蚂蚁平台用户指南 机器学习平台

通用约定

格式 说明 样例

该类警示信息将导致系统重大变 **危险:**更甚至故障,或者导致人身伤害 数据。

等结果。

危险:重置操作将丢失用户配置数据。

该类警示信息可能导致系统重大 变更甚至故障,或者导致人身伤

害等结果。

警告: 重启操作将导致业务中断,恢复业务所需时间约 10 分钟。

用于补充说明、最佳实践、窍门

等,不是用户必须了解的内容。

注: 您也可以通过按 Ctrl + A 选中全部文件。

> 多级菜单递进。 **设置 > 网络 > 设置网络类型**

粗体 表示按键、菜单、页面名称等 单击 确定。

UI 元素。

courier 命令。 执行 cd /d C:/windows 命令,

字体 进入 Windows 系统文件夹。

斜体 表示参数、变量。 bae log list —instanceid

Instance_ID

[]或者 表示可选项,至多选择一个。 ipconfig [-a11/-t]

[a|b]

{}或者 表示必选项,至多选择一个。 swith {stand | slave}

 $\{a \mid b\}$

通用约定	2
1 机器学习平台	4
1.1 机器学习的一般过程	4
1.1.1 新建实验	4
1.1.2 读取数据表	4
1.1.2.1 查看字段信息	5
1.1.3 数据预处理	5
1.1.3.1 缺失值填充	5
1.1.3.2 缺失值填充一参数设置	6
1.1.3.3 数据拆分	6
1.1.4 数据探索	7
1.1.4.1 查看全表统计信息	7
1.1.5 算法建模	8
1.1.5.1 选择算法组件	8
1.1.5.2 算法参数配置	9
1.1.5.3 预测和评估的参数配置	9
1.1.6 模型评估1	0
1.1.6.1 查看模型1	0
1.1.6.2 二分类评估1	1
1.1.7 数据存储1	2
1.1.7.1 写数据表1	2
1 1 7 9 促充榵刑 1	2

1 机器学习平台

1.1 机器学习的一般过程

一个完整的建模步骤包括以下6个步骤:

stepl:数据准备

step2:数据预处理

step3:数据可视化

step4: 算法建模

step5: 模型评估

step6:数据存储

注意:以下步骤默认用户已拥有自己的 projet 并将表数据传入对应的 project 中

1.1.1 新建实验

新建空白实验,输入实验名和实验描述:

其中:

- 名称:对创建的实验命名。
- 描述:对实验内容的描述。
- 位置:实验创建后放置的位置。

1.1.2 读取数据表

从组件栏中拖入读数据表,配置你的 ODPS 表:

1.1.2.1 查看字段信息

- 切换到字段信息栏,可以查看输入表的字段名、数据类型和前 100 行数据的数值分布。
- 在画布中右键点击组件可查看前 100 条详细数据。

1.1.3 数据预处理

对前一步导入的数据进行预处理。

1.1.3.1 缺失值填充

拖入"数据预处理-缺失值填充"组件,并将两个组件连线

1.1.3.2 缺失值填充一参数设置

设置组件中需要处理的字段和填充方法

1.1.3.3 数据拆分

- 对处理好的数据进行拆分。
- 拖入拆分组件,用线条连接缺失值填充和拆分组件。

此步骤的目的是将数据拆分成两份,例如:50%作为模型训练集,50% 作为模型预测集。

1.1.4 数据探索

- 用"全表统计"对数据做一个简单的分析,使用搜索或从"组件一数据探索一统计分析一基本分析一全表统计"拖入画布中。
- 将"缺失值填充"和"全表统计"两个组件用线条连接。

1.1.4.1 查看全表统计信息

点击"运行"后,右键点击"全表统计"选择查看分析报告,可看到数据的全表统计信息,如下:

1.1.5 算法建模

1.1.5.1 选择算法组件

本实验使用二分类模型,分别从"机器学习"栏目,拖入-逻辑回归二分类、 预测、二分类评估组件,

将组件用线条连接,如下图:

1.1.5.2 算法参数配置

选中"逻辑回归二分类"组件,画布右侧出现逻辑回归参数配置字段 - 训练特征列和目标列,如下图:

1.1.5.3 预测和评估的参数配置

预测组件第一个输入为算法模板,第二个输入为测试集,字段和参数无需配置; 二分类评估组件参数"原始标签列列名"与逻辑回归组件"目标列"参数配置 成相同的字段,如下:

预测组件输出字段解释

predict_result:预测结果列;

predict score: 预测结果概率得分; 仅模型为二分类时有效

predict detail:每个类别的预测概率得分;仅模型为二分类时有效

1.1.6 模型评估

运行以上流程,可查看模型的信息。

1.1.6.1 查看模型

右键点击"逻辑回归二分类",点击"模型选项一查看模型",如下图:

1.1.6.2 二分类评估

右键点击"二分类评估",点击"查看评估报告",如下图:

1.1.7 数据存储

1.1.7.1 写数据表

搜索"写数据表"组件,或者从"组件一数据读写一写数据表"中选中组件拖入画布中。

流程中任意节点的中间数据存储指定的 ODPS 表,如下图:

1.1.7.2 保存模型

选中训练好的模型,右键点击,选择"模型选项一保存模型",保存后的模型可以在左侧的"模型"一级菜单中找到。

选择训练好的模型可以拖入到画布中,可实现模型的预测功能,如下图:

