VG441 Final Exam

Pan, Chongdan ID:516370910121

July 26, 2020

THE UM-SJTU JI HONOR CODE

I accept the letter and spirit of the honor code:

I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code by myself or others.

Signature: 遙崇聃

1 Problem 1

Task 1

Figure 1: MST

Figure 2: Double Edge MST

Figure 3: Eulerian Path

Before short cutting, our path is $2 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 2 \rightarrow 1 \rightarrow 2$ After short cutting our path is $2 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1 \rightarrow 2$ with cost 3 + 4 + 5 + 86 + 100 + 10

Task 2

The odd degree set is $\{1, 3, 6, 5\}$

Figure 4: Min-weight-matching K

Figure 5: Add K to M $\,$

Before short cutting, our path is $1 \rightarrow 2 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 1$ After short cutting, our path is $1 \rightarrow 2 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ with cost=10+3+2+6+5+33=59 From eyeballing solution, it's same as $1 \rightarrow 2 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ with cost=59

2 Problem 2

${\bf Task}\ {\bf 1}$

$$n = 4, v_{max} = v_3 = 6$$

$$T[1,0]=0,T[1,4]=3$$

$$T[2,0]=0,T[2,4]=3,T[2,8]=6$$

$$T[3,0]=0,T[3,4]=3,T[3,6]=8,T[3,8]=6,T[3,10]=11,T[3,14]=14$$

$$T[4,0]=0,T[4,4]=3,T[4,5]=5,T[4,6]=8,T[4,8]=6,T[4,9]=8,T[4,10]=11$$

$$T[4,11]=13,T[4,13]=11,T[4,14]=14,T[4,15]=16,T[4,19]=19$$
 Since $T[4,9]=8$, the maximum value we can put is 9

Task 2

After ranking, we get $\frac{v_1}{s_1} = \frac{v_2}{s_2} > \frac{v_4}{s_4} > \frac{v_3}{s_3}$ So we put i_1 and i_2 in the bag and the total value is 8 by occupying 6 of 8 big size, which is smaller than 9

3 Problem 3

Task 1 At first
$$\frac{C_1}{|S_1|}=1.2$$
, $\frac{C_2}{|S_2|}=3$, $\frac{C_3}{|S_3|}=1$
So we prefer to use S_3 , and the remaining elements are $\{e_1,e_2,e_3,e_6,e_7\}$
Then $\frac{C_1}{3}=2$, $\frac{C_2}{|S_2|}=3$
So we prefer to use S_1 and the remaining elements are $\{e_6,e_7\}$
At last, we have to choose S_3 to cover the remaining elements. In total, the cost is $6+7+15=28$

Task 2

The greedy algorithm is not optimal, since we can cover all elements with S_2 and S_3 and total cost is 7+15=22

4 Bonus Problem

Task 1

Through Lagrangian Relaxation:

$$\max_{\alpha_{j},\beta_{ij}} \sum_{j \in D} \alpha_{j}$$
s.t.
$$\sum_{j \in D} \beta_{ij} \leq f_{i}, \forall i \in F$$

$$\alpha_{j} - \beta_{ij} \leq d_{ij}, \forall i \in F, j \in D$$

$$\alpha_{j} \geq 0, \forall j \in D$$

$$\beta_{ij} \geq 0, \forall i \in F, j \in D$$

Task 2

Obviously, α_j and β_{ij} can't be less than 0, since the demand won't contribute a negative cost. For the object, we want to maximize the amount of money demand j will to contribute, when it's max, it's same to we spend least cost, since it's covered by demand.

The sum of β_{ij} smaller than f_i means the amount of money contributed from demands towards a facility should be less than the cost of the corresponding facilities.

 $\alpha_j - \beta_{ij}$ represents the remaining cost after paying for the facilities, which should contribute for the demand d_{ij} , so it's should be smaller than d_{ij}