

Matemática

Folha 13 - Limites de funções reais de variável real

1. Definição de limite de uma função num ponto

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função real de variável real e a um ponto de acumulação, finito ou infinito, do seu domínio.

Nota: m número a diz-se ponto de acumulação de um conjunto C se e só se em qualquer vizinhança de centro a (intervalo da forma $]a-\delta,a+\delta[$, com $\delta>0$) existe pelo menos um elemento de C diferente de a.

Definição 1 (segundo Heine) Diz-se que ℓ (finito ou infinito) é o limite de f(x) quando x tende para a e escreve-se $\lim_{x\to a} f(x) = \ell$

se e só se a toda a sucessão de valores de x do domínio de f convergente para a (sendo esses valores diferentes de a), corresponde uma sucessão de valores de f convergente para ℓ .

Exemplo 1 Consideremos, em \mathbb{R} , a função definida por $f(x) = \frac{3x}{x^2+4}$ e vamos mostrar, a partir da definição, que $\lim_{x\to 1} f(x) = \frac{3}{5}$.

Seja $(x_n)_n$ uma qualquer sucessão de valores de x convergente para 1 por valores diferentes de 1, a que corresponde a sucessão $(y_n)_n$ de valores da função

$$\lim y_n = \lim \frac{3x_n}{x_n^2 + 4} = \frac{3\lim x_n}{(\lim x_n)^2 + 4} = \frac{3 \times 1}{1^2 + 4} = \frac{3}{5},$$

Logo, dado que $(x_n)_n$ é uma sucessão qualquer tal que $\lim x_n = 1$, temos $\lim_{x \to 1} f(x) = \frac{3}{5}$.

Exemplo 2 Vamos provar, a partir da definição, que $\lim_{x\to +\infty} \frac{1}{x+3} = 0$.

Como o domínio da função é $\mathbb{R} \setminus \{-3\}$, $+\infty$ é um ponto de acumulação desse domínio.

Seja $(x_n)_n$ uma qualquer sucessão de valores de x do domínio da função, convergente para $+\infty$. Então, $\lim \frac{1}{x_n+3}=0$ e, consequentemente, $\lim_{x\to+\infty}\frac{1}{x+3}=0$.

 $Como - \infty$ é também ponto de acumulação do domínio da função, podemos falar do limite quando x tende para $-\infty$ e, de forma análoga, provamos igualmente que $\lim_{x\to -\infty} \frac{1}{x+3} = 0$.

2. Limites laterais

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função real de variável real e a um ponto de acumulação finito de D.

Definição 2 Diz-se que ℓ é o limite lateral de f(x) à esquerda de a e escreve-se $\lim_{x\to a^-} f(x) = \ell$ se e só se a toda a sucessão de valores de x do domínio de f convergente para a (sendo esses valores menores do que a), corresponde uma sucessão de valores de f convergente para ℓ .

Definição 3 Diz-se que ℓ é o limite lateral de f(x) à direita de a e escreve-se $\lim_{x\to a^+} f(x) = \ell$ se e só se a toda a sucessão de valores de x do domínio de f convergente para a (sendo esses valores maiores do que a), corresponde uma sucessão de valores de f convergente para ℓ .

Teorema 1 Tem-se $\ell = \lim_{x \to a} f(x)$ se e só se existem e são iguais a ℓ os correspondentes limites laterais, isto é,

$$\lim_{x\to a} f(x) = \ell \iff \left(\lim_{x\to a^+} f(x) = \ell \quad \text{e} \quad \lim_{x\to a^-} f(x) = \ell\right).$$

Exemplo 3

Seja g a função definida, em $]-\infty,1[\,\cup\,]1,+\infty[$ por

$$g(x) = \begin{cases} -x^2 + 2x & \text{se } x < 1 \\ x & \text{se } x > 1 \end{cases}$$

O número 1 é ponto de acumulação do domínio D_g embora $1 \notin D_g$. Como $\lim_{x \to 1^+} g(x) = \lim_{x \to 1^-} g(x) = 1$, concluímos que $\lim_{x \to 1} g(x) = 1$.

3. Propriedades dos limites

Dos vários teoremas sobre limites de sucessões deduzem-se diretamente teoremas análogos para os limites de funções reais de variável real.

- Unicidade do limite Quando x tende para a, f não pode convergir simultaneamente para dois limites distintos .
- Limite de uma constante O limite de uma função constante é a própria constante.

Sejam f e g duas funções reais de variável real e b e c números reais.

• Limite de uma soma

Se
$$\lim_{x\to a} f(x) = b$$
 e $\lim_{x\to a} g(x) = c$, então $\lim_{x\to a} \left[f(x) + g(x) \right] = b + c$.

Temos o quadro seguinte para a finito ou infinito (note-se que, no caso em que as funções tendem uma para $+\infty$ e a outra para $-\infty$, o limite da soma f(x)+g(x) apresenta-se como uma indeterminação $\infty-\infty$).

$\lim_{x \to a} f(x)$	b	b	b	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	c	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} \left[f(x) + g(x) \right]$	b+c	$+\infty$	$-\infty$	$+\infty$	$-\infty$?

• Limite de um produto

Se
$$\lim_{x\to a} f(x) = b$$
 e $\lim_{x\to a} g(x) = c$, então $\lim_{x\to a} \left[f(x) \cdot g(x) \right] = b \cdot c$.

Temos o quadro seguinte para a finito ou infinito (no caso de uma das funções tender para zero e a outra para $+\infty$ ou $-\infty$, o limite do produto apresenta-se como uma indeterminação $0 \times \infty$).

2

$\lim_{x \to a} f(x)$	b	b > 0		b = 0	b < 0		$+\infty$		$-\infty$
$\lim_{x\to a}g(x)$	c	$+\infty$	$-\infty$	$\pm \infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} \left[f(x) \cdot g(x) \right]$	$b \cdot c$	$+\infty$	$-\infty$?	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$

• Limite de um quociente

Se $\lim_{x o a}f(x)=b$ e $\lim_{x o a}g(x)=c$, em que c
eq 0, então $\lim_{x o a}rac{f(x)}{g(x)}=rac{b}{c}$.

Este resultado generaliza-se ao caso de limites infinitos de acordo com o quadro seguinte (sendo a finito ou infinito): Aqui aparecem mais dois símbolos de indeterminação: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ e $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$.

$\lim_{x \to a} f(x)$	b	$+\infty$				$-\infty$	b eq 0	b	0	$\pm \infty$	
$\lim_{x \to a} g(x)$	$c \neq 0$	c > 0	c = 0	c < 0	c > 0	c = 0	c < 0	0	$\pm \infty$	0	$\pm \infty$
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{b}{c}$	$+\infty$	$\pm \infty$	$-\infty$	$-\infty$	$\pm \infty$	$+\infty$	$\pm \infty$	0	?	?

• Limite de uma raiz

Se $\lim_{x\to a} f(x) = b$ e $p \in \mathbb{N}$, então $\lim_{x\to a} \sqrt[p]{f(x)} = \sqrt[p]{b}$, admitindo que se tem $f(x) \geq 0$, $\forall x \in D_f$, no caso de de p ser par.

• Limite da potenciação

Considerando a operação de potenciação $f(x)^{g(x)}$ nos pontos onde é válida, se $\lim_{x\to a} f(x) = b$ e $\lim_{x\to a} g(x) = c$, então $\lim_{x\to a} f(x)^{g(x)} = b^c$.

Exemplo 4

$$\lim_{x \to 1} \left(4x^3 + 3x + 1\right) = 4 \left(\lim_{x \to 1} x\right)^3 + 3 \left(\lim_{x \to 1} x\right) + \lim_{x \to 1} 1 = 4 \times 1 + 3 \times 1 + 1 = 8.$$

$$\lim_{x \to -1^+} \frac{x}{x+1} = \frac{\lim_{x \to -1^+} x}{\lim_{x \to -1^+} (x+1)} = \frac{-1}{-1^+ + 1} = \frac{-1}{0^+} = -\infty$$

$$\lim_{x \to +\infty} (3x^2 + 5) = 3 \left(\lim_{x \to +\infty} x\right)^2 + \lim_{x \to +\infty} 5 = 3 \times (+\infty) + 5 = +\infty.$$

$$\lim_{x \to -\infty} (2x^3 + 7) = 2 \left(\lim_{x \to -\infty} x\right)^3 + \lim_{x \to -\infty} 7 = 2 \times (-\infty) + 7 = -\infty.$$

4. Indeterminações

Nos casos em que, por aplicação direta dos resultados sobre limites, somos conduzidos aos símbolos

$$\infty - \infty$$
, $0 \times \infty$, $\frac{0}{0}$ e $\frac{\infty}{\infty}$,

a que se chama símbolos de indeterminação, temos de seguir outro caminho para procurar, se existir, o limite. Vamos considerar dois casos: x tende para a (finito) e x tende para $+\infty$ ou $-\infty$.

4.1 $x \longrightarrow a$ (finito) : muitas das indeterminações podem reduzir-se a uma indeterminação do tipo $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Exemplo 5 No limite que abaixo se apresenta, aplicando diretamente o resultado do limite do quociente, somos conduzidos a $\frac{0}{0}$. O número 1 anula ambos os termos da fração e a indeterminação levanta-se simplificando a fração

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

3

Exemplo 6 No limite que abaixo se apresenta, o número 1 anula o numerador e o denominador da fração, o que significa que ambos os termos são divisíveis por x-1. Efetuando a divisão pela regra de Ruffini,

Numerador

Denominador

$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 4x - 2}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x^2 - 2x + 2)}{(x - 1)(x - 2)}.$$

Como o limite se calcula quando $x \longrightarrow 1$ por valores diferentes de 1, $x - 1 \neq 0$, temos, portanto,

$$\lim_{x \to 1} \frac{(x-1)(x^2 - 2x + 2)}{(x-1)(x-2)} = \lim_{x \to 1} \frac{x^2 - 2x + 2}{x - 2} = \frac{1 - 2 + 2}{1 - 2} = -1.$$

Exemplo 7

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \qquad \left(\frac{0}{0}\right).$$

Multiplicando ambos os termos por $\sqrt{x} + 3$, vem

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x - 9)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{x - 9}{(x - 9)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}.$$

Exemplo 8

$$\lim_{x\to -1^+} \left(\frac{1}{x^2 - 1} + \frac{1}{x + 1} \right) \qquad (\infty - \infty).$$

$$\begin{split} \lim_{x \to -1^+} \left(\frac{1}{x^2 - 1} + \frac{1}{x + 1} \right) &= \lim_{x \to -1^+} \left[\frac{1 + x - 1}{x^2 - 1} \right] \\ &= \lim_{x \to -1^+} \left[\frac{x}{x^2 - 1} \right] = \frac{-1}{0^-} = +\infty. \end{split}$$

4.2 $x \longrightarrow +\infty$ ou $x \longrightarrow -\infty$: muitas das indeterminações podem reduzir-se a uma indeterminação do tipo $\boxed{\frac{\infty}{\infty}}$.

Exemplo 9 Calcular os seguintes limites:

(a)
$$\lim_{x \to +\infty} \frac{x^2 + 7x + 1}{3x^2 + 6x + 2}$$
 $\left(\frac{\infty}{\infty}\right)$; (c) $\lim_{x \to -\infty} \frac{\frac{4x}{x^2 + 1}}{\frac{x^2}{2x^4 + 1}}$ $\left(\frac{0}{0}\right)$;

(b)
$$\lim_{x \to -\infty} \left[\frac{1}{2x} \cdot (x^2 + 1) \right]$$
 $(0 \times \infty);$ $(0 \times \infty);$ $(0 \times \infty);$ $(0 \times \infty);$

(a) Dividindo ambos os membros da fração por x^2 , vem

$$\lim_{x \to +\infty} \frac{x^2 + 7x + 1}{3x^2 + 6x + 2} = \lim_{x \to +\infty} \frac{1 + \frac{7}{x} + \frac{1}{x^2}}{3 + \frac{6}{x} + \frac{1}{x^2}} = \frac{1 + 0 + 0}{3 + 0 + 0} = \frac{1}{3}.$$

4

(b)
$$\lim_{x \to -\infty} \left[\frac{1}{2x} \cdot (x^2 + 1) \right] = \lim_{x \to -\infty} \frac{x^2 + 1}{2x} = \lim_{x \to -\infty} \left[\frac{x}{2} + \frac{1}{2x} \right] = -\infty + 0 = -\infty.$$

(c)
$$\lim_{x \to -\infty} \frac{\frac{4x}{x^2 + 1}}{\frac{x^2}{2x^4 + 1}} = \lim_{x \to -\infty} \frac{8x^5 + 4x}{x^4 + x^2} = \lim_{x \to -\infty} \frac{8x + \frac{4}{x^3}}{1 + \frac{1}{x^2}} = \frac{-\infty + 0}{1 + 0} = -\infty.$$

Pondo em evidência x, vem

$$\lim_{x\to +\infty} \left(\sqrt{x}-x\right) = \lim_{x\to +\infty} \left[x\left(\frac{\sqrt{x}}{x}-1\right)\right] = \lim_{x\to +\infty} \left[x\left(\sqrt{\frac{1}{x}}-1\right)\right] = +\infty \times (0-1) = -\infty.$$

Alguns limites de relevo

Apresentamos agora resultados úteis sobre alguns limites importantes.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

$$\lim_{x \to 0^+} x \ln x = 0.$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty, \qquad p \in \mathbb{R}$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

Exercícios Propostos

Para cada uma das alíneas seguintes, indique: Exercício 1

$$i) \lim_{x \to 1^{-}} f(x);$$

ii)
$$\lim_{x\to 1^+} f(x)$$
;

iii)
$$f(1)$$
.

Sendo a função h definida, em \mathbb{R} , por $h(x) = \left\{ \begin{array}{ccc} 2x & \text{se } x \geq 3 \\ x^2 - 3 & \text{se } x < 3 \end{array} \right.$ Exercício 2

Calcule

 $\lim_{x\to 5} h(x); \lim_{x\to -\infty} h(x); \lim_{x\to 3^-} h(x) \in \lim_{x\to 3^+} h(x). \text{ Diga se existe } \lim_{x\to 3} h(x).$

Exercício 3 Calcule, se existirem, os seguintes limites:

a)
$$\lim_{x \to 3^{-}} \frac{x^2}{x - 3}$$

$$d) \lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2}$$

$$g) \lim_{x \to +\infty} \frac{x^2}{x^3 + 9}$$

b)
$$\lim_{x \to -1^+} \frac{4x - 3}{x + 1}$$

e)
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}$$

a)
$$\lim_{x \to 3^{-}} \frac{x^{2}}{x - 3}$$
 d) $\lim_{x \to 0} \frac{5x^{3} + 8x^{2}}{3x^{4} - 16x^{2}}$ g) $\lim_{x \to +\infty} \frac{x^{2}}{x^{3} + 9}$ b) $\lim_{x \to -1^{+}} \frac{4x - 3}{x + 1}$ e) $\lim_{x \to 2} \frac{x^{3} - 5x^{2} + 8x - 4}{x^{3} - 3x^{2} + 4}$ h) $\lim_{x \to +\infty} \left(\sqrt{x^{2} + 1} - \sqrt{x^{2} - 1}\right)$

c)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$

c)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$
 f) $\lim_{x \to -\infty} \frac{2x^2 + 5x}{3x + 2 - 4x^2}$

$$i) \lim_{x \to -\infty} e^{-2x}$$

$$\mathrm{j)} \lim_{x \to -\infty} \frac{2^x}{3^x}$$