## MAT 224 LEC 0501 EXTRA EXCERCISE WEEK 1-2

### QIRUI LI

### 1. Linear Combination

- 1. In each of the following question, write the vector  $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3$  as a linear combination of  $\vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3$  in the following situations.
  - (1)  $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \vec{\mathbf{e}}_3$  are three vectors and

$$\begin{cases} \vec{\mathbf{v}}_1 = 3\vec{\mathbf{e}}_1 + 2\vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{v}}_2 = 2\vec{\mathbf{e}}_1 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{v}}_3 = 2\vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \end{cases} \begin{cases} \vec{\mathbf{w}}_1 = \vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{w}}_2 = \vec{\mathbf{e}}_1 + \vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{w}}_3 = \vec{\mathbf{e}}_2 \end{cases}$$

(2)  $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \vec{\mathbf{e}}_3$  are three vectors and

$$\begin{cases} \vec{\mathbf{v}}_1 = 3\vec{\mathbf{e}}_1 + 2\vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{v}}_2 = 2\vec{\mathbf{e}}_1 + \vec{\mathbf{e}}_3 \\ \vec{\mathbf{v}}_3 = 2\vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_3 \end{cases} \begin{cases} \vec{\mathbf{e}}_1 = \vec{\mathbf{w}}_2 + \vec{\mathbf{w}}_3 \\ \vec{\mathbf{e}}_2 = \vec{\mathbf{w}}_1 + \vec{\mathbf{w}}_2 + \vec{\mathbf{w}}_3 \\ \vec{\mathbf{e}}_3 = \vec{\mathbf{w}}_2 \end{cases}$$

(3)  $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3, \vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3 \in \mathbb{R}^3$  and certain row operation could reduce it to

$$(\vec{\mathbf{v}}_1 \quad \vec{\mathbf{v}}_2 \quad \vec{\mathbf{v}}_3 \quad \vec{\mathbf{w}}_1 \quad \vec{\mathbf{w}}_2 \quad \vec{\mathbf{w}}_3) \longrightarrow \begin{pmatrix} 1 & 2 & 2 & 0 & 1 & 0 \\ 2 & 1 & 4 & 1 & 0 & 0 \\ 3 & 3 & 5 & 0 & 0 & 1 \end{pmatrix}$$

(4)  $\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\vec{\mathbf{v}}_3,\vec{\mathbf{w}}_1,\vec{\mathbf{w}}_2,\vec{\mathbf{w}}_3\in\mathbb{R}^3$  are columns of the product

$$(\vec{\mathbf{v}}_1 \quad \vec{\mathbf{v}}_2 \quad \vec{\mathbf{v}}_3 \quad \vec{\mathbf{w}}_1 \quad \vec{\mathbf{w}}_2 \quad \vec{\mathbf{w}}_3) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 2 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 0 & 1 & 0 \\ 2 & 1 & 4 & 1 & 0 & 0 \\ 3 & 3 & 5 & 0 & 0 & 1 \end{pmatrix}$$

where the left factor is invertible.

(5)  $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3, \vec{\mathbf{w}}_1, \vec{\mathbf{w}}_2, \vec{\mathbf{w}}_3 \in P_{2,x} = \{f: f(x) = ax^2 + bx + c: a, b, c \in \mathbb{C}\}$  and it has the following value table

| F      | $\vec{\mathbf{v}}_1$ | $\vec{\mathbf{v}}_2$ | $\vec{\mathbf{v}}_3$ | $\vec{\mathbf{w}}_1$ | $\vec{\mathbf{w}}_2$ | $\vec{\mathbf{w}}_3$ |
|--------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| F(0)   | 1                    | 2                    | 3                    | 0                    | 1                    | -1                   |
| F'(0)  | 1                    | 1                    | 1                    | 0                    | 0                    | 1                    |
| F''(0) | 0                    | 0                    | 1                    | 1                    | -1                   | 1                    |

## 2. Linear Equation

2. Observe the general solution for each equation by eye and write it down. Do not compute.

(1)

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}$$

(2)

$$\begin{pmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 9 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

**3.** After applying some row operation, **Then observe** the general solution for each equation by eye and write it down.

$$\begin{pmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}$$

## 3. Missing Entry of a matrix product

4. Fill out the missing entry of the matrix product

$$\begin{pmatrix} 3 & 2 & \square \\ 1 & \square & 2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 4 \end{pmatrix} = \begin{pmatrix} \square & 2 & 2 & 3 \\ \square & 9 & 9 & 9 \\ \square & \square & \square & \square \end{pmatrix}$$

**5.** Find a matrix P such that

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 5 \\ 1 & 2 & 0 & 1 & 2 \\ 2 & 4 & 1 & 3 & 2 \end{pmatrix} = P \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

### 4. Linear Spaces

10. A linear space over a field F is defined by the following

**Definition.** The **linear space over the field F** is a set V, endowed with an **abelian group** structure, which admits action of scalar of F, In other words. V is a set equipped with an operator "+" and scalar multiplication satisfying

- (1) (V,+) is an abelian group, which means:
  - 0.0) For any  $v \in V$ ,  $w \in V$ , the notation v + w defines an element in V
  - 0.1) For any  $v \in V$ ,  $w \in V$ , v + w = w + v
  - 0.2) For any  $v \in V$ ,  $u \in V$ ,  $w \in V$ , (u + v) + w = u + (v + w)
  - 0.3) There exists  $0 \in V$ , such that for any  $v \in V$ , 0 + v = v
  - 0.4) For any  $v \in V$ , There exists  $-v \in V$ , such that v + (-v) = 0
- (2) (V,+) admits an action of field from right, which satisfying
  - 1.0) For any  $\vec{\mathbf{v}} \in V$ ,  $\lambda \in F$ , the notation  $\lambda \vec{\mathbf{v}}$  defines another element in V
  - 1.1) For any  $v \in V$ , 1v = v
  - 1.2) For any  $v \in V$ ,  $\lambda, \mu \in F$ ,  $(\lambda \mu)v = \lambda(\mu v)$
  - 1.3) For any  $v \in V$ ,  $\lambda, \mu \in F$ ,  $(\lambda + \mu)v = \lambda v + \mu v$
  - 1.4) For any  $v, w \in V$ ,  $\lambda \in F$ , we have  $\lambda(v+w) = \lambda v + \lambda w$ .

We often call the element of linear space as **vectors** 

For each of the following set, say True if it is a linear space and specify **the zero vector** in such a space, say False if it is not, and specify the code of all axioms where it does not follow.

For all of them we let  $F = \mathbb{R}$ .

We denote the multiplication in  $\mathbb{R}$  as + and  $\times$ , we denote the addition in V as  $\dot{+}$ 

**Example.** 
$$(V, \dot{+})$$
:  $V = \mathbb{R}$ ,  $x \dot{+} y := x + y + xy$ ,  $\lambda x := (\lambda \times x)$ 

False, Axiom 1.4) does not apply to this definition.

(1) 
$$(V, \dot{+}): V = \mathbb{R}, \ x\dot{+}y = x + y + xy, \ \lambda x := (\lambda \times x) + (\lambda - 1).$$

(2) 
$$(V, \dot{+}): V = \mathbb{R}, \ x\dot{+}y := x + y, \ \lambda x = \lambda^2 \times x.$$

(3) 
$$(V, \dot{+}): V = \mathbb{R}^2, \ x \dot{+} y := \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda \times x_1 \\ \lambda \times x_2 \end{pmatrix}.$$

(4) 
$$(V, \dot{+}) : V = \mathbb{R}, \ x \dot{+} y := \sqrt{x^2 + y^2}, \ \lambda x := \sqrt{\lambda} \times x$$

(5) 
$$(V, \dot{+}): V = \mathbb{R}, \ x \dot{+} y := \sqrt[3]{x^3 + y^3}, \ \lambda x := \sqrt[3]{\lambda} \times x$$

# 5. Linearly independence, Span

11. Show that the polynomials x(x-1), (x+1)(x-1), x(x+1) forms a linearly independent set. Do not use the fact that  $\{1, x, x^2\}$  is linearly independent.

**12.** Prove  $x + 3 \notin \text{span}\{(x - 1)(x + 1), x^2\}$ 

13. Find a basis of span $\{(x-1)^2, x^2-1, (x-1)(x-3)\}$  (Here you can use the fact  $\{1, x, x^2\}$  is linearly independent)

14. Let  $f_1, f_2, f_3, f_4, f_5$  be polynomials of degree at most 2. Given the following value table

| F           | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ |
|-------------|-------|-------|-------|-------|-------|-------|
| F(0)        | 1     | 2     | 3     | 0     | 1     | -1    |
| F(1)        | 0     | 1     | 1     | 0     | 0     | 1     |
| F(1) + F(2) | 0     | 0     | 0     | 1     | -1    | 1     |

Write down at least 5 subset of  $S = \{f_1, f_2, f_3, f_4, f_5, f_6\}$  such that it could be a basis for span(S)

## 6. Change of basis

**15.**Let 
$$V = P_{2,X} = \{f : f(X) = aX^2 + bX + c : a, b, c \in \mathbb{C}\}.$$

(1) Please find 6 quadratic polynomials  $f_1(X), f_3(X), f_5(X), g_0(X), g_2(X), g_4(X) \in V$  such that they have the following value table.

| F(X) | $f_1(X)$ | $f_3(X)$ | $f_5(X)$ |
|------|----------|----------|----------|
| F(1) | 1        | 0        | 0        |
| F(3) | 0        | 1        | 0        |
| F(5) | 0        | 0        | 1        |

| F(x) | $g_0(X)$ | $g_2(X)$ | $g_4(X)$ |
|------|----------|----------|----------|
| F(0) | 1        | 0        | 0        |
| F(2) | 0        | 1        | 0        |
| F(4) | 0        | 0        | 1        |

[You can leave into the form like the  $f_1(X)$  example.]

$$f_1(X) = \frac{(X-3)(X-5)}{8}$$

$$f_3(X) =$$

$$f_5(X) =$$

$$g_0(X) =$$

$$g_2(X) =$$

$$g_4(X) =$$

(2) Suppose we know  $\{f_1, f_3, f_5\}$  and  $\{g_0, g_2, g_4\}$  are bases of V. Find the change of basis matrix P such that

$$\left(\begin{array}{ccc} f_1 & f_3 & f_5 \end{array}\right) = \left(\begin{array}{ccc} g_0 & g_2 & g_4 \end{array}\right) P$$

(3) Write down  $P^{-1}$ ?

(Hint: Did you see  $(f_1 \quad f_3 \quad f_5) P^{-1} = (g_0 \quad g_2 \quad g_4)?$ )

(4) Find the coordinate of  $X^2$  with respect to the basis  $\{f_1, f_3, f_5\}$  and basis  $\{g_0, g_2, g_4\}$ , how is those coordinates related by P?

16. Look at the following picture for 3 vectors  $\vec{\mathbf{w}}, \vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2$  in two dimensional linear space. O is the origin.



- (1) (3pt) What is the coordinate of  $\vec{\mathbf{w}}$  with respect to basis (  $\vec{\mathbf{e}}_1 \quad \vec{\mathbf{e}}_2$  )?
- (2) (2pt) Find the change of basis matrix P such that  $(\vec{\mathbf{v}}_1 \ \vec{\mathbf{v}}_2) = (\vec{\mathbf{e}}_1 \ \vec{\mathbf{e}}_2) P$ .
- (3) (5pt) Find the coordinate of  $\vec{\mathbf{w}}$  in basis (  $\vec{\mathbf{v}}_1 \quad \vec{\mathbf{v}}_2$  )

### 17. Consider the Vandemonde Matrix

$$Van(1,2,3,4) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix}$$

We set up three basis

### The normal basis:

$$\{1, x, x^2, x^3\}$$

## The Lagrange interpolation Polynomial Basis:

$$\left\{ \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}, \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}, \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}, \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} \right\}$$

The clever Basis:

$$\{1, x-1, (x-1)(x-2), (x-1)(x-2)(x-3)\}\$$

(1) Fill in the missing element on \_\_\_:

$$U = \begin{pmatrix} --- & -1 & 2 & -6 \\ --- & --- & -3 & 11 \\ --- & --- & --- & -6 \\ --- & --- & --- \end{pmatrix}$$

(2) What is the change of basis matrix P such that

(3) Fill in the missing element on \_\_\_:

(4) Which of the following product equal to 
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix}?$$

$$A) \quad LU$$

- B) UL
- C)  $LU^{-1}$
- D)  $UL^{-1}$
- E)  $L^{-1}U$
- F)  $U^{-1}L$
- $G) \quad L^{-1}U^{-1}$
- $H) \quad U^{-1}L^{-1}$