MÓDULO C - RESPOSTAS

MC.01. $Q = 53,19 \text{ m}^3/\text{s}$

MC.02. $Q = 30 \cdot \frac{h}{t}$

VAZÃO (m³/s)						
CIDADE	15	30	60	120	240	
PARANAGUÁ	88,0	61,0	43,0	29,0	19,5	
CURITIBA	88,0	63,0	42,5	23,3	11,9	
PTA GROSSA	76,0	61,0	35,5	19,5	14,8	
SÃO PAULO	82,0	52,0	27,0	14,8	7,8	

MC.03. $Q = 2.00 \text{ m}^3/\text{s}$

MC.04. $Q = 45,00 \text{ m}^3/\text{s}$

MC.05.

CIDADE	h30 (mm)	h20	i	VAZÃO
	(Tr = 35 anos)	(mm)	(mm/h)	(m ³ /s)
Α	93	79,5	238,5	1,99
В	83	70,9	212,7	1,77
С	82	70,0	210.0	1,75

MC.06. $Q = 16,49 \text{ m}^3/\text{s}$

MC.07. A principal limitação no uso do método racional é o tamanho da bacia de drenagem que não deve ser superior a 5 km². No método, os valores de c (coeficiente de escoamento superficial) e i (intensidade de chuva) são tidos como uniformes sobre toda a bacia, o que não corresponde com a realidade. No entanto, para pequenas bacias, pode ser uma ferramenta muito útil para estudos de sensibilidade.

MC.08. Fazendo-se análise de sensibilidade com valores de t_C (tempo de concentração) entre 10 e 120 minutos e adotando-se A = 5 km² e c = 0,30, valores razoáveis para a vazão estão na faixa entre 15 e 60 m³/s.

MC.09. Por exemplo: cidade de **Santos**, adotando-se $\mathbf{A} = 4 \text{ km}^2 \text{ e } \mathbf{c} = 0,45$:

VAZÃO (m3/s)

T _R	Duração da chuva				
	15	15 30 60 120			
10	78,0	63,0	47,5	29,8	
25	90,0	83,0	64,5	39,8	
50	116,0	101,0	81,0	50,0	

MC.10.

Td (min)	Q (m ³ /s)
15	2f
30	g
60	0,5h

MC.11. $Q_{UNIT} = 1,37 Q_{SUPER}$

DIA	HORA	\mathbf{Q}_{TOTAL}	Q _{SUB}	Q _{SLIPER}	Q_{IINIT}
	0	11,1	11,1	0	0
10	6	17,2	11,0	6,2	8,5
	12	28,0	10,0	18,0	24,7
	18	42,0	10,6	31,4	43,1
	0	57,0	11,0	46,0	63,1
11	6	64,5	11,3	53,2	73,0

	12	53,0	11,6	41,4	56,8
	18	48,6	12,0	36,6	50,2
	0	44,4	12,4	32,0	43,9
12	6	35,5	12,7	22,8	31,3
	12	29,9	13,0	16,9	23,2
	18	27,8	13,4	14,4	19,8
	0	26,2	13,8	12,4	17,0
13	6	23,2	14,1	9,1	12,5
	12	20,5	14,4	6,1	8,4
	18	19,2	14,8	4,4	6,0
	0	18,3	15,2	3,1	4,3
14	6	17,5	15,5	2,0,	2,7
	12	16,8	15,8	1,0	1,4
	18	16,2	16,2	0	0

MC.12. a) A = 976 km² **b)** Q_{UNIT} = 0,5 Q_{SUPER}

DIA	\mathbf{Q}_{TOTAL}	$\mathbf{Q}_{\mathrm{SUB}}$	Q _{SUPER}	Q _{UNIT}
4	11	11	0	0
5	30	10	20	10
6	59	9	50	25
7	68	8	60	30
8	55	11	44	22
9	34	14	20	10
10	25	13	12	6
11	20	12	8	4
12	17	11	6	3
13	14	10	4	2
14	11	9	2	1
15	8	8	0	0

MC.13. a) PEFET = 25 mm **b)** Q_{UNIT} = 0,4 Q_{SUPER}

DIA	HORA	Q_{TOTAL}	Q _{SUB}	Q _{SUPER}	Q_{UNIT}
	0	60	60	0	0
5	6	210	60	150	60
	12	360	60	300	120
	18	510	60	450	180
	0	660	60	600	240
6	6	610	60	550	220
	12	560	60	500	200
	18	510	60	450	180
	0	460	60	400	160
7	6	410	60	350	140
	12	360	60	300	120
	18	310	60	250	100
	0	260	60	200	80
8	6	210	60	150	60
	12	160	60	100	40
	18	110	60	50	20
9	0	60	60	0	0

MC.14. $Q_{SUPER} = 0.987 Q_{UNIT}$

DIA	HORA	Q_{IJNIT}	Q _{SUPER}
	0	ZERO	0
1	6	17	16,8
	12	47,5	46,9
	18	86,5	85,4
	0	127	125,3
2	6	147	145,1
	12	114	112,5
	18	101	99,7
	0	88	86,9
3	6	63	62,2
	12	46	45,4
	18	39,5	39,0
	0	34	33,6
4	6	25	24,7
	12	17	16,8
	18	12	11,8
	0	8	7,9
5	6	5,5	5,4
	12	2,5	2,4

18 ZERO 0

MC.15. $A = \frac{24750}{\bar{P}}$ (P em mm e A em km²)

MC.16.

HORA	Q _{UNIT}
0	0
6	12
12	24
18	36
24	30
30	24
36	18
42	12
48	6
54	0

1ª. CHUVA	2ª. CHUVA	Q _{SUPER} TOT AL
0		0
6		6
12		12
18	0	18
15	18	33
12	36	48
9	54	63
6	45	51
3	36	39
0	27	27
	18	18
	9	9
	0	0

MC.17.

Q UNIT
0
15
30
25
20
15
10
5
0

1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOT AL
0			0
15	0		15
30	15	0	45
25	30	15	70
20	25	30	75
15	20	25	60
10	15	20	45
5	10	15	30
0	5	10	15
	0	5	5
		0	0

MC.18.

HORA	Q UNIT
0	zero
6	60
12	120
18	180
0	240
6	220
12	200
18	180
0	160
6	140
12	120
18	100
0	80
6	60
12	40
18	20
0	zero

1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOT AL
zero			0
90			90
180	zero]	180
270	120		390
360	240	zero	600
330	360	90	780
300	480	180	960
270	440	270	980
240	400	360	1000
210	360	330	900
180	320	300	800
150	280	270	700
120	240	240	600
90	200	210	500
60	160	180	400
30	120	150	300
0	80	120	200
•	40	90	130
	0	60	60
	·	30	30
		0	0

MC.19.

HORA	Q _{UNIT}	1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOT AL
0	zero	zero			0
6	150	225			225
12	300	450			450
18	450	676]		675
0	600	900	Ì		900

6	550		825			825
12	500		750	zero		750
18	450		675	300	zero	975
0	400		600	600	112,5	1312,5
6	350		525	900	337,5	1762,5
12	300		450	1200	562,5	2212,5
18	250		375	1100	787,5	2262,5
0	200		300	1000	862,5	2162,5
6	150		225	900	787,5	1912,5
12	100		150	800	712,5	1662,5
18	50		75	700	637,5	1412,5
0	zero		zero	600	562,5	1162,5
		_		500	487,5	987,5
				400	412,5	812,5
				300	337,5	637,5
				200	262,5	462,5
				100	187,5	287,5
				zero	112,5	112,5
					37,5	37,5
					zero	zero

 $\textbf{MC.20.} \quad \mathsf{Q}_{\mathsf{SUPER}} = 0.875 \; \mathsf{Q}_{\mathsf{UNIT}}$

HORA	Q _{UNIT}	1ª. CHUVA	2ª. CHUVA	Q _{SUPER} TOT AL
0	zero	0		0
0h30'	2,22	1,94	0	1,94
1 h	4,44	3,89	1,94	5,83
1h30'	3,89	3,40	3,89	7,29
2 h	3,33	2,91	3,40	6,31
2h30'	2,78	2,43	2,91	5,34
3 h	2,22	1,94	2,43	4,37
3h30'	1,67	1,46	1,94	3,40
4 h	1,11	0,97	1,46	2,43
4h30'	0,56	0,49	0,97	1,46
5 h	zero	0	0,49	0,49
			0	0

MC.21. $Q_{SUPER} = 0.758 Q_{UNIT}$

HORA	Q _{UNIT}	1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOT AL
0	0	0			0
0h30'	2	1,52	0		1,52
1 h	4	3,03	1,52	0	4,55
1h30'	3,5	2,65	3,03	1,52	7,20
2 h	3	2,27	2,65	3,03	7,95
2h30'	2,5	1,90	2,27	2,65	6,82
3 h	2	1,52	1,90	2,27	5,69
3h30'	1,5	1,14	1,52	1,90	4,56
4 h	1	0,76	1,14	1,52	3,42
4h30'	0,5	0,38	0,76	1,14	2,28
5 h	0	0	0,38	0,76	1,14
			0	0,38	0,38
				0	0

MC.22. a) Hidrograma unitário válido para chuvas de 2 horas de duração:

t	Q _{UNI}	1ª. CHUVA	2ª. CHUVA	Q _{SUPER}
0	0	0		0
1	4	2	0	2
2	8	4	2	6
3	12	6	4	10
4	10	5	6	11
5	8	4	5	9
6	6	3	4	7
7	4	2	3	5
8	2	1	2	3
9	0	0	1	1
			0	0

b) Hidrograma unitário válido para chuvas de 4 horas de duração:

t	Q _{UNI}	1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	4ª. CHUVA	Q _{SUPER}
0	0	0		_		0
1	4	1	0			1
2	8	2	1	0		3
3	12	3	2	1	0	6

4	10	2,5	3	2	1	8,5
5	8	2	2,5	3	2	9,5
6	6	1,5	2	2,5	3	9
7	4	1	1,5	2	2,5	7
8	2	0,5	1	1,5	2	5
9	0	0	0,5	1	1,5	3
			0	0,5	1	1,5
		•		0	0,5	0,5
					0	0

c)
$$A = 19,4 \text{ km}^2$$

$$\begin{array}{ll} \text{MC.23.} & Qu_0 = 0 \\ Qu_6 = 2,5 \\ Qu_{12} = 7,5 \\ Qu_{18} = 17,5 \\ Qu_{24} = 2,5 \\ Qu_{30} = 0 \\ Qu_{36} = 0 \end{array}$$

MC.24.

t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Q_{UNI}	0	2,5	5	7,5	10	9	8	7	6	5	4	3	2	1	0

MC.25.	a) Conservador:b) Arrojado:	$Q_{máx} = 28.7 \text{ m}^3/\text{s}$ $Q_{mín} = 19.0 \text{ m}^3/\text{s}$
	c) $\frac{\Delta Q}{Q} = -34\%$	α _{min} = 15,011175

MC.26. Conservador:
$$Q_{m\acute{a}\ x} = 0.383 \frac{k}{\mu}$$

Arrojado: $Q_{m\acute{a}\ x} = 0.255 \frac{k}{k}$

MC.27.

t	H.U.	1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	4ª. CHUVA	\mathbf{Q}_{TOTAI}
0	0	0				0
1h30'	5	2,5	0			2,5
3h	12	6	7,5	0		13,5
4h30'	22	11	18	0	0	29
6h	36	18,2	33	0	5	56,2
7h30'	52	26	54,8	0	12	92,8
9h	58,7	29,4	78	0	22	129,4
10h30'	55	27,5	88,1	0	36	151,6
12h	49,7	24,9	82,5	0	52	159,4
13h30'	44,1	22,1	74,6	0	58,7	155,4
15h	38,3	19,1	66,1	0	55	140,2

Duração do escoamento superficial = 37,5 horas

MC.28. $Q = 5137 \text{ m}^3/\text{s} \text{ (centenal)}$

MC.29. $Q = 26194 \text{ m}^3/\text{s} \text{ (decamilenar)}$

MC.30. Distribuição de Gumbel:

- **a)** 6,5801 cm
- **b)** 11,5277 cm
- c) 16,3854 cm
- d) 4,9476 cm
- e) 4,8577 cm

MC.31. c)

Q	496	662	326	612

Tr	100	100	10	500

- MC.32. $Q_{100} = 1905 \text{ m}^3\text{/s}$ $Q_{1000} = 2501 \text{ m}^3\text{/s}$
- **MC.33.** $Q = 873,1 \text{ m}^3/\text{s} \text{ (decamilenar)}$
- **MC.34.** x > 516
- **MC.35.** ΔQ (%) = 26%
- **MC.36.** $Q_{10} = 4590 \text{ m}^3/\text{s}$ $Q_{100} = 7972 \text{ m}^3/\text{s}$
- $\begin{array}{lll} \textbf{MC.37.} & \textbf{c)} \ \textbf{Q}_{10} = 5128 \ \text{m}^3/\text{s}, \textbf{Q}_{100} = 7419 \ \text{m}^3/\text{s} \\ \textbf{Q}_{1000} = 9668 \ \text{m}^3/\text{s}, \ \textbf{Q}_{10000} = 11914 \ \text{m}^3/\text{s} \\ \textbf{d)} \ \textbf{Q}_{10} = 6439 \ \text{m}^3/\text{s}, \textbf{Q}_{100} = 10029 \ \text{m}^3/\text{s} \\ \textbf{Q}_{1000} = 13553 \ \text{m}^3/\text{s}, \qquad \textbf{Q}_{10000} = 17073 \\ \text{m}^3/\text{s} \\ \textbf{e)} \ \text{Ver notas de aula}. \end{array}$
- MC.38. $Q_{10} = 1850 \text{ m}^3\text{/s}$ $Q_{100} = 2734,4 \text{ m}^3\text{/s}$ $Q_{1000} = 3618,8 \text{ m}^3\text{/s}$

MC.39.

a) Analiticamente:

 $Q_{10} = 3305 \text{ m}^3/\text{s}, \quad Q_{100} = 5137 \text{ m}^3/\text{s}$

b) Tabela de Reid:

 $Q_{10} = 3541 \text{ m}^3/\text{s}, \quad Q_{100} = 5653 \text{ m}^3/\text{s}$

MC.40. $Tr_{(900)} = 1,22 \text{ anos}$ $Tr_{(1500)} = 5,50 \text{ anos}$

MC.41.

T (anos)	10	100	1000
Q (m ³ /s)	2305	4137	5936

- **MC.42. c)** $Q_{10} = 1709 \text{ m}^3/\text{s}, Q_{100} = 2471 \text{ m}^3/\text{s}$ $Q_{1000} = 3219 \text{ m}^3/\text{s}, Q_{10000} = 3966 \text{ m}^3/\text{s}$
- $\begin{array}{llll} \textbf{MC.43.} & \textbf{c)} \ \textbf{Q}_{10} = 5128 \ \text{m}^3/\text{s}, \ \textbf{Q}_{100} = 7420 \ \text{m}^3/\text{s} \\ \textbf{Q}_{1000} = 9670 \ \text{m}^3/\text{s}, \ \textbf{Q}_{10000} = 11917 \ \text{m}^3/\text{s} \\ \textbf{d.1)} \ \textbf{Q}_{10} = 6440 \ \text{m}^3/\text{s}, \ \textbf{Q}_{100} = 10031 \ \text{m}^3/\text{s} \\ \textbf{Q}_{10000} = 13557 \ \text{m}^3/\text{s}, & \textbf{Q}_{10000} & = & 17076 \\ \text{m}^3/\text{s} & \textbf{e)} \ \text{Ver notas de aula}. \end{array}$
- MC.44. a) Quando existem estes dados é possível a definição de uma série de <u>máximas anuais</u> e partir para uma análise estatística em busca de melhor distribuição (Gumbel, Exponencial, Log-Pearson III, etc). A "descoberta" de uma distribuição estatística apropriada e a definição do tempo de recorrência desejado permitem que se calcule a vazão de projeto.

 b) O conhecimento de dados de chuya e vazão.
 - b) O conhecimento de dados de chuva e vazão permite que se defina o hidrograma unitário da bacia. Conhecido o H.U. e a "chuva de projeto" pode-se prever a vazão na exutória.
 - c) Estudos de regionalização hidrológica.

MC.45. Método de Muskingum:

Hidrograma de Jusante

riaregrama de edeame								
2,00	2,00	2,29	3,37	4,82	5,09	4,17	3,26	2,36

MC.46. Método de Muskingum:

x = 2 k = 1,46 dias

MC.47. Método de Muskingum:

Т	Q_{a1} (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	10	40	10	20,5
2	40	25	20,5	29,875
3	25	10	29,875	20,969
4	10	10	20,969	12,742

MC.48. Método de Muskingum:

T	Q a1 (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	12	30	12	15
2	30	42	15	27
3	42	36	27	36
4	36	36	36	36
5	36	18	36	33
6	18	18	33	23
7	18	-	23	-

MC.49. Máxima vazão efluente: $Q_{em\acute{a}x} = 352,0 \text{ m}^3/\text{s}$ (note que $Q_{e2} = 0,2 \ Q_{a1} + 0,2 \ Q_{a2} + 0,6 \ Q_{e1}$)

MC.50. Hidrograma Efluente:

DIA	Qa (m ³ /s)	Q_e (m ³ /s)
1	10	10
2	20	13,333
3	30	21,111
4	25	25,370
5	20	23,457
6	15	19,486
7	10	14,829

(note que $Q_{e2} = 1/3 (Q_{a1} + Q_{a2} + Q_{e1})$)

MC.51. Menor borda livre: h = 56.3 cm

(equações; $Q_e = 0.8944h^{3/2}$ $\frac{V}{\Delta t} = 2h$)

MC.52. Máxima vazão efluente: Q_{emáx} = 231 l/min

MC.53. Método de Muskingum:

Hidrograma de Jusante

2,20 | 3,08 | 4,43 | 4,97 | 4,29 | 3,52 | 2,61 | Máxima vazão efluente: Q_{emáx} = 4,97 m³/s

MC.54. Máximo Nível: h=2,34 m

Vazão de pico: Q_{emáx} = 323,24 m³/s (valores obtidos por interpolação linear)

C:\Users\KRUGER\Dropbox\Claudio\UFPR\ERH - Arquivos\Manual de Sobrevivência\Resp Módulo C.doc

MC.55. Máxima vazão efluente: Q_{emáx} = 25,370 m³/s

MC.56. Método de Muskingum:

Hidrograma de Jusante

2,00	2,16	2,95	4,26	4,91	4,32	3,62	2,71

MC.57.

Т	Q_{a1} (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	4	15	4	6,20
2	15	10	6,20	10,48
3	10	6	10,48	9,392
4	6	3	9,392	6,757

MC.58.

Т	Q_{a1} (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	12	30	12	21
2	30	41,40	21	33
3	41,40	35,64	33	36
4	35,64	30,144	36	33