Отчёт по лабораторной работе №5

Работа с линейным пространством

Сырцов Александр Юрьевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Подгонка полиномиальной кривой	
4	Выводы	20

List of Tables

List of Figures

3.1	Матрица D и векторы x y	8
3.2	График данных	9
3.3	Матрица A	10
3.4	Действия для далььнейшего нахождения a,b,c	11
3.5	Решение МНК	12
3.6	График получившейся параболы	13
3.7	Подгонка значений через встроенные функции	14
3.8	График результатов подгонки встроенными функциями	14
3.9	Диаграмма домика	15
3.10	получаем в радианах угол <i>theta1</i> , подставляем в матрицу враще-	
	ния $R1$ и в $RD1$ записываем произведение матрицы врещения на	
	исходную	16
3.11	Значения <i>x</i> , <i>y</i> для дальнейшего построения диаграмм	16
3.12	Поворачиваем вторую матрицу на 225 градусов	17
3.13	Диаграмма с домиками	17
3.14	Диаграмма с домиками с легендой сбоку по центру	18
3.15	Диаграмма с отзеркаленным домиком	19
3.16	Диаграмма с увеличенным домиком	19

1 Цель работы

Научится работе с подгонкой значений оценкой методом наименьших квадратов (МНК), работе с матричными преобразованиями.

2 Задание

• Сделать отчёт по лабораторной работе в формате Markdown. • В качестве ответа предоставить отчёты в 3 форматах: pdf, docx и md (в архиве, поскольку он должен содержать скриншоты, Makefile и т.д.)

3 Выполнение лабораторной работы

3.1 Подгонка полиномиальной кривой

1. Нужно найти параболу по методу наименьших квадратов для набора точек, заданных матрицей D, где первый столбец отвечает за вектор x, а втоорой за вектор y, поэтому первым шагом построил матрицу и извлёк векторы (рис. -fig. 3.1).

Figure 3.1: Матрица D и векторы x y

2. Пострроил точки на графике (рис. -fig. 3.2).

Figure 3.2: График данных

3. Далее работаю с матричным квадратным уравнением и строю матрицу системы, содержащей значения x, подставленные в квадратное уравнение как x^2 , x^1 и x^0 при коэффицентах a, b и c. Матрица системы называется a. Сначала я создал матрицу из единиц a0 строк и a3 столбца функцией ones() и посто подставил нужные значения a3 первый и второй столбец (рис. -fig. 3.3).

```
octave:5> A = ones(6,3)
A =
  1
      1
         1
  1
      1
         1
  1
      1
         1
  1
         1
      1
  1
      1
         1
  1
         1
      1
octave:6> A(:,1) = xdata .^2
A =
            1
   1
        1
        1
            1
   4
   9
        1
            1
        1
            1
  16
  25
        1
            1
            1
  36
        1
octave:7> A(:,2) = xdata_
A =
   1
        1
            1
   4
        2
            1
   9
        3
            1
  16
        4
            1
  25
        5
            1
        6
            1
  36
```

Figure 3.3: Матрица *A*

4. Решение МНК получается из уравнения, где в левой части действие на строке 8, а справа действие строке 9 (рис. -fig. 3.4). По сути просто домножаем матричное квадратное уравнение на транспонированную матрицу системы А. Здесь мы просто смотрим на результат действий.

Figure 3.4: Действия для далььнейшего нахождения a, b, c

5. Теперь я содаю дополненную матрицу В, записывая туда результаты придыдущих действий, чтобы, применив метод Гаусса через функцию rref(), найти окончательное решение. Полученную матрицу с решением я записываю в новую матрицу В_res, а уже из её четвёртого столбца с решениями беру все 3 значения в отдельные переменные a1, a2, a3 (они отвечают за коэффиценты a,b,c) (рис. -fig. 3.5).

```
octave:10 > B = A' * A;
octave:11> B (:,4) = A' * ydata;
octave:12> B_res = rref (B)
B res =
  1.0000
                          0 -0.8929
                0
                          0
                             5.6500
       0 1.0000
        0
                    1.0000 -4.4000
                0
octave:13> a1=B_res(1,4)
a1 = -0.8929
octave:14> a2=B_res(2,4)
a2 = 5.6500
octave:15> a3=B res(3,4)
a3 = -4.4000
octave:16>
```

Figure 3.5: Решение МНК

6. Строю соответствующий график для демонстрации подгонки значений через нашу оценку значений МНК (рис. -fig. 3.6).

Figure 3.6: График получившейся параболы

7. После всех шагов с поиском значений реализуем эквивалентный способ через встроенную функцию для подгонки значений полинома polyfit() и функцию polyval() для получения значения полинома P в точках, задаваемых вектором-строкой х (рис. -fig. 3.7).

```
octave:22> P = polyfit (xdata, ydata, 2)
P =

-0.8929    5.6500   -4.4000

octave:23> y = polyval (P,xdata)
y =

0.3571
3.3286
4.5143
3.9143
1.5286
-2.6429
```

Figure 3.7: Подгонка значений через встроенные функции

8. Построил график, аналогичный прошлому (рис. -fig. 3.8).

Figure 3.8: График результатов подгонки встроенными функциями

3.2 Матричные преобразования

9. Для работы с примитивным изображением домика задал матрицу всех его вершин D. Домик представляет из себя конечный граф. Из матрицы вынул значения x,y и изобразил граф (рис. -fig. 3.9).

Figure 3.9: Диаграмма домика

10. Для вращения объекта, заданного матрицей, необходимо домножить исходную на матрицу вращения. Адгоритм простой: переводим нужный нам угол в радианы, подставляем в матрицу вращения и домножаем слева на исходную матрицу. Сначала поворачиваю матрицу на 90 градусов (рис.-fig. 3.10).

```
octave:31> theta1 = 90*pi/180
theta1 = 1.5708
6.1230e-17 -1.0000e+00
  1.0000e+00 6.1230e-17
octave:33> RD1 = R1*D
RD1 =
Columns 1 through 5:
                         1.8369e-16 -2.0000e+00 -3.0000e+00
3.0000e+00 3.0000e+00 2.0000e+00
 -2.0000e+00
             6.1230e-17
  1.0000e+00
             1.0000e+00
                         3.0000e+00
 Columns 6 and 7:
  -2.0000e+00 -2.0000e+00
  1.0000e+00
              3.0000e+00
```

Figure 3.10: получаем в радианах угол *theta1*, подставляем в матрицу вращения R1 и в RD1 записываем произведение матрицы врещения на исходную

11. Из первой и второй строчки выделяем значения x, y и записываем в переменные x1, y1 (рис. -fig. 3.11).

```
octave:34> x1 = RD1(1,:)
x1 =
-2.0000e+00   6.1230e-17   1.8369e-16   -2.0000e+00   -3.0000e+00   -2.0000e+00   -2.0000e+00
octave:35> y1 = RD1(2,:)
y1 =
   1.0000   1.0000   3.0000   3.0000   2.0000   1.0000   3.0000
octave:36>
```

Figure 3.11: Значения *x*, *y* для дальнейшего построения диаграмм

12. Повторяю шаги 10, 11 для поворота на 225 градусов. Значения x, y и записываю в переменные x2, y2 (рис. -fig. 3.12).

```
octave:36> theta2 = 225*pi/180
theta2 = 3.9270
-0.7071
         0.7071
 -0.7071 -0.7071
octave:38> RD2 = R2*D
RD2 =
  0.7071 -0.7071 -2.1213 -0.7071
                              0.7071 0.7071 -0.7071
 -2.1213 -0.7071 -2.1213 -3.5355 -3.5355 -2.1213 -3.5355
octave:39> x2 = RD2(1,:)
x2 =
  0.7071 -0.7071 -2.1213 -0.7071
                               0.7071
                                      0.7071 -0.7071
octave:40> y2 = RD2(2,:)
y2 =
  -2.1213 -0.7071 -2.1213 -3.5355 -3.5355 -2.1213 -3.5355
```

Figure 3.12: Поворачиваем вторую матрицу на 225 градусов

13. Изображаем все домики в трёх цветах (рис. -fig. 3.13).

Figure 3.13: Диаграмма с домиками

14. Немного отходя от методчки изменяю отображение легенды так, чтобы она не перекрывала диаграмму (рис. -fig. 3.14).

Figure 3.14: Диаграмма с домиками с легендой сбоку по центру

15. Аналогично вращению можно задать отражение относительно некоторой прямой. В методичке сразу задана матрица отражения R без пояснений по её получению – по отражению видно, что прямая идёт под углом 45 градусов, следовательно синус от удвоенного аргумента (то есть угла 90 градусов) в матрице отражения дал ответ 1, а косинус – 0. Зная это, провожу домножение исходной матрицы на матрицу отражения и строю диаграмму (диаграмма одна, так как изменение масштаба командой axis не требует особого внимания) (рис. -fig. 3.15).

Figure 3.15: Диаграмма с отзеркаленным домиком

16. Самым последним шагом проводим дилатацию: увеличим домик в 2 раза с помощью домножения на матрицу Т, состоящую из двух базисных векторов, растягивающих линейное пространство. А далее выводим результат на экран в виде диаграммы (рис. -fig. 3.16).

Figure 3.16: Диаграмма с увеличенным домиком

4 Выводы

Я освоил матричные преобразования и способы подгонки значенй методом наименьших квадратов в языке Octave.