Welfare and revenue in budget-constrained markets

Edwin Lock joint work with Simon Finster and Paul Goldberg 15 November 2023

Buying ad slots

Buying ad slots

Example: Revenue and welfare diverge

One buyer and supply 3.

Example: Revenue and welfare diverge

One buyer and supply 3.

The market

- One seller and multiple buyers J
- ullet Multiple divisible goods $\mathcal{N} := \{1, \dots, n\}$ available with supply of 1 each
- Bundles are vectors $x \in [0, 1]^n$
- Market outcome
 - anonymous (non-negative) **prices** $p \in \mathbb{R}^n$
 - allocation $(\mathbf{x}^j)_{j\in J}$ with $\sum_{j\in J} \mathbf{x}^j \leq 1$

The market — Buyer preferences

- Linear valuation $v(x) = r \cdot x$
- Quasi-linear utility $u(p; x) = v(x) p \cdot x$
- At prices $p \in \mathbb{R}^n$, buyer demands utility-maximising bundle not exceeding budget β .

The market — Buyer preferences

- Linear valuation $v(x) = r \cdot x$
- Quasi-linear utility $u(\mathbf{p}; \mathbf{x}) = v(\mathbf{x}) \mathbf{p} \cdot \mathbf{x}$
- At prices $\mathbf{p} \in \mathbb{R}^n$, buyer demands utility-maximising bundle not exceeding budget β .

Geometric perspective

- Demand divides price-space into n + 1 regions corresponding to goods 1,..., n and nothing.
- Within each region, buyer spends entire budget on this good

Preferences of single buyer with ${\it r}=(5,3)$ and budget $\beta=1$

The market — Buyer preferences

- Linear valuation $v(x) = r \cdot x$
- Quasi-linear utility $u(p; x) = v(x) p \cdot x$
- At prices $\mathbf{p} \in \mathbb{R}^n$, buyer demands utility-maximising bundle not exceeding budget β .

Geometric perspective

- Demand divides price-space into n+1 regions corresponding to goods $1, \ldots, n$ and *nothing*.
- Within each region, buyer spends entire budget on this good

Aggregate demand

 Aggregate demand/spending of multiple buyers is Minkowski sum of individual demands

Objectives

A market outcome p and $(x^j)_{j\in J}$ is **envy-free** if x^j maximises buyer j's utility at prices p.

- 1. Revenue maximisation. Envy-free market outcome that maximises revenue $\sum_{j \in J} \mathbf{p} \cdot \mathbf{x}^j$.
- 2. Welfare maximisation. Envy-free market outcome with allocation maximising welfare $\sum_{i \in J} r^i \cdot x^j$.
- 3. Competitive Equilibrium. Envy-free market outcome satisfying market-clearing: $\sum_{i \in J} x^i = 1$.

(No strategic bidding!)

Objectives

A market outcome p and $(x^j)_{j\in J}$ is **envy-free** if x^j maximises buyer j's utility at prices p.

- 1. Revenue maximisation. Envy-free market outcome that maximises revenue $\sum_{i \in J} \mathbf{p} \cdot \mathbf{x}^i$.
- 2. Welfare maximisation. Envy-free market outcome with allocation maximising welfare $\sum_{i \in J} r^i \cdot x^j$.
- 3. Competitive Equilibrium. Envy-free market outcome satisfying market-clearing: $\sum_{i \in J} x^i = 1$.

(No strategic bidding!)

First and second welfare theorems

- 1. The allocation of a competitive equilibrium maximises welfare (is efficient).
- 2. Any market-clearing prices together with a welfare-maximising (efficient) allocation form a competitive equilibrium.

Our contributions

Recall: maximising revenue benefits seller, maximising welfare also takes into account buyers.

Main theorem

In our market setting, market-clearing prices p^* exist, are unique, and maximise revenue.

Corollary

Market-clearing prices p^* are buyer-optimal among all revenue-maximising outcomes.

Corollary

We can find p^* 'efficiently' (using our algorithm, or existing algorithms).

We focus on finding p^* , but computing corresponding allocation is easy. $ext{details}$

Related work

Arctic auction

- Arctic auction belongs to family of Product-Mix Auctions by Klemperer [2008, 2010, 2018]
- Primary objective: envy-free revenue maximisation
- Applications include sovereign debt restructuring (in collaboration with IMF)

Fisher markets

- Eisenberg-Gale [1959] convex program
- Variety of combinatorial algorithms [Devanur et al., 2008; Orlin, 2010; Adsul et al., 2012]
- Quasi-Fisher markets (and other preferences) studied, e.g., by [Chen et al., 2007; Murray, 2020;
 Gao and Kroer, 2020]
- Objectives: competitive and Nash equilibria
- Efficient algorithms for CE in quasi-Fisher markets [Chen et al., 2007] and [Gao and Kroer, 2020]

Related work — Fisher markets

Original Fisher market identical to our setting, apart from \dots

... buyers in Fisher markets don't value money.

Related work — Fisher markets

Original Fisher market identical to our setting, apart from \dots

... buyers in Fisher markets don't value money.

Related work — Arctic auction

Arctic Product-Mix Auction designed by Paul Klemperer for Government of Iceland to exchange blocked accounts for other financial assets (e.g. cash or bonds of different quality)

Related work — Arctic auction

Arctic Product-Mix Auction designed by Paul Klemperer for Government of Iceland to exchange blocked accounts for other financial assets (e.g. cash or bonds of different quality)

- Bidding language allows each buyer to submit preferences corresponding to the aggregate of our demand type
- Primary objective: envy-free revenue maximisation
- General version of Arctic Auction allows seller to specify supply costs (we don't)
- "DotEcon-Klemperer algorithm" finds revenue-maximising prices [Fichtl, 2022]

Proposition

The feasible region has an elementwise-minimal point p^* .

Proof idea: For any feasible ${\it p}$ and ${\it q}$, their elementwise-minimum ${\it p} \wedge {\it q}$ is feasible.

Lemma

For any feasible points $p \le q$, we can achieve weakly higher revenue at p than at q.

Lemma

For any feasible points $p \leq q$, we can achieve weakly higher revenue at p than at q.

Intuition

- Bids spend weakly more at p than at q.
- Total spending goes up (weakly).
- Issue: some bids might spend only part of their budget at q and p. How much?
- Want to argue that demand change is 'consistent', so these bids spent weakly more.

Lemma

For any feasible points $p \le q$, we can achieve weakly higher revenue at p than at q.

Proof sketch. Define $S = \{i \in N \mid p_i < q_i\}$. Let $(x^j)_{j \in J}$ and $(y^j)_{j \in J}$ be revenue-maximising allocations at p and q.

We construct allocation $(z^j)_{j\in J}$ at p with weakly higher revenue than $(y^j)_{j\in J}$ at q.

Case 1: For buyers j that demand only goods from S at p, set $z^j = x^j$.

Case 2: Other buyers demand all goods also demanded at q and no goods in S. Set $z^j = y^j$.

Lemma

For any feasible points $p \leq q$, we can achieve weakly higher revenue at p than at q.

Proof sketch. Define $S = \{i \in N \mid p_i < q_i\}$. Let $(x^j)_{j \in J}$ and $(y^j)_{j \in J}$ be revenue-maximising allocations at p and q.

We construct allocation $(z^j)_{j\in J}$ at p with weakly higher revenue than $(y^j)_{j\in J}$ at q.

Case 1: For buyers j that demand only goods from S at p, set $z^j = x^j$.

Case 2: Other buyers demand all goods also demanded at q and no goods in S. Set $z^j = y^j$.

Allocation z is envy-free and supply is not exceeded. 'Case 1 buyers' spend their entire budget and 'Case 2 buyers' spend the same as at q, so revenue is weakly higher.

Lemma

For any feasible points $p \le q$, we can achieve weakly higher revenue at p than at q.

Proof sketch. Define $S = \{i \in N \mid p_i < q_i\}$. Let $(\mathbf{x}^j)_{j \in J}$ and $(\mathbf{y}^j)_{j \in J}$ be revenue-maximising allocations at \mathbf{p} and \mathbf{q} .

We construct allocation $(z^j)_{j\in J}$ at p with weakly higher revenue than $(y^j)_{j\in J}$ at q.

Case 1: For buyers j that demand only goods from S at p, set $z^j = x^j$.

Case 2: Other buyers demand all goods also demanded at q and no goods in S. Set $z^j = y^j$.

Allocation z is envy-free and supply is not exceeded. 'Case 1 buyers' spend their entire budget and 'Case 2 buyers' spend the same as at q, so revenue is weakly higher.

Corollary

Revenue is maximised at p^* .

NB: In general, there can be many revenue-maximising prices

Minimal prices clear the market

Lemma

The prices p^* uniquely clear the market.

Minimal prices clear the market

Lemma

The prices p^* uniquely clear the market.

One proof

- Convex programming duality tells us that market-clearing prices exist.
- Suppose $q \geq p^*$ is market-clearing.
- Let $x \in [0,1]^n$ be aggregate demand at p^* maximising revenue.
- Revenues are $\sum_{i \in N} q_i$ at \boldsymbol{q} and $\sum_{i \in N} x_i p_i^*$ at \boldsymbol{p}^* .
- We know that revenue is maximised at p^* , so

$$\sum_{i\in N} q_i \leq \sum_{i\in N} x_i p_i^* \leq \sum_{i\in N} p_i^* < \sum_{i\in N} q_i.$$

Minimal prices clear the market

Lemma

The prices p^* uniquely clear the market.

Price-scaling subroutine

- Suppose feasible *p* are not market-clearing
 - Subroutine finds new allocation at p that exhausts supply of an additional good,
 - or uniformly scales down prices of some goods while maintaining feasibility and increasing aggregate demand
- This implies that p^* are market-clearing
- Modification of scaling routine by [Adsul et al. 2012] for Fisher markets
 - We scale prices down instead of up
 - Additional pre-processing for bids that may be indifferent between spending and not spending

Computing the minimal prices

- Repeatedly apply the price-scaling procedure leads to find p^* .
- Make progress by exhausting supply of an additional good or reducing price of at least one good.
- Algorithm terminates once supply of every good is exhausted.

Proposition

This algorithm finds p^* in at most exponential time (in the number of goods and buyers).

Bound is likely to be loose, at least in 'typical' instances. Algorithm performs well in practice.

Fact

Can also find p^* in polynomial time with algorithms of [Chen et al. 2007] or [Gao and Kroer, 2020].

Conclusion

- We've identified an important market setting in which competitive equilibrium maximises revenue (subject to envy-freeness)
- This makes **both** the seller and the buyers / social planner happy, and unifies two research directions.
- Potential applications in advertising, finance, debt restructuring, digital goods, etc.
- Takeaway: geometric perspective can be fruitful
- Further work: better running time guarantee for algorithm, or improved (geometric) algorithms

Thank you!

Appendix

Computing CE allocation from prices

