Reinforcement Learning for Optimal Portfolio Management in Dynamic Financial Environments

Mentor - Dr. Chandrashekar Lakshmi Narayanan Jerry John Thomas 111901055 Ishwar Govind 111901024

Contents

- 1. Introduction
- 2. Why Reinforcement Learning?
- 3. Experiments and Observations
- 4. Future Work and Scope

Introduction

- Portfolio optimization seeks to find the most efficient combination of investments by re-distributing stocks/shares/bonds that will provide the highest return at the lowest risk
- We look at different ways to achieve this optimization

Why Reinforcement Learning?

- Most Supervised Learning model are used for predicting stock price movements.
- The actions of buying and selling cannot be done by supervised learning models.
- RL provides algorithms to which can train agents to perform actions by using "intelligence".
- Model Free Deep Reinforcement Learning was shown to be successful in previous attempts at algorithmic trading.

Sharpe Ratio

- Measure of risk-adjusted return
- Used to compare the performance of Portfolios
- Higher Sharpe ratio indicates better risk-adjusted returns
- It is important to note that the Sharpe Ratio should not be used in isolation, as it does not take into account other factors such as liquidity, fees, or taxes.

$$S = \frac{R_p - R_f}{\sigma_p}$$

$$A(s,a) = Q(s,a) - V(s)$$

$$\text{q value for action a} \\ \text{in state s} \\ \text{value} \\ \text{of that} \\ \text{state}$$

$$A(s,a) = Q(s,a) - V(s)$$

$$r + \gamma V(s')$$

$$A(s,a) = r + \gamma V(s') - V(s)$$
TD Error

Environment

- State Space
 - [Current Balance, [Stock Prices], [Shares Owned]]
 - Dimension 2n+1, Range [0,∞)
- Action Space
 - [Stock Action]
 - Dimension:-n, Range[-1,1]
- Reward
 - $R_t = Assets_t Assets_{t-1}$

$$Assets = S_0 + \sum_{i=1}^{n} S_i * S_{n+i}$$

Proximal Policy Optimization

- PPO is a policy gradient reinforcement learning method.
- It is relatively easy to use and is efficient at solving complex problems
- It focuses more on sample efficiency and stability

Updating Policy

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right)$$

Updating Value Function

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2$$

Exp 1: Maximizing Sharpe

Stocks

- iShares MSCI World ETF (URTH)
- Vanguard Total International Bond Index Fund ETF (BNDX) (risk free)

Convex Optimization

Cumulative Returns

Portfolio Distribution

Sharpe as PPO reward

Exp 2: Risk Sensitive Actor-Critic

- What is Risk?
 - Potential for financial loss or uncertainty associated with investment decisions.
 - Level of price volatility associated with a particular asset
- What is Risk Sensitive?
 - Neither risk averse nor risk seeking but adapting the behavior based on circumstances.

Exp 2: Risk Sensitive Actor-Critic

We have created a continuous action space Actor Critic algo inspired from Borkar's paper

$$Q_{loss} = (Q_{target} - Q(s_t, a_t))^2$$

$$Q_{target} = \frac{Q(s_{t+1}, a_{t+1})}{Q(s_{ref}, a_{ref})} * e^{-R} - \alpha * log(\pi(s', a'))$$

$$\nabla_{\theta} J = \nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} (Q_{\phi}(s, a) - \alpha \log \pi_{\theta}(s', a'))$$

Cumulative Returns

Transformer

- The Transformer architecture consists of an encoder-decoder framework.
- Transformer Encoder
 - Core component of the Transformer architecture.
 - Processes input sequence and generates encoded representations
 - Captures global context and positional information.
- Transformer models have shown state of the art performance in a number of time series forecasting problems

Exp 3: Transformer-based PPO

Environment time window action Actor observation Critic Transformer Encoder

Updated Environment

- State Space
 - Dimension (Time window, No. of stocks, stock features + previous weights)
 - In our case (7,28,14)
 - Range [0,∞)
- Action Space
 - [Stock Action]
 - Dimension:-n, Range[-1,1]

Comparing Transformer-PPO with Dow Jones Index

Comparison of different RL algorithms

	Risk Sensitive AC	DDPG	Transformer PPO
Annual return	-0.644%	2.346%	7.758%
Cumulative returns	-0.901%	3.302%	10.771%
Annual volatility	17.335%	17.381%	18.953%
Sharpe ratio	0.05	0.22	0.49
Max drawdown	-19.726%	-18.096%	-16.851%
Daily value at risk	-2.181%	-2.175%	-2.351%

Future Work and Scope

- Understanding the agent's actions to get insights into better trading strategies.
- Biasing the agent's reward
- Explore imitation Learning and transfer learning in the financial market
- Include social media sentiment in the environment
- Create an Explainable AI framework
- Exploring the use of graph neural network encoding

References

- https://github.com/JerryJohnThomas/PortfolioOptimisation
- https://github.com/ishwargov/PortfolioOptimization
- Finrl stock env https://github.com/AI4Finance-Foundation/FinRL/blob/master/finrl/meta/env stock trading/env-stocktrading.py
- Schulman, John, et al. "Proximal policy optimization algorithms. OpenAl
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- V. Borkar, "A sensitivity formula for risk-sensitive cost and the actor–critic algorithm," Systems Control Letters
- Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, "Deep direct reinforcement learning for financial signal representation and trading," IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 3, pp. 653–664, 2017.
- U. Upadhyay, N. Shah, S. Ravikanti, and M. Medhe, "Transformer based reinforcement learning for games
- P. L.A. and M. Ghavamzadeh, "Actor-critic algorithms for risk-sensitive mdps," Advances in Neural Information Processing Systems, 02 2013

Thank You