Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 Travaux dirigés Alain Kraus

Exercices - Chapitre III

Méthodes de factorisation

Exercice 1

L'objectif de cet exercice est de trouver la décomposition en facteurs premiers de l'entier n=423701 en utilisant méthode p-1 de Pollard. Il est préférable d'utiliser une calculatrice pour la résolution de cet exercice.

- 1) Trouver le plus petit commun multiple k de tous les entiers inférieurs ou égaux à 12.
- 2) Déterminer le reste de la division euclidienne de 2^k par n.
- 3) Calculer le pgcd de $2^k 1$ et n.
- 4) En déduire la factorisation de n.

Exercice 2

- 1) Factoriser les entiers 247 et 481 avec la méthode rho de Pollard, en utilisant le couple (f, x_0) où $f = X^2 + 1 \in \mathbb{Z}[X]$ et $x_0 = 3$.
- 2) Factoriser l'entier 6059 par la méthode de Fermat.

Exercice 3

Soient $m \ge 4$ un entier pair et $r \ge 2$ un entier. Posons

$$N = \frac{m^r}{2} + \frac{m}{2} - 1.$$

- 1) Montrer que N est un entier composé en explicitant un diviseur de N.
- 2) En déduire que $2^{64} + 15$ est divisible par 31.

On peut facilement vérifier avec la méthode des divisions successives que $\frac{2^{64}+15}{31}$ est divisible par 107. On obtient $2^{64}+15=31\times 107\times 5561273462077043$, qui est un produit de trois nombres premiers.

Exercice 4

Pour tout $n \ge 1$, considérons l'entier $R_n = 1 \cdots 1$ constitué de n chiffres 1.

1) Montrer si R_n est premier, alors n est premier.

- 2) Soit p un nombre premier impair distinct de 5. Montrer qu'il existe une infinité d'entiers n tels que R_n soit divisible par p.
- 3) Supposons $n \geq 5$ premier. Soit ℓ un diviseur premier de R_n . Montrer que ℓ est congru à 1 modulo 2n.
- 4) En déduire que R_5 est composé, ainsi que sa décomposition en facteurs premiers.

Exercice 5

Rappelons qu'un entier est dit B-friable si tous ses diviseurs premiers sont inférieurs ou égaux à B. Déterminer l'ensemble des entiers $n \ge 1$ tels que n(n+1) soit 3-friable.

Exercice 6 (Carrés modulo p^r)

- 1) Soit G un groupe cyclique d'ordre n pair. Pour tout $x \in G$, montrer que x est un carré dans G si et seulement si $x^{\frac{n}{2}}$ est l'élément neutre de G.
- 2) Soit p un nombre premier impair.
 - 2.1) Soient a et n des entiers avec $n \ge 1$. Montrer que l'on a

$$(1+pa)^{p^n} \equiv 1+p^{n+1}a \text{ mod. } p^{n+2}.$$

2.2) Supposons n non divisible par p et que n soit un carré modulo p. En déduire que pour tout $r \ge 1$, n est un carré modulo p^r .

Exercice 7

Posons n = 2573. Déterminer la décomposition en facteurs premiers de n, en utilisant la méthode de recherche de congruences de carrés, avec l'entier B = 7.

Exercice 8 (Nombres de Fermat)

Pour tout $n \in \mathbb{N}$, posons $F_n = 2^{2^n} + 1$.

- 1) Si $n \geq 2$, montrer que chaque diviseur premier de F_n est congru à 1 modulo 2^{n+2} .
- 2) Montrer que 641 divise F_5 .
- 3) Soit p un nombre premier tel que $2^{p-1} \equiv 1 \mod p^2$. Soit m un entier naturel tel que $2^m \equiv 1 \mod p$. Montrer que l'on a $2^m \equiv 1 \mod p^2$.
- 4) Soit p un diviseur premier de F_n . Montrer que p^2 divise F_n si et seulement si on a $2^{p-1} \equiv 1 \mod p^2$.
- 5) En déduire que l'une des deux assertions suivantes est vraie :
 - 5.1) Il n'existe qu'un nombre fini de nombres de Fermat divisibles par le carré d'un nombre premier.
 - 5.2) Il existe une infinité de nombres premiers p tels que $2^{p-1} \equiv 1 \mod p^2$.

Exercice 9

Montrer que le produit de n entiers consécutifs est divisible par n!.

Exercice 10

Soit f un polynôme de $\mathbb{Z}[X]$ de degré ≥ 1 . Montrer qu'il existe une infinité d'entiers $n \in \mathbb{N}$ tels que f(n) soit composé.

Exercice 11

Étant donnés un polynôme $f \in \mathbb{Z}[X]$ et un nombre premier p, on dit que p est un diviseur premier de f s'il existe $n \in \mathbb{Z}$ tel que p divise f(n), autrement dit si f a une racine modulo p. Notons P(f) l'ensemble des diviseurs premiers de f.

On se propose d'établir que si f est non constant, P(f) est infini.

- 1) Soit f un polynôme de $\mathbb{Z}[X]$ ayant une racine dans \mathbb{Z} . Montrer que tous les nombres premiers sont dans P(f).
- 2) Pour tout $f \in \mathbb{Z}[X]$, distinct de ± 1 , montrer que P(f) est non vide.

Soit $f \in \mathbb{Z}[X]$ un polynôme de degré $n \geq 1$. Procédons par l'absurde en supposant que P(f) est fini. Notons r le produit des nombres premiers qui appartiennent à P(f).

- 3) Montrer que f(0) n'est pas nul.
- 4) Montrer qu'il existe des entiers relatifs b_1, \dots, b_n , divisibles par r, tels que l'on ait

$$f(rcX) = c(1 + b_1X + \dots + b_nX^n)$$
 avec $c = f(0)$.

- 5) En déduire une contradiction et le fait que P(f) soit infini.
- 6) Posons $f = X^2 3X 1 \in \mathbb{Z}[X]$.
 - 6.1) Montrer que 541 est premier et calculer le symbole de Legendre $(\frac{13}{541})$.
 - 6.2) L'entier 541 appartient-il à P(f)?

Soit $n \geq 1$ un entier. Notons $\Phi_n \in \mathbb{Z}[X]$ le n-ième polynôme cyclotomique.

- 7) Soit p un nombre premier ne divisant pas n.
 - 7.1) Soit a un entier. Montrer que p divise $\Phi_n(a)$ si et seulement si p ne divise pas a et n est l'ordre de a modulo p.
 - 7.2) En déduire que p divise Φ_n si et seulement si on a $p \equiv 1 \mod n$.
- 8) En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo n.
- 9) Montrer qu'il existe une infinité d'entiers n possédant la propriété suivante : soit p un diviseur premier de $n^2 + 1$. Alors, on a p = 5 ou $p \equiv 1 \mod 5$.