

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:		
Connor	Wilson	

UB Person Number:

5	0	2	5	4	9	2	2
0 1 2 3 4 6 7 8 9	① ① ② ③ ④ ⑤ ⑥ ⑦ ③ ⑨	0 1 3 4 5 6 7 8 9	0 1 2 3 4 6 7 8 9	○ 1② 3○ 5⑥ 7③ 9	0 1 2 3 4 5 6 7 8 •	○ ①○ ③○ ③○ ④○ ④○ ④○ ④○ ④○ ④○ ④	(a) (b) (c) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

_		90)									
								0	nan		
	1	2	3	4	5	6	7	TOTAL	GRADE		
	1										

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

WIKADO

$$x_1 - x_2 + x_3 = -2$$

 $x_1 + 2x_3 = 2$

 $\frac{1}{b} = -6 \quad \text{only}$

$$x_1 - (2 - 2x_3) + x_3 = -2$$

 $x_1 + 3x_2 = 0$

$$b = -6x_3 - 6 + 6x_3$$

be cause

Vy I C, Vy for any SER!

12 # Call for any C3 ER

b) {V₁, V₂, V₃} is not linearly independent because 3v₁ = V₃-2V₂.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$a_1 - a_{11} + 2a_{11} = 1$$
 $a_1 - a_2 - a_1 + 2a_2 = 1$
 $a_1 + a_2 = 0$
 $a_1 + a_2 = 0$
 $a_1 + a_2 = 0$
 $a_1 - a_2 = 0$
 $a_1 - a_2 = 0$
 $a_1 = 1$
 $a_2 - a_2 = 0$
 $a_1 = 1$
 $a_2 - a_2 = 0$

$$a_1 - a_5 + 2a_8 = 0$$
 $2a_5 = a_8$
 $a_2 + a_8 = 1$ $a_8 = 1 - a_8$
 $2a_5 - a_8 = 0$

$$a_3 - a_6 + 2a_9 = 0$$
 $a_3 + a_9 = 0$
 $2a_6 - a_9 = 1$

$$|a_5| = a_8$$
 $|-a_8| - \frac{1}{2}a_8 + 2a_8 = 0$
 $|a_8| = |-a_8|$ $|a_8| = -1$
 $|a_8| = -2$
 $|a_5| = -1$ $|a_2| = 3$

$$a_3 = -a_q$$
 $a_6 = \frac{1}{2}(1 + a_q)$
 $a_6 = \frac{1}{2}(1 + a_q)$
 $a_6 = \frac{1}{2}(1 + a_q)$
 $a_6 = 1$

$$a_3 = -1$$
 $a_6 = \frac{1}{2}(1+1) = 1$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2 & 1 & 2 \\ 3 & -1 & -2 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

There are no vectors u satisfying T(u)=[10]

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

This is true. By def. of spath, whu= $Gu+C_2V$ for some C_1 , $C_2 \in \mathbb{R}$. Therefore $W=C_1u+C_2v-U$, and compining gives $W=(C_1-1)U+C_2V$. However, C_1-1 is just some other constant in \mathbb{R} , so let $C_3=C_1-1$. Therefore $W=C_3U+C_2V$, meaning $W\in Span(U_1V)$ by definition.

QED.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

This is thue. If {u, v, w} is linearly independent,

then $u \neq c, v + c_w + c_v + c$

Since $U \neq C, v \land for any ciseR, then {u,v} is linearly independent by definition.$

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

this is false. For example, let u=[0], v=[0], and A = [ii]. Then A = [ii] and A = [ii]. An and A = [ii]. An are the same vector, so they are clearly linearly disdependent, however, [0] and [0] are linearly independent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

This is true. If $u \in Spain(v, w)$, then $U = C_1 \vee C_2 \vee C_2 \vee C_3 \vee C_4 \vee C$

QED.