

Sulautetut prosessorijärjestelmät

(4 op)

Luennoitsija Hannu-Pekka Hedman

Tavattavissa luentojen yhteydessä

•

- Puh: 0400 916179
- Email: hanhed@utu.fi (toimii puhelinta paremmin) / rpunk@utu.fi
- Antakaa palautetta kurssin sujumisesta jo kurssin kuluessa
 - Voi parantaa kurssin laatua!
 - EI vaikuta arvosteluun

Luentokalvot perustuvat pitkälti Tero Säntin aiempien vuosien luentoihin, josta kiitokset!

Kurssin sisältö

- Mikroprosessoripohjaiset järjestelmät
 - Mitä, missä
 - Vaihtoehtoja
- Mikroprosessorien rakenne ja toiminta
 - Esimerkkinä PIC18F452
- Sulautettujen järjestelmien suunnittelu
 - Laitesuunnittelu (piirikorttitasolla)
 - Ohjelmointi (Assembler, mahdollisesti C:tä hieman harjoituksissa)
 - Esimerkkinä QwikFlash-demolauta

Kurssin komponentit

- Luennot
 - Ti 14:15-15:45 K126A/B
 - Ke 14:15-15:45 110C
- Demot To 10.11 alkaen
 - 12.15-14
 - 14.15-16 K126A/B
 - Seuratkaa kurssin webbisivua moodlessa
 - Demojen pitäjä

• Tentti

Luennot

- Ei pakolliset, mutta suosittelen
- Saatetaan käsitellä myös asioita joita ei löydy kirjasta / luentokalvoista. Tentti silti vain kalvoista.
- Luentokalvot saatavilla kurssin webbisivuilla PDF-muotoisina Moodlessa
 - Päivitetään yleensä ennen luentoa

Kysykää, jos jokin jää epäselväksi / kiinnostaa

Demot

- Noin 4 demokertaa+ harjoitustyökerrat. Katso tarkemmin demopäivitykset moodlessa.
- Ainakin harjoitus laudan kytkemistä ja käyttöä esittelevä demokerta on **EHDOTTOMASTI** pakollinen. Yritämme varmistaa ettet polta lautaa. Lisäksi myös laudan "ohjelmointi-intro" on pakollinen Edellisinä vuosina ollut liikaa kädestä pitäen opetusta kun intro oli jäänyt väliin.
 - Voidaan sopia ylimääräinen ryhmä, jos normaalit eivät millään sovi
- Käsitellään demolaudan ohjelmointia, ohjelman syöttäminen laudalle ja muutamia esimerkkejä
- 2 ensimmäistä "kotitehtäviä", 2 jälkimmäistä käytännön harjoittelua
 - Materiaaliin kannattaa/pitää silti tutustua etukäteen!

Harjoitustyöt

- Voidaan tehdä pienissä ryhmissä. Riippuen "projektin" vaativuudesta 1-3 henkeä
- Vakiaiheita tulee olemaan tarjolla
 - Omia saa ehdottaa (hyvistä bonusta...)
- Käytetään QwikFlash-levyjä ja antureita. Käytössä on myös jokunen muu alusta, robottikäsiä, sensoreita jne.
- Tavoite on saada harjoitukset valmiiksi kevät 2018

Tentti

- Kysymykset luentokalvojen pohjalta
 - Jos luennoilla on käsitelty jotain todella tärkeää ylimääräistä asiaa, jota ei löydy kalvoista, niin siitä tulee erillinen maininta webbiin
- Tentti sähköinen
- Luultavasti annettu joukko kysymyksiä, josta arvotaan.

Webbisivut

- Ajankohtaiset tiedotteet
 - Luentojen peruuntumiset
 - Demot
 - Etc.
- Luentokalvot
 - PDF-muodossa
- Demoihin ja projekteihin liittyvää materiaalia
 - Koodinpätkiä ja include-tiedostot
 - Manuaalit ja muita ohjeita

Arvostelu

- Tentti 50%
- Demot+harjoitustyö 20%+30%
 - Edellisvuosiin verraten yritetään pitää projekti kompaktina. (Kurssin opintopisteiden määrä on 4, aiemmin 5).
 - Periaatteessa harjoitustyötä voisi painottaa enemmänkin arvostelussa. Ongelmana on että työ tehdään sekä yksin että ryhmissä. Huomautettakoon kuitenkin että harjoitustyössä ahkerointi auttaa myös tenttiin.

Sulautetut prosessorijärjestelmät: Mitä

- Ohjelmoitava laite, joka kontrolloi jonkun kokonaisuuden toimintaa
- Yleensä useita oheislaitteita
 - Näyttö, näppäimistö, muut syöttölaitteet
 - Dataväylät ja muistit
 - Muuntimet (AD/DA)
- System on Chip (SoC)
- · Hyvin yksinkertaisista varsin monimutkaisiin
- DSP

Yksinkertainen järjestelmä

System on Chip

- SoC yhdistää useita lohkoja samalle sirulle
- Yleensä lohkojen toimintaa ohjaa yhteinen prosessori
 - Toki on olemassa myös moniprosessorisia SoC:eja
- Myös ohjelmisto kuuluu kokonaisuuteen

Babbagen kone

- "Babbage difference engine" (1847 1849)
- The Museum of Science (UK)
- Laskentaosassa 4000 liikkuvaa osaa
 - Tulostus erikseen
- Paino 2,6 tonnia
- Yli 2 metriä korkea
- Lähes 3,5 metriä leveä
- Noin puoli metriä syvä

- 1950 luvulla tietokoneissa käytettiin radioputkia
- 1960 luvulla transistorit ja mikropiirit
- 1971 noin 2000 transistoria per piiri (chip) => Intel 4004, ensimmäinen 4-bittinen mikroprosessori
- vaati vielä monta oheispiiriä muistia ja I/O varten
- sen jälkeen monia 8 bittisiä mikroprossesoreita
- 1980 luvulla 16 ja 32 bittiset prosessorit
- nykyään myös 64 ja 128 bittisiä
- kodinkoneita ym. varten vähitellen 1980 1990 luvuilla lisättiin samalle sirulle CPU:n yhteyteen muistia, ajastimia
- AD-muuntimia, sarjaväyliä ja muita I/O toimintoja
- näitä alettiin kutsua pesukonemikroiksi, yksikivimikroiksi ja lopulta mikrokontrollereiksi

Sulautetut prosessorijärjestelmät: Missä

- Puhelimet
- Tietokoneet
- Kodinkoneet
- Viihde-elektroniikka
- Teollisuus
- Kulkuneuvot
- FPGA (Field Programmable Gate Array) piireissä mukana CPU core(-ja)
 - Vaikka missä

Sulautetut prosessorijärjestelmät: Missä

Sulautetut prosessorijärjestelmät: Vaihtoehtoja

- Pienet systeemit
 - Irtologiikka (esim. 74xxx piirit)
 - Analogiset säätöelimet (operaatiovahvistimet)
 - Vaikea muuttaa asetuksia / toiminnallisuutta
- Isommat systeemit
 - (Full Custom) ASIC
 - "Mahdotonta" muuttaa asetuksia / toiminnallisuutta
 - FPGA
 - Hankalahkoa muuttaa toimintaa

Kokonaisuuden suunnittelu

- Hyvän määrittelyn tekeminen on kaiken lähtökohta
 - Määrittelyn perusteella voidaan valita jo aikaisessa vaiheessa, mitkä osiot toteutetaan laitteistolla ja mitkä ohjelmallisesti
- Hyvän määrittelyn ominaisuuksia:
 - Virheetön
 - Yksiselitteinen
 - Täydellinen
 - Varmistettavissa
 - Useita menetelmiä
 - "System Verification"-kurssilta saa lisätietoa
 - Johdonmukainen
 - Rajoitteet eivät ole ristiriidassa keskenään
 - Muokattavissa / päivitettävissä jos reunaehdot muuttuvat

Kokonaisuuden suunnittelu

- Heterogeeninen järjestelmä jossa on sekä laitteistotasoisia (digitaalisia ja analogisia) että ohjelmallisia komponentteja
- Heterogeenisiä komponentteja (prosessorit, DSP:t, ASIC:t, väylät, point-to-point linkit, jne.).
- Heterogeeniset reunaehdot
 - Suorituskyky
 - Hinta
 - Tehonkulutus
 - Koko
- SoC suunnittelu on periaatteessa samanlaista, vain mittakaava muuttuu
- Suunnitteluajan tulee olla lyhyt, että tuote saadaan markkinoille riittävän nopeasti

Kokonaisuuden jaottelu

Ohjelmisto

- Joustava
- Uudelleen konfiguroitava
 - Helposti päivitettävissä
- Monimutkaisen toiminnan toteuttamiseen
- Edullinen toteutus (pienillä volyymeillä)

Laitteisto

- Suorituskykyä vaativat toiminnot
- Yleensä laitteistokiihdytetyillä ratkaisuilla voidaan alentaa tehonkulutusta
- Edullinen toteutus (suurilla volyymeillä)

Päivän esimerkki

- QwikFlash
 - Käydään tarkemmin myöhemmillä luennoilla
 - Käytetään myös demoissa ja projektissa

Kysymyksiä?