Problemi di ottimizzazione ricerca operativa

- insieme all'ottimizzazione combinatoria hanno come oggetto lo studio di metodologie al supporto di decisioni
- i problemi riguardano situazioni in cui serva massimizzare ricavi e profitti o minimizzare costi e perdite, in presenza di risorse limitate

processo decisionale

- fasi:
 - o individuazione del problema
 - raccolta dati
 - o costruzione modello
 - o determinazione di soluzioni
 - o analisi dei risultati
- ricerca operativa e ottimizzazione combinatoria si occupano delle fasi 3 e 4
- o richiedono l'impiego del linguaggio e degli strumenti di informatica e matematica modello
 - descrizione astratta e scritta con strumenti di tipo logico-matematico della parte di realtà utile al processo decisionale
 - tipi:
 - o basato sui giochi: la ricerca di una soluzione è risultante dall'interazione tra due o più agenti
 - o di simulazione: il problema si studia riproducendo il comportamneto del sistema
 - analitico: il problema viene descritto attraverso un relazioni matematiche (o logiche) il più possibile fedeli alla situazione reale ma astratto abbastanza da permetterne la determinazione di una soluzione analitica

problema (P)

- domanda la cui risposta dipende da un numero di parametri e variabili
- descritto tramite la descrizione di: parametri (in generale indeterminati) e variabili, caratteristiche che le soluzioni devono avere
- definito dall'insieme F delle possibili soluzioni (insieme ammissibile, i cui parametri sono soluzioni ammissibili)
- può essere specificato anche con un insieme F' | F cont F' e dai vincoli che gli elementi di F devono soddisfare
 - o gli elementi di F' \ F sono soluzioni non ammissibili
- istanza del problema: domanda ottenuta specificando dei valori concreti per tutti i parametri del problema
- la soluzione di un problema è in realtà sempre la soluzione della sua rappresentazione
- il modello è una descrizione limitata della realtà ma accurata negli aspetti che necessitiamo per la risoluzione del problema

descrizione di problemi

- soluzioni ammissibili (insieme Fp):
 - \circ specificato dando $G \supseteq Fp$ e descrivendo dei vincoli che un generico g appartenente G deve soddisfare per far parte di Fp
 - ∘ G Fp sono le soluzioni non ammissibili

problemi di ottimizzazione

- P viene descritto:
 - o dando l'insieme Fp
 - o specificando una funzione obiettivo cp : Fp a R che misuri costo o beneficio di ogni soluzione ammissibile
- un problema di minimo P consiste nel determinare il valore $Zp = min\{cp(g)|g \in Fp\}$

- un problema di massimo P consiste nel determinare il valore $Zp = \max\{cp(g)|g \in Fp\}$
 - o ad ogni problema di massimo P ne corrisponde uno di minimo P' tale che cp'(g) = -cp(g)
 - $Zp = -min\{cp'(g) \mid g \in Fp = Fp'\}$
 - o dato P, Zp è valore ottimo per P
 - dato P, un $g^* \in Fp$ tale che $Zp = cp(g^*)$ è soluzione ottima

casistica

- problema vuoto: $Fp = \emptyset$, per convenzione si assume che $Zp = \infty$
- problema illimitato: problema di massimo, $\forall x \in R$ esiste $g \in Fp$ con $cp(g) \ge x$; $Zp = +\infty$
- valore ottimo finito, ma non soluzione ottima finita: Zp esiste finito, ma $cp(g) \neq Zp \forall g$
- valore ottimo finito e soluzione ottima finita

ottimizzazione e decisione

- problema di decisione P: determinare una qualunque g ∈Fp o concludere che il problema è vuoto (Fp = ∅)
- dato un problema di decisione P, il relativo problema di certificato per $G \supseteq Fp$ consiste nel dire se $g \in Fp$ con $g \in G$
- dato un problema P di ottimizzazione
 - o si può considerare R decisionale tale che $Fr = \{g \in Fp \mid cp(g) = Zp\}$
 - o dato $x \in R$, si può considerare Rk decisionale tale che Frk = $\{g \in Fp \mid cp(g) \le k\}$ se P è di minimo, altrimenti duale

ottimizzazione e algoritmi

- algoritmo esatto per P: presa in input un'istanza di P fornisce in output una soluzione ottima g* di P se esiste
- algoritmi euristici: determinano una qualsiasi soluzione ammissibile
 - calcolano implicitamente un'approssimazione superiore (se problema di minimo) e una superiore (se di massimo) del valore ottimo

qualità degli algoritmi euristici

- dato che potrebbero concludere con una non esistenza di una soluzione ammissibile anche se $Fp \neq \emptyset$, dati $P \in g \in Fp$ definiamo
 - \circ errore assoluto di g $\varepsilon p(g) = cp(g) Zp$
 - errore relativo di g Rp(g) = $\epsilon p(g) / |Zp| = (\epsilon p(g) Zp) / |Zp|$
- una soluzione g è ϵ -ottima se $Rp(g) \le \epsilon$
- un algoritmo euristico si dice ε-approssimato se produce soluzione ε-ottime

rilassamenti

- quando l'errore diventa problematico, si risolve il problema che è l'approssimazione del problema in partenza
- dato P, un rilassamento di P (per esempio di minimo) è un qualunque problema \overline{P} definito min $\{c\overline{p}(g) \mid g \in F\overline{p}\}$
 - \circ con Fp \supseteq Fp e per ogn Fp.cp(g) ≤ cp(g) (dualmente per i problemi di massimo)
 - o Zp è inferiore a Zp
- se la soluzione ottima g^* di \overline{P} soddisfa $g^* \in Fp$ e $\overline{cp}(g^*) = \overline{cp}(g^*)$, allora $\overline{cp}(g^*) = \overline{Zp} \le \overline{Zp} \le \overline{cp}(g^*) \le \overline{cp}(g^*)$

modelli

da problemi a modelli

• si classificano i problemi individuati secondo categorie chiamate modelli (tra cui la programmazione lineare)

programmazione lineare (PL)

- un problema di PL è un problema di ottimizzazione definito dando:
 - o un numero finito $n \in \mathbb{N}$ di variabili reali: $x = (x_1, ..., x_n) \in \mathbb{R}^n$
 - una funzione obiettivo $f : R^n \rightarrow R : f(x) = cx$

- o un insieme di m vincoli lineari, in forma: ax = b, $ax \le b$ o $ax \ge b$, con $a \in \mathbb{R}^n$ e $b \in \mathbb{R}$
- a volte è utile assumere che $x \in \mathbb{N}^n$ (le soluzioni ammissibili sono (vettori di) numeri naturali, PLIntera)
- un problema di PL può sempre essere espresso come max $\{cx \mid Ax \le b\}$ con $A \in R^m$ e b $\in R^m$
 - \circ se P è di minimo, basta considerare f(x) = (-c)x
 - ogni vincolo ax = b diventa coppia di vincoli ax \leq b e ax \geq b
 - o ogni vincollo ax \geq b equivale a (-a)x \leq (-b)

PLI

- nella PL, le variabili rappresentato quantità
- nella PLI, le variabili sono:
 - o quantitative
 - ∘ logiche: rappresentano valori booleani; una variabile è logica se $x \in \mathbb{N}$, $0 \le x$, $x \le 1$
- le variabili logiche possono essere usate per modellare:
 - o l'assegnamento di una risorsa a una task
 - o il fatto che un'attività si debba eseguire o no

relazioni logiche

- le relazioni tra variabili logiche hanno natura logica
- le possiamo modellare tramite vincoli lineari:
 - negazione (y = !x): x = 1-y
 - implicazione $(z = (x -> y)): x+z >= 1; z >= y; x+z \le 1+y$
 - o congiunzione (z = (x and y)): $z \le x$; $z \le y$; $z \le x+y-1$
 - o disgiunzione (z = (x or y)): $z \ge x$; $z \ge y$; $z \le x+y$
- come conseguenza si ha che il problema è NP-difficile

vincoli di assegnamento

- partendo da:
 - \circ insieme N = {1, ..., n} di oggetti
 - \circ insieme $V = \{1, ..., m\}$ di luoghi
- l'idea è di rappresentare le condizioni in cui si assegnano oggetti a luoghi
- la variabile xij (con $1 \le i \le n$ e $1 \le j \le m$) prende valore booleano e modella il fatto che l'iesimo oggetto è al j-esimo luogo
- vincoli di semi-assegnamento: ogni oggetto è assegnato a un luogo
 - \circ \sum (j tra 1 e m) xij = 1 (1 \leq i \leq n)
- insiemi ammissibili:
 - \circ se ogni oggetto i ∈ {1, ..., n} non può essere assegnato a uno specifico insieme B(i) \subseteq V di luoghi
 - \circ xij esiste solo se i \in B(i)
 - $\circ \quad \sum (i \in B(i)) xii = 1 (1 \le i \le n)$
- vincoli di assegnamento: ogni oggetto è assegnato a un luogo e ogni luogo è assegnato a un oggetto
 - \circ \sum (j tra 1 e m) xij = 1 (1 \leq i \leq n)
 - \circ \sum (i tra 1 e n) xij = 1 (1 \leq i \leq m)
- ordinamento:
 - o i vincoli di assegnamento (non semi) possono imporr che n lavori siano eseguiti in un certo ordine
 - o la variabile xj indica se l'i-esim lavoro è effettuato come j-esimo (se vale 1) o meno (se vale 0)

selezione di sottoinsiemi

• sia $N = \{1, ..., n\}$ un insieme finito di elementi e sia $F = \{F1, ..., Fm\}$ una famiglia di

sottoinsiemi, con Fi ⊆N

- ▶ \forall Fj (con $1 \le j \le m$) associamo un costo cj
- voglio determinare D ⊆F di costo minimo, tra tutti i sottoinsiemi che soddisfano certi vincoli
- rappresento la situazione con una matrice $A = aij \in \{0, 1\}^n xm$ con aij = 1 se $i \in Fj$, 0 altrimenti
- il vettore delle variabili è x = (x1, ..., xn) con xj = 1 se $Fj \in D$, 0 altrimenti
- la funzione obiettivo da minimizzare sarà sempre ∑ (i tra 1 e m) cj xj
- i vincoli dipendono dal problema:
 - o problema di copertura: ognuno degli elementi di N sta in almeno un elemento di D
 - o problema di partizione: ognuno degli elementi di N sta in un elemento di D
 - \sum (j tra 1 e m) aij xij = 1 (1 \le i \le n)
 - o problema di riempimento: ognuno degli elementi di N sta al più uno degli elementi di D
 - \sum (j tra 1 e m) aij xij \leq 1 (1 \leq i \leq n)

variabili a valori discreti

- se le variabili non sono vincolate a prendere il valore da un insieme che: non è {0, 1}, non è N o un intervallo
 - o introduciamo n variabili y1, ..., yn vincolate yi $\in \{0, 1\}$, \sum (i tra 1 e n) yi = 1, x = \sum (i tra 1 e n) vi yi

minima quantità positiva prefissata

- quando una variabile x rappresenta un livello di produzione, capita che il suo valore debba viaggiare in un insieme {0} un [1, u]
 - o 0: assenza di produzione
 - o [1, u]: possibili livelli di produzione quando il meccanismo è attivo
- per modellare serve:
 - o introdurre una variabile logica $y \in \{0, 1\}$ che indica la presenza o meno di produzione
 - \circ i vincoli sono ly $\leq x$, $x \leq uy$
 - \circ correttamente, se y = 0, x = 0; altrimenti $1 \le x \le u$

valore assoluto

- nei vincoli:
 - o il vincolo $|g(x)| \le b$ può essere espresso come $g(x) \le b$ o $-g(x) \le b$ (b reale positivo)
 - o in casi più complessi non è sempre possibile
- nella funzione obiettivo:
 - o massimizzazione di |f(x)| con $x \in X$: si può risolvere risolvendo max $\{f(x) \mid x \in X\}$ e max $\{-f(x) \mid x \in X\}$ e confrontando i valori ottimi
 - o uguale per la minimizzazione

funzioni convesse

- nelle funzioni lineari a tratti la necessità di usare variabili logiche deriva dalla nonconvessità
- funzione convessa: se valgono le condizioni
 - ∘ f continua $(b_{i+1}+c_{i+1}a_{i+1}=b_i+c_ia_{i+1})$ $\forall 1 \le i < 1$
 - ∘ la derivata di f deve essere non descrescente, cioè $c_{i+1} \ge ci$ $\forall 1 \le i \le 1$
- se f è convessa, la minimizzazione diventa quella di $g(z_1, ..., z_n) = b_1 + c_1 a_1 + \sum_{i=1}^n (i \text{ tra } 1 \text{ e n})$ cizi
 - \circ vincoli: $0 \le z_i \le a_{i+1}$ - a_i , $x = a_1 + \sum (i \text{ tra } 1 \text{ e n}) z_i$
 - se f ha un ottimo x*, questo valore ottimo può essere ricostruito usando i segmenti di indice inferiore grazie alla convessità

reti di flusso

reti

- rete: grafo G = (N, A), solitamente diretto, ai cui archi siano associati pesi
- archi: canali in cui fluiscono oggetti, rappresentati da grandezze discrete o continue
- nodi: punti di ingresso o uscita dalla rete
- ad ogni nodo $i \in N$ è associato un reale bi detto sbilanciamento:
 - o positivo
 - il nodo i è un nodo di uscita e viene detto destinazione, pozzo o nodo di output
 - bi è detto domanda di i
 - o negativo
 - il nodo i è un nodo di entrata e si chiama origine, sorgente o nodo di input
 - -bi è detto offerta di i
 - o nullo
 - il nodo i è detto nodo di traferimento
- ad ogni arco (i, j) ∈A sono associati:
 - o costo cij: quanto costa per un' unità di bene attraversare il canale
 - o capacità inferiore lij: limite inferiore alla quantità di beni che possa fluire sul canale
- o capacità superiore uij: limite superiore alla quantità di beni che possa fluire sul canale problemi di flusso
 - sono un compromesso tra espressività (molti problemi concreti si possono esprimere come problemi di flusso) e complessità (esistono algoritmi relativamente efficienti anche per essi)
 - flusso: assegnamento di valori reali agli archi di una rete G = (N, A); soluzione dei problemi di flusso
 - viene formalizzato attraverso una sequenza di variabili xij, ciascuna corrispondente a un arco (i, j) ∈A
 - il costo di un flusso è il costo complessivo di tutti i flussi nella rete
 - $\circ \quad \sum (i, j \in A) \operatorname{cij} xij$
 - vincoli:
 - o domanda e offerta globale sono uguali
 - $\sum (i \in D) bi = -\sum (i \in O) bi \Leftrightarrow \sum (i \in N) bi = 0$
 - $D = \{i \in N \mid bi > 0\}$
 - $O = \{i \in N \mid bi < 0\}$
 - o il flusso si conserva

 - $BS(i) = \{(k, i) \mid (k, i) \in A\}$
 - $FS(i) = \{(i, k) | (i, k) \in A\}$
 - o il flusso deve essere ammissibile

problema del flusso di costo minimo (MCF)

- il costo del flusso è la funzione obiettivo da minimizzare
- le capacità inferiori sono nulle
- il problema è formalizzabile in PL: min(cx) con $0 \le x \le u$, Ex = b
 - \circ c ∈ R^[A]: vettore dei costi
 - ∘ $u \in R^{\Lambda}[A]$: vettore delle capacità
 - ∘ $E \in R^{N}[X]X[A]$: matrice di incidenza tra nodi e archi
 - \circ b \in R^[N]: vettore degli sbilanciamenti
- rilassare assunzioni:
 - o spesso conviene assumere che vi sia una sola sorgente e un solo pozzo
 - o si può trasformare il problema:
 - aggiungendo due nodi fittizi: l'unica sorgente e l'unico pozzo

- aggiungendo archi fittizi dalla sorgente a ciascun'altra sorgente: costo nullo e capacità superiore pari all'inverso dello sbilanciaento della sorgente
- aggiungendo archi fittizi da ciascun pozzo a quello unico: costo nullo e capacità superiore pari allo sbilanciamento del pozzo
- sbilanciamento dell'unica sorgente = somma degli sbilanciamenti delle sorgenti della rete di partenza; uguale per i pozzi
- o conviene imporre che lij = 0 per ogni arco $(i, j) \in A$ (capacità inferiori nulle)
- si costruisce una rete H che sia equivalente a G ma con capacità inferiori nulle: per arco (i, j) ∈A
 - si sottrae lij a bj e uij
 - si aggiunge lij a bj
 - si aggiunge $\sum ((i, j) \in A)$ cij lij alla funzione obiettivo
 - in pratica a un flusso xij in H corrisponde un flusso xij+lij in G
- o conviene imporre che i nodi (oltre agli archi) abbiano capacità (solo una quantità di flusso compresa in [li, ui] può passare per il nodo i ∈N)
- o si sdoppia ciascun nodo i in due nodi i' e i"
 - tutti gli archi entranti in i vanno in i'
 - tutti gli archi uscenti da i partono da i"
- ci sia un arco fittizio (i', i") con costo nullo, capacità inferiore li e capacità superire ui problema del flusso massimo (MF)
 - restrizione di MCF: l'obiettivo è di massimizzare i flussi
 - o costi nulli
 - sbilanciamenti nulli
 - o si aggiunge un arco fittizio da t a s di costo -1 e capacità infinita
 - formalizzabile direttamente in PL
 - data una rete G = (N, A)
 - o fissiamo due nodi s e t
 - vogliamo massimizzare il flusso tra essi, cioè trovare il massimo valore $v \mid se bs = -v$, bt = v e bi = 0 in tutti gli altri casi, allora esiste un flusso ammissibile
 - valore v ammissibile: valore del flusso x
 - max v
 - \circ som $((j, s) \in BS(s)) x_{js}+v = som ((s, j) \in FS(s)) xsj$
 - \circ som ((j, i) ∈BS(s)) xij som((i, j) ∈FS(s)) xij = 0 con i ∈N-{s, t}
 - ∘ som $((j, t) \in BS(t))$ x $jt = som ((t, j) \in FS(t))$ $x_{tj}+v$
 - \circ o \leq xij \leq uij con (i, j) \in A

tagli

- in una rete G = (N, A), un taglio è dato da una coppia (N', N'') di sottoinsiemi di $N \mid N' \cap N'' = \emptyset$ e N' un N'' = N
- un (s, t)-taglio in una rete G è un taglio (Ns, Nt) con $s \in Ns$ e $t \in Nt$
- dato un (s, t)-taglio in G = (N, A), indichiamo con A+(Ns, Nt) e A-(Ns, Nt) i sottoinsiemi
 - $\circ \quad A+(Ns, Nt) = \{(i, j) \in A \mid i \in Ns \land j \in Nt\}$
 - $\circ \quad A-(Ns, Nt) = \{(i, j) \in A \mid i \in Nt \land j \in Ns\}$
- proprietà:
 - o lemma: per ogni (s, t)-taglio e ogni flusso ammissibile x con valore v
 - $v = som((i, j) \in A+(Ns, Nt)) xij som((i, j) \in A-(Ns, Nt)) xij = flusso del taglio, indicato con x(Ns, Nt)$
 - $v \le som((i, j) \in A+(Ns, Nt))$ uij = capacità del taglio, indicata con u(Ns, Nt)
 - dimostrazione: conseguenza di
 - $v = som((i, j) \in A) xij som((i, j) \in A) xis =$

- = som $(k \in N)$ (som $((k, j) \in A)$ xkj som $((i, k) \in A)$ xik) =
- = som $((i, j) \in A+(Ns, Nt))$ xij som $((i, j) \in A-(Ns, Nt))$ xij
- il lemma dice che $v = x(Ns, Nt) \le u(Ns, Nt)$
- il flusso ammissibile è sempre minore o uguale alla capacità di qualunque taglio grafi residui
 - data una rete $G = (N_G, A_G)$ e un flusso ammissibile x, il grafo residuo Gx è il multigrafo (N_{Gx}, A_{Gx}) |
 - \circ Ngx = NG
 - o gli archi in Agx sono
 - concorde: per ogni arco $(i, j) \in A \mid xij \le uij$ esiste un arco concorde da i a j in Gx
 - discorde: per ogni arco $(i, j) \in A \mid xij > 0$ esiste un arco discorde da j a i in Gx
- o notiamo che in NGx possono esserci due archi tra due stessi nodi i e j cammini aumentanti
 - un cammino aumentante P in una rete G rispetto a x è un cammino orientato da s a t in Gx
 - o sia P+ (insieme archi concordi) sia P- (insieme archi discordi)
 - dato un cammino aumentante P rispetto a x, definiamo la capacitò di P rispetto a x
 - $\circ \quad \theta(P, x) = \min\{\min\{\min\{\min\{i, j) \in P+\}, \min\{x, ij \mid (j, i) \in P-\}\}\}$
 - dato un flusso x, un cammino P in Gx e un reale θ , definiamo x(P, θ) il flusso
- $\circ \quad (x(P,\theta))ij=xij+\theta \text{ se }(i,j)\in P+\text{, }xij-\theta \text{ se }(j,i)\in P-\text{, }xij\text{ altrimenti}$ algoritmo di ford fulkerson
 - 1. $x \leftarrow 0$
 - 2. costruisci Gx e determina se ha un cammino aumentante P: se non esiste, termina e restituisci x
 - 3. $x \leftarrow x(P, \theta(P, x))$
 - 4. torna al 2
 - correttezza:
 - lemma: se x è ammissibile, allora anche $x(P, \theta(P, x))$ lo è
 - o lemma: se x è un flusso ammissibile massimo, allora Gx non ha cammini aumentanti
 - dimostrazione: se ci fosse un cammino aumentante in Gx, allora x non sarebbe massimo (sarebbe possibile aumentare il valore del flusso)
 - o lemma: se Gx non ha cammini aumentanti, allora esiste un taglio di capacità v
 - dimostrazione: consideriamo il taglio (Ns, Nt) dove Ns contiene tutti i nodi raggiungibili da s in Gx e Nt = N-Ns
 - $v = x(Ns, Nt) = som((i, j) \in A+(Ns, Nt)) xij som((i, j) \in A-(Ns, Nt)) xij =$
 - = som $((i, j) \in A+(Ns, Nt))$ uij som $((i, j) \in A-(Ns, Nt))$ 0 =
 - = u(Ns, Nt)
 - o teorema di correttezza: se l'algoritmo di ford fulkerson termina, allora il flusso x è un flusso massimo
 - dimostrazione:
 - se ford fulkerson termina, allora Gx non ha cammini aumentanti
 - allora esiste un taglio di capacità v
 - v è per forza massimo, in quanto se non lo fosse avremmo un taglio di capacità inferiore al valore di un flusso ammissibile
 - teorema max-flox min-cut: il valore del massimo flusso è uguale alla minima capacità dei tagli
 - dimostrazione: basta dimostrare che il valore del massimo flusso è maggiore o uguale alla capacità di un taglio
 - se x è ammissibile e massimo, Gx non ha cammini aumentanti quindi esiste un taglio di capacità v

- complessità:
 - teorema: se le capacità di G sono numeri interi, allora esiste almeno un flusso intero massimo
 - dimostrazione:
 - se le capacità sono intere, allora il flusso massimo sarà al più nU con U = max {uij | (i, j) ∈A}
 - di conseguenza, il valore del flusso aumenta almeno di 1 a ogni iterata
 - l'algoritmo termina al più nU iterate
 - la dimostrazione ci dice che se le capacità non sono intere, la complessità è O(mnU)
 - pseudopolinomiale nella dimensione della rete

algoritmo di edmonds – karp

- algoritmo di ford-fulkerson dove la ricerca del cammino aumentante è eseguita visitando in ampiezza (BFS) il grafo residuo Gx
- i cammini aumentanti saranno sempre di lunghezza minima
- proprietà:
 - o correttezza: trivialmente corretto (perchè un caso particolare di ford-fulkerson)
 - o complessità:
 - se in ford-fulkerson i cammini aumentanti sono di lunghezza minima, allora la distanza di un nodo i dalla sorgente s in Gx non può diminuire
 - quindi il numero di iterazioni EK non può essere più grande di N*A
 - o data una rete F, un flusso ammissibile x e due nodi i, j in G, indichiamo con $\delta x(i, j)$ la distanza tra i e j nel grafo residuo Gx
 - lemma: se durante l'esecuzione di EK il flusso y è ottenuto da x tramite un'operazione di aumento del flusso in un cammino aumentante, allora per ogni nodo i ∈N vale che δx(s, i) <= δy(s, i)</p>
 - o teorema: il numero di iterazioni di EK è O(N A), quindi la sua complessità è O(N A^2)
 - dimostrazione:
 - un arco (i, j) in Gx è critico per un cammino aumentante P se la sua capacità (uij-xij se concorde, xij se discorde) è uguale a θ(P, x)
 - o dopo l'aumento del flusso lungo P, l'arco (i, j) sparisce dal grafo residuo
 - o in ogni cammino aumentante esiste almeno un arco critico
 - dati i, j connessi da un arco in A, il numero di volte che (i, j) sia arco critico è al più O(N)
 - o dato che di coppie tali ce ne sono al più O(A), in totale avremo al più O(N A) iterazioni
 - o dimostrazione:
 - quando (i, j) diventa critico la prima volta, deve valere che $\delta x(s, j) = \delta x(s, i)+1$ dove x è il flusso e sparisce dal grafo residuo
 - l'unico modo per ricomparire è fare in modo che il flusso (reale o virtuale) da i a j diminuisca, quindi $\delta y(s, i) = \delta y(s, j) + 1$ con y flusso
 - quindi, $\delta y(s, i) = \delta y(s, j) + 1 \ge \delta x(s, j) + 1 = \delta x(s, i) + 2$
 - di conseguenza, dal momento in cui (i, j) diventa critico al successivo, la sua distanza da s aumenta di almeno 2
 - dato che questa distanza non può essere superiore a |N|, il numero di volte in cui (i, j) può diventare critico è lineare in |N|

preflusso:

- vettore $x \mid som((i, j) \in BS(i)) xij som((i, j) \in FS(i)) xij \ge 0 con i \in N-\{s, t\}, 0 \le xij \le uij, (i, j) \in A$
- cioe, i vincoli di capacità sono soddisfatti mentre quelli di bilanciamento ai nodi possono non esserlo

- un nodo è attivo se il suo eccesso ei = som $((j, i) \in BS(i))$ som $((i, j) \in FS(i))$ è positivo, altrimenti è bilanciato
- etichettatura: vettore d = d1, ..., dn dove $di \in R+$ per ogni nodo $i \in N$
 - o valida se:
 - $(i, j) \in A \land xij < uij => di-dj <= 1$
 - $(i, i) \in A \land xij > 0 \Rightarrow di-dj <= 1$
 - dt = 0
 - o data un'etichettatura valida d, un arco (i, j) è ammissibile per i sse non è saturo e di = dj+1
 - o analogamente, (i, j) è ammissibile per j sse non è vuoto e dj = dj+1
- operazione di push:
 - o se i è un nodo attivo ed esiste un arco (i, j) ammissibile per esso, allora è possibile inviare l'eccesso, o una sua parte, lungo l'arco tramite push
 - push forward (i, j):
 - 1. $\theta \leftarrow \min\{\text{ei, uij-xij}\}$
 - 2. $xij \leftarrow xij + \theta$
 - 3. $ei \leftarrow ei \theta$
 - 4. ej \leftarrow ej $+\theta$
 - o push backward (i, j):
 - 1. $\theta \leftarrow \min\{\text{ei}, \text{xij}\}$
 - 2. $xij \leftarrow xij \theta$
 - 3. $ei \leftarrow ei \theta$
 - $ej \leftarrow ej + \theta$
 - o operazione di relabel: necessaria se il nodo i non ha nodi incidenti che siano ammissibili
 - consiste nell'aumentare l'etichetta di i: rende ammissibile almeno un aro incidente in i (quello per cui è stato ottenuto il valore minimo)
 - relabel (i): $di \leftarrow 1 + min\{dj \mid ((i, j) \in FS(i) \text{ and } xij \leq uij) \text{ or } ((j, i) \in BS(i) \text{ and } xji \geq 0)\}$
- etichettatura valida (G) d:
 - 1. supponiamo che il preflusso x sia nullo negli archi in uscita da s
 - 2. facciamo in modo che d_i sia la lunghezza del cammino di lunghezza minima da i a t
 - tranne in s dove ds = n
 - o 3. verifichiamo i vincoli

algoritmo di goldebrg – tarjan

- tipologia di edmonds-karp nella quale si cerca si scendere sotto la barriera di O(N A^2) per la complessità, e lo si fa rendendo la costruzione del flusso più locale
 - opponendosi così a ford-fulkerson e edmonds-karp, in cui a ogni iterazione si procede con un'analisi globale
- goldberg tarjan (G, s, t):
 - \circ 1. $x \leftarrow 0$
 - \circ 2. xsj ← usj per ogni (s, j) app FS(s)
 - \circ 3. d \leftarrow etichettatura valida (G)
 - \circ 4. ds \leftarrow n
 - 5. se tutti i nodi (non s e t) sono bilanciati, allora termina e restituisci x
 - 6. sia v un nodo sbilanciato
 - 7. se esiste (v, j) ammissibile per v, allora push forward (v, j) e torna a 6, altrimenti prosegui
 - 8. se esiste (i, v) ammissibile per v, allora push backward (i, v) e torna a 6, altrimenti prosegui

- o 9. relabel (v) e torna a 6
- teorema: l'algoritmo di goldberg-tarjan è corretto e la sua complessità in tempo è O(N^2 A)
 - o due invarianti sono validi all'inizio di ciascuna iterazione: l'etichettatura d è valida e x è un preflusso

problema del flusso di costo minimo nozioni e risultati preliminari

- pseudoflusso: vettore x che soddisfa i vincoli di capacità
 - \circ cioè | 0 <= xij <= uij con (i, j) \in A
- dato x pseudoflusso, lo sbilanciamento di un nodo i rispetto a x è
 - \circ ex(i) = som ((i, i) \in BS(i)) xij som ((i, j) \in FS(i)) xij-bi
 - o se ex è un vettore, è il vettore degli sbilanciamenti
- dato x pseudoflusso, i nodi sbilanciati rispetto a x fanno parte di:
 - Ox = $\{i \in N \mid ex(i) > 0\}$, nodi con eccesso di flusso, oppure
 - $Dx = \{i \in N \mid ex(i) < 0\}$, nodi con difetto di flusso
 - \circ se Ox = Dx = \emptyset , allora x è un flusso
 - sbilanciamento complessimo di x:
 - $g(x) = som (i \in Ox) ex(i) = -som (j \in Dx) ex(j)$

cammini aumentanti

- quando si lavora con pseudoflussi, la nozione di cammino aumentante diventa più generale
- il grafo residuo Gx per uno pseudoflusso x si generalizza a un problema MCF, in cui però ogni arco ha un costo:
 - o arco concorde (i, j) di Gx: costo cij
 - o arco discorde (j, i) di Gx: costo -cij
- un cammino P tra i e j in Gx è quindi aumentante
 - o gli archi possono essere partizionati in P+ e P-
 - è anche detto ciclo aumentante
- dato x pseudoflusso e P cammino aumentante, è possibile inviare $0 \le \theta \le \theta(P, x)$ unità di flusso lungo P attraverso $x(P, \theta)$ (indicato anche come $x \oplus P\theta$)
- se P è un cammino aumentante da i a j in Gx, allora lopseudoflusso $x(P, \theta)$ ha gli stessi sbilanciamenti di x tranne in i e j
 - \circ se i = j, il vettore degli sbilanciamenti non cambia
- costo di un cammino aumentante P:
 - \circ c(P) = som ((i, j) \in P+) cij som ((i, j) \in P-) cij
- $c*(x(P, \theta)) = c*(x \oplus P\theta) = c*x + \theta c(P)$
- struttura degli pseudoflussi:
 - teorema: siano x e y due pseudoflussi, esistono k <= n+m cammini aumentanti P1, ..., Pk, tutti per x, di cui al più m sono cicli | $z_1 = x$, $z_{i+1} = z_i \oplus \theta_i P_i$ con 1 <= i <= k, $z_{k+1} = y$, $0 <= \theta_i <= \theta(P_i, z_i)$
 - tutti i P_i hanno come estremi dei nodi in cui o sbilanciamento di x è diverso da quello di y

pseudoflussi minimali

- a differenza del MF, in MCF non possiamo aumentare il flusso indiscriminatamente
- il problema è di determinare quali siano le operazioni di aumento lecite e quali sono le properità dei flussi che garantiscono
- pseudoflusso minimale: pseudoflusso x che ha costo minimo tra tutti gli pseudoflussi con lo stesso sbilanciamento ex
- lemma: uno pseudoflusso (flusso ammissibile) è minimale (ottimo) sse non esistono cicli aumentanti di costo negativo

- o dimostrazione:
 - per contrapposizione: se esiste un ciclo aumentante di costo negativo in Gx, applicarlo diminuisce il costo senza alterare lo sbilanciamento, in contraddizione con la minimalità di x
 - per contrapposizione: supponiamo che x non sia minimale, cioè esiste y con cy <= cx
 e ey = ex
 - per il teorema sugli pseudoflussi, $y = x \oplus \theta 1 \oplus ... \oplus \theta n P n con \theta i > 0$ e ogni Pi è un ciclo
 - da cy < cx discende cx > cx+θ1c(P1)+ ... +θnc(Pn) e quindi c(Pi) < 0 per qualche i
- teorema: sia x uno pseudoflusso minimale e sia P un cammino aumentante rispetto a x avente costo minimo tra tutti i cammini che uniscono un nodo di Ox a uno di Dx
 - o allora qualunque sia $\theta \le \theta(x, P)$ abbiamo $x(\theta, P) = x \oplus \theta P$ è ancora pseudoflusso minimale
 - o dimostrazione:
 - siano s e t i vertici che P collega, supponiamo che $\theta \le \theta(x, P)$ e che y sia uno pseudoflusso con vettore di sbilanciamento ex (θ, P)
 - per il teorema della struttra degli pseudoflussi esistono:
 - k cammini aumentanti P1, ..., Pk rispetto a x, tutti da s a t
 - h cicli aumentanti C1, ..., Ch rispetto a x
 - $|y = x \oplus \theta 1P1 \oplus ... \oplus \theta kPk \oplus \mu 1C1 \oplus ... \oplus \mu hCh$ (tutti gli θi , μi sono positivi)
 - per lo sbilanciamento, som $(1 \le i \le k) \theta i = \theta$
 - $x \in minimale, c(Ci) \ge 0$
 - P ha costo minimo, $c(Pi) \ge c(P)$
- $\quad \text{ quindi, cy} = cx + \theta 1 c(P1) + ... + \theta k c(Pk) + \mu 1 c(C1) + ... + \mu h c(Ch) \geq cx + \theta c(P) = cx(\theta, P) \\ \text{algoritmi ausiliari}$
 - cammini minimi successivi
 - o cammini minimi successivi (G):
 - 1. $x \leftarrow pseudoflusso minimale (G)$
 - 2. se g(x) = 0, allora termina e restituisci x
 - 3. cerca un cammino di costo minimo P tra un nodo i ∈Ox e j ∈Dx:se non esiste, termina, altrimenti il problema è vuoto
 - 4. $x \leftarrow x(P, \min\{\theta(P, x), ex(i), -ex(i)\})$
 - 5. torna a 2
 - o correttezza:
 - a ogni passo il flusso x rimane minimale
 - se l'algoritmo termina, allora g(x) = 0, quindi x è uno pseudoflusso minimale con sbilanciamento nullo, cioè un flusso di costo minimo
 - o terminazione:
 - se b e u sono vettori di numeri interi osserviamo che:
 - lo pseudoflusso iniziale è intero
 - se x è uno pseudoflusso intero, allora la capacità $\theta(P, x)$ rimane intera
 - quindi lo pseudoflusso x rimane sempre intero
 - ad ogni passo g(x) diminuisce di almeno 1
 - o complessità:
 - lo sbilanciamento iniziale g è al più $g \le som$ (bi > 0) bi + som (cij < 0) uij
 - dato che lo sbilanciamento g(x) cala almeno di 1 ad ogni interazione, le iterazioni saranno al più g
 - il costo computazionale di ogni iterazione è dominato dalla ricerca di un cammino

- minimo eseguibile in tempo O(N A)
- quindi la complessità è nel caso peggiore O(g N A), pseudopolinomiale nella dimensione del grafo

flusso ammissibile (G)

- risolviamo il problema MF sulla rete ottenuta aggiungendo due nodi s e t cancellazione cicli
 - cancellazione cicli (G):
 - 1. se flusso ammissibile (G) restituisce un flusso ammissibile, allora mettilo in x, altrimenti termina (problema vuoto)
 - 2. cerca un ciclo di costo negativo in Gx: se non lo trovi, termina e restituisci x, altrimenti metti il ciclo in C
 - \circ 3. $x \leftarrow x(C, \theta(C, x))$
 - o 4. torna al 2
 - correttezza: conseguenza del lemma sull'equivalenza tra assenza di cicli aumentati e ottimalità
 - se le capacità sono numeri interi, allora il costo diminuisce di almeno 1 a ogni iterazione e l'algoritmo termina
 - il costo di qualunque flusso ammissibile è compreso tra -Auc e Auc, dove
 - $\circ \overline{u} = \max\{uij \mid (i, j) \in \mathbb{N}\}\$
 - \circ $\overline{c} = \max\{cij \mid (i, j) \in N\}$
 - complessità: pseudopolinomiale; $O(N A) * O(A\overline{uc}) = O(N A^2 \overline{uc})$

problemi di accoppiamento nozioni preliminari

- i grafi sono bipartiti non orientati, cioè grafi nella forma G = (O un D, A) con
 - \circ O = {1, ..., n} insieme dei nodi origine
 - o D = {n+1, ..., n+d} insieme dei nodi destinazione
 - o A ⊆OxD insieme degli archi, ciascuno dei quali ha un costo
- accoppiamento per grafo bipartito G = (O un D, A): sottoinsieme M di A i cui archi non hanno nodi in comune
 - o gli archi in M sono interni, quelli in A-M esterni
 - o i nodi che compaiono in qualche arco di M sono accoppiati, gli altri sono esposti
- accoppiamento perfetto: sse non vi sono nodi esposti in M
- costo di un accoppiamento M: $c(M) = som((i, j) \in M)$ cij
- dato M, l'arco $(i, j) \in M$ di costo massimo è detto arco bottleneck e ha valore di bottleneck max $\{cij \mid (i, j) \in M\}$

problemi

- accoppiamento di massima cardinalità
- accoppiamento di costo minimo: tra tutti gli accoppiamenti perfetti
- accoppiamento di massima cardinalità bottleneck: tra tutti gli accopiamenti di massima cardinalità si vuole determinare quello con valore di bottleneck minimo

accoppiamento di massima cardinalità

- il problema può essere visto come di flusso massimo con più sorgenti (i nodi in O) e più pozzi (nodi in D)
 - o tutte le capacità pari a 1
 - o teniamo conto solo dei flussi interi
- flussi ammissibili interi e accoppiamenti sono in corrispondenza biunivoca (a un flusso M corrisponde un grafo residuo G_M)
- si possono utilizzare algoritmi classici, ma è possibile anche sfruttare le caratteristiche di questi problemi

- ogni cammino aumentante in GM deve:
 - o essere alternante, cioè consistere di archi interni, seguiti da archi esterni
 - o partire da un'origine esposta e arrivare a una destinazione esposta
 - o cioè, se PE = P-M e P1 = M int P sono rispettivamente gli archi esterni e interni di un cammino aumentante P, allora |PE|-|P1| = 1
- la capacità $\theta(M, P)$ di un cammino aumentante P è sempre 1, quindi $M \oplus (\theta(M, P))P = (M-PI)$ un PE.
- otteniamo così un algoritmo simile a ford-fulkerson, ma in cui la ricerca del cammino aumentante è eseguita solo atttraverso una procedura di visita
- complessità: O(mn) perchè $U = \max\{\text{cij} \mid (i, j) \in A\} = 1$
- nel caso il problema sia l'accoppiamento di costo minimo, si può procedere uguale ma specializzando gli algoritmi per MCF
 - o i cammini minimi aumentanti possono essere visti come cammini esposti tra due vertici esposti, rispettivamente in O e D

geometria della PL

restringere lo spazio di ricerca

- lo spazio di ricerca nei problemi PL è infinito (ha anche cardinalità del continuo)
- in alcuni casi lo si può ridurre a un insieme finito (insieme dei vertici del poliedro che definisce la regione ammissibile)

nozioni preliminari

- iperpiano: insieme $\{x \in R^n \mid ax = b\}$ delle soluzioni dell'equazione lineare ax = b, con $a \in R^n \in B$
- semispazio: insieme $\{x \in R^n \mid ax \le b\}$ delle soluzioni dell'equazione lineare $ax \le b$ con a $\in R^n$ e $b \in R$
 - o un iperpiano è il confine del corrispondente semispazio
- poliedro: intersezione P di un numero finito m di semispazi
 - o devono esistere una matrice $A \in R^n$ mxn e un vettore $b \in R^n \mid P = \{x \mid Ax \le b\}$
- insieme convesso: insieme C cont R^n | tutti i punti che connettono x, y ∈C sono anch'essi in C
 - ∘ cioè, per ogni x, y ∈ C per ogni α ∈ [0, 1] α x+(1- α)y ∈ C
 - o semispazi e poliedri sono insiemi convessi
- se consideriamo il poliedro $P = \{x \mid Ax \le b\}$ ($A \in R^mxn$) e fissiamo un sottoinsieme I di $\{1, ..., m\}$:
 - \circ $\bar{I} = \{1, ..., m\}$ -I complementare di I
 - A_I sottomatrice di A ottenuta considerando solo le righe con indice in I
 - $\circ \quad P_I = \{x \mid A_I x = b_I \land A_{\bar{I}} x \le b_{\bar{I}}\} \text{ poliedro}$
- faccia: il poliedro PI se I | PI non è vuoto
 - \circ il numero di facce distinte di un poliedro $\{x \mid Ax \le b\}$ $(A \in R^n xn)$ è al massimo 2^n
 - ∘ P stesso è la faccia PØ
 - o faccette: facce proprie (non banali) e massimali
 - o dimensione della faccia: dimensione del più piccolo sottospazio che la contiene
 - una faccia determinata da una matrice A_I di rango k ha dimensione n-k o inferiore

vertici

- vertici: facce determinate da matrici AI di rango n quindi con dimensione 0
 - o per ipotesi sul rango di A_I , $A_I x = b_I$ ha una sola soluzione
 - le facce sono sempre non vuote
- spigoli: facce individuate da sottomatrci AI di rango n-1 e dimensione al massimo di 1 soluzioni di base

- supponiamo B | AB sia matrice quadrata e invertibile:
 - \circ B = base
 - AB = matrice di base
 - \circ xB = AB $^-$ 1 bB = soluzione di base
- soluzione di base $xB \mid xB \in P$ è ammissibile, altrimenti non lo è
- i vertici di P sono tutte le soluzioni di base ammissibili

vincoli attivi

- vincoli attivi in x: se $x \in P$, sono i vincoli che vengono soddisfatti come uguaglianze
- $I(x) = \{i \mid A_i x = b_i\}$ insieme degli indici dei vincoli attivi in x
- per ogni $J\subseteq I(x)$, l'insieme P_J è una faccia di P e $P_{I(x)}$ è la faccia minimale tra esse inviluppi convessi
 - i poliedri possono anche essere rappresentati per punti, usando l'insieme dei vertici
 - inviluppo converso: insieme conv(X) = {x = som (i da 1 a s) λixi | som (i da 1 a s) λi = 1^λi
 ≥ 0}
 - ∘ dato un insieme di punti $X = \{x1, ..., xs\} \subseteq R^n$
 - conv(X) è il più piccolo insieme convesso che contiene tutti i punti di X
 - politopo: poliedro limitato i cui vertii sono tutti in X
 - o conv(X) è un politopo
 - o non tutti i poliedri lo sono (possono essere illimitati)

coni convessi

- cono: insieme $C \subseteq R^n$ sse per ogni $x \in C$ e per ogni $\alpha \in R^+$ vale $\alpha x \in C$
- coni convessi: coni che sono anche insiemi convessi
 - ∘ sono caratterizzabili come gli insiemi $C \mid x, y \in C \land \lambda, \mu \in R \Rightarrow \lambda x + \mu y \in C$
- rappresentazione basata sule direzioni: cono finitamente generato da V
 - \circ cono(V) = {v = som (i tra1 e t) vivi | vi \in R+}
 - \circ insieme $V = \{v1, ..., vt\}$
 - o cono(V) è il più piccolo cono convesso che contiene tutti i vettori di V

teorema di motzkin

- $P \subseteq R^n$ è un poliedro sse esistono X, V finiti | P = conv(X) + cono(V)
- in questo contesto, P è generato dai punti in X e dalle direzioni in V
- se P è poliedro generato dai punti in X e X è minimale, allora tutti i suoi elementi sono i vertici di P
- analogamente: se P è un poliedro generato dalle direzioni in V e V è minimale, allora i sui elementi (raggi esterni) corrispondono alle direzioni degli spigoli illimitati

due rappresentazioni

- poliedri come intersezioni di semispazi o come somma di un politopo e un cono
- le due rappresentazioni sono equivalenti (grazie al teorema di motzkin) ma non hanno la stessa dimensione

teorema

- sia $P = \{x \mid Ax \le b\}$ e siano $x1, ..., xs, v1, ..., vt \in R^n \mid P = conv(\{x1, ..., xs\}) + cono(\{v1, ..., vt\})$
- allora il problema max $\{cs \mid Ax \le b\}$ ha ottimo finito sse $cvj \le 0$ per ogni $j \in \{1, ..., t\}$
- in tal caso esiste un $k \in \{1, ..., s\} \mid xk \ e$ soluzione ottima
- dimostrazione:
 - o per il teorema di decomposizione abbiamo che max $\{cx \mid Ax \le b\}$ è equivalente al problema sulle variabili $\lambda 1, ..., \lambda s$ e $\nu 1, ..., \nu t$
 - $\max(\text{som (i tra 1 e s) }\lambda i(\text{cxi})) + \text{som (j tra 1 e t) } \nu j(\text{cvj})$
 - \circ som (i tra 1 e s) $\lambda i = 1$; $\lambda i \ge 0$; $\forall i \ge 0$
 - questo problema sarebbe finito sse $cv_i \le 0$ per ogni $i \in \{1, ..., t\}$, infatti:

- 1. se fosse cvj > 0 per qualche $j \in \{1, ..., t\}$, allora si potrebbe far crescere a piacimento la funzione obiettivo pompando vj
- 2. supponiamo cvj \leq 0 per ogni j \in {1, ..., t} e prendiamo y \in P
- se λi e vj sono i corrispondenti coefficienti del teorema di decomposizione
- $cy = som (i tra 1 e s) \lambda i(cxi) + som (j tra 1 e t) \nu j(cvj) \le som (i tra 1 e s) \lambda i(cxi) \le som (i tra 1 e s) \lambda i(cxk) = cxk$
- $xk = vettore \mid xk = max\{cxi \mid i = 1, ..., s\} = soluzione ottima finita$

massimizzare il rango

- spesso assumiamo che in max{cx | Ax <= b} il rango di A ∈Rmxn sia uguale a n (cioè è massimo)
- se la matrice A ha rango inferiore di n:
 - o m < n: ci sono pochi vincoli
 - \circ m \geq n due o più righe di A sono linearmente indipendenti
- teorema: se il rango di A ∈ R^mxn è strettamente inferiore a n, allora max{cx | Ax <= b} può essere ricondotto a un diverso problema di PL la cui matrice dei coefficienti si ottiene eliminando una colonna di A (elimino quindi una variabile)
 - o dimostrazione: se il rango di A è inferiore a n, esiste almeno una colonna di A che è combinazione lineare delle altre
 - esempio: l'ultima A = (A', an); c = (c', cn); x = (x', xn); $A'\mu = an con \mu \in \mathbb{R}^n-1$
 - studiamo il nostro problema tramite max{c'x' | A'x' <= b} (problema ridotto), per poi tradurre i risultati sul problema iniziale
 - si verifica che
 - x = (x', xn) è ammissibile per il problema di partenza sse $x'+\mu xn$ è ammissibile per il problema ridotto
 - se il problema ridotto è superiormente limitato, anche il vecchio lo è
 - se x' è soluzione ottima per il problema ridotto, allora ogni vettore $x(\alpha) = (x'-\alpha\mu, \alpha)$ è soluzione ottima per il problema di partenza

dualità teoria

• si basa sulla definizione di un'involuzione (funzione inversa) che mappa ogni problema PL nel suo duale

primale e duale

- coppie asimmetriche:
 - \circ primale: max{cx | Ax \leq b}
 - o duale: $\min\{yb \mid (yA = c) \land (y \ge 0)\}$
- coppie simmetriche:
 - \circ primale: max {cx | (Ax \leq b) \land (x \geq 0)}
 - \circ duale: min{yb | (yA \geq c) \land (y \geq 0)}
- dimostrazione (il duale del duale è il primale): nel caso di coppia simmetrica
 - ∘ esprimiamo il duale come -max $\{y(-b) \mid (yA \ge c) \land (y \ge 0)\}$ = -max $\{(-b^T)y \mid ((-A^T)y < -c) \land (y < 0)\}$
- $\circ \quad \text{il cui duale è -min} \{-cx \mid ((x(-A^{\wedge}T) \geq (-b)) \wedge (x \geq 0)\} = \max\{cx \mid (Ax \leq b) \wedge (x \geq 0)\}$ teorema debole di dualità
 - se \bar{x} e \bar{y} sono soluzioni ammissibili per il prima e il duale, rispettivamente, allora $c\bar{x} \le \bar{y}b$
 - dimostrazione:
 - \circ coppia asimmetrica: $A\overline{x} \le b$; $\overline{y}A = c$, $\overline{y} \ge 0 \Longrightarrow \overline{y}A\overline{x} \le \overline{y}b$; $\overline{y}A\overline{x} = c\overline{x} \Longrightarrow c\overline{x} \le \overline{y}b$
 - o coppia simmetrica: $A\overline{x} \le b$, $\overline{x} \ge 0$; $\overline{y}A = c$, $\overline{y} \ge 0 \Rightarrow \overline{y}A\overline{x} \le \overline{y}b$; $\overline{y}A\overline{x} \ge c\overline{x} \Rightarrow c\overline{x} \le \overline{y}b$
 - corollario: se il primale è illimitato, allora il duale è vuoto
 - o dimostrazione:

- se il primale è illimitato, allora per ogni M app R esiste una soluzione ammissibile x per il primale con cx > M
- se per assurdo ci fosse y ammissibile per il duale, troveremmo x ammissibile per il primale con cx > yb (in contrasto col teorema deble di dualità)
- corollario: se \bar{x} e \bar{y} sono soluzioni ammissibili per primale e duale, rispettivamente, e \bar{cx} = \bar{y} b, allora \bar{x} e \bar{y} sono soluzioni ottime
 - o dimostrazione: se $c\bar{x} = \bar{y}b$ non fosse ottima, troveremmo z ammissibile per il primale con $c\bar{x} > c\bar{x}$ e quindi $c\bar{z} > \bar{y}b$ (in contrasto col teorema debole di dualità)

direzioni ammissibili

- direzione ammissibile: vettore $\xi \in \mathbb{R}^n$ se esiste $\overline{\lambda} > 0 \mid x(\lambda) = \overline{x} + \lambda \xi$ è ammissibile nel primale per ogni $\lambda \in [0, \overline{\lambda}]$
- ci chiediamo se data una coppia asimmetrica, consideriamo una soluzione ammissibile \overline{x} per il primale, se ci spostiamo lungo una direzione dell'iperspazio a partire da \overline{x} si resta o no nella regione ammissibile
- lemma: il vettore ξ è direzione ammissibile per \bar{x} sse $A_{I(\bar{x})}\xi \le 0$
 - ο dimostrazione: ξ come direzione ammissibile se per ogni $i ∈ \{1, ..., m\}$ $A_i \overline{x}(\lambda) = A_i x + \lambda A_i \xi <= b_i$
 - se $i \in I(\bar{x})$, allora $A_i\bar{x} = b_i$, quindi l'equazione è verificata sse $\lambda A_i \xi \le 0$
 - se i $\notin I(\overline{x})$, allora l'equazione è verificata da qualunque ξ , purchè λ sia abbastanza piccolo

direzioni di crescita

- direzione di crescita per \bar{x} : direzione $\xi \in R^N$ se uno spostamento λ lungo ξ fa crescere il valore della funzione obiettivo
 - \circ cioè se $cx(\lambda) = cx + \lambda c\xi > cx \Leftrightarrow c\xi > 0$
- la nozione di direzione di crescita non dipende dal punto x
- se c = 0, allora la funzione obiettivo vale sempre 0 e quindi tutte le soluzioni ammissibili sono ottime
- se $c \neq 0$, allora se esiste una direzione ammissibile per x che sia anche di crescita, allora x non può essere ottimo

algoritmo del simplesso struttura

- l'algoritmo procede iteritivamente, visitando alcuni tra i vertici del poliedro che definisce l'insieme delle soluzioni ammissibili
- dato un vertice x si cerca di determinare se tale vertice sia o no una soluzione ottima, cercando di determinare se esiste una soluzione y per il duale con lo stesso valore della funzione obiettivo
- nel caso x non sia ottima, si cerca di seguire una direzione di crescita ammissibile con un altro vertice
- se non si può spostarsi indefinitamente lungo questa direzione di crescita, allora il problema è illimitato
 - o altrimenti si incontra un altro vertice e ci si sposta
 - simplesso primale(A, b, c, B)
 - 1. N \leftarrow {1, ..., m}-B
 - \circ 2. $x \leftarrow A_B^{-1}bB$
 - 3. yB \leftarrow cAB^-1
 - \circ 4. yN \leftarrow 0
 - \circ 5. se yB \geq 0, allora termina con successo e restituisci x e y
 - \circ 6. h \leftarrow min{i \in B | $\overline{y_i} < 0$ }
 - \circ 7. sia ξ la colonna di indice h in -(AB^-1)

- 8. se AN $\xi \le 0$, allora termina e restituisci ξ (il problema è illimitato)
- \circ 9. k \leftarrow arg min{ $(b_i-A_ix)/A_i\xi \mid A_i\xi > 0 \land i \in N$ }
- \circ 10. B ← B un $\{k\}$ $\{h\}$
- o 11. torna a 1

correttezza

- l'algoritmo lavora con tre invarianti
 - \circ B = base ammissibile
 - \circ \bar{x} = soluzione ammissibile per il problema primale max $\{cx \mid Ax \le b\}$ mentra $\bar{y}A = c$
 - \circ quindi, \bar{x} è sempre vertice
 - o per y la condizione yA = c vale per come yB e yN vengono inizializzati
 - o quindi, \bar{y} è soluzione per il duale max {yb | yA = c, y \ge 0} sse $\bar{y}B \ge 0$
- allora l'algoritmo termina correttamente restituendo x e y soluzioni ottime per primale e duale
- se invece c'è y strettamente negativo, allora non vale l'ottimalità
 - o cerchiamo una direzione ammissibile e di crescita per x
 - ξ è sempre direzione di crescita perchè $c\xi = c(-A_B^-1u_h) = -(cA_B^-1)u_h = -yu_h = -y_h > 0$
 - con u_h vettore nullo ovunque tranne nella componente corrispondente a i (in cui vale
 1)
 - \circ ξ potrebbe non essere direzione ammissibile
- il vettore $A_B\xi$ è una delle colonne della matrice identica cambiata di segno, e quindi $A_B\xi \le 0$
- se $i \in N$ e $A_i \xi \le 0$, allora $x(\lambda)$ soddisfa l'i-esimo vincolo per ogni valore non negativo di λ
- se $i \in N$ e $A_i \xi > 0$, allora $A_i \overline{x}(\lambda) = A_i \overline{x} + \lambda A_i \xi \le b_i \iff \lambda \le (b_i A_i \overline{x}) / A_i \xi$
- scegliamo l'indice i che rende λ minimo, lo chiamiamo k
- $\overline{\lambda} = \min\{\lambda_i \mid i \in \mathbb{N}\}$
- 1. se $\lambda = +\infty$ (cioè se AN $\xi < 0$), allora il problema è illimitato
- 2. se 0 < delta < +∞, allora x(delta) è ammissibile per ogni delta ∈ [0, delta] e non ammissibile in altri casi
 - o quindi, possiamo spostarci da B a B un {k}-{h} (che corrisponde a un altro vertice)
- se delta = 0, allora la direzione non è ammissibile, ma possiamo effettuare un cambio di base verso B un {k}-{h} (rimaniamo sullo stesso vertice)

complessità

- si può dimostrare che ogni base viene trattata al massimo una volta durante l'esecuzione dell'algoritmo
- quindi, vi saranno al massimo un numero di iterazioni che può diventare esponenziale in n
- quindi
 - o dal punto di vista teorico, la complessità nel caso medio è polinomiale
 - o dal punto di vista pratico, si osserva che il simplesso è l'algoritmo più efficiente e che si comporta meglio di altri