Cycle Representation

Let \$n\$ be a fixed integer.

A **permutation** is a bijection from the set $\{1,2,\ldots,n\}$ to itself.

A **cycle of length** \$k\$ (\$k\ge 2\$) is a permutation \$f\$ where different integers exist $$i_1,\ldots,k$ \$ such that $$f(i_1)=i_2$, $$f(i_2)=i_3$, $$l(i_k)=i_1$$ and, for all \$x\$ not in $$\{i_1,\ldots,k\}$$, \$f(x)=x\$.

The **composition of \$m\$ permutations** $f_1,\ldots f_m$, written $f_1 \subset f_2 \subset f_m$, is their composition as functions.

Steve has some cycles f_1,f_2,\ldots,f_m . He knows the length of cycle f_i is f_i , but he does not know exactly what the cycles are. He finds that the composition $f_1 \circ f_2 \circ f_n$ of the cycles is a cycle of length f_n .

He wants to know how many possibilities of \$f_1,\ldots,f_m\$ exist.

Input Format

The first line contains \$T\$, the number of test cases.

Each test case contains the following information:

The first line of each test case contains two space separated integers, \$n\$ and \$m\$.

The second line of each test case contains \$m\$ integers, \$l_1,\ldots,l_m\$.

Constraints

\$n \geqslant 2\$ Sum of \$n\leqslant 1000\$ \$2\leqslant I_i \leqslant n\$ Sum of \$m\le 10^6\$

Output Format

Output \$T\$ lines. Each line contains a single integer, the answer to the corresponding test case.

Since the answers may be very large, output them modulo (10^9+7) .

Sample Input

1 3 2 2 2

Sample Output

6

Explanation

There are three cycles of length \$2\$. The composition of two cycles of length \$2\$ is a cycle of length \$3\$ if, and only if, the two cycles are different. So, there are \$3\cdot2=6\$ possibilities.