NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Lau Tze Siong

MA3201 Algebra II

AY 2006/2007 Sem 2

Question 1

- (a) (i) f is a ring homomorphism if and only if for all $a, b \in R$, $f(a +_R b) = f(a) +_S f(b)$ and $f(a \times_R b) = f(a) \times_S f(b)$.
 - (ii) $\ker(f) = \{ a \in R \mid f(a) = 0_S \}.$
- (b) (i) For all $r \in \ker(\phi)$, one has $\phi(r) = 0_S$. Hence $\psi(r) = \theta \circ \phi(r) = \theta(0_S) = 0_T$. Therefore $r \in \ker(\psi)$. Hence $\ker(\phi) \subseteq \ker(\psi)$
 - (ii) Existence

Since ϕ is surjective, for all $s \in S$ there exists $r \in R$ such that $\phi(r) = s$. Hence, define $\theta: S \to T$ such that $\theta(s) = \psi(r)$ where $\phi(r) = s$. Claim: θ is a well-defined homomorphism. Proof:

Fix $s \in S$ Let $r_1, r_2 \in R$ such that $\phi(r_1) = \phi(r_2) = s$. Hence $r_1 - r_2 \in \ker(\phi) \subseteq \ker(\psi)$. Therefore $\psi(r_1 - r_2) = 0_T$. Hence we have $\psi(r_1) = \psi(r_2)$.

Therefore θ is a well-defined function.

Let $s_1, s_2 \in S$ and $r_1, r_2 \in R$ such that $\phi(r_1) = s_1$ and $\phi(r_2) = s_2$.

$$\theta(s_1 + s_2) = \psi(r_1 + r_2)$$

$$= \psi(r_1) + \psi(r_2)$$

$$= \theta(s_1) + \theta(s_2)$$

$$\theta(s_1 s_2) = \psi(r_1 r_2)$$

$$= \psi(r_1) \psi(r_2)$$

$$= \theta(s_1) \theta(s_2)$$

Hence θ respects both addition and multiplication.

Therefore θ is a homomorphism.

Since for all $s \in S$, $\theta \circ \phi(s) = \theta(r)$ such that $r = \phi(s)$. $\theta(r) = \psi(s)$ by definition of θ . Hence there exist a $\theta : S \to T$ such that $\theta \circ \phi = \psi$.

Uniqueness

Suppose there exists $\theta_1, \theta_2 : S \to T$ such that $\theta_1 \circ \phi = \theta_2 \circ \phi = \psi$. Since ϕ is surjective, for all $s \in S$, $s = \phi(r)$ for some $r \in R$. $\theta_1(s) = \theta_1 \circ \phi(r) = \psi(r)$ and $\theta_2 \circ \phi(r) = \psi(r)$. Hence we have $\theta_1 = \theta_2$.

Question 2

(a) (i) An ideal I is prime if and only if for any $r_1, r_2 \in R$ such that $r_1r_2 \in I$, one has $r_1 \in I$ or $r_2 \in I$.

- (ii) An ideal I is maximal in R if and only if I is not R and for any ideal J such that $J \supseteq I$, J = R.
- (b) (i) An element $a \in R$ is prime if and only if a is non-zero non-unit element and for any $b, c \in R$ such that $a \mid bc$ then $a \mid b$ or $a \mid c$.
 - (ii) An element $a \in R$ is irreducible if and only if it is non-unit and for any $b, c \in R$ such that bc = a then either b is unit or a is unit.
- (c) (i) Claim: I is a prime ideal.

Proof:

Let $p(X), q(X) \in R[X]$ such that $pq \in I$. Hence we have p(X)q(X) = f(X)a(X) for some $a(X) \in R[X]$. Since R is a UFD, R[X] is a UFD. Hence f(X) is prime. Since $f(X) \mid p(X)q(X), f(X) \mid p(X)$ or $f(X) \mid q(X)$ which is equivalent to saying either $p(X) \in I$ or $q(X) \in I$. Hence I is a prime ideal. \square

Claim: J is a maximal ideal.

Proof:

Since F is field, F[X] is a Euclidean Domain. Now suppose K is a ideal such that $K \supseteq J$. Then there exist $p(X) \in K \setminus J$. Hence $f(X) \nmid p(X)$. Since f(X) is irreducible, we have $\gcd(f(X), p(X)) = 1$. Hence there exist $\alpha(X), \beta(X) \in F[X]$ such that $\alpha(X)f(X) + \beta(X)p(X) = 1$. Therefore $1 \in J$. Hence J = F[X]. Hence I is maximal. \square

(ii) Let $R = \mathbb{Z}[Y]$. Since \mathbb{Z} is a UFD, $\mathbb{Z}[Y]$ is a UFD. Since R is a UFD, R[X] is a UFD. Since X is irreducible, $\langle X \rangle$ is a prime ideal. But $\langle X \rangle \subsetneq \langle X, Y \rangle \subsetneq \langle R[X]$. Hence $\langle X \rangle$ is prime but not maximal.

Question 3

- (a) (i) A Euclidean Function is a map $\phi: R\setminus 0 \to \mathbb{Z}_+$ such that for any $a,b \in R\setminus \{0\}, \ \phi(ab) \ge \max(\phi(a),\phi(b))$ and there exists q,r such that a=qb+r where $\phi(r)<\phi(b)$ or r=0.
 - (ii) A Euclidean Domain is a Integral Domain which a Euclidean Function can be defined on.
- (b) Let $\phi(r) = 1$ for all $r \in F \setminus \{0\}$. This is a Euclidean function since for any $a, b \in R \setminus \{0\}$, $\phi(ab) \ge \max(\phi(a), \phi(b))$. The second condition is satisfied trivially since all non-zero elements in F are units hence are associates.

Since a field F is in particular a Integral Domain and we can define a Euclidean Function for all fields.

A field is a Euclidean Domain.

(c) Define

$$N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}_+$$

such that

$$N(a + b\sqrt{2}) = |a^2 - 2b^2|$$

. For any $a + b\sqrt{2}$, $p + q\sqrt{2} \in \mathbb{Z}\sqrt{2}$, we need to find $\alpha, r \in \mathbb{Z}\sqrt{2}$ such that

$$a + b\sqrt{2} = \alpha(p + q\sqrt{2}) + r$$

and $N(r) < N(p + q\sqrt{2})$. Rearranging the equation we have

$$\frac{r}{p+q\sqrt{2}} = \frac{a+b\sqrt{2}}{p+q\sqrt{2}} - \alpha$$

. Since $\mathbb{Q}\sqrt{2}$ is a field, $\frac{a+b\sqrt{2}}{p+q\sqrt{2}}=m+n\sqrt{2}$ for some $m,n\in\mathbb{Q}$.

Hence we need to find $\alpha \in \mathbb{Z}\sqrt{2}$ such that $N(m+n\sqrt{2}-\alpha)<1$.

To do this, note for any $m,n\in\mathbb{Q}$, there exist $x,y\in\mathbb{Z}$ such that $(m-x)\leq\frac{1}{2}$ and $(n-y)\leq\frac{1}{2}$. Therefore we let $\alpha=x+y\sqrt{2}$ such that the previous two inequalities are satisfied. Hence $N(m+n\sqrt{2}-\alpha)=|(m-x)^2-2(n-y)^2|<\frac{1}{4}+(2)\frac{1}{4}<1$.

Since $m + n\sqrt{2} - \alpha = \frac{r}{p + q\sqrt{2}}$, we have $N\left(\frac{r}{p + q\sqrt{2}}\right) < 1$. This gives us $N(r) < N(p + q\sqrt{2})$.

Hence we have found $\alpha, r \in \mathbb{Z}\sqrt{2}$ such that $a + b\sqrt{2} = \alpha(p + q\sqrt{2}) + r$ and $N(r) < N(p + q\sqrt{2})$. \square

Question 4

- (a) The sum $N_1 + N_2 + n_3 + ... + N_r$ is direct if and only if for any $n_i \in M_i$ and $k_i \in R$ for i = 1, ..., r. One has $\sum_{i=1}^r k_i n_i = 0_M$ if and only if $k_i = 0_R$ for all i = 1, ..., r.
- (b) (i) For i = 1, ..., r, let $k_i \in R$ and $v_i \in V_i$ such that

$$\sum_{i=1}^{r} k_i v_i = 0_M$$

. Since each $V_i \subseteq U_i$ for i=1,...,r, we have $v_i \in U_i$ for all i=1,...,r. Also, since $U_1+U_2+U_3+...+U_r$ is direct, $k_i=0_R$ for i=1,...r.

(ii) Define the map

$$\phi: M \to (U_1/V_1) \times (U_2/V_2) \times (U_3/V_3) \times ... \times (U_r/V_r)$$

such that

$$u_1 + u_2 + u_3 + ... + u_r \mapsto (u_1 + V_1, u_2 + V_2, u_3 + V_3, ..., u_r + V_r)$$

This map is will defined since

$$M = U_1 \bigoplus U_2 \bigoplus U_3 \bigoplus \dots \bigoplus U_r$$

, for $u_i, u_i' \in U_i$,

$$u_1 + u_2 + u_3 + \dots + u_r = u'_1 + u'_2 + u'_3 + \dots + u'_r$$

if and only if $u_i = u'_i$ for all i = 1, ..., r.

Claim: ϕ is a surjective homomorphism with $\ker(\phi) = V$.

Proof:

For $m_1, m_2 \in M$ and $\alpha \in R$, we write $m_1 = \sum_{i=1}^r u_i$ and $m_2 = \sum_{i=1}^r u_i'$ such that $u_i, u_i' \in U_i$.

$$\phi(m_1 + \alpha m_2) = \phi(\sum_{i=1}^r u_i + \alpha \sum_{i=1}^r u_i')$$

$$= \phi(\sum_{i=1}^r (u_i + \alpha u_i'))$$

$$= (u_1 + \alpha + u_1' + V, u_2 + \alpha + u_2' + V, u_3 + \alpha + u_3' + V, ..., u_r + \alpha + u_r' + V)$$

$$= (u_1 + V, u_2 + V, u_3 + V, ..., u_r + V) + \alpha(u_1' + V, u_2' + V, u_3' + V, ..., u_r' + V)$$

$$= \phi(\sum_{i=1}^r u_i) + \alpha \phi(\sum_{i=1}^r u_i')$$

$$= \phi(m_1) + \alpha \phi(m_2)$$

. Therefore ϕ is a homomorphism.

 ϕ is surjective since for any $(u_1 + V, u_2 + V, u_3 + V, ..., u_r + V) \in (U_1/V_1) \times (U_2/V_2) \times (U_3/V_3) \times ... \times (U_r/V_r)$, one has $\phi(u_1 + u_2 + u_3 + + u_r) = (u_1 + V, u_2 + V, u_3 + V, ..., u_r + V)$.

For any $u_1 + u_2 + u_3 + ... + u_r \in \ker(\phi)$, $\phi(u_1 + u_2 + u_3 + ... + u_r) = 0$ if and only if , $(u_1 + V, u_2 + V, u_3 + V, ..., u_r + V) = 0$. If and only if $u_i \in V_i$ for i = 1, ..., r. If and only if $u_1 + u_2 + u_3 + ... + u_r \in V$ (Since $V_1 + V_2 + ... + V_r$ is direct).

Therefore ϕ is a surjective homomorphism with $\ker(\phi) = V$.

By First Isomorphism Theorem, we have $M/V \cong (U_1/V_1) \times (U_2/V_2) \times (U_3/V_3) \times ... \times (U_r/V_r)$

Question 5

- (a) Suppose $n \neq 0$ and n is composite. Hence m = pq where p is prime and $q \in \mathbb{N}_{>1}$. Let $a = p \cdot 1$ p-times. Since n > p, $a \neq 0$. Similarly let $b = q \cdot 1$ q-times. Since n > q, $b \neq 0$. But $ab = 1 + 1 + 1 + \ldots + 1$ pq = m-times. Hence ab = 0. Therefore a is a zero-divisor of R. Hence R has at least 1 zero-divisor.
- (b) (i) Since ϕ is a unitary ring homomorphism, $\phi(1_R) = 1_S$. Define the additive cyclic group G generate by 1_S . Therefore $o(1_S) = m$. Since $n \cdot 1_S = \phi(n \cdot 1_R) = \phi(0_R) = 0_S$. Hence $m \mid n$. Therefore ma = n for some $a \in \mathbb{Z}$.

Page: 4 of 4

(ii) If R has no zero-divisor and n > 0, then n is prime. Since $1 \neq 0$, characteristic of S $m \neq 1$. Since n is prime, n = ma and $m \neq 1$, one has m = n.

П