Programare logică și funcțională - examen scris -

<u>Notă</u>

- Subiectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
 Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului - determinist/nedeterminist).
- 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP
        (DEFUN F(L)
                  (COND
                          ((NULL L) 0)
                          ((> (F (CAR L)) 1) (F (CDR L)))
                          (T (+ (F (CAR L)) (F (CDR L))))
                 )
        )
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L)), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

 ${f B.}$ Să se scrie un program PROLOG care generează lista aranjamentelor de ${f k}$ elemente dintr-o listă de numere întregi, având o sumă ${f S}$ dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [6, 5, 3, 4], $k=2 \text{ şi } S=9 \Rightarrow [[6,3],[3,6],[5,4],[4,5]]$ (nu neapărat în această ordine)

- C. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2)
 Se cere să se înlocuiască nodurile de pe nivelurile impare din arbore cu o valoare e dată. Nivelul rădăcinii se consideră a fi 0. Se va folosi o funcție MAP.

Exemplu pentru arborele (a (b (g)) (c (d (e)) (f))) și \mathbf{e} =h => (a (h (g)) (h (d (h)) (h)))