

Compendio Fondamenti di Automatica

A. Munafò

Christian Cantavenera | Ingegneria Informatica Unipi

A.A. 2024/25

Indice

0	Mod	ello a Variabili di Stato	1
	0.1	1) Modello in Variabili di Stato (Forma Standard)	1
	0.2	2) Dalle EDO alla Forma di Stato (Forma Compagna)	1
	0.3	3) Soluzione del Modello LTI (Formula di Lagrange)	2
	0.4	4) Modi, Autovalori, Jordan e Stabilità	2
	0.5	5) Equilibrio e Linearizzazione di Sistemi Non Lineari	3
	0.6	6) Raggiungibilità/Controllabilità	3
	0.7	7) Osservabilità/Ricostruibilità	3
	8.0	8) Scomposizione Canonica di Kalman e Forma Minima	4
	0.9	9) Funzione di Trasferimento e Controllo in Retroazione	5
	0.10	Checklist e Consigli Pratici per gli Esercizi	5
		0.10.1 Mini-Formulario	6
1	Funz	zione di Trasferimento e Analisi dei Sistemi	7
	1.1	1. Trasformata di Laplace - Proprietà Pratiche	7
	1.2	2. Dall'Equazione Differenziale alla FdT	8
	1.3	3. Sistemi del Primo Ordine	8
	1.4	4. Sistemi del Secondo Ordine	8
	1.5	5. Antitrasformata tramite Scomposizione in Fratti Semplici	g
	1.6	6. Algebra degli Schemi a Blocchi	9
	1.7	7. Da Spazio di Stato a FdT (e viceversa)	9
	1.8	8. Esempio Applicativo: Modello di Sospensione (Quarter-Car)	
	1.9	Checklist e Consigli Pratici per gli Esercizi	10
		1.9.1 Mini-Formulario	11
2	Crite	erio di Routh e Analisi della Stabilità	13
	2.1	1) Dallo Spazio di Stato alla Funzione di Trasferimento	13
	2.2	2) Stabilità: Concetti Fondamentali	13
	2.3	3) Stabilità dei Sistemi in Retroazione	14
	2.4	4) Criterio di Stabilità di Routh	14
	2.5	5) Criterio di Routh: Casi Singolari	15
	2.6	6) Risposta in Frequenza (o Armonica)	15
	2.7	Checklist e Consigli Pratici per gli Esercizi	15
		2.7.1 Mini-Formulario	16
3	Diag	rammi di Bode e Risposta in Frequenza	17
	3.1	1) Concetti Fondamentali	
	3.2	2) Forma Standard di Bode	
	3.3	3) Contributi dei Termini Elementari (Asintotici)	
	2 /	1) Tracciamento dei Diagrammi di Rode (Motodo Asintotico)	10

	3.5	Checklist e Consigli Pratici per gli Esercizi	
4	Il Lu	ogo delle Radici	21
	4.1	1) Concetti Fondamentali	21
	4.2	2) Regole per il Tracciamento (per K > 0)	21
	4.3	3) Luogo delle Radici e Prestazioni del Sistema	22
	4.4	Checklist e Consigli Pratici per gli Esercizi	22
		4.4.1 Mini-Formulario	23
5	Diag	rammi di Nyquist e Criterio di Stabilità	25
	5.1	1) Concetti Fondamentali	25
	5.2	2) Tracciamento Qualitativo del Diagramma	25
	5.3	3) Il Criterio di Stabilità di Nyquist	25
	5.4	4) Poli sull'Asse Immaginario (Chiusura all'Infinito)	26
	5.5	Checklist e Consigli Pratici per gli Esercizi	26
6	Mar	gini di Ampiezza e Fase	29
	6.1	1) Concetti Fondamentali di Robustezza	29
	6.2	2) Margine di Guadagno (Gain Margin, m_G o M_g)	29
	6.3	3) Margine di Fase (Phase Margin, m_Φ o P_m)	29
	6.4	4) Rappresentazione Grafica dei Margini	
		6.4.1 Diagrammi di Bode	
		6.4.2 Diagramma di Nyquist	30
	6.5	5) Requisiti di Progetto e Considerazioni Pratiche	30
		6.5.1 Sistemi non Regolari e Stabilità Condizionata	30
	6.6	Checklist e Consigli Pratici	31
		6.6.1 Mini-Formulario	31
7	Prog	gettazione del Controllore	33
	7.1	1) Obiettivi e Specifiche di Progetto	
		7.1.1 Categorie di Specifiche	
	7.2	2) Il Metodo del Loop Shaping	
		7.2.1 Legame tra Anello Aperto (L) e Chiuso (H)	
		7.2.2 Approssimazioni Fondamentali	
	7.3	3) Traduzione delle Specifiche in Vincoli su $L(s)$	34
		7.3.1 Specifiche Statiche (Vincoli a Bassa Frequenza)	34
		7.3.2 Specifiche di Rumore (Vincoli ad Alta Frequenza)	34
		7.3.3 Specifiche Dinamiche (Vincoli intorno a ω_c)	34
	7.4	4) Sensitività e Limiti Fisici	34
		7.4.1 Sensitività del Controllo e Saturazione	34
	7.5	Checklist e Consigli Pratici per il Progetto	35
		7.5.1 Mini-Formulario	36

0 Modello a Variabili di Stato

0.1 1) Modello in Variabili di Stato (Forma Standard)

$$\begin{cases} \dot{x} = Ax + Bu & \text{(Equazione di Stato)} \\ y = Cx + Du & \text{(Equazione di Uscita)} \end{cases}$$

- $x \in \mathbb{R}^n$: Vettore di stato
- $u \in \mathbb{R}^r$: Vettore degli ingressi
- $y \in \mathbb{R}^m$: Vettore delle uscite
- A: Matrice di sistema (dinamica, stabilità)
- B: Matrice degli ingressi (raggiungibilità con A)
- C: Matrice delle uscite (osservabilità con A)
- D: Matrice di legame diretto (spesso D=0 nei sistemi fisici)

Visuale a blocchi con l'integratore come elemento centrale.

Figura 0.1: Diagramma a blocchi stato

0.2 2) Dalle EDO alla Forma di Stato (Forma Compagna)

Data un'EDO: $y^{(n)}(t)=\hat{F}(y,\dot{y},\ldots,y^{(n-1)},u,\dot{u},\ldots,u^{(p)},t)$

- 1. **Isola** $y^{(n)}$ (normalizza il suo coefficiente a 1).
- 2. **Scegli** le variabili di stato come l'uscita e le sue derivate:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix}$$

3. **Scrivi** le equazioni di stato: $\dot{x}_1=x_2,\quad \dot{x}_2=x_3,\quad \dots,\quad \dot{x}_{n-1}=x_n\ \dot{x}_n=y^{(n)}=$ (sostituisci i termini con x e u)

1

Casi particolari:

- Senza derivate di u (p=0): A è in forma compagna, $B=[0,\ldots,0,1]^{\mathsf{T}}$, $C=[1,0,\ldots,0]$, D=0.
- Con derivate di u ($p \ge 1$): A e B come sopra; le derivate dell'ingresso compaiono nei coefficienti delle matrici C e D.

Esempio guida: y'' + y = 2u + u'

- 1. Isola: y'' = -y + 2u + u'
- 2. Stato: $x_1=y$, $x_2=\dot{y}$
- 3. Equazioni: $\dot{x}_1=x_2\,\dot{x}_2=-x_1+2u+u'$ (Qui compare u' , va gestito)
- 4. Il modello finale è:

$$\begin{cases} \dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 2 & 1 \end{bmatrix} \mathbf{x} + [0]u \end{cases}$$

Consiglio: Non forzare le derivate di u nella matrice B; vanno gestite in C e D.

0.3 3) Soluzione del Modello LTI (Formula di Lagrange)

$$x(t) = \underbrace{e^{A(t-t_0)}x_0}_{\text{Risposta Libera}} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{\text{Risposta Forzata}}$$

$$y(t) = Cx(t) + Du(t)$$

- Risposta Libera: Evoluzione da $x_0 \operatorname{con} u = 0$. Dipende solo da A (e^{At} è la matrice di transizione).
- Risposta Forzata: Evoluzione da $u(t) \cos x_0 = 0$.
- e^{At} si calcola con serie di potenze, diagonalizzazione, o forma di Jordan.

Consigli:

- Per ingressi semplici (gradino, impulso), sfrutta proprietà e trasformate.
- Se A è diagonale a blocchi, e^{At} è diagonale a blocchi (e^{A_1t},e^{A_2t},\ldots).

0.4 4) Modi, Autovalori, Jordan e Stabilità

- I **modi** della risposta libera $x_l(t)$ sono determinati dagli autovalori λ_i di A e dalla sua struttura (Jordan).
 - A diagonalizzabile: Modi semplici $e^{\lambda_i t}$ (reali) o $e^{\sigma_i t} \sin(\omega_i t + \phi_i)$ (complessi).
 - A non diagonalizzabile (Forma di Jordan): Compaiono termini polinomiali $t^k e^{\lambda_i t}$.
- Criterio di Stabilità (LTI) basato solo su A:
 - Asintoticamente Stabile: Tutti gli autovalori hanno $Re(\lambda_i) < 0$.
 - Semplicemente Stabile (Marginale): Tutti gli autovalori hanno Re(λ_i) ≤ 0 e gli autovalori con Re(λ_i) = 0 hanno m.a. = m.g. (nessun blocco di Jordan di dimensione > 1).
 - Instabile: Almeno un autovalore con $\operatorname{Re}(\lambda_i) > 0$ OPPURE almeno un autovalore con $\operatorname{Re}(\lambda_i) = 0$ con m.a. > m.g. (blocco di Jordan di dimensione > 1 sull'asse immaginario).

Consiglio: Per coppie di autovalori complessi $\sigma \pm j\omega$, usa i blocchi reali $2 \times 2 \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$ per evitare calcoli complessi.

0.5 5) Equilibrio e Linearizzazione di Sistemi Non Lineari

Per un sistema non lineare $\dot{x} = f(x, u)$:

- 1. **Punto di Equilibrio** (\bar{x}, \bar{u}) : Trovato risolvendo $0 = f(\bar{x}, \bar{u})$.
- 2. **Linearizzazione**: Definisci le variazioni $\Delta x = x \bar{x}$, $\Delta u = u \bar{u}$.

$$\Delta \dot{x} = A \Delta x + B \Delta u, \quad \text{dove} \quad A = \left. \frac{\partial f}{\partial x} \right|_{(\bar{x},\bar{u})}, \quad B = \left. \frac{\partial f}{\partial u} \right|_{(\bar{x},\bar{u})}$$

$$\Delta y = C\Delta x + D\Delta u, \quad \text{dove} \quad C = \left. \frac{\partial g}{\partial x} \right|_{(\bar{x},\bar{u})}, \quad D = \left. \frac{\partial g}{\partial u} \right|_{(\bar{x},\bar{u})}$$

3. **Analizza** il modello LTI $\Delta \dot{x} = A \Delta x + B \Delta u$ risultante.

Consigli:

- Scegli punti di equilibrio **semplici** (es., $\theta=0, v=0$ nell'esempio del cruise control) per matrici A e B più semplici.
- Le conclusioni sulla stabilità sono locali (valide solo intorno al punto di equilibrio linearizzato).
- Se la linearizzazione è marginalmente stabile, non si può concludere nulla sulla stabilità del sistema non lineare originale.

0.6 6) Raggiungibilità/Controllabilità

- **Definizione (Raggiungibilità)**: Il sistema è completamente raggiungibile se, partendo da x(0)=0, è possibile raggiungere **qualsiasi** stato \tilde{x} in un tempo finito T con un ingresso u(t) appropriato. Per sistemi LTI, raggiungibilità e controllabilità coincidono.
- Test di Kalman: Calcola la matrice di raggiungibilità:

$$M_B = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

Il sistema è raggiungibile se e solo se ${\rm rank}(M_R)=n$.

• Test PBH (Popov-Belevitch-Hautus): Il sistema è raggiungibile se e solo se:

$${\rm rank}[\lambda I - A \mid B] = n \quad {\rm per \, ogni \, autovalore} \, \lambda \, {\rm di} \, A$$

• Stabilizzabilità: La parte non raggiungibile (se presente) deve essere asintoticamente stabile.

Ispezione rapida (SISO, A diagonale): Il sistema è raggiungibile se tutti gli elementi di B sono non nulli ($b_i \neq 0$) e tutti gli autovalori sono distinti.

0.7 7) Osservabilità/Ricostruibilità

• **Definizione (Osservabilità)**: Il sistema è completamente osservabile se, conoscendo u(t) e y(t) su un intervallo di tempo finito [0, T], è possibile determinare univocamente lo stato iniziale x(0).

• Test di Kalman: Calcola la matrice di osservabilità:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Il sistema è osservabile se e solo se $\operatorname{rank}(\mathcal{O}) = n$.

• Test PBH: Il sistema è osservabile se e solo se:

$$\operatorname{rank} \begin{bmatrix} \lambda I - A \\ C \end{bmatrix} = n \quad \operatorname{per ogni autovalore} \lambda \operatorname{di} A$$

Nota pratica: Parti non osservabili che sono instabili sono un problema serio (lo stato diverge senza che l'uscita lo segnali).

0.8 8) Scomposizione Canonica di Kalman e Forma Minima

- È sempre possibile decomporre uno spazio di stato in 4 parti:
 - 1. Raggiungibile e Osservabile (\mathbf{x}_{RO})
 - 2. Raggiungibile e Non Osservabile (\mathbf{x}_{RNO})
 - 3. Non Raggiungibile e Osservabile (\mathbf{x}_{NRO})
 - 4. Non Raggiungibile e Non Osservabile (\mathbf{x}_{NRNO})
- La relazione ingresso-uscita u(t) o y(t) dipende solo dalla parte R&O.
- Una realizzazione è in **forma minima** se è sia completamente raggiungibile che completamente osservabile. Descrive la relazione I/O con il minor numero di stati possibile.

Figura 0.2: Schema riassuntivo della Scomposizione di Kalman

0.9 9) Funzione di Trasferimento e Controllo in Retroazione

• Funzione di Trasferimento G(s): Rappresentazione nel dominio di Laplace del legame I/U per condizioni iniziali nulle. Per un sistema SISO in forma stato:

$$G(s) = C(sI - A)^{-1}B + D$$

Il denominatore di G(s) è $\det(sI-A)$. Gli zeri possono cancellare poli non raggiungibili o non osservabili.

• Controllo in Retroazione (Feedback): Strategia fondamentale. Si misura l'uscita y, si calcola l'errore e=r-y rispetto al riferimento desiderato r, e si usa un controllore K per generare l'ingresso u che riduca l'errore.

Figura 0.3: schema

0.10 Checklist e Consigli Pratici per gli Esercizi

Da EDO a Forma di Stato

- oxdot Normalizza il coefficiente di $y^{(n)}$ a 1.
- \boxtimes Scegli $x = [y, \dot{y}, ..., y^{(n-1)}]^{\top}$.
- \boxtimes Le **derivate di** u non vanno in B, ma influenzano C e D.
- oxdot Verifica le dimensioni delle matrici (A: $n \times n$, B: $n \times r$, C: $m \times n$, D: $m \times r$).

Analisi di Stabilità

- oxdot Calcola gli **autovalori** di A (basta il segno della parte reale).
- \boxtimes Per autovalori con **Re**(λ)=**0**, verifica la **molteplicità geometrica** (dimensione dei blocchi di Jordan). Se m.a. > m.g. -> Instabile.
- \boxtimes Ricorda: la stabilità è una proprietà **interna** (della risposta libera, di A).

Linearizzazione

- oxdot Definisci chiaramente il **punto di equilibrio** (\bar{x}, \bar{u}) .
- \boxtimes Interpreta Δx e Δu come piccole variazioni attorno all'equilibrio.

Test di Raggiungibilità/Osservabilità

- \boxtimes Kalman: Costruisci M_R o $\mathcal O$ e calcola il rango. Se =n -> OK.
- 🛛 **PBH**: Usalo soprattutto per confermare la **non** raggiungibilità/osservabilità, testando i singoli autovalori.
- ☑ Se il sistema non è raggiungibile, verifica almeno che sia **stabilizzabile**.

Forma Minima

- □ La relazione I/U è descritta dalla parte R&O.
- oxdot **Poli e zeri** cancellati in G(s) corrispondono a parti non R o non O.

Generali

- ☑ Rango: Usa l'eliminazione di Gauss per calcolarlo in modo efficiente.
- Matrici diagonali a blocchi: Le proprietà spesso si analizzano blocco per blocco.
- 🗵 **Esempi tipici** (cruise control, masse-molle, circuiti RC) sono tuoi amici. Ricorda le loro caratteristiche.

0.10.1 Mini-Formulario

• Soluzione stato:
$$x(t)=e^{A(t-t_0)}x_0+\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$
 • Esponenziale di matrice:
$$e^{At}=\sum_{k=0}^\infty \frac{A^kt^k}{k!}$$

- Stabilità LTI: Dipende da $\operatorname{Re}(\lambda_i(A))$ e struttura di Jordan.
- Raggiungibilità: $\mathrm{rank}([B,AB,...,A^{n-1}B])=n$ oppure $\mathrm{rank}([\lambda I-A|B])=n$ $\forall \lambda$
- Osservabilità: $\mathrm{rank}([C;CA;...;CA^{n-1}]) = n \ \mathrm{oppure} \ \mathrm{rank}([\lambda I A;C]) = n \ \forall \lambda \in \mathcal{A}$
- Linearizzazione: $A=\frac{\partial f}{\partial x}|_{eq},\quad B=\frac{\partial f}{\partial u}|_{eq}$ Funzione di Trasferimento: $G(s)=C(sI-A)^{-1}B+D$

1 Funzione di Trasferimento e Analisi dei Sistemi

1.1 1. Trasformata di Laplace - Proprietà Pratiche

Definizione:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^{+\infty} f(t) e^{-st} dt$$

Condizione: f(t) deve essere di ordine esponenziale e generalmente continua.

Trasformate Fondamentali:

f(t)	F(s)
$\delta(t)$	1
$\delta(t-t_0)$	e^{-st_0}
1(t)	$\frac{1}{s}$
$1(t-t_0)$	$\frac{e^{-st_0}}{s}$
e^{at}	$\frac{1}{s-a}$
$t^n/n!$	$\frac{1}{s^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{at}\sin(\omega t)$	$\tfrac{\omega}{(s-a)^2+\omega^2}$
$e^{at}\cos(\omega t)$	$\tfrac{s-a}{(s-a)^2+\omega^2}$

Proprietà Utili:

- Linearità: $\mathcal{L}\{c_1f_1+c_2f_2\}=c_1F_1(s)+c_2F_2(s)$

- Derivata (Tempo): $\mathcal{L}\{\dot{f}(t)\} = sF(s) f(0^+)$ Integrale (Tempo): $\mathcal{L}\{\int_0^t f(\tau)d\tau\} = \frac{F(s)}{s}$ Traslazione (Frequenza): $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$
- Derivata (Frequenza): $\mathcal{L}\{t^nf(t)\}=(-1)^nrac{d^nF(s)}{ds^n}$
- Convoluzione (Tempo): $\mathcal{L}\{f(t)*g(t)\} = F(s)\cdot G(s)$

Teoremi dei Valori:

- Iniziale: $f(0^+) = \lim_{s \to \infty} sF(s)$
- Finale: $f(\infty) = \lim_{s \to 0} sF(s)$ (Valido solo se tutti i poli di sF(s) hanno parte reale < 0)

1.2 2. Dall'Equazione Differenziale alla FdT

Per un sistema LTI SISO descritto da:

$$a_n y^{(n)} + \dots + a_1 \dot{y} + a_0 y = b_m u^{(m)} + \dots + b_0 u$$

Applicare Laplace (condizioni iniziali nulle):

$$(a_ns^n+\cdots+a_1s+a_0)Y(s)=(b_ms^m+\cdots+b_1s+b_0)U(s)$$

$$\Rightarrow G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$

Importante: La FdT G(s) è anche la Trasformata di Laplace della Risposta all'Impulso g(t).

1.3 3. Sistemi del Primo Ordine

Forma standard:

$$G(s) = \frac{K}{\tau s + 1}$$

- K = G(0): Guadagno Statico
- τ : Costante di Tempo

Risposta al gradino unitario (U(s) = 1/s):

$$Y(s) = \frac{K}{s(\tau s + 1)} = K\left(\frac{1}{s} - \frac{\tau}{\tau s + 1}\right)$$

$$y(t) = K(1 - e^{-t/\tau}) \cdot 1(t)$$

- τ : Tempo per raggiungere il **63%** del valore finale (K).
- $t_{s.5\%} pprox 3 au$: Tempo di assestamento (entro il ±5% di K).

1.4 4. Sistemi del Secondo Ordine

Forma generale (senza zeri):

$$G(s) = \frac{K}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Parametri caratteristici:

- ω_n : Pulsazione Naturale [rad/s]
- ξ: Coefficiente di Smorzamento (adimensionale)
- $\omega_d = \omega_n \sqrt{1 \xi^2}$: Pulsazione Smorzata [rad/s] (per $0 < \xi < 1$)

Risposta al gradino unitario (per $0 < \xi < 1$):

$$y(t) = K \left[1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \phi) \right] \cdot 1(t)$$

 $con \phi = arccos(\xi)$

Specifiche della risposta:

- Tempo di Picco (T_p): $T_p=rac{\pi}{\omega_d}$
- Sovraelongazione Percentuale ($M_p\%$): $M_p\% = e^{-\pi\xi/\sqrt{1-\xi^2}} \cdot 100\%$
- Tempo di Assestamento (T_s): $T_s \approx \frac{3}{\xi \omega_n}$ (criterio al 5%) Tempo di Salita (T_r): $T_r \approx \frac{1.8}{\omega_n}$ (approssimazione)

1.5 5. Antitrasformata tramite Scomposizione in Fratti Semplici

Data $F(s)=rac{N(s)}{D(s)}=rac{N(s)}{(s-p_1)^{m_1}(s-p_2)^{m_2}...}$, si scompone in:

- Poli Semplici Reali: $\frac{A}{s-p}$ Poli Multipli Reali: $\frac{B_1}{s-p}+\frac{B_2}{(s-p)^2}+\cdots+\frac{B_m}{(s-p)^m}$ Poli Complessi Coniugati Semplici: $\frac{Cs+D}{(s-\sigma)^2+\omega^2}$ o $\frac{A}{s-(\sigma+j\omega)}+\frac{A^*}{s-(\sigma-j\omega)}$

Calcolo residui:

- Poli Semplici: $R = \lim_{s \to p} (s-p) F(s)$
- Poli Multipli (p con moltelpicità m): $R_k = \frac{1}{(m-k)!} \lim_{s \to p} \frac{d^{m-k}}{ds^{m-k}} [(s-p)^m F(s)]$

1.6 6. Algebra degli Schemi a Blocchi

Configurazioni Fondamentali:

- 1. Serie: $G_{tot}(s) = G_1(s) \cdot G_2(s)$
- 2. Parallelo: $G_{tot}(s) = G_1(s) + G_2(s)$
- 3. Retroazione:
 - Negativa: $G_{tot}(s)=\frac{G(s)}{1+G(s)H(s)}$ Positiva: $G_{tot}(s)=\frac{G(s)}{1-G(s)H(s)}$

Attenzione alle Cancellazioni: Collegamenti in serie/parallelo/retroazione possono causare cancellazioni polo-zero, rendendo il sistema complessivo non a minima rappresentazione (non completamente raggiungibile e/o osservabile).

1.7 7. Da Spazio di Stato a FdT (e viceversa)

Da SS a FdT:

Dato il sistema:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

La FdT è:

$$G(s) = C(sI - A)^{-1}B + D$$

Da FdT a SS (Realizzazione):

Data $G(s)=rac{b_0s^n+\cdots+b_n}{s^n+a_1s^{n-1}+\cdots+a_n}$, una realizzazione è la **Forma Canonica di Controllo** (sempre raggiungibile):

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} b_n & b_{n-1} & \cdots & b_1 \end{bmatrix} - b_0 \begin{bmatrix} a_n & a_{n-1} & \cdots & a_1 \end{bmatrix}, \quad D = [b_0]$$

1.8 8. Esempio Applicativo: Modello di Sospensione (Quarter-Car)

Funzione di Trasferimento:

$$G(s) = \frac{\Delta X_s(s)}{\Delta X_f(s)} = \frac{cs + k_s}{M_s s^2 + cs + k_s}$$

Parametri del Secondo Ordine:

•
$$\omega_n = \sqrt{\frac{k_s}{M_s}}$$

• $\xi = \frac{c}{2\sqrt{k_s M_s}}$

Analisi: Per un comfort ottimale (minime oscillazioni della carrozzeria X_s), serve uno smorzamento ξ sufficientemente alto, senza però pregiudicare l'aderenza.

1.9 Checklist e Consigli Pratici per gli Esercizi

1. Antitrasformata:

- \boxtimes Il denominatore di F(s) è sempre di grado maggiore o uguale al numeratore? Se no, esegui la divisione polinomiale prima di scomporre.
- 🛛 I poli sono semplici o multipli? Reali o complessi? Scegli il metodo di scomposizione di conseguenza.
- oxtimes Verifica i residui con il teorema del valore iniziale: $f(0^+) = \lim_{s o \infty} sF(s)$.

2. Risposta al Gradino:

- \boxtimes Per il **primo ordine**, identifica subito K e τ . Il grafico è una semplice esponenziale.
- oxdot Per il **secondo ordine**, calcola ξ e ω_n . Il valore di ξ ti dice tutto:
 - $\xi = 0$: Oscillazioni permanenti.
 - $0<\xi<1$: Sovraelongazione e oscillazioni smorzate. Calcola $M_p\%$, T_p , T_s .

– $\xi \ge 1$: Nessuna sovraelongazione. Il sistema può essere scomposto in due sistemi del primo ordine in serie.

3. Schemi a Blocchi:

- ⊠ Riduci lo schema passo-passo (serie, parallelo, retroazione).
- ☑ Attenzione ai punti di somma: spostali se necessario per applicare le regole.
- \boxtimes Il **guadagno statico** totale G(0) del sistema in catena chiusa si trova spesso ponendo s=0 nella FdT ridotta.

4. Da FdT a Spazio di Stato:

- oxtimes La forma canonica di controllo è la più semplice da ricavare. Ricorda di scrivere il denominatore come s^n + $a_1s^{n-1} + ... + a_n$ (coefficiente di $s^n = 1$).
- \boxtimes Controlla le dimensioni delle matrici: $A \grave{e} n \times n$, $B \grave{e} n \times 1$, $C \grave{e} 1 \times n$, $D \grave{e} 1 \times 1$.

5. Teorema del Valore Finale:

- oxtimes Usalo solo se il sistema è stabile! Controlla sempre la posizione dei poli di sF(s) prima di applicarlo. Se ha poli a destra o sull'asse immaginario (tranne forse uno in origine), il teorema non è applicabile.
- 🗵 È utilissimo per trovare il **valore a regime** di un'uscita senza dover calcolare tutta l'antitrasformata.

1.9.1 Mini-Formulario

- $\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$
- $\mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}$
- $\mathcal{L}\{f(t)*g(t)\} = F(s)G(s)$
- $f(\infty) = \lim_{s \to 0} sF(s)$ (se stab.)
- 1° Ordine: $y(t)=K(1-e^{-t/\tau})1(t)$ 2° Ordine (sovrael.): $y(t)=K\left[1-\frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}}\sin(\omega_d t+\phi)\right]1(t)$
- $M_p\% = e^{-\pi\xi/\sqrt{1-\xi^2}} \cdot 100\%$
- $T_s \approx \frac{3}{\xi \omega_n}$
- Forma Canonica Ctrl: Ultima riga di $A = [-a_n, -a_{n-1}, ..., -a_1]$

2 Criterio di Routh e Analisi della Stabilità

2.1 1) Dallo Spazio di Stato alla Funzione di Trasferimento

La funzione di trasferimento G(s) descrive la relazione ingresso-uscita di un sistema LTI nel dominio di Laplace, assumendo condizioni iniziali nulle.

Da SS a FdT (SISO e MIMO): Dato il modello $\dot{x} = Ax + Bu$ e y = Cx + Du, la (matrice di) funzione di trasferimento è:

$$G(s) = C(sI - A)^{-1}B + D$$

- **Poli**: I poli di G(s) sono le radici del suo denominatore, $\det(sI-A)$. Essi corrispondono agli **autovalori** di A che sono sia **raggiungibili** che **osservabili**.
- Equazione Caratteristica: $\det(sI-A)=0$. Le sue radici sono gli autovalori della matrice di sistema A.
- Cancellazioni Polo-Zero: Se un autovalore di A non compare come polo di G(s), significa che è stato cancellato perché il modo corrispondente non era raggiungibile o non era osservabile.

2.2 2) Stabilità: Concetti Fondamentali

La stabilità determina il comportamento del sistema a seguito di perturbazioni. È legata alla posizione dei poli nel piano complesso.

- Stabilità Asintotica: Il sistema ritorna all'equilibrio dopo una perturbazione.
 - Condizione: Tutti i poli della FdT (o tutti gli autovalori di A per la stabilità interna) devono avere parte reale negativa ($Re(\lambda_i) < 0$).
- Stabilità Marginale (o Semplice): Il sistema non diverge ma non torna all'equilibrio (es. oscillazioni permanenti).
 - Condizione: Tutti i poli hanno $Re(\lambda_i) \leq 0$ e i poli con $Re(\lambda_i) = 0$ (sull'asse immaginario) sono semplici (molteplicità 1).
- Instabilità: L'uscita diverge.
 - Condizione: Almeno un polo ha $Re(\lambda_i)>0$ OPPURE almeno un polo con $Re(\lambda_i)=0$ ha molteplicità > 1.
- Stabilità BIBO (Bounded-Input, Bounded-Output): A un ingresso limitato corrisponde sempre un'uscita limitata.

 Per i sistemi LTI, BIBO

 Stabilità Asintotica.

Poli Dominanti: I poli più vicini all'asse immaginario (con $Re(\lambda)$ meno negativa) sono quelli che decadono più lentamente e quindi **dominano** la risposta transitoria del sistema. Questo permette di approssimare sistemi di ordine superiore a sistemi del primo o secondo ordine.

2.3 3) Stabilità dei Sistemi in Retroazione

Per un sistema in anello chiuso (retroazione negativa):

Figura 2.1: Schema di un sistema di controllo in retroazione

- Funzione di Trasferimento d'Anello (Open Loop): $G_{OL}(s) = C(s)G(s)H(s)$
- Funzione di Trasferimento in Anello Chiuso: $T(s) = \frac{C(s)G(s)}{1 + G_{OL}(s)}$
- Equazione Caratteristica del Sistema Chiuso:

$$1 + G_{OL}(s) = 0$$

La stabilità del sistema in anello chiuso dipende **esclusivamente** dalle radici (poli) di questa equazione, non dai poli del sistema ad anello aperto.

2.4 4) Criterio di Stabilità di Routh

È un metodo algebrico per determinare il numero di radici di un polinomio con parte reale positiva, senza calcolarle.

Dato il polinomio caratteristico: $p(s)=a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0=0.$

- 1. **Condizione Necessaria**: Tutti i coefficienti a_i devono esistere e avere lo **stesso segno**. Se non è così, il sistema è instabile (o marginalmente stabile) e non serve procedere. > *Questa condizione* è anche sufficiente solo per n=1 e n=2.
- 2. Costruzione della Tabella di Routh:
 - Riga 1 (sⁿ): Contiene i coefficienti $a_n, a_{n-2}, a_{n-4}, \dots$
 - Riga 2 (s^{-1}): Contiene i coefficienti $a_{n-1}, a_{n-3}, a_{n-5}, \dots$
 - **Righe Successive**: Ogni elemento delle righe successive (a partire dalla terza) si calcola utilizzando gli elementi delle due righe precedenti, secondo la formula generale:

$$a_{i,j} = -\frac{\det \begin{vmatrix} a_{i-2,1} & a_{i-2,j+1} \\ a_{i-1,1} & a_{i-1,j+1} \end{vmatrix}}{a_{i-1,1}}$$

3. Criterio di Stabilità:

- Stabilità Asintotica: Se e solo se tutti gli elementi della prima colonna sono non nulli e hanno lo stesso segno.
- Instabilità: Il numero di cambi di segno nella prima colonna è uguale al numero di poli con parte reale positiva.

2.5 5) Criterio di Routh: Casi Singolari

1. Zero nella prima colonna (ma la riga non è tutta nulla):

- **Soluzione**: Sostituire lo zero con un piccolo numero positivo $\epsilon>0$ e completare la tabella. Analizzare i segni degli elementi nella prima colonna per $\epsilon\to0^+$.
- Un cambio di segno attorno a ϵ indica instabilità.

2. Un'intera riga è nulla:

- Cosa indica: La presenza di radici simmetriche rispetto all'origine (es. $\pm j\omega$, $\pm \sigma$, coppie complesse coniugate simmetriche). Il sistema non è asintoticamente stabile.
- Soluzione:
 - 1. Costruire il **Polinomio Ausiliario** q(s) usando i coefficienti della riga **precedente** a quella nulla.
 - 2. **Derivare** il polinomio ausiliario: $\frac{dq(s)}{ds}$.
 - 3. Sostituire la riga nulla con i coefficienti della derivata.
 - 4. Continuare la costruzione della tabella.

• Interpretazione:

- Le radici di q(s)=0 sono anche radici del polinomio originale. Se sono sull'asse immaginario ($s=\pm j\omega$), indicano una possibile oscillazione.
- Se non ci sono cambi di segno nella parte restante della prima colonna, il sistema è marginalmente stabile.
- Se ci sono cambi di segno, il sistema è instabile.

2.6 6) Risposta in Frequenza (o Armonica)

Per un sistema LTI **stabile**, la risposta a regime a un ingresso sinusoidale è ancora una sinusoide alla stessa frequenza, ma con ampiezza e fase modificate.

- Ingresso: $u(t) = U_0 \sin(\omega t)$
- Uscita a regime:

$$y_{regime}(t) = U_0 \cdot |G(j\omega)| \cdot \sin(\omega t + \angle G(j\omega))$$

- $|G(j\omega)|$: Modulo della FdT calcolata in $s=j\omega$ (guadagno in ampiezza).
- $\angle G(j\omega)$: Fase della FdT calcolata in $s=j\omega$ (sfasamento).

2.7 Checklist e Consigli Pratici per gli Esercizi

Stabilità e Criterio di Routh

- oxdots Trova l'equazione caratteristica. Se parti da un sistema in retroazione, è $1+G_{OL}(s)=0$. Sviluppa i calcoli fino a ottenere un polinomio p(s)=0.
- \boxtimes **Controllo preliminare (Condizione Necessaria)**: I coefficienti di p(s) hanno tutti lo stesso segno? Se c'è un coefficiente nullo o un cambio di segno, il sistema è instabile o, nel migliore dei casi, marginalmente stabile.
- 🗵 Costruisci la Tabella di Routh. Scrivi le prime due righe con attenzione. Riempile con zeri se i coefficienti finiscono.
- ☑ Calcola la prima colonna. Procedi riga per riga. Puoi moltiplicare un'intera riga per una costante positiva per semplificare i calcoli.
- ⋈ Analizza la prima colonna:
 - Tutti positivi? \Longrightarrow **Stabile**.

- Ci sono cambi di segno? ⇒ **Instabile**. Conta i cambi per sapere quanti poli instabili ci sono.

- **Zero Pivot**: Sostituisci con ϵ e calcola il limite.
- **Riga Nulla**: Fermati, crea il polinomio ausiliario q(s) dalla riga sopra, derivalo e usa i nuovi coefficienti. Ricorda che questo significa che il sistema non è asintoticamente stabile. Le radici di q(s) ti danno i poli sull'asse immaginario o simmetrici.

Analisi con Parametri (es. guadagno K)

- oxdot Svolgi i calcoli della tabella di Routh mantenendo il parametro K come variabile.
- oxdots Imponi la stabilità: poni tutti i termini della prima colonna > 0.
- 🖂 Risolvi il sistema di disequazioni per trovare il **range di valori di K** che garantisce la stabilità.
- \boxtimes I valori di K che annullano un termine della prima colonna sono i **valori critici** dove il sistema passa da stabile a instabile (spesso entrando in oscillazione).

2.7.1 Mini-Formulario

- Da Stato a FdT: $G(s) = C(sI A)^{-1}B + D$
- Equazione Caratteristica (Anello Chiuso): $1+G_{OL}(s)=0$
- · Criterio di Routh:
 - Stabilità ⇔ Tutti gli elementi della 1ª colonna > 0.
 - Nr. cambi di segno nella 1ª colonna = Nr. poli con Re(s) > 0.
- Risposta Armonica (uscita a regime): $y(t) = |G(j\omega)|U_0\sin(\omega t + \angle G(j\omega))$

3 Diagrammi di Bode e Risposta in Frequenza

3.1 1) Concetti Fondamentali

I diagrammi di Bode sono la rappresentazione grafica della risposta in frequenza $G(j\omega)$ di un sistema e si compongono di due grafici su scala semi-logaritmica (pulsazione ω in scala log, ampiezza/fase in scala lin).

• Diagramma dei Moduli (o Ampiezze):

- Asse Y: Modulo $|G(j\omega)|$ espresso in **Decibel (dB)**.
- Asse X: Pulsazione ω [rad/s] in scala logaritmica.

• Diagramma delle Fasi:

- Asse Y: Fase $\angle G(j\omega)$ espressa in gradi (o radianti).
- Asse X: Pulsazione ω [rad/s] in scala logaritmica.

Decibel (dB):

$$|G|_{dB} = 20 \log_{10}(|G|)$$

- **0 dB**: Guadagno unitario (|G| = 1).
- +20 dB: Amplificazione di 10 volte.
- -20 dB: Attenuazione di 10 volte.
- +6 dB: Raddoppio dell'ampiezza.

Vantaggio: L'uso dei logaritmi trasforma prodotti di FdT in somme e divisioni in sottrazioni, semplificando l'analisi di sistemi complessi.

$$|G_1 \cdot G_2|_{dB} = |G_1|_{dB} + |G_2|_{dB}$$
 e $\angle (G_1 \cdot G_2) = \angle G_1 + \angle G_2$

3.2 2) Forma Standard di Bode

Per tracciare i diagrammi, la FdT va scritta nella forma di Bode, che evidenzia i singoli contributi di poli e zeri.

$$G(s) = K_B \frac{\prod (1 + s\tau_{z_i})}{\prod (1 + s\tau_{p_i})} \frac{\prod (1 + \frac{2\xi_{z_i}}{\omega_{n,z_i}}s + \frac{s^2}{\omega_{n,z_i}^2})}{\prod (1 + \frac{2\xi_{p_i}}{\omega_{n,p_i}}s + \frac{s^2}{\omega_{n,p_i}^2})} \frac{1}{s^h}$$

- K_B : Guadagno di Bode. $|K_B|_{dB}=20\log_{10}(|K_B|)$ è il valore iniziale del modulo a $\omega \to 0$ (se h=0).
- $1/s^h$: Poli (h > 0) o zeri (h < 0) nell'origine. h è il tipo del sistema.
- $(1+s\tau)$: Poli/zeri reali. La pulsazione di rottura è $\omega_c=1/|\tau|$.
- + $(1+rac{2\xi}{\omega_n}s+rac{s^2}{\omega_n^2})$: Poli/zeri complessi coniugati. La pulsazione di rottura è ω_n .

3.3 3) Contributi dei Termini Elementari (Asintotici)

Termine	Modulo (dB)	Fase (gradi)
Guadagno K_B	Retta orizzontale a $20\log_{10}(\ K_B\)$	0° se $K_B>0$, -180° se $K_B<0$
Polo Origine $1/s^h$	Retta con pendenza -20h dB/decade passante per 0 dB a $\omega=1$	Costante a -90h°
Zero Origine s^h	Retta con pendenza +20h dB/decade passante per 0 dB a $\omega=1$	Costante a +90h°
Polo Reale $\frac{1}{1+s\tau}$	0 dB fino a $\omega_c=1/ au$, poi pendenza -20 dB/decade	Da 0° a -90° (passa per -45° a ω_c)
Zero Reale $1+s\tau$	0 dB fino a $\omega_c=1/ au$, poi pendenza +20 dB/decade	Da 0° a +90° (passa per +45° a ω_c)
Poli Complessi $\frac{1}{1+\dots}$	0 dB fino a ω_n , poi pendenza -40 dB/decade	Da 0° a -180° (passa per -90° a ω_n)
Zeri Complessi $1+\dots$	0 dB fino a ω_n , poi pendenza +40 dB/decade	Da 0° a +180° (passa per +90° a ω_n)
Ritardo Puro e^{-sT}	0 dB (non altera l'ampiezza)	$-\omega T\cdot (180/\pi)^\circ$ (scende linearmente

3.4 4) Tracciamento dei Diagrammi di Bode (Metodo Asintotico)

- 1. **Metti** G(s) **in forma di Bode**. Identifica K_B , poli/zeri nell'origine e tutte le pulsazioni di rottura ($\omega_c = 1/\tau \ {\rm e} \ \omega_n$).
- 2. Traccia il diagramma dei moduli:
 - Parti dalla retta corrispondente a K_B/s^h . Se h=0, è una retta orizzontale a $20\log_{10}(K_B)$. Se $h\neq 0$, è una retta con pendenza $\pm 20h$ dB/dec che passa per $20\log_{10}(K_B)$ a $\omega=1$.
 - Procedi da sinistra a destra sull'asse delle ω . Ad ogni pulsazione di rottura, **modifica la pendenza** della retta in base al termine incontrato (+20 per zero reale, -20 per polo reale, +40 per zeri complessi, -40 per poli complessi).

3. Traccia il diagramma delle fasi:

- Somma algebricamente i contributi di fase di ogni termine.
- Il contributo di un polo/zero reale inizia una decade prima della sua ω_c e termina una decade dopo.
- Il contributo di poli/zeri complessi è simile, ma con una variazione totale di $\pm 180^{\circ}$.

4. (Opzionale) Correggi il diagramma reale:

- In corrispondenza delle pulsazioni di rottura, il diagramma reale si discosta da quello asintotico.
- Poli/zeri reali: correzione di ∓ 3 dB a ω_c .
- Poli/zeri complessi: la correzione dipende da ξ . Per $\xi < 0.707$ si ha un picco di risonanza (un'amplificazione). Il picco vale circa $-20\log_{10}(2\xi)$ dB a ω_n .

3.5 Checklist e Consigli Pratici per gli Esercizi

oxdots **Prima di tutto, la forma di Bode!** Assicurati che ogni termine sia nella forma $(1+s\tau)$ o $(1+\cdots+s^2/\omega_n^2)$. Se hai (s+a), raccogli a per ottenere a(1+s/a). Il fattore a andrà a modificare il guadagno K_B .

- extstyle ext
- \boxtimes **Somma delle pendenze**: Il modo più rapido per tracciare il modulo è calcolare la pendenza cumulata dopo ogni ω_c . Esempio: Inizio a 0, incontro uno zero (+20), pendenza diventa +20. Incontro un polo (-20), pendenza torna a 0. Incontro poli complessi (-40), pendenza va a -40.
- oxdots Fase: la regola della decade: Per tracciare la fase in modo approssimato, considera che la variazione di fase ($\pm 90^\circ$ o $\pm 180^\circ$) avviene principalmente nell'intervallo $[\omega_c/10, 10\omega_c]$.
- oxdot **Poli/Zeri Instabili (a parte reale positiva)**: Se hai un termine $(1 s\tau) \cos \tau > 0$:
 - **Modulo**: Il diagramma del modulo è **identico** a quello del termine stabile $(1 + s\tau)$.
 - Fase: Il diagramma di fase è **ribaltato**. Un polo instabile contribuisce con una fase da 0° a $+90^{\circ}$. Uno zero instabile da 0° a -90° .
- \boxtimes **Picco di Risonanza**: Ricorda che un valore basso di ξ (< 0.5) nei poli complessi causa un picco evidente nel modulo. Questo è fondamentale per l'analisi della stabilità in anello chiuso (margini di guadagno e fase).

3.5.1 Mini-Formulario

- Decibel: $|G|_{dB} = 20 \log_{10}(|G|)$
- Pendenze Asintotiche:
 - Polo/Zero reale: $\mp 20 \, dB/decade$
 - Poli/Zeri complessi: ∓ 40 dB/decade
 - Polo/Zero all'origine (ordine h): $\mp 20h$ dB/decade
- · Variazioni di Fase:
 - Polo/Zero reale: $\mp 90^\circ$
 - Poli/Zeri complessi: $\mp 180^\circ$
 - Polo/Zero all'origine (ordine h): $\mp 90 h^\circ$
- Correzione a ω_c (polo reale): $-3~\mathrm{dB}$
- Correzione a ω_n (poli complessi): $-20\log_{10}(2\xi)$ dB
- Fase a ω_c (polo reale): -45°
- Fase a ω_n (poli complessi): -90°

4 Il Luogo delle Radici

4.1 1) Concetti Fondamentali

Il Luogo delle Radici è un metodo grafico che mostra come i poli di un sistema in anello chiuso si muovono nel piano complesso al variare di un parametro, solitamente un guadagno K>0.

- Sistema in Anello Aperto: $L(s) = K \cdot G(s) = K \frac{n(s)}{d(s)}$
- Equazione Caratteristica (Anello Chiuso): $1+L(s)=0 \implies d(s)+K\cdot n(s)=0$

Il Luogo delle Radici è l'insieme di tutte le soluzioni (radici) di questa equazione al variare di K da 0 a $+\infty$.

Condizioni Fondamentali: Un punto *s* appartiene al luogo se soddisfa:

- 1. Condizione di Fase (o Angolo): Definisce la forma del luogo.
 - Per K>0: $\angle G(s)=\sum \angle (s-z_i)-\sum \angle (s-p_i)=\pm 180^\circ(2h+1)$
 - Per K < 0: $\angle G(s) = \sum \angle (s-z_i) \sum \angle (s-p_i) = \pm 360^{\circ} h$
- 2. **Condizione di Modulo**: Definisce il *valore di K* in un punto del luogo.
 - $|K| = \frac{1}{|G(s)|} = \frac{|d(s)|}{|n(s)|}$

4.2 2) Regole per il Tracciamento (per K > 0)

- 1. **Numero di Rami**: Il numero di rami è uguale al numero di poli ad anello aperto, n.
- 2. Partenza e Arrivo:
 - I rami partono (K=0) dai poli di L(s).
 - I rami arrivano $(K \to \infty)$ agli zeri di L(s).
 - Se n > m, allora n m rami vanno all'infinito.
- 3. Appartenenza all'Asse Reale: Un punto sull'asse reale appartiene al luogo se alla sua destra ha un numero dispari di singolarità (poli + zeri) reali.
- 4. Simmetria: Il luogo è sempre simmetrico rispetto all'asse reale.
- 5. **Asintoti** (per i rami che vanno all'infinito, se n > m):
 - Numero asintoti: n-m

 - Centro degli asintoti (baricentro): $\sigma=\frac{\sum p_i-\sum z_i}{n-m}$ Angoli degli asintoti: $\phi_h=\frac{(2h+1)180^\circ}{n-m}$ per $h=0,1,\ldots,n-m-1$
- 6. Punti di Break-in / Break-away (punti di separazione/incontro sull'asse reale):
 - Sono punti a molteplicità maggiore di 1.
 - Si trovano risolvendo $\frac{dK}{ds} = 0$, dove $K(s) = -\frac{d(s)}{n(s)}$.
- 7. Angoli di Partenza/Arrivo (da/a poli/zeri complessi):
 - Angolo di partenza da un polo complesso p_k : $\theta_{p_k}=180^\circ+\sum\angle(p_k-z_i)-\sum_{j\neq k}\angle(p_k-p_j)$
 - Angolo di arrivo a uno zero complesso z_k : $\theta_{z_k}=180^\circ-\sum \angle(z_k-p_j)+\sum_{i\neq k} \angle(z_k-z_i)$

4.3 3) Luogo delle Radici e Prestazioni del Sistema

Il Luogo delle Radici permette di scegliere il guadagno K per posizionare i poli dominanti del sistema in anello chiuso in modo da soddisfare specifiche di performance.

Relazione tra posizione dei poli e risposta nel tempo: Per una coppia di poli complessi coniugati $s=-\xi\omega_n\pm j\omega_n\sqrt{1-\xi^2}$:

- ξ (smorzamento) costante: I poli si trovano su rette uscenti dall'origine con angolo $\theta = \arccos(\xi)$.
- ω_n (pulsazione naturale) costante: I poli si trovano su una circonferenza di raggio ω_n .
- $\sigma = \xi \omega_n$ (fattore di decadimento) costante: I poli si trovano su una retta verticale.

Traduzione delle specifiche in vincoli geometrici:

- Massima Sovraelongazione ($M_p\%$): Limita lo smorzamento minimo ($\xi \geq \bar{\xi}$). I poli devono trovarsi all'interno di un cono con apertura $\theta = \arccos(\bar{\xi})$.
- Tempo di Assestamento (T_s): Limita la parte reale minima ($\xi \omega_n \geq \bar{\sigma}$). I poli devono trovarsi a **sinistra** di una retta verticale $s=-\bar{\sigma}$.
- **Tempo di Salita** (T_r): Limita la pulsazione naturale minima ($\omega_n \geq \bar{\omega}_n$). I poli devono trovarsi all'**esterno** di una circonferenza di raggio $\bar{\omega}_n$.

La regione ammissibile per i poli è l'intersezione di queste aree.

4.4 Checklist e Consigli Pratici per gli Esercizi

1. Analisi Preliminare:

- \boxtimes Identifica i poli (p_i) e gli zeri (z_i) della funzione d'anello L(s).
- \boxtimes Calcola n (numero poli) e m (numero zeri).
- \boxtimes Il numero di rami è n. I rami che vanno all'infinito sono n-m.

2. Tracciamento su Asse Reale:

🖂 Colora i segmenti dell'asse reale che hanno un numero **dispari** di poli e zeri alla loro destra.

3. Asintoti (se n > m):

- oxtimes Calcola il centroide $\sigma = (\sum p_i \sum z_i)/(n-m)$.
- oxdots Calcola gli angoli $\phi_h=(2h+1)180^\circ/(n-m)$. Disegnali.

4. Punti di Separazione/Incontro (Break points):

- oxtimes Scrivi l'espressione per K(s) = -d(s)/n(s).
- oxtimes Calcola la derivata dK/ds e ponila uguale a zero.
- ☑ Le soluzioni reali che appartengono ai segmenti del luogo sull'asse reale sono i tuoi break points.

5. Intersezioni con Asse Immaginario (per determinare il K critico di stabilità):

- oxdots Usa il **Criterio di Routh** sull'equazione caratteristica d(s) + Kn(s) = 0.
- oxdot Risolvi l'equazione ausiliaria (dalla riga precedente) per trovare le pulsazioni $\pm j\omega$ di attraversamento.

6. Angoli di Partenza/Arrivo (solo se ci sono poli/zeri complessi):

🗵 Applica la formula usando un goniometro o calcolando le fasi dei vettori da tutte le altre singolarità.

7. Sintesi del Controllore:

- 🗵 Disegna la regione del piano complesso che soddisfa le specifiche (sovraelongazione, tempo di assestamento).
- ☑ Verifica se il luogo delle radici interseca questa regione.
- $\ oxdot$ Se sì, scegli un punto s^* desiderato sul luogo all'interno della regione.
- \boxtimes Calcola il guadagno K corrispondente a quel punto usando la **condizione di modulo**: $K = 1/|G(s^*)|$.

4.4.1 Mini-Formulario

- Equazione Caratteristica: $1 + K \cdot G(s)H(s) = 0$
- Condizione di Fase (K>0): $\angle G(s)H(s) = \pm 180^{\circ}(2h+1)$

- Condizione di Modulo: $|K|=\frac{1}{|G(s)H(s)|}$ Centro Asintoti: $\sigma=\frac{\sum p_i-\sum z_i}{n-m}$ Angoli Asintoti (K>0): $\phi_h=\frac{(2h+1)180^\circ}{n-m}$
- Break Points: $\frac{dK}{ds} = 0$
- Sovraelongazione: $M_p\%\iff\xi\geq \bar\xi\iff$ Cono di angolo $\theta=\arccos(\bar\xi)$
- Tempo di Assestamento: $T_s\iff \xi\omega_n\geq \bar\sigma\iff$ Semipiano a sinistra di $s=-\bar\sigma$

5 Diagrammi di Nyquist e Criterio di Stabilità

5.1 1) Concetti Fondamentali

Il **Diagramma di Nyquist** (o diagramma polare) è una rappresentazione della risposta in frequenza $G(j\omega)$ nel piano complesso. A differenza di Bode, usa scale **lineari** per la parte reale e immaginaria.

- Asse X: $Re\{G(j\omega)\}$ • Asse Y: $Im\{G(j\omega)\}$
- La curva è parametrizzata dalla pulsazione ω , che varia da $-\infty$ a $+\infty$. Il tracciato per $\omega \in [0, +\infty)$ è detto **diagramma polare**. Il tracciato per $\omega < 0$ è la sua immagine **speculare rispetto all'asse reale**. Il **punto critico** per la stabilità è **(-1, 0)**.

Il diagramma di Nyquist mostra la stessa informazione di Bode, ma in una forma diversa, fondamentale per applicare il criterio di stabilità di Nyquist. A differenza di Bode, i contributi dei singoli termini non si sommano graficamente.

5.2 2) Tracciamento Qualitativo del Diagramma

Per tracciare il diagramma, si analizzano i punti notevoli, specialmente per $\omega \to 0$ e $\omega \to \infty$.

Comportamento per $\omega \to 0$:

- **Tipo 0** (h = 0): Il diagramma parte da un punto **finito** sull'asse reale, pari al guadagno statico G(0).
- Tipo h (h>0, poli nell'origine): Il diagramma parte dall'infinito. La fase iniziale (e quindi il quadrante) dipende da $h: \angle G(j\omega) \approx -h \cdot 90^{\circ}$.

Comportamento per $\omega \to \infty$:

- Sistema strettamente proprio (n>m): Il diagramma arriva nell'origine (0, 0). La fase finale (e quindi la tangente) dipende dal grado relativo n-m: $\angle G(j\omega) \approx -(n-m)\cdot 90^\circ$.
- Sistema proprio (n=m): Il diagramma arriva a un punto finito sull'asse reale.

Dal diagramma di Bode a Nyquist: Si può tracciare qualitativamente il diagramma di Nyquist leggendo modulo e fase da un diagramma di Bode. Ogni quadrante del piano di Nyquist corrisponde a un intervallo di 90° nel diagramma di fase di Bode.

5.3 3) Il Criterio di Stabilità di Nyquist

È un metodo grafico potentissimo che determina la stabilità di un sistema in **anello chiuso** analizzando il diagramma di Nyquist della sua funzione d'anello **aperto** L(s).

Definizioni:

• L(s): Funzione di trasferimento ad anello aperto.

- P^+ : Numero di poli di L(s) con parte reale positiva (poli instabili ad anello aperto).
- R^+ : Numero di poli del sistema in anello chiuso con parte reale positiva (poli instabili ad anello chiuso che vogliamo determinare).
- N: Numero di **giri in senso orario** che il diagramma di Nyquist completo (per ω da $-\infty$ a $+\infty$) compie attorno al punto critico (-1, 0). I giri antiorari si contano come negativi.

Formula di Nyquist:

$$N = R^+ - P^+$$

Condizione di Stabilità: Il sistema in anello chiuso è asintoticamente stabile se e solo se non ha poli instabili, ovvero $R^+ = 0$. La condizione diventa quindi:

$$N=-P^+$$

Caso Fondamentale (Sistema Stabile ad Anello Aperto): Se il sistema ad anello aperto è stabile, allora $P^+=0$. La condizione di stabilità si semplifica drasticamente: il sistema in anello chiuso è stabile se e solo se N=0, ovvero il diagramma di Nyquist **non deve accerchiare** il punto critico (-1, 0).

5.4 4) Poli sull'Asse Immaginario (Chiusura all'Infinito)

Se la funzione d'anello L(s) ha poli sull'asse immaginario (inclusa l'origine), il diagramma di Nyquist per $\omega \to 0$ (o $\omega \to \omega_{polo}$) va all'infinito. Per applicare il criterio, il diagramma deve essere "chiuso".

- **Percorso di Nyquist**: Il percorso di integrazione nel piano *s* viene modificato con piccole semicirconferenze (indentature) per aggirare i poli sull'asse.
- Chiusura all'Infinito: Ogni polo di ordine h sull'asse immaginario produce nel diagramma di Nyquist una chiusura all'infinito costituita da h semicerchi percorsi in senso orario.
 - 1 polo in $s=0 \implies$ 1 semicerchio di 180°.
 - 2 poli in $s=0 \implies$ 2 semicerchi per un totale di 360°.

5.5 Checklist e Consigli Pratici per gli Esercizi

- oxdots 1. Analisi ad Anello Aperto: Data L(s), calcola il numero di poli instabili P^+ . Se $P^+=0$, il tuo obiettivo è N=0.
- \boxtimes 2. Traccia il Diagramma Polare: Calcola $L(j\omega)$ per $\omega=0$ e $\omega\to\infty$ per trovare i punti di partenza e arrivo del diagramma per $\omega\geq0$.
- \boxtimes 3. Trova le Intersezioni: Calcola per quali $\omega>0$ il diagramma interseca l'asse reale $(Im\{L(j\omega)\}=0)$ e l'asse immaginario $(Re\{L(j\omega)\}=0)$. L'intersezione con l'asse reale negativo è particolarmente importante.
- ☑ 4. Disegna il Diagramma Completo:
 - Disegna il diagramma polare per $\omega \in [0, \infty)$.
 - Aggiungi la sua immagine speculare rispetto all'asse reale per $\omega \in (-\infty, 0)$.
 - Se ci sono poli sull'asse immaginario (es. in s=0), aggiungi la **chiusura all'infinito** (es. un grande semicerchio orario per un polo nell'origine).
- 5. Conta i Giri (N): Conta quante volte il diagramma completo accerchia il punto (-1, 0) in senso orario. Un modo pratico è tracciare una semiretta dal punto (-1,0) e contare le intersezioni nette.
- oxtimes 6. Applica il Criterio: Verifica se $N=-P^+$. Se la condizione è soddisfatta, il sistema in anello chiuso è stabile.

Analisi con Guadagno K: Se $L(s)=K\cdot G(s)$, il punto critico diventa (-1/K, 0). - Disegna il diagramma di Nyquist per G(s). - Determina in quali intervalli dell'asse reale deve trovarsi il punto -1/K per soddisfare la condizione di stabilità $N=-P^+$. - Risolvi le disequazioni per trovare il **range di K** che garantisce la stabilità.

6 Margini di Ampiezza e Fase

6.1 1) Concetti Fondamentali di Robustezza

La **robustezza** è una misura chiave nella progettazione dei sistemi di controllo che indica la capacità di un sistema di mantenere la stabilità e prestazioni accettabili nonostante le incertezze del modello, i disturbi esterni o le variazioni dei parametri. Per quantificare questa robustezza, si utilizzano i **margini di stabilità**, che misurano quanto il sistema è "lontano" dal diventare instabile. I due margini principali sono il margine di guadagno e il margine di fase.

Un sistema in anello chiuso è stabile se vengono soddisfatte due condizioni intuitive sui diagrammi di Bode della funzione d'anello aperto L(s):

- Il modulo $|L(j\omega)|$ deve essere inferiore a 1 (0 dB) quando la fase $\angle L(j\omega)$ raggiunge -180°.
- La fase $\angle L(j\omega)$ deve essere superiore a -180° (cioè meno negativa) quando il modulo $|L(j\omega)|$ attraversa il valore 1 (0 dB).

6.2 2) Margine di Guadagno (Gain Margin, m_G o M_q)

Il margine di guadagno indica di quanto si può aumentare il guadagno d'anello prima che il sistema diventi instabile.

Definizione: Si definisce **pulsazione di crossover della fase** (ω_{π} o ω_{pc}) la pulsazione alla quale la fase della funzione d'anello aperto attraversa -180°. Il margine di guadagno è la distanza, misurata in dB, tra il modulo del guadagno a tale pulsazione e il livello di 0 dB.

$$m_G = -|L(j\omega_\pi)|_{dB}$$

- $m_G>0$ **dB**: Il sistema è stabile.
- $m_G < 0$ **dB**: Il sistema è instabile.

Un margine di guadagno positivo indica che all'attraversamento dei -180°, il modulo era inferiore a 0 dB, quindi il sistema è stabile.

6.3 3) Margine di Fase (Phase Margin, m_{Φ} o P_m)

Il margine di fase indica quale ritardo di fase aggiuntivo è necessario per portare il sistema all'instabilità.

Definizione: Si definisce **pulsazione di crossover del guadagno** $(\omega_t \circ \omega_{gc})$ la pulsazione alla quale il modulo della funzione d'anello aperto $|L(j\omega)|$ attraversa il valore di 0 dB. Il margine di fase è la differenza tra la fase del sistema a quella pulsazione e -180°.

$$m_\Phi = 180^\circ + \angle L(j\omega_t)$$

• $m_{\Phi} > 0^{\circ}$: Il sistema è stabile.

• $m_\Phi < 0^\circ$: Il sistema è instabile.

Un margine di fase positivo indica che all'attraversamento di 0 dB, la fase era "al di sopra" di -180°, garantendo la stabilità.

6.4 4) Rappresentazione Grafica dei Margini

6.4.1 Diagrammi di Bode

I diagrammi di Bode sono lo strumento principale per la lettura dei margini di stabilità:

- Margine di Guadagno: Si individua ω_{π} sul diagramma di fase (dove la fase è -180°), si sale al diagramma dei moduli a quella stessa pulsazione e si misura la distanza verticale dall'asse 0 dB.
- Margine di Fase: Si individua ω_t sul diagramma dei moduli (dove il guadagno è 0 dB), si scende al diagramma delle fasi a quella pulsazione e si misura la distanza verticale dall'asse dei -180°.

6.4.2 Diagramma di Nyquist

Sul diagramma di Nyquist, i margini quantificano la "distanza" del tracciato dal punto critico (-1, 0):

- Margine di Guadagno: È legato all'inverso dell'intersezione del diagramma con l'asse reale negativo. Se il diagramma interseca l'asse reale a -0.5, il guadagno può essere aumentato di un fattore 2 (cioè +6 dB) prima che il punto critico venga raggiunto.
- Margine di Fase: È l'angolo formato tra l'asse reale negativo e il vettore che unisce l'origine al punto in cui il diagramma interseca la circonferenza di raggio unitario.

Più il diagramma di Nyquist è lontano dal punto (-1, 0), più il sistema è robusto.

6.5 5) Requisiti di Progetto e Considerazioni Pratiche

Per garantire una buona robustezza e prestazioni adeguate (es. una risposta al gradino con smorzamento sufficiente), si richiedono tipicamente dei valori minimi per i margini.

- Margine di Guadagno (m_G): > 6 dB (nel documento è indicato > 4-6 dB)
- Margine di Fase (m_{Φ}): > 35°

6.5.1 Sistemi non Regolari e Stabilità Condizionata

Le definizioni standard dei margini sono pienamente affidabili per i **sistemi regolari** (o a fase minima), dove il modulo della FdT è una funzione monotona decrescente.

Tuttavia, esistono sistemi più complessi:

- **Sistemi con intersezioni multiple**: Se il diagramma di Bode presenta più attraversamenti di 0 dB o -180°, la definizione dei margini può diventare ambigua.
- Sistemi a stabilità condizionata: Sono sistemi che possono essere instabili per bassi valori di guadagno, stabili per un intervallo intermedio, e di nuovo instabili per guadagni elevati. In questi casi, l'analisi basata solo sui diagrammi di Bode può essere fuorviante ed è essenziale affidarsi al criterio di Nyquist o al luogo delle radici per una corretta valutazione della stabilità. Per questi sistemi, il concetto di margine di guadagno può dover essere invertito, indicando di quanto si può *ridurre* il guadagno prima di raggiungere l'instabilità.

6.6 Checklist e Consigli Pratici

- oxdots Calcola le pulsazioni di crossover: Trova ω_t (dove $|L(j\omega)|=1$) e ω_π (dove $\angle L(j\omega)=-180^\circ$).
- oxdot Leggi i margini dai grafici: Usa i diagrammi di Bode come strumento primario per una lettura rapida e chiara di m_G e $m_{oldsymbol{\Phi}}$.
- oxdots Interpreta il significato: Un margine di fase di 45° implica che si può aggiungere un ritardo puro al sistema che introduce uno sfasamento di -45° alla pulsazione ω_t prima che diventi instabile.
- oxdots Verifica la robustezza: Confronta i margini calcolati con i requisiti tipici di progetto ($m_G>6$ dB, $m_\Phi>35^\circ$) per valutare se il sistema è sufficientemente robusto.
- ★ Attenzione ai casi non standard: Se i diagrammi di Bode mostrano un andamento non monotono o attraversamenti multipli, non applicare le regole standard ciecamente. Usa il criterio di Nyquist per una verifica definitiva della stabilità.

6.6.1 Mini-Formulario

- Pulsazione Crossover Guadagno (ω_t): La ω tale che $|L(j\omega_t)|=1$ (o 0 dB).
- Pulsazione Crossover Fase (ω_π): La ω tale che $\angle L(j\omega_\pi) = -180^\circ$.
- Margine di Fase: $m_\Phi = 180^\circ + \angle L(j\omega_t)$
- Margine di Guadagno: $m_G = -|L(j\omega_\pi)|_{dB}$ (la fonte indica 0 dB $-|L(j\omega_\pi)|_{dB}$)

7 Progettazione del Controllore

7.1 1) Obiettivi e Specifiche di Progetto

L'obiettivo fondamentale del controllo è far sì che l'uscita di un processo y(t) segua un riferimento desiderato r(t) in modo stabile, preciso e robusto. Per raggiungere questo scopo, il progetto di un controllore C(s) deve soddisfare una serie di **specifiche di prestazione**, che si dividono in tre categorie principali.

7.1.1 Categorie di Specifiche

- 1. **Specifiche Statiche**: Riguardano il comportamento del sistema a **regime** $(t \to \infty)$. L'obiettivo è minimizzare o annullare l'**errore a regime** (e_{ss}) in risposta a ingressi canonici (gradino, rampa) e **reiettare i disturbi** a bassa frequenza.
- 2. **Specifiche Dinamiche**: Descrivono la qualità del **transitorio**. Le metriche principali sono la **rapidità** (misurata dal tempo di salita T_s o dal tempo di assestamento T_a) e il **comportamento oscillatorio** (misurato dalla massima sovraelongazione S%).
- 3. **Specifiche di Robustezza**: Assicurano che il sistema mantenga stabilità e prestazioni accettabili anche in presenza di incertezze sul modello. Si quantificano tramite i **margini di stabilità** (margine di fase m_{ϕ} e di guadagno m_{G}).

7.2 2) Il Metodo del Loop Shaping

Il **Loop Shaping** è una tecnica di progettazione basata sulla risposta in frequenza che consiste nel "modellare" il diagramma di Bode della **funzione d'anello** L(s) = C(s)G(s) per soddisfare le specifiche imposte al sistema in anello chiuso H(s) = L(s)/(1+L(s)).

7.2.1 Legame tra Anello Aperto (L) e Chiuso (H)

Il comportamento del sistema in anello chiuso (H) può essere dedotto da quello in anello aperto (L):

- Basse Frequenze ($|L(j\omega)|\gg 1$): Il sistema in anello chiuso ha un guadagno circa unitario, $H(j\omega)\approx 1$. Un $|L(j\omega)|$ elevato in questa regione garantisce un'alta **precisione a regime** e una buona **reiezione dei disturbi**.
- Alte Frequenze ($|L(j\omega)|\ll 1$): Il sistema in anello chiuso si comporta come quello ad anello aperto, $H(j\omega)\approx L(j\omega)$. Un $|L(j\omega)|$ basso in questa regione garantisce l'attenuazione del rumore di misura.
- Intorno alla Pulsazione di Taglio (ω_c): Qui, dove $|L(j\omega_c)|=1$, si determinano le prestazioni dinamiche e la stabilità del sistema in anello chiuso.

7.2.2 Approssimazioni Fondamentali

1. La **pulsazione di taglio** ω_c di L(s) è una buona stima della **banda passante** B_{3dB} del sistema in anello chiuso H(s).

- 2. Il margine di fase m_ϕ di L(s) è direttamente legato allo smorzamento ξ del sistema in anello chiuso.
 - $m_{\phi} \ge 75^{\circ} \implies$ Comportamento simile al **primo ordine** (nessuna sovraelongazione).
 - $m_{\phi} \leq 75^{\circ} \implies$ Comportamento simile al **secondo ordine** (sovraelongazione presente). Vale la regola empirica: $\xi \approx \frac{m_{\phi} \, [\text{gradi}]}{100}$.

7.3 3) Traduzione delle Specifiche in Vincoli su L(s)

Il cuore del loop shaping è tradurre ogni specifica di progetto in una "maschera" o "zona proibita" sul diagramma di Bode di L(s).

7.3.1 Specifiche Statiche (Vincoli a Bassa Frequenza)

- Errore a Regime: Per annullare l'errore a gradino, L(s) deve essere di **tipo 1** (contenere un polo in s=0). Se si richiede un errore finito $e_{ss} \leq X$ per un sistema di tipo 0, il guadagno statico deve soddisfare $L(0) \geq (1/X) 1$. Per un errore a rampa $e_{ramp} \leq X$, il guadagno di velocità $K_v = \lim_{s \to 0} sL(s)$ deve essere $K_v \geq 1/X$. Questo definisce un **limite inferiore per** $|L(j\omega)|$ a basse frequenze.
- Reiezione Disturbi di Carico: Una specifica $|S(j\omega)| \le \epsilon_d$ per $\omega \le \omega_d$ si traduce in $|L(j\omega)| \gtrsim 1/\epsilon_d$ per le stesse frequenze, rafforzando il limite inferiore.

7.3.2 Specifiche di Rumore (Vincoli ad Alta Frequenza)

• Reiezione Rumore di Misura: Una specifica $|H(j\omega)| \le \epsilon_n$ per $\omega \ge \omega_n$ si traduce direttamente in $|L(j\omega)| \lesssim \epsilon_n$ per le stesse frequenze. Questo definisce un limite superiore per $|L(j\omega)|$ ad alte frequenze.

7.3.3 Specifiche Dinamiche (Vincoli intorno a ω_c)

- Sovraelongazione Massima (S%): Si traduce in uno smorzamento minimo ξ_{min} , che a sua volta impone un margine di fase minimo $m_{\phi.min} \approx 100 \cdot \xi_{min}$.
- Tempo di Assestamento (T_a): Si traduce in una pulsazione di taglio minima, $\omega_{c,min} \approx 3/T_{a,max}$. Questo vincolo definisce la posizione in cui il diagramma di $|L(j\omega)|$ deve attraversare l'asse 0 dB.

7.4 4) Sensitività e Limiti Fisici

Esiste un **trade-off inevitabile** nel controllo, formalizzato dalla relazione S(s)+H(s)=1. Non è possibile avere contemporaneamente un'ottima reiezione dei disturbi (|S| piccolo) e un'ottima reiezione del rumore (|H| piccolo) alla stessa frequenza. Fortunatamente, i disturbi sono tipicamente a bassa frequenza e il rumore ad alta frequenza.

7.4.1 Sensitività del Controllo e Saturazione

La **sensitività del controllo** Q(s) = C(s)/(1 + L(s)) descrive lo "sforzo" richiesto all'attuatore.

- A basse frequenze, $|Q(j\omega)| \approx 1/|G(j\omega)|$.
- Ad alte frequenze, $|Q(j\omega)| \approx |C(j\omega)|$.

Regola pratica: Tentare di estendere la banda passante del sistema (ω_c) molto oltre quella naturale del processo (G(s)) è controproducente. Richiede un guadagno del controllore |C(s)| enorme, che porta alla **saturazione degli attuatori** e a un'eccessiva amplificazione del rumore.

7.5 Checklist e Consigli Pratici per il Progetto

Seguire un approccio metodico per tradurre le specifiche e modellare la funzione d'anello L(s).

Fase 1: Traduzione Meccanica delle Specifiche

1. Specifiche Statiche:

- Errore a gradino nullo? \implies Il controllore C(s) deve avere un polo in s=0. Inizia con un controllore Integrale (I) o Proporzionale-Integrale (PI): $C(s)=K_i/s$ o $C(s)=K_p(1+1/(\tau_i s))$.
- Errore a gradino finito $e_{ss} \leq X$? \implies Il sistema può essere di tipo 0. Calcola il guadagno statico $L(0) = C(0)G(0) \geq (1/X) 1$. Inizia con un controllore **Proporzionale (P)** $C(s) = K_p$ e calcola il valore minimo di K_p .
- Errore a rampa finito $e_{ramp} \leq X$? \implies Il sistema deve essere di tipo 1. Calcola il guadagno di velocità $K_v = \lim_{s \to 0} sC(s)G(s) \geq 1/X$ per determinare il guadagno del controllore.
- Reiezione disturbo $|S| \le \epsilon_d$ a ω_d ? \implies Verifica che a ω_d il tuo $|L(j\omega)|$ sia $\ge 1/\epsilon_d$. Se non lo è, il guadagno statico del controllore va aumentato.

2. Specifiche Dinamiche e di Robustezza:

- Sovraelongazione $S\% \leq S_{max}$? \implies Calcola ξ_{min} dalla formula $S\% = \exp(-\pi \xi/\sqrt{1-\xi^2})$ e imponi un margine di fase minimo $m_{\phi,min} \approx 100 \cdot \xi_{min}$ (es. $S\% \leq 15\% \implies \xi \geq 0.5 \implies m_{\phi} \geq 50^{\circ}$).
- Tempo di assestamento $T_a \leq T_{a,max}$? \implies Imponi una pulsazione di taglio minima $\omega_{c,min} \approx 3/T_{a,max}$.

3. Specifiche sul Rumore:

• Reiezione rumore $|H| \le \epsilon_n$ a ω_n ? \implies Imposta un vincolo superiore: $|L(j\omega)|$ deve essere $\le \epsilon_n$ per $\omega \ge \omega_n$.

Fase 2: Scelta del Controllore Iniziale e Loop Shaping

- 1. **Scegli la struttura base del controllore** (P, I, PI) in base alle specifiche statiche (punto 1.1) e calcola il guadagno necessario.
- 2. Disegna il Bode di L(s) = C(s)G(s) con il controllore iniziale.
- 3. Verifica le specifiche:
 - La pulsazione di taglio ω_c è $\geq \omega_{c,min}$?
 - Il margine di fase a ω_c è $\geq m_{\phi,min}$?
 - Il vincolo sul rumore ad alta frequenza è rispettato?

4. Se le specifiche NON sono soddisfatte, applica il Loop Shaping:

- **Problema**: Margine di fase insufficiente ($m_{\phi} < m_{\phi,min}$).
 - Soluzione: Devi "sollevare" la fase intorno a ω_c . Usa una **rete anticipatrice (lead network)** del tipo $C_{lead}(s) = \frac{1+\tau_z s}{1+\tau_p s} \cos \tau_z > \tau_p$. Posiziona lo zero $(1/\tau_z)$ un po' prima di ω_c e il polo $(1/\tau_p)$ dopo, per ottenere il massimo anticipo di fase proprio dove serve.
- **Problema**: Pulsazione di taglio troppo alta ($\omega_c>\omega_{c,max}$ a causa di vincoli sul rumore) o guadagno troppo alto a basse frequenze.
 - Soluzione: Devi "abbassare" il modulo senza alterare troppo la fase a ω_c . Usa una **rete attenuatrice (lag network)** del tipo $C_{lag}(s) = \frac{1+\tau_z s}{1+\tau_p s}$ con $\tau_z < \tau_p$. Posiziona polo e zero a frequenze molto più basse di ω_c per attenuare il guadagno a bassa frequenza e abbassare la curva del modulo.

- Problema: Sia m_ϕ che ω_c sono sbagliati.
 - **Soluzione**: Combina le due reti (controllore **lead-lag**). Usa la rete lag per posizionare correttamente la ω_c e la rete lead per fissare il margine di fase a quella nuova ω_c .

7.5.1 Mini-Formulario

- Relazione $S\% \leftrightarrow \xi$: $S\% = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}} \times 100$
- Relazione $m_{\phi} \leftrightarrow \xi$: $m_{\phi} \approx 100 \cdot \xi$ (in gradi)
- Funzione di Sensitività: $S(s) = \frac{1}{1 + L(s)}$
- Funzione di Sensitività Complementare: $H(s) = \frac{L(s)}{1+L(s)}$