```
@ General Constraints: 4 < C < 12
                               3 < Na < 15
                                  370.15
                                  Ns >1.2
     Problem Specific Constraint.
                                       Los 48mm
                                         Ls < 31.5 mm
                                          n, > 1.5
(P)
       Chrose wire diameter d= 2mm
                    Free length Lo= 48mm.
           => Maximum deflection (at service load Frax=45N)
                              Jmax = (48-37-5) = 10.5 mm
                => Spring vale |K = Frax = 4.286
        Sizes: Screw Thread MIOX 1.25 , Clearance = 1-25 mm
                            ID = 10+1.25= 11.25mm
                           OD = ID + 2d = 13.25 \text{ mm}

D = ID + d = 13.25 \text{ mm}

C = D/d = 6.625 \text{ mm}
         Shear Modulus: G=79.3 MPA
       (Table-10-5: d between 1-8-3mm => d~ 0.064-0.125 in)
              |N_a| = \frac{d^4G}{8 \times D^3} = 15.9 \text{ turms} (Not okay)
|N_t| = |N_{at2}| = 17.9 \text{ turms} (Table 16.1)
                  (for squared and ground ends)
         Solid height: [Ls = dNt = 35-8mm] - (Table 10-1)
                   =) y= 48-35.8=12.2 Mm
                      ( deflection at solid length)
                => Fs= Ky_= 52.289N
```

Continue with further calculations

$$K_B = \frac{4C+2}{4C-3} = 1.213$$
 $\Rightarrow T_S = K_B \left(\frac{8F_S D}{1Td^3} \right) - 267-51 \text{ MPB}$

Table 10-4: $A = 1783 \text{ MPA} - \left(\frac{9100}{17} \right)^M$, $M = 0.18$
 $\Rightarrow \text{ relative cost} = 1 \quad \left(\frac{1}{1500} \text{ A} + 227 - 140 \right)$
 $\Rightarrow \text{ Ssy} = 0.45 \text{ Snt} = 0.45 \frac{A}{Jm}$
 $\Rightarrow \text{ Ssy} = 703 \text{ MPA}$
 $\Rightarrow \text{ Ssy} = 703 \text{ MPA}$
 $\Rightarrow \text{ Ssy} = \frac{1}{2} \cdot 63 > 1.2 \quad \left(\frac{1}{2} \cdot \frac{1}{2}$

Since we do not satisfy all the conditions, expecially we are outside linear operation region. Need to reiterate.

				_
9	1.8 mm	2 m m	2.2mx	
ID	11.25	11.25	11.25	
OD	14.85	15.25	15.65	Note: We do not need to
D	13.05	13.25	13.45	iterate further Obsornion
C	7.25	6.625	6.11	1. For d=2mm: 9 =0:139 < 0.15
Na	10.9	[15.9]	22.2	=) outside linear regime
Lo	48	48	48	20 Na= 15.9 may Still be
Nt	12.9	17.9	24.2	tolerace.
Ls	23.22	35.8	53.24>Lo	2. d= 1-8mm! Ns = 0.979 <1
5	1.36	10.139	(not chay)	This is not allow all
3	,			all desirable
Ws	0.994	2.63		3. d=2.2 and higher:
n,	2.3	3.054		3. d=2.2 and reflections the
	1205	-2341		157 Lo Trobuced.
tom	-1345	23 11	4	Can not be manufactured.

-> Need to iterate again.

$$\Rightarrow \lim_{K \to \frac{45}{7.5}} = \frac{45-37.5}{5} = \frac{7.5}{6000} = \frac{1}{1000} = \frac$$

9	1-8Wm	2 mm.	2.2 m h	
ID	11.25mm	11.25mm	11.25	
OD	14.85	15.25	15.65	
D	13.05	13-25	13.45	
C	7.25	6.625	6.11	3
Na	7.8	11.36	15.9	
Lo.	45	- 45	45	
Nt	9.8	13.36	17.9	
Ls	19.04	26.72	39.38>37.5 = Workpiece Maickness	
3	3.528	1.437	1 (not feasible)	
ns	0.5 53	1.288	* " " " " " " " " " " " " " " " " " " "	
n,	2.3	3.054		
fom	-1022.	1-17-47.		

=> Only the wire diameter d=2mm satisfy all the criteria.

=> This should be chosen

(1) Buckling: Lo < 2.63 D = 5:26 D = 69.7mm (Table 10-2: x=0.5)

(safe) Critical frequency: $f = \frac{1}{2} \sqrt{\frac{NJ}{W}}$, $W = \sqrt{\frac{T^2 d^2 DN_A}{4}} = 0.131$ => 1=361 Hertz.

(Table-A5) Y=76 ku/m² => 1=36) Hertz.

Since, operating frequency is \$ \$5 Hz, the

spring is sate.

Fatigue factor of Sabely:

Znumedi Data (unprened) o

Sca = 241 MPa, Som = 379MPA

Table 10-4: Suf = A = 1563 MPA

-> Son = 0.67Sut = 1047MPA

Using Sines Contenia: Sse = Ssa = 241 MPa. $\Rightarrow n_f = \frac{Ssa}{T_a} = 2.10$

4.7