(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-109121

(43)公開日 平成8年(1996)4月30日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

A61K 7/48

7/00

N

C

E

審査請求 未請求 請求項の数4 OL (全 5 頁)

(21)出願番号

特顏平6-247453

(71)出顧人 000000918

花王株式会社

(22)出顧日

平成6年(1994)10月13日

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 木村 秀雄

千葉県松戸市五香六実5-120 キャピタ

ルB-102

(72)発明者 城倉 洋二

栃木県宇都宮市山本3丁目2-5

(72)発明者 上坂 敏雄

埼玉県熊谷市玉井2063-2

(72)発明者 岡田 千春

大阪府泉南郡岬町淡輪2321-3

(74)代理人 弁理士 有賀 三幸 (外3名)

(54) 【発明の名称】 化粧料

(57)【要約】

【構成】 (a)セラミド又はその類似構造物質、及び

- (b) 三次元溶解度パラメーター法により計算された
- (a)成分との相溶性値(Ri²)が30以下である油性基剤を含有する化粧料。

【効果】 (b)成分の作用により(a)成分を安定に配合できるため保存安定性が優れており、更に(a)成分の作用により皮膚に持続性のある保湿効果が付与できる。

【特許請求の範囲】

【請求項1】 (a) セラミド又はその類似構造物質、 及び(b)三次元溶解度パラメーター法により計算され た(a)成分との相溶性値(Ri')が30以下である 油性基剤を含有することを特徴とする化粧料。

【請求項2】 (a)成分が、次の一般式(1)又は (2):

[式(1)中、R1 及びR1 は1以上のヒドロキシル基 で置換されていてもよい炭素数10~26の直鎖又は分 20 岐鎖の飽和又は不飽和の炭化水素基を示す。式(2) 中、R³ は炭素数10~26の直鎖又は分岐鎖の飽和又 は不飽和の炭化水素基を示し、R1は炭素数9~25の 直鎖又は分岐鎖の飽和又は不飽和の炭化水素基を示す〕 で表されるセラミド又はその類似構造物質である請求項 1記載の化粧料。

【請求項3】 (b) 成分が乳酸オクチルドデシル又は ジイソステアリン酸ジグリセリンである請求項1記載の 化粧料。

【請求項4】 乳化型化粧料である請求項1記載の化粧 30 料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、保湿性に優れ、保存安 定性も良好な化粧料に関する。

[0002]

【従来の技術】従来、化粧料用の保湿剤としては、グリ セリン、ソルピトール、1,3-ブチレングリコール等 " の低分子量水親和性物質;アミノ酸、ピロリドンカルボ ン酸ナトリウム、尿素等のNMF(天然保湿因子)成 分;ムコ多糖類、コラーゲン等の高分子生体抽出物等が 用いられている。これらの保湿剤はいずれも水との親和 性により水分を保持し、保湿効果を発揮するものである が、その効果は一時的であり、根本的に角質層の水分保 持能力を改善し、持続的な保湿効果を付与するものでは ない。

【0003】一方、角質細胞間脂質は、角質層の水分保 持に重要な役割を果していることが知られており、この ような脂質又はその類似構造物質を含有した化粧料も提 案されている。しかしながら、とれらの脂質又はその類 50 基、ドコシル基、トリコシル基、テトラコシル基、ペン

似構造物質を単に化粧料に配合しただけでは、必ずしも その効果を充分に得ることはできず、しかも保存安定性 も満足できるものではなかった。

[0004]

【発明が解決しようとする課題】従って、本発明は上記 問題点を解決し、保湿性に優れるとともに保存安定性も 良好な化粧料を提供することを目的とする。

[0005]

【課題を解決するための手段】かかる実情において、本 10 発明者らは鋭意研究を重ねた結果、セラミド又はその類 似構造物質と、これと相溶性のよい特定の油性基剤とを 組み合わせることにより、保湿性に優れ、しかも使用感 の良好な化粧料が得られることを見出し、本発明を完成 した。

【0006】すなわち、本発明は、(a)セラミド又は その類似構造物質、及び(b)三次元溶解度パラメータ ー法により計算された(a)成分との相溶性値(R i') が30以下である油性基剤を含有することを特徴 とする化粧料を提供するものである。

【0007】本発明で用いる(a)成分のセラミド又は その類似構造物質は、哺乳動物脳組織等の天然物から抽 出されたものであっても、合成されたものであってもよ い。具体的には、次の一般式(1)又は(2);

[8000]

【化2】

【0009】 [式(1)中、R'及びR'は1以上のヒ ドロキシル基で置換されていてもよい炭素数10~26 の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基を示 す。式(2)中、R'は炭素数10~26の直鎖又は分 40 岐鎖の飽和又は不飽和の炭化水素基を示し、R1 は炭素 数9~25の直鎖又は分岐鎖の飽和又は不飽和の炭化水 索基を示す]で表されるセラミド又はその類似構造物質 を挙げることができる。

【0010】一般式(1)中、R'及びR'で示される 炭素数10~26の直鎖又は分岐鎖の飽和又は不飽和の 炭化水素基としては、例えばデシル基、ウンデシル基、 ドデシル基、トリデシル基、テトラデシル基、ベンタデ シル基、ヘキサデシル基、ヘブタデシル基、オクタデシ ル基、ノナデシル基、エイコシル基、ヘンエイコシル

タコシル基、ヘキサコシル基、2-ヘブチルウンデシル 基、5、7、7ートリメチル-2-(1、3、3-トリ メチルブチル) -オクチル基、2-ヘキシルデシル基、 2-オクチルウンデシル基、2-デシルテトラデシル基 等のアルキル基;デセニル基、ドデセニル基、ウンデセ ニル基、トリデセニル基、テトラデセニル基、ペンタデ セニル基、ヘキサデセニル基、ヘプタデセニル基、オク タデセニル基、ノナデセニル基、エイコセニル基、ヘン エイコセニル基、ドコセニル基、トリコセニル基、テト ラコセニル基、ペンタコセニル基、ヘキサコセニル基、 ノナジエニル基、デカジエニル基、ドデカジエニル基、 ウンデカジェニル基、トリデカジエニル基、テトラデカ ジエニル基、ペンタデカジエニル基、ヘキサデカジエニ ル基、ヘプタデカジエニル基、オクタデカジエニル基、 ノナデカジェニル基、イコサジェニル基、ヘンイコサシ エニル基、ドコサジエニル基、トリコサジエニル基、テ トラコサジエニル基、ペンタコサジエニル基、ヘキサコ サジエニル基、9-オクタデセニル基、9,12-オク タデカジエニル基等を挙げることができる。これらの炭 化水素基は1以上のヒドロキシル基で置換されていても 20 性値(Ri²)が30以下である油性基剤である。とと よい。また、式(2)中、R'で示される炭素数10~ 26の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基と しては、前記と同様のものを挙げることができ、更に、 R'で示される炭素数9~25の直鎖又は分岐鎖の飽和 又は不飽和の炭化水素基としては、ノニル基、ノネニル 基等に加えて前記と同様の炭素数25までのものを挙げ*

* ることができる。

【0011】前記一般式(2)で表わされるセラミドの 類似構造物質は公知の方法〔例えば、ポリッシュ・ジャ ーナル・オブ・ケミストリー (Pol. J. Che m.) <u>52</u>, 1059 (1978);同<u>52</u>, 1283 (1978);特開昭54-117421号公報、同5 4-144308号公報、同54-147937号公 報、同62-228048号公報、同63-21685 2号公報〕に準じて、例えばグリシジルエーテルとエタ ノールとから得られる化合物のアミノ基のみを選択的に アシル化することにより得ることができる。

【0012】(a)成分としては上記の成分から選択さ れた1種又は2種以上を組合わせて用いることができ る。(a)成分は、化粧料中に0.1~50重量%配合 するのが好ましく、特に0.5~30重量%、更に1~ 20重量%配合すると、角質層の水分保持能力が向上す るため好ましい。

【0013】本発明で用いる(b)成分は、三次元溶解 度パラメーター法により計算された(a)成分との相溶 で相溶性値(Ri')は、Hansenの式 [Am.Ind.H yg.Assoc.J.,49(6),301-308(1988)] によって求められ る次式により、計算されるものである。

[0014]

【数1】

 $Ri^2 = 4(\delta_{di} - \delta_{ds})^2 + (\delta_{pi} - \delta_{ps})^2 + (\delta_{hi} - \delta_{hs})^2$

Ri²:相溶性値(J/cu³)

 δ_d : Londonの分散力(ファンデルワース力)による項であり、 $\delta_d = \sum F_d / V$ により計算される。

 δ_p :分子の分極による項であり、 $\delta_p = (\Sigma \, F_p{}^2)^{1/2} \, / \, V$ により 計算される。

 δ_h : 水素結合による項であり、 δ_h = $(\Sigma\,F_h/V)^{1/2}$ により計算される。

i : 溶媒〔(b) 成分が相当する〕

s:溶質 [(a)成分が相当する]

F4、F5、F5:分子を構成する原子団のモル引力定数。

V:モル体積

【0015】とこで、る。、る。及びる。を求める際に 用いられるモル引力定数F。、F。及びF、は、例えば (1) D.W.Van Krevelen, P.J.Hoftyzer "Properies of Polymers" (Elsevier, Amsterdam), 152~155(1976).

(2) K.E.Meusburger "Pesticide Formulation" Innov ations and Developments 第14章(Am.Chem.soc., 151 \sim 162(1988) (3) A.F.M.Barton "Handbook of Solu bility Parameters and Other CohesionParameters" (C RC Press Inc. Boca Raton,FL)(1983)等に記載された値 を用いればよい。

【0016】なお、(a)成分を2種以上組合わせて用 いる場合、相溶性値(Ri')は、個々の(a)成分で とに計算し、そのいずれもが30以下となる(b)成分 を用いる。

【0017】(b)成分は、上記式によって求められる 相溶性値(Ri²)が30以下のものであるが、特に好 ましくは20以下、更に好ましくは10以下のものであ る。この相溶性値(Ri')が30を超える場合は、

(a) 成分との相溶性が低下するので化粧料の安定性が 50 低下し、(a)成分が析出したり、粘度が著しく増減し

たりするととに加え、分離やクリーミング等も生じる。 【0018】 このような(b) 成分としては、多価アル コールと脂肪酸のエステル化合物が好ましく、例えば乳 酸オクチルドデシル、トリー2エチルヘキサン酸グリセ リン、ジオクタン酸ネオペンテルグリコール、リンゴ酸 ジイソステアリル、セスキオレイン酸ソルビタン、モノ イソステアリン酸ジグリセリン、ジイソステアリン酸ジ グリセリン、トリイソステアリン酸ジグリセリン、ジカ プリン酸ネオペンチルグリセリン等を挙げることがで き、これらのなかでも、特に乳酸オクチルドデシル、ジ 10 イソステアリン酸ジグリセリンが好ましい。

【0019】(b)成分は上記の成分から選択された1 種又は2種以上を組合わせて用いることができる。

(b)成分は、化粧料中に0.1~70重量%配合する のが好ましく、特に0.5~50重量%、更に1~30 重量%配合すると(a)成分との相溶性がより向上し、 化粧料の安定性が向上するため好ましい。

【0020】本発明の化粧料には、更に界面活性剤及び 水を配合することができる。この界面活性剤としては、 化粧料成分として通常配合されるものであれば特に制限 20 調整剤、吸油性坦体等を適宜配合することができる。 されず、例えば、ポリオキシエチレンアルキルエーテ ル、ポリオキシエチレン脂肪酸エステル、ポリオキシエ チレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポ リオキシエチレングルタミン酸、ポリオキシエチレンイ ソステアリン酸ジエステル、α-モノイソステアリルグ リセリルエーテル、ポリエチレングリコール脂肪酸エス テル、ソルビタン脂肪酸エステル、ポリオキシエチレン ソルビタン脂肪酸エステル、脂肪酸モノグリセリド等の ノニオン性界面活性剤;アルキル硫酸ナトリウム、ポリ オキシエチレンアルキルエーテルリン酸ナトリウム、モ 30 ノアルキルリン酸塩、N--ステアロイルメチルタウリ ン酸ナトリウム等のアニオン性界面活性剤などを挙げる ことができる。

【0021】界面活性剤としては上記の成分から選択さ れた1種又は2種以上を用いることができ、これらを配 合する場合の配合量は、化粧料中に0.1~8.0重量 %であるのが好ましく、特に0.1~5.0重量%が好 ましい。

【0022】水の配合量は剤型に応じて適宜設定すると とができ、0.1~99.9重量%の範囲が好ましい。 また、本発明の化粧料は乳化型であることが好ましく、 乳化型化粧料の場合の水の配合量は20~90重量%が 好ましく、特に油中水型の場合は20~70重量%、水 中油型の場合は50~90重量%が好ましい。

【0023】また、本発明の化粧料には、コレステロー ル、コレステロール誘導体、脂肪酸を1種または2種以 上配合することができ、これらを配合することにより、 保湿性及び使用感をより向上させることができる。コレ ステロール又はコレステロール誘導体としては、例えば コレステロール、コレスタノール、炭素数12~36、

好ましくは炭素数14~28の飽和又は不飽和の直鎖又 は分岐鎖のコレステリルエステル、具体的には、イソス テアリン酸コレステリル、1,2-ヒドロキシステアリ ン酸コレステリル、デヒドロコレステロール、ラノリン 脂肪酸コレステリル、リシノール酸コレステリルなどを 挙げることができる。更に、脂肪酸としては、炭素数1 0~25のものが好ましく、例えばラウリン酸、ミリス チン酸、パルミチン酸、ステアリン酸、オレイン酸、ベ へン酸、ウンデシレン酸、ラノリン脂肪酸、イソステア リン酸等を挙げることができる。これらのコレステロー ル、コレステロール誘導体、脂肪酸を配合する場合に は、化粧料中に0.1~30重量%、特に0.1~15 重量%配合するのが好ましい。

【0024】更に、本発明の化粧料には、本発明の目的 を損なわない範囲内において、上記成分以外の通常化粧 品、医薬部外品、医薬品等に用いられる各種成分、例え ばアルコール、保湿剤、皮膚軟化剤、薬効剤、退色防止 剤、色素、香料、防腐剤、感触向上剤、紫外線吸収剤、 粉体、消炎剤、鎮痒剤、殺菌消毒剤、ホルモン剤、pH

【0025】本発明の化粧料は、通常の方法に従って製 造することができ、例えば油中水型又は水中油型のクリ ーム乳液、化粧水、油性化粧料、口紅、ファンデーショ ン、皮膚洗浄剤、ヘアートニック、整髪剤等にすること ができる。

[0026]

【発明の効果】本発明の化粧料は、剤型にかかわらず保 存安定性に優れ、更に、これにより(a)成分の角質層 への水分保持機能を充分に発揮できるので、皮膚への保 湿性付与効果に優れている。との保湿性の付与効果は、 角質層の水分保持能力を改善するものであるため、持続 的にその効果を発揮することができる。

[0027]

40

【実施例】以下、実施例により本発明を更に詳しく説明 するが、本発明はこれらにより限定されるものではな

【0028】実施例1、2及び比較例1、2 表1に示す組成の水中油型乳化化粧料を、下記製法によ り製造した。得られた各化粧料について、下記の方法に より保湿性及び保存安定性を試験した。結果を表1に示 す。

【0029】(製法)成分(1)~(9)の油相成分を 80℃に加熱して溶解した。次に、油相成分中に、同温 度に加熱した成分(10)~(13)及び(15)から なる水相成分を加え、乳化させた。その後、撹拌しなが ら(14)を加え、室温まで冷却し、水中油型乳化化粧 料を得た。

【0030】(試験方法)

(1) 保湿性:まず、5人のパネラーが各化粧料の一定 50 量を前腕内側部に塗布し、3時間放置したのち、湯洗し

た。次に、温度20℃、湿度50%の恒温恒湿室に入 り、30分後に角質層中の水分含有量をインピーダンス メーター(IBS社製)で測定し、保湿性を評価した。 表1には、5人の平均値を表示した。

(2)保存安定性:各化粧料を、5℃、室温及び50℃ でそれぞれ1月保存した場合の乳化状態を目視で観察

し、次の基準により保存安定性を評価した。

*〇:変化がなかった。

△: 粘度が著しく増加若しくは減少するか又は結晶が析 出した。

×:分離又はクリーミングが生じた。

[0031]

【表1】

組 成	実施例1	実施列2	出校列1	出效列2
(1) N- (2-ヒドロキシ-3-ヘキサデシロキシ プロビル) -N-2-ヒドロキシエチルヘキサ デカナミド	5.0	5.0	5.0	5.0
(2) ステアリン酸	20	2.0	2.0	20
(3) コレステロールイソステアレート	3.0	3.0	3.0	3.0
(4) ジイソステアリン酸ジグリセリン(Ri ² =2.6)	10.0	-	-	-
(5) 乳酸オクチルドデシル(Ri ² =4.3)	-	10.0	-	-
(6) ミリスチン酸イソステアリル(Ri ² =40.0)	-	-	10.0	-
(7) 流動イソパラフィン(Ri ² =91.4)	-	-	-	10.0
(8) ポリオキシエチレン(40)倒化ヒマシ油	20	2.0	2.0	20
(S) セタノール	3.0	3.0	3.0	3.0
(10) グリセリン	3.0	3.0	3.0	3.0
(11) 1、3ープチレングリコール	3.0	3.0	3.0	3.0
(12)プチルペラベン	0.1	0.1	0.1	0.1
(13)メチルペラベン	0.2	0.2	0.2	0.2
(14)香料	0.1	0.1	0.1	0.1
(15)精動水	バランス	バランス	パランス	バランス
保 湿 性(μΩ ⁻¹)	131	133	110	108
保存安定性				
5°C	0	0	Δ	Δ
室温	0.	0	0	0
5 0℃	0_	0	×	×

【0032】表1から明らかなとおり、実施例1及び2 は、いずれも保湿性及び保存安定性が優れていた。ま た、この保湿性は、長い時間持続させることができた。 これに対して、相溶性値(Ri²)が30を大きく超え るミリスチン酸イソステアリルを用いた比較例1と、流 40 動パラフィンを用いた2は、いずれも保湿性が劣ってい た。また、比較例1及び2は室温における保存安定性は

良かったが、5℃及び50℃では保存安定性が悪かっ た。即ち、比較例1の場合は5℃では粘度が増加し、5 0℃では分離が生じた。また、比較例2の場合も5℃で は粘度が増加し、50°Cでは分離が生じた。夏季の髙温 時から冬季の低温時までの使用期間を考慮すると、比較 例1及び2の化粧料は製品として明らかに不良であっ た。