Natural Language Processing

Paper Code: CS-821/6 UG 8th Sem

Dr. Samit Biswas, Assistant Professor

Department of Computer Sc. and Technology

Indian Institute of Engineering Science and Technology, Shibpur

Email: samit@cs.iiests.ac.in

Plan for Today

Similarity of two Words using Minimum Edit Distance

Minimum Edit Distance (MED)

Minimum Edit Distance

- minimum edit distance between two strings is defined as the minimum number of editing operations needed to transform one into the other.
- The editing operations like:
 - Insertion
 - Deletion
 - substitution
- Example: Representing the minimum edit distance between two strings as an alignment.

- If each operation has cost of 1
 - Distance between these is 5.
- If substitutions cost 2 (Levenshtein)
 - Distance between themis 8.

MED Algorithm

The Minimum Edit Distance Algorithm

Given two strings, the source string, X of length n, and target string Y of length m, we'll define D[i, j] as the edit distance between X[1 . . . i] and Y[1 . . . j], i.e., the first i characters of X and the first j characters of Y. The edit distance between X and Y is thus D[n, m].

MED Algorithm

The Minimum Edit Distance Algorithm

Dynamic Programming: A tabular computation of D(n, m)

- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - \circ And compute larger D(i,j) based on previously computed smaller values
 - o i.e., compute D(i,j) for all i(0 < i < n) and j(0 < j < m).

MED Algorithm

The Minimum Edit Distance Algorithm

 use dynamic programming to compute D[n, m] bottom up, combining solutions to subproblems.

$$D[i,j] = \min \left\{ \begin{array}{l} D[i-1,j] + \text{del-cost}(source[i]) \\ D[i,j-1] + \text{ins-cost}(target[j]) \\ D[i-1,j-1] + \text{sub-cost}(source[i], target[j]) \end{array} \right.$$

 assume the version of Levenshtein distance in which the insertions and deletions each have a cost of 1 and substitutions have a cost of 2.

$$D[i,j] = \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + \begin{cases} 2; & \text{if } source[i] \neq target[j] \\ 0; & \text{if } source[i] = target[j] \end{cases} \end{cases}$$

The Minimum Edit Distance Algorithm

```
function MIN-EDIT-DISTANCE(source, target) returns min-distance
  n \leftarrow LENGTH(source)
  m \leftarrow LENGTH(target)
  Create a distance matrix distance[n+1,m+1]
  # Initialization: the zeroth row and column is the distance from the empty string
       D[0,0] = 0
       for each row i from 1 to n do
          D[i,0] \leftarrow D[i-1,0] + del-cost(source[i])
       for each column j from 1 to m do
           D[0,j] \leftarrow D[0,j-1] + ins-cost(target[j])
  # Recurrence relation:
  for each row i from 1 to n do
       for each column j from 1 to m do
          D[i,j] \leftarrow MIN(D[i-1,j] + del-cost(source[i]),
                          D[i-1,j-1] + sub-cost(source[i], target[j]),
                          D[i, j-1] + ins-cost(target[j])
  # Termination
  return D[n,m]
```

MED Table

The Minimum Edit Distance Table

• Computation of MED between *intention* and execution:

N	9									
0	8									
I	7									
Т	6									
N	5									
E	4									
Т	3							10		
N	2									14 v
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MED Table

The Minimum Edit Distance Table

Computation of MED between *intention* and execution:

N	9									
0	8									
I	7		i 1) — mi		i-1,j) +				9 9	
Т	6		<i>i,j</i>) = mi		(i,j-1) + i-1,j-1)		; if S ₁ (i) ≠ S ₂ ((i)	
N	5			(-(-13 -1		if S ₁ (i			
Е	4		,							
T	3									
N	2						,			
Ι	1	*								
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	C	U	Т	I	0	N

MED Table

The Minimum Edit Distance Table

Computation of MED between *intention* and execution:

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MED Algorithm - Backtrace for Computing Alignments

Backtrace for Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
 - Every time we enter a cell, remember where we came from
- When we reach the end
 - Trace back the path from the lower right corner to read off the alignment
- An optimal alignment is composed of optimal subalignments

MED Algorithm - Backtrace for Computing Alignments

Backtrace for Computing alignments

```
Base conditions:
                                                                                 Termination:
 D(i,0) = i D(0,j) = j D(N,M) is distance
Recurrence Relation:
  For each i = 1...M
             For each j = 1...N
                    D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \end{cases}
ptr(i,j) = \begin{cases} LEFT & \text{insertion} \\ DOWN & \text{deletion} \\ DIAG & \text{substitution} \end{cases}
```

MED Algorithm - Backtrace for Computing Alignments

Backtrace for Computing alignments

n	9	↓ 8	∠ 	∠←↓ 10	∠←↓ 11	∠ ← ↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ← ↓ 10	∠ ← ↓ 11	↓ 10	↓9	∠8	← 9	
i	7	↓6	∠←↓ 7	∠←↓ 8	∠ ← ↓9	∠ ← ↓ 10	↓9	/8	← 9	← 10	
t	6	↓ 5	∠ - ↓6	∠←↓ 7	∠←↓ 8	∠ 	/8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ← ↓ 5	∠ - ↓6	∠-↓7	∠ ←↓8	∠ - ↓9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠←↓ 10	↓9	
t	3	∠ 4	∠ ←↓ 5	∠ <i>←</i> ↓ 6	∠←↓ 7	∠ ←↓8	77	<i>←</i> ↓ 8	∠ 49	↓8	
n	2	∠ ←↓3	∠ - ↓4	∠ ←↓ 5	∠←↓ 6	∠ ← ↓7	∠ ←↓ 8	↓ 7	∠ ← ↓ 8	Z 7	
i	1	∠←↓ 2	∠ - ↓3	∠ <i>←</i> ↓4	∠ ← ↓ 5	∠←↓ 6	∠←↓ 7	/6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

References

References

- Daniel Jurafsky & James H. Martin, "Speech and Language Processing", Prentice Hall
- Diana Maynard, Kalina Bontcheva, Isabelle Augenstein, "Natural Language Processing for the Semantic Web", A Publication in the Morgan & Claypool Publishers series.
- Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", By O'Reilly.
- Christopher Manning and Hinrich Schtze, "Foundations of Statistical Natural Language Processing",
 The MIT Press.

Thank You

Contacts:

Dr. Samit Biswas Department of CST, IIEST, Shibpur

उत्तिष्ठत जागृत प्राप्य वरान निबोधत INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR भारतीय अभियांत्रिकी विज्ञान एवं प्रौद्योगिकी संस्थान, शिवपुर