#09-1. 귀류법

나정휘

https://justiceHui.github.io/

귀류법

- 명제의 결론이 부정이라고 가정했을 때 모순이 발생함을 보여 원래 명제가 참임을 증명
- 모든 n에 대해 P(n)이 참임을 증명
 - P(n)이 거짓이 되는 n이 있다고 가정
 - P(n)이 거짓이 되는 n이 있으면 모순이 일어나는 것을 보임
 - P(n)이 거짓이 되는 n이 없으므로 모든 n에 대해 P(n)은 참

n > 1인 정수의 소인수분해가 유일함을 증명

- 소인수분해의 존재성은 강한 수학적 귀납법을 이용해 증명할 수 있음 (5차시)
- 유일하게 존재함을 증명해야 함
- (Euclid Lemma) a | bc 이고 gcd(a, b) = 1이면 a | c임
- n의 서로 다른 소인수분해 n = $p_1p_2...p_s$ = $q_1q_2...q_t$ 가 존재한다고 가정하자.
 - 일반성을 잃지 않고 s ≥ t인 경우만 생각
 - $q_1 \mid n = p_1 p_2 p_3 ... p_s$ 인데 p_1 과 q_1 은 모두 소수이므로 $q_1 \mid p_1$ 이거나 $q_1 \mid p_2 p_3 ... p_s$
 - 동일한 논리로 q₁ | p₁ or q₁ | p₂ or q₁ | p₃ or ... or q₁ | p_s
 - 따라서 $q_1 = p_i 0$ i가 존재하고, $q_1 = p_1 0$ 되도록 $p_2 = p_2 0$ 재배열하자.
 - 비슷하게 $q_2 = p_2$, $q_3 = p_3$, ... 이 되도록 p를 재배열할 수 있음
 - 만약 s > t 이면 p_{t+1}p_{t+2}...p_s ≠ 1이므로 s = t가 되어야 함
 - 모든 $1 \le i \le t$ 에 대해 $p_i = q_i$ 이므로 소인수분해는 유일하게 존재함
- 산술의 기본 정리(Fundamental Theorem of Arithmetic)
 - 1보다 큰 모든 정수는 순서가 바뀐 것을 제외하고 소수들의 곱으로 유일하게 표현할 수 있음

√3이 유리수가 아님을 증명

- √3이 유리수라고 가정하자.
- √3은 n,m > 0이고 gcd(n, m) = 1인 두 정수 n, m을 이용해 √3 = m/n으로 나타낼 수 있음
- 양변을 제곱하고 이항하면 3n² = m² > 1
- m > 1이므로 $m \ge 4 + 1$ 소수들의 $a = p_1 p_2 ... p_k + 1$ 으로 나타낼 수 있음
- $3 \mid m^2 \mid n \mid p_1 \mid p_2 \mid p_2 \mid n \mid p_2 \mid p_2 \mid n \mid p_3 \mid p_4 \mid p_3 \mid n \mid p_4 \mid p_5 \mid n \mid p_5 \mid p_6 \mid n \mid p_6 \mid p_6 \mid p_6 \mid p_7 \mid p_8 \mid p_8$
- $3n^2 = 3^2p_2^2p_3^2...p_k^2$ 이므로 $n^2 = 3p_2^2p_3^2...p_k^2$
- 3 | n² 이므로 유클리드 보조 정리에 의해 3 | n
- n과 m 모두 3의 배수이므로 gcd(n, m) ≥ 3
- gcd(n, m) = 1이라고 가정했는데 gcd(n, m) ≥ 3 이므로 모순 발생
- 따라서 √3은 유리수가 아님

소수는 무한히 많음을 증명

- 소수가 유한하다고 가정하고, 그 소수를 $p_1 \le p_2 \le \cdots \le p_k$ 라고 하자.
- n = p₁p₂···p_k + 1 > 1 을 생각해 보자.
- FTA에 의해 n = q₁q₂...q_i 로 나타낼 수 있음 (모든 1 ≤ i ≤ j 에 대해 q_i ∈ {p₁, p₂, ... , p_k})
- n과 p₁p₂...p_k 모두 q₁의 약수이므로 n p₁p₂...p_k도 q₁의 약수임
- 따라서 (n p₁p₂...p_k) / q₁ = 1 / q₁이 정수
- q₁ ≠ 1이므로 1 / q₁이 정수라는 것에 모순 발생

4n+3 꼴의 소수는 무한히 많음을 증명

- Note: 4n+1 꼴의 정수들의 곱은 4n+1 꼴
- 4n+3 (n≥1) 꼴의 소수가 유한하다고 가정하고, 그 수들을 7 = p₁ ≤ p₂ ≤ ... ≤ pょ라고 하자.
- Q = $p_1p_2...p_k$, M = 4Q+3이라고 정의하면 M > p_k 이므로 M은 소수가 아님
- FTA에 의해 M은 3 이상의 홀수 소수들의 곱 q₁q₂...q_s 로 나타낼 수 있음
- 4n+1 들의 곱은 항상 4n+1 꼴이므로 q_i = 4n+3 꼴인 q_i가 존재하고, 따라서 q_i = p_i인 j가 존재함
- 정의에 의해 p_i가 M, Q를 나누므로 p_i | 3 = M Q 임을 알 수 있음
- 하지만 p_i ≥ 7이므로 모순 발생

질문?