SRN							
-----	--	--	--	--	--	--	--

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE15CS201

END SEMESTER ASSESSMENT (ESA) B.TECH. 3rd SEMESTER- Dec 2019

UE15CS201-Digital Design and Computer Organization (Backlog)

-		(Backley)	-			
Tin	ne: 3	Hrs Answer All Questions Max Marks:	100			
1. a)	a)	Simplify the following minterms into simplified SOP expression using K-Map. $f(A,B,C,D) = \sum m(0,1,3,4,5,7,12,13,15)$				
	b)	Simplify the following maxterms into simplified POS expression using K-Map. $f(A,B,C,D) = \Pi M(0, 2, 3, 4, 6, 7, 14)$	8			
	c)	Simplify the following minterms into simplified SOP expression using K-Map. $f(X,Y,Z) = \Sigma m(0, 2, 6, 7)$	4			
2. a)	a)	List the steps required to obtain boolean function from any digital logic diagram.				
	b)	Explain Half adder and Full adder by mentioning its truth table, logic diagram and sum and carry expression.	8			
	c)	Explain 4 input priority encoder.	8			
3. a) b) c)	Explain direct inputs preset and clear.	4				
	b)	Design a sequential circuit with two D flip-flops A and B, and one input x_i in . When x_i in = 0, the state of the circuit remains the same. When x_i in = 1, the circuit goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats	8			
	c)	Explain S R Flipflop and D flip lop	8			
4.	a)	Summarize the operations of a computer.	4			
	b)	Explain the connection between processor and memory with neat diagram.	8			
	c)	Explain Big-Endian and Little -Endian assignment.	6			
	d	Explain Relative addressing mode.	2			
5.	a)	Multiply 14 times -5 using 5-bit numbers (10-bit result). [Using Booth's Multiplication)	8			
	b)	Write the control sequence for execution of the instruction Add (R3),R1	8			
	c)	Mention the actions required for executing the instruction Add (R3),R1	4			