

09/762926

528 Rec PCT/PTO 14 FEB 2001

PCT/EP99/05989

WO 00/11182

SEQUENCE LISTING

<110> SmithKline Beecham Biologicals S.A.

<120> Novel compounds

<130> BM45330

<160> 9

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2769

<212> DNA

<213> Bacteria

<400> 1

atgagatctt	ctttccgggtt	gaagccgatt	tgtttttatc	ttatgggtgt	tatgttatat	60
catcatagtt	atgcccaga	tgcagggcgc	gcgggcagcg	aggcgcagat	acaggttttg	120
gaagatgtgc	acgtcaaggc	gaagcgcgt	ccgaaagaca	aaaaagtgtt	taccgatgcg	180
cgtgccgtat	cgaccgtca	ggatatattc	aaatccagcg	aaaacctcga	caacatcgta	240
cgcagcatcc	ccgggtgcgtt	tacacagcaa	gataaaagct	cgggcattgt	gtcttgaat	300
attcgcggcg	acagcgggtt	cgggcgggtc	aatacgtatgg	tggacggcat	cacgcagacc	360
ttttatttcga	cttcttaccga	tgcgggcagg	gcaggcgggtt	catctcaatt	cggtgcatct	420
gtcgacagca	attttattgc	cggactggat	gtcgtcaaag	gcagcttcag	cggctcggca	480
ggcatcaaca	gccttgccgg	ttcggcgaat	ctgcggactt	taggcgtgga	tgacgtcggt	540
cagggcaata	atacctacgg	cctgctgcta	aaaggctctga	cggcaccaa	ttcaacccaaa	600
ggtaatgcga	tggcggcgat	aggtgcgcgc	aatggctgg	aaagcggagc	atctgtcggt	660
gtgcttacg	ggcacacgcg	gcmcacgtgg	gcmcggaaatt	accgcgtggg	cggcggcggt	720
cagcacatcg	gaaattttgg	cgcggaatat	ctggAACGGC	gcaaacacagcg	atattttgtat	780
caagaaggcg	gggttggaaatt	caattccaac	agcggaaaat	gggagcggga	tttccaaagg	840
ccgtactgga	aaaccaagtg	gtatcaaaaa	tacaatgacc	ccccagaact	gcaaaaatac	900
atcgaaggtc	atgacaaaaag	ctggcgggaa	aacctggcgc	cgcaatacga	catccccccc	960
atcgatccgt	ccagcctgaa	gcagcagtgc	gcaggcaatc	tgtttaaatt	ggaatacgcac	1020

ggcgttattca ataaatacac ggcgcaattt cgcgatttaa acacaaaaat cggcagccgc 1080
 aaaatcatca accgcaatta tcaattcaat tacggtttat cttaaactc atatgccaac 1140
 ctcaatctga ccgcagccta caattcgggc aggcagaaaat atccgaaagg gtcgaagttt 1200
 acaggctggg ggctttaaa agatttgaa acctacaaca acgcgaaaat cctcgacctc 1260
 aacaacaccg ccacccctcg gctgccccgc gaaaccgagt tgcaaaccac tttgggcttc 1320
 aattatttcc aacacgaata cggcaaaaac cgcttcctg aagaattggg gctgttttc 1380
 gacgtccgg atcaggacaa cgggctttat tcctatttgg ggcggtttaa gggcgataaa 1440
 gggctgctgc cccaaaaatc aaccatcgtc caaccggccg gcagccaata tttcaacacg 1500
 ttctacttcg atgcccgcgt caaaaaaaaac atttaccgct taaactacag caccaataacc 1560
 gtcgctacc gtttcggccg cgaatatacg ggcttattacg gctcgatga cgaatttaag 1620
 cgggcattcg gagaaaaactc gccgacatac aagaaacatt gcaaccagag ctgcggaatt 1680
 tatgaaccgg tattgaaaaa atacggcaaa aagcgcgcca acaaccattc ggtcagcatt 1740
 agtgcggact tcggcgatta tttcatgccg ttgcgcagct attcgcgcac acaccgtatg 1800
 cccaacatcc aagaaatgta ttttcccaa atcggcgact cggcggttca caccgcctta 1860
 aaaccagagc gcgcacacac ttggcaattt ggcttcaata cctataaaaaa aggattgtta 1920
 aaacaagatg atacatttagg attaaaactg gtcggctacc gcagccgcat cgacaactac 1980
 atccacaacg tttacggaa atggggat ttgaacggga atattccgag ctgggtcagc 2040
 agcaccggc ttgcctacac catccacacac cgcaatttca aagacaaaagt acacaaacac 2100
 ggttttgagt tggagctgaa ttacgattat gggcggtttt tcaccaacct ttcttacgcc 2160
 tatcaaaaaa gcacgcacacc gaccaacttc agcgatgcga gcgaatcgcc caacaatgct 2220
 tccaaagaag accaactcaa acaaggttat gggttgagca gggttccgc cctgccgcga 2280
 gattacggac gtttggaaagt cggtaacgcgc tggggggca acaaactgac tttgggcggc 2340
 gcgatgcgtc atttcggcaa gacccatccgc gcgcacggctg aagaacgcta tattcgcggc 2400
 accaaacgggg gaaataccag caatgtccgg caactggca agcggtccat caaacaacc 2460
 gaaacccttg cccgcccagcc tttgatttt gatttttacg cgcgttacga gccgaagaaa 2520
 aaccttattt tccgcgcga agtcaaaaat ctgttcgaca ggcgttataat cgatccgcctc 2580
 gatgcgggca atgatgcggc aacgcacgcgt tattacagtt cggtcgaccc gaaagacaag 2640
 gacgaagaag taacgtgtaa tgctgataaa acgttgtgca acggcaaata cggcggcaca 2700
 agcaaaaagcg tattgacccaa tttgcacgc ggacgcaccc tttgataac gatgagctac 2760
 aagttttaa 2769

<210> 2
 <211> 922
 <212> PRT
 <213> Bacteria

<400> 2

Met Arg Ser Ser Phe Arg Leu Lys Pro Ile Cys Phe Tyr Leu Met Gly

1	5	10	15
---	---	----	----

Val Met Leu Tyr His His Ser Tyr Ala Glu Asp Ala Gly Arg Ala Gly

20	25	30
----	----	----

Ser Glu Ala Gln Ile Gln Val Leu Glu Asp Val His Val Lys Ala Lys
35 40 45
Arg Val Pro Lys Asp Lys Lys Val Phe Thr Asp Ala Arg Ala Val Ser
50 55 60
Thr Arg Gln Asp Ile Phe Lys Ser Ser Glu Asn Leu Asp Asn Ile Val
65 70 75 80
Arg Ser Ile Pro Gly Ala Phe Thr Gln Gln Asp Lys Ser Ser Gly Ile
85 90 95
Val Ser Leu Asn Ile Arg Gly Asp Ser Gly Phe Gly Arg Val Asn Thr
100 105 110
Met Val Asp Gly Ile Thr Gln Thr Phe Tyr Ser Thr Ser Thr Asp Ala
115 120 125
Gly Arg Ala Gly Gly Ser Ser Gln Phe Gly Ala Ser Val Asp Ser Asn
130 135 140
Phe Ile Ala Gly Leu Asp Val Val Lys Gly Ser Phe Ser Gly Ser Ala
145 150 155 160
Gly Ile Asn Ser Leu Ala Gly Ser Ala Asn Leu Arg Thr Leu Gly Val
165 170 175
Asp Asp Val Val Gln Gly Asn Asn Thr Tyr Gly Leu Leu Lys Gly
180 185 190
Leu Thr Gly Thr Asn Ser Thr Lys Gly Asn Ala Met Ala Ala Ile Gly
195 200 205
Ala Arg Lys Trp Leu Glu Ser Gly Ala Ser Val Gly Val Leu Tyr Gly
210 215 220
His Ser Arg Arg Thr Trp Ala Gln Asn Tyr Arg Val Gly Gly Gly
225 230 235 240
Gln His Ile Gly Asn Phe Gly Ala Glu Tyr Leu Glu Arg Arg Lys Gln
245 250 255
Arg Tyr Phe Val Gln Glu Gly Leu Lys Phe Asn Ser Asn Ser Gly
260 265 270
Lys Trp Glu Arg Asp Phe Gln Arg Pro Tyr Trp Lys Thr Lys Trp Tyr
275 280 285
Gln Lys Tyr Asn Asp Pro Gln Glu Leu Gln Lys Tyr Ile Glu Gly His
290 295 300
Asp Lys Ser Trp Arg Glu Asn Leu Ala Pro Gln Tyr Asp Ile Thr Pro
305 310 315 320
Ile Asp Pro Ser Ser Leu Lys Gln Gln Ser Ala Gly Asn Leu Phe Lys
325 330 335
Leu Glu Tyr Asp Gly Val Phe Asn Lys Tyr Thr Ala Gln Phe Arg Asp
340 345 350
Leu Asn Thr Lys Ile Gly Ser Arg Lys Ile Ile Asn Arg Asn Tyr Gln

355 360 365
Phe Asn Tyr Gly Leu Ser Leu Asn Ser Tyr Ala Asn Leu Asn Leu Thr
370 375 380
Ala Ala Tyr Asn Ser Gly Arg Gln Lys Tyr Pro Lys Gly Ser Lys Phe
385 390 395 400
Thr Gly Trp Gly Leu Leu Lys Asp Phe Glu Thr Tyr Asn Asn Ala Lys
405 410 415
Ile Leu Asp Leu Asn Asn Thr Ala Thr Phe Arg Leu Pro Arg Glu Thr
420 425 430
Glu Leu Gln Thr Thr Leu Gly Phe Asn Tyr Phe His Asn Glu Tyr Gly
435 440 445
Lys Asn Arg Phe Pro Glu Glu Leu Gly Leu Phe Phe Asp Gly Pro Asp
450 455 460
Gln Asp Asn Gly Leu Tyr Ser Tyr Leu Gly Arg Phe Lys Gly Asp Lys
465 470 475 480
Gly Leu Leu Pro Gln Lys Ser Thr Ile Val Gln Pro Ala Gly Ser Gln
485 490 495
Tyr Phe Asn Thr Phe Tyr Phe Asp Ala Ala Leu Lys Lys Asp Ile Tyr
500 505 510
Arg Leu Asn Tyr Ser Thr Asn Thr Val Gly Tyr Arg Phe Gly Gly Glu
515 520 525
Tyr Thr Gly Tyr Tyr Gly Ser Asp Asp Glu Phe Lys Arg Ala Phe Gly
530 535 540
Glu Asn Ser Pro Thr Tyr Lys Lys His Cys Asn Gln Ser Cys Gly Ile
545 550 555 560
Tyr Glu Pro Val Leu Lys Lys Tyr Gly Lys Lys Arg Ala Asn Asn His
565 570 575
Ser Val Ser Ile Ser Ala Asp Phe Gly Asp Tyr Phe Met Pro Phe Ala
580 585 590
Ser Tyr Ser Arg Thr His Arg Met Pro Asn Ile Gln Glu Met Tyr Phe
595 600 605
Ser Gln Ile Gly Asp Ser Gly Val His Thr Ala Leu Lys Pro Glu Arg
610 615 620
Ala Asn Thr Trp Gln Phe Gly Phe Asn Thr Tyr Lys Lys Gly Leu Leu
625 630 635 640
Lys Gln Asp Asp Thr Leu Gly Leu Lys Leu Val Gly Tyr Arg Ser Arg
645 650 655
Ile Asp Asn Tyr Ile His Asn Val Tyr Gly Lys Trp Trp Asp Leu Asn
660 665 670
Gly Asn Ile Pro Ser Trp Val Ser Ser Thr Gly Leu Ala Tyr Thr Ile
675 680 685

Gln His Arg Asn Phe Lys Asp Lys Val His Lys His Gly Phe Glu Leu
 690 695 700
 Glu Leu Asn Tyr Asp Tyr Gly Arg Phe Phe Thr Asn Leu Ser Tyr Ala
 705 710 715 720
 Tyr Gln Lys Ser Thr Gln Pro Thr Asn Phe Ser Asp Ala Ser Glu Ser
 725 730 735
 Pro Asn Asn Ala Ser Lys Glu Asp Gln Leu Lys Gln Gly Tyr Gly Leu
 740 745 750
 Ser Arg Val Ser Ala Leu Pro Arg Asp Tyr Gly Arg Leu Glu Val Gly
 755 760 765
 Thr Arg Trp Leu Gly Asn Lys Leu Thr Leu Gly Gly Ala Met Arg Tyr
 770 775 780
 Phe Gly Lys Ser Ile Arg Ala Thr Ala Glu Glu Arg Tyr Ile Asp Gly
 785 790 795 800
 Thr Asn Gly Gly Asn Thr Ser Asn Val Arg Gln Leu Gly Lys Arg Ser
 805 810 815
 Ile Lys Gln Thr Glu Thr Leu Ala Arg Gln Pro Leu Ile Phe Asp Phe
 820 825 830
 Tyr Ala Ala Tyr Glu Pro Lys Lys Asn Leu Ile Phe Arg Ala Glu Val
 835 840 845
 Lys Asn Leu Phe Asp Arg Arg Tyr Ile Asp Pro Leu Asp Ala Gly Asn
 850 855 860
 Asp Ala Ala Thr Gln Arg Tyr Tyr Ser Ser Phe Asp Pro Lys Asp Lys
 865 870 875 880
 Asp Glu Glu Val Thr Cys Asn Ala Asp Lys Thr Leu Cys Asn Gly Lys
 885 890 895
 Tyr Gly Gly Thr Ser Lys Ser Val Leu Thr Asn Phe Ala Arg Gly Arg
 900 905 910
 Thr Phe Leu Ile Thr Met Ser Tyr Lys Phe
 915 920

<210> 3
<211> 2769
<212> DNA
<213> Bacteria

<400> 3

atgagatctt cttccgggtt gaagccgatt tggttttatc ttatgggtgt tatgttatat	60
catcatagtt atgccgaaga tgcagggcgc gcgggcagcg aggccagat acagggttttg	120
gaagatgtgc acgtcaaggc gaagcgcgtt ccgaaagaca aaaaagtgtt taccgatgcg	180
cgtgccgtat cgaccggcgtca ggatatattc aaatccagcg aaaacccgtca caacatcgta	240

cgccagcatcc ccgggtgcgtt tacacagcaa gataaaagct cgggcattgt gtctttgaat 300
 attcgcggcg acagcggggtt cgggcgggtc aatacgatgg tggacggcat cacgcagacc 360
 ttttattcga ctcttaccga tgcgggcagg gcaggcggtt catctcaatt cggtgcacatc 420
 gtcgacagca attttattgc cggactggat gtctgtcaaag gcagcttcag cggctcggca 480
 ggcatcaaca gccttgccgg ttccggcaat ctgcggactt taggcgtgga tgacgtcggt 540
 cagggcaata atacctacgg cctgtctcta aaaggctctga cccgcaccaa ttcaaccaaa 600
 ggtaatgcga tggcggcgat aggtgcgcgc aaatggctgg aaagcggagc atctgtcggt 660
 gtgcgtttacg ggcacagcag gcgcagcgtg gcgcaaaatt accgcgtggg cggcggcggg 720
 cagcacatcg gaaattttgg cgcggaatat ctggAACGGC gcaaggcagcg atatTTGTA 780
 caagaaggcg gggtgaaatt caattccaac agcggaaaat gggagcggga ttccaaagg 840
 ccgtactgga aaaccaagtg gtataaaaaa tacaatgacc cccagaact gcaaaaaatac 900
 atcgaaggc atgacaaaag ctggcggaa aacctggcgc cgcaatacga catcaccccc 960
 atcgatccgt ccagcctgaa gcagcagtcg gcaggcaatc tgtttaatt ggaatacgc 1020
 ggcgtattca ataaatacac ggcgaattt cgcgatttaa acaccaaaat cggcagccgc 1080
 aaaatcatca accgcaatta tcaattcaat tacggtttat cttaaactc atatgccaac 1140
 ctcaatctga ccgcagccta caattcggc aggcagaaaat atccgaaagg gtcgaagttt 1200
 acaggctggg ggctttaaa agatTTGAA acctacaaca acgcggaaaat cctcgacctc 1260
 aacaacaccc ccacccctcg gctccccgc gaaaccgagt tgcaaacacc tttgggcttc 1320
 aattatttcc acaacgaata cggcaaaaac cgcttcctg aagaattggg gctgttttc 1380
 gacggtccgg atcaggacaa cgggctttat tcctatttgg ggccgtttaa gggcgataaa 1440
 gggctgctgc cccaaaaatc aaccatcgca caaccggccg gcagccaata ttcaacacg 1500
 ttctacttcg atgcccgcgt caaaaaaaaac atttaccgct taaactacag caccaataacc 1560
 gtcggctacc gtttcggcgg cgaatatacg ggcttacg gtcggatga cgaatTTAAG 1620
 cgggcattcg gagaaaaactc gcccacatac aagaaacatt gcaaccagag ctgcggatt 1680
 tatgaacccg tattgaaaaa atacggcaaa aagcgcgcaca acaaccattc ggtcagcatt 1740
 agtgcggact tcggcgatta ttcatgccg ttgcgcagct attcgcgcac acaccgtatg 1800
 cccaaatcc aagaaatgtt ttttcccaa atcggcgact cggcggttca caccgcctt 1860
 aaaccagagc ggcgcacac ttggcaattt ggcttcaata cctataaaaaa aggattgtta 1920
 aaacaagatg atacattagg attaaaaactg gtcggctacc gcagccgcata cgacaactac 1980
 atccacaacg ttacggaa atgggtggat ttgaacggga atattccgag ctgggtcagc 2040
 agcaccgggc ttgcctacac catccacac cgcatttca aagacaaaagt acacaaacac 2100
 gttttgagt tggagctgaa ttacgattat gggcggtttt tcaccaacct ttcttacgccc 2160
 tatcaaaaaa gcacgcaccc gaccaacttc agcgatgcga gcgaatgcgc caacaatgcg 2220
 tccaaagaag accaactcaa acaaggttat gggttgagca gggttccgc cctgcccgcga 2280
 gattacggac gtttggaaat cggtaacgcgc tgggtggca acaaactgac tttggcggc 2340
 gcgatgcgcgtt attcggccaa gagcatccgc gcgcacggctg aagaacgcata ttcgcacggc 2400
 accaacgggg gaaataccag caatgtccgg caactggca agcgttccat caaacaacc 2460
 gaaacccttg cccgccagcc ttgttattt gattttacg cgcgttacga gccgaagaaa 2520
 aacccatttt tccgcgcgcgca agtcaaaaaat ctgttcgaca ggcgttatat cgatccgcctc 2580
 gatgcgggca atgatgcggc aacgcagcgt tattacagtt cgttcgaccc gaaagacaag 2640
 gacgaagaag taacgtgtaa tgctgataaa acgttgcgtca acggcaaata cggcggcaca 2700

agcaaaagcg tattgaccaa ttttgcacgc ggacgcaccc ttgtataac gatgagctac	2760
aagttaaa	2769

<210> 4
<211> 922
<212> PRT
<213> Bacteria

<400> 4		
Met Arg Ser Ser Phe Arg Leu Lys Pro Ile Cys Phe Tyr Leu Met Gly		
1	5	10
Val Met Leu Tyr His His Ser Tyr Ala Glu Asp Ala Gly Arg Ala Gly		
20	25	30
Ser Glu Ala Gln Ile Gln Val Leu Glu Asp Val His Val Lys Ala Lys		
35	40	45
Arg Val Pro Lys Asp Lys Lys Val Phe Thr Asp Ala Arg Ala Val Ser		
50	55	60
Thr Arg Gln Asp Ile Phe Lys Ser Ser Glu Asn Leu Asp Asn Ile Val		
65	70	75
Arg Ser Ile Pro Gly Ala Phe Thr Gln Gln Asp Lys Ser Ser Gly Ile		
85	90	95
Val Ser Leu Asn Ile Arg Gly Asp Ser Gly Phe Gly Arg Val Asn Thr		
100	105	110
Met Val Asp Gly Ile Thr Gln Thr Phe Tyr Ser Thr Ser Thr Asp Ala		
115	120	125
Gly Arg Ala Gly Gly Ser Ser Gln Phe Gly Ala Ser Val Asp Ser Asn		
130	135	140
Phe Ile Ala Gly Leu Asp Val Val Lys Gly Ser Phe Ser Gly Ser Ala		
145	150	155
Gly Ile Asn Ser Leu Ala Gly Ser Ala Asn Leu Arg Thr Leu Gly Val		
165	170	175
Asp Asp Val Val Gln Gly Asn Asn Thr Tyr Gly Leu Leu Leu Lys Gly		
180	185	190
Leu Thr Gly Thr Asn Ser Thr Lys Gly Asn Ala Met Ala Ala Ile Gly		
195	200	205
Ala Arg Lys Trp Leu Glu Ser Gly Ala Ser Val Gly Val Leu Tyr Gly		
210	215	220
His Ser Arg Arg Ser Val Ala Gln Asn Tyr Arg Val Gly Gly Gly		
225	230	235
Gln His Ile Gly Asn Phe Gly Ala Glu Tyr Leu Glu Arg Arg Lys Gln		
245	250	255

Arg Tyr Phe Val Gln Glu Gly Gly Leu Lys Phe Asn Ser Asn Ser Gly
260 265 270
Lys Trp Glu Arg Asp Phe Gln Arg Pro Tyr Trp Lys Thr Lys Trp Tyr
275 280 285
Gln Lys Tyr Asn Asp Pro Gln Glu Leu Gln Lys Tyr Ile Glu Gly His
290 295 300
Asp Lys Ser Trp Arg Glu Asn Leu Ala Pro Gln Tyr Asp Ile Thr Pro
305 310 315 320
Ile Asp Pro Ser Ser Leu Lys Gln Gln Ser Ala Gly Asn Leu Phe Lys
325 330 335
Leu Glu Tyr Asp Gly Val Phe Asn Lys Tyr Thr Ala Gln Phe Arg Asp
340 345 350
Leu Asn Thr Lys Ile Gly Ser Arg Lys Ile Ile Asn Arg Asn Tyr Gln
355 360 365
Phe Asn Tyr Gly Leu Ser Leu Asn Ser Tyr Ala Asn Leu Asn Leu Thr
370 375 380
Ala Ala Tyr Asn Ser Gly Arg Gln Lys Tyr Pro Lys Gly Ser Lys Phe
385 390 395 400
Thr Gly Trp Gly Leu Leu Lys Asp Phe Glu Thr Tyr Asn Asn Ala Lys
405 410 415
Ile Leu Asp Leu Asn Asn Thr Ala Thr Phe Arg Leu Pro Arg Glu Thr
420 425 430
Glu Leu Gln Thr Thr Leu Gly Phe Asn Tyr Phe His Asn Glu Tyr Gly
435 440 445
Lys Asn Arg Phe Pro Glu Glu Leu Gly Leu Phe Phe Asp Gly Pro Asp
450 455 460
Gln Asp Asn Gly Leu Tyr Ser Tyr Leu Gly Arg Phe Lys Gly Asp Lys
465 470 475 480
Gly Leu Leu Pro Gln Lys Ser Thr Ile Val Gln Pro Ala Gly Ser Gln
485 490 495
Tyr Phe Asn Thr Phe Tyr Phe Asp Ala Ala Leu Lys Lys Asp Ile Tyr
500 505 510
Arg Leu Asn Tyr Ser Thr Asn Thr Val Gly Tyr Arg Phe Gly Gly Glu
515 520 525
Tyr Thr Gly Tyr Tyr Gly Ser Asp Asp Glu Phe Lys Arg Ala Phe Gly
530 535 540
Glu Asn Ser Pro Thr Tyr Lys Lys His Cys Asn Gln Ser Cys Gly Ile
545 550 555 560
Tyr Glu Pro Val Leu Lys Lys Tyr Gly Lys Lys Arg Ala Asn Asn His
565 570 575
Ser Val Ser Ile Ser Ala Asp Phe Gly Asp Tyr Phe Met Pro Phe Ala

580	585	590
Ser Tyr Ser Arg Thr His Arg Met Pro Asn Ile Gln Glu Met Tyr Phe		
595	600	605
Ser Gln Ile Gly Asp Ser Gly Val His Thr Ala Leu Lys Pro Glu Arg		
610	615	620
Ala Asn Thr Trp Gln Phe Gly Phe Asn Thr Tyr Lys Lys Gly Leu Leu		
625	630	635
Lys Gln Asp Asp Thr Leu Gly Leu Lys Leu Val Gly Tyr Arg Ser Arg		
645	650	655
Ile Asp Asn Tyr Ile His Asn Val Tyr Gly Lys Trp Trp Asp Leu Asn		
660	665	670
Gly Asn Ile Pro Ser Trp Val Ser Ser Thr Gly Leu Ala Tyr Thr Ile		
675	680	685
Gln His Arg Asn Phe Lys Asp Lys Val His Lys His Gly Phe Glu Leu		
690	695	700
Glu Leu Asn Tyr Asp Tyr Gly Arg Phe Phe Thr Asn Leu Ser Tyr Ala		
705	710	715
Tyr Gln Lys Ser Thr Gln Pro Thr Asn Phe Ser Asp Ala Ser Glu Ser		
725	730	735
Pro Asn Asn Ala Ser Lys Glu Asp Gln Leu Lys Gln Gly Tyr Gly Leu		
740	745	750
Ser Arg Val Ser Ala Leu Pro Arg Asp Tyr Gly Arg Leu Glu Val Gly		
755	760	765
Thr Arg Trp Leu Gly Asn Lys Leu Thr Leu Gly Gly Ala Met Arg Tyr		
770	775	780
Phe Gly Lys Ser Ile Arg Ala Thr Ala Glu Glu Arg Tyr Ile Asp Gly		
785	790	795
Thr Asn Gly Gly Asn Thr Ser Asn Val Arg Gln Leu Gly Lys Arg Ser		
805	810	815
Ile Lys Gln Thr Glu Thr Leu Ala Arg Gln Pro Leu Ile Phe Asp Phe		
820	825	830
Tyr Ala Ala Tyr Glu Pro Lys Lys Asn Leu Ile Phe Arg Ala Glu Val		
835	840	845
Lys Asn Leu Phe Asp Arg Arg Tyr Ile Asp Pro Leu Asp Ala Gly Asn		
850	855	860
Asp Ala Ala Thr Gln Arg Tyr Tyr Ser Ser Phe Asp Pro Lys Asp Lys		
865	870	875
Asp Glu Glu Val Thr Cys Asn Ala Asp Lys Thr Leu Cys Asn Gly Lys		
885	890	895
Tyr Gly Gly Thr Ser Lys Ser Val Leu Thr Asn Phe Ala Arg Gly Arg		
900	905	910

Thr Phe Leu Ile Thr Met Ser Tyr Lys Phe

915

920

<210> 5

<211> 2766

<212> DNA

<213> Bacteria

<400> 5

atgagatctt	ctttccgggtt	gaagccgatt	tgttttacc	ttatgggtgt	tacgctata	60
cattatagtt	atgccgaaga	tgcagggcgc	gcgggcagcg	aggcgcagat	acaggtttg	120
gaagatgtgc	acgtcaaggc	gaagcgcgt	ccgaaagaca	aaaaagtgtt	taccgatgc	180
cgtccgtat	cgacccgtca	ggatataattc	aaatccagcg	aaaacctcga	caacatcgta	240
cgcagcatcc	ccgggtgcgtt	tacacagcaa	gataaaagct	cggcattgt	gtctttgaat	300
attcgcggcg	acagcgggtt	cgggcgggtc	aatacgtgg	tggacggcat	cacgcagacc	360
ttttattcga	cttctaccga	tgcggcagg	gcaggcgggtt	catctcaatt	cggtgcattct	420
gtcgacagca	attttattgc	cggactggat	gtcgtcaaag	gcagcttcag	cggctcggca	480
ggcatcaaca	gccttgcggg	ttcggcgaat	ctgcggactt	taggcgtgga	tgacgtcg	540
cagggcaata	atacctacgg	cctgctgcta	aaaggctctga	ccggcaccaa	ttcaacccaa	600
ggtaatgcga	tggcggcgat	aggtgcgcgc	aatggctgg	aaagcggagc	atctgtcggt	660
gtgcttacg	ggcacagcag	gcmcagcgt	gcmcacaatt	accgcgtgg	cggcggcggg	720
cagcacatcg	gaaattttgg	cgcggaatat	ttggAACGGC	gcaagcagcg	atattttgt	780
caagaggggt	ctttaaaatt	caattccgac	agcggaaaat	gggagcggga	tttacaaagg	840
caacagtgg	aataacaagcc	gtataaaaat	tacaacaacc	aagaactaca	aaaatacatc	900
gaaggtcatg	acaaaagctg	gcggaaaaac	ctggcgccgc	aatacgcacat	cacccccatc	960
gatccgtcca	gcctgaagca	gcagtcggca	ggcaatctgt	ttaaatttgg	atacgacggc	1020
gtattcaata	aatacacggc	gcaatttgc	gatTTTGTCTT	tgaacccgt	taccaacctc	1080
atcatcaacc	gcaatttatca	gttcaattac	ggTTTGTCTT	tgaacccgt	taccaacctc	1140
aatctgaccg	cagcctacaa	ttcggcagg	cagaaatatc	cgaaagggtc	gaagtttaca	1200
ggctgggggc	ttttaaagg	ttttaaaacc	tacaacaacg	cgaaaatcct	cgacaccaac	1260
aacaccgcca	ccttccggct	gccccgcgaa	accgagttgc	aaaccacattt	gggcttcaat	1320
tatTTCCACA	acgaatacgg	caaaaaccgc	tttcttgaag	aattggggct	ttttttcgac	1380
ggctccgtatc	aggacaacgg	gttttattcc	tatTTGGGGC	ggTTTAAAGGG	cgataaagg	1440
ctgctcccc	aaaaatcaac	cattgtccaa	ccggccggca	gccaatattt	caacacgttc	1500
tacttcgtatg	ccgcgtcaa	aaaagacatt	taccgcttaa	actacagcac	caataccgtc	1560
ggctaccgtt	tcggcggcga	atatacgggc	tattacggct	cgatgacga	attaagcgg	1620
gcattcggag	aaaactcgcc	gacatacaag	aaacatttgc	accggagctg	cgggatttat	1680
gaaccctgtat	tgaaaaaaaata	cgcaaaaag	cgcggcaaca	accattcggt	cagcattagt	1740
gcggacttcg	gcgattattt	catgccgttc	gccagctatt	cgcgacacaca	ccgtatgccc	1800
aacatccaag	aaatgttattt	ttcccaaatac	ggcgactccg	gcgttacac	cgccttaaaa	1860
ccagagcgcg	caaacacttg	gcaatttggc	ttcaataac	ataaaaaagg	attgttaaaa	1920

caagatgata cattaggatt aaaactggtc ggctaccgca gccgcacatcgca caactacatc	1980
cacaacgttt acgggaaatg gtgggatttg aacggggata ttcccgagctg ggtcagcagc	2040
accgggcttg cctacacccat ccaacatcgc aatttcaaag acaaagtgcacaaacacggt	2100
tttgagttgg agctgaatta cgattatggg cgtttttca ccaacctttc ttacgcctat	2160
caaaaaagca cgcaaccgac caacttcagc gatgcgagcg aatcgcccaa caatgcgtcc	2220
aaagaagacc aactcaaaca aggttatggg ttgagcaggg tttccgcctt gcccggagat	2280
tacggacgtt tggaagtcgg tacgcgctgg ttgggcaaca aactgacttt gggcgccg	2340
atgcgttatt tcggcaagag catccgcgcg acggctgaag aacgcgtatata cgacggcacc	2400
aacggggaa ataccagcaa ttccggcaa ctgggcaagc gttccatcaa acaaaccgaa	2460
actcttgcgc gccagcctt gatttttgat ttttacgcgcg cttacgagcc gaagaaaaac	2520
cttattttcc gcgcgcgaagt caaaaatctg ttgcacaggc gttatatcgat tccgctcgat	2580
gcgggcaatg atgcggcaac gcagcgat tacagctcgat tcgaccggaa agacaaggac	2640
gaagacgtta cgtgtaatgc tgataaaaacg ttgtgcaacg gcaaaatacgg cggcacaaggc	2700
aaaagcgtat tgaccaattt tgcacgcgga cgcacccat tgataacgat gagctacaag	2760
ttttaa	2766

<210> 6
<211> 921
<212> PRT
<213> Bacteria

<400> 6

```

Met Arg Ser Ser Phe Arg Leu Lys Pro Ile Cys Phe Tyr Leu Met Gly
      1           5           10          15
Val Thr Leu Tyr His Tyr Ser Tyr Ala Glu Asp Ala Gly Arg Ala Gly
      20          25          30
Ser Glu Ala Gln Ile Gln Val Leu Glu Asp Val His Val Lys Ala Lys
      35          40          45
Arg Val Pro Lys Asp Lys Lys Val Phe Thr Asp Ala Arg Ala Val Ser
      50          55          60
Thr Arg Gln Asp Ile Phe Lys Ser Ser Glu Asn Leu Asp Asn Ile Val
      65          70          75          80
Arg Ser Ile Pro Gly Ala Phe Thr Gln Gln Asp Lys Ser Ser Gly Ile
      85          90          95
Val Ser Leu Asn Ile Arg Gly Asp Ser Gly Phe Gly Arg Val Asn Thr
      100         105         110
Met Val Asp Gly Ile Thr Gln Thr Phe Tyr Ser Thr Ser Thr Asp Ala
      115         120         125
Gly Arg Ala Gly Gly Ser Ser Gln Phe Gly Ala Ser Val Asp Ser Asn
      130         135         140
Phe Ile Ala Gly Leu Asp Val Val Lys Gly Ser Phe Ser Gly Ser Ala

```

145 150 155 160
Gly Ile Asn Ser Leu Ala Gly Ser Ala Asn Leu Arg Thr Leu Gly Val
165 170 175
Asp Asp Val Val Gln Gly Asn Asn Thr Tyr Gly Leu Leu Leu Lys Gly
180 185 190
Leu Thr Gly Thr Asn Ser Thr Lys Gly Asn Ala Met Ala Ala Ile Gly
195 200 205
Ala Arg Lys Trp Leu Glu Ser Gly Ala Ser Val Gly Val Leu Tyr Gly
210 215 220
His Ser Arg Arg Ser Val Ala Gln Asn Tyr Arg Val Gly Gly Gly
225 230 235 240
Gln His Ile Gly Asn Phe Gly Ala Glu Tyr Leu Glu Arg Arg Lys Gln
245 250 255
Arg Tyr Phe Val Gln Glu Gly Ala Leu Lys Phe Asn Ser Asp Ser Gly
260 265 270
Lys Trp Glu Arg Asp Leu Gln Arg Gln Gln Trp Lys Tyr Lys Pro Tyr
275 280 285
Lys Asn Tyr Asn Asn Gln Glu Leu Gln Lys Tyr Ile Glu Gly His Asp
290 295 300
Lys Ser Trp Arg Glu Asn Leu Ala Pro Gln Tyr Asp Ile Thr Pro Ile
305 310 315 320
Asp Pro Ser Ser Leu Lys Gln Gln Ser Ala Gly Asn Leu Phe Lys Leu
325 330 335
Glu Tyr Asp Gly Val Phe Asn Lys Tyr Thr Ala Gln Phe Arg Asp Leu
340 345 350
Asn Thr Lys Ile Gly Ser Arg Lys Ile Ile Asn Arg Asn Tyr Gln Phe
355 360 365
Asn Tyr Gly Leu Ser Leu Asn Pro Tyr Thr Asn Leu Asn Leu Thr Ala
370 375 380
Ala Tyr Asn Ser Gly Arg Gln Lys Tyr Pro Lys Gly Ser Lys Phe Thr
385 390 395 400
Gly Trp Gly Leu Leu Lys Asp Phe Glu Thr Tyr Asn Asn Ala Lys Ile
405 410 415
Leu Asp Leu Asn Asn Thr Ala Thr Phe Arg Leu Pro Arg Glu Thr Glu
420 425 430
Leu Gln Thr Thr Leu Gly Phe Asn Tyr Phe His Asn Glu Tyr Gly Lys
435 440 445
Asn Arg Phe Pro Glu Glu Leu Gly Leu Phe Phe Asp Gly Pro Asp Gln
450 455 460
Asp Asn Gly Leu Tyr Ser Tyr Leu Gly Arg Phe Lys Gly Asp Lys Gly
465 470 475 480

Leu Leu Pro Gln Lys Ser Thr Ile Val Gln Pro Ala Gly Ser Gln Tyr
 485 490 495
 Phe Asn Thr Phe Tyr Phe Asp Ala Ala Leu Lys Lys Asp Ile Tyr Arg
 500 505 510
 Leu Asn Tyr Ser Thr Asn Thr Val Gly Tyr Arg Phe Gly Gly Glu Tyr
 515 520 525
 Thr Gly Tyr Tyr Gly Ser Asp Asp Glu Phe Lys Arg Ala Phe Gly Glu
 530 535 540
 Asn Ser Pro Thr Tyr Lys Lys His Cys Asn Arg Ser Cys Gly Ile Tyr
 545 550 555 560
 Glu Pro Val Leu Lys Lys Tyr Gly Lys Lys Arg Ala Asn Asn His Ser
 565 570 575
 Val Ser Ile Ser Ala Asp Phe Gly Asp Tyr Phe Met Pro Phe Ala Ser
 580 585 590
 Tyr Ser Arg Thr His Arg Met Pro Asn Ile Gln Glu Met Tyr Phe Ser
 595 600 605
 Gln Ile Gly Asp Ser Gly Val His Thr Ala Leu Lys Pro Glu Arg Ala
 610 615 620
 Asn Thr Trp Gln Phe Gly Phe Asn Thr Tyr Lys Lys Gly Leu Leu Lys
 625 630 635 640
 Gln Asp Asp Thr Leu Gly Leu Lys Leu Val Gly Tyr Arg Ser Arg Ile
 645 650 655
 Asp Asn Tyr Ile His Asn Val Tyr Gly Lys Trp Trp Asp Leu Asn Gly
 660 665 670
 Asp Ile Pro Ser Trp Val Ser Ser Thr Gly Leu Ala Tyr Thr Ile Gln
 675 680 685
 His Arg Asn Phe Lys Asp Lys Val His Lys His Gly Phe Glu Leu Glu
 690 695 700
 Leu Asn Tyr Asp Tyr Gly Arg Phe Phe Thr Asn Leu Ser Tyr Ala Tyr
 705 710 715 720
 Gln Lys Ser Thr Gln Pro Thr Asn Phe Ser Asp Ala Ser Glu Ser Pro
 725 730 735
 Asn Asn Ala Ser Lys Glu Asp Gln Leu Lys Gln Gly Tyr Gly Leu Ser
 740 745 750
 Arg Val Ser Ala Leu Pro Arg Asp Tyr Gly Arg Leu Glu Val Gly Thr
 755 760 765
 Arg Trp Leu Gly Asn Lys Leu Thr Leu Gly Gly Ala Met Arg Tyr Phe
 770 775 780
 Gly Lys Ser Ile Arg Ala Thr Ala Glu Glu Arg Tyr Ile Asp Gly Thr
 785 790 795 800
 Asn Gly Gly Asn Thr Ser Asn Phe Arg Gln Leu Gly Lys Arg Ser Ile

805 810 815
Lys Gln Thr Glu Thr Leu Ala Arg Gln Pro Leu Ile Phe Asp Phe Tyr
820 825 830
Ala Ala Tyr Glu Pro Lys Lys Asn Leu Ile Phe Arg Ala Glu Val Lys
835 840 845
Asn Leu Phe Asp Arg Arg Tyr Ile Asp Pro Leu Asp Ala Gly Asn Asp
850 855 860
Ala Ala Thr Gln Arg Tyr Tyr Ser Ser Phe Asp Pro Lys Asp Lys Asp
865 870 875 880
Glu Asp Val Thr Cys Asn Ala Asp Lys Thr Leu Cys Asn Gly Lys Tyr
885 890 895
Gly Gly Thr Ser Lys Ser Val Leu Thr Asn Phe Ala Arg Gly Arg Thr
900 905 910
Phe Leu Ile Thr Met Ser Tyr Lys Phe
915 920

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7

gcttagctagc agatcttctt tcgggaagaa

30

<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 8

ggtcgcgtcgaa gaaaacttgta gctcatcgtt atca

34

<210> 9
<211> 1000
<212> DNA

<213> Bacteria

<400> 9

tatccgataa gtttccgtac cgaacagact agattcccg	ctgcgcggga atgacgattc	60
ataagttcc cgaaattcca acataaccga aacctgacag	taaccgttagc aactgaaccg	120
tcattcccac gaaaagtggga atctagaaat gaaaagcaac	aggcatttat cgaaaataac	180
tgaaaccgaa cagactagat tccccctgc gcgggaatga	cgattcataa gtttcccgaa	240
attccaacat aaccgaaacc tgacagtaac cgtagtaact	gaaccgtcat tcccacgaaa	300
gtgggaatct agaaatgaaa agcaacaggc atttatcgga	aataactgga accgaacaga	360
cctagattcc cgcctgcgcg ggaatgacgg ctgcagatgc	ccgacggctt ttatagcaga	420
ttaacaaaaa tcaggacaag gcggcgagcc acagacagta	caaacagtac ggaaccgatt	480
cacttggtgc ttcagcacct tagagaatcg ttctcttga	gctaaggcga gacaacgccc	540
tactggttt tggtaatccg ctatattccg ccatctctaa	gatttacagc gatacacggg	600
taatttaagg aatggccgaa ccgtcattcc cgccactttt	cgtcattccc accactttt	660
gtcattcccg cgcaggcggg aatctagaat ctcggacttt	cagataatct ttgaatattg	720
ctgttgttct aaggttttaga ttccccttgc gcgggaatga	cgattcataa gtttcccgaa	780
attccaacat aaccgaaacc tgacagtaac cgtagcaaca	gagaatcggt ctctttgagc	840
taaggcggaa caacgctgta ccggtttttg ttaatccact	ataaatatcc aattgaaaatc	900
ttcagacggt atatcgaatt tacactttt aatgtttatg	ccgcctaaaa aaatgctaatt	960
atatttctta attgtctgac tgtttattgt tgaggaaaat		1000

SEQUENCE INFORMATION

BASB024 Polynucleotide and Polypeptide Sequences

SEQ ID NO:1

Neisseria meningitidis BASB024 polynucleotide sequence from strain ATCC 13090

ATGAGATCTTCTTCGGTTGAAGCGATTGTTTATCTTATGGGTGTTATGCTATATCATAGTTATGCCGAAGA
TGCAGGGCGCGCGGCAGCGAGGCGCAGATAACAGGTTTGGAAAGATGTGCACGTCAAGCGAAGCGCTACCGAAAGACA
AAAAAGTGTTCACCGATGCGCGTGCCTATCGACCCGTAGGATATATTCAAATCCAGCGAAAACCTCGACAACATCGTA
CGCAGCATCCCCGGTGCCTTACACAGCAAGATAAAAGCTCGGCATTGTCTTGAAATTTCGCGGCACAGCGGGTT
CGGGCGGGTCAATACGATGGTGGACGGCATCACGCAACCTTTATTGACTTCTACCGATGCGGGCAGGGCAGGCGGTT
CATCTCAATTGGTGCATCTGTCGACAGCAATTATTGCCGACTGGATGTCGTCAGGCAGCTCAGCGGCTCGGCA
GGCATCAACAGCCTGCCGGTTCGGCGAATCTCGGACTTTAGGCGTGGATGACGTCGTTAGGCAATAATACCTACGG
CCTGCTGCTAAAGGTCTGACCGGACCAATTCAACCAAAGGTAAATGCGATGGCGCGATAGGTGCGCAGAACATGGCTGG
AAAGCGGAGCATCTGCGGTGCTTACGGGACAGCAGGCGACGTGGCGCAAATTACCGCGTGGCGGGCGCGGG
CAGCACATCGGAAATTGGCGCGAATATCTGGAACGGCGAAACAGCGATATTGTACAAGAAGGCGGGTTGAAATT
CAATTCCAACAGCGGAAATGGGAGCGGATTCTCAAAGGCCGTACTGGAAACAGTGGTATCAAAATACAATGACC
CCCAAGAACTGAAAAATACATCGAAGGTCAATGACAAAAGCTGGGGAAAACCTGGCGCCGAAATACGACATCACCCCC
ATCGATCCGTCAGCCTGAAGCAGCAGTCGGCAGGCAATTGTTAAATTGGAATACGACGGCGTATTCAATAATACAC
GGCGCAATTGCGATTAAACACCAAAATCGCAGCGCAAATCATCAACCGCAATTATCAATTCAATTACGGTTTAT
CTTTAAACTCATATGCCAACCTCAATTGACCGCAGCCTACAATTGGCAGGCAAAATATCGAAAGGGTCAAGTTT
ACAGGCTGGGGCTTTAAAGATTGAAACCTACAACACCGAAAATCTCGACCTCAACAAACACCGCCACCTCCG
GCTGCCCGGAAACCGAGTTGCAAACCACTTGGCTCAATTATTCCACAACGAATACGGCAAAACCGCTTCCG
AAGAATTGGGCTGTTTTCGACGGTCCGGATCAGGACAACGGGCTTATTCTATTGGGGCGTTAAAGGGCGATAAA
GGGCTGCTGCCCAAAATCAACCATCGTCAAACGGCGGGCAGCCAATTTCACACGTTCTACTTCGATGCCGCGCT
AAAAAAAGACATTACCGCTTAAACTACAGCACCAATTACCGTCGGCTACCGTTTCGGCGGAATATACGGCTATTACG
GCTCGGATGACGAATTAAAGCGGGCATTGGAGAAAACTCGCCACATAAGAAACATTGCAACAGAGCTGGGAATT
TATGAACCGTATTGAAAAAATACGGCAAAAGCGGCCAACACCATTGTCAGCATTAGTGCAGCTTCGGGATT
TTTCATGCCGTTGCCAGCTATTGCGCACACACCGTATGCCAACATCCAAGAAATGTATTTCGAAATCGCGACT
CCGGCGTTCACACCGCCTTAAACACAGAGCGCGAAACACTTGGCAATTGGCTCAATACCTATAAAAAGGATTGTTA
AAACAAGATGATACTTAGGATTAACCTGGCTACCGCAGCCGATCGACAAACTACATCCACAACGTTACGGAA
ATGGTGGGATTGAAACGGGAATTCCGAGCTGGCTAGCAGCACCGGCTTGCCTACACCATTCAACACCGCAATTCA
AAGACAAAGTACACAAACACGGTTTGAGTTGGAGCTGAATTACGATTATGGCGTTTTTCAACACCTTCTACGCC
TATCAAAAAGCAGCAACCGACCAACTTCAGCGATGCGAGCGAATGCCAACATGCGTCAAAGAAGACCAACTCAA
ACAAGGTTATGGGTTGAGCAGGGTTCCGCCCTGCCGAGATTACGGACGTTGGAAAGTCGGTACCGCCTGGTGGCA
ACAAAATGACTTGGCGGCCGATGCGTATTGCGCAAGAGCATCCGCGACGGCTGAAGAACGCTATATCGACGCC
ACCAACGGGGAAATACCAAGCAATGTCCGGCAACTGGCAAGCGTTCCATCAAACAAACCGAAACCTTGGCCAGCC
TTTGATTTTGATTTCACGCCGTTACGAGCGAAGAAAAACCTTATTTCGCGCCGAAGTCAAAATCTGTTGACA

GGCGTTATATCGATCCGCTCGATGCCGGCAATGATGCCGAAACGCCAGCGTTATTACAGTTCGTGCACCGAAAGACAAG
GACGAAGAAGTAACGTGTAATGCTGATAAACGTTGTGCAACGCCAATACGGCGCACAAGCAAAGCGTATTGACCAA
TTTGACCGCGACGCACCTTTGATAACGATGAGCTACAAGTTTAA

SEQ ID NO:2

Neisseria meningitidis BASB024 polypeptide sequence deduced from the polynucleotide of Seq ID NO:1

MRSSFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVAKRVPDKKVFTDARAVSTRQDIFKSSENLDNIV
RSIPGAFTQQDKSSGIVSLNIRGDSGFRVNTMVDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSA
GINSLAGSANLRTLGVDDVVQGNNTYGLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSSRTWAQNYRVGGGG
QHIGNFGAEYLERRKQRYFVQEGLKFNSNSGKWERDFQRPYWTKWYQKYNDPQELQKYIEGHDKSWRENLPQYDITP
IDPSSLKQQSAGNLFKLEYDGVFNKYTAQFRDLNTKIGSRKIINRNQFNYGLSLSYANLNLTAAYNNSGRQKYPKGSKF
TGWGLLKDFETYNNAKILDNNNTATFRLPRETELQTTLGPNYFHNEYGKNRFPEELGLFFDGPQDNGLYSYLGRFKGDK
GLLPQKSTIVQPAGSQYFNTFYFDAALKDIYRLNYSNTVGYRGGEYTGYGSDDEFKRAFGENSPTYKKHCNQSCGI
YEPLKKYGGKRANNHSVSISADFGDYFMPFASYSRTHRMPNIQEMYFSQIGDGSVHTALKPERANTWQFGFNTYKKGLL
KQDDTLGLKLVGYRSRIDNYIHNVYWKWDLNGNIPSWVSSTGLAYTIQHRNFKDVKHGFELELNYDYGRFTNLSYA
YQKSTQPTNFSDAESPNNAKEDQLKQGYGLSRVSALPRDYGRLEVGTWRWGNKLTGGAMRYFGKSIRATAEERYIDG
TNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYPEKKNLIFRAEVKNLFDRRYIDPLDAGNDAATQRYYSSFDPKDK
DEEVTCNADKTLNGKYGGTSKSVLNFARGRTFLITMSYKF

SEQ ID NO:3

Neisseria meningitidis BASB024 polynucleotide sequence from strain ATCC 13090

ATGAGATCTTCTTCCGGTTGAAGCCGATTTGTTTATCTTATGGGTGTTATGCTATATCATCATAGTTATGCCGAAGA
TGCAGGGCGCGCGGGCAGCGAGGCGCAGATAACAGGTTTGGAAAGATGTGACGTCAAGCGAAGCGCTACCGAAAAGACA
AAAAAGTGTTCACCGATGCCGTGCCGTATCGACCCGTAGGATATATTCAAATCCAGCGAAACCTCGACAACATCGTA
CGCAGCATCCCCGGTGCCTTACACAGCAAGATAAAAGCTCGGCATTGTGCTTGAATATTGCCGGCACAGCGGGTT
CGGGCGGGTCAATACGATGGTGACGGCATACGCGACACCTTTATTCGACTTCTACCGATGCCGGAGGGCAGGGCGTT
CATCTCAATTGGTGATCTGCGACAGCAATTATTGCCGGACTGGATGTCGTCAGCTTCAGCGGCTCGGCA
GGCATCAACAGCCTTGGCGGAATCTCGGACTTTAGCGTGGATGACGTGTTAGGGCAATAATACCTACGG
CCTGCTGCTAAAGGTCTGACCGGACCAATTCAACCAAAGGTAAATGCGATGCCGGAGAGGTGCGCAGAAATGGCTGG
AAAGCGGAGCATCTGCGGTGTGCTTACGGGCACAGCAGCGCAGcgAGGGCAGGGCAAAATTACCGCGTGGCGGGCGGG
CAGCACATCGGAAATTGGCGCGGAATATCTGGAACGGCGCAAGCAGCGATATTGTACAAGAAGCGGGTTGAAATT
CAATTCCAACAGCGAAAATGGGAGCGGGATTCCAAGGCCGTACTGGAAACGCAAGTGGTATCAAAATACAATGACC
CCAAGAACTGCAAAATACATCGAAGGTCACTGACAAAAGCTGGCGGGAAACCTGGCGCCGCAATACGACATACCCCC
ATCGATCCGTCAGCCTGAAGCAGCAGTCGGCAGGCAATCTGTTAAATTGGAATACGACGGCGTATTCAATAATACAC
GGCGCAATTGCGATTAAACACCAAAATCGCAGGCCAAATCATCAACCGCAATTATCAATTCAATTACGGTTTAT
CTTAAACTCATATGCCAACCTCAATCTGACCGCAGCCTACAATTGGCAGGCAGAAATATCGGAAAGGGTCAAGTGT

ACAGGCTGGGGCTTTAAAAGATTTGAAACCTACAACACCGAAAATCCTCGACCTCAACAACACCGCCACCTTCCG
 GCTGCCCGCAAACCGAGTTGCAAACCACTTGGGCTTCATTATTCACAAACGAATACGGCAAAACCGCTTCCCTG
 AAGAATTGGGCTGTTTCGACGGTCCGGATCAGGACAACGGCTTATTCTATTGGGCGGTTAAGGGCGATAAA
 GGGCTGCTGCCCAAACATCAACCACATCGCCAACCGCCGAGCCAATATTCAACACGTTACTTCGATGCCGCGCT
 CAAAAAAAGACATTACCGCTAAACTACAGCACCAATACCGTCCGCTACCGTTCCGGCGAATACGGCTATTACG
 GCTCGGATGACGAATTAAAGCGGGCATTGGAGAAAACCGCCGACATACAAGAACATTGCAACCAGAGCTCGGAATT
 TATGAACCGTATTGAAAAAAACGGCAAAAGCGCCAAACAACCATTGGTCAGCATTAGTCGGACTTCGGCGATTA
 TTTCATGCCGTTGCCAGCTATTGCGCACACACCGTATGCCAACATCCAAGAAATGTATTTTCCAAATCGGCAGT
 CGGGCTTCACACCGCTTAAACAGAGCGCAGAACACTTGCAATTGGCTTCAATACCTATAAAAAGGATTGTTA
 AAACAAGATGATACTAGGATTAAACTGGTCGGCTACCGCAGCCGATCGACAACATCCACAACGTTACGGAA
 ATGGTGGATTGAAACGGAATTCCGAGCTGGCTAGCAGCACGGCTGCCTACACCATCCAACACCGCAATTCA
 AAGACAAAGTACACAAACACGGTTTGAGTTGGAGCTGAATTACGATTATGGCGTTTTTCACCAACCTTCTACGCC
 TATCAAAAAGCACGCAACCGACCAACTTCAGCGATGCGAGCGAATGCCAACATGGTCAAAGAACCAACTCAA
 ACAAGGTTATGGTTGAGCAGGGTTCCGCCCTGCCGAGATTACGGACGTTGGAAGTCGGTACCGCTGGTGGCA
 ACAAAACTGACTTTGGCGCGCATGCGTATTCGCAAGAGCATCCGCGACGGCTGAAGAACGCTATATCGACGGC
 ACCAACGGGGAAATACAGCAATGTCGGCAACTGGCAAGCGTCCATCAAACAAACCGAAACCTTGGCCAGCC
 TTTGATTTGATTTTACGCCGTTACGAGCGAAGAAAAACCTTATTTCCGCGCAAGTCAAAATCTGTTGACA
 GCGTTATATCGATCCGCTCGATGCCGAAATGATGCCGCAACCGCTTATTACAGTCGTTGACCCGAAAGACAAG
 GACGAAGAAGTAACGTGAAATGCTGATAAAACGTTGCAACGGCAAATACGGCGCACAGCAAAGCGTATTGACCAA
 TTTGACCGGACGACCTTTGATAACGATGAGCTACAAGTTTAA

SEQ ID NO:4

Neisseria meningitidis BASB024 polypeptide sequence deduced from the polynucleotide of SeQ ID NO:3

MRSSFRLKPICFYLMGVLYHHSYAEDAGRAGSEAOIOVLEDHVVKAKRVPDKKVFTDARAVSTRQDFKSSENLDNIV
 RSIPGAFTQQDKSSGIVSLNIRGDGFGRVNTMDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLDVVKGFSFGSA
 GINSLAGSANRTLIGVDDVVQGNNTYGLLKGLGTNSTKGNAMEAIGARKWLESGASVGVLYGHSSRSVAQNYRVGGGG
 QHIGNFGAEYLERRKQRYFVQEGLKFNSNSGKWERDFQRPYWKTWKYQKYNDPQELOQYIEGHDKSWRENLAQYDITP
 IDPSSLKQQSAGNLFKLEYDGVFNKYTAQFRDLNTKIGSRKIINRNYQFNYGLSLSYANLNLTAAYNNSGRQKYPKGSKF
 TGWGLLKDFTYNNAKILDNNNTATFRLPRETELQTTLGFBFHNEYGKNRFPEELGLFFDGPQDNGLYSYLGFKGDK
 GLLPQKSTIVQPAGSQYFNTFYFDAALKDIYRLNYSTNTVYRGFGGEYTGYYGSDEFKRAFGENSPTYKKHCNCSCGI
 YEPVLUKKYGKKRANNHSVISADFGDYFMPFASYSRTHRMPNIQEMYFSQIGDSGVHTALKPERANTWQFGFNTYKKGLL
 KQDDTLGLKLVGYRSRIDNYIHNVYGKWDLNGNIPSWVSSTGLAYTIQHRNFKDVKHGFELELYDYGRFTNLSSYA
 YQKSTQPTNFSDASESPNNASKEDQLKQGYGLSRVSALPRDYGRLEVGRWLGNKLTGGAMRYFGKSIRATAEERYIDG
 TNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYPEKKNLIFRAEVKNLFDRRYIDPLDAGNDAATQRYYSSFDPKDK
 DEEVTCNAKTLNGKYGGSKSVLTNFARGRTFLITMSYKF

SEQ ID NO:5

Neisseria meningitidis BASB024 polynucleotide sequence from strain H44/76

ATGAGATCTTCTTCCGGTTGAAGCCGATTGTTTAcCTTATGGGTGTTAcGCTATATCAttATAGTTATGCCGAAGA
 TGCAGGGCGCGGGCAGCGAGGCGCAGATAACAGGTTTGGAAAGATGTGCACGTCAAGGCAGCGCTACCGAAAGACA
 AAAAAGTGTTCACCGATGCGCGTGCCTATCGACCCGTAGGATATATTCAAATCCAGCAAAACCTCGACAAACATCGTA
 CGCAGCATCCCCGGTGCCTTACACAGCAAGATAAAAGCTGGGCATTGTGCTTGAATATTGCCGGCACAGCGGGTT
 CGGGCGGGTCAATAACGATGGTGGACGGCATCACGCAGACCTTTATTGACTTCTACCGATGCCGGAGGGCAGGGCGTT
 CATCTCAATTGGTGCATCTGTCGACAGCAATTATTGCCGGACTGGATGTCGTCAGGCAAGGGCAGCTTCAGGGCTCGGCA
 GGCATCAACAGCCTGCCGGTCTGGCGAATCTGGGACTTTAGGCGTGGATGACGTCGTTCAAGGGCAATAACCTACGG
 CCTGCTGCTAAAAGGCTGACCGGCACCAATTCAACCAAAGGTAATGCGATGCCGGCAGGGCTGGCAAAATTACCGCTGGGG
 AAAGCGGAGCATCTGTCGGTGTGCTTACGGCACAGCAGGCGCAGCGTGGCGCAAAATTACCGCTGGGCCGGCGGG
 CAGCACATCGAAATTGGCGGAATATTGGAACGGCGCAAGCAGCGATAATTGTACAAGAGGGTGTGTTGAAATT
 CAATTCCGACAGCGGAAATGGGAGCGGGATTACAAAGGCAACAGTGGAAATACAAGCCGTATAAAATTACAACAACC
 AAGAACTACAAAAATACATCGAAGGTCACTGACAAAAGCTGGCGGGAAACCTGGCGCCGAATACGACATCCCCCATC
 GATCCGTCCAGCCTGAAGCAGcgtcgccAGGCAATCTGTTAAATTGGAATACGACGGGTATTCAATAAACACGGC
 GCAATTTCGCGATTAAACACAAAATCGCAGCCGAAAATCATCAACCGCAATTATCAgTTCAATTACGGTTgTCTT
 TgAACCcCgTATACCAACCTCAATCTGACCCGAGCCTACAATTGGGAGGGCAAAATATCGAAAGGGTCAAGTTTACA
 GGCTGGGGCTTTAAAGGATTGAAACCTACAACACCGGAAATCCTCGACCTCAACAAACACCGCCACCTTCCGGCT
 GCCCGCGAAACCGAGTTGCAAACCACTTGGGCTTCATTATTCCACACGAATACGGCAAAACCGCTTCTGAAG
 AATTGGGCTTTTCGACGGTCTGATCAGGACAACGGGCTTATTCTATTGGGGGGTTAAGGGCGATAAAGGG
 CTGCTGCCCAAAATCAACCATTGTCCAACCGGCCGAGCCAATATTCAACACGTTCTACTTCGATGCCGCTCAA
 AAAAGACATTACCGCTTAAACTACAGCACCAATACCGTCGGCTACCGTTCGCGCGAATATACGGCTATTACGGCT
 CGGATGACGAATTAAAGCGGGATTGGAGAAAACCTCGCGACATACAAGAACATTGCAACCGGAGCTGGGATTAT
 GAACCGTATTGAAAAAATACGGCAAAAGCGCGCAACACCGTATTGGTCAAGCATTAGTGCAGCTTCTGGCGATTATT
 CATGCCGTTGCCAGCTATTGGCGCACACACCGTATGCCAACATCCAAGAAATGTATTTCACCGACTCCG
 GCGTTCACACCGCCTAAACAGAGCGCGAAACACTGGCAATTGGCTCAATACCTATAAAAAGGATTGTTAAA
 CAAGATGATACTTACGGGTTAAACTGGTGGCTACCGCAGCCGATCGACAACATCCACACGTTACGGGAAATG
 GTGGGATTGAAACGGGgATATTCCGAGCTGGGCTAGCAGCACCGGGCTGCCAACCGATCCAACATCGCAATTCAAAG
 ACAAAAGTCACAAACACGGTTTGAGTTGGAGCTGAATTACGATTATGGCGTTTTCACCAACCTTCTACGCCAT
 CAAAAAAGCACGCAACCGACCAACTCAGCGATGCGAGCGAATCGCCAAACATGCGTCAAAGAAGACCAACTCAAACA
 AGGTTATGGGTTGAGCAGGGTTCCGCCCTGCCGAGATTACGGACGTTGGAAAGTCGGTACGCCGCTGGTGGCAACA
 AACTGACTTGGCGCGCATGCCATTTCGCAAGAGCATCCGCGACGGCTGAAGAACGCTATATCGACGGCACC
 AACGGGGAAATACCGCAATTCCGCAACTGGCAAGCGTTCCATCAAACAAACCGAAACCTTGCCTGCCAGCCTT
 GATTTTGATTTACGCCGTTACGAGCGAAGAAAACCTATTTCGCCCGGAAGTCGAAAGGGAAATCTGTCGACAGGC
 GTTATATCGATCCGCTCGATGCCGGCAATGCGGCAACGCAAGCGTTATTACAGCTGTTGACCCGAAAGACAAGGAC
 GAAGACGTAACGTGAATGCTGATAAAACGTTGTGCAACGGCAAATACGGGGCACAAGCAAAGCGTATTGACCAATT
 TGACGCCGACGCACTTTGATAACGATGAGCTACAAGTTAA

SEQ ID NO:6

Neisseria meningitidis BASB024 polypeptide sequence deduced from the polynucleotide of Seq ID NO:5

MRSSFRLKPICFYLMGVTLHYHSYAEAGRAGSEAQIQVLEDHVAKRVPDKKVFTDARAVSTRQDIFKSSENLDNIV
 RSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSA
 GINSLAGSANLRTLGVDDVVQGNNTYGLLKGLTGTNSTKGNAMEAIGARKWLESGASVGVLGHSSRSVAQNYRVGGGG
 QHIGNFGAEYLERRKQRYFVQEGALKFNSDGSWKERDLQRQQWKYPKNYNNQELQKYIEGHDKSWRENLAPOQYDITPI
 DPSSLKQQSAGNLFKLEYDGVFNKYTAQFRDLNTKISRKIINRNYQFNYGLSLNPYTNLNLTAAYNNSGRQKYPKGSKFT
 GWGLLKDFTETYNNAKILDLNNTATFRLPRETELQTTLGPNYFHNEYGKNRFPEELGLFFDGPQDNGLYSYLGRFKGDKG
 LLPQKSTIVQPAGSQYFNTFYFDAAKKDIYRLNYSNTVGYRGGEYTGYGSDEFKRAFGENSPTYKKHCNRSCGIY
 EPVLKKYGGKKRANNHSVISADFGDYFMPFASYSRTHRMPNIQEMYFSQIGDSGVHTALKPERANTWQFGFNTYKKGLLK
 QDDTLGLKLVGYRSRIDNYIHNVYGGKWWDLNGDIPSWSSTGLAYTIQHRNFKDKVHKHGFELELNYDYGRFFTNLSYAY
 QKSTQPTNFSDASESPNNASKEDQLKQGYGLSRVSALPRDYGRLEVGRWLGNKLTLLGGAMRYFGKSI RATAEERYIDGT
 NGGNTSNFRQLGKRSIKQTETLARQPLIFDFYAAYPEKKNLIFRAEVKNLFDRRYIDPLDAGNDAATQRYYSSFDPKDKD
 EDVTCNADKTLNCNGKYGGTSKSVLTNFARGRTFLITMSYKF

SEQ ID NO:7

GCT AGC TAG CAG ATC TTC TTT CGG GAA GAA

SEQ ID NO:8

GGT CGC TCG AGA AAC TTG TAG CTC ATC GTT ATC A

SEQ ID NO:9

Neisseria meningitidis polynucleotide sequence up-stream the BASB024 gene sequence, in strain ATCC 13090

TATCCGATAAGTTCCGTACCGAACAGACTAGATTCCCGCTGCGCGGGAAATGACGATTATAAGTTCCGAAATTCCA
 ACATAACCGAAACCTGACAGTAACCGTAGCAACTGAACCGTCATTCCACGAAAGTGGGAATCTAGAAATGAAAGCAAC
 AGGCATTATCGGAAATAACTGAAACCGAACAGACTAGATTCCCGCTGCGCGGGAAATGACGATTATAAGTTCCGAA
 ATTCCAACATAACCGAAACCTGACAGTAACCGTAGTAACTGAACCGTCATTCCACGAAAGTGGGAATCTAGAAATGAAA
 AGCAACAGGCATTATCGGAAATAACTGGAACCGAACAGACCTAGATTCCCGCTGCGCGGGAAATGACGGCTGCAGATGC
 CCGACGGCTTTATAGCAGATTAAACAAAATCAGGACAAGGGCGGAGGCCACAGACAGTACAAACAGTACGGAACCGATT
 CACTTGGTCTTCAGCACCTTAGAGAAATGTTCTTTGAGCTAAGGCAGACAACGCCGTACTGGTTTTGTTAATCCG
 CTATATTCCGCCATCTCTAAGATTACAGCGATAACACGGGTATTAGGAATGGCGAACCGTCATTCCGCCACTTTT
 CGTCATTCCACCCTTTCTGTCATTCCCGCGAGGCGGGAAATCTAGAATCTGGACTTTAGATAATCTTGAAATATTG
 CTGTTGTTCTAAGGTTAGATTCCCTTGCGCGGGAAATGACGATTATAAGTTCCGAAATTCAAACATAACCGAAACC
 TGACAGTAACCGTAGCAACAGAGAAATCGTTCTTTGAGCTAAGGCAGAACACGCTGTACCGGTTTTGTTAATCCACT
 ATAAATATCCAATTGAAATCTCAGACGGTATATCGAATTACACTTTAATGTTATGCCGCTAAAAAAATGCTAAT
 ATATTCTTAATTGCTGACTGTTTATTGTTGAGGAAAAT

SEQUENCE LISTING

<110> Thonnard, Joelle

<120> Novel Compounds

<130> BM45330

<150> PCT/EP99/05989

<151> 1999-08-13

<150> GB 9818004.5

<151> 1998-08-18

<160> 9

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2769

<212> DNA

<213> Bacteria

<400> 1

atagagatctt	ctttccgggtt	gaagccgatt	tgttttatac	ttatgggtgt	tatgctata	60
catcatagtt	atgccaaga	tgcagggcgc	gcgggcagcg	aggcgcagat	acagggtttt	120
gaagatgtgc	acgtcaaggc	gaagcgcgt	ccgaaaagaca	aaaaagtgtt	taccgatgcg	180
cgtgccgtat	cgaccgtca	ggatatattc	aaatccagcg	aaaacctcg	caacatcgta	240
cgcagcatcc	ccgggtgcgtt	tacacagcaa	gataaaagct	cgggcattgt	gtctttgaat	300
attcgcggcg	acagcgggtt	cgggcgggtc	aatacgatgg	tggacggcat	cacgcagacc	360
tttatttgc	cttctaccga	tgcggcagg	gcaggcggtt	catctcaatt	cgggtcatct	420
gtcgacagca	attttattgc	cggactggat	gtcgatcaaag	gcagcttcag	cggctcgcca	480
ggcatcaaca	gccttgcgg	tgcggcgaat	ctgcggactt	taggcgtgga	tgacgtcggt	540
cagggcaata	atacctacgg	cctgcgtcta	aaaggtctga	ccggcaccaa	ttcaaccaaa	600
ggtaatgcga	tggcggcgat	aggtgcgcgc	aaatggctgg	aaagcggagc	atctgtcggt	660
gtgctttacg	ggcacagcag	gcbcacgtgg	gcgcääatt	accgcgtgg	cggcggcggg	720
cagcacatcg	gaaattttgg	cgcggaaatat	ctggAACGGC	gcaaacagcg	atattttgt	780
caagaaggcg	ggttggaaatt	caattccaaac	agcggaaat	gggagcggga	tttccaaagg	840
ccgtactgg	aaaccaagt	gtatcaaaaa	tacaatgacc	cccaagaact	gcaaaaatac	900
atcgaaaggtc	atgacaaaag	ctggcgggaa	aacctggcgc	cgcaatacga	catcaccccc	960
atcgatccgt	ccagcctgaa	gcagcagtgc	gcaggcaatc	tgtttaaatt	ggaatacgcac	1020
ggcgttattca	ataaaatacac	ggcgcattt	cgcattttaa	acaccaaaat	cggcagccgc	1080
aaaatcatca	accgcaatta	tcaattcaat	tacggtttat	ctttaaactc	atatgccaac	1140
ctcaatctga	ccgcagccta	caattcgggc	aggcagaaat	atccgaaagg	gtcgaagttt	1200
acaggctgg	ggctttaaa	agattttgaa	acctacaaca	acgcggaaat	cctcgaccc	1260
aacaacaccc	ccacccccc	gctgccccgc	gaaaccgagt	tgcaaacacc	tttgggcttc	1320
aattatttcc	acaacgaata	cggcaaaaac	cgcttccctg	aagaattggg	gctgtttttc	1380
gacggtccgg	atcaggacaa	cggctttat	tcctatttgg	ggcggtttaa	ggcgataaa	1440
ggcgtctgc	cccaaaaatc	aaccatgtc	caaccggccg	gcagccaata	tttcaacacg	1500
ttctacttcg	atgcccgcet	caaaaaagac	atttaccgct	taaactacag	caccaataacc	1560
gtcggctacc	gtttcggcgg	cgaatatacg	ggcttattacg	gctcgatga	cgaatttaag	1620
cggcattcg	gagaaaactc	gccgacatac	aagaaaacatt	gcaaccagag	ctgcfgaatt	1680
tatgaacccg	tattaaaaaa	atacggcaaa	aagcgcgcca	acaaccattc	gttcagcatt	1740
agtgcggact	tcggcgatta	tttcatggcg	ttcgcgcgt	attcgcgcac	acaccgtatg	1800
cccaacatcc	aagaaatgt	ttttcccaa	atcggcgact	ccggcggtca	caccgcctta	1860
aaaccagagc	gccaacac	ttggcaattt	ggcttcaata	cctataaaaa	aggattgtt	1920
aaacaagatg	atcatttagg	ataaaactg	gtcggctacc	gcagccgc	cgacaactac	1980
atccacaacg	tttacgggaa	atggtggat	ttgaacggga	atattccgag	ctgggtcagc	2040
agcacccgggc	ttgcctacac	catccaacac	cgcaatttca	aagacaaagt	acacaaacac	2100
ggttttgagt	tggagctgaa	ttacgattat	ggcggttttt	tcaccaacct	ttcttacgccc	2160

tatcaaaaaa	gcacgcaacc	gaccaacttc	agcgatgcga	gcgaatcgcc	caacaatgcg	2220
tccaaagaag	accaactcaa	acaaggatat	gggtttagca	gggtttccgc	cctgcccgcga	2280
gattacggac	gtttggaagt	cggtacgcgc	tggggggca	acaaactgac	tttgggcggc	2340
gcgatgcgc	atttccgcaa	gagcatccgc	gcgacggctg	aagaacgcta	tatcgacggc	2400
accaacgggg	gaaataccag	caatgtccgg	caactgggca	agcgccccat	caaacaaacc	2460
gaaacccttg	cccgccagcc	tttgattttt	gattttacg	ccgcttacga	gccgaagaaa	2520
aaccttattt	tccgcgcga	agtaaaaat	ctgttcgaca	ggcggttat	cgatccgctc	2580
gatgcgggca	atgatgcggc	aacgcagcgt	tattacagtt	cgttcgaccc	gaaagacaag	2640
gacgaagaag	taacgtgtaa	tgctgataaa	acgttgtgca	acggcaata	cggcggcaca	2700
acaaaagcg	tattgaccaa	ttttgcacgc	ggacgcacct	ttttgataac	gatgagctac	2760
aagttttaa						2769

<210> 2
<211> 922
<212> PRT
<213> Bacteria

<400> 2															
Met	Arg	Ser	Ser	Phe	Arg	Leu	Lys	Pro	Ile	Cys	Phe	Tyr	Leu	Met	Gly
1				5				10					15		
Val	Met	Leu	Tyr	His	His	Ser	Tyr	Ala	Glu	Asp	Ala	Gly	Arg	Ala	Gly
				20				25					30		
Ser	Glu	Ala	Gln	Ile	Gln	Val	Leu	Glu	Asp	Val	His	Val	Lys	Ala	Lys
				35				40					45		
Arg	Val	Pro	Lys	Asp	Lys	Val	Phe	Thr	Asp	Ala	Arg	Ala	Val	Ser	
				50				55					60		
Thr	Arg	Gln	Asp	Ile	Phe	Lys	Ser	Ser	Glu	Asn	Leu	Asp	Asn	Ile	Val
				65				70					75		80
Arg	Ser	Ile	Pro	Gly	Ala	Phe	Thr	Gln	Gln	Asp	Lys	Ser	Ser	Gly	Ile
				85				90					95		
Val	Ser	Leu	Asn	Ile	Arg	Gly	Asp	Ser	Gly	Phe	Gly	Arg	Val	Asn	Thr
				100				105					110		
Met	Val	Asp	Gly	Ile	Thr	Gln	Thr	Phe	Tyr	Ser	Thr	Ser	Thr	Asp	Ala
				115				120					125		.
Gly	Arg	Ala	Gly	Gly	Ser	Ser	Gln	Phe	Gly	Ala	Ser	Val	Asp	Ser	Asn
				130				135					140		
Phe	Ile	Ala	Gly	Leu	Asp	Val	Val	Lys	Gly	Ser	Phe	Ser	Gly	Ser	Ala
				145				150					155		160
Gly	Ile	Asn	Ser	Leu	Ala	Gly	Ser	Ala	Asn	Leu	Arg	Thr	Leu	Gly	Val
				165				170					175		
Asp	Asp	Val	Val	Gln	Gly	Asn	Asn	Thr	Tyr	Gly	Leu	Leu	Leu	Lys	Gly
				180				185					190		
Leu	Thr	Gly	Thr	Asn	Ser	Thr	Lys	Gly	Asn	Ala	Met	Ala	Ala	Ile	Gly
				195				200					205		
Ala	Arg	Lys	Trp	Leu	Glu	Ser	Gly	Ala	Ser	Val	Gly	Val	Leu	Tyr	Gly
				210				215					220		
His	Ser	Arg	Arg	Thr	Trp	Ala	Gln	Asn	Tyr	Arg	Val	Gly	Gly	Gly	Gly
				225				230					235		240
Gln	His	Ile	Gly	Asn	Phe	Gly	Ala	Glu	Tyr	Leu	Glu	Arg	Arg	Lys	Gln
				245				250					255		
Arg	Tyr	Phe	Val	Gln	Glu	Gly	Leu	Lys	Phe	Asn	Ser	Asn	Ser	Gly	
				260				265					270		
Lys	Trp	Glu	Arg	Asp	Phe	Gln	Arg	Pro	Tyr	Trp	Lys	Thr	Lys	Trp	Tyr
				275				280					285		
Gln	Lys	Tyr	Asn	Asp	Pro	Gln	Glu	Leu	Gln	Lys	Tyr	Ile	Glu	Gly	His
				290				295					300		
Asp	Lys	Ser	Trp	Arg	Glu	Asn	Leu	Ala	Pro	Gln	Tyr	Asp	Ile	Thr	Pro
				305				310					315		320
Ile	Asp	Asp	Pro	Ser	Ser	Leu	Lys	Gln	Gln	Ser	Ala	Gly	Asn	Leu	Phe
				325				330					335		
Leu	Glu	Tyr	Asp	Gly	Val	Phe	Asn	Lys	Tyr	Thr	Ala	Gln	Phe	Arg	Asp
				340				345					350		

seqlist.txt

Leu	Asn	Thr	Lys	Ile	Gly	Ser	Arg	Lys	Ile	Ile	Asn	Arg	Asn	Tyr	Gln
355								360							365
Phe	Asn	Tyr	Gly	Leu	Ser	Leu	Asn	Ser	Tyr	Ala	Asn	Leu	Asn	Leu	Thr
370								375							380
Ala	Ala	Tyr	Asn	Ser	Gly	Arg	Gln	Lys	Tyr	Pro	Lys	Gly	Ser	Lys	Phe
385								390				395			400
Thr	Gly	Trp	Gly	Leu	Leu	Lys	Asp	Phe	Glu	Thr	Tyr	Asn	Asn	Ala	Lys
								405				410			415
Ile	Leu	Asp	Leu	Asn	Asn	Thr	Ala	Thr	Phe	Arg	Leu	Pro	Arg	Glu	Thr
								420				425			430
Glu	Leu	Gln	Thr	Thr	Leu	Gly	Phe	Asn	Tyr	Phe	His	Asn	Glu	Tyr	Gly
								435				440			445
Lys	Asn	Arg	Phe	Pro	Glu	Glu	Leu	Gly	Leu	Phe	Phe	Asp	Gly	Pro	Asp
								450				455			460
Gln	Asp	Asn	Gly	Leu	Tyr	Ser	Tyr	Leu	Gly	Arg	Phe	Lys	Gly	Asp	Lys
465								470				475			480
Gly	Leu	Leu	Pro	Gln	Lys	Ser	Thr	Ile	Val	Gln	Pro	Ala	Gly	Ser	Gln
								485				490			495
Tyr	Phe	Asn	Thr	Phe	Tyr	Phe	Asp	Ala	Ala	Leu	Lys	Lys	Asp	Ile	Tyr
								500				505			510
Arg	Leu	Asn	Tyr	Ser	Thr	Asn	Thr	Val	Gly	Tyr	Arg	Phe	Gly	Gly	Glu
								515				520			525
Tyr	Thr	Gly	Tyr	Tyr	Gly	Ser	Asp	Asp	Glu	Phe	Lys	Arg	Ala	Phe	Gly
								530				535			540
Glu	Asn	Ser	Pro	Thr	Tyr	Lys	Lys	His	Cys	Asn	Gln	Ser	Cys	Gly	Ile
								545				550			560
Tyr	Glu	Pro	Val	Leu	Lys	Lys	Tyr	Gly	Lys	Lys	Arg	Ala	Asn	Asn	His
								565				570			575
Ser	Val	Ser	Ile	Ser	Ala	Asp	Phe	Gly	Asp	Tyr	Phe	Met	Pro	Phe	Ala
								580				585			590
Ser	Tyr	Ser	Arg	Thr	His	Arg	Met	Pro	Asn	Ile	Gln	Glu	Met	Tyr	Phe
								595				600			605
Ser	Gln	Ile	Gly	Asp	Ser	Gly	Val	His	Thr	Ala	Leu	Lys	Pro	Glu	Arg
								610				615			620
Ala	Asn	Thr	Trp	Gln	Phe	Gly	Phe	Asn	Thr	Tyr	Lys	Lys	Gly	Leu	Leu
								625				630			640
Lys	Gln	Asp	Asp	Thr	Leu	Gly	Leu	Lys	Leu	Val	Gly	Tyr	Arg	Ser	Arg
								645				650			655
Ile	Asp	Asn	Tyr	Ile	His	Asn	Val	Tyr	Gly	Lys	Trp	Trp	Asp	Leu	Asn
								660				665			670
Gly	Asn	Ile	Pro	Ser	Trp	Val	Ser	Ser	Thr	Gly	Leu	Ala	Tyr	Thr	Ile
								675				680			685
Gln	His	Arg	Asn	Phe	Lys	Asp	Lys	Val	His	Lys	His	Gly	Phe	Glu	Leu
								690				695			700
Glu	Leu	Asn	Tyr	Asp	Tyr	Gly	Arg	Phe	Phe	Thr	Asn	Leu	Ser	Tyr	Ala
								705				710			720
Tyr	Gln	Lys	Ser	Thr	Gln	Pro	Thr	Asn	Phe	Ser	Asp	Ala	Ser	Glu	Ser
								725				730			735
Pro	Asn	Asn	Ala	Ser	Lys	Glu	Asp	Gln	Leu	Lys	Gln	Gly	Tyr	Gly	Leu
								740				745			750
Ser	Arg	Val	Ser	Ala	Leu	Pro	Arg	Asp	Tyr	Gly	Arg	Leu	Glu	Val	Gly
								755				760			765
Thr	Arg	Trp	Leu	Gly	Asn	Lys	Leu	Thr	Leu	Gly	Gly	Ala	Met	Arg	Tyr
								770				775			780
Phe	Gly	Lys	Ser	Ile	Arg	Ala	Thr	Ala	Glu	Glu	Arg	Tyr	Ile	Asp	Gly
								785				790			800
Thr	Asn	Gly	Gly	Asn	Thr	Ser	Asn	Val	Arg	Gln	Leu	Gly	Lys	Arg	Ser
								805				810			815
Ile	Lys	Gln	Thr	Glu	Thr	Leu	Ala	Arg	Gln	Pro	Leu	Ile	Phe	Asp	Phe
								820				825			830
Tyr	Ala	Ala	Tyr	Glu	Pro	Lys	Lys	Asn	Leu	Ile	Phe	Arg	Ala	Glu	Val
								835				840			845

seqlist.txt

Lys	Asn	Leu	Phe	Asp	Arg	Arg	Tyr	Ile	Asp	Pro	Leu	Asp	Ala	Gly	Asn
850				855							860				
Asp	Ala	Ala	Thr	Gln	Arg	Tyr	Tyr	Ser	Ser	Phe	Asp	Pro	Lys	Asp	Lys
865				870				875			880				
Asp	Glu	Glu	Val	Thr	Cys	Asn	Ala	Asp	Lys	Thr	Leu	Cys	Asn	Gly	Lys
					885				890			895			
Tyr	Gly	Gly	Thr	Ser	Lys	Ser	Val	Leu	Thr	Asn	Phe	Ala	Arg	Gly	Arg
				900			905			910					
Thr	Phe	Leu	Ile	Thr	Met	Ser	Tyr	Lys	Phe						
				915			920								

<210> 3

<211> 2769

<212> DNA

<213> Bacteria

<400> 3

atgagatctt	ctttccgggtt	gaagccgatt	tgtttttatc	ttatgggtgt	tatgttatat	60
catcatagtt	atgcgcaga	tgccaggcg	gcgggcagcg	aggcgacat	acagggtttg	120
gaagatgtgc	acgtcaaggc	gaagcgcgt	ccgaaagaca	aaaaagtgtt	taccgatgcg	180
cgtgccgtat	cgaccgtca	ggatataattc	aatccagcg	aaaacctcga	caacatcgta	240
cgcagcatcc	ccgggtgcgtt	tacacagcaa	gataaaagct	cgggcattgt	gtctttgaat	300
attcgcggcg	acagcgggtt	cgggcgggtc	aatacgtatgg	tggacggcat	cacgcagacc	360
tttatttcga	cttctaccga	tgcgggcagg	gcaggcggtt	catctcaatt	cggtgtcatct	420
gtcgacagca	attttattgc	cggactgtat	gtcgtcaaag	gcagcttcag	cggtcggca	480
ggcatcaaca	gccttgcgg	ttcggcgaat	ctgcggactt	taggcgttga	tgacgtcgtt	540
cagggcaata	atacctacgg	cctgctgcta	aaaggtctga	ccggcaccaa	ttcaaccaa	600
gtaatgcga	tggcggcgat	aggtgcgcgc	aatggctgg	aaagcggagc	atctgtcgtt	660
gtgctttacg	ggcacagcag	gcmcagcgt	gcgcaaaatt	accgcgtggg	cgccggcggg	720
cagcacatcg	gaaattttgg	cgccgaatat	ctgaaacggc	gcaagcagcg	atattttgtt	780
caagaaggcg	ggttgaatt	caattccaa	agcggaaaat	gggagcggga	tttccaaagg	840
ccgtactgga	aaaccaagtg	gtatcaaaa	tacaatgacc	cccaagaact	gaaaaatac	900
atcgaagggtc	atgacaaaag	ctggcggaa	aacttgcgc	cgcaatacga	catcaccccc	960
atcgatccgt	ccagcctgaa	gcagcgtcg	gcaggcaatc	tgtttaattt	ggaatacgcac	1020
ggcgttacca	ataaatacac	ggcgcattt	cgcgatttaa	acaccaaat	ccgcagccgc	1080
aaaatcatca	accgcattt	tcaatcaat	tacggtttat	ctttaaactc	atatgccaac	1140
ctcaatctga	ccgcgccta	caattcgggc	aggcagaaaat	atccgaaagg	gtcgaagttt	1200
acaggctggg	ggctttaaa	agattttgaa	acctacaaca	acgcgaaaat	cctcgaccc	1260
aacaacaccc	ccacccccc	gctgccccgc	gaaaccgagt	tgcaaaaccac	tttgggcttc	1320
aattatttc	acaacgata	cggcaaaaac	cgctttctg	aagaatttgg	gctgtttttc	1380
gacgggtccgg	atcaggacaa	cgggctttat	tcctatttgg	ggcggtttaa	gggcgataaaa	1440
gggctgtgc	cccaaaaatc	aaccatcg	caaccggcc	gcagccaaata	tttcaacacg	1500
ttctacttcg	atgcgcgct	caaaaaagac	atttaccgt	taaactacag	caccaataacc	1560
gtcggctacc	gtttccgg	cgaatatacg	ggcttattacg	gctcgatga	cgaatttaag	1620
cgggcattcg	gagaaaactc	gccgacatac	aagaaacatt	gcaaccagag	ctgcggatt	1680
tatgaacccg	tattaaaaaa	atacggcaaa	aagcgcgc	acaaccattc	ggtcagcatt	1740
agtgcggact	tcggcgatta	tttcatccgc	ttcgcgcgt	attcgccac	acaccgtatg	1800
cccaacatcc	aagaaatgt	ttttccaa	atcggcgact	ccggcggtca	caccgcctt	1860
aaaccagagc	gcgcacac	ttggcaattt	ggctcaata	cctataaaaa	aggattgtt	1920
aaacaagatg	atacattagg	attaaaactg	gtcggttacc	gcagccgc	cgacaactac	1980
atccacaacg	tttacggaa	atgggtggat	ttgaacggga	atattccgag	ctgggtcagc	2040
agcacccggc	ttgcctacac	catccaacac	cgcaatttca	aagacaaat	acacaaacac	2100
ggttttgagt	tggagctgaa	ttacgattat	ggcggttttt	tcaccaacct	ttcttacgccc	2160
tatcaaaaaa	gcacgcac	gaccaacttc	agcgatgc	gcgaatcgcc	caacaatgcg	2220
tccaaagaag	accaactaa	acaagggtt	gggttggagca	gggttccgc	cctgcccgcga	2280
gattacggac	gtttggaagt	cggtacgc	tgggtggca	acaaactgac	tttgggcccggc	2340
gcgatgcgc	atttccgca	gagcatccgc	gcgcacggct	aagaacgc	tatgcacggc	2400
accaacgggg	gaaataccag	caatgtccgg	caactggca	agcgttccat	caaacaacc	2460
gaaaccctt	ccgcgcagcc	tttgatttt	gattttacg	ccgcttacga	gccgaagaaa	2520
aaccttattt	tccgcgcgc	agtcaaaaat	ctgttcgaca	ggcggttat	cgatccgctc	2580
gatgcgggc	atgatgcggc	aacgcagcgt	tattacagtt	cgttcgaccc	gaaagacaag	2640
gacgaagaag	taacgtgtaa	tgctgataaa	acggttgc	acggcaata	cgccggcaca	2700

agcaaaaagcg tattgaccaa ttttgcacgc ggacgcacct ttttgataac gatgagctac	2760
aagttttaa	2769

<210> 4
<211> 922
<212> PRT
<213> Bacteria

<400> 4
Met Arg Ser Ser Phe Arg Leu Lys Pro Ile Cys Phe Tyr Leu Met Gly
1 5 10 15
Val Met Leu Tyr His His Ser Tyr Ala Glu Asp Ala Gly Arg Ala Gly
20 25 30
Ser Glu Ala Gln Ile Gln Val Leu Glu Asp Val His Val Lys Ala Lys
35 40 45
Arg Val Pro Lys Asp Lys Lys Val Phe Thr Asp Ala Arg Ala Val Ser
50 55 60
Thr Arg Gln Asp Ile Phe Lys Ser Ser Glu Asn Leu Asp Asn Ile Val
65 70 75 80
Arg Ser Ile Pro Gly Ala Phe Thr Gln Gln Asp Lys Ser Ser Gly Ile
85 90 95
Val Ser Leu Asn Ile Arg Gly Asp Ser Gly Phe Gly Arg Val Asn Thr
100 105 110
Met Val Asp Gly Ile Thr Gln Thr Phe Tyr Ser Thr Ser Thr Asp Ala
115 120 125
Gly Arg Ala Gly Gly Ser Ser Gln Phe Gly Ala Ser Val Asp Ser Asn
130 135 140
Phe Ile Ala Gly Leu Asp Val Val Lys Gly Ser Phe Ser Gly Ser Ala
145 150 155 160
Gly Ile Asn Ser Leu Ala Gly Ser Ala Asn Leu Arg Thr Leu Gly Val
165 170 175
Asp Asp Val Val Gln Gly Asn Asn Thr Tyr Gly Leu Leu Leu Lys Gly
180 185 190
Leu Thr Gly Thr Asn Ser Thr Lys Gly Asn Ala Met Ala Ala Ile Gly
195 200 205
Ala Arg Lys Trp Leu Glu Ser Gly Ala Ser Val Gly Val Leu Tyr Gly
210 215 220
His Ser Arg Arg Ser Val Ala Gln Asn Tyr Arg Val Gly Gly Gly
225 230 235 240
Gln His Ile Gly Asn Phe Gly Ala Glu Tyr Leu Glu Arg Arg Lys Gln
245 250 255
Arg Tyr Phe Val Gln Glu Gly Leu Lys Phe Asn Ser Asn Ser Gly
260 265 270
Lys Trp Glu Arg Asp Phe Gln Arg Pro Tyr Trp Lys Thr Lys Trp Tyr
275 280 285
Gln Lys Tyr Asn Asp Pro Gln Glu Leu Gln Lys Tyr Ile Glu Gly His
290 295 300
Asp Lys Ser Trp Arg Glu Asn Leu Ala Pro Gln Tyr Asp Ile Thr Pro
305 310 315 320
Ile Asp Pro Ser Ser Leu Lys Gln Gln Ser Ala Gly Asn Leu Phe Lys
325 330 335
Leu Glu Tyr Asp Gly Val Phe Asn Lys Tyr Thr Ala Gln Phe Arg Asp
340 345 350
Leu Asn Thr Lys Ile Gly Ser Arg Lys Ile Ile Asn Arg Asn Tyr Gln
355 360 365
Phe Asn Tyr Gly Leu Ser Leu Asn Ser Tyr Ala Asn Leu Asn Leu Thr
370 375 380
Ala Ala Tyr Asn Ser Gly Arg Gln Lys Tyr Pro Lys Gly Ser Lys Phe
385 390 395 400
Thr Gly Trp Gly Leu Leu Lys Asp Phe Glu Thr Tyr Asn Asn Ala Lys
405 410 415
Ile Leu Asp Leu Asn Asn Thr Ala Thr Phe Arg Leu Pro Arg Glu Thr

	420	425	430												
Glu	Leu	Gln	Thr	Thr	Leu	Gly	Phe	Asn	Tyr	Phe	His	Asn	Glu	Tyr	Gly
							435	440	445						
Lys	Asn	Arg	Phe	Pro	Glu	Glu	Leu	Gly	Leu	Phe	Phe	Asp	Gly	Pro	Asp
							450	455	460						
Gln	Asp	Asn	Gly	Leu	Tyr	Ser	Tyr	Leu	Gly	Arg	Phe	Lys	Gly	Asp	Lys
							465	470	475						
Gly	Leu	Leu	Pro	Gln	Lys	Ser	Thr	Ile	Val	Gln	Pro	Ala	Gly	Ser	Gln
							485	490	495						
Tyr	Phe	Asn	Thr	Phe	Tyr	Phe	Asp	Ala	Ala	Leu	Lys	Lys	Asp	Ile	Tyr
							500	505	510						
Arg	Leu	Asn	Tyr	Ser	Thr	Asn	Thr	Val	Gly	Tyr	Arg	Phe	Gly	Gly	Glu
							515	520	525						
Tyr	Thr	Gly	Tyr	Tyr	Gly	Ser	Asp	Asp	Glu	Phe	Lys	Arg	Ala	Phe	Gly
							530	535	540						
Glu	Asn	Ser	Pro	Thr	Tyr	Lys	Lys	His	Cys	Asn	Gln	Ser	Cys	Gly	Ile
						545	550	555							
Tyr	Glu	Pro	Val	Leu	Lys	Lys	Tyr	Gly	Lys	Lys	Arg	Ala	Asn	Asn	His
							565	570	575						
Ser	Val	Ser	Ile	Ser	Ala	Asp	Phe	Gly	Asp	Tyr	Phe	Met	Pro	Phe	Ala
							580	585	590						
Ser	Tyr	Ser	Arg	Thr	His	Arg	Met	Pro	Asn	Ile	Gln	Glu	Met	Tyr	Phe
							595	600	605						
Ser	Gln	Ile	Gly	Asp	Ser	Gly	Val	His	Thr	Ala	Leu	Lys	Pro	Glu	Arg
							610	615	620						
Ala	Asn	Thr	Trp	Gln	Phe	Gly	Phe	Asn	Thr	Tyr	Lys	Lys	Gly	Leu	Leu
							625	630	635						
Lys	Gln	Asp	Asp	Thr	Leu	Gly	Leu	Lys	Leu	Val	Gly	Tyr	Arg	Ser	Arg
							645	650	655						
Ile	Asp	Asn	Tyr	Ile	His	Asn	Val	Tyr	Gly	Lys	Trp	Trp	Asp	Leu	Asn
							660	665	670						
Gly	Asn	Ile	Pro	Ser	Trp	Val	Ser	Ser	Thr	Gly	Leu	Ala	Tyr	Thr	Ile
							675	680	685						
Gln	His	Arg	Asn	Phe	Lys	Asp	Lys	Val	His	Lys	His	Gly	Phe	Glu	Leu
							690	695	700						
Glu	Leu	Asn	Tyr	Asp	Tyr	Gly	Arg	Phe	Phe	Thr	Asn	Leu	Ser	Tyr	Ala
							705	710	715						
Tyr	Gln	Lys	Ser	Thr	Gln	Pro	Thr	Asn	Phe	Ser	Asp	Ala	Ser	Glu	Ser
							725	730	735						
Pro	Asn	Asn	Ala	Ser	Lys	Glu	Asp	Gln	Leu	Lys	Gln	Gly	Tyr	Gly	Leu
							740	745	750						
Ser	Arg	Val	Ser	Ala	Leu	Pro	Arg	Asp	Tyr	Gly	Arg	Leu	Glu	Val	Gly
							755	760	765						
Thr	Arg	Trp	Leu	Gly	Asn	Lys	Leu	Thr	Leu	Gly	Gly	Ala	Met	Arg	Tyr
							770	775	780						
Phe	Gly	Lys	Ser	Ile	Arg	Ala	Thr	Ala	Glu	Glu	Arg	Tyr	Ile	Asp	Gly
							785	790	795						
Thr	Asn	Gly	Gly	Asn	Thr	Ser	Asn	Val	Arg	Gln	Leu	Gly	Lys	Arg	Ser
							805	810	815						
Ile	Lys	Gln	Thr	Glu	Thr	Leu	Ala	Arg	Gln	Pro	Leu	Ile	Phe	Asp	Phe
							820	825	830						
Tyr	Ala	Ala	Tyr	Glu	Pro	Lys	Lys	Asn	Ile	Phe	Arg	Ala	Glu	Val	
							835	840	845						
Lys	Asn	Leu	Phe	Asp	Arg	Arg	Tyr	Ile	Asp	Pro	Leu	Asp	Ala	Gly	Asn
							850	855	860						
Asp	Ala	Ala	Thr	Gln	Arg	Tyr	Tyr	Ser	Ser	Phe	Asp	Pro	Lys	Asp	Lys
							865	870	875						
Asp	Glu	Glu	Val	Thr	Cys	Asn	Ala	Asp	Lys	Thr	Leu	Cys	Asn	Gly	Lys
							885	890	895						
Tyr	Gly	Gly	Thr	Ser	Lys	Ser	Val	Leu	Thr	Asn	Phe	Ala	Arg	Gly	Arg
							900	905	910						
Thr	Phe	Leu	Ile	Thr	Met	Ser	Tyr	Lys	Phe						

915

920

<210> 5
<211> 2766
<212> DNA
<213> Bacteria

<400> 5

at gagatctt cttccgggtt	gaagccgatt tttttacc	ttatgggtgt ta	cgctata	60
cattatagtt atgccaaga	tgcaggcgc gcggcagcg	aggcgcagat ac	agggtttt	120
gaagatgtgc acgtcaaggc	gaagcgcgt a	aaaagtgtt tac	cgatgcg	180
cgtgccgtat cgaccgtca	ggatatttc aaatccagcg	aaacctcg a	aacatcgta	240
cgcagcatcc cgggtgcgtt	tacacagcaa gataaaagct	cggcattgt gt	cttgaat	300
attcgcggcg acagcgggtt	cggcggtc aatacgatgg	tggacggcat ca	cacgcagacc	360
tttatttca ctttaccga	tgccggcagg gcaggcggtt	atctcaatt cg	gtgcatct	420
gtcgacagca attttattgc	cggactggat gt	cgagcttcag cg	gctcggca	480
ggcatcaaca gccttgcgg	ttcggcgaat ctg	taggcgttga tg	acgtcggt	540
cagggcaata atacctacgg	cctgctgcta aaaggtctga	ccggcaccaa tt	caacccaa	600
ggtaatgcga tggcgccgat	agggtgcgcg aaatggctgg	aaagcggagc at	ctgtcggt	660
gtgctttagt ggcacagcag	gcccgcgtg g	accgcgtggg cgg	cggcggcggg	720
cagcacatcg gaaattttgg	cgcggatat tt	gcaagcagcg at	atatttgt	780
caagagggtg ctttgaattt	caattccgac agcggaaaat	gggagcggg ttt	acaaagg	840
caacagtgg aatacaagcc	gtataaaaaat tacaacaacc	aagaactaca aaa	atacatc	900
gaaggtcatg aaaaaagctg	gcggggaaac ctgcgcgc	aatacgacat cac	cccccatc	960
gatccgtcca gcctgaagca	gcagtcggca gg	ttaaatttga at	acgacggc	1020
gtattcaata aatacacggc	caatttcgc gattt	ccaaaatcgg cag	ccgcgcaaa	1080
atcatcaacc gcaatttatca	gttcaattac g	taaccgtt acc	caacacctc	1140
aatctgaccg cagcctacaa	ttcgggcagg c	cgaaagggtc ga	agtttaca	1200
ggctgggggc ttttaaagga	tttgcggacc tacaacaacg	cgaaaatcct cg	acctcaac	1260
aacaccgcca cttccggct	gccccgcgaa acc	aaaccactt ggg	cttcaat	1320
tatttccaca acgaatacgg	aaaaaccgc t	aattgggct gttt	ttcgac	1380
ggctctgatc aggacaacgg	cttttattcc t	gtttaaggg cgataaagg	gggg	1440
ctgctgcccc aaaaatcaac	cattgtccaa cc	ccaaatattt caacacgtt	c	1500
tacttcgatc ccgcgtctaa	aaaagacatt t	actacagcac caataccgt	c	1560
ggctaccgtt tcggcggcga	atatacggc t	cgatgacga attaagg	cg	1620
gcattcggag aaaactcgc	gacatacaga a	accggagctg c	gggattt	1680
gaaccctgtat tgaaaaata	cgccaaaaag c	accattcgt c	aggatt	1740
gcccggatcg gcgattattt	cgccgtt c	cgycacaca cc	gtatgccc	1800
aacatccaag aaatgtattt	ttcccaaattc g	gcgttacac cgc	ctttaaaaa	1860
ccagagcgcg caaacactt	caatttgcg t	ataaaaaagg att	gttaaaaa	1920
caagatgata cattaggatt	aaaactggc	ccgcgtatcg a	actacatc	1980
cacaacgttt acggaaaatg	gtgggattt a	ttccgagctg g	gtcagcagc	2040
accgggctt cttacaccat	ccaacatcg	acaatgtca caa	acacacgg	2100
tttgagttgg agctgaatta	cgattatgg	ccaaaccttc tt	acgccttat	2160
caaaaaagca cgcaaccgac	caacttc	atcgccaa caatgcgt	cc	2220
aaagaagacc aactcaaaca	aggttatgg	tttccgcctt g	ccgcgagat	2280
tacggacgtt tggaaatcg	tacgcgtt	ttgggcaaca aact	gacttt ggg	2340
atgcgttatt tcggcaagag	catccgcgc	acggctgaag aac	gtatata cgacgg	2400
aacgggggaa ataccagcaa	tttccggca	gttccatcaa aca	aaaccggaa	2460
actcttgcgc gccagcctt	gat	tttacgc	cttacgagcc	2520
cttattttcc gcggcgaagt	aaaaatctg t	tttacgc	gaagaaaaac	2580
gcgggcaatg atgcggcaac	tcgac	tttacgc	tttacgc	2640
gaagacgtaa cgtgtatgc	tttacgc	tttacgc	tttacgc	2700
aaaagcgtat tgaccaattt	tttacgc	tttacgc	tttacgc	2760
ttttaa				2766

<210> 6
<211> 921
<212> PRT
<213> Bacteria

<400> 6

seqlist.txt

Met Arg Ser Ser Phe Arg Leu Lys Pro Ile Cys Phe Tyr Leu Met Gly
1 5 10 15
Val Thr Leu Tyr His Tyr Ser Tyr Ala Glu Asp Ala Gly Arg Ala Gly
20 25 30
Ser Glu Ala Gln Ile Gln Val Leu Glu Asp Val His Val Lys Ala Lys
35 40 45
Arg Val Pro Lys Asp Lys Lys Val Phe Thr Asp Ala Arg Ala Val Ser
50 55 60
Thr Arg Gln Asp Ile Phe Lys Ser Ser Glu Asn Leu Asp Asn Ile Val
65 70 75 80
Arg Ser Ile Pro Gly Ala Phe Thr Gln Gln Asp Lys Ser Ser Gly Ile
85 90 95
Val Ser Leu Asn Ile Arg Gly Asp Ser Gly Phe Gly Arg Val Asn Thr
100 105 110
Met Val Asp Gly Ile Thr Gln Thr Phe Tyr Ser Thr Ser Thr Asp Ala
115 120 125
Gly Arg Ala Gly Gly Ser Ser Gln Phe Gly Ala Ser Val Asp Ser Asn
130 135 140
Phe Ile Ala Gly Leu Asp Val Val Lys Gly Ser Phe Ser Gly Ser Ala
145 150 155 160
Gly Ile Asn Ser Leu Ala Gly Ser Ala Asn Leu Arg Thr Leu Gly Val
165 170 175
Asp Asp Val Val Gln Gly Asn Asn Thr Tyr Gly Leu Leu Leu Lys Gly
180 185 190
Leu Thr Gly Thr Asn Ser Thr Lys Gly Asn Ala Met Ala Ala Ile Gly
195 200 205
Ala Arg Lys Trp Leu Glu Ser Gly Ala Ser Val Gly Val Leu Tyr Gly
210 215 220
His Ser Arg Arg Ser Val Ala Gln Asn Tyr Arg Val Gly Gly Gly
225 230 235 240
Gln His Ile Gly Asn Phe Gly Ala Glu Tyr Leu Glu Arg Arg Lys Gln
245 250 255
Arg Tyr Phe Val Gln Glu Gly Ala Leu Lys Phe Asn Ser Asp Ser Gly
260 265 270
Lys Trp Glu Arg Asp Leu Gln Arg Gln Trp Lys Tyr Lys Pro Tyr
275 280 285
Lys Asn Tyr Asn Asn Gln Glu Leu Gln Lys Tyr Ile Glu Gly His Asp
290 295 300
Lys Ser Trp Arg Glu Asn Leu Ala Pro Gln Tyr Asp Ile Thr Pro Ile
305 310 315 320
Asp Pro Ser Ser Leu Lys Gln Gln Ser Ala Gly Asn Leu Phe Lys Leu
325 330 335
Glu Tyr Asp Gly Val Phe Asn Lys Tyr Thr Ala Gln Phe Arg Asp Leu
340 345 350
Asn Thr Lys Ile Gly Ser Arg Lys Ile Ile Asn Arg Asn Tyr Gln Phe
355 360 365
Asn Tyr Gly Leu Ser Leu Asn Pro Tyr Thr Asn Leu Asn Leu Thr Ala
370 375 380
Ala Tyr Asn Ser Gly Arg Gln Lys Tyr Pro Lys Gly Ser Lys Phe Thr
385 390 395 400
Gly Trp Gly Leu Leu Lys Asp Phe Glu Thr Tyr Asn Asn Ala Lys Ile
405 410 415
Leu Asp Leu Asn Asn Thr Ala Thr Phe Arg Leu Pro Arg Glu Thr Glu
420 425 430
Leu Gln Thr Thr Leu Gly Phe Asn Tyr Phe His Asn Glu Tyr Gly Lys
435 440 445
Asn Arg Phe Pro Glu Glu Leu Gly Leu Phe Phe Asp Gly Pro Asp Gln
450 455 460
Asp Asn Gly Leu Tyr Ser Tyr Leu Gly Arg Phe Lys Gly Asp Lys Gly
465 470 475 480
Leu Leu Pro Gln Lys Ser Thr Ile Val Gln Pro Ala Gly Ser Gln Tyr
485 490 495

Phe Asn Thr Phe Tyr Phe Asp Ala Ala Leu Lys Lys Asp Ile Tyr Arg
 500 505 510
 Leu Asn Tyr Ser Thr Asn Thr Val Gly Tyr Arg Phe Gly Gly Glu Tyr
 515 520 525
 Thr Gly Tyr Tyr Gly Ser Asp Asp Glu Phe Lys Arg Ala Phe Gly Glu
 530 535 540
 Asn Ser Pro Thr Tyr Lys Lys His Cys Asn Arg Ser Cys Gly Ile Tyr
 545 550 555 560
 Glu Pro Val Leu Lys Lys Tyr Gly Lys Lys Arg Ala Asn Asn His Ser
 565 570 575
 Val Ser Ile Ser Ala Asp Phe Gly Asp Tyr Phe Met Pro Phe Ala Ser
 580 585 590
 Tyr Ser Arg Thr His Arg Met Pro Asn Ile Gln Glu Met Tyr Phe Ser
 595 600 605
 Gln Ile Gly Asp Ser Gly Val His Thr Ala Leu Lys Pro Glu Arg Ala
 610 615 620
 Asn Thr Trp Gln Phe Gly Phe Asn Thr Tyr Lys Lys Gly Leu Leu Lys
 625 630 635 640
 Gln Asp Asp Thr Leu Gly Leu Lys Leu Val Gly Tyr Arg Ser Arg Ile
 645 650 655
 Asp Asn Tyr Ile His Asn Val Tyr Gly Lys Trp Trp Asp Leu Asn Gly
 660 665 670
 Asp Ile Pro Ser Trp Val Ser Ser Thr Gly Leu Ala Tyr Thr Ile Gln
 675 680 685
 His Arg Asn Phe Lys Asp Lys Val His Lys His Gly Phe Glu Leu Glu
 690 695 700
 Leu Asn Tyr Asp Tyr Gly Arg Phe Phe Thr Asn Leu Ser Tyr Ala Tyr
 705 710 715 720
 Gln Lys Ser Thr Gln Pro Thr Asn Phe Ser Asp Ala Ser Glu Ser Pro
 725 730 735
 Asn Asn Ala Ser Lys Glu Asp Gln Leu Lys Gln Gly Tyr Gly Leu Ser
 740 745 750
 Arg Val Ser Ala Leu Pro Arg Asp Tyr Gly Arg Leu Glu Val Gly Thr
 755 760 765
 Arg Trp Leu Gly Asn Lys Leu Thr Leu Gly Gly Ala Met Arg Tyr Phe
 770 775 780
 Gly Lys Ser Ile Arg Ala Thr Ala Glu Glu Arg Tyr Ile Asp Gly Thr
 785 790 795 800
 Asn Gly Gly Asn Thr Ser Asn Phe Arg Gln Leu Gly Lys Arg Ser Ile
 805 810 815
 Lys Gln Thr Glu Thr Leu Ala Arg Gln Pro Leu Ile Phe Asp Phe Tyr
 820 825 830
 Ala Ala Tyr Glu Pro Lys Lys Asn Leu Ile Phe Arg Ala Glu Val Lys
 835 840 845
 Asn Leu Phe Asp Arg Arg Tyr Ile Asp Pro Leu Asp Ala Gly Asn Asp
 850 855 860
 Ala Ala Thr Gln Arg Tyr Tyr Ser Ser Phe Asp Pro Lys Asp Lys Asp
 865 870 875 880
 Glu Asp Val Thr Cys Asn Ala Asp Lys Thr Leu Cys Asn Gly Lys Tyr
 885 890 895
 Gly Gly Thr Ser Lys Ser Val Leu Thr Asn Phe Ala Arg Gly Arg Thr
 900 905 910
 Phe Leu Ile Thr Met Ser Tyr Lys Phe
 915 920

<210> 7
 <211> 30
 <212> DNA
 <213> Bacteria

<400> 7
 gctagctagc agatcttctt tcgggaagaa

seqlist.txt

<210> 8
<211> 34
<212> DNA
<213> Bacteria

<400> 8
ggtcgctcga gaaacttgt a gtcatcgat atca 34

<210> 9
<211> 1000
<212> DNA
<213> Bacteria

<400> 9
tatccgataaa gttccgtac cgaacagact agattcccgc ctgcgcggga atgacgattc 60
ataagttcc cgaaattcca acataaccga aacctgacag taaccgtac aactgaaccc 120
tcattccac gaaagtggga atctagaat gaaaaggcaac aggcatatcg cggaaataac 180
tgaacccgaa cagactagat tccgcctgc gcgggaatga cgattcataa gtttcccggaa 240
attccaaacat aaccggaaacc tgacagtaac cgttagtaact gaaccgtcat tcccacggaa 300
gtgggaatct agaaatgaaa agcaacaggg atttacgat aataactgga accgaacaga 360
ccttagattcc cgccctgcgc ggaatgacgg ctgcagatgc ccgacggct ttatagcaga 420
ttaacaaaaaa tcaggacaag gcggcgagcc acagacagta caaacagttac ggaaccgatt 480
cacttgggtgc ttccagcacct tagagaatcg ttctcttgc gctaaggcga gacaacgccc 540
tactggtttt tgtaatccg ctatattccg ccattctcaa gatttacagc gatacacggg 600
taatttaagg aatggccgaa ccgtcatcc cgccactttt cgtcattccc accactttc 660
gtcattcccg cgcaggcggg aatctagaat ctccgacttt cagataatct ttgaatattg 720
ctgttgttct aaggttttaga ttccccctgc gcgggaatga cgattcataa gtttcccggaa 780
attccaaacat aaccggaaacc tgacagtaac cgttagcaaca gagaatcggt ctctttgagc 840
taaggcgaaa caacgctgtt ccgggttttg ttaatccact ataaatatcc aattgaaatc 900
ttcagacggt atatcgtt tacactttt aatgtttatg ccgcctaaaa aaatgctaat 960
atatttctta attgtctgac tggttattgt tgaggaaaat 1000

1000
960
900
840
780
720
660
600
540
480
420
360
300
240
180
120
60