

Computer Vision Systems Programming VO Specific Object Recognition

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Introduction to object recognition

Specific object recognition (rigid, nonrigid)

Image from Grauman and Leibe 2013

Fundamental problem in Computer Vision

Many applications

- Panorama stitching, 3D reconstruction
- HCI and surveillance (face recognition)
- ▶ Image understanding (recall Fei-Fei Li's TED talk)

Taxonomy – Instance vs. Category

Instance recognition (specific object recognition)

- ▶ Recognize a specific, uniquely looking object
- ▶ Face of a certain person, the Eiffel tower

Object category recognition

- Recognize objects of a certain category
- Human faces, buildings

Taxonomy – Instance vs. Category

Taxonomy - Classification vs. Detection

Object classification

- Recognize main object in image
- Location and other objects not relevant

Object detection

Recognize multiple objects, possibly of different category

Taxonomy - Classification vs. Detection

Object Recognition Challenges

Instances of same category can look very differently

▶ Illumination, pose, viewpoint, occlusions, background

Image from Grauman and Leibe 2011

We want to detect specific planar objects (e.g. markers, books)

Comparatively easy problem

Challenges

- Unknown object pose and scale
- Partial occlusions
- Illumination

Image from youtube.com

Selecting \mathbf{x} and \mathbf{w}

Our problem formulation is

- Given a pixel location in a query image
- Predict location in reference image of sought object

So we know how to select x and w

- $\mathbf{x} = (x, y)$: location in query image
- $ightharpoonup \mathbf{w} = (u,v)$: corresponding location in reference image

Selecting \mathbf{x} and \mathbf{w}

Specific Planar Object Detection Model Selection

Images of planar objects are always related by a homography Φ

lacksquare 3 imes 3 matrix mapping between corresponding points

In homogeneous coordinates this means that

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \Phi \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Specific Planar Object Detection Model Selection

The model of choice is thus (disregarding noise)

$$\mathbf{w} = \Gamma(\mathbf{x}) = \begin{pmatrix} u \\ v \end{pmatrix} \quad , \quad \lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \mathbf{\Phi} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Learning Model Parameters

We again learn parameters $oldsymbol{ heta}$ from samples $\{\mathbf{x}_i,\mathbf{w}_i\}_{i=1}^n$

lacktriangledown definition of eta contains 9 parameters comprising $oldsymbol{\Phi}$

Usually no exact solution because of noisy \mathbf{x}_i

► Formulate as a least squares problem instead

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left[\sum_{i=1}^{n} (\mathbf{w}_i - \Gamma(\mathbf{x}_i))^{\top} (\mathbf{w}_i - \Gamma(\mathbf{x}_i)) \right]$$

Specific Planar Object Detection Learning Model Parameters

This least squares approach is optimal

▶ If noise is distributed normally with spherical covariance

This is a nonlinear optimization problem

- Solvable using any general nonlinear least squares solver
- OpenCV has an own function findHomography

But how can we compute $\{\mathbf x_i, \mathbf w_i\}_{i=1}^n$ automatically?

Next lecture

Bibliography

Grauman, Kristen and Bastian Leibe (2011). *Visual object recognition*. Morgan & Claypool.

Prince, S.J.D. (2012). *Computer Vision: Models Learning and Inference*. Cambridge University Press.

