3 RT Models

June 5, 2024

1 Machine Learning Models Applied to the IDS-2017

The purpose of this notebook is to experiment different machine learning on the IDS-2017 dataset generated by the CICFlowMeter on the recorder traffic which included benign and malicious flows

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import glob
     import os
     import xgboost as xgb
     from sklearn.model_selection import train_test_split, RandomizedSearchCV
     from sklearn.preprocessing import StandardScaler
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.metrics import classification_report, average_precision_score,_
      make_scorer, precision_score, accuracy_score, confusion_matrix
     from notebook_utils import upsample_dataset
     %matplotlib inline
     %load_ext autoreload
     %autoreload 2
     file_path =
      -r"CIC-IDS-2017\CSVs\GeneratedLabelledFlows\TrafficLabelling\processed\ids2017_processed.
      ⇔CSV"
     def replace_invalid(df):
         # Select only numeric columns
         numeric_columns = df.select_dtypes(include=[np.number]).columns
         # Identify columns with NaN, infinity, or negative values
         invalid_columns = df[numeric_columns].columns[df[numeric_columns].isna().
      ⇒any() |
                                                        np.isinf(df[numeric_columns]).
      ⇒any() |
                                                        (df[numeric_columns] < 0).</pre>
      ⇒any()]
```

```
print("Columns with NaN, infinity, or negative values:", invalid columns.
 →tolist())
    # Replace invalid values with NaN and fill with column mean
    df[invalid columns] = df[invalid columns].replace([np.inf, -np.inf, -1], np.
    df[invalid columns] = df[invalid_columns].fillna(df[invalid_columns].mean())
    return df
def load dataset(file path):
    df = pd.read_csv(file_path)
    convert_dict = {'label': 'category'}
    df = df.astype(convert_dict)
    replace_invalid(df)
    df.info()
    return df
attack_labels = {
    O: 'BENIGN',
    7: 'FTP-Patator',
    11: 'SSH-Patator',
    6: 'DoS slowloris',
    5: 'DoS Slowhttptest',
    4: 'DoS Hulk',
    3: 'DoS GoldenEye',
    8: 'Heartbleed',
    12: 'Web Attack - Brute Force',
    14: 'Web Attack - XSS',
    13: 'Web Attack - Sql Injection',
    9: 'Infiltration',
    1: 'Bot',
    10: 'PortScan',
    2: 'DDoS'
}
```

2 1. Preparing the Dataset

```
[2]: df = load_dataset(file_path)

Columns with NaN, infinity, or negative values: ['flow_duration',
    'flow_bytes_s', 'flow_packets_s', 'flow_iat_mean', 'flow_iat_max',
    'flow_iat_min', 'fwd_iat_min', 'fwd_header_length', 'bwd_header_length',
    'fwd_header_length_1', 'init_win_bytes_forward', 'init_win_bytes_backward',
    'min_seg_size_forward']
    <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 2830743 entries, 0 to 2830742 Data columns (total 96 columns):

#	Column	Dtype
0	destination_port	int64
1	protocol	int64
2	flow_duration	float64
3	total_fwd_packets	int64
4	total_backward_packets	int64
5	total_length_of_fwd_packets	float64
6	total_length_of_bwd_packets	float64
7	fwd_packet_length_max	float64
8	fwd_packet_length_min	float64
9	fwd_packet_length_mean	float64
10	fwd_packet_length_std	float64
11	bwd_packet_length_max	float64
12	bwd_packet_length_min	float64
13	bwd_packet_length_mean	float64
14	bwd_packet_length_std	float64
15	flow_bytes_s	float64
16	flow_packets_s	float64
17	flow_iat_mean	float64
18	flow_iat_std	float64
19	flow_iat_max	float64
20	flow_iat_min	float64
21	fwd_iat_total	float64
22	fwd_iat_mean	float64
23	fwd_iat_std	float64
24	fwd_iat_max	float64
25	fwd_iat_min	float64
26	<pre>bwd_iat_total</pre>	float64
27	bwd_iat_mean	float64
28	bwd_iat_std	float64
29	<pre>bwd_iat_max</pre>	float64
30	bwd_iat_min	float64
31	fwd_psh_flags	int64
32	bwd_psh_flags	int64
33	fwd_urg_flags	int64
34	bwd_urg_flags	int64
35	fwd_header_length	int64
36	bwd_header_length	int64
37	fwd_packets_s	float64
38	bwd_packets_s	float64
39	min_packet_length	float64
40	max_packet_length	float64
41	<pre>packet_length_mean</pre>	float64
42	packet_length_std	float64
43	<pre>packet_length_variance</pre>	float64

44	fin_flag_count	int64
45	syn_flag_count	int64
46	rst_flag_count	int64
47	psh_flag_count	int64
48	ack_flag_count	int64
49	urg_flag_count	int64
50	cwe_flag_count	int64
51	ece_flag_count	int64
52	down_up_ratio	float64
53	average_packet_size	float64
54	avg_fwd_segment_size	float64
55	avg_bwd_segment_size	float64
56	fwd_header_length_1	int64
57	fwd_avg_bytes_bulk	int64
58	fwd_avg_packets_bulk	int64
59	fwd_avg_bulk_rate	int64
60	bwd_avg_bytes_bulk	int64
61	bwd_avg_packets_bulk	int64
62	bwd_avg_bulk_rate	int64
63	subflow_fwd_packets	int64
64	subflow_fwd_bytes	int64
65	subflow_bwd_packets	int64
66	subflow_bwd_bytes	int64
67	init_win_bytes_forward	float64
68	init_win_bytes_backward	float64
69	act_data_pkt_fwd	int64
70	min_seg_size_forward	float64
71	active_mean	float64
72	active_std	float64
73	active_max	float64
74	active_min	float64
75	idle_mean	float64
76	idle_std	float64
77	idle_max	float64
78	idle_min	float64
79	label	category
80	is_attack	int64
81	_ label_code	int64
82	is_dos_hulk	int64
83	is_portscan	int64
84	is_ddos	int64
85	is_dos_goldeneye	int64
86	is_ftppatator	int64
87	is_sshpatator	int64
88	is_dos_slowloris	int64
89	is_dos_slowhttptest	int64
90	is_bot	int64
91	is_web_attack_brute_force	int64
	- -	

```
int64
     92 is_web_attack_xss
                                      int64
     93 is_infiltration
     94 is_web_attack_sql_injection
                                      int64
     95 is_heartbleed
                                      int64
    dtypes: category(1), float64(49), int64(46)
    memory usage: 2.0 GB
[3]: X = df.iloc[:, 0:79]
     Y = df.iloc[:, 79:]
     X.info()
     Y.info()
     print(Y.label.value_counts())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2830743 entries, 0 to 2830742
    Data columns (total 79 columns):
     #
         Column
                                      Dtype
         _____
                                      ----
     0
         destination port
                                      int64
     1
         protocol
                                      int64
     2
         flow duration
                                      float64
     3
         total_fwd_packets
                                      int64
         total_backward_packets
     4
                                      int64
         total_length_of_fwd_packets
     5
                                      float64
     6
         total_length_of_bwd_packets
                                      float64
     7
         fwd_packet_length_max
                                      float64
     8
         fwd_packet_length_min
                                      float64
         fwd_packet_length_mean
                                      float64
     10 fwd_packet_length_std
                                      float64
     11 bwd_packet_length_max
                                      float64
     12 bwd_packet_length_min
                                      float64
     13 bwd_packet_length_mean
                                      float64
     14 bwd_packet_length_std
                                      float64
     15 flow bytes s
                                      float64
     16 flow_packets_s
                                      float64
     17 flow_iat_mean
                                      float64
     18 flow_iat_std
                                      float64
     19 flow_iat_max
                                      float64
```

20 flow_iat_min

21 fwd_iat_total

22 fwd_iat_mean

23 fwd_iat_std

24 fwd_iat_max

25 fwd_iat_min

28 bwd_iat_std

29 bwd_iat_max

26 bwd_iat_total 27 bwd_iat_mean float64

float64

float64

float64

float64

float64 float64

float64

float64

float64

30	bwd_iat_min	float64
31	<pre>fwd_psh_flags</pre>	int64
32	bwd_psh_flags	int64
33	<pre>fwd_urg_flags</pre>	int64
34	bwd_urg_flags	int64
35	fwd_header_length	int64
36	bwd_header_length	int64
37	<pre>fwd_packets_s</pre>	float64
38	bwd_packets_s	float64
39	min_packet_length	float64
40	max_packet_length	float64
41	packet_length_mean	float64
42	packet_length_std	float64
43	packet_length_variance	float64
44	fin_flag_count	int64
45	syn_flag_count	int64
46	rst_flag_count	int64
47	psh_flag_count	int64
48	ack_flag_count	int64
49	urg_flag_count	int64
50	cwe_flag_count	int64
51	ece_flag_count	int64
52	down_up_ratio	float64
53	average_packet_size	float64
54	avg_fwd_segment_size	float64
55	avg_bwd_segment_size	float64
56	fwd_header_length_1	int64
57	fwd_avg_bytes_bulk	int64
58	fwd_avg_packets_bulk	int64
59	fwd_avg_bulk_rate	int64
60	bwd_avg_bytes_bulk	int64
61	bwd_avg_packets_bulk	int64
62	bwd_avg_bulk_rate	int64
63	subflow_fwd_packets	int64
64	subflow_fwd_bytes	int64
65	subflow_bwd_packets	int64
66	subflow_bwd_bytes	int64
67	init_win_bytes_forward	float64
68	init_win_bytes_backward	float64
69	act_data_pkt_fwd	int64
70	min_seg_size_forward	float64
71	active_mean	float64
72	active_std	float64
73	active_max	float64
74	active_min	float64
75	idle_mean	float64
76	idle_std	float64
77	idle_max	float64
	vv	

78 idle_min float64

dtypes: float64(49), int64(30)

memory usage: 1.7 GB

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2830743 entries, 0 to 2830742

Data columns (total 17 columns):

#	Column	Dtype
0	label	category
1	is_attack	int64
2	label_code	int64
3	is_dos_hulk	int64
4	is_portscan	int64
5	is_ddos	int64
6	is_dos_goldeneye	int64
7	is_ftppatator	int64
8	is_sshpatator	int64
9	is_dos_slowloris	int64
10	is_dos_slowhttptest	int64
11	is_bot	int64
12	<pre>is_web_attack_brute_force</pre>	int64
13	is_web_attack_xss	int64
14	is_infiltration	int64
15	$\verb"is_web_attack_sql_injection"$	int64
16	is_heartbleed	int64
dtyp	es: category(1), int64(16)	

dtypes: category(1), int64(16)

memory usage: 348.3 MB

label

BENIGN	2273097
DoS Hulk	231073
PortScan	158930
DDoS	128027
DoS GoldenEye	10293
FTP-Patator	7938
SSH-Patator	5897
DoS slowloris	5796
DoS Slowhttptest	5499
Bot	1966
Web Attack - Brute Force	1507
Web Attack - XSS	652
Infiltration	36
Web Attack - Sql Injection	21
Heartbleed	11

Name: count, dtype: int64

3 2. Feature Selection

3.0.1 Correlation based feature selection

First, the columns with no variance are dropped as they have no impact on the target variables.

```
[4]: stats = X.describe()
std = stats.loc["std"]
features_no_var = std[std == 0.0].index
# Exclude non-numeric columns (e.g., categorical columns) from the features_
with zero variance
features_no_var_numeric = [col for col in features_no_var if col in X.
select_dtypes(include=[np.number]).columns]
print(features_no_var_numeric)
```

```
['bwd_psh_flags', 'bwd_urg_flags', 'fwd_avg_bytes_bulk', 'fwd_avg_packets_bulk', 'fwd_avg_bulk_rate', 'bwd_avg_bytes_bulk', 'bwd_avg_packets_bulk', 'bwd_avg_bulk_rate']
```

The destination port feature is dropped because it can act as a shortcut predictor and cause high overfitting for the training set as show in this paper

```
[5]: X = X.drop(columns=features_no_var)
X = X.drop(columns=['destination_port'])
X.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2830743 entries, 0 to 2830742
Data columns (total 70 columns):
```

	• • • • • • • • • • • • • • • • • • • •	
#	Column	Dtype
0	protocol	int64
1	flow_duration	float64
2	total_fwd_packets	int64
3	total_backward_packets	int64
4	total_length_of_fwd_packets	float64
5	total_length_of_bwd_packets	float64
6	<pre>fwd_packet_length_max</pre>	float64
7	<pre>fwd_packet_length_min</pre>	float64
8	<pre>fwd_packet_length_mean</pre>	float64
9	<pre>fwd_packet_length_std</pre>	float64
10	bwd_packet_length_max	float64
11	bwd_packet_length_min	float64
12	bwd_packet_length_mean	float64
13	bwd_packet_length_std	float64
14	flow_bytes_s	float64
15	flow_packets_s	float64
16	flow_iat_mean	float64
17	flow_iat_std	float64
18	flow_iat_max	float64

19	flow_iat_min	float64
20	fwd_iat_total	float64
21	fwd_iat_mean	float64
22	fwd_iat_std	float64
23	fwd_iat_max	float64
24	fwd_iat_min	float64
25	bwd_iat_total	float64
26	bwd_iat_mean	float64
27	bwd_iat_std	float64
28	bwd_iat_max	float64
29	bwd_iat_min	float64
30	fwd_psh_flags	int64
31	fwd_urg_flags	int64
32	fwd_header_length	int64
33	bwd_header_length	int64
34	fwd_packets_s	float64
35	bwd_packets_s	float64
36	min_packet_length	float64
37	max_packet_length	float64
38	<pre>packet_length_mean</pre>	float64
39	packet_length_std	float64
40	<pre>packet_length_variance</pre>	float64
41	fin_flag_count	int64
42	syn_flag_count	int64
43	rst_flag_count	int64
44	psh_flag_count	int64
45	ack_flag_count	int64
46	urg_flag_count	int64
47	<pre>cwe_flag_count</pre>	int64
48	ece_flag_count	int64
49	down_up_ratio	float64
50	average_packet_size	float64
51	avg_fwd_segment_size	float64
52	<pre>avg_bwd_segment_size</pre>	float64
53	fwd_header_length_1	int64
54	subflow_fwd_packets	int64
55	subflow_fwd_bytes	int64
56	subflow_bwd_packets	int64
57	subflow_bwd_bytes	int64
58	init_win_bytes_forward	float64
59	init_win_bytes_backward	float64
60	act_data_pkt_fwd	int64
61	min_seg_size_forward	float64
62	active_mean	float64
63	active_std	float64
64	active_max	float64
65	active_min	float64
66	idle_mean	float64

```
67 idle_std float64
68 idle_max float64
69 idle_min float64
```

dtypes: float64(49), int64(21)

memory usage: 1.5 GB

[6]: threshold = 0.9

3.0.2 Remove collinear variables

```
corr_matrix = X.corr().abs()
     corr_matrix.head()
[6]:
                                  protocol
                                             flow_duration total_fwd_packets \
    protocol
                                  1.000000
                                                  0.265288
                                                                      0.007272
     flow_duration
                                  0.265288
                                                  1.000000
                                                                      0.020857
     total_fwd_packets
                                  0.007272
                                                                      1.000000
                                                  0.020857
                                  0.006361
     total backward packets
                                                  0.019669
                                                                      0.999070
     total length of fwd packets 0.033234
                                                  0.065456
                                                                      0.365508
                                  total_backward_packets \
                                                 0.006361
    protocol
    flow_duration
                                                 0.019669
    total_fwd_packets
                                                 0.999070
     total_backward_packets
                                                 1.000000
     total_length_of_fwd_packets
                                                 0.359451
                                  total_length_of_fwd_packets \
     protocol
                                                      0.033234
     flow_duration
                                                      0.065456
                                                      0.365508
     total_fwd_packets
     total_backward_packets
                                                      0.359451
     total_length_of_fwd_packets
                                                      1.000000
                                  total_length_of_bwd_packets \
                                                      0.005191
     protocol
    flow_duration
                                                      0.016186
     total_fwd_packets
                                                      0.996993
     total_backward_packets
                                                      0.994429
     total_length_of_fwd_packets
                                                      0.353762
                                  fwd_packet_length_max fwd_packet_length_min \
     protocol
                                                0.166066
                                                                        0.315250
     flow_duration
                                                0.273304
                                                                        0.105235
     total_fwd_packets
                                                0.009358
                                                                        0.002989
                                                                        0.002600
     total_backward_packets
                                                0.009039
     total_length_of_fwd_packets
                                                0.197030
                                                                        0.000275
```

fwd_packet_length_mean fwd_packet_length_std \

```
protocol
                                                 0.052344
                                                                        0.178832
                                                 0.143685
     flow_duration
                                                                        0.234434
     total_fwd_packets
                                                 0.000032
                                                                        0.001403
     total_backward_packets
                                                 0.000333
                                                                        0.001026
     total_length_of_fwd_packets
                                                 0.185262
                                                                        0.159787
                                      act_data_pkt_fwd min_seg_size_forward \
                                              0.005043
                                                                    0.003451
     protocol
     flow duration
                                              0.015942
                                                                    0.001357
     total fwd packets
                                              0.887387
                                                                    0.000184
     total backward packets
                                              0.882566
                                                                    0.000018
     total_length_of_fwd_packets
                                              0.407448
                                                                    0.001209
                                  active_mean active_std active_max active_min \
                                                              0.109356
                                                                          0.063663
     protocol
                                      0.085598
                                                  0.081018
     flow_duration
                                      0.189298
                                                  0.241059
                                                              0.294033
                                                                          0.121169
     total_fwd_packets
                                      0.039937
                                                  0.008329
                                                              0.030459
                                                                          0.041283
     total_backward_packets
                                                              0.028602
                                      0.038963
                                                  0.006437
                                                                          0.041278
     total_length_of_fwd_packets
                                      0.101084
                                                  0.103326
                                                              0.126493
                                                                          0.068325
                                  idle_mean idle_std idle_max idle_min
                                   0.179676 0.071305
                                                        0.184514 0.170531
     protocol
     flow_duration
                                   0.768031 0.243153 0.779524 0.738325
     total fwd packets
                                   0.001820 0.000809
                                                        0.001906 0.001670
     total backward packets
                                   0.001425 0.000492
                                                        0.001456 0.001330
     total length of fwd packets
                                   0.022660 0.027064 0.026079 0.018634
     [5 rows x 70 columns]
[7]: # Upper triangle of correlations
     upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
     upper.head()
[7]:
                                  protocol
                                            flow_duration
                                                            total_fwd_packets \
                                                  0.265288
                                                                     0.007272
    protocol
                                       NaN
                                                                     0.020857
     flow_duration
                                       NaN
                                                       NaN
     total_fwd_packets
                                       NaN
                                                       NaN
                                                                          NaN
     total_backward_packets
                                       NaN
                                                       {\tt NaN}
                                                                          NaN
     total_length_of_fwd_packets
                                       NaN
                                                       {\tt NaN}
                                                                          NaN
                                  total_backward_packets
                                                 0.006361
     protocol
    flow_duration
                                                 0.019669
     total fwd packets
                                                 0.999070
     total_backward_packets
                                                      NaN
     total_length_of_fwd_packets
                                                      NaN
```

```
total_length_of_fwd_packets \
                                                 0.033234
protocol
flow_duration
                                                 0.065456
total_fwd_packets
                                                 0.365508
total_backward_packets
                                                 0.359451
total_length_of_fwd_packets
                                                      NaN
                             total_length_of_bwd_packets
                                                 0.005191
protocol
                                                 0.016186
flow_duration
total fwd packets
                                                 0.996993
total_backward_packets
                                                 0.994429
total_length_of_fwd_packets
                                                 0.353762
                             fwd_packet_length_max
                                                     fwd_packet_length_min \
protocol
                                           0.166066
                                                                  0.315250
                                           0.273304
                                                                  0.105235
flow_duration
                                                                  0.002989
total_fwd_packets
                                           0.009358
total_backward_packets
                                           0.009039
                                                                  0.002600
total_length_of_fwd_packets
                                           0.197030
                                                                  0.000275
                             fwd_packet_length_mean
                                                     fwd_packet_length_std \
                                            0.052344
                                                                   0.178832
protocol
flow duration
                                            0.143685
                                                                   0.234434
total_fwd_packets
                                            0.000032
                                                                   0.001403
total backward packets
                                            0.000333
                                                                   0.001026
total_length_of_fwd_packets
                                            0.185262
                                                                   0.159787
                                act_data_pkt_fwd min_seg_size_forward \
                                        0.005043
                                                               0.003451
protocol
                                        0.015942
                                                               0.001357
flow_duration
total_fwd_packets
                                        0.887387
                                                               0.000184
total_backward_packets
                                        0.882566
                                                               0.000018
total_length_of_fwd_packets
                                        0.407448
                                                               0.001209
                             active_mean active_std active_max active_min \
                                             0.081018
                                                         0.109356
                                                                     0.063663
protocol
                                0.085598
flow_duration
                                             0.241059
                                                         0.294033
                                                                     0.121169
                                0.189298
total fwd packets
                                0.039937
                                             0.008329
                                                         0.030459
                                                                     0.041283
total_backward_packets
                                                         0.028602
                                                                     0.041278
                                0.038963
                                             0.006437
total_length_of_fwd_packets
                                0.101084
                                             0.103326
                                                         0.126493
                                                                     0.068325
                             idle_mean idle_std idle_max idle_min
                              0.179676 0.071305 0.184514 0.170531
protocol
                              0.768031 0.243153 0.779524 0.738325
flow_duration
                              0.001820 0.000809
                                                   0.001906 0.001670
total_fwd_packets
total_backward_packets
                              0.001425
                                        0.000492
                                                   0.001456 0.001330
```

```
total_length_of_fwd_packets 0.022660 0.027064 0.026079 0.018634
[5 rows x 70 columns]
[8]: to_drop = [column for column in upper.columns if any(upper[column] > threshold)]
to_keep = [
```

to_keep = [
 'Destination Port', 'Fwd Packet Length Std', 'Min Packet Length',
 'Packet Length Variance', 'PSH Flag Count', 'Active Max'
]
to_drop = [column for column in to_drop if column not in to_keep]
print('There are %d columns to remove.' % (len(to_drop)))
X = X.drop(columns=to_drop)
X.info()

There are 31 columns to remove.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2830743 entries, 0 to 2830742

Data columns (total 39 columns):

#	Column	Dtype
0	protocol	int64
1	flow_duration	float64
2	total_fwd_packets	int64
3	total_length_of_fwd_packets	float64
4	<pre>fwd_packet_length_max</pre>	float64
5	<pre>fwd_packet_length_min</pre>	float64
6	<pre>fwd_packet_length_mean</pre>	float64
7	bwd_packet_length_max	float64
8	<pre>bwd_packet_length_min</pre>	float64
9	flow_bytes_s	float64
10	flow_packets_s	float64
11	flow_iat_mean	float64
12	flow_iat_std	float64
13	flow_iat_min	float64
14	fwd_iat_min	float64
15	bwd_iat_total	float64
16	bwd_iat_mean	float64
17	bwd_iat_std	float64
18	bwd_iat_max	float64
19	fwd_psh_flags	int64
20	fwd_urg_flags	int64
21	fwd_header_length	int64
22	bwd_header_length	int64
23	bwd_packets_s	float64
24	min_packet_length	float64
25	fin_flag_count	int64
26	rst_flag_count	int64
27	psh_flag_count	int64

```
28 ack_flag_count
                                 int64
   urg_flag_count
                                 int64
29
30
   down_up_ratio
                                 float64
   init_win_bytes_forward
                                 float64
31
   init win bytes backward
                                 float64
   act_data_pkt_fwd
                                 int64
   min_seg_size_forward
                                 float64
35
   active_mean
                                 float64
36
   active_std
                                 float64
   active_max
37
                                 float64
38 idle_std
                                 float64
```

dtypes: float64(27), int64(12)

memory usage: 842.3 MB

3.0.3 3. Split Dataset

The dataset is split into a train, cross-validation and evaluation sets with a ratio of 0.8/0.1/0.1. The dataset is stratified according to the label to have an equal representation of all classes in the 3 subsets.

Upsampling is used to generate artificial samples for types of attacks that are underrepresented in the dataset.

```
[10]: X_train, Y_train = upsample_dataset(X, Y, 100000, attack_labels)
```

```
[11]: Y_train.label.value_counts()
```

[11]: label

BENIGN	2273097
DoS Hulk	231073
PortScan	158930
DDoS	128027
Bot	100000
DoS GoldenEye	100000
DoS Slowhttptest	100000
DoS slowloris	100000
FTP-Patator	100000
Heartbleed	100000
Infiltration	100000
SSH-Patator	100000
Web Attack - Brute Force	100000
Web Attack - Sql Injection	100000
Web Attack - XSS	100000

Name: count, dtype: int64

```
[12]: Y_eval.label.value_counts()
[12]: label
      BENIGN
                                     227310
      DoS Hulk
                                      23107
      PortScan
                                      15893
      DDoS
                                      12803
      DoS GoldenEye
                                       1029
      FTP-Patator
                                        794
      SSH-Patator
                                        589
      DoS slowloris
                                        579
      DoS Slowhttptest
                                        550
                                        197
      Web Attack - Brute Force
                                        151
      Web Attack - XSS
                                         65
      Infiltration
                                          4
      Web Attack - Sql Injection
                                          2
      Heartbleed
                                          1
      Name: count, dtype: int64
[13]: Y_test.label.value_counts()
[13]: label
      BENIGN
                                     227310
      DoS Hulk
                                      23108
      PortScan
                                      15893
      DDoS
                                      12803
      DoS GoldenEye
                                       1030
      FTP-Patator
                                        794
      SSH-Patator
                                        590
      DoS slowloris
                                        580
      DoS Slowhttptest
                                        550
      Bot
                                        196
      Web Attack - Brute Force
                                        150
      Web Attack - XSS
                                         65
      Infiltration
                                          3
                                          2
      Web Attack - Sql Injection
      Heartbleed
                                          1
      Name: count, dtype: int64
     Statistics for the training set
[14]: benign_percentage = len(Y_train.label[Y_train["label"]=="BENIGN"])/len(Y_train)
      print('Percentage of benign samples: %.4f' % benign_percentage)
      print(Y_train.is_attack.value_counts())
```

Percentage of benign samples: 0.5842

```
is_attack
0.0 2273097
1.0 1618030
Name: count, dtype: int64
```

4 3. Machine Learning Classifiers

In this section, different machine learning models are applied to classify network traffic. The metrics used to evaluate the models are primarily accuracy, precision, recall and the F1 score.

```
[15]: scaler = StandardScaler()
scaler.fit(X_train)
```

[15]: StandardScaler()

```
[16]: def plot_confusion_matrix(model_name, Y_true, Y_pred, labels=["Benign",_

¬"Attack"]):
         matrix = confusion_matrix(Y_true.is_attack, Y_pred)
         plt.figure(figsize=(8, 6))
         sns.heatmap(matrix, annot=True, cmap='Blues', fmt='d', xticklabels=labels,__
       yticklabels=labels)
         plt.xlabel('Predicted')
         plt.ylabel('True')
         plt.title(f'Confusion Matrix for {model_name}')
         plt.show()
     def metrics_report(dataset_type, y_true, y_predict, print_avg=True):
         print(f"Classification Report ({dataset_type}):")
         print(classification_report(y_true, y_predict, digits=4))
         if print_avg:
             print(f"Avg Precision Score: {average_precision_score(y_true,_
       print("Accuracy:",accuracy_score(y_true, y_predict))
         res = classification_report(y_true, y_predict, digits=4, output_dict = True)
         res["accuracy"] = accuracy_score(y_true, y_predict)
         return res
```

```
[17]: performance_models = {}
```

Functions for saving and loading modules

```
[18]: import joblib

def save_model(model, model_name):
    file_path = f'models/{model_name}.pkl'
    joblib.dump(model, file_path)
    print(f'Model saved to {file_path}')
```

```
def load_model(model_name):
    file_path = f'models/{model_name}.pkl'
    model = joblib.load(file_path)
    print(f'Model loaded from {file_path}')
    return model

os.makedirs('models', exist_ok=True)
```

4.1 3.1 Decision Trees/Ensembles Algorithms

0.9979

0.9999

```
4.1.1 3.1.1 Regression Forest
     Binary Classification
[19]: rf model binary = RandomForestClassifier(verbose=1, n jobs=-1, 11
       ⇔class_weight='balanced', criterion="entropy", n_estimators = 300, bootstrapu
       Frue, max_features=None)
      rf_model_binary.fit(scaler.transform(X_train), Y_train.is_attack)
     [Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 16 concurrent
     workers.
     [Parallel(n_jobs=-1)]: Done 18 tasks
                                                | elapsed: 4.8min
     [Parallel(n_jobs=-1)]: Done 168 tasks
                                                | elapsed: 27.4min
     [Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed: 46.3min finished
[19]: RandomForestClassifier(class_weight='balanced', criterion='entropy',
                             max_features=None, n_estimators=300, n_jobs=-1,
                             verbose=1)
[20]: print("Evaluation Set Performance")
      metrics_report("Evaluation", Y_eval.is_attack, rf_model_binary.predict(scaler.

→transform(X_eval)))
      # Predict and evaluate on the test set
      print("Test Set Performance")
      Y_pred = rf_model_binary.predict(scaler.transform(X_test))
      performance_models["rf"] = metrics_report("Test", Y_test.is_attack, Y_pred)
      plot_confusion_matrix("Regression Forest", Y_test, Y_pred)
     Evaluation Set Performance
     [Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent
     workers.
     [Parallel(n_jobs=16)]: Done 18 tasks
                                                | elapsed:
                                                               0.0s
     [Parallel(n_jobs=16)]: Done 168 tasks
                                                | elapsed:
                                                               0.3s
     [Parallel(n_jobs=16)]: Done 300 out of 300 | elapsed:
                                                               0.7s finished
     Classification Report (Evaluation):
                   precision
                                recall f1-score
                                                   support
                0
                      1.0000
                                0.9995
                                          0.9997
                                                    227310
```

0.9989

55764

accuracy			0.9996	283074
macro avg	0.9989	0.9997	0.9993	283074
weighted avg	0.9996	0.9996	0.9996	283074

Avg Precision Score: 0.9978486651284253

Accuracy: 0.9995725499339395

Test Set Performance

 $[Parallel(n_jobs=16)]: \ Using \ backend \ Threading Backend \ with \ 16 \ concurrent$

workers.

[Parallel(n_jobs=16)]: Done 18 tasks | elapsed: 0.0s [Parallel(n_jobs=16)]: Done 168 tasks | elapsed: 0.4s

[Parallel(n_jobs=16)]: Done 300 out of 300 | elapsed: 0.7s finished

Classification Report (Test):

	precision	recall	f1-score	support	
0	1.0000	0.9994	0.9997	227310	
1	0.9976	0.9999	0.9988	55765	
accuracy			0.9995	283075	
macro avg	0.9988	0.9997	0.9992	283075	
weighted avg	0.9995	0.9995	0.9995	283075	

Avg Precision Score: 0.9975953147083236


```
[21]: save_model(rf_model_binary, 'random_forest')
```

Model saved to models/random_forest.pkl

```
Multi-class classifier
```

[Parallel($n_jobs=-1$)]: Using backend ThreadingBackend with 16 concurrent workers.

[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 1.0min

[Parallel($n_jobs=-1$)]: Done 100 out of 100 | elapsed: 3.5min finished [Parallel($n_jobs=16$)]: Using backend ThreadingBackend with 16 concurrent workers.

Evaluation Set Performance

[Parallel(n_jobs=16)]: Done 18 tasks | elapsed: 0.2s

[Parallel(n_jobs=16)]: Done 100 out of 100 | elapsed: 1.0s finished

Classification Report (Evaluation):

	1			
	precision	recall	f1-score	support
0	1.0000	0.9977	0.9988	227310
1	0.3803	1.0000	0.5510	197
2	0.9999	0.9998	0.9999	12803
3	0.9990	1.0000	0.9995	1029
4	0.9966	1.0000	0.9983	23107
5	1.0000	1.0000	1.0000	550
6	1.0000	0.9983	0.9991	579
7	1.0000	1.0000	1.0000	794
8	1.0000	1.0000	1.0000	1
9	1.0000	1.0000	1.0000	4
10	0.9943	0.9999	0.9971	15893
11	1.0000	1.0000	1.0000	589
12	0.7254	0.6821	0.7031	151
13	0.6667	1.0000	0.8000	2
14	0.5625	0.9692	0.7119	65
accuracy			0.9979	283074
macro avg	0.8883	0.9765	0.9173	283074
weighted avg	0.9987	0.9979	0.9982	283074

Accuracy: 0.9979404678635269

Test Set Performance

[Parallel($n_{jobs}=16$)]: Using backend ThreadingBackend with 16 concurrent workers.

[Parallel(n_jobs=16)]: Done 18 tasks | elapsed: 0.2s

[Parallel(n_jobs=16)]: Done 100 out of 100 | elapsed: 1.0s finished

Classification Report (Test):

	precision	recall	f1-score	support
0	1.0000	0.9975	0.9988	227310
1	0.3748	1.0000	0.5452	196
2	0.9999	0.9999	0.9999	12803
3	0.9990	1.0000	0.9995	1030
4	0.9959	1.0000	0.9980	23108
5	0.9964	0.9982	0.9973	550

```
6
                  0.9983
                            1.0000
                                       0.9991
                                                     580
           7
                  1.0000
                            1.0000
                                       1.0000
                                                     794
           8
                  1.0000
                            1.0000
                                       1.0000
                                                       1
           9
                  1.0000
                            1.0000
                                       1.0000
                                                       3
          10
                  0.9931
                            0.9999
                                       0.9965
                                                   15893
          11
                  1.0000
                            1.0000
                                                     590
                                       1.0000
          12
                  0.8015
                            0.7000
                                       0.7473
                                                     150
          13
                  1.0000
                            1.0000
                                       1.0000
                                                       2
          14
                  0.5676
                            0.9692
                                       0.7159
                                                      65
                                       0.9978
                                                  283075
    accuracy
                                       0.9332
   macro avg
                  0.9151
                            0.9777
                                                  283075
weighted avg
                  0.9986
                            0.9978
                                       0.9981
                                                  283075
```

```
Accuracy: 0.9978380287909565
[22]: {'0': {'precision': 0.9999955898372209,
        'recall': 0.9975276054727025,
        'f1-score': 0.9987600730301569,
        'support': 227310.0},
       '1': {'precision': 0.37476099426386233,
        'recall': 1.0,
        'f1-score': 0.545201668984701,
        'support': 196.0},
       '2': {'precision': 0.9999218933062564,
        'recall': 0.9999218933062564,
        'f1-score': 0.9999218933062564,
        'support': 12803.0},
       '3': {'precision': 0.9990300678952473,
        'recall': 1.0,
        'f1-score': 0.9995147986414362,
        'support': 1030.0},
       '4': {'precision': 0.9959486251185242,
        'recall': 1.0,
        'f1-score': 0.9979702008205571,
        'support': 23108.0},
       '5': {'precision': 0.9963702359346642,
        'recall': 0.9981818181818182,
        'f1-score': 0.997275204359673,
        'support': 550.0},
       '6': {'precision': 0.9982788296041308,
        'recall': 1.0,
        'f1-score': 0.9991386735572783,
        'support': 580.0},
       '7': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 794.0},
       '8': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1.0},
       '9': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3.0},
```

```
'10': {'precision': 0.9930638005373993,
 'recall': 0.9999370792172655,
'f1-score': 0.9964885879107098,
 'support': 15893.0},
'11': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 590.0},
'12': {'precision': 0.8015267175572519,
 'recall': 0.7,
'f1-score': 0.7473309608540926,
 'support': 150.0},
'13': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2.0},
'14': {'precision': 0.5675675675675675,
 'recall': 0.9692307692307692,
 'f1-score': 0.7159090909090909,
 'support': 65.0},
'accuracy': 0.9978380287909565,
'macro avg': {'precision': 0.915097621441475,
 'recall': 0.9776532776939207,
 'f1-score': 0.9331674101582635,
 'support': 283075.0},
'weighted avg': {'precision': 0.9986212901610746,
 'recall': 0.9978380287909565,
 'f1-score': 0.9981151144627087,
 'support': 283075.0}}
```

Given that the dataset lacks many samples for some of the attack types, the multiclass classifier has low accuracy for several attack types, even after upsampling, which will cause overfitting in this case. It is better to test other machine learning algorithms for binary classifiers.

4.1.2 3.1.2 Gradient Boost (XGB)

```
import xgboost as xgb
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import make_scorer, precision_score

# Define the parameter grid for RandomizedSearchCV
param_grid = {
    'learning_rate': [0.01, 0.05, 0.1, 0.2],
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 5, 7, 10],
    'min_child_weight': [1, 3, 5],
    'subsample': [0.6, 0.8, 1.0],
    'colsample_bytree': [0.6, 0.8, 1.0],
    'gamma': [0, 0.1, 0.2, 0.3],
    'reg_alpha': [0, 0.1, 0.5, 1],
    'reg_lambda': [0, 0.1, 0.5, 1]
}
```

```
# Initialize the XGBoost classifier
      xgb_model_binary = xgb.XGBClassifier(objective='binary:logistic',__
       ⇒scale_pos_weight=1, n_jobs=-1)
      # Define the scorer
      scorer = make scorer(precision score)
      # Initialize RandomizedSearchCV
      random_search = RandomizedSearchCV(estimator=xgb_model_binary,_
       →param_distributions=param_grid, n_iter=20,
                                          scoring=scorer, n_jobs=-1, cv=2, verbose=2,__
       ⇒random state=42)
      # Fit the model on the training data
      random_search.fit(scaler.transform(X_train.astype('float32')), Y_train.
       ⇔is_attack)
      # Get the best model
      best_xgb_model = random_search.best_estimator_
      # Print the best hyperparameters
      print("Best Hyperparameters:", random_search.best_params_)
     Fitting 2 folds for each of 20 candidates, totalling 40 fits
     Best Hyperparameters: {'subsample': 1.0, 'reg lambda': 0.1, 'reg alpha': 0.5,
     'n_estimators': 300, 'min_child_weight': 1, 'max_depth': 7, 'learning_rate':
     0.05, 'gamma': 0.1, 'colsample_bytree': 1.0}
     Best Hyperparameters: {'subsample': 1.0, 'reg_lambda': 0, 'reg_alpha': 0.5, 'n_estimators': 100,
     'min_child_weight': 3, 'max_depth': 10, 'learning_rate': 0.1, 'gamma': 0.3, 'colsample_bytree':
     0.6
[24]: best_params = random_search.best_params_
      best_xgb_model = xgb.XGBClassifier(
          objective='binary:logistic',
          scale_pos_weight=1,
          n_{jobs=-1},
          **best params
      # Fit the model on the training data
      best_xgb_model.fit(scaler.transform(X_train), Y_train.is_attack)
[24]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                    colsample_bylevel=None, colsample_bynode=None,
                    colsample_bytree=1.0, device=None, early_stopping_rounds=None,
                    enable_categorical=False, eval_metric=None, feature_types=None,
```

```
gamma=0.1, grow_policy=None, importance_type=None,
interaction_constraints=None, learning_rate=0.05, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=7, max_leaves=None,
min_child_weight=1, missing=nan, monotone_constraints=None,
multi_strategy=None, n_estimators=300, n_jobs=-1,
num_parallel_tree=None, random_state=None, ...)
```

Evaluation Set Performance Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.9998 0.9930	0.9983	0.9990	227310 55764
accuracy			0.9984	283074
macro avg	0.9964	0.9987	0.9975	283074
weighted avg	0.9984	0.9984	0.9984	283074

Accuracy: 0.9984279728975463

Test Set Performance

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9998	0.9982	0.9990	227310
1	0.9927	0.9991	0.9959	55765
accuracy			0.9984	283075
macro avg	0.9962	0.9987	0.9974	283075
weighted avg	0.9984	0.9984	0.9984	283075


```
[26]: save_model(best_xgb_model, 'xgb_model')
```

Model saved to models/xgb_model.pkl

4.1.3 3.1.3 ADABoost

```
[27]: from sklearn.ensemble import AdaBoostClassifier
ada_boost_model = AdaBoostClassifier(
    n_estimators=50, # Number of weak learners
    learning_rate=1.0, # Learning rate (contribution of each weak learner)
    algorithm='SAMME', # SAMME.R is recommended for probability estimates
    random_state=42
)

# Fit the model on the training data
ada_boost_model.fit(scaler.transform(X_train), Y_train.is_attack)
```

[27]: AdaBoostClassifier(algorithm='SAMME', random_state=42)

Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.9910	0.9221	0.9553	227310
0	0.9910	0.9221	0.9555	227310
1	0.7525	0.9657	0.8459	55764
accuracy			0.9307	283074
macro avg	0.8718	0.9439	0.9006	283074
weighted avg	0.9440	0.9307	0.9337	283074

Accuracy: 0.9306930343302457 Classification Report (Test):

	precision	recall	f1-score	support
0	0.9915	0.9225	0.9557	227310
1	0.7539	0.9677	0.8475	55765
accuracy			0.9314	283075
macro avg weighted avg	0.8727	0.9451	0.9016	283075
	0.9447	0.9314	0.9344	283075


```
[29]: save_model(ada_boost_model, 'ada_boost_model')
```

Model saved to models/ada_boost_model.pkl

4.1.4 3.1.4 ID3

[30]: DecisionTreeClassifier(criterion='entropy', random_state=42)

```
[31]: y_pred_eval = id3_model.predict(scaler.transform(X_eval))
metrics_report("Evaluation", Y_eval.is_attack, y_pred_eval, print_avg=False)
```

Classification Report (Evaluation):

	precision	recall	f1-score	support
0	1.0000	0.9995	0.9997	227310
1	0.9980	0.9999	0.9989	55764
accuracy			0.9996	283074
macro avg	0.9990	0.9997	0.9993	283074
weighted avg	0.9996	0.9996	0.9996	283074

Accuracy: 0.9995760825791136 Classification Report (Test):

	precision	recall	f1-score	support
0	1.0000 0.9977	0.9994	0.9997 0.9988	227310 55765
accuracy			0.9995	283075
macro avg weighted avg	0.9988 0.9995	0.9997 0.9995	0.9992 0.9995	283075 283075


```
[32]: save_model(id3_model, 'id3_model')
```

Model saved to models/id3_model.pkl

4.1.5 Conclusion

```
[33]: def extract_and_plot_metrics(metrics_dict):
    # Initialize dictionaries to store the metrics for plotting
    precision_dict = {'0': [], '1': [], 'model': []}
    recall_dict = {'0': [], '1': [], 'model': []}
    f1_score_dict = {'0': [], '1': [], 'model': []}
    accuracy_list = []

# Iterate over the models in the metrics dictionary
for model_name, metrics in metrics_dict.items():
    precision_dict['0'].append(metrics['0']['precision'])
    precision_dict['1'].append(metrics['1']['precision'])
    recall_dict['0'].append(metrics['0']['recall'])
    recall_dict['1'].append(metrics['1']['recall'])
```

```
f1_score_dict['0'].append(metrics['0']['f1-score'])
        f1_score_dict['1'].append(metrics['1']['f1-score'])
        accuracy_list.append(metrics['accuracy'])
        precision_dict['model'].append(model_name)
        recall_dict['model'].append(model_name)
        f1_score_dict['model'].append(model_name)
    # Plotting the metrics
    fig, axs = plt.subplots(2, 2, figsize=(14, 10))
    # Plot precision
    axs[0, 0].plot(precision_dict['model'], precision_dict['0'], label='Class_u

    o', marker='o')

    axs[0, 0].plot(precision_dict['model'], precision_dict['1'], label='Class_
 →1', marker='o')
    axs[0, 0].set_title('Precision')
    axs[0, 0].legend()
    # Plot recall
    axs[0, 1].plot(recall_dict['model'], recall_dict['0'], label='Class 0', __
    axs[0, 1].plot(recall_dict['model'], recall_dict['1'], label='Class 1',u

marker='o')
    axs[0, 1].set_title('Recall')
    axs[0, 1].legend()
    # Plot f1-score
    axs[1, 0].plot(f1_score_dict['model'], f1_score_dict['0'], label='Class 0', __

marker='o')
    axs[1, 0].plot(f1_score_dict['model'], f1_score_dict['1'], label='Class 1',u

marker='o')
    axs[1, 0].set_title('F1-Score')
    axs[1, 0].legend()
    # Plot accuracy
    print(accuracy_list)
    print(precision dict['model'])
    axs[1, 1].plot(precision_dict['model'], accuracy_list, label='Accuracy',__
 →marker='o')
    axs[1, 1].set_title('Accuracy')
    axs[1, 1].legend()
    plt.tight_layout()
    plt.show()
extract_and_plot_metrics(performance_models)
```

[0.9995230945862404, 0.9983785215932174, 0.9313927404398128, 0.9995230945862404] ['rf', 'xgb', 'adaboost', 'id3']

ID3 and Random Forest perform very well on the dataset while Adaboost is the worst model. To conclude, after finetuning the hyperparameters, random forest seems to be the best tree based algorithm to perform on the dataset.

4.2 3.2 Deep Neural Network

In this section, deep neural networks are used to create binary classifiers that distinguish between benign and malicious traffics. Hyperparameters are optimized to obtain the best results.

```
[34]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
```

```
[35]: # Define the model architecture
model = keras.Sequential([
          keras.layers.Dense(128, activation='relu', input_shape=(scaler.
          transform(X_train).shape[1],)),
          keras.layers.Dropout(0.5),
          keras.layers.Dense(64, activation='relu'),
```

```
keras.layers.Dropout(0.5),
    keras.layers.Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy',_
 →metrics=['accuracy'])
# Train the model
history = model.fit(scaler.transform(X train), Y train.is attack, epochs=10,
  →batch_size=32, validation_split=0.2)
C:\Users\youss\AppData\Local\Programs\Python\Python312\Lib\site-
packages\keras\src\layers\core\dense.py:88: UserWarning: Do not pass an
`input_shape`/`input_dim` argument to a layer. When using Sequential models,
prefer using an `Input(shape)` object as the first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/10
97279/97279
                       66s
673us/step - accuracy: 0.9374 - loss: 0.1676 - val_accuracy: 0.2848 - val_loss:
8.9642
Epoch 2/10
97279/97279
                        66s
678us/step - accuracy: 0.9524 - loss: 0.1146 - val_accuracy: 0.2882 - val_loss:
7.4969
Epoch 3/10
97279/97279
                        65s
669us/step - accuracy: 0.9544 - loss: 0.1118 - val_accuracy: 0.2889 - val_loss:
4.7225
Epoch 4/10
                       65s
97279/97279
664us/step - accuracy: 0.9557 - loss: 0.1169 - val_accuracy: 0.2726 - val_loss:
10.9780
Epoch 5/10
97279/97279
661us/step - accuracy: 0.9562 - loss: 0.1089 - val_accuracy: 0.3051 - val_loss:
6.2204
Epoch 6/10
                       65s
97279/97279
666us/step - accuracy: 0.9568 - loss: 0.1259 - val_accuracy: 0.3020 - val_loss:
9.3219
Epoch 7/10
                        65s
97279/97279
666us/step - accuracy: 0.9570 - loss: 0.1114 - val_accuracy: 0.2990 - val_loss:
11.0146
Epoch 8/10
97279/97279
                       65s
```

```
666us/step - accuracy: 0.9575 - loss: 0.1486 - val_accuracy: 0.3099 - val_loss:
     5.7396
     Epoch 9/10
     97279/97279
                             65s
     665us/step - accuracy: 0.9577 - loss: 0.1267 - val_accuracy: 0.3003 - val_loss:
     9.3866
     Epoch 10/10
     97279/97279
                             65s
     666us/step - accuracy: 0.9578 - loss: 0.1226 - val_accuracy: 0.3451 - val_loss:
     8.2815
[36]: # Predict probabilities on the evaluation set
      y pred eval prob = model.predict(scaler.transform(X eval))
      # Convert probabilities to binary predictions
      y_pred_eval = (y_pred_eval_prob > 0.5).astype(int)
      metrics_report("Evaluation", Y_eval.is_attack, y_pred_eval, print_avg=False)
      # Predict and evaluate on the test set
      y_pred_test_prob = model.predict(scaler.transform(X_test))
      y_pred_test = (y_pred_test_prob > 0.5).astype(int)
      metrics_report("Test", Y_test.is_attack, y_pred_test, print_avg=False)
      plot_confusion_matrix("DNN", Y_test, y_pred_test)
     8847/8847
                           4s 420us/step
     Classification Report (Evaluation):
                   precision
                                recall f1-score
                                                   support
                0
                      0.9813 0.9796
                                          0.9805
                                                    227310
                1
                      0.9175
                                0.9239
                                          0.9207
                                                     55764
                                          0.9686
                                                    283074
         accuracy
                                          0.9506
                                                    283074
        macro avg
                      0.9494
                                0.9518
                                0.9686
     weighted avg
                      0.9687
                                          0.9687
                                                    283074
     Accuracy: 0.9686477740802758
     8847/8847
                           4s 433us/step
     Classification Report (Test):
                   precision
                                recall f1-score
                                                   support
                0
                      0.9818
                                0.9798
                                          0.9808
                                                    227310
                1
                      0.9185
                                0.9260
                                          0.9222
                                                     55765
                                          0.9692
                                                    283075
         accuracy
                                0.9529
                                          0.9515
                                                    283075
        macro avg
                      0.9501
                                          0.9693
     weighted avg
                      0.9693
                                0.9692
                                                    283075
```


4.2.1 Hyperparameter Tuning

```
optimizer=tf.keras.optimizers.Adam(learning_rate=hp.

⇒Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='LOG',

⇒default=1e-3)),

loss='binary_crossentropy',

metrics=['accuracy']
)

return model
```

```
Reloading Tuner from G:\Other computers\My PC\stage\ML-
NIDS\Notebooks\hyperparam_tuning\intrusion_detection\tuner0.json
Search space summary
Default search space size: 9
units input (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step':
32, 'sampling': 'linear'}
num_layers (Int)
{'default': None, 'conditions': [], 'min_value': 1, 'max_value': 3, 'step': 1,
'sampling': 'linear'}
units_0 (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step':
32, 'sampling': 'linear'}
dropout_0 (Float)
{'default': 0.0, 'conditions': [], 'min_value': 0.0, 'max_value': 0.5, 'step':
0.1, 'sampling': 'linear'}
learning rate (Float)
{'default': 0.001, 'conditions': [], 'min_value': 0.0001, 'max_value': 0.01,
'step': None, 'sampling': 'log'}
units_1 (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step':
```

```
32, 'sampling': 'linear'}
     dropout_1 (Float)
     {'default': 0.0, 'conditions': [], 'min_value': 0.0, 'max_value': 0.5, 'step':
     0.1, 'sampling': 'linear'}
     units 2 (Int)
     {'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step':
     32, 'sampling': 'linear'}
     dropout_2 (Float)
     {'default': 0.0, 'conditions': [], 'min value': 0.0, 'max value': 0.5, 'step':
     0.1, 'sampling': 'linear'}
[39]: best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
      print(best hps)
      model1 = build_model(best_hps)
      history = model.fit(scaler.transform(X train), Y train.is attack, epochs=20,
       →validation_split=0.2, verbose=1)
     <keras_tuner.src.engine.hyperparameters.hyperparameters.HyperParameters object</pre>
     at 0x0000015161FA3830>
     C:\Users\youss\AppData\Local\Programs\Python\Python312\Lib\site-
     packages\keras\src\layers\core\dense.py:88: UserWarning: Do not pass an
     `input_shape`/`input_dim` argument to a layer. When using Sequential models,
     prefer using an `Input(shape)` object as the first layer in the model instead.
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
     Epoch 1/20
     97279/97279
                             65s
     667us/step - accuracy: 0.9579 - loss: 0.1334 - val_accuracy: 0.3554 - val_loss:
     5.8488
     Epoch 2/20
     97279/97279
                             65s
     668us/step - accuracy: 0.9580 - loss: 0.1261 - val_accuracy: 0.3384 - val_loss:
     7.1888
     Epoch 3/20
     97279/97279
                             65s
     670us/step - accuracy: 0.9584 - loss: 0.1040 - val_accuracy: 0.3418 - val_loss:
     4.9406
     Epoch 4/20
     97279/97279
                             65s
     668us/step - accuracy: 0.9583 - loss: 0.1237 - val_accuracy: 0.3384 - val_loss:
     5.9503
     Epoch 5/20
                             65s
     97279/97279
     668us/step - accuracy: 0.9586 - loss: 0.1698 - val_accuracy: 0.3462 - val_loss:
     6.6066
     Epoch 6/20
     97279/97279
                             65s
     666us/step - accuracy: 0.9587 - loss: 0.1062 - val_accuracy: 0.3664 - val_loss:
```

```
6.7357
Epoch 7/20
97279/97279
                        65s
668us/step - accuracy: 0.9586 - loss: 0.1191 - val_accuracy: 0.3445 - val_loss:
6.9325
Epoch 8/20
97279/97279
                        65s
667us/step - accuracy: 0.9586 - loss: 0.1078 - val_accuracy: 0.3645 - val_loss:
5.8693
Epoch 9/20
97279/97279
                        65s
667us/step - accuracy: 0.9586 - loss: 0.2841 - val_accuracy: 0.3554 - val_loss:
6.4449
Epoch 10/20
97279/97279
                        65s
665us/step - accuracy: 0.9589 - loss: 0.1272 - val_accuracy: 0.3623 - val_loss:
7.7536
Epoch 11/20
97279/97279
                        65s
665us/step - accuracy: 0.9591 - loss: 0.1058 - val_accuracy: 0.3481 - val_loss:
7.2022
Epoch 12/20
97279/97279
                        65s
671us/step - accuracy: 0.9593 - loss: 0.1060 - val_accuracy: 0.3884 - val_loss:
7.3497
Epoch 13/20
97279/97279
                        66s
675us/step - accuracy: 0.9587 - loss: 0.1452 - val_accuracy: 0.3858 - val_loss:
5.5309
Epoch 14/20
97279/97279
                        66s
676us/step - accuracy: 0.9594 - loss: 0.1067 - val_accuracy: 0.4324 - val_loss:
4.6448
Epoch 15/20
97279/97279
                        65s
667us/step - accuracy: 0.9589 - loss: 0.1081 - val_accuracy: 0.4341 - val_loss:
3.4974
Epoch 16/20
                        65s
97279/97279
667us/step - accuracy: 0.9595 - loss: 0.2097 - val_accuracy: 0.4070 - val_loss:
4.3750
Epoch 17/20
97279/97279
                        66s
673us/step - accuracy: 0.9593 - loss: 0.1092 - val_accuracy: 0.3577 - val_loss:
6.5637
Epoch 18/20
97279/97279
                        65s
665us/step - accuracy: 0.9596 - loss: 0.1057 - val_accuracy: 0.3408 - val_loss:
```

```
Epoch 19/20
     97279/97279
                             65s
     669us/step - accuracy: 0.9595 - loss: 0.1479 - val_accuracy: 0.3792 - val_loss:
     4.0979
     Epoch 20/20
     97279/97279
                             65s
     668us/step - accuracy: 0.9592 - loss: 0.1318 - val_accuracy: 0.4012 - val_loss:
     7.1979
[40]: print(best_hps.values)
     {'units_input': 480, 'num_layers': 2, 'units_0': 448, 'dropout_0':
     0.3000000000000004, 'learning_rate': 0.00614260757976685, 'units_1': 224,
     'dropout_1': 0.0, 'units_2': 256, 'dropout_2': 0.4}
[41]: from tensorflow.keras.models import save_model as save_model_keras
      def save_keras_model(model, model_name):
          file_path = f'models/{model_name}.h5'
          save_model_keras(model, file_path)
          print(f'Model saved to {file_path}')
      save_keras_model(model, 'DNN_model1')
     WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or
     `keras.saving.save_model(model)`. This file format is considered legacy. We
     recommend using instead the native Keras format, e.g.
     `model.save('my_model.keras')` or `keras.saving.save_model(model,
     'my_model.keras')`.
     Model saved to models/DNN_model1.h5
     Best Hyperparameters {'units_input': 480, 'num_layers': 2, 'units_0': 448, 'dropout_0':
     0.300000000000004, 'learning rate': 0.00614260757976685, 'units 1': 224, 'dropout 1': 0.0,
     'units_2': 256, 'dropout_2': 0.4}
[42]: # Predict probabilities on the evaluation set
      y_pred_eval_prob = model.predict(scaler.transform(X_eval))
      # Convert probabilities to binary predictions
      y_pred_eval = (y_pred_eval_prob > 0.5).astype(int)
      metrics_report("Evaluation", Y_eval.is_attack, y_pred_eval, print_avg=False)
      # Predict and evaluate on the test set
      y_pred_test_prob = model.predict(scaler.transform(X_test))
      y_pred_test = (y_pred_test_prob > 0.5).astype(int)
      metrics_report("Test", Y_test.is_attack, y_pred_test, print_avg=False)
      plot_confusion_matrix("DNN", Y_test, y_pred_test)
```

7.4742

8847/8847 4s 424us/step Classification Report (Evaluation):

	precision	recall	f1-score	support
0	0.9833 0.8969	0.9737 0.9326	0.9785 0.9144	227310 55764
			0.0050	002074
accuracy			0.9656	283074
macro avg	0.9401	0.9531	0.9464	283074
weighted avg	0.9663	0.9656	0.9658	283074

Accuracy: 0.9655920360047197

8847/8847 4s 446us/step

Classification Report (Test):

	precision	recall	f1-score	support
0	0.9838	0.9738	0.9788	227310
1	0.8976	0.9348	0.9158	55765
accuracy			0.9662	283075
macro avg	0.9407	0.9543	0.9473	283075
weighted avg	0.9669	0.9662	0.9664	283075

