Exercise 2

•	_
1	I)

T=N*500

seq	2perhost 2	8perhost 8	
	2	1	1
	9	6	3
4	41	24	9
(65	37	13

N		speedup 2per	speedup 8perh	efficiency 2perh	efficiency 8perhost 8
	1000	2	2	0.5	0.25
	2000	1.5	3	0.375	0.375
	4000	1.708333333	4.555555556	0.42708333333	0.569444444444444
	5000	1.756756757	5	0.43918918919	0.625

2D

T=N*100

N	seq	4perhost 4	speedup) (efficiency
	100	5	1	5	1.25
	200	45	12	3.75	0.9375
	250	90	24	3.75	0.9375
	300	154	95 1.62105	263158	0.405263157894737

3D

T=N*20

N	seq	8perhost 8	sp	eedup efficiency	
	30	1	0	#DIV/0!	#DIV/0!
	40	5	1	5	0.625
	50	12	2	6	0.75
	60	25	4	6.25	0.78125

Notes:

speedup here means absolute speedup \rightarrow reference is fastest sequential version

We used strong and weak scalability. Per row we compared execution time on a fixed size (strong) problem. In each column we sized up the problem (weak) and compared results.

Page 4