Mathematic Modeling the Outline - 数学建模知识点大纲 –

 $e^{\imath \theta} = \cos(\theta) + \imath \sin(\theta)$ Lumin

cdluminate@163.com

This Document is distributed under the MIT license.

August 7, 2015

Contents

1	Opti	mization Model	3				
	1.1	Lineaer Programming	3				
		1.1.1 Standard Form	3				
		1.1.2 Standarlization Methods	3				
		1.1.3 Solving	3				
		1.1.4 Application	3				
	1.2	Integer Linear Programming					
	1.3						
	1.4	Mixed Integer Programming					
		1.4.1 Basic Concept					
		1.4.2 Optimization Theory					
		1.4.3 逆序法,正序法	3				
		1.4.4 Applications	3				
	1.5	Non-Linear Programming	3				
		1.5.1 Optimal problem without constraint	3				
		1.5.2 Optimal problem with constraints	2				
		1.5.3 Application	2				
	1.6	Software/Tools	2				
2	_	Dynamics Model					
	2.1	Differential Function Model	5				
		2.1.1 Exponential Model	5				
		2.1.2 SI Model: susceptible infective : Logistic	[
		2.1.3 SIS Model	5				
		2.1.4 SIR Model	[
	2.2	Stability	5				
	2.3	Application	[
	2.4	Software	5				
3	Possibility						
•	3.1	Probability Base	6				
	3.2	Computer Emulating - Monte Carlo	6				
	J.Z	3.2.1 Monte Carlo Precision	6				
	3.3	Random Number Generator	6				
	ر.ں	Nandoni Number Generator	(

		3.3.1	Probability - Reference	6				
4	Graph Theory 7							
	4.1	•	concept of graph theory	7				
	4.2		と理	7				
	4.3			7				
	4.3		est Path Problem					
		4.3.1	Dijkstra Algorithm	7				
		4.3.2	Floyd Algorithm	7				
	4.4	Applic	cation	7				
	4.5	Euler	Graph and Hamilton Cycle	7				
		4.5.1	Traveling Salesman Problem	7				
	4.6			8				
	1.0	4.6.1		8				
		4.6.2		8				
		4.6.3		8				
	4.7	Pytho	n3	8				
	4.8	Matla	b	8				
5	Statistics and Regression 9							
	5.1			9				
	5.2		·析	9				
	J.2	5.2.1	主要内容	9				
		5.2.2	Single Variable Linear Regression	9				
		5.2.3	Multi Variable Linear Regression	9				
		5.2.4	Multi Variable Non-Linear Regression	9				
		5.2.5	keys	9				
6	Markov Chain 9							
	6.1	placel	nolder	9				
		•						
7	Fuzzy Mathematics 9							
		•	Subset	9				
	,	7.1.1		9				
		7.1.2		9				
		7.1.3		9				
		7.1.4	Fuzzy Clustering	9				
8	排队	必	1	0				
U	AL IV							
Α	Paper composing 11							
				2				
В	Common References							

1 Optimization Model

1.1 Lineaer Programming

1.1.1 Standard Form

The object is

 $Minimize Z = C^T X$

Subject to

$$Ax = b$$

Bounds

$$x \geqslant 0$$

Where

$$C = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & \dots \\ \dots & a_{nn} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

1.1.2 Standarlization Methods

- 最大最小转换: Z' = -Z
- 不等式约束变为等式约束:不等式中添加松 弛变量/剩余变量xn+i。
- $b_i \geq 0, (i = 1, 2, ..., n)$, 乘-1反转公式以标准化。
- X_i 无限制时,引入非负变量m, n,令 $x_i = m n$ 并代入目标方程,转化为非负限制。

1.1.3 Solving

图解法。单纯形法 (需求标准式或矩阵式问题)。

1.1.4 Application

各类资源规划,投资,生产/存储控制,下料。

1.2 Integer Linear Programming

分支界定法 Branch&Cut

1.3 Mixed Integer Programming

1.4 Dynamic Programming

1.4.1 Basic Concept

- 1. Step k = 1 ... n
- 2. Status S_k

- 3. Decision $u_k(x_k)$
- 4. Policy

$$P_{kj} = u_k(x_k), \dots, u_j(x_j)$$

5. Status Transition Equation

$$x_{k+1} = T_k(x_k, u_k(x_k)), k = 1, \dots, n$$

6. Objective function

$$V_{k,n}(x_k, p_{k,n}(x_k)) = \Phi_k(x_k, u_k, V_{k+1,n})$$

7. Step Profit

$$V_{k,n}(x_k, p_{k,n}(x_k) = opt_{k \le j \le n} V_j(x_j, u_j)$$

8. Optimal Value Function

$$f_k(x_k) = optV_{k,n}(x_k, p_{k,n}(x_k))$$

1.4.2 Optimization Theory

Bellman Optimization Theory

1.4.3 逆序法,正序法

1.4.4 Applications

When put Dynamic Programming into practice, pay attention to 1. definition of steps; 2. policies allowed within each step; 3. status transition equation.

- Shortest path problem
- Knapsack Problem
- Resource Assignment
- ...

1.5 Non-Linear Programming

1.5.1 Optimal problem without constraint

General form

$$Min f(x), x = (x_1, x_2, \dots, x_n)^T \in R^n$$

Local solution optimized \rightarrow 一阶必要

$$\nabla f(x^*) = 0$$

Local solution optimized \rightarrow 二阶充分

$$\nabla f(x^*) = 0$$
 and $\nabla^2 f(x^*)$ is Positive definite

1.5.2 Optimal problem with constraints

General form

$$Min f(x), x \in R$$

 $s.t. c_i(x) = 0, i \in E = \{1, 2, ..., l\}$
 $c_i(x) = 0, i \in I = \{l + 1, l + 2, ..., l + m\}$

Local solution optimized → 必要

$$\exists vector \: \lambda^*$$

$$\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_{i=1}^{l+m} \lambda_i^* \nabla c_i(x^*) = 0$$

$$c_i(x^*) = 0, i \in E$$

$$c_i(x^*) \le 0, i \in I$$

$$\lambda_i^* \ge 0, i \in I$$

$$\lambda_i^* c_i(x^*) = 0, i \in I$$

Where the L is the Lagronge function

$$L(x,\lambda) = f(x) + \sum_{i=1}^{l+m} \lambda_i c_i(x)$$

1.5.3 Application

订购/存储模型,投资/组合问题 lingo例子 e.g.

$$minf(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

sets:

1.6 Software/Tools

Matlab/Octave, Lingo/Lindo, IBM ILOG CPLEX.

2 Dynamics Model

2.1 Differential Function Model

2.1.1 Exponential Model

$$x(t + \Delta t) - x(t) = kx(t)\Delta t$$

when $\Delta x \rightarrow 0$

$$\begin{cases} \frac{dx}{dt} = kx \\ x(0) = x_0 \end{cases}$$

the solution

$$x(t) = x_0 e^{kt}$$

2.1.2 SI Model: susceptible infective: Logistic

$$s(t) + i(t) = N$$

$$k(s) = \frac{ks}{N} = k(1 - \frac{i}{n})$$

$$\begin{cases} \frac{di}{dt} = k(1 - \frac{i}{n})s \\ x(0) = x_0 \end{cases}$$

the solution

$$x(t) = \frac{n}{1 + (\frac{n}{x_0})e^{-kt} - 1}$$

2.1.3 SIS Model

$$\begin{cases} \frac{dx}{dt} = k(1 - \frac{x}{n})x - lx\\ x(0) = x_0 \end{cases}$$

2.1.4 SIR Model

$$\begin{cases} \frac{dx}{dt} = \frac{ksx}{n} - lx \\ \frac{ds}{dt} = -\frac{ksx}{n} \\ \frac{dr}{dt} = lx \\ x(0) = x_0, \ r(0) = r_0, \ s(0) = s_0 \end{cases}$$

2.2 Stability

定理: 设 x_0 是微分方程 dx(t)/dt = f(x) 的平衡点且 $f'(x_0) \neq 0$, 若 $f'(x_0) \leq 0$ 则 x_0 稳定; 若 $f'(x_0) \geq 0$,则 x_0 不稳定。

2.3 Application

Best fishing strategy.

2.4 Software

Matlab:

dsolve, solver = $\{ ode45, ode... \}$

3 Possibility

3.1 Probability Base

Include [1]

3.2 Computer Emulating - Monte Carlo

Statistical simulation method: Combine the emulation of random events with the probability feature of different kinds of random events.

- e.g. Solve $I = \int_a^b g(x) dx$ with Monte Carlo sol. Cast uniformly randomized points to the rectangle range, then count how many point dropped under the curve g(x).
- 1. Build the probability model; 2. extract samples from known probability distributions; 3. Setup statistic variables in need.

3.2.1 Monte Carlo Precision

CLT: Central-Limit Theorem
1. Randomly Casting Points

$$E(X) \approx \bar{p} = \frac{k}{n}$$

2. Mean Value

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \ldots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

3.3 Random Number Generator

- 1. $x_i = \lambda x_{i-1}(modM)$. 2. $x_i = (\lambda x_i + c)(modM)$. Tests:
 - 1. Parameter test
 - 2. Uniformity test
 - 3. Independency test

In matlab: rand*, normrand

3.3.1 Probability - Reference

References

[1] 概率论与数理统计,浙江大学出版社

4 Graph Theory

4.1 Basic concept of graph theory

矩阵
 邻接矩阵 node - node
 关联矩阵 node - edge
 赋权矩阵 weight

各种类型的图 完全图,立方体(偶图),完全偶图,赋权 图,有向图,无向图 子图

$$V' \subset V, E' \subset E$$

生成子图

$$V' = V, E' \subset E$$

补图

树树,生成树,无向生成树

4.2 一些定理

1. Given simple graph G contains no isolated node, and contains m edges, then the number of all generated subgraph is 2^m

$$\binom{m}{0} + \binom{m}{1} + \ldots + \binom{m}{m} = 2^m$$

2. For \forall undirected graph

$$\sum_{v \in V} d(v) = 2m$$

3. For \forall directed graph

$$\sum_{v \in V} d^{+}(v) + \sum_{v \in V} d^{-}(v) = m$$

4.3 Shortest Path Problem

4.3.1 Dijkstra Algorithm

Base of this algorithm

$$d(u_0, \bar{S}) = \min_{u \in S, v \in \bar{S}} \{ d(u_0, u) + w(u, v) \}$$

where u,v denotes the source and destination node, d(u,v) denotes the distance between u and v, $S\in V$ and $u_o\in S$ and $\bar{S}=V$

This algorithm can not only find the shortest path from u_o to v_0 , but also all the shortest path from u_o to any other nodes in graph G.

4.3.2 Floyd Algorithm

Get the minimum distance between to given nodes.

4.4 Application

- 1. 运输问题
- 2. 转运问题
- 3. 最优指派问题: 匈牙利算法
- 4. 中国邮递员问题: Fleury Algorithm

4.5 Euler Graph and Hamilton Cycle

4.5.1 Traveling Salesman Problem

Figure out the Hamilton cycle which possess the minimum weight.

Assume that:

- ullet w_{ij} denotes the distance between city i to city j
- x_{ij} denotes the decision if going from city i

The solution is:

$$MinimizeC = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$
 (1)

s.t. :

$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} = 1, j = 1, 2, \dots, n$$

$$u_i - u_j + nx_{ij} \le n - 1; i \ne j; i, j = 2, 3, \dots, n$$

$$x_{ij} = 0OR1; i \ne j; i, j = 1, 2, \dots, n$$

$$u_i \ge 0; j = 1, 2, \dots, n$$

Note that, there are some TSP example program available in the LINGO's user manual[1].

MODEL:

! traveling seller;
SETS:
city/Pe T Pa M N L/: u;
link(city, city): w,x;
endsets
data:
!to Pe T Pa M N L;
w = 0 13 51 77 68 50
13 0 60 70 67 59

```
51 60 0 57 36 2
77 70 57 0 20 55
68 67 36 20 0 34
50 59 2 55 34 0;
enddata
n = @size(city);
min = @sum(link: w * x);
@for(city(k):
@sum(city(i)|i #ne# k: x(i,k)) = 1;
@sum(city(j)|j #ne# k: x(k,j)) = 1;
);
@for(link(i,j)|i #gt# 1 #and# j #gt# 1 #and# j #gt# 1 #and# j:
u(i) - u(j) + n*x(i,j) \le n-1;
);
@for(link: @bin(x));
end
```

Trees and spinning trees

4.6.1 无向生成树

避圈法

4.6.2 最优连线问题

Kruskal

4.6.3 最大流问题

4.7 Python3

4.8 Matlab

graph* function set: graphminspantree graphshortpath

5 Statistics and Regression

5.1 聚类分析

拟合,分段

K-means:原则上需要预先知道类别数量。

5.2 回归分析

5.2.1 主要内容

- 相关关系.数学表达式
- 回归方程,回归预测
- 估计的标准误差

5.2.2 Single Variable Linear Regression

$$Y = a_0 + a_1 X + \varepsilon$$

where

$$\varepsilon_i \sim N(0, \sigma^2)$$

6 Markov Chain

6.1 placeholder

7 Fuzzy Mathematics

7.1 Fuzzy Subset

While the feature function of certain subset can be represented as the mapping

$$X_A: U \to \{0, 1\}$$

where $X_A(x) = 1$ when $x \in A$. 秃头悖论。

The fuzzy subset $A \in {\cal U}$ can be represented as the mapping

$$A(x): U \rightarrow [0,1]$$

7.1.1 λ Cut Set

$$A_{\lambda} = \{x | A(x) \geqslant \lambda\}$$

7.1.2 Fuzzy Relationship

While the classical 2 variable relationship can be represented as the mapping

$$R: X \times Y \rightarrow \{0, 1\}$$

Object:

$$Q = \sum (y - y_c)^2$$

Get the parameters: Least square Method

5.2.3 Multi Variable Linear Regression

TODO: svm :: svr ?

$$Y = a_0 + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n + \varepsilon$$

5.2.4 Multi Variable Non-Linear Regression

$$Y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

5.2.5 keys

- 选择主成分
- 相关系数
- 置信区间

which is in fact the feature function of subset R of $X\times Y$.

The fuzzy relationship can be represented as the mapping

$$R: X \times Y \rightarrow [0, 1]$$

The fuzzy matrix means

$$R_{m \times n}(i,j) = R(x_i, y_j)$$

7.1.3 Fuzzy Relation Synthesis

$$R_1 \circ R_2 = (c_{ij})_{m \times n}$$

where

$$c_{ij} = \bigvee \{ (a_{ik} \land b_{kj} | 1 \le k \le s \}$$

7.1.4 Fuzzy Clustering

- Data Standarlizing1. 平移:标准差变换,极差变换
- Fuzzy Likeness Matrix1. Cosine of included angle

- 2. Correlation coefficient
- Distances $r_{ij} = 1 cd(x_i, x_j)$ 1. Hamming Distance

• Fuzzy equivalant matrix

2. Euclidean Distance 3. Chebyshev Distance

排队论 8

A Paper composing

- 1. Background of problem
- 2. Assumptions
- 3. Setup the Mathematical Model
- 4. Get the solution of model
- 5. Model Analyzation

6. Model Validation

A.1 Reference Structure

摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 结果分析 模型检验 模型推广 模型评价 参考文献和附录

B Common References

References

- [1] LINGO 官方文档 http://www.lindo.com/downloads/PDF/LINGO.pdf
- [2] 数学建模基础(第二版), 薛毅, 科学出版社
- [3] 本文的Git Repo, 以及我写的一些数模相关程序