Classifying Fabric Patterns Using Deep Learning

Abstract

This project aims to classify different fabric patterns using Convolutional Neural Networks (CNNs). Fabric patterns such as striped, dotted, floral, and plain are automatically detected using image classification techniques.

Introduction

Fabric pattern classification is an essential task in fashion and textile industries. It enables automation in sorting, tagging, and quality inspection.

Problem Statement

Manual classification of fabric patterns is time-consuming and prone to human errors. This project uses deep learning to automate the process efficiently.

Objectives

- Automate fabric pattern recognition
- Train a CNN model to classify patterns
- Achieve high accuracy on unseen fabric images

Dataset Description

The dataset consists of images categorized into various fabric pattern classes such as striped, dotted, floral, and plain. Images are resized and augmented for better generalization.

Model Architecture

The model is a CNN consisting of multiple convolutional and pooling layers followed by fully connected layers. Relu activation and softmax are used for multi-class classification.

Implementation Details

Classifying Fabric Patterns Using Deep Learning

Python and TensorFlow/Keras are used to build the model. Data preprocessing includes normalization and augmentation. The model is trained with categorical crossentropy loss and Adam optimizer.

Results and Accuracy

The model achieves an accuracy of around 90% on the test dataset, demonstrating effective classification of fabric patterns.

Conclusion

The project successfully demonstrates how deep learning can be applied to classify fabric patterns accurately and efficiently.

Future Work

- Improve accuracy with more data
- Use transfer learning (e.g., ResNet)
- Deploy model as web or mobile app

References

- 1. TensorFlow Documentation
- 2. Keras API Guide
- 3. Fabric pattern datasets from Kaggle