

Problem Set #3: Operational Amplifiers

Problem (1)

Compare between the two operational amplifier circuits in terms of:

- 1- DC-gain
- 2- GBW (assume a load capacitance C_L)
- 3- Slew rate
- 4- Maximum available output swing
- 5- Input common-mode range (assume $V_b = V_{b1} = V_{TH} + 4V_{eff}$)
- 6- Noise & Offset

Show that the noise & offset of the cascode devices are neglected.

Explain why the transfer function $A(s) = \frac{V_{out}}{V_{in}}(s)$ will have LHP zeroes.

Problem (2)

Study the stability of the self-regulated current source in the previous sheet of current mirrors (problem #3) considering only the capacitors shown in the figure.

Problem (3)

For the shown operational amplifier:

- 1- What is the type of this op-amp?
- 2- Find the relation between I_{REF1} , I_{REF2} and I_{REF3} .
- 3- Find an expression for the poles in this op-amp in terms of the circuit parameters (Consider C_{gs} only).
- 4- Assume output load capacitance C_L at V_{out} , find an expression of the Gain-Bandwidth product (GBW) in terms of the circuit parameters. Find an expression for the Slew rate (SR).
- 5- Find the maximum output range as a function of V_{b1} and V_{b2} .
- 6- Find the values of V_{b1} and V_{b2} for maximum output swing. Find an expression for the maximum output swing in this case.

Problem (4)

For the two-stage op-amp shown: $V_{DD}=2.5V$, $\mu_n C_{ox}=100\mu A/V$, $\mu_p C_{ox}=50\mu A/V$, $\lambda_n=\lambda_p=0.01V^{-1}$, and $V_{thn}=|V_{thp}|=0.6V$. For a total power consumption of 6mW, find the maximum GBW for $C_L=1pF$ such that the non-dominant pole is double GBW. Calculate the DC-gain and the maximum output swing. What is the optimum value for V_{eff5} ? Assume: Compensation capacitor = C_L / 2, and $V_{eff5}=V_{eff6}$ and $V_{eff1}=V_{eff3}$ If the amplifier is placed in a unity feedback configuration, calculate the closed loop gain and BW. What is the fractional gain error (FGE) and settling time?

Problem (5)

For the following op-amp circuit:

- 1- Find the DC gain.
- 2- Find the locations and expressions of the poles.
- 3- Is there a zero in the transfer function? Find its location.

