Ridge and Lasso - Hyperparameters

Pavlos Protopapas, Ignacio Becker

Outline

- Q&A
- Generalization Error, Bias Variance Tradeoff
- Regularization
 - Lasso and Ridge

Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point training set.

Right: Best-fit models using degree 10 polynomial

PROTOPAPAS, BECKER

Bias vs Variance

Left: Linear regression coefficients

Right: Poly regression of order 10 coefficients

Model selection is the application of a principled method to determine the complexity of the model, e.g., choosing a subset of predictors, choosing the degree of the polynomial model etc.

A strong m

overfitting How do we discourage extreme values in the model parameters?

- there are

 - the polynomial degree is too high
 - too many cross terms are considered
- the coefficients values are too extreme

PROTOPAPAS, BECKER

What we want

Low model error

Minimize:

$$rac{1}{n} \sum_{i=1}^n \left| y_i - oldsymbol{eta}^ op oldsymbol{x}_i
ight|^2$$

Discourage extreme values in model parameters

Minimize:

What we want

Low model error

Minimize:

$$rac{1}{n} \sum_{i=1}^n \left| y_i - oldsymbol{eta}^ op oldsymbol{x}_i
ight|^2$$

Discourage extreme values in model parameters

Minimize:

$$L_{reg} = \begin{cases} \sum_{j=1}^{J} \beta_j^2 \\ \sum_{j=1}^{J} |\beta_j| \end{cases}$$

What we want

Low model error

Minimize:

$$rac{1}{n} \sum_{i=1}^n \left| y_i - oldsymbol{eta}^ op oldsymbol{x}_i
ight|^2$$

Discourage extreme values in model parameters

Minimize:

$$j_{reg} = \begin{cases} \sum_{j=1}^{\infty} \\ j \end{cases}$$

How do we combine these two objectives?

$$\sum_{j=1}^{J} \beta_j^2$$

$$\sum_{j=1}^{J} |\beta_j|$$

What we want

Low model error

Minimize:

Discourage extreme values in model parameters

Minimize:

$$\mathcal{L}_{REG} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i \right|^2 + L_{reg}$$

What we want

Low model error

Discourage extreme values in model parameters

mize:

Minimize:

 λ is the **regularization** parameter. It controls the relative importance between model error and the regularization term

$$\mathcal{L}_{REG} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i \right|^2 + \lambda L_{reg}$$

What we want

Low model error

Discourage extreme values in model

parameters

Low modal arror

 $\lambda = 0$: equivalent to simple linear

regression

 $\lambda = \infty$: yields a model with $\beta's = 0$

$$\mathcal{L}_{REG} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \right|^2 + \lambda L_{reg}$$

What we want

Low model error

Minimize:

Discourage extreme values in model parameters

What we want

Low model error

Minimize:

Discourage extreme values in model parameters

Minimize:

$$\mathcal{L}_{REG} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \right|^2 + \lambda L_{reg}$$

Regularization: LASSO Regression

What we want

Low model error

Minimize:

Discourage extreme values in model parameters

Minimize:

Note that
$$\sum_{j=1}^{J} \$ \beta_j \hbar e I_1$$
 norm of the vector β

$$\mathcal{L}_{LASSO} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i \right|^2 + \lambda \sum_{j=1}^{J} |\beta_j|$$

What we want

Discourage extreme values in model

No need to regularize the bias, β_0 Why?

eters

$$\mathcal{L}_{LASSO} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \right|^2 + \lambda \sum_{j=1}^{J} |\beta_j|$$

14

Regularization: LASSO Regression

Lasso regression: minimize \mathcal{L}_{LASSO} with respect to $\beta's$

$$\mathcal{L}_{LASSO} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i \right|^2 + \lambda \sum_{j=1}^{J} |\beta_j|$$

Regularization: Ridge Regression

Ridge regression: minimize
$$\mathcal{L}_{RIDGE}$$
 with respect the vector $\boldsymbol{\beta}$

$$\mathcal{L}_{LASSO} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \right|^2 + \lambda \sum_{j=1}^{J} \beta_j^2$$

16 PROTOPAPAS, BECKER

Regularization: Ridge Regression

Ridge regression: minimize \mathcal{L}_{RIDGE} with respect to $\beta's$

$$\mathcal{L}_{LASSO} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \right|^2 + \lambda \sum_{j=1}^{J} \beta_j^2$$

No need to regularize the bias, β_0 , since it is not connected to the predictors.

Ridge regularization with only validation: step by step

For ridge regression there exist an analytical solution for the coefficients:

$$\hat{\beta}_{Ridge}(\lambda) = (X^{T}X + \lambda I)^{-1}X^{T}Y$$

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - 1. determine the β that minimizes the L_{ridge} , $\beta_{Ridge}(\lambda) = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda I\right)^{-1}X^{T}Y$, using the train data.
 - 2. record $L_{MSE}(\lambda)$ using validation data.
- 3. select the λ that minimizes the MSE loss on the validation data,

$$\lambda_{ridge} = \operatorname{argmin}_{\lambda} L_{MSE}(\lambda)$$

- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, now using λ_{ridge} , resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 5. Report MSE or R^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

Ridge regularization with only validation: step by step

For ridge regression there exist an analytical solution for the coefficients:

$$\hat{\beta}_{Ridge}(\lambda) = (X^{T}X + \lambda I)^{-1}X^{T}Y$$

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - 1. determine the β that minimizes the L_{ridge} , $\beta_{Ridge}(\lambda) = \left(X^TX + \lambda I\right)^{-1}X^TY$,
 - 2. record $L_{MSE}(\lambda)$ using validation data.
- 3. select the λ that minimizes the MSE loss on the validation data,

$$\lambda_{ridge} = \operatorname{argmin}_{\lambda} L_{MSE}(\lambda)$$

- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, now using λ_{ridge} , resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 5. Report MSE or R^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

Ridge regularization with only validation: step by step

For ridge regression there exist an analytical solution for the coefficients:

$$\hat{\beta}_{Ridge}(\lambda) = (X^{T}X + \lambda I)^{-1}X^{T}Y$$

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - 1. determine the β that minimizes the L_{ridge} , $\beta_{Ridge}(\lambda) = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda I\right)^{-1}X^{T}Y$, using the train data.
 - 2. record $L_{MSE}(\lambda)$ using validation data.
- 3. select the λ that minimizes the MSE loss on the validation data,

$$\lambda_{ridge} = \operatorname{argmin}_{\lambda} L_{MSE}(\lambda)$$

- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, now using λ_{ridge} , resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 5. Report MSE or \mathbb{R}^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

Ridge regularization with validation only

Lasso regularization with validation only: step by step

For Lasso regression, there is **no** analytical solution for the coefficients, so we use a **solver**.

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - A. determine the β that minimizes the L_{lasso} , $\beta_{lasso}(\lambda)$, using the train data. This is done using a solver.
 - B. record $L_{MSE}(\lambda)$ using the validation data.
- 3. select the A that minimizes the MSE loss on the validation data,

$$\lambda_{lasso} = \operatorname{argmin}_{\lambda} L_{MSE}(\lambda)$$

- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, now using λ_{Lasso} , resulting to $\hat{\beta}_{lasso}(\lambda_{lasso})$
- 5. Report MSE or R^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{lasso}(\lambda_{lasso})$

Lasso regularization with validation only: step by step

For Lasso regression, there is **no** analytical solution for the coefficients, so we use a **solver**.

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - A. determine the β that minimizes the L_{lasso} , $\beta_{lasso}(\lambda)$, using the train data. This is done using a solver.
 - B. record $L_{MSE}(\lambda)$ using the validation data.
- 3. select the λ that minimizes the MSE loss on the validation data,
 - $\lambda_{l} = \operatorname{argmin}_{1} I_{l} I_{l} I_{l}$
- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train},\{X,Y\}_{validation}\}$, now using λ_{Lasso} , resulting to $\hat{\beta}_{lasso}(\lambda_{lasso})$
- 5. Report MSE or \mathbb{R}^2 on $\{X,Y\}_{test}$ given the $eta_{lasso}(\lambda_{lasso})$

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^k\}$

	λ_1	λ_2	•••	λ_n
k_1				
k_2				
k_n				

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k},\{X,Y\}_{val}^k\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:

	λ_1	λ_2	•••	λ_n
k_1				
k_2				
k_n				

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^k\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:
 - A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda, k) = \left(X^TX + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
 - B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k},\{X,Y\}_{val}^k\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:
 - A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda, k) = \left(X^TX + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
 - B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k},\{X,Y\}_{val}^k\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:
 - A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda,k) = \left(X^TX + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
- B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$ At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^{k}\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:

- A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda, k) = \left(X^TX + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
- B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$ At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.
- 4. Average the $L_{MSE}(\lambda,k)$ for each λ , $\overline{L}_{MSE}(\lambda)$.

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^{k}\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:

30

- A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda, k) = \left(X^TX + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
- B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$ At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.
- 1. Average the $L_{MSE}(\lambda,k)$ for each λ , $\overline{L}_{MSE}(\lambda)$.
- 2. Find the λ that minimizes the $\bar{L}_{MSE}(\lambda)$, resulting to λ_{ridge} .

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^{k}\}$
- 3. for k in $\{1, ..., K\}$ for λ in $\{\lambda_0, ..., \lambda_n\}$:
 - A. determine the β that minimizes the L_{ridge} , $\beta_{ridge}(\lambda,k) = \left(\mathbf{X}^T\mathbf{X} + \lambda I\right)^{-1}X^TY$, using the train data of the fold, $\{X,Y\}_{train}^{-k}$.
- B. $\operatorname{record} L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$ At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.
- 4. Average the $L_{MSE}(\lambda,k)$ for each λ , $\overline{L}_{MSE}(\lambda)$.
- 5. Find the λ that minimizes the $ar{L}_{MSE}(\lambda)$, resulting to λ_{ridge} .
- 6. Refit the model using the full training data, $\{\{X,Y\}_{train},\{X,Y\}_{val}\}$, resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 7. report MSE or R^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

Ridge regularization with cross-validation only: step by step

Exercise: Simple Lasso and Ridge Regularization

The aim of this exercise is to understand Lasso and Ridge regularization.

For this we will plot the predictor vs coefficient as a horizontal bar chart. The graph will look similar to the one given below.

