RREFL MILAN WIKARSKI MICK: WIKI

$$X = \frac{5}{2} \times_{1}, \times_{2_{1}} \dots, \times_{n} \frac{5}{5}$$
 $R = X \times X$
 $R = \frac{5}{2} \times_{1}, \times_{2_{1}} \dots, \times_{n} \frac{5}{5}$
 $R = \frac{5}{2} \times_{1}, \times_{2_{1}} \dots, \times_{n} \frac{5}{5}$

$$\Delta x = \frac{\xi(x_1, x_2)}{|x_1|^2} = \frac{\xi(x_1, x_2)}{|x_2|^2} = \frac{\xi(x_1, x$$

NECH:
$$R' = X \times X / \Delta X$$
 $|R'| = |X \times X| - |\Delta X| = n^2 - n = n(n-1)$

MUSÍ PATRIT RELACII R

- TENTO PRVOU MÔZE,

ALE NEMUSÍ PATRIT RELACITR

R' OBSAHUJE VŠETKY PRVKY, KTORÉ MÔŽU, ALE NEMUSIA PATRIT RELÁCII R.

UVAZUJME L'UBOVOCIU REFLEXÍVNU RELACIU R A ZOBRAZENIE

PRE L'UBOVOLNÉ 20BRAZENIE $f: R' \longrightarrow \S0, 1\S$ EXISTUJE PRÁVE DEDNA REFLEXÍVNA RELÁCIA R TAKÁ, ŽE $f = F_A$. TEDA REFLEXÍVNYCH RELÁCIÍ DE ROVNAKÝ POČET, AKO ZOBRAZENÍ $R' \to \S0, 1\S$, ČIŽE

$$2^{|R'|} = \frac{2^{n(n-1)}}{2}$$