Linear Models

Linear models are a class of regression and classification models in which the prediction is a linear function of the input variables.

- Also known as linear classifiers;
- A component of **neural networks**.

Summary:

- Feature Representations
- Linear Regression
- Binary Classification
- Multiclass Classification
- Logistic Regression
- Regularization and Optimization
- Non-Linear Models

Feature Representations

- **Feature representation** is the process of transforming raw data into a set of features that can be used to more effectively train a machine learning model:
- Bag-of-words features used for text classification;
- SIFT features used for image classification;
- Other categorical, boolean and continuous features.

To represent information about x, a typical approach is to define a **feature** map $\phi: X \to \mathbb{R}^d$ that maps x to a d-dimensional feature vector $\phi(x)$ - **feature** vector:

- $\phi(x)$ is a vector of d features;
- It may include boolean, categorical and continuous features;
- Categorical features can be encoded as **one-hot vectors** a vector with a 1 in the position corresponding to the category and 0s everywhere else.

NLP (Natural Language Processing) Pipelines

- Classical NLP pipelines: stacking together several linear classifiers;
- Each output is used to **handcraft features** for the next classifier **feature engineering**.

Linear Regression

- Output space Y is **continuous** (e.g. \mathbb{R});
- Model: $\hat{y} = w^T x + b$;
- w is a d-dimensional vector of **weights**;
- *b* is a **bias**:
- Given training data $D = \{(x_n, y_n)\}_{n=1}^N$, we want to find the **best** w and b.

The **least squares** approach is to find w and b that minimize the **mean squared error** (MSE):

$$min_{w,b} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2 = min_{w,b} \sum_{n=1}^{N} (y_n - (w^T x_n + b))^2$$

• Maximum likelihood estimate (MLE) of w and b.

Closed-Form Solution

• Ofter, linear dependency of \hat{y} on x is a bad assumption, so a more general approach is to usa a **feature vector** $\phi(x)$:

$$\hat{y} = w^T \phi(x)$$

- The bias term is included in $\phi(x)$, in thee constant feature $\phi_0(x) = 1$;
- **Fit**/**learn** w by solving:

$$min_w \sum_{n=1}^{N} (y_n - w^T \phi(x_n))^2$$

• The closed-form solution is:

$$\hat{w} = (X^T X)^{-1} X^T y, with X = \begin{bmatrix} \phi(x_1)^T \\ \vdots \\ \phi(x_N)^T \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

Squared Loss Function

The squared loss function is:

$$L(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2, with \hat{y} = w^T \phi(x)$$

The model is fit to training data by minimizing the loss function:

$$\hat{w} = argmin_w \sum_{n=1}^{N} L(y_n - \hat{y}_n) = argmin_w \sum_{n=1}^{N} \frac{1}{2} (y_n - w^T \phi(x_n))^2$$

The $\frac{1}{2}$ factor is included for **convenience**, so that the derivative of the loss function is $y - \hat{y}$.

Other Regression Loss Functions

- Squared loss (most common): $L(y, \hat{y}) = \frac{1}{2}(y \hat{y})^2$;
- Absolute error loss: $L(y, \hat{y}) = |y \hat{y}|$;
- Huber loss: $L(y, \hat{y}) = \begin{cases} \frac{1}{2}(y \hat{y})^2 & \text{if } |y \hat{y}| \leq \delta \\ \delta(|y \hat{y}| \frac{1}{2}\delta) & \text{otherwise} \end{cases}$.

Overfitting and Underfitting

- Overfitting: the model is too complex for the data;
 - To avoid overfitting:
 - * Regularization penalize large weights;
 - * Some way to choose the number of features D;
- Underfitting: the model is too simple for the data.

Ridge Regression and Regularization

If X^TX is **not invertible**, we can add a **regularization term** to the loss function, using the **ridge regression** approach:

$$\hat{w}_{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

This is equivalent to (considering $||w||_2^2 = \sum_{i=1}^d w_i^2$, the **L2 norm**):

$$\hat{w}_{ridge} = argmin_w ||Xw - y||^2 + \lambda ||w||_2^2$$

• l_2 regularization is also known as **weight decay**, or penalized least squares.

Maximum A Posteriori (MAP)

- **Maximum a posteriori** (MAP) is a **Bayesian** approach to learning the parameters of a model;
- Assuming that we have a **prior distribution** $w \sim \mathcal{N}(0, \tau^2 I)$, we can find the **maximum a posteriori** estimate of w:

$$\hat{w}_{MAP} = argmax_w p(w|y) = argmax_w p(y|w) p(w) / p(y) = argmin_w \lambda ||w||_2^2 + \sum_{n=1}^N (y_n - w^T \phi(x_n))^2$$

- The **prior** $||w||_2^2$ is the **regularization term** regularizer;
- The likelihood $\sum_{n=1}^{N} (y_n w^T \phi(x_n))^2$ is the loss function;
- The regularization constant is $\lambda = \frac{\sigma^2}{\tau^2}$.

Binary Classification

- Output space Y is **binary** (e.g. $\{0,1\}$);
- Model:

$$\hat{y} = sign(w^T \phi(x) + b) = \begin{cases} +1 & \text{if } w^T \phi(x) + b \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

- **Sign function** converts from continuous to binary; this is different from regression;
- The decision boundary is a **hyperplane**: $w^T \phi(x) + b = 0$;
- The dataset D is **linearly separable** if there exists a pair (w, b) such that classification is **perfect**.

Perceptron Learning Algorithm

- Perceptron learning algorithm (PLA) is an iterative algorithm for finding a linear classifier;
- Process one data point x_n at each round:
 - 1. Apply the current model to x_n to get a prediction \hat{y}_n ;
 - 2. If \hat{y}_n is correct, do nothing;
 - 3. If \hat{y}_n is incorrect, update the model, by **adding/subtracting** feature vector $\phi(x_n)$ to/from w;
- The training data is **linearly separable** with **margin** $\gamma > 0$ if there exists a weight vector u, with ||u|| = 1, such that $y_n(u^T \phi(x_n)) \ge \gamma$ for all n;
- **Radius** of the data is $R = max_n ||\phi(x_n)||$;
- The following bound of number of mistakes k is valid: $k \leq (\frac{R}{\gamma})^2$.

But what a perceptron can and cannot do?

- Since is a **linear classifier**, it cannot solve **non-linearly separable** problems, such as XOR;
- But it can solve linearly separable problems, such as AND, OR and NAND.

Multiclass Classification

- Assume now a **multi-class** problem, with |Y| > 2 labels (classes);
- There are several strategies to reduce to binary classification:
 - One-vs-all (OVA): train |Y| classifiers, each one to distinguish between one class and the rest;
 - **One-vs-one** (OVO): train $\frac{|Y|(|Y|-1)}{2}$ classifiers, each one to distinguish between one pair of classes;
 - Binary coding: use a binary code (maybe a error-correcting code) to represent each class, and train a binary classifier for each bit.

Multiclass Linear Classifiers

• Parametrized by a weight matrix $W \in \mathbb{R}^{d \times |Y|}$ - one weight per feature/label pair - and a bias vector $b \in \mathbb{R}^{|Y|}$ - one bias per label:

$$W = \begin{bmatrix} w_1 & \cdots & w_{|Y|} \end{bmatrix}, b = \begin{bmatrix} b_1 & \cdots & b_{|Y|} \end{bmatrix}$$

- The score of a particular label is based on a **linear combination** of the features and the corresponding weights;
- Predict the label \hat{y} with the **highest score**:

$$\hat{y} = argmax_{y \in Y}(W\phi(x) + b)$$

Logistic Regression

- A linear model gives a **score** for each class y: $w_y^T \phi(x)$, from which we may compute a **conditional posterior probability** $p(y|x) = \frac{exp(w_y^T \phi(x))}{\sum_{y' \in Y} exp(w_{y'}^T \phi(x))}$;
 - This is known as **softmax transformation**;
 - We choose the **most probable class**: $argmax_{y \in Y} p(y|x) = argmax_{y \in Y} (w_y^T \phi(x));$
- Sigmoid transformation:

$$\sigma(z) = \frac{e^u}{1 + e^u}$$

- Widely used in neural networks;
- Maps \mathbb{R} to [0,1];
- The output can be interpreted as a **probability**;
- Positive, bounded and strictly increasing function.

Multinomial Logistic Regression

• Multinomial logistic regression is a generalization of logistic regression to multiple classes;

$$P_W(y|x) = \frac{exp(w_y^T \phi(x))}{\sum_{y' \in Y} exp(w_{y'}^T \phi(x))}$$

• Maximize the **conditional log-likelihood** of the training data, in order to find the best weights W:

$$\hat{W} = argmax_W \sum_{n=1}^{N} log P_W(y_n|x_n)$$

- Function **strictly convex** any local minimum is also a global minimum;
- No closed-form solution, but can be solved with gradient descent, or other optimization methods.

Gradient Descent Recap

- Goal: **minimize** a function $f: \mathbb{R}^d \to \mathbb{R}$, for differentiable f;
- Take small steps in the negative gradient direction, until stopping criterion is met: $w^{(t+1)} = w^{(t)} \eta \nabla f(w^{(t)})$.

The **loss function** in logistic regression is:

$$L(W;(x,y)) = \log \sum_{y' \in Y} exp(w_{y'}^T \phi(x)) - w_y^T \phi(x)$$

Stochastic Gradient Descent

- Stochastic gradient descent (SGD) is a variant of gradient descent, where the gradient is approximated using a single data point;
- Monte Carlo approximation more frequent updates, which is convenient with large datasets;
- 1. Set $W^{(0)} = 0$;
- 2. Iterate until stopping criterion is met:
 - (a) Pick a random data point (x_n, y_n) ;
 - (b) Update $W^{(t+1)} = W^{(t)} \eta \nabla L(W^{(t)}; (x_n, y_n)).$
- Approximate the gradient with a single data point;
- Noisy updates, but faster;
- Mini-batch SGD: use a small batch of data points to approximate the gradient.

Regularization

• **Regularization** is a technique to **reduce overfitting** - when the model is too complex for the data;

$$\hat{w} = argmin_w \sum_{n=1}^{N} L(y_n - w^T \phi(x_n)) + \lambda \Omega(w)$$

- $\Omega(w)$ is the **regularization term**, and λ is the **regularization constant** that controls the weight of the regularization term;
- l_2 regularization: $\Omega(w) = ||w||_2^2 = \sum_{i=1}^d w_i^2$ promotes smaller weights;
- l_1 regularization: $\Omega(w) = ||w||_1 = \sum_{i=1}^d |w_i|$ promotes smaller and sparse weights.

Non-Linear Models

- Linear models are limited to linear decision boundaries data must be linearly separable;
- Non-linear models can learn non-linear decision boundaries;
- There are several approaches to non-linear models:
 - Feature engineering manually define non-linear features;
 - Kernel methods implicitly map data to a higher-dimensional space;
 - Neural networks learn non-linear features.

There are two main ways of building machine learning systems:

- 1. **Feature-based** describe object properties (features) and build a model that uses these features **feature engineering**;
- 2. **Similarity-based** define a similarity measure between objects and build a model that uses this similarity **kernel methods**, **knn**.

KNN (K-Nearest Neighbors) Classifier

- KNN is a non-parametric classifier;
- No training is required, just **memorize** the training data;
- Given a new input x, find the k closest training examples x_n and predict the majority label among them: $\hat{y(x)} = y_n$, where $n = argmin||x x_i||$;
- **Disadvantage**: **expensive** at test time must compute the distance to all training examples.

Kernel Methods

- A kernel is a similarity function $k: X \times X \to \mathbb{R}$, that is symmetric and positive semi-definite;
- Given dataset $D = \{(x_n, y_n)\}_{n=1}^N$, we can define the **Gram matrix** $K \in \mathbb{R}^{N \times N}$, where $K_{ij} = k(x_i, x_j)$;
 - Symmetric $K_{ij} = K_{ji}$;
 - Positive semi-definite $v^T K v \ge 0$ for all $v \in \mathbb{R}^N$;
- Mercer's theorem: a function k is a valid kernel if and only if K is a valid Gram matrix;
- **Kernel trick**: take a feature-based algorithm (e.g. linear regression) and replace the dot product x^Tx' with a kernel k(x,x'). The resulting algorithm is a **non-linear** algorithm that operates in the **feature space** many models can be **kernelized**.

There are several popular kernels:

- Polynomial kernel: $k(x, x') = (x^T x' + c)^d$;
- Gaussian radial basis function (RBF): $k(x, x') = exp(-\frac{||x-x'||^2}{2\sigma^2});$
- String kernels;
- Tree kernels.