

DEPARTMENT OF CHEMISTRY

3º Teste de Química Física 2, 2022/06/06, 18:00 H

Nº			
Nome:			

1. A seguinte reação pode ser feita sobre vários catalisadores sólidos

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

Explique **detalhadamente** a razão destas observações seguintes, deduzindo as expressões, definindo k', k'', k''' e k'''' e avançando um **mecanismo** para cada caso.

1.1. Quando a reação se processa sobre platina, a velocidade é dada por:

$$v = k' \frac{p_{O_2}^{\frac{1}{2}}}{P_{CO}}$$

1.2. Quando a reação se processa sobre **níquel**, a velocidade é dada por:

$$v = \mathbf{k}'' \frac{p_{CO} p_{O_2}^{\frac{1}{2}}}{p_{CO2}^2}$$

DEPARTMENT OF CHEMISTRY

c) Quando a reação se processa sobre ródio, a velocidade é dada por:

$$v = \mathbf{k'''} \frac{p_{CO}p_{O2}}{p_{CO2}}$$

d) Quando a reação se processa sobre tungsténio, a velocidade é dada por:

$$v = \mathbf{k''''} p_{O2}$$

2. O Teflon é um material hidrofóbico por excelência, possuindo uma energia superficial de 19 mJ ${\rm m}^{\text{-}2}$.

Os novos materiais super-hidrofóbicos apresentam ângulos de contacto com a água a 25° C ($\gamma_{LV}/mN m^{-1} = 72.8$) acima dos 140° . Prove que a **energia superficial** destes materiais se situa nos 10^{-3} N m⁻¹. Relacione com o valor para o Teflon e diga quais as aproximações feitas.

DEPARTMENT OF CHEMISTRY

3. Seguiu-se a **adsorção de N_2** sobre 5,623 g de sílica-gel a 77 K. A esta temperatura, a pressão de saturação do azoto é de 1021 mbar.

P/mbar	52	130	208	286	354	402
n /mmol	28,4	30,9	34,0	37,7	39,1	47,0

3.1. Se a área de uma molécula de N_2 for 16,2 \mathring{A}^2 , qual a **área disponível** para a adsorção do azoto por grama de sílica-gel prevista pela **Teoria de B.E.T.**?

DEPARTMENT OF CHEMISTRY

3.2. Calcule a **área disponível** para a adsorção do azoto por grama de sílica-gel prevista pela **Teoria de Langmuir**. Continue a usar a área de uma molécula de N_2 como 16,2 \mathring{A}^2

3.3 Compare os valores obtidos em 3.1 e 3.2 e dê uma explicação para a semelhança ou diferença entre eles.

3.4. Considerando que Nm=0,0075 mol g⁻¹, e que para se obter 73,3% de cobertura do adsorvente a 82,5 K a pressão é de 250 mbar, calcule a **entalpia de adsorção** para este processo. Explique se será uma adsorção física ou química.

4. O álcool cetílico é usado nas formulações cosméticas para dar textura e consistência aos cremes e emulsões cosméticas, devido a sua compatibilidade com a pele.

A partir de 250 cm³ de uma solução-mãe de álcool cetílico (CH₃(CH₂)₁₄CH₂OH) (M=242,44 gmol⁻¹) de concentração 0,015 mol dm⁻³, prepararam-se as seguintes soluções aquosas em balões volumétricos de 25 ou 500 ou 10 cm³, e mediu-se a tensão superficial de cada uma delas a 37°C.

	1	2	3
V _{CH3(CH2)14CH2OH} /cm ³	15	125	1,5
V _{Total} /cm ³	25	500	10
γ/mN m ⁻¹	43,1	60,2	69,0

DEPARTMENT OF CHEMISTRY

4.1. Calcule a **área superficial** ocupada por uma molécula de álcool cetílico para uma concentração de 0,006 mol dm⁻³.

4.2. O álcool cetílico (CH₃(CH₂)₁₄CH₂OH) é usado como um filme fino sobre a superfície da água em reservatórios para impedir a evaporação. Tendo em conta que o ponto de Pockels é de 20 Å², mostre que 30 g de álcool cetílico por cada hectare (10000 m²) de superfície de água é suficiente para formar um filme de monocamada saturada.

5. Esta é uma seção transversal de uma folha de relva, corada artificialmente para microscópio, vista por um microscópio eletrónico. As *carinhas sorridentes* são os canais pelos quais a água é puxada por capilaridade, desde o início da raiz até ao topo da planta.

SCIENCE & TECHNOLOGY

Se considerarmos que estes canais têm em média um diâmetro que é a milésima parte do milímetro, que a seiva que corre nestes canais tem uma densidade e uma tensão superficial **iguais à da água** à temperatura ambiente (densidade da água a 25°C 0,99705 gcm⁻³ e tensão superficial da água a 25°C 72,8 mNm⁻¹) e que as paredes internas destes canais (por ser material vegetal constituído em grande parte por água) têm uma **energia superficial** igual à tensão superficial da água, calcule a **altura máxima** que a seiva pode subir por capilaridade.

Auxiliar de memória

Constantes

 $h=6,625x10^{-34} Js$ $k_B=1,38x10^{-23} \text{ JK}^{-1}$ $c=2,998x10^8 \text{ ms}^{-1}$ $m_p=1,673x10^{-27} \text{ Kg}$ $m_e=9,11x10^{-31} \text{ Kg}$ $R=8,314 \text{ J mol}^{-1}\bar{K}^{-1}=1,987 \text{ cal mol}^{-1}K^{-1}=$ =0.082 atm dm³mol⁻¹K⁻¹=0.083 bar dm³mol⁻¹K⁻¹ N_A=6,023x10²³ mol⁻¹ $u=1,66x10^{-27} \text{ Kg}$ 1bar=10⁵ Pa $g=9.8 \text{ ms}^{-1}$

C: 12.01 u.m.a. H: 1.0079 u.m.a. N: 14.01 u.m.a. O: 16.00 u.m.a. Cl: 35.5 u.m.a.

$$h = \frac{2\gamma\cos\theta}{(\rho_1 - \rho_2)gr_t}$$

$$P = \frac{5.6234 \times 10^6 \, \text{x MM x } \gamma^{1/4}}{10^6 \, \rho}$$
 Parácor

$$\Gamma_{2,1} = -\frac{c}{RT} \frac{d\gamma}{dc}$$
 Isotérmica de Gibbs
$$\theta = \frac{V}{V_{m}} = \frac{cz}{(1-z)[1+(c-1)z]}$$
 Isotérmica de BET
$$\theta_{A} = \frac{N}{N_{m}} = \frac{K_{A}p_{A}}{1+K_{A}p_{A}}$$
 Isotérmica de Langmuir

$$\gamma_{SV} - \gamma_{SL} = \gamma_{LV} \cos \theta$$
 Equação de Young
$$\ln \frac{P}{P_0} = \frac{V_i}{RT} \frac{2\gamma}{r}$$
 Equação de Kelvin

Equação de 1 reta com 2 pontos (x_1, y_1) e (x_2, y_2) : $y - y_1 = \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$

$$y - y_1 = \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1)$$

$$1 + \cos\theta = 2(\frac{\gamma_{SV}}{\gamma_{LV}})^{1/2}$$