THE NELSON MANDELA AFRICAN INSTITUTION OF SCIENCE AND TECHNOLOGY (NM-AIST)

COURSE TITLE: EMoS 6222, MOBILE TELECOMMUNICATION AND TECHNOLOGY

LECTURER: Dr.Ally Mussa Dida

STUDENT: Salama Ndayisaba

Specialization: Embedded Sytems

Reg. Number: M083/BI19

ASSIGNMENT TITLE: Captures of output of Matlab codes

Date of submission: September 27, 2022

Table of Content

Capture_1: Exercise for entering a vector	2
Capture_2: Exercise for entering a vector	3
Capture_3: Exercise for entering Matrix	4
Capture_4: Exercise for Linear spacing	5
Capture_5: Linear Spacing continuous exercise	6
Capture_6: Exercise of colon operator in matrix	7
Capture_7: Exercise for colon operator in matrix	8
Capture_8: Exercise for a sub-matrix	9
Capture_9: The same exercise	10
Capture_10: The same exercise	11
Capture_11: Exercise for deleting a row or column	12
Capture_12: Exercise for dimension	13
Capture_13: Exercise for matrix generators	14
Capture_14: The exercise continues	15
Capture_15: continuous exercise	16
Capture_16: Exercise for solving linear equations	17
Capture_17: continuous exercise	18
Capture 18: Exercise for factorial and format	19

Capture_1: Exercise for entering a vector

```
Command Window
  >> v=[1 4 7 10 13]
  v =
      1 4 7 10 13
  >> w=[1;4;7;10;13]
  w =
      1
       4
      7
      10
      13
  >> w-v'=w
  W-\Delta_1=M
      1
  Incorrect use of '=' operator. Assign a value to a variable using '=' and compare values for
  equality using '=='.
  >> M-A,
  ans =
       0
       0
```

Capture_2: Exercise for entering a vector

```
Command Window
  >> M-A.
  ans =
       0
       0
       0
       0
  >> v(1:3)
  ans =
     1 4 7
  >> v(3,end)
  Index in position 1 exceeds array bounds (must not exceed 1).
  >> M = A,
  w =
       1
       4
       7
      10
      13
```

Capture_3: Exercise for entering Matrix

```
Command Window
  Unrecognized function or variable 'v'.
  >> w(1:3)
  Unrecognized function or variable 'w'.
  >> A = [1 2 3; 4 5 6; 7 8 9]
  A =
       1
                   3
             5
                   6
       7
             8
                   9
  >> A(2,1)
  ans =
       4
  >> A(3,3) = 0
  A =
       1
                   3
       4
             5
                   6
             8
                   0
```

Capture_4: Exercise for Linear spacing

Oup.	ture_+. Lacre		op arting							
Con	nmand Window									⊚
:	>> theta = 1:	inspace(0,	2*pi,101)							^
1	theta =									
	Columns 1	through 9								
	0	0.0628	0.1257	0.1885	0.2513	0.3142	0.3770	0.4398	0.5027	
	Columns 10	through 1	8							
	0.5655	0.6283	0.6912	0.7540	0.8168	0.8796	0.9425	1.0053	1.0681	
	Columns 19	through 2	7							
	1.1310	1.1938	1.2566	1.3195	1.3823	1.4451	1.5080	1.5708	1.6336	
	Columns 28	through 3	6							
	1.6965	1.7593	1.8221	1.8850	1.9478	2.0106	2.0735	2.1363	2.1991	
	Columns 37	through 4	5							
	2.2619	2.3248	2.3876	2.4504	2.5133	2.5761	2.6389	2.7018	2.7646	
	Columns 46	through 5	4							
fx	2.8274	2.8903	2.9531	3.0159	3.0788	3.1416	3.2044	3.2673	3.3301	
	0.1									

Capture_5: Linear Spacing continuous exercise

Co	mmand Window									⊚
	COLUMNIS 40	ciirougii 5	7							٨
	2.8274	2.8903	2.9531	3.0159	3.0788	3.1416	3.2044	3.2673	3.3301	
	Columns 55	through 6	3							
	3.3929	3.4558	3.5186	3.5814	3.6442	3.7071	3.7699	3.8327	3.8956	
	Columns 64	through 7	2							
	3.9584	4.0212	4.0841	4.1469	4.2097	4.2726	4.3354	4.3982	4.4611	
	Columns 73	through 8	1							
	4.5239	4.5867	4.6496	4.7124	4.7752	4.8381	4.9009	4.9637	5.0265	
	Columns 82 through 90									
	5.0894	5.1522	5.2150	5.2779	5.3407	5.4035	5.4664	5.5292	5.5920	
	Columns 91 through 99									
	5.6549	5.7177	5.7805	5.8434	5.9062	5.9690	6.0319	6.0947	6.1575	
	Columns 100 through 101									
	6.2204	6.2832								
fx	>>									~

Capture_6: Exercise of colon operator in matrix

```
Command Window
  >> A(2,:)
  ans =
      4 5 6
  >> A(:,2:3)
  ans =
       2
            3
       5
            6
       8
            0
  >> A(:,2)=[]
  A =
      1
            3
       4
            0
  >> B = A([2 3],[1 2])
            6
```

Capture_7: Exercise for colon operator in matrix

```
Command Window

2 3 5 6 8 0

>> A(:,2)=[]

A =

1 3 4 6 7 0

>> B = A([2 3],[1 2])

B =

4 6 7 0

>> C = A([2 1 3],:)

C =

4 6 1 3 7 0

Æ >> |
```

Capture_8: Exercise for a sub-matrix

```
Command Window
  >> C = A([2 1 3],:)
  C =
       4
         6
       1
             3
             0
       7
  >> A(:)
  ans =
       1
       4
       7
       3
       6
       0
  >> A
  A =
       1
             3
       4
             6
             0
```

Capture_9: The same exercise

```
Command Window
  >> A
  A =
       1
           3
       4
            6
  >> A(2:3,2:3)
  Index in position 2 exceeds array bounds (must not exceed 2).
  >> A(end:-1:1,end)
  ans =
       0
       6
       3
  >> A([1 3],[2 3])
  Index in position 2 exceeds array bounds (must not exceed 2).
  >> A(3,:) = []
  A =
       1
            3
       4
             6
```

Capture_10: The same exercise

```
Command Window
  >> A(end:-1:1,end)
  ans =
      0
       6
       3
  >> A([1 3],[2 3])
  Index in position 2 exceeds array bounds (must not exceed 2).
  >> A(3,:) = []
  A =
      1
            6
  >> A = [A(1,:);A(2,:);[7 8 0]]
  Error using vertcat
  Dimensions of arrays being concatenated are not consistent.
  >> size(A)
  ans =
       2
           2
```

Capture_11: Exercise for deleting a row or column

```
Command Window
  >> A(3,:) = []
  A =
       1
           3
       4
             6
  >> A = [A(1,:);A(2,:);[7 8 0]]
  Error using vertcat
  Dimensions of arrays being concatenated are not consistent.
  >> size(A)
  ans =
       2 2
  >> [m,n]=size(A)
  m =
       2
  n =
       2
```

Capture_12: Exercise for dimension

```
Command Window

>> size(A)

ans =

2 2

>> [m,n]=size(A)

m =

2

n =

2

>> A'

ans =

1 4
3 6

>> B = [A 10*A; -A[1 0 0; 0 1 0; 0 0 1]]

B = [A 10*A; -A[1 0 0; 0 1 0; 0 0 1]]
```

Capture_13: Exercise for matrix generators

```
Command Window
  >> B = [A 10*A; -A [1 0 0; 0 1 0; 0 0 1]]
  Error using horzcat
  Dimensions of arrays being concatenated are not consistent.
  >> b=ones(3,1)
  b =
       1
       1
       1
  >> eye(3)
  ans =
           0 0
       1
                 0
       0
            1
       0
            0
                  1
  >> c=zeros(2,3)
       0
            0
                 0
            0
                  0
```

Capture_14: The exercise continues

```
Command Window
  >> B = [A 10*A; -A [1 0 0; 0 1 0; 0 0 1]]
  Error using horzcat
  Dimensions of arrays being concatenated are not consistent.
  >> b=ones(3,1)
  b =
      1
       1
       1
  >> eye(3)
  ans =
      1
          0 0
                0
       0
            1
       0
            0
                 1
  >> c=zeros(2,3)
  c =
          0 0
      0
       0
            0
                 0
  >> D = [C zeros(2): ones(2) eves(2)]
```

Capture_15: continuous exercise

```
Command Window
    0 0 1
 >> c=zeros(2,3)
  c =
    0 0 0
      0 0 0
 >> D = [C zeros(2); ones(2) eyes(2)]
 Error using horzcat
 Dimensions of arrays being concatenated are not consistent.
 >> C = A.*B
 C =
     4 18
     28
         0
 >> A.^2
 ans =
     1 9
     16 36
fx >> A =[1 2 3; 4 5 6; 7 8 9];
```

Capture_16: Exercise for solving linear equations

```
Command Window
  x =
       0
       -1
        1
  >> A =[1 2 3; 4 5 6; 7 8 0];
  >> A = [1 2 3; 4 5 6; 7 8 0];
  >> b = [1; 1; 1];
  >> x = inv(A) *b
  x =
     -1.0000
      1.0000
     -0.0000
  >> A = [1 2 3; 4 5 6; 7 8 0];
  >> b = [1; 1; 1];
  >> x = A/b
  x =
     -1.0000
      1.0000
     -0.0000
f_{\overset{\cdot}{\star}} >>
```

Capture_17: continuous exercise

```
Command Window
     -0.0000
 >> A = [1 2 3; 4 5 6; 7 8 0];
  >> b = [1; 1; 1];
  >> x = A\b
  x =
    -1.0000
     1.0000
     -0.0000
  >> A = [1 2 3; 4 5 6; 7 8 0];
  >> inv(A)
  ans =
    -1.7778 0.8889 -0.1111
     1.5556 -0.7778 0.2222
     -0.1111 0.2222 -0.1111
  >> det(A)
  ans =
     27.0000
f_{\frac{x}{x}} >>
```

Capture_18: Exercise for factorial and format

```
Command Window
  >> edit
  >> f =factorial(5)
  f =
     120
  >> format short eng
  >> pi
  ans =
       3.1416e+000
  >> format long eng
  >> pi
  ans =
      3.14159265358979e+000
  >> help function_name>subfunction_name
  function_name>subfunction_name not found.
  Use the Help browser search field to search the documentation, or
^{\kappa} type "help help" for help command options, such as help for methods.
```