



# SISTEMA DIGITALAK DISEINATZEKO OINARRIAK (1. kurtso, 1. lauhilabete)

- 1. gaia. Informazioaren irudikapena
- 2. gaia. Boole aljebraren oinarriak eta ate logikoak
- 3. gaia. Bloke konbinatzionalak
- 4. gaia. Bloke sekuentzialak
- 5, gaia. Memoriak
- 6. gaia. Sistema digitalen diseinu metodologiaren hastapenak



#### **BIBLIOGRAFIA:**



"Principios de diseño de sistemas digitales. Guía Práctica"

G. Bosque, P. Fernandez. Ed. UPV/EHU 2014

"Principios de diseño de sistemas digitales"

O. Arbelaitz, O. Arregi y otros coautores, Ed. UPV/EHU 2008

"Fundamentos de sistemas digitales"

T. Floyd, Ed. Prentice Hall 2000

"Diseño digital"

M. Morris Mano, Ed. Prentice Hall 2003

#### IRAKASLE: Pablo Fernández

Bulegoa: P5I15

Tfno.: 946014502

E-mail: pablo.fernandezr@ehu.eus





# Irakasgai honen eduki guztiak agertuko dira, kurtsoan zehar, web orrialde honetan:

https://egela1819.ehu.eus/

SDDO ikasle gida 2018/19 irakurri

# 1. gaia: Informazioaren irudikapena

### Teknologia elektronikoaren elementuak













### Eremu elektromagnetikoak jarraiak dira: Elektronika analogikoa





Magnitude
bakoitzeko
(tentsio,
intentsitatea)
infinitu
balio dago
v=f(t)
i=g(t)

# Funtzio jarrai baten zenbait balio hartu dezakegu: diskretu bihurtu



Funtzio analogikoa: infinitu balio



Funtzio diskretua: balio kopuru finitua

# Etengailuaren bidez, tentsio/intentsitate balio bi baino ez daude: on/off

$$V_{ARGIA} = R_{ARGIA} \cdot I$$

$$ON: V_{ON/OFF} = 0; V_{ARGIA} = V_{CC}$$

$$OFF: I = 0; V_{ARGIA} = 0$$

$$Etengailua ON/OFF$$

$$Intentsitatea ON/OFF$$

Bi balioko elektronika⇔ Electronika digitala



Elektronika Digitaleko seinaleen tentsio balioak

# Tentsioaren irudikapena

• Bi tentsio baliotan oinarritzen da elektronika digitala

• Beraz, tentsio aldagarriak irudikatzeko, bi zenbaki balio erabiliko dugu

• Bi balioak dira 0 (tentsio baxua: L) eta 1 (tentsio altua: H)

### Lekunezko zenbaki-sistema

$$N = \sum_{i=-k}^{n-1} d_i \cdot b^i$$

 $N = \sum_{i=-k}^{n-1} d_i \cdot b^i$   $d_i=i$ . zifra, b=oinarria

|              | b  | d       | $N = 2001_{10}$ |
|--------------|----|---------|-----------------|
| Bitarra      | 2  | 0-1     | 11111010001     |
| Zortzitarra  | 8  | 0-7     | 3721            |
| Hamartarra   | 10 | 0-9     | 2001            |
| Hamaseitarra | 16 | 0-9,A-F | 7D1             |

### Lekunezko zenbaki-sistema

- Elektronika digitalean, bi balioen bitartez seinaleak irudikatzen ditugu
- 2 oinarria daukan zenbaki-sistema (bitarra) bi zifra baino ez du erabiltzen
- Beraz, elektronika digitaleko sistemetan, zenbaki informazioa irudikatzeko zenbakisistema bitarra erabiliko dugu

### Lekunezko zenbaki-sistema

- 1 baino txikiago diren zenbakiak, komaren eskuinean idazten direnak, berretzaile negatiboen bidez irudikatzen dira
- Horrela zenbaki errealak adierazi daitezke

$$14,75_{10} = 1 \cdot 10^{1} + 4 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

$$1110,11_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 8 + 4 + 2 + 0 + 1/2 + 1/4 = 14,75$$

# Zenbaki-sistemaren arteko bihurketak

Bitarra  $\iff$  Zortzitarra  $\iff$  Hamaseitarra

| Hamaseitarra |   | 7   | В   |     | A  | 3  |    | В   | (   | 7   | 4   |
|--------------|---|-----|-----|-----|----|----|----|-----|-----|-----|-----|
| Bitarra      | 0 | 111 | 101 | 11( | 10 | 00 | 11 | 101 | 111 | 000 | 100 |
| Zortzitarra  |   | 7   | 5   | 6   | 4  |    | 3  | 5   | 7   | 0   | 4   |

#### Zenbaki-sistemaren arteko bihurketak

#### Hamartarra ⇔ besteak:

- Bihurtu nahi dugun **zenbaki**ren zatiketa osoa : bilatzen dugun **oinarria** jarraitu zatiketa, zatidura zatitzaile baino txikiago izan arte hondarrak dira zenbakiaren zifrak oinarri berrian, eskubidetatik ezkerretara hartuta
- Bihurtu nahi dugun zenbakiren **zati dezimala** x bilatzen dugun **oinarria**→zati dezimala berriro biderkatu, zero bihurtu arte→ biderketa bakoitzean sortu diren zati osoak dira zenbakiaren zifrak oinarri berrian, ezkerretatik eskubidetara hartuta

#### Zehaztasun finitua

- Sistema digitaletan, zifra kopurua finkoa da, zifra bakoitzari tentsio seinale bat dagokio eta
- Adierazi daitezken zenbaki kopurua finitua da baita ere→zehastasun finitua→koma finkoa
- 2ko oinarrian, komaren ezkerrean *n* zifra, eta komaren eskuinean *k* zifra badaude:

$$N_{max} = 2^{n} - 1 + (1 - 2^{-k})$$
 $N_{min} = 2^{-k}$ 

# Kode bitarrean kodifikatutako sistema hamartarra: BCD

| Hamartarra   | BCD zenbakia |
|--------------|--------------|
| 0            | 0000         |
| 1            | 0001         |
| 2            | 0010         |
| 3            | 0011         |
| 4            | 0100         |
| 5            | 0101         |
| 6            | 0110         |
| 7            | 0111         |
| 8            | 1000         |
| 9            | 1001         |
|              | 1010         |
| <b> </b>     | 1011         |
| Ez erabiliak | 1100         |
|              | 1101         |
|              | 1110         |
|              | 1111         |

- Erosoagoa da guretzat kode hamartarra → 0 eta 1en bidez kodea erabiliena hauxe da: BCD (Binary Coded Decimal)
- 396<sub>10</sub>= 0011 1001 0110 (16 konbinazio, 6 ez erabiliak)
- Eragiketa aritmetikoak ezin dira erabili→Arau bereziak

- *n* biten bidez, 2<sup>n</sup> zenbaki osoak irudikatu daitezke
- Zenbaki osoak positibo zein negatibo irudikatzeko, bitan zatituko ditugu  $2^n$  zenbakiak:  $2^{n-1}$  positiboak eta beste hainbeste negatiboak
- Zero positiboa da
- 2ko osagarria da gehien erabiltzen den metodoa





Zenbaki bitar positiboak

Zeinu erantsitako magnitudea

- Zeinu erantsitako magnitudea da metodo errezena, baina hainbat eragozpen dauka:
  - Zero bi irudikapen dauka: +0 y -0
  - Metodo honetako zenbakien arteko eragiketa aritmetikoak baliogabeak dira
- Zenbaki positibo altuena da:  $N_{max} = 2^{n-1} 1$
- Zenbaki negatibo altuena da:  $N_{min} = -(2^{n-1}-1)$





1eko osagarria

$$A^{(1)} = 2^4 - 1 - |A|$$

2ko osagarria

$$A^{(2)} = 2^4 - |A| = A^{(1)} + 1$$

- Zenbaki baten balio absolutuaren 0 eta 1ak alderantzikatuz, 1eko osagarrian zenbaki negatiboa lortzen da
- 2ko osagarrian zenbaki negatiboa lortzen da 1eko osagarrien bidez, 1 gehiago batuz
- 2ko osagarri sisteman, 0 bakar bat dago, beraz, zenbaki negatiboetan bat gehiago dago:  $-2^{n-1}$ 
  - Zenbaki positibo altuena da:  $N_{m\acute{a}x} = 2^{n-1}-1$
  - Zenbaki negatibo altuena da:  $N_{min} = -2^{n-1}$

Batugaiak
 
$$0 \\ +0 \\ +0 \\ 0$$
 $0 \\ +1 \\ -1 \\ 0$ 
 $1 \\ +0 \\ -1 \\ 0$ 
 $1 \\ +1 \\ 0$ 

 Batuketa
  $0 \\ 0 \\ 0$ 
 $0 \\ 0 \\ 0$ 
 $0 \\ 0 \\ 0$ 
 $0 \\ 0 \\ 0$ 



Zenbaki negatibo erabiliz batuketa bitarra

- 2ko osagarria à Bururakoa baztertu
- 1eko osagarria à Buruakoa berriro batu
- Zeinu ezberdineko zenbakiak batutzen ditugunean, emaitza ez da inoiz batugaiak baino handiagoàez dago gainezkatzerik (overflow)
- Zeinu bereko zenbakiak batutzenà batuketaren zeinua ezberdinaà gainezkatze dago

- 2<sup>n-1</sup>eko gehiegizko sisteman, zenbaki guztiei (positibo zein negatiboei) 2<sup>n-1</sup> batutzen zaie, horrela emaitza beti da positiboa
- Zenbaki baten balioa ezagutzeko, 2<sup>n-1</sup> kendu egin behar diogu
- Sistema honekin batuketa baliogabekoa da, emaitza beti gehi 2<sup>n-1</sup> delako

$$A+2^{n-1}+B+2^{n-1}=\underbrace{((A+B)+2^{n-1})}_{BATUKETA}+2^{n-1}$$

| Hamartarra | Mag. zeinu erantsita | 1eko osagarria | 2ko osagarria | 8ko gehiegizkoa |
|------------|----------------------|----------------|---------------|-----------------|
| -8         |                      |                | 1000          | 0000            |
| -7         | 1111                 | 1000           | 1001          | 0001            |
| -6         | 1110                 | 1001           | 1010          | 0010            |
| -5         | 1101                 | 1010           | 1011          | 0011            |
| -4         | 1100                 | 1011           | 1100          | 0100            |
| -3         | 1011                 | 1100           | 1101          | 0101            |
| -2         | 1010                 | 1101           | 1110          | 0110            |
| -1         | 1001                 | 1110           | 1111          | 0111            |
| -0         | 1000                 | 1111           |               |                 |
| 0          | 0000                 | 0000           | 0000          | 1000            |
| 1          | 0001                 | 0001           | 0001          | 1001            |
| 2          | 0010                 | 0010           | 0010          | 1010            |
| 3          | 0011                 | 0011           | 0011          | 1011            |
| 4          | 0100                 | 0100           | 0100          | 1100            |
| 5          | 0101                 | 0101           | 0101          | 1101            |
| 6          | 0110                 | 0110           | 0110          | 1110            |
| 7          | 0111                 | 0111           | 0111          | 1111            |

# Idazkera zientifikoa: koma higikorreko zenbakiak

$$N=f \cdot 10^e$$

f: frakzio edo mantisa → zehaztasuna

e: berretzailea → zenbaki-tarte

#### Koma higikorra: Kode bitarrean

- ANSI/IEEE Std. 754 (1985)
  - Berretzailea:
    - 2<sup>n-1</sup>-1eko gehiegizkoa
    - Dena '0' eta dena '1' bereziak
  - Frakzioa normalizatuetan, lehenengo 1a komaren ezkerrean dago

# Idazkera zientifikoa: koma higikorreko zenbakiak

- 2ko oinarriko bertsioa konputagailuan erabiltzeko
- Komaren eskuinean dagoen zenbakia '1' ba da, frakzioa *normalizatuta* dago
- Komaren eskuinean '0' badagoà ezkerrera mugitzen dugu '0', berretzaileen balioa dekrementatuz (frakzioa normalizatuta bihurtzen dugu zenbakien balioa aldatu gabe)

# Idazkera zientifikoa: koma higikorreko zenbakiak

#### Adibidea:

| 23 | 22, 21 16    | 15, 14, 13, 12 |
|----|--------------|----------------|
| +  | berretzailea | frakzioa       |

Oinarria=2, berretzailea 64ko gehiegizko sisteman

#### Ez normalizatuta:

$$01010100.000000000011011 = 2^{20} \cdot (2^{-12} + 2^{-13} + 2^{-15} + 2^{-16}) = 432$$

#### Normalizatuta:

#### Idazkera zientifikoa: IEEE 754

#### **ANSI/IEEE Std. 754 (1985)**

Normalizatuta: Komaren ezkerrean lehenengo 1a, frakzioan 1 hori inplizitu dago

Berretzailea adierazteko 2<sup>n-1</sup>-1 gehiegizkoa erabiltzen da

| z  |   | 8<br>b        | <u>23</u><br>f |          | (-1) <sup>z</sup> x 2 <sup>(b-12)</sup> | <sup>(7)</sup> x (1+f) |
|----|---|---------------|----------------|----------|-----------------------------------------|------------------------|
|    | 1 | 8             |                | 23       |                                         | -                      |
| a) | + | berretzaile   |                | frakzio  |                                         |                        |
|    | 1 | 11            |                |          | 52                                      |                        |
| b) | + | berretzaile   |                |          |                                         |                        |
|    | a | ) Zehaztasu s | inple          | b) Zehaz | ztasun bikoitza                         |                        |

### Idazkera zientifikoa: IEEE 754

Frakzio eta berretzaile esanahiaren salbuespenak (dena '0' eta dena '1' balio berezirako erreserbaturik):

| Normalizatua    | ±  | 0 < Ber. < Max | Edozein bit multzo              |
|-----------------|----|----------------|---------------------------------|
| Ez normalizatua | ±  | 0              | Zero ez den edozein bit multzo  |
| Zero            | ±  | 0              | 0                               |
| Infinitu        | ±  | 1111           | 0                               |
| Ez da zenbaki   | ±  | 1111           | Zero ez den edozein bit multzo  |
| LL dd Zoribani  | X, | Zeinu bita     | 2010 02 doi: 0d020:: Sit Hait20 |

#### Kode alfanumerikoak: ASCII

## ASCII: American Standard Code for Infomation Interchange

- 7bit→128 karaktere
- 1byte: 0 ASCII kodea
- MSB=1 → beste 128 karaktere, azentu daukaten hizkirako edo beste hizkuntzarako (Latin-1)
- 0 B7 B6 B5 B4 B3 B2 B1 B0

  Zutabe Lerro

### Kode alfanumerikoak: ASCII

|                                                             |      |     |                | B <sub>7</sub> B <sub>8</sub> B | 5            |              |        |            |
|-------------------------------------------------------------|------|-----|----------------|---------------------------------|--------------|--------------|--------|------------|
| B <sub>4</sub> B <sub>3</sub> B <sub>2</sub> B <sub>1</sub> | 000  | 001 | 010            | 011                             | 100          | 101          | 110    | 111        |
| 0000                                                        | NULL | DLE | SP             | 0                               | <b>@</b>     | P            |        | p          |
| 0001                                                        | SOH  | DC1 | 1              | 1                               | A            | Q            | а      | q          |
| 0010                                                        | STX  | DC2 | -11            | 2                               | В            | R            | a<br>b | Т          |
| 0011                                                        | ETX  | DC3 | #              | 3                               | C            | S            | С      | S          |
| 0100                                                        | EOT  | DC4 | \$             | 4<br>5                          | D            | Т            | d      | t          |
| 0101                                                        | ENQ  | NAK | %              | 5                               | E            | U            | е      | u          |
| 01.10                                                       | ACK  | SYN | &              | 6                               | F            | $\mathbf{v}$ | f      | v          |
| 0111                                                        | BEL  | ETB |                | 7                               | $\mathbf{G}$ | W            | g      | w          |
| 1000                                                        | BS   | CAN | (              | 8                               | H            | $\mathbf{x}$ | g<br>h | x          |
| 1001                                                        | HT   | EM  | ý              | 9                               | 1            | Y            | i      | y          |
| 1010                                                        | LF   | SUB | *              |                                 | J            | Z            | î      | Z          |
| 1011                                                        | VT   | ESC | +              |                                 | K            |              | k      | 1          |
| 1100                                                        | FF   | FS  | 34             | <                               | L            | Ñ            | 1      | Ĩ.         |
| 1101                                                        | CR   | GS  | ( <del>)</del> | (3 <del>11</del> )              | $\mathbf{M}$ | Ť            | m      | 1          |
| 1110                                                        | SO   | RS  | 108            | >                               | N            | Λ            | n      | 3 <u>5</u> |
| 1111                                                        | SI   | US  | 10             | 7                               | O            |              | O      | DEI        |

#### Kode alfanumerikoak: ASCII

- Taula honetan  $B_8=0$ ,  $B_8=1$  denean azento daukaten hizkiak eta beste hizkuntz europarraren karaktere bereziak agertzen dira
- Baina europar ez diren beste hizkuntzarako? → Kode taula, hizkuntza bakoitzarako, taula bat
- Karaktere txinatarrak 256 baino askoz gehiago dira, kode taula bat ez da nahikoa

### Kode alfanumerikoak: UNICODE

- UNICODE sisteman karaktere bakoitzari zenbaki bitar bat dagokio (kode puntua)
- Zenbakiak 16 bitekoak dira (UTF-16), baina orain 32 bit (UTF-32) erabiltzen dira
- 2<sup>32</sup>≈4x10<sup>9</sup> zenbaki bitarraren esanahia erabakitzeko, 1991an enpresa partzuergo bat sortu zen, barnean Apple, Microsoft eta Sun, besteak beste

## Kode alfanumerikoak: UNICODE

|      | Control |      |       | ASCII |     |     |     |      |      | Control |                         |                     | Latin 1 |     |     |                 |  |  |
|------|---------|------|-------|-------|-----|-----|-----|------|------|---------|-------------------------|---------------------|---------|-----|-----|-----------------|--|--|
| 000  | )       | 001  | 002   | 003   | 004 | 005 | 006 | 007  | 800  | 009     | 00A                     | 00B                 | 00C     | 00D | 00E | 00F             |  |  |
| 0 CT | RL      | CTRL | SPACE | 0     | @   | P   | `   | p    | CTRL | CTRL    | NBSP                    | 0                   | À       | Đ   | à   | D               |  |  |
| 1 CT | 'RL     | CTRL | !     | 1     | A   | Q   | a   | q    | CTRL | CTRL    | i                       | $\pm$               | Á       | Ñ   | á   | ñ               |  |  |
| 2 CT | 'RL     | CTRL | "     | 2     | В   | R   | b   | r    | CTRL | CTRL    | ¢                       | 2                   | Â       | Ò   | â   | ò               |  |  |
| 3 CT | 'RL     | CTRL | #     | 3     | C   | S   | c   | S    | CTRL | CTRL    | £                       | 3                   | Ã       | Ó   | ã   | ó               |  |  |
| 4 CT | 'RL     | CTRL | \$    | 4     | D   | T   | d   | t    | CTRL | CTRL    | ۵                       | ,                   | Ä       | Ô   | ä   | ô               |  |  |
| 5 CT | 'RL     | CTRL | %     | 5     | E   | U   | e   | u    | CTRL | CTRL    | $\mathbf{Y} \mathbf{Y}$ | μ                   | Å       | Õ   | å   | õ               |  |  |
| 6 CT | 'RL     | CTRL | &     | 6     | F   | V   | f   | V    | CTRL | CTRL    | -                       | $\P$                | Æ       | Ö   | æ   | ö               |  |  |
| 7 CT | 'RL     | CTRL | '     | 7     | G   | W   | g   | W    | CTRL | CTRL    | §                       |                     | Ç       | ×   | ç   | ÷               |  |  |
| 8 CT | 'RL     | CTRL | (     | 8     | Н   | X   | h   | X    | CTRL | CTRL    |                         | ذ                   | È       | Ø   | è   | ø               |  |  |
| 9 CT | RL      | CTRL | )     | 9     | I   | Y   | i   | y    | CTRL | CTRL    | ©                       |                     | É       | Ù   | é   | ù               |  |  |
| A CT | RL      | CTRL | *     | :     | J   | Z   | j   | Z    | CTRL | CTRL    | a                       | 0                   | Ê       | Ú   | ê   | ú               |  |  |
| в ст | RL      | CTRL | +     | ;     | K   | [   | k   | {    | CTRL | CTRL    | «                       | <b>»</b>            | Ë       | Û   | ë   | û               |  |  |
| C CT | RL      | CTRL | ,     | <     | L   | \   | 1   | 1    | CTRL | CTRL    | ¬                       | $\frac{1}{4}  1/4 $ | Ì       | Ü   | ì   | ü               |  |  |
| D CT | RL      | CTRL | -     | =     | M   | ]   | m   | }    | CTRL | CTRL    | -                       | $\frac{1}{2}  1/2 $ | Í       | Ý   | í   | ý               |  |  |
| E CT | RL      | CTRL |       | >     | N   | ٨   | n   | ~    | CTRL | CTRL    | ®                       | 3 3/4               | Î       | ?b] | î   | 'b <sub>]</sub> |  |  |
| F CT | RL      | CTRL | /     | ?     | О   | -   | o   | CTRL | CTRL | CTRL    | -                       | i                   | Ϊ       | В   | ï   | ÿ               |  |  |