ECEN5322: Search Engines and Analysis of High Dimensional Datasets 09/27/2015

Lab Report 2

The Group Structure of S^{n-1}

Author: Prasanth Prahladan(100817764)

1. Prove that O(n) is a group when equipped with matrix multiplication. Let $U_1, U_2 \in O(n)$. Therefore, by definition we have $U_i^T * U_i = U_i * U_i^T = I_n$. Define $P = U_1 * U_2$ and $Q = U_2 * U_1$.

$$P^{T} * P = (U_{1} * U_{2})^{T} * (U_{1} * U_{2}) = (U_{2}^{T} * U_{1}^{T}) * (U_{1} * U_{2}) = U_{2}^{T} * (U_{1}^{T} * (U_{1}) * U_{2} = I_{n}$$

Similarly, we can prove $P * P^T = I_n$ and $Q * Q^T = Q^T * Q = I_n$. Therefore, $P, Q \in O(n)$. Hence, O(n) is a group when equipped with the matrix multiplication operation.

2. Prove that $U \in O(n) \implies det(U) = \pm 1$.

Since, $U_i^T * U_i = U_i * U_i^T = I_n$ and det(MN) = det(M)det(N) we have

$$det(U)^2 = det(I_n) = 1 \implies det(U) = \pm 1.$$

3. Prove that SO(n) is a subgroup of O(n).

Let $U_1, U_2 \in SO(n)$. Therefore, $det(U_i) = 1$ and $U_i^T * U_i = U_i * U_i^T = I_n$. Define $P = U_1 * U_2$ and $Q = U_2 * U_1$.

$$det(P) = det(Q) = det(U_1) * det(U_2) = 1$$

 $P^T * P = P * P^T = I_n = Q^T * Q = Q * Q^T$

Therefore, $P, Q \in SO(n)$. Further, we know that $U_i^{-1} \in SO(n)$ such that $U_i^{-1} * U_i = I_n \in SO(n)$. Therefore, $\tilde{Q} = U_1^{-1} * U_2^{-1} \in SO(n)$ and $\tilde{P} = U_2^{-1} * U_1^{-1} \in SO(n)$.

$$P * \tilde{P} = (U_1 * U_2) * (U_2^{-1} * U_1^{-1}) = U_1 * (I_n) * U_1^{-1} = I_n$$
$$Q * \tilde{Q} = I_n$$

which proves that, $\tilde{P} = P^{-1}$ and $\tilde{Q} = Q^{-1}$. Thus, SO(n) is a subgroup of O(n).

4. Consider the subset \mathcal{G} of SO(n) defined by

$$\mathcal{G} = U \in SO(n), Ue_1 = e_1$$

where e_1 is the first element of the canonical basis in \mathbb{R}^n . Prove that \mathcal{G} is a subgroup of SO(n).

Let $G_1, G_2 \in \mathcal{G} \subset SO(n)$. Therefore, $G_i e_1 = e_1$. Define $P = G_1 * G_2 \in SO(n)$.

$$Pe_1 = (G_1 * G_2)e_1 = G_1(e_1) = e_1$$

Therefore, $P \in \mathcal{G}$. Further, we observe that

$$e_1 = G_i e_1$$

 $G_i^{-1} e_1 = G_i^{-1} * G_i e_1 = I_n e_1 = e_1$

Therefore, $G_i^{-1} \in \mathcal{G}$ and

$$P^{-1}e_1 = (G_1 * G_2)^{-1}e_1 = G_2^{-1} * G_1^{-1}e_1 = G_2^{-1}e_1 = e_1$$

This implies that $P \in \mathcal{G}$ and hence, \mathcal{G} is a Subgroup of SO(n).

5. Prove that every element $U \in \mathcal{G}$ can be written as below with $W \in SO(n-1)$

$$U = \begin{bmatrix} 1 & 0 \\ 0 & W \end{bmatrix} \tag{1}$$

Let $\{u_1, u_2, u_3, \dots u_n\}$ be the n-column vectors defining $U = [u_1u_2 \dots u_n] \in \mathcal{G}$. We have, $Ue_1 = e_1 \implies u_1 = e_1$. Since, $\operatorname{rank}(U) = n$, and $\{u_i\}$ are all orthogonal vectors, we know that $\{u_2, \dots u_n\}$ form a set of (n-1) independent vectors. Its possible to determine a rotation $(K \in SO(n))$ of these (n-1) vectors such that their first-component is 0. Therefore, $K[u_i] = [0v_i]'$ where $\{v_i\}$ form a set of (n-1) linearly independent orthogonal (n-1) dimensional vectors.

$$U = \begin{bmatrix} 1 & \bar{x}' \\ \bar{0} & M \end{bmatrix} \xrightarrow{K \in SO(n)} \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W \end{bmatrix} = V \in \mathcal{G}$$

where $\bar{x} \in \mathbb{R}^{n-1}$. Further, note that

$$det(V) = det(KU) = det(K) * det(U) = 1$$
$$= 1.det(W)$$
$$V^{T} * V = \begin{bmatrix} 1 & \overline{0}' \\ \overline{0} & W^{T}W \end{bmatrix} = I_{n}$$

Therefore, $W \in (n-1) \times (n-1)$ real matrix with det(W) = 1 and $W^T * W = W * W^T = I_{n-1}$. Hence, $W \in SO(n-1)$.

6. Prove that $\Psi: \mathcal{G} \to SO(n-1)$ such that $\Psi(U) = W$ in $(\ref{eq:property})$ is an 'isomorphism' between \mathcal{G} and SO(n-1).

Consider elements $U_1, U_2 \in \mathcal{G}$ and $\Psi(U_i) = W_i$ where $W_i \in SO(n-1), U_i \in \mathcal{G}$ and

$$U_i = \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_i \end{bmatrix}. \tag{2}$$

. We can make the following observations

$$U_1 * U_2 = \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_1 \end{bmatrix} * \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_1 * W_2 \end{bmatrix}$$
$$\Psi(U_1 * U_2) = W_1 * W_2 = \Psi(U_1) * \Psi(U_2)$$

1. Surjective: $\forall W \in SO(n-1)$ we can construct U such that

$$U = \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W \end{bmatrix}. \tag{3}$$

Note that, det(U) = 1.det(W) = 1, $U^TU = UU^T = I_n$ and $Ue_1 = e_1$. Therefore, $U \in \mathcal{G}$ and $\Psi(\cdot)$ is a surjective function.

2. Injective: Let $W_1 = W_2$ where $W_i = \Psi(U_i)$, $W_i \in SO(n-1)$ and $U_i \in \mathcal{G}$. Therefore,

$$\Psi(W_1) = \Psi(W_2)$$

$$\begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_1 \end{bmatrix} = \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W_2 \end{bmatrix}$$

$$U_1 = U_2$$

$$\Psi(U_1) = \Psi(U_2) \implies U_1 = U_2$$

Hence, $\Psi(\cdot)$ is an injective function.

From the discussion above, we prove that $\Psi(\cdot)$ is a bijective and an Isomorphism between \mathcal{G} and SO(n-1).

7. Prove that $\forall x \in S^{n-1} \exists U \in SO(n)$ such that $Ue_1 = x$. Is U unique? Let $\{u_1, u_2, \dots u_n\}$ be the columns of the matrix $U \in SO(n)$. If $u_1 = x$, then we obtain $Ue_1 = x$. Therefore, we also require that the n-1 column vectors $\{u_2, \dots u_n\}$ be orthogonal to x.

$$U = \left[\begin{array}{ccc} x & u_2 & \cdots & u_n \end{array} \right] \in SO(n)$$

Note, that any rotation of the matrices $u_i \neq x$ can be used to construct U. Hence, $U \in SO(n)$ is not unique.

8. Prove that if $U, V \in SO(n)$ such that $Ue_1 = Ve_1 = x$, then there exits $W \in SO(n-1)$ such that

$$U = V * \left[\begin{array}{cc} 1 & \bar{0}' \\ \bar{0} & W \end{array} \right]$$

Let $G \in \mathcal{G} \subset SO(n)$. From above, we know that $\exists W \in SO(n-1)$

$$Ge_1 = e_1$$

$$G = \begin{bmatrix} 1 & \bar{0}' \\ \bar{0} & W \end{bmatrix}$$

We make the following observations

$$x = Ve_1 = V * (Ge_1)$$

$$= Ue_1$$

$$U = V * G = V * \begin{bmatrix} 1 & \overline{0}' \\ \overline{0} & W \end{bmatrix}$$

9. Prove that if U_1 and U_2 are two coset representatives for the same coset then $U_1\mathcal{G} = U_2\mathcal{G}$.

 $U\mathcal{G}$ is the coset defined by $U \in SO(n)$ and contains $V = UG, \forall G \in \mathcal{G}$. The set of all cosets $\{U\mathcal{G}\} = SO(n)/\mathcal{G}$, is called the 'quotient-group'.

Let $U\mathcal{G}$ be the coset under consideration, with coset-representations $V_1, V_2 \in U\mathcal{G}$. Therefore, by definition we have for $G_1, G_2 \in \mathcal{G}$

$$U = V_1 G_1 = V_2 G_2$$

Further,

$$V_1\mathcal{G} = \{X|V_1 = XG, \forall X \in SO(n), \forall G \in \mathcal{G} \text{ and } V_1 \in SO(n)\}$$

 $V_2\mathcal{G} = \{Y|V_2 = YG, \forall Y \in SO(n), \forall G \in \mathcal{G} \text{ and } V_2 \in SO(n)\}$

We note the following

$$V_{1}\mathcal{G} = \{X|V_{1} = XG, \forall X \in SO(n)\}$$

$$= \{X|V_{1}G_{1} = XGG_{1}, \forall X \in SO(n)\}$$

$$= \{X|V_{2}G_{2} = XGG_{1}, \forall X \in SO(n)\}$$

$$= \{X|V_{2} = XGG_{1}G_{2}^{-1}, \forall X \in SO(n)\}$$

$$= \{X|V_{2} = X\tilde{G}, \forall X \in SO(n)\}$$

$$= V_{2}\mathcal{G}$$

10. Define the map $\Phi: SO(n)/\mathcal{G} \to S^{n-1}$ such that $U \mapsto \Phi(U) = Ue_1$. Prove that $\Phi(\cdot)$ represents the action of $\mathbf{SO}(\mathbf{n})$ i.e. $\forall \Omega \in SO(n), \forall U \in SO(n)/\mathcal{G}$

$$\Phi(\Omega U) = \Omega \Phi(U)$$

Let $x \in S^{n-1}$. We know $\exists U \in SO(n)/\mathcal{G}$ such that $Ue_1 = x$. By definition, $\Phi(U) = Ue_1 = x$

$$\Phi(\Omega U) = (\Omega U)e_1 = \Omega(Ue_1) = \Omega\Phi(U)$$

Hence, $\Phi(\cdot)$ represents the action of SO(n).

11. Prove that the map $\Phi(\cdot)$ is bijective and continuous.

To prove that $\Phi(\cdot)$ is bijective, we proceed as follows

1. Injective Let $x_1 = x_2 = \tilde{x}$, where $\Phi(U_i) = U_i e_1 = x_i$. Therefore, we have

$$x_1 = x_2$$

$$\Phi(U_1) = \Phi(U_2)$$

$$U_1e_1 = U_2e_1$$

$$= U_2Ge_1$$

where $G \in \mathcal{G}$. Therefore, $U_1, U_2 \in U_1\mathcal{G}$ i.e they belong to the same equivalence class. Therefore, there exits a unique $\tilde{U} \in SO(n)/\mathcal{G}$ such that $U_1 = U_2 = \tilde{U}$. Hence, $\Phi(\cdot)$ is injective.

2. Surjective For any $x \in S^{n-1}$, there exists non-unique $U \in SO(n)$ such that $Ue_1 = x$. By using the equivalence rule, $U = VG, G \in \mathcal{G}$, there exists a unique $U \in SO(n)/\mathcal{G} \forall x$ such that $Ue_1 = x$. Therefore, $\Phi(\cdot)$ is a surjective function.

From the above discussion, we learn that $\Phi(\cdot)$ is a bijective function.

To prove that $\Phi(\cdot)$ is continuous, we use the notion that images of a converging sequence of points in the domain, form a converging sequence in the range of the map i.e.

$$\lim_{n\to\infty}\Omega_n\to\Omega\implies\lim_{n\to\infty}\Phi(\Omega_n)\text{ exists.}$$

We define convergence in the domain, using the Frobenius norm i.e.

$$\lim_{n\to\infty}\Omega_n\to\Omega\implies\lim_{n\to\infty}||\Omega_n-\Omega||_F\to0$$

We observe that

$$\lim_{n \to \infty} ||\Phi(\Omega_{n+1}) - \Phi(\Omega_n)|| = \lim_{n \to \infty} ||\Omega_{n+1}e_1 - \Omega_ne_1||$$

$$\leq \lim_{n \to \infty} ||\Omega_{n+1} - \Omega_n||||e_1|| \to 0$$

Therefore, $\lim_{n\to\infty} \Phi(\Omega_n)$ exists! Hence, $\Phi(\cdot)$ is a continuous mapping.

Conclusion:

$$\mathcal{G} \xrightarrow{isomorphism} SO(n-1)$$

$$SO(n)/\mathcal{G} \leftrightarrow SO(n)/SO(n-1)$$

$$S^{n-1} \xrightarrow{homeomorphism} SO(n)/\mathcal{G}$$

$$S^{n-1} \leftrightarrow SO(n)/SO(n-1)$$

We thus conclude that the Sphere S^{n-1} can be identified with the Quotient Group, SO(n)/SO(n-1). And thus properties of Group Action, Group Symmetries can be used to understand it. Further, the topological Group structure of the Sphere, permits us to define a Haar Measure on it, which shall then be used to measure the set of points under study.

Definition 1 (Group). A group is non-empty set G with an operation * and satisfying the following properties

- 1. for any $f, g \in G$, $h * g \in G$
- 2. for any $f, g, h \in G$, f * (g * h) = (f * g) * h
- 3. $\exists e \in G \text{ such that for any } g \in G, g * e = e * g = g$
- 4. for any $g \in G$, $\exists g^{-1} \in G$, such that $g * g^{-1} = g^{-1} * g = e$

Definition 2 (Subgroup). A subset H of G is a subgroup if

- 1. for any $g, h \in H$, $h * g \in H$
- 2. for any $q \in H$, $\exists q^{-1} \in H$, such that $q * q^{-1} = q^{-1} * q = e$

Definition 3 (Orthogonal Group, O(n)). The orthogonal group O(n) is the subset of $n \times n$ real matrices U such that $U^T * U = U * U^T = I_n$, where I_n is the $n \times n$ Identity Matrix.

Definition 4 (Special Orthogonal Group, SO(n)). SO(n) consists of the elements of O(n) with determinant 1 i.e. the rotations.

Definition 5 (Homomorphism). A function $\phi: (G, *) \to (F, \Delta)$ is called a homomorphism if ϕ commutes with Group Operations

$$\forall G_1, G_2 \in G, \phi(G_1 * G_2) = \phi(G_1) \Delta \phi(G_2)$$

Definition 6 (Isomorphism). Let $f:(G,*)\to (F,\Delta)$ be a homomorphism. f is an isomorphism if f is bijective i.e f^{-1} exits and f^{-1} is also a homomorphism.

Definition 7 (Equivalence Class). Two matrices U and V are equivalent under a relation if $Ue_1 = Ve_1 = x$, or equivalently there exists $Q \in \mathcal{G}$ such that U = VQ. Let $U \in SO(n)$. The Left-Coset is defined as $U\mathcal{G} = \{V|V \in SO(n-1), V = UQ, Q \in \mathcal{G}\}$ where V is called 'coset representative'.

Definition 8 (Quotient Group). The set of left-cosets is called Quotient Group, denoted by $SO(n)/\mathcal{G}$.