集合論 (第2回)

2. 和集合と共通部分

いくつかの集合が与えられると、それらから「和集合」と「共通部分」という新しい集合が定まる。今回は和集合と共通部分の定義と例を紹介し、さらに集合の分配法則について証明する。詳しい内容は下記の文献を参考のこと。

- 「集合と位相」(内田伏一 著) の p.5-p.10.
- 「集合 · 位相入門」(松坂和夫 著) の p.12-p.16.

定義 2-1 (和集合)

集合 A, B の少なくとも一方に属する要素全体の集合を $A \succeq B$ **の和集合**といい, $A \cup B$ で表す. つまり,

$$A \cup B = \{x \mid x \in A \sharp t \not t x \in B\}.$$

一般的に集合 $A_1, A_2, ..., A_n$ に対して

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n = \{x \mid x \in A_1 \text{ \sharp $\rlap{$t$}$ $\id} x \in A_2 \text{ \sharp $\rlap{$t$}$ $\id} \ldots \text{ \sharp $\rlap{$t$}$ $\id} x \in A_n \}$$

を $A_1, A_2, ..., A_n$ の和集合という.

和集合の例を挙げる.

$$A \cup B = \{1, 2, 3, 5\}.$$

(2) 開区間 $I_k = (0, k)$ (k = 1, 2, ..., n) に対して,

$$\bigcup_{k=1}^{n} I_k = (0, n).$$

問題 2-1

- (1) 集合 $A=\{1,2,3,4,5\},\ B=\{2,4,6\},\ C=\{x\in\mathbb{Z}\mid x^2<2\}$ を考える. $A\cup B$ および $A\cup B\cup C$ を求めよ.
- (2) 次の集合を計算せよ.

$${x \in \mathbb{R} \mid x^2 \in (0,1) \cup (2,3)}$$

例題 2-1

多項式 $f(x), g(x) \in \mathbb{R}[x]$ に対して、集合 A, B を次で定義する.

$$A = \{t \in \mathbb{R} \mid f(t) = 0\}, \quad B = \{t \in \mathbb{R} \mid g(t) = 0\}.$$

また h(x) = f(x)g(x) とし、集合 C を

$$C = \{ t \in \mathbb{R} \mid h(t) = 0 \}$$

で定める. このとき, $A \cup B = C$ を示せ.

(証明) $A \cup B \subseteq C$ を示す. $t \in A \cup B$ とすると, $t \in A$ または $t \in B$. このとき, f(t) = 0 または g(t) = 0 なので, h(t) = f(t)g(t) = 0. よって $t \in C$. 従って $A \cup B \subseteq C$.

次に $C \subseteq A \cup B$ を示す. $t \in C$ とすると,

$$0 = h(t) = f(t)g(t).$$

よって f(t)=0 または g(t)=0. 従って $t\in A$ または $t\in B$. よって $t\in A\cup B$. 従って $C\subseteq A\cup B$. これで両方の包含が示せたので $A\cup B=C$ である.

問題 2-2 集合 *A*, *B*, *C* を次で定義する.

 $A = \{n \in \mathbb{Z} \mid n \text{ it } 3 \text{ で割った余りが } 1\},$

 $B = \{n \in \mathbb{Z} \mid n \text{ it } 3 \text{ で割った余りが } 2\},$

 $C = \{n \in \mathbb{Z} \mid n^2 \text{ it } 3 \text{ で割った余りが } 1\}.$

このとき, $A \cup B = C$ を示せ.

例題 2-2

集合 A, B, C に対して次を示せ.

 $A \subseteq C$ かつ $B \subseteq C \Rightarrow A \cup B \subseteq C$.

** このことから $A \cup B$ は $A \in B$ を含む最小の集合であると言える.

(証明) $x \in A \cup B$ とすると, $x \in A$ または $x \in B$ である. $x \in A$ のとき, $A \subseteq C$ より $x \in C$. $x \in B$ のとき, $B \subseteq C$ より $x \in C$. どちらの場合でも $x \in C$. よって $A \cup B \subseteq C$.

2

定義 2-2 (共通部分)

集合 A,B のどちらにも属する要素全体の集合を A E B **の共通部分**といい, $A \cap B$ で表す. つまり,

$$A \cap B = \{x \mid x \in A, \ x \in B\}.$$

一般的に集合 $A_1, A_2, ..., A_n$ に対して

$$\bigcap_{i=1}^{n} A_i = \{ x \mid x \in A_1, \ x \in A_2, \, \ x \in A_n \}$$

を $A_1, A_2, ..., A_n$ **の共通部分**という.

例を挙げる.

$$A \cap B = \{1, 3\}.$$

(2) 開区間 $I_k = (0, k)$ (k = 1, 2, ..., n) に対して,

$$\bigcap_{k=1}^{n} I_k = (0,1).$$

問題 2-3

(1) 集合 A, B, C を次で定義する.

$$A = \{-3, -2, -1, 0, 1, 2, 3\}, \ B = \{1, 3, 5, 7\}, \ C = \{x \in \mathbb{R} \mid x^4 + x^2 - 2 = 0\}.$$

このとき, $A \cap B$ および $A \cap B \cap C$ を求めよ.

(2) 次の集合を計算せよ.

$$\{x \in \mathbb{R} \mid x^2 - 4x < 0\} \cap \mathbb{Z}.$$

例題 2-3

集合 A, B, C に対して次を示せ.

$$C \subseteq A, \ C \subseteq B \Rightarrow C \subseteq A \cap B.$$

※ このことから $A \cap B$ は $A \in B$ の両方に含まれる最大の集合だと言える.

(証明) $x \in C$ とする. $C \subseteq A$ より $x \in A$ であり, $C \subseteq B$ より $x \in B$ である. よって $x \in A \cap B$. 従って $C \subseteq A \cap B$.

問題 2-4 多項式 $f(x), g(x) \in \mathbb{R}[x]$ に対して集合 A, B を次で定義する.

$$A = \{t \in \mathbb{R} \mid f(t) = 0\}, \quad B = \{t \in \mathbb{R} \mid g(t) = 0\}.$$

また h(x) = f(x) + g(x) とし、集合 C を次で定める.

$$C = \{ t \in \mathbb{R} \mid h(t) = 0 \}.$$

このとき, $A \cap B \subseteq C$ を示せ.

定理 2-1 (分配法則)

集合 A, B, C に対して次が成り立つ.

- $(1) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $(2) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

(解答) (1) のみ示す. 両方の包含を示せばよい.

- $(i) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \ を示す. \ x \in A \cup (B \cap C) \ とする. \ \texttt{このとき}, \ x \in A \ \texttt{また} \ \texttt{は} \ x \in B \cap C \ \texttt{である}. \ x \in A \ \texttt{のとき}, \ x \in A \cup B \ \texttt{かつ} \ x \in A \cup C \ \texttt{より}, \ x \in (A \cup B) \cap (A \cup C). \ \texttt{以上より} \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \ \texttt{が示せた}.$
- (ii) $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ を示す、 $x \in (A \cup B) \cap (A \cup C)$ とする、 $x \in A$ のとき、 $x \in A \cup (B \cap C)$ 、次に $x \notin A$ のときを考える。このとき、 $x \in A \cup B$ より $x \in B$ であり、 $x \in A \cup C$ より $x \in C$ である。よって $x \in B \cap C \subseteq A \cup (B \cap C)$ 、以上より $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ も示せた。

問題 2-5 定理 2-1 (2) を示せ.

4