

Структуры над словами: образцы и уравнения

Летняя практика, Переславль-Залесский 4–6 июля, 2022 г.

Проектирование структур с образцами

• Вопрос достижимости образца:

```
f (A : x) = Expr1
f [] = Expr2
f [A] = Expr3
```

• Вопрос накрытия образцами:

```
f ((x : y) : z) = Expr1
f [] = Expr2
```

• Вопрос перестановочности образцов:

```
f (x : (A : y)) = Expr1

f (A : (y : z)) = Expr2
```

...а с отказом от свободы и единственности вхождений переменных эти вопросы становятся намного сложнее.

Проектирование структур с образцами

• Вопрос достижимости образца:

```
f {x t t y = Expr1 }
f {x 'A' t z1 'A' y = Expr2 }
f {x 'A' y 'A' z = Expr3 }
```

• Вопрос накрытия образцами:

```
f {x1 (z) x2 t x3 = Expr1}
f {x (z) = Expr2}
f {t x = Expr3}
```

• Вопрос перестановочности образцов:

```
f {x, x 'A' : 'A' x = Expr1}
f (x, x 'AB' : 'BA' x = Expr2}
```

Необходимо определить выразительную силу образцов — языки, которые они описывают, и свойства этих языков.

Обозначения для подстановки

В курсе алгебры результат применения подстановки σ к терму t обозначают обычно $\sigma(t)$. У логиков (и в CS) принята постфиксная нотация: $t\sigma$. Мы будем использовать её.

Почему так?

Во многих классических работах по логике (Тарский, Карри) подстановка сразу записывалась в квадратных скобках [t/A]. В этом случае было более естественно приписывать её в конец выражения-аргумента: например, F(t,t)[t/A].

В более современных работах приняты обозначения [t := A] и $[t \mapsto A]$. В последнем случае форма стрелки существенна: \to используется для выделения области определения и значений, а не подстановок.

Базовые определения

 $V_{\mathfrak{T}}$ — множество переменных типа \mathfrak{T} , $V=\bigcup^{\mathfrak{T}}V_{\mathfrak{T}}.$

Рассматриваем е-переменные (типа строка/выражение) и t-переменные (типа терм). Т.е. $V = V_{\rm e} \cup V_{\rm t}$.

Кратность терма T в образце P обозначаем $|P|_T$.

 Σ — по умолчанию неограниченный алфавит констант. $\mathcal{B}[S]$

— множество скобочных структур над строками в алфавите S.

Плоский образец P — строка в алфавите $V_{\rm e} \cup \mathcal{B}[\Sigma \cup V_{\rm t}]$. Образец P линеен, если $\forall x \in V_{\rm e} \, (|\mathsf{P}|_x = 1)$. Подстановка в образец — гомоморфизм, сохраняющий константы (т.е. для всех $\mathbf{A} \in \Sigma \ \mathbf{A} \sigma = \mathbf{A}$).

Образец допускает плоское разбиение, если он плоский, либо имеет вид (P_1) (P_2) . . . (P_n) P_{n+1} , где все P_i допускают плоское разбиение. Максимальные плоские подобразцы такого образца называем фрагментами плоского разбиения $(\Phi\Pi P)$.

1 / 23

Плоские разбиения и деревья

Рассмотрим следующий образец:

$$\Big(ig(z_1 \; (\textbf{A} \; \textbf{B}) \; z_2 ig) \; z_3 \; z_2 \Big) \Big((z_4 \; z_1 \; z_5) \; z_6 \; \textbf{B} \; z_6 \Big) \; z_1 \; \big(() \; \textbf{A} \big) \; z_3 \; z_6$$
 Структура его ФПР приведена ниже.

Поскольку скобочные структуры могут возникнуть только сразу справа от открывающей скобки, то ФПР образуют древесные структуры, аналогичные АТД.

Пример образца, не разбиваемого на ФПР:

$$\left(\mathbf{x}_1 \ (\mathbf{A} \ \mathbf{x}_2) \ \mathbf{x}_1 \ \mathbf{x}_2\right) \ \mathbf{x}_1$$

Языки, распознаваемые образцами

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым образцом P , назовем множество элементов $\Phi \in \mathfrak{B}[\Sigma]$, для которых существует подстановка $\sigma \colon \mathsf{P}\sigma = \Phi$. Образец P_1 сводится к образцу P_2 , если $\mathcal{L}(\mathsf{P}_1) \subseteq \mathcal{L}(\mathsf{P}_2)$.

Подстановка $x\sigma = \varepsilon$ допустима! В терминологии pattern languages — рассматриваются E-pattern languages (EPL, сокращение от Erasing Pattern Languages, языки стирающих образцов).

- Язык, распознаваемый образцом-строкой $P \in \Sigma^*$, есть $\{P\}$.
- Язык, распознаваемый образцом $P = x_1 \ x_2 \ x_1$, есть всё множество $\mathcal{B}[\Sigma]$.

Языки, распознаваемые образцами

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым образцом P , назовем множество элементов $\Phi \in \mathcal{B}[\Sigma]$, для которых существует подстановка $\sigma \colon \mathsf{P}\sigma = \Phi$. Образец P_1 сводится к образцу P_2 , если $\mathcal{L}(\mathsf{P}_1) \subseteq \mathcal{L}(\mathsf{P}_2)$.

- Язык, распознаваемый образцом-строкой $P \in \Sigma^*$, есть $\{P\}$.
- Язык, распознаваемый образцом $P = x_1 \ x_2 \ x_1$, есть всё множество $\mathfrak{B}[\Sigma]$.

С точки зрения семантики сопоставления, образец x_1 x_2 x_1 также неудачный: x_1 всегда успешно сопоставляется с ε . Бывает и иначе: хотя $\mathscr{L}(z_1\ z_2\ z_2)=\mathscr{L}(x_1\ x_2\ x_1)=\mathscr{B}[\Sigma]^*$ из-за существования тривиальной подстановки $z_2:=\varepsilon$, но ленивое сопоставление строки **ABB** с $z_1\ z_2\ z_2$ построит подстановку $z_2:=\mathbf{B}$, а вовсе не $z_2:=\varepsilon$.

Сводимость и эквивалентность

Если P_1 , P_2 оба из $(V_e \cup \mathcal{B}[\Sigma])^*$, то:

- P_1 сводится к $P_2 \Leftrightarrow$ существует подстановка σ такая, что $P_2 \sigma = P_1$;
- если P_2 линеен, тогда вычислительная сложность проверки сводимости образца P_1 к образцу P_2 линейна от суммы длин P_1 и P_2 .

Из-за того, что образцы стирающие (определяют EPL), двухсторонняя сводимость не эквивалентна наличию переименовки: вспомним те же \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 и \mathbf{z}_1 \mathbf{z}_2 \mathbf{z}_2 .

Сводимость и эквивалентность

Если P_1 , P_2 оба из $(\mathsf{V}_\mathsf{e} \cup \mathcal{B}[\Sigma])^*$, то:

- P_1 сводится к $P_2 \Leftrightarrow$ существует подстановка σ такая, что $P_2 \sigma = P_1$;
- если P_2 линеен, тогда вычислительная сложность проверки сводимости образца P_1 к образцу P_2 линейна от суммы длин P_1 и P_2 .

Если рассматривать только линейные образцы без идущих подряд переменных из $V_{\rm e}$, тогда уже для образцов без переменных из $V_{\rm t}$ выполняется утверждение

$$\mathscr{L}(\mathsf{P}_1) = \mathscr{L}(\mathsf{P}_2) \Leftrightarrow \exists \sigma(\mathsf{P}_1 \sigma = \mathsf{P}_2 \& \forall \mathtt{x} \in \mathsf{V}_\mathsf{e}(\mathtt{x} \sigma \in \mathsf{V}_\mathsf{e}))$$

Краткие и избыточные образцы

Определение

Образец P_1 называется кратким, если любой образец P_2 такой, что $\mathscr{L}(\mathsf{P}_1) = \mathscr{L}(\mathsf{P}_2)$, имеет длину, не меньшую, чем P_1 .

Иначе P_1 называется избыточным.

Пример

Образец $P = x_1 x_2 A x_3 B x_1 x_2$ избыточен.

Образец $P' = x_1 x_2 x_2 x_1$ является кратким.

Алгебраисты также говорят, что избыточные образцы определяются нетривиальными неподвижными точками морфизмов над образцами (т.е. существует нетривиальная подстановка, переводящая избыточный образец в себя).

Например, для $P: x_1 \mapsto \varepsilon, x_2 \mapsto x_1 x_2$.

Критерий избыточности образца (Reidenbach, 2004)

Образец P избыточен, если существует представление $P=Q_0$ R_1 $Q_1\dots$ R_n Q_n , $Q_i\in\{{\mathfrak B}[\Sigma]\cup V_e\}^*$, $R_i\in {V_e}^+{V_e}^+$, такое, что:

- ullet множества переменных образцов Q_i и R_j не пересекаются;
- в каждом слове R_i найдется имеющая единственное вхождение в R_i переменная \mathbf{x}_i (выделенная) такая, что

$$\forall j (\mid R_j \mid_{\mathbf{x}_i} > 0 \Rightarrow \mid R_j \mid = \mid R_i \mid).$$

Этот критерий является необходимым и достаточным условием при рассмотрении плоских образцов в $\{\mathcal{B}[\Sigma] \cup V_{\mathsf{e}}\}^{*a}$.

^аУ Рейденбаха он доказан для образцов в $V_{\rm e}^*$. Для образцов над ${\mathcal B}[\Sigma]$ доказательство где-то в моих старых тетрадях — здесь существенно, что скобки порождают бесконечный «алфавит констант».

Критерий Рейденбаха под лупой

Пусть искомое разбиение образца P существует. Тогда по каждому блоку R_i построим подстановку σ_{fix} так: $\mathbf{x_i}\sigma_{fix} = R_i$, а образы прочих переменных из R_i равны ϵ (они могут встречаться и в сочетании с другой выделенной переменной $\mathbf{x_k}$ в прочих R-блоках). Очевидно, $P\sigma_{fix} = P$.

Образец $P \in V_e^*$ всегда допускает хотя бы две разные нестирающие подстановки \Leftrightarrow образец P избыточен по Рейденбаху.

Критерий Рейденбаха под лупой

Образец $P \in V_e^*$ всегда допускает хотя бы две разные нестирающие подстановки \Leftrightarrow образец P избыточен по Рейденбаху.

- Для образцов, содержащих константные фрагменты, это не верно: $x_1 \ \mathbf{A} \ x_2$ допускает много подстановок в \mathbf{A}^n , хотя является кратким. Однако это верно для фрагментов таких образцов, не содержащих констант.
- Стирающих подстановок может быть и несколько: например, $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_2 \ \mathbf{x}_1$ допускает две подстановки в **A B A B**. Однако поиск возможных подстановок можно экспоненциально ускорить, если пользоваться критерием Рейденбаха.
- Иногда структура слова слишком однородна, чтобы критерий Рейденбаха гарантировал единственность подстановки: см. Aⁿ и любой краткий образец без констант, содержащий как минимум две различные переменные.

Добавление переменных типа терм

За увеличение выразительной силы образцов приходится платить усложнением теоретических конструкций.

ullet $\mathscr{L}(\mathsf{P}_1)\subseteq\mathscr{L}(\mathsf{P}_2)$ уже не определяется подстановкой.

 $P_1 = \mathbf{A} \ x_1, \ P_2 = x_2 \ \mathbf{t}.$ Язык P_1 вкладывается в язык P_2 , а подстановки нет.

• Нет (пока ещё) исследованного понятия избыточного и краткого образца. Более того, образцы для одного и того же языка не образуют нижнюю полурешётку.

Образы x t и t x оба краткие.

Плавающие t-переменные

Определение

Назовем переменную t_i в плоском линейном образце Р якорной, если

- t_i имеет кратность, не меньшую 2;
- или в P существует подслово α , не содержащее переменных из V_e , такое, что $\alpha=\alpha_1$ t_i α_2 , причем α_1 и α_2 оба содержат хотя бы один символ или t-переменную, имеющую кратность в P не меньше 2.

В противном случае назовем t_i плавающей.

Пример

Рассмотрим образец t_1 t_2 x_1 t_3 t_4 t_2 x_2 t_5 . Якорными переменными являются t_2 и t_1 .

Плавающие переменные и языки образцов

Плавающая переменная в образце не подсказывает, какая конкретно буква должна быть подставлена вместо неё, а только указывает на то, что подстановка не пустая. Фрагменты образца, содержащие только е-переменные и плавающие переменные — аналог «нестираемых» фрагментов.

Плавающий сегмент линейного образца P — максимальное подслово P, содержащее только плавающие t-переменные и переменные из $V_{\rm e}$.

Образец, в котором все е-переменные входят в плавающие сегменты — аналог нестирающего (non-erasing) образца. Хуже всего, если есть и стирающие, и нестирающие фрагменты.

Плавающие переменные и языки образцов

Плавающий сегмент линейного образца P — максимальное подслово P, содержащее только плавающие t-переменные и переменные из V_e .

Образец, в котором все е-переменные входят в плавающие сегменты — аналог нестирающего (non-erasing) образца. Хуже всего, если есть и стирающие, и нестирающие фрагменты.

Язык образца $P_1 = \mathbf{BBA} \times \mathbf{ABCDA}$ вкладывается в язык образца $P_2 = \mathbf{z_0} \, \mathbf{t} \, \mathbf{t} \, \mathbf{z_1} \, \mathbf{t_1} \, \mathbf{t_2} \, \mathbf{t_3} \, \mathbf{t} \, \mathbf{z_2}$. Чтобы это доказать, приходится перебирать два случая: пустоты и непустоты подставляемого в \mathbf{x} значения.

Multi-pattern Salomaa)

languages

(Kari,

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым множеством образцов P_i (англ. — multi-pattern language, сокращенно MPL), назовем множество элементов $\Phi \in \mathfrak{B}[\Sigma]^*$, для которых существует $\mathfrak{i} \in \mathbb{N}$ и подстановка σ : $\sigma(\mathsf{P}_i) = \Phi$.

Множество MPL-объединений стирающих образцов совпадает с множеством MPL-объединений нестирающих образцов. Образец с плавающими t-переменными тоже определяет мультиобразец, и здесь уже смешивание стирающих и нестирающих фрагментов может быть разрешено.

Однако переход от стирающих образцов к нестирающим порождает экспоненциальное разрастание описания MPL.

Пример «плавающего» MPL

```
Пусть P_1 = x_1 A A C x_2 C A B x_3 B B C,

P_2 = z_1 \frac{t_n}{t_n} \frac{t_n}{z_2} \frac{z_2}{t_{m1}} \frac{z_3}{z_3} \frac{t_{m2}}{t_{m2}} \frac{z_4}{t_{m3}} \frac{t_{m3}}{z_5} \frac{t_n}{t_n} \frac{z_6}{z_6}.
```

Множество нестирающих образцов, объединению которых равен P_2 :

Множество нестирающих образцов, объединение которых равно P_1 , и обобщающие их подстановки в P_2 :

A A C C A B B B C A A C C A B x₃ B B C A A C x₂ C A B B B C A A C x₂ C A B B B C x₁ A A C C A B B B C x₁ A A C C A B x₃ B B C x₁ A A C x₂ C A B B B C x₁ A A C x₂ C A B B B C

 $\begin{array}{ll} P_{2}^{3}\sigma_{1},\;t_{n}\sigma_{1}=\textbf{C}\\ P_{2}^{3}\sigma_{2},\;t_{n}\sigma_{2}=\textbf{C}\\ P_{2}^{2}\sigma_{3},\;t_{n}\sigma_{3}=\textbf{A}\\ P_{2}^{2}\sigma_{4},\;t_{n}\sigma_{4}=\textbf{A}\\ P_{3}^{3}\sigma_{5},\;t_{n}\sigma_{5}=\textbf{C}\\ P_{2}^{3}\sigma_{6},\;t_{n}\sigma_{6}=\textbf{C}\\ P_{2}^{4}\sigma_{7},\;t_{n}\sigma_{7}=\textbf{A}\\ P_{3}^{4}\sigma_{8},\;t_{n}\sigma_{8}=\textbf{A} \end{array}$

Размер алфавита

Все хорошие свойства образцов, позволяющие работать с ними обычными методами (поиск подстановки, разбиение Рейденбаха) — следствие того, что мы подразумеваем $|\Sigma| = O(|\Sigma_{\text{Prog}}|^2)$, где Σ — алфавит входных данных, Σ_{Prog} — множество символов, явно входящих в образцы. Допущение реалистичное, учитывая, что «буквами» выступают и константные деревья.

Языки образцов х **A B** у **A** z и х **A** у **B A** z в алфавите $\{A, B, C\}$ очевидно не сравнимы: первый распознаёт слово **ABCA**, второй распознаёт **ACBA**. А в алфавите $\{A, B\}$ эти образцы описывают один и тот же язык^а.

 $[^]a$ И поэтому, если алфавит входных данных явно присутствует в образцах, нужны другие способы проверки подстановок на однозначность.

О распознаваемых словах

Предположим, мы рассматриваем краткий образец $P=x_1\;x_2\;x_2\;x_1$. Если он сопоставляется со словом \mathbf{A}^n , то, как уже было видно, сопоставлений может быть много. С какими ещё словами происходит такая же ситуация?

Чтобы ответить на указанный вопрос, предположим, что слово сопоставилось с P двумя разными способами. То есть нашлись x_1, x_2, z_1, z_2 такие, что $x_1 \neq z_1 \lor x_2 \neq z_2$ и при этом

$$x_1 \ x_2 \ x_2 \ x_1 = z_1 \ z_2 \ z_2 \ z_1$$

Что нам даёт такое равенство и как его упрощать? Ответы на этот вопрос потребуют краткое введение в теорию уравнений в словах.

Уравнения как способ описания однозначности образца

Скажем, что образец $\mathsf{P}(\mathtt{x}_1,\dots,\mathtt{x}_n)$ однозначный, если уравнение $\mathsf{P}(\mathtt{x}_1,\dots,\mathtt{x}_n)=\mathsf{P}(z_1,\dots,z_n)$ имеет только решение $\forall i(\mathtt{x}_i=z_i).$

- Любой образец от одной переменной однозначен;
- Образец $(x_1 x_2)(x_2 x_2 x_1)$ однозначен, поскольку $|x_2|$ определяется как разность длин строк, сопоставляемых с его ФПР $x_1 x_2$ и $x_2 x_2 x_1$;
- Образец $(x_1 x_2)(x_2 x_3)(x_3 x_1)$ однозначен, поскольку решение на длины переменных, входящих в него, всегда единственно, если существует;
- ullet Образец $(x_1 x_2)(x_2 x_1)$ неоднозначен (см. выше).

Однозначность длин

Пусть образец P содержит константные строки только вида $(P)^i$ для некоторого простого слова P. Тогда вопрос об его однозначности можно свести к вопросу об единственности решения уравнения на длины входящих в него переменных.

Действительно, рассмотрим слова вида $(P)^{m_j}$, сопоставляемые с ФПР такого образца. По предположению о простоте P, переменные образца получат значения вида $(P)^{k_i}$. В силу уравнения коммутативности для любых двух таких значений, получаем, что существует отображение μ сопоставлений вида $P_j:(P)^{m_j}$ в диофантовы уравнения $\mu(P_j)=m_j$ над $\mathbb N$. Такое отображение переводит переменные в себя, конкатенацию — в сложение, а константные фрагменты $(P)^i$ — в натуральные числа i.

Матрица кратностей

Имея ФПР P_1, P_2, \ldots, P_n образца $P(x_1, \ldots, x_m)$, можно построить матрицу $\mathcal{M}(P)$ кратностей переменных образца: $\alpha_{i,j} = |P_i|_{x_j}$.

Если ранг $\mathcal{M}(\mathsf{P})$ равен m , то сопоставление с образцом P всегда имеет единственное решение, если существует.

Если ранг матрицы $\mathcal{M}(P)$ меньше m, то имеет смысл искать такие подмножества $\Phi \Pi P \ P_i$, ранг матрицы кратности которых равен числу входящих в них различных переменных. Тогда все переменные, входящие в такие подмножества, будут сопоставлены однозначно. То есть задача поиска однозначных сопоставлений может быть аппроксимирована сверху задачей поиска ранга $\mathcal{M}(P)$.

(Для поиска целочисленных решений аналогично: ссылка на быстрый алгоритм)

Некоммутативный случай

Коммутативный случай является «худшим» с точки зрения сложности сопоставлений. Но худший случай не всегда достигается, если в образцах встречаются разнородные константные фрагменты.

Образец \mathbf{x}_1 **A** \mathbf{x}_2 \mathbf{x}_1 **B** \mathbf{x}_2 однозначен (см. выше), хотя порождает уравнение на длины $2x_1+2x_2+2=M$, имеющее много решений.

Неоднозначные сопоставления

Предположим, некоторый ФПР неоднозначен и имеет вид x_1 Φ_1 ... Φ_n x_{n+1} , причём подмножество переменных x_i , встречающееся в других ФПР того же образца, непусто. Как эффективно организовать поиск подстановок в x_1,\ldots,x_{n+1} ?

Можно заметить, что удлинение x_i может происходить не произвольно, а только так, чтобы предварить очередное вхождение Φ_i в сопоставляемую строку. Поэтому имеет смысл запоминать возможные следующие точки возврата по строке для каждой переменной, уже получившей значение.

(x1 ABA x2 BB x3) x2 x3 BBB x4 : (ABABBCBBABABB)BBB(AB)⁵ B¹⁰

Матрица кратностей образца имеет ранг 2, а переменных в образце 4, поэтому анализ длин значений переменных не эффективен.

$$\left(\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

Приходится делать перебор по вариантам сопоставлений. Выберем лидирующим первый ФПР и обозначим $\Phi_1=$ ABA, $\Phi_2=$ BB. Присваивание $x1\sigma=\epsilon$ сразу же приводит к удачному сопоставлению с Φ_1 . Сопоставляем остаток: (x2 BB x3) x2 x3 BBB x4: (BBCBBABABB)BBB(AB) 5 B 10

(x1 ABA x2 BB x3) x2 x3 BBB x4 : (ABABBCBBABABB)BBB(AB) 5 B 10

Присваивание $x1\sigma = \varepsilon$ сразу же приводит к удачному сопоставлению с Φ_1 . Сопоставляем остаток: (x2 BB x3) x2 x3 BBB x4 : (BBCBBABABB)BBB(AB) 5 B 10 Опять получаем $x2\sigma = \varepsilon$ и успех сопоставления с Φ_2 . Поскольку $\Phi_1 x 2\sigma \Phi_2$ имеет пустое нетривиальное перекрытие с Φ_1 (не содержит Φ_1 , кроме как в позиции префикса, и не кончается префиксом Φ_1), то удлинение x1 сдвигаем сразу за 5-ю позицию во входной строке: $x1\sigma = ABABB++z$. Подстановка $x3\sigma = CBBABABB$ определена однозначно и сразу же приводит к неуспеху сопоставления во втором ФПР. Поскольку этот ФПР мы условно прошли до конца, можно построить массив совпадений его подстрок с Φ_i . Φ_2 х 3σ имеет нетривиальное перекрытие с Φ_2 начиная с 4-й и 9-й позиции, и с Φ_1 на 6-й позиции. Удлиняем х2. 23 / 23

(x1 ABA x2 BB x3) x2 x3 BBB x4 : (ABABBCBBABABB)BBB(AB) 5 B 10

Опять получаем $x2\sigma = \varepsilon$ и успех сопоставления с Φ_2 . Поскольку $\Phi_1 x 2\sigma \Phi_2$ имеет пустое нетривиальное перекрытие с Φ_1 (не содержит Φ_1 , кроме как в позиции префикса, и не кончается префиксом Φ_1), то удлинение x1 сдвигаем сразу за 5-ю позицию во входной строке: $x1\sigma = ABABB++z$. Подстановка $x3\sigma = CBBABABB$ определена однозначно и сразу же приводит к неуспеху сопоставления во втором ФПР. Поскольку этот ФПР мы условно прошли до конца, можно построить массив совпадений его подстрок с Φ_i . Φ_2 x3 σ имеет нетривиальное перекрытие с Φ_2 начиная с 4-й и 9-й позиции, и с Φ_1 на 6-й позиции. Удлиняем х2. Текущее сопоставление: (x2 BB x3) x2 x3 BBB x4 : (BBABABB)BBB(AB) 5 B 10 $x2\sigma = BBC$ (удлинение на BBCBBABA++z) $x1\sigma = \varepsilon$ (удлинение на ABABBCBB++z)

(x1 ABA x2 BB x3) x2 x3 BBB x4 : (ABABBCBBABABB)BBB(AB) 5 B 10

Текущее сопоставление:

 $(x2 BB x3) x2 x3 BBB x4 : (BBABABB)BBB(AB)^5 B^{10}$

 $x2\sigma=BBC$ (удлинение на BBCBBABA++z)

 $x1\sigma = \varepsilon$ (удлинение на ABABBCBB++z)

Здесь можно принять нетривиальное решение сразу же проверить, сопоставится ли такое значение x2 во втором ФПР. Это сэкономит один откат. Однако мы этого не сделаем и построим очередное сопоставление вида $x3\sigma=$ ABABB, после чего уже проверим сопоставление во втором ФПР. Опять неудача, требуется откат, и опять по x2.

(x1 ABA x2 BB x3) x2 x3 BBB x4: (ABABBCBBABABB)BBB(AB)⁵ B¹⁰

Здесь можно принять нетривиальное решение сразу же проверить, сопоставится ли такое значение x2 во втором ФПР. Это сэкономит один откат. Однако мы этого не сделаем и построим очередное сопоставление вида $x3\sigma=$ ABABB, после чего уже проверим сопоставление во втором ФПР. Опять неудача, требуется откат, и опять по x2. Состояние сопоставления:

(x2 BB x3) x2 x3 BBB x4: $(BB)BBB(AB)^5 B^{10}$

 $x2\sigma = BBCBBABA$ (удлинений нет)

 $x1\sigma = \varepsilon$ (удлинение на ABABBCBB++z)

При удлинении х1 из массива совпадений подстрок входной строки с Φ_2 удаляются элементы, позиции которых перекрываются с новым значением х 1σ Φ_1 .

(x1 ABA x2 BB x3) x2 x3 BBB x4: (ABABBCBBABABB)BBB(AB)⁵ B¹⁰

Состояние сопоставления:

(x2 BB x3) x2 x3 BBB x4: (BB)BBB(AB) 5 B 10

 $x2\sigma=BBCBBABA$ (удлинений нет)

 $x1\sigma = \varepsilon$ (удлинение на ABABBCBB++z)

При удлинении x1 из массива совпадений подстрок входной строки с Φ_2 удаляются элементы, позиции которых перекрываются с новым значением $x1\sigma$ Φ_1 .

Построение подстановки $x3\sigma=\epsilon$ приводит к неудаче при сопоставлении во втором ФПР, поэтому откатываемся на удлинение x1. Дальше всё однозначно ($x2\sigma=x3\sigma=\epsilon$), сопоставление со вторым ФПР оказывается успешным.