Obtención de los Coeficientes de la forma canónica para la Elipse, hipérbolas y parábolas

Determinación analítica de las cónicas

Grupo 12

December 05, 2023

Contenidos

- 1. Introduccion
- 2. Elipse

Introduccion

Formas cuadraticas

Definition

Una forma cuadratica en n variables $x_1, x_2, ..., x_n$ es una combinacion lineal de los productos $x_i x_j$, esto es, una combinacion lineal de cuadrados $x_1^2, x_2^2, ..., x_n^2$ y terminos $x_1 x_2, x_1 x_3, ..., x_1 x_n, x_2 x_3, ..., x_2 x_n, ..., x_{n-1} x_n$

Example

- $q = x^2 y^2 + 4xy$ and $q = x^2 + 3y^2 2xy$ son formas cuadraticas en x y y.
- $q = -4x_{21} + x_{22}^2 + 4x_{23} + 6x_1x_3$ es una forma cuadratica en x_1, x_2 y x_3 .
- La formas cuadratica general de x_1, x_2, x_3 es $a_1x_{21} + a_2x_{22}^2 + a_3x_{23} + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$.

Formas cuadraticas

Las formas cuadraticas pueden ser escritas de la forma matricial $q(x) = x^T A x$ donde A es una matriz simetrica $n \times n$ y x es un vector columna $n \times 1$.

La matriz A es llamada la matriz de la forma cuadratica q.

Example

Supongamos que $q=x_1^2-x_2^2+4x_1x_2$. Los coeficientes de x_1^2 y x_2^2 son 1 y -1, respectivamente, por lo que colocamos estos, en orden, en las dos posiciones diagonales de una matriz A. El coeficiente de x_1x_2 es 4, que dividimos equitativamente entre las posiciones (1, 2) y (2, 1), colocando un 2 en cada lugar.

Formas cuadraticas

Asi tenemos que:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$y x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 Luego:

$$q(x) = x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 - x_2^2 + 4x_1x_2$$

Introducción a las Cónicas

En álgebra lineal, las cónicas (elipses, hipérbolas y parábolas) pueden representarse mediante matrices. Vamos a explorar cómo obtener los coeficientes de la forma canónica de estas cónicas utilizando matrices.

Elipse

Forma Matricial de la Elipse

La forma matricial de la ecuación de una elipse es:

$$\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0$$

donde A es una matriz simétrica definida positiva, \mathbf{b} es un vector, y c es un escalar.

Obtención de los Coeficientes para la Elipse

Los coeficientes de la forma canónica de la elipse se pueden obtener a partir de la matriz A y el vector \mathbf{b} . En particular, los semiejes de la elipse son los inversos de las raíces cuadradas de los valores propios de A.

Bibliografia

- Applications of Linear Algebra in Various Fields (Part-1): https://www.researchgate.net/publication/356818396_Applications_of_ Linear_Algebra_in_Various_Fields_Part-1
- 🗐 Álgebra lineal y geometría cartesiana Juan de Burgos Román
- 🗗 Practical Linear Algebra: A Geometry Toolbox Gerald Farin, Dianne Hansford

