Teaching Introductory Statistics with R/RStudio

Probability Distributions

Central Limit Theorem

Probability Distributions in R

Four Functions that can be used for any Distribution:

- Probability/Proportion/Area Under Distribution Curve (Integral)
- q → Quantile (Decimal form of Percentile)
- d → Density (y-coordinates of points on the Density Curve)
- **r** \rightarrow Random Draw from the Distribution

Put one of these letters in front of the density name.

Example - Normal Distribution: pnorm(), qnorm(), dnorm(), pnorm(), qnorm(), dnorm(), rnorm()

	Distribution Functions				
	<u>Beta</u>	pbeta	qbeta	dbeta	rbeta
	<u>Binomial</u>	pbinom	qbinom	dbinom	rbinom
,	<u>Cauchy</u>	pcauchy	qcauchy	dcauchy	rcauchy
	<u>Chi-Square</u>	pchisq	qchisq	dchisq	rchisq
	<u>Exponential</u>	pexp	qexp	dexp	rexp
	<u>F</u>	pf	qf	df	rf
	<u>Gamma</u>	pgamma	qgamma	dgamma	rgamma
	Geometric	pgeom	qgeom	dgeom	rgeom
	<u>Hypergeometric</u>	phyper	qhyper	dhyper	rhyper
	<u>Logistic</u>	plogis	qlogis	dlogis	rlogis
	<u>Log Normal</u>	plnorm	qlnorm	dlnorm	rlnorm
	Negative Binomial	pnbinom	qnbinom	dnbinom	rnbinom
	<u>Normal</u>	pnorm	qnorm	dnorm	rnorm
	<u>Poisson</u>	ppois	qpois	dpois	rpois
	Student t	pt	qt	dt	rt
·	Studentized Range	ptukey	qtukey	dtukey	rtukey
	<u>Uniform</u>	punif	qunif	dunif	runif
	Weibull	pweibull	qweibull	dweibull	rweibull
	Wilcoxon Rank Sum Statistic	pwilcox	qwilcox	dwilcox	rwilcox
	Wilcoxon Signed Rank Statistic	psignrank	qsignrank	dsignrank	rsignrank

xpnorm()

Z-Scores: Values in the standard normal distribution, mean is 0, standard deviation is 1.

Find the probability of obtaining a z-score less than 1.

```
xpnorm(1, mean = 0, sd = 1, lower.tail = TRUE)
[1] 0.8413447
```


A population has a mean of 100 and standard deviation of 10. Find the probability that a randomly selected member of this population has a value of 90 or greater.

xpnorm(90, mean = 100, sd = 10, lower.tail = FALSE)

[1] 0.8413447

xpnorm()

Find the probability of obtaining a z-score between -2 and -1.

```
xpnorm(c(-2,-1), mean = 0, sd = 1)
[1] 0.02275013 0.15865525
```


xqnorm()

A population has a mean of 100 and standard deviation of 10. Find the 75th percentile.

xqnorm(0.75, mean = 110, sd = 10, lower.tail = TRUE)

[1] 0.6744898

Which two z-scores cut out the middle 95% of the standard normal distribution?

xqnorm(c(0.025,0.975), mean = 0, sd = 1)

Other examples - Binomial and t

Binomial Experiment: Find the probability of at most 3 successes in 10 trials given a

success probability p = 0.25.

```
xpbinom(3, size = 10, p = 0.25, lower.tail = TRUE)
[1] 0.7758751
```

Which two t-scores cut out the middle 95% of the t-distribution with 17 degrees of freedom?

```
xqt(c(0.025,0.975),df = 17)
[1] -2.109816 2.109816
```


d (Density) and r (Random)

Plot The Z-Curve. Generate points, connect with line.

```
> x <-seq(from = -4, to = 4, by = 0.1)
> y <-dnorm(x, mean = 0, sd = 1)
> gf_line(y ~ x)
```


One Random draw from a Uniform distribution Unif(0,1)

```
> runif(1, min = 0, max = 1)
[1] 0.6123176
```

Random sample of size 5 from a Normal distribution N(0,1)

```
> rnorm(5, mean = 0, sd = 1)
[1] 0.5920287 0.4656121 -2.0115025 0.3550288 1.1795863
```

Simulation in R - Central Limit Theorem

SIMULATION EXPERIMENT: Understanding the variability of a point estimate

Suppose we knew that the true proportion of <u>ALL</u> American adults who support expansion of solar energy is known to be 88%, so p=0.88 is the population parameter.

If we poll 1000 U.S. adults, how close would sample proportion \widehat{p} be to the true parameter p = 0.88?

If we take many random sample, what would the distribution of all the \widehat{p} 's look like?

CLT Simulation in R: Understanding Variability of a Point Estimate

Poll 1000 Adults, calculate proportion of support. Repeat 500 times, get 500 sample proportions!

```
# Let "1" represent "support", "0" represent "not support"
pop size <-250000000
# Let's make a vector of the population opinions with 88% 1's and 12% 0's
opinions <-c(rep(1, 0.88*pop_size), rep(0, 0.12*pop_size))
# Let's take a sample of size 1000 from the population of opinions
s <-sample(opinions, size = 1000)</pre>
# Let's find the proportions for our sample
prop(s)
# Let's repeat 500 times the process of sampling 1000 opinions.
# We'll store in the results data frame, where each row is a sample of 1000
# dimensions of data frame is 500 rows, 1000 columns:
df sample <- do(500) * sample(opinions, size = 1000)</pre>
dim(df sample)
df sample
# Let's now find the proportion for each sample. We do this by applying the prop function to each row.
# Then we'll store the proportions from all 500 samples in a vector.
prop_support <-apply(df_sample, prop, MARGIN = 1) #1 for rows, 2 for columns.</pre>
# See distribution of these proportions. Use gf_dhistogram for density. Then overlay with normal distribution
gf_dhistogram(~ prop_support, bins = 12, color= "black", fill = "gold") %>%
        gf fitdistr(dist = "dnorm")
```

CLT Simulation in R: Understanding Variability of a Point Estimate

