Market Basket Analysis

Contents

- 1. Understanding Association Rules
- 2. Introduction to Market Basket Analysis
 - . Uses
 - ii. Definitions and Terminology
- 3. Rule Evaluation
 - i. Support
 - ii. Confidence
 - iii. Lift
- 4. Market Basket Analysis in Python

About Association Rules

Associati on Rule Learning

Method for discovering interesting relations between variables in large databases

- Based on the concept of strong rules, Rakesh Agrawal introduced association rules
 for discovering regularities between products in large-scale transaction data
 recorded by point-of-sale (POS) systems in supermarkets
- For example, the rule found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are also likely to buy burger
- Association rule learning method can be applied in many areas such as web usage mining, fraud detection, continuous production and bioinformatics

Introduction to Market Basket Analysis

The most widely used area of application for association rules is Market Basket
 Analysis

Market Basket Analysis (Association Analysis) is a mathematical modeling technique based upon the theory that if you buy a certain group of items, you are likely to buy another group of items

• It is used to analyze the customer purchasing behavior and helps in increasing the sales and maintain inventory by focusing on the point of sale transaction data

Market Basket Analysis – Uses

Product Building

 Develop combo offers based on products bought together

Optimisation

 Organise and place associated products/categories nearby inside a store

Advertising and Marketing

Determine the layout of the catalog of an ecommerce site

Inventory Management Control inventory based on product demands and what products sell together

Definitions and Terminology

Term	Definition
Transactions	A set of items (Item set)
Support	Ratio of number of times two or more items occur together to the total number of transactions Support can be thought of as P(A and B)
Confidence	Conditional probability that a randomly selected transaction will include Item B given Item A P(B A) (written as A => B)
Lift	Ratio of the probability of Items A and B occurring together (Joint probability) to the product of P(A) and P(B)

Get an Edge!

The Famous Story

An article in The Financial Times of London (Feb. 7, 1996) stated,

"The example of what data mining can achieve is the case of a large US supermarket chain which discovered a strong association for many customers between a brand of babies nappies (diapers) and a brand of beer. Most customers who bought the nappies also bought the beer. The best hypothesisers in the world would find it difficult to propose this combination but data mining showed it existed, and the retail outlet was able to exploit it by moving the products closer together on the shelves."

Rule Evaluation – Support

Transaction No.	Item 1	Item 2	Item 3	• • •
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Wine	Vodka	
103	Beer	Cheese	Diaper	
104	Ice Cream	Diaper	Beer	

$$Support = \frac{\text{No.of transactions containing both A and B}}{\text{Total no.of transactions}} = \frac{3}{5} = 60\%$$

Support of {Diaper, Beer} is 3/5

Rule Evaluation – Confidence

Transaction No.	Item 1	Item 2	Item 3	• • •
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Wine	Vodka	
103	Beer	Cheese	Diaper	
104	Ice Cream	Diaper	Beer	

Confidence for $\{A\} \Rightarrow \{B\} = \frac{\text{No.of transactions containing both A and B}}{\text{No. of transactions containing A}}$

Confidence for $\{Diaper\} \Rightarrow \{Beer\} \text{ is } 3/3$

When Diaper is purchased, the likelihood of Beer purchase is 100%

Confidence for $\{Beer\} \Rightarrow \{Diaper\}$ is 3/4

When Beer is purchased, the likelihood of Diaper purchase is 75%

 ${Diaper} \Rightarrow {Beer}$ is a more important rule according to Confidence

Rule Evaluation – Lift

Transaction No.	Item 1	Item 2	Item 3	Item 4
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Milk	Vodka	Chocolate
103	Beer	Milk	Diaper	Chocolate
104	Milk	Diaper	Beer	

Lift =
$$\frac{P(A \cap B)}{P(A)P(B)} = \frac{\frac{3}{5}}{\left(\frac{4}{5}\right)\left(\frac{4}{5}\right)} = 0.9375$$

Lift < 1 indicates Chocolate is decreasing the chance of Milk purchase Support and confidence are high but lift is low

Case Study – Online Retail Data

Background

• A typical retail transactional data from a UK retailer from 2010-11

Objective

To mine association rules and information about item sets

Available Information

- Total number of transactions is 541909
- · Items are aggregated to 392 categories
- Data is collected for 1 year (365 days)

Observations

Data Snapshot

ONLINE RETAIL Variables

InvoiceNo	StockCode	Description (Quantity	InvoiceDate	UnitPrice	CustomerID	Country
536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER		6	01-12-2010 08:26	2.55	17850	United Kingdom
536365	71053	WHITE METAL LA	ANTERN	6	01-12-2010 08:26	3.39	17850	United Kingdom
536365	84406B	CREAM CUPID HEARTS	COAT HANGER	8	01-12-2010 08:26	2.75	17850	United Kingdom
Colum	ın 📗	Description	Type	N	<mark>leasurem</mark>	ent	Possik	ole Values
Invoice	No In	voice Number	Numeri	C	-			-
StockCo	ode	Stock Code	Categoric	al	-			-
Description Product Description Char				er H	HITE HANG EART T-LIG HOLDER, 6	SHT		-
Quantity		Quantity	Quantity Continuo		-			tive and tive value
InvoiceD	InvoiceDate Date of Invoice		Date		dd-mm-yyyy hh:mm		01/12/2010 8:26 09/12/2011 12:	
UnitPrice Price per un product		ice per unit of product	Continuo	US	-			tive and tive value
Custom D	ierl (Customer ID	Continuo	US	-			-
Count	ry C	ountry name	Categorio	al Ur	nited Kingo France, et			

Market Basket Analysis in Python

#Market Basket Analysis Using Apriori Recommendation

pip install mlxtend

```
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
df = pd.read_excel('Online Retail.xlsx')
df.head()
```

- □ We will be using library "mlxtend" for performing Market Basket Analysis in Python.
- □ Library "mlxtend" is used for extracting frequent itemsets with applications in association rule learning

Market Basket Analysis in Python

Output:

Index	InvoiceNo	StockCode	Description	Quantity	InvoiceDate UnitPr	ice CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6 01-	12-2010 8.26 2	.55 17850	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6 01-	12-2010 8.26 3	.39 17850	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8 01-	12-2010 8.26 2	.75 17850	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6 01-	12-2010 8.26 3	.39 17850	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6 01-	12-2010 8.26 3	.39 17850	United Kingdom

Visualise Item Frequency

#Item Frequency Plot

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x = 'Description', data = df, order =
df['Description'].value_counts().iloc[:10].index)
plt.xticks(rotation=90)
```

- □ *sns.countplot()* calculates item frequency and returns a barplot.
- □ order = Order to plot the categorical levels in, otherwise the levels are inferred from the data objects

Item Frequency Plot

Output

Interpretation:

The plot shows items by frequency in a descending order.

Basic Data Cleanup

Data Cleaning and Consolidation

```
df['Description'] = df['Description'].str.strip()
df.dropna(axis=0, subset=['InvoiceNo'], inplace=True)
df['InvoiceNo'] = df['InvoiceNo'].astype('str')
df = df[~df['InvoiceNo'].str.contains('C')]
```

- □ *strip()* returns a copy of the string with both leading and trailing characters removed.
- □ *dropna()* removes all the missing values and a new object is returned which does not have any NaN values present in it.
- □ *contains()* function is used to test if pattern or regex is contained within a string of a Series or Index. Here it is used to remove 'C' from 'InvoiceNo.

□ *After the cleanup, consolidation of the items into 1 transaction per row with each product is done.*

Basic Data Cleanup

Output:

						12 PENC		
				12 MESSA		LS SMALI	_	
				GE CARDS		TUBE RI	12 PENCILS	
	10 COLOUR SP 12 COLO	URED P 12 EGG	HOUSE PAINTE	WITH EN	12 PENCIL SMA	LL D RETROS	S SMALL TUBE	12 PENCILS TAL
Description		LLOONS D WOOD		VELOPES	TUBE WOODLAN	D POT	SKULL	L TUBE POSY
InvoiceNo								
536370	0.0	0.0	0.0	0.0	9	0.0	0.0	0.0
536852	0.0	0.0	0.0	0.0)	0.0	0.0	0.0
536974	0.0	0.0	0.0	0.0	(0.0	0.0	0.0
537065	0.0	0.0	0.0	0.0	(0.0	0.0	0.0
537463	0.0	0.0	0.0	0.0	(0.0	0.0	0.0

Consolidation of items

```
# Data consolidation

def encode_units(x):
    if x <= 0:
        return 0
    if x >= 1:
        return 1

basket_sets = basket.applymap(encode_units)
basket_sets.drop('POSTAGE', inplace=True, axis=1)
```

- □ applymap() method applies a function that accepts and returns a scalar to every element of a DataFrame.
- □ This way, we generated a data frame that shows us whether a particular items is bought or not.

```
frequent_itemsets = apriori(basket_sets, min_support=0.07,
use_colnames=True)
```

□ Once data is structured properly, frequent item sets that have a support of at least 7% is generated.

Get and Display the Rules

#Get the Rules

```
rules = association_rules(frequent_itemsets, metric="lift",
min_threshold=1)
```

□ association_rules() generate the rules with their corresponding support, confidence and lift.

#Show Top 5 Rules

```
rules.head()
```

Output:

Index	antecedents	consequents	antecedent support	consequent support		confidence	lift	leverage	conviction
0	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE GREEN'})</pre>	0.102040816	0.096938776	0.073979592	0.725	7.478947368	0.06408788	3.283858998
1	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE PINK'})</pre>	0.096938776	0.102040816	0.073979592	0.763157895	7.478947368	0.06408788	3.79138322
2	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE GREEN'})</pre>	0.094387755	0.096938776	0.079081633	0.837837838	8.642958748	0.069931799	5.568877551
3	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE RED'})</pre>	0.096938776	0.094387755	0.079081633	0.815789474	8.642958748	0.069931799	4.916180758
4	frozenset({'POSTAGE'})	frozenset({'ALARM CLOCK BAKELIKE GREEN'})	0.765306122	0.096938776	0.084183673	0.11	1.134736842	0.009995835	1.014675533

Manage How the Rules are Displayed

#Sort the Rules

□ Dataframe can be filtered using standard pandas code. In this case, rules with high lift (>6) and high confidence (>8) are displayed.

Output:

```
antecedent consequent
                                                                                    lift leverage conviction
           antecedents
                                                     support support confidence
Index
                            consequents
                                           support
     frozenset({'ALARM frozenset({'ALARM
        CLOCK BAKELIKE
                         CLOCK BAKELIKE
              GREEN'})
                                 RED'}) 0.0969388 0.09438780.0790816 0.81578958.6429587 0.0699318 4.9161808
     frozenset({'ALARM frozenset({'ALARM
        CLOCK BAKELIKE
                         CLOCK BAKELIKE
                RED'})
                               GREEN'}) 0.0943878 0.09693880.0790816 0.83783788.6429587 0.0699318 5.5688776
     frozenset({'SET/6 frozenset({'SET/2
      RED SPOTTY PAPER 0 RED RETROSPOT
             PLATES'}) PAPER NAPKINS'}) 0.127551 0.13265310.1020408
  17
                                                                            0.86.0307692 0.0851208 4.3367347
```

Interpretation:

Green and red alarm clocks are purchased together and the red paper cups, napkins and plates are purchased together in a manner that is higher than the overall probability would suggest

Manage How the Rules are Displayed

```
basket['ALARM CLOCK BAKELIKE GREEN'].sum()
340.0
basket['ALARM CLOCK BAKELIKE RED'].sum()
316.0
```

- □ *In order to check how much opportunity is there to use the popularity of one product to drive sales of another, their sum is calculated.*
- □ For example, it can be seen that 340 Green Alarm clocks are sold but only 316 Red Alarm clocks are sold, hence maybe selling of Red Alarm Clock can be increased through recommendations

Combinations by country

```
basket2 = (df[df['Country'] =="Germany"]
          .groupby(['InvoiceNo', 'Description'])['Quantity']
          .sum().unstack().reset index().fillna(0)
          .set index('InvoiceNo'))
basket sets2 = basket2.applymap(encode units)
basket sets2.drop('POSTAGE', inplace=True, axis=1)
frequent itemsets2 = apriori(basket sets2, min support=0.05,
use colnames=True)
rules2 = association rules(frequent itemsets2, metric="lift",
min threshold=1)
rules2[ (rules2['lift'] >= 4) &
        (rules2['confidence'] >= 0.5)]
```

- □ *It is interesting to see how the combinations vary by country of purchase.*
- □ Here, some popular combinations in Germany are displayed

Combinations by country

Output:

```
antecedent consequent
                                support
                                                  support confidence
                                                                     lift
                                                                           leverage conviction
Index
         antecedents
                     consequents
                                         support
                 frozenset({'PLAS
   frozenset({'PLASTE
                    TERS IN TIN
     RS IN TIN CIRCUS
                       WOODLAND
  1
          PARADE'})
                     ANIMALS'})
                              frozenset({'PLAS
   frozenset({'PLASTE
                    TERS IN TIN
          RS IN TIN
                       WOODLAND
        SPACEBOY' })
                     ANIMALS'})
                               frozenset({'RED frozenset({'WOOD
          RETROSPOT LAND CHARLOTTE
 11 CHARLOTTE BAG' })
                        BAG'})
                              0.0700219 0.1269147 0.059080963
                                                          0.84375 6.648168103 0.050194159 5.587746171
```

Interpretation:

It can be inferred that Germans like Plasters in Tin Spaceboy and Woodland Animals.

Quick Recap

In this session, we learnt Market Basket Analysis:

Market Basket Analysis

- Mathematical modeling technique based upon the theory that if you buy a certain group of items, you are likely to buy another group of items
- Transactions, Support, Confidence and Lift are the key concepts used in this analysis
- The analysis is performed by creating and studying rules based on different itemsets

Market Basket Analysis in Python

- Library **mlxtend** is used for undertaking MBA in Python
- sns.countplot() plots frequency
- apriori() builds frequent items
- association_rules() builds the rules