Project 3

Kun Zhou

May 22, 2016

P1

The graphs are on page 2,3.

- When β becomes larger, more sweeps are needed to make H(X) converge to h^* .
- When β becomes larger, h^* become smaller.
- It's hard to say which version of method is better. But based on the graphs, version 2 is better.
- \bullet Obviously, checkerboard image starts h from 1 while constant image starts from 0.

P2

It's hard to display the sweeps for Gibbs Sampler since the sweeps are too large. So I show it in the following table.

	eta					
	0.65		0.75		0.85	
	MC1	MC2	MC1	MC2	MC1	MC2
Version 1	6	7	12	23	32	25
Version 2	5.01	8.85	9.52	16.17	17.12	25.54
Gibbs	54	54	158	158	1740	1740

P3 The bigger β is, the lower average size of clusters is.

P4 It converges very fast and only takes about 52 sweeps.

