Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza - RCN CAMPUS DE RIO DAS OSTRAS

Gabarito da 1ª Avaliação de Geometria Analítica e Cálculo Vetorial – 1/2015 06/04/2015

- 1. Considere os pontos A = (3, 1) e B = (1, -3).
 - (a) [1 pt] Determine as equações paramétricas da reta r que passa por A e é perpendicular a \overrightarrow{AB} .
 - (b) [1,5 pts] Determine os pontos sobre a reta r que formem com A e B um triângulo de área 25.

Solução:

(a)

Note que $\overrightarrow{AB} = (-2, -4)//(1, 2)$, daí, $\overrightarrow{v} = (2, -1)$ é perpendicular a \overrightarrow{AB} .

Com isso, temos que as seguintes equações paramétricas de r:

$$r: \begin{cases} x = 3 + 2t, \\ y = 1 - t, \ t \in \mathbb{R}. \end{cases}$$

(b)

Universidade Federal Fluminense — UFF Instituto de Humanidades e Saúde — RHS Departamento de Ciências da Natureza — RCN Campus de Rio das Ostras

0,5

Dado um ponto P da reta r, uma vez que o triângulo ΔBAP é retângulo, temos que a área é dada por

 $\mathcal{A} = \frac{\|\overrightarrow{AB}\| \|\overrightarrow{AP}\|}{2}.$

Como queremos A = 25 temos que

$$\|\overrightarrow{AB}\| \|\overrightarrow{AP}\| = 50 \tag{1}$$

-0.5 —

Das equações paramétricas, sabemos que P=(3+2t,1-t) para algum $t\in\mathbb{R}.$ Neste caso, temos que

 $\|\overrightarrow{AB}\| = \sqrt{20} = 2\sqrt{5} \text{ e } \|\overrightarrow{AP}\| = \|\sqrt{(2t, -t)}\| = \sqrt{5t^2} = \sqrt{5}|t|.$

- 0,5 -

Substituindo em (1) temos que

$$10|t| = 50 \Rightarrow t = \pm 5.$$

Logo, substituindo os valores de t em P obtemos os seguintes pontos:

$$P_1 = (13, -4) e P_2 = (-7, 6).$$

- 2. Três vértices de um paralelogramo ABCD são $A=(-2,-7/2),\ B=(3,0)$ e D=(-2,-3/2). Pede-se:
 - (a) [1 pt] Determine as coordenadas do vértice C.
 - (b) [1 pt] Determine um vetor cuja direção seja a bissetriz do ângulo agudo desse paralelogramo.

Solução:

(a)

-0.5

Pela Lei do paralelogramo, sabemos que

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$

Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN Campus de Rio das Ostras

0.5

Note que $\overrightarrow{AB}=(5,7/2)$ e $\overrightarrow{AD}=(0,2)$. Substituindo C=(x,y) na última equação, temos que

$$(x+2, y+7/2) = (5, 11/2) \Rightarrow x = 3 \text{ e } y = 2.$$

Logo C = (3, 2).

(b)

0.5

Sabemos que os ângulos do paralelogramo são aqueles formados pelos vetores \overrightarrow{AB} e \overrightarrow{AD} ou por \overrightarrow{BA} e \overrightarrow{BC} . O ângulo agudo será aquele cujo produto interno é positivo. Como

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = 7 > 0,$$

temos que o ângulo agudo é o formado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} .

0,5

A fim de encontrar a bissetriz do ângulo entre os vetores \overrightarrow{AB} e \overrightarrow{AD} primeiro precisamos normalizar estes vetores. Note que $\|\overrightarrow{AD}\| = 2$ e $\|\overrightarrow{AB}\| = \frac{\sqrt{149}}{2}$. Com isso, temos que

$$\overrightarrow{u} = \frac{\overrightarrow{AD}}{\|\overrightarrow{AD}\|} = (0,1) \text{ e } \overrightarrow{v} = \frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|} = \left(\frac{10}{\sqrt{149}}, \frac{7}{\sqrt{149}}\right).$$

Assim,

$$\overrightarrow{u} + \overrightarrow{v} = \left(\frac{10}{\sqrt{149}}, \frac{\sqrt{149} + 7}{\sqrt{149}}\right) // = (10, \sqrt{149} + 7).$$

Logo a direção procurada é dada pelo seguinte vetor:

$$\overrightarrow{w} = (10, \sqrt{149} + 7)$$

- 3. Sabendo que os pontos A=(0,2) e B=(5,17) pertencem a um reta r, pede-se:
 - (a) [1,5 pts] Determine as coordenadas de um ponto P desta reta r tal que $\|\overrightarrow{AP}\| = 1$.
 - (b) [1 pt] Analise se o ponto C = (10, 19) pertence à reta r.
 - (c) [1 pt] Determine um vertor \overrightarrow{v} que seja perpendicular a r.

Solução:

(a)

Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN Campus de Rio das Ostras

0,5

Note que $\overrightarrow{AB}=(5,15)/\!/(1,3),$ daí, as equações paramétricas de r são:

$$r: \begin{cases} x = t, \\ y = 2 + 3t, \ t \in R. \end{cases}$$

0.5

Com isso, temos que P=(t,2+3t) para algum $t\in\mathbb{R}.$ Como $\overrightarrow{AP}=(t,3t)$ temos que

$$\|\overrightarrow{AP}\| = \sqrt{t^2 + 9t^2} = \sqrt{10t^2} = \sqrt{10}|t| = 1 \Rightarrow t = \pm \frac{\sqrt{10}}{10}.$$

-0.5

Como precisamos apenas encontrar um ponto P tal que $\|\overrightarrow{AP}\|=1$, basta substituir $t=\sqrt{10}/10$ nas coordenadas de P para obtermos

$$P = \left(\frac{\sqrt{10}}{10}, 2 + \frac{3\sqrt{10}}{10}\right)$$

(b)

1,0

Das equações paramétricas de r, o ponto C pertencerá à reta r se, e somente se, existir $t \in \mathbb{R}$ tal que C = (t, 2 + 3t).

Neste caso,

$$(10, 19) = (t, 2 + 3t) \Rightarrow t = 10 \text{ e } t = 8/3,$$

um absurdo! Portanto $C \notin \mathbb{R}$.

(c)

1.0

Como (1,3)//r sabemos que $\overrightarrow{v} = (3,-1) \perp r$.

4. [2 pts] Calcule o valor de α para que os vetores \overrightarrow{u} e $\overrightarrow{u} + \alpha \overrightarrow{v}$ sejam ortogonais, sabendo que $\|\overrightarrow{u}\| = 3$, $\|\overrightarrow{v}\| = 5$ e $\|\overrightarrow{u} + \overrightarrow{v}\| = \sqrt{40}$.

Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN Campus de Rio das Ostras

Solução:

1.0

Primeiramente, note que

$$0 = \overrightarrow{u} \cdot (\overrightarrow{u} + \alpha \overrightarrow{v}) = ||u||^2 + \alpha \overrightarrow{u} \cdot \overrightarrow{v} = 9 + \alpha \overrightarrow{u} \cdot \overrightarrow{v}$$

Logo,

$$\alpha = \frac{-9}{\overrightarrow{u} \cdot \overrightarrow{v}} \tag{2}$$

_ 1,0 -

Neste caso, basta encontrar o valor de $\overrightarrow{u} \cdot \overrightarrow{v}$. Como $||\overrightarrow{u} + \overrightarrow{v}|| = \sqrt{40}$, temos que

$$40 = \|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2 = 9 + 2\overrightarrow{u} \cdot \overrightarrow{v} + 25$$

Portanto,

$$\overrightarrow{u} \cdot \overrightarrow{v} = 3 \tag{3}$$

Sbustituindo (3) em (2), finalmente obtemos que

$$\alpha = -3$$
.