Convex Optimization I

Using material from Stephen Boyd

Why do we need optimization in robotics?

- Gives us a way to frame robotics problems mathematically
- VERY widely used
- Example: Inverse Optimal Control:

Learning Objective Functions for Manipulation [Kalakrishnan et al., ICRA 2013]

Why do we need optimization in robotics?

Example: Simultaneous Localization and Mapping (SLAM)

Keyframe-Based Visual-Inertial SLAM Using Nonlinear Optimization [Leutenegger et al., RSS 2013]

Convex Optimization

- Convex optimization is a mature field with deep mathematical foundations
- It is so powerful that it's often worth it to
 - Work hard to reformulate your problem as convex
 - Approximate non-convex objective functions as convex
 - Use solution to approximation to start search for solution to the real problem
- It scales well with dimensionality
 - Convex optimization routinely solves problems with 1000s of variables
- Convex optimizers are fast (usually)

Outline

- Calculus Review
- Convex Sets
- Convex Functions
- Unconstrained Optimization

Set Notation

$$X = \{x \mid a^Tx \leq b, x \in C, a \in \mathbb{R}^n\}$$

X is 'the set 'of xs' such that $a^Tx \leq b$ is true for x in the set C' where a is a vector in a Euclidian space of dimension n

Review: Functions

Functions are defined as:

$$f:A\to B$$

- "f maps elements in the set A to elements in the set B"
- The set A is the domain of f
- The set B is the range of f
- Example:

$$f: \mathbf{R}^n \to \mathbf{R}^m$$

"Function f maps n-dimensional vectors to some m-dimensional vectors"

Review: Derivatives

- Derivatives can get complicated!
- Keep this in mind: A derivative is a linear approximation of how a function changes a certain point

The derivative of f(x) is the ratio between an infinitesimal change in an input variable x and the resulting change in the output f(x)

Review: Derivatives

• Recall the definition for a derivative $f: \mathbf{R} \to \mathbf{R}$

$$Df(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• We can write a similar definition for $f: \mathbb{R}^n \to \mathbb{R}^m$

Review: Derivatives

- Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$
- The function f is differentiable at x if there exists a matrix

$$Df(x) \in \mathbf{R}^{m \times n}$$
 that satisfies

This is a matrix

$$\lim_{z \in \text{dom } f, \ z \neq x, \ z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|_2}{\|z - x\|_2} = 0$$

- Df(x) is called the derivative (or Jacobian) of the function
- Df(x) can be computed by computing partial derivatives

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \qquad i = 1, \dots, m, \quad j = 1, \dots, n$$

Review: Gradient

• When f is real-valued $(i.e., f : \mathbb{R}^n \to \mathbb{R})$ the derivative Df(x) is a row vector (a 1 x n matrix)

Range must be 1-dimensional!

The transpose of the derivative is the gradient:

$$\nabla f(x) = Df(x)^T$$

Again, you can compute the gradient by taking partial derivatives:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, \dots, n.$$

Review: Second Derivative

• When f is real-valued $(i.e., f : \mathbb{R}^n \to \mathbb{R})$ the **second** derivative is called the Hessian Matrix: $\nabla^2 f(x)$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \qquad i = 1, \dots, n, \quad j = 1, \dots, n,$$

 Recall that the second derivative is the derivative of the first derivative:

$$D\nabla f(x) = \nabla^2 f(x)$$

Questions

- Suppose we have a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$
 - 1. What are the dimensions of the gradient vector $\nabla f(x)$?
 - 2. What are the dimensions of the Hessian matrix $\nabla^2 f(x)$?

Convex Sets

Convex sets and functions

- Convexity is a restriction on shapes and functions
 - Convex optimization only works when everything is convex!

 We will cover definitions of convexity for shapes and functions

 You can use these to build convex sets/functions for the problems you care about

A convex set

A convex function

Convex Sets

• Convex set: contains line segment between any two points in the set. *C* is a *convex set* if:

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

Important Types of Convex Sets: Hyperplane

 Hyperplane: A set of points that have a constant inner product with vector a

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

same as $a \cdot x$

Another way to define it:

$$\{x \mid a^T(x - x_0) = 0\}$$

Important Types of Convex Sets: Halfspace

Halfspace: A hyperplane with an inequality

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

Another way to define it :

$${x \mid a^T(x - x_0) \le 0}$$

Important Types of Convex Sets: Polyhedron

 Polyhedron: The intersection of a finite number of halfspaces and hyperplanes

 Another way to define it: The set of solutions to a set of linear inequalities and equalities:

$$Ax \leq b$$

$$Cx = d$$

Important Convexity-Preserving Operations on Sets

- Intersection preserves convexity
 - If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex
- It follows that the intersection of any number of convex sets is convex
- Affine functions preserve convexity

$$f: \mathbf{R}^n \to \mathbf{R}^m \qquad f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, \ b \in \mathbf{R}^m$$

- Examples of affine functions
 - Scaling
 - Translation
 - Projection

How do we know a polyhedron is always convex?

Convex Functions

Convex Functions

The domain of the function

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

• I.e. the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f

Advantage of convex functions

- Convex functions have only one local minimum!
 - That means local methods can find the global optimum!

Concave Functions

Concave functions are convex functions that are "upside down"

- If f(x) is convex, -f(x) is concave.
- Some f(x) are **both** concave and convex
 - Example?

Summary

 Convex sets are sets where a line segment between any two points is part of the set

 Convex functions are functions where the line segment between any two points is above the graph of the function

Break

Unconstrained Optimization

Unconstrained Minimization Problem

$$\min_{x} \operatorname{minimize} f(x)$$

- Assumptions
 - f is convex
 - No constraints on x

- Some are general, some exploit a specific structure of f
- Usually decide what to use based on
 - Differentiability of f
 - How you compute $\nabla f(x)$
- We will cover several important methods common in robotics

Review: Minimizing a simple function

- For a simple function, e.g. $f(x) = x^2 4x$, we can use calculus to find the minimum
- For an optimal point x^* , $\nabla f(x^*) = 0$
- So,
 - 1. Take the derivative of f(x)
 - 2. Set it equal to 0
 - 3. Solve for x

1.
$$\nabla f(x) = 2x - 4$$

$$2x - 4 = 0$$

 $3. \quad x = 2$ is the minimum

What about a more complicated function?

•
$$f(x) = e^{0.5x+0.9} + e^{-0.5x^2-0.4} + 4x$$

1.
$$\nabla f(x) = 0.5e^{0.5x+0.9} - xe^{-0.5x^2-0.4} + 4$$

2.
$$0.5e^{0.5x+0.9} - xe^{-0.5x^2-0.4} + 4 = 0$$

3.
$$x = ???$$

Problem: No way to solve arbitrary equations using algebra!

$\min_{x} \operatorname{minimize} f(x)$

- assume f is convex
- assume x is unconstrained

Descent Methods

Unconstrained Minimization Methods

- Let p* be the optimal value of f(x)
- Let x* be a value of x that produces p*
 - $p^* = f(x^*)$
- These methods produce a sequence of points:

$$x^{(k)} \in \mathbf{dom} \, f, \, k = 0, 1, \dots$$

$$f(x^{(k)}) \to p^{\star}$$

 Can interpret as iteratively finding an x* that solves optimality condition:

$$\nabla f(x^{\star}) = 0$$

Descent methods

- We will cover two types of descent methods:
 - Gradient descent
 - Newton's method
 - Advantage: affine invariant
- Descent methods generate points with this property:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

Other notation:

$$x := x + t\Delta x$$

- Δx is the step, or search direction
- *t* is the step size, or step length

General descent algorithm

given a starting point $x \in \text{dom } f$.

repeat

Many ways

1. Determine a descent direction Δx .

to do these

2. Line search. Choose a step size t > 0.

3. Update. $x := x + t\Delta x$.

untilestopping criterion is satisfied.

Gradient Descent

- Most common optimization algorithm
- Easy to implement, but may be slow to converge
- Descent direction:

$$\Delta x = -\nabla f(x)$$

Termination condition:

$$\|\nabla f(x)\|_2 \le \epsilon$$
 e.g. $\epsilon = 0.00$

Gradient Descent: Step size

• Ideally, we would use *exact line search* to determine step size *t*:

$$t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$$

 But this is slow to compute in general, so often use backtracking line search:

```
 \begin{aligned} & \textbf{given a descent direction } \Delta x \text{ for } f \text{ at } x \in \textbf{dom } f, \ \alpha \in (0,0.5), \ \beta \in (0,1). \\ & t := 1. \\ & \textbf{while } f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x, \quad t := \beta t. \end{aligned}
```

I.e. decrease magnitude of step until you meet the stopping condition

Gradient Descent Example

• Find the minimum of this function:

$$f(x_1, x_2) = 0.5(x_1^2 + 10x_2^2)$$

• Starting at $x^{(0)} = (10,1)$, using exact line search

Gradient Descent Example

• Find the minimum of this function:

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

exact line search

Problems with Gradient Descent

- Sensitive to the condition number of the Hessian
 - High condition number means very slow convergence
- Sensitive to the coordinates you use (not affine invariant)
 - Apply a linear transform to x and you may get different results!
- Newton's method overcomes these problems by using the Hessian of the function
 - For a price (the Hessian can be expensive to compute)

Newton's method: Descent direction

Determine a descent direction:

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

- Why?
 - Let's approximate f(x) with a quadratic function (remember Taylor series):

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves the linearized optimality condition:

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

Newton's method: Stopping criterion

• The Newton decrement $\lambda(x)$ leads to the stopping criterion:

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

- λ(x) is an estimate of the distance between f(x) and p*
- $\lambda(x)^2$ is the directional derivative in the direction of the Newton step:

$$\nabla f(x)^T \Delta x_{\rm nt} = -\lambda(x)^2$$

- If the directional derivative is very close to 0, f(x) is not changing much in this direction
 - I.e. you're very close to the optimum
 - So, when $\frac{\lambda(x)^2}{2}$ is below some small tolerance ϵ , stop

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$.

repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

Newton's method example

Find the optimum of this function:

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Backtracking line search parameters:

$$\alpha = 0.1, \ \beta = 0.7$$

$\min_{x} \min f(x)$

- assume f is convex
- assume x is unconstrained

Numerical Differentiation

What about functions that you don't know analytically?

- So far f(x) is always represented analytically
- What if f(x) is this:

x is actuator forces/torques

f(x) outputs distance of tip to goal

"Optimization-based inverse model of Soft Robots with Contact Handling" Eulalie Coevoet, Adrien Escande, Christian Duriez

Numerical Differentiation

- Need a way to differentiate when the function is not represented analytically
- Assume we can evaluate the function at any x
 - E.g. by running some code like a simulation
- Recall standard derivative definition for f: R → R

$$Df(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Key idea: Evaluate function at two points per dimension and estimate the <u>derivative</u>

Numerical differentiation for univariate functions

- 1. Pick a small scalar h
- Use a Finite Difference method. Two common ones:
 - a) Newton's Difference Quotient

$$Df(x) \approx \frac{f(x+h) - f(x)}{h}$$

b) Symmetric Difference Quotient

$$Df(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

 There are other numerical methods which can give better estimates but use more function evaluations

Numerical differentiation for multidimensional functions

- For $f: \mathbb{R}^n \to \mathbb{R}^m$ we do the same thing to compute the Jacobian
- Recall:

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \qquad i = 1, \dots, m, \quad j = 1, \dots, n$$
 index j

• Let $\delta(j,h) = [0,...,h,...0]^T$

$$Df(x)_{ij} \approx \frac{f(x+\delta(j,h))_i - f(x)_i}{h}$$

- Similar process for Symmetric Difference Quotient
- Thus we can use numerical differentiation to compute the gradient for gradient descent

Limitations

- Choosing h well is difficult in general (it is function-dependent)
 - Many use a fixed h for simplicity
- Numerical methods can be very sensitive to the choice of h

 There can be errors due to machine precision and floating point arithmetic

$\min_{x} \operatorname{minimize} f(x)$

- assume f is convex
- assume x is unconstrained

Homework

- Reading from Optimization Book
 - Ch. 4.1-4.1.2, 4.3-4.3.1 (skip examples), 4.4-4.4.1 (only read first example in 4.4.1)
- Homework 4 due tonight
- Homework 5 posted tonight