Exponenciální funkce.

$$y = f(x) = e^{x}$$

D $(f) = \mathbf{R}$
R $(f) = (0, +\infty)$
 f je rostoucí na svém definičním oboru,
 $f(+\infty) = +\infty$, $f(-\infty) = 0$
 $f(0) = e^{0} = 1$
 $e = 2, 78...$ Eulerova konstanta

Funkce logaritmus.

$$y = f(x) = \log(x)$$

D $(f) = (0, +\infty)$
R $(f) = \mathbb{R}$
 f je rostoucí na svém definičním oboru,
 $f(x) \rightarrow +\infty$, pro $x \rightarrow +\infty$
 $f(x) \rightarrow -\infty$, pro $x \rightarrow 0$
 $f(1) = \log 1 = 0$

Funkce obecná mocnina = mocninná funkce.

$$y = f(x) = a^x, a > 0$$

 $a^x = e^{x \log a}$
D $(f) = R$
R $(f) = (0, +\infty)$
 f je rostoucí na svém definičním
oboru pro $a > 1$,
 f je klesající na svém definičním
oboru pro $a < 1$
 $f(0) = a^0 = 1$

Inverzní funkcí k funkci

$$y = a^x$$
, $a > 0$, $a \ne 1$,
je funkce logaritmus při základu a
 $y = \log_a x$

$$y = f(x) = a^{-x} = 1 / a^x$$

D (f) = **R**
R (f) = (0, +∞)
f klesající na svém definičním
oboru pro $a > 1$,
f rostoucí na svém definičním
oboru pro $a < 1$
 $f(0) = 1/a^0 = 1$

Speciálně:

Dekadický logaritmus $y = \log_{10} x$ přirozený logaritmus $y = \log_{e} x$

Pravidla pro počítání s logaritmy a mocninami.

$$a^{x+y} = a^x a^y$$

$$a^{x+y} = a^x a^y$$

$$a^{x-y} = a^x / a^y$$

$$(a^x)^y = a^{xy}$$

$$a^0 = 1$$

$$(a^x)^y = a^{xy}$$

$$a^{0} = 1$$

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a(xy) = \log_a x + \log_a y$$
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a(x^b) = b \log_a x$$

$$\log_a a = 1$$

$$\log_a x = \frac{\log x}{\log a}$$

Příklady.

$$x^{-1} = x^{0-1} = \frac{x^0}{x^1} = \frac{1}{x}$$

$$\log \frac{1}{x} = \log(x^{-1}) = -\log x$$

nebo

$$\log \frac{1}{x} = \log 1 - \log x = -\log x$$

$$e^{ax+b} = e^b e^{ax} = e^b (e^x)^a$$

Sčítání se mění na násobení, Násobení se mění na mocninu.

Posun po ose x v exponentu má multiplikativní účinek Na funkční hodnotu.

$$e^{0.5x+1} = ee^{0.5x}$$

Graf je symetrický podle osy *y.*

Srovnání exponenciely a polynomů.

Tečna k exponenciele.

Pro
$$x \approx 0$$
 platí $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^k}{k!} + \dots = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$ neboli

$$e^x \approx 1 + x$$
 neboli $\frac{e^x - 1}{x} \approx 1$

Předpokládejme, že velikost populace v čase t je N(t), $t \ge 0$ a že platí:

$$N(t) = N(0)e^{-at}$$

Víme, že N(0) = 100 a N(10) = 1Vypočtěte a.

$$\log N(t) = \log N(0) - at$$

$$\log N(10) = \log 100 - 10a$$

$$\log 1 = \log 100 - 10a$$

$$\log 100 = 10a$$

$$a = \log(100)^{0.1}$$

$$a = 0.46$$

Periodické funkce – goniometrické funkce.

Funkce f se nazývá periodická s periodou T, jestliže

- \triangleright když $x \in D(f)$, pak $x + T \in D(f)$
- $\succ f(x) = f(x + T)$

Funkce $y = f(x) = \sin x$.

$$D(f) = R$$

$$R(f) = <-1, 1>$$

f je periodická na svém definičním oboru s periodou 2π , f(0) = 0

Funkce $y = f(x) = \cos x$.

D $(f) = \mathbf{R}$ R (f) = <-1, 1>

f je periodická na svém definičním oboru s periodou 2π ,

Funkce $y = f(x) = \operatorname{tg} x = \sin x / \cos x$.

D
$$(f) = \mathbf{R} \setminus \{(2k+1) \pi/2, k \in \mathbf{Z}\}$$

$$R(f) = (-\infty, +\infty)$$

f je periodická na svém definičním oboru s periodou π , f(0) = 0

Na intervalech ((2k - 1) π /2, (2k + 1) π /2) je funkce rostoucí

Funkce $y = f(x) = \cot x = \cos x / \sin x$.

$$D(f) = \mathbf{R} \setminus \{k\pi, k \in \mathbf{Z}\}$$

$$R(f) = (-\infty, +\infty)$$

f je periodická na svém definičním oboru s periodou π , $f(\pi/2) = 0$

Na intervalech ($-k\pi$, $k\pi$) je funkce klesající

Pravidla pro počítání s goniometrickými funkcemi.

Cyklometrické funkce.

- ightharpoonup arcsin x je inverzní funkce k funkci sinus na intervalu (- $\pi/2$, $\pi/2$).
 - ightharpoonup D(arcsin) = (-1, 1)
 - $ightharpoonup R(\arcsin) = (-\pi/2, \pi/2).$
- \triangleright arccos x je inverzní funkce k funkci cosinus na intervalu (0, π).
 - \triangleright D(arccos) = (-1, 1)
 - \triangleright R(arccos) = $(0, \pi)$.
- ightharpoonup arctg x je inverzní funkce k funkci tangens na intervalu (- $\pi/2$, $\pi/2$).
 - \triangleright D(arctg) = $(-\infty, +\infty)$
 - $ightharpoonup R(arctg) = (-\pi/2, \pi/2)$
- \triangleright arccotg x je inverzní funkce k funkci tangens na intervalu (0, π).
 - \triangleright D(arccotg) = $(-\infty, +\infty)$
 - $ightharpoonup R(arccotg) = (0, \pi).$

> Pro $x \approx 0$ je arctg $(x) \approx x$

1. Určete periodu funkce, posunutí po osách, obor hodnot a hodnotu v bodě 0. Pak graf funkce nakreslete.

$$y = 4 \cos(2x-\pi) + 2 = 4\cos(2(x-\pi/2)) + 2$$

Posun o $\pi/2$ po ose *x* do kladných hodnot.

- R(f) = <-2, 6>
- $0 < 2x \pi < 2\pi$ určuje základní periodu funkce cosinus. Odtud $\pi/2 < x < 3\pi/2$. Perioda je tedy π .
- Pro x = 0 je $y = 4 \cos(-\pi) + 2 = -2$.

2. Poločas rozpadu C¹⁴ je 5730 let. Proces rozpadu se řídí funkcí $W_t = W_0 e^{-\lambda t}$ Určete λ .

$$0.5W_0 = W_t = W_0 e^{-\lambda t}$$

$$0.5 = e^{-\lambda t}$$

$$\log 2 = \lambda t$$

$$\lambda = \frac{\log 2}{5730}$$

3. Víme, že povrch krychle S závisí na délce hrany krychle L (S = aL^2) a objem krychle V závisí na délce hrany L (V = bL³). Určete zvislost mezi S a V.

$$S = aL^2$$

Položme
$$k = \frac{b}{a^{\frac{3}{2}}}$$
Pak $V = kS^{\frac{3}{2}}$

$$V = b(\frac{S}{a})^{\frac{3}{2}}$$

$$\mathsf{k} \quad V = kS^{\frac{3}{2}}$$

$$V = \frac{b}{a^{\frac{3}{2}}} S^{\frac{3}{2}}$$

$$V = kS^{\frac{5}{2}}$$