Name: Anupreet Porwal
Roll No: 12143

MTH517/517A: Time Series Analysis Quiz #1; Full Marks-20

Let $\{X_t\}$ be a time series given by $X_t = \alpha + \beta t + S_t + Y_t$; where, α and β are real constants, S_t is a seasonal component with period 6 and $Y_t = \varepsilon_t - \varepsilon_{t-1}$; $\{\varepsilon_t\}$ is a sequence of independent and identically distributed $N(0, \sigma^2)$ random variables.

Prove or disprove the following statements:

- (a) $Cov(X_t, X_{t+h}) = 0; \forall |h| \ge 2$
- **(b)** $\{X_t\}$ is covariance stationary
- (c) $\{X_t\}$ is a Gaussian time series
- (d) $\{\nabla X_t\}$ is covariance stationary
- (e) $Cov(\nabla_6 X_t, \nabla_6 X_{t+h}) = 0; h = \pm 2, \pm 3, \pm 4$
- (f) $\{\nabla_6 X_i\}$ is covariance stationary
- (g) $\{\nabla_6 X_i\}$ is strict stationary
- **(h)** $\left\{\nabla_6^2 X_t\right\}$ is an MA process

$$X_t = X + \beta t + S_t + Y_t$$

$$S_t = S_t + 6$$

Yt = Et - Et-1 Et ~ N(0,0