Chapitre 1 (la suite) Approximation des EDP par la méthode des différences finies

Remarque. Si la dérivée quatrième e u est nulle $(u^{(4)} = 0)$, alors l'erreur de consistance $\varepsilon_h(u) = 0$, c'est-à-dire $A(u_h - \pi_h(u)) = 0$. La matrice A est inversible et on en déduit que $u_h - \pi_h(u)$, c'est-à-dire $\forall i \in \{0, \dots, N\}, u_i = u(x_i)$. La solution discrète coïncide donc avec la solution exacte en chacun des sommets (intérieur ou non) du maillage.

Définition. L'erreur de convergence de la méthode des différences finies appliqué au problème (2) peut être quantifier par exemple par la quantité $||u_h - \pi_h(u)||_{\infty}$. Rappelons que

$$A_h u_h = b_h$$
, et $A_h \pi_h(u) = b_h + \varepsilon_h(u)$

Par différence

$$A_h(u_h - \pi_h(u)) = -\varepsilon_h(u)$$

En d'autre terme

$$u_h - \pi_h(u) = -(A_h)^{-1} \varepsilon_h(u)$$

On a le résultat suivant

Théorème. Supposons que $C \geq 0$. Si la solution u de problème (2) est de classe $C^{(4)}$ sur [0,1], alors le schéma numérique (2)' est convergent d'ordre 2 pour la norme $\|.\|_{\infty}$. Plus précisément on a

$$||u_h - \pi_h(u)||_{\infty} \le \frac{h^2}{96} \sup_{[0,1]} |u^{(4)}(x)|$$

Démonstration. Nous allons utiliser l'estimation suivante

$$||A_h^{-1}||_{\infty} \le \frac{1}{8}$$

On a

$$||u_h - \pi_h(u)||_{\infty} = ||(A_h)^{-1}\varepsilon_h(u)||_{\infty} \le ||(A_h)^{-1}||_{\infty}.||\varepsilon_h(u)||_{\infty} \le \frac{1}{8}||\varepsilon_h(u)||_{\infty}$$

Ce qui donne

$$||u_h - \pi_h(u)||_{\infty} \le \frac{h^2}{96} \sup_{[0,1]} |u^{(4)}|$$

(car nous avons déjà montré que $\|\varepsilon_h(u)\|_{\infty} \leq \frac{h^2}{12} \sup_{[0,1]} |u^{(4)}(x)|$)

II. Cas de la dimension 2

Considérons le problème de Dirichlet homogène suivant

$$\begin{cases}
- \triangle u(x) = f(x, y), & si \ (x, y) \in \Omega =]0, 1[\times]0, 1[, \\
u(x, y) = 0, & si \ (x, y) \in \Gamma.
\end{cases}$$
(3)

où f est une fonction donnée, continue sur [0,1]. Ce problème admet une solution dont nous proposons de calculer une valeur approchée à l'aide de la méthode des différences finies :

On recouvre Ω par des rectangles élémentaires de taille $h_x = 1/N_x$ dans la direction x et $h_y = 1/N_y$ dans la direction y. On cherche pour tout $i \in \{0, 1, ..., N_x\}$ et $j \in \{0, 1, ..., N_y\}$ une approximation de $u(ih_x, jh_y)$, qu'on la note u_i^j . Pour cela, on approche les dérivées secondes par le schéma à trois points :

$$\frac{\partial^2 u}{\partial x^2} = \frac{u(x + h_x, .) - 2u(x, .) + u(x - h_x, .)}{h_x^2}$$

(la variable y ne joue aucun rôle dans cette approximation)

$$\frac{\partial^2 u}{\partial y^2} = \frac{u(., y + h_y) - 2u(., y) + u(., y - h_y)}{h_y^2}$$

(la variable x ne joue aucun rôle dans cette approximation)

Cela donne le schéma numérique suivant

$$\begin{cases}
-\frac{u_{i+1}^{j} - 2u_{i}^{j} + u_{i-1}^{j}}{h_{x}^{2}} - \frac{u_{i}^{j+1} - 2u_{i}^{j} + u_{i}^{j-1}}{h_{y}^{2}} = f(ih_{x}, jh_{y}) \\
i \in 1, \dots, N_{x} - 1 \text{ et } j \in 1, \dots, N_{y} - 1 \\
u_{i}^{j} = 0, \text{ pour } i \in \{0, N_{x}\} \text{ ou pour } j \in \{0, N_{y}\}
\end{cases}$$
(3.1)

Ce schéma s'appelle **schéma à cinq points du laplacien**. Il s'agit d'un schéma centré où pour évaluer u au point (ih_x, jh_y) , on utilise les valeurs de u en cinq points centrés autour de (ih_x, jh_y) : le point (ih_x, jh_y) lui-même et les points $(ih_x, (j-1)h_y)$, $(ih_x, (j+1)h_y)$ $((i-1)h_x, jh_y)$ et $((i+1)h_x, jh_y)$

Si on note par $h = max(h_x, h_y)$. L'écriture matricielle de (3.1) est $C_h u_h = b_h$ où C_h est une matrice par blocs. Si on numérote les inconnues de la manière suivante $u_1^1, \ldots, u_1^{N_y-1}, u_2^1, \ldots, u_1^{N_y-1}, u_3^1, \ldots, u_{N_x-1}^{N_y-1}$, c'est-à-dire en balayant le maillage ligne par ligne. La matrice C_h est formée de $(N_y - 1)^2$ blocs et chaque bloc est de taille $(N_x - 1) \times (N_x - 1)$.

$$C_h = \begin{bmatrix} A & D & 0 & 0 & 0 \dots & 0 \\ D & A & D & 0 & 0 \dots & 0 \\ 0 & D & A & D & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 \dots & 0 & \dots & 0 & D & A & D \\ 0 \dots & 0 & \dots & 0 & D & A \end{bmatrix}$$

où A et D sont les matrices suivantes :

$$A = \begin{bmatrix} a & -b_1 & 0 & 0 & 0 \dots & 0 \\ -b_1 & a & -b_1 & 0 & 0 \dots & 0 \\ 0 & -b_1 & a & -b_1 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 \dots & 0 & \dots & 0 & -b_1 & a & -b_1 \\ 0 \dots & 0 & \dots & 0 & -b_1 & a \end{bmatrix}, \quad D = \begin{bmatrix} -b_2 & 0 & 0 & 0 & 0 \dots & 0 \\ 0 & -b_2 & 0 & 0 & 0 \dots & 0 \\ 0 & 0 & b_2 & 0 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 \dots & 0 & \dots & 0 & -b_2 & 0 \\ 0 \dots & 0 & \dots & 0 & 0 & -b_2 \end{bmatrix}$$

où
$$b_1 = \frac{1}{h_x^2}, \ b_2 = \frac{1}{h_y^2}, \ et \ a = 2(b_1 + b_2).$$

La matrice C_h est symétrique définie positive, monotone et il existe une constante C > 0 indépendante de h telle que $||C_h||_{\infty} \leq C$. La méthode est convergente d'ordre deux pour u de classe \mathcal{C}^4 .