CCCP

ОТРАСЛЕВЫЕ СТАНДАРТЫ

ДЕТАЛИ И СБОРОЧНЫЕ ЕДИНИЦЫ ТРУБОПРОВОДОВ ИЗ КОРРОЗИОННОСТОЙКОЙ СТАЛИ НА Рраб <2,2МПа (22кгс/см²), Т≤300°С ДЛЯ АС

Конструкция и размеры

ОСТЗ4-10-416-90 — ОСТЗ4-10-426-90 ОСТЗ4-10-428-90 ОСТЗ4-10-431-90— ОСТЗ4-10-433-90 ОСТЗ4-10-439-90; ОСТЗ4-10-440-90 ЧАСТЬ 1 Издание официальное ДЕТАЛИ И СБОРОЧНЫЕ ЕДИНИЦЫ ТРУБОПРОВОДОВ АС. $Ppa\delta < 2.2 \, M \Pi \alpha \, (22 \, \text{kzc/cm}^2), T = 300 \, ^{\circ} \text{C}$

ПЕРЕХОДЫ ТОЧЕНЫЕ

OCT 34-10-423-90

Конструкция и размеры

DKN 69 3717 0026

Дата введения 01.01.91.

Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на точеные переходы из коррозионностойкой стали для трубопроводов групп в в С атомных станций по "Правилам АЭУ".

Сландарт соответствует требованиям "Правил АЭУ".

Допускается применение точеных переходов по данному стандарту для трубопроводов, на которые распространяются "Правила пара и горячей воды" и Сни ПЗ. ОБ. ОБ.

Издание официальное

Перепечатка воспрещена

T.P. N 8433444 om 91,02.28

98

2. Конструкция и размеры точеных переходов должны соответствовать указанным на чертеже и в таблице

	2	`
	-	-
	τ	۸
	_	_
	r	_
	C	_
	_	_ '
	5	_
	C	۸
	ř	
	+	_
		•
	€	_
	_	7
	4	٠.
	+	-
	D	ď
	ż	٠.
•	ι)
		ı
	00104 C 400 00	C
•	7	=
	•	_

	Размеры в лам											0		
Обозна- чение	Условное Давление Ру, МПа {кгс/ст²}	Условные пррходы Дух Ду,	Размеры диняемы Дн × S	nputoe- x mpyō DH, * S,	D	D ₁ nped anika. na h14	Ипмин	Tp Tiped. omkn	\mathcal{D}_2	І), Нотин	D ₁ Nped omkn	L	Macea, K2	CT34-H
01		15 × 10	18'× 2,5	14 × 2	20	18	13,5		14	10,5	+0,20		0,10	10-4
02		20 × 10	25×3	.,	28	25	19:5	10.5 + D.24	5	\			8,20	423
03		20 × 15	20 % 0	18 × 2,5	1		10.0		18	13,5	+0,24		0,19	.9
04		25 × 10		14 × 2					14	10,5	+0,20		0,28	
05	2,5 (25)	25 × 15	32× 2.5	18 × 2,5	36	32	28,0	+0,26	18	13.5	+0,24	60		
06	1 -~ ()	25 × 20		25 × 3					25	19,5			1,29	_
07]	32 × 10		14 x 2					14	10,5	+ 420		0,30	_
08		32 × 15	38 × 3	18 × 2,5	40	38	72 n	* <i>0,</i> 34	18	13.5	+0.24	1	0,33	
09		32 × 20	30 4 3	25 × 3] 40	100	00,0	1 1/204	25	19,5			0,35	
10		32 × 25		32 × 2,5					32	28,0	+ 4,26		0.29	

Farmes											Rouse	WAR!	:TE
<i>ଓଡ଼ି ୭୫ ଖର</i> -	Scarbnoe Bahaenue Py;	YCNOBHWE DODYDDN	Размеры диняемы	npucae- x mpy5	7	\mathcal{D}_{t}	.2	þ	77	Z	ρ_1	,	Масса,
LE-149	(11/10 (120)(11/2)	Dyx Dy1	DH x 5	DH, XS,	D_{t_i}	11280. 617:KN. 100 h14	Kamus.	Пред. एक्सो.	D_2	HOMUK.	Noed. omkn.	4	K2
1 _j		50 × 20		25 × 3					25	19,5	+0.24		1.24
12	2,5 (25)	50 × 25	57×3	32×2.5	6D	57	52	+0,40	32	28,0	+0.25	100	1,25
13		50 × 32		38 × 3					33	33,0	+ 0,34		.,20

Пример условного обозначения перехода точеного Ду 32мм и Пу 20мм на условное давление Бу 25/Ма (25 госем?) для трубопроводов групп Ви С, на которые распространяются "Правила АЭУ" и и учестроводов, на которые распространяются "Правила пара и горячей воды" и СНиПЗ-05.05

Переход 32×20-2,5 09 0CT34-10-423-90

3. Mameruan - Kpy2 1 FOCT 2590

Депускается применение стали марки 12Х18Н1ОТ по ГОСТ 5632.

4. Неуказанные предельные вітклонения размеров по классу точно**сти "грубый**" Гост 25070.

- 5. Сварные стыковые соединения по ОСТ 34-10-417.
- д. Останьные технические требования по ост 34-10-440 .

Лист регистрации изменений ОСТЗ4-10-423-90

• Company of the Comp	HOME	ים חעונ	ะกากชิ (c	траниц)				Epox
Изм.	U3ME- HEH- HBIX	нен- новых раван- покумен		Номер Вокумента	<i>โโอชิกบ</i> ะ ง	Lama	68272- HUЯ U3M2- HEHUЯ	

Содержание Часть 1

DCT34-10-416-90	Сортамент труб	3
OCT34-10-417-90	Соединения сварные стыковые	
	и угловые	9
DCT34-10-418-90	Отводы крутоизогнуты е	41
OCT 34-10-419-90	Отводы сварные	41
OCT34-10-420-90	Отводы гнутые	78
00734-10-421-90	Трубы крутоизогнутые	81
OCT34-10-422-90	Переходы бесшовные	84
OCT34-10-423-90	Переходы точеные	98
OCT34-10-424-90	Переходы сварные листавые	103
OCT 34-10-425-90	Фланцы плоские приварные	132
00734-10-426-90	Фланцы плоские приварные с ребрами	159
OCT34-10-428-90	Заглушки с соединительным	
	выступом фланцевые	169
JCT34-10-431-90	Кольца подкладные	180
OCT34-10-432-90	Тройники равнопроходные сверленые	188
DCT34-10-433-90	Тройники переходные с усиленным	
	штуцером	190
DCT34-10-439-90	Штуцеры	201
OCT34-10-440-90	Технические тробования	208
	Часть 2	
OCT 34-10-508-90	Ответвления трубопроводов	3
DCT34-10-509-9D	Штуцера для ответвлений	32
0CT34-10-510-90	Тройники сварные равнопроходные	48
OCT 34-10-511-90	Тройники сварные переходные	68
DCT34-10-512-90	Тройники сварные равнопроходные	
	с накладкой	105
DCT 34-10-513-90	Тройники сварные переходные	
	ς μακλαθκού	121

215