Algebra

Munir Uz Zaman

Date: November 21, 2021

Contents

1	Polynomials			
	1.1	Division Algorithm	5	
	1.2	The Fundamental Theorem of Algebra	6	
	1.3	Roots of Cubic Polynomials	7	
	1.4	Lagrange Interpolation	Ć	

Polynomials

Definition 1.0.1. A Polynomial P(x) is an one variable expression or function of the form

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_0, a_1, \dots, a_n are constants and $n \in \mathbb{N}$. The constants a_i are called the *coefficients* of the polynomial. We will denote A[x] as the set of all polynomials with $a_i \in A$. If $n \neq 0$ then n is called the *degree* of the polynomial P(x) and write $\deg P(x) = n$. If $a_n = 1$ then we say that the polynomial is *monic*.

r is called a root of the polynomial P(x) if and only if P(r) = 0.

§1.1 Division Algorithm

Theorem 1.1.1 (The Division Algorithm)

Given two polynomial A(x) and B(x) there exists unique polynomials Q(x) and R(x) with deg $R(x) < \deg B(x)$ such that,

$$A(x) = Q(x)B(x) + R(x)$$

The polynomials Q(x) and R(x) are known as the *quotient* and the *remainder*, respectively. If the remainder R(x) = 0 then we say that B(x) divides A(x) and write $B(x) \mid A(x)$.

For example, if $B(x) = x^2 - x + 1$ and $A(x) = x^5 + x^3 + 2x$ then,

$$x^{5} + x^{3} + 2x = (x^{3} + x^{2} + x)(x^{2} - x + 1) + x$$

In this example, the remainder R(x) = x and the quotient $Q(x) = x^3 + x^2 + x$.

Suppose B(x) is a polynomial of degree $n \ge 1$ and let A(x) = x - z be linear polynomial. Now from Theorem 1.1.1 we know that there exists polynomials Q(x) and R(x) with deg R(x) < 1 such that,

$$B(x) = A(x)Q(x) + R(x)$$

Since $0 \le \deg R(x) < 1$, R(x) must be a constant polynomial, we can assume R(x) = r where $r \in \mathbb{R}$. Therefore,

$$B(x) = A(x)Q(x) + R(x)$$
$$= (x - z)Q(x) + r$$

Now if r = 0 then,

$$B(x) = (x - z)Q(x) \implies B(z) = 0$$

Now if B(z) = 0 that is if z is a root of the polynomial B(x) then,

$$B(z) = (z - z) Q(x) + r \implies B(z) = r \implies r = 0$$

Therefore we have proved the following theorem.

Theorem 1.1.2 (Factor Theorem)

The real number z will be a root of the polynomial P(x) if and only if P(x) is divisible by x-z.

Corollary 1.1.2.1

The number $-\frac{b}{a}$ where $a, b \in \mathbb{R}$ will be a root of the polynomial P(x) if and only if the polynomial P(x) is divisible by ax + b.

If P(x) has the root z then the Factor Theorem guarantees that there exists a polynomial $Q_0(x)$ such that,

$$P(x) = (x - z) Q_0(x)$$

Now if,

$$P(x) = (x - z)^m Q(x)$$

then we say that z is root of P(x) of multiplicity m.

§1.2 The Fundamental Theorem of Algebra

Theorem 1.2.1 (The Fundamental Theorem of Algebra)

The Fundamental Theorem of Algebra states that, every polynomial P(x) in $\mathbb{C}[x]$ has at least one root in \mathbb{C}

Corollary 1.2.1.1

If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial of degree n then,

$$P(x) = k(x - z_1)(x - z_2) \cdots (x - z_n)$$

where, $k = a_n$ and $z_i \in \mathbb{C}$. The numbers $z_1, z_2 \cdots z_n$ are not necessarily distinct.

Figure 1.1: The 4 complex roots of the polynomial $x^4 - 2x^3 + 2x^2 + 8x + 16$

§1.3 Roots of Cubic Polynomials

Finding the roots of a cubic polynomial is quite hard. So, we are going to first try to solve the cubic polynomial,

$$f(x) = x^3 + px + q$$

where $p, q \in \mathbb{R}$. Setting p = -3ab and $q = a^3 + b^3$ we get,

$$f(x) = x^3 + a^3 + b^3 - 3abx$$

Now using the formula,

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

we get,

$$f(x) = (x + a + b)(x^{2} - (a + b)x + a^{2} + b^{2} - ab)$$

Therefore the 3 roots of f are,

$$x_{1} = -a - b$$

$$x_{2}, x_{3} = \frac{a + b \pm \sqrt{a^{2} + b^{2} + 2ab - 4a^{2} - 4b^{2} + 4ab}}{2}$$

$$= \frac{a + b \pm \sqrt{-3a^{2} - 3b^{2} + 6ab}}{2}$$

$$= \frac{a + b \pm \sqrt{-3(a - b)^{2}}}{2}$$

$$= \frac{a + b \pm \sqrt{3}i(a - b)}{2}$$

$$= \frac{(1 + \sqrt{3}i)a \pm (1 - \sqrt{3}i)b}{2}$$

$$= \frac{1 + \sqrt{3}i}{2}a \pm \frac{1 - \sqrt{3}i}{2}b$$

Now we have express the root in terms of p, q that is, we have to express a, b in terms of p, q. Now,

$$q = a^{3} + b^{3}$$
$$p = -3ab$$
$$\implies a^{3}b^{3} = -\frac{p^{3}}{27}$$

Let $u = a^3$ and $v = b^3$. Notice that u and v are the roots of the quadratic polynomial,

$$P(x) = x^{2} - (u+v)x + uv = x^{2} - q^{3}x - \frac{p^{3}}{27}$$

Using the quadratic equation we get,

$$u, v = \frac{q^3 \pm \sqrt{q^6 + \frac{4}{27}p^3}}{2}$$
$$a, b = \sqrt[3]{\frac{q^3}{2} \pm \frac{\sqrt{q^6 + \frac{4}{27}p^3}}{2}}$$
$$= \sqrt[3]{\frac{q^3}{2} \pm \sqrt{\frac{q^6}{4} + \frac{p^3}{27}}}$$

So let's now try to solve the cubic equation using the results we've got so far,

$$f(x) = x^3 - x^2 - 2x + 1$$

First we have to use substitution to transform the polynomial into another polynomial of the form,

$$x^3 + px + q$$

Since every polynomial can be uniquely defined by its coefficients, we can associate or express a polynomial of degree n by a unique point in n+1 dimensional space. For example we can express the polynomial,

$$(1) \cdot x^3 + (-1) \cdot x^2 + (-2) \cdot x + (1)$$

as,

$$(1) \cdot x^3 + (-1) \cdot x^2 + (-2) \cdot x + (1) \to (1, -1, -2, 1)$$

Likewise, the point (5, -1, 0, 1) can be used to represent the polynomial,

$$(5, -1, 0, 1) \rightarrow 5x^3 - x^2 + 1$$

Notice that,

$$(x_3, x_2, \dots, x_0) + (y_3, y_2, \dots, y_0) = (x_3 + y_3, x_2 + y_2, \dots, x_0 + y_0)$$

Say that there exists a polynomial u(x) = (x + n) where $n \in \mathbb{C}$ such that,

$$x^{3} - x^{2} - 2x + 1 = u(x)^{3} + pu(x) + q$$

This equation can also be represented as,

$$(1, -1, -2, 1) = (1, 3n, 3n^2, n^3) + (0, 0, p, pn) + (0, 0, 0, q) \implies (1, -1, -2, 1) = (1, 3n, 3n^2 + p, n^3 + pn + q)$$

This gives us the system of equation,

$$3n = -1$$
$$3n^2 + p = -2$$
$$n^3 + pn + q = 1$$

Therefore,

$$n = -\frac{1}{3}$$
$$p = -\frac{7}{3}$$
$$q = \frac{7}{27}$$

Thus,

$$x^{3} - x^{2} - 2x + 1 = \left(x - \frac{1}{3}\right)^{3} - \frac{7}{3}\left(x - \frac{1}{3}\right) + \frac{7}{27} \implies f(x) = g\left(x - \frac{1}{3}\right)$$

where

$$g(x) = x^3 - \frac{7}{3}x + \frac{7}{27}$$

Now we can use the results we've proved earlier to solve the polynomial g(x). After that we add $\frac{1}{3}$ to the 3 roots of g(x). The 3 numbers we will get by adding $\frac{1}{3}$ are the 3 roots of f(x).

§1.4 Lagrange Interpolation

Theorem 1.4.1 (Lagrange Interpolation)

Let $\alpha_0, \alpha_1, \dots, \alpha_n$ be distinct real numbers and $\beta_0, \beta_1, \dots, \beta_n$ be another set of n+1 real numbers. Then there exists a unique polynomial,

$$P(x) = \sum_{i=0}^{n} \left(\prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j} \right) \beta_i$$

with deg $P(x) \le n$ such that $P(\alpha_k) = \beta_k$ for all $0 \le k \le n$.

Proof: Let,

$$D_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - \alpha_j}{\alpha_k - \alpha_j} = \frac{(x - \alpha_0)(x - \alpha_1)\cdots(x - \alpha_{k-1})(x - \alpha_{k+1})\cdots(x - \alpha_n)}{(\alpha_k - \alpha_0)(\alpha_k - \alpha_1)\cdots(\alpha_k - \alpha_{k-1})(\alpha_k - \alpha_{k+1})\cdots(\alpha_k - \alpha_n)}$$

If $x = \alpha_k$ then $D_k(x) = 1$ else if $x = \alpha_i$ where $i \neq k$ then $D_k(x) = 0$. Thus the polynomial,

$$P(x) = \sum_{k=0}^{n} D_k(x)\beta_k$$

will be equal to β_k for all $x = \alpha_k$. It is also clear that the polynomial P(x) has degree at most n since deg $D_k(x) = n$ for all $0 \le k \le n$.

Now suppose that there exists two polynomials $P_1(x)$ and $P_2(x)$, with degree at most n, such that,

$$P_1(\alpha_k) = P_2(\alpha_k) = \beta_k, \ 0 \le k \le n$$

Therefore the polynomial $Q(x) = P_1(x) - P_2(x)$ has n+1 distinct roots. But that is impossible since we know that $\deg Q(x) \leq n$ and a polynomial of degree n has at most n distinct roots. This proves that the polynomial P(x) must be unique, that is, P(x) is the only polynomial, with degree at most n, such that, $P(\alpha_k) = \beta_k$ for all $0 \leq k \leq n$

Figure 1.2: Plot of a Lagrange Polynomial

Figure 1.2 shows the Lagrange polynomial going through the points,

$$\{(1,1),(2,3),(0,-1),(5,4),(-5,-3),(4,4.5)\}$$

We can easily compute Lagrange polynomials in python using sympy.

Problem 1.4.1

Let P(x) be a polynomial of degree n such that, $P(k) = 2^k$ for all $0 \le k \le n$. Find P(n+1).

Solution: From Theorem 1.4.1 we have,

$$P(x) = \sum_{k=0}^{n} 2^k D_k(x)$$

where,

$$D_k(x) = \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{(k)(k-1)\cdots(1)(-1)(-2)\cdots(k-n+1)(k-n)}$$
$$= (-1)^{n-k} \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{k!(n-k)!}$$

Therefore,

$$P(n+1) = \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)n(n-1)\cdots(n-k+2)(n-k)(n-k-1)\cdots1}{k!(n-k)!}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)!}{k!(n-k)!(n-k+1)}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \binom{n+1}{k}$$

$$= (-1) \left(\sum_{k=0}^{n+1} \binom{n+1}{k} 2^k (-1)^{n-k+1}\right) + 2^{n+1}$$

$$= (-1) (2-1)^{n+1} + 2^{n+1}$$

$$= 2^{n+1} - 1$$

*