Predictive Analytics

- 1. Data Analytics
- 2. Predictive Analytics

```
In [29]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
```

In [30]:

```
#Import Dataset
dataset = pd.read_excel('Dataset Predictive Analysis.xlsx')
```

In [31]:

```
dataset.head()
```

Out[31]:

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_description	merchant_id	merchant_c
0	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	POS	81c48296- 73be-44a7- befa- d053f48ce7cd	
1	authorized	0.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES-POS	830a451c- 316e-4a6a- bf25- e37caedca49e	I
2	authorized	1.0	NaN	ACC- 1222300524	AUD	151.23 -33.94	POS	835c231d- 8cdf-4e96- 859d- e9d571760cf0	I
3	authorized	1.0	NaN	ACC- 1037050564	AUD	153.10 -27.66	SALES-POS	48514682- c78a-4a88- b0da- 2d6302e64673	I
4	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES-POS	b4e02c10- 0852-4273- b8fd- 7b3395e32eb0	ı

5 rows × 23 columns

1

In [32]:

```
data = dataset[['age', 'amount', 'balance']]
```

In [33]:

```
data.head()
```

Out[33]:

	age	amount	balance
0	26	16.25	35.39
1	26	14.19	21.20
2	38	6.42	5.71

```
3 40 amount balance 2117.22
4 26 3.25 17.95
```

```
In [34]:
```

```
#Scatter Plot - age Vs balance
sns.scatterplot(x=data['age'], y=data['balance'], data= data)
```

Out[34]:

<AxesSubplot:xlabel='age', ylabel='balance'>

In [35]:

```
#Scatter Plot - age Vs amount
sns.scatterplot(x=data['age'], y=data['amount'], data= data)
```

Out[35]:

<AxesSubplot:xlabel='age', ylabel='amount'>

REGRESSION MODEL

```
In [36]:
```

```
x = data[['age','balance']]
y = data['balance']
```

In [37]:

```
import sklearn
from sklearn.model_selection import train_test_split
```

In [38]:

```
#Train & Test
```

```
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.20)
In [39]:
from sklearn.linear_model import LinearRegression

In [40]:
regr = LinearRegression()

In [41]:
regr.fit(X_train, y_train)
Out[41]:
LinearRegression()
In [42]:
pred = regr.predict(X_train)

In [43]:
pred
Out[43]:
array([ 1273.98, 1520.95, 15701.73, ..., 9522.21, 10233.88, 3935.48])
```