Dual BS: False | Complex: Fals

Number of MD, FA

3

Team 64: Enhancing User Detection Bi-Weekly Update 4

Sponsor: Dr. Krishna Narayanan Jamison Ebert TA: Max Lesser

Project Summary

- With the rise in mMTC, a cell-free paradigm has been proposed to handle all the users
- In this paradigm, being able to accurately identify which users are active is critical
- Applying LISTA to the user activity detection problem in a cell-based system
- Evaluating the performance of LISTA in a cell-free system

mMTC: massive machine type communication; only a subset of users are active at any given point in time

Project Overview

Project Timeline

Implement unlearned algorithms	Implement LISTA	Add noise to algorithms	TISTA	Complex Rayleigh Fading	Unlearned 2 BS	Misdetections and False Alarms	Learned 2 BS

Unlearned Algorithms

Accomplishments since last update 15 hrs of effort	Ongoing progress/problems and plans until the next presentation					
-CAMP is working -Dual BS AMP is working -Misdetection and False alarm plots -Creating functions to run ISTA, AMP for specific processes	Continue creating functions to make code readable and user friendly					

Misdetection: The user is active, but we did not notice

False Alarm: We say the user is active, but they are not

Complex Rayleigh Fading SNR: 5dB → □

2 BS AMP

Noise: True | Fading: True | Dual BS: True | Complex: True

SNR: 5

Num_iter: 15

Averaged over 30 trials

Noise: True | Fading: True | Dual BS: True | Complex: True

Num_iter: 15

Averaged over 30 trials

Learned Algorithms

Accomplishments since last update 5 hrs of effort	Ongoing progress/problems and plans until the next presentation					
-MD, FA plot vs. SNR -Trying to get set up on the TAMU server so I can run CLISTA in background	2 BS implementation Compiling code neatly, creating functions for readability, and incorporating mathematical descriptions					

5 layers, 20 epochs Noise only

5 layers, 20 epochs Noise and fading

The two fuctions in the next cell are the implementation of these two equations.

The Onsager Correction term:

$$\mu^t = rac{1}{n} \mathbf{z}^{t-1} \sum \eta^{'}(r_j^{t-1}; au_{t-1})$$

The Eta function:

$$\eta(u;T) = \left\{ egin{aligned} u - T & ext{if } u \geq T \ u + T & ext{if } u \leq -T \ 0 & ext{else} \end{aligned}
ight.$$

Also included are system parameters. Where n is the number of measurements, N is the number of total users, and k is the number of active users.

```
[ ] 1 def onsager(z, r, tau):
2    n = len(z)
3    return (z/n) * np.sum(eta(r, tau) != 0)
4
5 def eta(u, T):
6    return (u - T)*(u >= T) + (u + T)*(u <= -T)
7
8 # initial parameters
9 n = 270
10 N = 1024
11 k = 40</pre>
```


	1-Sep	15-Sep	1-Oct	1-Nov	15-Nov	1-Dec	15-Jan	1-Feb	15-Feb	1-Mar	15-Mar	1-Apr	15-Apr	30-Apr
Program unlearned algorithms														
Generate baseline data														
Learn about LISTA and develop simple network with preset layers														
Develop custom layers for network														
Train without noise														
Train with noise														
Add real rayleigh fading														
Add complex rayleigh fading														
Implement TISTA														
Train with fading														
Preparation for symposium														
Unlearned baseline for 2 base station														
MD, FA plots														
Expand to two base station approach														
Finalizing work and documentation														
Compile into a single colab notebook														

Validation

We are evaluating MSE vs. iterations/layers.

The project is considered a success if the ML outperforms ISTA/AMP:

- With no noise
- With noise
- With fading
- With noise and fading

Here performance is measured by MSE and number of MD/FA.

