CORRECTION DU CONCOURS DIRECT D'ENTREE À L'ESATIC

SESSION 2012

EPREUVE DE PHYSIQUE

QUESTION À CHOIX MULTIPLES (QCM)

Question-1:

Un oscillateur élastique horizontal a une amplitude $X_m = 3$ cm; sa période $T_0 = 0.05_s$, sa phase à origine des temps est $\phi = \frac{-\pi}{2}$ L'expression horaire de l'oscillateur est : Cocher la Mauvaise réponse (1min)

 \Box A: $3.10^{-2}cos(40\pi t - \frac{\pi}{2})$

B: $30.10^{-2}cos(40\pi t - \frac{\pi}{2})$

 \Box C: $0.03cos(40\pi t - \frac{\pi}{2})$

 \Box **D**: $30.10^{-3}cos(40\pi t - \frac{\pi}{2})$

Justification: car pour l'équation B on a $X_m = 30.10^{-2} \neq 0.03$

Question-2:

Un générateur impose aux bornes d'un dipôle une tension sinusoïdale en (en V) $U(t) = 25cos(100\pi t)$ en (t en s). L'intensité (en A) qui traverse ce dipôle est de la forme : $i(t) = 0.5cos(2\pi ft - \frac{\pi}{4})$

- 2.1) La valeur de la fréquence f est égale : Cocher la bonne réponse (1 min)
 - \square A: 20 HZ
 - \square B: 25 HZ
 - C: 50 HZ
 - \square D: 100 HZ

Justification: car $2\pi ft = 100\pi t \Rightarrow f = \frac{100}{2} = 50 \text{ HZ}$

2.2:

La valeur de l'impédance est égale : Cocher la bonne réponse(1min)

 \square A: 20 Ω

 \square B: 25Ω

 \blacksquare C: 50Ω

 \square **D**: 100Ω

Justification: car Z = $\frac{U_{max}}{I_{max}}$ donc Z = $\frac{25}{0.5}$ = 50Ω

Question-3:

On enroule un fil conducteur de longueur D=0.5 km autour d'un tube cylindrique en carton de façon à réaliser un solénoïde comportant N spires jointives de rayon r et de longueur l=80cm avec $\mu_0=4\pi.10^{-7}$ S.I

3.1) L'expression de N en fonction de D et r est égale à : Cocher la bonne réponse (1 min)

 \Box A: $2\pi r/D$

 \blacksquare B: D/2 π r

 \Box C: $2\pi rD$

 \Box **D**: r/2 π D

Justification: On sait pour un tour du tube on fait $2\pi r$ donc pour N on fera $2\pi rD$ ce qui donnera

 $2\pi Nr = D \Rightarrow N = \frac{D}{2\pi r}$

3.1) L'expression de l'inductance L en fonction de D et l est égale à : Cocher la bonne réponse (1 min)

 \Box **A**: $\frac{10^{-7}l^2}{D}$

 \Box **B**: $10^{-7}lD^2$

C: $\frac{10^{-7}D^2}{l}$

 \square **D**: $\frac{10^{-7}D}{l^2}$

Justification: On sait que L = $\mu_0 \frac{N^2 S}{l}$ or $N^2 = \frac{D^2}{4\pi^2 r^2}$; S = πr^2 Donc L = $10^{-7} \frac{D^2}{l}$

Question-4:

Dans quel cas la force magnétique est-elle nulle : Cocher les deux bonnes réponses (1 min)

 $\blacksquare \ \mathbf{A} : \ \overrightarrow{V} = \overrightarrow{0}$

- \Box **B**: $\overrightarrow{V} \perp \overrightarrow{B}$
- \blacksquare C: $\overrightarrow{V} \parallel \overrightarrow{B}$
- \Box **D**: q > 0
- \Box **E**: $\overrightarrow{B} \parallel q$

Justification: on sait que $\overrightarrow{F} = q\overrightarrow{V} \wedge \overrightarrow{B}$ donc $F = |q|VB|\sin(\widehat{\overrightarrow{V}}, \overrightarrow{B})|=0$ pour $\overrightarrow{V} = \overrightarrow{0}$ et $\overrightarrow{V} \parallel \overrightarrow{B}$

Question-5:

Deux isotopes de masses m_1 et m_2 entrent dans la chambre de déviation d'un spectographe de masse avec une vitesse V_1 et V_2 m_2 = 4 m_1 on a alors : **cocher la bonne réponse**

- \Box **A**: $V_2 = 2 V_1$
- \Box **B**: $V_2 = 3 V_1$
- \Box **C**: $V_2 = 4 V_1$
- **D**: $V_1 = 2 V_2$
- \Box **E**: $V_1 = 3 V_2$
- \Box **F**: $V_1 = 4 V_2$

Justification: On sait que $\frac{V_1^2}{V_2^2} = \frac{m_2}{m_1} = \frac{4m_1}{m_1} = 4 \Rightarrow V_1 = 2V_2$

Question-6:

Pour avoir la force de laplace F = IlB, il faut: ICI cocher la bonne réponse (2min)

- \Box **A**: $\overrightarrow{B} \parallel \overrightarrow{l}$
- \Box **B**: $\overrightarrow{F_l} \parallel \overrightarrow{l}$
- \Box C: $\overrightarrow{I} \parallel \overrightarrow{B}$
- \blacksquare D: $\overrightarrow{B} \perp \overrightarrow{l}$
- \Box **E**: $\overrightarrow{I} \perp \overrightarrow{l}$
- \blacksquare **F**: $I\overrightarrow{l} \perp \overrightarrow{B}$

Justification:On sait que $\overrightarrow{F_l} = I \overrightarrow{l} \wedge \overrightarrow{B} \Rightarrow F = ILB|\sin(\widehat{\overrightarrow{l}}, \overrightarrow{B})| = ILB \text{ si } \overrightarrow{B} \perp \overrightarrow{l} \text{ et } I \overrightarrow{l} \perp \overrightarrow{B}$

Question-7:

On considère une bobine réelle, parcourue par un courant permanant ; la tension entre ses bornes est : cocher la bonne réponse (1min)

\blacksquare D : Depend de l'angle α
Justification: On sait que $\overrightarrow{F} = q\overrightarrow{V} \wedge \overrightarrow{B}$ donc $F = q VB \sin(\widehat{\overrightarrow{V}}, \overrightarrow{B}) \Rightarrow V = \frac{f}{qBsin(\alpha)}$
Question-10:
L'équation différentielle des oscillations électriques non amortie dans un circuit LC est : Cocher la bonne réponse (1 min)

 $\Box \quad \mathbf{A} : \ \ddot{U} + \frac{C}{L}U = 0$

 \square **A**: sinusoïdale

 \square B: Constante

□ C: En créneaux

■ D: Triangulaire

 \square **E**: Quelconque

A : Parallèles

 \square **D**: Divergents

 \square **E**: Convergents

particule: Cocher la bonne réponse (1 min)

Justification: Cours

Question-9:

 \square A: Croit

□ B : Décroit

 \square C: Reste constante

 \square **F**: Linèaire

Justification: Cours

Question-8:

à l'intérieure d'un solénoïde, les lignes de champ sont : cocher la bonne réponse (1min)

Une particule chargée, animée d'ine vitesse \overrightarrow{V} , entre dans un champ magnétique uniforme. Le vecteur vitesse \overrightarrow{V} fait un angle α avec le vecteur champ magnétique. L'énergie cinétique de la

C: Orientées dans le meme sens que le courant dans les spires

B: Orientées de la face Nord vers la face sud

 $\square \quad \mathbf{B} : \ \ddot{U} + \frac{1}{\sqrt{LC}}U = 0$

 $\Box \quad \mathbf{C} : \ \ddot{U} + LCU = 0$

 $\blacksquare \quad \mathbf{D} : \ \ddot{U} + \frac{1}{LC}U = 0$

Justification: Dans un circuit LC l'équation des mailles est : $U_l + U_c = 0$ or $U_c = \frac{q}{c}$ et $U_l = \frac{ldi}{dt}$ donc l'équation dévient $\frac{ldi}{dt} + \frac{q}{c} = 0 \Rightarrow \frac{ld^2q}{dt^2} + \frac{q}{c} = 0 \Rightarrow \frac{cd^2U}{dt^2} + \frac{U}{L} = 0 \Rightarrow$

$$\frac{d^2U}{dt^2} + \frac{U}{LC} = 0$$

Question-11:

Le plutonium 240 se désintègre selon l'équation suivante : $^{240}_{94}Pu \rightarrow ^{4}_{2}He + ^{236}_{92}U + ^{0}_{0}\gamma$. Cocher la bonne réponse (1 min)

■ A: Réaction provoquée

 \square B: désintègration β

 \blacksquare C: désintègration α

 \square **D** : Réction spontanée

Justification: Voir le cours

${\bf Question\text{-}12:}$

Le circuit de la figure ci contre est un oscillateur en train d'osciller que ce passe t'il si on ferme

l'interrupteur Cocher la bonne réponse (1 min)

 $\hfill \Box$ \hfill . On augment la fréquence des oscillations

B: Les oscillations cessent

 $\hfill \square$ C : Les oscillations continuent normalement

Justification: Les oscillations cessent car le circuit est court-circuité donc $U_c=U_l=0$

Question-13:

Dans un montage intégrateur, U_s a pour fréquence f = 100 Hz la fréquence de U_e est : Cocher la bonne réponse (1 min)

■ A: Egale à 100 HZ

 \square B: Supérieure à 100 Hz

 \Box C: Inférieure à 100 Hz

 \square D: Nulle

Justification: f = 100 Hz dans un intégrateur on à : $U_s = -\frac{1}{RC} \int_0^t U_e dt$ posons que $U_e(t) = U_m cos(2\pi f t + \phi)$ donc $U_s = -\frac{1}{RC} \int_0^t U_m cos(2\pi f t + \phi) dt$ donc $U_s = -\frac{1}{RC} \times \frac{1}{2\pi f} sin(2\pi f t + \phi) dt$ donc U_s et U_e ont les mêmes fréquences

Question-14:

Voici le schéma ci-contre \overrightarrow{v} : on doit réprésenter \overrightarrow{B} Cocher la bonne réponse (1 min)

 \Box A: $\bigcirc \overrightarrow{B}$

 \Box **B**: $\rightarrow \overrightarrow{B}$

 \Box C: $\uparrow \overrightarrow{B}$

 \Box **D**: $\downarrow \overrightarrow{B}$

Justification: Ici aucune des réponses proposées n'est vrai le champ magnétique est plutôt entrant donc $\bigotimes \overline{B}$

Question-15:

La trajectoire de la particule dans le champ magnétique uniforme a pour expression : Cocher la bonne réponse (1 min 30)

 \square **A**: $R = \frac{|q|m}{VB}$

 \square **B**: $R = \frac{|q|V}{mB}$

 \square C: $R = \frac{|q|B}{mV}$

 \square **D**: $R = \frac{mV}{|q|B}$

 \blacksquare **E**: $R = \frac{VB}{|q|m}$

 \square **F**: $R = \frac{mB}{|a|V}$

Justification: Cours

Question-16:

Un ressort horizontal comprimé au maximum possède : Cocher la bonne réponse (1 min)

□ A: Uniquement de l'énergie cinétique
■ B: Uniquement de l'énergie potentielle élastique
□ C: De l'énergie cinétique et de l'énergie potentielle élastique
□ D: Aucune énergie

Justification: Définition même de l'énergie potentielle élastique

Question-17:

: Deux objets A et B sont lachés dans le vide, d'une hauteur h, au même instant : B sans vitesse initiale, A avec une vitesse initiale horizontale. Cocher la bonne réponse (1 min 30)

 \square A: B arrive au sol avec une vitesse plus grande que celle de A

 \square **B**: B arrive le premier

 \square C: A et B arrivent en même temps

■ D: A arrive le premier

Justification: A arrive le premier partant de l'équation de la vitesse $V = at + V_0$ la vitesse de A augment alors plus vite que celle de B car $V_{A_0} \neq 0$ et $V_{B_0} = 0$

Question-18:

Dans le dispositif ci-dessous l'intensité du courant est $I = \frac{E}{R}$ on a E = 12.74 V et R = 2 Ω Cocher la bonne réponse (1 min)

 \square A: I = 6 A

 \Box **B** : I = 6.3 A

 \Box **C**: I = 6.5 A

 \Box **D** : I = 6.32 A

 \Box **E** : I = 6.42 A

F: I = 6.37 A

Justification: Il suffit de faire le calcul

Question-19:

Un point mobile M décrit sur un axe $(0, \overrightarrow{i'})$ un mouvement uniformement varié d'accélération $\overrightarrow{a'} = 4 \overrightarrow{i'}$ A l'instant t=0, le vecteur vitesse est $\overrightarrow{V_0} = -8 \overrightarrow{i'}$ et le vecteur position $\overrightarrow{OM_0} = 2 \overrightarrow{i'}$ Les équations horaires du mouvement x(t) et v(t) sont Cocher les deux bonnes réponse (1 min 30)

A: V = 4t - 8; $x = 2t^2 - 8t + 2$

 \Box **B**: V = 4t; x = -2t² + 1

 \Box C: V = 4t+8; x = $t^2 + 4t + 1$

D: V = 4(t-2); $x = 2(t^2 - 4t + 1)$

Justification:On a : $\overrightarrow{a} = 4\overrightarrow{i}$, $\overrightarrow{V_0} = -8\overrightarrow{i}$; $\overrightarrow{OM_0} = 2\overrightarrow{i}$ x(t) et v(t) sont :

 $a = \frac{dv}{dt} = 4$; $V(t) = 4t + V_0 \Rightarrow V(t) = 4t - 8$ on sait aussi que $V = \frac{dx}{dt} \Rightarrow x(t) = 2t^2 - 8t + 2t$

Question-20:

Un solide de masse m=100 kg est lancé vers la montée, avec une vitesse $\overrightarrow{V_0}$ le long d'un plan incliné d'un angle $\alpha=30^o$ par rapport à l'horizontale. les frottements du plan sur le solide ont une valeur f=2.5 N, avec g=10N/kg et $\sin(\alpha)=\frac{1}{2}$

La valeur de son acélération a est égale : Cocher la bonnes réponse (1 min30)

 \Box **A**: -7.5 m/s²

□ **B**: -5 m/ s^2

C: $5 \text{ m/}s^2$

 \Box **D**: 6.5 m/s²

 \Box **D**: 7.5 m/s²

Justification:On réalise le schéma et on analyse que : On a \overrightarrow{f} + \overrightarrow{p} + $\overrightarrow{R_N}$ = m \overrightarrow{a}

avec \overrightarrow{f} $\begin{pmatrix} -f \\ 0 \end{pmatrix}$, \overrightarrow{p} , $\begin{pmatrix} -mgsin(\alpha) \\ -mgcos(\alpha) \end{pmatrix}$, $\overrightarrow{a'}$ $\begin{pmatrix} a_x \\ 0 \end{pmatrix}$ $\overrightarrow{R_N}$ $\begin{pmatrix} 0 \\ R_{Nx} \end{pmatrix}$ sur l'axe (ox) on a :

 $-f - mgsin(\alpha) = ma_x$ or ici $|\mathbf{a}| = |a_x| = \frac{f + mgsin(\alpha)}{m}$

Question-21:

Dans l'espace muni d'un repère $(o, \overrightarrow{i}, \overrightarrow{j})$, on lance un projectile de masse m à partir d'un point A situé à une hauteur H du sol avec une vitesse $\overrightarrow{V_o}$, horizontal

8

l'équation de la trajectoire du projectile est y égale Cocher la bonnes réponse (2 min)

 \Box **A**: $\frac{-gx^2}{2v_o\cos^2(\alpha)} + tan(\alpha)x + H$

 \Box B: $\frac{-gx^2}{2v_o sin^2(\alpha)} + tan(\alpha)x + H$

C: $\frac{-gx^2}{2v_2^2} + H$

 \square **D**: $\frac{gx^2}{2v_o^2} + H$

Justification: choix du système : le projectile de masse m

choix du réferentiel : supposé galiléen ; bilan des forces :
$$\overrightarrow{p} = m \overrightarrow{g}$$
 $\sum \overrightarrow{F_{ext}} = m \overrightarrow{a_g}$ \Rightarrow $m \overrightarrow{g} = m \overrightarrow{a_g}$ donc $\overrightarrow{a_g} = \overrightarrow{g}$

$$\overrightarrow{V} = \overrightarrow{g} t + \overrightarrow{V_0} \text{ donc } \overrightarrow{OG} = \frac{1}{2} \overrightarrow{g} t^2 + \overrightarrow{V_0} t + \overrightarrow{OG_0} \text{ on a } \overrightarrow{a_g} = \overrightarrow{g} \left(\ddot{x} = 0 \ \ddot{y} = -g \right)$$

$$\overrightarrow{V} \begin{pmatrix} \dot{x} = V_0 \\ \dot{y} = -gt \end{pmatrix} \overrightarrow{OG} \begin{pmatrix} x = V_0 t \\ y = -\frac{1}{2}gt^2 + H \end{pmatrix} t = \frac{x}{V_o} \Rightarrow Y = \frac{-gx^2}{2v_o^2} + H$$

QUESTION À CHOIX MULTIPLES (QCD)

Répondre par vrai ou faux, aux propositions suivantes, en cochant les cases :

QUESTION A CHOIX DIRECTS (QCD)(lmin par question)

	ondre par vrai ou par faux , aux propositions suivantes, en cochant les cases	VRAI	FAUX
I D	Pour appliquer le théorème de l'énergie cinétique il faut nécessairement avoir deux valeurs de la vitesse du solide		
	1111 0 0 000 0		
2,3	Pour appliquer le théorème de l'énergie cinétique, il faut qu'il n'y ait pas de force de frottement		
3.	La flèche d'une trajectoire, dans le champ de pesanteur uniforme, est l'ordonnée maximale du projectile		
4.5	Dans un champ électrostatique la trajectoire d'une particule chargée est toujours un arc de parabole		
25	Dans un pendule élastique la longueur de la trajectoire du solide est égale à $2X_m$		
Q-	Dans un pendule élastique en mouvement, chaque fois que l'énergie cinétique E_c = 0, l'énergie potentielle E_p = 0.		
Z)	Le courant électrique peut créer un champ magnétique		
83	Plus une bobine est longue, plus le champ créé en son centre est grand		
20	Un spectrographe de masse permet de trier les isotopes selon leur vitesse		
10	Un filtre de Wien est un dispositif dans lequel existent un champ électromagnétique et un champ électrostatique		
J.	Dans un champ magnétique uniforme, lorsqu'une particule est en mouvement, son accélération tangentielle est toujours nulle		
12	Pour qu'il y ait auto - induction, il faut que la longueur de la bobine varie		1
13;	Une bobine possède à tout instant une force électromotrice		
14	Si une bobine comportant N spires de sectionreparties sur une longueur ℓ, est traversée par un courant variable d'intensité i, alors elle possède une		
	inductance L telle que $S = \frac{L.\ell}{\mu_0 N^2}$	İ	
15	La force de Laplace est toute force agissant sur un conducteur électrique		T -
16	La force de Laplace exercée sur un conducteur est toujours appliquée au centre d'inertie du conducteur		

37	La force de Laplace et le poids d'un conducteur électrique ne s'appliquent pas
	parfois en un même point du conducteur
78	L'amplitude Qm des oscillations est la charge initiale du condensateur
19	Si la période de la décharge du condensateur est T, alors celle de l'énergie
1	accumulée par le condensateur est T/2
20	Dans un circuit électrique oscillant libre, l'énergie d'oscillation peut être nulle
21	En régime sinusordal forcé, si $u(t) = U_m \cos \omega t$, alors $i(t) = I_m \cos(\omega t - \varphi)$
22	En régime sinusoïdal forcé, on peut écrire u(t) - Z.i(t)
23	Un circuit RLC série est un circuit oscillant
22 23 24	Dans le montage dérivateur, pour avoir une tension constante à la sortie, il
	faut utiliser une tension linéaire à l'entrée
25	La grande taille d'un conducteur électrique diminue l'intensité de la force de
40	Laplace exercée sur lui.
27	Il existe deux groupes de réactions nucléaires
27	Dans la radio activité α, le noyau fils précède le noyau père de 2 cases dans la
	classification périodique des éléments
28	Si l'accélération d'un point matériel est nulle, alors il est animé d'un
3	mouvement rectiligne uniforme
29)	Tout mouvement uniformément varié est rectiligne
30	Le théorème du centre d'inertie s'applique dans tous les référentiels

```
2 \rightarrow \text{Faux}
                                                      3 \rightarrow \text{Vrai} \quad 4 \rightarrow \text{Faux} \quad 5 \rightarrow \text{Faux} \quad 6 \rightarrow \text{Faux} \quad 7 \rightarrow \text{vrai} \quad 8 \rightarrow \text{faux}
1 \rightarrow vrai
                         10 \rightarrow \text{Faux} \quad 11 \rightarrow \text{vrai}
                                                                                      12 \rightarrow \text{Faux}
                                                                                                                     13 \rightarrow \text{Faux}
                                                                                                                                                     14 \rightarrow vrai
                                                                                                                                                                                  15 \rightarrow \text{faux}
        16 \rightarrow \text{faux} \quad 17 \rightarrow \text{Faux} \quad 18 \rightarrow \text{Faux}
                                                                                                  19 \rightarrow
                                                                                                                     20 \rightarrow \text{Faux}
                                                                                                                                                    21 \rightarrow vrai
                                                                                                                                                                                 22 \rightarrow vrai
                                                                                                                                                                                                              23 \rightarrow vrai
                                                                                                                                       29 {\rightarrow}~\mathrm{vrai}
24 \rightarrow vrai
                           25 \rightarrow \text{Faux} \quad 26 \rightarrow \text{vrai}
                                                                                      27 \rightarrow 28 \rightarrow vrai
30 \rightarrow \text{faux}
```