I. Prove Theorem 9.4 $\frac{1}{cond(A)} \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2} \le \frac{\|\mathbf{e}\|_2}{\|\mathbf{x}\|_2} \le cond(A) \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2}$

Solution:

$$\begin{split} \frac{1}{cond(A)} \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2} &= \frac{1}{\|A\|_2 \|A^{-1}\|_2} \frac{\|A\mathbf{e}\|_2}{\|\mathbf{b}\|_2} \\ &\leq \frac{1}{\|A\|_2 \|A^{-1}\|_2} \frac{\|A\|_2 \|\mathbf{e}\|_2}{\|\mathbf{b}\|_2} \\ &= \frac{\|\mathbf{e}\|_2}{\|A^{-1}\|_2 \|\mathbf{b}\|_2} \\ &\leq \frac{\|\mathbf{e}\|_2}{\|A^{-1}\mathbf{b}\|_2} \\ &= \frac{\|\mathbf{e}\|_2}{\|\mathbf{x}\|_2} \\ &= \frac{\|\mathbf{e}\|_2}{\|\mathbf{x}\|_2} \\ &= \frac{\|A^{-1}\mathbf{r}\|_2}{\|\mathbf{x}\|_2} \\ &\leq \|A^{-1}\|_2 \|A\|_2 \frac{\|\mathbf{r}\|_2}{\|A\|_2 \|\mathbf{x}\|_2} \\ &\leq cond(A) \frac{\|\mathbf{r}\|_2}{\|A\mathbf{x}\|_2} = cond(A) \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2} \end{split}$$

II. What are the values of cond(A) for A in (7.13) for n = 8 and n = 1024 Solution:

A 的特征值为

$$\lambda_k(A) = \frac{4}{h^2} \sin^2 \frac{k\pi}{2n}, \ k = 1, 2, \dots, n-1$$

$$cond(A) = ||A||_2 ||A^{-1}||_2$$

$$= \frac{\max_{k=1, 2, \dots, n-1} \lambda_k(A)}{\min_{k=1, 2, \dots, n-1} \lambda_k(A)}$$

$$= \frac{\sin^2 \frac{(n-1)\pi}{2n}}{\sin^2 \frac{\pi}{2n}}$$

所以
$$n=8$$
 时 $cond(A)=\frac{\sin^2\frac{7\pi}{16}}{\sin^2\frac{\pi}{16}}\approx 48.991$ 所以 $n=1024$ 时 $cond(A)=\frac{\sin^2\frac{1023\pi}{2048}}{\sin^2\frac{\pi}{2048}}\approx 1046267.343$

III. Prove Lemma 9.16

Solution:

$$A = diag(-1, 2, -1) = D - L - U$$

$$L + U = \frac{1}{h^2} \begin{bmatrix} -1 & & & \\ -1 & & -1 & & \\ & \ddots & & \ddots & \\ & & -1 & & -1 \\ & & & -1 \end{bmatrix}, D = \frac{2}{h^2}I$$

所以

$$T_{\omega} = (1 - \omega)I + \omega D^{-1}(L + U)$$

$$= I - \omega \frac{h^2}{2}D + \omega \frac{h^2}{2}(L + U)$$

$$= I - \frac{\omega h^2}{2}(D - L - U)$$

$$= I - \frac{\omega h^2}{2}A$$

设 $\lambda_k(A)$ 所对应的特征向量为 $\mathbf{w_k}$, 设 $Q = [\mathbf{w_1}, \mathbf{w_2}, \cdots, \mathbf{w_{n-1}}]$, 则 $A = Q \; diag(\lambda_k(A)) \; Q^T$ 而

$$T_{\omega} = I - \frac{\omega h^2}{2} A$$

$$= Q I Q^T + \frac{\omega h^2}{2} Q \operatorname{diag}(\lambda_k(A)) Q^T$$

$$= Q \operatorname{diag}(1 - \frac{\omega h^2}{2} \lambda_k(A)) Q^T$$

所以 T_{ω} 和 A 具有相同的特征向量

且对应的特征值为 $\lambda_k(T_\omega) = 1 - \frac{\omega h^2}{2} \lambda_k(A) = 1 - \frac{\omega h^2}{2} \frac{4}{h^2} \sin^2 \frac{k\pi}{2n} = 1 - 2\omega \sin^2 \frac{k\pi}{2n}, \ k = 1, 2, \cdots, n-1$

IV. Show that, for $\nu_1 = \nu_2 = 1$, the computational cost of an FMG cycle is less than $\frac{2}{(1-2^{-D})^2}WU$. Give upper bounds as tight as possible for computational costs of an FMG cycle for D = 1, 2, 3

Solution:

与 Lemma 9.33 一致, 且由 FMG 的定义可知, FMG 的计算开销为

$$\begin{split} 2WU \sum_{k=0}^{m} \sum_{i=m-k}^{m} 2^{-iD} &= 2WU \sum_{k=0}^{m} \frac{2^{-(m-k)D} (1-2^{-(k+1)D})}{1-2^{-D}} \\ &= 2WU \sum_{k=0}^{m} \left(\frac{2^{-(m-k)D}}{1-2^{-D}} - \frac{2^{-(m+1)D}}{1-2^{-D}} \right) \\ &= 2WU \left(\frac{1-2^{-(m+1)D}}{(1-2^{-D})^2} - (m+1) \frac{2^{-(m+1)D}}{1-2^{-D}} \right) \\ &< \frac{2WU}{(1-2^{-D})^2} \end{split}$$

- D=1: 8WU
- D=2: $\frac{7}{2}WU$
- D=3: $\frac{5}{2}WU$

V. Prove Lemma 9.44: The full-weighting operator satisfies

$$dim \mathcal{R}(I_h^{2h}) = \frac{n}{2} - 1, \qquad dim \mathcal{N}(I_h^{2h}) = \frac{n}{2}$$

Solution:

接 $j=2k-1, k=1,2,\cdots,\frac{n}{2}-1$ 的顺序作变换: $C_{j+1}-2C_j, C_{j+2}-C_j$ 得

$$I_{h}^{2h} \xrightarrow{for \ j=1; j < n-1; j+2} \begin{bmatrix} 1 & 0 & 0 & & & & \\ & 1 & 0 & 0 & & & & \\ & & \ddots & \ddots & & & \\ & & & & 1 & 0 & 0 \\ & & & & & 1 & 0 & 0 \end{bmatrix}$$

所以
$$dim \mathcal{R}(I_h^{2h}) = rank(I_h^{2h}) = \frac{n}{2} - 1$$

又有 $dim \mathcal{R}(I_h^{2h}) + dim \mathcal{N}(I_h^{2h}) = dim(\mathbb{R}^{n-1}) = n - 1 \Rightarrow dim \mathcal{N}(I_h^{2h}) = \frac{n}{2}$

VI. Exercise 9.11. For $\Omega = (0,1)$, plot to show that the maximum wavenumber that is representable on Ω^h is $n_{max} = \frac{1}{h}$. What if we require that the Fourier mode be 0 at boundary points?

以 h = 0.1 为例,绿色的为实际波形

图 1: k = 10, $w_{k,j} = \cos(kx_j\pi)$, $x_j = jh$, $j = 1, 2, \dots, 9$

从上图可以看出最大能够表示的波数 $n_{max}=\frac{1}{h}$ 若限制边界点为 0,那么最大能表示的波数不再为 $\frac{1}{h}$ 而是 $\frac{1}{h}-1$,同样以 h=0.1 为例

图 2: k = 10, $w_{k,j} = \sin(kx_j\pi)$, $x_j = jh$, $j = 1, 2, \dots, 9$

可见当 $k = \frac{1}{h}$ 时所表示的波数为 0

如上图所示,限制边界点为 0 时,最大能表示的波数 $n_{max} = \frac{1}{h} - 1$

VII. Exercise 9.14.Plot the case of n=6 for the mode with $k=\frac{3}{2}n$ is represented by $k=\frac{1}{2}n$

可见 $k = \frac{3}{2}n$ 和 $k = \frac{1}{2}n$ 的 Fourier mode 除了相差一个正负号是一样的

VIII. Exercise 9.18. Write a program to reproduce Fig. 2.7 in the book by Briggs et al. [2000]. For $n=64,\ \omega\in[0,1]$, verify $\rho(T_\omega)\geq0.9986$ and hence slow convergence.

由上图可见

$$\rho(T_{\omega}) \ge \min_{\omega} \rho(T_{\omega}) = \min_{\omega} \max_{k=1,2,\cdots,63} |\lambda_k(T_{\omega})|$$

$$= \min_{\omega} \max \{|\lambda_1(T_{\omega})|, |\lambda_{63}(T_{\omega})|\}$$

$$= \min_{\omega} \lambda_1(T_{\omega})$$

$$= \lambda_1(T_1)$$

$$= 1 - 2\sin^2 \frac{\pi}{128}$$

$$\approx 0.9988 \ge 0.9986$$