Automatic Image Captioning with Model Benchmarking and Robustness Analysis

Team Neural Navigators

Sandeep Vetcha 22CS10079 Sathvik Pratapagiri 22CS10053 Lubesh Sharma 22CS30065

Part A - Custom Encoder-Decoder Model

Methodology

We implemented a custom image captioning model using a Transformer-based encoder-decoder architecture

Encoder: Pretrained ViT-Small-Patch16-224

Decoder: Transformer Decoder (based on GPT-style transformer blocks)

• Positional encodings were added to the decoder inputs.

Teacher forcing was applied during training.

• Training:

o Optimizer: AdamW

Loss: CrossEntropyLoss

o Batch size: Tuned to fit within 15 GB GPU limit (Colab T4)

o Epochs: 20

o Dataset: Provided image-caption dataset

Zero-Shot Baseline: SmolVLM was used without any fine-tuning, using attn_implementation='eager' to bypass compatibility issues with flash attention.

Models	BLEU Score	METEOR Score	ROUGE-L Score
SMOLVLM	0.0066	0.1299	0.0790
Custom	0.0527	0.1947	0.2385

GRAPHS

From graphs we can conclude that suitable number of epochs to run are 7 for best model

Part B – Occlusion Robustness Analysis

Methodology

Step 1: Patch-wise Occlusion

- Each image is divided into 16×16 patches, matching the patch size of the ViT encoder.
- A percentage of patches (10%, 50%, or 80%) is selected randomly and their pixel values are replaced with black (0, 0, 0).
- This simulates varying levels of information loss in a structured way

occluded_image = occlude_image(original_image, mask_percentage=50)

Step 2: Caption Generation

- For each occlusion level:
 - o Both SmolVLM (zero-shot) and Custom model (fine-tuned) generate captions.
 - The captions are compared against the ground truth using:
 - BLEU
 - ROUGE-L
 - METEOR

Step 3: Performance Degradation Analysis

For each occlusion level, compute:

Metric Degradation = Metric(after occlusion) - Metric(before occlusion)

A more robust model would show less degradation in scores.

Step 4: Data Logging for Part C

 Save the original caption, generated caption, and perturbation level (10/50/80) into a .csv file for use in training the BERT classifier.

Architecture Diagram (Descriptive Text)

You can draw the below as a flowchart or describe in the report like this:

- 1. Input Image \rightarrow Patch Splitter \rightarrow Random Patch Masking (blackout)
- 2. → Occluded Image → Captioning Model (SmolVLM / Custom)
- 3. \rightarrow Generated Caption
- 4. → Metric Evaluator (BLEU, ROUGE-L, METEOR)

Repeat for 10%, 50%, 80% occlusion levels.

SmolVLM Performance:

Occlusion %	BLEU		ROUGE-L		METEOR	
	SMOLVLM	сиѕтом	SMOLVLM	сиѕтом	SMOLVLM	сиѕтом
10%	0.0101	0.0202	0.1318	0.2124	0.0861	0.1371
50%	0.0033	0.0174	0.1031	0.2018	0.0573	0.1283
80%	0.0006	0.0141	0.0744	0.1928	0.0379	0.1203

Part C - Caption Source Classification using BERT

Methodology

Step 1: Dataset Construction

- From Part B, for each test image and occlusion level, we collected:
 - The ground truth caption
 - The model-generated caption (from both SmolVLM and Custom)
 - The occlusion level (10, 50, or 80)
- We structured the input as:

Input Text: <original_caption> <SEP> <generated_caption> <SEP><occlusion_level> Label: SmolVLM or Custom

- This dataset was saved as a .csv file and used to train the classifier.

Step 2: Model Architecture

- We used bert-base-uncased from HuggingFace as the text encoder.
- The encoder's final CLS token output is passed through a small feedforward head:
 BERT (CLS) Output → Dropout → Linear Layer (768 → 128) → ReLU → Linear Layer (128 → 2)
- Final output: Logits for binary classification ([SmolVLM, Custom])

Step 3: Training Setup

- Loss Function: CrossEntropyLoss
- Optimizer: AdamW
- Learning Rate: Tuned (default: 2e-5)
- Batch Size: 16
- Epochs: Trained until validation F1 stopped improving
- Early Stopping: Based on F1 score on validation set

Step 4: Data Splitting

- Dataset split by images (no overlap):
 - 70% Train
 - 10% Validation
 - 20% Test

Evaluation Results (Test Set)

Performance by Occlusion Level

Metric	Value
Accuracy	97.50%
Precision	97.62%
Recall	97.50%
F1 Score	97.50%

Occlusion %	Accuracy		
10%	97.33%		
50%	97.59%		
80%	97.59%		