Simulazioni atomistiche del processo di cristallizzazione in nanofili di GeTe

Edoardo Baldi

Relatore: Prof. Marco Bernasconi

Università di Milano-Bicocca — Dipartimento di Fisica

Sessione di Laurea Magistrale del 23 marzo 2015

Materiali a cambiamento di fase per memorie ottiche ed elettroniche

Memorie ottiche: DVD-RW, Bluray Disc Memorie elettroniche non volatili: memorie a cambiamento di fase (PCM)

Leghe di calcogenuri: GeTe, Ge₂Sb₂Te₅ (GST)

Rapida e reversibile transizione tra cristallo e amorfo (~ 50 ns)

Materiali a cambiamento di fase per memorie ottiche ed elettroniche

Memorie ottiche: DVD-RW, Bluray Disc Memorie elettroniche non volatili: memorie a cambiamento di fase (PCM)

Leghe di calcogenuri: GeTe, Ge₂Sb₂Te₅ (GST)

Rapida e reversibile transizione tra cristallo e amorfo (~ 50 ns)

Materiali a cambiamento di fase

Due stati della memoria

bit "0" o "1"

Grande differenza nelle proprietà tra le due fasi

Fase cristallina

metallica

Fase amorfa

isolante

Variazione di resistività di 3 ordini di grandezza

Differenza della riflettività del 30%

memorie ottiche

La transizione è indotta per riscaldamento (impulsi laser/corrente)

- Regione attiva: piccola porzione del film di materiale a cambiamento di fase che subisce la transizione
- Transizione indotta per effetto Joule

- *Lettura*: eseguita a bassa tensione (V < V_{th})
- Processi di set/reset: tensione applicata maggiore del valore V_{th})

corrente e impulso breve cristallo -> amorfo Ser bassa intensità e impulso più lungo

- *Lettura*: eseguita a bassa tensione (V < V_{th})
- Processi di set/reset: tensione applicata maggiore del valore V_{th})

corrente e impulso breve cristallo → amorfo

Set: bassa intensità e impulso più lungo

- Lettura: eseguita a bassa tensione ($V < V_{th}$)
- Processi di set/reset: tensione applicata maggiore del valore V_{th})
 - Reset: elevata intensità di corrente e impulso breve cristallo → amorfo
 - Set: bassa intensità e impulso più lungo amorfo → cristallo

- Lettura: eseguita a bassa tensione ($V < V_{th}$)
- Processi di set/reset: tensione applicata maggiore del valore V_{th})
 - Reset: elevata intensità di corrente e impulso breve cristallo → amorfo
 - Set: bassa intensità e impulso più lungo amorfo → cristallo

Nanofili nei dispositivi PCM

Vantaggi nell'utilizzo di nanofili

- Riduzione della potenza dissipata nel processo di programmazione
- Riduzione delle dimensioni della cella

Nanofili nei dispositivi PCM

Vantaggi nell'utilizzo di nanofili

- Riduzione della potenza dissipata nel processo di programmazione
- Riduzione delle dimensioni della cella

La cristallizzazione

La cinetica di cristallizzazione è di difficile approccio sperimentale

Il GeTe

- Struttura cristallina trigonale (fase α): cella elementare romboedrica
- NaCl elongata lungo
- Parametri strutturali

Il GeTe

- Struttura cristallina trigonale (fase α): cella elementare romboedrica
- Struttura cubica tipo NaCl elongata lungo la (111)
 - Parametri strutturali

Il GeTe

- Struttura cristallina trigonale (fase α): cella elementare romboedrica
- Struttura cubica tipo NaCl elongata lungo la (111)
 - Parametri strutturali

$$a = 4.31 \text{ Å}$$

$$\alpha = 57.9^{\circ}$$

$$x = 0.2366$$

Ge:
$$(x, x, x)$$

Te:
$$(-x, -x, -x)$$

Nanofili: il modello

Nanofili: il modello

Dinamica molecolare con potenziale neural networks

MD e potenziale NN

Potenziale neural networks

Total energy as a sum of the atomic energies: $E_{tot} = \sum_i E_i$

[Behler J. and Parrinello M., Phys. Rev. Lett. 2007]

$E_{\mathfrak{i}} = F(\{G(\bar{x})\})$

Symmetry functions {G}

Information on the atomic environment up to a certain cut-off radius (3rd coordination shell)

E_i analytic function of the atomic positions

Potenziale neural networks per il GeTe

- E_i è calcolata con il metodo neural networks
- Il potenziale per il GeTe è ottenuto interpolando un database di energie calcolate ab initio
- 30 000 configurazioni e ~ 8000 parametri

