Misura della curva caratteristica del diodo

Brusini Alessio Ferrari Carola Mirolo Manuele Stroili Emanuele

21 Ottobre 2025

Sommario

L'esperimento consiste nell'ottenere la curva caratteristica del diodo, linealizzarla in scala semilogaritmica, fare un fit e, tramite un'analisi dei dati: ricavare il coefficente η caratteristico del diodo a diverse temperature e individuare il valore del voltaggio build-in (V_0) del diodo

Il primo grafico che viene presentato mostra l'andamento della corrente I in funzione del voltaggio V a diverse temperature. In questo grafico osserviamo che la curva caratteristica del diodo presenta un comportamento esponenziale, che verifica la formula che si trova in letteratura per un diodo ideale:

$$I(V) = I_0 \left(e^{\left(\frac{qV}{\eta kT}\right)} - 1 \right)$$

Si può notare come, al diminuire della temperature:

- la derivata prima aumenti
- ullet l'innalzamento della curva si verifica a valori di di V sempre maggiori

La seconda considerazione ci fa intuire che il passaggio della corrente sia estremamente condizionato dalla temperature, questo perchè a temperature minori vi sarà una minore eccitazione degli elettroni e, conseguentemente, per oltrepassare la barriera di potenziale della giunzione essi avranno bisogno di un voltaggio maggiore.

Ivi è riportato il grafico della curva caratteristica del diodo in scala semilogaritmica, su cui è stato fatto il fit lineare. Tramite esso siamo riusciti a ricavare il valore di η , caratteristico per diverse temperature.

T [°C]	η
60.5	1.702
47.7	1.604
25.1	1.676
-0.6	1.637
-195.5	1.791

Si può notare che l'ultimo fit, quello svolto a temperature minore (azoto liquido), presenta un valore di η più alto. I valori trovati confermano che il diodo utilizzato e' un diodo di silicio ($\eta=2$)

I dati rappresentati in questo grafico sono quelli campionati in polrizzazzione inversa alla temperatura di $-0.9^{\circ}C$ Il fit lineare dei dati in polarizzazione inversa ha permesso di stimare la corrente di polarizzazione inversa I_0 (il valore dell'intercetta q).

Il grafico sopra riportato mostra l'andamento di V rispetto a T per specifici valori di corrente, scelti accurandosi di essere ben sopra del ginocchio della curva caratteristica del diodo e al contempo sotto la fine della curva. Si nota come, al tendere a 0 della T il valore di V tenda anch'esso ad uno specifico valore (ciò è evidenziato dal primo grafico), che sarà il valore di tensione di build-in del diodo. Nel nostro caso, tale valore si trovi nell'intervallo [1.18V-1.20V]

Quest'ultimo grafico viene riportato per evidenziare la bontà del fit svoltosi per i punti precedenti, nonostante il numero di punti disponibili per farlo non fosse elevato.