K-MEANS ALGORITHM FOR UNSUPERVISED LEARNING

```
import pandas as pd
import random
import numpy as np
import matplotlib.pyplot as plt
pd.set_option('display.max_columns', None)
Data = pd.read csv('heart.csv')
Data = Data.drop('target', axis = 1)
(n, m) = Data.shape
Data.index = [f'X{j+1}' \text{ for } j \text{ in range}(n)]
Data.columns = [f'f{i+1}' for i in range(m)]
# split data into train test ratio
train data = Data.sample(frac = 0.8)
test data = Data.drop(train data.index)
# K_Means Algorithm
def KMeans(Data, K):
  n = len(Data.axes[0])
  m = len(Data.axes[1])
  rn = random.sample(range(n), K)
  centroids = []
  for i in rn:
    centroids.append(Data.iloc[i])
  centroids = pd.DataFrame(centroids, index=range(K),
columns=Data.columns)
  stopping criteria = 1
  while stopping_criteria == 1:
    new_centroids = [[] for _ in range(K)]
    list cluster = [[] for i in range(K)]
    for i in range(n):
```

```
distance = []
      for k in range(K):
         sum of sqrs = 0
         for j in Data.columns:
           sum of sqrs += (Data[j].iloc[i] - centroids[j].iloc[k])**2
         d = (sum of sqrs)**(1/2)
         distance.append(d)
      min_val_index = distance.index(min(distance))
      list cluster[min val index].extend([Data.iloc[i].tolist()])
    for i in range(K):
      Mean_for_cluster = np.array(list_cluster[i])
      new_centroid = np.mean(Mean_for_cluster, axis=0)
      new centroids[i] = new centroid.tolist()
    new centroids = pd.DataFrame(new centroids, columns=Data.columns)
    if centroids.equals(new_centroids):
      stopping criteria = 0
    centroids = new centroids
  return centroids, list_cluster
# training the algorithm
error = []
for K in range(2, 11):
  centroid, list_cluster = KMeans(train_data, K)
  centroid = centroid.values
  sum of sqr = 0
  for i in range(K):
    for j in range(len(list_cluster[i])):
      for k in range(m):
         sum of sqr += (list cluster[i][j][k] - centroid[i][k])**2
  error.append(sum_of_sqr / len(train_data))
# Calculate elbow point for optimal K
elbow point = 0
max diff = 0
for i in range(1, len(error)-1):
  diff = (error[i-1] - error[i]) / (error[i] - error[i+1])
```

```
if diff > max diff:
    max diff = diff
    elbow point = i + 2
Optimal K = elbow point
print('Optimal_K = ', Optimal_K)
# plot the graph
plt.plot(range(2,11), error, color = 'g', marker = 'o')
plt.xlabel('Number of clusters')
plt.ylabel('error')
plt.title('Error Vs Number of Clusters')
plt.show()
# testing algorithm
centroids, list cluster = KMeans(test data, Optimal K)
centroids.index = [f'c{i+1}' for i in range(Optimal_K)]
# error for testing data
sum sqr = 0
for i in range(Optimal_K) :
  list cl = pd.DataFrame(list cluster[i], columns=test data.columns)
  sub_df = list_cl - centroids.iloc[i]
  sub df = sub df ** 2
  sub df = sub df.sum(axis = 1)
  sum_sqr += sub_df.sum(axis = 0)
print(f'\nThe error in testing data is : {sum sqr / len(test data)}')
print(f'\nThe centroids of clusters are : \n{round(centroids,2)}\n')
for i in range(Optimal_K):
  print(f'Cluster_C{i+1}: \n{pd.DataFrame(list_cluster[i],
columns=test data.columns)}\n')
```

OUTPUT

Optimal_K = 6

The error in testing data is: 892.6776021362093

The centroids of clusters are:

f2 f5 f1 f3 f4 f6 f7 f8 f9 f10 f11 \ c1 48.73 0.79 1.33 124.73 212.33 0.15 0.75 164.02 0.21 0.56 1.67 c2 62.11 0.58 0.37 127.95 274.53 0.21 0.42 110.16 0.53 1.55 1.00 c3 60.62 0.46 0.77 143.23 349.08 0.15 0.77 150.62 0.54 1.22 1.62 c4 56.41 0.76 0.94 130.32 188.68 0.21 0.71 128.62 0.38 1.55 1.18 c5 55.51 0.67 1.31 136.16 248.00 0.16 0.36 157.16 0.20 0.99 1.49 c6 54.31 0.64 1.14 136.47 295.33 0.22 0.42 152.36 0.39 1.01 1.36

f12 f13

c1 0.65 2.40

c2 1.63 2.32

c3 0.62 2.31

c4 0.56 2.09

Cluster C1:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 0 52.0 1.0 0.0 125.0 212.0 0.0 1.0 168.0 0.0 1.0 2.0 2.0 3.0 1 45.0 1.0 0.0 104.0 208.0 0.0 0.0 148.0 1.0 3.0 1.0 0.0 2.0 2 37.0 0.0 2.0 120.0 215.0 0.0 1.0 170.0 0.0 0.0 2.0 0.0 2.0 3 44.0 1.0 1.0 120.0 220.0 0.0 1.0 170.0 0.0 0.0 2.0 0.0 2.0 4 53.0 1.0 2.0 130.0 197.0 1.0 0.0 152.0 0.0 1.2 0.0 0.0 2.0 5 52.0 1.0 2.0 138.0 223.0 0.0 1.0 169.0 0.0 0.0 2.0 4.0 2.0 6 56.0 1.0 1.0 130.0 221.0 0.0 0.0 163.0 0.0 0.0 2.0 0.0 3.0 7 34.0 1.0 3.0 118.0 182.0 0.0 0.0 174.0 0.0 0.0 2.0 0.0 2.0 8 39.0 0.0 2.0 94.0 199.0 0.0 1.0 179.0 0.0 0.0 2.0 0.0 2.0 9 52.0 1.0 1.0 128.0 205.0 1.0 1.0 184.0 0.0 0.0 2.0 0.0 2.0 10 60.0 1.0 0.0 117.0 230.0 1.0 1.0 160.0 1.0 1.4 2.0 2.0 3.0 11 39.0 0.0 2.0 138.0 220.0 0.0 1.0 152.0 0.0 0.0 1.0 0.0 2.0 12 57.0 1.0 0.0 132.0 207.0 0.0 1.0 168.0 1.0 0.0 2.0 0.0 3.0 13 52.0 1.0 2.0 138.0 223.0 0.0 1.0 169.0 0.0 0.0 2.0 4.0 2.0 14 51.0 1.0 2.0 94.0 227.0 0.0 1.0 154.0 1.0 0.0 2.0 1.0 3.0 15 52.0 0.0 2.0 136.0 196.0 0.0 0.0 169.0 0.0 0.1 1.0 0.0 2.0 16 37.0 0.0 2.0 120.0 215.0 0.0 1.0 170.0 0.0 0.0 2.0 0.0 2.0 17 52.0 1.0 2.0 172.0 199.0 1.0 1.0 162.0 0.0 0.5 2.0 0.0 3.0 18 58.0 1.0 2.0 132.0 224.0 0.0 0.0 173.0 0.0 3.2 2.0 2.0 3.0 19 52.0 1.0 0.0 112.0 230.0 0.0 1.0 160.0 0.0 0.0 2.0 1.0 2.0 20 43.0 1.0 0.0 110.0 211.0 0.0 1.0 161.0 0.0 0.0 2.0 0.0 3.0 21 38.0 1.0 2.0 138.0 175.0 0.0 1.0 173.0 0.0 0.0 2.0 4.0 2.0 22 44.0 1.0 1.0 120.0 220.0 0.0 1.0 170.0 0.0 0.0 2.0 0.0 2.0 23 42.0 0.0 2.0 120.0 209.0 0.0 1.0 173.0 0.0 0.0 1.0 0.0 2.0 24 41.0 1.0 2.0 130.0 214.0 0.0 0.0 168.0 0.0 2.0 1.0 0.0 2.0 25 54.0 0.0 2.0 160.0 201.0 0.0 1.0 163.0 0.0 0.0 2.0 1.0 2.0 26 38.0 1.0 2.0 138.0 175.0 0.0 1.0 173.0 0.0 0.0 2.0 4.0 2.0 27 50.0 0.0 2.0 120.0 219.0 0.0 1.0 158.0 0.0 1.6 1.0 0.0 2.0 28 53.0 1.0 0.0 140.0 203.0 1.0 0.0 155.0 1.0 3.1 0.0 0.0 3.0 29 39.0 1.0 0.0 118.0 219.0 0.0 1.0 140.0 0.0 1.2 1.0 0.0 3.0 30 67.0 1.0 2.0 152.0 212.0 0.0 0.0 150.0 0.0 0.8 1.0 0.0 3.0 31 51.0 1.0 2.0 94.0 227.0 0.0 1.0 154.0 1.0 0.0 2.0 1.0 3.0 32 56.0 1.0 1.0 130.0 221.0 0.0 0.0 163.0 0.0 0.0 2.0 0.0 3.0 33 56.0 1.0 1.0 130.0 221.0 0.0 0.0 163.0 0.0 0.0 2.0 0.0 3.0 34 51.0 1.0 2.0 94.0 227.0 0.0 1.0 154.0 1.0 0.0 2.0 1.0 3.0

 35
 46.0
 0.0
 1.0
 105.0
 204.0
 0.0
 1.0
 172.0
 0.0
 0.0
 2.0
 0.0
 2.0

 36
 51.0
 1.0
 2.0
 100.0
 222.0
 0.0
 1.0
 143.0
 1.0
 1.2
 1.0
 0.0
 2.0

 37
 59.0
 1.0
 3.0
 134.0
 204.0
 0.0
 1.0
 162.0
 0.0
 0.8
 2.0
 2.0
 2.0

 38
 44.0
 1.0
 2.0
 130.0
 233.0
 0.0
 1.0
 179.0
 1.0
 0.4
 2.0
 0.0
 2.0

 39
 52.0
 1.0
 2.0
 172.0
 199.0
 1.0
 1.0
 162.0
 0.0
 0.5
 2.0
 0.0
 2.0

 40
 58.0
 1.0
 2.0
 112.0
 230.0
 0.0
 1.65.0
 0.0
 2.5
 1.0
 1.0
 3.0

 41
 35.0
 0.0
 1.2
 182.0
 0.0
 1.4
 2.0
 0.0
 2.0

 42
 52.0
 1.0
 0.0

Cluster C2:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 0 58.0 0.0 0.0 100.0 248.0 0.0 0.0 122.0 0.0 1.0 1.0 0.0 2.0 1 54.0 1.0 0.0 122.0 286.0 0.0 0.0 116.0 1.0 3.2 1.0 2.0 2.0 2 62.0 1.0 1.0 120.0 281.0 0.0 0.0 103.0 0.0 1.4 1.0 1.0 3.0 3 56.0 1.0 0.0 130.0 283.0 1.0 0.0 103.0 1.0 1.6 0.0 0.0 3.0 4 58.0 1.0 0.0 128.0 259.0 0.0 0.0 130.0 1.0 3.0 1.0 2.0 3.0 5 62.0 0.0 2.0 130.0 263.0 0.0 1.0 97.0 0.0 1.2 1.0 1.0 3.0 6 67.0 1.0 0.0 160.0 286.0 0.0 0.0 108.0 1.0 1.5 1.0 3.0 2.0 7 70.0 1.0 0.0 130.0 322.0 0.0 0.0 109.0 0.0 2.4 1.0 3.0 2.0 8 74.0 0.0 1.0 120.0 269.0 0.0 0.0 121.0 1.0 0.2 2.0 1.0 2.0 9 71.0 0.0 2.0 110.0 265.0 1.0 0.0 130.0 0.0 0.0 2.0 1.0 2.0 10 57.0 1.0 0.0 152.0 274.0 0.0 1.0 88.0 1.0 1.2 1.0 1.0 3.0 11 62.0 0.0 0.0 138.0 294.0 1.0 1.0 106.0 0.0 1.9 1.0 3.0 2.0 12 64.0 0.0 0.0 130.0 303.0 0.0 1.0 122.0 0.0 2.0 1.0 2.0 2.0 13 62.0 1.0 0.0 120.0 267.0 0.0 1.0 99.0 1.0 1.8 1.0 2.0 3.0 14 66.0 1.0 1.0 160.0 246.0 0.0 1.0 120.0 1.0 0.0 1.0 3.0 1.0 15 62.0 0.0 0.0 138.0 294.0 1.0 1.0 106.0 0.0 1.9 1.0 3.0 2.0 16 64.0 1.0 0.0 120.0 246.0 0.0 0.0 96.0 1.0 2.2 0.0 1.0 2.0 17 58.0 0.0 0.0 100.0 248.0 0.0 0.0 122.0 0.0 1.0 1.0 0.0 2.0 18 53.0 1.0 0.0 123.0 282.0 0.0 1.0 95.0 1.0 2.0 1.0 2.0 3.0

Cluster_C3:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 0 65.0 0.0 2.0 140.0 417.0 1.0 0.0 157.0 0.0 0.8 2.0 1.0 2.0 1 64.0 0.0 0.0 180.0 325.0 0.0 1.0 154.0 1.0 0.0 2.0 0.0 2.0 2 57.0 0.0 0.0 120.0 354.0 0.0 1.0 163.0 1.0 0.6 2.0 0.0 2.0 3 58.0 0.0 2.0 120.0 340.0 0.0 1.0 172.0 0.0 0.0 2.0 0.0 2.0 4 55.0 1.0 0.0 132.0 353.0 0.0 1.0 132.0 1.0 1.2 1.0 1.0 3.0 5 57.0 0.0 0.0 120.0 354.0 0.0 1.0 163.0 1.0 0.6 2.0 0.0 2.0 6 63.0 0.0 0.0 150.0 407.0 0.0 0.0 154.0 0.0 4.0 1.0 3.0 3.0 7 63.0 1.0 0.0 130.0 330.0 1.0 0.0 132.0 1.0 1.8 2.0 3.0 3.0 8 59.0 1.0 0.0 170.0 326.0 0.0 0.0 140.0 1.0 3.4 0.0 0.0 3.0 9 64.0 1.0 2.0 140.0 335.0 0.0 1.0 158.0 0.0 0.0 2.0 0.0 2.0 10 64.0 1.0 2.0 140.0 335.0 0.0 1.0 158.0 0.0 0.0 2.0 0.0 2.0 11 64.0 1.0 2.0 140.0 335.0 0.0 1.0 158.0 0.0 0.0 2.0 0.0 2.0 12 55.0 0.0 0.0 180.0 327.0 0.0 2.0 117.0 1.0 3.4 1.0 0.0 2.0

Cluster_C4:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 0 70.0 1.0 0.0 145.0 174.0 0.0 1.0 125.0 1.0 2.6 0.0 0.0 3.0 1 60.0 1.0 2.0 140.0 185.0 0.0 0.0 155.0 0.0 3.0 1.0 0.0 2.0 2 44.0 1.0 0.0 120.0 169.0 0.0 1.0 144.0 1.0 2.8 0.0 0.0 1.0 3 76.0 0.0 2.0 140.0 197.0 0.0 2.0 116.0 0.0 1.1 1.0 0.0 2.0 4 57.0 1.0 2.0 150.0 126.0 1.0 1.0 173.0 0.0 0.2 2.0 1.0 3.0 5 44.0 1.0 0.0 120.0 169.0 0.0 1.0 144.0 1.0 2.8 0.0 0.0 1.0 6 40.0 1.0 0.0 110.0 167.0 0.0 0.0 114.0 1.0 2.0 1.0 0.0 3.0 7 56.0 1.0 0.0 132.0 184.0 0.0 0.0 105.0 1.0 2.1 1.0 1.0 1.0 8 63.0 1.0 0.0 140.0 187.0 0.0 0.0 144.0 1.0 4.0 2.0 2.0 3.0 9 50.0 1.0 0.0 144.0 200.0 0.0 0.0 126.0 1.0 0.9 1.0 0.0 3.0 10 42.0 1.0 2.0 130.0 180.0 0.0 1.0 150.0 0.0 0.0 2.0 0.0 2.0 11 35.0 1.0 0.0 120.0 198.0 0.0 1.0 130.0 1.0 1.6 1.0 0.0 3.0 12 59.0 1.0 2.0 126.0 218.0 1.0 1.0 134.0 0.0 2.2 1.0 1.0 1.0 13 51.0 1.0 2.0 110.0 175.0 0.0 1.0 123.0 0.0 0.6 2.0 0.0 2.0 14 58.0 1.0 0.0 146.0 218.0 0.0 1.0 105.0 0.0 2.0 1.0 1.0 3.0 15 51.0 1.0 2.0 110.0 175.0 0.0 1.0 123.0 0.0 0.6 2.0 0.0 2.0 16 51.0 1.0 2.0 110.0 175.0 0.0 1.0 123.0 0.0 0.6 2.0 0.0 2.0 17 71.0 0.0 0.0 112.0 149.0 0.0 1.0 125.0 0.0 1.6 1.0 0.0 2.0 18 49.0 1.0 2.0 120.0 188.0 0.0 1.0 139.0 0.0 2.0 1.0 3.0 3.0 19 63.0 0.0 0.0 124.0 197.0 0.0 1.0 136.0 1.0 0.0 1.0 0.0 2.0 20 59.0 1.0 0.0 164.0 176.0 1.0 0.0 90.0 0.0 1.0 1.0 2.0 1.0 21 61.0 1.0 0.0 138.0 166.0 0.0 0.0 125.0 1.0 3.6 1.0 1.0 2.0 22 60.0 0.0 2.0 120.0 178.0 1.0 1.0 96.0 0.0 0.0 2.0 0.0 2.0 23 45.0 0.0 1.0 112.0 160.0 0.0 1.0 138.0 0.0 0.0 1.0 0.0 2.0 24 66.0 0.0 3.0 150.0 226.0 0.0 1.0 114.0 0.0 2.6 0.0 0.0 2.0 25 51.0 1.0 3.0 125.0 213.0 0.0 0.0 125.0 1.0 1.4 2.0 1.0 2.0 26 68.0 0.0 2.0 120.0 211.0 0.0 0.0 115.0 0.0 1.5 1.0 0.0 2.0 27 68.0 1.0 0.0 144.0 193.0 1.0 1.0 141.0 0.0 3.4 1.0 2.0 3.0 28 62.0 1.0 1.0 128.0 208.0 1.0 0.0 140.0 0.0 0.0 2.0 0.0 2.0 29 57.0 1.0 0.0 140.0 192.0 0.0 1.0 148.0 0.0 0.4 1.0 0.0 1.0 30 59.0 1.0 2.0 126.0 218.0 1.0 1.0 134.0 0.0 2.2 1.0 1.0 1.0 31 53.0 1.0 0.0 142.0 226.0 0.0 0.0 111.0 1.0 0.0 2.0 0.0 3.0 32 64.0 1.0 0.0 145.0 212.0 0.0 0.0 132.0 0.0 2.0 1.0 2.0 1.0 3.0 355.0 0.0 0.0 128.0 205.0 0.0 2.0 130.0 1.0 2.0 1.0 3.0

Cluster C5:

f1 f2 f3 f5 f6 f7 f8 f9 f10 f11 f12 f13 f4 0 46.0 1.0 0.0 120.0 249.0 0.0 0.0 144.0 0.0 0.8 2.0 0.0 3.0 1 57.0 0.0 0.0 140.0 241.0 0.0 1.0 123.0 1.0 0.2 1.0 0.0 3.0 2 48.0 1.0 2.0 124.0 255.0 1.0 1.0 175.0 0.0 0.0 2.0 2.0 2.0 3 46.0 1.0 2.0 150.0 231.0 0.0 1.0 147.0 0.0 3.6 1.0 0.0 2.0 4 63.0 1.0 0.0 130.0 254.0 0.0 0.0 147.0 0.0 1.4 1.0 1.0 3.0 5 60.0 0.0 3.0 150.0 240.0 0.0 1.0 171.0 0.0 0.9 2.0 0.0 2.0 6 50.0 1.0 0.0 150.0 243.0 0.0 0.0 128.0 0.0 2.6 1.0 0.0 3.0 7 51.0 1.0 0.0 140.0 261.0 0.0 0.0 186.0 1.0 0.0 2.0 0.0 2.0 8 60.0 1.0 0.0 125.0 258.0 0.0 0.0 141.0 1.0 2.8 1.0 1.0 3.0 9 64.0 1.0 3.0 170.0 227.0 0.0 0.0 155.0 0.0 0.6 1.0 0.0 3.0 10 54.0 1.0 2.0 150.0 232.0 0.0 0.0 165.0 0.0 1.6 2.0 0.0 3.0 11 44.0 1.0 1.0 120.0 263.0 0.0 1.0 173.0 0.0 0.0 2.0 0.0 3.0 12 53.0 1.0 2.0 130.0 246.0 1.0 0.0 173.0 0.0 0.0 2.0 3.0 2.0 13 47.0 1.0 2.0 108.0 243.0 0.0 1.0 152.0 0.0 0.0 2.0 0.0 2.0 14 69.0 1.0 3.0 160.0 234.0 1.0 0.0 131.0 0.0 0.1 1.0 1.0 2.0 15 47.0 1.0 2.0 108.0 243.0 0.0 1.0 152.0 0.0 0.0 2.0 0.0 2.0 16 51.0 1.0 0.0 140.0 261.0 0.0 0.0 186.0 1.0 0.0 2.0 0.0 2.0 17 61.0 1.0 2.0 150.0 243.0 1.0 1.0 137.0 1.0 1.0 1.0 0.0 2.0 18 51.0 1.0 2.0 125.0 245.0 1.0 0.0 166.0 0.0 2.4 1.0 0.0 2.0 19 47.0 1.0 2.0 108.0 243.0 0.0 1.0 152.0 0.0 0.0 2.0 0.0 2.0 20 69.0 1.0 3.0 160.0 234.0 1.0 0.0 131.0 0.0 0.1 1.0 1.0 2.0 21 60.0 0.0 0.0 150.0 258.0 0.0 0.0 157.0 0.0 2.6 1.0 2.0 3.0 22 54.0 0.0 2.0 108.0 267.0 0.0 0.0 167.0 0.0 0.0 2.0 0.0 2.0 23 64.0 1.0 3.0 170.0 227.0 0.0 0.0 155.0 0.0 0.6 1.0 0.0 3.0 24 44.0 1.0 2.0 140.0 235.0 0.0 0.0 180.0 0.0 0.0 2.0 0.0 2.0 25 69.0 1.0 2.0 140.0 254.0 0.0 0.0 146.0 0.0 2.0 1.0 3.0 3.0 26 65.0 0.0 2.0 155.0 269.0 0.0 1.0 148.0 0.0 0.8 2.0 0.0 2.0 27 43.0 1.0 0.0 150.0 247.0 0.0 1.0 171.0 0.0 1.5 2.0 0.0 2.0 28 55.0 1.0 1.0 130.0 262.0 0.0 1.0 155.0 0.0 0.0 2.0 0.0 2.0 29 65.0 1.0 0.0 110.0 248.0 0.0 0.0 158.0 0.0 0.6 2.0 2.0 1.0 30 59.0 0.0 0.0 174.0 249.0 0.0 1.0 143.0 1.0 0.0 1.0 0.0 2.0 31 50.0 1.0 0.0 150.0 243.0 0.0 0.0 128.0 0.0 2.6 1.0 0.0 3.0 32 57.0 0.0 1.0 130.0 236.0 0.0 0.0 174.0 0.0 0.0 1.0 1.0 2.0 33 58.0 1.0 2.0 105.0 240.0 0.0 0.0 154.0 1.0 0.6 1.0 0.0 3.0 34 56.0 1.0 2.0 130.0 256.0 1.0 0.0 142.0 1.0 0.6 1.0 1.0 1.0 35 45.0 1.0 0.0 115.0 260.0 0.0 0.0 185.0 0.0 0.0 2.0 0.0 2.0 36 44.0 1.0 2.0 140.0 235.0 0.0 0.0 180.0 0.0 0.0 2.0 0.0 2.0 37 41.0 0.0 2.0 112.0 268.0 0.0 0.0 172.0 1.0 0.0 2.0 0.0 2.0 38 48.0 1.0 1.0 130.0 245.0 0.0 0.0 180.0 0.0 0.2 1.0 0.0 2.0 39 51.0 0.0 2.0 130.0 256.0 0.0 0.0 149.0 0.0 0.5 2.0 0.0 2.0 40 54.0 1.0 0.0 110.0 239.0 0.0 1.0 126.0 1.0 2.8 1.0 1.0 3.0 41 63.0 1.0 3.0 145.0 233.0 1.0 0.0 150.0 0.0 2.3 0.0 0.0 1.0 42 57.0 1.0 1.0 124.0 261.0 0.0 1.0 141.0 0.0 0.3 2.0 0.0 3.0 43 58.0 0.0 0.0 170.0 225.0 1.0 0.0 146.0 1.0 2.8 1.0 2.0 1.0 44 62.0 0.0 0.0 140.0 268.0 0.0 0.0 160.0 0.0 3.6 0.0 2.0 2.0 45 54.0 1.0 0.0 140.0 239.0 0.0 1.0 160.0 0.0 1.2 2.0 0.0 2.0 46 63.0 0.0 2.0 135.0 252.0 0.0 0.0 172.0 0.0 0.0 2.0 0.0 2.0 47 60.0 0.0 3.0 150.0 240.0 0.0 1.0 171.0 0.0 0.9 2.0 0.0 2.0 48 59.0 1.0 0.0 138.0 271.0 0.0 0.0 182.0 0.0 0.0 2.0 0.0 2.0 49 60.0 0.0 0.0 150.0 258.0 0.0 0.0 157.0 0.0 2.6 1.0 2.0 3.0 50 62.0 0.0 0.0 140.0 268.0 0.0 0.0 160.0 0.0 3.6 0.0 2.0 2.0 51 47.0 1.0 2.0 130.0 253.0 0.0 1.0 179.0 0.0 0.0 2.0 0.0 2.0 52 69.0 0.0 3.0 140.0 239.0 0.0 1.0 151.0 0.0 1.8 2.0 2.0 2.0 53 69.0 0.0 3.0 140.0 239.0 0.0 1.0 151.0 0.0 1.8 2.0 2.0 2.0 54 50.0 0.0 0.0 110.0 254.0 0.0 0.0 159.0 0.0 0.0 2.0 0.0 2.0

Cluster C6:

f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f1 0 55.0 1.0 0.0 160.0 289.0 0.0 0.0 145.0 1.0 0.8 1.0 1.0 3.0 1 66.0 0.0 2.0 146.0 278.0 0.0 0.0 152.0 0.0 0.0 1.0 1.0 2.0 2 42.0 1.0 1.0 120.0 295.0 0.0 1.0 162.0 0.0 0.0 2.0 0.0 2.0 3 51.0 0.0 2.0 120.0 295.0 0.0 0.0 157.0 0.0 0.6 2.0 0.0 2.0 4 52.0 1.0 3.0 152.0 298.0 1.0 1.0 178.0 0.0 1.2 1.0 0.0 3.0 5 58.0 1.0 0.0 114.0 318.0 0.0 2.0 140.0 0.0 4.4 0.0 3.0 1.0 6 48.0 1.0 0.0 124.0 274.0 0.0 0.0 166.0 0.0 0.5 1.0 0.0 3.0 7 56.0 0.0 0.0 200.0 288.0 1.0 0.0 133.0 1.0 4.0 0.0 2.0 3.0 8 64.0 1.0 2.0 125.0 309.0 0.0 1.0 131.0 1.0 1.8 1.0 0.0 3.0 9 60.0 0.0 2.0 102.0 318.0 0.0 1.0 160.0 0.0 0.0 2.0 1.0 2.0 10 46.0 1.0 0.0 140.0 311.0 0.0 1.0 120.0 1.0 1.8 1.0 2.0 3.0

```
11 46.0 1.0 0.0 140.0 311.0 0.0 1.0 120.0 1.0 1.8 1.0 2.0 3.0
12 55.0 1.0 0.0 160.0 289.0 0.0 0.0 145.0 1.0 0.8 1.0 1.0 3.0
13 64.0 0.0 2.0 140.0 313.0 0.0 1.0 133.0 0.0 0.2 2.0 0.0 3.0
14 58.0 0.0 1.0 136.0 319.0 1.0 0.0 152.0 0.0 0.0 2.0 2.0 2.0
15 45.0 1.0 0.0 142.0 309.0 0.0 0.0 147.0 1.0 0.0 1.0 3.0 3.0
16 58.0 1.0 1.0 120.0 284.0 0.0 0.0 160.0 0.0 1.8 1.0 0.0 2.0
17 60.0 1.0 0.0 140.0 293.0 0.0 0.0 170.0 0.0 1.2 1.0 2.0 3.0
18 54.0 0.0 1.0 132.0 288.0 1.0 0.0 159.0 1.0 0.0 2.0 1.0 2.0
19 54.0 0.0 1.0 132.0 288.0 1.0 0.0 159.0 1.0 0.0 2.0 1.0 2.0
20 58.0 1.0 1.0 120.0 284.0 0.0 0.0 160.0 0.0 1.8 1.0 0.0 2.0
21 46.0 1.0 0.0 140.0 311.0 0.0 1.0 120.0 1.0 1.8 1.0 2.0 3.0
22 51.0 0.0 0.0 130.0 305.0 0.0 1.0 142.0 1.0 1.2 1.0 0.0 3.0
23 65.0 1.0 3.0 138.0 282.0 1.0 0.0 174.0 0.0 1.4 1.0 1.0 2.0
24 68.0 1.0 2.0 118.0 277.0 0.0 1.0 151.0 0.0 1.0 2.0 1.0 3.0
25 68.0 1.0 2.0 180.0 274.0 1.0 0.0 150.0 1.0 1.6 1.0 0.0 3.0
26 35.0 1.0 0.0 126.0 282.0 0.0 0.0 156.0 1.0 0.0 2.0 0.0 3.0
27 48.0 1.0 0.0 124.0 274.0 0.0 0.0 166.0 0.0 0.5 1.0 0.0 3.0
28 60.0 0.0 2.0 102.0 318.0 0.0 1.0 160.0 0.0 0.0 2.0 1.0 2.0
29 58.0 0.0 3.0 150.0 283.0 1.0 0.0 162.0 0.0 1.0 2.0 0.0 2.0
30 48.0 0.0 2.0 130.0 275.0 0.0 1.0 139.0 0.0 0.2 2.0 0.0 2.0
31 58.0 1.0 1.0 120.0 284.0 0.0 0.0 160.0 0.0 1.8 1.0 0.0 2.0
32 59.0 1.0 3.0 170.0 288.0 0.0 0.0 159.0 0.0 0.2 1.0 0.0 3.0
33 39.0 1.0 2.0 140.0 321.0 0.0 0.0 182.0 0.0 0.0 2.0 0.0 2.0
34 51.0 0.0 2.0 140.0 308.0 0.0 0.0 142.0 0.0 1.5 2.0 1.0 2.0
35 51.0 1.0 0.0 140.0 299.0 0.0 1.0 173.0 1.0 1.6 2.0 0.0 3.0
```

MULTIVARIATE LINEAR REGRESSION FOR SUPERVISED LEARNING

```
import numpy as np
import pandas as pd
#load data
file_path= 'Student_Performance.csv'
data=pd.read csv(file path)
#map function
data['Extracurricular Activities']=data['Extracurricular
Activities'].map({'Yes':1,'No':0})
(m,n plus one) = data.shape
n = n plus one - 1 # Number of features (extracting target variable)
data.index = [f'X{j+1}' for j in range(m)]
data.columns = [f'f{i+1}' if i in range(n) else 'Y' for i in range(n+1)]
# split data into train test ratio
train data = data.sample(frac = 0.8)
test_data = data.drop(train_data.index)
# For Gradient Descent Algorithm
def predictions(X, theta):
  pred Y = X.dot(theta)
  return pred_Y
def cost(X,Y,theta):
  m = len(Y)
  pred_Y = X.dot(theta)
  error = pred_Y - Y
  err = (1/(2*m)) * np.mean(error**2)
  return err
def gradient_descent(X, Y, theta, learning_rate, tol):
  m = len(Y) # Number of training examples
```

```
stopping criteria = 0
  while (stopping_criteria == 0):
    pred Y = predictions(X, theta)
    error = pred Y - Y
    # Update theta using the gradient
    gradient = (1/m) * np.dot(X.T, error)
    theta_new = theta - learning_rate * gradient
    err = cost(X, Y, theta_new)
    if(err < tol or np.array equal(theta, theta new)):
      stopping criteria = 1
    theta = theta new
    if(np.isnan(err)):
      print('\nWarning : Losing minima. \nPlease, Adjust learning rate :')
      learning_rate = eval(input('New_Learning_Rate = '))
      theta = np.zeros(X.shape[1])
  return theta, err
# training the algorithm
# Assuming the last column is the target (Y), and the rest are features (X)
X_train = train_data.iloc[:, :-1].values # Features (independent variables)
Y train = train data.iloc[:, -1].values # Target (dependent variable)
# Add a column of ones to X for the intercept (bias term)
X train = np.column stack((np.ones(X train.shape[0]), X train))
# Initialize parameters
theta = np.zeros(X_train.shape[1])
learning rate = eval(input('Learning Rate = '))
tolerance = eval(input('Tolerance = '))
Optimal theta, train error = gradient descent(X train, Y train, theta,
learning rate, tolerance)
print(f'\nError in training : \n{train_error}')
print(f'\nOptimal theta:\n{Optimal theta}')
```

```
# testing the algorithm
X_test = test_data.iloc[:, :-1]
X_test = np.column_stack((np.ones(X_test.shape[0]), X_test))
Y_test = test_data.iloc[:, -1]

compare_Y = pd.DataFrame(Y_test).assign(pred_Y = predictions(X_test, Optimal_theta))
test_error = cost(X_test, Y_test, Optimal_theta)

print(f'\nComparison of predicted output and actual output is :
\n{compare_Y}')
print(f'\nError in testing : \n{test_error}')
```

OUTPUT

```
Learning Rate = 1e-3
Tolerance = 5e-4
/usr/local/lib/python3.10/dist-packages/numpy/core/_methods.py:118:
RuntimeWarning: overflow encountered in reduce
 ret = umr sum(arr, axis, dtype, out, keepdims, where=where)
<ipython-input-1-4666391a60c2>:30: RuntimeWarning: overflow encountered
in square
 err = (1 / (2*m)) * np.mean(error**2)
<ipython-input-1-4666391a60c2>:42: RuntimeWarning: invalid value
encountered in subtract
theta new = theta - learning rate * gradient
Warning: Losing minima.
Please, Adjust learning rate:
New Learning Rate = 3e-4
Error in training:
0.0004999990267157956
Optimal theta:
```

[-21.84071117 2.61602072 0.94624123 -0.09068859 -0.22945847 0.03199385]

Comparison of predicted output and actual output is:

	Υ	pred_Y
X9	61.0	62.328287
X13	27.0	28.479550
X14	33.0	37.474905
X20	63.0	60.601275
X24	57.0	60.250485
		•••
X9984	79.0	80.689864
X9990	27.0	28.643106
X9993	50.0	49.066850
X9994	55.0	55.112526
X9999	95.0	91.791976

[2000 rows x 2 columns]

Error in testing:

0.0019987144268516677

LOGISTIC REGRESSION FOR SUPERVISED LEARNING

```
import numpy as np
import pandas as pd
# load Excel data
file path = "gender classification v7.xlsx"
data = pd.read excel(file path)
(m, n_plus_one) = data.shape
n = n_plus_one - 1 # Number of features (extracting target variable)
data.index = [f"X{j+1}" for j in range(m)]
data.columns = [f"f{i+1}" if i in range(n) else "Y" for i in range(n + 1)]
# map function
data['Y']=data['Y'].map({'Male':1,'Female':0})
# split data into train test ratio
train data = data.sample(frac = 0.8)
test_data = data.drop(train_data.index)
# Gradient Descent Algorithm
def predictions(X, theta):
  z = X.dot(theta)
  predictions = 1/(1 + np.exp(-z))
  return predictions
def cost(X, Y, theta):
  m = len(Y)
  pred Y = predictions(X, theta)
  err = (-1/m) * np.sum((np.dot(Y.T, np.log(pred Y))) + (np.dot((1 - Y).T, np.log(pred Y)))) + (np.dot((1 - Y).T, np.log(pred Y)))) + (np.dot((1 - Y).T, np.log(pred Y)))) + (np.dot((1 - Y).T, np.log(pred Y))))) + (np.dot((1 - Y).T, np.log(pred Y))))))))
np.log(1 - pred Y))))
  return err
def gradient descent(X, Y, theta, learning rate, tol):
  m = len(Y) # Number of training examples
  stopping criteria = 0
  while stopping_criteria == 0:
```

```
pred Y = predictions(X, theta)
    error = pred_Y - Y
    # Update theta using the gradient
    gradient = (1 / m) * np.dot(X.T, error)
    theta new = theta - learning rate * gradient
    err = cost(X, Y, theta)
    if (err < tol):
      stopping criteria = 1
    theta = theta new
    if(np.isnan(err)) :
       print('\nWarning : Losing Minima. \nAdjust learning rate :')
      learning_rate = eval(input('New_Learning_Rate = '))
      theta = np.zeros(X.shape[1])
  return theta
def classification(X, theta, threshold):
  pred Y = predictions(X, theta)
  y = []
  for i in range(len(pred_Y)):
    if pred_Y[i] >= threshold:
      y.append(1)
    else:
      y.append(0)
  y = np.array(y)
  return y
# training the algorithm
# Assuming the last column is the target (Y), and the rest are features (X)
X train = train data.iloc[:, :-1].values # Features (independent variables)
Y_train = train_data.iloc[:, -1].values # Target (dependent variable)
# Add a column of ones to X for the intercept (bias term)
X_train = np.column_stack((np.ones(X_train.shape[0]), X_train))
# Initialize parameters
theta = np.zeros(X_train.shape[1])
```

```
# parameters
learning rate = eval(input('Learning Rate = '))
tolerance = eval(input('Tolerance = '))
Optimal_theta = gradient_descent(X_train, Y_train, theta, learning_rate,
tolerance)
train_error = cost(X_train, Y_train, Optimal_theta)
print(f'Error in training : \n{train error}')
print(f'\nOptimal\ Theta: \n\{Optimal\_theta\}')
# testing the algorithm
X test = test data.iloc[:,:-1].values
X_test = np.column_stack((np.ones(X_test.shape[0]), X_test))
Y test = test data.iloc[:, -1].values
classified_Y = classification(X_test, Optimal_theta, threshold = 0.5)
compare Y = pd.DataFrame(Y test, columns = ['Actual Y'], index =
test data.index).assign(Classified Y = classified Y)
test error = cost(X test, Y test, Optimal theta)
print(f'\nComparison of classified output and actual output : \n{compare Y}')
print(f'\nError in testing : \n{test_error}')
OUTPUT
Learning_Rate = 0.1
Tolerance = 0.075
Error in training:
0.07499991198803457
```

[-12.34197092 -0.67315782 0.30278229 0.26405517 4.06981646

Optimal Theta:

3.63727776 3.50285441 3.8324567

Comparison of classified output and actual output :

A ctual	V	Classified	V
Actual	Y	Classified	Y

X8	0	0	
X9	0	1	
X12	1	1	
X20	1	1	
X21	1	1	
	•••		
X4954	0	0	
X4965	1	1	
X4969	1	1	
X4973	0	0	
X4990	0	0	

[1000 rows x 2 columns]

Error in testing:

0.09093105849610583