

Disciplina: Arquitetura e Organização de Computadores I

Trabalho

Objetivo: O trabalho aqui proposto tem como objetivo a implementação de um simulador para uma arquitetura com pipeline simplificada, composta por um conjunto de instruções aritméticas, de desvio e de movimentação de dados entre registradores e memória.

Instruções

- O trabalho poderá ser feito em dupla.
- O trabalho poderá ser implementado em uma das seguintes linguagens:
 - C/C++;
 - Java;
 - Pascal;
 - Python;

Obs: caso a dupla deseje utilizar outra linguagem deverá comunicar o professor para verificar se a linguagem será aceita.

- O trabalho vale de 0,0 a 10,0 e corresponde a 3ª avaliação periódica.
- O trabalho deverá ser entregue via moodle na data combinada em sala.
- O nome do arquivo enviado deve seguir o padrão: NomeAluno1 RAXXXXXX NomeAluno2 RAXXXXXX.zip;
 - o O formato para submissão deve ser .zip, .rar, ou .tar;

Descrição: Deve-se implementar um simulador para uma arquitetura simples. As descrições para o hardware são as seguintes:

- Processador:
 - A arquitetura deverá ter um pipeline de 5 estágios, sendo eles:
 - Busca de instrução;
 - o Decodificação de instrução;
 - o Execução;
 - Acesso a memória;
 - Escrita do resultado nos registradores;

Obs: Veja que nem todas instruções realizam ações em todos estágios do pipeline, porém para simplificar a implementação, faça com que todas as instruções **passem** por todos os estágios;

- O hazards de dados deverão ser tratadas com a inserção de stalls quando necessário;
 - Nesses casos, a instrução deve esperar até que a dependência saia do pipeline.

Disciplina: Arquitetura e Organização de Computadores I

- Os *hazards* de controle deverão ser tratados prevendo que o desvio nunca será tomado.
- Assuma que não existirão *hazards* estruturais;
- A arquitetura deve ter 32 registradores de uso geral;
 - Os registradores devem ser nomeados de r0 até r31;
 - Inicialmente todos eles devem conter o valor 0;
- Além dos registradores de uso geral, deverão ser utilizados também os seguintes registradores:
 - ∘ PC Contador de programa;
 - ∘ SP Ponteiro de pilha
 - ∘ RA Endereço de retorno;

Memória:

- A arquitetura deve ter memória de dados e instruções separadas;
- Assuma que o programa que está em execução pode ser armazenado inteiro na memória de instruções;
- Assuma que cada instrução ocupa uma posição na memória de instruções;
- O tamanho da memória de dados fica a critério da equipe, porém deverá ter no mínimo 2048 posições;
 - o Todos os dados da memória devem ser inicializados com o valor 0.
- Cada endereço de memória de dados deverá armazenar um valor inteiro;

• Instruções:

- As instruções aritméticas e de desvio só podem ter seus operandos endereçados de duas maneiras:
 - Endereçamento direto por registrador;
 - Endereçamento por imediato;
- As instruções de acesso à memória deverão ter um operando com endereçamento direto por registrador e um operando com endereçamento por deslocamento;
- O formato e significado das instruções que deverão ser implementadas são exibidos na Tabela 1;
- Todas as instruções deverão operar somente sobre valores inteiros.

Entrada

• A entrada do programa deverá ser um arquivo de texto contendo um conjunto de instruções a serem executadas, onde cada instrução ocupa uma linha do arquivo.

• Saída:

- A cada ciclo deverá ser exibido:
 - o Os valores armazenados em cada endereço da memória de dados;

Disciplina: Arquitetura e Organização de Computadores I

- o Os valores armazenados em cada um dos registradores de uso geral;
- Os valores armazenados em cada um dos registradores de controle de estado;
- Quais as instruções se encontram em cada estágio do pipeline;
- Quando um estágio estiver sem instruções, a saída deve apresentar tal informação, preenchendo o campo com algo que indique tal estado, por exemplo um caractere "—".

Tipo de Instrução	Representação da instrução		Significado
Aritméticas	add	rd, rs, rt	Atribui à rd a soma de rs e rt rd←rs+rt
	addi	rd, rs, imm	Atribui à rd a subtração entre rs e um valor imediato rd ← rs+imm
	sub	rd, rs, rt	Atribui à rd a soma de rs e rt rd←rs-rt
	subi	rd, rs, imm	Atribui à rd a subtração entre rs e um valor imediato rd ←rs-imm
	mul	rd, rs, rt	Atribui à rd o produto entre rs e rt rd←rs*rt
	div	rd, rs, rt	Atribui à rd o quociente da divisão de rs por rt rd←rs div rt
Desvios	blt	rs, rt, imm	Salta caso rs seja maior que rt Se rs < rt então pc←imm
	bgt	rs, rt, imm	Salta caso rs seja menor que rt Se rs > rt então pc←imm
	beq	rs, rt, imm	Salta caso rs e rt sejam iguais Se rs = rt então pc←imm
	j	imm	Salto incondicional pc ←imm
	jr	rd	Salto incondicional para um endereço no registrador pc ← rd
	jal	imm	Salto incondicional com armazenamento de endereço de retorno ra ← pc+1 e pc ← imm
Memória	lw	rd, imm(rs)	Carrega da memória para o registrador rd rd ←M[imm+rs]
	sw	rs, imm(rt)	Armazena o valor de rs na memória M[imm+rt] ←rs
Movimentação	mov	rd, rs	Movimentação de registrador para registrador rd ← rs
	movi	rd, imm	Movimentação de imediato para registrador rd ←imm

Tabela 1: Conjunto de instruções da arquitetura a ser simulada.

Disciplina: Arquitetura e Organização de Computadores I

Obs: nas instruções imm é um valor constante inteiro.

Problemas com Trabalhos COPIADOS:

Quem copiar terá o trabalho anulado (zerado), seja de outra dupla ou da internet. Quem fornecer a cópia também terá o trabalho anulado (zerado).