Machine Learning para classificação de corpos estelares

Intro

Há décadas a humanidade vem aprimorando as tecnologias e estudos para classificar estrelas, essa pesquisa gera resultados importantes para entendermos nosso universo e encontrar fenômenos que podem ser favoráveis para a evolução da humanidade. Utilizando o dataset da SDSS (Sloan Digital Sky Survey) que classifica corpos celestes, nosso objetivo é utilizar as características espectrais de cem mil observações para sermos capazes de classificar observações futuras com algoritmos de machine learning e manipulação de dados.

Divisão de classes

0.50

0.25

No pré-processamento, foi realizada a remoção de outliers do dataset usando o IQR, onde através de um loop todas as variáveis foram verificadas, e aproximadamente 14% das observações eram outliers. Ademais, para a seleção de features foi feito um teste de correlação com o método de Pearson entre a variável classe e as demais, onde aquelas com correlações marginais foram desconsideradas, 10 variáveis foram selecionadas para os próximos processos e 8 removidas. O dataset não possui dados faltantes, duplicados ou nulos, o que facilitou a etapa de pré-processamento.

Matriz de correlação

			- 5.5.5					3		
n	1.00	0.86	0.75	0.65		0.43	-0.26	0.32	0.43	0.47
б	0.86	1.00	0.94	0.86	0.79	0.61	-0.13	0.52	0.61	0.63
L	0.75	0.94	1.00	0.97	0.92	0.67	0.05		0.67	0.68
-	0.65	0.86	0.97	1.00	0.97	0.68	0.17		0.68	0.69
Z	0.57	0.79	0.92	0.97	1.00	0.66	0.23		0.66	0.66
spec_obj_ID	0.43	0.61	0.67	0.68	0.66	1.00	0.14	0.52	1.00	0.97
class sp	-0.26	-0.13	0.05	0.17	0.23	0.14	1.00	0.23	0.14	0.13
redshift	0.32	0.52				0.52	0.23	1.00	0.52	0.51
plate	0.43	0.61	0.67	0.68	0.66	1.00	0.14	0.52	1.00	0.97
MJD	0.47	0.63	0.68	0.69	0.66	0.97	0.13	0.51	0.97	1.00
	u	g	r	i	Z S	spec_obj_II	D dass	redshift	plate	MJD

Os dois modelos de machine learning foram executados e aprimorados com o método de boosting e tuning. Percebe-se que a variável "redshift" foi a mais importante para o algoritmo de classificação com mais de 70%. O redshift indica a mudança nas ondas de luz de um objeto que se afasta, ou seja, quanto maior o valor, maior a distância do ponto de observação.

Random Forest

As demais variáveis relevantes possuem uma característica em comum de serem filtros fotométricos para observação dos corpos celestes, sendo essas:

"u","z", e "g"

Features

Random Forest

É notável que o corpo celeste "Quasar" foi o mais difícil de classificar corretamente, o que se mostra no recall baixo em comparação às demais.

0 - Galáxia

1 - Estrela

2 - Quasar

Random Forest

Xgboost

0 - Galáxia

1 - Estrela

2 - Quasar

Xgboost

Conclusão

Ambos os modelos tiveram uma performance satisfatória e conseguiram, com uma boa precisão, fazer a classificação dos corpos celestes, sendo assim válidos para próximas classificações em surveys realizados pela SDSS. A eficiência na classificação dos corpos celestes pode contribuir na categorização e mapeamento de nosso universo, colaborando com diversas áreas no campo científico. Estrelas, galáxias e até os quasares podem ser reconhecidos rapidamente com o modelo bem treinado.

Referências

- Gráficos feitos com bibliotecas do Python e R
- @fedesoriano. (January 2022). Stellar Classification Dataset SDSS17. Coletado[21/09/2024] de https://www.kaggle.com/fedesoriano/stellar-classification-dataset-sdss17.
- ◆ Aprendizado de máquina: uma abordagem estatística, Izbicki, R. and Santos,
 T. M., 2020. ◆ Estatística e ciência de dados., Morettin, Pedro Alberto, and Julio da Motta Singer, 2022.