

Arm-based Processor Architectures

Dirk Pleiter

PDC and CST | EECS | KTH

January 2023

Instruction Set Architecture

Kunpeng 920 Processor

2/2

Instruction Set Architecture

Kunpeng 920 Processor

2023-01-17 3/2:

- Arm = Semiconductor and software design company
 - ► Founded in 1990
 - Headquarter in Cambridge (UK)
 - Daughter company of the Softbank Group
- Arm = Architecture
 - Reduced instruction set computer (RISC) instruction set architectures (RISC)
 - ► The ARMv1 architecture was introduced in 1985
 - ► The Armv9 architecture has been launched in 2021
- ► Arm = Designs
 - Example: The Arm Neoverse V1 Core
- ► Arm ≠ Processor solution
 - Arm-based processors are build by Arm licensees

2023-01-17 4/2

Arm Market Figures (February 2021)

- ▶ 6.7 billion Arm-based chips shipped in Q4'2020
- ▶ In total > 180 Arm-based chips shipped until end of 2020
- ▶ 530 licensees as of early 2021

[Arm, 2021]

2023-01-17 5 / 3

Arm Server-class CPUs

	launch	$N_{ m cores}$
Marvell ThunderX2	2018	32
HiSilicon Kunpeng 920	2019	64
Fujitsu A64FX	2019	48
AWS Graviton 3	2021	64
Ampere Altra Max	2021	128
NVIDIA GRACE	2023	64
SiPearl Rhea1	?	?

2023-01-17 6/22

Area	Sub area	Status	
Applications	Scientific	Many ported	
	ISV	Very few available	
Development	compilers	Several choices	
environment	Numerical libraries	Many ported and optimised	
System	OS	Various Linux distributions	
middleware	Parallel FS	Very limited choice	

2023-01-17 7/22

Why Arm?

- The Arm business model relies on multiple competing solution providers
 - One single IP provider versus multiple solution providers using this IP
 - The solution providers are forced to look for differentiating features
- Promote a competition for better prices
 - This allows to rebalance different cost components in case of supercomputers
- Promote a competition for better solutions
 - Better solutions for different sub-markets
 - Possible differentiators:
 - Different core count
 - Different width of vector instructions

Different memory hierarchy

2023-01-17 8 / 22

Green500 list results (in parts estimated):

CPU	Efficiency	Comment	
A64FX	$17\mathrm{GFlop/s/W}$	Special design, FP opt.	
Xeon Cascade Lake	$6\mathrm{GFlop/s/W}$	FP optimised	
ThunderX2	$\sim 4\mathrm{GFlop/s/W}$		
Kunpeng 920	$\sim 3\mathrm{GFlop/s/W}$	Not FP optimised	

2023-01-17 9/22

Instruction Set Architecture

Kunpeng 920 Processor

2023-01-17 10/22

Armv8 Architecture Introduction

- ► RISC ISA with
 - An uniform register file
 - Load/store architecture
 - Data-processing operations only operate on register contents
 - Load to register, store from register
- ▶ 64-bit (AArch64) and 32-bit (AArch32) execution state
- ► SIMD instructions as part of the base ISA (128-bit in case of AArch64)
- Multiple architecture profiles
 - A: Application profile with support for virtual memory
 - R: Real-time profile
 - M: Micro-controller profile

2023-01-17

Extensions of Armv8 (mostly optional):

- Scalable Vector Extension: Instructions supporting very wide SIMD instructions
- Cryptographic Extension: Instructions for the acceleration of encryption and decryption
- RAS Extension: Extensions to improve Reliability, Availability, and Serviceability mainly by adding control and status registers
- Statistical Profiling Extension (SPE): Support for non-invasive performance profiling

2023-01-17 12/22

Digression: SIMD Parallelism

- Single Instruction Multiple Data (SIMD) instructions exploit data-level parallelism by operating on data items in parallel
 - E.g., SIMD add

$$\begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \end{pmatrix} \leftarrow \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

- Example ISA:
 - Intel Streaming SIMD Extensions (SSE)
 - ► Intel Advanced Vector Extensions (AVX, AVX2, AVX512)
 - POWER ISA (VMX/AltiVec, VSX)
 - Armv7 NEON, Armv8, Arm SVE

2023-01-17 13/2:

- ► SVE = Scalable Vector Extension
 - Extension of Arm-v8 that includes NEON SIMD instructions
- Unique feature of SVE: Vector Length Agnostic (VLA)
 - Vector length is a choice of the CPU architect
 - ► Supported length: 128, 256, ..., 2048 bit (multiple of 128)
 - ▶ Same binary executable on CPUs with different SVE length

Note: VLA needs suitable ISA definition + hardware support

2023-01-17

Arm SVE Example: DAXPY

```
void daxpv(double a. double *restrict x.
                                                     double *restrict v, int n)
                                             int i:
 gcc-10.2 -march=armv8-a+sve -03
                                             for (i = 0; i < n; i++)
                                               v[i] += a * x[i]:
cmp w2, 0
ble .L1
mov x3, 0
mov z2.d, d0
                                                Contiguous load double words to vector
whilelo p0.d, wzr, w2
ptrue p1.b, all
                                                Floating-point fused multiply-add
.p2align 3,,7
.L3:
                                                Contiguous store doublewords
ld1dz1.d, p0/z, [x1, x3, lsl 3]
ld1dz0.d, p0/z, [x0, x3, lsl 3]
fmad z0.d, p1/m, z2.d, z1.d
                                                Increment loop counter
st1dz0.d, p0, [x1, x3, lsl 3]
incd x3
                                                While incrementing unsigned
whilelo p0.d, w3, w2
                                                scalar lower than scalar
b.anv .L3
.L1:
```

2023-01-17 15/22

Arm Memory Model

- Arm uses a relaxed memory model that makes less consistency guarantees compared to x86
 - Propagation of writes between different threads may happen in different order
- Example
 - Assume the following dual-threaded application

```
// Thread 1 // Thread 2
a = 1 r1 = b
b = 1 r2 = a
```

- Question: Can r1 = 1 and r2 = 0 be observed?
- Answer:

x86: noArm: yes

2023-01-17 16/22

Instruction Set Architecture

Kunpeng 920 Processor

2023-01-17 17/2:

Kunpeng 920: Introduction

- ▶ Up to 64 CPU cores
- Maximum clock frequency of 3 GHz
- ► LEGO-style architecture based on multiple chiplets
 - ► The Kunpeng 920 Server processor version comprises
 - 2× CPU-Compute chiplets
 - ► 1× Compute-IO chiplet
- ▶ Process: TSMC 7 nm + 16 nm
- ► Thermal design power (TDP): 200 W

2023-01-17 18/22

Kunpeng 920: CPU-Compute Chiplet

► Taishan V110 Core

Instr. decoder	4 instr/cycle	
FP64 throughput	2 FMA/cycle	
FP32 throughput	4 FMA/cycle	
L1-D	64 kiByte	
L1-I	64 kiByte	
L2	512 kiByte	

- CPU Cluster
 - ▶ 4× cores
- ► Chiplet
 - ▶ 8× CPU clusters
 - ► 8 × 4 MiByte L3 cache
 - ➤ 2× DDR4 memory controller (up to 2993 MT/s)

[Jing Xia et al., 2021]

2023-01-17 19/22

Kunpeng 920: Compute-IO Chiplet

- ▶ Up to 40 lanes PCle 4.0
- ► Ethernet
- ► SAS/SATA 3.0 interfaces

[Jing Xia et al., 2021]

2023-01-17 20/22

Kunpeng 920: Memory Bandwidth

[Jing Xia et al., 2021]

	Bandwidth	Latency
L1-D	$2 \times 128 \mathrm{bit/cycle/core} \Rightarrow$	$< 2\mathrm{ns}$
	up to 6 TByte/s/CPU	
L2	$2 \times 128 \mathrm{bit/cycle/core} \Rightarrow$	< 4 ns
	up to 6 TByte/s/CPU	
L3	Up to 3 TByte/s/CPU	$< 15\mathrm{ns}$
Memory	Up to 191 GByte/s/CPU	$\sim 100\mathrm{ns}$

2023-01-17 21/22

Finish with a View on Fugaku

2023-01-17 22/22