Turno tarde

Comisión:

Apellido y Nombre:

Nota Final:

- 1. (15 pts.) Sea \mathbb{K} un cuerpo y $A \in M_n(\mathbb{K})$. Dar la definición del determinante de A.
- 2. Sea $a \in \mathbb{R}$ y sea P_1 el plano perpendicular a $(-1,1,a^2)$ que pasa por (0,0,-1). Sea P_2 el plano descripto en forma paramétrica por $P_2 = \{t(1,0,1) + s(0,1,a) + (0,0,-1) : t,s \in \mathbb{R}\}$. Sea P_3 el plano dado en forma implícita por $P_3 = \{(x,y,z) \in \mathbb{R}^3 : x + ay + (a-2)z = 2\}$.
 - (a) (10 pts.) Escribir la ecuación implícita del plano P_1 .
 - (b) (10 pts.) Escribir la ecuación implícita del plano P_2 .
 - (c) (5 pts.) Dar todos los valores $a \in \mathbb{R}$ para los cuales la intersección $P_1 \cap P_2 \cap P_3$ tiene exactamente un solo punto.
- 3. (15 pts.) Calcular el determinante de la siguiente matriz:

$$\left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]$$

- 4. Sea K un cuerpo. Demostrar las siguientes afirmaciones. (Sea prolijo y escriba todo de forma completa)
 - (a) (10 pts.) Si $A, B, C \in M_{m \times n}(\mathbb{K})$, entonces se cumple que A + (B + C) = (A + B) + C.
 - (b) (10 pts.) Sea $n \in \mathbb{N}$, \mathbb{K} un cuerpo y $\lambda \in \mathbb{K}$. Sea $I_{\lambda} := \lambda \cdot I_n$ con I_n la matriz identidad de tamaño $n \times n$. Demostrar que la matriz costante I_{λ} conmuta con todas las matrices de $M_n(\mathbb{K})$, es decir que se cumple que

$$A \cdot I_{\lambda} = I_{\lambda} \cdot A$$
 para toda $A \in M_n(\mathbb{K})$.

- (c) (5 pts.) Sea $A \in M_n(\mathbb{Q})$ una matriz cuadrada con coeficientes en el cuerpo de los racionales. Asumamos que existe $0 \neq V \in M_{n \times 1}(\mathbb{C})$ tal que AV = 0. Demostrar que existe $0 \neq W \in M_{n \times 1}(\mathbb{Q})$ tal que AW = 0.
- 5. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar su afirmación.
 - (a) (5 pts.) Se cumple que

$$det \begin{bmatrix} 1 & -2 & 0 & 10 & 1 \\ -1 & 1 & 0 & 0 & -1 \\ 6 & 4 & 1 & -1 & 6 \\ 1 & -2 & 0 & 10 & 1 \\ 7 & 0 & -3 & 1 & 7 \end{bmatrix} = -1$$

- (b) (5 pts.) Si \mathbb{K} es un cuerpo y $A, B \in M_n(\mathbb{K})$ son matrices tales que AB es invertible, entonces A es invertible.
- (c) (10 pts.) Existe una matriz $A \in M_n(\mathbb{K})$ invertible con 0 como autovalor.

1	2(a)	2(b)	2(c)	3	4(a)	4(b)	4(c)	5(a)	5(b)	5(c)