第四題:邀請函 (Invitation)

問題敘述

古老的米克斯王國共住了n個米克斯人,每個米克斯人都有自己的住所,住所編號為0, 1, ..., n-1,任兩位米克斯人的住所間可能有雙向的通道、也可能沒有通道(但不會只有單向的通道)。米克斯國王常常舉辦全國性會議,他希望越多人出席越好,但被邀請出席者一定要符合一個特殊規定,即若兩位米克斯人的住所間有通道,則其中至多只有一人會受到邀請。給定n與所有通道,下次舉辦全國性會議時,總共要印製幾張邀請函?

輸入格式

測資的第一行為住所總數n,n為一正整數,且住所編號為0,1,...,n-1。第二行是總通道數m。接下來的m行中,每行有兩個正整數i,j(以空白區隔),代表住所i與住所j之間有一通道。

輸出格式

請輸出下次全國性會議舉辦時所需印製邀請卡數量。

輸入範例 1	輸出範例 1
6	3
6	
0 3	
1 5	
3 2	
2 5	
0 4	
1 0	

輸入範例 2	輸出範例 1
7	4
8	
6 5	
0 3	
2 6	
3 5	
1 4	
1 2	
3 4	
2 3	

評分說明

本題共有 4 組測試題組,條件限制如下所示。每一組可有一或多筆測試資料,該組所有 測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	10	$1 \le n \le 24$
2	25	$1 \le n \le 40$
3	40	$1 \le n \le 100$ 為偶數,而且每條通道連接住所 $0, 1,, n/2 - 1$ 與 $n/2, n/2 + 1,, n - 1$ 其中之一。
4	25	$1 \le n \le 100$