

5

Protecting Information Resources

Learning Objectives (1 of 2)

- Describe information technologies that could be used in computer crimes
- Describe basic safeguards in computer and network security
- Explain the major security threats
- Describe security and enforcement measures

Learning Objectives (2 of 2)

 Summarize the guidelines for a comprehensive security system, including business continuity planning

Risks Associated with Information Technologies

- Information technologies can be misused to invade users' privacy and commit computer crimes
 - You can minimize or prevent many of these risks by installing operating system updates regularly, using antivirus and antispyware software, and using e-mail security features

The Costs of Cyber Crime to the U.S. Economy

- Costs include:
 - Stolen identities, intellectual property, and trade secrets
 - Damage done to companies' and individuals' reputations
 - Expense of enhancing and upgrading a company's network security after an attack
 - Opportunity costs associated with downtime and lost trust and loss of sensitive business information

Spyware and Adware

Spyware

- Software that secretly gathers information about users while they browse the Web
 - Prevented by installing antivirus or antispyware software

Adware

- Spyware that collects information about the user to determine advertisements to display
 - Prevented by installing an ad-blocking feature in the Web browser

Phishing, Pharming, Baiting, Quid Pro Quo, SMiShing, and Vishing (1 of 3)

- Phishing
 - Sending fraudulent e-mails that seem to come from legitimate sources
- Pharming
 - Internet users are directed to fraudulent
 Web sites with the intention of stealing their personal information

Phishing, Pharming, Baiting, Quid Pro Quo, SMiShing, and Vishing (2 of 3)

- Baiting
 - Similar to phishing attacks; baiter gives recipient a promise
- Quid pro quo
 - Involves a hacker requesting the exchange of critical data or login information in exchange for a service or prize

Phishing, Pharming, Baiting, Quid Pro Quo, SMiShing, and Vishing (3 of 3)

- SMiShing (SMS phishing)
 - Technique tricks a user to download a malware
- Vishing (voice or VoIP phishing)
 - Technique tricks a user to reveal important financial or personal information to unauthorized entities

Keystroke Loggers

- Monitor and record keystrokes
 - Can be software or hardware devices
 - Used by companies to track employees' use of e-mail and the Internet
 - Used for malicious purposes
 - Prevented by some antivirus and antispyware programs

Sniffing and Spoofing

Sniffing

- Capturing and recording network traffic
- Used by hackers to intercept information

Spoofing

- Attempting to gain access to a network by posing as an authorized user in order to find sensitive information
- Also happens when an illegitimate program poses as a legitimate one

Computer Crime and Fraud (1 of 2)

- Computer fraud
 - Unauthorized use of computer data for personal gain
- Computer crimes
 - Denial-of-service attacks
 - Identity theft and software piracy
 - Distributing child pornography
 - E-mail spamming
 - Writing or spreading malicious codes

Computer Crime and Fraud (2 of 2)

- Stealing files for industrial espionage
- Changing computer records illegally
- Virus hoaxes
- Sabotage
- Holding a firm's critical data for ransom
 - Example: ransomware

Computer and Network Security: Basic Safeguards (1 of 5)

- Comprehensive security system
 - Protects an organization's resources
 - Collectively protect information resources and keep intruders and hackers at bay
 - Hardware
 - Software
 - Procedures
 - Personnel

Computer and Network Security: Basic Safeguards (2 of 5)

- Important aspects of computer and network security: CIA triangle
 - Confidentiality
 - Integrity
 - Availability

Computer and Network Security: Basic Safeguards (3 of 5)

- McCumber cube
 - Framework for evaluating information security
 - Represented as a three-dimensional cube
 - Defines nine characteristics of information security
 - Includes different states in which information can exist in a system
 - Transmission, storage, and processing

Exhibit 5.1 McCumber Cube

Computer and Network Security: Basic Safeguards (4 of 5)

- Levels of network security
 - Level 1: front-end servers
 - Protected against unauthorized access
 - Level 2: back-end systems
 - Protected to ensure data confidentiality, accuracy, and integrity
 - Level 3: corporate network
 - Protected against intrusion, denial-ofservice attacks, and unauthorized access

Computer and Network Security: Basic Safeguards (5 of 5)

- Planning a comprehensive security system: designing fault-tolerant systems
 - Ensure availability in the event of a system failure by using a combination of hardware and software
 - Commonly used methods
 - Uninterruptible power supply (UPS)
 - Redundant array of independent disks (RAID)
 - Mirror disks

Intentional Threats

- Intentional threats include:
 - Viruses and worms
 - Trojan programs
 - Logic bombs
 - Backdoors
 - Blended threats
 - Rootkits
 - Denial-of-service attacks
 - Social engineering

Viruses

- Consists of self-propagating program code that is triggered by a specified time or event
 - Attaches itself to other files, and the cycle continues when the program or operating system containing the virus is used
 - Transmitted through a network or e-mail attachments, or message boards
 - Prevented by installing and updating an antivirus program

Worms

- Independent programs that can spread themselves without having to be attached to a host program
 - Replicate into a full-blown version that could end up eating computing resources
 - Examples: Code Red, Melissa, and Sasser

Trojan Programs

- Contain code intended to disrupt a computer, network, or Web site
 - Hidden inside a popular program

Logic Bombs

- Type of Trojan program used to release a virus, worm, or other destructive code
 - Triggered at a certain time or by a specific event

Backdoors

- Programming routine built into a system by its designer or programmer
 - Enables the designer or programmer to bypass security and sneak back into the system later to access programs or files

Blended Threats

- Combines characteristics of viruses, worms, and malicious codes with vulnerabilities on networks
 - Search for vulnerabilities in computer networks and take advantage of them
 - Embedding malicious codes in the server's HTML files
 - Sending unauthorized e-mails from compromised servers with a worm attachment

Denial-of-Service Attacks (1 of 2)

- Flood a network or server with service requests to prevent legitimate users' access to the system
 - Distributed denial-of-service (DDoS) attack: thousands of computers work together to bombard a Web site with thousands of requests in a short period, causing it to grind to a halt

Denial-of-Service Attacks (2 of 2)

- Botnet: network of computers and IoT devices:
 - Infected with malicious software
 - Controlled as a group without owners' knowledge
- TDoS (telephony denial of service) attacks
 - Use high volumes of automated calls to tie up a target phone system, halting incoming and outgoing calls

Social Engineering

- Using "people skills" to trick others into revealing private information
- Commonly used social-engineering techniques
 - Dumpster diving
 - Shoulder surfing
 - Tailgating
 - Scareware
 - Pretexting

Security Measures And Enforcement: An Overview

- Components of a comprehensive security system
 - Biometric, nonbiometric, and physical security measures
 - Access controls
 - Virtual private networks
 - Data encryption
 - E-commerce transaction security measures
 - Computer Emergency Response Team (CERT)

Biometric Security Measures

- Use a physiological element unique to a person that cannot be stolen, lost, copied, or passed on to others
 - Biometric devices and measures
 - Facial recognition, fingerprints, hand geometry, iris analysis, palm prints, retinal scanning, signature analysis, vein analysis, and voice recognition

Nonbiometric Security Measures

- Three main nonbiometric security measures
 - Callback modems
 - Firewalls
 - Intrusion detection systems

Callback Modems

- Verify whether a user's access is valid
 - Done by logging the user off and then calling the user back at a predetermined number
 - Useful when many employees work off-site and need to connect to the network from remote locations

Firewalls

- Combinations of hardware and software that acts as a filter between a private network and external networks
 - Network administrator defines rules for access, and all other data transmissions are blocked
 - Types: packet-filtering firewalls, applicationfiltering firewalls, and proxy servers

Exhibit

5.3 Basic Firewall Configuration

Exhibit

5.4 Proxy Server

Intrusion Detection System (IDS)

- Protects against external and internal access
 - Placed in front of a firewall
 - Identifies attack signatures, traces patterns, and generates alarms for the network administrator
 - Causes routers to terminate connections with suspicious sources
 - Prevents DoS attacks

Physical Security Measures

- Control access to computers and networks
 - Include devices for securing computers and peripherals from theft
 - Cable shielding and room shielding
 - Corner bolts and steel encasements
 - Electronic trackers, identification (ID) badges, and proximity-release door openers

Access Controls

- Designed to protect systems from unauthorized access in order to preserve data integrity
 - Terminal resource security: erases the screen and signs the user off automatically after a specified length of inactivity
 - Passwords: combination of numbers, characters, and symbols that is entered to allow access to a system

Virtual Private Networks (1 of 2)

- Provides a secure tunnel through the Internet for transmitting messages and data via a private network
 - Gives remote users have a secure connection to the organization's network
 - Provides security for extranets

Virtual Private Networks (2 of 2)

- Data is encrypted before it is sent with a protocol
 - Layer Two Tunneling Protocol (L2TP)
 - Internet Protocol Security (IPSec)
- Advantage
 - Set-up costs are low
- Disadvantages
 - Slow transmission speed
 - Lack of standardization

Data Encryption (1 of 4)

- Transforms data, called plaintext or cleartext, into a scrambled form called ciphertext that cannot be read by others
 - Receiver unscrambles data using a decryption key
- Rules for encryption
 - Known as the encryption algorithm
 - Determine how simple or complex the transformation process should be

Data Encryption (2 of 4)

- Commonly used encryption protocols
 - Secure Sockets Layer (SSL)
 - Manages transmission security on the Internet
 - Transport Layer Security (TLS)
 - Cryptographic protocol that ensures data security and integrity over public networks, such as the Internet

Data Encryption (3 of 4)

- Asymmetric encryption uses two keys
 - Public key known to everyone
 - Encrypted message can be decrypted only with the same algorithm used by the public key and requires the recipient's private key
 - Private or secret key known only to the recipient
 - Drawback: slow and requires a large amount of processing power

Data Encryption (4 of 4)

- Symmetric (secret key) encryption: same key is used to encrypt and decrypt the message
 - Sender and receiver must agree on the key and keep it secret
 - Can be used to create digital signatures
 - Drawback: sharing the key over the Internet is difficult

E-Commerce Transaction Security Measures

- Concerned with several issues
 - Confidentiality
 - Authentication
 - Integrity
 - Nonrepudiation of origin
 - Nonrepudiation of receipt

Computer Emergency Response Team

- Developed by the Defense Advanced Research Projects Agency
 - Focuses on security breaches and DoS attacks
 - Offers guidelines on handling and preventing attacks
 - Conducts public awareness campaigns and researches Internet security vulnerabilities

Guidelines for a Comprehensive Security System (1 of 4)

- Before establishing a security program, organizations should:
 - Understand the principles of the Sarbanes-Oxley Act of 2002
 - Conduct a basic risk analysis, which makes use of financial and budgeting techniques
 - Information obtained helps organizations weigh the cost of a security system

Guidelines for a Comprehensive Security System (2 of 4)

- Steps when developing a comprehensive security plan
 - Set up a security committee
 - Post security policy in a visible place
 - Raise employee awareness
 - Use strong passwords
 - Install software patches and updates
 - Revoke terminated employees' passwords and ID badges immediately

Guidelines for a Comprehensive Security System (3 of 4)

- Keep sensitive data locked in secured locations
- Exit programs and systems promptly
- Limit computer access to authorized personnel only
- Compare communication logs with communication billings periodically
- Install antivirus programs, firewalls, and intrusion detection systems
- Use only licensed software

Guidelines for a Comprehensive Security System (4 of 4)

- Ensure fire protection systems and alarms are up to date, and test them regularly
- Check environmental factors
 - Temperature and humidity levels
- Use physical security measures
 - Corner bolts on workstations, ID badges, and door locks

Business Continuity Planning (1 of 2)

- Outlines procedures for keeping a firm operational in the event of a natural disaster or network attack
 - Disaster recovery plan lists the tasks that must be performed to restore damaged data and equipment and steps to prepare for disaster

Business Continuity Planning (2 of 2)

- Steps to follow when disaster strikes
 - Put together a management crisis team
 - Contact the insurance company
 - Restore phone communication systems
 - Notify all affected people that recovery is underway
 - Set up a help desk to assist affected people
 - Document all actions taken

Summary (1 of 2)

- Risks associated with information technologies can be minimized by:
 - Installing operating system updates regularly
 - Using antivirus/antispyware software and email security features
- Comprehensive security system protects an organization's resources
 - Including information, computers, and network equipment

Summary (2 of 2)

- Network security threats can be categorized
 - Unintentional: natural disasters, accidental deletion of data, and structural failures
 - Intentional: hacker attacks and attacks by disgruntled employees
- Organizations must employ a variety of comprehensive security measures to guard against threats

