ļ <u>.</u>
The dataset on the right has higher MSE.
Left: Ein= 大器 (h(Xn)-yn) ²
= to [(2.5-2.5)2+(4-3)2+(3.5-3.5)2+(3-4)2+(4.5-4.5)2+(4-5)2+(5.5-5.5)2+(7-6)2
+(6.5-6.5)2+(7-7)2]
= た(0+1+0+1+0+1+0+0)
= 卡×4
= =
Right: Ein= 古台(h(Xn)-yn) ²
= + [(2.5-2.5)2+(3-3)2+(3.5-3.5)2+(6-4)2+(4.5-4.5)2+(5-5)2+(5.5-5.5)2+(4-6)2+
(6.5-6.5)2+(7-7)2]
=
= × 8
= 4
As Ein of the right=告》Ein of the left=号.the dataset on the right has higher M

(1).
$$\tanh(s) = \frac{e^{s} - e^{-s}}{e^{s} + e^{-s}} = \frac{e^{s} - \frac{e^{s}}{e^{s}}}{e^{s} + \frac{1}{e^{s}}} = \frac{e^{2s} - 1}{e^{2s} + 1} = \frac{e^{2s} - 1}{e^{2s} + 1}$$

 $\theta(s) = 1 + e^{s}$ $50 \theta(2s) = \frac{e^{2s}}{|+e^{2s}|}, 2\theta(2s) - |= \frac{2e^{2s}}{|+e^{2s}|} - |= \frac{2e^{2s} - |-e^{2s}|}{|+e^{2s}|} = \frac{e^{2s} - |}{e^{2s} + |} = to$ $50 \tan h(s) = 2\theta(2s) - |$

(2). From (1).
$$\tanh(s) = 2\theta(2s) - |$$

OWhen |s| is extremely large ($|s| \rightarrow +\infty$):

If s is positive,
$$s \rightarrow +\infty$$
, then $\theta(2s) \rightarrow |$, $\tanh(s) \rightarrow 2\cdot |-|=|$,

and as $\tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$, $e^{-s} \rightarrow 0$ when s is large, so $\tanh(s) \rightarrow \frac{e^s}{e^s} = 1$ If s is negative, $s \rightarrow -\infty$, then $\theta(2s) \rightarrow 0$, $\tanh(s) \rightarrow 2 \cdot |-| = -|$, and as $\tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$, $e^s \rightarrow 0$ when -s is large, so $\tanh(s) \rightarrow \frac{e^{-s}}{-e^{-s}} = -|$

D When
$$|s|$$
 is extremely small $(s \rightarrow 0)$:
$$\frac{e^{s} - e^{-s}}{s}$$

 $tanh(s) = \frac{e^{s} - e^{-s}}{e^{s} + e^{-s}}$ and both e^{s} and e^{-s} are close to 1, so cannot dominate. Thus, tanh(s) converges to a hard threshold of 1 or -1 for large [s].

Thus, tanh (s) converges to a hard threshold of 1 or -1 for large |s|,

and no threshold for small |s|

```
3.
        (1). E_{in}(w) = \sum_{n=1}^{N} (y=+1) \ln \frac{1}{h(x_n)} + (y=-1) \ln \frac{1}{h(x_n)}
               P(y|x) = \begin{cases} \ln \frac{1}{h(x_n)} & \text{for } y = +1 \\ \ln \frac{1}{1 - h(x_n)} & \text{for } y = -1 \end{cases}
               Substitute h(x) = \theta(w^T x), P(y|x) = \theta(yw^T x)
Maximum (h) = \prod_{n=1}^{N} P(y_n | X_n) = \prod_{n=1}^{N} (h(x_n))^{(y_n=+1)} (-h(x_n)^{(y_n=-1)})
               \prod_{n} P(y_n|x_n) = \prod_{n} \theta(y_n w^T x_n)
               max IIP(yn |xn) (⇒ max(In IIP(yn |xn))
                                         = max & InP(ynlxn)
                                         <> min - 长 InP(ynlxn)
                                         = min N & In P(yn | Xn)
                                         = min N = In \(\theta(ynw^Txn)\)
                                         = min 大岩 In(He-ynw+xn)
            |nL(h)| = \sum_{n=1}^{N} (y_n = +1) |n(h(x_n))| + (y_n = -1) |n(1-h(x))|

-|nL(h)| = \sum_{n=1}^{N} (y_n = +1) |n| \frac{1}{h(x_n)} + (y_n = -1) |n| \frac{1}{h(x_n)} = Ein(w)
           So cross-entropy error measure is equal to minimum method of likelihood
```

4. (1). Derivative of f(x): $f'(x) = \frac{df(x)}{dx} = \frac{d(\frac{u}{1+e^{kx+b}})}{dx}$ $= -\alpha (k \cdot e^{kx+b} \cdot (1 + e^{kx+b})^{-2}$ -akekx+b (1+ekx+b)2 OWhen a=Oork=O.bER: f'(x) = 0, so f(x) is a constant @ When a.k>o(a,k>0 or a,k<0), bER: $e^{kx+b} > 0$ regardless of (kx+b), $(l+e^{kx+b})^2 > 0$, Q: k>0, -ak<0, so f'(x)<0 for all x. As x getting larger, f(x) keeps decreasing. @ When a.k<0 (a>0, k<0 or a<0.k>0), bER: $e^{kx+b} > 0$ regardless of (kx+b), $(l+e^{kx+b})^2 > 0$, Q: k<0, -ak>0, so f'(x)<0 for all x. As x getting larger, f(x) keeps increasing. In conclusion, b will not influence the monotonicity of f(x), and when a=0 or K=0. f(x) becomes a constant; when a, K>O or a, K<O, f(x) decreases when x increases; when (a>o, k<o) or (a<o, k>o), f(x) increases when x increases; (2). Based on (1), O When $\alpha=0$, k, b $\in \mathbb{R}$: f(x)=0 for all x. DWhen $\alpha \neq 0$, k=0, $b\in R$: $f(x) = \frac{a}{1+e^b}$ for all x. When $b \rightarrow -\infty$, $f(x) \rightarrow a$ (a $\neq 0$) When b=0, $f(x)=\frac{a}{2}$ (a+0) When $b \rightarrow +\infty$, $f(x) \rightarrow 0$ @When a.k>0 (a,k>0 or a,k<0) and beR:f'(x)<0 for all x, xT, $f(x)\downarrow$. when $x \rightarrow +\infty$, if a, k>0, $e^{kx+b} \rightarrow +\infty$, $1+e^{kx+b} \rightarrow +\infty$, f(x) min $\rightarrow 0$ if a, k<0, $e^{Kx+b} \rightarrow 0$, $|+e^{Kx+b} \rightarrow |$, f(x) = a (a<0)when $x \to -\infty$ if a,k>0, $e^{kx+b} \to 0$, $|+e^{kx+b} \to |$, $f(x)_{max} = \frac{\alpha}{|+e^{kx+b}|} \to \alpha$ (a>0) if a, K<0, exx+b > +0. Hekx+b > +00, f(x)max >0

```
ζ.
(1), H^{T} = (X(X^{T}X)^{T}X^{T})^{T}
         =((X(X^TX)^T)X^T)^T
         =(X^{T})^{T}((X^{T}X)^{-1})^{T}X^{T}
         = X(X^T(X^T)^T)^{-1}X^T
        = X(X^TX)^TX^T
         =H
  As HT=H, H is symmetric.
(2) Base case: when k=1, Hk=H'=H, true.
   \Theta A ssume that H^k = H for positive integer k > 1, then we can prove H^k = H by proving H^{k+1} = H.
     H^{k+1} = H^{k} \cdot H
          = H.H
          =(\chi(\chi^T\chi)^{-1}\chi^T)(\chi(\chi^T\chi)^{-1}\chi^T)
         = X(X^{T}X)^{-1}X^{T}X(X^{T}X)^{-1}X^{T}
         =X(X^TX)^{-1}(X^TX)(X^TX)^{-1}X^T
         = \chi((X^TX)^{-1}(X^TX))(X^TX)^{-1}X^T
         = X \cdot I \cdot (X^T X)^{-1} X^T
          = X(X^TX)^{-1}X^T
          =H
     As Hk+1=H, assumption holds, so Hk=H for any positive integer k.
(3), O Base case: when k=1, (I-H) = (I-H) = I-H, true.
    @ Assume that (I-H) = I-H for integer k>1, we can prove (I-H) = I-H by proving
      (I-H)^{k+1} = I-H
      (I-H)^{k+1} = (I-H)^{k} (I-H)
                 =(I-H)(I-H)
                 = T2- IH-HI+H2
```

```
= I-H-H+H2
             = I - 2H + H \cdot H
             = I-2H+H As H\cdot H=H from (2)
             = I-H
    As (I-H)^{k+1} = I-H, assumption holds, so (I-H)^k = I-H for any positive integer k.
(4). trace(H) = trace(X(X^TX)^{-1}X^T)
              = trace ((X(X^TX)^{-1})X^T)
              = trace(X^T(X(X^TX)^T))
              = trace((X^TX)(X^TX)^{-1})
              = trace(I)
  As X is an N by d+1 matrix, XTX is a d+1 by d+1 matrix,
  then I=(XTX)(XTX) is a d+1 by d+1 identity matrix.
   So trace(I) = 1 × (d+1) = d+1
```


(2)	defferenced area analysis (V MI Is).
import numpy as np	def forward_propagation(X, W, b):
X = np.array([[4, 49],	Z = np.dot(X, W) + b
[5, 4],	A = sigmoid(Z)
[12, 28],	return A
[29, 18],	
[30, 65],	def backward_propagation(X, A, y):
[36, 32],	dZ = A - y.reshape(-1, 1)
[36, 1],	dW = np.dot(X.T, dZ)
[54, 29],	db = np.sum(dZ, axis=0, keepdims=True)
[58, 76],	return dW, db
[70, 12],	
[72, 26],	<pre>_ def gradient_descent(X, y, W, b, learning_rate, num_iterations):</pre>
[76, 55],	for i in range(num_iterations):
[78, 4],	A = forward_propagation(X, W, b)
[82, 15],	dW, db = backward_propagation(X, A, y)
[87, 95],	W -= learning_rate * dW
[90, 70],	b -= learning_rate * db
[90, 55],	return W, b
[92, 84],	
[95, 14],	learning_rate = 0.01
[98, 21]])	num_iterations = 1000
y = np.array([0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,	W, b = gradient_descent(X, y, W, b, learning_rate,
1, 1, 0, 0, 0, 0, 0, 0])	num_iterations)
np.random.seed(42)	# Calculate accuracy:
W = np.random.randn(X.shape[1], 1)	y_pred = forward_propagation(X, W, b)
b = np.zeros((1, 1))	y_pred_class = np.round(y_pred)
	accuracy = np.mean(y_pred_class == y.reshape(-1, 1)) * 100
def sigmoid(z):	print(f"Accuracy on the training dataset: {accuracy}%")
return 1 / (1 + np.exp(-z))	

