Axiomas de congruência e produto interno de vectores

Aula 12 - 03/04/2019

Sumário

- Axioma da intersecção recta-circunferência
- Construção de rectas perpendiculares a uma dada recta
- Alturas de um triângulo
- Projecção ortogonal de um vector sobre uma recta
- Produto interno de vectores
- Propriedades do produto interno

Circunferência

A forma mais intuitiva de comparar comprimentos em rectas não paralelas é através da noção de circunferência.

Esta noção também permite a construção de rectas perpendiculares.

O último axioma de congruência relaciona rectas e circunferências

Definição. Seja P um ponto num plano \mathcal{P} e r>0. A circunferência com centro em P e raio r é o conjunto de todos os pontos $Q \in \mathcal{P}$ tais que $\overline{PQ} = r$.

R.12 Axioma da intersecção recta-circunferência. Seja O um ponto e r uma recta. Então existe uma circunferência com centro em O que intersecta a recta r em exactamente dois pontos.

Tirar uma perpendicular

Lema. Seja r uma recta e P um ponto que não pertence a r. Sejam $X, Y \in r$ tais que $\overline{PX} = \overline{PY}$ e seja Q o ponto médio de [XY]. Então a recta \overrightarrow{PQ} é perpendicular à recta \overrightarrow{r} . **Dem.** Sejam $\overrightarrow{PQ} = u$, $\overrightarrow{QX} = v$, $\overrightarrow{QY} = -v$. Então

$$\overrightarrow{PX} = u + v \text{ e } \overrightarrow{PY} = u - v.$$

Como $\overline{PX} = \overline{PY}$, temos que |u+v| = |u-v|, logo u e v são ortogonais. Como u é paralelo à recta PQ e v é paralelo à recta r, temos que r e PQsão perpendiculares.

Proposição. Seja r uma recta e P um ponto. Então existe um único ponto $Q \in r$ tal que a recta PQ é perpendicular a r. Dem Exercício.

Definição. O único ponto Q de r tal que PQ é perpendicular a rdesigna-se pé da perpendicular por P sobre r.

Corolário. Duas rectas complanares perpendiculares à mesma recta são 4 D > 4 P > 4 B > 4 B > B 9 Q P paralelas.

Altura de um triângulo

Definição. Sejam A, B, C pontos não colineares. Dado um vértice de $\triangle(ABC)$, a altura por esse vértice é a única recta que o contém e que é perpendicular ao lado oposto ao vértice considerado.

Proposição. Sejam [ABC] e [A'B'C'] triângulos congruentes. Sejam BQ e B'Q' as alturas pelos vértices B e B', com $Q \in AC$ e $Q' \in A'C'$. Então AQ : QC = A'Q' : Q'C' e $\overline{BQ} = \overline{B'Q'}$.

Dem. Exercício.

Projecção ortogonal de um vector

A projecção ortogonal de um vector sobre uma recta é uma noção fundamental para definir geometricamente o produto interno de vectores.

Proposição. Sejam u e v vectores, $v \neq \vec{0}$. Então existe um único número real λ tal que $u = \lambda v + w$ com w ortogonal a v.

Dem. Seja O a origem e sejam P e Q pontos tais que $u = \overrightarrow{OP}$ e $v = \overrightarrow{OQ}$. Seja R o pé da perpendicular por P sobre a recta OQ. Então $\overrightarrow{OR} = \lambda v$, $OQ: OR = 1: \lambda$. Como R é único, o escalar λ também é único. Temos que o vector $\overrightarrow{RP} = u - \overrightarrow{OR} = w$ é ortogonal a v.

Definição. Dados vectores u e v, com $v \neq \vec{0}$, o único vector λv tal que $u = \lambda v + w$, com w ortogonal a v é designado projecção ortogonal de u na direcção de v. O vector w é a componente de u na direcção perpendicular a v.

Produto interno de vectores

Definição. Sejam u e v vectores. O produto interno de u por v é um número real, denotado por $u \cdot v$, que é definido por

$$u \cdot v = \begin{cases} \lambda |v|^2 & \text{se} \quad v \neq \vec{0} \\ 0 & \text{se} \quad v = \vec{0} \end{cases}$$

sendo λv a projecção ortogonal de u na direcção de v.

Propriedades do produto interno

Para quaisquer vectores u, v, w e para quaisquer escalares λ, μ , tem-se:

- ▶ $u \cdot u \ge 0$, com igualdade se e só se $u = \vec{0}$ (definido positivo).
- $u \cdot v = v \cdot u$ (simétrico).
- $(\lambda u + \mu v) \cdot w = \lambda u \cdot w + \mu v \cdot w \text{ (linear)}.$

Nota. Devido à simetria, tem-se também que

$$u \cdot (\lambda v + \mu w) = \lambda u \cdot v + \mu u \cdot w,$$

portanto o produto interno é bilinear.

Demonstração da simetria do produto interno (I)

Sejam u e v vectores linearmente independentes. Seja O a origem e A,B,C tais que

$$\overrightarrow{OA} = u$$
, $\overrightarrow{OB} = v$, $\overrightarrow{OC} = \lambda v$, com $\lambda = \frac{|u|}{|v|}$.

Temos assim que $\overline{OC} = \overline{OA}$.

Seja X o pé da perpendicular por A sobre a recta OB e sejam Y e Z os pés das perpendiculares por B e C respectivamente sobre a recta OA. Como, por construção,

$$\overline{OC} = \overline{OA} = |u|,$$

os triângulos [OAC] e [OCA] são congruentes, logo pela proposição das alturas.

$$OZ:ZA=OX:XC.$$

Demonstração da simetria do produto interno (II)

As rectas CZ e BY são paralelas, porque são ambas perpendiculares à reta OA. Pelo axioma da semelhança, temos que

$$OZ:OY=OC:OB=|u|:|v|.$$

Por definição de produto interno, temos

$$\overrightarrow{OX} = \frac{u \cdot v}{|v|^2} \overrightarrow{OB} \ \ e \ \overrightarrow{OY} = \frac{v \cdot u}{|u|^2} \overrightarrow{OA},$$

logo

$$OX : OB = u \cdot v : |v|^2 \ e \ OY : OA = v \cdot u : |u|^2.$$

Como

$$OZ:OY=OC:OB=|u|:|v|,$$

temos

$$OX : OC = u \cdot v : |u| |v| e OZ : OA = v \cdot u : |u| |v|.$$

Como

$$OZ: OA = OX: OC$$

segue que $u \cdot v = v \cdot u$.

