Moléculas con un átomo central unido a átomos o grupos no iguales

En general, las moléculas en las cuales los átomos o grupos de átomos que rodean al átomo central no son todos iguales, son polares. Esto se debe a que los momentos dipolares de sus enlaces no tienen igual módulo y por lo tanto su suma vectorial no se anula.

A manera de ejemplo, se muestra cómo se obtiene el momento dipolar resultante en la molécula de sulfuro de carbonilo (SCO), que es lineal. Como la diferencia de electronegatividad entre el C y el O es mayor que entre el C y el S, el módulo del momento dipolar del enlace C-O, es mayor que el del C-S. Por lo tanto, aunque los vectores tienen sentido contrario, cuando se suman no se compensan, el momento dipolar total está dirigido desde el átomo de carbono hacia el de oxígeno y la molécula es polar.

Entre otros ejemplos de moléculas polares de este tipo podemos citar el metanal (H₂C=O), cuya moléculas son triangulares y el cloruro de metilo (CH₃Cl), cuyas moléculas tienen forma de tetraedro irregular.

Un resumen de lo expuesto en esta sección se presenta en las Tablas 6.2 y 6.3.

Moléculas	Condiciones	Forma	Ejemplos	Polaridad
Diatómicas	formadas por átomos del mismo elemento	lineal	N ₂ H ₂	no polar
	formadas por átomos de distintos elementos	lineal	HCI NO CO	polar
Poliatómicas	átomo central unido a átomos o grupos de átomos iguales	lineal	CO ₂	
		triangular	BF ₃	no polar
		tetraédrica	CH₄	
		angular	SO ₂ H ₂ O	polar
		piramidal	NH ₃ PCl ₃	polai
	átomo central unido a átomos o grupos de átomos no iguales	todas	SCO H ₂ C=O CH ₃ Cl	polar

Tabla 6.2: Polaridad de las moléculas de acuerdo con su forma geométrica

Suma vectorial de los momentos dipolares en la molécula de SCO

Fórmula	Pares electrónicos	Estructura de Lewis	Forma y ángulo de enlace	Modelo molecular	Ejemplos	Polaridad
AX_2	2 pares compartidos	X:A:X	lineal, 180°		BeH ₂ , BeF ₂ CdI ₂ , ZnBr ₂ CO ₂	no polar μ=0 D
	2 pares compartidos y 1 par libre	X×A×X	angular, < 120°		PbCl ₂ , SnCl ₂ , SO ₂	polar μ≠0 D iones
	2 pares compartidos y 2 pares libres	X X A X X	angular, < 109,5°		H ₂ O, I ₂ O H ₂ S, OF ₂	polar μ≠0 D
AX_3	3 pares compartidos	X XXÄXX	triangular, 120°		BH ₃ , BF ₃ BI ₃ , AlCl ₃ SO ₃	no pola μ=0 D
					NO ₃ , CO ₃ ²	iones
	3 pares compartidos y 1 par libre	1	piramidal, < 109,5°		NH ₃ , PH ₃ PF ₃ , NCl ₃ PCl ₃	polar μ≠0 D
					H ₃ O ⁺ , IO ₃ ⁻ SO ₃ ²⁻	iones
AX4	4 pares compartidos	X X	tetraédrica, 109,5°		CH ₄ , SiH ₄ CCl ₄	no polar μ=0 D
					SO ₄ ²⁻ , ClO ₄ ⁻ PO ₄ ³⁻ , BF ₄ ⁻ NH ₄ ⁺	iones

Tabla 6.3:
Ejemplos de formas geométricas de algunos iones y moléculas del tipo AX_n, teniendo en cuenta el número de pares electrónico alrededor del átomo central.