14.385 Nonlinear Econometric Analysis (Causal) matrix completion

Maximilian Kasy

Department of Economics, MIT

Fall 2022

Outline

- Setup: Filling in missing entries in a matrix Y.
 - 1. Recommender systems.
 - 2. Counterfactual outcomes in panel data.
- Recap: Singular value decompositions and principal components.
- Empirical risk minimization methods.
- Nearest neighbor methods.
- Missigness assumptions.
- Reweighting.
- The synthetic nearest neighbor algorithm.

Takeaways for this part of class

- Typical assumption:
 Y is a sum of a low rank matrix A and idiosyncratic noise E.
- Any matrix has a singular value decomposition.
 Principal components correspond to the largest singular values.
- Popular methods for matrix completion:
 - 1. Empirical risk minimization.
 - 2. Nearest neighbors.
- Standard methods suffer from bias with non-random missingness.
- For (conditionally) missing at random data, reweighting can provide a solution.
- An algorithm for more general missingness is Synthetic nearest neighbors.

Standard algorithms

Missigness assumptions

Synthetic nearest neigbhors

Reference

- Random matrices with *m* rows, *n* columns:
 - Latent matrix A.
 - Error matrix E, where E[E|A] = 0.
 - Outcome matrix Y = A + E, thus E[Y|A] = A.
 - Observability matrix D.
 - Probability of observability: P = E[D].
- Goal: Estimate the entries of the latent matrix A based on observations (Y_{ij} · D_{ij}, D_{ij}).
- Typical loss function:

$$\frac{1}{m \cdot n} \sum_{i,j} \left(\hat{A}_{ij} - A_{ij} \right)^2.$$

Interpretations

- Recommender systems:
 - Rows i index individuals, columns j index movies.
 - Y_{ij} are movie ratings by individual i for movie j.
 - D_{ij} are indicators for whether a movie was rated by an individual.
 - Goal: Recommend movies that would receive high ratings.
- Panel data causal inference (cf. synthetic controls):
 - Rows i index cross-sectional units, columns j index time-periods.
 - Y_{ij} are potential outcomes absent treatment.
 - D_{ij} are indicators for untreated units.
 - Goal: Recover missing Y_{ij} to recover causal effects.

Standard algorithms

Missigness assumptions

Synthetic nearest neigbhors

Reference

Reminder: Singular value decomposition

• Any real valued matrix A with m rows, n columns, rank k = rank(A) can be decomposed as

$$A = U \cdot \Sigma \cdot V = \sum_{l=1}^{k} \sigma_{l} \cdot u_{l} \cdot v'_{l}.$$

- *U* is an $m \times k$ matrix with orthonormal columns u_l .
- V is an $n \times k$ matrix with orthonormal columns v_I .
- Σ is a $\mathbf{k} \times \mathbf{k}$ diagonal matrix with entries σ_l of decreasing magnitude.
- Special case: Diagonalization of square matrices A.
- Consider the largest singular values σ_l :
 - Principal components: $\sigma_l \cdot u_l$.
 - Low-rank approximation: $A \approx \sum_{l=1}^{\kappa} \sigma_l \cdot u_l \cdot v_l'$, where $\kappa < k$.

Empirical risk minimization (ERM) methods

• Minimize average prediction error for observed outcomes:

$$\hat{A} = \operatorname*{argmin}_{a} \sum_{i,j} D_{ij} \cdot \left(a_{ij} - Y_{ij}\right)^2 + \lambda \cdot Reg(a).$$

- Here Reg is one of several possible regularization penalties, λ is a tuning parameter.
- Popular choice: Nuclear norm (or trace norm).

$$Reg(a) = tr(\sqrt{a' \cdot a}) = \sum_{l} \sigma_{l}(a).$$

The $\sigma_l(a)$ are the singular values of a.

- \Rightarrow Lasso penalty for the singular values of \hat{A} .
- ⇒ SoftImpute algorithm
- Variant: Rather than penalizing \hat{A} , constrain \hat{A} to be low rank.

Nearest neighbor methods

- Consider a specific i,j with $D_{i,j} = 0$.
- Find a set \mathcal{I} of k rows i', such that
 - 1. $D_{i',j} \neq 0$.
 - 2. Row i' is "similar" to row i.
- "Similar" often means a small distance of the vector of observed values,

$$\sum_{i'} D_{ij'} \cdot D_{i'j'} \cdot \left(Y_{ij'} - Y_{i'j'} \right)^2.$$

• Impute an estimate for Y_{ij} as

$$\hat{\mathbf{Y}}_{ij} = \frac{1}{k} \sum_{i' \in \mathcal{I}} \mathbf{Y}_{i'j}.$$

Standard algorithms

Missigness assumptions

Synthetic nearest neigbhors

References

Missingness assumptions

1. Missing completely at random (MCAR):

$$D_{ij}|Y\sim^{iid}Ber(p).$$

2. Missing at random (MAR):

$$D_{ij}|Y,X \sim Ber(P_{ij}(X)),$$

independently across i,j, where X are observable controls, and $P_{ii}(X) > 0$.

- 3. Missing not at random (MNAR):
 - D and Y are not independent,
 - D_{ij} and $D_{i'j'}$ are not independent,
 - $P_{ij} = 0$ is allowed.

Practice problem

- Suppose MCAR holds.
 Consider any empirical risk minimization (ERM) algorithm.
 What is the expectation of the objective function for such an algorithm?
- Suppose MAR holds.
 How could you modify empirical risk minimization, to avoid biases?

Reweighting under MAR

• Suppose that P takes the form

$$P_{ij} = g\left(X_i \cdot \beta_X + W_j \cdot \beta_W + \delta_i + \gamma_j\right),\,$$

where $g(\cdot)$ is a link function; e.g. the logistic $g(x) = \frac{\exp(x)}{1 + \exp(x)}$.

- We can estimate P by logistic regression of D_{ij} on X_i, W_j, and row and column fixed effects.
- Reweighted ERM:

$$\hat{A} = \operatorname*{argmin}_{a} \sum_{i,j} rac{D_{ij}}{\hat{P}_{ij}} \cdot \left(a_{ij} - Y_{ij}\right)^2 + \lambda \cdot Reg(a).$$

Standard algorithms

Missigness assumptions

Synthetic nearest neigbhors

Reference

A restricted form of MNAR

Assummptions:

1. Low rank factor model:

$$rank(A) = k < min(m, n)$$
, so that

$$A = \sum_{l=1}^k \sigma_l \cdot u_l \cdot v_l'.$$

2. Selection on latent factors:

$$E[E|U,V,D]=0.$$

3. Linear span inclusion:

Any set of k rows of U has full rank.

Identification

- Assumption 3 could be weakened, but holds generically.
- Immediate implication of these assumptions:
 - Fix a pair (*i*,*j*).
 - Let \mathscr{I} be such that $D_{i'i} = 1$ for all $i' \in \mathscr{I}$ and $|\mathscr{I}| \geq k$.
 - Then there is a β such that

$$u_{i,.} = \sum_{i' \in \mathscr{I}} \beta_{i'} \cdot u_{i',.}.$$

Furthermore,

$$A_{ij} = \sum_{i' \in \mathscr{I}} \beta_{i'} \cdot E[Y_{i'j}|U,V,D].$$

- Thus:
 - Suppose we could estimate β .
 - Then we could impute

$$\hat{\mathsf{A}}_{ij} = \sum_{i' \in \mathscr{Q}} \beta_{i'} \cdot \mathsf{Y}_{i'j}.$$

Synthetic nearest neighbors

Synthetic nearest neighbors (1)

Algorithm proposed by Agarwal et al. (2021);

- 1. Fix tuning parameter $\kappa \in \mathbb{N}$ (rank of approximations).
- 2. Consider some (i,j) for which we want to estimate A_{ij} .
- 3. Find a set of rows and columns AR and AC such that

$$D_{i'j'}=D_{i'j}=D_{ij'}=1$$

for all $i' \in AR$ and $j' \in AC$. Let S be the submatrix of Y corresponding to rows AR, columns AC.

4. Find the singular value decomposition

$$S = \sum_{l=1}^{K} \sigma_{l} \cdot \hat{u}_{l} \cdot \hat{v}_{l}'$$

Synthetic nearest neighbors (2)

5. Estimate

$$\hat{eta} = \left(\sum_{l=1}^{\kappa} rac{1}{\sigma_i} \cdot \hat{u}_i \cdot \hat{v}_i'
ight) \cdot A_{i,AC}.$$

(Note we are truncating the sum at κ .)

6. Impute

$$\hat{\mathsf{A}}_{ij} = \sum_{i' \in \mathscr{I}} \beta_{i'} \cdot \mathsf{Y}_{i'j}.$$

7. Repeat for different rows *AC*, columns *AR*, and average.

Role of columns and rows could be switched, without affecting the estimate.

Typical patterns of missingness

References

- Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. (2021). Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 116(536):1716–1730
- Agarwal, A., Dahleh, M., Shah, D., and Shen, D. (2021). Causal matrix completion. arXiv preprint arXiv:2109.15154