Filtragem

As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem original, ou seja, o pixel "filtrado" tem um valor dependente do contexto em que ele se encontra na imagem original.

A operação de filtragem necessita da definição de frequência espacial. Assim, seja g uma imagem. Os níveis de cinza NC de g variam com a distância, observando-se uma única linha ou coluna de pixels da imagem.

Considerando a linha selecionada teríamos a seguinte distribuição dos níveis de cinza em relação ao primeiro pixel na linha (lado esquerdo da linha, veja a seta na imagem).

Observa-se que a linha da imagem apresentar uma grande variação nos níveis de cinza a medida que nos afastamos do primeiro pixel. Estas descontinuidades têm as seguintes características:

- representam bordas (feições de alta frequência sensíveis à visão)
- quando muito próximas caracterizam feições de alta frequência
- quando em número baixo caracterizam feições de baixa freqüência (superfícies suaves na imagem)

O conceito de frequência espacial alta ou baixa na imagem depende da escala em que a imagem se encontra. Então, uma mesma área da imagem pode ser de alta frequência ou de baixa frequência dependendo do fator de escala da imagem.

Nas imagens podemos encontrar freqüências: Alta, Média e Baixa. Assim, é possível reduzir os efeitos de determinadas freqüências na imagem, buscando obter um efeito visual de melhor qualidade na imagem. As freqüências que devem ser tratadas, dependem do objetivo a ser atingido com o tratamento.

A redução de componentes de frequência é conseguida através de técnicas de filtragem, usando realce seletivo e eliminando a mistura de frequências.

As formas de Implementação da Filtragem são por Convolução no domínio espacial e por Análise de Fourier no domínio da frequência.

O esquema de Filtragem por Convolução:

 $g_f = g * h onde$:

 $g_f \rightarrow imagem \ filtrada$

 $g \rightarrow imagem \ original$

 $h \rightarrow m$ áscara

* → Convolução

A Convolução discreta é descrita pela seguinte formulação matemática:

Mecanismo para realização da Convolução de h sobre a imagem g.

Com esta operação o pixel central (marcado com x) terá um novo valor que depende dele e dos vizinhos.

Os filtros espaciais são implementados através de máscaras (matrizes) com dimensões ímpares. Os tipos de filtros são Passa Baixas, Passa Altas, Direcionais, Passa Banda.

Efeito de Borda

O problema da borda está em como resolver o problema da(s) primeira(s) linha(s), da(s) última(s) linha(s), da(s) primeira(s) coluna(s) e da(s) última(s) coluna(s) de pixels. Nestes locais as máscaras não correspondem diretamente aos pixels da imagem. Portanto, alguma estratégia deve ser tomada para preenchermos estes pixels. Várias estratégias podem ser implementadas. É possível repetir para estes locais os valores dos pixels originais, ou repetir o valor pixel tratado

mais próximo. Outra estratégia é considerar a Convolução apenas dos pixels que intersectam o filtro (a máscara). Exemplo:

Original

Repete pixel original tratado mais próximo

Repete pixel

10	12	13	11
11	50	12	12
10	11	13	12
10	12	12	13

A **Filtragem por Convolução** é uma operação pontual que pode tomar bastante tempo de processamento. Os resultados da aplicação destes filtros resultam em imagens com baixo brilho e baixo contraste.

Os filtros **Passa-Baixas** eliminam altas freqüências, sendo usado para eliminar ruídos em imagens. O ruído é uma fonte de alta freqüência. O efeito produzido é uma desfocalização caracterizada por uma imagem borrada. Esta desfocalização depende das dimensões do filtro, quanto maior a dimensão do filtro, maior será a desfocalização.

Exemplos de filtros Passa-Baixas:

1) **Filtro da Média**: pixel central é a média aritmética dos pixels dentro da área da janela.

Máscaras:

Quadrada $\begin{array}{c|cccc}
 & 1 & 1 & 1 \\
\hline
 & 9 & 9 & 9 \\
 & 1 & 1 & 1 \\
\hline
 & 9 & 9 & 9 \\
\hline
 & 1 & 1 & 1 \\
\hline
 & 9 & 9 & 9
\end{array}$

$$\begin{array}{c|cccc} Gaussiana \\ \hline & \frac{1}{15} & \frac{2}{15} & \frac{1}{15} \\ \frac{2}{15} & \frac{3}{15} & \frac{2}{15} \\ \frac{1}{15} & \frac{2}{15} & \frac{1}{15} \\ \hline & \frac{1}{15} & \frac{2}{15} & \frac{1}{15} \\ \hline \end{array}$$

Exemplos de filtragem:

```
[g,m] = imread('C:\On_work\Images\lena.bmp','bmp');
h1 = [1/9 1/9 1/9; 1/9 1/9; 1/9 1/9 1/9];
h2 = [0 1/5 0; 1/5 1/5 1/5; 0 1/5 0];
h3 = [1/15 2/15 1/15; 2/15 3/15 2/15; 1/15 2/15 1/15];

gfh1 = filtropdi(double(g),h1,'pixel original');
gfh2 = filtropdi(double(g),h2,'pixel original');
gfh3 = filtropdi(double(g),h3,'pixel original');
```

exibepdi(g,m) % Imagem Original

exibepdi (gfh1,m) % Imagem filtrada com o filtro da média (máscara quadrada)

exibepdi (gfh2,m) % Imagem filtrada com o filtro da média (máscara em cruz)

exibepdi (gfh3,m) % Imagem filtrada com o filtro gaussiano

2) **Filtro da Média Ponderada**: peso depende de sua distância ao peso central.

Quadrada			
1	1	1	
16	$\frac{-}{8}$	16	
1	1	1	
$\frac{8}{8}$	$\overline{4}$	8	
1	1	1	
16	8	16	

Forma +			
0	$\frac{1}{6}$	0	
1	1	1	
6	3	6	
0	$\frac{1}{6}$	0	

Neste caso a suavização é menos intensa pois há mais influência do pixel central.

Exemplos:

```
h4=[1/16 1/8 1/16; 1/8 1/4 1/8; 1/16 1/8 1/16];
h5=[0 1/6 0; 1/6 1/3 1/6; 0 1/6 0];
gfh4 = filtropdi(double(g),h4,'pixel original');
gfh5 = filtropdi(double(g),h5,'pixel original');
```

exibepdi (gfh3) % Imagem filtrada com o filtro da média ponderada (máscara quadrada)

exibepdi (gfh4) % Imagem filtrada com o filtro da média ponderada (máscara em cruz)

3) **Filtro da Moda**: o nível de cinza do pixel central é o nível de cinza mais populoso dentro da janela de dimensão do filtro.

Exemplo:

Original		
10	12	13
11	50	12
10	10	13

Filtrado		
10	12	13
11	10	
	•••	

Moda = 10

Este filtro é usado para homogeneizar imagens temáticas, ou para reduzir ruídos mantendo o máximo de informação na imagem.

4) **Filtro da Mediana**: O nível de cinza do pixel central é o nível de cinza intermediário do conjunto ordenado de níveis de cinza dentro da janela da máscara.

Exemplo:

Ordenação:

NC do pixel central = 27 (ou 28)

Este é um filtro complexo por envolver ordenação. Mas sua aplicação suaviza a imagem preservando a informação de bordas na imagem.

Os **Filtros Passa-Altas** (FPA) ou de realce de bordas, são usados para eliminar feições de baixa freqüência e para realçar feições de alta freqüência. O tamanho da máscara (filtro) utilizado influencia o resultado final. Quanto menor forem as dimensões do filtro, menos detalhes serão realçados. No caso de feições lineares extensas, usa-se máscaras de dimensões grandes.

Exemplos de Filtros Passa Alta

1) Filtros Laplacianos: usados para detectar bordas

$$\begin{vmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{vmatrix}$$

$$\begin{bmatrix}
 -1 & -1 & -1 \\
 -1 & 8 & -1 \\
 -1 & -1 & -1
 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

Estas máscaras caracterizam-se por ter a soma dos pesos = 0.

```
Exemplos:
```

```
h6=[0 -1 0; -1 4 -1; 0 -1 0];
h7=[-1 -1 -1; -1 8 -1; -1 -1 -1];
h8=[1 -2 1; -2 4 -2; 1 -2 1];
gfh6 = filtropdi(double(g),h6,'pixel original');
gfh7 = filtropdi(double(g),h7,'pixel original');
gfh8 = filtropdi(double(g),h8,'pixel original');
```

exibepdi (gfh6,m) % Imagem filtrada com o filtro Laplaciano (1)

 $\verb|exibepdi(gfh7,m)| & Magem filtrada com o filtro Laplaciano (2) \\$

exibepdi (gfh8,m) % Imagem filtrada com o filtro Laplaciano (3)

2) **Filtros Laplacianos+Original**: usados para detectar bordas mantendo a informação original.

$$\begin{vmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{vmatrix}$$

Estas máscaras caracterizam-se por ter a soma dos pesos = 1. Mas tem como desvantagem o realce de ruídos.

Exemplos:

```
h9=[0 -1 0; -1 5 -1; 0 -1 0];
h10=[-1 -1 -1; -1 9 -1; -1 -1 -1];
h11=[1 -2 1; -2 5 -2; 1 -2 1];
gfh9 = filtropdi(double(g),h9,'pixel original');
gfh10 = filtropdi(double(g),h10,'pixel original');
gfh11 = filtropdi(double(g),h11,'pixel original');
exibepdi(gfh9,m) % Imagem filtrada com o filtro Laplaciano + original(1)
```


exibepdi (gfh10,m) % Imagem filtrada com o filtro Laplaciano + original (2)

exibepdi (gfh11,m) % Imagem filtrada com o filtro Laplaciano + original (3)

Filtros Direcionais de bordas são filtros passa alta que realçam bordas em certas direções, dependendo da implementação do filtro. As bordas em imagens são caracterizadas por transições abruptas de níveis de cinza. Nestes filtros os pesos são distribuídos de forma assimétrica em torno de um eixo hipotético.

Exemplo de Filtros Direcionais:

1) Filtros de Sobel

1) I muos u	Coober		
Norte/	Nordeste/	Leste/	Noroeste/
Sul	Sudoeste	Oeste	Sudeste
1 2 1	0 1 2	-1 0 1	$\begin{bmatrix} -2 & -1 & 0 \end{bmatrix}$
0 0 0	$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$	$-2 \ 0 \ 2$	-1 0 1
-1 -2 -1	$\begin{bmatrix} -2 & -1 & 0 \end{bmatrix}$	-1 0 1	0 1 2
	0 0 0; -1 -2 -1];		

```
gfh12 = filtropdi(double(g),h12,'pixel original');
gfh13 = filtropdi(double(g),h13,'pixel original');
gfh14 = filtropdi(double(g),h14,'pixel original');
gfh15 = filtropdi(double(g),h15,'pixel original');
```

exibepdi (gfh12,m) % Imagem filtrada com o filtro Sobel Norte/Sul

h14=[-1 0 1; -2 0 2; -1 0 1]; h15=[-2 -1 0; -1 0 1; 0 1 2]; exibepdi (gfh13,m) % Imagem filtrada com o filtro Sobel Nordeste/Sudoeste

exibepdi (gfh14,m) % Imagem filtrada com o filtro Sobel Leste/Oeste

exibepdi (gfh15,m) % Imagem filtrada com o filtro Sobel Noroeste/Sudeste

2) Filtros de Prewitt

Norte/ Sul

1	1 -2 -1	1
1	-2	1
-1	-1	-1

Nordeste/ Sudoeste

Leste/ Oeste

Noroeste/ Sudeste

```
h19=[-1 -1 1; -1 -2 1; 1 1 1];
```

```
gfh16 = filtropdi(double(g),h16,'pixel original');
gfh17 = filtropdi(double(g),h17,'pixel original');
gfh18 = filtropdi(double(g),h18,'pixel original');
gfh19 = filtropdi(double(g),h19,'pixel original');
exibepdi(gfh16,m) % Imagem filtrada com o filtro Prewitt Norte/Sul
```


exibepdi (gfh17,m) % Imagem filtrada com o filtro Prewitt Nordeste/Sudoeste

exibepdi (gfh18,m) % Imagem filtrada com o filtro Prewitt Leste/Oeste

exibepdi (gfh19,m) % Imagem filtrada com o filtro Prewitt Noroeste/Sudeste

Filtro para detecção de linhas, são filtros passa alta que realçam feições lineares na horizontal e na vertical.

Exemplo de filtros:

Detecção Detecção horizontal Vertical

$$\begin{array}{c|cccc} -1 & -1 & -1 \\ \hline 2 & 2 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & 2 & -1 \\ \hline 2 & 2 & 2 \end{array}$$

O problema com estes filtros é que eles podem detectar características que não são linhas.

Exemplos:

```
h20=[-1/2 -1/2 -1/2; 1 1 1; -1/2 -1/2];
h21=[-1/2 1 -1/2; -1/2 1 -1/2; -1/2 1 -1/2];
gfh20 = filtropdi(double(g),h20,'pixel original');
gfh21 = filtropdi(double(g),h21,'pixel original');
exibepdi(gfh20,m) % Imagem filtrada com o filtro detetor de linhas horizontais
```


exibepdi (gfh21,m) % Imagem filtrada com o filtro detetor de linhas verticais

Outros exemplos aplicação de filtros:

• Considere a Imagem original:

• Aplicação do Filtro Passa-Baixas (Filtro utilizado - filtro da Média):

• Aplicação do Filtro Passa-Altas (Filtro utilizado - <u>filtro Laplaciano + original</u>):


```
Algortimo: function gf = filtropdi(g,h) gf = g; Lint = fix(size(h,1)/2); Pint = fix(size(h,2)/2); % Laco sobre as linhas for l = Lint + l : size(g,1) - Lint % Laco sobre os pixels for p = Pint + l : size(g,2) - Pint % Extracao da subimagem gj = g(l - Lint:l + Lint, p - Pint:p + Pint); % Calculo da convolucao entre a subimagem e a mascara gf(l,p) = sum(sum(gj.*h)); end
```


Departamento de Computação Cursos de Ciência e Engenharia da Computação Disciplina: Processamento Digital de Imagens

Laboratório de PDI Nº. 2 Data 12/05/2007

Real ce

- 1) Aplicar os diferentes tipos de realce, visto em sala, sobre a imagem da Lena em níveis de cinza.
- a) Li near (Testar com di ferentes ganhos e deslocamentos)b) Logarítmico

- c) Equalização histrogrâmica
- d) Raiz Quadarada

e) Quadrado

Filtragem

Implementar a função de filtragem e testar com os diferentes tipos de filtros especificados.

- 2) Aplicação de filtros sobre a imagem da Lena em níveis de cinza. Exemplos de filtros Passa-Baixas:
- a) Filtro da Média: pixel central é a média aritmética dos pixels dentro da área da janela.

Máscaras:

(M1) Quadrada

- 1	- 1	_ 1
1	1	IJΙ
9 1	9	9
	1	1
9 1	9	9
	1	1
9	9	9

(M2) Forma +

(IVIZ)	FOI	Ш
0	$\frac{1}{5}$	0
1	5 1	1
5	5	5
0	$\frac{1}{5}$	0
	-	l

(M3) Gaussi ana

	•	
1	2	1
15	<u>15</u>	15
2	3	2
15	<u>15</u>	15
1	2	1
15	15	$\overline{15}$
		_

Exemplos de filtragem:

Imagem Original

Imagem filtrada com o filtro da média (máscara quadrada)

Imagem filtrada com o filtro da média (máscara em cruz)

Imagem filtrada com o filtro gaussiano

b) **Filtro da Média Ponderada**: peso depende de sua distância ao peso central.

(M4) Quadrada

(M5) Forma +

4) Quadrac		
1	1	1
16	8	16
1	1	1
8	4	8
1	1	1
16	8	16

(M5) Forma
$$\begin{array}{c|cccc}
0 & \frac{1}{6} & 0 \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
0 & \frac{1}{6} & 0
\end{array}$$

Neste caso a suavização é menos intensa pois há mais influência do pixel central.

Exemplos:

Imagem filtrada com o filtro da média ponderada (máscara quadrada)

Imagem filtrada com o filtro da média ponderada (máscara em cruz)

c) **Filtro da Moda**: o nível de cinza do pixel central é o nível de cinza mais populoso dentro da janela de dimensão do filtro. Exemplo:

<u> </u>	⁻i gi	nal
10	12	13
11	50	12
10	10	13

Moda = 10

Este filtro é usado para homogeneizar imagens temáticas, ou para reduzir ruídos mantendo o máximo de informação na imagem.

d) **Filtro da Mediana**: O nível de cinza do pixel central é o nível de cinza intermediário do conjunto ordenado de níveis de cinza dentro da janela da máscara.

Exemplo:

0ri gi nal			Filtrada		
28	32	29	27	27	
28	30	27	27	27	
28	32	29			

Ordenação:

NC do pixel central = 27 (ou 28)

Este é um filtro complexo por envolver ordenação. Mas sua aplicação suaviza a imagem preservando a informação de bordas na imagem.

Exemplos de Filtros Passa Alta

e) **Filtros Laplacianos** : usados para detectar bordas Testar cada máscara.

Estas máscaras caracterizam-se por ter a soma dos pesos = 0.

Imagem filtrada com o filtro Laplaciano (1)

Imagem filtrada com o filtro Laplaciano (2)

Imagem filtrada com o filtro Laplaciano (3)

f) Filtros Laplacianos+Original: usados para detectar bordas mantendo a informação original.

(1) (3)

Estas máscaras caracterizam-se por ter a soma dos pesos = 1. Mas tem como desvantagem o real ce de ruídos.

Imagem filtrada com o filtro Laplaciano + original (1)

Imagem filtrada com o filtro Laplaciano + original (2)

Imagem filtrada com o filtro Laplaciano + original (3)

Filtros Direcionais de bordas são filtros passa alta que realçam bordas em certas direções, dependendo da implementação do filtro. As bordas em imagens são caracterizadas por transições abruptas de níveis de cinza. Nestes filtros os pesos são distribuídos de forma assimétrica em torno de um eixo hipotético.

Exemplo de Filtros Direcionais:

Norte/	Nordeste/	Leste/	Noroeste/
Sul	Sudoeste	Oeste	Sudeste
1 2 1 0 0 0 -1 -2 -1	$ \begin{array}{c cccc} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} $

Imagem filtrada com o filtro Sobel Norte/Sul

Imagem filtrada com o filtro Sobel Nordeste/Sudoeste

Imagem filtrada com o filtro Sobel Leste/Oeste

Imagem filtrada com o filtro Sobel Noroeste/Sudeste

2) Filtros de Prewitt

Norte/ Sul	Nordeste/ Sudoeste	Leste/ Oeste	Noroeste/ Sudeste	
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \end{bmatrix}$	1 1 1 -1 -2 1		$\begin{bmatrix} -1 & -1 & 1 \\ -1 & -2 & 1 \end{bmatrix}$	
-1 -1 -1	-1 -1 1	-1 1 1	1 1 1	

Exemplos: Imagem filtrada com o filtro Prewitt Norte/Sul

Imagem filtrada com o filtro Prewitt Nordeste/Sudoeste

Imagem filtrada com o filtro Prewitt Leste/Oeste

Imagem filtrada com o filtro Prewitt Noroeste/Sudeste

3) Filtro para detecção de linhas, são filtros passa alta que realçam feições lineares na horizontal e na vertical.

Exemplo de filtros:

Detecção hori<u>zontal</u>

 $\begin{array}{cccc} -1 & -1 & -1 \\ \hline 2 & 2 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \\ \hline 2 & 2 & 2 \end{array}$

Detecção Verti cal

O problema com estes filtros é que eles podem detectar características que não são linhas. Exemplos:

Imagem filtrada com o filtro detetor de linhas horizontais

Imagem filtrada com o filtro detetor de linhas verticais

