

Discrete Structures Fall 2024

Sheet 1 Chapter One

Logical operations:

				$\mathcal{A} \& \mathcal{B}$			
${\mathcal A}$	$ eg \mathcal{A}$	1	1	1 0 0	1	1	1
1	0	1	0	0	1	0	0
0	1	0	1	0	1	1	0
'	'	0		0	0	1	1

Which of these sentences are propositions? What are the truth values of those that are propositions?

- a) Boston is the capital of Massachusetts. proposition (idk)
- b) Miami is the capital of Florida. proposition (false)
- c) 2 + 3 = 5. proposition True
- d) 5 + 7 = 10. proposition false
- e) x + 2 = 11. not proposition
- f) Answer this question. not prop

Let p and q be the propositions

p: It is below freezing.

q: It is snowing.

Write these propositions using p and q and logical connectives (including negations).

- a) It is below freezing and snowing. P^q
- b) It is below freezing but not snowing. $p \land not q$
- c) It is not below freezing and it is not snowing. $\sim_{p} \wedge_{\sim 0}$
- d) It is either snowing or below freezing (or both). $P \parallel Q$

Discrete Structures Fall 2024

- e) If it is below freezing, it is also snowing. P->q
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
- g) That it is below freezing is necessary and sufficient for it to be snowing. P<-->Q

(p || freezing)^ (p->q)

For each of these sentences, state what the sentence means if the logical connective or is an inclusive or (that is, a disjunction) versus an exclusive or. Which of these meanings of or do you think is intended?

- a) To take discrete mathematics, you must have taken calculus or a course in computer science.
- b) When you buy a new car from Acme Motor Company, you get \$2000 back in cash or a 2% car loan.
- c) Dinner for two includes two items from column A or three items from column B.
- d) School is closed if more than 2 feet of snow falls or if the wind chill is below -100.

Determine whether each of these conditional statements is true or false.

- a) If 1 + 1 = 2, then 2 + 2 = 5.
- b) If 1 + 1 = 3, then 2 + 2 = 4.
- c) If 1 + 1 = 3, then 2 + 2 = 5.
- d) If monkeys can fly, then 1 + 1 = 3.

Construct a truth table for each of these compound propositions.

- a) $p \rightarrow (\neg q \lor r)$
- b) $(p \rightarrow q) \lor (\neg p \rightarrow r)$
- c) $(p \rightarrow q) \land (\neg p \rightarrow r)$
- d) $(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$
- e) $(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$

Show that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not logically equivalent.

Show that $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are not logically equivalent.

Best of luck!

Discrete Structures Fall 2024

