Vector Calculus 10.8 Arc Length and Curvature; 10.9 Motion in Space: Velocity and Acceleration

Def: Suppose $\vec{r}=\vec{r}(t)$ is a parametric vector-valued function. Physicists call $\vec{r}(t)$ the position vector, $\vec{v}(t)=\vec{r}'(t)$ the velocity vector, $|\vec{v}(t)|=|\vec{r}'(t)|$ the speed, and $\vec{a}(t)=\vec{v}'(t)=\vec{r}''(t)$ the acceleration vector.

Ex: Compute the position vector, velocity vector, speed, and acceleration vector of $\vec{r}(t) = <3t, -t^2, t^3>$ at t=2.

Sol: We compute

$$7(2) = (6, -4, 8)$$
 $7(4) = (3, -2t, 3t^2)|_{t=2} = (3, -4, 12)$
 $7(4) = (0, -2, 6t)|_{t=2} = (0, -2, 12)$
 $7(4) = \sqrt{9+16+144}$
 $7(4) = \sqrt{9+16+144}$
 $7(4) = \sqrt{9+16+144}$

Def: Suppose r=r(t) is a regular parametric space curve defined for t near a, and suppose $r''(t)=\sqrt{0}$ exists for t near a.

We say $T(a) = \frac{r'(a)}{r'(a)}$ is the <u>unit tangent vector of r at t=a</u>.

We say
$$\vec{N}(a) = \frac{\frac{1}{2t}T(t)}{\frac{1}{2t}T(t)}$$
 is the unit normal vector of \vec{r} $\frac{1}{2t}T(t)$

We say $\vec{B}(a) = \vec{T}(a) \times \vec{N}(a)$ is the binormal vector of \vec{r} at t=a.

We say T(a), N(a), B(a) are the <u>TNB frame</u> or the orthonormal frame of rat t=a

Ex: Compute the TNB frame of $\vec{r}(t) = \cos(t), \sin(t), t>$ at all t.

Sol: We compute

$$\overrightarrow{r}(t) = \langle -\sin t, \cos t, 1 \rangle$$

$$|\overrightarrow{r}(t)| = \sqrt{\sin^2 t + (\cos^2 t + 1)} = \sqrt{2}$$

$$\overrightarrow{T}(t) = \frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|} = \langle -\frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

For $\tilde{N}(t)$, we compute

$$\frac{\partial}{\partial t} \vec{T}(t) = \left\langle -\frac{\cos t}{\sqrt{2}}, -\frac{\sin t}{\sqrt{2}}, 0 \right\rangle$$

$$\left| \frac{\partial}{\partial t} \vec{T}(t) \right| = \sqrt{\frac{\cos^2 t}{2} + \frac{\sin^2 t}{2}} = \sqrt{\frac{1}{2}}$$

$$\Rightarrow \vec{N}(t) = \frac{\cancel{k}\vec{\tau}(t)}{\cancel{k}\vec{\tau}(t)} = \frac{\langle -\frac{\cos t}{\sqrt{2}}, -\frac{\sin t}{\sqrt{2}}, \delta \rangle}{\cancel{k}\vec{\tau}} = \langle -\cos t, -\sin t, \delta \rangle$$

Next, we compute

i, we compute
$$\frac{1}{B}(t) = \overline{T}(t) \times \overline{N}(t) = \left(\frac{-\sin t}{E}, \frac{\cos t}{E}, \frac{1}{E} \right)$$

$$= \left\langle \begin{array}{c} \frac{1}{\sqrt{2}} & -\frac{(\omega)t}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right\rangle$$

We conclude that

$$\overrightarrow{T}(t) = \left\langle -\frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

$$\overrightarrow{N}(t) = \left\langle -\cos t, -\sin t, 0 \right\rangle$$

$$\overrightarrow{B}(t) = \left\langle \frac{\sin t}{\sqrt{2}}, -\frac{\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

Fact: Suppose $\vec{r}=\vec{r}(t)$ is a regular parametric space curve defined for t near a, and suppose \vec{r} "(t)= $\sqrt{0}$ exists for t near a.

$$T(a), N(a), B(a)$$
 are orthonormal: $|T(a)| = |N(a)| = |B(a)| = 1$ and $T(a) \perp N(a)$, $T(a) \perp B(a)$, $N(a) \perp B(a)$.

T(a) is tangent to the image of T at t=a.

N(a) points towards the center of the osculating circle of r at t=a. It does not necessarily point exactly *at* the center, but it does point towards the center.

B(a) is a normal vector of the plane in space containing the osculating circle of \vec{r} at t=a.

11.1 Functions of Several Variables

Def: A <u>real-valued function of two variables</u> is a function $f:R^2-R$ of the variables x,y, and denoted f=f(x,y). The <u>graph</u> of f is the surface in space given by the equation z=f(x,y), which is the set

Ex: Some examples.

1. Linear functions f(x,y)=a+bx+cy, with graph the non-vertical plane through (0,0,a) with normal in the direction of n=<b,c,-1>.

Because, the graph is the surface given by the equation

$$2=a+bx+cy \Rightarrow bx+cy-2+a=0$$

$$\Rightarrow b(x-0)+c(y-0)-(2-a)=0$$

$$\Rightarrow plane through (0,0,a) with normal in the direction of $\vec{n} = (b,c,-1)$.$$

2. $f(x,y) = \sqrt{a^2 - x^2 - y^2}$ for a>0, with graph the upper hemisphere centered at the origin with radius =a.

Because the graph of f is the surface given by the equation

$$Z = \sqrt{a^2 - x^2 - y^2}$$
 \Rightarrow $x^2 + y^2 + z^2 = a^2$, $z > 0$
with $x^2 + y^2 \le a^2$

Def: Suppose f=f(x,y) is a real-valued function. The <u>level</u> <u>curve of f at k in R</u> is the curve in the plane z=k given by the equation f(x,y)=k.

Ex: Sketch the level curves of $f(x,y)=4x^2+y^2$ at k=1,4.

Sol: First, the level curve of f at k=1 is given by

$$4x^2+y^2=1 \implies \frac{x^2}{4}+y^2=1$$

Second, the level curve of f at k=4 is given by

$$4x^{2}+y^{2}=4 \Rightarrow x^{2}+\frac{y^{2}}{4}=1$$

We conclude that the level curves of f at k=1,4 are

In fact, the graph of f is the quadric surface given by the equation $2 = 4x^2 + y^2 \qquad \text{elliptic paraboloid}.$

Def: A <u>real-valued function of three variables</u> is a function f:R^3->R of the variables x,y,z, and denoted f=f(x,y,z). The graph of f is the <u>hypersurface</u> in R^4 given by the set

The <u>level surface of f at k in R</u> is the surface in space given by the equation f(x,y,z)=k.

Ex: Identify the level surfaces of $f(x,y,z)=x^2+y^2+z^2$ at k=1,4.

Sol: We have

$$X^2+y^2+z^2=1 \implies \text{ at the origin}$$
 $X^2+y^2+z^2=4 \implies \text{ sphere of radius}=2$
 $X^2+y^2+z^2=4 \implies \text{ centered at the origin}$

11.2 Limits and Continuity

Fact: Suppose f=f(x) is defined near a, but perhaps not at a. The limit of f at a exists and is L if and only if the leftand right-hand limits of f exist at a and are both L.

For functions of one variable, you only have to check two directions: from the left and from the right. However, to show the limit of f=f(x,y) at (a,b) exists, we must consider many direction!

b -

Def: Suppose f=f(x,y) is a real-valued function defined

We say $\lim_{(x,u)\to(a,b)} f(x,y)=L$ if and only if $\lim_{t\to a} f(r(t))=L$ for all

continuous parametric plane curves = (t) defined near t=0 with $\vec{r}(0) = <a,b>$.

If f is defined at (a,b) and $\lim_{(x,y)=f(a,b)} f(a,b)$, then we say \underbrace{f} is continuous at (a,b).

We similarly define $\lim_{(x,y)} f(x,y)$ exists in the extended sense, and write

$$\mathcal{L}_{(x,y)\to(y,b)} f(x,y) = \pm \infty.$$

Fact: Suppose f=f(x,y) is a real-valued function defined near (a,b), but perhaps not at (a,b). If there are continuous parametric plane cures $\vec{r_1}, \vec{r_2}$ defined near t=0 with $\vec{r_1}(0)=\vec{r_2}(0)=<a,b>$, but so that

(including the possibility that one of the limits does not exist), then $\lim_{x \to a} f(x,y)$ does not exist.

$$(dir) \leftarrow (HX)$$

Ex: Show that the limit of the given function f at (0,0) does not exist (even in the extended sense).

1.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Sol: We must find two continuous parametric plane curves \vec{r}_{t} , \vec{r}_{t} passing through <0,0> so that $\lim_{t \to 0} f(\vec{r}_{t}(t)) = \lim_{t \to 0} f(\vec{r}_{t}(t))$.

First consider
$$\frac{3}{7}(t) = < t, 0 >$$

Second, consider
$$\vec{r}_{i}(t) = <0, t>$$
. We compute

$$\lim_{t \to 0} F(t^2(t)) = \lim_{t \to 0} \left(\frac{\chi^2 - y^2}{\chi^2 + y^2} \Big|_{\chi = 0} \right)$$

$$= \underbrace{\int_{t\to0}^{0^2-t^2}}_{t\to0} = \underbrace{\int_{t\to0}^{-t^2}}_{t^2} = \underbrace{\int_{t\to0}^{-t^2}}_{t\to0} - | = -|$$

Since

then we conclude that

2.
$$f(x,y) = \frac{xy^2}{x^2+2y}$$

Sol: Consider r(t) = < t, 0>, we compute

$$= \int_{t \to 0} \frac{t \cdot 0^2}{t^2 + 0^4} - \int_{t \to 0} 0 = 0$$

Consider $\mathbf{r}(t) = <0, t>$, we compute

$$\frac{1}{t \to 0} f(\vec{\tau}_2 t) = \frac{1}{t \to 0} \frac{xy^2}{x^2 + y^2} \Big|_{x=0} = \frac{1}{t \to 0} \frac{0 \cdot t^2}{0^2 + t^2}$$

$$= \frac{1}{t \to 0} 0 = 0$$

WARNING: This does *not* mean that the limit exists. We must consider *all* possible ways of approaching (0,0).

Consider $\mathbf{r}(t) = \langle t^2, t \rangle$, we compute

$$\frac{1}{t \Rightarrow 0} F(\hat{r}_{s}(t)) = \frac{1}{t \Rightarrow 0} \frac{xy^{2}}{x^{2} + y^{4}} \Big|_{x=t^{2}} = \frac{1}{t \Rightarrow 0} \frac{t^{2} \cdot t^{2}}{(t^{2})^{2} + t^{4}}$$

$$= \lim_{t \to 0} \frac{t^{4}}{t^{4}+t^{4}} = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}$$

Since

$$\lim_{t\to 0} F(\vec{r}_{s}(t)) = 0 \quad \pm \frac{1}{2} = \lim_{t\to 0} F(\vec{r}_{s}(t))$$

$$\times -axis$$

then we conclude that

It is not enough to only check along y=mx.

$$3. f(x,y) = \sin(\frac{x}{x^2 + y^2})$$

Sol: Consider $\hat{r}(t) = < t, 0>$, we compute

$$\frac{1}{t \to 0} F(\vec{\tau}(t)) = \frac{1}{t \to 0} \sin\left(\frac{t}{t^2 + 0^2}\right)$$

$$= \frac{1}{t \to 0} \sin\left(\frac{t}{t}\right) DNE$$

Since

then we conclude that