CLAIMS

We claim:

1	1. A method comprising:
2	applying an inverse wavelet transform to data repeatedly for a
3	plurality of decomposition levels; and
4	clipping, after each application of the inverse wavelet transform, any
5	value generated as a result of application of the inverse wavelet transform
6	that exceeds a predetermined range associated with that decomposition
7	level subband of the inverse wavelet transform.
1	2. The method defined in Claim 1 wherein the inverse wavelet
2	transform comprises a 5,3 wavelet transform filter.
1	3. The method defined in Claim 1 wherein the inverse wavelet

transform comprises a 9,7 wavelet transform filter.

1	4. An article of manufacture comprising one or more recordable
2	media having executable instructions stored thereon which, when executed
3	by a machine, cause the machine to:
4	apply an inverse wavelet transform to data repeatedly for a plurality
5	of decomposition levels; and
6	clip, after each application of the inverse wavelet transform, any
7	value generated as a result of application of the inverse wavelet transform
8	that exceeds a predetermined range associated with that decomposition
9	level, subband and inverse wavelet transform.
1	5. The article of manufacture defined in Claim 4 wherein the
2	inverse wavelet transform comprises a 5,3 wavelet transform filter.
1	6/ The article of manufacture defined in Claim 4 wherein the
2	inverse wavelet transform comprises a 9,7 wavelet transform filter.
1	7. An apparatus comprising:
2	means for applying an inverse wavelet transform to data repeatedly
3	for a plurality of decomposition levels, and

2

4 means for clipping, after each application of the inverse wavelet transform, any value generated as a result of application of the inverse 5 wavelet transform that exceeds a predetermined range associated with that 6 decomposition level, subband and inverse wavelet transform. 7 1 8. The apparatus defined in Claim 7 wherein the inverse wavelet transform comprises a 5/3 wavelet transform filter. 2 1 9. The apparatus defined in Claim 7 wherein the inverse wavelet 2 transform comprises a 9,7 wavelet transform filter. 1 10, A method comprising: 2 applying a forward wavelet transform to input data in a 4:x:x format 3 to generate encoded data, where x is not equal to 4; and 4 quantizing level 1 coefficients in high-low (HL) and high-high (HH) 5 subbands to zero, such that the encoded data resembles 4:4:4 formatted data. The method defined in Claim 10 further comprising quantizing 1 11.

level I coefficients in a low-high (LH) subband to zero.

1	12 The method defined in Claim 11 wherein the input data is 4:1:1
2	formatted data.
1	13. The method defined in Claim 10 wherein the input data is 4:2:2
2	formatted data.
1	14. An apparatus comprising:
2	means for applying a forward wavelet transform to input data in a
3	4:x:x format to generate encoded data, where x is not equal to 4; and
4	means for quantizing level 1 coefficients in high-low (HL) and high-
5	high (HH) subbands to zero, such that the encoded data resembles 4:4:4
6	formatted data.
1	$\sqrt{15}$. The apparatus defined in Claim 14 further comprising means
2	for quantizing level 1 coefficients in a low-high (LH) subband to zero.
1	16. The apparatus defined in Claim 11 wherein the input data is
2	4/1-1 formatted data.

1	17. The apparatus defined in Claim 10 wherein the input data is
2	4:2:2 formatted data.
1	18. An article of manufacture comprising one or more recordable
2	media having executable instructions stored thereon which, when executed
3	by a machine, cause the machine to:
4	apply a forward wavelet transform to input data in a 4:x:x format to
5	generate encoded data, where x is not equal to 4; and
6	quantize level 1 coefficients in high-low (HL) and high-high (HH)
7	subbands to zero, such that the encoded data resembles 4:4:4 formatted data.
1	19. The article of manufacture defined in Claim 18 further
2	comprising quantizing level 1 coefficients in a low-high (LH) subband to
3	zero.
1	20. The article of manufacture defined in Claim 19 wherein the
2/	input data is 4:1:1 formatted data

Wy,

21. The article of manufacture defined in Claim 18 wherein the

2 input data is 4:2:2 formatted data.