Introduction

- How do increases in mountaineering permit royalties affect risk and decision-making on Mount Everest?
- Previous studies have investigated decision making where there exist sunk costs, mostly using experimental data gathered in lab
- Mountaineers make decisions facing high-risk, life threatening situations many times throughout their careers
- This context allows us to analyze the decisions of professional high-risk decision makers facing uncertainty and sunk costs

Background

- Both Nepal and Tibet introduced large-scale permit systems as commercial expeditions begin in 1990s as a way of regulating market and extracting rents
- Paying permit royalty mandatory for climbing, and account for a sizable portion of expenses paid to undertake the climb
- New permit system in Nepal 2015, amounted to a \$1000 increase

Data and Summary Statistics

- The Himalayan Database ©:
- Eight 8000m peaks in the Nepal Himalaya
- 2000-2019
- Representative dataset
- Permits are measured in USD, found from various sources

Table 1: Summary Statistics of Key Variables								
	Obs.	Mean	Std. Dev.	Min.	Max.			
Deaths & Injuries in 24h	3,381	1.7610	4.8446	0	8			
Permit Royalty (1000's USD)	3,802	10.0952	1.4792	0.757	15			
Individual Controls								
Age	3,802	40.1394	10.4088	14	81			
Oxygen Used	3,802	0.8611	0.3459	0	1			
Previous 8000m Experience	3,802	1.7636	3.4913	0	40			
Expedition Composition Controls	-							
Climbers: Hired Climbers	3,562	1.3011	0.7211	0.2	6			
Team Size	3,802	11.4761	8.5762	1	42			
Crowding	3,154	0.1237	0.3292	0	1			
Bad Weather	3,802	0.3254	0.4686	0	1			
Bad Conditions	3,802	0.0513	0.2206	0	1			
Same Day Climbers	3,154	84.9214	61.2123	0	240			

Table 2: Summary Statistics for Synthetic Control							
	Treated		Control				
	Mean	Std. Dev.	Mean	Std. Dev.			
Season Death & Injury Rate (%)	8	5.8652	2.9770	3.4658			
Number of Climbers	406.5	194.6864	95	104.4323			
Average Hired Ratio	1.2350	0.2265	2.1461	1.1929			

The Effect of Sunk Costs on High-Risk Decision Making

Evidence from Mount Everest

Advisors: Marit Rehavi & Paul Schrimpf Author: Sarah Wappel

Synthetic Control

Negative Binomial Regression Results

Table 3: Regression Results Dependent Variable: Everest South Number of Deaths & Injuries in 24h (1) (2)(4)**(5) (6)** (3) Panel A: Negative Binomial Regression Permit Royalty 0.00793-0.00747-0.00599-0.00313-0.00637-0.00595(0.00864)(0.00849)(0.00741)(0.00751)(0.00756)(0.0131)Crowding 1.057*** 1.062*** 1.046*** (0.0640)(0.0639)(0.0642)-15.29***-16.39*** -0.785***-1.117***-19.28***0.256*** $\ln \alpha$ (0.0780)(0.885)(0.269)(0.0418)(0.111)(0.134)0.1100.1280.1760.179Pseudo R-Squared 0.00003450.175Panel B: Zero-inflated model -0.00122-0.00776-0.00780-0.0109**-0.0113**-0.00882*Permit Royalty (0.00612)(0.00533)(0.00533)(0.00522)(0.0111)(0.00609)Crowding 0.529*** 0.533*** 0.526***(0.0426)(0.0426)(0.0424)Zero Prediction -0.0605***-0.0339***-0.0542***-0.0542***Same Day Climbers -0.0420***-0.0540***(0.00338)(0.00235)(0.00271)(0.00272)(0.00272)(0.00312)-1.111****-16.65***-17.41***-17.53***-17.98***-17.06*** $\ln \alpha$ (0.0894)(0.0553)(0.0491)(0.0238)(0.164)(0.0230)Year FE YesYesYesNoYesYesConditions FE NoYesYesYesYesIndividual Controls YesYesNoYesExpedition Controls 3126 3126 3126 3126 3126 3010

Robust standard errors in parentheses. α is the dispersion parameter of the count model. The inflated model is a logit model.

* p < 0.10, ** p < 0.05, *** p < 0.01

Estimation Strategy

Synthetic Control model using weighted outcomes from other 8000m peaks to create counterfactual Everest

$$Y'_{EV,t} = \Sigma_{m \in M} (W_m Y_{EV,t})$$

- M set of peaks m
- $Y_{m,t}$ observed rate of death & injury(%) on peak min year t
- $W-1\times m$ vector $\Sigma_{\mathbf{m}\in M}W_m=1, W_m\geq 0$, weights of each peak

Estimate the effect of a \$1000 increase in permit prices on the incidence of death and injury in 24 hours. Using the negative binomial distribution, as described in Hilbe (2014):

$$p(y) = P(Y = y | \mu_i, \alpha) = \frac{\Gamma(y + \alpha^{-1})}{\Gamma(y + 1)\Gamma(\alpha^{-1})} \left(\frac{1}{1 + \alpha\mu}\right)^{\alpha^{-1}} \left(\frac{\alpha\mu}{1 + a\mu}\right)^y$$

Negative Binomial Regression Model:

 $\ln(\mu) = \beta_0 + \beta_1 R_{m,t} + \delta X_{m,t} + \psi_{m,t} + \rho_{m,t} + \ln(t_i)$

- R Permit Royalty, measured in 1000's of USD
- X- individual, expedition, and weather controls
- ψ , ρ Year, peak fixed effects
- y -- Injury and Death count in 24 hours
- μ mean of Y
- α heterogeneity parameter
- *t* time

Probability distribution of zeros:

$$P(y = j) = \begin{cases} \pi + (1 - \pi)P(Y = y) & \text{if } j = 0\\ (1 - \pi)P(Y = y) & \text{if } j > 0 \end{cases}$$

Where π is the logistic link function defined as:

$$\pi = \frac{\lambda}{1 + \lambda}$$
And $\ln(\lambda) = \gamma_0 + \gamma_1 D + \ln(t_I)$

• D—Number of other climbers reaching a high point in the same period

Synthetic Control Composition

- The composition of the synthetic control was generated using a combination of season and expedition predictors
- The peaks used to construct the Synthetic Everest are Everest -North, Cho Oyu, and Dhaulagiri I

Table 4: Peak Weights in Synthetic Everest Year Treated Synthetic Weight PeakAverage Hired Ratio 2009 1.267295 $2013 \quad 1.072262$ Average Hired Ratio 1.446104Everest-North 0.764Number of Climbers 235241.261Annapurna 1 155.953Number of Climbers 462Number of Climbers 626139.941Cho Oyu 0.1292000 4.195804 Death & Injury Rate Dhaulagiri I 0.1072006 0.4310345 3.662985 Death & Injury Rate Kangchenjunga $2007 \quad 2.027027$ Death & Injury Rate 3.455463Death & Injury Rate 2010 1.28866 4.471751 Lhotse Death & Injury Rate 2011 0.6864989 0.8502481 Makalu 2012 2.09205 2.724465 Death & Injury Rate 2013 0.6557377 3.225901 Death & Injury Rate Manaslu 1.787304 Root Mean Squared Prediction Error

Interpretation

- The Synthetic Control Model demonstrates a reversal of trends wherein the season death and injury rate on Everest begins trending higher than than the Synthetic Everest after treatment
- Negative Binomial Regressions allow us to examine the effects at a much finer level and include more precise controls with which to analyze results
- Using the full specification, and the zero-inflated model:
- A \$1000 increase in permit royalties on Everest is associated with 0.1 fewer deaths or injuries within a 24hour window during a climber's summit push
- More than 150 climbers on a single route during a 24 hour window is associated with 0.5 more deaths or injuries in that same period

Discussion

- The results of the negative binomial and zero-inflated negative binomial regressions suggest:
 - Permit royalty increases associated with lower risk
 - Mechanism: higher-risk seekers, i.e. those undertaking No oxygen, solo, speed ascents, dispersing to other, relatively cheaper, 8000m peaks
- Higher death and injury rate on Everest following permit royalty increase in 2015 appears be associated with crowding from the higher numbers of
- Potential endogeneity: permit increases occurred concurrent with exogeneous events including 2014 Khumbu Avalanche and 2015 Nepal Earthquake.

climbers on Everest

Robustness

These results are robust to:

- Different specifications of risk (climbing above high camps, pre-summit bid climbing)
- Inclusion of fall and winter climbing seasons
- Inclusion of seasons with high numbers of deaths and injuries from Acts of God
- Inclusion of a wide range of varying controls for individual, expedition, season, and summit date characteristics
- Using alternative zero-predictors in the zero-inflated model

Future Paths

- Perform nuanced behavioural analysis to determine specific decisions whilst facing uncertainty
- Determine whether permits affect conformation bias and updating in this context
 - Potential for asymmetric processing of new information
- Examine these effects in commercial teams versus professional climbing teams

Works Cited

J. Hilbe, Negative Binomial Regression, 2nd ed., New York: Cambridge University Press, 2011.

