Your Name: Changhyun, Lee Your Andrew ID: changhyl

Your Nickname on Leaderboard: CH

Homework 2

0. Statement of Assurance

- 1. Did you receive any help whatsoever from anyone in solving this assignment? No. If you answered 'yes', give full details? (e.g. "Jane explained to me what is asked in Question 3.4").
- 2. Did you give any help whatsoever to anyone in solving this assignment? No. If you answered 'yes', give full details? (e.g. "I pointed Joe to section 2.3 to help him with Question 2").
- 3. Did you find or come across code that implements any part of this assignment? No. If you answered 'yes', give full details? (e.g. book & page, URL & location within the page, etc)

1. Corpus Exploration (10)

Please perform your exploration on the training set.

1.1 Basic statistics (5)

Statistics	
the total number of movies	5353
the total number of users	10858
the number of times any movie was rated '1'	53852
the number of times any movie was rated '3'	260055
the number of times any movie was rated '5'	139429
the average movie rating across all users and movies	3.3805

For user ID 4321	
the number of movies rated	73
the number of times the user gave a '1' rating	4

the number of times the user gave a '3' rating	28
the number of times the user gave a '5' rating	8
the average movie rating for this user	3.1506

For movie ID 3	
the number of users rating this movie	84
the number of times the user gave a '1' rating	10
the number of times the user gave a '3' rating	29
the number of times the user gave a '5' rating	1
the average rating for this movie	2.5238

1.2 Nearest Neighbors (5)

	Nearest Neighbors
Top 5 NNs of user 4321 in terms of dot product similarity	90, 551, 980, 2586, 3760
Top 5 NNs of user 4321 in terms of cosine similarity	3635, 7700, 8202, 8497, 9873
Top 5 NNs of movie 3 in terms of dot product similarity	1466, 2292, 3688, 3835, 4927
Top 5 NNs of movie 3 in terms of cosine similarity	4324, 4857, 5065, 5370, 5391

2. Rating Algorithms (50)

2.1 User-user similarity (10)

Rating Method	Similarity Metric	K	RMSE	Runtime(sec)
Mean	Dot product	10	1.0032	56.22
Mean	Dot product	100	1.0086	135.81
Mean	Dot product	500	1.0459	491.40

Mean	Cosine	10	1.0634	54.67
Mean	Cosine	100	1.0622	135.81
Mean	Cosine	500	1.0755	491.40
Weighted	Cosine	10	1.0631	54.67
Weighted	Cosine	100	1.0617	141.40
Weighted	Cosine	500	1.0740	496.28

2.2 Movie-movie similarity (10)

Rating Method	Similarity Metric	K	RMSE	Runtime(sec)
Mean	Dot product	10	1.0203	39.72
Mean	Dot product	100	1.0473	183.62
Mean	Dot product	500	1.1118	572.83
Mean	Cosine	10	1.0177	37.69
Mean	Cosine	100	1.0642	216.91
Mean	Cosine	500	1.1185	662.62
Weighted	Cosine	10	1.0152	37.26
Weighted	Cosine	100	1.0571	131.46
Weighted	Cosine	500	1.1024	552.92

2.3 Movie-rating/user-rating normalization (10)

Rating Method	Similarity Metric	K	RMSE	Runtime(sec)
Mean	Dot product	10	1.0028	84.13
Mean	Dot product	100	1.0082	189.65
Mean	Dot product	500	1.0445	615.15
Mean	Cosine	10	1.0648	62.77
Mean	Cosine	100	1.0635	165.33
Mean	Cosine	500	1.0766	576.94
Weighted	Cosine	10	1.0645	61.03
Weighted	Cosine	100	1.0630	145.16
Weighted	Cosine	500	1.0752	545.40

Add a detailed description of your normalization algorithm.

- The user-movie matrix is centered from -2 to 2.
- To calculate the cosine similarity, the dot product similarity is divided by L2 norm of each user/movie vectors.

Pearson Correlation Coefficient is calculated by replacing the user/movie vector X to (X - X_mean). After that, the cosine similarity is applied to get PCC similarity.

2.4 Matrix Factorization (20)

- a. Briefly outline your optimization algorithm for PMF
- b. Describe your stopping criterion

Num of Latent Factors	RMSE	Runtime(sec)*	Num of Iterations
2			
5			
10			
20			
50			

3. Analysis of results (15)

Discuss the complete set of experimental results, comparing the algorithms to each other. Discuss your observations about the various algorithms, i.e., differences in how they performed, what worked well and didn't, patterns/trends you observed across the set of experiments, etc. Try to explain why certain algorithms or approaches behaved the way they did.

- Cosine similarity seems like it does not affect the performance of rating algorithm because the RMSEs according to the similarity matrix are pretty much similar.
- Weighted rating method reveals that has higher RMSE, except for the case of movie-movie similarity.
- The more K larger, the more the RMSE is increased.
- The running time is increased when K is getting larger
- Pearson Correlation Coefficient is calculated by replacing the user/movie vector X to (X X_mean). After that, the cosine similarity is applied to get PCC similarity.
- When I tried to calculate the Pearson Correlation Coefficient, I found that the RMSE is decreased if the X_mean has lower value. For example, we can choose

the X_mean by averaging 10916 values with assuming missing values also have ratings of 3, not by averaging only existing rating values.

4. The software implementation (5)

Add detailed descriptions about software implementation & data preprocessing, including:

- 1. A description of what you did to preprocess the dataset to make your implementations easier or more efficient.
- Similarity matrix preprocessed, by using user-item matrix multiplication. Through this preprocessing, we can get more efficient algorithm.
- The csr matrix from scipy is used to resolve computational cost, especially in user-item matrix multiplication that I mentioned above.
- Modularization of algorithm such as User_user_similarity and Movie_movie_similarity, knn, and so forth. We reduced the redundancy of codes by using these kinds of modules. Simply we can choose the parameters such as K, metric(dot product or cosine), rating method(mean or weighted).
- Exceptional input is handled with a notification of 'invalid input'.
- PCC is efficiently calculated by replacing the user/movie vector X to (X X_mean), using the user-user similarity function.
- 2. A description of major data structures (if any); any programming tools or libraries that you used;
- Scipy csr_matrix is used to represent sparse matrix
- Numpy library is used to efficient matrix multiplications.
- Tools: Pycharm Community Edition (2019.3.2.)

- 3. Strengths and weaknesses of your design, and any problems that your system encountered;
- This program can automatically run and implement all the experiments.
- We used sparse matrix, by using the library of scipy.csr_matrix.
- We calculated normalization factor such as L2 norm for the cosine similarity in advance so that to improve computational efficiency.
- However, we need to develop this program further, to reduce redundancy of codes used to make output of all experiments.