Comp790-166: Computational Biology

Lecture 18

April 6, 2021

Announcements

- Homework 2 to be assigned tonight.
- Comments on projects? How are they going?
- Office hours today: please send me an email if you plan to visit office hours

Today

- Another alignment problem, for single-cell multimodal alignment
- GNN vs Corrections on Simpler Approaches

Multimodal Single-Cell Profiling

- In an ideal world, one would just measure cells via a proteomic technology with flow or mass cytometry (just kidding...)
- In reality, you may want to measure multiple levels of biology with different technologies.
- You likely cannot apply these technologies to the exact set of cells.
- It would be great to be able to map cells to each other according to measurements from different modalities.

Setup and Assumptions

- Let $X = \{x_1, x_2, \dots x_M\}$ and $Y = \{y_1, y_2, \dots y_N\}$ be two datasets measuring points from the some phenomenon (e.g. cells)
- Assume that $X, Y \subset \mathbb{R}^n$.
- In data matrix format, $X \in \mathbb{R}^{M \times n}$ and $Y \in \mathbb{R}^{N \times n}$

Illustration

Figure: from

http://proceedings.mlr.press/v80/amodio18a/amodio18a.pdf

Processing on One View

Start with $X \in \mathbb{R}^{M \times n}$ as an example.

- For a pair of rows, x_i, x_j , compute some notion of similarity between them.
- Create a row-stochastic probability matrix, **P** dividing each similarity bu the sum of similarities.
- Find eigenvalues of **P**, such that $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_M$ and corresponding eigenvectors, $\{\phi_j\}_{j=1}^M$
- Use eigenvectors and eigenvalues to define diffusion coordinates $(\Phi_t = {\Phi_t(x_i) : x_i \in X}).$

Diffusion Coordinates for one View

Recall that we can map each x_i to diffusion coordinates in terms of eigenpairs as,

$$\Phi_{t}\left(x_{i}\right) = \left[\lambda_{1}^{t}\phi_{1}\left(x_{i}\right), \ldots, \lambda_{N}^{t}\phi_{N}\left(x_{i}\right)\right]^{T}$$

Note that as always t denotes how much we power, P

Graph Fourier Transform

Use **P** to compute the normalized graph Laplacian as,

$$L = I - D^{1/2}PD^{-1/2}$$

- As we know, we can learn a lot from the eigenvectors of the graph Laplacian, and corresponding eigenvalues, (for some j, with the eigenvector/eigenvalue pair) $\{\Psi_i, \omega_i\}$
- GFT of a signal at the j-th frequency can then be computed as $\widehat{f}[j] = \langle f, \psi_j \rangle$
- Recall that the eigenvectors corresponding to lower eigenvalues (ω_j) correspond to lower frequencies.

Harmonic Alignment Overview

- Construct two diffusion maps, one for X and another for Y.
- These are represented by eigenpairs as $\left(\lambda_i^{(X)}, \phi_i^{(X)}\right), i = 1, \dots, M$ and $\left(\lambda_j^{(Y)}, \phi_j^{(Y)}\right), j = 1, \dots, N$ The objective is to align X and Y in terms of diffusion coordinates.
- However, each diffusion component represents some notion of frequency and hence diffusion coordinates between X and Y should only be aligned if their frequencies are similar.

Bandlimited Correlation

The diffusion harmonics will be binned into local frequency bands with the following window function,

$$w_{\xi}(\lambda) = \begin{cases} \sin\left(\frac{\pi}{2}\cos^2\left(\frac{\pi}{2}(\ell\lambda - \xi)\right)\right) & \frac{\xi - 1}{\ell} \le \lambda \le \frac{\xi + 1}{\ell} \\ 0 & \text{otherwise} \end{cases}$$

Here, ℓ and ξ are some fixed parameters.

Define Bandlimiting Weights

For $i=1,\ldots,M$ and $j=1,\ldots N$, define bandlimiting weights between the diffusion harmonics of X and Y as,

$$w_{ij}^{(X,Y)} = \sum_{\xi=1}^{\ell} w_{\xi} \left(\lambda_{i}^{(X)}\right) w_{\xi} \left(\lambda_{j}^{(Y)}\right)$$

These weights can then be used to construct an $M \times N$ bandlimited correlation matrix, C as,

$$[C]_{ij} = w_{ij}^{(X,Y)} \operatorname{corr}\left(\phi_i^{(X)}, \phi_j^{(Y)}\right)$$

Unpacking

$$[C]_{ij} = w_{ij}^{(X,Y)} \operatorname{corr}\left(\phi_i^{(X)}, \phi_j^{(Y)}\right)$$

 Here is ensuring correlations between diffusion harmonics that correspond to similar frequencies.

GFT to Express Harmonics in Terms of Features

We assume that X and Y each have n measured features, f_s , and g_s , respectively.

$$\hat{\mathbf{x}}_i = \left(\hat{f}_1[i], \dots, \hat{f}_n[i]\right)^T$$

and

$$\hat{\mathbf{y}}_j = (\hat{g}_1[j], \dots, \hat{g}_n[j])^T$$

* Reminder GFT for frequency j over some signal, f is $f[\hat{i}] = \langle f, \phi_j \rangle$

Writing Correlation as Inner Product

Given the GFTs for X and Y define,

$$\operatorname{corr}\left(\boldsymbol{\phi}_{i}^{(X)},\boldsymbol{\phi}_{j}^{(Y)}\right) = \langle \hat{\mathbf{x}}_{i},\hat{\mathbf{y}}_{j} \rangle$$

With this definition, the entire correlation matrix can therefore be defined as,

$$[C]_{ij} = w_{ij}^{(X,Y)} \langle \hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{y}}_{\mathbf{j}} \rangle$$

Rigid Alignment Based on C

Given C, the harmonic alignment can be can be computed as follows. First, define SVD of C as,

$$C = U\Sigma V^T$$

Its nearest orthogonal transformation is further given by

$$T = UV^T$$

Writing a Unified Diffusion Map

A unified diffusion map can ultimately be written as,

$$\Phi_t^{(X,Y)} = \begin{bmatrix} \Phi_0^{(X)} & \Phi_0^{(X)} \mathbf{T} \\ \Phi_0^{(Y)} \mathbf{T}^T & \Phi_0^{(Y)} \end{bmatrix} \begin{bmatrix} \Lambda^{(X)} & 0 \\ 0 & \Lambda^{(X)} \end{bmatrix}^t$$

- $\Lambda^{(X)}$ is the diagonal matrix of the diffusion eigenvalues, $\{\lambda_i^{(X)}\}_{i=1}^N$
- You can use $\Phi_t^{(X,Y)}$ to build a new graph in terms of the new defined coordinates

Pseudocode is Helpful

```
Algorithm A.3 function Align(G^{(X)}, G^{(Y)}, t, \ell) = \Phi_{\epsilon}^{(X,Y)}
Compute and apply an alignment matrix to two diffusion maps.
                      Laplacian eigensystems and degrees G^{(X)}, G^{(Y)}: G^{(Z)} = {\Psi^{(Z)}, \Lambda^{(Z)}, D^{(Z)}}
                      Alignment diffusion
                      Alignment band count
                                                                                     \Phi_*(X,Y)
 Output: Aligned diffusion map
  1: for Z=X,Y do
 2: \Psi^{(Z)} \leftarrow \Psi^{(Z)} \setminus \psi_1^{(Z)} : \Lambda^{(Z)} \leftarrow \Lambda^{(Z)} \setminus \lambda_1^{(Z)}
       \Phi^{0(Z)} \leftarrow D^{(Z)^{1/2}}\Psi^{(Z)}
                                                                                                                                               \triangleright \begin{array}{l} Graph \ Fourier \\ transform \end{array}
           \hat{Z} \leftarrow \Psi^{(Z)}^T Z
 5: end for

 w<sup>(X,Y)</sup> ← BandlimitingWeights (Λ<sup>(X)</sup>, Λ<sup>(Y)</sup>, ℓ)

▷ Ala. A. 

 7: for i = 2, N_1 do
           for j = 2, N_2 do
                                                                                                                                               Bandlimited
                 C(i-1,j-1) \leftarrow w_{ij}^{(X,Y)} \left\langle \hat{X}(i-1,:), \hat{Y}(j-1,:) \right\rangle
                                                                                                                                                  correlations
            end for
11: end for
12: U, S, V \leftarrow SVD(C)
                                                                                                                                               > Orthogonalization
Sec. 4.2
13: T \leftarrow UV^T
\mathbf{14:}\ \Phi_{t}^{(X,Y)} \leftarrow \begin{bmatrix} \Phi^{0(X)} & \Phi^{0(X)} \mathbf{T} \\ \Phi^{0(Y)} \mathbf{T}^{T} & \Phi^{0(Y)} \end{bmatrix} \begin{bmatrix} \Lambda^{(X)} & \mathbf{0} \\ \mathbf{0} & \Lambda^{(Y)} \end{bmatrix}^{t}
15: return Φ<sub>t</sub>(X,Y)
```

Recap

Figure: from Stanley et al. SIAM Data Mining. 2020.

^{*}Note this is a different Stanley...

Application 1: Batch Effect Correction

- CyTOF datasets of PBMCs from patients with dengue.
- In early immune response, there should be changes in IFN γ and TFN α .
- There should be co-upregulation of these two cytokines.

Figure: from Fig. 3. Denoising doesn't remove IFN and TNF relationship.

Multimodal Data Fusion

A common set of cells were profiled with a gene expression assay and chromatin profiling assay. In the experiment, cells were scrambled and the objective was the quantify overlp in neighborhoods in cell graphs.

Figure: from Fig. 3

Conclusion for Harmonic Alignment

- The authors found a set of join diffusion coordinates based on those computed in the individual datasets.
- All of this was done under the assumption that for a pair of coordinates between X and Y to map between datasets, they should have a similar frequency interpretation.
- It can successfully be applied for tasks such as batch effect correction and finding a correspondence between cells profiled with multiple assays.
- Geometric framework via diffusion maps + filtering through GSP

GNN vs Simple Things

- You all love GNNs
- Recently there has been some work to study why GNNs are outperforming simpler methods and how to incorporate this intuition back to simpler methods

Figure: from https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_ Book-Chapter_5-GNNs.pdf. Messages are aggregated from the neighborhood of some target node.

Correct and Smooth Approach

- The goal is to compare how a couple of simple methods/intuition can be strung together can be used to classify nodes
- The main idea is to start with a cheap base prediction based on node features (e.g. attributes or coordinates of a spectral embedding), and clean up graph structure through label propagation (correct and smooth).

What is Label Propagation?

Some of your nodes are labeled, others are unlabeled, and you predict labels of unlabeled nodes based on the structure of the graph.

Overview of Correct and Smooth Approach

Figure: from Huang et al. ICLR. 2021

Notation Preliminaries

- Let there be n nodes.
- Assume we have a feature vector for each node, such that node features are encodes in an $n \times p$ matrix, X.
- Similarly, let A be the adjacency matrix of the graph
- Split nodes into labeled (L) and unlabeled (U) sets
- Define an n × c matrix, Y with a binary indicator for whether node i
 is in class c.

Simple Base Predictor

Given the matrix of features for each node, X and labels, Y, train a simple model to minimize,

$$\sum_{i\in L_{t}}\ell\left(f\left(x_{i}\right) ,y_{i}\right)$$

- Here L_t denotes the set of labeled training nodes
- Specify a matrix, Z containing these base predictions.

Error Correlation

• The intuition is that errors are expected to be correlated across edges in the graph. Hence, spread uncertainty across the edges.

Define and error matrix, $E \in \mathbb{R}^{n \times c}$ as,

$$E_{L_{t,i}} = Y_{L_{t,i}} - Z_{L_{t,i}}, \quad E_{L_{v,i}} = 0, \quad E_{U,i} = 0$$

This means that the only non-zero entries are those that correspond to labeled training nodes!

Smooth the Error Using a Label Spreading Technique

The errors are smoothed as follow with a label spreading technique,

$$\hat{E} = \underset{W \in \mathbb{R}^n \times c}{\operatorname{arg \, min \, trace}} \left(W^T (I - S) W \right) + \mu \|W - E\|_F^2$$

- S is the normalized adjacency matrix, $D^{-1/2}AD^{-1/2}$
- The first term encourages smoothness of the error over the graph
- The second term keeps W close to the initial estimate of error, E.

Solution

Given

$$\hat{\mathcal{E}} = \operatorname*{arg\,min}_{W \in \mathbb{R}^n \times c} \operatorname{trace} \left(W^{\mathcal{T}} (I - S) W \right) + \mu \|W - E\|_F^2$$

it was previously shown that the solution can be obtained through the following iteration,

$$E^{(t+1)} = (1 - \alpha)E + \alpha SE^{(t)}$$

The quickly converges to \hat{E} and therefore gives corrected predictions as,

$$Z^r = Z + \hat{E}$$

Smoothing Final Predictions with Prediction Correlation

- The next assumption to be used for correction is that adjacent nodes in the graph are likely to have similar labels (e.g. homophily)
- Another round of label propagation will be used to encourage smoothness over distribution of labels.

Starting with the best guess of the labels, H, with $H_{L_t,:}=Y_{L_t,:}$ and $H_{L_v\cup U,:}=Z_{L_v\cup U,:}^{(r)}$, propagate labels as,

$$H^{(t+1)} = (1 - \alpha)H + \alpha SH^{(t)}$$

Final Prediction

The following has now been applied

- Base prediction
- Residual correction
- Label smoothing

After convergence of $H^{(t+1)} = (1-\alpha)H + \alpha SH^{(t)}$, get a final prediction, $\hat{Y} \in \mathbb{R}^{n \times c}$, and assign node to the class with the max predicted probability.

Results

Datasets	Classes	Nodes	Edges	Parameter Δ	Accuracy Δ	Time (s)
Arxiv	40	169,343	1,166,243	-84.90%	+0.26	12 (+90)
Products	47	2,449,029	61,859,140	-93.47%	+1.74	171 (+2959)
Cora	7	2,708	5,429	-98.37%	+1.09	< 1 (+7)
Citeseer	6	3,327	4,732	-89.68%	-0.69	< 1 (+7)
Pubmed	3	19,717	44,338	-96.00%	-0.30	< 1 (+14)
Email	42	1,005	25,571	-97.89%	+4.33	43 (+17)
Rice31	10	4,087	184,828	-99.02%	+1.39	39(+12)
US County	2	3,234	12,717	-74.56%	+1.77	39 (+12)
wikiCS	10	11,701	216,123	-84.88%	+2.03	7 (+11)

Figure: from Table 1. Performance is in reported to SOTA GNN.

Accuracy vs Number of Parameters

Higher accuracy with less parameters on one of the datasets (and training is also significantly faster)

Figure: from Fig. 2

Visualizing which correction step fixed error

Figure: from Fig. 3.

Summary

- Simple LP, diffusion, and GNN are fundamentally related
- Augmenting graph information with attributes, spectral features, etc. can be helpful for classifying nodes
- A base prediction is corrected according to smoothing over residual errors and encouraging closely connected nodes to have similar labels.