主管 领导 审核 签字

哈尔滨工业大学(深圳)2020/2021 学年秋季学期

复变函数与积分变换期末试题

题号	=	Ш	四	五	六	七	总分
得分							
阅卷人							

注意行为规范 遵守考场纪律

- 填空题(每小题3分,共15分)
- 1. 复数 -√3-i 的主辐角是____。
- 2. 设C是从z=1到z=-1的上半单位园周,则积分

$$\int_C e^z dz = \underline{\hspace{1cm}}_{\circ}$$

- 3. 设幂函数 $\sum_{n=0}^{\infty} a_n(z-2)^n$ 在点 2-2i 处收敛, 在点 z=0 处发散,则 该幂级数的收敛半经 $R = ____$ 。
- 4. $\oint_{|z|=1} \left(\sin^{2021} z + \frac{z+1}{z^2 + 2z + 4} \right) dz = \underline{\hspace{1cm}}$
- 5. 设 $f(t) = \cos 2t$,则其傅氏变换

$$F(\omega) =$$
 \circ

单项选择题(每小题3分,共15分)

- 1. 设函数 $f(z) = \overline{z} z^3$, 那么()。
 - A. f(z)处处可导;

- B. f(z)处处不可导;
- C. f(z) 仅在原点可导;
- D. f(z) 仅在原点解析。
- 2. 设C为正向园周|z|=1,则 $\oint_C (1+3z+z^2) \sin \frac{1}{z} dz = ().$
- A. $-\frac{5\pi i}{6}$; B. $\frac{5\pi i}{6}$; C. $-\frac{5\pi i}{3}$; D. $\frac{5\pi i}{3}$ \circ

- 3. 下列命题正确的是()。
 - A. 每一个幂级数在其收敛圆周上处处收敛;
 - B. 每一个幂级数的和函数在收敛圆内处处解析;
 - C. 若函数 f(z) 的实、虚部在点 z_0 处满 C-R 条件,则 f(z) 在点 z_0 处解析;
 - D. 若函数 f(z) 的实、虚部均为调和函数,则 f(z)解析。
- 4. z=0 是函数 $f(z) = \left(1 + \frac{1}{z^2}\right) e^{-\frac{1}{z}}$ 的 ()。
 - A. 本性奇点:

B. 极点:

C. 可去奇点:

- D. 非孤立奇点。
- 5. 若 $F(\omega) = i\pi [\delta(\omega+2) \delta(\omega-2)]$ 为函数f(t)傅氏变换,则f(t)是()。
 - A. $\sin 2t$;

B. $i \sin 2t$;

C. $\cos 2t$;

D. $i\cos 2t$ •

1.
$$I = \oint_{|z|=1} \frac{z}{\sin z} dz;$$

2.
$$I = \oint_{|z|=2} \frac{z \sin z}{(z - \frac{\pi}{2})^2} dz$$
;

3.
$$I = \oint_{|z|=2} \frac{e^{\frac{1}{z}}}{(z^2+1)^{10}} dz$$
;

4.
$$I = \int_{0}^{2\pi} \frac{1}{2 + \sin \theta} d\theta$$

四、 (8分) 求函数
$$f(z) = \frac{1}{z^2 + z - 6}$$
 在 $2 < |z| < 3$ 内的 洛朗展开式。

六、 (10 分)利用拉普拉斯变换求解下列初值问题 $\begin{cases} y'' - 3y' + 2y = 0 \\ y(0) = 2, y'(0) = 3 \end{cases}$

七、 (7分) 已知函数 f(z)=u+iv 是解析函数且 $u-v=e^x \Big[\big(x-y \big) \cos y - \big(x+y \big) \sin y \Big],$

求f(z)。