METODE MOOSRA

(Multi Objective Optimazation on the basis of Simple Ratio Analysis)

Saifur Rohman Cholil, S.Kom., M.Kom.

☐ Metode MOOSRA dikategorikan sebagai salah satu metode optimasi multi objektif. ☐ Metode ini menghitung rasio sederhana dari kriteria yang menguntungkan dan kriteria tidak menguntungkan selama proses pengambilan keputusan (Dorfeshan et al., 2018).

- Metode MOOSRA memilih alternatif terbaik dengan penyederhanaan tinggi, waktu komputasi rendah dan perhitungan matematis dasar, dan tidak menggunakan parameter tambahan (Narayanamoorthy et al., 2020).
- □ Perbedaan metode MOORA dan MOOSRA adalah pada penentuan skor kinerja. MOORA menggunakan operator pengurangan (-) sedangkan MOOSRA operator pembagian (/).

- ☐ Tahapan metode MOOSRA:
 - Menentukan nilai kriteria, bobot dan alternatif
 - Merubah nilai kriteria menjadi matriks keputusan (X)
 - Normalisasi matriks (X_{ij}^*)
 - Penentuan skor kinerja (Y_i)
 - Perangkingan alternatif

1. Menentukan nilai kriteria, bobot kriteria dan alternatif

Menginputkan kriteria-kriteria yang telah ditetapkan pada suatu alternatif dimana kriteria tersebut nantinya akan diproses, hasilnya akan menjadi sebuah keputusan dan memberikan bobot pada masing-masing kriteria.

2. Merubah nilai kriteria menjadi matriks keputusan.

Semua nilai yang berada pada masing-masing kriteria direpresentasikan menjadi matriks keputusan.

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{1n} \\ x_{21} & x_{22} & x_{2n} \\ x_{m1} & x_{m2} & x_{mn} \end{bmatrix}$$

Tujuan dilakukan normalisasi matriks untuk menyatukan setiap elemen matriks sehingga elemen pada matriks memiliki nilai yang sebanding. Normalisasi matriks menggunakan persamaan berikut.

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^{m} X_{ij}^2\right]}}$$

4. Penentuan skor kinerja

Penentuan skor kinerja menggunakan persamaan berikut.

$$Y_{i} = \frac{\sum_{j=1}^{g} w_{j} \ x_{ij}^{*}}{\sum_{j=g+1}^{n} w_{j} \ x_{ij}^{*}}$$

Dimana g adalah atribut yang dimaksimalkan (benefit), n adalah atribut yang diminimalkan (cost), $\mathbf{w}_{\mathbf{j}}$ adalah bobot dan x_{ij}^{*} adalah normalisasi matriks.

5. Perangkingan alternatif.

Penentuan rangking dilakukan berdasarkan nilai terbesar dari hasil perhitungan yang telah telah dilakukan.

Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- □ Posisi yang dibutuhkan hanya 2 orang.
- Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1)
 - ✓ Pendidikan (C2)
 - ✓ Usia (C3)
 - ✓ Status perkawinan (C4)
 - ✓ Alamat (C5)

Jawab:

1. Menentukan kriteria, bobot dan alternatif

Kriteria Benefit:

- Pengalaman kerja (disimbolkan C1)
- > Pendidikan (C2)
- ➤ Usia (C3)

kriteria Cost:

- Status perkawinan (C4)
- > Alamat (C5)

☐ Pembobotan (w)

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi(A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif		kriteria						
	C1	C2	C3	C4	C5			
A1	0,5	1	0,7	0,7	0,8			
A2	0,8	0,7	1	0,5	1			
A3	1	0,3	0,4	0,7	1			
A4	0,2	1	0,5	0,9	0,7			
A5	1	0,7	0,4	0,7	1			

2. Merubah nilai kriteria menjadi matriks keputusan.

Alternatif	kriteria					
	C1	C2	C3	C4	C5	
A1	0,5	1	0,7	0,7	0,8	
A2	0,8	0,7	1	0,5	1	
А3	1	0,3	0,4	0,7	1	
A4	0,2	1	0,5	0,9	0,7	
A5	1	0,7	0,4	0,7	1	

	0,5	1	0,7 1 0,4 0,5	0,7	0,8
	0,8	0,7	1	0,5	1
X =	1	0,3	0,4	0,7	1
	0,2	1	0,5	0,9	0,7
	_ 1	0,7	0,4	0,7	1 _

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^{m} X_{ij}^2\right]}}$$

Kriteria C1:

$$= \sqrt{0.5^2 + 0.8^2 + 1^2 + 0.2^2 + 1^2}$$

= 1.712

$$A_{11} = \frac{0.5}{1.712} = 0.292$$

$$A_{21} = \frac{0.8}{1.712} = 0.467$$

$$A_{31} = \frac{1}{1,712} = 0,584$$

$$A_{41} = \frac{0,2}{1,712} = 0,117$$

$$A_{51} = \frac{1}{1,712} = 0,584$$

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^m X_{ij}^2\right]}}$$

Kriteria C2:

$$= \sqrt{1^2 + 0.7^2 + 0.3^2 + 1^2 + 0.7^2}$$

= 1.752

$$1 = \frac{1}{1,752} = 0,572$$

$$A_{12} = \frac{1}{1,752} = 0,571$$

$$A_{22} = \frac{0,7}{1,752} = 0,400$$

$$A_{32} = \frac{0,3}{1,752} = 0,171$$

$$A_{42} = \frac{1}{1,752} = 0,571$$

$$A_{52} = \frac{0,7}{1,752} = 0,400$$

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^m X_{ij}^2\right]}}$$

Kriteria C3:

$$= \sqrt{0.7^2 + 1^2 + 0.4^2 + 0.5^2 + 0.4^2}$$

= 1,435

$$A_{13} = \frac{0.7}{1.435} = 0.488$$

$$A_{23} = \frac{1}{1,435} = 0,697$$

$$A_{33} = \frac{0,4}{1,435} = 0,279$$

$$A_{43} = \frac{0,5}{1,435} = 0,348$$

$$A_{53} = \frac{0,4}{1,435} = 0,279$$

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^m X_{ij}^2\right]}}$$

Kriteria C4:

$$= \sqrt{0.7^2 + 0.5^2 + 0.7^2 + 0.9^2 + 0.7^2}$$

= 1.591

$$A_{14} = \frac{0.7}{1,591} = 0.440$$

$$A_{24} = \frac{0.5}{0.5} = 0.314$$

$$A_{34} = \frac{0.7}{1.591} = 0.440$$

$$A_{44} = \frac{0.9}{1.591} = 0.566$$

$$A_{54} = \frac{0.7}{1.591} = 0.440$$

$$= 0.56$$
 $= 0.44$

$$X_{ij}^* = \frac{X_{ij}}{\sqrt{\left[\sum_{i=1}^m X_{ij}^2\right]}}$$

Kriteria C5:

$$= \sqrt{0.8^2 + 1^2 + 1^2 + 0.7^2 + 1^2}$$
$$= 2.032$$

$$A_{15} = \frac{0.8}{2,032} = 0.394$$

$$A_{25} = \frac{1}{2,032} = 0,492$$

$$A_{35} = \frac{1}{2,032} = 0,492$$

$$A_{45} = \frac{{}_{0,7}^{2,032}}{{}_{2,032}} = 0,344$$

$$A_{55} = \frac{1}{{}_{2,032}} = 0,492$$

3. Hasil normalisasi matriks

	0,292	0,571	0,488	0,440	0,394	
	0,467	0,400	0,697	0,314	0,492	
$X_{ij}^* =$	0,584	0,171	0,279	0,440	0,492	
	0,117	0,571	0,348	0,566	0,344	SECTION AND ADDRESS.
	0,584	0,400	0,279	0,440 0,314 0,440 0,566 0,440	0,492	

4. Penentuan skor kinerja

$$X_{ij}^{*} = \begin{bmatrix} 0,292 & 0,571 & 0,488 & 0,440 & 0,394 \\ 0,467 & 0,400 & 0,697 & 0,314 & 0,492 \\ 0,584 & 0,171 & 0,279 & 0,440 & 0,492 \\ 0,117 & 0,571 & 0,348 & 0,566 & 0,344 \\ 0,584 & 0,400 & 0,279 & 0,440 & 0,492 \end{bmatrix} \times W_{j}$$

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

-				
0,088	0,114	0,098	0,066	0,059 0,074 0,074 0,052 0,074
0,140	0,080	0,139	0,047	0,074
0,175	0,034	0,056	0,066	0,074
0,035	0,114	0,070	0,085	0,052
0,175	0,080	0,056	0,066	0,074

4. Penentuan skor kinerja:

Alternatif	Benefit (C1+C2+C3)	Cost (C4+C5)	Skor Kinerja
A1	0,299	0,125	2,393
A2	0,359	0,121	2,972
А3	0,265	0,140	1,897
A4	0,219	0,137	1,603
A5	0,311	0,140	2,224

$$Y_i = \frac{\sum_{j=1}^{g} w_j \ x_{ij}^*}{\sum_{j=g+1}^{n} w_j \ x_{ij}^*}$$

0,088	0,114	0,098	0,066	0,059	1
0,140	0,080	0,139	0,066 0,047	0,074	-
0,175	0,034	0,056	0,066	0,074	$\frac{Z_L}{Z_0}$
0,035	0,114	0,070	0,085	0,052	
0,175	0,080	0,056	0,066 0,085 0,066	0,074	

5. Perangkingan alternatif

Alternatif	Skor Kinerja	Ranking
A1	2,393	2
A2	2,972	1
A3	1,897	4
A4	1,603	5
A 5	2,224	3

- □ Nilai terbesar ada pada A2 = 2,972 dan A1 = 2,393 sehingga Dion Pratama dan Doni Prakosa adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Doni Prakosa terpilih untuk posisi operator mesin.

Ref	erence :	
	A novel assessment of bio-medical waste disposal methods using integrating weighting approach and hesitant fuzzy MOOSRA-S. Narayanamoorthy, V. Annapoorani, Daekook Kang, Dumitru Baleanu, Jeonghwan Jeon, Joseph Varghese Kureethara, L. Ramya (2020)	
	Selecting project-critical path by a new interval type-2 fuzzy decision methodology based on MULTIMOORA, MOOSRA and TPOP methods-Y. Dorfeshan, S. Meysam Mousavi, V. Mohagheghi, B. Vahdani (2018)	P=2
	Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) dalam Penentuan Lulusan Mahasiswa Terbaik -Abdul Karim, Shinta Esabella, Titi Andriani, Muhammad Hidayatullah (2022)	a×