

Chapter 4 Data Classification

Assoc. Prof. TRAN MINH QUANG quangtran@hcmut.edu.vn http://researchmap.jp/quang

CONTENT

- 1. Overview
- 2. Logistic regression
- 3. Decision tree
- 4. Bayesian method
- 5. Artificial neural network (ANN)
- 6. Other classification methods
- 7. Evaluation and selection of models
- 8. Summary

REFERENCES

- [1] Jiawei Han, Micheline Kamber, and Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012.
- [2] David Hand, Heikki Mannila, Padhraic Smyth, "Principles of Data Mining", MIT Press, 2001.
- [3] David L. Olson, Dursun Delen, "Advanced Data Mining Techniques", Springer-Verlag, 2008.
- [4] Graham J. Williams, Simeon J. Simoff, "Data Mining: Theory, Methodology, Techniques, and Applications", Springer-Verlag, 2006.
- [5] ZhaoHui Tang, Jamie MacLennan, "Data Mining with SQL Server 2005", Wiley Publishing, 2005.
- [6] Oracle, "Data Mining Concepts", B28129-01, 2008.
- [7] Oracle, "Data Mining Application Developer's Guide", B28131-01, 2008.
- [8] Ian H.Witten, Eibe Frank, "Data mining: practical machine learning tools and techniques", 2nd Edition, Elsevier Inc, 2005.
- [9] Florent Messeglia, Pascal Poncelet & Maguelonne Teisseire, "Successes and new directions in data mining", IGI Global, 2008.
- [10] Oded Maimon, Lior Rokach, "Data Mining and Knowledge Discovery Handbook", 2nd Edition, Springer Science + Business Media, LLC 2005, 2010.

Situations

- Email: "spam" or "normal"
- Online transactions (e-commerce): "fraud" or "normal"
- Healthcare: "sick" or "not sick"; tumor "benign" or "malignant",...
- Y ∈{0, 1}: 0: *"negative"* or 1: *"positive"* classes
- $Y \in \{0, 1, 2, 3\}$: multiple classes
- Each class is labeled: Ex., "spam" or "not spam"

- Given a training dataset, find out models that describe class A and B
- Given a new pattern/object, identify the class it belongs to?
- Evaluate whether the selected class is really appropriate with the given pattern/object?

Classification

- Is a data analysis method that extract models that describe data classes or the trends of data
- Is a two steps process:
 - **Training**: to build the classifier by analyzing (learning) the training dataset
 - Classification: classify new patterns/object, if the accuracy of the built classifier is acceptable
- y = f(X): y is label (the description) of a class and X is the data/object
- **Training**: tuple <X,y> is given in the training dataset → identify f
- <u>Classification</u>: given a set of <X', y'>, where X' <> X (testing dataset) evaluate f. If the accuracy of f is acceptable then use f to identify y" for any new given X"

Classification: is a supervised learning method

 Estimate the tumor is "benign" or "malignant" based on its size

- If $h_{\theta}(X) \ge 0.5$ then: "Y=1" and vice versa "Y=0"
- In fact, $h_{\theta}(X) > 1$ or $h_{\theta}(X) < 0$
- Logistic regression: $0 \le h_{\theta}(X) \le 1 = > Classification$

Common classification algorithms

- Logistic regression
- Decision tree
- Bayesian method
- Artificial neural network (ANN)
- K-nearest neighbor
- Case-based reasoning
- Genetic algorithms
- Rough sets analysis
- Fuzzy sets analysis ...

- $h_{\theta}(X) = \theta^T X$ (may be >1 or <0)
- We need $h_{\theta}(X)$ that is $0 \le h_{\theta}(X) \le 1$
- Re-modeling: $h_{\theta}(X) = g(\theta^T X)$

$$g(z) = \frac{1}{1 + e^{-z}}$$

where,
$$h$$

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

Sigmoid functionor Logistic function

Related to coefficients θ

Explain the <u>value</u> of

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

- is the probability to predict "y=1" with input is x
- Ex.,

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ kt.khoi_u \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

- ⇒70% tumors with given size could be "malignant"
- $\Rightarrow h_{\theta}(x) = P(y=1|x,\theta)$ (probability for y=1, with a given x and parameterred by θ)

• Note $h_{\theta}(X) = g(\theta^T X)$ where $g(z) = \frac{1}{1 + e^{-z}}$ or

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

- $g(z) \ge 0.5$, when $z \ge 0$
- g(z) < 0.5, when z < 0

- Predict y=1 when $h_{\theta}(X) \ge 0.5$ or $\theta^T X \ge 0$
- Predict y=0 when $h_{\theta}(X) < 0.5$ or $\theta^T X < 0$

- Decision boundary
 - $h_{\theta}(X) = g(\theta^T X) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - Select

$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

• Predict "y=1" if $\theta^T X \ge 0$ or $-3 + x_1 + x_2 \ge 0$ => $x_1 + x_2 \ge 3$

Decision boundary

•
$$h_{\theta}(X) = g(\theta^T X) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

• Predict "y=1" if $\theta^T X \ge 0$ or $-1+x^2_1+x^2_2 \ge 0$

- Cost function of the logistic regression function
 - Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(N)}, y^{(N)})\}$
 - N examples

$$x = \begin{vmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}; x_0 = 1; y \in \{0,1\}$$

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

• How to identify the set of coefficients θ ?

• Refer to the linear regression: $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

o In non-linear regression

$$J(\theta) = cost(h_{\theta}(x), y)$$

 $cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

To simplify we can write:

$$cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

Cost function of the logistic regression function

$$\cos t(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) : y = 1\\ -\log(1 - h_{\theta}(x)) : y = 0 \end{cases}$$

- Cost = 0 if y=1, $h_{\theta}(x)=1$
- When $h_{\theta}(x)$ ->0 then cost -> ∞
- ⇒ when $h_{\theta}(x)=0$ i.e., we predict: $P(y=1|x, \theta)=0$, meanwhile y=1, hence the cost of the algorithm in this case must be large

18

Cost function of the logistic regression function

$$\cos t(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) : y = 1\\ -\log(1 - h_{\theta}(x)) : y = 0 \end{cases}$$

- Cost = 0 if y=0, $h_{\beta}(x)=0$
- When $h_{\mathcal{O}}(x)$ ->1 then cost -> ∞
- ⇒ When $h_{\theta}(x)=1$, i.e., we predict : $P(y=1|x, \theta)=1$, meanwhile y=0, hence the cost of the algorithm in this case is large

19

Simplify the cost function and gradient descent algorithm

$$\cos t(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) : y = 1\\ -\log(1 - h_{\theta}(x)) : y = 0 \end{cases}$$

• Since y=0|1, the cost function can be simplified as:

$$cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1-y)log(1-h_{\theta}(x))$$

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \cos t (h_{\theta}(x^{(i)}) - y^{(i)}) = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y) \log(1 - h_{\theta}(x^{(i)}))$$

- Finding $\min_{\theta} J(\theta)$, we can figure out θ (gradient descent)
- To predict y based on a new given x:

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

- Using logistic regression to classify multi-classes data set:
 - Email folder: "business", "friend", "family", "hobby" (y={1,2,3,4})
 - Diagnose: "flu", "fever due to virus", "rubella" (y={1,2,3})
 - Weather forecast: "sunny", "clouding", "rainy" (y={1,2,3})

o multi-classes dataset

o multi-class dataset: One and the rest

 $h^{(i)}_{\theta}(x) = P(y=1|x;\theta)$ với (i=1,2,..k), k is the number of classes

- Train the classifier using logistic regression $h^{(i)}_{\theta}(x)$ for each class i
- Given a new object x, we predict y by selecting class i with the highest $h^{(i)}_{\theta}(x)$:

 $h^{(i)}_{\theta}(x) = P(y=1|x; \theta)$ với (i=1,2,...k), k is the number of classes

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- Internal node: is a test on a specific feature
- Leaf node: class label
- Path from an internal node: the result of a test on the corresponding feature

- Algorithm for building decision tree
 - ID3, C4.5, CART (Classification and Regression Trees binary decision trees)

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition D.

Input:

- Data partition, D, which is a set of training tuples and their associated class labels;
- attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split point or splitting subset.

Output: A decision tree.

Method:

(15) return N;

```
create a node N;
(2)
     if tuples in D are all of the same class, C then
(3)
          return N as a leaf node labeled with the class C;
(4)
     if attribute_list is empty then
(5)
          return N as a leaf node labeled with the majority class in D; // majority voting
     apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
(6)
     label node N with splitting_criterion;
(7)
     if splitting_attribute is discrete-valued and
(8)
          multiway splits allowed then // not restricted to binary trees
          attribute\_list \leftarrow attribute\_list - splitting\_attribute; // remove splitting_attribute
(9)
(10) for each outcome j of splitting_criterion
     // partition the tuples and grow subtrees for each partition
          let D_i be the set of data tuples in D satisfying outcome j; // a partition
(11)
          if D_i is empty then
(12)
(13)
                attach a leaf labeled with the majority class in D to node N;
          else attach the node returned by Generate_decision_tree(D_j, attribute_list) to node N;
(14)
     endfor
```

- Characteristics of the algorithm
 - A greedy algorithm (without backward), divide and conquer, recursive, top-down analysis
 - Complexity: $O(n^* |D| * log |D|)$
 - Each feature corresponds to a level of the tree
 - At each level, |D| objects/patterns in the training data are examined
 - In-memory \rightarrow ???

• Attribute_selection_method

- Heuristic: to chose the partition criteria at a node, i.e. to divide D into smaller partitions with appropriate classes
 - Rank each attribute
 - The selected attribute is the one whose score is the highest
 - Measure for attribute splitting: information gain, gain ratio, gini index

A là thuộc tính phân tách (splitting attribute).

Dr. Tran Minh Quang - quangtran@hcmut.edu.vn

Information Gain

- Based on information theory introduced by Claude Shannon about the value/content of information
- The attribute whose information gain is the highest is selected as splitting attribute for the current node N
 - N: current node where D is partitioned
 - Splitting attribute: assure that the impurity/randomness is minimized in the resulted partitions
 - This approach helps minimizing the number of tests in order to classify a given object

Information Gain

- Info(D): The necessary information used to classify an object in D (= Entropy(D))
 - p_i : the probability for an object in D that belongs to a specific class C_i (where i = 1..m)
 - C_{i,D}: a set of objects belong to C_i in D

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
$$p_i = |C_{i,D}| / |D|$$

Information Gain

- Info_A(D): The necessary information used to classify an object in D based on attribute A
 - Attribute A is used to divide D into v partitions $\{D_1,\,D_2,\,...,\,D_j,\,...,\,D_v\}$
 - Each D_i has |D_i| object in D
 - This information describes the level of chaos (impurity) in partitions
 - It is better to have small Info_A(D)

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} * Info(D_j)$$

Information Gain

Information gain is the difference between Info(D)
 (before partitioning) and Info_A(D) (after partitioning by using attribute A)

$$Gain(A) = Info(D) - Info_A(D)$$

youth

credit_rating student class income high fair no no high excellent по по medium fair по по low fair yes yes excellent medium ves yes.

income	student	credit_rating	class				
medium low low medium medium	no yes yes yes no	fair fair excellent fair excellent	yes yes no yes				

senior

Gain(age)=0.246 bits

Gain(income)?

Gain(student)?

Gain(credit_rating)?

→ Splitting attribute?

income	student	credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes	

age?

middle_aged`

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$

$$+\frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}\right)$$

$$+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ bits.}$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$$
 bits.

o GainRatio(A)

- Used in C4.5 algorithm
- Problem in Information Gain: It may create many small partitions (even with only 1 object)
- => Normalize Information with split information: SplitInfo_A(D)
- Splitting attribute A is the one whose **GainRatio(A)** is the maximum

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} * \log_{2} \left(\frac{|D_{j}|}{|D|}\right)$$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_{A}(D)}$$

$$\begin{aligned} \text{SplitInfo}_{\text{income}}(\text{D}) &= -\frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) \\ &= 0.926. \end{aligned}$$

Gain(income) = 0.029

GainRatio(income) = 0.029/0.926 = 0.031

GainRatio(age)?

GainRatio(student)?

GainRatio(credit_rating)?

→ Splitting attribute?

o Gini Index

- Used with CART
- Is a binary split for each attribute A
 - $A \in S_A$?
 - S_A is a subset of 1 or v 1 values of attribute A
- Gini index of an attribute is the minimum value in accordance with a subset S_A from 2^v-2 subsets
- Splitting attribute is the one whose gini index is minimum (to maximize the reduction in duplication between partitions) $Gini(D) = 1 \sum_{i=1}^{m} p_i^2$

$$\mathit{Gini}_A(D) = \frac{|D_1|}{|D|}\mathit{Gini}(D_1) + \frac{|D_2|}{|D|}\mathit{Gini}(D_2)$$

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

$$Gini(D) = 1 - \left(\frac{9}{14}\right)^{2} - \left(\frac{5}{14}\right)^{2} = 0.459$$

$$Gini_{income} \in \{low, medium\}(D)$$

$$= \frac{10}{14}Gini(D_{1}) + \frac{4}{14}Gini(D_{2})$$

$$= \frac{10}{14}\left(1 - \left(\frac{6}{10}\right)^{2} - \left(\frac{4}{10}\right)^{2}\right) + \frac{4}{14}\left(1 - \left(\frac{1}{4}\right)^{2} - \left(\frac{3}{4}\right)^{2}\right)$$

$$= 0.450$$

$$= Gini_{income} \in \{high\}(D).$$

$$Gini_{income \in \{low, high\}} = Gini_{income \in \{medium\}} = 0.315$$

$$Gini_{income \in \{medium, high\}} = Gini_{income \in \{low\}} = 0.300$$

$$Gini_{age \in \{youth, senior\}/\{middle_aged\}} = 0.375$$

→ Splitting attribute?

- Home work: Build a decision tree from AllElectronics dataset using:
 - Information Gain
 - Gain Ratio
 - Gini Index
 - → Are they similar?
 - → Practice the classification with the resulted Decision tree and discuss about their effectiveness

- Based Bayes's theorem
 - Assumption: class conditional independence
 - Is a classification based on probability

Reverend Thomas Bayes (1702-1761)

- Bayes's theorem
 - X: a tuple/object (evidence)
 - H: hypothesis
 - X belongs to class C.

RID	age	income	student	credit_rating	Class: buys_comput
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Given an RID, is it belongs to class

"yes" (buys_computer = yes)

X is identified by values of its attributes

- Bayes's theorem
 - P(H | X): posterior probability
 - Ex: P(buys_computer=yes | age=young, income=high): **probability** of buying computer from a customer whose age is "young" and income is "high"
 - P(X|H): posterior probability, the conditional probability of X based on H (likelihood)
 - Ex: P(age=young,income=high | buys_computer=yes): probability of a customer who bough computer has age = "young" and income = "high"
 - P(age=young, income=high | buys_computer=yes) = 0
 - P(age=young, income=high | buys_computer=no) = 2/5 = 0.4

• Bayes's theorem

- P(H): class prior probability
 - Ex: P(buys_computer=yes): **probability** of customer who buys computer in general
 - $P(buys_computer=yes) = 9/14 = 0.643$
 - $P(buys_computer=no) = 5/14 = 0.357$
- P(X): predictor prior probability
 - Ex: P(age=young, income=high): **probability** of customer whose age = "young" and income = "high"
 - P(age=young, income=high) = 2/14 = 0.143

- Bayes's theorem
 - P(H), P(X|H), P(X): Calculated from given dataset
 - P(H | X): Inferred from Bayes's theorem

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

P(buys_computer=yes|age=young, income=high) = P(age=young, income=high|buys_computer=yes)P(buys_computer=yes)/P(age=young, income=high) = 0

P(buys_computer=no|age=young, income=high) = P(age=young, income=high|buys_computer=no)P(buys_computer=no)/P(age=young, income=high) = 0.4*0.357/0.143 = 0.9986

• Given a training dataset D with class labels for C_i , i=1..m, the classification process of an object/tuple $X = (x_1, x_2, ..., x_n)$ with Bayesian method:

X is classified into C_i iff

 $P(C_i | X) > P(C_i | X)$, where j=1..m, j≠i

$$P(C_i \mid X) = \frac{P(X \mid C_i)P(C_i)}{P(X)}$$

- \rightarrow Maximize $P(C_i | X)$ (i.e. select C_i if $P(C_i | X)$ is the maximum value)
- → Maximize $P(X | C_i)P(C_i)$, since P(X) is a similar and, we have $P(C_i) = |C_{i,D}|/|D|$...

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i) = P(x_1 \mid C_i) * P(x_2 \mid C_i) * ... * P(x_n \mid C_i)$$

- P(X|C_i) is calculated with class conditional independence assumption
- x_k , k = 1..n: value of attribute A_k in object X
- $P(x_k|C_i)$ is calculated as follows:

- A_k is a categorical attribute
 - $P(x_k|C_i) = |\{X'|x'_k = x_k \land X' \in C_i\}|/|C_{i,D}|$
- A_k is a continuous attributes
 - We assume $P(x_k|C_i)$ follows a particular distribution (Ex: Gauss distribution with μ and σ)

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \qquad P(\mathbf{X}|C_i) = g(x_k,\mu_{C_i},\sigma_{C_i})$$

- Problem: if $P(x_k | C_i) = 0$ then $P(X | C_i) = 0!!!$
 - Original approach
 - $P(x_k | C_i) = |\{X' | x'_k = x_k \land X' \in C_i\}| / |C_{i,D}|$
 - Laplace (Pierre Laplace, 1749-1827)
 - $P(x_k | C_i) = (|\{X' | x'_k = x_k \land X' \in C_i\}| + 1)/(|C_{i,D}| + m)$ where, m is the number of different values in the domain of attribute A_k
 - z-estimate
 - $P(x_k | C_i) = (|\{X' | x'_k = x_k \land X' \in C_i\}| + \mathbf{z*P(x_k)})/(|C_{i,D}| + \mathbf{z})$

 $X = (age = youth, income = medium, student = yes, credit_rating = fair)$

 $C_1 = \{X'|X'.buys_computer = yes\}$

 $C_2 = \{X''|X''.buys_computer = no\}$

 $P(buys_computer = yes) = 9/14 = 0.643$

 $P(buys_computer = no) = 5/14 = 0.357$

$$P(age = youth \mid buys_computer = yes)$$
 = $2/9 = 0.222$

$$P(age = youth \mid buys_computer = no)$$
 = 3/5 = 0.600

$$P(income = medium \mid buys_computer = yes) = 4/9 = 0.444$$

$$P(income = medium \mid buys_computer = no) = 2/5 = 0.400$$

$$P(student = yes \mid buys_computer = yes) = 6/9 = 0.667$$

$$P(student = yes \mid buys_computer = no)$$
 = 1/5 = 0.200

$$P(credit_rating = fair \mid buys_computer = yes) = 6/9 = 0.667$$

$$P(credit_rating = fair \mid buys_computer = no) = 2/5 = 0.400$$

$$P(X|buys_computer = yes) = P(age = youth \mid buys_computer = yes) \times$$

$$P(income = medium \mid buys_computer = yes) \times$$

$$P(student = yes \mid buys_computer = yes) \times$$

$$=0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$$
.

$$P(X|buys_computer = no) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019.$$

$$P(X|buys_computer = yes)P(buys_computer = yes) = 0.044 \times 0.643 = 0.028$$

$$P(X|buys_computer = no)P(buys_computer = no) = 0.019 \times 0.357 = 0.007$$

 $\rightarrow X \in C_1$

: a

CATEGORICAL DATA

Weather dataset:
 (Outlook, Temp, Humidity,
 Windy) => Play (Yes/No)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

4. CLASSIFICATION WITH BAYESIAN — CATEGORICAL DATA

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		Outlo		Tomp	Llumidity	\A.** 1		0.4

Decision (play=yes/no)

Calculate:

P(Yes|E)

P(No|E)

where, E the input data (need to be classified)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dr. Tran Minh Quang – quangtran@hcmut.edu.vn

CATEGORICAL DATA

•Quyết định (play=yes/no)

Outlook Temp Humidity Windy Play Sunny Cool High True ?

Evidence E

 $P(Yes \mid E) = P(Outlook = Sunny \mid Yes)$

D(Vac)

x P(Temperature = Cool | Yes)

 $x P(Humidity = High \mid Yes)$

 $x P(Windy = True \mid Yes)$

Probability of class Yes

•	P(Yes)	
Λ	P(E)	
		3 9
	$\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9}$	$X = \frac{3}{9} X \frac{9}{14}$
=	P(E)

Οι	ıtlook		Ten	nperat	ure	Hu	midit	y	\	Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No	
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5	
Overca st	4	0	Mild	4	2	Normal	6	1	True	3	3			
Rainy	3	2	Cool	3	1	İ								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14	
Overca st Rainy	4/9 3/9	0/5 2/5	Mild Cool	4/9 3/9	2/5 1/5	Normal	6/9	1/5	True	3/9	3/5			

CATEGORICAL DATA

•Quyết định (play=yes/no)

Outlook Temp Humidity Windy Play Sunny Cool High True ?

Evidence E

 $P(No \mid E) = P(Outlook = Sunny \mid No)$

 $D(N_0)$

x P(Temperature = Cool | No)

Probabilit y of class No $x P(Humidity = High \mid No)$

 $x P(Windy = True \mid No)$

v	<u> </u>	NO,	_		
Δ	P	(E)		·	
	3	1	$\langle \frac{4}{5} \rangle$	3	5
_	5	{ − } 5	{ - }	{ - }	$\frac{\sqrt{14}}{14}$
=			P(E	"	

Οι	ıtlook		Ten	nperat	ure	Hu	midit	y	Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overca st	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1			•	1140				
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overca st	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5	İ			ĺ				

CATEGORICAL DATA

Decision (play=yes/no)

```
Outlook Temp Humidity Windy Play Sunny Cool High True ?
```

Likelihood "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$ Likelihood "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$ Normalized:

```
P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Since P("no") > P("yes") => Play = "No"
```

```
Outlook Temp Humidity Windy Play
Sunny Cool High True No Result
```

4. CLASSIFICATION WITH BAYESIAN — CONTINUOUS DATA

- Assumption: Attributes has Gauss distribution
- Probability distribution function is calculated as:
 - omean μ $\mu = \frac{1}{N} \sum_{j=1}^{N} x_j$
 - Standard deviation σ

$$\sigma^{2} = \frac{1}{N-1} \sum_{j=1}^{N} (x_{j} - \mu)^{2}$$

Distribution function f(x)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

CONTINUOUS DATA

Outl	ook		Tem	peratu	re	Hur	midity	/	1	Windy	1	Pla	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3		83	85		86	85	False	6	2	9	5
Overcast	4	0		70	80		96	90	True	3	3		
Rainy	3	2		68	65		80	70					
				64	72		65	95					
				69	71		70	91					
				75			80						
				75			70						
				72			90						
				81			75						
Sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	False	6/9	2/5	9/14	5/14
			std.										
Overcast	4/9	0/5	dev.	6.2	7.9	std. dev.	10.2	9.7	True	3/9	3/5		
Rainy	3/9	2/5											

Ex:

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$
Dr. Tran Minh Quang – quangtran@hcmut.edu.vn

4. CLASSIFICATION WITH BAYESIAN — CONTINUOUS DATA

Classification: Outlook Temp Humidity Windy Play
 Sunny 66 90 True ?

Likelihood "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$

Likelihood "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$

P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1

Advantage:

- Easy to implement, fast learning, easy to understand the results
- Effective in many cases

Disadvantage:

 Assumption class conditional independence may not be satisfied -> carefully check this characteristic

Non-linear Classification

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

 $X_{1}^{2}, X_{1}X_{2}, X_{1}X_{3},...X_{1}X_{100}, X_{2}^{2}, X_{2}X_{3}...$

⇒5000 features (~O(n²) parameters)

$$X_{1}^{2}, X_{2}^{2}, X_{3}^{2}, \dots X_{10}^{2}, X_{1}^{2}X_{2}, \dots$$

=>O(n³) parameters

Dr. Tran Minh Quang - quangtran@hcmut.edu.vn

What is this?

Human: a car

Training:

Testing: What is this?

62

Learning Algorithm

Hình 50×50 pixels $\rightarrow 2500$ pixels (n=2500) (7500 if RGB)

$$x = \begin{bmatrix} \text{pixel 1 intensity} \\ \text{pixel 2 intensity} \\ \vdots \\ \text{pixel 2500} \\ \text{intensity} \end{bmatrix}$$

Kết hợp hàm bậc $2 (x_i * x_j) : \approx 3M$ features

- Simulate the work of human brain
- Popular since 80s 90s
- Now, it is applied in various applications

Neuron in the brain

Nucleus

Dendrite

Input

Cell body

Node of Ranvier

Schwann cell

Myelin sheath

Out put Gile

Out put Gile

Modeling neuron: Logistic unit

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$
"weights" \leftarrow
"parametes"

Sigmoid (logistic) activation function.

If the network has s_j nodes (units) at level j and s_{j+1} nodes at level j+1, then the size/dimension of $\Theta^{(j)}$ is $s_{j+1}x(s_j+1)$

Source: Andrew Ng

67

ANN: Feed forward (Forward propagation)

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$\begin{split} a_1^{(2)} &= g(\underline{\Theta_{10}^{(1)}}x_0 + \underline{\Theta_{11}^{(1)}}x_1 + \underline{\Theta_{12}^{(1)}}x_2 + \underline{\Theta_{13}^{(1)}}x_3) \quad \mathbf{Z_1^{(2)}} \\ a_2^{(2)} &= g(\underline{\Theta_{20}^{(1)}}x_0 + \underline{\Theta_{21}^{(1)}}x_1 + \underline{\Theta_{22}^{(1)}}x_2 + \underline{\Theta_{23}^{(1)}}x_3) \quad \mathbf{Z_2^{(2)}} \\ a_3^{(2)} &= g(\underline{\Theta_{30}^{(1)}}x_0 + \underline{\Theta_{31}^{(1)}}x_1 + \underline{\Theta_{32}^{(1)}}x_2 + \underline{\Theta_{33}^{(1)}}x_3) \quad \mathbf{Z_3^{(2)}} \\ h_{\Theta}(x) &= a_1^{(3)} &= g(\underline{\Theta_{10}^{(2)}}a_0^{(2)} + \underline{\Theta_{11}^{(2)}}a_1^{(2)} + \underline{\Theta_{12}^{(2)}}a_2^{(2)} + \underline{\Theta_{13}^{(2)}}a_3^{(2)}) \\ \mathbf{a}^{(3)} &= \mathbf{g}(\mathbf{Z^{(3)}}) \end{split}$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$
Thêm $a_0^{(2)} = 1$ vào $a^{(2)}$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\theta}(x) = a^{(3)} = g(z^{(3)})$$

Ex., presenting ANNs for basic logic operators

Validate using logic tables for the above ANNs!

- \circ Ex., use ANN to present a more complicated logic operation: x_1 NOR x_2
- \circ x_1 NOR x_2 = NOT x_1 XOR x_2 :

\mathbf{x}_1	\mathbf{x}_2	$x_1 XOR x_2$	x ₁ NOR x ₂
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

- => $x_1 NOR x_2=(x_1 AND x_2)OR(NOT x_1 AND NOT x_2)$
- => Integrate basic ANNs in the previous slide for presenting this expression!

o Present: x_1 NOR $x_2 = (x_1 \text{ AND } x_2)$ OR (NOT x_1 AND NOT x_2)

 $a_2^{(2)} = (NOT x_1) AND (NOT x_2)$

71

Cost function in ANN

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

L = Total number of layers in the network

 $s_l = No.$ of nodes (not included the bias node) in level I

Binary classification

$$y = 0 \text{ or } 1$$

1 output unit

Multi-class classification (K classes)

$$y \in \mathbb{R}^K$$

E.g.
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$ pedestrian car motorcycle truck

K output units

Source: Andrew Ng

72

Cost function in ANN

Logistic regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Neural network:

$$h_{\Theta}(x) \in \mathbb{R}^{K} \quad (h_{\Theta}(x))_{i} = i^{th} \text{ output}$$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log(h_{\Theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^{2}$$

 Minimizing the Cost in ANN: Backpropagation method

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need to calculate:

$$-J(\Theta) - \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

 Calculate the change of the derivation of the Cost function when changing parameters (gradient computation)

• Given a training dataset (x,y), feed forward in ANN

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)}) \text{ (add } a_0^{(2)})$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^{(3)}) \text{ (add } a_0^{(3)})$$

$$z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

- Let $\delta^{(l)}_{j}$ be the "error" created by node j at l layer
 - At each node in the output layer (l = L = 4)

$$\delta^{(4)}_{j} = a^{(4)}_{j} - y_{j}$$
 $(\delta^{(4)} = a^{(4)} - y)$

Calculate "errors" of inner nodes:

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot g'(z^{(3)})$$

$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot g'(z^{(2)})$$

Note: Do not calculate $\delta^{(1)}$ and

$$\frac{\partial}{\partial \theta_{ij}^{(l)}} J(\theta) = a_j^{(l)} \delta_i^{(l+1)}$$

- Backpropagation algorithm
 - Given a training dataset $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$
 - Assign $\Delta^{(l)}_{ii} = 0$ (for all i, j, h)
 - For i=1 to N(N = |D|)
 - $a^{(i)} := x^i$ conduct feed forward to calculate $a^{(l)}$ (l=1,2,3,...L)

Dr. Tran Minh Quang – guangtran@hcmut.edu.vn

- Use $y^{(i)}$ to calculate $\delta^{(L)} = a^{(L)} y$
- Calculate $\delta^{(L-1)}$, $\delta^{(L-2)}$,..., $\delta^{(2)}$
- Calculate $\Delta^{(l)}_{ii} := \Delta^{(l)}_{ii} + a_{(i)}^{(l)} \delta_{(i)}^{(l+1)}$
- Assign $\begin{cases} D_{ij}^{(l)} \coloneqq \frac{1}{N} \Delta_{ij}^{(l)} + \lambda \theta_{ij}^{(l)}, j \neq 0 \\ \\ D_{ij}^{(l)} \coloneqq \frac{1}{N} \Delta_{ij}^{(l)}, j = 0 \end{cases}$

 $\frac{C}{\partial \theta_{ii}^{(l)}} J(\theta) = D_{ij}^{(l)}$

Source: Andrew Ng

• Ex., about backpropagation:

• Ex., about backpropagation:

6. OTHER CLASSIFICATION METHODS

- o k-nn (k-nearest neighbor)
 - Given a training dataset D (with labels), classify record/object X to a particular class based on k objects that are the most similar to X (majority vote)
 - Issues
 - What kind of similarity measure to be used?
 - > How to identify k?

$$\rightarrow$$
 k <= $|D|^{1/2}$

6. OTHER CLASSIFICATION METHODS

- Select a measure
 - Euclidean

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Select value of k
 - If k is too small -> affected by noise
 - If k is too large -> selected objects may come from different classes.

k is large!

6. OTHER CLASSIFICATION METHODS

(a) 1-nearest neighbor

 $X \in MINUS$

(b) 2-nearest neighbor

 $X \in MINUS$ hay $X \in PLUS$? (c) 3-nearest neighbor

 $X \in \mathsf{PLUS}$

7. EVALUATE AND SELECT A CLASSIFICATION MODEL

• Evaluation criteria

- Accuracy
 - Describes how good a classifier can recognize different objects in the dataset
- Speed
 - > The computation cost for training and using the classifier
- Robustness
 - The capability of the classifier to work with datasets that contain noise or missing data
- Scalability
 - > Possibility to build a classifier with a very large datasets
 - > The capability to update/retrain the classifier with new dataset
- Interpretability
 - > The ability to understand the way a classifier work

7. EVALUATE AND SELECT A CLASSIFICATION MODEL

o Criteria: High Precision (P) and high Recall (R)

$$P = \frac{TP}{TP + FP} \qquad R = \frac{TP}{TP + FN} \qquad F - Score = \frac{2 \cdot P \cdot R}{P + R}$$

TP: True positive; FP: False positive; FN: False negative

• E.x: Dataset has 9 BG and 4 FG flows (total: 13 flows)

The classifier picks up 7 (4 BG and 3 FG) flows as BG flows. $\Rightarrow P=4/(3+4)=4/7$; R=4/(4+5)=4/9

7. EVALUATE AND SELECT A CLASSIFICATION MODEL

- Evaluate the accuracy/effectiveness
 - Holdout method: Randomly divide D to 2 different sets
 - Training set: (e.g., 2/3)
 - > Test set (e.g., 1/3)
 - Cross validation
 - \triangleright Divide D to k (k=10) portions with the same size
 - \triangleright Iteration *i*, use D_i for testing and the rest for training
 - Calculate the average of evaluation measures from k rounds of execution

8. SUMMARY

- Classification with Decision trees: ID3, C4.5, CART
 - Slitting attribute selection
- Classification with Bayesian
 - Based on Bayes's theorem
- Classification with artificial neural network (ANN)
- K-nn classification
 - Based on the distance (or similarity)
- Evaluation and selection of classifier
 - Criteria, measures, and methods

quangtran@hcmut.edu.vn