Unleashing the neurons of the Intel® Curie module on the Arduino/Genuino 101 platform

Empower your project with neurons which can learn with the push of a button and immediately start recognizing.

Monitor signals and act only when significant events occur.

Who is General Vision

RCE neurons on silicon

- = NeuroMem technology
- = Neuromorphic Memories

- Incorporation in 1987
- Using Restricted Coulomb Energy (*) neurons since 1988 (mostly for vision applications)
- Inventor of the 1st NeuroMem chip jointly with IBM (ZISC, 36 and later 78 neurons) in 1993
- Inventor of the 2nd NeuroMem chip (CM1K, 1K neurons) in 2007
- Intel rolls out the 1st SOC with NeuroMem inside

(*) RCE was invented by Pr. Leon N. Cooper and all, Physics Nobel Prize 1972

Director of the brain and neural systems center at Brown University.

A brief introduction

View this introduction on our youtube account

General Vision

What can I do with the Curie neurons?

Grush, the gaming toothbrush making sure the kids brush their teeth properly

ShapeHeart, arm band with heart monitoring

Jagger & Lewis, smart collar monitoring well-being of dogs

Benefits of the neurons

- The neurons learn by examples
 - No programming
 - Training can be done off-line or the fly
- Continuous monitoring at low-power
- Can detect novelty or anomaly
- Knowledge portability
- Knowledge expandability

- Input= Stimuli
- Output=Decision

About the neurons

Chain of identical neuron cells, no supervisor, low clock, low power

Curie Neurons attributes

ANN Attributes	CM1K
Neuron capacity	128
Neuron memory size	128 bytes
Categories	15 bits
Distances	16 bits
Contexts	7 bits
Recognition status	Identified, Uncertain or Unknown
Classifiers	Radial Basis Function (RBF)
	K-Nearest Neighbor (KNN)
Distance Norms	L1 (Manhattan)
	Lsup

How to interface to the neurons

- 4 basic functions
 - Learn / Recognize
 - Save / Restore knowledge
- Tuning and expansion options

How to teach the neurons

- Simple workflow
 - Data collection and annotation
 - Feature extraction
 - Broadcast to neurons with annotated category
 - The neurons build the knowledge autonomously
- Knowledge Builder suite for off-line training
 - Ul for training and validation per sensor type
 - Curie KB for acceleration and gyro signals
 - Image KB for image data
 - More to come...
- CurieNeurons libraries for real-time training on Arduino/Genuino 101

Application deployment w/ off-line training

Knowledge Builder Training platform

Execution platform

Application deployment w/ live training

Training & Execution on Curie

NeuroMem Knowledge Builder – Curie edition

General Vision

CurieNeurons library

- RBF classifier
- Single context
- No access to the neurons' registers

```
Broadcast
                                                                                                           Knowledge
                                                                      vector
class CurieNeurons
                                                                                                         Write neurons
   public:
                                                                                    Recognize
        # define NEURONSIZE
                               128 //memory capacity of each neuron in byte
        # define MAXNEURONS
                               128 // number of silicon neurons
       CurieNeurons();
       void Init();
       void getNeuronsInfo(int* neuronSize, int* neuronsAvailable, int* neuronsCommitted);
       void Forget();
       void Forget(int Maxif);
       int Learn(unsigned char vector[], int length, int category);
       int Classify(unsigned char vector[], int length);
       int Classify(unsigned char vector[], int length, int* distance, int* category, int* nid);
       int Classify(unsigned char vector[], int length, int K, int distance[], int category[], int nid[]);
       void ReadNeuron(int nid, int* context, unsigned char model[], int* aif, int* category);
       void ReadNeuron(int nid, unsigned char neuron[]);
       int ReadNeurons(unsigned char neurons[]);
       int WriteNeurons(unsigned char neurons[]);
```

Learn

Read neurons

CurieNeurons Geek library

- Full access to the neurons' register
- Access to both RBF and KNN classifiers
- Access to multiple contexts
 - Sensor fusion
 - Cascade classifiers

```
//Functions available in the Geek Library
void SetContext(int context, int minif, int maxif);
void GetContext(int* context, int* minif, int* maxif);
void SetRBF();
void SetKNN();
int NCOUNT();
void NSR(int value);
int NSR();
void MINIF(int value);
int MINIF();
void MAXIF(int value);
int MAXIF();
void GCR(int value);
int GCR();
int DIST();
void CAT(int value);
int CAT();
void NID(int value);
int NID();
void RSTCHAIN();
void AIF(int value);
int AIF();
void IDX(int value);
```

General Vision

CurieNeurons_IMU Example

Stimuli = A simple feature vector is assembled and normalized over n samples [ax1, ay1, az1, gx1,gy1, gz1, ax2, ay2, az2, gx2, gy2, gz2, ... axn, ayn, azn, gxn, gyn, gzn]**Category**= 1 for vertical, 2 for horizontal, 0 for anything else

General Vision

The movie

Connecting the Intel Arduino/Genuino to the PC for demo of motion recognition

View this introduction on our youtube account

CurieNeurons_IMU2: 2 contexts

```
Stimuli = 2 simple feature vectors assembled and normalized over n samples context 1, vector_accel= [ax1, ay1, az1, ax2, ay2, az2,... axn, ayn, azn] context 2, vector_gyro= [gx1,gy1, gz1, gx2, gy2, gz2, ... gxn, gyn, gzn]

Category= 1 for vertical, 2 for horizontal, 0 for anything else

Observation= commits more neurons, but less false hits
```


What next?

- □ Free CurieNeurons library
- CurieNeuronsGeek library
- □ NeuroMem Knowledge Builder(Curie edition)
- □ Training courses on NeuroMem
- □ Thank you and visit us at <u>www.general-vision.com</u>