UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2025/1 Prova da área IIA

1 - 4	5	6	Total

Nome:	Cartã	o:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:				
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$			
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$			
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j} b^j, \binom{n}{j} = \frac{n!}{j!(n-j)!}$				
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\cos(y) + \operatorname{sen}(y)\cos(x)$				
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$				

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

	Séries:
1	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
-	$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
1	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
1	$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
1	$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
	$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
	$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
1	$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
	$-1 < x < 1, m \neq 0, 1, 2, \dots$

Integrais:

Funções especiais:

runções especiais.				
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$			
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$			
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$			
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$			
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$			

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int e^{\lambda x} \sin(w x) dx = \frac{e^{\lambda x} (\lambda \sin(w x) - w \cos(w x))}{\lambda^2 + w^2}$$

Tabela	de	transformadas	de	Laplace:

Tabel	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{s}$ $\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$
	•	

		15-(22	
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$	
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$	
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$	
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$	
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$	
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$	
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$	
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$	
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$	
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$	
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$	
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$	
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$	
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$	
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$	
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$	
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$	
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$	
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $	
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$	

Nesta prova $u(\cdot)$ representa a função degrau unitário.

• Questão 1. Marque a alternativa correta.

(A)(0.6pt) Sobre
$$\mathcal{L}^{-1}\left\{\frac{1}{\pi^2 + s^2}\right\}$$
, é correto: (B)(0.6pt) Sobre $\mathcal{L}^{-1}\left\{\frac{e^{-s}}{\pi^2 + s^2}\right\}$, é correto:

(B)(0.6pt) Sobre
$$\mathcal{L}^{-1}\left\{\frac{e^{-s}}{\pi^2 + s^2}\right\}$$
, é correto

$$(\)\ \frac{\cos(\pi t)}{\pi}$$

$$(\)\ u(t-1)\frac{\cos(\pi t)}{\pi}$$

()
$$sen(\pi t)$$

$$(\)\ -u(t-1)\frac{\operatorname{sen}(\pi t)}{\pi}$$

$$()$$
 $\cos(\pi t)$

()
$$u(t-1) \sin(\pi(t-1))$$

$$() \frac{\operatorname{sen}(\pi t)}{\pi}$$

()
$$u(t-1)\cos(\pi(t-1))$$

$$(\)\ \frac{e^{\pi t} - e^{-\pi t}}{2\pi}$$

$$() u(t-1)\frac{\cos(\pi t)}{\pi}$$

$$() -u(t-1)\frac{\sin(\pi t)}{\pi}$$

$$() u(t-1)\sin(\pi(t-1))$$

$$() u(t-1)\cos(\pi(t-1))$$

$$() u(t-1)\frac{e^{\pi(t-1)} - e^{-\pi(t-1)}}{2\pi}$$

(C) (0.6pt) Sobre o regime de amortecimento do oscilador $\begin{cases} y'' + 4y' + 4y &= 1 \\ y(0) = 0 &, y'(0) = 1 \end{cases}$, é correto:

() é superamortecido

() é não-amortecie

() é subamortecido

() é assintoticamente amortecido

() é criticamente amortecido

() é exponencialmente amortecido

• Questão 2. Considere a função f(t) definida abaixo

$$f(t) = \begin{cases} t & , 0 < t < 1 \\ 2 - t & , 1 < t \le 2 \\ 0 & , t > 2 \end{cases}$$

(B)(0.6pt) Sobre $\mathcal{L}\{f(t)\}\$, é correto:

(A)(0.6pt) Sobre representação para f, é correto:

$$\left(\ \ \right) \frac{1 - e^{-s}}{s^2} + \frac{2e^{-s}}{s}$$

()
$$f = tu(t) + 2(1-t)u(t-1) + (t-2)u(t-2)$$

$$\left(\begin{array}{c} \frac{1}{s} + \frac{2e^{-s}}{s} + \frac{2e^{-s}}{s^2} - \frac{2e^{-2s}}{s^2} \end{array} \right)$$

()
$$f = tu(t) + (2-t)u(t-1)$$

$$\left(\ \ \right) \ \frac{1 - 2e^{-s} + e^{-2s}}{s^2}$$

()
$$f = tu(t) + (2-2t)u(t-1) + (2-t)u(t-2)$$

$$\left(\right) \frac{1}{s^2} + \frac{2e^{-s}}{s} - \frac{e^{-s}}{s^2} + \frac{e^{-2s}}{s^2}$$

()
$$f = tu(t) + (2-t)u(t-1) + u(t-2)$$

$$\left(\ \ \right) \ \frac{1-2e^{-s}}{s^2}$$

()
$$f = tu(t) + (2-t)u(t-1) + (t-2)u(t-2)$$
 () $\frac{1-2e^{-s}}{s^2}$

• Questão 3. Considere $F(s) = \frac{s^2 - 6s + 4}{s^3 - 3s^2 + 2s}$

(A)(0.6pt) Sobre $\mathcal{L}^{-1}{F(s)}$ é correto:

$$() 1 + e^t + e^{2t}$$

B)(0.6pt) Sobre
$$\mathcal{L}^{-1}{F(s-3)}$$
 é corr

()
$$2 + \operatorname{senh}(t) - \operatorname{senh}(\sqrt{2} t)$$

$$() e^{-3t}(2+e^t-2e^{2t})$$

()
$$1 + \sin(t) - \sin(\sqrt{2} t)$$

()
$$u(t-3)(2+e^{3-t}-2e^{6-2t})$$

$$() 1 + \operatorname{sen}(t) - \operatorname{sen}(\sqrt{2}t)$$

$$() 2 + e^{t-3} - 2e^{2(t-3)}$$

()
$$2u(t) + e^{-t} - 2e^{-2t}$$

$$() 2 + e^t - 2e^{2t}$$

(B)(0.6pt) Sobre
$$\mathcal{L}^{-1}\{F(s-3)\}$$
 é correto:
() $e^{-3t}(2+e^t-2e^{2t})$
() $u(t-3)(2+e^{3-t}-2e^{6-2t})$
() $2+e^{t-3}-2e^{2(t-3)}$
() $2+e^{3-t}-2e^{6-2t}$
() $u(t-3)(2+\operatorname{senh}(t-3)-\operatorname{senh}(2t-6))$
() nenhum dos anteriores

() nenhuma das anteriores

• Questão 4. Considere y tal que $\begin{cases} ty' - \frac{3y}{2} = 3 , t > 1 \\ y(1) = 2 \end{cases}$

(A)(0.6pt) sobre solução particular y_p para a EDO contida acima, é correto:

 $(\)\ y_p = 3$

 $(\)\ y_p = -2$

() $y_p = 3t$

() $y_p = -2t$

() $y_p = 3t^{-1}$

() nenhuma das anteriores

(B)(0.6pt) sendo $U' = \frac{dU}{ds}$ a derivada da transformada da respectiva solução homogênea, é correto:

 $(\) \frac{U'}{U} = -\frac{5/2}{s}$

 $(\) \frac{U'}{U} = -\frac{1/2}{s-1}$

 $(\) \frac{U'}{U} = -\frac{3/2}{s}$

 $(\)\ \frac{U'}{U} = -\frac{1/2}{s+1}$

 $\begin{array}{c} (\)\ \frac{U'}{U}=-\frac{1/2}{s} \\ (\rm C)\ (0.6pt)\ Obtenha\ a\ solução\ }y(t)\ do\ PVI\ usando\ os\ resultados\ dos\ ítens\ anteriores. \end{array}$

• Questão 5. Para f(t) dada à direita, considere y satisfazendo $\int y'' + y = f(t)$, t > 0 $\begin{cases} y(0) = 0 & , y'(0) = 0 \end{cases}$

(A)(0.8pt) Obtenha F(s), a transformada de Laplace de f(t). (B)(1.2pt) Usando transformada de Laplace, obtenha y(t).

• Questão 6. Considere o seguinte problema de valor inicial (aqui $\delta(t)$ é Delta de Dirac):

$$\begin{cases} x' = -x - 2y + \delta(t) \\ y' = x - y + \delta(t) \end{cases} \quad \text{com } x(0) = 0 \text{ e } y(0) = 0. \text{ Aqui } x' = \frac{dx}{dt}, y' = \frac{dy}{dt}.$$

(A)(1.4pt) Aplicando a Transformada de Laplace, obtenha um sistema de equações entre as quantidades $s, X = \mathcal{L}\{x\}$ e $Y = \mathcal{L}\{y\}$. Obtenha a solução desse sistema de equações. (B)(0.6pt) Obtenha x(t) e y(t) via transformada inversa.