第二章 矩阵代数

2021年10月20日

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- ④ 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

名词与记号

- 矩阵的维数: 指的是其行数和列数
- 矩阵元素的标记: A = [a_{ii}]; (A)_{ii} = a_{ii}.
- 方阵
- 零矩阵. 对角矩阵和单位矩阵

单位矩阵的矩阵元: $(I_n)_{ii} = \delta_{ii}$, $i, j = 1, \dots, n$. 其中

$$\delta_{ij} = \left\{ \begin{array}{ll} 1, & i = j \\ 0, & i \neq j \end{array} \right.$$

对角矩阵的矩阵元: $(D)_{ii} = d_i \delta_{ii}$.

矩阵的和与标量乘法

- 矩阵的和: 只能在相同维数的矩阵之间进行
- 矩阵与数的乘法: 标量乘法
- 矩阵的和与标量乘法的运算满足关于向量空间加法与数乘的8个性质(参看教材P26)

同一数域上的所有 $m \times n$ 的矩阵亦构成了一个线性空间!

同理, $\mathbb{R}^n \to \mathbb{R}^m$ 上的所有线性变换也构成了一个线性空间.

矩阵乘法

引入:

有两个映射 $T_1: M \to N$ 和 $T_2: L \to M$,定义复合映射 $T_1 \circ T_2$ (简写为 T_1T_2): $L \to N$ 如下:

$$\vec{x} \ (\in L) \stackrel{T_2}{\longrightarrow} T_2 \ (\vec{x}) \ \ (\in M) \stackrel{T_1}{\longrightarrow} T_1 \ (T_2 \ (\vec{x})) \ \ (\in N)$$

即

$$(T_1 T_2)(\vec{x}) := T_1 ((T_2 (\vec{x})))$$

从定义出发,我们可以证明两个线性变换的复合依然是线性变换.

5 / 45

复合线性变换的矩阵表达式

下面我们讨论两个复合线性变换 T_1T_2 对应的矩阵变换 AB 的表达式,即假设 $T_1(\vec{y}) = A\vec{y}$, $T_2(\vec{x}) = B\vec{x}$, 从 $T_1T_2(\vec{x}) := (AB)\vec{x}$ 出发确定矩阵乘积 AB.

首先根据定义.

$$T_1 T_2(\vec{x}) = T_1(T_2(\vec{x})) = T_1(B\vec{x}) = A(B\vec{x}).$$

而

$$B\vec{x} = x_1 \vec{b}_1 + \dots + x_p \vec{b}_p, \Rightarrow$$

$$A(B\vec{x}) = A(x_1 \vec{b}_1) + \dots + A(x_p \vec{b}_p)$$

$$= x_1 A(\vec{b}_1) + \dots + x_p A(\vec{b}_p)$$

$$= \left[A\vec{b}_1 + \dots + A\vec{b}_p \right] \vec{x} := (AB)\vec{x},$$

即

$$AB = A \begin{bmatrix} \vec{b}_1 & \cdots & \vec{b}_p \end{bmatrix} = \begin{bmatrix} A\vec{b}_1 & \cdots & A\vec{b}_p \end{bmatrix}.$$

这就是矩阵乘法的定义.

矩阵乘法的规则

- AB 的每一列都是 A 的各列的线性组合, 以 B 的对应列的元素为权.
- AB 的每一行都是 B 的各行的线性组合, 以 A 的对应行的元素为权.
- 行列法则

$$(AB)_{ij} = \sum_{l} a_{il} b_{lj}$$

注意: A 的列数和 B 的行数要匹配.

矩阵乘法的性质

•
$$A(BC) = (AB)C$$

乘法的结合律

$$\bullet \ A(B+C) = AB + AC$$

乘法的左分配律

$$\bullet (B+C)A = BA + CA$$

乘法的右分配律

•
$$r(AB) = (rA)B = A(rB)$$
, r 是数

$$\bullet I_m A = A = AI_n$$

矩阵乘法的恒等式

示例

• 证明 A(BC) = (AB)C.

证明二:

$$\begin{array}{rcl} (A(BC))_{ij} & = & \sum_{l} a_{il} (BC)_{lj} = \sum_{l} a_{il} \left(\sum_{k} b_{lk} c_{kj} \right) \\ & = & \sum_{k} \left(\sum_{l} a_{il} b_{lk} \right) c_{kj} = \sum_{k} (AB)_{ik} c_{kj} \\ & = & ((AB)C)_{ij}. \end{array}$$

证明 I_mA = A.

证明:

$$(I_mA)_{ij}=\sum_k(I_m)_{ik}a_{kj}=\sum_k\delta_{ik}a_{kj}=a_{ij}=(A)_{ij}.$$

• 矩阵的乘幂

$$A^k := \underbrace{A \cdots A}_k$$

• 矩阵的转置

$$\left(A^{T}\right)_{ij}:=(A)_{ji}\equiv a_{ji}$$

- 对称矩阵与反对称矩阵
 - 对称矩阵: $A^T = A$, 即 $a_{ij} = a_{ji}$;
 - 反对称矩阵: $A^T = -A$, 即 $a_{ij} = -a_{ji}$.

• 矩阵转置的性质 (定理 3)

1
$$(A^T)^T = A$$

2 $(A+B)^T = A^T + B^T$

$$(rA)^T = rA^T$$

$$(AB)^T = B^T A^T$$

示例

• 证明 $(A^T)^T = A$.

证明:

$$((A^T)^T)_{ij} = (A^T)_{ji} = a_{ij} = (A)_{ij}.$$

• 证明 $(AB)^T = B^T A^T$.

证明:

HTL

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- ④ 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

矩阵可逆的定义

初始版:

定义

对于一个 $m \times n$ 的矩阵 A, 如果存在 $n \times m$ 的矩阵 C 和 D, 使得

$$CA = I_n$$
 \nearrow $AD = I_m$,

我们就说 A 是可逆的.

我们可以证明, 根据上面的定义, 对于有限维的矩阵 A, 如果其可逆, 则 A 应当是方阵, 且有 C = D.

简化版:

定义

对于一个 $n \times n$ 的矩阵 A, 如果存在一个 $n \times n$ 的矩阵 C, 使得

$$CA = I_n$$
 \nearrow $AC = I_n$,

我们就说 A 是可逆的. 其可逆矩阵记为 A^{-1} .

实际上, 我们可以证明, 对于 $n \times n$ 的矩阵 A, 如果存在一个 $n \times n$ 的矩 阵 C, 使得 $CA = I_n$, 则必有 $AC = I_n$ (参看教材 2.3 节可逆矩阵的特征).

可逆变换与可逆矩阵

定义

我们称一个变换 $T: A \rightarrow B$ 是可逆的, 若当存在变换 $G: B \rightarrow A$, 能够 使得 $GT = 1_A$ 以及 $TG = 1_B$.

注: 1A和1B分别是集合A和B上的恒等变换.

- 变换 T 可逆的充要条件是 T 是双射, 即 T 既是满射又是单射.
- 若 T 是有限维空间上的线性变换, $T(\vec{x}) = A\vec{x}$, 则 T 可逆当且仅当矩阵 A 可逆.

◆□▶◆圖▶◆臺▶◆臺▶

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- ④ 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

可逆矩阵的一些等价陈述

- 一个 $n \times n$ 的矩阵 A 可逆, 当且仅当
 - A 的各行各列都有主元.
 - A 有 n 个主元.
 - A 的各列线性无关.
 - $A\vec{x} = \vec{0}$ 只有平凡解.
 - 对于 $\forall \vec{b} \in \mathbb{R}^n$, $A\vec{x} = \vec{b}$ 都有唯一解.
 - *A* 等价于 *n*×*n* 的单位矩阵 *I_n*.
 - A 的各列生成 ℝⁿ.
 - 存在 n×n矩阵 C 使 CA = I.
 - 存在 n×n 矩阵 D 使 AD = I.
 - · · ·

可逆矩阵的运算性质

若 A (和 B) 可逆,

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$ (可逆矩阵的乘积也是可逆的)
- A^T 可逆, 且 $(A^T)^{-1} = (A^{-1})^T$

示例

● 2×2 矩阵的逆矩阵

设
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, 则 A 可逆当且仅当 $ad - bc \neq 0$, 且

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

● 上 (下) 三角矩阵可逆的条件

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- 4 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

初等矩阵

定义

把单位矩阵进行一次初等行变换后所得到的矩阵称为初等矩阵.

- 初等矩阵都是可逆的.
- 对矩阵 A 进行某种初等行变换可以写成 EA 两个矩阵相乘的形式, 其中 E 是对应的初等矩阵.

初等行变换求逆

如果 $n \times n$ 的矩阵 A 是可逆的, 则把矩阵 A 变为单位矩阵 I_n 的一系列 初等行变换将把 I_n 变成 A^{-1} .

线性代数 1

因为如果
$$(E_p \cdots E_1) A = I_n$$
, 则有 $(E_p \cdots E_1) I_n = A^{-1}$.

算法:

把增广矩阵 $[A\ I]$ 进行行化简. 若 A 可逆, 则 $[A\ I] \rightarrow [I\ A^{-1}]$.

< □ > <□ > < □ > < 글 > < 글 > 글|= :

逆矩阵与求解线性方程组

设矩阵
$$A$$
 可逆, $A^{-1} = \left[\vec{b}_1 \ \cdots \vec{b}_n \right]$, 则

$$AA^{-1} = \begin{bmatrix} A\vec{b}_1 & \cdots & A\vec{b}_n \end{bmatrix} = I_n = \begin{bmatrix} \vec{e}_1 & \cdots & \vec{e}_n \end{bmatrix}.$$

即逆矩阵 A^{-1} 的第 j 列满足方程 $A\vec{x} = \vec{e}_{j}$.

逆矩阵与求解线性方程组

设矩阵 A 可逆, $A^{-1} = \begin{bmatrix} \vec{b}_1 & \cdots \vec{b}_n \end{bmatrix}$, 则

$$AA^{-1} = \begin{bmatrix} A\vec{b}_1 & \cdots & A\vec{b}_n \end{bmatrix} = I_n = \begin{bmatrix} \vec{e}_1 & \cdots & \vec{e}_n \end{bmatrix}.$$

即逆矩阵 A^{-1} 的第 j 列满足方程 $A\vec{x} = \vec{e}_j$.

问题:设 A 为可逆 $n \times n$ 的矩阵, B 为 $n \times p$ 矩阵, 求 $A^{-1}B$.

解答:

$$[A \ B] \rightarrow [I \ X],$$

则 $X = A^{-1}B$.

HTL

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- ④ 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

分块矩阵的运算

- 加法和标量乘法
- 乘法

分块矩阵的乘法,如 AB 可以按照通常的行列法则进行,只要A 的列的分法和B 的行的分法一致.如

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix}.$$

∢ロト→御ト→恵ト→恵ト 連門 ※

列行法则

矩阵乘法的列行展开法则:

若 $A \in m \times n$ 矩阵, $B \in n \times p$ 矩阵, 则

$$AB = \begin{bmatrix} \operatorname{col}_{1}(A) & \operatorname{col}_{2}(A) & \cdots & \operatorname{col}_{n}(A) \end{bmatrix} \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$
$$= \operatorname{col}_{1}(A)\operatorname{row}_{1}(B) + \cdots + \operatorname{col}_{n}(A)\operatorname{row}_{n}(B).$$

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- ④ 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

\mathbb{R}^n 的子空间

定义

集合 $H \subset \mathbb{R}^n$, $H \in \mathbb{R}^n$ 的一个线性子空间, 要求

- $0 \vec{0} \in H;$
- ② H 中的向量对加法和数乘运算封闭. 即 $\forall \vec{u}, \vec{v} \in H, \vec{u} + \vec{v} \in H;$ $\forall \vec{u} \in H$ 和数 $c, c\vec{u} \in H$.

\mathbb{R}^n 的子空间

定义

集合 $H \subset \mathbb{R}^n$, $H \in \mathbb{R}^n$ 的一个线性子空间, 要求

- $0 \vec{0} \in H;$
- ② H 中的向量对加法和数乘运算封闭. 即 $\forall \vec{u}, \vec{v} \in H, \vec{u} + \vec{v} \in H;$ $\forall \vec{u} \in H$ 和数 $c, c\vec{u} \in H.$

子空间示例: 矩阵的列空间与零空间

对于矩阵 $A_{m\times n} = [\vec{a}_1 \cdots \vec{a}_n],$

- A 的列空间 $\operatorname{Col} A := \operatorname{Span} \{\vec{a}_1, \cdots, \vec{a}_n\} \subset \mathbb{R}^m$.
- A 的零空间 $\operatorname{Nul} A := \left\{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \right\} \subset \mathbb{R}^n.$

20./45

线性空间的基

动机: 研究能够生成线性空间 H 所必需的最小的向量集合.

每一个这样的向量组我们称为 H 的一个基.

对干给定的 H. 我们有

- 这个向量组必定是线性无关的.
- 基的选取不是唯一的.
- 每个基所包含的向量个数是一样的.

HTL 线性代数 I

关于第 3 点的证明

引理

有向量组 $\{\vec{a}_1, \dots, \vec{a}_q\}$ (记为 α -向量组) 和 $\{\vec{b}_1, \dots, \vec{b}_p\}$ (记为 β -向量组), 若 $\alpha \subset \operatorname{Span}\{\beta\}$, 即 α -向量组能被 β -向量组线性表出, 且 q > p, 则 α -向量组必线性相关.

证明:

$$[\vec{a}_1 \ \cdots \ \vec{a}_q] = \begin{bmatrix} \vec{b}_1 \ \cdots \ \vec{b}_p \end{bmatrix} \begin{bmatrix} c_{11} & \cdots & c_{1q} \ c_{21} & \cdots & c_{2q} \ \vdots & \cdots & \vdots \ c_{p1} & \cdots & c_{pq} \end{bmatrix} := \begin{bmatrix} \vec{b}_1 \ \cdots \ \vec{b}_p \end{bmatrix} C_{p imes q}$$

因为 q > p, 则 $\exists \vec{u} (\neq \vec{0}) \in \mathbb{R}^q$, 使得 $C\vec{u} = \vec{0}$. 因此有 $[\vec{a}_1 \cdots \vec{a}_q] \vec{u} = \vec{0}$, 即 α 线性相关.

线性代数 |

32 / 45

线性空间的维数

从引理出发, 我们可以很容易推出, 对于线性空间 H 的任意两个基, 它们所包含的向量数目是一样的. 这个数目我们就定义为线性空间 H 的维数, 记为 $\dim H$.

示例

• 列空间 Col A:

矩阵 A 的主元列构成了 Col A 的一个基;

 $\dim \operatorname{Col} A$ (:= rank A) = {A 的主元列的数目}. (提示: 两个矩阵 A, B (行) 等价 (记为 $A \sim B$) 则意味着 A 和 B 的列具有相同的线性关系)

• 零空间 Nul A:

 $\dim \operatorname{Nul} A = \{A$ 的自由变量的数目 $\}$.

一些定理

- 秩定理: 对于 m×n 的矩阵 A, rank A + dim Nul A = n
 即 基本变量数目 + 自由变量数目 = (系数) 矩阵的列数
- 若 $\dim H = p$, 有向量组 $\{\vec{a}_1, \dots, \vec{a}_q\} \in H$ 且 q > p, 则该向量组必 线性相关. (回忆前述引理及第一章中的定理 8)
- 基定理: 若 $\dim H = p$, 则 H 中任意一个由 p 个线性无关的向量组成的向量组便构成了 H 的一个基.

关于可逆矩阵 (续)

有矩阵 $A_{n\times n}$, A 可逆当且仅当

- $\operatorname{rank} A (= \operatorname{dim} \operatorname{Col} A) = n$
- $\dim \operatorname{Nul} A = 0$
- $\operatorname{Col} A = \mathbb{R}^n$
- . . .

示例 |

• 设有向量组 $\alpha = \{\vec{a}_i, i = 1, \cdots, 5\}$, 其中 $\vec{a}_1 = (1, -1, 2, 4)$, $\vec{a}_2 = (0, 3, 1, 2)$, $\vec{a}_3 = (3, 0, 7, 14)$, $\vec{a}_4 = (1, -2, 2, 0)$, $\vec{a}_5 = (2, 1, 5, 10)$. 求该向量组的一个极大线性无关组,并将其余向量表示为该极大线性无关组的线性组合.

答: 考虑矩阵 $A = [\vec{a}_1 \cdots \vec{a}_5]$, 则 Col A 的一组基为 $\{\vec{a}_1, \vec{a}_2, \vec{a}_4\}$ (此即为 α -向量组的一个极大线性无关组), 而 $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$, $\vec{a}_5 = 2\vec{a}_1 + \vec{a}_2$.

示例Ⅱ

• 设 A, B 分别为 $m \times n$, $n \times p$ 矩阵, 且 AB = 0. 则 $\operatorname{rank} A + \operatorname{rank} B$? 答: $\operatorname{rank} A + \operatorname{rank} B \le n$ (提示: 秩定理)

内容

- 1 矩阵运算
- ② 矩阵的逆
- ③ 可逆矩阵的性质
- 4 初等行变换求矩阵的逆
- 5 分块矩阵
- 6 子空间,基与维数
- ② 坐标向量

向量用基展开

有线性空间 H, $\dim H = p$, 设 $\beta = \{\vec{b}_1, \dots, \vec{b}_p\}$ 是 H 的一个基, 则 $\forall \vec{x} \in H$ 都可以用 β -基展开:

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_p \vec{b}_p = \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_p \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_p \end{bmatrix} \vec{c}.$$

可以证明, 对于给定的基展开式是唯一的.

向量用基展开

有线性空间 H, $\dim H = p$, 设 $\beta = \{\vec{b}_1, \dots, \vec{b}_p\}$ 是 H 的一个基, 则 $\forall \vec{x} \in H$ 都可以用 β -基展开:

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_p \vec{b}_p = \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_p \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_p \end{bmatrix} \vec{c}.$$

可以证明, 对于给定的基展开式是唯一的.

定义

我们称 $\vec{c} \in \mathbb{R}^p$ 是 H 中的 \vec{x} 相对于 β -基的坐标向量, 或 \vec{x} 的 β -坐标向量, 记为 $[\vec{x}]_\beta$.

HTL 线性代数 I

线性空间的同构映射

上面给出的 $\vec{x} \mapsto [\vec{x}]_{\beta}$ 的对应,即 $\vec{x} = \begin{bmatrix} \vec{b}_1 & \cdots & \vec{b}_p \end{bmatrix} [\vec{x}]_{\beta}$,定义了一个映射 $\beta: H \to \mathbb{R}^p$.

- β 是双射.
- β 是线性变换. 因为

$$\begin{split} \beta\left(\vec{x}+\vec{y}\right) &= \left[\vec{x}+\vec{y}\right]_{\beta} = \left[\vec{x}\right]_{\beta} + \left[\vec{y}\right]_{\beta} = \beta\left(\vec{x}\right) + \beta\left(\vec{y}\right), \\ \beta\left(c\vec{x}\right) &= \left[c\vec{x}\right]_{\beta} = c\left[\vec{x}\right]_{\beta} = c\beta\left(\vec{x}\right). \end{split}$$

我们称这样的映射为线性空间的同构映射.

在这里, 我们可以看到 $H \cong \mathbb{R}^p$, 即 $H \to \mathbb{R}^p$ 同构.

◆□▶ ◆률▶ ◆혈▶ ▲ 臺灣

事实上我们有

定理

在实数域上的任意一个 n 维线性空间均同构于 \mathbb{R}^n .

41 / 45

示例I

有向量
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$
,

- 考虑基 $\beta_1 = \{\vec{e}_1, \vec{e}_2\}$, 则 $[\vec{x}]_{\beta_1} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- 考虑基 $\beta_2 = \{\vec{a}_1, \vec{a}_2\}$, 其中 $\vec{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{a}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. 求 $[\vec{x}]_{\beta_2}$?

示例Ⅱ

设向量
$$\vec{x}$$
 属于一个基为 $\beta = \{\vec{b}_1, \vec{b}_2\}$ 的子空间 H , 其中 $\vec{b}_1 = \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix}$

$$\vec{b}_2 = \begin{bmatrix} -2\\-7\\5 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} 2\\9\\-7 \end{bmatrix}.$$

- dim H=2.
- $\bullet \ [\vec{\mathsf{x}}]_\beta = \begin{vmatrix} 4 \\ 1 \end{vmatrix}.$

HTL

本章作业

- 2.1 节: 3, 7, 11, 15, 21, 29
- 2.2 节: 5, 9, 15, 23, 37
- 2.3 节: 9, 17, 23, 27, 35
- 2.4 节: 5, 11, 17, 21
- 2.8 节: 3, 9, 17, 33
- 2.9 节: 3, 11, 15, 27

课堂练习

- 2.1 节: 5, 23, 33
- 2.2 节: 3, 11, 35
- 2.3 节: 7, 37, 39
- 2.4 节: 7, 23, 25
- 2.8 节: 7, 21, 25
- 2.9 节: 7, 17, 19

