

LÓGICA - 1º Grado en Ingeniería Informática

Facultad de Informática
Universidad Politécnica de Madrid

Lógica de Primer Orden: Sintaxis

David Pérez del Rey

dperezdelrey@fi.upm.es

Despacho 2104

Tel: +34 91 336 74 45

Formalización

 Aprendes lógica si y sólo si estudias. Estudias. Por tanto, aprendes lógica.

$$p \leftrightarrow q, q = p$$

2. A todos los hombres les gusta que les rasquen detrás de las orejas. Hobbes es un hombre. Por tanto, a Hobbes le gusta que le rasquen detrás de las orejas.

$$p, q = r$$

$$\forall x(P(x) \rightarrow Q(x)), P(a) \models Q(a)$$

Elementos de un Lenguaje de Primer Orden

- Símbolos de constante
- Símbolos de variable
- Símbolos de función
 - Notación alternativa
 - Notación infija
- Símbolos de predicado
 - Notación alternativa
 - Notación infija

{a, b, c,
$$a_1$$
, ... a_n ...}
{x, y, z, x_1 , ... x_n ...}
{f¹ ... fⁿ, g¹ ... gⁿ, h¹ ... hⁿ ...}
{f(_), f(_,_) ... g(_), g(_,_) ...}
7+5 en lugar de +75 ó +(7,5)
{P⁰, P¹...Pⁿ, Q⁰,...Qⁿ, R⁰,...Rⁿ}
P, P(_), P(_,_) ... Q, Q(_), Q(_,_)
x=y en lugar de =xy ó =(x,y)

- Cada uno de estos conjuntos es disjunto del resto
 - No existen símbolos comunes entre constantes y variables
 - No existen símbolos comunes entre funciones y predicados

Elementos de un Lenguaje de Primer Orden

Conectivas lógicas

$$\{\neg, \lor, \rightarrow, \land, \leftrightarrow\}$$

Cuantificador

$$\{\exists, \forall\}$$

Símbolos de puntuación

- paréntesis, coma
- Innecesarios si utilizáramos notación prefija
- Mejoran la legibilidad P(a,f(x,g(b)) en lugar de P²af²xg¹b
- Reducibles a un mínimo en notación infija (predecencia):
 - ∘ $\{ \forall, \exists, \neg \}$ son de menor alcance que $\{ \land, \lor \}$, que son de menor alcance que $\{ \rightarrow, \leftrightarrow \}$

Expresiones de un Lenguaje L de Primer Orden

- Expresión: Cualquier concatenación de símbolos
- Subconjuntos de expresiones que nos interesan (definición recursiva)
 - **Términos** de L son las siguientes expresiones:
 - Un símbolo de constante o variable
 - Una expresión del tipo: f(t₁, ..., t_n) donde f es un símbolo de función n-ádico de L y t¹...tⁿ son términos de L
 - **Átomos** de L son las expresiones del tipo:
 - P(t₁, ..., t_n) donde P es un símbolo de predicado n-ádico de L y t¹...tⁿ son términos de L
 - Literal. Son literales de L los átomos de L y las expresiones del tipo:
 - ¬P(t₁, ..., tₙ) donde P es un símbolo de predicado n-ádico de L y t¹...tⁿ son términos de L
 - Fórmulas Bien Formadas (FBF) de L son las expresiones del tipo:
 - Átomos de L
 - \circ $\neg A$, $A \lor B$, $A \land B$, $A \to B$ y $A \leftrightarrow B$ son formulas de L sii A y B son FBF de L
 - ∃xA(x) y ∀xA(x) es una FBF de L sii A(x) es una FBF de L en la que x es un símbolo de variable libre (ver más adelante)

Formalización: Estructuras Básicas

- Todos los hombres son mortales
 - $\forall x(H(x) \rightarrow M(x))$
- No todo hombre es mortal
 - $\neg \forall x (H(x) \rightarrow M(x)) \circ \exists x (H(x) \land \neg M(x))$
- Al menos un hombre es mortal
 - $\exists x(H(x) \land M(x))$
- Ningún hombre es mortal
 - $\neg \exists x (H(x) \land M(x)) \circ \forall x (H(x) \rightarrow \neg M(x))$
- Sólo los hombres son mortales
 - $\forall x(M(x) \rightarrow H(x))$
- (Típicamente, ∀ se usa con implicación y ∃ con conjunción)

Formalización en LPO

- Seleccione los predicados, constantes y funciones necesarios para definir un LPO en el que formalizar las siguientes oraciones:
 - 1. Vicente es mejicano
 - 2. Mi casa es roja
 - 3. Luisa y María son brasileñas pero Vicente es mejicano
 - 4. Jorge adora a Juan
 - 5. Jorge adora a su padre
 - 6. Juan ama a Rosa pero ella no le corresponde
 - 7. Pedro sujetó a Juan y María le atizó
 - 8. Homero escribió la Ilíada y la Odisea
 - 9. Nieves se peina a sí misma y también peina a Juan
 - 10. Titán es satélite de Saturno pero Europa no lo es
 - 11. O Pedro o María (pero no ambos) son hermanos míos
 - 12. Si Colón descubrió América, merece un lugar en la Historia
 - 13. El asesino de mi padre es Juan o Pedro, pero no Alberto
 - 14. María ama a mi padre mientras que Julia me ama a mi
 - 15. Cela leía a Borges aunque éste lo detestaba públicamente

Formalización en LPO

- 16. María está enamorada de alguien
- 17. Hay al menos un número primo
- 18. Cualquier crimen será castigado
- 19. No todos los crímenes merecen la pena capital
- 20. Las novelas de Cela me fascinan
- 21. Hay profesores que no saben explicar
- 22. Sólo los suecos entienden a Bergman
- 23. Todo ciudadano tiene derecho a una vivienda
- 24. Hay genios, pero no todos los poetas lo son
- 25. No todos los satélites de Júpiter tienen atmósfera
- 26. Todos los estudiantes de tercer curso ayudan a al menos uno de primero
- 27. Nadie respeta a quien no se respeta a sí mismo
- 28. Hay un pintor a quien todo el mundo admira

Alcance de los cuantificadores

- Alcance (ámbito) de un cuantificador es la menor subfórmula posible tras el cuantificador
 - $\exists x P(x,y) \lor Q(x,y); \exists x (P(x,y) \lor Q(x,y)); \forall y \exists x P(x,y) \lor Q(x,y); \forall y \exists x (P(x,y) \lor Q(x,y))$
- Variables libres y ligadas
 - Ligada cuando esta bajo el alcance de un cuantificador
 - Libre cuando no se encuentra bajo el alcance de ningún cuantificador
 - Una variable puede estar libre y ligada en una misma fórmula

Fórmulas abiertas y cerradas

- Las fórmulas cerradas no tienen variables libres:
- Las fórmulas abiertas tienen al menos una variable libre:
- Ejercicio. Señalar las variables libres y ligadas:
 - 1. $\exists x(P(x,f(y)) \rightarrow \exists yQ(x,y))$
 - 2. $\exists x P(x) \rightarrow \forall y Q(x,f(y))$
 - 3. $\exists x \exists y (P(x,y) \lor Q(x,y)) \land R(a,y)$
 - 4. $\exists x \exists y ((P(x,y) \lor Q(x,y) \land R(x,y))$
 - 5. $\forall x(x=y \rightarrow \exists z P(x,z))$
 - 6. $\exists x \forall y P(x,f(x,y)) \rightarrow \exists y Q(x,y)$
 - 7. $X = y + z \rightarrow X \le y + z$
 - 8. $\forall x(x + 0 = x)$
 - 9. $\forall x(N(x) \rightarrow N(s(x)))$
 - 10. $\forall x \exists y (P(g(x,a),y) \lor \neg Q(x) \lor \neg R(z,b)) \land \exists z S(x,y,z)$

Sustituciones - Notación

La sustitución es una operación sintáctica sobre fórmulas y términos que devuelve nuevas fórmulas y términos:

$$A - sustitución \rightarrow A'$$
 $t - sustitución \rightarrow t'$

- Esta operación se aplica única y exclusivamente sobre variables libres presentes en A
 o en t. De no haberlas, la sustitución rinde la expresión inicial.
- Siendo A una fórmula y x una variable de un LPO
 - A(x) indica la aparición de al menos una ocurrencia libre de x en A
 - A { x / t } representa a la fórmula obtenida a partir de A sustituyendo todas las apariciones de la variable libre x por el término t.

• Ejemplos:

- A(x): $P(x,f(y)) \rightarrow \exists yQ(x,y)$;
- A(y): $\exists x((P(x,y) \lor Q(x,y)) \land R(x,y))$;
- A(x): $\exists x(P(x,y) \lor Q(x,y)) \land R(x,y)$;

 $A\{y/f(z)\}:\exists x((P(x,f(z)) \lor Q(x,f(z))) \land R(x,f(z)))$

 $A\{x/g(a,b)\}:\exists x((P(x,y)\lor Q(x,y))\land R(g(a,b),y)$

Sustituciones - Condiciones

- Condiciones para la sustitución de una variable libre por un término:
 - Reemplazo de todas y sólo las ocurrencias de la variable libre en la fórmula por el término
 - $(\exists x (P(x,f(y)) \rightarrow \exists y Q(x,y))) \{y/a\} = \exists x (P(x,f(a)) \rightarrow \exists y Q(x,y))$
 - $(\exists xA)\{y/t\} = \exists xA\{y/t\}$ sii t **no** contiene apariciones de **x**
 - $\exists x(\neg(x=y))\{y/z\} = \exists x(\neg(x=z))$
 - $\exists x(\neg(x=y))\{y/x\} = ? \exists x(\neg(x=x))$
 - $(\forall xA)\{y/t\} = \forall xA\{y/t\}$ sii t **no** contiene apariciones de **x**
 - ∀xPadre(x,y){y/primogénito(x)} =? ∀xPadre(x,primogénito(x))
 - (∃xA){y/t} = ∃z(A{x/z}){y/t sii t contiene apariciones de x pero z no aparece en A
 - $\exists x(\neg(x=y))\{y/x\} = \exists z(\neg(x=y)\{x/z\}))\{y/x\} = \exists z(\neg(z=y))\{y/x\} = \exists z(\neg(z=x))$
 - (∀xA){y/t} = ∀z(A{x/z}){y/t} sii t contiene apariciones de x pero z no aparece en A
 - ∀xPadre(x,y){y/primogénito(x)} = ∀z(Padre(x,y){x/z}){y/primogénito(x)} =
 ∀zPadre(z,y){y/primogénito(x)} = ∀zPadre(z,primogénito(x))

Ejercicios de Sustituciones

- 1. $(\exists x(P(x,f(y)) \rightarrow \exists yQ(x,y)))\{y/g(z)\}$
- 2. $(\forall x \forall y (P(x,y) \rightarrow Q(x,y)))\{y/a\}$
- 3. $(\forall x(\forall y P(x,y) \rightarrow Q(x,y)))\{y/a\}$
- 4. $(\exists x(\forall y(P(x,y) \lor Q(x,y)) \land R(x,y)))\{y/b\}$
- 5. $(\exists x(\forall y(P(x,y) \lor Q(x,y)) \land R(x,y))\{x/b\}$
- 6. $(\exists x \forall y (P(x,y) \lor Q(x,y)) \land R(x,y)) (x/a, y/b)$
- 7. $(\forall x(P(x,y) \rightarrow Q(x,y)))\{y/f(x,a)\}$
- 8. $(\forall y P(x,y) \rightarrow \forall x Q(x,y)) \{y/f(x,a)\}$
- 9. $(x = y + z \rightarrow x \le y + z)\{x/1, y/2\}$
- 10. $(x = y + z \rightarrow x \le y + z)\{x/s(x)\}$
- 11. $(x = y + z \rightarrow x \le y + z)\{x/s(y)\}$
- 12. $(\forall x(x + 0 = x))\{x/1\}$

