Лабораторная работа 1.05

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАЯТНИКА ОБЕРБЕКА

И.И. Логачев, Е.В. Козис, А.А. Задерновский

Цель работы: изучение законов вращательного движения на примере маятника Обербека.

Задание: определить момент инерции маятника Обербека, измеряя время прохождения фиксированного расстояния разными грузиками.

Подготовка к выполнению лабораторной работы: изучить понятия момента силы и момента импульса относительно точки и относительно оси, момента инерции точки и твердого тела, ознакомиться с понятиями угловой скорости и углового ускорения материальной точки, а также с уравнением вращательного движения твердого тела относительно неподвижной оси. Изучить принципы, на которых основана работа экспериментальной установки. Ответить на контрольные вопросы.

Библиографический список

- 1. Савельев И.В. Курс общей физики. В 3-х томах. Том 1. Механика. Молекулярная физика. СПб.: Издательство «Лань», 2018, гл. 2, §§ 6-11; гл. 5, §§ 36-39.
- 2. Трофимова Т.И. Курс физики. М.: Издательский центр «Академия», 2016, гл. 2, §§ 5 8; гл. 4, §§ 16 18.

Контрольные вопросы

- 1. Дайте определение момента инерции материальной точки и твердого тела относительно некоторой оси.
- 2. Дайте определение момента силы относительно точки и относительно некоторой оси.
- 3. Приведите вывод основного уравнения динамики вращательного движения твёрдого тела.
- 4. Как определяется направление вектора угловой скорости $\vec{\omega}$ и углового ускорения относительно некоторой оси?
- 5. Опишите устройство маятника Обербека.
- 6. Чему равен суммарный момент сил, действующих на ось вращения маятни-ка Обербека?
- 7. Выведите расчетную формулу для определения момента инерции маятника Обербека.

- 8. Выведите расчетную формулу для оценки относительной погрешности при определении момента инерции маятника Обербека.
- 9. Как, используя формулу (12), найти абсолютную погрешность измерения момента инерции маятника Обербека?

Теоретическое введение

Вращение твердого тела постоянной массы вокруг неподвижной оси описывается основным уравнением динамики вращательного движения. При заданном значении момента инерции тела J относительно оси вращения это уравнение записывается в виде

$$M = J\beta \tag{1}$$

где M – суммарный момент внешних сил, приложенных к телу, относительно оси вращения, β — угловое ускорение вращения тела.

Момент инерции твердого тела относительно некоторой оси можно определить по формуле

$$J = \int r^2 dm \tag{2}$$

где $dm = \rho dV$ – масса элементарного объема dV, ρ – плотность тела, r расстояние от элементарной массы тела до оси вращения. В тех случаях, когда тело имеет сложную геометрическую форму или неоднородно по массе, вычисление момента инерции может быть весьма сложным. В такой ситуации определение момента инерции производится экспериментально.

Рассмотрим схему маятника Обербека, показанную на рис. 1. При движе-

нии груза т сила натяжения нити создает вращающий момент, который равен

$$M_T = TR, (3)$$

где R — радиус шкива, T — сила натяжения нити. Величину Т можно определить из второго закона Ньютона

$$ma = mg - T, (4)$$

где a — ускорение груза, g — ускорение свободного падения. Из этого уравнения выразим силу натяжения нити

$$T = m(g - a). (5)$$

Используя основной закон динамики вращательного движения, проанализируем вращение ма-

ятника Обербека. Кроме указанного момента силы натяжения, на маятник дей-

Рис. 1

ствует также момент сил трения, тормозящий его. Определение этого момента весьма затруднительно, так как он создается неизвестными по величине силами с неизвестными плечами. Такими силами являются силы трения в подшипниках оси и силы сопротивления воздуха. При невысоких скоростях вращения суммарный момент сил трения можно считать постоянным, а плечом приложения этих сил считать радиус оси вращения r, т. е.

$$M_{\rm Tp} = rF_{\rm Tp}.\tag{6}$$

Таким образом, суммарный момент сил, приложенных к маятнику относительно оси вращения, согласно выражениям (3) и (6) равен

$$M = M_T - M_{\rm Tp}. (7)$$

При этом учтено, что моменты силы трения и силы натяжения нити имеют противоположные направления (см. рис. 1). Угловое ускорение шкива маятника β и его тангенциальное ускорение a_{τ} связаны известным соотношением

$$a_{\tau} = \beta R. \tag{8}$$

Считая нить невесомой и нерастяжимой, ускорение груза a можно выразить через расстояние h, которое проходит груз за время t, а именно $a=2h/t^2$. В силу того что $a_{\tau}=a$, для углового ускорения получим

$$\beta = \frac{a}{R} = \frac{2h}{Rt^2}. (9)$$

Последовательно используя в качестве грузов гири с массами m_1 и m_2 и измеряя время прохождения ими фиксированного расстояния h, получим систему из двух уравнений с двумя неизвестными J и $M_{\rm Tp}$ — моментом инерции и моментом сил трения

$$J\frac{2h}{Rt_1^2} = m_1 \left(g - \frac{2h}{t_1^2}\right) R - M_{\text{Tp}},$$

$$J\frac{2h}{Rt_2^2} = m_2 \left(g - \frac{2h}{t_2^2}\right) R - M_{\text{Tp}}.$$
(10)

Исключая из этой системы M_{Tp} , получим расчетную формулу для момента инерции

$$J = \frac{R^2}{t_1^2 - t_2^2} \left[\frac{(m_2 - m_1)gt_1^2t_2^2}{2h} + (m_1t_2^2 - m_2t_1^2) \right]. \tag{11}$$

В проводимом эксперименте грузики движутся с ускорениями, которые много меньше (примерно на два порядка) ускорения свободного падения. По-

этому второе слагаемое в квадратных скобках выражения (11) оказывается много меньше первого,

$$\left|m_1t_2^2-m_2t_1^2\right| << \frac{(m_2-m_1)gt_1^2t_2^2}{2h},$$

и им можно пренебречь. Окончательно получаем следующую расчетную формулу для момента инерции маятника Обербека.

$$J = \frac{R^2(m_2 - m_1)gt_1^2t_2^2}{(t_1^2 - t_2^2)2h}. (12)$$

Описание аппаратуры и методики измерений

Изучение динамики вращательного движения производится на установке, получившей название «Маятник Обербека» и схематически изображенной на рис. 2.

Рис. 2. Схема экспериментальной установки

Маятник Обербека представляет собой четыре тонких жестких металлических стержня, закрепленных в металлической муфте под прямым углом друг к другу. Муфта закреплена на кронштейне так, что ее ось вращения расположена горизонтально. Вдоль каждого стержня могут перемещаться цилиндрические грузы одинаковой массы m_0 , закрепляемые на произвольном расстоянии от оси вращения с помощью фиксаторов. Это дает возможность изменять момент инерции всей системы.

При одинаковом расстоянии грузов от оси вращения система сбалансирована, т.е. находится в состоянии безразличного равновесия. На муфте расположен шкив, на который намотана нить. К свободному концу нити может быть прикреплен груз массой m.

Порядок выполнения работы

- 1. Закрепите на конце нити груз массой m_1
- 2. Намотайте нить на шкив так, чтобы груз поднялся до уровня немного ниже концов спиц с грузами, и удерживайте маятник рукой, не давая ему начать движение.
- 3. Отпустите маятник и одновременно включите секундомер. После достижения грузом отметки h (например, до пола) остановите секундомер и аккуратно за шкив остановите вращение маятника.
- 4. Измерение времени прохождения грузом массой m_1 фиксированного расстояния h необходимо провести не менее пяти раз.
- 5. Закрепите на конце нити груз массой m_2 и повторите опыт по пп. 1-3 не менее 5 раз.
- 6. Радиус шкива *R* измеряется штангенциркулем.
- 7. Результаты измерений оформите в виде таблицы.

Таблица 1.

	t, c					Среднее	Случайная погреш-	Погреш-	Абсолют- ная погре
т, г	1	2	3	4	5	$t_{\rm cp},{ m c}$	ность $\Delta t_{ m cл}, { m c}$	прибора $\Delta t_{\rm np}, { m c}$	шность Δt , с
m_1									
m_2									

Обработка результатов измерений

- 1. Используя расчетную формулу (12), вычислите момент инерции маятника Обербека.
- 2. Расчет абсолютной погрешности времени Δt проведите с учетом случайной погрешности $\Delta t_{\rm cn}$ и погрешности секундомера $\Delta t_{\rm np}$ Погрешность секундомера примите равной 0,1 с. В дальнейших расчетах используйте максимальную погрешность $\Delta t = \sqrt{\Delta t_{\rm cn}^2 + \Delta t_{\rm np}^2}$.

3. Определите абсолютную погрешность полученного значения момента инерции ΔJ по формуле $\Delta J = J \cdot E$ где E — относительная погрешность измерений, получаемая из расчетной формулы (12)

$$E = \frac{\Delta g}{g} + \frac{\Delta h}{h} + 2\frac{\Delta R}{R} + 2\frac{\Delta m}{m_2 - m_1} + 2\frac{\Delta t}{t_1} + 2\frac{\Delta t}{t_2} + 2\frac{\Delta t}{t_1 - t_2}.$$

4. Запишите полученное значение момента инерции в виде $J \pm \Delta J$. Округление результатов произведите с учетом полученных значений абсолютных погрешностей измерений.