Ian S.W. Ma

Winter 2020

Contents

1	Statistics Basics	1	
2	Bayes Throrem	2	
3	Conjugate Priors	3	
4	Normal Distribution Priors	3	
5	Jeffrey's Prior	4	
6	Reference Prior	5	
7	Point Estimates	5	
8	Interval Estimates	6	
9	Classic Hypothesis Testing	6	
10	Bayesian Hypothesis Testing	6	
11	Deterministic Numerical Integration	8	
12	Monte Carlo Integration	9	
13	Markov Chain Monte Carlo (MCMC)	11	
14	4 Metropolis-Hasting Algorithm 1		
15	MCMC Diagnostics	14	

1 Statistics Basics

General Structure: Probability Space/Triple

Probability Space/Triple $(\Omega, \mathcal{F}, \mathbb{P})$

- Ω : Sample Space, set of all posible outcomes.
- \mathcal{F} : Set of events σ , each event is a subset of Ω
- \mathbb{P} Probability of event $\sigma \in \mathcal{F}$

Conditional Probability

Conditional probability of A given B: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \Leftrightarrow \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(A \cap B)$

General properties

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ Events are mutually exclusive $\Rightarrow \mathbb{P}(A \cap B) = 0$
- $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$ Events are independent $\Rightarrow \mathbb{P}(A|B) = \mathbb{P}(A)$
- Law of Total Probability

If events A_1, A_2, A_N are mutually exclusive and exhaustive $(\bigcup_{i=1}^N A_i = \Omega)$ then:

$$\mathbb{P}(B) = \sum_{i=1}^{N} \mathbb{P}(A_i \cap B) = \sum_{i=1}^{N} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Random Variables

$X \sim \text{Distribution}$	$\mathbb{E}\left[X\right]$	$\operatorname{Var}\left[X\right]$
$Normal(\mu, \sigma^2)$	μ	σ^2
Bernoulli(θ)	θ	$\theta(1-\theta)$
$Binomial(\theta)$	$n\theta$	$n\theta(1-\theta)$
$Poisson(\mu)$	μ	μ
Uniform (α, β)	$\frac{\alpha+\beta}{2}$	$\frac{(\alpha+\beta)^2}{12}$
Beta (α, β)	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
$Gamma(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Inv. Gamma (α, β)	$\frac{\beta}{\alpha-1}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$
Exponential(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Random Vectors

$\mathbf{X} = X_1,, X_k \sim \text{Distribution}$	$\mathbb{E}\left[X_i\right]$	$Var[X_i]$	$\operatorname{Cov}(X_i, X_j)$
Multivariative Normal(μ, Σ)	μ_i	$\sum_{i,i}$	$\sum_{i,j}$
$Multinomial(n, \theta_1,, \theta_k)$	$n\theta_i$	$n(1-\theta_i)$	$-n\theta_i\theta_j$

2 Bayes Throrem

Discrete Case

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\mathbb{P}(Y = y_j)}$$

$$= \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal}}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\sum_{k=1}^{n} \mathbb{P}(X = x_k, Y = y_j)}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\sum_{k=1}^{n} \mathbb{P}(Y = y_j | X = x_k) P(X = x_k)}$$

$$\Rightarrow \mathbb{P}((X|Y)) = \frac{\mathbb{P}(Y|X)\mathbb{P}(X)}{\sum_{x} \mathbb{P}(X = x, Y)} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal}}$$

Continuus Case

$$f(X|Y) = \frac{f(X,Y)}{g(Y)} = \frac{g(Y|X)f(X)}{\int g(Y|X)f(X)dX}$$

Bayesian Statistical Inference

• $L(\theta|y) = f(y|\theta)$: Likelihood

• $\pi(\theta)$: Prior

• m(y) = p(y): Marginal distribution/Normalizing constant

Posterior Distribution:
$$p(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{\int p(\theta,y)d\theta} = \frac{f(y|\theta)\pi(\theta)}{\int f(y|\theta)\pi(\theta)d\theta} \propto f(y|\theta)\pi(\theta)$$

Predictive Distrubutions

Prior Predictive Distribution: $p(y^{new}) = \int_{\theta} f(y^{new}|\theta)\pi(\theta)d\theta$ Posterior Predictive Distribution: $p(y^{new}|y^{old}) = \int_{\theta} f(y^{new}|\theta,y^{old})p(\theta|y^{old})d\theta$

Bayes Theorem for Multiple Parameters $\Theta = \{\theta_1, ..., \theta_q\}$

$$\mathbb{P}(\boldsymbol{\Theta}|\boldsymbol{y}) = \frac{\mathbb{P}(\boldsymbol{y}|\boldsymbol{\Theta})\mathbb{P}(\boldsymbol{\Theta})}{\mathbb{P}(\boldsymbol{y})} \propto \mathbb{P}(\boldsymbol{y}|\boldsymbol{\Theta})\mathbb{P}(\boldsymbol{\Theta})$$

3 Conjugate Priors

Sample Distribution	Parameter	Prior
Bernoulli (θ)	θ	$Beta(\alpha, \beta)$
$Binomial(n, \theta)$	θ	$Beta(\alpha, \beta)$
$Poisson(\theta)$	θ	$Gamma(\alpha, \beta)$
Exponential (θ)	θ	$Gamma(\alpha, \beta)$
Normal (μ, σ_0^2)	μ	Normal (μ_h, σ_h^2)
Normal (μ_0, σ^2)	σ^2	Inverse $Gamma(\alpha, \beta)$
Normal $(\mu_0, 1/\tau)$	$ au = 1/\sigma^2$	$Gamma(\alpha, \beta)$
Multinomial $(n, \theta_1,, \theta_k)$	$\theta_1,, \theta_k$	Dirichlet $(\alpha_1,, \alpha_k)$
Uniform $(0, \theta)$	θ	$Pareto(\theta_m, \alpha)$

4 Normal Distribution Priors

Unknown μ , known σ^2

- Sample $\boldsymbol{y} \in \mathbb{R}^n$
- Prior $\mu \sim \text{Normal}(\mu_0, \sigma_0^2) = \text{Normal}\left(\mu_0, \frac{\sigma^2}{m}\right) \Rightarrow m = \sigma^2/\sigma_0^2$
- Posterior:

$$\mu|\boldsymbol{y},\sigma^2 \sim \text{Normal}\left(\frac{m\mu_0 + n\bar{y}}{m+n}, \frac{\sigma^2}{m+n}\right) = \text{Normal}\left((1-w)\mu_0 + w\bar{y}, \frac{\sigma^2}{m+n}\right)$$
$$w = \frac{m}{m+n}$$

Unknown μ , known τ

- Sample $\boldsymbol{y} \in \mathbb{R}^n$
- Prior $\mu \sim \text{Normal}\left(\mu_0, \frac{\sigma^2}{m}\right) = \text{Normal}\left(\mu_0, \frac{1}{\tau m}\right)$
- Posterior:

$$\mu | \boldsymbol{y}, \sigma^2 \sim \text{Normal}\left(\frac{m\mu_0 + n\bar{y}}{m+n}, \frac{1}{\tau(m+n)}\right) = \text{Normal}\left((1-w)\mu_0 + w\bar{y}, \frac{1}{\tau(m+n)}\right)$$

$$w = \frac{m}{m+n}$$

Unknown τ , known μ

- Sample $\boldsymbol{y} \in \mathbb{R}^n$
- Prior $\tau \sim \text{Gamma}(\alpha, \beta)$
- Posterior:

$$\tau | \boldsymbol{y}, \boldsymbol{\mu} \sim \operatorname{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{z^2}{2}\right)$$

$$z^2 = \sum_i (y_i - \mu)^2$$

Unknown σ^2 , known μ

- Sample $\mathbf{y} \in \mathbb{R}^n$
- Prior $\mu, \sigma^2 \sim \text{Normal}\left(\mu_0, \frac{\sigma^2}{\kappa}\right) \times \text{Inverse Gamma}(\alpha, \beta)$
- Posterior:

$$\mu, \sigma^2 | \boldsymbol{y} \sim \text{Normal}\left(\frac{\kappa \mu_0 + n\bar{y}}{\kappa + n}, \frac{\sigma^2}{\kappa + n}\right) \times \text{Inverse Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{(n-1)s^2}{2} + \frac{\kappa n(\bar{y} - \mu_0)^2}{2(\kappa + n)}\right)$$

$$s^2 = \sum_i (y_i - \bar{y})^2 / (n - 1)$$

 $s^2 = \sum_i (y_i - \bar{y})^2/(n-1)$ $\kappa = \sigma^2(\alpha - 1)/\beta$ or given (seriously it's not written anywhere Ken, I'm just guessing here

Jeffrey's Prior 5

Definition

Jeffery Prior: $\pi_{JP}(\theta) \propto \sqrt{I(\theta|y)}$

Fisher Information:

$$I(\theta|y) = \mathbb{E}\left[\left(\frac{d\log f(y|\theta)}{d\theta}\right)^2\right] = -\mathbb{E}\left[\frac{d^2\log f(y|\theta)}{d\theta^2}\right]$$

1:1 transformation of Jeffrey's Prior

$$\pi(\phi) = \pi_{JP}(\theta) \left| \frac{d\theta}{d\phi} \right|$$

Jeffrey's Prior for Multivariate Parameter Vector

Gradient of log likelihood:

$$S(\boldsymbol{\theta}) = \begin{bmatrix} \partial_{\theta_1} \log f(x) \\ \vdots \\ \partial_{\theta_n} \log f(x) \end{bmatrix}$$

Hessian Matrix of log likelihood:

$$H(\boldsymbol{\theta}) = \operatorname{Jacobian}\left[S(\boldsymbol{\theta})\right] = \begin{bmatrix} \partial_{\theta_1} \partial_{\theta_1} \ln f(x) & \cdots & \partial_{\theta_1} \partial_{\theta_n} \ln f(x) \\ \vdots & \ddots & \vdots \\ \partial_{\theta_n} \partial_{\theta_1} \ln f(x) & \cdots & \partial_{\theta_n} \partial_{\theta_n} \ln f(x) \end{bmatrix}$$

Fisher Information: $I(\theta|\underline{x}) = -\mathbb{E}\left[\underline{H}(\theta)\right]$ Jeffrey's Prior: $\pi_{JP} \propto \sqrt{\det(I(\theta|x))}$

6 Reference Prior

Kullback-Leibler (KL) divergence

A measure of the difference between two pmfs/pdfs. When KL(f,g) = 0, the two distributions are idetical.

Properties

- $KL(f,g) \neq KL(g,f)$
- $KL(fmg) \ge 0$

Continuous parameter x

$$KL(f,g) = \int \ln \left[\frac{f(x)}{g(x)} \right] dx = \mathbb{E}_f[\log f(X)] - \mathbb{E}_g[\log f(X)]$$

Discrete parameter x

$$KL(f,g) = \sum_{x \in X} \ln \left[\frac{f(x)}{g(x)} \right] = \mathbb{E}_f[\log f(X)] - \mathbb{E}_g[\log f(X)]$$

Reference Prior

Read week 4 notes (2.2)

7 Point Estimates

Components of Decision Theory with emphasis on parameter estimation

- State Speae Θ , unknown true value $\theta \in \Theta$
- Action Space $A \ni a$, sometimes $A = \Theta$
- Sampling Distribution $f(\boldsymbol{y}|\theta)$
- Loss Function $\mathcal{L}(a|\theta)$
- Risk $R_{\theta}(a|\mathbf{y}) = \mathbb{E}_{\theta}[L(a|\theta, y)] = \int_{\theta \in \Theta} \mathcal{L}(a|\theta)p(\theta|\mathbf{y})d\theta$
- Bayes Estimator of a parameter $\hat{\theta}_{BE} = \arg\min_{\hat{\theta} \in \Theta} R_{\theta}(\hat{\theta}|\boldsymbol{y})$

Common Loss Functions and Corresponding Estimators

- Squared Error Loss: $\mathcal{L}(\theta|\hat{\theta}) = (\theta \hat{\theta})^2$, Bayes Estimator $\hat{\theta} = \mathbb{E}[\theta|\boldsymbol{y}]$
- Absolute Error Loss: $\mathcal{L}(\theta|\hat{\theta}) = |\theta \hat{\theta}|$, Bayes Estimator $\hat{\theta} = \theta_{0.5}$, $(\mathbb{P}(\theta \leq \theta_{0.5}) = 0.5)$
- 0-1 Loss: $\mathcal{L}(\theta|\hat{\theta}) = I(\theta \neq \hat{\theta})$, Bayes Estimator $\hat{\theta}$ is the posterior mode

8 Interval Estimates

$$P \times 100\%$$
 Bayesian Credible interval = $[LB, UB]$ where $\int_{LB}^{UB} p(\theta, \boldsymbol{y}) d\theta = P$

If loooking for one side-confidence bounds then $LB = -\infty$ or $UB = \infty$

Symmetric Credicble Interval

[LB, UB] where
$$\mathbb{P}(\theta \leq LB) = \mathbb{P}(\theta \geq UB) = \alpha/2 = (1 - P)/2$$

Highest Posterior Density Interval (HPDI)

Credible Interval where all values outside the interval has a density smaller than any of the values in the interval.

Credible Regions

$$\iint p(\theta_1, \theta_2 | \boldsymbol{y}) d\theta_1 d\theta_2 = 1 - \alpha = P$$

9 Classic Hypothesis Testing

- 1. Assume hypothesis H_0 is true
- 2. Calculate test statistic $T(y_{obs})$ based on observed sample data regarding to H_0 and H_1
- 3. Conditional on H_0 being true, p-value = $\mathbb{P}(T(\boldsymbol{y}) \text{ more extreme than } T(\boldsymbol{y}_{obs})|\theta, H_0)$
- 4. Reject H_0 and accept H_1 for sufficiently small p-values, do not reject H_0 otherwise

10 Bayesian Hypothesis Testing

Suppose there are tow hypotheses about parameter θ :

$$H_0: \theta \in \Theta_1 \quad H_1: \theta \in \Theta_1$$

where $\Theta_0 \cup \Theta_1 = \Theta$ and $\Theta_0 \cap \Theta_1 = \emptyset$.

The Bayesian approach specifies prior probabilities on each hypotheses:

$$p_0 = \mathbb{P}(H_0 \text{ is true}) = \mathbb{P}(\theta \in \Theta_0)$$

 $p_1 = \mathbb{P}(H_1 \text{ is true}) = \mathbb{P}(\theta \in \Theta_1)$

Where the posteriors are as follows:

$$\mathbb{P}(H_0|\boldsymbol{y}) = \mathbb{P}(\theta \in \Theta_0|\boldsymbol{y})$$
$$\mathbb{P}(H_1|\boldsymbol{y}) = \mathbb{P}(\theta \in \Theta_1|\boldsymbol{y})$$

Where
$$\mathbb{P}(H_0|\boldsymbol{y}) + \mathbb{P}(H_1|\boldsymbol{y}) = 1$$

Simple

- Single parameter values $H_0: \theta = \theta_0 \quad H_1: \theta = \theta_1$
- Posteriors:

$$\mathbb{P}(H_0|\boldsymbol{y}) = \mathbb{P}(\boldsymbol{\theta} = \boldsymbol{\theta}_0|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_0)p_0}{m(\boldsymbol{y})} = \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_0)p_0}{f(\boldsymbol{y}|\boldsymbol{\theta}_0)p_0 + f(\boldsymbol{y}|\boldsymbol{\theta}_1)p_1}$$

$$\mathbb{P}(H_1|\boldsymbol{y}) = \mathbb{P}(\boldsymbol{\theta} = \boldsymbol{\theta}_1|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_1)p_1}{m(\boldsymbol{y})} = \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_1)p_1}{f(\boldsymbol{y}|\boldsymbol{\theta}_0)p_0 + f(\boldsymbol{y}|\boldsymbol{\theta}_1)p_1}$$

$$\mathbb{P}(H_0|\boldsymbol{y}) = 1 - \mathbb{P}(H_1|\boldsymbol{y})$$

• posterior odds of H_0 against H_1 :

$$\frac{\mathbb{P}(H_0|\boldsymbol{y})}{\mathbb{P}(H_1|\boldsymbol{y})} = \frac{f(\boldsymbol{y}|\theta_0)p_0}{f(\boldsymbol{y}|\theta_1)p_1}$$

Composite

- Single parameter values $H_0: \theta \in \Theta_0$ $H_1: \theta \in \Theta_1$
- Prior: $p_i = \int_{\theta \in \Theta_i} \pi(\theta) d\theta$
- Posteriors:

$$\mathbb{P}(H_i|\boldsymbol{y}) = \frac{p(\boldsymbol{y}, H_i)}{m(\boldsymbol{y})} = \frac{p_i \ p(\boldsymbol{y}|H_i)}{m(\boldsymbol{y})} = \frac{p_i \int p(\boldsymbol{y}, \theta|H_i)d\theta}{m(\boldsymbol{y})} = \frac{p_i \int f(\boldsymbol{y}|\theta)\pi(\theta|H_i)d\theta}{m(\boldsymbol{y})}$$
$$= \frac{p_i \int_{\theta \in \Theta_i} f(\boldsymbol{y}|\theta)\frac{\pi(\theta)}{p_i}d\theta}{m(\boldsymbol{y})} = \frac{\int_{\theta \in \Theta_i} f(\boldsymbol{y}|\theta)\pi(\theta)d\theta}{m(\boldsymbol{y})} = \int_{\theta \in \Theta_i} p(\theta|\boldsymbol{y})d\theta = \mathbb{P}(\theta \in \Theta_i|\boldsymbol{y})$$

• posterior odds of H_0 against H_1 :

$$\frac{\mathbb{P}(H_0|\boldsymbol{y})}{\mathbb{P}(H_1|\boldsymbol{y})} = \frac{\int_{\theta \in \Theta_0} f(\boldsymbol{y}|\theta)\pi(\theta)d\theta}{\int_{\theta \in \Theta_1} f(\boldsymbol{y}|\theta)\pi(\theta)d\theta} = \frac{\mathbb{P}(\theta \in \Theta_0|\boldsymbol{y})}{\mathbb{P}(\theta \in \Theta_1|\boldsymbol{y})} = \frac{\mathbb{P}(\theta \in \Theta_0|\boldsymbol{y})}{1 - \mathbb{P}(\theta \in \Theta_0|\boldsymbol{y})}$$

Multiple models

- Set of models $M_1, ..., M_K$
- H_i : The correct model is M_i

$$\mathbb{P}(H_i|\boldsymbol{y}) = \frac{\mathbb{P}(H_i,\boldsymbol{y})}{\mathbb{P}(\boldsymbol{y})} = \frac{\mathbb{P}(H_i,\boldsymbol{y})}{\sum_{j=1}^K \mathbb{P}(H_j,\boldsymbol{y})}$$

Bayes Factor

- Prior odds for H_0 against $H_1 = p_0/p_1$
- Posterior odds for H_0 against $H_1 = \mathbb{P}(H_0|\mathbf{y})/\mathbb{P}(H_1|\mathbf{y})$
- Bayes Factor for H_0 against H_1 :

$$BF_{01} = \frac{\text{Posterior odds for } H_0 \text{ against } H_1}{\text{Prior odds for } H_0 \text{ against } H_1} = \frac{\mathbb{P}(H_0|\boldsymbol{y})/\mathbb{P}(H_1|\boldsymbol{y})}{p_0/p_1}$$
$$BF_{10} = \frac{1}{BF_{01}}$$

BF_{ij}	Interpretation	
< 3	No edvidence for H_i over H_j	
> 3	Positive edvidence for H_i	
> 20	Strong edvidence for H_i	
> 150	Very strong edvidence for H_i	

Simple H_0 vs Simple H_1

$$BF_{01} = \frac{\mathbb{P}(H_0|\boldsymbol{y})/\mathbb{P}(H_1|\boldsymbol{y})}{p_0/p_1} = \frac{(f(\boldsymbol{y}|\theta_0)p_0)/(f(\boldsymbol{y}|\theta_1)p_1)}{p_0/p_1} = \frac{f(\boldsymbol{y}|\theta_0)}{f(\boldsymbol{y}|\theta_1)}$$

Composite H_0 vs Composite H_1

$$BF_{01} = \frac{\mathbb{P}(H_0|\boldsymbol{y})/\mathbb{P}(H_1|\boldsymbol{y})}{p_0/p_1} = \frac{\left[\int_{\theta \in \Theta_0} f(\boldsymbol{y}|\theta)\pi(\theta)d\theta\right]/\left[\int_{\theta \in \Theta_1} f(\boldsymbol{y}|\theta)\pi(\theta)d\theta\right]}{p_0/p_1} = \frac{\mathbb{P}(\theta \in \Theta_0|\boldsymbol{y})/\mathbb{P}(\theta \in \Theta_1|\boldsymbol{y})}{p_0/p_1}$$

Simple H_0 vs Composite H_1

$$BF_{01} = \frac{\mathbb{P}(H_0|\boldsymbol{y})/\mathbb{P}(H_1|\boldsymbol{y})}{p_0/p_1} = \frac{\left[f(\boldsymbol{y}|\theta_0)p_0\right]/\left[p_1\int_{-\infty}^{\infty}f(\boldsymbol{y}|\theta)\pi(\theta)d\theta\right]}{p_0/p_1} = \frac{f(\boldsymbol{y}|\theta_0)}{\int_{-\infty}^{\infty}f(\boldsymbol{y}|\theta)\pi(\theta)d\theta} = \frac{f(\boldsymbol{y}|\theta_0)}{m(\boldsymbol{y})}$$

Multipes Hypotheses

Read 5B.7 cba to type

11 Deterministic Numerical Integration

$$\int_{x_i}^{x_{i+m}} f(x)dx \approx \sum_{j=1}^m w_{ij} f(x_{i+j})$$

12 Monte Carlo Integration

Expectaquion
$$\mathbb{E}[\theta] = \int \theta p(\theta) d\theta$$

Samples of $\theta: \theta_1, ..., \theta_N$
 \Rightarrow Monte Carlo Estimate $\hat{\mathbb{E}}[\theta] = \frac{1}{N} \sum_{i=1}^N \theta_i \approx \mathbb{E}[\theta]$

By the Law of Large Numbers, $\mathbb{P}(\lim_{N\to\infty}\hat{\mathbb{E}}[\theta] = \mathbb{E}[\theta]) = 1$.

Many Bayesian integrals can be viewed as expectations, such as probabilities and normalising constants.

Direct Sampling

- Target Distribution, often the posterior $p(\theta|\mathbf{y})$
- Integrals of interest: $\mathbb{E}[h(\theta|\mathbf{y})] = \int h(\theta)p(\theta|\mathbf{y})dy$
 - Common choises for $h(\theta)$:

 $h(\theta) = \theta$, the posterior mean

 $h(\theta) = (\theta - \mathbb{E}[\theta])^2$, the posterior variance

$$h(\theta) = I(a \le \theta \le b), \mathbb{P}(\theta \in [a, b])$$

- Samples $\theta_1, ..., \theta_N$
- Monto Carlo estimation of Integrals of interest $\mathbb{E}[h(\theta|\boldsymbol{y})] \approx \hat{\mathbb{E}}[h(\theta|\boldsymbol{y})] = \frac{1}{N} \sum h(\theta_i)$
- Monte Carlo Error = $\hat{\mathbb{E}}[h(\theta|\boldsymbol{y})] \mathbb{E}[h(\theta|\boldsymbol{y})]$

Inverse Probability Integral Transform Method (Inverse PIT)

Continous Random Variable

- Let Y be continuous random variables with cdf $F_Y(y) \in [0,1]$
- Define new random variable $U = F_Y(Y) \sim \text{Uniform}(0,1)$

The Inverse PIT method

- Transform a uniform variable U using the inverse CDF of Y $(g(U) = F_Y^{-1}(U))$. $g \sim Y$
- Therefore if one can evaluate F^{-1} for Y, then sample y can be generated by $y = F^{-1}(u)$, where $u \sim \text{Uniform}(0,1)$

Discrete Random Variable

The Inverse PIT method

• Same for Continous method where:

$$F^{-1}(u) = \min_{y} \{ y : F_Y(y) \ge u \}$$

Rejection Sampling

Target distribution $p(\theta|\mathbf{y})$

- Generates independent samples form envelope distribution $g(\theta)$
- Only some generated values are kept/used, while the rest are discarded
- Often used for generating univariate random variables than a multivariate random vector

General Rejection Algorithm

For target distribution $p(\theta)$ and envelope $g(\theta)$, the (upper) bound M pf p/g is defined:

$$M \ge \frac{p(\theta)}{q(\theta)} \quad \forall \theta \Leftrightarrow M(g)\theta \ge p(\theta)$$

The Algorithm to generate a single value form $p(\theta)$ is as follows:

- 1. Generate θ^* from $g(\theta^*)$
- 2. Generate u form Uniform $(0, Mg(\theta^*))$
- 3. If $u \leq p(\theta^*)$ keep θ^* else reject and return step 1

The acceptance rate is $\frac{1}{M}$ which M is defined as above. For optimal acceptance rate, we choose $M_{opt} = \sup \left\{ \frac{p(\theta)}{g(\theta)} \right\}$

Importance Sampling

Simlar to Rejection sampling. However, we adjust the values to correspond to the rightr distribution instead of rejecting them. Therefore all generated θ are kept, there's no rejection.

Suppose there is another distribution has the same support as $p(\theta|\mathbf{y})$, the integral then can be written as $\mathbb{E}_p[h(\theta|\mathbf{y})] = \mathbb{E}_g[h(\theta)w(\theta)]$ where $w(\theta) = p(\theta|\mathbf{y})/g(\theta)$ is the **importance ratio**.

The Monte Carlo estimats can be calculated $\hat{\mathbb{E}}_p[h(\theta|\boldsymbol{y})] \equiv \hat{\mathbb{E}}_g[h(\theta)w(\theta)] = \frac{1}{N}\sum h(\theta^i)w(\theta^i)$

Sampling Importance Re-Sampling

Algorithm for generating a samplem sixe of n

- 1. Choosing N > n. generate N samples of $\theta^i, i = 1, ..., N$ form the envolope distribution (importance sampler) $g(\theta)$
- 2. Calculate the importance ratio $w_i = p(\theta^i|\mathbf{y})/g(\theta)$, then scale by the some of weights:

$$w^{*i} = \frac{w^i}{\sum_j^N w^j}$$

3. randomly sample n θ^{i} 's with replacement, with probabilities $w^{*1}, ..., w^{*N}$

13 Markov Chain Monte Carlo (MCMC)

Overwiew

- Dependent Samples: $\theta | y$
- Iterative Conditional Generation: $g(\theta^i|\theta^{i-1})$
- Burn-in: The initial vales $\theta^1, ..., \theta^B$ are not distributed according to th target distribution $p(\theta)$, therefore would be discarded
- Sample for Inference: The additional N-B samples $\theta^{B+1},...,\theta^N$ are used for inference

Markov Chain

- State Space S: is a set of all possible states j
- Process $\theta^t = j$: process at time t is in state j

Definition

$$\mathbb{P}(\theta^{0} = x_{0}, ..., \theta^{T} = x_{T}) = \mathbb{P}(\theta^{T} = x_{T} | \theta^{0} = x_{0}, ..., \theta^{T-1} = x_{T-1})$$

$$\times \mathbb{P}(\theta^{T-1} = x_{T-1} | \theta^{0} = x_{0}, ..., \theta^{T-2} = x_{T-2})$$

$$\times \mathbb{P}(\theta^{0} = \theta_{0})$$

Markov Peoperty: if $\theta^t | \theta^{t-1}$ is independent to other values, then $\mathbb{P}(\theta^T = x_T | \theta^0 = x_0, ..., \theta^{T-1} = x_{T-1}) = \mathbb{P}(\theta^T = x_T | \theta^{T-1} = x_{T-1})$. Therefore:

$$\mathbb{P}(\theta^0 = x_0, ..., \theta^T = x_T) = \prod_{t=1}^T \mathbb{P}(\theta^t = x_t | \theta^{t-1} = x_{t-1}) \times \mathbb{P}(\theta^0 = x_0)$$

The sequence of random variables $\theta^1, ..., \theta^K$ with Markov Property is a Markov Chain

Terminology and Notation

- • One-Step Transistion Probability $p_{ij}^t = \mathbb{P}(\theta^t = j | \theta^{t-1} = i)$
- if $p_{ij}^t = p_{ij} \ \forall t$ then the chain is **time homogeneous** otherwise **time imhomogeneous**
- Transistion probability matrix $(P_t)_{ij} = p_{ij}$, where each row sums to one for a time homogeneous chain $P_t = P \ \forall t$

Limiting Behaviour of Markov Chain

- Recurrent State: state where a Markov Chain returns with probability 1
- Nonnull State: state where it will eventually recurrence in a finite expected time
- Irreducible Markov Chain: $\exists m \in \mathbb{N} \ s.t. \ \mathbb{P}(\theta^{m+n} = j | \theta^n = i) > 0 \ \forall i$
- Periodic Markov Chain: $\exists m \in \mathbb{N} \ s.t. \ \exists d \in \ s.t. \ \mathbb{P}(\theta^{m+n} = j | \theta^n = i) > 0 \cap m/d \in \mathbb{Z}^+ \ \forall i$ otherwise Aperiodic Markov Chain
- Ergodic Markov Chain: Irreducible, aperiodic, all states are nonnull and recurrent

Marginal amd Stationary Distributoin

- Marginal Probability Distribution for state at time t is denoted π_t , which is a vector of probabilities that sum to one
- $\bullet \ (\pi_t)_i = \boldsymbol{\pi}_t(i) = \mathbb{P}(\theta^t = i)$
- $\boldsymbol{\pi}_{t+1}^{\top} = \boldsymbol{\pi}_{t}^{\top} P \Leftrightarrow \boldsymbol{\pi}_{t+1} = P^{\top} \boldsymbol{\pi}_{t}$
- If $\pi^{\top}P = \pi^{\top}$ then π is a stationa distribution

Reversible Markov Chain

If a time homogeneous Markov Chain with tpm P and Stationary distribution π fufill the **Detailed** Balance equation then it is a reversible Markov Chain.

Detailed Balance equation is written $\pi(i)p_{ij} = \pi(j)p_{ji}$

Key Theoretical Results

If a Markov Chain with tpm P and is irreducible, aperiodic and has a stationary distribution π , the the followings are true:

- $\boldsymbol{\pi}$ is unique, $\exists ! \boldsymbol{\pi} \ s.t. \ \boldsymbol{\pi}^{\top} P = \boldsymbol{\pi}^{\top}$
- $\lim_{n\to\infty} \mathbb{P}(\theta^{t+n} = j | \theta^t = i) = \pi(j)$
- π is the follows solution to the following program:

$$\sum_{i \in S} \boldsymbol{\pi}(i) = 1$$
$$\boldsymbol{\pi}(j) = \sum_{i \in S} \boldsymbol{\pi}(i) p_{ij}$$

Subject to : $\pi(j) \ge 0 \ \forall j \in S$

14 Metropolis-Hasting Algorithm

Steps

Iteration t gievn sample Θ^{t-1} :

- 1. Generate candidate value Θ^c from proposal distribution $q(\Theta^c|\Theta^{t-1})$
- 2. Calculate Metropolis Hasting Ratio (MHR) aka. acceptance rate if < 1:

$$MHR(\Theta^{t-1}, \Theta^C) = \frac{p(\Theta^c)q(\Theta^{t-1}|\Theta^c)}{p(\Theta^{t-1})q(\Theta^c|\Theta^{t-1})}$$

- 3. Generate $u \sim \text{Uniform}(0,1)$
- 4. if $u \leq \min(1, MHR(\Theta^{t-1}, \Theta^C))$, then $\Theta^t = \Theta^c$ (Keep Θ^c) Otherwise $\Theta^t = \Theta^{t-1}$
- 5. Set t = t + 1, return step 1

Special case proposals

Random walks $(\theta^c = \theta^c + \epsilon)$

Special cases for
$$\epsilon$$
: $\epsilon \sim \begin{cases} \text{Normal}(0, \sigma^2) \\ t_{2\ df} \end{cases}$ where $q(\theta^c | \theta^o) = q(\theta^o | \theta^c) \Rightarrow \text{MHR}(\theta^o, \theta^c) = \frac{p(\theta^c)}{p(\theta^o)}$ Uniform $(-b, b)$

Independence proposals

$$MHR(\theta^o, \theta^c) = \frac{p(\theta^c)q(\theta^o)}{p(\theta^o)q(\theta^c)}$$

Multidimentional Θ : One-at-a-time updats

let $\Theta_U^{t+1}, \Theta_0^t \subset \Theta$ be the set of updated or yet to be updated $\theta \in \Theta$. Then:

$$\mathrm{MHR}(\theta_i^t, \theta_i^c) = \frac{p(\Theta_U^{t+1}, \theta_i^c, \Theta_0^t \setminus \{\theta_i^c\}) q(\theta_i^t | \Theta_U^{t+1}, \theta_i^c, \Theta_0^t \setminus \{\theta_i^c\})}{p(\Theta_U^{t+1}, \Theta_0^t) q(\theta_i^c | \Theta_U^{t+1}, \Theta_0^t)}$$

15 MCMC Diagnostics

Notations

• Burn-in Length B

The idea burn-in length B is the point where the chain is converged (aka. future values will be in the limiting distribution)

• Trace plots/Sample paths

A time series plot of chains of generated values

Multiple Chains

The reason to plot multiple chains for a single random values is that a random variable θ may have multiple modes θ_1 , ..., therefore we would like to capture as many as possible. A plot of such chains does not prove convergence, but instead can indicates a lack of convergence.

Let's say variables $\theta_1, ..., \theta_K$ converge at $B = \{B_1, ..., B_K\}$ respectively, then we say any sample length $N \ge \max B$ would indicate a "good mixing"

A more quantitive assessment of a good mixing/lack of convergence is the **Brooks-Gelman-Rubin** (BGR) statistics, and is defined as below:

$$R = \frac{\text{Width of 80\% credible interval of all chains combined}}{\text{Average width of 80\% credible interval for each chain}}$$

If the chain has converged, $R \approx 1$. If the chains have yet been converged then R > 1

Variance of Monte Carlo Estimate $\hat{\mathbb{E}}\left[\theta\right]$

Notation

- $\gamma_k = \text{Cov}(\theta^i, \theta^{i+k})$: autocovariance of lag $k \geq 0$ of the chain
- $\sigma^2 = \gamma_0$: variance if the chain
- $\rho_k = \gamma_k/\sigma^2$: autocorrelation of lag k
- τ_n^2/n : Variance of $\hat{\mathbb{E}}[\theta]$

$$\operatorname{Var}\left[\hat{\mathbb{E}}\left[\theta\right]\right] = \frac{\tau_n^2}{n}$$

$$\tau_2^2 = \sigma^2 \left[1 + 2\sum_{k=1}^n \frac{n-k}{n} \rho_k\right] \text{ (Ineffiency factor/ Integrated autocorrelation)}$$

As $n \to \infty$:

$$\tau_2^2 = \sigma^2 \left[1 + 2\sum_{k=1}^n \frac{n-k}{n} \rho_k \right] \approx \sigma^2 \left(1 + 2\sum_{k=1}^\infty \rho_k \right) \Rightarrow \operatorname{Var} \left[\hat{\mathbb{E}} \left[\theta \right] \right] \approx \frac{\sigma^2 \left(1 + 2\sum_{k=1}^\infty \rho_k \right)}{n}$$

Effective Sample Size, ESS

$$n_{eff} = \frac{n}{1 + 2\sum_{k=1}^{n} \rho_k} \Rightarrow \operatorname{Var}\left[\hat{\mathbb{E}}\left[\theta\right]\right] \approx \frac{\sigma^2}{n_{eff}}$$

Autocorrelation Plots

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\sigma}^2} = \frac{\sum_{i=1}^{n-1} (\theta^i - \bar{\theta}) (\theta^{i+k} - \bar{\theta})}{\sum_{i=1}^{n} (\theta^i - \bar{\theta})^2}, \quad \bar{\theta} \text{ is the sample average}$$

Central Limit Theorem for $\hat{\mathbb{E}}[\theta]$

$$\hat{\mathbb{E}}\left[\theta\right] \sim \text{Asymptotically Normal}\left(\mathbb{E}\left[\theta\right], \frac{\sigma^2}{n_{eff}}\right) \Rightarrow \frac{\hat{\mathbb{E}}\left[\theta\right] - \mathbb{E}\left[\theta\right]}{\sigma / \sqrt{n_{eff}}} \sim \text{Normal}(0, 1)$$

Estimating Var $\left[\hat{\mathbb{E}}\left[\theta\right]\right]$

Batching is a popular method for estimating $\operatorname{Var}\left[\hat{\mathbb{E}}\left[\theta\right]\right]$, whe algorithm is as below:

- 1. Partition chain of length n into m batches of $T \in [10, 30]$ successive values
- 2. For each batch calculate the mean of the values $\bar{\theta}_i$
- 3. Estimate of Var $\left[\hat{\mathbb{E}}\left[\theta\right]\right]$ is then calculated:

$$\frac{\hat{\tau^2}}{n} = \frac{\frac{T}{m-1} \sum_{i=1}^{m} \left(\bar{\theta}_i - \bar{\theta}\right)^2}{n}$$

Improve Performance

- Changing proposal distribution
- Reparameterising model
- Blocking

Gibbs Sampler

Can be seen as a special case of a Metropolis-Hasting sampler with two features:

- The proposal distributions are conditional distributions for θ 's
- All candidates values are accepted (MHR(θ_i^t, θ_i^c) = 1)

The Algorithm

- 1. Let $\Theta = (\theta_1, ..., \theta_q) \sim p(\Theta)$
- 2. For $i \in {1,..,q}$ denote the full conditional distribution for θ_i by

$$p(\theta_i | \theta_{-i}) = p(\theta_i | \theta_1, ..., \theta_{i-1}, \theta_{i+1}, ..., \theta_q)$$

- 3. Initialise chain $\Theta^0 = (\theta_1^0, ..., \theta_q^0)$
- 4. At iteration t+1 given Θ^t , Θ^{t+1} is generated as follows:
 - Generate θ_1^{t+1} from $p(\theta_1|\theta_2^t,...,\theta_q^t)$
 - Generate θ_i^{t+1} from $p(\theta_i|\theta_1^{t+1},...,\theta_{i-1}^{t+1},\theta_{i+1}^t,...,\theta_q^t)$:
- 5. The (joint) transistion probability of going from Θ^t to Θ^{t+1} is:

$$\mathcal{K}_{Gibbs}(\Theta^t, \Theta^{t+1}) = \prod_{i=1}^q p(\theta_i^{t+1} | \theta_j^{t+1}, j < i \cap \theta_j^t, j > i)$$

An the stationary distribution is the target $p(\Theta)$

Gibbs Sampler vs Metropolis-Hasting

Gibbs Sampler

- Strengths
 - Automatically defined proposal dist.
 - Accepts all candidate values
 - views as an "adaptive algorithm"
- Weaknesses
 - Conditional distribution may not be tractable
 - Sampling may be computationally intensive
 - -100% acceptance \neq good mizing

Metropolis Hasting

- Strengths
 - flexible proposal dist., can be fast sample from, fast to evaluate MHR
 - Don't need to know conditional dist.
 - easily block updating
- Weaknesses
 - Hard to find good proposal with good mixing
 - Can take time to tune a proposal

Distrubution Table

Discrete Distributions

$\theta \sim \text{Distrubution}$	Mass function	Mean	Variance
Binimial (n, p)	$f(\theta) = \binom{b}{\theta} p^{\theta} (1-p)^{n-\theta}$	np	np(1-p)
$Poisson(\lambda)$	$f(\theta) = \frac{\lambda^{\theta} \exp{-\lambda}}{\theta!}$	λ	λ
Geometric (p)	$f(\theta) = p(1-p)^{\theta-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative Binomial (α, β)	$f(\theta) = \begin{pmatrix} \theta + \alpha - 1 \\ \alpha - 1 \end{pmatrix} \left(\frac{\beta}{\beta + 1} \right)^{\alpha} \left(\frac{1}{\beta + 1} \right)^{\theta}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}(\beta+1)$
$\text{Multinomial}(n, \boldsymbol{p})$	$f(\boldsymbol{\theta}) = \frac{n!}{\prod_{i=1}^k \theta_i!} \prod_{i=1}^k p_i^{\theta_i}$	$noldsymbol{p}$	$\operatorname{Var}\left[\theta_{i}\right] = np_{i}(1 - p_{i})$

Noted that:

$$\bullet \ \binom{n}{k} = \frac{n!}{k!(n-k!)}$$

Continous Dostribution

$\theta \sim \text{Distrubution}$	Density function	Mean	Variance
$\boxed{ \text{Uniform}[a,b] }$	$f(\theta) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Normal(\mu, \sigma^2)$	$f(\theta) = \frac{\exp\left(-\frac{(\theta - \mu)^2}{2\mu^2}\right)}{\sqrt{2\pi\sigma^2}}$	μ	σ^2
log Normal (μ, σ^2)	$f(\theta) = \frac{\exp\left(-\frac{(\log \theta - \mu)^2}{2\mu^2}\right)}{\theta\sqrt{2\pi\sigma^2}}$	$\exp\left(\mu + \frac{\sigma^2}{2}\right)$	$\exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$
$\beta(\alpha,\beta)$	$f(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
$\boxed{\text{Exponential}(\lambda)}$	$f(\theta) = \lambda \exp(-\lambda \theta)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\Gamma(\alpha, \beta)$	$f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} \exp(-\beta \theta)$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$
$\Gamma^{-1}(lpha,eta)$	$f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} \exp\left(-\frac{\beta}{\theta}\right)$	$\frac{\beta}{\alpha-1}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$
χ^2_v	$f(\theta) = \frac{2^{-v/2}}{\Gamma(v/2)} \theta^{\frac{v}{2} - 1} \exp\left(-\frac{\theta}{2}\right)$	v	2v
χ_v^{-2}	$f(\theta) = \frac{2^{-v/2}}{\Gamma(v/2)} \theta^{-\left(\frac{v}{2}+1\right)} \exp\left(-\frac{1}{2\theta}\right)$	$\frac{1}{v-2}$	$\frac{2}{(v-2)^2(v-4)}$
Dirichlet (α_1, α_k)	$f(\theta) = \frac{\Gamma(\alpha_0)}{\prod_{i=1}^k \Gamma(\alpha_i)} \prod_{i=1}^k \theta_i^{\alpha_i - 1}$	$\mathbb{E}\left[\theta_i\right] = \frac{\alpha_i}{\alpha_0}$	$\operatorname{Var}\left[\theta_{i}\right] = \frac{\alpha_{i}(\alpha_{0} - \alpha_{i})}{\alpha_{0}^{2}(\alpha_{0} + 1)}$

Noted that for Dirichlet distribution, $\alpha_0 = \sum_{i=1}^k \alpha_i$