CS477 Combinatorics: Homework 10

于峥 518030910437

2020年5月13日

Problem 1. 证明:任何一个元素为非负实数、每行每列之和为 1 的 $n \times n$ 矩阵可以表示成置换矩阵的凸组合。

Solution. 首先我们不难把矩阵转化为二分图,如果 $M_{ij} \neq 0$,那么二分图 i,j 对应的点之间有边相连。我们首先证明这个二分图 $G = (L \cup R, E)$ 是有完美匹配的,即该二分图满足 Hall 条件。

如果存在子集 $S \subset L$,满足 $|\mathcal{N}(S)| < |S|$,注意到 |S| 所对应的行上的数字和为 |S|。这是 $|\mathcal{N}(S)|$ 对应列上的数字的部分和,而 $|\mathcal{N}(S)|$ 对应列上的数字和为 $|\mathcal{N}(S)| < |S|$,产生矛盾,因此必定所有集合都满足 Hall 条件,即二分图有完美匹配。因此矩阵上至少有 n 个非零的 M_{ij} ,我们可以对矩阵中不为 0 的 M_{ij} 个数进行归纳。

Induction Base 如果有n个位置非零,这n个位置必定都为1,不难发现M本身就是个置换矩阵。

Induction Step 对于非零位置数大于 n 的矩阵,我们找到对应二分图上的一个完美匹配,选择将匹配边对应的矩阵中的数中最小的一个,设为 λ_0 , 匹配对应的矩阵为 P_0 , 那么我们将矩阵减去 $\lambda_0 P_0$ 非零位置位置个数必定至少减少 1,因此我们将剩下的矩阵可以看作 $(1-\lambda_0)M'$, M' 依然是每行每列都为 1 的矩阵,根据归纳 M' 可以表示成置换矩阵的凸组合。

那么考虑此时矩阵 $M = \lambda_0 P_0 + (1 - \lambda_0) M' = \lambda_0 P_0 + (1 - \lambda_0) \sum_{i=1}^k \lambda_k P_k$ 。 并且 $\lambda_0 + (1 - \lambda_0) \sum_{i=1}^k \lambda_k = 1$,因此 M 可以表示成置换矩阵的凸组合。 **Problem 2.** G 是一个二分图,最大度数为 Δ 。

证明:可以对G的边用 Δ 种颜色染色,使得任何两条有公共点的边不同色。

Solution. 假设我们至少需要 C 种颜色才能使得任何两条有公共点的边不同色。那么我们显然有 $C \geq \Delta$ 。

考虑二分图左侧 L 所有度数为 Δ 的点的集合 S, 那么 S 和 $\mathcal{N}(S)$ 必然 存在大小为 |S| 的匹配,因为考虑任意子集 $T \subset S$, T 和 $\mathcal{N}(T)$ 之间的 边数为 $|T|\Delta = |\mathcal{N}(T)|\overline{d}$. \overline{d} 是 $\mathcal{N}(T)$ 的平均度数显然小于等于 Δ , 所以 $|T| \leq |\mathcal{N}(T)|$,这意味着这个子图满足 Hall 条件。我们记这个匹配为 M_L . 同理对右侧拥有度数 Δ 的点的集合找到完备匹配 M_R .

那么 $M_L \cup M_R$ 形成一个子图,首先我们有这个子图中的点度数都小于等于 2。所以这个子图的每个连通块只能是链或者环。

- i) 如果是环,我们可以做到选泽环上一半的边,这些边之间没有公共点,我们把它们从图上删去。此时这个连通块中的每个点度数都减少了1。
- ii) 如果是链,若这条链的长度为奇数 2k+1,那么我们可以做到删去 k+1 条互相没有公共点的边使得每个点度数都减少 1。

若是偶数,不难发现不可能链条两端的点度数在原图都是当前图的最大度数 Δ , 否则会出现两个度数为 Δ 的点匹配到了同一个点,根据构造这是不可能的。所以如果我们发现链的一端的度数小于 Δ ,那我们就从另一端开始,每隔一条边就删去一条边。我们可以做每个度数为 Δ 的点度数都减少 1。

每次操作可以让最大度数减少 1,因此 Δ 次后图将没有边。我们让一次删去的边染上同一种颜色,我们就得到了一个大小为 Δ 的染色。

Problem 3. 证明:对任意整数 k > 2,

$$r(3,k) \le \frac{k^2 + 3}{2}.$$

Solution.

Induction Base 由于 r(3,2) = 3, r(3,3) = 6 可以验证是满足要求的。

Induction Step 假设对于小于 k 时都成立,下面证明对于 k 也成立。 我们可以证明, $r(3,k) \le r(3,k-1) + k$,因为我们可以选择一个点,对于它 连出去的 r(3,k-1) + k - 1 条边,如果黄色边数量大于等于 k,那么对于黄 色边对应的点,如果不全是蓝色 (存在蓝色 K_k) 那么必有黄色三角形。如果黄色边数量小于 k, 那么就至少存在 r(3,k-1) 条蓝色边,我们知道这些边对应的点如果存在蓝色 K_{k-1} , 那么加上选择的点构成蓝色 K_k 。 当 k 是奇数时

$$r(3,k) \le k + \lfloor \frac{(k-1)^2 + 3}{2} \rfloor = k + \frac{(k-1)^2 + 2}{2} = \frac{k^2 + 3}{2}$$

当 k 是偶数时,我们可以证明 $\frac{k^2+2}{2}$ 个点将足够。因为如果每个点连出去的 蓝边数量都小于 $\frac{(k-1)^2+3}{2}$,并且黄边数量小于 k。

那么每个点连出去的黄边数量必须为 k-1, 而 k-1 是奇数,而 $\frac{k^2+2}{2}$ 也是奇数,因此这个黄色子图不满足握手定律。因此必然存在一个点满足蓝边大于等于 r(3,k-1) 或黄边大于等于 k。因此 k 为偶数时也满足。

Problem 4. 定义 $r_k(3)$ 为最小的 N 使得对 K_N 的边任意 k 染色,总有一个同色三角形。证明:

$$2^k < r_k(3) \le \lfloor ek! \rfloor + 1.$$

Solution. a) $2^k < r_k(3)$

Induction Base 当 k = 1 时,显然 2 个点不可能有同色三角形。

Induction Step 当小于 k 都成立时,我们取两个大小为 2^{k-1} 的图且两个图没有同色三角形,根据归纳这能做到。我们用新的第 k 种颜色把两个图之间的边连起来,就得到了大小为 2^k 且没有同色三角形的图。

b)
$$r_k(3) \le |ek!| + 1$$

用 k 种颜色对 K_n 染色,考虑 K_n 中某个点,它的邻边中必然有某种颜色出现了 $\left\lceil \frac{n-1}{k} \right\rceil$ 次,不妨设为黄色,如果这对应的 $\left\lceil \frac{n-1}{k} \right\rceil$ 个点的子图中出现了黄色,那么意味着出现了一个黄色三角形。否则如果 $\left\lceil \frac{n-1}{k} \right\rceil \geq r_{k-1}(3)$,那么也有同色三角形。

因此我们得到

$$r_k(3) \le k(r_{k-1}(3) - 1) + 2$$

又 $r_2(3) = 3$, 我们让 $f_1 = 3$, $f_k = kf_{k-1} - k + 2$. 那么我们可归纳证明

$$f_k - 1 = \sum_{i=0}^k \frac{k!}{i!}$$

当 k=1 时验证成立。若当小于 k 时成立,那么我们有 k 时也成立

$$f_k - 1 = k(f_{k-1} - 1) + 1 = k \sum_{i=0}^{k-1} \frac{(k-1)!}{i!} + \frac{k!}{k!} = \sum_{i=0}^{k} \frac{k!}{i!}$$

因此 $r_k(3) \le f_k < ek! + 1$, 考虑 $r_k(3)$ 为整数所以 $r_k(3) \le \lfloor ek! \rfloor + 1$.

Problem 5. 称一个关于 x_1, x_2, \ldots, x_n 的方程 E 是 Ramsey 的,如果: 对任意的 k,存在一个 N,使得对任意的染色 $f:[N] \to [k]$,总有 E 的同色解,即 E 的一组解 (a_1, a_2, \ldots, a_n) 使得 $f(a_1) = f(a_2) = \cdots = f(a_n)$ 。注意其中 a_i 不必两两不同。对下面的方程的每一个,证明或否定它是 Ramsey的。

- (a) $E_1: x = 2y$;
- (b) $E_2: x + y = z;$
- (c) $E_3: 5x + 3y = 7z + 12w$;
- (d) $E_4: x + 2020y = z$.

Solution. (a) E_1 不是 Ramsey 的,因为图 $G = ([N], \{\{x,y\} : x = 2y\})$ 由若干条链组成,可以二染色,所以对于任意的 N 都能做到不出现相邻同色节点,因此没有同色解。

(b) E_2 是 Ramsey 的, $\forall k$, 考虑

$$N = r_k(3) = \underbrace{r(3, 3, \cdots, 3)}_{\mathtt{k} \ \uparrow \ \mathtt{3}}$$

对于染色 $f:[N] \to [k]$,我们考虑 K_N ,对边进行 k 染色,染色方式是对于 边 $\{u,v\}$,颜色为 f(|u-v|)。那么由于其中必定存在同色三角形。设三角形 的三个点为 a,b,c(a>b>c),那么边所对应的数为 a-b,b-c,a-c。由构 造知道这三个数是同色的。又 (a-b)+(b-c)=a-c,所以满足 E_2 。

(c) 否定,对于 k=22, 我们定义染色 $f: \mathbb{Z}_+ \to [22]$, $f(23^k \cdot j) = j \mod 23$, 其中 23 /j。假设存在一组同色解 f(x) = f(y) = f(z) = f(w) = j. 所以我们有

 $5\cdot 23^{k_1}(23x_1+j)+3\cdot 23^{k_2}(23y_1+j)=7\cdot 23^{k_3}(23z_1+j)+12\cdot 23^{k_4}(23w_1+j)$ 我们将等式两边除以 $23^{\max\{k_1,k_2,k_3,k_4\}}$

 $5 \cdot 23^{m_1}(23x_1+j) + 3 \cdot 23^{m_2}(23y_1+j) = 7 \cdot 23^{m_3}(23z_1+j) + 12 \cdot 23^{m_4}(23w_1+j)$

然后对等式两边对 23 取模, 注意到根据定义, $j \neq 0$, 然后除以 j

$$5 \cdot 23^{m_1} + 3 \cdot 23^{m_2} = 7 \cdot 23^{m_3} + 12 \cdot 23^{m_4} \pmod{23}$$

由于 m_1, m_2, m_3, m_4 中至少有一个是 0, 而枚举所有情况检查后发现不存在 合法的 m_1, m_2, m_3, m_4 , 所以不存在同色解。

(d) E_4 是 Ramsey 的, 借助范德蒙数的存在性来证明,

Lemma 1. 对任意的 k, l, 存在 N, 使得 [N] 被 k 染色后中一定存在 同色的长度为 l 的等差数列。最小的 N 记为 W(k, l)。

注意到对于 w(k, 2021),如果我们能保证等差数列的公差也和等差数列同色。那么我们就找到了方程 x+2020y=z 的一组解。我们记满足这样要求的最小的 N 为 f(k)。

我们归纳证明 f(k) 是存在的,首先 f(1) = 2021。

然后我们可以证明

$$f(k) \le W(k, 2020f(k-1) + 1)$$

因为对 [W(k,2020f(k-1)+1)] 进行 k 染色后,其中存在一个长度为 2020f(k-1)+1 的同色等差数列 $a,a+d,\cdots,a+2020f(k-1)d$ 。不妨设颜色 为黄色,那么我们再考虑 $d,2d,\ldots,f(k-1)d$,如果这些数中存在黄色,设为 jd,那么 $a,a+jd,\cdots,a+2020jd$ 就是满足要求的。否则 $d,2d,\ldots,f(k-1)d$ 是被 k-1 染色的,根据归纳同样满足要求。

所以对于任意的 k,都存在满足条件的 N。