

Pauta Tarea 3

10 de septiembre de 2025

 2^{0} semestre 2025 - Profesores M. Arenas - A. Kozachinskiy - M. Romero

Pregunta 1

Indique si las siguientes afirmaciones son ciertas. Justifique su respuesta con una demostración.

(a) (3.0 pts)
$$\{ \forall x \forall y \left(R(x,y) \to R(y,x) \right), \ \forall x \forall y \forall z \left(\left(R(x,y) \land R(y,z) \right) \to R(x,z) \right) \} \ \models \ \forall x \, R(x,x)$$

(b) (3.0 pts)
$$\{\forall x \exists y \, R(x,y), \, \forall x \forall y \, (R(x,y) \to R(y,x)), \, \forall x \forall y \forall z \, ((R(x,y) \land R(y,z)) \to R(x,z))\} \models \forall x \, R(x,x)$$

Solución

Por simplicidad, definamos:

$$\varphi_1 = \forall x \exists y \, R(x, y)$$

$$\varphi_2 = \forall x \forall y \, \big(R(x, y) \to R(y, x) \big)$$

$$\varphi_3 = \forall x \forall y \forall z \, \big((R(x, y) \land R(y, z)) \to R(x, z) \big)$$

$$\varphi = \forall x \, R(x, x)$$

(a) La afirmación es falsa. Debemos mostrar que $\{\varphi_2, \varphi_3\} \not\models \varphi$. Para esto, basta mostrar una interpretación \mathcal{I} tal que $[\![\{\varphi_2, \varphi_3\}]\!]_{\mathcal{I}} = 1$, pero $[\![\varphi]\!]_{\mathcal{I}} = 0$. Podemos tomar la interpretación \mathcal{I} con dominio $\{1\}$ y tal que:

$$R^{\mathcal{I}}=\emptyset$$

Es decir, el predicado $R^{\mathcal{I}}$ siempre es falso. La fórmula $\forall x \forall y (R(x,y) \to R(y,x))$ es verdadera sobre \mathcal{I} , ya que los únicos posibles valores para x e y son x=1 e y=1, y el antecedente de la

implicación es falso. Similarmente para $\forall x \forall y \forall z \ ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$. Deducimos que $[\![\{\varphi_2,\varphi_3\}]\!]_{\mathcal{I}} = 1$. Por otro lado, tenemos que $\forall x \ R(x,x)$ es falsa sobre \mathcal{I} ya que $(1,1) \notin R^{\mathcal{I}}$. Concluimos que $[\![\varphi]\!]_{\mathcal{I}} = 0$.

Notar que el argumento funciona si escogemos cualquier dominio para \mathcal{I} y hacemos que el predicado $R^{\mathcal{I}}$ sea falso para todos los posibles valores de x e y.

(b) La afirmación es verdadera. Debemos demostrar que $\{\varphi_1, \varphi_2, \varphi_3\} \models \varphi$. Sea \mathcal{I} una interpretación arbitraria tal que $[\![\{\varphi_1, \varphi_2, \varphi_3\}]\!]_{\mathcal{I}} = 1$. Debemos demostrar que $[\![\varphi]\!]_{\mathcal{I}} = 1$. Como $\varphi = \forall x \, R(x, x)$, tomemos un elemento a arbitrario en el dominio de \mathcal{I} . Debemos verificar que $(a, a) \in R^{\mathcal{I}}$. Como $\varphi_1 = \forall x \exists y \, R(x, y)$ es verdadera sobre \mathcal{I} , para el elemento x = a, existe un elemento b en el dominio de \mathcal{I} tal que $(a, b) \in R^{\mathcal{I}}$. Como $\varphi_2 = \forall x \forall y \, (R(x, y) \to R(y, x))$ es verdadera sobre \mathcal{I} , tomando x = a, y = b, obtenemos que la implicación $R(a, b) \to R(b, a)$ debe ser verdadera. Como ya sabemos que $(a, b) \in R^{\mathcal{I}}$ es verdadero, entonces se debe cumplir que $(b, a) \in R^{\mathcal{I}}$. Finalmente, como $\varphi_3 = \forall x \forall y \forall z \, ((R(x, y) \land R(y, z)) \to R(x, z))$ es verdadera sobre \mathcal{I} , tomando x = a, y = b, z = a, obtenemos que la implicación $(R(a, b) \land R(b, a)) \to R(a, a)$ debe ser verdadera. Como ya sabemos que $R(a, b) \land R(b, a)$ es cierto, concluimos que $R(a, a) \in R^{\mathcal{I}}$.

Distribución de puntaje

En ambos ítems, 3.0 pts por dar la respuesta correcta y justificar con una demostración correcta. Sólo decir si es consecuencia lógica o no, sin ninguna justificación, no recibe puntaje. Se aplican descuentos o puntaje parciales a criterio del corrector.

Pregunta 2

Dado dos conjuntos A y B se define la intersección $A \cap B$ y la diferencia $A \setminus B$ como:

$$A \cap B = \{c \mid c \in A \land c \in B\}.$$
$$A \setminus B = \{c \mid c \in A \land c \notin B\}.$$

¿Son ciertas las siguientes igualdades para todos los conjuntos $A,\ B$ y C? Justifique su respuesta con una demostración.

(a)
$$(3.0 \text{ pts})$$
 $(A \setminus C) \cap (C \setminus B) = \emptyset$

(b) (3.0 pts)
$$(A \setminus B) \setminus C = A \setminus (B \setminus C)$$

Solución

- (a) La igualdad es cierta. Sean A, B y C conjuntos arbitrarios. Por el axioma de extensionalidad, basta ver que $(A \setminus C) \cap (C \setminus B)$ no tiene elementos. Por contradicción, supongamos que $u \in (A \setminus C) \cap (C \setminus B)$, para cierto u. Por la definición de intersección, tenemos que $u \in (A \setminus C)$ y $u \in (C \setminus B)$. Por la definición de la diferencia, obtenemos que $u \in A$ y $u \notin C$, y $u \in C$ y $u \notin B$. En particular, deducimos que $u \in C$ y $u \notin C$, lo cual es una contradicción.
- (b) La igualdad es falsa. Para demostrar esto, podemos tomar $A = \{a\}$, $B = \emptyset$, $C = \{a\}$, donde a es cualquier conjunto (por ejemplo $a = \emptyset$). Por un lado, tenemos que:

$$(A \setminus B) \setminus C = (\{a\} \setminus \emptyset) \setminus \{a\} = \{a\} \setminus \{a\} = \emptyset$$

Por otra parte, tenemos que:

$$A \setminus (B \setminus C) = \{a\} \setminus (\emptyset \setminus \{a\}) = \{a\} \setminus \emptyset = \{a\}$$

Luego $(A \setminus B) \setminus C$ y $A \setminus (B \setminus C)$ son distintos.

Distribución de puntaje

En ambos ítems, 3.0 pts por dar la respuesta correcta y justificar con una demostración correcta. Sólo decir si se cumple o no la igualdad, sin ninguna justificación, no recibe puntaje. Se aplican descuentos o puntajes parciales a criterio del corrector.