ECE 164 – Analog Integrated Circuit Design

Sensor Interface Redesign Triton Industries, Inc.

December 3rd, 2023

Jason Smyslov PID: A17132126 jsmyslov@ucsd.edu

Michael Hawkins PID: A17234954 mjhawkins@ucsd.edu

Professor: Drew Hall

Design Outline

To properly re-design the sensor interface, we initially broke the circuit up into subcircuits with specific characteristics and functions covered in lectures. These subcircuits were: Constant G_m (1), Current Mirror Bias (2, 3, 4), Folded Cascode (5,6), Compensation Network (7), and a Common Source amplifier (7). Most of our components are MOSFETs, so MATLAB scripts with parameters of MOSFET equations like overdrive voltage and drain current were created.

Values for k_n ', k_p ', and λ were taken from the homework for calculations. Initially, we designed each circuit to meet a V_{ov} of 200 mV for every transistor to meet specifications and give enough room to keep all transistors in saturation. Additionally, we made some assumptions such as setting every V_t to 400 mV and every length to 1 μ m to standardize calculations. As we proceeded to the CS amplifier, we decided on setting the output to 900 mV to keep both transistors in saturation. Afterwards, we calculated gm_9 using our desired phase margin and gain bandwidth. From this we determined the approximate current for the corresponding g_m and started sizing the CS amplifier accordingly.

Then we began to size the Folded Cascode circuit and Current Mirror Bias circuit to meet the voltages needed for the CS amplifier. In particular, we chose voltages at nodes that would keep with the 200 mV overdrive voltage and limit the V_{ds} in case we would need to correct for currents later. We also took into consideration that some widths would need to be larger in order to achieve parameters for mirroring, so we preemptively raised widths for mirrored transistors connected to the CS amplifier. This was because we found that our $\frac{W}{L}$ ratios calculated in the CS amplifier were quite large and would get larger when optimizing.

For the constant G_m circuit, we wanted to size the two lengths within a ratio and ensure that the voltage from the circuit would keep the Current Mirror Bias circuit M_{b7} , M_{b8} , and M_{b11} within saturation. We verified the operation of the constant G_m circuit and began to optimize the circuit by raising widths for transistors M_9 , M_8 , and lowered M_3 until parameters were reached and power dissipation was lowered.

Schematic

Figure1: Left Side of Design Circuit (Currents, Vov, Node Voltages)

Figure 2: Left Side of Design Circuit (W/L, R)

Figure3: Right Side of Design Circuit (Currents, Vov, Node Voltages)

Figure 4: Right Side of Design Circuit (W/L)

Common Source & Compensation Network

Adc =
$$A_{V_1} A_{V_2} = g_{mq} R_1 g_{mq} R_2$$

$$W_{P1} \approx -\frac{1}{C_c g_{mq} R_2 R_1} \qquad W_c = GBW = W_{P1} A_V = \frac{g_{mc}}{C_c}$$

$$W_{P2} = -\frac{g_{mq}}{C_2} \qquad PM = 90^\circ - tan^{-1} \left(\frac{w_c}{w_{P2}}\right)$$

$$A_{dc} = A_{V_1} A_{V_2} = g_{m_{cl}} R_1 g_{m_{ll}} R_2$$

$$\omega_{P1} \approx -\frac{1}{C_c g_{m_{ll}} R_2 R_1} \qquad \omega_c = GB\omega = \omega_{P1} A_V = \frac{g_{m_{cl}}}{C_c}$$

$$W_{P_2} = \frac{60 \text{ MHz} \cdot 2x}{\tan(25^\circ)} = 8.08.46 \text{ E6}^{\text{rad/s}}$$

$$I_{D} = \frac{1}{2} K_{n}' \left(\frac{\omega}{L}\right) V_{OV}^{2} \left(1 + \lambda V_{PS}\right)$$

$$= 7 \left(\frac{\omega}{L}\right) = \frac{2 I_{Dq}}{K_{n}' V_{OV}^{2} \left(1 + \lambda V_{PS}\right)}$$

$$I_{p} = \frac{1}{2} \kappa_{n}' \left(\frac{\omega}{L}\right) V_{0N}^{2} \left(1 + \lambda V_{pS}\right) \qquad \lambda = .1 \quad V_{pS} = .9 \text{ U}$$

$$= 7 \left(\frac{\omega}{L}\right) = \frac{2 I_{pq}}{\kappa_{n}' V_{ov}^{2} \left(1 + \lambda V_{pS}\right)} \qquad = 7 \frac{2 \left(404.23 \mu A\right)}{\left(270 \mu A/V^{2}\right) \left(.2\right)^{2} \left(1 + .1 \times .9\right)} = 68.68$$

$$\omega_q = 31 \alpha$$
 $L_q = .45 \alpha$
 $\left(\frac{\omega}{L}\right)_q = 68$

$$\begin{array}{lll}
\omega_{q} = 31 & \alpha \\
L_{q} = .45 & \alpha
\end{array}
\qquad
\begin{pmatrix}
\omega_{L} \\
Q = 68
\end{pmatrix}
\qquad
\qquad
\omega_{P_{1}} = \frac{1}{C_{c}g_{mq}R_{2}R_{1}}$$

$$= \frac{1}{(SE-12)(4.04_{mS})(24.738k)(494.8k)}$$

$$= 4.0444E3 \quad \$$

$$R_2 = \frac{1}{2i_{p_q}} = \frac{1}{1.(404.23_{pq})} = 24.738 kg$$

$$R_1 = \frac{1}{\lambda_{imisror}} = \frac{1}{1(20.2)\mu A} = \frac{194.8 \text{KL}}{1(20.2)\mu A} = \frac{2(20.2 \text{Lm}A)}{1.2} = \frac{202.1 \mu S}{1.2}$$

$$R_{s} = \frac{1}{\lambda_{imiscor}} = \frac{1}{1(20.21\mu A)} = 494.8 \text{KM}$$

$$A_{V_{1}} = g_{M_{G}b}R_{1} = (202.1\mu S)(494.8kz) = 100 \approx 40 dB$$

$$A_{V_{2}} = g_{M_{Q}}R_{2} = (4.04mS)(24.738k) = 100 \approx 40 dB$$

$$A_{V_{3}} = \frac{P}{V} = \frac{2.5mW}{1.8V} = 1.38mA$$

$$A_{V_{4}} = A_{V_{1}}A_{V_{2}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{4}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$A_{V_{5}} = 40+40 = 80 dB = 65 dBV$$

$$PM = 40^{\circ} - tan^{-1} \left(\frac{\omega_{c}}{\omega_{PL}} \right)$$

$$65^{\circ} = 90^{\circ} - tan^{-1} \left(\frac{\omega_{c}}{808.4666} \right)$$

$$tan \left(25^{\circ} \right) = \frac{\omega_{c}}{908.4666}$$

We= 60 MHz

Figure 1 - Amplifier architecture

%Mosfet Parameters kn = 267.2e-6; kp = 49.1e-6; lambda = .1;

Vdd = 1.8; Vtn = .43; Vtp = .3s;

3Use .7 Vds drop, 5-1 sizing ratio, Budget 12.5uA for R_bias,Mb1,Mb3

Vov_Mb1 = .3; Vov_Mb3 = .3; Id_Mb1_Mb3 = 12.5e-6;

38udget 12.5uA for Mb2,Mb4

Vov_Mb2 = .7; Vov_Mb4 = .3; Id_Mb2_Mb4 = 12.5e-6;

R_bias = (Vdd - 2*.7); Id_Mb1_Mb3;

30leglecting channel length to simplify calculations, so Vds = 0

Vds_Mb1 = (y Vds_Mb2 = 0; Vds_Mb3 = 0; Vds_Mb4 = 0;

Vds_Mb1 = (2*Id_Mb1_Mb3)/(kp*Vov_Mb1^2*(1+lambda*Vds_Mb1));

WL_Mb2 = (2*Id_Mb2_Mb3)/(kn*Vov_Mb3^2*(1+lambda*Vds_Mb3));

WL_Mb4 = (2*Id_Mb2_Mb4)/(kn*Vov_Mb4^2*(1+lambda*Vds_Mb4));

	Spec	Calc	Sim	nizereb
	R _{BIAS}	32K	33.91k	6%
kn 2.672 kp 4.910 lambda 0.100 R_bias 3.200	100-04 100-05 100-04 100-04	5.68	5	1.3%
Vdd 1.800 Vds,Mb1 0 Vds,Mb2 0 Vds,Mb3 0 Vds,Mb4 0 Vds,Mb4 0	(W/L)62	1.04	1	4%
Vov_Mb2 0.700 Vov_Mb3 0.300 Vov_Mb4 0.300 Vov_Mb4 0.300 Vot 0.430 Vtp 0.380 Wt_Mb1 5.657	(w/ _L) ₆₃	1. 04	1	4%
WL_Mb2 1.036 WL_Mb3 1.036 WL_Mb4 1.036	» (Ψ/,)	1.04		4°/•

		- Buses	b7 4.5000e-04	Spec	Hand Calc	Sim	Dischep
1 = 2 = 3 = 4 = 5	%Budgetting 475uA for Current in Mb5b %Budgetting 450uA for Current in Mb5a, Mb7 %Mosfet Parameters kn = 267.2e-6; kp = 49.1e-6; lambda = .1; %Voltages, Components	Id_Mb5b Id_Mb5b Id_Mb5b Id_Mb5b Id_Mb5b Id_Mb5a Id_Mb5a Id_Mb5a Id_Mb5a Id_Mb5a Id_Mb5a	4.7500e-04 4.7500e-04 2.6720e-04 4.9100e-05 0.1000 1.8000	(W/L)bsa	28.64	28	2.3%
VE NOGA 8 9 10	Vdd = 1.8; Vtn = .43; Vtp = .38; Vov_Mb7 = .3; Vov_Mb5a = .8; Vov_Mb5b = .9; Id_Mb5a_Mb7 = 450e-6; Id_Mb5b = 475e-6; Weglecting Channel length to simplify calculations, so Vds = % %besides Mb5b because of triode	Vds_Mb5b Vds_Mb7 Vov_Mb5a	0.1250 0 0.8000 0.9000 0.3000 0.4300	(W/L) LSB	92.41	80	15.5%
11 12 13 14 15	Vds_Mb5b = 0.125; Vds_Mb5a = 0; Vds_Mb7 = 0; WL_Mb7 = (2*Id_Mb5a_Mb7)/(kn*Vov_Mb7^2*(1+lambda*Vds_Mb7)); WL_Mb5a = (2*Id_Mb5a_Mb7)/(kp*Vov_Mb5a^2*(1+lambda*Vds_Mb5a)); WL_Mb5b = Id_Mb5b/(kp*(Vov_Mb5b*Vds_Mb5b5*Vds_Mb5b^2));	WL_Mb5a WL_Mb5b	0.3800 28.6405 92.4096 37.4251	(W/L)67	37.43	35	6.9%
No. Vb 7 Vb 9 SAT 10	%Budgetting 25uA for Current in Mb6, Mb8 Vov_Mb6 = .48; Vov_Mb8 = .27; Id_Mb6_Mb8 = 24e-6; %Meglecting Channel length to simplify calculations, so Vds = Vds Mb6 = 0; Vds Mb8 = 0;	₩ Vtn	0.4800 0.2700 0.4300	("/L) LC	3.89	4	2.8%
Mbe 11 12 13 13	WL_Mb6 = (2*Id_Mb6_Mb8)/(kp*Vov_Mb6^2*(1+lambda*Vds_Mb6)); WL_Mb8 = (2*Id_Mb6_Mb8)/(kn*Vov_Mb8^2*(1+lambda*Vds_Mb8));	WL_Mb6	0.3800 3.8895 2.2589	(4/2) ⁶⁸	2.26	2	13%
Vc Mba 9	%Budgetting 25uA for Current in Mb9, Mb19, Mb11 Vov_Mb9 = .21; Vov_Mb10 = .33; Vov_Mb11 = .27; Id_Mb9_Mb11 = 26e-6		0.3300	(W/L)19	21.2	21	1%
Va Mb10 11 12 13 14	%Neglecting Channel length to simplify calculations, so Vds = 0 Vds_Mb9 = 0; Vds_Mb10 = 0; Vds_Mb11 = 0; WL_Mb9 = (2*Id_Mb9_Mb11)/(kp*Vov_Mb9^2*(1+lambda*Vds_Mb9));	Vov_Mb11 Vov_Mb9 Vtn Vtp	0.2700 0.2100 0.4300 0.3800	(w/L) 610	8.6	9	4.4%
Mbu 15 16	WL_Mb10 = (2*Id_Mb9_Mb11)/(kp*Vov_Mb10^2*(1+lambda*Vds_Mb10)); WL_Mb11 = (2*Id_Mb9_Mb11)/(kn*Vov_Mb11^2*(1+lambda*Vds_Mb11));	WL_Mb10 WL_Mb11 WL_Mb9	8.6030 2.3615 21.2441	(w/L) 611	2.36	2.1	12.4%
Vc Vc	o Ci sedegetting / Sun for Current in Polic, Police	Vov_Mb12	0.2100	(WZ) 612	60	60	0%
V6	9 % Modgetting 125uA for Current in Mb13, Mb15a > 2000 in Mb14b 10 Voy.Mb12 = 21; Voy.Mb15a = 16; Id_Mb12_Mb16a = 75e-6; 11 Voy.Mb13 = .21; Voy.Mb15 = .23; Id_Mb13_Mb15 = 125e-6; 12 Voy.Mb14b = .35; Id_Mb14b = 200e-6; Voy.Mb14b = .2; 3 Wegletting Channel length to simplify calculations, so Vds = 0	Vov_Mb13 Vov_Mb14a Vov_Mb14b Vov_Mb15	0.2100 0.1600 0.3500 0.2300	(%) (13	97	95	2.1%
VE Man May VE		Vtn Vtp WL_Mb12 WL_Mb13	0.4300 0.3800 60.0376 96.9838	(W/L)614a	19	17	11.8%
	18 WL_Mb14a = (2*Id_Mb12_Mb14a)/(kn*Vov_Mb14a^2*(1+lambda*Vds_Mb14a)); 19 WL_Mb15 = (2*Id_Mb13_Mb15)/(kn*Vov_Mb15^2*(1+lambda*Vds_Mb15)); 20 WL_Mb14b = Id_Mb14b/(kn*Vov_Mb14b^4Vds_Mb14b - 5*Vds_Mb14b^2));	WL_Mb14a WL_Mb14b WL_Mb15	19.0050 14.9701 14.8569	(W/L) 6146	15	14	7.1%
	Woodesthing 70th for Consult in MI NO	Vov_Mb12	0.2100 0.2100	(w) bis	14.9	13	14.6%
V _C V _C 8 9 10 11	MBudgetting 70uA for Current in M1, M2 MBudgetting 35uA for Current in M3a, M3b Vov_M1 = .21; Vov_M2 = .23; Id_M1_M2 = 70e-6; Vov_M3a = .25; Vov_M3b = .25; Id_M3a_M3b = 35e-6;	Vov_Mb14a Vov_Mb14b Vov_Mb15	0.1600 0.3500 0.2300	(W/L) MI	64.7	55	17.6 %
12 13 14	<pre>%Weglecting Channel length to simplify calculations, so Vds = 0 Vds_N1 = 0; Vds_N2 = 0; Vds_M3a = 0; Vds_M3b = 0; WL_M1 = (2*Id_M1_M2)/(kp*Vov_M1^2*(1*lambda*Vds_M1));</pre>	Vtn Vtp WL_Mb12	0.4300 0.3800 60.0376	(W/L) MZ	53.9	45	19.8%
Non Man 15 16 17 18	<pre>wt_n1 = (2 10_7t_n2)/(kp*Vov_n1 2 (1 + 1 amboda *Vds_N2); Wt_N2 = (2 11_d M_102)/(kp*Vov_M3a^2*(1 + 1 ambda *Vds_N2); Wt_Nb3a = (2 11_d M3a_M3b)/(kp*Vov_M3a^2*(1 + 1 ambda *Vds_M3a)); Wt_Nb3b = (2 11_d M3a_M3b)/(kp*Vov_M3b^2*(1 + 1 ambda *Vds_M3b));</pre>	WL_Mb13 WL_Mb14a WL_Mb14b WL_Mb15	96.9838 19.0050 14.9701 14.8569	(WL)3A (W/L)3B	22.8 27.8	20 20	14 % 14%
							I

$$\begin{split} \mathbf{I}_{tot} &= \mathbf{I}_{D_{M3}} + \mathbf{I}_{D_{M4}} + \mathbf{I}_{D_{M4}} + \mathbf{I}_{D_{M4}} + \mathbf{I}_{D_{M1}} + \mathbf{I}_{D_{M1}UE} + \mathbf{I}_{D_{M7A}} + \mathbf{I}_{D_{M7B}} + \mathbf{I}_{D_{M4}} \\ &= |2.5_{MA} + |2.5_{MA} + |450_{MA} + |24_{MA}| + |26_{MA}| + |200_{MA}| + |105_{MA}| + |325_{MA}| \\ &= |1.26_{MA}| & P = |1.26_{MA}| \cdot |1.8V| = |2.268_{MW}| \end{split}$$

Spec	Hand Calculation	Simulation	Discrepancy 620% calculation, ok
Phase Margin	65°	66.14°	+ 1.14°
Gain Margin		15.78 dB	
DC Gain	80 JB	79.72 dB	29 dB
Unity Gain Bandwidth	60 MHz	61.39 MHz	+ 1.39MHz
Power Dissipation	2.268 mW	2.275 mW	+ 7aW

Bode Plot

Figure 4: Bode Plot Simulation

1 dB20(VF("/out"))	wave	V	
2 phase(VF("/out"))	wave	~	
3 phaseMargin(VF("/out"))	65.22	~	
4_gainMargin(VF("/out"))	-16.21	~	
5 gainBwProd(VF("/out"))	66.48M	\checkmark	
6 unityGainFreg(VF("/out"))	60.77M	\checkmark	
7 bandwidth(VF("/out") 3 "low")	7.13K	~	
8 dB20(value(VF("/out") 0))	79.37	\checkmark	
9 (VDC("/vdd") * IDC("/V3/PLUS") *	(-1) 2.275m	~	
10 V3/PLUS			V

Transient Simulation

Figure 5: Input Transient Simulation

Figure 6: Output Transient Simulation

These graphs are based on differential inputs of 2.5 μ V_P and -2.5 μ V_P using a sine wave source (Figure 5). This source was used because we wanted to view the differential voltage across the sensor interface we created. To accomplish this, we needed to half the voltage coming into each side and place a negative voltage for the negative input. This voltage simulated a 10 μ V_{PP} sine wave on the input and the resulting output is in figure 6. Placing a 5 μ V source in a common mode configuration would yield us a similar type of result, however the magnitude of the final graph would not be as significant. Since we are using a sensor interface, we believe that the differential mode analysis of the transient response would be more beneficial as a result and is posted above.

Comments & Conclusions

The project followed quite closely to hand calculations for most of the project. However, for the project to be optimized properly, the project required Vovs to be driven down to their limit of 150 mV. In order to accomplish this in the overall circuit we considered raising lengths for certain transistors to minimize the $\frac{W}{L}$ ratios and lower the widths of most transistors since the 'm' factor for mirroring transistors would soon be an issue. After this, we sized the transistors in the common source amplifier. We expected the voltage at the gate of the pMOS to increase and the widths and lengths of both transistors to increase. As of now, the nMOS in the common source amplifier is at the lowest voltage value to be within specifications for the given g_m value. Our circuit has some room to adjust on the AC specifications and could benefit from this, but it would require a lot of manipulation throughout the circuit.

The lessons we learned from this project was that hand calculations can only take you so far without making assumptions on values needed to solve. This was a logical step that significantly reduced the time it takes to get valuable results but also allowed us to make small changes faster. At a certain point, the width and length values of transistors would have to be non-integer values to maximize the lowest possible power output.

In order to make these changes, it seemed that parametric analysis was not a tool in order to iterate quickly. Also, the tool had caused a disk error as well as a rare malformed lock-stake issue which prevented one partner from using Cadence. This required extensive debugging through Piazza and using clsAdminTool and has yet to be resolved.