MC558 - Complexidade de Algoritmos II

Primeiro semestre de 2023

Laboratório 3

Muitos caminhos e um destino

Joãozinho acabou de entrar na UNICOMP. Ele está super feliz, mas agora tem que planejar sua vida nos próximos 5 anos. Na vida há vários caminhos a escolher, que levam a vidas completamente diferentes. Desde a antiguidade filósofos têm meditado sobre este problema fundamental da existência, mas que agora pode ser estudado usando computadores e matemática.

O objetivo desta tarefa é calcular o número de possíveis vidas que Joãozinho pode viver, sabendo das possíveis escolhas em cada momento (obviamente, isso não é possível na vida real, mas isto é apenas um projeto de MC558). Para descrever precisamente o problema usaremos grafos.

Seja G um grafo orientado com dois vértices especificados: um vértice origem s (início da graduação) e um vértice destino t (final da graduação). Um vértice representa um certo estado no tempo. Uma aresta (i,j) indica que é possível ir do estado i ao estado j e representa uma possível **escolha** no ponto/instante i. Veja a figura abaixo:

Cada aresta tem uma das 3 possíveis cores: **verde**, **amarelo** ou **vermelho**. Verde indica que foi uma escolha que representou uma boa ação (por exemplo, Joãozinho fez o projeto com antecedência!!), amarelo indica que foi um ato neutro (por exemplo, Joãozinho fez o projeto, mas em cima da hora.) e vermelho significa que não foi lá essas coisas (por exemplo, Joãozinho entregou o projeto atrasado ou não entregou...). Joãozinho vem de uma família humilde mas ele aprendeu a ser responsável desde pequeno. Assim, ele estabeleceu que as suas escolhas devem obedecer às seguintes regras:

- se ele escolheu uma aresta verde, então sua próxima aresta pode ser de qualquer cor;
- se ele escolheu uma aresta amarela, então sua próxima aresta não pode ser vermelha;
- se ele escolheu uma aresta vermelha, então sua próxima aresta tem que ser verde.

Você deve escrever um programa que recebe G, s e t e devolve o **número de caminhos viáveis** de s a t, ou seja, caminhos s a t que respeitem as regras acima. No grafo da figura o número de

caminhos viáveis de s a t é 6, a saber: (s, u, v, t), (s, u, z, v, t), (s, u, z, t), (s, w, u, v, t), (s, w, u, z, t) e (s, w, z, t).

Observação: Isto não será verificado, mas sua implementação deveria ter complexidade linear.

1 Entrada

Na primeira linha da entrada estão quatro inteiros n, m, s e t, que indicam, respectivamente, o número de vértices, o número de arestas, o vértice origem e o vértice destino de um grafo orientado acíclico G, onde $0 \le s, t \le n-1$.

A seguir vêm m linhas, cada uma contendo uma tripla de inteiros $x, y \in c$ onde $0 \le x, y \le n-1$ e $0 \le c \le 2$ que indicam que (x, y) é uma aresta de G com cor c (verde = 0, amarelo = 1 e vermelho = 2). Você pode supor que: $0 \le n \le 100$, o grafo orientado é acíclico sem arestas múltiplas e o número de caminhos viáveis é menor que 2^{31} .

2 Saída

Apenas um inteiro indicando número de caminhos viáveis de s a t.

Exemplos:

Entrada	Saída
6 9 0 5	6
0 1 0	
0 2 0	
1 3 2	
1 4 0	
2 1 1	
2 4 1	
3 5 0	
4 3 2	
4 5 1	
4 4 0 3	1
0 1 2	
0 3 1	
1 2 1	
2 3 0	

3 Implementação e Submissão

- A solução deverá ser implementada em C, C++11 ou Python 3.
- O programa deve ser submetido no SuSy, com o nome principal t3 (por exemplo, t3.c).
- O número máximo de submissões é 20.
- A tarefa contém 10 testes abertos e 10 testes fechados. A nota será proporcional ao número de acertos nos testes fechados.
- Casos de plágio implicam em nota ZERO na disciplina para todos os envolvidos.
- Não é permitido o uso de bibliotecas que não sejam padrão, bem como diretivas ou flags de otimização.

4 Prazo final de submissão

Segunda-feira 8 de maio às 6h da manhã.