Package 'provenance'

April 21, 2016

Title Statistical Toolbox for Sedimentary Provenance Analysis

Version 1.5

Description Bundles a number of established statistical methods to facilitate the visual interpretation of large datasets in sedimentary geology. Includes functionality for adaptive kernel density estimation, multidimensional scaling, generalised procrustes analysis and individual differences scaling using a variety of dissimilarity measures. Univariate provenance proxies, such as single-grain ages or (isotopic) compositions are compared with the Kolmogorov-Smirnov dissimilarity and Sircombe-Hazelton L2-norm. Categorical provenance proxies, such as mineralogical, petrographic or chemical compositions are compared with the Aitchison and Bray-Curtis distances. Also included are tools to plot compositional data on ternary diagrams, to calculate the sample size required for specified levels of statistical precision, and to assess the effects of hydraulic sorting on detrital compositions. Includes an intuitive query-based user interface for users who are not proficient in R.

Author Pieter Vermeesch [aut, cre]

Maintainer Pieter Vermeesch <p.vermeesch@ucl.ac.uk>

Depends R (>= 3.0.0)

Imports MASS, methods License GPL-2 LazyData true

RoxygenNote 5.0.1

R topics documented:

malgamate	2
s.acomp	3
s.compositional	
s.data.frame.compositional	5
otev	5
ray.diss	6
LR	7
ombine	7

2 amalgamate

omo 1 /	gamate Group components of a composition	
ndex		3
		٠,
	ternary	
	summaryplot	
	subset.distributional	
	subset.compositional	
	restore	
		3
		30
	1	
	provenance	
	procrustes	
	plot.ternary	
	plot.PCA	
	plot.minsorting	
	1	24
	1	24
	plot.INDSCAL	
	plot.GPA	
	plot.distributional	
	plot.compositional	20
	PCA	20
	Namib	19
	minsorting	18
		1
	KS.diss	
	KDEs	
	KDE	
	indscal	
	GPA	
	get.p	
	get.n	
	endmembers	10
	diss	9
	densities	7
	dansitios	

Description

Adds several components of a composition together into a single component

as.acomp 3

Usage

```
amalgamate(X, ...)
## Default S3 method:
amalgamate(X, ...)
## S3 method for class 'compositional'
amalgamate(X, ...)
## S3 method for class 'SRDcorrected'
amalgamate(X, ...)
```

Arguments

X a compositional dataset

a series of new labels assigned to strings or vectors of strings denoting the components that need amalgamating

Value

an object of the same class as X with fewer components

Examples

as.acomp

create an acomp object

Description

Convert an object of class compositional to an object of class acomp for use in the compositions package

Usage

```
as.acomp(x)
```

Arguments

Χ

an object of class compositional

4 as.compositional

Value

```
a data.frame
```

Examples

```
data(Namib)
qfl <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(qfl,type="QFL.dickinson")
qfl.acomp <- as.acomp(qfl)
## uncomment the next two lines to plot an error
## ellipse using the compositions package:
# library(compositions)
# ellipses(mean(qfl.acomp),var(qfl.acomp),r=2)</pre>
```

as.compositional

create a compositional object

Description

Convert an object of class matrix, data. fram or acomp to an object of class compositional

Usage

```
as.compositional(x, method = NULL, colmap = "rainbow")
```

Arguments

x an object of class matrix, data. fram or acomp

method dissimilarity measure, either 'aitchison' for Aitchison's CLR-distance or 'bray'

for the Bray-Curtis distance.

colmap the colour map to be used in pie charts.

Value

an object of class compositional

```
data(Namib)
PT.acomp <- as.acomp(Namib$PT)
PT.compositional <- as.compositional(PT.acomp)
print(Namib$PT$x - PT.compositional$x)
## uncomment the following lines for an illustration of using this
## function to integrate the \code{provenance} package with \code{compositions}
# library(compositions)
# data(Glacial)
# a.glac <- acomp(Glacial)
# c.glac <- as.compositional(a.glac)
# summaryplot(c.glac,ncol=8)</pre>
```

```
as. {\tt data.frame.compositional} \\ {\tt \it create\ a\ data.frame\ \it object}
```

Description

Convert an object of class compositional to a data. frame for use in the robCompositions package

Usage

```
## S3 method for class 'compositional' as.data.frame(x, ...)
```

Arguments

x an object of class compositional... optional arguments to be passed on to the generic function

Value

```
a data.frame
```

Examples

```
data(Namib)
qfl <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(qfl,type="QFL.dickinson")
qfl.frame <- as.data.frame(qfl)
## uncomment the next two lines to plot an error
## ellipse using the robCompositions package:
# library(robCompositions)
# pca <- pcaCoDa(qfl.frame)
# plot(pca,xlabs=rownames(qfl.frame))</pre>
```

botev

Compute the optimal kernel bandwidth

Description

Uses the diffusion algorithm of Zdravko Botev (2011) to calculate the bandwidth for kernel density estimation

Usage

```
botev(x)
```

6 bray.diss

Arguments

x a vector of ordinal data

Value

a scalar value with the optimal bandwidth

Author(s)

Dzdravko Botev

References

Botev, Z. I., J. F. Grotowski, and D. P. Kroese. "Kernel density estimation via diffusion." The Annals of Statistics 38.5 (2010): 2916-2957.

Examples

```
fname <- system.file("DZ.csv",package="provenance")
bw <- botev(read.distributional(fname)$x$N1)
print(bw)</pre>
```

bray.diss

Bray-Curtis dissimilarity

Description

Calculates the Bray-Curtis dissimilarity between two samples

Usage

```
bray.diss(x, y)
```

Arguments

x a vector containing the first compositional sample

y a vector of length(x) containing the second compositional sample

Value

a scalar value

```
data(Namib)
print(bray.diss(Namib$HM$x["N1",],Namib$HM$x["N2",]))
```

CLR 7

CLR

Centred logratio transformation

Description

Calculates Aitchison's centered logratio transformation for a dataset of class compositional

Usage

CLR(x)

Arguments

Х

an object of class compositional

Value

a matrix of CLR coordinates

Examples

```
# The following code shows that applying provenance's PCA function
# to compositional data is equivalent to applying R's built-in
# princomp function to the CLR transformed data.
data(Namib)
plot(PCA(Namib$Major))
dev.new()
clrdat <- CLR(Namib$Major)$x
biplot(princomp(clrdat))</pre>
```

combine

Combine samples of distributional data

Description

Lumps all single grain analyses of several samples together under a new name

Usage

```
combine(X, ...)
```

Arguments

X a distributional dataset

a series of new labels assigned to strings or vectors of strings denoting the samples that need amalgamating

8 densities

Value

a distributional data object with fewer samples than X

Examples

densities

A list of rock and mineral densities

Description

List of rock and mineral densities using the following abbreviations: Q (quartz), KF (K-feldspar), P (plagioclase), F (feldspar), Lvf (felsic/porfiritic volcanic rock fragments), Lvm (microlithic / porfiritic / trachitic volcanic rock fragments), Lcc (calcite), Lcd (dolomite), Lp (marl), Lch (chert), Lms (argillaceous / micaceous rock fragments), Lmv (metavolcanics), Lmf (metasediments), Lmb (metabasites), Lv (volcanic rock fragments), Lc (carbonates), Ls (sedimentary rock fragments), Lm (metamorphic rock fragments), Lu (serpentinite), mica, opaques, FeOx (Fe-oxides), turbids, zr (zircon), tm (tourmaline), rt (rutile), TiOx (Ti-oxides), sph (titanite), ap (apatite), mon (monazite), oth (other minerals), ep (epidote), othLgM (prehnite + pumpellyite + lawsonite + carpholite), gt (garnet), ctd (chloritoid), st (staurolite), and (andalusite), ky (kyanite), sil (sillimanite), amp (amphibole), px (pyroxene), cpx (clinopyroxene), opx (orthopyroxene), ol (olivine), spinel and othHM (other heavy minerals).

Author(s)

Alberto Resentini and Pieter Vermeesch

References

Resentini, A, Malusa M G and Garzanti, E. "MinSORTING: An Excel worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies." Computers & Geosciences 59 (2013): 90-97.

Garzanti, E, Ando, S and Vezzoli, G. "Settling equivalence of detrital minerals and grain-size dependence of sediment composition." Earth and Planetary Science Letters 273.1 (2008): 138-151.

See Also

restore, minsorting

```
data(Namib,densities)
N8 <- subset(Namib$HM,select="N8")
distribution <- minsorting(N8,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution)</pre>
```

diss 9

diss Calculate the dissimilarity matrix between two distributional or compositional datasets

Description

Calculate the dissimilarity matrix between two datasets of class distributional or compositional using the Kolmogorov-Smirnov, Sircombe-Hazelton, Aitchison or Bray Curtis distance

Usage

```
diss(x, method)
## S3 method for class 'distributional'
diss(x, method = NULL)
## S3 method for class 'compositional'
diss(x, method = NULL)
```

Arguments

```
x an object of class distributional or compositional method (optional) either "KS", "SH", "aitchison" or "bray"
```

Value

an object of class diss

Examples

```
data(Namib)
print(round(100*diss(Namib$DZ)))
```

endmembers

Petrographic end-member compositions

Description

A compositional dataset comprising the mineralogical compositions of the following end-members: undissected_magmatic_arc, dissected_magmatic_arc, ophiolite, recycled_clastic, undissected_continental_btransitional_continental_block, dissected_continental_block, subcreted_axial_belt and subducted_axial_belt

Author(s)

Alberto Resentini and Pieter Vermeesch

10 get.f

References

Resentini, A, Malusa M G and Garzanti, E. "MinSORTING: An Excel worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies." Computers & Geosciences 59 (2013): 90-97.

Garzanti, E, Ando, S and Vezzoli, G. "Settling equivalence of detrital minerals and grain-size dependence of sediment composition." Earth and Planetary Science Letters 273.1 (2008): 138-151.

See Also

minsorting

Examples

```
data(endmembers,densities)
ophiolite <- subset(endmembers,select="ophiolite")
plot(minsorting(ophiolite,densities,by=0.05))</pre>
```

get.f

Calculate the largest fraction that is likely to be missed

Description

For a given sample size, returns the largest fraction which has been sampled with p x 100

Usage

```
get.f(n, p = 0.05)
```

Arguments

n the number of grains in the detrital sample

p the required level of confidence

Value

the largest fraction that is sampled with at least 100 x p certainty

References

Vermeesch, Pieter. "How many grains are needed for a provenance study?." Earth and Planetary Science Letters 224.3 (2004): 441-451.

```
print(get.f(60))
print(get.f(117))
```

get.n 11

get.n	Calculate the number of grains required to achieve a desired level of sampling resolution

Description

Returns the number of grains that need to be analysed to decrease the likelihood of missing any fraction greater than a given size below a given level.

Usage

```
get.n(p = 0.05, f = 0.05)
```

Arguments

p	the probability that all n grains in the sample have missed at least one fraction of size f
f	the size of the smallest resolvable fraction (0 <f<1)< th=""></f<1)<>
n,	the number of grains in the sample

Value

the number of grains needed to reduce the chance of missing at least one fraction f of the total population to less than p

References

Vermeesch, Pieter. "How many grains are needed for a provenance study?." Earth and Planetary Science Letters 224.3 (2004): 441-451.

```
# number of grains required to be 99% that no fraction greater than 5% was missed: print(get.n(0.01)) # number of grains required to be 90% that no fraction greater than 10% was missed: print(get.n(p=0.1,f=0.1))
```

12 GPA

get.p

Calculate the probability of missing a given population fraction

Description

For a given sample size, returns the likelihood of missing any fraction greater than a given size

Usage

```
get.p(n, f = 0.05)
```

Arguments

n the number of grains in the detrital sample

f the size of the smallest resolvable fraction (0 < f < 1)

Value

the probability that all n grains in the sample have missed at least one fraction of size f

References

Vermeesch, Pieter. "How many grains are needed for a provenance study?." Earth and Planetary Science Letters 224.3 (2004): 441-451.

Examples

```
print(get.p(60))
print(get.p(117))
```

GPA

Generalised Procrustes Analysis of configurations

Description

Given a number of (2D) configurations, this function uses a combination of transformations (reflections, rotations, translations and scaling) to find a 'consensus' configuration which best matches all the component configurations in a least-squares sense.

Usage

```
GPA(X, scale = TRUE)
```

Arguments

X a list of dissimilarity matrices

scale boolean flag indicating if the transformation should include the scaling operation

indscal 13

Value

a two column vector with the coordinates of the group configuration

See Also

procrustes

indscal

Individual Differences Scaling of provenance data

Description

Performs 3-way Multidimensional Scaling analysis using Carroll and Chang (1970)'s INdividual Differences SCALing method as implemented using De Leeuw and Mair (2011)'s stress majorization algorithm.

Usage

```
indscal(..., type = "ordinal")
```

Arguments

a sequence of datasets of class distributional or compositional

type is either "ratio" or "ordinal"

Value

an object of class INDSCAL, i.e. a list containing the following items:

delta: Observed dissimilarities

obsdiss: List of observed dissimilarities, normalized

confdiss: List of configuration dissimilarities conf: List of matrices of final configurations

gspace: Joint configurations aka group stimulus space

cweights: Configuration weights

stress: Stress-1 value spp: Stress per point

sps: Stress per subject (matrix) ndim: Number of dimensions model: Type of smacof model niter: Number of iterations nobj: Number of objects 14 KDE

Author(s)

Jan de Leeuw and Patrick Mair

References

de Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, < http://www.jstatsoft.org/v31/i03/>

Examples

```
data(Namib)
plot(indscal(Namib$DZ,Namib$HM))
```

KDE

Create a kernel density estimate

Description

Turns a vector of numbers into an object of class KDE using a combination of the Botev (2010) bandwidth selector and the Abramson (1982) adaptive kernel bandwidth modifier.

Usage

```
KDE(x, from = NA, to = NA, bw = NA, adaptive = TRUE, log = FALSE, n = 512, ...)
```

Arguments

X	a vector of numbers
from	minimum age of the time axis. If NULL, this is set automatically
to	maximum age of the time axis. If NULL, this is set automatically
bw	the bandwidth of the KDE. If NULL, bw will be calculated automatically using $botev()$
adaptive	boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is used
log	transform the ages to a log scale if TRUE
n	horizontal resolution of the density estimate
	optional arguments to be passed on to density

Value

an object of class KDE, i.e. a list containing the following items:

x: horizontal plot coordinates

y: vertical plot coordinates

bw: the base bandwidth of the density estimate

ages: the data values from the input to the KDE function

KDEs 15

See Also

KDEs

Examples

```
data(Namib)
samp <- Namib$DZ$x[['N1']]
dens <- KDE(samp,0,3000,kernel="epanechnikov")
plot(dens)</pre>
```

KDEs

Generate an object of class KDEs

Description

Convert a dataset of class distributional into an object of class KDEs for further processing by the summaryplot function.

Usage

```
KDEs(x, from = NA, to = NA, bw = NA, samebandwidth = TRUE,
   adaptive = TRUE, pch = NA, normalise = FALSE, log = FALSE, n = 512,
   ...)
```

Arguments

X	an object of class distributional
from	minimum limit of the x-axis.
to	maximum limit of the x-axis.
bw	the bandwidth of the kernel density estimates. If $bw=NA$, the bandwidth will be set automatically using botev()
samebandwidth	boolean flag indicating whether the same bandwidth should be used for all samples. If samebandwidth = TRUE and bw = NULL, then the function will use the median bandwidth of all the samples.
adaptive	boolean flag switching on the adaptive bandwidth modifier of Abramson (1982)
pch	(optional) symbol to be used to mark the sample points along the x-axis
normalise	boolean flag indicating whether or not the KDEs should all integrate to the same value.
log	boolean flag indicating whether the data should by plotted on a logarithmic scale.
n	horizontal resolution of the density estimates
	optional parameters to be passed on to density

16 KS.diss

Value

an object of class KDEs, i.e. a list containing the following items:

kdes: a named list with objects of class KDE from: the beginning of the common time scale

to: the end of the common time scale

themax: the maximum probability density of all the KDEs

pch: the plot symbol to be used by plot.KDEs xlabel: the x-axis label to be used by plot.KDEs

See Also

KDE

Examples

```
data(Namib)
KDEs <- KDEs(Namib$DZ,0,3000,pch=NA)
summaryplot(KDEs,ncol=3)</pre>
```

KS.diss

Kolmogorov-Smirnov dissimilarity

Description

Returns the Kolmogorov-Smirnov dissimilarity between two samples

Usage

```
KS.diss(x, y)
```

Arguments

x the first sample as a vectory the second sample as a vector

Value

a scalar value representing the maximum vertical distance between the two cumulative distributions

```
data(Namib)
print(KS.diss(Namib$DZ$x[['N1']],Namib$DZ$x[['T8']]))
```

MDS 17

MDS

Multidimensional Scaling

Description

Performs classical or nonmetric Multidimensional Scaling analysis

Multidimensional Scaling of compositional data

Multidimensional Scaling of distributional data

Multidimensional Scaling of a dissimilarity matrix

Usage

```
MDS(x, ...)
## S3 method for class 'compositional'
MDS(x, classical = FALSE, ...)
## S3 method for class 'distributional'
MDS(x, classical = FALSE, ...)
## S3 method for class 'diss'
MDS(x, classical = FALSE, ...)
```

Arguments

X	an object of class distributional, compositional or diss
	optional arguments to be passed onto diss (if x is of class compositional or distributional) or onto cmdscale or isoMDS (if x is of class dist).
classical	boolean flag indicating whether classical (TRUE) or nonmetric (FALSE) MDS should be used

Value

```
an object of class MDS, i.e. a list containing the following items:
```

points: a two column vector of the fitted configuration

classical: a boolean flag indicating whether the MDS configuration was obtained by classical (TRUE) or nonmetric (FALSE) MDS.

diss: the dissimilarity matrix used for the MDS analysis

stress: (only if classical=TRUE) the final stress achieved (in percent)

```
data(Namib)
plot(MDS(Namib$Major,classical=TRUE))
```

18 minsorting

minsorting	Assess settling equivalence of detrital components	

Description

Models grain size distribution of minerals and rock fragments of different densities

Usage

```
minsorting(X, dens, sname = NULL, phi = 2, sigmaphi = 1, medium = "freshwater", from = -2.25, to = 5.5, by = 0.25)
```

Arguments

Χ	an object of class compositional
dens	a vector of mineral and rock densities
sname	sample name if unspecified, the first sample of the dataset will be used
phi	the mean grain size of the sample in Krumbein's phi units
sigmaphi	the standard deviation of the grain size distirbution, in phi units
medium	the transport medium, one of either "air", "freshwater" or "seawater"
from	the minimum grain size to be evaluated, in phi units
to	the maximum grain size to be evaluated, in phi units

the grain size interval of the output table, in phi units

Value

by

```
an object of class minsorting, i.e. a list with two tables:
mfract: the grain size distribution of each mineral (sum of the columns = 1)
mcomp: the composition of each mineral (sum of the rows = 1)
```

Author(s)

Alberto Resentini and Pieter Vermeesch

References

Resentini, A, Malusa, M G and Garzanti, E. "MinSORTING: An Excel worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies." Computers & Geosciences 59 (2013): 90-97.

Garzanti, E, Ando, S and Vezzoli, G. "Settling equivalence of detrital minerals and grain-size dependence of sediment composition." Earth and Planetary Science Letters 273.1 (2008): 138-151.

See Also

restore

Namib 19

Examples

Namib

An example dataset

Description

A large dataset of provenance data from Namibia comprised of 14 sand samples from the Namib Sand Sea and 2 samples from the Orange River.

Details

Namib is a list containing the following 6 items:

DZ: a distributional dataset containing the zircon U-Pb ages for ca. 100 grains from each sample, as well as their (1-sigma) analytical uncertainties.

PT: a compositional dataset with the bulk petrography of the samples, i.e. the quartz ('Q'), K-feldspar ('KF'), plagioclase ('P'), and lithic fragments of metamorphic ('Lm'), volcanic ('Lv') and sedimentary ('Ls') origin.

HM: a compositional dataset containing the heavy mineral composition of the samples, comprised of zircon ('zr'), tourmaline ('tm'), rutile ('rt'), Ti-oxides ('TiOx'), titanite ('sph'), apatite ('ap'), epidote ('ep'), garnet ('gt'), staurolite ('st'), andalusite ('and'), kyanite ('ky'), sillimanite ('sil'), amphibole ('amp'), clinopyroxene ('cpx') and orthopyroxene ('opx').

PTHM: a compositional dataset combining the variables contained in PT and HM plus 'mica', 'opaques', 'turbids' and 'other' transparent heavy minerals ('LgM'), normalised to 100.

Major: a compositional dataset listing the concentrations (in wt TiO2, P2O5 and MnO.

Trace: a compositional data listing the concentrations (in ppm) of Rb, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb, Th, U, Zr, Hf, V, Nb, Cr, Co, Ni, Cu, Zn, Ga and Pb.

Author(s)

Pieter Vermeesch and Eduardo Garzanti

References

Vermeesch, P. and Garzanti, E., Making geological sense of 'Big Data' in sedimentary provenance analysis, Chemical Geology 409 (2015) 20-27

```
data(Namib)
samp <- Namib$DZ$x[['N1']]
dens <- KDE(samp,0,3000)
plot(dens)</pre>
```

20 plot.compositional

PCA

Principal Component Analysis

Description

Performs PCA of compositional data using a centred logratio distance

Usage

```
PCA(x, ...)
```

Arguments

```
x an object of class compositional... optional arguments to R's princomp function
```

Value

an object of classes PCA, which is synonymous to the stats packages' princomp class.

Examples

```
data(Namib)
plot(MDS(Namib$Major,classical=TRUE))
dev.new()
plot(PCA(Namib$Major),asp=1)
print("This example demonstrates the equivalence of classical MDS and PCA")
```

plot.compositional

Plot a pie chart

Description

Plots an object of class compositional as a pie chart

Usage

```
## S3 method for class 'compositional'
plot(x, sname, annotate = TRUE, colmap = NULL, ...)
```

plot.distributional 21

Arguments

x an object of class compositional

sname the sample name

annotate a boolean flag controlling if the pies of the pie-chart should be labeled

colmap an optional string with the name of one of R's built-in colour palettes (e.g.,

heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plot-

ting the data.

... optional parameters to be passed on to the graphics object

Examples

```
data(Namib)
plot(Namib$HM,'N1',colmap='heat.colors')
```

plot.distributional

Plot continuous data as histograms or cumulative age distributions

Description

Plot one or several samples from a distributional dataset as a histogram or Cumulative Age Distributions (CAD).

Usage

```
## S3 method for class 'distributional'
plot(x, snames = NULL, annotate = TRUE,
    CAD = FALSE, pch = NA, verticals = TRUE, colmap = NULL, ...)
```

Arguments

x an object of class distributional

snames a string or a vector of string with the names of the samples that need plotting if

snames is a vector, then the function will default to a CAD.

annotate boolean flag indicating whether the x- and y-axis should be labeled

CAD boolean flag indicating whether the data should be plotted as a cumulative age

distribution or a histogram. For multi-sample plots, the function will override

this value with TRUE.

pch an optional symbol to mark the sample points along the CAD

verticals boolean flag indicating if the horizontal lines of the CAD should be connected

by vertical lines

colmap an optional string with the name of one of R's built-in colour palettes (e.g.,

heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plot-

ting the data.

... optional arguments to the generic plot function

22 plot.GPA

Examples

```
data(Namib)
plot(Namib$DZ,c('N1','N2'))
```

plot.GPA

Plot a Procrustes configuration

Description

Plots the group configuration of a Generalised Procrustes Analysis

Usage

```
## S3 method for class 'GPA'
plot(x, pch = NA, pos = NULL, col = "black", bg = "white",
   cex = 1, ...)
```

Arguments

X	an object of class GPA
pch	plot symbol
pos	position of the sample labels relative to the plot symbols if pch $!= NA$
col	plot colour (may be a vector)
bg	background colour (may be a vector)
cex	relative size of plot symbols
	optional arguments to the generic plot function

See Also

procrustes

```
data(Namib)
GPA <- procrustes(Namib$DZ,Namib$HM)
coast <- c('N1','N2','N3','N10','N11','N12','T8','T13')
snames <- names(Namib$DZ)
bgcol <- rep('yellow',length(snames))
bgcol[which(snames %in% coast)] <- 'red'
plot(GPA,pch=21,bg=bgcol)</pre>
```

plot.INDSCAL 23

plot.INDSCAL

Plot an INDSCAL group configuration and source weights

Description

Given an object of class INDSCAL, generates two plots: the group configuration and the subject weights. Together, these describe a 3-way MDS model.

Usage

```
## S3 method for class 'INDSCAL'
plot(x, asp = 1, pch = NA, pos = NULL, col = "black",
  bg = "white", cex = 1, xlab = "X", ylab = "Y", xaxt = "n",
  yaxt = "n", ...)
```

Arguments

X	an object of class INDSCAL
asp	the aspect ratio of the plot
pch	plot symbol (may be a vector)
pos	position of the sample labels relative to the plot symbols if pch != NA
col	plot colour (may be a vector)
bg	background colour (may be a vector)
cex	relative size of plot symbols
xlab	a string with the label of the x axis
ylab	a string with the label of the y axis
xaxt	if = 'y', adds ticks to the x axis
yaxt	if = 'y', adds ticks to the y axis
	optional arguments to the generic plot function

See Also

indscal

```
data(Namib)
coast <- c('N1','N2','N3','N10','N11','N12','T8','T13')
snames <- names(Namib$DZ)
pch <- rep(21,length(snames))
pch[which(snames %in% coast)] <- 22
plot(indscal(Namib$DZ,Namib$HM),pch=pch)</pre>
```

24 plot.MDS

plot.KDE

Plot a kernel density estimate

Description

Plots an object of class KDE

Usage

```
## S3 method for class 'KDE'
plot(x, pch = "|", xlab = "age [Ma]", ylab = "", ...)
```

Arguments

X	an object of class KDE
pch	the symbol used to show the samples. May be a vector. Set $pch = NA$ to turn them off.
xlab	the label of the x-axis
ylab	the label of the y-axis
	optional parameters to be passed on to the graphics object

See Also

KDE

Examples

```
data(Namib)
samp <- Namib$DZ$x[['N1']]
dens <- KDE(samp,from=0,to=3000)
plot(dens)</pre>
```

plot.MDS

Plot an MDS configuration

Description

Plots the coordinates of a multidimensional scaling analysis as an X-Y scatter plot or 'map' and, if x-classical = FALSE, a Shepard plot.

Usage

```
## S3 method for class 'MDS'
plot(x, nnlines = FALSE, pch = NA, pos = NULL, cex = 1,
   col = "black", bg = "white", xlab = "", ylab = "", xaxt = "n",
   yaxt = "n", ...)
```

plot.minsorting 25

Arguments

x	an object of class MDS
nnlines	if TRUE, draws nearest neighbour lines
pch	plot character (see ?plot for details). May be a vector.
pos	position of the sample labels relative to the plot symbols if pch != NA
cex	relative size of plot symbols (see ?par for details)
col	plot colour (may be a vector)
bg	background colour (may be a vector)
xlab	a string with the label of the x axis
ylab	a string with the label of the y axis
xaxt	if = 's', adds ticks to the x axis
yaxt	if = 's', adds ticks to the y axis
	optional arguments to the generic plot function

See Also

MDS

Examples

```
data(Namib)
mds <- MDS(Namib$DZ)
coast <- c('N1','N2','N3','N10','N11','N12','T8','T13')
snames <- names(Namib$DZ)
bgcol <- rep('yellow',length(snames))
bgcol[which(snames %in% coast)] <- 'red'
plot(mds,pch=21,bg=bgcol)</pre>
```

plot.minsorting

Plot inferred grain size distributions

Description

Plot the grain size distributions of the different minerals under consideration

Usage

```
## S3 method for class 'minsorting'
plot(x, cumulative = FALSE, components = NULL, ...)
```

26 plot.PCA

Arguments

an object of class minsorting
 boolean flag indicating whether the grain size distribution should be plotted as a density or cumulative probability curve.
 string or list of strings with the names of a subcomposition that needs plotting optional parameters to be passed on to graphics::matplot (see ?par for details)

See Also

minsorting

Examples

```
data(endmembers,densities)
OPH <- subset(endmembers,select="ophiolite")
distribution <- minsorting(OPH,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution,components=c('F','px','opaques'))</pre>
```

plot.PCA

Compositional biplot

Description

Plot the results of a principal components analysis as a biplot

Usage

```
## S3 method for class 'PCA' plot(x, ...)
```

Arguments

x an object of class PCA

... optional arguments of the biplot function

See Also

PCA

```
data(Namib)
plot(PCA(Namib$Major))
```

plot.ternary 27

plot.ternary	Plot a ternary diagram	

Description

Plots triplets of compositional data on a ternary diagram

Usage

```
## S3 method for class 'ternary'
plot(x, type = "empty", pch = NA, pos = NULL,
  labels = names(x), showpath = FALSE, bg = NA, col = "cornflowerblue",
   ...)
```

Arguments

Х	an object of class ternary
type	adds annotations to the ternary diagram, one of either empty, QFL $.$ descriptive, QFL $.$ folk or QFL $.$ dickinson
pch	plot character, see ?par for details (may be a vector)
pos	position of the sample labels relative to the plot symbols if pch != NA
labels	vector of strings to be added to the plot symbols
showpath	if x has class SRDcorrected, and showpath==TRUE, the intermediate values of the SRD correction will be plotted on the ternary diagram as well as the final composition
bg	background colour for the plot symbols (may be a vector)
col	colour to be used for the background lines (if applicable)
	optional arguments to the generic points function

See Also

ternary

```
data(Namib)
tern <- ternary(Namib$PT,'Q',c('KF','P'),c('Lm','Lv','Ls'))
plot(tern,type='QFL.descriptive',pch=21,bg='red',labels=NULL)</pre>
```

28 procrustes

procrustes

Generalised Procrustes Analysis of provenance data

Description

Given a number of input datasets, this function performs an MDS analysis on each of these and the feeds the resulting configurations into the GPA() function.

Usage

```
procrustes(...)
```

Arguments

... a sequence of datasets of classes distributional and compositional

Value

```
an object of class GPA, i.e. a list containing the following items: points: a two column vector with the coordinates of the group configuration labels: a list with the sample names
```

Author(s)

Pieter Vermeesch

References

```
Gower, J.C. (1975). Generalized Procrustes analysis, Psychometrika, 40, 33-50.
```

See Also

GPA

```
data(Namib)
gpa <- procrustes(Namib$DZ,Namib$HM)
plot(gpa)</pre>
```

provenance 29

provenance

Menu-based interface for provenance

Description

For those less familiar with the syntax of the R programming language, the provenance() function provides a user-friendly way to access the most important functionality in the form of a menu-based query interface. Further details and examples are provided on http://provenance.london-geochron.com

Usage

provenance()

Author(s)

Pieter Vermeesch

References

Vermeesch, P., Resentini, A. and Garzanti, E., an R package for statistical provenance analysis, Sedimentary Geology, doi:10.1016/j.sedgeo.2016.01.009.

See Also

http://provenance.london-geochron.com

read.compositional

Read a .csv file with categorical data

Description

Reads a data table containing categorical data (e.g. petrographic, heavy mineral or geochemical data)

Usage

```
read.compositional(fname, method = NULL, colmap = "rainbow")
```

Arguments

fname a string with the path to the .csv file

method either "bray" (for the Bray-Curtis distance) or "aitchison" (for Aitchison's cen-

tral logratio distance). If omitted, the function defaults to 'aitchison', unless

there are zeros present in the data.

colmap an optional string with the name of one of R's built-in colour palettes (e.g.,

heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plot-

ting the data.

30 read.densities

Value

an object of class compositional, i.e. a list with the following items:

x: a data frame with the samples as rows and the categories as columns

method: either "aitchison" (for Aitchison's centred logratio distance) or "bray" (for the Bray-Curtis distance)

Examples

```
fname <- system.file("Major.csv",package="provenance")
Major <- read.compositional(fname)
plot(PCA(Major))</pre>
```

read.densities

Read a .csv file with mineral and rock densities

Description

Reads a data table containing densities to be used for hydraulic sorting corrections (minsorting and srd functions)

Usage

```
read.densities(fname)
```

Arguments

fname

a string with the path to the .csv file

Value

a vector with mineral and rock densities

```
data(Namib,densities)
N8 <- subset(Namib$HM,select="N8")
distribution <- minsorting(N8,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution)</pre>
```

read.distributional 31

read.distributional

Read a .csv file with continuous (detrital zircon) data

Description

Reads a data table containing continuous data (e.g. detrital zircon ages)

Usage

```
read.distributional(fname, errorfile = NA, method = "KS",
    xlab = "age [Ma]", colmap = "rainbow")
```

Arguments

fname the path of a .csv file with the input data, arranged in columns.

errorfile the (optional) path of a .csv file with the standard errors of the input data, ar-

ranged by column in the same order as fname. Must be specified if the data are

to be compared with the Sircombe-Hazelton dissimilarity.

method an optional string specifying the dissimilarity measure which should be used for

comparing this with other datasets. Should be one of either "KS" (for Kolmogorov-Smirnov) or "SH" (for Sircombe and Hazelton). If method = "SH", then errorfile should be specified. If method = "SH" and errorfile is unspecified, then the program will default back to the Kolmogorov-Smirnov dissimilar-

ity.

xlab an optional string specifying the nature and units of the data. This string is used

to label kernel density estimates.

colmap an optional string with the name of one of R's built-in colour palettes (e.g.,

heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plot-

ting the data.

Value

an object of class distributional, i.e. a list with the following items:

x: a named list of vectors containing the numerical data for each sample

err: an (optional) named list of vectors containing the standard errors of x

method: either "KS" (for Kolmogorov-Smirnov) or "SH" (for Sircombe Hazelton)

breaks: a vector with the locations of the histogram bin edges

xlab: a string containing the label to be given to the x-axis on all plots

```
agefile <- system.file("DZ.csv",package="provenance")
errfile <- system.file("DZerr.csv",package="provenance")
DZ <- read.distributional(agefile,errfile)
plot(KDE(DZ$x$N1))</pre>
```

restore

restore

Undo the effect of hydraulic sorting

Description

Restore the detrital composition back to a specified source rock density (SRD)

Usage

```
restore(X, dens, target = 2.71)
```

Arguments

X an object of class compositional dens a vector of rock and mineral densities

target the target density (in g/cm3)

Value

an object of class SRDcorrected, i.e. an object of class compositional which is a daughter of class compositional containing the restored composition, plus one additional member called restoration, containing the intermediate steps of the SRD correction algorithm.

Author(s)

Alberto Resentini and Pieter Vermeesch

References

Garzanti E, Ando, S and Vezzoli, G. "Settling equivalence of detrital minerals and grain-size dependence of sediment composition." Earth and Planetary Science Letters 273.1 (2008): 138-151.

See Also

minsorting

SH.diss 33

SH.diss

Sircombe and Hazelton distance

Description

Calculates Sircombe and Hazelton's L2 distance between the Kernel Functional Estimates (KFEs, not to be confused with Kernel Density Estimates!) of two samples with specified analytical uncertainties

Usage

```
SH.diss(x, i, j, c.con = 0)
```

Arguments

X	an object o	of class	distributional
---	-------------	----------	----------------

i index of the first sample

j index of the second sample

c.con smoothing bandwidth of the kernel functional estimate

Value

a scalar value expressing the L2 distance between the KFEs of samples i and j

Author(s)

Keith Sircombe and Martin Hazelton

References

Sircombe, K. N., and M. L. Hazelton. "Comparison of detrital zircon age distributions by kernel functional estimation." Sedimentary Geology 171.1 (2004): 91-111.

See Also

KS.diss

```
datfile <- system.file("DZ.csv",package="provenance")
errfile <- system.file("DZerr.csv",package="provenance")
DZ <- read.distributional(datfile,errfile)
d <- SH.diss(DZ,1,2)
print(d)</pre>
```

34 subset.distributional

```
subset.compositional Get a subset of compositional data
```

Description

Return a subset of provenance data according to some specified indices

Usage

```
## $3 method for class 'compositional'
subset(x, subset = NULL, select = NULL,
    components = NULL, ...)
```

Arguments

x an object of class compositional

subset logical expression indicating elements or rows to keep: missing values are taken

as false.

select a vector of sample names.

components a vector specifying a subcomposition

... optional arguments for the generic subset function

Value

an object of class compositional

See Also

read.compositional

```
subset.distributional Get a subset of distributional data
```

Description

Return a subset of provenance data according to some specified indices

Usage

```
## S3 method for class 'distributional'
subset(x, subset = NULL, select = NULL, ...)
```

summaryplot 35

Arguments

all object of class distributional	Χ	an object of class	distributional
------------------------------------	---	--------------------	----------------

subset logical expression indicating elements or rows to keep: missing values are taken

as false.

select a vector of sample names

... optional arguments for the generic subset function

Value

an object of class distributional

See Also

read.distributional

Examples

```
data(Namib)
coast <- subset(Namib$HM,select=c("N1","N2","T8","T13","N12","N13"))
summaryplot(coast,ncol=2)</pre>
```

summaryplot

Joint plot of several provenance datasets

Description

Arranges kernel density estimates and pie charts in a grid format

Usage

```
summaryplot(..., ncol = 1)
```

Arguments

 $\dots \qquad \qquad \text{a sequence of datasets of class compositional, KDEs, or distributional} \\$

ncol the number of columns

Value

a summary plot of all the data comprised of KDEs for the datasets of class KDEs, pie charts for those of class compositional and histograms for those of class distributional.

See Also

KDEs

36 ternary

Examples

```
data(Namib)
KDEs <- KDEs(Namib$DZ,0,3000)
summaryplot(KDEs,Namib$HM,Namib$PT,ncol=2)</pre>
```

ternary

Define a ternary composition

Description

Create an object of class ternary

Usage

```
ternary(X, x = NULL, y = NULL, z = NULL)
```

Arguments

Χ	an object of class	compositional
Λ	all object of class	COMPOSTITIONAL

x string or a vector of strings indicating the variables making up the first subcomposition of the ternary system. If omitted, the first component of X is used

instead.

y second (set of) variables

z third (set of) variables

Value

```
an object of class ternary, i.e. a list containing:
x: a three column matrix (or vector) of ternary compositions.
and (if X is of class SRDcorrected)
```

restoration: a list of intermediate ternary compositions inherited from the SRD correction

See Also

restore

```
data(Namib)
tern <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(tern,type="QFL")</pre>
```

Index

```
{\tt amalgamate}, {\tt 2}
                                                  plot.ternary, 27
as.acomp, 3
                                                  procrustes, 28
as. {\it compositional}, 4
                                                  provenance, 29
as.data.frame.compositional, 5
                                                  read.compositional, 29
botev, 5
                                                  read.densities, 30
                                                  read.distributional, 31
bray.diss, 6
                                                  restore, 32
CLR, 7
                                                  SH.diss, 33
combine, 7
                                                  subset.compositional, 34
densities, 8
                                                  subset.distributional, 34
diss, 9
                                                  summaryplot, 35
endmembers, 9
                                                  ternary, 36
get.f, 10
get.n, 11
get.p, 12
GPA, 12
indscal, 13
KDE, 14
KDEs, 15
KS.diss, 16
MDS, 17
minsorting, 18
Namib, 19
PCA, 20
plot.compositional, 20
plot.distributional, 21
plot.GPA, 22
plot.INDSCAL, 23
plot.KDE, 24
plot.MDS, 24
plot.minsorting, 25
plot.PCA, 26
```