EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Low-Pass and High-Pass Filters

- More Examples -

Ex. 05

a) Is the four-pole filter in Figure below approximately optimized for a Butterworth response? What is the roll-off rate?

High Pass

$$DF = 2 - \frac{R_3}{R_4} = 2 - \frac{1.0}{6.8} = 1.85$$

Second Stage:

$$DF = 2 - \frac{R_7}{R_8} = 2 - \frac{6.8}{5.6} = 0.786$$

		1ST STAGE			2ND STAGE			3RD STAGE		
ORDER	ROLL-OFF DB/DECADE	POLES	DF	R_1/R_2	POLES	DF	R_3/R_4	POLES	DF	R_5/R_6
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

		1ST STAGE			2ND STAGE			3RD STAGE		
ORDER	ROLL-OFF DB/DECADE	POLES	DF	R_1/R_2	POLES	DF	R_3/R_4	POLES	DF	R_5/R_6
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

From the table

 1^{st} stage DF = 1.848

and

 2^{nd} stage DF=0.765

Therefore, this filter is approximately Butterworth.

Roll-off rate = 80 dB/decade

b) Determine the critical frequency of the filter circuit below.

$$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi\sqrt{R_5R_6C_3C_4}} = \frac{1}{2\pi\sqrt{(4.7\,\mathrm{k}\Omega)(6.8\,\mathrm{k}\Omega)(0.22\,\mu\mathrm{F})(0.1\,\mu\mathrm{F})}}} = \mathbf{190\,Hz}$$

c) Without changing the response curve, adjust the component values in the filter circuit to make it an equal-value filter. Select for both stages.

$$R = R_1 = R_2 = R_5 = R_6$$
 and $C = C_1 = C_2 = C_3 = C_4$

Let $C = 0.22 \mu F$ (for both stages)

$$f_c = \frac{1}{2\pi\sqrt{R^2C^2}} = \frac{1}{2\pi RC}$$

$$R = \frac{1}{2\pi f_c C} = \frac{1}{2\pi (190 \text{ Hz})(0.22 \,\mu\text{F})} = 3.81 \text{ k}\Omega$$

Choose $R = 3.9 k\Omega$ (for both stages)

d) Modify the filter circuit in the Figure to increase the roll-off rate to -120 dB/decade while maintaining an approximate Butterworth response.

Add another identical stage and change the ratio of the feedback resistors to 0.068 for first stage, 0.586 for second stage, and 1.482 for third stage.

Ex. 06

a) Convert the filter below to a high-pass with the same critical frequency and response characteristic.

b) Make the necessary circuit modification to reduce by half the critical frequency in Ex. 05(b).

$$f_c = \frac{1}{2\pi RC}$$

$$f_0 = \frac{190 \,\text{Hz}}{2} = 95 \,\text{Hz}$$

$$R = \frac{1}{2\pi f_c C} = \frac{1}{2\pi (95 \text{ Hz})(0.22 \,\mu\text{F})} = 7615 \,\Omega$$

Let $R = 7.5 k\Omega$.

And choose R_1 , R_2 , R_3 and R_6 to 7.5 $k\Omega$

- c) For the filter in Figure below,
 - i. how would you increase the critical frequency?
 - ii. How would you increase the gain?

$$f_c = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

$$A_{cl(NI)} = \frac{R_3}{R_4} + 1$$

- i. Decrease R_1 and R_2 or C_1 and C_2 .
- ii. Increase R_3 or decrease R_4 .