One can think of linear algebra as an algebraic way to think about geometric concepts.

Definition 1 (vector). A vector in \mathbb{R}^N is a point $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^N$ or the line segment going from the origin to that point.

Definition 2 (vector magnitude/length). The **magnitude** or **length** of a vector $\mathbf{x} = (x_1, ..., x_n)$ is $\sqrt{x_1^2 + x_2^2 + ... x_n^2}$

Definition 3 (unit vector). A unit vector is a vector \mathbf{v} s.t. ||v|| = 1

insert proof

Definition 4 (vector addition). The sum of \mathbf{x} and \mathbf{y} in \mathbb{R}^N is $\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_n + y_n)$

**Heading operations on vectors **

Definition 5 (scalar multiplication). If $c \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^n$,

$$c\mathbf{v} = (cx_1, cx_2, \dots, cx_n) \tag{1}$$

$$||c\mathbf{v}|| = c\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = |c| \cdot ||\mathbf{v}||$$
 (2)

Definition 6 (vector addition). if $\mathbf{v} = (x_1, \dots, x_n), \mathbf{w} = (y_1, \dots, y_n)$

$$\mathbf{v} + \mathbf{w} = (x_1 + y_1, x_2 + y_2, \dots x_n + y_n)$$
 (3)

Remark. Parallelogram rule: $0, \mathbf{v}, \mathbf{w}$, and $\mathbf{v} + \mathbf{w}$ form a parallelogram

Definition 7 (vector subtraction). \mathbf{v} - \mathbf{w} is the vector that produces \mathbf{v} when added to \mathbf{w} . For \mathbf{v} , $\mathbf{w} \in \mathbb{R}^n$,

$$\mathbf{v} - \mathbf{w} = (x_1 - y_1, \dots, x_n - y_n) \tag{4}$$

Remark. v-w starts at w and goes toward v

Definition 8 (midpoint). The **midpoint** of two points can be found by taking the average of their components. In two dimensions, the midpoint vecotr of points \mathbf{v} and \mathbf{w} is

$$\frac{\mathbf{v} + \mathbf{w}}{2} \tag{5}$$

We can also think of this as $\mathbf{w} + \frac{\mathbf{v} - \mathbf{w}}{2} = \frac{\mathbf{v} + \mathbf{w}}{2}$. I.e. traveling along \mathbf{w} then halfway along the vector connecting \mathbf{v} and \mathbf{w} .

Theorem 9 (Diagonals of a parallelogram bisect each other).

Proof. We can prove the diagonals bisect each other by showing their midpoints are equal. We showed above that the diagonal formed by \mathbf{v} - \mathbf{w} has midpoint $\frac{\mathbf{v}+\mathbf{w}}{2}$. The other diagonal runs from $\mathbf{0}$ to \mathbf{v} + \mathbf{w} . This is the vector \mathbf{v} + \mathbf{w} which also clearly has midpoint $\frac{v+w}{2}$ Since the midpoints of the diagonals are equal, they bisect each other.

Theorem 10 (Medians of a triangle intersect at a point 2/3 the way from each vertex to its opposite side).

Figure 1: medians

Proof. For each point, we want to calculate the point 2/3 along its corresponding median.

One median is $\mathbf{w}/2 - \mathbf{v}$. 2/3 of that median is $2/3(\mathbf{w}/2 - \mathbf{v}) = \mathbf{v}/3 + \mathbf{w}/3$. Another median is $\mathbf{v}/2 - \mathbf{w}$. 2/3 of that median is $2/3(\mathbf{v}/2 - \mathbf{w}) = \mathbf{v}/3 + \mathbf{w}/3$. The final median is $\mathbf{v}+\mathbf{w}/2$. 2/3 of that median is $2/3(\mathbf{v}+\mathbf{w}/2) = \mathbf{v}/3 + \mathbf{w}/3$. The same cooordinate lies 2/3 the way down each median.

2