WRITTEN ASSIGNMENT 08

Let G(V,E) be a directed graph. Let $w:E\to \mathbf{Z}$ be a function assigning integer weights to all the graph's edges and let $s\in V$ be the source vertex. Every vertex $v\in V$ stores v.d – the current estimate of the distance from the source. A vertex also stores v.p – its "parent" (the last vertex on the shortest path before reaching v). Bellman-Ford algorithm to find the minimum distance from s to all the other vertices is given by the following pseudocode:

```
\begin{aligned} \mathbf{BELLMANFORD}(G,w,s) \colon & & \quad \mathbf{for\ each\ } \operatorname{vertex}\ v \in V \colon & \quad (initialize\ vertices\ to\ run\ shortest\ paths) \\ & v.d = \infty \\ & v.p = \mathbf{NULL} \\ & s.d = 0 \quad (the\ distance\ from\ source\ vertex\ to\ itself\ is\ 0) \\ & \quad \mathbf{for\ } i = 1\ \mathbf{to}\ |V| - 1 \quad (repeat\ |V| - 1\ times) \\ & \quad \mathbf{for\ each\ } \operatorname{edge}\ (u,v) \in E \\ & \quad \mathbf{if\ } v.d > u.d + w(u,v) \colon \quad (relax\ an\ edge,\ if\ necessary) \\ & \quad v.d = u.d + w(u,v) \\ & \quad v.p = u \end{aligned}
```


Fig. 1: A directed graph for Bellman-Ford Algorithm

In this task the input graph is shown in Fig.1.

(A) In your graph use the vertex $s=v_0$ as the *source vertex* for Bellman-Ford algorithm. Create a table showing the changes to all the distances to the vertices of the given graph every time a successful edge relaxing happens and some distance is reduced. You should run n-1 phases of the Bellman-Ford algorithm (where n is the number of vertices). You can also stop earlier, if no further edge relaxations can happen.

Note: Please make sure to release the edges in the lexicographical order. For example, in a single phase the edge (v_1, v_4) is relaxed before the edge (v_2, v_1) , since v_1 precedes v_2 .

- **(B)** Summarize the result: For each vertex tell what is its minimum distance from the source. Also tell what is the shortest path how to get there.
- (C) Does the input graph contain negative cycles? Justify your answer.