Versuchsbericht zu

M3 - Elaszizität

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 29.11.2017 betreut von Christian Thiede

> > 4. Dezember 2017

Inhaltsverzeichnis

1	Kurzfassung	3
2	Methoden2.1 Biegung Metallstäbe	
3	Ergebnisse und Diskussion 3.1 Beobachtung	
4	Schlussfolgerung	5

1 Kurzfassung

***Kurzfassung

Um die Elastizität verschiedener Materialien zu untersuchen, wurden zwei Experimente durchgeführt. Zunächst wurden die Auslenkungen von Stäben unter Last gemessen und daraus deren Elastizität bestimmt. Dies ließ Schlüsse auf die Art der Materialien zu. Dann wurde mithilfe verschiedener angehängter Objekte ein Torsionspendel untersucht und so der Schubmodul des Torsionsdrahtes bestimmt. Der so ermittelte Schubmodul wurde mit dem zu erwartenden Wert für das vermutete Material des Drahtes verglichen.

2 Methoden

- ***Methoden
- *** Paralaxen frei wegen spiegel *** Schwing MEsspunkt bei max. Speed

2.1 Biegung Metallstäbe

Zunächst wurde, um den Elastizitätsmodul von verschiedenen Materialien zu bestimmen, ihre Durchbiegung in Abhängigkeit von der auf sie wirkenden Kraft gemessen. Dazu wurden vier Stäbe unterschiedlichen Materials an einem Ende waagerecht eingespannt, an ihr anderes Ende fünf verschiedene Gewichte gehängt und dann die senkrechte Auslenkung dieses Endes gemessen. Dabei wurde jeweils zwischen jeder Messung die Ruhelage des Stabes ohne Gewicht neu gemessen. Parallaxenfreiheit beim Ablesen der Auslenkungsskala wurde sichergestellt, indem man so über den Stab gepeilt hat, dass die Reflexion des Stabes im Spiegel hinter dem Stab verschwindet. Dann wurden die Abmessungen der Stäbe an fünf Stellen je dreimal mit einer Mikrometerschraube gemessen. Hierdurch wird des Fehler dieser Messung sehr gering, wenn sichergestellt ist, dass kein systematischer Fehler durch eine falsche Nullposition der Mikrometerschraube existiert. Dies wurde sichergestellt, indem die Position der Mikrometerschraube im komplett zugeschraubten Zustand überprüft wurde.

2.2 Torsionspendel

Der zweite Versuch bestand darin die Schwingung eines Torsionspendels zu untersuchen, um den Schubmodul des Drahtes, an dem das Pendel aufgehängt ist zu bestimmen. Dazu wurde erst die Schwingungsdauer mit angehängter zylindrischer Scheibe gemessen und der Durchmesser des Torsionsdrahtes an fünf verschiedenen Stellen je drei mal gemessen. Dann wurde noch Höhe, Durchmesser und Masse der Scheibe bestimmt. Daraufhin wurde die Schwingung des Torsionspendel mit angehängter Hantel untersucht. Hierzu wurde zunächst die Schwingungsdauer der Hantel ohne aufgelgte Scheiben und dann mit zwei Scheiben, die sich in fünf verschiedenen Abständen vom Schwerpunkt der Hantelachse befanden, gemessen. Die Abmessungen und die Masse der Hantel sowie der Scheiben wurde ebenfalls festgestellt. Die Massen waren auf den betreffenden Teilen angegeben.

Die Länge des Torsionsdrahtes wurde ebenfalls gemessen und in allen Fällen wurde eine Anfangsauslenkung von etwa 180° verwandt.

3 Ergebnisse und Diskussion

3.1 Beobachtung

- *** linear-> Fit und Algorithmus angeben vgl. Theorie
- *** Biegungen in einen Graphen
- *** Graphen beschreiben
- *** Unsicherheitenrechnung

Daten

Abbildung 1: Biegungen verschiedener Stäbe

Tabelle 1: Parameter die beim Fitten sich ergeben

	S1 hochkant	S1 flachkant	S2	S3	S4
a in $\mathrm{cm}\mathrm{g}^{-1}$	0,004 264	0,025452	0,02	0,030 093	0,010 546 6
b in cm	0,018 586	-0,019825	$-2 \cdot 10^{-17}$	0,005370	0,013 921

Abbildung 2: Torsion eines Drahtes mit verschiedene Hanteln

Unsicherheiten

Tabelle 2: Unsicherheiten der verwendeten Messinstrumente. Die Wahrscheinlichkeitsdichtefunktionen wurden als rechteckig angenommen.

	Mikroschraube	Massband/Biegungsanzeige	Stoppuhranzeige	Reaktionszeit
u	$0,00577\mathrm{cm}$	$0.05774\mathrm{cm}$	$0,\!005774\mathrm{s}$	$0,11547\mathrm{s}$

3.2 Diskussion

*** Gewichte als exakt angenommen ***Materialien vergleich mit Literatur

4 Schlussfolgerung

***Materialien vergleich mit Literatur