Agrégation Interne 1993 : deuxième épreuve.

Remarque : l'énoncé a été très légèrement modifié pour correspondre au programme des classes préparatoires et pour corriger une erreur de la partie III.

Le problème a pour objet d'étudier certaines propriétés et certaines utilisations de la **Transformation de** Laplace.

 \mathcal{E} désigne l'ensemble des applications continues par morceaux de $]0,+\infty[$ dans \mathbb{C} et sommables sur]0,1].

Pour tout $f \in \mathcal{E}$, on note \mathcal{A}_f l'ensemble des $z \in \mathbb{C}$ tels que l'application $t \mapsto e^{-zt} f(t)$ soit sommable sur $]0, +\infty[$. Pour $z \in \mathcal{A}_f$, on pose $F(z) = \int_0^{+\infty} e^{-zt} f(t) dt$.

 \mathcal{F} désigne l'ensemble des $f \in \mathcal{E}$ telles que $\mathcal{A}_f \neq \emptyset$.

Pour $f \in \mathcal{F}$, F s'appelle la **transformée de Laplace** de f et on note $F = \mathcal{L}_f$.

Les parties ${f III}$ et ${f IV}$ sont indépendantes.

PARTIE I

Dans cette partie, on se propose d'expliciter les transformées de Laplace de certaines applications f.

- 1. Soit $f \in \mathcal{F}$ et $z = x_0 + iy_0 \in \mathcal{A}_f$.
 - a. Montrer que tout z = x + iy tel que $x \ge x_0$ est également élément de \mathcal{A}_f .
 - b. Montrer que F est continue dans le demi-plan

$$\Pi_{z_0} = \{ z = x + iy, \ x \ge x_0 \}.$$

- 2. Soit $n \in \mathbb{N}$. On suppose dans cette question que $f(t) = t^n$.
 - a. Déterminer \mathcal{A}_f .
 - b. Pour tout $z \in \mathcal{A}_f$, expliciter F(z).
- 3. Soit $n \in \mathbb{N}$ et $a \in \mathbb{C}$. On suppose dans cette question que $f(t) = t^n e^{-at}$.
 - a. Déterminer \mathcal{A}_f .
 - b. Pour tout $z \in \mathcal{A}_f$, expliciter F(z).
- 4. Soit $n \in \mathbb{N}$, $a \in \mathbb{C}$ et $\omega \in \mathbb{R}$. On suppose dans cette question que $f(t) = t^n e^{-at} e^{i\omega t}$.
 - a. Déterminer \mathcal{A}_f .
 - b. Pour tout $z \in \mathcal{A}_f$, expliciter F(z).
 - c. En déduire l'expression, lorsqu'elles ont un sens, des intégrales :

$$I_0 = \int_0^{+\infty} e^{-zt} \cos \omega t \, dt$$

$$J_0 = \int_0^{+\infty} e^{-zt} \sin \omega t \, dt$$

$$I_1 = \int_0^{+\infty} t e^{-zt} \cos \omega t \, dt$$

$$J_1 = \int_0^{+\infty} t e^{-zt} \sin \omega t \, dt$$

PARTIE II

Dans cette partie, on se propose d'établir certaines propriétés de la transformation de Laplace.

1. Soit $f \in \mathcal{F}$ continue sur $]0, +\infty[$ et soit $s \in \mathcal{A}_f$ et a > 0. Montrer que :

$$F(s+a) = a \int_0^{+\infty} g(t)e^{-at} dt$$

où, pour tout $t \ge 0$, $g(t) = \int_0^t e^{-su} f(u) du$.

- 2. Sous les mêmes conditions, montrer que si pour tout $n \in \mathbb{N}^*$, F(s+na)=0, alors on peut établir successivement les résultats suivants :
 - a. Pour tout $n \in \mathbb{N}$, $\int_0^1 g\left(-\frac{\ln u}{a}\right) u^n du = 0$.
 - b. Pour tout $t \ge 0$, g(t) = 0.
- 3. En déduire que si $f \in \mathcal{F}$ est continue et telle que $\mathcal{L}_f = 0$, f est la fonction nulle.
- 4. Soit $n \in \mathbb{N}^*$ et soit $f \in \mathcal{E}$ vérifiant les trois conditions suivantes :
 - (i) f est de classe C^n sur $[0, +\infty[$;
 - (ii) pour tout $k \in \{0, 1, ..., n\}, f^{(k)} \in \mathcal{F}$;
- (iii) pour tout $k \in \{0, 1, \dots, n-1\}$ et tout $z \in \mathcal{A}_{f^{(k)}}, e^{-zt} f^{(k)}(t) \xrightarrow[t \to +\infty]{} 0$.

Montrer qu'alors, pour tout $z \in \bigcap_{k=0}^{n} \mathcal{A}_{f^{(k)}}$, on a l'égalité :

$$\mathcal{L}_{f^{(n)}}(z) = z^n \mathcal{L}_f(z) - \sum_{k=0}^{n-1} z^{n-k-1} f^{(k)}(0).$$

PARTIE III

Dans cette partie, on se propose, à l'aide de transformation de Laplace, de retrouver certains résultats classiques concernant les fonctions "gamma" (notée Γ) et "bêta" (notée B) respectivement définies par :

$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} dt$$

$$B(\alpha, \beta) = \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du.$$

- 1. Montrer que $\Gamma(z)$ est défini pour tout z = x + iy tel que x > 0.
- 2. Pour tout réel s > 0 et tout réel k > -1, exprimer, au moyen de la fonction Γ , $\mathcal{L}_f(s)$ où $f(t) = t^k$. Comparer avec le résultat obtenu en I.2.
- 3. Déterminer l'ensemble des couples (α,β) de réels tels que $B(\alpha,\beta)$ converge.
- 4. g et h étant deux applications appartenant à \mathcal{E} et continues sur $]0,+\infty[$, on considère l'application f définie sur $[0,+\infty[$ par :

$$f(t) = \int_0^t g(u)h(t-u) \, \mathrm{d}u.$$

On peut démontrer, et on admettra, que pour tout réel $s \in \mathcal{A}_g \cap \mathcal{A}_h$, $s \in \mathcal{A}_f$ et $\mathcal{L}_f(s) = \mathcal{L}_g(s)\dot{\mathcal{L}}_h(s)$.

En déduire les résultats suivants :

a. Pour tout couple (α, β) de réels strictement positifs, on a :

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

b. Pour tout réel α tel que $0 < \alpha < 1$, on a :

$$B(\alpha, 1 - \alpha) = \Gamma(\alpha)\Gamma(1 - \alpha).$$

5. Soit w la fonction périodique de période 2π définie pour $x \in]-\pi,\pi]$ par

$$w(x) = \cos \alpha x$$

où α est un réel tel que $0 < \alpha < 1$.

a. Calculer les coefficients de Fourier de w.

b. Montrer que
$$\frac{\pi}{\sin \pi \alpha} = \frac{1}{\alpha} + 2\alpha \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2 - \alpha^2}$$
.

c. Montrer que
$$B(\alpha, 1 - \alpha) = \int_0^{+\infty} \frac{t^{\alpha - 1}}{1 + t} dt$$
, puis que $B(\alpha, 1 - \alpha) = \int_0^{+\infty} \frac{t^{\alpha - 1} + t^{-\alpha}}{1 + t} dt$.

d. En déduire que
$$\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha}$$
.

PARTIE IV

Dans cette partie, on se propose, à l'aide de la transformation de Laplace, de résoudre une équation différentielle et un système différentiel. On pourra à cet effet utiliser les parties I et II.

1. On considère le problème de Cauchy :

(1)
$$\begin{cases} u''' - 5u'' + 8u' - 4u = t\cos t \\ u''(0) = u'(0) = u(0) = 1 \end{cases}$$

On pose $U = \mathcal{L}_u$.

- a. Exprimer U(z) sous forme de fraction rationnelle en z.
- b. En déduire la solution u de (1) sur \mathbb{R} .
- 2. On considère le problème de Cauchy:

(2)
$$\begin{cases} 2u'' + v'' + 2u = 0 \\ u'' + v'' + v = 0 \\ u(0) = u_0 \in \mathbb{R}^*, \ u'(0) = v(0) = v'(0) = 0 \end{cases}$$

On pose $U = \mathcal{L}_u$ et $V = \mathcal{L}_v$.

- a. Exprimer U(z) et V(z) sous forme de fractions rationnelles en z.
- b. En déduire la solution (u, v) de (2) sur \mathbb{R} .