# Decomposition of Persistent Homology and Spectral Sequences

Peiqi Yang, Yingfeng Hu, Hao Wu

George Washington University

# Persistent Homology - Point Cloud



# Abstract Simplicial Complex

#### **Definition**

Let V be a finite set of vertices (points),  $2^V$  is its power set.  $\Delta \subseteq 2^V$  is an **abstract simplicial complex** if, for all faces  $f \in \Delta$  and every non-empty subset  $f' \subseteq f$ , f' is also a face in  $\Delta$ .

### Definition (Vietoris-Rips complex)

$$\mathcal{R}(V,\epsilon) := \{ f \subset 2^V : \forall u, v \in f, \ B(u,\epsilon) \cap B(v,\epsilon) \neq \emptyset \}.$$

# Persistent Homology - Rips



# Persistent Homology - Filtration

#### Definition

A filtered chain complex  $(C, d, \mathcal{F})$  over a field  $\mathbb{F}$  is a chain complex of  $\mathbb{F}$ -spaces with an extra filtration structure

$$\emptyset = \mathcal{F}^0 \, C \subseteq \mathcal{F}^1 C \subseteq \cdots \subseteq \mathcal{F}^{p-1} C \subseteq \mathcal{F}^p C \subseteq \cdots \subseteq C$$

It is an ascending sequence of subchain complexes.

#### Remark

In the previous example, the entire chain complex C is the ASC of all vertices, which is  $2^V$  consisting of all subsets of V. Each filtration level in the example is a Vietoris–Rips complex, which is  $\mathcal{F}^pC=\mathcal{R}(V,p\epsilon)$  for all  $p\geq 1$ .

# Persistent Homology - Barcodes



# Persistent Homology

#### **Definition**

For  $s \leq t$ , the inclusion  $\mathcal{F}^sC \hookrightarrow \mathcal{F}^tC$  induces a homomorphism  $f_n^{s,t}: H_n(\mathcal{F}^sC) \to H_n(\mathcal{F}^tC)$  on homology groups. Then  $H_n^{s,t} = \operatorname{Im}(f_n^{s,t})$  is defined to be the **n-th persistent homology group** for all such  $s \leq t$ .

#### Definition

The **n-th persistent Betti number** is defined by  $b_n^{s,t} = \dim_{\mathbb{F}} H_n^{s,t}$ .

#### Definition

The n-th persistent multiplicities for all s < t is defined by

$$\mu_n^{s,t} = (b_n^{s,t-1} - b_n^{s,t}) - (b_n^{s-1,t-1} - b_n^{s-1,t}).$$

# Persistent Homology and Spectral Sequence

#### Theorem (Basu and Parida, 2017)

Let  $(C, d, \mathcal{F})$  be a filtered chain complex over  $\mathbb{F}$  where each  $\mathcal{F}^pC$  is the chain complex of a finite CW-complex. Then, for each r > 0,  $n, s \ge 0$ ,

$$\dim_{\mathbb{F}} E_{n,s}^{(r)} = (b_n^{s,s+r-1} - b_n^{s-1,s+r-1}) - (b_{n-1}^{s-r,s-1} - b_{n-1}^{s-r,s}).$$

# Persistent Homology and Spectral Sequence

### Theorem (Basu and Parida, 2017)

Let  $(C, d, \mathcal{F})$  be a filtered chain complex over  $\mathbb{F}$  where each  $\mathcal{F}^pC$  is the chain complex of a finite CW-complex. Then, for each r > 0,  $n, s \ge 0$ ,

$$\dim_{\mathbb{F}} E_{n,s}^{(r)} = (b_n^{s,s+r-1} - b_n^{s-1,s+r-1}) - (b_{n-1}^{s-r,s-1} - b_{n-1}^{s-r,s}).$$

### Corollary (Spectral Sequence Theorem)

For every r > 0, and all  $n \ge 0$ ,

$$\sum_{s} \dim_{\mathbb{F}} E_{n,s}^{(r)} = \sum_{j-i > r} (\mu_{n}^{i,j} + \mu_{n-1}^{i,j}) + b_{n}.$$

### Lee-Gornik Spectral Sequence

The equivariant  $\mathfrak{sl}(N)$  Khovanov-Rozansky homology of oriented link diagram D over  $\mathbb{C}[a]$  is defined to be the homology

$$H_P(D) = H(H(C_P(D), d_{mf}), d_{\chi}).$$

Define 
$$\hat{\mathcal{C}}_P(D) = \mathcal{C}_P(D)/(a-1)\mathcal{C}_P(D)$$
. Then

$$\hat{H}_P(D) = H(H(\hat{C}_P(D), d_{mf}), d_{\chi})$$

is called the **deformed**  $\mathfrak{sl}(N)$  **Khovanov-Rozansky homology**.

### Lee-Gornik Spectral Sequence

The equivariant  $\mathfrak{sl}(N)$  Khovanov-Rozansky homology of oriented link diagram D over  $\mathbb{C}[a]$  is defined to be the homology

$$H_P(D) = H(H(C_P(D), d_{mf}), d_{\chi}).$$

Define 
$$\hat{\mathcal{C}}_P(D) = \mathcal{C}_P(D)/(a-1)\mathcal{C}_P(D)$$
. Then

$$\hat{H}_P(D) = H(H(\hat{C}_P(D), d_{mf}), d_{\chi})$$

is called the **deformed**  $\mathfrak{sl}(N)$  **Khovanov-Rozansky homology**.

### Theorem (Lee-Gornik)

Let D be a diagram of an oriented link L. Then the x-filtration  $\mathcal{F}_x$  on the chain complex  $(H(\hat{C}_P(D), d_{mf}), d_\chi)$  induces a spectral sequence  $\{\hat{E}_r(L)\}$  converging to  $\hat{H}_P(L)$  with  $\hat{E}_1(L) \cong H_N(L)$ .

### Lobb's Decomposition

Lobb observed that  $(H(C_P(D), d_{mf}), d_\chi)$ , as a bounded chain complex of finitely generated graded free  $\mathbb{C}[a]$ -module, decomposes into a direct sum of simple graded chain complexes of the forms

$$F_{i,s} = 0 \to \mathbb{C}[a] \|i\| \{s\} \to 0$$

$$T_{i,m,s} = 0 \to \mathbb{C}[a] \|i - 1\| \{s + 2km\} \xrightarrow{a^m} \mathbb{C}[a] \|i\| \{s\} \to 0$$

# Lobb's Decomposition

#### Lemma (Wu, 2015)

For any  $r \geq 0$ ,

$$E_r^{p,q}(\hat{F}_{i,s}) = \begin{cases} \mathbb{C} & \text{if } p = s \text{ and } q = i - s, \\ 0 & \text{otherwise}, \end{cases}$$

$$E_r^{p,q}(\hat{T}_{i,m,s}) = \begin{cases} \mathbb{C} & \text{if } p = s, q = i - s \text{ and } r \leq 2km, \\ \mathbb{C} & \text{if } p = s + 2km, q = i - 1 - s - 2km \\ & \text{and } r \leq 2km, \\ 0 & \text{otherwise}. \end{cases}$$

#### Remark

Here 
$$\hat{F}_{i,s} = F_{i,s}/(a-1)F_{i,s}$$
 and  $\hat{T}_{i,m,s} = T_{i,m,s}/(a-1)T_{i,m,s}$ .

# Persistent Chain Complex

#### Definition

The **persistent chain complex**  $(PC, d_x)$  of filtered chain complex  $(C, d, \mathcal{F})$  over  $\mathbb{F}$  is defined to be the direct sum

$$(PC, d_{x}) := \bigoplus_{p \in \mathbb{Z}} (\mathcal{F}^{p}C, d|_{\mathcal{F}^{p}C}).$$

Here x is a homogeneous indeterminate of degree 1 act on PC as the natural inclusion map  $i^p: \mathcal{F}^pC \hookrightarrow \mathcal{F}^{p+1}C$  for each  $p \in \mathbb{Z}$ . This makes  $(PC, d_x)$  is a chain complex of graded  $\mathbb{F}[x]$ -modules, where the homogeneous component of degree p is  $(\mathcal{F}^pC, d|_{\mathcal{F}^pC})$ .

# Persistent Chain Complex

#### Definition

The **persistent chain complex**  $(PC, d_x)$  of filtered chain complex  $(C, d, \mathcal{F})$  over  $\mathbb{F}$  is defined to be the direct sum

$$(PC, d_{x}) := \bigoplus_{p \in \mathbb{Z}} (\mathcal{F}^{p}C, d|_{\mathcal{F}^{p}C}).$$

Here x is a homogeneous indeterminate of degree 1 act on PC as the natural inclusion map  $i^p: \mathcal{F}^pC \hookrightarrow \mathcal{F}^{p+1}C$  for each  $p \in \mathbb{Z}$ . This makes  $(PC, d_x)$  is a chain complex of graded  $\mathbb{F}[x]$ -modules, where the homogeneous component of degree p is  $(\mathcal{F}^pC, d|_{\mathcal{F}^pC})$ .

Note that PC is a free  $\mathbb{F}[x]$ -module and  $d_x$  preserves the grading of PC. The homology  $PH := H(PC, d_x)$  is a graded  $\mathbb{F}[x]$ -module and called the **persistent homology** of  $(C, d, \mathcal{F})$ .

# Terminology

#### **Definition**

A filtered  $\mathbb{F}$ -space  $(V, \mathcal{F})$  is **locally finite dimensional** if  $\mathcal{F}^pV$  is finite dimensional over  $\mathbb{F}$  for every  $p \in \mathbb{Z}$ .

# Terminology

#### **Definition**

A filtered  $\mathbb{F}$ -space  $(V, \mathcal{F})$  is **locally finite dimensional** if  $\mathcal{F}^pV$  is finite dimensional over  $\mathbb{F}$  for every  $p \in \mathbb{Z}$ .

#### Definition

Let M be a graded  $\mathbb{F}[x]$  module. Then  $M\|n\|\{s\}$  is a bigraded  $\mathbb{F}[x]$ -module where

- ullet  $\|\cdot\|$  indicates the homological grading,
- $\{\cdot\}$  indicates the polynomial degree shift,  $(M||n||\{s\})^k = M^{k-s}$ .

### Types of Factors

#### Definition

For  $n, s, m \in \mathbb{Z}$  and m > 0,

$$U_{n,s,\infty} = 0 \to \mathbb{F}[x] ||n|| \{s\} \to 0 \tag{1}$$

$$U_{n,s,m} = 0 \to \mathbb{F}[x] \| n + 1 \| \{ s + m \} \xrightarrow{x^m} \mathbb{F}[x] \| n \| \{ s \} \to 0$$
 (2)

# Types of Factors

#### Definition

For  $n, s, m \in \mathbb{Z}$  and m > 0,

$$U_{n,s,\infty} = 0 \to \mathbb{F}[x] ||n|| \{s\} \to 0 \tag{1}$$

$$U_{n,s,m} = 0 \to \mathbb{F}[x] \| n+1 \| \{s+m\} \xrightarrow{x^m} \mathbb{F}[x] \| n \| \{s\} \to 0$$
 (2)

#### Remark

$$H(U_{n,s,\infty}) \cong \mathbb{F}[x] ||n|| \{s\},$$
  

$$H(U_{n,s,m}) \cong \mathbb{F}[x]/(x^m) ||n|| \{s\}.$$

These factors are the generalization of Lobb's factors.

### Theorem (I)

Let  $(PC, d_x)$  be the persistent chain complex of a filtered chain complex  $(C, d, \mathcal{F})$  over  $\mathbb{F}$ , such that:

• For each n, the filtration on  $C_n$  is bounded below;

### Theorem (I)

Let  $(PC, d_x)$  be the persistent chain complex of a filtered chain complex  $(C, d, \mathcal{F})$  over  $\mathbb{F}$ , such that:

- For each n, the filtration on  $C_n$  is bounded below;
- For each n,  $(C_n, \mathcal{F})$  is locally finite dimensional over  $\mathbb{F}$ .

### Theorem (I)

Let  $(PC, d_x)$  be the persistent chain complex of a filtered chain complex  $(C, d, \mathcal{F})$  over  $\mathbb{F}$ , such that:

- For each n, the filtration on  $C_n$  is bounded below;
- For each n,  $(C_n, \mathcal{F})$  is locally finite dimensional over  $\mathbb{F}$ .

Then, up to chain homotopy and permutation of factors,  $(PC, d_x)$  can be uniquely decomposed as a direct sum of graded chain complexes of types (1) and (2).

### Theorem (I, Continued)

Define  $\mathbb{Z}_{+,\infty} = \mathbb{Z}_+ \cup \{+\infty\}$ . Then for each  $n \in \mathbb{Z}$ , there exist  $K_n \in \mathbb{Z}_{+,\infty}$  and a unique sequence  $\{(s_n(i), m_n(i))\}_{i=1}^{K_n} \subseteq \mathbb{Z} \times \mathbb{Z}_{+,\infty}$  satisfying  $s_n(i) \leq s_n(i+1)$  and  $m_n(i) \leq m_n(i+1)$  if  $s_n(i) = s_n(i+1)$ , so that

$$PC \simeq \bigoplus_{n=-\infty}^{\infty} \bigoplus_{i=1}^{K_n} U_{n,s_n(i),m_n(i)}.$$

Consequently, the persistent homology  $PH = H(PC, d_x)$  can be uniquely decomposed as a direct sum of

$$PH \cong \bigoplus_{n=-\infty}^{\infty} \bigoplus_{i=1}^{K_n} H(U_{n,s_n(i),m_n(i)}).$$

# Spectral Sequence

#### Definition

For a chain complex K of free  $\mathbb{F}[x]$ -modules, the short exact sequence  $0 \to K\{1\} \xrightarrow{x} K \xrightarrow{\pi_x} K/xK \to 0$  induces an exact couple given by

$$H(K) \xrightarrow{\times} H(K)$$

$$H(K/xK)$$

where  $\pi_{\times}$  is the standard quotient map. Denote by

$$\mathcal{H}^{(r)}(K) = (A^{(r)}, E^{(r)}, f^{(r)}, g^{(r)}, \Delta^{(r)})$$

the above exact couple derived (r-1) times. Then  $\{E^{(r)}\}$  is called the **spectral sequence** of K.

# Spectral Sequence

#### Remark

For a filtered chain complex  $(C, d, \mathcal{F})$ ,  $\{E^{(r)}\}$  in  $\{\mathcal{H}^{(r)}(PC)\}$  is the standard spectral sequence of  $(C, d, \mathcal{F})$  with some grading shifts.

# Decomposition of Spectral Sequence

### Theorem (II)

The decomposition of the persistent homology  $PH = H(PC, d_x)$  in Theorem (I) induces a direct sum decomposition of the spectral sequence  $\{E^{(r)}\}\$  of  $(PC, d_x)$ . For  $r \in \mathbb{Z}_{+,\infty}$  and the same sequence  $\{(s_n(i), m_n(i))\}_{i=1}^{K_n} \subseteq \mathbb{Z} \times \mathbb{Z}_{+,\infty}$  defined in Theorem (I), we have

$$E^{(r)} \cong \bigoplus_{n=-\infty}^{\infty} \bigoplus_{i=1}^{K_n} E^{(r)}(U_{n,s_n(i),m_n(i)}).$$

# Decomposition of Spectral Sequence

More precisely, for  $r, m \in \mathbb{Z}_+$ ,

$$E^{(r)}(U_{n,s,\infty}) \cong \mathbb{F} ||n|| \{s\} \quad \forall r \geq 1,$$
  
$$E^{(\infty)}(U_{n,s,\infty}) \cong \mathbb{F} ||n|| \{s\},$$

$$E^{(r)}(U_{n,s,m})\cong egin{cases} \mathbb{F}\|n+1\|\{s+m\}\oplus \mathbb{F}\|n\|\{s\} & ext{for } 1\leq r\leq m, \ 0 & ext{for } r>m, \ E^{(\infty)}(U_{n,s,m})\cong 0. \end{cases}$$

# Decomposition of Spectral Sequence

More precisely, for  $r, m \in \mathbb{Z}_+$ ,

$$E^{(r)}(U_{n,s,\infty}) \cong \mathbb{F} ||n|| \{s\} \quad \forall r \geq 1,$$
  
$$E^{(\infty)}(U_{n,s,\infty}) \cong \mathbb{F} ||n|| \{s\},$$

$$E^{(r)}(U_{n,s,m})\cong egin{cases} \mathbb{F}\|n+1\|\{s+m\}\oplus \mathbb{F}\|n\|\{s\} & ext{for } 1\leq r\leq m, \ 0 & ext{for } r>m, \end{cases}$$
  $E^{(\infty)}(U_{n,s,m})\cong 0.$ 

### Corollary

 $\{E^{(r)}\}$  collapses locally to  $E^{(\infty)}$ , which means  $\{E^{(r)}_{n,s}\}$  collapses to  $E^{(\infty)}_{n,s}$ .

# Relations of Persistent Homology and Spectral Sequence

### Theorem (III)

Denote by  $\nu_{n,s,\infty}$  the multiplicity of the factor  $H(U_{n,s,\infty}) \cong \mathbb{F}[x] \| n \| \{s\}$  in the decomposition of the persistent homology  $PH = H(PC, d_x)$  and  $\nu_{n,s,m}$  the multiplicity of the factor  $H(U_{n,s,m}) \cong \mathbb{F}[x]/(x^m) \|n\| \{s\}$ .

- dim<sub>F</sub>  $E_{n,s}^{(r)} = \nu_{n,s,\infty} + \sum_{m \geq r} (\nu_{n,s,m} + \nu_{n-1,s-m,m})$ , which shows that the persistent homology determines the spectral sequence. Then:
- ullet The spectral sequence  $\{E^{(r)}\}$  collapses locally to  $E^{(\infty)}$ , and
  - $u_{n,s,\infty} = \dim_{\mathbb{F}} E_{n,s}^{(\infty)},$
  - $u_{n,s,m} = \dim_{\mathbb{F}} E_{n,s}^{(m)} \dim_{\mathbb{F}} E_{n,s}^{(m+1)} \nu_{n-1,s-m,m},$

which implies that the spectral sequence determines the persistent homology since  $\mathcal F$  is bounded below and, therefore,  $\nu_{n,s,m}=0$  for  $s\ll 0$ .

#### Persistent Betti Number

### Corollary

Recall that  $\mu_n^{i,j}$  is the **persistent multiplicities**, then

- $\bullet \ \mu_n^{i,j} = \nu_{n,i,j-i},$
- $\nu_{n,s,m} = \mu_n^{s,s+m}$ .

Also, the **persistent Betti number**  $b_n^{i,j}$  can be counted with  $\nu_{n,s,m}$  and  $\nu_{n,s,\infty}$  by

$$b_n^{i,j} = \sum_{j-m < s \le i} \nu_{n,s,m}.$$

# Future Work I (Peiqi Yang)

### Definition (Wu, 2017)

The Khovanov-Rozansky chain complex  $\mathscr{C}_*(G)$  of digraph G is the graded Koszul chain complex  $C^{\mathbb{F}[E(G)]}(\Delta_G)$  over  $\mathbb{F}[E(G)]$  defined by the incidence set  $\Delta_G$  of G.

# Future Work I (Peiqi Yang)

### Definition (Wu, 2017)

The Khovanov-Rozansky chain complex  $\mathscr{C}_*(G)$  of digraph G is the graded Koszul chain complex  $C^{\mathbb{F}[E(G)]}(\Delta_G)$  over  $\mathbb{F}[E(G)]$  defined by the incidence set  $\Delta_G$  of G.

There is a way to define an  $\mathfrak{sl}(N)$  Koszul matrix factorization of digraphs, which induces a spectral sequence between the HOMFLYPT digraph homology and the  $\mathfrak{sl}(N)$  digraph homology following our main result in this talk.

# Future Work I (Peiqi Yang)

### Definition (Wu, 2017)

The Khovanov-Rozansky chain complex  $\mathscr{C}_*(G)$  of digraph G is the graded Koszul chain complex  $C^{\mathbb{F}[E(G)]}(\Delta_G)$  over  $\mathbb{F}[E(G)]$  defined by the incidence set  $\Delta_G$  of G.

There is a way to define an  $\mathfrak{sl}(N)$  Koszul matrix factorization of digraphs, which induces a spectral sequence between the HOMFLYPT digraph homology and the  $\mathfrak{sl}(N)$  digraph homology following our main result in this talk.

The software packages for persistent homology is well developed nowadays. For another approach, there is a hope of using mature tools to compute some complicated examples in Khovanov-Rozansky graph homology.

# Future Work II (Yingfeng Hu)

Jacob Rasmussen constructed a spectral sequence E whose first page is the HOMFLYPT homology that converges to the  $\mathfrak{sl}(n)$  Khovanov-Rozansky homology.

More recently, Wu constructed a variant of the Khovanov-Rozansky homology for transverse links in the standard contact 3-sphere. Yingfeng plans to use the main results in this talk to give an alternative construction of the Rasmussen spectral sequence based on the transverse Khovanov-Rozansky homology.

#### Reference

- Saugata Basu and Laxmi Parida, Spectral sequences, exact couples and persistent homology of filtrations, Expo. Math. **35** (2017), no. 1, 119–132. MR 3626207
- Herbert Edelsbrunner and John L. Harer, *Computational topology*, American Mathematical Society, Providence, RI, 2010, An introduction. MR 2572029
- Hao Wu, A colored sl(N) homology for links in  $S^3$ , Dissertationes Math. **499** (2014), 217. MR 3234803
- Equivariant Khovanov-Rozansky homology and Lee-Gornik spectral sequence, Quantum Topol. **6** (2015), no. 4, 515–607. MR 3392963
- \_\_\_\_\_, Khovanov-Rozansky homology and directed cycles, J. Algebraic Combin. **46** (2017), no. 2, 403–444. MR 3680620