Análise de Risco

Risco de Prazo

Prof. E.A.Schmitz 2016

Qual o menor prazo de realização de um projeto?

- Fatores importantes:
 - Recursos
 - Duração das atividades
 - Atividades imprevistas

Qual o menor prazo de realização de um projeto?

Caso mais simples (sem risco):

- Não existe restrição de recursos
- Durações conhecidas
- Todas atividades são conhecidas

Solução:

- O menor tempo de realização de um projeto é igual a duração do maior caminho no grafo do projeto.
- O percurso de maior duração é chamado de caminho crítico.

Critical path method (CPM)

- Passo 1 (Forward): marcar em cada um dos nós o "tempo mais cedo de início" (ES(i) que esta atividade pode ser iniciada. ES(i) é igual ao maior dos "tempo mais cedo de término" (EF(j)) de suas atividades predecessoras.
- Passo 2 (Backward): marcar em cada um dos nós o "tempo mais tarde de término" (LF(i)) que uma atividade pode terminar. (LF(i)) é igual ao menor dos "tempo mais tarde de início"(LS(j) das atividades dependentes.
- Passo 3 (Folga): para cada um dos nós determine a diferença entre o tempo mais cedo e o tempo mais tarde (LS(i)-ES(i) = LF(i)-EF(i)).
- Passo 4 (Caminho crítico): conjunto de nós em que a folga é zero.

Critical path method (CPM)

Projeto da mala direta

- Atividades do projeto
 - A-Definir critérios de seleção (1)
 - B-Selecionar itens do catalogo (4)
 - C-Selecionar prospects (5)
 - D-Projetar catálogo (7)
 - E-Imprimir etiquetas (2)
 - F-Imprimir catálogo (3)
 - G-Afixar etiquetas (1)

Representação do projeto da mala direta

Redes não-deterministas

- Duração das atividades é dada por uma variável aleatória, que tem uma determinada distribuição de probabilidade
- O prazo do projeto deve agora ser redefinido em termos n\u00e3o deterministas.
- A duração do projeto é dada por uma variável aleatória:
 - Prob (término <prazo desejado).

Duração de redes nãodeterministicas

Algoritmo MC

- Entradas:
 - Rede: lista de sucessores
 - Duração: vetor de durações das atividades
- Saída:
 - distribuição de probabidade do prazo
- Roteiro
 - Gerar N cenários de durações
 - Para i em 1:N
 - d[i]= cpmf (rede,durações)

Redes não-deterministas

Variabilidade

 Duração das atividades é dada por uma variável aleatória, que tem uma determinada distribuição de probabilidade

Incerteza

Algumas tarefas podem ou não serem executadas

Exercício: calcular a distribuição de probabilidade do prazo

Atividades incertas

- incerteza sobre a execução de algumas atividades
- incerteza está associada a um evento
- evento pode ser modelado por uma distribuição de Bernoulli
- R: rbinom()

Exercício – duração com atividades incertas

Redes de atividades em R

- ifm : pacote com funções para geração de cronogramas
 - cpmf: calcula a duração do caminho crítico de uma rede de atividades
- igraph: pacote para operações com grafos
 - operações:
 - make_graph (x): cria uma grafo a partir de um vetor de arestas
 - a Il_simple_paths (g,from=start,to=end,directed=TRUE):
 retorna uma lista com os caminhos entre start e end.

Analisando o resultado

- Risco de (Prazo > Contrato)
 - cláusula de multa?
- Items que impactam o prazo
 - nós convergentes (nodal bias)
 - ponto de encontro de muitas atividades
 - percursos alternativos
 - distribuição bimodal