Seminarium dyplomowe magisterskie

Prezentacja nr 3

Wojciech Pasternak

Wyznaczanie zer wielomianów

Finding of roots of polynomial

Promotor: dr hab. inż. Robert Janczewski

Wybór struktury do reprezentacji wielomianu

- Reprezentacja wielomianu w pamięci na dwa sposoby:
 - Trzymanie tylko niezerowych współczynników wielomianu (mapa)
 - Trzymanie wszystkich współczynników wielomianu (tablica)

Testy jakościowe - wnioski

- Dla obu struktur możliwe jest znalezienie żądanego rozwiązania z zadaną dokładnością
- Wszystkie testy jednostkowe kończą się sukcesem dla obu struktur

Wielomian stopnia n, składający się z sumy dwóch niezerowych współczynników

Wielomian stopnia n, składający się z sumy n/10 niezerowych współczynników

Wielomian stopnia n, składający się z sumy n/2 niezerowych współczynników

Wielomian stopnia n, składający się z sumy n niezerowych współczynników

Wnioski – część 1

- Stopień wielomianu ma niewielki wpływ na czas działania w przypadku mapy
- Stopień wielomianu ma krytyczny wpływ na czas działania w przypadku tablicy
- Kwadratowa zależność czasu działania od stopnia wielomianu

Wnioski – część 2

- Liczba niezerowych współczynników ma krytyczny wpływ na czas znajdowania pierwiastków wielomianu w przypadku mapy
- Liczba niezerowych współczynników nie ma wpływu na czas znajdowania pierwiastków wielomianu w przypadku wektora (tablicy)
- Im odsetek niezerowych współczynników jest większy tym mapa działa gorzej, by dla liczby niezerowych współczynników dążących do stopnia wielomianu osiągnąć praktycznie identyczny czas działania jak w przypadku tablicy

Porównanie czasu działania ze względu na rozkładalność wielomianu na czynniki i liczbę pierwiastków w przypadku mapy

Porównanie czasu działania ze względu na rozkładalność wielomianu na czynniki i liczbę pierwiastków w przypadku tablicy

Wnioski

- Rozkładalność wielomianu na czynniki ma krytyczne znaczenie dla czasu działania algorytmu w przypadku obu struktur
- Mniejsza liczba pierwiastków powoduje szybsze działanie algorytmu – brak potrzeby zawężania przedziału rozwiązania, jeżeli wiemy, że nie występują w nim pierwiastki

Prezentacja zabawnej historyjki

- ✓ Zapomniany zakomentowany assert w testach jednostkowych i zdziwienie, że testy zakończone sukcesem, a funkcjonalność nie działa
- ✓ Wyciek pamięci, poprzez niejawnie wywoływany domyślny konstruktor kopiujący – 300Mb/s – chwila nieuwagi i komputer wymagał twardego resetu – szybkość wyciekania była większa, niż szybkość swapowania (zapisywania pamięci na dysku)

Dziękuję!