Petri Nets: Modelling, Properties and Analysis

Jiri Srba

Department of Computer Science Aalborg University, Denmark

Lecture 1

Petri Nets

- Graphical and mathematical modeling formalism.
- High level modeling of distributed/concurrent systems.
- Suggested by Carl Adam Petri in 1962, became one of the most popular models.
- Its own dedicated conference, yearly competition of tools ...

P/T Nets Syntax

Petri Net

A Petri net is a tupple N = (P, T, F, W) where

- P is a finite set of places,
- T is a finite set of transitions such that $T \cap P = \emptyset$,
- $F \subseteq (P \times T) \cup (T \times P)$ is the set of arcs (flow relation),
- $W: F \to \mathbb{N}$ is the weight function.

A marking M on a net N is a function $M: P \to \mathbb{N}^0$.

A marked Petri net is a pair (N, M_0) where N is a Petri net and M_0 its initial marking.

We extend the function W to the domain $(P \times T) \cup (T \times P)$ such that W((p,t)) = 0 if $(p,t) \notin F$ and W((t,p)) = 0 if $(t,p) \notin F$.

P/T Nets Semantics

A given Petri net N=(P,T,F,W), together with a labelling function $\ell:T\to \mathcal{A}ct$ where $\mathcal{A}ct$ is a finite nonempty set of actions, determines a labelled transition system where

- states are all marking on N,
- Act is the set of actions, and
- $M \stackrel{a}{\longrightarrow} M'$ if there is a transition $t \in T$ with $\ell(t) = a$ and
 - $M(p) \ge W((p, t))$ for every $p \in P$ (transition t is enabled in M), and
 - M'(p) = M(p) W((p, t)) + W((t, p)) for every $p \in P$ (transition t is fired).

Exercise: draw a fragment of the LTS generated by the net.

Exercise: Model a Car Crossing with Two Traffic Lights

- One traffic light in north/south direction,
- one traffic light in east/west direction,
- traffic light cycle: red, red and yellow, green, yellow, red, ...
- guarantee mutual exclusion of green.

Use TAPAAI

http://www.tapaal.net

and ignore the timing intervals (in Menu/View disable showing of $[0,\inf)$ intervals).

Finite Capacity Semantics

Our Petri net semantics assumes an infinite (unbounded) capacity.

Let K(p) be a maximum allowed number of tokens in the place p.

Definition [Finite Capacity Semantics]

Let M be a marking such that $M(p) \leq K(p)$ for all $p \in P$. In finite capacity semantics we have $M \stackrel{a}{\longrightarrow} M'$ only if $M'(p) \leq K(p)$ for all $p \in P$.

Fact: Finite capacity semantics can be simulated by nets with the infinite capacity. (For each place p add a complementary place p'; be careful about weighted arcs!).

For the rest of the course, we consider the infinite capacity semantics.

Let N = (P, T, F, W) be a Petri net. Let M be a marking on N and let F be a set of accepting markings.

Definition [Language of a Petri Net]

The language of N generated from M by the set F is defined as

$$L(M) = \{ w \in \mathcal{A}ct^* \mid M \xrightarrow{w} M' \text{ and } M' \in F \}$$
.

Let N = (P, T, F, W) be a Petri net. Let M be a marking on N and let F be a set of accepting markings.

Definition [Language of a Petri Net]

The language of N generated from M by the set F is defined as

$$L(M) = \{ w \in \mathcal{A}ct^* \mid M \xrightarrow{w} M' \text{ and } M' \in F \}$$
.

Theorem

There is a Petri net generating the non-context-free language $\{a^nb^nc^n\mid n\geq 1\}.$

Let N = (P, T, F, W) be a Petri net. Let M be a marking on N and let F be a set of accepting markings.

Definition [Language of a Petri Net]

The language of N generated from M by the set F is defined as

$$L(M) = \{ w \in \mathcal{A}ct^* \mid M \xrightarrow{w} M' \text{ and } M' \in F \}$$
.

Theorem

There is a Petri net generating the non-context-free language $\{a^nb^nc^n\mid n\geq 1\}.$

Theorem

There is no Petri net that can generate the context-free language $\{ww^R \mid w \in \{a,b\}^*\}$.

Let N = (P, T, F, W) be a Petri net. Let M be a marking on N and let F be a set of accepting markings.

Definition [Language of a Petri Net]

The language of N generated from M by the set F is defined as

$$L(M) = \{ w \in \mathcal{A}ct^* \mid M \xrightarrow{w} M' \text{ and } M' \in F \}$$
.

Theorem

There is a Petri net generating the non-context-free language $\{a^nb^nc^n\mid n\geq 1\}.$

Theorem

There is no Petri net that can generate the context-free language $\{ww^R \mid w \in \{a,b\}^*\}$.

Exercise: Draw a net (with an initial marking and final markings) that generates the language $\{a^nb^m \mid n, m \ge 1 \text{ and } m \le 3n\}$.

Let $\longrightarrow = \bigcup_{a \in \mathcal{A}ct} \xrightarrow{a}$. We write $M' \geq M$ if $M'(p) \geq M(p)$ for all places $p \in P$.

Let
$$\longrightarrow = \bigcup_{a \in \mathcal{A}ct} \xrightarrow{a}$$
.
We write $M' \geq M$ if $M'(p) \geq M(p)$ for all places $p \in P$.

Reachability Problem

Given a marked Petri net (N, M_0) and a marking M, is it the case that $M_0 \longrightarrow^* M$?

Let
$$\longrightarrow = \bigcup_{a \in Act} \xrightarrow{a}$$
.
We write $M' \ge M$ if $M'(p) \ge M(p)$ for all places $p \in P$.

Reachability Problem

Given a marked Petri net (N, M_0) and a marking M, is it the case that $M_0 \longrightarrow^* M$?

Coverability Problem

Given a marked Petri net (N, M_0) and a marking M, is there a marking M' such that $M_0 \longrightarrow^* M'$ and $M' \ge M$?

Let $\longrightarrow = \bigcup_{a \in \mathcal{A}ct} \xrightarrow{a}$. We write $M' \ge M$ if $M'(p) \ge M(p)$ for all places $p \in P$.

Reachability Problem

Given a marked Petri net (N, M_0) and a marking M, is it the case that $M_0 \longrightarrow^* M$?

Coverability Problem

Given a marked Petri net (N, M_0) and a marking M, is there a marking M' such that $M_0 \longrightarrow^* M'$ and $M' \ge M$?

Boundedness Problem

Given a marked Petri net (N, M_0) , is there a number k such that whenever $M_0 \longrightarrow^* M$ for some M then $M(p) \le k$ for all $p \in P$? If yes, then N is called k-bounded.

Remark: 1-bounded nets are also called safe nets.

Liveness

Given a marked Petri net (N, M_0) , whenever $M_0 \longrightarrow^* M$ then for each $t \in T$ there is some M' s.t. $M \longrightarrow^* M'$ and M' enables t?

Liveness

Given a marked Petri net (N, M_0) , whenever $M_0 \longrightarrow^* M$ then for each $t \in T$ there is some M' s.t. $M \longrightarrow^* M'$ and M' enables t?

Liveness degree of a transition t in a marked net (N, M_0) :

- **L0-live**: if t is not enabled in any marking reachable from M_0 .
- **L1-live**: if t is enabled in some marking reachable from M_0 .
- **L2-live**: for any given number k, there is a firing sequence from M_0 where t is fired at least k times.
- **L3-live**: if t is fired infinitely often in some infinite firing sequence from M_0 .
- **L4-live**: if t is L1-live in any marking reachable from M_0 .

Liveness

Given a marked Petri net (N, M_0) , whenever $M_0 \longrightarrow^* M$ then for each $t \in T$ there is some M' s.t. $M \longrightarrow^* M'$ and M' enables t?

Liveness degree of a transition t in a marked net (N, M_0) :

- **L0-live**: if t is not enabled in any marking reachable from M_0 .
- **L1-live**: if t is enabled in some marking reachable from M_0 .
- **L2-live**: for any given number k, there is a firing sequence from M_0 where t is fired at least k times.
- **L3-live**: if t is fired infinitely often in some infinite firing sequence from M_0 .
- **L4-live**: if t is L1-live in any marking reachable from M_0 .

Lk Liveness

A marked Petri net (N, M_0) is Lk live for $k \in \{0, 1, 2, 3, 4\}$ if every transition in N is Lk live. The net N is strictly Lk live if it is Lk live but not L(k+1) live.

Deadlock Problem

Given a marked Petri net (N, M_0) , is there a marking M such that $M_0 \longrightarrow^* M$ and M does not enable any transition at all?

Deadlock Problem

Given a marked Petri net (N, M_0) , is there a marking M such that $M_0 \longrightarrow^* M$ and M does not enable any transition at all?

Reversibility Problem

Given a marked Petri net (N, M_0) , is it the case that whenever $M_0 \longrightarrow^* M$ then $M \longrightarrow^* M_0$?

Deadlock Problem

Given a marked Petri net (N, M_0) , is there a marking M such that $M_0 \longrightarrow^* M$ and M does not enable any transition at all?

Reversibility Problem

Given a marked Petri net (N, M_0) , is it the case that whenever $M_0 \longrightarrow^* M$ then $M \longrightarrow^* M_0$?

Home Marking Problem

Given a marked Petri net (N, M_0) , is there a marking M' such that whenever $M_0 \longrightarrow^* M$ then $M \longrightarrow^* M'$?

Deadlock Problem

Given a marked Petri net (N, M_0) , is there a marking M such that $M_0 \longrightarrow^* M$ and M does not enable any transition at all?

Reversibility Problem

Given a marked Petri net (N, M_0) , is it the case that whenever $M_0 \longrightarrow^* M$ then $M \longrightarrow^* M_0$?

Home Marking Problem

Given a marked Petri net (N, M_0) , is there a marking M' such that whenever $M_0 \longrightarrow^* M$ then $M \longrightarrow^* M'$?

Bisimulation Problem

Given marked Petri nets (N, M_0) and (N', M'_0) , are the markings M_0 and M'_0 in labelled transition systems generated by the nets strongly bisimilar?

Decidability of Behavioural Properties

Reachability	decidable*, TOWER-hard
Coverability	EXPSPACE-complete
Boundedness	EXPSPACE-complete
Liveness	decidable, TOWER-hard
Deadlock	decidable*, TOWER-hard
Reversibility	decidable, TOWER-hard
Home Marking	decidable, TOWER-hard
Bisimulation	undecidable

^{*} decision algorithm with Ackermann running time (2019)

Petri nets are not a Turing-powerful model.

^{**} tower of exponents of elementary height in the input size (2019) ELEMENTARY — tower of exponents of fixed height