

2.8 Étude d'un robot à architecture SCARA

On cherche à déterminer les caractéristiques du robot Adept Cobra i600 présenté sur ci-dessous. Ce type de robot est couramment utilisé pour réaliser des opérations de montage mécanique, d'assemblage de composants électroniques et de beaucoup d'autres opérations nécessitant une automatisation rapide et précise. Ce robot présente une architecture série dite SCARA (Selective Compliant Articulated Robot Arm).

Il est composé d'un bâti C_0 et de quatre corps C_1 à C_4 interconnectés par des liaisons pivot et glissière d'axes parallèles. Le corps C_4 porte une pince de centre $E = O_4$ orientée par un axe (O_4, \vec{z}_4) et décalée de 20 mm par rapport à un point de référence du corps C_3 . Cette disposition des liaisons confère au mécanisme une certaine souplesse (compliance) dans les directions du plan (\vec{x}, \vec{y}) mais une bonne rigidité suivant \vec{z} d'où le terme Selective Compliant.

- 1. Étude géométrique
 - (a) Paramétrage de Denavit-Hartenberg du mécanisme (3 points).

Réponse

Paramétrage de Denavit-Hartenberg.

i	1	2	3	4
α_i	0	π	π	π
a_i	$a_1 = 325$	$a_2 = 275$	0	0
$ heta_i$	θ_1	$ heta_2$	0	$ heta_4$
d_i	0	0	d_3	$d_4 = -20$
q_i représenté	0	0	0	0

NB: dans ce mécanisme,

- le paramètre constant θ_3 peut être choisi de façon arbitraire (par exemple, $\theta_3 = 0[\frac{\pi}{2}]$)
- sauf raison spécifique, on choisit $\theta_3=0$ qui correspond à une valeur d'angle « simple », c'est le cas représenté sur la figure précédente
- si une autre valeur avait été choisie par exemple : $\theta_3 = \frac{\pi}{2}$
 - le schéma aurait été modifié $(\vec{x}_3 \text{ colinéaire à } \vec{y}_2)$ sans oublier $q_{3rep} = \frac{\pi}{2}$
 - le résultat final du modèle 0A_4 reste inchangé avec ce changement de variable pour l'angle constant θ_3

- (b) Modèle géométrique direct du mécanisme (2 points).
 - On utilisera la notation c_{ij} et s_{ij} pour désigner $\cos(\theta_i + \theta_j)$ et $\sin(\theta_i + \theta_j)$.
 - Calculer les matrices de transformation élémentaires et la transformation homogène résultante ${}^{0}A_{4}$. Écrire ${}^{0}A_{4}$ en simplifiant les expressions trigonométriques.

Réponse

$${}^{0}A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{2} = \begin{bmatrix} c_{12} & s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & -c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{3} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & -d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{3}A_{4} = \begin{bmatrix} c_{4} & s_{4} & 0 & 0 \\ s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
 a_{4} = \begin{bmatrix}
 c_{124} & s_{124} & 0 & a_{1}c_{1} + a_{2}c_{12} \\
 s_{124} & -c_{124} & 0 & a_{1}s_{1} + a_{2}s_{12} \\
 0 & 0 & -1 & d_{4} - d_{3} \\
 0 & 0 & 0 & 1
\end{vmatrix}$$

— Vérifier le calcul par observation de la configuration $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$.

Réponse

On vérifie bien que la configuration $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ correspond à la matrice calculée :

$${}^{0}A_{4} = \begin{bmatrix} 1 & 0 & 0 & a_{1} + a_{2} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & d_{4} = -20 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Modèle cinématique direct.

On note $\vec{X} = \begin{bmatrix} \vec{V}_{E/\mathcal{R}_0} & \vec{\omega}_{4/0} \end{bmatrix}^T$ la vitesse de l'organe terminal exprimée au point E par rapport à \mathcal{R}_0 et $\dot{q} = \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 & \dot{d}_3 & \dot{\theta}_4 \end{bmatrix}^T$ les vitesses articulaires du mécanisme.

(a) Calculer, sous leur **forme vectorielle la plus simple**, la vitesse angulaire absolue $\overrightarrow{U}_{4/0}$ et la vitesse linéaire absolue $\overrightarrow{V}_{E/\mathcal{R}_0}$ du corps C_4 par rapport au bâti C_0 (1 point).

Réponse

la vitesse angulaire absolue $\overrightarrow{\omega}_{4/0}$ s'écrit :

$$\overrightarrow{\omega}_{4/0} = \overrightarrow{z}_0 \dot{\theta}_1 + \overrightarrow{z}_1 \dot{\theta}_2 + \overrightarrow{z}_3 \dot{\theta}_4.$$

$$\overrightarrow{V}_{E/\mathcal{R}_0} = a_1 \dot{\theta}_1 \overrightarrow{y}_1 - a_2 \left(\dot{\theta}_1 + \dot{\theta}_2 \right) \overrightarrow{y}_2 + \dot{d}_3 \overrightarrow{z}_2$$

Détails de calcul

$$\vec{V}_{E/\mathcal{R}_0} = \frac{d^{\mathcal{R}_0}}{dt} (a_1 \vec{x}_1 + a_2 \vec{x}_2 + d_3 \vec{z}_2 + d_4 \vec{z}_3),$$

$$= a_1 \dot{\theta}_1 \vec{y}_1 - a_2 (\dot{\theta}_1 + \dot{\theta}_2) \vec{y}_2 + \dot{d}_3 \vec{z}_2.$$

(b) Donner l'expression qui relie \overrightarrow{X} aux vitesses articulaires \dot{q} . Expliciter les termes et indiquer la dimension de la matrice jacobienne vectorielle \overrightarrow{J} du robot (1 point).

Réponse

La vitesse opérationnelle s'écrit :
$$\overrightarrow{X} = \begin{bmatrix} a_1 \overrightarrow{y}_1 - a_2 \overrightarrow{y}_2 & -a_2 \overrightarrow{y}_2 & \overrightarrow{z}_2 & \overrightarrow{0} \\ \overrightarrow{z}_0 & \overrightarrow{z}_1 & \overrightarrow{0} & \overrightarrow{z}_3 \end{bmatrix} \dot{q}$$
 et la matrice jacobienne vectorielle \overrightarrow{J} est de dimension 2×4 .

(c) Étudier les singularités du mécanisme (2 points).

Réponse

La jacobienne, projetée dans \mathcal{R}_2 a pour expression :

$${}^{2}J = \begin{bmatrix} a_{1}s_{2} & 0 & 0 & 0 \\ -a_{1}c_{2} - a_{2} & -a_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & -1 \end{bmatrix}$$

Après suppression des deux lignes de zéros, 2J est une matrice carrée dont le déterminant vaut $det(^2J) = a_1a_2s_2$ et s'annule pour $\theta_2 = 0$ $[\pi]$.

3. Étude dynamique

En vue d'étudier la dynamique de ce mécanisme, il est nécessaire de préciser les données de masse et d'inertie des différents corps.

- Le corps C_1 présente une masse m_1 et son centre de gravité G_1 est situé à une distance l_{G_1} de l'axe $(O_0, \overrightarrow{z}_0)$.
- Le corps C_2 présente une masse m_2 et son centre de gravité G_2 est situé à une distance l_{G_2} de l'axe $(O_1, \overrightarrow{z}_1)$.
- Le corps C_3 présente une masse m_3 et son centre de gravité G_3 est confondu avec O_3 .
- La masse du corps C_4 est négligeable et on note I_4 le moment d'inertie de C_4 par rapport à l'axe $(O_4, \overrightarrow{z}_4)$.
- Enfin, les inerties des corps C_1 à C_3 sont négligées dans cette étude.

(a) Calculer le double des énergies cinétiques galiléennes $2T_i$ des corps C_i dans leur mouvement par rapport à \mathcal{R}_0 . Les résultats seront écrits en ordonnant tous les termes des formes quadratiques.

En déduire le double de l'énergie cinétique galiléenne totale 2T du mécanisme puis la matrice d'énergie cinétique H (4 points).

Réponse

$$\begin{split} \boxed{2T_1 = m_1 l_{G_1}^2 \dot{\theta}_1^2} \\ \boxed{2T_2 = m_2 \left[a_1^2 + l_{G_2}^2 + 2a_1 l_{G_2} c_2 \right] \dot{\theta}_1^2 + m_2 l_{G_2}^2 \dot{\theta}_2^2 + 2m_2 \left[l_{G_2}^2 + a_1 l_{G_2} c_2 \right] \dot{\theta}_1 \dot{\theta}_2} \\ \boxed{2T_3 = m_3 \left[a_1^2 + a_2^2 + 2a_1 a_2 c_2 \right] \dot{\theta}_1^2 + m_3 a_2^2 \dot{\theta}_2^2 + m_3 \dot{d}_3^2 + 2m_3 \left[a_2^2 + a_1 a_2 c_2 \right] \dot{\theta}_1 \dot{\theta}_2} \\ \boxed{2T_4 = I_4 (\dot{\theta}_1 + \dot{\theta}_2 + \dot{\theta}_4)^2} \end{split}$$

$$2T = \left[m_1 l_{G_1}^2 + m_2 l_{G_2}^2 + (m_2 + m_3) a_1^2 + m_3 a_2^2 + 2 a_1 c_2 (m_2 l_{G_2} + m_3 a_2) + I_4 \right] \dot{\theta}_1^2 + \left[m_2 l_{G_2}^2 + m_3 a_2^2 + I_4 \right] \dot{\theta}_2^2 + m_3 \dot{d}_3^2 + I_4 \dot{\theta}_4^2 + 2 \left[m_2 l_{G_2}^2 + m_3 a_2^2 + a_1 c_2 (m_2 l_{G_2} + m_3 a_2) + I_4 \right] \dot{\theta}_1 \dot{\theta}_2 + 2 I_4 \dot{\theta}_1 \dot{\theta}_4 + 2 I_4 \dot{\theta}_2 \dot{\theta}_4$$

La matrice d'énergie cinétique galiléenne to tale ${\cal H}$ du mécanisme s'écrit :

$$H = \begin{bmatrix} m_1 l_{G_1}^2 + m_2 l_{G_2}^2 + (m_2 + m_3) a_1^2 + m_3 a_2^2 + & m_2 l_{G_2}^2 + m_3 a_2^2 + & 0 & I_4 \\ 2 a_1 c_2 (m_2 l_{G_2} + m_3 a_2) + I_4 & a_1 c_2 (m_2 l_{G_2} + m_3 a_2) + I_4 & 0 & I_4 \\ m_2 l_{G_2}^2 + m_3 a_2^2 + & m_2 l_{G_2}^2 + m_3 a_2^2 + I_4 & 0 & I_4 \\ a_1 c_2 (m_2 l_{G_2} + m_3 a_2) + I_4 & 0 & I_4 \\ 0 & 0 & 0 & m_3 & 0 \\ I_4 & I_4 & 0 & I_4 \end{bmatrix}$$

(b) L'accélération de la pesanteur est définie par le vecteur : $\vec{g} = -g\vec{z}_0$. Par la méthode de votre choix, calculer les efforts généralisés G_i , dus à la pesanteur, relatifs aux quatre paramètres q_i ($i \in \{1...4\}$) (1 point).

Réponse

À part G_3 , tous les G_i sont nuls car les solides correspondant restent à altitude constante. Le potentiel de pesanteur vaut :

$$V = -m_3 \overrightarrow{g} \cdot \overrightarrow{O_0 G_3} = m_3 g \overrightarrow{z}_0 \cdot \overrightarrow{O_2 O_3} = -m_3 g d_3.$$

On a donc:

$$G_1 = G_2 = G_4 = 0 \qquad G_3 = -m_3 g$$

(c) En désignant par τ_i l'effort moteur appliqué à l'articulation i, donner le modèle dynamique du mécanisme sous la forme matricielle présentée sur la dernière page du support de cours. Exprimer les termes des matrices introduites (2 points).

Réponse

$$\tau_{1} = H_{11}\ddot{\theta}_{1} + H_{12}\ddot{\theta}_{2} + H_{14}\ddot{\theta}_{4} \underbrace{-a_{1}s_{2}(m_{2}l_{G_{2}} + m_{3}a_{2})}_{B_{12}} \dot{\theta}_{2}^{2} + \underbrace{2a_{1}s_{2}(m_{2}l_{G_{2}} + m_{3}a_{2})}_{C_{112}} \dot{\theta}_{1}\dot{\theta}_{2}$$

$$\tau_{2} = H_{21}\ddot{\theta}_{1} + H_{22}\ddot{\theta}_{2} + H_{24}\ddot{\theta}_{4} + \underbrace{a_{1}s_{2}(m_{2}l_{G_{2}} + m_{3}a_{2})}_{B_{21}} \dot{\theta}_{1}^{2}$$

$$\tau_{3} = H_{33}\ddot{d}_{3} \underbrace{-m_{3}g}_{G_{3}}$$

$$\tau_{4} = H_{41}\ddot{\theta}_{1} + H_{42}\ddot{\theta}_{2} + H_{44}\ddot{\theta}_{4}$$