Calcolatori Elettronici (12AGA)

Esame del 13.7.2017 Correzione

- Si desidera costruire un contatore circolare sincrono su 2 bit.
- Si seguono i passi necessari per progettare un circuito sequenziale sincrono (modello di Huffman).
- Il circuito da progettare
 - richiede 2 FF
 - corrisponde a un circuito di Moore.

Passo 1: costruzione tavola di verità

FF1	FF2	I1	12	FF1	FF2	Out1	Out2
0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	1	0	0	1	0	0
0	0	1	1	-	-	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
0	1	1	1	-	-	0	1
1	0	0	0	1	0	1	0
1	0	0	1	0	1	1	0
1	0	1	0	1	1	1	0
1	0	1	1	-	-	1	0
1	1	0	0	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	1	1
1	1	1	1	-	-	1	1

Passo #2 – mappe di Karnaugh

FF1					
FF1 FF2	0 0	01	11	10	
0 0	0	0	1	1	
01	1	0	1	0	
11	-	-	-	-	
10	0	1	0	1	

FF2					
FF1 FF2	0 0	01	11	10	
0 0	0	1	1	0	
01	1	0	0	1	
11	-	-	-	-	
10	1	0	0	1	

Passo #2 – copertura mappe

FF1					
FF1 FF2	0 0	01	11	10	
0 0	0	0	1	1	
01	1	0	1	0	
11	-	-	-	-	
10	0	1	0	1	

		112		
FF1 FF2	0 0	01	11	10
0 0	0	1	1	0
01	1	0	0	1
11	-	-	-	-
10	1	0	0	1

FF2

 $FF1=I2 \overline{FF1} \overline{FF2} + I1 \overline{FF1} FF2 + \overline{I1} FF1 FF2 + \overline{I2} FF1 \overline{FF2}$

 $FF2 = \overline{11} \overline{12} FF2 + \overline{12} \overline{FF2} + \overline{11} \overline{FF2}$

 Si disegni una memoria composta da 4
Mparole di 16 bit ciascuna, utilizzando moduli da 512Kparole da 8 bit ciascuna.

- Si scrivano le microistruzioni (inclusive della fase di fetch) eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione SUB [R2], R3, R1
- Tale istruzione sottrae al contenuto di R3 il contenuto di R1, e scrive il risultato nella locazione di memoria il cui indirizzo è memorizzato in R2.

- 1. Fase di fetch

 - PC_{out}MAR_{in}
 - Clear Y
 - Set Carry In to ALU
 - Add
- Z_{in}
- MAR_{out}
- Read
- aspetta MFC
- Z_{out}
- SEL=0
- MDR_{in}
- MDR² out
- IR_{in}

2. Fase di esecuzione

- R3_{out}
- Y_{in} R1_{out} Sub

- Z_{in} Z_{out} SEL=1
- MDR_{in}
- MDR¹ out
- R2_{out}
- MĂRin
- MAR_{out}
- Write
- aspetta MFC

- Si descriva il funzionamento del modo 1 dell'8255 in caso di utilizzo della porta B in modalità di output.
- Si richiede il disegno di uno schema di interconnessione tra CPU, 8255 e dispositivo periferico.

Domanda #13 - descrizione

- Quando la porta B è programmata come descritto, si verifica per ogni dato da trasmettere la seguente sequenza di eventi
 - 1. La CPU scrive il dato nel registro B dell'8255
 - 2. L'8255 attiva il segnale OBF
 - 3. La periferica legge il dato e attiva il segnale ACK
 - 4. L'8255 invia alla CPU una richiesta di Interrupt

Domanda #13 - schema

