

→ 100切性為2011 好处是 财务上入1? 217 95时; 1214年951.



多13010年<mark>7259</mark>01 別は(241)

## 7장. 구간추정 (Interval Estimation)

# 7장 구간추정 (Interval Estimation)

場とまたでのもではま 場別場: 羽ち別場士E → ME 또는 뇌노동산비면병투자양

o 모수(parameter)  $\theta$  ☞ 추정량(estimator):  $\hat{\theta} = g(X_1, X_2, ..., X_n)$  대신

 $[L(X_1, X_2, ..., X_n), U(X_1, X_2, ..., X_n)]$  형식의 추정 방법 사용

- $L(X_1, X_2, ..., X_n)$  : lower bound
- $U(X_1, X_2, ..., X_n)$  : upper bound

o 구간 [ $L(X_1,X_2,...,X_n)$ ,  $U(X_1,X_2,...,X_n)$ ] 으로  $\theta$  추정

$$\Rightarrow P[L(X_1, X_2, ..., X_n) \le \theta \le U(X_1, X_2, ..., X_n)] \implies 1 - \alpha$$

 $: \theta$ 에 대한 100 $(1-\alpha)$ % 신뢰구간

신과수들은 만장시케어 구반의 뜻이 가장 작은 지점

ekt 0.95 थ्रियान 0.99 थ्रियापूर्न मिरेना में

 $\sim 1-\alpha$  : 신뢰계수(confidence coefficient)

NZLF는 (confidence level7 : P[L < 0 < R] = I - 여

५ भणम्बर्धिकरमान्त्रियारम



ex) XI... Xn 15 from N(p, 02), 0/ Tell 0= p

 $\hat{\theta} = \overline{X}$  이용  $\rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$  :  $\hat{\theta}$  과 우한 비 이 있는 구간 는 각단 뜻이 최신이라면 과목대칭

7장. 구간추정 (Interval Estimation)

NOTE: 바람직한 구간추정?

- 주어진 신뢰계수  $(1-\alpha)$ 일 때, 구간의 길이를 최소로 하는 구간추정  $\rightarrow$  정성이 %아야하 (MVUE or MLE)
  - ① 효율적인 추정량  $\hat{\theta}=g(X_1,X_2,...,X_n)$  사용
  - ②  $\hat{\theta} = g(X_1, X_2, ..., X_n)$ 의 분포를 이용해 신뢰계수를 만족하는 구간 설정

다 "pivotal quantity (중심 축량)"  $Q = h(\hat{\theta}, \theta)$  활용 그 건생생  $\chi$  parameter 2 이 국 이 전 생 나는  $\chi_{\text{Lin}}$   $\chi_{\text{Lin}$ 

▶ 일반적인 형태  $(\hat{\theta})$  의 분포가  $\theta$ 를 중심으로 좌우 대칭인 경우)  $L(X_1, X_2, ..., X_n) = \hat{\theta} - E$  &  $U(X_1, X_2, ..., X_n) = \hat{\theta} + E$ 



% 신뢰수준(confidence level) :  $(1-\alpha)$ 

 $P[L(X_1,...,X_n) \leq \theta \leq U(X_1,...,X_n)] \geq 1-\alpha$  ☞ 구간의 길이 최소화...?



# 7.1 <mark>평균에</mark> 대한 신뢰구간

 $(X_1,X_2,\,\cdots,X_n)$  random sample from  $N(\mu,\sigma_0^2):\mu$ 에 대한 구간추정  $\times \sigma_0^2$  : known (알고 있을 때)

$$ullet$$
 pivotal quantity :  $Q=rac{\overline{X}-\mu}{\sigma_0/\sqrt{n}}\sim Z$  이용

$$\Rightarrow P[\overline{X} - z_{\alpha/2}(\frac{\sigma_0}{\sqrt{n}}) \le \mu \le \overline{X} + z_{\alpha/2}(\frac{\sigma_0}{\sqrt{n}})] = 1 - \alpha$$

$$\Rightarrow$$
  $\mu$ 에 대한 100 $(1-lpha)$ % 신뢰구간 :  $[\overline{X}-z_{lpha/2}(rac{\sigma_0}{\sqrt{n}}),\,\overline{X}+z_{lpha/2}(rac{\sigma_0}{\sqrt{n}})$  ]

- **▶** 100(1 − \alpha)% 의 의미?
  - ☞ [예제 7.1-2] & 그림 7.1-1 (교재 p.323)



THE SAL - WEIGHT OF IN OF INCOMED THE 4, by - 3 to party & (h-h52 0/8)

 $(X_1,X_2,\cdots,X_n)$  random sample from  $(N)(\mu,\sigma^2)$  :  $\mu$  에 대한 구간추정  $\times \sigma^2$ : unkwon (모르는 경우)

- pivotal quantity :  $Q = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{(n-1)}$  이용 및 정규분포 가정  $\Rightarrow \pi \text{ (사기 높따찬 나 (사기 녹짜 나 ) )}$   $\Rightarrow \pi \text{ 가게 가에 이 되는 때 }$

 $\Rightarrow$   $\mu$ 에 대한 100 $(1-\alpha)$ % 신뢰구간 :

长红小

$$[\overline{X} - t_{\alpha/2,\,(n-1)}(\frac{S}{\sqrt{n}}),\,\overline{X} + t_{\alpha/2,\,(n-1)}(\frac{S}{\sqrt{n}})\,] \qquad \text{$0$ not $\xi$. } \text{$\frac{1}{2}$ or $\zeta$ and $\zeta$ of $\zeta$ o$$

o [예제 7.1-5] & [예제 7.1-6] (각자)

-> २०१२५०२ छिर्म्य 52 भेगवा कर्ड १३००३ 24492 Q = X-M ~ N(0,1)

NOTE: 정규분포 가정이 없으면,

$$lackbox$$
 pivotal quantity :  $Q=rac{\overline{X}-\mu}{S/\sqrt{n}}\div Z$  이용  $rac{}{}$  표본크기  $n$ 이 큰 경우

"중심극한정리(CLT)"

→ भारकित्रिका अहिला भग भूवल ? मुखा महेला ० ८ .



NOTE. 
$$[L(X_1,X_2,...,X_n),\ U(X_1,X_2,...,X_n)]$$
 등 양측 신뢰구간

왕) 자유물이  $\mod$  :  $[L(X_1,X_2,...,X_n)\leq \theta]$  또는  $[\theta\leq U(X_1,X_2,...,X_n)]$ 

स्रा भूमोह | उपनिष्ठा | 
$$P[\overline{X}-z_{\alpha}(\frac{\sigma}{\sqrt{n}})\leq \mu\ ]=1-\alpha$$

또는 
$$P[\; \mu \leq \overline{X} + z_{\alpha}(\frac{\sigma}{\sqrt{n}})\;] = 1 - \alpha$$

#### **X NOTE**

- ① X를 사용함으로써 구간의 길이 최소화
- Somple Size  $\binom{2}{n}$ 이 증가하면 구간의 길이 감소  $\binom{3}{n}$ 이 고정된 경우,  $1-\alpha$  감소하면  $\Rightarrow$  구간의 길이?
  - ③ 구간 폭이 sample data(표본자료)에 따라 변할 수 있음



# 7.2 평균의 차이( $\mu_x - \mu_y$ )에 대한 신뢰구간

문년 
$$\times$$
  $\sigma_x^2, \sigma_y^2$  : known (알고 있을 때)  $\nearrow$   $\hat{\theta}$  (MIE)  $\theta$ 

$$\Rightarrow$$
 pivotal quantity : 
$$Q = \frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}} \sim Z$$

$$\Rightarrow (\mu - \mu)$$
에 대한  $100(1 - \alpha)$ % 신뢰구간 :

 $\Rightarrow$   $(\mu_x - \mu_y)$ 에 대한 100 $(1-\alpha)$ % 신뢰구간 :

$$\begin{bmatrix} (\overline{X} - \overline{Y}) - z_{\alpha/2} \sigma_w, \ (\overline{X} - \overline{Y}) + z_{\alpha/2} \sigma_w \end{bmatrix} , \quad \sigma_w = \sqrt{\sigma_x^2/n + \sigma_y^2/m}$$
 
$$? (-2 \alpha_1 \le Q \le 2 \alpha_1) = 1 - \alpha$$

o [예제 7.2-1]



[NOTE 1]  $\sigma_x^2, \sigma_y^2$  unknown (모르는 경우) & n, m 이 큰 경우 "중심극한정리(CLT)"

가정 : 
$$\sigma_x^2 = \sigma_y^2 = \sigma^2$$

 $\sigma_x^2 = \sigma_y^2 = \sigma^2$  ※ 분산이 같지 않은 경우 (교재 p.331~332 참조)

$$lackbox$$
 pivotal quantity :  $Q=\dfrac{(\overline{X}-\overline{Y})-(\mu_x-\mu_y)}{S_p\,\sqrt{1/n+1/m}}\sim \dfrac{$  생생년가생일요!  $t_{(n+m-2)}$  이용

여기서 합동추정량(pooled\_estimator) : 
$$S_p^2 = \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2} = \frac{\frac{1}{2}(\chi_1-\chi_1)^2 + \frac{1}{2}(\chi_1-\chi_1)^2}{n+m-2}$$

o [예제 7.2-2]



# ■ 쌍 비교 (paired comparison) > 함의 compounding 을 다니워내

 $(X_1, Y_1), (X_2, Y_2), \cdots, (X_n, Y_n)$  random sample from bivariate Normal dist.

 $\Rightarrow D_i = X_i - Y_i$ ,  $D_1, D_2, ..., D_n$  random sample from  $N(\mu_D, \sigma_D^2)$ 

 $\Rightarrow$   $\mu_D=\left(\mu_x-\mu_y\right)$ 에 대한 100(1-  $\alpha$ )% 신뢰구간 :

$$[\overline{D} - t_{\alpha/2, (n-1)}(\frac{S_D}{\sqrt{n}}), \overline{D} + t_{\alpha/2, (n-1)}(\frac{S_D}{\sqrt{n}})]$$

Q. 쌍 비교(paired comparison)를 하는 이유는?  $\Rightarrow Var(\overline{D}) = ...$  )제청년다자해서 월대자이니까!

「예제 7.2-41



#### 7.3 비율(P)에 대한 신뢰구간 P= HIKI

 $X_1, X_2, \cdots, X_n$  random sample from  $\mathtt{Ber}(p)$  & 표본크기 n이 큰 경우 o

 $\Rightarrow P$ 에 대한  $100(1-\alpha)$ % 신뢰구간:

$$[\, \hat{p} - z_{\alpha/2} \, \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \; , \; \hat{p} + z_{\alpha/2} \, \sqrt{\frac{\hat{p}\,(1-\hat{p})}{n}} \; ]$$

※ NOTE: 다른 형태의 신뢰구간 (p. 339 참조)

부등식 
$$\frac{|\hat{p}-p|}{\sqrt{p(1-p)/n}} \leq z_{\alpha/2}$$
 © 이차함수 부등식의 해(구간)



2) 모비율의 차이 $(p_1 - p_2)$ 에 대한 신뢰구간 p.342

$$Q = \frac{(\hat{p}_1 - \hat{p}_2) - (\hat{p}_1 - \hat{p}_2)}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{N} + \frac{\hat{p}_2(1-\hat{p}_2)}{M}}} \stackrel{\sim}{\sim} 2$$

#### ▶ 표본크기 결정 문제

- (최대) 허용 오차를 만족시키는 표본크기의 결정 ☞ <u>7.4절</u>

# 下土 日 ちもり→ そそんとちものりの いかとんとれてとき!

ex) 
$$E = Z_{M/2} \frac{\sigma^2}{4n} = (00 \rightarrow n = ?)$$
  
 $E = Z_{M/2} \frac{\sigma^2}{4n} = 50 \rightarrow n = ?$ 

# ▶ 분산( $\sigma^2$ )에 대한 구간추정 등

$$Q = \frac{(N-1) S^{2}}{\sigma^{2}} \sim \pi^{2} (N-1)$$

$$\Rightarrow P \left( a \leq \frac{(N-1) S^{2}}{\sigma^{2}} \leq b \right) = 1 - \pi \cdot 2 \quad \text{a.s.} \quad b \leq \frac{1}{2} \times 50 + \sigma^{2} \cdot 31 + \frac{1}{2} \times 11 + \frac$$

