Bloque I. Introducción. Tema 2. Sistema binario de representación numérica

Grado en Ingeniería Informática. Fundamentos de Computadores.

Índice

- 1. Sistemas de numeración de base fija
- 2. Conversión entre bases
 - 1. Sustitución en serie.
 - 2. División/multiplicación por la base
 - 3. Conversión rápida binario-hexadecimal, binario-octal.
- 3. Aritmética binaria
- 4. Representación de enteros en el computador
- 5. Bibliografía

Sistemas de numeración de base fiia

• Sistema numérico:- Conjunto ordenado de símbolos (cifras o dígitos) + Reglas para +, -, x, /

- Base: nº de cifras o dígitos que utiliza un sist. numérico.
- Ejemplos:
 - Sist. Decimal (base=10) ———— {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Sist. Binario (base = 2) {0, 1}
 - Sist. Hexadecimal (base = 16) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - Sist. Octal (base = 8) \longrightarrow {0, 1, 2, 3, 4, 5, 6, 7}

I. Sistemas de numeración de base fija

En cualquier sist. de numeración:

$$\begin{aligned} N &= (a_{p-1} \ a_{p-2} \ ... \ a_1 \ a_0 \ , \ a_{-1} \ a_{-2} \ ... \ a_{-q})_r \\ a_i \ \text{son los dígitos}, \\ p \ \text{es el número de dígitos enteros}, \\ q \ \text{es el número de dígitos} \\ \text{fraccionarios}, \\ a_{p-1} \ \text{es el dígito más significativo}, \\ a_{-q} \ \text{es el dígito menos significativo}. \end{aligned}$$

- Ejemplo:
 - (107,45)₁₀
 - (1A3,B)₁₆
 - $(101110,11)_2$
 - $(1473,13)_8$
- Sist. de numeración posicional.

I. Sistemas de numeración de base fiia

$$(123,54)_{10} = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 5 \cdot 10^{-1} + 4 \cdot 10^{-2}$$

- La posición de cada dígito tiene un peso (r^i) .
- Valor de a_i (dígito x peso): $a_i \cdot r^i$
- Número = suma de valores de todos sus dígitos

$$N = \sum_{i=-q}^{p} a_i \cdot r^i$$

- Representación única.
 - MSD, LSD
- Notación polinomial.

- Dos métodos:
 - Sustitución en serie: nº en base r a base d (decimal).
 - •Convertir el número (101,01)₂ a decimal.

$$(101,01)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} =$$

= $4 + 0 + 1 + 0 + 0,25 = (5,25)_{10}$

•Convertir el número (1AC,2)₁₆ a decimal.

$$(1AC,2)_{16} = 1 \cdot 16^{2} + A \cdot 16^{1} + C \cdot 16^{0} + 2 \cdot 16^{-1} =$$

$$= 1 \cdot 256 + 10 \cdot 16 + 12 \cdot 1 + 2 \cdot 0,0625 = (428,125)_{10}$$

¡¡Cuidado con la sustituición directa!!

$$(1AC,2)_{16} \neq 1+10+12+0, 2 = (23,2)_{10}$$

División/multiplicación por la base: nº en base d (decimal) a base s.

Procedimiento parte entera:

- 1. Dividir parte entera entre $s \longrightarrow \text{resto} = \text{dígito } a_0 \text{ de la parte}$ entera.
- 2. Dividir cociente entre $s \longrightarrow \text{resto} = \text{dígito } a_1 \text{ de la parte entera}$ (repetir paso 1).
- 3. cociente = 0 FIN
- •Procedimiento parte fraccionaria:
 - 1. Multiplicar parte fraccionaria por $s = nuevo n^{o} con parte entera (a_{-1}) y fraccionaria.$
 - 2. Multiplicar nueva fracción (repetir paso 1).
 - 3. Parte fraccionaria = 0 o suficientes dígitos ==> FIN

• Ejemplo: convertir el número (214)₁₀ a binario.

• Ejemplo: convertir el número (0,8125)₁₀ a binario.

Resultado: $(0.8125)_{10} = 0.1101$

• Ejemplo: convertir el número (1963)₁₀ a hexadecimal.

Resultado: $(1963)_{10} = (7 A B)_{16}$

• Ejemplo: convertir el número $(0,1025390625)_{10}$ a hexadecimal.

0,1025390625 X 16

Resultado: $(0,1025390625)_{10} = (0,1A4)_{16}$

• Correspondencia de los 15 primeros número en distintas bases:

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binario	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

- Conversión a/de binario:
 - Binario hexadecimal:
 - 1. Completar con '0' hasta tener nº de bits múltiplo de 4
 - 2. Agrupar en grupos de 4
 - 3. Convertir cada grupo a hexadecimal.

Binario ctal:

- Conversión a/de binario:
 - Hexadecimal binario: sustituir cada dígito hexadecimal por su correspondiente binario con 4 bits.

• Octal binario: sustituir cada dígito octal por su correspondiente binario con 3 bits.

3. Aritmética binaria

- ¿Por qué sistema binario?
 - Cualquier nº se representa utilizando '0' y '1'.
 - Operaciones aritméticas son muy sencillas de implementar.
- Para referirse a los dígitos binarios: bit (binary digit).
 - En los circuitos del computador:
 - "valor alto" de tensión (5V) → 1 lógico
 - "valor bajo" de tensión(0V) → 0 lógico
- Operaciones aritméticas básicas:

+	0	1	Х	0	1	RESTA BINARIA (-) 0 1
0	0	1	0	0	0	0 0 1
1	1	10	1	0	1	1 11 0

3. Aritmética binaria

Sumar: 1001 + 1011

Restar: 101101 - 011011

Sumar: 1011 + 0011

Restar: 101101 - 011110

3. Aritmética binaria

Multiplicar: 1100 X 101

Dividir: 1101001/101

- Tamaño datos dependen de:
 - Arquitectura del computador
 - Circuitería interna utilizada
- Maneja datos de tamaño fijo: 8bits, 16 bits, 32 bits...
- Criterios para elegir la forma de representar nº enteros:
 - Implementación de operaciones aritméticas lo más sencilla posible.
 - Overflow o desbordamiento: al realizar alguna operación aritmética, el resultado no es representable con el nº de bits disponible.

- Representación de enteros sin signo:
 - 'n' bits, rango: desde 0 a 2ⁿ-1.
 - Operaciones:
 - Suma: n^{ϱ} de 'n' bits + n^{ϱ} de 'n' bits = hasta 'n+1' bits para representar el resultado \longrightarrow Overflow. 1 0 1 1

- La suma y resta son diferentes. Resulta interesante que se realicen de la misma forma tilizar complemento a la base para las restas.
- Multiplicación: n^{ϱ} de 'n' bits **x** n^{ϱ} de 'n' bits = hasta '2n' bits para representar el resultado \Longrightarrow Overflow.

 Complemento a la base de un número N de 'n' dígitos en base 'r', C,N:

$$C_r N = r^n - N$$

- Complemento a 2 (cuando r=2, caso binario)
 - Ejemplo: N = 1001 de 4 bits

$$C_2 N = 2^4 - N$$

 $C_2 (1001) = 10000 - 1001 = 0111$

- Permite realizar la operación de resta como una suma:
 - A y B nº enteros sin signo de 'n' bits

$$A + C_2 B = A + 2^n - B = (A - B) + 2^n$$

- Para C_2N necesitamos una resta 2^n -N ¿entonces?
- Complemento restringido a la base: complemento a 1 de N

$$C_1 N = 2^n - N - 1 = C_2 N - 1$$

 $C_2 N = C_1 N + 1$

- Podemos calcular el complemento a 2 de un nº utilizando una suma en lugar de una resta.
- Cálculo del complemento a 1 de un nº N representado en binario:
 - Cambiar los '1' por '0' y los '0' por '1'.
 - $C_1(1011) = 0100$

Se pueden hacer restas utilizando sólo operaciones de suma. SE SIMPLIFICAN LOS CIRCUITOS que realizan estas operaciones

- Representación de enteros con signo: signo y magnitud.
 - Con 'n' bits podemos representar nº enteros con signo:
 - MSD bit de signo
 - 'n-1' bits **⇒** magnitud
 - Rango de nº entre 2ⁿ⁻¹-1 y -(2ⁿ⁻¹-1)
 - Dos codificaciones para el '0': con signo, sin signo.
 - Sumas y restas:
 - Tener en cuenta los signos de los operandos.
 - Ordenar los módulos si hay que restar.
 - Calcular el signo del resultado en función de los signos de los operandos y sus módulos.

Circuitos que tengan en cuenta todas las posibilidades de signos y módulos para sumar y restar correctamente

NO SE SUELE USAR ESTA REPRESENTACIÓN EN LOS COMPUTADORES

- Representación de enteros con signo: complemento a 2
 - Solo se necesitan 'n' bits:
 - Nº +: en binario natural.
 - Nº -: como el C₂ del positivo correspondiente.
 - Para cambiar el signo de un número, se hace el C2 de dicho número.
 - Ejemplo:
 - 6₁₀ => 0110
 - $-6_{10} \Rightarrow C_2(6_{10}) = C_2(0110_2) = 1010$
 - 1º bit: signo ('0' → +, '1' → -)
 - Rango de nº desde -2ⁿ⁻¹ hasta 2ⁿ⁻¹-1
 - Representación única para '0'.
 - En las sumas y restas el bit de signo NO se trata de forma diferente (se opera)

Ejemplos de operaciones ('n' = 4 bits):

Detección de overflows:

- Binario puro: desbordamiento en sumas o restas si se produce acarreo superior
- Complemento a 2: desbordamiento si el signo del resultado es inesperado

5. Bibliografía

- Román Hermida, Ana Mº del Corral, Enric Pastor, Fermín Sánchez
 - **"Fundamentos de Computadores"**, cap 1 Editorial Síntesis
- Thomas L. Floyd
 "Fundamentos de Sistemas Digitales", cap 2
 Editorial Prentice Hall
- Daniel D. Gajski
 "Principios de Diseño Digital", cap 2
 Editorial Prentice Hall
- M. Morris Mano
 "Diseño Digital", cap 1
 Editorial Prentice Hall