Multidimensional Inventory Control

Nils Löhndorf

2019-04-26

We model the stochastic inventory problem with Markovian demand. The objective is to maximize expected profits by placing optimal order quantities x_{ti} for products $i \in I$ in periods $t \in T$. Demand is satisfied from on-hand inventory $I_{t-1,i}$ by selling s_{ti} products. Any excess demand is considered lost.

Inventory capacity: C = 1000; inventory holding cost: h = 0.5; sales price: p = 5; purchase cost: c = 3. Initial inventory: $I_{0,i} = 0$.

Demand is non-stationary and characterized by a discrete-time multi-dimensional lattice with T layers and N=100 nodes per layer.

The optimization problem can be stated as a multistage stochastic linear optimization problem, which is given by

$$\max \operatorname{Exp}_{\xi} \left[\sum_{t} \sum_{i} (ps_{ti} - hI_{ti} - cx_{ti}) \right]$$
(1)

s.t.
$$I_{ti} = I_{t-1,i} + x_{ti} - s_{ti},$$
 $t = 1, ..., I$ (2)

$$x_{ti} \le I_{t-1,i},$$
 $t = 1, ..., I$ (3)

$$x_{ti} \le D_{ti}(\xi),$$
 $t = 1, ..., I$ (4)

$$I_{ti} \le C,$$
 $t = 1, ..., I$ (5)

$$I_{ti}, s_{ti}, x_{ti} \ge 0,$$
 $t = 1, ..., I$ (6)