						
10)) - Voltage drop: maximum voltage drop from supply to load must not				
		exceed 4%. Bigger cable size re	duces volto	ge drop	but	
		increase cable costing.				
		- Current Carrying Capacity: the cable current c	carrying C	apacity n	nust be	
		higher than breaker rating to prevent damage				
		to cable during fault	<i>.</i>			
	•	-Fault Level: the cable must be able to withstand the thermal constrain				
		S'k' 7 Ift.	X			
	1		1.0			
1	7)	Office: 1-\$230V, 3-\$400V CP5 Table	45 pg 117			
		Connected Load	DF	Current	Demand	
	_	$(24 \times 2 \times 36 \times 1.8) = 13.52A$ (item 1)	90%	12.17A		
		240				
	_	(1x20) = 20A (item 9)	100%	20A		
		(2×20) = 40A	50%	20A	1-0	
					> .	
	-	(1x200)/230 = 0.87A (item 10)	100%	0.87A		
~		$(9 \times 20)/230 = 7.83A$	75%	5.87A		
				58.91A	J	
•	-	Po=N×PF×J3×Vin×Iin				
		5000 = 0.85 x 0.87 x 13 x 400 x In	Α	4	3-19	
		\Rightarrow Iin = 9.76A	100%	9.76A		
	i)	Max. Current Demand = 9.76 + [58.91]/3				
		= 29.4A*				
	1	• / / 0774				
	ii)	With 20% load growth: 29.4× 1.2 = 35.3A				
		:. Breaker size is 40A				

c)	1/C PVC-insulated copper conductor
	1=120m
	metal trunking (method 3)
	group with 2 other similar circuit
	temperature 40°C
	Total connected load = [13.52+20+40+0.87+7.83]/3 + 9.76
	= 37.2A
	=> Ib=37.2A, In=40A
i)	Iz7, In (CixCaxCg)
	Ci = 1 , Ca = 0.87 , Cg = 0.7 SCP5 Table 4C1
	Iz7,65.7A
	=> Itab = 68A , S = 16mmy (CP5 Table 4DIA, Col. 5 pg 217)
. 1	
<i>ii)</i>	Vdrop max = 2% of 400V = 8V
	Va = Ib x Z x103 x L Z = 2.4 from CP5 Table 401B, Col. 6
	= 37.2 × 2.4 × 10 × 120
	= 10.7 V
	Since Vo 7 Varapmax - unable to meet the requirement.
	C 1
	Select the next higher S value which is 25mm
	Check: Z=1.55 from CP5 Table 4DIB, Col.6
	$V_{\delta} = 37.2 \times 1.55 \times 10^{3} \times 120$
	= 6.92 V
	S - 1/1 - 1/2 - S - 2 - (1)
	Since Vd < Voice max : S=25mm is more suitable.

3i)	ZE = (0.05 + 0.05 + 0.1 + 0.15)
	= 0.35.2
	CP5 Table 17A 2022
ii)	Zs = ZE + 1.38 (R, +R2) ×103 × L
	=0.35 + 1.38 (19.51) ×103 × 15
	=0.75452
	-C75 Table 41BZ, (f)
	Zsmax = 1.02 sz
	Since Zs < Zsmar, it complies with shock protection.
	Ter each MCB, they have different critical fault current boundary.
	When faut current is higher than this boundary, trip time will be
	lower. Hence lower impedance than the boundary impedance will
	ensure tripping before 5 sec.
Wi)	If = V/Zs = 305A
, <u>1</u>	
(VI	From Type 2 MCB graph, Pg 194, 32A MCB
	t=0.018s ki Scoc > Ist
	1152 x 1.53 > 3052 x 0.018
	115 × 1.5 7 905 × 0.018
	29756 7 1674 (True)
	Since k'Sopo 7 Ist, it is suitable & meet the thermal
	Constraints.
	When the person is touching the phase b neutral conductor,
	standing on an insulator. The RCD does not sense current different
	between phase & neutral, hence does not trip.