JichenDai_CS 524_Lab_#5

A. Download data.at:

https://drive.google.com/drive/folders/1thu0jOyjMAJ33gdtcC-25OHm-N78PYHc

B. Create an Amazon S3 bucket and load the above data into this bucket.

1. create 3s bucket as we did in Lab3

2. upload those five files.

C. Open Amazon SageMaker

D. Launch a Notebook instance (and at the same time create the new IAM permissions for the Amazon S3 bucket you had created)

1. Create a IAM group for Amazon S3 bucket.

2. Attach policy choose "AmazonS3FullAccess".

3. Click on "next" and "create group".

4. Go inside the group, click on "Add user to groups". Add IAMaccessor. 2020-04-28 23:18 EDT

5. Go to sagemaker, click "Notebook instances" and click "create notebook instances".

6. Crreate an IAM role

Creation Time:

7. Then, click on create, we will got a new instance

E. Load the notebook

1. Click on "open jupiter lab"

2. click on "upload" to upload the jupyter file.

3. open the jupyter file and choose "conda python3"

F. Edit the bucket name and run the code on each line of the notebook

1. Edit bucket name

```
role = get_execution_role()
bucket='jichenbucket'
key1 = '04-18-2020.csv'
```

2. Run the code piece by piece

```
data_location4 = 's3://{}/{}'.format(bucket, key4
```

Import the data

```
4]: latest_data=pd.read_csv(data_location1)
    confirmed_df=pd.read_csv(data_location2)
    deaths_df=pd.read_csv(data_location3)
    recoveries_df=pd.read_csv(data_location4)
```

```
]: latest_data.head()
```

```
: confirmed df.head()
```

]: cols = confirmed_df.keys()

Get all the dates for the outbreak

MSE: 2375651382.185125

[21]: s3.Object(bucket_name='jichenbucket', key='Output/SVM')


```
|All | # Future predictions using SAM | sen d* = pd.DataFrame({ Date : future forcest_dates(-10:), "SAM Predicted Number of Confirmed Cases Moridatos : np.round(sym pred)-10:(}))
(41):

0 04/20/30/0
            Date SVM Predicted Number of Confirmed Cases Worldwide
      1 04/21/2020
                                                         2703801.0
      2 04/22/2008
                                                          2825/140
     $ 04/23/2020
                                                         2051712.0
      4 04/24/2020
     $ 04/25/2000
                                                          3216330,0
      6 04/26/2000
                                                          3355132.0
     7 04/27/2020
                                                          3458387.0
      8 04/28/2020
                                                          36461903
      9 04/29/2020
                                                         1799636.0
|st|| linest pred = linest pred.reshape(1,-1)|0|
set = pd.SataFrame(('Data': future forcast dates(-10:), 'Polytomial Predicted Number of Confirmed Cases Norloade': np.round(linear pred[-10:])))
set discontinued for the predicted Number of Confirmed Cases Norloade': np.round(linear pred[-10:])))
      4
             Date Polynomial Predicted Number of Confirmed Cases Worldwide
      0 04/20/2020
      1 04/21/2020
                                                               2883303.0
      2 04/22/2020
      3 -04/23/2020
                                                               3169752.0
      4 04/24/2020
                                                               3319014.0
      5 04/25/2020
                                                               3474527.0
     7 04/27/2020
                                                               3798185.0
      8 04/28/2020
                                                                3967269.0
      9 -04/29/2020
                                                               4141283.0
Date Bayesian Ridge Predicted Number of Confirmed Cases Worldwide
 [AE]:
      0 04/20/2020
                                                                  2769996.G
      3 04/21/2020
                                                                  2913910.0
      2 04/22/2000
                                                                   3063326.0
      3 04/23/2020
                                                                   3218337.0
      4 04/24/2020
                                                                   3379081.0
      5 04/25/2020
                                                                   3545096.II
      6 04/25/20/0
                                                                   3718321.0
      7 04/27/2020
                                                                   $89 (099)
       8 04/25/2020
```

427388341

9 04/29/2020

Recovery Rate (worldwide) "suceptible to change "

```
Mecowary wase (pointwise) "integrate is change"

| mean recovery rate = tp.mean(recovery rate, color="block")
| plt.plm(signuted dates, recovery rate, color="block")
| plt.plm(adjusted dates, recovery rate, linestyle="..., color="black")
| plt.shelims(y = mean recovery rate, linestyle="..., color="black")
| plt.shelims(y = mean recovery rate, ) = "to(mean recovery rate)], prop=("size"; 38))
| plt.shelims() = "size = ("size = 132) | plt.ylate() | Recovery rate, ) = "to(mean recovery rate)], prop=("size"; 38))
| plt.ylate() | Recovery fate, | vize=18)
| plt.ylate() | Reco
```

[48]: wl.Object(bucket name: jichenbucket', Ney-'Output/Recovery Eate')


```
Complete desired aspects concerns.

[80]: District adjusted dates, total deaths, colors's']
plt.plot(adjusted dates, total processed, colors's')
plt.legend(['Dath', 'Recoveries'], lors'best', fontsize-20)
plt.legend(['Dath', 'Recoveries'], lors'best', fontsize-20)
plt.stict('Mather of Comess', size-30)
plt.stick(size-30)
plt.stick(size-30)
ing_Sata = in.DytesIO()
plt.sucwing(ing_date, formats'pog')
ing_data_seck[0]
al = botol.resource['al']
bucket[ = al.Dutes(bucket])
bucket[ = al.Dutes(Body-ing_date, ContentType-'Enegs/pog', Key-'Output/Death is_Becomesta_')
[60]: x3.Object(bucket_name='jichembucket', key='Output/Death_vx_Recoveries')
                                                                                                             Number of Coronavirus Cases
                       600000 Dath
Recoveries
             Number of Cases
300000
                        500000
                        100000
                                                                                                   20
                                                                                                                          40 60
Dave Since 1/22/2020
```

0	US	732197	38664	SAIHU	628693	0.0238077
1	Span	191726	20041	74797	96206	0.10454
2	Italy	1/5925	21227	44927	107771	# 1.520am
3	Enunce	149149	11145	36587	91217	0129/01
A	Germany	141142	4459	85400	53483	0.0511074
5	United Kingdom	115314	15498	.414	99402	010439
ā	Chris	81/87	46.95	77614	15.87	0.0553308
7	Turkery	82129	1890	10453	69986	0.0229561
8 9	Itum	80668 5/18.1	50st 5451	55907 8348	19850 23382	0 DEZZ125
10	Belgium	36793	313	3057	11421	0.00050705
11	Brazil	3653	2354	140/6	20278	0.0642152
12	Lenede	34356	1400	10064	21992	0.0407490
13	Natherlands	31/66	3613	317	2/836	0111119
14	Sootzerland	27404	1368	17100	8936	0.047919
15	Portugal	19685	687	610	18388	(1034899)
16	India	15722	521	2463	12/58	0.0551383
17	Interes	14758	571	n	14110	(10.98600)
18	Austria	14671	443	10214	4014	0.0301956
19	Peru	14420	348	5554	7388	0.0241331
20	Sowden	13822	1511	550	11/61	@ 1079.512
21	brael	1,1285	164	3456	9845	0.0123634
22	- Kerree, Saturb	10853	232	7957	2484	0.021777
23	Japan	10296	222	1069	9005	0.0215618
24	Chile	9/30	126	4035	5569	0.0129496
25	Ecuador	9022	456	1008	7558	0.0505431
26	Voland	8742	347	981	7414	0.039693
27	Romania	8418	421	1/30	6267	(2:05/3011)
28	Sauck Andres	8274	92	1529	6851	0.011119
29	Pekisten	76.93	14.8	1632	5663	0.018722
30	Danmek	7437	346	4031	3060	0.0465241
31	Noney	7096	164	32	6640	0.023308)
32	Mexico	6875	546	2125	4204	0.0794182
33	Crechie	8806	181	1227	5198	0.027,199
14	Australia	6547	67	4124	2356	0.010233
15	United Arab Eminates	6302	37	1188	5077	0.00587119
36	Indonesia	6248	535	631	5082	0.0056274
17	Philippines	8007	397	516	5174	0.065221
18	Sertria	5994	117	657	5241	0.0195195
39	Seigepore	5992	- 11	740	5241	0.00183578
40	Mulayria	5305	86	3102	2115	0.0165881
41	Ukrane	5105	733	275	4698	(1.025047)
42	Oster	5008	d	510	4490	E00159744
43	Belinus	4779	45	142	4392	0.009416
44	Dominican Republic	4335	217	512	3806	0.0500577
45	Panama	4210	116	122	1972	
46	Finland	1881	90	1700	1891	(1.0244495
47 48	Lownbourg Colombia	3537	72	501	2864	0.020356
49		3439 3034	151	6.14	2652	
50	South Africa	305/ 305/		901	20/9	0.0171391
51	Egypt. Argentine	2758	129	701	2107	0.04677
52	Thelend		47		859	0.017197
53	Moreces	2753 2685	137	1787 314	2234	0.051024
54	Algeria	2534	367	894	1273	23448
55	Moldow	25/8	57	191	1930	0.023569
56	Greate	2235	110	269	1856	2,04521
57	Bangladash	2144	84	56	1994	0.039179
58	Hungary	1834	1/2	231	14:11	0.091784
59	Crostia	1832	29	615	1178	0.021288
-						
60	Safrtein	1273		755	1011	0.00394811

Country Name Number of Confirmed Cases Number of Deaths Number of Recoveries Number of Active Cases Mortality Rate

7): Country Number of Confirmed Cases Number of Deaths Number of Recoveries Mortality Rate Province/State Name 241712 17671 05 Huber 65129 4512 H-D667783 China 3 Mecsechusetts 05 36372 3404 0.0.586011 Pennsylvania 1.5 37652 1042 0.0329233 Michigan 05 30795 2308 1/5 0.007.0883 7 tiros COS 29160 1259 0.0431756 1/5 0.0293425 8 Florida. 25492 740 9 Lousiere 05 23580 1267 0.051732 W 15/04 11 05 673 Georgia 17669 105 17550 1086 0.0618803 12 Connecticut Cluebec Cartetle 13 17521 588 0.0392572 14 100 12,526 425 0.0341554 Asshington 05 11776 513 0.052055 10 Ontario Cameria 11013 564 0.0512122 545 17 Indiana 05 10641 0.051217 18 Ohio 0.0 10022 453 0.0441205 19 Colorado 05 19047 589 0.0429977 155 8053 Virginia. 0.0320377 21 COS 6589 142 0 0.0215511 Service store 0.5 85000 587 0 0.0295512 22 North Carolina 23 Mwateri COS 5579 197 0 0.035311 24 105 4724 180 0.0387033 4712 05 153 0.0024703 Rhode Island 1/5 4491 137 0 0.0305055 20 27 COS 4248 119 0.0000132 South Carolina 28 Wincessin 1.0 4199 232 0.0504882 29 Minnsippi 05 3974 152 0.0382486 1/4 3626 153 0.0416437 Australia 2026 26 1179 31 New South Wales 0.00888585 32 Unit 1.5 2917 25 0-II.00857045 33 05 2707 144 0.0031954 2550 91 35 Alberta artette 2562 51 0.0199063 0.0263967 30 Detayore 1.6 25.88 675 0 low 74 37 COS 2513 0.0294469 38 1/4 2465 0.0551/24 19 05 125 0.0547759 12 6.6 1844 40 Cheigon 0.0390456 41 Karmes 05 1821 25 0.0466776 42 New Mexical 1.00 1/98 53 0.0294772

05

144

1/44

0.021789

0.0250819

43

G. Check the results in the output folder in the Amazon S3 bucket you had created.

1. Go to the bucket, there is a output folder

Output folder includes all output files we generated.

Cloclusion:

As we can see, the SageMaker provides a powerful platform for us to deploy our projects. And it cooperates with S3 storage and IAM to give us a great experience. We don't need to consider about things such as environment, thus we can concentrate more on our project.