Iris Classification Project Report

Classification Report

1. Objective

The objective of this project is to build and evaluate machine learning models to classify Iris flower species based on their physical characteristics (sepal and petal measurements).

- 2. Dataset Overview
- Source: IRIS.csv
- Features:
 - SepalLengthCm
 - SepalWidthCm
 - PetalLengthCm
 - PetalWidthCm
- Target: Species (Setosa, Versicolor, Virginica)

No missing values were found, and the dataset was well balanced.

- 3. Models Implemented
- a. Support Vector Machine (SVM)
- Model: SVC with kernel tuning
- Evaluation:
 - Confusion matrix and classification report used
 - Accuracy Score: ~97%
- b. Neural Network (Sequential Model)
- Architecture:
 - Input Layer: 4 neurons
- Hidden Layers: 2 Dense layers with ReLU activation

Iris Classification Project Report

- Output Layer: Softmax

- Optimizer: Adam

- Metrics: Accuracy, Precision, Recall

- Performance:

- Test Accuracy: ~96%
- F1 Score, Precision, and Recall show strong performance across all classes
- 4. Cross-Validation & Grid Search
- Stratified K-Fold cross-validation used
- GridSearchCV performed for hyperparameter tuning in the SVM
- Best parameters and cross-validation score were identified
- 5. Visualizations
- Confusion matrix plots
- ROC Curve with AUC scores
- Loss and Accuracy plots for neural network training
- 6. Key Findings
- Both SVM and Neural Networks are effective
- SVM slightly outperformed the neural network
- Feature scaling improved model performance
- Balanced dataset aided in stable training
- Generalization validated with cross-validation and test accuracy