NICOLI PINHEIRO DE ARAUJO

ESTIMAÇÃO INTELIGENTE DE IDADE DE TELESPECTADORES PARA APLICAÇÕES DE SUGESTÃO DE CONTEÚDO EM SMART TVS

Trabalho de Conclusão de Curso apresentado à banca avaliadora do Curso de Engenharia de Computação, da Escola Superior de Tecnologia, da Universidade do Estado do Amazonas, como pré-requisito para obtenção do título de Engenheira de Computação.

Orientador(a): Profa. Dra. Elloá Barreto Guedes da Costa

Manaus – Novembro – 2018

Capítulo 1

Resultados e Discussão

Considerando a abordagem descrita na solução proposta, os resultados da execução das CNNs aplicadas ao problema de estimação de idade a partir de uma imagem de face são apresentados a seguir.

Nas abordagens a seguir, conforme mencionado na Seção $\ref{eq:conforme}$, os treinamentos e testes compreenderam as arquiteturas canônicas LeNet e AlexNet com funções de ativação ReLU e Leaky ReLU nas camadas ocultas e de ativação. É importante ressaltar que neste momento não foram utilizadas técnicas de $transfer\ learning$.

1.1 Abordagem 1

A primeira abordagem de treinamento das CNNs utilizou as imagens da base de dados normalizadas.

Obedecendo ao método de validação cruzada *holdout* previamente mencionado, os resultados desta abordagem encontram-se sintetizados na Tabela 1.5.

Tabela 1.1: Resultados do treino e teste dos modelos propostos na Abordagem 1.

Rede	Função de ativação	Parâmetros	Épocas	Tempo de treinamento	MAE Teste	RMSE Teste
LeNet	Leaky ReLU	params	15	12 h	14.44	18.18
LeNet	ReLU	params	43	16 h	14.09	17.93
AlexNet	ReLU	58.286.145	10	15 h	38.63	41.22
AlexNet	Leaky ReLU	params	30	40 h	15.33	18.58

1.2 Abordagem 2

A segunda abordagem de treinamento adotada utilizou as imagens da base de dados normalizadas e com *data augmentation*, que inclui a probabilidade de uma rotação entre 0 e 20 graus, zoom de 0.8 a 1.2, chance de flip de 0.5, translate de 0.2.

Obedecendo ao método de validação cruzada holdout previamente mencionado, os resultados desta abordagem encontram-se sintetizados na Tabela 1.5.

Figura 1.1: Resultados do treinamento e teste da CNN LeNet.

- (a) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação ReLU.
- (b) Reta-0 LeNet ReLU.

- (c) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação $Leaky\ ReLU.$
- (d) Reta-0 LeNet Leaky ReLU.

Tabela 1.2: Resultados do treino e teste dos modelos propostos na Abordagem 1.

Rede	Função de ativação	Parâmetros	Épocas	Tempo de treinamento	MAE Teste	RMSE Teste
LeNet	Leaky ReLU	params	15	12 h	14.44	18.18
LeNet	ReLU	params	43	16 h	14.09	17.93
AlexNet	ReLU	58.286.145	10	15 h	38.63	41.22
AlexNet	Leaky ReLU	params	30	40 h	15.33	18.58

Abordagem 3 1.3

A terceira abordagem utilizou as imagens da base de dados normalizadas e com equalização de histograma de cores, além de técnicas de data augmentation, que inclui a probabilidade de uma rotação entre 0 e 20 graus, zoom de 0.8 a 1.2, chance de flip de 0.5, translate de 0.2.

Figura 1.2: Resultados do treinamento e teste da CNN AlexNet.

(c) Treinamento AlexNet Leaky ReLU.

(d) Reta-0 AlexNet Leaky ReLU.

Obedecendo ao método de validação cruzada holdout previamente mencionado, os resultados desta abordagem encontram-se sintetizados na Tabela 1.5.

Tabela 1.3: Resultados do treino e teste dos modelos propostos na Abordagem 1.

Rede	Função de ativação	Parâmetros	Épocas	Tempo de treinamento	MAE Teste	RMSE Teste
LeNet	Leaky ReLU	params	15	12 h	14.44	18.18
LeNet	ReLU	params	43	16 h	14.09	17.93
AlexNet	ReLU	58.286.145	10	15 h	38.63	41.22
AlexNet	$Leaky \ ReLU$	params	30	40 h	15.33	18.58

Figura 1.3: Resultados do treinamento e teste da CNN LeNet.

(a) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação ReLU.

(c) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação *Leaky ReLU*.

(d) Reta-0 LeNet Leaky ReLU.

1.4 Abordagem 4

A quarta abordagem utilizou as imagens da base de dados normalizadas e com equalização de histograma de cores, além de técnicas de *data augmentation*, que inclui a probabilidade de uma rotação entre 0 e 20 graus, zoom de 0.8 a 1.2, chance de flip de 0.5, translate de 0.2. Porém, utilizou-se a métrica MAE para o cálculo da atualização dos pesos (como loss). Neste ponto, escolheu-se a dentre as treinadas nas abordagens anteriores, ou seja, a rede LeNet com função de ativação Relu.

criterio

Obedecendo ao método de validação cruzada *holdout* previamente mencionado, os resultados desta abordagem encontram-se sintetizados na Tabela 1.5.

Figura 1.4: Resultados do treinamento e teste da CNN AlexNet.

(a) Treinamento AlexNet ReLU.

(b) Reta-0 AlexNet ReLU.

(d) Reta-0 AlexNet Leaky ReLU.

Tabela 1.4: Resultados do treino e teste dos modelos propostos na Abordagem 1.

Rede	Função de ativação	Parâmetros	Épocas	Tempo de treinamento	MAE Teste	RMSE Teste
LeNet	Leaky ReLU	params	15	12 h	14.44	18.18
LeNet	ReLU	params	43	16 h	14.09	17.93
AlexNet	ReLU	58.286.145	10	15 h	38.63	41.22
AlexNet	Leaky ReLU	params	30	40 h	15.33	18.58

1.5 Abordagem 5

A quinta abordagem utilizou as imagens da base de dados normalizadas, mas sem equalização de histograma de cores, e técnicas de *data augmentation*. Porém, seguiu-se utilizando a métrica

Figura 1.5: Resultados do treinamento e teste da CNN LeNet.

- (a) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação ReLU.
 - uitetura LeNet $_{I}$ (b) Reta-0 LeNet ReLU.

- (c) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação *Leaky ReLU*.
- (d) Reta-0 LeNet Leaky ReLU.

MAE para o cálculo da atualização dos pesos (como loss), e aumentou-se o tamanho do batch para 128, haja vista a característica instável do treinamento mostrada nas abordagens anterio-res. Utilizou-se somente da arquitetura LeNet ReLU sem histograma e data augmentation por ser a que alcançou menor RMSE dentre as treinadas nas abordagens anteriores.

Obedecendo ao método de validação cruzada holdout previamente mencionado, os resultados desta abordagem encontram-se sintetizados na Tabela 1.5.

Figura 1.6: Resultados do treinamento e teste da CNN AlexNet.

10

Época

15

10

Tabela 1.5: Resultados do treino e teste dos modelos propostos na Abordagem 1.

Rede	Função de ativação	Parâmetros	Épocas	Tempo de treinamento	MAE Teste	RMSE Teste
LeNet	Leaky ReLU	params	15	12 h	14.44	18.18
LeNet	ReLU	params	43	16 h	14.09	17.93
AlexNet	ReLU	58.286.145	10	15 h	38.63	41.22
AlexNet	$Leaky \ ReLU$	params	30	40 h	15.33	18.58

1.6 Abordagem x

- Mesmas redes - Normalização das imagens, equalização por histograma -> o que é - data augmentation -> mais técnicas de data augmentation

Figura 1.7: Resultados do treinamento e teste da CNN LeNet.

- (a) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação ReLU.
- (b) Reta-0 LeNet ReLU.

Figura 1.8: Resultados do treinamento e teste da CNN LeNet.

- (a) RMSE de treinamento da arquitetura LeNet utilizando funções de ativação ReLU.
- (b) Reta-0 LeNet *ReLU*.

1.7 Abordagem x+1

Outras arquiteturas VGG com transfer learning 1. Retirar última camada (softmax) e adicionar leaky relu 2. Retirar duas últimas camadas (dense e softmax) e adicionar leaky relu

Capítulo 2

Considerações Finais

O objetivo deste trabalho consiste em elaborar estratégias inteligentes para estimação de idade de telespectadores de *Smart* TVs a partir de suas respectivas fotografias faciais. Para este fim, foram propostos, treinados e testados em caráter preliminar dois modelos de CNNs já bem estabelecidos na literatura, a LeNet e AlexNet, com dois perfis de hiperparâmetros cada um.

Com isto, observou-se uma melhora significativa na performance da AlexNet, enquanto o RMSE da LeNet não sofreu grandes mudanças. Quanto às saídas das redes, a LeNet exibiu valores positivos e negativos próximos de zero, e a AlexNet forneceu previsões que giravam em torno da média dos dados. Estes resultados são preliminares e certamente outros modelos e parâmetros serão investigados conforme previsto na metodologia e cronograma deste trabalho de conclusão de curso.

Nos próximos meses, os esforços estarão concentrados em pesquisar e adotar estratégias que possam minimizar os problemas identificados, como substituir as funções de ativação das camadas ocultas por outras variantes da ReLU, adotar métodos específicos de inicialização de pesos, normalização de batch, entre outros. Planeja-se também a proposição, o treinamento e teste de outras redes inspiradas em outros modelos canônicos.

O problema em questão é importante do ponto de vista prático para o desenvolvimento de diversas soluções de recomendação de conteúdo e controle parental em *Smart* TVs, auxiliando no desenvolvimento destas soluções tecnológicas. Considerando a formação de uma bacharela em Engenharia de Computação, endereçar este problema permite a prática de diversos conceitos

vistos ao longo do curso, em especial relacionados às disciplinas de Inteligência Artificial, Redes Neurais, Processamento Digital de Imagens, *Machine Learning* e Sinais e Sistemas.

Referências Bibliográficas