



# 32-bit Arm<sup>®</sup> Cortex<sup>®</sup>-M7 280 MHz MCUs, 128-Kbyte Flash memory, 1.4-Mbyte RAM, 46 com. and analog interfaces, SMPS, crypto



LQFP64 (10 x 10 mm) LQFP100 (14 x 14 mm) LQFP144 (20x20 mm) LQFP176 (24 x 24 mm)



#### **Features**

#### Includes ST state-of-the-art patented technology

#### Core

 32-bit Arm® Cortex®-M7 core with double-precision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache allowing to fill one cache line in a single access from the 128-bit embedded Flash memory; frequency up to 280 MHz, MPU, 599 DMIPS/ 2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

#### **Memories**

- 128 Kbytes of Flash memory plus 1 Kbyte of OTP memory
- ~1.4 Mbytes of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 1.18 Mbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain
- 2x Octo-SPI memory interfaces with on-the-fly decryption, I/O multiplexing and support for serial PSRAM/NOR, Hyper RAM/Flash frame formats, running up to 140 MHz in SRD mode and up to 110 MHz in DTR mode
- Flexible external memory controller with up to 32-bit data bus:
  - SRAM, PSRAM, NOR Flash memory clocked up to 125 MHz in Synchronous mode
  - SDRAM/LPSDR SDRAM
  - 8/16-bit NAND Flash memories
- CRC calculation unit

#### **Security**

 ROP, PC-ROP, active tamper, secure firmware upgrade support, Secure access mode

#### General-purpose input/outputs

- Up to 138 I/O ports with interrupt capability
  - Fast I/Os capable of up to 133 MHz
  - Up to 164 5-V-tolerant I/Os

#### Low-power consumption

- Stop: down to 32 µA with full RAM retention
- Standby: 2.8 μA (Backup SRAM OFF, RTC/LSE ON, PDR OFF)
- V<sub>BAT</sub>: 0.8 μA (RTC and LSE ON)

#### **Clock management**

- Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI
- External oscillators: 4-50 MHz HSE, 32.768 kHz LSE
- 3× PLLs (1 for the system clock, 2 for kernel clocks) with fractional mode

# Product summary

STM32H7B0xB

STM32H7B0AB, STM32H7B0IB, STM32H7B0RB, STM32H7B0ZB, STM32H7B0VB



#### Reset and power management

- 2 separate power domains, which can be independently clock gated to maximize power efficiency:
  - CPU domain (CD) for Arm<sup>®</sup> Cortex<sup>®</sup> core and its peripherals, which can be independently switched in Retention mode
  - Smart run domain (SRD) for reset and clock control, power management and some peripherals
- 1.62 to 3.6 V application supply and I/Os
- · POR, PDR, PVD and BOR
- Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs
- · Dedicated SDMMC power supply
- High power efficiency SMPS step-down converter regulator to directly supply V<sub>CORE</sub> or an external circuitry
- Embedded regulator (LDO) with configurable scalable output to supply the digital circuitry
- · Voltage scaling in Run and Stop mode
- Backup regulator (~0.9 V)
- Low-power modes: Sleep, Stop and Standby
- V<sub>BAT</sub> battery operating mode with charging capability
- · CPU and domain power state monitoring pins

#### Interconnect matrix

- 3 bus matrices (1 AXI and 2 AHB)
- Bridges (5× AHB2APB, 3× AXI2AHB)

#### 5 DMA controllers to unload the CPU

- 1× high-speed general-purpose master direct memory access controller (MDMA)
- 2× dual-port DMAs with FIFO and request router capabilities
- 1× basic DMA with request router capabilities
- 1x basic DMA dedicated to DFSDM

#### Up to 35 communication peripherals

- 4× I2C FM+ interfaces (SMBus/PMBus)
- 5× USART/5x UARTs (ISO7816 interface, LIN, IrDA, modem control) and 1x LPUART
- 6× SPIs, including 4 with muxed full-duplex I2S audio class accuracy via internal audio PLL or external clock and 1 x SPI/I2S in LP domain (up to 125 MHz)
- 2x SAIs (serial audio interface)
- · SPDIFRX interface
- SWPMI single-wire protocol master interface
- · MDIO Slave interface
- 2× SD/SDIO/MMC interfaces (up to 133 MHz)
- 2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN)
- 1× USB OTG interfaces (1HS/FS)
- HDMI-CEC
- 8- to 14-bit camera interface up to 80 MHz
- 8-/16-bit parallel synchronous data input/output slave interface (PSSI)

DS13196 - Rev 6 page 2/199



#### 11 analog peripherals

- 2× ADCs with 16-bit max. resolution (up to 24 channels, up to 3.6 MSPS)
- 1× analog and 1x digital temperature sensors
- 1× 12-bit single-channel DAC (in SRD domain) + 1× 12-bit dual-channel DAC
- 2× ultra-low-power comparators
- 2× operational amplifiers (8 MHz bandwidth)
- 2× digital filters for sigma delta modulator (DFSDM), 1x with 8 channels/8 filters and 1x in SRD domain with 2 channels/1 filter

#### **Graphics**

- LCD-TFT controller up to XGA resolution
- Chrom-ART graphical hardware Accelerator (DMA2D) to reduce CPU load
- Hardware JPEG Codec
- Chrom-GRC<sup>™</sup> (GFXMMU)

#### Up to 19 timers and 2 watchdogs

- 2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 280 MHz)
- 2× 16-bit advanced motor control timers (up to 280 MHz)
- 10× 16-bit general-purpose timers (up to 280 MHz)
- 3× 16-bit low-power timers (up to 280 MHz)
- 2× watchdogs (independent and window)
- 1× SysTick timer
- RTC with sub-second accuracy and hardware calendar

#### Cryptographic acceleration

- AES chaining modes: ECB,CBC,CTR,GCM,CCM for 128, 192 or 256
- HASH (MD5, SHA-1, SHA-2), HMAC
- 2x OTFDEC AES-128 in CTR mode for Octo-SPI memory encryption/decryption
- 1x 32-bit, NIST SP 800-90B compliant, true random generator

#### **Debug mode**

- SWD and JTAG interfaces
- 4 KB Embedded Trace Buffer

#### 96-bit unique ID

#### All packages are ECOPACK2 compliant

DS13196 - Rev 6 page 3/199



### 1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32H7B0xB microcontrollers.

This document should be read in conjunction with the STM32H7B0xB reference manual (RM0455). The reference manual is available from the STMicroelectronics website .

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32H7B0xB errata sheet (ES0478), available on the STMicroelectronics website .

For information on the Arm<sup>®</sup> Cortex<sup>®</sup>-M7 core, refer to the Cortex<sup>®</sup>-M7 Technical Reference Manual, available from the www.arm.com website

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

DS13196 - Rev 6 page 4/199



#### 2 Description

STM32H7B0xB devices are based on the high-performance Arm<sup>®</sup> Cortex<sup>®</sup>-M7 32-bit RISC core operating at up to 280 MHz. The Cortex<sup>®</sup> -M7 core features a floating point unit (FPU) which supports Arm<sup>®</sup> double-precision (IEEE 754 compliant) and single-precision data-processing instructions and data types. STM32H7B0xB devices support a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.

STM32H7B0xB devices incorporate high-speed embedded memories with a Flash memory of 128 Kbytes, around 1.4 Mbyte of RAM (including 192 Kbytes of TCM RAM, 1.18 Mbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to four APB buses, three AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.

All the devices offer two ADCs, two DACs (one dual and one single DAC), two ultra-low power comparators, a low-power RTC, 12 general-purpose 16-bit timers, two PWM timers for motor control, three low-power timers, a true random number generator (RNG), and a cryptographic acceleration cell and a HASH processor. The devices support nine digital filters for external sigma delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

- · Standard peripherals
  - Four I2Cs
  - Five USARTs, five UARTs and one LPUART
  - Six SPIs, four I2Ss in full-duplex mode. To achieve audio class accuracy, the I<sup>2</sup>S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
  - Two SAI serial audio interfaces, out of which one with PDM
  - One SPDIFRX interface
  - One single wire protocol master interface (SWPMI)
  - One 16-bit parallel synchronous slave interface (PSSI) sharing the same interface as the digital camera)
  - Management Data Input/Output (MDIO) slaves
  - Two SDMMC interfaces (one can be supplied from a supply voltage separate from that of all other I/Os)
  - A USB OTG high-speed with full-speed capability (with the ULPI)
  - One FDCAN plus one TT-CAN interface
  - Chrom-ART Accelerator
  - HDMI-CEC
- Advanced peripherals including
  - A flexible memory control (FMC) interface
  - Two octo-SPI memory interface with on-the-fly decryption (OTFDEC)
  - A digital camera interface for CMOS sensors (DCMI)
  - A graphic memory management unit (GFXMMU)
  - An LCD-TFT display controller (LTDC)
  - A JPEG hardware compressor/decompressor

Refer to Table 1. STM32H7B0xB features and peripheral counts for the list of peripherals available on each part number.

STM32H7B0xB devices operate in the -40 to +85 °C ambient temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2 Power supply supervisor) and connecting the PDR\_ON pin to V<sub>SS</sub>. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

The USB OTG\_HS/FS interfaces can be supplied either by the integrated USB regulator or through a separate supply input.

A dedicated supply input is available for one of the SDMMC interface for package with more than 100 pins. It allows running from a different voltage level than all other I/Os.

A comprehensive set of power-saving mode allows the design of low-power applications.

The CPU and domain states can be directly monitored on some GPIOs configured as alternate functions. STM32H7B0xB devices are offers in several packages ranging from 64 pins to 225 pins/balls. The set of included peripherals changes with the device chosen.

DS13196 - Rev 6 page 5/199



These features make the STM32H7B0xB microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- · Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile applications, Internet of Things
- · Wearable devices: smart watches.

Figure 1. STM32H7B0xB block diagram shows the general block diagram of the device family.

DS13196 - Rev 6 page 6/199

Table 1. STM32H7B0xB features and peripheral counts

| Peripherals             |                                        | SMPS (1)                |              | no-SMPS      |                           |                         |              |  |
|-------------------------|----------------------------------------|-------------------------|--------------|--------------|---------------------------|-------------------------|--------------|--|
|                         |                                        | STM32H7B0IBK            | STM32H7B0ABI | STM32H7B0IBT | STM32H7B0ZBT              | STM32H7B0VBT            | STM32H7B0RBT |  |
| Flash memory (Kbytes)   |                                        | 128                     |              |              |                           |                         |              |  |
|                         | SRAM on AXI                            |                         | 1024         |              |                           |                         |              |  |
| SRAM in Kbytes          | SRAM on AHB (CD domain)                |                         | 128          |              |                           |                         |              |  |
|                         | SRAM on AHB (SRD domain)               |                         |              | 32           |                           |                         |              |  |
| TCM RAM in Kbytes       | ITCM RAM (instruction)                 |                         |              | 64           |                           |                         |              |  |
| TOW RAW III Royles      | DTCM RAM (data)                        |                         |              | 128          |                           |                         |              |  |
| Backup                  | SRAM (Kbytes)                          |                         |              | 4            |                           |                         |              |  |
|                         | Interface                              | 1                       |              |              |                           |                         |              |  |
|                         | NOR Flash memory/RAM controller        | <b>x</b> <sup>(2)</sup> |              | x            | <b>x</b> <sup>(2)</sup> - |                         |              |  |
| FMC                     | Multiplexed I/O NOR Flash memory       | x                       |              | X            |                           | <b>X</b> <sup>(2)</sup> | -            |  |
|                         | 16-bit NAND Flash memory               | x                       |              | x            |                           | <b>x</b> <sup>(2)</sup> | -            |  |
|                         | SDRAM controller                       | x <sup>(2)</sup>        |              | x            | <b>x</b> <sup>(2)</sup>   | -                       |              |  |
| Octo-SI                 | PI interfaces <sup>(3)</sup>           | 2 <sup>(4)</sup>        |              | 2            | 2(4)                      | 1 Octo-SPI              | 1 Quad-SPI   |  |
|                         | General-purpose                        | 10                      |              |              |                           |                         |              |  |
| T                       | Advanced-control (PWM)                 | 2                       |              |              |                           |                         |              |  |
| Timers                  | Basic                                  | 2                       |              |              |                           |                         |              |  |
|                         | Low-power                              | 3                       |              |              |                           |                         |              |  |
| Window watchdog         | Window watchdog / independent watchdog |                         | 1/1          |              |                           |                         |              |  |
| Real-time Clock (RTC)   |                                        | 1                       |              |              |                           |                         |              |  |
| T(5)                    | Passive                                | 2                       |              | 3 2          |                           |                         |              |  |
| Tamper pins (5)         | Active                                 | 1                       |              | 2 1          |                           |                         |              |  |
| Random number generator |                                        | 1                       |              |              |                           |                         |              |  |
| Cryptogra               | phic accelerator                       | 1                       |              |              |                           |                         |              |  |
| Hash pro                | Hash processor (HASH)                  |                         | 1            |              |                           |                         |              |  |

| Peripherals                         |                                    | SMPS (1)                                         |              | no-SMPS            |              |                     |                                    |  |  |
|-------------------------------------|------------------------------------|--------------------------------------------------|--------------|--------------------|--------------|---------------------|------------------------------------|--|--|
|                                     |                                    | STM32H7B0IBK                                     | STM32H7B0ABI | STM32H7B0IBT       | STM32H7B0ZBT | STM32H7B0VBT        | STM32H7B0RBT                       |  |  |
| On-the-fly decryption               | for external Octo-SPI memory       | 2                                                |              | 2                  |              | 2                   | 2 <sup>(2)</sup>                   |  |  |
|                                     | SPI/I2S (6)                        | 6/4                                              |              | 6/4                |              | 5/4                 | 4/4                                |  |  |
|                                     | I2C                                |                                                  |              | 4                  | 4            |                     |                                    |  |  |
|                                     | USART/UART                         | 5/5                                              |              | 5                  | /5           | 5 <sup>(2)</sup> /5 | 4 <sup>(2)</sup> /3 <sup>(2)</sup> |  |  |
|                                     | /LPUART                            | /1                                               |              | /                  | 1            | /1                  | /1                                 |  |  |
|                                     | SAI/PDM                            | 2/1                                              |              | 2                  | /1           | 2 <sup>(2)</sup> /1 | 1 <sup>(2)</sup> /-                |  |  |
| Communi-cation interfaces           | SPDIFRX                            | 4 inpu                                           | uts          |                    | 4 in         | puts                |                                    |  |  |
|                                     | SWPMI                              | 1                                                |              |                    |              |                     |                                    |  |  |
|                                     | MDIOS                              |                                                  |              | 1                  |              |                     |                                    |  |  |
|                                     | SDMMC                              | 2                                                |              | 2                  |              | 2(                  | 7)                                 |  |  |
|                                     | FDCAN/TT-CAN                       |                                                  |              | 1/1                |              |                     | 1/1 <sup>(2)</sup>                 |  |  |
|                                     | USB OTG_HS ULPI, OTG_FS<br>PHY     | 1 1                                              |              | 1 1                |              | (8)                 | 1 (9)                              |  |  |
| Digital camera                      | Digital camera interface/PSSI (10) |                                                  | 1/1 1/1      |                    |              |                     |                                    |  |  |
| LCD-TFT d                           | lisplay controller                 | 1                                                |              |                    |              |                     |                                    |  |  |
| JPE                                 | G Codec                            | 1                                                |              |                    |              |                     |                                    |  |  |
| Chrom-ART Ac                        | ccelerator (DMA2D)                 | 1                                                |              |                    |              |                     |                                    |  |  |
| Graphic memory mar                  | nagement unit (GFXMMU)             | 1                                                |              |                    |              |                     |                                    |  |  |
| HD                                  | HDMI CEC                           |                                                  | 1            |                    |              |                     |                                    |  |  |
| D                                   | DFSDM                              |                                                  | 2            |                    |              |                     |                                    |  |  |
| Number of filters for DFSDM1/DFSDM2 |                                    | 8/1                                              |              | 8/1                |              |                     | 7/1                                |  |  |
|                                     | 8 to 16 bits                       |                                                  |              | 2                  |              |                     |                                    |  |  |
| ADCs                                | Number of channels                 | 24 24                                            |              | 20 <sup>(11)</sup> |              |                     | 11)                                |  |  |
| B40                                 | 12 bits                            |                                                  | 1            | 2                  |              |                     |                                    |  |  |
| DACs Number of channels             |                                    | 3 (1 single channel + 1 dual-channel interfaces) |              |                    |              |                     |                                    |  |  |
| Comparators                         |                                    | 2                                                |              | 2                  |              |                     | 1                                  |  |  |
| Operational amplifier               |                                    | 2                                                |              | 2                  |              |                     | 1                                  |  |  |
|                                     | GPIOs                              | 128                                              | 121          | 138                | 112          | 80                  | 49                                 |  |  |

| Peripherals            |                                        | SMPS (1)                                                                                                                                         |                                         | no-SMPS      |                       |              |              |  |  |
|------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------------|--------------|--------------|--|--|
|                        |                                        | STM32H7B0IBK                                                                                                                                     | STM32H7B0ABI                            | STM32H7B0IBT | STM32H7B0ZBT          | STM32H7B0VBT | STM32H7B0RBT |  |  |
|                        | Wakeup pins                            | 4                                                                                                                                                |                                         | 6            |                       | 4            |              |  |  |
| Maximum CP             | U frequency (MHz)                      | 280                                                                                                                                              |                                         |              |                       |              |              |  |  |
| SMPS step              | SMPS step-down converter               |                                                                                                                                                  |                                         | -            |                       |              |              |  |  |
| USB inte               | USB internal regulator                 |                                                                                                                                                  | 1 -                                     |              |                       |              |              |  |  |
| USB sepa               | USB separate supply pad                |                                                                                                                                                  | 1 -                                     |              |                       |              |              |  |  |
| VDDMMC se              | VDDMMC separate supply pad             |                                                                                                                                                  | 1 -                                     |              |                       |              |              |  |  |
| VREF+ separate         | VREF+ separate pad and internal buffer |                                                                                                                                                  |                                         | 1 1          |                       |              | -            |  |  |
| Opera                  | Operating voltage                      |                                                                                                                                                  | 1.62 to 3.6 V (12)                      |              |                       |              |              |  |  |
| 2                      |                                        |                                                                                                                                                  | Ambient temperature range: −40 to 85 °C |              |                       |              |              |  |  |
| Operating temperatures |                                        | Junction temperature range: −40 to 130 °C <sup>(13)</sup>                                                                                        |                                         |              |                       |              |              |  |  |
| Pa                     | Packages                               |                                                                                                                                                  | UFBGA169                                | LQFP176      | LQFP144               | LQFP100      | LQFP64       |  |  |
| Bootloader             |                                        | USART, I2C, SPI, USB-<br>DFU, FDCAN USB-DFU, FDCAN USB-DFU, FDCAN USB-DFU, FDCAN USART, I2C, SPI, USB-DFU, FDCAN USART, I2C, SPI, USB-DFU, FDCAN |                                         |              | ART, I2C, SPI, USB-DI | =U           |              |  |  |

- 1. The devices with SMPS correspond to commercial code STM32H7B0xIxxQ.
- 2. For limitations on peripheral features depending on packages, check the available pins/balls in Table 7. STM32H7B0xB pin/ball definition.
- To maximize the performance, the I/O high-speed at low-voltage feature (HSLV) must be activated when V<sub>DD</sub> < 2.7 V. This feature is not available on all I/Os (see Table 87. OCTOSPI characteristics in SDR mode, and Table 88. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus).
- 4. The I/O high-speed at low-voltage feature (HSLV) at V<sub>DD</sub> < 2.7 V is not available for OCTOSPIM\_P2.
- 5. A tamper pin can be configured either as passive or active (not both).
- 6. SPI1, SPI2, SPI3 and SPI6 interfaces give the flexibility to work in an exclusive way in either SPI mode or I2S audio mode.
- 7. Dedicated I/O supply pad (VDDMMC) or external level shifter are not supported.
- 8. The ULPI interface is supported. PC2 and PC3 are available on PC2\_C and PC3\_C, respectively, by closing the internal analog switch (see Table 7. STM32H7B0xB pin/ball definition).
- 9. The ULPI interface is not supported.
- 10. DCMI and PSSI cannot be used simultaneously since they share the same circuitry.
- 11. For limitations on fast pads or channels depending on packages, check to the available pins/balls in Table 7. STM32H7B0xB pin/ball definition.
- 12.  $V_{DD}/V_{DDA}$  can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2 Power supply supervisor) and connecting PDR\_ON pin to  $V_{SS}$ . Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.
- 13. The junction temperature is limited to 105 °C in VOS0 voltage range.





Figure 1. STM32H7B0xB block diagram

DS13196 - Rev 6 page 10/199



#### 3 Functional overview

#### 3.1 Arm® Cortex®-M7 with FPU

The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency.

The Cortex®-M7 processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- · Dynamic branch prediction
- Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
- 64-bit AXI4 interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The following memory interfaces are supported:

- Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
- · Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses
- AXI Bus interface to optimize Burst transfers
- Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

Refer to Figure 1. STM32H7B0xB block diagram for the general block diagram of the STM32H7B0xB family.

Note: Cortex<sup>®</sup>-M7 with FPU core is binary compatible with the Cortex<sup>®</sup>-M4 core.

#### 3.2 Memory protection unit (MPU)

The memory protection unit (MPU) manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions.

The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory.

When an unauthorized access is performed, a memory management exception is generated.

#### 3.3 Memories

#### 3.3.1 Embedded Flash memory

The STM32H7B0xB devices embed up to 128 Kbytes of Flash memory that can be used for storing programs and data.

The Flash memory is organized as 137-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:

- One Flash word (4 words, 16 bytes or 128 bits)
- 9 ECC bits.

The Flash memory is organized as follows:

- 128 Kbytes of user Flash memory, containing 16 user sectors of 8 Kbytes each
- 128 Kbytes of System Flash memory from which the device can boot.
- 1 Kbyte of OTP (one-time programmable) memory containing option bytes for user configuration.

DS13196 - Rev 6 page 11/199



#### 3.3.2 Secure access mode

In addition to other typical memory protection mechanism (RDP, PCROP), STM32H7B0xB devices embed the Secure access mode, an enhanced security feature. This mode allows developing user-defined secure services by ensuring, on the one hand code and data protection and on the other hand code safe execution.

Two types of secure services are available:

STMicroelectronics Root Secure Services:

These services are embedded in System memory. They provide a secure solution for firmware and third-party modules installation. These services rely on cryptographic algorithms based on a device unique private key.

User-defined secure services:

These services are embedded in user Flash memory. Examples of user secure services are proprietary user firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level of protection.

The secure firmware is embedded in specific user Flash memory areas configured through option bytes.

Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe execution. Once executed, the corresponding code and data are no more accessible.

The above secure services are available only for Cortex<sup>®</sup>-M7 core operating in Secure access mode. The other masters cannot access the option bytes involved in Secure access mode settings or the Flash secured areas.

#### 3.3.3 Embedded SRAM

All devices feature:

- 1 Mbyte of AXI-SRAM mapped onto AXI bus matrix in CPU domain (CD) split into:
  - AXI-SRAM1: 256 Kbytes
  - AXI-SRAM2: 384 Kbytes
  - AXI-SRAM3: 384 Kbytes
- 128 Kbytes of AHB-RAM mapped onto AHB bus matrix in CPU domain (CD) split into:
  - AHB-SRAM1: 64 Kbytes
  - AHB-SRAM2: 64 Kbytes
- 32 Kbytes of SRD-SRAM mapped in Smart Run Domain (SRD)
- 4 Kbytes of backup SRAM

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or  $V_{BAT}$  mode.

RAM mapped to TCM interface (ITCM and DTCM):

Both ITCM and DTCM RAMs are 0 wait state memories that are accessible from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the CPU(AHBP).

64 Kbytes of ITCM-RAM (instruction RAM)

This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU.

128 Kbytes of DTCM-RAM (2x 64 Kbyte DTCM-RAMs on 2x32-bit DTCM ports)

The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex<sup>®</sup>-M7 dual issue capability.

#### 3.4 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT\_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:

- All Flash address space
- All RAM address space: ITCM, DTCM RAMs and SRAMs
- The system memory bootloader

The boot loader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU, FDCAN). Refer to *STM32 microcontroller system memory boot mode application note* (AN2606) for details.

DS13196 - Rev 6 page 12/199



#### 3.5 Power supply management

#### 3.5.1 Power supply scheme

- V<sub>DD</sub> = 1.62 to 3.6 V: external power supply for I/Os, provided externally through V<sub>DD</sub> pins.
- V<sub>DDLDO</sub> = 1.62 to 3.6 V: supply voltage for the internal regulator supplying V<sub>CORE</sub>
- V<sub>DDA</sub> = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL.
- V<sub>DD33USB</sub> and V<sub>DD50USB</sub>:

 $V_{DD50USB}$  can be supplied through the USB cable to generate the  $V_{DD33USB}$  via the USB internal regulator. This allows supporting a  $V_{DD}$  supply different from 3.3 V.

The USB regulator can be bypassed to supply directly  $V_{DD33USB}$  if  $V_{DD}$  = 3.3 V.

- V<sub>DDMMC</sub> = 1.62 to 3.6 V external power supply for independent I/Os. V<sub>DDMMC</sub> can be higher than V<sub>DD</sub>.
   VDDMMC pin should be tied to VDD when it is not used.
- $V_{BAT}$  = 1.2 to 3.6 V: power supply for the  $V_{SW}$  domain when  $V_{DD}$  is not present.
- V<sub>CAP</sub>: V<sub>CORE</sub> supply, which value depends on voltage scaling (0.74 V, 0.9 V, 1.0 V, 1.1 V, 1.2 V or 1.3 V). It is configured through VOS bits in PWR\_CR3 register. The V<sub>CORE</sub> domain is split into two domains the CPU domain (CD) and the Smart Run Domain (SRD).
  - CD domain containing most of the peripherals and the Arm<sup>®</sup> Cortex<sup>®</sup>-M7 core
  - SRD domain containing some peripherals and the system control.
- V<sub>DDSMPS</sub> = 1.62 to 3.6 V: step-down converter power supply
- V<sub>LXSMPS</sub> = V<sub>CORE</sub> or 1.8 to 2.5 V: external regulated step-down converter output
- V<sub>FBSMPS</sub> = V<sub>CORE</sub> or 1.8 to 2.5 V: external step-down converter feedback voltage sense input

Note: For I/O speed optimization at low V<sub>DD</sub> supply, refer to Section 3.8 General-purpose input/outputs (GPIOs).

The features available on the device depend on the package (refer to Table 1. STM32H7B0xB features and peripheral counts).

During power-up and power-down phases, the following power sequence requirements must be respected (see Figure 2. Power-up/power-down sequence):

- When  $V_{DD}$  is below 1 V, other power supplies ( $V_{DDA}$ ,  $V_{DD33USB}$  and  $V_{DD50USB}$ ) must remain below  $V_{DD}$  + 300 mV
- When V<sub>DD</sub> is above 1 V, all power supplies are independent (except for V<sub>DDSMPS</sub>, which must remain at the same level as V<sub>DD</sub>).

During the power-down phase,  $V_{DD}$  can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

DS13196 - Rev 6 page 13/199





Figure 2. Power-up/power-down sequence

- 1.  $V_{DDx}$  refers to any power supply among  $V_{DDA}$ ,  $V_{DD33USB}$  and  $V_{DD50USB}$ .
- 2. V<sub>DD</sub> and V<sub>DDSMPS</sub> must be wired together into order to follow the same voltage sequence.

#### 3.5.2 Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

Power-on reset (POR)

The POR supervisor monitors  $V_{DD}$  power supply and compares it to a fixed threshold. The devices remain in reset mode when  $V_{DD}$  is below this threshold,

Power-down reset (PDR)

The PDR supervisor monitors  $V_{DD}$  power supply. A reset is generated when  $V_{DD}$  drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR\_ON pin.

Brownout reset (BOR)

The BOR supervisor monitors  $V_{DD}$  power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when  $V_{DD}$  drops below this threshold.

Programmable voltage detector (PVD)

The PVD monitors the  $V_{DD}$  power supply by comparing it with a threshold selected from a set of predefined values

It can also monitor the voltage level of the PVD\_IN pin by comparing it with an internal  $V_{REFINT}$  voltage reference level.

Analog voltage detector (AVD)

The AVD monitors the  $V_{DDA}$  power supply by comparing it with a threshold selected from a set of predefined values.

V<sub>BAT</sub> threshold

The V<sub>BAT</sub> battery voltage level can be monitored by comparing it with two thresholds levels.

Temperature threshold

A dedicated temperature sensor monitors the junction temperature and compare it with two threshold levels.

DS13196 - Rev 6 page 14/199



#### 3.5.3 Voltage regulator

The same voltage regulator supplies the two power domains (CD and SRD). The CD domain can be independently switched off.

Voltage regulator output can be adjusted according to application needs through six power supply levels:

- Run mode (VOS0 to VOS3)
  - Scale 0 and scale 1: high performance
  - Scale 2: medium performance and consumption
  - Scale 3: optimized performance and low-power consumption
- Stop mode (SVOS3 to SVOS5)
  - Scale 3: peripheral with wakeup from stop mode capabilities (UART, SPI, I2C, LPTIM) are operational
  - Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled

The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt.

#### 3.5.4 SMPS step-down converter

The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that provides lower power consumption than a conventional voltage regulator (LDO).

The step-down converter can be used to:

- Directly supply the V<sub>CORE</sub> domain
  - the SMPS step-down converter operating modes follow the device system operating modes (Run, Stop, Standby).
  - the SMPS step-down converter output voltage are set according to the selected VOS and SVOS bits (voltage scaling)
- Provide intermediate voltage level to supply the internal voltage regulator (LDO)
  - The SMPS step-down converter operating modes follow the device system operating modes (Run, Stop, Standby).
  - The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected step-down level
- Provide an external supply
  - The SMPS step-down converter is forced to external operating mode
  - The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected step-down level

The 1.8 V or 2.5 V SMPS step-down converter output voltage imposes a minimum  $V_{DDSMPS}$  supply of 2.5 V or 3.3 V, respectively. It defines indirectly the minimum  $V_{DD}$  supply and I/O level.

#### 3.6 Low-power modes

There are several ways to reduce power consumption on STM32H7B0xB:

- Decrease dynamic power consumption by slowing down the system clocks even in Run mode and individually clock gating the peripherals that are not used.
- Save power consumption when the CPU is idle, by selecting among the available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources.

The devices feature several low-power modes:

- System Run with CSleep (CPU clock stopped)
- Autonomous with CD domain in DStop (CPU and CPU Domain bus matrix clocks stopped)
- Autonomous with CD domain in DStop2 (CPU and CPU Domain bus matrix clocks stopped, CPU domain in retention mode)
- System Stop (SRD domain clocks stopped) and CD domain in DStop (CPU and CPU Domain bus matrix clocks stopped)
- System Stop (SRD domain clocks stopped) and CD domain in DStop2 (CPU and CPU Domain bus matrix clocks stopped, CPU domain in retention mode)
- Standby (System, CD and SRD domains powered down)

DS13196 - Rev 6 page 15/199



CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex<sup>®</sup>-M7 core is set after returning from an interrupt service routine.

The CPU domain can enter low-power mode (DStop or DStop2) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode.

If part of the domain is not in low-power mode, the domain remains in the current mode.

Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStop2 mode.

 System power mode
 CD domain power mode
 SRD domain power mode

 Run
 DRun/DStop/DStop2
 DRun

 Stop
 DStop/DStop2
 DStop

 Standby
 Standby
 Standby

Table 2. System vs domain low-power mode

Some GPIO pins can be used to monitor CPU and domain power states:

| Power state monitoring pins | Description                          |
|-----------------------------|--------------------------------------|
| PWR_CSLEEP                  | CPU clock OFF                        |
| PWR_CSTOP                   | CPU domain in low-power mode         |
| PWR NDSTOP2                 | CPLI domain retention mode selection |

Table 3. Overview of low-power mode monitoring pins

#### 3.7 Reset and clock controller (RCC)

The clock and reset controller is located in the SRD domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baud rate.

#### 3.7.1 Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs.

The RCC receives the following clock source inputs:

- Internal oscillators:
  - 64 MHz HSI clock (1% accuracy)
  - 48 MHz RC oscillator
  - 4 MHz CSI clock
  - 32 kHz LSI clock
- External oscillators:
  - 4-50 MHz HSE clock
  - 32.768 kHz LSE clock

The RCC provides three PLLs: one for system clock, two for kernel clocks.

The system starts on the HSI clock. The user application can then select the clock configuration.

A high precision can be achieved for the 48 MHz clock by using the embedded clock recovery system (CRS). It uses the USB SOF signal, the LSE or an external signal (SYNC) to fine tune the oscillator frequency on-the-fly.

DS13196 - Rev 6 page 16/199



#### 3.7.2 System reset sources

Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain.

A system reset is generated in the following cases:

- Power-on reset (pwr por rst)
- Brownout reset
- Low level on NRST pin (external reset)
- Window watchdog
- · Independent watchdog
- Software reset
- Low-power mode security reset
- Exit from Standby

#### 3.8 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

After reset, all GPIOs are in Analog mode to reduce power consumption.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To maximize the performance, the I/O high-speed feature, HSLV, must be activated at low device supply voltage. This is needed to achieve the performance required for peripherals such as the SDMMC, FMC and OCTOSPI. The GPIOs are divided into four groups which can be optimized separately (refer to the description of HSLVx bits of SYSCFG CCCSR register in RM0455).

The I/O high-speed feature must be used only when  $V_{DD}$  is lower than 2.7 V, and both the HSLV user option bits (VDDIO HSLV and VDDMMC HSLV) and HSLVx bits must be set to enable it (refer to RM0455 for details).

DS13196 - Rev 6 page 17/199

#### 3.9 Bus-interconnect matrix

The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see Figure 3. STM32H7B0xB bus matrix).



Figure 3. STM32H7B0xB bus matrix



#### 3.10 DMA controllers

The devices feature five DMA instances to unload CPU activity:

A master direct memory access (MDMA)

The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex®-M7 TCM memories.

The MDMA is located in the CD domain. It is able to interface with the other DMA controllers located in this domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly.

Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers.

- Two dual-port DMAs (DMA1, DMA2) located in the CD domain and connected to the AHB matrix, with FIFO and request router capabilities.
- One basic DMA (BDMA1) located in the CD domain and connected to the AHB matrix. This DMA is dedicated to the DFSDM (see Section 3.26 Digital filter for sigma-delta modulators (DFSDM))
- One basic DMA (BDMA2) located in the SRD domain, with request router capabilities.

The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event.

#### 3.11 Chrom-ART Accelerator (DMA2D)

The Chrom-Art Accelerator (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- · Rectangle filling with a fixed color
- · Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG decoder output.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

#### 3.12 Chrom-GRC™ (GFXMMU)

The Chrom-GRC<sup>™</sup> is a graphical oriented memory management unit aimed at:

- · Optimizing memory usage according to the display shape
- Manage cache linear accesses to the frame buffer
- · Prefetch data

The display shape is programmable to store only the visible image pixels.

A virtual memory space is provided which is seen by all system masters and can be physically mapped to any system memory.

An interrupt can be generated in case of buffer overflow or memory transfer error.

#### 3.13 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex<sup>®</sup>-M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining

DS13196 - Rev 6 page 19/199



- Processor context automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

#### 3.14 Extended interrupt and event controller (EXTI)

The EXTI controller performs interrupt and event management. In addition, it can wake up the processor, power domains and/or SRD domain from Stop mode.

The EXTI handles up to 89 independent event/interrupt lines split into 28 configurable events and 61 direct events.

Configurable events have dedicated pending flags, active edge selection, and software trigger capable.

Direct events provide interrupts or events from peripherals having a status flag.

#### 3.15 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

#### 3.16 Flexible memory controller (FMC)

The FMC controller main features are the following:

- Interface with static-memory mapped devices including:
  - Static random access memory (SRAM)
  - NOR Flash memory/OneNAND Flash memory
  - PSRAM (4 memory banks)
  - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- · Read FIFO for SDRAM controller
- The maximum FMC\_CLK/FMC\_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2.

#### 3.17 Octo-SPI memory interface (OCTOSPI)

The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal SPI memories. The STM32H7B0xB embeds two separate Octo-SPI interfaces.

Each OCTOSPI instance supports single/dual/quad/octal SPI formats.

Multiplex of single/dual/quad/octal SPI over the same bus can be achieved using the integrated I/O manager.

The OCTOSPI can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the OCTOSPI registers
- Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external memory is memory mapped and it is seen by the system as if it was an
  internal memory supporting both read and write operations.

The OCTOSPI support two frame formats supported by most external serial memories such as serial PSRAMs, serial NOR Flash memories, Hyper RAMs and Hyper Flash memories:

- The classical frame format with the command, address, alternate byte, dummy cycles and data phase
- The HyperBus<sup>™</sup> frame format.

DS13196 - Rev 6 page 20/199



Multichip package (MCP) combining any of the above mentioned memory types can also be supported.

#### 3.18 Analog-to-digital converters (ADCs)

The STM32H7B0xB devices embed two analog-to-digital converters, whose resolution can be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 24 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a destination location without any software action.

In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, and LPTIM1 timers.

#### 3.19 Analog temperature sensor

The STM32H7B0xB embeds an analog temperature sensor that generates a voltage ( $V_{TS}$ ) that varies linearly with the temperature. This temperature sensor is internally connected to ADC2\_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device junction temperature ranging from -40 to +125 °C.

The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is accessible in read-only mode.

#### 3.20 Digital temperature sensor (DTS)

The STM32H7B0xB embeds a sensor that converts the temperature into a square wave which frequency is proportional to the temperature. The PCLK or the LSE clock can be used as reference clock for the measurements. A formula given in the product reference manual (RM0455) allows to calculate the temperature according to the measured frequency stored in the DTS DR register.

#### $V_{BAT}$ operation

The V<sub>BAT</sub> power domain contains the RTC, the backup registers and the backup SRAM.

To optimize battery duration, this power domain is supplied by  $V_{DD}$  when available or by the voltage applied on VBAT pin (when  $V_{DD}$  supply is not present).  $V_{BAT}$  power is switched when the PDR detects that  $V_{DD}$  dropped below the PDR level.

The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by  $V_{DD}$ , in which case, the  $V_{DD}$  mode is not functional.

V<sub>BAT</sub> operation is activated when V<sub>DD</sub> is not present.

The VBAT pin supplies the RTC, the backup registers and the backup SRAM.

The devices embed an internal V<sub>BAT</sub> battery charging circuitry that can be activated when V<sub>DD</sub> is present.

Note: When the microcontroller is supplied from  $V_{BAT}$ , external interrupts and RTC alarm/events do not exit it from  $V_{BAT}$  operation.

When PDR\_ON pin is connected to  $V_{SS}$  (Internal Reset OFF), the  $V_{BAT}$  functionality is no more available and  $V_{BAT}$  pin should be connected to VDD.

#### 3.22 Digital-to-analog converters (DAC)

The devices features one dual-channel DAC (DAC1), located in the CD domain, plus one single-channel DAC (DAC2), located in the SRD domain.

DS13196 - Rev 6 page 21/199



The three 12-bit buffered DAC channels can be used to convert three digital signals into three analog voltage signal outputs.

The following feature are supported:

- three DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- · Triple DAC channel independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- external triggers for conversion
- input voltage reference V<sub>RFF+</sub> or internal VREFBUF reference.

The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

#### 3.23 Voltage reference buffer (VREFBUF)

The built-in voltage reference buffer can be used as voltage reference for ADCs and DACs, as well as voltage reference for external components through the VREF+ pin.

Five different voltages are supported (refer to the reference manual for details).

#### 3.24 Ultra-low-power comparators (COMP)

The STM32H7B0xB devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity.

The reference voltage can be one of the following:

- An external I/O
- A DAC output channel
- An internal reference voltage or submultiple (1/4, 1/2, 3/4)
- The analog temperature sensor
- The V<sub>BAT</sub>/4 supply.

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator.

#### 3.25 Operational amplifiers (OPAMP)

The STM32H7B0xB devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability, and two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15.

The operational amplifier main features are:

- PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15
- Up to two positive inputs connected to DAC
- Output connected to internal ADC
- Low input bias current down to 1 nA
- Low input offset voltage down to 1.5 mV
- Gain bandwidth up to 8 MHz

The devices embed two operational amplifiers (OPMAP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15.

DS13196 - Rev 6 page 22/199



#### 3.26 Digital filter for sigma-delta modulators (DFSDM)

The device embeds two DFSDM interfaces:

DSFDM1

It is located in the CD domain and features eight external digital serial interfaces (channels) and eight digital filters, or alternately eight internal parallel inputs.

DSFDM2

It is located in the SRD domain. DFSDM2 is a lite version including two external digital serial interfaces (channels) and one digital filters.

The DFSDM peripherals interface the external  $\Sigma\Delta$  modulators to microcontroller and then perform digital filtering of the received data streams (which represent analog value on  $\Sigma\Delta$  modulators inputs). DFSDMs can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDMs feature optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various  $\Sigma\Delta$  modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution

The DFSDM peripherals support:

- Multiplexed input digital serial channels:
  - configurable SPI interface to connect various SD modulator(s)
  - configurable Manchester coded 1 wire interface support
  - PDM (Pulse Density Modulation) microphone input support
  - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
  - clock output for SD modulator(s): 0..20 MHz
- Alternative inputs from eight internal digital parallel channels (up to 16 bit input resolution):
  - internal sources: ADC data or memory data streams (DMA)
- Digital filter modules with adjustable digital signal processing:
  - Sinc<sup>x</sup> filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
  - integrator: oversampling ratio (1..256)
- Up to 24-bit output data resolution, signed output data format
- Automatic data offset correction (offset stored in register by user)
- Continuous or single conversion
- Start-of-conversion triggered by:
  - software trigger
  - internal timers
  - external events
  - start-of-conversion synchronously with first digital filter module (DFSDM0)
- · Analog watchdog feature:
  - low value and high value data threshold registers
  - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
  - input from final output data or from selected input digital serial channels
  - continuous monitoring independently from standard conversion
- Short circuit detector to detect saturated analog input values (bottom and top range):
  - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
  - monitoring continuously each input serial channel
- Break signal generation on analog watchdog event or on short circuit detector event
- Extremes detector:
  - storage of minimum and maximum values of final conversion data
  - refreshed by software
- DMA capability to read the final conversion data
- · Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence

DS13196 - Rev 6 page 23/199



- "Regular" or "injected" conversions:
  - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
  - "injected" conversions for precise timing and with high conversion priority

#### 3.27 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- · Capability to automatically crop the image

#### 3.28 Parallel synchronous slave interface (PSSI)

The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It allows the transmitter to send a data valid signal to indicate when the data is valid, and the receiver to output a flow control signal to indicate when it is ready to sample the data.

The PSSI main features are:

- Slave mode operation
- 8- or 16-bit parallel data input or output
- 8-word (32-byte) FIFO
- Data enable (DE) alternate function input and Ready (RDY) alternate function output.

When enabled, these signals can either allow the transmitter to indicate when the data is valid or the receiver to indicate when it is ready to sample the data, or both.

The PSSI shares most of the circuitry with the digital camera interface (DCMI). It thus cannot be used simultaneously with the DCMI.

#### 3.29 LCD-TFT display controller (LTDC)

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events
- AXI master interface with burst of 16 words

#### 3.30 JPEG codec (JPEG)

The JPEG codec can encode and decode a JPEG stream as defined in the

ISO/IEC10918-1 specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers.

The JPEG codec main features are as follows:

- 8-bit/channel pixel depths
- Single clock per pixel encoding and decoding
- Support for JPEG header generation and parsing

DS13196 - Rev 6 page 24/199



- Up to four programmable quantization tables
- Fully programmable Huffman tables (two AC and two DC)
- Fully programmable minimum coded unit (MCU)
- Encode/decode support (non simultaneous)
- Single clock Huffman coding and decoding
- Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
- Stallable design
- Support for single greyscale component
- · Ability to enable/disable header processing
- Internal register interface
- · Fully synchronous design
- · Configuration for high-speed decode mode

#### 3.31 True random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

#### 3.32 Cryptographic acceleration (CRYP and HASH)

The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually required to ensure confidentiality, authentication, data integrity and non-repudiation when exchanging messages with a peer:

- Encryption/Decryption
  - DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key
  - AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining algorithms, 128, 192 or 256-bit key
- Universal HASH
  - SHA-1 and SHA-2 (secure HASH algorithms)
  - MD5
  - HMAC

The cryptographic accelerator supports DMA request generation.

#### 3.33 On-the-fly decryption engine (OTFDEC)

The embedded OTFDEC decrypts in real-time the encrypted content stored in the external Octo-SPI memories used in Memory-mapped mode.

The OTFDEC uses the AES-128 algorithm in counter mode (CTR).

Code execution on external Octo-SPI memories can be protected against fault injection thanks to STMicroelectronics enhanced encryption mode (refer to RM0455 for details).

The OTFDEC main features are as follow:

- On-the-fly 128-bit decryption during STM32 Octo-SPI read operations (single or multiple).
  - AES-CTR algorithm with keystream FIFO (depth= 4)
  - Support for any read size
- Up to four independent encrypted regions
  - Region definition granularity: 4096 bytes
  - Region configuration write locking mechanism
  - Two optional decryption modes: execute-only and execute-never
- 128-bit key for each region, two-byte firmware version, and eight-byte application-defined nonce

DS13196 - Rev 6 page 25/199



- Encryption keys confidentiality and integrity protection
  - Write only registers with software locking mechanism
  - Availability of 8-bit CRC as public key information
- Support for STM32 Octo-SPI prefetching mechanism.
- · Encryption mode

#### 3.34 Timers and watchdogs

The devices include two advanced-control timers, ten general-purpose timers, two basic timers, three low-power timers, two watchdogs and a SysTick timer.

All timer counters can be frozen in Debug mode.

Table 4. Timer feature comparison compares the features of the advanced-control, general-purpose and basic timers.

Table 4. Timer feature comparison

| Timer type           | Timer                        | Counter<br>resolution | Counter<br>type      | Prescaler factor                      | DMA<br>request<br>generation | Capture/<br>compare<br>channels | Comple-<br>mentary<br>output | Max<br>interface<br>clock<br>(MHz) | Max<br>timer<br>clock<br>(MHz) |
|----------------------|------------------------------|-----------------------|----------------------|---------------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------------|--------------------------------|
| Advanced-<br>control | TIM1,<br>TIM8                | 16-bit                | Up, Down,<br>Up/down | Any integer<br>between 1 and<br>65536 | Yes                          | 4                               | Yes                          | 140                                | 280                            |
| General<br>purpose   | TIM2,<br>TIM5                | 32-bit                | Up, Down,<br>Up/down | Any integer<br>between 1 and<br>65536 | Yes                          | 4                               | No                           | 140                                | 280                            |
|                      | TIM3,<br>TIM4                | 16-bit                | Up, Down,<br>Up/down | Any integer<br>between 1 and<br>65536 | Yes                          | 4                               | No                           | 140                                | 280                            |
|                      | TIM12                        | 16-bit                | Up                   | Any integer<br>between 1 and<br>65536 | No                           | 2                               | No                           | 140                                | 280                            |
|                      | TIM13,<br>TIM14              | 16-bit                | Up                   | Any integer<br>between 1 and<br>65536 | No                           | 1                               | No                           | 140                                | 280                            |
|                      | TIM15                        | 16-bit                | Up                   | Any integer<br>between 1 and<br>65536 | Yes                          | 2                               | 1                            | 140                                | 280                            |
|                      | TIM16,<br>TIM17              | 16-bit                | Up                   | Any integer<br>between 1 and<br>65536 | Yes                          | 1                               | 1                            | 140                                | 280                            |
| Basic                | TIM6,<br>TIM7                | 16-bit                | Up                   | Any integer<br>between 1 and<br>65536 | Yes                          | 0                               | No                           | 140                                | 280                            |
| Low-power timer      | LPTIM1,<br>LPTIM2,<br>LPTIM3 | 16-bit                | Up                   | 1, 2, 4, 8, 16, 32,<br>64, 128        | No                           | 0                               | No                           | 140                                | 280                            |

The maximum timer clock is up to 280 MHz depending on TIMPRE bit in the RCC\_CFGR register and CDPRE1/2 bits in RCC\_CDCFGR register.

#### 3.34.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

Input capture

DS13196 - Rev 6 page 26/199



- · Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

The advanced-control timers support independent DMA request generation.

#### 3.34.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32H7B0xB devices (see Table 4. Timer feature comparison for differences).

#### TIM2, TIM3, TIM4 and TIM5

The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers (TIM1, TIM8) via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 and TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

#### TIM12, TIM13, TIM14, TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 and TIM5 full-featured general-purpose timers or used as simple time bases.

#### 3.34.3 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

#### 3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3)

The low-power timers feature an independent clock and are running also in Stop mode if they are clocked by LSE, LSI or an external clock. The low-power timers are able to wakeup the devices from Stop mode.

The low-power timers support the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- · Programmable digital glitch filter
- Encoder mode

DS13196 - Rev 6 page 27/199



#### 3.34.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

#### 3.34.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

#### 3.34.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- · Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

#### 3.35 Real-time clock (RTC)

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V<sub>BAT</sub> mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC is supplied through a switch that takes power either from the  $V_{DD}$  supply when present or from the  $V_{BAT}$  pin.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in  $V_{BAT}$  mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in  $V_{BAT}$  mode, but is functional in all low-power modes.

All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

#### 3.36 Tamper and backup registers (TAMP)

The TAMP main features are the following:

- 32 backup registers:
  - The backup registers (TAMP\_BKPxR) are implemented in the RTC domain that remains powered-on by V<sub>BAT</sub> when the V<sub>DD</sub> power is switched off.

DS13196 - Rev 6 page 28/199



- Three external tamper detection events
  - Each external event can be configured to be active or passive
  - External passive tampers with configurable filter and internal pull-up
- · Seven internal tamper events
- Any tamper detection can generate an RTC timestamp event
- Any tamper detection can erase the RTC backup registers, the backup SRAM and the memory regions
  protected by the on-the-fly decryption engine (OTFDEC)
- Monotonic counter

#### 3.37 Inter-integrated circuit interface (I<sup>2</sup>C)

The STM32H7B0xB embed four I<sup>2</sup>C interfaces.

The  $I^2C$  bus interface handles communications between the microcontroller and the serial  $I^2C$  bus. It controls all  $I^2C$  bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I<sup>2</sup>C-bus specification and user manual rev. 5 compatibility:
  - Slave and master modes, multimaster capability
  - Standard-mode (Sm), with a bit rate up to 100 kbit/s
  - Fast-mode (Fm), with a bit rate up to 400 kbit/s
  - Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
  - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
  - Programmable setup and hold times
  - Optional clock stretching
- System management bus (SMBus) specification rev 2.0 compatibility:
  - Hardware PEC (packet error checking) generation and verification with ACK control
  - Address resolution protocol (ARP) support
  - SMBus alert
- Power system management protocol (PMBus<sup>™</sup>) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- · Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

#### 3.38 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32H7B0xB devices have five embedded universal synchronous receiver transmitters (USART1, USART2, USART3, USART6 and USART10) and five universal asynchronous receiver transmitters (UART4, UART5, UART7, UART8 and UART9). Refer to the table below for a summary of USARTx and UARTx features.

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.

USART1, USART2, USART3, USART6 and USART10 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability.

The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- · Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

DS13196 - Rev 6 page 29/199



All USART interfaces can be served by the DMA controller.

Table 5. USART features

X = supported

| USART modes/features                             | USART1/2/3/6/10 | UART4/5/7/8/9 |
|--------------------------------------------------|-----------------|---------------|
| Hardware flow control for modem                  | X               | X             |
| Continuous communication using DMA               | X               | X             |
| Multiprocessor communication                     | X               | X             |
| Synchronous mode (Master/Slave)                  | X               | -             |
| Smartcard mode                                   | X               | -             |
| Single-wire Half-duplex communication            | X               | X             |
| IrDA SIR ENDEC block                             | X               | X             |
| LIN mode                                         | X               | X             |
| Dual clock domain and wakeup from low power mode | X               | X             |
| Receiver timeout interrupt                       | X               | X             |
| Modbus communication                             | X               | X             |
| Auto baud rate detection                         | X               | X             |
| Driver Enable                                    | X               | X             |
| USART data length                                | 7, 8 and        | 9 bits        |
| Tx/Rx FIFO                                       | X               | X             |
| Tx/Rx FIFO size                                  | 16              |               |

#### 3.39 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART embeds a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- · Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baud rates.

LPUART interface can be served by the DMA controller.

#### 3.40 Serial peripheral interfaces (SPI)/integrated interchip sound interfaces (I2S)

The devices feature up to six SPIs (SPI1/I2S1, SPI2/I2S2, SPI3/I2S3, SPI6/I2S6 and SPI4, SPI5) that allow communicating up to 125 Mbits/s in master and slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 32 bits for SPI1/I2S1, SPI2/I2S2, SPI3/I2S3, from 4 to 16 bits for the others. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation, and 16x 8-bit embedded Rx and Tx FIFOs (SPI1/I2S1, SPI2/I2S2, SPI3/I2S3) or 8x 8-bit embedded Rx and Tx FIFOs (SPI4, SPI5, SPI6/I2S6), all with DMA capability.

DS13196 - Rev 6 page 30/199



Four standard I<sup>2</sup>S interfaces (multiplexed with SPI1, SPI2, SPI3, SPI6) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When one or all I<sup>2</sup>S interfaces is/are configured in master mode, the master clock can be output to the external DAC/codec at 256 times the sampling frequency. All I<sup>2</sup>S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA capability.

#### 3.41 Serial audio interfaces (SAI)

The devices embed two SAIs (SAI1, SAI2) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC'97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller.

Audio sampling frequencies up to 192 kHz are supported.

One of the SAI supports up to 8 microphones thanks to an embedded PDM interface.

The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously.

#### 3.42 SPDIFRX receiver interface (SPDIFRX)

The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main SPDIFRX features are the following:

- · Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- · Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif\_frame\_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

#### 3.43 Single wire protocol master interface (SWPMI)

The single wire protocol master interface (SWPMI) is the master interface corresponding to the contactless frontend (CLF) defined in the ETSLTS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bit rate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

#### 3.44 Management data input/output (MDIO) slaves

The devices embed an MDIO slave interface it includes the following features:

DS13196 - Rev 6 page 31/199



- 32 MDIO register addresses, each of which is managed using separate input and output data registers:
  - 32 x 16-bit firmware read/write, MDIO read-only output data registers
  - 32 x 16-bit firmware read-only, MDIO write-only input data registers
- · Configurable slave (port) address
- Independently maskable interrupts/events:
  - MDIO register write
  - MDIO register read
  - MDIO protocol error
- Able to operate in and wake up from STOP mode

#### 3.45 SD/SDIO/MMC card host interfaces (SDMMC)

Two SDMMC host interfaces are available. They support *MultiMediaCard System Specification* version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.

One of the SDMMC interface can be supplied through a separate  $V_{DDMMC}$  supply. If required, it can thus operate at a different voltage level than all other I/Os.

Both interfaces support the *SD memory card specifications* version 4.1. and the *SDIO card specification* version 4.0. in two different databus modes: 1 bit (default) and 4 bits.

Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous.

The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM.

#### 3.46 Controller area network (FDCAN1, FDCAN2)

The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit.

Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

FDCAN1 supports time triggered CAN (TTCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication.

A 10 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules.

The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.

#### 3.47 Universal serial bus on-the-go high-speed (OTG HS)

The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral that supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 Mbit/s) and a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG\_HS interface in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG\_HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It features software-configurable endpoint setting and supports suspend/resume. The USB OTG\_HS controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

DS13196 - Rev 6 page 32/199



The main features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- · 8 bidirectional endpoints
- · 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- · External HS or HS OTG operation supporting ULPI in SDR mode

The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.

- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

# 3.48 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the consumer electronics control (CEC) protocol (supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wake up the MCU from Stop mode on data reception.

#### 3.49 Debug infrastructure

The devices offer a comprehensive set of debug and trace features to support software development and system integration.

- · Breakpoint debugging
- Code execution tracing
- Software instrumentation
- JTAG debug port
- · Serial-wire debug port
- Trigger input and output
- Serial-wire trace port
- Trace port
- Arm<sup>®</sup> CoreSight<sup>™</sup> debug and trace components

The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools. The trace port performs data capture for logging and analysis.

DS13196 - Rev 6 page 33/199



# 4 Memory mapping

Refer to the product line reference manual (RM0455) for details on the memory mapping as well as the boundary addresses for all peripherals.

DS13196 - Rev 6 page 34/199



## 5 Pin descriptions

Figure 4. LQFP64 (STM32H7B0xB without SMPS) pinout



1. The above figure shows the package top view.

DS13196 - Rev 6 page 35/199



Figure 5. LQFP100 (STM32H7B0xB without SMPS) pinout



1. The above figure shows the package top view.

DS13196 - Rev 6 page 36/199



Figure 6. LQFP144 (STM32H7B0xB without SMPS) pinout



1. The above figure shows the package top view.

DS13196 - Rev 6 page 37/199



Figure 7. LQFP176 (STM32H7B0xB without SMPS) pinout



1. The above figure shows the package top view.

DS13196 - Rev 6 page 38/199



Figure 8. UFBGA169 (STM32H7B0xB with SMPS) ballout

|   | 1                      | 2               | 3     | 4      | 5   | 6      | 7    | 8    | 9    | 10     | 11   | 12       | 13       |
|---|------------------------|-----------------|-------|--------|-----|--------|------|------|------|--------|------|----------|----------|
| Α | PE4                    | PE2             | VDD   | VCAP   | PB6 | VDDMMC | VDD  | PG10 | PD5  | VDD    | PC12 | PC10     | PH14     |
| В | PC15-<br>OSC32_<br>OUT | PE3             | VSS   | VDDLDO | PB8 | PB4    | VSS  | PG11 | PD6  | VSS    | PC11 | PA14     | PH13     |
| С | PC14-<br>OSC32_IN      | PE6             | PE5   | PDR_ON | PB9 | PB5    | PG14 | PG9  | PD4  | PD1    | PA15 | VSS      | VDD      |
| D | VDD                    | vss             | PC13  | PE1    | PE0 | PB7    | PG13 | PD7  | PD3  | PD0    | PA13 | VDDLDO   | VCAP     |
| E | VLXSMPS                | VSSSMPS         | VBAT  | PF1    | PF3 | воото  | PG15 | PG12 | PD2  | PA10   | PA9  | PA8      | PA12     |
| F | VDDSMPS                | VFBSMPS         | PF0   | PF2    | PF5 | PF7    | PB3  | PG4  | PC6  | PC7    | PC9  | PC8      | PA11     |
| G | VDD                    | VSS             | PF4   | PF6    | PF9 | NRST   | PF13 | PE7  | PG6  | PG7    | PG8  | VDD50USB | VDD33USB |
| н | PH0-<br>OSC_IN         | PH1-<br>OSC_OUT | PF10  | PF8    | PC2 | PA4    | PF14 | PE8  | PG2  | PG3    | PG5  | VSS      | VDD      |
| J | PC0                    | PC1             | VSSA  | PC3    | PA0 | PA7    | PF15 | PE9  | PE14 | PD11   | PD13 | PD15     | PD14     |
| κ | PC3_C                  | PC2_C           | PA0_C | PA1    | PA6 | PC4    | PG0  | PE13 | PH10 | PH12   | PD9  | PD10     | PD12     |
| L | VDDA                   | VREF+           | PA1_C | PA5    | PB1 | PB2    | PG1  | PE12 | PB10 | PH11   | PB13 | VSS      | VDD      |
| М | VDD                    | VSS             | PH3   | VSS    | PB0 | PF11   | VSS  | PE10 | PB11 | VDDLDO | VSS  | PD8      | PB15     |
| N | PA2                    | PH2             | PA3   | VDD    | PC5 | PF12   | VDD  | PE11 | PE15 | VCAP   | VDD  | PB12     | PB14     |

1. The above figure shows the package top view.

DS13196 - Rev 6 page 39/199



|                        | 2                                                                                           | 3                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VSS                    | PB8                                                                                         | VDDLDO                    | VCAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PB6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG11                                                                                                                                                                                                | PG9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VDDLDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VCAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE4                    | PE3                                                                                         | PB9                       | PE0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG13                                                                                                                                                                                                | PD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PH14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC13                   | VSS                                                                                         | PE2                       | PE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | воото                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG14                                                                                                                                                                                                | PG10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PC10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PA11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC15-<br>OSC32_<br>OUT | PC14-<br>OSC32_IN                                                                           | PE5                       | PDR_ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VDD<br>MMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG15                                                                                                                                                                                                | PG12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PD6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PH15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PC8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| vss                    | VBAT                                                                                        | PE6                       | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PC9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PC6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VDD50<br>USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VLX<br>SMPS            | VSS<br>SMPS                                                                                 | PF1                       | PF0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD33<br>USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PG5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VDD<br>SMPS            | VFB<br>SMPS                                                                                 | PF2                       | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PG8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PG7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PG4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PF6                    | PF4                                                                                         | PF5                       | PF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PD13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PH0-<br>OSC_IN         | PF8                                                                                         | PF7                       | PF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PH1-<br>OSC_<br>OUT    | VSS                                                                                         | PF10                      | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PB15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PB14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NRST                   | PC0                                                                                         | PC1                       | VREF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PB13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC2                    | PC3                                                                                         | VREF+                     | VDDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PC5                                                                                                                                                                                                 | PB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PH7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PE14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PB12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC2_C                  | PC3_C                                                                                       | VSSA                      | PH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PF11                                                                                                                                                                                                | PE8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PF15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PF13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PB10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PH10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PH12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PA0                    | PA1                                                                                         | PA1_C                     | PH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PB2                                                                                                                                                                                                 | PG0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PE7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PB11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PF12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PE12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PE13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PE15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| vss                    | PA2                                                                                         | PA0_C                     | PH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PH5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PA6                                                                                                                                                                                                 | PB0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PF14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PE9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PE11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VCAP ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VDDLDO ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | PE4 PC13 PC15-SSC32_OUT VSS VLX SMPS VDD SMPS PF6 PH0-OSC_IN PH1-OSC_OUT NRST PC2 PC2_C PA0 | PE4 PE3  PC13 VSS  PC15-2 | PE4         PE3         PB9           PC13         VSS         PE2           PC15-1SC32_ OUT         PC14-1SC32_ OUT         PE5           VSS         VBAT         PE6           VLX SMPS         PF1         PF6           VDD SMPS         PF2         PF2           PF6         PF4         PF5           PH0-DSC_IN         PF8         PF7           PH1-OSC_OUT         VSS         PF10           NRST         PC0         PC1           PC2         PC3         VREF+           PC2_C         PC3_C         VSSA           PA0         PA1         PA1_C | PE4         PE3         PB9         PE0           PC13         VSS         PE2         PE1           PC15-15-20-00T         PC14-0SC32_IN         PE5         PDR_ON           VSS         VBAT         PE6         VDD           VLX         VSS         PF1         PF0           VDD         VFB         PF2         VDD           PF6         PF4         PF5         PF3           PF0-SSC_IN         PF8         PF7         PF9           PH1-SSC_OUT         VSS         PF10         VDD           NRST         PC0         PC1         VREF-           PC2         PC3         VREF+         VDDA           PC2_C         PC3_C         VSSA         PH2           PA0         PA1         PA1_C         PH4 | PE4         PE3         PB9         PE0         PB7           PC13         VSS         PE2         PE1         BOOT0           PC15-10SC32_ PC14-10SC32_IN         PE5         PDR_ON         VDD MMC           VSS         VBAT         PE6         VDD         VDD           VLX SMPS         SMPS         PF1         PF0         PF0           VDD SMPS         PF2         VDD         VDD         PF3           PF6         PF4         PF5         PF3         PF9           PH0-DSC_IN         PF8         PF7         PF9         PF9           PH1-DSC_IN         VSS         PF10         VDD         VDD           NRST         PC0         PC1         VREF-         PC2         PC3         VREF+         VDDA         VDD           PC2_C         PC3_C         VSSA         PH2         PA3           PA0         PA1         PA1_C         PH4         PA4 | PE4         PE3         PB9         PE0         PB7         PB4           PC13         VSS         PE2         PE1         BOOT0         PB5           PC15-10-10-10-10-10-10-10-10-10-10-10-10-10- | PE4         PE3         PB9         PE0         PB7         PB4         PG13           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14           PC15-<br>SIGC32_<br>OUT         PC14-<br>OSC32_IN         PE5         PDR_ON         VDD<br>MMC         VSS         PG15           VSS         VBAT         PE6         VDD         VSS         VSS           VLX<br>SMPS         VSS         PF1         PF0         VSS         VSS           VDD<br>SMPS         VFB<br>SMPS         PF2         VDD         VSS         VSS           PF6         PF4         PF5         PF3         VSS         VSS           PH0-<br>OSC_IN         PF8         PF7         PF9         VSS         VSS           PH1-<br>OSC_OUT         VSS         PF10         VDD         VSS         VSS           NRST         PC0         PC1         VREF-         VDD         VSS         PC5           PC2_C         PC3_C         VSSA         PH2         PA3         PA7         PF11           PA0         PA1         PA1_C         PH4         PA4         PA5         PB2 | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10           PC15-1SC32_DOUT         PC14-1OSC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12           VLX SMPS         VBAT         PE6         VDD         VSS         VSS         VSS           VDD SMPS         SMPS         PF1         PF0         VSS         VSS         VSS           VDD SMPS         PF2         VDD         VSS         VSS         VSS           PF6         PF4         PF5         PF3         VSS         VSS         VSS           PH0-DSC_IN         PF8         PF7         PF9         VSS         VSS         VSS           PH1-DSC_IN         VSS         PF10         VDD         VSS         VSS         VSS           PH1-DSC_IN         VSS         PF10         VDD         VSS         VSS         VSS           PH1-DSC_IN         VSS         PF10         VDD         VSS         VSS         VSS           PH1-DSC_IN         VSS         VSS <td< th=""><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4           PC15-1SC32-1-0SC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6           VLX SSDPS         VBAT         PE6         VDD         VSS         VSS         VSS         VSS           VDD SMPS         PF1         PF0         VSS         VSS         VSS         VSS           VDD SMPS         PF2         VDD         VSS         VSS         VSS         VSS           PF6         PF4         PF5         PF3         VSS         VSS         VSS         VSS           PH0-DSC_IN         PF8         PF7         PF9         VSS         VSS         VSS         VSS           PH1-DSC_IN         VSS         PF10         VDD         VSS         VSS         VSS         VSS           PH1-DSC_IN         PF8         PF7         PF9         VSS         VSS         VSS         VSS           NRST         PC0         PC1         VREF-</th><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10         PD4         PD0           PC15-<br/>SGC32_OUT         PC14-<br/>OSC32_IN         PE5         PDR_ON         VDD<br/>MMC         VSS         PG15         PG12         PD6         VSS           VSS         VBAT         PE6         VDD         VSS         VSS         VSS         VSS         VSS           VLX<br/>SMPS         VSS         PF1         PF0         VSS         VSS         VSS         VSS         VSS           VDD<br/>SMPS         VFB<br/>SMPS         PF2         VDD         VSS         VSS<!--</th--><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10         PD4         PD0         PC11           PC15-<br/>SSC32_UVT         PC14-<br/>OSC32_IN         PE5         PDR_ON         VDD<br/>MMC         VSS         PG15         PG12         PD6         VSS         VDD           VSS         VBAT         PE6         VDD         VSS         VSS</th><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10           PC15-ISC32_INDUT         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15           VSS         VBAT         PE6         VDD         VSS         VSS</th><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13           PC15-SC32- OCTO- OSC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9           VSS         VBAT         PE6         VDD         VSS         VSS</th><th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13         PA8           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13         PA10           PC14-<br/>OGC32_N         PE5         PDR_ON         VDD<br/>MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9         PC8           VSS         VBAT         PE6         VDD         VD         VSS         V</th></th></td<> | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4           PC15-1SC32-1-0SC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6           VLX SSDPS         VBAT         PE6         VDD         VSS         VSS         VSS         VSS           VDD SMPS         PF1         PF0         VSS         VSS         VSS         VSS           VDD SMPS         PF2         VDD         VSS         VSS         VSS         VSS           PF6         PF4         PF5         PF3         VSS         VSS         VSS         VSS           PH0-DSC_IN         PF8         PF7         PF9         VSS         VSS         VSS         VSS           PH1-DSC_IN         VSS         PF10         VDD         VSS         VSS         VSS         VSS           PH1-DSC_IN         PF8         PF7         PF9         VSS         VSS         VSS         VSS           NRST         PC0         PC1         VREF- | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10         PD4         PD0           PC15-<br>SGC32_OUT         PC14-<br>OSC32_IN         PE5         PDR_ON         VDD<br>MMC         VSS         PG15         PG12         PD6         VSS           VSS         VBAT         PE6         VDD         VSS         VSS         VSS         VSS         VSS           VLX<br>SMPS         VSS         PF1         PF0         VSS         VSS         VSS         VSS         VSS           VDD<br>SMPS         VFB<br>SMPS         PF2         VDD         VSS         VSS </th <th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10         PD4         PD0         PC11           PC15-<br/>SSC32_UVT         PC14-<br/>OSC32_IN         PE5         PDR_ON         VDD<br/>MMC         VSS         PG15         PG12         PD6         VSS         VDD           VSS         VBAT         PE6         VDD         VSS         VSS</th> <th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10           PC15-ISC32_INDUT         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15           VSS         VBAT         PE6         VDD         VSS         VSS</th> <th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13           PC15-SC32- OCTO- OSC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9           VSS         VBAT         PE6         VDD         VSS         VSS</th> <th>PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13         PA8           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13         PA10           PC14-<br/>OGC32_N         PE5         PDR_ON         VDD<br/>MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9         PC8           VSS         VBAT         PE6         VDD         VD         VSS         V</th> | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12           PC13         VSS         PE2         PE1         BOOT0         PB5         PG14         PG10         PD4         PD0         PC11           PC15-<br>SSC32_UVT         PC14-<br>OSC32_IN         PE5         PDR_ON         VDD<br>MMC         VSS         PG15         PG12         PD6         VSS         VDD           VSS         VBAT         PE6         VDD         VSS         VSS | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10           PC15-ISC32_INDUT         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15           VSS         VBAT         PE6         VDD         VSS         VSS | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13           PC15-SC32- OCTO- OSC32_IN         PE5         PDR_ON         VDD MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9           VSS         VBAT         PE6         VDD         VSS         VSS | PE4         PE3         PB9         PE0         PB7         PB4         PG13         PD7         PD5         PD2         PC12         PH14         PA13         PA8           PC13         VSS         PE2         PE1         BOOTO         PB5         PG14         PG10         PD4         PD0         PC11         PC10         PH13         PA10           PC14-<br>OGC32_N         PE5         PDR_ON         VDD<br>MMC         VSS         PG15         PG12         PD6         VSS         VDD         PH15         PA9         PC8           VSS         VBAT         PE6         VDD         VD         VSS         V |

Figure 9. UFBGA176+25 (STM32H7B0xB with SMPS) ballout

- 1. The above figure shows the package top view.
- 2. The devices with SMPS correspond to commercial code STM32H7B0IIK6Q.

Table 6. Legend/abbreviations used in the pinout table

| Name          | Abbreviation                                                             | Definition                                                        |
|---------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| Pin name      | Unless otherwise specified in bra-<br>function during and after reset is | ckets below the pin name, the pin the same as the actual pin name |
|               | S                                                                        | Supply pin                                                        |
| Din tuno      | I                                                                        | Input only pin                                                    |
| Pin type      | I/O                                                                      | Input / output pin                                                |
|               | ANA                                                                      | Analog-only Input                                                 |
|               | FT                                                                       | 5 V tolerant I/O                                                  |
|               | TT                                                                       | 3.3 V tolerant I/O                                                |
|               | В                                                                        | Dedicated BOOT0 pin                                               |
| I/O structure | RST                                                                      | Bidirectional reset pin with<br>embedded weak pull-up resistor    |
|               | Option for TT                                                            | and FT I/Os                                                       |
|               | _f                                                                       | I2C FM+ option                                                    |

DS13196 - Rev 6 page 40/199



| Na              | me                   | Abbreviation                                                                          | Definition                                                              |  |  |
|-----------------|----------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                 |                      | _a                                                                                    | analog option (supplied by V <sub>DDA</sub> )                           |  |  |
|                 |                      | _u                                                                                    | USB option (supplied by V <sub>DD33</sub> USB)                          |  |  |
|                 |                      | _h0 <sup>(1)</sup>                                                                    | High-speed low voltage (mainly SDMMC2 on V <sub>DDMMC</sub> power rail) |  |  |
| I/O str         | ucture               | _h1 <sup>(1)</sup>                                                                    | High-speed low voltage (mainly for OCTOSPI)                             |  |  |
|                 |                      | _h2 <sup>(1)</sup>                                                                    | High-speed low voltage (mainly for FMC)                                 |  |  |
|                 |                      | _h3 <sup>(1)</sup>                                                                    | High-speed low voltage                                                  |  |  |
|                 |                      | _\$                                                                                   | Secondary supply (supplied by $V_{DDMMC}$ ) $^{(2)}$                    |  |  |
| No              | tes                  | Unless otherwise specified by a note, all I/Os are set as floaduring and after reset. |                                                                         |  |  |
| Pin functions   | Alternate functions  | Functions selected through GPIOx_AFR registers                                        |                                                                         |  |  |
| FIII IUIICUOIIS | Additional functions | Functions directly selected/enabled through peripheral registers                      |                                                                         |  |  |

Refer to SYSCFG\_CCCSR register in the device reference manual for how to set a group of I/Os in High-speed low-voltage mode. Depending on the chosen I/Os (for example OCTOSPI), it can belong to several groups of I/Os and several HSLVx bits need to be set (refer to Table Pin/ball definition). Take care that the VDDIO\_HSLV and/or VDDMMC\_HSLV option bits must also be set.

Table 7. STM32H7B0xB pin/ball definition

|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                          |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                      | Additional functions |
| A2                 | C3                    | -        | 1                       | 1       | 1       | PE2                                   | I/O      | FT_h2            | TRACECLK, SAI1_CK1, SPI4_SCK,<br>SAI1_MCLK_A, OCTOSPIM_P1_IO2,<br>USART10_RX, FMC_A23, EVENTOUT                                          | -                    |
| B2                 | B2                    | -        | 2                       | 2       | 2       | PE3                                   | I/O      | FT_h2            | TRACED0, TIM15_BKIN, SAI1_SD_B, USART10_TX, FMC_A19, EVENTOUT                                                                            | -                    |
| A1                 | B1                    | -        | 3                       | 3       | 3       | PE4                                   | I/O      | FT_h2            | TRACED1, SAI1_D2, DFSDM1_DATIN3,<br>TIM15_CH1N, SPI4_NSS, SAI1_FS_A,<br>FMC_A20, DCMI_D4/PSSI_D4,<br>LCD_B0, EVENTOUT                    | -                    |
| C3                 | D3                    | -        | 4                       | 4       | 4       | PE5                                   | I/O      | FT_h2            | TRACED2, SAI1_CK2, DFSDM1_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6/PSSI_D6, LCD_G0, EVENTOUT                            | -                    |
| C2                 | E3                    | -        | 5                       | 5       | 5       | PE6                                   | I/O      | FT_h2            | TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7/PSSI_D7, LCD_G1, EVENTOUT | -                    |
| В3                 | A1                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                        | -                    |
| A3                 | -                     | -        | -                       | -       | -       | VDD                                   | S        | -                | -                                                                                                                                        | -                    |
| E3                 | E2                    | 1        | 6                       | 6       | 6       | VBAT                                  | S        | -                | -                                                                                                                                        | -                    |

DS13196 - Rev 6 page 41/199

<sup>2.</sup> Refer to the table Features and peripheral counts for the list of packages featuring a V<sub>DDMMC</sub> separate supply pad.



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                             |                                                                    |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                         | Additional functions                                               |
| D2                 | A15                   | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                           | -                                                                  |
| -                  | -                     | -        | -                       | -       | 7       | PI8                                   | I/O      | FT               | EVENTOUT                                                                    | TAMP_IN2/<br>TAMP_OUT3,<br>RTC_OUT2, WKUP4                         |
| D3                 | C1                    | 2        | 7                       | 7       | 8       | PC13                                  | I/O      | FT               | EVENTOUT                                                                    | TAMP_IN1/<br>TAMP_OUT2/<br>TAMP_OUT3,<br>RTC_OUT1/RTC_TS,<br>WKUP3 |
| -                  | C2                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                           | -                                                                  |
| C1                 | D2                    | 3        | 8                       | 8       | 9       | PC14-OSC32_IN<br>(OSC32_IN)           | I/O      | FT               | EVENTOUT                                                                    | OSC32_IN                                                           |
| B1                 | D1                    | 4        | 9                       | 9       | 10      | PC15-<br>OSC32_OUT<br>(OSC32_OUT)     | I/O      | FT               | EVENTOUT                                                                    | OSC32_OUT                                                          |
| -                  | -                     | -        | -                       | -       | 11      | PI9                                   | I/O      | FT_h2            | OCTOSPIM_P2_IO0, UART4_RX,<br>FDCAN1_RX, FMC_D30, LCD_VSYNC,<br>EVENTOUT    | -                                                                  |
| -                  | -                     | -        | -                       | -       | 12      | PI10                                  | I/O      | FT_h2            | OCTOSPIM_P2_IO1, FMC_D31,<br>PSSI_D14, LCD_HSYNC, EVENTOUT                  | -                                                                  |
| -                  | -                     | -        | -                       | -       | 13      | PI11                                  | I/O      | FT               | OCTOSPIM_P2_IO2, LCD_G6,<br>OTG_HS_ULPI_DIR, PSSI_D15,<br>EVENTOUT          | WKUP5                                                              |
| -                  | D10                   | -        | -                       | -       | 14      | VSS                                   | S        | -                | -                                                                           | -                                                                  |
| D1                 | D11                   | -        | -                       | -       | 15      | VDD                                   | S        | -                | -                                                                           | -                                                                  |
| E2                 | F2                    | -        | -                       | -       | -       | VSSSMPS                               | S        | -                | -                                                                           | -                                                                  |
| E1                 | F1                    | -        | -                       | -       | -       | VLXSMPS                               | S        | -                | -                                                                           | -                                                                  |
| F1                 | G1                    | -        | -                       | -       | -       | VDDSMPS                               | S        | -                | -                                                                           | -                                                                  |
| F2                 | G2                    | -        | -                       | -       | -       | VFBSMPS                               | S        | -                | -                                                                           | -                                                                  |
| F3                 | F4                    | -        | -                       | 10      | 16      | PF0                                   | I/O      | FT_f             | I2C2_SDA, OCTOSPIM_P2_IO0,<br>FMC_A0, EVENTOUT                              | -                                                                  |
| E4                 | F3                    | -        | -                       | 11      | 17      | PF1                                   | I/O      | FT_f             | I2C2_SCL, OCTOSPIM_P2_IO1,<br>FMC_A1, EVENTOUT                              | -                                                                  |
| F4                 | G3                    | -        | -                       | 12      | 18      | PF2                                   | I/O      | FT_h2            | I2C2_SMBA, OCTOSPIM_P2_IO2,<br>FMC_A2, EVENTOUT                             | -                                                                  |
| E5                 | H4                    | -        | -                       | 13      | 19      | PF3                                   | I/O      | FT_h2            | OCTOSPIM_P2_IO3, FMC_A3,<br>EVENTOUT                                        | -                                                                  |
| G3                 | H2                    | -        | -                       | 14      | 20      | PF4                                   | I/O      | FT_h2            | OCTOSPIM_P2_CLK, FMC_A4,<br>EVENTOUT                                        | -                                                                  |
| F5                 | Н3                    | -        | -                       | 15      | 21      | PF5                                   | I/O      | FT_h2            | OCTOSPIM_P2_NCLK, FMC_A5,<br>EVENTOUT                                       | -                                                                  |
| B7                 | E1                    | -        | 10                      | 16      | 22      | VSS                                   | S        | -                | -                                                                           | -                                                                  |
| A7                 | E4                    | -        | 11                      | 17      | 23      | VDD                                   | S        | -                | -                                                                           | -                                                                  |
| G4                 | H1                    | -        | -                       | 18      | 24      | PF6                                   | I/O      | FT_h1            | TIM16_CH1, SPI5_NSS, SAI1_SD_B,<br>UART7_Rx, OCTOSPIM_P1_IO3,<br>EVENTOUT   | -                                                                  |
| F6                 | J3                    | -        | -                       | 19      | 25      | PF7                                   | I/O      | FT_h1            | TIM17_CH1, SPI5_SCK,<br>SAI1_MCLK_B, UART7_Tx,<br>OCTOSPIM_P1_IO2, EVENTOUT | -                                                                  |

DS13196 - Rev 6 page 42/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |                   |                                       |          |                  |                                                                                                                                                 |                                                 |
|--------------------|-----------------------|----------|-------------------------|---------|-------------------|---------------------------------------|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176           | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                             | Additional functions                            |
| H4                 | J2                    | -        | -                       | 20      | 26                | PF8                                   | I/O      | FT_h1            | TIM16_CH1N, SPI5_MISO,<br>SAI1_SCK_B, UART7_RTS,<br>TIM13_CH1, OCTOSPIM_P1_IO0,<br>EVENTOUT                                                     | -                                               |
| G5                 | J4                    | -        | -                       | 21      | 27                | PF9                                   | I/O      | FT_h1            | TIM17_CH1N, SPI5_MOSI,<br>SAI1_FS_B, UART7_CTS, TIM14_CH1,<br>OCTOSPIM_P1_IO1, EVENTOUT                                                         | -                                               |
| НЗ                 | K3                    | -        | -                       | 22      | 28                | PF10                                  | I/O      | FT_h1            | TIM16_BKIN, SAI1_D3, PSSI_D15,<br>OCTOSPIM_P1_CLK, DCMI_D11/<br>PSSI_D11, LCD_DE, EVENTOUT                                                      | -                                               |
| H1                 | J1                    | 5        | 12                      | 23      | 29                | PH0-<br>OSC_IN(PH0)                   | I/O      | FT               | EVENTOUT                                                                                                                                        | OSC_IN                                          |
| H2                 | K1                    | 6        | 13                      | 24      | 30                | PH1-OSC_OUT<br>(PH1)                  | I/O      | FT               | EVENTOUT                                                                                                                                        | OSC_OUT                                         |
| G6                 | L1                    | 7        | 14                      | 25      | 31                | NRST                                  | I/O      | RST              | -                                                                                                                                               | -                                               |
| J1                 | L2                    | 8        | 15                      | 26      | 32                | PC0                                   | I/O      | FT_a             | DFSDM1_CKIN0, DFSDM1_DATIN4,<br>SAI2_FS_B, FMC_A25,<br>OTG_HS_ULPI_STP, LCD_G2,<br>FMC_SDNWE, LCD_R5, EVENTOUT                                  | ADC12_INP10                                     |
| J2                 | L3                    | 9        | 16                      | 27      | 33                | PC1                                   | I/O      | FT_ah0           | TRACEDO, SAI1_D1, DFSDM1_DATINO, DFSDM1_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SDMMC2_CK, OCTOSPIM_P1_IO4, MDIOS_MDC, LCD_G5, EVENTOUT           | ADC12_INP11,<br>ADC12_INN10,<br>TAMP_IN3, WKUP6 |
| H5 (3)             | M1 <sup>(3)</sup>     | 10       | -                       | -       | -                 | PC2                                   | I/O      | FT_a             | PWR_CSTOP, DFSDM1_CKIN1,<br>SPI2_MISO/I2S2_SDI,<br>DFSDM1_CKOUT, OCTOSPIM_P1_IO2,<br>OTG_HS_ULPIDIR,<br>OCTOSPIM_P1_IO5, FMC_SDNE0,<br>EVENTOUT | ADC12_INP12,<br>ADC12_INN11                     |
| K2                 | N1<br>(3)             | -        | 17 <sup>(4)</sup>       | 28(4)   | 34 <sup>(4)</sup> | PC2_C                                 | ANA      | TT_a             | -                                                                                                                                               | ADC2_INP0,<br>ADC2_INN1                         |
| J4 <sup>(3)</sup>  | M2 <sup>(3)</sup>     | 11       | -                       | -       | -                 | PC3                                   | I/O      | FT_a             | PWR_CSLEEP, DFSDM1_DATIN1, SPI2_MOSI/I2S2_SDO, OCTOSPIM_P1_I00, OTG_HS_ULPI_NXT, OCTOSPIM_P1_I06, FMC_SDCKE0, EVENTOUT                          | ADC12_INP13,<br>ADC12_INN12                     |
| K1 <sup>(3)</sup>  | N2 <sup>(3)</sup>     | -        | 18(4)                   | 29(4)   | 35(4)             | PC3_C                                 | ANA      | TT_a             | -                                                                                                                                               | ADC2_INP1                                       |
| G1                 | E12                   | -        | -                       | 30      | 36                | VDD                                   | S        |                  | -                                                                                                                                               | -                                               |
| G2                 | F6                    | -        | -                       | -       | -                 | VSS                                   | S        |                  | -                                                                                                                                               | -                                               |
| J3                 | N3                    | 12       | 19                      | 31      | 37                | VSSA                                  | S        |                  | -                                                                                                                                               | -                                               |
| -                  | L4                    | -        | _                       | -       | -                 | VREF-                                 | S        |                  | -                                                                                                                                               | -                                               |
| L2                 | M3                    | _        | 20                      | 32      | 38                | VREF+                                 | S        |                  | -                                                                                                                                               | -                                               |
| L1                 | M4                    | 13       | 21                      | 33      | 39                | VDDA                                  | S        |                  | -                                                                                                                                               | -                                               |
| J5 <sup>(3)</sup>  | P1 <sup>(3)</sup>     | 14       | 22                      | 34      | 40                | PA0                                   | I/O      | FT_a             | TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, SPI6_NSS/I2S6_WS, USART2_CTS/ USART2_NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, EVENTOUT          | ADC1_INP16,<br>WKUP1                            |
| K3 <sup>(3)</sup>  | R3 <sup>(3)</sup>     | -        | -                       | -       | -                 | PA0_C                                 | ANA      | TT_a             | -                                                                                                                                               | ADC1_INP0,<br>ADC1_INN1                         |

DS13196 - Rev 6 page 43/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                                                                              |                                           |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                                                          | Additional functions                      |
| K4 <sup>(3)</sup>  | P2 <sup>(3)</sup>     | 15       | 23                      | 35      | 41      | PA1                                   | I/O      | FT_ah1           | TIM2_CH2, TIM5_CH2, LPTIM3_OUT,<br>TIM15_CH1N, USART2_RTS,<br>UART4_RX, OCTOSPIM_P1_IO3,<br>SAI2_MCK_B, OCTOSPIM_P1_DQS,<br>LCD_R2, EVENTOUT                                                 | ADC1_INP17,<br>ADC1_INN16                 |
| L3 <sup>(3)</sup>  | P3 <sup>(3)</sup>     | -        | -                       | -       | -       | PA1_C                                 | ANA      | TT_a             | -                                                                                                                                                                                            | ADC1_INP1                                 |
| N1                 | R2                    | 16       | 24                      | 36      | 42      | PA2                                   | I/O      | FT_a             | TIM2_CH3, TIM5_CH3, TIM15_CH1,<br>DFSDM2_CKIN1, USART2_TX,<br>SAI2_SCK_B, MDIOS_MDIO, LCD_R1,<br>EVENTOUT                                                                                    | ADC1_INP14,<br>WKUP2                      |
| N2                 | N4                    | -        | -                       | -       | 43      | PH2                                   | I/O      | FT_h2            | LPTIM1_IN2, OCTOSPIM_P1_IO4,<br>SAI2_SCK_B, FMC_SDCKE0, LCD_R0,<br>EVENTOUT                                                                                                                  | -                                         |
| M1                 | G4                    | -        | -                       | -       | -       | VDD                                   | S        | -                | -                                                                                                                                                                                            | -                                         |
| M2                 | F7                    | -        | -                       | -       | -       | VSS                                   | s        | -                | -                                                                                                                                                                                            | -                                         |
| М3                 | R4                    | -        | -                       | -       | 44      | PH3                                   | I/O      | FT_ah2           | OCTOSPIM_P1_IO5, SAI2_MCK_B,<br>FMC_SDNE0, LCD_R1, EVENTOUT                                                                                                                                  | -                                         |
| -                  | P4                    | -        | -                       | -       | 45      | PH4                                   | I/O      | FT_fa            | I2C2_SCL, LCD_G5,<br>OTG_HS_ULPI_NXT, PSSI_D14,<br>LCD_G4, EVENTOUT                                                                                                                          | -                                         |
| -                  | R5                    | -        | -                       | -       | 46      | PH5                                   | I/O      | FT_fa            | I2C2_SDA, SPI5_NSS, FMC_SDNWE,<br>EVENTOUT                                                                                                                                                   | -                                         |
| N3                 | N5                    | 17       | 25                      | 37      | 47      | PA3                                   | I/O      | FT_ah1           | TIM2_CH4, TIM5_CH4, OCTOSPIM_P1_CLK, TIM15_CH2, I2S6_MCK, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, LCD_B5, EVENTOUT                                                                                | ADC1_INP15                                |
| M4                 | F8                    | 18       | 26                      | 38      | 48      | VSS                                   | S        | -                | -                                                                                                                                                                                            | -                                         |
| N4                 | H12                   | 19       | 27                      | 39      | 49      | VDD                                   | S        | -                | -                                                                                                                                                                                            | -                                         |
| H6                 | P5                    | 20       | 28                      | 40      | 50      | PA4                                   | I/O      | TT_a             | TIM5_ETR, SPI1_NSS/I2S1_WS,<br>SPI3_NSS/I2S3_WS, USART2_CK,<br>SPI6_NSS/I2S6_WS, DCMI_HSYNC/<br>PSSI_DE, LCD_VSYNC, EVENTOUT                                                                 | ADC1_INP18,<br>DAC1_OUT1                  |
| L4                 | P6                    | 21       | 29                      | 41      | 51      | PA5                                   | I/O      | TT_ah0           | PWR_NDSTOP2, TIM2_CH1/ TIM2_ETR, TIM8_CH1N, SPI1_SCK/ I2S1_CK, SPI6_SCK/I2S6_CK, OTG_HS_ULPI_CK, PSSI_D14, LCD_R4, EVENTOUT                                                                  | ADC1_INP19,<br>ADC1_INN18,<br>DAC1_OUT2   |
| K5                 | R7                    | 22       | 30                      | 42      | 52      | PA6                                   | I/O      | TT_ah1           | TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SP11_MISO/I2S1_SDI, OCTOSPIM_P1_IO3, SP16_MISO/ I2S6_SDI, TIM13_CH1, TIM8_BKIN_COMP12, MDIOS_MDC, TIM1_BKIN_COMP12, DCMI_PIXCLK/ PSSI_PDCK, LCD_G2, EVENTOUT | ADC12_INP3,<br>DAC2_OUT1                  |
| J6                 | N6                    | 23       | 31                      | 43      | 53      | PA7                                   | I/O      | FT_ah1           | TIM1_CH1N, TIM3_CH2, TIM8_CH1N, DFSDM2_DATIN1, SPI1_MOSI/ I2S1_SDO, SPI6_MOSI/I2S6_SDO, TIM14_CH1, OCTOSPIM_P1_IO2, FMC_SDNWE, LCD_VSYNC, EVENTOUT                                           | ADC12_INP7,<br>ADC12_INN3,<br>OPAMP1_VINM |
| K6                 | R6                    | 24       | 32                      | 44      | 54      | PC4                                   | I/O      | FT_a             | DFSDM1_CKIN2, I2S1_MCK,<br>SPDIFRX1_IN2, FMC_SDNE0,<br>LCD_R7, EVENTOUT                                                                                                                      | ADC12_INP4,<br>OPAMP1_VOUT,<br>COMP1_INM  |
| N5                 | M7                    | 25       | 33                      | 45      | 55      | PC5                                   | I/O      | FT_ah1           | SAI1_D3, DFSDM1_DATIN2, PSSI_D15,<br>SPDIFRX1_IN3, OCTOSPIM_P1_DQS,<br>FMC_SDCKE0, COMP1_OUT, LCD_DE,<br>EVENTOUT                                                                            | ADC12_INP8,<br>ADC12_INN4,<br>OPAMP1_VINM |

DS13196 - Rev 6 page 44/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                  |                                                         |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                              | Additional functions                                    |
| N7                 | K4                    | -        | -                       | -       | -       | VDD                                   | s        | -                | -                                                                                                                                | -                                                       |
| M7                 | F9                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                | -                                                       |
| M5                 | R8                    | 26       | 34                      | 46      | 56      | PB0                                   | I/O      | FT_ah0           | TIM1_CH2N, TIM3_CH3, TIM8_CH2N, DFSDM2_CKOUT, DFSDM1_CKOUT, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, OCTOSPIM_P1_IO1, LCD_G1, EVENTOUT | ADC12_INP9,<br>ADC12_INN5,<br>OPAMP1_VINP,<br>COMP1_INP |
| L5                 | M8                    | 27       | 35                      | 47      | 57      | PB1                                   | I/O      | FT_ah0           | TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN1, LCD_R6, OTG_HS_ULP1_D2, OCTOSPIM_P1_IO0, LCD_G0, EVENTOUT                         | ADC12_INP5,<br>COMP1_INM                                |
| L6                 | P7                    | 28       | 36                      | 48      | 58      | PB2                                   | I/O      | FT_ah1           | RTC_OUT2, SAI1_D1, DFSDM1_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, OCTOSPIM_P1_CLK, OCTOSPIM_P1_DQS, EVENTOUT                       | COMP1_INP                                               |
| M6                 | N7                    | -        | -                       | 49      | 59      | PF11                                  | I/O      | FT_ah1           | SPI5_MOSI, OCTOSPIM_P1_NCLK,<br>SAI2_SD_B, FMC_SDNRAS,<br>DCMI_D12/PSSI_D12, EVENTOUT                                            | ADC1_INP2                                               |
| N6                 | P11                   | -        | -                       | 50      | 60      | PF12                                  | I/O      | FT_ah2           | OCTOSPIM_P2_DQS, FMC_A6,<br>EVENTOUT                                                                                             | ADC1_INP6,<br>ADC1_INN2                                 |
| -                  | F10                   | -        | -                       | 51      | 61      | VSS                                   | S        | -                | -                                                                                                                                | -                                                       |
| -                  | L12                   | -        | -                       | 52      | 62      | VDD                                   | S        | -                | -                                                                                                                                | -                                                       |
| G7                 | N11                   | -        | -                       | 53      | 63      | PF13                                  | I/O      | FT_ah2           | DFSDM1_DATIN6, I2C4_SMBA,<br>FMC_A7, EVENTOUT                                                                                    | ADC2_INP2                                               |
| H7                 | R10                   | -        | -                       | 54      | 64      | PF14                                  | I/O      | FT_fah2          | DFSDM1_CKIN6, I2C4_SCL, FMC_A8, EVENTOUT                                                                                         | ADC2_INP6,<br>ADC2_INN2                                 |
| J7                 | N10                   | -        | -                       | 55      | 65      | PF15                                  | I/O      | FT_fh2           | I2C4_SDA, FMC_A9, EVENTOUT                                                                                                       | -                                                       |
| K7                 | P8                    | -        | -                       | 56      | 66      | PG0                                   | I/O      | FT_h2            | OCTOSPIM_P2_IO4, UART9_RX,<br>FMC_A10, EVENTOUT                                                                                  | -                                                       |
| -                  | F12                   | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                | -                                                       |
| -                  | M5                    | -        | -                       | -       | -       | VDD                                   | S        | -                | -                                                                                                                                | -                                                       |
| L7                 | N9                    | -        | -                       | 57      | 67      | PG1                                   | I/O      | FT_h2            | OCTOSPIM_P2_IO5, UART9_TX,<br>FMC_A11, EVENTOUT                                                                                  | OPAMP2_VINM                                             |
| G8                 | P9                    | -        | 37                      | 58      | 68      | PE7                                   | I/O      | FT_ah2           | TIM1_ETR, DFSDM1_DATIN2,<br>UART7_Rx, OCTOSPIM_P1_IO4,<br>FMC_D4/FMC_DA4, EVENTOUT                                               | OPAMP2_VOUT,<br>COMP2_INM                               |
| H8                 | N8                    | -        | 38                      | 59      | 69      | PE8                                   | I/O      | FT_ah2           | TIM1_CH1N, DFSDM1_CKIN2,<br>UART7_Tx, OCTOSPIM_P1_IO5,<br>FMC_D5/FMC_DA5, COMP2_OUT,<br>EVENTOUT                                 | OPAMP2_VINM                                             |
| J8                 | R11                   | -        | 39                      | 60      | 70      | PE9                                   | I/O      | FT_ah2           | TIM1_CH1, DFSDM1_CKOUT,<br>UART7_RTS, OCTOSPIM_P1_IO6,<br>FMC_D6/FMC_DA6, EVENTOUT                                               | OPAMP2_VINP,<br>COMP2_INP                               |
| M11                | G6                    | -        | -                       | 61      | 71      | VSS                                   | S        | -                | -                                                                                                                                | -                                                       |
| N11                | M9                    | -        | -                       | 62      | 72      | VDD                                   | S        | -                | -                                                                                                                                | -                                                       |
| M8                 | R9                    | -        | 40                      | 63      | 73      | PE10                                  | I/O      | FT_ah2           | TIM1_CH2N, DFSDM1_DATIN4,<br>UART7_CTS, OCTOSPIM_P1_IO7,<br>FMC_D7/FMC_DA7, EVENTOUT                                             | COMP2_INM                                               |

DS13196 - Rev 6 page 45/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                           |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                       | Additional functions |
| N8                 | R12                   | -        | 41                      | 64      | 74      | PE11                                  | I/O      | FT_ah2           | TIM1_CH2, DFSDM1_CKIN4,<br>SPI4_NSS, SAI2_SD_B,<br>OCTOSPIM_P1_NCS, FMC_D8/<br>FMC_DA8, LCD_G3, EVENTOUT                                  | COMP2_INP            |
| L8                 | P12                   | -        | 42                      | 65      | 75      | PE12                                  | I/O      | FT_h2            | TIM1_CH3N, DFSDM1_DATIN5,<br>SPI4_SCK, SAI2_SCK_B, FMC_D9/<br>FMC_DA9, COMP1_OUT, LCD_B4,<br>EVENTOUT                                     | -                    |
| K8                 | P13                   | -        | 43                      | 66      | 76      | PE13                                  | I/O      | FT_h2            | TIM1_CH3, DFSDM1_CKIN5,<br>SPI4_MISO, SAI2_FS_B, FMC_D10/<br>FMC_DA10, COMP2_OUT, LCD_DE,<br>EVENTOUT                                     | -                    |
| J9                 | M12                   | -        | 44                      | 67      | 77      | PE14                                  | I/O      | FT_h2            | TIM1_CH4, SPI4_MOSI, SAI2_MCK_B,<br>FMC_D11/FMC_DA11, LCD_CLK,<br>EVENTOUT                                                                | -                    |
| N9                 | P14                   | -        | 45                      | 68      | 78      | PE15                                  | I/O      | FT_h2            | TIM1_BKIN, USART10_CK, FMC_D12/<br>FMC_DA12, TIM1_BKIN_COMP12,<br>LCD_R7, EVENTOUT                                                        | -                    |
| L9                 | N12                   | 29       | 46                      | 69      | 79      | PB10                                  | I/O      | FT_f             | TIM2_CH3, LPTIM2_IN1, I2C2_SCL,<br>SPI2_SCK/I2S2_CK, DFSDM1_DATIN7,<br>USART3_TX, OCTOSPIM_P1_NCS,<br>OTG_HS_ULPI_D3, LCD_G4,<br>EVENTOUT | -                    |
| M9                 | P10                   | -        | 47                      | 70      | 80      | PB11                                  | I/O      | FT_f             | TIM2_CH4, LPTIM2_ETR, I2C2_SDA,<br>DFSDM1_CKIN7, USART3_RX,<br>OTG_HS_ULPI_D4, LCD_G5,<br>EVENTOUT                                        | -                    |
| N10                | R13                   | 30       | 48                      | 71      | 81      | VCAP                                  | S        | -                | -                                                                                                                                         | -                    |
| -                  | M10                   | 31       | 49                      | -       | -       | VSS                                   | S        | -                | -                                                                                                                                         | -                    |
| M10                | R14                   | -        | -                       | -       | -       | VDDLDO                                | S        | -                | -                                                                                                                                         | -                    |
| -                  | -                     | 32       | 50                      | 72      | 82      | VDD                                   | S        | -                | -                                                                                                                                         | -                    |
| -                  | P15                   | -        | -                       | -       | 83      | PH6                                   | I/O      | FT               | TIM12_CH1, I2C2_SMBA, SPI5_SCK,<br>FMC_SDNE1, DCMI_D8/PSSI_D8,<br>EVENTOUT                                                                | -                    |
| -                  | M11                   | -        | -                       | -       | 84      | PH7                                   | I/O      | FT_f             | I2C3_SCL, SPI5_MISO, FMC_SDCKE1, DCMI_D9/PSSI_D9, EVENTOUT                                                                                | -                    |
| -                  | N13                   | -        | -                       | -       | 85      | PH8                                   | I/O      | FT_fh2           | TIM5_ETR, I2C3_SDA, FMC_D16,<br>DCMI_HSYNC/PSSI_DE, LCD_R2,<br>EVENTOUT                                                                   | -                    |
| -                  | M14                   | -        | -                       | -       | 86      | PH9                                   | I/O      | FT_h2            | TIM12_CH2, I2C3_SMBA, FMC_D17,<br>DCMI_D0/PSSI_D0, LCD_R3,<br>EVENTOUT                                                                    | -                    |
| K9                 | N14                   | -        | -                       | -       | 87      | PH10                                  | I/O      | FT_h2            | TIM5_CH1, I2C4_SMBA, FMC_D18,<br>DCMI_D1/PSSI_D1, LCD_R4,<br>EVENTOUT                                                                     | -                    |
| L10                | M13                   | -        | -                       | -       | 88      | PH11                                  | I/O      | FT_fh2           | TIM5_CH2, I2C4_SCL, FMC_D19,<br>DCMI_D2/PSSI_D2, LCD_R5,<br>EVENTOUT                                                                      | -                    |
| K10                | N15                   | -        | -                       | -       | 89      | PH12                                  | I/O      | FT_fh2           | TIM5_CH3, I2C4_SDA, FMC_D20,<br>DCMI_D3/PSSI_D3, LCD_R6,<br>EVENTOUT                                                                      | -                    |
| L12                | G10                   | -        | -                       | -       | 90      | VSS                                   | S        | -                | -                                                                                                                                         | -                    |
| L13                | -                     | -        | -                       | -       | 91      | VDD                                   | S        | -                | -                                                                                                                                         | -                    |

DS13196 - Rev 6 page 46/199



|                    |                       | Pin/ball ı | name <sup>(1) (2)</sup> |         |         |                                       |          |                  |                                                                                                                                                                        |                      |
|--------------------|-----------------------|------------|-------------------------|---------|---------|---------------------------------------|----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64     | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                                    | Additional functions |
| N12                | M15                   | 33         | 51                      | 73      | 92      | PB12                                  | I/O      | FT_h1            | TIM1_BKIN, OCTOSPIM_P1_NCLK, I2C2_SMBA, SPI2_NSS/ I2S2_WS, DFSDM1_DATIN1, USART3_CK, FDCAN2_RX, OTG_HS_ULPI_D5, DFSDM2_DATIN1, TIM1_BKIN_COMP12, UART5_RX, EVENTOUT    | -                    |
| L11                | L15                   | 34         | 52                      | 74      | 93      | PB13                                  | I/O      | FT_h0            | TIM1_CH1N, LPTIM2_OUT, DFSDM2_CKIN1, SPI2_SCK/I2S2_CK, DFSDM1_CKIN1, USART3_CTS/ USART3_NSS, FDCAN2_TX, OTG_HS_ULPI_D6, SDMMC1_D0, DCMI_D2/PSSI_D2, UART5_TX, EVENTOUT | -                    |
| N13                | K15                   | 35         | 53                      | 75      | 94      | PB14                                  | I/O      | FT_h0            | TIM1_CH2N, TIM12_CH1, TIM8_CH2N,<br>USART1_TX, SPI2_MISO/I2S2_SDI,<br>DFSDM1_DATIN2, USART3_RTS,<br>UART4_RTS, SDMMC2_D0, LCD_CLK,<br>EVENTOUT                         | -                    |
| M13                | K14                   | 36         | 54                      | 76      | 95      | PB15                                  | I/O      | FT_h0            | RTC_REFIN, TIM1_CH3N, TIM12_CH2,<br>TIM8_CH3N, USART1_RX, SPI2_MOSI/<br>I2S2_SDO, DFSDM1_CKIN2,<br>UART4_CTS, SDMMC2_D1, LCD_G7,<br>EVENTOUT                           | -                    |
| M12                | L14                   | -          | 55                      | 77      | 96      | PD8                                   | I/O      | FT_h2            | DFSDM1_CKIN3, USART3_TX,<br>SPDIFRX1_IN1, FMC_D13/FMC_DA13,<br>EVENTOUT                                                                                                | -                    |
| K11                | K13                   | -          | 56                      | 78      | 97      | PD9                                   | I/O      | FT_h2            | DFSDM1_DATIN3, USART3_RX, FMC_D14/FMC_DA14, EVENTOUT                                                                                                                   | -                    |
| K12                | L13                   | -          | 57                      | 79      | 98      | PD10                                  | I/O      | FT_h2            | DFSDM1_CKOUT, DFSDM2_CKOUT,<br>USART3_CK, FMC_D15/FMC_DA15,<br>LCD_B3, EVENTOUT                                                                                        | -                    |
| -                  | H6                    | -          | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                      | -                    |
| J10                | J13                   | -          | 58                      | 80      | 99      | PD11                                  | I/O      | FT_h2            | LPTIM2_IN2, I2C4_SMBA,<br>USART3_CTS/USART3_NSS,<br>OCTOSPIM_P1_IO0, SAI2_SD_A,<br>FMC_A16/FMC_CLE, EVENTOUT                                                           | -                    |
| K13                | J15                   | -          | 59                      | 81      | 100     | PD12                                  | I/O      | FT_fh2           | LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, USART3_RTS, OCTOSPIM_P1_IO1, SAI2_FS_A, FMC_A17/FMC_ALE, DCMI_D12/ PSSI_D12, EVENTOUT                                      | -                    |
| J11                | H15                   | -          | 60                      | 82      | 101     | PD13                                  | I/O      | FT_fh2           | LPTIM1_OUT, TIM4_CH2, I2C4_SDA,<br>OCTOSPIM_P1_IO3, SAI2_SCK_A,<br>UART9_RTS, FMC_A18, DCMI_D13/<br>PSSI_D13, EVENTOUT                                                 | -                    |
| H12                | R1                    | -          | -                       | 83      | 102     | VSS                                   | S        | -                | -                                                                                                                                                                      | -                    |
| H13                | -                     | -          | -                       | 84      | 103     | VDD                                   | S        | -                | -                                                                                                                                                                      | -                    |
| J13                | H14                   | -          | 61                      | 85      | 104     | PD14                                  | I/O      | FT_h2            | TIM4_CH3, UART8_CTS, UART9_RX, FMC_D0/FMC_DA0, EVENTOUT                                                                                                                | -                    |
| J12                | J12                   | -          | 62                      | 86      | 105     | PD15                                  | I/O      | FT_h2            | TIM4_CH4, UART8_RTS, UART9_TX, FMC_D1/FMC_DA1, EVENTOUT                                                                                                                | -                    |
| -                  | D6                    | -          | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                      | -                    |
| -                  | G7                    | -          | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                      | -                    |
| Н9                 | G15                   | -          | -                       | 87      | 106     | PG2                                   | I/O      | FT_h2            | TIM8_BKIN, TIM8_BKIN_COMP12,<br>FMC_A12, EVENTOUT                                                                                                                      | -                    |

DS13196 - Rev 6 page 47/199



|                    |                       | Pin/ball | name <sup>(1) (2)</sup> |         |         |                                       |          |                  |                                                                                                                                                              |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                          | Additional functions |
| H10                | H13                   | -        | -                       | 88      | 107     | PG3                                   | I/O      | FT_h2            | TIM8_BKIN2, TIM8_BKIN2_COMP12,<br>FMC_A13, EVENTOUT                                                                                                          | -                    |
| C12                | H10                   | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                            | -                    |
| C13                | -                     | -        | -                       | -       | -       | VDD                                   | S        | -                | -                                                                                                                                                            | -                    |
| F8                 | G14                   | -        | -                       | 89      | 108     | PG4                                   | I/O      | FT_h2            | TIM1_BKIN2, TIM1_BKIN2_COMP12,<br>FMC_A14/FMC_BA0, EVENTOUT                                                                                                  | -                    |
| H11                | F15                   | -        | -                       | 90      | 109     | PG5                                   | I/O      | FT_h2            | TIM1_ETR, FMC_A15/FMC_BA1,<br>EVENTOUT                                                                                                                       | -                    |
| G9                 | F14                   | -        | -                       | 91      | 110     | PG6                                   | I/O      | FT_h2            | TIM17_BKIN, OCTOSPIM_P1_NCS,<br>FMC_NE3, DCMI_D12/PSSI_D12,<br>LCD_R7, EVENTOUT                                                                              | -                    |
| G10                | G13                   | -        | -                       | 92      | 111     | PG7                                   | I/O      | FT_h2            | SAI1_MCLK_A, USART6_CK,<br>OCTOSPIM_P2_DQS, FMC_INT,<br>DCMI_D13/PSSI_D13, LCD_CLK,<br>EVENTOUT                                                              | -                    |
| G11                | G12                   | -        | -                       | 93      | 112     | PG8                                   | I/O      | FT_h2            | TIM8_ETR, SPI6_NSS/I2S6_WS,<br>USART6_RTS, SPDIFRX1_IN2,<br>FMC_SDCLK, LCD_G7, EVENTOUT                                                                      | -                    |
| -                  | J6                    | -        | -                       | 94      | 113     | VSS                                   | S        | -                | -                                                                                                                                                            | -                    |
| G12                | E15                   | -        | -                       | -       | -       | VDD50USB                              | S        | -                | -                                                                                                                                                            | -                    |
| G13                | F13                   | -        | -                       | 95      | 114     | VDD33USB                              | S        | -                | -                                                                                                                                                            | -                    |
| F9                 | E14                   | 37       | 63                      | 96      | 115     | PC6                                   | I/O      | FT_h0            | TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0/PSSI_D0, LCD_HSYNC, EVENTOUT                   | SWPMI_IO             |
| F10                | D15                   | 38       | 64                      | 97      | 116     | PC7                                   | I/O      | FT_h0            | TRGIO, TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, SDMMC1_D7, DCMI_D1/PSSI_D1, LCD_G6, EVENTOUT    | -                    |
| F12                | D14                   | -        | 65                      | 98      | 117     | PC8                                   | I/O      | FT_h0            | TRACED1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS, FMC_NE2/FMC_NCE, FMC_INT, SWPMI_RX, SDMMC1_D0, DCMI_D2/PSSI_D2, EVENTOUT                                  | -                    |
| F11                | E13                   | 39       | 66                      | 99      | 118     | PC9                                   | I/O      | FT_fh0           | MCO2, TIM3_CH4, TIM8_CH4,<br>12C3_SDA, 12S_CKIN, UART5_CTS,<br>OCTOSPIM_P1_IO0, LCD_G3,<br>SWPMI_SUSPEND, SDMMC1_D1,<br>DCMI_D3/PSSI_D3, LCD_B2,<br>EVENTOUT | -                    |
| -                  | J7                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                            | -                    |
| E12                | B14                   | 40       | 67                      | 100     | 119     | PA8                                   | I/O      | FT_fh0           | MCO1, TIM1_CH1, TIM8_BKIN2, 12C3_SCL, USART1_CK, OTG_HS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT                                           | -                    |
| E11                | D13                   | 41       | 68                      | 101     | 120     | PA9                                   | I/O      | FT_u             | TIM1_CH2, LPUART1_TX, I2C3_SMBA,<br>SPI2_SCK/I2S2_CK, USART1_TX,<br>DCMI_D0/PSSI_D0, LCD_R5,<br>EVENTOUT                                                     | OTG_HS_VBUS          |

DS13196 - Rev 6 page 48/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                                                   |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                               | Additional functions |
| E10                | C14                   | 42       | 69                      | 102     | 121     | PA10                                  | I/O      | FT_u             | TIM1_CH3, LPUART1_RX,<br>USART1_RX, OTG_HS_ID,<br>MDIOS_MDIO, LCD_B4, DCMI_D1/<br>PSSI_D1, LCD_B1, EVENTOUT                                                       | -                    |
| F13                | C15                   | 43       | 70                      | 103     | 122     | PA11                                  | I/O      | FT_u             | TIM1_CH4, LPUART1_CTS, SPI2_NSS/<br>I2S2_WS, UART4_RX, USART1_CTS/<br>USART1_NSS, FDCAN1_RX, LCD_R4,<br>EVENTOUT                                                  | OTG_HS_DM            |
| E13                | B15                   | 44       | 71                      | 104     | 123     | PA12                                  | I/O      | FT_u             | TIM1_ETR, LPUART1_RTS, SPI2_SCK/<br>I2S2_CK, UART4_TX, USART1_RTS,<br>SAI2_FS_B, FDCAN1_TX, LCD_R5,<br>EVENTOUT                                                   | OTG_HS_DP            |
| D11                | B13                   | 45       | 72                      | 105     | 124     | PA13(JTMS/<br>SWDIO)                  | I/O      | FT               | JTMS/SWDIO, EVENTOUT                                                                                                                                              | -                    |
| D13                | A14                   | 46       | 73                      | 106     | 125     | VCAP                                  | S        | -                | -                                                                                                                                                                 | -                    |
| B10                | M6                    | 47       | 74                      | 107     | 126     | VSS                                   | S        | -                | -                                                                                                                                                                 | -                    |
| D12                | A13                   | -        | -                       | -       | -       | VDDLDO                                | S        | -                | -                                                                                                                                                                 | -                    |
| A10                | -                     | 48       | 75                      | 108     | 127     | VDD                                   | s        | -                | -                                                                                                                                                                 | -                    |
| B13                | C13                   | -        | -                       | -       | 128     | PH13                                  | I/O      | FT_h2            | TIM8_CH1N, UART4_TX, FDCAN1_TX, FMC_D21, LCD_G2, EVENTOUT                                                                                                         | -                    |
| A13                | B12                   | -        | -                       | -       | 129     | PH14                                  | I/O      | FT_h2            | TIM8_CH2N, UART4_RX, FDCAN1_RX,<br>FMC_D22, DCMI_D4/PSSI_D4,<br>LCD_G3, EVENTOUT                                                                                  | -                    |
| -                  | D12                   | -        | -                       | -       | 130     | PH15                                  | I/O      | FT_h2            | TIM8_CH3N, FMC_D23, DCMI_D11/<br>PSSI_D11, LCD_G4, EVENTOUT                                                                                                       | -                    |
| -                  | -                     | -        | -                       | -       | 131     | PI0                                   | I/O      | FT_h2            | TIM5_CH4, SPI2_NSS/I2S2_WS,<br>FMC_D24, DCMI_D13/PSSI_D13,<br>LCD_G5, EVENTOUT                                                                                    | -                    |
| -                  | J9                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                 | -                    |
| -                  | -                     | -        | -                       | -       | 132     | PI1                                   | I/O      | FT_h2            | TIM8_BKIN2, SPI2_SCK/I2S2_CK,<br>TIM8_BKIN2_COMP12, FMC_D25,<br>DCMI_D8/PSSI_D8, LCD_G6,<br>EVENTOUT                                                              | -                    |
| -                  | -                     | -        | -                       | -       | 133     | PI2                                   | I/O      | FT_h2            | TIM8_CH4, SPI2_MISO/I2S2_SDI,<br>FMC_D26, DCMI_D9/PSSI_D9,<br>LCD_G7, EVENTOUT                                                                                    | -                    |
| -                  | -                     | -        | -                       | -       | 134     | PI3                                   | I/O      | FT_h2            | TIM8_ETR, SPI2_MOSI/I2S2_SDO,<br>FMC_D27, DCMI_D10/PSSI_D10,<br>EVENTOUT                                                                                          | -                    |
| -                  | J10                   | -        | -                       | -       | 135     | VSS                                   | S        | -                | -                                                                                                                                                                 | -                    |
| -                  | -                     | -        | -                       | -       | 136     | VDD                                   | S        | -                | -                                                                                                                                                                 | -                    |
| B12                | A12                   | 49       | 76                      | 109     | 137     | PA14(JTCK/<br>SWCLK)                  | I/O      | FT               | JTCK/SWCLK, EVENTOUT                                                                                                                                              | -                    |
| C11                | A11                   | 50       | 77                      | 110     | 138     | PA15(JTDI)                            | I/O      | FT               | JTDI, TIM2_CH1/TIM2_ETR, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS/ I2S6_WS, UART4_RTS, LCD_R3, UART7_TX, LCD_B6, EVENTOUT                           | -                    |
| A12                | C12                   | 51       | 78                      | 111     | 139     | PC10                                  | I/O      | FT_h0            | DFSDM1_CKIN5, DFSDM2_CKIN0,<br>SPI3_SCK/I2S3_CK, USART3_TX,<br>UART4_TX, OCTOSPIM_P1_IO1,<br>LCD_B1, SWPMI_RX, SDMMC1_D2,<br>DCMI_D8/PSSI_D8, LCD_R2,<br>EVENTOUT | -                    |

DS13196 - Rev 6 page 49/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                                                            |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                                        | Additional functions |
| B11                | C11                   | 52       | 79                      | 112     | 140     | PC11                                  | I/O      | FT_h0            | DFSDM1_DATIN5, DFSDM2_DATIN0,<br>SPI3_MISO/I2S3_SDI, USART3_RX,<br>UART4_RX, OCTOSPIM_P1_NCS,<br>SDMMC1_D3, DCMI_D4/PSSI_D4,<br>LCD_B4, EVENTOUT                           | -                    |
| A11                | B11                   | 53       | 80                      | 113     | 141     | PC12                                  | I/O      | FT_h0            | TRACED3, TIM15_CH1, DFSDM2_CKOUT, SPI6_SCK/I2S6_CK, SPI3_MOSI/I2S3_SD0, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9/ PSSI_D9, LCD_R6, EVENTOUT                                 | -                    |
| -                  | J14                   | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                          | -                    |
| D10                | C10                   | -        | 81                      | 114     | 142     | PD0                                   | I/O      | FT_h2            | DFSDM1_CKIN6, UART4_RX,<br>FDCAN1_RX, UART9_CTS, FMC_D2/<br>FMC_DA2, LCD_B1, EVENTOUT                                                                                      | -                    |
| C10                | A10                   | -        | 82                      | 115     | 143     | PD1                                   | I/O      | FT_h2            | DFSDM1_DATIN6, UART4_TX,<br>FDCAN1_TX, FMC_D3/FMC_DA3,<br>EVENTOUT                                                                                                         | -                    |
| E9                 | B10                   | 54       | 83                      | 116     | 144     | PD2                                   | I/O      | FT_h0            | TRACED2, TIM3_ETR, TIM15_BKIN,<br>UART5_RX, LCD_B7, SDMMC1_CMD,<br>DCMI_D11/PSSI_D11, LCD_B2,<br>EVENTOUT                                                                  | -                    |
| D9                 | A9                    | -        | 84                      | 117     | 145     | PD3                                   | I/O      | FT_h2            | DFSDM1_CKOUT, SPI2_SCK/ I2S2_CK, USART2_CTS/USART2_NSS, FMC_CLK, DCMI_D5/PSSI_D5, LCD_G7, EVENTOUT                                                                         | -                    |
| C9                 | C9                    | -        | 85                      | 118     | 146     | PD4                                   | I/O      | FT_h1            | USART2_RTS, OCTOSPIM_P1_IO4,<br>FMC_NOE, EVENTOUT                                                                                                                          | -                    |
| A9                 | В9                    | -        | 86                      | 119     | 147     | PD5                                   | I/O      | FT_h1            | USART2_TX, OCTOSPIM_P1_IO5,<br>FMC_NWE, EVENTOUT                                                                                                                           | -                    |
| -                  | K2                    | -        | -                       | 120     | 148     | VSS                                   | S        | -                | -                                                                                                                                                                          | -                    |
| -                  | -                     | -        | -                       | 121     | 149     | VDDMMC                                | S        | -                | -                                                                                                                                                                          | -                    |
| B9                 | D9                    | -        | 87                      | 122     | 150     | PD6                                   | I/O      | FT_sh3           | SAI1_D1, DFSDM1_CKIN4,<br>DFSDM1_DATIN1, SPI3_MOSI/<br>I2S3_SDO, SAI1_SD_A, USART2_RX,<br>OCTOSPIM_P1_IO6, SDMMC2_CK,<br>FMC_NWAIT, DCMI_D10/PSSI_D10,<br>LCD_B2, EVENTOUT | -                    |
| D8                 | B8                    | -        | 88                      | 123     | 151     | PD7                                   | I/O      | FT_sh3           | DFSDM1_DATIN4, SPI1_MOSI/<br>I2S1_SDO, DFSDM1_CKIN1,<br>USART2_CK, SPDIFRX1_IN0,<br>OCTOSPIM_P1_IO7, SDMMC2_CMD,<br>FMC_NE1, EVENTOUT                                      | -                    |
| -                  | K6                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                          | -                    |
| A6                 | D5                    | -        | -                       | -       | -       | VDDMMC                                | S        | -                | -                                                                                                                                                                          | -                    |
| C8                 | A8                    | -        | -                       | 124     | 152     | PG9                                   | I/O      | FT_sh3           | SPI1_MISO/I2S1_SDI, USART6_RX,<br>SPDIFRX1_IN3, OCTOSPIM_P1_I06,<br>SAI2_FS_B, SDMMC2_D0, FMC_NE2/<br>FMC_NCE, DCMI_VSYNC/PSSI_RDY,<br>EVENTOUT                            | -                    |
| A8                 | C8                    | -        | -                       | 125     | 153     | PG10                                  | I/O      | FT_sh3           | OCTOSPIM_P2_IO6, SPI1_NSS/<br>I2S1_WS, LCD_G3, SAI2_SD_B,<br>SDMMC2_D1, FMC_NE3, DCMI_D2/<br>PSSI_D2, LCD_B2, EVENTOUT                                                     | -                    |
| B8                 | A7                    | -        | -                       | 126     | 154     | PG11                                  | I/O      | FT_sh3           | LPTIM1_IN2, SPI1_SCK/I2S1_CK,<br>SPDIFRX1_IN0, OCTOSPIM_P2_IO7,<br>SDMMC2_D2, USART10_RX,<br>DCMI_D3/PSSI_D3, LCD_B3,<br>EVENTOUT                                          | -                    |

DS13196 - Rev 6 page 50/199



|                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                                       |          |                  |                                                                                                                                                                                                                 |                      |
|--------------------|-----------------------|----------|-------------------------|---------|---------|---------------------------------------|----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | Pin name<br>(function after<br>reset) | Pin type | I/O<br>structure | Alternate functions                                                                                                                                                                                             | Additional functions |
| E8                 | D8                    | -        | -                       | 127     | 155     | PG12                                  | I/O      | FT_sh3           | LPTIM1_IN1, OCTOSPIM_P2_NCS,<br>SPI6_MISO/I256_SDI, USART6_RTS,<br>SPDIFRX1_IN1, LCD_B4,<br>SDMMC2_D3, USART10_TX,<br>FMC_NE4, LCD_B1, EVENTOUT                                                                 | -                    |
| D7                 | B7                    | -        | -                       | 128     | 156     | PG13                                  | I/O      | FT_sh3           | TRACED0, LPTIM1_OUT,<br>SPI6_SCK/I2S6_CK, USART6_CTS/<br>USART6_NSS, SDMMC2_D6,<br>USART10_CTS/USART10_NSS,<br>FMC_A24, LCD_R0, EVENTOUT                                                                        | -                    |
| C7                 | C7                    | -        | -                       | 129     | 157     | PG14                                  | I/O      | FT_sh3           | TRACED1, LPTIM1_ETR, SPI6_MOSI/1256_SDO, USART6_TX, OCTOSPIM_P1_IO7, SDMMC2_D7, USART10_RTS, FMC_A25, LCD_B0, EVENTOUT                                                                                          | -                    |
| -                  | K7                    | -        | -                       | 130     | 158     | VSS                                   | S        | -                | -                                                                                                                                                                                                               | -                    |
| -                  | -                     | -        | -                       | 131     | 159     | VDD                                   | S        | -                | -                                                                                                                                                                                                               | -                    |
| -                  | K8                    | -        | -                       | -       | -       | VSS                                   | S        | -                | -                                                                                                                                                                                                               | -                    |
| E7                 | D7                    | -        | -                       | 132     | 160     | PG15                                  | I/O      | FT_h1            | USART6_CTS/USART6_NSS,<br>OCTOSPIM_P2_DQS, USART10_CK,<br>FMC_SDNCAS, DCMI_D13/PSSI_D13,<br>EVENTOUT                                                                                                            | -                    |
| F7                 | A6                    | 55       | 89                      | 133     | 161     | PB3(JTDO/<br>TRACESWO)                | I/O      | FT_h0            | JTDO/TRACESWO, TIM2_CH2,<br>SPI1_SCK/I2S1_CK, SPI3_SCK/<br>I2S3_CK, SPI6_SCK/I2S6_CK,<br>SDMMC2_D2, CRS_SYNC, UART7_RX,<br>EVENTOUT                                                                             | -                    |
| B6                 | B6                    | 56       | 90                      | 134     | 162     | PB4(NJTRST)                           | I/O      | FT_h0            | NJTRST, TIM16_BKIN, TIM3_CH1,<br>SPI1_MISO/I2S1_SDI, SPI3_MISO/<br>I2S3_SDI, SPI2_NSS/I2S2_WS,<br>SPI6_MISO/I2S6_SDI, SDMMC2_D3,<br>UART7_TX, EVENTOUT                                                          | -                    |
| C6                 | C6                    | 57       | 91                      | 135     | 163     | PB5                                   | I/O      | FT_h0            | TIM17_BKIN, TIM3_CH2, I2C1_SMBA,<br>SPI1_MOSI/I2S1_SDO, I2C4_SMBA,<br>SPI3_MOSI/I2S3_SDO, SPI6_MOSI/<br>I2S6_SDO, FDCAN2_RX,<br>OTG_HS_ULPI_D7, LCD_B5,<br>FMC_SDCKE1, DCMI_D10/PSSI_D10,<br>UART5_RX, EVENTOUT | -                    |
| A5                 | A5                    | 58       | 92                      | 136     | 164     | PB6                                   | I/O      | FT_f             | TIM16_CH1N, TIM4_CH1, I2C1_SCL, HDMI_CEC, I2C4_SCL, USART1_TX, LPUART1_TX, FDCAN2_TX, OCTOSPIM_P1_NCS, DFSDM1_DATIN5, FMC_SDNE1, DCMI_D5/PSSI_D5, UART5_TX, EVENTOUT                                            | -                    |
| D6                 | B5                    | 59       | 93                      | 137     | 165     | PB7                                   | I/O      | FT_fa            | TIM17_CH1N, TIM4_CH2, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, DFSDM1_CKIN5, FMC_NL, DCMI_VSYNC/PSSI_RDY, EVENTOUT                                                                                            | PVD_IN               |
| E6                 | C5                    | 60       | 94                      | 138     | 166     | воото                                 | I        | В                | -                                                                                                                                                                                                               | VPP                  |
| B5                 | A2                    | 61       | 95                      | 139     | 167     | PB8                                   | I/O      | FT_fsh3          | TIM16_CH1, TIM4_CH3, DFSDM1_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, SDMMC1_D4, DCMI_D6/ PSSI_D6, LCD_B6, EVENTOUT                                                               | -                    |

DS13196 - Rev 6 page 51/199



| No.    |                    |                       | Pin/ball | name <sup>(1)</sup> (2) |         |         |                 |          |         |                                                                                                                                              |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|----------|-------------------------|---------|---------|-----------------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C5   B3   62   96   140   168   PB9   100   FT_fsh3   DFSDMI_DATINT, ZET_SIDA, SPL NSSSE2_WS, 12C4_SDA, SPL NSSSSE2_WS, 12C4_SDA, SPL NSSSSE2_WS, 12C4_SDA, SPL NSSSSE2_WS, 12C4_SDA, SPL NSSSSE2_WS, 12C4_SDA, SPL NSSSSE2_SDA, 12C4_SDA, SPL NSSSSE2_SDA, SPL NSSSSE2_SDA, SPL NSSSSSE2_SDA, SPL NSSSSS, 12C4_SDA, SPL NSSSSS, 12C_SA, SPL NSSSSS, 12C_SA, SPL NSSSSS, 12C_SA,    | UFBGA169 with SMPS | UFBGA176+25 with SMPS | LQFP64   | LQFP100                 | LQFP144 | LQFP176 | (function after | Pin type |         | Alternate functions                                                                                                                          | Additional functions |
| D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5                 | В3                    | 62       | 96                      | 140     | 168     | PB9             | I/O      | FT_fsh3 | DFSDM1_DATIN7, I2C1_SDA,<br>SPI2_NSS/I2S2_WS, I2C4_SDA,<br>SDMMC1_CDIR, UART4_TX,<br>FDCAN1_TX, SDMMC2_D5,<br>I2C4_SMBA, SDMMC1_D5, DCMI_D7/ | -                    |
| D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D5                 | B4                    | -        | 97                      | 141     | 169     | PE0             | I/O      | FT_h2   | LPTIM2_ETR, UART8_RX,<br>SAI2 MCK A, FMC NBL0, DCMI D2/                                                                                      | -                    |
| - K10 63 99 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D4                 | C4                    | -        | 98                      | 142     | 170     | PE1             | I/O      | FT_h2   | DCMI_D3/PSSI_D3, LCD_R6,                                                                                                                     | -                    |
| C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4                 | A4                    | -        | -                       | -       | -       | VCAP            | S        | -       | -                                                                                                                                            | -                    |
| B4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  | K10                   | 63       | 99                      | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| 64 100 144 172 VDD S - TIM8_BKIN_SAI2_MCK_A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4                 | D4                    | -        | -                       | 143     | 171     | PDR_ON          | S        | -       | -                                                                                                                                            | -                    |
| TIMB_BKIN, SAI2_MCK_A, TIMB_BKIN, COMP12_FMC_NBL2, DCMI_D5/PSSI_D5, LCD_B4, EVENTOUT  TIMB_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC/FPSSI_RDY, LCD_B5, EVENTOUT  TIMB_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC/FPSSI_RDY, LCD_B5, EVENTOUT  TIMB_CH2, SAI2_SD_A, FMC_D28, DCMI_D6/PSSI_D6, LCD_B6, EVENTOUT  TIMB_CH3_SAI2_FS_A, FMC_D29, DCMI_D7/PSSI_D7, LCD_B7, EVENTOUT  TIMB_CH3_SAI2_FS_A, FMC_D29, DCMI_D6/PSSI_D6, LCD_B6, EVENTOUT  TIMB_CH3_SAI2_FS_CA_FMC_D29, DCMI_D6/PSSI_D6, LCD_B6, EVENTOUT  TIMB_CH3_SAI2_FS_CA_FMC | B4                 | A3                    | -        | -                       | -       | -       | VDDLDO          | S        | -       | -                                                                                                                                            | -                    |
| -   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                  | -                     | 64       | 100                     | 144     | 172     | VDD             | S        | -       | -                                                                                                                                            | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | -                     | -        | -                       | -       | 173     | PI4             | I/O      | FT_h2   | TIM8_BKIN_COMP12, FMC_NBL2,<br>DCMI_D5/PSSI_D5, LCD_B4.                                                                                      | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | -                     | -        | -                       | -       | 174     | PI5             | I/O      | FT_h2   | DCMI_VSYNC/PSSI_RDY, LCD_B5,                                                                                                                 | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | -                     | -        | -                       | -       | 175     | PI6             | I/O      | FT_h2   | DCMI D6/PSSI D6, LCD B6,                                                                                                                     | -                    |
| - G8 VSS S VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  | -                     | -        | -                       | -       | 176     | PI7             | I/O      | FT_h2   | DCMI_D7/PSSI_D7, LCD_B7,                                                                                                                     | -                    |
| - G9 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | K12                   | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| - H7 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | G8                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| - H8 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | G9                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| - H9 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | H7                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| - J8 VSS S VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  | H8                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| - K9 VSS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | H9                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | J8                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| . P15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                  | K9                    | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |
| -   1/10   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                  | R15                   | -        | -                       | -       | -       | VSS             | S        | -       | -                                                                                                                                            | -                    |

- 1. The devices with SMPS correspond to commercial code STM32H7B0xlxxQ.
- A non-connected I/O in a given package is configured as an output tied to V<sub>SS</sub>. Any analog peripheral connected to such a pad (such as OPAMP, VREF+) must be disabled.
- 3. Pxy\_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.
- 4. There is a direct path between Pxy\_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on Pxy\_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.

DS13196 - Rev 6 page 52/199

# page 53/199

**Table 8. Port A alternate functions** 

|        | AF0            | AF1                     | AF2                         | AF3                                                        | AF4                                                                           | AF5                                                                    | AF6                                                            | AF7                                                                         | AF8                                                                  | AF9                                                                         | AF10                                                                 | AF11                                                                                                     | AF12                                    | AF13                            | AF14          | AF15     |
|--------|----------------|-------------------------|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------|----------|
| Por    | sys            | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/<br>12C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/12S3/<br>UART4 | SDMMC1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI6/I2S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/<br>LCD/<br>OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/OTG1_HS/<br>SAIZ/SDMMC2/TIM8 | DFSDM1/2/<br>12C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPM11/<br>TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/<br>TIM1 | LCD/UART5     | sys      |
| PA     | 0 -            | TIM2_CH1/<br>TIM2_ETR   | TIM5_CH1                    | TIM8_ETR                                                   | TIM15_BKIN                                                                    | SPI6_NSS/<br>I2S6_WS                                                   | -                                                              | USART2_<br>CTS/<br>USART2_<br>NSS                                           | UART4_TX                                                             | SDMMC2_CMD                                                                  | SAI2_SD_B                                                            | -                                                                                                        | -                                       | -                               | -             | EVENTOUT |
| PA     | 1 -            | TIM2_CH2                | TIM5_CH2                    | LPTIM3_OUT                                                 | TIM15_CH1N                                                                    | -                                                                      | -                                                              | USART2_<br>RTS                                                              | UART4_RX                                                             | OCTOSPIM_<br>P1_IO3                                                         | SAI2_MCK_B                                                           | OCTOSPIM_<br>P1_DQS                                                                                      | -                                       | -                               | LCD_R2        | EVENTOUT |
| PA     | 2 -            | TIM2_CH3                | TIM5_CH3                    | -                                                          | TIM15_CH1                                                                     | -                                                                      | DFSDM2_<br>CKIN1                                               | USART2_<br>TX                                                               | SAI2_SCK_B                                                           | -                                                                           | -                                                                    | -                                                                                                        | MDIOS_MDIO                              | -                               | LCD_R1        | EVENTOUT |
| PA     | 3 -            | TIM2_CH4                | TIM5_CH4                    | OCTOSPIM_<br>P1_CLK                                        | TIM15_CH2                                                                     | I2S6_MCK                                                               | -                                                              | USART2_<br>RX                                                               | -                                                                    | LCD_B2                                                                      | OTG_HS_<br>ULPI_D0                                                   | -                                                                                                        | -                                       | -                               | LCD_B5        | EVENTOUT |
| PA     | 4 -            | -                       | TIM5_ETR                    | -                                                          | -                                                                             | SPI1_NSS/<br>I2S1_WS                                                   | SPI3_NSS/<br>I2S3_WS                                           | USART2_<br>CK                                                               | SPI6_NSS/<br>I2S6_WS                                                 | -                                                                           | -                                                                    | -                                                                                                        | -                                       | DCMI_HSYNC/<br>PSSI_DE          | LCD_<br>VSYNC | EVENTOUT |
| PA     | 5 PWR_NDSTOP2  | TIM2_CH1/<br>TIM2_ETR   | -                           | TIM8_CH1N                                                  | -                                                                             | SPI1_SCK/<br>I2S1_CK                                                   | -                                                              | -                                                                           | SPI6_SCK/                                                            | -                                                                           | OTG_HS_<br>ULPI_CK                                                   | -                                                                                                        | -                                       | PSSI_D14                        | LCD_R4        | EVENTOUT |
| PA     | 6 -            | TIM1_BKIN               | TIM3_CH1                    | TIM8_BKIN                                                  | -                                                                             | SPI1_MISO/<br>I2S1_SDI                                                 | OCTOSPIM_<br>P1_IO3                                            | -                                                                           | SPI6_MISO/<br>I2S6_SDI                                               | TIM13_CH1                                                                   | TIM8_BKIN_COMP12                                                     | MDIOS_MDC                                                                                                | TIM1_BKIN_<br>COMP12                    | DCMI_PIXCLK/<br>PSSI_PDCK       | LCD_G2        | EVENTOUT |
| Port A | 7 -            | TIM1_CH1N               | TIM3_CH2                    | TIM8_CH1N                                                  | DFSDM2_<br>DATIN1                                                             | SPI1_MOSI/<br>I2S1_SDO                                                 | -                                                              | -                                                                           | SPI6_MOSI/<br>I2S6_SDO                                               | TIM14_CH1                                                                   | OCTOSPIM_P1_IO2                                                      | -                                                                                                        | FMC_SDNWE                               | -                               | LCD_VSYNC     | EVENTOUT |
| PA     | 8 MCO1         | TIM1_CH1                | -                           | TIM8_BKIN2                                                 | I2C3_SCL                                                                      | -                                                                      | -                                                              | USART1_<br>CK                                                               | -                                                                    | -                                                                           | OTG_HS_<br>SOF                                                       | UART7_RX                                                                                                 | TIM8_BKIN2_<br>COMP12                   | LCD_B3                          | LCD_R6        | EVENTOUT |
| PA     | 9 -            | TIM1_CH2                | -                           | LPUART1_TX                                                 | I2C3_SMBA                                                                     | SPI2_SCK/<br>I2S2_CK                                                   | -                                                              | USART1_<br>TX                                                               | -                                                                    | -                                                                           | -                                                                    | -                                                                                                        | -                                       | DCMI_D0/<br>PSSI_D0             | LCD_R5        | EVENTOUT |
| PA     | 0 -            | TIM1_CH3                | -                           | LPUART1_RX                                                 | -                                                                             | -                                                                      | -                                                              | USART1_<br>RX                                                               | -                                                                    | -                                                                           | OTG_HS_<br>ID                                                        | MDIOS_MDIO                                                                                               | LCD_B4                                  | DCMI_D1/<br>PSSI_D1             | LCD_B1        | EVENTOUT |
| PA     | -              | TIM1_CH4                | -                           | LPUART1_CTS                                                | -                                                                             | SPI2_NSS/<br>I2S2_WS                                                   | UART4_RX                                                       | USART1_<br>CTS/<br>USART1_NSS                                               | -                                                                    | FDCAN1_<br>RX                                                               | -                                                                    | -                                                                                                        | -                                       | -                               | LCD_R4        | EVENTOUT |
| PA     | 2 -            | TIM1_ETR                | -                           | LPUART1_RTS                                                | -                                                                             | SPI2_SCK/<br>I2S2_CK                                                   | UART4_TX                                                       | USART1_<br>RTS                                                              | SAI2_FS_B                                                            | FDCAN1_<br>TX                                                               | -                                                                    | -                                                                                                        | -                                       | -                               | LCD_R5        | EVENTOUT |
| PA     | JTMS/<br>SWDIO | -                       | -                           | -                                                          | -                                                                             | -                                                                      | -                                                              | -                                                                           | -                                                                    | -                                                                           | -                                                                    | -                                                                                                        | -                                       | -                               | -             | EVENTOUT |
| PA     | JTCK/<br>SWCLK | -                       | -                           | -                                                          | -                                                                             | -                                                                      | -                                                              | -                                                                           | -                                                                    | -                                                                           | -                                                                    | -                                                                                                        | -                                       | -                               | -             | EVENTOUT |
| PA     | 5 JTDI         | TIM2_CH1/<br>TIM2_ETR   | -                           | -                                                          | HDMI_CEC                                                                      | SPI1_NSS/<br>I2S1_WS                                                   | SPI3_NSS/<br>I2S3_WS                                           | SPI6_NSS/<br>I2S6_WS                                                        | UART4_<br>RTS                                                        | LCD_R3                                                                      | -                                                                    | UART7_TX                                                                                                 | -                                       | -                               | LCD_B6        | EVENTOUT |

#### Table 9. Port B alternate functions

|              |      | AF0               | AF1                     | AF2                         | AF3                                                        | AF4                                                                   | AF5                                                                    | AF6                                                        | AF7                                                                     | AF8                                                                  | AF9                                                                 | AF10                                                                         | AF11                                                                                         | AF12                                    | AF13                        | AF14          | AF15     |
|--------------|------|-------------------|-------------------------|-----------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|---------------|----------|
|              | Port | sys               | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/I2C4/<br>OCTOSPIM P1/<br>SAI1/SPI3/I2S3/<br>UART4 | SDMMC1/SPI2/<br>I2S2/SPI3/I2S3/<br>SPI6/I2S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LC<br>D/OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/<br>SAI2/SDMMC2/<br>TIM8 | DFSDM1/2/<br>I2C4/LCD/MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/SWPMI1/<br>TIM1/8/UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/TIM1 | LCD/<br>UART5 | sys      |
|              | PB0  | -                 | TIM1_CH2N               | TIM3_CH3                    | TIM8_CH2N                                                  | DFSDM2_CKOUT                                                          | -                                                                      | DFSDM1_CKOUT                                               | -                                                                       | UART4_CTS                                                            | LCD_R3                                                              | OTG_HS_<br>ULPI_D1                                                           | OCTOSPIM_P1_IO1                                                                              | -                                       | -                           | LCD_G1        | EVENTOUT |
|              | PB1  | -                 | TIM1_CH3N               | TIM3_CH4                    | TIM8_CH3N                                                  | -                                                                     | -                                                                      | DFSDM1_DATIN1                                              | -                                                                       | -                                                                    | LCD_R6                                                              | OTG_HS_<br>ULPI_D2                                                           | OCTOSPIM_<br>P1_IO0                                                                          | -                                       | -                           | LCD_G0        | EVENTOUT |
|              | PB2  | RTC_OUT2          | -                       | SAI1_D1                     | -                                                          | DFSDM1_CKIN1                                                          | -                                                                      | SAI1_SD_A                                                  | SPI3_MOSI/<br>I2S3_SDO                                                  | -                                                                    | OCTOSPIM_P1_CLK                                                     | OCTOSPIM_<br>P1_DQS                                                          | -                                                                                            | -                                       | -                           | -             | EVENTOUT |
|              | PB3  | JTDO/<br>TRACESWO | TIM2_CH2                | -                           | -                                                          | -                                                                     | SPI1_SCK/<br>I2S1_CK                                                   | SPI3_SCK/<br>I2S3_CK                                       | -                                                                       | SPI6_SCK/<br>I2S6_CK                                                 | SDMMC2_D2                                                           | CRS_SYNC                                                                     | UART7_RX                                                                                     | -                                       | -                           | -             | EVENTOUT |
|              | PB4  | NJTRST            | TIM16_BKIN              | TIM3_CH1                    | -                                                          | -                                                                     | SPI1_MISO/<br>I2S1_SDI                                                 | SPI3_MISO/<br>I2S3_SDI                                     | SPI2_NSS/<br>I2S2_WS                                                    | SPI6_MISO/<br>I2S6_SDI                                               | SDMMC2_D3                                                           | -                                                                            | UART7_TX                                                                                     | -                                       | -                           | -             | EVENTOUT |
|              | PB5  | -                 | TIM17_BKIN              | TIM3_CH2                    | -                                                          | I2C1_SMBA                                                             | SPI1_MOSI/<br>I2S1_SDO                                                 | I2C4_SMBA                                                  | SPI3_MOSI/<br>I2S3_SDO                                                  | SPI6_MOSI/<br>I2S6_SDO                                               | FDCAN2_RX                                                           | OTG_HS_<br>ULPI_D7                                                           | LCD_B5                                                                                       | FMC_SDCKE1                              | DCMI_D10/<br>PSSI_D10       | UART5_RX      | EVENTOUT |
|              | PB6  | -                 | TIM16_CH1N              | TIM4_CH1                    | -                                                          | I2C1_SCL                                                              | HDMI_CEC                                                               | I2C4_SCL                                                   | USART1_TX                                                               | LPUART1_TX                                                           | FDCAN2_TX                                                           | OCTOSPIM_<br>P1_NCS                                                          | DFSDM1_DATIN5                                                                                | FMC_SDNE1                               | DCMI_D5/PSSI_D5             | UART5_TX      | EVENTOUT |
| H B          | PB7  | -                 | TIM17_CH1N              | TIM4_CH2                    | -                                                          | I2C1_SDA                                                              | -                                                                      | I2C4_SDA                                                   | USART1_RX                                                               | LPUART1_RX                                                           | -                                                                   | -                                                                            | DFSDM1_CKIN5                                                                                 | FMC_NL                                  | DCMI_VSYNC/<br>PSSI_RDY     | -             | EVENTOUT |
| <sub>S</sub> | PB8  | -                 | TIM16_CH1               | TIM4_CH3                    | DFSDM1_CKIN7                                               | I2C1_SCL                                                              | -                                                                      | I2C4_SCL                                                   | SDMMC1_CKIN                                                             | UART4_RX                                                             | FDCAN1_RX                                                           | SDMMC2_D4                                                                    | -                                                                                            | SDMMC1_D4                               | DCMI_D6/PSSI_D6             | LCD_B6        | EVENTOUT |
|              | PB9  | -                 | TIM17_CH1               | TIM4_CH4                    | DFSDM1_DATIN7                                              | I2C1_SDA                                                              | SPI2_NSS/<br>I2S2_WS                                                   | I2C4_SDA                                                   | SDMMC1_CDIR                                                             | UART4_TX                                                             | FDCAN1_TX                                                           | SDMMC2_D5                                                                    | I2C4_SMBA                                                                                    | SDMMC1_D5                               | DCMI_D7/PSSI_D7             | LCD_B7        | EVENTOUT |
|              | PB10 | -                 | TIM2_CH3                | -                           | LPTIM2_IN1                                                 | I2C2_SCL                                                              | SPI2_SCK/<br>I2S2_CK                                                   | DFSDM1_DATIN7                                              | USART3_TX                                                               | -                                                                    | OCTOSPIM_<br>P1_NCS                                                 | OTG_HS_<br>ULPI_D3                                                           | -                                                                                            | -                                       | -                           | LCD_G4        | EVENTOUT |
|              | PB11 | -                 | TIM2_CH4                | -                           | LPTIM2_ETR                                                 | I2C2_SDA                                                              | -                                                                      | DFSDM1_CKIN7                                               | USART3_RX                                                               | -                                                                    | -                                                                   | OTG_HS_<br>ULPI_D4                                                           | -                                                                                            | -                                       | -                           | LCD_G5        | EVENTOUT |
|              | PB12 | -                 | TIM1_BKIN               | -                           | OCTOSPIM_<br>P1_NCLK                                       | I2C2_SMBA                                                             | SPI2_NSS/<br>I2S2_WS                                                   | DFSDM1_DATIN1                                              | USART3_CK                                                               | -                                                                    | FDCAN2_RX                                                           | OTG_HS_<br>ULPI_D5                                                           | DFSDM2_DATIN1                                                                                | -                                       | TIM1_BKIN_COMP12            | UART5_RX      | EVENTOUT |
|              | PB13 | -                 | TIM1_CH1N               | -                           | LPTIM2_OUT                                                 | DFSDM2_CKIN1                                                          | SPI2_SCK/                                                              | DFSDM1_CKIN1                                               | USART3_CTS/<br>USART3_NSS                                               | -                                                                    | FDCAN2_TX                                                           | OTG_HS_<br>ULPI_D6                                                           | -                                                                                            | SDMMC1_D0                               | DCMI_D2/PSSI_D2             | UART5_TX      | EVENTOUT |
|              | PB14 | -                 | TIM1_CH2N               | TIM12_CH1                   | TIM8_CH2N                                                  | USART1_TX                                                             | SPI2_MISO/<br>I2S2_SDI                                                 | DFSDM1_DATIN2                                              | USART3_RTS                                                              | UART4_RTS                                                            | SDMMC2_D0                                                           | -                                                                            | -                                                                                            | -                                       | -                           | LCD_CLK       | EVENTOUT |
|              | PB15 | RTC_REFIN         | TIM1_CH3N               | TIM12_CH2                   | TIM8_CH3N                                                  | USART1_RX                                                             | SPI2_MOSI/<br>I2S2_SDO                                                 | DFSDM1_CKIN2                                               | -                                                                       | UART4_CTS                                                            | SDMMC2_D1                                                           | -                                                                            | -                                                                                            | -                                       | -                           | LCD_G7        | EVENTOUT |

#### Table 10. Port C alternate functions

|        |      | AF0        | AF1                     | AF2                         | AF3                                                        | AF4                                                                   | AF5                                                                    | AF6                                                        | AF7                                                                         | AF8                                                          | AF9                                                                 | AF10                                                                         | AF11                                                                                                    | AF12                                    | AF13                            | AF14      | AF15     |
|--------|------|------------|-------------------------|-----------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|-----------|----------|
|        | Port | sys        | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/PSSI/<br>DFSDM1/2/<br>12C1/2/3/4/<br>LPTIM2/TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/I2C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/I2S3/<br>UART4 | SDMMC1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI6/I2S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/SDMMC1/<br>SPDIFRX/ISPI6/<br>I2S6/UART4/5/8 | FDCAN1/2/FMC/LCD<br>/OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/<br>SAI2/SDMMC2/<br>TIM8 | DFSDM1/2/<br>12C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPM1/<br>TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/<br>TIM1 | LCD/UART5 | sys      |
|        | PC0  | -          | -                       | -                           | DFSDM1_CKIN0                                               | -                                                                     | -                                                                      | DFSDM1_DATIN4                                              | -                                                                           | SAI2_FS_B                                                    | FMC_A25                                                             | OTG_HS_<br>ULPI_STP                                                          | LCD_G2                                                                                                  | FMC_SDNWE                               | -                               | LCD_R5    | EVENTOUT |
|        | PC1  | TRACED0    | -                       | SAI1_D1                     | DFSDM1_DATIN0                                              | DFSDM1_CKIN4                                                          | SPI2_MOSI/<br>I2S2_SDO                                                 | SAI1_SD_A                                                  | -                                                                           | -                                                            | SDMMC2_CK                                                           | OCTOSPIM_<br>P1_IO4                                                          | -                                                                                                       | MDIOS_MDC                               | -                               | LCD_G5    | EVENTOUT |
|        | PC2  | PWR_CSTOP  | -                       | -                           | DFSDM1_CKIN1                                               | -                                                                     | SPI2_MISO/<br>I2S2_SDI                                                 | DFSDM1_CKOUT                                               | -                                                                           | -                                                            | OCTOSPIM_P1_IO2                                                     | OTG_HS_<br>ULPI_DIR                                                          | OCTOSPIM_<br>P1_IO5                                                                                     | FMC_SDNE0                               | -                               | -         | EVENTOUT |
|        | PC3  | PWR_CSLEEP | -                       | -                           | DFSDM1_DATIN1                                              | -                                                                     | SPI2_MOSI/<br>I2S2_SDO                                                 | -                                                          | -                                                                           | -                                                            | OCTOSPIM_P1_IO0                                                     | OTG_HS_<br>ULPI_NXT                                                          | OCTOSPIM_<br>P1_IO6                                                                                     | FMC_SDCKE0                              | -                               | -         | EVENTOUT |
|        | PC4  | -          | -                       | -                           | DFSDM1_CKIN2                                               | -                                                                     | I2S1_MCK                                                               | -                                                          | -                                                                           | -                                                            | SPDIFRX1_IN2                                                        | -                                                                            | -                                                                                                       | FMC_SDNE0                               | -                               | LCD_R7    | EVENTOUT |
|        | PC5  | -          | -                       | SAI1_D3                     | DFSDM1_DATIN2                                              | PSSI_D15                                                              | -                                                                      | -                                                          | -                                                                           | -                                                            | SPDIFRX1_IN3                                                        | OCTOSPIM_<br>P1_DQS                                                          | -                                                                                                       | FMC_SDCKE0                              | COMP1_OUT                       | LCD_DE    | EVENTOUT |
|        | PC6  | -          | -                       | TIM3_CH1                    | TIM8_CH1                                                   | DFSDM1_CKIN3                                                          | I2S2_MCK                                                               | -                                                          | USART6_TX                                                                   | SDMMC1_D0DIR                                                 | FMC_NWAIT                                                           | SDMMC2_D6                                                                    | -                                                                                                       | SDMMC1_D6                               | DCMI_D0/<br>PSSI_D0             | LCD_HSYNC | EVENTOUT |
| Port C | PC7  | TRGIO      | -                       | TIM3_CH2                    | TIM8_CH2                                                   | DFSDM1_DATIN3                                                         | -                                                                      | I2S3_MCK                                                   | USART6_RX                                                                   | SDMMC1_D123DIR                                               | FMC_NE1                                                             | SDMMC2_D7                                                                    | SWPMI_TX                                                                                                | SDMMC1_D7                               | DCMI_D1/<br>PSSI_D1             | LCD_G6    | EVENTOUT |
|        | PC8  | TRACED1    | -                       | TIM3_CH3                    | TIM8_CH3                                                   | -                                                                     | -                                                                      | -                                                          | USART6_CK                                                                   | UART5_RTS                                                    | FMC_NE2/<br>FMC_NCE                                                 | FMC_INT                                                                      | SWPMI_RX                                                                                                | SDMMC1_D0                               | DCMI_D2/<br>PSSI_D2             | -         | EVENTOUT |
|        | PC9  | MCO2       | -                       | TIM3_CH4                    | TIM8_CH4                                                   | I2C3_SDA                                                              | I2S_CKIN                                                               | -                                                          | -                                                                           | UART5_CTS                                                    | OCTOSPIM_P1_IO0                                                     | LCD_G3                                                                       | SWPMI_<br>SUSPEND                                                                                       | SDMMC1_D1                               | DCMI_D3/<br>PSSI_D3             | LCD_B2    | EVENTOUT |
|        | PC10 | -          | -                       | -                           | DFSDM1_CKIN5                                               | DFSDM2_CKIN0                                                          | -                                                                      | SPI3_SCK/<br>I2S3_CK                                       | USART3_TX                                                                   | UART4_TX                                                     | OCTOSPIM_P1_IO1                                                     | LCD_B1                                                                       | SWPMI_RX                                                                                                | SDMMC1_D2                               | DCMI_D8/<br>PSSI_D8             | LCD_R2    | EVENTOUT |
|        | PC11 | -          | -                       | -                           | DFSDM1_DATIN5                                              | DFSDM2_DATIN0                                                         | -                                                                      | SPI3_MISO/<br>I2S3_SDI                                     | USART3_RX                                                                   | UART4_RX                                                     | OCTOSPIM_P1_NCS                                                     | -                                                                            | -                                                                                                       | SDMMC1_D3                               | DCMI_D4/<br>PSSI_D4             | LCD_B4    | EVENTOUT |
|        | PC12 | TRACED3    | -                       | TIM15_CH1                   | -                                                          | DFSDM2_CKOUT                                                          | SPI6_SCK/                                                              | SPI3_MOSI/<br>I2S3_SDO                                     | USART3_CK                                                                   | UART5_TX                                                     | -                                                                   | -                                                                            | -                                                                                                       | SDMMC1_CK                               | DCMI_D9/<br>PSSI_D9             | LCD_R6    | EVENTOUT |
|        | PC13 | -          | -                       | -                           | -                                                          | -                                                                     | -                                                                      | -                                                          | -                                                                           | -                                                            | -                                                                   | -                                                                            | -                                                                                                       | -                                       | -                               | -         | EVENTOUT |
|        | PC14 | -          | -                       | -                           | -                                                          | -                                                                     | -                                                                      | -                                                          | -                                                                           | -                                                            | -                                                                   | -                                                                            | -                                                                                                       | -                                       | -                               | -         | EVENTOUT |
|        | PC15 | -          | -                       | -                           | -                                                          | -                                                                     | -                                                                      | -                                                          | -                                                                           | -                                                            | -                                                                   | -                                                                            | -                                                                                                       | -                                       | -                               | -         | EVENTOUT |



|        |      | AF0     | AF1                     | AF2                         | AF3                                                        | AF4                                                                   | AF5                                                                    | AF6                                                        | AF7                                                                         | AF8                                                                  | AF9                                                                     | AF10                                                                     | AF11                                                                                                     | AF12                                    | AF13                                | AF14     | AF15     |
|--------|------|---------|-------------------------|-----------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|----------|----------|
|        | Port | sys     | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/I2C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/I2S3/<br>UART4 | SDMMC1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI6/I2S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LC<br>D/OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/SAI2/<br>SDMMC2/TIM8 | DFSDM1/2/<br>I2C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPMI1/<br>TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/<br>DCMI/<br>PSSI/LCD/<br>TIM1 | LCDUART5 | sys      |
|        | PD0  | -       | -                       | -                           | DFSDM1_CKIN6                                               | -                                                                     | -                                                                      | -                                                          | -                                                                           | UART4_RX                                                             | FDCAN1_RX                                                               | -                                                                        | UART9_CTS                                                                                                | FMC_D2/<br>FMC_DA2                      | -                                   | LCD_B1   | EVENTOUT |
|        | PD1  | -       | -                       | -                           | DFSDM1_DATIN6                                              | -                                                                     | -                                                                      | -                                                          | -                                                                           | UART4_TX                                                             | FDCAN1_TX                                                               | -                                                                        | -                                                                                                        | FMC_D3/<br>FMC_DA3                      | -                                   | -        | EVENTOUT |
|        | PD2  | TRACED2 | -                       | TIM3_ETR                    | -                                                          | TIM15_BKIN                                                            | -                                                                      | -                                                          | -                                                                           | UART5_RX                                                             | LCD_B7                                                                  | -                                                                        | -                                                                                                        | SDMMC1_CMD                              | DCMI_D11/<br>PSSI_D11               | LCD_B2   | EVENTOUT |
|        | PD3  | -       | -                       | -                           | DFSDM1_CKOUT                                               | -                                                                     | SPI2_SCK/<br>I2S2_CK                                                   | -                                                          | USART2_CTS/<br>USART2_NSS                                                   | -                                                                    | -                                                                       | -                                                                        | -                                                                                                        | FMC_CLK                                 | DCMI_D5/<br>PSSI_D5                 | LCD_G7   | EVENTOUT |
|        | PD4  | -       | -                       | -                           | -                                                          | -                                                                     | -                                                                      | -                                                          | USART2_RTS                                                                  | -                                                                    | -                                                                       | OCTOSPIM_P1_IO4                                                          | -                                                                                                        | FMC_NOE                                 | -                                   | -        | EVENTOUT |
|        | PD5  | -       | -                       | -                           | -                                                          | -                                                                     | -                                                                      | -                                                          | USART2_TX                                                                   | -                                                                    | -                                                                       | OCTOSPIM_P1_IO5                                                          | -                                                                                                        | FMC_NWE                                 | -                                   | -        | EVENTOUT |
|        | PD6  | -       | -                       | SAI1_D1                     | DFSDM1_CKIN4                                               | DFSDM1_DATIN1                                                         | SPI3_MOSI/<br>I2S3_SDO                                                 | SAI1_SD_A                                                  | USART2_RX                                                                   | -                                                                    | -                                                                       | OCTOSPIM_P1_IO6                                                          | SDMMC2_CK                                                                                                | FMC_NWAIT                               | DCMI_D10/<br>PSSI_D10               | LCD_B2   | EVENTOUT |
|        | PD7  | -       | -                       | -                           | DFSDM1_DATIN4                                              | -                                                                     | SPI1_MOSI/<br>I2S1_SDO                                                 | DFSDM1_CKIN1                                               | USART2_CK                                                                   | -                                                                    | SPDIFRX1_IN0                                                            | OCTOSPIM_P1_IO7                                                          | SDMMC2_CMD                                                                                               | FMC_NE1                                 | -                                   | -        | EVENTOUT |
| Port D | PD8  | -       | -                       | -                           | DFSDM1_CKIN3                                               | -                                                                     | -                                                                      | -                                                          | USART3_TX                                                                   | -                                                                    | SPDIFRX1_IN1                                                            | -                                                                        | -                                                                                                        | FMC_D13/<br>FMC_DA13                    | -                                   | -        | EVENTOUT |
|        | PD9  | -       | -                       | -                           | DFSDM1_DATIN3                                              | -                                                                     | -                                                                      | -                                                          | USART3_RX                                                                   | -                                                                    | -                                                                       | -                                                                        | -                                                                                                        | FMC_D14/<br>FMC_DA14                    | -                                   | -        | EVENTOUT |
|        | PD10 | -       | -                       | -                           | DFSDM1_CKOUT                                               | DFSDM2_CKOUT                                                          | -                                                                      | -                                                          | USART3_CK                                                                   | -                                                                    | -                                                                       | -                                                                        | -                                                                                                        | FMC_D15/<br>FMC_DA15                    | -                                   | LCD_B3   | EVENTOUT |
|        | PD11 | -       | -                       | -                           | LPTIM2_IN2                                                 | I2C4_SMBA                                                             | -                                                                      | -                                                          | USART3_CTS/<br>USART3_NSS                                                   | -                                                                    | OCTOSPIM_P1_IO0                                                         | SAI2_SD_A                                                                | -                                                                                                        | FMC_A16/<br>FMC_CLE                     | -                                   | -        | EVENTOUT |
|        | PD12 | -       | LPTIM1_IN1              | TIM4_CH1                    | LPTIM2_IN1                                                 | I2C4_SCL                                                              | -                                                                      | -                                                          | USART3_RTS                                                                  | -                                                                    | OCTOSPIM_P1_IO1                                                         | SAI2_FS_A                                                                | -                                                                                                        | FMC_A17/<br>FMC_ALE                     | DCMI_D12/<br>PSSI_D12               | -        | EVENTOUT |
|        | PD13 | -       | LPTIM1_OUT              | TIM4_CH2                    | -                                                          | I2C4_SDA                                                              | -                                                                      | -                                                          | -                                                                           | -                                                                    | OCTOSPIM_P1_IO3                                                         | SAI2_SCK_A                                                               | UART9_RTS                                                                                                | FMC_A18                                 | DCMI_D13/<br>PSSI_D13               | -        | EVENTOUT |
|        | PD14 | -       | -                       | TIM4_CH3                    | -                                                          | -                                                                     | -                                                                      | -                                                          | -                                                                           | UART8_CTS                                                            | -                                                                       | -                                                                        | UART9_RX                                                                                                 | FMC_D0/<br>FMC_DA0                      | -                                   | -        | EVENTOUT |
|        | PD15 | -       | -                       | TIM4_CH4                    | -                                                          | -                                                                     | -                                                                      | -                                                          | -                                                                           | UART8_RTS                                                            | -                                                                       | -                                                                        | UART9_TX                                                                                                 | FMC_D1/<br>FMC_DA1                      | -                                   | -        | EVENTOUT |

#### Table 12. Port E alternate functions

|       |      | AF0      | AF1                     | AF2                         | AF3                                                        | AF4                                                                           | AF5                                                                    | AF6                                                            | AF7                                                                         | AF8                                                                  | AF9                                                                     | AF10                                                                     | AF11                                                                                          | AF12                                    | AF13                        | AF14          | AF15     |
|-------|------|----------|-------------------------|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|---------------|----------|
|       | Port | sys      | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/<br>12C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/12S3/<br>UART4 | SDMMC1/<br>SP12/12S2/<br>SP13/12S3/<br>SP16/12S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LC<br>D/OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/SA12/<br>SDMMC2/TIM8 | DFSDM1/2/<br>I2C4/LCD/MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/SWPMI1/<br>TIM1/8/JJART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/TIM1 | LCD/<br>UART5 | sys      |
|       | PE0  | -        | LPTIM1_ETR              | TIM4_ETR                    | -                                                          | LPTIM2_ETR                                                                    | -                                                                      | -                                                              | -                                                                           | UART8_Rx                                                             | -                                                                       | SAI2_MCK_A                                                               | -                                                                                             | FMC_NBL0                                | DCMI_D2/<br>PSSI_D2         | LCD_R0        | EVENTOUT |
|       | PE1  | -        | LPTIM1_IN2              | -                           | -                                                          | -                                                                             | -                                                                      | -                                                              | -                                                                           | UART8_Tx                                                             | -                                                                       | -                                                                        | -                                                                                             | FMC_NBL1                                | DCMI_D3/<br>PSSI_D3         | LCD_R6        | EVENTOUT |
|       | PE2  | TRACECLK | -                       | SAI1_CK1                    | -                                                          | -                                                                             | SPI4_SCK                                                               | SAI1_MCLK_A                                                    | -                                                                           | -                                                                    | OCTOSPIM_P1_IO2                                                         | -                                                                        | USART10_RX                                                                                    | FMC_A23                                 | -                           | -             | EVENTOUT |
|       | PE3  | TRACED0  | -                       | -                           | -                                                          | TIM15_BKIN                                                                    | -                                                                      | SAI1_SD_B                                                      | -                                                                           | -                                                                    | -                                                                       | -                                                                        | USART10_TX                                                                                    | FMC_A19                                 | -                           | -             | EVENTOUT |
|       | PE4  | TRACED1  | -                       | SAI1_D2                     | DFSDM1_DATIN3                                              | TIM15_CH1N                                                                    | SPI4_NSS                                                               | SAI1_FS_A                                                      | -                                                                           | -                                                                    | -                                                                       | -                                                                        | -                                                                                             | FMC_A20                                 | DCMI_D4/<br>PSSI_D4         | LCD_B0        | EVENTOUT |
|       | PE5  | TRACED2  | -                       | SAI1_CK2                    | DFSDM1_CKIN3                                               | TIM15_CH1                                                                     | SPI4_MISO                                                              | SAI1_SCK_A                                                     | -                                                                           | -                                                                    | -                                                                       | -                                                                        | -                                                                                             | FMC_A21                                 | DCMI_D6/<br>PSSI_D6         | LCD_G0        | EVENTOUT |
|       | PE6  | TRACED3  | TIM1_BKIN2              | SAI1_D1                     | -                                                          | TIM15_CH2                                                                     | SPI4_MOSI                                                              | SAI1_SD_A                                                      | -                                                                           | -                                                                    | -                                                                       | SAI2_MCK_B                                                               | TIM1_BKIN2_<br>COMP12                                                                         | FMC_A22                                 | DCMI_D7/<br>PSSI_D7         | LCD_G1        | EVENTOUT |
|       | PE7  | -        | TIM1_ETR                | -                           | DFSDM1_DATIN2                                              | -                                                                             | -                                                                      | -                                                              | UART7_RX                                                                    | -                                                                    | -                                                                       | OCTOSPIM_P1_IO4                                                          | -                                                                                             | FMC_D4/<br>FMC_DA4                      | -                           | -             | EVENTOUT |
| PortE | PE8  | -        | TIM1_CH1N               | -                           | DFSDM1_CKIN2                                               | -                                                                             | -                                                                      | -                                                              | UART7_TX                                                                    | -                                                                    | -                                                                       | OCTOSPIM_P1_IO5                                                          | -                                                                                             | FMC_D5/<br>FMC_DA5                      | COMP2_OUT                   | -             | EVENTOUT |
|       | PE9  | -        | TIM1_CH1                | -                           | DFSDM1_CKOUT                                               | -                                                                             | -                                                                      | -                                                              | UART7_RTS                                                                   | -                                                                    | -                                                                       | OCTOSPIM_P1_IO6                                                          | -                                                                                             | FMC_D6/<br>FMC_DA6                      | -                           | -             | EVENTOUT |
|       | PE10 | -        | TIM1_CH2N               | -                           | DFSDM1_DATIN4                                              | -                                                                             | -                                                                      | -                                                              | UART7_CTS                                                                   | -                                                                    | -                                                                       | OCTOSPIM_P1_IO7                                                          | -                                                                                             | FMC_D7/<br>FMC_DA7                      | -                           | -             | EVENTOUT |
|       | PE11 | -        | TIM1_CH2                | -                           | DFSDM1_CKIN4                                               | -                                                                             | SPI4_NSS                                                               | -                                                              | -                                                                           | -                                                                    | -                                                                       | SAI2_SD_B                                                                | OCTOSPIM_P1_NCS                                                                               | FMC_D8/<br>FMC_DA8                      | -                           | LCD_G3        | EVENTOUT |
|       | PE12 | -        | TIM1_CH3N               | -                           | DFSDM1_DATIN5                                              | -                                                                             | SPI4_SCK                                                               | -                                                              | -                                                                           | -                                                                    | -                                                                       | SAI2_SCK_B                                                               | -                                                                                             | FMC_D9/<br>FMC_DA9                      | COMP1_<br>OUT               | LCD_B4        | EVENTOUT |
|       | PE13 | -        | TIM1_CH3                | -                           | DFSDM1_CKIN5                                               | -                                                                             | SPI4_MISO                                                              | -                                                              | -                                                                           | -                                                                    | -                                                                       | SAI2_FS_B                                                                | -                                                                                             | FMC_D10/<br>FMC_DA10                    | COMP2_OUT                   | LCD_DE        | EVENTOUT |
|       | PE14 | -        | TIM1_CH4                | -                           |                                                            | -                                                                             | SPI4_MOSI                                                              | -                                                              | -                                                                           | -                                                                    | -                                                                       | SAI2_MCK_B                                                               | -                                                                                             | FMC_D11/<br>FMC_DA11                    | -                           | LCD_CLK       | EVENTOUT |
|       | PE15 | -        | TIM1_BKIN               | -                           |                                                            | -                                                                             | -                                                                      | -                                                              | -                                                                           | -                                                                    | -                                                                       | -                                                                        | USART10_CK                                                                                    | FMC_D12/<br>FMC_DA12                    | TIM1_BKIN_COMP12            | LCD_R7        | EVENTOUT |

|        |      | AF0 | AF1                     | AF2                         | AF3                                                        | AF4                                                                           | AF5                                                                | AF6                                                        | AF7                                                                     | AF8                                                                  | AF9                                                                 | AF10                                                                 | AF11                                                                                                | AF12                                    | AF13                                | AF14          | AF15     |
|--------|------|-----|-------------------------|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|---------------|----------|
| ı      | Port | sys | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>12C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/12C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/12S3/<br>UART4 | SDMMC1/SPI2/<br>I2S2/SPI3/<br>I2S3/SPI6/<br>I2S6/UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LCD/<br>OCTOSPIM_P1/2/<br>SDMMC2/SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/OTG1_HS/<br>SAI2/SDMMC2/TIM8 | DFSDM1/2/<br>12C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPM1/TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/<br>DCMI/<br>PSSI/LCD/<br>TIM1 | LCD/<br>UART5 | sys      |
|        | PF0  | -   | -                       | -                           | -                                                          | I2C2_SDA                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P2_IO0                                                     | -                                                                    | -                                                                                                   | FMC_A0                                  | -                                   | -             | EVENTOUT |
|        | PF1  | -   | -                       | -                           | -                                                          | I2C2_SCL                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P2_IO1                                                     | -                                                                    | -                                                                                                   | FMC_A1                                  | -                                   | -             | EVENTOUT |
|        | PF2  | -   | -                       | -                           | -                                                          | I2C2_SMBA                                                                     | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P2_IO2                                                     | -                                                                    | -                                                                                                   | FMC_A2                                  | -                                   | -             | EVENTOUT |
|        | PF3  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P2_IO3                                                     | -                                                                    | -                                                                                                   | FMC_A3                                  | -                                   | -             | EVENTOUT |
|        | PF4  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P2_CLK                                                     | -                                                                    | -                                                                                                   | FMC_A4                                  | -                                   | -             | EVENTOUT |
|        | PF5  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_<br>P2_NCLK                                                | -                                                                    | -                                                                                                   | FMC_A5                                  | -                                   | -             | EVENTOUT |
|        | PF6  | -   | TIM16_CH1               | -                           | -                                                          | -                                                                             | SPI5_NSS                                                           | SAI1_SD_B                                                  | UART7_Rx                                                                | -                                                                    | -                                                                   | OCTOSPIM_P1_IO3                                                      | -                                                                                                   | -                                       | -                                   | -             | EVENTOUT |
|        | PF7  | -   | TIM17_CH1               | -                           | -                                                          | -                                                                             | SPI5_SCK                                                           | SAI1_MCLK_B                                                | UART7_Tx                                                                | -                                                                    | -                                                                   | OCTOSPIM_P1_IO2                                                      | -                                                                                                   | -                                       | -                                   | -             | EVENTOUT |
| Port F | PF8  | -   | TIM16_CH1N              | -                           | -                                                          | -                                                                             | SPI5_MISO                                                          | SAI1_SCK_B                                                 | UART7_RTS                                                               | -                                                                    | TIM13_CH1                                                           | OCTOSPIM_P1_IO0                                                      | -                                                                                                   | -                                       | -                                   | -             | EVENTOUT |
| l g    | PF9  | -   | TIM17_CH1N              | -                           | -                                                          | -                                                                             | SPI5_MOSI                                                          | SAI1_FS_B                                                  | UART7_CTS                                                               | -                                                                    | TIM14_CH1                                                           | OCTOSPIM_P1_IO1                                                      | -                                                                                                   | -                                       | -                                   | -             | EVENTOUT |
|        | PF10 | -   | TIM16_BKIN              | SAI1_D3                     | -                                                          | PSSI_D15                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P1_CLK                                                     | -                                                                    | -                                                                                                   | -                                       | DCMI_D11/<br>PSSI_D11               | LCD_DE        | EVENTOUT |
|        | PF11 | -   | -                       | -                           | -                                                          | -                                                                             | SPI5_MOSI                                                          | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_<br>P1_NCLK                                                | SAI2_SD_B                                                            | -                                                                                                   | FMC_SDNRAS                              | DCMI_D12/<br>PSSI_D12               | -             | EVENTOUT |
|        | PF12 | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_<br>P2_DQS                                                 | -                                                                    | -                                                                                                   | FMC_A6                                  | -                                   | -             | EVENTOUT |
|        | PF13 | -   | -                       | -                           | DFSDM1_DATIN6                                              | I2C4_SMBA                                                                     | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                    | -                                                                                                   | FMC_A7                                  | -                                   | -             | EVENTOUT |
|        | PF14 | -   | -                       | -                           | DFSDM1_CKIN6                                               | I2C4_SCL                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                    | -                                                                                                   | FMC_A8                                  | -                                   | -             | EVENTOUT |
|        | PF15 | -   | -                       | -                           | -                                                          | I2C4_SDA                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                    | -                                                                                                   | FMC_A9                                  | -                                   | -             | EVENTOUT |

#### Table 14. Port G alternate functions

|        |      | AF0     | AF1                     | AF2                         | AF3                                                    | AF4                                                                           | AF5                                                                    | AF6                                                               | AF7                                                                         | AF8                                                                  | AF9                                                                 | AF10                                                                     | AF11                                                                                                     | AF12                                    | AF13                            | AF14          | AF15     |
|--------|------|---------|-------------------------|-----------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------|----------|
| ı      | Port | sys     | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/<br>SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/<br> 2C4/<br> OCTOSPIM_P1/<br> SAI1/SPI3/I2S3/<br> UART4 | SDMMC1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI6/I2S6/<br>UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LCD<br>/OCTOSPIM_P1/2/<br>SDMMC2/SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/SAI2/<br>SDMMC2/TIM8 | DFSDM1/2/<br>I2C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPMI1/<br>TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/<br>TIM1 | LCD/<br>UART5 | sys      |
| П      | PG0  | -       | -                       | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | OCTOSPIM_P2_IO4                                                     | -                                                                        | UART9_RX                                                                                                 | FMC_A10                                 | -                               | -             | EVENTOUT |
|        | PG1  | -       | -                       | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | OCTOSPIM_P2_IO5                                                     | -                                                                        | UART9_TX                                                                                                 | FMC_A11                                 | -                               | -             | EVENTOUT |
|        | PG2  | -       | -                       | -                           | TIM8_BKIN                                              | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | -                                                                   | -                                                                        | TIM8_BKIN_<br>COMP12                                                                                     | FMC_A12                                 | -                               | -             | EVENTOUT |
|        | PG3  | -       | -                       | -                           | TIM8_BKIN2                                             | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | -                                                                   | -                                                                        | TIM8_BKIN2_<br>COMP12                                                                                    | FMC_A13                                 | -                               | -             | EVENTOUT |
|        | PG4  | -       | TIM1_BKIN2              | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | -                                                                   | -                                                                        | TIM1_BKIN2_<br>COMP12                                                                                    | FMC_A14/<br>FMC_BA0                     | -                               | -             | EVENTOUT |
|        | PG5  | -       | TIM1_ETR                | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | -                                                                   | -                                                                        | -                                                                                                        | FMC_A15/<br>FMC_BA1                     | -                               | -             | EVENTOUT |
|        | PG6  | -       | TIM17_BKIN              | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | -                                                                           | -                                                                    | -                                                                   | OCTOSPIM_P1_NCS                                                          | -                                                                                                        | FMC_NE3                                 | DCMI_D12/<br>PSSI_D12           | LCD_R7        | EVENTOUT |
|        | PG7  | -       | -                       | -                           | -                                                      | -                                                                             | -                                                                      | SAI1_MCLK_A                                                       | USART6_CK                                                                   | -                                                                    | OCTOSPIM_P2_DQS                                                     | -                                                                        | -                                                                                                        | FMC_INT                                 | DCMI_D13/<br>PSSI_D13           | LCD_CLK       | EVENTOUT |
| Port G | PG8  | -       | -                       | -                           | TIM8_ETR                                               | -                                                                             | SPI6_NSS/<br>I2S6_WS                                                   | -                                                                 | USART6_RTS                                                                  | SPDIFRX1_IN2                                                         | -                                                                   | -                                                                        | -                                                                                                        | FMC_SDCLK                               | -                               | LCD_G7        | EVENTOUT |
|        | PG9  | -       | -                       | -                           | -                                                      | -                                                                             | SPI1_MISO/<br>I2S1_SDI                                                 | -                                                                 | USART6_RX                                                                   | SPDIFRX1_IN3                                                         | OCTOSPIM_P1_IO6                                                     | SAI2_FS_B                                                                | SDMMC2_D0                                                                                                | FMC_NE2/<br>FMC_NCE                     | DCMI_VSYNC/<br>PSSI_RDY         | -             | EVENTOUT |
|        | PG10 | -       | -                       | -                           | OCTOSPIM_P2_IO6                                        | -                                                                             | SPI1_NSS/<br>I2S1_WS                                                   | -                                                                 | -                                                                           | -                                                                    | LCD_G3                                                              | SAI2_SD_B                                                                | SDMMC2_D1                                                                                                | FMC_NE3                                 | DCMI_D2/<br>PSSI_D2             | LCD_B2        | EVENTOUT |
|        | PG11 | -       | LPTIM1_IN2              | -                           | -                                                      | -                                                                             | SPI1_SCK/<br>I2S1_CK                                                   | -                                                                 | -                                                                           | SPDIFRX1_IN0                                                         | OCTOSPIM_P2_IO7                                                     | SDMMC2_D2                                                                | USART10_RX                                                                                               | -                                       | DCMI_D3/<br>PSSI_D3             | LCD_B3        | EVENTOUT |
|        | PG12 | -       | LPTIM1_IN1              | -                           | OCTOSPIM_P2_NCS                                        | -                                                                             | SPI6_MISO/<br>I2S6_SDI                                                 | -                                                                 | USART6_RTS                                                                  | SPDIFRX1_IN1                                                         | LCD_B4                                                              | SDMMC2_D3                                                                | USART10_TX                                                                                               | -                                       | -                               | LCD_B1        | EVENTOUT |
|        | PG13 | TRACED0 | LPTIM1_OUT              | -                           | -                                                      | -                                                                             | SPI6_SCK/<br>I2S6_CK                                                   | -                                                                 | USART6_CTS/<br>USART6_NSS                                                   | -                                                                    | -                                                                   | SDMMC2_D6                                                                | USART10_CTS/<br>USART10_NSS                                                                              | -                                       | -                               | LCD_R0        | EVENTOUT |
|        | PG14 | TRACED1 | LPTIM1_ETR              | -                           | -                                                      | -                                                                             | SPI6_MOSI/<br>I2S6_SDO                                                 | -                                                                 | USART6_TX                                                                   | -                                                                    | OCTOSPIM_P1_IO7                                                     | SDMMC2_D7                                                                | USART10_RTS                                                                                              | -                                       | -                               | LCD_B0        | EVENTOUT |
|        | PG15 | -       | -                       | -                           | -                                                      | -                                                                             | -                                                                      | -                                                                 | USART6_CTS/<br>USART6_NSS                                                   | -                                                                    | OCTOSPIM_P2_DQS                                                     | -                                                                        | -                                                                                                        | -                                       | DCMI_D13/<br>PSSI_D13           | -             | EVENTOUT |



|        |      | AF0 | AF1                     | AF2                         | AF3                                                        | AF4                                                                           | AF5                                                                | AF6                                                        | AF7                                                                     | AF8                                                                  | AF9                                                                 | AF10                                                                     | AF11                                                                                                | AF12                                    | AF13                        | AF14          | AF15     |
|--------|------|-----|-------------------------|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|---------------|----------|
| ,      | Port | sys | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/<br>LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/I2C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/I2S3/<br>UART4 | SDMMC1/SPI2/<br>I2S2/SPI3/I2S3/<br>SPI6/I2S6/<br>UARTT/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/LCD<br>/OCTOSPIM_P1/2/<br>SDMMC2/SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/SAI2/<br>SDMMC2/TIM8 | DFSDM1/2/<br>12C4/LCD/<br>MDIOS/<br>OCTOSPIM_P1/<br>SDMMC2/<br>SWPM1/TIM1/8/<br>UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/TIM1 | LCD/<br>UART5 | sys      |
|        | PH0  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | -                                       | -                           | -             | EVENTOUT |
|        | PH1  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | -                                       | -                           | -             | EVENTOUT |
|        | PH2  | -   | LPTIM1_IN2              | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P1_IO4                                                     | SAI2_SCK_B                                                               | -                                                                                                   | FMC_SDCKE0                              | -                           | LCD_R0        | EVENTOUT |
|        | PH3  | -   | -                       | -                           | -                                                          | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | OCTOSPIM_P1_IO5                                                     | SAI2_MCK_B                                                               | -                                                                                                   | FMC_SDNE0                               | -                           | LCD_R1        | EVENTOUT |
|        | PH4  | -   | -                       | -                           | -                                                          | I2C2_SCL                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | LCD_G5                                                              | OTG_HS_<br>ULPI_NXT                                                      | -                                                                                                   | -                                       | PSSI_D14                    | LCD_G4        | EVENTOUT |
|        | PH5  | -   | -                       | -                           | -                                                          | I2C2_SDA                                                                      | SPI5_NSS                                                           | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_SDNWE                               | -                           | -             | EVENTOUT |
|        | PH6  | -   | -                       | TIM12_CH1                   | -                                                          | I2C2_SMBA                                                                     | SPI5_SCK                                                           | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_SDNE1                               | DCMI_D8/<br>PSSI_D8         | -             | EVENTOUT |
|        | PH7  | -   | -                       | -                           | -                                                          | I2C3_SCL                                                                      | SPI5_MISO                                                          | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_SDCKE1                              | DCMI_D9/<br>PSSI_D9         | -             | EVENTOUT |
| Port H | PH8  | -   | -                       | TIM5_ETR                    | -                                                          | I2C3_SDA                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D16                                 | DCMI_HSYNC/<br>PSSI_DE      | LCD_R2        | EVENTOUT |
| ď      | PH9  | -   | -                       | TIM12_CH2                   | -                                                          | I2C3_SMBA                                                                     | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D17                                 | DCMI_D0/<br>PSSI_D0         | LCD_R3        | EVENTOUT |
|        | PH10 | -   | -                       | TIM5_CH1                    | -                                                          | I2C4_SMBA                                                                     | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D18                                 | DCMI_D1/<br>PSSI_D1         | LCD_R4        | EVENTOUT |
|        | PH11 | -   | -                       | TIM5_CH2                    | -                                                          | I2C4_SCL                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D19                                 | DCMI_D2/<br>PSSI_D2         | LCD_R5        | EVENTOUT |
|        | PH12 | -   | -                       | TIM5_CH3                    | -                                                          | I2C4_SDA                                                                      | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D20                                 | DCMI_D3/<br>PSSI_D3         | LCD_R6        | EVENTOUT |
|        | PH13 | -   | -                       | -                           | TIM8_CH1N                                                  | -                                                                             | -                                                                  | -                                                          | -                                                                       | UART4_TX                                                             | FDCAN1_TX                                                           | -                                                                        | -                                                                                                   | FMC_D21                                 | -                           | LCD_G2        | EVENTOUT |
|        | PH14 | -   | -                       | -                           | TIM8_CH2N                                                  | -                                                                             | -                                                                  | -                                                          | -                                                                       | UART4_RX                                                             | FDCAN1_RX                                                           | -                                                                        | -                                                                                                   | FMC_D22                                 | DCMI_D4/<br>PSSI_D4         | LCD_G3        | EVENTOUT |
|        | PH15 | -   | -                       | -                           | TIM8_CH3N                                                  | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                   | -                                                                        | -                                                                                                   | FMC_D23                                 | DCMI_D11/<br>PSSI_D11       | LCD_G4        | EVENTOUT |

#### Table 16. Port I alternate functions

|        |      | AF0 | AF1                     | AF2                         | AF3                                                    | AF4                                                                           | AF5                                                                | AF6                                                        | AF7                                                                     | AF8                                                                  | AF9                                                                         | AF10                                                                     | AF11                                                                                     | AF12                                    | AF13                        | AF14          | AF15     |
|--------|------|-----|-------------------------|-----------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|---------------|----------|
|        | Port | sys | LPTIM1/<br>TIM1/2/16/17 | PDM_SAI1/<br>TIM3/4/5/12/15 | DFSDM1/LPTIM2/3/<br>LPUART1/<br>OCTOSPIM_P1/2/<br>TIM8 | CEC/DCMI/<br>PSSI/<br>DFSDM1/2/<br>I2C1/2/3/4/<br>LPTIM2/<br>TIM15/<br>USART1 | CEC/SPI1/<br>I2S1/SPI2/<br>I2S2/SPI3/<br>I2S3/SPI4/5/<br>SPI6/I2S6 | DFSDM1/2/I2C4/<br>OCTOSPIM_P1/<br>SAI1/SPI3/I2S3/<br>UART4 | SDMMC1/SPI2/<br>I2S2/SPI3/<br>I2S3/SPI6/<br>I2S6/UART7/<br>USART1/2/3/6 | LPUART1/<br>SAI2/<br>SDMMC1/<br>SPDIFRX1/<br>SPI6/I2S6/<br>UART4/5/8 | FDCAN1/2/FMC/L<br>CD/<br>OCTOSPIM_P1/2/<br>SDMMC2/<br>SPDIFRX1/<br>TIM13/14 | CRS/FMC/LCD/<br>OCTOSPIM_P1/<br>OTG1_FS/<br>OTG1_HS/SAI2/<br>SDMMC2/TIM8 | DFSDM1/2/I2C4/LCD/<br>MDIOS/OCTOSPIM_P1/<br>SDMMC2/SWPMI1/<br>TIM1/8/UART7/9/<br>USART10 | FMC/LCD/<br>MDIOS/<br>SDMMC1/<br>TIM1/8 | COMP/DCMI/<br>PSSI/LCD/TIM1 | LCD/<br>UART5 | sys      |
|        | PI0  | -   | -                       | TIM5_CH4                    | -                                                      | -                                                                             | SPI2_NSS/<br>I2S2_WS                                               | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | -                                                                                        | FMC_D24                                 | DCMI_D13/<br>PSSI_D13       | LCD_G5        | EVENTOUT |
|        | PI1  | -   | -                       | -                           | TIM8_BKIN2                                             | -                                                                             | SPI2_SCK/<br>I2S2_CK                                               | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | TIM8_BKIN2_COMP12                                                                        | FMC_D25                                 | DCMI_D8/<br>PSSI_D8         | LCD_G6        | EVENTOUT |
|        | PI2  | -   | -                       | -                           | TIM8_CH4                                               | -                                                                             | SPI2_MISO/<br>I2S2_SDI                                             | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | -                                                                                        | FMC_D26                                 | DCMI_D9/<br>PSSI_D9         | LCD_G7        | EVENTOUT |
|        | PI3  | -   | -                       | -                           | TIM8_ETR                                               | -                                                                             | SPI2_MOSI/<br>I2S2_SDO                                             | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | -                                                                                        | FMC_D27                                 | DCMI_D10/<br>PSSI_D10       | -             | EVENTOUT |
|        | PI4  | -   | -                       | -                           | TIM8_BKIN                                              | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | SAI2_MCK_A                                                               | TIM8_BKIN_COMP12                                                                         | FMC_NBL2                                | DCMI_D5/<br>PSSI_D5         | LCD_B4        | EVENTOUT |
| Port I | PI5  | -   | -                       | -                           | TIM8_CH1                                               | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | SAI2_SCK_A                                                               | -                                                                                        | FMC_NBL3                                | DCMI_VSYNC/<br>PSSI_<br>RDY | LCD_B5        | EVENTOUT |
|        | PI6  | -   | -                       | -                           | TIM8_CH2                                               | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | SAI2_SD_A                                                                | -                                                                                        | FMC_D28                                 | DCMI_D6/<br>PSSI_D6         | LCD_B6        | EVENTOUT |
|        | PI7  | -   | -                       | -                           | TIM8_CH3                                               | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | SAI2_FS_A                                                                | -                                                                                        | FMC_D29                                 | DCMI_D7/<br>PSSI_D7         | LCD_B7        | EVENTOUT |
|        | PI8  | -   | -                       | -                           | -                                                      | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | -                                                                                        | -                                       | -                           | -             | EVENTOUT |
|        | PI9  | -   | -                       | -                           | OCTOSPIM_P2_IO0                                        | -                                                                             | -                                                                  | -                                                          | -                                                                       | UART4_RX                                                             | FDCAN1_RX                                                                   | -                                                                        | -                                                                                        | FMC_D30                                 | -                           | LCD_<br>VSYNC | EVENTOUT |
|        | PI10 | -   | -                       | -                           | OCTOSPIM_P2_IO1                                        | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | -                                                                           | -                                                                        | -                                                                                        | FMC_D31                                 | PSSI_D14                    | LCD_<br>HSYNC | EVENTOUT |
|        | PI11 | -   | -                       | -                           | OCTOSPIM_P2_IO2                                        | -                                                                             | -                                                                  | -                                                          | -                                                                       | -                                                                    | LCD_G6                                                                      | OTG_HS_<br>ULPI_DIR                                                      | -                                                                                        | -                                       | PSSI_D15                    | -             | EVENTOUT |





#### 6 Electrical characteristics

#### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>.

#### 6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at  $T_J = 25$  °C and  $T_J = T_{Jmax}$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 $\sigma$ ).

#### 6.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_J$  = 25 °C,  $V_{DD}$  = 3.3 V (for the 1.62 V  $\leq$  V<sub>DD</sub>  $\leq$  3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$ ).

#### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

#### 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10. Pin loading conditions.

#### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 11. Pin input voltage.

Figure 10. Pin loading conditions



Figure 11. Pin input voltage



DS13196 - Rev 6 page 62/199



#### 6.1.6 Power supply scheme

Figure 12. Power supply scheme



DS13196 - Rev 6 page 63/199



- 1. 100 nF filtering capacitor on each package pin.
- 2. A tolerance of +/- 20% is acceptable on decoupling capacitors.

Refer to Getting started with STM32H7A3/7B3 and STM32H7B0 hardware development(AN5307) for more details.

Caution:

Note:

Each power supply pair  $(V_{DD}/V_{SS}, V_{DDA}/V_{SSA}...)$  must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

#### 6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme



### 6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 17. Voltage characteristics, Table 18. Current characteristics, and Table 19. Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Table 17. Voltage characteristics

All main power ( $V_{DD}$ ,  $V_{DDA}$ ,  $V_{DD33USB}$ ,  $V_{DDMMC}$ ,  $V_{DDSMPS}$ ,  $V_{BAT}$ ) and ground ( $V_{SS}$ ,  $V_{SSA}$ ) pins must always be connected to the external power supply, in the permitted range.

| Symbols                            | Ratings                                                                                                                                                                                                    | Min                  | Max                                                                                                                     | Unit |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| V <sub>DDX</sub> - V <sub>SS</sub> | External main supply voltage (including V <sub>DD</sub> , V <sub>DDLDO</sub> , V <sub>DDSMPS</sub> , V <sub>DDA</sub> , V <sub>DD33USB</sub> , V <sub>DDMMC</sub> , V <sub>BAT</sub> , V <sub>REF+</sub> ) | -0.3                 | 4.0                                                                                                                     | V    |
|                                    | Input voltage on FT_xxx pins                                                                                                                                                                               | V <sub>SS</sub> -0.3 | $\begin{aligned} & \text{Min}(V_{DD}, V_{DDA}, \\ & V_{DD33USB}, V_{DDMMC}, \\ & V_{BAT}) + 4.0^{(2)(3)} \end{aligned}$ | V    |
| V <sub>IN</sub> <sup>(1)</sup>     | Input voltage on TT_xx pins                                                                                                                                                                                | V <sub>SS</sub> -0.3 | 4.0                                                                                                                     | V    |
|                                    | Input voltage on BOOT0 pin                                                                                                                                                                                 | V <sub>SS</sub>      | 9.0                                                                                                                     | V    |
|                                    | Input voltage on any other pins                                                                                                                                                                            | V <sub>SS</sub> -0.3 | 4.0                                                                                                                     | V    |
| ΔV <sub>DDX</sub>                  | Variations between different $V_{\text{DDX}}$ power pins of the same domain                                                                                                                                | -                    | 50                                                                                                                      | mV   |

DS13196 - Rev 6 page 64/199



| Symbols                           | Ratings                                          | Min | Max | Unit |
|-----------------------------------|--------------------------------------------------|-----|-----|------|
| V <sub>SSx</sub> -V <sub>SS</sub> | Variations between all the different ground pins | -   | 50  | mV   |

- 1. V<sub>IN</sub> maximum value must always be respected. Refer to Table 62. I/O current injection susceptibility for the maximum allowed injected current values.
- 2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
- 3. This formula has to be applied on power supplies related to the I/O structure described by the pin definition table.

**Table 18. Current characteristics** 

| Symbols                      | Ratings                                                                                       | Max   | Unit |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------|-------|------|--|--|--|
| ΣIV <sub>DD</sub>            | Total current into sum of all V <sub>DD</sub> power lines (source) <sup>(1)</sup>             | 620   |      |  |  |  |
| ΣIV <sub>SS</sub>            | Total current out of sum of all V <sub>SS</sub> ground lines (sink) <sup>(1)</sup>            |       |      |  |  |  |
| IV <sub>DD</sub>             | Maximum current into each V <sub>DD</sub> power pin (source) <sup>(1)</sup>                   | 100   |      |  |  |  |
| IV <sub>SS</sub>             | IV <sub>SS</sub> Maximum current out of each V <sub>SS</sub> ground pin (sink) <sup>(1)</sup> |       |      |  |  |  |
| I <sub>IO</sub>              | Output current sunk by any I/O and control pin                                                | 20    | mA   |  |  |  |
| ΣI <sub>(PIN)</sub>          | Total output current sunk by sum of all I/Os and control pins <sup>(2)</sup>                  | 140   |      |  |  |  |
| ZI(PIN)                      | Total output current sourced by sum of all I/Os and control pins <sup>(2)</sup>               | 140   |      |  |  |  |
| I <sub>INJ(PIN)</sub> (3)(4) | Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5                             | -5/+0 |      |  |  |  |
| 'INJ(PIN)                    | Injected current on PA4, PA5                                                                  | -0/0  |      |  |  |  |
| ΣI <sub>INJ(PIN)</sub>       | Total injected current (sum of all I/Os and control pins) <sup>(5)</sup>                      | ±25   |      |  |  |  |

- All main power (V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DDSMPS</sub>, V<sub>DDLDO</sub>, V<sub>DD33USB</sub>, V<sub>DDMMC</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supplies, in the permitted range.
- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- 3. A positive injection is induced by  $V_{IN}$ > $V_{DD}$  while a negative injection is induced by  $V_{IN}$ < $V_{SS}$ .  $I_{INJ(PIN)}$  must never be exceeded. Refer also to Table 17. Voltage characteristics for the maximum allowed input voltage values.
- 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- When several inputs are submitted to a current injection, the maximum ∑I<sub>INJ(PIN)</sub> is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 19. Thermal characteristics

| Symbol           | Ratings                      | Value              | Unit |
|------------------|------------------------------|--------------------|------|
| T <sub>STG</sub> | Storage temperature range    | -65 to +150        | °C   |
| TJ               | Maximum junction temperature | 130 <sup>(1)</sup> |      |

1. The junction temperature is limited to 105 °C in the VOS0 voltage range.

DS13196 - Rev 6 page 65/199



# 6.3 Operating conditions

## 6.3.1 General operating conditions

Table 20. General operating conditions

| Symbol               | Parameter                                                                                               | Operating conditions                                                     | Min                 | Тур  | Max                                                                                                                                                                                                         | Unit |
|----------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| V <sub>DD</sub>      | Standard operating voltage                                                                              | -                                                                        | 1.62 <sup>(1)</sup> | -    | 3.6                                                                                                                                                                                                         |      |
| .,                   |                                                                                                         |                                                                          | 1.62 <sup>(1)</sup> | -    | 3.6                                                                                                                                                                                                         |      |
| V <sub>DDLDO</sub>   | Supply voltage for the internal regulator                                                               | VDDLDO ≤ VDD                                                             | 1.2 <sup>(2)</sup>  | -    | 3.6                                                                                                                                                                                                         |      |
| V <sub>DDSMPS</sub>  | Supply voltage for the internal SMPS Step-down converter                                                | VDDSMPS = VDD                                                            | 1.62(1)             | -    | 3.6                                                                                                                                                                                                         |      |
|                      | Chandand an austing vallence for independent MMC                                                        | Indenpent MMC I/Os used                                                  | 1.62 <sup>(1)</sup> | -    | 3.6                                                                                                                                                                                                         |      |
| V <sub>DDMMC</sub>   | Standard operating voltage for independent MMC I/Os                                                     | Independent MMC I/Os<br>not used V <sub>DDMMC</sub> =<br>V <sub>DD</sub> | 1.62 <sup>(1)</sup> | -    | 3.6                                                                                                                                                                                                         |      |
| V <sub>DD33USB</sub> | Standard operating voltage, USB domain                                                                  | USB used                                                                 | 3.0                 | -    | 3.6                                                                                                                                                                                                         |      |
| <b>▼</b> DD330SB     | Standard operating voltage, OSB domain                                                                  | USB not used                                                             | 0                   | -    | 3.6                                                                                                                                                                                                         |      |
|                      |                                                                                                         | ADC or COMP used                                                         | 1.62                | -    |                                                                                                                                                                                                             |      |
|                      |                                                                                                         | DAC used                                                                 | 1.8                 | -    |                                                                                                                                                                                                             |      |
| l v                  | Analan ananting valtage                                                                                 | OPAMP used                                                               | 2.0                 | -    | 3.6                                                                                                                                                                                                         |      |
| V <sub>DDA</sub>     | Analog operating voltage                                                                                | VREFBUF used                                                             | 1.8                 | -    |                                                                                                                                                                                                             |      |
|                      |                                                                                                         | ADC, DAC, OPAMP,<br>COMP, VREFBUF not<br>used                            | 0                   | -    |                                                                                                                                                                                                             |      |
| V <sub>BAT</sub>     | Backup operating voltage                                                                                | -                                                                        | 1.2                 | -    | 3.6                                                                                                                                                                                                         | V    |
|                      |                                                                                                         | TT_xx I/O                                                                | -0.3                | -    | V <sub>DD</sub> +0.3                                                                                                                                                                                        |      |
|                      |                                                                                                         | воото                                                                    | 0                   | -    | 9                                                                                                                                                                                                           |      |
| V <sub>IN</sub>      | I/O Input voltage                                                                                       | All I/O except BOOT0 and TT_xx                                           | -0.3                | -    | $\begin{aligned} & \text{Min}(\text{V}_{\text{DD}}, \\ & \text{V}_{\text{DDA}}, \\ & \text{V}_{\text{DD33USB}}, \\ & \text{V}_{\text{DDMMC}}) \\ & +3.6 \text{ V} < \\ & 5.5 \text{ V}^{(3)} \end{aligned}$ |      |
|                      |                                                                                                         | VOS3 (max frequency<br>88 MHz)                                           | 0.95                | 1.0  | 1.05                                                                                                                                                                                                        |      |
|                      | Internal regulator ON (LDO or SMPS) <sup>(4)</sup>                                                      | VOS2 (max frequency<br>160 MHz)                                          | 1.05                | 1.10 | 1.15                                                                                                                                                                                                        |      |
|                      | Internal regulator ON (LDO of SWFS)                                                                     | VOS1 (max frequency<br>225 MHz)                                          | 1.15                | 1.20 | 1.25                                                                                                                                                                                                        |      |
| V <sub>CORE</sub>    |                                                                                                         | VOS0 (max frequency<br>280 MHz)                                          | 1.25                | 1.30 | 1.35                                                                                                                                                                                                        |      |
|                      |                                                                                                         | VOS3 (max frquency<br>88 MHz)                                            | 0.97                | 1.0  | 1.05                                                                                                                                                                                                        |      |
|                      | Regulator OFF: external V <sub>CORE</sub> voltage must be supplied from external regulator on VCAP pins | VOS2 (max frequency<br>160 MHz)                                          | 1.07                | 1.10 | 1.15                                                                                                                                                                                                        |      |
|                      |                                                                                                         | VOS1 (max frequency<br>225 MHz)                                          | 1.17                | 1.20 | 1.25                                                                                                                                                                                                        |      |

DS13196 - Rev 6 page 66/199



| Symbol            | Parameter                                                                                               | Operating conditions                 | Min  | Тур  | Max  | Unit |
|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|------|------|------|------|
| V <sub>CORE</sub> | Regulator OFF: external V <sub>CORE</sub> voltage must be supplied from external regulator on VCAP pins | VOS0 (max frequency<br>280 MHz)      | 1.27 | 1.30 | 1.33 | V    |
| _                 | Ambient temperature for the cuffix 6 version                                                            | Maximum power dissipation            | -40  | -    | 85   | °C   |
| T <sub>A</sub>    | Ambient temperature for the suffix 6 version                                                            | Low-power dissipation <sup>(5)</sup> | -40  | -    | 105  |      |
| T <sub>J</sub>    | Junction temperature range                                                                              | VOS0                                 | -40  | -    | 105  | °C   |
|                   |                                                                                                         | VOS3, VOS2, VOS1                     | -40  | -    | 130  |      |

- When a reset occurs, the functionality is guaranteed down to V<sub>PDRmax</sub> or to the specified V<sub>DDmin</sub> when the PDR is OFF. The PDR can only be switched OFF though the PDR\_ON pin that is not available in all packages (refer to Table 7. STM32H7B0xB pin/ball definition)
- 2. Only for power-up sequence when the SMPS step-down converter is configured to supply the LDO.
- 3. This formula has to be applied on power supplies related to the I/O structures described by the pin definition table.
- 4. At startup, the external V<sub>CORE</sub> voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).
- 5. In low-power dissipation state,  $T_A$  can be extended to this range as long as  $T_J$  does not exceed  $T_{Jmax}$  (see Section 7.7 Thermal characteristics).

Table 21. Maximum allowed clock frequencies

| Symbol (1)(2)                            | Parameter            | VOS0 | VOS1  | VOS2 | VOS3 | Unit |
|------------------------------------------|----------------------|------|-------|------|------|------|
| f <sub>CPU</sub>                         | CPU                  | 280  | 225   | 160  | 88   |      |
| f <sub>ACLK</sub>                        | AXI                  | 280  | 225   | 160  | 88   |      |
| f <sub>HCLK</sub>                        | AHB                  | 280  | 225   | 160  | 88   |      |
| f <sub>PCLK</sub>                        | APB                  | 140  | 112.5 | 80   | 44   |      |
| f <sub>TraceCK</sub> / f <sub>JTCK</sub> | Trace / JTAG         | 40   | 35    | 40   | 20   |      |
| f <sub>ltdc_ker_ck</sub>                 | LTDC                 | 140  | 112.5 | 80   | 44   |      |
| f <sub>fmc_ker_ck</sub>                  | FMC                  | 280  | 225   | 160  | 88   |      |
| f <sub>octospi_ker_clk</sub>             | OCTOSPI1/2           | 280  | 225   | 160  | 88   |      |
| f <sub>sdmmc_ker_ck</sub>                | SDMMC1/2             | 280  | 225   | 160  | 88   |      |
| f <sub>DFSDM1_Aclk</sub>                 | DECDM                | 140  | 112.5 | 80   | 44   |      |
| f <sub>DFSDM1_Clk</sub>                  | DFSDM1               | 140  | 112.5 | 80   | 44   |      |
| f <sub>DFSDM2_Aclk</sub>                 | DECDMO               | 140  | 112.5 | 80   | 44   | MHz  |
| fDFSDM2_Clk                              | DFSDM2               | 140  | 112.5 | 80   | 44   |      |
| f <sub>fdcan_ker_ck</sub>                | FDCAN                | 140  | 112.5 | 80   | 44   |      |
| f <sub>cec_ker_ck</sub>                  | HDMI_CEC             | 66   | 66    | 66   | 44   |      |
| f <sub>I2C_ker_ck</sub>                  | I2C[1:4]             | 140  | 112.5 | 80   | 44   |      |
| f <sub>lptim_ker_ck</sub>                | LPTIM[1:3]           | 140  | 112.5 | 80   | 44   |      |
| f <sub>rcc_tim_ker_ck</sub>              | TIM[2:7],TIM[12:14]  | 280  | 225   | 160  | 88   |      |
| f <sub>rcc_tim_ker_ck</sub>              | PWM1,PWM8,TIM[15:17] | 280  | 225   | 160  | 88   |      |
| f <sub>rng_clk</sub>                     | RNG                  | 140  | 112.5 | 80   | 44   |      |
| f <sub>sai_a_ker_ck</sub>                | 0.014                | 450  | 450   | 00   | 00   |      |
| f <sub>sai_b_ker_ck</sub>                | SAI1                 | 150  | 150   | 80   | 80   |      |
| f <sub>sai_a_ker_ck</sub>                | SAI2                 | 150  | 150   | 80   | 80   |      |

DS13196 - Rev 6 page 67/199



| Symbol (1)(2)               | Parameter       | VOS0 | VOS1  | VOS2 | VOS3 | Unit |
|-----------------------------|-----------------|------|-------|------|------|------|
| f <sub>sai_b_ker_ck</sub>   | SAI2            | 150  | 150   | 80   | 80   |      |
| f <sub>spdifrx_ker_ck</sub> | SPDIFRX1        | 280  | 225   | 160  | 88   |      |
| f <sub>spi_ker_ck</sub>     | SPI[1:6]        | 280  | 225   | 160  | 88   |      |
| f <sub>lpuart_ker_ck</sub>  | LPUART1         | 140  | 112.5 | 80   | 44   |      |
| f <sub>usart_ker_ck</sub>   | USART1/2/3/6/10 | 280  | 225   | 160  | 88   |      |
| f <sub>uart_ker_ck</sub>    | UART4/5/7/8/9   | 280  | 225   | 160  | 88   | MHz  |
| f <sub>adp_clk</sub>        | USBOTG          | 48   | 48    | 48   | 48   |      |
| f <sub>ulpi_ck</sub>        | USB1ULPI        | 66   | 66    | 66   | 66   |      |
| f <sub>adc_ker_ck</sub>     | ADC1/2          | 50   | 50    | 50   | 50   |      |
| f <sub>dac_pclk</sub>       | DAC1/2          | 140  | 112.5 | 80   | 44   |      |
| f <sub>rtc_ker_ck</sub>     | RTC             | 1    | 1     | 1    | 1    |      |

<sup>1.</sup> Guaranteed by design.

Table 22. Supply voltage and maximum frequency configuration

| Power scale | V <sub>CORE</sub> source | Max T <sub>J</sub> (°C) | Max frequency (MHz) | Min V <sub>DD</sub> (V) |
|-------------|--------------------------|-------------------------|---------------------|-------------------------|
| VOS0        | LDO/SMPS                 | 105                     | 280                 | 1.71                    |
| VOS1        | LDO/SMPS                 | 130                     | 225                 | 1.62                    |
| VOS2        | LDO/SMPS                 | 130                     | 160                 | 1.62                    |
| VOS3        | LDO/SMPS                 | 130                     | 88                  | 1.62                    |
| SVOS4       | LDO/SMPS                 | 130                     | N/A                 | 1.62                    |
| SVOS5       | LDO/SMPS                 | 130                     | N/A                 | 1.62                    |

DS13196 - Rev 6 page 68/199

<sup>2.</sup> The maximum kernel clock frequencies can be limited by the maximum peripheral clock frequency (refer each peripheral electrical characteristics).



#### 6.3.2 VCAP external capacitor

Stabilization for the embedded LDO regulator is achieved by connecting an external capacitor  $C_{EXT}$  to the VCAPx pin.  $C_{EXT}$  is specified in Table 23. VCAP operating conditions. Two external capacitors must be connected to VCAP pins (refer to *Getting started with STM32H7A3/TB3 and STM32H7B0 hardware development* (AN5307).

Figure 14. External capacitor CEXT



1. Legend: ESR is the equivalent series resistance.

#### Table 23. VCAP operating conditions

When the internal LDO voltage regulator is switched OFF, the two 2.2 µF VCAP capacitors are not required. However all VCAPx package pins must be connected together and it is recommended to add a ceramic filtering capacitor of 100 nF as close as possible to each VCAPx pin.

| Symbol | Parameter                          | Conditions               |
|--------|------------------------------------|--------------------------|
| CEXT   | External capacitor for LDO enabled | 2.2 µF <sup>(1)(2)</sup> |
| ESR    | ESR of external capacitor          | < 100 mΩ                 |

- 1. This value corresponds to CEXT typical value. A variation of ±20% is tolerated.
- 2. If the VCAP3 pin is available (depending on the package), it must be connected to the other VCAP pins. No additional capacitor is required.

#### 6.3.3 SMPS step-down converter

The devices embed a high power efficiency SMPS step-down converter requiring external components. Refer to *Getting started with STM32H7A3/7B3 and STM32H7B0 hardware development* (AN5307) for the required components and tradeoffs.

Table 24. Characteristics of SMPS step-down converter external components

| Symbol            | Parameter                                                                                                                                   | Conditions |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|
| C <sub>IN</sub>   | Capacitance of external capacitor on VDDSMPS                                                                                                | 4.7 µF     |
| CIN               | ESR of external capacitor                                                                                                                   | 100 mΩ     |
| C <sub>filt</sub> | Capacitance of external capacitor on VLXSMPS pin                                                                                            | 220 pF     |
| C <sub>OUT</sub>  | Capacitance of external capacitor on VFBSMPS pin                                                                                            | 10 μF      |
| 0001              | ESR of external capacitor                                                                                                                   | 20 mΩ      |
| L                 | Inductance of external Inductor on VLXSMPS pin                                                                                              | 2.2 µH     |
| -                 | Serial DC resistor                                                                                                                          | 150 mΩ     |
| I <sub>SAT</sub>  | DC current at which the inductance drops 30% from its value without current.                                                                | 1.7 A      |
| I <sub>RMS</sub>  | Average current for a 40 $^{\circ}$ C rise: rated current for which the temperature of the inductor is raised 40 $^{\circ}$ C by DC current | 1.4 A      |

DS13196 - Rev 6 page 69/199



| Table 25. SMF | 'S step-down | converter cl | haracteristics f | for externa | usage |
|---------------|--------------|--------------|------------------|-------------|-------|
|---------------|--------------|--------------|------------------|-------------|-------|

| Symbol                             | Conditions                         | Min                       | Тур | Max  | Unit |  |
|------------------------------------|------------------------------------|---------------------------|-----|------|------|--|
| V (1)                              | V <sub>OUT</sub> = 1.8 V           | 2.3                       | -   | 3.6  | V    |  |
| V <sub>DDSMPS</sub> <sup>(1)</sup> | V <sub>OUT</sub> = 2.5 V           | 3                         | -   | 3.6  |      |  |
| V <sub>OUT</sub> <sup>(2)</sup>    | I <sub>ОИТ</sub> =600 mA           | 2.25                      | 2.5 | 2.75 | V    |  |
| VOUT(=)                            | 1001-000 HIM                       | 1.62                      | 1.8 | 1.98 |      |  |
| 1                                  | internal and external usage        | nal and external usage 60 |     | 600  | mA   |  |
| I <sub>OUT</sub> —                 | External usage only <sup>(3)</sup> | -                         | -   | 600  | IIIA |  |
| RDS <sub>ON</sub>                  | -                                  | -                         | 100 | 120  | mΩ   |  |
| IDD <sub>SMPS_Q</sub>              | Quiescent current                  | -                         | 220 | -    | μA   |  |
| T <sub>SMPS_START</sub>            | V <sub>OUT</sub> = 1.8 V           | -                         | 270 | 405  | μs   |  |
|                                    | V <sub>OUT</sub> = 2.5 V           | -                         | 360 | 540  |      |  |

- 1. The switching frequency is 2.4 MHz±10%
- 2. Including line transient and load transient.
- 3. These characteristics are given for SMPSEXTHP bit is set in the PWR\_CR3 register.

The SMPS current consumption can be determined using the following formula based on the maximum LDO current consumption provided in Section 6.3.7 Supply current characteristics:

$$I_{DDSMPS} = I_{DDLDO} \times (V_{CORE} \div (V_{DD} \times efficency))$$
 where

I<sub>DDLDO</sub> is the current in LDO configuration given in the following tables

 $V_{CORE}$  is the digital core supply ( $V_{CAP}$ )

Efficiency is defined in the following curves.

DS13196 - Rev 6 page 70/199



Figure 15. SMPS efficieency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode,  $T_J$  = 30 °C



Figure 16. SMPS efficiency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode,  $T_J$  = 130 °C



DS13196 - Rev 6 page 71/199

Figure 17. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5),  $\rm T_{J}$  = 30  $^{\circ}\rm C$ 



Figure 18. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5),  $T_J = 130 \, ^{\circ}\text{C}$ 



DS13196 - Rev 6 page 72/199



Figure 19. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5),  $T_{.1} = 30 \, ^{\circ}\text{C}$ 



Figure 20. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5),  $T_J = 130 \, ^{\circ}\text{C}$ 



## 6.3.4 Operating conditions at power-up / power-down

Subject to general operating conditions for T<sub>A</sub>.

Operating conditions at power-up / power-down (regulator ON)

DS13196 - Rev 6 page 73/199



Table 26. Operating conditions at power-up / power-down (regulator ON)

| Symbol              | Parameter                         | Min | Max | Unit |
|---------------------|-----------------------------------|-----|-----|------|
| t                   | V <sub>DD</sub> rise time rate    | 0   | ∞   |      |
| t <sub>VDD</sub>    | V <sub>DD</sub> fall time rate    | 10  | ∞   |      |
| t                   | V <sub>DDA</sub> rise time rate   | 0   | ∞   |      |
| tvdda               | V <sub>DDA</sub> fall time rate   | 10  | ∞   |      |
| <b>*</b>            | V <sub>DDUSB</sub> rise time rate | 0   | ∞   | µs/V |
| t <sub>VDDUSB</sub> | V <sub>DDUSB</sub> fall time rate | 10  | ∞   |      |
|                     | V <sub>DDMMC</sub> rise time rate | 0   | ∞   |      |
| VDDMMC              | V <sub>DDMMC</sub> fall time rate | 10  | ∞   |      |

### 6.3.5 Embedded reset and power control block characteristics

The parameters given in Table 27. Reset and power control block characteristics are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions.

Table 27. Reset and power control block characteristics

| Symbol                               | Parameter                                   | Conditions                 | Min  | Тур  | Max  | Unit |
|--------------------------------------|---------------------------------------------|----------------------------|------|------|------|------|
| t <sub>RSTTEMPO</sub> <sup>(1)</sup> | Reset temporization after POR released      | -                          | -    | 377  | 550  | μs   |
| V                                    | Dower on/power down reget threshold         | Rising edge <sup>(1)</sup> | 1.62 | 1.67 | 1.71 |      |
| V <sub>POR/PDR</sub>                 | Power-on/power-down reset threshold         | Falling edge               | 1.58 | 1.62 | 1.68 |      |
| V <sub>BOR1</sub>                    | Brown-out reset threshold 1                 | Rising edge                | 2.04 | 2.10 | 2.15 |      |
| VBOR1                                | Brown-out reset till esticial i             | Falling edge               | 1.95 | 2.00 | 2.06 |      |
| $V_{BOR2}$                           | Brown-out reset threshold 2                 | Rising edge                | 2.34 | 2.41 | 2.47 |      |
| VBOR2                                | Brown-out reset tilleshold 2                | Falling edge               | 2.25 | 2.31 | 2.37 |      |
| V <sub>BOR3</sub>                    | Brown-out reset threshold 3                 | Rising edge                | 2.63 | 2.70 | 2.78 |      |
| VBOR3                                | Brown-out reset tilleshold 3                | Falling edge               | 2.54 | 2.61 | 2.68 |      |
| V <sub>PVD0</sub>                    | Programmable Voltage Detector threshold 0   | Rising edge                | 1.90 | 1.96 | 2.01 |      |
| VPVD0                                | Programmable voltage Detector tilleshold o  | Falling edge               | 1.81 | 1.86 | 1.91 |      |
| $V_{PVD1}$                           | Programmable Voltage Detector threshold 1   | Rising edge                | 2.05 | 2.10 | 2.16 | V    |
| <b>▼</b> PVD1                        | Programmable voltage Detector timeshold 1   | Falling edge               | 1.96 | 2.01 | 2.06 |      |
| $V_{PVD2}$                           | Programmable Voltage Detector threshold 2   | Rising edge                | 2.19 | 2.26 | 2.32 |      |
| VPVD2                                | Programmable voltage Detector timeshold 2   | Falling edge               | 2.10 | 2.15 | 2.21 |      |
| $V_{PVD3}$                           | Programmable Voltage Detector threshold 3   | Rising edge                | 2.35 | 2.41 | 2.47 |      |
| <b>▼</b> PVD3                        | Programmable voltage Detector timeshold 3   | Falling edge               | 2.25 | 2.31 | 2.37 |      |
| $V_{PVD4}$                           | Programmable Voltage Detector threshold 4   | Rising edge                | 2.49 | 2.56 | 2.62 |      |
| <b>V</b> PVD4                        | Programmable voltage Detector timeshold 4   | Falling edge               | 2.39 | 2.45 | 2.51 |      |
| $V_{PVD5}$                           | Programmable Voltage Detector threshold 5   | Rising edge                | 2.64 | 2.71 | 2.78 |      |
| V PVD5                               | Programmable voltage Detector tirreshold 5  | Falling edge               | 2.55 | 2.61 | 2.68 |      |
| V <sub>PVD6</sub>                    | Programmable Voltage Detector threshold 6   | Rising edge                | 2.78 | 2.86 | 2.94 |      |
| <b>₹</b> PVD6                        | r rogrammable voltage Detector tilleshold o | Falling edge in Run mode   | 2.69 | 2.76 | 2.83 |      |
| V <sub>POR/PDR</sub>                 | Hysteresis for power-on/power-down reset    | Hysteresis in Run mode     | -    | 43   | -    | mV   |

DS13196 - Rev 6 page 74/199



| Symbol                                 | Parameter                                           | Conditions             | Min  | Тур  | Max   | Unit |
|----------------------------------------|-----------------------------------------------------|------------------------|------|------|-------|------|
| V <sub>hyst_BOR_PVD</sub>              | Hysteresis voltage of BOR                           | Hysteresis in Run mode | -    | 100  | -     | mV   |
| I <sub>DD_BOR_PVD</sub> <sup>(1)</sup> | BOR and PVD consumption from $V_{DD}$               | -                      | -    | -    | 0.630 |      |
| I <sub>DD_POR_PDR</sub>                | POR and PDR consumption from $V_{DD}$               | -                      | 0.8  | -    | 1.2   | μA   |
| Varia                                  | Analog voltage detector for VDDA threshold 0        | Rising edge            | 1.66 | 1.71 | 1.76  |      |
| V <sub>AVM_0</sub>                     | Alialog voltage detector for VDDA tilleshold o      | Falling edge           | 1.56 | 1.61 | 1.66  |      |
| V <sub>AVM 1</sub>                     | Analog voltage detector for VDDA threshold 1        | Rising edge            | 2.06 | 2.12 | 2.19  |      |
| V AVM_1                                | Alialog voltage detector for VDDA tilleshold i      | Falling edge           | 1.96 | 2.02 | 2.08  | V    |
| V <sub>AVM 2</sub>                     | Analog voltage detector for VDDA threshold 2        | Rising edge            | 2.42 | 2.50 | 2.58  | V    |
| V AVM_2                                | Alialog voltage detector for VDDA tilleshold 2      | Falling edge           | 2.35 | 2.42 | 2.49  |      |
| V <sub>AVM_3</sub>                     | Analog voltage detector for VDDA threshold 3        | Rising edge            | 2.74 | 2.83 | 2.91  |      |
| VAVM_3                                 | Alialog voltage detector for VDDA tilleshold 3      | Falling edge           | 2.64 | 2.72 | 2.80  |      |
| V <sub>hyst_VDDA</sub>                 | Hysteresis of VDDA voltage detector                 | -                      | -    | 100  | -     | mV   |
| I <sub>DD_PVM</sub>                    | PVM consumption from VDD <sup>(1)</sup>             | -                      | -    | -    | 0.25  | μA   |
| I <sub>DD_VDDA</sub>                   | Voltage detector consumption on VDDA <sup>(1)</sup> | Resistor bridge        | -    | -    | 2.5   | μA   |

<sup>1.</sup> Guaranteed by design.

# 6.3.6 Embedded reference voltage

The parameters given in Table 28 are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions.

| Symbol                             | Parameter                                                                     | Conditions                       | Min   | Тур   | Max   | Unit                  |
|------------------------------------|-------------------------------------------------------------------------------|----------------------------------|-------|-------|-------|-----------------------|
| V <sub>REFINT</sub> <sup>(1)</sup> | Internal reference voltages                                                   | -40 °C < T <sub>J</sub> < 130 °C | 1.180 | 1.216 | 1.255 | V                     |
| t <sub>S_vrefint</sub> (2)(3)      | ADC sampling time when reading the internal reference voltage                 | -                                | 4.3   | -     | -     |                       |
| t <sub>S_vbat</sub> (3)            | $V_{BAT}$ sampling time when reading the internal $V_{BAT}$ reference voltage | -                                | 9     | -     | -     | μs                    |
| t <sub>start_vrefint</sub> (3)     | Start time of reference voltage buffer when ADC is enable                     | -                                | -     | -     | 4.4   | μs                    |
| Irefbuf <sup>(3)</sup>             | Reference Buffer consumption for ADC                                          | V <sub>DD</sub> = 3.3 V          | 9     | 13.5  | 23    | μΑ                    |
| ΔVREFINT <sup>(3)</sup>            | Internal reference voltage spread over the temperature range                  | -40 °C < T <sub>J</sub> < 130 °C | -     | 5     | 15    | mV                    |
| T <sub>coeff</sub>                 | Average temperature coefficient                                               | Average temperature coefficient  | -     | 20    | 70    | ppm/°C                |
| V <sub>DDcoeff</sub>               | Average Voltage coefficient                                                   | 3.0 V < V <sub>DD</sub> < 3.6 V  | -     | 10    | 1370  | ppm/V                 |
| V <sub>REFINT_DIV1</sub>           | 1/4 reference voltage                                                         | -                                | -     | 25    | -     |                       |
| V <sub>REFINT_DIV2</sub>           | 1/2 reference voltage                                                         | -                                | -     | 50    | -     | % V <sub>REFINT</sub> |
| V <sub>REFINT_DIV3</sub>           | 3/4 reference voltage                                                         | -                                | -     | 75    | -     |                       |

Table 28. Embedded reference voltage

- 1. Guaranteed by design and tested in production at 3.3 V
- 2. The shortest sampling time for the application can be determined by multiple iterations.
- 3. Guaranteed by design.

DS13196 - Rev 6 page 75/199



### Table 29. Internal reference voltage calibration values

| Symbol                 | Parameter                                                          | Memory address      |
|------------------------|--------------------------------------------------------------------|---------------------|
| V <sub>REFIN_CAL</sub> | Raw data acquired at temperature of 30 °C, <sub>VDDA</sub> = 3.3 V | 08FFF810 - 08FFF812 |

Table 30. USB regulator characteristics

| Symbol                  | Parameter                               | Conditions | Min | Тур  | Max | Unit |
|-------------------------|-----------------------------------------|------------|-----|------|-----|------|
| V <sub>DD50USB</sub>    | Supply voltage                          | -          | 4   | 5    | 5,5 | V    |
| I <sub>DD50USB</sub>    | Current consumption                     | -          | -   | 13.5 | -   | μA   |
| V <sub>REGOUTV33V</sub> | Regulated output voltage                | -          | 3   | -    | 3.6 | V    |
| I <sub>OUT</sub>        | Output current load sinked by USB block | -          | -   | -    | 20  | mA   |
| T <sub>WKUP</sub>       | Wakeup time                             | -          | -   | 120  | 170 | μs   |

## **6.3.7** Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 13. Current consumption measurement scheme.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

#### Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f<sub>ACLK</sub> frequency (refer to the table "Number of wait states according to CPU clock (f<sub>rcc\_cpu\_ck</sub>) frequency and V<sub>CORE</sub> range" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.

The parameters given in the below tables are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 20. General operating conditions.

The maximum current consumptions provided in the following tables are given for LDO regulator ON. To obtain the maximum SMPS current consumption, the efficiency curves can be used with the maximum LDO current consumption as entry value (refer to Section 6.3.3 SMPS step-down converter).

DS13196 - Rev 6 page 76/199



### Table 31. Inrush current and inrush electric charge characteristics for LDO and SMPS

1. The typical values are given for  $V_{DDLDO} = V_{DDSMPS} = 3.3 \text{ V}$  and for typical decoupling capacitor values of  $C_{EXT}$  and  $C_{OUT}$ .

2. The product consumption on  $V_{\text{DDCORE}}$  is not taken into account in the inrush current and inrush electric charge.

| Symbol            | Parameter Parameter                          |                                       | Conditions                                                             | Min | Тур  | Max                | Unit |
|-------------------|----------------------------------------------|---------------------------------------|------------------------------------------------------------------------|-----|------|--------------------|------|
|                   | Inrush current on voltage regulator power-on |                                       | on V <sub>DDLDO</sub> <sup>(1)</sup>                                   | -   | 55   | 96 <sup>(2)</sup>  |      |
|                   | (POR or wakeup from Standby)                 | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies the V <sub>DDCORE</sub>                                  | -   | 25   | 92 <sup>(4)</sup>  |      |
| -                 |                                              |                                       | SMPS supplies internal LDO $V_{OUT} = 1.8 V^{(5)}$                     | -   | 45   | 135 <sup>(4)</sup> |      |
|                   | Inrush current on voltage regulator power-on | on V (3)                              | SMPS supplies internal LDO $V_{OUT} = 2.5 V^{(5)}$                     | -   | 45   | 100 <sup>(4)</sup> |      |
| I <sub>RUSH</sub> | (POR)                                        | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies external circuit V <sub>OUT</sub> = 1.8 V <sup>(5)</sup> | -   | 25   | 70 <sup>(4)</sup>  | mA   |
|                   |                                              |                                       | SMPS supplies external circuit V <sub>OUT</sub> = 2.5 V <sup>(5)</sup> | -   | 25   | 50(4)              |      |
|                   | Inrush current on voltage regulator power-on | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies internal LDO V <sub>OUT</sub> = 1.8 V                    | -   | 70   | 200(4)             |      |
|                   | (wakeup from Standby)                        | OH ADDSWb2.                           | SMPS supplies internal LDO $V_{OUT}$ = 2.5 $V$                         | -   | 95   | 210(4)             |      |
|                   | Inrush current on voltage regulator power-on | on V <sub>DDLDO</sub> <sup>(1)</sup>  |                                                                        |     | 4.4  | 5.3(2)             |      |
|                   | (POR or wakeup from Standby)                 | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies the V <sub>DDCORE</sub>                                  | -   | 2.9  | 7 <sup>(2)</sup>   |      |
|                   |                                              |                                       | SMPS supplies internal LDO $V_{OUT} = 1.8 V^{(5)}$                     | -   | 4.0  | 7.5 <sup>(2)</sup> |      |
|                   | Inrush current on voltage regulator power-on | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies internal LDO $V_{OUT} = 2.5 V^{(5)}$                     | -   | 4.0  | 5.7 <sup>(2)</sup> |      |
| Q <sub>RUSH</sub> | (POR)                                        | OH VDDSMPS                            | SMPS supplies external circuit VOUT = 1.8 V <sup>(5)</sup>             | -   | 2.9  | 5.2 <sup>(2)</sup> | μC   |
|                   |                                              |                                       | SMPS supplies external circuit V <sub>OUT</sub> = 2.5 V <sup>(5)</sup> | -   | 2.9  | 4 <sup>(2)</sup>   |      |
|                   | Inrush current on voltage regulator power-on | on V <sub>DDSMPS</sub> <sup>(3)</sup> | SMPS supplies internal LDO V <sub>OUT</sub> = 1.8 V                    | -   | 8.0  | 15 <sup>(2)</sup>  |      |
|                   | (wakeup from Standby)                        | OU A DIDOMISS.                        | SMPS supplies internal LDO V <sub>OUT</sub> = 2.5 V                    |     | 14.5 | 20.5(2)            |      |

- 1. The inrush current and inrush electric charge on  $V_{DDLDO}$  are not present in Bypass mode or when the SMPS supplies  $V_{DDCORE}$ .
- 2. The maximum value is given for the maximum decoupling capacitor  $C_{EXT}$ .
- The inrush current and inrush electric charge on V<sub>DDSMPS</sub> is not present if the external component (L or C<sub>OUT</sub>) is not present, that is if the SMPS is not used.
- The maximum value is given for the maximum decoupling capacitor C<sub>OUT</sub> and the minimum V<sub>DDSMPS</sub> voltage.
- 5. The inrush current and inrush electric charge due to the transition from 1.2 V to the final  $V_{OUT}$  value (1.8 V or 2.5 V) is not taken into account.

DS13196 - Rev 6 page 77/199



Table 32. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON

Data are in DTCM for best computation performance. In this case, the cache has no influence on consumption.

|                 | n DTCM for best comp |                          |      |                                  |            |             |                           |                           | x <sup>(1)(2)</sup>                                                |                            |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|-----------------|----------------------|--------------------------|------|----------------------------------|------------|-------------|---------------------------|---------------------------|--------------------------------------------------------------------|----------------------------|------|----|--|--|--|--|--|----------|----------|----------|------|----|-----|-----------|--------|----|
| Symbol          | Parameter            | Condition                | s    | f <sub>rcc_cpu_ck</sub><br>(MHz) | Typ<br>LDO | Typ<br>SMPS | T <sub>J</sub> =<br>25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C                                         | T <sub>J</sub> =<br>130 °C | unit |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS0 | 280                              | 69.5       | 34.0        | 77                        | 106                       | 128                                                                | 173                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VO30 | 225                              | 56.5       | 27.5        | 64                        | 92                        | 114                                                                | 159                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          |      | 225                              | 52.0       | 24.0        | 58                        | 80                        | 98                                                                 | 136                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          |      | 200                              | 46.5       | 21.0        | 52                        | 75                        | 93                                                                 | 130                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS1 | 180                              | 42         | 19.0        | 47                        | 70                        | 88                                                                 | 125                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      | All peripherals disabled |      | 168                              | 39         | 18.0        | 45                        | 67                        | 85                                                                 | 122                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          |      |                                  |            |             |                           |                           |                                                                    |                            |      |    |  |  |  |  |  |          | 160      | 37.5     | 17.0 | 43 | 65  | 83        | 83 120 |    |
|                 |                      |                          |      |                                  |            |             |                           |                           |                                                                    |                            |      |    |  |  |  |  |  | 4.045.04 | diodolod | diodbiod |      |    | 160 | 34.0      | 14.5   | 38 |
|                 |                      |                          | VOS2 | 144                              | 30.5       | 13.0        | 35                        | 52                        | 67                                                                 | 97                         |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
| I <sub>DD</sub> | Supply current in    |                          |      | 88                               | 19.0       | 8.5         | 23                        | 41                        | 55                                                                 | 85                         | m A  |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
| טטי             | Run mode             |                          |      |                                  |            |             |                           |                           |                                                                    |                            |      |    |  |  |  |  |  | 88       | 18.0     | 7.5      | 21   | 35 | 46  | 101<br>97 | IIIA   |    |
|                 |                      |                          | VOS3 | VOS3                             | VOS3       | 60          | 12.5                      | 5.5                       | 16                                                                 | 29                         | 41   | 66 |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          |      | 25                               | 6.0        | 3.0         | 9                         | 23                        | 34                                                                 | 59                         |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS0 | 280                              | 133.5      | 63.5        | 142                       | 173                       | 196                                                                | 242                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      | 225                      | 225  | 108.0                            | 51.5       | 115         | 146                       | 168                       | 130 °C  173  159  136  130  125  122  120  101  97  85  71  66  59 |                            |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS1 | 225                              | 99.0       | 45.0        | 105                       | 129                       | 147                                                                | 185                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      | All peripherals enabled  | VO31 | 160                              | 71.5       | 32.5        | 77                        | 100                       | 118                                                                | 156                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS2 | 160                              | 65.0       | 27.5        | 69                        | 87                        | 102                                                                | 132                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          |      | 88                               | 41.5       | 17.5        | 45                        | 63                        | 77                                                                 | 108                        |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |
|                 |                      |                          | VOS3 | 88                               | 38.0       | 15.0        | 41                        | 55                        | 66                                                                 | 91                         |      |    |  |  |  |  |  |          |          |          |      |    |     |           |        |    |

<sup>1.</sup> Guaranteed by characterization results, unless otherwise specified.

DS13196 - Rev 6 page 78/199

<sup>2.</sup> The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down converterfor the SMPS maximum current consumption.



Table 33. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON

|                 |                   |                             |      |                                  | _                         | _                          |                        | Ma                        | ax <sup>(1)(2)</sup>       |                            |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|-----------------|-------------------|-----------------------------|------|----------------------------------|---------------------------|----------------------------|------------------------|---------------------------|----------------------------|----------------------------|------|----|---------------------------------------------------------------|--|--|----|------|-----|----|----|----|----|------|
| Symbol          | Parameter         | Condition                   | s    | f <sub>rcc_cpu_ck</sub><br>(MHz) | Typ<br>LDO <sup>(1)</sup> | Typ<br>SMPS <sup>(1)</sup> | T <sub>J</sub> = 25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | unit |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS0 | 280                              | 69.0                      | 33.5                       | 77                     | 106                       | 128                        | 173                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VO30 | 225                              | 56.0                      | 27.0                       | 64                     | 92                        | 114                        | 158                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 225                              | 51.5                      | 23.5                       | 58                     | 80                        | 98                         | 136                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 200                              | 46.5                      | 21.5                       | 52                     | 75                        | 92                         | 129                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS1 | 180                              | 42.0                      | 19.0                       | 47                     | 70                        | 88                         | 125                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 168                              | 39.0                      | 18.0                       | 45                     | 67                        | 85                         | 122                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   | All peripherals<br>disabled |      | 160                              | 37.5                      | 17.0                       | 43                     | 65                        | 83                         | 120                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS2 | 160                              | 34.0                      | 14.5                       | 38                     | 56                        | 70                         | 101                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 144                              | 30.5                      | 13.0                       | 35                     | 53                        | 67                         | 97                         |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
| I <sub>DD</sub> | Supply current in |                             |      |                                  |                           | 88                         | 8 19.0 8.5             | 23                        | 41                         | 55                         | 85   | mA |                                                               |  |  |    |      |     |    |    |    |    |      |
| טטי             | Run mode          |                             |      |                                  |                           |                            |                        |                           |                            |                            |      |    |                                                               |  |  | 88 | 17.5 | 7.5 | 21 | 35 | 46 | 71 | IIIA |
|                 |                   |                             |      |                                  |                           | VOS3                       | 60                     | 12.5                      | 5.0                        | 16                         | 29   | 41 | 33 120<br>70 101<br>67 97<br>55 85<br>46 71<br>41 66<br>34 59 |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 25                               | 6.0                       | 2.5                        | 9                      | 23                        | 34                         | 59                         |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS0 | 280                              | 132.5                     | 63.5                       | 142                    | 173                       | 195                        | 241                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VO30 | 225                              | 107.5                     | 51.0                       | 115                    | 145                       | 168                        | 213                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS1 | 225                              | 99.0                      | 44.5                       | 105                    | 129                       | 147                        | 185                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   | All peripherals enabled     | VO31 | 160                              | 71.5                      | 32.5                       | 77                     | 100                       | 118                        | 155                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   | V                           | VOS2 | 160                              | 65.0                      | 27.5                       | 69                     | 87                        | 102                        | 132                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             |      | 88                               | 41.5                      | 17.5                       | 45                     | 63                        | 77                         | 108                        |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |
|                 |                   |                             | VOS3 | 88                               | 38.0                      | 15.0                       | 41                     | 55                        | 66                         | 91                         |      |    |                                                               |  |  |    |      |     |    |    |    |    |      |

<sup>1.</sup> Guaranteed by characterization results, unless otherwise specified.

Table 34. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF

|                 |                   | Conditions               |      | for our of Typ                   |                           | Typ                        | Max <sup>(1)(2)</sup>  |                           |                            |                            |      |     |      |      |     |    |    |    |
|-----------------|-------------------|--------------------------|------|----------------------------------|---------------------------|----------------------------|------------------------|---------------------------|----------------------------|----------------------------|------|-----|------|------|-----|----|----|----|
| Symbol          | Parameter         |                          |      | f <sub>rcc_cpu_ck</sub><br>(MHz) | Typ<br>LDO <sup>(1)</sup> | Typ<br>SMPS <sup>(1)</sup> | T <sub>J</sub> = 25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |     |      |      |     |    |    |    |
|                 |                   |                          | VOS0 | 280                              | 56.0                      | 28.0                       | 63                     | 91                        | 113                        | 157                        |      |     |      |      |     |    |    |    |
|                 |                   |                          | VU30 | 225                              | 47.0                      | 23.5                       | 54                     | 82                        | 103                        | 148                        |      |     |      |      |     |    |    |    |
|                 |                   | All peripherals disabled | VOS1 | 225                              | 43.0                      | 21.0                       | 49                     | 71                        | 89                         | 126                        |      |     |      |      |     |    |    |    |
|                 |                   |                          | VUS1 | 160                              | 34.0                      | 16.5                       | 39                     | 62                        | 79                         | 116                        |      |     |      |      |     |    |    |    |
| .               | Supply current in |                          |      |                                  |                           |                            | aloabloa               | aloabloa                  | disabiod                   | diodolod                   | VOS2 | 160 | 29.5 | 13.5 | 34. | 51 | 65 | 96 |
| I <sub>DD</sub> | Run mode          |                          | VU32 | 88                               | 18.5                      | 9.0                        | 23                     | 40                        | 54                         | 84                         | mA   |     |      |      |     |    |    |    |
|                 |                   | VOS                      | VOS3 | 88                               | 16.5                      | 7.5                        | 19                     | 33                        | 44                         | 69                         |      |     |      |      |     |    |    |    |
|                 |                   |                          | VOS0 | 280                              | 119.5                     | 58.0                       | 127                    | 157                       | 180                        | 225                        |      |     |      |      |     |    |    |    |
|                 |                   | All peripherals          | VUSU | 225                              | 98.5                      | 48.0                       | 105                    | 135                       | 157                        | 203                        |      |     |      |      |     |    |    |    |
|                 |                   | enabled \                | VOS1 | 225                              | 90.5                      | 42.0                       | 96                     | 120                       | 138                        | 176                        |      |     |      |      |     |    |    |    |

DS13196 - Rev 6 page 79/199

<sup>2.</sup> The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down converterfor the SMPS maximum current consumption.





|                 |           |                                                    |                          | f <sub>rcc_cpu_ck</sub> | Turn                      | Tun                        | Max <sup>(1)(2)</sup>  |                           |                            |                            |      |  |
|-----------------|-----------|----------------------------------------------------|--------------------------|-------------------------|---------------------------|----------------------------|------------------------|---------------------------|----------------------------|----------------------------|------|--|
| Symbol          | Parameter | Condition                                          | onditions 'rcc_c <br>(Mh |                         | Typ<br>LDO <sup>(1)</sup> | Typ<br>SMPS <sup>(1)</sup> | T <sub>J</sub> = 25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |  |
|                 |           | Supply current in Run mode All peripherals enabled | VOS1                     | 160                     | 68.0                      | 32.0                       | 73                     | 96                        | 114                        | 152                        |      |  |
| I <sub>DD</sub> |           |                                                    | VOS2                     | 160                     | 60.5                      | 26.5                       | 64                     | 82                        | 97                         | 127                        | mA   |  |
| יטטי            | Run mode  |                                                    | VU32                     | 88                      | 41.0                      | 18.0                       | 45                     | 62                        | 77                         | 107                        |      |  |
|                 |           |                                                    |                          | VOS3                    | 88                        | 36.5                       | 15.0                   | 39                        | 53                         | 64                         | 89   |  |

<sup>1.</sup> Guaranteed by characterization results, unless otherwise specified.

Table 35. Typical consumption in Run mode and corresponding performance versus code position

| Cumbal          | Dovometer   | Conditio   | ns                                       | f <sub>rcc_cpu_c k</sub> | Coremark | Тур  | Тур     | Unit                           | LDO I <sub>DD</sub> / | SMPS I <sub>DD</sub> / | Unit     |      |      |  |      |      |  |
|-----------------|-------------|------------|------------------------------------------|--------------------------|----------|------|---------|--------------------------------|-----------------------|------------------------|----------|------|------|--|------|------|--|
| Symbol          | Parameter   | Peripheral | Code                                     | (MHz)                    | Coremark | LDO  | DO SMPS |                                | Coremark              | Coremark               | Unit     |      |      |  |      |      |  |
|                 |             |            | ITCM                                     | 280                      | 1414     | 69.5 | 33.8    |                                | 49.2                  | 23.9                   |          |      |      |  |      |      |  |
|                 |             |            | FLASH                                    | 280                      | 1414     | 69.0 | 33.4    |                                | 48.8                  | 23.6                   |          |      |      |  |      |      |  |
|                 | dis         | disab      | All peripherals<br>disabled,<br>cache ON | AXI<br>SRAM              | 280      | 1414 | 69.5    | 33.6                           |                       | 49.2                   | 23.8     |      |      |  |      |      |  |
|                 |             |            |                                          | AHB<br>SRAM              | 280      | 1414 | 70.0    | 33.7                           |                       | 49.5                   | 23.8     |      |      |  |      |      |  |
| 1               |             |            | SRD<br>SRAM                              | 280                      | 1414     | 70.0 | 33.7    |                                | 49.5                  | 23.8                   | μA/      |      |      |  |      |      |  |
| I <sub>DD</sub> | in Run mode |            | ITCM                                     | 280                      | 1414     | 69.5 | 33.8    | mA                             | 49.2                  | 23.9                   | Coremark |      |      |  |      |      |  |
|                 |             |            | FLASH                                    | 280                      | 668      | 56.0 | 28.0    |                                | 83.8                  | 41.9                   |          |      |      |  |      |      |  |
|                 | disabled    |            |                                          |                          |          |      |         | All peripherals disabled cache | AXI<br>SRAM           | 280                    | 668      | 62.5 | 30.2 |  | 93.6 | 45.2 |  |
|                 |             | OFF        | AHB<br>SRAM                              | 280                      | 295      | 59.5 | 28.8    |                                | 201.7                 | 97.6                   |          |      |      |  |      |      |  |
|                 |             |            |                                          | SRD<br>SRAM              | 280      | 295  | 59.0    | 28.5                           |                       | 200.0                  | 96.6     |      |      |  |      |      |  |

Table 36. Typical current consumption in Autonomous mode

| Symbol                                          | Parameter                            | Conditions <sup>(1)</sup>                              |      | f <sub>rcc_hclk4</sub> (AHB4) (MHz) | Тур  | Unit |
|-------------------------------------------------|--------------------------------------|--------------------------------------------------------|------|-------------------------------------|------|------|
| lan                                             | Complete company in Automorphic mode | Supply current in Autonomous mode Run, DStop mode VOS3 |      |                                     |      | mA   |
| I <sub>DD</sub> Supply current in Autonomous mo | Supply current in Autonomous mode    | Run, DStop2 mode                                       | VOS3 | 64                                  | 2.64 | IIIA |

System in Run mode, CPU domain is DStop or DStop2 mode with memories of the CPU domain shut-off enable or disable.

DS13196 - Rev 6 page 80/199

The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down converterfor the SMPS maximum current consumption.





Table 37. Typical current consumption in Sleep mode, regulator ON

|                        |                                 |                          |      |                                  | Tirm       | Тур  | Max <sup>(1)(2)</sup>     |                           |                            |                            |      |
|------------------------|---------------------------------|--------------------------|------|----------------------------------|------------|------|---------------------------|---------------------------|----------------------------|----------------------------|------|
| Symbol                 | Parameter                       | Conditions               |      | f <sub>rcc_cpu_ck</sub><br>(MHz) | Typ<br>LDO | SMPS | T <sub>J</sub> =<br>25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |
|                        |                                 |                          | VOS0 | 280                              | 18.1       | 13.0 | 23                        | 51                        | 72                         | 115                        |      |
|                        |                                 | VU30                     | 225  | 15.0                             | 10.6       | 20   | 47                        | 68                        | 112                        |                            |      |
|                        |                                 | All peripherals disabled | VOS1 | 225                              | 13.7       | 9.3  | 18                        | 40                        | 57                         | 93                         |      |
| I <sub>DD(Sleep)</sub> | Supply current in<br>Sleep mode |                          | VUS1 | 160                              | 10.3       | 6.8  | 14                        | 36                        | 53                         | 90                         | mA   |
|                        | •                               |                          | VOS2 | 160                              | 9.3        | 5.8  | 12                        | 30                        | 44                         | 74                         |      |
|                        |                                 |                          | VU32 | 88                               | 5.8        | 3.6  | 9                         | 26                        | 40                         | 70                         |      |
|                        |                                 |                          | VOS3 | 88                               | 5.2        | 3.0  | 8                         | 21                        | 32                         | 57                         |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 38. Typical current consumption in System Stop mode

|                       |                                                      |                                                          |                              |            | _           |                        | Ма                        | x <sup>(1)(2)</sup>        |                            |      |
|-----------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------|------------|-------------|------------------------|---------------------------|----------------------------|----------------------------|------|
| Symbol                | Parameter                                            | Conditions                                               |                              | Typ<br>LDO | Typ<br>SMPS | T <sub>J</sub> = 25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |
|                       |                                                      |                                                          | SVOS3<br>Main <sup>(3)</sup> | 0.540      | 0.487       | 2.33                   | 14.36                     | 24.52                      | 46.29                      |      |
|                       |                                                      | Flash memory in low- power mode, memory shut-off disable | SVOS3 LP                     | 0.495      | 0.193       | 2.27                   | 14.21                     | 24.28                      | 45.94                      |      |
|                       |                                                      | mode, memory shut-on disable                             | SVOS4                        | 0.370      | 0.137       | 1.59                   | 10.58                     | 18.52                      | 35.90                      |      |
|                       |                                                      |                                                          | SVOS5                        | 0.245      | 0.090       | 0.98                   | 7.18                      | 13.10                      | 26.61                      |      |
|                       | Flash memory in normal mode, memory shut-off disable | SVOS3<br>Main <sup>(3)</sup>                             | 0.560                        | 0.504      | 2.39        | 14.62                  | 24.93                     | 47.01                      |                            |      |
|                       |                                                      | SVOS3 LP                                                 | 0.515                        | 0.209      | 2.33        | 14.47                  | 24.69                     | 46.65                      |                            |      |
|                       |                                                      | SVOS4                                                    | 0.390                        | 0.153      | 1.65        | 10.84                  | 18.93                     | 36.62                      |                            |      |
|                       | Cton DCton                                           |                                                          | SVOS5                        | 0.245      | 0.090       | 1.04                   | 7.43                      | 13.51                      | 27.32                      |      |
|                       | Stop, DStop                                          | Flash memory in low- power mode, memory shut-off enable  | SVOS3<br>Main <sup>(3)</sup> | 0.530      | 0.481       | 2.31                   | 14.23                     | 24.27                      | 45.71                      |      |
| I <sub>DD(Stop)</sub> |                                                      |                                                          | SVOS3 LP                     | 0.480      | 0.186       | 2.25                   | 14.09                     | 24.04                      | 45.36                      | mA   |
| DD(Glop)              |                                                      |                                                          | SVOS4                        | 0.360      | 0.134       | 1.57                   | 10.49                     | 18.32                      | 35.41                      |      |
|                       |                                                      |                                                          | SVOS5                        | 0.230      | 0.085       | 0.96                   | 6.95                      | 12.59                      | 25.26                      |      |
|                       |                                                      |                                                          | SVOS3<br>Main <sup>(3)</sup> | 0.550      | 0.498       | 2.37                   | 14.50                     | 24.68                      | 46.43                      |      |
|                       |                                                      | Flash memory in normal mode, memory shut-off enable      | SVOS3 LP                     | 0.500      | 0.204       | 2.31                   | 14.35                     | 24.45                      | 46.07                      |      |
|                       |                                                      | memory shut-on enable                                    | SVOS4                        | 0.380      | 0.151       | 1.63                   | 10.75                     | 18.73                      | 36.13                      |      |
|                       |                                                      |                                                          | SVOS5                        | 0.230      | 0.085       | 1.02                   | 7.21                      | 13.00                      | 25.97                      |      |
|                       |                                                      |                                                          | SVOS3<br>Main <sup>(3)</sup> | 0.161      | 0.343       | 0.32                   | 1.67                      | 2.86                       | 5.58                       |      |
|                       | Stop, DStop2                                         | Flash memory in low- power mode, memory shut-off disable | SVOS3 LP                     | 0.115      | 0.046       | 0.28                   | 1.62                      | 2.80                       | 5.50                       |      |
|                       | 1177                                                 | mode, memory shut-on disable                             | SVOS4                        | 0.095      | 0.037       | 0.20                   | 1.23                      | 2.19                       | 4.43                       |      |
|                       |                                                      |                                                          | SVOS5                        | 0.090      | 0.032       | 0.14                   | 0.93                      | 1.75                       | 3.80                       |      |

DS13196 - Rev 6 page 81/199

<sup>2.</sup> The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down converterfor the SMPS maximum current consumption.



|                       |              | Conditions                                              |                              | Trees      | Tirm        | Max <sup>(1)(2)</sup>     |                           |                            |                            |      |
|-----------------------|--------------|---------------------------------------------------------|------------------------------|------------|-------------|---------------------------|---------------------------|----------------------------|----------------------------|------|
| Symbol Paramete       | Parameter    |                                                         |                              | Typ<br>LDO | Typ<br>SMPS | T <sub>J</sub> =<br>25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |
|                       |              |                                                         | SVOS3<br>Main <sup>(3)</sup> | 0.146      | 0.337       | 0.30                      | 1.55                      | 2.63                       | 5.04                       |      |
| I <sub>DD(Stop)</sub> | Stop, DStop2 | Flash memory in low -power mode, memory shut-off enable | SVOS3 LP                     | 0.100      | 0.040       | 0.26                      | 1.51                      | 2.58                       | 4.96                       | mA   |
|                       |              | SVOS4 SVOS5                                             | SVOS4                        | 0.085      | 0.033       | 0.19                      | 1.15                      | 2.01                       | 3.98                       |      |
|                       |              |                                                         | 0.075                        | 0.028      | 0.12        | 0.80                      | 1.46                      | 3.02                       |                            |      |

- 1. Guaranteed by characterization results.
- 2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down converterfor the SMPS maximum current consumption.
- 3. When the SMPS is ON, an additional consumption is observed. It is recommended to use LP SVOS3 to optimize power consumption.

Table 39. Typical current consumption RAM shutoff in Stop mode

| Count of             | Barranatar            | Conditions                                                                                                                                            | T,       | yp LDO |       | Unit |
|----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------|------|
| Symbol               | Parameter             | Conditions                                                                                                                                            | SVOS3 LP | SVOS4  | SVOS5 |      |
|                      |                       | AXISRAM1 shutoff power consumption (power consumption reduction when AXISRAM1 shutoff is enabled)                                                     | 3.00     | 1.80   | 3.00  |      |
|                      |                       | AXISRAM2 shutoff power consumption (power consumption reduction when AXISRAM2 shutoff is enabled)                                                     | 4.40     | 2.70   | 4.40  |      |
|                      |                       | AXISRAM13 shutoff power consumption (power consumption reduction when AXISRAM3 shutoff is enabled)                                                    | 4.40     | 2.70   | 4.40  |      |
|                      |                       | AHBSRAM1 shutoff power consumption (power consumption reduction when AHBSRAM1 shutoff is enabled)                                                     | 0.90     | 0.50   | 0.70  |      |
| $\Delta_{IDD}(Stop)$ | Stop, Dstop or Dstop2 | AHBSRAM2 shutoff power consumption (power consumption reduction when AHBSRAM2 shutoff is enabled)                                                     | 0.90     | 0.50   | 0.70  | μA   |
| 155( 17              | ,                     | ITCM and ETM shutoff power consumption (power consumption reduction when ITCM and ETM shutoff is enabled)                                             |          | 0.60   | 0.90  |      |
|                      |                       | GFXMMU and JPEG shutoff power consumption (power consumption reduction when GFXMMU and JPEG shutoff is enabled)                                       | 0.20     | 0.10   | 0.10  |      |
|                      |                       | High-speed interface USB and FDCAN shutoff power consumption (power consumption reduction when High-speed interface USB and FDCAN shutoff is enabled) | 0.20     | 0.10   | 0.10  |      |
|                      |                       | SRDSRAM shutoff power consumption (power consumption reduction when SRDSRAM shutoff is enabled)                                                       | 0.30     | 0.30   | 0.40  |      |

Table 40. Typical and maximum current consumption in Standby mode

|                 | Parameter                                      | Conditions     |                             | Тур       |                         |                    | Max (3.6V) <sup>(1)</sup> |                           |                           |                            |                            |      |
|-----------------|------------------------------------------------|----------------|-----------------------------|-----------|-------------------------|--------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|------|
| Symbol          |                                                | Backup<br>SRAM | RTC &<br>LSE <sup>(2)</sup> | 1.62<br>V | 2.4<br>V <sup>(3)</sup> | 3 V <sup>(3)</sup> | 3.3<br>V <sup>(3)</sup>   | T <sub>J</sub> =<br>25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |
|                 | Supply current in<br>Standby mode,<br>IWDG OFF | OFF            | OFF                         | 1.97      | 2.76                    | 3.02               | 3.30                      | 4.0                       | 11.0                      | 22.0                       | 57.0                       |      |
| I <sub>DD</sub> |                                                | ON             | OFF                         | 2.78      | 3.69                    | 4.02               | 4.40                      | 5.4                       | 13.0                      | 25.0                       | 64.0                       | μA   |
| (Standby)       |                                                | OFF            | ON                          | 2.46      | 3.37                    | 3.73               | 4.07                      | 5.0                       | 12.2                      | 23.3                       | 59.0                       |      |
|                 |                                                | ON             | ON                          | 3.27      | 4.30                    | 4.73               | 5.17                      | 6.4                       | 14.2                      | 26.3                       | 66.0                       |      |

- 1. Guaranteed by characterization results.
- 2. The LSE clock is in low-drive mode.

DS13196 - Rev 6 page 82/199



3. These values are given for PDR ON. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced (refer to Section 6.3.5 Embedded reset and power control block characteristics).

|                        |                       | Conditions     |                             | Тур   |      |      | Max (3.6V) <sup>(1)</sup> |                           |                           |                            |                            |      |
|------------------------|-----------------------|----------------|-----------------------------|-------|------|------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|------|
| Symbol                 | Parameter             | Backup<br>SRAM | RTC &<br>LSE <sup>(2)</sup> | 1.2 V | 2 V  | 3 V  | 3.3 V                     | T <sub>J</sub> =<br>25 °C | T <sub>J</sub> =<br>85 °C | T <sub>J</sub> =<br>105 °C | T <sub>J</sub> =<br>130 °C | Unit |
|                        |                       | OFF            | OFF                         | 0.01  | 0.02 | 0.03 | 0.07                      | 0.2                       | 1.9                       | 4.6                        | 14                         |      |
| I (\/PAT)              | Supply current in     | ON             | OFF                         | 0.85  | 0.93 | 1.05 | 1.14                      | 1.5                       | 3.6                       | 7.5                        | 20.0                       |      |
| I <sub>DD</sub> (VBAT) | V <sub>BAT</sub> mode | OFF            | ON                          | 0.50  | 0.63 | 0.74 | 0.84                      | 1.2                       | 3.1                       | 5.9                        | 16                         | μA   |
|                        |                       | ON             | ON                          | 1.34  | 1.54 | 1.76 | 1.91                      | 2.5                       | 4.8                       | 8.8                        | 22.0                       |      |

Table 41. Typical and maximum current consumption in V<sub>BAT</sub> mode

- 1. Guaranteed by characterization results.
- The LSE clock is in low-drive mode.

### I/O system current consumption

I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 63. I/O static characteristics.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

#### Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see Table 42. Peripheral current consumption in Run mode), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDx} \times f_{sw} \times C_L$$

where

 $I_{\mbox{\scriptsize SW}}$  is the current sunk by a switching I/O to charge/discharge the capacitive load

V<sub>DDx</sub> is the MCU supply voltage

f<sub>SW</sub> is the I/O switching frequency

 $C_L$  is the total capacitance seen by the I/O pin:  $C = C_{INT} + C_{EXT}$ 

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

### On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The I/O compensation cell is enabled.
- $f_{rcc\ cpu\ ck}$  is the CPU clock.  $f_{PCLK} = f_{rcc\ cpu\ ck}/4$ , and  $f_{HCLK} = f_{rcc\ cpu\ ck}/2$ .

The given value is calculated by measuring the difference of current consumption

DS13196 - Rev 6 page 83/199



- · with all peripherals clocked off
- with only one peripheral clocked on
- $f_{rcc\_cpu\_ck}$  = 280 MHz (Scale 0),  $f_{rcc\_cpu\_ck}$  = 225 MHz (Scale 1),  $f_{rcc\_cpu\_ck}$  = 160 MHz (Scale 2),  $f_{rcc\_cpu\_ck}$  = 88 MHz (Scale 3)
- The ambient operating temperature is 25 °C and  $V_{DD}$ =3.3 V.

Table 42. Peripheral current consumption in Run mode

|       |                   |       | I <sub>DD</sub> ( | (Тур) |       | l lmid          |
|-------|-------------------|-------|-------------------|-------|-------|-----------------|
|       | Peripheral        | VOS0  | VOS1              | VOS2  | VOS3  | Unit            |
|       | MDMA              | 7.10  | 6.40              | 5.90  | 5.40  |                 |
|       | DMA2D             | 3.00  | 2.80              | 2.50  | 2.30  |                 |
|       | JPGDEC            | 4.70  | 4.40              | 4.00  | 3.60  |                 |
|       | FLITF             | 20.00 | 19.00             | 17.00 | 15.00 |                 |
|       | FMC registers     | 1.30  | 1.30              | 1.20  | 1.10  |                 |
|       | FMC kernel        | 10.00 | 9.30              | 8.40  | 7.70  |                 |
|       | OSPI1 registers   | 0.50  | 0.60              | 0.50  | 0.50  |                 |
|       | OSPI1 kernel      | 2.30  | 2.20              | 2.00  | 1.80  |                 |
|       | SDMMC1 registers  | 8.90  | 8.30              | 7.60  | 6.90  |                 |
|       | SDMMC1 kernel     | 2.20  | 2.00              | 1.80  | 1.60  |                 |
|       | OSPI2 registers   | 0.70  | 0.70              | 0.70  | 0.60  |                 |
| AHB3  | OSPI2 kernel      | 2.00  | 1.80              | 1.60  | 1.50  |                 |
|       | IOMNGR            | 0.30  | 0.30              | 0.30  | 0.30  |                 |
|       | OTFDEC1           | 1.20  | 1.20              | 1.10  | 1.10  | μ <b>A</b> /MHz |
|       | OTFDEC2           | 1.40  | 1.30              | 1.20  | 1.20  |                 |
|       | GFXMMU            | 2.80  | 2.70              | 2.40  | 2.30  |                 |
|       | AXISRAM2          | 5.30  | 5.00              | 4.60  | 4.20  |                 |
|       | AXISRAM3          | 5.40  | 5.10              | 4.60  | 4.30  |                 |
|       | DTCM1             | 1.10  | 1.10              | 1.00  | 1.00  |                 |
|       | DTCM2             | 0.70  | 0.80              | 0.70  | 0.70  |                 |
|       | ITCM              | 1.10  | 1.10              | 1.00  | 1.00  |                 |
|       | AXISRAM1          | 5.30  | 5.00              | 4.60  | 4.20  |                 |
|       | Bridge            | 0.10  | 0.10              | 0.10  | 0.10  |                 |
|       | DMA1              | 0.90  | 0.90              | 0.80  | 0.70  |                 |
|       | DMA2              | 0.90  | 0.80              | 0.80  | 0.70  |                 |
|       | CRC               | 0.60  | 0.60              | 0.50  | 0.50  |                 |
|       | ADC12 registers   | 5.40  | 4.90              | 4.50  | 4.10  |                 |
| AHB1  | ADC12 kernel      | 1.10  | 1.00              | 0.90  | 0.80  |                 |
|       | USB1OTG registers | 24.00 | 22.00             | 20.00 | 18.00 |                 |
|       | USB1OTG kernel    | 9.50  | 9.30              | 9.10  | 8.80  |                 |
|       | USB1ULPI          | 0.10  | 0.10              | 0.10  | 0.10  |                 |
|       | Bridge            | 0.10  | 0.10              | 0.10  | 0.10  |                 |
| ALIDO | CRYPT             | 1.50  | 1.40              | 1.30  | 1.20  |                 |
| AHB2  | HASH              | 1.80  | 1.60              | 1.50  | 1.30  |                 |

DS13196 - Rev 6 page 84/199



|      | Davinhaval       |       | I <sub>DD</sub> ( | Тур) |      | 11              |
|------|------------------|-------|-------------------|------|------|-----------------|
|      | Peripheral       | VOS0  | VOS1              | VOS2 | VOS3 | Unit            |
|      | DCMI             | 5.00  | 4.60              | 4.20 | 3.90 |                 |
|      | HSEM             | 0.10  | 0.10              | 0.10 | 0.10 |                 |
|      | RNG registers    | 1.50  | 1.40              | 1.20 | 1.10 |                 |
|      | RNG kernel       | 10.00 | 9.70              | 9.50 | 9.20 |                 |
| AHB2 | SDMMC2 registers | 6.80  | 6.30              | 5.70 | 5.20 |                 |
| ANDZ | SDMMC2 kernel    | 2.30  | 2.10              | 1.90 | 1.70 |                 |
|      | BDMA1            | 1.70  | 1.60              | 1.50 | 1.30 |                 |
|      | AHBSRAM1         | 0.70  | 0.70              | 0.60 | 0.60 |                 |
|      | AHBSRAM2         | 0.70  | 0.60              | 0.60 | 0.50 |                 |
|      | Bridge           | 9.10  | 8.40              | 7.70 | 7.00 |                 |
|      | GPIOA            | 2.00  | 1.80              | 1.70 | 1.50 |                 |
|      | GPIOB            | 1.80  | 1.70              | 1.50 | 1.40 |                 |
|      | GPIOC            | 2.00  | 1.80              | 1.70 | 1.50 |                 |
|      | GPIOD            | 2.00  | 1.80              | 1.70 | 1.50 |                 |
|      | GPIOE            | 1.90  | 1.80              | 1.60 | 1.50 |                 |
|      | GPIOF            | 1.90  | 1.80              | 1.60 | 1.50 | μ <b>A</b> /MHz |
|      | GPIOG            | 2.00  | 1.80              | 1.70 | 1.50 |                 |
|      | GPIOH            | 1.90  | 1.80              | 1.60 | 1.50 |                 |
| AHB4 | GPIOI            | 1.90  | 1.80              | 1.60 | 1.50 |                 |
|      | GPIOJ            | 1.90  | 1.80              | 1.60 | 1.50 |                 |
|      | GPIOK            | 2.00  | 1.80              | 1.70 | 1.50 |                 |
|      | BDMA2            | 4.20  | 3.90              | 3.50 | 3.20 |                 |
|      | SRDSRAM          | 0.60  | 0.50              | 0.50 | 0.50 |                 |
|      | BKPRAM           | 0.80  | 0.70              | 0.70 | 0.60 |                 |
|      | IWDG             | 0.07  | 0.07              | 0.07 | 0.07 |                 |
|      | Bridge           | 0.10  | 0.10              | 0.10 | 0.10 |                 |
|      | LTDC             | 12.00 | 11.00             | 9.80 | 8.90 |                 |
| APB3 | WWDG1            | 1.10  | 1.00              | 0.90 | 0.90 |                 |
|      | Bridge           | 0.10  | 0.10              | 0.10 | 0.10 |                 |
|      | TIM2             | 7.50  | 6.90              | 6.30 | 6.20 |                 |
|      | TIM3             | 6.30  | 5.90              | 5.40 | 4.90 |                 |
|      | TIM4             | 5.80  | 5.40              | 4.90 | 4.50 |                 |
|      | TIM5             | 7.20  | 6.70              | 6.10 | 5.60 |                 |
|      | TIM6             | 1.60  | 1.50              | 1.30 | 1.20 |                 |
| APB1 | TIM7             | 1.60  | 1.40              | 1.30 | 1.20 |                 |
|      | TIM12            | 3.60  | 3.30              | 3.00 | 2.80 |                 |
|      | TIM13            | 2.80  | 2.60              | 2.40 | 2.10 |                 |
|      | TIM14            | 2.50  | 2.30              | 2.10 | 1.90 |                 |
|      | LPTIM1 registers | 0.80  | 0.80              | 0.70 | 0.60 |                 |
|      | LPTIM1 kernel    | 2.20  | 2.00              | 1.80 | 1.70 |                 |

DS13196 - Rev 6 page 85/199





|      | Burdul             |       | I <sub>DD</sub> ( | Тур)  |       | Unit  |
|------|--------------------|-------|-------------------|-------|-------|-------|
|      | Peripheral         | VOS0  | VOS1              | VOS2  | VOS3  | Unit  |
|      | SPI2 registers     | 2.20  | 2.00              | 1.80  | 1.70  |       |
|      | SPI2 kernel        | 0.90  | 0.80              | 0.80  | 0.70  |       |
|      | SPI3 registers     | 2.70  | 2.40              | 2.30  | 2.00  |       |
|      | SPI3 kernel        | 0.90  | 0.80              | 0.70  | 0.70  |       |
|      | SPDIFRX1 registers | 0.60  | 0.50              | 0.50  | 0.40  |       |
|      | SPDIFRX1 kernel    | 2.90  | 2.70              | 2.50  | 2.20  |       |
|      | USART2 registers   | 2.00  | 1.80              | 1.70  | 1.50  |       |
|      | USART2 kernel      | 4.60  | 4.30              | 3.90  | 3.60  |       |
|      | USART3 registers   | 2.00  | 1.80              | 1.70  | 1.50  |       |
|      | USART3 kernel      | 4.50  | 4.20              | 3.80  | 3.40  |       |
|      | UART4 registers    | 1.70  | 1.60              | 1.50  | 1.30  |       |
|      | UART4 kernel       | 3.70  | 3.40              | 3.10  | 2.80  |       |
|      | UART5 registers    | 1.80  | 1.70              | 1.50  | 1.40  |       |
|      | UART5 kernel       | 3.80  | 3.50              | 3.20  | 2.90  |       |
|      | I2C1 registers     | 0.90  | 0.80              | 0.80  | 0.70  |       |
|      | I2C1 kernel        | 2.10  | 2.00              | 1.80  | 1.70  |       |
|      | I2C2 registers     | 0.90  | 0.80              | 0.70  | 0.70  |       |
| APB1 | I2C2 kernel        | 2.10  | 1.90              | 1.80  | 1.60  | µА/МН |
| AFDI | I2C3 registers     | 0.90  | 0.80              | 0.70  | 0.70  |       |
|      | I2C3 kernel        | 2.20  | 2.00              | 1.80  | 1.70  |       |
|      | HDMICEC registers  | 0.50  | 0.50              | 0.40  | 0.40  |       |
|      | HDMICEC kernel     | 0.10  | 0.10              | 0.10  | 0.10  |       |
|      | DAC1               | 1.40  | 1.30              | 1.20  | 1.10  |       |
|      | UART7 registers    | 1.80  | 1.70              | 1.50  | 1.40  |       |
|      | UART7 kernel       | 3.80  | 3.50              | 3.20  | 2.90  |       |
|      | UART8 registers    | 2.10  | 2.00              | 1.80  | 1.70  |       |
|      | UART8 kernel       | 3.80  | 3.50              | 3.20  | 2.90  |       |
|      | Bridge             | 0.30  | 0.30              | 0.20  | 0.10  |       |
|      | CRS                | 0.50  | 0.40              | 0.40  | 0.40  |       |
|      | SWP registers      | 2.30  | 2.10              | 2.00  | 1.80  |       |
|      | SWP kernel         | 0.10  | 0.10              | 0.10  | 0.10  |       |
|      | OPAMP              | 4.20  | 3.80              | 3.50  | 3.20  |       |
|      | MDIO               | 3.10  | 2.90              | 2.60  | 2.40  |       |
|      | FDCAN registers    | 17.00 | 16.00             | 15.00 | 14.00 |       |
|      | FDCAN kernel       | 5.60  | 4.80              | 3.50  | 1.10  |       |
|      | Bridge             | 0.10  | 0.10              | 0.10  | 0.10  |       |
|      | TIM1               | 9.80  | 9.10              | 8.30  | 7.60  |       |
| ADDO | TIM8               | 9.50  | 8.80              | 8.00  | 7.30  |       |
| APB2 | USART1 registers   | 0.10  | 0.10              | 0.10  | 0.10  |       |
|      | USART1 kernel      | 0.10  | 0.10              | 0.10  | 0.10  |       |

page 86/199



|      |                   |       | I <sub>DD</sub> ( | (Тур) |      |        |
|------|-------------------|-------|-------------------|-------|------|--------|
|      | Peripheral        | VOS0  | VOS1              | VOS2  | VOS3 | Unit   |
|      | USART6 registers  | 3.80  | 4.00              | 4.50  | 6.30 |        |
|      | USART6 kernel     | 0.10  | 0.10              | 0.10  | 0.10 |        |
|      | USART10 registers | 4.00  | 4.10              | 4.60  | 6.40 |        |
|      | USART10 kernel    | 0.10  | 0.10              | 0.10  | 0.10 |        |
|      | UART9 registers   | 3.50  | 3.60              | 4.00  | 5.50 |        |
|      | UART9 kernel      | 0.10  | 0.10              | 0.10  | 0.10 |        |
|      | SPI1 registers    | 2.10  | 1.90              | 1.80  | 1.60 |        |
|      | SPI1 kernel       | 0.90  | 0.80              | 0.70  | 0.70 |        |
|      | SPI4 registers    | 2.10  | 1.90              | 1.70  | 1.50 |        |
|      | SPI4 kernel       | 0.50  | 0.50              | 0.40  | 0.40 |        |
| APB2 | TIM15             | 5.30  | 4.90              | 4.40  | 4.00 |        |
| AFDZ | TIM16             | 4.20  | 3.90              | 3.50  | 3.20 |        |
|      | TIM17             | 4.30  | 4.00              | 3.60  | 3.30 |        |
|      | SPI5 registers    | 2.00  | 1.90              | 1.70  | 1.50 |        |
|      | SPI5 kernel       | 0.50  | 0.50              | 0.40  | 0.40 |        |
|      | SAI1 registers    | 1.80  | 1.60              | 1.50  | 1.30 |        |
|      | SAI1 kernel       | 1.40  | 1.30              | 1.20  | 1.00 |        |
|      | SAI2 registers    | 2.30  | 2.10              | 1.90  | 1.70 |        |
|      | SAI2 kernel       | 1.20  | 1.10              | 1.00  | 0.90 |        |
|      | DFSDM1 registers  | 10.00 | 9.60              | 8.80  | 8.00 |        |
|      | DFSDM1 kernel     | 0.10  | 0.10              | 0.10  | 0.10 | μA/MHz |
|      | Bridge            | 0.50  | 0.40              | 0.40  | 0.30 |        |
|      | SYSCFG            | 0.40  | 0.30              | 0.30  | 0.30 |        |
|      | LPUART1 registers | 1.10  | 1.00              | 0.90  | 0.80 |        |
|      | LPUART1 kernel    | 2.30  | 2.10              | 1.90  | 1.70 |        |
|      | SPI6 registers    | 1.70  | 1.50              | 1.40  | 1.30 |        |
|      | SPI6 kernel       | 0.60  | 0.50              | 0.50  | 0.40 |        |
|      | I2C4 registers    | 0.80  | 0.70              | 0.60  | 0.60 |        |
|      | I2C4 kernel       | 1.90  | 1.70              | 1.60  | 1.40 |        |
|      | LPTIM2 registers  | 0.60  | 0.60              | 0.50  | 0.50 |        |
|      | LPTIM2 kernel     | 1.90  | 1.70              | 1.60  | 1.40 |        |
| APB4 | LPTIM3 registers  | 0.60  | 0.50              | 0.50  | 0.40 |        |
|      | LPTIM3 kernel     | 1.50  | 1.40              | 1.30  | 1.20 |        |
|      | DAC2              | 0.80  | 0.70              | 0.60  | 0.50 |        |
|      | COMP12            | 0.40  | 0.30              | 0.30  | 0.30 |        |
|      | VREF              | 0.30  | 0.30              | 0.20  | 0.20 |        |
|      | RTCAPB            | 1.90  | 1.70              | 1.60  | 1.40 |        |
|      | TMPSENS           | 2.30  | 2.10              | 2.00  | 1.80 |        |
|      | DFSDM2 registers  | 1.70  | 1.50              | 1.40  | 1.30 |        |
|      | DFSDM2 kernel     | 0.10  | 0.10              | 0.10  | 0.10 |        |

DS13196 - Rev 6 page 87/199



|      | Peripheral |      | Unit |      |      |        |
|------|------------|------|------|------|------|--------|
|      | renpheral  | VOS0 | VOS1 | VOS2 | VOS3 | Onnt   |
| APB4 | Bridge     | 0.10 | 0.10 | 0.10 | 0.10 | μA/MHz |

Table 43. Peripheral current consumption in Stop, Standby and V<sub>BAT</sub> mode

| Cumbal          | Parameter Conditi          | Тур        | Max (3.6 V) |                        |                        |                         |                         |      |
|-----------------|----------------------------|------------|-------------|------------------------|------------------------|-------------------------|-------------------------|------|
| Symbol          |                            | Conditions | 3.3 V       | T <sub>J</sub> = 25 °C | T <sub>J</sub> = 85 °C | T <sub>J</sub> = 105 °C | T <sub>J</sub> = 130 °C | Unit |
|                 | RTC+LSE low drive          | -          | 0.77        | 1.0                    | 1.2                    | 1.3                     | 2.0                     |      |
|                 | RTC+LSE medium- low drive  | -          | 0.87        | 1.1                    | 1.3                    | 1.4                     | 2.1                     |      |
| I <sub>DD</sub> | RTC+LSE medium- high drive | -          | 1.03        | 1.3                    | 1.5                    | 1.6                     | 2.3                     | μA   |
|                 | RTC+LSE High drive         | -          | 1.38        | 1.6                    | 1.8                    | 1.9                     | 2.6                     |      |
|                 | Backup SRAM                | -          | 1.10        | 1.4                    | 2.0                    | 3.2                     | 7.0                     |      |

## 6.3.8 Wakeup time from low-power modes

The wakeup times given in Table 44. Low-power mode wakeup timings are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and  $V_{DD}$ =3.3 V.

Table 44. Low-power mode wakeup timings

| Symbol                              | Parameter                                | Conditions                                      | Typ <sup>(1)</sup> | Max <sup>(1)(2)</sup> | Unit             |
|-------------------------------------|------------------------------------------|-------------------------------------------------|--------------------|-----------------------|------------------|
| t <sub>WUSLEEP</sub> (3)            | Wakeup from Sleep                        | -                                               | 5.00               | 5.00                  | CPU clock cycles |
|                                     |                                          | SVOS3 Main, HSI, Flash memory in normal mode    | 4.2                | 6                     |                  |
|                                     |                                          | SVOS3 Main, HSI, Flash memory in low-power mode | 8.3                | 11                    |                  |
|                                     |                                          | SVOS3 LP, HSI, Flash memory in normal mode      | 5.0                | 7                     |                  |
|                                     |                                          | SVOS3 LP, HSI, Flash memory in low-power mode   | 9.0                | 12                    |                  |
|                                     | Wudstop <sup>(3)</sup> Wakeup from DStop | SVOS4, HSI, Flash memory in normal mode         | 15.7               | 19                    |                  |
|                                     |                                          | SVOS4, HSI, Flash memory in low-power mode      | 19.7               | 25                    |                  |
|                                     |                                          | SVOS5, HSI, Flash memory in normal mode         | 35.0               | 43                    |                  |
| <b>4</b> (3)                        |                                          | SVOS5, HSI, Flash memory in low-power mode      | 35.0               | 43                    |                  |
| <sup>I</sup> WUDSTOP <sup>(0)</sup> |                                          | SVOS3 Main, CSI, Flash memory in normal mode    | 42.5               | 52                    |                  |
|                                     |                                          | SVOS3 Main, CSI, Flash memory in low power mode | 48.0               | 58                    | μs               |
|                                     |                                          | SVOS3 LP, CSI, Flash memory in normal mode      | 43.3               | 53                    |                  |
|                                     |                                          | SVOS3 LP, CSI, Flash memory in low power mode   | 48.8               | 59                    |                  |
|                                     |                                          | SVOS4, CSI, Flash memory in normal mode         | 54.0               | 65                    |                  |
|                                     |                                          | SVOS4, CSI, Flash memory in low-power mode      | 59.5               | 72                    |                  |
|                                     |                                          | SVOS5, CSI, Flash memory in normal mode         | 74.8               | 90                    |                  |
|                                     |                                          | SVOS5, CSI, Flash memory in low-power mode      | 74.8               | 90                    |                  |
|                                     |                                          | SVOS3 LP, HSI, Flash memory in low-power mode   | 9.7                | 13                    |                  |
| t <sub>WUDSTOP2</sub> (3)           | Wakeup from DStop2, clock kept running   | SVOS4, HSI, Flash memory in low-power mode      | 20.4               | 26                    |                  |
|                                     | running                                  | SVOS5, HSI, Flash memory in low-power mode      | 35.7               | 44                    |                  |

DS13196 - Rev 6 page 88/199



| Symbol                    | Parameter                              | Conditions                                    | Typ <sup>(1)</sup> | Max <sup>(1)(2)</sup> | Unit |
|---------------------------|----------------------------------------|-----------------------------------------------|--------------------|-----------------------|------|
|                           | W.I 6 . BOL . 0 . I . I . I            | SVOS3 LP, CSI, Flash memory in low-power mode | 51.3               | 62                    |      |
| t <sub>WUDSTOP2</sub> (3) | Wakeup from DStop2, clock kept running | SVOS4, CSI, Flash memory in low-power mode    | 62.0               | 75                    | ше   |
|                           |                                        | SVOS5, CSI, Flash memory in low-power mode    | 77.3               | 93                    | μs   |
| t <sub>WUSTDBY</sub> (3)  | Wakeup from Standby mode               | -                                             | 257                | 330                   |      |

- 1. Guaranteed by characterization results.
- 2. Measures done at -40 °C in the worst conditions.
- 3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

### 6.3.9 External clock source characteristics

### High-speed external user clock generated from an external source

In bypass mode, the HSE oscillator is switched off and the input pin is a standard I/O.

The external clock signal has to respect Table 45. High-speed external user clock characteristics in addition to Table 63. I/O static characteristics. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0455).

| Symbol                                                                     | Parameter                                      | Parameter Conditions                            |                             | Typ <sup>(1)</sup> | Max <sup>(1)</sup>         | Unit |
|----------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------|--------------------|----------------------------|------|
| fHSE_ext                                                                   | User external clock source frequency           | External digital/analog clock                   | 4                           | 25                 | 50                         | MHz  |
| V <sub>HSEH</sub>                                                          | Digital OSC_IN input high-<br>level voltage    | External digital clock                          | 0.7 V <sub>DD</sub>         | -                  | V <sub>DD</sub>            | V    |
| V <sub>HSEL</sub>                                                          | Digital OSC_IN input low-level voltage         | External digital clock                          | V <sub>SS</sub>             | -                  | 0.3 V <sub>DD</sub>        | V    |
| tw(HSEH)/tw(HSEL)(2)                                                       | Digital OSC_IN input high or low time          | External digital clock                          | 7                           | -                  | -                          | ns   |
| V <sub>IswHSE</sub> (V <sub>HSEH</sub> -V <sub>HSEL</sub> ) <sup>(3)</sup> | Analog low-swing OSC_IN peak-to-peak amplitude | External analog low-                            | 0.2                         | -                  | 2/3 V <sub>DD</sub>        | V    |
| DuCy <sub>HSE</sub>                                                        | Analog low-swing OSC_IN duty cycle             | swing clock                                     | 45                          | 50                 | 55                         | %    |
| t <sub>r(HSE)</sub> /t <sub>f(HSE)</sub>                                   | Analog low-swing OSC_IN rise and fall times    | External analog low-<br>swing clock, 10% to 90% | 0.05 / f <sub>HSE_ext</sub> | -                  | 0.3 / f <sub>HSE_ext</sub> | ns   |

Table 45. High-speed external user clock characteristics

- 1. Guaranteed by design.
- 2. The rise and fall times for a digital input signal are not specified. However the  $V_{HSEH}$  and  $V_{HSEL}$  conditions must be fulfilled.
- 3. The DC component of the signal must ensure that the signal peaks are located between  $V_{DD}$  and  $V_{SS}$ .

DS13196 - Rev 6 page 89/199



V<sub>HSEL</sub>

90 %

t<sub>r(HSE)</sub>

t<sub>r(HSE)</sub>

t<sub>r(HSE)</sub>

t<sub>w(HSE)</sub>

t<sub>w(HSE</sub>

Figure 21. High-speed external clock source AC timing diagram

# Low-speed external user clock generated from an external source

In bypass mode, the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect Table 46. Low-speed external user clock characteristics in addition to Table 63. I/O static characteristics. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0455).

**Symbol Parameter** Conditions Min<sup>(1</sup> Typ(1 Max<sup>(1)</sup> Unit 1000 User external clock source frequency External digital/analog clock 32.768 kHz f<sub>LSE\_ext</sub>  $0.7 V_{DD}$  $V_{DD}$  $V_{LSEH}$ Digital OSC32\_IN input high-level voltage External digital clock V  $V_{\mathsf{LSEL}}$  $V_{SS}$  $0.3 V_{DD}$ OSC32\_IN input low-level voltage \_  $t_{w(LSEH)}/t_{w(LSEL)}$ OSC32 IN high or low time External digital clock 250 \_ ns Analog low-swing OSC\_IN high-level voltage  $V_{lsw}$  H 0.6 \_ 1.225 V<sub>Isw L</sub> Analog low-swing OSC\_IN low-level voltage 0.35 8.0 ٧ External analog low-swing clock Analog low-swing OSC\_IN peak-to-peak V<sub>ISWLSE</sub> (V<sub>LSEH</sub>-V<sub>LSEL</sub>) 0.875 0.2 amplitude **DuCy<sub>LSE</sub>** Analog low-swing OSC\_IN duty cycle 45 50 55 % External analog low-swing clock, 100 Analog low-swing OSC\_IN rise and fall times 200  $t_{r(LSE)}/t_{f(LSE)}$ ns 10% to 90%

Table 46. Low-speed external user clock characteristics

#### 1. Guaranteed by design.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

DS13196 - Rev 6 page 90/199





Figure 22. Low-speed external clock source AC timing diagram

# High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 47. 4-50 MHz HSE oscillator characteristics. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol                         | Parameter                   | Operating conditions <sup>(1)</sup> | Min <sup>(2)</sup> | Typ <sup>(2)</sup> | Max <sup>(2)</sup> | Unit |  |
|--------------------------------|-----------------------------|-------------------------------------|--------------------|--------------------|--------------------|------|--|
| F                              | Oscillator frequency        | -                                   | 4                  | -                  | 50                 | MHz  |  |
| R <sub>F</sub>                 | Feedback resistor           | -                                   | -                  | 200                | -                  | kΩ   |  |
|                                |                             | During startup <sup>(3)</sup>       | -                  | -                  | 4                  |      |  |
|                                |                             | $V_{DD}$ =3 V, Rm=30 $\Omega$       |                    | 0.05               |                    |      |  |
|                                |                             | C <sub>L</sub> =10 pF at 4 MHz      | -                  | 0.35               | -                  |      |  |
|                                |                             | $V_{DD}$ =3 V, Rm=30 $\Omega$       |                    | 0.40               |                    |      |  |
|                                |                             | C <sub>L</sub> =10 pF at 8 MHz      | -                  | 0.40               | -                  |      |  |
| I <sub>DD(HSE)</sub>           | HSE current consumption     | $V_{DD}$ =3 V, Rm=30 $\Omega$       |                    | 0.45               |                    | mA   |  |
|                                |                             | C <sub>L</sub> =10 pF at 16 MHz     | - 0.45             | -                  | 0.45               | -    |  |
|                                |                             | V <sub>DD</sub> =3 V, Rm=30 Ω       |                    | 0.05               |                    |      |  |
|                                |                             | C <sub>L</sub> =10 pF at 32 MHz     | -                  | 0.65               | -                  |      |  |
|                                |                             | $V_{DD}$ =3 V, Rm=30 $\Omega$       |                    | 0.05               |                    |      |  |
|                                |                             | C <sub>L</sub> =10 pF at 48 MHz     | -                  | 0.95               | -                  |      |  |
| Gm <sub>critmax</sub>          | Maximum critical crystal gm | Startup                             | -                  | -                  | 1.5                | mA/V |  |
| t <sub>SU</sub> <sup>(4)</sup> | Start-up time               | V <sub>DD</sub> is stabilized       | -                  | 2                  | -                  | ms   |  |

Table 47, 4-50 MHz HSE oscillator characteristics

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- Guaranteed by design.
- 3. This consumption level occurs during the first 2/3 of the  $t_{SU(HSE)}$  startup time.

DS13196 - Rev 6 page 91/199

Unit

Max<sup>(2</sup>

0.75



t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

> For C<sub>1.1</sub> and C<sub>1.2</sub>, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 23. Typical application with an 8 MHz crystal). C<sub>L1</sub> and C<sub>L2</sub> are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C<sub>L1</sub> and C<sub>L2</sub>. The PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C<sub>I 1</sub> and C<sub>I 2</sub>.

Note:

**Symbol** 

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



Figure 23. Typical application with an 8 MHz crystal

R<sub>EXT</sub> value depends on the crystal characteristics.

**Parameter** 

### Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Operating conditions(1)

LSEDRV[1:0] = 01,

Min<sup>(2)</sup>

Typ<sup>(2)</sup>

components specified in Table 48. Low-speed external user clock characteristics. In the application, the resonator

F 32.768 Oscillator frequency kHz LSEDRV[1:0] = 00,290 Low drive capability LSEDRV[1:0] = 01, 390 Medium Low drive capability LSE current consumption nΑ Inn LSEDRV[1:0] = 10, 550 Medium high drive capability LSEDRV[1:0] = 11, 900 High drive capability LSEDRV[1:0] = 00,0.5 **Gm**<sub>critmax</sub> Low drive capability Maximum critical crystal gm μA/V

Table 48. Low-speed external user clock characteristics

DS13196 - Rev 6 page 92/199



| _,, |
|-----|
|-----|

| Symbol                | Parameter                   | Operating conditions <sup>(1)</sup> | Min <sup>(2)</sup> | Typ <sup>(2)</sup> | Max <sup>(2)</sup> | Unit |
|-----------------------|-----------------------------|-------------------------------------|--------------------|--------------------|--------------------|------|
|                       |                             | Medium Low drive capability         |                    |                    |                    |      |
|                       |                             | LSEDRV[1:0] = 10,                   | -                  |                    | 4.7                |      |
| Gm <sub>critmax</sub> | Maximum critical crystal gm | Medium high drive capability        |                    | -                  | 1.7                | μA/V |
|                       |                             | LSEDRV[1:0] = 11,                   |                    |                    | 2.7                |      |
|                       |                             | High drive capability               | -                  | -                  |                    |      |
| t <sub>SU</sub> (3)   | Startup time                | VDD is stabilized                   | -                  | 2                  | -                  | S    |

- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers.
- 2. Guaranteed by design.
- 3. t<sub>SU</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors

CL1

OSC32\_IN

Bias controlled gain

OSC32\_OUT

STM32

Figure 24. Typical application with a 32.768 kHz crystal

1. An external resistor is not required between OSC32\_IN and OSC32\_OUT and it is forbidden to add one.

### 6.3.10 Internal clock source characteristics

The parameters given in Table 49. HSI48 oscillator characteristics to Table 52. LSI oscillator characteristics are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions.

48 MHz high-speed internal RC oscillator (HSI48)

| Symbol                                  | Parameter                                                              | Conditions                                      | Min                 | Тур   | Max                 | Unit |
|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|---------------------|-------|---------------------|------|
| f <sub>HSI48</sub>                      | HSI48 frequency                                                        | V <sub>DD</sub> = 3.3 V, T <sub>J</sub> = 30 °C | 47.5 <sup>(1)</sup> | 48    | 48.5 <sup>(1)</sup> | MHz  |
| TRIM <sup>(2)</sup>                     | User trimming step                                                     | -                                               | -                   | 0.175 | 0.250               | %    |
| USER TRIM COVERAGE(3)                   | User trimming coverage                                                 | ± 32 steps                                      | ±4,70               | ±5.6  | -                   | %    |
| DuCy(HSI48) <sup>(2)</sup>              | Duty cycle                                                             | -                                               | 45                  | -     | 55                  | %    |
| ACCHSI48_REL <sup>(3)</sup>             | Accuracy of the HSI48 oscillator over temperature (reference is 30 °C) | T <sub>J</sub> = -40 to 130 °C                  | -4.5                | -     | 4                   | %    |
| ΔV <sub>DD</sub> (HSI48) <sup>(2)</sup> | HSI48 oscillator frequency drift with V <sub>DD</sub> (reference is    | V <sub>DD</sub> = 3 to 3.6 V                    | -                   | 0.025 | 0.05                | %    |
|                                         | 3.3 V)                                                                 | V <sub>DD</sub> = 1.62 to 3.6 V                 | -                   | 0.05  | 0.1                 | /0   |

Table 49. HSI48 oscillator characteristics

DS13196 - Rev 6 page 93/199



| Symbol                                 | Parameter                                                               | Conditions | Min | Тур    | Max | Unit |
|----------------------------------------|-------------------------------------------------------------------------|------------|-----|--------|-----|------|
| t <sub>su</sub> (HSI48) <sup>(2)</sup> | HSI48 oscillator startup time                                           | -          | -   | 2.1    | 4.0 | μs   |
| I <sub>DD</sub> (HSI48) <sup>(2)</sup> | HSI48 oscillator power consumption                                      | -          | -   | 350    | 400 | μA   |
| N <sub>T</sub> jitter <sup>(2)</sup>   | Next transition jitter accumulated jitter on 28 cycles                  | -          | -   | ± 0.15 | -   | ns   |
| P <sub>T</sub> jitter <sup>(2)</sup>   | Paired transition jitter Accumulated jitter on 56 cycles <sup>(6)</sup> | -          | -   | ± 0.25 | -   | ns   |

- 1. Calibrated during manufacturing tests.
- 2. Guaranteed by design.
- 3. Guaranteed by characterization results.
- 4.  $\Delta f_{HSI} = ACCHSI48\_REL + \Delta V_{DD}$
- 5. These values are obtained by using the formula: (Freq(3.6 V) Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) Freq(1.62 V)) / Freq(1.62 V).
- 6. Jitter measurements are performed without clock sources activated in parallel.

## 64 MHz high-speed internal RC oscillator (HSI)

Table 50. HSI oscillator characteristics

| Symbol                  | Parameter                                                         | Conditions                                                                                | Min <sup>(1)</sup>  | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------|--------------------|--------------------|------|
| f <sub>HSI</sub>        | HSI frequency                                                     | V <sub>DD</sub> =3.3 V, T <sub>J</sub> =30 °C                                             | 63.7 <sup>(2)</sup> | 64                 | 64.3(2)            | MHz  |
|                         |                                                                   | Trimming is not a multiple of 32 <sup>(3)</sup>                                           | -                   | 0.24               | 0.32               |      |
|                         |                                                                   | Trimming is 128, 256 and 384 <sup>(3)</sup>                                               | -5.2                | -1.8               | -                  |      |
| TRIM                    | HSI user trimming step                                            | Trimming is 64, 192, 320 and 448 <sup>(3)</sup>                                           | -1.4                | -0.8               | -                  | %    |
|                         |                                                                   | Other trimming are a multiple of 32 (not including multiple of 64 and 128) <sup>(3)</sup> | -0.6                | -0.25              | -                  |      |
| DuCy(HSI)               | Duty Cycle                                                        | -                                                                                         | 45                  | -                  | 55                 | %    |
| Δ <sub>VDD (HSI)</sub>  | HSI oscillator frequency drift over $V_{DD}$ (reference is 3.3 V) | V <sub>DD</sub> =1.62 to 3.6 V                                                            | -0.12               | -                  | 0.03               | %    |
| Λ                       | HSI oscillator frequency drift over temperature                   | T <sub>J</sub> =-20 to 105 °C                                                             | -1(4)               | -                  | 1(4)               | %    |
| Δ <sub>TEMP</sub> (HSI) | (reference is 64 MHz)                                             | T <sub>J</sub> =−40 to T <sub>J</sub> max °C                                              | -2(4)               | -                  | 1(4)               | 70   |
| t <sub>su</sub> (HSI)   | HSI oscillator start-up time                                      | -                                                                                         | -                   | 1.4                | 2                  | μs   |
| + (UQI)                 | LICI appillator atabilization time                                | at 1 % of target frequency                                                                | -                   | 4                  | 8                  |      |
| t <sub>stab</sub> (HSI) | HSI oscillator stabilization time                                 | at 5 % of target frequency                                                                | -                   | -                  | 4                  | μs   |
| I <sub>DD</sub> (HSI)   | HSI oscillator power consumption                                  | -                                                                                         | -                   | 300                | 400                | μA   |

- 1. Guaranteed by design, unless otherwise specified.
- 2. Calibrated during manufacturing tests.
- 3. Trimming value of HSICAL[8:0] (refer to RM0455).
- 4. Guaranteed by characterization results.

# 4 MHz low-power internal RC oscillator (CSI)

Table 51. CSI oscillator characteristics

| Symbol           | Parameter              | Conditions                                      | Min <sup>(1)</sup>  | Typ <sup>(1)</sup> | Max <sup>(1)</sup>  | Unit |
|------------------|------------------------|-------------------------------------------------|---------------------|--------------------|---------------------|------|
| f <sub>CSI</sub> | CSI frequency          | V <sub>DD</sub> = 3.3 V, T <sub>J</sub> = 30 °C | 3.96 <sup>(2)</sup> | 4                  | 4.04 <sup>(2)</sup> | MHz  |
| TDIM             | 001                    | Trimming is not a multiple of 16                | -                   | 0.40               | 0.75                | -    |
| TRIM             | CSI user trimming step | Trimming is a multiple of 32                    | -4,75               | -2,75              | 0.75                | -    |

DS13196 - Rev 6 page 94/199



| Symbol                  | Parameter                                                                | Conditions                                                         | Min <sup>(1)</sup>          | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit  |
|-------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|--------------------|--------------------|-------|
| TRIM                    | CSI user trimming step                                                   | Other trimming are a multiple of 16 (not including multiple of 32) | -0,43                       | 0.00               | 0.75               | %     |
| DuCy(CSI)               | Duty Cycle                                                               | -                                                                  | 45                          | -                  | 55                 | %     |
| A (CCI)                 | CSI oscillator frequency drift over temperature                          | T <sub>J</sub> = 0 to 85 °C                                        | <b>-</b> 3.7 <sup>(3)</sup> | -                  | 4,5 <sup>(3)</sup> | 0/    |
| Δ <sub>TEMP</sub> (CSI) |                                                                          | T <sub>J</sub> = -40 to 130 °C                                     | <b>-11</b> <sup>(3)</sup>   | -                  | 7,5 <sup>(3)</sup> | %     |
| ΔV <sub>DD</sub> (CSI)  | CSI oscillator frequency drift over V <sub>DD</sub>                      | V <sub>DD</sub> = 1.62 to 3.6 V                                    | -0.06                       | -                  | 0.06               | %     |
| t <sub>su</sub> (CSI)   | CSI oscillator startup time                                              | -                                                                  | -                           | 1                  | 2                  | μs    |
| t <sub>stab</sub> (CSI) | CSI oscillator stabilization time (to reach ± 3 % of $$f_{\text{CSI}}$)$ | -                                                                  | -                           | -                  | 4                  | cycle |
| I <sub>DD</sub> (CSI)   | CSI oscillator power consumption                                         | -                                                                  | -                           | 23                 | 30                 | μA    |

- 1. Guaranteed by design, unless otherwise specified.
- 2. Calibrated during manufacturing tests.
- 3. Guaranteed by characterization results.

### Low-speed internal (LSI) RC oscillator

Symbol Parameter Conditions Max Unit Min Тур  $V_{DD}$  = 3.3 V,  $T_{J}$  = 25 °C 31,4(1) 32,6(1  $T_J$  = -40 to 110 °C,  $V_{DD}$  = 1.62 to 3.6 V  $f_{LSI}$ LSI frequency 29,76(2)  $33,6^{(2)}$ kHz  $T_J$  = -40 to 130 °C,  $V_{DD}$  = 1.62 to 3.6 V 29,4(2) 33,6(2)  $t_{su}(LSI)^{(3)}$ LSI oscillator startup time 80 130 μs LSI oscillator stabilization time (5% of final  $t_{stab}(LSI)^{(3)}$ 170 120 value) I<sub>DD</sub>(LSI)(3) LSI oscillator power consumption 130 280 nΑ

Table 52. LSI oscillator characteristics

- 1. Calibrated during manufacturing tests.
- 2. Guaranteed by characterization results.
- 3. Guaranteed by design.

### 6.3.11 PLL characteristics

The parameters given in Table 53. PLL characteristics (wide VCO frequency range) are derived from tests performed under temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions.

Table 53. PLL characteristics (wide VCO frequency range)

| Symbol                 | Parameter                           | Conditions | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|------------------------|-------------------------------------|------------|--------------------|--------------------|--------------------|------|
| f                      | PLL input clock                     | -          | 2                  | -                  | 16                 | MHz  |
| f <sub>PLL_IN</sub>    | PLL input clock duty cycle          | -          | 10                 | -                  | 90                 | %    |
|                        |                                     | VOS0       | 1                  | -                  | 280(2)             |      |
| £                      | DLL moultiplier output aloak D.O.D. | VOS1       | 1                  | -                  | 225(2)             |      |
| f <sub>PLL_P_OUT</sub> | PLL multiplier output clock P, Q, R | VOS2       | 1                  | -                  | 160 <sup>(2)</sup> | MHz  |
|                        |                                     | VOS3       | 1                  | -                  | 88(2)              |      |
| f <sub>VCO_OUT</sub>   | PLL VCO output                      | -          | 128                | -                  | 560 <sup>(3)</sup> |      |

DS13196 - Rev 6 page 95/199



| Symbol               | Parameter                  | Conditions                                                       |                                  | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|----------------------|----------------------------|------------------------------------------------------------------|----------------------------------|--------------------|--------------------|--------------------|------|
|                      | Did look time              | Normal mode                                                      |                                  | -                  | 45                 | 100(3)             |      |
| tLOCK                | PLL lock time              | Sigma-delta mode (f <sub>PLL_IN</sub> ≥ 8 MHz)                   |                                  | -                  | 60                 | 120 <sup>(3)</sup> | μs   |
|                      |                            | f <sub>VCO_OUT</sub> = 128 MHz                                   |                                  | -                  | 60                 | -                  |      |
|                      | Ovela to soula iittaa      | f <sub>VCO_OUT</sub> = 200 N                                     | 1Hz                              | -                  | 50                 | -                  |      |
|                      | Cycle-to-cycle jitter      | f <sub>VCO_OUT</sub> = 400 MHz                                   |                                  | -                  | 20                 | -                  | ±ps  |
| 1:44                 |                            | f <sub>VCO_OUT</sub> = 560 N                                     | 1Hz                              | -                  | 15                 | -                  |      |
| Jitter               |                            | Normal mode (f PLL_IN = 2 MHz), f <sub>VCO</sub>                 | _OUT = 560 MHz                   | -                  | ±0.2               | -                  | %    |
|                      | Language Control           | Normal mode (f PLL_IN = 16 MHz), f <sub>VCO_0</sub>              | <sub>D_OUT</sub> = 560 MHz       | -                  | ±0.8               | -                  |      |
|                      | Long term jitter           | Sigma-delta mode (f <sub>PLL_IN</sub> = 2 MHz),                  | f <sub>VCO_OUT</sub> = 560 MHz   | -                  | ±0.2               | -                  | %    |
|                      |                            | Sigma-delta mode (f PLL_IN = 16 MHz)                             | , f <sub>VCO_OUT</sub> = 560 MHz | -                  | ±0.8               | -                  |      |
|                      |                            | f _ FCO MUIT                                                     | V <sub>DD</sub>                  | -                  | 330                | 420                |      |
|                      | DI La accessa compositions | f <sub>VCO_OUT</sub> = 560 MHz<br>f <sub>VCO_OUT</sub> = 128 MHz | V <sub>CORE</sub>                | -                  | 630                | -                  | μA   |
| I <sub>DD(PLL)</sub> | PLL power consumption      |                                                                  | V <sub>DD</sub>                  | -                  | 155                | 230                |      |
|                      |                            |                                                                  | V <sub>CORE</sub>                | -                  | 170                | -                  |      |

- 1. Guaranteed by design, unless otherwise specified.
- 2. This value must be limited to the maximum frequency due to the product limitation.
- 3. Guaranteed by characterization results.

Table 54. PLL characteristics (medium VCO frequency range)

| Symbol               | Parameter                                | Condi                          | tions                         | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |    |
|----------------------|------------------------------------------|--------------------------------|-------------------------------|--------------------|--------------------|--------------------|------|----|
| form                 | PLL input clock                          | -                              |                               | 1                  | -                  | 2                  | MHz  |    |
| f <sub>PLL_IN</sub>  | PLL input clock duty cycle               | -                              |                               | 10                 | -                  | 90                 | %    |    |
|                      |                                          | VOS                            | 30                            | 1.17               | -                  | 210                |      |    |
| four our             | PLL multiplier output clock P, Q, R      | VOS                            | 31                            | 1.17               | -                  | 210                |      |    |
| f <sub>PLL_OUT</sub> | PLE Multiplier output clock P, Q, R      | VOS                            | 32                            | 1.17               | -                  | 160 <sup>(2)</sup> | MHz  |    |
|                      |                                          | VOS                            | S3                            | 1.17               | -                  | 88(2)              |      |    |
| f <sub>VCO_OUT</sub> | PLL VCO output                           | -                              |                               | 150                | -                  | 420                |      |    |
|                      | DI La defina                             | Normal                         | mode                          | -                  | 45                 | 80(3)              |      |    |
| t <sub>LOCK</sub>    | PLL lock time                            | Sigma-del                      | ta mode                       | forbidden          |                    | 1                  | μs   |    |
|                      |                                          | f <sub>VCO_OUT</sub> = 150 MHz | -                             | -                  | 60                 | -                  |      |    |
|                      |                                          | f <sub>VCO_OUT</sub> = 200 MHz | -                             | -                  | 40                 | -                  |      |    |
|                      | Cycle-to-cycle jitter                    | f <sub>VCO_OUT</sub> = 400 MHz | -                             | -                  | 18                 | -                  | ±ps  |    |
| Jitter               |                                          | f <sub>VCO_OUT</sub> = 420 MHz | -                             | -                  | 15                 | -                  |      |    |
|                      |                                          | f <sub>VCO_OUT</sub> = 150 MHz |                               | -                  | 75                 | -                  |      |    |
|                      | Period jitter                            | f <sub>VCO_OUT</sub> = 400 MHz | f <sub>PLL_OUT</sub> = 50 MHz | -                  | 25                 | -                  | ±-ps |    |
|                      | Long term jitter                         | Normal mode, f <sub>VCC</sub>  | <sub>D_OUT</sub> = 400 MHz    | -                  | ±0.2               | -                  | %    |    |
|                      |                                          |                                | V <sub>DD</sub>               | -                  | 275                | 360                |      |    |
| I <sub>DD(PLL)</sub> | PLL power consumption on V <sub>DD</sub> | f <sub>VCO_OUT</sub> = 420 MHz | V <sub>CORE</sub>             | CO_OUT = 420 MHZ   | -                  | 450                | -    | μA |
| 7                    | po                                       | f <sub>VCO_OUT</sub> = 150 MHz | V <sub>DD</sub>               | -                  | 160                | 240                | μ, τ |    |

DS13196 - Rev 6 page 96/199





| Symbol               | Parameter                                | Condit                         | ions              | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|----------------------|------------------------------------------|--------------------------------|-------------------|--------------------|--------------------|--------------------|------|
| I <sub>DD(PLL)</sub> | PLL power consumption on V <sub>DD</sub> | f <sub>VCO_OUT</sub> = 150 MHz | V <sub>CORE</sub> | -                  | 165                | -                  | μΑ   |

- 1. Guaranteed by design, unless otherwise specified.
- 2. This value must be limited to the maximum frequency due to the product limitation.
- 3. Guaranteed by characterization results.

# **6.3.12** Memory characteristics

### Flash memory

The characteristics are given at  $T_J = -40$  to 130 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table 55. Flash memory characteristics

| Symbol          | Parameter      | Conditions   | Min | Тур | Max | Unit |
|-----------------|----------------|--------------|-----|-----|-----|------|
| I <sub>DD</sub> |                | Word program | -   | 2.5 | 4   | mA   |
|                 | Supply current | Sector erase | -   | 1.8 | 3   |      |
|                 |                | Mass erase   | -   | 2.0 | 3   |      |

Table 56. Flash memory programming

| Symbol                | Parameter                    | Conditions           | Min  | Тур | Max <sup>(1)</sup> | Unit |
|-----------------------|------------------------------|----------------------|------|-----|--------------------|------|
| t <sub>prog</sub>     | Word program time            | 128 bits (user area) | -    | -   | 20                 |      |
|                       | word program time            | 16 bits (OTP area)   | -    | -   | 20                 | μs   |
| t <sub>ERASE8KB</sub> | Sector erase time (8 Kbytes) | -                    | -    | -   | 2.2                |      |
| t <sub>ME</sub>       | Bank mass erase time         |                      | _    | -   | 10                 | ms   |
| $V_{prog}$            | Programming voltage          |                      | 1.62 | -   | 3.6                | V    |

<sup>1.</sup> Guaranteed by characterization results.

Table 57. Flash memory endurance and data retention

| Symbol           | Parameter Conditions | Conditions                           | Value              | Unit    |  |
|------------------|----------------------|--------------------------------------|--------------------|---------|--|
|                  |                      | Conditions                           | Min <sup>(1)</sup> | Onit    |  |
| N <sub>END</sub> | Endurance            | T <sub>J</sub> = -40 to +130 °C      | 10                 | kcycles |  |
| t <sub>RET</sub> | Data retention       | 1 kcycle at T <sub>A</sub> = 85 °C   | 30                 | Years   |  |
|                  | -                    | 10 kcycles at T <sub>A</sub> = 55 °C | 20                 | rears   |  |

1. Guaranteed by characterization results.

DS13196 - Rev 6 page 97/199



#### 6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

#### Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V<sub>DD</sub> and V<sub>SS</sub> through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table 58. EMS characteristics. They are based on the EMS levels and classes defined in application note AN1709.

Level/ Conditions Symbol **Parameter Class** Voltage limits to be applied on any I/O pin to induce 3B  $V_{FESD}$ a functional disturbance V<sub>DD</sub> = 3.3 V, T<sub>A</sub> = +25 °C, LQFP144, f<sub>rcc\_cpu\_ck</sub> = Fast transient voltage burst limits to be applied 216 MHz, conforms to IEC 61000-4-2 through 100 pF on V<sub>DD</sub> and V<sub>SS</sub> pins to induce a  $V_{FTB}$ 5A functional disturbance

Table 58. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1  $\text{k}\Omega$ ) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

#### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

## **Electromagnetic Interference (EMI)**

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

DS13196 - Rev 6 page 98/199



Table 59. EMI characteristics

| Symbol Parameter |            | Conditions                                                                                                                                                                    | Monitored frequency<br>band | Max vs. [f <sub>HSE</sub> /<br>f <sub>CPU</sub> ] | Unit |  |
|------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|------|--|
|                  |            |                                                                                                                                                                               | bana                        | 8/216 MHz                                         |      |  |
|                  |            | 0.1 to 30 MHz                                                                                                                                                                 | 12                          |                                                   |      |  |
|                  |            | ak level $V_{DD}$ = 3.6 V, $T_A$ = 25 °C, LQFP144 package, conforming to IEC61967-2 $130 \text{ MHz}$ $130 \text{ MHz}$ to 1 GHz $130 \text{ MHz}$ $130 \text{ MHz}$ to 2 GHz | 30 to 130 MHz               | 17                                                | dBµV |  |
| S <sub>EMI</sub> | Peak level |                                                                                                                                                                               | 130 MHz to 1 GHz            | 15                                                | чьμν |  |
|                  |            |                                                                                                                                                                               | 1 GHz to 2 GHz              | 14                                                |      |  |
|                  |            |                                                                                                                                                                               | EMI Level                   | 3.5                                               | -    |  |

### 6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

### Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

Table 60. ESD absolute maximum ratings

| Symbol                | Ratings                         | Conditions                                       | Packages              | Class | Maximum<br>value    | Unit |
|-----------------------|---------------------------------|--------------------------------------------------|-----------------------|-------|---------------------|------|
| V CCD/LIDIAN          | Electrostatic discharge voltage | T <sub>A</sub> = +25 °C conforming to ANSI/ESDA/ | Packages with SMPS    | 1C    | 1000 <sup>(2)</sup> |      |
|                       | (human body model)              | JEDEC JS-001                                     | Packages without SMPS | 2     | 2000                | V    |
| Vegeveen              | Electrostatic discharge voltage | A = +25 °C conforming to ANSI/ESDA/              | All LQFP packages     | C1    | 250                 |      |
| V <sub>ESD(CDM)</sub> | (charge device model)           | JEDEC JS-002                                     | All BGA packages      | C2a   | 500                 |      |

<sup>1.</sup> Guaranteed by characterization results.

### Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with JESD78 IC latchup standard.

Table 61. Electrical sensitivities

| Symbol | Parameter            | Conditions                                     | Class      |
|--------|----------------------|------------------------------------------------|------------|
| LU     | Static latchup class | T <sub>J</sub> = +130 °C, conforming to JESD78 | II level A |

DS13196 - Rev 6 page 99/199

<sup>2.</sup> The electrostatic discharge is 2000 V for all pins, except V<sub>FBSMPS</sub>, for which the test fails at 2000 V and passes at 1600 V.



## 6.3.15 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below  $V_{SS}$  or above  $V_{DD}$  (for standard, 3.3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

### Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of  $-5 \mu A/+0 \mu A$  range), or other functional failure (for example reset, oscillator frequency deviation).

The following tables are the compilation of the SIC1/SIC2 and functional ESD results.

Negative induced A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

| Symbol           | Description                                                                                         | Functional susceptibility             |    |      |
|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|----|------|
| PG1,             | Description                                                                                         | Negative injection Positive injection |    | Unit |
| I <sub>INJ</sub> | PF2, PI12                                                                                           | 0                                     | NA |      |
|                  | PG1, PE9, PB0, PA7, PC4, PC5, PE7, PE8, PA4, PA5, PA6, PF2, PI12, PC2_C, PC3_C, PA0_C, PA1_C, BOOT0 | 0                                     | 0  | mA   |
|                  | All other I/Os                                                                                      | 5                                     | NA |      |

Table 62. I/O current injection susceptibility

### 6.3.16 I/O port characteristics

### General input/output characteristics

Unless otherwise specified, the parameters given in Table 63. I/O static characteristics are derived from tests performed under the conditions summarized in Table 20. General operating conditions. All I/Os are CMOS and TTL compliant (except for BOOT0).

Note:

For information on GPIO configuration, refer to the application note AN4899 "STM32 GPIO configuration for hardware settings and low-power consumption" available from the ST website www.st.com.

Table 63, I/O static characteristics

| Symbol                          | Parameter                                   | Condition                                               | Min                                      | Тур | Max                                     | Unit |
|---------------------------------|---------------------------------------------|---------------------------------------------------------|------------------------------------------|-----|-----------------------------------------|------|
|                                 | I/O input low-level voltage except BOOT0    |                                                         | -                                        | -   | 0.3V <sub>DD</sub> <sup>(1)</sup>       |      |
| V <sub>IL</sub>                 | I/O input low-level voltage except BOOT0    | 1.62 V < V <sub>DDIOx</sub> < 3.6 V                     | -                                        | -   | 0.4V <sub>DD</sub> =0.1 <sup>(2)</sup>  | V    |
| V <sub>IH</sub>                 | BOOT0 I/O input low level voltage           |                                                         | -                                        | -   | 0.19V <sub>DD</sub> +0.1 <sup>(2)</sup> |      |
|                                 | I/O input high level voltage except BOOT0   |                                                         | 0.7V <sub>DD</sub> <sup>(1)</sup>        | -   | -                                       |      |
| V <sub>IH</sub>                 | I/O input high level voltage except BOOT0   | 1.62 V < V <sub>DDIOx</sub> < 3.6 V                     | 0.47V <sub>DD</sub> +0.25 <sup>(2)</sup> | -   | -                                       | V    |
|                                 | BOOT0 I/O input high level voltage          |                                                         | 0.17V <sub>DD</sub> +0.6 <sup>(2)</sup>  | -   | -                                       |      |
| V <sub>HYS</sub> <sup>(2)</sup> | TT_xx, FT_xxx and NRST I/O input hysteresis | 1.62 V < V <sub>DDIOx</sub> < 3.6 V                     | -                                        | 250 | -                                       | mV   |
| VHYS                            | BOOT0 I/O input hysteresis                  | 1.02 V \ V DDIOX \ 3.0 V                                | -                                        | 200 | -                                       | IIIV |
|                                 | FT vy input lookago surrent(2)              | $0 < V_{IN} \le Max(V_{DDxxx})^{(5)}$                   | -                                        | -   | ±250                                    |      |
| lleak                           | FT_xx input leakage current <sup>(2)</sup>  | $Max(V_{DDxxx}) < V_{IN} \le 5.5 \text{ V}^{(3)(4)(5)}$ | -                                        | -   | 1500                                    | nA   |

DS13196 - Rev 6 page 100/199



| Symbol            | Parameter                                         | Condition                                                     | Min | Тур | Max     | Unit |
|-------------------|---------------------------------------------------|---------------------------------------------------------------|-----|-----|---------|------|
|                   | FT I/O                                            | $0 < V_{IN} \le Max(V_{DDxxx})^{(5)}$                         | -   | -   | ±350    |      |
|                   | FT_u I/O                                          | $Max(V_{DDxxx}) < V_{IN} \le 5.5 \text{ V}^{(3)(4)}(8)^{(5)}$ | -   | -   | 5000(6) | nA   |
| I <sub>leak</sub> | TT_xx input leakage current                       | $0 < V_{IN} \le Max(V_{DDxxx})^{(5)}$                         | -   | -   | ±250    |      |
|                   | VPP (POOTO alla manda finadica)                   | 0 < V <sub>IN</sub> ≤ V <sub>DDIOx</sub>                      | -   | -   | 15      |      |
|                   | VPP (BOOT0 alternate function)                    | V <sub>DDIOx</sub> < V <sub>IN</sub> ≤ 9 V                    | -   | -   | 35      | – uA |
| RPU               | Weak pull-up equivalent resistor <sup>(7)</sup>   | V <sub>IN</sub> = V <sub>SS</sub>                             | 30  | 40  | 50      | kΩ   |
| RPD               | Weak pull-down equivalent resistor <sup>(7)</sup> | $V_{IN} = V_{DD}^{(5)}$                                       | 30  | 40  | 50      | K12  |
| CIO               | I/O pin capacitance                               | -                                                             | -   | 5   | -       | pF   |

- 1. Compliant with CMOS requirements.
- 2. Guaranteed by design.
- 3. All FT\_xx IO except FT\_lu and FT\_u.
- 4.  $V_{IN}$  must be less than  $Max(V_{DDxxx}) + 3.6 V$ .
- 5.  $Max(V_{DDxxx})$  is the maximum value of all the I/O supplies.
- 6. To sustain a voltage higher than MIN( $V_{DD}$ ,  $V_{DDA}$ ,  $V_{DD33USB}$ ) +0.3 V, the internal pull-up and pull-down resistors must be disabled.
- The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/ NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10%).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 25.  $V_{IL}/V_{IH}$  for all I/Os except BOOT0.



Figure 25. V<sub>IL</sub>/V<sub>IH</sub> for all I/Os except BOOT0

## **Output driving current**

The GPIOs (general purpose input/outputs) can sink or source up to  $\pm 8$  mA, and sink or source up to  $\pm 20$  mA (with a relaxed  $V_{OL}/V_{OH}$ ).

DS13196 - Rev 6 page 101/199



In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2 Absolute maximum ratings. In particular:

- The sum of the currents sourced by all the I/Os on V<sub>DD</sub>, plus the maximum Run consumption of the MCU sourced on V<sub>DD</sub>, cannot exceed the absolute maximum rating ΣI<sub>VDD</sub> (see Table 18. Current characteristics).
- The sum of the currents sunk by all the I/Os on V<sub>SS</sub> plus the maximum Run consumption of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute maximum rating ΣI<sub>VSS</sub> (see Table 18. Current characteristics).

### **Output voltage levels**

Unless otherwise specified, the parameters given in Table 64. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 and Table 65. Output voltage characteristics for PC13, PC14, PC15 and PI8 are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions. All I/Os are CMOS and TTL compliant.

Table 64. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8

The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17. Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

| Symbol                            | Parameter                                               | Conditions <sup>(1)</sup>                                                                        | Min                  | Max | Unit |
|-----------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|-----|------|
| V <sub>OL</sub>                   | Output low level voltage                                | CMOS port <sup>(2)</sup><br>I <sub>IO</sub> =8 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V               | -                    | 0.4 |      |
| V <sub>OH</sub>                   | Output high level voltage                               | CMOS port <sup>(2)</sup> $I_{IO} = -8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$ | V <sub>DD</sub> -0.4 | -   |      |
| V <sub>OL</sub> <sup>(1)</sup>    | Output low level voltage                                | TTL port <sup>(2)</sup><br>I <sub>IO</sub> =8 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V                | -                    | 0.4 |      |
| V <sub>OH</sub> <sup>(1)</sup>    | Output high level voltage                               | TTL port <sup>(2)</sup><br>I <sub>IO</sub> =-8 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V               | 2.4                  |     |      |
| V <sub>OL</sub> <sup>(1)</sup>    | Output low level voltage                                | I <sub>IO</sub> =20 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V                                          | -                    | 1.3 | V    |
| V <sub>OH</sub> <sup>(1)</sup>    | Output high level voltage                               | I <sub>IO</sub> =−20 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V                                         | V <sub>DD</sub> -1.3 | -   |      |
| V <sub>OL</sub> <sup>(1)</sup>    | Output low level voltage                                | I <sub>IO</sub> = 4 mA<br>1.62 V≤ V <sub>DD</sub> ≤3.6 V                                         | -                    | 0.4 |      |
| V <sub>OH</sub> <sup>(1)</sup>    | Output high level voltage                               | I <sub>IO</sub> = -4 mA 1.62 V≤V <sub>DD</sub> <3.6 V                                            | V <sub>DD</sub> =0.4 | -   |      |
| V (1)                             | Output law lavel velters for an ETF I/O pip in EM1 mode | I <sub>IO</sub> = 20 mA<br>2.3 V≤ V <sub>DD</sub> ≤3.6 V                                         | -                    | 0.4 |      |
| V <sub>OLFM+</sub> <sup>(1)</sup> | Output low level voltage for an FTf I/O pin in FM+ mode | I <sub>IO</sub> = 10 mA<br>1.62 V≤ V <sub>DD</sub> ≤3.6 V                                        | -                    | 0.4 |      |

- 1. Guaranteed by design.
- 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

### Table 65. Output voltage characteristics for PC13, PC14, PC15 and PI8

The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17. Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

DS13196 - Rev 6 page 102/199



| Symbol                         | Parameter                                    | Conditions <sup>(1)</sup>                                                                   | Min                  | Max | Unit |
|--------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|-----|------|
| V <sub>OL</sub>                | Output low level voltage                     | CMOS port <sup>(2)</sup> I <sub>IO</sub> =8 mA, 2.7 V≤ VDD ≤ 3.6 V                          | -                    | 0.4 |      |
| V <sub>OH</sub>                | Output high level voltage                    | CMOS port <sup>(2)</sup> $I_{IO}$ = -8 mA, 2.7 V≤ $V_{DD}$ ≤ 3.6 V                          | V <sub>DD</sub> -0.4 | -   |      |
| V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage                     | TTL port <sup>(2)</sup> $I_{IO} = 8 \text{ mA}, 2.7 \text{ V} \le V_{DD} \le 3.6 \text{ V}$ | -                    | 0.4 |      |
| V <sub>OH</sub> <sup>(1)</sup> | Output high level voltage                    | TTL port <sup>(2)</sup> $I_{IO}$ =-8 mA, 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V          | 2.4                  | -   |      |
| V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage                     | I <sub>IO</sub> =20 mA, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                                     | -                    | 1.3 | V    |
| V <sub>OH</sub> <sup>(1)</sup> | Output high level voltage                    | $I_{IO}$ = -20 mA, 2.7 V ≤ $V_{DD}$ ≤ 3.6 V                                                 | VDD-1.3              | -   |      |
| V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage                     | I <sub>IO</sub> = 4 mA, 1.62 V ≤ V <sub>DD</sub> ≤ 3.6 V                                    | -                    | 0.4 |      |
| V <sub>OH</sub> <sup>(1)</sup> | Output high level voltage                    | $I_{IO}$ = -4 mA, 1.62 V $\leq$ V <sub>DD</sub> $<$ 3.6 V                                   | VDD-0.4              | -   |      |
| V (1)                          | Output low level voltage for an FT_f I/O pin | $I_{IO} = 20 \text{ mA}, 2.3 \text{ V} \le V_{DD} \le 3.6 \text{ V}$                        | -                    | 0.4 |      |
| V <sub>OLFM+</sub> (1)         | in FM+ mode                                  | I <sub>IO</sub> = 10 mA, 1.62 V ≤ V <sub>DD</sub> ≤ 3.6 V                                   | -                    | 0.4 |      |

<sup>1.</sup> Guaranteed by design.

# Output buffer timing characteristics (HSLV option disabled)

The HSLV bit of SYSCFG\_CCCSR register can be used to optimize the I/O speed when the product voltage is below 2.7 V.

Table 66. Output timing characteristics (HSLV OFF)

| Speed | Symbol                                                                                                       | Parameter                                                                 | conditions                             | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|--------------------|--------------------|------|
|       |                                                                                                              |                                                                           | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V | -                  | 12                 |      |
|       |                                                                                                              |                                                                           | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 3                  |      |
|       | F (2)                                                                                                        | Manifestory for many                                                      | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 12                 |      |
|       | F <sub>max</sub> <sup>(2)</sup>                                                                              | Maximum frequency                                                         | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 3                  | MHz  |
|       |                                                                                                              |                                                                           | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 16                 |      |
| 00    |                                                                                                              |                                                                           | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 4                  |      |
| 00    |                                                                                                              |                                                                           | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V | -                  | 16.6               |      |
|       |                                                                                                              |                                                                           | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 33.3               | ns   |
|       | 1 4 (3)                                                                                                      | Output high to low level fall time and output low to high level rise time | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 13.3               |      |
|       | t <sub>r</sub> /t <sub>f</sub> (3)                                                                           |                                                                           | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 25                 |      |
|       |                                                                                                              |                                                                           | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 10                 |      |
|       |                                                                                                              |                                                                           | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 20                 |      |
|       |                                                                                                              |                                                                           | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V | -                  | 60                 |      |
|       |                                                                                                              |                                                                           | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 15                 |      |
|       | F (2)                                                                                                        |                                                                           | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 80                 |      |
|       | F <sub>max</sub> <sup>(2)</sup>                                                                              | Maximum frequency                                                         | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 15                 | MHz  |
| 01    |                                                                                                              |                                                                           | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -                  | 110                |      |
|       |                                                                                                              |                                                                           | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -                  | 20                 |      |
|       | (2)                                                                                                          | Output high to low level fall time and output low to                      | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V | -                  | 5.2                |      |
|       | t <sub>r</sub> /t <sub>f</sub> (3) Output high to low level rail time and output low to high level rise time | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                                    | -                                      | 10                 | ns                 |      |

DS13196 - Rev 6 page 103/199

<sup>2.</sup> TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.



| C=30 pF, 2.7 \times \times \cdot 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Speed | Symbol                                        | Parameter                                            | conditions                                            | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------|--------------------|--------|
| 10 high level rise time    C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 2.8     C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 5.2     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 3.5     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 3.6     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 40     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 40     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 40     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 110     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 40     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 6.9     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 5.2     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 18.8     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 5.2     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 18.8     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 5.2     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 5.2     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 5.2     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 100     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 50     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 50     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 50     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 220     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 220     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 3.3     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 3.3     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 3.3     C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V   - 66     C=30 pF, 1.62 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V   - 1.5     C=10 pF, 2.7 V≤V <sub>D</sub>                                                                                                                                                                                                                                                                                  |       |                                               |                                                      | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V                 | -                  | 4.2                |        |
| C=10 pF, 2.7 VsVpps3.6 V   - 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01    | t_/te (3)                                     |                                                      | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                  | 7.5                | ne     |
| Fmax   Pmax   Maximum frequency   C=50 pF, 2.7 V×V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>   - 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | प्रमु                                         | high level rise time                                 | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V                 | -                  | 2.8                | 113    |
| Fmax   Pmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                               |                                                      | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                  | 5.2                |        |
| $F_{max}^{(2)}  \text{Maximum frequency}  \begin{cases} C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 110 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 40 \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 166 \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 100 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 100 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.8 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 6.9 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 5.2 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 1.8 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 5.2 \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 1.8 \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 100 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 50 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 50 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 85 \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 85 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ $                                                                                                                                             |       |                                               |                                                      | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 85                 |        |
| Fmax   Maximum frequency   C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup>   - 40   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                               |                                                      | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 35                 |        |
| C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | <b>F</b> (2)                                  | Mayimum fraquancy                                    | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 110                | NAL I- |
| $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Fmax <sup>(-)</sup>                           | Maximum frequency                                    | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 40                 | IVITZ  |
| $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                               |                                                      | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 166                |        |
| $ \begin{array}{c} \text{C=50 pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.8 \\ \text{C=50 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 6.9 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 2.8 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 5.2 \\ \text{C=10 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 5.2 \\ \text{C=10 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 1.8 \\ \text{C=10 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 1.8 \\ \text{C=10 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 100 \\ \text{C=50 pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 50 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 50 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 66 \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 66 \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 66 \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 85 \\ \text{C=50 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ \text{C=50 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ \text{C=50 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 6.6 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 2.4 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ C$                                                                                                                          | 4.0   |                                               |                                                      | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 100                |        |
| $t_{i}/t_{f} \stackrel{(3)}{=}  \text{Output high to low level fall time and output low to high level rise time} \qquad \begin{array}{c} C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 2.8 \\ \hline C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 5.2 \\ \hline C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 1.8 \\ \hline C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 3.3 \\ \hline \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 100 \\ \hline \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 50 \\ \hline \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 50 \\ \hline \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 66 \\ \hline \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 66 \\ \hline \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 85 \\ \hline \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ \hline \\ C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 6.6 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 6.6 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 6.6 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 6.6 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{D}_{D} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{D}_{D} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{D}_{D} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ \hline \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{D}_{D} \leq 3.6 $                     | 10    |                                               |                                                      | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 3.8                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> |                                                      | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 6.9                |        |
| high level rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                               | Output high to low level fall time and output low to | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 2.8                |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                               |                                                      | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 5.2                | ns     |
| Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                               |                                                      | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 1.8                | -      |
| $F_{max}^{(2)}  \text{Maximum frequency}  \begin{cases} C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 50 \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 133 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 66 \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 220 \\ C=10 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 85 \\ \end{cases} $ $C=50 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 3.3 \\ C=50 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 6.6 \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 2.4 \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 4.5 \\ C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 1.5 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                               |                                                      | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 3.3                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                               |                                                      | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 100                |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                               |                                                      | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 50                 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | - (2)                                         |                                                      | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 133                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency                                    | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 66                 | MHz    |
| $t_{r}/t_{f} \overset{(3)}{=} \\ \text{Output high to low level fall time and output low to high level rise time} \\ \begin{array}{c} C=50 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 3.3 \\ \hline C=50 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 6.6 \\ \hline C=30 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 2.4 \\ \hline C=30 \text{ pF, } 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)} & - & 4.5 \\ \hline C=10 \text{ pF, } 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)} & - & 1.5 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                               |                                                      | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 220                | -      |
| $t_{\text{r}}/t_{\text{f}} \overset{\text{(3)}}{\text{(3)}} \qquad \text{Output high to low level fall time and output low to} \\ t_{\text{high level rise time}} \qquad \frac{\text{C=50 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.6 \text{ V}^{(4)}}{\text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}^{(4)}} - \frac{6.6}{6.6}}{\text{C=30 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{2.4}{6.5}} \\ \text{C=30 pF, } 1.62 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{4.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} - \frac{1.5}{6.6}} \\ \text{C=10 pF, } 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)}} + \frac{1.5}{6.6}} \\ C=10 pF$ |       |                                               |                                                      | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 85                 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11(5) |                                               |                                                      | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 3.3                |        |
| $\begin{array}{c} \text{t}_{\text{f}}/\text{t}_{\text{f}} \stackrel{\text{(3)}}{=} \\ \text{high level rise time} \\ \\ \text{C=30 pF, 1.62 V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}^{(4)} \\ \\ \text{C=10 pF, 2.7 V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{(4)} \\ \\ \end{array}  -   \text{1.5} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                               |                                                      | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 6.6                | -      |
| high level rise time $C=30 \text{ pF}, 1.62 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}^{(4)}$ - 4.5 $C=10 \text{ pF}, 2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}^{(4)}$ - 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | (2)                                           | Output high to low level fall time and output low to | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 2.4                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | t <sub>r</sub> /t <sub>f</sub> (3)            |                                                      | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 4.5                | - ns   |
| C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> - 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                      | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -                  | 1.5                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                               |                                                      | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                  | 2.7                |        |

- 1. Guaranteed by design.
- 2. The maximum frequency is defined with the following conditions:  $(t_r + t_f) \le 2/3$  T, skew  $\le 1/20$  T, 45%<Duty cycle<55%
- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.
- 5. Reserved for output clock only.

# Output buffer timing characteristics (HSLV option enabled)

Table 67. Output timing characteristics (HSLV ON)

| Speed | Symbol                          | Parameter         | conditions                | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-------|---------------------------------|-------------------|---------------------------|--------------------|--------------------|------|
| 00    | F <sub>max</sub> <sup>(2)</sup> | Maximum frequency | C=50 pF, 1.62 V≤VDD≤2.7 V | -                  | 10                 | MHz  |

DS13196 - Rev 6 page 104/199



| Speed             | Symbol                                        | Parameter                                                                                                               | conditions                               | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit    |
|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|--------------------|---------|
|                   | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency                                                                                                       | C=30 pF, 1.62 V≤VDD≤2.7 V                | -                  | 10                 | MHz     |
|                   | max                                           | waximum nequency                                                                                                        | C=10 pF, 1.62 V≤VDD≤2.7 V                | -                  | 10                 | 1011 12 |
| 00                |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V                | -                  | 11                 |         |
|                   | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | Output high to low level fall time and output low to high level rise time                                               | C=30 pF, 1.62 V≤VDD≤2.7 V                | -                  | 9                  | ns      |
|                   |                                               | 3                                                                                                                       | C=10 pF, 1.62 V≤VDD≤2.7 V                | -                  | 6.6                |         |
|                   |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V                | -                  | 50                 |         |
|                   | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency                                                                                                       | C=30 pF, 1.62 V≤VDD≤2.7 V                | -                  | 58                 | MHz     |
| 01                |                                               |                                                                                                                         | C=10 pF, 1.62 V≤VDD≤2.7 V                | -                  | 66                 |         |
| 01                |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V                | -                  | 6.6                |         |
|                   | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> Output high to low level fall time and output low to high level rise time | C=30 pF, 1.62 V≤VDD≤2.7 V                | -                  | 4.8                | ns      |
|                   |                                               | Ü                                                                                                                       | C=10 pF, 1.62 V≤VDD≤2.7 V                | -                  | 3                  |         |
|                   |                                               | F <sub>max</sub> <sup>(2)</sup> Maximum frequency                                                                       | C=50 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 55                 |         |
|                   | F <sub>max</sub> <sup>(2)</sup>               |                                                                                                                         | C=30 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 80                 | MHz     |
| 10                |                                               |                                                                                                                         | C=10 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 133                |         |
| 10                |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 5.8                |         |
|                   | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | Output high to low level fall time and output low to<br>high level rise time                                            | C=30 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 4                  | ns      |
|                   |                                               | g 10101.100 time                                                                                                        | C=10 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 2.4                |         |
|                   |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 60                 |         |
|                   | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency                                                                                                       | C=30 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 90                 | MHz     |
| (5)               |                                               |                                                                                                                         | C=10 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 175                |         |
| 11 <sup>(5)</sup> |                                               |                                                                                                                         | C=50 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 5.3                |         |
|                   | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> Output high to low level fall time and output low to                      | C=30 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 3.6                | ns      |
|                   |                                               | mgmevernse ume                                                                                                          | C=10 pF, 1.62 V≤VDD≤2.7 V <sup>(4)</sup> | -                  | 1.9                |         |

- 1. Guaranteed by design.
- 2. The maximum frequency is defined with the following conditions:  $(t_i+t_j) \le 2/3$  T, skew  $\le 1/20$  T, 45%<br/>
  County cycle <55%
- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.
- 5. Reserved for output clock only.

# 6.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R<sub>PU</sub> (see Table 63. I/O static characteristics).

Unless otherwise specified, the parameters given in Table 68. NRST pin characteristics are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions.

Table 68. NRST pin characteristics

| Symbol                               | Parameter                                       | Conditions                       | Min  | Тур | Max | Unit |
|--------------------------------------|-------------------------------------------------|----------------------------------|------|-----|-----|------|
| R <sub>PU</sub> <sup>(1)</sup>       | Weak pull-up equivalent resistor <sup>(2)</sup> | $V_{IN} = V_{SS}$                | 30   | 40  | 50  | kΩ   |
| V <sub>F(NRST)</sub> <sup>(1)</sup>  | NRST Input filtered pulse                       | 1.71 V < V <sub>DD</sub> < 3.6 V | -    | -   | 50  |      |
| V (1)                                | NRST Input not filtered pulse                   | 1.71 V < V <sub>DD</sub> < 3.6 V | 350  | -   | -   | ns   |
| V <sub>NF(NRST)</sub> <sup>(1)</sup> |                                                 | 1.62 V < V <sub>DD</sub> < 3.6 V | 1000 | -   | -   |      |

DS13196 - Rev 6 page 105/199



- 1. Guaranteed by design.
- 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10%).

Figure 26. Recommended NRST pin protection



- 1. The reset network protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V<sub>IL(NRST)</sub> max level specified in Table 63. I/O static characteristics. Otherwise the reset is not taken into account by the device.

### 6.3.18 FMC characteristics

Note:

Unless otherwise specified, the parameters given in the below tables for the FMC interface are derived from tests performed under the ambient temperature,  $f_{HCLK}$  frequency and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS0.

At VOS1, the performance in some FMC modes can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics.

### Asynchronous waveforms and timings

Figure 27 through Figure 29 represent asynchronous waveforms and Table 69 through Table 76 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capacitive load C<sub>L</sub> = 30 pF

In all timing tables,  $T_{fmc\_ker\_ck}$  is the kernel clock period.

DS13196 - Rev 6 page 106/199



 $t_{w(NE)}$ FMC\_NE t<sub>w(NOE)</sub>  $t_{v(NOE\_NE)}$ t<sub>h(NE\_NOE)</sub> FMC\_NOE FMC\_NWE  $t_{v(A\_NE)}$  $t_{h(A\_NOE)}$ FMC\_A[25:0] Address  $t_{h(BL\_NOE)}$ FMC\_NBL[1:0] – t<sub>h(Data\_NE)</sub> t<sub>su(Data\_NOE)</sub> th(Data\_NOE) t<sub>su(Data\_NE)</sub> Data FMC\_D[15:0] t<sub>v(NADV\_NE)</sub> – t<sub>w(NADV)</sub> FMC\_NADV FMC\_NWAIT th(NE\_NWAIT) tsu(NWAIT\_NE)

Figure 27. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

Table 69. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings

| Symbol                    | Parameter                             | Min <sup>(1)</sup>           | Max <sup>(1)</sup>           | Unit |
|---------------------------|---------------------------------------|------------------------------|------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                       | 3T <sub>fmc_ker_ck</sub> - 1 | 3T <sub>fmc_ker_ck</sub> +1  |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low            | 0                            | 0.5                          |      |
| t <sub>w(NOE)</sub>       | FMC_NOE low time                      | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 1 |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time | 0                            | -                            |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid            | -                            | 0.5                          | ns   |
| t <sub>h(A_NOE)</sub>     | Address hold time after FMC_NOE high  | 0                            | -                            |      |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time       | 13                           | -                            |      |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOEx high setup time      | 11                           | -                            |      |
| t <sub>h(Data_NOE)</sub>  | Data hold time after FMC_NOE high     | 0                            | -                            |      |

DS13196 - Rev 6 page 107/199



| Symbol                  | Parameter                         | Min <sup>(1)</sup> | Max <sup>(1)</sup>          | Unit |
|-------------------------|-----------------------------------|--------------------|-----------------------------|------|
| t <sub>h(Data_NE)</sub> | Data hold time after FMC_NEx high | 0                  | -                           |      |
| t <sub>v(NADV_NE)</sub> | FMC_NEx low to FMC_NADV low       | -                  | 0                           | ns   |
| t <sub>w(NADV)</sub>    | FMC_NADV low time                 | -                  | T <sub>fmc_ker_ck</sub> + 1 |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings

NWAIT pulse width is equal to 1 AHB cycle.

| Symbol                    | Parameter                                 | Min <sup>(1)</sup>              | Max <sup>(1)</sup>          | Unit |
|---------------------------|-------------------------------------------|---------------------------------|-----------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 7T <sub>fmc_ker_ck +1</sub>     | 7T <sub>fmc_ker_ck +1</sub> |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> -1     | 5T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>w(NWAIT)</sub>     | FMC_NWAIT low time                        | T <sub>fmc_ker_ck -1</sub> -0.5 | -                           | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 4T <sub>fmc_ker_ck</sub> +9     | -                           |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 3T <sub>fmc_ker_ck</sub> +12    | -                           |      |

<sup>1.</sup> Guaranteed by characterization results.

Figure 28. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms



DS13196 - Rev 6 page 108/199



1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

| Symbol                   | Parameter                             | Min <sup>(1)</sup>            | Max <sup>(1)</sup>            | Unit |
|--------------------------|---------------------------------------|-------------------------------|-------------------------------|------|
| $t_{w(NE)}$              | FMC_NE low time                       | 3T <sub>fmc_ker_ck</sub> - 1  | 3T <sub>fmc_ker_ck + 1</sub>  |      |
| $t_{v(NWE\_NE)}$         | FMC_NEx low to FMC_NWE low            | T <sub>fmc_ker_ck</sub> - 1   | T <sub>fmc_ker_ck</sub>       |      |
| t <sub>w(NWE)</sub>      | FMC_NWE low time                      | T <sub>fmc_ker_ck</sub> - 0.5 | T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>h(NE_NWE)</sub>   | FMC_NWE high to FMC_NE high hold time | T <sub>fmc_ker_ck</sub>       | -                             |      |
| t <sub>v(A_NE)</sub>     | FMC_NEx low to FMC_A valid            | -                             | 2                             |      |
| t <sub>h(A_NWE)</sub>    | Address hold time after FMC_NWE high  | T <sub>fmc_ker_ck</sub> + 0.5 | -                             | ] no |
| t <sub>v(BL_NE)</sub>    | FMC_NEx low to FMC_BL valid           | -                             | 0.5                           | – ns |
| t <sub>h(BL_NWE)</sub>   | FMC_BL hold time after FMC_NWE high   | T <sub>fmc_ker_ck</sub> - 0.5 | -                             |      |
| t <sub>v(Data_NE)</sub>  | Data to FMC_NEx low to Data valid     | -                             | T <sub>fmc_ker_ck</sub> + 3   |      |
| t <sub>h(Data_NWE)</sub> | Data hold time after FMC_NWE high     | T <sub>fmc_ker_ck+1</sub>     | -                             |      |
| t <sub>v(NADV_NE)</sub>  | FMC_NEx low to FMC_NADV low           | -                             | 0                             |      |
| $t_{w(NADV)}$            | FMC_NADV low time                     | -                             | T <sub>fmc_ker_ck</sub> + 1   |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings

NWAIT pulse width is equal to 1 AHB cycle.

| Symbol                    | Parameter                                 | Min <sup>(1)</sup>            | Max <sup>(1)</sup>           | Unit |
|---------------------------|-------------------------------------------|-------------------------------|------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> - 1  | 8T <sub>fmc_ker_ck + 1</sub> |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 6T <sub>fmc_ker_ck</sub> - 1  | 6T <sub>fmc_ker_ck + 1</sub> | 1    |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 5T <sub>fmc_ker_ck</sub> + 13 | -                            | ns   |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub> + 12 | -                            |      |

1. Guaranteed by characterization results.

DS13196 - Rev 6 page 109/199



Figure 29. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 73. Asynchronous multiplexed PSRAM/NOR read timings

| Symbol                    | Parameter                                           | Min <sup>(1)</sup>            | Max <sup>(1)</sup>             | Unit |
|---------------------------|-----------------------------------------------------|-------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 4T <sub>fmc_ker_ck</sub> - 1  | 4T <sub>fmc_ker_ck</sub> + 1   |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low                          | 2T <sub>fmc_ker_ck</sub>      | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>w(NOE)</sub>       | FMC_NOE low time                                    | T <sub>fmc_ker_ck</sub> - 1   | T <sub>fmc_ker_ck</sub> + 1    |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time               | 0                             | -                              |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                             | 0.5                            |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                             | 0.5                            | ns   |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                                   | T <sub>fmc_ker_ck</sub> - 0.5 | T <sub>fmc_ker_ck</sub> +1     |      |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> + 0.5 | -                              |      |
| t <sub>h(A_NOE)</sub>     | Address hold time after FMC_NOE high                | T <sub>fmc_ker_ck</sub> - 0.5 | -                              |      |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time                     | 13                            | -                              |      |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOE high setup time                     | 11                            | -                              |      |

DS13196 - Rev 6 page 110/199



| Symbol                   | Parameter                         | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|--------------------------|-----------------------------------|--------------------|--------------------|------|
| t <sub>h(Data_NE)</sub>  | Data hold time after FMC_NEx high | 0                  | -                  | ns   |
| t <sub>h(Data_NOE)</sub> | Data hold time after FMC_NOE high | 0                  | -                  |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 74. Asynchronous multiplexed PSRAM/NOR read - NWAIT timings

| Symbol                    | Parameter                                 | Min <sup>(1)</sup>            | Max <sup>(1)</sup>           | Unit |
|---------------------------|-------------------------------------------|-------------------------------|------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> - 1  | 8T <sub>fmc_ker_ck</sub> + 1 |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> - 1  | 5T <sub>fmc_ker_ck</sub> + 1 | no   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 4T <sub>fmc_ker_ck</sub> + 9  | -                            | ns   |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub> + 12 | -                            |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 75. Asynchronous multiplexed PSRAM/NOR write timings

| Symbol                    | Parameter                                           | Min <sup>(1)</sup>             | Max <sup>(1)</sup>             | Unit |
|---------------------------|-----------------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 4T <sub>fmc_ker_ck</sub> - 1   | 4T <sub>fmc_ker_ck</sub>       |      |
| t <sub>v(NWE_NE)</sub>    | FMC_NEx low to FMC_NWE low                          | Tfmc_ker_c - 1                 | T <sub>fmc_ker_ck</sub> + 0.5  |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                                    | 2T <sub>fmc_ker_ck</sub> - 0.5 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>h(NE_NWE)</sub>    | FMC_NWE high to FMC_NE high hold time               | T <sub>fmc_ker_ck</sub> - 0.5  | -                              |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                              | 0                              |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                              | 0.5                            |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                                   | T <sub>fmc_ker_ck</sub>        | T <sub>fmc_ker_ck</sub> + 1    | ns   |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> + 0.5  | -                              |      |
| t <sub>h(A_NWE)</sub>     | Address hold time after FMC_NWE high                | T <sub>fmc_ker_ck</sub> + 0.5  | -                              |      |
| t <sub>h(BL_NWE)</sub>    | FMC_BL hold time after FMC_NWE high                 | T <sub>fmc_ker_ck</sub> - 0.5  | -                              |      |
| t <sub>v(BL_NE)</sub>     | FMC_NEx low to FMC_BL valid                         | -                              | 0.5                            |      |
| t <sub>v(Data_NADV)</sub> | FMC_NADV high to Data valid                         | -                              | T <sub>fmc_ker_ck</sub> + 2    |      |
| t <sub>h(Data_NWE)</sub>  | Data hold time after FMC_NWE high                   | T <sub>fmc_ker_ck</sub> +0.5   | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 76. Asynchronous multiplexed PSRAM/NOR write - NWAIT timings

| Symbol                    | Parameter                                 | Min <sup>(1)</sup>             | Max <sup>(1)</sup>             | Unit |
|---------------------------|-------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 9T <sub>fmc_ker_ck</sub> - 1   | 9T <sub>fmc_ker_ck</sub>       |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 7T <sub>fmc_ker_ck</sub> - 0.5 | 7T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 5T <sub>fmc_ker_ck</sub> + 9   | -                              | ns   |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub> + 12  | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

#### Synchronous waveforms and timings

Figure 30 through Figure 33 represent synchronous waveforms and Table 77 through Table 80 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

DS13196 - Rev 6 page 111/199



- BurstAccessMode = FMC\_BurstAccessMode\_Enable
- MemoryType = FMC\_MemoryType\_CRAM
- WriteBurst = FMC\_WriteBurst\_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables,  $T_{fmc\ ker\ ck}$  is the kernel clock period, with the following FMC\_CLK maximum values:

- For 2.7 V < V<sub>DD</sub> < 3.6 V, FMC\_CLK = 125 MHz at 20 pF</li>
- For 1.8 V < V<sub>DD</sub> < 1.9 V, FMC\_CLK = 100 MHz at 20 pF</li>
- For 1.62 V < V<sub>DD</sub><1.8 V, FMC\_CLK = 100 MHz at 15 pF</li>

Figure 30. Synchronous multiplexed NOR/PSRAM read timings



Table 77. Synchronous multiplexed NOR/PSRAM read timings

| Symbol                    | Parameter                            | Min <sup>(1)</sup>            | Max <sup>(1)(2)</sup> | Unit |
|---------------------------|--------------------------------------|-------------------------------|-----------------------|------|
| t <sub>w(CLK)</sub>       | FMC_CLK period                       | 2T <sub>fmc_ker_ck</sub> -0.5 | -                     |      |
| t <sub>d(CLKL-NExL)</sub> | FMC_CLK low to FMC_NEx low (x=02)    | -                             | 2                     | ns   |
| t <sub>d(CLKH_NExH)</sub> | FMC_CLK high to FMC_NEx high (x= 02) | T <sub>fmc_ker_ck</sub> +1.5  | -                     |      |

DS13196 - Rev 6 page 112/199





| Symbol                      | Parameter                                    | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup> | Unit |
|-----------------------------|----------------------------------------------|------------------------------|-----------------------|------|
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                  | -                            | 1                     |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high                 | 0                            | -                     |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)         | -                            | 2.0                   |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)      | T <sub>fmc_ker_ck</sub> +1.5 | -                     |      |
| t <sub>d(CLKL-NOEL)</sub>   | FMC_CLK low to FMC_NOE low                   | -                            | 1.5                   |      |
| t <sub>d(CLKH-NOEH)</sub>   | FMC_CLK high to FMC_NOE high                 | T <sub>fmc_ker_ck</sub> +1.5 | -                     | ns   |
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to FMC_AD[15:0] valid            | -                            | 3                     | 113  |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid          | 0                            | -                     |      |
| t <sub>su(ADV-CLKH)</sub>   | FMC_A/D[15:0] valid data before FMC_CLK high | 3                            | -                     |      |
| t <sub>h(CLKH-ADV)</sub>    | FMC_A/D[15:0] valid data after FMC_CLK high  | 0.5                          | -                     |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high          | 3                            | -                     |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high           | 1                            | -                     |      |

<sup>1.</sup> Guaranteed by characterization results.

DS13196 - Rev 6 page 113/199

<sup>2.</sup> At VOS1, these values are degraded by up to 5 %.



Figure 31. Synchronous multiplexed PSRAM write timings

Table 78. Synchronous multiplexed PSRAM write timings

| Symbol                     | Parameter                                | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup> | Unit |
|----------------------------|------------------------------------------|------------------------------|-----------------------|------|
| t <sub>w(CLK)</sub>        | FMC_CLK period                           | 2T <sub>fmc_ker_ck</sub> -1  | -                     |      |
| t <sub>d(CLKL-NExL)</sub>  | FMC_CLK low to FMC_NEx low (x =02)       | -                            | 2                     |      |
| t <sub>d</sub> (CLKH-NExH) | FMC_CLK high to FMC_NEx high (x = 02)    | T <sub>fmc_ker_ck</sub> +1.5 | -                     |      |
| t <sub>d(CLKL-NADVL)</sub> | FMC_CLK low to FMC_NADV low              | -                            | 1.5                   |      |
| t <sub>d(CLKL-NADVH)</sub> | FMC_CLK low to FMC_NADV high             | 0                            | -                     | ns   |
| t <sub>d(CLKL-AV)</sub>    | FMC_CLK low to FMC_Ax valid (x =1625)    | -                            | 2                     | 115  |
| t <sub>d(CLKH-AIV)</sub>   | FMC_CLK high to FMC_Ax invalid (x =1625) | T <sub>fmc_ker_ck</sub> +1.5 | -                     |      |
| t <sub>d(CLKL-NWEL)</sub>  | FMC_CLK low to FMC_NWE low               | -                            | 1.5                   |      |
| t <sub>(CLKH-NWEH)</sub>   | FMC_CLK high to FMC_NWE high             | T <sub>fmc_ker_ck</sub> +1   | -                     |      |

DS13196 - Rev 6 page 114/199



| Symbol                      | Parameter                                  | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup> | Unit |
|-----------------------------|--------------------------------------------|------------------------------|-----------------------|------|
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to to FMC_AD[15:0] valid       | -                            | 2.5                   |      |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid        | 0                            | -                     |      |
| t <sub>d(CLKL-DATA)</sub>   | FMC_A/D[15:0] valid data after FMC_CLK low | -                            | 3                     |      |
| t <sub>d(CLKL-NBLL)</sub>   | FMC_CLK low to FMC_NBL low                 | -                            | 2                     | ns   |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high               | T <sub>fmc_ker_ck</sub> +0.5 | -                     |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high        | 2                            | -                     |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high         | 2                            | -                     |      |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.



Figure 32. Synchronous non-multiplexed NOR/PSRAM read timings

Table 79. Synchronous non-multiplexed NOR/PSRAM read timings

| Symbol                   | Parameter                         | Min <sup>(1)</sup>            | Max <sup>(1)(2)</sup> | Unit |
|--------------------------|-----------------------------------|-------------------------------|-----------------------|------|
| t <sub>w(CLK)</sub>      | FMC_CLK period                    | 2T <sub>fmc_ker_ck</sub> -0.5 | -                     |      |
| t <sub>(CLKL-NExL)</sub> | FMC_CLK low to FMC_NEx low (x=02) | -                             | 2                     | ns   |

DS13196 - Rev 6 page 115/199



| Symbol                     | Parameter                                  | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup> | Unit |
|----------------------------|--------------------------------------------|------------------------------|-----------------------|------|
| t <sub>d(CLKH-NExH)</sub>  | FMC_CLK high to FMC_NEx high (x= 02)       | T <sub>fmc_ker_ck</sub> +1.5 | -                     |      |
| t <sub>d(CLKL-NADVL)</sub> | FMC_CLK low to FMC_NADV low                | -                            | 1.5                   |      |
| t <sub>d(CLKL-NADVH)</sub> | FMC_CLK low to FMC_NADV high               | 0                            | -                     |      |
| t <sub>d(CLKL-AV)</sub>    | FMC_CLK low to FMC_Ax valid (x=1625)       | -                            | 2                     |      |
| t <sub>d(CLKH-AIV)</sub>   | FMC_CLK high to FMC_Ax invalid (x=1625)    | T <sub>fmc_ker_ck</sub> +1.5 | -                     |      |
| t <sub>d(CLKL-NOEL)</sub>  | FMC_CLK low to FMC_NOE low                 | -                            | 1.5                   | ns   |
| t <sub>d(CLKH-NOEH)</sub>  | FMC_CLK high to FMC_NOE high               | T <sub>fmc_ker_ck</sub> +1   | -                     |      |
| t <sub>su(DV-CLKH)</sub>   | FMC_D[15:0] valid data before FMC_CLK high | 3                            | -                     |      |
| t <sub>h(CLKH-DV)</sub>    | FMC_D[15:0] valid data after FMC_CLK high  | 0.5                          | -                     |      |
| t <sub>(NWAIT-CLKH)</sub>  | FMC_NWAIT valid before FMC_CLK high        | 3                            | -                     |      |
| t <sub>h(CLKH-NWAIT)</sub> | FMC_NWAIT valid after FMC_CLK high         | 1                            | -                     |      |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.

Figure 33. Synchronous non-multiplexed PSRAM write timings



DS13196 - Rev 6 page 116/199



Table 80. Synchronous non-multiplexed PSRAM write timings

| Symbol                      | Parameter                                | Min <sup>(1)</sup>             | Max <sup>(1)(2)</sup> | Unit |
|-----------------------------|------------------------------------------|--------------------------------|-----------------------|------|
| t <sub>(CLK)</sub>          | FMC_CLK period                           | 2T <sub>fmc_ker_ck</sub> - 0.5 | -                     |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)        | -                              | 2                     |      |
| t(CLKH-NExH)                | FMC_CLK high to FMC_NEx high (x= 02)     | T <sub>fmc_ker_ck</sub> + 1.5  | -                     |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low              | -                              | 1.5                   |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high             | 0                              | -                     |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)     | -                              | 2                     |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)  | T <sub>fmc_ker_ck</sub> + 1.5  | -                     |      |
| t <sub>d(CLKL-NWEL)</sub>   | FMC_CLK low to FMC_NWE low               | -                              | 1.5                   | ns   |
| t <sub>d(CLKH-NWEH)</sub>   | FMC_CLK high to FMC_NWE high             | T <sub>fmc_ker_ck</sub> + 1    | -                     |      |
| t <sub>d(CLKL-Data)</sub>   | FMC_D[15:0] valid data after FMC_CLK low | -                              | 3                     |      |
| t <sub>d(CLKL-NBLL)</sub>   | FMC_CLK low to FMC_NBL low               | -                              | 2                     |      |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high             | T <sub>fmc_ker_ck</sub> + 0.5  | -                     |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high      | 2                              | -                     |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high       | 2                              | -                     |      |

<sup>1.</sup> Guaranteed by characterization results.

#### NAND controller waveforms and timings

Figure 34 through Figure 37 represent synchronous waveforms, and Table 81 and Table 82 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC\_SetupTime = 0x01
- COM.FMC\_WaitSetupTime = 0x03
- COM.FMC HoldSetupTime = 0x02
- COM.FMC\_HiZSetupTime = 0x01
- ATT.FMC\_SetupTime = 0x01
- ATT.FMC\_WaitSetupTime = 0x03
- ATT.FMC\_HoldSetupTime = 0x02
- ATT.FMC\_HiZSetupTime = 0x01
- Bank = FMC\_Bank\_NAND
- MemoryDataWidth = FMC\_MemoryDataWidth\_16b
- ECC = FMC\_ECC\_Enable
- ECCPageSize = FMC\_ECCPageSize\_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- Capacitive load C<sub>L</sub> = 30 pF

In all timing tables,  $T_{fmc\_ker\_ck}$  is the kernel clock period.

DS13196 - Rev 6 page 117/199

<sup>2.</sup> At VOS1, these values are degraded by up to 5 %.

Figure 34. NAND controller waveforms for read access



Figure 35. NAND controller waveforms for write access



DS13196 - Rev 6 page 118/199



Figure 36. NAND controller waveforms for common memory read access



Figure 37. NAND controller waveforms for common memory write access



Table 81. Switching characteristics for NAND Flash memory read cycles

| Symbol                  | Parameter                                  | Min <sup>(1)</sup>             | Max <sup>(1)</sup>            | Unit |
|-------------------------|--------------------------------------------|--------------------------------|-------------------------------|------|
| t <sub>w(N0E)</sub>     | FMC_NOE low width                          | 4T <sub>fmc_ker_ck</sub> - 0.5 | 4T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>su(D-NOE)</sub>  | FMC_D[15-0] valid data before FMC_NOE high | 8                              | -                             |      |
| t <sub>h(NOE-D)</sub>   | FMC_D[15-0] valid data after FMC_NOE high  | 0                              | -                             | ns   |
| t <sub>d(ALE-NOE)</sub> | FMC_ALE valid before FMC_NOE low           | -                              | 3T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>h(NOE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid            | 4T <sub>fmc_ker_ck</sub> -1    | -                             |      |

1. Guaranteed by characterization results.

DS13196 - Rev 6 page 119/199

| Symbol                  | Parameter                             | Min <sup>(1)</sup>             | Max <sup>(1)</sup>            | Unit |
|-------------------------|---------------------------------------|--------------------------------|-------------------------------|------|
| t <sub>w(NWE)</sub>     | FMC_NWE low width                     | 4T <sub>fmc_ker_ck</sub> - 0.5 | 4T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>v(NWE-D)</sub>   | FMC_NWE low to FMC_D[15-0] valid      | 0                              | -                             |      |
| t <sub>h(NWE-D)</sub>   | FMC_NWE high to FMC_D[15-0] invalid   | 2T <sub>fmc_ker_ck</sub> + 1.5 | -                             | no   |
| t <sub>d(D-NWE)</sub>   | FMC_D[15-0] valid before FMC_NWE high | 5T <sub>fmc_ker_ck</sub> - 2   | -                             | ns   |
| t <sub>d(ALE-NWE)</sub> | FMC_ALE valid before FMC_NWE low      | -                              | 3T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>h(NWE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid       | 2T <sub>fmc_ker_ck</sub> + 0.5 | -                             |      |

Table 82. Switching characteristics for NAND Flash write cycles

#### **SDRAM** waveforms and timings

In all timing tables,  $T_{fmc\_ker\_ck}$  is the kernel clock period, with the following FMC\_SDCLK maximum values:

- For 2.7 V < V<sub>DD</sub> <3.6 V: FMC\_CLK =110 MHz at 20 pF</li>
- For 1.8 V < V<sub>DD</sub> <1.9 V: FMC\_CLK =100 MHz at 20 pF</li>
- For 1.62 V <<sub>DD</sub> <1.8 V, FMC\_CLK =100 MHz at 15 pF</li>



Figure 38. SDRAM read access waveforms (CL = 1)

DS13196 - Rev 6 page 120/199

<sup>1.</sup> Guaranteed by characterization results.



Table 83. SDRAM read timings

| Symbol                        | Parameter              | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup>         | Unit |
|-------------------------------|------------------------|------------------------------|-------------------------------|------|
| t <sub>w(SDCLK)</sub>         | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>su(SDCLKH _Data)</sub> | Data input setup time  | 3                            | -                             |      |
| th(SDCLKH_Data)               | Data input hold time   | 0                            | -                             |      |
| t <sub>d</sub> (SDCLKL_Add)   | Address valid time     | -                            | 1.5                           |      |
| t <sub>d(SDCLKL-SDNE)</sub>   | Chip select valid time | -                            | 2                             |      |
| t <sub>h(SDCLKL_SDNE)</sub>   | Chip select hold time  | 0.5                          | -                             | ns   |
| $t_{d(SDCLKL\_SDNRAS)}$       | SDNRAS valid time      | -                            | 2                             |      |
| t <sub>h(SDCLKL_SDNRAS)</sub> | SDNRAS hold time       | 0.5                          | -                             |      |
| t <sub>d(SDCLKL_SDNCAS)</sub> | SDNCAS valid time      | -                            | 0.5                           |      |
| t <sub>h(SDCLKL_SDNCAS)</sub> | SDNCAS hold time       | 0                            | -                             |      |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.

Table 84. LPSDRAM read timings

| Symbol                        | Parameter              | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup>         | Unit |
|-------------------------------|------------------------|------------------------------|-------------------------------|------|
| t <sub>W(SDCLK)</sub>         | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>su(SDCLKH_Data)</sub>  | Data input setup time  | 3                            | -                             |      |
| th(SDCLKH_Data)               | Data input hold time   | 0.5                          | -                             |      |
| t <sub>d</sub> (SDCLKL_Add)   | Address valid time     | -                            | 3.5                           |      |
| t <sub>d(SDCLKL_SDNE)</sub>   | Chip select valid time | -                            | 2.5                           | no   |
| t <sub>h(SDCLKL_SDNE)</sub>   | Chip select hold time  | 0                            | -                             | ns   |
| t <sub>d(SDCLKL_SDNRAS</sub>  | SDNRAS valid time      | -                            | 1                             |      |
| t <sub>h(SDCLKL_SDNRAS)</sub> | SDNRAS hold time       | 0                            | -                             |      |
| t <sub>d(SDCLKL_SDNCAS)</sub> | SDNCAS valid time      | -                            | 1.5                           |      |
| th(SDCLKL_SDNCAS)             | SDNCAS hold time       | 0                            | -                             |      |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.

DS13196 - Rev 6 page 121/199





Figure 39. SDRAM write access waveforms

**Table 85. SDRAM Write timings** 

| Symbol                         | Parameter              | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup>         | Unit |
|--------------------------------|------------------------|------------------------------|-------------------------------|------|
| t <sub>w(SDCLK)</sub>          | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>d(SDCLKL_Data)</sub>    | Data output valid time | -                            | 2.5                           |      |
| th(SDCLKL _Data)               | Data output hold time  | 0                            | -                             |      |
| t <sub>d(SDCLKL_Add)</sub>     | Address valid time     | -                            | 2                             |      |
| t <sub>d</sub> (SDCLKL_SDNWE)  | SDNWE valid time       | -                            | 2.5                           |      |
| t <sub>h(SDCLKL_SDNWE)</sub>   | SDNWE hold time        | 0.5                          | -                             | ns   |
| $t_{\sf d(SDCLKL\_SDNE)}$      | Chip select valid time | -                            | 2                             | 115  |
| th(SDCLKLSDNE)                 | Chip select hold time  | 0.5                          | -                             |      |
| $t_{d(SDCLKL\_SDNRAS)}$        | SDNRAS valid time      | -                            | 1.5                           |      |
| t <sub>h</sub> (SDCLKL_SDNRAS) | SDNRAS hold time       | 0.5                          | -                             |      |
| t <sub>d</sub> (SDCLKL_SDNCAS) | SDNCAS valid time      | -                            | 1.5                           |      |
| t <sub>d</sub> (SDCLKL_SDNCAS) | SDNCAS hold time       | 0.5                          | -                             |      |

<sup>1.</sup> Guaranteed by characterization results.

DS13196 - Rev 6 page 122/199



Note:

2. At VOS1, these values are degraded by up to 5 %.

**Table 86. LPSDR SDRAM Write timings** 

| Symbol                        | Parameter              | Min <sup>(1)</sup>           | Max <sup>(1)(2)</sup>         | Unit |
|-------------------------------|------------------------|------------------------------|-------------------------------|------|
| $t_{w(SDCLK)}$                | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>d(SDCLKL_Data)</sub>   | Data output valid time | -                            | 2.5                           |      |
| t <sub>h(SDCLKL_Data)</sub>   | Data output hold time  | 0                            | -                             |      |
| t <sub>d(SDCLKL_Add)</sub>    | Address valid time     | -                            | 2.5                           |      |
| t <sub>d</sub> (SDCLKL-SDNWE) | SDNWE valid time       | -                            | 3                             |      |
| t <sub>h</sub> (SDCLKL-SDNWE) | SDNWE hold time        | 0                            | -                             |      |
| t <sub>d(SDCLKL</sub> - SDNE) | Chip select valid time | -                            | 3                             | ns   |
| t <sub>h(SDCLKL</sub> - SDNE) | Chip select hold time  | 0                            | -                             |      |
| t <sub>d(SDCLKL-SDNRAS)</sub> | SDNRAS valid time      | -                            | 2                             |      |
| t <sub>h(SDCLKL-SDNRAS)</sub> | SDNRAS hold time       | 0                            | -                             |      |
| t <sub>d(SDCLKL-SDNCAS)</sub> | SDNCAS valid time      | -                            | 2                             |      |
| t <sub>d(SDCLKL-SDNCAS)</sub> | SDNCAS hold time       | 0                            | -                             |      |

<sup>1.</sup> Guaranteed by characterization results.

# 6.3.19 Octo-SPI interface characteristics

Unless otherwise specified, the parameters given in Table 87. OCTOSPI characteristics in SDR mode and Table 88. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus for the OCTOSPI interface are derived from tests performed under the ambient temperature, f<sub>HCLK</sub> frequency and V<sub>DD</sub> supply voltage summarized in Table 20. General operating conditions, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics.

Table 87. OCTOSPI characteristics in SDR mode

Delay block bypassed.

| Symbol                                     | Parameter                       | Conditions                                                                                                        | Min <sup>(1)(2)</sup>   | Typ <sup>(1)(2)</sup> | Max <sup>(1)(2)(3)</sup> | Unit |
|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|--------------------------|------|
| F <sub>(CLK)</sub> OCTOSPI clock frequency |                                 | 1.62 V < V <sub>DD</sub> < 3.6 V, VOS0,<br>C <sub>LOAD</sub> = 15 pF                                              | -                       | -                     | 90                       |      |
|                                            |                                 | 1.62 V < V <sub>DD</sub> < 3.6 V, VOS0,<br>C <sub>LOAD</sub> = 20 pF                                              | -                       | -                     | 80                       | MHz  |
|                                            |                                 | $2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}, \text{ VOS0},$<br>$\text{C}_{\text{LOAD}} = 20 \text{ pF}$ | -                       | -                     | 140                      |      |
| t <sub>w(CLKH)</sub>                       | OCTOSPI clock high and low time | DDCCCALCD(7:0) = n = 0.4.2.5                                                                                      | t <sub>(CLK)</sub> /2   | -                     | t <sub>(CLK)</sub> /2+1  |      |
| t <sub>w(CLKL)</sub>                       |                                 | PRESCALER[7:0] = n = 0,1,3,5                                                                                      | t <sub>(CLK)</sub> /2-1 | -                     | t <sub>(CLK)</sub> /2    | ns   |

DS13196 - Rev 6 page 123/199

<sup>2.</sup> At VOS1, these values are degraded by up to 5 %.



| Symbol                            | Parameter              | Conditions                       | Min <sup>(1)(2)</sup>                    | Typ <sup>(1)(2)</sup> | Max <sup>(1)(2)(3)</sup>              | Unit |
|-----------------------------------|------------------------|----------------------------------|------------------------------------------|-----------------------|---------------------------------------|------|
| t <sub>w(CLKH)</sub>              | OCTOSPI clock high     | PRESCALER[7:0] = n = 2,4,6,8     | (n/2)*t <sub>(CLK)</sub> /<br>(n+1)      | -                     | (n/2)*t <sub>(CLK)</sub> /<br>(n+1)+1 |      |
| t <sub>w(CLKL)</sub>              | and low time           | FRESUALER[1.0] - 11 - 2,4,0,0    | (n/2+1)*t <sub>(CLK)</sub> /<br>(n+1) -1 | -                     | (n/2+1)*t <sub>(CLK)</sub> /<br>(n+1) |      |
| <b>4</b> (4)                      | 5                      | 2.7 V < V <sub>DD</sub> < 3.6 V  | 2                                        | -                     | -                                     |      |
| t <sub>s(IN)</sub> <sup>(4)</sup> | Data input setup time  | 1.62 V < V <sub>DD</sub> < 3.6 V | 2                                        | -                     | -                                     | ns   |
| <b>t</b>                          | Data inquit hald time  | 2.7 V < V <sub>DD</sub> < 3.6 V  | 4.5                                      | -                     | -                                     |      |
| t <sub>h(IN)<sup>(4)</sup></sub>  | Data input hold time   | 1.62 V < V <sub>DD</sub> < 3.6 V | 5                                        | -                     | -                                     |      |
| t <sub>v(OUT)</sub>               | Data output valid time | -                                | -                                        | 1                     | 1.5 <sup>(4)</sup>                    |      |
| t <sub>h(OUT)</sub>               | Data output hold time  | -                                | 0                                        | -                     | -                                     |      |

- 1. All values apply to Octal and Quad-SPI mode.
- 2. Guaranteed by characterization results.
- 3. At VOS1, these values are degraded by up to 5 %.
- 4. Using PC2, PC3 PI11, PF0 or PF1 I/O in the data bus adds 3.5 ns to this timing value.



Figure 40. OctoSPI timing diagram - SDR mode

Table 88. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus

| Symbol                    | Parameter               | Conditions                                                           | Min <sup>(1)</sup>                                 | Typ <sup>(1)</sup>    | Max <sup>(1)(2)</sup>                 | Unit |
|---------------------------|-------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------|---------------------------------------|------|
|                           |                         | 1.71 V < V <sub>DD</sub> < 3.6 V, VOS0,<br>C <sub>LOAD</sub> = 15 pF | -                                                  | -                     | 120 <sup>(5)</sup>                    |      |
| F <sub>(CLK)</sub> (3)(4) | OCTOSPI clock frequency | 2.7 V < V <sub>DD</sub> < 3.6 V, VOS0,<br>C <sub>LOAD</sub> = 20 pF  | -                                                  | -                     | 100                                   | MHz  |
|                           |                         | 1.62 V < V <sub>DD</sub> < 2.5 V, VOS0,<br>C <sub>LOAD</sub> = 20 pF | -                                                  | -                     | 100/45 <sup>(6)</sup>                 |      |
| t <sub>w(CLKH)</sub>      | OCTOSPI clock high      | DDECCALED(7:0) = n = 0.4.2.5                                         | t <sub>(CLK)</sub> /2                              | -                     | t <sub>(CLK)</sub> /2+1               |      |
| t <sub>w(CLKL)</sub>      | and low time            | PRESCALER[7:0] = n = 0,1,3,5                                         | t <sub>(CLK)</sub> /2-1                            | -                     | t <sub>(CLK)</sub> /2                 |      |
| t <sub>w(CLKH)</sub>      | OCTOSPI clock high      | DDECCALED(7:0) = n = 2.46.0                                          | (n/2)*t <sub>(CLK)</sub> /<br>(n+1)                | -                     | (n/2)*t <sub>(CLK)</sub> /<br>(n+1)+1 |      |
| t <sub>w(CLKL)</sub>      | and low time            | PRESCALER[7:0] = n = 2,4,6,8                                         | (n/2+1)*t <sub>(CLK)</sub> /<br>(n+1)-1            | -                     | (n/2+1)*t <sub>(CLK)</sub> /<br>(n+1) | ns   |
| t <sub>v(CLK)</sub>       | Clock valid time        | -                                                                    | -                                                  | t <sub>(CLK)</sub> +1 |                                       |      |
| t <sub>h(CLK)</sub>       | Clock hold time         |                                                                      | t <sub>(CLK)</sub> /2-0.5<br>t <sub>(CLK)</sub> /2 | -                     | -                                     |      |

DS13196 - Rev 6 page 124/199



| Symbol                             | Parameter                     | Conditions                   | Min <sup>(1)</sup>     | Typ <sup>(1)</sup>     | Max <sup>(1)(2)</sup>                  | Unit |
|------------------------------------|-------------------------------|------------------------------|------------------------|------------------------|----------------------------------------|------|
| t <sub>w(CS)</sub>                 | Chip select high time         | -                            | 3 x t <sub>(CLK)</sub> | -                      | -                                      |      |
| $t_{V(DQ)}$                        | Data input vallid time        | -                            | 0                      | -                      | -                                      |      |
| t <sub>v(DS)</sub>                 | Data strobe input valid time  | -                            | 0                      | -                      | -                                      |      |
| t <sub>h(DS)</sub>                 | Data strobe input hold time   | -                            | 0                      | -                      | -                                      |      |
| t <sub>v(RWDS)</sub>               | Data strobe output valid time | -                            | -                      | -                      | 3 x t <sub>(CLK)</sub>                 |      |
| $t_{sr(DQ)}$ $t_{sf(DQ)}^{(7)}$    | Data input setup time         | -                            | -1                     | -                      | -                                      | ns   |
| t <sub>hr(DQ)</sub>                | Data input hold time          | Rising edge                  | 3                      | -                      | -                                      |      |
| t <sub>hf(DQ)</sub> <sup>(7)</sup> | Data input hold time          | Falling edge                 | 3.5                    | -                      | -                                      |      |
| t(OUT)                             |                               | DHQC = 0                     | -                      | 5.5                    | 7 <sup>(8)</sup>                       |      |
| $t_{Vr(OUT)}$<br>$t_{Vf(OUT)}$     | Data output valid time        | DHQC = 1, PRESCALER[7:0]=1,2 | -                      | t <sub>(CLK)</sub> /4+ | t <sub>(CLK)</sub> /4+2 <sup>(8)</sup> |      |
| t <sub>hr(OUT)</sub>               | Data autout hald time         | DHQC = 0                     | 4.5                    | -                      | -                                      |      |
| t <sub>hf(OUT)</sub>               | Data output hold time         | DHQC = 1, PRESCALER[7:0]=1,2 | t <sub>(CLK)</sub> /4  | -                      | -                                      |      |

- 1. Guaranteed by characterization results, unless otherwise specified.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. The maximum frequency values are given for a maximum RWDS to DQ skew  $\leq \pm 1.0$  ns.
- 4. DHQC must be set to reach the mentioned frequency.
- 5. Guaranteed by design.
- 6. Using PC2, PC3, PI11, PF0 or PF1 I/Os limits the maximum clock frequency.
- 7. Delay block bypassed.
- 8. Using PC2, PC3, PI11, PF0 or PF1 I/O in the data bus adds 3.5 ns to this timing value.

Figure 41. OctoSPI timing diagram - DTR mode



DS13196 - Rev 6 page 125/199

Figure 42. OctoSPI Hyperbus clock



Figure 43. OctoSPI Hyperbus read



Host drives DQ[7:0] and the memory drives RWDS.

tw(CS) NCS Read write recovery Access latency tv(CLK) th(CLK) CLK, NCLK t<sub>v(OUT)</sub>  $t_{h(OUT)}$ tv(RWDS) High = 2x latency count Low = 1x latency count **RWDS** Latency count tv(OUT) th(OUT) tv(OUT) th(OUT) DQ[7:0] Command address Host drives DQ[7:0] and RWDS.

Figure 44. OctoSPI Hyperbus write

#### 6.3.20 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in Table 89. Delay Block characteristics for Delay Block are derived from tests performed under the ambient temperature,  $f_{rcc\_cpu\_ck}$  frequency and VDD supply voltage summarized in Table 20. General operating conditions, with the following configuration:

Host drives DQ[7:0] and the memory drives RWDS.

DS13196 - Rev 6 page 126/199



Table 89. Delay Block characteristics

| Symbol            | Parameter     | Conditions | Min  | Тур  | Max  | Unit |
|-------------------|---------------|------------|------|------|------|------|
| t <sub>init</sub> | Initial delay | -          | 1400 | 1700 | 2700 | no   |
| $t_\Delta$        | Unit Delay    | -          | 40   | 47   | 59   | ps   |

#### 6.3.21 16-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 90. ADC characteristics are derived from tests performed under the ambient temperature,  $f_{PCLK2}$  frequency and  $V_{DDA}$  supply voltage conditions summarized in Table 20. General operating conditions.

**Table 90. ADC characteristics** 

| Symbol                        | Parameter                            |                                                      | Cond                    | litions                   |                          | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |  |
|-------------------------------|--------------------------------------|------------------------------------------------------|-------------------------|---------------------------|--------------------------|--------------------|--------------------|--------------------|------|--|
| $V_{DDA}$                     | Analog power supply for ADC ON       |                                                      |                         | -                         |                          | 1.62               | -                  | 3.6                |      |  |
| V <sub>REF+</sub> (2)         | Positive reference                   |                                                      | $V_{DDA}$               | ≥ 2 V                     |                          | 1.62               | -                  | V <sub>DDA</sub>   | V    |  |
| VREF+(=)                      | voltage                              |                                                      | $V_{DDA}$               | < 2 V                     |                          |                    | $V_{DDA}$          |                    | V    |  |
| V <sub>REF-</sub> (2)         | Negative reference voltage           |                                                      |                         | -                         |                          |                    | $V_{SSA}$          |                    |      |  |
|                               |                                      |                                                      |                         |                           | BOOST =<br>11            | 0.12               | _                  | 50                 |      |  |
| £                             | ADO 1 1 6                            | 4.00                                                 | V-V 2                   | 6.14                      | BOOST =                  | 0.12               | -                  | 25                 |      |  |
| f <sub>ADC</sub>              | ADC clock frequency                  | 1,02                                                 | V ≤V <sub>DDA</sub> ≤ 3 | .0 V                      | BOOST =<br>01            | 0.12               | -                  | 12.5               | MHz  |  |
|                               |                                      |                                                      |                         |                           |                          | -                  | -                  | 6.25               |      |  |
|                               | Sampling rate for<br>Direct channels | Resolution = 16<br>bits,<br>V <sub>DDA</sub> > 2.5 V | T <sub>J</sub> = 90 °C  | f <sub>ADC</sub> = 36 MHz | SMP = 1.5                | -                  | -                  | 3.60               |      |  |
|                               |                                      | Resolution = 16<br>bits                              |                         | f <sub>ADC</sub> = 37 MHz | SMP = 2.5                | -                  | -                  | 3.35               |      |  |
|                               |                                      | Resolution = 14<br>bits                              |                         | f <sub>ADC</sub> = 50 MHz | SMP = 2.5                | -                  | -                  | 5.00               |      |  |
|                               | Direct charmers                      | Resolution = 12<br>bits                              | T <sub>J</sub> =        | f <sub>ADC</sub> =50 MHz  | SMP = 2.5                | -                  | -                  | 5.50               |      |  |
|                               |                                      | Resolution = 10<br>bits                              | 125 °C                  | f <sub>ADC</sub> =50 MHz  | SMP=1.5                  | -                  | -                  | 7.10               |      |  |
| f <sub>S</sub> <sup>(3)</sup> |                                      | Resolution = 8<br>bits                               | _                       | f <sub>ADC</sub> =50 MHz  | SMP=1.5                  | -                  | -                  | 8.30               | MSPS |  |
|                               |                                      | Resolution = 16<br>bits, V <sub>DDA</sub> >2.5V      | T <sub>J</sub> = 90 °C  | f <sub>ADC</sub> =32 MHz  | SMP=2.5                  | _                  | -                  | 2.90               |      |  |
|                               |                                      | Resolution = 16<br>bits                              | 11 - 90 C               | f <sub>ADC</sub> =31 MHz  | SMP=2.5                  | -                  | -                  | 2.80               |      |  |
|                               | Sampling rate for Fast channels      | Resolution = 14<br>bits                              |                         | f <sub>ADC</sub> =33 MHz  | SMP=2.5                  | -                  | -                  | 3.30               |      |  |
|                               |                                      | Resolution = 12<br>bits                              | TJ = 125°C              |                           | f <sub>ADC</sub> =39 MHz | SMP=2.5            | -                  | -                  | 4.30 |  |
|                               |                                      | Resolution = 10<br>bits                              |                         | f <sub>ADC</sub> =48 MHz  | SMP=2.5                  | -                  | -                  | 6.00               |      |  |

DS13196 - Rev 6 page 127/199



| Symbol                          | Parameter                                        |                                                       | Cond                                         | itions                         |         | Min <sup>(1)</sup>   | Typ <sup>(1)</sup> | Max <sup>(1)</sup>           | Unit               |  |
|---------------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------------|--------------------------------|---------|----------------------|--------------------|------------------------------|--------------------|--|
|                                 | Sampling rate for Fast channels                  | Resolution = 8<br>bits                                | TJ =<br>125°C                                | f <sub>ADC</sub> =50 MHz       | SMP=2.5 | -                    | -                  | 7.10                         |                    |  |
|                                 |                                                  | Resolution = 16<br>bits                               | T <sub>J</sub> = 90 °C                       |                                |         | -                    | -                  |                              |                    |  |
| £ (3)                           | Sampling rate for                                | Resolution = 14<br>bits                               |                                              |                                |         | -                    | -                  |                              | MSPS               |  |
| f <sub>S</sub> <sup>(3)</sup>   | Slow channels,<br>BOOST = 00, f <sub>ADC</sub> = | Resolution = 12<br>bits                               | T <sub>J</sub> =                             | f <sub>ADC</sub> =10 MHz       | SMP=1.5 | -                    | -                  | 1.00                         | IVISPS             |  |
|                                 | 10 MHz                                           | Resolution = 10<br>bits                               | 125 °C                                       |                                |         |                      | -                  | -                            |                    |  |
|                                 |                                                  | Resolution = 8<br>bits                                | -                                            |                                |         | -                    | -                  |                              |                    |  |
| t <sub>TRIG</sub>               | External trigger period                          |                                                       | Resolution                                   | n = 16 bits                    |         | -                    | -                  | 10                           | 1/f <sub>ADC</sub> |  |
| V <sub>AIN</sub> <sup>(4)</sup> | Conversion voltage range                         |                                                       |                                              | -                              |         | 0                    | -                  | V <sub>REF+</sub>            | V                  |  |
| V <sub>CMIV</sub>               | Common mode input voltage                        |                                                       | -                                            |                                |         |                      | V <sub>REF</sub> / | V <sub>REF</sub> /2<br>+ 10% | V                  |  |
|                                 |                                                  | Res                                                   | solution = 16                                | bits, T <sub>J</sub> = 125 °C  |         | -                    | -                  | 170                          |                    |  |
|                                 |                                                  | Res                                                   | solution = 14                                | bits, T <sub>J</sub> = 125 °C  |         | -                    | -                  | 435                          |                    |  |
| R <sub>AIN</sub> <sup>(5)</sup> | External input impedance                         | Res                                                   | olution = 12 b                               | oits, TJ <sub>J</sub> = 125 °C | ;       | -                    | -                  | 1150<br>5650                 | Ω                  |  |
|                                 | poddiiioo                                        | Res                                                   | solution = 10                                | bits, T <sub>J</sub> = 125 °C  |         | -                    | -                  |                              |                    |  |
|                                 |                                                  | Re                                                    | Resolution = 8 bits, T <sub>J</sub> = 125 °C |                                |         |                      | -                  | 26500                        |                    |  |
| C <sub>ADC</sub>                | Internal sample and hold capacitor               | -                                                     |                                              |                                |         | -                    | 4                  | -                            | pF                 |  |
| t <sub>ADCVREG_</sub><br>STUP   | ADC LDO startup time                             |                                                       |                                              | -                              |         | -                    | 5                  | 10                           | μs                 |  |
| t <sub>STAB</sub>               | ADC power-up time                                |                                                       | LDO alrea                                    | idy started                    |         | 1                    | -                  | -                            | conversion cycle   |  |
| t <sub>CAL</sub>                | Offset and linearity calibration time            |                                                       |                                              | -                              |         | 165010               |                    |                              |                    |  |
| t <sub>OFF_CAL</sub>            | Offset calibration time                          |                                                       |                                              | -                              |         |                      | 1280               |                              | -                  |  |
|                                 | Trigger conversion                               |                                                       | СКМОГ                                        | DE = 00                        |         | 1.5                  | 2                  | 2.5                          |                    |  |
| <b>t</b>                        | latency for regular                              |                                                       | CKMOI                                        | DE = 01                        |         | -                    | -                  | 2.5                          |                    |  |
| t <sub>LATR</sub>               | and injected channels without aborting the       |                                                       | CKMOI                                        | DE = 10                        |         | -                    | -                  | 2.5                          |                    |  |
|                                 | conversion                                       |                                                       | CKMOI                                        | DE = 11                        |         | -                    | -                  | 2.25                         |                    |  |
|                                 | Trigger conversion                               |                                                       | CKMOI                                        | DE = 00                        |         | 2.5                  | 3                  | 3.5                          | 1/f <sub>ADC</sub> |  |
| t <sub>LATRIN</sub> J           | latency for regular and injected channels        |                                                       | CKMOI                                        | DE = 01                        |         | -                    | -                  | 3.5                          |                    |  |
| LAIRINJ                         | when a regular                                   |                                                       | CKMOI                                        | DE = 10                        |         | -                    | -                  | 3.5                          |                    |  |
|                                 | conversion is aborted                            |                                                       | CKMOI                                        | DE = 11                        |         | -                    | -                  | 3.25                         |                    |  |
| t <sub>S</sub>                  | Sampling time                                    |                                                       | -                                            |                                |         | 1.5                  | -                  | 810.5                        |                    |  |
| t <sub>CONV</sub>               | Total conversion time (including sampling time)  |                                                       | N-bits re                                    | esolution                      |         | tS +<br>0.5 +<br>N/2 | -                  | -                            |                    |  |
|                                 | ADC consumption on                               | Resolution = 16 bits, f <sub>ADC</sub> =25 MHz - 1440 |                                              |                                |         |                      |                    | -                            |                    |  |
| I <sub>DDA_D(ADC)</sub>         | V <sub>DDA</sub> , BOOST=11,                     | Reso                                                  | olution = 14 b                               | oits, f <sub>ADC</sub> =30 MHz | Z       | -                    | 1350               | -                            | μA                 |  |
| ,                               | Differential mode                                | D                                                     |                                              | oits, f <sub>ADC</sub> =40 MHz |         | _                    | 990                | _                            |                    |  |

DS13196 - Rev 6 page 128/199





| Symbol                  | Parameter                                                                                  | Conditions                                     | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |  |
|-------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|--------------------|--------------------|------|--|
|                         | ADC consumption on                                                                         | Resolution = 16 bits                           | -                  | 1080               | -                  |      |  |
|                         | V <sub>DDA</sub> , BOOST=10,<br>Differential mode                                          | Resolution = 14 bits                           | -                  | 810                | -                  |      |  |
|                         | f <sub>ADC</sub> =25 MHz                                                                   | Resolution = 12 bits                           | -                  | 585                | -                  |      |  |
|                         | ADC consumption on                                                                         | Resolution = 16 bits                           | -                  | 630                | -                  |      |  |
| I <sub>DDA_D(ADC)</sub> | V <sub>DDA</sub> , BOOST=01,<br>Differential mode                                          | Resolution = 14 bits                           | -                  | 432                | -                  | μΑ   |  |
|                         | f <sub>ADC</sub> =12.5 MHz                                                                 | Resolution = 12 bits                           | -                  | 315                | -                  |      |  |
|                         | ADC consumption on                                                                         | Resolution = 16 bits                           | -                  | 360                | -                  |      |  |
|                         | V <sub>DDA</sub> , BOOST=00,<br>Differential mode                                          | Resolution = 14 bits                           | -                  | 270                | -                  |      |  |
|                         | f <sub>ADC</sub> =6.25 MHz                                                                 | Resolution = 12 bits                           | -                  | 225                | -                  |      |  |
|                         | ADC consumption on                                                                         | Resolution = 16 bits, f <sub>ADC</sub> =25 MHz | -                  | 720                | -                  |      |  |
|                         | ADC consumption on V <sub>DDA</sub> , BOOST=11, Single-ended mode                          | Resolution = 14 bits, f <sub>ADC</sub> =30 MHz | -                  | 675                | -                  |      |  |
|                         |                                                                                            | Resolution = 12 bits, f <sub>ADC</sub> =40 MHz | -                  | 495                | -                  |      |  |
|                         | ADC consumption on V <sub>DDA</sub> , BOOST=10, Single-ended mode f <sub>ADC</sub> =25 MHz | Resolution = 16 bits                           | -                  | 540                | -                  |      |  |
|                         |                                                                                            | Resolution = 14 bits                           | -                  | 405                | -                  |      |  |
| Inna of (Ano)           |                                                                                            | Resolution = 12 bits                           | -                  | 292.5              | -                  |      |  |
| IDDA_SE(ADC)            | ADC consumption on                                                                         | Resolution = 16 bits                           | -                  | 315                | -                  |      |  |
|                         | V <sub>DDA</sub> , BOOST=01,<br>Single-ended mode                                          | Resolution = 14 bits                           | -                  | 216                | -                  |      |  |
|                         | f <sub>ADC</sub> =12.5 MHz                                                                 | Resolution = 12 bits                           | -                  | 157.5              | -                  | μA   |  |
|                         | ADC consumption on                                                                         | Resolution = 16 bits                           | -                  | 180                | -                  |      |  |
|                         | V <sub>DDA</sub> , BOOST=00,<br>Single-ended mode                                          | Resolution = 14 bits                           | -                  | 135                | -                  |      |  |
|                         | f <sub>ADC</sub> =6.25 MHz                                                                 | Resolution = 12 bits                           | -                  | 112.5              | -                  |      |  |
|                         |                                                                                            | f <sub>ADC</sub> =50 MHz                       | -                  | 400                | -                  |      |  |
|                         |                                                                                            | f <sub>ADC</sub> =25 MHz                       | -                  | 220                | -                  |      |  |
| I <sub>DD(ADC)</sub>    | ADC consumption on V <sub>DD</sub>                                                         | f <sub>ADC</sub> =12.5 MHz                     | -                  | 180                | -                  |      |  |
|                         | טט -                                                                                       | f <sub>ADC</sub> =6.25 MHz                     | -                  | 120                | -                  |      |  |
|                         |                                                                                            | f <sub>ADC</sub> =3.125 MHz                    | -                  | 80                 | -                  |      |  |

- 1. Guaranteed by design.
- 2. Depending on the package,  $V_{REF+}$  can be internally connected to  $V_{DDA}$  and  $V_{REF-}$  to  $V_{SSA}$ .
- 3. These values are valid UFBGA176+25 and one ADC. The values for other packages and multiple ADCs might be different
- 4. The voltage booster on ADC switches must be used for  $V_{DDA}$  < 2.4 V (embedded I/O switches).
- The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit resolutions.

Table 91. Minimum sampling time vs R<sub>AIN</sub>

Data valid up to 130 °C, with a 47 pF PCB capacitor and  $V_{DDA}$ =1.6 V.

| Decelution | RAIN (Ω) | Minimum sampling time (s)         |                                 |                                 |  |  |
|------------|----------|-----------------------------------|---------------------------------|---------------------------------|--|--|
| Resolution |          | Direct channels <sup>(1)(2)</sup> | Fast channels <sup>(1)(3)</sup> | Slow channels <sup>(1)(4)</sup> |  |  |
| 16 bits    | 47       | 7.37E-08                          | 1.14E-07                        | 1.72E-07                        |  |  |
|            | 47       | 6.29E-08                          | 9.74E-08                        | 1.55E-07                        |  |  |
| 14 bits    | 68       | 6.84E-08                          | 1.02E-07                        | 1.58E-07                        |  |  |
|            | 100      | 7.80E-08                          | 1.12E-07                        | 1.62E-07                        |  |  |

DS13196 - Rev 6 page 129/199



| Resolution | RAIN (Ω)  |                       | Minimum sampling time (s)       |                                 |
|------------|-----------|-----------------------|---------------------------------|---------------------------------|
| vesolution | KAIN (12) | Direct channels(1)(2) | Fast channels <sup>(1)(3)</sup> | Slow channels <sup>(1)(4)</sup> |
| 14 bits    | 150       | 9.86E-08              | 1.32E-07                        | 1.80E-07                        |
| 14 0113    | 220       | 1.32E-07              | 1.61E-07                        | 2.01E-07                        |
|            | 47        | 5.32E-08              | 8.00E-08                        | 1.29E-07                        |
|            | 68        | 5.74E-08              | 8.50E-08                        | 1.32E-07                        |
|            | 100       | 6.58E-08              | 9.31E-08                        | 1.40E-07                        |
| 40.1.11    | 150       | 8.37E-08              | 1.10E-07                        | 1.51E-07                        |
| 12 bits    | 220       | 1.11E-07              | 1.34E-07                        | 1.73E-07                        |
|            | 330       | 1.56E-07              | 1.78E-07                        | 2.14E-07                        |
|            | 470       | 2.16E-07              | 2.39E-07                        | 2.68E-07                        |
|            | 680       | 3.01E-07              | 3.29E-07                        | 3.54E-07                        |
|            | 47        | 4.34E-08              | 6.51E-08                        | 1.08E-07                        |
|            | 68        | 4.68E-08              | 6.89E-08                        | 1.11E-07                        |
|            | 100       | 5.35E-08              | 7.55E-08                        | 1.16E-07                        |
|            | 150       | 6.68E-08              | 8.77E-08                        | 1.26E-07                        |
|            | 220       | 8.80E-08              | 1.08E-07                        | 1.40E-07                        |
| 40.1.11    | 330       | 1.24E-07              | 1.43E-07                        | 1.71E-07                        |
| 10 bits    | 470       | 1.69E-07              | 1.89E-07                        | 2.13E-07                        |
|            | 680       | 2.38E-07              | 2.60E-07                        | 2.80E-07                        |
|            | 1000      | 3.45E-07              | 3.45E-07 3.66E-07               |                                 |
|            | 1500      | 5.15E-07              | 5.35E-07                        | 5.48E-07                        |
|            | 2200      | 7.42E-07              | 7.75E-07                        | 7.78E-07                        |
|            | 3300      | 1.10E-06              | 1.14E-06                        | 1.14E-06                        |
|            | 47        | 3.32E-08              | 5.10E-08                        | 8.61E-08                        |
|            | 68        | 3.59E-08              | 5.35E-08                        | 8.83E-08                        |
|            | 100       | 4.10E-08              | 5.83E-08                        | 9.22E-08                        |
|            | 150       | 5.06E-08              | 6.76E-08                        | 9.95E-08                        |
|            | 220       | 6.61E-08              | 8.22E-08                        | 1.11E-07                        |
|            | 330       | 9.17E-08              | 1.08E-07                        | 1.32E-07                        |
|            | 470       | 1.24E-07              | 1.40E-07                        | 1.63E-07                        |
| 0 hito     | 680       | 1.74E-07              | 1.91E-07                        | 2.12E-07                        |
| 8 bits     | 1000      | 2.53E-07              | 2.70E-07                        | 2.85E-07                        |
|            | 1500      | 3.73E-07              | 3.93E-07                        | 4.05E-07                        |
|            | 2200      | 5.39E-07              | 5.67E-07                        | 5.75E-07                        |
|            | 3300      | 8.02E-07              | 8.36E-07                        | 8.38E-07                        |
|            | 4700      | 1.13E-06              | 1.18E-06                        | 1.18E-06                        |
|            | 6800      | 1.62E-06              | 1.69E-06                        | 1.68E-06                        |
|            | 10000     | 2.36E-06              | 2.47E-06                        | 2.45E-06                        |
|            | 15000     | 3.50E-06              | 3.69E-06                        | 3.65E-06                        |

<sup>1.</sup> Guaranteed by design.

DS13196 - Rev 6 page 130/199

<sup>2.</sup> Direct channels are connected to analog I/Os (PA0\_C, PA1\_C, PC2\_C and PC3\_C) to optimize ADC performance.



- Fast channels correspond for ADCx\_INPx to PA6, PB1, PC4, PF11, PF13 and for ADCx\_INNx to PA7, PB0, PC5, PF12, PF14
- 4. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.

Figure 45. ADC conversion timing diagram



<sup>1.</sup> The sampling time defines the minimum sampling clock cycles (SMP) to be programmed in the ADC (refer to the product reference manual for details).

Table 92. ADC accuracy

Data guaranteed by characterization for BGA packages. The values for LQFP packages might differ. ADC DC accuracy values are measured after internal calibration.

| Symbol | Parameter                            | Condit          | ions <sup>(1)</sup> | Min | Тур     | Max | Un |
|--------|--------------------------------------|-----------------|---------------------|-----|---------|-----|----|
|        |                                      | Direct channel  | Single ended        | -   | +10/–20 | -   |    |
|        |                                      | Direct channel  | Differential        | -   | ±15     | -   |    |
| ET     | Total wadedinated area               | Fast channel    | Single ended        | -   | +10/–20 | -   |    |
| EI     | Total undadjusted error              | Fast channel    | Differential        | -   | ±15     | -   |    |
|        |                                      | Slow channel    | Single ended        | -   | ±10     | -   |    |
|        |                                      | Slow channel    | Differential        | -   | ±10     | -   |    |
| EO     | Offset error                         | -               |                     | -   | ±10     | -   |    |
| EG     | Gain error                           | -               | -                   |     |         | -   | LS |
| ED     | Differential linearity area          | Single          | Single ended        |     |         | -   | LS |
| ED     | Differential linearity error         | Differ          | Differential        |     |         | -   |    |
|        |                                      | Direct channel  | Single ended        | -   | ±11     | -   |    |
|        | Integral linearity error             | Direct chariner | Differential        | -   | ±7      | -   |    |
| EL     |                                      | Fast channel    | Single ended        | -   | ±13     | -   |    |
| EL     |                                      |                 | Differential        | -   | ±7      | -   |    |
|        |                                      | Slow channel    | Single ended        | -   | ±10     | -   |    |
|        |                                      | Slow channel    | Differential        | -   | ±6      | -   |    |
| ENOB   | Effective number of bits             | Single          | ended               | -   | 12.2    | -   | Bi |
| ENOB   | Effective number of bits             | Differ          | ential              | -   | 13.2    | -   | БІ |
| CINAD  | Cignal to point and distortion ratio | Single          | ended               | -   | 75.2    | -   |    |
| SINAD  | Signal-to-noise and distortion ratio | Differ          | ential              | -   | 81.2    | -   |    |
| SNR    | Cignal to poinc ratio                | Single          | ended               | -   | 77.0    | -   | d  |
| SINK   | Signal-to-noise ratio                | Differ          | ential              | -   | 81.0    | -   |    |
| THD    | Total harmonic distortion            | Single          | ended               | -   | 87      | -   |    |

DS13196 - Rev 6 page 131/199



| Symbol | Parameter                 | Conditions <sup>(1)</sup> | Min | Тур | Max | Unit |
|--------|---------------------------|---------------------------|-----|-----|-----|------|
| THD    | Total harmonic distortion | Differential              | -   | 90  | -   | dB   |

1. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, V<sub>DDA</sub>=V<sub>REF+</sub>=3.3 V and BOOST=11.

#### Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents

Any positive injection current within the limits specified for  $I_{INJ(PIN)}$  and  $\Sigma I_{INJ(PIN)}$  in Section 6.3.15 I/O current injection characteristics does not affect the ADC accuracy.



Figure 46. ADC accuracy characteristics

- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4.  $E_T$  = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
- 5. EO = Offset Error: deviation between the first actual transition and the first ideal one.
- 6. EG = Gain Error: deviation between the last ideal transition and the last actual one.
- 7. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
- 8. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

DS13196 - Rev 6 page 132/199



Figure 47. Typical connection diagram using the ADC

- 1. Refer to Table 90. ADC characteristics for the values of R<sub>AIN</sub>, R<sub>ADC</sub> and C<sub>ADC</sub>.
- C<sub>parasitic</sub> represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high C<sub>parasitic</sub> value downgrades conversion accuracy. To remedy this, f<sub>ADC</sub> should be reduced.

#### General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 48. Power supply and reference decoupling ( $V_{REF+}$  not connected to  $V_{DDA}$ ) or Figure 49. Power supply and reference decoupling ( $V_{REF+}$  connected to  $V_{DDA}$ ), depending on whether  $V_{REF+}$  is connected to  $V_{DDA}$  or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 48. Power supply and reference decoupling (V<sub>REF+</sub> not connected to V<sub>DDA</sub>)



DS13196 - Rev 6 page 133/199



V<sub>REF+</sub> input is not available on all package (refer to Table 1. STM32H7B0xB features and peripheral counts) whereas V<sub>REF-</sub> is available only on UFBGA176+25, TFBGA225 with SMPS and TFBGA216. When V<sub>REF-</sub> is not available, it is internally connected to V<sub>SSA</sub>.

Figure 49. Power supply and reference decoupling ( $V_{REF+}$  connected to  $V_{DDA}$ )



V<sub>REF+</sub> input is not available on all package (refer to Table 1. STM32H7B0xB features and peripheral counts)
whereas V<sub>REF-</sub> is available only on UFBGA176+25, TFBGA225 with SMPS and TFBGA216. When V<sub>REF-</sub> is
not available, it is internally connected to V<sub>SSA</sub>.

#### 6.3.22 DAC characteristics

Table 93. DAC characteristics

| Symbol            | Parameter                        | Condit                | tions                         | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit  |
|-------------------|----------------------------------|-----------------------|-------------------------------|--------------------|--------------------|--------------------|-------|
| V <sub>DDA</sub>  | Analog supply voltage            | -                     |                               | 1.8                | 3.3                | 3.6                |       |
| V <sub>REF+</sub> | Positive reference voltage       | -                     | - 1.80 -                      |                    | -                  | $V_{DDA}$          | V     |
| V <sub>REF-</sub> | Negative reference voltage       | -                     | -                             |                    | $V_{SSA}$          | -                  |       |
| Rı                | Resistive Load                   | DAC output buffer ON  | connected to V <sub>SSA</sub> | 5                  | -                  | -                  |       |
| INL.              | Resistive Load                   | DAC output buffer ON  | connected to V <sub>DDA</sub> | 25                 | -                  | -                  | kΩ    |
| R <sub>O</sub>    | Output Impedance                 | DAC output I          | DAC output buffer OFF         |                    | 13                 | 16                 |       |
| R <sub>BON</sub>  | Output impedance sample and hold | DAC output buffer ON  | V <sub>DD</sub> = 2.7 V       | -                  | -                  | 1.6                | kΩ    |
| IVBON             | mode, output buffer ON           | DAC output buller ON  | V <sub>DD</sub> = 2.0 V       | -                  | -                  | 2.6                | - K12 |
| R <sub>BOFF</sub> | Output impedance sample and hold | DAC output buffer OFF | V <sub>DD</sub> = 2.7 V       | -                  | -                  | 17.8               | kΩ    |
| NBOFF             | mode, output buffer OFF          | DAC output buller OFF | V <sub>DD</sub> = 2.0 V       | -                  | -                  | 18.7               | - K12 |
| C <sub>L</sub>    | Capacitive Load                  | DAC output I          | buffer OFF                    | -                  | -                  | 50                 | pF    |
| C <sub>SH</sub>   | Capacitive Load                  | Sample and            | Hold mode                     | -                  | 0.1                | 1                  | μF    |

DS13196 - Rev 6 page 134/199



| Symbol                  | Parameter                                                                                        | Condi                                                      | tions                                                                   | Min <sup>(1)</sup> | Typ <sup>(1)</sup>                                                           | Max <sup>(1)</sup>       | Unit |     |  |
|-------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|--------------------------|------|-----|--|
| V <sub>DAC_OUT</sub>    | Voltage on DAC_OUT output                                                                        | DAC output                                                 | buffer ON                                                               | 0.2                | -                                                                            | V <sub>DDA</sub><br>−0.2 | V    |     |  |
| 2/10_001                |                                                                                                  | DAC output                                                 | buffer OFF                                                              | 0                  | -                                                                            | V <sub>REF+</sub>        |      |     |  |
|                         |                                                                                                  |                                                            | ±0.5 LSB                                                                | -                  | 2.05                                                                         | -                        |      |     |  |
|                         | Settling time (full scale: for a 12-bit                                                          | Normal mode, DAC                                           | ±1 LSB                                                                  | -                  | 1.97                                                                         | -                        |      |     |  |
|                         | code transition between the lowest                                                               | output buffer ON,                                          | ±2 LSB                                                                  | -                  | 1.67                                                                         | -                        |      |     |  |
| tSETTLING               | and the highest input codes when DAC_OUT reaches the final value                                 | $C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$         | ±4 LSB                                                                  | -                  | 1.66                                                                         | -                        | μs   |     |  |
|                         | of ±0.5LSB, ±1LSB, ±2LSB, ±4LSB,<br>±8LSB)                                                       |                                                            | ±8 LSB                                                                  | -                  | 1.65                                                                         | -                        |      |     |  |
|                         |                                                                                                  | Normal mode, DAC outp                                      | •                                                                       | -                  | 1.7                                                                          | 2                        |      |     |  |
| • (2)                   | Wakeup time from off state (setting the ENx bit in the DAC Control register)                     | Normal mode, DAC<br>C <sub>L</sub> ≤ 50 pF,                |                                                                         | -                  | 5                                                                            | 7.5                      |      |     |  |
| t <sub>WAKEUP</sub> (2) | until the final value of ±1LSB is reached                                                        | Normal mode, DAC<br>C <sub>L</sub> ≤ 1                     |                                                                         | -                  | 2                                                                            | 5                        | μs   |     |  |
| PSRR                    | DC V <sub>DDA</sub> supply rejection ratio                                                       | Normal mode, DAC<br>C <sub>L</sub> ≤ 50 pF,                |                                                                         | -                  | -80                                                                          | -28                      | dB   |     |  |
|                         | Sampling time in Sample and Hold mode                                                            | mode (BUFFER ON)  C <sub>L</sub> =100 nF MODE<2:0>_V12=110 |                                                                         | _                  |                                                                              | -                        | 0.7  | 2.6 |  |
| t <sub>SAMP</sub>       | C <sub>L</sub> =100 nF (code transition between the lowest input code and the highest input code | MODE<2:0>_V12=110<br>(BUFFER OFF)                          |                                                                         |                    | 11.5                                                                         | 18.7                     | ms   |     |  |
|                         | when DAC_OUT reaches the ±1LSB final value)                                                      | MODE<2:0><br>(INTERNAL BI                                  |                                                                         | -                  | 0.3                                                                          | 0.6                      | μs   |     |  |
| I <sub>leak</sub>       | Output leakage current                                                                           | -                                                          |                                                                         | -                  | -                                                                            | (3)                      | nA   |     |  |
| C <sub>lint</sub>       | Internal sample and hold capacitor                                                               | -                                                          |                                                                         | 1.8                | 2.2                                                                          | 2.6                      | pF   |     |  |
| t <sub>TRIM</sub>       | Middle code offset trim time                                                                     | Minimum time to ve                                         | rify the each code                                                      | 50                 | -                                                                            | -                        | μs   |     |  |
| .,                      |                                                                                                  | V <sub>REF+</sub> =                                        | : 3.6 V                                                                 | -                  | 850                                                                          | -                        |      |     |  |
| V <sub>offset</sub>     | Middle code offset for 1 trim code step                                                          | V <sub>REF+</sub> =                                        | : 1.8 V                                                                 | -                  | 425                                                                          | -                        | μV   |     |  |
|                         |                                                                                                  | DAC autout huffer ON                                       | No load, middle code (0x800)                                            | -                  | 360                                                                          | -                        |      |     |  |
| l== = . = .             | DAC quiescent                                                                                    | DAC output buffer ON                                       | No load, worst code (0xF1C)                                             | -                  | 490                                                                          | -                        |      |     |  |
| I <sub>DDA(DAC)</sub>   | consumption from V <sub>DDA</sub>                                                                | DAC output buffer OFF                                      | No load, middle/worst code (0x800)                                      | -                  | 20                                                                           | -                        |      |     |  |
|                         |                                                                                                  | Sample and Hold m                                          | node, C <sub>SH</sub> =100 nF                                           | -                  | 360*T <sub>ON</sub> /<br>(T <sub>ON</sub> +T <sub>OFF</sub> ) <sup>(4)</sup> | -                        |      |     |  |
|                         |                                                                                                  | DAC output buffer ON                                       | No load, middle code (0x800)                                            | -                  | 170                                                                          | -                        | μA   |     |  |
|                         |                                                                                                  | Brito datput ballol div                                    | No load, worst code<br>(0xF1C)                                          | -                  | 170                                                                          | -                        |      |     |  |
| I <sub>DDV(DAC)</sub>   | DAC consumption from V <sub>REF+</sub>                                                           | DAC output buffer OFF                                      | No load, middle/worst code (0x800)                                      | -                  | 160                                                                          | -                        |      |     |  |
|                         |                                                                                                  | Sample and Hold mode, (worst                               |                                                                         | -                  | 170*T <sub>ON</sub> /<br>(T <sub>ON</sub> +T <sub>OFF</sub> ) <sup>(4)</sup> | -                        |      |     |  |
|                         |                                                                                                  |                                                            | Sample and Hold mode, Buffer OFF,  C <sub>SH</sub> =100 nF (worst code) |                    |                                                                              | -                        |      |     |  |

1. Guaranteed by design, unless otherwise specified.

DS13196 - Rev 6 page 135/199



- In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).
- 3. Refer to Table 63. I/O static characteristics.
- T<sub>ON</sub> is the refresh phase duration, while T<sub>OFF</sub> is the hold phase duration. Refer to the product reference manual for more details.

Table 94. DAC accuracy

| Symbol    | Parameter                                           | Conditions                                                                           |                           | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-----------|-----------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|--------------------|--------------------|--------------------|------|
| DNL       | Differential non-linearity(2)                       | DAC output buffer ON                                                                 |                           | -2                 | -                  | 2                  | LSB  |
| DINL      | Differential non linearity <sup>(2)</sup>           | DAC output buffer OFF                                                                |                           | -2                 | -                  | 2                  | LOB  |
| 18.11     |                                                     | DAC output buffer ON, $C_L \le 50$ pF, $R_L$                                         | ≥ 5 kΩ                    | -4                 | -                  | 4                  | 1.00 |
| INL       | Integral non linearity <sup>(3)</sup>               | DAC output buffer OFF, C <sub>L</sub> ≤ 50 pF,                                       | no R <sub>L</sub>         | -4                 | -                  | 4                  | LSB  |
|           |                                                     | DAC output buffer ON C < 50 pF D > 540                                               | V <sub>REF+</sub> = 3.6 V | -                  | -                  | ±12                |      |
| Offset    | Offset error at code 0x800 <sup>(3)</sup>           | DAC output buffer ON, $C_L \le 50$ pF, $R_L \ge 5 \text{ k}\Omega$                   | V <sub>REF+</sub> = 1.8 V | -                  | -                  | ±25                | LSB  |
|           |                                                     | DAC output buffer OFF, $C_L \le 50$ pF, no $R_L$                                     | -                         | -                  | -                  | ±8                 |      |
| Offset1   | Offset error at code 0x001 <sup>(4)</sup>           | DAC output buffer OFF, C <sub>L</sub> ≤ 50 pF,                                       | no R <sub>L</sub>         | -                  | -                  | ±5                 | LSB  |
| 0" 10 1   | Offset error at code 0x800 after                    | DAO autout huffer ON O 450 rF D > 510                                                | V <sub>REF+</sub> = 3.6 V | -                  | -                  | ±5                 |      |
| OffsetCal | factory calibration                                 | DAC output buffer ON, $C_L \le 50 \text{ pF}$ , $R_L \ge 5 \text{ k}\Omega$          | VR <sub>EF+</sub> = 1.8 V | -                  | -                  | ±7                 | LSB  |
|           | (5)                                                 | DAC output buffer ON,C <sub>L</sub> ≤ 50 pF, R <sub>L</sub>                          | -                         | _                  | ±1                 |                    |      |
| Gain      | Gain error <sup>(5)</sup>                           | DAC output buffer OFF, C <sub>L</sub> ≤ 50 pF,                                       | no R <sub>L</sub>         | -                  | -                  | ±1                 | %    |
|           |                                                     | DAC output buffer ON,C <sub>L</sub> $\leq$ 50 pF, R <sub>L</sub> $\geq$ 5 k $\Omega$ |                           |                    | -                  | ±30                |      |
| TUE       | Total undajusted error                              | DAC output buffer OFF, C <sub>L</sub> ≤ 50 pF,                                       | no R <sub>L</sub>         | -                  | -                  | ±12                | LSB  |
| TUECal    | Total undajusted error after calibration            | DAC output buffer ON C <sub>L</sub> ≤ 50pF, R <sub>L</sub>                           | ≥ 5kΩ                     | -                  | -                  | ±23                | LSB  |
| OND       | 0: 11 : (6)                                         | DAC output buffer ON $C_L \le 50 pF$ , $R_L \ge 5 k\Omega 1 k$                       | Hz, BW 500KHz             | -                  | 67.8               | -                  | -10  |
| SNR       | Signal-to-noise ratio <sup>(6)</sup>                | DAC output buffer OFF $C_L \le 50pF$ , no $R_L 1kF$                                  | lz, BW 500KHz             | -                  | 67.8               | -                  | dB   |
| TUE       | <b>-</b>                                            | DAC output buffer ON C <sub>L</sub> ≤ 50pF, R <sub>L</sub> ≥ 5                       | kΩ, 1 kHz                 | -                  | -78,6              | -                  | i.   |
| THD       | Total harmonic distorsion <sup>(6)</sup>            | DAC output buffer OFF C <sub>L</sub> ≤ 50pF, no F                                    | R <sub>L</sub> , 1 kHz    | -                  | -78,6              | -                  | dB   |
| OINIAD    | 0, 1, (6)                                           | DAC output buffer ON C <sub>L</sub> ≤ 50pF, R <sub>L</sub> ≥ 5                       | kΩ, 1 kHz                 | -                  | 67.5               | -                  | i.   |
| SINAD     | Signal-to-noise and distorsion ratio <sup>(6)</sup> | DAC output buffer OFF C <sub>L</sub> ≤ 50pF, no F                                    | R <sub>L</sub> , 1 kHz    | -                  | 67.5               | -                  | dB   |
| ENOR      | Effective words on of his                           | DAC output buffer ON $C_L \le 50 \text{pF}$ , $R_L \ge 5 \text{k}\Omega$ , 1 kHz     |                           |                    | 10.9               | -                  | -ID  |
| ENOB      | Effective number of bits                            | DAC output buffer OFF C <sub>L</sub> ≤ 50pF, no F                                    | R <sub>L</sub> , 1 kHz    | -                  | 10.9               | -                  | dB   |
|           |                                                     |                                                                                      |                           |                    |                    |                    |      |

- 1. Guaranteed by design, unless otherwise specified.
- 2. Difference between two consecutive codes minus 1 LSB.
- 3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (V<sub>REF+</sub> - 0.2 V) when the buffer is ON.
- 6. Signal is -0.5dBFS with Fsampling = 1 MHz.

DS13196 - Rev 6 page 136/199



Figure 50. 12-bit buffered /non-buffered DAC

## Buffered/Non-buffered DAC



 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC\_CR register.

## 6.3.23 Voltage reference buffer characteristics

Table 95. VREFBUF characteristics

| Symbol                  | Parameter                                    | Conditions                                        | s            | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-------------------------|----------------------------------------------|---------------------------------------------------|--------------|--------------------|--------------------|--------------------|------|
|                         |                                              |                                                   | VSCALE = 000 | 2.8                | 3.3                | 3.6                |      |
|                         |                                              | Normal mode                                       | VSCALE = 001 | 2.4                | -                  | 3.6                |      |
|                         |                                              | Normal mode                                       | VSCALE = 010 | 2.1                | -                  | 3.6                |      |
| V <sub>DDA</sub>        | Analog supply voltage                        |                                                   | VSCALE = 011 | 1.8                | -                  | 3.6                |      |
| V DDA                   | Alialog supply voltage                       |                                                   | VSCALE = 000 | 1.62               | -                  | 2.80               |      |
|                         |                                              | Degraded mode <sup>(2)</sup>                      | VSCALE = 001 | 1.62               | -                  | 2.40               |      |
|                         |                                              | Degraded mode (**)                                | VSCALE = 010 | 1.62               | -                  | 2.10               |      |
|                         |                                              |                                                   | VSCALE = 011 | 1.62               | -                  | 1.80               |      |
|                         | Voltage Reference Buffer<br>Output           | Normal mode at 30°C,<br>I <sub>LOAD</sub> =100 μA | VSCALE = 000 | 2.496(3)           | 2.5000             | 2.504(3)           | V    |
|                         |                                              |                                                   | VSCALE = 001 | 2,0460             | 2.0490             | 2,0520             |      |
|                         |                                              |                                                   | VSCALE = 010 | 1,8010             | 1.8040             | 1,8060             |      |
|                         |                                              |                                                   | VSCALE = 011 | 1,4995             | 1.5015             | 1,5040             |      |
| V <sub>REFBUF_OUT</sub> |                                              |                                                   | VSCALE = 000 | VDDA- 150<br>mV    | -                  | VDDA               |      |
|                         | Gaipat                                       | Da was da da was da (2)                           | VSCALE = 001 | VDDA- 150<br>mV    | -                  | VDDA               |      |
|                         |                                              | Degraded mode <sup>(2)</sup>                      | VSCALE = 010 | VDDA- 150<br>mV    | -                  | VDDA               | -    |
|                         |                                              |                                                   | VSCALE = 011 | VDDA- 150<br>mV    | -                  | VDDA               | -    |
| TRIM                    | Trim step resolution                         | -                                                 | -            | -                  | ±0.05              | ±0.1               | %    |
| C <sub>L</sub>          | Load capacitor                               | -                                                 | -            | 0.5                | 1                  | 1.50               | uF   |
| esr                     | Equivalent Serial Resistor of C <sub>L</sub> | -                                                 | -            | -                  | -                  | 2                  | Ω    |

DS13196 - Rev 6 page 137/199



| Symbol                    | Parameter                                                                              | Conditions                                             | 5                          | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup>         | Unit    |  |
|---------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|--------------------|--------------------|----------------------------|---------|--|
| I <sub>LOAD</sub>         | Static load current                                                                    | -                                                      | -                          | -                  | -                  | 4                          | mA      |  |
|                           | 1:1-6                                                                                  | 201/21/ /261/                                          | I <sub>LOAD</sub> = 500 μA | -                  | 200                | -                          |         |  |
| line_reg                  | Line regulation                                                                        | $2.8 \text{ V} \leq \text{V}_{DDA} \leq 3.6 \text{ V}$ | I <sub>LOAD</sub> = 4 mA   | -                  | 100                | -                          | ppm/V   |  |
| I <sub>LOAD_reg</sub>     | Load regulation                                                                        | 500 μA ≤ I <sub>LOAD</sub> ≤ 4 mA                      | Normal Mode                | -                  | 50                 | -                          | ppm/ mA |  |
| T <sub>coeff</sub>        | Temperature coefficient                                                                | -40 °C < T <sub>J</sub> < +130 °C                      | -                          | -                  | -                  | Tcoeff<br>VREFINT +<br>100 | ppm/ °C |  |
| PSRR                      | Power supply rejection                                                                 | DC                                                     | 60                         |                    | -                  | dB                         |         |  |
| FORK                      | Fower supply rejection                                                                 | 100KHz                                                 | -                          | -                  | 40                 | -                          | QD      |  |
|                           |                                                                                        | C <sub>L</sub> =0.5 μF                                 | -                          | -                  | 300                | -                          |         |  |
| t <sub>START</sub>        | Startup time                                                                           | C <sub>L</sub> =1 μF                                   | -                          | -                  | 500                | -                          | μs      |  |
|                           |                                                                                        | C <sub>L</sub> =1.5 μF                                 | -                          | -                  | 650                | -                          |         |  |
| Inrush                    | Control of maximum DC current drive on VREFBUF_OUT during startup phase <sup>(4)</sup> | -                                                      |                            | -                  | 8                  | -                          | mA      |  |
|                           |                                                                                        | $I_{LOAD} = 0 \mu A$                                   | -                          | -                  | 15                 | 25                         |         |  |
| I <sub>DDA(VREFBUF)</sub> | V <sub>REFBUF</sub> consumption from V <sub>DDA</sub>                                  | I <sub>LOAD</sub> = 500 μA                             | -                          | -                  | 16                 | 30                         | μA      |  |
|                           |                                                                                        | I <sub>LOAD</sub> = 4 mA                               | -                          | -                  | 32                 | 50                         |         |  |

- 1. Guaranteed by design, unless otherwise specified.
- In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (V<sub>DDA</sub>-drop voltage).
- 3. Guaranteed by tests in production.
- To properly control VREFBUF I<sub>INRUSH</sub> current during the startup phase and the change of scaling, VDDA voltage should be in the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.

## 6.3.24 Analog temperature sensor characteristics

Table 96. Analog temperature sensor characteristics

| Symbol                              | Parameter                                                                                                                                                                                                                                                                                                                                                              | Min | Тур                                        | Max   | Unit    |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------|-------|---------|
| <b>T</b> . (1)                      | T <sub>L</sub> <sup>(1)</sup> V <sub>SENSE</sub> linearity with temperature (from V <sub>SENSOR</sub> voltage)  V <sub>SENSE</sub> linearity with temperature (from ADC counter)  Average slope (from V <sub>SENSOR</sub> voltage)  Average slope (from ADC counter)  V <sub>30</sub> <sup>(3)</sup> Voltage at 30°C ± 5 °C  Startup time in Run mode (buffer startup) | -   | -                                          | 3     | °C      |
| IL(·)                               | V <sub>SENSE</sub> linearity with temperature (from ADC counter)                                                                                                                                                                                                                                                                                                       | -   | -                                          | 3     | C       |
| Ava Slope(2)                        | Average slope (from V <sub>SENSOR</sub> voltage)                                                                                                                                                                                                                                                                                                                       | -   | 3<br>3<br>- 2 2<br>- 2 0.62 25.2<br>9 0.40 | mV/°C |         |
| Avg_Slope                           | Average slope (from ADC counter)                                                                                                                                                                                                                                                                                                                                       |     | 2                                          | -     | IIIV/ C |
| V <sub>30</sub> <sup>(3)</sup>      | Voltage at 30°C ± 5 °C                                                                                                                                                                                                                                                                                                                                                 | -   | 0.62                                       | -     | V       |
| t <sub>start_run</sub> (1)          | Startup time in Run mode (buffer startup)                                                                                                                                                                                                                                                                                                                              | -   | -                                          | 25.2  | III C   |
| t <sub>S_temp</sub> <sup>(1)</sup>  | ADC sampling time when reading the temperature                                                                                                                                                                                                                                                                                                                         | 9   | -                                          | -     | μs      |
| I <sub>sens</sub> (1)               | Sensor consumption                                                                                                                                                                                                                                                                                                                                                     | -   | 0.18                                       | 0.31  | μA      |
| I <sub>sensbuf</sub> <sup>(1)</sup> | Sensor buffer consumption                                                                                                                                                                                                                                                                                                                                              | -   | 3.8                                        | 6.5   | μΛ      |

- 1. Guaranteed by design.
- 2. Guaranteed by characterization results.
- 3. Measured at  $V_{DDA}$  = 3.3 V  $\pm$  10 mV. The  $V_{30}$  ADC conversion result is stored in the TS\_CAL1 byte.

DS13196 - Rev 6 page 138/199



Table 97. Analog temperature sensor calibration values

| Symbol  | Parameter                                                                     | Memory address            |
|---------|-------------------------------------------------------------------------------|---------------------------|
| TS_CAL1 | Temperature sensor raw data acquired value at 30 °C, V <sub>DDA</sub> =3.3 V  | 0x08FF F814 - 0x08FF F816 |
| TS_CAL2 | Temperature sensor raw data acquired value at 130 °C, V <sub>DDA</sub> =3.3 V | 0x08FF F818 - 0x08FF F81A |

# 6.3.25 Digital temperature sensor characteristics

Table 98. Digital temperature sensor characteristics

| Symbol                                  | Parameter                                              | Conditions                      | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup>                              | Unit  |
|-----------------------------------------|--------------------------------------------------------|---------------------------------|--------------------|--------------------|-------------------------------------------------|-------|
| f <sub>DTS</sub> <sup>(2)</sup>         | Output Clock frequency                                 | -                               | 500                | 750                | 1150                                            | kHz   |
| T <sub>LC</sub> <sup>(2)</sup>          | Temperature linearity coefficient                      | VOS2                            | 1660               | 2100               | 2750                                            | Hz/°C |
| T(2)                                    | Tomporature effect measurement all VOS                 |                                 | °C                 |                    |                                                 |       |
| T <sub>TOTAL_ERROR</sub> <sup>(2)</sup> | remperature onset measurement, all VOS                 | T <sub>J</sub> =30 °C to 130 °C | -7                 | -                  | 1150<br>2750<br>4<br>2<br>0<br>1<br>2<br>116.00 | C     |
| T <sub>VDD CORE</sub>                   | Additional error due to supply variation               | VOS2                            | 0                  | -                  | 100 2750 - 4 - 2 - 0 - 1 - 2 67 116.00          | °C    |
| 'VDD_CORE                               | Additional error due to supply variation               | VOS0, VOS1, VOS3                | -1                 | -                  | 1                                               |       |
| t <sub>TRIM</sub>                       | Calibration time                                       | _                               | -                  | -                  | 2                                               | ms    |
| t <sub>WAKE_UP</sub>                    | Wake-up time from off state until DTS ready bit is set | -                               | -                  | 67                 | 116.00                                          | μs    |
| I <sub>DDCORE_DTS</sub>                 | DTS consumption on V <sub>CORE</sub>                   | -                               | 8.5                | 30                 | 70.0                                            | μA    |

<sup>1.</sup> Guaranteed by design, unless otherwise specified.

# 6.3.26 Temperature and V<sub>BAT</sub> monitoring

Table 99. V<sub>BAT</sub> monitoring characteristics

| Symbol                             | Parameter                                             | Min | Тур  | Max | Unit |
|------------------------------------|-------------------------------------------------------|-----|------|-----|------|
| R                                  | Resistor bridge for V <sub>BAT</sub>                  | -   | 26   | -   | ΚΩ   |
| Q                                  | Ratio on V <sub>BAT</sub> measurement                 | -   | 4    | -   | -    |
| Er <sup>(1)</sup>                  | Error on Q                                            | -10 | -    | +10 | %    |
| t <sub>S_vbat</sub> <sup>(1)</sup> | ADC sampling time when reading V <sub>BAT</sub> input | 9   | -    | -   | μs   |
| V <sub>BAThigh</sub>               | High supply monitoring                                | -   | 3.55 | -   | V    |
| V <sub>BATIow</sub>                | Low supply monitoring                                 | -   | 1.36 | -   | V    |

<sup>1.</sup> Guaranteed by design.

Table 100. V<sub>BAT</sub> charging characteristics

| Symbol          | Parameter                 | Condition          | Min Typ - 5 - 1.5 |          | Max | Unit |
|-----------------|---------------------------|--------------------|-------------------|----------|-----|------|
| R <sub>BC</sub> | Pattery charging register | VBRS in PWR_CR3= 0 | -                 | 5<br>1.5 | -   | ΚΩ   |
| 1/BC            | Battery charging resistor | VBRS in PWR_CR3= 1 | -                 | 1.5      | -   | KΩ   |

DS13196 - Rev 6 page 139/199

<sup>2.</sup> Guaranteed by characterization results.



Table 101. Temperature monitoring characteristics

| Symbol               | Parameter                   | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|----------------------|-----------------------------|--------------------|--------------------|--------------------|------|
| TEMP <sub>high</sub> | High temperature monitoring | -                  | 117                | -                  | °C   |
| TEMPlow              | Low temperature monitoring  | -                  | <b>-</b> 25        | -                  |      |

<sup>1.</sup> Guaranteed by design.

# 6.3.27 Voltage booster for analog switch

Table 102. Voltage booster for analog switch characteristics

| Symbol                 | Parameter            | Condition                        | Min <sup>(1)</sup>                   | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|------------------------|----------------------|----------------------------------|--------------------------------------|--------------------|--------------------|------|
| V <sub>DD</sub>        | Supply voltage       | -                                | 1.62                                 | 2.6                | 3.6                | V    |
| t <sub>SU(BOOST)</sub> | Booster startup time | -                                | -                                    | -                  | 50                 | μs   |
| Inn/no cory            | Poortor concumption  | 1.62 V ≤ V <sub>DD</sub> ≤ 2.7 V | 1.62 V ≤ V <sub>DD</sub> ≤ 2.7 V 125 | 125                |                    |      |
| IDD(BOOST)             | Booster consumption  | 2.7 V < V <sub>DD</sub> < 3.6 V  | -                                    | -                  | 250                | μA   |

<sup>1.</sup> Guaranteed by characterization results.

# **6.3.28** Comparator characteristics

Table 103. COMP characteristics

| Symbol                         | Parameter                                                                         | Conditions                | Min <sup>(1)</sup>                                       | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|--------------------------------|-----------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|--------------------|--------------------|------|
| $V_{DDA}$                      | Analog supply voltage                                                             | -                         | 1.62                                                     | 3.3                | 3.6                |      |
| V <sub>IN</sub>                | Comparator input voltage range                                                    | -                         | 0                                                        | -                  | $V_{DDA}$          | V    |
| V <sub>BG</sub> <sup>(2)</sup> | Scaler input voltage                                                              | -                         |                                                          | -                  |                    |      |
| V <sub>SC</sub>                | Scaler offset voltage                                                             | -                         | -                                                        | ±5                 | ±10                | mV   |
| 1                              | Scaler static consumption from V <sub>DDA</sub>                                   | BRG_EN=0 (bridge disable) | -                                                        | 0.2                | 0.3                |      |
| I <sub>DDA</sub> (SCALER)      | Scaler static consumption from V <sub>DDA</sub>                                   | BRG_EN=1 (bridge enable)  | -                                                        | 0.8                | 1                  | μA   |
| t <sub>START_SCALER</sub>      | Scaler startup time                                                               | -                         | 1                                                        |                    | 250                | μs   |
|                                |                                                                                   | High-speed mode           | -                                                        | 2                  | 5                  |      |
|                                | Comparator startup time to reach propagation delay specification                  | Medium mode               | -                                                        | 5                  | 20                 | μs   |
|                                | · ·                                                                               | Ultra-low-power mode      | -                                                        | 15                 | 80                 |      |
|                                |                                                                                   | High-speed mode           | - 140 25 - 2 5 - 5 2 - 15 8 - 50 8 - 0.5 0 2.5 7 - 50 12 | 80                 | ns                 |      |
|                                | Propagation delay for 200 mV step with 100 mV overdrive                           | Medium mode               | -                                                        | 0.5                | 0.9                | 116  |
| t <sub>D</sub> <sup>(3)</sup>  |                                                                                   | Ultra-low-power mode      | -                                                        | 2.5                | 7                  | μs   |
| D.                             |                                                                                   | High-speed mode           | -                                                        | 50                 | 120                | ns   |
|                                | Propagation delay for step > 200 mV with 100 mV overdrive only on positive inputs | Medium mode               | -                                                        | 0.5                | 1.2                | 110  |
|                                | , , ,                                                                             | Ultra-low-power mode      | -                                                        | 2.5                | 7                  | μs   |
| $V_{\text{offset}}$            | Comparator offset error                                                           | Full common mode range    | -                                                        | ±5                 | ±20                | mV   |
|                                |                                                                                   | No hysteresis             | -                                                        | 0                  | -                  |      |
| $V_{hys}$                      | Comparator hysteresis                                                             | Low hysteresis            | 4                                                        | 10                 | 22                 | mV   |
| v nys                          | Comparator Hysteresis                                                             | Medium hysteresis         | 8                                                        | 20                 | 37                 |      |
|                                |                                                                                   | High hysteresis           | 16                                                       | 30                 | 52                 |      |

DS13196 - Rev 6 page 140/199





| Symbol                  | Parameter                                    | Con                  | ditions                                     | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-------------------------|----------------------------------------------|----------------------|---------------------------------------------|--------------------|--------------------|--------------------|------|
|                         |                                              |                      | Static                                      | -                  | 400                | 600                |      |
|                         |                                              | Ultra-low-power mode | With 50 kHz ±100 mV overdrive square signal | -                  | 800                | -                  | nA   |
|                         |                                              |                      | Static                                      | -                  | 5                  | 7                  |      |
| I <sub>DDA</sub> (COMP) | Comparator consumption from V <sub>DDA</sub> | Medium mode          | With 50 kHz ±100 mV overdrive square signal | -                  | 6                  | -                  |      |
|                         |                                              |                      | Static                                      | -                  | 70                 | -                  | μA   |
|                         |                                              | High-speed mode      | With 50 kHz ±100 mV overdrive square signal | -                  | 75                 | -                  |      |

- 1. Guaranteed by design, unless otherwise specified.
- 2. Refer to Section 6.3.6 Embedded reference voltage.
- 3. Guaranteed by characterization results.

# 6.3.29 Operational amplifier characteristics

Table 104. Operational amplifier characteristics

| Symbol                        | Parameter                                                             | Conditions                                                                             | Min <sup>(1)</sup>          | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit  |
|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|-------|
| $V_{DDA}$                     | Analog supply voltage Range                                           | -                                                                                      | 2                           | 3.3                | 3.6                |       |
| CMIR                          | Common Mode Input Range                                               | -                                                                                      | 0                           | -                  | V <sub>DDA</sub>   | V     |
| \/I                           | land offer to celland                                                 |                                                                                        | -                           | -                  | ±1.5               | >/    |
| VI <sub>OFFSET</sub>          | Input offset voltage                                                  | All voltages and temperature, no load                                                  | -                           | -                  | ±2.5               | mV    |
| ΔVI <sub>OFFSET</sub>         | Input offset voltage drift                                            | -                                                                                      | -                           | ±3.0               | -                  | μV/°C |
| TRIMOFFSETP,<br>TRIMLPOFFSETP | Offset trim step at low common input voltage (0.1*V <sub>DDA</sub> )  | -                                                                                      | -                           | 1.1                | 1.5                | \(    |
| TRIMOFFSETN,<br>TRIMLPOFFSETN | Offset trim step at high common input voltage (0.9*V <sub>DDA</sub> ) | -                                                                                      | -                           | 1.1                | 1.5                | - mV  |
| I <sub>LOAD</sub>             | Drive current                                                         | -                                                                                      | -                           | -                  | 500                |       |
| I <sub>LOAD_PGA</sub>         | Drive current in PGA mode                                             | -                                                                                      | -                           | -                  | 270                | μA    |
| C <sub>LOAD</sub>             | Capacitive load                                                       | -                                                                                      | -                           | -                  | 50                 | pF    |
| CMRR                          | Common mode rejection ratio                                           | -                                                                                      | -                           | 80                 | -                  | dB    |
| PSRR                          | Power supply rejection ratio                                          | $C_{LOAD} \le 50 pf / R_{LOAD} \ge 4 k\Omega^{(2)}$ at 1 kHz,<br>$V_{com} = V_{DDA}/2$ | 50                          | 66                 | -                  | dB    |
| GBW                           | Gain bandwidth for high supply range                                  | 200 mV ≤ Output dynamic range ≤ V <sub>DDA</sub> - 200 mV                              | 4                           | 7.3                | 12.3               | MHz   |
| SR                            | Slew rate (from 10% and 90%                                           | Normal mode                                                                            | -                           | 3                  | -                  | 1//// |
| SK                            | of output voltage)                                                    | High-speed mode                                                                        | -                           | 24                 | -                  | V/µs  |
| АО                            | Open loop gain                                                        | 200 mV ≤ Output dynamic range ≤ V <sub>DDA</sub> - 200 mV                              | 59                          | 90                 | 129                | dB    |
| φm                            | Phase margin                                                          | 55                                                                                     |                             | -                  | 0                  |       |
| GM                            | Gain margin                                                           | -                                                                                      | -                           | 12                 | -                  | dB    |
| V <sub>OHSAT</sub>            | High saturation voltage                                               | $I_{load}$ =max or $R_{LOAD}$ =min, Input at $V_{DDA}$                                 | V <sub>DDA</sub><br>-100 mV | -                  | -                  | mV    |

DS13196 - Rev 6 page 141/199



| Symbol                  | Parameter                                                                                                                                                                                    | C                           | Conditions                                                                       |      | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit     |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|------|--------------------|--------------------|----------|--|
| V <sub>OLSAT</sub>      | Low saturation voltage                                                                                                                                                                       | I <sub>load</sub> =max or R | LOAD=min, Input at 0 V                                                           | -    | -                  | 100                | mV       |  |
| tuussus                 | Wake up time from OFF state                                                                                                                                                                  | Normal mode                 | C <sub>LOAD</sub> ≤ 50pf, R <sub>LOAD</sub><br>≥ 4 kΩ, follower<br>configuration | -    | 0.8                | 3.2                |          |  |
| <sup>t</sup> WAKEUP     | High speed mode $ \begin{array}{c} \text{High speed} \\ \text{mode} \end{array} \overset{\text{$C_{\text{LOAD}} \leq 50 \text{pf, $R_{\text{LOAD}}$}}}{\leq 4 \text{ $k\Omega$, follower}} $ | ≥ 4 kΩ, follower            | -                                                                                | 0.9  | 2.8                | μs                 |          |  |
|                         |                                                                                                                                                                                              | PG                          | GA gain = 2                                                                      | -1   | -                  | 1                  |          |  |
|                         | Non inverting gain error value                                                                                                                                                               | PG                          | SA gain = 4                                                                      | -2   | -                  | 2                  |          |  |
|                         | Non inverting gain entor value                                                                                                                                                               | PG                          | SA gain = 8                                                                      | -2.5 | -                  | 2.5                |          |  |
|                         |                                                                                                                                                                                              | PG                          | A gain = 16                                                                      | -3   | -                  | 3                  |          |  |
|                         |                                                                                                                                                                                              | PG                          | GA gain = 2                                                                      | -1   | -                  | 1                  |          |  |
| DCA gain                | Inverting gain error value                                                                                                                                                                   | PG                          | GA gain = 4                                                                      | -1   | -                  | 1                  | 0/       |  |
| PGA gain                | Inverting gain error value                                                                                                                                                                   | PG                          | GA gain = 8                                                                      | -2   | -                  | 2                  | - %      |  |
|                         |                                                                                                                                                                                              | PG                          | A gain = 16                                                                      | -3   | -                  | 3                  |          |  |
|                         |                                                                                                                                                                                              | PG                          | SA gain = 2                                                                      | -1   | -                  | 1                  |          |  |
|                         | External non-inverting gain                                                                                                                                                                  | PGA gain = 4                |                                                                                  | -3   | -                  | 3                  |          |  |
|                         | error value                                                                                                                                                                                  | PG                          | GA gain = 8                                                                      | -3.5 | -                  | 3.5                |          |  |
|                         |                                                                                                                                                                                              | PGA gain = 16               |                                                                                  | -4   | -                  | 4                  |          |  |
|                         |                                                                                                                                                                                              | PC                          | GA Gain=2                                                                        | -    | 10/10              | -                  | kΩ/      |  |
|                         | R2/R1 internal resistance                                                                                                                                                                    | PC                          | GA Gain=4                                                                        | -    | 30/10              | -                  |          |  |
|                         | values in non-inverting PGA mode <sup>(3)</sup>                                                                                                                                              | PC                          | GA Gain=8                                                                        | -    | 70/10              | -                  |          |  |
| D                       |                                                                                                                                                                                              | PG                          | A Gain=16                                                                        | -    | 150/10             | -                  |          |  |
| R <sub>network</sub>    |                                                                                                                                                                                              | PGA Gain = -1               |                                                                                  | -    | 10/10              | -                  | kΩ       |  |
|                         | R2/R1 internal resistance                                                                                                                                                                    | PGA Gain = -3               |                                                                                  | -    | 30/10              | -                  |          |  |
|                         | values in inverting PGA mode <sup>(3)</sup>                                                                                                                                                  | PGA Gain = -7               |                                                                                  | -    | 70/10              | -                  |          |  |
|                         |                                                                                                                                                                                              | PGA Gain = -15              |                                                                                  | -    | 150/10             | -                  |          |  |
| Delta R                 | Resistance variation (R1 or R2)                                                                                                                                                              |                             | -                                                                                | -15  | -                  | 15                 | %        |  |
|                         |                                                                                                                                                                                              |                             | Gain=2                                                                           | -    | GBW/2              | -                  |          |  |
|                         | PGA bandwidth for different                                                                                                                                                                  |                             | Gain=4                                                                           | -    | GBW/4              | -                  | MHz      |  |
|                         | non inverting gain                                                                                                                                                                           |                             | Gain=8                                                                           | -    | GBW/8              | -                  | IVITIZ   |  |
| PGA BW                  |                                                                                                                                                                                              |                             | Gain=16                                                                          | -    | GBW/16             | -                  |          |  |
| FUA DW                  |                                                                                                                                                                                              | (                           | Gain = -1                                                                        | -    | 5.00               | -                  |          |  |
|                         | PGA bandwidth for different                                                                                                                                                                  | (                           | Gain = -3                                                                        | -    | 3.00               | -                  | N 41 1-  |  |
|                         | inverting gain                                                                                                                                                                               | (                           | Gain = -7                                                                        | -    | 1.50               | -                  | MHz      |  |
|                         |                                                                                                                                                                                              |                             | Sain = -15                                                                       | -    | 0.80               | -                  |          |  |
|                         | Valle                                                                                                                                                                                        | at 1 KHz                    | and and land and a land                                                          | -    | 140                | -                  | -> // /: |  |
| en                      | Voltage noise density at 10 KH                                                                                                                                                               | at 10 KHz                   | output loaded with 4 kΩ                                                          | -    | 55                 | -                  | nV/√⊦    |  |
|                         | ODAMD and the first                                                                                                                                                                          | Normal mode                 |                                                                                  | -    | 570                | 1000               |          |  |
| I <sub>DDA(OPAMP)</sub> | OPAMP consumption from V <sub>DDA</sub>                                                                                                                                                      | High-speed mode             | no Load, quiescent mode, follower                                                | -    | 610                | 1200               | μA       |  |

<sup>1.</sup> Guaranteed by design, unless otherwise specified.

DS13196 - Rev 6 page 142/199

<sup>2.</sup>  $R_{LOAD}$  is the resistive load connected to VSSA or to VDDA.



3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.

#### 6.3.30 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in Table 105. DFSDM measured timing 1.62-3.6 V for DFSDM are derived from tests performed under the ambient temperature, f<sub>PCLKx</sub> frequency and supply voltage conditions summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C<sub>L</sub> = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- VOS level set to VOS0

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics (DiFSDM\_CKINx, DFSDM\_DATINx, DFSDM\_CKOUT for DFSDM).

Table 105. DFSDM measured timing 1.62-3.6 V

| Symbol                                       | Parameter                                                   | Conditions                                                                                                         |                                                | Min                                          | Тур                       | Max                                          | Unit |
|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------------------|------|
| f <sub>DFSDMCLK</sub>                        | DFSDM<br>clock                                              | 1.62 V < V <sub>DD</sub> < 3.6 V                                                                                   |                                                | -                                            | -                         | fsysclk                                      | MHz  |
| f <sub>CKIN</sub> (1/<br>T <sub>CKIN</sub> ) | Input clock frequency                                       | SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0),                                                   |                                                | -                                            | -                         | 20 (f <sub>DFSDMCLK</sub> /4)                |      |
|                                              |                                                             | SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0)                                                    |                                                | -                                            | -                         | 20 (f <sub>DFSDMCLK</sub> /4)                |      |
| f <sub>CKOUT</sub>                           | Output<br>clock<br>frequency                                | 1.62 < V <sub>DD</sub> < 3.6 V                                                                                     |                                                | -                                            | -                         | 20                                           |      |
| DuCyCKOUT                                    | Output<br>clock<br>frequency<br>duty cycle                  | 1.62 < V <sub>DD</sub> < 3.6 V                                                                                     | Even division,CKOUTDIV[7:0] = n, 1, 3, 5,      | 45                                           | 50                        | 55                                           | %    |
|                                              |                                                             |                                                                                                                    | Odd<br>division,CKOUTDIV[7:0]<br>= n, 2, 4, 6, | (((n/<br>2+1)/(n-1))*100)-5                  | (((n/2+1)/<br>(n-1))*100) | (((n/<br>2+1)/(n-1))*100)+5                  |      |
| twh(CKIN)                                    | Input clock<br>high and<br>low time                         | SPI mode<br>(SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V        | -                                              | T <sub>CKIN</sub> /2 - 0.5                   | T <sub>CKIN</sub> /2      | -                                            | ns   |
| t <sub>su</sub>                              | Data input setup time                                       | SPI mode<br>(SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V        | -                                              | 4                                            | -                         | -                                            |      |
| t <sub>h</sub>                               | Data input hold time                                        | SPI mode<br>(SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V        | -                                              | 0.5                                          | -                         | -                                            |      |
| T <sub>Manchester</sub>                      | Manchester<br>data period<br>(recovered<br>clock<br>period) | Manchester mode<br>(SITP[1:0]=2,3),<br>Internal clock mode<br>(SPICKSEL[1:0]¹0),<br>1.62 < V <sub>DD</sub> < 3.6 V | -                                              | (CKOUTDIV[7:0]+1)<br>x T <sub>DFSDMCLK</sub> | -                         | (2*CKOUTDIV[7:0])<br>x T <sub>DFSDMCLK</sub> |      |

DS13196 - Rev 6 page 143/199



Figure 51. Channel transceiver timing diagrams



## 6.3.31 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in Table 106. DCMI characteristics for DCMI are derived from tests performed under the ambient temperature, f<sub>HCLK</sub> frequency and VDD supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

DCMI\_PIXCLK polarity: falling

DS13196 - Rev 6 page 144/199



- DCMI\_VSYNC and DCMI\_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C<sub>L</sub>=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- Output speed is set to OSPEEDRy[1:0] = 11
- VOS level set to VOS0

**Table 106. DCMI characteristics** 

| Symbol                    | Parameter                                     | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|---------------------------|-----------------------------------------------|--------------------|--------------------|------|
| -                         | Frequency ratio DCMI_PIXCLK/f <sub>HCLK</sub> | -                  | 0.4                | -    |
| DCMI_PIXCLK               | Pixel Clock input                             | -                  | 80                 | MHz  |
| D <sub>pixel</sub>        | Pixel Clock input duty cycle                  | 30                 | 70                 | %    |
| t <sub>su(</sub> DATA)    | Data input setup time                         | 2.5                | -                  |      |
| t <sub>h</sub> (DATA)     | Data hold time                                | 1                  | -                  | _    |
| tsu(HSYNC),<br>tsu(VSYNC) | DCMI_HSYNC/ DCMI_VSYNC input setup time       | 3                  | -                  | ns   |
| th(HSYNC),<br>th(VSYNC)   | DCMI_HSYNC/ DCMI_VSYNC input hold time        | 1                  | -                  | -    |

1. Guaranteed by design.

Figure 52. DCMI timing diagram



DS13196 - Rev 6 page 145/199



#### 6.3.32 PSSI interface characteristics

Unless otherwise specified, the parameters given in Table 107 and 108for PSSI are derived from tests performed under the ambient temperature, f<sub>HCLK</sub> frequency and V<sub>DD</sub> supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- PSSI\_PDCK polarity: falling
- PSSI RDY and PSSI DE polarity: low
- Bus width: 16 linesDATA width: 32 bits
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- Output speed is set to OSPEEDRy[1:0] = 11

Note:

At VOS1, the performance in Transmit mode can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Table 107. PSSI transmit characteristics

Guaranteed by characterization results.

| Symbol                | Parameter                                   | Min | Max <sup>(1)</sup> | Unit |
|-----------------------|---------------------------------------------|-----|--------------------|------|
| -                     | Frequency ratio PSSI_PDCK/f <sub>HCLK</sub> | -   | 0.4                | -    |
| PSSI_PDCK             | PSSI clock input                            | -   | 50                 | MHz  |
| D <sub>pixel</sub>    | PSSI clock input duty cycle                 | 30  | 70                 | %    |
| t <sub>dv(DATA)</sub> | Data output valid time                      | -   | 10                 |      |
| t <sub>dh(DATA)</sub> | Data output hold time                       | 5   | -                  |      |
| t <sub>dv((DE)</sub>  | DE output valid time                        | -   | 14                 | no   |
| t <sub>dh(DE)</sub>   | DE output hold time                         | 6   | -                  | ns   |
| t <sub>su(RDY)</sub>  | RDY input setup time                        | 3   | -                  |      |
| t <sub>h(RDY)</sub>   | RDY input hold time                         | 0   | -                  |      |

<sup>1.</sup> At VOS1, these values are degraded by up to 5 %.

Table 108. PSSI receive characteristics

Guaranteed by characterization results.

| Symbol                | Parameter                                   | Min | Max |
|-----------------------|---------------------------------------------|-----|-----|
| -                     | Frequency ratio PSSI_PDCK/f <sub>HCLK</sub> | -   | 0.4 |
| PSSI_PDCK             | PSSI clock input                            | -   | 100 |
| D <sub>pixel</sub>    | PSSI clock input duty cycle                 | 30  | 70  |
| t <sub>su(DATA)</sub> | Data input setup time                       | 2   | -   |
| t <sub>h(DATA)</sub>  | Data input hold time                        | 1   | -   |
| t <sub>su((DE)</sub>  | DE input setup time                         | 3   | -   |
| t <sub>h(DE)</sub>    | DE input hold time                          | 1   | -   |
| t <sub>ov(RDY)</sub>  | RDY output valid time                       | -   | 10  |
| t <sub>oh(RDY)</sub>  | RDY output hold time                        | 4.5 | -   |

DS13196 - Rev 6 page 146/199



Figure 53. PSSI timing diagram in Transmit mode





DS13196 - Rev 6 page 147/199



## 6.3.33 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in Table 109 for LCD-TFT are derived from tests performed under the ambient temperature, f<sub>HCLK</sub> frequency and VDD supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- LCD\_CLK polarity: high
- LCD\_DE polarity: low
- LCD\_VSYNC and LCD\_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C<sub>L</sub>=30 pF
- Measurement points are done at CMOS levels: 0.5VDD
- · IO Compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS 0

Note:

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Table 109. LTDC characteristics

| Symbol                                      | Parameter                        | Conditions                             | Min                        | Max <sup>(1)</sup>         | Unit |
|---------------------------------------------|----------------------------------|----------------------------------------|----------------------------|----------------------------|------|
|                                             |                                  | 2.7 V < V <sub>DD</sub> < 3.6 V, 20 pF | -                          | 140                        |      |
| f <sub>CLK</sub>                            | LTDC clock output frequency      | 2.7 V < V <sub>DD</sub> < 3.6 V        | -                          | 133                        | MHz  |
|                                             |                                  | 1.62 V < V <sub>DD</sub> < 3.6 V       | -                          | 66.5                       |      |
| D <sub>CLK</sub>                            | LTDC clock output duty cycle     | -                                      | 45                         | 55                         | %    |
| t <sub>w(CLKH)</sub> , t <sub>w(CLKL)</sub> | Clock High time, low time        | -                                      | t <sub>w(CLK)</sub> /2-0.5 | t <sub>w(CLK)</sub> /2+0.5 |      |
| t                                           | Data output valid time           | 2.7 V < V <sub>DD</sub> < 3.6 V        | -                          | 3.0                        |      |
| t <sub>v(DATA)</sub>                        |                                  | 1.62 V < V <sub>DD</sub> < 3.6 V       | -                          | 7.5                        |      |
| t <sub>h(DATA)</sub>                        | Data output hold time            | -                                      | 0                          | -                          | ns   |
| t t t                                       | HSVNCA/SVNC/DE output valid time | 2.7 V < V <sub>DD</sub> < 3.6 V        | -                          | 3.0                        |      |
| $t_{v(HSYNC)}, t_{v(VSYNC)}, t_{v(DE)}$     | HSYNC/VSYNC/DE output valid time | 1.62 V < V <sub>DD</sub> < 3.6 V       | -                          | 7.5                        |      |
| $t_{h(HSYNC)}, t_{h(VSYNC)}, t_{h(DE)}$     | HSYNC/VSYNC/DE output hold time  | -                                      | 0                          | -                          |      |

<sup>1.</sup> At VOS1, these values are degraded by up to 5 %.

DS13196 - Rev 6 page 148/199



Figure 55. LCD-TFT horizontal timing diagram

Figure 56. LCD-TFT vertical timing diagram



### 6.3.34 Timer characteristics

The parameters given in Table 110. TIMx characteristics are guaranteed by design.

Refer to Section 6.3.16 I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

DS13196 - Rev 6 page 149/199



| Table | 110  | TIMY   | characteristics  |
|-------|------|--------|------------------|
| Iable | TIV. | IIIVIA | CHALACIEL ISLICS |

| Symbol                 | Parameter                                    | Conditions <sup>(1)</sup>                                         |   | Max <sup>(2)</sup>      | Unit                 |
|------------------------|----------------------------------------------|-------------------------------------------------------------------|---|-------------------------|----------------------|
| t <sub>res(TIM)</sub>  | Timer resolution time                        | AHB/APBx prescaler=1 or 2 or 4,<br>f <sub>TIMxCLK</sub> = 280 MHz |   | -                       | t <sub>TIMxCLK</sub> |
|                        | Timer resolution time                        | AHB/APBx prescaler>4, f <sub>TIMxCLK</sub> = 140 MHz              | 1 | -                       | t <sub>TIMxCLK</sub> |
| f <sub>EXT</sub>       | Timer external clock frequency on CH1 to CH4 | f <sub>TIMxCLK</sub> = 280 MHz                                    | 0 | f <sub>TIMxCLK</sub> /2 | MHz                  |
| Res <sub>TIM</sub>     | Timer resolution                             |                                                                   | - | 16/32                   | bit                  |
| t <sub>MAX_COUNT</sub> | Maximum possible count with 32-bit counter   | -                                                                 | - | 65536 × 65536           | t <sub>TIMxCLK</sub> |

The maximum timer frequency on APB1 or APB2 is up to 280 MHz, by setting the TIMPRE bit in the RCC\_CFGR register. If APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc\_hclk1, otherwise TIMxCLK = 4x F<sub>rcc\_pclkx\_d2</sub>.

### 6.3.35 Low-power timer characteristics

Table 111. LPTIMx characteristics

| Symbol                 | Parameter                                           | Min | Max                       | Unit                 |
|------------------------|-----------------------------------------------------|-----|---------------------------|----------------------|
| t <sub>res(TIM)</sub>  | Timer resolution time                               | 1   | -                         | t <sub>TIMxCLK</sub> |
| f <sub>LPTIMxCLK</sub> | Timer kernel clock                                  | 0   | 100                       | MHz                  |
| f <sub>EXT</sub>       | Timer external clock frequency on Input1 and Input2 | 0   | f <sub>LPTIM</sub> xCLK/2 | IVITZ                |
| Res <sub>TIM</sub>     | Timer resolution                                    | -   | 16                        | bit                  |
| t <sub>MAX_COUNT</sub> | Maximum possible count                              | -   | 65536                     | t <sub>TIMxCLK</sub> |

#### 6.3.36 Communication interfaces

## 6.3.36.1 I<sup>2</sup>C interface characteristics

The I<sup>2</sup>C interface meets the timings requirements of the I2C-bus specification and user manual revision 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The parameters given in Table 112 and Table 113are obtained with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 00

Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

The I<sup>2</sup>C timings requirements are guaranteed by design when the I<sup>2</sup>C peripheral is properly configured (refer to RM0455 reference manual) and when the i2c\_ker\_ck frequency is greater than the minimum shown in the table below:

Table 112. Minimum i2c ker ck frequency in all I2C modes

| Symbol  | Parameter        | Condition      |                          | Min | Unit  |
|---------|------------------|----------------|--------------------------|-----|-------|
|         |                  | Standard-mode  | -                        | 2   |       |
|         | I2CCLK frequency | Fast-mode      | Analog Filtre ON, DNF=0  | 9   | MHz   |
| †I2CCLK |                  |                | Analog Filtre OFF, DNF=1 | 9   | IVITZ |
|         |                  | Fast-mode Plus | Analog Filtre ON, DNF=0  | 19  |       |

DS13196 - Rev 6 page 150/199

<sup>2.</sup> Guaranteed by design.



Note:

| Symbol              | Parameter        | Condition      |                          | Min | Unit |
|---------------------|------------------|----------------|--------------------------|-----|------|
| f <sub>I2CCLK</sub> | I2CCLK frequency | Fast-mode Plus | Analog Filtre OFF, DNF=1 | 16  | -    |

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DDIOx</sub> is disabled, but still present.
- The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load C<sub>Load</sub> supported in Fm+, which is given by these formulas:

 $t_{r(SDA/SCL)}=0.8473xR_{P}xC_{Load}$ 

 $R_{P(min)} = (V_{DD} - V_{OL(max)}) / I_{OL(max)}$ 

Where R<sub>P</sub> is the I2C lines pull-up. Refer to Section 6.3.16 I/O port characteristics for the I<sup>2</sup>C I/Os characteristics.

All I<sup>2</sup>C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Table 113. I<sup>2</sup>C analog filter characteristics

| Symbol          | Parameter                                                          | Min <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |
|-----------------|--------------------------------------------------------------------|--------------------|--------------------|------|
| t <sub>AF</sub> | Maximum pulse width of spikes that are suppressed by analog filter | 50 <sup>(2)</sup>  | 260(3)             | ns   |

- 1. Guaranteed by design.
- 2. Spikes whose width is lower than t<sub>AF(min)</sub> are filtered.
- 3. Spikes whose width is higer than  $t_{AF(max)}$  are not filtered.

#### 6.3.36.2 USART interface characteristics

Unless otherwise specified, the parameters given in Table 114 for USART are derived from tests performed under the ambient temperature,  $f_{PCLKX}$  frequency and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C<sub>L</sub> = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

**Table 114. USART characteristics** 

| Symbol                 | Parameter             | Conditions                                                   | Min                    | Тур                  | Max <sup>(1)</sup>     | Unit |
|------------------------|-----------------------|--------------------------------------------------------------|------------------------|----------------------|------------------------|------|
|                        |                       | Master mode                                                  |                        |                      | 35                     | MHz  |
|                        | LICART I I I          | Slave receiver mode                                          |                        |                      | 93.0                   |      |
| f <sub>CK</sub>        | USART clock frequency | Slave mode transmitter mode, 2.7 V < V <sub>DD</sub> < 3.6 V | -                      | -                    | 29.0                   |      |
|                        |                       | Slave mode transmitter mode, 1.62 V < $V_{\rm DD}$ < 3.6 V   |                        |                      | 22.0                   |      |
| t <sub>su(NSS)</sub>   | NSS setup time        | Slave mode                                                   | t <sub>ker</sub> +2    | -                    | -                      |      |
| t <sub>h(NSS)</sub>    | NSS hold time         | Slave mode                                                   | 2                      | -                    | -                      |      |
| t <sub>w(SCKH)</sub> , | CK high and low time  | Master mode                                                  | 1/f <sub>ck</sub> /2-2 | 1/f <sub>ck</sub> /2 | 1/f <sub>ck</sub> /2+2 | -    |
| t <sub>su(MI)</sub>    | Data input setup time | Master mode                                                  | 17                     | -                    | -                      | ns   |

DS13196 - Rev 6 page 151/199



| Symbol              | Parameter              | Conditions                                             | Min | Тур  | Max <sup>(1)</sup> | Unit |
|---------------------|------------------------|--------------------------------------------------------|-----|------|--------------------|------|
| t <sub>su(SI)</sub> | Data input setup time  | Slave mode                                             | 1   | -    | -                  |      |
| t <sub>h(MI)</sub>  | Data input hold time   | Master mode                                            | 0   | -    | -                  |      |
| t <sub>h(SI)</sub>  |                        | Slave mode                                             | 1.5 | -    | -                  |      |
| t <sub>v(SO)</sub>  | Data output valid time | Slave mode transmitter mode, 1.62 V < $V_{DD}$ < 3.6 V | -   | 15.5 | 22                 | ns   |
| t <sub>v(SO)</sub>  |                        | Slave mode transmitter mode, 2.7 V < $V_{DD}$ < 3.6 V  | -   | 15.5 | 17                 | 113  |
| t <sub>v(MO)</sub>  |                        | Master mode                                            | -   | 1.5  | 2                  |      |
| t <sub>h(SO)</sub>  | Data output hold time  | Slave mode                                             | 12  | -    | -                  |      |
| t <sub>h(MO)</sub>  |                        | Master mode                                            | 1   | -    | -                  |      |

<sup>1.</sup> At VOS1, these values are degraded by up to 5 %.



Figure 57. USART timing diagram in Master mode

1. Measurement points are done at  $0.5V_{DD}$  and with external  $C_L = 30$  pF.

DS13196 - Rev 6 page 152/199



Note:

NSS input tc(SCK) **-t**h(NSS)-**⋖t**su(NSS)▶ **-t**w(SCKH)-► **◆t**r(SCK)— CPHA=0 CPOL=0 CPHA=0 CPOL=1 tw(SCKL)→ tv(TX)  $-t_{h(TX)}$ **+t**f(SCK)− -t<sub>dis(TX)</sub>▶ TX output First bit OUT Next bits OUT Last bit OUT -**t**h(RX)--tsu(RX)► First bit IN Last bit IN RX input Next bits IN

Figure 58. USART timing diagram in Slave mode

#### 6.3.36.3 SPI interface characteristics

Unless otherwise specified, the parameters given in Table 115 for SPI are derived from tests performed under the ambient temperature, f<sub>PCLKx</sub> frequency and V<sub>DD</sub> supply voltage conditions summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C<sub>L</sub> = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

| Symbol                               | Parameter                                               | Conditions                                                            | Min <sup>(1)</sup> | Typ <sup>(1)</sup>   | Max <sup>(1)(2)</sup>  | Unit |
|--------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--------------------|----------------------|------------------------|------|
|                                      |                                                         | Master mode 2.7 < V <sub>DD</sub> < 3.6 V, SPI1, 2, 3                 |                    |                      | 125/100 <sup>(3)</sup> |      |
| f <sub>SCK</sub> SPI clock frequency | Master mode, 2.7 < V <sub>DD</sub> <3.6 V, SPI4, 5, 6   |                                                                       |                    | 100                  |                        |      |
|                                      | Master mode, 1.62 < V <sub>DD</sub> < 3.6 V, SPI4, 5, 6 |                                                                       |                    | 75/38 <sup>(3)</sup> | 1                      |      |
|                                      | SPI clock frequency                                     | Slave receiver mode, 1.62 < V <sub>DD</sub> < 3.6 V                   | -                  | -                    | 100                    | MHz  |
|                                      |                                                         | Slave mode transmitter/full duplex, 2.7 < V <sub>DD</sub> < 3.6 V     |                    |                      | 45/31 <sup>(3)</sup>   |      |
|                                      |                                                         | Slave mode transmitter/full duplex, 1.62 <v<sub>DD &lt; 3.6 V</v<sub> |                    |                      | 29/18 <sup>(3)</sup>   | -    |
| t <sub>su(NSS)</sub>                 | NSS setup time                                          | Slave mode                                                            | 2                  | -                    | -                      |      |
| t <sub>h(NSS)</sub>                  | NSS hold time                                           | slave mode                                                            |                    | -                    | -                      | ns   |
| t <sub>su(MI)</sub>                  | Data input setup time                                   | Master mode                                                           | 3                  | -                    | -                      | ns   |

Table 115. SPI dynamic characteristics

DS13196 - Rev 6 page 153/199





| Symbol               | Parameter                | Conditions                                  | Min <sup>(1)</sup> | Typ <sup>(1)</sup>  | Max <sup>(1)(2)</sup> | Unit |
|----------------------|--------------------------|---------------------------------------------|--------------------|---------------------|-----------------------|------|
| t <sub>su(SI)</sub>  | Data input setup time    | Slave mode                                  | 2                  | -                   | -                     |      |
| t <sub>h(MI)</sub>   | Data input hold time     | Master mode                                 | 3                  | -                   | -                     |      |
| t <sub>h(SI)</sub>   | Data input noid time     | Slave mode                                  | 1                  | -                   | -                     |      |
| t <sub>a(SO)</sub>   | Data output access time  | Slave mode                                  | 9                  | 13                  | 27                    |      |
| t <sub>dis(SO)</sub> | Data output disable time | Slave mode                                  | 0                  | 1                   | 5                     |      |
| t (00)               |                          | Slave mode, 2.7 < V <sub>DD</sub> < 3.6 V   | -                  | 9/15 <sup>(3)</sup> | 11/16 <sup>(3)</sup>  | ns   |
| t <sub>v(SO)</sub>   | Data output valid time   | Slave mode, 1.62 < V <sub>DD</sub> < 3.6 V  | -                  | 9/15 <sup>(3)</sup> | 17/27 <sup>(3)</sup>  |      |
| t aug                | Data output valid time   | Master mode, 2.7 < V <sub>DD</sub> < 3.6 V  | -                  | 1/5 <sup>(3)</sup>  | 1.5/7 <sup>(3)</sup>  |      |
| t <sub>v(MO)</sub>   |                          | Master mode, 1.62 < V <sub>DD</sub> < 3.6 V | -                  | 1/5 <sup>(3)</sup>  | 2/13 <sup>(3)</sup>   |      |
| t <sub>h(SO)</sub>   | Data output hold time    | Slave mode, 1.62 < V <sub>DD</sub> < 3.6 V  | 7                  | -                   | -                     |      |
| t <sub>h(MO)</sub>   | Data output Hold time    | Master mode                                 | 0                  | -                   | -                     |      |

- 1. Guaranteed by characterization results.
- At VOS1, these values are degraded by up to 5 %.
- Using PC3\_C / PC2\_C (not available on all packages).



Figure 59. SPI timing diagram - slave mode and CPHA = 0

DS13196 - Rev 6 page 154/199





Figure 60. SPI timing diagram - slave mode and CPHA = 1<sup>(1)</sup>

1. Measurement points are done at  $0.5V_{DD}$  and with external  $C_L = 30$  pF.



Figure 61. SPI timing diagram - master mode<sup>(1)</sup>

1. Measurement points are done at  $0.5V_{DD}$  and with external  $C_L = 30$  pF.

### 6.3.36.4 I<sup>2</sup>S Interface characteristics

Unless otherwise specified, the parameters given in Table 116 for  $I^2S$  are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

DS13196 - Rev 6 page 155/199



- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C<sub>L</sub> = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- HSLV activated when VDD ≤ 2.7 V
- VOS level set to VOS0

Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,WS).

Table 116. I<sup>2</sup>S dynamic characteristics

| Symbol                             | Parameter                          | Conditions                             | Min <sup>(1)</sup> | Max <sup>(1)(2)</sup>  | Unit  |
|------------------------------------|------------------------------------|----------------------------------------|--------------------|------------------------|-------|
| f <sub>MCK</sub>                   | I <sup>2</sup> S main clock output | -                                      | -                  | 50                     | MHz   |
|                                    |                                    | Master TX                              | -                  | 50/33 <sup>(3)</sup>   |       |
| four                               | 120 alaak fransızana               | Master RX                              | -                  | 40                     | MHz   |
| fcк I <sup>2</sup> S clock frequen | I <sup>2</sup> S clock frequency   | Slave TX                               | -                  | 31/18.5 <sup>(3)</sup> | IVITZ |
|                                    | Slave RX                           | -                                      | 50                 |                        |       |
| t <sub>v(WS)</sub>                 | WS valid time                      | Master mode                            | -                  | 5.5                    |       |
| t <sub>h(WS)</sub>                 | WS hold time                       | Master mode                            | 0                  | -                      |       |
| t <sub>su(WS)</sub>                | WS setup time                      | Slave mode                             | 2                  | -                      |       |
| t <sub>h(WS)</sub>                 | WS hold time                       | Slave mode                             | 1                  | -                      |       |
| t <sub>su(SD_MR)</sub>             | Data insult action times           | Master receiver                        | 2                  | -                      |       |
| t <sub>su(SD_SR)</sub>             | Data input setup time              | Slave receiver                         | 2                  | -                      |       |
| t <sub>h(SD_MR)</sub>              | Data in south and time             | Master receiver                        | 4.5                | -                      | ns    |
| t <sub>h(SD_SR)</sub>              | Data input hold time               | Slave receiver                         | 1                  | -                      |       |
| t <sub>v(SD_ST)</sub>              | Data autout validiliaa             | Slave transmitter (after enable edge)  | -                  | 16/27 <sup>(3)</sup>   |       |
| t <sub>v(SD_MT)</sub>              | Data output valid time             | Master transmitter (after enable edge) | -                  | 4/15 <sup>(3)</sup>    |       |
| t <sub>h(SD_ST)</sub>              | Data autout hald fina              | Slave transmitter (after enable edge)  | 7                  | -                      |       |
| t <sub>h(SD_MT)</sub>              | Data output hold time              | Master transmitter (after enable edge) | 0                  | -                      |       |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. Using PC3\_C / PC2\_C (not available on all packages).

DS13196 - Rev 6 page 156/199





Figure 62. I<sup>2</sup>S slave timing diagram (Philips protocol)<sup>(1)</sup>

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.



Figure 63. I<sup>2</sup>S master timing diagram (Philips protocol)<sup>(1)</sup>

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

DS13196 - Rev 6 page 157/199



#### 6.3.36.5 SAI characteristics

Unless otherwise specified, the parameters given in Table 117 for SAI are derived from tests performed under the ambient temperature, f<sub>PCLKx</sub> frequency and VDD supply voltage conditions summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C<sub>L</sub> = 30 pF
- IO Compensation cell activated.
- Measurement points are done at CMOS levels: 0.5VDD
- VOS level set to VOS0

Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

| Symbol                   | Parameter                 | Conditions                                                                  | Min <sup>(1)</sup> | Max <sup>(1)(2)</sup> | Unit |
|--------------------------|---------------------------|-----------------------------------------------------------------------------|--------------------|-----------------------|------|
| f <sub>MCK</sub>         | SAI Main clock output     | -                                                                           | -                  | 50                    |      |
|                          |                           | Master transmitter, 2.7 ≤ V <sub>DD</sub> ≤ 3.6 V                           | -                  | 34                    |      |
|                          |                           | Master transmitter, $1.62 \le V_{DD} \le 3.6 \text{ V}$                     | -                  | 27                    |      |
| f <sub>CK</sub>          | SAI clock frequency       | Master receiver, 1.6 ≤ V <sub>DD</sub> ≤ 3.6 V                              | -                  | 27                    | MHz  |
| iCK                      | SAI Clock frequency       | Slave transmitter, 2.7 ≤ VDD ≤ 3.6 V                                        | -                  | 37                    |      |
|                          |                           | Slave transmitter, 1.62 ≤ VDD ≤ 3.6 V                                       | -                  | 30                    |      |
|                          |                           | Slave receiver, 1.62 $\leq$ V <sub>DD</sub> $\leq$ 3.6 V                    | -                  | 50                    |      |
| t                        | F <sub>S</sub> valid time | Master mode, $2.7 \le V_{DD} \le 3.6 \text{ V}$                             | -                  | 14.5                  |      |
| $t_{v(FS)}$              | i g valid time            | Master mode, 1.62 ≤ V <sub>DD</sub> ≤ 3.6 V                                 | -                  | 18.5                  |      |
| t <sub>su(FS)</sub>      | F <sub>S</sub> setup time | Slave mode                                                                  | 8                  | -                     |      |
| 4                        | F <sub>S</sub> hold time  | Master mode                                                                 | 1                  | -                     |      |
| t <sub>h(FS)</sub>       | F <sub>S</sub> hold time  | Slave mode                                                                  | 2                  | -                     |      |
| t <sub>su(SD_A_MR)</sub> | Data is not a store time  | Master receiver                                                             | 0.5                | -                     |      |
| t <sub>su(SD_B_SR)</sub> | Data input setup time     | Slave receiver                                                              | 1                  | -                     |      |
| t <sub>h(SD_A_MR)</sub>  | 5                         | Master receiver                                                             | 5.5                | -                     | ns   |
| t <sub>h(SD_B_SR)</sub>  | Data input hold time      | Slave receiver                                                              | 3                  | -                     |      |
|                          |                           | Slave transmitter (after enable edge), $2.7 \le V_{DD} \le 3.6 \text{ V}$   | -                  | 13.5                  |      |
| t <sub>v(SD_B_ST)</sub>  | Data output valid time    | Slave transmitter (after enable edge), $1.62 \le V_{DD} \le 3.6 \text{ V}$  | -                  | 16.5                  |      |
| t <sub>h(SD_B_ST)</sub>  | Data output hold time     | Slave transmitter (after enable edge)                                       | 8                  | -                     |      |
|                          | 5                         | Master transmitter (after enable edge), $2.7 \le V_{DD} \le 3.6 \text{ V}$  | -                  | 14                    |      |
| t <sub>v(SD_A_MT)</sub>  | Data output valid time    | Master transmitter (after enable edge), $1.62 \le V_{DD} \le 3.6 \text{ V}$ | -                  | 18                    |      |
| t <sub>h(SD_A_MT)</sub>  | Data output hold time     | Master transmitter (after enable edge)                                      | 7.5                | -                     |      |

**Table 117. SAI characteristics** 

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. APB clock frequency must be at least twice SAI clock frequency.

DS13196 - Rev 6 page 158/199



Figure 64. SAI master timing waveforms

Figure 65. SAI slave timing waveforms



### 6.3.36.6 MDIO characteristics

Unless otherwise specified, the parameters given in Table 118 are derived from tests performed under the ambient temperature,  $f_{HCLK}$  frequency and  $V_{DD}$  supply voltage summarized in Table 20. General operating conditions, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS0

Note:

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

DS13196 - Rev 6 page 159/199



| <b>3 1 1 1 1 1 1 1 1 1 1</b> |     |     |                    |
|------------------------------|-----|-----|--------------------|
| Parameter                    | Min | Тур | Max <sup>(1)</sup> |
| Management Data Clock        | _   | _   | 30                 |

**Symbol** Unit MHz  $F_{MDC}$ 9  $t_{d(MDIO)}$ Management Data Iput/output output valid time 11 21 Management Data Iput/output setup time 2.5 t<sub>su(MDIO)</sub> ns Management Data Iput/output hold time 1 t<sub>h(MDIO)</sub>

Table 118, MDIO Slave timing parameters

t<sub>MDC</sub>) t<sub>d(MDIO)</sub> tsu(MDIO) th(MDIO)

Figure 66. MDIO Slave timing diagram

#### 6.3.36.7 SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in Table 119 and Table 120 for SDIO are derived from tests performed under the ambient temperature, f<sub>PCLKx</sub> frequency and V<sub>DD</sub> supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C<sub>L</sub>=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.

Table 119. Dynamics characteristics: SDMMC characteristics, V<sub>DD</sub>=2.7 to 3.6 V

Above 100 MHz,  $C_L = 20$  pF.

Note:

| Symbol              | Parameter                                  | Conditions              | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)(2)</sup> | Unit |
|---------------------|--------------------------------------------|-------------------------|--------------------|--------------------|-----------------------|------|
| f <sub>PP</sub>     | Clock frequency in data transfer mode      | -                       | 0                  | -                  | 133                   | MHz  |
| -                   | SDIO_CK/f <sub>PCLK2</sub> frequency ratio | -                       | -                  | -                  | 8/3                   | -    |
| t <sub>W(CKL)</sub> | Clock low time                             | f <sub>PP</sub> =52 MHz | 8.5                | 9.5                | -                     | no   |
| t <sub>W(CKH)</sub> | Clock high time                            | f <sub>PP</sub> =52 MHz | 8.5                | 9.5                | -                     | ns   |

DS13196 - Rev 6 page 160/199

<sup>1.</sup> At VOS1, these values are degraded by up to 5 %.





| Symbol               | Parameter                                            | Conditions        | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)(2)</sup> | Unit |
|----------------------|------------------------------------------------------|-------------------|--------------------|--------------------|-----------------------|------|
| CMD, D input         | s (referenced to CK) in eMMC legacy/SDR/DDR and SD   | HS/SDR/DDR mode   |                    |                    |                       |      |
| t <sub>ISU</sub>     | Input setup time HS                                  | -                 | 2.5                | -                  | -                     | 200  |
| t <sub>IH</sub>      | Input hold time HS                                   | -                 | 0.5                | -                  | -                     | ns   |
| t <sub>IDW</sub> (3) | Input valid window (variable window)                 | -                 | 3.0                | -                  | -                     | -    |
| CMD, D outpu         | uts (referenced to CK) in eMMC legacy/SDR/DDR and SI | D HS/SDR/DDR mode | )                  |                    |                       |      |
| t <sub>OV</sub>      | Output valid time HS                                 | -                 | -                  | 6                  | 6.5                   |      |
| tон                  | Output hold time HS                                  | -                 | 5                  | -                  | -                     | ns   |
| CMD, D input         | s (referenced to CK) in SD default mode              |                   | ,                  |                    |                       |      |
| t <sub>ISUD</sub>    | Input setup time SD                                  | -                 | 2.5                | -                  | -                     | 200  |
| t <sub>IHD</sub>     | Input hold time SD                                   | -                 | 0.5                | -                  | -                     | ns   |
| CMD, D outpu         | uts (referenced to CK) in SD default mode            |                   | ,                  |                    |                       |      |
| t <sub>OVD</sub>     | Output valid default time SD                         | -                 | -                  | 1                  | 1.5                   | no   |
| t <sub>OHD</sub>     | Output hold default time SD                          | -                 | 0                  | -                  | -                     | ns   |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Table 120. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V

Above 100 MHz,  $C_L = 20$  pF.

| Symbol               | Parameter                             | Conditions              | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Ma <sup>(1)(2)</sup> | Unit |
|----------------------|---------------------------------------|-------------------------|--------------------|--------------------|----------------------|------|
| f <sub>PP</sub>      | Clock frequency in data transfer mode | -                       | 0                  | -                  | 85                   | MHz  |
| t <sub>W(CKL)</sub>  | Clock low time                        | f <sub>PP</sub> =52 MHz | 8.5                | 9.5                | -                    |      |
| t <sub>W(CKH)</sub>  | Clock high time                       | f <sub>PP</sub> =52 MHz | 8.5                | 9.5                | -                    | ns   |
| CMD, D inpu          | uts (referenced to CK) in eMMC mode   |                         |                    | ,                  |                      | ,    |
| t <sub>ISU</sub>     | Input setup time HS                   | -                       | 2.5                | -                  | -                    |      |
| t <sub>IH</sub>      | Input hold time HS                    | -                       | 0.5                | -                  | -                    | ns   |
| t <sub>IDW</sub> (3) | Input valid window (variable window)  | -                       | 3.5                | -                  | -                    |      |
| CMD, D out           | puts (referenced to CK) in eMMC mode  |                         |                    |                    |                      |      |
| t <sub>OVD</sub>     | Output valid time HS                  | -                       | -                  | 6                  | 6.5                  |      |
| tohd                 | Output hold time HS                   | -                       | 5.5                | -                  | -                    | ns   |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

DS13196 - Rev 6 page 161/199



Figure 67. SDIO high-speed mode

Figure 68. SD default mode



**←** tOHD

Figure 69. DDR mode



#### 6.3.36.8 USB OTG\_FS characteristics

Unless otherwise specified, the parameters given in Table 121. Dynamics characteristics: USB OTG\_FS for ULPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 11

DS13196 - Rev 6 page 162/199



Note:

- Capacitive load C<sub>L</sub>=20 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- VOS level set to VOS0

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.

Table 121. Dynamics characteristics: USB OTG\_FS

| Symbol               | Parameter                                      | Condition           | Min    | Тур  | Max  | Unit |
|----------------------|------------------------------------------------|---------------------|--------|------|------|------|
| V <sub>DD33USB</sub> | USB transceiver operating voltage              | -                   | 3.0(1) | -    | 3.6  | V    |
| R <sub>PUI</sub>     | Embedded USB_DP pull-up value during idle      | -                   | 900    | 1250 | 1600 |      |
| R <sub>PUR</sub>     | Embedded USB_DP pull-up value during reception | -                   | 1400   | 2300 | 3200 | Ω    |
| Z <sub>DRV</sub>     | Output driver impedance <sup>(2)</sup>         | Driver high and low | 28     | 36   | 44   |      |

<sup>1.</sup> The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics that are degraded in the 2.7 to 3.0 V voltage range.

#### 6.3.36.9 USB OTG HS characteristics

Unless otherwise specified, the parameters given in Table 122 for ULPI are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C<sub>L</sub>=20 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- IO Compensation cell activated.
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.

Table 122. Dynamics characteristics: USB ULPI

| Symbol                           | Parameter                                   | Condition                                             | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)(2)(3)</sup> | Unit |
|----------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------|--------------------|--------------------------|------|
| t <sub>SC</sub>                  | Control in (ULPI_DIR , ULPI_NXT) setup time | -                                                     | 3.5                | -                  | -                        |      |
| t <sub>HC</sub>                  | Control in (ULPI_DIR, ULPI_NXT) hold time   | -                                                     | 2                  | -                  | -                        |      |
| t <sub>SD</sub>                  | Data in setup time                          | -                                                     | 3                  | -                  | -                        | no   |
| t <sub>HD</sub>                  | Data in hold time                           | -                                                     | 0                  | -                  | -                        | ns   |
| +/+                              | Control/Datal output dalay                  | 2.7 < V <sub>DD</sub> < 3.6 V, C <sub>L</sub> =20 pF  | -                  | 7                  | 8.5                      |      |
| t <sub>DC</sub> /t <sub>DD</sub> | Control/Datal output delay                  | 1.71 < V <sub>DD</sub> < 3.6 V, C <sub>L</sub> =15 pF | -                  | 9                  | 13                       |      |

- 1. Guaranteed by characterization results.
- 2. At VOS1, these values are degraded by up to 5 %.
- 3. For external ULPI transceivers operating at 1.8 V, check carefully the timing values for compatibility.

DS13196 - Rev 6 page 163/199

<sup>2.</sup> No external termination series resistors are required on USB\_DP (D+) and USB\_DM (D-); the matching impedance is already included in the embedded driver.



Note:



Figure 70. ULPI timing diagram

#### 6.3.36.10 JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in Table 123 and Table 124 for JTAG/SWD are derived from tests performed under the ambient temperature, f<sub>rcc\_cpu\_ck</sub> frequency and V<sub>DD</sub> supply voltage summarized in Table 20. General operating conditions and Table 21. Maximum allowed clock frequencies, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C<sub>L</sub>=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- VOS level set to VOS0

At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote when applicable.

Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics:

**Conditions Symbol Parameter** Min Тур Max<sup>(1)</sup> Unit  $\mathsf{F}_\mathsf{pp}$ 2.7 V < V<sub>DD</sub> < 3.6 V 35 MHz T<sub>CK</sub> clock frequency 1.62 V < V<sub>DD</sub> < 3.6 V 1/t<sub>c(TCK)</sub> 27.5 TMS input setup time 1 t<sub>isu(TMS)</sub> TMS input hold time 1 t<sub>ih(TMS)</sub> TDI input setup time 1.5 t<sub>isu(TDI)</sub> ns TDI input hold time 1 t<sub>ih(TDI)</sub> 2.7 V <V<sub>DD</sub>< 3.6 V 8 14 t<sub>ov(TDO)</sub> TDO output valid time 1.62 V <V<sub>DD</sub>< 3.6 V 8 18 toh(TDO) TDO output hold time 7

Table 123. Dynamics JTAG characteristics

**Table 124. Dynamics SWD characteristics** 

| Symbol          | Parameter             | Conditions                       | Min | Тур | Max <sup>(1)</sup> | Unit |
|-----------------|-----------------------|----------------------------------|-----|-----|--------------------|------|
| F <sub>pp</sub> | SWCLK clock frequency | 2.7V <v<sub>DD&lt; 3.6 V</v<sub> | -   | -   | 76                 | MHz  |

DS13196 - Rev 6 page 164/199

<sup>1.</sup> At VOS1, these values are degraded by up to  $5\,\%$ .



| Symbol                  | Parameter               | Conditions                       | Min | Тур | Max <sup>(1)</sup> | Unit |
|-------------------------|-------------------------|----------------------------------|-----|-----|--------------------|------|
| 1/t <sub>c(SWCLK)</sub> | SWCLK clock frequency   | 1.62 <v<sub>DD&lt; 3.6 V</v<sub> | -   | -   | 55.5               | MHz  |
| t <sub>isu(SWDIO)</sub> | SWDIO input setup time  | -                                | 2   | -   | -                  |      |
| t <sub>ih(SWDIO)</sub>  | SWDIO input hold time   | -                                | 1   | -   | -                  |      |
|                         | CWDIO output valid time | 2.7V <v<sub>DD&lt; 3.6 V</v<sub> | -   | 8.5 | 13                 | ns   |
| <sup>t</sup> ov(SWDIO)  | SWDIO output valid time | 1.62 <v<sub>DD&lt; 3.6 V</v<sub> | -   | 8.5 | 18                 |      |
| t <sub>oh(SWDIO)</sub>  | SWDIO output hold       | -                                | 8   | -   | -                  |      |

<sup>1.</sup> At VOS1, these values are degraded by up to 5 %.



Figure 71. JTAG timing diagram





DS13196 - Rev 6 page 165/199



# 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS13196 - Rev 6 page 166/199



# 7.1 LQFP64 package information

This is a 64-pins, 10 x 10 mm, low-profile quad flat package.



Figure 73. LQFP64 - Outline

1. Drawing is not to scale.

DS13196 - Rev 6 page 167/199



| Symbol | millimeters |        |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|--------|-------|-----------------------|--------|--------|
|        | Min         | Тур    | Max   | Min                   | Тур    | Max    |
| Α      | -           | -      | 1.600 | -                     | -      | 0.0630 |
| A1     | 0.050       | -      | 0.150 | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400  | 1.450 | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170       | 0.220  | 0.270 | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090       | -      | 0.200 | 0.0035                | -      | 0.0079 |
| D      | -           | 12.000 | -     | -                     | 0.4724 | -      |
| D1     | -           | 10.000 | -     | -                     | 0.3937 | -      |
| D3     | -           | 7.500  | -     | -                     | 0.2953 | -      |
| E      | -           | 12.000 | -     | -                     | 0.4724 | -      |
| E1     | -           | 10.000 | -     | -                     | 0.3937 | -      |
| E3     | -           | 7.500  | -     | -                     | 0.2953 | -      |
| е      | -           | 0.500  | -     | -                     | 0.0197 | -      |
| K      | 0°          | 3.5°   | 7°    | 0°                    | 3.5°   | 7°     |
| L      | 0.450       | 0.600  | 0.750 | 0.0177                | 0.0236 | 0.0295 |
| L1     | -           | 1.000  | -     | -                     | 0.0394 | -      |
| CCC    | -           | -      | 0.080 | -                     | -      | 0.0031 |

Table 125. LQFP64 pin - Mechanical data



Figure 74. LQFP64 - Recommended footprint

1. Dimensions are expressed in millimeters.

# 7.1.1 Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

DS13196 - Rev 6 page 168/199

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.



Figure 75. LQFP64 marking example (package top view)



1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS13196 - Rev 6 page 169/199



# 7.2 LQFP100 package information

This LQFP is a 100 pins, 14 x 14 mm, low-profile quad flat package.



Figure 76. LQFP100 - Outline

1. Drawing is not to scale

Table 126. LQFP100 - Mechanical data

| Cumbal | millimeters |        |        | inches <sup>(1)</sup> |        |        |
|--------|-------------|--------|--------|-----------------------|--------|--------|
| Symbol | Min         | Тур    | Max    | Min                   | Тур    | Max    |
| Α      | -           | -      | 1.600  | -                     | -      | 0.0630 |
| A1     | 0.050       | -      | 0.150  | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400  | 1.450  | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170       | 0.220  | 0.270  | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090       | -      | 0.200  | 0.0035                | -      | 0.0079 |
| D      | 15.800      | 16.000 | 16.200 | 0.6220                | 0.6299 | 0.6378 |
| D1     | 13.800      | 14.000 | 14.200 | 0.5433                | 0.5512 | 0.5591 |
| D3     | -           | 12.000 | -      | -                     | 0.4724 | -      |
| E      | 15.800      | 16.000 | 16.200 | 0.6220                | 0.6299 | 0.6378 |
| E1     | 13.800      | 14.000 | 14.200 | 0.5433                | 0.5512 | 0.5591 |
| E3     | -           | 12.000 | -      | -                     | 0.4724 | -      |
| е      | -           | 0.500  | -      | -                     | 0.0197 | -      |
| L      | 0.450       | 0.600  | 0.750  | 0.0177                | 0.0236 | 0.0295 |
| L1     | -           | 1.000  | -      | -                     | 0.0394 | -      |
| k      | 0.0°        | 3.5°   | 7.0°   | 0.0°                  | 3.5°   | 7.0°   |
| ccc    | -           | -      | 0.080  | -                     | -      | 0.0031 |

1. Values in inches are converted from mm and rounded to 4 decimal digits.

DS13196 - Rev 6 page 170/199





Figure 77. LQFP100 - Recommended footprint

1. Dimensions are expressed in millimeters.

DS13196 - Rev 6 page 171/199



# 7.2.1 Device marking for LQFP100

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 78. LQFP100 marking example (package top view)



1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS13196 - Rev 6 page 172/199



# 7.3 LQFP144 package information

LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.



Figure 79. LQFP144 - Outline

I. Drawing is not to scale

DS13196 - Rev 6 page 173/199



Table 127. LQFP144 - Mechanical data

| Symbol | millimeters |        |        | inches <sup>(1)</sup> |        |        |
|--------|-------------|--------|--------|-----------------------|--------|--------|
|        | Min         | Тур    | Max    | Min                   | Тур    | Max    |
| Α      | -           | -      | 1.600  | -                     | -      | 0.0630 |
| A1     | 0.050       | -      | 0.150  | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400  | 1.450  | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170       | 0.220  | 0.270  | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090       | -      | 0.200  | 0.0035                | -      | 0.0079 |
| D      | 21.800      | 22.000 | 22.200 | 0.8583                | 0.8661 | 0.8740 |
| D1     | 19.800      | 20.000 | 20.200 | 0.7795                | 0.7874 | 0.7953 |
| D3     | -           | 17.500 | -      | -                     | 0.689  | -      |
| E      | 21.800      | 22.000 | 22.200 | 0.8583                | 0.8661 | 0.8740 |
| E1     | 19.800      | 20.000 | 20.200 | 0.7795                | 0.7874 | 0.7953 |
| E3     | -           | 17.500 | -      | -                     | 0.689  | -      |
| е      | -           | 0.500  | -      | -                     | 0.0197 | -      |
| L      | 0.450       | 0.600  | 0.750  | 0.0177                | 0.0236 | 0.0295 |
| L1     | -           | 1.000  | -      | -                     | 0.0394 | -      |
| k      | 0°          | 3.5°   | 7°     | 0°                    | 3.5°   | 7°     |
| ccc    | -           | -      | 0.080  | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.



Figure 80. LQFP144 - Recommended footprint

1. Dimensions are expressed in millimeters.

DS13196 - Rev 6 page 174/199



# 7.3.1 Device marking for LQFP144

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 81. LQFP144 marking example (package top view)



1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS13196 - Rev 6 page 175/199



# 7.4 LQFP176 package information

This LQFP is a 176-pin, 24 x 24 mm, 0.5 mm pitch, low profile quad flat package.



Figure 82. LQFP176 - Outline

1. Drawing is not to scale.

DS13196 - Rev 6 page 176/199



Table 128. LQFP176 - Mechanical data

| Complete | millimeters |       |        | inches <sup>(1)</sup> |        |        |
|----------|-------------|-------|--------|-----------------------|--------|--------|
| Symbol   | Min         | Тур   | Max    | Min                   | Тур    | Max    |
| А        | -           | -     | 1.600  | -                     | -      | 0.0630 |
| A1       | 0.050       | -     | 0.150  | 0.0020                | -      | 0.0059 |
| A2       | 1.350       | -     | 1.450  | 0.0531                | -      | 0.0571 |
| b        | 0.170       | -     | 0.270  | 0.0067                | -      | 0.0106 |
| С        | 0.090       | -     | 0.200  | 0.0035                | -      | 0.0079 |
| D        | 23.900      | -     | 24.100 | 0.9409                | -      | 0.9488 |
| HD       | 25.900      | -     | 26.100 | 1.0197                | -      | 1.0276 |
| ZD       | -           | 1.250 | -      | -                     | 0.0492 | -      |
| E        | 23.900      | -     | 24.100 | 0.9409                | -      | 0.9488 |
| HE       | 25.900      | -     | 26.100 | 1.0197                | -      | 1.0276 |
| ZE       | -           | 1.250 | -      | -                     | 0.0492 | -      |
| е        | -           | 0.500 | -      | -                     | 0.0197 | -      |
| L(2)     | 0.450       | -     | 0.750  | 0.0177                | -      | 0.0295 |
| L1       | -           | 1.000 | -      | -                     | 0.0394 | -      |
| k        | 0°          | -     | 7°     | 0°                    | -      | 7°     |
| CCC      | -           | -     | 0.080  | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to four decimal digits.

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Figure 83. LQFP176 - Recommended footprint

Note: Dimensions are expressed in millimeters.

DS13196 - Rev 6 page 177/199

<sup>2.</sup> L dimension is measured at gauge plane at 0.25 mm above the seating plane.



# 7.4.1 Device marking for LQFP176

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 84. LQFP176 marking example (package top view)



1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS13196 - Rev 6 page 178/199



# 7.5 UFBGA169 package information

This UFBGA is a 169 balls, 7 x 7 mm, 0.50 mm pitch, ultra thin profile fine pitch ball grid array package



Figure 85. UFBGA169 - Outline

- 1. Drawing is not to scale.
- 2. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heat slug.
  - A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

DS13196 - Rev 6 page 179/199

0.0020



| Symbol           |       | millimeters |       |        | inches <sup>(1)</sup> |        |  |  |
|------------------|-------|-------------|-------|--------|-----------------------|--------|--|--|
|                  | Min.  | Тур.        | Max.  | Min.   | Тур.                  | Max.   |  |  |
| A <sup>(2)</sup> | -     | -           | 0.600 | -      | -                     | 0.0236 |  |  |
| A1               | -     | -           | 0.110 | -      | -                     | 0.0043 |  |  |
| A2               | -     | 0.130       | -     | -      | 0.0051                | -      |  |  |
| A4               | -     | 0.320       | -     | -      | 0.0126                | -      |  |  |
| b <sup>(3)</sup> | 0.230 | 0.280       | 0.330 | 0.0091 | 0.0110                | 0.0130 |  |  |
| D                | 6.850 | 7.000       | 7.150 | 0.2697 | 0.2756                | 0.2815 |  |  |
| D1               | -     | 6.000       | -     | -      | 0.2362                | -      |  |  |
| E                | 6.850 | 7.000       | 7.150 | 0.2697 | 0.2756                | 0.2815 |  |  |
| E1               | -     | 6.000       | -     | -      | 0.2362                | -      |  |  |
| е                | -     | 0.500       | -     | -      | 0.0197                | -      |  |  |
| F                | -     | 0.500       | -     | -      | 0.0197                | -      |  |  |
| ddd              | -     | -           | 0.080 | -      | -                     | 0.0031 |  |  |
| eee (4)          | -     | -           | 0.015 | -      | _                     | 0.0059 |  |  |

Table 129. UFBGA169 - Mechanical data

- 1. Values in inches are converted from mm and rounded to four decimal digits.
- Ultra Thin profile: 0.50 < A ≤ 0.65 mm / Fine pitch: e < 1.00 mm pitch.</li>
  - The total profile height (dim A) is measured from the seating plane to the top of the component
  - The maximum total package height is calculated by the following methodology:
  - A Max = A1 Typ + A2 Typ + A4 Typ +  $\sqrt{(A1^2+A2^2+A4^2)}$  tolerance values)
- 3. The typical balls diameters before mounting is 0.20 mm.

 $fff^{(5)}$ 

4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.

0.050

5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones.

Figure 86. UFBGA169 - Recommended footprint



DS13196 - Rev 6 page 180/199

0.27 mm aperture diameter



| Dimension | Recommended values                                              |
|-----------|-----------------------------------------------------------------|
| Pitch     | 0.5 mm                                                          |
| Dpad      | 0.27 mm                                                         |
| Dsm       | 0.35 mm typ. (depends on the soldermask registration tolerance) |

Table 130. UFBGA169 - recommended PCB design rules (0.5 mm pitch BGA)

#### 7.5.1 Device marking for UFBGA169

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Solder paste

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 87. UFBGA169 marking example (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples
in production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

DS13196 - Rev 6 page 181/199



## 7.6 UFBGA(176+25) package information

This UFBGA is a 176+25 balls, 10 x 10 mm, 0.65 mm pitch, ultra thin profile fine pitch ball grid array package.



Figure 88. UFBGA(176+25) - Outline

- 1. Drawing is not to scale.
- 2. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heat slug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

DS13196 - Rev 6 page 182/199

0.0020



| Crowbal          | millimeters |        |        | inches <sup>(1)</sup> |         |        |  |
|------------------|-------------|--------|--------|-----------------------|---------|--------|--|
| Symbol           | Min.        | Тур.   | Max.   | Min.                  | Тур.    | Max.   |  |
| A <sup>(2)</sup> | -           | -      | 0.600  | -                     | -       | 0.0236 |  |
| A1               | 0.050       | 0.080  | 0.110  | 0.0020                | 0.0031  | 0.0043 |  |
| A2               | -           | 0.450  | -      | -                     | 0.0177  | -      |  |
| A3               | -           | 0.130  | -      | -                     | 0.0051  | -      |  |
| A4               | -           | 0.320  | -      | -                     | 0.0126  | _      |  |
| b                | 0.240       | 0.290  | 0.340  | 0.0094                | 0.0114  | 0.0134 |  |
| D                | 9.850       | 10.000 | 10.150 | 0.3878                | 0.03937 | 0.3996 |  |
| D1               | -           | 9.100  | -      | -                     | 0.3583  | _      |  |
| E                | 9.850       | 10.000 | 10.150 | 0.3878                | 0.03937 | 0.3996 |  |
| E1               | -           | 9.100  | -      | -                     | 0.3583  | -      |  |
| е                | -           | 0.650  | -      | -                     | 0.0256  | _      |  |
| F                | -           | 0.450  | -      | -                     | 0.0177  | -      |  |
| ddd              | -           | -      | 0.080  | -                     | -       | 0.0031 |  |
| eee (3)          | -           | -      | 0.015  | -                     | -       | 0.0059 |  |

Table 131. UFBGA(176+25) - Mechanical data

1. Values in inches are converted from mm and rounded to four decimal digits.

 $fff^{(4)}$ 

2. Ultra thin profile: 0.50 < A Max \u0001 0.65mm / Fine pitch: e < 1.00mm. The total profile height (Dim.A) is measured from the seating plane "C" to the top of the component.

0.050

- The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 4. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones.

Figure 89. UFBGA(176+25) - Recommended footprint



DS13196 - Rev 6 page 183/199



| Dimension         | Recommended values                                               |
|-------------------|------------------------------------------------------------------|
| Pitch             | 0.65 mm                                                          |
| Dpad              | 0.300 mm                                                         |
| Dsm               | 0.400 mm typ. (depends on the soldermask registration tolerance) |
| Stencil opening   | 0.300 mm aperture diameter                                       |
| Stencil thickness | Between 0.100 mm and 0.125 mm                                    |
| Pad trace width   | 0.100 mm                                                         |

Table 132. UFBGA(176+25) - Recommended PCB design rules (0.65 mm pitch BGA)

### 7.6.1 Device marking for UFBGA176+25

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Product identification<sup>(1)</sup>
STM32H7BO

TBK6Q

Date code
YWW

Figure 90. UFBGA176+25 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

### 7.7 Thermal characteristics

The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation:

 $T_J max = T_A max + (P_D max \times \Theta_{JA})$ 

DS13196 - Rev 6 page 184/199



#### Where:

- T<sub>A</sub>max is the maximum ambient temperature in °C,
- Θ<sub>JA</sub> is the package junction-to-ambient thermal resistance, in °C/W,
- $P_D$ max is the sum of  $P_{INT}$ max and  $P_{I/Q}$ max ( $P_D$ max =  $P_{INT}$ max +  $P_{I/Q}$ max),
- P<sub>INT</sub>max is the product of I<sub>DD</sub> and V<sub>DD</sub>, expressed in Watts. This is the maximum chip internal power.

P<sub>I/O</sub>max represents the maximum power dissipation on output pins where:

 $P_{I/O}max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$ 

taking into account the actual  $V_{OL}$  /  $I_{OL}$  and  $V_{OH}$  /  $I_{OH}$  of the I/Os at low and high level in the application.

Table 133. Thermal characteristics

| Symbol          | Definition                        | Parameter                                                                   | value | unit |
|-----------------|-----------------------------------|-----------------------------------------------------------------------------|-------|------|
| ΘЈΑ             |                                   | Thermal resistance junction-ambient LQFP64 - 10 x 10 mm /0.5 mm pitch       | 48.8  |      |
|                 |                                   | Thermal resistance junction-ambient LQFP100 - 14 x 14 mm /0.5 mm pitch      | 47.4  |      |
|                 | Thermal resistance                | Thermal resistance junction-ambient LQFP144 - 20 x 20 mm /0.5 mm pitch      | 46    | °C/W |
|                 | junction-ambiant                  | Thermal resistance junction-ambient LQFP176 - 24 x 24 mm /0.5 mm pitch      | 43.6  | C/VV |
|                 |                                   | Thermal resistance junction-ambient UFBGA169 - 7 x 7 mm /0.5 mm pitch       | 41.4  |      |
|                 |                                   | Thermal resistance junction-ambient UFBGA176+25 - 10 x 10 mm /0.65 mm pitch | 44.4  |      |
|                 |                                   | Thermal resistance junction-board LQFP64 - 10 x 10 mm /0.5 mm pitch         | 37.2  |      |
|                 |                                   | Thermal resistance junction-board LQFP100 - 14 x 14 mm /0.5 mm pitch        | 39.2  |      |
|                 | Thermal resistance junction-board | Thermal resistance junction-board LQFP144 - 20 x 20 mm /0.5 mm pitch        | 41.3  | °C/W |
| ΘЈΒ             |                                   | Thermal resistance junction-board LQFP176 - 24 x 24 mm /0.5 mm pitch        | 40.2  | C/VV |
|                 |                                   | Thermal resistance junction-board UFBGA169 - 7 x 7 mm /0.5 mm pitch         | 15.3  |      |
|                 |                                   | Thermal resistance junction-board UFBGA176+25 - 10 x 10 mm /0.65 mm pitch   | 25    |      |
| Θ <sub>JC</sub> |                                   | Thermal resistance junction-case LQFP64 - 10 x 10 mm /0.5 mm pitch          | 13    |      |
|                 |                                   | Thermal resistance junction-case LQFP100 - 14 x 14 mm /0.5 mm pitch         | 12.8  |      |
|                 | Thermal registance                | Thermal resistance junction-case LQFP144 - 20 x 20 mm /0.5 mm pitch         | 12.6  |      |
|                 | Thermal resistance junction-case  | Thermal resistance junction-case LQFP176 - 24 x 24 mm /0.5 mm pitch         | 11.5  | °C/W |
|                 |                                   | Thermal resistance junction-case UFBGA169 - 7 x 7 mm /0.5 mm pitch          | 19.9  |      |
|                 |                                   | Thermal resistance junction-case UFBGA176+25 - 10 x 10 mm /0.65 mm pitch    | 18.9  |      |

### 7.7.1 Reference documents

- JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air). Available from www.jedec.org.
- For information on thermal management, refer to application note "Thermal management guidelines for STM32 32-bit Arm Cortex MCUs applications" (AN5036) available from <a href="https://www.st.com">www.st.com</a>.

DS13196 - Rev 6 page 185/199



# 8 Ordering information



For a list of available options (such as speed and package) or for further information on any aspect of this device, contact your nearest ST sales office.

DS13196 - Rev 6 page 186/199



# **Revision history**

Table 134. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20-Dec-2019 | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |          | Updated Octo-SPI interface in Table 1. STM32H7B0xB features and peripheral counts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |          | Updated Figure 2. Power-up/power-down sequence in Section 6.1.6 Power supply scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |          | Updated HSLV feature description in Section 3.8 General-purpose input/outputs (GPIOs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |          | In Section 5 Pin descriptions: updated Table 6. Legend/abbreviations used in the pinout table; changed SPDIFRX into SPDIFRX1 and updated all SPDIFRX1 pin names.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |          | Updated Table 17. Voltage characteristics to add V <sub>REF+</sub> in the list of external main supply voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |          | Removed clock frequencies from Table 20. General operating conditions and added new Table 21. Maximum allowed clock frequencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |          | Changed condition for t <sub>RSTTEMPO</sub> in Table 27. Reset and power control block characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |          | Added I <sub>DD50USB</sub> in Table 30. USB regulator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27-Apr-2020 | 2        | Updated Table 38. Typical current consumption in System Stop mode, added Table 39. Typical current consumption RAM shutoff in Stop mode, and added IWDG and changed SPDIFRX into SPDIFRX1 in Table 42. Peripheral current consumption in Run mode.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |          | Table 56. Flash memory programming: updated t <sub>ME</sub> description and unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |          | In the whole Section 6.3.18 FMC characteristics, replaced sentence "the T <sub>KERCK</sub> is the fmc_ker_ck clock period" by "the T <sub>fmc_ker_ck</sub> is the kernel clock period".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |          | Section 6.3.19 Octo-SPI interface characteristics: added parameter measurement conditions, updated Table 87. OCTOSPI characteristics in SDR mode and Table 88. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus, updated Figure 42. OctoSPI Hyperbus clock, Figure 43. OctoSPI Hyperbus read and Figure 44. OctoSPI Hyperbus write.                                                                                                                                                                                                                                                                                                                                         |
|             |          | Updated Figure 48. Power supply and reference decoupling ( $V_{REF+}$ not connected to $V_{DDA}$ ), note 1. and note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |          | Section 6.3.30 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics, Section 6.3.31 Camera interface (DCMI) timing specificationsSection 6.3.33 LCD-TFT controller (LTDC) characteristics, Section 6.3.36.2 USART interface characteristics, Section 6.3.36.3 SPI interface characteristics, Section 6.3.36.4 I2S Interface characteristics, Section 6.3.36.5 SAI characteristics, Section 6.3.36.7 SD/SDIO MMC card host interface (SDMMC) characteristics, Section 6.3.36.8 USB OTG_FS characteristics, Section 6.3.36.9 USB OTG_HS characteristics, Section 6.3.36.10 JTAG/SWD interface characteristics: changed VOS level to VOS0 in the parameter measurement conditions. |
| 08-Jul-2020 | 20 3     | Updated note related to ULPI interface availability on packages that do not feature PC2 and PC3 I/Os in Table 1. STM32H7B0xB features and peripheral counts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |          | Updated Table 18. Current characteristics, Table 19. Thermal characteristics and Figure 13. Current consumption measurement scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

DS13196 - Rev 6 page 187/199



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |          | Updated Figure 12. Power supply scheme. Added note to V <sub>REFINT</sub> in Table 28. Embedded reference voltage.Added Table 31. Inrush current and inrush electric charge characteristics for LDO and SMPS. Updated Table 44. Low-power mode wakeup timings, Table 32. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON and Table 33. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON.                                                                                                                                                                                                                                                                                                                                    |
|             |          | Updated Table 66. Output timing characteristics (HSLV OFF) and Table 67. Output timing characteristics (HSLV ON).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |          | Updated Table 60. ESD absolute maximum ratings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |          | Added notes related to performance degradation at VOS1 in Section 6.3.18 FMC characteristics, Section 6.3.19 Octo-SPI interface characteristics, Section 6.3.32 PSSI interface characteristics, Section 6.3.33 LCD-TFT controller (LTDC) characteristics, Section 6.3.36.2 USART interface characteristics, Section 6.3.36.3 SPI interface characteristics, Section 6.3.36.4 I2S Interface characteristics, Section 6.3.36.5 SAI characteristics, Section 6.3.36.6 MDIO characteristics, Section 6.3.36.7 SD/SDIO MMC card host interface (SDMMC) characteristics, Section 6.3.36.9 USB OTG_HS characteristics and Section 6.3.36.10 JTAG/SWD interface characteristics. Updated F <sub>(CLK)</sub> measurement conditions in Table 87. OCTOSPI characteristics in SDR mode and Table 88. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus. |
|             |          | Added Figure 45. ADC conversion timing diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |          | Added Section 6.3.32 PSSI interface characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |          | Updated Figure 57. USART timing diagram in Master mode and Figure 58. USART timing diagram in Slave mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |          | Added note related to ULPI transceivers operating at 1.8 V in Table 122. Dynamics characteristics: USB ULPI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |          | Updated VDDMMC separate supply pad in Section 2 Description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 4        | In Section 3.31 True random number generator (RNG), changed "random number generator" in "true random number generator" and description updated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |          | Updated Figure 12. Power supply scheme and Section 6.3.2 VCAP external capacitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |          | Added V <sub>BAT</sub> in Section 6.3.1 General operating conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16-Sep-2020 |          | Updated High-speed external user clock generated from an external source and Low-speed external user clock generated from an external source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |          | Added reference to application note AN4899 in Section 6.3.16 I/O port characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |          | Updated DuCyCKOUT in Table 105. DFSDM measured timing 1.62-3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |          | Updated Figure 88. UFBGA(176+25) - Outline and Table 131. UFBGA(176+25) - Mechanical data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28-Sep-2020 | 5        | Updated V <sub>HSEL</sub> maximum value in Table 45. High-speed external user clock characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |          | Added indication that patents apply to the devices in Section Features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |          | Added reference to errata sheet in Section 1 Introduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 6        | Updated WKUP signals in Figure 1. STM32H7B0xB block diagram and in Table 7. STM32H7B0xB pin/ball definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 04-May-2021 |          | Updated Section 3.40 Serial peripheral interfaces (SPI)/integrated interchip sound interfaces (I2S).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |          | Added note to TRIM parameter in Table 50. HSI oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |          | Extended Figure 46. ADC accuracy characteristics to both ADC resolutions and updated Figure 47. Typical connection diagram using the ADC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |          | Replace 110 °C by 130 °C in Table 97. Analog temperature sensor calibration values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

DS13196 - Rev 6 page 188/199



| Date | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |          | Updated $t_{su(ADV-CLKH)}$ , $t_{h(CLKH-ADV)}$ , $t_{su(NWAIT-CLKH)}$ and $t_{h(CLKH-NWAIT)}$ minimum values in Table 9. Updated $t_{su(DV-CLKH)}$ , $t_{h(CLKH-DV)}$ , $t_{(NWAIT-CLKH)}$ and $t_{h(CLKH-NWAIT)}$ minimum values in Table 79. Synchronous non-multiplexed NOR/PSRAM read timings. Updated $t_{su(SDCLKH\_Data)}$ and $t_{h(SDCLKH\_Data)}$ minimum values in Table 83. SDRAM read timings. Updated $t_{su(SDCLKH\_Data)}$ and $t_{h(SDCLKH\_Data)}$ and $t_{h(SDCLKH\_Data)}$ minimum values in Table 84. LPSDRAM read timings. |
|      |          | Section 6.3.19 Octo-SPI interface characteristics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |          | <ul> <li>Updated t<sub>S(IN)</sub>/t<sub>H(IN)</sub> conditions and minimum values in Table 87. OCTOSPI characteristics in SDR mode and updated Figure 40. OctoSPI timing diagram - SDR mode.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |
|      |          | Updated Table 88. OCTOSPI characteristics in DTR mode (with DQS)/     Octal and Hyperbus and Figure 41. OctoSPI timing diagram - DTR mode.                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |          | Updated Figure 42. OctoSPI Hyperbus clock, Figure 43. OctoSPI Hyperbus read and Figure 44. OctoSPI Hyperbus write.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |          | Table 115. SPI dynamic characteristics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |          | Changed t <sub>su(MI)</sub> and t <sub>h(MI)</sub> minimum values in Master mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |          | Removed t <sub>w(SCKH)</sub> , t <sub>w(SCKL)</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |          | Table 119. Dynamics characteristics: SDMMC characteristics, V <sub>DD</sub> =2.7 to 3.6 V:                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |          | <ul> <li>Modified t<sub>ISU</sub> and t<sub>IH</sub> minimum values for CMD/ D inputs in High-speed<br/>mode.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |          | Modified t <sub>ISUD</sub> and t <sub>IH</sub> minimum values for CMD/ D inputs in Default mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |          | Table 120. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |          | Removed SDIO_CK/f <sub>PCLK2</sub> frequency ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |          | - Modified $t_{\text{ISU}}$ and $t_{\text{IH}}$ minimum values in CMD, D inputs (referenced to CK) in eMMC mode.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |          | Section 7.5 UFBGA169 package information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |          | Added note 2 below Figure 85. UFBGA169 - Outline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |          | Updated Table 129. UFBGA169 - Mechanical data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |          | Removed note related to non-solder mask below Figure 86. UFBGA169 - Recommended footprint.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |          | Section 7.6 UFBGA(176+25) package information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |          | Added note 2 below Figure 88. UFBGA(176+25) - Outline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |          | Updated Figure 89. UFBGA(176+25) - Recommended footprint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

DS13196 - Rev 6 page 189/199



# **Contents**

| 1 | Introduction |                                                  |                                   |    |  |  |  |
|---|--------------|--------------------------------------------------|-----------------------------------|----|--|--|--|
| 2 | Description  |                                                  |                                   |    |  |  |  |
| 3 |              | _                                                | overview                          |    |  |  |  |
|   | 3.1 Arm®     |                                                  | Cortex®-M7 with FPU               |    |  |  |  |
|   | 3.2          | 2 Memory protection unit (MPU)                   |                                   |    |  |  |  |
|   | 3.3          |                                                  | Memories                          |    |  |  |  |
|   |              | 3.3.1                                            | Embedded Flash memory             |    |  |  |  |
|   |              | 3.3.2                                            | Secure access mode                |    |  |  |  |
|   |              | 3.3.3                                            | Embedded SRAM                     |    |  |  |  |
|   | 3.4          | Boot n                                           | modes                             | 12 |  |  |  |
|   | 3.5          | Power                                            | r supply management               | 13 |  |  |  |
|   |              | 3.5.1                                            | Power supply scheme               | 13 |  |  |  |
|   |              | 3.5.2                                            | Power supply supervisor           | 14 |  |  |  |
|   |              | 3.5.3                                            | Voltage regulator                 | 15 |  |  |  |
|   |              | 3.5.4                                            | SMPS step-down converter          | 15 |  |  |  |
|   | 3.6          | Low-power modes15                                |                                   |    |  |  |  |
|   | 3.7          | Reset and clock controller (RCC)                 |                                   |    |  |  |  |
|   |              | 3.7.1                                            | Clock management                  | 16 |  |  |  |
|   |              | 3.7.2                                            | System reset sources              | 17 |  |  |  |
|   | 3.8          | Gener                                            | ral-purpose input/outputs (GPIOs) | 17 |  |  |  |
|   | 3.9          | Bus-interconnect matrix                          |                                   |    |  |  |  |
|   | 3.10         | DMA controllers                                  |                                   |    |  |  |  |
|   | 3.11         | Chrom-ART Accelerator (DMA2D)                    |                                   |    |  |  |  |
|   | 3.12         | Chrom-GRC™ (GFXMMU)                              |                                   |    |  |  |  |
|   | 3.13         | Nested vectored interrupt controller (NVIC)19    |                                   |    |  |  |  |
|   | 3.14         | Extended interrupt and event controller (EXTI)   |                                   |    |  |  |  |
|   | 3.15         | Cyclic redundancy check calculation unit (CRC)20 |                                   |    |  |  |  |
|   | 3.16         | Flexible memory controller (FMC)20               |                                   |    |  |  |  |
|   | 3.17         | Octo-SPI memory interface (OCTOSPI)20            |                                   |    |  |  |  |
|   | 3.18         | Analog-to-digital converters (ADCs)              |                                   |    |  |  |  |
|   | 3.19         | Analog temperature sensor                        |                                   |    |  |  |  |
|   | 3.20         | Digital temperature sensor (DTS)                 |                                   |    |  |  |  |
|   | 3.21         |                                                  | operation                         |    |  |  |  |
|   | 3.22         |                                                  | I-to-analog converters (DAC)      |    |  |  |  |
|   |              |                                                  |                                   |    |  |  |  |



| 3.23 Voltage reference buffer (VREFBUF)                                             | . 22                                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| Ultra-low-power comparators (COMP)                                                  |                                                      |  |  |  |  |  |
| Operational amplifiers (OPAMP)                                                      |                                                      |  |  |  |  |  |
| Digital filter for sigma-delta modulators (DFSDM)23                                 |                                                      |  |  |  |  |  |
| 3.27 Digital camera interface (DCMI)                                                | . 24                                                 |  |  |  |  |  |
| 3.28 Parallel synchronous slave interface (PSSI)                                    | . 24                                                 |  |  |  |  |  |
| 3.29 LCD-TFT display controller                                                     | . 24                                                 |  |  |  |  |  |
| <b>3.30</b> JPEG codec (JPEG)                                                       | . 24                                                 |  |  |  |  |  |
| 3.31 Random number generator (RNG)                                                  | . 25                                                 |  |  |  |  |  |
| 3.32 Cryptographic acceleration (CRYPT and HASH)                                    | . 25                                                 |  |  |  |  |  |
| 3.33 On-the-fly decryption engine (OTFDEC)                                          | . 25                                                 |  |  |  |  |  |
| 3.34 Timers and watchdogs                                                           | . 26                                                 |  |  |  |  |  |
| 3.34.1 Advanced-control timers (TIM1, TIM8)                                         | . 26                                                 |  |  |  |  |  |
| 3.34.2 General-purpose timers (TIMx)                                                | . 27                                                 |  |  |  |  |  |
| 3.34.3 Basic timers (TIM6 and TIM7)                                                 | . 27                                                 |  |  |  |  |  |
| 3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3)                                    |                                                      |  |  |  |  |  |
| 3.34.5 Independent watchdog                                                         | . 28                                                 |  |  |  |  |  |
| 3.34.6 Window watchdog                                                              | . 28                                                 |  |  |  |  |  |
| 3.34.7 SysTick timer                                                                | . 28                                                 |  |  |  |  |  |
| 3.35 Real-time clock (RTC)                                                          | . 28                                                 |  |  |  |  |  |
| 3.36 Tamper and backup registers (TAMP)                                             | . 28                                                 |  |  |  |  |  |
| 3.37 Inter-integrated circuit interface (I2C)                                       | . 29                                                 |  |  |  |  |  |
| 3.38 Universal synchronous/asynchronous receiver transmitter (USART)                | . 29                                                 |  |  |  |  |  |
| 3.39 Low-power universal asynchronous receiver transmitter (LPUART)                 | . 30                                                 |  |  |  |  |  |
| 3.40 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)     | . 30                                                 |  |  |  |  |  |
| 3.41 Serial audio interfaces (SAI)                                                  | . 31                                                 |  |  |  |  |  |
| 3.42 SPDIFRX receiver interface (SPDIFRX)                                           | . 31                                                 |  |  |  |  |  |
| 3.43 Single wire protocol master interface (SWPMI)                                  | . 31                                                 |  |  |  |  |  |
| 3.44 Management data input/output (MDIO) slaves                                     | . 31                                                 |  |  |  |  |  |
| SD/SDIO/MMC card host interfaces (SDMMC)32                                          |                                                      |  |  |  |  |  |
| Controller area network (FDCAN1, FDCAN2)32                                          |                                                      |  |  |  |  |  |
| 3.47 Universal serial bus on-the-go high-speed (OTG_HS)                             | Universal serial bus on-the-go high-speed (OTG_HS)32 |  |  |  |  |  |
| High-definition multimedia interface (HDMI) - consumer electronics control (CEC) 33 |                                                      |  |  |  |  |  |
| 3.49 Debug infrastructure                                                           | . 33                                                 |  |  |  |  |  |
| Memory mapping                                                                      | .34                                                  |  |  |  |  |  |
| Pin descriptions                                                                    | .35                                                  |  |  |  |  |  |

**4 5** 



| Elec | trical cl            | naracteristics                                         | .62  |  |  |
|------|----------------------|--------------------------------------------------------|------|--|--|
| 6.1  | Parameter conditions |                                                        |      |  |  |
|      | 6.1.1                | Minimum and maximum values                             | . 62 |  |  |
|      | 6.1.2                | Typical values                                         | . 62 |  |  |
|      | 6.1.3                | Typical curves                                         | . 62 |  |  |
|      | 6.1.4                | Loading capacitor                                      | . 62 |  |  |
|      | 6.1.5                | Pin input voltage                                      | . 62 |  |  |
|      | 6.1.6                | Power supply scheme                                    | . 63 |  |  |
|      | 6.1.7                | Current consumption measurement                        | . 64 |  |  |
| 6.2  | Absolu               | ite maximum ratings                                    | . 64 |  |  |
| 6.3  | Operat               | Operating conditions                                   |      |  |  |
|      | 6.3.1                | General operating conditions                           | . 66 |  |  |
|      | 6.3.2                | VCAP external capacitor                                | . 69 |  |  |
|      | 6.3.3                | SMPS step-down converter                               | . 69 |  |  |
|      | 6.3.4                | Operating conditions at power-up / power-down          | . 73 |  |  |
|      | 6.3.5                | Embedded reset and power control block characteristics | . 74 |  |  |
|      | 6.3.6                | Embedded reference voltage                             | . 75 |  |  |
|      | 6.3.7                | Supply current characteristics                         | . 76 |  |  |
|      | 6.3.8                | Wakeup time from low-power modes                       | . 88 |  |  |
|      | 6.3.9                | External clock source characteristics                  | . 89 |  |  |
|      | 6.3.10               | Internal clock source characteristics                  | . 93 |  |  |
|      | 6.3.11               | PLL characteristics                                    | . 95 |  |  |
|      | 6.3.12               | Memory characteristics                                 | . 97 |  |  |
|      | 6.3.13               | EMC characteristics                                    | . 98 |  |  |
|      | 6.3.14               | Absolute maximum ratings (electrical sensitivity)      | . 99 |  |  |
|      | 6.3.15               | I/O current injection characteristics                  | 100  |  |  |
|      | 6.3.16               | I/O port characteristics                               | 100  |  |  |
|      | 6.3.17               | NRST pin characteristics                               | 105  |  |  |
|      | 6.3.18               | FMC characteristics                                    | 106  |  |  |
|      | 6.3.19               | Octo-SPI interface characteristics                     | 123  |  |  |
|      | 6.3.20               | Delay block (DLYB) characteristics                     | 126  |  |  |
|      | 6.3.21               | 16-bit ADC characteristics                             | 127  |  |  |
|      | 6.3.22               | DAC characteristics                                    | 134  |  |  |
|      | 6.3.23               | Voltage reference buffer characteristics               | 137  |  |  |
|      | 6.3.24               | Temperature sensor characteristics                     | 138  |  |  |
|      | 6.3.25               | Digital temperature sensor characteristics             | 139  |  |  |
|      | 6.3.26               | Temperature and VBAT monitoring                        | 139  |  |  |
|      | 6.3.27               | Voltage booster for analog switch                      | 140  |  |  |



|     |          | 6.3.28    | Comparator characteristics                                        |     |
|-----|----------|-----------|-------------------------------------------------------------------|-----|
|     |          | 6.3.29    | Operational amplifier characteristics                             |     |
|     |          | 6.3.30    | Digital filter for Sigma-Delta Modulators (DFSDM) characteristics | 143 |
|     |          | 6.3.31    | Camera interface (DCMI) timing specifications                     |     |
|     |          | 6.3.32    | PSSI interface characteristics                                    | 146 |
|     |          | 6.3.33    | LCD-TFT controller (LTDC) characteristics                         |     |
|     |          | 6.3.34    | Timer characteristics                                             |     |
|     |          | 6.3.35    | Low-power timer characteristics                                   | 150 |
|     |          | 6.3.36    | Communication interfaces                                          | 150 |
| 7   | Pac      | kage inf  | ormation                                                          | 166 |
|     | 7.1      | LQFP6     | 64 package information                                            | 167 |
|     |          | 7.1.1     | Device marking for LQFP64                                         | 168 |
|     | 7.2      | LQFP1     | 00 package information                                            | 170 |
|     |          | 7.2.1     | LQFP100 package information                                       | 172 |
|     | 7.3      | LQFP1     | 44 package information                                            | 173 |
|     |          | 7.3.1     | LQFP144 package information                                       | 175 |
|     | 7.4      | LQFP1     | 76 package information                                            | 176 |
|     |          | 7.4.1     | Device marking for LQFP176                                        | 178 |
|     | 7.5      | UFBGA     | A169 package information                                          | 179 |
|     |          | 7.5.1     | Device marking for UFBGA169                                       | 181 |
|     | 7.6      | UFBGA     | A(176+25) package information                                     | 182 |
|     |          | 7.6.1     | Device marking for UFBGA176+25                                    | 184 |
|     | 7.7      | Therma    | al characteristics                                                | 184 |
|     |          | 7.7.1     | Reference documents                                               | 185 |
| 8   | Ord      | ering inf | formation                                                         | 186 |
| Rev |          | •         |                                                                   |     |
|     |          | _         |                                                                   |     |
|     |          |           |                                                                   |     |
| LIS | T OT TIC | iures     |                                                                   | 197 |



# **List of tables**

DS13196 - Rev 6 page 194/199

# **\7**/

| Table 51.              | CSI oscillator characteristics                                              |      |
|------------------------|-----------------------------------------------------------------------------|------|
| Table 52.              | LSI oscillator characteristics                                              | 95   |
| Table 53.              | PLL characteristics (wide VCO frequency range)                              | 95   |
| Table 54.              | PLL characteristics (medium VCO frequency range)                            | 96   |
| Table 55.              | Flash memory characteristics                                                | 97   |
| Table 56.              | Flash memory programming                                                    | 97   |
| Table 57.              | Flash memory endurance and data retention                                   | 97   |
| Table 58.              | EMS characteristics                                                         | 98   |
| Table 59.              | EMI characteristics                                                         | 99   |
| Table 60.              | ESD absolute maximum ratings                                                | 99   |
| Table 61.              | Electrical sensitivities                                                    | 99   |
| Table 62.              | I/O current injection susceptibility                                        | 100  |
| Table 63.              | I/O static characteristics                                                  |      |
| Table 64.              | Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 | 102  |
| Table 65.              | Output voltage characteristics for PC13, PC14, PC15 and PI8                 |      |
| Table 66.              | Output timing characteristics (HSLV OFF)                                    |      |
| Table 67.              | Output timing characteristics (HSLV ON)                                     |      |
| Table 68.              | NRST pin characteristics.                                                   |      |
| Table 69.              | Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings                    |      |
| Table 70.              | Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings              |      |
| Table 71.              | Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings                   |      |
| Table 72.              | Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings             |      |
| Table 73.              | Asynchronous multiplexed PSRAM/NOR read timings                             |      |
| Table 74.              | Asynchronous multiplexed PSRAM/NOR read - NWAIT timings                     |      |
| Table 75.              | Asynchronous multiplexed PSRAM/NOR write timings                            |      |
| Table 76.              | Asynchronous multiplexed PSRAM/NOR write - NWAIT timings                    |      |
| Table 77.              | Synchronous multiplexed NOR/PSRAM read timings                              |      |
| Table 78.              | Synchronous multiplexed PSRAM write timings                                 |      |
| Table 79.              | Synchronous non-multiplexed NOR/PSRAM read timings                          |      |
| Table 80.              | Synchronous non-multiplexed PSRAM write timings                             |      |
| Table 81.              | Switching characteristics for NAND Flash memory read cycles                 |      |
| Table 82.              | Switching characteristics for NAND Flash write cycles                       |      |
| Table 83.              | SDRAM read timings                                                          |      |
| Table 84.              | LPSDRAM read timings                                                        |      |
| Table 85.<br>Table 86. | SDRAM Write timings                                                         |      |
| Table 87.              | · · · · · · · · · · · · · · · · · · ·                                       |      |
| Table 88.              | OCTOSPI characteristics in SDR mode                                         |      |
| Table 89.              | Delay Block characteristics                                                 |      |
| Table 90.              | ADC characteristics                                                         |      |
| Table 91.              | Minimum sampling time vs R <sub>AIN</sub> .                                 |      |
| Table 92.              | ADC accuracy                                                                |      |
| Table 93.              | DAC characteristics                                                         |      |
| Table 94.              | DAC accuracy                                                                |      |
| Table 95.              | VREFBUF characteristics                                                     |      |
| Table 96.              | Analog temperature sensor characteristics                                   |      |
| Table 97.              | Analog temperature sensor calibration values                                |      |
| Table 98.              | Digital temperature sensor characteristics                                  |      |
| Table 99.              | V <sub>BAT</sub> monitoring characteristics                                 |      |
|                        | V <sub>BAT</sub> charging characteristics                                   |      |
|                        | Temperature monitoring characteristics.                                     |      |
|                        | Voltage booster for analog switch characteristics                           |      |
|                        | COMP characteristics                                                        |      |
|                        | Operational amplifier characteristics                                       |      |
|                        | DFSDM measured timing 1.62-3.6 V                                            |      |
|                        |                                                                             | . ,, |

## STM32H7B0xB

### List of tables



| Table 106.        | DCMI characteristics                                                           | 145 |
|-------------------|--------------------------------------------------------------------------------|-----|
| <b>Table 107.</b> | PSSI transmit characteristics                                                  | 146 |
| <b>Table 108.</b> | PSSI receive characteristics                                                   | 146 |
| <b>Table 109.</b> | LTDC characteristics                                                           | 148 |
| <b>Table 110.</b> | TIMx characteristics                                                           | 150 |
| <b>Table 111.</b> | LPTIMx characteristics                                                         | 150 |
| <b>Table 112.</b> | Minimum i2c_ker_ck frequency in all I <sup>2</sup> C modes                     | 150 |
| <b>Table 113.</b> | I <sup>2</sup> C analog filter characteristics                                 | 151 |
| <b>Table 114.</b> | USART characteristics                                                          | 151 |
| <b>Table 115.</b> | SPI dynamic characteristics                                                    | 153 |
| <b>Table 116.</b> | I <sup>2</sup> S dynamic characteristics                                       | 156 |
| <b>Table 117.</b> | SAI characteristics                                                            | 158 |
|                   | MDIO Slave timing parameters                                                   |     |
| <b>Table 119.</b> | Dynamics characteristics: SDMMC characteristics, V <sub>DD</sub> =2.7 to 3.6 V | 160 |
|                   | Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V               |     |
|                   | Dynamics characteristics: USB OTG_FS                                           |     |
| <b>Table 122.</b> | Dynamics characteristics: USB ULPI                                             | 163 |
|                   | Dynamics JTAG characteristics                                                  |     |
|                   | Dynamics SWD characteristics                                                   |     |
|                   | LQFP64 pin - Mechanical data                                                   |     |
|                   | LQFP100 - Mechanical data                                                      |     |
|                   | LQFP144 - Mechanical data                                                      |     |
|                   | LQFP176 - Mechanical data                                                      |     |
|                   | UFBGA169 - Mechanical data                                                     |     |
|                   | UFBGA169 - recommended PCB design rules (0.5 mm pitch BGA)                     |     |
|                   | UFBGA(176+25) - Mechanical data                                                |     |
|                   | UFBGA(176+25) - Recommended PCB design rules (0.65 mm pitch BGA)               |     |
|                   | Thermal characteristics.                                                       |     |
| Table 134.        | Document revision history                                                      | 187 |



# **List of figures**

| Figure 1.  | STM32H7B0xB block diagram                                                                                        |      |
|------------|------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.  | Power-up/power-down sequence                                                                                     |      |
| Figure 3.  | STM32H7B0xB bus matrix                                                                                           |      |
| Figure 4.  | LQFP64 (STM32H7B0xB without SMPS) pinout                                                                         |      |
| Figure 5.  | LQFP100 (STM32H7B0xB without SMPS) pinout                                                                        |      |
| Figure 6.  | LQFP144 (STM32H7B0xB without SMPS) pinout                                                                        |      |
| Figure 7.  | LQFP176 (STM32H7B0xB without SMPS) pinout                                                                        |      |
| Figure 8.  | UFBGA169 (STM32H7B0xB with SMPS) ballout.                                                                        |      |
| Figure 9.  | UFBGA176+25 (STM32H7B0xB with SMPS) ballout                                                                      |      |
| Figure 10. | Pin loading conditions                                                                                           |      |
| Figure 11. | Pin input voltage                                                                                                |      |
| Figure 12. | Power supply scheme                                                                                              |      |
| Figure 13. | Current consumption measurement scheme                                                                           |      |
| Figure 14. | External capacitor C <sub>EXT</sub>                                                                              |      |
| Figure 15. | SMPS efficicency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode, $T_J$ = 30 °C                   | . 71 |
| Figure 16. | SMPS efficiency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode, T <sub>J</sub> = 130 °C          | . 71 |
| Figure 17. | SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5), T <sub>J</sub> = 30 °C    | . 72 |
| Figure 18. | SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5), T <sub>J</sub> = 130 °C   | . 72 |
| Figure 19. | SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5), T <sub>J</sub> = 30 °C   |      |
| Figure 20. | SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5), T <sub>J</sub> = 130 °C. |      |
| Figure 21. | High-speed external clock source AC timing diagram.                                                              |      |
| Figure 22. | Low-speed external clock source AC timing diagram                                                                |      |
| Figure 23. | Typical application with an 8 MHz crystal                                                                        |      |
| Figure 24. | Typical application with a 32.768 kHz crystal                                                                    |      |
| Figure 25. | V <sub>IL</sub> /V <sub>IH</sub> for all I/Os except BOOT0                                                       |      |
| Figure 26. | Recommended NRST pin protection                                                                                  |      |
| Figure 27. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms                                                       |      |
| Figure 28. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms                                                      |      |
| Figure 29. | Asynchronous multiplexed PSRAM/NOR read waveforms                                                                |      |
| Figure 30. | Synchronous multiplexed NOR/PSRAM read timings.                                                                  |      |
| Figure 31. | Synchronous multiplexed PSRAM write timings                                                                      |      |
| Figure 32. | Synchronous non-multiplexed NOR/PSRAM read timings                                                               |      |
| Figure 33. | Synchronous non-multiplexed PSRAM write timings                                                                  |      |
| Figure 34. | NAND controller waveforms for read access.                                                                       |      |
| Figure 35. | NAND controller waveforms for write access                                                                       |      |
| Figure 36. | NAND controller waveforms for common memory read access                                                          |      |
| Figure 37. | NAND controller waveforms for common memory write access                                                         |      |
| Figure 38. | SDRAM read access waveforms (CL = 1)                                                                             |      |
| Figure 39. | SDRAM write access waveforms                                                                                     |      |
| Figure 40. | OctoSPI timing diagram - SDR mode                                                                                | 124  |
| Figure 41. | OctoSPI timing diagram - DTR mode                                                                                |      |
| Figure 42. | OctoSPI Hyperbus clock                                                                                           | 126  |
| Figure 43. | OctoSPI Hyperbus read                                                                                            | 126  |
| Figure 44. | OctoSPI Hyperbus write                                                                                           | 126  |
| Figure 45. | ADC conversion timing diagram                                                                                    |      |
| Figure 46. | ADC accuracy characteristics                                                                                     |      |
| Figure 47. | Typical connection diagram using the ADC                                                                         |      |
| Figure 48. | Power supply and reference decoupling (V <sub>REF+</sub> not connected to V <sub>DDA</sub> )                     | 133  |
| Figure 49. | Power supply and reference decoupling (V <sub>REF+</sub> connected to V <sub>DDA</sub> )                         |      |
| Figure 50. | 12-bit buffered /non-buffered DAC                                                                                |      |
| Figure 51. | Channel transceiver timing diagrams                                                                              |      |
| Figure 52. | DCMI timing diagram                                                                                              | 145  |
|            |                                                                                                                  |      |

DS13196 - Rev 6 page 197/199

## STM32H7B0xB





| Figure 53. | PSSI timing diagram in Transmit mode                                     | 147 |
|------------|--------------------------------------------------------------------------|-----|
| Figure 54. | PSSI timing diagram in Receive mode                                      | 147 |
| Figure 55. | LCD-TFT horizontal timing diagram                                        | 149 |
| Figure 56. | LCD-TFT vertical timing diagram                                          | 149 |
| Figure 57. | USART timing diagram in Master mode                                      | 152 |
| Figure 58. | USART timing diagram in Slave mode                                       |     |
| Figure 59. | SPI timing diagram - slave mode and CPHA = 0                             | 154 |
| Figure 60. | SPI timing diagram - slave mode and CPHA = 1 <sup>(1)</sup>              | 155 |
| Figure 61. | SPI timing diagram - master mode <sup>(1)</sup>                          | 155 |
| Figure 62. | I <sup>2</sup> S slave timing diagram (Philips protocol) <sup>(1)</sup>  | 157 |
| Figure 63. | I <sup>2</sup> S master timing diagram (Philips protocol) <sup>(1)</sup> | 157 |
| Figure 64. | SAI master timing waveforms                                              | 159 |
| Figure 65. | SAI slave timing waveforms                                               | 159 |
| Figure 66. | MDIO Slave timing diagram                                                |     |
| Figure 67. | SDIO high-speed mode                                                     | 162 |
| Figure 68. | SD default mode                                                          | 162 |
| Figure 69. | DDR mode                                                                 | 162 |
| Figure 70. | ULPI timing diagram                                                      | 164 |
| Figure 71. | JTAG timing diagram                                                      | 165 |
| Figure 72. | SWD timing diagram                                                       |     |
| Figure 73. | LQFP64 - Outline                                                         |     |
| Figure 74. | LQFP64 - Recommended footprint                                           |     |
| Figure 75. | LQFP64 marking example (package top view)                                |     |
| Figure 76. | LQFP100 - Outline                                                        |     |
| Figure 77. | LQFP100 - Recommended footprint                                          |     |
| Figure 78. | LQFP100 marking example (package top view)                               |     |
| Figure 79. | LQFP144 - Outline                                                        |     |
| Figure 80. | LQFP144 - Recommended footprint                                          |     |
| Figure 81. | LQFP144 marking example (package top view)                               |     |
| Figure 82. | LQFP176 - Outline                                                        |     |
| Figure 83. | LQFP176 - Recommended footprint                                          |     |
| Figure 84. | LQFP176 marking example (package top view)                               |     |
| Figure 85. | UFBGA169 - Outline                                                       |     |
| Figure 86. | UFBGA169 - Recommended footprint                                         |     |
| Figure 87. | UFBGA169 marking example (package top view)                              |     |
| Figure 88. | UFBGA(176+25) - Outline                                                  |     |
| Figure 89. | UFBGA(176+25) - Recommended footprint                                    |     |
| Figure 90. | UFBGA176+25 marking example (package top view)                           | 184 |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13196 - Rev 6 page 199/199