

第10章 控制单元的设计

系统结构研究所- 计算机组成原理

第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

控制器的类型

组合逻辑型:核心是微操作产生部件,用组合逻辑设计思想,以布尔代数为工具设计。输入信号来自指令译码器的输出、时序发生器的时序信号和程序运行结果特征及状态,输出为带有时间标志的微操作控制信号。

• 微程序控制型:将机器指令分解为基本微命令序列,用二进制码表示微命令,并编成微指令,多条微指令形成微程序。每种机器指令对应一段微程序,在制造CPU时固化在CPU中的一个控制存储器中(CS或CM)中。执行一条机器指令时,CPU依次从CS中取微指令,从而产生微命令。

10.1 组合逻辑设计

一、组合逻辑控制单元框图

1. CU 外特性

2. 节拍信号

二、微操作的节拍安排

假设:采用同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作 尽量 安排在一个节拍 内完成并允许有先后顺序

2. 取指周期 微操作的 节拍安排

3. 间址周期 微操作的 节拍安排

$$T_0$$
 Ad (IR) \longrightarrow MAR
 $1 \longrightarrow R$
 T_1 M (MAR) \longrightarrow MDR
 T_2 MDR \longrightarrow Ad (IR)

4. 执行周期 微操作的 节拍安排

① CLA
$$T_0$$

$$T_1$$

$$T_2 \quad 0 \longrightarrow AC$$
② COM T_0

$$T_1$$

$$T_2 \quad \overline{AC} \longrightarrow AC$$
③ SHR T_0

$$T_1$$

$$T_1$$

$$T_2 \quad L(AC) \longrightarrow R(AC)$$

$$AC_0 \longrightarrow AC_0$$

$$\bigcirc$$
 CSL T_0

$$T_1$$

$$T_2 \quad \mathbf{R}(\mathbf{AC}) \longrightarrow \mathbf{L}(\mathbf{AC}) \quad \mathbf{AC}_0 \longrightarrow \mathbf{AC}_n$$

$$AC_0 \longrightarrow AC_n$$

$$\bigcirc$$
 STP T_0

$$T_1$$

$$T_2 \quad 0 \longrightarrow G$$

6 ADD
$$X T_0$$
 Ad $(IR) \longrightarrow MAR$

$$1 \longrightarrow \mathbb{R}$$

$$T_1 \quad M(MAR) \longrightarrow MDR$$

$$T_2$$
 (AC) + (MDR) \longrightarrow AC

$$\bigcirc \text{STA } \mathbf{X} \quad T_0 \quad \text{Ad (IR)} \longrightarrow \text{MAR}$$

$$1 \longrightarrow W$$

$$T_1$$
 AC \longrightarrow MDR

$$T_2$$
 MDR \longrightarrow M (MAR)

8 LDA X
$$T_0$$
 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R

$$T_1 \qquad M (MAR) \longrightarrow MDR$$

$$T_2$$
 MDR \longrightarrow AC

$$T_0$$

$$T_1$$

$$T_2$$
 Ad (IR) \longrightarrow PC

$$T_0$$

$$T_1$$

$$T_2 \qquad A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$$

5. 中断周期 微操作的 节拍安排

$$T_0 \longrightarrow MAR$$

$$T_1 \quad PC \longrightarrow MDR$$

$$T_2$$
 MDR \longrightarrow M (MAR) 向量地址 \longrightarrow PC

中断隐指令完成

- 确定指令功能和指令格式。
- 确定机器周期、节拍和时钟周期,确定机器周期是固定的还是可变长的。
- 根据指令功能和CPU的结构图,进行微操作命令分析
- 对指令微操作进行<u>节拍安排</u>,确定每条指令所需的机器 周期及在各机器周期需完成的操作,排出操作时间表。
- 根据操作时间表写出微操作的逻辑表达式,即微操作=周期•节拍•指令码•其他条件
- 根据微操作的表达式,画出组合逻辑电路

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	τ		PC→ MAR						
	T_0		1 → R						
	<i>T</i> ₁		$M(MAR) \longrightarrow MDR$						
FE			(PC) +1 →PC						
取指			$MDR \rightarrow IR$						
	T_2		OP(IR)→ID						
	' 2	₁ I	1→ IND						
		// Ī	1→ EX						

间址特征

1. 列出操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0	τ	Ad (IR) \longrightarrow MAR						
			1 → R						
IND 间址	T_1		M(MAR) →MDR						
円址			MDR→ Ad (IR)						
	T_2	IND	1→ EX						

间址周期标志

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			Ad (IR) → MAR						
	T_{0}		1 → R						
	-		1 → W						
EX	τ		$M(MAR) \rightarrow MDR$						
执行	T_1		AC→ MDR						
			(AC)+(MDR) →AC						
	τ		$MDR \rightarrow M(MAR)$						
	T_2		MDR → AC						
			0→ AC						

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	τ		PC→ MAR	1	1	1	1	1	1
	T_0		1 → R	1	1	1	1	1	1
	T ₁		$M(MAR) \longrightarrow MDR$	1	1	1	1	1	1
FE			(PC) +1→ PC	1	1	1	1	1	1
取指			MDR → IR	1	1	1	1	1	1
	T_2		OP(IR)→ID	1	1	1	1	1	1
	2	I	1→ IND			1	1	1	1
		Ī	1→ EX	1	1	1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0	T_0	Ad (IR) \longrightarrow MAR			1	1	1	1
			1 → R			1	1	1	1
IND 间址	T_1		$M(MAR) \longrightarrow MDR$			1	1	1	1
门门址	T ₂		MDR→ Ad (IR)			1	1	1	1
		IND	1→ EX			1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			Ad (IR) \longrightarrow MAR			1	1	1	
	T_{0}		1→ R			1		1	
	-		$1 \longrightarrow W$				1		
EX	<i>T</i> ₁		$M(MAR) \longrightarrow MDR$			1		1	
执行			$AC \longrightarrow MDR$				1		
			(AC)+(MDR) →AC			1			
	τ		$MDR \rightarrow M(MAR)$				1		
	T_2		MDR → AC					1	
			0→ AC	1					

2. 写出微操作命令的最简表达式

$$M (MAR) \longrightarrow MDR$$

$$= FE \cdot T_1 + IND T_1 (ADD + STA + LDA + JMP + BAN) + EX T_1 (ADD + LDA)$$

$$= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN) + EX (ADD + LDA) \}$$

3. 画出逻辑图

- 特点
 - > 思路清晰,简单明了
 - > 庞杂,调试困难,修改困难
 - ➤ 速度快 (RISC)

10.2 微程序设计——基本概念

- 微命令:微程序控制计算机中的微操作控制信号。
- 微操作: 执行部件接受微指令后所进行的操作,是指令 序列中最基本、不可分割的动作。
 - 例如,一条加法指令要分成四步完成:取指令,计算地址,取 数,加法运算,每一步实现需若干个微操作
- 微指令:在微程序控制的计算机中,同时发出的控制信号所执行的一组微操作。
 - 是在机器的一个节拍中,一组实现一定操作功能的微命令
 - 将一条指令分解成若干条微指令,按次序执行微指令,即可实 现指令的功能
- 微程序:由微指令组成的序列称为微程序。一个微程序的功能对应一条机器指令的功能。

10.2 微程序设计——基本概念

- 控制存储器:微程序存放于存储器中,由于该存储器主要存放控制命令(信号)和下一条执行的微指令地址 (简称下址),因此被称为控制存储器。
 - 执行一条指令就是执行一段存放在控制存储器中的微程序。
 - 用ROM实现,因为一台计算机指令系统是固定的,所以微程序是固定的,所以控制存储器可以用ROM实现
- 微周期: 执行一条微指令和取出下一条微指令所需时间
 - 通常一个微周期与一个CPU周期时间相等
- 相斥性微命令: 不能在一个微周期出现的微命令
 - 如读命令和写命令
- 相容性微命令: 能在一个微周期出现的微命令。

10.2 微程序设计

一、微程序设计思想的产生

1951 英国剑桥大学教授 Wilkes

完成 一条机器指令 微操作命令 n 微指令 m 00010010 一条机器指令对应一个微程序 存入 ROM 存储逻辑

微指令的格式

微指令:

控制字段

下址字段

- ❖ 控制字段:操作控制,发出各种控制信号
- ❖ 下址字段: 顺序控制,指出下条微指令地址,以 控制微指令序列的执行顺序

二、微程序控制单元框图及工作原理

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

5

二、微程序控制单元框图及工作原理

3. 工作原理

_	主有	Ž	$egin{array}{c} \mathbf{M} \\ \mathbf{M+1} \\ \mathbf{M+2} \end{array}$	M+1 M+2 ×××	】 取指周期 微程序
	LDA ADD STA STP	X Y Z	P P+1 P+2 Q Q+1 Q+2 K K+1 K+2	P+1 P+2 M Q+1 Q+2 M K+1 K+2 M	】对应LDA操 对应的微程序 对应ADD操 对应的微程序 对应STA操作的微程序

3. 工作原理

(1) 取指阶段 执行取指微程序

 $M \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 M+1

 $Ad (CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 M+2

 $Ad(CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

(2) 执行阶段 执行 LDA 微程序

OP(IR) → 微地址形成部件 → CMAR (P → CMAR)

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成正确的指令地址MAR

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成で解除指令地址CMAR

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成飞条微指令地址CMAR

 $(\mathbf{M} \longrightarrow \mathbf{CMAR})$

(3) 取指阶段 执行取指微程序

 $\mathbf{M} \longrightarrow \mathbf{CMAR}$

•

全部微指令存在 CM 中,程序执行过程中 只需读出

- 关键 → 微指令的操作控制字段如何形成微操作命令
 - > 微指令的 后续地址如何形成

三、微指令的编码方式(控制方式)

1. 直接编码(直接控制)方式

在微指令的操作控制字段中,每一位代表一个微操作命令

某位为"1"表示该控制信号有效

2. 字段直接编码方式

将微指令的控制字段分成若干 "段", 每段经译码后发出控制信号

每个字段中的命令是 互斥 的缩短 了微指令字长,增加了译码时间

3. 字段间接编码方式

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

四、微指令序列地址的形成

- 1. 微指令的 下地址字段 指出(断定方式)
- 2. 根据机器指令的操作码形成:根据机器指令的操作码,由微地址形成部件形成对应该机器指令微程序的首地址。
- 3. 增量计数器 (顺序地址)

 $(CMAR) + 1 \longrightarrow CMAR$

4. 分支转移 (转移指令)

转移方式 指明判别条件

转移地址 指明转移成功后的去向

四、微指令序列地址的形成

5. 通过测试网络

6. 由硬件产生微程序入口地址

加电后,第一条微指令地址 由专门 硬件 产生中断周期 由 硬件 产生中断周期微程序首地址

四、微指令序列地址的形成

7. 后续微指令地址形成方式原理图

五、微指令格式

1. 水平型微指令

一次能定义并执行多个并行操作

如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码

2. 垂直型微指令

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

3. 两种微指令格式的比较

- (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强
- (2) 水平型微指令执行一条机器指令所要的 微指令 数目少,速度快
- (3) 水平型微指令 用较短的微程序结构换取较长的 微指令结构
- (4) 水平型微指令与机器指令 差别大

六、静态微程序设计和动态微程序设计

静态 微程序无须改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令, 有利于仿真,采用 EPROM

七、毫微程序设计

1. 毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微程序

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

2. 毫微程序控制存储器的基本组成

八、串行微程序控制和并行微程序控制

串行 微程序控制

取第 i 条微指令 执行第 i 条微指令	取第 i+1 条微指令 执行第 i+1 条微指令
----------------------	--------------------------

并行 微程序控制

	取第 i 条微指令	执行第 i 条微指令		_
_		取第 i+1 条微指令	执行第 i+1 条微指令	
	·		取第 i+2 条微指令	执行第 i+2条微指令

九、微程序设计举例

- 1. 写出对应机器指令的微操作及节拍安排 假设 CPU 结构与组合逻辑相同
- (1) 取指阶段微操作分析 3条微指令

 $T_0 \quad PC \longrightarrow MAR$

 $T_1 \quad M(MAR) \longrightarrow MDR \quad (PC) + 1 \longrightarrow PC$

 $T_2 \quad MDR \longrightarrow IR$

OP(IR) → 微地址形成部件

 $1 \longrightarrow \mathbb{R}$

蓝需考虑如何囊排这条编始龄令?

则取指操作需。3.条微指令

OP(IR)→微地址形成部件 → CMAR

(2) 取指阶段的微操作及节拍安排

考虑到需要 形成后续微指令的地址

$$T_0 \quad PC \longrightarrow MAR \qquad 1 \longrightarrow R$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

$$T_2$$
 M (MAR) \longrightarrow MDR (PC)+1 \longrightarrow PC

$$T_3$$
 Ad (CMDR) \longrightarrow CMAR

$$T_4$$
 MDR \longrightarrow IR OP(IR) \longrightarrow 微地址形成部件

$$T_5$$
 OP(IR) \longrightarrow 微地址形成部件 \longrightarrow CMAR

(3) 执行阶段的微操作及节拍安排

考虑到需形成后续微指令的地址

• 非访存指令

取指微程序的入口地址 M 由微指令下地址字段指出

- ① CLA 指令 $T_0 \quad 0 \longrightarrow AC$ $T_1 \quad Ad (CMDR) \longrightarrow CMAR$
- ② COM 指令 $T_0 \quad \overline{AC} \longrightarrow AC$ $T_1 \quad Ad (CMDR) \longrightarrow CMAR$

③ SHR 指令

$$T_0$$
 L(AC) \longrightarrow R(AC) AC₀ \longrightarrow AC₀
 T_1 Ad(CMDR) \longrightarrow CMAR

④ CSL 指令

$$T_0$$
 $R(AC) \longrightarrow L(AC)$ $AC_0 \longrightarrow AC_n$
 T_1 $Ad(CMDR) \longrightarrow CMAR$

⑤ STP 指令

$$T_0 \longrightarrow G$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

• 访存指令

- ⑥ ADD 指令
 - T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R
 - T_1 Ad (CMDR) \longrightarrow CMAR
 - $T_2 \quad M(MAR) \longrightarrow MDR$
 - T_3 Ad (CMDR) \longrightarrow CMAR
 - T_{4} (AC) + (MDR) \longrightarrow AC
 - T_5 Ad (CMDR) \longrightarrow CMAR
- ⑦ STA 指令
 - T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow W$
 - T_1 Ad (CMDR) \longrightarrow CMAR
 - $T_2 \longrightarrow MDR$
 - T_3 Ad (CMDR) \longrightarrow CMAR
 - $T_4 \quad MDR \longrightarrow M (MAR)$
 - T_5 Ad (CMDR) \longrightarrow CMAR

⑧ LDA 指令

$$T_0$$
 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

$$T_2 \qquad M (MAR) \longrightarrow MDR$$

$$T_3$$
 Ad (CMDR) \longrightarrow CMAR

$$T_4$$
 MDR \longrightarrow AC

$$T_5$$
 Ad (CMDR) \longrightarrow CMAR

• 转移类指令

⑨ JMP指令

$$T_0$$
 Ad (IR) \longrightarrow PC

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

⑩ BAN 指令

$$T_0 \qquad A_0 \cdot Ad (IR) + \overline{A_0} \cdot (PC) \longrightarrow PC$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

微指令 38条

2. 确定微指令格式

- (1) 微指令的编码方式 采用直接控制
- (2) 后续微指令的地址形成方式 由机器指令的操作码通过微地址形成部件形成 由微指令的下地址字段直接给出
- (3) 微指令字长
 由 20 个微操作
 确定操作控制字段 最少 20 位
 由 38 条微指令
 确定微指令的下地址字段 为 6 位
 微指令字长 可取 20 + 6 = 26 位

(4) 微指令字长的确定

38条微指令中有19条

是关于后续微指令地址 — CMAR

若用 Ad (CMDR) 直接送控存地址线

则 省去了输至 CMAR 的时间,省去了 CMAR

同理 OP(IR) → 微地址形成部件 → 控存地址线

可省去19条微指令,2个微操作

$$38 - 19 = 19$$

$$20 - 2 = 18$$

下地址字段最少取 5 位 操作控制字段最少取 18 位

5(

(5) 省去了 CMAR 的控制存储器

考虑留有一定的余量

取操作控制字段 下地址字段

(6) 定义微指令操作控制字段每一位的微操作

0 1 2 ... 23 24 ... 29

3. 编写微指令码点

微程序	微指令 地址	微指令 (二进制代码)														
名称	(八进制)		操作控制字段							下地址字段						
PC→MAR		0	1	2	3	4	•••	10	•••	23	24	25	26	27	28	29
 取指	00	1	1			PC+1→PC				0	0	0	0	0	1	
	01			1	1	1 MDR→IR					0	0	0	1	0	
	02					1					×	×	×	×	×	×
CLA	03						Ad(IR)	→ MA	R	0	0	0	0	0	0
COM	04			1	→R						0	0	0	0	0	0
	10		1		M	I(MAR)→MDR				0	0	1	0	0	1	
ADD	11			1-							0	0	1	0	1	0
	12			1	→R						0	0	0	0	0	0
	16		1					1			0	0	1	1	1	1
LDA	17			1~			AUD		AAD		0	1	0	0	0	0
	20				M		\d(IR R)→				0	0	0	0	0	0

第十章 控制单元的设计 回顾

- * 10.1 组合逻辑设计
 - CU框图、微操作的节拍安排(三个原则)
 - 设计步骤: 列操作时间表、写逻辑表达式、画逻辑图
- * 10.2 微程序设计
 - 设计思想: 微程序、微指令、控存
 - CU框图和工作原理
 - **关键:微指令编码方式**(直接、字段直接和间接编码)和 **后续地址形成**(下地址、操作码经微地址形成部件、增量计数、分支转移、测试网络、硬件产生)
 - 微指令格式: 水平型、垂直型; 静态、动态微程序设计
 - **设计步骤:** 微操作分析和节拍安排、确定微指令格式、编写微指令码点

Thank You!

Computer Architecture Research Institute - Computer Organization