Efecto Hall

Recordar que cualquier carga electrica que se desplaza en un campo magnetico experimenta una fuerza resultado de la interacción de ambos. Esta es la Fuerza de Lorentz. (ver Clase 8 - Campos Magneticos > Fuerza de Lorentz).

Al estar el conductor sumergido en un campo magnetico, se produce una fuerza magnetica que va a desplazar las particulas hacia un lado del conductor. Al haber mayor concentracion de electrones de este lado, se va a formar un campo electrico en el mismo. Este, a su vez, produce una fuerza electrica opuesta a la magnetica. Eventualmente, se igualan y la particula se desplazara en linea recta.

$$|ec{F_E}| = |ec{F_B}| \Rightarrow qE = qv_dB$$

Entonces, $\mathrm{d} \mathrm{e} E_H = v_d B$ y $V_H = E_H d$

$$V_H = v_d B d$$

Tambien, recordando que $v_d = rac{J}{nq}$ y $J = rac{i}{A}$

$$V_H = rac{i}{nqA} B d$$

$$V_H=v_dBd$$