Лабораторная работа № 3.2.6 "Исследование гальванометра"

Петров Артём Антонович, группа 721

22 ноября 2018 г.

Экспериментальная установка

Параметры установки:

собственное сопротивление гальванометра $R_0 = [475 \pm 1]Ohm$, сопротивление $R_2 = [10, 0 \pm 0, 1]kOhm$, ёмкость конденсатора $C = [2, 0 \pm 0, 1]\mu F$, напряжение на источнике $U_0 = [2.03 \pm 0.01]V$,

расстояние от зеркальца гальванометра до экрана (и до источника света, соответственно) $a = [136 \pm 1]cm$.

Рис. 1: Схема установки для измерения отклонения зеркала гальванометра.

Ход работы

Стационарный режим (измерение динамической постоянной)

Была получена зависимость отклонения зайчика x от сопротивления магазина сопротивлений R при значении входного напряжения $U_0=[2.03\pm0.01]V$, положении делителя $R_1/R_2=\frac{1}{2000}$. Её можно видеть на графике 4. Коэффициент наклона графика

Рис. 2: Схема установки для работы гальванометра в стационарном режиме.

Рис. 3: Схема установки для определения баллистической постоянной.

 $\frac{C_1}{2a}=[2,21\pm0,05]nA/cm$. Из него мы получаем значение динамической постоянной гальванометра $C_1=[0.601\pm0.14]\mu A$.

Рис. 4: Зависимость I(x). Коэффициент наклона графика $\frac{C_1}{2a} = [2, 21 \pm 0, 05] nA/cm$.

Стационарный режим (измерение $R_{\rm kp}$)

Для начала был получен логарифмический декремент затухания разомкнутого гальванометра с помощью измерения двух последовательных отклонения зайчика. Получено значение $\theta_0 = [0, 307 \pm 0, 005]$. Также был измерен период колебаний рамки $T_0 = [6, 2 \pm 0, 2]sec$.

Далее было примерно оценено значение $R_{\rm kp}$ с помощью наблюдения за тем, при каком R зайчик перестаёт колебаться (начинается "безколебательный" режим). Получено приблизительное значение $R_{\rm kp}\approx 9.2kOhm$.

Далее была получена зависимость $1/\theta^2$ от $(R+R_0)^2$. Её можно видеть на графике 5. Коэф наклона графика при малых значениях R: $koef = [1,95\pm0,18]*10^{-4}kOhm^{-2}$. Откуда получили значение $R_{\mathbf{kp}} = \frac{1}{2\pi}\sqrt{koef^{-1}} - R_0 = [10.9\pm0.5]kOhm$.

Рис. 5: Зависимость $1/\theta^2$ от $(R+R_0)^2$. Коэф наклона графика при малых значениях R: $koef = [1, 95 \pm 0, 18] * 10^{-4} kOhm^{-2}$

Баллистический режим (измерение $R_{\rm kp}$ и динамической постоянной гальванометра)

Можно видеть, что время релаксации (время протекания заряда конденсатора через гальванометр) $t = R_0 C \approx 10^{-3} sec$ много меньше периода собственных колебаний рамки гальванометра $T_0 = [6, 2 \pm 0, 2] sec$, а значит предложенное в теории приближение, что рамка ускоряется почти мгновенно верно.

Была получена зависимость максимального отклонения зайчика l_{max} от шунтирующего сопротивления R в баллистическом режиме работы гальванометра (рамка гальванометра разгоняется за счёт заряда, запасённого на конденсаторе за время много меньшее периода его колебаний и затем исследуется движение зайчика на экране). Эту зависимость можно видеть на графике 6.

Известно, что в критическом режиме l_{max} в e раз меньше, чем при незатухающих колебаниях. l_{max} незатухающих колебаний рассчитывается как l_{max} незатухающих $= l_{max}(R=0) \exp^{\theta_0/4}$. Интервал значений в которые должно попадать l_{max} крит представлен на том же графике. Получая координаты пересечения нашей зависимости с этим интервалом можно найти $R_{\rm kp}$. Полученное значение $(R_{\rm kp}+R_0)^{-1}=[0.143\pm0.010]kOhm^{-1}$, откуда значение $R_{\rm kp}=[6.5\pm0.5]kOhm$.

Видно, что были получены три довольно разных значений $R_{\rm kp}$:

 $R_{\rm kp} \approx 9.2 kOhm$ получено подбором,

Рис. 6: Зависимость максимального отклонения зайчика l_{max} от шунтирующего сопротивления R в баллистическом режиме работы гальванометра.

 $R_{\rm kp} = [10.9 \pm 0.5] kOhm$ получено в стационарном режиме,

 $R_{\rm kp} = [6.5 \pm 0.5] kOhm$ получено в баллистическом режиме.

Эксперименты других исследователей нашего потока дают такие же несовпадающие значения $R_{\mbox{\tiny KD}}.$

Где же ошибка? Когда всё пошло не так?

возвращается из пространных мыслей о том, что пошло не так

Было получено значение $C_{Q \ \mathbf{kp}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{l_{max \ \mathbf{kput}}} = [2.09 \pm 0.11] * 10^{-6} C$ (здесь $\frac{R_1}{R_2} = 1/70$, а $l_{max \ \mathbf{kput}} = [7.55 \pm 0.12] cm$).

Итог

Гальванометр исследован. Получены значения его динамической $C_1 = [0.601 \pm 0.14] \mu A$ и баллистической $C_{Q \text{ кр}} = [2.09 \pm 0.11] * 10^{-6} C$ постоянных. Также были получены значения $R_{\text{кр}}$ тремя разными способами:

 $R_{\text{кр}} \approx 9.2 kOhm$ получено подбором,

 $R_{\rm kp} = [10.9 \pm 0.5] kOhm$ получено в стационарном режиме,

 $R_{\rm kp} = [6.5 \pm 0.5] kOhm$ получено в баллистическом режиме.

Планы на будущее

Разобраться, почему такие различия в значениях $R_{\rm kp}$, полученных разными способами.