Suites et séries de fonctions

Feuille d'exercices #08

⊗ Partie A – Suites de fonctions

Exercice 1 — Étudier la convergence simple et uniforme des suites de fonctions :

$$f_n(x) = \frac{nx^2}{1+nx} \text{ sur } [0,1]; \ g_n(x) = x^n (1-x)^n \text{ sur } [0,1]; \ h_n(x) = \cos^n \left(\frac{x}{\sqrt{n}}\right) \text{ sur } \mathbb{R}$$

Exercice 2 — Soient $f \in \mathcal{C}([0,1],\mathbb{R})$ et, pour $n \in \mathbb{N}$, $f_n : x \mapsto \int_0^x f(t^n) dt$.

Étudier la convergence simple et la convergence uniforme de $(f_n)_{n \in \mathbb{N}}$.

Exercice 3 — Soit, pour $n \in \mathbb{N}$, $f_n : x \mapsto n \cos^n(x) \sin(x)$.

- 1. Étudier la convergence simple de $(f_n)_{n \in \mathbb{N}}$ sur $]0, \frac{\pi}{2}]$.
- 2. Comparer $\lim_{n\to+\infty} \int_0^{\pi/2} f_n(x) dx$ et $\int_0^{\pi/2} \lim_{n\to+\infty} f_n(x) dx$. Qu'en déduire?

Exercice 4 — On considère la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ définie par :

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n \mathbb{1}_{[0,n]}(x)$$

- 1. Étudier la convergence simple de $(f_n)_{n \in \mathbb{N}^*}$ sur \mathbb{R}_+ .
- 2. On pose $\delta_n(x) = e^{-x} f_n(x)$. Montrer que $\|\delta_n\|_{\infty} \le \frac{1}{en}$ puis conclure. On cherchera à majorer $\delta_n(x_0)$ où x_0 vérifie $\delta_n'(x_0) = 0$.
- 3. Prouver que $\int_0^{+\infty} e^{-x} \ln(x) dx = -\gamma.$

Exercice 5 — Soient $\alpha \in \mathbb{R}_+^*$ et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions α -lipschitzienne sur le segment [a,b] et à valeurs dans \mathbb{R} . On suppose de plus que la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur [a,b]. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur [a,b].

Exercice 6 — Soit (u_n) une suite de fonctions continues sur un intervalle I et à valeurs dans \mathbb{C} . On suppose que :

$$\forall n \in \mathbb{N}, \quad \forall x \in I, \quad |u_n(x)| \leq a_n$$

où a_n est le terme général d'une série supposée convergente.

Montrer que la suite (P_n) de terme général $P_n(x) = \prod_{k=1}^n (1 + u_k(x))$ converge uniformément sur I vers une fonction continue sur I.

Exercice 7 — Soit $f : \mathbb{R} \to \mathbb{R}$ continue et bornée. On considère, pour tout $n \in \mathbb{N}$, la fonction f_n définie par :

$$\forall x \in \mathbb{R}, \quad f_n(x) = \int_{-\infty}^{+\infty} f(x - t) \varphi_n(t) \, \mathrm{d}t \quad \text{où} \quad \varphi_n(t) = \frac{n}{\pi} \cdot \frac{1}{1 + n^2 t^2}$$

Montrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} et qu'elle converge uniformément sur tout segment de \mathbb{R} .

Exercice 8 — Second théorème de Dini

Soient $a, b \in \mathbb{R}$ avec a < b. On considère une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions croissantes de [a, b] dans \mathbb{R} qui converge simplement vers une fonction continue f. Soit enfin, pour $p \in \mathbb{N}^*$, la subdivision du segment [a, b] définie par :

$$\forall k \in \{0, \dots, p\}, \quad a_k = a + k \cdot \frac{b - a}{p}$$

- 1. Soit $\varepsilon > 0$. Montrer qu'il existe $p \in \mathbb{N}^*$ tel que $f(a_{k+1}) f(a_k) \le \varepsilon$ pour tout entier $k \in \{0, ..., p-1\}$.
- 2. Montrer que la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f est uniforme sur [a,b].
- 3. *Application* Montrer que la suite de fonctions $\left(x \mapsto \left(1 + \frac{x}{n}\right)^n\right)_{n \in \mathbb{N}^*}$ converge uniformément vers exp sur tout segment de \mathbb{R} .

⊗ Partie B – Séries de fonctions

Exercice 9 — Étudier la convergence simple puis uniforme sur \mathbb{R}_+ des séries de termes généraux :

$$u_n(x) = \frac{x}{n(1+nx)}$$
 et $v_n(x) = \frac{x}{(1+nx)^2}$

Exercice 10 — Étudier la convergence simple puis uniforme de la série de fonctions de terme général u_n dans les cas suivants :

$$u_n(x) = \frac{x^{2n}}{1 + x^{2n}}; \quad u_n(x) = \frac{1}{2^n} \operatorname{th}\left(\frac{x}{2^n}\right); \quad u_n(x) = \frac{x e^{-nx}}{\ln(n)}$$

$$u_n(x) = x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right); \quad u_n(x) = \frac{(-1)^n}{x+n} \quad (x \ge 0)$$

Exercice 11 — Déterminer les domaines de convergence simple et uniforme de la série de terme général $u_n(x) = (-1)^n \frac{e^{-nx}}{n}$. Calculer sa somme.

Exercice 12 — Soient $\alpha > 0$ et $u_n(x)$ défini sur \mathbb{R}_+ par $u_n(x) = n^2 x^{\alpha} e^{-nx^2}$.

- 1. Étudier la convergence simple et normale de $\sum u_n$ sur $[0, +\infty[$.
- 2. En cas de convergence, quel est le domaine de continuité de la somme?
- 3. Étudier la somme au voisinage de 0.

Exercice 13 — Soit $(a_n)_{n \in \mathbb{N}}$ une suite décroissante de réels positifs.

On pose alors $u_n(x) = a_n x^n (1 - x)$. Montrer que :

- $\sum u_n$ converge simplement sur [0, 1].
- $\sum u_n$ converge normalement sur [0,1] si et seulement si $\sum_{n\in\mathbb{N}^*} \frac{a_n}{n}$ converge.
- $\sum u_n$ converge uniformément sur [0,1] si et seulement si $a_n \xrightarrow[n \to +\infty]{} 0$.
- **Exercice 14** Pour $\alpha > 1$ et x > 0, on pose :

$$\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$
 et $\eta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$

- 1. Déterminer la limite ζ en $+\infty$ et trouver un équivalent en 1^+ .
- 2. Montrer que la fonction η est bien définie et qu'elle est continue sur \mathbb{R}^*_+ .
- 3. Trouver pour x > 1 une relation entre $\zeta(x)$ et $\eta(x)$.
- 4. Retrouver un équivalent en 1^+ de $\zeta(x)$.

Exercice 15 — On pose
$$f(x) = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$$
.

- 1. Montrer que f est définie sur \mathbb{R} et établir sa continuité.
- 2. Déterminer la limite de f en $+\infty$.
- 3. Y a-t-il convergence normale sur \mathbb{R} ? convergence uniforme?

Exercice 16 — On pose, sous réserve d'existence, $f(x) = \sum_{n=2}^{+\infty} \frac{1}{n^x \ln(n)}$.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier la continuité de f.
- 3. Trouver un équivalent de f au voisinage de 1^+ .

Exercice 17 — Soit a > 0. On pose $f(x) = \sum_{n=1}^{+\infty} \ln(1 + \frac{a}{n^2 x^2})$.

- 1. Déterminer le domaine de définition de f.
- 2. Donner un équivalent en 0 et $+\infty$ de f.

Exercice 18 — Soit, pour tout x > 0, $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\ln(x+n)}$ sur \mathbb{R}_+^* .

- 1. Montrer que f est définie, continue et à valeurs positives.
- 2. Prouver que f est de classe \mathscr{C}^1 et préciser ses variations.
- 3. Calculer f(x) + f(x+1) pour x > 0.
- 4. En déduire un équivalent de f(x) en $+\infty$ et en 0.

 \mathbb{E} Exercice 19 — Pour $n \in \mathbb{N}$, on pose $S_n(x) = \sum_{k=0}^n e^{ikx}$ et $D = \mathbb{R} \setminus 2\pi\mathbb{Z}$.

- 1. Montrer que pour tous $x \in D$ et $n \in \mathbb{N}$, $|S_n(x)| \le \frac{1}{\left|\sin\left(\frac{x}{2}\right)\right|}$.
- 2. Prouver la convergence de $\sum_{n \in \mathbb{N}^*} \frac{e^{inx}}{n}$ pour tout $x \in D$.
- 3. Soit $f_n: x \mapsto \frac{e^{inx}}{n}$ pour $n \in \mathbb{N}^*$. Prouver que la série $\sum f_n$ converge uniformément sur tout segment inclus dans $]0,2\pi[$.

Exercice 20 — Soit, pour $n \in \mathbb{N}^*$, la fonction $u_n : x \mapsto x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right)$.

- 1. Justifier la convergence simple de $\sum u_n \operatorname{sur} \mathbb{R}^*_+$.
- 2. Soit $f: x \mapsto -\ln(x) + \sum_{n=0}^{+\infty} u_n(x)$. Prouver que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 3. Montrer que f est l'unique fonction de classe \mathscr{C}^1 vérifiant :
 - (i) $\forall x > 0$, $f(x+1) f(x) = \ln(x)$ (ii) f(1) = 0 (iii) f convexe sur \mathbb{R}_{+}^{*}
- 4. Montrer que $\int_{0}^{+\infty} t^{x-1} e^{-t} dt = \lim_{n \to +\infty} \frac{n^{n} n!}{x(x+1) \cdots (x+n)}.$

Exercice 21 — On pose, pour $x \in]-1,1[$, $F(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{dt}{1-x\cos(t)}$.

- 1. Montrer que pour tout $x \in]-1,1[$, $F(x)=\sum_{n=0}^{+\infty} {2n \choose n} \frac{x^{2n}}{4^n}$.
- 2. Montrer que $F(x) = \frac{1}{\sqrt{1-x^2}}$ et en déduire un développement de $\arcsin(x)$.

Exercice 22 — Justifier l'égalité :

$$\int_0^1 \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n}} t^{\sqrt{n}} \right) dt = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}(\sqrt{n}+1)}$$

Exercice 23 — On pose, pour tout $x \in \mathbb{R}$, $f(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{n!^2}$.

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Soit, pour $x \in \mathbb{R}$, $\phi_x : t \mapsto \sum_{k=0}^{+\infty} \frac{x^k}{k!} e^{ikt}$.
 - a) Calculer $\frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_x(t) e^{-int} dt$.
 - b) Calculer de deux façons différentes $\frac{1}{2\pi} \int_{-\pi}^{\pi} |\phi_x(t)|^2 dt$.
 - c) En déduire que pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{\pi} \int_{0}^{\pi} e^{2x \cos(t)} dt$.

⊗ Partie C – Approximation uniforme

- № Exercice 24 Lemme de Riemann-Lebesgue
 - 1. Soit $f:[a,b] \to \mathbb{K}$ de classe \mathscr{C}^1 sur [a,b]. Montrer que :

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to +\infty]{} 0$$

2. Soit $f:[a,b] \to \mathbb{K}$ continue par morceaux sur [a,b]. Montrer que :

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to +\infty]{} 0$$

Exercice 25 — Approximation simultanée

1. Soient $f, g \in \mathcal{C}^1([a, b], \mathbb{C})$. Montrer qu'alors, pour tout $x_0 \in [a, b]$:

$$||f - g||_{\infty} \le |f(x_0) - g(x_0)| + (b - a)||f' - g'||_{\infty}$$

2. En déduire que pour toute fonction $f \in \mathcal{C}^1([a,b],\mathbb{C})$, il existe une suite $(P_n)_{n\in\mathbb{N}}$ de fonctions polynomiales qui converge uniformément sur [a,b]vers f telle que la suite $(P'_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers f'.

Exercice 26 — Approximation polynomiale de la racine carrée On considère la suite $(P_n)_{n\in\mathbb{N}}$ de polynômes définie par $P_0=0$ et pour tout $n\in\mathbb{N}$,

$$P_{n+1} = P_n + \frac{1}{2}(X - P_n^2)$$

- 1. Montrer que la suite $(P_n)_{n \in \mathbb{N}}$ est polynomiale et préciser le degré de P_n .
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$\forall x \ge 0$$
, $P_{n+1}(x) - \sqrt{x} = \left(P_n(x) - \sqrt{x}\right) \cdot \left(1 - \frac{1}{2}\left(P_n(x) + \sqrt{x}\right)\right)$

- 3. Montrer que tous $n \in \mathbb{N}$ et $x \in [0,1]$, $0 \le P_n(x) \le P_{n+1}(x) \le \sqrt{x}$.
- 4. En déduire que la suite $(P_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1], en croissant, vers une fonction f à préciser.
- 5. Prouver que la convergence de $(P_n)_{n\in\mathbb{N}}$ vers f est uniforme.