16.482 / 16.561: Computer Architecture and Design Fall 2013

Lecture 5: Key Questions October 7, 2013

	October 7, 2013
1.	Describe the basic operation of a pipelined datapath.
2.	Does pipelining improve latency or throughput?
3.	What is the maximum potential speedup of pipelining?

4. If one pipeline stage can run faster than the others, how does that affect the speedup?

5. Draw a basic pipeline diagram and describe the 5 stages.

b. Reading memory on a load and fetching? a new instruction in the same cycle?

7. Every pipelined instruction takes the same number of cycles. Why?

16.482/16.561: Computer Architecture & Design Fall 2013

Instructor: M. Geiger Lecture 5: Key Questions

8. Example: Say we have the following code:

loop:

add \$t1, \$t2, \$t3

lw \$t4, 0(\$t1)

beq \$t4, \$t3, end

sw \$t3, 4(\$t1)

add \$t2, \$t2, 8

j loop

end:

...

Assume each pipeline stage takes 4 ns. How much time will it take on an ideal pipelined datapath (i.e., no delays between instructions)?

9. Describe how a pipelined datapath is divided into stages and how data is transferred between stages.

Instructor: M. Geiger Lecture 5: Key Questions

16.482/16.561: Computer Architecture & Design Fall 2013

Instructor: M. Geiger Lecture 5: Key Questions

10. Describe the three different types of pipeline hazards.

11. Example: What are no-ops? Given the following code, where are no-ops needed?

add \$t2, \$t3, \$t4 sub \$t5, \$t1, \$t2 or \$t6, \$t2, \$t7 slt \$t8, \$t9, \$t5

16.482/16.561: Computer Architecture & Design Fall 2013	Instructor: M. Geiger Lecture 5: Key Questions		
12. Explain how forwarding works in a pipelined datapath.			
13. Describe a case in which forwarding alone is not enough to resolve a data hazard.			
14. Describe the reason processors may experience branch delays.			

16.482/16.561: Computer Architecture & Design
Fall 2013

Instructor: M. Geiger
Lecture 5: Key Questions

15. Describe the basics of branch prediction.