Wine Classification with a Neural Network

Group 6: Vikram P.T., Suyang Wang, Rui Li, Tyler Youngberg

Data Set

Wine Quality: http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Research Goal

Classify Two Types of Wine by Analyzing physicochemical variables

Data Cleaning

Combing Two data sets, Red Wine and White Wine, with the 'rbind' function in R, and delete the non-using columns.

Type	Number	Relabel
Red	1599	1
White	4898	2

Data Description

Predictors									
	Min.	1st Qu	Median	Mean	3rd Qu	Max.	Units		
fixed acidity	3.8	6.4	7	7.215307	7.7	15.9	g(tartaric acid)/L		
volatile acidity	0.08	0.23	0.29	0.339666	0.4	1.58	g(acetic acid)/L		
citric acid	0	0.25	0.31	0.318633	0.39	1.66	g/L		
residual sugar	0.6	1.8	3	5.443235	8.1	65.8	g/L		
chlorides	0.009	0.038	0.047	0.056034	0.065	0.611	g/L		
free sulfur dioxide	1	17	29	30.52532	41	289	mg/L		
total sulfur dioxide	6	77	118	115.7446	156	440	mg/L		
density	0.98711	0.99234	0.99489	0.994697	0.99699	1.03898	g/mL		
рН	2.72	3.11	3.21	3.218501	3.32	4.01	none		
sulphates	0.22	0.43	0.51	0.531268	0.6	2	g/L		
alcohol	8	9.5	10.3	10.4918	11.3	14.9	percent		

- **Fixed Acidity:** Fixed or nonvolatile acid of wine (do not evaporate readily).
- Volatile Acidity: The amount of acetic acid in wine.
- Citric Acid: Found in small quantities, citric acid can add 'freshness' and flavor to wines.
- **Residual Sugar:** The amount of sugar remaining after fermentation stops.
- Chlorides: The amount of salt in the wine.
- Free Sulfur Dioxide: The free form of SO2 exists in equilibrium between molecular SO2 and bisulfite ion.
- **Total Sulfur Dioxide:** The amount of free and bound forms of S02.
- **Density:** The density of wine.
- **PH:** How acidic or basic a wine is.
- **Sulphates:** A wine additive which can contribute to sulfur dioxide gas (S02) levels.
- **Alcohol:** The percent alcohol content of the wine.

Overview of Analysis to Follow

• Box Plots: We first create box plots for each predictor and focus on the boxplots spreading significantly different for Red and White Wins.

Overview of Analysis to Follow

- Correlation: We deeper investigate to the correlation between the predictors.
- Density = concentrations of (Water + Sugar + Alcohol).
- Water concentration =
 100%(total concentration) alcohol (concentration) (sugar concentration)

Overview of Analysis to Follow

- PCA: We use PCA to visualize whether there is separation of the 2 classes.
- Clustering: The K-means of the clustering has a very high False-Positive Rate.
- Neural Network: We use Neural Network to improve performance.

Neural Network

• "A neural network is put together by hooking together many of our simple 'neurons', so that the output of a neuron can be the input of another." (Andrew, 2011, p. 3)

Iterations of:

- 1. Forward Propagation
- 2. Backpropagation
- 3. Gradient Descent

To update parameters (W, b) minimizing the overall cost function.

Computation of activations

$$a_i^{l+1} = f(W_{i1}^{(l)}a_1^l + W_{i2}^{(l)}a_2^l + \dots + b_i^{(l)})$$

Overall Cost Function

$$J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b; x^{(i)}, y^{(i)})\right] + \frac{\lambda}{2}\sum_{i=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}(W_{ji}^{(l)})^2$$

Gradient Descent

$$W_{ij}^{(l)} := W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b)$$

$$b_i^{(l)} := b_i^{(l)} - \alpha \frac{\partial}{\partial b_i^{(l)}} J(W, b)$$

Our Model

Our Model

- 11 input nodes correspond to the features of our data.
- 2 hidden layers and 1 output layer
- The activation function used for the hidden layers is RELU and for the output is Sigmoid.
- The number of hidden layers and units in each layers a hyper-parameters and can be tuned using cross-validation or using a test set.
- Used the binary cross entropy as loss/cost function.

$$Error = \sum_{i=1}^{n} -(p_i \log q_i + (1 - p_i) \log(1 - q_i))$$

RELU and Sigmoid

Training and Test error vs Training set size

Receiver Operating Characteristic (ROC) Curve

- Shows the performance of the model against all possible thresholds
- Area Under the Curve (AUC) is 0.99
 - 0.5 = random classification
 - 1.0 = perfect classification

Confusion Matrix

- 0.0066 overall error rate
- 0.0153 error rate for red wine
- 0.0041 error rate for white wine

Conclusion

- Neural network demonstrates that it is possible to discern between red and white wine with high accuracy based on these predictors
- Does not reveal how
- A simpler method, such as logistic regression, could be used to give an idea of how the predictors differ between the two

THANK YOU!