Spacetime examples in INLA

Elias T. Krainski

Jul–2017, Lavras/MG 62^a RBras & 17^o SEAGRO

Outline

Separable space-time models

- 2 Infant mortality in Paraná
- 3 PM-10 concentration in Piemonte, Italy

•
$$\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$$

- $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$
- ullet Consider a spatial model precision $oldsymbol{Q1}$
- ullet Consider a temporal model precision ${\it Q}2$

- $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$
- Consider a spatial model precision Q1
- Consider a temporal model precision Q2
- Kronecker product models :

$$\pi(\mathbf{x}) \propto (|\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}|^*)^{1/2} \exp\left(-rac{1}{2}\mathbf{x}^T\{\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}\}\mathbf{x}
ight)$$

where $|.|^*$ may be the generalized determinant when needed

example:

```
f(spatial, model='besagproper2',
  group=time, control.group=list(model='ar1'))
```

- $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$
- Consider a spatial model precision Q1
- Consider a temporal model precision Q2
- Kronecker product models :

$$\pi(\mathbf{x}) \propto (|\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}|^*)^{1/2} \exp\left(-rac{1}{2}\mathbf{x}^T \{\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}\}\mathbf{x}
ight)$$

where |.|* may be the generalized determinant when needed

example:

```
f(spatial, model='besagproper2',
  group=time, control.group=list(model='ar1'))
```

• 1st order dynamic models

Outline

Separable space-time models

- 2 Infant mortality in Paraná
- 3 PM-10 concentration in Piemonte, Italy

Infant mortality model

ullet infant death at municipality i and year t

$$y_{it} \sim \mathsf{Poisson}(\mathsf{E}_{it}\mathsf{e}^{\eta_{it}})$$

Infant mortality model

infant death at municipality i and year t

$$y_{it} \sim \mathsf{Poisson}(\mathsf{E}_{it}\mathsf{e}^{\eta_{it}})$$

- E_i: expected number of death (under some suposition)
 - overal ratio

$$r_0 = \frac{\sum_{it} y_{it}}{\sum_{it} borns_{it}}$$

- $E_{it} = r_0 borns_{it}$
- E_{it}: expected deaths if the ratio is the same (over space and time)
- observed relative risk

$$SMR_{it} = \frac{y_{it}}{E_{it}}$$

Model structure

linear predictor evolution over time

$$x_{it} = \rho x_{i,t-1} + s_{it}$$

• s_{it} at each time \rightarrow spatially correlated

$$s_{it}|s_{-i,t} \sim N(\sum_{j \sim i} s_{j,t}/n_i, \sigma_s^2/n_i)$$

- ullet space-time precision matrix implied: $oldsymbol{Q} = oldsymbol{Q_T} \otimes oldsymbol{Q_S}$
- ullet both smooth over time and space (if ho is near 1)

Model structure

linear predictor evolution over time

$$x_{it} = \rho x_{i,t-1} + s_{it}$$

• s_{it} at each time \rightarrow spatially correlated

$$s_{it}|s_{-i,t} \sim N(\sum_{j \sim i} s_{j,t}/n_i, \sigma_s^2/n_i)$$

- ullet space-time precision matrix implied: $oldsymbol{Q} = oldsymbol{Q_T} \otimes oldsymbol{Q_S}$
- both smooth over time and space (if ρ is near 1)
- the full model

$$\eta_{it} = \alpha_0 + e_t + u_i + v_t + s_i + x_{it}$$

where

- α_0 is the intercept
- e_t is a unstructured temporal random effect
- u_i is a unstructured spatial random effect
- \bullet v_t is a structured temporal random effect
- \bullet s_t is a structured temporal random effect
- x_{it} is a space-time random effect

eliaskr@ufpr.br

On space-time random effect

- it can be one of the four type interaction models
- dynamic model using the besagproper2 model for space
 - $\lambda = 0$: no spatial structure
 - $\lambda = 1$: equals the intrinsic Besag
 - $\rho =$ 0: no temporal structure
 - $\rho = 1$: equals RW1
 - $\bullet \ \to \mbox{includes}$ all the four interaction types

Dimensions: 15 x 15

Temporal precision structure (for Q_T)

Map example and the neighbourhood

Dimensions: 11 x 11

Spatial precision structure (for Q_S)

Dimensions: 165 x 165

Spatio temporal precision structure (for Q)

Five models for x_{it}

m_0 :	<i>x</i> ₀	same ratio over space and time
m_1 :	$x_0 + x_{0,t}$	different ratio over time
m_2 :	$x_0 + x_{i,0}$	differet ratio over space
m_3 :	$x_0 + x_{0,t} + x_{i,0}$	common time trend + common sp. surface
m_4 :	$x_0 + x_{it}$	variation over space and time

Five models for x_{it}

```
m_0:x_0same ratio over space and timem_1:x_0 + x_{0,t}different ratio over timem_2:x_0 + x_{i,0}differet ratio over spacem_3:x_0 + x_{0,t} + x_{i,0}common time trend + common sp. surfacem_4:x_0 + x_{it}variation over space and time
```

Outline

Separable space-time models

- 2 Infant mortality in Paraná
- 3 PM-10 concentration in Piemonte, Italy

Space-time dynamic intercept

The (linear) measurement equation

$$\mathbf{y}_{it} = \mathbf{F}_{it}' \boldsymbol{\beta} + \mathbf{A}_{i(t)} \mathbf{x}_t + \epsilon_{it}$$

- \mathbf{F}_t is a matrix of covariates
- $oldsymbol{\circ}$ $oldsymbol{\beta}$ are the fixed effects
- $oldsymbol{A}_{(t)}$ picks out the appropriate values of $oldsymbol{x}_t$
- $\epsilon_t \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2 I)$

Space-time dynamic intercept

The (linear) measurement equation

$$\mathbf{y}_{it} = \mathbf{F}_{it}' \boldsymbol{\beta} + \mathbf{A}_{i(t)} \mathbf{x}_t + \epsilon_{it}$$

- \boldsymbol{F}_t is a matrix of covariates
- $oldsymbol{\circ}$ $oldsymbol{\beta}$ are the fixed effects
- $A_{(t)}$ picks out the appropriate values of x_t
- $\epsilon_t \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2 I)$
- vector AR(1) process for x

$$\mathbf{x}_t = \rho \mathbf{x}_{t-1} + \boldsymbol{\omega}_t$$

 $m{\omega}_t$: spatial SPDE model

$$\omega_t \overset{\mathsf{i.i.d.}}{\sim} \mathsf{N}(\mathbf{0}, \boldsymbol{Q}^{-1}),$$

 $m{\bullet}$ ρ is the time correlation

PM-10 concentration in Piemonte, Italy

Cameletti et al. (2011), on r-inla.org

- 24 monitoring stations
- Daily data from 10/05 to 03/06

Space model part

Make the mesh

Make the latent model

```
spde = inla.create.spde(mesh,model="matern")
```

Using the group feature

Construct a kronecker product model using the group feature

```
formula = y ~ -1 + intercept + WS + HMIX + ... +
  f(field, model=spde,
      group = time,
      control.group=list(model="ar1")
    )
```

- This tells INLA that the observations are grouped in a certain way.
- control.group contains the grouping model (ar1, exchangable, rw1, and others) as well as their prior specifications.

Make an **A** matrix

Use the group argument

- data locations in all group=time level
- builds an **A** matrix in an appropriate way

Organising the data

Covariates at the data points, but the latent field only defined their through the A matrix

We need to make sure that A only applies to the random effect.