FCC RF Test Report

APPLICANT Xiaomi Communications Co., Ltd.

EQUIPMENT : Mobile Phone

BRAND NAME : XIAOMI

MODEL NAME : M1906F9SH

FCC ID : 2AFZZ-XMSF9SH

STANDARD FCC Part 15 Subpart E §15.407

CLASSIFICATION (NII) Unlicensed National Information Infrastructure

The product was received on Apr. 17, 2019 and testing was completed on Jun. 11, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

JasonJia

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 1 of 30 Report Issued Date: Jun. 25, 2019

: Rev. 01

Report No.: FR941708-01D

Report Version Report Template No.: BU5-FR15EWL AC MA Version 2.0

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Product Feature of Equipment Under Test	
	1.3	Product Specification of Equipment Under Test	6
	1.4	Modification of EUT	7
	1.5	Testing Location	7
	1.6	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	
	3.1	26dB & 99% Occupied Bandwidth Measurement	
	3.2	Maximum Conducted Output Power Measurement	
	3.3	Power Spectral Density Measurement	
	3.4	Unwanted Emissions Measurement	
	3.5	AC Conducted Emission Measurement	
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	
4		OF MEASURING EQUIPMENT	
5	UNCE	RTAINTY OF EVALUATION	30
ΑP	PENDI	X A. CONDUCTED TEST RESULTS	
ΑP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PENDI	X C. RADIATED SPURIOUS EMISSION	
ΑP	PENDI	X D. DUTY CYCLE PLOTS	
ΑP	PENDI	X E. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 2 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR941708-01D	Rev. 01	Initial issue of report	Jun. 25, 2019

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 3 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

SUMMARY OF TEST RESULT

Report Section	FCC Rule Description		Limit	Result	Remark
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 7.39 dB at 5350.200 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 16.08 dB at 0.592 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 4 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Report No.: FR941708-01D

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	XIAOMI			
Model Name	M1906F9SH			
FCC ID	2AFZZ-XMSF9SH			
	GSM/WCDMA/LTE			
	WLAN 2.4GHz 802.11b/g/n HT20			
ELIT cumperts Badies application	WLAN 5GHz 802.11a/n HT20/HT40			
EUT supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80			
	Bluetooth BR / EDR / LE			
	FM Receiver / GNSS			
	Conducted:			
IMEI Code	864087040016356/864087040016301/864087040016364			
INEI Code	Radiation: 864087040013197/864087040013205			
	Conduction: 864087040013338/864087040013346			
HW Version	P2			
SW Version	PKQ1.190416.001 V10			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 30

 TEL: +86-512-57900158
 Report Issued Date
 : Jun. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSF9SH Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification			
	5180 MHz ~ 5240 MHz		
Tx/Rx Frequency Range	5260 MHz ~ 5320 MHz		
Tarta Frequency Hange	5500 MHz ~ 5700 MHz		
aximum Output Power to Antenna 9% Occupied Bandwidth ntenna Type / Gain	<5180 MHz ~ 5240 MHz>		
	802.11a : 15.12 dBm / 0.0325 W		
	802.11n HT20 : 13.92 dBm / 0.0247 W		
	802.11n HT40 : 13.32 dBm / 0.0215 W		
	802.11ac VHT20 : 14.01 dBm / 0.0252 W		
	802.11ac VHT40 : 14.14 dBm / 0.0259 W		
	802.11ac VHT80 : 12.03 dBm / 0.0160 W		
	<5260 MHz ~ 5320 MHz>		
	802.11a : 15.05 dBm / 0.0320 W		
	802.11n HT20 : 14.34 dBm / 0.0272 W		
Maximum Output Power to Antenna	802.11n HT40 : 12.97 dBm / 0.0198 W		
	802.11ac VHT20 : 14.02 dBm / 0.0252 W		
	802.11ac VHT40 : 14.25 dBm / 0.0266 W		
	802.11ac VHT80 : 12.04 dBm / 0.0160 W		
	<5500 MHz ~ 5700 MHz >		
	802.11a : 14.40 dBm / 0.0275 W		
	802.11n HT20 : 13.92 dBm / 0.0247 W		
	802.11n HT40 : 12.99 dBm / 0.0199 W		
	802.11ac VHT20 : 13.57 dBm / 0.0228 W		
Antenna Type / Gain Type of Modulation	802.11ac VHT40 : 13.88 dBm / 0.0244 W		
	802.11ac VHT80 : 11.58 dBm / 0.0144 W		
	<5180 MHz ~ 5240 MHz>		
	802.11a : 17.63 MHz		
	802.11ac VHT20 : 18.68 MHz		
	802.11ac VHT40 : 36.46 MHz		
	802.11ac VHT80 : 75.76 MHz		
99% Occupied Bandwidth	<5260 MHz ~ 5320 MHz>		
	802.11a : 17.68 MHz		
99% Occupied Bandwidth	802.11n HT20 : 18.68 MHz		
	802.11ac VHT40 : 36.36 MHz		
	802.11ac VHT80 : 75.64 MHz		
99% Occupied Bandwidth	<5500 MHz ~ 5700 MHz >		
	802.11a : 17.63 MHz		
	802.11n HT20 : 18.73 MHz		
	802.11ac VHT40 : 36.56 MHz		
	802.11ac VHT80 : 75.76 MHz		
	<5150 MHz ~ 5250 MHz>		
	PIFA Antenna with gain -2.50 dBi		
Antonno Typo / Coir	<5250 MHz ~ 5350 MHz>		
Antenna Type / Gain	PIFA Antenna with gain -2.46 dBi		
	<5470 MHz ~ 5700 MHz>		
	PIFA Antenna with gain -1.84 dBi		
	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Type of Modulation	802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM /		
1 yes or modulation	256QAM)		
	LOURAINI)		

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 6 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Note:

- 1. WLAN operation in 5600 MHz ~ 5650 MHz is notched.
- 2. For 802.11an HT20 / ac VHT20 and 802.11an HT40 / ac VHT40 mode, the whole testing have assessed only 802.11ac VHT20/ VHT40 for 5180 MHz ~ 5240 MHz and 802.11n HT20/ac VHT40 for 5260 MHz ~ 5320 MHz , 5500 MHz ~ 5720 MHz by referring to their maximum conducted power.

Report No.: FR941708-01D

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
Test Site Location	TEL: +86-512-57900158			
	FAX: +86-512-579009	58		
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309	

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 30

 TEL: +86-512-57900158
 Report Issued Date
 : Jun. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSF9SH Report Template No.: BU5-FR15EWL AC MA Version 2.0

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

Report No.: FR941708-01D

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz	38*	5190	46*	5230
Band 1 (U-NII-1)	40	5200	48	5240
(0 1411 1)	42#	5210		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz	54*	5270	62*	5310
Band 2 (U-NII-2A)	56	5280	64	5320
(5 1411 274)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(3 : 111 23)	108	5540	136	5680
	110*	5550	140	5700

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

 Sporton International (Kunshan) Inc.
 Page Number
 : 8 of 30

 TEL: +86-512-57900158
 Report Issued Date
 : Jun. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSF9SH Report Template No.: BU5-FR15EWL AC MA Version 2.0

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

	Test Cases				
AC	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (5G) + USB Cable (Charging				
Conducted	from Adapter 1) + Earphone				
Emission	Trom Adapter 1) + Earphone				

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 9 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR941708-01D

Ch. #		Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III: 5470-5725MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
М	Middle	44	60	116
Н	High	48	64	140

	Ch #	Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III:5470-5725MHz
Ch. #		802.11n HT20	802.11n HT20	802.11n HT20
L	Low	36	52	100
М	Middle	44	60	116
Н	High	48	64	140

	Ch #	Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III:5470-5725MHz
Ch. #		802.11ac VHT20	802.11ac VHT20	802.11ac VHT20
L	Low	36	52	100
М	Middle	44	60	116
Н	High	48	64	140

	Ch #	Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III: 5470-5725MHz
Ch. #		802.11ac VHT40	802.11ac VHT40	802.11ac VHT40
L	Low	38	54	102
М	Middle	-	-	110
Н	High	46	62	134

Ch. #		Band I: 5150-5250 MHz Band II: 5250-5350 MHz		Band III: 5470-5725MHz	
		802.11ac VHT80	802.11ac VHT80	802.11ac VHT80	
L	Low	-	-	106	
M	Middle	42	58	-	
Н	High	-	-	-	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 10 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Xiaomi	LYEJ02LM	N/A	N/A	N/A
3.	WLAN AP	D-Link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m
4.	Notebook	Lenovo	G480	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Earphone	Lenovo	SH100	N/A	Unshielded, 1.2 m	N/A
6.	SD Card	Kingston	8GB	N/A	N/A	N/A

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 11 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

Report No.: FR941708-01D

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss

Following shows an offset computation example with cable loss 6.6 dB

 $Offset(dB) = RF \ cable \ loss(dB).$ = 6.6 (dB)

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 12 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 13 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 14 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output

power over the frequency band of operation shall not exceed 250 mW.

For the 5.25-5.725 GHz bands, the maximum conducted output power over the frequency bands of

operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission

bandwidth in megahertz.

For the 5.47-5.6 GHz and 5.65-5.725 GHz band, the maximum conducted output power shall not

exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The maximum e.i.r.p. shall not

exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in

megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall

be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Page Number : 15 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 16 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958

FCC ID: 2AFZZ-XMSF9SH Report Template No.: BU5-FR15EWL AC MA Version 2.0

Page Number : 17 of 30 Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 18 of 30
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Note: Average Power Density (dB) = Measured value+ Duty Factor

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 19 of 30 Report Issued Date: Jun. 25, 2019 Report Version : Rev. 01

Report No.: FR941708-01D

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 20 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

EIRP (dBm)	Field Strength at 3m (dBµV/m)	
- 27	68.2	

Note: The following formula is used to convert the EIRP to field strength.

$$EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7$$

where

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 d_{Meas} is the measurement distance, in \boldsymbol{m}

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc. TEL: +86-512-57900158

FAX: +86-512-57900958

FCC ID: 2AFZZ-XMSF9SH

Page Number : 21 of 30 Report Issued Date: Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.

Report No.: FR941708-01D

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWLAC MA Version 2.0

: 22 of 30

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 23 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 24 of 30
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 25 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR941708-01D

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 26 of 30
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR941708-01D

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 27 of 30

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR941708-01D

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 28 of 30

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2018	Jun. 06, 2019~ Jun. 11, 2019	Aug. 06, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Jun. 06, 2019~ Jun. 11, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Jun. 06, 2019~ Jun. 11, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jun. 25, 2018	Jun. 10, 2019	Jun. 24, 2019	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY553705 28	10Hz-44GHz	Oct. 09, 2018	Jun. 10, 2019	Oct. 08, 2019	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Jun. 10, 2019	Oct. 18, 2019	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 12, 2018	Jun. 10, 2019	Jun. 11, 2019	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Jun. 10, 2019	Jan. 26, 2020	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Jun. 10, 2019	Jan. 04, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06.2018	Jun. 10, 2019	Aug. 05, 2019	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Jun. 10, 2019	Jan. 13, 2020	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2018	Jun. 10, 2019	Aug. 16, 2019	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Dec. 22, 2018	Jun. 10, 2019	Dec. 21, 2019	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 10, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 10, 2019	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 10, 2019	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 19, 2018	May 29, 2019	Apr. 18, 2019	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	May 29, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	May 29, 2019	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	May 29, 2019	Oct. 11, 2019	Conduction (CO01-KS)

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : 29 of 30
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Report No.: FR941708-01D

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

1		
	Measuring Uncertainty for a Level of Confidence	2.9dB
	of 95% (U = 2Uc(y))	2.90Б

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	3.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 0 4D
of 95% (U = 2Uc(y))	5.0 dB

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Report Issued Date: Jun. 25, 2019
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 30 of 30

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : A1 of A1
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Report Number: FR941708-01D

Test Engineer:	Lion Ran	Temperature:	21~25	°C
Test Date:	2019/06/06~2019/06/11	Relative Humidity:	51~54	%

Report Number: FR941708-01D

TEST RESULTS DATA 26dB and 99% OBW

	Band I										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)			
11a	6Mbps	1	36	5180	17.63	23.38	-	22.46			
11a	6Mbps	1	44	5220	17.58	23.48	-	22.45			
11a	6Mbps	1	48	5240	17.63	23.63	-	22.46			
VHT20	MCS0	1	36	5180	18.68	23.83	-	22.71			
VHT20	MCS0	1	44	5220	18.68	24.63	-	22.71			
VHT20	MCS0	1	48	5240	18.63	24.53	-	22.70			
VHT40	MCS0	1	38	5190	36.46	41.54	-	23.01			
VHT40	MCS0	1	46	5230	36.46	41.72	-	23.01			
VHT80	MCS0	1	42	5210	75.76	84.24	-	23.01			

Report Number : FR941708-01D

TEST RESULTS DATA Power Spectral Density

	FCC Band I										
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	-	Pass/Fail	
11a	6Mbps	1	36	5180	0.09	5.02	11.00	-2.50		Pass	
11a	6Mbps	1	44	5220	0.09	4.98	11.00	-2.50		Pass	
11a	6Mbps	1	48	5240	0.09	4.58	11.00	-2.50		Pass	
VHT20	MCS0	1	36	5180	0.07	3.79	11.00	-2.50		Pass	
VHT20	MCS0	1	44	5220	0.07	3.75	11.00	-2.50		Pass	
VHT20	MCS0	1	48	5240	0.07	3.25	11.00	-2.50		Pass	
VHT40	MCS0	1	38	5190	0.16	0.97	11.00	-2.50		Pass	
VHT40	MCS0	1	46	5230	0.16	0.56	11.00	-2.50		Pass	
VHT80	MCS0	1	42	5210	0.30	-4.00	11.00	-2.50		Pass	

Report Number: FR941708-01D

TEST RESULTS DATA Average Power Table

	FCC Band I										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)		Pass/Fail	
11a	6Mbps	1	36	5180	0.09	14.74	24.00	-2.50		Pass	
11a	6Mbps	1	44	5220	0.09	15.12	24.00	-2.50		Pass	
11a	6Mbps	1	48	5240	0.09	15.02	24.00	-2.50		Pass	
HT20	MCS0	1	36	5180	0.07	13.58	24.00	-2.50		Pass	
HT20	MCS0	1	44	5220	0.07	13.92	24.00	-2.50		Pass	
HT20	MCS0	1	48	5240	0.07	13.88	24.00	-2.50		Pass	
HT40	MCS0	1	38	5190	0.16	13.17	24.00	-2.50		Pass	
HT40	MCS0	1	46	5230	0.16	13.32	24.00	-2.50		Pass	
VHT20	MCS0	1	36	5180	0.08	13.66	24.00	-2.50		Pass	
VHT20	MCS0	1	44	5220	0.08	14.01	24.00	-2.50		Pass	
VHT20	MCS0	1	48	5240	0.08	13.89	24.00	-2.50		Pass	
VHT40	MCS0	1	38	5190	0.16	13.91	24.00	-2.50		Pass	
VHT40	MCS0	1	46	5230	0.16	14.14	24.00	-2.50		Pass	
VHT80	MCS0	1	42	5210	0.30	12.03	24.00	-2.50		Pass	

Report Number : FR941708-01D

TEST RESULTS DATA 26dB and 99% OBW

	Band II										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)	FCC 26dB Bandwidth Power Limit (dBm)	Note	
11a	6M bps	1	52	5260	17.68	24.03	23.48	29.48	23.98		
11a	6M bps	1	60	5300	17.68	23.88	23.48	29.48	23.98		
11a	6M bps	1	64	5320	17.63	23.53	23.46	29.46	23.98		
HT20	MCS 0	1	52	5260	18.68	24.53	23.71	29.71	23.98		
HT20	MCS 0	1	60	5300	18.63	24.58	23.70	29.70	23.98		
HT20	MCS 0	1	64	5320	18.63	24.83	23.70	29.70	23.98		
VHT40	MCS 0	1	54	5270	36.36	41.81	23.98	30.00	23.98		
VHT40	MCS 0	1	62	5310	36.36	41.72	23.98	30.00	23.98		
VHT80	MCS 0	1	58	5290	75.64	83.60	23.98	30.00	23.98		

TEST RESULTS DATA Power Spectral Density

						Band	II		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	52	5260	0.09	3.87	11.00	-2.46	Pass
11a	6M bps	1	60	5300	0.09	4.44	11.00	-2.46	Pass
11a	6M bps	1	64	5320	0.09	4.14	11.00	-2.46	Pass
HT20	MCS 0	1	52	5260	0.07	3.16	11.00	-2.46	Pass
HT20	MCS 0	1	60	5300	0.07	3.50	11.00	-2.46	Pass
HT20	MCS 0	1	64	5320	0.07	3.39	11.00	-2.46	Pass
VHT40	MCS 0	1	54	5270	0.16	0.35	11.00	-2.46	Pass
VHT40	MCS 0	1	62	5310	0.16	0.36	11.00	-2.46	Pass
VHT80	MCS 0	1	58	5290	0.30	-4.53	11.00	-2.46	Pass

TEST RESULTS DATA Average Power Table

						FCC Ba	nd II			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail
11a	6M bps	1	52	5260	0.09	14.57	23.98	-2.46	26.99	Pass
11a	6M bps	1	60	5300	0.09	14.87	23.98	-2.46	26.99	Pass
11a	6M bps	1	64	5320	0.09	15.05	23.98	-2.46	26.99	Pass
HT20	MCS 0	1	52	5260	0.07	13.99	23.98	-2.46	26.99	Pass
HT20	MCS 0	1	60	5300	0.07	14.20	23.98	-2.46	26.99	Pass
HT20	MCS 0	1	64	5320	0.07	14.34	23.98	-2.46	26.99	Pass
HT40	MCS 0	1	54	5270	0.16	12.91	23.98	-2.46	26.99	Pass
HT40	MCS 0	1	62	5310	0.16	12.97	23.98	-2.46	26.99	Pass
VHT20	MCS 0	1	52	5260	0.08	13.78	23.98	-2.46	26.99	Pass
VHT20	MCS 0	1	60	5300	0.08	13.89	23.98	-2.46	26.99	Pass
VHT20	MCS 0	1	64	5320	0.08	14.02	23.98	-2.46	26.99	Pass
VHT40	MCS 0	1	54	5270	0.16	14.16	23.98	-2.46	26.99	Pass
VHT40	MCS 0	1	62	5310	0.16	14.25	23.98	-2.46	26.99	Pass
VHT80	MCS 0	1	58	5290	0.30	12.04	23.98	-2.46	26.99	Pass

TEST RESULTS DATA 26dB and 99% OBW

						Band	III			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)	FCC 26dB Bandwidth Power Limit (dBm)	Note
11a	6M bps	1	100	5500	17.63	24.23	23.46	29.46	23.98	
11a	6M bps	1	116	5580	17.63	23.53	23.46	29.46	23.98	
11a	6M bps	1	140	5700	17.58	23.33	23.45	29.45	23.98	
HT20	MCS 0	1	100	5500	18.73	24.08	23.73	29.73	23.98	
HT20	MCS 0	1	116	5580	18.58	24.23	23.69	29.69	23.98	
HT20	MCS 0	1	140	5700	18.73	24.23	23.73	29.73	23.98	
VHT40	MCS 0	1	102	5510	36.46	41.99	23.98	30.00	23.98	
VHT40	MCS 0	1	110	5550	36.56	41.72	23.98	30.00	23.98	
VHT40	MCS 0	1	134	5670	36.36	41.99	23.98	30.00	23.98	
VHT80	MCS 0	1	106	5530	75.76	83.76	23.98	30.00	23.98	

<u>TEST RESULTS DATA</u> <u>Power Spectral Density</u>

						Band	III		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	100	5500	0.09	3.87	11.00	-1.84	Pass
11a	6M bps	1	116	5580	0.09	4.19	11.00	-1.84	Pass
11a	6M bps	1	140	5700	0.09	3.80	11.00	-1.84	Pass
HT20	MCS 0	1	100	5500	0.07	3.29	11.00	-1.84	Pass
HT20	MCS 0	1	116	5580	0.07	3.44	11.00	-1.84	Pass
HT20	MCS 0	1	140	5700	0.07	3.11	11.00	-1.84	Pass
VHT40	MCS 0	1	102	5510	0.16	-0.14	11.00	-1.84	Pass
VHT40	MCS 0	1	110	5550	0.16	-0.24	11.00	-1.84	Pass
VHT40	MCS 0	1	134	5670	0.16	-0.24	11.00	-1.84	Pass
VHT80	MCS 0	1	106	5530	0.30	-4.57	11.00	-1.84	Pass

TEST RESULTS DATA Average Power Table

						FCC Ba	nd III			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail
11a	6M bps	1	100	5500	0.09	13.70	23.98	-1.84	26.99	Pass
11a	6M bps	1	116	5580	0.09	14.13	23.98	-1.84	26.99	Pass
11a	6M bps	1	140	5700	0.09	14.40	23.98	-1.84	26.99	Pass
HT20	MCS 0	1	100	5500	0.07	13.44	23.98	-1.84	26.99	Pass
HT20	MCS 0	1	116	5580	0.07	13.84	23.98	-1.84	26.99	Pass
HT20	MCS 0	1	140	5700	0.07	13.92	23.98	-1.84	26.99	Pass
HT40	MCS 0	1	102	5510	0.16	11.99	23.98	-1.84	26.99	Pass
HT40	MCS 0	1	110	5550	0.16	12.24	23.98	-1.84	26.99	Pass
HT40	MCS 0	1	134	5670	0.16	12.99	23.98	-1.84	26.99	Pass
VHT20	MCS 0	1	100	5500	0.08	13.00	23.98	-1.84	26.99	Pass
VHT20	MCS 0	1	116	5580	0.08	13.37	23.98	-1.84	26.99	Pass
VHT20	MCS 0	1	140	5700	0.08	13.57	23.98	-1.84	26.99	Pass
VHT40	MCS 0	1	102	5510	0.16	12.99	23.98	-1.84	26.99	Pass
VHT40	MCS 0	1	110	5550	0.16	13.01	23.98	-1.84	26.99	Pass
VHT40	MCS 0	1	134	5670	0.16	13.88	23.98	-1.84	26.99	Pass
VHT80	MCS 0	1	106	5530	0.30	11.58	23.98	-1.84	26.99	Pass

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : B1 of B2
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Temperature: **25.3~26.2**℃ Test Engineer : Amos Zhang 28~30% Relative Humidity: Test Voltage: 120Vac / 60Hz Phase: Neutral Remark: All emissions not reported here are more than 10 dB below the prescribed limit. 80 Level (dBuV) 70.0 FCC PART 15E 60.0 FCC PART 15E(AVG) 50.0 40.0 30.0 20.0 10.0 ⁰.15 2 5 10 20 30 Frequency (MHz) : CO01-KS Site Condition : FCC PART 15E LISN-N-181119-060105 NEUTRAL :864087040013338/864087040013346 #15 Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB 0.152 44.55 -21.32 65.87 33.90 0.18 10.47 QP 1 0.152 38.45 -17.42 55.87 27.80 0.18 10.47 Average 3 0.168 41.51 -23.57 65.08 30.90 0.18 10.43 QP 4 0.168 26.31 -28.77 55.08 15.70 0.18 10.43 Average 0.208 36.43 -26.84 63.27 25.90 0.17 10.36 QP 0.208 21.33 -31.94 53.27 10.80 0.17 10.36 Average 6 0.270 30.39 -30.73 61.12 19.91 0.16 10.32 QP 8 0.270 18.29 -32.83 51.12 7.81 0.16 10.32 Average 9 0.461 31.20 -25.47 56.67 20.80 0.15 10.25 QP 10 0.461 20.20 -26.47 46.67 9.80 0.15 10.25 Average 0.582 34.18 -21.82 56.00 23.80 0.14 10.24 QP 11 0.582 22.08 -23.92 46.00 11.70 0.14 10.24 Average

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : B2 of B2
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Appendix C. Radiated Spurious Emission

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5137.92	55.25	-18.75	74	48.55	35.06	8.14	36.5	106	110	Р	Н
		5148.16	42.54	-11.46	54	35.84	35.06	8.14	36.5	106	110	Α	Н
000.44	*	5178	103.6	-	-	96.84	35.08	8.17	36.49	106	110	Р	Н
802.11a		5178	95.81	-	-	89.05	35.08	8.17	36.49	106	110	Α	Н
CH 36 5180MHz		5140.48	51.45	-22.55	74	44.75	35.06	8.14	36.5	100	89	Р	V
STOUWINZ		5149.92	41.75	-12.25	54	35.05	35.06	8.14	36.5	100	89	Α	V
	*	5178	100.38	-	-	93.62	35.08	8.17	36.49	100	89	Р	V
		5178	92.55	-	-	85.79	35.08	8.17	36.49	100	89	Α	V
Remark		o other spurio I results are P		st Peak a	and Average	e limit line	e.						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C1 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 1 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11a CH 36		10360	52.82	-15.48	68.3	66.54	37.47	11.87	63.06	100	360	Р	Н
5180MHz		10360	51.89	-16.41	68.3	65.61	37.47	11.87	63.06	100	360	Р	V
802.11a CH 44		10440	50.28	-18.02	68.3	63.89	37.5	11.93	63.04	100	360	Р	Н
5220MHz		10440	51.44	-16.86	68.3	65.05	37.5	11.93	63.04	100	360	Р	V
802.11a		10480	50.2	-18.1	68.3	63.73	37.53	11.97	63.03	100	360	Р	Н
CH 48 5240MHz		10480	50.65	-17.65	68.3	64.18	37.53	11.97	63.03	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line).						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C2 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 1 5150~5250MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5140.64	54.02	-19.98	74	47.32	35.06	8.14	36.5	117	119	Р	Н
		5149.76	43.02	-10.98	54	36.32	35.06	8.14	36.5	117	119	Α	Н
802.11ac	*	5184	104.39	-	-	97.63	35.08	8.17	36.49	117	119	Р	Н
VHT20		5184	97.07	-	-	90.31	35.08	8.17	36.49	117	119	Α	Н
CH 36		5147.2	52.62	-21.38	74	45.92	35.06	8.14	36.5	107	111	Р	V
5180MHz		5148.64	41.28	-12.72	54	34.58	35.06	8.14	36.5	107	111	Α	V
	*	5184	100.43	-	-	93.67	35.08	8.17	36.49	107	111	Р	V
		5184	93.33	-	-	86.57	35.08	8.17	36.49	107	111	Α	V
Remark	1. N	o other spurio	us found.										

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH

: C3 of C27 Page Number Report Issued Date: Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz

WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		(H/V)
802.11ac VHT20		10360	48.38	-19.92	68.3	62.1	37.47	11.87	63.06	100	360	Р	Н
CH 36 5180MHz		10360	49.06	-19.24	68.3	62.78	37.47	11.87	63.06	100	360	Р	V
802.11ac VHT20		10440	50.66	-17.64	68.3	64.27	37.5	11.93	63.04	100	360	Р	Н
CH 44 5220MHz		10440	50.57	-17.73	68.3	64.18	37.5	11.93	63.04	100	360	Р	V
802.11ac VHT20		10480	49.61	-18.69	68.3	63.14	37.53	11.97	63.03	100	360	Р	Н
CH 48 5240MHz		10480	50.28	-18.02	68.3	63.81	37.53	11.97	63.03	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Average	e limit line).						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C4 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 1 5150~5250MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
		5148.64	56.52	-17.48	74	49.82	35.06	8.14	36.5	108	115	Р	Н
		5149.98	46.39	-7.61	54	39.69	35.06	8.14	36.5	108	115	Α	Н
	*	5194	101.21	-	-	94.41	35.09	8.2	36.49	108	115	Р	Н
		5194	93.97	-	-	87.17	35.09	8.2	36.49	108	115	Α	Н
802.11ac		5369.94	49.36	-24.64	74	42.34	35.17	8.3	36.45	108	115	Р	Н
VHT40		5374.8	39.62	-14.38	54	32.6	35.17	8.3	36.45	108	115	Α	Н
CH 38		5145.76	52.19	-21.81	74	45.49	35.06	8.14	36.5	100	35	Р	٧
5190MHz		5149.76	43.1	-10.9	54	36.4	35.06	8.14	36.5	100	35	Α	٧
	*	5194	98.43	-	-	91.63	35.09	8.2	36.49	100	35	Р	٧
		5194	90.37	-	-	83.57	35.09	8.2	36.49	100	35	Α	٧
		5388.84	48.64	-25.36	74	41.59	35.18	8.32	36.45	100	35	Р	٧
		5356.98	39.45	-14.55	54	32.44	35.16	8.3	36.45	100	35	Α	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C5 of C27
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Band 1 5150~5250MHz

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10380	46.98	-21.32	68.3	60.65	37.48	11.9	63.05	100	360	Р	Н
VHT40													
CH 38 5190MHz		10380	47.01	-21.29	68.3	60.68	37.48	11.9	63.05	100	360	Р	V
802.11ac VHT40		10460	47.64	-20.66	68.3	61.2	37.51	11.97	63.04	100	360	Р	Н
CH 46 5230MHz		10460	48.66	-19.64	68.3	62.22	37.51	11.97	63.04	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line) .						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C6 of C27
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		5146.08	57.57	-16.43	74	50.87	35.06	8.14	36.5	122	114	Р	Н
		5148.48	46.11	-7.89	54	39.41	35.06	8.14	36.5	122	114	Α	Н
	*	5204	94.61	-	-	87.81	35.09	8.2	36.49	122	114	Р	Н
		5204	87.66	-	-	80.86	35.09	8.2	36.49	122	114	Α	Н
802.11ac		5390.1	49.82	-24.18	74	42.77	35.18	8.32	36.45	122	114	Р	Н
VHT80		5369.22	39.78	-14.22	54	32.76	35.17	8.3	36.45	122	114	Α	Н
CH 42		5149.92	57.44	-16.56	74	50.74	35.06	8.14	36.5	100	35	Р	V
5210MHz		5149.92	43.44	-10.56	54	36.74	35.06	8.14	36.5	100	35	Α	V
	*	5216	92.67	-	-	85.85	35.1	8.2	36.48	100	35	Р	V
		5216	85.65	-	-	78.83	35.1	8.2	36.48	100	35	Α	V
		5376.6	49.13	-24.87	74	42.11	35.17	8.3	36.45	100	35	Р	V
		5373	39.85	-14.15	54	32.83	35.17	8.3	36.45	100	35	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C7 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 1 5150~5250MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

						- (JIIIO @ 011	-7					
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	_	
1		(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10420	45.3	-23	68.3	58.92	37.5	11.93	63.05	100	360	Р	Н
VHT80													
CH 42		10420	43.51	-24.79	68.3	57.13	37.5	11.93	63.05	100	360	Р	V
5210MHz													
Remark		o other spurio		st Peak	and Average	e limit line) .						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C8 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5322	102.77	-	-	95.81	35.15	8.27	36.46	116	113	Р	Н
		5322	95.53	-	-	88.57	35.15	8.27	36.46	116	113	Α	Н
000.11		5355.8	52.76	-21.24	74	45.75	35.16	8.3	36.45	116	113	Р	Н
802.11a		5351.9	42.33	-11.67	54	35.32	35.16	8.3	36.45	116	113	Α	Н
CH 64 5320MHz	*	5318	100.31	-	-	93.35	35.15	8.27	36.46	100	123	Р	٧
3320WITZ		5318	92.58	-	-	85.62	35.15	8.27	36.46	100	123	Α	٧
		5363.6	50.11	-23.89	74	43.09	35.17	8.3	36.45	100	123	Р	٧
		5350.4	40.63	-13.37	54	33.62	35.16	8.3	36.45	100	123	Α	V
	1. N	o other spurio	us found.										
Remark		I results are F		st Peak	and Average	e limit line	Э.						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C9 of C27 Report Issued Date: Jun. 25, 2019 Report Version : Rev. 01

Report No.: FR941708-01D

Band 2 5250~5350MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		/ 	(ID) (()	Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		10520	49.85	-18.45	68.3	63.34	37.54	12	63.03	100	360	Р	Н
CH 52													
5260MHz		10520	50.44	-17.86	68.3	63.93	37.54	12	63.03	100	360	Р	V
802.11a		10600	50.12	-23.88	74	63.49	37.58	12.06	63.01	100	360	Р	Н
CH 60		10600	52.57	-21.43	74	65.94	37.58	12.06	63.01	117	104	Р	V
5300MHz		10600	44.42	-9.58	54	57.79	37.58	12.06	63.01	117	104	Α	٧
802.11a		10640	49.47	-24.53	74	62.78	37.6	12.09	63	100	360	Р	Н
CH 64		10640	54.16	-19.84	74	67.47	37.6	12.09	63	115	104	Р	V
5320MHz		10640	44.93	-9.07	54	58.24	37.6	12.09	63	115	104	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C10 of C27 Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz WIFI 802.11n HT20 (Band Edge @ 3m)

				Limit	Read	Antenna	Cable	Preamp	Ant	Table	reak	POI.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	5355.6	51.36	-22.64	74	44.35	35.16	8.3	36.45	116	116	Р	Н
	5351.7	41.24	-12.76	54	34.23	35.16	8.3	36.45	116	116	Α	Н
*	5318	102.46	-	-	95.5	35.15	8.27	36.46	116	116	Р	Н
	5318	95.3	-	-	88.34	35.15	8.27	36.46	116	116	Α	Н
	5357.2	49.96	-24.04	74	42.95	35.16	8.3	36.45	100	331	Р	٧
	5350	39.78	-14.22	54	32.77	35.16	8.3	36.45	100	331	Α	٧
*	5318	99.33	-	-	92.37	35.15	8.27	36.46	100	331	Р	٧
	5318	92.7	-	-	85.74	35.15	8.27	36.46	100	331	Α	٧
		5355.6 5351.7 * 5318 5318 5357.2 5350 * 5318	5355.6 51.36 5351.7 41.24 * 5318 102.46 5318 95.3 5357.2 49.96 5350 39.78 * 5318 99.33	(MHz) (dBμV/m) (dB) 5355.6 51.36 -22.64 5351.7 41.24 -12.76 * 5318 102.46 - 5318 95.3 - 5357.2 49.96 -24.04 5350 39.78 -14.22 * 5318 99.33 -	(MHz) (dBμV/m) (dB) (dBμV/m) 5355.6 51.36 -22.64 74 5351.7 41.24 -12.76 54 * 5318 102.46 - - 5318 95.3 - - 5357.2 49.96 -24.04 74 5350 39.78 -14.22 54 * 5318 99.33 - -	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) 5355.6 51.36 -22.64 74 44.35 5351.7 41.24 -12.76 54 34.23 * 5318 102.46 - - 95.5 5318 95.3 - - 88.34 5357.2 49.96 -24.04 74 42.95 5350 39.78 -14.22 54 32.77 * 5318 99.33 - - 92.37	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) 5355.6 51.36 -22.64 74 44.35 35.16 5351.7 41.24 -12.76 54 34.23 35.16 * 5318 102.46 - - 95.5 35.15 5318 95.3 - - 88.34 35.15 5357.2 49.96 -24.04 74 42.95 35.16 5350 39.78 -14.22 54 32.77 35.16 * 5318 99.33 - - 92.37 35.15	(MHz) (dBμV/m) (dB μV/m) (dBμV/m) (dBμV) (dB/m) (dB μV/m) 5355.6 51.36 -22.64 74 44.35 35.16 8.3 5351.7 41.24 -12.76 54 34.23 35.16 8.3 * 5318 102.46 - - 95.5 35.15 8.27 5318 95.3 - - 88.34 35.15 8.27 5357.2 49.96 -24.04 74 42.95 35.16 8.3 5350 39.78 -14.22 54 32.77 35.16 8.3 * 5318 99.33 - - 92.37 35.15 8.27	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 5355.6 51.36 -22.64 74 44.35 35.16 8.3 36.45 5351.7 41.24 -12.76 54 34.23 35.16 8.3 36.45 * 5318 102.46 - - 95.5 35.15 8.27 36.46 5318 95.3 - - 88.34 35.15 8.27 36.46 5357.2 49.96 -24.04 74 42.95 35.16 8.3 36.45 5350 39.78 -14.22 54 32.77 35.16 8.3 36.45 * 5318 99.33 - - 92.37 35.15 8.27 36.46	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 5355.6 51.36 -22.64 74 44.35 35.16 8.3 36.45 116 5351.7 41.24 -12.76 54 34.23 35.16 8.3 36.45 116 * 5318 102.46 - - 95.5 35.15 8.27 36.46 116 5318 95.3 - - 88.34 35.15 8.27 36.46 116 5357.2 49.96 -24.04 74 42.95 35.16 8.3 36.45 100 5350 39.78 -14.22 54 32.77 35.16 8.3 36.45 100 * 5318 99.33 - - 92.37 35.15 8.27 36.46 100	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) 5355.6 51.36 -22.64 74 44.35 35.16 8.3 36.45 116 116 5351.7 41.24 -12.76 54 34.23 35.16 8.3 36.45 116 116 * 5318 102.46 - - 95.5 35.15 8.27 36.46 116 116 5318 95.3 - - 88.34 35.15 8.27 36.46 116 116 5357.2 49.96 -24.04 74 42.95 35.16 8.3 36.45 100 331 5350 39.78 -14.22 54 32.77 35.16 8.3 36.45 100 331 * 5318 99.33 - - 92.37 35.15 8.27 36.46 100 331	(MHz) (dBμV/m) (dB μV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 5355.6 51.36 -22.64 74 44.35 35.16 8.3 36.45 116 116 P 5351.7 41.24 -12.76 54 34.23 35.16 8.3 36.45 116 116 A * 5318 102.46 - - 95.5 35.15 8.27 36.46 116 116 P 5318 95.3 - - 88.34 35.15 8.27 36.46 116 116 A 5357.2 49.96 -24.04 74 42.95 35.16 8.3 36.45 100 331 P 5350 39.78 -14.22 54 32.77 35.16 8.3 36.45 100 331 A * 5318 99.33 - - 92.37 35.15 8.27 36.46 100

Remark

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C11 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11n HT20		10520	51.03	-17.27	68.3	64.52	37.54	12	63.03	100	360	Р	Н
CH 52 5260MHz		10520	50.51	-17.79	68.3	64	37.54	12	63.03	100	360	Р	V
802.11n HT20		10600	50.19	-23.81	74	63.56	37.58	12.06	63.01	100	360	Р	Н
CH 60 5300MHz		10600	48.61	-25.39	74	61.98	37.58	12.06	63.01	100	360	Р	V
802.11n HT20		10640	49.54	-24.46	74	62.85	37.6	12.09	63	100	360	Р	Н
CH 64 5320MHz		10640	50.57	-23.43	74	63.88	37.6	12.09	63	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line).						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C12 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 2 5250~5350MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5113.28	50.44	-23.56	74	43.8	35.05	8.1	36.51	128	112	Р	Н
		5140.8	40.43	-13.57	54	33.73	35.06	8.14	36.5	128	112	Α	Н
	*	5312	98.99	-	-	92.03	35.15	8.27	36.46	128	112	Р	Н
		5312	91.57	-	-	84.61	35.15	8.27	36.46	128	112	Α	Н
802.11ac		5351.2	53.99	-20.01	74	46.98	35.16	8.3	36.45	128	112	Р	Н
VHT40		5350.2	46.61	-7.39	54	39.6	35.16	8.3	36.45	128	112	Α	Н
CH 62		5102.88	50.2	-23.8	74	43.57	35.04	8.1	36.51	123	14	Р	٧
5310MHz		5117.92	40.56	-13.44	54	33.88	35.05	8.14	36.51	123	14	Α	V
	*	5312	96.4	-	-	89.44	35.15	8.27	36.46	123	14	Р	V
		5312	89.28	-	-	82.32	35.15	8.27	36.46	123	14	Α	V
		5350.8	52.73	-21.27	74	45.72	35.16	8.3	36.45	123	14	Р	V
		5350.1	43.82	-10.18	54	36.81	35.16	8.3	36.45	123	14	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C13 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 2 5250~5350MHz

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI Ant. 1	Note	Frequency (MHz)	Level	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Avg.	
802.11ac VHT40		10540	47.13	-21.17	68.3	60.57	37.55	12.03	63.02	100	360	P	Н
CH 54 5270MHz		10540	48.2	-20.1	68.3	61.64	37.55	12.03	63.02	100	360	Р	V
802.11ac VHT40		10620	46.45	-27.55	74	59.78	37.59	12.09	63.01	100	360	Р	Н
CH 62 5310MHz		10620	46.56	-27.44	74	59.89	37.59	12.09	63.01	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Average	e limit line	÷.						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C14 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 2 5250~5350MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		5124.96	50.38	-23.62	74	43.68	35.06	8.14	36.5	115	116	Р	Н
		5140.8	41.02	-12.98	54	34.32	35.06	8.14	36.5	115	116	Α	Н
	*	5284	93.43	-	-	86.52	35.13	8.25	36.47	115	116	Р	Н
		5284	86.38	-	-	79.47	35.13	8.25	36.47	115	116	Α	Н
802.11ac		5351.8	60.98	-13.02	74	53.97	35.16	8.3	36.45	115	116	Р	Н
VHT80		5352.4	45.01	-8.99	54	38	35.16	8.3	36.45	115	116	Α	Н
CH 58		5147.36	50.31	-23.69	74	43.61	35.06	8.14	36.5	100	33	Р	٧
5290MHz		5111.2	40.72	-13.28	54	34.08	35.05	8.1	36.51	100	33	Α	٧
	*	5296	91.75	-	-	84.83	35.14	8.25	36.47	100	33	Р	٧
		5296	84.04	-	-	77.12	35.14	8.25	36.47	100	33	Α	٧
		5359.8	60.5	-13.5	74	53.49	35.16	8.3	36.45	100	33	Р	٧
		5353.1	44.16	-9.84	54	37.15	35.16	8.3	36.45	100	33	Α	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C15 of C27 Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 2 5250~5350MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	_	
802.11ac VHT80		10580	42.86	-25.44	68.3	56.23	37.58	12.06	63.01	100	360	Р	Н
CH 58 5290MHz		10580	44.87	-23.43	68.3	58.24	37.58	12.06	63.01	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line	e.						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C16 of C27
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5459.28	50.13	-23.87	74	42.99	35.21	8.36	36.43	115	120	Р	Н
		5465.68	54.88	-13.42	68.3	47.69	35.22	8.4	36.43	115	120	Р	Н
		5459.92	41.74	-12.26	54	34.6	35.21	8.36	36.43	115	120	Α	Н
000 44 -	*	5498	104.48	-	-	97.26	35.24	8.4	36.42	115	120	Р	I
802.11a		5498	96.49	-	-	89.27	35.24	8.4	36.42	115	120	Α	I
CH 100 5500MHz		5456.88	49.48	-24.52	74	42.34	35.21	8.36	36.43	100	115	Р	V
3300WH2		5464.88	53.01	-15.29	68.3	45.86	35.22	8.36	36.43	100	115	Р	/
		5459.76	40.5	-13.5	54	33.36	35.21	8.36	36.43	100	115	Α	٧
	*	5500	101.42	-	-	94.2	35.24	8.4	36.42	100	115	Р	٧
		5500	93.74	-	-	86.52	35.24	8.4	36.42	100	115	Α	/
	*	5696	104.05	-	-	96.64	35.25	8.58	36.42	112	119	Р	Н
000.44		5696	97.06	-	-	89.65	35.25	8.58	36.42	112	119	Α	Н
802.11a		5744.76	55.67	-12.63	68.3	48.26	35.21	8.64	36.44	112	119	Р	Н
CH 140 5700MHz	*	5698	100.09	-	-	92.68	35.25	8.58	36.42	100	118	Р	٧
JI UUIVIITZ		5698	93.35	-	-	85.94	35.25	8.58	36.42	100	118	Α	V
		5737.64	53.05	-15.25	68.3	45.67	35.21	8.61	36.44	100	118	Р	V
Remark	1. No	o other spurio	us found.										

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH

: C17 of C27 Page Number Report Issued Date: Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11a		11000	44.43	-29.57	74	57.23	37.76	12.37	62.93	100	360	Р	Н
CH 100 5500MHz		11000	45.53	-28.47	74	58.33	37.76	12.37	62.93	100	360	Р	V
802.11a		11160	44.67	-29.33	74	57.22	37.84	12.51	62.9	100	360	Р	Н
CH 116 5580MHz		11160	43.82	-30.18	74	56.37	37.84	12.51	62.9	100	360	Р	V
802.11a		11400	44.92	-29.08	74	57.14	37.95	12.68	62.85	100	360	Р	Н
CH 140 5700MHz		11400	44.41	-29.59	74	56.63	37.95	12.68	62.85	100	360	Р	٧
Remark		o other spurio		st Peak a	and Average	e limit line). Э.		1		1	1	1

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C18 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 3 - 5470~5725MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
		5458.64	51.98	-22.02	74	44.84	35.21	8.36	36.43	109	116	Р	Н
		5467.12	51.9	-16.4	68.3	44.71	35.22	8.4	36.43	109	116	Р	Н
		5459.98	42	-12	54	34.86	35.21	8.36	36.43	109	116	Α	Н
802.11n	*	5498	104.19	-	-	96.97	35.24	8.4	36.42	109	116	Р	Н
HT20		5498	96.62	-	-	89.4	35.24	8.4	36.42	109	116	Α	Н
CH 100		5450.16	50.17	-23.83	74	43.03	35.21	8.36	36.43	100	30	Р	٧
5500MHz		5467.44	51.01	-17.29	68.3	43.82	35.22	8.4	36.43	100	30	Р	V
		5459.92	40.55	-13.45	54	33.41	35.21	8.36	36.43	100	30	Α	V
	*	5498	100.64	-	-	93.42	35.24	8.4	36.42	100	30	Р	V
		5498	93.36	-	-	86.14	35.24	8.4	36.42	100	30	Α	V
	*	5704	103.37	-	-	95.94	35.24	8.61	36.42	111	116	Р	Н
802.11n		5704	96.21	-	-	88.78	35.24	8.61	36.42	111	116	Α	Н
HT20		5725.32	54.38	-13.92	68.3	46.98	35.22	8.61	36.43	111	116	Р	Н
CH 140	*	5702	100.75	-	-	93.32	35.24	8.61	36.42	100	8	Р	٧
5700MHz		5702	92.83	-	-	85.4	35.24	8.61	36.42	100	8	Α	٧
Ī		5742.76	52.65	-15.65	68.3	45.24	35.21	8.64	36.44	100	8	Р	٧

^{2.} All results are PASS against Peak and Average limit line.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C19 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 3 - 5470~5725MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
802.11n HT20		11000	44.62	-29.38	74	57.42	37.76	12.37	62.93	100	360	Р	Н
CH 100 5500MHz		11000	45.21	-28.79	74	58.01	37.76	12.37	62.93	100	360	Р	٧
802.11n HT20		11160	43.56	-30.44	74	56.11	37.84	12.51	62.9	100	360	Р	Н
CH 116 5580MHz		11160	44.5	-29.5	74	57.05	37.84	12.51	62.9	100	360	Р	V
802.11n HT20		11400	43.98	-30.02	74	56.2	37.95	12.68	62.85	100	360	Р	Н
CH 140 5700MHz		11400	43.44	-30.56	74	55.66	37.95	12.68	62.85	100	360	Р	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C20 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 3 - 5470~5725MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	, ,				(dB)	(dB)	(cm)	(deg)		
		5453.2	49.84	-24.16	74	42.7	35.21	8.36	36.43	117	114	Р	Н
		5468.4	51.58	-16.72	68.3	44.39	35.22	8.4	36.43	117	114	Р	Н
		5459.76	41.06	-12.94	54	33.92	35.21	8.36	36.43	117	114	Α	Н
	*	5514	96.98	-	-	89.72	35.24	8.44	36.42	117	114	Р	Н
802.11ac		5514	89.29	-	-	82.03	35.24	8.44	36.42	117	114	Α	Н
VHT40		5737.24	50.9	-17.4	68.3	43.52	35.21	8.61	36.44	117	114	Р	Н
CH 102		5455.44	49.73	-24.27	74	42.59	35.21	8.36	36.43	102	97	Р	V
5510MHz		5467.12	51.29	-17.01	68.3	44.1	35.22	8.4	36.43	102	97	Р	V
		5459.98	41.17	-12.83	54	34.03	35.21	8.36	36.43	102	97	Α	V
	*	5514	97.07	-	-	89.81	35.24	8.44	36.42	102	97	Р	V
		5514	90.46	-	-	83.2	35.24	8.44	36.42	102	97	Α	V
		5727.64	50.42	-17.88	68.3	43.02	35.22	8.61	36.43	102	97	Р	V
		5454.64	49.16	-24.84	74	42.02	35.21	8.36	36.43	100	115	Р	Н
		5460.08	47.8	-20.5	68.3	40.66	35.21	8.36	36.43	100	115	Р	Н
		5459.92	39.59	-14.41	54	32.45	35.21	8.36	36.43	100	115	Α	Н
	*	5666	96.53	-	-	89.07	35.28	8.58	36.4	100	115	Р	Н
802.11ac		5666	89.29	-	-	81.83	35.28	8.58	36.4	100	115	Α	Н
VHT40		5732.76	52.33	-15.97	68.3	44.93	35.22	8.61	36.43	100	115	Р	Н
CH 134		5386.8	48.82	-25.18	74	41.79	35.18	8.3	36.45	100	95	Р	V
5670MHz		5468.4	47.82	-20.48	68.3	40.63	35.22	8.4	36.43	100	95	Р	V
		5449.84	39.61	-14.39	54	32.47	35.21	8.36	36.43	100	95	Α	V
	*	5666	97.52	-	-	90.06	35.28	8.58	36.4	100	95	Р	V
		5666	90.32	-	-	82.86	35.28	8.58	36.4	100	95	Α	V
		5743.4	52.42	-15.88	68.3	45.01	35.21	8.64	36.44	100	95	Р	V
Remark		o other spurio I results are P		st Peak	and Average	e limit line	e.						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C21 of C27 Report Issued Date: Jun. 25, 2019 Report Version : Rev. 01

Report No.: FR941708-01D

Band 3 - 5470~5725MHz

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11ac VHT40		11020	43.18	-30.82	74	55.94	37.77	12.4	62.93	100	360	Р	Н
CH 102 5510MHz		11020	43.25	-30.75	74	56.01	37.77	12.4	62.93	100	360	Р	V
802.11ac VHT40		11100	43.48	-30.52	74	56.13	37.81	12.45	62.91	100	360	Р	Н
CH 110 5550MHz		11100	43.65	-30.35	74	56.3	37.81	12.45	62.91	100	360	Р	V
802.11ac VHT40		11340	43.21	-30.79	74	55.53	37.92	12.62	62.86	100	360	Р	Н
CH 134 5670MHz		11340	43.44	-30.56	74	55.76	37.92	12.62	62.86	100	360	Р	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C22 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 3 5470~5725MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
		5451.92	52.78	-21.22	74	45.64	35.21	8.36	36.43	114	116	Р	Н
		5470	56.77	-11.53	68.3	49.58	35.22	8.4	36.43	114	116	Р	Н
		5455.28	44.27	-9.73	54	37.13	35.21	8.36	36.43	114	116	Α	Н
	*	5526	92.44	-	-	85.18	35.24	8.44	36.42	114	116	Р	Н
802.11ac		5526	85.21	-	-	77.95	35.24	8.44	36.42	114	116	Α	Н
VHT80		5752.6	50.95	-17.35	68.3	43.57	35.19	8.64	36.45	114	116	Р	Н
CH 106		5452.56	53.97	-20.03	74	46.83	35.21	8.36	36.43	101	103	Р	٧
5530MHz		5466.64	54.92	-13.38	68.3	47.73	35.22	8.4	36.43	101	103	Р	٧
		5458.96	44.39	-9.61	54	37.25	35.21	8.36	36.43	101	103	Α	٧
	*	5538	93.93	-	-	86.65	35.25	8.44	36.41	101	103	Р	٧
		5538	86.89	-	-	79.61	35.25	8.44	36.41	101	103	Α	٧
		5737.24	50.4	-17.9	68.3	43.02	35.21	8.61	36.44	101	103	Р	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C23 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Band 3 5470~5725MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBuV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos	Pos (deg)	_	
		(WITZ)	(ασμν/ιιι)	(ub)	(ασμν/ιιι)	(ασμν)	(ub/iii)	(ub)	(ub)	(CIII)	(ueg)	(F/A)	(II/V)
802.11ac		11060	42.35	-31.65	74	55.05	37.8	12.42	62.92	100	360	Р	Н
VHT80													

CH 106		11060	43.76	-30.24	74	56.46	37.8	12.42	62.92	100	360	Р	V
5530MHz													
Remark	No other spurious found.												
	2. Al	. All results are PASS against Peak and Average limit line.											

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C24 of C27 Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

Emission below 1GHz

WIFI 802.11n HT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	18.13	-21.87	40	24.91	24.5	0.63	31.91	-	-	Р	Н
		354.95	22.73	-23.27	46	30.9	20.44	2.08	30.69	-	-	Р	Н
		839.95	24.77	-21.23	46	23.2	26.04	3.2	27.67	-	-	Р	Н
		868.08	25.02	-20.98	46	23.03	26.21	3.25	27.47	-	-	Р	Н
000 44		920.46	26.22	-19.78	46	23.34	26.62	3.34	27.08	100	36	Р	Н
802.11n		968.96	26.1	-27.9	54	22.18	27.16	3.44	26.68	-	-	Р	Н
HT40 LF		31.94	17.49	-22.51	40	25.38	23.36	0.65	31.9	-	-	Р	V
		42.61	18.21	-21.79	40	31.92	17.44	0.75	31.9	-	-	Р	V
		93.05	18.44	-25.06	43.5	33.47	15.67	1.07	31.77	-	-	Р	V
		880.69	25.33	-20.67	46	23.17	26.28	3.27	27.39	100	30	Р	V
		971.87	25.83	-28.17	54	21.86	27.19	3.44	26.66	-	-	Р	V
		996.12	26.41	-27.59	54	21.94	27.46	3.49	26.48	-	-	Р	V
Remark		o other spurio I results are F		st limit li	ne.								

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C25 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : C26 of C27
Report Issued Date : Jun. 25, 2019

Report No.: FR941708-01D

Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

Report No.: FR941708-01D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Sporton International (Kunshan) Inc. : C27 of C27 Page Number TEL: 86-512-57900158 Report Issued Date: Jun. 25, 2019 FAX:86-512-57900958 Report Version : Rev. 01

FCC ID: 2AFZZ-XMSF9SH Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11a	97.92	2.044	0.489	0.51KHz
802.11n HT20	98.51	-	-	10Hz
802.11ac VHT20	98.15	-	-	10Hz
802.11ac VHT40	96.30	0.942	1.062	1.1KHz
802.11ac VHT80	93.26	0.461	2.170	2.2KHz

802.11a

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : D1 of D3
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

Report No.: FR941708-01D

802.11n HT20

802.11ac VHT20

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : D2 of D3
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01

802.11ac VHT40

802.11ac VHT80

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF9SH Page Number : D3 of D3
Report Issued Date : Jun. 25, 2019
Report Version : Rev. 01