ANALOG CIRCUITS DESIGN

AE6: Operational Amplifiers V, Differential circuits – instrumentation amplifiers

Course overview

- 1. Single ended versus differential
- 2. The difference amplifier
- 3. Common-mode analysis
- 4. Applications of differential circuits in the digital world

1. Single-ended versus differential: the challenge

The challenge is to measure a mechanical force using a strain gauge which is an insulating flexible backing supporting a metallic foil pattern.

At rest, the metallic pattern exhibits a nominal resistance. The strain causes a deformation of the metallic foil and:

- When stretched, the metal becomes longer and narower: its resistance increases,
- When compressed, the metal becomes shorter and wider: its resistance decreases

The relative variation of the resistance ($\Delta R/R$) is however in the $\pm 10^{-3}$ range, i.e. for a 100Ω nominal resistance, variation is only $\pm 0.1\Omega$

1. Single-ended versus differential: Single-ended measurement

Single-ended arrangement: the signal to measure Eg is referred to the ground Eg exhibits a large constant bias but very little variation in presence of strain

The large bias, unless it is cancelled, prohibits high gain for the input amplifier

1. Single-ended versus differential: single-ended measurement

Assuming that the bias is cancelled in Eg, only the small variation remains and:

$$Vout = A Vin = A(Eg \frac{Rin}{Rin + Rg} + Vp \frac{Rin}{Rin + Rg} + Ip Rin)$$

Vp: parasitic voltage due to a large distance between the two local ground points

Ip: parasitic current created by an electromagnetic field

1. Single-ended versus differential: differential measurement

Under strain ($\Delta R/R = 10^{-3}$)

Differential arrangement: the signal to measure is now Egp – Egn

Ground still exists but is no longer the reference

The bias can be any, only the difference between Egp and Egn matters

1. Single-ended versus differential: differential measurement

$$Vout = Ap \ Vinp - An \ Vinn = Ap \ Egp \ \frac{Rinp}{Rinp + Rgp} - An \ Egn \ \frac{Rinn}{Rinn + Rgn}$$

$$+ Ap \ Vp \ \frac{Rinp}{Rinp + Rgp} - An \ Vp \ \frac{Rinn}{Rinn + Rgn}$$

$$+ Ap \ Ip \ Rinp - An \ Ip \ Rinn$$

Parasitic terms cancel if symmetry is ensured:

- At amplifier's level \rightarrow Ap = An, Rinp = Rinn
- At sensor level → Rgn = Rgp

1. Single-ended versus differential: common mode & differential mode

Differential operation involves two voltages (for example Egp and Egn)

Common-mode voltage (Vcm): the amount which is the same on both Egp and Egn. \rightarrow Here, Vcm = VCC/2

Differential-mode voltage (Vd): the amount which is the difference of the terms having the same value but opposite polarity on both Egp and Egn.

$$\rightarrow$$
 Here, Vd = VCC (Δ R/R)

1. Single-ended versus differential: common mode & differential mode

In a general way, when information is conveyed by two voltages V1 and V2:

V1 and V2 can be expressed as $V1 = Vcm + \frac{Vd}{2}$ and $V2 = Vcm - \frac{Vd}{2}$ Information is carried by the differential-mode voltage Vd = V1 - V2Perturbators are carried by the common-mode voltage $Vcm = \frac{V1+V2}{2}$

Goals for the differential amplifier:

Offering a stable and predictible gain for differential-mode signals Reducing as much as possible the effects of common-mode perturbators (achieved through circuit symetry)

2. The difference amplifier: basic circuit

Goals: the amplifier must exhibit at both inputs:

- The same gain with opposite sign The same (high) impedance

Gain:
$$Vout = \frac{-R2}{R1} Vin1 + \left(1 + \frac{R2}{R1}\right) Vin2$$

Input impedance: Zin1 = R1 $Zin2 \rightarrow \infty$

This circuit doesn't meet the expectations neither for gain nor input impedance

2. The difference amplifier: improved basic circuit

Gain:
$$Vout = \frac{R2}{R1} (Vin2 - Vin1)$$

Importance of R2/R1 ratio matching

Input impedance:
$$Zin1 = R1$$
 $Zin2 = R1 + R2$

$$Zin2 = R1 + R2$$

This circuit meets the expectations for gain but not for impedance

2. The difference amplifier: the instrumentation amplifier

Adding voltage followers increase and symmetrize input impedances

Problem: overall gain is only performed by last stage → R2/R1 > 1

- → two external resistors needed
- → matching is difficult for external resistors

Gain of last stage is set to 1 (R1 = R2) \rightarrow matching greatly improved (internal res.) Gain is implemented on first stage (A1, A2) with only one external resistor R_G

2. The difference amplifier: the instrumentation amplifier

Which expression for the amplifier's gain?

1/ Amplifier's output voltage is:

$$Vout = \frac{R2}{R1} (Vx2 - Vx1)$$

2/ Vin2=0

$$Vx1a = \left(1 + \frac{R3}{R_G}\right)Vin1 \qquad Vx1b = \frac{-R3}{R_G}Vin2$$

$$Vx1b = \frac{-R3}{R_G}Vin2$$

$$Vx2a = \frac{-R3}{R_G}Vin1$$

$$Vx2b = \left(1 + \frac{R3}{R_G}\right)Vin2$$

4/ Superposition:
$$Vx1 = \left(1 + \frac{R3}{R_G}\right)Vin1 + \frac{-R3}{R_G}Vin2$$
 $Vx2 = \frac{-R3}{R_G}Vin1 + \left(1 + \frac{R3}{R_G}\right)Vin2$

5/ Finally:

$$Vout = \frac{R2}{R1} \left(1 + \frac{2R3}{R_G} \right) (Vin2 - Vin1)$$

2. The difference amplifier: the instrumentation amplifier

Some commercially available circuits... among many others

INA818 Simplified Internal Schematic

- Second stage gain = 1 (R1=R2=40kΩ)
- R3 (25k Ω) is laser-trimmed to guarantee an accurate absolute value
- Gain can be set between 1 and 1000
- Implements a V_{REF} input* to allow an offset at the output

- Digitally programmable gain (36 different values)
- Calibration register for each gain value
- 2 multiplexed channels
- Differential output
- Implements a V_{OCM} input to allow an offset at the output

*The external voltage source connected to V_{RFF} must exhibit a negligible output resistance with respect to $40k\Omega$

3. Common-mode analysis: when common-mode becomes differential...

Taking into account that resistors haven't exactly their nominal value:

The gain is sligthly different for Vin1 and Vin2: $Vout = G_{+} Vin2 - G_{-} Vin1$

$$Vout = G_+ Vin2 - G_- Vin1$$

Consequence if Vin1 and Vin2 have a non-zero common mode:

$$Vout = G_{+}\left(Vcm + \frac{Vd}{2}\right) - G_{-}\left(Vcm - \frac{Vd}{2}\right) = \frac{Vd}{2}(G_{+} + G_{-}) + Vcm(G_{+} - G_{-})$$

Slight gain error for Vd/2

Vmc is not fully canceled

A portion of the common-mode signal is viewed as a differential one

3. Common-mode analysis: Common-Mode Rejection Ratio

The Common-Mode Rejection Ratio (CMRR) is a measure of the ability of the amplifier to reject (cancel) the common-mode signals

$$CMRR = \frac{Adm}{Acm}$$

Adm: differential-mode gain

Acm: common-mode gain

CMRR is frequency depedent

How to use the CMRR value?

Vout = Adm Vd + Acm Vcm

Example: INA828

3. Common-mode analysis: Common-Mode Rejection Ratio

Common-mode error calculation example:

$$Gain = 1003 = Adm$$

$$Vd = 2mV$$

Vd = 2mV \rightarrow Expected value: Vout = 2.006V

CMRR = 140dB (worst case @ G=1000)
$$\rightarrow$$
 CMRR = $10^7 \rightarrow$ Acm $\approx 10^{-4}$

Real value: Vout = $1003 \times 2mV + 10^{-4} 6V = 2.0066V \approx 0.03\%$ error, < 0.5LSB @ 10 bits, Vref = 3.3V)

Vcm range is limited, check datasheet

4. Applications of differential circuits in the digital world

Why differential signals for digital applications?

Because
$$i = C \frac{dV}{dt}$$

Digital signals → high dV

- + high throughput → low dt
- + Long distance → high capacitance
- = high current from supply

Reducing dV (lower supply voltage) helps reducing the supply current but also increases susceptibility to perturbators

Perturbators are common-mode signals, thus the interest in using differential signals

RS485 (computers, industry) CAN bus (automotive, industry)

Ethernet

Pin	Description	10base T	100Base- T	1000Base T
1	Transmit Data+ or BiDirectional	TX+	TX+	BI_DA+
2	Transmit Data- or BiDirectional	TX-	TX-	BI_DA-
3	Receive Data+ or BiDirectional	RX+	RX+	BI_DB+
4	Not connected or BiDirectional	n/c	n/c	BI_DC+
5	Not connected or BiDirectional	n/c	n/c	BI_DC-
6	Receive Data- or BiDirectional	RX-	RX-	BI_DB-
7	Not connected or BiDirectional	n/c	n/c	BI_DD+
8	Not connected or BiDirectional	n/c	n/c	BI_DD-

IVDS

