Homework #2

EE 242 Spring 2025

Yehoshua Luna 2322458

Problem #1

a)

- i. y(t) is nonlinear. $T(x_1(t) + x_2(t)) = e^{-(x_1(t) + x_2(t))} = e^{-x_1(t)} \cdot e^{-x_2(t)} \neq e^{-x_1(t)} + e^{-x_2(t)} = T(x_1(t)) + T(x_2(t))$
- ii. y(t) is time-invariant. $y(t-t_0)=e^{-(t-t_0)}=T(x(t-t_0))$
- iii. y(t) is stable. $|x(t)| < M \rightarrow 0 \le e^{-x(t)} = y(t) \le e^{M}$
- iv. y(t) is causal because it only depends on $x(t_0)$.
- v. y(t) is invertible. As the graph below shows, for each x(t), there is a unique value y(t). We can also easily see that $x(t) = -\ln(y(t))$, which proves this.

b)

- i. y(t) is linear. $T(ax_1(t) + bx_2(t)) = \int_{-\infty}^{2t} ax_1(u) + bx_2(u) du = a \int_{-\infty}^{2t} x_1(u) du + b \int_{-\infty}^{2t} x_2(u) du = a \cdot T(x_1(t)) + b \cdot T(x_2(t))$
- ii. y(t) is time-variant. $y(t-t_0) = \int_{-\infty}^{2(t-t_0)} x(u) \ du \neq \int_{-\infty}^{2t-t_0} x(u) \ du = \int_{-\infty}^{2t} x(u-t_0) \ du = T(x(t-t_0))$
- iii. y(t) is unstable. If x(t) = 1, then $y(t) = \int_{-\infty}^{2t} 1 \, du = \infty$ for all $t \neq -\infty$. This clearly violates BIBO stability, so y(t) is therefore unstable.
- iv. y(t) is not causal. It depends on $\int x(u) \ du$ at $u=2t_0$ from integration bounds.
- v. y(t) is not invertible because it loses information about the input x(t) through integration over the given bounds. For example, if $x_1(t) = u(t) u(t-2)$ and $x_2(t) = u(t+2) u(t)$, then $y_1(2) = y_2(2) = 2$. Both of the input functions produced the same result, so this system cannot be invertible. It is impossible to mathematically characterize the input function from this system's output.

Problem #2

Using the associative property, we can add e^{-2t} and $\delta(t+1)$ together into one response, namely, $e^{-2t} + \delta(t+1)$. This can then be convolved with u(t) to produce the equivalent system response. The calculations are as follows:

$$H(t) = (e^{-2t} + \delta(t+1)) * u(t) = \int_{-\infty}^{\infty} (e^{-2\tau} + \delta(\tau+1)) \cdot u(t-\tau) d\tau$$
$$= \int_{-\infty}^{t} e^{-2\tau} + \delta(\tau+1) d\tau = \infty$$

The equivalent system response is $H(t) = \infty$. (Was there supposed to be another u(t)?)

Problem #3

Because x(n) is only nonzero at n=0 and n=1, we can simplify the discrete convolution to $y(n)=\sum_{k=0}^1 x(k)\cdot h(n-k)=x(0)\cdot h(n-0)+x(1)\cdot h(n-1)=h(n)-h(n-1).$ We must have h(0)-h(-1)=1, but h(n) is causal, so h(-1)=0 and h(0)=1. Increasing n by one gives h(1)-h(0)=0, so h(1)=1. h(2)-h(1)=0, so h(2)=2. h(3)-h(2)=0, so h(3)=3. h(4)-h(3)=-1, so we finally have h(4)=0. Thus, $h(n)=[\dots 0,1,1,1,0,\dots]$.

Problem #4

x(t) = u(t) - 2u(t-1) + u(t-2), so x(t) * h(t) = u(t) * h(t) - 2u(t-1) * h(t) + u(t-2) * h(t) = y(t) - 2y(t-1) + y(t-2) by the distributive property. Because we know what the response y(t) looks like, we can then graph x(t) * h(t).

Problem #5

 $x(t-t_0)$ shifts the input signal x(t) to the left by t_0 . $h(t+t_0)$ shifts the impulse response h(t) to the right by t_0 . However, these two shifts cancel during the process of convolution, so the output is simply y(t).

Problem #6

According to the textbook, h(n) = s(n) - s(n-1), so $h(n) = \alpha^n u(n) - \alpha^{n-1} u(n-1)$.

Problem #7

Problem #8

a)

i. h(t) = 0 for t < 0, so the system is causal.

ii. $h(t) = \cos{(\omega_0 t)}$ for t > 0. $\int_0^\infty |\cos{(\omega_0 t)}| \ dt = \infty$, so the system is unstable.

b)

i. $h(n) \neq 0$ for n < 0, so the system is not causal.

ii. $h(n) = 0.8^n$ for $n \ge -2$, so $\sum_{n=-2}^{\infty} |0.8^n| = 7.8125$ and the system is stable.

Problem #9

$$y(t) = \int_{-\infty}^{\infty} e^{-a\tau} u(\tau) \cdot e^{-b(t-\tau)} u(t-\tau) \, d\tau = e^{-bt} \int_{0}^{t} e^{(b-a)\tau} \, d\tau = e^{-bt} \cdot \frac{e^{(b-a)t} - 1}{b-a}$$

When a=b, $e^{(b-a)\tau}$ evaluates to 1, so $\int_0^t e^{(b-a)\tau} d\tau = t$. Therefore $y(t)=te^{-bt}$ for a=b.

Problem #10

$$y(n) = \sum_{k=-\infty}^{\infty} \alpha^k u(k) \cdot \beta^{n-k} u(n-k) = \sum_{k=0}^{n} \alpha^k \cdot \beta^{n-k} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Problem #11

Problem #12

- a) $H(j\omega)$ is just the Fourier Transform of h(t), so we can find h(t) by calculating the inverse Fourier Transform of $H(j\omega)$. Using the tables provided in my textbook and the distributive property of integrals, I can easily see that $h(t) = \delta(t) + \alpha \delta(t t_0)$.
- b) We need to separate the real and imaginary parts of $H(j\omega)$ to find the magnitude and phase of the transfer function. Expanding $H(j\omega)$ gives $1 + \alpha \cos(\omega t_0) j\alpha\sin(\omega t_0)$. Now we can find the magnitude and phase:

$$|H(j\omega)| = \sqrt{Re^2 + Im^2} = \sqrt{(1 + \alpha \cos(\omega t_0))^2 + (\alpha \sin(\omega t_0))^2}$$

$$= \sqrt{1 + 2\alpha \cos(\omega t_0) + \alpha^2 \cos^2(\omega t_0) + \alpha^2 \sin^2(\omega t_0)}$$

$$= \sqrt{1 + 2\alpha \cos(\omega t_0) + \alpha^2}$$

$$\angle H(j\omega) = \tan^{-1}\left(\frac{Im}{Re}\right) = \tan^{-1}\left(\frac{-\alpha \sin(\omega t_0)}{1 + \alpha \cos(\omega t_0)}\right)$$

We can then graph the magnitude and phase of $H(j\omega)$ as functions of ω for fixed values $\alpha=t_0=2$ to get an understanding of how the output varies with ω . Magnitude graph:

Phase graph:

