Homework 2

Due Friday, February 5

Practice Problems

You don't need to turn in solutions to the following textbook problems, but you should try all of them.

• Section 1.3: 7, 17, 20, 34

• Section 2.1: 3, 5, 6, 13, 21

• Section 2.2: 2, 4, 13, 14, 15

• Extra problem: Without using a calculator, prove that $1782^{12} + 1841^{12} = 1922^{12}$ is false.

Problems to turn in

1. Let $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and $b = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ be the prime factorizations of a and b. (That is, p_1, p_2, \ldots, p_k are distinct primes and each $r_i, s_i \geq 0$.) Prove that $a \mid b$ if and only if $r_i \leq s_i$ for every i.

2. Suppose $a, b \in \mathbb{Z}$, and let n be a positive integer. Prove that $a \mid b$ if and only if $a^n \mid b^n$.

3. Suppose a and n are positive integers. Prove that $\sqrt[n]{a}$ is either an integer or an irrational number.

Note: This makes it easy to determine whether $\sqrt[n]{a}$ is irrational; if it's not an integer, then it must be irrational. For example, $\sqrt[4]{120}$ is clearly not an integer, so we know that it is irrational.

Recall that the binomial coefficients are defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

where n is a non-negative integer and $k \in \{0, 1, ..., n\}$. These numbers are called binomial coefficients because they are the coefficients when you expand a power of a binomial:

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n = \sum_{k=0}^n \binom{n}{k}x^{n-k}y^k.$$

For this assignment, you may assume the above theorem without proof. Since it is obvious that the coefficients of $(x + y)^n$ are integers, you may therefore also assume that the <u>binomial</u> coefficients are all integers.

¹This equation was seen in the Simpsons episode "Treehouse of Horror VI." If it were true, it would be a counterexample to Fermat's Last Theorem.

- 4. Prove that if p is prime and $1 \le k \le p-1$, then $p \mid \binom{p}{k}$.
- 5. Prove that if p is prime, then for any $a, b \in \mathbb{Z}$,

$$(a+b)^p \equiv a^p + b^p \pmod{p}.$$

Note: This is not necessarily true if p is composite. For example, $(1+1)^4 \not\equiv 1^4 + 1^4 \pmod{4}$.

6. Find all solutions to $X^3 = 3$ in $\mathbb{Z}/5\mathbb{Z}$. (Be sure to prove that you found all the solutions.)