Най-близък общ предшественик на два върха в дърво. Минимален елемент в отрез от масив. (част 1)

16.10.2020 г.

(Lowest Common Ancestor (LCA) and Range Minimum Query (RMQ))

RMQ-проблем:

<u>Дадено</u>: Имаме даден масив от (различни) естествени числа - ключове A[0...n-1].

Вход: $0 \le i \le j < n$.

<u>Изход</u>: Търси се $k = \arg\min_{l \in [i,j]} A[l]$, т.е. $A[k] = \min\{A[l] \mid i \leq l \leq j\}$.

LCA:

T(V, p, r) е кореново дърво. Тогава за връх в кореново дърво $v \in V$ нека $p^*(v) = \{p^{(k)}(v) \mid 0 \le k \le d(v)\}$. За върхове $u, v \in V$, общите предшественици са $p^*(u) \cap p^*(v)$. Ще търсим $\arg\max d(w) : w \in p^*(u) \cap p^*(v)$. Тук формално изказахме дефиницията за LCA, която не толкова формално може да се каже и по следните начини: Най-близкия общ предшественик на върховете $u, v \in V$, от кореновото дърво T(V, p, r) е върхът w,

- **1.** който се съдържа и в двата прости пътища от корена r до връх u и от корена r до върха v и е с възможно най-голяма дълбочина.
- **2.** който има и върховете u и v като свой наследници и е с максимална дълбочина.
- **3.** се намира на най-краткия път между върховете u и v и е най-близо до корена r. И трите дефиниции са еквивалентни.

LCA-проблем:

<u>Дадено</u>: T = (V, p, r) кореново дърво.

Вход: Върхове $u, v \in V$.

<u>Изход</u>: Търси се arg max d(w) : $w \in p^*(u) \cap p^*(v)$.

<u>Цел</u>: < O(n, 1) > времева сложност съответно за създаване на индекс (структура от данни за индексиране) и за заявка за LCA.

Свеждане на LCA-проблема към $\pm 1~RMQ$ -проблем.

euler	0	2	3	2	5	2	0	1	7	1	8	9	8	11	8	1	0	10	12	10	13	10	0
i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

depths	0	1	1	2	Ø	2	Ø	2	2	3	1	3	2	2
start	0	7	1	2	Ø	4	Ø	8	10	11	17	13	18	20
end	22	15	5	2	Ø	4	Ø	8	14	11	21	13	18	20
i	0	1	2	3	4	5	6	7	8	9	10	11	12	13

```
Обхождане в дълбочина (псевдо код):
                                                      Друг подход (C++):
time \leftarrow 0
                                                      global variables:
start[0...|V|-1]
                                                      vector < list < int > > adj;
end[0...|V|-1]
                                                      vector < int > euler, dep, s, f;
visited[0...2|V|-1]
                                                      int timer;
depths[0...2|V|-1]
                                        void\ dfs(int\ v=0,int\ d=0,int\ p=-1)
DFS(T, v)
                                               s[v] = timer;
                                               euler[timer + +] = v;
      start[v] = time
      visited[time] \leftarrow v
                                               dep[v] = d;
      depths[time] \leftarrow d(v)
                                               for (const int & child: adj[v]){
      time \leftarrow time + 1
                                                      if (child = = p) continue;
      for u: p(u) = v
                                                      dfs(child, d + 1, v);
             DFS(T, u)
                                                      euler[timer ++] = v;
             visited[time] \leftarrow v
             depths[time] \leftarrow d(v)
                                               fin[v] = timer - 1;
             time \leftarrow time + 1
                                         }
      end[v] \leftarrow time - 1
```

Интересува ни: DFS(T, r)

- 1. Последната стойност на time е $2 \mid V \mid -1$, тъй като time се увеличава веднъж за всеки връх и всяко ребро $\Rightarrow \mid V \mid$ пъти за всеки връх и $\mid V \mid -1 = \mid E \mid$ за всяко ребро $\Rightarrow 2 \mid V \mid -1$.
- 2. За всеки $u, v \in T$:
 - 1. Ако start[u] < start[v] и end[v] < end[u], то тогава $T_v \subsetneq T_u$;
 - 2. Ako start[u] < start[v] и end[u] < start[v], то тогава $T_u \cap T_v = \emptyset$.
- 3. |depths[t] depths[t+1]| = 1
- 4. Ako k = RMQ(depths, start[u], start[v]), to visited[k] = LCA(u, v).