Desenvolvimento de uma Inteligência Artificial que joga Campo Minado

Gabriel Kury Fonseca¹, Luiz G. P. Mendes², Rafael de T. Navarro³

¹Faculdade de Computação e Informática – Universidade Presbiteriana Mackenzie (MACK) São Paulo – SP – Brasil

{10390103,10382703,10389955}@mackenzista.com.br

Resumo. Este artigo têm como objetivo a recriação do popular jogo "Campo Minado" em python, e então desenvolver uma inteligência artificial que aprende a vencer o jogo através da aprendizagem por reforço.

1. Introdução

Os jogos digitais são amplamente utilizados tanto para entretenimento quanto para desenvolvimento de habilidades cognitivas, como resolução de problemas e pensamento crítico. O campo minado, um clássico jogo de lógica, oferece um cenário ideal para testar algoritmos de inteligência artificial (IA). A complexidade do jogo, no qual o jogador precisa identificar as bombas baseando-se apenas em pistas numéricas, é um desafio interessante para IA, especialmente quando aplicada a técnicas de aprendizado por reforço.

Neste artigo, propomos o desenvolvimento de um sistema de campo minado em Python, onde uma IA aprenderá a jogar utilizando o Q-Learning, para aprender por reforço. A partir de sucessivas partidas, a IA será capaz de otimizar suas estratégias para minimizar o risco de encontrar bombas e maximizar o número de casas seguras reveladas.

2. Descrição do Problema

O campo minado é jogado em um tabuleiro de dimensões pré-definidas, onde algumas células escondem bombas e outras contêm números que indicam quantas bombas estão nas casas ao redor. O objetivo do jogador é revelar todas as casas seguras sem clicar em nenhuma bomba. Porém, o jogador só possui informações parciais sobre o tabuleiro, o que adiciona uma camada de incerteza às suas decisões.

O problema central abordado neste projeto é como uma IA pode aprender a jogar campo minado de maneira eficiente. A IA precisará desenvolver uma estratégia que minimize a incerteza e maximize a probabilidade de revelar células seguras. O aprendizado por reforço será utilizado para permitir que o algoritmo aprenda com suas ações, recompensando-o por movimentos corretos e penalizando-o quando uma bomba for ativada.

3. Dataset

Por ser um algoritmo de aprendizagem por reforço, nenhum dataset é usado neste trabalho.

4. Metodologia e Resultados Esperados

A metodologia proposta para este projeto pode ser dividida em três etapas principais: desenvolvimento do jogo, implementação da IA e avaliação dos resultados.

4.1. Desenvolvimento do Jogo

A primeira fase consiste na implementação de uma versão simples do campo minado em Python, utilizando a biblioteca numpy para manipulação da matriz que representa o tabuleiro. A configuração padrão será um tabuleiro de 8x10 células com 10 bombas; inicialmente o jogo será baseado no Campo Minado do Google na dificuldade "Fácil". A lógica para gerar o campo, calcular as dicas numéricas e determinar as regras de vitória e derrota será desenvolvida baseada no já citado Campo Minado do Google. Além disso, serão criadas funções para a interação da IA com o jogo, como revelar uma célula e avaliar o estado do jogo.

4.2. Implementação da IA

A IA será baseada em um algoritmo de aprendizado por reforço, o Q-Learning, que permite ao algoritmo aprender por meio de tentativa e erro. O algoritmo explorará o tabuleiro, recebendo recompensas positivas por revelações corretas e recompensas negativas ao acionar uma bomba. Durante o treinamento, o agente aprenderá a melhorar suas decisões com base em suas experiências passadas. Parâmetros como taxa de aprendizado, fator de desconto e exploração vs. exploração serão ajustados para garantir um aprendizado eficiente.

4.3. Avaliação dos Resultados

Os resultados esperados incluem uma IA capaz de jogar campo minado de maneira otimizada, com uma taxa de sucesso crescente conforme o número de jogos treinados. Serão realizadas simulações para avaliar a eficiência da IA em termos de taxa de vitórias e tempo para concluir o jogo. A performance do algoritmo será analisada com base nas métricas de acertos e penalidades, demonstrando a evolução do aprendizado ao longo do tempo.

5. Referências

(Ao longo do bimestre não lembramos de de anotar/guardar a bibliografia/referências, por isso não temos. Para a segunda entrega (em novembro) providenciaremos ambas.)

6. Bibliografia

(Ao longo do bimestre não lembramos de de anotar/guardar a bibliografia/referências, por isso não temos. Para a segunda entrega (em novembro) providenciaremos ambas.)