6 Übung vom 02.06.

17. Aufgabe

Es sei $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $M := \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$.

 $M \neq \emptyset$

$$\Leftrightarrow \begin{array}{c|ccc} f(\mathbf{x}) = \langle 0, x \rangle & = & \max \\ & A\mathbf{x} & = & \mathbf{b} \\ & \mathbf{x} & \geq & 0 \end{array} \quad (PP) \quad \text{ist l\"osbar mit Maximalwert 0}$$

A14, Dualitätssatz
$$\langle b, v \rangle = \min_{A^T v \geq 0}$$
 (DP) ist lösbar mit Minimalwert 0

$$\Leftrightarrow \begin{array}{c|ccc} \langle b,v\rangle & = & \min \\ A^Tv & \geq & 0 \end{array} \text{(DP) wird durch v=0 gelöst}$$

$$\Leftrightarrow [\forall v \in \mathbb{R}^m : A^T v \ge 0 \Rightarrow \langle b, v \rangle \ge \langle b, 0 \rangle = 0]$$

18. Aufgabe

a) Es sei $f_i = \langle y^i, \cdot \rangle$ mit $||y^i|| = 1$ für $i = 1, \dots, k$. Für $\varrho \in [0, \infty)$ und $z \in \mathbb{R}^n$:

$$\underbrace{B_{\varrho}(z)}_{\text{Kugel um z mit Radius }\varrho} \subset \{f_i \leq \alpha_i\} \iff z + \varrho y^i \in \{f_i \leq \alpha_i\}$$

Also ist
$$B_{\varrho}(z) \subset M \Leftrightarrow \alpha_i \geq \langle z + \varrho y^i, y^i \rangle = \langle z, y^i \rangle + \varrho \ (i = 1, \dots, k)$$
 [Beachte: $\langle z + \varrho y^i, y^i \rangle = f_i(z + \varrho y^i); \ ||y^i|| = 1$]

Unser gesuchtes LP ist:

Wir setzen $z = z^1 - z^2$, dann ergibt sich:

$$\begin{pmatrix}
1 & y^{1^T} & -y^{1^T} \\
\vdots & & & \\
1 & y^{k^T} & -y^{k^T}
\end{pmatrix}
\begin{pmatrix}
\varrho \\
z^1 \\
z^2
\end{pmatrix} & \leq & \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_k
\end{pmatrix}$$

$$\begin{pmatrix}
\varrho \\
z^1, z^2 & \geq & 0 \\
z^1, z^2 & \geq & 0
\end{pmatrix}$$
(PP)

[Bemerkung: z^1 soll alle positiven Komponeneten von z und sonst nur 0 enthalten, z^2 alle negativen Komponenten und sonst nur 0. (Im Prinzip: $z^1=z^+,\,z^2=z^-$)]

Als duales Programm erhalten wir:

$$\left(\begin{array}{cccc} g(v) = \sum_{i=1}^k v_i \alpha_i & = & \min \\ \begin{pmatrix} 1 & \cdots & 1 \\ y^1 & \cdots & y^k \\ y^k & \cdots & -y^k \end{pmatrix} v & \geq & \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right) \Leftrightarrow \left(\begin{array}{cccc} g(v) = \sum_{i=1}^k v_i \alpha_i & = & \min \\ \sum_{i=1}^k v_i \alpha_i & = & \min \\ \sum_{i=1}^k v_i y_i & \geq & 1 \\ \sum_{i=1}^k v_i y_i^i & = & 0 \\ v & \geq & 0 \end{array} \right)$$

b)

$$\varrho(M) \text{ ist endlich } \Leftrightarrow \qquad (\operatorname{PP}) \text{ ist l\"osbar }$$

$$\Leftrightarrow \qquad (\operatorname{PP}) \text{ und } (\operatorname{DP}) \text{ besitzen besitzen zul\"assigen Punkt}$$

$$\Leftrightarrow \qquad (\operatorname{DP}) \text{ besitzt zul\"assigen Punkt}$$

$$\Leftrightarrow \qquad \exists v_1, \dots, v_k \geq 0 : \sum_{i=1}^k v_i = 1, \sum_{i=1}^k v_i y^i = 0$$

$$\Leftrightarrow \qquad 0 \in \operatorname{conv} \{y^1, \dots, y^k\}$$

(*) (PP) besitzt den zulässigen Punkt $(\varrho,z^1,z^2)=(0,0,0)$ [Beachte: alle $\alpha_i\geq 0]$

19. Aufgabe

(a) Sei $x = (x_1, \dots, x_6)$ mit $x_4 = x_5 = x_6 = 0$.

$$\begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 1 \\ 8 & -5 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 22 \end{pmatrix} \overset{\text{Gauß}}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

Also: $x^0=(4,2,1,0,0,0)$ ist einziger Punkt mit Ax=b und $x_4=x_5=x_6=0$. $x^0\in M; a^1,a^2,a^3$ sind l.u. $\Rightarrow x^0$ ist Ecke von M.

(b) Wir betrachten:

$$\begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 22 \end{pmatrix} \overset{\text{Gauß}}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix}$$

Es gibt keine zulässigen Punkte mit $x_1 = x_2 = x_3 = 0$.

20. Aufgabe

(a)(i) Weil $b \ge 0$ ist, gilt $(0, b) \in M'$.

$$Ax + y = b \Leftrightarrow (A|E_m) \begin{pmatrix} x \\ y \end{pmatrix} = b$$

Die Spalten von E_m sind l.u. $\Rightarrow (0, b)$ ist Ecke.

(ii) Es sei (x,y) Ecke von M'.

Beh.: x ist Ecke von M

Es seien $x^1, x^2 \in M$ und $\alpha \in (0,1)$: $x = \alpha x^1 + (1-\alpha)x^2$. Wir setzen $y^1 = b - Ax^1$ und $y^2 = b - Ax^2$. Es gilt:

- $y^1, y^2 \ge 0$
- $(x^1, y^1), (x^2, y^2) \in M'$

_

$$\alpha \begin{pmatrix} x^1 \\ y^1 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} x^2 \\ y^2 \end{pmatrix} = \begin{pmatrix} x \\ \alpha(b - Ax^1) + (1 - \alpha)(b - Ax^2) \end{pmatrix} = \begin{pmatrix} x \\ b - Ax \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Da (x,y) Ecke von M' ist, ist dies äquivalent zu

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^1 \\ y^1 \end{pmatrix} = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$$

$$\Rightarrow x = x^1 = x^2$$

Also ist x Ecke von M.

(b) Anmerkung: Wir führen die Schlupfvariablen y_1, y_2, y_3 ein und betrachten M'. Wir wissen aus (a)(i), dass (0,b) Ecke von M' ist. Hieraus folgt das erste Tableau. Dann führen wir einen Eckentausch durch, wobei wir hier die Pivot-Spalte frei wählen können und deswegen eine einfache Spalte aussuchen. Ziel ist es, eine Ecke von M' zu bekommen, bei der drei der ersten 5 Komponenten von 0 verschieden sind. Nach

(a)(ii) sind die ersten 5 Komponenten der Ecke von M' nämlich Ecke von M. Diese ist dann nicht entartet.

x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3	4	
2	1	1	1	-2	1	0	0	4	$\frac{4}{1}$
1	-4	1	-2	-3	0	1	0	2	$\frac{2}{1}$
2	5	1	-4	6	0	0	1	3	$\frac{3}{1}$
1	5	0	3	1	1	-1	0	2	$\frac{\overline{2}}{\overline{1}}$
1	-4	1	-2	-3	0	1	0	2	$\frac{\overline{2}}{1}$
1	9	0	-2	9	0	-1	1	1	$\frac{1}{1}$
0	-4	0	5	-8	1	0	-1	1	
0	-13	1	0	-12	0	2	-1	1	
1	9	0	-2	9	0	-1	1	1	
0	$-\frac{4}{5}$	0	1	$-\frac{8}{5}$	$\frac{1}{5}$	0	$-\frac{1}{5}$	$\frac{1}{5}$	
0	-13	1	0	-12	Ŏ	2	-1	ľ	
1	$\frac{37}{5}$	0	0	$\frac{29}{5}$	$\frac{2}{5}$	-1	$\frac{3}{5}$	$\frac{7}{5}$	

Die Ecken (x,y) von M' sind nach jeweils einem Schritt (0,0,2,0,0, 2,0,1), (1,0,1,0,0, 1,0,0) bzw. $(\frac{7}{5},0,1,\frac{1}{5},0,0,0,0)$. Aus (a)(ii) folgt, dass $(\frac{7}{5},0,1,\frac{1}{5},0)$ Ecke von M ist, und diese Ecke ist nicht entartet.