ЛАБОРАТОРНАЯ РАБОТА №2 ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ

Выполнили:		 	
Группа:	_ Вариант 2		

1. Исследование зависимости погрешности от шага сетки

1. Для функции f(x)=exp(x) определите оптимальный шаг для численного вычисления второй производной. Результаты экспериментов запишите в табл.

1.	
h	Ψ
10 -1	

Табл. 1.

Схематично нарисуйте график погрешности в зависимости от шага сетки (зависимость Ψ от h).

2. Для функции f(x)=100exp(x) определите оптимальный шаг для численного вычисления второй производной. Результаты экспериментов запишите в табл.2

Ψ

Табл. 2.

Схематично нарисуйте график погрешности в зависимости от шага сетки (зависимость Ψ от h). Как изменился оптимальный шаг? Почему? (написать объяснение).

3. Для функции f(x)=exp(x)+cos(10x) определите оптимальный шаг для численного вычисления второй производной. Результаты экспериментов запишите в табл. 3.

Табл. 3.

Схематично нарисуйте график погрешности в зависимости от шага сетки (зависимость Ψ от h). Как изменился оптимальный шаг? Почему? (написать объяснение).

4. Для функции $f(x)=P_2(x)$ определите оптимальный шаг для численного вычисления второй производной. Результаты экспериментов запишите в табл. 4.

h	Ψ
<i>10</i> ⁻¹	

Табл. 4.

Постройте (от руки!) график погрешности в зависимости от шага сетки (зависимость Ψ от h). Объясните, почему получился именно такой оптимальный шаг.

5. Для функции $f(x)=P_3(x)$ определите оптимальный шаг для численного вычисления второй производной. Результаты экспериментов запишите в табл. 5.

<u>J.</u>	
h	Ψ
10 ⁻¹	

Табл. 5.

Схематично нарисуйте график погрешности в зависимости от шага сетки (зависимость Ψ от h). Объясните, почему получился именно такой оптимальный шаг.

2. Исследование зависимости погрешности от узла сетки

- 1. Схематично нарисуйте график зависимости погрешности от узла сетки для функции f(x)=exp(x), оператора вычисления второй производной и шага сетки $h=10^{-3}$. Чем определяется вид графика?
- 2. Постройте аналогичный график для функции f(x)=exp(x), и шага сетки $h=10^{-5}$. Чем можно объяснить скачкообразное увеличение погрешности в узлах 0.125, 0.25, 0.5?
- 3. Постройте аналогичный график для функций $f_I(x) = exp(x)$, $f_2(x) = exp(x) + cos(10x)$, и шага сетки $h = 10^{-4}$. Почему есть вычислительная погрешность в первом случае и нет во втором?