Unit-8: Algorithms for LTL

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1:

Automata-based LTL model-checking

Does Transition system satisfy LTL formula ϕ ?

Does **Transition system** satisfy LTL formula ϕ ?

Negation $\neg \phi$

Does Transition system satisfy LTL formula ϕ ?

$$\begin{array}{c} \textbf{Negation} \neg \phi \\ \downarrow \\ \textbf{NBA} \, \mathscr{A}_{\neg \phi} \end{array}$$

Does Transition system satisfy LTL formula
$$\phi$$
?

Negation $\neg \phi$

NBA $\mathscr{A}_{T.S}$

NBA $\mathscr{A}_{\neg \phi}$

Is
$$L(\mathscr{A}_{T.S.}) \cap L(\mathscr{A}_{\neg \phi})$$
 empty?

Does Transition system satisfy LTL formula
$$\phi$$
?

Negation $\neg \phi$

NBA \mathcal{A}_{TS}

NBA $\mathcal{A}_{\neg \phi}$

Is
$$L(\mathscr{A}_{T.S.}) \cap L(\mathscr{A}_{\neg\phi})$$
 empty?
Is $L(\mathscr{A}_{T.S.} \times \mathscr{A}_{\neg\phi})$ empty?

Here: Converting LTL formulas to NBA

Here: Converting LTL formulas to NBA

Coming next: Examples

Atomic propositions $AP = \{ p_1, p_2 \}$

Alphabet:

```
\{\{\}, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}
```

$\mathbf{F} p_1$ Words where p_1 occurs sometime

```
 \begin{array}{c} \{p_2\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots\\ \{p_1,p_2\}\{\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots\\ \vdots \end{array}
```

$\mathbf{F} p_1$ Words where p_1 occurs sometime

$$\{p_2\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots \\ \{p_1,p_2\}\{\}\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots \\ \vdots$$

$G p_1$ Words where p_1 occurs always

```
 \begin{aligned} &\{p_1\}\{p_1,p_2\}\{p_1\}\{p_1,p_2\}\{p_1\}\{p_1\}\{p_1\}\}\dots \\ &\{p_1,p_2\}\{p_1,p_2\}\{p_1\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots \\ &\vdots \end{aligned}
```

$G p_1$ Words where p_1 occurs always

```
 \{p_1\}\{p_1,p_2\}\{p_1\}\{p_1,p_2\}\{p_1\}\{p_1\}\{p_1\} \dots \\ \{p_1,p_2\}\{p_1,p_2\}\{p_1\}\{p_1\}\{p_1\}\{p_1,p_2\} \dots \\ \vdots
```



```
p_1 \land \neg p_2 Words starting with \{p_1\}
\{p_1\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots
\{p_1\}\{\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots
\vdots
```

```
p_1 \land \neg p_2 Words starting with \{p_1\}
\{p_1\}\{\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\}\dots
\{p_1\}\{\{\}\{p_1\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots
\vdots
```


$p_1 \wedge \mathbf{X} \neg p_2$

```
 \begin{array}{c} \{\,p_1\,\}\,\{\,\}\,\{\,p_2\,\}\,\{\,p_1,p_2\,\}\,\{\,p_2\,\}\,\{\,p_2\,\}\,\{\,p_2\,\}\,\dots \\ \{\,p_1,p_2\,\}\,\{\,p_1\}\,\{\,\,\}\,\{\,p_1\,\}\,\{\,p_1\,\}\,\{\,p_1,p_2\,\}\,\dots \\ & \vdots \end{array}
```

$p_1 \wedge \mathbf{X} \neg p_2$

XX $(p_1 \land \mathbf{X} \neg p_2)$

```
 \begin{aligned} \{\} \{\} \{p_1\} \{\} \{p_2\} \{p_1, p_2\} \{p_2\} \{p_2\} \{p_2\} \dots \\ \{p_2\} \{p_1\} \{p_1, p_2\} \{p_1\} \{\} \{p_1\} \{p_1\} \{p_1, p_2\} \dots \\ \vdots \end{aligned}
```

XX ($p_1 \land \mathbf{X} \neg p_2$)

```
 \begin{aligned} \{\} \{\} \{p_1\} \{\} \{p_2\} \{p_1, p_2\} \{p_2\} \{p_2\} \{p_2\} \dots \\ \{p_2\} \{p_1\} \{p_1, p_2\} \{p_1\} \{\} \{p_1\} \{p_1\} \{p_1, p_2\} \dots \\ \vdots \end{aligned}
```


$p_1 U p_2$

```
 \begin{aligned} &\{p_1\}\{p_1\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots\\ &\{p_1,p_2\}\{\}\{\}\{p_1\}\{p_1\}\{p_1,p_2\}\dots\\ &\vdots \end{aligned}
```

$p_1 U p_2$

$$\begin{aligned} \{p_1\} \{p_1\} \{p_2\} \{p_1, p_2\} \{p_2\} \{p_2\} \{p_2\} \dots \\ \{p_1, p_2\} \{\} \{\} \{p_1\} \{p_1\} \{p_1, p_2\} \dots \\ \vdots \end{aligned}$$

$(\mathbf{X} p_1) \mathbf{U} p_2$

```
 \begin{array}{c} \{p_2\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots\\ \{\}\{p_1\}\{p_1\}\{p_1\}\{p_1,p_2\}\{p_1,p_2\}\dots\\ \{\}\{p_1,p_2\}\{\}\{\}\{p_2\}\{p_1,p_2\}\dots\\ \vdots \end{array}
```

$(\mathbf{X} p_1) \mathbf{U} p_2$

```
 \begin{aligned} &\{p_2\}\{\}\{p_2\}\{p_1,p_2\}\{p_2\}\{p_2\}\{p_2\}\dots\\ &\{\}\{p_1\}\{p_1\}\{p_1\}\{p_1,p_2\}\{p_1,p_2\}\dots\\ &\{\}\{p_1,p_2\}\{\}\{\}\{p_2\}\{p_1,p_2\}\dots\\ &\vdots \end{aligned}
```


$\mathbf{F} p_1 \wedge \neg \mathbf{F} p_2$

$\mathbf{F} p_1 \wedge \neg \mathbf{F} p_2$

$$p_1 \wedge \mathbf{X} \neg p_1 \wedge \mathbf{G} (p_1 \leftrightarrow \mathbf{XX} p_1)$$

$$p_1$$
 $\neg p_1$ p_1 $\neg p_1$ p_1 $\neg p_1$ p_1 p_1

$p_1 \wedge \mathbf{X} \neg p_1 \wedge \mathbf{G} (p_1 \leftrightarrow \mathbf{XX} p_1)$

$$p_1 \neg p_1 \ p_1 \neg p_1 \ p_1 \neg p_1 \ p_1 \neg p_1 \ p_1$$

G \mathbf{F} p_1 Words where p_1 occurs infinitely often

G \mathbf{F} p_1 Words where p_1 occurs infinitely often

$$G (p_1 \rightarrow XF p_2)$$

$$p_1 \qquad \qquad F_{p_2}$$

$$F p_2$$

$$G (p_1 \to XF p_2)$$

$$\xrightarrow{p_1}$$

$$F p_2$$

Summary

LTL model-checking

Method

LTL to NBA examples

Unit-8: Algorithms for LTL

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: LTL to NBA

$p_1 U p_2$

$p_1 U p_2$

 $\{p_1\}$ $\{p_1\}$ $\{p_1\}$ $\{p_1\}$ $\{p_2\}$ $\{p_1\}$ $\{p_1\}$ $\{p_1\}$ $\{p_1,p_2\}$...

$p_1 U p_2$

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$			
Ţ,	<i>p</i> ₁									
-	<i>p</i> ₂									
$v_1 U_1$	<i>p</i> ₂									

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$			
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p ₁ L	J_{p_2}									

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{p ₁ }	{p ₂ }	{p ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p ₁ [J_{p_2}	1	1	1	1	1	1	1	1	1

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1, p_2\}$			
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p_1 l	Up_2	1	1	1	1	1	1	1	1	1

	<i>p</i> ₁					
	<i>p</i> ₂					
p_1 L	J_{p_2}					

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$			
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p_1 l	J_{p_2}	1	1	1	1	1	1	1	1	1

		{ <i>p</i> ₁ }	{}	{ <i>p</i> ₁ }	{}	{ <i>p</i> ₁ }	{}	{p ₁ }	{}	{p ₁ }
	<i>p</i> ₁									
	<i>p</i> ₂									
₁ <i>L</i>	J_{p_2}									

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$			
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p ₁ <i>U</i>	J_{p_2}	1	1	1	1	1	1	1	1	1

		{ <i>p</i> ₁ }	{}	{p ₁ }	{}	{ <i>p</i> ₁ }	{}	{p ₁ }	{}	{p ₁ }
	<i>p</i> ₁	1	0	1	0	1	0	1	0	1
	<i>p</i> ₂	0	0	0	0	0	0	0	0	0
₁ <i>L</i>	J_{p_2}									

 $p_1 U p_2$

		{ <i>p</i> ₁ }	{p ₂ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	$\{p_1,p_2\}$			
	<i>p</i> ₁	1	1	1	1	0	1	1	1	1
	<i>p</i> ₂	0	0	0	0	1	0	0	0	1
p ₁ <i>U</i>	J_{p_2}	1	1	1	1	1	1	1	1	1

		{ <i>p</i> ₁ }	{}	{ <i>p</i> ₁ }	{}	{ <i>p</i> ₁ }	{}	{p ₁ }	{}	{p ₁ }
	<i>p</i> ₁	1	0	1	0	1	0	1	0	1
	<i>p</i> ₂	0	0	0	0	0	0	0	0	0
1	Up_2	0	0	0	0	0	0	0	0	0

recall that
$$\ \ F \phi = true \ U \phi \ \ and \ \ G \phi = \neg true \ U \neg \phi$$

$$\neg \ true \ U \neg (true \ U \ p_1)$$

recall that
$$\mathbf{F} \phi = true \, \mathbf{U} \, \phi$$
 and $\mathbf{G} \, \phi = \neg true \, \mathbf{U} \, \neg \phi$
$$\neg true \, \mathbf{U} \, \neg (true \, \mathbf{U} \, p_1)$$

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$\mathbf{F} \phi = true \ \mathbf{U} \ \phi$$
 and $\mathbf{G} \ \phi = \neg true \ \mathbf{U} \ \neg \phi$
$$\neg true \ \mathbf{U} \ \neg (true \ \mathbf{U} \ p_1)$$

		{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }
	<i>p</i> ₁									
	true									
true	$\overline{\mathrm{U}p_1}$									
¬ true	Up_1									
true U ¬ (true U	J_{p_1}									
¬ true U ¬ (true U	J_{p_1}									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$\mathbf{F} \phi = true \ \mathbf{U} \ \phi$$
 and $\mathbf{G} \ \phi = \neg true \ \mathbf{U} \ \neg \phi$
$$\neg true \ \mathbf{U} \ \neg (true \ \mathbf{U} \ p_1)$$

		{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{p ₁ }
	<i>p</i> ₁	0	0	1	0	0	1	0	0	1
	true									
true	Up_1									
¬ true	U p ₁									
true U ¬ (true U	J p ₁)									
¬ true U ¬ (true U	J p ₁)									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$
$$\neg true U \neg (true U p_1)$$

		{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{p ₁
	<i>p</i> ₁	0	0	1	0	0	1	0	0	1
tr	ие	1	1	1	1	1	1	1	1	1
true U	<i>p</i> ₁									
¬ true U	<i>p</i> ₁									
true U ¬ (true U p	₁)									
¬ true U ¬ (true U p	₁)									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

		{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{p ₁ }
-	<i>p</i> ₁	0	0	1	0	0	1	0	0	1
-	true	1	1	1	1	1	1	1	1	1
true	U p ₁	1	1	1	1	1	1	1	1	1
¬ true	U p ₁									
true U ¬ (true U	J p ₁)									
¬ true U ¬ (true Ū	J p ₁)									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }
P	1 0	0	1	0	0	1	0	0	1
tru	e 1	1	1	1	1	1	1	1	1
true U p	1 1	1	1	1	1	1	1	1	1
¬ true U p	1 0	0	0	0	0	0	0	0	0
true U \neg (true U p_1)								
\neg true $U \neg (true U p_1)$)								

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$\mathbf{F} \phi = true \ \mathbf{U} \ \phi$$
 and $\mathbf{G} \ \phi = \neg true \ \mathbf{U} \ \neg \phi$
$$\neg true \ \mathbf{U} \ \neg (true \ \mathbf{U} \ p_1)$$

	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{p ₁ }
p_1	0	0	1	0	0	1	0	0	1
true	1	1	1	1	1	1	1	1	1
true $\overline{\mathrm{U}p_1}$	1	1	1	1	1	1	1	1	1
\neg true $\overline{\mathrm{U}p_1}$	0	0	0	0	0	0	0	0	0
true U \neg (true U p_1)	0	0	0	0	0	0	0	0	0
\neg true $U \neg (true \overline{U p_1})$									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }	{}	{}	{ <i>p</i> ₁ }
p_1	0	0	1	0	0	1	0	0	1
true	1	1	1	1	1	1	1	1	1
true $\overline{\mathrm{U}p_1}$	1	1	1	1	1	1	1	1	1
\neg true $\overline{\text{U} p_1}$	0	0	0	0	0	0	0	0	0
true U \neg (true U p_1)	0	0	0	0	0	0	0	0	0
\neg true $U \neg (true U p_1)$	1	1	1	1	1	1	1	1	1

recall that
$$\ \ F \phi = true \ U \phi \ \ and \ \ G \phi = \neg true \ U \neg \phi$$

$$\neg \ true \ U \ \neg (true \ U \ p_1)$$

recall that
$$\ \ F \phi = true \ U \phi \ \ and \ \ G \phi = \neg true \ U \neg \phi$$

$$\neg true \ U \neg (true \ U \ p_1)$$

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$\mathbf{F} \phi = true \ \mathbf{U} \ \phi$$
 and $\mathbf{G} \ \phi = \neg true \ \mathbf{U} \ \neg \phi$
$$\neg true \ \mathbf{U} \ \neg (true \ \mathbf{U} \ p_1)$$

		{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
	p_1									
	true									
true	$\overline{\mathrm{U}p_1}$									
¬ true	Up_1									
true U ¬ (true U	J_{p_1}									
¬ true U ¬ (true U	J_{p_1}									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

		{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
	<i>p</i> ₁	1	1	0	0	0	0	0	0	0
	true									
true	Up_1									
¬ true	U <i>p</i> ₁									
true U ¬ (true U	J p ₁)									
¬ true U ¬ (true U	J p ₁)									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

		{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
	p_1	1	1	0	0	0	0	0	0	0
	true	1	1	1	1	1	1	1	1	1
true	$\overline{\mathrm{U}p_1}$									
¬ true	$\overline{Up_1}$									
true U ¬ (true U	J_{p_1}									
¬ true U ¬ (true U	J_{p_1}									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$
$$\neg true U \neg (true U p_1)$$

	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
p_1	1	1	0	0	0	0	0	0	0
true	1	1	1	1	1	1	1	1	1
true $\overline{\mathrm{U}p_1}$	1	1	0	0	0	0	0	0	0
\neg true $\overline{\text{U} p_1}$									
true U \neg (true U p_1)									
\neg true $U \neg (true U p_1)$									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$
$$\neg true U \neg (true U p_1)$$

	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
p_1	1	1	0	0	0	0	0	0	0
true	1	1	1	1	1	1	1	1	1
true $\overline{\mathrm{U}p_1}$	1	1	0	0	0	0	0	0	0
\neg true $\overline{\text{U} p_1}$	0	0	1	1	1	1	1	1	1
true U \neg (true U p_1)									
\neg true $U \neg (true U p_1)$									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

	{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
<i>P</i> ₁	1	1	0	0	0	0	0	0	0
true	1	1	1	1	1	1	1	1	1
true $\overline{\mathrm{U}p_1}$	1	1	0	0	0	0	0	0	0
\neg true $\overline{\text{U} p_1}$	0	0	1	1	1	1	1	1	1
true U \neg (true U p_1)	1	1	1	1	1	1	1	1	1
\neg true $U \neg (true U p_1)$									

 $\mathbf{G} \mathbf{F} p_1$

recall that
$$F \phi = true U \phi$$
 and $G \phi = \neg true U \neg \phi$ $\neg true U \neg (true U p_1)$

		{ <i>p</i> ₁ }	{ <i>p</i> ₁ }	{}	{}	{}	{}	{}	{}	{}
-	<i>p</i> ₁	1	1	0	0	0	0	0	0	0
-	true	1	1	1	1	1	1	1	1	1
true	U <i>p</i> ₁	1	1	0	0	0	0	0	0	0
¬ true	U <i>p</i> ₁	0	0	1	1	1	1	1	1	1
true U ¬ (true U	J_{p_1}	1	1	1	1	1	1	1	1	1
¬ true U ¬ (true U	J_{p_1}	0	0	0	0	0	0	0	0	0

$\mathbf{F} (\neg p_1 \wedge \mathbf{X} (\neg p_2 \mathbf{U} p_1))$

$\mathbf{F} (\neg p_1 \wedge \mathbf{X} (\neg p_2 \mathbf{U} p_1))$

recall that $F \phi = true U \phi$

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

true
$$\mathbf{U} (\neg p_1 \land \mathbf{X} (\neg p_2 \mathbf{U} p_1))$$

$$\mathbf{F} (\neg p_1 \wedge \mathbf{X} (\neg p_2 \mathbf{U} p_1))$$

recall that
$$F \phi = true U \phi$$

true
$$\mathbf{U} (\neg p_1 \land \mathbf{X} (\neg p_2 \mathbf{U} p_1))$$

$$\{\} \qquad \{p_2\} \qquad \{\} \qquad \{\} \qquad \{p_1\} \quad \{p_1,p_2\} \ \{p_1,p_2\} \qquad \cdots$$

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	-{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁							
-	<i>p</i> ₂							
-	$\neg p_1$							
	$\neg p_2$							
$\neg p_2$	U p ₁							
$X (\neg p_2$	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
$_{2}$ U ($\neg p_{1} \wedge X (\neg p_{2})$	U p ₁))							

true

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$							
-	$\neg p_2$							
$\neg p_2$	U p ₁							
X (¬p ₂	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁							
$X (\neg p_2)$	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁					1	1	1
$X (\neg p_2$	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U ($\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁			1	1	1	1	1
$X (\neg p_2$	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U ($\neg p_1 \wedge X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)							
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0						
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1					
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U ($\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	₽2	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	2 U p ₁	0	0	1	1	1	1	1
$X (\neg p_2)$	U p ₁)	0	1	1				
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1			
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	2 U p ₁	0	0	1	1	1	1	1
X (¬p ₂	U p ₁)	0	1	1	1	1		
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U ($\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	2 U p ₁	0	0	1	1	1	1	1
X (¬p ₂	U p ₁)	0	1	1	1	1	1	
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U ($\neg p_1 \wedge X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)							
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0						
true U $(\neg p_1 \land X (\neg p_2)$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1					
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1				
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1	1			
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1	1	0		
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2)$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1	1	0	0	
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
-	<i>p</i> ₂	0	1	0	0	0	1	1
-	$\neg p_1$	1	1	1	1	0	0	0
-	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1	1	0	0	0
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))							

$$F (\neg p_1 \land X (\neg p_2 \cup p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>p</i> ₁	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p$	2 U p ₁	0	0	1	1	1	1	1
X (¬p ₂	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge X (\neg p_2)$	U p ₁)	0	1	1	1	0	0	0
true U ($\neg p_1 \land X (\neg p_2)$	U p ₁))	1	1	1	1			

$$F (\neg p_1 \land X (\neg p_2 U p_1))$$

recall that
$$F \phi = true U \phi$$

		{}	{p ₂ }	{}	{}	{ <i>p</i> ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	₽1	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2$	U p ₁	0	0	1	1	1	1	1
$X (\neg p_2)$	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2)$	U p ₁)	0	1	1	1	0	0	0
true U $(\neg p_1 \land X (\neg p_2))$	U p ₁))	1	1	1	1	0	0	0

$p_1 \cup p_2$

		{p ₁ }	{p ₁ }	$\{p_1\}$	{p ₁ }	{p ₂ }	{p ₁ }	{p ₁ }	$\{p_1\}$	$\{p_1, p_2\}$
	<i>P</i> 1	1	1	1	1	0	1	1	1	1
	P2	0	0	0	0	1	0	0	0	1
p_1 U	J _{P2}	1	1	1	1	1	1	1	1	1

		{p ₁ }	-83	$\{p_1\}$	{}	{p ₁ }	-83	$\{p_1\}$	-{}	{p ₁ }
	<i>p</i> 1	1	0	1	0	1	0	1	0	1
	P2	0	0	0	0	0	0	0	0	0
p_1 l	J p2	0	0	0	0	0	0	0	0	0

true U $(\neg p_1 \land X (\neg p_2 \cup p_1))$

		-8	$\{p_2\}$	8	-8	{p ₁ }	$\{p_1, p_2\}$	$\{p_1, p_2\}$
	<i>P</i> 1	0	0	0	0	1	1	1
	<i>p</i> ₂	0	1	0	0	0	1	1
	$\neg p_1$	1	1	1	1	0	0	0
	$\neg p_2$	1	0	1	1	1	0	0
¬p;	U p1	0	0	1	1	1	1	1
X (¬p ₂	U p ₁)	0	1	1	1	1	1	0
$\neg p_1 \wedge \mathbf{X} (\neg p_2$	U p ₁)	0	1	1	1	0	0	0
true U ($\neg p_1 \land X (\neg p_2)$	U p1))	1	1	1	1	1	1	0

\neg true $\mathbf{U} \neg (true \mathbf{U} p_1)$

p ₁ 0 0 1 0 0 1 0 0	
true 1 1 1 1 1 1 1 1 1	
true U p ₁ 1 1 1 1 1 1 1 1 1	
¬true U p ₁ 0 0 0 0 0 0 0 0	
true U ¬ (true U p ₁) 0 0 0 0 0 0 0 0	true U
true $U \neg (true \ U \ p_1)$ 1 1 1 1 1 1 1 1 -	¬ true U

	{p ₁ }	{p ₁ }	-8	-{}	{}	-{}	-8	-{}	-8
<i>p</i> ₁	1	1	0	0	0	0	0	0	0
true	1	1	1	1	1	1	1	1	1
true U p_1	1	1	0	0	0	0	0	0	0
$\neg true U p_1$	0	0	1	1	1	1	1	1	1
true U \neg (true U p_1)	1	1	1	1	1	1	1	1	1
true $U \neg (true \overline{U p_1})$	0	0	0	0	0	0	0	0	0

Formula expansions

t)		- n
- P	_ ~	· P

$\{p_1\}$	{p ₁ }	{p ₁ }	{p ₁ }	{p ₂ }	{p ₁ }	{p ₁ }	$\{p_1\}$	{p ₁ ,p ₂ } ··
1	1	1	1	0	1	1	1	1
0	0	0	0	1	0	0	0	1

		{p ₁ }	-()	$\{p_1\}$	{}	{p ₁ }	-()	{p ₁ }	-{}	{p ₁ } -
	<i>p</i> 1	1	0	1	0	1	0	1	0	1
	P ₂	0	0	0	0	0	0	0	0	0
p ₁ U	p ₂	0	0	0	0	0	0	0	0	0

true U $(\neg p_1 \land X (\neg p_2 \cup p_1))$

	-8	$\{p_{2}\}$	-8	-8	{p ₁ }	$\{p_1,p_2\}$	$\{p_1, p_2\}$
P ₁	0	0	0	0	1	1	1
P2	0	1	0	0	0	1	1
$\neg p_1$	1	1	1	1	0	0	0
$\neg p_2$	1	0	1	1	1	0	0
$\neg p_2 \cup p_1$	0	0	1	1	1	1	1
$\mathbb{X} \; (\neg p_2 \; \mathbb{U} \; p_1)$	0	1	1	1	1	1	0
$\neg p_1 \wedge \ \mathrm{X} \ (\neg p_2 \ \mathrm{U} \ p_1)$	0	1	1	1	0	0	0
U (¬p₁ ∧ X (¬p₂ U p₁))	1	1	1	1	1	1	0

\neg true $\mathbf{U} \neg (true \mathbf{U} p_1)$

true U ¬
¬ true U ¬

	-8	{}	$\{p_1\}$	-{}	-8	{p ₁ }	{}	1
<i>P</i> 1	0	0	1	0	0	1	0	
true	1	1	1	1	1	1	1	
true Up_1	1	1	1	1	1	1	1	
\neg true Up_1	0	0	0	0	0	0	0	
true U \neg (true U p_1)	0	0	0	0	0	0	0	
true U \neg (true U p_1)	1	1	1	1	1	1	1	

		$\{p_1\}$	{p ₁ }	-{}	-0	-{}	-83	-0	-0	-{}
	p 1	1	1	0	0	0	0	0	0	0
- 1	true	1	1	1	1	1	1	1	1	1
true L	J p ₁	1	1	0	0	0	0	0	0	0
¬ true \	J p ₁	0	0	1	1	1	1	1	1	1
(true U	<i>p</i> ₁)	1	1	1	1	1	1	1	1	1
(true U	<i>p</i> ₁)	0	0	0	0	0	0	0	0	0

Key idea: Construct automata whose states are columns of the formula expansion

Key idea: Construct automata whose states are columns of the formula expansion

Next in this module: understand properties of formula expansions

Word compatibility

<i>p</i> ₁				
<i>p</i> ₂				

Word compatibility

	{}				
p_1	0				
<i>p</i> ₂	0				

Word compatibility

	{}	$\{p_1\}$			
p_1	0	1			
<i>P</i> 2	0	0			

Word compatibility

	{}	$\{p_1\}$	{ <i>p</i> ₂ }		
p_1	0	1	0		
<i>P</i> 2	0	0	1		

Word compatibility

	{}	$\{p_1\}$	{ <i>p</i> ₂ }	$\{p_1, p_2\}$	
p_1	0	1	0	1	
<i>p</i> ₂	0	0	1	1	

AND-NOT-compatibility

AND-NOT-compatibility

ϕ_1	1	0	1	0	
ϕ_2	1	1	0	0	
$\phi_1 \wedge \phi_2$	1	0	0	0	

X-compatibility

X-compatibility

ϕ		0		
Χφ	0			

X-compatibility

ϕ		0		1	
Χφ	0		1		

	l	1	1	l	I	ı	ı
ϕ_1	20-						
ϕ_2							
ϕ_1 U ϕ_2							

ϕ_1	护					
ϕ_2	1					
ϕ_1 U ϕ_2	1					

ϕ	1	26-					
ϕ	2	1	0				
ϕ_1 U ϕ	2	1	1				
	-						_

ϕ_1	25	1				_
ϕ_2	1	0				
ϕ_1 U ϕ_2	1	1	1			

					l		
	ϕ_1	25-	1				
	ϕ_2	1	0		0		
ϕ_1 U	ϕ_2	1	1	1	0		

ϕ_1	20-	1		0		_
7 1						_
da	 1	0		0		_
42	 -					
$\phi_1 \cup \phi_2$	1	1	1	0		

			ı	I	ı	l	
ϕ_1	26	1		0	1		
ϕ_2	1	0		0	0		
ϕ_1 U ϕ_2	1	1	1	0	0		

ϕ_1	妆	1		0	1		
ϕ_2	1	0		0	0		
ϕ_1 U ϕ_2	1	1	1	0	0	0	

	ϕ_1				
	ϕ_2				
ϕ_1 U	ϕ_2				

			l		
ϕ_1	1				
ϕ_2	0				
$\phi_1 \cup \phi_2$	1	1			

	ı	ı	1	ı	I
ϕ_1	1	1			
ϕ_2	0	0			
$\phi_1 \cup \phi_2$	1	1	1		

			l		
ϕ_1	1	1	1		
ϕ_2	0	0	0		
$\phi_1 \cup \phi_2$	1	1	1	1	

	ı		I	I	ı	
ϕ_1	1	1	1	1		
ϕ_2	0	0	0	0		
$\phi_1 \cup \phi_2$	1	1	1	1	1	

Ç	ϕ_1	1	1	1	1	1	
Ç	ϕ_2	0	0	0	0	0	•••
ϕ_1 U ϕ_1	ϕ_2	1	1	1	1	1	

			l			
ϕ_1	1	1	1	1	1	
ϕ_2	0	0	0	0	0	• • •
$\phi_1 \cup \phi_2$	1	1	1	1	1	

Cannot happen forever that $\phi_1 \cup \phi_2 = 1$, $\phi_1 = 1$ but $\phi_2 = 0$

Accepting expansions

					p_1	U p	2					true	U (p_1 /	\ X	$(\neg p_1)$	U_p	1))			
_		$\{p_1\}$	$\{p_1\}$	{p1}	$\{p_1\}$	{p ₂ }	{p ₁ }	$\{p_1\}$	{p1}	{P1+P	2}		-8	{p ₂ }	-8	-8	{p ₁ }	p_1, p_2	[p ₁ ,p ₂	}	
	Pı	1	1	1	1	0	1	1	1	1		Pı	0	0	0	0	1	1	1		
_	P2	0	0	0	0	1	0	0	0	1		P ₂	0	1	0	0	0	1	1		
$p_1 U$	P2	1	1	1	1	1	1	-1	1	1		791	1	1	1	1	0	0	0		
												792	1	0	1	1	1	0	0		
												¬ρ₂ U ρ₁	0	0	1	1	1	1	1		
		$\{p_1\}$	{}	$\{p_1\}$	{}	$\{p_1\}$	{}	$\{p_1\}$	{}	(p ₁)		$X (\neg p_2 \cup p_1)$	0	1	1	1	1	1	0	_	
	P1	1	0	1	0	1	0	1	0	1		$\neg p_1 \wedge X (\neg p_2 \cup p_1)$	0	1	1	1	0	0	0		
	P2	0	0	0	0	0	0	0	0	0		trace U $(\neg p_1 \land X (\neg p_2 \cup p_1))$	1	1	1	1	1	1	0		
$p_1 U$	P2	0	0	0	0	0	0	0	0	0											
										¬ tr	ue l	$J \neg (true U p_1)$									
				1	1	1	1	1	1	1				1							
		_	_	-	-	-	_	_	-	()	_		{p ₁ }	{p ₁ }	_	()		{}	- ()		- ()
		_	<i>p</i> ₁	0	0	1	0	0	1	0	0	<i>P</i> ₁	1	1	0	0	0	0	0	0	0
		_	rue	1	1	1	1	1	1	1	1	true	1	1	1	1	1	1	1	1	1
		rue U		1	1	1	1	1	1	1	1	true U p ₁	1	1	0	0	0	0	0	0	0
		rue U		0	0	0	0	0	0	0	0	¬ true U p ₁	0	0	1	1	1	1	1	1	1
rue U -				0	0	0	0	0	0	0	0	true U \neg (true U p_1)	1	1	1	1	1	1	1	1	1
rue U -	(tr	ue U Į) ₁)	1	1	1	1	1	1	1	1	\neg true U \neg (true U p_1)	0	0	0	0	0	0	0	0	0

Entry in first column of last row (corresponding to final formula) is 1

Summary

LTL to NBA

Formula expansions

Properties

Columns as states of NBA

Unit-8: Algorithms for LTL

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

Automaton construction

p_1 U p_2 true U $(\neg p_1 \land X (\neg p_2 \cup p_1))$

		$\{p_1\}$	$\{p_1\}$	$\{p_1\}$	$\{p_1\}$	$\{p_2\}$	$\{p_1\}$	$\{p_1\}$	$\{p_1\}$	{p ₁ ,p ₂ } ···
	p_1	1	1	1	1	0	1	1	1	1
	<i>P</i> 2	0	0	0	0	1	0	0	0	1
p_1 t	¹ P2	1	1	1	1	1	1	1	1	1

		{p ₁ }	-{}	{p ₁ }	-8	$\{p_1\}$	-8	$\{p_1\}$	-0	{p1}
	Pı	1	0	1	0	1	0	1	0	1
	P2	0	0	0	0	0	0	0	0	0
$p_1 L$	J p2	0	0	0	0	0	0	0	0	0

		-8	{p ₂ }	-8	-8	$\{p_1\}$	$\{p_1, p_2\}$	$\{p_1, p_2\}$	
	<i>P</i> 1	0	0	0	0	1	1	1	
_	P2	0	1	0	0	0	1	1	
	¬p ₁	1	1	1	1	0	0	0	
_	¬p2	1	0	1	1	1	0	0	
p₂ t	J _{P1}	0	0	1	1	1	1	1	
X (¬p₂ U	p ₁)	0	1	1	1	1	1	0	
¬p1 ∧ X (¬p2 U	p ₁)	0	1	1	1	0	0	0	_
U (¬p₁ ∧ X (¬p₂ U	P ₁))	1	1	1	1	1	1	0	

\neg true $\mathbf{U} \neg (true \mathbf{U} p_1)$

		0	0	{p1}	-8	-8	$\{p_1\}$	-8	-8			{p ₁ }	{p1}	-8	-81	-8	8	0	8	0
	p 1	0	0	1	0	0	1	0	0		<i>p</i> ₁	1	1	0	0	0	0	0	0	0
	true	1	1	1	1	1	1	1	1		true	1	1	1	1	1	1	1	1	1
true	U p ₁	1	1	1	1	1	1	1	1	true	Up_1	1	1	0	0	0	0	0	0	0
¬ true	U p ₁	0	0	0	0	0	0	0	0	¬ true	U p ₁	0	0	1	1	1	1	1	1	1
true U ¬ (true U	J p ₁)	0	0	0	0	0	0	0	0	true U ¬ (true U	J p ₁)	1	1	1	1	1	1	1	1	1
true U ¬ (true U	J p ₁)	1	1	1	1	1	1	1	1	¬ true U ¬ (true U	J p ₁)	0	0	0	0	0	0	0	0	0

				<i>p</i> ₁	U 1	b ₂					true U ($\neg p_1 \land X (\neg p_2 \cup p_1)$)											
	(p ₁)	{p ₁ }	{p ₁ }	{p ₁ }	{p ₂ }	{p1}	{p1	{p1	{p ₁ ,p	2}		8	{p ₂ }	8	8	{p ₁ }	{p ₁ ,p ₂	{p ₁ ,p ₂				
Pi	1	1	1	1	0	1	1	1	1		P	0	0	0	0	1	1	1				
P2	0	0	0	0	1	0	0	0	1		P	0	1	0	0	0	1	1				
$p_1 U p_2$	1	1	1	1	1	1	1	1	1		¬P	1	1	1	1	0	0	0				
7°2 1 0 1 1 1 0														0	0 0							
792 U P1 0 0 1 1 1 1															1							
_	{p ₁ }	-{}	{p ₁ }	-{}	{p ₁ }	-8	{Pi	- 8	{P1		$X (\neg p_2 \cup p_1$) 0	1	1	1	1	1	0				
PI	1	0	1	0	1	0	1	0	1		¬p₁ ∧ X (¬p₂ U p₁) 0	1	1	1	0	0	0				
P2	0	0	0	0	0	0	0	0	0		true U $(\neg p_1 \land X (\neg p_2 \lor p_1)$) 1	1	1	1	1	1	0	_			
$p_1 U p_2$	0	0	0	0	0	0	0	0	0													
			8	8	(p ₁)	()	8	{p ₁ }			J ¬(true U p₁)	{p ₁ }	(p ₁)	8	8	8	8	8	8	***		
	_	<i>p</i> ₁	0	0	1	0	0	1	0	0	<i>p</i> ₁	1	1	0	0	0	0	0	0	0		
	t	rue	1	1	1	1	1	1	1	1	true	1	1	1	1	1	1	1	1	1		
	true U	<i>p</i> ₁	1	1	1	1	1	1	1	1	true U p_1	1	1	0	0	0	0	0	0	0		
-	true U	<i>p</i> ₁	0	0	0	0	0	0	0	0	$\neg true U p_1$	0	0	1	1	1	1	1	1	1		
rue U ¬ (t	rue U j	p ₁)	0	0	0	0	0	0	0	0	true U \neg (true U p_1)	1	1	1	1	1	1	1	1	1		
rue U ¬ (t	rue II	0.1	1	1	1	-1	1	1	1	- 1	¬ true U ¬ (true U p.)	0	0	0	0	0	0	0	0	0		

Construct an automaton with states as column vectors that can guess accepting expansions

Example 1: $p_1 \cup p_2$

p_1	0	0	0	0	1	1	1	1
p_2	0	0	1	1	0	0	1	1
$p_1 \cup p_2$	0	1	0	1	0	1	0	1

Recall Until-compatibility

Recall Until-compatibility

Recall Until-compatibility

Recall Until-compatibility

Compatible states

Recall Until-compatibility

0	1	1
1	0	0
1	0	1

 q_{0}

 q_0

1	
1	
1	

Example 2: $(X p_1) U p_2$

 $\begin{array}{c|c}
p_1 & * \\
p_2 & * \\
X p_1 & * \\
(X p_1) U p_2 & * \\
\end{array}$

 $\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$

 q_{0}

$$\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$$

$$\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$$

$$\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$$

$$\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$$

$$\begin{array}{c|c} p_1 & * \\ p_2 & * \\ X p_1 & * \\ (X p_1) U p_2 & * \end{array}$$

		0		1		1		0	
q_0 -	{}	0	$\{p_1\}$	0	$\{p_1,p_2\}$	1	{ p ₂ }	1	
		1	ĺ	1		0		1	
		1		1		1		1	

Coming next: Construction for an arbitrary LTL formula ϕ

Step 1: List down subformulae of ϕ

Step 1: List down subformulae of ϕ

Step 2: Check AND-NOT and Until compatibility

Step 2: Check AND-NOT and Until compatibility

Incompatible states!

Step 2: Check AND-NOT and Until compatibility

Incompatible states!

Remove incompatible states and **add** a new state $\{q_0\}$

Step 3: Add transitions satisfying

Word, X and Until compatibility

Step 3: Add transitions satisfying

Word, X and Until compatibility

Step 3: Add transitions satisfying

Word, X and Until compatibility

From q_0 add compatible transitions to states where last entry is 1

Step 4: Accepting states should ensure Until-eventuality condition

Step 4: Accepting states should ensure Until-eventuality condition

For every Until subformula $\phi_1 \cup \phi_2$, define

$$F_{\phi_1 \cup \phi_2}$$
: set of states where $\phi_1 \cup \phi_2 = 0$ or $\phi_2 = 1$

Step 4: Accepting states should ensure Until-eventuality condition

For every Until subformula $\phi_1 \cup \phi_2$, define

$$F_{\phi_1 \cup \phi_2}$$
: set of states where $\phi_1 \cup \phi_2 = 0$ or $\phi_2 = 1$

	0	1	0	1
$F_{p_1 \cup p_2}$:	0	0	1	1
	0	0	1	1

▶ Compatible states $+ q_0$

- ► Compatible states $+ q_0$
- ► Compatible transitions

- ► Compatible states $+ q_0$
- ► Compatible **transitions**
- ▶ If no Until subformula, then every state is accepting

- ► Compatible states $+ q_0$
- ► Compatible transitions
- ▶ If no Until subformula, then every state is accepting
- ▶ Otherwise, accepting set for each Until subformula: $\{F_1, F_2, ..., F_k\}$

- ► Compatible states $+ q_0$
- ► Compatible **transitions**
- ▶ If no Until subformula, then every state is accepting
- ▶ Otherwise, accepting set for each Until subformula: $\{F_1, F_2, ..., F_k\}$
- ► This will be a Generalized NBA (GNBA)

- ► Compatible states $+ q_0$
- ► Compatible **transitions**
- ▶ If no Until subformula, then every state is accepting
- ▶ Otherwise, accepting set for each Until subformula: $\{F_1, F_2, ..., F_k\}$
- ► This will be a Generalized NBA (GNBA)

Every GNBA can be converted to an equivalent NBA (Unit 6 - Module 4)

- ► Compatible states $+ q_0$
- ► Compatible **transitions**
- ▶ If no Until subformula, then every state is accepting
- ▶ Otherwise, accepting set for each Until subformula: $\{F_1, F_2, ..., F_k\}$
- ► This will be a Generalized NBA (GNBA)

Every GNBA can be converted to an equivalent NBA (Unit 6 - Module 4)

In general, this algorithm gives NBA which is **exponential** in size of formula