CORRELATION AND REGRESSION

Scatter Diagrams and p.m.c.c

- Product moment correlation coefficient (p.m.c.c), r - number between -1 and +1 calculated to measure the correlation of a population of bivariate data
 - The closer the value of r is to +1 or -1, the stronger the correlation

$$S_{xy} = \sum (x - \overline{x})(y - \overline{y}) = \sum xy - n\overline{xy}$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

where :
$$S_{xx} = \sum (x - \overline{x})^2 = \sum x^2 - n\overline{x}^2$$

$$S_{yy} = \sum (y - \overline{y})^2 = \sum y^2 - n\overline{y}^2$$

Rank Correlation

The Least Squares Regression Line - line of best fit which produces the least possible value of the sum of the squares of the residuals.

• Given by: $y - \overline{y} = \frac{S_{xy}}{S_{xx}}(x - \overline{x})$

Alternatively, y = a + bx where, $b = \frac{S_{xy}}{S_{yy}}, a = \overline{y} - b\overline{x}$

- (x, y), the predicted value of y is given by y^{*} = a + bx.
- If the regression line is a good fit to the data, the equation may be used to predict y values for x values within the given domain, i.e. interpolation.
- The corresponding residual =
- $\bullet \qquad \epsilon = y y^{\hat{}} = y (a + bx)$
- The sum of the residuals = $\Sigma \epsilon = 0$
- The least squares regression line minimises the sum of the squares of the residuals, $\sum \epsilon \ 2$.

DISCRETE RANDOM VARIABLES

Discrete random variables

 Discrete random variables with probabilities p1, p2, p3, p4, ..., pn can illustrated using a vertical line chart:

Notation:

- A discrete random variable is usually denoted by a capital letter (X, Y etc).
- Particular values of the variable are denoted by small letters (r, x etc)
- P(X=r1) means the probability that the discrete random variable X takes the value r1
- $\sum P(X=r_k)$ means the sum of the probabilities for all values of r, in other words $\sum P(X=rk) = 1$

Using tables

For a small set of values it is often convenient to list the probabilities for each value in a table.

r _i	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	r _{n-1}	rn
$P(X = r_i)$	<i>p</i> ₁	p ₂	p ₃	p _{n-1}	p _n

Using formulae: Sometimes it is possible to define the probability function as a formula, as a function of r, P(X = r) = f(r)

Calculating probabilities: Sometimes you need to be able to calculate the probability of some compound event, given the values from the table or function.

Explanation of probabilities: Often you need to explain how the probability P(X = rk), for some value of k, is derived from first principles.

Shapes of distributions

Uniform

Bimodal

bimodal does not mean that the peaks have to be the same height

Skew

Positive Skew

Symmetrical

Negative Skew

Central Tendency (averages)

Mean: $\overline{x} = \frac{\sum x}{n}$ (raw data) $\overline{x} = \frac{\sum xf}{\sum f}$ (grouped data)

Median: mid-value when the data are placed in rank order

Mode: most common item or class with the highest

frequency

Mid-range: (minimum + maximum) value ÷ 2

Dispersion (spread)

Range: maximum value - minimum value

Sum of squares:

$$S_{xx} = \Sigma (x - \overline{x})^2 \equiv \Sigma x^2 - n \, \overline{x}^2$$
 (raw data)

$$S_{xx} = \sum (x - \overline{x})^2 f \equiv \sum x^2 f - n \overline{x}^2$$
 (frequency dist.)

Mean square deviation: $msd = \frac{S_{xx}}{}$

Root mean squared deviation: $msd = \sqrt{\frac{S_{xx}}{n}}$

Variance: $s^2 = \frac{S_{xx}}{n-1}$ Standard deviation: $s = \sqrt{\frac{S_{xx}}{n-1}}$

EXPLORING DATA

Types of data

- Categorical data or qualitative data are data that are listed by their properties e.a. colours of cars.
- Numerical or quantitative data
- Discrete data are data that can only take particular numerical values. e.g. shoe sizes.
- Continuous data are data that can take any value. It is often gathered by measuring e.g. length, temperature.

Frequency Distributions

- Frequency distributions: data are presented in tables which summarise the data. This allows you to get an idea of the shape of the distribution.
- **Grouped discrete data** can be treated as if it were continuous, e.g. distribution of marks in a test.

Stem and leaf diagrams

- A concise way of displaying discrete or continuous data (measured to a given accuracy) whilst retaining the original information.
- Visual example:

Average daily temperatures in 16 cities are recorded in January and July. The

January: 2, 18, 3, 6, -3, 23, -5, 17, 14, 29, 28, -1, 2, -9, 28, 19 **July**: 21, 2, 16, 25, 5, 25, 19, 24, 28, -1, 8, -4, 18, 13, 14, 21 Draw a back to back stem and leaf diagram and comment on the shape of the distributions

Answer

Jan July 9531-014 63220258

9 8 7 4 10 3 4 6 8 9 9 8 8 3 20 1 1 4 5 5 8 The January data is uniform but the July data has a negative skew

Outliers

- These are pieces of data which are at least two standard deviations from the mean
 - i.e. beyond $\overline{x} \pm 2s$

Linear coding

 If the data are coded as y = ax +b then the mean and standard deviation have the coding y = a x + b (the same coding) and sy = asx (multiply by the multiplier of x)

Example:

• For two sets of data x and y it is found that they are related by the formula y = 5x - 20:

Given $\overline{x} = 24.8$ and $s_x = 7.3$, find the values of \overline{y} and s_y $\overline{y} = (5 \times 24.8) - 20 = 102$ $s_y = 5 \times 7.3 = 36.5$

PROBABILITY

The experimental probability

- The experimental probability of an event is = number of successes number of trials If the experiment is repeated 100 times, then the expectation (expected frequency) is equal to n × P(A).
- The sample space for an experiment illustrates the set of all possible outcomes. Any event is a sub-set of the sample space. Probabilities can be calculated from first principles. Example: If two fair dice are throw

Tree Diagrams

- Multiply probabilities along the branches (AND)
- Add probabilities at the ends of branches (OR)

Example:

Event A (the toy is a car): P(A) = 0.9Event B (the toy is not red): P(B) = 0.75

The probability of Joe getting a car that is not red is 0.675

NORMAL DISTRIBUTION

Definition

- A continuous random variable X which is bellshaped and has mean (expectation) μ and standard deviation σ is said to follow a Normal Distribution with parameters μ and σ.
- In shorthand, $X \sim N(\mu, \sigma^2)$

• Standardised form by using transformation:

$$z = \frac{x - \mu}{\sigma} \implies x = \sigma z + \mu$$
, where $Z \sim N(0, 1)$

Calculating Probabilities

- The area to the left of the value z, representing $P(Z \le z)$, is denoted by $\Phi(z)$ and is read from tables for $z \ge 0$.
- Useful techniques for $z \ge 0$:

$$(Z > -z) = P(Z \le z)$$

- The inverse normal tables may be used to find $z = \Phi 1(p)$ for $p \ge 0.5$. For p < 0.5, use symmetry properties of the Normal distribution.
 - o 99.73% of values lie within 3 s.d. of the mean

Estimating μ and/or σ

- Use simultaneous equations of the form:
 - x = σz + μ for matching (x, z) pairs- where z is given or may be
 deduced from Φ-1(p) for given
 value(s) of x.

Independent events

 $P(A \text{ and } B) = P(A \cap B) = P(A) \times P(B)$

Conditional probability

- If A and B are independent events then the probability that event B occurs is not affected by whether or not event A has already happened. This can be seen in example 1 above. For independent events P(B/A) = P(B)
- If A and B are dependent, as in example 2 above, then $P(B|A) = P(A \cap B)$ P(A)
- The multiplication law for dependent probabilities may be rearranged to give P(A and B) = $P(A \cap B) = P(A) \times P(B|A)$