Nonparametric Tests

Charles Hwang

Background

- Nonparametric statistics is an entire subsection of statistics
 - STAT 351/488 Nonparametric Statistical Methods¹ offered at Loyola every spring semester
- Nonparametric tests can be used when assumptions of traditional tests are violated
 - Most real-world data are not normally distributed

Body Mass Index (BMI)

Concepts

- Median (m)
 - Not unduly influenced by outliers or distribution
- Ordinal data (Likert scale, rating, education level, etc.)
- Order statistics (rank)

Advantages

- Tests make fewer assumptions
 - Tests are often as or more robust than traditional tests.
- Methods can be easier to use and interpret

Disadvantages

- Some tests have less power (larger *n* needed)
- Generally less commonly used and recognized
- Some tests don't have test statistics (only p-values)
 - Example: Fisher's exact test

(Incomplete) List of Methods²

- Analysis of similarities
- Anderson-Darling test
- Bootstrap methods
- Cochran's Q
- Cohen's κ
- Friedman two-way ANOVA by ranks
- Kaplan-Meier
- Kendall's τ
- Kendall's W
- Kolmogorov–Smirnov test
- Kruskal–Wallis one-way ANOVA by ranks
- Kuiper's test
- Log-rank test

- Mann-Whitney *U* (Wilcoxon rank sum) test
- McNemar's test
- Median test
- Pitman's permutation test
- Rank products
- Siegel-Tukey test
- Sign test
- Spearman's ρ
- Squared ranks test
- Tukey-Duckworth test
- Wald-Wolfowitz runs test
- Wilcoxon signed-rank test

(Incomplete) List of Methods²

- Analysis of similarities: tests similarities between groups against similarities within groups
 Anderson-Darling test: tests whether a sample is drawn from a given distribution
 Bootstrap methods: estimates the accuracy/sampling distribution of a statistic
 Cochran's Q: tests whether k treatments in randomized block designs with 0/1 outcomes have identical effects

Cohen's κ : measures inter-rater agreement for categorical items Friedman two-way ANOVA by ranks: tests whether κ treatments in randomized block designs have identical effects Kaplan–Meier: estimates the survival function from lifetime data, modeling censoring Kendall's τ : measures statistical dependence between two variables

Kendall's W: a measure between 0 and 1 of inter-rater agreement Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution

Kruskal-Wallis one-way ANOVA by ranks: tests whether > 2 independent samples are drawn from the same

distribution

Kuiper's test: tests whether a sample is drawn from a given distribution, sensitive to cyclic variations such as day of the week

Log-rank test: compares survival distributions of two right-skewed, censored samples
Mann-Whitney *U* (Wilcoxon rank sum) test: tests whether two samples are drawn from the same distribution, as
compared to a given alternative hypothesis

McNemar's test: tests whether, in 2 × 2 contingency tables with a dichotomous trait and matched pairs of subjects,

- row and column marginal frequencies are equal Median test: tests whether two samples are drawn from distributions with equal medians Pitman's permutation test: a statistical significance test that yields exact p values by examining all possible rearrangements of labels
 Rank products: detects differentially expressed genes in replicated microarray experiments
 Siegel-Tukey test: tests for differences in scale between two groups

- Sign test: tests whether matched pair samples are drawn from distributions with equal medians
- Spearman's p: measures statistical dependence between two variables using a monotonic function

- Squared ranks test: tests equality of variances in two or more samples
 Tukey-Duckworth test: tests equality of two distributions by using ranks
 Wald-Wolfowitz runs test: tests whether the elements of a sequence are mutually independent/random
 Wilcoxon signed-rank test: tests whether matched pair samples are drawn from populations with different mean ranks

(Incomplete) List of Methods

- Analysis of similarities
- Anderson-Darling test
- Bootstrap methods
- Cochran's Q
- Cohen's κ
- Friedman two-way ANOVA by ranks
- Kaplan-Meier
- Kendall's τ
- Kendall's W
- Kolmogorov-Smirnov test
- Kruskal-Wallis one-way ANOVA by ranks
- Kuiper's test
- Log-rank test

- Mann-Whitney U (Wilcoxon rank sum) test
- McNemar's test
- Median test
- Pitman's permutation test
- Rank products
- Siegel-Tukey test
- Sign test
- Spearman's ρ
- Squared ranks test
- Tukey-Duckworth test
- Wald-Wolfowitz runs test
- Wilcoxon signed-rank test

Kendall's τ

- Take all ${}_{n}C_{2} = n(n-1) / 2$ pairs of points
- A pair is concordant if $x_i < x_j$ and $y_i < y_j$
- A pair is discordant if $x_i < x_j$ and $y_i > y_j$
- $\tau = (\text{concordant discordant}) / {}_{n}C_{2}$
- Ties (if $x_i = x_j$ or $y_i = y_j$)
 - \circ τ_{Δ} (ignore)
 - \circ τ_{R} (RStudio)
 - τ_C (Stuart-Kendall)

Kendall's τ

$$egin{aligned} n_0 &= n(n-1)/2 \ n_1 &= \sum_i t_i (t_i-1)/2 \ n_2 &= \sum_i u_j (u_j-1)/2 \end{aligned}$$

$$n_c = \text{Number of concordant pairs}$$

$$n_d$$
 = Number of discordant pairs

 t_i = Number of tied values in the i^{th} group of ties for the first quantity

 $u_j = \text{Number of tied values in the } j^{\text{th}} \text{ group of ties for the second quantity}$

r =Number of rows

c = Number of columns

$$m = \min(r, c)$$

$$au_B = rac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}} \ au_C = rac{2(n_c - n_d)}{n^2rac{(m-1)}{m}}$$

Kendall's τ Example

(3,4) (1,1)(2,2)(3,4)(4,3)(5,5)

cor(x,y,method="kendall")

Kendall's T Example Data

X

$$C = 9, D = 1$$

 $\tau = (9 - 1) / 10 =$
 $\tau = 0.8$

Spearman's p

- Calculates *r* on ranks
 - Ties: fractional (mean) ranks
- Not unduly affected by outliers or influential points
- Useful for data resembling a monotonic function (exponential, logistic, logarithmic, etc.)
- cor(x,y,method="spearman")

Sign test (paired or one-sample)

- Points where $x_i > y_i$ are \oplus
- Points where $x_i = y_i$ are \emptyset
- Points where $x_i < y_i$ are \ominus
- One-sample: replace y_i with η (estimated population median)
- H_0 : $m_x m_y = d$; H_A : $m_x m_y \neq d$ or H_0 : $m = \eta$; H_A : $m \neq \eta$
- $p = 2 * Binomcdf(\oplus; n \emptyset, 0.5)$
- Disadvantage: Low power

Sign test (paired, H_0 : $m_x - m_y = 0$)

X	0	1	2	3	3	4	5	6	7	7	8	9	10
у	1	2	4	3	4	5	6	7	8	8	9	9	9
Sgn	Θ	Θ	Θ	Ø	Θ	Ø	\oplus						

$$p = 2 * Binomcdf(\oplus; n - \emptyset, 0.5) = 2 * Binomcdf(1; 13 - 2, 0.5) = 0.01171875$$

binom.test(1,11,p=0.5,alternative="two.sided")

Sign test (one-sample, H_0 : m = 1)

X	0	1	2	3	3	4	5	6	7	7	8	9	10
Sgn	Θ	Ø	⊕	\oplus	\oplus	⊕	\oplus	0	⊕	\oplus	\oplus	⊕	⊕

 $p = 2 * Binomcdf(\oplus; n - \emptyset, 0.5) \rightarrow 1 - 2 * Binomcdf(11; 13 - 1, 0.5) = 0.006347656$ binom.test(11,12,p=0.5,alternative="two.sided")

Wilcoxon signed-rank test

- Similar to sign test
- Points are sorted by absolute difference and ranked (ties ignored)
- $W^- + W^+ = W = n(n+1) / 2$

$$t = rac{k + rac{1}{2} - rac{n(n+1)}{4}}{\sqrt{rac{n(n+1)(2n+1)}{6}}}. \quad \sigma^2 = rac{n(n+1)(2n+1) - z(z+1)(2z+1) - c/2}{6}, \, ^5$$

Wilcoxon signed-rank test (paired, H_0 : $m_x = m_y$)

X	100	101	102	103	103	104	105	106	107	107	108	109	110
у	101	100	99	98	97	96	95	94	93	93	92	92	92
Diff.	-1	1	3	5	6	8	10	12	14	14	16	17	18
R_{i}	1.5	1.5	3	4	5	6	7	8	9.5	9.5	11	12	13

$$W^{-} = 1.5$$

$$W^+ = 1.5 + 3 + 4 + 5 + 6 + 7 + 8 + 9.5 + 9.5 + 11 + 12 + 13 = 89.5$$

$$W = 89.5$$
, $p = 0.002351027$

wilcox.test(x,y,paired=TRUE)

Wilcoxon signed-rank test (one-sample, H_0 : m = 0)

X	0	1	2	3	3	4	5	6	7	7	8	9	10
	l		2	l	l	l			I	1	1		l
R_{i}	_	1	2	3.5	3.5	5	6	7	8.5	8.5	10	11	12

$$W^{-} = 0$$

$$W^+ = 1 + 2 + 3.5 + 3.5 + 5 + 6 + 7 + 8.5 + 8.5 + 10 + 11 + 12 = 78$$

$$W = 78$$
, $p = 0.002506842$

wilcox.test(x,alternative="two.sided")

Mann-Whitney *U* (Wilcoxon rank sum) test

Similar family of tests for non-paired two-sample

•
$$H_0$$
: $m_x - m_y = d$;

•
$$U_1 = \sum_{i=1}^{n_1} R_1 - n_2(n_2+1)/2$$

$$H_A: m_x - m_y \neq d$$

$$U_2 = \sum_{i=1}^{n_2} R_2 - n_1(n_1 + 1)/2$$

$$z = rac{U - m_U}{\sigma_U}, ~~ m_U = rac{n_1 n_2}{2}, \sigma_{ ext{ties}} = \sqrt{rac{n_1 n_2 (n_1 + n_2 + 1)}{12} - rac{n_1 n_2 \sum_{k=1}^K (t_k{}^3 - t_k)}{12n(n-1)}}, ~~ ^6$$

Mann-Whitney *U* (Wilcoxon rank sum) test

<i>x</i> , <i>y</i>	0	1	2	3	3	4	5	6	7	7	8	9	10
R_{x}	1	2	3	4.5		6		8					
R_{y}					4.5		7		9.5	9.5	11	12	13

$$U_1 = 1 + 2 + 3 + 4.5 + 6 + 8 - n_2(n_2+1)/2 = 24.5 - 6*7/2 = 3.5$$

 $U_2 = 4.5 + 7 + 9.5 + 9.5 + 11 + 12 + 13 - n_1(n_1+1)/2 = 66.5 - 5*6/2 = 51.5$

W = 3.5, p = 0.01488064

wilcox.test(x,y,alternative="two.sided")

Kolmogorov-Smirnov test

- One-sample (Kolmogorov) or two-sample (Smirnov)
- H_0 : The data are from a certain/the same distribution
- H_{Δ} : The data are not from a certain/the same distribution
- Disadvantage: less power
 - Normal distribution: Shapiro-Wilk test
 - Anderson-Darling test gives more weight to tails

Kolmogorov–Smirnov test⁷

ks.test(x,y)

McNemar's (MACK-neh-MARS) test

- Tests for marginal homogeneity (paired data)
- H_0 : b = c; H_A : $b \ne c$
- $\chi^2_{(1)} = (b-c)^2 / (b+c)$
- mcnemar.test(x)

2×2	Υ	N	Tot
Υ	а	b	a+b
N	С	d	c+d

Tot a+c b+d n

Bonus: Fisher's exact test

- H_0 : The two variables are independent
- H_{Δ} : The two variables are not independent
- fisher.test(x,alternative="two.sided")

2×2			Tot
	а	b	a+b
	С	d	c+d
		, ,	,

Tot a+c b+d

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{\binom{a+b}{b}\binom{c+d}{d}}{\binom{n}{b+d}} = \frac{(a+b)! \ (c+d)! \ (c+d)! \ (a+c)! \ (b+d)!}{a! \ b! \ c! \ d! \ n!}$$

Conclusion

- Nonparametric statistics is an entire subsection of statistics
- Nonparametric tests can be used when assumptions of traditional tests are violated
 - Most real-world data are not normally distributed

References

- 1. https://www.luc.edu/media/lucedu/math/docs/Stat-Grid.pdf
 - a. Hollander, Myles, Douglas A. Wolfe and Eric Chicken. *Nonparametric Statistical Methods*. 3rd ed., Wiley-Blackwell, 2014.
- 2. https://en.wikipedia.org/wiki/Nonparametric_statistics#Methods
- 3. https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Accounting_for_ties
- 4. https://commons.wikimedia.org/wiki/File:Spearman_fig1.svg
- 5. https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test#Computing_the_null_distribution
- 6. https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
- 7. https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
 - a. https://commons.wikimedia.org/wiki/File:KS_Example.png
 - b. https://commons.wikimedia.org/wiki/File:KS2_Example.png
- 8. https://en.wikipedia.org/wiki/Fisher%27s_exact_test#Example

Questions?