Medici Solutions (incomplete)

Rizzmaster9000

2023W

Chapter 3

2. a) If m = n, and **AB** is invertible,

$$(\mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} = \mathbf{I}$$

$$(\mathbf{B}^{-1}\mathbf{A}^{-1})\mathbf{A}\mathbf{B} = \mathbf{I}$$

$$(\mathbf{A}^{-1}\mathbf{B}^{-1})(\mathbf{B}^{-1}\mathbf{A}^{-1})\mathbf{A}\mathbf{B} = \mathbf{A}^{-1}\mathbf{B}^{-1}$$

$$(A^{-1}B^{-1}A^{-1})AB(BA) = (A^{-1}B^{-1})(BA)$$

Since any invertible square matrix \mathbf{X} has the property $\mathbf{X}^{-1}\mathbf{X} = \mathbf{X}\mathbf{X}^{-1} = \mathbf{I}$, the left side simplifies to \mathbf{I} so that

 $\mathbf{I} = (\mathbf{A}^{-1}\mathbf{B}^{-1})\mathbf{B}\mathbf{A}$, i.e., $\mathbf{A}^{-1}\mathbf{B}^{-1}$ is the inverse of $\mathbf{B}\mathbf{A}$.

- b) Note that m < n because if m > n then by the Corollary to Theorem V, $\mathbf{B}\mathbf{x} = \mathbf{0}$ has nontrivial solutions and thus $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$ has nontrivial solutions, i.e., $\mathbf{A}\mathbf{B}$ is not invertible. But if m < n, then $\mathbf{A}\mathbf{x} = \mathbf{0}$ has nontrivial solutions and thus $\mathbf{B}\mathbf{A}\mathbf{x} = \mathbf{0}$ also has nontrivial solutions, i.e., $\mathbf{B}\mathbf{A}$ is not invertible.
- 3. If m < n then $\mathbf{A}\mathbf{x} = \mathbf{0}$ has nontrivial solutions by the Corollary to Theorem V. But then $\mathbf{L}\mathbf{A}\mathbf{x} = \mathbf{0}$ also has nontrivial solutions, so $\mathbf{L}\mathbf{A} = \mathbf{I}$ is impossible.
- 4. Yes

Putting the system in matrix form $(\mathbf{A}\mathbf{x} = \mathbf{b})$, we have

$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -1 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}, \text{ so } \text{rref} \begin{bmatrix} \mathbf{A} | \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1/7 & 1 \\ 0 & 1 & -5/7 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ which has a zero row and hence infinite solutions.}$$

5. Yes

A is square and has a unique solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ for at least one $\mathbf{b} \in {}^{3}\mathbb{R}$, so by the Corollary to Theorem VI it is invertible, i.e., a product of elementary matrices.

6. No

A cannot be invertible because it does not have a unique solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ for every $\mathbf{b} \in {}^{3}\mathbb{R}$.

7. See 2b).

Chapter 4

1. No

Axiom MIV fails, since $1(x_1, x_2) \neq (x_1, x_2)$ when $x_2 \neq 0$.

Chapter 5

- 1. a) No
- SII fails, consider $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- b) Yes
- SI: f = 0 is the zero function.

SII: $\int_0^1 (f+g)(x) dx = 0$ for all $f, g \in U$.

SIII: If $\int_0^1 f(x) dx = 0$ then $\lambda \int_0^1 f(x) dx = 0$ for all $\lambda \in \mathbb{R}$ and $f \in U$.

2. \Longrightarrow If i) is true, U is not a subspace because SI fails. Hence U must be nonempty. Further, if ii) is true, we can set $\lambda = 1$ and note that all $\mathbf{u}_1 + \mathbf{u}_2$ are in U (i.e. SII holds), and we can also set $\mathbf{x}_1 = \mathbf{0}$ and note that all $\lambda \mathbf{u}_2$ are in U (i.e. SIII holds).

 \longleftarrow If U is a subspace, it contains the zero vector (SI) and hence is nonempty. Further, for all $\mathbf{u}_1, \mathbf{u}_2 \in U$, U must contain all $\mathbf{u}_1 + \lambda \mathbf{u}_2$ by SII and SIII.

```
4. No SII fails, see 1a).
```

5 No

SII fails, consider
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

8.
$$\mathbf{u} = \frac{1}{2}((\mathbf{u} + \mathbf{v}) + -(\mathbf{v} + \mathbf{w}) + (\mathbf{w} + \mathbf{u}))$$

 $\mathbf{v} = \frac{1}{2}((\mathbf{u} + \mathbf{v}) + (\mathbf{v} + \mathbf{w}) + -(\mathbf{w} + \mathbf{u}))$

$$\mathbf{w} = \frac{1}{2}(-(\mathbf{u} + \mathbf{v}) + (\mathbf{v} + \mathbf{w}) + (\mathbf{w} + \mathbf{u}))$$

Thus,
$$\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \supseteq \operatorname{span}\{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}\}.$$

$$\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{v}$$

$$\mathbf{v} + \mathbf{w} = \mathbf{v} + \mathbf{w}$$

$$\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{u}$$

Thus, $\operatorname{span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}\subseteq\operatorname{span}\{\mathbf{u}+\mathbf{v},\mathbf{v}+\mathbf{w},\mathbf{w}+\mathbf{u}\}.$

9. Yes

$$0(1,1) + 1(1, 2) = (1, 2).$$

10. No

Axiom SII fails, consider
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

11. \mathbb{R} : SI: $0 \in \mathbb{R}$

SII: For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}, \mathbf{x} + \mathbf{y} \in \mathbb{R}$

SIII: For all $\mathbf{x} \in \mathbb{R}$ and any scalar $\lambda \in \mathbb{R}$, $\lambda \mathbf{x} \in \mathbb{R}$

 $\{0\}: SI: 0 \in \mathbb{R}$

SII: $0 + 0 \in \{0\}$

SIII: For any scalar $\lambda \in \mathbb{R}$, $\lambda 0 \in \{0\}$

For any other finite non-empty set of n elements $\{x_1, x_2, ..., x_n\}$ in \mathbb{R} , SIII fails because some scalar $\lambda \in \mathbb{R}$ exists such that λx_1 is not in the set.

Chapter 6

1. \Longrightarrow If $\{p,q,pq\}$ is linearly independent, $\lambda_1p + \lambda_2q + \lambda_3pq = \mathbf{0}$ has only the trivial solution. But if $\deg p = 0$, $\lambda_1p + \lambda_2q + \lambda_3pq = \mathbf{0}$ has the solution $\lambda_1 = 0, \lambda_2 = p, \lambda_3 = -1$ which is a nontrivial solution. Likewise if $\deg q = 0$, $\lambda_1p + \lambda_2q + \lambda_3pq = \mathbf{0}$ has the solution $\lambda_1 = q, \lambda_2 = 0, \lambda_3 = -1$. Hence $\deg p$, $\deg q \neq 0$, i.e., $\deg p$, $\deg q \geq 1$ is required. $\{p,q\}$ is linearly independent, $\lambda_1 + \lambda_2q + \lambda_3pq = \mathbf{0}$ has only the trivial solution, i.e., $\{p,q,pq\}$ is linearly independent.

2. Reducing U to its basis, we have $U = \operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_n\}$ and $W = \operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_n,\mathbf{v}\}$, where $1 \le n \le k$. If $\mathbf{v} \in \operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_n\} = U$, then W can also be reduced to its basis so that $W = \operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_n\}$, i.e., U = W and thus $\dim U = \dim W$.

If $\mathbf{v} \notin \operatorname{span}\{\mathbf{v}_1, ..., \mathbf{v}_n\} = U$, then $\{\mathbf{v}_1, ..., \mathbf{v}_n, \mathbf{v}\}$ is a linearly independent set which spans W and is hence a basis for W. In this case, $\dim W = n + 1$, i.e., $\dim W = \dim U + 1$.

As no possibilities other than the two described above exist, we conclude that either dim $U = \dim W$ or dim $U + 1 = \dim W$.

3. Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent, $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 + \lambda_4 \mathbf{v}_4 = \mathbf{0}$ has only the trivial solution. But $\beta_1 \mathbf{v}_1 + \beta_2 (\mathbf{v}_1 + \mathbf{v}_2) + \beta_3 (\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) + \beta_4 (\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4) = \mathbf{0}$ is equivalent to $(\beta_1 + \beta_2 + \beta_3 + \beta_4)\mathbf{v}_1 + (\beta_2 + \beta_3 + \beta_4)\mathbf{v}_2 + (\beta_3 + \beta_4)\mathbf{v}_3 + \beta_4\mathbf{v}_4 = \mathbf{0}$, which implies $\beta_1 + \beta_2 + \beta_3 + \beta_4 = 0$ $\beta_2 + \beta_3 + \beta_4 = 0$

$$\beta_3 + \beta_4 = 0$$

 $\beta_4 = 0$, i.e., $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. Thus, $\{\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4\}$ is linearly independent.

- 5. If V is an n-dimensional vector space, where n is finite, then any nonzero vector \mathbf{v} in V is linearly independent of n-1 other nonzero vectors in V. Hence a basis for V can be constructed by adding n-1 nonzero vectors to the set $\{\mathbf{v}\}$ such that each vector in the set cannot be produced as a linear combination of other vectors in the set.
- 6. If **A** is not invertible, then its nullspace (the set of vectors such that $\mathbf{A}\mathbf{v} = \mathbf{0}$) has a dimension of at least one. But since $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ is a linearly independent set containing n vectors, and \mathbf{A} 's rowspace (the orthogonal complement to its nullspace) has a dimension of less than n, there exists at least one $\mathbf{v}_i \in \{\mathbf{v}_1,...,\mathbf{v}_n\}$ such that \mathbf{v}_i is in the nullspace of \mathbf{A} , so at least one of $\{\mathbf{u}_1,...,\mathbf{u}_n\}$ will end up being $\mathbf{0}$. Since any set containing $\mathbf{0}$ is linearly dependent, we conclude that $\{\mathbf{u}_1,...,\mathbf{u}_n\}$ must be linearly dependent.

7. No

The set is not a basis if $f_0 = 0$.

- 9. a) S is a subspace since it contains the zero vector and inherits the vector addition and scalar multiplication properties of V. Also, the maximum number of linearly independent vectors in S is k. Therefore, $\{\mathbf{v}_1...\mathbf{v}_k\}$ is a basis for S, and $S = \operatorname{span}\{\mathbf{v}_1...\mathbf{v}_k\}$. It follows that $S \subseteq \operatorname{span}\{\mathbf{v}_1...\mathbf{v}_k\}$.
- b) $\{\mathbf{v}_1...\mathbf{v}_k,\mathbf{x}\}$ is a linearly independent set. Thus $\lambda_1\mathbf{v}_1 + ... + \lambda_k\mathbf{v}_k + \lambda_{k+1}\mathbf{v}_{k+1} = 0$ has only the trivial solution. But $\beta_1(\mathbf{v}_1 + \mathbf{x}) + ... + \beta_k(\mathbf{v}_k + x) = 0$ is equivalent to $\beta_1\mathbf{v}_1 + ... + \beta_k\mathbf{v}_k + (\beta_1 + ... + \beta_k)\mathbf{x} = 0$, so the latter equation must have only the trivial solution as well and hence be linearly independent.
- 10. If $U \cap W \neq \{\mathbf{0}\}$, $\dim(U \cap W)$ must be greater or equal to 1 since both U and W are subspaces and must contain the zero vector. If $\dim(U \cap W) = 2$ as well, then U = W, since U's basis has 2 linearly independent vectors, and W's basis contains 2 linearly independent vectors, and the set containing these four vectors is linearly dependent. But it was given in the question that $U \neq W$, so $\dim(U \cap W) = 1$.
- 11. No $\sin^2 x + \cos^2 x = 1$.
- 12. No

On the interval F[0, 1], span $\{x, |x|\} = \text{span}\{x\}$.

13. Since a matrix with linearly independent columns has a unique solution for every $\mathbf{A}\mathbf{x} = \mathbf{b}$, and $\mathbf{A}\mathbf{0} = \mathbf{0}$, we conclude that $\mathbf{x} = \mathbf{0}$ is the unique solution.

14. a) SI: $\mathbf{x} = \mathbf{0} \in W$

- SII: $\mathbf{u}^T \mathbf{x} = \mathbf{0}$ can be rewritten as $u_1 x_1 + ... + u_n x_n = 0$ where $\{u_1, ..., u_n\}$ and $\{x_1, ..., x_n\}$ are the individual entries of \mathbf{u}^T and \mathbf{x} respectively. If $\mathbf{x}, \mathbf{y} \in W$, then $u_1 x_1 + ... + u_n x_n = 0$ and $u_1 y_1 + ... + u_n y_n = 0$, so $u_1 x_1 + ... + u_n x_n + u_1 y_1 + ... + u_n y_n = u_1(x_1 + y_1) + ... + u_n(x_n + y_n) = 0$. But this equation can be rewritten as $\mathbf{u}^T (\mathbf{x} + \mathbf{y})$, so $\mathbf{u}^T (\mathbf{x} + \mathbf{y}) = \mathbf{0}$ for all $\mathbf{x}, \mathbf{y} \in W$. SIII: If $\mathbf{x} \in W$, then $u_1 x_1 + ... + u_n x_n = 0$, so $\lambda (u_1 x_1 + ... + u_n x_n) = 0$ as well. But this equation can be rewritten as $\mathbf{u}^T \lambda \mathbf{x}$, so $\lambda \mathbf{x} \in W$ for all $\mathbf{x} \in W$.
- b) \mathbf{u}^T has n columns, so $n = \text{rank}\mathbf{u}^T + \text{nullity}\mathbf{u}^T$ and if $\mathbf{u} \neq 0$ then $\text{rank}\mathbf{u}^T$ is always equal to 1, so $\text{nullity}\mathbf{u}^T = \dim W = n 1$.
- c) If $\mathbf{u} \neq \mathbf{0}$, then $\mathbf{u}^T \mathbf{u} \neq 0$ by Medici. Hence $\{\mathbf{u}, \mathbf{w}_1, ..., \mathbf{w}_{n-1}\}$ is a linearly independent set containing n vectors. But then this set is a basis for ${}^n\mathbb{R}$ since all of its elements are in ${}^n\mathbb{R}$.
- 15. Note that the equation $\lambda_1 \mathbf{u}_1 + ... + \lambda_5 \mathbf{u}_5 + \beta_1 \mathbf{w}_1 + ... + \beta_1 0 \mathbf{w}_{10} = 0$ is equivalent to $\lambda_1 \mathbf{u}_1 + ... + \lambda_5 \mathbf{u}_5 = -\beta_1 \mathbf{w}_1 + ... + -\beta_{10} \mathbf{w}_{10}$. But since $U \cap W = \{\mathbf{0}\}$, only the trivial solution exists since it is impossible to create linear combinations of vectors in U out of vectors in W and vice versa. Hence $\{\mathbf{u}_1, ..., \mathbf{u}_5, \mathbf{w}_1, ..., \mathbf{w}_{10}\} \in V$ is a linearly independent set containing 15 vectors, which means its span has dimension 15.

16. Yes

If $\{x\} \cup S$ is linearly dependent then x can be formed as a linear combination of elements in S, so $x \in \text{span}S$.

18. No

Any set containing 0 is not linearly independent.

19. \Longrightarrow If $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ is linearly dependent, then $\sum_{i=1}^n \lambda_i \mathbf{v}_i = 0$ has nontrivial solutions. Therefore some $\mathbf{v}_k \in \{\mathbf{v}_1,...,\mathbf{v}_n\}$ exists such that $\sum_{i=1}^{n-1} \lambda_i \mathbf{v}_i$, where $i \neq k, = -\lambda_k \mathbf{v}_k$, i.e., $\mathbf{v}_k = \sum_{i=1}^{n-1} (\lambda_i / - \lambda_k) \mathbf{v}_i$.

 $= \text{If some } \mathbf{v}_k \text{ is a linear combination of the other members in the set, then } -\lambda_k \mathbf{v}_k = \sum_{i=1}^{n-1} \lambda_i \mathbf{v}_i \text{ where } i \neq k \text{ and } \lambda_i, \lambda_k \text{ are not all } 0, \text{ so } \sum_{i=1}^{n-1} \lambda_i \mathbf{v}_i \text{ (where } i \neq k) + \lambda_k \mathbf{v}_k = 0 \text{ has non-trivial solutions, i.e., the set } \{\mathbf{v}_1, ..., \mathbf{v}_n\} \text{ is linearly dependent.}$

22. Since $\dim^n \mathbb{R}^n = n^2$, and there are $n^2 + 1$ terms in this equation, nontrivial solutions exist by FTOLA.

23. For dim(span S) = 3, S must be a linearly independent set, i.e., $\lambda_1(1+x) + \lambda_2(1+kx+x^2) + \lambda_3(1+2x^2) = 0$ must only have the trivial solution. This equation is equivalent to $(\lambda_1 + \lambda_2 + \lambda_3)1 + (\lambda_1 + k\lambda_2)x + (\lambda_2 + 2\lambda_3)x^2 = 0$, and since $\{1, x, x^2\}$ is a linearly independent set,

$$\lambda_1 + \lambda_2 + \lambda_3 = 0,$$

$$\lambda_1 + k\lambda_2 = 0$$
, and

 $\lambda_2 + 2\lambda_3 = 0$ are required. Solving the system of equations, we see that $k = \frac{1}{2}$ is the only value which causes this set of equations to be linearly dependent. As nontrivial solutions for $\lambda_1, \lambda_2, \lambda_3$ will exist iff the set of equations is linearly dependent, we conclude that $k \neq \frac{1}{2}$ is the only condition for dim(span S) = 3.

24. \Longrightarrow If $\{\mathbf{e}_1 - \mathbf{v}, ..., \mathbf{e}_n - \mathbf{v}\}$ is a basis for V, then $\lambda_1(\mathbf{e}_1 - \mathbf{v}) + ... + \lambda_n(\mathbf{e}_n - \mathbf{v}) = 0$ has only the trivial solution. But this equation is equivalent to $\lambda_1\mathbf{e}_1 + ... + \lambda_n\mathbf{e}_n = (\lambda_1 + ... + \lambda_n)\mathbf{v}$ which in turn is equivalent to $\frac{\lambda_1\mathbf{e}_1 + ... + \lambda_n\mathbf{e}_n}{(\lambda_1 + ... + \lambda_n)} = \mathbf{v}$. If $\mathbf{v} = \alpha_1\mathbf{e}_1 + ... + \alpha_n\mathbf{e}_n$ where $\alpha_1 + ... + \alpha_n = 1$, then infinite solutions exist for $\{\lambda_1...\lambda_n\}$ which means that $\{\mathbf{e}_1 - \mathbf{v}, ..., \mathbf{e}_n - \mathbf{v}\}$ cannot be a basis. Hence $\mathbf{v} \neq \alpha_1\mathbf{e}_1 + ... + \alpha_n\mathbf{e}_n$ is required.

 $\longleftarrow \text{ If } \mathbf{v} \neq \alpha_1 \mathbf{e}_1 + \ldots + \alpha_n \mathbf{e}_n \text{ (where } \alpha_1 + \ldots + \alpha_n = 1), \text{ then } \frac{\lambda_1 \mathbf{e}_1 + \ldots + \lambda_n \mathbf{e}_n}{(\lambda_1 + \ldots + \lambda_n)} = \mathbf{v} \text{ has no nontrivial solutions, i.e., only the trivial solution exists. It follows that } \{\mathbf{e}_1 - \mathbf{v}, \ldots, \mathbf{e}_n - \mathbf{v}\} \text{ is a basis for } V.$

Chapter 7

1. No

 $\mathrm{rank} \leq 4.$

2. No

rank ≤ 7 , so nullity ≥ 5 .

3. No

Consider
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

4. Yes

 $n = rank \mathbf{A}$, so nullity $\mathbf{A} = 0$.

5. No

Any matrix whose columns are linearly independent has a nullity of 0.

6. Yes

It must: rank ≤ 34 , so nullity ≥ 17 .

7. \Longrightarrow If null **A** = null **B** then rref **A** = rref **B** and so **E...EnA** = **G..GnB** for some combinations of elementary matrices **e** = **E...En** and **g** = **G...Gn**. But **A** = e^-1 **gB**, and since e^-1 **g** is invertible, we take **U** = e^-1 **g** and thereby conclude **U** must exist.

 \longleftarrow If $\mathbf{A} = \mathbf{UB}$, then null $\mathbf{A} = \text{null} \mathbf{UB}$. But since \mathbf{U} is invertible, null $\mathbf{UB} = \text{null} \mathbf{B}$ since the only solution to any $\mathbf{UBx} = \mathbf{0}$ is $\mathbf{Bx} = \mathbf{0}$, and null \mathbf{B} contains all \mathbf{x} such that $\mathbf{Bx} = \mathbf{0}$. Thus, null $\mathbf{A} = \text{null} \mathbf{B}$.

8. $col \mathbf{AV} = col \mathbf{A}$ [Prop I].

Thus, rank AV = rank A, which implies nullity AV = nullity A since A and V both have n columns.

9. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 1 & -2 \\ 0 & 5 & 5 \\ 3 & 1 & 7 \end{bmatrix}$$
. Then $\text{rref}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

Taking the corresponding columns with leading ones from rref **A**, we conclude that a basis for col **A** is $\left\{ \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 7 \end{bmatrix} \right\}$.

10. a)
$$\operatorname{rref} \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -4 & -3 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
.

Thus a basis for row **A** is $\{[1 \ 4 \ 5 \ 0 \ 0], [0 \ 2 \ 4 \ 2 \ 0], [0 \ 6 \ 7 \ 6 \ 5]\}.$

- b) Taking the corresponding columns with leading ones from rref \mathbf{A} , we conclude that a basis for col \mathbf{A} is $\left\{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 1 \\ 2 & 6 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 1 \\ 4 & 7 & 1 \\ 0 & 0 & 1 \end{bmatrix}\right\}$.
- c) By looking at rref A, we see that the system of equations needed to obtain solutions to Ax = 0 is:

$$x1 - 4x4 - 3x5 = 0$$

$$x2 + x4 + 2x5 = 0$$

$$x3 - x5 = 0$$

Taking x4 and x5 as free variables, we obtain

$$\operatorname{null} \mathbf{A} = x4 \begin{bmatrix} 4\\-1\\0\\1\\0 \end{bmatrix} + x5 \begin{bmatrix} 3\\-2\\1\\0\\1 \end{bmatrix}$$

and thus a basis for null \mathbf{A} is $\left\{ \begin{bmatrix} 4 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$.

- 14. a) Since $\mathbf{A}\mathbf{x} = \mathbf{0}$, $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{0}$. Since $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{0}$, $\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})^T \mathbf{A}\mathbf{x} = \mathbf{0}$, which implies $\mathbf{A}\mathbf{x} = \mathbf{0}$ [Lemma III].

Thus, $\text{null}\mathbf{A} = \text{null}\mathbf{A}^T$.

- b) By the above result, we have n nullity $\mathbf{A} = \operatorname{rank} \mathbf{A} = n$ nullity $\mathbf{A}^T = \operatorname{rank} \mathbf{A}^T$.
- 15. LA = I implies LAx = 0 has only x = 0 as a solution.

But A has linearly dependent columns (m < n), which means its nullspace contains nontrivial solutions. It follows that LAx = 0 must also have nontrivial solutions; hence, LA = I is impossible.

- 18. \Longrightarrow If AB = O, then ABx = 0 for all Bx, which implies that $colB \subseteq null A$.
- \leftarrow If $col \mathbf{B} \subseteq null \mathbf{A}$, then partitioning \mathbf{B} into its columns we get:

$$\mathbf{AB} = \mathbf{A} \begin{bmatrix} b1 & \dots & bn \end{bmatrix} = \begin{bmatrix} \mathbf{A}b1 & \dots & \mathbf{A}bn \end{bmatrix}$$

and $\{b1, ..., bn\} \in \text{col}\mathbf{B} \subseteq \text{null}\mathbf{A}$ so this equation becomes $[\mathbf{0} \ ... \ \mathbf{0}] = \mathbf{O}$ implying that $\mathbf{A}\mathbf{B} = \mathbf{O}$.

21. \implies If null $\mathbf{A} = \text{col}\mathbf{A}$, then rank $\mathbf{A} = \text{n/2}$ because dimcol $\mathbf{A} = \text{rank}\mathbf{A}$ and $\mathbf{n} = \text{rank}\mathbf{A} + \text{nullity}\mathbf{A}$, so the only value which satisfies rank $\mathbf{A} = \text{nullity } \mathbf{A} \text{ is } n/2.$

If $\text{null}\mathbf{A} = \text{col}\mathbf{A}$, $\mathbf{A}^2 = \mathbf{O}$ because, partitioning \mathbf{A} into its columns $\{a1, ..., an\}$, $\mathbf{A}^2 = \mathbf{A}[a1 \ ... \ an] = [\mathbf{A}a1 \ ... \ \mathbf{A}an]$ which becomes $\begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} \end{bmatrix} = \mathbf{O}$ since $\{a1, \dots, an\} \in \operatorname{col} \mathbf{A} \subseteq \operatorname{null} \mathbf{A}$.

 \leftarrow If $\mathbf{A}^2 = \mathbf{0}$, then $\mathbf{A}^2 \mathbf{x} = \mathbf{0}$ for all \mathbf{x} , so $\mathbf{A}(\mathbf{A}\mathbf{x}) = \mathbf{0}$ for all \mathbf{x} . But this means that $\mathrm{col}\mathbf{A} \subseteq \mathrm{null}\mathbf{A}$, since all \mathbf{b} such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ are solutions to $\mathbf{A}\mathbf{b} = \mathbf{0}$. As col**A** and null**A** are both subspaces of ${}^{n}\mathbb{R}$, if col**A** \subseteq null**A**, we can only conclude that $col \mathbf{A} = null \mathbf{A}$ if $dimcol \mathbf{A} = nullity \mathbf{A}$ [Theorem VI, Chapter 6]. This is only possible if $rank \mathbf{A} = nullity \mathbf{A}$, i.e., $rank \mathbf{A}$ = n/2.

Chapter 8

$$2. \ 1 + x = 1(1) + 1x$$

$$2 + 3x = 2(1) + 3x$$

Taking the transpose of the coefficients, we get $\mathbf{T} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$.

3. a) The standard basis of P2 is
$$\{1,x,x^2\}$$
. $(1/2)x^2$ - $(1/2)x = 0(1)$ - $(1/2)x$ + $(1/2)x^2$ 1 - x^2 =1(1) + 0 x + $(-1)x^2$ (1/2) x + $(1/2)x^2$ =0 + $(1/2)x$ + $(1/2)x^2$

Taking the transpose of the coefficients, we get $\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix}$. Since $\text{rref} \mathbf{T} = \mathbf{I}$, E is a linearly independent set

in \mathbb{P}^2 containing three vectors, and hence a basis.

5.
$$2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 3\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} = c\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} + d\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 where $\begin{bmatrix} c \\ d \end{bmatrix}$ are the coordinates in F . Solving for c and d , we get coordinates of $\begin{bmatrix} 5/2 \\ -1/2 \end{bmatrix}$.

Chapter 9

1. No
$$\det \mathbf{B} = 6 \det \mathbf{A}$$
.

2. No Consider
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.
3. $\det(2\mathbf{A}^{-1}) = 2^n \det \mathbf{A}^{-1} = 2^n / \det \mathbf{A} = -4$ $\det \mathbf{A} = -(2^{n-2})$ $-4 = \det \mathbf{A}^3 \det \mathbf{B}^{-1} = \det \mathbf{A} \det \mathbf{A} \det \mathbf{A} / \det \mathbf{B} = (2^n / (-4))^3 / \det \mathbf{B}$

4. No Consider
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

5. Since
$$\mathbf{A}^2 = -\mathbf{I}$$
 and \mathbf{A} is square, $\det \mathbf{A}^2 = \det \mathbf{A} \det \mathbf{A} = \det (-\mathbf{I}) = (-1)^n$. Thus, $\det \mathbf{A} = (-1)^{n/2}$.

7.
$$\implies$$
 Let $\mathbf{Ag} = \begin{bmatrix} a_1 & b_1 & g_1 \\ a_2 & b_2 & g_2 \\ a_3 & b_3 & g_3 \end{bmatrix}$, where $g_i = -c_i$. Note that this represents matrices $\mathbf{A} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}$ and $\mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix}$ in

augmented form. Also let $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$. For one unique solution to exist for any \mathbf{g} in $\mathbf{A}\mathbf{v} = \mathbf{g}$, it is required that rank $\mathbf{A} = \mathbf{g}$

 $\operatorname{rank} \mathbf{Ag} = n$, where n is the number of columns in \mathbf{A} . This means that $\operatorname{rank} \mathbf{Ag}$ must be 2, i.e. that \mathbf{Ag} is singular and thus must have determinant 0. If \mathbf{Ag} has determinant 0, then multiplying the third column of \mathbf{Ag} by -1 will also yield a matrix (which is the matrix considered in the question) with determinant 0.

 \Leftarrow If the matrix considered in the question has determinant 0, then $\det \mathbf{Ag} = 0$, so $\operatorname{rank} \mathbf{Ag} = 2$ because if $\operatorname{rank} \mathbf{Ag} \neq 2$ then $\operatorname{rank} \mathbf{A} \neq 2$ by necessity which implies nonuniqueness of any solution (if it exists) to $\mathbf{Av} = \mathbf{g}$. If $\operatorname{rank} \mathbf{Ag} = 2$, then $\operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{Ag} = n$ and we can thereby conclude that a unique solution (i.e. one single point) exists as the intersection between the three given lines for any g_1, g_2, g_3 . Since this conclusion holds for any g_1, g_2, g_3 , it also holds for any c_1, c_2, c_3 .

9. No

Any transformation matrix **T** must be invertible, so $\det \mathbf{T} \neq 0$ is required.

10. No Consider
$$\mathbf{x} = [1]$$
, $\mathbf{y} = [1]$.

11. Let $\{a_1, ..., a_n\}$ be the rows of **A**.

Since the determinant is multilinear along the rows of \mathbf{A} , $\mu^n \det \mathbf{A} = \det \begin{bmatrix} \mu a_1 \\ \vdots \\ \mu a_n \end{bmatrix} = \det \mu \mathbf{A}$.

13. Yes

If **A** is symmetric, then $\mathbf{C}^T = \mathbf{C} = \operatorname{adj} \mathbf{A}$.

Let
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then $(\operatorname{tr} \mathbf{A})\mathbf{I} - \mathbf{A} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \operatorname{adj} \mathbf{A}$.

18. \implies If **A** is invertible, $\mathbf{A}^{-1}\mathbf{A}$ adj $\mathbf{A} = \mathbf{A}^{-1}(\det \mathbf{A})\mathbf{I}$, so adj $\mathbf{A} = \mathbf{A}^{-1}\det \mathbf{A}$. Since $\mathbf{A}^{-1}\det \mathbf{A}$ is always invertible if $\det \mathbf{A}$ $\neq 0$, adj**A** must also be invertible.

 \longleftarrow If adj**A** is invertible, \mathbf{A} adj \mathbf{A} (adj \mathbf{A})⁻¹ = $(\det \mathbf{A})\mathbf{I}(\operatorname{adj}\mathbf{A})^{-1}$, so $\mathbf{A} = (\det \mathbf{A})(\operatorname{adj}\mathbf{A})^{-1}$. If **A** is not invertible, $\det \mathbf{A} = (\det \mathbf{A})(\operatorname{adj}\mathbf{A})^{-1}$. 0 and so the only solution to this equation is A = O. But it was given that $A \neq O$, so A must also be invertible.

Chapter 10

Since all of A's eigenvalues are 0, $S^{-1}AS = O$. Multiplying both sides by S on the left and then S^{-1} on the right, we get

2. Yes

 $\mathbf{A}^k = \mathbf{O}$ implies that $\det \mathbf{A} = 0$, since $\det(\mathbf{A}^k) = (\det \mathbf{A})^k = 0$. But then \mathbf{A} is not invertible, so null $\mathbf{A} = \text{null}(\mathbf{A} - 0\mathbf{I})$ contains nonzero vectors. Since $\lambda = 0$ has nonzero eigenvectors, it is an eigenvalue of A.

Since
$$c_{\mathbf{A}}(\lambda) = \lambda^2 - 3\lambda + 2 = \lambda^2 - (\operatorname{tr} \mathbf{A})\lambda + \det \mathbf{A}, \operatorname{tr} \mathbf{A} = 3.$$

4. Yes

If **x** is a solution to $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, then $(\mathbf{A} + \mathbf{I})\mathbf{x} = \lambda \mathbf{x} + \mathbf{x}$ and so the eigenvectors of **A** and **A** + **I** are the same.

5. Yes

If x is a solution to $Ax = \lambda x$, then $A^2x = \lambda^2 x$ and so the eigenvectors of A and A^2 are the same.

Since A is diagonalizable, the sum of the dimensions of all its eigenspaces must be equal to n. Thus E_d , the eigenspace corresponding to $\lambda = d$, must be equal to n, and since $E_d = \text{null}(d\mathbf{I} - \mathbf{A})$, we have by the Rank-Nullity theorem that $rank(d\mathbf{I} - \mathbf{A}) = 0.$

10. Yes

If **A** does not have 0 as an eigenvalue, then $E_0 = \text{null}(\mathbf{A} - 0\mathbf{I}) = \text{null}\mathbf{A}$ must have a dimension of 0 since the eigenspace associated with $\lambda = 0$ contains no eigenvectors. nullity $\mathbf{A} = 0$ is equivalent to \mathbf{A} being invertible, i.e., a product of elementary matrices.

12. If $\det \mathbf{A} = 0$, $\det(\mathbf{A}\operatorname{adj}\mathbf{A}) = 0$.

If
$$\det \mathbf{A} \neq 0$$
, \mathbf{A} is invertible, so $\operatorname{adj} \mathbf{A} = \mathbf{A}^{-1}(\det \mathbf{A})\mathbf{I}$
 $\det(\operatorname{adj} \mathbf{A}) = \det(\mathbf{A}^{-1}(\det \mathbf{A})\mathbf{I}) = (\det \mathbf{A})^n/\det \mathbf{A} = (\det \mathbf{A})^{n-1}$

13. a) rank $\mathbf{A} = 1$, nullity $\mathbf{A} = 3$

- b) Since $E_0 = \text{null} \mathbf{A}$, $\lambda = 0$ exists and its eigenspace has dimension 3.
- c) Since $c_{\mathbf{A}}(\lambda) = \lambda^3(\lambda 4)$, another eigenvalue of **A** is $\lambda = 4$.

17. a)
$$\mathbf{A} \operatorname{adj} \mathbf{A} = (\det \mathbf{A}) \mathbf{I} = (\det \mathbf{A}^T) \mathbf{I} = \mathbf{A}^T \operatorname{adj} \mathbf{A}^T$$

b) \Longrightarrow If \mathbf{A} is invertible, $\det \mathbf{A} \neq 0$, so $\mathbf{A}^T \operatorname{adj} \mathbf{A}^T = (\det \mathbf{A}) \mathbf{I}$
 $\mathbf{A}^T (\operatorname{adj} \mathbf{A}^T / \det \mathbf{A}) = \mathbf{I}$ which menas \mathbf{A}^T has an inverse, $\operatorname{adj} \mathbf{A}^T / \det \mathbf{A}$.
 \longleftarrow If \mathbf{A}^T is invertible, $\det \mathbf{A}^T \neq 0$, so $\mathbf{A} \operatorname{adj} \mathbf{A} = (\det \mathbf{A}^T) \mathbf{I}$

 $\mathbf{A}(\operatorname{adj}\mathbf{A}/\det\mathbf{A}^T) = \mathbf{I}$ which means \mathbf{A} has an inverse, $\operatorname{adj}\mathbf{A}/\det\mathbf{A}^T$.

20. Note that at least two of the λ_i 's must be equal or else there are more distinct eigenvalues than columns of **A**. Since 2 linearly independent vectors are in the repeated eigenvalue's eigenspace, this eigenspace has dimension 2. But then the other eigenvalue is not an eigenvalue if it is different from the two λ_i 's, since then its eigenspace would have dimension 0. Thus, all three λ_i 's are equal (call it λ), and since λ 's eigenspace has dimension 2, all $\mathbf{x} \in {}^2\mathbb{R}$ are solutions to the equation $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$.