STAT-3445 Discussion Dec 6

Assume X_1, X_2, \ldots, X_n are independent and identically distributed random samples from an exponential distribution with the probability density function:

$$f(x) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}, \quad x \ge 0, \lambda > 0,$$

where λ is the unknown parameter. Define the estimator $\hat{\lambda}_n = \bar{X}$, where $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- Find $E(\hat{\lambda}_n)$, $B(\hat{\lambda}_n)$ and the $MSE(\hat{\lambda}_n)$.
- Prove whether $\hat{\lambda}_n$ is a consistent estimator.
- Find the maximum likelihood estimator $\hat{\lambda}_{MLE}$ of λ .
- Find the method of moments estimator $\hat{\lambda}_{\text{MM}}$ for λ .
- Find a sufficient statistic for λ .
- Derive a MVUE for λ .
- Construct a 1α confidence interval for λ .
- Design the most powerful α -level test for $H_0: \lambda = \lambda_0$ against $H_a: \lambda = \lambda_a$, where $\lambda_a > \lambda_0$.
- Is the test designed above uniformly most powerful (UMP) for testing $H_0: \lambda = \lambda_0$ against $H_a: \lambda > \lambda_0$?
- Consider the following two estimators:

$$\hat{\lambda}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $\hat{\lambda}_2 = \frac{1}{n-1} \sum_{i=1}^n X_i$.

- Compare the bias and MSE of $\hat{\lambda}_1$ and $\hat{\lambda}_2$.
- Which estimator is more efficient?