QUANTUM MECHANICS NOTES

CARSON JAMES

Contents

1. Introduction	1
1.1. Schrödinger Equation	1
1.2. Operators	2
1.3. Continuity Equation	5
1.4. Position and Momentum Space	6
1.5. Stationary States	7
2. Fundamental Examples in One Dimension	8
2.1. The Infinite Square Well	8
2.2. The Harmonic Oscillator	9
3. Fundamental Examples in Three Dimensions	13
3.1. Spherical Harmonic Oscillator (Cartesian Coordinates)	13
3.2. Spherical Coordinates	14
3.3. The Infinite Spherical Box	15
3.4. The Hydrogen Atom	15
3.5. Spherical Harmonic Oscillator (Spherical Coordinates)	16
3.6 Orbital Angular Momentum	18

1. Introduction

1.1. Schrödinger Equation.

Note 1.1. In the introduction, we keep position general with $x \in \mathbb{R}^n$ given by $x = (x_1, \dots, x_n)$, the usual math notation. The notation in cartesian coordinates changes in three dimensions to r = (x, y, z), the usual physics notation.

Definition 1.2. A particle with potential energy V(x,t) is completely described by its **position wavefunction** $\Psi(x,t)$, which satisfies the **Schrödinger equation**:

$$i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\Delta\Psi + V\Psi$$

Interpretation 1.3. We interpret $|\Psi(x,t)|^2$ to be the **probability density** for the position, x, of the particle at time t. Therefore, we require that for each $t \in \mathbb{R}$,

$$\int_{\mathbb{R}^n} \Psi(x,t)^* \Psi(x,t) dx = 1$$

1.2. Operators.

Definition 1.4. We define the j^{th} position and momentum coordinate operators X_j, P_j , (in position space) by

$$X_i \Psi(x,t) = x_i \Psi(x,t)$$

and

$$P_{j}\Psi(x,t) = -i\hbar \frac{\partial}{\partial x_{j}}\Psi(x,t)$$

We define the **position** and **momentum** operators, X and P, by

$$X = (X_1, X_2, \cdots, X_n)$$

and

$$P = (P_1, P_2, \cdots, P_n)$$

We denote $P \cdot P$ by P^2 . Note that

$$P^2 = -\hbar^2 \Delta$$

If the partical has potential energy V(x,t), we define the **Hamiltonian** operator, H, by

$$H = \frac{P^2}{2m} + V$$

Thus the Schrödinger equation reads

$$i\hbar \frac{\partial}{\partial t} \Psi = H\Psi$$

Note 1.5. If the potential energy doesn't depend on time, we may write

$$H = \frac{P^2}{2m} + V(X)$$

meaning Hamiltonian only depends on the position and momentum operators, X and P. For the rest of these notes, we assume that the potential energy V does not depend on time.

Definition 1.6. Let A and B be operators. Then B is said to be the **adjoint** of A if for each Ψ_1 , Ψ_2 ,

$$\langle \Psi_1 | A \Psi_2 \rangle = \langle B \Psi_1 | \Psi_2 \rangle$$

i.e.

$$\int_{\mathbb{R}^n} \Psi_1^*(A\Psi_2) dx = \int_{\mathbb{R}^n} (B\Psi_1)^* \Psi_2 dx$$

If B is the adjoint of A, we write

$$B = A^{\dagger}$$

Exercise 1.7. Let A be an operator, then

- (1) for each $\Psi_1, \Psi_2, \langle A\Psi_1 | \Psi_2 \rangle = \langle \Psi_1 | A^{\dagger} \Psi_2 \rangle$
- $(2) (A^{\dagger})^{\dagger} = A$

Proof. (1) For wavefunctions Ψ_1 , Ψ_2 , we have

$$\begin{split} \langle A\Psi_1|\Psi_2\rangle &= \langle \Psi_2|A\Psi_1\rangle^* \\ &= \langle A^\dagger\Psi_2|\Psi_1\rangle^* \quad \text{(by definition)} \\ &= \langle \Psi_1|A^\dagger\Psi_2\rangle \end{split}$$

(2) For each Ψ_1, Ψ_2 , we have that

$$\langle A\Psi_1 | \Psi_2 \rangle = \langle \Psi_1 | A^{\dagger} \Psi_2 \rangle$$
$$= \langle (A^{\dagger})^{\dagger} \Psi_1 | \Psi_2 \rangle$$

This implies that for each Ψ_1, Ψ_2 ,

$$\langle [A - (A^{\dagger})^{\dagger}] \Psi_1, \Psi_2 \rangle = 0$$

Therefore for each Ψ_1 ,

$$\left[A - (A^{\dagger})^{\dagger}\right]\Psi_1 = 0$$

Hence $\langle A - (A^{\dagger})^{\dagger} = 0$ and $A = (A^{\dagger})^{\dagger}$.

Definition 1.8. An linear operator Q is **self-adjoint** if

$$Q = Q^{\dagger}$$

Interpretation 1.9. For each measurable, observable quantity \hat{Q} , there is a self-adjoint operator Q whose eigenvalues are the possible measurment values and whose eigenfunctions are the possible states of the system at measurment.

Exercise 1.10. The operators X_i , P_i and H are self adjoint.

Hint: for H, use Green's second identity.

Proof. Since x_i is real, clearly

$$\langle \Psi_1 | X_i \Psi_2 \rangle = \langle X_i \Psi_1 | \Psi_2 \rangle$$

Similarly, we have that

$$\langle \Psi_1 | P_j \Psi_2 \rangle = \int_{\mathbb{R}^n} \Psi_1^* \left(-i\hbar \frac{\partial}{\partial x_j} \Psi_2 \right) dx$$

$$= -i\hbar \int_{\mathbb{R}^n} \Psi_1^* \left(\frac{\partial}{\partial x_j} \Psi_2 \right) dx$$

$$= i\hbar \int_{\mathbb{R}_n} \left(\frac{\partial}{\partial x_j} \Psi_1^* \right) \Psi_2 dx \qquad \text{(integration by parts)}$$

$$= \int_{\mathbb{R}^n} \left(-i\hbar \frac{\partial}{\partial x_j} \Psi_1 \right)^* \Psi_2 dx$$

$$= \langle P\Psi_1 | \Psi_2 \rangle$$

Finally

$$\begin{split} \langle \Psi_1 | H \Psi_2 \rangle - \langle H \Psi_1 | \Psi_2 \rangle &= \int_{\mathbb{R}^n} \Psi_1^* \bigg(-\frac{\hbar^2}{2m} \Delta \Psi_2 + V \Psi_2 \bigg) dx - \int_{\mathbb{R}^n} \bigg(-\frac{\hbar^2}{2m} \Delta \Psi_1 + V \Psi_1 \bigg)^* \Psi_2 dx \\ &= \frac{\hbar^2}{2m} \int_{\mathbb{R}^n} (\Delta \Psi_1^*) \Psi_2 - \Psi_1^* (\Delta \Psi_2) dx \\ &= 0 \qquad \text{(Green's second identity)} \end{split}$$

Exercise 1.11. Let Q be a self-adjoint operator. Then

(1) the eigenvalues of Q are real.

(2) the eigenfunctions of Q corresponding to distinct eigenvalues are orthogonal. Proof.

(1) Let λ be an eigenvalue of Q with corresponding eigenfunction Ψ . Then

$$\lambda \langle \Psi | \Psi \rangle = \langle \Psi | Q \Psi \rangle$$
$$= \langle Q \Psi | \Psi \rangle$$
$$= \lambda^* \langle \Psi | \Psi \rangle$$

Thus $\lambda = \lambda^*$ and is real

(2) Let λ_1 and λ_2 be eigenvalues of Q with corresponding eigenfunctions Ψ_1 and Ψ_2 . Suppose that $\lambda_1 \neq \lambda_2$. Then

$$\lambda_2 \langle \Psi_1 | \Psi_2 \rangle = \langle \Psi_1 | Q \Psi_2 \rangle$$

$$= \langle Q \Psi_1 | \Psi_2 \rangle$$

$$= \lambda_1 \langle \Psi_1 | \Psi_2 \rangle$$

So $(\lambda_2 - \lambda_1)\langle \Psi_1 | \Psi_2 \rangle = 0$. Which implies that $\langle \Psi_1 | \Psi_2 \rangle = 0$

Definition 1.12. Let A and B be operators. The **commutator** of A and B, [A, B], is defined by

$$[A, B] = AB - BA$$

Exercise 1.13. We have $[X_i, P_j] = \delta_{i,j} i\hbar$.

Proof. For a position wave function Ψ ,

$$\begin{split} [X_j,P_j]\Psi(x,t) &= [x_j,-i\hbar\frac{\partial}{\partial x_j}]\Psi(x,t) \\ &= (-i\hbar)\left[x_j\frac{\partial}{\partial x_j}\Psi(x,t) - \frac{\partial}{\partial x_j}x_j\Psi(x,t)\right] \\ &= (-i\hbar)\left[x_j\frac{\partial}{\partial x_j}\Psi(x,t) - \Psi(x,t) - x_j\frac{\partial}{\partial x_j}\Psi(x,t)\right] \\ &= i\hbar\Psi(x,t) \end{split}$$

Hence $[X_j, P_j] = i\hbar$

For $i \neq j$,

$$X_{i}P_{j}\Psi(x,t) = \frac{\partial}{\partial x_{j}}x_{i}\Psi(x,t)$$
$$= -i\hbar x_{i}\frac{\partial}{\partial x_{j}}\Psi(x,t)$$
$$= P_{j}X_{i}\Psi(x,t)$$

So

$$[X_i, P_j] = 0$$

Exercise 1.14. Let A, B and C be operators, then [AB, C] = A[B, C] + [A, C]B

Proof. We have

$$[AB, C] = ABC - CAB$$

$$= ABC - ACB + ACB - CAB$$

$$= A(BC - CB) + (AC - CA)B$$

$$= A[B, C] + [A, C]B$$

1.3. Continuity Equation.

Exercise 1.15. If V is real and Ψ satisfies the Schrödinger equation, then

$$i\hbar \frac{\partial}{\partial t} \Psi^* = -H\Psi^*$$

Proof. We have that

$$\begin{split} i\hbar\frac{\partial}{\partial t}\Psi^* &= \left(-i\hbar\frac{\partial}{\partial t}\Psi\right)^* \\ &= \left(-\left[-\frac{\hbar^2}{2m}\Delta\Psi + V\Psi\right]\right)^* \\ &= -\left[-\frac{\hbar^2}{2m}\Delta\Psi^* + V\Psi^*\right] \\ &= -H\Psi^* \end{split}$$

Exercise 1.16. We have that

$$\frac{\partial}{\partial t}(\Psi^*\Psi) + \frac{\hbar}{2mi}\nabla\cdot \left[\Psi^*(\nabla\Psi) - (\nabla\Psi^*)\Psi\right] = 0$$

Proof.

$$\begin{split} \frac{\partial}{\partial t}(\Psi^*\Psi) &= \left(\frac{\partial}{\partial t}\Psi^*\right)\Psi + \Psi^*\left(\frac{\partial}{\partial t}\Psi\right) \\ &= \left(\frac{\hbar}{2mi}(\Delta\Psi^*)\Psi - \frac{1}{i\hbar}V\Psi^*\Psi\right) + \left(-\frac{\hbar}{2mi}\Psi^*(\Delta\Psi) + \frac{1}{i\hbar}V\Psi^*\Psi\right) \\ &= \frac{\hbar}{2mi}\bigg[(\Delta\Psi^*)\Psi - \Psi^*(\Delta\Psi)\bigg] \\ &= -\frac{\hbar}{2mi}\bigg[\Psi^*(\Delta\Psi) - (\Delta\Psi^*)\Psi\bigg] \\ &= -\frac{\hbar}{2mi}\nabla\cdot\bigg[\Psi^*(\nabla\Psi) - (\nabla\Psi^*)\Psi\bigg] \end{split}$$

Therefore

$$\frac{\partial}{\partial t}(\Psi^*\Psi) + \frac{\hbar}{2mi}\nabla\cdot \left[\Psi^*(\nabla\Psi) - (\nabla\Psi^*)\Psi\right] = 0$$

Definition 1.17. We define the **probability current density**, j, of the particle to be

$$j = \frac{\hbar}{2mi} \left[\Psi^*(\nabla \Psi) - (\nabla \Psi^*) \Psi \right]$$

1.4. Position and Momentum Space.

Definition 1.18. We define the **momentum wavefunction**, Φ , of the particle to be the Fourier transform of the position wavefunction:

$$\begin{split} \Phi(p,t) &= F[\Psi](p,t) \\ &= \frac{1}{(2\pi\hbar)^{n/2}} \int_{\mathbb{P}^n} \Psi(x,t) e^{-i\frac{p\cdot x}{\hbar}} dx \end{split}$$

Note 1.19. We recall the following facts about Fourier transforms:

(1)
$$\Phi(p,t) = \frac{1}{(2\pi\hbar)^{n/2}} \int_{\mathbb{R}^n} \Psi(x,t) e^{-i\frac{p\cdot x}{\hbar}} dx$$
and
$$\Psi(x,t) = \frac{1}{(2\pi\hbar)^{n/2}} \int_{\mathbb{R}^n} \Phi(p,t) e^{i\frac{p\cdot x}{\hbar}} dp$$
(2)
$$F\left[\frac{\partial}{\partial x_j}\Psi\right] = \frac{ip_j}{\hbar} F[\Psi]$$
and
$$F^{-1}\left[\frac{\partial}{\partial p_j}\Phi\right] = -\frac{ix_j}{\hbar} F[\Psi]$$
(3)
$$\int_{\mathbb{R}^n} \Psi_1^* \Psi_2 dx = \int_{\mathbb{R}^n} F[\Psi_1]^* F[\Psi_2] dx$$

Note 1.20. Let Q(X, P) be a self-adjoint operator. Then the properties of the Fourier transform inmply that:

$$Q(X,P) = \begin{cases} Q(x,-i\hbar\nabla) & (position\ space) \\ Q(i\hbar\nabla,p) & (momentum\ space) \end{cases}$$

Exercise 1.21. If Ψ satisfies the Schrödinger equation, then Φ satisfies

$$i\hbar \frac{\partial}{\partial t} \Phi = \frac{p^2}{2m} \Phi + V(i\hbar \nabla) \Phi$$

Proof. Starting with the Schrödinger equation, we have

$$i\hbar \frac{\partial}{\partial t} \Psi = \left[\frac{P^2}{2m} + V(X) \right] \Psi$$
$$= \left[\frac{-\hbar^2}{2m} \Delta + V(x) \right] \Psi \qquad \text{(position space)}$$

Taking Fourier transforms of both sides, we see that

$$\begin{split} i\hbar\frac{\partial}{\partial t}\Phi &= \left[\frac{P^2}{2m} + V(X)\right]\Phi \\ &= \left[\frac{p^2}{2m} + V(i\hbar\nabla)\right]\Phi \qquad \text{(position space)} \end{split}$$

Interpretation 1.22. We interpret $|\Phi(p,t)|^2$ to be the probability density for the momentum, p, of the particle at time t.

Note 1.23. For a self-adjoint operator Q(X,P), the expected value of Q, is given by

$$\langle Q \rangle = \begin{cases} \langle \Psi(x,t) | Q(x,-i\hbar\nabla)\Psi(x,t) \rangle & (position \ space) \\ \langle \Phi(p,t) | Q(i\hbar\nabla,p)\Phi(p,t) \rangle & (momentum \ space) \end{cases}$$

1.5. Stationary States.

Definition 1.24. When the potential energy V doesn't depend on time, we look for solutions to the Schrödinger equation of the form

$$\Psi(x,t) = \psi(x)\varphi(t)$$

With a closer look, we find that

(1)
$$H\psi = E\psi$$

(2)
$$\varphi(t) = e^{-i\frac{E}{\hbar}t}$$

Statement (1) is referred to as the **time-independent Schrödinger equation**. Eigenfuntions of the Hamiltonian operator are called **stationary states**. If the possible eigenvalues for the Hamiltonian operator are discreet $(E_n)_{n\in\mathbb{N}}$ with stationary states $(\psi_n)_{n\in\mathbb{N}}$, then the general solution to the Schrödinger equation is

$$\Psi(x,t) = \sum_{n \in \mathbb{N}} c_n \psi_n(x) e^{-i\frac{E_n}{\hbar}t}$$

where

$$c_n = \int_{\mathbb{R}^n} \psi_n^*(x) \Psi(x, 0) dx$$

Definition 1.25. An energy eigenvalue E_n of H is said to have a **degeneracy of degree** k if it corresponds to k orthonormal stationary states.

Note 1.26. If the energy eigenvalues $(E_n)_{n\in\mathbb{N}}$ have degeneracies of degrees $(k_n)_{n\in\mathbb{N}}$ with corresponding orthonormal stationary states $(\psi_{n,j})_{j=1}^{k_n}$ and

$$\Psi(x,t) = \sum_{n \in \mathbb{N}} \sum_{j=1}^{k_n} c_{n,j} \psi_{n,j}(x) e^{-i\frac{E_n}{\hbar}t}$$

Then the probability of measuring the energy E_n is

$$\mathbb{P}(E_n) = \sum_{j=1}^{k_n} |c_{n,j}|^2$$

Definition 1.27. If the spectrum of the Hamiltonian is discreet, the stationary state with the least energy is called the **ground state**. The stationary states that are not the ground state are called **excited states**.

2. Fundamental Examples in One Dimension

2.1. The Infinite Square Well.

Definition 2.1. The infinite square well is defined by the potential

$$V(x) = \begin{cases} \infty & x \in I_1 = (-\infty, a] \\ 0 & x \in I_2 = (0, a) \\ \infty & x \in I_3 = [a, \infty) \end{cases}$$

Exercise 2.2. By starting with a finite potental well and letting the height of the well go to infinity, show that the stationary states and their energies are given by

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x) & x \in (0, a) \\ 0 & x \notin (0, a) \end{cases}$$

and

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

Proof. Define

$$V_{\alpha}(x) = \begin{cases} \alpha & x \in I_1 \\ 0 & x \in I_2 \\ \alpha & x \in I_3 \end{cases}$$

For the potential energy V_{α} , in sections I_1, I_3 the Schrödinger equation may be written as

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = \frac{2m}{\hbar^2} (\alpha - E)\psi$$

Assuming $\alpha > E$, we may write $l = \frac{\sqrt{2m(\alpha - E)}}{\hbar}$ and substitute to get

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = l^2 \psi$$

Thus in region I_1 , $\psi_1(x) = Ae^{lx} + Be^{-lx}$ and in region I_3 , $\psi_3(x) = Fe^{lx} + Ge^{-lx}$. Since e^{-lx} blows up as $x \to -\infty$, B = 0. Since e^{lx} blows up as $x \to \infty$, F = 0.

In section I_2 , the Schrödinger equation may be written as

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -\frac{2mE}{\hbar^2}\psi$$

We write $k = \frac{\sqrt{2mE}}{\hbar}$ and substitute to get

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -k^2 \psi$$

Hence in region I_2 , $\psi_2(x) = C \sin(kx) + D \cos(kx)$.

So far we have

$$\psi_{\alpha}(x) = \begin{cases} Ae^{lx} & x \in I_1 \\ C\sin(kx) + D\cos(kx) & x \in I_2 \\ Ge^{-lx} & x \in I_3 \end{cases}$$

To find possible wavefunctions ψ for the infinite potential, we let $\alpha \to \infty$. As $\alpha \to \infty$, we have that $l \to \infty$. Hence $\psi_1 \to 0$ and $\psi_3 \to 0$. So for the infinite potential,

$$\psi(x) = \begin{cases} C\sin(kx) + D\cos(kx) & x \in (0, a) \\ 0 & x \notin (0, a) \end{cases}$$

By continuity at the points x = 0 and x = a, we see that $0 = C\sin(0) + D\cos(0)$ which implies that D = 0 and $0 = C\sin(ka)$ which yields various solutions

$$k_n = \frac{n\pi}{a} \quad n \in \mathbb{Z}$$

To avoid non-normalizable solutions or linearly dependent solutions, we restrict $n \in \mathbb{N}$. Our energies are then

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2ma^2} \quad n \in \mathbb{N}$$

and (after normalizing) our stationary states are

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x) & x \in (0, a) \\ 0 & x \notin (0, a) \end{cases}$$

2.2. The Harmonic Oscillator.

Definition 2.3. The **harmonic oscillator** in one dimension is defined by the potential energy:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

We define the **lowering operator**, a_{-} , by

$$a_{-} = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega X + iP \right)$$

and we define the **raising operator**, a_+ , by

$$a_{+} = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega X - iP \right)$$

Exercise 2.4. The adjoint of the lowering operator is the raising operator:

$$(a_-)^{\dagger} = a_+$$

Proof. Let Ψ_1 , Ψ_2 be wavefunctions. Since X, P are self-adjoint, we have that

$$\begin{split} \langle \Psi_1 | a_- \Psi_2 \rangle &= \frac{1}{\sqrt{2\hbar m \omega}} \langle \Psi_1 | (m \omega X + i P) \Psi_2 \rangle \\ &= \frac{1}{\sqrt{2\hbar m \omega}} \bigg[m \omega \langle \Psi_1 | X \Psi_2 \rangle + i \langle \Psi_1 | P \Psi_2 \rangle \bigg] \\ &= \frac{1}{\sqrt{2\hbar m \omega}} \bigg[\langle m \omega X \Psi_1 | \Psi_2 \rangle + \langle -i P \Psi_1 | \Psi_2 \rangle \bigg] \\ &= \frac{1}{\sqrt{2\hbar m \omega}} \langle (m \omega X - i P) \Psi_1 | \Psi_2 \rangle \\ &= \langle a_+ \Psi_1 | \Psi_2 \rangle \end{split}$$

Exercise 2.5. We have that

(1)
$$a_{-}a_{+} = \frac{1}{\hbar\omega}H + \frac{1}{2}$$

(2) $a_{+}a_{-} = \frac{1}{\hbar\omega}H - \frac{1}{2}$
(3) $[a_{-}, a_{+}] = 1$

(3)
$$[a_-, a_+] = 1$$

Proof. (1)

$$a_{-}a_{+} = \frac{1}{2\hbar m\omega} (m\omega X + iP) (m\omega X - iP)$$

$$= \frac{1}{2\hbar m\omega} \left[(m^{2}\omega^{2}X^{2} + P^{2}) - m\omega i (XP - PX) \right]$$

$$= \frac{1}{\hbar\omega} (\frac{1}{2m}P^{2} + \frac{1}{2}m\omega^{2}X^{2}) - \frac{i}{2\hbar} [X, P]$$

$$= \frac{1}{\hbar\omega} H + \frac{1}{2}$$

- (2) Similar
- (3) Trivial

Exercise 2.6. If $H\psi = E\psi$, then

(1)
$$Ha_-\psi = (E - \hbar\omega)a_-\psi$$

(2)
$$Ha_+\psi = (E + \hbar\omega)a_+\psi$$

Proof.

$$\begin{split} Ha_-\psi &= \hbar\omega \bigg(a_-a_+ - \frac{1}{2}\bigg)a\psi \\ &= \hbar\omega \bigg(a_-a_+a_- - \frac{1}{2}a_-\bigg)\psi \\ &= \hbar\omega a_- \bigg(a_+a_- - \frac{1}{2}\bigg)\psi \\ &= \hbar\omega a_- \bigg(a_+a_- + \frac{1}{2} - 1\bigg)\psi \\ &= \hbar\omega a_- \bigg(\frac{1}{\hbar\omega}H - 1\bigg)\psi \\ &= a_-H\psi - \hbar\omega a_-\psi \\ &= (E - \hbar\omega)a_-\psi \end{split}$$

(2) Similar

Interpretation 2.7. The lowering operator "lowers" a stationary state ψ with energy E to a stationary state $a_-\psi$ with energy $E - \hbar\omega$ and the raising operator "raises" a stationary state ψ with energy E to a stationary state $a_+\psi$ with energy $E + \hbar\omega$.

Definition 2.8. Since the zero function is a solution to the time-independent Schrödinger equation, we define the ground state, ψ_0 of the harmonic oscillator to be the stationary state that satisfies $a_-\psi_0 = 0$. The excited states ψ_n , for $n \ge 1$, are obtained by applying the rasing operator n times and then normalizing.

Exercise 2.9. We have that

(1)
$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}$$

$$(2) E_0 = \frac{1}{2}\hbar\omega$$

(3)
$$\psi_n = c_n(a_+)^n \psi_0 \quad (for some \ constant \ c_n)$$

$$(4) E_n = \hbar\omega(n + \frac{1}{2})$$

Proof.

(1) The simple differential equation $a_{-}\psi_{0} = 0$ has the solution

$$\psi_0 = Ae^{-\frac{m\omega}{2\hbar}x^2}$$

Thus

$$|\psi_0|^2 = |A|^2 e^{-\frac{m\omega}{\hbar}x^2}$$

If we normalize this function, we obtain

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}$$

(2) It is tedious but straightforward to show that

$$H\psi_0 = \frac{1}{2}\hbar\omega\psi_0$$

- (3) Clear by definition.
- (4) Clear by previous exercise.

Exercise 2.10.

(1)
$$\psi_{n+1} = \frac{1}{\sqrt{n+1}} a_+ \psi_n$$

(2)
$$\psi_{n-1} = \frac{1}{\sqrt{n}} a_- \psi_n$$

(1) $\psi_{n+1} = \frac{1}{\sqrt{n+1}} a_+ \psi_n$ (2) $\psi_{n-1} = \frac{1}{\sqrt{n}} a_- \psi_n$ Hint: use the adjoint-ness of a_- and a_+

Proof.

(1)

$$a_{-}a_{+}\psi_{n} = \left(\frac{1}{\hbar\omega}H + \frac{1}{2}\right)\psi_{n}$$
$$= \frac{1}{\hbar\omega}E_{n}\psi_{n} + \frac{1}{2}\psi_{n}$$
$$= (n+1)\psi_{n}$$

Since $\psi_{n+1} = ca_+\psi_n$, we have that

$$1 = \langle \psi_{n+1} | \psi_{n+1} \rangle$$

$$= \langle ca_{+} \psi_{n} | ca_{+} \psi_{n} \rangle$$

$$= |c|^{2} \langle a_{+} \psi_{n} | a_{+} \psi_{n} \rangle$$

$$= |c|^{2} \langle a_{-} a_{+} \psi_{n} | \psi_{n} \rangle$$

$$= |c|^{2} \langle (n+1) \psi_{n} | \psi_{n} \rangle$$

$$= |c|^{2} (n+1) \langle \psi_{n} | \psi_{n} \rangle$$

$$= |c|^{2} (n+1)$$

So
$$c = \frac{1}{\sqrt{n+1}}$$

(2) Similar to (1).

Exercise 2.11. The n^{th} stationary state is given by $\psi_n = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0$ *Proof.* Clear by induction.

Exercise 2.12. Show that

(1)
$$\psi_1(x) = \left(\frac{4m^3\omega^3}{\hbar^3\pi}\right)xe^{-\frac{m\omega}{2\hbar}x^2}$$

(2) $E_1 = \frac{3}{2}\hbar\omega$

$$(2) E_1 = \frac{3}{2}\hbar\omega$$

Proof. Straightforward.

Exercise 2.13. If particle one is in state ψ_0 at time t=0, then the momentum wave function is

$$\Phi(p,t) = \left(\frac{1}{m\omega\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{1}{2m\omega\hbar}p^2} e^{-i\frac{\omega}{2}t}$$

Proof. By assumption

$$\Psi(x,t) = \psi_0(x)e^{-i\frac{\omega}{2}t}$$

Thus

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} \Psi(x,t) e^{-i\frac{px}{\hbar}} dx$$

The rest is straightforward.

3. Fundamental Examples in Three Dimensions

3.1. Spherical Harmonic Oscillator (Cartesian Coordinates).

Definition 3.1. The spherical harmonic oscillator (in cartesian coordinates) is defined by the potential energy

$$V(x, y, z) = x^2 + y^2 + z^2$$

Exercise 3.2. In cartesian coordinates, the the stationary states of the harmonic oscillator are given by

$$\psi_{n_x,n_y,n_z}(x,y,z) = \psi_{n_x}(x)\psi_{n_y}(y)\psi_{n_z}(z)$$

with energies

$$E_{n_x,n_y,n_z} = \hbar\omega \left(n_x + n_y + n_z + \frac{3}{2}\right)$$

where $\psi_{n_x}, \psi_{n_y}, \psi_{n_z}$ are stationary states for the one dimensional harmonic oscillator.

Proof. We look for solutions of the form $\psi(x, y, z) = \psi_x(x)\psi_y(y)\psi_z(z)$. Plugging this into the time-independent Schrödinger equation, we get

$$-\frac{\hbar^2}{2m} \left[\frac{\partial^2 \psi_x}{\partial x^2} \psi_y \psi_z + \psi_x \frac{\partial^2 \psi_y}{\partial y^2} \psi_z + \psi_x \psi_y \frac{\partial^2 \psi_z}{\partial z^2} \right] + \frac{1}{2} m \omega^2 (x^2 + y^2 + x^2) \psi = E \psi$$

Dividing both sides by ψ and rearranging, we obtain

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2\psi_x}{\partial x^2}\frac{1}{\psi_x} + \frac{1}{2}m\omega^2x^2\right) + \left(-\frac{\hbar^2}{2m}\frac{\partial^2\psi_y}{\partial y^2}\frac{1}{\psi_y} + \frac{1}{2}m\omega^2y^2\right) + \left(-\frac{\hbar^2}{2m}\frac{\partial^2\psi_z}{\partial z^2}\frac{1}{\psi_z} + \frac{1}{2}m\omega^2z^2\right) = E$$

Thus each part is constant and we may write

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi_x}{\partial x^2} + \frac{1}{2}m\omega^2 x^2 \psi_x = E_x \psi_x$$
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi_y}{\partial y^2} + \frac{1}{2}m\omega^2 y^2 \psi_y = E_y \psi_y$$
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi_z}{\partial z^2} + \frac{1}{2}m\omega^2 z^2 \psi_z = E_z \psi_z$$

So we have three one-dimensional harmonic oscillators and we have

$$\psi_x = \psi_{n_x} = \frac{1}{\sqrt{n_x!}} (a_+)^{n_x} \psi_0 \text{ and } E_x = E_{n_x} = \hbar \omega \left(n_x + \frac{1}{2} \right)$$
 $\psi_y = \psi_{n_y} = \frac{1}{\sqrt{n_y!}} (a_+)^{n_y} \psi_0 \text{ and } E_y = E_{n_y} = \hbar \omega \left(n_y + \frac{1}{2} \right)$
 $\psi_z = \psi_{n_z} = \frac{1}{\sqrt{n_z!}} (a_+)^{n_z} \psi_0 \text{ and } E_z = E_{n_z} = \hbar \omega \left(n_z + \frac{1}{2} \right)$

Thus

$$\psi = \psi_{n_x,n_y,n_z}(x,y,z) = \psi_{n_x}(x)\psi_{n_y}(y)\psi_{n_z}(z)$$

with energy

$$E = E_{n_x, n_y, n_z} = \hbar\omega \left(n_x + n_y + n_z + \frac{3}{2}\right)$$

Exercise 3.3. Show that the degree of degeneracy of E_n is

$$deg(E_n) = \binom{n+2}{2}$$

Proof. Stars and bars

Interpretation 3.4. The energies of the three-dimensional harmonic oscillator are given by $E_n = \hbar\omega\left(n + \frac{3}{2}\right)$ which correspond to $\binom{n+2}{2}$ stationary states.

3.2. Spherical Coordinates.

Definition 3.5. We now set n = 3, and work with spherical coordinates (r, θ, ϕ) where r is the distance in from the origin, $0 \le \theta \le \pi$ is the angle with initial side on the positive z-axis, and $0 \le \phi < 2\pi$ is the angle in the x-y plane with initial side on the positive x-axis going towards the positive y-axis.

Proposition 3.6. In spherical coordinates, the time independent Schrödinger equation becomes

$$-\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \psi + V \psi = E \psi$$

Definition 3.7. If the potential energy V only depends on r, then we can solve for stationary solutions of the form $\psi(r, \theta, \phi) = R(r), Y(\theta, \phi)$. It results that there is some constant l such that

(1)
$$\frac{1}{R}\frac{d}{dr}r^{2}\frac{dR}{dr} - \frac{2m}{\hbar^{2}}r^{2}(V-E) = l(l+1)$$

(2)
$$\frac{1}{Y} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] = -l(l+1)$$

The number l is called the azimuthal quantum number, equation (1) is called the radial equation and equation (2) is called the angular equation.

Definition 3.8. We can look for solutions to the angular equation of the form $Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$. It results that there is some constant m such that

(1)
$$\frac{1}{\Theta}\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) + l(l+1)\sin^2\theta = m^2$$

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -m^2$$

Equation (2) has the solution

$$\Phi(\phi) = e^{im\phi}$$

Since (r, θ, ϕ) is the same point in space as $(r, \theta, \phi + 2\pi)$, we require that $\Phi(\phi) = \Phi(\phi + 2\pi)$. This implies that $m \in \mathbb{Z}$. The integer m is called the **magnetic quantum number**.

If $l \in \mathbb{N}_0$ and $m \leq l$, then equation (1) has the solution

$$\Theta(\theta) = AP_l^m(\cos\theta)$$

where P_l^m is the **associated Legendre** function given by

$$P_l^m(x) = (1 - x^2)^{\frac{|m|}{2}} \left(\frac{d}{dx}\right)^{|m|} P_l(x)$$

and $P_l(x)$ is the l^{th} Legendre polynomial defined by

$$P_l(x) = \frac{1}{2^l l!} \left(\frac{d}{dx}\right)^l (x^2 - 1)^l$$

The angular function $Y_l^m(\theta,\phi) = A_l^m P_l^m(\cos\theta) e^{im\phi}$ may be normalized by setting

$$A_l^m = \epsilon \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}}$$

where

$$\epsilon = \begin{cases} (-1)^m & m \ge 0\\ 1 & m < 0 \end{cases}$$

The normalized angular functions are called **spherical harmonics**.

Exercise 3.9. Compute some spherical harmonics.

Definition 3.10. If we make the substitution u(r) = rR(r), we may rewrite the radial equation as

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

which looks like the one dimensional Schrödinger equation. The function

$$V + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

 $is \ called \ the \ \textbf{\it effective potential}.$

- 3.3. The Infinite Spherical Box.
- 3.4. The Hydrogen Atom.

3.5. Spherical Harmonic Oscillator (Spherical Coordinates).

Definition 3.11. The spherical harmonic oscillator (in spherical coordinates) is defined by the potential energy

$$V(r) = r^2$$

Exercise 3.12. Making the substitution $\kappa = \frac{\sqrt{2mE}}{\hbar}$, we can rewrite the radial equation for the harmonic oscillator as

$$\frac{1}{\kappa^2} \frac{d^2 u}{dr^2} = \left[\frac{\hbar^2 \omega^2 (\kappa r)^2}{2^2 E^2} + \frac{l(l+1)}{(\kappa r)^2} - 1 \right] u$$

Proof. Straightforward

Exercise 3.13. Making the substitution $\rho = \kappa r$ and $\rho_0 = \frac{\hbar \omega}{2E}$, we can rewrite the radial equation as

$$\frac{1}{\kappa^2} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = \left[\rho_0^2 \rho^2 + \frac{l(l+1)}{\rho^2} - 1 \right] u$$

Proof. Straightforward.

Exercise 3.14. We have

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \frac{1}{\kappa^2} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2}$$

and thus we may rewrite the radial equation as

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \left[\rho_0^2 \rho^2 + \frac{l(l+1)}{\rho^2} - 1\right] u$$

Proof. Straightforward by chain-rule.

Exercise 3.15. As $\rho \to \infty$, $u \approx e^{-\frac{\rho_0}{2}\rho^2}$

Proof. As $\rho \to \infty$,

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} \approx \rho_0^2 \rho^2 u$$

Trying the function $u(\rho) = e^{-\frac{\rho_0}{2}\rho^2}$, we see that

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = (\rho_0^2 \rho^2 - \rho_0) e^{-\frac{\rho_0}{2}\rho^2}$$
$$\approx \rho_0^2 \rho^2 e^{-\frac{\rho_0}{2}\rho^2} \quad (\text{as } \rho \to \infty)$$
$$= \rho_0^2 \rho^2 u$$

Exercise 3.16. As $\rho \to 0$, $u \approx \rho^{l+1}$

Proof. As $\rho \to 0$,

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} \approx \frac{l(l+1)}{\rho^2} u$$

Trying the function $u(\rho) = \rho^{l+1}$, we see that

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = l(l+1)\rho^{l-1}$$
$$= \frac{l(l+1)}{\rho^2}u$$

Note 3.17. We can now, "glue" these functions together with a third unknown function $v(\rho)$ to obtain the prototype solution

$$u(\rho) = \rho^{l+1} e^{-\frac{\rho_0}{2}\rho^2} v(\rho)$$

Exercise 3.18. Suppose that for some nice function $v(\rho)$,

$$u(\rho) = \rho^{l+1} e^{-\frac{\rho_0}{2}\rho^2} v(\rho)$$

Then computing $\frac{d^2u}{d\rho^2}$ and plugging into the radial equation and simplifying, we obtain the relation

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(l+1-\rho_0\rho^2) \frac{\mathrm{d}v}{\mathrm{d}\rho} + \rho(1-\rho_0(2l+3))v = 0$$

Proof. Very tedious but straightforward.

Exercise 3.19. If $v(\rho)$ can be represented by a power series

$$v(\rho) = \sum_{j=0}^{\infty} c_j \rho^j$$

then plugging in $v(\rho)$ into the previous relation combining like terms and solving for the coefficients yields the relations

$$c_1 = 0$$

and

$$c_{j+2} = \left[\frac{\rho_0(2j+2l+3)-1}{(j+2)(j+2l+3)} \right] c_j \quad j \ge 0$$

This implies that for each odd j, $c_j = 0$.

Proof. Tedious but straightforward.

Exercise 3.20. If for each $j \geq 0$, $c_{2j} \neq 0$, then v behaves asymptotically like $e^{\rho_0 \rho^2}$. Thus $u(\rho)$ behaves asymptotically like $\rho^{l+1}e^{\frac{\rho_0}{2}\rho^2}$. This implies that R(r) is not normalizable. Therefore there exists $j_{max} \geq 0$ such that $c_{2j_{max}+2} = 0$ and $v(\rho)$ is a polynomial of degree $2j_{max}$ and consists of only even powers of ρ .

Proof. As $j \to \infty$, $c_{j+2} \approx \frac{2\rho_0}{j} c_j$. Hence $v(\rho)$ behaves asymptotically like

$$\sum_{j=0}^{\infty} \frac{2^{j} \rho_{0}^{j}}{\prod_{k=1}^{j} 2k} \rho^{2j} = \sum_{j=0}^{\infty} \frac{(\sqrt{\rho_{0}} \rho)^{2j}}{j!}$$
$$= e^{(\sqrt{\rho_{0}} \rho)^{2}}$$
$$= e^{\rho_{0} \rho^{2}}$$

Exercise 3.21. The energies allowed for this system are

$$E_n = \hbar\omega \left(n + \frac{3}{2}\right) \quad n \in \mathbb{N}_0$$

Proof. Using the recursion relation found earlier, we have that

$$0 = \left[\frac{\rho_0(2j_{max} + 2l + 3) - 1}{(j_{max} + 2)(j_{max} + 2l + 3)} \right] c_{j_{max}}$$

This implies that

$$0 = \rho_0(2j_{max} + 2l + 3) - 1$$

and so

$$\frac{1}{\rho_0} = 2j_{max} + 2l + 3$$

Using the fact that $\rho_0 = \frac{\hbar \omega}{2E}$, we solve for E to obtain

$$E = \hbar\omega \left(j_{max} + l + \frac{3}{2} \right)$$

Since j_{max} and l may be any non-negative integers, we introduce a non-negative integer $n = j_{max} + l$ and index the allowed energies as

$$E_n = \hbar\omega \left(n + \frac{3}{2}\right) \quad n \in \mathbb{N}_0$$

3.6. Orbital Angular Momentum.

Definition 3.22. Extrapolating from the classical formula for angular momentum, we define the **orbital angular momentum operator** L, of a particle by

$$L = R \times P$$

so that

$$L_x = YP_z - ZP_y$$

$$L_y = ZP_x - XP_z$$

$$L_z = XP_y - YP_x$$

and

$$L^2 = L_x^2 + L_y^2 + L_z^2$$

Exercise 3.23. We have that

- $(1) [L_x, L_y] = i\hbar L_z$
- $\begin{array}{l} (2) \ [L_y, L_z] = i\hbar L_x \\ (3) \ [L_z, L_x] = i\hbar L_y \end{array}$

Proof.

$$\begin{split} [L_x, L_y] &= (Y P_z - Z P_y) (Z P_x - X P_z) - (Z P_x - X P_z) (Y P_z - Z P_y) \\ &= Y P_x (P_z Z - Z P_z) + X P_y (Z P_z - P_z Z) \\ &= (X P_y - Y P_x) [Z . P_z] \\ &= i \hbar L_z \end{split}$$

- (2) Similar
- (3) Similar

Exercise 3.24.

(1)
$$[L^2, L_x] = 0$$

(2)
$$[L^2, L_y] = 0$$

(3)
$$[L^2, L_z] = 0$$

Proof.

(1)

$$[L^{2}, L_{x}] = [L_{x}^{2}, L_{x}] + [L_{y}^{2}, L_{x}] + [L_{z}^{2}, L_{x}]$$

$$= (L_{y}[L_{y}, L_{x}] + [L_{y}, L_{x}]L_{y}) + (L_{z}[L_{z}, L_{x}] + [L_{z}, L_{x}]L_{z})$$

$$= -i\hbar(L_{y}L_{z} + L_{z}L_{y}) + i\hbar(L_{z}L_{y} + L_{y}L_{z})$$

$$= 0$$

- (2) Similar.
- (3) Similar.

Exercise 3.25. The operators L_x, L_y and L_z are self-adjoint.

Proof. Let Ψ_1, Ψ_2 be wave functions. Since X_i and P_j are self-adjoint and commute for $i \neq j$, we have that

$$\begin{split} \langle \Psi_1 | L_x \Psi_2 \rangle &= \langle \Psi_1 | Y P_z \Psi_2 \rangle - \langle \Psi_1 | Z P_y \Psi_2 \rangle \\ &= \langle P_z Y \Psi_1 | \Psi_2 \rangle - \langle P_y Z \Psi_1 | \Psi_2 \rangle \\ &= \langle Y P_z \Psi_1 | \Psi_2 \rangle - \langle Z P_y \Psi_1 | \Psi_2 \rangle \\ &= \langle L_x \Psi_1 | \Psi_2 \rangle \end{split}$$

So L_x is self-adjoint. The case is similar for L_y and L_z

Definition 3.26. We define the raising operator L_+ and lowering operator L_- by

$$L_+ = L_x + iL_y$$
 and $L_- = L_x - iL_y$

Exercise 3.27.

$$[L^2, L_+] = [L^2, L_-] = 0$$

Proof. Trivial. \Box

Exercise 3.28. The lowering operator is the adjoint of the raising operator:

$$L_{-} = (L_{+})^{\dagger}$$

Proof. Let Ψ_1, Ψ_2 be wavefunctions. Then

$$\begin{split} \langle \Psi_1 | L_+ \Psi_2 \rangle &= \langle \Psi_1 | L_x \Psi_2 \rangle + i \langle \Psi_1 | L_y \Psi_2 \rangle \\ &= \langle L_x \Psi_1 | \Psi_2 \rangle + i \langle L_y \Psi_1 | \Psi_2 \rangle \\ &= \langle L_x \Psi_1 | \Psi_2 \rangle + \langle -i L_y \Psi_1 | \Psi_2 \rangle \\ &= \langle (L_x - i L_y) \Psi_1 | \Psi_2 \rangle \\ &= \langle L_- \Psi_1 | \Psi_2 \rangle \end{split}$$

Hence $L_{-} = (L_{+})^{\dagger}$.

Exercise 3.29. We have

(1)
$$[L_z, L_+] = \hbar L_+$$

(2) $[L_z, L_-] = -\hbar L_-$

Proof.

(1)

$$[L_z, L_+] = [L_z, L_x] + i[L_z, L_y]$$
$$= i\hbar L_y + \hbar L_x$$
$$= \hbar L_+$$

(2) Similar.

Exercise 3.30. Suppose that f is simultaneously an eigenfunction of L^2 with eigenvalue λ and an eigenfunction of L_z with eigenvalue μ . Then

- (1) $L_+ f$ is simultaneously an eigenfunction of L^2 with eigenvalue λ and an eigenfunction of L_z with eigenvalue $\mu + \hbar$
- (2) L_+f is simultaneously an eigenfunction of L^2 with eigenvalue λ and an eigenfunction of L_z with eigenvalue $\mu \hbar$

Proof.

(1) First we have

$$L^{2}L_{+}f = L_{+}L^{2}f$$
$$= L_{+}\lambda f$$
$$= \lambda L_{+}f$$

Second we see that

$$L_z L_+ f = \left[L_+ L_z + \left(L_z L_+ - L_+ L_z \right) \right] f$$

$$= \left(L_+ L_z + \left[L_z, L_+ \right] \right) f$$

$$= \left(\mu L_+ + \hbar L_+ \right) f$$

$$= \left(\mu + \hbar \right) L_+ f$$

(2) Similar.