1.基本情况

我使用numpy实现了线性SVM和带高斯核的SVM。

具体实现细节和课件类似。线性核中,我将b并入W作为其最后一维,将x的最后一维加上1,以消除b使得代码更清晰。高斯核的bandwidth我使用向量间欧氏距离的中位数。

数据方面,因为数据各维之间差异较大,容易导致过拟合,我进行了归一化处理。

我的优化方法是minibatch SGD,同时,我比较了使用全部参数W的平均值,以及只使用W本身进行测试的两种方式。

经过超参数调优,线性SVM运行结果如下:

训练loss图示如下:

测试准确率最高72.92%, 验证准确率80.63%

带高斯核的SVM运行结果如下:

训练loss图示如下:

Loss Comparison

测试准确率最高81.25%, 验证准确率79.37%

2.超参数选择

我使用grid search进一步进行超参数选择,得到的超参数和结果如下:

	参数是否取平 均	正则化方 法	正则化参数 reg	学习率	batch size	准确率
线性模 型	是	L1	1	1e-8	128	81.87%
高斯核	否	L2	0.01	0.01	16	80.63%

3.和sklearn比较

测试准确率	我的	sklearn
线性模型	81.87%	80.00%
高斯核	80.63%	82.50%

比较得到,两者准确率相差不多,可以说明我模型实现的正确性