Problem Set #4

$\begin{array}{c} {\rm Danny~Edgel} \\ {\rm Econ~709:~Economic~Statistics~and~Econometrics~I} \\ {\rm Fall~2020} \end{array}$

December 7, 2020

 ${\it Collaborated with Sarah \ Bass, \ Emily \ Case, \ Michael \ Nattinger, \ and \ Alex \ Von \ Hafften}$

Question 1

(a) The table below displays the coefficient estimates, alongside robust standard errors.

	(1)
VARIABLES	$\log(\text{wage})$
Education	0.144***
	(0.0118)
Experience	0.0426***
	(0.0125)
Experience ²	-0.0951***
	(0.0341)
Constant	0.531***
	(0.202)
01	0.05
Observations	267
R-squared	0.389
Sum-of-squared Errors	82.50
Debugt standard among in perentheses	

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

(b) In terms of the model parameters, with experience = 10,

$$\theta = \frac{\beta_1}{\beta_2 + \frac{1}{5}\beta_3}$$

Using the parameter estimates from the model,

$$\hat{\theta} \approx 6.109$$

(c) The asymptotic standard error of $\hat{\theta}$ is the square root of its asymptotic variance. Since θ is a function of β , we can use the delta method to solve for the variance of $\hat{\theta}$ as a function of the variance-covariance matrix of $\hat{\beta}$:

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to_d f'(\hat{\beta})\mathcal{N}\left(0,V\right) \equiv \mathcal{N}\left(0,f'(\hat{\beta})'Vf'(\hat{\beta})\right)$$

Where V is the variance-covariance matric of $\hat{\beta}$ and

$$f'(\hat{\beta}) = \begin{pmatrix} \frac{\partial f(\beta)}{\partial \hat{\beta}_1} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_2} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_3} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_4} \end{pmatrix} = \begin{pmatrix} \frac{1}{\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3} \\ -\frac{\beta_1}{(\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3)^2} \\ -\frac{\hat{\beta}_1}{5(\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3)^2} \end{pmatrix}$$

(d) Using the results from the regression summarized in part (a),

$$\begin{split} s(\hat{\theta}) &\approx 1.63 \\ 90\% \text{ c.i.} &= [\hat{\theta} - 1.645s(\hat{\theta}), \hat{\theta} + 1.645s(\hat{\theta})] \approx [3.428, 8.790] \end{split}$$

Question 2

According to equation (8.3),

$$\widetilde{\beta}_{CLS} = \underset{R'\beta=c}{\operatorname{arg \, min}} \operatorname{SSE}(\beta)$$

Where $R = \begin{pmatrix} 0 \\ I_{k_2} \end{pmatrix}$ and c = 0. Then, (8.3) can be simplified as the following unconstrained optimization problem:

$$\widetilde{\beta}_{CLS} = \operatorname{argmin} \operatorname{SSE} \begin{pmatrix} \beta_1 \\ 0 \end{pmatrix}$$

WAnd where $\hat{\beta}_{OLS}$ from the regression of Y on X_1 is defined as:

$$\hat{\beta}_{OLS} = \operatorname{argmin} \, SSE(\beta_1)$$

Question 3

By equation (8.3),

$$\widetilde{\beta}_{CLS} = \underset{R'\beta=c}{\operatorname{arg\,min}} \operatorname{SSE}(\beta)$$

Where,
$$SSE(\beta) = (Y - X\beta)'(Y - X\beta) = (Y - X_1\beta_1 - X_2\beta_2)'(Y - X_1\beta_1 - X_2\beta_2)$$
 and, in this case, $R = \begin{pmatrix} I_k \\ I_k \end{pmatrix}$ and $c = 0$. Then,

$$\widetilde{\beta}_{CLS} = \arg\min_{R'\beta = c} SSE(\beta)(Y - X\beta)'(Y - X\beta)$$

$$\mathcal{L} = (Y - X_1\beta_1 - X_2\beta_2)'(Y - X_1\beta_1 - X_2\beta_2) - \lambda(\beta_1 + \beta_2)$$

$$\frac{\partial \mathcal{L}}{\partial \beta_1} = -2X_1'(Y - X_1\beta_1 - X_2\beta_2) - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \beta_2} = -2X_2'(Y - X_1\beta_1 - X_2\beta_2) - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \beta_1 + \beta_2 = 0$$

$$\beta_1 = -\beta_2$$

$$-2X_1'(Y - X_1\beta_1 - X_2\beta_2) = -2X_2'(Y - X_1\beta_1 - X_2\beta_2)$$

$$-2X_1'(Y + X_1\beta_2 - X_2\beta_2) = -2X_2'(Y + X_1\beta_2 - X_2\beta_2)$$

$$-2X_1'(Y - 2X_1'(X_1 - X_2)\beta_2 = -2X_2'(Y - 2X_2'(X_1 - X_2)\beta_2)$$

$$2(X_2 - X_1)'(X_1 - X_2)\beta_2 = 2(X_1 - X_2)'Y$$

$$\beta_2 = [(X_2 - X_1)'(X_1 - X_2)](X_1 - X_2)'Y$$

$$\beta_1 = [(X_2 - X_1)'(X_2 - X_1)](X_2 - X_1)'Y$$

Thus,

$$\widetilde{\beta}_{CLS} = \left(\begin{bmatrix} (X_2 - X_1)'(X_2 - X_1) \end{bmatrix} (X_2 - X_1)'Y \\ [(X_2 - X_1)'(X_1 - X_2)] (X_1 - X_2)'Y \right)$$

Question 4

8.4(a)

Question 5

8.22

Question 6

9.1

9.2

Question 7

9.4

Question 8

9.7