

Introduction to informatics Piroska Biró

Contact & Office Hours

- Office Hours
 - Monday 9–10 am
 - Wednesday 4–5 pm
- Office: I-227
- ▶ E-mail:
 - biro.piroska@inf.unideb.hu
- Course material (Class Webpage):
 - https://w1.inf.unideb.hu/web/biropiroska/introduction-toinfromatics/

Syllabus

- Types of course: Theory/Labor
- ▶ Course number/week: 2+2
- Subject code: INGK201-K5
- Credit: 5
- ▶ Theory: Wednesday 8–10, F01
- Labors:
 - Wednesday 10–12, 108
 - Wednesday 12–14, 108

Requirements

Attendance and Participation:

- In every course and labor there will be an attendance sheet.
- Maximum three absences are allowed in labor.
- Maximum 15 minutes late arrival is accepted in labor.

Assessment and grading:

- Midterm 20%
- End-term 20%
- Final exam 60%

16 th	September	Introduction, Test, Basic concepts, History of computing		
24 th	September	Computer number systems, Conversion rules, Arithmetic operations in different number systems		
1 st	October	Data storage		
8 th	October	Boole-algebra, Logical operations, Logical gates		
15 th	October	Operating Systems		
22 th	October	Professional Week - No class		
29 th	October	Networking and the Internet		
5 th	November	Midterm 1		
12 th	November	Algorithms		
19 th	November	C programming language Data types, Operators, Statements, Loops		
26 th	November	Basic algorithms, Functions		
3 rd	December	Arrays and strings, Pointers		
10 th	December	Iterative, Recursive, Induction		
17 th	December	End-term 2		

Number systems

- Decimal number system
 - the concept of place value
- Generally the numbers can be described in the following form:

$$a_n a_{n-1} \dots a_1 a_0 a_{-1} a_{-2} \dots a_{-m}$$

$$\sum_{i=-m}^n a_i \cdot 10^i \text{ , when } 0 \leq a_i < 10.$$

• Optional in the p base (p>1) number system the used digits 0, 1, ..., p-1, the place values are the powers of number p:

$$\sum_{i=-m}^{n} a_i \cdot p^i$$
 , when $0 \le a_i < p$.

For example: 123,45

Number systems

- Binary (base two) number system
 digits: 0, 1
- Ternary (base three) number system
 - digits: 0, 1, 2

. . .

- Octonary (base eight) number system
 - digits: 0, 1, 2,..., 7

. . .

- Decimal (base ten) number system/ten base
 - digits: 0, 1, 2,..., 9

. . .

- Hexadecimal (base sixteen) number system
 - digits: 0, 1, 2, ..., 9, A, B, C, D, E, F

Binary	Ternary	Quinary	Octonary	Decimal	Duodecimal	Hexadecimal
p = 2	p = 3	p = 5	p = 8	p = 10	p = 12	p = 16
0	0	0	0	0	0	0
1	1	1	1	1	1	1
					- · ·	1
10	2	2	2	2	2	2
11	10	3	3	3	3	3
100	11	4	4	4	4	4
101	12	10	5	5	5	5
110	20	11	6	6	6	6
111	21	12	7	7	7	7
1000	22	13	10	8	8	8
1001	100	14	11	9	9	9
1010	101	20	12	10	a	Α
1011	102	21	13	11	b	В
1100	110	22	14	12	10	С
1101	111	23	15	13	11	D
1110	112	24	16	14	12	E
1111	120	25	17	15	13	F
10000	121	26	20	16	14	10

Number systems base names

- 2 binary
- 3 ternary
- 4 quaternary
- 5 quinary
- 6 senary
- 7 septenary
- 8 octonary
- 9 nonary

- 10 decimal
- 11 undenary
- 12 duodecimal
- 13 tridecimal
- 14 quattuordecimal
- 15 quindecimal
- 16 sexadecimal

Exercise

Convert each of the following different base representation to its equivalent base ten form:

- 1. $1011100.101_2 =$
- $2. 1221.12_3 =$
- $3.152.43_6 =$
- 4. $173.104_8 =$
- 5. $841.47_9 =$
- **6.** $13A.2F_{16} =$

Convert from base ten to different base number representations

113.45₍₁₀

113	2	
56	1	
28	0	
14	0	
7	0	
3	1	
1	1	†
0	1	
•		

	0	.45	2
	0	.90	
\	1	.8	
	1	.6	
	1	.2	
	0	.4	
	0	.8	
	1	.6	
	1	.2	
	0	.4	
	0	8	

 $1100001.0111001100_{(2)}$

Exercise

- Convert each of the following base ten representation to its equivalent binary form:
 - 1. $962_{10} =$
 - **2.** 3241_{10 =}
 - 3. $871,64_{10} =$
 - 4. $1322,181_{10} =$
- Convert each of the following ten base representation to its equivalent octonary form:
 - 1. 51_{10} =
 - $2. 718_{10} =$
 - 3. $417,18_{10}$ =
 - **4.** 791,27₁₀=
- Convert each of the following ten base representation to its equivalent hexadecimal form:
 - 1. 334₁₀=
 - 2. 8191₁₀=
 - $3. 218,2_{10} =$
 - 4 245,17₁₀=

Connection between the octal and the binary system

Binary	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Connection between the hexadecimal and the binary system

Binary	Hexadecimal	Binary	Hexadecimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Exercise

Convert each of the following binary representation to its equivalent octal and hexadecimal form, and each of the following hexadecimal representation to its equivalent binary and octal form:

```
1. 1110\ 1001\ 1100\ 0011_2 =
```

- 2. $1011\ 0111\ 0101\ 0100_2^- =$
- 3. $1000\ 1101\ 11111\ 0011\ 1101_2 =$
- **4.** $1010\ 1011\ 0011\ 1110\ 0001\ 0101_2 =$
- 5. $3BCF_{16} =$
- 6. BF29 $_{16}^{16}$ =
- 7. $48C5_{16} =$
- 8. $63AE_{16} =$

Excercise

- Convert each of the following ten base representation to its equivalent binary form:
 - 1. $1862_{10} =$
 - **2.** 93281_{10 =}
 - 3. $39871,64_{10} =$
 - 4. $49322,1813_{10} =$
- Convert each of the following ten base representation to its equivalent base seven (septenary) form:
 - 1. 1951₁₀=
 - 2. 82718_{10} =
 - 3. $417,18_{10}$ =
 - **4.** 13791,27₁₀=
- Convert each of the following ten base representation to its equivalent base nine (nonary) form:
 - 1. 2334₁₀=
 - 2. 83191₁₀=
 - $3. 218,92_{10} =$
 - 5245,67₁₀=

Webpages - Practicing - Converters

http://courses.cs.vt.edu/~cs1104/number_c onversion/conv2.html

- http://www.easysurf.cc/cnver18.html
- http://planetcalc.com/862/

