Algebra II (Doble grado Informática-Matemáticas)

23 de marzo de 2020

1. Tema 4: Grupos cocientes. Teoremas de isomorfía.

Continuamos en esta clase con el Tema 4 del programa. Nos ocupamos ahora de estudiar los subgrupos del grupo cociente y, particularmente a obtener el "segundo teorema de isomorfía", que nos ayuda a describir los cocientes de los grupos cocientes.

Proposición 1.1. Sea $N \subseteq G$ un subgrupo normal de un grupo G. Entonces:

- (1) Si $H \in Sub(G)$ es cualquier subgrupo tal que $N \leq H$, entonces $N \subseteq H$ y H/N es un subgrupo de G/N.
- (2) Sean $H_1, H_2 \in Sub(G)$, con $N \leq H_i$, i = 1, 2, entonces

$$H_1/N = H_2/N \iff H_1 = H_2.$$

(3) Sea $L \leq G/N$ un subgrupo del grupo cociente. Entonces existe un único subgrupo $H \leq G$ tal que $N \leq H$ y L = H/N.

Como consecuencia de las afirmaciones anteriores tenemos que

$$Sub(G/N) = \{H/N \ con \ N \le H \le G\},\$$

esto es, los subgrupos del grupo cociente G/N son de la forma H/N con $N \leq H < G$.

Demostración. Puesto que para todo $a \in G$ se tiene $aNa^{-1} = N$, entonces también se tendrá la igualdad para todo $a \in H$ y por tanto $N \subseteq H$. Podemos considerar entonces el cociente H/N que es claro que es un subgrupo de G/N. Tenemos así (1).

Veamos (2): Supongamos que $H_1/N = H_2/N$ y sea $a \in H_1$, entonces

$$aN \in H_1/N = H_2/N \Rightarrow \exists b \in H_2 \text{ tal que } aN = bN$$

 $\Rightarrow b^{-1}a \in N \le H_2 \Rightarrow a = b(b^{-1}a) \in H_2, \Rightarrow a \in H_2$

Consecuentemente $H_1 \leq H_2$. De forma análoga se demuestra que $H_2 \leq H_1$ y se tiene la implicación hacia la derecha. Es obvio que se verifica la implicación hacia la izquierda y por tanto se tiene (2).

Veamos (3): Consideremos el homomorfismo de proyección canónica $p:G\to G/N$ (que recordemos está definido por p(a)=aN) y sea $L\le G/N$. Sabemos entonces que $H:=p^*(L)=\{a\in G/p(a)\in L\}=\{a\in G/aN\in L\}$ es un subgrupo de G.

Veamos que este este es el subgrupo de G buscado. En efecto, si $a \in N$ entonces $p(a) = aN = N \in L$ (pues si $L \leq G/N$ entonces ha de contener al uno del grupo) y entonces $a \in H$. Consecuentemente, $N \leq H$ y es claro que L = H/N.

La unicidad de H es consecuencia directa de (2).

Podemos ya demostrar el segundo teorema de isomorfía que nos dice quiénes son los subgrupos normales de G/N:

Teorema 1.2. (SEGUNDO TEOREMA DE ISOMORFÍA O DEL DOBLE COCIENTE)

Sea $N \subseteq G$ un subgrupo normal de un grupo G y $H/N \subseteq G/N$, donde $N \subseteq H \subseteq G$. Entonces

$$H/N \subseteq G/N \iff H \subseteq G$$
,

y en tal caso hay un isomorfismo

$$(G/N)/(H/N) \cong G/H$$
, dado por $aN(H/N) \mapsto aH$.

Demostración. Supongamos que $H \leq G$, entonces para cualesquiera $a \in G$ y $b \in H$ se tiene que $ab^{-1}a \in aHa^{-1} = H$, y entonces

$$(aN)(bN)(aN)^{-1} = (aba^{-1})N \in H/N,$$

lo que nos dice que $H/N \subseteq G/N$.

Recíprocamente, supongamos que $H/N \subseteq G/N$. Podemos entonces considerar el correspondiente grupo cociente (G/N)/(H/N). Sea $f: G \to (G/N)/(H/N)$ el homomorfismo obtenido al componer las proyecciones canónicas:

$$f: G \to G/N \to (G/N)/(H/N), \ a \mapsto aN(H/N).$$

Como las proyecciones canónicas son epimorfismo, entonces f es también epimorfismo (por ser composición de epimorfismos), es decir

$$Img(f) = (G/N)/(H/N).$$

Por otro lado, su núcleo $Ker(f) = \{a \in G/f(a) = H/N\} = \{a \in G/N/aN \in H/N\}$ y entonces es claro que $H \leq Ker(f)$. Por otro lado, si $a \in Ker(f)$ entonces $aN \in H/N$ y existirá $h \in H$ tal que $aN = hN \Rightarrow h^{-1}a \in N \leq H \Rightarrow a = h(h^{-1}a) \in H$. Esto es $Ker(f) \leq H$ y la doble inclusión deducimos entonces

$$H = Ker(f)$$
.

Como el núcleo de un homomorfismo es siempre un subgrupo normal del dominio (véase Ejemplo 1.4 de la clase del 17-marzo-2020), tenemos que

$$H \subseteq G$$
,

y aplicando el primer teorema de isomorfía al homomorfismo f, concluimos que

$$G/H \cong (G/N)/(H/N)$$
,

como queríamos demostrar.

П

Teorema 1.3. (TERCER TEOREMA DE ISOMORFÍA).

Sea G un grupo y H, K subgrupos de G con $H \subseteq G$. Entonces:

- (1) El conjunto KH es un subgrupo de G y $H \subseteq KH$.
- (2) $H \cap K \subseteq K$.
- (3) Existe un isomorfismo

$$K/H \cap K \cong KH/H$$
.

Demostración. Veamos (1): Recordemos que $KH:=\{kh/k\in K, h\in H\}$ y que si KH=HK entonces este conjunto es un subgrupo de G. Como H es un subgrupo normal de G entonces kH=Hk, para todo $k\in K$, con lo que KH=HK y KH es un subgrupo de G.

Como $H \subseteq G$ y $H \subseteq KH$, entonces también es $H \subseteq KH$ y se tiene (1)

Denotemos por $g:K\to G$ el homomorfismo inclusión, esto es dado por $g(k)=k,\ k\in K.$ Sea $p:G\to G/H$ la proyección canónca y consideremos la composición

$$K \xrightarrow{g} G \xrightarrow{p} G/H, k \mapsto kH.$$

Entonces

$$Ker(pg) = \{k \in K/(pg)(k) = H\} = \{k \in K/kH = H\} = \{k \in K/k \in H\} = K \cap H,$$

con lo que $K\cap H\unlhd K$ (recuérdese que el núcleo de un homomorfismo es un subgrupo normal del dominio) y se tiene (2).

Finalmente, para ver (3) aplicamos el primer teorema de isomorfía al homomorfismo pg, entonces como $Ker(pg)=K\cap H$, tendremos que

$$K/K \cap H \cong Img(pg)$$
.

Veamos que Img(pg) = KH/H: En efecto, $Img(pg) = \{(pg)(k)/k \in K\} = \{kH/k \in K\}$, y entonces, puesto que $K \leq KH$, es claro que $Img(pg) \leq KH/H$. Recíprocramente, un elemento de KH/K será la clase xH de un elemento $x \in KH$. Sea $k \in K$ y $h \in H$ tal que x = kh, entonces

$$xH = (kh)H = (kH)(hH) = (kH)H = kH \in Img(pg),$$

consecuentemente, $KH/H \leq Img(pg)$ y de la doble inclusión tenemos que Img(pg) = KH/H y también el isomorfismo en (3).

Dedicaremos el resto de la clase a hacer algunos ejercicios de la relación 4.

Comenzaremos con un par de ejercicios de aplicación de los teoremas de isomorfía.

Ejercicio. (Ejercicio 14. Relación 3). Sea N un subgrupo normal de G tal que N y G/N son abelianos. Sea H un subgrupo cualquiera de G. Demostrar que existe un subgrupo normal $K \subseteq H$ tal que K y H/K son abelianos.

Resolución. En efecto, tomamos como $K = H \cap N$, entonces, por el tercer teorema de isomorfía aplicado a H y $N \subseteq G$, sabemos que $K \subseteq H$: Además como $K \subseteq N$ y N es abeliano, entonces también lo es K.

Por otro lado, aplicando de nuevo el tercer teorema de isomorfía, $H/K = H/H \cap N \cong HN/N$ y entonces H/K es isomorfo a un subgrupo de G/N con lo que por ser éste último abeliano, también lo es cualquier subgrupo suyo. Consecuentemente H/K es también abeliano.

Ejercicio. (Ejercicio 15. Relación 3) Sea G un grupo finito, y sean H, K subgrupos de G, con H normal y tales que |K| y [G:H] son primos relativos. Demostrar que K está contenido en H.

Resolución. Puesto que estamos en las hipótesis del tercer teorema de isomorfía, entonces será $K/H \cap K \cong KH/H$, con lo que $|KH/H| = |K/H \cap K| = [K:H \cap K]$ y, como por el teorema de Langrange, $[K:H \cap K]$ es un divisor del orden de K, tendremos que |KH/H| es un divisor de |K|.

Por otro lado, considerando $H \leq KH \leq G$, haciendo uso del Ejercicio 13 de la Relación 2, tendremos que [G::H] = [G:KH][KH:H], con lo que |KH/H| = [KH:H] es un divisor de [G:H].

Por hipótesis, |K| y [G:H] son primos relativos, con lo que |KH/H| = 1, esto es (de nuevo haciendo uso del Ejercicio 13 de la Relación 2) KH = H y entonces $K \leq H$, como queríamos demostrar.

Nos ocupamos ahora de hacer algunos ejercicios de la relación 3 relativos al centro de un grupo.

Ejercicio. (Ejercicio 6. Relación 3)

Resolución. En este ejercicio se introduce el **centro** de un grupo G como

$$Z(G) = \{ a \in G / ax = xa, \, \forall x \in G \}.$$

Esto es Z(G) consiste de aquellos elementos de G que conmutan con todos los elementos de G.

Es claro que $Z(G) \neq \emptyset$ pues $1 \in Z(G)$. Es fácil ver que Z(G) es un subgrupo normal de G (apartados 1 y 2) así como que $Z(G) = G \Leftrightarrow G$ es abeliano (apartado 3).

Veamos el apartado 4 que dice: Demostrar que si G/Z(G) es cíclico entonces G es abeliano:

En efecto, supongamos que G/Z(G) es cíclico, entonces existirá $aZ(G) \in G/Z(G)$, tal que $G/Z(G) = \langle aZ(G) \rangle$.

Sean $x, y \in G$ dos elementos arbitrarios de G. Considerando $xZ(G), yZ(G) \in G/Z(G)$, tendremos que

$$\begin{cases} \exists n \in \mathbb{Z} \text{ tal que } xZ(G) = (aZ(G))^n = a^nZ(G) \Rightarrow x = a^nz \text{ para algún } z \in Z(G) \\ \exists m \in \mathbb{Z} \text{ tal que } yZ(G) = (aZ(G))^m = a^mZ(G) \Rightarrow y = a^mz' \text{ para algún } z' \in Z(G), \end{cases}$$

entonces

$$xy=a^nza^mz'\overset{(*)}{=}a^na^mzz'=a^{n+m}zz'=a^ma^nzz'\overset{(*)}{=}a^mz'a^nz=yx,$$

donde en las identidades (*), hemos utilizado que z y z' son elementos de Z(G) y por tanto conmutan con cualquier elemento de G. Tenemos pues que xy = yx para cualesquiera $x, y \in G$, es decir G es abeliano.

Calculamos ahora el centro de los grupos simétricos, los grupos alternados y los grupos diédricos.

Ejercicio (Ejercicio 8. Relación 3.)

- 1. Demostrar que $Z(S_2) = S_2$ y que $Z(S_n)$ es trivial si $n \ge 3$.
- 2. Demostrar que $Z(A_3) = A_3$ y que $Z(A_n)$ es trivial si $n \ge 4$.

Resolución. !.- Puesto que S_2 es un grupo abeliano, la primera afirmación es clara. Sea $n \geq 3$ y $\sigma \in S_n$ con $\sigma \neq id$, entonces existirá $i \in \{1, 2, ..., n\}$ tal que $\sigma(i) = j \neq i$. Elegimos $k \in \{1, 2, ..., n\}$ con $k \neq i, j$ (notemos que puesto que $n \geq 3$ siempre podemos elegir tal k) y sea $\tau = (j \ k)$, entonces

$$\begin{cases} (\sigma\tau)(i) = \sigma(i) = j \\ (\tau\sigma)(i) = \tau(j) = k \end{cases} \implies (\sigma\tau)(i) \neq (\tau\sigma)(i),$$

consecuentemente $\sigma \notin Z(S_n)$ y por tanto $Z(S_n) = \{id\}.$

!.- Puesto que A_3 es un grupo abeliano, la primera afirmación es clara. Sea $n \geq 4$ y $\sigma \in A_n$ con $\sigma \neq id$, entonces existirá $i \in \{1, 2, ..., n\}$ tal que $\sigma(i) = j \neq i$. Elegimos $k, l \in \{1, 2, ..., n\}$ con $k \neq l$ y $k, l \neq i, j$ (notemos que puesto que $n \geq 4$ siempre podemos elegir tales k, l) y sea $\alpha = (j \ k \ l) \in A_n$, entonces

$$\begin{cases} (\sigma\alpha)(i) = \sigma(i) = j \\ (\alpha\sigma)(i) = \alpha(j) = k \end{cases} \implies (\sigma\alpha)(i) \neq (\alpha\sigma)(i),$$

consecuentemente $\sigma \notin Z(A_n)$ y por tanto $Z(A_n) = \{id\}.$

Ejercicio. (Eercicio 9. Relación 3) Demostrar que $Z(D_n) = \{1, r^m\}$ si n = 2m y que $Z(D_n)$ es trivial si n = 2m + 1.

Resolución. Sabemos que

$$D_n = \langle r, s/r^n = 1 = s^2, sr = r^{-1}s \rangle = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}.$$

En primer lugar veamos que

(a)
$$r^k s \notin Z(D_n)$$
 para todo $0 \le k \le n-1$

En efecto, supongamos que para algún k, $r^k s \in Z(D_n)$, entonces dicho elemento conmuta con todos los elementos de D_n , en particular con el generador r, pero entonces tendríamos:

$$r(r^k s) = (r^k s)r \Rightarrow r^{k+1} s = r^{k-1} s \Rightarrow r^{k+1} = r^{k-1} \Rightarrow r = r^{-1} \Rightarrow r^2 = 1.$$

llegaríamos entonces a que ord(r)=2 lo cual es una contradicción pues $ord(r)=n\geq 3.$

Nos ocupamos ahora de los elementos de la forma r^k , $0 \le k \le n-1$.

Para $k = 0, r^0 = 1 \in Z(G)$.

Sea $1 \le k \le n-1$. Es obvio que r^k conmuta con los elementos de la forma $r^j, \ 0 \le j \le n-1$. Entonces

$$r^k \in Z(D_n) \iff r^k(r^j s) = (r^j s)r^k, \ \forall 0 < j < n-1, \iff r^k s = sr^k,$$

v como $sr^k = r^{-k}s$,

$$r^k \in Z(D_n) \iff r^k = r^{-k} \iff (r^k)^2 = 1 \iff ord(r^k) = 2.$$

Sabemos que $ord(r^k) = \frac{n}{\text{m.c.d.}(k,n)}$ y entonces

$$r^k \in Z(D_n) \iff n = 2 \text{ m. c. d.}(k, n),$$

con lo que,

(b) si n = 2m + 1 entonces $r^k \notin Z(D_n)$ para todo $1 \le k \le n - 1$. Entonces, utilizando (a) y (b), concluimos que

$$Z(D_{2m+1}) = \{1\}.$$

Supongamos n = 2m entonces

$$2m = 2 \text{ m. c. d.}(k, 2m) \iff m = \text{m. c. d.}(k, 2m) \iff k = m,$$

con lo que utilizando (a), concluimos que

$$Z(D_{2m}) = \{1, r^m\}.$$

Los ejercicios desde el 16 al 20 de la Relación 3 tienen que ver con el grupo de automorfismos de un grupo que definimos a continuación.

Definición 1.4. Sea G un grupo. Un automorfismo de G es un homomorfismo $f:G\to G$ que es isomorfismo. Denotaremos por

$$Aut(G) = \{f : G \to G/f \text{ es automorfismo}\}.$$

Es claro que Aut(G) es un grupo con operación dada por la composición

El ejercicio siguiente nos da una descripción completa del grupo de automorfismos de un grupo cíclico finito:

Ejercicio. (Ejercicio 18. Relación 3) Sea G un grupo y sea $C_n = \langle x | x^n = 1 \rangle$ el grupo cíclico de orden n. Demostrar que:

- 1. Si $\theta: C_n \to G$ es un homomorfismo de grupos, con $\theta(x) = g$, entonces $ord(g)|n, y \ \theta(x^k) = g^k \ \forall k \in \{0, \dots, n-1\}.$
- 2. Para cada $g \in G$ tal que ord(g)|n, existe un único homomorfismo de grupos $\theta_g: C_n \to G$ tal que $\theta_g(x) = g$.
- 3. Si $g \in G$ es tal que ord(g)|n, entonces el morfismo θ_g es monomorfismo si, y sólo si, ord(g)=n.
- 4. Existe un isomorfismo de grupos

$$(\mathbb{Z}_n)^{\times} \cong Aut(C_n),$$

dado por $r \mapsto f_r$ para cada r = 1, ..., n con mcd(r, n) = 1, donde el automorfismo f_r se define mediante $f_r(x) = x^r$.

En particular, $Aut(C_n)$ es un grupo abeliano de orden $\varphi(n)$.

Resolución. 1.- Sea $\theta: C_n \to G$ un homomorfismo de grupos, con $\theta(x) = g$. Entonces $g^n = (\theta(x))^n = \theta(x^n) = \theta(1) = 1$, con lo que ord(g)|n.

La segunda afirmación es inmediata por ser θ un homomorfismo de grupos.

2.- Sea $g \in G$ con ord(g) = t y supongamos que t|n, entonces $\exists n' \in \mathbb{Z}$ tal que n = tn'.

Veamos que la aplicación $\theta_g: C_n \to G$ dada por $\theta_g(x^k) = g^k$, $0 \le k \le n-1$, define un homomorfismo de grupos.

Sean $x^k, x^r \in C_n$, $0 \le k, r \le n-1$. Sabemos que si k+r = qn+s, $0 \le s \le n-1$, entonces $x^k x^r = x^s$ con lo que

$$\theta_g(x^k x^r) = \theta_g(x^s) = g^s = g^h,$$

donde h = Res(s; t), ya que ord(g) = t. Por otro lado

$$\theta_q(x^k)\theta_q(x^r) = g^k g^r = g^{Res(k+r;t)}.$$

Supongamos que s = ts' + h, con $0 \le h \le t - 1$, entonces k + r = qn + s = qtn' + ts' + h = (qn' + s')t + h y por tanto Res(k + r; t) = h con lo que

$$\theta_q(x^k x^r) = \theta_q(x^k)\theta_q(x^r),$$

y θ_g es en efecto un homomorfismo. La unicidad es consecuencia directa del apartado anterior.

3.- Sea $g \in G$ con ord(g) = t y supongamos que t|n. Supongamos que $\theta_g : C_n \to G$ es un monomorfismo. Como $\theta_g(x^t) = g^t = 1$ entonces $x^t = 1$ (pues el núcleo de θ_g es trivial) y entonces n|t. Consecuentemente t = ord(g) = n.

Recíprocamente, Supongamos que ord(g) = n y sea $x^k \in Ker(\theta_g)$, entonces $1 = \theta_g(x^k) = g^k$ con lo que, como ord(g) = n, $n|k \Rightarrow x^k = 1$, esto es $Ker(\theta_g)$ es trivial y θ_g es un monomorfismo.

4.- Recordemos que $(\mathbb{Z}_n)^{\times} = \{r/1 \leq r \leq n-1, \text{m. c. d.}(r,n) = 1\}$. Para cada $r \in (\mathbb{Z}_n)^{\times}$, puesto que $ord(x^r) = \frac{n}{\text{m.c.d.}(r,n)} = n$, entonces, por el apartado 2, la aplicación $f_r : C_n \to C_n$ dada por $f_r(x) = x^r$ es un homomorfismo de grupos que, por el apartado 3, también es monomorfismo. Por otro lado $Img(f_r) = \langle x^r \rangle = \langle x \rangle = C_n$ y entonces f_r es también un epimorfismo. Tenemos pues una aplicación

$$\lambda: (\mathbb{Z}_n)^{\times} \longrightarrow Aut(C_n), \text{ dada por } \lambda(r) = f_r.$$

Veamos que es un homomorfismo de grupos (recuerdese que la operación en el grupo de automorfismos es la composició): Sean $r, k \in (\mathbb{Z}_n)^{\times}$, entonces

$$\lambda(rk) = \lambda(Res(rk;n)) = f_{Res(rk;n)};$$
 mientras que $\lambda(r)\lambda(k) = f_r \circ f_k$,

como

$$(f_r \circ f_k)(x) = f_r(x^k) = (f_r(x))^k = (x^r)^k = x^{rk} = x^{Res(rk;m)} = f_{Res(rk;n)}(x),$$

de nuevo usando el apartado 2, es

$$\lambda(rk) = \lambda(r)\lambda(k).$$

Finalmente, que λ es un isomorfismo es también consecuencia directa del apartado 2 (concretadlo vosotros).