PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-334424

(43)Date of publication of application: 22.11.2002

(51)Int.CI.

G11B 5/738 G11B 5/65

G11B 5/851

(21)Application number : 2001-138170

(22) Date of filing:

09.05.2001

(71)Applicant : SHOWA DENKO KK

(72)Inventor: MOCHIZUKI NORIO

SHIMIZU KENJI SAKAWAKI AKIRA

YO TERU

KOKUBU MASATO SAKAI HIROSHI

54) MAGNETIC RECORDING MEDIUM, METHOD FOR MANUFACTURING THE SAME AND MAGNETIC RECORDING AND REPRODUCING DEVICE

57)Abstract:

PROBLEM TO BE SOLVED: To provide a magnetic recording medium in which the crystal orientation of the magnetic film can be increased and he magnetic particles can be made fine, and to provide a method for nanufacturing the medium and a magnetic recording and reproducing levice.

SOLUTION: A soft magnetic base film 2, orientation controlling film 4, perpendicular magnetic film 5 and protective film 6 are formed on a ionmagnetic substrate 1. The orientation controlling film 4 consists of an illoy containing a first element and a second element which can form a olid solution with the first element. The first element is Ru and/or Re vhile the second element has the solid solution limit with the first element ind does not form the hcp structure as a single crystal.

EGAL STATUS

Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the xaminer's decision of rejection or application converted egistration]

Date of final disposal for application]
Patent number]
Date of registration]
Number of appeal against examiner's decision of ejection]
Date of requesting appeal against examiner's decision of rejection]
Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

NOTICES *

PO and NCIPI are not responsible for any amages caused by the use of this translation.

.This document has been translated by computer. So the translation may not reflect the original precisely. **** shows the word which can not be translated.

.In the drawings, any words are not translated.

LAIMS

Claim(s)]

Claim 1] The soft magnetism substrate film which consists of soft magnetic materials at least on a nonmagnetic ubstrate, and the orientation control substrate film, The orientation control film which controls the stacking tendency f the film right above, the perpendicular magnetic film in which the easy axis mainly carried out orientation erpendicularly to the substrate, and a protective coat are prepared. The orientation control film The magnetic-cording medium characterized by being that to which it consists of an alloy which contains the 2nd element which an dissolve to the 1st element and this 1st element, and the 1st element is Ru and/or Re, and the 2nd element has a plid-solution limit community to the 1st element, and that simple substance crystal does not take hcp structure. Claim 2] The magnetic-recording medium according to claim 1 characterized by the 2nd element being at least one put chosen from from among V, Nb, Ta, Cr, Mo, W, Mn, nickel, Pd, Pt, and Ir.

Claim 3] The soft magnetism substrate film which consists of soft magnetic materials at least on a nonmagnetic abstrate, and the orientation control substrate film, The orientation control film which controls the stacking tendency f the film right above, the perpendicular magnetic film in which the easy axis mainly carried out orientation erpendicularly to the substrate, and a protective coat are prepared. The orientation control film The magnetic-cording medium characterized by being what consists of an alloy which added at least one sort chosen from mong Si oxide, Zr oxide, Hf oxide, Ti oxide, aluminum oxide, and C and B to Ru and/or Re.

Claim 4] The orientation control substrate film is a magnetic-recording medium given in any 1 term among claims 1-3 naracterized by being what uses one sort or two sorts or more of alloys as a principal component among NiAl, FeAl, oFe, CoZr, NiTi, AlCo, AlRu, and CoTi.

Claim 5] It is a magnetic-recording medium given in any 1 term among claims 1-4 characterized by spacing of the soft agnetism substrate film and a perpendicular magnetic film being 60nm or less.

Claim 6] The soft magnetism substrate film which consists of soft magnetic materials at least on a nonmagnetic ibstrate, and the orientation control substrate film, The orientation control film which controls the stacking tendency film right above, and the perpendicular magnetic film in which the easy axis mainly carried out orientation expendicularly to the substrate, It is the manufacture approach of a magnetic-recording medium of preparing a rotective coat. The orientation control film The 1st element, The manufacture approach of the magnetic-recording redium characterized by consisting of an alloy which contains the 2nd element which can dissolve to this 1st element, and for the 1st element being Ru and/or Re, and for the 2nd element having a solid-solution limit community to the 1st ement, and that simple substance crystal not taking hep structure.

Claim 7] The soft magnetism substrate film which consists of soft magnetic materials at least on a nonmagnetic ibstrate, and the orientation control substrate film, The orientation control film which controls the stacking tendency the film right above, and the perpendicular magnetic film in which the easy axis mainly carried out orientation expendicularly to the substrate, It is the manufacture approach of a magnetic-recording medium of preparing a otective coat. The orientation control film The manufacture approach of the magnetic-recording medium naracterized by consisting of an alloy which added at least one sort chosen from from among Si oxide, Zr oxide, Hf cide, Ti oxide, aluminum oxide, and C and B to Ru and/or Re.

laim 8] The magnetic recorder and reproducing device characterized by having the magnetic head which carries out cord playback of the information among claims 1-7 at a magnetic-recording medium and this magnetic-recording edium given in any 1 term.

Translation done.]

NOTICES *

PO and NCIPI are not responsible for any amages caused by the use of this translation.

.This document has been translated by computer. So the translation may not reflect the original precisely.

.**** shows the word which can not be translated.

.In the drawings, any words are not translated.

ETAILED DESCRIPTION

Detailed Description of the Invention]

)001]

Field of the Invention] This invention relates to a magnetic-recording medium, its manufacture approach, and the tagnetic recorder and reproducing device that used this magnetic-recording medium.

Description of the Prior Art] Conventionally, the magnetic-recording medium within a field the easy axis in a agnetic film mainly carried out [the medium] orientation in parallel to the substrate is used widely. In the magneticcording medium within a field, in order to realize high recording density-ization, it is necessary to make a noise low, ut if diameter-ization of a granule of a magnetic particle is attained for noise reduction, since the volume of this article will become small, it becomes easy to produce aggravation of the reproducing characteristics resulting from eat fluctuation. Moreover, when recording density is raised, a medium noise may increase under the effect of an antield in a record bit boundary. On the other hand, the so-called vertical-magnetic-recording medium in which the easy cis in a magnetic film mainly carried out orientation perpendicularly to the substrate Since the effect of an anti-field in bit boundary is small and a record magnetic domain with a clear boundary is formed, even when high recording ensity is formed, As an example of the vertical-magnetic-recording medium which attracts big attention from the pility of a heat fluctuation property and noise figure to be raised, what was indicated by JP,60-214417, A and JP,63-11117,A can be mentioned. Co alloys, such as a CoCr alloy which can enlarge a magnetic anisotropy, are usually used or the perpendicular magnetic film of a vertical-magnetic-recording medium. Since the crystal stacking tendency of a agnetic film deteriorates and the particle size of a columnar crystal also becomes uneven when a direct Co alloy agnetic film is formed on a nonmagnetic substrate, the attempt which raises the crystal stacking tendency (C shaft acking tendency) of a magnetic film has been made by preparing the substrate film between a nonmagnetic substrate id a perpendicular magnetic film. In order that a crystal may tend to carry out orientation of the hexagonal-closestacking structural materials, such as Ti, to (0001), it is reported by by using this for the substrate film that the stacking ndency of Co alloy magnetic film is improvable. The vertical-magnetic-recording medium using the substrate film ontaining Ti is indicated by IEEE Transactions on Magnetics MAG. and 19 (1983) 1644. The technique of raising C aft stacking tendency of Ti content substrate film and Co alloy magnetic film is proposed by JP,7-101495,B by eparing the film which consists of Si, germanium, Sn, etc. in the bottom of Ti content substrate film. Moreover, the ljustment of the grid between the substrate film and Co alloy magnetic film is raised by making Ti content substrate Im contain other elements, and the technique of raising the crystal stacking tendency of Co alloy magnetic film is oposed by the patent No. 2669529 official report. 0031

roblem(s) to be Solved by the Invention] In recent years, in order to raise the magnetic properties of a vertical-agnetic-recording medium and to realize further high recording density-ization, a playback output is heightened and it requested that a noise is decreased. However, the present condition is that a crystal stacking tendency tending to come inadequate by the above-mentioned conventional magnetic-recording medium, and making a magnetic particle stailed moreover cannot acquire sufficient magnetic properties from a difficult thing. In order to make crystal grain stailed especially, when thickness of the substrate film was made thin, under the effect of an initial growth phase, the ystal grain of the substrate film might become uneven and the crystal stacking tendency of a perpendicular magnetic m might deteriorate. Moreover, the soft magnetism substrate film (the so-called backing layer) which consists of soft

lagnetic materials is prepared between a perpendicular magnetic film and a substrate, and the magnetic-recording ledium which raised the effectiveness of receipts and payments of the magnetic flux between the magnetic head and a lagnetic-recording medium is proposed in recent years. By this magnetic-recording medium, since the closed magnetic ircuit where the magnetic flux from the magnetic head goes via the perpendicular magnetic film and soft magnetism abstrate film at the time of record playback is formed, record playback of the increase of the effectiveness of receipts and payments of magnetic flux and high density is attained, since [however,] the conventional magnetic-recording ledium of the crystal stacking tendency of a perpendicular magnetic film is inadequate and a magnetic anisotropy is afferior -- the above-mentioned closed magnetic circuit -- unstable -- becoming -- easy -- record reproducing laracteristics, a heat fluctuation property, and record -- there was a problem which is easy to become inadequate resolution etc.]. This invention aims at offering the magnetic-recording medium which was made in view of the pove-mentioned situation, and can raise the crystal stacking tendency of a magnetic film, and can make a magnetic article detailed, its manufacture approach, and a magnetic recorder and reproducing device.

Means for Solving the Problem] The soft magnetism substrate film with which the magnetic-recording medium of this evention consists of soft magnetic materials at least on a nonmagnetic substrate, The orientation control substrate film, e orientation control film which controls the stacking tendency of the film right above, and the perpendicular agnetic film in which the easy axis mainly carried out orientation perpendicularly to the substrate, A protective coat is repared and the orientation control film consists of an alloy which contains the 2nd element which can dissolve to the st element and this 1st element. The 1st element is Ru and/or Re and it is characterized by the 2nd element being that which it has a solid-solution limit community to the 1st element, and the simple substance crystal does not take hep ructure. As the 2nd element, at least one sort chosen from from among V, Nb, Ta, Cr, Mo, W, Mn, nickel, Pd, Pt, and can be mentioned. The alloy which added at least one sort chosen from from among Si oxide, Zr oxide, Hf oxide, Ti ride, aluminum oxide, and C and B to Ru and/or Re as an ingredient of the orientation control film can also be entioned. As for the orientation control substrate film, it is desirable that it is what uses one sort or two sorts or more falloys as a principal component among NiAl, FeAl, CoFe, CoZr, NiTi, AlCo, AlRu, and CoTi. As for spacing of the oft magnetism substrate film and a perpendicular magnetic film, it is desirable to be referred to as 60nm or less. 1005] The soft magnetism substrate film with which the manufacture approach of the magnetic-recording medium of is invention consists of soft magnetic materials at least on a nonmagnetic substrate, The orientation control substrate lm, the orientation control film which controls the stacking tendency of the film right above, and the perpendicular agnetic film in which the easy axis mainly carried out orientation perpendicularly to the substrate, It is the anufacture approach of a magnetic-recording medium of preparing a protective coat. The orientation control film The st element, It consists of an alloy which contains the 2nd element which can dissolve to this 1st element, and the 1st ement is Ru or Re, and the 2nd element has a solid-solution limit community to the 1st element, and is characterized / that simple substance crystal not taking hcp structure. The manufacture approach of the magnetic-recording medium this invention shall consist of an alloy which added at least one sort chosen from from in the orientation control film nong Si oxide, Zr oxide, Hf oxide, Ti oxide, aluminum oxide, and C and B to Ru and/or Re. 006] The magnetic recorder and reproducing device of this invention is characterized by equipping the above-

entioned magnetic recorder and reproducing device of this invention is characterized by equipping the aboveentioned magnetic-recording medium and this magnetic-recording medium with the magnetic head which carries out cord playback of the information.

imbodiment of the Invention] Drawing 1 is the cross-section block diagram showing typically the configuration of the agnetic-recording medium which is the gestalt of 1 operation of this invention. As shown in drawing 1, the soft agnetism substrate film 2, the orientation control substrate film 3, the orientation control film 4, the perpendicular agnetic film 5, a protective coat 6, and lubricating film 7 are formed on the nonmagnetic substrate 1, and the agnetic-recording medium of this operation gestalt is constituted. The aluminium alloy substrate which has the NiP ating film generally used as a substrate for magnetic-recording media as a substrate 1, glass substrates (crystallization ass, tempered glass, etc.), a ceramic substrate, a carbon substrate, a silicon substrate, and a silicon carbide substrate n be mentioned. Moreover, the substrate which formed the NiP film by plating, a spatter, etc. can be mentioned to ese substrates. It is suitable for average-of-roughness-height Ra of the front face of a substrate 1 to be referred to as 01-2nm (preferably 0.05-1.5nm). Adsorption of the magnetic head to a medium and the magnetic-head vibration at e time of record playback become it easy to take place that surface average-of-roughness-height Ra is under this

ange. Moreover, a glide property will tend to become inadequate if surface average-of-roughness-height Ra crosses nis range.

0008] Since magnetization of the perpendicular magnetic film 5 is more firmly fixed in the direction perpendicular to a ubstrate 1, the soft magnetism substrate film 2 is formed. as the soft magnetic materials which constitute the soft nagnetism substrate film 2 -- Fe -- more than 60at% -- Fe alloy to contain can be used. As this ingredient, FeCo system lloys (FeCo, FeCoV, etc.), FeNi system alloys (FeNi, FeNiMo, FeNiCr, FeNiSi, etc.), FeAl system alloys (FeAl, 'eAlSi, FeAlSiCr, FeAlSiTiRu, etc.), FeCr system alloys (FeCr, FeCrTi, FeCrCu, etc.), FeTa system alloys (FeTa, 'aTaC, etc.), a FeC system alloy, a FeN system alloy, a FeSi system alloy, a FeP system alloy, a FeNb system alloy, nd a FeHf system alloy can be mentioned. The soft magnetism substrate film 2 can be made into the structure of aving fine crystals, such as FeAlO, FeMgO, FeTaN, and FeZrN. Moreover, this fine crystal can also consider as the onfiguration which has the granular structure distributed in the matrix. the soft magnetism substrate film 2 -- Co esides the above -- more than 80at% -- Co alloy which contains and contains at least one or more sorts in Zr, Nb, Ta, 'r, Mo, etc. can be used. For example, CoZr, CoZrNb, CoZrTa, CoZrCr, CoZrMo, etc. can be mentioned as a suitable ning. Moreover, the soft magnetism substrate film 2 shall consist of an alloy which makes amorphous structure. 0009] As for the soft magnetism substrate film 2, it is desirable that the saturation magnetic flux density is more than .8T. When saturation magnetic flux density is smaller than 0.8T, there is a possibility that turbulence and a noise may icrease [a playback wave]. Moreover, practical, although it is desirable to make it as small as possible as for the oercive force of the soft magnetism substrate film 2, if it is made smaller than 200 (Oe) and (15.8x103 A/m), ifficient magnetic properties can be acquired.

)010] The thickness of the soft magnetism substrate film 2 is suitably set up by the saturation magnetic flux density of ne ingredient which constitutes the soft magnetism substrate film 2. Specifically, it is desirable for Bs-t (T-nm) which the product of the saturation magnetic flux density Bs of the ingredient which constitutes the soft magnetism abstrate film (T), and thickness [of the soft magnetism substrate film 2] t (nm) to be 40 or more (preferably 60 or nore T-nm) T-nm.

)011] As for the front face (field by the side of the orientation control substrate film 3) of the soft magnetism substrate lm 2, it is desirable that the ingredient which constitutes the soft magnetism substrate film 2 oxidizes partially or empletely, and is constituted. As for the thickness of this oxidation part (oxidizing zone), it is desirable to be referred as 0.1nm or more less than 3nm. The condition that the soft magnetism substrate film 2 oxidized can be checked by uger electron spectroscopy, the SIMS method, etc. Moreover, it can ask for the thickness of the oxidation part oxidizing zone) of soft magnetism substrate film 2 front face with the transmission electron microscope (TEM) hotograph of for example, a medium cross section.

0012] The orientation control substrate film 3 is prepared in order to make crystal grain detailed, and can mention hat uses one sort or two sorts or more of alloys as a principal component among NiAl, FeAl, CoFe, CoZr, NiTi, ICo, AlRu, and CoTi as an ingredient of the orientation control substrate film 3 while it raises the stacking tendency f the orientation control film 4. In addition, a principal component means that the component concerned is included ceeding 50at(s)%. Moreover, the ingredient which added Cr, Nb, V, W, Mo, B, O, N, Ru, Nd, etc. can also be used or these alloys. When using the above-mentioned 2 yuan system alloy (NiAl, FeAl, CoFe, CoZr, NiTi, AlCo, AlRu, oTi), it is desirable to make into 40 - 60at% (preferably 45 - 55at%) each content of two components which constitute is alloy. As an ingredient of the orientation control substrate film 3, what takes B-2 structure is suitable. As for the ickness of the orientation control substrate film 3, it is desirable to be referred to as 0.1-20nm. Moreover, when that hose melting point is 1200 degrees C or more is used for the orientation control substrate film 3, since the diameter of ystal grain can be made small, it is desirable.

1013] The orientation control film 4 is film prepared in order to control the stacking tendency and the diameter of ystal grain of the perpendicular magnetic film 5 which are located right above. The orientation control film 4 shall rive as Ru and/or Re (it may be hereafter called the 1st element) from the alloy which contains the 2nd element which in dissolve to this 1st element.

014] Although the 2nd element can dissolve to the 1st element, it is an element which has a solid-solution limit ommunity (it dissolves only in the limited presentation range). Moreover, the 2nd element is an element with which e simple substance crystal does not take hcp structure in ordinary temperature. As this 2nd element, at least one sort tosen from among V, Nb, Ta, Cr, Mo, W, Mn, nickel, Pd, Pt, and Ir can be mentioned. The a-axis die length of a mple substance crystal is shown in Table 1 whenever [to the crystal structure of the simple substance in the ordinary

emperature of these elements, and Ru and Re / maximum dissolution]. The simple substance crystal structure of Ru nd Re is collectively shown in Table 1.

0015] Γable 1]

I do lo				
元素	単体の	a 軸長	最大固溶度	
•	結晶構造	'	対Ru	対Re
		(nm)	(at%)	(at%)
v	bcc	0. 30240	31	12
Ta	bcc	0. 33030	28	5. 1
w	bcc	0.31652	48	20
Рt	fcc	0. 39236	21	· 40
Pd	fcc	0. 38903	17	2
Nb	bcc	0. 33004	29	4
Ni	fcc	0. 35240	50	17.7
M n	cubic .	0.89126	51	不明
Мо	bcc	0.31470	51.5	15
Ιr	fcc	0, 38392	49	44
Ст	рсс	0. 28848	52	25
Ru	hcp	0. 27058	_	_
Rе	hcp	0. 27609		-

ubic:立方最密構造

0016] As shown in Table 1, whenever [as opposed to Ru and Re in element shown here dissolution] has threshold alue (whenever [maximum dissolution]). In addition, although whenever [maximum dissolution / of Mn to Re] is nknown, it is checked that Mn is an element which has a solid-solution limit community to Re. Moreover, Table 1 nows that the crystal structure of the simple substance of the element shown here does not take hcp structure.

1017] As an example of the alloy used for the orientation control film 4, Ru-V, Ru-Nb, Ru-Ta, Ru-Cr, Ru-Mo, Ru-W, u-Mn, Ru-nickel, Ru-Pd, Ru-Pt, Ru-Ir, Re-V, Re-Nb, Re-Ta, Re-Cr, Re-Mo, Re-W, Re-Mn, Re-nickel, Re-Pd, Re-Pt, nd Re-Ir can be mentioned.

1018] It is suitable for the content of the 2nd element in the alloy which constitutes the orientation control film 4 to onsider as 1 - 50at% (preferably 1 - 40at%). When this content is under the above-mentioned range, it is not desirable, order that the diameter of crystal grain of the orientation control film 4 may become large and may cause big and sugh-ization of the magnetic particle in the perpendicular magnetic film 5. Moreover, when the 2nd element content cosses the above-mentioned range, the stacking tendency of the orientation control film 4 gets worse, and the stacking ndency of the perpendicular magnetic film 5 becomes easy to deteriorate. Moreover, the alloy which contains other ements in the range which does not worsen the crystal structure of not only the 1st and 2nd elements but the rientation control film 4 can also be used for the orientation control film 4.

1019] The alloy which added at least one sort chosen from from among Si oxide, Zr oxide, Hf oxide, Ti oxide, uminum oxide, and C and B in the 1st element (Ru and/or Re) can also be used for the orientation control film 4. As a example of this alloy, Ru-SiO2, Ru-ZrO2, Ru-HfO2, Ru-TiO2, Ru-aluminum 2O3, Ru-C, Ru-B, Re-SiO2, Re-ZrO2, e-HfO2, Re-TiO2, Re-aluminum 2O3, Re-C, and Re-B can be mentioned. It is suitable for the content of the above-entioned ingredient (Si oxide, Zr oxide, Hf oxide, Ti oxide, aluminum oxide, one or more sorts among C and B) to onsider as 1-50at% (preferably 1 - 40at%) in the alloy which constitutes the orientation control film 4. When this ontent is under the above-mentioned range, it is not desirable, in order that the diameter of crystal grain of the ientation control film 4 may become large and may cause big and rough-ization of the magnetic particle in the rependicular magnetic film 5. Moreover, when this content crosses the above-mentioned range, the stacking tendency the orientation control film 4 gets worse, and the stacking tendency of the perpendicular magnetic film 5 becomes say to deteriorate.

020] It is suitable for the thickness of the orientation control film 4 to be referred to as 1-50nm (preferably 1-30nm). ne effectiveness which raises the crystal stacking tendency of the perpendicular magnetic film 5 as this thickness is ider the above-mentioned range tends to become inadequate. Moreover, if this thickness crosses the above-mentioned nge, the particle size of crystal grain will become large within the orientation control film 4, and it will become easy

make the magnetic particle in the perpendicular magnetic film 5 big and rough. Moreover, since the distance of the nagnetic head and the soft magnetism substrate film 2 at the time of record playback becomes large, the resolution of a generative signal falls and noise figure deteriorates, it is not desirable. As for the orientation control film 4, it is esirable that a front face (drawing Nakagami side) is what makes hcp structure at least.

1021] The perpendicular magnetic film 5 is a magnetic film in which the easy axis mainly carried out orientation erpendicularly to the substrate, and it is desirable to use Co alloy for this perpendicular magnetic film 5. For example, CoCrPt alloy and a CoPt alloy can be used. Moreover, the alloy which added at least one sort of elements chosen as use alloys from Ta, Zr, Nb, Cu, Re, Ru, V, nickel, Mn, germanium, Si, B, O, N, etc. can be used.

1022] Although the perpendicular magnetic film 5 can also be made into the uniform monolayer structure which appoints of the above mentioned Co alloy it can also be made into the multi-least the multi-least the model.

onsists of the above-mentioned Co alloy, it can also be made into the uniform monolayer structure which onsists of the above-mentioned Co alloy, it can also be made into the multilayer structure which carried out the iminating of the layer which consists of transition metals (Co, Co alloy), and the layer which consists of noble metals of the layer which consists of noble metals of the layer which consists of noble metals of this Co alloy. In sing a CoCrPt system alloy, in order to raise a perpendicular magnetic anisotropy, it is desirable to make Pt content into 8 - 24at%. As for the thickness of the layer which consists of noble metals, it is desirable to consider as the range of 0.4-1.4nm. This is for noise figure to get worse, when a setup of the thickness becomes difficult and becomes larger and 1.4nm, while coercive force Hc and a reverse magnetic-domain nucleation field will fall, if the thickness of a oble-metals layer becomes smaller than 0.4nm. It is suitable for the thickness of the layer which consists of transition retals to be referred to as 0.1-0.6nm (preferably 0.1-0.4nm). If this transition-metals layer is too thin, while coercive orce Hc and a reverse magnetic-domain nucleation field will fall, a setup of thickness becomes difficult, and if too rick, noise figure will get worse. In the perpendicular magnetic film 5, although any are not cared about as the raximum upper layer among these transition-metals layer and a noble-metals layer, as for the lowest layer, considering a noble-metals layer is desirable.

1023] Although each component of the magnetic film of the above-mentioned monolayer structured type and a minating structured type takes polycrystal structure, it can also use the ingredient which takes amorphous structure by the magnetic-recording medium of this invention. Specifically, the alloys (TbFeCo system alloy etc.) containing rare arth elements can be used.

0024] Although what is necessary is just to optimize suitably with the playback output made into the purpose, since the problem of that noise figure gets worse, resolution falling tends to arise when the perpendicular magnetic film 5 is thick, as for the thickness of the perpendicular magnetic film 5, it is desirable that it is 3-100nm practically. As for the perpendicular magnetic film 5, it is desirable that it is what makes hop structure.

1025] As for the spacing A of the perpendicular magnetic film 5 and the soft magnetism substrate film 2, i.e., spacing nown in drawing 1, it is desirable to be referred to as 60nm or less (preferably 40nm or less, still more preferably 1 nm or less). The closed magnetic circuit formed by making this spacing A into the above-mentioned range between e magnetic head, the perpendicular magnetic film 5, and the soft magnetism substrate film 2 at the time of record ayback -- stabilizing -- the effectiveness of receipts and payments of magnetic flux -- raising -- record reproducing naracteristics, a heat fluctuation property, and record -- resolution etc. can be raised now. If spacing A crosses the pove-mentioned range, the magnetic flux from the magnetic head will stop being able to reach the soft magnetism obstrate film 2 easily at the time of record playback, and each above-mentioned property will deteriorate.

1026] It is for preventing damage on the front face of a medium, when the magnetic head contacts a medium, and curing the lubricating properties between the magnetic head and a medium, while preventing the corrosion of the expendicular magnetic film 5, a protective coat 6 can use a well-known ingredient conventionally, for example, what akes a principal component the single presentation of C, SiO2, and ZrO2 or these, and contains other elements is table. As for the thickness of a protective coat 6, it is desirable to consider as the range of 1-10nm.

1027] Well-known lubricant, such as a perfluoro polyether, fluorination alcohol, and a fluorination carboxylic acid, in be used for lubricating film 7. The class and thickness can be suitably set up according to the property of the otective coat used or lubricant.

028] In order to manufacture the magnetic-recording medium of the above-mentioned configuration, on the substrate shown in <u>drawing 1</u>, the soft magnetism substrate film 2 is formed by a spatter etc., oxidation treatment is performed the front face of this soft magnetism film 2 if needed, and, subsequently the orientation control substrate film 3, the ientation control film 4, and the perpendicular magnetic film 5 are formed by a spatter etc. one by one. Subsequently, ter forming a protective coat 6 by the spatter, the CVD method, the ion beam method, etc., lubricating film 7 is

ormed with a DIP coating method, a spin coat method, etc.

3029] When performing oxidation treatment to the front face of the soft magnetism substrate film 2, after forming the oft magnetism substrate film 2, the approach of putting the soft magnetism substrate film 2 to oxygen content gas and ne approach of introducing oxygen into the process gas at the time of forming the part near the front face of the soft nagnetism substrate film 2 can be taken. What is necessary is just to contact the soft magnetism substrate film 2 into ilution gas and pure oxygen which diluted oxygen with an argon or nitrogen about 0.1 to 30 seconds, in putting the ont face of the soft magnetism substrate film 2 to oxygen content gas. Moreover, the approach of putting the soft nagnetism substrate film 2 to atmospheric air can also be taken. Specifically, a desirable oxidation state can be cquired by putting soft magnetism substrate film 2 front face to the ambient atmosphere of the oxygen gas pressure of 0 - 3 or more Pa for 0.1 - 30 seconds to the degree of vacuum of 10-4 to ten to 6 Pa. In case the soft magnetism ubstrate film 2 is put to oxygen content gas, the degree of oxidation can be adjusted by setting up suitably the amount f the oxygen to be used, and the exposure period to oxygen. In using the gas which diluted especially oxygen with rare as, such as an argon, adjustment of the degree of oxidation of soft magnetism substrate film 2 front face becomes easy y setup of the dilution ratio of gas. When introducing oxygen into the process gas for membrane formation of the soft nagnetism substrate film 2, the approach of performing a spatter using the process gas which made a part of membrane ormation time amount containing oxygen (for example, for [before membrane formation termination] 1 second) can e taken using a spatter as for example, a forming-membranes method. As this process gas, the gas which mixed xygen about 0.05 to 10% at the rate of the volume is suitably used for an argon, for example. By scaling of this soft nagnetism substrate film 2, the magnetic fluctuation of the maximum front face of the soft magnetism substrate film 2 an be suppressed, crystal grain of the orientation control substrate film 3 formed on the soft magnetism substrate film and the orientation control film 4 can be made detailed, and the improvement effect of noise figure can be acquired. loreover, by the barrier layer-function of the oxidization part of soft magnetism substrate film 2 front face, it can appress that a staining substance moves to a medium front face from the soft magnetism substrate film 2 or the onmagnetic substrate 1, and corrosion generating on the front face of a medium can be prevented.)030] When using the alloy which contains the 1st element (Ru and/or Re) and the 2nd element (V, Nb, Ta, Cr, Mo,

I, Mn, nickel, Pd, Pt, Ir, etc.) in the orientation control film 4, the orientation control film 4 can be formed by the patter using the target which consists of this alloy.

)031] When using the 1st element alloy which contains in the orientation control film 4 the above-mentioned oxide (at ast one sort chosen from from among Si oxide, Zr oxide, Hf oxide, Ti oxide, and aluminum oxide), the orientation ontrol film 4 can be formed using the target which consists of an ingredient containing this oxide and 1st element. foreover, the orientation control film 4 may be formed using the process gas containing oxygen using the target which onsists of an ingredient which contains at least one sort and the 1st element among Si, Zr, Hf, Ti, and aluminum. 1032] In making the perpendicular magnetic film 5 into the multilayer structure which consists of a transition-metals yer and a noble-metals layer, the 1st target which consists of transition metals (Co, Co alloy), and the 2nd target hich consists of noble metals (Pt, Pd, etc.) are used by turns, and it forms the perpendicular magnetic film 5 by arrying out the spatter of the ingredient of each target by turns.

1033] The spatter using the carbon target as the formation approach of a protective coat 6, and a CVD method and the n beam method can be mentioned. Moreover, the approach of forming the protective coat 6 which consists of SiO2 or rO2 by the reactant spatter using the gas which contains oxygen as process gas is applicable using the target of RF patter using the target of SiO2 or ZrO2 or Si, or Zr. When using a CVD method and the ion beam method, the totective coat 6 with a very high degree of hardness can be formed, since it becomes possible to make the thickness nall sharply compared with the protective coat formed of the spatter, the spacing loss at the time of record playback in be made small, and record playback of high density can be performed.

1034] The orientation control film 4 consists of an alloy which contains the 2nd element which can dissolve to the 1st ement and this 1st element by the magnetic-recording medium of this operation gestalt. By the configuration whose st element is Ru and/or Re and whose 2nd element is that to which it has a solid-solution limit community to the 1st ement, and the simple substance crystal does not take hcp structure, the crystal stacking tendency of the orientation ontrol film 4 can be raised, and the crystal stacking tendency of the perpendicular magnetic film 5 can be raised. loreover, crystal grain can be diameter[of a granule]-ized in the orientation control film 4, and a magnetic particle in be made detailed in the perpendicular magnetic film 5. Therefore, noise reduction is attained, while heightening percive force and raising a playback output.

3035] The orientation control film 4 can be considered that the reason outstanding magnetic properties are acquired is s being shown below by consisting of an alloy containing the 1st and 2nd elements of the above. Although the 2nd lement can dissolve to the 1st element, it is an element which has a solid-solution limit community. Furthermore, the nd element is an element with which a simple substance crystal does not take hcp structure to the 1st element being an lement with which a simple substance crystal takes hcp structure. Thus, it is thought that the grain boundary layer in which the 2nd element deposited becomes is easy to be formed in case crystal grain grows within the orientation ontrol film 4, since it has a different property from the 1st element in respect of dissolution nature and the crystal tructure as for the 2nd element. For this reason, many crystal grain with it is formed in the orientation control film 4. a small and particle size and] [uniform] Formation of the grain boundary layer in the perpendicular magnetic film 5 which grows under the effect of the orientation control film 4 is urged to the grain boundary layer containing this 2nd lement, and a detailed and uniform magnetic particle is formed in the perpendicular magnetic film 5. Therefore, noise eduction is attained, while heightening coercive force and raising a playback output.

D036] Moreover, in the orientation control film 4, in case crystal grain grows, it is thought that the orientation side of nis crystal grain is influenced [which adjoins this crystal grain and grows] of a grain boundary layer. Since this grain oundary layer contains many 2nd element, the crystal face of crystal grain tends to become fixed according to the lass and content of this 2nd element. For this reason, the orientation side of the crystal grain of the orientation control lm 4 serves as homogeneity. Therefore, a crystal stacking tendency can be raised in the perpendicular magnetic film 5 hich grows under the effect of the orientation control film 4. Therefore, magnetic properties, such as coercive force nd a playback output, can be raised further.

)037] on the other hand, when the alloy containing the element (for example, Co) which does not have a solid-solution mit community to the 1st element (that is, it dissolves covering a total presentation), and takes hep structure is used or the orientation control film 4 Since these elements (Co etc.) have a property just like the 1st element and it dissolves ithout resistance to the 1st element, a grain boundary layer is hard to be formed and the diameter of crystal grain tends become large. For this reason, in the perpendicular magnetic film 5, a magnetic particle becomes easy to become big and rough and uneven.

Moreover, the crystal stacking tendency of the orientation control film 4 and the perpendicular magnetic film 5 and be raised by using for the orientation control film 4 the alloy which added at least one sort chosen from nong Si oxide, Zr oxide, Hf oxide, Ti oxide, aluminum oxide, and C and B to Ru and/or Re. Moreover, crystal grain and be diameter of a granule lized in the orientation control film 4, and a magnetic particle can be made detailed in the perpendicular magnetic film 5. Therefore, noise reduction is attained, while heightening coercive force and raising a layback output.

1039] It is possible by using the above-mentioned alloy for the orientation control film 4 that the reason outstanding agnetic properties are acquired is as being shown below. Since the above-mentioned oxide, and C and B are matter hich does not dissolve to the 1st element (Ru and/or Re) and they tend to deposit in a grain boundary layer compared ith crystal grain in case crystal grain grows within the orientation control film 4, in the orientation control film 4, a rain boundary layer becomes is easy to be formed. Moreover, this grain boundary layer becomes easy to become what as large width of face. For this reason, many crystal grain with it is formed in the orientation control film 4. [a small ad particle size and] [uniform] Moreover, crystal grain will be in the condition of having estranged greatly mutually. herefore, noise reduction is attained, while heightening coercive force and raising a playback output.

1040] Moreover, in the orientation control film 4, the crystal face of crystal grain tends to become fixed according to e above-mentioned ingredient (above-mentioned oxide, C, B) class and content which are contained in a grain bundary layer. For this reason, the orientation side of the crystal grain of the orientation control film 4 serves as a somogeneity. Therefore, a crystal stacking tendency can be raised in the perpendicular magnetic film 5 which grows a der the effect of the orientation control film 4. Therefore, magnetic properties, such as coercive force and a playback atput, can be raised further.

Moreover, since the crystal stacking tendency of the perpendicular magnetic film 5 can be raised, the magnetic nisotropy of the perpendicular magnetic film 5 can be raised. For this reason, the closed magnetic circuit formed stween the magnetic head, the perpendicular magnetic film 5, and the soft magnetism substrate film 2 at the time of cord playback can form the closed magnetic circuit protected and stabilized [destabilizing in the perpendicular agnetic film 5, and]. for this reason, the effectiveness of receipts and payments of magnetic flux -- raising -- record producing characteristics, a heat fluctuation property, and record -- resolution etc. can be raised.

0042] Moreover, by this magnetic-recording medium, since the alloy which made Ru and/or Re contain the abovenentioned ingredient (the 2nd element, the above-mentioned oxide, C, B) is used, compared with the case where xpensive Ru and/or Re are used independently, ingredient cost is reducible. Therefore, reduction of a manufacturing ost is attained.

9043] With this operation gestalt, the orientation control substrate film 3 which consists of NiAl etc. was formed etween the soft magnetism substrate film 2 and the orientation control film 4. Although Ru alloy which is the omponent of the orientation control film 4, and Re alloy have the property in which the diameter of crystal grain tends become large, with this operation gestalt, by forming the orientation control substrate film 3 which functions as rain-refining film, the crystal of the orientation control film 4 can be made detailed, and the diameter of crystal grain f the perpendicular magnetic film 5 formed on it can be made small. For this reason, the further noise reduction is trained. It is thought by forming the orientation control substrate film 3 that detailed-ization of the crystal of the rientation control film 4 is attained because the diameter of crystal grain of the orientation control substrate film 3 NiAl etc.) becomes small.

1044] moreover, Co system soft magnetic materials (a CoZr system, a CoZrNb system, and a CoZrTa system --) Fe /stem soft magnetic materials (a FeCo system --), such as a CoZrCr system and a CoZrMo system alloy a FeNi /stem, a FeAl system, a FeCr system alloy, etc. -- etc. -- from, in forming directly the orientation control film 4 which onsists of an Ru alloy or an Re alloy on the becoming soft magnetism substrate film 2 At the time of initial growth of it orientation control film 4, nucleation stops being able to happen easily and the diameter of crystal grain tends to ecome uneven from the crystalline difference between these soft magnetism substrate film 2 and the orientation ontrol film 4 in the orientation control film 4. On the other hand, with this operation gestalt, since the orientation ontrol substrate film 3 which consists of NiAl etc. resembles the orientation control film 4 closely in respect of ystallinity, the nucleation nature at the time of initial growth of the orientation control film 4 becomes good, and inform crystal grain becomes is easy to be formed. Therefore, with this operation gestalt, by forming the orientation ontrol substrate film 3, in the orientation control film 4, crystal grain with it is formed, and much more noise reduction attained. [a small and particle size and] [uniform]

1045] By the manufacture approach of this operation gestalt, since the alloy which contains the 1st and 2nd elements the above in the orientation control film 4 is used, the crystal stacking tendency of the orientation control film 4 and e perpendicular magnetic film 5 can be raised. Moreover, crystal grain can be diameter[of a granule]-ized in the rientation control film 4, and a magnetic particle can be made detailed in the perpendicular magnetic film 5. herefore, noise reduction is attained, while heightening coercive force and raising a playback output. 046] Moreover, by using the above-mentioned oxide and the 1st element alloy containing C and B for the orientation ontrol film 4, the crystal stacking tendency of the orientation control film 4 and the perpendicular magnetic film 5 can raised, and the outstanding magnetic anisotropy can be acquired. Moreover, crystal grain can be diameter[of a anule]-ized in the orientation control film 4, and a magnetic particle can be made detailed in the perpendicular agnetic film 5. Therefore, noise reduction is attained, while heightening coercive force and raising a playback output. 047] As shown in drawing 2, by the magnetic-recording medium of this invention, the nonmagnetic interlayer 8 hich consists of a non-magnetic material can be formed between the orientation control film 4 and the perpendicular agnetic film 5. Co alloy can be used for the nonmagnetic interlayer 8. CoCr can be used as this Co alloy. Moreover, e alloy which added to CoCr one sort or two sorts or more of elements chosen from Ta, Zr, Nb, Cu, Re, Ru, nickel, n, germanium, Si, O, N, and B can be used. Moreover, nonmagnetic Co alloy containing one sort or two sorts or ore of elements chosen from Ta, Zr, Nb, Cu, Re, Ru, nickel, Mn, germanium, Si, O, N, and B and Co can also be ed. Since resolution will fall and noise figure will get worse when the distance of the perpendicular magnetic film 5 id the soft magnetism substrate film 2 becomes large if too thick, as for the nonmagnetic interlayer 8, it is desirable to t thickness to 20nm or less, and it is more desirable to be referred to as 10nm or less. By forming the nonmagnetic terlayer 8, the stacking tendency of the perpendicular magnetic film 5 can be raised, and coercive force can be

048] As shown in <u>drawing 3</u>, by the magnetic-recording medium of this invention, the hard magnetism film 9 which nsists of a hard magnetic material which has a magnetic anisotropy within a field can also be formed between the soft agnetism substrate film 2 and a substrate 1. A CoCr alloy can be used as an ingredient used for the hard magnetism m 9. Moreover, the magnetic materials (CoSm alloy etc.) which consist of an alloy of transition metals and rare earth ements can also be used. As for the hard magnetism film 9, it is desirable that coercive force Hc is more than 500

De) (preferably more than 1000 (Oe)). thickness of the hard magnetism film 9 is set to 20-150nm (preferably 40-0nm) -- it is desirable. In order to make it the soft magnetism substrate film 2 not form a substrate radial magnetic omain wall, as for the hard magnetism film 9, it is desirable that it is magnetized in the direction of a radial from a ubstrate core, and switched connection is formed between the soft magnetism substrate film 2. It is desirable to repare the substrate film (illustration abbreviation) which consists of Cr or a Cr alloy directly under the hard nagnetism film 9.

D049] By forming the hard magnetism film 9, generating of the spike noise by the huge magnetic domain which the oft magnetism substrate film 2 forms can be prevented, it excels in an error rate property, and the magnetic-recording redium in which high density record is possible can be obtained. This is based on the following reasons. Since [that oercive force is small] the soft magnetism substrate film 2 has the changeable direction of magnetization, it forms a uge magnetic domain in the field inboard of a substrate 1. The magnetic domain wall which is the boundary of the ragnetic domain in this soft magnetism substrate film 2 may cause spike noise generating, and may become the factor which reduces the error rate of a magnetic-recording medium. Switched connection of the hard magnetism film 9 and resoft magnetism substrate film 2 is carried out, the magnetization direction of the soft magnetism substrate film 2 is ompulsorily turned to substrate 1 radial one, and it can avoid forming the above-mentioned huge magnetic domain by orming the hard magnetism film 9 between the soft magnetism substrate film 2 and a substrate 1. For this reason, spike oise generating can be prevented.

Drawing 4 is the cross-section block diagram showing an example of the magnetic recorder and reproducing evice concerning this invention. The magnetic recorder and reproducing device shown in this drawing is equipped ith the medium mechanical component 11 which carries out the rotation drive of the magnetic-recording medium 10 and this magnetic-recording medium 10 of the above-mentioned configuration, the magnetic head 12 which performs iformational record playback to the magnetic-recording medium 10, the head mechanical component 13 which makes the magnetic head 12 drive, and the record regenerative-signal processor 14. The record regenerative-signal system 14 rocesses the inputted data, a record signal can be sent to the magnetic head 12, or can process the regenerative signal om the magnetic head 12, and can output data now.

1051] A single magnetic pole head can be used as the magnetic head 12. <u>Drawing 5</u> shows an example of a single tagnetic pole head, and the outline configuration of the single magnetic pole head 12 is carried out from the magnetic pole 15 and the coil 16. The main pole 17 can generate the field impressed to the perpendicular magnetic film 5 at the me of record by being formed in the shape of [which has the main pole 17 with narrow width of face, and the broad exiliary magnetic pole 18] a side view abbreviation KO character, and a magnetic pole 15 can detect now the tagnetic flux from the perpendicular magnetic film 5 at the time of playback.

1052] In case record to the magnetic-recording medium 10 is performed using the single magnetic pole head 12, the agnetic flux emitted from the tip of the main pole 17 makes the perpendicular magnetic film 5 magnetize in the expendicular direction to a substrate 1. Under the present circumstances, since the soft magnetism substrate film 2 is ormed in the magnetic-recording medium 10, the magnetic flux from the main pole 17 forms the closed magnetic reuit which results in the auxiliary magnetic pole 18 through the perpendicular magnetic film 5 and the soft agnetism substrate film 2. By forming this closed magnetic circuit between the single magnetic pole head 12 and the agnetic-recording medium 10, record playback of the increase of the effectiveness of receipts and payments of agnetic flux and high density is attained. In addition, although the magnetic flux between the main pole 17 and the off magnetism film 2 becomes the reverse sense in the magnetic flux between the soft magnetism film 2 and the ixiliary magnetic pole 18, since it is large enough compared with the main pole 17, the area of the auxiliary magnetic ble 18 becomes small [the flux density from the auxiliary magnetic pole 18] enough, and magnetization of the expendicular magnetic film 5 is not influenced by the magnetic flux from this auxiliary magnetic pole 18. Moreover, this invention, the compound-die thin film magnetic-recording head which equipped with the huge magnetic-luctance (GMR) component, the things, for example, the playback section, other than a single magnetic pole head, in also be used as the magnetic head.

1053] Since the alloy (or the above-mentioned oxide, the 1st element alloy containing C and B) which contains the 1st all 2nd elements of the above in the orientation control film 4 of the magnetic-recording medium 10 is used for the agnetic-recording medium of this invention, it can raise the crystal stacking tendency of the orientation control film 4 and the perpendicular magnetic film 5. Moreover, crystal grain can be diameter of a granule 1-ized in the orientation introl film 4, and a magnetic particle can be made detailed in the perpendicular magnetic film 5. Therefore, noise

eduction is attained, while heightening coercive force and raising a playback output. Therefore, high recording ensity-ization can be attained.

3054]

Example] Hereafter, an example is shown and the operation effectiveness of this invention is clarified. 'he glass substrate [finishing / washing] 1 (made in Ohara, outer diameter of 2.5 inches) is held in the membrane ormation chamber of DC magnetron sputtering equipment (product C-3010 made from Anelva). (Examples 1-36) after exhausting the inside of a membrane formation chamber until it was set to -5 Pa, the soft magnetism substrate ilm 2 (100nm in thickness) which consists of 89at%Co-4at%Zr-7at%Nb on 100-degree C temperature conditions was ormed by the spatter on this ultimate-vacuum 1x10 glass substrate 1. Subsequently, the orientation control substrate Ilm 3 (8nm in thickness) which consists of 50at%nickel-50at%aluminum, and the orientation control film 4 (5nm in nickness) were formed by the spatter on the soft magnetism substrate film 2 on 200-degree C temperature conditions. 'he alloy which consists of the 1st raw material (Ru or Re) and the 2nd raw material (V, Nb, Ta, Cr, Mo, W, Mn, ickel, Pd, Pt, Ir, SiO2, ZrO2, HfO2, TiO2, aluminum 2O3, C or B) was used for the orientation control film 4. Content f the 2nd raw material was carried out as shown in Table 2. Subsequently, the perpendicular magnetic film 5 (30nm in nickness) which consists of 62at%Co-20at%Cr-14at%Pt-4at%B was formed. In the above-mentioned sputtering rocess, membranes were formed with the gas pressure of 0.5Pa, using an argon as process gas for membrane ormation. Subsequently, the protective coat 6 (5nm in thickness) which consists of carbon with a CVD method was ormed. Subsequently, with the DIP coating method, the lubricating film 7 (2nm in thickness) which consists of a erfluoro polyether was formed, and the magnetic-recording medium was obtained.

)055] (Examples 1 and 2 of a comparison) The magnetic-recording medium was produced like the example 1 except onsisting the orientation control film of Ru or Re.

NA1632 made from GUZIK, and spin stand S1701MP. In evaluation of magnetic properties, it measured in track-cording-density 100kFCI and error rate 600kFCI (at the time of playback), using a single magnetic pole head as the tagnetic head. A result is shown in Table 2. He shows the coercive force at the time of making a magnetic-recording tedium magnetize in the perpendicular direction to a substrate 1.

Γable 2]

	配向制御鸌	第2原料 の含有率	Нс	再生出力	SNRm
		(at%)	(0e)	(mY)	(dB)
実施例1	Ru — V	25	4354	2.87	17.69
実施例2	Ru — Nb	25	4199	2.86	17.74
実施例3	Ru-Ta	15	4229	2. 97	17. 71
実施例4	Ru-Cr	40	4075	2. 98	17.80
実施例5	Ru — No	40	4137	2.96	17.66
実施例6	Ru − W	40	4144	2.91	17. 58
実施例7	Ru — Mn	40	4055	2.84	17, 77
実施例8	Ru-Ni	40	4412	3.01	17.82
実施例9	Ru—Pd	15	4130	2. 86	17.78
実施例10	Ru-Pt	15	4096	2. 99	17. 73
実施例11	Ru-1r	40	4095	2.86	17.61
実施例12	Ru-SiO2	20	4022	2. 95	18.10
実施例13	Ru-ZrO2	20	4200	2.96	17.78
実施例14	Ru-HfO2	20	4024	3.00	17. 78
実施例15	Ru-TiO2	20	4291	2.89	17.72
実施例16	Ru-A12O3	20	4112	2.98	17.59
実施例17	Ru-C	25	3933	2.89	17. 56
実施例18	Ru-B	25	4099	2.87	17.73
実施例19	Re-V	5	4073	2.84	17.66
実施例20	Re-Nb	5	4092	2.88	17.68
実施例21	Re-Ta	5	4027	2.80	17.77
実施例22	Re-Cr	15	3998	2.96	1 7.76
実施例23	Re-Mo	15	4211	2.90	17.62
実施例24	Re-W	15	4038	2.86	17.58
実施例25	Re—Mn	15	3991	2.79	17.73
実施例26	Re-Ni	15	3800	2.91	17.81
実施例27	Re-Pd	40	4148	2.84	17.61
実施例28	Re-Pt	40	3927	2.86	17.50
実施例29	Re-Ir	40	3892	2.81	17.65
実施例30	Re-SiO2	20	3783	2.86	18.21
実施例31	Re-ZrO2	20	4082	2.90	17.71
実施例32	Re-HfO2	20	4088	2.86	17.60
実施例33	Re-TiO2	20	3974	2. 89	17.79
実施例34	Re-A12O3	20	3966	2. 76	17.64
実施例35	Re-C	15	4173	2. 88	17. 52
実施例36	Re — B	15	4237	2, 86	17. 66
比較例1	Ru	_	3404	2. 84	14.04
比較例2	Re	_	3128	2. 79	13, 81

1058] In the example which used for the orientation control film 4 the alloy which added the 2nd raw material of the sove from Table 2 to Ru or Re compared with the example of a comparison which used Ru or Re for the orientation introl film 4, it turns out that the result of having excelled about coercive force Hc, a playback output, and SNR was stained.

059] (Example 37) The magnetic-recording medium was produced like the example 1 by changing the thickness of e orientation control substrate film 3 except changing the distance of the soft magnetism substrate film 2 and the rependicular magnetic film 5. The result of having measured over-writing (it being called OW Over Wright and the llowing) of these magnetic-recording medium is shown in <u>drawing 6</u>. From <u>drawing 6</u>, when spacing of the soft agnetism substrate film 2 and the perpendicular magnetic film 5 exceeds 60nm, by setting this spacing to 60nm or ss shows that outstanding reproducing characteristics were able to be acquired to OW being set to 35dB or less, and producing characteristics becoming low.

Iffect of the Invention If it is in the magnetic-recording medium of this invention as explained above The orientation introl film consists of an alloy which contains the 2nd element which can dissolve to the 1st element and this 1st ement. By the configuration whose 1st element is Ru and/or Re and whose 2nd element is that to which it has a solid-

olution limit community to the 1st element, and the simple substance crystal does not take hcp structure, the crystal tacking tendency of the orientation control film can be raised, and the crystal stacking tendency of a perpendicular nagnetic film can be raised. Moreover, crystal grain can be diameter[of a granule]-ized in the orientation control film, nd a magnetic particle can be made detailed in a perpendicular magnetic film. Therefore, noise reduction is attained, thile heightening coercive force and raising a playback output.

3061] Moreover, the crystal stacking tendency of the orientation control film and a perpendicular magnetic film can be aised by using for the orientation control film the alloy which added at least one sort chosen from from among Si xide, Zr oxide, Hf oxide, Ti oxide, aluminum oxide, and C and B to Ru and/or Re. Moreover, crystal grain can be iameter[of a granule]-ized in the orientation control film, and a magnetic particle can be made detailed in a erpendicular magnetic film. Therefore, noise reduction is attained, while heightening coercive force and raising a layback output.

Franslation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-334424 (P2002-334424A)

(43)公開日 平成14年11月22日(2002.11.22)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
G11B	5/738		G11B	5/738	5 D 0 0 6
	5/65			5/65	5D112
	5/851			5/851	

審査請求 未請求 請求項の数8 OL (全 12 頁)

		•
(21)出顧番号	特願2001-138170(P2001-138170)	(71)出願人 000002004
(22)出願日	平成13年5月9日(2001.5.9)	昭和電工株式会社 東京都港区芝大門1丁目13番9号
		(72)発明者 望月 寛夫
	*	千葉県市原市八幡海岸通5番の1 昭和電
		エエイチ・ディー株式会社内 (72)発明者 清水 議治
		千葉県市原市八幡海岸通5番の1 昭和電
	·	エエイチ・ディー株式会社内
		(74)代理人 100064908
		弁理士 志賀 正武 (外6名)

最終頁に続く

(54) 【発明の名称】 磁気記録媒体、その製造方法、および磁気記録再生装置

(57)【要約】

【課題】 磁性膜の結晶配向性を高め、かつ磁性粒子を 微細化することができる磁気記録媒体、その製造方法、 および磁気記録再生装置を提供する。

【解決手段】 非磁性基板1上に、軟磁性下地膜2と、配向制御膜4と、垂直磁性膜5と、保護膜6とが設けられ、配向制御膜4は、第1元素と、この第1元素に対し固溶可能な第2元素とを含む合金からなり、第1元素が、Ruおよび/またはReであり、第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものである。

1:非磁性基板 2:軟磁性下地膜 3:配向制御膜 4:配向制御膜 5:垂護膜 6:環滑膜 7;潤滑膜

BUSC

【特許請求の範囲】

【請求項1】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、配向制御下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、

配向制御膜は、第1元素と、この第1元素に対し固溶可能な第2元素とを含む合金からなり、

第1元素が、Ruおよび/またはReであり、

第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものであることを特徴とする磁気記録媒体。-

【請求項2】 第2元素が、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Pd、Pt、Ir のうちから選ばれる少なくとも1種であることを特徴とする請求項1記載の磁気記録媒体。

【請求項3】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、配向制御下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、

配向制御膜は、Si酸化物、Zr酸化物、Hf酸化物、 Ti酸化物、Al酸化物、C、Bのうちから選ばれる少なくとも1種を、Ruおよび/またはReに添加した合金からなるものであることを特徴とする磁気記録媒体。

【請求項4】 配向制御下地膜は、NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTiのうち1種または2種以上の合金を主成分とするものであることを特徴とする請求項1~3のうちいずれか1項記載の磁気記録媒体。

【請求項5】 軟磁性下地膜と垂直磁性膜との間隔が60nm以下であることを特徴とする請求項1~4のうちいずれか1項記載の磁気記録媒体。

【請求項6】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、配向制御下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とを設ける磁気記録媒体の製造方法であって、

配向制御膜を、第1元素と、この第1元素に対し固溶可能な第2元素とを含む合金からなり、第1元素がRuおよび/またはReであり、第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものとすることを特徴とする磁気記録媒体の製造方法。

【請求項7】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、配向制御下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とを設ける磁気記録媒体の製造方法であって、

配向制御膜を、Si酸化物、Zr酸化物、Hf酸化物、

Ti酸化物、AI酸化物、C、Bのうちから選ばれる少なくとも1種を、Ruおよび/またはReに添加した合金からなるものとすることを特徴とする磁気記録媒体の製造方法。

【請求項8】 請求項1~7のうちいずれか1項記載の磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気へッドとを備えたことを特徴とする磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録媒体、その製造方法、およびこの磁気記録媒体を用いた磁気記録 再生装置に関するものである。

[0002]

【従来の技術】従来、磁性膜内の磁化容易軸が主に基板 に対し平行に配向した面内磁気記録媒体が広く用いられ ている。面内磁気記録媒体において、高記録密度化を実 現するには、ノイズを低くすることが必要となるが、ノ イズ低減のため磁性粒子の小粒径化を図ると、この粒子 の体積が小さくなるため、熱揺らぎに起因する再生特性 の悪化が生じやすくなる。また、記録密度を高めた際 に、記録ビット境界での反磁界の影響により媒体ノイズ が増加することがある。これに対し、磁性膜内の磁化容 易軸が主に基板に対し垂直に配向した、いわゆる垂直磁 気記録媒体は、高記録密度化した場合でも、ビット境界 での反磁界の影響が小さく、境界が鮮明な記録磁区が形 成されるため、熱揺らぎ特性およびノイズ特性を高める ことができることから、大きな注目を集めている垂直磁 気記録媒体の例としては、特開昭60-214417号 公報、特開昭63-211117号公報に開示されたも のを挙げることができる。垂直磁気記録媒体の垂直磁性 膜には、通常、磁気異方性を大きくできるCoCr合金 などのCo合金が用いられる。非磁性基板上に直接Co 合金磁性膜を形成した場合には、磁性膜の結晶配向性が 劣化し、柱状結晶の粒径も不均一となるため、非磁性基・ 板と垂直磁性膜との間に下地膜を設けることによって、 磁性膜の結晶配向性(C軸配向性)を向上させる試みが なされてきた。Ti等の六方最密充填構造材料は、結晶 が(0001)に配向しやすいため、これを下地膜に用 いることによって、Со合金磁性膜の配向性を改善する ことができることが報告されている。Tiを含む下地膜 を用いた垂直磁気記録媒体に関しては、IEEE Transacti ons on Magnetics MAG., 19(1983)1644に記載されてい る。特公平7-101495号公報には、Ti含有下地 膜の下にSi、Ge、Snなどからなる膜を設けること により、Ti含有下地膜とCo合金磁性膜のC軸配向性 を高める手法が提案されている。また特許第26695 29号公報には、Ti含有下地膜に他の元素を含有させ ることにより、下地膜とCo合金磁性膜との間の格子の 整合性を高め、Co合金磁性膜の結晶配向性を向上させ

る手法が提案されている。

[0003]

【発明が解決しようとする課題】近年では、垂直磁気記 録媒体の磁気特性を向上させ、さらなる高記録密度化を 実現するため、再生出力を高め、ノイズを減少させるこ とが要望されている。しかしながら、上記従来の磁気記 録媒体では、結晶配向性が不十分となりやすく、しかも 磁性粒子を微細化するのが難しいことから、十分な磁気 特性を得ることができないのが現状である。特に、結晶 粒を微細化するために下地膜の膜厚を薄くした場合にお いて、初期成長層の影響によって下地膜の結晶粒が不均 一となり、垂直磁性膜の結晶配向性が劣化することがあ った。また近年、垂直磁性膜と基板との間に、軟磁性材 料からなる軟磁性下地膜(いわゆる裏打ち層)を設け、 磁気ヘッドと磁気記録媒体との間の磁束の出入りの効率 を向上させた磁気記録媒体が提案されている。この磁気 記録媒体では、記録再生時において、磁気ヘッドからの 磁束が、垂直磁性膜、軟磁性下地膜を経由する閉磁路を 形成することから、磁束の出入りの効率が増し、高密度 の記録再生が可能になる。しかしながら、従来の磁気記 録媒体では、垂直磁性膜の結晶配向性が不十分で磁気異 方性が劣るために上記閉磁路が不安定になりやすく、記 録再生特性、熱揺らぎ特性、記録分解能などが不十分と なりやすい問題があった。本発明は、上記事情に鑑みて -なされたもので、磁性膜の結晶配向性を高め、かつ磁性 粒子を微細化することができる磁気記録媒体、その製造 方法、および磁気記録再生装置を提供することを目的と する。

[0004]

【課題を解決するための手段】本発明の磁気記録媒体 は、非磁性基板上に、少なくとも軟磁性材料からなる軟 磁性下地膜と、配向制御下地膜と、直上の膜の配向性を 制御する配向制御膜と、磁化容易軸が基板に対し主に垂 直に配向した垂直磁性膜と、保護膜とが設けられ、配向 制御膜が、第1元素と、この第1元素に対し固溶可能な 第2元素とを含む合金からなり、第1元素が、Ruおよ び/またはReであり、第2元素が、第1元素に対する 固溶限界を有し、かつその単体結晶がhcp構造をとら ないものであることを特徴とする。第2元素としては、 V、Nb、Ta、Cr、Mo、W、Mn、Ni、Pd、 Pt、Irのうちから選ばれる少なくとも1種を挙げる ことができる。配向制御膜の材料としては、Si酸化 物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化 物、C、Bのうちから選ばれる少なくとも1種を、Ru および/またはReに添加した合金を挙げることもでき る。配向制御下地膜は、NiAl、FeAl、CoF e, CoZr, NiTi, AlCo, AlRu, CoT iのうち1種または2種以上の合金を主成分とするもの であるのが好ましい。軟磁性下地膜と垂直磁性膜との間 隔は、60mm以下とするのが好ましい。

【0005】本発明の磁気記録媒体の製造方法は、非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、配向制御下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配刺した垂直磁性膜と、保護膜とを設ける磁気記録媒体の製造方法であって、配向制御膜を、第1元素と、この第1元素に対し固溶可能な第2元素とを含む合金からなり、第1元素がRuまたはReであり、第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものとすることを特徴とする。本発明の磁気記録媒体の製造方法は、配向制御膜を、Si酸化物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化物、C、Bのうちから選ばれる少なくとも1種を、Ruおよび/またはReに添加した合金からなるものとすることもできる。

【0006】本発明の磁気記録再生装置は、上記磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気へッドとを備えたことを特徴とする。

[0007]

【発明の実施の形態】図1は、本発明の一実施の形態で ある磁気記録媒体の構成を模式的に示す断面構成図であ る。図1に示すように、本実施形態の磁気記録媒体は、 非磁性基板1上に、軟磁性下地膜2と、配向制御下地膜 3と、配向制御膜4と、垂直磁性膜5と、保護膜6と、 潤滑膜7とが設けられて構成されている。基板1として は、磁気記録媒体用基板として一般に用いられているN i Pメッキ膜を有するアルミニウム合金基板、ガラス基 板(結晶化ガラス、強化ガラス等)、セラミックス基 板、カーボン基板、シリコン基板、シリコンカーバイド 基板を挙げることができる。 またこれらの基板にNiP 膜をメッキ法やスパッタ法などにより形成した基板を挙 げることができる。 基板1の表面の平均粗さRaは、 0.01~2nm (好ましくは0.05~1.5nm) とするのが好適である。表面平均粗さRaがこの範囲未 満であると、媒体への磁気ヘッドの吸着や、記録再生時 の磁気ヘッド振動が起こりやすくなる。また表面平均粗 さRaがこの範囲を越えるとグライド特性が不十分とな りやすい。

【0008】軟磁性下地膜2は、垂直磁性膜5の磁化をより強固に基板1と垂直な方向に固定するために設けられているものである。軟磁性下地膜2を構成する軟磁性材料としては、Feを60at%以上含有するFe合金を用いることができる。この材料としては、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど)、FeAl系合金(FeAl、FeAlSiCr、FeAlSiTiRuなど)、FeC系合金(FeCrTi、FeCrCuなど)、FeTa系合金(FeTa、FaTaCなど)、FeC系合金、FeN系合金、FeSi系合金、FeP

系合金、FeNb系合金、FeHf系合金を挙げることができる。軟磁性下地膜2は、FeAlO、FeMgO、FeTaN、FeZrNなどの微細結晶を有する構造とすることができる。またこの微細結晶がマトリクス中に分散されたグラニュラー構造を有する構成とすることもできる。軟磁性下地膜2には、上記のほかCoを8Oat%以上含有し、かつZr、Nb、Ta、Cr、Mo等のうち少なくとも1種以上を含有するCo合金を用いることができる。例えば、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrNb、CoZrTa、CoZrCr、CoZrMoなどを好適なものとして挙げることができる。また、軟磁性下地膜2は、アモルフェス構造をなす合金からなるものとすることもできる。

【0009】軟磁性下地膜2は、その飽和磁東密度が 0.8 T以上であることが好ましい。飽和磁東密度が 0.8 Tより小さい場合には、再生波形が乱れ、ノイズ が増加するおそれがある。また、軟磁性下地膜2の保磁 力は可能な限り小さくすることが好ましいが、実用的に は、200(Oe)(15.8×10³A/m)より小 さくすれば十分な磁気特性を得ることができる。

【0010】軟磁性下地膜2の厚さは、軟磁性下地膜2を構成する材料の飽和磁束密度によって適宜設定される。具体的には、軟磁性下地膜を構成する材料の飽和磁束密度Bs(T)と、軟磁性下地膜2の膜厚t(nm)の積であるBs・t(T·nm)が、40T·nm以上(好ましくは60T·nm以上)であることが望ましい。

【〇〇11】軟磁性下地膜2の表面(配向制御下地膜3側の面)は、軟磁性下地膜2を構成する材料が部分的または完全に酸化されて構成されていることが好ましい。この酸化部分(酸化層)の厚さは〇.1 nm以上3 nm未満とするのが好ましい。軟磁性下地膜2が酸化された状態はオージェ電子分光法、SIMS法などにより確認することができる。また軟磁性下地膜2表面の酸化部分(酸化層)の厚さは、例えば媒体断面の透過型電子顕微鏡(TEM)写真により求めることができる。

【0012】配向制御下地膜3は、配向制御膜4の配向性を向上させるとともに、結晶粒を微細化するために設けられるものであり、配向制御下地膜3の材料としては、NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTiのうち1種または2種以上の合金を主成分とするものを挙げることができる。なお主成分とは当該成分を50at%を越えて含むことを意味する。また、これらの合金にCr、Nb、V、W、Mo、B、O、N、Ru、Nd等を添加した材料を用いることもできる。上記2元系合金(NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTi)を用いる場合には、この合金を構成する2つの成分の含有率を、いずれも40~60at%(好ましくは45~55at%)とするのが好まし

い。配向制御下地膜3の材料としては、B2構造をとる ものが好適である。配向制御下地膜3の厚さは、0.1 ~20nmとするのが好ましい。また、配向制御下地膜 3には、融点が1200℃以上であるものを用いると、 結晶粒径を小さくできるため好ましい。

【0013】配向制御膜4は、直上に位置する垂直磁性膜5の配向性や結晶粒径を制御するために設けられた膜である。配向制御膜4は、Ruおよび/またはRe(以下、第1元素ということがある)と、この第1元素に対し固溶可能な第2元素とを含む合金からなるものとすることができる。

こ【00-14】第2元素は、第1元素に対し、固溶可能であるが、固溶限界を有する(限られた組成範囲においてのみ固溶する)元素である。また第2元素は、その単体結晶が常温においてhcp構造をとらない元素である。この第2元素としては、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Pd、Pt、Irのうちから選ばれる少なくとも1種を挙げることができる。これら元素の常温における単体の結晶構造、RuおよびReに対する最大固溶度、単体結晶のa軸長さを表1に示す。表1には、RuおよびReの単体結晶構造を併せて示す。

[0015]

【表1】

元素	単体の	8 軸長	最大固溶度	
	結晶構造		対Ru	対Re
		(esn)	(at%)	(at%)
V	bcc	0. 30240	31	12
Та	bcc	0. 33030	28	5.1
w	bcc	0.31652	48	20
Рt	fcc	0. 39236	21	· 40
Рd	fcc	0. 38903	17	2
Nb	bcc	0. 33004	29	4
Ni	fcc	0.35240	50	17.7
Mn	cubic	0.89126	51	不明
Мо	bcc	0.31470	51.5	15
Ir	fcc	0.38392	49	44
Ст	bcc	0. 28848	52	25
Ru	hep	0. 27058		_
Re	hcp	0. 27609		

cubic:立方最密構造

【0016】表1に示すように、ここに示す元素は、RuおよびReに対する固溶度が限界値(最大固溶度)を有する。なおReに対するMnの最大固溶度は不明であるが、MnはReに対し固溶限界を有する元素であることが確認されている。また表1より、ここに示す元素の単体の結晶構造は、hcp構造をとらないことがわかる。

【0017】配向制御膜4に用いられる合金の具体例としては、Ru-V、Ru-Nb、Ru-Ta、Ru-Cr、Ru-Mo、Ru-W、Ru-Mn、Ru-Ni、Ru-Pd、Ru-Pt、Ru-Ir、Re-V、Re-Nb、Re-Ta、Re-Cr、Re-Mo、Re-

W、Re-Mn、Re-Ni、Re-Pd、Re-P t、Re-Irを挙げることができる。

【0019】配向制御膜4には、Si酸化物、Zェ酸化 物、HI酸化物、Ti酸化物、AI酸化物、C、Eのう ちから選ばれる少なくとも1種を、第1元素(日ロおよ び/またはRe)に添加した合金を用いることもでき る。この合金の具体例としては、RuーSiO。Ru $-ZrO_2$, Ru $-HfO_2$, Ru $-TiO_2$, Ru -A $1_{\,2}\,O_3$, Ru = C , Ru = B , Re = Si O_2 , Re = ZrO₂, Re-HfO₂, Re-TiO₂, Re-Al. O₃、Re-C、Re-Bを挙げることができる。配向 制御膜4を構成する合金中において、上記材料(S)酸 化物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化 物、C+-Bのうち手種以上)の含有率は、1~50 a t % (好ましくは1~40 a t%) とするのが好適であ る。この含有率が上記範囲未満である場合には、配向制 御膜4の結晶粒径が大きくなり、垂直磁性膜5における 磁性粒子の粗大化を招くため好ましくない。またこの含 有率が上記範囲を越える場合には、配向制御膜4の配向 性が悪化し、垂直磁性膜5の配向性が劣化しやすくな

【0020】配向制御膜4の厚さは、1~50nm(好ましくは1~30nm)とするのが好適である。この膜厚が上記範囲未満であると、垂直磁性膜5の結晶配向性を高める効果が不十分となりやすい。またこの膜厚が上記範囲を越えると、配向制御膜4内で結晶粒の粒径が大きくなり、垂直磁性膜5における磁性粒子が粗大化しやすくなる。また記録再生時における磁気ヘッドと軟磁性下地膜2との距離が大きくなり、再生信号の分解能が低下し、ノイズ特性が劣化するため好ましくない。配向制御膜4は、少なくとも表面(図中上面)がhcp構造をなすものであることが好ましい。

【0021】垂直磁性膜5は、磁化容易軸が基板に対し主に垂直に配向した磁性膜であり、この垂直磁性膜5には、Co合金を用いることが好ましい。例えば、CoCrPt合金やCoPt合金を用いることができる。またこれらの合金にTa、Zr、Nb、Cu、Re、Ru、V、Ni、Mn、Ge、Si、B、O、Nなどから選ばれる少なくとも1種の元素を添加した合金を用いること

ができる。

【0022】垂直磁性膜5は、上記Co合金からなる均 一な単層構造とすることもできるが、遷移金属(Co、 Co合金) からなる層と貴金属 (Pt、Pd等) からな る層とを積層した多層構造とすることもできる。このC o合金には、上記CoCrPt系合金やCoPt系合金 などを用いることができる。CoCrPt系合金を用い る場合には、垂直磁気異方性を高めるため、Pt含有率 を8~24 a t%とすることが好ましい。貴金属からな る層の厚さは、O. 4~1.4 n mの範囲とするのが好 ましい。これは、貴金属層の厚さが0.4 nmより小さ くなると、保磁力Hcや逆磁区核生成磁界が低下すると… ともにその層厚の設定が難しくなり、1.4 nmよりも 大きくなると、ノイズ特性が悪化するためである。遷移 金属からなる層の厚さは、0.1~0.6 nm (好まし <は0.1~0.4nm)とするのが好適である。この 遷移金属層は、薄すぎれば保磁力Hc、逆磁区核生成磁 界が低下するとともに厚さの設定が難しくなり、厚すぎ ればノイズ特性が悪化する。垂直磁性膜5においては、 これら遷移金属層と貴金属層のうちいずれを最上層とし てもかまわないが、最下層は貴金属層とするのが好まし

【0023】上記単層構造型、積層構造型の磁性膜の構成材料はいずれも多結晶構造をとるが、本発明の磁気記録媒体では、非晶質構造をとる材料を使用することもできる。具体的には、希土類元素を含む合金(TbFeCo系合金など)を用いることができる。

【0024】垂直磁性膜5の膜厚は、目的とする再生出りによって適宜最適化すればよいが、垂直磁性膜5が厚すぎる場合には、ノイズ特性が悪化する、分解能が低下する等の問題が起こりやすいため、実用上は3~100 nmであることが好ましい。垂直磁性膜5は、hcp構造をなすものであることが好ましい。

【0025】垂直磁性膜5と軟磁性下地膜2との間隔、すなわち図1に示す間隔Aは、60nm以下(好ましくは10nm以下、さらに好ましくは20nm以下)とするのが好ましい。この間隔Aを上記範囲とすることによって、記録再生時に磁気ヘッドと垂直磁性膜5と軟磁性下地膜2との間に形成される閉磁路を安定化し、磁束の出入りの効率を高め、記録再生特性、熱揺らぎ特性、記録分解能などを向上させることができるようになる。間隔Aが上記範囲を越えると、記録再生時に磁気ヘッドからの磁束が軟磁性下地膜2に届きにくくなり、上記各特性が劣化する。

【0026】保護膜6は、垂直磁性膜5の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぎ、かつ磁気ヘッドと媒体の間の潤滑特性を確保するためのもので、従来公知の材料を使用することが可能であり、例えばC、SiO₂、ZrO₂の単一組成、またはこれらを主成分とし他元素を含むものが使用可能

である。保護膜6の厚さは、 $1\sim10$ n mの範囲とするのが望ましい。

【0027】潤滑膜7には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸など公知の潤滑剤を使用することができる。その種類および膜厚は、使用される保護膜や潤滑剤の特性に応じて適宜設定することができる。

【0028】上記構成の磁気記録媒体を製造するには、図1に示す基板1上に、スパッタ法などにより軟磁性下地膜2を形成し、次いで、必要に応じてこの軟磁性膜2の表面に酸化処理を施し、次いで配向制御下地膜3、配向制御膜4、垂直磁性膜5を順次スパッタ法などにより形成する。次いで、スパッタ法、CVD法、イオンビーム法等によって保護膜6を形成した後、ディップコーティング法、スピンコート法などにより潤滑膜7を形成する

【0029】軟磁性下地膜2の表面に酸化処理を施す場 合には、軟磁性下地膜2を形成した後、軟磁性下地膜2 を酸素含有ガスに曝す方法や、軟磁性下地膜2の表面に 近い部分を成膜する際のプロセスガス中に酸素を導入す る方法を採ることができる。軟磁性下地膜2の表面を酸 素含有ガスに曝す場合には、軟磁性下地膜2を、酸素を アルゴンや窒素で希釈した希釈ガスや純酸素に0.1~ 30秒程度接触させればよい。また軟磁性下地膜2を大 気に曝す方法を採ることもできる。具体的には、10-4 ~10-6Paの真空度に対して10-3Pa以上の酸素ガ ス圧の雰囲気に軟磁性下地膜2表面を0.1~30秒間 曝すことで、好ましい酸化状態を得ることができる。軟 磁性下地膜2を酸素含有ガスに曝す際には、使用する酸 素の量、酸素への曝露時間を適宜設定することで酸化の 度合いを調節することができる。特に酸素をアルゴン等 の希ガスで希釈したガスを用いる場合には、ガスの希釈 率の設定によって軟磁性下地膜2表面の酸化の度合いの 調整が容易になる。軟磁性下地膜2の成膜用のプロセス ガスに酸素を導入する場合には、例えば成膜法としてス パッタ法を用い、成膜時間の一部のみ(例えば成膜終了 前の1秒間)に、酸素を含有させたプロセスガスを用い てスパッタを行う方法をとることができる。このプロセ スガスとしては、例えばアルゴンに酸素を体積率で0. 05~10%程度混合したガスが好適に用いられる。こ の軟磁性下地膜2の表面酸化によって、軟磁性下地膜2 の最表面の磁気的な揺らぎを抑え、軟磁性下地膜2上に 形成される配向制御下地膜3、配向制御膜4の結晶粒を 微細化してノイズ特性の改善効果を得ることができる。 また軟磁性下地膜2表面の酸化部分のバリア層的機能に より、軟磁性下地膜2または非磁性基板1から腐食性物 質が媒体表面に移動することを抑え、媒体表面の腐食発 生を防ぐことができる。

【0030】配向制御膜4に、第1元素 (Ruおよび/ またはRe)と第2元素 (V、Nb、Ta、Cr、M o、W、Mn、Ni、Pd、Pt、Irなど)を含む合金を用いる場合には、この合金からなるターゲットを用いて、スパッタ法により配向制御膜4を形成することができる。

【0031】配向制御膜4に、上記酸化物(Si酸化物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化物のうちから選ばれる少なくとも1種)を含む第1元素合金を用いる場合には、この酸化物と第1元素とを含む材料からなるターゲットを用いて配向制御膜4を形成することができる。またSi、Zr、Hf、Ti、Alのうち少なくとも1種と、第1元素とを含む材料からなるターゲットを用い、酸素を含有するプロセスガスを用いて配向制御膜4を形成してもよい。

【0032】垂直磁性膜5を、遷移金属層と貴金属層からなる多層構造とする場合には、遷移金属(Co、Co合金)からなる第1のターゲットと、貴金属(Pt、Pd等)からなる第2のターゲットを交互に用いて、それぞれのターゲットの材料を交互にスパッタすることにより垂直磁性膜5を形成する。

【0033】保護膜6の形成方法としては、カーボンターゲットを用いたスパッタ法や、CVD法、イオンビーム法を挙げることができる。また、SiO $_2$ や ZrO_2 のターゲットを用いたRFスパッタ、あるいはSiやZrのターゲットを用い、プロセスガスとして酸素を含むガスを用いる反応性スパッタによって、SiO $_2$ や ZrO_2 からなる保護膜6を形成する方法を適用することができる。CVD法、イオンビーム法を用いる場合には、極めて硬度の高い保護膜6を形成することができ、スパッタ法により形成された保護膜に比べ、その膜厚を大幅に小さくすることが可能となるため、記録再生時のスペーシングロスを小さくし、高密度の記録再生を行うことができる

【0034】本実施形態の磁気記録媒体では、配向制御膜4が、第1元素と、この第1元素に対し固溶可能な第2元素とを含む合金からなり、第1元素がRuおよび/またはReであり、第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものである構成によって、配向制御膜4の結晶配向性を高め、垂直磁性膜5の結晶配向性を向上させることができる。また配向制御膜4において結晶粒を小粒径化し、垂直磁性膜5において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【0035】配向制御膜4を、上記第1および第2元素を含む合金からなるものとすることによって、優れた磁気特性が得られる理由は、次に示すとおりであると考えることができる。第2元素は、第1元素に対し固溶可能であるものの、固溶限界を有する元素である。さらに、第1元素が、単体結晶がhcp構造をとる元素であるのに対し、第2元素は、単体結晶がhcp構造をとらない

元素である。このように、第2元素は、固溶性および結晶構造の点で第1元素とは異なる性質をもつため、配向制御膜4内で結晶粒が成長する際に、第2元素が析出した粒界層が形成されやすくなると考えられる。このため、配向制御膜4内において、粒径が小さく、かつ均一な結晶粒が数多く形成される。この第2元素を含む粒界層は、配向制御膜4の影響下で成長する垂直磁性膜5における粒界層の形成を促し、垂直磁性膜5において、微細かつ均一な磁性粒子が形成される。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

- 【00.3.6】また、配向制御膜4において、結晶粒が成長する際に、この結晶粒の配向面は、この結晶粒に隣接して成長する粒界層の影響を受けると考えられる。この粒界層が第2元素を多く含むため、結晶粒の結晶面は、この第2元素の種類や含有率に応じて一定となりやすい。このため、配向制御膜4の結晶粒の配向面は均一となる。よって、配向制御膜4の影響下で成長する垂直磁性膜5において、結晶配向性を高めることができる。従って、保磁力、再生出力などの磁気特性をさらに向上させることができる。

【0037】これに対し、第1元素に対し固溶限界をもたず(すなわち全組成にわたって固溶する)、かつhcp構造をとる元素(例えばCo)を含む合金を配向制御膜4に用いた場合にはでごの元素(Coなど)がご第1元素とよく似た性質を持つことから、第1元素に対し抵抗なく固溶するため、粒界層が形成されにくく、結晶粒径が大きくなりやすい。このため、垂直磁性膜5において、磁性粒子が粗大かつ不均一となりやすくなる。

【0038】また配向制御膜4に、Si酸化物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化物、C、Bのうちから選ばれる少なくとも1種を、Ruおよび/またはReに添加した合金を用いることによって、配向制御膜4および垂直磁性膜5の結晶配向性を向上させることができる。また配向制御膜4において結晶粒を小粒径化し、垂直磁性膜5において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【0039】配向制御膜4に、上記合金を用いることによって、優れた磁気特性が得られる理由は、次に示すとおりであると考えることができる。上記酸化物、C、Bは、第1元素(Ruおよび/またはRe)に対し固落しない物質であるため、配向制御膜4内で結晶粒が成長する際に、結晶粒に比べ粒界層中に析出しやすいことから、配向制御膜4において、粒界層が形成されやすくなる。配向制御膜4内において、粒径が小さく、から、またさの粒界層が幅の広いものとなりやすくなる。このため、配向制御膜4内において、粒径が小さく、かつ均一な結晶粒が数多く形成される。また結晶粒が互いに大きく離間した状態となる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能とな

る。

【0040】また、配向制御膜4において、結晶粒の結晶面は、粒界層に含まれる上記材料(上記酸化物、C、B)種類や含有率に応じて一定となりやすい。このため、配向制御膜4の結晶粒の配向面は均一となる。よって、配向制御膜4の影響下で成長する垂直磁性膜5において、結晶配向性を高めることができる。従って、保磁力、再生出力などの磁気特性をさらに向上させることができる。

【0041】また、垂直磁性膜5の結晶配向性を向上させることができるため、垂直磁性膜5の磁気異方性を高めることができる。このため、記録再生時において磁気へッドと垂直磁性膜5と軟磁性下地膜2との間に形成される閉磁路が、垂直磁性膜5において不安定化するのを防ぎ、安定した閉磁路を形成することができる。このため、磁束の出入りの効率を高め、記録再生特性、熱揺らぎ特性、記録分解能などを向上させることができる。【0042】また、この磁気記録媒体では、Ruおよび/またはReに、上記材料(第2元素、上記酸化物、C、B)を含有させた合金を用いるので、高価なRuおよび/またはReを単独で用いる場合に比べ、材料コストを削減することができる。従って、製造コストの低減が可能となる。

【0043】本実施形態では、軟磁性下地膜2と配向制御膜4との間に、NiA1等からなる配向制御下地膜3を設けた。配向制御膜4の構成材料であるRu合金、Re合金は結晶粒径が大きくなりやすい性質があるが、本実施形態では、結晶粒微細化膜として機能する配向制御下地膜3を設けることによって、配向制御膜4の結晶を微細化し、その上に形成される垂直磁性膜5の結晶粒径を小さくすることができる。このため、さらなるノイズ低減が可能となる。配向制御下地膜3を設けることによって配向制御膜4の結晶の微細化が可能となるのは、配向制御下地膜3(NiA1等)の結晶粒径が小さくなるためであると考えられる。

【0044】またCo系軟磁性材料(CoZr系、CoZrNb系、CoZrTa系、CoZrCr系、CoZrNb系、CoZrTa系、CoZrCr系、CoZrMo系合金等)、Fe系軟磁性材料(FeCo系、FeNi系、FeAl系、FeCr系合金等)などからなる軟磁性下地膜2上に、Ru合金やRe合金からなる配向制御膜4を、直接形成する場合には、これら軟磁性下地膜2と配向制御膜4との間の結晶性の違いから、配向制御膜4の初期成長時において核形成が起こりにくくすい。これに対し、本実施形態では、NiAlなどからなる配向制御下地膜3が、結晶性の点で配向制御関4における核形成性が良好となり、均一な結晶粒が形成されやすくなる。従って、本実施形態では、配向制御下地膜3を設けることによって、配向制御膜4において粒径が小さくか

つ均一な結晶粒が形成され、いっそうのノイズ低減が可能となる。

【0045】本実施形態の製造方法では、配向制御膜4に、上記第1および第2元素を含む合金を用いるので、配向制御膜4および垂直磁性膜5の結晶配向性を向上させることができる。また配向制御膜4において結晶粒を小粒径化し、垂直磁性膜5において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【0046】また、配向制御膜4に、上記酸化物、C、Bを含む第1元素合金を用いることによって、配向制御膜4および垂直磁性膜5の結晶配向性を向上させ、優れた磁気異方性を得ることができる。また配向制御膜4において結晶粒を小粒径化し、垂直磁性膜5において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【0047】図2に示すように、木発明の磁気記録媒体 では、配向制御膜4と垂直磁性膜5との間に、非磁性柱 料からなる非磁性中間膜8を設けることができる。非磁 性中間膜8には、Co合金を用いることができる。この Co合金としては、CoCrを用いることができる。ま たTa、Zr、Nb、Cu、Re、Ru、Ni、Mn、 Ge、Si、O、N、Bから選ばれる1種または2種以 ·上の元素をCoCrに添加した合金を用いることができ・ a. st. Ta. Zr. Nb. Cu. Re. Ru. Ni. Mn、Ge、Si、O、N、Bから選ばれる1種または 2種以上の元素と、Coとを含む非磁性のCo合金を用 いることもできる。非磁性中間膜8は、厚すぎると垂直 磁性膜5と軟磁性下地膜2との距離が大きくなることに より分解能が低下しノイズ特性が悪化するため、厚さを 20 nm以下とするのが好ましく、10 nm以下とする のがより好ましい。非磁性中間膜8を設けることによっ て、垂直磁性膜与の配向性を向上させ保磁力を高めるこ とができる。

【0048】図3に示すように、本発明の磁気記録媒体では、軟磁性下地膜2と基板1との間に、面内磁気異方性を有する硬磁性材料からなる硬磁性膜9を設けることもできる。硬磁性膜9に用いられる材料としては、CoCr合金を用いることができる。また遷移金属と希上類元素との合金からなる磁性材料(CoSm合金など)を用いることもできる。硬磁性膜9は、保磁力Hcが500(Oe)以上(好ましくは1000(Oe)以上)であることが好ましい。硬磁性膜9の厚さは、20~150nm(好ましくは40~70nm)とするの好ましい。硬磁性膜9は、軟磁性下地膜2が基板半径方向の磁壁を形成しないようにするため、基板中心から放射状の方向に磁化され、軟磁性下地膜2との間に交換結合が形成されていることが好ましい。硬磁性膜9の直下には、CrまたはCr合金からなる下地膜(図示略)を設ける

のが好ましい。

【0049】硬磁性膜9を設けることによって、軟磁性下地膜2が形成する巨大な磁区によるスパイクノイズの発生を防ぐことができ、エラーレート特性に優れ、高密度記録が可能な磁気記録媒体を得ることができる。これは、以下の理由による。軟磁性下地膜2は、保磁力が小さく磁化の方向が変わりやすいために、基板1の面内方向に巨大な磁区を形成する。この軟磁性下地膜2中の磁区の境界である磁壁は、スパイクノイズ発生の原因となり、磁気記録媒体のエラーレートを低下させる要因となることがある。硬磁性膜9を軟磁性下地膜2と基板1との間に設けることにより、硬磁性膜9と軟磁性下地膜2を交換結合させ、軟磁性下地膜2の磁化方向を強制的に基板1半径方向に向け、上記巨大磁区が形成されないようにすることができる。このため、スパイクノイズ発生を防ぐことができる。

【0050】図4は、本発明に係る磁気記録再生装置の一例を示す断面構成図である。この図に示す磁気記録再生装置は、上記構成の磁気記録媒体10と、この磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に対して情報の記録再生を行う磁気ヘッド12と、磁気ヘッド12を駆動させるヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号系14は、入力されたデータを処理して記録信号を磁気ヘッド12に送ったりに磁気ヘッド12からの再生信号を処理してデータを出力することができるようになっている。

【0051】磁気ヘッド12としては、単磁極ヘッドを 用いることができる。図5は、単磁極ヘッドの一例を示 すもので、単磁極ヘッド12は、磁極15と、コイル1 6とから概略構成されている。磁極15は、幅の狭い主 磁極17と幅広の補助磁極18とを有する側面視略コ字 状に形成され、主磁極17は、記録時に垂直磁性膜5に 印加される磁界を発生し、かつ再生時に垂直磁性膜5か らの磁束を検出することができるようになっている。

【0052】単磁極ヘッド12を用いて、磁気記録媒体10への記録を行う際には、主磁極17の先端から発せられた磁束が、垂直磁性膜5を、基板1に対し垂直な方向に磁化させる。この際、磁気記録媒体10には軟磁性下地膜2が設けられているため、主磁極17からの磁束は、垂直磁性膜5、軟磁性下地膜2を通って補助磁極18に至る閉磁路を形成する。この閉磁路が単磁極ヘッド12と磁気記録媒体10との間に形成されることにより、磁束の出入りの効率が増し、高密度の記録再生が可能になる。なお、軟磁性膜2と補助磁極18との間の磁束とは逆向きになるが、補助磁極18の面積は主磁極17に比べて十分に広いため、補助磁極18からの磁束密度は十分に小さくなり、この補助磁極18からの磁束により垂直磁性膜5の磁化が影響を受けることはない。また本発明で

は、磁気ヘッドとして、単磁極ヘッド以外のもの、例えば再生部に巨大磁気抵抗(GMR)素子を備えた複合型 薄膜磁気記録ヘッドを用いることもできる。

【0053】本発明の磁気記録媒体は、磁気記録媒体10の配向制御膜4に、上記第1および第2元素を含む合金(または上記酸化物、C、Bを含む第1元素合金)を用いるので、配向制御膜4および垂直磁性膜5の結晶配向性を向上させることができる。また配向制御膜4において結晶粒を小粒径化し、垂直磁性膜5において磁性粒子を微細化することができる。よって、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。従って、高記録密度化を図ることができる。

【実施例】以下、実施例を示して本発明の作用効果を明 確にする。

(実施例1~36)洗浄済みのガラス基板1 (オハラ社製、外径2.5インチ)をDCマグネトロンスハッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容し、到達真空度1×10⁻⁶ Paとなるまで成膜チャンバ内を排気した後、このガラス基板1 | に、100 cの温度条件で89at%Co-4at "。Zr - 7 a t "。Nbからなる軟磁性下地膜2 (厚さ100 nm)をスパッタ法により形成した。次いで、200 cの温度条件で、軟磁性下地膜2上に、50 a t "。Ni - 50 a t "。A h からなる配向制御下地膜3 (厚さ8 nm) と一記回制御膜4 (厚さ5 nm)とをスパッタ法により形成した。配向制御膜4には、第1原料(Ruまたは1:0)と、第2

原料 (V、Nb、Ta、Cr、Mo、W、Mn、Ni、Pd、Pt、Ir、 SiO_2 、 ZrO_2 、 HfO_2 、Ti O_2 、 Al_2O_3 、C、またはB) とからなる合金を用いた。第2原料の含有率は表2に示した通りとした。次いで、62at%Co-2Oat%Cr-14at%Pt-4at%Bからなる垂直磁性膜5 (Pe30nm)を形成した。上記スパッタリング工程においては、成膜用のプロセスガスとしてアルゴンを用い、ガス圧力O.5 Paにて成膜を行った。次いで、CVD法によりカーボンからなる保護膜6 (Pe5nm)を形成した。次いで、Fr1、Fr1、Fr2、Fr3、Fr3、Fr3、Fr3、Fr3、Fr3、Fr3、Fr4、Fr3、Fr4、Fr5、Fr5、Fr6、Fr6、Fr7、Fr7、Fr8、Fr9 Fr9 F

【0055】(比較例1、2)配向制御膜を、RuまたはReからなるものとすること以外は実施例1と同様にして磁気記録媒体を作製した。

【0056】各磁気記録媒体の磁気特性を、GUZIK 社製リードライトアナライザRWA1632、およびス ピンスタンドS1701MPを用いて測定した。磁気特 性の評価には、磁気ヘッドとして単磁極ヘッドを用い、 線記録密度100kFCI、エラーレート600kFC I(再生時)にて測定を行った。結果を表2に示す。H cは、磁気記録媒体を基板1に対し垂直な方向に磁化さ せたときの保磁力を示す。

[0057]

【表2】

【0058】表2より、配向制御膜4にRuまたはReを用いた比較例に比べ、RuまたはReに上記第2原料を添加した合金を配向制御膜4に用いた実施例では、保磁力Hc、再生出力、SNRについて優れた結果が得られたことがわかる。

【0059】(実施例37)配向制御下地膜3の厚さを変えることによって軟磁性下地膜2と垂直磁性膜5との距離を変化させること以外は実施例1と同様にして磁気記録媒体を作製した。これら磁気記録媒体のオーバーライト(Over Wright、以下、OWという)を測定した結果を図6に示す。図6より、軟磁性下地膜2と垂直磁性膜5との間隔が60nmを越える場合にはOWが35dB以下となり再生特性が低くなるのに対し、この間隔を60nm以下とすることによって、優れた再生特性を得ることができたことがわかる。

[0060]

【発明の効果】以上説明したように、本発明の磁気記録 媒体にあっては、配向制御膜が、第1元素と、この第1 元素に対し固溶可能な第2元素とを含む合金からなり、第1元素がRuおよび/またはReであり、第2元素が、第1元素に対する固溶限界を有し、かつその単体結晶がhcp構造をとらないものである構成によって、配向制御膜の結晶配向性を高め、垂直磁性膜の結晶配向性を向上させることができる。また配向制御膜において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【0061】また配向制御膜に、Si酸化物、Zr酸化物、Hf酸化物、Ti酸化物、Al酸化物、C、Bのうちから選ばれる少なくとも1種を、Ruおよび/またはReに添加した合金を用いることによって、配向制御膜および垂直磁性膜の結晶配向性を向上させることができる。また配向制御膜において結晶粒を小粒径化し、垂直磁性膜において磁性粒子を微細化することができる。従って、保磁力を高め、再生出力を向上させるとともに、ノイズ低減が可能となる。

【図面の簡単な説明】

【図1】 本発明の磁気記録媒体の第1の実施形態を示す一部断面図である。

【図2】 本発明の磁気記録媒体の第2の実施形態を示す一部断面図である。

【図3】 本発明の磁気記録媒体の第3の実施形態を示す一部断面図である。

【図4】 本発明の磁気記録再生装置の一例を示す概

略構成図である。

【図5】 図4に示す磁気記録再生装置に使用される磁気ヘッドの一例を示

【図6】 試験結果を示すグラフである。 【符号の説明】

1…非磁性基板、2…軟磁性下地膜、3…配向制御下 地膜、4…配向制御膜、5…垂直磁性膜、6…保護膜、 10…磁気記録媒体、12…磁気ヘッド

【図1】

1:非磁性基板 2:軟磁性下冲距 3:配向直接 4:配向直接 5:無暴機 56:無暴機 【図2】

【図5】

【図3】

【図4】

フロントページの続き

(72)発明者 坂脇 彰 千葉県市原市八幡海岸通5番の1 昭和電 エエイチ・ディー株式会社内

(72) 発明者 楊 輝

千葉県市原市八幡海岸通5番の1 昭和電 エエイチ・ディー株式会社内 (112) 102-334424 (P2002-,24

(72)発明者 國分 誠人 千葉県市原市八幡海岸通5番の1 昭和電 エエイチ・ディー株式会社内 (72)発明者 酒井 浩志 千葉県市原市八幡海岸通5番の1 昭和電 エエイチ・ディー株式会社内Fターム(参考) 5D006 CA01 CA06 DA08 EA03 5D112 AA03 BD03 BD08