Spatial Data

Cmpt 767 Visualization
Steven Bergner
sbergner@sfu.ca

[Telea / Möller]

Overview

- Spatial data vis examples
- Function plots and height fields
- Isolines

Visualization examples: Fluid flow

mixing of substances (chemistry)

flow on surface (aircraft design)

flow in volume (engine design)

wind flow atop geo map (weather forecast)

particle flow close to surface (aircraft design 2)

sketch of flow in volume (illustrative/communication)

Visualization examples: Material/biosciences

Visualization examples: Medical sciences

brain activity (fMRI)

blood flow in aneurysm

MRI scan - tissues

bone tissue density

bone + skin surface

Visualization examples: Geosciences

ocean velocity and surface temperature

sea level pressure and temperature

wind flow paths over Earth's surface

Earth surface and inner temperature

Visualization examples: Abstract data

mapping is not 'neutral' or natural, but reflects the problem/question to be solved

data table: parallel coordinates view

Pe: Folder tree view & toolbar settings in XP
 Pe: Folder tree view & toolbar settings in \(\)
 Pe: Folder tree view & toolbar settings in \(\)
 Pe: Folder tree view & toolbar setting
 Pe: Folder tree view & toolbar setting

tree: explorer view tree: cushion treemap view

data table: classical view

source code: classical view

source code: dense pixel view

graph: bundled view

graph: adjacency matrix

Scientific Visualization – Basic data Characteristics

Stanford bunny 3D model (70K triangles, 30K vertices)

Right image shows surface curvature (scalar dataset, red=flat, blue=curved)

- data: numerical values defined on a spatial domain, say: $f: \mathbb{R}^3 \to \mathbb{R}$
- both domain and range are continuous spaces
- hence the following are easy or at least possible
- resampling / rescaling
- filtering
- reconstruction (from piecewise discrete representation e.g. triangles)
- visual interpretation (domain is a natural 3D shape)

Our input: Dataset examples

 $f: \mathbf{R}^2 \to \mathbf{R}$ a planar slice

 $f: \mathbf{R}^2 \to \mathbf{R}^0$ a surface

Basic Strategies

- Visualization of 1D, 2D, or 3D scalar fields
 - 1D scalar field: $\Omega \in R \to R$
 - 2D scalar field: $\Omega \in \mathbb{R}^2 \to \mathbb{R}$
 - 3D scalar field: $\Omega \in \mathbb{R}^3 \to \mathbb{R}$
 - → Volume visualization!

Basic Strategies

- Mapping to geometry
 - Function plots
 - Height fields
 - Isolines and isosurfaces
- Color coding
- Specific techniques for 3D data
 - Indirect volume visualization
 - Direct volume visualization
 - Slicing
- Visualization method depends heavily on dimensionality of domain

Function Plots and Height Fields

Function plot for a 1D scalar field

$$\{(s, f(s))|s \in R\}$$

- Points
- 1D manifold: line
- Error bars possible

Gnuplot example

Function Plots and Height Fields

- Function plot for a 2D scalar field $\{(s,t,f(s,t))|(s,t)\in R^2\}$
 - Points
 - 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

Isolines

- Visualization of 2D scalar fields
- Given a scalar function $f:\Omega \to R$ and a scalar value $c\in R$
- Isolines consist of points $\{(x,y)|f(x,y)=c\}$
- If f() is differentiable and grad(f) ≠ 0,
 then isolines are curves
- Contour lines

Choropleth / Isopleth

Isolines

- Pixel by pixel contouring
- Straightforward approach: scanning all pixels for equivalence with isovalue
- Input
 - $f: (1,...,x_{max}) \times (1,...,y_{max}) \to R$
 - Isovalues $I_1,...,I_n$ and isocolors $c_1,...,c_n$
- Algorithm

```
for all (x,y) \in (1,...,x_{max}) \times (1,...,y_{max}) do for all k \in \{1,...,n\} do if |f(x,y)-I_k| < \varepsilon then draw(x,y,c_k)
```

 Problem: Isoline can be missed if the gradient of f() is too large (despite range ε)

Marching Squares

- Representation of the scalar function on a rectilinear grid
- Scalar values are given at each vertex
- Take into account the interpolation within cells
- Isolines cannot be missed
- Divide and conquer: consider cells independently of each other

Marching Squares

- 4 different cases (classes) of combinations of signs
- Symmetries: rotation, reflection, change + ←
- Compute intersections between isoline and cell edge, based on linear interpolation along the cell edges

Isolines

- We can distinguish the cases by a decider
- Mid point decider
 - Interpolate the function value in the center

$$f_{\text{center}} = \frac{1}{4} (f_{i,j} + f_{i+1,j} + f_{i,j+1} + f_{i+1,j+1})$$

- If $f_{center} < c$ we chose the right case, otherwise we chose the left case

Not always correct solution