Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions.

Henry Kvinge, Colorado State

(Joint with Anthony Licata and Stuart Mitchell)
University of Virginia Algebra Seminar

September 27, 2017

Outline of the story

 \bigcirc Khovanov's Heisenberg category \mathcal{H}'

Asymptotic rep. theory of symmetric groups

2 Shifted symmetric functions Λ^*

Khovanov's Heisenberg category \mathcal{H}'

Khovanov's Heisenberg category

Khovanov proposed a monoidal \mathbb{C} -linear category \mathcal{H}' , called *Khovanov's Heisenberg category* to categorify the Heisenberg algebra H.

Reminder: H is generated by $p_n,q_n\in\mathbb{Z}_{\geq 0}$ subject to the relations

$$p_n q_m = q_m p_n + \delta_{n,m} 1, \ p_n p_m = p_m p_n, \ q_n q_m = q_m q_n.$$

Khovanov's Heisenberg category

Khovanov proposed a monoidal \mathbb{C} -linear category \mathcal{H}' , called *Khovanov's Heisenberg category* to categorify the Heisenberg algebra H.

Reminder: H is generated by $p_n,q_n\in\mathbb{Z}_{\geq 0}$ subject to the relations

$$p_n q_m = q_m p_n + \delta_{n,m} 1, \ p_n p_m = p_m p_n, \ q_n q_m = q_m q_n.$$

Khovanov's Heisenberg category

Khovanov proposed a monoidal \mathbb{C} -linear category \mathcal{H}' , called *Khovanov's Heisenberg category* to categorify the Heisenberg algebra H.

Reminder: H is generated by $p_n,q_n\in\mathbb{Z}_{\geq 0}$ subject to the relations

$$p_n q_m = q_m p_n + \delta_{n,m} 1, \ p_n p_m = p_m p_n, \ q_n q_m = q_m q_n.$$

The idea

Classical: Heisenberg algebra H acts on symmetric functions,

The idea

Classical: Heisenberg algebra H acts on symmetric functions, (direct sum of Grothendieck group of symmetric groups by linear operators coming from induction/restriction functors).

The idea

Classical: Heisenberg algebra H acts on symmetric functions, (direct sum of Grothendieck group of symmetric groups by linear operators coming from induction/restriction functors).

New: Khovanov's *Heisenberg category* \mathcal{H}' acts on representation category of symmetric groups by induction/restriction functors themselves.

Describing \mathcal{H}'

The category \mathcal{H}' :

Objects - Sequences of Q_+ and Q_- .

Morphisms - Oriented compact 1-manifolds immersed in the plane strip $\mathbb{R} \times [0,1].$ Up to isotopy.

Describing \mathcal{H}'

The category \mathcal{H}' :

Objects - Sequences of Q_+ and Q_- .

Morphisms - Oriented compact 1-manifolds immersed in the plane strip $\mathbb{R} \times [0,1].$ Up to isotopy.

Example:

Local relations

Motivation: H relation $Q_{-}Q_{+} \cong Q_{+}Q_{-} \oplus 1$

Motivation: S_n relations

You should think:

- Q_+ is 'like' $\operatorname{Ind}_{S_n}^{S_{n+1}}$,
- Q_- is 'like' $\operatorname{Res}_{S_{n-1}}^{S_n}$,

$$Q_{+} \, Q_{-} \, Q_{-} \, Q_{+} \, Q_{-} \quad \text{ is 'like'} \quad \operatorname{Ind}_{S_{n-2}}^{S_{n-1}} \operatorname{Res}_{S_{n-2}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}} \operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}$$

 Morphisms are 'like' natural transformations between compositions of these functors

Example:

Mackey decomposition for symmetric groups:

$$\mathsf{Ind}_{S_{n-1}}^{S_n} \circ \mathsf{Res}_{S_{n-1}}^{S_n} \, \oplus \, \mathsf{Id}_n \cong \mathsf{Res}_{S_n}^{S_{n+1}} \circ \mathsf{Ind}_{S_n}^{S_{n+1}} \, .$$

One can show that:

$$Q_+Q_- \oplus \mathbb{1} \cong Q_-Q_+.$$

Heisenberg relation:

$$q_1p_1 + 1 = p_1q_1.$$

Relations

$$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \end{array} \left\langle \end{array} \right\rangle \left\langle \begin{array}{$$

mean there are homomorphisms

For $x \in \mathbb{C}[S_n]$, set

For $x \in \mathbb{C}[S_n]$, set

Example: In $\mathbb{C}[S_3]$, if x = 5(1, 3) + 1 then

Dots

For simplification we write:

Acts on $\bigoplus_{n>0} \mathbb{C}[S_n]$ - mod as multiplication by Jucys-Murphy elements.

$$J_0 := 0, \quad J_k := (1, k) + (2, k) + \cdots + (k - 1, k).$$

Center of \mathcal{H}'

By definition the <u>center</u> $Z(\mathcal{H}')$ of \mathcal{H}' is graphically the commutative \mathbb{C} -algebra of all closed diagrams.

 \mathcal{H}' is **rich** in representation-theoretic data (morphism spaces contain all symmetric groups, affine degenerate Hecke algebras).

Center of \mathcal{H}'

By definition the <u>center</u> $Z(\mathcal{H}')$ of \mathcal{H}' is graphically the commutative \mathbb{C} -algebra of all closed diagrams.

 \mathcal{H}' is **rich** in representation-theoretic data (morphism spaces contain all symmetric groups, affine degenerate Hecke algebras).

 $Z(\mathcal{H}')$ should contain interesting information.

Center of \mathcal{H}'

Theorem (Khovanov)

$$Z(\mathcal{H}') \cong \mathbb{C}[c_0, c_1, \dots] \cong \mathbb{C}[\tilde{c}_2, \tilde{c}_3, \dots]$$

where

Reminder: A dot labelled with a *k* is *k* right-twisted curls.

Question: Is known combinatorics/structure encoded by the diagrammatics of $Z(\mathcal{H}')$?

Example: Is there a combinatorial interpretation of relations such as

Question: Is known combinatorics/structure encoded by the diagrammatics of $Z(\mathcal{H}')$?

Example: Is there a combinatorial interpretation of relations such as

$$f_{(2)} \qquad f_{(2)} = f_{(2,2)} + 4f_{(3)} + 2f_{(1,1)}$$

Guess: Corresponds to mulitiplication of some symmetric functions or analogues of symmetric functions, $\{f_{\lambda}\}$?

The shifted symmetric functions Λ^*

Call $f \in \mathbb{C}[x_1, \dots, x_n]$ shifted symmetric if it is symmetric in the new variables

$$x_i'=x_i-i.$$

Example:

$$x_1x_2 + x_2x_3 + x_1x_3 + x_2 + 2x_3 \leftarrow \text{shifted symmetric}$$

$$\psi \qquad \mathbf{x}_1' = \mathbf{x}_1 - 1, \ \mathbf{x}_2' = \mathbf{x}_2 - 2, \ \mathbf{x}_3' = \mathbf{x}_3 - 3$$

$$(x'_1x'_2 + x'_2x'_3 + x'_1x'_3) + 5(x'_1 + x'_2 + x'_3) + 19 \leftarrow \text{symmetric}$$

The algebra of shifted symmetric functions Λ^* has similar construction to classical symmetric functions Λ .

Λ	Λ*
$\Lambda = \varprojlim \Lambda_n$	$\Lambda^* = \varprojlim \Lambda_n^*$
elements symmetric	elements shifted symmetric
graded by polynomial degree	filtered by polynomial degree

 Λ^* has many generators/bases analogous to Λ :

•
$$p_{\lambda}^{\#}=p_{\lambda}+$$
 l.o.t.,

shifted power sums

•
$$s_{\lambda}^* = s_{\lambda} + \text{l.o.t.}$$

shifted Schur functions

•
$$e_k^* = e_k + \text{l.o.t.},$$

elementary shifted functions

•
$$h_k^* = h_k + \text{l.o.t.},$$

homogeneous shifted functions

Proposition (Okounkov-Olshanski)

$$gr(\Lambda^*) \cong \Lambda.$$

Proposition (Okounkov-Olshanski)

$$gr(\Lambda^*) \cong \Lambda$$
.

Example:

$$e_2^*(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) = \boxed{\mathbf{x_1}\mathbf{x_2} + \mathbf{x_2}\mathbf{x_3} + \mathbf{x_1}\mathbf{x_3}} + \mathbf{x_2} + 2\mathbf{x_3}$$
elementary symmetric polynomial e_2

Λ^* as functions on Young diagrams $\mathcal P$

 Λ^* can also be realized as a subalgebra of functions on Young diagrams $\mathcal{P}.$

Given
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$$
 and $f \in \Lambda^*$ then,

$$f(\lambda) := f(\lambda_1, \lambda_2, \ldots, \lambda_r, 0, 0, \ldots).$$

Λ^* as functions on Young diagrams $\mathcal P$

 Λ^* can also be realized as a subalgebra of functions on Young diagrams $\mathcal{P}.$

Given $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ and $f \in \Lambda^*$ then,

$$f(\lambda) := f(\lambda_1, \lambda_2, \ldots, \lambda_r, 0, 0, \ldots).$$

Example: $\lambda = (4, 2, 1)$,

$$e_2^*(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) = \mathbf{x_1}\mathbf{x_2} + \mathbf{x_2}\mathbf{x_3} + \mathbf{x_1}\mathbf{x_3} + \mathbf{x_2} + 2\mathbf{x_3}$$

$$e_2^*(\lambda) = e_2^*(4,2,1) = 4 \cdot 2 + 2 \cdot 1 + 4 \cdot 1 + 2 + 2 \cdot 1$$

Shifted Schur functions

Recall hook length

hook length(
$$\square$$
) = 4

Shifted Schur functions

Recall hook length

hook length(
$$\square$$
) = 6

Shifted Schur functions

Theorem: [Okounkov] If $|\lambda| \leq |\mu|$ then

$$s_{\mu}^{*}(\lambda) = egin{cases} \prod_{\square \in \mu} ext{(hook length } \square ext{)} & \lambda = \mu \ 0 & ext{otherwise} \end{cases}$$

Labeled hook lengths

$$s_{(5,4,3,1)}^*$$
 = 8 · 6 · 4 · 1 · 6 · 4 · 2 · 5 · 3 · 1 · 3 · 1 · 1

Corollary:
$$\dim(L^{\lambda}) = \frac{n!}{s_{\lambda}^{*}(\lambda)}$$

Let λ/μ be a skew Young diagram, $\lambda \vdash n$, $\mu \vdash k$,

Example:

$$\lambda = \frac{1}{2}$$
, $\mu = \frac{1}{2}$, $\lambda/\mu = \frac{1}{2}$

[Okounkov-Olshanski]

$$\#$$
 standard tableaux of shape $\lambda/\mu = \dfrac{\dim(L^\lambda)s^*_\mu(\lambda)}{n(n-1)\dots(n-k+1)}$

Example: [Okounkov-Olshanski]

For $\mu \vdash k$, $\lambda \vdash n$,

$$p_{\mu}^{\#}(\lambda) = \begin{cases} \frac{(n \mid k)}{\dim L^{\lambda}} \chi^{\lambda}(\mu, 1^{n-k}) & k \leq n \\ 0 & \text{otherwise.} \end{cases}$$

where

$$(n \mid k) = n(n-1) \dots (n-k+1),$$

 $\dim(L^{\lambda}) = \dim$ of simple S_n -rep L^{λ}

 $\chi^{\lambda}(\mu, 1^{n-k}) = \text{value of character corresponding to simple representation}$ L^{λ} on element of cycle type $(\mu, 1^{n-k})$.

Example: [Okounkov-Olshanski]

For $\mu \vdash k$, $\lambda \vdash n$,

$$p_{\mu}^{\#}(\lambda) = \begin{cases} \frac{(n|k)}{\dim L^{\lambda}} \chi^{\lambda}(\mu, 1^{n-k}) & k \leq n \\ 0 & \text{otherwise.} \end{cases}$$

where

$$(n \mid k) = n(n-1) \dots (n-k+1),$$

 $\dim(L^{\lambda}) = \dim$ of simple S_n -rep L^{λ}

 $\chi^{\lambda}(\mu, 1^{n-k}) = \text{value of character corresponding to simple representation}$ L^{λ} on element of cycle type $(\mu, 1^{n-k})$.

Note: In general $p_{\mu_1}^\# p_{\mu_2}^\# \dots p_{\mu_r}^\# \neq p_{(\mu_1,\mu_2,\dots,\mu_r)}^\#$.

Example: [Okounkov-Olshanski]

For $\mu \vdash k$, $\lambda \vdash n$,

$$p_{\mu}^{\#}(\lambda) = \begin{cases} \frac{(n|k)}{\dim L^{\lambda}} \chi^{\lambda}(\mu, 1^{n-k}) & k \leq n \\ 0 & \text{otherwise.} \end{cases}$$

where

$$(n \mid k) = n(n-1) \dots (n-k+1),$$

 $\dim(L^{\lambda}) = \dim$ of simple S_n -rep L^{λ}

$$\chi^{\lambda}(\mu, 1^{n-k})$$
 = value of character corresponding to simple representation L^{λ} on element of cycle type $(\mu, 1^{n-k})$.

Note: In general
$$p_{\mu_1}^\# p_{\mu_2}^\# \dots p_{\mu_r}^\# \neq p_{(\mu_1,\mu_2,\dots,\mu_r)}^\#$$
.

But
$$p_{\mu_1}^\# p_{\mu_2}^\# \dots p_{\mu_r}^\# = p_{(\mu_1,\mu_2,\dots,\mu_r)}^\# + \text{l.o.t.}$$

Theorem (K., Licata, Mitchell)

 $Z(\mathcal{H}')$ is isomorphic as a \mathbb{C} -algebra to the shifted symmetric functions Λ^* ,

$$Z(\mathcal{H}') \cong \Lambda^*$$
.

Theorem (K., Licata, Mitchell)

 $Z(\mathcal{H}')$ is isomorphic as a \mathbb{C} -algebra to the shifted symmetric functions Λ^* ,

$$Z(\mathcal{H}') \cong \Lambda^*$$
.

To establish the isomorphism, we use the fact that for all $n \ge 0$ there are surjective homomorphisms.

Theorem (K., Licata, Mitchell)

 $Z(\mathcal{H}')$ is isomorphic as a \mathbb{C} -algebra to the shifted symmetric functions Λ^* ,

$$Z(\mathcal{H}') \cong \Lambda^*$$
.

To establish the isomorphism, we use the fact that for all $n \ge 0$ there are surjective homomorphisms.

Dictionary between Λ^* and $Z(\mathcal{H}')$

If $\sigma \in S_n$ of conjugacy class λ , then

Example:

Dictionary between Λ^* and $Z(\mathcal{H}')$

If E_{λ} is the central idempotent of $\mathbb{C}[S_n]$ associated to L^{λ} then

Example: $L^{(2)}$ is trivial representation for $\mathbb{C}[S_2]$ with idempotent $E_{(2)} = \frac{1}{2}(s_1 + 1)$ so

$$s_{(2)}^* \longmapsto \frac{1}{2} \bigoplus + \frac{1}{2} \bigoplus$$

Dictionary between Λ^* and $Z(\mathcal{H}')$

Because $h_n^* = s_{(n)}^*$, $e_n^* = s_{(1^n)}^*$,

$$e_n^* \qquad \longmapsto \qquad \qquad \frac{1}{n!} \sum_{\sigma \in S_n} \qquad \overbrace{\sigma} \qquad \qquad$$

$$h_n^* \longrightarrow \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)}$$

Involutions on ∧*

Okounkov and Olshanski identified an involution $\xi : \Lambda^* \to \Lambda^*$ defined so that if $f \in \Lambda^*$:

$$\xi(f)(\lambda) := f(\lambda').$$

In particular

$$egin{aligned} s_{\lambda}^* &\longmapsto s_{\lambda'}^* \ p_k^\# &\longmapsto (-1)^k p_k^\# \ e_k^* &\longmapsto h_k^* \ h_k^* &\longmapsto e_k^* \end{aligned}$$

Involutions on Λ^*

What is the diagrammatic interpretation?

For diagram $D \in Z(\mathcal{H}')$,

$$\xi(D) = (-1)^{c(D)}D$$

 $c(D) := \#\{\text{dots and crossings in } D\}$

Example:

Involutions on **∧***

What is the diagrammatic interpretation?

For diagram $D \in Z(\mathcal{H}')$,

$$\xi(D) = (-1)^{c(D)}D$$

 $c(D) := \#\{\text{dots and crossings in } D\}$

Example:

Remaining question:

For this we need to turn to asymptotic representation theory.

Moments of Kerov's transition measure \widehat{m}_k

Young's Lattice

Motivation for transition measure

Assign probability of moving from $\lambda = (4, 2, 1)$ to $\mu = (4, 2, 2)$?

Motivation for transition measure

Assign probability of moving from $\lambda = (4, 2, 1)$ to $\mu = (4, 2, 2)$?

One choice is transition probability: $\widehat{q}_{\lambda}((4,2,2)) = \frac{\dim(L^{(4,2,2)})}{|\mu|\dim(L^{\lambda})}$

Motivation for transition measure

Assign probability of moving from $\lambda = (4, 2, 1)$ to $\mu = (4, 2, 2)$?

One choice is transition probability: $\widehat{q}_{\lambda}((4,2,2)) = \frac{\dim(L^{(4,2,2)})}{|\mu|\dim(L^{\lambda})}$

$$\frac{\dim(L^{(4,2,1,1)})}{|\mu|\dim(L^{\lambda})} + \frac{\dim(L^{(4,2,2)})}{|\mu|\dim(L^{\lambda})} + \frac{\dim(L^{(4,3,1)})}{|\mu|\dim(L^{\lambda})} + \frac{\dim(L^{(5,2,1)})}{|\mu|\dim(L^{\lambda})} = 1$$

Motivation for co-transition measure

Dually, assign probability of moving from $\lambda = (4,2,1)$ to $\mu = (4,1,1)$?

Co-transition probability: $\check{q}_{\lambda}((4,1,1)) = \frac{\dim(L^{(4,1,1)})}{\dim(L^{\lambda})}$

Motivation for co-transition measure

Dually, assign probability of moving from $\lambda = (4,2,1)$ to $\mu = (4,1,1)$?

$$\begin{aligned} \textit{Co-transition probability:} \ \ \breve{q}_{\lambda}((4,1,1)) &= \frac{\dim(L^{(4,1,1)})}{\dim(L^{\lambda})} \\ & \frac{\dim(L^{(4,2)})}{\dim(L^{\lambda})} + \frac{\dim(L^{(4,1,1)})}{\dim(L^{\lambda})} + \frac{\dim(L^{(3,2,1)})}{\dim(L^{\lambda})} = 1 \end{aligned}$$

The transition/co-transition measure

For each λ , Kerov constructed two probability measures on \mathbb{R} based on the transition/co-transition measure for λ and the interlacing coordinates of λ :

$$\widehat{\omega}_{\lambda}=$$
 transition measure for $\lambda=\sum_{\lambda
eq\mu}\widehat{q}_{\lambda}(\mu)\delta_{\mathsf{content}(\mu/\lambda)}$

$$\widecheck{\omega}_{\lambda}=$$
 co-transition measure for $\lambda=\sum_{\mu
eq\lambda}\widecheck{q}_{\lambda}(\mu)\delta_{\mathsf{content}(\lambda/\mu)}$

$$\widehat{\omega}_{\lambda} = \widehat{q}_{\lambda}((4,2,1,1))\delta_{-3} + \widehat{q}_{\lambda}((4,2,2))\delta_{-1} + \widehat{q}_{\lambda}((4,3,1))\delta_{1} + \widehat{q}_{\lambda}((5,2,1))\delta_{4}$$

$$\widehat{\omega}_{\lambda} = \widehat{q}_{\lambda}((4,2,1,1))\delta_{-3} + \widehat{q}_{\lambda}((4,2,2))\delta_{-1} + \widehat{q}_{\lambda}((4,3,1))\delta_{1} + \widehat{q}_{\lambda}((5,2,1))\delta_{4}$$
Contents of cells we can add
$$\widehat{q}_{\lambda}((4,2,1,1))\delta_{-3} + \widehat{q}_{\lambda}((4,2,2))\delta_{-1} + \widehat{q}_{\lambda}((4,3,1))\delta_{1} + \widehat{q}_{\lambda}((5,2,1))\delta_{4}$$

$$\widecheck{\omega}_{\lambda} = \widecheck{q}_{\lambda}((4,2))\delta_{-2} + \widecheck{q}_{\lambda}((4,1,1))\delta_{0} + \widecheck{q}_{\lambda}((3,2,1))\delta_{3}$$

Moments and Boolean cumulants

Can consider moments and cumulants for $\widehat{\omega}_{\lambda}$ and $\widecheck{\omega}_{\lambda}$.

- $\widehat{m}_k(\lambda) = k$ th moment of $\widehat{\omega}_{\lambda}$,
- $\check{m}_k(\lambda) = k$ th moment of $\check{\omega}_{\lambda}$.
- $\hat{b}_k(\lambda) = k$ th Boolean cumulant of $\hat{\omega}_{\lambda}$.

Can view \widehat{m}_k , \widecheck{m}_k , \widehat{b}_k as functions on $\mathcal P$ by

Moments and Boolean cumulants

Can consider moments and cumulants for $\widehat{\omega}_{\lambda}$ and $\widecheck{\omega}_{\lambda}$.

- $\widehat{m}_k(\lambda) = k$ th moment of $\widehat{\omega}_{\lambda}$,
- $\check{m}_k(\lambda) = k$ th moment of $\check{\omega}_{\lambda}$.
- $\hat{b}_k(\lambda) = k$ th Boolean cumulant of $\hat{\omega}_{\lambda}$.

Can view \widehat{m}_k , \widecheck{m}_k , \widehat{b}_k as functions on $\mathcal P$ by

$$\lambda \xrightarrow{\widehat{m}_k} \widehat{m}_k(\lambda), \qquad \lambda \xrightarrow{\widecheck{m}_k} \widecheck{m}_k(\lambda), \qquad \lambda \xrightarrow{\widehat{b}_k} \widehat{b}_k(\lambda).$$

Moments and Boolean cumulants

Can consider moments and cumulants for $\widehat{\omega}_{\lambda}$ and $\widecheck{\omega}_{\lambda}$.

- $\widehat{m}_k(\lambda) = k$ th moment of $\widehat{\omega}_{\lambda}$,
- $\check{m}_k(\lambda) = k$ th moment of $\check{\omega}_{\lambda}$.
- $\hat{b}_k(\lambda) = k$ th Boolean cumulant of $\hat{\omega}_{\lambda}$.

Can view \widehat{m}_k , \widecheck{m}_k , \widehat{b}_k as functions on $\mathcal P$ by

$$\lambda \xrightarrow{\widehat{m}_k} \widehat{m}_k(\lambda), \qquad \lambda \xrightarrow{\widecheck{m}_k} \widecheck{m}_k(\lambda), \qquad \lambda \xrightarrow{\widehat{b}_k} \widehat{b}_k(\lambda).$$

[Lassalle] \widehat{m}_k , $p_1^{\#}\widecheck{m}_k$, \widehat{b}_k belong to Λ^* .

An algebraic approach to \widehat{m}_k , \widecheck{m}_k

From Biane's study of the asymptotic representation theory of symmetric groups and free probability:

$$\bullet \ \widehat{m}_k(\lambda) = \chi^{\lambda}(\operatorname{pr}_n(J_{n+1}^k))$$

•
$$p_1^{\#}(\lambda)\check{m}_k(\lambda) = \chi^{\lambda}\Big(\sum_{i=1}^n s_i \dots s_{n-1}J_n^k s_{n-1}\dots s_i\Big)$$

where
$$J_{n+1} = \text{Jucys-Murphy element} = \sum_{i=1}^{n+1} (i, n+1)$$

$$\operatorname{pr}_n(\sigma) = \begin{cases} \sigma & \text{if } \sigma(n+1) = n+1 \\ 0 & \text{otherwise} \end{cases}$$

An algebraic approach to \widehat{m}_k , \widecheck{m}_k

From Biane's study of the asymptotic representation theory of symmetric groups and free probability:

$$\bullet \ \widehat{m}_k(\lambda) = \chi^{\lambda}(\operatorname{pr}_n(J_{n+1}^k))$$

•
$$p_1^{\#}(\lambda)\check{m}_k(\lambda) = \chi^{\lambda}\Big(\sum_{i=1}^n s_i \dots s_{n-1}J_n^k s_{n-1}\dots s_i\Big)$$

where $J_{n+1} = \text{Jucys-Murphy element} = \sum_{i=1}^{n+1} (i, n+1)$

$$\operatorname{pr}_n(\sigma) = \begin{cases} \sigma & \text{if } \sigma(n+1) = n+1 \\ 0 & \text{otherwise} \end{cases}$$

We use this interpretation to connect \widehat{m}_k , \widecheck{m}_k and $Z(\mathcal{H}')$.

Then

Then

Question: Can any of the results of Kerov, Olshanski, Okounkov, Vershik, etc. be obtained purely diagrammatically?

$W_{1+\infty}$ and Λ^*

Another construction: The trace (or zeroth Hochschild homology) of the Heisenberg category $Tr(\mathcal{H}')$ is a noncommutative algebra of diagrams on an annulus.

Cautis-Lauda-Licata-Sussan showed $Tr(\mathcal{H}') \cong W_{1+\infty}$ the vertex algebra from conformal field theory.

$W_{1+\infty}$ and Λ^*

Another construction: The *trace* (or zeroth Hochschild homology) of the Heisenberg category $Tr(\mathcal{H}')$ is a noncommutative algebra of diagrams on an annulus.

Cautis-Lauda-Licata-Sussan showed $Tr(\mathcal{H}') \cong W_{1+\infty}$ the vertex algebra from conformal field theory.

$W_{1+\infty}$ and Λ^*

There is a natural action of $Tr(\mathcal{H}')$ on $Z(\mathcal{H}')$ by placing a closed diagram from $Z(\mathcal{H}')$ inside an annulus diagram from $Tr(\mathcal{H}')$.

This gives purely planar realization of an action of $W_{1+\infty}$ on Λ^* which was first considered by Lascoux-Thibon.

Thank you.