## BIPOLAR JUNCTION TRANSISTOR (BJT)

## • Basically two *back-to-back diodes*



• Name originates from *transfer of resistor* 

- Three-Layer/Terminal [Emitter (E), Base (B), Collector (C)] Two-Junction [Base-Emitter (BE), Base-Collector (BC)] device
- Current through *two terminals* (E and C) can be *controlled* by the current through the *third terminal* (B)
  - > Current controlled device
- Bipolar device
  - ➤ Both electrons and holes participate in current conduction

#### Active device

- Capable of producing *voltage/current/power*gain
- Two basic usage:
  - > Amplification (Analog Circuits)
  - ➤ Switching (*Digital Circuits*)
- Two Types:
  - > npn
  - > pnp
- Immensely important device

# Symbols and Current-Voltage Conventions



## • Voltage Convention:

- > p-side first:
  - Sign of the voltage immediately lets us know the biasing state (forward or reverse)
- > npn: V<sub>BE</sub> (base-emitter voltage), V<sub>BC</sub> (base-collector voltage), and V<sub>CE</sub> (collector-emitter voltage)
- > pnp: V<sub>EB</sub> (emitter-base voltage), V<sub>CB</sub> (collector-base voltage), and V<sub>EC</sub> (emitter-collector voltage)
- ➤ Note: Collector-Emitter is NOT a junction

- Current Convention:
  - > npn:
    - $I_C$  and  $I_B$  flow in,  $I_E$  flows out
  - **>** *pnp*:
    - $I_E$  flows in,  $I_C$  and  $I_B$  flow out
- Applying KCL, treating the whole BJT as a big node, for both npn and pnp:
  - $> I_E = I_C + I_B$
  - > Extremely important KCL for the BJT

## **Modes of Operation**

 $V_{BC} / V_{CB}$ 

**Quadrant II (Reverse Active) BE junction reverse biased BC junction forward biased** 

Quadrant I (Saturation)

Both BE and BC
junctions forward biased

0

 $V_{\rm BE}$  /  $V_{\rm EB}$ 

Quadrant III (Cutoff)
Both BE and BC
junctions reverse biased

Quadrant IV (Forward Active)
BE junction forward biased
BC junction reverse biased

**Quadrants III and IV: Analog Domain Quadrants I and III: Digital Domain** 

Quadrant II: Finds use only in TTL circuits

# Operation in the Forward Active (FA) Mode



1 Injection Component, 2 Recombination Component, 3 Collection Component

- BE junction forward biased, BC junction reverse biased
- Emitter injects electrons to base
  - > Supplied by the external terminal to maintain charge neutrality in emitter
    - Emitter current (I<sub>E</sub>) flows out of the emitter terminal
- Base injects holes to emitter
  - This component is reduced as much as possible by doping emitter very heavily

- Injected electrons *diffuse* through the base due to *concentration gradient* 
  - At the same time, some of them *recombine* with the *holes* in the *base*
  - > Supplied by the *external terminal* to maintain *charge neutrality* in *base* 
    - Base current (I<sub>B</sub>) flows into the base terminal
- Electrons that *survived recombination* will reach the *base edge* of the *BC depletion region*

- Note the *direction* of the *electric field* (E) present in the *BC depletion region*
- This *field* will *sweep* the *survived electrons* to the *collector* 
  - These *electrons* will *flow out* of the *collector terminal* 
    - Collector current (I<sub>C</sub>) flows into the collector terminal
- Base Control:
  - ightharpoonup A small change in  $I_B$  can cause a large change in  $I_C \Rightarrow$  Transistor action

- For a *good transistor*, the *ratio*  $I_C/I_B$  should be *as large as possible*
- Can be *achieved* by *reducing* the *chances* of recombination in the base
- Two ways:
  - $ightharpoonup Reduce base doping <math>\Rightarrow$  Limits supply of holes  $\Rightarrow$  Reduces recombination
  - ➤ Reduce base width ⇒ Reduces amount of time electrons spend in base ⇒ Reduces recombination

## **Current Gain**

- Common-Emitter (CE) Current Gain:
  - $> \beta = I_C/I_B$  (*Higher the better*!)
- Common-Base (CB) Current Gain:
  - $> \alpha = I_C/I_E (\leq 1: closer to 1, better it is!)$
- Also,  $I_E = I_C + I_B$  $\Rightarrow \alpha = \beta/(\beta + 1)$  and  $\beta = \alpha/(1 - \alpha)$
- *Note*: As  $\alpha \to 1$ ,  $\beta \to \infty$
- *Typical values*:  $\beta \sim 100\text{-}5000$ ,  $\alpha \sim 0.99\text{-}0.9998$

## **Current-Voltage Relation**

- **BE** junction basically a diode
  - $> I_E = I_{ES} \exp(V_{BE}/V_T) \quad (V_{BE} > 4V_T)$ 
    - I<sub>ES</sub>: Reverse Saturation Current of BE junction
- A *fraction*  $\alpha$  of  $I_E$  reaches *collector* 
  - $> I_C = \alpha I_E = I_S \exp(V_{BE}/V_T)$ 
    - $I_S (= \alpha I_{ES})$ : Saturation current of the BJT
- The *difference* between  $I_E$  and  $I_C$  is  $I_B$

$$> I_B = I_E - I_C$$

## **Output Characteristic**



#### • Quick Estimate:

- $\triangleright$  Under *forward bias*,  $V_{BE} \sim 0.7 \text{ V}$
- > Justification:
  - $V_{\gamma} \sim 0.6 \text{ V}$
  - 0.7 V is 100 mV above  $V_{\gamma} \Rightarrow$  junction sufficiently forward biased
  - $I_C$ - $V_{BE}$  relation *exponential*  $\Rightarrow$  A *little change* in  $V_{BE}$  can cause a *large change* in  $I_C$
- > Heuristic estimate: not accurate, however, extremely useful for a quick hand-calculation
- $V_{CE} = V_{BE} V_{BC}$  (applying chain rule)

- Thus, for  $V_{CE} > 0.7 \text{ V}$ ,  $V_{BC}$  negative
  - ➤ BC junction *reverse biased* and FA operation is *maintained*
- As  $V_{CE} \rightarrow 0.7 \text{ V}, V_{BC} \rightarrow 0$ 
  - > BC junction *losing its reverse bias*
- At  $V_{CE} = 0.7 \text{ V}, V_{BC} = 0$ 
  - ➤ BC junction *under zero bias*
- For  $V_{CE} < 0.7 \text{ V}$ ,  $V_{BC}$  turns *positive* 
  - ▶ Both BE and BC junctions become forward biased ⇒ saturation

V<sub>CE</sub> = 0.7 V is known as *onset of saturation* (OS)

#### • Saturation:

- $\triangleright$  For  $V_{CE} < 0.7 V$
- > CB junction becomes *forward biased*
- > Collector also starts to *inject* electrons to base
- > Two effects:
  - > Net electrons reaching collector  $\downarrow \Rightarrow I_C \downarrow$
  - ➤ Base gets flooded with electrons
    - $\Rightarrow$  Recombination increases manyfold  $\Rightarrow$   $I_B \uparrow$
  - $\triangleright$  Thus,  $\beta \downarrow \Rightarrow$  Defined as  $\beta_{sat}$  (=  $I_{C,sat}/I_{B,sat}$ )

- Noting that  $V_{\gamma} = 0.6 \text{ V}$ , for  $V_{BC} \leq 0.5 \text{ V}$ , injection of electrons from collector to base will be negligible
  - Fig. It can be assumed that FA operation is maintained till this point, with β retaining its nominal (FA) value
  - $ightharpoonup V_{CE} = 0.2 \text{ V}$  at this point, and is known as the point of soft saturation (SS)
- Beyond this point, BJT enters the *operating* domain known as hard saturation (HS)

- In *hard saturation*,  $V_{BC} \approx 0.7 \text{ V}$ , and collector *injects* electrons *vigorously* into the base
- To *counter* this effect, V<sub>BE</sub> automatically *increases* to about 0.8 V
- At this point,  $V_{CE} = 0.1 \text{ V}$ , and is known as the *point of hard saturation* (HS)
- Note that all these numbers are for *quick* estimates, and actual values can be a little different from these

- Degree of Saturation (DoS):
  - $\triangleright$  DoS =  $\beta/\beta_{sat}$  ( $\ge 1$ )
  - ➤ Portrays how *deeply* the BJT is driven into *saturation*
- Commonly used values of parameters for quick estimate:

$$\triangleright$$
 V<sub>BE</sub>(FA) = V<sub>BE</sub>(SS) = 0.7 V

$$\triangleright$$
 V<sub>BE</sub>(HS) = 0.8 V

$$V_{CE}(OS) = 0.7 \text{ V}, V_{CE}(SS) = 0.2 \text{ V}$$

$$\triangleright$$
 DoS(FA,OS,SS) = 1, DoS(HS) > 1

- BJTs in *analog circuits* are used as *amplifiers*, and should *never* be pushed to *hard saturation* (β *drops significantly*)
  - $\succ$  Lowest limit of  $V_{CE} = 0.2 \text{ V } (soft \ saturation)$
- On the other hand, BJTs used in *digital circuits*, while *on*, are always pushed to *hard saturation*, since they act basically as *switches* 
  - $\gt V_{CE} = 0.1 \text{ V } (hard \ saturation)$

## Finding the Operating Point: Load Line Analysis

Quick estimate in FA mode:

$$\triangleright I_{\rm B} = (V_{\rm B} - V_{\rm BE})/R_{\rm B}$$

$$V_{\rm BE} = 0.7 \, {\rm V}$$

$$\triangleright I_C = \beta I_B$$

➤ Independent of R<sub>C</sub>, so long as FA operation is maintained



- For continuous variation of  $V_B$ , continuous variation of  $I_C$  and  $I_B$ 
  - The *output characteristics* will *fill up* the *entire quadrant*
- The operating point (Q-point) can lie anywhere in this quadrant
- To find the *unique* Q-point, need to *draw* the *load line*
- Load line equation:

$$ightharpoonup I_{\rm C} = (V_{\rm CC} - V_{\rm CE})/R_{\rm C}$$

## • 2 boundary points:

- $\triangleright$  For  $I_C = 0$ ,  $V_{CE} = V_{CC}$
- $\triangleright$  For  $V_{CE} = 0$ ,  $I_C = V_{CC}/R_C$
- Joining these 2 points by a straight line gives the load line
- The *intersection point* of the *load line* with the *output characteristic* gives the *Q-point*
- Gives infinite number of choices for possible Q-point

- The *best choice* for the *Q-point* is *right at the center* of the *load line* 
  - $\gt V_{CEQ}(best) = V_{CC}/2$  and  $I_{CQ}(best) = V_{CC}/(2R_C)$
- Permits the maximum possible signal swing in both directions
- If  $V_{CEQ} > V_{CC}/2$ , it's biased more towards cutoff
- If  $V_{CEQ} < V_{CC}/2$ , it's biased more towards saturation
- Either way, we will get a distorted output



Aloke Dutta/EE/IIT Kanpur



(a) Negative Clipping: Saturation Induced

(b) Positive Clipping:
Cutoff Induced

- Under application of an ac signal (v<sub>i</sub>), the dynamic operating point (DOP) will move along the load line
- For *positive*  $v_i$ , the DOP will move Q towards saturation  $(V_{CE} \rightarrow 0, I_C \rightarrow I_{C,max})$ 
  - The *output signal*  $(v_0)$  will be in its *negative excursion*
  - ightharpoonup If Q enters *saturation*, *negative peak* of  $v_0$  will get *clipped*
  - > Distorted output

- For negative  $v_i$ , the DOP will move Q towards cutoff  $(V_{CE} \rightarrow V_{CC}, I_C \rightarrow 0)$ 
  - The *output signal*  $(v_0)$  will be in its *positive* excursion
  - $\triangleright$  If Q *cuts off*, *positive peak* of  $v_0$  will get *clipped*
  - > Distorted output
- Golden rule of thumb for BJT biasing:
  - To get maximum undistorted peak-topeak swing of  $v_0$ , Q-point must be chosen to be at the middle of the load line

## • Role of $R_C$ :

- $\triangleright$  Under *FA mode*,  $R_C$  does not control  $I_C$ , however, it changes  $V_{CE}$  (=  $V_{CC} I_C R_C$ )
- $\triangleright$  If  $R_C \uparrow$ ,  $V_{CE} \downarrow \Rightarrow Q$  moves towards saturation
- $ightharpoonup \operatorname{If} R_{C} \downarrow, V_{CE} \uparrow \Rightarrow Q \operatorname{moves} \operatorname{towards} \operatorname{cutoff}$
- Thus, different values of  $R_C$  can produce different Q-points (in terms of  $V_{CE}$ )

## • DC Power Dissipation:

$$P_{D} = V_{BEQ} \times I_{BQ} + V_{CEQ} \times I_{CQ}$$

$$\approx V_{CEQ} \times I_{CQ} (under FA \ mode)$$

## **Some Observations**

- Q should be *biased* such that it is in the *FA* mode of operation
  - ➤ Behaves like a constant and ideal current source with infinite output resistance, since I<sub>C</sub> is independent of V<sub>CE</sub>
  - > Ideal region to bias a BJT
- For very high R<sub>C</sub>, I<sub>C,max</sub> very small
  - Load line may not have any intersection point in the FA region at all

- > Q-point moves to saturation region
- > Ceases to become a constant current source, since in saturation, I<sub>C</sub> becomes a strong function of V<sub>CE</sub>
- > Disastrous way of biasing a BJT
- Similar situation will arise if R<sub>C</sub> is very small
  - ➤ I<sub>C,max</sub> will become *very large* and *Q-point will move towards cutoff*
  - > Another disastrous way of biasing a BJT

- Example: Let  $V_{CC} = V_B = 5 \text{ V}$ ,  $R_B = 430 \text{ k}\Omega$ , and  $\beta = 100 \text{ }$ 
  - $ightharpoonup I_B = (V_B V_{BE})/R_B = (5 0.7)/(430 \text{ k}\Omega) = 10$ μA (assuming *FA* mode of operation with  $V_{BE}$ = 0.7 V)
  - $I_C = \beta I_B = 1 \text{ mA}$
  - $\triangleright$  V<sub>CE</sub> will *depend* on our *choice* of R<sub>C</sub>
  - $\triangleright$  R<sub>C</sub> for *best biasing* (BB) (V<sub>CE</sub>(BB) = V<sub>CC</sub>/2):
    - $R_C(BB) = V_{CC}/(2I_C) = 2.5 \text{ k}\Omega$
  - $ightharpoonup R_C$  that puts Q at OS (VCE(OS) = 0.7 V):
    - $R_C(OS) = [V_{CC} V_{CE}(OS)]/I_C = 4.3 \text{ k}\Omega$

## Any value of $R_C$ higher than 4.3 $k\Omega$ would push Q in saturation

- ightharpoonup Choose  $R_C = 20 \text{ k}\Omega$ :
  - Assuming FA operation is maintained,  $V_{CE}$  comes out to be -15 V!
  - Golden rule:
    - ❖ Potential at any point in a circuit can never go beyond the positive and negative extremes of the power supply voltages, unless there is a power source within the circuit
  - Thus,  $V_{CE} = -15 \text{ V is } absurd!$
  - Hence, Q is *no more* in the *FA* mode of operation, rather it has been pushed into *saturation*

- Whether it is in soft saturation (SS) or hard saturation (HS), would depend on the degree of saturation (DoS)
- *For HS*, *DoS must be*  $\geq$  2 ( $\beta_{sat} \leq \beta/2$ )
- Assume *HS*:  $V_{BE}(HS) = 0.8 \text{ V}, V_{CE}(HS) = 0.1 \text{ V}$ 
  - $I_{B,sat} = [V_{CC} V_{BE}(HS)]/R_B = (5 0.8)/(430 \text{ kΩ}) = 9.77$  μA
  - $I_{C,sat} = [V_{CC} V_{CE}(HS)]/R_C = (5 0.1)/(20 \text{ k}Ω) = 245 \text{ μA}$
  - $\beta_{\text{sat}} = I_{\text{C,sat}}/I_{\text{B,sat}} = 245/9.77 = 25$
  - **♦** DoS =  $\beta/\beta_{sat}$  = 4 (> 2)
  - **Assumption verified, and analysis is correct!**
- $\triangleright$  Ex.: Find the values of R<sub>C</sub> that would put Q at the edge of: i) HS, and ii) SS

#### **Base Width Modulation Effect**

- In FA mode, as  $|V_{BC}|^{\uparrow}$ , BC depletion region width  $\uparrow \Rightarrow$  neutral base width  $\downarrow$ 
  - ➤ Electrons spend less time in base ⇒ chance of recombination ↓
  - > More electrons make it to the collector  $\Rightarrow$   $I_C^{\uparrow}$  as  $V_{CE}^{\uparrow}$
  - ➤ Known as the *Base Width Modulation Effect* (or *Early Effect*)

- The *current-voltage characteristic*, including *Early Effect*, is modeled as:
  - $> I_C = I_S[exp(V_{BE}/V_T)](1 + V_{CE}/V_A)$
  - ➤ V<sub>A</sub>: *Early Voltage* (~ 130 V for *npn*, and ~ 52 V for *pnp*)
  - ➤ V<sub>A</sub> is a *negative number*, but taken to be a *positive quantity*
- Imparts a *positive slope* in the *output* characteristics in the *FA region* 
  - ➤ Introduces an *output resistance*, and makes the current source *non-ideal*!



All characteristics merge at  $|V_A|$  in the negative  $V_{CE}$  axis Note: If  $V_A \to \infty$ , all characteristics become horizontal in the FA region

#### **IEEE Notational Convention**

- Pure DC quantities:
  - > Capital letter with capital subscript (e.g., V<sub>BE</sub>)
- Pure ac quantities:
  - > Small-case letter with small-case subscript (e.g., v<sub>be</sub>)
- Instantaneous (DC + ac) quantities:
  - Either capital letter with small-case subscript (e.g., V<sub>be</sub>) or small-case letter with capital subscript (e.g., v<sub>BE</sub>)

## **Small-Signal Model**

- The *electrical equivalent* of the BJT at the *DC bias point*
- Basically an *electrical network*, having *passive and active elements*
- To obtain this model, *DC analysis* is needed, since the *information* regarding the *Q-point* (I<sub>C</sub>, V<sub>CE</sub>) is necessary
- This model for npn and pnp BJT is same

# Validity of the Small-Signal Model

- Basically linearization
   of the operating
   region around the Q point
- This linearization should not contain any higher-order terms



• To start with, assume  $V_A \rightarrow \infty$  $> I_{CO} = I_S \exp(V_{BEO}/V_T)$ 

• Thus:

$$\begin{split} I_{c} &= I_{S} \exp \left( \frac{V_{be}}{V_{T}} \right) = I_{S} \exp \left( \frac{V_{BEQ} + V_{i}}{V_{T}} \right) \\ &= I_{S} \exp \left( \frac{V_{BEQ}}{V_{T}} \right) \exp \left( \frac{V_{i}}{V_{T}} \right) = I_{CQ} \exp \left( \frac{V_{i}}{V_{T}} \right) \end{split}$$

• Expand the *exponential term* in series:

$$I_{c} = I_{CQ} \left[ 1 + \frac{V_{i}}{V_{T}} + \frac{1}{2!} \left( \frac{V_{i}}{V_{T}} \right)^{2} + \frac{1}{3!} \left( \frac{V_{i}}{V_{T}} \right)^{3} + \cdots \right]$$

• Thus:

$$i_{c} = I_{c} - I_{CQ} = I_{CQ} \left[ \frac{v_{i}}{V_{T}} + \frac{1}{2!} \left( \frac{v_{i}}{V_{T}} \right)^{2} + \frac{1}{3!} \left( \frac{v_{i}}{V_{T}} \right)^{3} + \cdots \right]$$

• True linearization of  $i_c$ - $v_i$  relation can be achieved only if all higher-order terms can be neglected  $\Rightarrow v_i$  should be  $<< V_T$ 

### **Small-Signal Model Parameters**

• Incremental Emitter Resistance (r<sub>E</sub>):

$$r_{\rm E} = \frac{i_{\rm e}}{v_{\rm i}} = \frac{\Delta I_{\rm E}}{\Delta V_{\rm BE}} \equiv \frac{dI_{\rm E}}{dV_{\rm BE}} \bigg|_{V_{\rm CE} \text{ constant}} = \frac{V_{\rm T}}{I_{\rm E}}$$

• *Transconductance* (g<sub>m</sub>):

$$g_{m} = \frac{i_{c}}{v_{i}} = \frac{\Delta I_{C}}{\Delta V_{BE}} \equiv \frac{dI_{C}}{dV_{BE}}\Big|_{V_{CE} \text{ constant}} = \frac{I_{C}}{V_{T}}$$

- ightharpoonup Thus,  $g_m r_E = I_C / I_E = \alpha \approx 1$
- > A frequently used approximation:
  - $g_m = 1/r_E$
- $\triangleright$  For  $I_C = 1$  mA:
  - $r_E = 26 \Omega$  and  $g_m = 1/26 A/V$
- $\rightarrow$  As I<sub>C</sub> $\uparrow$ :
  - $g_m \uparrow$  and  $r_E \downarrow$
  - Also  $P_D \uparrow$
- $\triangleright$  Gain = f(g<sub>m</sub>)
  - ⇒ For *higher gain*, the circuit has to be fed *more* power

#### • Base-Emitter Resistance $(r_{\pi})$ :

$$r_{\pi} = \frac{v_{i}}{i_{b}} = \frac{\Delta V_{BE}}{\Delta I_{B}} \equiv \frac{dV_{BE}}{dI_{C}} \frac{dI_{C}}{dI_{B}} \bigg|_{V_{CE} \text{ constant}} = \frac{\beta}{g_{m}} \approx \beta r_{E}$$

For 
$$I_C = 1$$
 mA and  $\beta = 100$ :  $r_{\pi} = 2.6 \text{ k}\Omega$ 

#### • Output Resistance (r<sub>0</sub>):

$$r_{0} = \frac{v_{ce}}{i_{c}} = \left[\frac{dI_{C}}{dV_{CE}}\right]^{-1} \bigg|_{V_{DE} \text{ constant}} = \frac{V_{A}}{I_{C}} = \frac{V_{A}}{V_{T}} \frac{V_{T}}{I_{C}} = \frac{1}{\eta g_{m}}$$

- For  $I_C = 1$  mA,  $V_{AN} = 130$  V, and  $V_{AP} = 52$  V:  $r_0(npn) = 130$  kΩ and  $r_0(pnp) = 52$  kΩ
- $> \eta (= V_T/V_A): 2 \times 10^{-4} (npn) \text{ and } 5 \times 10^{-4} (pnp)$
- $\geq g_m r_0 = \eta^{-1}$
- Collector-Base Resistance (r<sub>u</sub>):

$$r_{\mu} = \frac{v_{ce}}{i_{b}} = \frac{\Delta V_{CE}}{\Delta I_{B}} \bigg|_{V_{RE} \text{ constant}} = \frac{dV_{CE}}{dI_{C}} \frac{dI_{C}}{dI_{B}} = \beta r_{0}$$

 $ightharpoonup Oversimplification - actual value much higher (~ 5-10<math>\beta r_0$ ) > 100s of M $\Omega$ 

• *Emitter-Base Capacitance*  $(C_{\pi})$ :

$$C_{\pi} = C_{je} + C_{b}$$

- > C<sub>je</sub>: *Emitter-base depletion capacitance* 
  - $\approx 2C_{je0}$
  - C<sub>je0</sub>: Emitter-base depletion capacitance at zero bias
- C<sub>b</sub>: *Emitter-base diffusion capacitance* (known as *base charging capacitance*)

$$= \tau_F g_m \quad (>> C_{je})$$

- $\tau_{\rm F}$ : Base transit time
- $ightharpoonup C_{\pi} \uparrow \text{ as } g_{m} \uparrow (Problem!)$

• Collector-Base Capacitance (C<sub>u</sub>):

$$C_{\mu} = \frac{C_{\mu 0}}{\left(1 - \frac{V_{BC}}{V_{0,BC}}\right)^{m}}$$

- $ightharpoonup C_{\mu 0}$ : Collector-base depletion capacitance at zero bias
- ➤ V<sub>0,BC</sub>: Built-in voltage of collector-base junction
- > m: Grading coefficient (1/2 for abrupt step junction, 1/3 for linearly graded junction)

- Quasi-Neutral Emitter, Base, and Collector Resistances (r<sub>e</sub>, r<sub>b</sub>, and r<sub>c</sub>):
  - ➤ In IC BJT, emitter highest doped, followed by base, with collector being least doped
  - $\triangleright$  Thus,  $r_c > r_b > r_e$
  - > Typical values:
    - $r_e \sim 5-10 \Omega$
    - $r_b \sim 100-200 \Omega$
    - $r_c$  ~ can be as high as  $k\Omega$
  - > Become important only at very high frequencies

## The Hybrid- $\pi$ Model



**E,B,C: Extrinsic Terminals** 

E',B',C': Intrinsic Terminals

#### • Simplifications:

- r<sub>e</sub>, r<sub>b</sub>, r<sub>c</sub> can be *safely neglected* under *low to moderate frequencies* of operation
- $ightharpoonup r_{\mu}$  can be *neglected*, since it's *extremely large*
- At low to moderate frequencies, the capacitive reactances of  $C_{\pi}$  and  $C_{\mu}$  will be extremely large  $\Rightarrow$  can be neglected
- $\triangleright$  Leads to the *Low-Frequency T-Model*, having only *three components*:  $r_{\pi}$ ,  $g_{m}v_{1}$ , and  $r_{0}$
- > Simplest possible equivalent results if  $r_0$  is also neglected!



**Low-Frequency T-Model** 

• Note: The *output circuit* resembles a *non-ideal current source* of *magnitude*  $g_m v_1$  (or equivalently,  $\beta i_b$ ) with *output resistance*  $r_0$ 

- This model is appropriate when the ac input is applied to base
- When the ac input is applied to the emitter, then need to draw this circuit in a slightly different way



## Frequency Specifications of BJTs

- Four important characteristic frequencies:
  - $\triangleright$  Beta Cutoff Frequency  $(f_{\beta})$
  - > Unity Gain Cutoff Frequency (f<sub>T</sub>)
  - $\triangleright$  Alpha Cutoff Frequency  $(f_{\alpha})$
  - > Maximum Operable Frequency (f<sub>max</sub>)



- $i_0 \approx g_m v_1$  (neglecting reverse transmission through  $C_\mu$ )
- $v_1 = i_i Z_{eq}$

$$Z_{eq} = \frac{r_{\pi}}{1 + sr_{\pi} \left(C_{\pi} + C_{\mu}\right)} \qquad (s = j\omega)$$

#### • Thus:

$$\beta(j\omega) = \frac{i_0(j\omega)}{i_i(j\omega)} = \frac{\beta_0}{1 + j\omega/\omega_{\beta}}$$

 $\beta_0$  (=  $g_m r_{\pi}$ ): Low-frequency short-circuit common-emitter current gain

$$\omega_{\beta} = \frac{g_{m}}{\beta_{0} \left( C_{\pi} + C_{\mu} \right)}$$

- $f_{\beta} [= \omega_{\beta}/(2\pi)]$ : **Beta Cutoff Frequency**
- At  $f = f_{\beta}$ ,  $\beta = \beta_0 / \sqrt{2}$

• For  $f \gg f_{\beta}$ :

$$\beta(j\omega) \simeq \frac{g_{\rm m}}{j\omega(C_{\pi} + C_{\mu})}$$

- At  $\omega = \omega_T = g_m/(C_\pi + C_\mu)$ ,  $|\beta| = 1$
- $f_T = \omega_T/(2\pi)$ : *Unity Gain Cutoff Frequency* (also known as *Unity Gain Bandwidth*)
- Note:  $f_T = \beta_0 f_\beta$
- $f_T > f_{\beta}$ , and their spacing depends on  $\beta_0$



- Actual measurement of  $f_T$  difficult measured indirectly
- Measurement done at  $f_x >> f_{\beta}$ , where  $\beta$  has dropped to about 5-10
- Then,  $f_T = \beta(f_x)f_x$
- Using  $\alpha = \beta/(\beta + 1)$ :

$$\alpha(j\omega) = \frac{\beta(j\omega)}{1 + \beta(j\omega)} = \frac{\alpha_0}{1 + j\omega/\omega_{\alpha}}$$

 $\alpha_0 = \beta_0/(\beta_0 + 1)$ : Low-frequency short-circuit common-base current gain

$$\omega_{\alpha} = (\beta_0 + 1)\omega_{\beta}$$

- $f_{\alpha} [= \omega_{\alpha}/(2\pi)]$ : Alpha Cutoff Frequency
- At  $f = f_{\alpha}$ ,  $\alpha = \alpha_0 / \sqrt{2}$
- Note:  $f_{\alpha}$  and  $f_{T}$  extremely close to each other, with  $f_{\alpha}$  marginally higher than  $f_{T}$ , with both being much larger than  $f_{\beta}$
- Maximum Operable frequency:

$$f_{\text{max}} = f_{\text{T}}|_{\text{max}} = \frac{1}{2\pi\tau_{\text{E}}}$$

> Known as the *Transit Time Model*