<u>Clean version of claims, incorporating current amendments.</u> <u>IN THE CLAIMS:</u>

What is claimed is:

: ; ¿:

1	1. A mixer circuit for generating an IF output responsive to an RF input and a LO drive source,				
2	comprising:				
3	a mixer core having a doubly balanced mixer including a first differentially coupled				
4	transistor pair and a second differentially coupled transistor pair;				
5	an RF input circuit coupled to the mixer core, the RF input circuit comprising:				
6	an input inductor having a first terminal coupled to receive an RF input signal and				
7	a second terminal;				
8	a biasing resistor having a first terminal coupled to the second terminal of the				
9	input inductor and a second terminal coupled to a first bias voltage;				
10	a first input transistor having a control terminal coupled to the second terminal of				
11	the input inductor, a second terminal, and a third terminal;				
12	a second inductor having a first terminal coupled to the second terminal of the				
13	first input transistor and to the first differentially coupled transistor pair, the second inductor also				
14	having a second terminal coupled to a ground potential;				
15	a supply resistor having a first terminal coupled to the second terminal of the first				
16	input transistor and a second terminal coupled to a supply potential;				
17	a first capacitor having a first terminal also coupled to the second terminal of the				
18	first input transistor and a second terminal coupled to the second differentially coupled transistor				
19	pair; and				
20	a third inductor having a first terminal coupled to the second terminal of the first				
21	capacitor and a second terminal coupled to the ground potential.				
1	2. The mixer circuit according to Claim 1 wherein the first differentially coupled transistor				
2	pair, the second differentially coupled transistor pair and the first input transistor are all				
3	npn transistors.				

Attorney Docket No.: MLNR-08101

- The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all pnp transistors.
- The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MOSFET transistors.
- The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MESFET transistors.
- 1 6. A mixer circuit for generating an IF output responsive to an RF input and a LO drive source, comprising:

a mixer core having a doubly balanced mixer including a first differentially coupled transistor pair and a second differentially coupled transistor pair, the mixer core coupled to receive a LO drive signal, the LO drive signal having a plurality of harmonics;

a low noise RF input circuit coupled to the mixer core through a folded_cascode circuit, the low noise RF input circuit coupled to receive an RF input signal, wherein the folded cascode circuit further isolates the RF input circuit from the LO drive signal and the plurality of harmonics.

7. A mixer as in Claim 6 wherein the folded cascode circuit comprises:

3

4

5

6

7 8

9

1

2

3

4

5

6

7 8

9

10

a first cascode transistor having an emitter terminal coupled to a second terminal of a first capacitor and to a first terminal of a third inductor, a collector terminal coupled to the second differentially coupled transistor pair and a base terminal,

a second cascode transistor having a base terminal coupled to the base terminal of the first cascode transistor, an emitter terminal coupled to a first terminal of a second inductor and to an emitter terminal of a first transistor and a collector terminal coupled to the first differentially coupled transistor pair,

a second capacitor, having a first terminal coupled to the emitter terminal of the second cascode transistor and a second terminal coupled to a second terminal of the first capacitor, the

11	base terminal of the first cascode transistor and to the base terminal of the second cascode				
12	transistor,				
13	a third capacitor, having a first terminal coupled to the emitter terminal of the first				
14	cascode transistor and a second terminal coupled to the second terminal of the second capacitor,				
15	a second biasing resistor having a first terminal coupled to the first terminal of the second				
16	capacitor and a second terminal coupled to a second bias voltage.				
1	8. A mixer as in Claim 7, wherein the low noise RF input circuit further includes a RF				
2	feedback circuit, the RF feedback circuit comprising:				
3	a second transistor having a base terminal coupled to the supply potential, an				
4	emitter terminal coupled to the collector terminal of the first input transistor and a collector				
5	terminal coupled to the first terminal of the supply resistor and to the first terminal of the first				
6	capacitor,				
7	a feedback resistor, having a first terminal coupled to the base terminal of the first				
8	input transistor and a second terminal,				
9	a second capacitor, having a first terminal coupled to the second terminal of the				
10	feedback resistor and a second terminal coupled to the first terminal of the supply resistor.				
1	9. A mixer as in Claim 7, wherein the mixer core further includes a tracking supply circuit,				
2	the tracking supply circuit comprising:				
3	a first diode-connected transistor having a cathode terminal coupled to the ground				
4	potential and an anode terminal,				
5	a second diode-connected transistor having a cathode terminal coupled to the				
6	anode terminal of the first diode connected transistor and an anode terminal,				
7	a third resistor having a first terminal coupled to the anode terminal of the second				
8	diode connected transistor and a second terminal,				
9	a first current supply having a first terminal coupled to the second terminal of the				
10	third resistor and a second terminal coupled to the supply potential,				
11	a loop amplifier having a first terminal coupled to the second terminal of the third				
12	resistor and to the first terminal of the first current supply, a second terminal coupled to the				
13	supply potential, a third terminal coupled to the ground potential and a fourth terminal,				
14	a fourth resistor having a first terminal coupled to the fourth terminal of the loop				
15	amplifier and a second terminal,				

a second transistor having a collector terminal coupled to the second terminal of			
the fourth resistor, a base terminal coupled to receive a first LO drive signal and emitter terminal,			
a third transistor having a base terminal coupled to receive a second LO drive			
signal, an emitter terminal coupled to the emitter terminal of the second transistor and a collector			
terminal,			
a fifth resistor having a first terminal coupled to the fourth terminal of the loop			
amplifier and a second terminal coupled to the collector terminal of the third transistor			
a second current supply having a first terminal coupled to the emitter terminal of			
the second transistor and to the emitter terminal of the third transistor and a second terminal			
coupled to the ground potential,			
a first common collector amplifier having a base terminal coupled to the second			
terminal of the fifth resistor and to the collector terminal of the third transistor, a collector			
terminal coupled to the fourth terminal of the loop amplifier, and an emitter terminal coupled to a			
first mixer core LO input,			
a third current supply having a first terminal coupled to the emitter terminal of the			
first common collector amplifier and a second terminal coupled to the ground potential,			
a second common collector amplifier having a base terminal coupled to the			
second terminal of the fourth resistor and to the collector terminal of the second transistor, a			
collector terminal coupled to the fourth terminal of the loop amplifier and an emitter terminal			
coupled to a second mixer core LO input,			
a fourth current supply having a first terminal coupled to the emitter terminal of			
the second common collector amplifier and a second terminal coupled to the ground potential.			
10. A mixer as in Claim 7, wherein the low noise RF input circuit further includes a			
tracking mixer bias current circuit coupled to the second bias input terminal, the tracking mixer			
bias current circuit comprising:			
a third resistor having a first terminal coupled to the supply potential and a second			
terminal,			
a first diode connected transistor having a anode terminal coupled to the second terminal			
of the third resistor and a cathode terminal,			
a second transistor having a collector terminal coupled to the cathode terminal of the first			
diode connected transistor, an emitter terminal coupled to the ground potential and a base			
terminal,			

Attorney Docket No.: MLNR-08101

11	a loop amplifier having a first terminal coupled to the emitter terminal of the first diode				
12	connected transistor and to the collector terminal of the second transistor, a second terminal				
13	coupled to the second bias voltage and a third terminal,				
14	a fourth resistor having a first terminal coupled to the base terminal of the second [npn]				
15	transistor and a second terminal coupled to the second terminal of the loop amplifier and to the				
16	second bias voltage,				
17	a bandgap voltage supply having a first terminal coupled to the ground potential and a				
18	second terminal coupled to the third terminal of the loop amplifier.				
1	11. A mixer circuit as in Claim 6, wherein the mixer core further includes a tracking supply				
2	circuit, the tracking supply circuit comprising:				
3	a first diode-connected transistor having a cathode terminal coupled to the ground				
4	potential and an anode terminal,				
5	a second diode-connected transistor having a cathode terminal coupled to the				
6	anode terminal of the first diode connected transistor and an anode terminal,				
7	a third resistor having a first terminal coupled to the anode terminal of the second				
8	diode connected transistor and a second terminal,				
9	a first current supply having a first terminal coupled to the second terminal of the				
10	third resistor and a second terminal coupled to the supply potential,				
11 -	a loop amplifier having a first terminal coupled to the second terminal of the third				
12	resistor and to the first terminal of the first current supply, a second terminal coupled to the				
13	supply potential, a third terminal coupled to the ground potential and a fourth terminal,				
14	a fourth resistor having a first terminal coupled to the fourth terminal of the loop				
15	amplifier and a second terminal,				
16	a second transistor having a collector terminal coupled to the second terminal of				
17	the fourth resistor, a base terminal coupled to receive a first LO drive signal and emitter terminal,				
18	a third transistor having a base terminal coupled to receive a second LO drive				
19	signal, an emitter terminal coupled to the emitter terminal of the second transistor and a collector				
20	terminal,				
21	a fifth resistor having a first terminal coupled to the fourth terminal of the loop				

amplifier and a second terminal coupled to the collector terminal of the third transistor

00					
23	a second current supply having a first terminal coupled to the emitter terminal of				
24	the second transistor and to the emitter terminal of the third transistor and a second terminal				
25	coupled to the ground potential,				
26	a first common collector amplifier having a base terminal coupled to the second				
27	terminal of the fifth resistor and to the collector terminal of the third transistor, a collector				
28	terminal coupled to the fourth terminal of the loop amplifier, and an emitter terminal coupled to a				
29	first mixer core LO input,				
30	a third current supply having a first terminal coupled to the emitter terminal of the				
31	first common collector amplifier and a second terminal coupled to the ground potential,				
32	a second common collector amplifier having a base terminal coupled to the				
33	second terminal of the fourth resistor and to the collector terminal of the second transistor, a				
34	collector terminal coupled to the fourth terminal of the loop amplifier and an emitter terminal				
35	coupled to a second mixer core LO input,				
36	a fourth current supply having a first terminal coupled to the emitter terminal of				
37	the second common collector amplifier and a second terminal coupled to the ground potential.				
1	12. A mixer circuit as in Claim 6, wherein the low noise RF input circuit further includes a				
2	RF feedback circuit coupled to the RF input circuit, the RF feedback circuit comprising:				
3	a second transistor having a base terminal coupled to the supply potential, an				
4	emitter terminal coupled to the collector terminal of the first input transistor and a collector				
5	terminal coupled to the first terminal of the supply resistor and to the first terminal of the first				
6	capacitor,				
7	a feedback resistor, having a first terminal coupled to the base terminal of the first				
8	input transistor and a second terminal,				
9	a second capacitor, having a first terminal coupled to the second terminal of the				
10	feedback resistor and a second terminal coupled to the first terminal of the supply resistor.				
1	13. A quadrature mixer circuit for generating a quadrature IF output responsive to an RF				
2	input and a quadrature pair of LO drive signals, comprising:				
3	a mixer core having a first doubly balanced mixer including a first differentially				
4	coupled transistor pair and a second differentially coupled transistor pair and a second doubly				
5	balanced mixer including a third differentially coupled transistor pair and a fourth differentially				
6	coupled transistor pair;				

7	an RF input circuit coupled to the mixer core, the RF input circuit comprising:				
8	an input inductor having a first terminal coupled to receive an RF input signal and				
9	a second terminal;				
10	a biasing resistor having a first terminal coupled to the second terminal of the				
11	input inductor and a second terminal coupled to a first bias voltage;				
12	a first input transistor having a base terminal coupled to the second terminal of				
13	the input inductor, an emitter terminal, and a collector terminal;				
14	a second inductor having a first terminal coupled to the emitter of the first				
15	transistor and to the first differentially coupled transistor pair and to the third differentially				
16	coupled transistor pair, the second inductor also having a second terminal coupled to a ground				
17	potential;				
18	a supply resistor having a first terminal coupled to the collector of the first				
19	transistor and a second terminal coupled to a supply potential;				
20	a first capacitor having a first terminal also coupled to the collector of the first				
21	transistor and a second terminal coupled to the second differentially coupled transistor pair and to				
22	the fourth differentially coupled transistor pair; and				
23	a third inductor having a first terminal coupled to the second terminal of the first				
24	capacitor and a second terminal coupled to the ground potential.				
1	14. A quadrature mixer circuit for generating a quadrature IF output responsive to an RF				
2	input and a quadrature pair of LO drive signals, comprising:				
3	a mixer core having a first doubly balanced mixer including a first differentially coupled				
4	transistor pair and a second differentially coupled transistor pair and having a second doubly				
5	balanced mixer including a third differentially coupled transistor pair and a fourth differentially				
6	coupled transistor pair; the mixer core coupled to receive a quadrature LO drive signal, the				
7	quadrature LO drive signal having a plurality of harmonics;				
8	a low noise RF input circuit coupled to the mixer core through a folded cascode circuit,				
9	the low noise RF input circuit coupled to receive an RF input signal, wherein the folded cascode				
10	circuit further isolates the RF input circuit from the quadrature LO drive signal and the plurality				
11	of harmonics,				
12	a first cascode capacitor, a first terminal of the first cascode capacitor coupled to the				
13	emitter terminal of a first cascode transistor and a second node of the first cascode capacitor				
14	coupled to the base terminals of the first cascode transistor and a second cascode transistor,				

a second cascode capacitor, a first terminal of the second cascode capacitor coupled to the base terminals of the first cascode transistor and the second cascode transistor and the second node of the second cascode capacitor coupled to the emitter terminal of the second cascode transistor.

15. A quadrature mixer as in Claim 14 wherein the cascode circuit comprises:

a first cascode transistor having an emitter terminal coupled to the second terminal of the first capacitor and to the first terminal of the third inductor, a collector terminal coupled to the second differentially coupled transistor pair and a base terminal,

a second cascode transistor having a base terminal coupled to the base terminal of the first cascode transistor, an emitter terminal coupled to the first terminal of the second inductor and to the emitter terminal of the first transistor and a collector terminal coupled to the first differentially coupled transistor pair,

a second capacitor, having a first terminal coupled to the collector terminal of the first cascode transistor and a second terminal coupled to the base terminal of the first cascode transistor and to the base terminal of the second cascode transistor,

a third capacitor, having a first terminal coupled to the emitter terminal of the second cascode transistor and a second terminal coupled to the second terminal of the second capacitor and to the base terminal of the first cascode transistor and to the base terminal of the first cascode transistor,

a second biasing resistor having a first terminal coupled to the second terminal of the second capacitor and the first terminal of the third capacitor and a second terminal coupled to a second bias voltage,

a third biasing resistor having a first terminal coupled to the second bias voltage and to the second terminal of the second biasing resistor and having a second terminal,

a third cascode transistor having a collector terminal coupled to the fourth differentially coupled transistor pair, an emitter terminal coupled to the second terminal of the third inductor and to the emitter terminal of the first cascode transistor, and a base terminal,

a fourth cascode transistor having a base terminal coupled to the base terminal of the third cascode transistor, a collector terminal coupled the third differentially coupled transistor pair and an emitter terminal coupled to the emitter terminal of the second cascode transistor and to the second terminal of the second inductor,

		a fou	rth capacitor having a first terminal coupled to the emitter terminal of the third		
cascode transistor and a second terminal coupled to the base terminal of the third and fourth					
	casco	de tran	sistors,		
		a fift	h capacitor having a first terminal coupled to the second terminal of the fourth		
	capac		I to the base terminals of the third and fourth cascode transistors and a second		
	-		pled to the emitter terminal of the fourth cascode transistor.		
	16.	A qu	adrature mixer as in Claim 15 wherein the low noise RF input circuit further		
		inclu	des a RF feedback circuit, the RF feedback circuit comprising:		
			a second transistor having a base terminal coupled to the supply potential,		
	an em	itter te	rminal coupled to the collector terminal of the first input transistor and a collector		
			pled to the first terminal of the supply resistor and to the first terminal of the first		
	capac				
	•	ŕ	a feedback resistor, having a first terminal coupled to the base terminal of		
	the fir	st inpu	at transistor and a second terminal,		
		•	a sixth capacitor, having a first terminal coupled to the second terminal of		
	the fe	edback	resistor and a second terminal coupled to the first terminal of the supply resistor.		
			•		
	17.	A quadrature mixer as in Claim 16, wherein the mixer core further includes a first			
		track	ing supply circuit portion coupled to the In-Phase LO drive input terminals of the		
			r core and a second tracking supply circuit portion coupled to the Quadrature Phase		
			rive input terminals of the mixer core.		
	18.	A mi	xer circuit as in Claim 17, wherein the first tracking supply comprises:		
		a.	a first diode-connected transistor having a cathode terminal coupled to the ground		
			potential and an anode terminal;		
		b.	a second diode-connected transistor having a cathode terminal coupled to the		
			anode terminal of the first diode connected transistor and an anode terminal,		
		c.	a third resistor having a first terminal coupled to the anode terminal of the second		
			diode connected transistor and a second terminal;		
		d.	a first current supply having a first terminal coupled to the second terminal of the		
			third resistor and a second terminal coupled to the supply potential;		

10	e.	a loop amplifier having a first terminal coupled to the second terminal of the third
11		resistor and to the first terminal of the first current supply, a second terminal
12		coupled to the supply potential, a third terminal coupled to the ground potential
13		and a fourth terminal;
14	f.	a fourth resistor having a first terminal coupled to the fourth terminal of the loop
15		amplifier and a second terminal;
16	g.	a second transistor having a collector terminal coupled to the second terminal of
17		the fourth resistor, a base terminal coupled to receive a first LO drive signal and
18		emitter terminal;
19	h.	a third transistor having a base terminal coupled to receive a second LO drive
20		signal, an emitter terminal coupled to the emitter terminal of the second transistor
21		and a collector terminal;
22	i.	a fifth resistor having a first terminal coupled to the fourth terminal of the loop
23		amplifier and a second terminal coupled to the collector terminal of the third
24		transistor;
25	j.	a second current supply having a first terminal coupled to the emitter terminal of
26		the second transistor and to the emitter terminal of the third transistor and a
27		second terminal coupled to the ground potential;
28	k.	a first common collector amplifier having a base terminal coupled to the second
29		terminal of the fifth resistor and to the collector terminal of the third transistor, a
30		collector terminal coupled to the fourth terminal of the loop amplifier, and an
31		emitter terminal coupled to a first mixer core LO input;
32	1.	a third current supply having a first terminal coupled to the emitter terminal of the
33		first common collector amplifier and a second terminal coupled to the ground
34		potential;
35	m.	a second common collector amplifier having a base terminal coupled to the
36		second terminal of the fourth resistor and to the collector terminal of the second
37		transistor, a collector terminal coupled to the fourth terminal of the loop amplifier
38		and an emitter terminal coupled to a second mixer core LO input; and
39	n.	a fourth current supply having a first terminal coupled to the emitter terminal of
40		the second common collector amplifier and a second terminal coupled to the
41		ground potential;
42	and wherein	the second tracking sunnly circuit portion comprises:

43 44	0.	a third diode-connected transistor having a cathode terminal coupled to the ground potential and an anode terminal;
45	p.	a fourth diode-connected transistor having a cathode terminal coupled to the
46	•	anode terminal of the third diode connected transistor and an anode terminal;
47	q.	a third resistor having a first terminal coupled to the anode terminal of the second
48	•	diode connected transistor and a second terminal;
49	r.	a first current supply having a first terminal coupled to the second terminal of the
50		third resistor and a second terminal coupled to the supply potential;
51	s.	a loop amplifier having a first terminal coupled to the second terminal of the third
52		resistor and to the first terminal of the first current supply, a second terminal
53		coupled to the supply potential, a third terminal coupled to the ground potential
54		and a fourth terminal;
55	t.	a fourth resistor having a first terminal coupled to the fourth terminal of the loop
56		amplifier and a second terminal;
57	u.	a second transistor having a collector terminal coupled to the second terminal of
58		the fourth resistor, a base terminal coupled to receive a first LO drive signal and
59		emitter terminal;
60	v.	a third transistor having a base terminal coupled to receive a second LO drive
61		signal, an emitter terminal coupled to the emitter terminal of the second transistor
62		and a collector terminal;
63	w.	a fifth resistor having a first terminal coupled to the fourth terminal of the loop
64		amplifier and a second terminal coupled to the collector terminal of the third
65		transistor;
66	х.	a second current supply having a first terminal coupled to the emitter terminal of
67		the second transistor and to the emitter terminal of the third transistor and a
68		second terminal coupled to the ground potential;
69	y.	a first common collector amplifier having a base terminal coupled to the second
70		terminal of the fifth resistor and to the collector terminal of the third transistor, a
71		collector terminal coupled to the fourth terminal of the loop amplifier, and an
72		emitter terminal coupled to a first mixer core LO input;
73	z.	a third current supply having a first terminal coupled to the emitter terminal of the
74		first common collector amplifier and a second terminal coupled to the ground
75		potential;

Attorney Docket No.: MLNR-08101

76		aa.	a second common collector amplifier having a base terminal coupled to the
77			second terminal of the fourth resistor and to the collector terminal of the second
78			transistor, a collector terminal coupled to the fourth terminal of the loop amplifier
79			and an emitter terminal coupled to a second mixer core LO input;
30		ab.	a fourth current supply having a first terminal coupled to the emitter terminal of
31			the second common collector amplifier and a second terminal coupled to the
32			ground potential.
1	19.	A qua	drature mixer as in Claim 15, wherein the low noise RF input circuit further
2		includ	les a tracking mixer bias current circuit, the tracking bias current circuit
3		comp	rising:
4			a first resistor having a first terminal coupled to the supply potential and a second
5	terminal,		
6			a first diode connected transistor having a anode terminal coupled to the second
7	terminal of the third resistor and a cathode terminal,		
8			a second transistor having a collector terminal coupled to the cathode terminal of
9	the fi	rst diode	e connected transistor, an emitter terminal coupled to the ground potential and a
0	base	terminal	,
1			a loop amplifier having a first terminal coupled to the emitter terminal of the first
2	diode	connec	ted transistor and to the collector terminal of the second transistor, a second
3	termi	nal coup	pled to the second bias voltage and a third terminal,
4			a second resistor having a first terminal coupled to the base terminal of the second
5	trans	istor and	a second terminal coupled to the second terminal of the loop amplifier and to the
6	secor	nd bias v	oltage,
7			a bandgap voltage supply having a first terminal coupled to the ground potential
8 .	and a	second	terminal coupled to the third terminal of the loop amplifier.

- 1 20. A mixer circuit for generating an IF output responsive to an RF input and a LO drive source, comprising:
- a mixer core having a doubly balanced mixer including a first differentially coupled [npn] transistor pair and a second differentially coupled [npn] transistor pair;

5	a single ended RF input circuit coupled to receive an RF signal, the RF circuit coupled to				
6	the mixer core, the RF circuit including means for providing an input impedance, means for				
7	splitting a phase of the RF signal, and means for decoupling noise from the RF signal to the				
8	mixe	r core.			
1	21.	A mixer circuit for generating an IF output responsive to an RF input and a LO drive			
2		source, comprising:			
3		a mixer core having a doubly balanced mixer including a first differentially coupled			
4	transistor pair and a second differentially coupled transistor pair, the mixer core coupled to				
5	receiv	ve a LO drive signal, the LO drive signal having a plurality of harmonics;			
6		a low noise single ended RF input circuit coupled to the mixer core through a cascode			
7	circui	it, the low noise RF input circuit coupled to receive an RF input signal, wherein the cascode			
8	circui	it further isolates the RF input circuit from the LO drive signal and the plurality of			
9	harm	onics the RF circuit including means for providing an input impedance and means for			
10	splitti	ing a phase of the RF signal.			
1	22.	The mixer circuit according to Claim 6 wherein the first differentially coupled transistor			
2		pair, the second differentially coupled transistor pair and the first input transistor are all			
3		npn transistors.			
1	23.	The mixer circuit according to Claim 6 wherein the first differentially coupled transistor			
2		pair, the second differentially coupled transistor pair and the first input transistor are all			
3		pnp transistors.			
1	24.	The mixer circuit according to Claim 6 wherein the first differentially coupled transistor			
2		pair, the second differentially coupled transistor pair and the first input transistor are all			
3		MOSFET transistors.			
1	25.	The mixer circuit according to Claim 6 wherein the first differentially coupled transistor			
2		pair, the second differentially coupled transistor pair and the first input transistor are all			
3		MESFET transistors.			

The mixer circuit according to Claim 13 wherein the first differentially coupled transistor 26. 1 2 pair, the second differentially coupled transistor pair, the third differentially coupled 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all npn transistors. The mixer circuit according to Claim 13 wherein the first differentially coupled transistor 1 27. pair, the second differentially coupled transistor pair, the third differentially coupled 2 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all pnp transistors. 28. The mixer circuit according to Claim 13 wherein the first differentially coupled transistor 1 pair, the second differentially coupled transistor pair, the third differentially coupled 2 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all MOSFET transistors. The mixer circuit according to Claim 13 wherein the first differentially coupled transistor 29. 1 2 pair, the second differentially coupled transistor pair, the third differentially coupled transistor pair, the fourth differentially coupled transistor pair and the first input transistor 3 are all MESFET transistors. 4 31. The mixer circuit according to Claim 14 wherein the first differentially coupled transistor 1 2 pair, the second differentially coupled transistor pair, the third differentially coupled 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all npn transistors. 32. The mixer circuit according to Claim 14 wherein the first differentially coupled transistor 1 2 pair, the second differentially coupled transistor pair, the third differentially coupled 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all pnp transistors. The mixer circuit according to Claim 14 wherein the first differentially coupled transistor 1 33.

pair, the second differentially coupled transistor pair, the third differentially coupled

2

3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all MOSFET transistors. 34. The mixer circuit according to Claim 14 wherein the first differentially coupled transistor 1 2 pair, the second differentially coupled transistor pair, the third differentially coupled 3 transistor pair, the fourth differentially coupled transistor pair and the first input transistor 4 are all MESFET transistors. The mixer circuit according to Claim 20 wherein the first differentially coupled transistor 1 35. 2 pair, the second differentially coupled transistor pair and the first input transistor are all 3 npn transistors. The mixer circuit according to Claim 20 wherein the first differentially coupled transistor 1 36. 2 pair, the second differentially coupled transistor pair and the first input transistor are all 3 pnp transistors. The mixer circuit according to Claim 20 wherein the first differentially coupled transistor 1 37. pair, the second differentially coupled transistor pair and the first input transistor are all 2 3 MOSFET transistors. The mixer circuit according to Claim 20 wherein the first differentially coupled transistor 1 38. 2 pair, the second differentially coupled transistor pair and the first input transistor are all 3 MESFET transistors. The mixer circuit according to Claim 21 wherein the first differentially coupled transistor 1 39. 2 pair, the second differentially coupled transistor pair and the first input transistor are all 3 npn transistors. 40. The mixer circuit according to Claim 21 wherein the first differentially coupled transistor 1 pair, the second differentially coupled transistor pair and the first input transistor are all 2 3 pnp transistors.

- 1 41. The mixer circuit according to Claim 21 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MOSFET transistors.
- 1 42. The mixer circuit according to Claim 21 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MESFET transistors.