Recall from class that functions are equal if and only if they are equal on all inputs (this equality is called extensionality.)

Definition 0.1. (extensionality) If $f, g \in A \to B$,

$$f = q \stackrel{\text{def}}{=} \forall x : A. \ f(x) = q(x)$$

So, we can prove two functions f and g are equal by choosing an arbitrary $x \in A$ and showing f(x) = g(x).

For example, if f(x) = |x| (the absolute value) and g(x) = x then, $f \neq g$ when we consider them as functions in the type $\mathbb{Z} \to \mathbb{Z}$ since f(-2) = 2 and g(-2) = -2. But, if we think of these functions as elements of $\mathbb{N} \to \mathbb{N}$, they are equal. To see this, choose an arbitrary $x \in \mathbb{N}$ and argue that f(x) = g(x) i.e. that |x| = x. But this is trivially true when $x \geq 0$, which follows because $x \in \mathbb{N}$.

Problem 0.1. Create a separate Haskell script called Plus.hs which includes definitions for the following fuctions.

$$\begin{aligned} plus :: (Integer, Integer) &\rightarrow Integer \\ plus(x,y) &= x + y \end{aligned}$$

$$plusc :: Integer &\rightarrow (Integer \rightarrow Integer) \\ plusc :x &y = x + y \end{aligned}$$

Use plusc to create a function of type (Integer \rightarrow Integer) that adds 7 to its argument.

$$plusSeven = ???$$

Add this function to the Plus module and test it in the interpreter.

Now, consider the following two definitions.

$$\begin{array}{l} compose: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c) \\ compose \ f \ g \ x \ = f \ (g \ x) \\ id:: a \rightarrow a \\ id \ x \ = \ x \end{array}$$

Problem 0.2. Implement these functions in a module than includes the *Plus* module and, in the interpreter, evaluate the following:

```
: t compose plusSeven plusSeven
(compose plusSeven plusSeven)0
(compose plusSeven plusSeven)1
(compose plusSeven plusSeven)2
```

We will write $f \circ g$ instead of compose f g.

Problem 0.3. Prove the following theorem. [compose-id-right] For every function f, if $f \in A \to B$ then $f \circ id = f$.

Problem 0.4. Prove the following theorem using extensionalty. [compose-id-left] For every function f, if $f \in A \to B$ then $id \circ f = f$.