ระบบโรงเรือนอัจฉริยะ Smart Greenhouse

ใช้ Arduino เป็นสมองกลางควบคุมและแสดงผลค่าต่าง ๆ ที่เกี่ยวข้องกับการเพาะปลูก เช่น อุณหภูมิ ความชื้นในดิน ความเข้ม แสง และตรวจจับการเข้าใกล้ด้วย Ultrasonic เพื่อทำงานอัตโนมัติ

อุปกรณ์ที่ใช้

- Arduino Uno
- เซนเซอร์ TMP36 ightarrow วัดอุณหภูมิ
- เซนเซอร์ Ultrasonic (HC-SR04) → ตรวจจับ การเคลื่อนไหว/การเข้าใกล้ (ใช้แทนการรักษา ความปลอดภัย)
- จอ LCD 16x2 พร้อม I2C → แสดงผลค่า เซนเซอร์
- Soil Moisture Sensor ightarrow วัดความชื้นในดิน
- LDR (Light Sensor) \longrightarrow ตรวจวัดความเข้มแสง
- Relay Module (สมมุติ) → เปิด/ปิดปั๊มน้ำหรือ หลอดไฟ
- Buzzer/LED → แจ้งเตือน

•

การทำงานของระบบ

1. ตรวจสอบสภาพอากาศในโรงเรือน

TMP36 \longrightarrow แสดงอุณหภูมิ LDR \longrightarrow วัดความสว่าง ถ้ามืดเกินไปเปิด ไฟเสริม (จำลองด้วย LFD)

2. รดน้ำอัตโนมัติ

Soil Moisture Sensor \longrightarrow ถ้าความชื้น ในดินต่ำกว่าเกณฑ์ กด Relay เปิดปั๊มน้ำ

ความปลอดภัย

Ultrasonic Sensor \longrightarrow ตรวจจับวัตถุที่ เข้าใกล้ ถ้ามีคน/สัตว์เข้าใกล้โรงเรือนจะ ดัง Buzzer

4. แสดงผลบน LCD I2C

แสดงข้อมูล เช่น

Temp: 28C Light: High Soil: Dry Sec: Safe

ประโยชน์ในชีวิตประจำวัน

ช่วยดูแลต้นไม้/ผักสวนครัวโดยไม่ต้องเฝ้าตลอดเวลา ประหยัดน้ำด้วยระบบรดน้ำอัตโนมัติ ควบคุมแสงเพื่อการเจริญเติบโตของพืช เพิ่มความปลอดภัยจากสัตว์หรือผู้บุกรุก

การต่อวงจร (Tinkercad)

- 1. Arduino Uno เป็นบอร์ดหลัก
- 2. LCD I2C 16x2

 $SDA \longrightarrow SDA$

 $SCL \longrightarrow SCL$

 $VCC \longrightarrow 5V$

 $GND \longrightarrow GND$

3. TMP36 (อุณหภูมิ)

 $VCC \rightarrow 5V$

 $GND \longrightarrow GND$

 $OUT \rightarrow A0$

4. Ultrasonic (HC-SR04)

 $VCC \rightarrow 5V$

 $GND \longrightarrow GND$

Trig \rightarrow D9

Echo \rightarrow D8

5. Soil Moisture Sensor

 $VCC \rightarrow 5V$

 $GND \longrightarrow GND$

 $AO \longrightarrow A1$

6. LDR (Light Sensor) + ตัวต้านทาน 10k $\Omega \rightarrow$ ต่อเป็นวงจรแบ่งแรงดัน

หนึ่งขา LDR \longrightarrow 5V

อีกขา LDR → A2 และต่อ R10k ไป

GND

- 7. **Relay (จำลองปั๊มน้ำ)** → ควบคุมด้วย D7
- 8. **LED (แทนไฟเสริม)** ightarrow D6 + R220ightarrow GND
- 9. **Buzzer (แจ้งเตือน)** ightarrow D5 + R100 Ω ightarrow GND

สิ่งที่จะเห็นใน Tinkercad

LCD แสดงค่าอุณหภูมิ, ความเข้มแสง, ความชื้นดิน, สถานะ ความปลอดภัย

LED จะติดเมื่อแสงน้อย

Relay จะทำงานเมื่อดินแห้ง

Buzzer จะดังเมื่อมีวัตถุเข้าใกล้

```
โค้ด
                                                              // อ่านค่าแสง
#include <Wire.h>
                                                              int ldrValue = analogRead(ldrPin);
#include <LiquidCrystal I2C.h>
                                                              // อ่าน Ultrasonic
LiquidCrystal I2C lcd(0x27, 16, 2);
                                                              digitalWrite(trigPin, LOW);
// Pin กำหนด
                                                              delayMicroseconds(2);
const int tempPin = A0;
                                                              digitalWrite(trigPin, HIGH);
const int soilPin = A1;
                                                              delayMicroseconds(10);
const int ldrPin = A2;
                                                              digitalWrite(trigPin, LOW);
const int trigPin = 9;
                                                              long duration = pulseIn(echoPin, HIGH);
const int echoPin = 8;
                                                              int distance = duration * 0.034 / 2;
const int relayPin = 7;
const int ledPin = 6;
                                                              // ----- การควบคุม -----
                                                              // ควบคุมปั้มน้ำ
const int buzzerPin = 5;
                                                              if (soilPercent < 40) {
                                                                digitalWrite(relayPin, HIGH); // เปิดปั๊ม
void setup() {
 Serial.begin(9600);
                                                                digitalWrite(relayPin, LOW); // ปิดปั้ม
 lcd.init();
 lcd.backlight();
                                                              }
                                                              // ควบคุมไฟ
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
                                                              if (ldrValue < 400) {
                                                                digitalWrite(ledPin, HIGH); // เปิดไฟเสริม
 pinMode(relayPin, OUTPUT);
 pinMode(ledPin, OUTPUT);
                                                              } else {
 pinMode(buzzerPin, OUTPUT);
                                                                digitalWrite(ledPin, LOW);
                                                              }
 lcd.setCursor(0, 0);
                                                              // แจ้งเตือนถ้ามีคน/สัตว์เข้าใกล้
 lcd.print(" Smart Greenhouse ");
                                                              if (distance < 20) {
 delay(2000);
                                                                digitalWrite(buzzerPin, HIGH);
}
                                                              } else {
void loop() {
                                                                digitalWrite(buzzerPin, LOW);
 // อ่านค่าอุณหภูมิ TMP36
                                                              }
 int tempValue = analogRead(tempPin);
 float voltage = tempValue * 5.0 / 1023.0;
                                                              // ----- แสดงผล -----
 float temperatureC = (voltage - 0.5) * 100.0;
                                                              lcd.clear();
                                                              lcd.setCursor(0, 0);
 // อ่านค่าความชื้นดิน
                                                              lcd.print("T:");
 int soilValue = analogRead(soilPin);
                                                              lcd.print((int)temperatureC);
 int soilPercent = map(soilValue, 1023, 0, 0, 100);
                                                              lcd.print("C ");
// ยิ่งค่าต่ำยิ่งชื้น
```

```
lcd.print("L:");
if (ldrValue < 400) lcd.print("Low ");
else lcd.print("High");

lcd.setCursor(0, 1);
lcd.print("Soil:");
lcd.print(soilPercent);
lcd.print("% ");

if (distance < 20) lcd.print("Alert");
else lcd.print("Safe ");

delay(1000);
}</pre>
```