

Outline

- Background: Graph Neural Network & Fraud Detection.
- Research: A History (w/ Highlights) of GNN-based Fraud Detection Research.
- Application: The Guideline for Applying GNNs to Fraud Detection.
- Resources: Dataset, Toolbox, Paper List, etc...
- Q&A

What is Fraud?

Fraud definition according to U.S. Law:

 a misrepresentation of a fact, made from one person to another, with knowledge of its falsity and for the purpose of inducing the other to act.

Fraudster vs. Hacker

- Most fraudsters are NOT hackers.
- Only few hackers are fraudsters.

Fraud vs. Anomaly

- Not all frauds are anomalies.
- Not all anomalies are frauds.

Fraud Types in 2021

Social Network

- Fake Reviews
- Social Bots
- Misinformation
- Disinformation
- Fake Accounts
- Social Sybils
- Link Advertising

Finance

- Insurance Fraud
- Loan Defaulter
- Money Laundering
- Malicious Account
- Transaction Fraud
- Cash-out User
- Bitcoin Fraud

Others

- Advertisement
- Mobile Apps
- Ecommerce
- Crowdturfing
- Fake Clicks
- Game
- Account Takeover

GNN-based Fraud Detection

- (1) Graph Construction.
- (2) Training GNN on the Graph.
- (3) Classifying Unlabeled Nodes.

Key idea: the connected nodes are similar (homophily assumption)

A History of GNN Fraud Detection (75+Papers)

Research

GEM (CIKM'18)

Account-Device Heterogeneous Graph

- Task: malicious accounts detection in Alipay.
- The first paper leveraging the heterogeneous graph for fraud detection.
- Device types include UMID, MAC address, IMSI, APDID (Alipay Fingerprint).
- Using attention mechanism to learn importance of different sub-graphs.
- Code is available.

GAS (CIKM'19)

- Task: spam review detection on the Xianyu Platform.
- CIKM'19 Industrial Track Best Paper.
- Novel graph construction approach. Encoding each heterogeneous entity separately.
- Verifying a sampling approach for graph construction.
- Code is available.

User-Comment-Product Graph
+
Comment-Comment Graph

Research

CARE-GNN (CIKM'20)

Fraudster Camouflage

- Task: spam review detection on Yelp; malicious reviewer detection on Amazon.
- Top 15 influential papers in CIKM'20.
- Addressing the fraudster camouflage and classimbalance problems in fraud detection.
- Using reinforcement learning to select the most informative neighbors for GNNs.
- Integrated with <u>DGL</u>, introduce two public datasets.
- Extended <u>TOIS version</u> with more applications.
- Code is available.

Background

Research

FD-NAG (arXiv'21)

Transferring a heterogeneous non-attributed graph to an edge-attributed homogeneous graph

- Task: fraudsters detection in ride sharing services.
- Designing node and edge features for non-attributed graphs.
- Empirically verified the effectiveness of contrastive learning in fraud detection.

Applying GNN into Fraud Detection

Problem Formulation

- Whether using Graph&GNNs?
- Which task to choose?
- What graph schema is suitable?

Key Issues and Solutions

- Camouflage, Scalability, Class imbalance
- Label scarcity, Label fidelity, Data-scarcity

Novel Practices

- Novel methods
- Industrial cases

Problem Formulation

Using Graph?

- The fraudsters share common entities.
- The fraudsters have clustering behavior.
- The trade off between cost and effectiveness.

Using GNN?

- The infrastructure.
- The feature availability and feature types.
- Integrating with other modules and tasks.

Which Task?

- Node/edge/graph/subgraph classification.
- Community detection; anomaly detection.

Schema Design

- Node/edge type and node/edge feature.
- Graph schema, node sampling.
- Graph structure is flexible: <u>SIGIR'19</u>, <u>ICDM'20</u>.

Which GNN?

- GNN is chosen based on task and schema.
- Simple GNN model is enough.
- GAT and Graph-SAGE are commonly used.

Graph Schema

Homogeneous

BitGCN FdGars GeniePath FD-NAG

Multi-relation

GraphConsis
CARE-GNN
PC-GNN

Heterogeneous

GAS mHGNN IHGAT

Hierarchical

GEM
SemiGNN
Player2Vec
AA-HGNN

Key Issues and Solutions

Camouflage

- Neighboring filtering: SIGIR'20, CIKM'20, WWW'21.
- Aware of adversarial behavior: IJCAI'20, WWW'20.
- Active generative learning: <u>ACL'20</u>.
- Bayesian edge weight inference: ACL'21.

Scalability

- GNN scalability: MLF@KDD'20.
- Shallow graph models are more scalable: MLG@KDD'18, WWW'20.

Class imbalance

- Under-sampling: <u>CIKM'20</u>.
- Neighbor selection: WWW'21.
- Data augmentation: CIKM'20.

Key Issues and Solutions (Cont'd)

Label scarcity

- Active learning: <u>ICDM'20</u>, <u>TNNLS'21</u>.
- Ensemble learning: CIKM'20.
- Meta learning: WSDM'21.

Label fidelity

- Active learning: TNNLS'21.
- Human-in-the-loop: AAAI'20.

Data scarcity

Data augmentation: <u>CIKM'20</u>, <u>CIKM'21</u>, <u>ACL'20</u>.

Novel Practices

Background

Graph Pretraining (Contrastive Learning)

- Fraudster is distinguishable from its structural pattern.
- TNNLS'21, SIGIR'21, arXiv'21(1), arXiv'21(2).

Dynamic/Temporal/Streaming Graph

- The historical information is useful for identifying fraudsters.
- The efficiency and cost are bottlenecks.
- CIKM'21, KDD'21(1), KDD'21(2), SIGMOD'21.
- arXiv'21, SDM'21, ICDM'20, KDD'20.
- ROLAND.

Novel Practices (Cont'd)

Multi-task Learning

- Credit limit forecasting and credit risk predicting: WSDM'21.
- Fraud detection and recommender system: SIGIR'20.

Explainable Fraud Detection

- Explainable fraud transaction detection: <u>arXiv'20</u>, <u>KDD'21</u>.
- Explainable fake news detection: ACL'20.

Recent Surveys

- A Comprehensive Survey on Graph Anomaly Detection with Deep Learning.
- Anomaly Mining Past, Present and Future.
- Graph Computing for Financial Crime and Fraud Detection: Trends, Challenges and Outlook.

Industrial Cases

- Facebook
 - WWW'20, KDD'20, Security'21.
- Amazon
 - MLG@KDD'18, KDD'21.
- Tencent
 - WWW'19, WWW'20, KDD'21.
- Alibaba & Ant Group
 - CIKM'18, AAAI'19, SIGIR'19, CIKM'19, ICDM'19, IJCAI'20, ACL'20, CIKM'20(1).
 - CIKM'20(2), SIGMOD'21, WSDM'21, WWW'21, AAAI'21, KDD'21(1), KDD'21(2).
- eBay
 - Workshop@AAAI'21, arXiv'20, MLF@KDD'20.
- Others
 - App Market, Money Laundering, Fake Invitation (iQIYI), Bitcoin, Grab.

- DGFraud: a GNN-based fraud detection toolbox implemented TensorFlow 1.X.
 - 360 stars, ten GNN models.
- DGFraud-TF2: a GNN-based fraud detection toolbox implemented TensorFlow 2.X.
 - 31 stars, nine GNN models.
- UGFraud: an unsupervised graph-based fraud detection toolbox.
 - 71 stars, six classic models, deployed on Pypi.
- GNN-FakeNews: a collection of GNN-based fake news detection models.
 - 80 stars, benchmarking GNN-based fake news detection, integrated with DGL and PyG.
- Graph-based Fraud Detection Paper List (frequently updated).
 - 466 stars, more than 100 papers listed plus code, datasets, surveys, and other resources.
- Graph Adversarial Learning Literature (frequently updated).
 - 455 stars, more than 200 papers surveyed.

Other Toolboxes

- PyOD: Python Outlier Detection
 - https://github.com/yzhao062/pyod.
- PyODD: An End-to-end Outlier Detection System
 - https://github.com/datamllab/pyodds.
- DGL Fraud Detection Pipeline
 - https://github.com/awslabs/realtime-fraud-detection-with-gnn-on-dgl.
- PyG 2.0: A PyTorch-based GNN Library
 - https://github.com/pyg-team/pytorch_geometric.

Other Resources

- KDD Machine Learning in Finance Workshop
 - https://sites.google.com/view/kdd-mlf-2021.
- KDD Machine Learning on Graph Workshop
 - http://www.mlgworkshop.org/.
- KDD'20 Deep Anomaly Detection Tutorial
 - https://sites.google.com/view/kdd2020deepeye/home
- Awesome Fraud Detection Papers
 - https://github.com/benedekrozemberczki/awesome-fraud-detection-papers.

Thanks!

Yingtong Dou University of Illinois at Chicago

Email: ydou5@uic.edu

Homepage: http://ytongdou.com

Project Page: https://github.com/safe-graph

Wechat: ytongdou

Twitter: @dozee_sim

