1

ph-2011-14 to 26

AI24BTECH11020 - Rishika

- 14) If L_x, L_y and L_z are respectively the x, y and z components of angular momentum operator L, the commutator $[L_xL_y, L_z]$ is equal to
 - a) $i\hbar \left(L_x^2 + L_y^2\right)$ b) $2i\hbar L_z$

 - c) $i\hbar \left(L_x^2 L_y^2\right)$
- 15) The normalized ground state wavefunction of a hydrogen atom is given by $\psi(r) = \frac{1}{\sqrt{4\pi}} \frac{2}{a^{3/2}} e^{\frac{-r}{a}}$, where a is the Bohr radius and r is the distance of the electron from the nucleus, located at the origin. The expectation value $\left\langle \frac{1}{r^2} \right\rangle$ is

 - a) $\frac{8\pi}{q^2}$ b) $\frac{4\pi}{a^2}$ c) $\frac{4}{a^2}$ d) $\frac{2}{a^2}$
- 16) Two charges q and 2q are placed along the x-axis in front of a grounded, infinite conducting plane, as shown in the figure. They are located respectively at a distance of 0.5m and 1.5m from the plane. The force acting on the charge q is

- 17) A uniform surface current is flowing in the positive y-direction over an infinite sheet lying in x yplane. The direction of the magnetic field is
 - a) along \hat{i} for z > 0 and along $-\hat{i}$ for z < 0
 - b) along \hat{k} for z > 0 and along $-\hat{k}$ for z < 0
 - c) along -i for z > 0 and along i for z < 0
 - d) along $-\hat{k}$ for z > 0 and along \hat{k} for z < 0
- 18) A magnetic dipole of dipole moment m is placed in a non-uniform magnetic field B. If the position vector of the dipole is r, the torque acting on the dipole about the origin is
 - a) $r \times (m \times B)$
 - b) $r \times \nabla (m \cdot B)$

- c) $m \times B$
- d) $m \times B + r \times \nabla (m \cdot B)$
- 19) Which of the following expressions for a vector potential A DOES NOT represent a uniform magnetic field of magnitude B_0 along the z-direction?
 - a) $A = (0, B_0 x, 0)$
 - b) $A = (-B_0 y, 0, 0)$

 - c) $A = (\frac{B_0 x}{2}, \frac{B_0 y}{2}, 0)$ d) $A = (-\frac{B_0 y}{2}, \frac{B_0 x}{2}, 0)$
- 20) A neutron passing through a detector is detected because of
 - a) the ionization it produces
 - b) the scintillation light it produces
 - c) the electron hole pairs it produces
 - d) the secondary particles produced in a nuclear reaction in the detector medium
- 21) An atom with one outer electron having orbital angular momentum l is placed in a weak magnetic field. The number of energy levels into which the higher total angular momentum state splits, is
 - a) 2l + 2
 - b) 2l + 1
 - c) 2*l*
 - d) 2l 1
- 22) For a multi-electron atom, l, L and S specify the one-electron orbital angular momentum, total orbital angular momentum and total spin angular momentum, respectively. The selection rules for electric dipole transition between the two electronic energy levels, specified by l, L and S are
 - a) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta l = 0, \pm 1$
 - b) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta l = \pm 1$
 - c) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta l = 0, \pm 1$
 - d) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta l = \pm 1$
- 23) For a three-dimensional crystal having N primitive unit cells with a basis of p atoms, the number of optical branches is
 - a) 3
 - b) 3*p*
 - c) 3p 3
 - d) 3N 3p
- 24) For an intrinsic semiconductor, m_e^* and m_h^* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature, the position of the Fermi level
 - a) depends on m_e^* but not on m_h^*
 - b) depends on m_h^* but not on m_e^*
 - c) depends on both m_e^* and m_h^*
 - d) depends neither on m_e^* nor on m_h^*
- 25) In the following circuit, the voltage across and the current through the $2K\Omega$ resistance are

- a) 20*V*, 10*mA*
- b) 20*V*, 5*mA*
- c) 10V, 10mA
- d) 10V, 5mA

I. Q.26 to Q.55 carry two marks each.

- 26) The unit vector normal to the surface $x^2 + y^2 z = 1$ at the point $\mathbf{P}(1, 1, 1)$ is
 - a) $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{2}}$
 - b) $\frac{2\hat{i}+\hat{j}-\hat{k}}{\sqrt{6}}$
 - c) $\frac{\hat{i}+2\hat{j}-\hat{k}}{\sqrt{6}}$
 - d) $\frac{2\hat{i}+2\hat{j}-\hat{k}}{3}$