20. Vector Algebra

EE24BTECH11047 - Niketh Prakash Achanta

I. C:MCQs With One Correct Answer

- 41) Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = 10\hat{j} + 10\hat{k}$ $\hat{i} + 2\hat{j} + 2\hat{k}$ The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by (2010)
 - a) $\frac{8}{9}$

 - b) $\frac{\sqrt{17}}{9}$ c) $\frac{1}{9}$ d) $\frac{4\sqrt{5}}{9}$
- 42) Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \overrightarrow{v} in the plane of \overrightarrow{a} and \overrightarrow{b} , whose projection on \overrightarrow{c} is $\frac{1}{\sqrt{3}}$, is given by (2011) given by
 - a) $\hat{i} 3\hat{j} + 3\hat{k}$
 - b) $-3\hat{i} 3\hat{j} \hat{k}$
 - c) $3\hat{i} \hat{j} + 3\hat{k}$ d) $\hat{i} + 3\hat{j} 3\hat{k}$
- 43) The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4)with the plane 5x - 4y - z = 1. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR, then the length of the line segment PS is (2010)
 - a) $\frac{1}{\sqrt{2}}$
 - b) $\sqrt{2}$
 - c) 2
 - d) $2\sqrt{2}$

- 44) The equation of a plane passing through the line of intersection of the planes x+2y+3z=2and x - y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3,1,-1) is
 - a) 5x 11y + z = 17
 - b) $\sqrt{2}x + y = 3\sqrt{2} 1$

 - c) $x + y + z = \sqrt{3}$ d) $x \sqrt{2}y = 1 \sqrt{2}$
- 45) If \overrightarrow{a} and \overrightarrow{b} are vectors such that $|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{29}$ and $\overrightarrow{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \overrightarrow{b}$, then a possible value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is
 - a) 0
 - b) 3
 - c) 4
 - d) 8
- 46) Let P be the image of the point (3,1,7) with respect to the plane x - y + z = 3. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1} = \frac{y}{z} = \frac{z}{1}$ (JEE Adv. 2016)
 - a) x + y 3z = 0
 - b) 3x + z = 0
 - c) x 4y + 7z = 0
 - d) 2x y = 0
- 47) The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7, is (JEE) Adv. 2017)
 - a) 14x + 2y 15z = 1
 - b) 14x 2y + 15z = 27
 - c) 14x + 2y + 15z = 31
 - d) -14x + 2y + 15z = 3

48) Let O be the origin and let PQR be an arbitrary triangle. The point S is such that $\overrightarrow{OP} \cdot \overrightarrow{OQ} + \overrightarrow{OR} \cdot \overrightarrow{OS} = \overrightarrow{OR} \cdot \overrightarrow{OP} + \overrightarrow{OQ} \cdot \overrightarrow{OS} = \overrightarrow{OQ} \cdot \overrightarrow{OS$ $\overrightarrow{OR} + \overrightarrow{OP} \cdot \overrightarrow{OS}$

Then the triangle PQR has S as its (JEE Adv. 2017)

- a) Centroid
- b) Circumcentre
- c) Incentre
- d) Orthocenter
- II. D: MCQs with One or More than One Correct
 - 1) Let $\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \overrightarrow{c} is a unit vector perpendicular to both the vectors \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$, then

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$

is equal to

(1986-2 Marks)

- a) 0

c)
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

d) $\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right) \left(c_1^2 + c_2^2 + c_3^2 \right)$

- 2) The number of vectors of unit length perpendicular to vectors $\vec{a} = \{1, 1, 0\}$ and $\vec{b} = \{0, 1, 1\}$ is (1987-2Marks)
 - a) one
 - b) two
 - c) three
 - d) infinite
 - e) None of these
- 3) Let $\overrightarrow{d} = 2\hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} \hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} 2\hat{k}$ be three vectors. A vector in the plane of \overrightarrow{b} and \overrightarrow{c} , whose projection on \overrightarrow{a} is of magnitude $\sqrt{2/3}$, is: (1993-2Marks)

 - a) $2\hat{i} + 3\hat{j} 3\hat{k}$ b) $2\hat{i} + 3\hat{j} + 3\hat{k}$
 - c) $-2\hat{i} \hat{j} + 5\hat{k}$
 - d) $2\hat{i} + \hat{j} + 5\hat{k}$

- 4) The vector $\frac{1}{3}(2\hat{i} 2\hat{j} + \hat{k})$ is (1994)
 - a) a unit vector
 - b) makes an angle with the vector
 - c) parallel to the vector $\left\{-\hat{i} + \hat{j} \frac{1}{2}\hat{k}\right\}$
 - d) perpendicular to the vector $3\hat{i} + 2\hat{j} 2\hat{k}$
- 5) If $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors and $|c| = \sqrt{3}$, then (1998-2Marks)
 - a) $\alpha = 1, \beta = -1$
 - b) $\alpha = 1, \beta = \pm 1$
 - c) $\alpha = -1, \beta = \pm 1$
 - d) $\alpha = \pm 1, \beta = 1$