Նեյրոնային ցանցեր. ինչեր և ինչպեսներ

ԵՊ3 ԻԿՄ ՈͰԳԸ

Մեբենայական ուսուցում

- Machine learning
- Գիտության ճյուղ, որն ուսումնասիրում է այնպիսի ալգորիթմներ, որոնք կարողանում են սովորել տվյալներից

Մեբենայական ուսուցում

- Machine learning
- Մեթոդներ

Genetic Algorithms
Clustering

Artificial Neural Networks

Decision Tree Learning

Regression
Association Rule Learning

Support Vector Machines

Reinforcement Learning

• Ձեռագիր թվանշանների ճանաչում

Random Sampling of MNIST

- Ձեռագիր թվանշանների ճանաչում
 - Benchmark: http://yann.lecun.com/exdb/mnist/
 - Լավագույն արդյունքը SVM-ով՝ 99.44%
 - Լավագույն արդյունքը նեյրոնային ցանցով՝ 99.77%
 - Dan Cireşan, Ueli Meier, Juergen Schmidhuber, 2012
 - http://arxiv.org/abs/1202.2745

• Լուսանկարից օբյեկտի ճանաչում

- Լուսանկարից օբյեկտի ճանաչում
 - Մի քանի մրցույթներ։ http://www.image-net.org/challenges/LSVRC/2014/
 - Լավագույն արդյունքները՝ Goog**LeNet**
 - http://googleresearch.blogspot.com/2014/09/building-deeper-understanding-of-images.html
 - http://karpathy.github.io/2014/09/02/what-i-learned-fromcompeting-against-a-convnet-on-imagenet/
 - Կարեն Սիմոնյան, Andrew Zisserman, University of Oxford
 - http://www.robots.ox.ac.uk/~karen/

- Լուսանկարից ճանապարհային նշանների ճանաչում
 - http://benchmark.ini.rub.de/
- Խոսբի ճանաչում
 - Geoffrey Hinton:
 - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38131.pdf
 - Andrew Ng: http://arxiv.org/abs/1406.7806

Geoffrey Hinton

https://www.cs.toronto.edu/~hinton/

University of Toronto

Google

- Backpropagation
- Boltzmann machines
- Deep belief networks

Geoffrey Hinton

Հարցազրույց reddit-ում.

http://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton

I will be disappointed if in five years time we do not have something that can watch a YouTube video and tell a story about what happened.

Yann LeCun

http://yann.lecun.com/

https://www.facebook.com/yann.lecun

New York University

Facebook Artificial Intelligence Research

Convolutional neural networks

Yann LeCun

Հարցազրույց reddit-ում.

http://www.reddit.com/r/MachineLearning/comments/2 5lnbt/ama_yann_lecun/

Yet another advice: don't get fooled by people who claim to have a solution to Artificial General Intelligence, who claim to have Al systems that work "just like the human brain", or who claim to have figured out how the brain works (well, except if it's Geoff Hinton making the claim). Ask them what error rate they get on MNIST or ImageNet.

Andrew Ng

http://cs.stanford.edu/people/ang/

https://twitter.com/AndrewYNg

Stanford University

Baidu Research

- Google Brain
- Կատվի նկարի Ճանաչում Youtubeից
- Coursera-ի համահիմնադիր

Yoshua Bengio

http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html

https://plus.google.com/u/0/+YoshuaBengio/posts

Université de Montréal

Աշխատում է միայն համալսարանում

- Գիրք http://www.iro.umontreal.ca/~bengioy/dlbook/
- over 22000 citations found by Google Scholar in early
 2015

Yoshua Bengio

Հարցազրույց reddit-ում.

http://www.reddit.com/r/MachineLearning/comments/25lnbt/ama_yann_lecun/

I believe that the recent surge of interest in NNets just means that the machine learning community wasted many years not exploring them, in the 1996-2006 decade, mostly. There is also hype, especially if you consider the media. That is unfortunate and dangerous, and will be exploited especially by companies trying to make a quick buck. The danger is to see another bust when wild promises are not followed by outstanding results. Science mostly moves by small steps and we should stay humble.

Juergen Schmidhuber

http://people.idsia.ch/~juergen/

Swiss Al Lab IDSIA

- Recurrent neural networks
- LSTM networks

Andrej Karpathy, Ph.D. student

http://cs.stanford.edu/people/karpathy/

https://plus.google.com/+AndrejKarpathy/posts

Stanford University

Google

Blog: http://karpathy.github.io/

Կոնֆերանսներ

- International conference on learning representations
 - https://sites.google.com/site/representationlearning2014/
 - Կազմակերպում են Yoshua Bengio & Yann Lecun
 - Canada

Կոնֆերանսներ

- Neural information processing systems
 - http://nips.cc/
 - 1987-hg
 - 2014 Montreal, Canada
 - 2015 Montreal, Canada
 - 2016 Lisbon, Portugal

Կոնֆերանսներ

- Neural information processing systems
 - Papers in early NIPS proceedings tended to use neural networks as a
 tool for understanding how the human brain works, which attracted
 researchers with interests in biological learning systems as well as
 those interested in artificial learning systems. Since then, the
 biological and artificial systems research streams have diverged, and
 recent NIPS proceedings are dominated by papers on machine
 learning, artificial intelligence and statistics, although computational
 neuroscience remains an aspect of the conference.
 - Wikipedia

Ինչպես են աշխատում

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

Neuron (output) activation

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

- b is the neuron bias
- $g(\cdot)$ is called the activation function

Ինչպես են աշխատում

NEURAL NETWORK

 $w_i^{(2)}$

 $h(\mathbf{x})_i$

Topics: single hidden layer neural network

· Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{b}^{(1)} + \mathbf{W}^{(1)}\mathbf{x}$$
$$\left(a(\mathbf{x})_i = b_i^{(1)} + \sum_j W_{i,j}^{(1)} x_j\right)$$

Hidden layer activation:

$$\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{a}(\mathbf{x}))$$

Output layer activation:

$$f(\mathbf{x}) = o\left(b^{(2)} + \mathbf{w}^{(2)^{\top}} \mathbf{h}^{(1)} \mathbf{x}\right) \underbrace{x_1}_{\text{output activation function}}^{t,j} \dots \underbrace{x_d}_{\text{output activation function}}^{t,j}$$

Բազմաշերտ ցանցեր

NEURAL NETWORK

Topics: multilayer neural network

- Could have L hidden layers:
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

▶ hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Ինչպես են աշխատում

• Նկարները ներկայացվում են որպես մատրիցներ

Ինչպես են աշխատում

Convolutional layer

Բազմաշերտ ցանցեր. LeNet

Ինչպես են սովորում

Ինչպես են սովորում

Ինչպես են սովորում

Արժեքները փոփոխում ենք այնպես, որ հավանականությունը աձի

Կենսաբանական նեյրոննե՞ր

Ոչ միայն դասակարգում և ոչ միայն supervised

Autoencoder on MNIST dataset

http://kaggle.com/c/diabetic-retinopathy-detection

Healthy eye: level 0

Severe state: level 4

• Նախնական մշակում

• Նախնական մշակում

Original images of healthy eyes

Preprocessed versions edge recognized as level 4

- Ցանցի կառուցվածքը
- 11 շերտ

Nr	Type	Batches	Channels	Width	Height	Kernel size / stride
0	Input	20	1	512	512	
1	Conv	20	40	506	506	7x7 / 1
2	ReLU	20	40	506	506	
3	MaxPool	20	40	253	253	3x3 / 2
4	Conv	20	40	249	249	5x5 / 1
5	ReLU	20	40	249	249	
6	MaxPool	20	40	124	124	3x3 / 2
7	Conv	20	40	120	120	5x5 / 1
8	ReLU	20	40	120	120	
9	MaxPool	20	40	60	60	3x3 / 2
10	Conv	20	40	56	56	5x5 / 1
11	ReLU	20	40	56	56	
12	MaxPool	20	40	14	14	4x4 / 4
13	Fully connected	20	256			
14	ReLU	20	256			
15	Dropout	20	256			
16	Fully connected	20	256			
17	ReLU	20	256			
18	Dropout	20	256			
19	Fully connected	20	1			
20	Euclidean Loss	1	1			

• Արդյունքները. . .

Շաքարախտային ռետինոպատիայի ախտորոշում

• Բոլոր մանրամասները.

http://yerevann.github.io/2015/08/17/diabetic-

retinopathy-detection-contest-what-we-did-wrong/

80	-	Florian Muellerklein	0.50395	9	Mon, 27 Jul 2015 18:54:01
81	†2	azk	0.50122	18	Mon, 04 May 2015 05:12:28 (-2.8d)
82	↑5	YerevaNN • Hrant Khachatrian • Narek Hovsepyan • Tigran Galstyan • Hrayr Harutyunyan • Mahnerak	0.50039	38	Mon, 27 Jul 2015 18:40:31 (-29.5h)
83	↑6	[UvA.nl] BSc Al 2nd year Project 💤	0.49230	6	Thu, 25 Jun 2015 12:03:33
84	↓2	BlueCoconut	0.49196	7	Mon, 27 Jul 2015 01:13:57

Լուսանկարների գունավորում

Լուսանկարների գունավորում

• Հաղարծինը 1913 թվականին

Կետերի «դեմքի ճանաչում»

• https://www.kaggle.com/c/noaa-right-whale-recognition մինչև հունվարի 7-ր

Ինչպես սովորել

https://www.youtube.com/playlist?list=PL6Xpj9I5qX YEcOhn7TqghAJ6NAPrNmUBH by Hugo Larochelle

Topics: connection weights, bias, activation function

· Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

· Neuron (output) activation

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

- W are the connection weights
- b is the neuron bias
- $g(\cdot)$ is called the activation function

Ինչպես սովորել

https://www.youtube.com/playlist?list=PL6Xpj9I5qXY EcOhn7TqghAJ6NAPrNmUBH by Hugo Larochelle http://info.usherbrooke.ca/hlarochelle/cours/ift725_A 2013/contenu.html - սլայդեր, հոդվածների հղումներ...

Note that Hugo Larochelle (formerly a PhD with me and a post-doc with Hinton) has great videos on deep learning – **Yoshua Bengio**

Hugo Larochelle's nice, but fairly <u>advanced class on</u> <u>Machine Learning</u> (Neural Nets included). – **Andrej Karpathy**

Ինչպես սովորել. մաթ. անալի՞զ

Մի քանի փոփոխականից ֆունկցիայի գրադիենտ. . .

Ծրագրեր

- Caffe http://caffe.berkeleyvision.org/
- Theano (Python) http://deeplearning.net/software/theano/
- PyBrain http://pybrain.org/
- Torch7 http://torch.ch/ Lua լեզվով
 - Օգտագործում են Google-ում, Facebook-ում. . .
- ConvNetJS (by Karpathy)

http://cs.stanford.edu/people/karpathy/convnetjs/

ConvNetJS

Demo on MNIST:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

```
layer_defs.push({type:'input',
out_sx:24, out_sy:24, out_depth:1});
layer_defs.push({type:'conv', sx:5,
filters:8, stride:1, pad:2,
activation:'relu'});
layer_defs.push({type:'pool', sx:2,
stride:2});
layer_defs.push({type:'conv', sx:5,
filters:16, stride:1, pad:2,
activation:'relu'});
layer_defs.push({type:'pool', sx:3,
stride:3});
layer_defs.push({type:'softmax',
num_classes:10});
```

input (24x24x1) max activation: 1, min: 0 max gradient: 0.10605, min: -0.0954

Activations:

conv (24x24x8) filter size 5x5x1, stride 1 max activation: 3.30328, min: -1.34753 max gradient: 0.08902, min: -0.04703 parameters: 8x5x5x1+8 = 208

relu (24x24x8) max activation: 3.30326, min: 0 max gradient: 0.06902, min: -0.04703

pool (12x12x8) pooling size 2x2, stride 2 max activation: 3.30328, min: 0 max gradient: 0.06902, min: -0.04703

conv (12x12x16) filter size 5x5x8, stride 1 max activation: 4.34829, min: -6.68405 max gradient: 0.06943, min: -0.08449 parameters: 16x5x5x8+16 = 3216

(#12223120)(#1646161)(#266620)(#166020)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#16662000)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#1666200)(#16662000)(#16662000)(#1666200)(#1666200)(#1

relu (12x12x16) max activation: 4.34829, min: 0 max gradient: 0.06943, min: -0.08449

pool (4x4x16) pooling size 3x3, stride 3 max activation: 4.34829, min: 0 max gradient: 0.06943, min: -0.08449 Activations:

Activation Gradients:

Examples of the state of the stat

nax activation: 4.31996, min: -4.45031 max gradient: 0.21936, min: -0.28975 parameters: 10x256+10 = 2570 Activations: Activation Gradients:

softmax (1x1x10) max activation: 0.71025, min: 0.00011 max gradient: 0, min: 0

Activations:

Այլ դասընթացներ

- 1. Udacity: Intro to machine learning
 - https://www.udacity.com/course/ud120
- 2. Coursera: Stanford: Machine learning (by Andrew Ng!)
 - https://www.coursera.org/course/ml
- 3. Coursera: Stanford: Neural networks for machine learning (by Geoffrey Hinton!)
 - https://www.coursera.org/course/neuralnets

Այլ դասընթացներ

- 4. Hacker's guide (by Karpathy)
 - Ծրագրավորողի տեսանկյունից
 - http://karpathy.github.io/neuralnets/
 - Ռուսերեն թարգմանություն. http://habrahabr.ru/company/paysto/blog/244723/
- 5. Convolutional Neural Networks for Visual Recognition (by Karpathy et al.)
 - http://vision.stanford.edu/teaching/cs231n/
- 6. Курс «Машинное обучение» (Yandex)
 - http://shad.yandex.ru/lectures/machine_learning.xml

Այլ դասընթացներ

- 7. http://www.computervisiontalks.com/
 տասնյակ դասընթացներ ամենատարբեր
 ուղղվածություններով
 - Reinforcement learning <u>http://www.machinelearningtalks.com/tag/rl-course/</u>

 - Recurrent networks
 http://www.computervisiontalks.com/automated-image-captioning-with-convnets-and-recurrent-nets-andrej-karpathy/

Շևորհակալություն

