Quu ノート -微分積分Ⅱ-

責任者 Quu

最終更新 2025/01/10

概要

微分積分学入門についてのノート.

主に, 多変数微分積分, ベクトル解析, 複素解析について扱う.

このノートを読む前に

このノートは、Quu ノート I から引き続き微分積分を学ぶためのノートである。Quu ノート I に書いてあることをあらかた身に着けた方なら特別苦も無く読み進められる程度の難易度になっている。前回の思想である厳密さと計算への応用の両立はそのまま受けつがれている。本ノートでは、主に I で触れなかった多変数の微分積分について述べ、その後ベクトル解析や複素解析について述べる。そして、物理への応用として、あの相対性理論についてすこしだけ触れ、現代数学に欠かせない Lebesgue 積分論についても述べようと思う。こうみると、微分積分のノートというにはいささか内容が多い。通常微分積分と言ったら、最初の多変数の微分積分だけを指す。しかしこのノートでは、もっとさまざまな解析学の分野に触れ、それらを大観できる、そんな内容になっているのだ。どちらかといえば、高木貞二の解析概論に近いものになっているだろう。

それぞれの部の内容について、簡単に紹介しようと思う.

まず、第一部では基礎数学について述べる. 具体的には、集合論の基礎、線形代数のうち、行列と行列式について、そして、多変数関数の微分である偏微分と多変数関数の積分である多重積分について述べる. 集合論は、これまで学んできた数学よりも抽象度が高く、厳密性も求められるから初めて学ぶ際は少し戸惑われるだろう. ここはじっくり学んでほしい. 直接の応用としては、後に述べる Lebesgue 積分論にかかわってくる. 線形代数は、正直本ノートではすこしも触れたくなかった話題である. しかし、多重積分の変数変換において登場するヤコビアンのためには、行列式の概念が必要であるから、必要最低限述べた. 偏微分と多重積分は、一変数の場合から単純に拡張しただけであるから、すんなり理解できると思う.

次に、第二部では、ベクトル解析について述べる。ベクトル解析で扱われる豊富な内容のうち、重要なものをかいつまんで扱う。ベクトル値関数の微分積分はもちろん、平面そして空間上の曲線の解析も行う。また、曲面についても解析を行う。これらの内容は、微分幾何に通じるもので、一般相対論でも重要である。その後、場の概念について扱う。これは物理、特に電磁気学との関連の深いから、電磁気学の例を用いて説明する。その後、ベクトル場上の積分定理についても扱う。いわゆる Gauss の定理や Stokes の定理である。総じて、この部における数学は、ほかの部の数学に比べて厳密性を無視した展開となっているから注意してほしい。しかし、厳密性を多少犠牲にしてでも、明快に解説できたと思う。

次に、第三部では、複素解析について扱う。複素数について簡単な性質を述べたのち、複素関数を定義する。 複素関数に対しても、実数の場合と同様微分積分が定義できて、とくに微分可能性に対して、実数よりも少し厳 しい条件を付けることで、実り豊かな結果を得ることができる。複素解析は、それ自身興味深い対象であるが、 直接的な応用としては、留数定理の存在があるだろう。実数における定積分を、複素積分に直すことで、留数と 呼ばれる値の和として表すことができるのだ。留数は不定積分を経由しない方法で求めることができるので、 不定積分ができなくても、定積分の計算をすることができるというわけである。また、Riemann 面を用いて多 価関数を扱う方法についても少しだけ述べようと思う。

第四部では、相対性理論についてすこしだけ扱う。一般相対性理論で扱う数学は高級な Riemann 幾何学であるが、特殊相対性理論で扱う数学は簡単な微分積分で十分なのであるから、学ぶための準備は十分できているといえるだろう。まず、特殊相対性理論について、入門的に学ぶ。ここで、相対性理論で用いる諸概念の説明も行う。この時生じるであろうパラドクスについては、つぎのパラドクスの解決で理解していく。その後、相対性理論を適用した力学を展開するための数学について簡単に学ぶ。ここで、変分法や、ベクトル、テンソルの座標変換についても簡単に述べる。こうして必要な数学を身に着けたら、いよいよ相対性理論を用いた力学につ

いて考えていく。このとき、世界一有名な数式とも言ってよい $E=mc^2$ も導出するから楽しみにしていてほしい。また、前に解決したパラドクスについても、別の視点から解決することができることを述べる。最後に、一般相対性理論について、その内容を覗いてみる。

最後に、第五部では、Lebesgue 積分論について簡単に学ぶ. これまで学んできた積分を Riemann 積分とい うが、実は Riemann 積分では様々な制約があった。まず一つ、Riemann 積分では、関数が連続でない場合、積 分可能であるとは限らない. 実際関数が有界であって原始関数を持っても, その関数が積分可能であるとは限 らない例が存在している.次に,積分記号と極限の入れ替えのためには,関数列が一様収束しなければならな い. これは I にて学んだことである. 一様収束は、正直言ってかなり厳しい条件であろう. そんな条件が満た されていないと、項別に積分できないのは、Riemann 積分の大きな欠点であるし、制約である. それに対して、 Lebesgue 積分では、これらの制約が大幅に緩和される.例えば、関数列 $\{f_n\}$ が区間 [a,b] の各点で $\lim f_n = f$ であるとき, すべての n に対して $|f_n(x)| < M$ となる定数 M が存在すれば, $\lim_{n \to \infty} \int f_n(x) dx = \int f(x) dx$ とで きるのだ (まさに項別積分!!). 流れとしては, まず考察したい全体の集合に対して, 扱う部分集合の対象として 都合の良いものを集めた σ -集合体というものを定義する. この σ 集合体と全体集合を用いて可測空間なるも のが作られる. その集合体内に含まれる部分集合はすべて可測集合と呼ばれ, 可測集合であれば, それに対して 測度が定義できる. 測度は、簡単に言えば、ものの長さや立体の体積などを抽象化したもので、可測空間にこの 測度を加えて測度空間を作ることができる. 一方, 全体集合に対して実数を対応させる関数のうち, ある条件を みたすものを可測関数と定義する. 常に正の値を取る可測関数には, 単関数とよばれる関数の単調増加列が存 在して、その収束関数として表すことができるという性質がある. このようにして数学の準備を整えることで、 ようやく積分が定義できる. 積分を定義し、基本的な性質について述べた後は、本命の収束定理について述べて いく. これだけの内容を全てしっかり学ぼうとしたら、それだけで一冊できてしまうから、必要最低限のみ解説 してこうと思う.

今回の Quu ノート II は I と比べて書式が変わっているところがあるから、始めに紹介しておく.まず、定理の名前等に出てくる海外の人名は、すべて英語にしてある.これは、専門的な本ではたいてい人名が英語で書かれていること考慮している.また、句読点を「、」「。」から「,」「.」に変更した.これも、理工系の本では後者の方を用いられているからそれに合わせた形となる.各節(section)番号の前には \S 記号を付けた.

各節ごとに、基本問題を用意している.これらは是非とも自分で解いてもらいたい.ノートの最後のほうに解答もつけているから、適宜参照してほしい.Iでも述べたように、これを読んで一度ですべてを理解できなくてもよいし、またその必要もない.ただ、寝転がりながら読んでも理解できるほど簡単な内容でもない.紙と鉛筆を用意して、しっかりと繰り返し読んで考えることで、必ず微分積分が理解できるようになるだろう.

これを読んで、少しでも解析学を大観できたと感じられたら幸いである.

以下に、各部の関係を示す図をのせる.参考にしてほしい.破線の矢印は、読んでおくと便利というだけで、 読まなくてもあまり困ることはないだろう.

このノートを書く際に使ったアプリケーション等をあげておく.

- 1. T_EX(正確には LAT_EX)
- 2. Tikz (T_EX のパッケージ. 作図するときに便利である.)
- 4. PowerPoint(表紙のアイコンを作成するために用いた.)
- 5. WolflamAlpha(検算で大活躍した.)

なお、誤植等があれば遠慮なく連絡してほしい. 質問も大歓迎である.

目次

第Ⅰ部	基礎数学	8
§ 1	集合論基礎	9
1.1	集合とは	9
1.2	記号論理	11
1.3	集合の演算	14
1.4	直積集合	16
1.5	写像	17
1.6	濃度	22
1.7	実数の連続性	26
§ 2	行列と行列式	28
§ 3	偏微分	29
§ 4	多重積分	30
第 II 音	ボーベクトル解析	31
§ 5	ベクトルの性質と演算	32
§ 6	ベクトル値関数とその微分	33
§7	曲線の解析	34
§ 8	曲面論入門	35
§ 9	微分演算子	36
§10	線積分と面積分	37
第 III	部 複素解析	38
§11	複素数	39
§12	複素関数とその微分	40
§13	複素線積分	41
§14	級数	42
§15	留数定理	43

目次		7
§16	解析接続	44
§17	Riemann 面	45
第 IV	V 部 相対性理論	46
§18	特殊相対論入門	47
§19	パラドクスの解決	48
§20	数学的準備	49
§2 1	相対論的力学	50
§22	一般相対論への展望	51
第Ⅴ	部 Lebesgue 積分入門	52
§23	可測空間	53
§24	測度	54
§25	可測関数	55
§26	積分	56
§27	収束定理	57
第 V ː	T 部 終わりに	58

第I部

基礎数学

ここでは、数学をするうえで必要となる最低限の基礎知識を学ぶ. 主に、集合論基礎、線形代数のうちベクトル、行列、行列式の基礎が含まれる. また、多変数関数について微分・積分を定義する. いわゆる偏微分、重積分というもので、これらの概念を習得することは、数学、物理、工学を学ぶ上で重要である.

§1 集合論基礎 **9**

§1 集合論基礎

集合とその演算,写像,濃度について軽く触れ,実数論についても少し触れる.

1.1 集合とは

集合とは端的に言えば、 $\underline{600}$ 集まり*1*である。実数の集まりでも整数の集まりでもよいし、関数の集まりでもよい。もっと具体的に、犬、猫、人間、など、ともかく何かを集めた集まりである。ある集合に対して、あるものがその集合に含まれていた場合、そのものを集合の要素や元という。集合を構成するものといってもよいだろう。 \underline{a} が集合 \underline{A} の要素であることを次のように表記し、 \underline{a} は \underline{A} に属するという。

また, a が A の要素でないことは $a \notin A$ または $A \not\ni a$ と表記する.例えば, A が 6 の約数全てであるとき, $1 \in A, 2 \in A$ であるが, $5 \notin A$ である.なお,集合が集合たるためには,その集める範囲が明確に定義できていなければならない.例えば,学校内の美人な学生全体の集まりは,美人の定義が定まっていないから集合ではないのである.大きい服すべての集まり.おいしい食べ物全体の集まりなども同様の理由で集合ではない.

集合はものの集まりであるから、その要素の個数について気になるところである.要素の個数が0か自然数で表せる集合を有限集合といい、それ以外の集合を無限集合という.また、要素の個数が0、すなわち要素を何も持たない集合を空集合といい、 \emptyset とかく.有限集合としては例えば先ほど例に挙げた6の約数全ての集合がある.無限集合としては、自然数全体の集合、実数全体の集合などがある.

様々な集合を考えることができるが、特別な記号で表せる集合があるから紹介しておこう.これらは一般的に、たいてい断りなく用いられる.

№ = 自然数全体の集合

図 = 整数全体の集合

◎ = 有理数全体の集合

ℝ = 実数全体の集合

ℂ = 複素数全体の集合

集合を表す方法として、その要素をすべて書き並べる表し方がある.これを**列記法**または**外延的記法**という.これを用いて、先ほど例示した 6 の約数全ての集合を表す.

$$A = \{-6, -3, -2, -1, 1, 2, 3, 6\} \tag{1.2}$$

もちろん, 元を書き並べる順序をかえても同じ集合である。また, 重複して書かれた要素は一つのものとして考え, 同じ要素を重複して書くようなことはしない。しかし, 要素の数が多くなれば, 要素を全て並べて書くことは困難になることは容易に想像できる。例えば 100 万以下の自然数すべての集合を列記法でかく作業は途方も

 $^{^{*1}}$ 素朴な疑問だが、もののあつまりというものはどういうものであろうか.なんだか曖昧な定義である.例えば、 $A\in A$ を満たす A は集合といえるだろうか.この答えは No であって、それは集合を厳密に定める公理系によって示される.これらの研究は公理的集合論という 20 世紀に発展した数学の分野の一つである.

1.1 集合とは **10**

ないだろう. そこで, 集合の要素となる条件 (範囲, 性質) を書いて, それを満たす要素全体として集合を表す方法も存在する. これを説明法や内包的記法という. これを用いて先ほどの (1.2) を書くと

$$A = \{x \mid x \text{ は } 6 \text{ の約数全体 } \} \tag{1.3}$$

となる. このように, 説明法では集合を要素 x の条件 P(x) を用いて $\{x \mid P(x)\}$ とかく. また, $\{1.3\}$ は $\{x \in \mathbb{Z} \mid x$ は 6 の約数全体 $\}$ とも書かれる. 最初の x の前に大前提の $x \in \mathbb{Z}$ を書くのである. このほかにも, 特別な集合の場合は固有の表し方もある. 例えば, 閉区間, 開区間の表し方がそうである.

義務教育中に習ったように、自然数 $\mathbb N$ のすべての要素は整数 $\mathbb Z$ に含まれている.これは、 $\mathbb N$ が $\mathbb Z$ に '包まれている' ような状態であると理解できる.一般に、二つの集合 A,B について、A の全ての要素が B の要素であるとき、A は B の部分集合であるといい、

とかく. この場合, A は B に包まれている, または B は A を包むという. 反対に, $A \subset B$ ではないことを $A \not\subset B$ とかく. 明らかに, $A \subset A$ である. また, $A \subset B$, $B \subset C$ ならば $A \subset C$ であることも, 明らかであろう. $A \subset B$ かつ $A \supset B$ であるとき, A = B とかき, 二つの集合 A, B は等しいという.

 $A \subset B$ かつ $A \neq B$ であるとき, A は B の真部分集合であるといい, これを強調したい時 $A \subsetneq B$ とかく. 例えば、 $\mathbb N$ は $\mathbb Z$ の真部分集合である.

集合 A に対して、A の部分集合全体の集合を A の巾集合といい、 $\mathfrak{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、本ノートでは、最後の記法 2^A を採用することにする.巾集合は、その要素全てが集合である.一般に、どの要素も集合であるような集合を集合族という.*2

例えば、 $A = \{1,2,3\}$ のとき $2^A = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ である。空集合が入っていることに疑問が浮かぶ人もいるだろうから説明しておこう。空集合とは、要素を一つも持たない集合であるから、論理として「a が A に含まれていない」ならば「a は \emptyset に含まれていない」が任意の集合 A に対して成り立つ。実際、前半の「」の真偽にかかわらず成り立つから、これは正しいと納得されるだろう.*3 このときこの命題の対偶*4を取れば、「a が \emptyset に含まれている」ならば「a は A に含まれている」が成り立つ。すなわち、空集合は任意の集合の部分集合であることがわかる。

^{*2} 集合族は、一般にドイツ文字や花文字で表される慣習がある.

^{*3} これは次小節を見ることでより納得がいくはずである.

^{*4} 次小節参照.

1.2 記号論理 11

1.2 記号論理

ここでは集合論を展開するために便利な記号論理について必要最小限に留めて述べる.

一般に,数学の定理は

$$p \Rightarrow q \quad (p \text{ ς bif } q) \tag{1.5}$$

の形をしていることが多い. p をこの定理の仮定, q を結論という. p,q のように, 真偽の定まる文章を命題という. 命題によっては, それ自身がある複数の命題によって構成されている場合がある. 例えば, a=1 かつ b=2 は a=1 という命題と b=2 という命題が「かつ」によって結合されている. このように, 数学に現れる命題を結合するものは, 次の三種類がある.

$$p \wedge q$$
, $p \vee q$, $p \Rightarrow q$

 \wedge は「かつ」, \vee は「または」, \Rightarrow^{*5} は「ならば」を表す.*6 特に, $p \Rightarrow q \wedge p \Leftarrow q$ であるとき, p と q は同値であるといい, $p \Leftrightarrow q$ とかく.

次に、命題の否定を考える。命題 p に対して、その否定は「p でない」となり、これを $\neg p$ とかく.以上で紹介した記号 \land , \lor , \neg , \Rightarrow , \Leftrightarrow を論理演算子という.命題の合成命題を否定する際には、書き方に注意を払う必要がある.例えば、 $p \land q$ という命題を否定するときに $\neg p \land q$ と書いてはいけない.この場合、「p ではない」かつq であるという命題になっているからである.正しくは、 $\neg (p \land q)$ とかく.

ある命題が真である場合や偽である場合に、それを数値で表すことができたら便利である。そこで、命題が真である場合、その命題の真理値は 1 であるといい、偽のとき、その命題の真理値は 0 であるということにする。例えば、p,q の真理値がそれぞれ 1,0 であるとき、 $p \wedge q$ の真理値は 1 である。この時重要なのは、 $p \wedge q$ の真偽を判断するときに、 $p \wedge q$ の命題の意味を解釈することなく、p,q の真偽だけから判断できたということである。よって、命題 p_1,p_2,\ldots,p_n の合成命題 p が与えられたときは、p の真偽に重要なのは論理式の構造と p_1,p_2,\ldots,p_n の真偽だけということになる。

そこで、各命題 p_1, p_2, \ldots, p_n の真理値のすべての組み合わせについて P を計算した表を考え、これを P の真理値表という. 以下に $p \wedge q$ の真理値表を示す.

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

表 1: p ∧ q の真理値表

二つの合成命題 P,Q が与えられたとき、真理値表において P,Q の真理値表が一致するとき、P と Q は論理的に同値であるといい, $P\equiv Q$ とかく.試しに, $\neg(p\wedge q)$ と $(\neg p)\vee(\neg q)$ が論理的に同値であることを示してみる.(次ページ)

 $^{^{*5}}$ $p \Rightarrow q$ はこの命題が真であるとすでに分かっているときによく用いられる.まだこの命題が真であるかがわかっていない場合などは $p \to q$ と書いて区別する.

^{*6 ∧} を論理積, ∨ を論理和という.

1.2 記号論理 12

以下の表を見ればわかるように、 $\neg(p \land q)$ と $(\neg p) \lor (\neg q)$ の真理値はすべて一致している.これより直ちにこれら二つの論理が同値であることがわかる.

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$(\neg p) \vee (\neg q)$
	0		1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

表 2: 真理値表による命題の比較

上記の方法とまったく同様にして、 $\neg(p \lor q)$ と $(\neg p) \land (\neg q)$ が示されるから、以下の **De Morgan の法則**が成り立つことがわかる.

$$\neg(p \land q) \equiv (\neg p) \lor (\neg q) \tag{1.6}$$

$$\neg(p \lor q) \equiv (\neg p) \land (\neg q) \tag{1.7}$$

De Morgan の法則は最も基本的な論理演算の法則であるから、しっかり理解しておこう.この二つの式から双対性の概念が見えるがここでは触れない.

De Morgan の法則を用いれば、 \land 、 \lor の含まれる合成命題については否定できるが、 \Rightarrow が含まれた命題を否定する際はどうすればよいだろうか.一度ここでもっとも簡単な形である $p \Rightarrow q$ について考察してみよう.すぐわかるのは p が真の場合、q が真ならば真、偽ならば偽であるとなることである.問題は p が偽の場合である.このとき q が成り立っていようがいまいが(仮定がそもそも偽であるから)真偽には関係のないような気がする.そこでp が偽のときには $p \Rightarrow q$ は偽であると定めることにしよう.このように定めるのは、例えば「任意の自然数 n に対して $n > 2 \Rightarrow n > \sqrt{5}$ 」という命題を考える際に便利だからである.普通に考えてみればこの命題はもちろん真なのであるが、これまでの考え方に則ると、n = 2 のとき「 $2 > 2 \Rightarrow 2 > \sqrt{5}$ 」が真でなければならない.なぜなら n は任意の自然数だからである.このような場合,下線部のように定めることで,任意の自然数に対して命題が真であるようにできるのだ.よって, $p \Rightarrow q$ の真偽は $\neg p \lor q$ の真偽と一致することがわかる.よって, $\neg (p \Rightarrow q) \equiv \neg (\neg p \lor q) \equiv \neg (\neg p) \land (\neg q) \equiv p \land (\neg q)$ となる.ここで, $\neg (\neg p) \equiv p$ であることを用いた.これは真理値表を用いて簡単に示せる.以上をまとめると

$$\neg(p \Rightarrow q) \equiv p \land (\neg q) \tag{1.8}$$

が得られる.

二つの命題 p,q に対して、 $p\Rightarrow q$ が正しくても $q\Rightarrow p$ が正しいとは限らない。例えば、微分可能であるならば連続であるが、連続で会っても微分可能ではないのが好例である。 $q\Rightarrow p$ を $p\Rightarrow q$ の逆といい、 $\neg q\Rightarrow \neg p$ を対偶という。今述べたように、命題 $p\Rightarrow q$ が真であっても逆は真であるとは限らないが、対偶についてはどうだろうか。対偶の論理式を式変形してみると $\neg q\Rightarrow \neg p\equiv \neg (\neg q)\vee (\neg p)\equiv q\vee (\neg p)\equiv p\Rightarrow q$ となる。*7 すなわち、 $p\Rightarrow q$ とその対偶の真偽は一致する。これは、 $p\Rightarrow q$ の命題を証明する際には、その対偶を証明してもよいということを示している。

 $^{*^7}$ 何も言わず $p \lor q \equiv q \lor p$ を用いてしまったが、本来は真理値表で確かめる必要がある.ただ、直感的に明らかであろう.

1.2 記号論理 13

最後に、限定記号について述べておこう.これはこれから多く出てくるからしっかり理解しよう.変数を含む文章で、変数に値を代入する値と命題になるものを命題関数や述語という.命題も命題関数も含めて単に命題とよぶ.例えば、 $p(x) \equiv x$ は 2 と等しい という命題関数を考えてみる.ここに x=2 を代入した命題 $p(2) \equiv 2$ は 2 と等しい は真である.一方 x=1 を代入した命題 p(1) は偽である.

ここで気になってくるのが、ある命題関数を考えたときに、この命題は全てのxについて成立しているのか、それともあるxについて成立しているかであろう。このときの「全ての (任意の)」や「ある (或る)」という言葉を限定語という。例えば、「三角形の内角の和は 180° 」という命題は「全ての三角形」に対して成立している。この「全ての」や「ある」を表す記号として、 \forall 、 \exists がある。それぞれ 'For all' または 'For any'、'Exist' に由来する記号で、前者を全称記号、後者を存在記号という。これらをまとめて限定記号という。これを用いて、全ての実数に対しその平方が 0 または正であるという命題は $\forall x \in \mathbb{R}[x^2 \geq 0]$ と書ける。また、実数全体で定義された関数 f(x) に対して、f(x) = x となる実数 x が存在するという命題は $\exists x \in \mathbb{R}[f(x) = x]$ と書ける。

限定記号を用いれば, $\varepsilon-N$ 論法による極限の定義を簡単な論理式で書くことができる. 試しに, 数列 $\{a_n\}$ が $a_n \to \alpha$ となることを限定記号を用いて書いてみると

$$\forall \varepsilon > 0, \exists N > 0, \forall n \in \mathbb{N} [n > N \Rightarrow |a_n - \alpha| < \varepsilon]$$

となる. この書き方のほうがどの変数が何に依存しているかがすっきりしていて見やすいと思う.

最後に、全称記号および存在記号付きの命題を否定すると、それらが互いに入れ替わることを証明なしに述べて終わる.

$$\neg \left(^{\forall} x \in X \left[p(x) \right] \right) \equiv {}^{\exists} x \in X \left[\neg p(x) \right] \tag{1.9}$$

$$\neg \left(\exists x \in X \left[p(x) \right] \right) \equiv \forall x \in X \left[\neg p(x) \right] \tag{1.10}$$

しかし、これは直感的には理解しやすい.例えば (1.9) であれば、任意の x について成り立っていることを否定するのだから、(少なくとも一つは) 成り立たないような x が存在しなければならない.そして、この式に両辺否定を取れば (1.10) がすぐさま導かれる.

1.3 集合の演算 14

1.3 集合の演算

集合に話を戻す.二つの集合 A,B について,その和と積に対応するものを考えよう.それらは以下のように定められる.

$$A \cup B = \{x \mid x \in A \lor x \in B\} \tag{1.11}$$

$$A \cap B = \{x \mid x \in A \land x \in B\} \tag{1.12}$$

集合 $A \cup B$ を $A \in B$ の和集合といい, $A \cap B$ を $A \in B$ の共通部分という. 定義から明らかに次式が成り立つ.

$$A \subset A \cup B, \quad B \subset A \cup B$$
 (1.13)

$$A \cap B \subset A, \quad A \cap B \subset B$$
 (1.14)

しかし、せっかく記号論理を学んだのだから、上式を証明してみるのもよいだろう。試しに、(1.13) を示してみることにしよう。対称性から、示すべき命題は、 $x \in A \to x \in A \cup B$ で十分である。 $x \in A \to x \in A \lor x \in B$ であり、右辺は和集合の定義そのものだから、示された。やはり明らかであったが、簡単な命題でも記号論理の威力が垣間見えるだろう。

二つの集合が共通の要素を一つも持たない場合, 共通部分に含まれる要素は存在しない. この場合, 要素数は 0 であるから空集合である. 集合 A,B に対し, $A\cap B=\emptyset$ であるとき, A と B は交わらない (互いに素である) という. 逆に, $A\cap B\neq\emptyset$ のとき, 二つの集合は交わるという.

集合演算の基本的な性質について述べよう. 以下に式を列挙する.

$$A \cup B = B \cup A, \quad A \cap B = B \cap A \tag{1.15}$$

$$(A \cup B) \cup C = A \cup (B \cup C) \tag{1.16}$$

$$(A \cap B) \cap C = A \cap (B \cap C) \tag{1.17}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{1.18}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{1.19}$$

(1.15) は交換法則, (1.16), (1.17) は結合法則, (1.18), (1.19) は分配法則である. これらはすべて定義から記号論理を駆使して簡単に証明できる. ここでは, (1.18) のみ証明することにする.

Proof. 示すのは、 $x \in A \cup (B \cap C) \leftrightarrow x \in (A \cup B) \cap (A \cup C)$ である。 $x \in A \cup (B \cap C) \leftrightarrow x \in A \vee x \in B \cap C \leftrightarrow x \in A \vee (x \in B \wedge x \in C)$ であるから、命題に関する分配法則が成立すればよい。真理値表を書けば わかるように、 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ だから、 $x \in A \cup (B \cap C) \leftrightarrow (x \in A \vee x \in B) \wedge (x \in A \vee x \in C) \leftrightarrow x \in A \cup B \wedge x \in A \cup C \leftrightarrow x \in (A \cup B) \cap (A \cup C)$ となる。以上より、(1.18) が示された.

二つの集合 A, B に対して、 差に対応するものを考える. これは以下のように定義する.

$$A - B = \{x \mid x \in A \land x \notin B\} \tag{1.20}$$

集合 A-B を A と B の**差集合**という.一般に, $A-B \neq B-A$ である.等号が成り立つのは A=B の場合 のみである.これは実数の場合と同様であるから理解しやすい.

1.3 集合の演算 15

数学では、ある集合を基礎として、その要素について考察する場合が多い。例えば、Quu ノート I では実数の集合 $\mathbb R$ において、その微分積分等を考察していた。このような、特定の集合 Ω の要素と部分集合について議論する場合、 Ω を全体集合という。全体集合にはよく Ω,U といった記号が用いられる。全体集合 Ω が与えられたとき、考察の対象となる集合 $A\subset\Omega$ に対して、 $\Omega-A$ を考えることができる。この差集合 $\Omega-A$ を Ω における A の補集合といい、 A^c とかく、*8 任意の $x\in\Omega$ に対して、 $x\in A^c \Leftrightarrow x\notin A$ が成立する。

以降, 特別断りがない場合 Ω を全体集合とする. 任意の $A \subset \Omega$ に対して, 以下が成り立つ.

$$(A^c)^c = A (1.21)$$

$$A \cup A^c = \Omega \tag{1.22}$$

$$A \cap A^c = \emptyset \tag{1.23}$$

$$\Omega^c = \varnothing, \quad \varnothing^c = \Omega \tag{1.24}$$

$$A \cup \Omega = \Omega \tag{1.25}$$

$$A \cap \Omega = A \tag{1.26}$$

これらは補集合の定義からすぐさま導かれるから、ここでは述べない. 各自で試されるとよいであろう. 補集合について重要なのは次の De Morgan の法則である.

$$(A \cup B)^c = A^c \cap B^c \tag{1.27}$$

$$(A \cap B)^c = A^c \cup B^c \tag{1.28}$$

これは記号論理で述べた De Morgan の法則の法則 (1.6),(1.7) からすぐさま導かれるから、これも証明は略する. これに加えて、補集合については、以下の等式が重要である.

$$A - B = A \cap B^c \tag{1.29}$$

Proof. 前提として, $A, B \subset \Omega$ であることに注意しよう.

$$x \in A - B \leftrightarrow x \in A \land x \notin B$$
$$\leftrightarrow x \in A \land x \in B^c$$
$$\leftrightarrow x \in A \cap B^c$$

以上より、等式が示された.

集合の勉強をする際に、そのイメージを持たせるために、よく Venn 図が紹介されている。しかし上で見たように、Venn 図を使おうが使わまいが、集合の命題は記号論理の演算を用いて機械的に解くことができる。むしる、今後扱う命題では図で書くと複雑な場合が多い。そのためこのノートでは Venn 図については一切触れない。興味がある人は適当な集合論の本を参考にしてみるとよいだろう。

図 1: 共通部分 $A \cap B$ の Venn 図

^{*8} c は complement の頭文字.

1.4 直積集合 16

1.4 直積集合

Quu ノート I において、実数 $\mathbb R$ は数直線ととらえることができると説明した。同様にして、二つの数直線を直交させてできる平面についても、この平面上の各点と二つの数直線の値とを対応付けることができるだろう。これは、関数のグラフを書く時にすでに(直接言及されていないだけで)学んだことである。この平面の各点は、二つの集合 $\mathbb R$ 、 $\mathbb R$ の各要素を対にしたもの全てを集めた集合といえよう。

一般に、二つの集合 A, B に対して

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$
 (1.30)

を A と B の直積集合または単に直積という.ここで,(a,b) は二つのもの a,b から作られる対となるもので,これを順序対という.順序対は集合と違って, $(a,b) \neq (b,a)$ となる.つまり,対の順序が違えばそれは違うものとみなす.二つの順序対 (a,b),(a',b') が等しいのは a=a',b=b' となるときに限るとする.

直積を用いれば、先ほど例で挙げた平面も $\mathbb{R} \times \mathbb{R}$ と書けるとわかる。ただこの場合、同一の集合の直積であるから簡単に \mathbb{R}^2 と書くことにしよう。この記法は、任意の集合 A の直積 $A \times A$ についても用いられる。すなわち、 $A \times A = A^2$ である。

直積の具体例を挙げよう。例えば、 $A=\{1,2,3\}, B=\{2,3\}$ とすると、 $A\times B=\{(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)\}$ であり、 $B\times A=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ である。このように、一般に直積では交換法則が成り立たない。

直積 $A \times B$ において, A, B どちらか一方が空集合であれば順序対が存在しないので, この場合 $A \times B$ は空集合になる.

今は二つの集合について、それぞれの要素から順序対を作っていた。これを n 個の集合の場合に拡張しよう。 n 個の集合 A_1,A_2,\cdots,A_n に対して、それらの直積集合を

$$A_1 \times A_2 \times \dots \times A_n = \{ (a_1, a_2, \cdot, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n \}$$
 (1.31)

によって定める. (a_1,a_2,\cdots,a_n) は順序対である. n 個の場合でも二つの順序対が等しいのは, 並べられた各要素の値が等しい場合に限るとする. また, $A_1=A_2=\cdots=A_n=A$ のとき, この直積集合を A^n とかく.

直積は、もっと一般に集合系に対して定義される.しかし、微分積分を学ぶ上では上記の定義で十分であるからここでは述べない.こちらも、興味がある人は集合論の本を参考にしてほしい.

1.5 写像

これまで扱ってきた関数は、主に実数から実数に対応するものだった。例えば、 $f(x)=x^3$ は、全ての実数に対して定義され、全ての実数に対応しているだろう。ここで議論したいのは、もっと一般に、二つの集合間の対応である。

二つの集合 X,Y が与えられ, X の<u>どの要素</u>に対しても, それぞれ Y の要素がただ一つ対応しているとき, この対応関係そのものを X から Y への写像* 9 と定義する. 写像は, 関数や変換とも呼ばれたりするが, 全てまったくの同義語である. *10 X から Y の写像が f であることは, 次のように書かれる.

$$f: X \to Y \tag{1.32}$$

このとき, X を f の定義域 (始域)Y を値域 (終域) という。また、二つの写像 $f: X \to Y, f': X' \to Y'$ が同じ 写像である *11 とは、 $X=X' \wedge Y=Y'$ であって、 $^{\forall}x \in X[f(x)=f'(x)]$ であることをいう。このとき、f=f'とかく。

 $f: x \to y$ によって, $x \in X$ が $y \in Y$ に対応することを y = f(x) とかく. このとき, y を f による x の像という. また, x を f による y の原像という.

これまで扱ってきた関数の中には、 $\sin(x^2)$ のように、関数の中に関数が入っているものがあった.これを合成関数といったわけだが、これを写像の場合にも考えてみる. すなわち、集合 X,Y,Z と、二つの写像 $f:X\to Y,g:Y\to Z$ を考え、この合成写像なるものを考えてみよう.写像 $h:X\to Z$ を、h(x)=g(f(x)) として定める.この写像の各像は、X の要素を Y に飛ばし、その像を g で Z の要素にとばしたものと一致する.これを合成写像といい、 $g\circ f$ とかく.

合成写像に関しては、交換法則は成り立たないが、結合法則は成り立つ. すなわち

$$h \circ (g \circ f) = (h \circ g) \circ f \tag{1.33}$$

が成り立つ. ただし, f,g,h は, 集合 X,Y,Z,W について, $f:X\to Y,g:Y\to Z,h:Z\to W$ とする.

Proof. $x \in X$ とする. このとき

$$[h \circ (g \circ f)](x) = h((g \circ f)(x)) = h(g(f(x))) = (h \circ g)(f(x)) = [(h \circ g) \circ f](x)$$

が成り立つ. したがって等号が成り立つ.

 $f: X \to Y$ を写像とする. $A \subset X$ に対して、 $\{f(a) \mid a \in A\}$ を f による A の像といい、f(A) とかく. また、 $B \subset Y$ に対して、 $\{x \in X \mid f(x) \in B\}$ を f による B の逆像または原像といい、 $f^{-1}(B)$ と表す.明らかに、 $f(A) \subset Y$ 、 $f^{-1}(B) \subset X$ である.

例えば、 $f: \mathbb{R} \to \mathbb{R}; x \mapsto x^{2*12}$ として、f([0,1]) = [0,1] である.一方、 $f^{-1}([0,1]) = [-1,1]$ である.すなわち、この場合像と逆像は等しくない.像も逆像も等しい例として、 $f: \mathbb{R} \to \mathbb{R}; x \mapsto x^3$ がある.先ほどと同じ部分集合の像を考えると f([0,1]) = [0,1] であるし, $f^{-1}([0,1]) = [0,1]$ である.から,この場合確かに等しい.

^{*9} 対応関係自体を定義していないから,この定義は曖昧であるように感じる.この感覚は正常なものだ.実際は, $X\times Y$ の部分集合を対応関係と定義し,そのうち全ての $x\in X$ に対して, $y\in Y$ が一意的に存在するものを写像というのである.

 $^{^{*10}}$ 関数は, 特に X が数の場合にいうようである.

^{**11} $A \subset X$ に対して定義される $g: A \to Y$ が任意の $x \in A$ に対し, f(x) = g(x) であるとき, g を f の A の制限という.このとき $g = f \upharpoonright_A$ とかく.また,f は g の拡張と呼ばれる.

^{*12} このように、写像の像を具体的に $x \mapsto f(x)$ と書くことがある.

像と逆像に関しては以下の公式が成り立つ. ただし, $f: X \to Y$ とし, $A_1, A_2 \subset X, B_1, B_2 \subset Y$ とする.

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \tag{1.34}$$

$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \tag{1.35}$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2) \tag{1.36}$$

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2) \tag{1.37}$$

$$A_1 \subset f^{-1}(f(A_1)) \tag{1.38}$$

$$f(f^{-1}(B_1)) \subset B_1 \tag{1.39}$$

$$f(A_1) - f(A_2) \subset f(A_1 - A_2) \tag{1.40}$$

$$f^{-1}(B_1) - f^{-1}(B_2) = f^{-1}(B_1 - B_2)$$
(1.41)

これも像と逆像の定義から導出できるから、各自で証明してほしい.ここでは、(1.34) と (1.38) のみ証明しよう.

(1.34) の証明.

$$f(A_1 \cup A_2) = \{ f(a) \mid a \in A_1 \cup A_2 \} = \{ f(a) \mid a \in A_1 \lor a \in A_2 \}$$

であるから、 $y \in f(A_1 \cup A_2)$ のとき、y = f(a) となる $a \in A_1$ または $a \in A_2$ が存在する.このときそれぞれ $y \in f(A_1), y \in f(A_2)$ となるので $y \in f(A_1 \cup A_2) \to y \in f(A_1) \cup f(A_2)$ となる.一方, $y \in f(A_1) \cup f(A_2)$ のとき, $y \in f(A_1)$ または $y \in f(A_2)$ だからそれぞれ y = f(a) となる $a \in A_1$ もしくは $a \in A_2$ が存在する.よって, $y \in f(A_1 \cup A_2)$ となるので, $y \in f(A_1) \cup f(A_2) \to y \in f(A_1 \cup A_2)$ である.従って, $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ が示された.

(1.38) の証明. $a \in A_1$ とする. このとき, 像の定義より $f(a) \in f(A_1)$ が成り立つ. 一方逆像の定義から

$$f^{-1}(f(A_1)) = \{ x \in X \mid f(x) \in f(A_1) \}$$

であるから、(集合の | より右の条件を満たすことより) $a \in f^{-1}(f(A_1))$ である。よって、 $A_1 \subset f^{-1}(f(A_1))$ \square

(1.38) の証明において重要なのは, $a \in X$ としたときに $f(a) \in f(A_1)$ であっても, $a \in A_1$ とは<u>限らない</u>という点である。例を挙げると, $f(x) = x^2$ のとき f([0,1]) = [0,1] であったが, $x = -1 \in [-1,0]$ であっても, $f(x) = (-1)^2 = 1 \in [0,1]$ が成り立っている。すなわち, $f(x) \in f([0,1])$ となる x は [-1,0] 内にも存在している。

一般の写像に関する性質は以上でほとんどであるが、これだと (1.38) のような包含関係しか得られない.できる限 $f: X \to Y$ について、次のように定める.

- 1. f(X) = Y であるとき, f は全射または上への写像であるという.
- 2. $x_1, x_2 \in X$ について, $x_1 \neq x_2$ ならば $f(x_1) \neq f(x_2)$ であるとき, f は単射または 1 対 1 写像であるという.
- 3. f が全射かつ単射であるとき, f は全単射であるという.

写像 f が全単射であれば、(1.34) から (1.41) のうち \subset であるものは等号が成り立つようになる.全単射である写像の例として、一次関数 $f(x)=ax+b\quad (a\neq 0)$ がある.これが全単射であることは容易に確かめられるから、これも各自で確かめてみるとよいだろう.

任意の集合 $X_1 \subset X_2$ に対し、 X_1 の各要素 x に対して、i(x) = x となる写像 $i: X_1 \to X_2$ を包含写像とい う. 特に, $X_1 = X_2 = X$ であるとき、恒等写像という. 恒等写像はよく id_X と書かれる. 恒等写像は全単射で ある. これも明らかである.

写像 $f:X\to Y$ が全単射のとき、どの $y\in Y$ に対しても y=f(x) となる $x\in X$ が一意に定まるはずであ る. そこで, $y \in Y$ に対して, y = f(x) を満たす $x \in X$ を対応させることで, Y から X への写像が定まる. こ の写像を $f^{-1}: Y \to X$ とかき, f の逆写像という. 先ほど定義した逆像と言葉が似ているが, 異なる概念であ るから気を付けてほしい.

逆写像に関する基本的な定理には、以下のものがある.

 $f: X \to Y$, $g: Y \to X$ を写像とする. このとき $g \circ f = \mathrm{id}_X$ であれば, f は単射で g は全射である. 特 $C, f \circ g = id_Y$ であれば、f, g はともに全単射で g は f の逆写像である.

Proof. $g \circ f = \mathrm{id}_X$ であるとする. このとき, $x_1, x_2 \in X$ について $f(x_1) = f(x_2)$ であるとする. このとき 写像の定義から $g(f(x_1)) = g(f(x_2))$ である. ところで, $g(f(x)) = (g \circ f)(x) = \mathrm{id}_X(x) = x$ であるから, $x_1 = x_2$ である. すなわち, $f(x_1) = f(x_2) \rightarrow x_1 = x_2$ だから, 対偶を取れば $x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$ と なって, f の単射性が示された. 次に, g が全射であることを示す. $x \in X$ とする. このとき, y = f(x) と置く と, g(y) = g(f(x)) = x である. すなわち, X の任意の要素に対して, 対応元 $y \in Y$ が存在するから, g は全射 である. まったく同様にして, $f \circ g = \mathrm{id}_Y$ であれば, f は全射で g は単射である. 従って, f,g は全単射であ る. g が f^{-1} なのは逆写像の定義から明らかであろう.

実は, 上の定理において $g\circ f$ が単射であれば f は単射であり, $g\circ f$ が全射であれば, g も全射である. *13 これ は上の証明をすこし変えるだけだから、読者への演習問題としよう.

集合の列 A_1,A_2,\cdots,A_n を考えよう. これらは、各添え字 $1,2,\cdots,n$ に対して、集合 A_1,A_2,\cdots,A_n が対 応している状態であるから, 添え字の集合 $\{1,2,\cdots,n\}$ からある集合族への一つの写像 A が与えられている と考えられる. このように、ある空でない添え字の集合 Λ からある集合族への写像 A のことを、 Λ 上の集合 系といい,

$$(A_{\lambda} \mid \lambda \in \Lambda), \quad (A_{\lambda})_{\lambda \in \Lambda}$$
 (1.42)

とかく. 実用上は、集合系も集合族も拘泥せず同じ集合の集合と考えてもよい. そのため、(1.42) は以下のよう にも書かれる.

$$\{A_{\lambda} \mid \lambda \in \Lambda\} \tag{1.43}$$

集合系に対して、和集合と共通部分を以下のように定める.

$$\bigcup A_{\lambda} = \{ x \mid {}^{\exists} \lambda \in \Lambda, x \in A_{\lambda} \}$$
 (1.44)

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} = \{x \mid \exists \lambda \in \Lambda, x \in A_{\lambda}\}
\bigcap_{\lambda \in \Lambda} A_{\lambda} = \{x \mid \forall \lambda \in \Lambda, x \in A_{\lambda}\}$$
(1.44)

^{*} 13 このとき, $f: X \to Y, g: Y \to Z$ であっても成り立つ.

(1.44) および (1.45) はそれぞれ $\bigcup \{A_{\lambda} \mid \lambda \in \Lambda\}, \bigcap \{A_{\lambda} \mid \lambda \in \Lambda\}$ と書かれることもある. また, $\Lambda =$ $\{1,2,\cdots,n\}$ のときは, $\bigcup_{k=1}^n$, $\bigcap_{k=1}^n$ の記号を用いることもある. とくに, $\Lambda=\mathbb{N}$ であれば,

$$\bigcup_{n=1}^{\infty} A_n, \quad \bigcap_{n=1}^{\infty} A_n$$

とかいてもよい.

集合系の各集合 A_λ が集合 X の部分集合であるとき, この集合系を X の部分集合系という. $\{A_\lambda \mid \lambda \in \Lambda\}$ を X の部分集合系とする. このとき, 次の De Morgan の法則が成り立つ.

$$\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} (A_{\lambda})^{c}$$

$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)^{c} = \bigcup_{\lambda \in \Lambda} (A_{\lambda})^{c}$$

$$(1.46)$$

$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)^{c} = \bigcup_{\lambda \in \Lambda} (A_{\lambda})^{c} \tag{1.47}$$

(1.47) は (1.46) からすぐでるから, (1.46) のみ示す.

Proof.

$$x \in \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)^{c} \leftrightarrow \neg [^{\exists} \lambda \in \Lambda, x \in A_{\lambda}] \leftrightarrow {}^{\forall} \lambda \in \Lambda, x \not \in A_{\lambda} \leftrightarrow {}^{\forall} \lambda \in \Lambda, x \in (A_{\lambda})^{c} \leftrightarrow \bigcap_{\lambda \in \Lambda} (A_{\lambda})^{c}$$

より等号が成り立つ.

最後に、集合系の極限にあたるものを定義しよう. $\mathbb N$ を添え字の集合系とする集合系 $\{A_n \mid n \in \mathbb N\}$ に対 して,

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{n=1}^{\infty} A_n \tag{1.48}$$

を上極限集合という. 上極限集合は, 無限個の A_n に属す要素全てを集めた集合である. また,

$$\liminf_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n \tag{1.49}$$

を下極限集合という. 下極限集合は、有限個の A_k だけ除いて、それ以外を全て集めた集合である. まず基本的なのは、次の包含関係である.

$$\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \tag{1.50}$$

本によってはこの関係を明らかと書くようである.しかし、私個人がこれを単に'明らか'とするのは納得がい かないから, 証明を与える.

Proof. すぐにわかることとして, $\bigcap_{n=1}^{\infty}A_n\subset\bigcap_{n=1}^{\infty}A_n$ がある. したがって, 各 $i\in\mathbb{N}$ について,

$$\liminf_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \bigcup_{k=i}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

が成り立つ. 実際, i が大きくなることで生じる和集合の '漏れ' は, すべて $k\geq i$ 以降の $\bigcap_k A_n$ に含まれている. また, $\bigcap_{n=k}^\infty A_n\subset A_k$ であることもすぐわかる. したがって,

$$\bigcup_{k=i}^{\infty} \bigcap_{n=k}^{\infty} A_n \subset \bigcup_{k=i}^{\infty} A_k \Rightarrow \bigcap_{i=1}^{\infty} \bigcup_{k=i}^{\infty} \bigcap_{n=k}^{\infty} A_n \subset \bigcap_{i=1}^{\infty} \bigcup_{k=i}^{\infty} A_k = \limsup_{n \to \infty} A_n$$

であり、左辺は
$$\bigcap_{i=1}^{\infty}\bigcup_{k=i}^{\infty}\bigcap_{n=k}^{\infty}A_n=\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}A_n=\liminf_{n\to\infty}A_n$$
 だから、 $\liminf_{n\to\infty}A_n\subset\limsup_{n\to\infty}A_n$.

(1.50) において、特に等式が成り立つ場合、これを極限集合といって、

$$\lim_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n \tag{1.51}$$

とかく. これらの概念は Lebesgue 積分論において重要である.

1.6 濃度

集合 A, B, C について, 以下が成り立つ.

- (1) $A \sim A$
- (2) $A \sim B$ $\Rightarrow A$
- (3) $A \sim B$ かつ $B \sim C$ ならば $A \sim C$

Proof. 以下それぞれ証明を述べる. どれも示すことは, 全単射の存在である.

- (1) 恒等写像 id_A を考えればよい.
- (2) 仮定より $A \rightarrow B$ の全単射が存在して、全単射の逆写像を考えればこれは $B \rightarrow A$ の全単射である.
- (3) $A \to B$ の全単射と $B \to C$ の全単射の合成写像を考えれば、これは全単射である.

二つの全単射の合成写像が全単射であることは直感的に明らかであるが、厳密に証明をしておこう. より強い主張である以下の補題を示そう.

写像 $f: X \to Y, g: Y \to Z$ について、以下が成立する.

- (i) f, q ともに単射であれば $g \circ f$ も単射.
- (ii) f,g ともに全射であれば $g \circ f$ も全射.

Proof. 以下に証明を述べる.

- (i) $x_1, x_2 \in X, x_1 \neq x_2$ とする. $y_1 = f(x_1), y_2 = f(x_2)$ と置くと、f の単射性から $y_1 \neq y_2$ である. また、g の単射性から $g(y_1) \neq g(y_2)$ である. 従って、 $(g \circ f)(x_1) = g(f(x_1)) = g(y_1) \neq g(y_2) = g(f(x_2)) = (g \circ f)(x_2)$ だから、 $g \circ f$ は単射.
- (ii) 示すことは, $(g \circ f)(X) = Z$ である. f, g は全射であるから f(X) = Y, g(Y) = Z が成立する. すなわ

ち、任意の $z \in Z$ に対し、z = g(y) となる $y \in Y$ および y = f(x) となる $x \in X$ が存在する. よって、 $z = g(y) = g(f(x)) = (g \circ f)(x) \in (g \circ f)(X)$ が成り立つ. これより $Z \subset (g \circ f)(X)$ であり、写像の定義より $Z \supset (g \circ f)(X)$ だから $Z = (g \circ f)(X)$ 、よって $g \circ f$ は全射.

全射の証明は、以前述べた全射を示す証明とすこしやり方が違うように見えるだろう。実際にはどちらのスタイルで証明してもらっても構わない。個人的には、今回の証明のほうがわかりやすい気がする。なおこの補題より、全単射同士の合成写像が全単射であることは明らかであろう。

全ての集合の濃度は互いに等しいとは限らない.この事実は重要である. 例えば以下が成り立つ.

 $\mathbb{N} \sim \mathbb{R}$

これは Cantor によって示された. 彼の有名な対角線論法と呼ばれるアイデアを見てみよう.

Proof. 背理法* 14 で示す。 $\mathbb{N} \sim \mathbb{R}$ であれば、全単射 $f: \mathbb{N} \to \mathbb{R}$ が存在する。このとき(すべての)実数 f(n) について、10 進法による無限小数展開を行うと、 $f(n) = a_{n0}.a_{n1}a_{n2}\cdots a_{nn}\cdots$ となる。ただし、各 a_{nm} ($m=1,2,\ldots$)が 0 から 9 までの整数, $a_{0n}\in \mathbb{Z}$ で、整数や有限小数は小数部分に 0 を続けるとする。例を挙げる。例えば、 $3.1415\ldots$ なら $a_{n0}=3$, $a_{n1}=1$, $a_{n2}=4$, \ldots となる。2.4 なら $a_{n0}=2$, $a_{n1}=4$, $a_{n2}=a_{n3}=\cdots=0$ である。n=1 から書き並べると以下のようになる。

$$f(1) = a_{10}.\mathbf{a_{11}}a_{12}a_{13} \cdots$$

$$f(2) = a_{20}.a_{21}\mathbf{a_{22}}a_{23} \cdots$$

$$f(3) = a_{30}.a_{31}a_{32}\mathbf{a_{33}} \cdots$$

$$\vdots$$

小数部分の太字を見てほしい. この対角の数字を用いて、新たな無限小数を作る. 具体的には、各 a_{nn} について

$$b_n = \begin{cases} 1 & (a_{nn} は偶数) \\ 2 & (a_{nn} は奇数) \end{cases}$$

である b_n を用いて、無限小数 $b=0.b_{11}b_{22}b_{33}\cdots$ をつくる.重要なのは、必ず $b_n\neq a_{nn}$ となることである. この b は明らかに $b\in\mathbb{R}$ であるが、すべての $n\in\mathbb{N}$ に対して、 $f(n)\neq b$ である.なぜなら、どの n についても 小数第 n 位の数字が b と異なるからである.これは、f が全単射(全射)であることに矛盾する.

自然数全体の集合 $\mathbb N$ と濃度が等しい集合を可算集合という。また,有限集合と可算集合を合わせて高々可算集合という。

^{*14} 証明すべき命題を否定した命題をもとに論理を導き、矛盾を見つけることで元の命題を示す方法.

我々が次に望むのは、濃度を大小で比較できるようになることだろう.集合 A,B について、A から B への 単射が存在するが、B から A への単射が存在しないとき、A は B より濃度が小さい、または、B は A より濃度が大きいという.B から A への単射が存在したときは何も言えないのか、と疑問に思うかもしれない.実は、B ernstein の定理によって、A から B への単射と B から A への単射が存在するとき、濃度が等しいことが濃度が等しいことが保障される.証明はここでは述べないから、興味がある人は調べてみるとよい.

最も重要なのは、有理数の集合 $\mathbb Q$ が可算集合であることである.そのためにはまず、二つの補題を示さなければならない.

集合 A, B が $A \subset B$ であれば、A から B への単射が存在する.

Proof. 包含写像 $i: A \rightarrow B$ を考えると、これは明らかに単射であるから、示された.

 \mathbb{Z}^2 は可算集合である.

Proof. $\mathbb{Z} = \{(m,n) \mid m,n \in \mathbb{Z}\}$ は、平面 \mathbb{R}^2 上の格子点の集合であるから、下図のように対応をつけること で、 $\mathbb{Z}^2 = \{a_1,a_2,\cdots,a_n\cdots\}$ とできる.したがって、 \mathbb{Z}^2 は可算集合である.

 \Box

図 2: $a_1 = (0,0)$ として、反時計回りに対応付けていく.

準備が整ったので、◎が可算集合であることを示そう.

Proof. まず, $\mathbb{N} \subset \mathbb{Q}$ より, \mathbb{N} から \mathbb{Q} への単射が存在する. 次に, $r \in \mathbb{Q}$ は, 既約分数として r = p/q ($p \in \mathbb{Z}, b \in \mathbb{N}$) の形にかける (整数 n については, q = 1 として, x = x/1 とかく). このとき,

$$f: \mathbb{Q} \to \mathbb{Z}^2, \frac{p}{q} \mapsto (p,q)$$

は単射であるから, \mathbb{Z}^2 が可算であるので \mathbb{Z}^2 から \mathbb{N} への全単射が存在する. 以上より, \mathbb{Q} から \mathbb{N} への単射が存在するから, Bernstein の定理より $\mathbb{Q} \sim \mathbb{N}$ である.

最後に、可算集合の部分集合は高々可算集合であることを示そう.

Proof. 可算集合を A とする。 $B \subset A$ は有限集合か無限集合である。有限集合であれば、それは高々可算集合であるから、B は無限集合であるとする。 仮定より、全単射 $f:A \to \mathbb{N}$ が存在する。 よって、 $f(B) = \mathbb{N} \subset \mathbb{N}$ と置くと、 $B \sim \mathbb{N}$ である。 B が無限集合であるから、N も無限集合である。 したがって、自然数の無限部分集合 \mathbb{N} が可算であることを示せばよい。 写像 $g: \mathbb{N} \to \mathbb{N}$ を考える。 g(n) は集合 $\{m \in \mathbb{N} \mid m \leq n\}$ の要素数とする。 このとき、g は全単射である。

1. 単射の証明.

 $n_1, n_2 \in N, n_1 \neq n_2$ とする. 対称性から $n_1 < n_2$ と仮定してもよい. このとき, $m \leq n_1$ をみたす $m \in N$ は $m \leq n_2$ も満たし、後者の場合は $m = n_2$ も条件を満たすから、 $g(n_1) < g(n_2)$. したがって、 $g(n_1) \neq g(n_2)$ だから g は単射.

2. 全射の証明.

 $n\in\mathbb{N}$ とする. N は無限部分集合であるから, n=g(k) となる $k\in N$ は存在する. (N の要素にはいくらでも大きい値がある.) すなわち, $n\in g(N)$ であるから, $\mathbb{N}\subset f(N)$. よって, g は全射.

これより, N から \mathbb{N} への全単射が存在するから, $N \sim \mathbb{N}$. ゆえに, $B \sim \mathbb{N}$

1.7 実数の連続性 26

1.7 実数の連続性

ここでは、実数の連続性について述べようと思う.実数の性質を学ぶことは、微分積分を行う上で大切だから、少し難しいかもしれないが学んでいこう.

全ての数を A,B の二組に分けて、A に属する各数を B に属する各数よりも小さくできたとしよう。ただしこのとき A,B は空集合ではないとする。このような組み分け (A,B) を Dedekind の切断 (Dedekind cut) といい、A を下組、B を上組という。

ある数 s について, s より小さい数全てを A, s よりも大きい数全てを B に入れるとする. (A,B) が切断であるためには, s も A または B に入っていなければならない. s が A に含まれるとき, A に最大値が存在し、B に最小値は存在しない.*¹⁵ 逆に, s を B に入れれば, A に最大値は存在せず, B の最小値は存在する. このように, 任意の s について, それを境界とする切断を作ることができるが, この逆, すなわち次の定理が成り立つ.

----- Dedekind の定理 ー

実数の切断は、下組と上組との境界として、一つの数を確定する.

これが**実数の連続性**である. 今後の論理の展開は, この定理が成り立つものとして, すなわち公理として認めて行う.

大小の順序があるところ*16には切断ができるが、この切断は次の三つの種類がある.

- 1. 下組に最大値が存在し、上組に最小値が存在する. (leap)
- 2. 下組に最大値が存在せず, 上組にも最小値が存在しない. (gap)
- 3. 下組もしくは上組どちらかに端 (最大値または最小値) が存在し、もう一方には端が存在しない. (連続)

Dedekind の定理の主張とは、実数の切断が3の切断に限られるということである.

例えば、自然数の切断を考えてみよう.このとき、切断の下組と上組には必ず最大値および最小値が含まれている. すなわち、自然数の切断は 1 のみである.逆に、有理数の切断は 1 のようにできない.しかし、2 のようにはできる.例えば、 $s=\sqrt{2}$ と取れば、 $s\not\in\mathbb{Q}$ であるから s は下組にも上組にも含まれないからである.もちろん、3 の切断もできる.これには有理数を s と取ればよい.

次に、最大値および最小値についてもう少し深掘りしよう.Quu ノート I では、数列の有界について述べていた.有界は一般の実数の部分集合についても定義できる.集合 A に属する任意の数 a に対して、 $a \le M$ とできる実数 M が存在するとき,A は上に有界であるといい,この時の M を上界という.同様に, $a \ge m$ とできる実数 m が存在するとき,A は下に有界であるといい,この時の m を下界という.上にも下にも有界であるとき,A は有界という.

上界および下界は一つに定まらない。なぜなら、上界が一つ存在すれば、それよりも大きい数も当然上界であるからである。下界についても同様である。そこで、上界のうち最小値と下界のうち最大値について考えてみる。実は、A に最小値または最大値が存在しなくても、上界の最小値または下界の最大値は存在する。この、上界のうち最小である数を、A の上限といい、 $\sup A$ とかく。また、下界のうち最大である数を、A の下限といい、

^{*15} 例えば、s=1 と考えると、 $b\in B$ は b>1 である.最小値が存在すると仮定し、それを b と置くと、b'=(b+1)/2 は、b>b'>1 であり $b\in B$ となる.これは b が B の最小値であることに矛盾する.

^{*16} この集合を順序集合という. もちろん実数も順序集合である.

1.7 実数の連続性 27

 $\inf A$ とかく.

 $a = \sup A$ であることと次の二つが同時に成り立つことは同値である.

- 1. $\forall x \in A [x \leq a]$
- $2. \ \forall r < a, \exists x > r [x \in A]$

1 は a が A の上界であることを意味しており, 2 で a より小さいどの数も上界になりえないこと* 17 を意味しているから, これは納得であろう. 同様に, $a = \inf A$ であることと次の二つが成り立つことも同値である.

- 1. $\forall x \in A [x \ge a]$
- $2. \forall r > a, \exists x < r [x \in A]$

例を挙げてみよう. 例えば, [-1,1] は最大値 1, 最小値 -1 である. 一方 (-1,1] は最大値 1 だが, 最小値は存在しない. しかし, 下限は存在して, それは -1 である. -1 は (-1,1] の下界であり, どの r > -1 についても r > x > -1 となる数が存在して, $x \in (-1,1]$ であるから, 確かに存在している.

なお、上記の条件式は、次のように書き換えることもできる。 まず $a=\sup A$ については

- 1. $\forall x \in A [x \leq a]$
- 2. $\forall \varepsilon > 0, \exists x \in A [a \varepsilon < x]$

であり, $a = \inf A$ については

- 1. $\forall x \in A [x \ge a]$
- 2. $\forall \varepsilon > 0, \exists x \in A [x < a + \varepsilon]$

となる.*18

上限と下限で重要なのは、次の定理である.

----- Weierstrass の定理 -

実数の部分集合 A が上方 (または下方に) 有界ならば A の上限 (または下限) が存在する.

これが先ほどのべた「上界の最小値… は存在する」の根拠、むしろそのものである.

 $^{^{*17}\,}r$ は a より小さいが, そのとき r よりも大きい x が存在してその x が A に含まれていれば, r は上界でないのである.

^{*18} それぞれ $r = a - \varepsilon, r = a + \varepsilon$ と置けばよい.

§2 行列と行列式 **28**

§2 行列と行列式

ベクトルのイメージとその和・差について、内積についても述べる、外積はベクトル解析のときに述べる、 続いて、行列についてその定義を述べ、和・差・積について述べる、転置行列と逆行列についても述べる、行列 式は、一般の定義を述べ、その後 2x2 と 3x3 について計算方法を述べる。余因子展開についてその計算方法を 述べる。 §3 偏微分 **29**

§3 偏微分

多変数関数をまず具体例で挙げ、その後偏微分について解説する. 二変数テイラー展開及び積分記号下の微分まで述べる.

§4 多重積分 **30**

§4 多重積分

多重積分についてまず二重積分についてその定義を話す。かんたんな計算ののちに三重積分も述べる。その後、変数返還について、一次変換の場合について厳密な証明を行い、それ以外は感覚的なものにとどめる。

第Ⅱ部

ベクトル解析

ベクトル解析は、理工系の学生にとって馴染み深いものと聞く.たいていの物理科と電気科の学生は、電磁気学にて顔を合わせることになるだろう.よく電磁気学は、ベクトル解析をふんだんに用いるから難しいと言われているが、少なくともベクトル解析単体で見ればそこまで難しいものではない.そして何よりベクトル解析は楽しいものである.ここでは、まずベクトルについての基礎知識について述べた後、ベクトル値関数についてその微分積分を定義する.その後、空間上の曲線および曲面の解析についてすこし述べ、ベクトル解析の顔ともいえる微分演算子について述べる.電磁気学ではよく用いられる Gauss の発散定理および Stokes の定理についても扱う.

§5 ベクトルの性質と演算

数学基礎で述べたことと多少重複するが、内積、外積およびそれらの性質を述べる. スカラー三重積とベクトル三重積も述べる.

§6 ベクトル値関数とその微分

ベクトル値関数について述べたのち、それらの微分積分を定義する。ただし、積分は定義のみで深く触れない。

§7 曲線の解析 **34**

§7 曲線の解析

曲線について解析する. 平面曲線について述べて, 空間曲線でも議論する. Frenet-Serret の公式まで.

§8 曲面論入門 **35**

§8 曲面論入門

曲面について解析する.基本量を導出し、Gauss 曲率と平均曲率を紹介する.

§9 微分演算子 **36**

§9 微分演算子

ベクトル場とスカラー場について説明する. その後各微分演算子について述べる.

§10 線積分と面積分 37

§10 線積分と面積分

線積分と面積分について定義を述べる。 Gauss の定理と Stokes の定理について述べ,電磁気学への応用をしてみる.

第Ⅲ部

複素解析

複素解析は、数学の中で最も美しい理論の一つと言われる。複素関数(複素数から複素数へ対応させる関数)に対して、正則という概念が定義できる。正則性とはかんたんに言えば微分可能性のことなのであるが、驚くべきことにこの正則性を満たせば、それらを微分した関数も正則性を保つのである。これらの性質を含め、正則関数の解析の基本となるのは Cauchy の積分定理である。ここでは、複素数についてその基本的な性質を述べ、複素関数および複素微分について定義し、複素平面上での積分を述べる。その後、Cauchy の積分定理をはじめとする、正則関数に関する多くの定理を証明する。その中には実積分の計算に対してたいへん有効な留数定理もある。この理論の美しさをじっくり味わってほしい。

§11 複素数 **39**

§11 複素数

複素数についてその基礎知識を述べる. 複素平面上の領域も. De Moivre の定理まで述べる.

§12 複素関数とその微分

複素関数について定義し、その性質について簡単に述べる。 Cauchy-Riemann の方程式も述べる。 初等関数についても述べる。

§13 複素線積分 **41**

§13 複素線積分

かんたんな線積分の計算をして、Cauchy の積分定理を述べる。Cauchy の積分公式や Goursat の定理などの多数定理を述べる。最大値の原理については証明させる?

§14 級数 **42**

§14 級数

複素数列について、その収束等を定義し、複素級数についても定義する. べキ級数や Taylor 展開、Maclaurin 展開についても述べる. Laurent 展開を重点的に扱う. 特異点とその分類も述べる.Picard の大定理は入れない. 無限遠点の Laurent 展開も述べる.

§15 留数定理 **43**

§15 留数定理

留数について定義を述べて、留数定理を示す.その後、実積分の計算を行う.無限遠での留数についても述べる.

§16 解析接続 **44**

§16 解析接続

解析接続について簡単な例を挙げ、一致の定理を証明して、解析接続の一意性について説明する.

§17 Riemann 面 **45**

§17 Riemann 面

余裕があれば、多価関数と Riemann 面についてすこしだけ述べる.

第IV部

相対性理論

相対性理論... それはかの天才物理学者 Einstein が作り上げた物理学の中で最も美しい理論である. 理科や宇宙が好きな小学生であればほとんどの人があこがれていたものであると思うし, それ以外の人でも, 相対性理論から導かれる不思議な世界 (双子のパラドクスなど) について聞いたことがある人も多いと思う. 相対性理論が美しいといわれるその所以は, たった一つの物理的要請に真摯に従って計算することで, 重力場の基礎方程式 (いわゆる, Einstein 方程式) までたどり着けるところであろう. その要請とは, 「物理学の法則は, 座標系に依存しない形式に書かれなければならない」という, 実に自然な, 当然ともいえる要請である. この要請から, さまざまな相対性理論の世界が開けることには, ただただ驚嘆するばかりである

相対性理論は、一般に非常に難しいといわれている。確かに、相対性理論、特に一般相対性理論を真に理解するには、数学の Riemann 幾何学について熟知していないといけないだろう。しかし、特殊相対性理論に限って言えば、かんたんな力学の知識さえあれば(一部を除いて)理解することができる。また、一般相対性理論に関しても、重力場の方程式を導くだけであれば必要な Riemann 幾何学の知識も特別難しいものではないのである。

ここでは、特殊相対性理論について、よく子供向けの科学本などに載っている事象を中心に数学的に理解していく。また、一般相対性理論についても軽く触れる。

§18 特殊相対論入門 **47**

§18 特殊相対論入門

Galilei 変換についてと慣性系について述べる. 光速度不変の原理について, 実験結果から述べ, Lorentz 変換を導出する. Minkowski 時空上の距離, 世界間隔について説明する. このとき Lorentz 変換に対して不変であることを述べる. 固有時間などについても述べる.

§19 パラドクスの解決 48

§19 パラドクスの解決

パラドクスをここで解決する. 双子のパラドクスと時計のパラドクス

§20 数学的準備 **49**

§20 数学的準備

ベクトルやテンソルについて, かんたんに定義する.

§21 相対論的力学 **50**

§21 相対論的力学

相対論上で力学を展開する. $E=mc^2$ の導出や変分原理についても扱う. 双子のパラドクスを変分原理を用いて解決する.

§22 一般相対論への展望 **51**

§22 一般相対論への展望

Riemann 幾何学の ds^2 を紹介して、等価原理について $\Gamma=0$ であることを紹介する.

第V部

Lebesgue 積分入門

積分好きなら一度は聞いたことがあるのが、この Lebesgue 積分である. Lebesgue 積分は、単なる数学の枠を飛び越えて、物理学や工学で必須の Fourier 解析や、偏微分方程式、また確率論などのいたるところに顔を出す非常に重要な概念である. それにもかかわらず、この Lebesgue 積分はなかなかに難しく、習得にも時間がかかる. これは Lebesgue 積分が素朴な Riemann 積分と違って内容がいささか抽象的であることが原因であるように思える. さらに、集合論に関する知識も必要であり、学ぶための敷居が高い. そこでここでは、Lebesgue 積分論のうち、特に重要であるものを選択して系統的に学べるよう、構成を工夫した.端的に言えば、極限と積分の順序交換ができる単調収束定理へ最短経路で学べるようになっているのである. なおこの Lebesgue 積分は、Riemann 積分と対照的に、しばしばグラフを横に切る積分であると説明される. 実際まちがってはないが、実際に Lebesgue 積分を学んでいると、横に切っているというイメージはあまりないので注意してほしい.

§23 可測空間 **53**

§23 可測空間

集合体, σ -集合体の定義を述べ, 可測空間を定義する. 部分集合族から生成される σ -集合体や可測分割等も述べる.

§24 測度 **54**

§24 測度

集合関数の定義および測度の定義を述べる。様々な測度の例を述べる。測度の基本的な性質についても示す。 μ -零集合についても触れ、完備測度空間を定義する。完備測度への測度の拡張が存在し、しかもそれが一意であることを述べる。

§25 可測関数 **55**

§25 可測関数

可測関数の定義,基本的性質を述べる. 単関数を定義し,任意の正なる可測関数に対して,収束する単関数の 単調増加列が存在することを示す. ほとんど到る所 (almost everywhere) についても触れる. §26 積分 **56**

§26 積分

積分を定義し、諸性質を述べる. 関数が連続であれば、Riemann 積分と Lebesgue 測度に対する積分 (Lebesgue 積分) が一致することも述べる.

§27 収束定理 **57**

§27 収束定理

Lebesgue の有界収束定理を証明する. 適用例などをみてその威力を体感する.

第 VI 部

終わりに

索引

1 対 1 写像, 18

Bernstein の定理, 24

De Morgan の法則, 12, 20 Dedekind の定理, 26

Weierstrass の定理, 27

上極限集合, 20 上に有界, 26 上への写像, 18

外延的記法, 9 下限, 26 可算集合, 23

逆写像, 19 逆像, 17 共通部分, 14 極限集合, 21

空集合, 9

下界, 26 元, 9 原像, 17 限定記号, 13 限定語, 13

合成写像, 17 恒等写像, 19

差集合, 14

始域, 17 下極限集合, 20 下に有界, 26 実数の連続性, 26 写像, 17 終域, 17 集合系, 19 集合所対, 16 上界, 26 上上限, 26 真理値, 11

切断, 26 説明法, 10 全射, 18 全称記号, 13 全体集合, 15 全単射, 18

真理値表, 11

像, 17 存在記号, 13 対角線論法, 23 互いに素, 14 高々可算集合, 23 単射, 18

直積, 16 直積集合, 16

同值, 11

内包的記法,10

濃度, 23 濃度が大きい, 24 濃度が小さい, 24 濃度が等しい, 22

否定, 11

部分集合, 10 部分集合族, 20

巾集合, 10

包含写像, 19 補集合, 15

無限集合,9

命題, 11

有界, 26 有限集合, 9

要素, 9

列記法, 9

和集合, 14