Misura indiretta della velocità della luce

C.d.L. in Fisica, a.a. 2022-2023 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi

1 Introduzione

Lo scopo di questa esperienza è la misurazione della velocità della luce utilizzando il metodo di Focault. Questa grandezza, infatti, svolge un ruolo cruciale come costante fisica universale e la sua determinazione è stata di fondamentale importanza per la definizione delle unità di misura nel Sistema Internazionale.

1.1 Metodo

La determinazione della velocità della luce viene effettuata utilizzando il metodo di Focault: viene diretto un fascio luminoso, proveniente da una sorgente, verso uno specchio rotante che ne causa la riflessione con spostamento angolare $\Delta\omega$.

Il raggio di luce, dopo aver colpito lo specchio rotante, viene riflesso nella direzione opposta lungo la stessa traiettoria che aveva compito nel viaggio di andata. Poiché lo specchio è in rotazione, la posizione in cui il raggio colpisce lo specchio è in costante cambiamento: questo causa uno spostamento angolare tra il punto di arrivo del raggio riflesso e la posizione iniziale - misurata con specchio fermo -.

Misurando con precisione la posizione iniziale δ_i - con specchio fermo - e la finale δ_f - con specchio in movimento - si riesce a dedurre lo spostamento angolare $\Delta \delta = \delta_f - \delta_i$: questo rende possibile determinare la velocità della luce

$$c = 4f_2 D^2 \frac{(\omega - \omega_0)}{(D + a - f_2)\Delta\delta}$$

$$\tag{1.1.1}$$

dove c è la velocità della luce, f_2 è la lunghezza focale della seconda lente posta nell'apparato, D è la lunghezza del percorso compituto dal facio luminoso, ω_0 e ω sono rispettivamente la velocità angolare iniziale e finale dello specchio rotante, a è la distanza tra la seconda lente dell'apparato e lo specchio rotante e $\Delta \delta$ è lo spostamento dell'immagine nel punto di osservazione, quando la velocità angolare dello specchio rotante passa da ω_0 a ω .

2 Analisi dati

2.1 Stima degli errori

L'errore sulla stima del valore di c è frutto di due componenti: una sistematica - calcolata mediante propagazione degli errori - e una statistica - data dalla deviazione standard della media di c ottenuta per ogni coppia $\Delta\omega$ e $\Delta\delta$.

 ω e δ vengono considerate come grandezze prive di errore: questo risulta essere valutato nel calcolo della deviazione standard a loro riferito.

La formula per la determinazione di c è quella già presentata al paragrafo 1.2 (non so come mettere la reference). Da essa si ricavano le seguenti formule utilizzate per la propagazione degli errori:

$$\frac{\partial c}{\partial D} = \frac{4\Delta\omega}{\Delta\delta} \frac{Df_2(2a+D-2f_2)}{(a+D-f_2)^2}$$
(2.1.2)

$$\frac{\partial c}{\partial a} = -\frac{4\Delta\omega}{\Delta\delta} \frac{D^2 f_2}{(a+D-f_2)^2}$$
 (2.1.3)

3 Appendice

$\nu_0 [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta_0 [\mathrm{m}]$	$\nu [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta[\mathrm{m}]$
-1395	-8765.043504	8.93	1387	8714.778021	9.69
-1400	-8796.459430	8.92	1406	8834.158542	9.69
-1300	-8168.140899	8.93	1407	8840.441727	9.70
-1413	-8878.140839	8.91	1391	8739.910762	9.70
-1360	-8545.132018	8.92	1382	8683.362095	9.69
-1346	-8457.167423	8.92	1402	8809.025801	9.70
-1358	-8532.565647	8.91	1394	8758.760318	9.69
-1393	-8752.477133	8.91	1419	8915.839951	9.70
-1390	-8733.627577	8.92	1369	8601.680686	9.69
-1416	-8896.990395	8.91	1419	8915.839951	9.70
-1394	-8758.760318	8.93	1424	8947.255877	9.69
-1366	-8582.831130	8.91	1419	8915.839951	9.69
-1417	-8903.273580	8.91	1404	8821.592171	9.70
-1322	-8306.370976	8.92	1312	8243.539123	9.66
-1378	-8658.229353	8.93	1409	8853.008098	9.69
-1300	-8168.140899	8.92	1394	8758.760318	9.68
-1378	-8658.229353	8.92	1315	8262.388679	9.66
-1372	-8620.530241	8.92	1369	8601.680686	9.66
-1385	-8702.211650	8.93	1384	8695.928465	9.70
-1362	-8557.698388	8.93	1329	8350.353273	9.63
-1309	-8224.689567	8.93	1349	8476.016979	9.69
-1365	-8576.547944	8.92	1383	8689.645280	9.69
-1389	-8727.344392	8.92	1317	8274.955050	9.65
-1342	-8432.034682	8.92	1314	8256.105494	9.66
-1398	-8783.893059	8.92	1331	8362.919644	9.66
-1364	-8570.264759	8.92	1381	8677.078909	9.69
-1374	-8633.096612	8.92	1385	8702.211650	9.70
-1372	-8620.530241	8.93	1375	8639.379797	9.67
-1375	-8639.379797	8.91	1310	8230.972752	9.67
-1347	-8463.450609	8.93	1325	8325.220532	9.68

Tab. 1: Specchio in rotazione CW a frequenza iniziale massima ν_0 e in rotazione CCW a frequenza finale massima ν : misure di posizione iniziale δ_0 e finale δ dello spot luminoso

$\nu_0 [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta_0 [\mathrm{m}]$	$\nu [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta [\mathrm{m}]$
14	87.96459430	9.31	618	3883.008520	9.47
17	106.8141502	9.31	683	4291.415565	9.50
18	113.0973355	9.30	837	5259.026102	9.53
13	81.68140899	9.31	848	5328.141140	9.54
14	87.96459430	9.31	890	5592.034923	9.55
20	125.6637061	9.32	870	5466.371217	9.55
11	69.11503838	9.31	852	5353.273882	9.54
18	113.0973355	9.30	880	5529.203070	9.54
14	87.96459430	9.30	893	5610.884479	9.54
14	87.96459430	9.31	619	3889.291705	9.49
13	81.68140899	9.31	637	4002.389041	9.48
15	94.24777961	9.31	601	3776.194370	9.47
13	81.68140899	9.31	653	4102.920006	9.49
15	94.24777961	9.31	606	3807.610296	9.48
17	106.8141502	9.31	618	3883.008520	9.48

Tab. 2: Specchio in rotazione CCW, frequenza iniziale minima e frequenza finale intermedia: variazione di pulsazione $\Delta \omega$ e variazione di posizione $\Delta \delta$, e rispettiva misura indiretta della velocità della luce c

$\Delta\omega [\mathrm{rad/s}]$	$\Delta\delta[\mathrm{m}]$	c [m/s]
3795.043926	0.16	3.12288E + 08
4184.601415	0.19	2.89974E + 08
5145.928767	0.23	2.94574E + 08
5246.459731	0.23	3.00329E + 08
5504.070329	0.24	3.01947E + 08
5340.707511	0.23	3.05724E + 08
5284.158843	0.23	3.02487E + 08
5416.105735	0.24	2.97122E + 08
5522.919885	0.24	3.02981E + 08
3801.327111	0.18	2.78049E + 08
3920.707632	0.17	3.03651E + 08
3681.946590	0.16	3.02981E + 08
4021.238597	0.18	2.94134E + 08
3713.362517	0.17	2.87592E + 08
3776.194370	0.17	2.92458E + 08

Tab. 3: Specchio in rotazione CCW, frequenza iniziale minima e frequenza finale intermedia: variazione di pulsazione $\Delta \omega$ e variazione di posizione $\Delta \delta$, e rispettiva misura indiretta della velocità della luce c

$\nu_0 [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta_0[\mathrm{m}]$	$\nu [\mathrm{Hz}]$	$\omega_0 [\mathrm{rad/s}]$	$\delta[\mathrm{m}]$
-14	-87.96459430	9.31	-684	-4297.698750	9.11
-16	-100.5309649	9.29	-811	-5095.663284	9.08
-20	-125.6637061	9.29	-739	-4643.273942	9.08
-17	-106.8141502	9.29	-860	-5403.539364	9.06
-19	-119.3805208	9.29	-867	-5447.521661	9.05
-17	-106.8141502	9.29	-841	-5284.158843	9.06
-16	-100.5309649	9.29	-865	-5434.955291	9.05
-15	-94.24777961	9.29	-856	-5378.406623	9.05
-19	-119.3805208	9.28	-839	-5271.592473	9.06
-15	-94.24777961	9.28	-892	-5604.601294	9.04
-13	-81.68140899	9.29	-840	-5277.875658	9.06
-23	-144.5132621	9.29	-844	-5303.008399	9.07
-13	-81.68140899	9.29	-874	-5491.503958	9.06
-21	-131.9468915	9.30	-889	-5585.751738	9.05
-16	-100.5309649	9.29	-885	-5560.618997	9.06

Tab. 4: Specchio in rotazione CW, frequenza iniziale minima e frequenza finale intermedia: variazione di pulsazione $\Delta \omega$ e variazione di posizione $\Delta \delta$, e rispettiva misura indiretta della velocità della luce c