ANÁLISE MATEMÁTICA II

Integrais de linha e integrais de superfície

Escola Superior Náutica Infante Dom Henrique

Parametrização de curvas

- 1. Parametrize a semi-circunferência de raio 1, centrada em (0,1), com $x \ge 0$.
- 2. Parametrize a fronteira da região $\{(x,y)\in\mathbb{R}^2\mid y\geq x^2-4, x^2+y^2\geq 1, x\geq 0, y\geq 0\}.$
- 3. Parametrize a fronteira da região $\{(x,y)\in\mathbb{R}^2\mid (x-2)^2+y^2\geq 4, y\leq x, y\geq 0\}.$

Integrais de linha de campos escalares

- 4. Considere a parábola $y=x^2$ com densidade de massa $\frac{1}{(1+y)\sqrt{1+4y}}$. Calcule a massa do segmento da parábola entre x=-1 e x=1.
- 5. Calcule $\int_C y \ ds$ sendo C a parábola $y=2\sqrt{x}$ entre x=3 e x=15.
- 6. Calcule $\int_C \frac{1}{x^2 + y^2} ds$ onde C é o segmento de recta que une (0,1) a (1,0).
- 7. Calcule $\int_C x^2 + y^2 z\,ds$ onde C é a intersecção da esfera de raio 2 centrada na origem com o plano z=2.
- 8. Calcule $\int_C x^2 + y^2 + 2z\,ds$ sobre a hélice C parametrizada por $g(t) = (\cos t, \sin t, 4t)$ entre (1,0,0) e $(0,1,2\pi)$.
- 9. Calcule a massa dum arame com forma duma circunferência de raio 3 centrada na origem e densidade linear dada por $\rho(x,y)=5-y$.

Integrais de linha de campos vectoriais

- 10. Calcule $\int_C (x^2 + y^2) dx + (x^2 y^2) dx$ onde C é o gráfico de y = 1 |1 x| entre (0, 0) e (2, 0).
- 11. Considere a curva C parametrizada por $g(\theta) = (\cos \theta, \sin \theta, \theta)$, com $0 \le \theta \le 4\pi$.
 - (a) Calcule o comprimento de C.
 - (b) Calcule o trabalho do campo $f(x,y,z)=\left(y,-x,e^{x^2+y^2-1}\right)$ ao longo de C
- 12. Considere o campo f(x,y)=(-y,y) e o caminho C constituído por dois segmentos de recta passando por (1,-2), (1,1) e (0,1). Calcule o integral de f ao longo de C.
- 13. Calcule $\int_L xydx + x^2dy$, com L parametrizada por $r(\lambda) = (\lambda, 1 |\lambda|)$ com $-1 \le \lambda \le 1$.

1

- 14. Calcule $\int_C (x^2 y) dx + (y^2 + x) dy$ nos casos seguintes:
 - (a) C é o segmento de recta unindo (0,1) a (1,2);
 - (b) C é um caminho em linha recta entre (0,1) e (1,1) e depois em linha recta até (1,2);
 - (c) C é a parábola $(t, t^2 + 1)$ entre (0, 1) e (1, 2).
- 15. Calcule $\int_C \left(3x^2 6yz\right) dx + \left(2y + 3xz\right) dy + \left(1 4xyz^2\right) dz$ nos casos seguintes:
 - (a) C é a curva (t, t^2, t^3) com $0 \le t \le 1$;
 - (b) C é um caminho em linha recta entre (0,0,0) e (0,0,1) e depois em linha recta até (1,1,1);
 - (c) C é o segmento de recta unindo (0,0,0) e (1,1,1).
- 16. Calcule $\int_C (x+y) dx + (y-x) dy$ nos casos seguintes:
 - (a) C é a parábola $y^2=x$ entre os pontos (1,1) e (4,2);
 - (b) C é o segmento de recta unindo (1,1) e (4,2);
 - (c) C é um caminho em linha recta entre (1,1) e (1,2) e depois em linha recta até (4,2).
- 17. Calcule o trabalho realizado por f(x,y)=(2x-y+4,5y+3x-6) ao longo dos caminhos seguintes:
 - (a) o triângulo de vértices (0,0), (3,0) e (3,2);
 - (b) a circunferência de raio 4 centrada na origem.
- 18. Calcule o trabalho realizado pelo campo $f(x,y,z)=(3x-4y+2z,4x+2y-3z^2,2xz-4y^2+z^3)$ ao longo da elipse parametrizada por $x=4\cos t,\ y=3\sin t,\ \cos t\le 2\pi.$

Teorema de Green

- 19. Seja C a fronteira do quadrado $|x| \leq \frac{\sqrt{2}}{2}$, $|y| \leq \frac{\sqrt{2}}{2}$ percorrida no sentido directo. Calcule $\oint_C \sin\left(\pi x^2\right) dx + \left(e^{y^2} x\right) dy$.
- 20. Calcule $\oint_C (2xy-x^2) dx + (x+y^2) dy$ ao longo da fronteira C da região limitada por $x=y^2$ e $y=x^2$.
- 21. Calcule a área da elipse $x = 3\cos\theta$, $y = 2\sin\theta$.
- 22. Calcule a área da hipociclóide $x=\cos^3\theta$, $y=\sin^3\theta$.
- 23. Calcule $\oint_C \left(4x^3 5y\right) dx \left(8 + \sqrt{y^3 + 2}\right) dy$ sendo C a circunferência $x^2 + (y 1)^2 = 4$.
- 24. Calcule a área limitada pelas curvas $y^2 = 4 4x$ e $y^2 = 4 x$.

Teorema Fundamental do Cálculo

- 25. Considere a curva $C = \{(x,y) \in \mathbb{R}^2 \mid y=x^3, 0 \le x \le 1\}$ e o campo vectorial definido por $f(x,y) = (2xy + y^2, 2xy + x^2)$.
 - (a) Calcule o integral de f ao longo da curva C a partir da definição.
 - (b) Verifique que o campo f é um gradiente e calcule um potencial V tal que $f = \nabla V$.
 - (c) Confirme o valor obtido na alínea (a) recorrendo ao potencial V.
- 26. Considere o campo vectorial definido por $g(x,y)=(2x^3+xy^2-2xy,2y^3+y-x^2\ 2xy).$
 - (a) Verifique se existe algum potencial V tal que $g = \nabla V$.
 - (b) Calcule o integral de g ao longo da curva $r(t) = (t \sin(\pi t^2), t \cos(\pi t^2))$.
- 27. Verifique que $\int_{(1,2)}^{(3,4)} \left(6xy^2 y^3\right) dx + \left(6x^2y 3xy^2\right) dy$ é independente do caminho e calcule o seu valor.
- 28. Calcule $\oint_C \left(x^2y\cos x + 2xy\sin x y^2e^x\right)dx + \left(x^2\sin x 2ye^x\right)dx$ ao longo da hipociclóide $C \text{ definida por } x^{\frac{2}{3}} + y^{\frac{2}{3}} = 8.$
- 29. Verifique que $\int_{(1,0)}^{(2,1)} \left(2xy-y^4+3\right) dx + \left(x^2-4xy^3\right) dy$ é independente do caminho e calcule o seu valor.
- 30. Calcule $\int_C (xy^3 y^2 \cos x) dx + (1 2y \sin x + 3x^2y^2) dx$:
 - (a) ao longo da parábola C definida por $2x = \pi y^2$ entre (0,0) e $(\frac{\pi}{2},1)$;
 - (b) ao longo da fronteira do paralelogramo de vértices (0,0), (3,0), (5,2) e (2,2).

Parametrização de superfícies

- 31. Parametrize a superfície $x^2 + (y-1)^2 + (z+2)^2 = 4$.
- 32. Parametrize a superfície $(z-2)^2=x^2+y^2$ com $2\leq z\leq 5$.

Integrais de superfície

- 33. Calcule $\iint_S xz \ dS$, sendo a região S a porção do plano 3x+2y+z=12 limitada por x=0, $x=1,\ y=0$ e y=2.
- 34. Calcule $\iint_S z \ dS$, com $S = \{(x,y,z) \in \mathbb{R}^3 \mid z = 6 x^2 y^2, z \ge 2\}$.
- 35. Seja $S = \{(x, y, z) \mid x^2 + y^2 = 1, -1 \le z \le 1\}.$
 - (a) Calcule a área de S.
 - (b) Calcule o momento de inércia de S quando gira em torno do eixo vertical.
 - (c) Calcule o centróide de S.

- 36. Calcule $\iint_S \frac{xy}{x^2 + y^2} dS$ com $S = \{(x, y, z) \mid x, y \ge 0, z = x^2 + y^2 \le 1\}.$
- 37. Considere a superfície S definida por $z = 2 (x^2 + y^2)$ com $z \ge 0$.
 - (a) Calcule a área de S.
 - (b) Calcule o momento de inércia de S quando gira em torno do eixo vertical.
 - (c) Calcule o centróide de S.
 - (d) Calcule $\iint_S 3z \ dS$.
- 38. Calcule $\iint_S (x^2 + y^2) dS$ ao longo da superfície do cone $z^2 = 3(x^2 + y^2)$ limitado por z = 0 e z = 3.
- 39. Calcule a área do plano 2x + y + +2z = 16 na região limitada por:
 - (a) x = 0, y = 0, x = 2 e y = 3;
 - (b) x = 0, y = 0 e $x^2 + y^2 = 64$.
- 40. Calcule a área do parabolóide $2z = x^2 + y^2$ que fica fora do cone $z = \sqrt{x^2 + y^2}$.
- 41. Calcule a área do cone $z^2=3\left(x^2+y^2\right)$ limitada pelo parabolóide $z=x^2+y^2.$

Integrais de fluxo

- 42. Seja S a superfície $x^2+y^2+z^2=1$ com $z\geq 0$. Calcule o fluxo de (0,0,3z+1) através de S.
- 43. Calcule o fluxo do campo $(xy,-x^2,x+z)$ através da porção do plano 2x+2y+z=6 contida no primeiro octante.
- 44. Calcule o fluxo de (1, xy, 0) através da superfície $r(u, v) = (u + v, u v, u^2)$.

Teorema da divergência

- 45. Sejam r(x,y,z)=(x,y,z) o campo radial e S uma superfície fechada. Relacione o integral $\iint_S (r\cdot \vec{n})\ dS$ com o volume da região limitada por S.
- 46. Calcule o fluxo de $(xz^2,x^2y-z^3,2xy+y^2z)$ ao longo da superfície delimitando o hemisfério $x^2+y^2+z^2\leq 1$, $z\geq 0$.
- 47. Calcule o fluxo de $(z^2-x,-xy,3z)$ ao longo da fronteira da região delimitada por $z=4-y^2$, $x=0,\ x=3$ e z=0.
- 48. Calcule o fluxo de $(2x+3z,-xz-y,y^2+2z)$ ao longo da superfície esférica centrada em (3,-1,2) com raio 3.

4

Teorema de Stokes

- 49. Seja S a superfície do parabolóide $2z=x^2+y^2$ limitada por z=2 e C a sua fronteira.
 - (a) Calcule directamente a circulação do campo $(3y, -xz, yz^2)$ ao longo de C.
 - (b) Verifique o resultado recorrendo ao Teorema de Stokes.
- 50. Seja S a meia superfície esférica $x^2+y^2+z^2=9$ com $z\geq 0$ e C a sua fronteira.
 - (a) Calcule directamente a circulação do campo $(2y,3x,-z^2)$ ao longo de C.
 - (b) Verifique o resultado recorrendo ao Teorema de Stokes.