CS 225

Data Structures

April 13 – Graph Impl Wade Fagen-Ulmschneider

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

insertVertex(K key):
removeVertex(Vertex v):
areAdjacent(Vertex v1, Vertex v2):
incidentEdges(Vertex v):

Graph Implementation: Edge List

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n+m	n ²
insertVertex(v)	1	n	1
removeVertex(v)	m	n	deg(v)
insertEdge(v, w, k)	1	1	1
removeEdge(v, w)	1	1	1
incidentEdges(v)	m	n	deg(v)
areAdjacent(v, w)	m	1	min(deg(v), deg(w))

Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We've seen traversal beforebut it's different:

- Ordered
- Obvious Start

- •
- •

Traversal: BFS

