

EPREUVE: MATHEMATIQUES Durée: 2h00

EXERCICE 1 (08 points)

Pour chaque question de cet exercice, une seule des réponses proposées est exacte. Le candidat indiquera sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Chaque réponse exacte rapporte 1 point. Chaque réponse fausse enlève 0,5 point. Une absence de réponse est comptée 0 point. Toute note négative est ramenée à zéro.

On considère la fonction 2π périodique f définie par $f(x) = x^2$ sur $[-\pi; \pi]$.

1) *f* est:

A: impaire;

B: paire; C: ni paire, ni impaire

2) Soit $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$. On a :

A:
$$a_0 = \frac{\pi^2}{3}$$
; B: $a_0 = \frac{\pi^2}{2}$; C: $a_0 = \frac{2\pi^2}{3}$; D: $a_0 = 0$

$$C: a_0 = \frac{2\pi^2}{3}$$

3) Soit $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ pour $n \ge 1$:

$$A : a_n = 0$$

A:
$$a_n = 0$$
; B: $a_n = 4 \frac{(-1)^n}{n^2}$; C: $a_n = \frac{4}{n^2}$; D: $a_n = 3 \frac{(-1)^n}{n^2}$

$$C: a_n = \frac{4}{n^2}$$

$$D: a_n = 3 \frac{(-1)^n}{n^2}$$

4) Soit $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ pour $n \ge 1$:

$$A : b_n = 0$$

$$B: b_n = 4 \frac{(-1)^n}{n^2}$$

$$C: b_n = \frac{4}{n^2}$$

A:
$$b_n = 0$$
; B: $b_n = 4 \frac{(-1)^n}{n^2}$; C: $b_n = \frac{4}{n^2}$; D: $b_n = 3 \frac{(-1)^n}{n^2}$

5) La série de Fourier de f est :

A:
$$\frac{\pi^2}{6} + 4\sum_{n\geq 1} \frac{(-1)^n}{n^2} \cos nx$$
; B: $\frac{\pi^2}{6} + 4\sum_{n\geq 1} \frac{(-1)^n}{n^2} \sin nx$;

B:
$$\frac{\pi^2}{6} + 4\sum_{n\geq 1} \frac{(-1)^n}{n^2} \sin nx$$

$$C: \frac{\pi^2}{3} + 4\sum_{n\geq 1} \frac{(-1)^n}{n^2} \cos nx$$
; $D: \frac{\pi^2}{3} + 4\sum_{n\geq 1} \frac{(-1)^n}{n^2} \sin nx$

$$D: \frac{\pi^2}{3} + 4\sum_{n \ge 1} \frac{(-1)^n}{n^2} \sin nx$$

6) La valeur de la série $\sum_{n\geq 1} \frac{1}{n^2}$ est :

A:
$$\frac{\pi^2}{6}$$
; B: $\frac{\pi^2}{12}$; C: $\frac{\pi^2}{3}$; D: $\frac{\pi^2}{4}$

B:
$$\frac{\pi^2}{12}$$

$$C:\frac{\pi^2}{3};$$

$$D:\frac{\pi^2}{4}$$

7) La valeur de la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^2}$ est :

A:
$$\frac{\pi^2}{6}$$

B:
$$\frac{\pi^2}{12}$$

A:
$$\frac{\pi^2}{6}$$
; B: $\frac{\pi^2}{12}$; C: $\frac{\pi^2}{5}$; D: $\frac{\pi^2}{4}$

$$D:\frac{\pi^2}{4}$$

8) La valeur de la série $\sum_{n\geq 1}\frac{1}{n^4}$ est :

A:
$$\frac{\pi^4}{6}$$
; B: $\frac{\pi^4}{12}$; C: $\frac{\pi^4}{3}$; D: $\frac{\pi^4}{90}$

B:
$$\frac{\pi^4}{12}$$
;

$$C: \frac{\pi^4}{3};$$

D:
$$\frac{\pi^4}{90}$$

EXERCICE 2 (04 points)

Déterminer le rayon de convergence et la somme de la série entière réelle

$$\sum_{n\geq 1} \frac{1}{n(n+1)} x^{n+1}$$

EXERCICE 3 (08 points)

Soit q la forme quadratique définie sur \mathbb{R}^3 par :

$$q(x, y, z) = x^2 + (1 + a)y^2 + (1 + a + a^2)z^2 + 2xy - 2ayz$$
 où a est un nombre réel.

La matrice A de q dans la base canonique de \mathbb{R}^3 est $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1+a & -a \\ 0 & -a & 1+a+a^2 \end{pmatrix}$

- 1) Calculer le déterminant de A.
- 2) Pour quelles valeurs de a la forme q est-elle dégénérée ?
- 3) Réduire q et donner son rang et sa signature en fonction de a.
- 4) Déterminer une base orthogonale pour q.
- 5) En déduire une matrice inversible P telle que tPAP soit une matrice diagonale.