1. a measure / degree of disorder / randomness of a system 1 3 M1: negative - molecules have less energy in the system M2: positive – solid being converted into an aqueous solution M3: negative - gaseous ions being converted into a solid (standard) Gibbs free energy change 1 2 **M1**: $(\Delta)G = \Delta H - T\Delta S$ **M2:** description of calculating the minimum value of T for which ΔG is zero / becomes negative **OR** $T = \Delta H / \Delta S$ [1] 2. 1 either negative alwavs alwavs energy change or positive positive negative lattice energy enthalpy of neutralisation both [1] (energy change) when 1 mole of solute is dissolved in an infinite amount of water to form a dilute solution 1 3 calculation of ΔH^{e}_{sol} with -251, -1284 and -2035 only and two correct signs [1] calculation of ΔH^{o}_{sol} with -251, -1284 and -2035 only and correct signs **OR** calculation of ΔH^{e}_{sol} with (-251 × 3), -1284 and -2035 only and two correct signs [2] $\Delta H^{e}_{sol} = (3 \times -251) + (-1284) - (-2035) = -2 \text{ (kJ mol}^{-1}) [3]$ 2 Ca²⁺ have a higher charge / greater charge density [1] ora **stronger** electrostatic forces between Br⁻ and Ca²⁺ [1] 1 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ [1] $T\Delta S$ is more positive 1 OR -T\Delta S becomes more negative [1] 3. simple molecular / simple covalent 1 weak London forces / id-id forces / VDW forces 1 or London forces / id-id forces / VDW forces AND small amount of energy to break 1 $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ or $SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$ 1 white solid steamy fumes / white fumes / misty fumes 1 moles of $SiCl_4 = 0.8505 / 170.1 = 0.005$ 1 conc of H^+ (0.005) × 4 / 0.8 = 0.025 1 1 pH = -log(0.025) = 1.6-225.7 = 239.0 - (18.7 + 2x)1 x = +2231 decrease in number of moles of gas /more moles of gas on left / reactants (ora) 1 use of $\Delta G = \Delta H - T\Delta S$ with $\Delta G = 0 / \Delta G > 0$ or $T = \Delta H / \Delta S$ or T = (640 000 / 225.7)1 2836 / 2840 (2835.6)

_	International Education [Atpila restring] Qi denotation with tetter by	3 u 3 t ti
4.	solubility increases down the group	1
	$\Delta H_{\rm latt}$ and $\Delta H_{\rm hyd}$ both decrease or $\Delta H_{\rm latt}$ and $\Delta H_{\rm hyd}$ both become less exothermic / more endothermic	1
	ΔH_{latt} decreases / changes more (than ΔH_{hyd} as OH ⁻ being smaller than M ²⁺)	1
	$\Delta H_{\rm sol}$ becomes more exothermic / more negative / less endothermic / less positive	1
	$\Delta H_{r1} - (538 + 2x230 + 394) = -(1216 + 286)$	1
	$\Delta H_{\rm r1} - 1392 = -1502$	
	$\Delta H_{r1} = -110$	1
	$let \Delta H_f(HCO_3^-(aq)) = y$	1
	2y - 538 = -1216 - 394 - 286 - 26	
	y = -692	1
	$\Delta H_{r3} - 538 - 2(230 + 394) = -538 - 2(692)$	1
	$\Delta H_{r3} = -136$	
	ΔH_{r3} will be identical to ΔH_{r4} , / unchanged	1
	as the reaction is the same, or:	1
	$2OH^{-}(aq) + 2CO_{2}(g) \longrightarrow 2HCO_{3}^{-}(aq) \text{ or}$	
	metal ions stay in solution/metal ions are unchanged / are spectators	
	more gaseous moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3)	1
	ΔS is therefore expected to be more negative/less positive for reaction 3.	1
5.	Total: M1: correct use of stoichiometry	13 2
	M2: answer + 189	
	M1: States or uses correct form of Gibbs equation $\Delta G = \Delta H - T\Delta S$	3
	M2: appreciates / includes $\Delta G = 0$ at temperature required	
	M3: uses 1000 correctly and answer +624(.339)	
	Award 3 marks for correct answer	
6.	negative and decrease in number / amount of gas molecules a measure / degree of disorder / randomness of a system	1
	M1: negative – molecules have less energy in the system	3
	M2: positive – solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
	(standard) Gibbs free energy <u>change</u>	1
	M1 : $(\Delta)G = \Delta H - T\Delta S$	2
	M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = ΔH / ΔS [1]	

7.

solubility increases down the group	1
ΔH_{latt} and ΔH_{hyd} both decrease or ΔH_{latt} and ΔH_{hyd} both become less exothermic / more endothermic	1
ΔH_{latt} decreases / changes more (than ΔH_{hyd} as OH ⁻ being smaller than M ²⁺)	1
$\Delta H_{\rm sol}$ becomes more exothermic / more negative / less endothermic / less positive	1
$\Delta H_{r1} - (538 + 2x230 + 394) = -(1216 + 286)$	1
$\Delta H_{r1} - 1392 = -1502$	
$\Delta H_{r1} = -110$	1
let $\Delta H_f(HCO_3^-(aq)) = y$	1
2y - 538 = -1216 - 394 - 286 - 26	
y = -692	1
$\Delta H_{\rm f3} - 538 - 2(230 + 394) = -538 - 2(692)$	1
$\Delta H_{\rm r3} = -136$	
$\Delta H_{\rm r3}$ will be identical to $\Delta H_{\rm r4}$, / unchanged	1
as the reaction is the same, or:	1
$2OH^{-}(aq) + 2CO_{2}(g) \longrightarrow 2HCO_{3}^{-}(aq)$ or	
metal ions stay in solution/metal ions are unchanged / are spectators	
more gaseous moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3)	1
ΔS is therefore expected to be more negative/less positive for reaction 3.	1
Total:	13
M1 solubility decreases down the group	4
M2 ΔH_{latt} and ΔH_{hyd} both become less exothermic / more endothermic	
M3 ΔH_{latt} changes less (than ΔH_{hyd} as SO ₄ ²⁻ being larger than M ²⁺)	
M4 $\Delta H_{\rm sol}$ becomes less exothermic / less negative	

M1 CaO ₂ and Ca ²⁺ has a smaller ionic radii/ Ca ²⁺ has a higher charge density	2
M2 anion/O ₂ ²⁻ becomes more polarised /distorted	
$Mg(IO_3)_2 \rightarrow MgO + 2.5O_2 + I_2$	1
M1 $K_{sp} = [Ca^{2+}][IO_3]^2$	2
M2 units = $mol^3 dm^{-9}$	
$K_{sp} = 4 \times (5.6 \times 10^{-3})^3$ $K_{sp} = 7.03 \times 10^{-7}$ 2sf min	1
M1 Ca(IO ₃) ₂ AND as solubility of Ca(IO ₃) ₂ decreases	2
M2 due to common ion effect	
M1 moles $S_2O_3^{2-}$ = 0.002 x 12.4/1000 = 2.48 x 10 ⁻⁵ moles of I_2 = 1.24 x 10 ⁻⁵	3
M2 moles of IO_3^- = 4.13 x 10 ⁻⁶ in 50 cm ³ moles of IO_3^- = 2.07 x 10 ⁻⁵ in 250 cm ³ mass of NaIO ₃ = 2.07 x 10 ⁻⁵ x 197.9	
M3 mass of NaIO ₃ = 0.0041	
It is feasible as the E_{cell} will be positive/+0.12 V	1
M1 Rate = $k[IO_3^-][SO_3^{2-}][H^+]$ M2 units = $mol^{-2}dm^6s^{-1}$	2
0.10	1
3d	1
(Ni ²⁺) $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$	
M1 d orbitals split into two levels/ lower and upper orbitals	4
M2 electron(s) promoted / excited to a higher d-orbital	
M3 frequency of light absorbed	
M4 observed colour is complement of light absorbed	
(addition of NH ₃) increases [OH-] (due to ionisation of NH ₃ in water) and shifts equilibrium 1 to the right (forming Ni(OH) ₂)	1
(a large excess of NH ₃) shifts eqm 2 to the right (forming $[Ni(NH_3)_6]^{2+}$) AND the $[Ni^{2+}]/[[Ni(H_2O)_6]^{2+}]$ decreases and eqm 1 shifts to the left (causing the ppt to dissolve)	1
M1 two correct structures cis & trans for [NiBr ₂ (CN) ₂] ²⁻	2
NC NI Br NC NI Br	
M2 type of stereoisomerism: cis-trans/geometric	

95 1 95	Cambridge A International	ssessment
	International	Education

Г		
9.	M1 ΔH_{latt} and ΔH_{hyd} decrease / both become less exothermic / less negative	3
	M2 ΔH_{latt} decreases / changes less/becomes less exothermic by a smaller extent OR ΔH_{hyd} decreases / changes more / dominant factor	
	M3 ΔH_{sol} becomes less exothermic / less negative OR ΔH_{sol} becomes (more) endothermic / (more) positive OR $\Delta H_{sol} = \Delta H_{hyd} - \Delta H_{latt}$ expression AND reaction becomes less exothermic	
	Mg: fizzing Ba: (fizzing and) white solid/ppt forms	1
	M1 solubility of BaSO ₄ = $\sqrt{1.08 \times 10^{-10}}$ = 1.04 × 10 ⁻⁵ (mol dm ⁻³)	2
	$M2 = 1.04 \times 10^{-5} \times 233.4 / 10 = 2.43 \times 10^{-4}$ (g per 100 cm ³ of solution) min 2sf	
	$-1473 = 180 + 503 + 965 + \Delta H_{f}^{e} - 2469$	3
	ΔH^{e}_{f} of SO ₄ ²⁻ (g) = -652 kJ mol ⁻¹	
	M1 correct five values used [1] M2 only correct five values used [1] M3 correct signs and evaluation [1]	
	 BaSO₄ is more negative/bigger as Ba²⁺ is smaller OR Ba²⁺ has a larger charge stronger force of attraction between the ions 	2
	One mark for two correct Two marks for all three correct	
	M1 $\Delta G^{\circ} = 0$ so T = $\Delta H_r^{\circ} / \Delta S^{\circ}$	2
	M2 T = 132/0.616 = 214.3 K T = -58.7 °C min 2sf	
	M1 $\Delta S^{\circ} = (203 + (70 \times 8) + (2 \times 192)) - (427 - (2 \times 95)) = +530 \text{ J K}^{-1} \text{ mol}^{-1}$	3
	$\mathbf{M2} \ \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	
10	M3 ΔG° = 133 – (298 × 0.530) = –24.9 kJ mol ⁻¹ ecf 1dp min M1 all five points plotted correctly M2 best-fit straight line (ruler) with negative gradient drawn	2
	M1 gradient correctly calculated OR gradient working seen	2
	M2 gradient = $-\Delta S^{\circ}$ ΔS° evaluated correctly ecf ΔS° = (+)160 \pm 10 (J K ⁻¹ mol ⁻¹)	
	$2HCO_3^- \to CO_3^{2-} + CO_2 + H_2O$	1
	M1 ionic radius of M ⁺ / cationic radius increases OR charge density of ion / M ⁺ decreases down Group 1	2
	M2 less distortion / polarisation of the anion / HCO ₃ ⁻ OR CO bond / C-O / C=O less weakened	
	M1 solution which resists changes in pH when opposes / resists change in pH	2
	M2 when small amount of acid / H⁺ or alkali / base / OH⁻ is added	
	M1 (with acid) $HCO_3^- + H^+ \rightarrow H_2CO_3$ OR $HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$	2
	M2 (with alkali) $H_2CO_3 + OH^- \rightarrow HCO_3^- + H_2O$	
	M1 $K_a = 10^{-6.35} = 4.47 \times 10^{-7}$	3
	M2 [H ⁺] = $4.47 \times 10^{-7} / 14.1 = 3.17 \times 10^{-8}$ ecf	
	M3 pH = -log [H+] = 7.5 ecf from a calculated [H+] min 2sf	