Continuous Functions

Felix Lentze & Dominic Plein

Date: July 10th, 2024

Contents

1	Continuous Functions	2
2	$a \cdot y + b$ is continuous	3
3	y^2 is continuous	4
4	1/y is continuous	6

1 Continuous Functions

Text excerpts remixed from Vladimir A. Zorich - Mathematical Analysis I as well as Stephen Abbott - Understanding Analysis.

Let f be a real-valued function defined in a neighborhood of a point $a \in \mathbb{R}$. In intuitive terms, the function f is continuous at a if its value f(x) approaches the value f(a) that it assumes at the point a itself as x gets nearer to a.

Definition 1 (Continuous at a point). A function $f:D\subseteq\mathbb{R}\to\mathbb{R}$ is continuous at the point $a\in D$ if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D : \quad \left(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon \right)$$
 (1)

If f is continuous at every point in the domain D, then we say that f is continuous on D.

Definition 2 (Fibration). test

2 $a \cdot y + b$ is continuous

Gegeben sei die Funktion $f(y) = a \cdot y + b$, wobei $a \neq 0$. Wir wollen zeigen, dass f stetig an jeder Stelle $x \in \mathbb{R}$ ist. Schritte im Detail:

- 1. **Einführung:** Wir beginnen mit der Definition der Funktion $f(y) = a \cdot y + b$ und der Annahme $a \neq 0$. Ziel ist es zu zeigen, dass f an der Stelle x stetig ist.
- 2. Einführung der ε -Umgebung: Sei $\varepsilon > 0$. Wir wählen $\delta = \frac{\varepsilon}{|a|}$.

Sei
$$\delta := \frac{\varepsilon}{|a|}$$
.

3. Existenz von δ : Da |a| > 0, folgt $\delta > 0$.

$$0 < \delta := \frac{\varepsilon}{|a|}.$$

- 4. **Definition der** δ -**Umgebung:** Wir zeigen nun, dass für alle y mit $|y-x|<\delta$ die Bedingung $|f(x)-f(y)|<\varepsilon$ erfüllt ist.
- 5. Berechnung der Differenz:

$$|f(x) - f(y)| = |(a \cdot x + b) - (a \cdot y + b)|$$

$$= |a \cdot x + b - a \cdot y - b|$$

$$= |a \cdot x - a \cdot y|$$

$$= |a \cdot (x - y)|$$

$$= |a| \cdot |x - y|.$$

6. Schätzung der Differenz: Da $|x-y|<\delta$ und $\delta=\frac{\varepsilon}{|a|}$, erhalten wir:

$$|a| \cdot |x - y| < |a| \cdot \delta = |a| \cdot \frac{\varepsilon}{|a|} = \varepsilon.$$

7. **Abschluss:** Somit haben wir gezeigt, dass $|f(x) - f(y)| < \varepsilon$ für $|x - y| < \delta$, was die Stetigkeit von f an x beweist.

3 y^2 is continuous

Sei $f(x) = x^2$. Wir beweisen, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist. Vorbereitende Schritte:

1. Definition von δ :

$$\delta = \min\left(\frac{\epsilon}{2|x|+1}, 1\right)$$

Diese Wahl von δ stellt sicher, dass $\delta > 0$ und $\delta \leq 1$.

2. Positivität von δ :

$$0 < \delta$$

Da $\epsilon > 0$ und 2|x| + 1 > 0, folgt $0 < \frac{\epsilon}{2|x|+1}$. Somit ist $\delta > 0$.

3. Obere Schranke von δ :

$$\delta \leq 1$$

Dies folgt direkt aus der Definition von δ .

4. Weitere obere Schranke von δ :

$$\delta \le \frac{\epsilon}{2|x|+1}$$

Auch dies folgt direkt aus der Definition von δ .

5. Beziehung zwischen |y| und |x|:

$$|y| < |x| + \delta$$

Da $|y| = |x + (y - x)| \le |x| + |y - x|$ und $|y - x| < \delta$, folgt $|y| < |x| + \delta$.

6. Beziehung zwischen |x+y| und |x|+|y|:

$$|x+y| < |x| + |y|$$

Dies ist eine Anwendung der Dreiecksungleichung.

7. Nichtnegativität von |x-y|:

$$0 \le |x - y|$$

Da |x-y| der Betrag einer reellen Zahl ist, ist er nicht negativ.

8. Obere Schranke von |x-y|:

$$|x-y| < \delta$$

Da $|y - x| < \delta$, folgt $|x - y| = |y - x| < \delta$.

9. Beziehung zwischen |x| + |y| und $|x| + (|x| + \delta)$:

$$|x| + |y| < |x| + (|x| + \delta)$$

Da $|y| < |x| + \delta$, folgt $|x| + |y| < |x| + (|x| + \delta)$.

10. Beziehung zwischen $2|x| + \delta$ und 2|x| + 1:

$$2|x| + \delta \le 2|x| + 1$$

Da $\delta \le 1$, folgt $2|x| + \delta \le 2|x| + 1$.

Beweis:

Sei $\epsilon>0$ gegeben. Wir wählen δ als $\delta=\min\left(\frac{\epsilon}{2|x|+1},1\right)$. Nach den obigen vorbereitenden Schritten wissen wir, dass $0<\delta$.

Sei $|y-x|<\delta.$ Wir müssen zeigen, dass $|y^2-x^2|<\epsilon.$

$$\begin{split} |y^2-x^2| &= |(y+x)(y-x)| & \text{(Ringregel)} \\ &= |y+x|\cdot |y-x| & \text{(Absorptions regel)} \\ &\leq (|x|+|y|)\cdot |y-x| & \text{(Anwendung von Schritt 6)} \\ &\leq (|x|+(|x|+\delta))\cdot \delta & \text{(Anwendung von Schritt 5 und 8)} \\ &= (2|x|+\delta)\cdot \delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot \delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot \frac{\epsilon}{2|x|+1} & \text{(Anwendung von Schritt 4)} \\ &= \epsilon & \text{(Feldregel)} \end{split}$$

Daraus folgt, dass $|y^2 - x^2| < \epsilon$.

4 1/y is continuous

Proof. Sei $x \in \mathbb{R}$ mit $x \neq 0$ und $\epsilon > 0$ gegeben. Wir müssen ein $\delta > 0$ finden, so dass für alle y mit $0 < |y - x| < \delta$ gilt, dass $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$.

Setze $\delta = \min\left(\frac{\epsilon|x|^2}{2}, \frac{|x|}{2}\right)$.

• Da $\epsilon > 0$ und |x| > 0, ist $\delta > 0$.

Sei nun y mit $y \neq 0$ und $|y - x| < \delta$ gegeben.

• Zuerst zeigen wir, dass $\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right|$:

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{y - x}{xy} \right|$$
$$= \frac{|y - x|}{|x||y|}$$

• Da $|y-x|<\delta\leq \frac{|x|}{2}$, folgt $|y|>\frac{|x|}{2}$:

$$|y| = |x + (y - x)|$$

$$\ge |x| - |y - x|$$

$$> |x| - \frac{|x|}{2}$$

$$= \frac{|x|}{2}$$

• Da $\delta \leq \frac{\epsilon |x|^2}{2}$, folgt:

$$\begin{split} \frac{|x-y|}{|x||y|} &< \frac{\delta}{|x| \cdot \frac{|x|}{2}} \\ &= \frac{\delta}{\frac{|x|^2}{2}} \\ &\leq \frac{\frac{\epsilon|x|^2}{2}}{\frac{|x|^2}{2}} \end{split}$$

Somit haben wir gezeigt, dass für alle y mit $y \neq 0$ und $|y - x| < \delta$ gilt, dass $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$. Daher ist f stetig an x.