Boosting functional regression models with FDboost

Sarah Brockhaus & David Rügamer

In collaboration with Sonja Greven, Thorsten Hothorn, Andy Mayr, Fabian Scheipl and Almond Stöcker

LMU Munich

July 24, 2017

Functional data: Growth curves

(Ramsay and Silverman, 2005)

Functional data: Spectrometric measures

(Brockhaus et al., 2015)

Functional data: Shapes

Functional data: Shapes

Functional data: Trajectories

(Ramsay and Silverman, 2005)

Functional data: Movement

Functional data: Brain scans

► Observation units are functions; several measurement points for each observation unit

- ► Observation units are functions; several measurement points for each observation unit
- Measurement points on regular or irregular grid

- Observation units are functions; several measurement points for each observation unit
- Measurement points on regular or irregular grid
- Possibly arbitrary many measurements possible
 - \rightarrow smooth data generating function

- Observation units are functions; several measurement points for each observation unit
- Measurement points on regular or irregular grid
- Possibly arbitrary many measurements possible
 - \rightarrow smooth data generating function
- Observations possibly with (measurement) error

- Observation units are functions; several measurement points for each observation unit
- Measurement points on regular or irregular grid
- Possibly arbitrary many measurements possible
 → smooth data generating function
- Observations possibly with (measurement) error
- ▶ Difference: functional data ↔ time series

Outline

Functional data analysis in a nutshell

Some basic statistics

Overview

Regression with functional data

Generic model

Estimation by gradient boosting

Other transformations of the conditional response distribution Implementation in FDboost

Case studies

Functional response

Scalar response and functional covariates

Summary and discussion

Basic statistics for functional data

Mean, Variance and Covariance

- ▶ functional variable X(t), with $t \in \mathcal{T}$ and \mathcal{T} interval in \mathbb{R}
- ▶ sample $x_i(t)$, i = 1, ..., n

Mean, Variance and Covariance

- functional variable X(t), with $t \in \mathcal{T}$ and \mathcal{T} interval in \mathbb{R}
- ▶ sample $x_i(t)$, i = 1, ..., n
- functional mean:

$$\hat{\mu}_X(t) = \bar{x}(t) = \frac{1}{n} \sum_{i=1}^n x_i(t)$$

functional variance:

$$\hat{\sigma}_X(t) = \frac{1}{n-1} \sum_{i=1}^n [x_i(t) - \bar{x}(t)]^2$$

Mean, Variance and Covariance

- ▶ functional variable X(t), with $t \in \mathcal{T}$ and \mathcal{T} interval in \mathbb{R}
- ▶ sample $x_i(t)$, i = 1, ..., n
- functional mean:

$$\hat{\mu}_X(t) = \bar{x}(t) = \frac{1}{n} \sum_{i=1}^n x_i(t)$$

functional variance:

$$\hat{\sigma}_X(t) = \frac{1}{n-1} \sum_{i=1}^n [x_i(t) - \bar{x}(t)]^2$$

functional (auto-)covariance:

$$\hat{\sigma}_X(t_1,t_2) = \frac{1}{n-1} \sum_{i=1}^n [x_i(t_1) - \bar{x}(t_1)][x_i(t_2) - \bar{x}(t_2)]$$

Example for mean: Growth curves of 54 girls

centered per time-point 10 height (cm) 20 10 15 age (years)

estimated mean:

$$\hat{\mu}_X(t) = \bar{x}(t) = \frac{1}{n} \sum_{i=1}^n x_i(t)$$

centered curves:

$$x_i^*(t) = x_i(t) - \bar{x}(t)$$

11/43

Example for variance

centered curves:

$$x_i^*(t) = x_i(t) - \bar{x}(t)$$

estimated variance:

$$\hat{\sigma}_X(t) = \frac{1}{n-1} \sum_{i=1}^n [x_i(t) - \bar{x}(t)]^2$$

Example for covariance surface

$$\hat{\sigma}_X(t_1,t_2) = \frac{1}{n-1} \sum_{i=1}^n [x_i(t_1) - \bar{x}(t_1)][x_i(t_2) - \bar{x}(t_2)]$$

Functional data analysis in a nutshell

Important topics: (Ramsay and Silverman, 2005)

ightharpoonup Data representation ightarrow interpolation, smoothing

- ightharpoonup Data representation ightarrow interpolation, smoothing
- ▶ Visualization → registration, outlier detection

- ightharpoonup Data representation ightarrow interpolation, smoothing
- ▶ Visualization → registration, outlier detection
- ► Finding of patterns in the variation of the data → functional principal component analysis (FPCA)

- lacktriangleright Data representation o interpolation, smoothing
- ▶ Visualization → registration, outlier detection
- ► Finding of patterns in the variation of the data → functional principal component analysis (FPCA)
- Classification and clustering

- ightharpoonup Data representation ightarrow interpolation, smoothing
- ▶ Visualization → registration, outlier detection
- ► Finding of patterns in the variation of the data → functional principal component analysis (FPCA)
- Classification and clustering
- ▶ Regression → functional regression models (Morris, 2015; Greven and Scheipl, 2017)

scalar-on-function:
$$y_i = \beta_0 + \int x_i(s)\beta(s)\,ds + \varepsilon_i$$
 function-on-scalar:
$$y_i(t) = \beta_0(t) + x_i\beta(t) + \varepsilon_i(t)$$
 function-on-function:
$$y_i(t) = \beta_0(t) + \int x_i(s)\beta(s,t)\,ds + \varepsilon_i(t)$$

R packages

Visualization

Shang & Hyndman (2016). rainbow: Rainbow Plots, Bagplots and Boxplots for Functional Data. R package version 3.4. https://CRAN.R-project.org/package=rainbow

Visualization, descriptive and exploratory analysis

- ▶ Febrero-Bande & Oviedo de la Fuente (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1–28.
- Ramsay, Wickham, Graves & Hooker (2014). fda: Functional Data Analysis. R package version 2.4.4. https://CRAN.R-project.org/package=fda

Regression

- Goldsmith, Scheipl, Huang, Wrobel, Gellar, Harezlak, McLean, Swihart, Xiao, Crainiceanu & Reiss (2016). refund: Regression with Functional Data.
 R package version 0.1-16. https://CRAN.R-project.org/package=refund
- Brockhaus & Rügamer (2017). FDboost: Boosting Functional Regression models. R package version 0.3-0.
 https://CRAN.R-project.org/package=FDboost

see also the CRAN Task View: Functional Data Analysis

Regression with functional data

Data set from Gentsch et al. (2014), also used in Rügamer et al. (2016)

- ▶ Main goal: Understand how emotions evolve
- ▶ Participants played a gambling game with real money outcome
- ► Emotions "measured" via EMG (muscle activity in the face)
- ► Influencing factor appraisals measured via EEG (brain activity)
- Different game situation, a lot of trials

Function-on-function-regression

Function-on-function-regression ... what for?

Function-on-function-regression ... what for?

► The absolute value is not really of interest

Function-on-function-regression ... what for?

- The absolute value is not really of interest
- Describe the course of each curve, more specifically their relationship → average course of function

Generic additive regression model

- ▶ functional response Y(t), $t \in \mathcal{T} = [T_1, T_2]$
- vector of covariates x containing functional covariates x(s)
 and scalar covariates z

Generic model

$$\mathbb{E}(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{j} h_{j}(\mathbf{x}, t)$$

h(x, t) linear predictor which is the sum of partial effects h_j(x, t) • each $h_j(x,t)$ is a real valued function over \mathcal{T} and can depend on or several covariates

Generic additive regression model

- ▶ functional response Y(t), $t \in \mathcal{T} = [T_1, T_2]$
- vector of covariates x containing functional covariates x(s) and scalar covariates z

Generic model

$$\mathbb{E}(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{j} h_{j}(\mathbf{x}, t)$$

▶ h(x, t) linear predictor which is the sum of partial effects $h_j(x, t)$

• each $h_j(x, t)$ is a real valued function over \mathcal{T} and can depend on or several covariates

ightarrow Scalar response as degenerated case with $\mathcal{T} = [\mathcal{T}_1, \mathcal{T}_1]$

Generic additive regression model

- ▶ functional response Y(t), $t \in \mathcal{T} = [T_1, T_2]$
- vector of covariates x containing functional covariates x(s)
 and scalar covariates z

Generic model

$$\mathbb{E}(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{j} h_{j}(\mathbf{x}, t)$$

► h(x, t) linear predictor which is the sum of partial effects $h_j(x, t)$

• each $h_j(x, t)$ is a real valued function over \mathcal{T} and can depend on or several covariates

ightarrow Scalar response as degenerated case with $\mathcal{T} = [\mathcal{T}_1, \mathcal{T}_1]$

Partial effects $h_j(x, t)$ of scalar covariates

- ▶ smooth intercept $\beta_0(t)$
- group-specific smooth intercepts $\beta_{0a}(t)$
- ▶ smooth linear effect of scalar covariate $z\beta(t)$
- ightharpoonup smooth non-linear effect of scalar covariate g(z,t)
- ▶ interactions, e.g., $z_1z_2\beta(t)$ and $g(z_1, z_2, t)$

(Scheipl et al., 2015; Brockhaus et al., 2015)

Partial effects $h_i(x, t)$ of functional covariates

- concurrent effect $x(t)\beta(t)$
- ▶ linear effect of functional covariate $\int_{S} x(s)\beta(s,t) ds$

Partial effects $h_j(x, t)$ of functional covariates

- concurrent effect $x(t)\beta(t)$
- ▶ linear effect of functional covariate $\int_{S} x(s)\beta(s,t) ds$
- ► constrained effect of functional covariate $\int_{l(t)}^{u(t)} x(s) \beta(s,t) ds$, with integration limits [l(t), u(t)]

Partial effects $h_j(x, t)$ of functional covariates

- concurrent effect $x(t)\beta(t)$
- ▶ linear effect of functional covariate $\int_{S} x(s)\beta(s,t) ds$
- ► constrained effect of functional covariate $\int_{I(t)}^{u(t)} x(s) \beta(s,t) ds$, with integration limits [I(t), u(t)]

effect		linear	historical	lag
[I(t),u(t)]		$[T_1, T_2]$	$[T_1,t]$	$[t-\delta,t]$
	S		+	

(Scheipl et al., 2015; Brockhaus et al., 2016b,a)

Interactions of functional and scalar covariates

linear interaction of scalar and functional covariate

$$z\int_{I(t)}^{u(t)}x(s)\beta(s,t)ds$$

group-specific functional effects

$$I(z=a)\cdot \int_{I(t)}^{u(t)} x(s)\beta_a(s,t)ds$$

with indicator function $I(\cdot)$

Interactions of functional and scalar covariates

linear interaction of scalar and functional covariate

$$z\int_{I(t)}^{u(t)}x(s)\beta(s,t)ds$$

group-specific functional effects

$$I(z=a)\cdot \int_{I(t)}^{u(t)} x(s)\beta_a(s,t)ds$$

with indicator function $I(\cdot)$

→ For all the listed effects ensure identifiability by suitable constraints

Specification of partial effects

The generic model: $\mathbb{E}(Y(t)|\mathbf{x}) = h(\mathbf{x},t) = \sum_{j} h_{j}(\mathbf{x},t)$

Row tensor product basis

$$h_j(\mathbf{x},t) = \left\{ \mathbf{b}_j(\mathbf{x},t)^\top \odot \mathbf{b}_Y(t)^\top \right\} \theta_j$$

- ▶ $\boldsymbol{b}_i / \boldsymbol{b}_Y$ vector of κ_i / κ_Y basis functions in covariates / over \mathcal{T}
- ▶ ⊙ row-wise tensor product ('Kronecker product on rows')
- \triangleright θ_i coefficient vector
- ▶ Ridge-type penalty with penalty term $\theta_j^{\top} \mathbf{P}_{jY} \theta_j$ for regularization in both directions

Specification of partial effects

The generic model: $\mathbb{E}(Y(t)|\mathbf{x}) = h(\mathbf{x},t) = \sum_{j} h_{j}(\mathbf{x},t)$

Row tensor product basis

$$h_j(\mathbf{x},t) = \left\{ \mathbf{b}_j(\mathbf{x},t)^\top \odot \mathbf{b}_Y(t)^\top \right\} \theta_j$$

- ▶ \boldsymbol{b}_j / \boldsymbol{b}_Y vector of κ_j/κ_Y basis functions in covariates / over $\mathcal T$
- ▶ ⊙ row-wise tensor product ('Kronecker product on rows')
- \bullet θ_i coefficient vector
- ▶ Ridge-type penalty with penalty term $\theta_j^{\top} \mathbf{P}_{jY} \theta_j$ for regularization in both directions
- ▶ if possible, representation as generalized linear array model (Currie et al., 2006).

How do we estimate such models?

▶ As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - → For example, consider a model with
 - a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) \ ds$

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - ▶ a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - ▶ a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels
 - $\kappa_s = \kappa_t = 20$ B-spline bases for $\beta_a(s,t)$ smoothness in s and t

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - ▶ a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels
 - $\kappa_s = \kappa_t = 20$ B-spline bases for $\beta_a(s,t)$ smoothness in s and t
 - $\Rightarrow \operatorname{ncol}(\boldsymbol{X}) = \kappa_z \cdot \kappa_s \cdot \kappa_t$

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels
 - $\kappa_s = \kappa_t = 20$ B-spline bases for $\beta_a(s,t)$ smoothness in s and t
 - $\Rightarrow \operatorname{ncol}(\boldsymbol{X}) = \kappa_z \cdot \kappa_s \cdot \kappa_t = 10 \cdot 20 \cdot 20 = 4000$

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels
 - $\kappa_s = \kappa_t = 20$ B-spline bases for $\beta_a(s,t)$ smoothness in s and t
 - $\Rightarrow \operatorname{ncol}(\boldsymbol{X}) = \kappa_z \cdot \kappa_s \cdot \kappa_t = 10 \cdot 20 \cdot 20 = 4000$
- ► So how can we handle and fit multiple of such partial effects at the same time?

- ► As per usual: Write down the (penalized) log-likelihood and maximize it (see, e.g., Scheipl et al., 2016)
- Problem: Computational feasibility
 - \rightarrow For example, consider a model with
 - ▶ a factor-specific historical effect $\int_0^t x(s)\beta_a(s,t) ds$
 - factor with $\kappa_z = 10$ levels
 - $\kappa_s = \kappa_t = 20$ B-spline bases for $\beta_a(s,t)$ smoothness in s and t
 - $\Rightarrow \operatorname{ncol}(\boldsymbol{X}) = \kappa_z \cdot \kappa_s \cdot \kappa_t = 10 \cdot 20 \cdot 20 = 4000$
- ► So how can we handle and fit multiple of such partial effects at the same time?
- \rightarrow component-wise boosting

Idea:

▶ iteratively boost the model performance (= reduce expected L₂-loss)

- by fitting and evaluating the partial effects component-wise

- by fitting and evaluating the partial effects component-wise
- using one partial effect at a time to update the model

- by fitting and evaluating the partial effects component-wise
- using one partial effect at a time to update the model
- ightarrow Results in component-wise gradient descent steps

- by fitting and evaluating the partial effects component-wise
- using one partial effect at a time to update the model
- ightarrow Results in component-wise gradient descent steps

Component-wise gradient boosting: algorithm

Goal of boosting: Minimize the expected loss Use the (penalized) regression models for effects h_j as base-learners

Algorithm For boosting iterations $m = 1, ..., m_{\text{stop}}$:

- ▶ compute the negative gradient $u_i(t)$ of the expected loss using the current estimate of the linear predictor $\hat{h}^{[m]}(x_i, t)$
- ▶ fit each base-learner to $u_i(t)$
- select the best fitting base-learner
- \blacktriangleright update the according parameters using a fixed step-length $\nu \in (0,1]$

The final model is a linear combination of base-learner fits.

(Brockhaus et al., 2015)

Remember the generic model

- ▶ functional response Y(t), $t \in \mathcal{T} \subset \mathbb{R}$
- vector of covariates x containing functional covariates x(s) and scalar covariates z

Generic model

$$\mathbb{E}(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{i} h_{i}(\mathbf{x}, t)$$

▶ h(x, t) linear predictor which is the sum of partial effects $h_j(x, t)$ • each $h_j(\mathbf{x}, t)$ is a real valued function over \mathcal{T} and can depend on or several covariates

Remember the generic model

- ▶ functional response Y(t), $t \in \mathcal{T} \subset \mathbb{R}$
- vector of covariates x containing functional covariates x(s) and scalar covariates z

Generic model

$$\xi(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{i} h_{i}(\mathbf{x}, t)$$

▶ h(x, t) linear predictor which is the sum of partial effects $h_j(x, t)$

• each $h_j(x, t)$ is a real valued function over \mathcal{T} and can depend on or several covariates

Remember the generic model

- ▶ functional response Y(t), $t \in \mathcal{T} \subset \mathbb{R}$
- vector of covariates x containing functional covariates x(s) and scalar covariates z

Generic model

$$\xi(Y(t) \mid \mathbf{x}) = h(\mathbf{x}, t) = \sum_{i} h_{i}(\mathbf{x}, t)$$

▶ h(x, t) linear predictor which is the sum of partial effects $h_j(x, t)$

- each $h_j(x, t)$ is a real valued function over \mathcal{T} and can depend on or several covariates
- \blacktriangleright ξ is some transformation function, e.g., a quantile or $\mathbb E$

The generic model: $\xi(Y(t)|\mathbf{x}) = h(\mathbf{x},t) = \sum_j h_j(\mathbf{x},t)$

The generic model:
$$\xi(Y(t)|x) = h(x,t) = \sum_j h_j(x,t)$$

model	ξ	loss function $ ho$
LM	E	L ₂ -loss
GLM	$g\circ \mathbb{E}$	negative log-likelihood
median regression	$Q_{0.5}$	L_1 -loss
quantile regression	$Q_{ au}$	check function

The generic model:
$$\xi(Y(t)|x) = h(x,t) = \sum_j h_j(x,t)$$

model	ξ	loss function $ ho$
LM	E	L ₂ -loss
GLM	$g\circ \mathbb{E}$	negative log-likelihood
median regression	$Q_{0.5}$	L_1 -loss
quantile regression	$Q_{ au}$	check function

The generic model: $\xi(Y(t)|\mathbf{x}) = h(\mathbf{x},t) = \sum_j h_j(\mathbf{x},t)$

model	ξ	loss function ρ
LM	E	L ₂ -loss
GLM	$g\circ \mathbb{E}$	negative log-likelihood
median regression	$Q_{0.5}$	L_1 -loss
quantile regression	$Q_{ au}$	check function

ightarrow GAMLSS (Stasinopoulos et al., 2016) also possible

The generic model:
$$\xi(Y(t)|\mathbf{x}) = h(\mathbf{x},t) = \sum_j h_j(\mathbf{x},t)$$

model	ξ	loss function ρ
LM	E	L ₂ -loss
GLM	$g\circ \mathbb{E}$	negative log-likelihood
median regression	$Q_{0.5}$	L_1 -loss
quantile regression	$Q_{ au}$	check function

- → GAMLSS (Stasinopoulos et al., 2016) also possible
- ightarrow Loss function for trajectories $\hat{=}$ integrated loss over domain of response:

$$\ell(Y, h(x)) = \int_{\mathcal{T}} \underbrace{\rho(Y(t), h(x, t))}_{\text{pointwise loss for } t} dt$$

Tuning, early stopping and model selection

- Tuning
 - lacktriangle We fix the u and degrees of freedom for each baselearner
 - number of boosting iterations determines model complexity
 - optimal stopping iteration is determined by resampling methods (on the level of curves)

Tuning, early stopping and model selection

Tuning

- lacktriangle We fix the u and degrees of freedom for each baselearner
- number of boosting iterations determines model complexity
- optimal stopping iteration is determined by resampling methods (on the level of curves)

Early stopping

- Regularization technique to avoid overfitting
- Induces parameter shrinkage
- and model selection

Tuning, early stopping and model selection

- Tuning
 - lacktriangle We fix the u and degrees of freedom for each baselearner
 - number of boosting iterations determines model complexity
 - optimal stopping iteration is determined by resampling methods (on the level of curves)
- Early stopping
 - Regularization technique to avoid overfitting
 - Induces parameter shrinkage
 - and model selection
- Alternatively: Model selection via stability selection (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013)

Implementation

Implemented in

- R package FDboost (Brockhaus et al., 2017)
- based on R package mboost (Hothorn et al., 2016)
- Extension: FDboostLSS for functional gamboostLSS (Hofner et al., 2015)

Goal: Make use of the modular implementation of mboost

 Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and
 - allow for different data input (e.g. matrices for curve observations)

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and
 - allow for different data input (e.g. matrices for curve observations)
- Function-on-function regression:

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and
 - allow for different data input (e.g. matrices for curve observations)
- Function-on-function regression:
 - ▶ Implement base-learner, which also vary in the direction of *t*

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and
 - allow for different data input (e.g. matrices for curve observations)
- Function-on-function regression:
 - Implement base-learner, which also vary in the direction of t
 - ▶ The loss function is now an integral

- Scalar-on-function regression: the loss and empirical risk is just as for 'scalar-on-scalar regression'
 - We just have to implement new base-learners and
 - allow for different data input (e.g. matrices for curve observations)
- Function-on-function regression:
 - ▶ Implement base-learner, which also vary in the direction of *t*
 - ► The loss function is now an integral
 - → Numerical integration scheme to approximate expected loss

Main fitting function:

```
FDboost(formula, timeformula, data, ...)
```

- ▶ timeformula
 - = NULL for scalar-on-function regression,
 - = \sim bbs(t) for function-on-function regression
- Some of the base-learners for functional data:

$$\begin{split} z\beta(t) & \text{bolsc(z)} \\ f(z,t) & \text{bbsc(z)} \\ z_1z_2\beta(t) & \text{bols(z1) %Xc% bols(z2)} \\ \int_{\mathcal{S}} x(s)\beta(s,t)ds & \text{bsignal(x, s = s)} \\ x(t)\beta(t) & \text{bconcurrent(x, s = s, time = t)} \\ \int_{I(t)}^{u(t)} x(s)\beta(s,t)ds & \text{bhist(x, s = s, time = t, limits = ...)} \end{split}$$

Main fitting function:

```
FDboost(formula, timeformula, data, ...)
```

- ▶ timeformula
 - = NULL for scalar-on-function regression,
 - = \sim bbs(t) for function-on-function regression
- Some of the base-learners for functional data:

$$\begin{split} z\beta(t) & \text{bolsc(z) \%0\% bbs(t)} \\ f(z,t) & \text{bbsc(z) \%0\% bbs(t)} \\ z_1z_2\beta(t) & \text{bols(z1) \%Xc\% bols(z2) \%0\% bbs(t)} \\ \int_{\mathcal{S}} x(s)\beta(s,t)ds & \text{bsignal(x, s = s) \%0\% bbs(t)} \\ x(t)\beta(t) & \text{bconcurrent(x, s = s, time = t)} \\ \int_{I(t)}^{u(t)} x(s)\beta(s,t)ds & \text{bhist(x, s = s, time = t, limits = ...)} \end{split}$$

Example: FDboost call

Case studies Functional response

Goal: Try to explain

- facial expressions (measured with EMG)
- by brain activity (measured with EEG)
- \rightarrow Function-on-function-regression

(Brockhaus et al., 2017)

Model equation:

$$y_{\text{EMG}}(t) = \beta_0(t) + x_{\text{EEG}}(t)\beta_1(t) + \varepsilon(t)$$

 \blacktriangleright One-to-one relation between EEG and EMG \rightarrow Concurrent effect

Model equation:

$$y_{ ext{EMG}}(t) = eta_0(t) + \int x_{ ext{EEG}}(s) eta_1(s,t) \mathrm{d}s + arepsilon(t)$$

- ▶ One-to-one relation between EEG and EMG \rightarrow Concurrent effect
- ▶ Response time specific effect → Linear functional effect

Model equation:

$$y_{ ext{ iny EMG}}(t) = eta_0(t) + \int_0^{t-\delta} x_{ ext{ iny EEG}}(s) eta_1(s,t) \mathrm{d}s + arepsilon(t)$$

- One-to-one relation between EEG and EMG → Concurrent effect
- ▶ Response time specific effect → Linear functional effect
- ► EMG can only be influenced by EEG activities in the past → Historical effect

Results

Case studies Scalar response and functional covariates

Spectral data of fossil fuels

Goal: predict heat value *y* using the spectral measurements of NIR and UV spectra

(Brockhaus et al., 2015)

Data of fossil fuel: model

Model equation:

$$y = eta_0 + f(z_{\scriptscriptstyle \mathrm{H2o}}) + \int_{\mathcal{S}_{\scriptscriptstyle \mathrm{NIR}}} x_{\scriptscriptstyle \mathrm{NIR}}(s_{\scriptscriptstyle \mathrm{NIR}}) eta_{\scriptscriptstyle \mathrm{NIR}}(s_{\scriptscriptstyle \mathrm{NIR}}) \, ds_{\scriptscriptstyle \mathrm{NIR}} + \ \int_{\mathcal{S}_{\scriptscriptstyle \mathrm{UV}}} x_{\scriptscriptstyle \mathrm{UV}}(s_{\scriptscriptstyle \mathrm{UV}}) eta_{\scriptscriptstyle \mathrm{UV}}(s_{\scriptscriptstyle \mathrm{UV}}) \, ds_{\scriptscriptstyle \mathrm{UV}} + arepsilon,$$

- ▶ heat value y
- non-linear effect of water content (H2O)
- ▶ linear functional effect of NIR and UV spectrum

Data of fossil fuel: results

Estimated effects with stopping iteration chosen by 10 fold bootstrap

Data of fossil fuel: results

- estimated effects on 100 bootstrap samples (gray lines)
- point-wise median (black lines)
- point-wise 5 and 95% quantiles (dashed red lines)

Summary and discussion

Summary and discussion (I)

What is FDA?

- Measurement units are functions,
 i.e., curves, surfaces, trajectories,...
- Smooth data generating process
- Many observations of the same data generating process
- Mean, variance and covariance for functional data
- Functional counterparts for many methods from multivariate statistics

Summary and discussion (II)

Estimating functional regression models with FDboost

- LM, GLM, GAMLSS and quantile regression included
- variety of covariate effects,
 - (non-)linear effects of scalar covariates
 - ▶ linear effects of functional covariates, historical effects
 - interaction effects

Summary and discussion (II)

Estimating functional regression models with FDboost

- LM, GLM, GAMLSS and quantile regression included
- variety of covariate effects,
 - (non-)linear effects of scalar covariates
 - ▶ linear effects of functional covariates, historical effects
 - interaction effects
- estimation by component-wise gradient boosting
 - high dimensional data settings
 - data-driven variable selection
 - shrinkage of effects
- ► comprehensive implementation in R add-on package FDboost

References I

- S. Brockhaus, D. Rügamer, and S. Greven. Boosting Functional Regression Models with FDboost. *ArXiv e-prints*, May 2017.
- Sarah Brockhaus, Fabian Scheipl, Torsten Hothorn, and Sonja Greven. The functional linear array model. *Statistical Modelling*, 15(3):279–300, 2015.
- Sarah Brockhaus, Andreas Fuest, Andreas Mayr, and Sonja Greven. Signal regression models for location, scale and shape with an application to stock returns. arXiv preprint, arXiv:1605.04281, 2016a.
- Sarah Brockhaus, Michael Melcher, Friedrich Leisch, and Sonja Greven. Boosting flexible functional regression models with a high number of functional historical effects. *Statistics and Computing*, 2016b. Accepted, DOI: http://dx.doi.org/10.1007/s11222-016-9662-1.
- D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. *Journal of the Royal* Statistical Society: Series B (Statistical Methodology), 68(2):259–280, 2006.
- Kornelia Gentsch, Didier Grandjean, and Klaus R. Scherer. Coherence explored between emotion components: Evidence from event-related potentials and facial electromyography. *Biological Psychology*, 98(0):70 81, 2014.
- Sonja Greven and Fabian Scheipl. A general framework for functional regression modelling. *Statistical Modelling*, 17(1-2):1–35, 2017.

References II

- Benjamin Hofner, Andreas Mayr, Nora Fenske, and Matthias Schmid. gamboostLSS: Boosting Methods for GAMLSS Models, 2015. R package version 1.2-0, Available at http://CRAN.R-project.org/package=gamboostLSS.
- Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, and Benjamin Hofner. *mboost: Model-Based Boosting*, 2016. R package version 2.6-0, Available at http://CRAN.R-project.org/package=mboost.
- Nicolai Meinshausen and Peter Bühlmann. Stability selection (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.
- Jeffrey S. Morris. Functional regression. *Annual Review of Statistics and Its Application*, 2(1):321–359, 2015.
- James O Ramsay and Bernard W Silverman. Functional Data Analysis. Springer, New York, 2005.
- David Rügamer, Sarah Brockhaus, Kornelia Gentsch, Klaus Scherer, and Sonja Greven. Detecting synchronisation in EEG- and EMG-signals via boosted functional historical models. Unpublished manuscript, 2016.
- Fabian Scheipl, Ana-Maria Staicu, and Sonja Greven. Functional additive mixed models. *Journal of Computational and Graphical Statistics*, 24(2): 477–501, 2015.

References III

- Fabian Scheipl, Jan Gertheiss, and Sonja Greven. Generalized functional additive mixed models. *Electronic Journal of Statistics*, 10(1):1455–1492, 2016.
- Rajen D Shah and Richard J Samworth. Variable selection with error control: another look at stability selection. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 75(1):55–80, 2013.
- D. M. Stasinopoulos, R. A. Rigby, V. Voudouris, C. Akantziliotou, and M. Enea. gamlss: Generalised Additive Models for Location Scale and Shape, 2016. R package version 4.3-8, Available at http://CRAN.R-project.org/package=gamlss.