





# CSCS Services to support your scientific work

Pablo Fernandez CSCS User Lab Day, September 11<sup>th</sup>, 2018

#### **Service Overview**

- User Lab
  - Peer-reviewed
  - Different allocation schemas
- Computational Services for Science
  - Swiss research institutions and consortia with their own funding can take advantage of the services provided by CSCS.
  - Shared with User Lab when possible, but also dedicated
  - Individual PIs with can easily use "cscs2go"

All share the same service catalog



## **Our partners**

#### **Call for Proposals**

- User Lab
- PRACE Tier 0

#### Housing

- BlueBrain for EPFL
- Euler for ETH Zurich

#### **Hosting (dedicated systems)**

- MeteoSwiss
- Mönch Cluster for ETH Zurich (dismantling)
- Phoenix for CHIPP (new also as non dedicated system)

#### **Services on non dedicated systems**

- Empa
- ETH Zurich
  - C2SM (storage)
  - Prof. Pètros Koumoutsakos
  - Prof. Nicola Spalding
  - Prof. Matthias Troyer
- Hilti
- MARVEL
- PartnerRe
- Paul Scherrer Institute
- Swiss Data Science Center
- Università della Svizzera Italiana
- University of Geneva / CADMOS
- University of Zurich



## Pay-as-you-go – Service Highlights

- Highly standardized offering
  - Clearly defined packages with different price tags
  - Access to our service catalog
- Low entry barriers
  - Online creation of accounts and payments (goal: immediate access)
  - Inexpensive entry level package for testing
  - Reduced bureaucratic load



## http://www.cscs.ch/services/service-catalog/

ABOUT SERVICES COMPUTERS USER LAB SCIENCE PUBLICATIONS EVENTS



USER PORTAL

O v e r v i e w

Contractual Partners

Service Catalog

User Regulations

cscs2go

Services | Service Catalog

### **SERVICE CATALOG**

CATEGORIES



COMPUTE RESOURCES

#### GPU Hybrid (@Piz Daint)

Computing node-hours on a CPU/GPU hybrid partition (Cray XC50) of the Piz Daint supercomputer. This service includes access to



STORAGE RESOURCES

#### Home Directory

Every user is assigned their own home directory with sufficient storage space to store codes and documents (/home)



INTERACTION AND WORKFLOW TOOLS

#### Job Queue

Access to compute nodes is provided with the use of an integrated workload manager (Slurm). This provides traditional batch processing services





## **Service Catalog Categories**

- Compute resources
- Storage resources
- Interaction and Workflow tools

- Scientific applications
- Data Science and Machine Learning applications
- Visualization applications
- Programming environment

Helpdesk & training





## **Compute and Storage resources**

#### Consumable resources, billable

- MultiCore @ Piz Daint
- GPU Hybrid @ Piz Daint
- Manycore @ Grand Tavé
- OpenStack @ Pollux
- Cluster-on-demand @ Mythen

- Homes
- Online (+Object)
- Data Protection



## From Mönch to Mythen up to Fulen: Virtualization of Cluster Services

#### Mönch

- A cluster dedicated to research groups at ETH Zurich
- 10 rack NEC Intel-based system: 376 standard compute nodes, 40 large-memory compute nodes, 24 huge-memory compute nodes
- One physical / logical cluster





## From Mönch to Mythen up to Fulen: Virtualization of Cluster Services







## From Mönch to Mythen up to Fulen: Virtualization of Cluster Services

#### Mythen

- A physical OpenStack environment optimized for HPC applications
  - 20 compute nodes (16 CPU, 2 Big Mem, 2 GPU)
- Can be extended with different kind of compute nodes
- Mythen is not made directly available to customers but is used to create virtual clusters

#### **Fulen**

- The first "logical" cluster implemented on Mythen
  - Virtual 84 compute nodes (from 10 to 104) cores) plus additional service nodes
- Can "dynamically" grow in size depending on customers need



#### **Interaction and Workflow tools**

- Job Queue
- Containers, Docker/Shifter
- High Throughput Scheduler, Greasy
- OpenStack, infrastructure-as-a-service
- Data Transfer
- JupyterHub
- Continuous Integration



#### Interaction and Workflow tools - Data transfer

- Move datasets (>TB) around (and in/out) CSCS
  - High throughput (> GB/s)
  - Main file systems @ CSCS (/scratch/snx..., /project, /store)
- Internal transfers
  - Xfer queue
  - Can chain with jobs using SLURM dependencies
- External transfers
  - Globus Online / GridFTP



## Interaction and Workflow tools - JupyterHub

- Allows users to run their Jupyter Notebooks in a dedicated node
  - A small partition of Piz Daint is free for single-node notebooks
  - Bigger notebooks can run on the normal job queue
  - Multicore or Hybrid
- Charged against your project







## Interaction and Workflow tools – Continuous Integration



- Helps automate the non-human part of the software development process, with continuous integration and delivery
- Builds take place on the compute nodes of Piz Daint and therefore software is tested on the actual hardware/software
- For CSCS projects that need it, the PI should ask us at <a href="help@cscs.ch">help@cscs.ch</a>



**add description** 

Jenkins ▶ scs ▶

♣ Up

Status

**X** Configure

New Item

O Delete Folder

People

Build History

Project Relationship

Check File Fingerprint

🧎 Move

Open Blue Ocean

Credentials

New View

| Build Queue             | - |
|-------------------------|---|
| No builds in the queue. |   |

**Build Executor Status** 💻 master 1 Idle 2 Idle (offline) s299\_daintvm1 (offline) s577\_daintvm1



| All | +         |                          |                          |                          |               |     |
|-----|-----------|--------------------------|--------------------------|--------------------------|---------------|-----|
| s   | w         | Name ↓                   | Last Success             | Last Failure             | Last Duration | Fav |
|     |           | Test_Arbor_Demo          | 6 hr 22 min - <u>#17</u> | 1 day 21 hr - <u>#15</u> | 16 min        |     |
|     | *         | Test_Reframe_CI          | 4 days 2 hr - <u>#10</u> | 4 days 2 hr - <u>#4</u>  | 2 min 4 sec   |     |
|     |           | <u>TestDomVMFeatures</u> | 1 mo 15 days - <u>#3</u> | 1 mo 15 days - <u>#2</u> | 0.61 sec      |     |
|     | *         | <u>TestPipeline</u>      | 1 day 0 hr - <u>#19</u>  | 1 day 0 hr - <u>#14</u>  | 22 sec        |     |
|     | <u>**</u> | <u>UserLabDay</u>        | 20 hr - <u>#17</u>       | 20 hr - <u>#16</u>       | 2 min 9 sec   |     |

Icon: SML

Legend RSS for all RSS for failures RSS for just latest builds





# Okay, but what can I actually do inside the machine?

CSCS Services 16

## **Scientific applications**

- Amber
- CP2K
- CPMD
- GROMACS
- LAMMPS
- NAMD
- Python
- Quantum Espresso
- VASP
- (+libs: Trilinos, FFTW, HDF5, Blas, NetCDF)



## **Data Science and Machine Learning applications**

- Spark
- TensorFlow
- Theano
- ABCpy
- Jupyter Notebook
- Cray Graph Engine
- Dask
- Intel BigDL
- Anaconda Python & R



# **Visualization applications**

- ParaView
- VisIt
- VMD





## **Programming environment**

- Cray/Intel/GNU/PGI compilers
- DDT debugger
- CrayPat performance tool
- VI-HPS performance tool
- CUDA Toolkit
- NVIDIA SDK performance tool
- Easybuild framework



## Helpdesk & training

- We are here to help: <a href="mailto:help@cscs.ch">help@cscs.ch</a>
- Watch out for upcoming training events:
  <a href="https://www.cscs.ch/publications/tutorials/">https://www.cscs.ch/publications/tutorials/</a>

- Coming soon: User Management Portal
  - To allow PIs and users to manage their projects



#### **Discussion**

- Are you missing something from our service catalog?
- Is your scientific area well represented within our set of installed applications?
- Do you have any workflow other than just submitting a job in the queue and wait for the result? Have you tried to use the Data Transfer queue?
- Are you planning to build a mobile or web application, or a portal, that need to use HPC resources?
- Do you (plan to) use Amazon / Google / Azure cloud services? What for?









Thank you for your attention.

## **Service Catalog**

Compute Resources MultiCore, GPU Hybrid, Manycore, OpenStack, (Cluster-on-

demand)

Storage Resources Homes, Online (+Object), Data Protection

Interaction and Workflow tools Job Queue, Containers, High Throughput Scheduler, OpenStack,

Data Transfer, JupyterHub, Continuous Integration

Scientific Applications Amber, CP2K, CPMD, GROMACS, LAMMPS, NAMD, Python,

Q. Espresso, VASP (+libs: Trilinos, FFTW, HDF5, Blas, NetCDF)

Data Science & Machine Learning Spark, TensorFlow, Theano, ABCpy, Jupyter NB, CGE, Dask,

BigDL, Anaconda Python & R

Visualization ParaView, Vislt, VMD

Programming environment Cray/Intel/GNU/PGI, DDT, CrayPat, VI-HPS, NVIDIA SDK,

Easybuild

Customer/Support Services Help Desk, Training