experimentId	experimentName	noOfSteps	aim	requiredApparatuss
1	Chemical Reaction		To study the reaction kinetics	Beakers, Bunsen burner, Thermometer
2	Electrical Circuit Analysis		To analyze circuit behavior	Multimeter, Breadboard, Resistors
3	Microbiology Culture	6	To cultivate microorganisms	Petri dishes, Agar, Incubator
	Genetic Sequencing	10	To sequence DNA	PCR machine, DNA sequencer, Primers
	Physics Pendulum Experiment		To study pendulum motion	String, Weight, Stopwatch
	Acid-Base Titration		To determine concentration	Burette, Pipette, Indicator
7	Plant Growth Observation		To monitor plant growth	Pots, Soil, Watering can
8	Density Measurement	5	To measure density of substances	Graduated cylinder, Balance
	Magnetic Field Mapping		To map magnetic field lines	Compass, Magnetic probes
	Heat Transfer Experiment	7	To study heat conduction	Heat source, Thermocouples
11	Chemical Synthesis	4	To synthesize organic compounds	Round-bottom flask, Condenser
12	Solar Cell Efficiency	5	To measure solar cell efficiency	Solar simulator, Current-voltage meter
13	Reaction Rate Determination	6	To determine reaction rates	Reaction vessel, Spectrophotometer
14	Bacterial Staining	4	To stain bacteria for microscopy	Crystal violet, Safranin
15	Electroplating Process	6	To electroplate metal objects	Electrolyte, Power supply
16	Optical Fiber Communication	8	To transmit data using optical fibers	Optical transmitter, Receiver

exptl d	description	stepN o	video
	Measure and pour the reactants into the beaker	_	http://localhost/chemlab/Main.mp4
	Heat the mixture using a Bunsen burner		http://localhost/chemlab/Main.mp4
	Record the temperature every 30 seconds		http://localhost/chemlab/Main.mp4
	Analyze the reaction products		http://localhost/chemlab/Main.mp4
	Calculate the reaction rate		http://localhost/chemlab/Main.mp4
	Design the circuit diagram		http://localhost/chemlab/Main.mp4
	Connect components on the breadboard		http://localhost/chemlab/Main.mp4
	Apply voltage and measure current		http://localhost/chemlab/Main.mp4
	Record voltage and current values in a table		http://localhost/chemlab/Main.mp4
	Calculate total resistance and power		http://localhost/chemlab/Main.mp4
	Analyze circuit behavior using Ohms Law		http://localhost/chemlab/Main.mp4
	Draw voltage and current waveforms		http://localhost/chemlab/Main.mp4
	Summarize circuit analysis findings		http://localhost/chemlab/Main.mp4
3	Prepare the growth medium	1	http://localhost/chemlab/Main.mp4
3	Inoculate the microorganisms onto the agar	2	http://localhost/chemlab/Main.mp4
	Incubate the Petri dishes at the appropriate temperature		http://localhost/chemlab/Main.mp4
	Observe and document the colony growth		http://localhost/chemlab/Main.mp4
	Perform Gram staining to determine cell type		http://localhost/chemlab/Main.mp4
	Identify and classify the microorganisms		http://localhost/chemlab/Main.mp4
	Extract DNA from the sample		http://localhost/chemlab/Main.mp4
	Set up the PCR reaction with appropriate primers		http://localhost/chemlab/Main.mp4
	Run the PCR cycles in a thermal cycler		http://localhost/chemlab/Main.mp4
	Prepare the DNA sequencing reaction		http://localhost/chemlab/Main.mp4
	Load the sample into the DNA sequencer		http://localhost/chemlab/Main.mp4
	Analyze and interpret the DNA sequencing results		http://localhost/chemlab/Main.mp4
	Generate a DNA sequence report		http://localhost/chemlab/Main.mp4
	Perform sequence alignment and comparison		http://localhost/chemlab/Main.mp4
	Identify genetic variations and mutations		http://localhost/chemlab/Main.mp4
4	Draw conclusions about the DNA sequence	10	http://localhost/chemlab/Main.mp4
5	Set up a pendulum with a string and weight	1	http://localhost/chemlab/Main.mp4
	Release the pendulum from a fixed angle		http://localhost/chemlab/Main.mp4
	Measure the time period of the pendulum		http://localhost/chemlab/Main.mp4
	Repeat the measurements for different lengths		http://localhost/chemlab/Main.mp4
	Prepare the standard solutions of acid and base		http://localhost/chemlab/Main.mp4
	Fill the burette with one of the solutions		http://localhost/chemlab/Main.mp4
	Add the solution gradually to the flask		http://localhost/chemlab/Main.mp4
	· .		http://localhost/chemlab/Main.mp4
	Record the volume at the equivalence point		
	Calculate the concentration of the unknown solution		http://localhost/chemlab/Main.mp4
	Repeat the titration for accuracy		http://localhost/chemlab/Main.mp4
	Plant the seeds in the pots with soil		http://localhost/chemlab/Main.mp4
	Water the plants regularly		http://localhost/chemlab/Main.mp4
	Observe and record the plant growth		http://localhost/chemlab/Main.mp4
	Measure the mass of the substance		http://localhost/chemlab/Main.mp4
	Fill the graduated cylinder with a known volume of water		http://localhost/chemlab/Main.mp4
8	Carefully add the substance to the cylinder	3	http://localhost/chemlab/Main.mp4
	Record the new water volume		http://localhost/chemlab/Main.mp4
	Calculate the density using the mass and volume		http://localhost/chemlab/Main.mp4
	Place the compass near the magnetic field source		http://localhost/chemlab/Main.mp4
	Note the direction of the compass needle		http://localhost/chemlab/Main.mp4
	Move the compass to different locations		http://localhost/chemlab/Main.mp4
	Plot the magnetic field lines on a map		http://localhost/chemlab/Main.mp4
	Use magnetic probes to measure the field strength		http://localhost/chemlab/Main.mp4
	Analyze and interpret the magnetic field data		http://localhost/chemlab/Main.mp4
	Prepare the heat source		http://localhost/chemlab/Main.mp4
	Connect the thermocouples to the objects		http://localhost/chemlab/Main.mp4
	Measure and record the initial temperatures		http://localhost/chemlab/Main.mp4
	Apply heat and monitor the temperature changes		http://localhost/chemlab/Main.mp4
	Record the final temperatures		http://localhost/chemlab/Main.mp4
	Calculate the rate of heat transfer		http://localhost/chemlab/Main.mp4
	Analyze the results and draw conclusions		http://localhost/chemlab/Main.mp4
	Set up the round-bottom flask and condenser		http://localhost/chemlab/Main.mp4
	Add the reactants and catalyst to the flask		
			http://localhost/chemlab/Main.mp4
	Heat the mixture and monitor the reaction		http://localhost/chemlab/Main.mp4
	Cool the reaction and extract the product		http://localhost/chemlab/Main.mp4
	Set up the solar cell in a controlled environment		http://localhost/chemlab/Main.mp4
12	Measure and record the incident light intensity	2	http://localhost/chemlab/Main.mp4
	Measure and record the current-voltage characteristics		http://localhost/chemlab/Main.mp4
	Calculate the efficiency of the solar cell		http://localhost/chemlab/Main.mp4
17			12.1,1.2.2
	Repeat the measurements for different conditions	5	http://localhost/chemlak/Main.mp4

Database: experiment, Table: experiment_steps, Purpose: Dumping data

exptl	description	stepN	video
d		0	
13	13 Prepare the reaction vessel and reagents		http://localhost/chemlab/Main.mp4
13	13 Initiate the reaction and start the timer		http://localhost/chemlab/Main.mp4
13	Measure the absorbance at regular intervals	3	http://localhost/chemlab/Main.mp4
13	Plot a graph of absorbance versus time	4	http://localhost/chemlab/Main.mp4
13	Determine the reaction rate from the graph	5	http://localhost/chemlab/Main.mp4
13	Analyze factors affecting the reaction rate	6	http://localhost/chemlab/Main.mp4
14	Prepare the bacterial smear on a slide	1	http://localhost/chemlab/Main.mp4
14	Stain the bacteria with crystal violet	2	http://localhost/chemlab/Main.mp4
14	Wash and decolorize the slide	3	http://localhost/chemlab/Main.mp4
14	Counterstain the bacteria with safranin	4	http://localhost/chemlab/Main.mp4
15	Prepare the electrolyte solution	1	http://localhost/chemlab/Main.mp4
15	Connect the object to be electroplated	2	http://localhost/chemlab/Main.mp4
15	Immerse the object and apply current	3	http://localhost/chemlab/Main.mp4
15	Monitor the electroplating process	4	http://localhost/chemlab/Main.mp4
16	Set up the optical transmitter	1	http://localhost/chemlab/Main.mp4
16	Connect the optical fibers	2	http://localhost/chemlab/Main.mp4
16	Transmit data through the fibers	3	http://localhost/chemlab/Main.mp4
16	Receive and decode the transmitted data	4	http://localhost/chemlab/Main.mp4
16	Analyze the data transmission quality	5	http://localhost/chemlab/Main.mp4
16	Optimize the system for better performance	6	http://localhost/chemlab/Main.mp4
16	Summarize the findings and conclusions	7	http://localhost/chemlab/Main.mp4

Database: experiment, Table: users, Purpose: Dumping data

userId	name	designation	password
LAB001	Meena Sundaram	Lab Assistant	lab123
LAB002	Suresh Raman	Junior Lab Assistant	lab456
LAB003	Priya Nair	Senior Lab Assistant	lab789
LAB004	Karthik Rajendran	Lab Technician	lab012
LAB005	Nithya Balaji	Lab Supervisor	lab345
STU001	Arjun Sharma	Student	student123
STU002	Divya Menon	Student	student456
STU003	Rahul Kapoor	Student	student789
STU004	Ananya Nair	Student	student012
STU005	Kiran Rajendran	Student	student345
TCH001	Rajesh Kumar	Professor	teacher123
TCH002	Deepika Sharma	Assistant Professor	teacher456
TCH003	Sanjay Verma	Lecturer	teacher789
TCH004	Sneha Rajan	Associate Professor	teacher012
TCH005	Aruna Menon	Senior Lecturer	teacher345