1 The Role of Algorithms in Computing

1.1 Algorithms

1.1-1

- Give a real-world example that requires sorting or a real-world example that requires computing a convex hull.
 - Sorting: browse the price of the restaurants with ascending prices on NTU street.
 - Convex hull: computing the diameter of set of points.

1.1-2

Other than speed, what other measures of efficiency might one use in a real-world setting?

Memory efficiency and coding efficiency.

1.1-3

Select a data structure that you have seen previously, and discuss its strengths and limitations.

Linked-list:

- · Strengths: insertion and deletion.
- · Limitations: random access.

1.1-4

- How are the shortest-path and traveling-salesman problems given above similar? How are they different?
 - Similar: finding path with shortest distance.
 - Different: traveling-salesman has more constraints.

1.1-5

Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is "approximately" the best is good enough.

- Best: find the GCD of two positive integer numbers.
- Approximately: find the solution of differential equations.

1.2 Algorithms as a technology

1.2-1

Give an example of an application that requires algorithmic content at the application level, and discuss the function of the algorithms involved.

Drive navigation.

1.2-2

Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $8n^2$ steps, while merge sort runs in $64n\lg n$ steps. For which values of n does insertion sort beat merge sort?

Chapter 1 1 / 2

$$8n^2 < 64n \lg n$$

 $2^n < n^8$
 $2 \le n \le 43$.

1.2-3

What is the smallest value of n such that an algorithm whose running time is $100n^2$ runs faster than an algorithm whose running time is 2^n on the same machine?

$$100n^2 < 2^n$$

 $n \ge 15$.

Problem 1-1

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
lgn	2^{10^6}	$2^{6 \times 10^7}$	$2^{3.6\times10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.59\times10^{12}}$	$2^{3.15\times10^{13}}$	$2^{3.15\times10^{15}}$
\sqrt{n}	10^{12}	3.6×10^{15}	1.3×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.95×10^{30}
n	10^{6}	6×10^{7}	3.6×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.15×10^{15}
nlgn	6.24×10^4	2.8×10^6	1.33×10^8	2.76×10^{9}	7.19×10^{10}	7.98×10^{11}	6.86×10^{13}
n^2	1000	7745	60000	293938	1609968	5615692	56156922
n^3	100	391	1532	4420	13736	31593	146645
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Chapter 1 2 / 2