Homework#2

2015004302 곽상원

 $oldsymbol{ ext{Object}}$: 각 pixel에서 Harris matrix H를 구하고 minimum eigenvalue (λ_{\min}) 을 시각적으로 보인다.

Environment: checkboard.png를 구글 드라이브에 업로드하고 내 드라이브를 mount해서 파일을 읽었다.

Source image

▶ Output

Support window size	
	0 -
3*3	100
	200 -
	300 -
	400
	500 -
	0 100 200 300 400 500 600 700
7*7	0 -
	100 -
	200 -
	300 -
	400 -
	500 -
	0 100 200 300 400 500 600 700
11*11	0
	100
	200 -
	300 -
	400 -
	500 -
	0 100 200 300 400 500 600 700

▶ Analysis

관찰결과, supporting window의 크기가 커짐에 따라 λ_{\min} 이 큰 값을 갖는 pixels이 증가한다. 하지만 각 pixel에 대한 이 경향은 각자의 최고점이 존재하고, 이후부터는 오히려 λ_{\min} 이 감소하는 모습을 보일 것이다. 즉, 더 많은 supporting window를 이용한다면 각 pixel의 최고점을 얻고 threshold와 비교해서 이보다 크면 corner로 판별할 수 있을 것이다. 그리고 이는 harris corner detector와 유사한 효과를 낼 수 있을 것이다.