library(dplyr)
library(stringr)

Intro to Data Science - HW 5

Copyright Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

```
# Enter your name here: Ryan Tervo
# Course Number: IST 687
# Assignement Name: Homework #5
# Due Date: 14 Nov 2022
# Submitted Date: 14 Nov 2022
```

Attribution statement: (choose only one and delete the rest)

```
# 1. I did this homework by myself, with help from the book and the professor.
```

This module: Data visualization is important because many people can make sense of data more easily when it is presented in graphic form. As a data scientist, you will have to present complex data to decision makers in a form that makes the data interpretable for them. From your experience with Excel and other tools, you know that there are a variety of **common data visualizations** (e.g., pie charts). How many of them can you name?

The most powerful tool for data visualization in R is called **ggplot**. Written by computer/data scientist **Hadley Wickham**, this "**graphics grammar**" tool builds visualizations in layers. This method provides immense flexibility, but takes a bit of practice to master.

Step 1: Make a copy of the data

A. Read the **who** dataset from this URL: https://intro-datascience.s3.us-east-2.amazonaws.com/who.csv into a new dataframe called **tb**.

Your new dataframe, tb, contains a so-called **multivariate time series**: a sequence of measurements on 23 Tuberculosis-related (TB) variables captured repeatedly over time (1980-2013). Familiarize yourself with the nature of the 23 variables by consulting the dataset's codebook which can be found here: https://intro-datascience.s3.us-east-2.amazonaws.com/TB data dictionary 2021-02-06.csv.

```
IMPORT LIBRARIES:
library(tidyverse)
## — Attaching packages —
                                                                         — tidyverse 1.3.2 —
    ggplot2 3.4.0
                    purrr 0.3.5
    tibble 3.1.8
##
                    dplyr 1.0.10
    tidyr 1.2.1 stringr 1.4.1
##
##
    readr 2.1.3
                   forcats 0.5.2
   — Conflicts —
                                                                     tidyverse conflicts() —
    dplyr::filter() masks stats::filter()
   dplyr::lag() masks stats::lag()
```

```
# DEFINE THE VARIABLES:
fileName <- "https://intro-datascience.s3.us-east-2.amazonaws.com/who.csv"

# READ EXCEL FILE USING WEBSITE FILE:
tb <- data.frame(read_csv(fileName)) # show_col_types = FALSE))</pre>
```

```
## Rows: 5769 Columns: 23

## — Column specification

## Delimiter: ","

## chr (1): iso2

## dbl (22): year, new_sp_m04, new_sp_m514, new_sp_m014, new_sp_m1524, ...

##

i Use `spec()` to retrieve the full column specification for this data.

## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
tb0 <- tb
```

B. How often were these measurements taken (in other words, at what frequency were the variables measured)? Put your answer in a comment.

```
# The measurements were taken annually.
# This can seen in the tb$year column in which data is collected on a yearly or annual basis
.
```

Step 2: Clean-up the NAs and create a subset

A. Let's clean up the iso2 attribute in tb

Hint: use is.na() – well use ! is.na()

```
tb1 <- tb[!is.na(tb$iso2), ]
```

B. Create a subset of **tb** containing **only the records for Canada ("CA" in the iso2 variable)**. Save it in a new dataframe called **tbCan**. Make sure this new df has **29 observations and 23 variables**.

```
# Create tb2 per the instructions: only CA
tbCan <- tb1[tb1$iso2 == "CA", ]

# Verify tb2 has Correct Dimensions:
numRow <- nrow(tbCan)
numCol <- ncol(tbCan)

# Display the Results:
printString = paste('Dataframe tb2 has ', numRow, ' rows (observations) and ', numCol, ' columns (variables).', sep = '')
print(printString, quote = FALSE)</pre>
```

```
## [1] Dataframe tb2 has 29 rows (observations) and 23 columns (variables).
```

C. A simple method for dealing with small amounts of missing data in a numeric variable is to substitute the mean of

the variable in place of each missing datum.

This expression locates (and reports to the console) all the missing data elements in the variable measuring the **number** of positive pulmonary smear tests for male children 0-4 years old (there are 26 data points missing)

```
tbCan$new_sp_m04[is.na(tbCan$new_sp_m04)]
```

```
Error in eval(expr, envir, enclos): object 'tbCan' not found Traceback:
```

D. Write a comment describing how that statement works.

```
Understanding how the statement works is helpful to look at the three individual parts
# Each part has an output.
# Part 2 and part 3 have an input.
         tbCan$new sp m04[is.na(tbCan$new sp m04)]
#part
  Part 1: tbCan$new sp m04
           input:
#
            ouput: a vector of the tbCan$new sp mo4 column values.
# Part 2: is.na('Part 1')
            input: A column of values from tbCan$new sp m04
            output: A column of values TRUE and FALSE.
            # For each input element that is 'na' the corresponding output element is TRUE
            # For each input element that is not 'na' then the corresponding output element
 is FALSE.
            # In this case the only True elements correspond to elements which have NA, per
the test.
# Part 3: tbCan$new sp m04['Part2']
            input: A vector of TRUE and FALSE values which has a length as the number of el
ements in tbCan$new sp m04
            output: A vector of values in "tbCan$new sp m04" of only the associated TRUE ele
ments in Part 2.
# FINAL OUTPUT: A vector, elements are all na, the length is equal to the number of na's in
tbCan$new sp m04 column.
```

E. Write 4 more statements to check if there is missing data for the number of positive pulmonary smear tests for: male and female children 0-14 years old (new_sp_m014 and new_sp_f014), and male and female citizens 65 years of age and older, respectively. What does empty output suggest about the number of missing observations?

```
# Perform Tests # Creates a vector of TRUE and FALSE for each column based on whether or not it is na. # SUMs the TRUE and FALSE statements to get total TRUE for each one. TRUE = 1 and FALSE = 0.
```

```
test0 <- is.na(tbCan$new sp m04)
test0Results <- sum(test0)</pre>
test1 <- is.na(tbCan$new sp m014)</pre>
test1Results <- sum(test1)</pre>
test2 <- is.na(tbCan$new sp f014)</pre>
test2Results <- sum(test2)</pre>
test3 <- is.na(tbCan$new sp m65)</pre>
test3Results <- sum(test3)</pre>
test4 <- is.na(tbCan$new sp f65)</pre>
test4Results <- sum(test4)</pre>
# Display Output:
printString0 <- paste('The column male 0 - 04 had ', testOResults, ' missing data.',</pre>
sep = ''
printString1 <- paste('The column male 0 - 14 had ', test1Results, ' missing data.',</pre>
sep = ''
sep = ''
printString3 <- paste('The column male 65 and older had ', test3Results, ' missing data.',
sep = ''
printString4 <- paste('The column female 65 and older had ', test4Results, ' missing data.',
sep = '')
print(printString0, quote = FALSE)
## [1] The column male 0 - 04
                                   had 26 missing data.
print(printString1, quote = FALSE)
## [1] The column male 0 - 14
                                   had 0 missing data.
print(printString2, quote = FALSE)
## [1] The column female 0 - 14 had 0 missing data.
print(printString3, quote = FALSE)
\#\# [1] The column male 65 and older had 0 missing data.
print(printString4, quote = FALSE)
## [1] The column female 65 and older had 0 missing data.
```

library(imputeTS)

```
# What does empty output suggest about the number of missing observations?
# This suggests that there are no missing fields or no na's.
```

There is an R package called **imputeTS** specifically designed to repair missing values in time series data. We will use this instead of mean substitution.

The **na_interpolation()** function in this package takes advantage of a unique characteristic of time series data: **neighboring points in time can be used to "guess" about a missing value in between**.

F. Install the **imputeTS** package (if needed) and use **na_interpolation()** on the variable from part C. Don't forget that you need to save the results back to the **tbCan** dataframe. Also update any attribute discussed in part E (if needed).

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
# COMPLETE PART F USING 'na_interpolation()' function.

tbCan$new_sp_m04 <- na_interpolation(tbCan$new_sp_m04)
```

G. Rerun the code from C and E above to check that all missing data have been fixed.

```
# Verify tbCan "na's" have been resolved.
test5 <- is.na(tbCan$new_sp_m04)
test5Results <- sum(test5)
#printString5 <- paste('The column had ', test5Results, ' missing data.', sep = '')
#print(printString5, quote = FALSE)

# RERUN PART C:
tbCan$new_sp_m04[is.na(tbCan$new_sp_m04)]</pre>
```

```
## numeric(0)
```

```
# RERUN PART E:
test0 <- is.na(tbCan$new_sp_m04)
test0Results <- sum(test0)

test1 <- is.na(tbCan$new_sp_m014)
test1Results <- sum(test1)

test2 <- is.na(tbCan$new_sp_f014)
test2Results <- sum(test2)

test3 <- is.na(tbCan$new_sp_m65)
test3Results <- sum(test3)

test4 <- is.na(tbCan$new_sp_f65)
test4Results <- sum(test4)</pre>
```

```
# Display Output:
printString0 <- paste('The column male 0 - 04 had ', test0Results, ' missing data.',</pre>
sep = '')
printString1 <- paste('The column male 0 - 14 had ', test1Results, ' missing data.',</pre>
sep = '')
printString2 <- paste('The column female 0 - 14 had', test2Results, 'missing data.',
sep = '')
printString3 <- paste('The column male 65 and older had ', test3Results, ' missing data.',
sep = '')
printString4 <- paste('The column female 65 and older had ', test4Results, ' missing data.',
sep = ''
print(printString0, quote = FALSE)
## [1] The column male 0 - 04
                                    had 0 missing data.
print(printString1, quote = FALSE)
## [1] The column male 0 - 14
                                    had 0 missing data.
print(printString2, quote = FALSE)
## [1] The column female 0 - 14
                                    had 0 missing data.
print(printString3, quote = FALSE)
\#\# [1] The column male 65 and older had 0 missing data.
print(printString4, quote = FALSE)
## [1] The column female 65 and older had 0 missing data.
```

Step 3: Use ggplot to explore the distribution of each variable

Don't forget to install and library the ggplot2 package. Then:

H. Create a histogram for **new_sp_m014**. Be sure to add a title and briefly describe what the histogram means in a comment.

```
# INSTALL LIBRARY:
library(ggplot2)

# CREATE PLOT USING GGPLOT:
plot1 <- ggplot(data = tbCan, aes(x = new_sp_m014)) + geom_histogram()</pre>
```

```
# DISPLAY PLOT:
plot1
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


I. Create histograms (using ggplot) of each of the other three variables from E with ggplot(). Which parameter do you need to adjust to make the other histograms look right?

```
# CREATE HISTOGRAMS USING GGPLOT:
plot2 <- ggplot(data = tbCan, aes(x = new_sp_f014)) + geom_histogram()
plot2</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
plot3 <- ggplot(data = tbCan, aes(x = new_sp_m65)) + geom_histogram()
plot3</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
plot4 <- ggplot(data = tbCan, aes(x = new_sp_f65)) + geom_histogram()
plot4</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Which parameter do you need to adjust to make the other histograms look right?
The parameter that needs to be adjusted is the number of bins.

Step 4: Explore how the data changes over time

J. These data were collected in a period of several decades (1980-2013). You can thus observe changes over time with the help of a line chart. Create a **line chart**, with **year** on the X-axis and **new_sp_m014** on the Y-axis.

```
# CREATE GGPLOT:
plot_J <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_m014))
# DISPLAY PLOT:
plot_J</pre>
```


K. Next, create similar graphs for each of the other three variables. Change the **color** of the line plots (any color you want).

```
# CREATE GGPLOT: COMBINED
plot_K <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_m014, colour ="blue")) +
    geom_line(aes(y = new_sp_f014, colour ="orange")) +
    geom_line(aes(y = new_sp_m65, colour = "red")) +
    geom_line(aes(y = new_sp_f65, colour = "green"))

# CREATE GGPLOT SEPARATE:
plot_K1 <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_m014, colour ="blue"))
plot_K2 <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_f014, colour ="blue"))
plot_K3 <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_m65, colour = "green"))
plot_K4 <- ggplot(tbCan, aes(x = year)) + geom_line(aes(y = new_sp_f65, colour = "green"))
# DISPLAY PLOTS:
plot_K</pre>
```


L. Using vector math, create a new variable by combining the numbers from new_sp_m014 and new_sp_f014. Save the resulting vector as a new variable in the tbCan df called new_sp_combined014. This new variable represents the number of positive pulmonary smear tests for male AND female children between the ages of 0 and 14 years of age. Do the same for SP tests among citizens 65 years of age and older and save the resulting vector in the tbCan variable called new_sp_combined65.

```
# CREATE NEW COLUMNS IN tbCan
tbCan$new_sp_combined014 <- tbCan$new_sp_m014 + tbCan$new_sp_f014
tbCan$new_sp_combined65 <- tbCan$new_sp_m65 + tbCan$new_sp_f65
head(tbCan)
```

```
##
       iso2 year new sp new sp m04 new sp m514 new sp m014 new sp m1524
         CA 1980
## 872
                     951
                                   1
                                                            12
                                               NA
                                                                           54
## 873
         CA 1981
                     803
                                   1
                                                             8
                                                                           49
                                               NA
         CA 1982
  874
                     812
                                   1
                                               NA
                                                             6
                                                                           52
         CA 1983
                     771
                                               NA
                                                                           47
  875
         CA 1984
                     811
                                   1
                                               NA
                                                             3
                                                                           44
##
  876
         CA 1985
                     791
                                   1
                                                            11
                                                                           42
  877
       new sp m2534 new sp m3544 new sp m4554 new sp m5564 new sp m65 new sp mu
##
  872
                  75
                                             100
                                                          108
                                                                       186
## 873
                  61
                                64
                                              87
                                                           103
                                                                       141
                                                                                   NA
## 874
                  66
                                69
                                              90
                                                            91
                                                                       150
                                                                                   NA
## 875
                  63
                                62
                                              90
                                                            92
                                                                       123
                                                                                   NA
## 876
                  75
                                58
                                                            83
                                              68
                                                                       169
                                                                                   NA
```

```
## 877
                 70
                               59
                                            77
                                                          81
                                                                    168
     new sp f04 new sp f514 new sp f014 new sp f1524 new sp f2534 new sp f3544
                           NA
                                        18
                                                                   51
## 872
                                                     62
## 873
                                                                   57
               NA
                           NA
                                        6
                                                     46
                                                                                26
## 874
               NA
                           NA
                                         7
                                                     51
                                                                   57
                                                                                 30
                                                                   50
## 875
                                                      50
                                                                                29
               NA
                           NA
                                        11
## 876
               NA
                           NA
                                         9
                                                      51
                                                                   59
                                                                                 28
                                         5
                                                      30
                                                                   56
## 877
               NA
                           NA
                                                                                19
      new sp f4554 new sp f5564 new sp f65 new sp fu new sp combined014
## 872
                 31
                               33
                                         104
## 873
                 28
                               35
                                         92
                                                                        14
## 874
                 25
                               38
                                          80
                                                    NA
                                                                        13
                              35
                                                                        20
## 875
                 24
                                         86
                                                    NA
## 876
                 28
                              36
                                         100
                                                    NA
                                                                        12
## 877
                 28
                              48
                                         97
                                                    NA
                                                                        16
   new sp combined65
##
## 872
                     290
## 873
                     233
## 874
                     230
## 875
                     209
## 876
                     269
## 877
                     265
```

M. Finally, create a **scatter plot**, showing **new_sp_combined014** on the x axis, **new_sp_combined65** on the y axis, and having the **color and size** of the point represent **year**.

```
# CREATE GGPLOT SEPARATE:
plot_M <- ggplot(tbCan, aes(x = new_sp_combined014, y = new_sp_combined65)) + geom_point(aes(
    size = year, colour = year))
# DISPLAY PLOTS:
plot_M</pre>
```


N. Interpret this visualization – what insight does it provide?

- # INTERPRETATION:
- # At all times there were more cases in the older population than in the younger population.
- # There were more cases in the 2000's than in the 1980's.