The Formal Semantics of Programming Languages / Chapter1-3

Wataru Yachi

JAIST

month DD, YYYY

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

■ If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

In either case, we have contradiction.

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$	• • •	$\theta(x_j)$	• • •
x_0	0	1	1		1	
x_1	1	1	0		0	
x_2	0	0	1		1	
:	:	:	÷		÷	
x_i	0	1	0	• • •	1	
:	:	:	:		:	

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$	• • •	$\theta(x_j)$	• • •
x_0	0	1	1		1	
x_1	1	1	0		0	
x_2	0	0	1	• • •	1	• • •
÷	:	÷	:		÷	
x_i	0	1	0		1	
÷	:	:	:		:	

in above table, we can define Y by pick up x_n which corresponding cell along diagonal is $\mathbf{0}$

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$		$\theta(x_j)$	
x_0	0	1	1		1	
x_1	1	1	0		0	
x_2	0	0	1	• • •	1	• • •
:	:	÷	:		:	
x_i	0	1	0		1	
:	:	:	:		÷	

in above table, we can define Y by pick up x_n which corresponding cell along diagonal is $\mathbf{0}$

$$Y = \{x_0\}$$

Direct and Inverse Image of Relation

Definition (direct image)