	tadors (XC), Grau en Enginyeria Informàtica COGNOMS			Primavera 2016		
NOM:	COGNOMS	GKUI	DNI			
Duració: 1h15m. El test es recollirà en 25 minuts.	Respondre el problemes en el mateix enunciat.	1				
Test. (4 punts) Totes les preguntes són multiresposta: Valen la meitat si hi ha un error, 0 si més.						
 Marca les respostes que siguin correctes sobre el protocol TCP: El camp de checksum es calcula a partir només de dades de la pròpia capçalera TCP. El camp ACK Number és opcional. La validesa del camp ACK Number és opcional i depèn del Flag ACK La capçalera transporta el valor de la finestra de congestió 						
 Per a calcular la finestra òptima d'una comunicació entre dos nodes units per una línia de transmissió on només hi ha una connexió TCP cal tenir en compte: Només la velocitat de transmissió de la línia Només la velocitat de transmissió de la línia i la mida del buffer de recepció Només la velocitat de transmissió de la línia, la mida del buffer de recepció i el RTT de la comunicació Només la velocitat de transmissió de la línia, la mida del buffer de recepció, el RTT de la comunicació i la probabilitat d'error de la línia 						
 3. Quines afirmacions són correctes sobre el procés d'establiment de la connexió? Si el tercer dels segments de l'establiment es perd, un dels extrems de la connexió es queda en estat LISTEN El número de seqüència inicial (ISN) es reconeix explícitament en el procés d'establiment, fent incrementar en 1 els números de seqüència esperats per l'altre extrem Durant aquesta fase es negocia el MSS Durant aquesta fase es negocia la finestra de congestió inicial 						
 4. Per a que el flux d'usuari d'un procés d'aplicació que envia dades TCP quedi bloquejat perquè el nivell TCP no pot acceptar més dades per a ser enviades, en un escenari en què la velocitat de tots els enllaços entre transmissor i receptor és la mateixa i no hi ha cap altrea comunicació en la mateixa línia, cal que es donguin les següents condicions: L'aplicació ha d'utilitzar TCP en el mode bloquejant d'acord amb els flags usats durant l'inici de la connexió El valor de la finestra de congestió ha de ser major que el de la finestra advertida El buffer de transmissió de TCP en la banda transmissora ha d'estar ple El buffer de recepció de TCP en la banda receptora ha d'estar ple 						
 Quines de les següents situacions són possibles a TCP? Després de d'enviar tota la finestra (cwnd) en una ràfega de segments, tots els segments són reconeguts i la finestra cwnd es duplica Després de d'enviar tota la finestra (cwnd) en una ràfega de segments, tots els segments són reconeguts i la finestra cwnd augmenta aproximadament en 1 segment Després de d'enviar tota la finestra (cwnd=4) en una ràfega de segments, tots quatre segments són reconeguts i la finestra cwnd augmenta en més de 2 segments, però menys que 4 (aproximadament 2.5) Després de d'enviar tota la finestra (cwnd) en una ràfega de segments, tots els segments són reconeguts i la finestra cwnd es quadruplica 						
 Quines de les següents situacions són possibles a UDP? S'envia un datagrama UDP, i després de que es perdi no es torna a enviar més S'envia un datagrama UDP, i després de que es perdi l'aplicació el torna a enviar En el destí, els datagrames es reordenen a nivell UDP per a poder reconstruir la seqüència de datagrames original En el destí, es verifica el checksum dels datagrames i basat en això es descarten aquells que estan identificats com a corromputs 						
	segments des d'un equip a un altre no s'aturi per culpa dés hi ha una connexió TCP, la cwnd té un valor prou gran r de awnd és 400 bytes.					

Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		9/5/2016		Primavera 2016
NOM:	COGNOMS	GRUP	DNI	

Duració: 1h15m. El test es recollirà en 25 minuts. Respondre el problemes en el mateix enunciat.

Pregunta 1. (6 puntos)

Las siguientes 29 líneas presentan información sobre parte de la captura de un intercambio de segmentos TCP entre una máquina Cliente (que llamaremos C) y una máquina Servidor (que llamaremos S).

Las columnas representan: 1) Número de línea del intercambio, 2) Identificador de máquina y port que envía, 3) Identificador de máquina y port que recibe, 4) Flags activos (S, P, F, .), 5) Indicación de si es un ack sin datos, 6) Número de secuencia : número de secuencia del siguiente segmento (tamaño de datos), 7) Número de ACK, 8) Tamaño de la ventana anunciada. Responder las siguientes preguntas justificando brevemente las respuestas.

```
10.1.0.3.1059 > 10.2.0.1.80:
                                   ack 1 win 32120
    10.1.0.3.1059 > 10.2.0.1.80: P 1:93(92) ack 1 win 32120
    10.2.0.1.80 > 10.1.0.3.1059: P 1:213(212) ack 93 win 32120
3.
    10.1.0.3.1059 > 10.2.0.1.80:
                                 . ack 213 win 23168
    10.2.0.1.80 > 10.1.0.3.1059:
                                   213:1661(1448) ack 93 win 32120
    10.1.0.3.1059 > 10.2.0.1.80: . ack 1661 win 32120
6.
7.
8.
    10.1.0.3.1059 > 10.2.0.1.80: . ack 26277 win 23168
    10.2.0.1.80 > 10.1.0.3.1059:
                                   26277:27725(1448) ack 93 win 32120
10. 10.2.0.1.80 > 10.1.0.3.1059:
                                   27725:29173(1448) ack 93 win 32120
11. 10.2.0.1.80 > 10.1.0.3.1059:
                                   30621:32069(1448) ack 93 win 32120
12. 10.2.0.1.80 > 10.1.0.3.1059: . 32069:33517(1448) ack 93 win 32120
                                 . ack 29173 win 23168
   10.1.0.3.1059 > 10.2.0.1.80:
                                   33517:34965(1448) ack 93 win 32120
   10.2.0.1.80 > 10.1.0.3.1059:
15. 10.2.0.1.80 > 10.1.0.3.1059:
                                   34965:36413(1448) ack 93 win 32120
16. 10.2.0.1.80 > 10.1.0.3.1059:
                                   36413:37861(1448) ack 93 win 32120
17. 10.1.0.3.1059 > 10.2.0.1.80:
                                 . ack 29173 win 23168
18. 10.1.0.3.1059 > 10.2.0.1.80:
                                       29173 win 23168
                                 . ack
19. 10.1.0.3.1059 > 10.2.0.1.80:
                                . ack 29173 win 23168
20. 10.2.0.1.80 > 10.1.0.3.1059: .
                                   29173:30621(1448) ack 93 win 32120
21. 10.1.0.3.1059 > 10.2.0.1.80: . ack 37861 win 23168
22. 10.2.0.1.80 > 10.1.0.3.1059:
                                 . 37861:39309(1448) ack 93 win 32120
23.
24. 10.2.0.1.80 > 10.1.0.3.1059: FP 499773:500213(440) ack 93 win 32120
25. 10.1.0.3.1059 > 10.2.0.1.80:
                                 . ack 493981 win 23168
                                 . 493981:495429(1448) ack 93 win 32120
26. 10.2.0.1.80 > 10.1.0.3.1059:
27. 10.1.0.3.1059 > 10.2.0.1.80:
                                 . ack 500214 win 23168
28. 10.1.0.3.1059 > 10.2.0.1.80: F 93:93(0) ack 500214 win 23168
29. 10.2.0.1.80 > 10.1.0.3.1059: . ack 94 win 32120
```

- **1.A** (0.5 puntos) ¿Cuáles son las direcciones IP de C y S?
- **1.B** (0.5 puntos) Justificar a partir de la captura quién inicia la conexión.
- 1.C (0.5 puntos) ¿Por qué en la línea 4 no hay número de secuencia?
- **1.D** (0,5 puntos) ¿Cuántos segmentos se intercambian en la desconexión? ¿Cuáles son las líneas correspondientes?
- 1.E (0,5 puntos) Si no ha habido pérdidas, ¿cuántos segmentos (con MSS bytes) parece que ha enviado S durante la línea 7?

1.F	(0,5 puntos) Antes del envío de la línea 9, ¿cuánto vale como mínimo la ventana de congestión?
1.G	(0,5 puntos) ¿En qué lado se ha hecho la captura? ¿Cómo lo sabemos?
1.H	(1 punto) Dibujar (eje vertical para la ventana y eje horizontal para el tiempo) la evolución de la ventana de transmisión desde el momento del envío de la línea 9 hasta la línea 22, asumiendo que en la línea 9 la ventana de transmisión es igual a la ventana anunciada. Indicar claramente en qué momento se cambia entre fases SS y CA y el valor del umbral. NOTA: No preocuparse por la escala del eje de tiempo, sino usar las líneas de la captura.
1.I	(0,75 puntos) Suponiendo que no hay pérdidas (aunque puedan aparecer en la captura) y que durante toda la conexión la ventana de TCP es igual a la ventana anunciada (es decir, el tiempo que se tarda en llegar a la ventana anunciada es despreciable), calcular aproximadamente la velocidad eficaz y cuánto durará la transmisión. Suponer RTT = 10 ms.
1.J	(0,75 puntos) Suponiendo que no hay pérdidas (aunque puedan aparecer en la captura) y que la ventana de congestión inicial es igual a 1 segmento con MSS bytes, ¿cuántos RTT transcurren hasta que la ventana de TCP alcanza el valor de la ventana anunciada? Volver a calcular la velocidad eficaz y cuánto durará la transmisión sin despreciar el tiempo en llegar a la ventana anunciada.