Network Calculus Tests – Tree Network Configurations

Version 1.1 (2014-Dec-30)

© Steffen Bondorf 2013 - 2014, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons Attribution-ShareAlike 4.0. See http://creativecommons.org/licenses/by-sa/4.0/

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems (DISCO) Lab* at the University of Kaiserslautern.
- Naming of the individual network configurations depicts the name of the according functional test for the DiscoDNC.
- \bullet The naming scheme used in this document is detailed in Network Calculus_NamingScheme.pdf.
- Arrival bound computations are equivalent to the PbooArrivalBound_Output_PerHop.java class of the DiscoDNC.
- The end-to-end left-over service curve for PBOO arrival bounds can be computed by simply convolving the server-local ones.
- Arrival bounds for PmooArrivalBound. java and analyses using them are listed only if results are different to PBOO.

Changelog:

Version 1.1 (2014-Dec-30):

- Streamlined the PMOO left-over latency $T_{\rm e2e}^{\rm l.o.f}$ computation.
- Adapted to naming scheme version 1.1.

 $^{^{1}} http://disco.cs.uni-kl.de/index.php/projects/disco-dnc$

 ${\bf Tree_1SC_2Flows_1AC_2Paths}$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1,2\}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0,1\}$

arrivalBound $(s_2, \{f_n\}, \mathcal{G}), \mathcal{G} = \mathcal{P}(\mathcal{F})$	$=\alpha_{s_2}^{f_n}, n \in \{0, 1\}$	FIFO_MUX ARB_MUX		
$lpha_{s_2}^{f_n}$	$= \gamma_{5,25}$			
$lpha_{s_2}^{xf_n}$		$=\gamma_{0,0}$		
$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n} = \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$	=	$= \beta_{20,20}$		
	$r_{s_2}^{f_n}$	=5		
$\alpha_{s_2}^{f_n} = \alpha_{s_n}^{f_n} \oslash \beta_{s_n}^{\text{l.o.}f_n} = \gamma_{r_{s_2}^{f_n}, b_{s_2}^{f_n}}$	$b_{s_2}^{f_n}$	$\alpha_{s_n}^{f_n}(T_{s_n}^{\text{l.o.}f_n}) = 5 \cdot 20 + 25 = 125$		
	=	$= \gamma_{5,125}$		

Flow $f_n, n \in \{0,1\}$ (comparable with Tandem_1SC_2Flows_1AC_2Paths)

	TFA	FIFO_MUX	ARB_MUX		
	$\alpha_{s_n} = \alpha_{s_n}^{f_n}$		$=\gamma_{5,25}$		
s_n		$\beta_{s_n} = b_{s_n}^{f_n}$	FIFO per micro flow		
	c	$ \rho_{s_n} = 0_{s_n} $ $ 20 \cdot [t - 20]^+ = 25 $	$\beta_{s_n} = b_{s_n}^{f_n}$		
	$D_{s_n}^{f_n}$		$20 \cdot [t - 20]^+ = 25$		
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$		
	$B_{s_n}^{f_n}$	$\alpha_{s_n}(T_{s_n})$	$(1) = 5 \cdot 20 + 25$		
	$D_{s_n}^{*n}$		= 125		
	$\alpha_{s_2} = \sum_j \alpha_{s_2}^{f_n}$		$+ \gamma_{5,125} = \gamma_{10,250}$		
s_2		$\beta_{s_2} = b_{s_1}$			
	$D_{s_2}^{f_n}$	$20 \cdot [t - 20]^+ = 250$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 250$		
	- 2	$t = 32\frac{1}{2}$	t = 65		
	$B_{s_2}^{f_n}$	$\alpha_{s_2}(T_{s_2})$	$= 10 \cdot 20 + 250$		
	$D_{s_2}^{\circ}$		= 450		
	D^{f_n}	$\sum_{i=\{n,2\}} D_{s_i}^{f_n} = 53\frac{3}{4}$	$\sum_{i=\{n,2\}} D_{s_i}^{f_n} = 86\frac{1}{4}$		
	B^{f_n}	$\max_{i=\{n,2\}} b_{s_i}^{f_n} = 450$			

SFA			FIFO_MUX ARB_MUX		
s_n	$lpha_{s_n}^{xf_n}$		$=\gamma_{0,0}$		
a_n	$\beta_{s_n}^{\mathrm{l.o.}f_n} = \beta_{s_n} \ominus \alpha_{s_n}^{xf_n} = \beta_{s_n}$		$=\beta_2$	20,20	
	$\alpha_{s_2}^{xf_n} = \alpha_{s_2}^{f_n}$		$=\gamma_{5}$	5,125	
s_2		$R_{s_2}^{\mathrm{l.o.}f_n}$	$[R_{s_2} - r_{s_2}^{x_j}]$	$[f_n]^+ = 15$	
52	$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n} = \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$		$\beta_{s_2} = b_{s_2}^{x\bar{f}_n}$	$\beta_{s_2} = \alpha_{s_2}^{xf_n}$	
		$T_{s_2}^{\text{l.o.}f_n}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t - 20]^+ = 5 \cdot t + 125$	
			$t = 26\frac{1}{4}$	t = 35	
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		$\bigotimes_{i=\{n,2\}} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{15,46\frac{1}{4}}$ $\beta_{\text{e2e}}^{\text{l.o.} f_n} = b^{f_n}$	$\bigotimes_{i=\{n,2\}} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{15,55}$	
				$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	
	D^{f_n}		$15 \cdot [t - 46\frac{1}{4}]^{+} = 25$	$15 \cdot [t - 55]^+ = 25$	
			$t = 47\frac{11}{12}$	$t = 56\frac{2}{3}$	
	B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 46\frac{1}{4} + 25$	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 55 + 25$	
	2		$=$ $256\frac{1}{4}$	= 300	

	PMOO	ARB_MUX		
s_n	$\frac{\alpha_{s_n}^{\bar{x}f_n}}{\alpha_{s_n}^{x^f n}}$ $\frac{\alpha_{s_n}^{\bar{x}f_n}}{\alpha_{s_2}^{\bar{x}(f_0)}}$	$=\gamma_{0,0}$		
	$\alpha_{s_n}^{xf_n}$	$=\gamma_{0,0}$		
s_2 $rac{lpha_{s_2}^{ar{x}(f_0)}}{lpha_{s_2}^{x(f_0)}}$		$=\gamma_{5,125}$		
		$=\gamma_{5,125}$		
	$R_{\text{e}2\text{e}}^{\text{l.o.}f_n} = \bigwedge_{i \in \{n,2\}} \left(R_{s_i} - r_{s_i}^{xf_n} \right)$	$= (20 - 0) \wedge (20 - 5)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$	$R_{\text{e2e}} = / \setminus_{i \in \{n,2\}} (R_{s_i} - R_{s_i})$	= 15		
$ \rho_{\text{e2e}} = \rho_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}} $		$= 20 + \frac{0 + 0 \cdot 20}{15} + 20 + \frac{125 + 5 \cdot 20}{15}$		
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = \sum_{i \in \{n,2\}} \left(T_{s_i} + \frac{b_{s_i}^{xf_n} + r_{s_i}^{xf_n} \cdot T_{s_i}}{R_{\mathrm{e2e}}^{\mathrm{l.o.}f_0}} \right)$	15 15		
		$=$ $40 + \frac{225}{15}$		
		= 55		
	=	$=\beta_{15,55}$		
		$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{f_n}$		
	D^{f_n}	$15 \cdot [t - 55]^+ = 25$		
		$t = 56\frac{2}{3}$		
	B^{f_n}	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 55 + 25$		
	D	= 300		

 ${\bf Tree_1SC_3Flows_1AC_3Paths}$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1,2\}$
- $\mathcal{F} = \{f_0, f_1, f_2\}$
- $\alpha^{f_0} = \alpha^{f_1} = \alpha^{f_2} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0, 1, 2\}$

arrivalBound $(s_1, \{f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_1}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{f_1}$		$= \gamma_{5,25}$		
$lpha_{s_0}^{x(ilde{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$	$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{p^{\text{l.o.}f_1}, p^{\text{l.o.}f_1}} =$		$= \beta_{20,20}$	
	$r_{s_1}^{f_1}$	=	= 5	
$\alpha_{s_1}^{f_1} = \alpha_{s_0}^{f_1} \oslash \beta_{s_0}^{\text{l.o.}f_1} = \gamma_{r_{s_1}^{f_1}, b_{s_1}^{f_1}}$	$b_{s_1}^{f_1}$	$\alpha_{s_0}^{f_1}(T_{s_0}^{\text{l.o.}f_1}) =$	$5 \cdot 20 + 25 = 125$	
	=	=	$\gamma_{5,125}$	

$\operatorname{arrivalBound}(s_2, \{f_1\}, \{f_0\}) = \alpha_{s_2}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_1}^{f_1}$		$=\gamma_{5,125}$		
$\alpha_{s_1}^{x(\bar{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{R_{s_1}^{\text{l.o.}f_1}, T_{s_1}^{\text{l.o.}f_1}}$	$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{s_1, o.f_1, g_1, o.f_1} =$		$=\beta_{20,20}$	
	r_{s_1} , r_{s_1}		=5	
$\alpha_{s_2}^{f_1} = \alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1} = \gamma_{r_{s_2}^{f_1}, b_{s_2}^{f_1}}$	$b_{s_2}^{f_1}$	$\alpha_{s_1}^{f_1}(T_{s_1}^{\text{l.o.}f_1}) =$	$5 \cdot 20 + 125 = 225$	
2 2	=		$= \gamma_{5,225}$	

$\operatorname{arrivalBound}(s_5, \{f_1\}, \{f_0\}) = \alpha_{s_5}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_2}^{f_1}$		$=\gamma_{5,225}$		
$lpha_{s_2}^{x(ar{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)} = \beta_{R_{s_2}^{\text{l.o.}f_1}, T_{s_2}^{\text{l.o.}f_1}}$	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)} = \beta_{pl.o.f_1, pl.o.f_1} =$		$=\beta_{20,20}$	
	$r_{s_5}^{f_1}$		=5	
$\alpha_{s_5}^{f_1} = \alpha_{s_2}^{f_1} \oslash \beta_{s_2}^{\text{l.o.}f_1} = \gamma_{r_{s_5}^{f_1}, b_{s_5}^{f_1}}$	$b_{s_5}^{f_1}$	$\alpha_{s_2}^{f_1}(T_{s_2}^{\text{l.o.}f_1}) =$	$5 \cdot 20 + 225 = 325$	
	=		$= \gamma_{5,325}$	

arrivalBound $(s_4, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_4}^{f_2}$		FIFO_MUX	ARB_MUX	
$lpha_{s_3}^{f_2}$		$=\gamma_{5,25}$		
$lpha_{s_3}^{x(ilde{f}_2)}$		$=\gamma_{0,0}$		
$\beta_{s_3}^{\text{l.o.}f_2} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_2)} = \beta_{R_{s_3}^{\text{l.o.}f_2}, T_{s_3}^{\text{l.o.}f_2}}$	$\beta_{s_2}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_2)} = \beta_{p_1\text{l.o.}f_2, p_1\text{l.o.}f_2} = $		$= \beta_{20,20}$	
	$r_{s_4}^{f_2}$		= 5	
$\alpha_{s_4}^{f_2} = \alpha_{s_3}^{f_2} \oslash \beta_{s_3}^{\text{l.o.}f_2} = \gamma_{r_{s_4}^{f_2}, b_{s_4}^{f_2}}$	$b_{s_4}^{f_2}$	$\alpha_{s_3}^{f_2}(T_{s_3}^{\text{l.o.}f_2}) =$	$5 \cdot 20 + 25 = 125$	
7 7	=	=	$\gamma_{5,125}$	

arrivalBound $(s_5, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_5}^{f_2}$		FIFO_MUX	ARB_MUX	
$lpha_{s_4}^{f_2}$		$=\gamma_{5,125}$		
$lpha_{s_4}^{x(f_2)}$		$=\gamma_{0,0}$		
$\beta_{s_4}^{\text{l.o.}f_2} = \beta_{s_4} \ominus \alpha_{s_4}^{x(f_2)} = \beta_{R_{s_4}^{\text{l.o.}f_2}, T_{s_4}^{\text{l.o.}f_2}}$	$\beta_{\text{o}}^{\text{l.o.}f_2} = \beta_{\text{s.t}} \ominus \alpha_{\text{s.t}}^{x(f_2)} = \beta_{\text{pl.o.}f_2} = \beta_{\text{pl.o.}f_2} = \beta_{\text{pl.o.}f_2}$		$= \beta_{20,20}$	
1084 ,184	$r_{s_5}^{f_2}$		=5	
$\alpha_{s_5}^{f_2} = \alpha_{s_4}^{f_2} \oslash \beta_{s_4}^{\text{l.o.}f_2} = \gamma_{r_{s_5}^{f_2}, b_{s_5}^{f_2}}$	$b_{s_5}^{f_2}$	$\alpha_{s_4}^{f_2}(T_{s_4}^{\text{l.o.}f_2}) =$	$5 \cdot 20 + 125 = 225$	
	=	=	$\gamma_{5,225}$	

arrivalBound $(s_6, \{f_1, f_2\}, \{f_0\}) = \alpha_{s_6}^{\{f_1, f_2\}}$	FIFO_MUX	ARB_MUX	
$lpha_{s_5}^{\{f_1,f_2\}}$	$=\gamma_{10,550}$		
$lpha_{s_5}^{x\{f_1,f_2\}}$	$=\gamma_{0,0}$		
$\beta_{s_5}^{\text{l.o.}\{f_1,f_2\}} = \beta_{s_5} \ominus \alpha_{s_5}^{x\{f_1,f_2\}} = \beta_{R_{s_5}^{\text{l.o.}\{f_1,f_2\}}, T_{s_5}^{\text{l.o.}\{f_1,f_2\}}}$	=	=	$= eta_{20,20}$
	$r_{s_6}^{\{f_1,f_2\}}$		= 10
$\alpha_{s_6}^{\{f_1,f_2\}} = \alpha_{s_5}^{\{f_1,f_2\}} \oslash \beta_{s_5}^{\text{l.o.}\{f_1,f_2\}} = \gamma_{r_{s_6}^{\{f_1,f_2\}},b_{s_6}^{\{f_1,f_2\}}}$	$b_{s_6}^{\{f_1,f_2\}}$	$\alpha_{s_5}^{\{f_1,f_2\}}(T_{s_5}^{\text{l.o.}\{f_1,f_2\}})$	$(3) = 10 \cdot 20 + 550 = 750$
	=	=	$\gamma_{10,750}$

arrivalBound $(s_2, \{f_0, f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_2\}) = \alpha_{s_2}^{\{f_0, f_1\}}$	FIFO_MUX	ARB_MUX		
$lpha_{s_1}^{\{f_0,f_1\}}$	$=\gamma_{10,150}$			
$lpha_{\mathbf{s}_1}^{x\{f_0,f_1\}}$		$=\gamma_{0,0}$		
$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{R_{s_1}^{\text{l.o.}\{f_0,f_1\}},T_{s_1}^{\text{l.o.}\{f_0,f_1\}}}$	$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{s_1,o.\{f_0,f_1\}} = \beta_{s_1,o.\{f_0,f_1\}} = \beta_{s_1,o.\{f_0,f_1\}}$		$=\beta_{20,20}$	
	n(J0;J1)		= 10	
$lpha_{s_2}^{\{f_0,f_1\}} = lpha_{s_1}^{\{f_0,f_1\}} \oslash eta_{s_1}^{ ext{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_2}^{\{f_0,f_1\}},b_{s_2}^{\{f_0,f_1\}}}$	$b_{s_2}^{\{f_0,f_1\}}$	$\alpha_{s_1}^{\{f_0,f_1\}}(T_{s_1}^{\text{l.o.}\{f_0\}})$	$(f_1) = 10 \cdot 20 + 150 = 350$	
	=		$=\gamma_{10,350}$	

arrivalBound $(s_5, \{f_0, f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_2\}) = \alpha_{s_5}^{\{f_0, f_1\}}$		FIFO_MUX	ARB_MUX	
$lpha_{s_2}^{\{f_0,f_1\}}$		$=\gamma_{10,350}$		
$lpha_{s_2}^{x\{f_0,f_1\}}$		$=\gamma_{0,0}$		
$\beta_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_2} \ominus \alpha_{s_2}^{x\{f_0,f_1\}} = \beta_{R_{s_2}^{\text{l.o.}\{f_0,f_1\}}, T_{s_2}^{\text{l.o.}\{f_0,f_1\}}}$	$\beta_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_2} \ominus \alpha_{s_2}^{x\{f_0,f_1\}} = \beta_{p_{\text{l.o.}\{f_0,f_1\}}} \alpha_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \beta_{p_{\text{l.o.}\{f_0,f_1\}}} \alpha_{s_2}^{l.$		$=\beta_{20,20}$	
n_{s_2} , n_{s_2}	$r_{s_5}^{\{f_0,f_1\}}$		= 10	
$\alpha_{s_5}^{\{f_0,f_1\}} = \alpha_{s_2}^{\{f_0,f_1\}} \oslash \beta_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_5}^{\{f_0,f_1\}},b_{s_5}^{\{f_0,f_1\}}}$	$b_{s_5}^{\{f_0,f_1\}}$	$\alpha_{s_2}^{\{f_0,f_1\}}(T_{s_2}^{\text{l.o.}\{f_0\}})$	$(0,f_1) = 10 \cdot 20 + 350 = 550$	
	=		$=\gamma_{10,550}$	

arrivalBound $(s_6, \{f_0, f_1, f_2\}, \{\}) = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$		FIFO_MUX	ARB_MUX
$lpha_{s_5}^{\{f_0,f_1,f_2\}}$			$=\gamma_{10,775}$
$lpha_{s_5}^{x\{f_0,f_1,f_2\}}$			$=\gamma_{0,0}$
$\beta_{s_5}^{\text{l.o.}\{f_0, f_1, f_2\}} = \beta_{s_5} \ominus \alpha_{s_5}^{x\{f_0, f_1, f_2\}} = \beta_{R_{s_5}^{\text{l.o.}\{f_0, f_1, f_2\}}, T_{s_5}^{\text{l.o.}\{f_0, f_1, f_2\}}}$	=		$=\beta_{20,20}$
	$r_{s_6}^{\{f_0,f_1,f_2\}}$		=15
$\alpha_{s_6}^{\{f_0, f_1, f_2\}} = \alpha_{s_5}^{\{f_0, f_1, f_2\}} \oslash \beta_{s_5}^{\text{l.o.}\{f_0, f_1, f_2\}} = \gamma_{r_{s_6}^{\{f_0, f_1, f_2\}}, b_{s_6}^{\{f_0, f_1, f_2\}}}$	$b_{s_6}^{\{f_0,f_1,f_2\}}$	$\alpha_{s_5}^{\{f_0,f_1,f_2\}}(T_{s_5}^{\text{l.o}})$	$(f_0, f_1, f_2) = 15 \cdot 20 + 775 = 1075$
	=		$=\gamma_{15,1075}$

Flow f_0

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$	$= \gamma_{5,25} + \gamma_{5,125} = \gamma_{10,150}$		
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$	
	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^+ = 150$	$20 \cdot [t - 20]^+ = 10 \cdot t + 150$	
		$t = 27\frac{1}{2}$ $\alpha_{s_1}(T_{s_1}) = 10$	t = 55	
	$B_{s_1}^{f_0}$	$\alpha_{s_1}(T_{s_1}) = 10$	0.20 + 150	
	1	=	350	
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$	$=\gamma_{10,3}$	50	
s_2		$eta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$	
	$D_{s_2}^{f_0}$	$20 \cdot [t - 20]^+ = 350$	$20 \cdot [t - 20]^+ = 10 \cdot t + 350$	
		$20 \cdot [t - 20]^{+} = 350$ $t = 37\frac{1}{2}$	t = 75	
	$B_{s_2}^{f_0}$	$\frac{2}{\alpha_{s_2}(T_{s_2})} = 10$	0.20 + 350	
		= 550		
	$\alpha_{s_5} = \alpha_{s_5}^{\{f_0, f_1\}} + \alpha_{s_5}^{f_2}$	$= \gamma_{10,550} + \gamma_{5,225} = \gamma_{15,775}$		
s_5		$eta_{s_5} = b_{s_5}$	$\beta_{s_5} = \alpha_{s_5}$	
	$D_{s_5}^{f_0}$	$20 \cdot [t - 20]^+ = 775$	$20 \cdot [t - 20]^+ = 15 \cdot t + 775$	
		$t = 58\frac{3}{4}$	t = 235	
	$B_{s_5}^{f_0}$	$\alpha_{s_5}(T_{s_5}) = 15$	$6 \cdot 20 + 775$	
		=	1075	
	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$	$=\gamma_{15,1075}$		
s_6		$eta_{s_6} = b_{s_6}$	$\beta_{s_6} = \alpha_{s_6}$	
$D_{s_6}^{f_0}$	$D_{s_6}^{f_0}$	$20 \cdot [t - 20]^+ = 1075$	$20 \cdot [t - 20]^+ = 15 \cdot t + 1075$	
		$t = 73\frac{3}{4}$	t = 295	
	$B_{s_6}^{f_0}$	$\alpha_{s_6}(T_{s_6}) = 15 \cdot 20 + 1075$		
	-	=	1375	
	D^{f_0}	$\sum_{i=\{1,2,5,6\}} D_{s_i}^{f_0} = 27\frac{1}{2} + 37\frac{1}{2} + 58\frac{3}{4} + 73\frac{3}{4} = 197\frac{1}{2}$	$\sum_{i=\{1,2,5,6\}} D_{s_i}^{f_0} = 55 + 75 + 235 + 295 = 660$	
	B^{f_0}	$\max_{i=\{1,2,5,6\}} E$	$B_{s_i}^{f_0} = 1375$	

SFA FIFO MUX:

$$\begin{array}{ll} \beta_{c2c}^{\text{lo.5}} & = & \left(\beta_{s_1}^{\text{lo.x}}(f_0) \odot \alpha_{s_1}^{x_1(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{lo.x}}(f_0) \odot \alpha_{s_2}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_2(f_0)}\right) \\ & = & \left(\beta_{s_1}^{\text{lo.x}}(f_0) \odot \alpha_{s_1}^{x_1(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{lo.x}}(f_0) \odot \alpha_{s_2}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_5(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_5(f_0)}\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_5}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_5}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_2}\right) \otimes$$

SFA ARB MUX:

$$\begin{array}{ll} \beta_{c2c}^{\text{l.o.}f_0} & = & \left(\beta_{s_1}^{\text{l.o.}x(f_0)} \odot \alpha_{s_1}^{x(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{l.o.}x(f_0)} \odot \alpha_{s_2}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \\ & = & \left(\beta_{s_1}^{\text{l.o.}x(f_0)} \odot \alpha_{s_1}^{x(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{l.o.}x(f_0)} \odot \alpha_{s_2}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha$$

	PMOO	ARB_MUX		
e.	$lpha_{s_1}^{ar{x}(f_0)}$	$=\gamma_{5,125}$		
s_1	$\alpha_{a}^{x(J_0)}$	$=\gamma_{5,125}$		
s_2	$\alpha_{s_2}^{x(f_0)}$	$=\gamma_{0,0}$		
32	$\begin{array}{c} -\frac{z}{x}(f_0) \\ \alpha_{s_2} \\ \alpha_{s_5} \\ \end{array}$	$=\gamma_{5,125}$		
s_5	$lpha_{s_5}^{ar{x}(f_0)}$	$=\gamma_{5,225}$		
	$lpha_{s_5}^{x(f_0)}$	$=\gamma_{10,xxx}$		
s_6	$\alpha_{x}^{x(f_0)}$	$=\gamma_{0,0}$		
	$\frac{\alpha s_6}{\alpha s_6}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{1,2,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (20-5) \wedge (20-5) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		= 10		
R _{e2e} , 1 _{e2e}		$= 20 + \frac{125 + 5 \cdot 20}{10} + 20 + \frac{0 + 5 \cdot 20}{10} + 20 + \frac{225 + 10 \cdot 20}{10} + 20 + \frac{0 + 10 \cdot 20}{10}$		
	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{1,2,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$			
		$=$ $80 + \frac{950}{10}$		
		= 175		
	=	$=\beta_{10,185}$		
		$eta_{ ext{e}2 ext{e}}^{ ext{l.o.}f_0} = b^{f_0}$		
D^{f_0}		$10 \cdot [t - 175]^+ = 25$		
		$t = 177\frac{1}{2}$		
B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 175 + 25$		
D**		= 900		

Flow f_1

TFA FIFO_MUX ARB_MUX		ARB_MUX	
	$\alpha_{s_1} = \alpha_{s_1}^{f_1}$	$=\gamma_{5,25}$	
s_0		$\beta - h$	FIFO per micro flow
		$\beta_{s_0} = b_{s_0}$ $20 \cdot [t - 20]^+ = 25$	$\beta_{s_0} = b_{s_0}$
	$D_{s_0}^{f_1}$		$20 \cdot [t - 20]^+ = 25$
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$
	Df_1	$\alpha_{s_0}(T_{s_0}) =$	$5 \cdot 20 + 25$
	$B_{s_0}^{f_1}$	=	125
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$ $D_{s_1}^{f_1}$ $B_{s_1}^{f_1}$	$= \gamma_{5,25} + \gamma_{5,125} = \gamma_{10,150}$	
s_1	$D_{s_1}^{f_1}$	$=27\frac{1}{2}$	=55
	$B_{s_1}^{J_1}$	=35	50
$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$		$=\gamma_{10}$	
s_2	$\frac{D_{s_2}^{f_1}}{B_{s_2}^{f_1}}$	$=37\frac{1}{2}$	= 75
	$B_{s_2}^{J_1}$	=55	50
	$\alpha_{s_5} = \alpha_{s_5}^{\{f_0, f_1\}} + \alpha_{s_5}^{f_2}$	$= \gamma_{5,225} + \gamma_{10,550} = \gamma_{15,775}$	
s_5	$\begin{array}{c} D_{s_5}^{f_1} \\ B_{s_5}^{f_1} \end{array}$	$=58\frac{3}{4}$	= 235
	$B_{s_5}^{J_1}$	= 10'	75
	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$	$=\gamma_{15,1075}$	
s_6	$\begin{array}{c} D_{s_6}^{f_1} \\ B_{s_6}^{f_1} \end{array}$	$=73\frac{3}{4}$	= 295
	$B_{s_6}^{f_1} = 1375$		
	D^{f_1}	$\sum_{i \in \{0,1,2,5,6\}} D_{s_i}^{f_1} = 21\frac{1}{4} + 27\frac{1}{2} + 37\frac{1}{2} + 58\frac{3}{4} + 73\frac{3}{4} = 218\frac{3}{4}$ $max_{i \in \{0,1,2,5,6\}}$	$\sum_{i \in \{0,1,2,5,6\}} \overline{D_{s_i}^{f_1}} = 21\frac{1}{4} + 55 + 75 + 235 + 295 = 681\frac{1}{4}$
	B^{f_1}	$max_{i \in \{0,1,2,5,6\}}$	$AB_{s_i}^{f_1} = 1375$

SFA FIFO MUX:

$$\begin{array}{ll} \beta_{c2}^{b,0,c} & = & \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \alpha_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)$$

SFA ARB MUX:

$$\begin{array}{ll} \beta_{coc}^{a,f_{1}} &=& \left(\beta_{coc}^{a,c,f_{1}}\right) \circ \left(\beta_{coc}^{a,c$$

	PMOO	ARB_MUX		
s_0	$\frac{\alpha_{s_0}^{\bar{x}(f_1)}}{\alpha_{s_0}^{x(f_1)}}$	$=\gamma_{0,0}$		
30	$lpha_{s_0}^{x(f_1)}$	$=\gamma_{0,0}$		
s_1	$\alpha^{\bar{x}(f_1)}$	$=\gamma_{5,25}$		
91	$\alpha_{*}^{x(J_1)}$	$=\gamma_{5,25}$		
s_2	$\alpha_{s_2}^{x(f_1)}$	$=\gamma_{0,0}$		
52	$\begin{array}{c} x(f_1) \\ \alpha_{s_2} \\ \alpha_{s_5}^{\bar{x}(f_1)} \end{array}$	$=\gamma_{5,125}$		
s_5	$lpha_{s_5}^{ar{x}(f_1)}$	$=\gamma_{5,225}$		
	$\alpha_{s_5}^{x(f_1)}$	$=\gamma_{10,xxx}$		
s_6	$\frac{\alpha_{s_6}^{\overline{x}(f_1)}}{\alpha_{s_6}^{x(f_1)}}$	$=\gamma_{0,0}$		
	$lpha_{s_6}^{x(f_1)}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_1} = \bigwedge_{i \in \{0,1,2,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$	$= (20-0) \wedge (20-5) \wedge (20-5) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$		= 10		
$R_{\rm e2e}$, $R_{\rm e2e}$		$= 20 + \frac{0+0\cdot 20}{10} + 20 + \frac{25+5\cdot 20}{10} + 20 + \frac{0+5\cdot 20}{10} + 20 + \frac{225+10\cdot 20}{10} + 20 + \frac{0+10\cdot 20}{10}$		
	$ T_{\text{e2e}}^{\text{l.o.}f_1} = \sum_{i \in \{0,1,2,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{\bar{x}(f_1)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_1}} \right) $	10 10 10 10 10 850		
	$rac{1}{e^{2e}} = \angle i \in \{0,1,2,5,6\} $	$=$ $100 + \frac{850}{10}$		
		=		
	=	$=\beta_{10,185}$		
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_1} = b^{f_1}$		
D^{f_1}		$10 \cdot [t - 185]^+ = 25$		
		$t = 187\frac{1}{2}$		
B^{f_1}		$\alpha^{f_1}(T_{\text{e}2e}^{\text{l.o.}f_1}) = 5 \cdot 185 + 25$		
		= 950		

Flow f_2

	TFA	FIFO MUX	ARB MUX
	$\alpha_{s_3} = \alpha_{s_3}^{f_2}$	$=\gamma_{5.25}$	
83	$D_{s_3}^{f_2}$	$\beta_{s_3} = b_{s_3}$ $20 \cdot [t - 20]^+ = 25$ $t = 21\frac{1}{4}$	FIFO per micro flow $\beta_{s_3} = b_{s_3}$ $20 \cdot [t - 20]^+ = 25$ $t = 21\frac{1}{4}$
	$B_{s_3}^{f_2}$	$\alpha_{s_3}(T_{s_3})$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\alpha_{s_4} = \alpha_{s_4}^{f_2}$	$=\gamma_{5,125}$	
84	$D_{s_4}^{f_2}$	$ \beta_{s_4} = b_{s_4} 20 \cdot [t - 20]^+ = 125 t = 26\frac{1}{4} $	FIFO per micro flow $\beta_{s_4} = b_{s_4}$ $20 \cdot [t - 20]^+ = 125$ $t = 26\frac{1}{4}$
	$B_{s_4}^{f_2}$	$\alpha_{s_4}(T_{s_4})$	$ \begin{array}{rcl} &=& 5 \cdot 20 + 125 \\ &=& 225 \end{array} $
s_5	$\begin{array}{c} \alpha_{s_5} = \alpha_{s_5}^{\{f_0,f_1\}} + \alpha_{s_5}^{f_2} \\ \hline D_{s_5}^{f_2} \\ B_{s_5}^{f_2} \end{array}$	$= \gamma_{5,225} - \frac{1}{100}$ $= 58\frac{3}{4}$	$\gamma_{10,550} = \gamma_{15,775}$ $= 235$ $= 1075$
s_6	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$ $D_{s_6}^{f_2}$ $B_{s_6}^{f_2}$	$=73\frac{3}{4}$	$= \gamma_{15,1075}$ $= 295$ $= 1375$
	$D^{f_2} \\ B^{f_2}$	$\sum_{i \in \{3,4,5,6\}} D_{s_i}^{f_2} = 180$ $\max_{i \in \{3,4,5,6\}} D_{s_i}^{f_2} = 180$	$\sum_{i \in \{3,4,5,6\}} D_{s_i}^{f_2} = 577\frac{1}{2}$ $_{4,5,6\}} B_{s_i}^{f_2} = 1375$

SFA FIFO MUX:

= 750

$$\begin{array}{ll} \beta_{cd}^{\text{l.o.}f_2} & = & \left(\beta_{s_3}^{\text{l.o.}x(f_2)} \odot \alpha_{s_3}^{r(f_2)}\right) \otimes \left(\beta_{s_4}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_3}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \beta_{s_5}^{\text{l.o.}x(f_2)} \otimes \beta_{s_5}^{\text$$

SFA ARB MUX:

 $B^{f_1} = \alpha^{f_1}(T_{e2e}^{\text{l.o.}f_1})$

= 1275

 $= 5 \cdot 250 + 25$

$$\begin{array}{ll} \beta_{s_{0}}^{\text{Lo.}f_{2}} &=& \left(\beta_{s_{3}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{3}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{0}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{1}} \otimes \beta_{s_{2}}\right) \right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) \ominus \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \otimes \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right)\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{3}} \ominus \left(\left(\left(\alpha_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{2}}\right)\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\left(\alpha_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{3}} \ominus \left(\left(\left(\beta_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}} - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\left(\beta_{s_{1},f_{1},$$

	PMOO	ARB_MUX		
s_3	$lpha_{s_3}^{ar{x}(f_2)}$	$=\gamma_{0,0}$		
53	$\alpha_{s_3}^{x(J_2)}$	$=\gamma_{0,0}$		
s_4	$lpha_{s_4}^{ar{x}(f_2)}$	$=\gamma_{0,0}$		
	$\alpha_{s_4}^{x(f_2)}$	$=\gamma_{0,0}$		
s_5	$\alpha_{s_5}^{x(f_2)}$	$=\gamma_{10,550}$		
	$\alpha_s^{x(f_2)}$	$=\gamma_{10,550}$		
s_6	$lpha_{s_6}$ $lpha_{s_6}$	$=\gamma_{0,0}$		
-0	$\frac{\alpha s_6}{\alpha s_6}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_2} = \bigwedge_{i \in \{3,4,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_2)} \right)$	$= (20-0) \wedge (20-0) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_2} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_2}, T_{\text{e2e}}^{\text{l.o.}f_2}}$		= 10		
n _{e2e} ,r _{e2e}		$= 20 + \frac{0+0\cdot20}{5} + 20 + \frac{0+0\cdot20}{5} + 20 + \frac{550+10\cdot20}{5} + 20 + \frac{0+10\cdot20}{5}$		
	$T_{\text{e2e}}^{\text{l.o.}f_2} = \sum_{i \in \{3,4,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_2)} + r_{s_i}^{x(f_2)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_2}} \right)$	950		
	$-e2e$ $\angle n \in \{3,4,5,6\}$ $-s_i$ $R_{e2e}^{1.0.12}$	$=$ $80 + \frac{950}{10}$		
		= 175		
=		$=\beta_{10,175}$		
		$eta_{ ext{e2e}}^{ ext{l.o.}f_2} = b^{f_2}$		
D^{f_2}		$10 \cdot [t - 175]^+ = 25$		
		$t = 177\frac{1}{2}$		
B^{f_2}		$\alpha^{f_2}(T_{\text{e2e}}^{\text{l.o.}f_2}) = 5 \cdot 175 + 25$		
D*-		= 900		