31. Pascalův trojúhelník a binomická věta

Úloha 1. $11^0=1$, $11^1=11$, $11^2=121$, $11^3=1331$, vidíte to taky? Proč to funguje? Kdy se to poprvé pokazí? (Nápověda: 11=10+1, binomická věta)

Úloha 2. Roznásobte (= dosaďte do binomické věty) a pokud to nějak jde, tak výsledek zjednodušte: (a) $(2+a)^3$ (b) $\left(\frac{1}{x}+2x\right)^5$ (c) $(x-\sqrt{x})^4$

Úloha 3. Spočtěte *bez kalkulačky (!)*, kolik je (a) $(1+\sqrt{2})^5$ (b) $(1-\sqrt{2})^5$ (c) $(\sqrt{2}+\sqrt[4]{2})^4$

Úloha 4. Jaký je desátý člen binomického rozvoje $(2a + b)^{15}$?

Úloha 5. Určete $x \in \mathbb{R}$ tak, aby pátý člen binomického rozvoje $\left(\frac{2}{x} - \sqrt{x}\right)^9$ byl roven 2016.

Úloha 6. Který člen binomického rozvoje $(y^2 + y^{-1})^9$ obsahuje y^3 ?

Úloha 7. Vypočítejte takový člen binomického rozvoje $(3\sqrt{a}-a^{-2})^{10}$, který neobsahuje a.

Úloha 8. Dokažte, že následující čísla jsou celá pro všechna $n \in \mathbb{N}$:

(a)
$$(1+\sqrt{3})^n + (1-\sqrt{3})^n$$

(b)
$$\frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$
 (jde o vzorec pro n -té Fibonacciho číslo)

- \star Úloha 9. Dokažte, že pro všechna $n \in \mathbb{N}$ je $\frac{4^n-1}{3}$ celé číslo. (Nápověda: 4=3+1.)
- ⋆ Úloha 10. Součty následujících "šikmých příček" dávají jistou známou posloupnost. Proč tomu tak je?

- \star Úloha 11. Derivace součinu se spočte jako (fg)' = f'g + fg'. Jak se spočte druhá derivace součinu? A jak to bude pokračovat? Proč? Sedí to i pro "nultou derivaci"?
- \star Úloha 12. Dokažte následující tvrzení: je-li p prvočíslo, pak jsou všechna čísla

$$\binom{p}{1}, \binom{p}{2}, \dots, \binom{p}{p-1}$$

násobky p. (Nápověda: Využijte $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ a zvažte, kde se v tomto zlomku objeví p.)

2. (a) $a^3 + 6a^2 + 12a + 8$ (b) $32x^5 + \frac{1}{x^5} + 80x^3 + \frac{10}{x^3} + 80x + \frac{40}{x}$ (c) $x^4 - 4x^3\sqrt{x} + 6x^3 - 4x^2\sqrt{x} + x^2$

3. (a) $29\sqrt{2} + 41$ (b) $-29\sqrt{2} + 41$ (c) $6 + 8 \cdot 2^{\frac{1}{4}} + 12 \cdot 2^{\frac{1}{2}} + 8 \cdot 2^{\frac{3}{4}}$

3. (a) $29\sqrt{2} + 41$ (b) $-29\sqrt{2} + 41$ (c) $6 + 8 \cdot 2^4 + 12 \cdot 2^2 + 8 \cdot 2^4$ **4.** $\binom{15}{9}(2a)^9b^6 = 320320a^9b^6$

5. $\sqrt[3]{2}$

6. šestý

7. třetí, 295 245