Computer Modeling of Biomolecules

Final Project

Νίκος Περδικοπάνης nikosp@di.uoa.gr

Ιανουάριος 2015

Project: Re-ranking Virtual Screening results

- Στόχος είναι η εύρεση inhibitors (screen out) οι οποίοι είναι επιλεκτικοί για την πρωτεΐνη ενδιαφέροντος.
- Τη είσοδο αποτελούν τα αποτελέσματα (virtual screening results) των midterm projects (ranked compounds in sdf format)

Ανάπτυξη λογισμικού-Πλατφόρμα

- Για την υλοποίηση χρησιμοποιήθηκαν:
 - Python scripting (2.7.10)
 - Platform: Ubuntu with Apache web server

- Αναπτύχθηκαν
 - Command line tools για τα επιμέρους τμήματα της εφαρμογής
 - Web Interface για την απομακρυσμένη πρόσβαση και εκτέλεση.

Μέρος Πρώτο Command Line

createTabFileCLI.py

>python createTabFileCLI.py filename1filenameN

2stepReadFromFile.py

>python 2stepReadFromFile.py RankDiff EnergyDiff ColumnSelection

Περιγραφή Επεξεργασία ½

- Η είσοδος αποτελείται από σειρά αρχείων σε sdf γραμμογραφήση
- Τα αρχεία διαβάζονται (δίνονται ως ορίσματα) από το createTabFileCLI.py
- Δημιουργούνται δύο αρχεία εξόδου, ίδιας μορφής. Το ένα αφορά στην στήλη της ενέργειας και το δεύτερο στην στήλη του Rank
- Τα αρχεία αυτά θα αποτελέσουν την είσοδο για τα επόμενα βήματα πραγματοποιείται το φιλτράρισμα και η τελική επιλογή των καλύτερων inhibitors

Γραμμογράφηση αρχείων εξόδου του createTabFileCLI.py

Φιτράρισμα σύμφωνμα με Rank και Energy Diff

Στο δεύτερο επίπεδο χρησιμοποιείται το 2stepReadFromFile.py στο οποίο η είσοδος είναι η έξοδος του προηγούμενου βήματος.

Ο χρήστης εισάγει παραμετρικά τα εξής

Rank diff

Energy diff

Base File

Το εργαλείο επιστρέφει δύο αρχεία (energy και rank) με τα compounds που ικανοποιούν τις συνθήκες

Γραμμογράφηση αρχείων εξόδου του 2stepReadFromFile.py

Μέρος Δεύτερο Web Interface

- Για τις ανάγκες της εφαρμογής αναπτύχθηκε ένα πλήρως λειτουργικό Web Interface
- Το περιβάλλον είναι Ubuntu linux, Appache Web Server, HTML5, Python

Οθόνες Εφαρμογής Login, Main Form

Nikos Perdikopanis-Biomolecules Modeling-Final Project 2016

Nikos Perdikopanis-Biomolecules Modeling-Final Project 2016

Upload Files

insert Threshold Values

Nikos Perdikopanis-Biomolecules Modeling-Final Project 2016

Create Table-File

insert Threshold Values

Thresholding 1/2

Thresholding 2/2

Rank Threshold

Energy Threshold

Filename

Base File

/home/nikos/data/ALL/1PYS-ALK5.sdf

/home/nikos/data/ALL/2WOU-ALK5.sdf

/home/nikos/data/ALL/3E93-p38.sdf

/home/nikos/data/ALL/3MYO-ALK1.sdf

/home/nikos/data/ALL/3Q4U-ALK2.sdf

/home/nikos/data/ALL/4BGG-ALK2.sdf

Go on

lines 15892 Files 6

ReRank VS results

Upload Files

Create-Table- File File

Thresholding

Help

Filtering for Rank Threshold=2 Energy Threshold=2 Column Data=1

RJC 00945	[[C@@]12(c3ccc([N+](=O)[O-])cc3)C[C@H]3C[C@@H] (C1)C[C@@H](C2)C3']	-7.002	-3.146	-4.716	-4.415	-4.763	-4.02
BTB 04693	['S(=O)(=O)(N1CC[NH+](c2c([N+](=O)[O-])cc(C(F) (F)F)cc2)CC1)c1cc(c(cc1)OC)OC']	-7.001	-3.68	-4.645	-4.672	-4.261	-4.304
RJC 02314	['c12c(c3nc4c(cc3)cccc4)c(n(c(=O)c1cc(cc2)[N+](=O) [O-])Cc1ccccc1)N']	-9.278	-6.347	-6.64	-5.455	-4.99	-6.444
	['c1(c(=0)n(c2c(c1C(C(=0)OCC)C(=0)OCC)cccc2)c1ccccc1)[N+](=0) [O-]']	-7.339	-4.826	-4.554	100.0	-3.06	-4.241
SEW 01857	['c1(C(=0)NC(=[NH2+])[C@]23C[C@@H]4C[C@H](C2)C[C@H] (C3)C4)c(onc1C)C']	-6.874	-4.717	-3.835	-4.732	-3.252	-4.309
CD 08680	['S(=O)(=O) (/N=C(/NNC(=O)c1c(noc1C)c1c(Cl)cccc1Cl)\\SC)c1cccc1']	-5.923	-3.664	-3.375	-3.222	-0.637	-3.446
BTB 06638	['S(=O)(=O)(c1cc(c[[N+](=O)[O-])cc1)Oc1ncc([N+](=O) [O-])cc1)c1ccccc1']	-8.284	-5.763	-5.117	-4.791	-3.165	-5.344
BTB 02647	['n1(c(=N)scc1c1ccc(cc1)Cl)c1c(cccc1)[NH+]1CCOCC1']	-6.96	-4.377	-3.833	100.0	-3.565	-4.632
HTS 03117	['c1(c[[n+](c[nH]1)C)N1CC[NH+](C(c2cccc2)c2cccc2)CC1)[N+](=0) [O-]']	-7.355	-4.729	-4.253	-3.411	-2.654	-3.768
NRB 03809	[[C@]12([C@@H]([C@@H]3[C@@H]([C@](C1) (O)C)c1c(cc(OC(=O)C)cc1)CC3)CC[C@H]2OC(=O)C)C']	-6.417	-4.4	-4.295	-4.395	-4.24	-3.379
HTS 09909	['n12e(e(e3e(e1Se1[nH]e4e(ecce4)[nH+]1)CCCC3)C#N) [nH+]e1e2ecce1']	-8.684	-5.638	-5.422	-5.106	-3.686	-5.167
	[[C@@]12(c3ccc(cc3)OC)C[C@H]3C[C@@H](C1)C[C@@H] (C2)C3']	-6.65	-4.241	-4.557	-4.346	-4.364	-3.894
S 03966	['[N+](=O)(NC(=[NH2+])NC(C#C)(C)C)[O-]']	-5.212	-2.924	-3.172	-2.779	-2.924	-2.31
CD 08935	[[C@@]12(C(=0)N3CCSCC3)C[C@@H]3C[C@H](C2)C[C@H] (C1)C3]	-8.65	-4.469	-3.879	-4.402	100.0	-4.012
S 13684	['C12=C([C@@H](C(=C(O1)N)C#N)c1ccc(SC)cc1)CCc1c2cccc1']	-7.766	-5.052	-5.484	-5.187	-3.762	-5.293
HTS 07836	['N(c1c(cccc1)[NH+]1CCOCC1)C(=0)C[N@@H+]1CC[C@@H] (C(=0)N)CC1']	-9.207	-6.97	-6.598	-5.277	-3.918	-6.015

Nikos Perdikopanis-Biomolecules Modeling-Final Project 2016

Για υλοποίηση

- Ολοκλήρωση module μεταφόρτωσης αρχείων
- Επιλογή υποσυνόλου αρχείων για ανάλυση
- Ενοποίηση φιλτραρίσματος (Rank και energy)