Draw the first five harmonics in a wave on a string:

First	
Second	
Third	
Fourth	
Fifth	

There is a wave on a string.
The fundamental frequency is 20 Hertz.
The length of the string is 2.5 meters.
Fill out the following table:

Harmonic	Frequency	Wavelength	Speed
First			
_			
Second			
Third			
Tillu			
Fourth			
Fifth			
FIIUI			
Sixth			
Seventh			
Eighth			

There is a wave on a string. The fundamental frequency is f_1 . The length of the string is L. Fill out the following table in terms of f_1 and L. [these are the known quantities]

Harmonic	Frequency	Wavelength	Speed
First			
Second			
Third			
E. al.			
Fourth			
Fifth			
Titti			
Sixth			
Seventh			
Eighth			

Based upon the table that you created, determine two new formulas: If f_n is the nth harmonic, determine a formula for f_n in terms of f_1 and n.

If λ_n is the wavelength of the nth harmonic, determine a formula for λ_n in terms of L and n.