Métodos Numéricos - LE 2 Victória Xavier Queiroz

1) 1. (3p) Encontre uma solução específica yp(t) = R cos(wt-a) para y" + 100y = cos(wt) - sin(wt).

$$\gamma_{p} = R \cos(\omega t - \alpha) = A \cos(\omega t) + B \sin(\omega t)$$

$$\frac{d[\gamma_{p}]}{dt} = -WR \sin(\omega t - \alpha)$$

$$\frac{d^{2}[\gamma_{p}]}{dt^{2}} = -\omega^{2}R \cos(\omega t - \alpha)$$

$$\frac{d^{2}[\gamma_{p}]}{dt^{2}} = -\omega^{2}R \cos(\omega t - \alpha)$$

A=1 B=-1

$$(R^2 = A^2 + B^2)$$

 $R^2 = (1)^2 + (-1)^2$
 $R^2 = 1 + 1$
 $R^2 = 2 \rightarrow R = \pm \sqrt{2}$
 $R = \frac{B}{A} = -\frac{1}{1} = -1$
 $R = \frac{A}{A} = -\frac{A}{A} = -\frac$

Substituindo

$$-\omega^{2}[R\cos(\omega t - \alpha)] + 100 \cdot [R\cos(\omega t - \alpha)] = \cos(\omega t) - \sin(\omega t)$$

$$[100 - \omega^{2}] \cdot [R\cos(\omega t - \alpha)] = \sqrt{2} \cdot \cos(\omega t + \pi/4)$$

$$[100 - \omega^{2}] \cdot [R\cos(\omega t + \pi/4)] = \sqrt{2} \cdot \cos(\omega t + \pi/4)$$

$$R(100 - \omega^{2}) = \sqrt{2}$$

$$R = \sqrt{2} \cdot (100 - \omega^{2})$$

$$y_{P} = R\cos(\omega t - \alpha)$$

$$y_{P} = \sqrt{2} \cdot \cos(\omega t + \pi/4)$$

$$100 - \omega^{2}$$

(3p) (a) Se você conhece
$$\exp(i\theta)$$
 e $\exp(-i\theta)$, como pode encontrar $\sin(\theta)$? (b) Encontre todos os ângulos θ com $\exp(i\theta) = -1$, e (c) todos os ângulos ϕ com $\exp(i\phi) = i$.

Q)
$$e^{i\theta} = \cos(\theta) + i \sin(\theta)$$
 $e^{i\theta} - e^{-i\theta} = \cos(\theta) + i \sin(\theta) - \cos(\theta) + i \sin(\theta)$
 $e^{-i\theta} = \cos(\theta) + (-i) \cdot \sin(\theta)$ $e^{i\theta} - e^{-i\theta} = 2i \cdot \sin(\theta)$

$$\frac{\sin(\theta) - \cos(\theta) + i \sin(\theta)}{\sin(\theta) - \cos(\theta) + i \sin(\theta)} = \frac{\sin(\theta) - \cos(\theta) + i \sin(\theta)}{\sin(\theta) - \cos(\theta)}$$

b)
$$e^{i\theta} = -1 \rightarrow \cos(\theta) + i \sec(\theta) = -1$$

 $\theta = \pi(2k+1)$, kell

c)
$$e^{i\phi} = i \rightarrow \cos(\phi) + i \operatorname{sen}(\phi) = i$$

$$\phi = 2\pi \cdot k + \frac{\pi}{2}; k \in \mathbb{N}$$

(4p) Qual equação de segunda ordem é resolvida por $y(t) = c1 \exp(-2t) + c2 \exp(-4t)$? Ou $y(t) = t \exp(5t)$?

a)
$$y(t) = c_1 \cdot e^{-2t} + c_2 \cdot e^{-4t}$$

$$-2e - 4 \quad \text{São raizes!} \quad (\Delta > 0)$$

$$f(t) = (t+4)(t+2)$$

$$f(t) = t^2 + 6t + 8$$

y" + 6y' + 8y = 0

5 e a única raiz! (
$$\triangle = 0$$
)

$$f(t) = (t-5)(t-5)$$

$$f(t) = t^{2} - 10t + 25$$
($y'' - 10y' + 25y = 0$

b) y(t) = t.est