STRUKTURE PODATAKA LETNJI SEMESTAR

STABLA BINARNOG TRAŽENJA SORTIRANA/UREĐENA BINARNA STABLA

Prof. Dr Leonid Stoimenov

Katedra za računarstvo Elektronski fakultet u Nišu

Stabla Binarnog Traženja - Pregled

- Definicija
- Operacije
- Primeri
- Gomila (Heap)
- Operacije

POJAM STABLA BINARNOG TRAŽENJA

o Stablo binarnog traženja (SBT) je binarno stablo koje čuva ključeve (ili parove ključ-element) u čvorovima

(key,element)

- o i za koje važi:
 - Neka su *u*, *v*, i *w* tri čvora, takva da je *u* u levom podstablu čvora *v*, a *w* je u desnom podstablu *v*. Tada važi da je

POJAM STABLA BINARNOG TRAŽENJA (2)

- Stablo binarnog traženja (SBT) Navedeni uslov važi za sve čvorove u stablu, odnosno za celo levo i desno podstablo:
- Vrednost čvora je
 - veća od svih vrednosti *levog podstabla* i
 - manja ili jednaka od vrednosti desnog podstabla

ZA VEŽBU: DA LI SU ZADATA STABLA SBT?

PRIMER STABLA BINARNOG TRAŽENJA

Na osnovu niza formirati stablo bin. traženja:
56, 26, 28, 200, 18, 24, 190, 213, 27, 12

PRIMER STABLA BINARNOG TRAŽENJA

Niz: 6, 9, 2, 1, 4, 8

Niz: 6, 8, 4, 1, 2, 9

OPERACIJA DODAVANJA

- Inicijalizacija: O(1)
- While petlja u linijama 3-8 traži mesto za ubacivanje z, vodeći računa o roditelju y Zahteva vreme O(h)
- Linije 9-14 dodaju vrednost: *O*(1)

 \Rightarrow UKUPNO: O(h)

```
Algoritam SBT.3. Dodavanje
Tree-Insert(T, z)
      y \leftarrow \text{null}
      x \leftarrow root(T)
      while (x \neq \text{null})
         y \leftarrow x
          if (key(z) < key(x))
                then x \leftarrow left(x)
                else x \leftarrow right(x)
       end while
      p(z) \leftarrow y //p-roditeljski čvor
      if (y = \text{null})
10.
          then root(T) \leftarrow z
11.
          else if key(z) \le key(y)
12.
               then left(y) \leftarrow z
13.
               else right(y) \leftarrow z
14.
```

ILUSTRACIJA DODAVANJA

o Dodavanje elementa N

STABLA BINARNOG TRAŽENJA – OPERACIJE

Osnovne operacije sa stablom: obilazak stabla

- Dodatne operacije u odnosu na binarna stabla
 - Traženje čvora sa ključem k operacija find
 - Umetanje operacija *insertItem*
 - Brisanje čvora operacija removeElement

OBILAZAK STABLA BINARNOG TRAŽENJA

• Inorder obilazak stabla binarnog traženja rezultat je uređeni niz u rastućem poretku:

Primer Obilazak Stabla binarnog traženja

Niz: 6, 9, 2, 1, 4, 8

Niz: 6, 8, 4, 1, 2, 9

Obilazak: 1 2 4 6 8 9

OPERACIJA TRAŽENJA – REKURZIVNA

Algoritam SBT.1. Rekurzivno traženje

$\underline{\text{Tree-Search}(cvor, k)}$

- 1. **if** $(cvor = null\ or\ k = key(cvor))$
- 2. **then** return *cvor*
- 3. **if** (k < key(cvor))
- 4. **then** return Tree-Search(left(cvor), k)
- 5. **else** return Tree-Search(right(cvor), k)

Složenost: *O*(*h*) *O*(*log n*), *n broj čvorova u stablu*

OPERACIJA TRAŽENJA – ITERATIVNA

Uglavnom <u>efikasnija</u> od rekurzivne.

OSTALE OPERACIJE TRAŽENJA

Traženje maksimalnog elementa – findMax

Algoritam SBT.3. Traženje maksimalnog elementa

findMax(cvor)

- 1. **if** (*cvor* != *null*)
- 2. **while** $(right(cvor) \neq null)$
- 3. cvor = right(cvor)
- 4. return cvor

 Traženje minimalnog elementa – findMin Pseudokod?

OPERACIJA BRISANJA ČVORA

- Brisanje čvora je složeno zato što treba paziti da nakon brisanja ostane zadovoljen uslov uređenja stabla
- Čvor N koji se briše treba zameniti čvorom X koji treba pronaći u stablu, tako da se održi uređenje stabla
- o Postoje tri slučaja:

OPERACIJA BRISANJA ČVORA

- 1. Naći čvor N i čvor ROD
- 2. Obrisati čvor N na sledeći način:

```
Slučaj 1 (Brisanje iz lista):

null \rightarrow ROD.link(N)
```

// link na N roditelja se postavlja na null

Slučaj 2 (brisanje čvora koji ima 1 dete):

```
N.link(D) \rightarrow ROD.link(N)
```

// u roditeljski čvor čvora N se postavlja

// link na dete čvora N

Slučaj 3 (brisanje čvora sa 2 deteta):

Naći čvor S (inorder sledbenik čvora N) Obrisati čvor S korišćenjem slučaja 1 ili 2

 $S \rightarrow ROD.link(N)$

// u roditeljski čvor čvora N se postavlja // link na inorder sledbenika čvora N

ILUSTRACIJA BRISANJA

• Brisanje lista (čvor 5)

ILUSTRACIJA BRISANJA (2)

• Brisanje čvora stepena 1 (čvor 4)

ILUSTRACIJA BRISANJA (3)

• Brisanje čvora stepena 2 (čvor 3)

Brisanje čvora

- Primeri

- Prikaz prethodno opisanih slučajeva je na slici.
- Sa B je označen čvor koji se briše (siva boja), a sa X čvor koji ga zamenjuje.
- Svako iduće stablo ujedno je i rezultat brisanja čvora iz prethodnog stabla.

PRIMER ZA VEŽBU

Kreirati stablo binarnog traženja na osnovu vrednosti zadatih u navedenom redosledu:

Nakon toga, obrisati čvorove u zadatom redosledu:

42, 14

Koji čvor će biti koren stabla nakon ovih operacija?

A. 2

B. 4

C. 5

D. 16

GOMILA HEAP

ŠTA JE HEAP?

• Heap je gotovo kompletno binarno stablo koje čuva vednosti u čvorovima i koje zadovoljava osobine tzv Heaporder.

• Heap-order: za svaki čvor v izuzev korena, važi:

Minheap

 $key(v) \ge key(parent(v))$

Maxheap

 $key(v) \le key(parent(v))$

MIN I MAX HEAP

• Svaki koren nekog podstabla mora da ima maksimalnu vrednost (MAXHEAP) ili minimalnu vrednost (MINHEAP) u odnosu na sve ostale čvorove

VISINA HEAP-A

- Heap koji čuva n vrednosti ima visinu $O(\log n)$
 - Neka je h visina heap-a koji čuva n vrednosti
 - Pošto ima 2^i čvorova/vrednosti na nivou i = 0, ..., h 2 i na nivou h 1 je poslednji čvor

HEAP IMPLEMENACIJA PREKO POLJA

- Za heap sa *n* vrednosti koristi se polje veličine *n* + 1
- Za čvor koji se nalazi na poziciji i
 - Levi potomak je na 2i
 - Desni potomak je na 2i + 1
- Ćelija sa indeksom 0 se ne koristi

Dodavanje u Heap

- Operacija insertItem dodavanje ključa k u heap
 - dodavanje u polje na poziciji n + 1
 - Preuređenje
- Algoritam u tri koraka:
 - Pronaći poslednji novi čvor z
 - Smesti k u z
 - Preuredi heap da poštuje uređenost upheap

OPERACIJA UPHEAP

- Algoritam *upheap* ponovo uspostavlja heap-order osobinu premeštanjem k do prave pozicije
- upheap se završava kada k dostigne koren ili čvor čiji roditelj ima manju ili jednaku vrednost u odnosu na k (minheap)
- \circ Pošto je visina heap-a $O(\log n)$, upheap zahteva $O(\log n)$

PRIMER: DODAVANJE U HEAP

o Dodati element 15 u maxheap

Primer: dodavanje u Heap (2)

• Traženje pozicije za novu vrednost uz stablo (upheap)

Primer: dodavanje u Heap (3)

o Upis 15 u novi čvor na pravom mestu

OPERACIJA DODAVANJA - PSEUDOKOD

```
Algoritam SBT.4 Dodavanje elementa min-gomili
InsertHeap(h,n,e)
//h – gomila (heap), n – broj elemenata gomile, e – novi element
    n \leftarrow n+1, ptr \leftarrow n // lokacija novog elementa
    repeat while (ptr>1) {
  //nalaženje lokacije elementa e
      rod ← [ptr/2] // lokacija roditelja čvora
      if (e \le h(rod) then
  h(ptr) \leftarrow e
   return
      h(ptr) \leftarrow h(rod) // pomeranje čvora naniže
                  // ažuriranje ptr
     ptr \leftarrow rod
     end repreat
10.
   h(1) \leftarrow e
                          // smeštanje e u koren
11.
                                                              33
    return
12.
```

PRIMER KREIRANJE MIN HEAP-A

Niz: 6, 9, 2, 1, 4, 8

Niz: 6, 8, 4, 1, 2, 9

Brisanje korena Heap-a

Operacija removeMin

 odnosi se na brisanje
 korena minheap-a

• Algoritam:

- Zameni koren vrednošću koja se nalazi u poslednjem čvoru w
- Povrati uređenost heapa odnosno heap-order osobinu - downheap

OPERACIJA DOWNHEAP

- Algoritam **downheap** ponovo uspostavlja heap-order zamenom ključa *k* sa čvorovima nadole od korena
- Downheap se završava kada ključ k dostigne list ili kada dođe do čvora čija deca imaju ključeve veće ili jednake k
- o Visina za heap je reda $O(\log n)$, za downheap treba $O(\log n)$

PRIMER BRISANJA KORENA GOMILE (1)

Koren sadrži max element

PRIMER BRISANJA KORENA GOMILE (2)

• Brisanje vrednosti iz korena

PRIMER BRISANJA KORENA GOMILE (3)

o Uzimanje poslednjeg čvora 8 iz heap-a

PRIMER BRISANJA KORENA GOMILE (4)

Traženje mesta za vrednost 8

Brisanje korena gomile

Algoritam SBT.5 Brisanje korena gomile

DeleteHeap(h,n,e)

- /* h heap, n broj el. gomile, e obrisani el., posl vrednost iz poslednjeg elem. Gomile, ptr lokacija poslednjeg elementa, levo i desno deca posl. elementa gomile */
- 1. $e \leftarrow h[1]$ // uklanjanje korena gomile
- 2. posl ← h[n]; n ← n-1 // brisanje posl. elementa
- 3. **if** (n=0) **then** return //brisanje jedinog elem. gomile
- 4. $ptr \leftarrow 1$; levo $\leftarrow 2$; desno $\leftarrow 3$ // inicijalizacija
- 5. **repeat while** (desno<=n)
- 6. //nalazenje prave lokacije elementa

 7. if (noglob llovol and noglob lidegnel)
- 7. **if** (posl>h[levo] **and** posl>= h[desno])
- 8. **then** $\{h[ptr] \leftarrow posl; return\}$ 9. **if** $\{h[desno] \leq h[levo]$
- then $\{h[ptr] \leftarrow h[levo]; ptr \leftarrow levo\}$
- else $\{h[ptr] \leftarrow h[desno]; ptr \leftarrow desno\}$
- 12. levo \leftarrow 2*ptr; desno \leftarrow levo + 1
- 13. end repeat
- if (levo = n) and if(posl < h[levo]) then ptr \leftarrow levo
- 15. $h[ptr] \leftarrow posl$
- 16. return

- Petlja 5-13 se ponavlja sve dok čvor posl ima desno dete
 Korak 14 obrađuje
- granični slučaj kada

 posl nema desno dete,
 ali ima levo dete
- U koraku 14 dve if naredbe su stavljene jer h[levo] ne mora biti definisan kada je

levo>n

HEAP-SORT

- Neka heap sadrži n elemenata
 - Zahtevani prostor je O(n)
 - Operacije insertItem i removeMin zahtevaju
 O(log n)
 - Operacije size,
 isEmpty, minKey, i
 minElement zahtevaju
 O(1)

- Korišćenjem heap-a možemo sortirati sekvencu od *n* elemenata za *O*(*n* log *n*)
- Takvo sortiranje se zove Heap-sort
- Heap-sort je mnogo brži od algoritama kao što su insertion-sort i selection-sort

HEAPSORT — PSEUDOKOD

exit

```
Algoritam SBT.6. Heap sort
heapSort(a,n)
// sortira polje a od n elemenata
    // formiranje min ili max gomile od elemenata polja
    \boldsymbol{a}
    repeat for j=1,n-1
       call insertHeap(a,j,a[j+1])
    // sortiranje brisanjem korena gomile dok se gomila
    ne isprazni
    repeat while n>1
       call deleteHeap(a,n,e)
      a[n+1] = e
```

PITANJA, IDEJE, KOMENTARI

