WebAssign
Section 8.4 (fa16) (Homework)

Sean Vaeth Math 129, section 05, Fall 2016 Instructor: William Conway

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

1. 3/3 points | Previous Answers

A rod has length 7 meters. At a distance x meters from its left end, the density of the rod is given by $\delta(x) = 6x + 9$ gm/m.

(a) Find the approximate mass of the slice at a distance of x meters from the left end. You can write Delta or use Δ in the CalcPad.

\$\$(6*x*+9)Δ*x*

(b) Find the exact total mass of the rod.

mass = \$\$210

2. 4/4 points | Previous Answers

Consider the triangular region shown below with density $\delta(x) = 6 + x$ grams/cm² and a = 4.

(a) Can the total mass of the triangular region be found using a single integral?

(b) Find an approximation for the mass of a slice x units to the right of the y-axis, having width Δx .

$$$(6+x)(-x+4)\Delta x$	
	1

 \checkmark

Find an approximation for the mass of a slice x units to the left of the y-axis, having width Δx .

$$$(6+x)(x+4)\Delta x$	
	1

(b) Find the total mass.

mass = \$\$2883

3. 4/4 points | Previous Answers

The density of oil in a circular oil slick on the surface of the ocean at a distance of r meters from the center of the slick is given by

$$p(r) = \frac{100}{1+r} \text{ kg/m}^2$$

(a) What are the shapes of the slices?

Circles	of	radius	r n	neters	with	centers	at the	center	of	the	oil	slick
Circies	Οī	Taulus	<i>i</i>	HELEIS	WILLI	centers	at the	Center	Οı	uie	OII	SIICK

- Thin horizontal strips at a distance of *r* meters from the center of the oil slick.
- Thin rings with radius *r* meters, centered at the center of the oil slick.

Why?

	The	oil	slick	is a	circle.
- /		\sim 11	21101	13 G	CII CIC:

We always slice circles into horizontal strips.

 \odot The density is approximately constant at a distance of r meters from the center of the slick.

(b) Find an approximation for the mass of a slice. Use Delta or Δ from the CalcPad.

 $$$200\pi r1 + r\Delta r$

(c) Find the exact mass of oil when the radius of the slick is 80 meters.

\$\$200 π (80-In(81))

4. 3/3 points | Previous Answers

A cardboard figure has the shape shown below. The region is bounded on the left by the line x = c, on the right by the line x = d, above by f(x), and below by g(x). The density p(x) in gm/ cm² varies only with x.

Find the integral needed for the total mass of the figure. Use all lower case letters.

5. 6/6 points | Previous Answers

A city along the edge of a river is semi-circular shaped with radius 15 miles. In each case below, determine the shape of the strip that would be appropriate for the given population density. Then write a definite integral to represent the total population in the city.

(a) The population density is p(x) = -20x + 500 people per square mile where x is the distance in miles from the center of the city.

(b) The population density is p(x) = 200 people per square mile where x is the vertical distance in miles from the river.

6. 2/2 points | Previous Answers

A car moving at a speed of v mph achieves 23 + 0.1v mpg (miles per gallon) for v between 20 and 60 mph. Your speed as a function of time, t, in hours, is give by

$$v = 50 t/(t+1)$$

(a) Which of the following integrals will give the total number of gallons of gas consumed between t=2 and t=3 hours?

- (b) Evaluate the integral in part (a). Round your answer to 2 decimal places.
- 1.34 🥓 gallons

7. 4/4 points | Previous Answers

The storage shed in the figure is the shape of a half-cylinder of radius r meters and length l meters.

(a) The shed is filled with sawdust whose density (kg/m^3) at any point is proportional to the distance of that point from the floor. Write a formula for the density, d, as a function of x, the distance from the floor in meters. Use lower case k as the proportionality constant.

(b) Write the integral needed to find the total mass of the sawdust in the shed (in kg). Use all lower case letters.

