INTERROGATION ÉCRITE Nº 9

NOM : Prénom :

Note:

1. On pose $\mathbb{Q}[i] = \{a+ib, (a,b) \in \mathbb{Q}^2\}$. Montrer que $(\mathbb{Q}[i], +, \times)$ est un corps.

 $2. \ \, \mathrm{Soit} \, \, (\alpha,r) \in (\mathbb{N} \setminus \{0,1\})^2 \, \, \mathrm{tel \, que \, } \, \alpha^r-1 \, \, \mathrm{soit \, premier}. \, \, \mathrm{Montrer \, que \, } \, \alpha=2 \, \, \mathrm{puis \, que \, } \, r \, \, \mathrm{est \, premier}.$

3. Déterminer le reste de la division euclidienne de 2^{2017} par 7.
4. Soit $(a, b, c, d) \in \mathbb{Z}^4$ tel que a et b divisent respectivement c et d et tel que c et d soient premiers entre eux. Montrer que a et b sont également premiers entre eux.
\mathbf{r}
5. Donner une partie génératrice de $F = \{(x, y, z) \in \mathbb{R}^3, \ x - 2y + 3z = 0\}$ (mettre sous forme d'un vect).