Contents

- This code is to compute the primal game LP of player 1. This code will
- give the game value, player 1's optimal strategy and the initial vector
- payoff over player 2's state
- Initialization
- Constraint \sum_{a_t} R_{I_t}(a_t)=P_{a_{t-1},b_{t-1}}(k_{t-1},k_t)R_{I_{t-1}}(a_t-1);
- The inequality contraint
- Construct the objective function: \max_{R}max_{U} \sum_{I} q(I)*U_{\mathcal{J}_1}
- Game value
- Finding the optimal strategy from the realization plan we got from previous linprog result
- sigma is player 1's optimal strategy
- to find ontimal nu
- nu is the initial vector payoff over player 2's state

```
clear all;
close all;
clc;
warning('off')
```

This code is to compute the primal game LP of player 1. This code will

give the game value, player 1's optimal strategy and the initial vector

payoff over player 2's state

Initialization

```
P\{1,1\}=[.8 \ .1 \ .1; \ .1 \ .4 \ .5; \ .2 \ .7 \ .1]; \ Player 1's Payoff matrix if a=1 and b=1
P\{1,2\}=[.4.5.1; .2.3.5; .4.4.2]; %Player 1's Payoff matrix if a=1 and b=2
P\{2,1\}=[.2 .2 .6; .5 .2 .3; .2 .6]; %Player 1's Payoff matrix if a=2 and b=1
P\{2,2\}=[.3 .3 .4; .1 .8 .1; .1 .1 .8]; %Player 1's Payoff matrix if a=2 and b=2
save P.mat;
Q\{1,1\}=[.8 .2;.5 .5]; %Player 2's Payoff matrix if a=1 and b=1
Q\{1,2\}=[.2.8;.1.9]; %Player 2's Payoff matrix if a=1 and b=2
Q\{2,1\}=[.6 .4;.5 .5]; %Player 2's Payoff matrix if a=2 and b=1
Q{2,2}=[.7 .3;.1 .9]; %Player 2's Payoff matrix if a=2 and b=2
save Q.mat;
T=2; %Number of stages in a game
A=2; %Number of player 1's actions
B=2; %Number of player 2's actions
k=3; %Number of states of player 1
1=2; %Number of states of player 2
lm=0.3; %discounted value
p=[0.5 0.3 0.2]; %player 1's initial probability for state
q=[0.5 0.5]; %player 2's initial probability for state
load M.mat;
               %payoff matrix
G=M;
```

```
%information set of player 1 and 2
[is1,n_is1]=info_I(T,A,B,k);
[is2,n_is2]=info_J(T,A,B,1);
```

Constraint \sum_{a_t} R_{I_t}(a_t)=P_{a_{t-1},b_{t-1}}(k_{t-1},k_t)R_{I_{t-1}}(a_{t-1});

```
%\forall t=1,...n, \forall \mathcal{I} t
%Creating the equation as matrix multiplication [Aeq]*[variable]=[beq]. In
%this equation the variable is R {I t}
Aeq=zeros(sum(n is1),sum(n is1)*A);
beq=zeros(sum(n is1),1);
row index=0;
for t=1:T
           for i=1:length(is1{t})
                         row index=row index+1;
                        for a=1:A %As there is summation a t in R {I {t}}
                                     I=is1\{t\} (i,:); %for selecting each row from the information set of player 1
                                      [col_index_RIt] = RIt_col_index_P1(t,I,A,B,k,a,n_is1); %finding the column ind
ex for that particular information set row
                                     Aeq(row index,col index RIt)=1;
                         end
                         kt=I(end);
                         if t==1
                                  beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {I 0}(a 0)=Pr(beq(row index, 1) = p(kt); %As at t=1, P {a 0,b 0}(k 0,k 1)=1 and R {a 0,b 0}(k 0,k 1)=1 an
k1)
                                     Ipre=is1{t}(i,1:(length(is1{t}(i,:))-3));
                                     aprev=is1\{t\} (i, (length(is1\{t\}(i,:))-2));
                                     bprev=is1\{t\}(i,(length(is1\{t\}(i,:))-1));
                                     [col index RItprev] = RIt col index P1(t-1,Ipre,A,B,k,aprev,n is1);
                                     ktpre=I(end-3);
                                     Aeq(row index,col index RItprev) = -P{aprev,bprev}(ktpre,kt);
                         end
             end
end
```

The inequality contraint

```
%Creating the equation as matrix multiplication [Ain]*[variables]=[bin]. In
%this equation the variables are R_{I_t},(U_{J_t},U_{J_t}),U_{J_t+1})
[kset,n_kset] = Kset(T,k); %to get player 1's state information only

Ain=zeros(sum(n_is2)*B,(sum(n_is1)*A+sum(n_is2)));
bin=zeros(sum(n_is2)*B,1);

row_index=0;
for t=1:T
    for j=1: length (is2{t}) %for different J_t and different b_t there will be different row

for b=1:B
    row_index=row_index+1;
    for kn=1:length(kset{t})
```

```
for a=1:A
                     [I] = construct Is(j,kn,t,kset,is2);
                     [col index] = RIt col index P1(t,I,A,B,k,a,n is1);
                     Ain(row index,col index) = lm^{(t-1)} G\{I(3*t-2), (is2\{t\}(j, (3*t-2)))\} (a,b)
; %R {I t} coefficient
                end
            end
            %To find the term for U {J {t+1}}
            if t < T %As for U {J {N+1}}=0
                for a1=1:A
                     for lplus=1:1
                         Jplus=[is2{t}(j,:) a1 b lplus];
                         [col index Jplus] = J col index(n is1,A,B,l,Jplus,n is2,t+1);
                          Ain(row index,col index Jplus) = Q{a1,b}(is2{t}(j,end),lplus); %The
coefficient for U {J {t+1}}
                end
            end
            %To find the term for U {J {t}}
            Jpre=is2\{t\}(j,:);
            [col_index_Jpre] = J_col_index(n_is1,A,B,l,Jpre,n_is2,t);
            Ain(row index, col index Jpre) =-1;
        end
    end
end
```

Construct the objective function: $\max_{R}\max_{U} \sum_{I} q(I)*U_{\mathcal{J}_1}$

```
f=[zeros(1,sum(n is1)*A) q zeros(1,sum(n is2(2:end)))]; %zeros(1,sum(n is1)*A) is for R {I
t} as there is no R {I t} in the objective function. zeros(1, sum(n is2(2:end))) is for U
{J_{2:T}} as in objective function there is only U {\mathcal J}_{3:T}
%Rearrange every coefficient to use in linprog
Ain1=-Ain; %As linprog use <=
bin1=-bin; %As linprog use <=
f1=-[zeros(1,size(Ain1,2)-size(f,2)) f ]; %as linprog works for only minimize obj function
thats why -ve. To ensure that matrix of objective function and Ain, Aeq are of same size w
e add zeroes
Aeq1=padarray(Aeq,[0, (size(Ain1,2)-size(Aeq,2))],0,'post'); % to use linprog Ain and Aeq
must have same column number as column number indicates variables. Both equation must have
lb=[zeros(sum(n is1)*A,1);-Inf((size(Ain1,1)-sum(n is1)*A),1)];
ub=+Inf;
options = optimoptions('linprog','Display','none');
[x,v1]=linprog(f1,Ain1,bin1,Aeq1,beq,lb,ub,options); %x=[R {I t} U {J t}] and v1 is the ga
me value
```

Game value

```
v1
```

Finding the optimal strategy from the realization plan we got from previous linprog result

```
sigma=R \{I t\}/(P \{a \{t-1\},b \{t-1\}\})(k \{t-1\},k t)*RI \{t-1\})
sigma=zeros(1, sum(n is1));
sigma col=0;
for t=1:T
   for i=1:length(is1{t})
        I=is1\{t\} (i,:); %for selecting each row from the information set of player 1
        sigma col=sigma col+1;
        for a=1:A %As there is summation a t in R {I {t}}
            [row index RIt] = RIt col index P1(t,I,A,B,k,a,n is1); %finding the column ind
ex for that particular information set row. The number of column index in RIt is the numbe
r of row index in optimal realization plan x
            RIt=x(row index RIt,1);
            kt=I(end);
            if t==1
               RItprev=p(kt);
               pvalue=1;
            else
                Ipre=is1{t}(i,1:(length(is1{t}(i,:))-3));
                aprev=is1\{t\} (i, (length(is1\{t\}(i,:))-2));
                bprev=is1{t}(i,(length(is1{t}(i,:))-1));
                [row index RItprev] = RIt col index P1(t-1,Ipre,A,B,k,aprev,n is1);
                ktpre=I(end-3);
                RItprev=x(row index RItprev,1);
                pvalue=P{aprev,bprev}(ktpre,kt);
            sigma(a,sigma col)=RIt/(RItprev*pvalue);
        end
    end
end
```

sigma is player 1's optimal strategy

```
sigma %sigma(1st row) for a=1 and sigma(2nd row) for a=2. Each column indicates each infor mation set at different stages. For example. 5th column is for T=2 (k_1=1, a_1=1, b_1=1, k_2=2)
```

```
sigma =
 Columns 1 through 7
    1.0000
             0.0000
                       1.0000
                                    0
                                               0
        0
             1.0000
                            0
                               1.0000
                                        1.0000 1.0000
                                                              1.0000
 Columns 8 through 14
                  0
                          NaN
                                    NaN
                                             NaN
                                                       NaN
                                                                 NaN
```

1.0000	1.0000	NaN	NaN	NaN	NaN	NaN
Columns 15	through	21				
NaN	0	0	0	0	0	0
NaN	0	0	0	0	0	0
Columns 22	through	28				
0	0.2774	0	0	0.4392	0	0
1.0000	0.7226	1.0000	1.0000	0.5608	1.0000	1.0000
Columns 29	through	35				
0.4899	0	0	0.3135	0	NaN	NaN
0.5101	1.0000	1.0000	0.6865	1.0000	NaN	NaN
Columns 36	through	39				
NaN	NaN	NaN	NaN			
NaN	NaN	NaN	NaN			

to find ontimal nu

```
%to find UJ1
for l_present=1:1
    t=1;
    info=l_present;
    [col_index_UJ1] = J_col_index(n_is1,A,B,l,info,n_is2,t);
    UJ1=x(col_index_UJ1,1);
    nu(l_present)=[UJ1];
end
```

nu is the initial vector payoff over player 2's state

```
nu=-nu %as nu=-Z_{I_1}. nu[1] is for nu(l=1) and nu[2] is for nu(l=2)
```

nu = -89.5061 -117.7559