Komisja Egzaminacyjna dla Aktuariuszy

Egzamin dla Aktuariuszy z 17 czerwca 2000 r.

Część I

Matematyka finansowa

Imie i nazwisko	osoby egzaminowan	ei:		
	osos, egammas	-j.		

Czas egzaminu: 100 minut

1. Które z powyższych tożsamości są prawdziwe:

I.
$$\left(I^{(m)}a\right)_{\infty}^{(m)} = \frac{1}{m\left(i^{(m)}-d^{(m)}\right)}$$

II. Jeżeli
$$a_{\overline{n|}} = p$$
 oraz $(Ia)_{\overline{n|}} = q$ to $i = \frac{n-p}{(n+1)p-q}$

III. Jeżeli
$$a_{\overline{n|}} - a_{\overline{n|}} = p$$
 to $\ddot{a}_{\overline{m+k|}}^{(t)} - \ddot{a}_{\overline{n+k|}}^{(t)} = p \cdot \frac{iv^k}{d^{(t)}}$

- **A.** tylko I
- **B.** tylko I, II
- C. I, II i III
- **D.** tylko I i III
- E. żadna z powyższych odpowiedzi A,B,C,D nie jest prawdziwa

- **2.** Nowa maszyna, której cena wynosi *a*, na koniec okresu *n* lat ma wartość *b*. Jeżeli wiadomo, że:
- wartość maszyny po czasie t od chwili zakupu przy zastosowaniu metody amortyzacji liniowej (straight-line method) wynosi AL(t)

oraz

wartość maszyny po czasie t od chwili zakupu przy zastosowaniu metody liniowo malejących odpisów amortyzacyjnych (sum-of-the-digit method) wynosi AS(t) to dla jakiej wartości t funkcja AS(t) - AL(t) przyjmuje minimum.

$$\mathbf{A.} \qquad \frac{n \cdot (a-b)}{2 \cdot (a+b)}$$

$$\mathbf{B.} \qquad \frac{2 \cdot n + 1}{4}$$

C.
$$\frac{3 \cdot n}{4}$$

$$\mathbf{D.} \qquad \frac{n}{2}$$

E.
$$\frac{n}{4}$$

3. Na okres 10 lat została zaciągnięta pożyczka, którą pożyczkobiorca spłacił równymi ratami płatnymi na koniec każdego roku. Ile wynosi całkowita kwota spłaconych odsetek jeżeli:

- kapitał spłacony w pierwszych trzech ratach wyniósł 1253 zł
- kapitał spłacony w ostatnich trzech ratach wyniósł 1763 zł

Odpowiedź (podaj najbliższą wartość):

- **A.** 1425 zł
- **B.** 1475 zł
- **C.** 1500 zł
- **D.** 1550 zł
- **E.** 1575 zł

4. Dane są renty ciągłe, w których wysokość płatności w chwili t wynosi t zaś natężenie oprocentowania zależne jest od długości okresu wypłacania renty i wynosi $\frac{1}{n}$. Wyznacz ile razy obecna wartość renty wypłacanej przez okres 3 lat jest większa od obecnej wartości wypłacanej przez okres 2 lat.

- **A.** 1,50 razy
- **B.** 2,25 razy
- **C.** 3,00 razy
- **D.** 3,75 razy
- E. żadna z powyższych odpowiedzi A,B,C,D nie jest prawdziwa

5. 10-letnia obligacja o wartości 1000 płaci kupony półroczne każdy o wysokości 50. Środki otrzymane z kuponów są reinwestowane przy stopie $i^{(2)} = 4\%$.

Wyznacz kwotę za którą inwestor zakupił obligacje, jeżeli efektywna stopa zwrotu z inwestycji w ciągu 10-letniego okresu inwestowania wyniesie $i=10\,\%$.

Odpowiedź (podaj najbliższą wartość):

- **A.** 850
- **B.** 854
- **C.** 858
- **D.** 862
- **E.** 866

6. Pożyczka jest spłacana za pomocą 10 malejących spłat na końcu każdego okresu odpowiednio w wysokości 20, 19, 18, 17, 16,...11 dokonywanych na końcu każdego roku.

Znajdź wysokość oprocentowania zapłaconego w piątej spłacie.

Odpowiedź:

A.
$$17-11 \cdot v^6 - \ddot{a}_{6}$$

B.
$$17-11 \cdot v^6 - a_{\overline{6}|}$$

C.
$$16-11\cdot v^6 - a_{-6}$$

D.
$$16-11\cdot v^6 - \ddot{a}_{6}$$

E. żadna z powyższych odpowiedzi A,B,C,D nie jest prawdziwa

7. Niech \overline{d}_k oznacza duration renty malejącej, której obecna wartość jest oznaczana przez $(Da)_{\overline{k}|}$. Wyznacz $\lim_{k\to\infty} \left(\overline{d}_k\right)$ przy stopie procentowej i=5%.

- **A.** 0
- **B.** 20
- **C.** 21
- **D.** ∞
- E. żadna z powyższych odpowiedzi A,B,C,D nie jest prawdziwa

8. Obligacja o wartości nominalnej równej wartości wykupu 1 500 zł ze stopą kuponową C będzie wykupiona po *n* latach. W przypadku gdy zwiększymy stopę kuponową o 1%, cena zakupu wzrośnie o 75 zł. Cena zakupu obligacji została wyliczona przy stopie zwrotu 6% o półrocznej kapitalizacji odsetek.

Inna obligacja o wartości nominalnej równej wartości wykupu 1500 zł będzie wykupiona po 2n latach. Oblicz jej cenę zakupu przy stopie zwrotu 6% o półrocznej kapitalizacji odsetek, jeżeli jej stopa kuponowa wynosi 7%.

Wszystkie obligacje wypłacają półroczne kupony.

Odpowiedź (podaj najbliższą wartość):

- **A.** 1600
- **B.** 1630
- **C.** 1660
- **D.** 1690
- **E.** 1720

9. Oblicz wartość końcową miesięcznej renty o wysokości kwartałami stałej po upływie 15 miesięcy wiedząc, że wysokość rat wzrośnie w kolejnych kwartałach o 4%. Na początku renta wynosi 150 zł. Miesięczna stopa procentowa wynosi 2%. Odpowiedź (podaj najbliższą wartość):

- **A.** 2785
- **B.** 2795
- **C.** 2805
- **D.** 2815
- **E.** 2825

- 10. Dane są dwie renty wieczyste A i B, gdzie
- 1) renta A w wysokości 1 płatna na koniec każdego roku,
- 2) renta B w wysokości 1 płatna na koniec co drugiego roku. Różnica pomiędzy obecną wartością renty A, wyznaczoną przy stopie technicznej i, a obecną wartością renty B wyznaczoną również przy stopie technicznej i, wynosi $\sqrt{2}$.

Odpowiedź (podaj najbliższą wartość):

Wyznacz stopę techniczną i.

- **A.** 0,1
- **B.** 0,2
- **C.** 0,3
- **D.** 0,4
- **E.** 0,5

Egzamin dla Aktuariuszy z 17 czerwca 2000 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko :	Klucz odpowiedzi
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	С	
2	D	
3	В	
4	В	
5	В	
6	A	
7	С	
8	В	
9	В	
10	D	

* Wypełnia Komisja Egzaminacyjna.

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.