#### Classificação de Dados

Aula 03 Introdução à Análise de Complexidade de Algoritmos; Notações Theta, O e Omega

UFRGS

INF01124

#### Análise de Algoritmos

- Análise de Algoritmo
  - Tempo de processamento em função dos dados de entrada;
     Espaço de memória total requerido para os dados;
     Comprimento total do código;
     Correta obtenção do resultado pretendido;

  - Robustez (como comporta-se com as entradas inválidas ou não
- Análise de Algoritmos é medição de complexidade de
  - Ouantidade de "trabalho" necessária para a sua execução, expressa em função das **operações fundamentais**, as quais variam de acordo com o algoritmo, e em função do volume de dados.

#### Tempo de Execução de Algoritmos

- Em alguns casos pode-se calcular exatamente o tempo de execução de um algoritmo, mas esta precisão pode não justificar o esforço
- Para entradas suficientemente grandes, constantes multiplicativas e termos de mais baixa ordem podem ser desconsiderados, i.e., o termo de mais alta ordem domina o custo do algoritmo
  - 3n² + 10n + 7 = Θ(n²)
     Eficiência assintótica
- Um algoritmo assintoticamente mais eficiente apresenta menor tempo de execução para todas as entradas a partir de um certo tamanho



### Custo do cálculo de determinantes

| n  | Método de Cramer           | Método de Gauss |
|----|----------------------------|-----------------|
| 2  | 22 µs                      | 50 μs           |
| 3  | 102 μs                     | 159 µs          |
| 4  | 456 µs                     | 353 µs          |
| 5  | 2,35 ms                    | 666 µs          |
| 10 | 1,19 min                   | 4.95 ms         |
| 20 | 15 225 séculos             | 38,63 ms        |
| 40 | 5·10 <sup>33</sup> séculos | 0,315 s         |

Tabela 1.1.1: Tamanho do Problema x Tempo de Execução Do Livro: Complexidade de Algoritmos, Laira Toscani & Paulo Veloso, Série Livros Didátio Instituto de Informática - UFRGS

#### Complexidade

- Porquê o estudo da Complexidade?
  - Performance
  - Escolher entre vários algoritmos o mais eficiente para implementar;
  - · Desenvolver novos algoritmos para problemas que já têm solução:
  - Desenvolver algoritmos mais eficientes (melhorar os algoritmos), devido ao aumento constante do "tamanho" dos problemas a serem resolvidos.
- O estudo da Complexidade Computacional torna possível determinar se a implementação de determinado algoritmo é viável.



Instituto de Informática - UFRGS

#### Análise de Algoritmos

- Medidas de Análise
  - Devem ser independentes da tecnologia (hardware/software)
  - Modelos Matemáticos simplificados baseados nos fatores relevantes:

    - Tempo de Execução
       Uma função que relaciona o tempo de execução com o tamanho de entrada:

- t = F(n)
   Conjunto de operações a serem executadas.
  - Custo associado à execução de cada operação.
  - Ocupação de Espaço em Memória

#### Tamanho do problema

| Complexidade       | Tamanho de problema executável em |             |           |  |
|--------------------|-----------------------------------|-------------|-----------|--|
| de tempo           | I segundo                         | I minuto    | 1 hora    |  |
| log <sub>2</sub> n | 2106                              | 26-107      | 23.6-109  |  |
| n                  | 106                               | 6.107       | 3.6 · 109 |  |
| n·log₂n            | 62.746                            | 2.8.106     | 1,3.108   |  |
| n <sup>2</sup>     | 103                               | 7,746 · 103 | 60.000    |  |
| n <sup>3</sup>     | 102                               | 3.9 · 102   | 1,5.103   |  |
| 2 <sup>n</sup>     | 20                                | 25          | 32        |  |
| 3.0                | 13                                | 16          | 20        |  |

Tabela 1.1.3: Complexidade do algoritmo x Tempo de execução

Do Livro: Complexidade de Algoritmos, Laira Toscani & Paulo Veloso, Série Livros Didáti Instituto de Informática - UFRGS

#### A Notação Θ (Theta)

- A notação Θ define um limite assintótico exato, a menos de constantes
- lack Para uma dada função <math>g(n), representando o custo assintótico de um algoritmo, define-se:

 $\Theta(g(n)) = \{ \ f(n) \colon \exists \ \mathtt{c}_1, \ \mathtt{c}_2, \ \mathtt{n}_{\scriptscriptstyle 0} > 0 \mid 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall \ \mathtt{n} \ge \mathtt{n}_{\scriptscriptstyle 0} \ \}$ 

- $f(n) = \Theta(g(n))$  ou  $f(n) \in \Theta(g(n))$
- lacktriangledown g(n) é dito um limite assintoticamente justo (tight) para f(n)



## A Notação Θ: Observações

- ♦ A inequação pode ser satisfeita fazendo-se c₁ assumir um valor ligeiramente menor que o coeficiente do termo de mais alta ordem e fazendo-se c<sub>2</sub> assumir um valor ligeiramente maior que este mesmo coeficiente
- Para todo polinômio

 $p(n) = \sum_{i=0}^{d} a_i n^i$ , onde  $a_d > 0$ ,  $p(n) = \Theta(n^d)$ 

Θ(1) representa uma constante ou uma função constante com relação a alguma variável

# A Notação O (omicron ou "O grande")

 Utiliza-se a notação O quando dispõe-se apenas de um limite assintótico superior (limite para o tempo de execução do pior caso):

 $\mathcal{O}(g(n)) = \{\ f(n) \colon \exists\ \mathsf{c},\ \mathsf{n}_{_{\scriptscriptstyle{0}}} > 0 \mid 0 \le f(n) \le cg(n), \ \forall\ \mathsf{n} \ge \mathsf{n}_{_{\scriptscriptstyle{0}}} \ \}$ 

- $f(n) = \Theta(g(n)) \rightarrow f(n) = O(g(n))$ , i.e.,  $\Theta$  é mais forte que O



# Métodos de Classificação de Dados

- Classificação interna (internal sorting) é realizada em memória de acesso direto
- · Caso o volume de dados ultrapasse a capacidade da memória é necessário utilizar classificação externa (external sorting), com armazenamento normalmente em disco (ou outro dispositivo de armazenamento externo)

Instituto de Informática - UFRGS

# Notações: O versus O

- A notação O define um limite para o tempo de execução do pior caso de um algoritmo para quaisquer entradas
  - O(n²) é o limite para o pior caso para o algoritmo de classificação por inserção direta
- A notação Θ define limites para o tempo de execução de um algoritmo, mas depende dos valores de entrada utilizados
  - Por exemplo, caso a sequência já se encontre ordenada, o algoritmo de classificação por inserção direta executa em  $\Theta(n)$
- $\bullet$  Se  $f(n) = an^2 + bn + c$ , com a > 0, então  $f(n) = O(n^2)$  e  $f(n) = \Theta(n^2)$
- ♦ Se f(n) = an + b, com a > 0, então f(n) = O(n), mas  $f(n) \neq O(n^2)$

Instituto de Informática - UFRGS

#### A Notação Ω (Omega)

 Utiliza-se a notação Ω quando dispõe-se apenas de um limite assintótico inferior (limite para o tempo de execução do melhor caso):

 $\mathcal{Q}(g(n)) = \{\; f(n) \colon \exists \; \mathsf{c}, \, \mathsf{n_o} > 0 \mid 0 \leq cg(n) \leq f(n) \;, \; \forall \; \mathsf{n} \geq \mathsf{n_o} \; \}$ 

