Avaliação de algoritmos de congestionamento TCP

Projeto final

Topologia dos Testes

- Hipervisor Cliente XEN
- Hipervisor Servidor ESXi
- Servidor com 3vcpu
- Serviços HTTPS: Apache2, NGINX
- Serviços QUIC: NGINX
- 1GB e 4 GB de VRAM
- ▶ 15 algoritmos de congestionamento TCP: cubic, bic, Westwood, htcp, hybla, vegas, nv, scalable, lp, veno, yeah, Illinois, dctcp, cdg, bbr

Escalonamento das medições

- Medições realizadas utilizando o ApacheBench
- 2000 requisições com 100 requisições concorrentes
- ▶ 10000 requisições com 500 requisições concorrentes
- ▶ 20000 requisições com 1000 requisições concorrentes

Topologia dos Testes

Realização dos Testes

- Testes realizados utilizando o script benchmark.py
- Cada serviço é iniciado e finalizado usando docker exec
- Algoritmos de congestionamento alterados no servidor utilizando o comando sysctl net.ipv4.tcp_congestion_control=<algoritmo>
- Aplicação ApacheBench é executada com os parâmetros de cada escalonamento, sendo salvo o arquivo de output txt e o csv contendo a serie temporal
- Após finalizado o mesmo é repetido após configuração de VRAM

Processamento de Dados

- Os dados são organizados em seus devidos diretórios "1vram" "4vram"
- O script collect_stats.sh lê todos os arquivos separando as variáveis de decisão: requisições por segundo, tempo por requisição, taxa de transferência e tempo para testes
- O script script *collect_stats.sh* lê todos os arquivos csv e separa suas series temporais
- O script *script.r* é utilizado para o calculo dos parâmetros: Fractal Dimension, Hurst Parameter e Alpha Tail Shape e a criação das DMUs em um aquivo .xlsx
- Dados das medições comparados utilizando análise por envoltória de dados (DEA)

Processamento de Dados: DEA

- A Análise por Envoltória de Dados (DEA) é uma técnica de análise de dados quantitativos utilizada para medir a eficiência de um conjunto de unidades produtivas.
- Compara as entradas e saídas de cada unidade para avaliar sua eficiência relativa em relação às outras.
- Identifica a melhor combinação de entradas e saídas para alcançar a máxima eficiência, ou seja, produzir a maior quantidade de saída possível utilizando a menor quantidade de entrada

Modelos DEA

- O modelo CRS assume que as DMUs operam sob retornos constantes à escala. Isso significa que o aumento proporcional nos insumos resulta em um aumento proporcional nos produtos.
- O modelo VRS considera que as DMUs podem operar sob retornos variáveis à escala. Isso significa que o aumento nos insumos pode não resultar em um aumento proporcional nos produtos.
- Os modelos de super eficiência permitem que as DMUs eficientes (com eficiência igual a 1 no modelo CRS ou VRS) sejam comparadas entre si. Isso é útil para identificar quais unidades são mais eficientes dentro do grupo de unidades já consideradas eficientes.

Processamento de Dados: DEA

- Variáveis de entrada:
- Dimensão Fractal
- Tempo para testes
- Tempo por requisição
- Variáveis de saída:
- Taxa de transferência
- Requisições por segundo
- Parâmetro de Hurst
- Alpha Tail Shape

Processamento de Dados: DEA

- O script script_DEA.r é utilizado para a geração de dados de eficiências das DMUs geradas anteriormente
- São gerados dados de eficiência para cada escalonamento e para todos os escalonamentos unidos
- Utilizado modelo de super eficiência CRS para ranqueamento das DMUs

Escalonamento 1: 2000 requisições 100 concorrentes

Melhores

DMUs	Fractal.Dime	Time.Taken.	Time.Per.Re	Transfer.Rate	Requests.Pe	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU84	1.14	9.67	4.83	10567.16	206.86	0.68	1.14	104.66%
DMU14	1.14	9.45	4.73	10812.72	211.58	0.74	0.56	103.64%
DMU2	1.00	16.57	8.29	6167.87	120.69	0.75	0.51	103.33%
DMU26	1.08	9.68	4.84	10560.10	206.72	0.70	1.04	102.90%
DMU49	1.13	9.43	4.72	10837.96	212.07	0.69	1.01	102.49%

DMUs 🚉	VRAM 🔻	Server 🔻	Algorithm 🔻
DMU2	1vram	apache2	bic
DMU14	1vram	apache2	westwood
DMU26	1vram	nginx	scalable
DMU49	4vram	apache2	cubic
DMU84	4vram	quic	lp ,

Escalonamento 1: 2000 requisições 100 concorrentes

Piores

DMUs	Fractal.Dime	Time.Taken.	Time.Per.Re	Transfer.Rate	Requests.Pe	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU13	1.00	41.64	20.82	2454.63	48.03	0.70	0.43	93.19%
DMU8	1.00	46.66	23.33	2190.46	42.86	0.70	0.47	93.89%
DMU11	1.00	41.54	20.77	2460.68	48.15	0.70	0.38	94.04%
DMU34	1.00	24.96	12.48	4093.67	80.14	0.70	0.50	94.17%
DMU6	1.00	52.04	26.02	1964.07	38.43	0.71	0.39	94.74%

DMU 📭	VRAM ▼	Server 🔻	Algorithm 🔻
DMU6	1vram	apache2	htcp
DMU8	1vram	apache2	illinois
DMU11	1vram	apache2	scalable
DMU13	1vram	apache2	veno
DMU34	1vram	quic	cubic

Escalonamento 1: Fronteira de Eficiência

Análise Exploratória dos Dados: Mais Recomendada

Análise Exploratória dos Dados: Menos Recomendada

Escalonamento 2: 10000 requisições 500 concorrentes

Melhores

DMU	Fractal.Dime	Time.Taken.1	Time.Per.Rec	Transfer.Rate	Requests.Per	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU47	1.09	46.95	4.70	10883.85	212.97	0.83	0.39	101.49%
DMU50	1.07	46.90	4.69	10896.28	213.22	0.81	0.42	101.41%
DMU38	1.09	48.41	4.84	10552.72	206.58	0.74	1.20	101.30%
DMU28	1.00	48.55	4.86	10521.77	205.97	0.72	0.46	101.04%
DMU85	1.04	47.93	4.79	10657.25	208.63	0.73	0.71	100.93%

DMU	■ VRAM	Server	_ Algorithm _
DMU28	1vram	nginx	veno
DMU38	1vram	quic	illinois
DMU47	4vram	apache2	bic
DMU50	4vram	apache2	dctcp
DMU85	4vram	quic	nv

Escalonamento 2: 10000 requisições 500 concorrentes

Piores

DMU	Fractal.Dime	Time.Taken.	Time.Per.Rec	Transfer.Rate	Requests.Per	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU2	1.07	130.03	13.00	3930.23	76.91	0.64	0.26	77.95%
DMU14	1.00	134.28	13.43	3760.21	74.47	0.66	0.31	86.17%
DMU9	1.00	136.30	13.63	3708.89	73.37	0.67	0.31	87.86%
DMU5	1.00	140.42	14.04	3596.20	71.22	0.67	0.31	87.98%
DMU1	1.00	142.55	14.26	3542.01	70.15	0.67	0.30	88.50%

DMU	VRAM	Server	Algorithm
DMU1	1vram	apache2	bbr
DMU2	1vram	apache2	bic
DMU5	1vram	apache2	dctcp
DMU9	1vram	apache2	lp
DMU14	1vram	apache2	westwood

Escalonamento 2: Fronteira de Eficiência

Análise Exploratória dos Dados: Mais Recomendada

Análise Exploratória dos Dados: Menos Recomendada

Escalonamento 3: 20000 requisições 1000 concorrentes

Melhores

DMU	Fractal.Dime	Time.Taken	Time.Per.Reg	Transfer.Rat	Requests.Per	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU76	1.02	101.20	5.06	10095.20	197.63	0.80	1.39	118.75%
DMU33	1.04	97.62	4.88	10465.84	204.88	0.80	1.15	101.66%
DMU22	1.01	98.29	4.92	10394.14	203.48	0.80	0.48	101.64%
DMU46	1.09	93.75	4.69	10902.51	213.34	0.77	0.37	101.07%
DMU34	1.04	97.17	4.86	10513.18	205.82	0.80	0.71	100.81%

DMU	VRAM	Server	Algorithm
DMU22	1vram	nginx	hybla
DMU33	1vram	quic	cdg
DMU34	1vram	quic	cubic
DMU46	4vram	apache2	bbr
DMU76	4vram	quic	bbr

Escalonamento 3: 20000 requisições 1000 concorrentes

Piores

DMU	Fractal.Dime	Time.Taken.1	Time.Per.Rec	Transfer.Rate	Requests.Per	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU2	1.00	255.42	12.77	3852.92	78.30	0.69	0.26	87.88%
DMU6	1.00	254.98	12.75	3866.64	78.44	0.70	0.25	88.91%
DMU12	1.00	255.88	12.79	3851.23	78.16	0.70	0.25	89.49%
DMU3	1.00	257.35	12.87	3823.49	77.72	0.71	0.26	90.36%
DMU4	1.00	274.34	13.72	3554.87	72.90	0.71	0.25	90.37%

DMU	VRAM	Server	Algorithm .
DMU2	1vram	apache2	bic
DMU3	1vram	apache2	cdg
DMU4	1vram	apache2	cubic
DMU6	1vram	apache2	htcp
DMU12	1vram	apache2	vegas

Escalonamento 3: Fronteira de Eficiência

Análise Exploratória dos Dados: Mais Recomendada

Análise Exploratória dos Dados: Menos Recomendada

Todos Escalamentos

Melhores

DMU	Fractal.Dime	Time.Taken	Time.Per.Rឡ	Transfer.Ra	Requests.Pe	Hurst.Param	Alfa.Tail.Sha	SCCR_I
DMU76.20000r1000c	1.02	101.20	5.06	10095.20	197.63	0.80	1.39	117.38%
DMU84.2000r100c	1.14	9.67	4.83	10567.16	206.86	0.68	1.14	104.66%
DMU14.2000r100c	1.14	9.45	4.73	10812.72	211.58	0.74	0.56	103.64%
DMU2.2000r100c	1.00	16.57	8.29	6167.87	120.69	0.75	0.51	103.33%
DMU26.2000r100c	1.08	9.68	4.84	10560.10	206.72	0.70	1.04	102.90%

DMU	VRAM	Server	Algorithm .
DMU2	1vram	apache2	bic
DMU14	1vram	apache2	westwood
DMU26	1vram	nginx	scalable
DMU76	4vram	quic	bbr
DMU84	4vram	quic	lp _

Todos Escalamentos

Piores

DMU	Fractal.Dime	Time.Taken	Time.Per.Re	Transfer.Ra	Requests.Pe	Hurst.Paran	Alfa.Tail.Sha	SCCR_I
DMU2.10000r500c	1.07	130.03	13.00	3930.23	76.91	0.64	0.26	75.63%
DMU14.10000r500c	1.00	134.28	13.43	3760.21	74.47	0.66	0.31	83.60%
DMU9.10000r500c	1.00	136.30	13.63	3708.89	73.37	0.67	0.31	85.24%
DMU5.10000r500c	1.00	140.42	14.04	3596.20	71.22	0.67	0.31	85.36%
DMU1.10000r500c	1.00	142.55	14.26	3542.01	70.15	0.67	0.30	85.86%

DMU	■ VRAM	■ Server	_ Algorithm _
DMU1	1vram	apache2	bbr
DMU2	1vram	apache2	bic
DMU5	1vram	apache2	dctcp
DMU9	1vram	apache2	lp
DMU14	1vram	apache2	westwood

Todos Escalamentos: Fronteira de Eficiência

Referências Bibliográficas

- CHARNES, A.; COOPER, W. W.; RHODES, E. Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, v. 2, n. 6, 1978.
- ▶ BANKER, R. D.; CHARNES, A.; COOPER, W. W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, v. 30, n. 9, 1984.
- ► INSTITUTO INFNET. O que é e como fazer uma análise por envoltória de dados (DEA)? [s.d.]. Disponível em: https://blog.infnet.com.br/data-analysis/o-que-e-e-como-fazer-uma-analise-por-envoltoria-de-dados-dea/. Acesso em: 08 mar. 2025.