

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR UNITED STATES PATENT

**MULTI-FUNCTIONAL HEMATOPOIETIC FUSION
PROTEINS BETWEEN SEQUENCE REARRANGED G-CSF
RECEPTOR AGONISTS AND OTHER HEMATOPOIETIC FACTORS**

INVENTORS:

Yiqing Feng St. Louis, Missouri Citizen of the United States	Linda L. Zurfluh Kirkwood, Missouri Citizen of the United States
Nicholas R. Staten St. Louis, Missouri Citizen of the United States	John P. McKearn Glencoe, Missouri Citizen of the United States
Charles M. Baum Evanston, Illinois Citizen of the United States	Barbara K. Klein St. Louis, Missouri Citizen of the United States
Neena L. Summers St. Charles, Missouri Citizen of the United States	Stephen C. Lee St. Louis, Missouri Citizen of the United States
Maire Helena Caparon Chesterfield, Missouri Citizen of Ireland	Charles A. McWherter Wildwood, Missouri Citizen of the United States
S. Christopher Bauer New Haven, Missouri Citizen of the United States	Judith G. Giri Chesterfield, Missouri Citizen of the United States

Via Express Mail EV 169252205 US on October 27, 2003

MULTI-FUNCTIONAL HEMATOPOIETIC FUSION
PROTEINS BETWEEN SEQUENCE REARRANGED G-CSF
RECEPTOR AGONISTS AND OTHER HEMATOPOIETIC FACTORS

5

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a continuation of U.S. Pat. App. Ser. No. 09/510,238, filed February 22, 2002, pending, which is a divisional of U.S. Pat. App. Ser. No. 08/835,162 filed April 4, 1997, now issued as U.S. Pat. No. 6,066,318 on May 23, 2000, which is a continuation-in-part of PCT/US 96/15774 filed October 4, 1996 which claims priority under 35 U.S.C. §119(e) of U.S. Provisional Pat. App. Ser. No. 60/004,834, filed October 5, 1995, now abandoned.

REFERENCE TO A "SEQUENTIAL LISTING," A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A DISKETTE

20

[0002] This application includes a computer program listing appendix, pursuant to 37 CFR 1.96, contained on a diskette, which is incorporated fully into this application by this reference.

25 The diskette is labeled as follows:

Applicant: Feng, et al.
Title: Multi-Functional Hematopoietic Fusion
Proteins Between Sequence Rearranged G-CSF
Receptor Agonists and Other Hematopoietic
Factors
30 Recorded: October 23, 2003
Atty No.: 126181-1058
Serial No.: Unknown
Filing Date: October 27, 2003

35

The diskette contains the following file in ASCII file format:

File Name	File size	Creation Date
Sequence.txt	574 kb	October 23, 2003

5

BACKGROUND OF THE INVENTION

[0003] The present invention relates to multi-functional hematopoietic receptor agonists.

[0004] Colony stimulating factors (CSFs) which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells. CSFs in both human and murine systems have been identified and distinguished according to their activities. For example, granulocyte-CSF (G-CSF) and macrophage-CSF (M-CSF) stimulate the in vitro formation of neutrophilic granulocyte and macrophage colonies, respectively, while GM-CSF and interleukin-3 (IL-3) have broader activities and stimulate the formation of both macrophage, neutrophilic and eosinophilic granulocyte colonies. IL-3 also stimulates the formation of mast, megakaryocyte and pure and mixed erythroid colonies.

25

DESCRIPTION OF RELATED ART

[0005] U.S. 4,877,729 and U.S. 4,959,455 disclose human IL-3 and gibbon IL-3 cDNAs and the protein sequences for which

they code. The hIL-3 disclosed has serine rather than proline at position 8 in the protein sequence.

[0006] International Patent Application (PCT) WO 88/00598 discloses gibbon- and human-like IL-3. The hIL-3 contains a 5 Ser⁸ -> Pro⁸ replacement. Suggestions are made to replace Cys by Ser, thereby breaking the disulfide bridge, and to replace one or more amino acids at the glycosylation sites.

[0007] U.S. 4,810,643 discloses the DNA sequence encoding human G-CSF.

10 [0008] WO 91/02754 discloses a fusion protein comprised of GM-CSF and IL-3 which has increased biological activity compared to GM-CSF or IL-3 alone. Also disclosed are nonglycosylated IL-3 and GM-CSF analog proteins as components of the multi-functional hematopoietic receptor agonist.

15 [0009] WO 92/04455 discloses fusion proteins composed of IL-3 fused to a lymphokine selected from the group consisting of IL-3, IL-6, IL-7, IL-9, IL-11, EPO and G-CSF.

[0010] WO 95/21197 and WO 95/21254 disclose fusion proteins capable of broad multi-functional hematopoietic properties.

20 [0011] GB 2,285,446 relates to the c-mpl ligand (thrombopoietin) and various forms of thrombopoietin which are shown to influence the replication, differentiation and

maturation of megakaryocytes and megakaryocytes progenitors which may be used for the treatment of thrombocytopenia.

[0012] EP 675,201 A1 relates to the c-mpl ligand (Megakaryocyte growth and development factor (MGDF), allelic variations of c-mpl ligand and c-mpl ligand attached to water soluble polymers such as polyethylene glycol.

[0013] WO 95/21920 provides the murine and human c-mpl ligand and polypeptide fragments thereof. The proteins are useful for *in vivo* and *ex vivo* therapy for stimulating platelet production.

REARRANGEMENT OF PROTEIN SEQUENCES

[0014] In evolution, rearrangements of DNA sequences serve an important role in generating a diversity of protein structure and function. Gene duplication and exon shuffling provide an important mechanism to rapidly generate diversity and thereby provide organisms with a competitive advantage, especially since the basal mutation rate is low (Doolittle, 20 *Protein Science* 1:191-200, 1992).

[0015] The development of recombinant DNA methods has made it possible to study the effects of sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of

their amino acid sequences (Cunningham, et al., *Proc. Natl. Acad. Sci. U.S.A.* **76**:3218-3222, 1979; Teather & Erfle, *J. Bacteriol.* **172**: 3837-3841, 1990; Schimming et al., *Eur. J. Biochem.* **204**: 13-19, 1992; Yamiuchi and Minamikawa, *FEBS Lett.*

5 **260**:127-130, 1991; MacGregor et al., *FEBS Lett.* **378**:263-266).

The first in vitro application of this type of rearrangement to proteins was described by Goldenberg and Creighton (*J. Mol. Biol.* **165**:407-413, 1983). A new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order of amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus. At this point the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or 10 near the original N-terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue forming the new C-terminus of the chain.

15 **[0016]** This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, *J. Mol. Biol.* **165**:407-413, 1983; Li & Coffino, *Mol. Cell. Biol.* **13**:2377-2383, 1993). The proteins examined have represented a broad range of structural classes, including

proteins that contain predominantly α -helix (interleukin-4; Kreitman et al., *Cytokine* **7**:311-318, 1995), β -sheet (interleukin-1; Horlick et al., *Protein Eng.* **5**:427-431, 1992), or mixtures of the two (yeast phosphoribosyl anthranilate 5 isomerase; Luger et al., *Science* **243**:206-210, 1989). Broad categories of protein function are represented in these sequence reorganization studies:

Enzymes

- | | | |
|----|--|--|
| 10 | T4 lysozyme | Zhang et al., <i>Biochemistry</i> 32 :12311-12318, 1993; Zhang et al., <i>Nature Struct. Biol.</i> 1 :434-438 (1995). |
| 15 | dihydrofolate | Buchwalder et al., <i>Biochemistry</i> reductase 31 :1621-1630, 1994; Protasova et al., <i>Prot. Eng.</i> 7 :1373-1377, 1995). |
| 20 | ribonuclease T1 | Mullins et al., <i>J. Am. Chem. Soc.</i> 116 :5529-5533, 1994; Garrett et al., <i>Protein Science</i> 5 :204-211, 1996). |
| | Bacillus β -glucanase | Hahn et al., <i>Proc. Natl. Acad. Sci.U.S.A.</i> 91 :10417-10421, 1994). |
| 25 | aspartate | Yang & Schachman, <i>Proc. Natl. Acad. transcarbamoylase Sci. U.S.A.</i> 90 :11980-11984, 1993). |
| 30 | phosphoribosyl anthranilate | Luger et al., <i>Science</i> 243 :206-210 (1989; Luger et al., <i>Prot. Eng. Isomerase</i> 3 :249-258, 1990). |
| 35 | pepsin/pepsinogen | Lin et al., <i>Protein Science</i> 4 :159-166, 1995). |
| | glyceraldehyde-3-phosphate dehydrogenase | Vignais et al., <i>Protein Science</i> 4 :994-1000, 1995). |
| 40 | ornithine | Li & Coffino, <i>Mol. Cell. Biol.</i> |

decarboxylase **13**:2377-2383, 1993).

5 yeast phosphoglycerate dehydrogenase Ritco-Vonsovici et al., *Biochemistry* **34**:16543-16551, 1995).

Enzyme Inhibitor

10 basic pancreatic trypsin inhibitor Goldenberg & Creighton, *J. Mol. Biol.* **165**:407-413, 1983).

Cytokines

15 interleukin-1b Horlick et al., *Protein Eng.* **5**:427-431, 1992).

interleukin-4 Kreitman et al., *Cytokine* **7**:311-318, 1995).

20 Tyrosine Kinase Recognition Domain

a-spectrin SH3 domain Viguera, et al., *J. Mol. Biol.* **247**:670-681, 1995).

25 Transmembrane Protein

omp A Koebnik & Krämer, *J. Mol. Biol.* **250**:617-626, 1995).

30 Chimeric Protein

35 interleukin-4-
Pseudomonas exotoxin Kreitman et al., *Proc. Natl. Acad. Sci. U.S.A.* **91**:6889-6893, 1994).

[0017] The results of these studies have been highly variable. In many cases substantially lower activity, solubility or thermodynamic stability were observed (*E. coli* dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast

phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease T1, *Bacillus b-* 5 *glucanase*, interleukin-1 β , α -spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence was observed, e.g., the solubility and refolding rate for rearranged α -spectrin SH3 domain sequences, and the receptor 10 affinity and anti-tumor activity of transposed interleukin-4-*Pseudomonas* exotoxin fusion molecule (Kreitman et al., *Proc. Natl. Acad. Sci. U.S.A.* **91**:6889-6893, 1994; Kreitman et al., *Cancer Res.* **55**:3357-3363, 1995).

[0018] The primary motivation for these types of studies 15 has been to study the role of short-range and long-range interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact 20 that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways (Viguera, et al., *J. Mol. Biol.* **247**:670-681, 1995). In the case of the SH3 domain of α -spectrin, choosing new

termini at locations that corresponded to b-hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.

[0019] The positions of the internal breakpoints used in 5 the studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N- terminus to the breakpoint is ca. 10 to 80% of the total 10 sequence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman, *Proc. Natl. Acad. Sci. U.S.A.* 90:11980-11984, 1993), a portion of sequence has been deleted 15 from the original C-terminal segment, and the connection made from the truncated C-terminus to the original N-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al. (*J. Mol. Biol.* 247:670-681, 1995) compared joining the original N- and C- termini with 3- or 4-residue linkers; the 3-residue linker was 20 less thermodynamically stable. Protasova et al. (*Protein Eng.* 7:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of *E. coli* dihydrofolate reductase; only the 3-residue linker produced protein in good yield.

BRIEF SUMMARY OF THE INVENTION

[0020] Novel hematopoietic proteins of this invention
are represented by the formulas:

5 $R_1-L_1-R_2$, $R_2-L_1-R_1$, R_1-R_2 , or R_2-R_1

wherein R_1 and R_2 are independently selected from the
group consisting of;

(I) A polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:

1 Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa
5 10
Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly
15 20
Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa
20 30 40
Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp
25 50
Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly
30 60 70
Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
35 80
Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
40 90 100
Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp
45 110
Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr
50 120 130
Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala
55 140
Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa
60 150 160
Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1)
65 170

wherein

40 Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
45 Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;

Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
5 Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
10 Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala,
Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His,
Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
15 Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
20 Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or
25 Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His
Xaa at position 123 is Glu, Arg, Phe or Thr
Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or
30 Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
35 Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
40 wherein optionally 1-11 amino acids from the N-terminus and 1-
5 from the C-terminus can be deleted; and
wherein the N-terminus is joined to the C-terminus directly or
through a linker capable of joining the N-terminus to the C-

terminus and having new C- and N-termini at amino acids;

	38-39	62-63	123-124
	39-40	63-64	124-125
	40-41	64-65	125-126
5	41-42	65-66	126-127
	42-43	66-67	128-129
	43-44	67-68	128-129
	45-46	68-69	129-130
	48-49	69-70	130-131
10	49-50	70-71	131-132
	52-53	71-72	132-133
	53-54	91-92	133-134
	54-55	92-93	134-135
	55-56	93-94	135-136
15	56-57	94-95	136-137
	57-58	95-96	137-138
	58-59	96-97	138-139
	59-60	97-98	139-140
	60-61	98-99	140-141
20	61-62	99-100	141-142 or 142-143;

(II) A polypeptide comprising; a modified hIL-3 amino acid sequence of the formula:

Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn
1 5 10 15

5 Cys Xaa
20 25 30

10 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45

Xaa
50 55 60

15 Xaa
65 70 75

Xaa
80 85 90

20 Xaa
95 100 105

25 Xaa Phe Xaa
110 115 120

Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe
125 130 (SEQ ID NO:2);

30 wherein

Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;

Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;

Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;

35 Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln,
Asn, Thr, Ser or Val;

Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn,
Gln, Leu, Val or Gly;

Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu,
Ser, or Arg;

Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;

Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;

Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;

Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;

Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu,
5 or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
10 Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln,
Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
15 Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu,
Val, Glu, Phe, Tyr, Ile, Met or Ala;
20 Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala,
Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp,
Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys,
25 Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln,
Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,
30 Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or
Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser,
Ala, Ile, Val, His, Phe, Met or Gln;
35 Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,
or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn,
40 Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,
Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
45 Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;

Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or
Ile;

5 Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or
Val;

Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro,
10 or His;

Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or
His;

Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly,
or Leu;

15 Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,
Trp, or Asn;

Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or
Asp;

20 Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or
Arg;

Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;

Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser,
Gln, or Leu;

25 Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly,
or Asp;

Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;

Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;

30 Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or
Asp;

Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or
Arg;

Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or
Lys;

35 Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,
His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;

Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;

Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;

40 Xaa at position 85 is Leu, Asn, Val, or Gln;

Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;

Xaa at position 87 is Leu, Ser, Trp, or Gly;

Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;

Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn,
or Ser;

45 Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or
Met;

Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or

His;

Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly,
Ile or Leu;

Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or
Arg;

Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys,
His, Ala, or Pro;

Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr,
Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;

Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;

Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;

Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu,
Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;

Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly,
Ser, Phe, or His;

Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln,
or Pro;

Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr,
Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;

Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;

Xaa at position 103 is Asp, or Ser;

Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,
Gln, Lys, Ala, Phe, or Gly;

Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,
Leu, Lys, Ile, Asp, or His;

Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or
Pro;

Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His,
Ser, Ala or Pro;

Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or
Gly;

Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His,
Glu, Ser, or Trp;

Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;

Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or
Phe;

Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,
Lys, Leu, Ile, Val or Asn;

Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;

Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,
Trp, or Met;

Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,
Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;

Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;

Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or
Tyr;

Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or

Arg;

Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or
Gly;

5 Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,
Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or
Leu;

10 wherein optionally from 1 to 14 amino acids can be deleted
from the N-terminus and/or from 1 to 15 amino acids can be
deleted from the C-terminus; and wherein from 0 to 44 of the
amino acids designated by Xaa are different from the
corresponding amino acids of native (1-133) human interleukin-
15 3; and

wherein the N-terminus is joined to the C-terminus directly or
through a linker (L₂) capable of joining the N-terminus to the
C-terminus and having new C- and N-termini at amino acids;

20	26-27	49-50	83-84
	27-28	50-51	84-85
	28-29	51-52	85-86
	29-30	52-53	86-87
	30-31	53-54	87-88
	31-32	54-55	88-89
25	32-33	64-65	89-90
	33-34	65-66	90-91
	34-35	66-67	91-92
	35-36	67-68	92-93
	36-37	68-69	97-98
30	37-38	69-70	98-99
	38-39	70-71	99-100
	39-40	71-72	100-101
	40-41	72-73	101-102
	41-42	82-83	102-103
35			or 103-104;

or

(III) A polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:

Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser
1 5 10 15

5 His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro
20 25 30 35

10 Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu
40 45 50 55

Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala
60 65 70 75

15 Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly
80 85 90 95

Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Xaa Xaa Xaa
100 105 110

20 Xaa Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His
115 120 125 130

25 Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val
135 140 145 150

Arg Arg Ala Pro Pro Thr Thr Ala Val Pro Ser Arg Thr Ser Leu Val Leu Thr Leu
155 160 165 170

30 Asn Glu Leu Pro Asn Arg Thr Ser Gly Leu Leu Glu Thr Asn Phe Thr Ala Ser Ala
175 180 185 190

Arg Thr Thr Gly Ser Gly Leu Leu Lys Trp Gln Gln Gly Phe Arg Ala Lys Ile Pro
195 200 205

35 Gly Leu Leu Asn Gln Thr Ser Arg Ser Leu Asp Gln Ile Pro Gly Tyr Leu Asn Arg
210 215 220 225

Ile His Glu Leu Leu Asn Gly Thr Arg Gly Leu Phe Pro Gly Pro Ser Arg Arg Thr
40 230 235 240 245

Leu Gly Ala Pro Asp Ile Ser Ser Gly Thr Ser Asp Thr Gly Ser Leu Pro Pro Asn
250 255 260 265

45 Leu Gln Pro Gly Tyr Ser Pro Ser Pro Thr His Pro Pro Thr Gly Gln Tyr Thr Leu

270 275 280 285

PheProLeuProProThrLeuProThrProValValGlnLeuHisProLeuLeuPro

290 295 300

5

AspProSerAlaProThrProThrProThrSerProLeuLeuAsnThrSerTyrThr

305 310 315 320

HisSerGlnAsnLeuSerGlnGluGly (SEQ ID NO:3)

10 325 330 332

153

wherein;

15 Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro,
Phe, Trp, or Met;

Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu,
Ile, Trp, or Met;

20 Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu,
Ile, Trp, or Met;

Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or
Asn; and

25 wherein the N-terminus is joined to the C-terminus directly or
through a linker (L₂) capable of joining the N-terminus to the
C-terminus and having new C- and N-termini at amino acids;

	26-27	51-52	108-109
	27-28	52-53	109-110
	28-29	53-54	110-111
	29-30	54-55	111-112
5	30-31	55-56	112-113
	32-33	56-57	113-114
	33-34	57-58	114-115
	34-35	58-59	115-116
	36-37	59-60	116-117
10	37-38	78-79	117-118
	38-39	79-80	118-119
	40-41	80-81	119-120
	41-42	81-82	120-121
	42-43	82-83	121-122
15	43-44	83-84	122-123
	44-45	84-85	123-124
	46-47	85-86	124-125
	47-48	86-87	125-126
	48-49	87-88	126-127
20	50-51	88-89	or 127-128;

or

(IV) A polypeptide comprising; a modified hIL-3 amino acid sequence of the formula:

Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn
1 5 10 15

5 Cys Xaa
20 25 30

10 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45

Xaa
50 55 60

15 Xaa
65 70 75

Xaa
80 85 90

20 Xaa
95 100 105

25 Xaa Phe Xaa
110 115 120

Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe
125 130 (SEQ ID NO:2)

30 wherein

Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;

35 Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;

Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln,
Asn, Thr, Ser or Val;

Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn,
Gln, Leu, Val or Gly;

40 Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu,
Ser, or Arg;

Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;

Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;

Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;

45 Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;

Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu,
5 or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
10 Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
15 Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu,
Val, Glu, Phe, Tyr, Ile, Met or Ala;
20 Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys,
25 Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,
30 Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
35 Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,
or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn,
40 Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,
Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
45 Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;

Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or
Ile;

5 Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or
Val;

Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro,
10 or His;

Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or
His;

Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly,
or Leu;

15 Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,
Trp, or Asn;

Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or
Asp;

20 Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or
Arg;

Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;

Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser,
Gln, or Leu;

25 Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly,
or Asp;

Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;

Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;

30 Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or
Asp;

Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or
Arg;

Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or
Lys;

35 Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,
His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;

Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;

Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;

40 Xaa at position 85 is Leu, Asn, Val, or Gln;

Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;

Xaa at position 87 is Leu, Ser, Trp, or Gly;

Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;

Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn,
or Ser;

45 Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or
Met;

Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or

His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly,
Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or
Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys,
His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr,
Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
10 Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu,
Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly,
15 Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln,
or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr,
Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
20 Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,
Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,
25 Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or
Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His,
Ser, Ala or Pro;
30 Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or
Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His,
Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
35 Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or
Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,
Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
40 Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,
Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,
Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
45 Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or
Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or

Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or
Gly;
5 Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,
Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or
Leu;
10 wherein optionally from 1 to 14 amino acids can be deleted
from the N-terminus and/or from 1 to 15 amino acids can be
deleted from the C-terminus; and wherein from 1 to 44 of the
amino acids designated by Xaa are different from the
corresponding amino acids of native (1-133) human interleukin-
15 3;
or

(V) a colony stimulating factor;

and wherein L₁ is a linker capable of linking R₁ to R₂;

with the proviso that at least R₁ or R₂ is selected from the polypeptide of formula (I), (II), or (III); and

5 said hematopoietic protein can optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

[0021] The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) above are; 38-39, 39-40, 40-41, 41-42, 48-49, 53-54, 54-55, 55-56, 56-57, 57-58, 58-59, 59-60, 60-61, 61-62, 62-63, 64-65, 65-66, 66-67, 67-68, 68-69, 69-70, 96-97, 125-126, 126-127, 127-128, 128-129, 129-130, 130-131, 131-132, 132-133, 133-134, 134-135, 135-136, 136-137, 137-138, 138-139, 139-140, 140-141 and 141-142.

[0022] The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) above are; 38-39, 48-49, 96-97, 125-126, 132-133 and 141-142.

[0023] The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 35-36, 36-37, 37-38, 38-39, 39-40, 66-67, 67-68, 68-69, 69-70, 70-71, 84-85, 85-86, 86-87, 87-88, 88-89, 89-90, 90-91, 98-99, 99-100, 100-101 and 101-102.

[0024] The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 34-35, 69-70 and 90-91.

[0025] The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (III) above or the amino acid sequence of (SEQ ID NO:256) are; 80-81, 81-82, 82-83, 83-84, 84-85, 85-86, 86-87, 108-109, 109-110, 110-111, 111-112, 112-113, 113-114, 114-115, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126 and 126-127.

[0026] The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (III) above or the amino acid sequence of (SEQ ID NO:256) are; 81-82, 108-109, 115-116, 119-120, 122-123 and 125-126.

[0027] The invention is also intended to include multifunctional receptor agonist which comprises a sequence rearranged c-mpl receptor agonist in which the cysteine at position 7 and/or 151 are substituted with another amino acid. Preferably, the substitution at position 7 and 151 is Ser, Ala, Gly, His, Asn, Asp, Thr, Phe or Thr. More preferably, the substitution at position 7 and 151 is Ser, Ala, Gly, His or Asn.

[0028] The multifunctional receptor agonist of the present invention can also be represented by the following formula:

$$(T^1)_a - (L^1)_b - X^1 - (L)_c - X^2 - (L^2)_d - (T^2)_e$$
$$X^1 - (L)_c - X^2 - (L) - Y^1 - (L)_c - Y^2$$

5

in which:

10 X^1 is a peptide comprising an amino acid sequence corresponding to the sequence of residues n+1 through J of the original protein having amino acids residues numbered sequentially 1 through J with an amino terminus at residue 1;

L is an optional linker;

15 X^2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein;

20 Y^1 is a peptide comprising an amino acid sequence corresponding to the sequence of residues n=1 through K of the original protein having amino acids residues numbered sequentially 1 through K with an amino terminus at residue 1;

25 Y^2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein;

L^1 and L^2 are optional peptide spacers;

 n is an integer ranging from 1 to J-1;

 b, c, and d are each independently 0 or 1;

 a and e are either 0 or 1, provided that both a and e cannot both be 0; and

25 T^1 and T^2 are proteins.

[0029] Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding the multi-functional hematopoietic receptor agonists, related microbial expression systems, and processes for making 5 the multi-functional hematopoietic receptor agonists. The invention also relates to pharmaceutical compositions containing the multi-functional hematopoietic receptor agonists, and methods for using the multi-functional hematopoietic receptor agonists.

10 [0030] In addition to the use of the multi-functional hematopoietic receptor agonists of the present invention *in vivo*, it is envisioned that *in vitro* uses would include the ability to stimulate bone marrow and blood cell activation and growth before infusion into patients.

BRIEF DESCRIPTION OF THE FIGURES

[0031] Figure 1 schematically illustrates the sequence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized *de novo* as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.

[0032] Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.

[0033] Figure 3 shows a schematic of Method II, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined without a linker and

different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original 5 C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original sequence.

[0034] Figure 4 shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-10 terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original 15 C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.

DETAILED DESCRIPTION OF THE INVENTION

[0035] The present invention encompasses multi-functional hematopoietic receptor agonists formed from covalently linked 5 polypeptides, each of which may act through a different and specific cell receptor to initiate complementary biological activities. Hematopoiesis requires a complex series of cellular events in which stem cells generate continuously into large populations of maturing cells in all major lineages.

10 There are currently at least 20 known regulators with hematopoietic proliferative activity. Most of these proliferative regulators can only stimulate one or another type of colony formation in vitro, the precise pattern of colony formation stimulated by each regulator is quite

15 distinctive. No two regulators stimulate exactly the same pattern of colony formation, as evaluated by colony numbers or, more importantly, by the lineage and maturation pattern of the cells making up the developing colonies. Proliferative responses can most readily be analyzed in simplified in vitro

20 culture systems. Three quite different parameters can be distinguished: alteration in colony size, alteration in colony numbers and cell lineage. Two or more factors may act on the progenitor cell, inducing the formation of larger number of progeny thereby increasing the colony size. Two or more

25 factors may allow increased number of progenitor cells to

proliferate either because distinct subsets of progenitors cells exist that respond exclusively to one factor or because some progenitors require stimulation by two or more factors before being able to respond. Activation of additional 5 receptors on a cell by the use of two or more factors is likely to enhance the mitotic signal because of coalescence of initially differing signal pathways into a common final pathway reaching the nucleus (Metcalf, *Nature* **339**:27, 1989). Other mechanisms could explain synergy. For example, if one 10 signaling pathway is limited by an intermediate activation of an additional signaling pathway which is caused by a second factor, then this may result in a super additive response. In some cases, activation of one receptor type can induce an enhanced expression of other receptors (Metcalf, *Blood* 15 **82**:3515-3523, 1993). Two or more factors may result in a different pattern of cell lineages than from a single factor. The use of multi-functional hematopoietic receptor agonists may have a potential clinical advantage resulting from a proliferative response that is not possible by any single 20 factor.

[0036] The receptors of hematopoietic and other growth factors can be grouped into two distinct families of related proteins: (1) tyrosine kinase receptors, including those for epidermal growth factor, M-CSF (Sherr, *Blood* **75**:1, 1990) and

SCF (Yarden et al., *EMBO J.* **6**:3341, 1987); and (2) hematopoietic receptors, not containing a tyrosine kinase domain, but exhibiting obvious homology in their extracellular domain (Bazan, *PNAS USA* **87**:6934-6938, 1990). Included in this 5 latter group are erythropoietin (EPO) (D'Andrea et al., *Cell* **57**:277, 1989), GM-CSF (Gearing et al., *EMBO J.* **8**:3667, 1989), IL-3 (Kitamura et al., *Cell* **66**:1165, 1991), G-CSF (Fukunaga et al., *J. Bio. Chem.* **265**:14008-15, 1990), IL-4 (Harada et al., *PNAS USA* **87**:857, 1990), IL-5 (Takaki et al., *EMBO J.* **9**:4367, 10 1990), IL-6 (Yamasaki et al., *Science* **241**:825, 1988), IL-7 (Goodwin et al., *Cell* **60**:941-51, 1990), LIF (Gearing et al., *EMBO J.* **10**:2839, 1991) and IL-2 (Cosman et al., *Mol-Immunol.* **23**: 935-94, 1986). Most of the latter group of receptors exists in a high-affinity form as heterodimers. After ligand 15 binding, the specific a-chains become associated with at least one other receptor chain (b-chain, g-chain). Many of these factors share a common receptor subunit. The a-chains for GM-CSF, IL-3 and IL-5 share the same b-chain (Kitamura et al., *Cell* **66**:1165, 1991), Takaki et al., *EMBO J.* **10**:2833-8, 1991) and receptor complexes for IL-6, LIF and IL-11 share a common 20 b-chain (gp130) (Taga et al., *Cell* **58**:573-81, 1989; Gearing et al., *Science* **255**:1434-7, 1992). The receptor complexes of IL-2, IL-4, IL-7, IL-9 and IL-15 share a common g-chain (Kondo et al., *Science* **262**:1874, 1993; Russell et al., *Science* **266**:

1042-1045, 1993; Noguchi et al., *Science* **262**:1877, 1993; Giri et al., *EMBO J.* **13**:2822-2830, 1994).

[0037] The use of a multiply acting hematopoietic factor may also have a potential advantage by reducing the demands placed on factor-producing cells and their induction systems. If there are limitations in the ability of a cell to produce a factor, then by lowering the required concentrations of each of the factors, and using them in combination may usefully reduce demands on the factor-producing cells. The use of a multiply acting hematopoietic factor may lower the amount of the factors that would be needed, probably reducing the likelihood of adverse side-effects.

[0038] Novel compounds of this invention are represented by a formula selected from the group consisting of:

15 R₁-L₁-R₂, R₂-L₁-R₁, R₁-R₂, and R₂-R₁

[0039] Where R₁ and R₂ are as defined above.

[0040] R₂ is preferably a colony stimulating factor with a different but complementary activity than R₁. By complementary activity is meant activity which enhances or changes the response to another cell modulator. The R₁ polypeptide is joined either directly or through a linker segment to the R₂ polypeptide. The term "directly" defines multi-functional hematopoietic receptor agonists in which the

polypeptides are joined without a peptide linker. Thus L₁ represents a chemical bond or polypeptide segment to which both R₁ and R₂ are joined in frame, most commonly L₁ is a linear peptide to which R₁ and R₂ are joined by amide bonds linking the carboxy terminus of R₁ to the amino terminus of L₁ and carboxy terminus of L₁ to the amino terminus of R₂. By "joined in frame" is meant that there is no translation termination or disruption between the reading frames of the DNA encoding R₁ and R₂.

10 [0041] A non-exclusive list of other growth factors, i.e. colony stimulating factors (CSFs), are cytokines, lymphokines, interleukins, or hematopoietic growth factors which can be joined to (I), (II) or (III) include GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin 15 (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, flt3 ligand, human growth hormone, and stem cell factor (SCF) also known as steel factor or c-kit ligand. Additionally, this invention encompasses the use of modified R₁ or R₂ molecules or mutated 20 or modified DNA sequences encoding these R₁ or R₂ molecules. The present invention also includes multi-functional hematopoietic receptor agonists in which R₁ or R₂ is an hIL-3 variant, c-mpl ligand variant, or G-CSF variant. A "hIL-3

"variant" is defined as a hIL-3 molecule which has amino acid substitutions and/or portions of hIL-3 deleted as disclosed in WO 94/12638, WO 94/12639 and WO 95/00646, as well as other variants known in the art. A "c-mpl ligand variant" is defined 5 as an c-mpl ligand molecule which has amino acid substitutions and/or portions of c-mpl ligand deleted, disclosed in United States Application Serial Number 08/383,035 as well as other variants known in the art. A "G-CSF variant" is defined an G-CSF molecule which has amino acid substitutions and/or 10 portions of G-CSF deleted, as disclosed herein, as well as other variants known in the art.

[0042] The linking group (L_1) is generally a polypeptide of between 1 and 500 amino acids in length. The linkers joining the two molecules are preferably designed to (1) allow the two 15 molecules to fold and act independently of each other, (2) not have a propensity for developing an ordered secondary structure which could interfere with the functional domains of the two proteins, (3) have minimal hydrophobic characteristics which could interact with the functional protein domains and 20 (4) provide steric separation of R_1 and R_2 such that R_1 and R_2 could interact simultaneously with their corresponding receptors on a single cell. Typically surface amino acids in flexible protein regions include Gly, Asn and Ser. Virtually any permutation of amino acid sequences containing Gly, Asn

and Ser would be expected to satisfy the above criteria for a linker sequence. Other neutral amino acids, such as Thr and Ala, may also be used in the linker sequence. Additional amino acids may also be included in the linkers due to the addition 5 of unique restriction sites in the linker sequence to facilitate construction of the multi-functional hematopoietic receptor agonists.

[0043] Preferred L₁ linkers of the present invention include sequences selected from the group of formulas:

(Gly³Ser)ⁿ (SEQ ID NO:4), (Gly⁴Ser)ⁿ (SEQ ID NO:5),
(Gly⁵Ser)ⁿ (SEQ ID NO:6), (GlyⁿSer)ⁿ (SEQ ID NO:7)
or (AlaGlySer)ⁿ (SEQ ID NO:8).

[0044] One example of a highly-flexible linker is the
15 glycine and serine-rich spacer region present within the pIII
protein of the filamentous bacteriophages, e.g. bacteriophages
M13 or fd (Schaller et al., *PNAS USA* **72**: 737-741, 1975). This
region provides a long, flexible spacer region between two
domains of the pIII surface protein. The spacer region
20 consists of the amino acid sequence:

25 [0045] The present invention also includes linkers in which
an endopeptidase recognition sequence is included. Such a
cleavage site may be valuable to separate the individual

components of the multi-functional hematopoietic receptor agonist to determine if they are properly folded and active in vitro. Examples of various endopeptidases include, but are not limited to, plasmin, enterokinase, kallikrein, urokinase, 5 tissue plasminogen activator, clostripain, chymosin, collagenase, Russell's viper venom protease, postproline cleavage enzyme, V8 protease, Thrombin and factor Xa.

[0046] Peptide linker segments from the hinge region of heavy chain immunoglobulins IgG, IgA, IgM, IgD or IgE provide 10 an angular relationship between the attached polypeptides. Especially useful are those hinge regions where the cysteines are replaced with serines. Preferred linkers of the present invention include sequences derived from murine IgG gamma 2b hinge region in which the cysteines have been changed to 15 serines. These linkers may also include an endopeptidase cleavage site. Examples of such linkers include the following sequences:

IleSerGluProSerGlyProIleSerThrIleAsnProSerProProSerL
ys
20 GluSerHisLysSerPro (SEQ ID NO:10) and

IleGluGlyArgIleSerGluProSerGlyProIleSerThrIleAsnProS
er
ProProSerLysGluSerHisLysSerPro (SEQ ID NO:11).
25

[0047] The present invention is, however, not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does

not interfere with the folding and function of the individual molecules of the multi-functional hematopoietic receptor agonist.

[0048] One aspect of the invention includes multi-functional hematopoietic receptor agonists which comprise a sequence rearranged c-mpl receptor agonist in which the cysteine(s) at position 7 and 151 of c-mpl ligand, have been substituted with another amino acid. Kaushansky et al. (*Blood* **86**:255a Abstract 1008, 1995) teaches that all four of the cysteines at positions 7, 29, 85, and 151 are required for bioactivity. The presence of cysteines in a protein can cause problems in processing when the protein is being produced recombinantly in a bacterial host. Microbially produced cysteine-containing proteins may tend to form multimers which greatly complicate purification of the protein product. Several additional purification steps, such as reduction and reoxidation of the recombinant protein may be required to obtain the protein in the proper confirmation. Removal of one of the cysteine residues, with concurrent replacement by a chemically equivalent neutral amino acid, would be desirable, in order to simplify the isolation and purification of the molecule. However, the successful removal of cysteines from biologically active molecules is unpredictable, in that the tertiary structure in the absence of the normally formed

disulfide bridges, can be substantially altered. A molecule in which a pair of cysteines at positions 7 and 151 are substituted with another amino acid may have one or more advantages including, but not limited to: 1) increased folding efficiency of the heterologously expressed protein; 2) elimination of mispaired disulfides, 3) use of milder refold conditions (ie. Guanidine vs. Urea); 4) increased purification yields, 5) increased protein solubility; and 6) increased protein stability.

10

Determination of the Linker L₂.

[0049] The length of the amino acid sequence of the linker L₂ to be used in R₁ and/or R₂ can be selected empirically or 15 with guidance from structural information, or by using a combination of the two approaches.

[0050] When no structural information is available, a small series of linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 Å 20 and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods, *Mol. Immunol.* **20:** 483-489, 1983), Kyte & Doolittle, *J. Mol. Biol.* **157:**105-132; solvent exposed surface area, Lee & Richards, *J. Mol. Biol.* **55:**379-400, 1971) and the ability to adopt the necessary 25 conformation without deranging the conformation of R¹ or R²

(conformationally flexible; Karplus & Schulz, *Naturwissenschaften* **72**:212-213, 1985). Assuming an average of translation of 2.0 to 3.8 Å per residue, this would mean the length to test would be between 0 to 30 residues, with 0 to 15 residues being the preferred range. Exemplary of such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser (SEQ ID NO:12) repeated n times, where n is 1, 2, 3 or 4. Those skilled in the art will recognize that there are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu, *Critical Rev. Biotech.* **12**: 437-462, 1992); if they are too long, entropy effects will likely destabilize the three-dimensional fold, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.

[0051] Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical selection of linkers. They will also recognize that it is sometimes the case that the

positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray diffraction or nuclear magnetic resonance spectroscopy data, and that when true, this situation will therefore need to be taken into account in 5 order to properly estimate the length of the linker required. From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. 10 Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8Å per residue) are then selected. These linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be 15 flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the Gly-Gly-Gly-Ser (SEQ ID NO:12) cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the 20 appropriate total length may be used.

Determination of the Amino
and Carboxyl Termini of R₁ and R₂

[0052] Sequences of R₁ and R₂ capable of folding to 25 biologically active states can be prepared by appropriate

selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence L₂ as described above. Amino and carboxyl termini are selected from 5 within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below. A novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region. In many cases the selection of the new termini will be such 10 that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions 15 to the amino or carboxyl portions of the new sequence.

[0053] It is a central tenet of molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled 20 in the art to obtain and interpret three-dimensional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint regions

include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch & Sander, *Biopolymers* **22**: 2577-2637, 1983), the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia, *Ann. Rev. Biochem.* **53**:537-572, 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, *Methods Enzymol.* **154**: 511-533, 1987). In some cases additional information is known about solvent exposure of residues; one example is a site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not available, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility and the occurrence of turns and loops. Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile & Salvatore, *Eur. J. Biochem.* **218**:603-621, 1993)

[0054] Thus using either the experimentally derived structural information or predictive methods (e.g., Srinivisan & Rose *Proteins: Struct., Funct. & Genetics*, **22**: 81-99, 1995) the parental amino acid sequence is inspected to classify 5 regions according to whether or not they are integral to the maintenance of secondary and tertiary structure. The occurrence of sequences within regions that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets) are regions 10 that should be avoided. Similarly, regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection of amino and carboxyl termini. In 15 contrast, those regions that are known or predicted to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid 20 sequence that are preferred based on the above criteria are referred to as a breakpoint region.

Non-covalent Multifunctional
Hematopoietic Growth Factors

[0055] An alternative method for connecting two hematopoietic growth factors is by means of a non-covalent interaction. Such complexed proteins can be described by one of the formulae:

5 $R_1-C_1 + R_2-C_2$; or $C_1-R_1 + C_2-R_2$; $C_1-R_1 + R_2-C_2$; or $C_1-R_1 + R_2-C_2$.

[0056] R_1 and R_2 are as is defined above. Domains C_1 and C_2 are either identical or non-identical chemical structures, 10 typically proteinaceous, which can form a non-covalent, specific association. Complexes between C_1 and C_2 result in a one-to-one stoichiometric relationship between R_1 and R_2 for each complex. Examples of domains which associate are "leucine zipper" domains of transcription factors, 15 dimerization domains of bacterial transcription repressors and immunoglobulin constant domains. Covalent bonds link R_1 and C_1 , and R_2 and C_2 , respectively. As indicated in the formulae, the domains C_1 and C_2 can be present either at the N-terminus or C-terminus of their corresponding hematopoietic 20 growth factor (R). These multimerization domains (C_1 and C_2) include those derived from the bZIP family of proteins (Abel et al., *Nature* **341**:24-25, 1989; Landshulz et al., *Science* **240**:1759-1764, 1988; Pu et al., *Nuc. Acid Res.* **21**:4348-4355, 1993; Kozarides et al., *Nature* **336**:646-651, 1988), as well as 25 multimerization domains of the helix-loop-helix family of

proteins (Abel et al., *Nature* **341**:24-25, 1989; Murre et al., *Cell* **56**:777-783, 1989; Tapscott et al., *Science* **242**:405-411, 1988; Fisher et al., *Genes & Dev.* **5**:2342-2352, 1991).

Preferred multi-functional hematopoietic receptor agonists of

5 the present invention include colony stimulating factors dimerized by virtue of their incorporation as translational multi-functional hematopoietic receptor agonists with the leucine zipper dimerization domains of the bZIP family proteins Fos and Jun. The leucine zipper domain of Jun is
10 capable of interacting with identical domains. On the other hand, the leucine zipper domain of Fos interacts with the Jun leucine zipper domain, but does not interact with other Fos leucine zipper domains. Mixtures of Fos and Jun predominantly result in formation of Fos-Jun heterodimers. Consequently,
15 when joined to colony stimulating factors, the Jun domain can be used to direct the formation of either homo- or heterodimers. Preferential formation of heterodimers can be achieved if one of the colony stimulating factor partners is engineered to possess the Jun leucine zipper domain while the
20 other is engineered to possess the Fos zipper.

[0057] Additional peptide sequences may also be added to facilitate purification or identification of multi-functional hematopoietic receptor agonist proteins (e.g., poly-His). A highly antigenic peptide may also be added that would enable

rapid assay and facile purification of the multi-functional hematopoietic receptor agonist protein by a specific monoclonal antibody.

[0058] "Mutant amino acid sequence," "mutant protein", 5 "variant protein", "mutein", or "mutant polypeptide" refers to a polypeptide having an amino acid sequence which varies from a native sequence due to amino acid deletions, substitutions, or both, or is encoded by a nucleotide sequence intentionally made variant from a native sequence.. "Native sequence" 10 refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.

[0059] Hematopoietic growth factors can be characterized by their ability to stimulate colony formation by human hematopoietic progenitor cells. The colonies formed include 15 erythroid, granulocyte, megakaryocyte, granulocytic macrophages and mixtures thereof. Many of the hematopoietic growth factors have demonstrated the ability to restore bone marrow function and peripheral blood cell populations to therapeutically beneficial levels in studies performed 20 initially in primates and subsequently in humans. Many or all of these biological activities of hematopoietic growth factors involve signal transduction and high affinity receptor binding. Multi-functional hematopoietic receptor agonists of the present invention may exhibit useful properties such as

having similar or greater biological activity when compared to a single factor or by having improved half-life or decreased adverse side effects, or a combination of these properties.

[0060] Multi-functional hematopoietic receptor agonists 5 which have little or no agonist activity maybe useful as antagonists, as antigens for the production of antibodies for use in immunology or immunotherapy, as genetic probes or as intermediates used to construct other useful hIL-3 muteins.

[0061] Biological activity of the multi-functional 10 hematopoietic receptor agonist proteins of the present invention can be determined by DNA synthesis in factor-dependent cell lines or by counting the colony forming units in an in vitro bone marrow assay.

[0062] The multi-functional hematopoietic receptor agonists 15 of the present invention may have an improved therapeutic profile as compared to single acting hematopoietic agonists. For example, some multi-functional hematopoietic receptor agonists of the present invention may have a similar or more potent growth factor activity relative to other hematopoietic 20 agonists without having a similar or corresponding increase in side-effects.

[0063] The present invention also includes the DNA sequences which code for the multi-functional hematopoietic receptor agonist proteins, DNA sequences which are

substantially similar and perform substantially the same function, and DNA sequences which differ from the DNAs encoding the multi-functional hematopoietic receptor agonists of the invention only due to the degeneracy of the genetic 5 code. Also included in the present invention are the oligonucleotide intermediates used to construct the mutant DNAs and the polypeptides coded for by these oligonucleotides.

[0064] Genetic engineering techniques now standard in the art (United States Patent 4,935,233 and Sambrook et al., 10 "Molecular Cloning A Laboratory Manual", Cold Spring Harbor Laboratory, 1989) may be used in the construction of the DNA sequences of the present invention. One such method is cassette mutagenesis (Wells et al., *Gene* **34**:315-323, 1985) in which a portion of the coding sequence in a plasmid is 15 replaced with synthetic oligonucleotides that encode the desired amino acid substitutions in a portion of the gene between two restriction sites.

[0065] Pairs of complementary synthetic oligonucleotides encoding the desired gene can be made and annealed to each 20 other. The DNA sequence of the oligonucleotide would encode sequence for amino acids of desired gene with the exception of those substituted and/or deleted from the sequence.

[0066] Plasmid DNA can be treated with the chosen restriction endonucleases then ligated to the annealed

oligonucleotides. The ligated mixtures can be used to transform competent JM101 cells to resistance to an appropriate antibiotic. Single colonies can be picked and the plasmid DNA examined by restriction analysis and/or DNA sequencing to identify plasmids with the desired genes.

[0067] Cloning of the DNA sequences of the novel multifunctional hematopoietic agonists wherein at least one of the with the DNA sequence of the other colony stimulating factor may be accomplished by the use of intermediate vectors. Alternatively one gene can be cloned directly into a vector containing the other gene. Linkers and adapters can be used for joining the DNA sequences, as well as replacing lost sequences, where a restriction site was internal to the region of interest. Thus genetic material (DNA) encoding one polypeptide, peptide linker, and the other polypeptide is inserted into a suitable expression vector which is used to transform bacteria, yeast, insect cells or mammalian cells. The transformed organism is grown and the protein isolated by standard techniques. The resulting product is therefore a new protein which has a colony stimulating factor joined by a linker region to a second colony stimulating factor.

[0068] Another aspect of the present invention provides plasmid DNA vectors for use in the expression of these novel multi-functional hematopoietic receptor agonists. These

vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention. Appropriate vectors which can transform microorganisms capable of expressing the multi-functional hematopoietic receptor agonists include expression vectors comprising nucleotide sequences coding for the multi-functional hematopoietic receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.

10 [0069] Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the multi-functional hematopoietic receptor agonist polypeptides. The vector employed in the method also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and which are capable of directing the replication and expression thereof in selected host cells.

15 [0070] As another aspect of the present invention, there is provided a method for producing the novel multi-functional hematopoietic receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA sequence coding for expression of a novel multi-functional hematopoietic receptor agonist. Suitable cells or cell lines

may be bacterial cells. For example, the various strains of *E. coli* are well-known as host cells in the field of biotechnology. Examples of such strains include *E. coli* strains JM101 (Yanish-Perron et al. *Gene* **33**: 103-119, 1985) 5 and MON105 (Obukowicz et al., *Applied Environmental Microbiology* **58**: 1511-1523, 1992). Also included in the present invention is the expression of the multi-functional hematopoietic receptor agonist protein utilizing a chromosomal expression vector for *E. coli* based on the bacteriophage Mu 10 (Weinberg et al., *Gene* **126**: 25-33, 1993). Various strains of *B. subtilis* may also be employed in this method. Many strains of yeast cells known to those skilled in the art are also available as host cells for expression of the polypeptides of the present invention. When expressed in the *E. coli* 15 cytoplasm, the gene encoding the multi-functional hematopoietic receptor agonists of the present invention may also be constructed such that at the 5' end of the gene codons are added to encode Met⁻²-Ala⁻¹- or Met⁻¹ at the N-terminus of the protein. The N termini of proteins made in the cytoplasm 20 of *E. coli* are affected by post-translational processing by methionine aminopeptidase (Ben Bassat et al., *J. Bac.* **169**:751-757, 1987) and possibly by other peptidases so that upon expression the methionine is cleaved off the N-terminus. The multi-functional hematopoietic receptor agonists of the

present invention may include multi-functional hematopoietic receptor agonist polypeptides having Met⁻¹, Ala⁻¹ or Met⁻²-Ala⁻¹ at the N-terminus. These mutant multi-functional hematopoietic receptor agonists may also be expressed in *E.* 5 *coli* by fusing a secretion signal peptide to the N-terminus. This signal peptide is cleaved from the polypeptide as part of the secretion process.

[0071] Also suitable for use in the present invention are mammalian cells, such as Chinese hamster ovary cells (CHO). 10 General methods for expression of foreign genes in mammalian cells are reviewed in Kaufman, R. J., 1987) Genetic Engineering, Principles and Methods, Vol. 9, J. K. Setlow, editor, Plenum Press, New York. An expression vector is constructed in which a strong promoter capable of functioning 15 in mammalian cells drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional hematopoietic receptor agonist. For example, plasmids such as pcDNA I/Neo, pRc/RSV, and pRc/CMV (obtained 20 from Invitrogen Corp., San Diego, California) can be used. The eukaryotic secretion signal peptide coding region can be from the gene itself or it can be from another secreted mammalian protein (Bayne, M. L. et al., *Proc. Natl. Acad. Sci.*

USA **84:** 2638-2642, 1987). After construction of the vector containing the gene, the vector DNA is transfected into mammalian cells. Such cells can be, for example, the COS7, HeLa, BHK, CHO, or mouse L lines. The cells can be cultured, 5 for example, in DMEM media (JRH Scientific). The polypeptide secreted into the media can be recovered by standard biochemical approaches following transient expression for 24 - 72 hours after transfection of the cells or after establishment of stable cell lines following selection for 10 antibiotic resistance. The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art. See, e.g., Gething and Sambrook, *Nature*, **293**:620-625, 1981), or alternatively, 15 Kaufman et al, *Mol. Cell. Biol.*, **5(7)**:1750-1759, 1985) or Howley et al., U.S. Pat. No. 4,419,446. Another suitable mammalian cell line is the monkey COS-1 cell line. A similarly useful mammalian cell line is the CV-1 cell line.

[0072] Where desired, insect cells may be utilized as host 20 cells in the method of the present invention. See, e.g., Miller et al., *Genetic Engineering*, **8**:277-298 (Plenum Press 1986) and references cited therein. In addition, general methods for expression of foreign genes in insect cells using Baculovirus vectors are described in: Summers, M. D. and

Smith, G. E., 1987) - A manual of methods for Baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555. An expression vector is constructed comprising a Baculovirus transfer vector, in which

5 a strong Baculovirus promoter (such as the polyhedron promoter) drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional hematopoietic receptor agonist polypeptide. For example, the plasmid

10 pVL1392 (obtained from Invitrogen Corp., San Diego, California) can be used. After construction of the vector carrying the gene encoding the multi-functional hematopoietic receptor agonist polypeptide, two micrograms of this DNA is co-transfected with one microgram of Baculovirus DNA (see

15 Summers & Smith, 1987) into insect cells, strain SF9. Pure recombinant Baculovirus carrying the multi-functional hematopoietic receptor agonist is used to infect cells cultured, for example, in Excell 401 serum-free medium (JRH Biosciences, Lenexa, Kansas). The multi-functional

20 hematopoietic receptor agonist secreted into the medium can be recovered by standard biochemical approaches. Supernatants from mammalian or insect cells expressing the multi-functional hematopoietic receptor agonist protein can be first

concentrated using any of a number of commercial concentration units.

[0073] The multi-functional hematopoietic receptor agonists of the present invention may be useful in the treatment of 5 diseases characterized by decreased levels of either myeloid, erythroid, lymphoid, or megakaryocyte cells of the hematopoietic system or combinations thereof. In addition, they may be used to activate mature myeloid and/or lymphoid cells. Among conditions susceptible to treatment with the 10 polypeptides of the present invention is leukopenia, a reduction in the number of circulating leukocytes (white cells) in the peripheral blood. Leukopenia may be induced by exposure to certain viruses or to radiation. It is often a side effect of various forms of cancer therapy, e.g., exposure 15 to chemotherapeutic drugs, radiation and of infection or hemorrhage. Therapeutic treatment of leukopenia with these multi-functional hematopoietic receptor agonists of the present invention may avoid undesirable side effects caused by treatment with presently available drugs.

20 [0074] The multi-functional hematopoietic receptor agonists of the present invention may be useful in the treatment of neutropenia and, for example, in the treatment of such conditions as aplastic anemia, cyclic neutropenia, idiopathic neutropenia, Chediak-Higashi syndrome, systemic lupus

erythematosus (SLE), leukemia, myelodysplastic syndrome and myelofibrosis.

[0075] The multi-functional hematopoietic receptor agonist of the present invention may be useful in the treatment or prevention of thrombocytopenia. Currently the only therapy for thrombocytopenia is platelet transfusion which are costly and carry the significant risks of infection (HIV, HBV) and alloimmunization. The multi-functional hematopoietic receptor agonist may alleviate or diminish the need for platelet transfusion. Severe thrombocytopenia may result from genetic defects such as Fanconi's Anemia, Wiscott-Aldrich, or May Hegglin syndromes. Acquired thrombocytopenia may result from auto- or allo-antibodies as in Immune Thrombocytopenia Purpura, Systemic Lupus Erythematosus, hemolytic anemia, or fetal maternal incompatibility. In addition, splenomegaly, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, infection or prosthetic heart valves may result in thrombocytopenia. Severe thrombocytopenia may also result from chemotherapy and/or radiation therapy or cancer. Thrombocytopenia may also result from marrow invasion by carcinoma, lymphoma, leukemia or fibrosis.

[0076] The multi-functional hematopoietic receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood.

Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation. Hematopoietic growth factors including G-CSF and GM-CSF have been shown to enhance 5 the number of circulating progenitors and stem cells in the peripheral blood. This has simplified the procedure for peripheral stem cell collection and dramatically decreased the cost of the procedure by decreasing the number of pheresis required. The multi-functional hematopoietic receptor agonist 10 may be useful in mobilization of stem cells and further enhance the efficacy of peripheral stem cell transplantation.

[0077] The multi-functional hematopoietic receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors and stem cells. Colony 15 stimulating factors (CSFs), such as hIL-3, have been administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the neutropenia and thrombocytopenia which are often the result of such treatment. 20 However the period of severe neutropenia and thrombocytopenia may not be totally eliminated. The myeloid lineage, which is comprised of monocytes (macrophages), granulocytes (including neutrophils) and megakaryocytes, is critical in preventing infections and bleeding which can be life-threatening.

Neutropenia and thrombocytopenia may also be the result of disease, genetic disorders, drugs, toxins, radiation and many therapeutic treatments such as conventional oncology therapy.

[0078] Bone marrow transplants have been used to treat this 5 patient population. However, several problems are associated with the use of bone marrow to reconstitute a compromised hematopoietic system including: 1) the number of stem cells in bone marrow, spleen, or peripheral blood is limited, 2) Graft Versus Host Disease, 3) graft rejection and 4) possible 10 contamination with tumor cells. Stem cells make up a very small percentage of the nucleated cells in the bone marrow, spleen and peripheral blood. It is clear that a dose response exists such that a greater number of stem cells will enhance hematopoietic recovery. Therefore, the in vitro expansion of 15 stem cells should enhance hematopoietic recovery and patient survival. Bone marrow from an allogeneic donor has been used to provide bone marrow for transplant. However, Graft Versus Host Disease and graft rejection limit bone marrow transplantation even in recipients with HLA-matched sibling 20 donors. An alternative to allogeneic bone marrow transplants is autologous bone marrow transplants. In autologous bone marrow transplants, some of the patient's own marrow is harvested prior to myeloablative therapy, e.g. high dose chemotherapy, and is transplanted back into the patient

afterwards. Autologous transplants eliminate the risk of Graft Versus Host Disease and graft rejection. However, autologous bone marrow transplants still present problems in terms of the limited number of stems cells in the marrow and possible 5 contamination with tumor cells. The limited number of stem cells may be overcome by ex-vivo expansion of the stem cells. In addition, stem cells can be specifically isolated, based on the presence of specific surface antigens such as CD34+ in order to decrease tumor cell contamination of the marrow 10 graft.

[0079] The following patents contain further details on separating stem cells, CD34+ cells, culturing the cells with hematopoietic factors, the use of the cells for the treatment of patients with hematopoietic disorders and the use of 15 hematopoietic factors for cell expansion and gene therapy.

5,061,620 relates to compositions comprising human hematopoietic stem cells provided by separating the stem cells from dedicated cells.

5,199,942 describes a method for autologous hematopoietic 20 cell transplantation comprising: (1) obtaining hematopoietic progenitor cells from a patient; (2) ex-vivo expansion of cells with a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM-CSF, IL-1, GM-CSF/IL-3 fusion protein and combinations thereof; (3) administering

cellular preparation to a patient.

5,240,856 relates to a cell separator that includes an apparatus for automatically controlling the cell separation process.

5 WO 91/16116 describes devices and methods for selectively isolating and separating target cells from a mixture of cells.

WO 91/18972 describes methods for in vitro culturing of bone marrow, by incubating suspension of bone marrow cells, using a hollow fiber bioreactor.

10 WO 92/18615 relates to a process for maintaining and expanding bone marrow cells, in a culture medium containing specific mixtures of cytokines, for use in transplants.

15 WO 93/08268 describes a method for selectively expanding stem cells, comprising the steps of (a) separating CD34+ stem cells from other cells and (b) incubating the separated cells in a selective medium, such that the stem cells are selectively expanded.

WO 93/18136 describes a process for in vitro support of mammalian cells derived from peripheral blood.

20 WO 93/18648 relates to a composition comprising human neutrophil precursor cells with a high content of myeloblasts and promyelocytes for treating genetic or acquired neutropenia.

WO 94/08039 describes a method of enrichment for human

hematopoietic stem cells by selection for cells which express c-kit protein.

WO 94/11493 describes a stem cell population that are CD34+ and small in size, which are isolated using a 5 counterflow elutriation method.

WO 94/27698 relates to a method combining immunoaffinity separation and continuous flow centrifugal separation for the selective separation of a nucleated heterogeneous cell population from a heterogeneous cell mixture.

10 WO 94/25848 describes a cell separation apparatus for collection and manipulation of target cells.

[0080] The long term culturing of highly enriched CD34+ precursors of hematopoietic progenitor cells from human bone marrow in cultures containing IL-1 α , IL-3, IL-6 or GM-CSF is 15 discussed in Brandt et al *J. Clin. Invest.* **86**:932-941, 1990).

[0081] One aspect of the present invention provides a method for selective ex-vivo expansion of stem cells. The term "stem cell" refers to the totipotent hematopoietic stem cells as well as early precursors and progenitor cells which can be 20 isolated from bone marrow, spleen or peripheral blood. The term "expansion" refers to the differentiation and proliferation of the cells. The present invention provides a method for selective ex-vivo expansion of stem cells, comprising the steps of: (a) separating stem cells from other

cells, (b) culturing said separated stem cells with a selective media which contains multi-functional hematopoietic receptor agonist protein(s) and (c) harvesting said stems cells. Stem cells, as well as committed progenitor cells 5 destined to become neutrophils, erythrocytes, platelets, etc. may be distinguished from most other cells by the presence or absence of particular progenitor marker antigens, such as CD34, that are present on the surface of these cells and/or by morphological characteristics. The phenotype for a highly 10 enriched human stem cell fraction is reported as CD34+, Thy-1+ and lin-, but it is to be understood that the present invention is not limited to the expansion of this stem cell population. The CD34+ enriched human stem cell fraction can be separated by a number of reported methods, including affinity 15 columns or beads, magnetic beads or flow cytometry using antibodies directed to surface antigens such as the CD34+. Further, physical separation methods such as counterflow elutriation may be used to enrich hematopoietic progenitors. The CD34+ progenitors are heterogeneous, and may be divided 20 into several sub-populations characterized by the presence or absence of co-expression of different lineage associated cell surface associated molecules. The most immature progenitor cells do not express any known lineage associated markers, such as HLA-DR or CD38, but they may express CD90(thy-1).

Other surface antigens such as CD33, CD38, CD41, CD71, HLA-DR or c-kit can also be used to selectively isolate hematopoietic progenitors. The separated cells can be incubated in selected medium in a culture flask, sterile bag or in hollow fibers.

5 Various colony stimulating factors may be utilized in order to selectively expand cells. Representative factors that have been utilized for ex-vivo expansion of bone marrow include, c-kit ligand, IL-3, G-CSF, GM-CSF, IL-1, IL-6, IL-11, flt-3 ligand or combinations thereof. The proliferation of the stem
10 cells can be monitored by enumerating the number of stem cells and other cells, by standard techniques (e.g. hemacytometer, CFU, LTCIC) or by flow cytometry prior and subsequent to incubation.

[0082] Several methods for ex-vivo expansion of stem cells
15 have been reported utilizing a number of selection methods and expansion using various colony stimulating factors including c-kit ligand (Brandt et al., *Blood* **83**:1507-1514 [1994], McKenna et al., *Blood* **86**:3413-3420 [1995]), IL-3 (Brandt et al., *Blood* **83**:1507-1514 [1994], Sato et al., *Blood* **82**:3600-
20 3609 [1993]), G-CSF (Sato et al., *Blood* **82**:3600-3609 [1993]), GM-CSF (Sato et al., *Blood* **82**:3600-3609 [1993]), IL-1 (Muench et al., *Blood* **81**:3463-3473 [1993]), IL-6 (Sato et al., *Blood* **82**:3600-3609 [1993]), IL-11 (Lemoli et al., *Exp. Hem.* **21**:1668-1672 [1993], Sato et al., *Blood* **82**:3600-3609 [1993]), flt-3

ligand (McKenna et al., *Blood* **86**:3413-3420 [1995]) and/or combinations thereof (Brandt et al., *Blood* **83**:1507-1514 [1994], Haylock et al., *Blood* **80**:1405-1412 [1992], Koller et al., *Biotechnology* **11**:358-363 [1993], (Lemoli et al., *Exp. Hem.* **21**:1668-1672 [1993]), McKenna et al., *Blood* **86**:3413-3420 [1995], Muench et al., *Blood* **81**:3463-3473 [1993], Patchen et al., *Biotherapy* **7**:13-26 [1994], Sato et al., *Blood* **82**:3600-3609 [1993], Smith et al., *Exp. Hem.* **21**:870-877 [1993], Steen et al., *Stem Cells* **12**:214-224 [1994], Tsujino et al., *Exp. Hem.* **21**:1379-1386 [1993]). Among the individual colony stimulating factors, hIL-3 has been shown to be one of the most potent in expanding peripheral blood CD34+ cells (Sato et al., *Blood* **82**:3600-3609 [1993], Kobayashi et al., *Blood* **73**:1836-1841 [1989]). However, no single factor has been shown to be as effective as the combination of multiple factors. The present invention provides methods for ex vivo expansion that utilize multi-functional hematopoietic receptor agonists that are more effective than a single factor alone.

[0083] Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, *Blood* **85**:997-1105, 1995) that has

been supplemented with a multi-functional hematopoietic receptor agonist of the present invention.

[0084] Another projected clinical use of growth factors has been in the in vitro activation of hematopoietic progenitors and stem cells for gene therapy. Due to the long life-span of hematopoietic progenitor cells and the distribution of their daughter cells throughout the entire body, hematopoietic progenitor cells are good candidates for ex vivo gene transfection. In order to have the gene of interest incorporated into the genome of the hematopoietic progenitor or stem cell one needs to stimulate cell division and DNA replication. Hematopoietic stem cells cycle at a very low frequency which means that growth factors may be useful to promote gene transduction and thereby enhance the clinical prospects for gene therapy. Potential applications of gene therapy (review Crystal, *Science* **270**:404-410 [1995]) include; 1) the treatment of many congenital metabolic disorders and immunodeficiencies (Kay and Woo, *Trends Genet.* **10**:253-257 [1994]), 2) neurological disorders (Friedmann, *Trends Genet.* **10**:210-214 [1994]), 3) cancer (Culver and Blaese, *Trends Genet.* **10**:174-178 [1994]) and 4) infectious diseases (Gilboa and Smith, *Trends Genet.* **10**:139-144 [1994]).

[0085] There are a variety of methods, known to those with skill in the art, for introducing genetic material into a host

cell. A number of vectors, both viral and non-viral have been developed for transferring therapeutic genes into primary cells. Viral based vectors include; 1) replication deficient recombinant retrovirus (Boris-Lawrie and Temin, *Curr. Opin. Genet. Dev.* **3**:102-109 [1993], Boris-Lawrie and Temin, *Annal. New York Acad. Sci.* **716**:59-71 [1994], Miller, *Current Top. Microbiol. Immunol.* **158**:1-24 [1992]) and replication-deficient recombinant adenovirus (Berkner, *BioTechniques* **6**:616-629 [1988], Berkner, *Current Top. Microbiol. Immunol.* **158**:39-66 [1992], Brody and Crystal, *Annal. New York Acad. Sci.* **716**:90-103 [1994]). Non-viral based vectors include protein/DNA complexes (Cristiano et al., *PNAS USA* **90**:2122-2126 [1993], Curiel et al., *PNAS USA* **88**:8850-8854 [1991], Curiel, *Annal. New York Acad. Sci.* **716**:36-58 [1994]), electroporation and liposome mediated delivery such as cationic liposomes (Farhood et al., *Annal. New York Acad. Sci.* **716**:23-35 [1994]).

[0086] The present invention provides an improvement to the existing methods of expanding hematopoietic cells, which new genetic material has been introduced, in that it provides methods utilizing multi-functional hematopoietic receptor agonist proteins that have improved biological activity, including an activity not seen by any single colony stimulation factor.

[0087] Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin, 5 gancyclovir, daunomycin and sulfa drugs, phenothiazones, tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. The multi-functional hematopoietic 10 receptor agonists of the present invention may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.

[0088] Hematopoietic deficiencies may also occur as a 15 result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal failure, e.g., dialysis. The multi-functional hematopoietic receptor agonists of the present invention may be useful in treating such hematopoietic deficiencies.

20 [0089] The treatment of hematopoietic deficiency may include administration of a pharmaceutical composition containing the multi-functional hematopoietic receptor agonists to a patient. The multi-functional hematopoietic receptor agonists of the present invention may also be useful

for the activation and amplification of hematopoietic precursor cells by treating these cells in vitro with the multi-functional hematopoietic receptor agonist proteins of the present invention prior to injecting the cells into a 5 patient.

[0090] Various immunodeficiencies, e.g., in T and/or B lymphocytes, or immune disorders, e.g., rheumatoid arthritis, may also be beneficially affected by treatment with the multi-functional hematopoietic receptor agonists of the present 10 invention. Immunodeficiencies may be the result of viral infections, e.g., HTLV, HTLVII, HTLVIII, severe exposure to radiation, cancer therapy or the result of other medical treatment. The multi-functional hematopoietic receptor agonists of the present invention may also be employed, alone 15 or in combination with other colony stimulating factors, in the treatment of other blood cell deficiencies, including thrombocytopenia (platelet deficiency), or anemia. Other uses for these novel polypeptides are the in vivo and ex vivo treatment of patients recovering from bone marrow transplants, 20 and in the development of monoclonal and polyclonal antibodies generated by standard methods for diagnostic or therapeutic use.

[0091] Other aspects of the present invention are methods and therapeutic compositions for treating the conditions

referred to above. Such compositions comprise a therapeutically effective amount of one or more of the multi-functional hematopoietic receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.

[0092] The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician considering various factors which modify the action of drugs, e.g., the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, a daily regimen may be in the range of 0.2 - 150 µg/kg of multi-functional hematopoietic receptor agonist protein per kilogram of body weight. Dosages would be adjusted relative to the activity of a given multi-functional hematopoietic receptor agonist protein and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and

as high as 1 milligram per kilogram of body weight per day. In addition, there may exist specific circumstances where dosages of multi-functional hematopoietic receptor agonist would be adjusted higher or lower than the range of 0.2 - 150 5 micrograms per kilogram of body weight. These include co-administration with other colony stimulating factors or IL-3 variants or growth factors; co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated multi-functional hematopoietic receptor agonist 10 protein; and various patient-related issues mentioned earlier in this section. As indicated above, the therapeutic method and compositions may also include co-administration with other human factors. A non-exclusive list of other appropriate colony stimulating factors (CSFs), cytokines, lymphokines, 15 hematopoietic growth factors and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL- 20 11, IL-12, IL-13, IL-15, IL-16, LIF, flt3 ligand, and stem cell factor (SCF) also known as steel factor or c-kit ligand, or combinations thereof. The dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition. Progress of the treated patient can

be monitored by periodic assessment of the hematological profile, e.g., differential cell count and the like.

MATERIALS AND METHODS

5 [0093] Unless noted otherwise, all specialty chemicals were obtained from Sigma, Co. (St. Louis, MO). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, 10 IN).

Transformation of *E. coli* strains

[0094] *E. coli* strains, such as DH5 α TM (Life Technologies, Gaithersburg, MD) and TG1 (Amersham Corp., Arlington Heights, 15 IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells. *E. coli* strains, such as JM101 (Yanisch-Perron, et al., *Gene*, 33: 103-119, 1985) and MON105 (Obukowicz, et al., *Appl. and Envir. Micr.*, 58: 1511-1523, 1992) can be used for expressing 20 the multi-functional hematopoietic receptor agonist of the present invention in the cytoplasm or periplasmic space.

MON105 ATCC#55204: F-, lambda-, IN(rrnD, rrE)1, rpoD+, rpoH358

25 DH5 α TM: F-, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-,mk+), phoA, supE44lambda-, thi-1, gyrA96, relA1

30 TG1: delta(lac-pro), supE, thi-1, hsdD5/F' (traD36, proA+B+, lacIq, lacZdeltaM15)

JM101 ATCC#33876: delta (pro lac), supE, thi,
F' (traD36, proA+B+, lacIq, lacZdeltaM15)

[0095] DH5 α ™ Subcloning efficiency cells are purchased as
5 competent cells and are ready for transformation using the
manufacturer's protocol, while both *E. coli* strains TG1 and
MON105 are rendered competent to take up DNA using a CaCl₂
method. Typically, 20 to 50 mL of cells are grown in LB
medium (1% bacto-tryptone, 0.5% bacto-yeast extract, 150 mM
10 NaCl) to a density of approximately 1.0 optical density unit
at 600 nanometers (OD₆₀₀) as measured by a Baush & Lomb
Spectronic spectrophotometer (Rochester, NY). The cells are
collected by centrifugation and resuspended in one-fifth
culture volume of CaCl₂ solution (50 mM CaCl₂, 10 mM Tris-Cl,
15 pH7.4) and are held at 4°C for 30 minutes. The cells are
again collected by centrifugation and resuspended in one-tenth
culture volume of CaCl₂ solution. Ligated DNA is added to 0.2
mL of these cells, and the samples are held at 4°C for 30-60
minutes. The samples are shifted to 42°C for two minutes and
20 1.0 mL of LB is added prior to shaking the samples at 37°C for
one hour. Cells from these samples are spread on plates (LB
medium plus 1.5% bacto-agar) containing either ampicillin (100
micrograms/mL, ug/mL) when selecting for ampicillin-resistant
transformants, or spectinomycin (75 ug/mL) when selecting for
25 spectinomycin-resistant transformants. The plates are

incubated overnight at 37°C. Colonies are picked and inoculated into LB plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL spectinomycin) and are grown at 37°C while shaking.

5 Methods For Creation of Genes
 With New N-Terminus/C-Terminus

Method I.

10 Creation of genes with new N-terminus/C-terminus
 which contain a linker region (L₂).

[0096] Genes with new N-terminus/C-terminus which contain a linker region (L₂) separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al *J. Am. Chem. Soc.* **116**, 5529-5533, 1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DNA sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in Figure 2.

20 [0097] In the first step, the first primer set ("new start" and "linker start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start") that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker (L₂) that connects the C-terminal and N-terminal ends of the original protein. In the second step, the second primer set ("new stop" and "linker stop") is used to create and amplify, from the original gene

sequence, the DNA fragment ("Fragment Stop") that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The "new start" and "new stop" primers are designed to include the appropriate restriction sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT).

[0098] "Fragment Start" and "Fragment Stop", which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The DNA fragments "Fragment Start" and "Fragment Stop" are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined in equimolar quantities, heated at 70°C for ten minutes and slow

cooled to allow annealing through their shared sequence in "linker start" and "linker stop". In the third PCR step, primers "new start" and "new stop" are added to the annealed fragments to create and amplify the full-length new N-terminus/C-terminus gene. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 60°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and approximately 0.5 ug of DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions are purified using a Wizard PCR Preps kit (Promega).

15 Method II.

Creation of genes with new
N-terminus/C-terminus without a linker region.

[0099] New N-terminus/C-terminus genes without a linker
20 joining the original N-terminus and C-terminus can be made
using two steps of PCR amplification and a blunt end ligation.
The steps are illustrated in Figure 3. In the first step, the
primer set ("new start" and "P-bl start") is used to create
and amplify, from the original gene sequence, the DNA fragment
25 ("Fragment Start") that contains the sequence encoding the new
N-terminal portion of the new protein. In the second step,

the primer set ("new stop" and "P-bl stop") is used to create and amplify, from gene sequence, the DNA fragment ("Fragment Stop") that contains the sequence encoding the new C-terminal portion of the new protein. The "new start" and "new stop" 5 primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for 45 seconds and 72°C extension for 45 seconds.

10 Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manufacturer. The "P-bl start" and "P-bl stop" primers are phosphorylated at the 5' end to aid in the subsequent blunt end ligation of "Fragment Start" and "Fragment Stop" to each 15 other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and 1x Vent buffer (New England Biolabs), 300 uM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, 20 Norwalk, CT). PCR reaction products are purified using a Wizard PCR Preps kit (Promega).

[00100] The primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typically "Fragment Start" is

designed to create NcoI restriction site , and "Fragment Stop" is designed to create a HindIII restriction site. Restriction digest reactions are purified using a Magic DNA Clean-up System kit (Promega). Fragments Start and Stop are resolved 5 on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined with and annealed to the ends of the ~ 3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50°C for ten minutes and allowed to slow cool. The three 10 fragments are ligated together using T4 DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/C-terminus gene. A portion of the ligation reaction is used to transform *E. coli* strain DH5á cells (Life Technologies, Gaithersburg, MD). Plasmid DNA is purified and 15 sequence confirmed as below.

Method III.
Creation of new N-terminus/C-terminus
genes by tandem-duplication method

20 [0100] New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al *Protein Eng.* 5:427-431, 1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps 25 are illustrated in Figure 3.

[0101] The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA sequence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reactions are purified using a Wizard PCR Preps kit (Promega).

Cloning of new N-terminus/C-terminus genes
into multi-functional receptor agonist expression vectors.

[0102] The new N-terminus/C-terminus gene is digested with restriction endonucleases to create ends that are compatible

to insertion into an expression vector containing another colony stimulating factor gene. This expression vector is likewise digested with restriction endonucleases to form compatible ends. After purification, the gene and the vector 5 DNAs are combined and ligated using T4 DNA ligase. A portion of the ligation reaction is used to transform *E. coli*. Plasmid DNA is purified and sequenced to confirm the correct insert. The correct clones are grown for protein expression.

10 DNA isolation and characterization

[0103] Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein. Plasmid DNA is isolated using the Promega Wizard™ Miniprep kit 15 (Madison, WI), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000 x g), plasmid DNA released with sequential NaOH/acid treatment, and 20 cellular debris is removed by centrifugation (10000 x g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the *E. coli* cells are 25 inoculated into 50-100 mls of LB plus appropriate antibiotic

for overnight growth at 37°C in an air incubator while shaking. The purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, *E. coli* or
5 other cells.

Sequence confirmation.

[0104] Purified plasmid DNA is resuspended in dH₂O and quantitated by measuring the absorbance at 260/280 nm in a
10 Bausch and Lomb Spectronic 601 UV spectrometer. DNA samples are sequenced using ABI PRISM™ DyeDeoxy™ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manufacturers suggested protocol
15 usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep™
20 spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA sequencer. Overlapping DNA sequence
25 fragments are analyzed and assembled into master DNA contigs

using Sequencher v2.1 DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).

Expression of multi-functional
receptor agonists in mammalian cells

5

Mammalian Cell Transfection/Production of Conditioned Media

[0105] The BHK-21 cell line can be obtained from the ATCC (Rockville, MD). The cells are cultured in Dulbecco's modified Eagle media (DMEM/high-glucose), supplemented to 2 mM (mM) L-glutamine and 10% fetal bovine serum (FBS). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL hygromycin B (Calbiochem, San Diego, CA). The BHK-21 cell line was previously stably transfected with the HSV transactivating protein VP16, which transactivates the IE110 promoter found on the plasmid pMON3359 (See Hippenmeyer et al., *Bio/Technology*, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21 cells expressing the transactivating protein VP16 are designated BHK-VP16. The plasmid pMON1118 (See Highkin et al., *Poultry Sci.*, 70: 970-981, 1991) expresses the hygromycin resistance gene from the SV40 promoter. A similar plasmid is available from ATCC, pSV2-hph.

[0106] BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3×10^5 cells per dish 24 hours prior

to transfection. Cells are transfected for 16 hours in 3 mL of "OPTIMEM"™ (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, pMON1118, and 80 ug of Gibco-BRL "LIPOFECTAMINE"™ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours post-transfection, media from each dish is collected and assayed for activity (transient conditioned media). The cells are removed from the dish by trypsin-EDTA, diluted 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies several millimeters in diameter. The colonies are removed from the dish with filter paper (cut to approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the conditioned media is re-assayed, and positive clones are expanded into growth media.

20 Expression of multi-functional receptor agonists in *E. coli*

[0107] *E. coli* strain MON105 or JM101 harboring the plasmid of interest are grown at 37°C in M9 plus casamino acids medium
25 with shaking in a air incubator Model G25 from New Brunswick

Scientific (Edison, New Jersey). Growth is monitored at OD600 until it reaches a value of 1.0 at which time Nalidixic acid (10 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 µg/mL. The cultures are then shaken at 5 37°C for three to four additional hours. A high degree of aeration is maintained throughout culture period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies (IB). One mL aliquots of the culture are 10 removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al. Molecular Cloning: A Laboratory Manual, 1982). The culture is 15 centrifuged (5000 x g) to pellet the cells.

20 Inclusion Body preparation, Extraction, Refolding, Dialysis, DEAE Chromatography, and Characterization of the multi-functional hematopoietic receptor agonists which accumulate as inclusion bodies in *E. coli*.

20 Isolation of Inclusion Bodies:

[0108] The cell pellet from a 330 mL *E. coli* culture is resuspended in 15 mL of sonication buffer (10 mM 2-amino-2-25 (hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH 8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA). These resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-

Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The first round of sonication is a 3 minute burst 5 followed by a 1 minute burst, and the final two rounds of sonication are for 1 minute each.

Extraction and refolding of
proteins from inclusion body pellets:

- 10 [0109] Following the final centrifugation step, the IB pellet is resuspended in 10 mL of 50 mM Tris-HCl, pH 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to allow for denaturation of the expressed protein.
- 15 [0110] The extraction solution is transferred to a beaker containing 70 mL of 5 mM Tris-HCl, pH 9.5 and 2.3 M urea and gently stirred while exposed to air at 4°C for 18 to 48 hours to allow the proteins to refold. Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high 20 pressure liquid chromatography (RP-HPLC) column (0.46x25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Denatured proteins generally elute later 25 in the gradient than the refolded proteins.

Purification

[0111] Following the refold, contaminating *E. coli* proteins are removed by acid precipitation. The pH of the refold 5 solution is titrated to between pH 5.0 and pH 5.2 using 15% (v/v) acetic acid (HOAc). This solution is stirred at 4°C for 2 hours and then centrifuged for 20 minutes at 12,000 x g to pellet any insoluble protein.

[0112] The supernatant from the acid precipitation step is 10 dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,500 daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10 mM Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE 15 chromatography. The sample is then centrifuged (20 minutes at 12,000 x g) to pellet any insoluble protein following dialysis.

[0113] A Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used 20 for ion exchange chromatography. The column is equilibrated in a buffer containing 10 mM Tris-HCl, pH 8.0, and a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buffer, over 45 column volumes is used to elute the protein. A flow rate of 1.0 mL per minute is used throughout the run. Column fractions (2.0 mL per fraction) are collected across the 25 gradient and analyzed by RP HPLC on a Vydac (Hesperia, Ca.)

C18 column (0.46 x 25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then 5 dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH₄Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons. Finally, the sample is sterile filtered using a 0.22µm syringe filter (µStar LB syringe 10 filter, Costar, Cambridge, Ma.), and stored at 4°C.

[0114] In some cases the folded proteins can be affinity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a 15 variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.

[0115] These and other protein purification methods are described in detail in *Methods in Enzymology*, Volume 182 20 'Guide to Protein Purification' edited by Murray Deutscher, Academic Press, San Diego, CA (1990).

Protein Characterization:

[0116] The purified protein is analyzed by RP-HPLC, 25 electrospray mass spectrometry, and SDS-PAGE. The protein

quantitation is done by amino acid composition, RP-HPLC, and Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.

AML Proliferation Assay for Bioactive Human Interleukin-3

[0117] The factor-dependent cell line AML 193 was obtained from the American Type Culture Collection (ATCC, Rockville, MD). This cell line, established from a patient with acute myelogenous leukemia, is a growth factor dependent cell line which displayed enhanced growth in GM-CSF supplemented medium (Lange, B., et al., *Blood* **70**: 192, 1987; Valtieri, M., et al., *J. Immunol.* **138**: 4042, 1987). The ability of AML 193 cells to proliferate in the presence of human IL-3 has also been documented. (Santoli, D., et al., *J. Immunol.* **139**: 348, 1987). A cell line variant was used, AML 193 1.3, which was adapted for long term growth in IL-3 by washing out the growth factors and starving the cytokine dependent AML 193 cells for growth factors for 24 hours. The cells are then replated at 1×10^5 cells/well in a 24 well plate in media containing 100 U/mL IL-3. It took approximately 2 months for the cells to grow rapidly in IL-3. These cells are maintained as AML 193 1.3 thereafter by supplementing tissue culture medium (see below) with human IL-3.

[0118] AML 193 1.3 cells are washed 6 times in cold Hanks balanced salt solution (HBSS, Gibco, Grand Island, NY) by centrifuging cell suspensions at 250 x g for 10 minutes followed by decantation of the supernatant. Pelleted cells 5 are resuspended in HBSS and the procedure is repeated until six wash cycles are completed. Cells washed six times by this procedure are resuspended in tissue culture medium at a density ranging from 2 x 10⁵ to 5 x 10⁵ viable cells/mL. This medium is prepared by supplementing Iscove's modified 10 Dulbecco's Medium (IMDM, Hazelton, Lenexa, KS) with albumin, transferrin, lipids and 2-mercaptoethanol. Bovine albumin (Boehringer-Mannheim, Indianapolis, IN) is added at 500 µg/mL; human transferrin (Boehringer-Mannheim, Indianapolis, IN) is added at 100 µg/mL; soybean lipid (Boehringer-Mannheim, 15 Indianapolis, IN) is added at 50 µg/mL; and 2-mercaptoethanol (Sigma, St. Louis, MO) is added at 5 x 10⁻⁵ M.

[0119] Serial dilutions of human interleukin-3 or multi-functional hematopoietic receptor agonist proteins are made in triplicate series in tissue culture medium supplemented as 20 stated above in 96 well Costar 3596 tissue culture plates. Each well contained 50 µl of medium containing interleukin-3 or multi-functional hematopoietic receptor agonist proteins once serial dilutions are completed. Control wells contained tissue culture medium alone (negative control). AML 193 1.3

cell suspensions prepared as above are added to each well by pipetting 50 μ l (2.5×10^4 cells) into each well. Tissue culture plates are incubated at 37°C with 5% CO₂ in humidified air for 3 days. On day 3, 0.5 μ Ci ³H-thymidine (2 Ci/mM, New England Nuclear, Boston, MA) is added in 50 μ l of tissue culture medium. Cultures are incubated at 37°C with 5% CO₂ in humidified air for 18-24 hours. Cellular DNA is harvested onto glass filter mats (Pharmacia LKB, Gaithersburg, MD) using a TOMTEC cell harvester (TOMTEC, Orange, CT) which utilized a water wash cycle followed by a 70% ethanol wash cycle. Filter mats are allowed to air dry and then placed into sample bags to which scintillation fluid (Scintiverse II, Fisher Scientific, St. Louis, MO or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, MD) is added. Beta emissions of samples from individual tissue culture wells are counted in a LKB BetaPlate model 1205 scintillation counter (Pharmacia LKB, Gaithersburg, MD) and data is expressed as counts per minute of ³H-thymidine incorporated into cells from each tissue culture well. Activity of each human interleukin-3 preparation or multi-functional hematopoietic receptor agonist protein preparation is quantitated by measuring cell proliferation (³H-thymidine incorporation) induced by graded concentrations of interleukin-3 or multi-functional hematopoietic receptor agonist. Typically, concentration

ranges from 0.05 pM - 10⁵ pM are quantitated in these assays.

Activity is determined by measuring the dose of interleukin-3 or multi-functional hematopoietic receptor agonist protein which provides 50% of maximal proliferation (EC₅₀ = 0.5 ×

5 (maximum average counts per minute of ³H-thymidine incorporated per well among triplicate cultures of all concentrations of interleukin-3 tested - background proliferation measured by ³H-thymidine incorporation observed in triplicate cultures lacking interleukin-3). This EC₅₀
10 value is also equivalent to 1 unit of bioactivity. Every assay is performed with native interleukin-3 as a reference standard so that relative activity levels could be assigned.

15 [0120] Typically, the multi-functional hematopoietic receptor agonist proteins were tested in a concentration range of 2000 pM to 0.06 pM titrated in serial 2 fold dilutions.

[0121] Activity for each sample was determined by the concentration which gave 50% of the maximal response by fitting a four-parameter logistic model to the data. It was observed that the upper plateau (maximal response) for the
20 sample and the standard with which it was compared did not differ. Therefore relative potency calculation for each sample was determined from EC₅₀ estimations for the sample and the standard as indicated above. AML 193.1.3 cells proliferate in response to hIL-3, hGM-CSF and hG-CSF. Therefore the

following additional assays were performed for some samples to demonstrate that the G-CSF receptor agonist portion of the multi-functional hematopoietic receptor agonist proteins was active. The proliferation assay was performed with the multi-
5 functional hematopoietic receptor agonist plus and minus neutralizing monoclonal antibodies to the hIL-3 receptor agonist portion. In addition, a fusion molecule with the factor Xa cleavage site was cleaved then purified and the halves of the molecule were assayed for proliferative
10 activity. These experiments showed that both components of the multi-functional hematopoietic receptor agonist proteins were active.

TF1 c-mpl ligand dependent proliferation assay

15 [0122] The c-mpl ligand proliferative activity can be assayed using a subclone of the pluripotential human cell line TF1 (Kitamura et al., J. Cell Physiol 140:323-334. [1989]). TF1 cells are maintained in h-IL3 (100 U/mL). To establish a sub-
clone responsive to c-mpl ligand, cells are maintained in
20 passage media containing 10% supernatant from BHK cells transfected with the gene expressing the 1-153 form of c-mpl ligand (pMON26448). Most of the cells die, but a subset of cells survive. After dilution cloning, a c-mpl ligand responsive clone is selected, and these cells are split into
25 passage media to a density of 0.3×10^6 cells/mL the day prior

to assay set-up. Passage media for these cells is the following: RPMI 1640 (Gibco), 10% FBS (Harlan, Lot #91206), 10% c-mpl ligand supernatant from transfected BHK cells, 1 mM sodium pyruvate (Gibco), 2 mM glutamine (Gibco), and 100 ug/mL 5 penicillin-streptomycin (Gibco). The next day, cells are harvested and washed twice in RPMI or IMDM media with a final wash in the ATL, or assay media. ATL medium consists of the following:IMDM (Gibco), 500 ug/mL of bovine serum albumin, 100 ug/mL of human transferrin, 50 ug/mL soybean lipids, 4 x 10⁻⁸M 10 beta-mercaptoethanol and 2 mL of A9909 (Sigma, antibiotic solution) per 1000 mL of ATL. Cells are diluted in assay media to a final density of 0.25 x 10⁶ cells/mL in a 96-well low evaporation plate (Costar) to a final volume of 50 ul. Transient supernatants (conditioned media) from transfected 15 clones are added at a volume of 50 ul as duplicate samples at a final concentration of 50% and diluted three-fold to a final dilution of 1.8%. Triplicate samples of a dose curve of IL-3 variant pMON13288 starting at 1 ng/mL and diluted using three-fold dilutions to 0.0014ng/mL is included as a positive 20 control. Plates are incubated at 5% CO₂ and 37° C. At day six of culture, the plate is pulsed with 0.5 Ci of ³H/well (NEN) in a volume of 20 ul/well and allowed to incubate at 5% CO₂ and 37° C for four hours. The plate is harvested and counted on a Betaplate counter.

Other in vitro cell based proliferation assays

[0123] Other in vitro cell based assays, known to those skilled in the art, may also be useful to determine the 5 activity of the multi-functional hematopoietic receptor agonists depending on the factors that comprise the molecule in a similar manner as described in the AML 193.1.3 cell proliferation assay. The following are examples of other useful assays.

10

TF1 proliferation assay: TF1 is a pluripotential human cell line (Kitamura et al., J. Cell Physiol 140:323-334. [1989]) that responds to hIL-3.

32D proliferation assay: 32D is a murine IL-3 dependent 15 cell line which does not respond to human IL-3 but does respond to human G-CSF which is not species restricted.

Baf/3 proliferation assay: Baf/3 is a murine IL-3 dependent cell line which does not respond to human IL-3 or human c-mpl ligand but does respond to human G-CSF which is 20 not species restricted.

T1165 proliferation assay: T1165 cells are a IL-6 dependent murine cell line (Nordan et al., 1986) which respond to IL-6 and IL-11.

Human Plasma Clot meg-CSF Assay: Used to assay 25 megakaryocyte colony formation activity (Mazur et al., 1981).

Transfected cell lines

[0124] Cell lines such as the murine Baf/3 cell line can be transfected with a colony stimulating factor receptor, such as 5 the human G-CSF receptor or human c-mpl receptor, which the cell line does not have. These transfected cell lines can be used to determine the activity of the ligand for which the receptor has been transfected into the cell line.

[0125] One such transfected Baf/3 cell line was made by 10 cloning the cDNA encoding c-mpl from a library made from a c-mpl responsive cell line and cloned into the multiple cloning site of the plasmid pcDNA3 (Invitrogen, San Diego Ca.). Baf/3 cells were transfected with the plasmid via electroporation. The cells were grown under G418 selection in the presence of 15 mouse IL-3 in Wehi conditioned media. Clones were established through limited dilution.

[0126] In a similar manner the human G-CSF receptor can be transfected into the Baf/3 cell line and used to determine the bioactivity of the multi-functional hematopoietic receptor 20 agonists.

Analysis of c-mpl ligand proliferative activity

Methods

1. Bone marrow proliferation assay

25 a. CD34+ Cell Purification:

Bone marrow aspirates (15-20 mL) were obtained from

normal allogeneic marrow donors after informed consent. Cells were diluted 1:3 in phosphate buffered saline (PBS, Gibco-BRL), 30 mL were layered over 15 mL Histopaque-1077 (Sigma) and centrifuged for 30 minutes at 300 RCF. The mononuclear 5 interface layer was collected and washed in PBS. CD34+ cells were enriched from the mononuclear cell preparation using an affinity column per manufacturers instructions (CellPro, Inc, Bothell WA). After enrichment, the purity of CD34+ cells was 10 70% on average as determined by using flow cytometric analysis using anti-CD34 monoclonal antibody conjugated to fluorescein and anti-CD38 conjugated to phycoerythrin (Becton Dickinson, San Jose CA).

Cells were resuspended at 40,000 cells/mL in X-Vivo 10 media (Bio-Whittaker, Walkersville, MD) and 1 mL was plated in 15 12-well tissue culture plates (Costar). The growth factor rhIL-3 was added at 100 ng/mL (pMON5873) was added to some wells. hIL3 variants were used at 10 ng/mL to 100 ng/mL. Conditioned media from BHK cells transfected with plasmid encoding c-mpl ligand or multi-functional hematopoietic 20 receptor agonists were tested by addition of 100 µl of supernatant added to 1 mL cultures (approximately a 10% dilution). Cells were incubated at 37°C for 8-14 days at 5% CO₂ in a 37°C humidified incubator.

b. Cell Harvest and Analysis:

At the end of the culture period a total cell count was obtained for each condition. For fluorescence analysis and ploidy determination cells were washed in megakaryocyte buffer (MK buffer, 13.6 mM sodium citrate, 1 mM theophylline, 2.2 µm PGE1, 11 mM glucose, 3% w/v BSA, in PBS, pH 7.4,) (Tomer et al., *Blood* **70**: 1735-1742, 1987) resuspended in 500 µl of MK buffer containing anti-CD41a FITC antibody (1:200, AMAC, Westbrook, ME) and washed in MK buffer. For DNA analysis cells were permeabilized in MK buffer containing 0.5% Tween 20 (Fisher, Fair Lawn NJ) for 20 min. on ice followed by fixation in 0.5% Tween-20 and 1% paraformaldehyde (Fisher Chemical) for 30 minutes followed by incubation in propidium iodide (Calbiochem , La Jolla Ca) (50 µg/mL) with RNA-ase (400 U/mL) in 55% v/v MK buffer (200mOsm) for 1-2 hours on ice. Cells were analyzed on a FACScan or Vantage flow cytometer (Becton Dickinson, San Jose, CA). Green fluorescence (CD41a-FITC) was collected along with linear and log signals for red fluorescence (PI) to determine DNA ploidy. All cells were collected to determine the percent of cells that were CD41+. Data analysis was performed using software by LYSIS (Becton Dickinson, San Jose, CA). Percent of cells expressing the CD41 antigen was obtained from flow cytometry analysis(Percent). Absolute (Abs) number of CD41+ cells/mL was calculated by: (Abs)=(Cell Count)*(Percent)/100.

2. Megakaryocyte fibrin clot assay.

CD34+ enriched population were isolated as described above. Cells were suspended at 25,000 cells/mL with or without cytokine(s) in a media consisting of a base Iscoves IMDM media supplemented with 0.3% BSA, 0.4mg/mL apo-transferrin, 6.67 μ M FeCl₂, 25 μ g/mL CaCl₂, 25 μ g/mL L-asparagine, 500 μ g/mL e-amino-n-caproic acid and penicillin/streptomycin. Prior to plating into 35mm plates, thrombin was added (0.25 Units/mL) to initiate clot formation. Cells were incubated at 37°C for 13 days at 5% CO₂ in a 37°C humidified incubator.

At the end of the culture period plates were fixed with methanol:acetone (1:3), air dried and stored at -200C until staining. A peroxidase immunocytochemistry staining procedure was used (Zymed, Histostain-SP. San Francisco, CA) using a cocktail of primary monoclonal antibodies consisting of anti-CD41a, CD42 and CD61. Colonies were counted after staining and classified as negative, CFU-MK (small colonies, 1-2 foci and less than approx. 25 cells), BFU-MK (large, multi-foci colonies with > 25 cells) or mixed colonies (mixture of both positive and negative cells).

Methylcellulose Assay

[0127] This assay reflects the ability of colony stimulating factors to stimulate normal bone marrow cells to produce

different types of hematopoietic colonies *in vitro* (Bradley et al., *Aust. Exp Biol. Sci.* **44**:287-300, 1966), Pluznik et al., *J. Cell Comp. Physio* **66**:319-324, 1965).

Methods

5

Approximately 30 mL of fresh, normal, healthy bone marrow aspirate are obtained from individuals following informed consent. Under sterile conditions samples are diluted 1:5 with a 1X PBS (#14040.059 Life Technologies, Gaithersburg, MD.) solution in a 50 mL conical tube (#25339-50 Corning, Corning MD). Ficoll (Histopaque 1077 Sigma H-8889) is layered under the diluted sample and centrifuged, 300 x g for 30 min.

10

The mononuclear cell band is removed and washed two times in 1X PBS and once with 1% BSA PBS (CellPro Co., Bothel, WA).

15

Mononuclear cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, WA) column. This fractionation is performed since all stem and progenitor cells within the bone marrow display CD34 surface antigen.

20

Cultures are set up in triplicate with a final volume of 1.0 mL in a 35 X 10 mm petri dish (Nunc#174926). Culture medium is purchased from Terry Fox Labs. (HCC-4230 medium (Terry Fox Labs, Vancouver, B.C., Canada) and erythropoietin (Amgen, Thousand Oaks, CA.) is added to the culture media.

25

3,000-10,000 CD34+ cells are added per dish. Recombinant IL-3,

purified from mammalian cells or *E. coli*, and multi-functional hematopoietic receptor agonist proteins, in conditioned media from transfected mammalian cells or purified from conditioned media from transfected mammalian cells or *E. coli*, are added
5 to give final concentrations ranging from .001 nM to 10 nM. Recombinant hIL-3, GM-CSF, c-mpl ligand and multi-functional hematopoietic receptor agonist are supplied in house. G-CSF (Neupogen) is from Amgen (Thousand Oaks Calif.). Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per
10 dish. Control (baseline response) cultures received no colony stimulating factors. Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox Lab. H2400). Cultures are incubated at 37°C, 5% CO₂ in humidified air.

15 Hematopoietic colonies which are defined as greater than 50 cells are counted on the day of peak response (days 10-11) using a Nikon inverted phase microscope with a 40x objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be
20 identified by spreading the colonies on a slide and stained or they can be picked, resuspended and spun onto cytopsin slides for staining.

Human Cord Blood Hemopoietic Growth Factor Assays

[0128] Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity. However, human bone marrow is not always available, and there is considerable variability between donors.

5 Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al., PNAS USA **89**:4109-113, 1992; Mayani et al., Blood **81**:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis. There is also a potential to
10 reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of cryopreserved cells for this purpose. By modifying the culture conditions, and/or analyzing for lineage specific markers, it is be possible to assay specifically for granulocyte / macrophage colonies (CFU-GM), for megakaryocyte CSF activity, or for high proliferative potential colony forming cell (HPP-CFC) activity.
15

Methods

Mononuclear cells (MNC) are isolated from cord blood
20 within 24 hr. of collection, using a standard density gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA-, CD34+ fraction using coated flasks from
25 Applied Immune Science (Santa Clara, CA); and CD34+ selection

using a CellPro (Bothell, WA) avidin column. Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) 5 are prepared with 1x10⁴ cells in 1ml of 0.9% methycellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). In some experiments, Methocult H4330 containing erythropoietin (EPO) was used instead of Methocult H4230, or Stem Cell Factor 10 (SCF), 50 ng/mL (Biosource International, Camarillo, CA) was added. After culturing for 7-9 days, colonies containing >30 cells are counted. In order to rule out subjective bias in scoring, assays are scored blind.

Additional details about recombinant DNA methods which 15 may be used to create the variants, express them in bacteria, mammalian cells or insect cells, purification and refold of the desired proteins and assays for determining the bioactivity of the proteins may be found in co-filed Applications WO 95/00646, WO 94/12639, WO 94/12638, WO 20 95/20976, WO 95/21197, WO 95/20977, WO 95/21254 and US 08/383,035 which are hereby incorporated by reference in their entirety.

Further details known to those skilled in the art may be found in T. Maniatis, et al., Molecular Cloning, A Laboratory

Manual, Cold Spring Harbor Laboratory, 1982) and references cited therein, incorporated herein by reference; and in J. Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, 1989) and references
5 cited therein, are incorporated herein by reference.

TABLE 1
OLIGONUCLEOTIDES

	c-mplNcoI	
5		ACGTCCATGGCNCNCNCNCNCCTGCTTGTGCACTCCGAGTC (SEQ ID NO:13)
	N=A, C, G or T	
10	Ecompl	ATGCACGAATTCCCTGACGCAGAGGGTGGA (SEQ ID NO:14)
	c-mplHindIII	TGACAAGCTTACCTGACGCAGAGGGTGGACCCT (SEQ ID NO:15)
15	4L-5'	AATTGGCAA (SEQ ID NO:16)
	4L-3'	CATGTTGCCG (SEQ ID NO:17)
20	5L-5'	AATTGGCGGCAA (SEQ ID NO:18)
	5L-3'	CATGTTGCCGCCG (SEQ ID NO:19)
	8L-5'	AATTGGCGGCAACGGCGGCAA (SEQ ID NO:20)
25	8L-3'	CATGTTGCCGCCGTTGCCGCCG (SEQ ID NO:21)
	31-5'	CGATCCATGGAGGTTCACCCCTTGCCT (SEQ ID NO:22)
30	31-3'	GATCAAGCTTATGGCACTGGCTCAGTCT (SEQ ID NO:23)
	35-5'	CGATACATGTTGCCTACACCTGTCCTG (SEQ ID NO:24)
	35-3'	GATCAAGCTTAAGGGTGAACCTCTGGGCA (SEQ ID NO:25)
35	39-5'	CGATCCATGGCCTGCTGCCTGCTGTG (SEQ ID NO:26)
	39-3'	GATCAAGCTTAAGGTGTAGGCAAAGGGTG (SEQ ID NO:27)
40	43-5'	CGATCCATGGCTGTGGACTTAGCTGGGA (SEQ ID NO:28)
	43-3'	GATCAAGCTTAAGGCAGCAGGACAGGTGT (SEQ ID NO:29)
	45-5'	CGATCCATGGACTTAGCTGGAGAA (SEQ ID NO:30)
45	45-3'	GATCAAGCTTACACAGCAGGCAGCAGGAC (SEQ ID NO:31)
	49-5'	CGATCCATGGGAGAATGGAAAACCCAG (SEQ ID NO:32)

	49-3'	GATCAAGCTTACAAGCTAAAGTCCACAGC (SEQ ID NO:33)
5	82-5'	CGATCCATGGGACCCACTTGCCTCTCA (SEQ ID NO:34)
	82-3'	GATCAAGCTTACAGTTGTCCCCGTGCTGC (SEQ ID NO:35)
	109-5'	CAGTCCATGGGAACCCAGCTTCCTCCA (SEQ ID NO:36)
10	109-3'	GATCAAGCTTAAAGGAGGCTCTGCAGGGC (SEQ ID NO:37)
	116-5'	CGATCCATGGGCAGGACCACAGCTCAC (SEQ ID NO:38)
15	116-3'	GATCAAGCTTACTGTGGAGGAAGCTGGTT (SEQ ID NO:39)
	120-5'	CGATCCATGGCTACAAGGATCCCAATGCC (SEQ ID NO:40)
	120-3'	GATCAAGCTTATGTGGCCTGCCCTGTGG (SEQ ID NO:41)
20	123-5'	CGATCCATGGATCCAATGCCATTTCCCTG (SEQ ID NO:42)
	123-3'	GATCAAGCTTACTTGTGAGCTGTGGCCT (SEQ ID NO:43)
25	126-5'	CGATCCATGGCCATCTCCTGAGCTTCAA (SEQ ID NO:44)
	126-3'	GATCAAGCTTAATTGGGATCCTTGTGAGCTGT (SEQ ID NO:45)
30	SYNNOXA1.REQ	AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTAACAGT ACGTAGAGGG CGGTGGAGGC TCC (SEQ ID NO:46)
35	SYNNOXA2.REQ	CCGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG CGCGTTCTCC AAGGTTTCA GATAGAAGGT CAGTTACGA CGG (SEQ ID NO:47)
40	L1syn.for	GTTACCCTTG AGCAAGCGCA GGAACAAACAG GGTGGTGGCT CTAACTGCTC TATAATGAT (SEQ ID NO:48)
	L1syn.rev	CGATCATTAT AGAGCAGTTA GAGCCACCAC CCTGTTGTTC CTGCGCTTGC TCAAGG (SEQ ID NO:49)
45	L3syn.for	GTTACCCTTG AGCAAGCGCA GGAACAAACAG GGTGGTGGCT CTGGCGGTGG CAGCGGCGGC GGTTCTAACT GCTCTATAAT GAT (SEQ ID NO:50)

L3syn.rev CGATCATTAT AGAGCAGTTA GAACCGCCGC CGCTGCCACC
(SEQ ID NO:51)

5 35start.seq GATCGACCAT GGCTCTGGAC CCGAACAAACC TC
(SEQ ID NO:52)

34rev.seq CTCGATTACG TACAAAGGTG CAGGTGGT (SEQ ID NO:53)

10 70start.seq GATCGACCAT GGCTAATGCA TCAGGTATTG AG
(SEQ ID NO:54)

69rev.seq CTCGATTACG TATTCTAAGT TCTTGACA (SEQ ID NO:55)

15 91start.seq GATCGACCAT GGCTGCACCC TCTCGACATC CA
(SEQ ID NO:56)

90rev.seq CTCGATTACG TAGGCCGTGG CAGAGGGC (SEQ ID NO:57)

20 101start.seq GATCGACCAT GGCTGCAGGT GACTGGCAAG AA
(SEQ ID NO:58)

100rev.seq CTCGATTACG TACTTGATGA TGATTGGA (SEQ ID NO:59)

25 L-11start.seq GCTCTGAGAG CCGCCAGAGC CGCCAGAGGG
CTGCGCAAGG TGGCGTAGAA CGCG (SEQ ID NO:60)

L-11stop.seq CAGCCCTCTG GCGGCTCTGG CGGCTCTCAG
AGCTTCCTGC TCAAGTCTTT AGAG (SEQ ID NO:61)

30 P-blstart.seq GGGCTGCGCA AGGTGGCG (SEQ ID NO:62)

P-blstop.seq ACACCATTGG GCCCTGCCAG C (SEQ ID NO:63)

35 39start.seq GATCGACCAT GGCTTACAAG CTGTGCCACC CC
(SEQ ID NO:64)

38stop.Seq CGATCGAAGC TTATTAGGTG GCACACAGCT TCTCCT
(SEQ ID NO:65)

40 97start.seq GATCGACCAT GGCTCCCGAG TTGGGTCCCA CC
(SEQ ID NO:66)

96stop.Seq CGATCGAAGC TTATTAGGAT ATCCCTTCCA GGGCCT
(SEQ ID NO:67)

45 126start.seq GATCGACCAT GGCTATGGCC CCTGCCCTGC AG

(SEQ ID NO:68)

125stop.Seq CGATCGAAGC TTATTATCCC AGTTCTCCA TCTGCT
 (SEQ ID NO:69)

5 133start.seq GATCGACCAT GGCTACCCAG GGTGCCATGC CG
 (SEQ ID NO:70)

10 132stop.seq CGATCGAAGC TTATTAGGGC TGCAGGGCAG GGGCCA
 (SEQ ID NO:71)

142start.seq GATCGACCAT GGCTCTGCT TTCCAGCGCC GG
 (SEQ ID NO:72)

15 141stop.Seq CGATCGAAGC TTATTAGGCG AAGGCCGGCA TGGCAC
 (SEQ ID NO:73)

GLYXA1 GTAGAGGGCG GTGGAGGCTC C (SEQ ID NO:74)

20 GLYXA2 CGGGGGAGCC TCCACCGCCC TCTAC (SEQ ID NO:75)

1GGGSfor TTCTACGCCA CCTTGCAG CCCGGCGCG GCTCTGACAT
 GTCTACACCA TTG (SEQ ID NO:76)

25 1GGGSrev CAATGGTGTA GACATGTCAG AGCCGCCGCC GGGCTGCGCA
 AGGTGGCGTA GAA (SEQ ID NO:77)

Synnoxa1.req AATTCCGTCG TAAACTGACC TTCTATCTGA AACCTTGGA
 GAACGCGCAG GCTAACAGT ACGTAGAGGG CGGTGGAGGC
 TCC (SEQ ID NO:240)

Synnoxa2.req CGGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG
 CGCGTTCTCC AAGGTTTCA GATAGAAGGT CAGTTACGA
 CGG (SEQ ID NO:241)

35 TABLE 2
GENE SEQUENCES

PMON30304

40 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
 GCTGGACCGAACAAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
 TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACATTAGAAAATGCATCAGGTATTGAG
 GCAATTCTCGTAATCTCAACCATGTCTGCCCTGCCACGGCGCACCTCTCGACATCC
 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
 45 CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
 CATGT (SEQ ID NO:78)

PMON26458

5 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGT
CCTTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGC
CTGCTGTGGACTTAGCTGGGAGAATGGAAAACCCAGATGGAGGGAGTGATGGCAGCACAGGGAC
ATTCTGGGAGCAGTGACCCTCTGCTGGAGGGAGTGATGGCAGCACAGGGACAACTGGGACC
CACTTGCCTCTCATCCCTCTGGGAGCAGTTCTCCACAGGGCAGGACCACAGCTACAAGGATCCC
10 TGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAGCTACAAGGATCCC
AATGCCATCTCCTGAGCTTCCAACACCTGCTCGAGGAAAGGTGCGTTCTGATGCTTGT
AGGAGGGTCCACCCCTGCGTCAGGAATTGGCGCAACATGGCGTCTCCGCTCCGCTG
AGGAGGGTCCACCCCTGCGTCAGGAATTGGCGCAACATGGCGTCTCCGCTCCGCTG
20 CACTTGCCTCTCATCCCTCTGGGAGCAGTTCCACAGGGCAGGACCACAGCTACAAGGATCCC
TGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAGCTACAAGGATCCC
AATGCCATCTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTTGT
AGGAGGGTCCACCCCTGCGTCAGGAATTGGCGCAACATGGCGTCTCCGCTCCGCTG
CTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTCACAGCAGACTG
25 AGCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTAG
CTTGGGAGAATGGAAAACCCAGATGGAGGGAGACCAGGACATTCTGGGAGCAGTG
CCCTCTGCTGGAGGGAGTGATGGCAGCACAGGGACAACTGGGACCCACTTGCCCTCATCC
CTCCTGGGAGCAGTTCTGGACAGGTCCGTCTCCCTGGGGCCCTGAGAGCCTCCCTGG
AACCCAGGGCAGGACCACAGCTACAAGGATCCCATGCCATCTCCTGAGCTTCCAACACC
30 TGCTCCGAGGAAAGGTGCGTTCTGATGCTTAGGAGGGTCCACCCCTGCGTCAGG
(SEQ ID NO: 80)

PMON28548

15 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGT

CCTTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGC

CTGCTGTGGACTTAGCTGGGAGAATGGAAAACCCAGATGGAGGGAGACCAGGACACAGGGAC

ATTCTGGGAGCAGTGACCCTCTGCTGGAGGGAGTGATGGCAGCACAGGGACAACTGGGACC

CACTTGCCTCTCATCCCTCTGGGAGCAGTTCCACAGGGCAGGACCACAGCTACAAGGATCCC

TGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAGCTACAAGGATCCC

AATGCCATCTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTTGT

AGGAGGGTCCACCCCTGCGTCAGGAATTGGCGCAACATGGCGTCTCCGCTCCGCTG

GTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTCACAGCAGACTGAGC

CAGTGCCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTAGCTT

45 GGGAGAATGGAAAACCCAGATGGAGGGAGACCAGGACACAGGACATTCTGGGAGCAGTGACCC

TTCTGCTGGAGGGAGTGATGGCAGCACAGGGACAACTGGGACCCACTTGCCCTCATCCCTC

CTGGGGCAGCTTCTGGACAGGTCCGTCTCCCTGGGGCCCTGAGAGCCTCCCTGGAAAC

CCAGCTTCCTCACAGGGCAGGACCACAGCTCACAAAGGATCCAATGCCATTTCTGAGCT
TCCAACACCTGCTCCGAGGAAAGGTGCCTGATGCTTAGGAGGGTCCACCCTCTGC
GTCAGG (SEQ ID NO:81)

5 PMON28501

TCCCCAGCTCACCTGCTGTGACCTCCGAGTCCTCAGTAACACTGCTCGTACTCCCATGT
CCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGCTCGTGC
CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
10 ATTCTGGGAGCAGTGACCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACC
CACTTGCCTCTCATCCCTCCTGGGAGCAGCTTCTGGACAGGTCCGTCTCCTCTGGGCC
TGCAGAGCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAAGGATCCC
AATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTGATGCTTGT
AGGAGGGTCCACCCCTCGCGTCAGGAATTGGCGCAACATGGCGTCTCCGCTCCGCTG
15 CTTGTGACCTCCGAGTCCTCAGTAACACTGCTCGTACTCCCATGTCTCACAGCAGACTG
AGCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGCTCGTGCCTGCTGTGGACTTTAG
CTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTG
CCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCTGGGCCCTGCAGAGCCTCCTGG
20 AACCCAGCTCCTCCACAGGGCAGGACCACAGCTCACAAAGGATCCAATGCCATCTCCTGA
GCTTCCAACACCTGCTCCGAGGAAAGGTGCCTGATGCTTAGGAGGGTCCACCCCTC
TGCGTCAGG (SEQ ID NO:82)

PMON28502

25 TCCCCAGCGCCGCCTGCTGTGACCTCCGAGTCCTCAGTAACACTGCTCGTACTCCCATGT
CCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGCTCGTGC
CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACC
30 CACTTGCCTCTCATCCCTCCTGGGAGCCTCCTCACAGGGCAGGACCACAGCTCACAAAGGATCCC
TGCAGAGCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAAGGATCCC
AATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTGATGCTTGT
AGGAGGGTCCACCCCTCGCGTCAGGAATTGGCGCAACGGCGAACATGGCGTCCCCAG
CGCCGCCTGCTGTGACCTCGAGTCCTCAGTAACACTGCTCGTACTCCCATGTCTCAC
35 AGCAGACTGAGCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGCTCGTGCCTGCTGT
GGACTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGG
GAGCAGTGACCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGC
CTCTCATCCCTCCTGGGAGCCTTCTGGACAGGTCCGTCTCCTCTGGGCCCTGCAGAG
CCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAAGGATCCAATGCCA
40 TCTTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTGATGCTTAGGAGGG
TCCACCCCTCGCGTCAGG (SEQ ID NO:83)

45 Syntan1

CATGGCTAACTGCTCTATAATGATCGATGAAATTATACATCACTAAAGAGACCACCTGCAC
CTTGCTGGACCCGAACAAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTT

CGACTTCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTAT
 TGAGGCAATTCTCGTAATCTCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGAC
 ATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTG
 GTTACCCCTTGAGCAAGCGCAGGAACAAACAGGGTGGCTCTAACTGCTCTATAATGATCGA
 5 TGAAATTATACATCACTTAAAGAGACCACCTGCACCTTGTGGACCGAACAAACCTCAATG
 ACGAAGACGTCTCTATCCTGATGGACCGAACCTCGACTTCAAACCTGGAGAGCTTCGTA
 AGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAGGCAATTCTCGTAATCTCAAAC
 ATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCCAATCATCATCAAGGCAGGTGACT
 GGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTACCTTGAGCAAGCGCAGGAACAA
 10 CAGTAC (SEQ ID NO:84)

Syntan3

15 1 CATGGCTAAC TGCTCTATAA TGATCGATGA AATTATAACAT CACTTAAAGA
 51 GACCACCTGC ACCTTTGCTG GACCCGAACA ACCTCAATGA CGAAGACGTC
 101 TCTATCCTGA TGGACCGAAA CCTTCGACTT CCAAACCTGG AGAGCTTCGT
 151 AAGGGCTGTGTC AAGAACTTAG AAAATGCATC AGGTATTGAG GCAATTCTTC
 201 GTAATCTCCA ACCATGTCTG CCCTCTGCCA CGGCCGCACC CTCTCGACAT
 251 CCAATCATCA TCAAGGCAGG TGACTGGCAA GAATTCCGGG AAAAAACTGAC
 301 GTTCTATCTG GTTACCCCTTG AGCAAGCGCA GGAACAACAG GGTGGTGGCT
 351 CTGGCGGTGG CAGCGGCCGG GCCTCTAACT GCTCTATAAT GATCGATGAA
 401 ATTATACATC ACTTAAAGAG ACCACCTGCA CCTTTGCTGG ACCCGAACAA
 451 CCTCAATGAC GAAGACGTCT CTATCCTGAT GGACCGAAAC CTTCGACTTC
 25 501 CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA
 551 GGTATTGAGG CAATTCTCG TAATCTCAA CCATGTCTGC CCTCTGCCAC
 601 GGCGCACCC TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG
 651 AATTCCGGGA AAAACTGACG TTCTATCTGG TTACCCCTGGA GCAAGCGCAG
 701 GAACAACAGT AC (SEQ ID NO:85)

30

pMON31104

35 1 ATGGCTCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT
 51 GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA
 101 AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTCG TAATCTCAA
 151 CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC CAATCATCAT
 201 CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG TTCTATCTGG
 251 TTACCCCTGGA GCAAGCGCAG GAACAACAGG GTGGTGGCTC TAACTGCTCT
 40 301 ATAATGATCG ATGAAATTAT ACATCACTTA AAGAGACCAC CTGCACCTTT
 351 GTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
 401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
 451 ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
 501 GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
 45 551 CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
 601 TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG
 651 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC

701 ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
 751 CCCCTGAGCT CCTGCCCGAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
 801 CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
 851 AAGGGATATC CCCCAGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
 5 901 GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
 951 GGCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:86)

pMON31105

10 1 ATGGCTAATG CATCAGGTAT TGAGGCAATT CTTCGTAATC TCCAACCATG
 51 TCTGCCCTCT GCCACGGCCG CACCCCTCTG ACATCCAATC ATCATCAAGG
 101 CAGGTGACTG GCAAGAATTC CGGGAAAAAAC TGACGTTCTA TCTGGTTACC
 151 CTTGAGCAAG CGCAGGAACA ACAGGGTGGT GGCTCTAACT GCTCTATAAT
 15 201 GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA CCTTGCTGG
 251 ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGACCGAAAC
 301 CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAAACTTAGA
 351 ATACGTAGAG GGCAGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
 401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
 20 451 ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
 501 GGCAGGAGGG GTCCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
 551 CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
 601 TCTCAGAGCT TCCTGCTCAA GTCTTAGAG CAAGTGAGAA AGATCCAGGG
 651 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
 25 701 ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
 751 CCCCTGAGCT CCTGCCCGAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
 801 CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
 851 AAGGGATATC CCCCAGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
 901 GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
 30 951 GGCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:87)

pMON31106

35 1 ATGGCTGCAC CCTCTCGACA TCCAATCATC ATCAAGGCAG GTGACTGGCA
 51 AGAATTCCGG GAAAAACTGA CGTTCTATCT GGTACCCCTT GAGCAAGCGC
 101 AGGAACAAACA GGGTGGTGGC TCTAACTGCT CTATAATGAT CGATGAAATT
 151 ATACATCACT TAAAGAGACC ACCTGCACCT TTGCTGGACC CGAACAAACCT
 201 CAATGACGAA GACGTCTCTA TCCTGATGGA CCGAAACCTT CGACTTCAA
 40 251 ACCTGGAGAG CTTCGTAAGG GCTGTCAAGA ACTTAGAAA TGCATCAGGT
 301 ATTGAGGCAA TTCTCGTAA TCTCCAACCA TGTCTGCCCT CTGCCACGGC
 351 CTACGTAGAG GGCAGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
 401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
 451 ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
 501 GGCAGGAGGG GTCCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
 551 CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
 601 TCTCAGAGCT TCCTGCTCAA GTCTTAGAG CAAGTGAGAA AGATCCAGGG

651 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
 701 ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
 751 CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
 801 CCAAECTCCAT AGCGGCCCTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
 5 851 AAGGGATATC CCCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
 901 GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
 951 GGCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:88)

10 pMON31107

1 ATGGCTGCAG GTGACTGGCA AGAATTCCGG GAAAAACTGA CGTTCTATCT
 51 GGTTACCCCTT GAGCAAGCGC AGGAACAACA GGGTGGTGGC TCTAACTGCT
 101 CTATAATGAT CGATGAAATT ATACATCACT TAAAGAGACC ACCTGCACCT
 15 151 TTGCTGGACC CGAACAAACCT CAATGACGAA GACGTCTCTA TCCTGATGGA
 201 CCGAAACCTT CGACTTCAA ACCTGGAGAG CTCGTAAGG GCTGTCAAGA
 251 ACTTAGAAAA TGCACTCAGGT ATTGAGGCAA TTCTTCGTAA TCTCCAACCA
 301 TGTCTGCCCT CTGCCACGGC CGCACCCCTCT CGACATCCAA TCATCATCAA
 351 GTACGTAGAG GGCAGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
 20 401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
 451 ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
 501 GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
 551 CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
 601 TCTCAGAGCT TCCTGCTCAA GTCTTAGAG CAAGTGAGAA AGATCCAGGG
 25 651 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
 701 ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
 751 CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
 801 CCAAECTCCAT AGCGGCCCTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
 851 AAGGGATATC CCCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
 30 901 GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
 951 GGCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:89)

pMON31108

35 1 ATGGCTCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT
 51 GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTCGTA AGGGCTGTCA
 101 AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG TAATCTCAA
 151 CCATGCTGTC CCTCTGCCAC GGCGCACCC TCTGACATC CAATCATCAT
 40 201 CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG TTCTATCTGG
 251 TTACCCCTTGA GCAAGCGCAG GAACAACAGG GTGGTGGCTC TGGCGGTGGC
 301 AGCGGGCGCG GTTCTAACTG CTCTATAATG ATCGATGAAA TTATACATCA
 351 CTTAAAGAGA CCACCTGCAC CTTTGTACGT AGAGGGCGGT GGAGGCTCCC
 401 CGGGTGAACC GTCTGGTCCA ATCTCTACTA TCAACCCGTC TCCTCCGTCT
 45 451 AAAGAATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
 501 CTTCGCCTCT GCTTTCCAGC GCCGGGCAGG AGGGGTCCCTG GTTGCTAGCC
 551 ATCTGCAGAG CTTCCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGGCG

601 CAGCCCTCTG CGGGCTCTGG CGGCTCTCAG AGCTTCCTGC TCAAGTCTTT
 651 AGAGCAAGTG AGAAAGATCC AGGGCGATGG CGCAGCGCTC CAGGAGAAGC
 701 TGTGTGCCAC CTACAAGCTG TGCCACCCCG AGGAGCTGGT GCTGCTCGGA
 751 CACTCTCTGG GCATCCCCCTG GGCTCCCCCTG AGCTCCTGCC CCAGCCAGGC
 5 801 CCTGCAGCTG GCAGGCTGCT TGAGCCAATC CCATAGCGGC CTTTCCCTCT
 851 ACCAGGGGCT CCTGCAGGCC CTGGAAGGGGA TATCCCCCGA GTTGGGTCCC
 901 ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
 951 GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
 (SEQ ID NO:90)

10

pMON31109

1 ATGGCTAATG CATCAGGTAT TGAGGCAATT CTTCGTAATC TCCAACCATG
 51 TCTGCCCTCT GCCACGGCCG CACCCCTCTG ACATCCAATC ATCATCAAGG
 15 101 CAGGTGACTG GCAAGAATTG CGGGAAAAAC TGACGTTCTA TCTGGTTACC
 151 CTTGAGCAAG CGCAGGAACA ACAGGGTGGT GGCTCTGGCG GTGGCAGCGG
 201 CGGCAGTTCT AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA
 251 AGAGACCACC TGCACCTTTG CTGGACCCGA ACAACCTCAA TGACGAAGAC
 301 GTCTCTATCC TGATGGACCG AAACCTTCGA CTTCCAAACC TGGAGAGCTT
 20 351 CGTAAGGGCT GTCAAGAACT TAGAATACGT AGAGGGCGGT GGAGGCTCCC
 401 CGGGTGAACC GTCTGGTCCA ATCTCTACTA TCAACCCGTC TCCTCCGTCT
 451 AAAGAACATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
 501 CTTCGCCTCT GCTTTCCAGC GCCGGGCAGG AGGGGTCTTG GTTGTAGCC
 551 ATCTGCAGAG CTTCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGCG
 25 601 CAGCCCTCTG GCGGCTCTGG CGGCTCTCAG AGCTTCCTGC TCAAGTCTTT
 651 AGAGCAAGTG AGAAAGATCC AGGGCGATGG CGCAGCGCTC CAGGAGAAGC
 701 TGTGTGCCAC CTACAAGCTG TGCCACCCCG AGGAGCTGGT GCTGCTCGGA
 751 CACTCTCTGG GCATCCCCCTG GGCTCCCCCTG AGCTCCTGCC CCAGCCAGGC
 801 CCTGCAGCTG GCAGGCTGCT TGAGCCAATC CCATAGCGGC CTTTCCCTCT
 30 851 ACCAGGGGCT CCTGCAGGCC CTGGAAGGGGA TATCCCCCGA GTTGGGTCCC
 901 ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
 951 GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
 (SEQ ID NO:91)

35 pMON31110

1 ATGGCTGCAC CCTCTCGACA TCCAATCATC ATCAAGGCAG GTGACTGGCA
 51 AGAATTCCGG GAAAAACTGA CGTTCTATCT GTTACCCCTT GAGCAAGCGC
 101 AGGAACAAACA GGGTGGTGGC TCTGGCGGTG GCAGCGGC GGTTCTAAC
 40 151 TGCTCTATAA TGATCGATGA AATTATACAT CACTAAAGA GACCACCTGC
 201 ACCTTTGCTG GACCCGAACA ACCTCAATGA CGAAGACGTC TCTATCCTGA
 251 TGGACCGAAA CCTCGACTT CCAAACCTGG AGAGCTTCGT AAGGGCTGTC
 301 AAGAACTTAG AAAATGCATC AGGTATTGAG GCAATTCTTC GTAATCTCCA
 351 ACCATGTCTG CCCTCTGCCA CGGCCTACGT AGAGGGCGGT GGAGGCTCCC
 45 401 CGGGTGAACC GTCTGGTCCA ATCTCTACTA TCAACCCGTC TCCTCCGTCT
 451 AAAGAACATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
 501 CTTCGCCTCT GCTTTCCAGC GCCGGGCAGG AGGGGTCTTG GTTGTAGCC

551 ATCTGCAGAG CTTCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGC
 601 CAGCCCTCTG CGGGCTCTGG CGGCTCTCAG AGCTTCTGC TCAAGTCTT
 651 AGAGCAAGTG AGAAAGATCC AGGGCGATGG CGCAGCGCTC CAGGAGAAGC
 701 TGTGTGCCAC CTACAAGCTG TGCCACCCCG AGGAGCTGGT GCTGCTCGGA
 5 751 CACTCTCTGG GCATCCCCCTG GGCTCCCCCTG AGCTCCTGCC CCAGCCAGGC
 801 CCTGCAGCTG GCAGGCTGCT TGAGCCAAGT CCATAGCGGC CTTTCCTCT
 851 ACCAGGGCT CCTGCAGGCC CTGGAAGGGTA TATCCCCGA GTTGGGTCCC
 901 ACCTTGACACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
 951 GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
 10 (SEQ ID NO: 92)

pMON31111

15 1 ATGGCTGCAG GTGACTGGCA AGAATTCCGG GAAAAAACTGA CGTTCTATCT
 51 GGTTACCCCTT GAGCAAGCGC AGGAACAAACA GGGTGGTGGC TCTGGCGGTG
 101 GCAGCGCGGG CGGTTCTAAC TGCTCTATAA TGATCGATGA AATTATACAT
 151 CACTTAAAGA GACCACCTGC ACCTTTGCTG GACCCGAACA ACCTCAATGA
 201 CGAAGACGTC TCTATCCTGA TGGACCGAAA CCTTCGACTT CCAAACCTGG
 251 AGAGCTTCGT AAGGGCTGTC AAGAACTTAG AAAATGCATC AGGTATTGAG
 20 301 GCAATTCTTC GTAATCTCCA ACCATGTCTG CCCTCTGCCA CGGCCGCACC
 351 CTCTCGACAT CCAATCATCA TCAAGTACGT AGAGGGCGGT GGAGGCTCCC
 401 CGGGTGAACC GTCTGGTCCA ATCTCTACTA TCAACCCGTC TCCTCCGTCT
 451 AAAGAATCTC ATAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
 501 CTTGCCTCT GCTTCCAGC GCCGGGCAGG AGGGGTCTTG GTTGCTAGCC
 25 551 ATCTGCAGAG CTTCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGC
 601 CAGCCCTCTG CGGGCTCTGG CGGCTCTCAG AGCTTCTGC TCAAGTCTT
 651 AGAGCAAGTG AGAAAGATCC AGGGCGATGG CGCAGCGCTC CAGGAGAAGC
 701 TGTGTGCCAC CTACAAGCTG TGCCACCCCG AGGAGCTGGT GCTGCTCGGA
 751 CACTCTCTGG GCATCCCCCTG GGCTCCCCCTG AGCTCCTGCC CCAGCCAGGC
 30 801 CCTGCAGCTG GCAGGCTGCT TGAGCCAAGT CCATAGCGGC CTTTCCTCT
 851 ACCAGGGCT CCTGCAGGCC CTGGAAGGGTA TATCCCCGA GTTGGGTCCC
 901 ACCTTGACACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
 951 GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
 (SEQ ID NO: 93)

35

pMON13182

40 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCGGCTCC AACATGGCTT
 401 ACAAGCTGTG CCACCCCGAG GAGCTGGTGC TGCTCGGACA CTCTCTGGGC
 451 ATCCCCCTGGG CTCCCCCTGAG CTCCCTGCCAGGCCAGGCC TGCAGCTGGC

501 AGGCTGCTTG AGCCAACTCC ATAGCGGCCT TTTCCTCTAC CAGGGGCTCC
 551 TGCAGGCCCT GGAAGGGATA TCCCCCGAGT TGGGTCCCAC CTTGGACACA
 601 CTGCAGCTGG ACGTCGCCGA CTTGCCACC ACCATCTGGC AGCAGATGGA
 651 AGAACTGGGA ATGGCCCTGT CCCTGCAGCC CACCCAGGGT GCCATGCCGG
 5 701 CCTTCGCCCTC TGCTTCCAG CGCCGGGAG GAGGGGTCTT GGTTGCTAGC
 751 CATCTGCAGA GCTTCCTGGA GGTGTCGTAC CGCGTTCTAC GCCACCTTGC
 801 GCAGCCCTCT GGCGGCTCTG GCGGCTCTCA GAGCTTCCTG CTCAAGTCTT
 851 TAGAGCAAGT GAGAAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG
 901 CTGTGTGCCA CCTAATAA (SEQ ID NO:94)

10

pMON13183

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTTACAAG
 451 CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC
 501 CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA GGCGCTGCAG CTGGCAGGCT
 25 551 GCTTGAGCCA ACTCCATAGC GGCTTTTCC TCTACCAGGG GCTCCTGCAG
 601 GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA
 651 GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC
 701 TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT GCCGGCCTTC
 751 GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCTGGTTG CTAGCCATCT
 30 801 GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC CTTGCGCAGC
 851 CCTCTGGCGG CTCTGGCGGC TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG
 901 CAAGTGAGAA AGATCCAGGG CGATGGCGCA GCGCTCCAGG AGAAGCTGTG
 951 TGCCACCTAA TAA (SEQ ID NO:95)

35

pMON13184

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 40 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTC
 401 CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
 451 GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT

501 GCAGCCCACC CAGGGTGCCA TGCCGGCCTT CGCCTCTGCT TTCCAGCGCC
 551 GGGCAGGAGG GGTCTGGTT GCTAGCCATC TGCAGAGCTT CCTGGAGGTG
 601 TCGTACCGCG TTCTACGCCA CCTTGCAG CCCTCTGGCG GCTCTGGCGG
 651 CTCTCAGAGC TTCCTGCTCA AGTCTTTAGA GCAAGTGAGA AAGATCCAGG
 5 701 GCGATGGCGC AGCGCTCCAG GAGAAGCTGT GTGCCACCTA CAAGCTGTGC
 751 CACCCCCGAGG AGCTGGTGCT GCTCGGACAC TCTCTGGGCA TCCCCTGGGC
 801 TCCCCTGAGC TCCTGCCCA GCCAGGCCCT GCAGCTGGCA GGCTGCTTGA
 851 GCCAACTCCA TAGCGGCCTT TTCCTCTACC AGGGGCTCCT GCAGGCCCTG
 901 GAAGGGATAT CCTAATAA (SEQ ID NO:96)

10

pMON13185

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTCCCGAG
 451 TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTGCGCG ACTTTGCCAC
 501 CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCCT GCCCTGCAGC
 25 551 CCACCCAGGG TGCCATGCCG GCCTTCGCTT CTGCTTCCA GCGCCGGGCA
 601 GGAGGGGTCC TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
 651 CCGCGTTCTA CGCCACCTTG CGCAGCCCTC TGGCGGCTCT GGCGGCTCTC
 701 AGAGCTTCCT GCTCAAGTCT TTAGAGCAAG TGAGAAAGAT CCAGGGCGAT
 751 GGCGCAGCGC TCCAGGAGAA GCTGTGTGCC ACCTACAAGC TGTGCCACCC
 30 801 CGAGGAGCTG GTGCTGCTCG GACACTCTCT GGGCATCCCC TGGGCTCCCC
 851 TGAGCTCCTG CCCCAGCCAG GCCCTGCAGC TGGCAGGCTG CTTGAGCCAA
 901 CTCCATAGCG GCCTTTCCCT CTACCAGGGG CTCCCTGCAGG CCCTGGAAGG
 951 GATATCCTAA TAA (SEQ ID NO:97)

35

pMON13186

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 40 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTA
 401 TGGCCCTGCTGC CCTGCAGCCC ACCCAGGGTG CCATGCCGGC CTTCGCCTCT
 451 GCTTTCCAGC GCCGGGCAGG AGGGGTCCTG GTTGCTAGCC ATCTGCAGAG

501 CTTCCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGC GAGCCCTCTG
 551 GCGGCTCTGG CGGCTCTCAG AGCTTCTGC TCAAGTCTT AGAGCAAGTG
 601 AGAAAGATCC AGGGCGATGG CGCAGCGCTC CAGGAGAAGC TGTGTGCCAC
 651 CTACAAGCTG TGCCACCCCCG AGGAGCTGGT GCTGCTCGGA CACTCTCTGG
 5 701 GCATCCCCTG GGCTCCCCTG AGCTCCTGCC CCAGCCAGGC CCTGCAGCTG
 751 GCAGGCTGCT TGAGCCA ACT CCATAGCGGC CTTTCCTCT ACCAGGGGCT
 801 CCTGCAGGCC CTGGAAGGGA TATCCCCGA GTTGGGTCCC ACCTTGGACA
 851 CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG GCAGCAGATG
 901 GAAGAACTGG GATAATAA (SEQ ID NO:98)

10

pMON13187

15 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTATGGCC
 451 CCTGCCCTGC AGCCCCACCA GGGTGCCATG CCGGCCTTCG CCTCTGCTTT
 501 CCAGCGCCGG GCAGGAGGGG TCCTGGTTGC TAGCCATCTG CAGAGCTTCC
 25 551 TGGAGGTGTC GTACCGCGTT CTACGCCACC TTGCGCAGCC CTCTGGCGGC
 601 TCTGGCGGCT CTCAGAGCTT CCTGCTCAAG TCTTAGAGC AAGTGAGAAA
 651 GATCCAGGGC GATGGCGCAG CGCTCCAGGA GAAAGCTGTGT GCCACCTACA
 701 AGCTGTGCCA CCCCCGAGGAG CTGGTGCTGC TCGGACACTC TCTGGCATIC
 751 CCCTGGGCTC CCCTGAGCTC CTGCCCCAGC CAGGCCCTGC AGCTGGCAGG
 30 801 CTGCTTGAGC CAACTCCATA GCGGCCTTT CCTCTACCAG GGGCTCCTGC
 851 AGGCCCTGGA AGGGATATCC CCCGAGTTGG GTCCCACCTT GGACACACTG
 901 CAGCTGGACG TCGCCGACTT TGCCACCACCC ATCTGGCAGC AGATGGAAGA
 951 ACTGGGATAA TAA (SEQ ID NO:99)

35

pMON13188

40 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGCTCC AACATGGCTA
 401 CCCAGGGTGCA CATGCCGGCC TTCGCCTCTG CTTTCCAGCG CCAGGGCAGGA
 451 GGGGTCTGG TTGCTAGCCA TCTGCAGAGC TTCCCTGGAGG TGTCTGTACCG

501 CGTTCTACGC CACCTTGCAGC AGCCCTCTGG CGGCTCTGGC GGCTCTCAGA
 551 GCTTCCTGCT CAAGTCTTTA GAGCAAGTGA GAAAGATCCA GGGCGATGGC
 601 GCAGCGCTCC AGGAGAAGCT GTGTGCCACC TACAAGCTGT GCCACCCCGA
 651 GGAGCTGGTG CTGCTCGGAC ACTCTCTGGG CATCCCCCTGG GCTCCCCCTGA
 5 701 GCTCCTGCCCG CAGCCAGGCC CTGCAGCTGG CAGGCTGCTT GAGCCAACTC
 751 CATAGCGGCC TTTTCCTCTA CCAGGGGCTC CTGCAGGCC CCC TGGAAGGGAT
 801 ATCCCCCGAG TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG
 851 ACTTTGCCAC CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCT
 901 GCCCTGCAGC CCTAATAA (SEQ ID NO:100)

10

PMON13189

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTACCCAG
 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
 501 CCTGGTTGCT AGCCATCTGC AGAGCTTCTT GGAGGTGTCG TACCGCGTTC
 25 551 TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
 601 CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
 651 GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
 701 TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
 751 TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
 30 801 CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC
 851 CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
 901 GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
 951 GCAGCCCTAA TAA (SEQ ID NO:101)

35

PMON13190

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 40 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTT
 401 CTGCTTCCA GCGCCGGGCA GGAGGGGTCC TGTTGCTAG CCATCTGCAG
 451 AGCTTCCTGG AGGTGTGTCGA CCGCGTTCTA CGCCACCTTG CGCAGCCCTC

501 TGGCGGCTCT GGCGGCTCTC AGAGCTTCCT GCTCAAGTCT TTAGAGCAAG
 551 TGAGAAAGAT CCAGGGCGAT GGCGCAGCGC TCCAGGAGAA GCTGTGTGCC
 601 ACCTACAAAGC TGTGCCACCC CGAGGAGCTG GTGCTGCTCG GACACTCTCT
 651 GGGCATCCCC TGGGCTCCCC TGAGCTCCTG CCCCAGCCAG GCCCTGCAGC
 5 701 TGGCAGGCTG CTTGAGCCAA CTCCATAGCG GCCTTTCTCCT CTACCAGGGG
 751 CTCCTGCAGG CCCTGGAAGG GATATCCCCC GAGTTGGGTC CCACCTTGGA
 801 CACACTGCAG CTGGACGTCTG CCGACTTGC CACCACCATC TGGCAGCAGA
 851 TGGAAGAACT GGGATGGCC CCTGCCCTGC AGCCCACCCA GGGTGCCATG
 901 CGGGCCTTCG CCTAATAA (SEQ ID NO:102)

10

pMON13191

1 ATGGCTTAAC GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTTCTGCT
 451 TTCCAGCGCC GGGCAGGAGG GGTCTGGTT GCTAGCCATC TGCAAGAGCTT
 501 CCTGGAGGTG TCGTACCGCG TTCTACGCCA CCTTGCGCAG CCCTCTGGCG
 25 551 GCTCTGGCGG CTCTCAGAGC TTCTGCTCA AGTCTTTAGA GCAAGTGAGA
 601 AAGATCCAGG GCGATGGCGC AGCGCTCCAG GAGAAGCTGT GTGCCACCTA
 651 CAAGCTGTGC CACCCCGAGG AGCTGGTGT GCTCGGACAC TCTCTGGGCA
 701 TCCCCGGGC TCCCCGTAGC TCCTGCCCA GCCAGGCCCT GCAGCTGGCA
 751 GGCTGCTTGA GCCAACTCCA TAGCGGCCCTT TTCTCTTAC AGGGGCTCCT
 30 801 GCAGGCCCTG GAAGGGATAT CCCCCGAGTT GGGTCCCACC TTGGACACAC
 851 TGCAGCTGGA CGTCGCCGAC TTTGCCACCA CCATCTGGCA GCAGATGGAA
 901 GAACTGGGAA TGGCCCCCTGC CCTGCAGCCC ACCCAGGGTG CCATGCCGGC
 951 CTTCGCCTAA TAA (SEQ ID NO:103)

35

pMON13192

1 ATGGCTTAAC GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 40 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTT
 401 ACAAGCTGTG CCACCCCGAG GAGCTGGTGC TGCTCGGACA CTCTCTGGGC
 451 ATCCCCGGGC TCCCCGTAGC TCCTGCCCA AGCCAGGCCCT TGCAAGCTGGC

501 AGGCTGCTTG AGCCAACCTCC ATAGCGGCCT TTTCCTCTAC CAGGGGCTCC
 551 TGCAGGCCCT GGAAGGGATA TCCCCCGAGT TGGGTCCCAC CTTGGACACA
 601 CTGCAGCTGG ACGTCGCCGA CTTGCCACC ACCATCTGGC AGCAGATGGA
 651 AGAACTGGGA ATGGCCCTG CCCTGCAGCC CACCCAGGGT GCCATGCCGG
 5 701 CCTTCGCCCTC TGCTTCCAG CGCCGGGAG GAGGGGTCTT GGTTGCTAGC
 751 CATCTGCAGA GCTTCCTGGA GGTGTCGTAC CGCGTTCTAC GCCACCTTGC
 801 GCAGCCCACA CCATTGGGCC CTGCCAGCTC CCTGCCAGGAG AGCTTCCTGC
 851 TCAAGTCTTT AGAGCAAGTG AGAAAGATCC AGGGCGATGG CGCAGCGCTC
 901 CAGGAGAACG TGTGTGCCAC CTAATAA (SEQ ID NO:104)

10

pMON13193

15 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTTACAAG
 451 CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC
 501 CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA GGCGCTGCAG CTGGCAGGCT
 25 551 GCTTGAGCCA ACTCCATAGC GGCTTTTC TCTACCAGGG GCTCCTGCAG
 601 GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA
 651 GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC
 701 TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT GCCGGCCTTC
 751 GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCTGGTTG CTAGCCATCT
 30 801 GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC CTTGCGCAGC
 851 CCACACCATT GGGCCCTGCC AGCTCCCTGC CCCAGAGCTT CCTGCTCAAG
 901 TCTTAGAGC AAGTGAGAAA GATCCAGGGC GATGGCGCAG CGCTCCAGGA
 951 GAAGCTGTGT GCCACCTAAT AA (SEQ ID NO:105)

35

pMON25190

40 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCGGCTCC AACATGGCTC
 401 CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
 451 GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT

501 GCAGCCCACC CAGGGTGCCA TGCCGGCCTT CGCCTCTGCT TTCCAGCGCC
 551 GGGCAGGAGG GGTCTGGTT GCTAGCCATC TGAGAGCTT CCTGGAGGTG
 601 TCGTACCGCG TTCTACGCCA CCTTGCGCAG CCCACACCCT TGGGCCCTGC
 651 CAGCTCCCTG CCCCAGAGCT TCCTGCTCAA GTCTTAGAG CAAGTGAGAA
 5 701 AGATCCAGGG CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC
 751 AAGCTGTGCC ACCCCGAGGA GCTGGTGTG CTCGGACACT CTCTGGGCAT
 801 CCCCTGGGCT CCCCTGAGCT CCTGCCAG CCAGGCCCTG CAGCTGGCAG
 851 GCTGCTTGAG CCAACTCCAT AGCGGCCTT TCCTCTACCA GGGGCTCCTG
 901 CAGGCCCTGG AAGGGATATC CTAATAA (SEQ ID NO:106)

10

PMON25191

15 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTCCCGAG
 451 TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
 501 CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCT GCCCTGCAGC
 25 551 CCACCCAGGG TGCCATGCCG GCCTTCGCTT CTGCTTCCA GCGCCGGGCA
 601 GGAGGGTCC TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
 651 CCGCGTTCTA CGCCACCTTG CGCAGCCAC ACCATTGGGC CCTGCCAGCT
 701 CCCTGCCCA GAGCTTCTG CTCAAGTCTT TAGAGCAAGT GAGAAAGATC
 751 CAGGGCGATG GCGCAGCGCT CCAGGAGAAG CTGTGTGCCA CCTACAAGCT
 30 801 GTGCCACCCC GAGGAGCTGG TGCTGCTCGG AACTCTCTG GGCATCCCT
 851 GGGCTCCCT GAGCTCCTGC CCCAGCCAGG CCCTGCAGCT GGCAAGGCTGC
 901 TTGAGCCAAC TCCATAGCGG CCTTTCCCTC TACCAGGGC TCCTGCAGGC
 951 CCTGGAAGGG ATATCCTAAT AA (SEQ ID NO:107)

35

PMON13194

40 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTA
 401 TGGCCCTGCA CCTGCAGCCC ACCCAGGGTGC CATGCCGGC CTTCGCCTCT
 451 GCTTCCAGC GCCGGGCAGG AGGGGTCTG GTTGCTAGCC ATCTGCAGAG

501 CTTCCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGC G CAGCCCACAC
 551 CATTGGGCC C TGCCAGCTCC CTGCCCCAGA GCTTCCTGCT CAAGTCTTTA
 601 GAGCAAGTGA GAAAGATCCA GGGCGATGGC GCAGCGCTCC AGGAGAAGCT
 651 GTGTGCCACC TACAAGCTGT GCCACCCCGA GGAGCTGGTG CTGCTCGGAC
 5 701 ACTCTCTGGG CATCCCCCTGG GCTCCCCCTGA GCTCCTGCC CAGCCAGGCC
 751 CTGCAGCTGG CAGGCTGCTT GAGCCAACTC CATAGCGGCC TTTTCCTCTA
 801 CCAGGGGCTC CTGCAGGGCC TGGAAGGGAT ATCCCCCGAG TTGGGTCCCA
 851 CCTTGGACAC ACTGCAGCTG GACGTCGCC G ACCTTGCCAC CACCATCTGG
 901 CAGCAGATGG AAGAACTGGG ATAATAA (SEQ ID NO:108)

10

pMON13195

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTATGGCC
 451 CCTGCCCTGC AGCCCCACCA GGGTGCATG CGGGCCTTCG CCTCTGCTTT
 501 CCAGCGCCGG GCAGGAGGGG TCCTGGTTGC TAGCCATCTG CAGAGCTTCC
 25 551 TGGAGGTGTC GTACCGCGTT CTACGCCACC TTGCGCAGCC CACACCATTG
 601 GGCCCTGCCA GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT CTTTAGAGCA
 651 AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG
 701 CCACCTACAA GCTGTGCCAC CCCGAGGAGC TGGTGCTGCT CGGACACTCT
 751 CTGGGCATCC CCTGGGCTCC CCTGAGCTCC TGCCCCAGCC AGGCCCTGCA
 30 801 GCTGGCAGGC TGCTTGAGCC AACTCCATAG CGGCCTTTTC CTCTACCAGG
 851 GGCTCCTGCA GGCCCTGGAA GGGATATCCC CCGAGTTGGG TCCCACCTTG
 901 GACACACTGC AGCTGGACGT CGCCGACTTT GCCACCACCA TCTGGCAGCA
 951 GATGGAAGAA CTGGGATAAT AA (SEQ ID NO:109)

35

pMON13196

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 40 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCAGGCTCC AACATGGCTA
 401 CCCAGGGTGC CATGCCGGCC TTCGCCTCTG CTTTCCAGCG CGGGCAGGA
 451 GGGGTCCCTGG TTGCTAGCCA TCTGCAGAGC TTCCCTGGAGG TGTCGTACCG

501 CGTTCTACGC CACCTTGCAC AGCCCACACC ATTGGGCCCT GCCAGCTCCC
 551 TGCCCCAGAG CTTCTGCTC AAGTCTTAG AGCAAGTGAG AAAGATCCAG
 601 GGCATGGCG CAGCGCTCCA GGAGAAGCTG TGTGCCACCT ACAAGCTGTG
 651 CCACCCCGAG GAGCTGGTGC TGCTCGGACA CTCTCTGGC ATCCCCTGGG
 701 CTCCCCCTGAG CTCCTGCCCT AGCCAGGGCC TGCAAGCTGGC AGGCTGCTTG
 751 AGCCAACCTCC ATAGCGGCCT TTTCTCTAC CAGGGGCTCC TGCAGGCCCT
 801 GGAAGGGATA TCCCCCGAGT TGGGTCCAC CTTGGACACA CTGCAGCTGG
 851 ACGTGCCGA CTTGCCACC ACCATCTGGC AGCAGATGGA AGAACTGGGA
 901 ATGGCCCTG CCCTGCAGCC CTAATAA (SEQ ID NO:110)

10

PMON13197

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTACCCAG
 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
 501 CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
 25 551 TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCC
 601 CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
 651 TGGCGCAGCG CTCCAGGAGA AGCTGTGTC CACCTACAAG CTGTGCCACC
 701 CCGAGGAGCT GGTGCTGTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
 751 CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
 30 801 ACTCCATAGC GGCCTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
 851 GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
 901 GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
 951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:111)

35

PMON13198

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 40 51 ACCACCTGCA CCTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCGGCTCC AACATGGCTT
 401 CTGCTTCCA GCGCCGGGCA GGAGGGGTCC TGGTTGCTAG CCATCTGCAG
 451 AGCTTCCTGG AGGTGTCGTA CCGCGTTCTA CGCCACCTTG CGCAGCCCAC

501 ACCATTGGGC CCTGCCAGCT CCCTGCCCA GAGCTTCCTG CTCAAGTCTT
 551 TAGAGCAAGT GAGAAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG
 601 CTGTGTGCCA CCTACAAGCT GTGCCACCCC GAGGAGCTGG TGCTGCTCGG
 651 ACACTCTCTG GGCATCCCTT GGGCTCCCT GAGCTCCTGC CCCAGCCAGG
 5 701 CCCTGCCAGCT GGCAGGCTGC TTGAGCCAAC TCCATAGCGG CCTTTCCCTC
 751 TACCAGGGGC TCCTGCAGGC CCTGGAAGGG ATATCCCCCG AGTTGGGTCC
 801 CACCTTGGAC AACTGCAGC TGGACGTCGC CGACTTGCC ACCACCATCT
 851 GGCAGCAGAT GGAAGAACTG GGAATGGCC CTGCCCTGCA GCCCACCCAG
 901 GGTGCCATGC CGGCCTTCGC CTAATAA (SEQ ID NO:112)

10

pMON13199

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 15 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 20 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTTCTGCT
 451 TTCCAGCGCC GGGCAGGAGG GGTCTGGTT GCTAGCCATC TGCAGAGCTT
 501 CCTGGAGGTG TCGTACCGCG TTCTACGCCA CCTTGCAG CCCACACCAT
 25 551 TGGGCCCTGC CAGCTCCCTG CCCCAGAGCT TCCTGCTCAA GTCTTAGAG
 601 CAAGTGAGAA AGATCCAGGG CGATGGCGCA GCGCTCCAGG AGAAGCTGTG
 651 TGCCACCTAC AAGCTGTGCC ACCCGAGGA GCTGGTGTG CTCGGACACT
 701 CTCTGGCCTAC CCCCTGGCT CCCCTGAGCT CCTGCCCAAG CCAGGCCCTG
 751 CAGCTGGCAG GCTGCTTGAG CCAACTCCAT AGCGGCCTT TCCTCTACCA
 30 801 GGGGCTCCTG CAGGCCCTGG AAGGGATATC CCCCAGTTG GGTCCCACCT
 851 TGGACACACT GCAGCTGGAC GTCGCCGACT TTGCCACCAC CATCTGGCAG
 901 CAGATGGAAG AACTGGGAAT GGCCCTGCC CTGCAGCCA CCCAGGGTGC
 951 CATGCCGGCC TTGCGCTAAT AA (SEQ ID NO:113)

35

pMON31112

1 ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
 51 GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
 40 101 ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
 151 CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTAA
 201 AAATCTCTG CCATGTCTGC CGCTAGCCAC GGCGCGCACCC ACGCGACATC
 251 CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTG TAAACTGACC
 301 TTCTATCTGA AACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT

501 CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
 551 TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
 601 CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
 651 GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
 5 701 TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
 751 TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
 801 CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GCCCCTGGAA GGGATATCCC
 851 CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
 901 GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
 10 951 GCAGCCCTAA TAA (SEQ ID NO:114)

pMON31113

15 1 ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
 51 GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
 101 ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
 151 CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTAA
 201 AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCGCACCC ACGCGACATC
 20 251 CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
 301 TTCTATCTGA AAACCTTGGG GAACGCGCAG GCTAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTACCCAG
 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGGCCGGG CAGGAGGGGT
 25 501 CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
 551 TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCC
 601 CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
 651 TGGCGCAGCG CTCCAGGAGA AGCTGTGTG CACCTACAAG CTGTGCCACC
 701 CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
 30 751 CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
 801 ACTCCATAGC GGCCTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
 851 GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
 901 GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
 951 CCCTGCCCTG CAGCCCTAAAT AA (SEQ ID NO:115)

35

pMON31114

40 1 ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
 51 GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
 101 ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
 151 CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTAA
 201 AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCGCACCC ACGCGACATC
 251 CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
 45 301 TTCTATCTGA AAACCTTGGG GAACGCGCAG GCTAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTACCCAG

451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
 501 CCTGGTTGCT AGCCATCTGC AGAGCTTCT GGAGGTGTCG TACCGCGTTC
 551 TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
 601 CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
 5 651 GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
 701 TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
 751 TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
 801 CGGCCTTTC CTCTACCAGG GGCTCCTGCA GCCCCTGGAA GGGATATCCC
 851 CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
 10 901 GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
 951 GCAGCCCTAA TAA (SEQ ID NO:116)

PMON31115

15 1 ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
 51 GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
 101 ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
 151 CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTAA
 20 201 AAATCTCCTG CCATGTCTGC CGCTAGCCAC GGCGCACCC ACGCGACATC
 251 CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
 301 TTCTATCTGA AAACCTTGGG GAACGCGCAG GCTAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTACCCAG
 25 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
 501 CCTGGTTGCT AGCCATCTGC AGAGCTTCT GGAGGTGTCG TACCGCGTTC
 551 TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCC
 601 CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
 651 TGGCGCAGCG CTCCAGGAGA AGCTGTGTGC CACCTACAAG CTGTGCCACC
 30 701 CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
 751 CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
 801 ACTCCATAGC GGCCTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
 851 GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
 901 GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
 35 951 CCCTGCCCTG CAGCCCTAAAT AA (SEQ ID NO:117)

PMON28505

40 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
 GCTGGACCGAACACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
 TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
 GCAATTCTCGTAATCTCCAACCATGTCTGCCCTTGCCACGGCCGACCCCTCTCGACATCC
 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
 45 CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
 CATGGAGGTTCACCCCTTGCCTACACCTGTCCTGCTGCTGTGGACTTTAGCTGGAG

AATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGCACATTCTGGGAGCAGTGACCCTCTG
CTGGAGGGAGTGTGGCAGCACGGGACAACACTGGGACCCACTGCCTCTCATCCCTCTGGG
GCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCTTGGAACCCAGC
TTCCTCCACAGGGCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAA
5 CACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCTCTGCGTCAG
GGAATTGGCGGCAACATGGCGTCTCCGCTCCGCTGTTGTGACCTCCGAGTCCTCAGTA
AACTGCTCGTGAECTCCATGTCCTCACAGCAGACTGAGCCAGTGCCCCA (SEQ ID
NO: 118)

10

PMON28506

15

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAA
20 CATGTTGCCTACACCTGCTCTGCTGCCTGCTGTGGACTTTAGCTTGGAGAATGGAAAACCC
AGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTG
ATGGCAGCACGGGACAACCTGGGACCCACTTGCCTCTCATCCCTCTGGGGCAGCTTCTGG
ACAGGTCCGTCTCCCTCCTGGGGCCCTGCAGAGCCTCTGGAAACCCAGCTCCTCCACAGG
GCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAACACACTGCTCCGA
25 GGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCTCTGCGTCAGGGATTGGCGG
CAACATGGCGTCTCCGCTCCGCTGTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTG
ACTCCCATGTCCTCACAGCAGACTGAGCCAGTGCCCAGAGGGTCAACCCT (SEQ ID
NO: 119)

30

PMON28507

35

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAA
40 CATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGGAGA
CCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACCTGGGACCCACTTGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCT
CCTCCTGGGGCCCTGCAGAGCCTCTGGAAACCCAGCTTCTCCACAGGGCAGGACACAG
CTCACACAAGGATCCAATGCCATCTCCTGAGCTTCAACACACTGCTCCGAGGAAAGGTGCGT
45 TTCCTGATGCTGTAGGAGGGTCCACCCTCTGCGTCAGGGATTGGCGGAAACATGGCGTC
TCCCGCTCCGCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTACTCCCATGTCC

TTCACAGCAGACTGAGCCAGTGCCAGAGGTTACCCCTTGCCCTACACCT (SEQ ID NO:120)

5 pMON28508

GCTAACTGCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
10 GCAATTCTCGTAATCTCAACCATGTCTGCCCTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAACATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCCAAA
CATGGCTGTGGACTTTAGCTGGAGAACATGGAAAACCCAGATGGAGGAGACCAAGGCACAGG
15 ACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGA
CCCACCTGCCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGC
CCTGCAGAGCCTCCTGGAACCCAGCTCCTCCACAGGGCAGGACACAGCTACAAGGATC
CCAATGCCATCTCCTGAGCTTCAAACACACTGCTCCGAGGAAAGGTGCGTTCTGATGCTT
GTAGGAGGGTCCACCCCTCGCGTCAGGAATTGGCGGAAACATGGCGTCTCCGCTCCGCC
20 TGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCATGTCCTCACAGCAGAC
TGAGCCAGTGCCCAGAGGTTACCCCTTGCCCTACACCTGTCTGCTGCCT (SEQ ID
NO:121)

25 pMON28509

GCTAACTGCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
30 GCAATTCTCGTAATCTCAACCATGTCTGCCCTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAACATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCCAAA
CATGGACTTTAGCTGGAGAACATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
35 TGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGACCCACT
TGCCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTGGGGCCCTGCA
GAGCCTCCTGGAACCCAGCTCCTCCACAGGGCAGGACACAGCTACAAGGATCCAAATG
CCATCTCCTGAGCTTCAAACACACTGCTCCGAGGAAAGGTGCGTTCTGATGCTTAGGA
GGGTCCACCCCTCGCGTCAGGAATTGGCGGAAACATGGCGTCTCCGCTCCGCTGCTTG
40 TGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCATGTCCTCACAGCAGACTGAGCC
AGTGGCCAGAGGTTACCCCTTGCCCTACACCTGTCTGCTGCCTGCTGTG (SEQ ID
NO:122)

45 pMON28510

GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCAGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
5 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCGTTAC
CCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGAACCGTC
TGGTCCAATCTCTACTATCAACCCGTCTCCTCGTCAAAGAAATCTCATAAACTCCAAACAT
GGGAGAATGGAAAACCCAGATGGAGGGAGACCAAGGCACAGGACATTCTGGAGCAGTGACCC
10 TCTGCTGGAGGGAGTGTGGCAGCACGGGACAACACTGGGACCCACTTGCTCTCATCCCTC
GGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGGCCTCCTGGAACCCA
GCTTCCTCCACAGGGCAGGACACAGCTACAAGGATCCCAATGCATCTCCTGAGCTCCA
ACACCTGCTCCGAGGAAGGTGCGTTCTGATGCTGTAGGGGGTCCACCCTCTGCGTCAG
GGAATTCGCGGCAACATGGCGTCTCCGCTCCGCTGCTGTGACCTCCGAGTCCTCAGTAA
ACTGCTTCGTGACTCCCATGTCCTCACAGCAGACTGACCAGTGCCTGAGGTTCACCTT
15 GCCTACACCTGTCCTGCCTGCTGTGGACTTAGTTG (SEQ ID NO:123)

pMON28511

20 GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCAGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGTTA
25 CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAAATCTCATAAATCTCCAAA
CATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCC
TTGGGGCCCTGCAGAGCCTCTTGGAACCCAGCTCCTCACAGGGCAGGACCAAGGCTCAC
AAGGATCCCAATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCGTTCC
30 GATGCTTGTAGGAGGGTCCACCCCTCTGCGTCAGGGAAATCGCGGCAACATGGCGTCTCCCG
CTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCCTTGCCTACACCTGTCCTGCTGCCTGCTGT
GGACTTTAGCTGGGAGAATGGAAAACCCAGATGGAGGGAGACCAAGGCACAGGACATTCTGG
GAGCAGTGACCCCTCTGCTGGAGGGAGTGTGGCAGCACGGGACAAGT (SEQ ID
35 NO:124)

pMON28512

40 GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCAGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGTTA
45 CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAAATCTCATAAATCTCCAAA
CATGGGAAACCCAGCTCCTCACAGGGCAGGACCAAGGCTCACAGGATCCCAATGCCATCT

TCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCCTTGATGCTTGTAGGAGGGTCC
ACCCTCTCGTCAGGAAATTCGGCCGCAACATGGCGTCTCCGCTCCGCTGCTTGTGACCT
CCGAGTCCTCAGTAAACTGCTCGTACTCCATGTCCTCACAGCAGACTGAGCCAGTGCC
CAGAGGTTCACCCCTTGCTTACACCTGTCCTGCTGCCGTGGACTTAGCTTGGAGAA
5 TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGAGGAGTGA
GGAGGGAGTGATGGCAGCACGGGACAACGGGACCCACTTGCCTCTCATCCCTCCTGGGGC
AGCTTCTGGACAGGTCCGTCTCCTGGGCCCTGCAGAGCCTCCTT (SEQ ID
NO:125)

10

pMON28513

15

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTGCCACGGCCGCACCCCTTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTACTATCAACCGTCTCCTCCGTCTAAAGAATCTCATAAATCTCAA
20 CATGGGCAGGACCAAGCTCACAAGGATCCAATGCCATCTCCTGAGCTTCCAACACCTGC
TCCGAGGAAAGGTGCCTGATGCTTAGGAGGGTCCACCCCTCGCGTCAGGAAATTC
GGCAGGAAACATGGCGTCTCCGCTCCGCTGCTTGACCTCCGAGTCCTCAGTAAACTGCT
TCGTGACTCCCCTGTCCTCACAGCAGACTGAGCCAGTGCCAGAGGTTACCCCTTGCTA
CACCTGTCCTGCTGCCTGCTGGACTTAGCTTGGAGAAATGGAAAACCCAGATGGAGGAG
25 ACCAAGGCACAGGACATTCTGGAGCAGTGACCTCTGCTGGAGGAGTGA
GGGACAACTGGGACCCACTTGCCTCTCATCCCTGGGCCAGCTTCTGGACAGGTCCGTC
TCCTCCTGGGCCCTGCAGAGCCTCCTGGAACCCAGCTTCCACAG (SEQ ID
NO:126)

30

pMON28514

35

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTGCCACGGCCGCACCCCTTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTACTATCAACCGTCTCCTCCGTCTAAAGAATCTCATAAATCTCAA
40 CATGGCTCACAAGGATCCAATGCCATCTCCTGAGCTTCCAACACCTGCTCGAGGAAAGG
TGCCTTCCTGATGCTTAGGAGGGTCCACCCCTCGCGTCAGGAAATCGCGGCAACATG
GCGTCTCCGCTCCGCTGCTTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCA
TGTCTTCACAGCAGACTGAGCCAGTGCCAGAGGTTACCCCTTGCTACACCTGTCTGC
TGCCTGCTGTGGACTTAGCTTGGAGAAATGGAAAACCCAGATGGAGGAGACCAAGGCACAG
45 GACATTCTGGAGCAGTGACCCCTCTGCTGGAGGGAGTGA
GGCAGCACGGGACAACGGGACCCACTTGCCTCTGGACAGGTCCGTCTCCTGGGG

CCCTGCAGAGCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACA (SEQ ID NO:127)

5 pMON28515

GCTAACTGCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTAGAAAATGCATCAGGTATTGAG
10 GCAATTCTCGTAATCTCAACCAGTCTGCCCTTGCCACGGCCGACCCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGATCCCAATGCCATTTCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTTCC
15 TGATGCTGTAGGAGGGTCCACCCCTCGCGTCAGGGATTGGCGGCAACATGGCGTCTCCC
GCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTGACTCCCATGTCCCTCA
CAGCAGACTGAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGCTCGTGCCTGCTG
TGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACGGGACCCACTTG
20 CCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGA
GCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAG (SEQ ID
NO:128)

25 pMON28516

GCTAACTGCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTAGAAAATGCATCAGGTATTGAG
30 GCAATTCTCGTAATCTCAACCAGTCTGCCCTTGCCACGGCCGACCCCTCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGCCATTTCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTTCTGATGTTG
35 TAGGAGGGTCCACCCCTCGCGTCAGGGATTGGCGGCAACATGGCGTCTCCGCTCCGCCT
GCTTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTGACTCCCATGTCCCTCACAGCAGACT
GAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGCTCGTGCCTGCTGTTGAGCTTA
GCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGAGCAGTG
ACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACGGGACCCACTTGCTCTCATC
40 CCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTTG
GAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAGGATCCAAAT (SEQ ID
NO:129)

45 pMON28519

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
5 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGAGGTTCACCCCTTGCCTACACCTGTCTGCTGCCTGCTGTGGACTTTAGCTGGAG
AATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTG
10 CTGGAGGGAGTGTGGCAGCACGGGACAACACTGGGACCCACTTGCCTCTCATCCCTCTGGG
GCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGC
TTCCTCACAGGGCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAA
CACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCTCTGCGTCAG
GGAATTCCGCAACATGGCGTCTCCGCTCCGCTGCTGTGACCTCCGAGTCCTCAGTAAAC
15 TGCTTCGTGACTCCCATGTCCTCACAGCAGACTGAGCCAGTGCCCCA (SEQ ID
NO:130)

PMON28520

20 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
25 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGTTGCCTACACCTGTCTGCTGCTGTGGACTTTAGCTTGGAGAATGGAAAACCC
AGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTG
30 ATGGCAGCACGGGACAACACTGGGACCCACTTGCCTCTCATCCCTCTGGGGCAGCTTCTGG
ACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTCCTCCACAGG
GCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGA
GGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCTCTGCGTCAGGAAATCGGCAA
CATGGCGTCTCCGCTCCGCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACT
35 CCCATGTCCTCACAGCAGACTGAGCCAGTGCCCCAGAGGTTCACCC (SEQ ID
NO:131)

PMON28521

40 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
45 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA

CATGGTCCTGCTGCCTGCTGGACTTAGCTTGGAGAATGGAAAACCCAGATGGAGGGAGA
CCAAGGCACAGGACATTCTGGGAGCAGTGACCCTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACCTGGGACCCACTGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCT
CCTCCTGGGGCCCTGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAG
5 CTCACAAAGGATCCCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAAATCGAACATGGCGTCTCC
CGCTCCGCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCCACACCTGCTTC
ACAGCAGACTGAGCCAGTGCCAGAGGTTACCCCTTGCTACACCT (SEQ ID
NO:132)

10

pMON28522

GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTT
15 GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
20 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGCTGTGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGG
ACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACGG
CCCACCTGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCTCCCTGGGGC
CCTGCAGAGCCTCTGGAAACCCAGCTTCCACAGGGCAGGACACAGCTACAAGGATC
25 CCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGGGAAATCGGAACATGGCGTCTCCGCTCCGCTGC
TTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCCACAGCAGACTGA
GCCAGTGCCCAGAGGTTACCCCTTGCTACACCTGCTGCTGCCT (SEQ ID
NO:133)

30

pMON28523

GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTT
35 GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
40 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTC
TGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGACCCACT
TGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCTCCCTGGGGCCCTGCA
GAGCCTCTGGAAACCCAGCTTCCACAGGGCAGGACACAGCTACAAGGATCCAAATG
45 CCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTTGTAGGA
GGGTCCACCCCTCTGCGTCAGGGAAATCGGAACATGGCGTCTCCGCTCCGCTGCTGTGA
CCTCCGAGTCCTCAGTAAACTGCTCGTACTCCCACAGCAGACTGAGCCAGT

GCCCAGAGGTTCACCTTGCTACACCTGCCTGCTGCCTGCTGTG (SEQ ID NO:134)

5 pMON28524

GCTAACTGCTATAATGATGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
10 GCAATTCTCGTAATCTCCAACCAGTCTGCCCTTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCAA
CATGGGAGAATGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGA
15 CCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGCCCTCTCATCC
CTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCTGGGGCCCTGCAGAGCCTCCTGG
AACCCAGCTCCTCCACAGGGCAGGACCACAGCTACAAGGATCCCAATGCCATCTCCTGA
GCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTGTAGGGAGGTCCACCCCTC
TGCCTGAGGAATTGGCAACATGGCGTCTCCGCTCCGCTGTGACCTCCGAGTCCT
20 CAGTAAACTGCTCGTGACTIONCCATGTCCTCACAGCAGACTGAGCCAGTGCCAGAGGTTC
ACCCTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTG (SEQ ID
NO:135)

25 pMON28525

GCTAACTGCTATAATGATGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
30 GCAATTCTCGTAATCTCCAACCAGTCTGCCCTTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCAA
CATGGGACCCACTTGCCTCTCATCCCTGGGGCAGTTCTGGACAGGTCCGTCTCCTCC
35 TTGGGGCCCTGCAGAGCCTCCTTGAACCCAGCTCCTCCACAGGGCAGGACCACAGCTCAC
AAGGATCCCAATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCGTTCCCT
GATGCTGTAGGGAGGTCCACCCCTCTGCGTCAGGGAATTGGCAACATGGCGTCTCCGCTC
CGCCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTGACTIONCCATGTCCTTCACAGC
AGACTGAGCCAGTGCCCAGAGGTTCACCTGCCTACACCTGTCCTGCTGCCTGCTGTGGA
40 CTTTAGCTGGAGAATGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAG
CAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCAGGGACAACTG (SEQ ID
NO:136)

45 pMON28526

GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
5 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA
CATGGGAACCCAGCTCCTCCACAGGGCAGGACCACAGCTCACAGGATCCCAATGCCATCT
TCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTTGTAGGAGGGTCC
10 ACCCTCTCGTCAGGGATTGGCAACATGGCGTCTCCGCTCCGCCTGCTTGTGACCTCCG
AGTCCTCAGTAAACTGCTCGTACTCCCATGTCCCTCACAGCAGACTGAGCCAGTGCCAG
AGGTTCACCCCTTGCCTACACCTGCTCCTGCTGCTGTGGACTTTAGCTTGGAGAACATGG
AAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGAGCAGTGACCCTCTGCTGGA
GGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGCCTCTCATCCCTGGGGCAGC
15 TTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTT (SEQ ID
NO:137)

pmON28527

20 GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
25 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA
CATGGGCAGGACCACAGCTCACAGGATCCCAATGCCATCTCCTGAGCTTCCAACACCTGC
TCCGAGGAAAGGTGCGTTCTGATGCTTGTAGGAGGGTCCACCCCTCTGCGTCAGGGATTG
30 GGCAACATGGCGTCTCCGCTCCGCCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCG
TGACTCCCAGTGCCTTCACAGCAGACTGAGCCAGTGCCTCAGAGGTTACCCCTTGCCTACAC
CTGTCCTGCTGCCTGCTGGACTTTAGCTTGGAGAACATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGTAGGGCAGCACGGGG
ACAACACTGGGACCCACTTGCCTCTCATCCCTGGGGCAGCTTCTGGACAGGTCCGTCTCC
35 TCCTTGGGGCCCTGCAGAGCCTCCTGGAAACCCAGCTCCTCCACAG (SEQ ID
NO:138)

pmON28528

40 GCTAACTGCTCTATAATGATCGATGAAATTATAACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
45 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA

CATGGCTCACAGGATCCAAATGCCATCTCCTGAGCTTCAACACCTGCTCGAGGAAAGG
TGCCTTCCTGATGCTTAGGAGGGTCCACCCCTTGCCTGAGCTCCAGTAAACTGCTCGTACTCCATGT
CCTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCCTTGCCTACACCTGCTCGTGC
5 CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACC
CACTTGCCCTCATCCCTGGGGCAGCTTCTGGACAGGTCCGTCCCTCCTGGGCC
TGCAGAGCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCA (SEQ ID
NO:139)

10

pMON28529

GCTAACTGCTCTATAATGATGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
15 GCTGGACCCGAACAAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAAACCATGTCTGCCCTTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
20 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGATCCAAATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTTCC
TGATGCTGTAGGGAGGTCACCCCTCGCGTCAGGAATTGGCAACATGGCGTCTCCGCT
CCGCCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCATGTCCTCACAG
CAGACTGAGCCAGTGCCAGAGGTTCACCCCTTGCCCTACACCTGTCCTGCTGCCTGTTGG
25 ACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGA
GCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTGCCT
CTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCCCTCCTGGGCCCTGCAGAGCC
TCCTTGGAACCCAGCTCCTCACAGGGCAGGACACAGCTACAAG (SEQ ID
NO:140)

30

pMON28530

GCTAACTGCTCTATAATGATGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
35 GCTGGACCCGAACAAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAAACCATGTCTGCCCTTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
40 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCCTTCTGATGCTTG
TAGGAGGGTCCACCCCTCGCGTCAGGAATTGGCAACATGGCGTCTCCGCTCCGCTGCT
TGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCATGTCCTCACAGCAGACTGAG
CCAGTGCCCAGAGGTTCACCCCTTGCCCTACACCTGTCCTGCTGCCTGTTAGCT
45 TGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTGCCTCTCATCCCT
CCTGGGCCAGCTTCTGGACAGGTCCGTCCCTGGGCCCTGCAGAGCCTTGGAA

CCAGCTTCCTCACAGGGCAGGACCACAGCTACAAGGATCCAAAT (SEQ ID NO:141)

5 pMON28533

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTGACT
TCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATGAGGC
10 AATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCGCACCCCTCGCATCCAAT
CATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATTGGTTACCCCT
TGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGTAACCGTCTGGT
CCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAACATGGA
GGTCACCCCTTGCCTACACCTGTCCTGCTGTGGACTTTAGCTGGAGAATGGA
15 AAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAG
GGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGCCCTCTCATCCCTGGGGCAGCT
TTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTTGGAAACCCAGCTCCTC
CACAGGGCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAAACACCTG
CTCCGAGGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCCTGCGTCAGGGAATT
20 CGGCGGCAACGGCGAACATGGCGTCCCCAGCGCCGCTGTTGTGACCTCCGAGTCCTCA
GTAAACTGCTCGTACTCCATGTCCTCACAGCAGACTGAGCCAGTGCCA (SEQ ID NO:142)

25 pMON28534

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
30 GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCGCACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGTGAACCG
TCTGGTCAAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCAA
CATGTTGCCTACACCTGTCCTGCTGTGGACTTTAGCTGGAGAATGGAAAACCC
35 AGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTG
ATGGCAGCACGGGACAACACTGGGACCCACTTGCCCTCTCATCCCTCTGGGGCAGCTTCTGG
ACAGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTTGGAAACCCAGCTCCTCCACAGG
GCAGGACCACAGCTACAAGGATCCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGA
GGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCCTGCGTCAGGGAATTGGCGG
40 CAACGGCGAACATGGCGTCCCCAGCGCCGCTGTTGTGACCTCCGAGTCCTCAGTAAAC
TGCTCGTACTCCATGTCCTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCC
(SEQ ID NO:143)

45 pMON28535

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
5 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA
CATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGAGA
CCAAGGCACAGGACATTCTGGGAGCAGTGACCTCTGCTGGAGGGAGTGATGGCAGCACGG
10 GGACAACCTGGGACCCACTGCCTCTCATCCCTCCTGGGAGCTTCTGGACAGGTCCGTCT
CCTCCTGGGGCCCTGCAGAGCCTCCTGGAACCCAGCTTCTCCACAGGGCAGGACACAG
CTCACACAAGGATCCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTGTAGGAGGGTCCACCCTCTCGTCAGGAAATTGGCGGCAACGGCGGCAA
CATGGCGTCCCCAGCGCCCTGCTGTGACCTCCAGTCAGTAAACTGCTTCGTGACT
15 CCCATGTCCTTCACAGCAGACTGAGCCAGTGAGCCAGTGAGGTTCACCCCTTGCCTACACCT
(SEQ ID NO:144)

pmON28536

20 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
25 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA
CATGGCTGTGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGG
ACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACGGGA
30 CCCACTTGCCTCTCATCCCTCCTGGGAGCTTCTGGACAGGTCCGTCTCCTGGGGC
CCTGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACACAGCTACAAGGATC
CCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTT
GTAGGAGGGTCCACCCTCTCGTCAGGAAATTGGCGGCAACGGCGGAAACATGGCGTCCCC
AGCGCCGCTGCTGTGACCTCCAGTCAGTAAACTGCTTCGTGACTCCATGTCCTTC
35 ACAGCAGACTGAGCCAGTGAGCCAGTGAGGTTCACCCCTTGCCTACACCTGTCCTGCTGCCT
(SEQ ID NO:145)

pmON28537

40 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTCTCGACATCC
45 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCAAAGAACATCTCATAAAATCTCCAAA

CATGGACTTAGCTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGTGGCAGCACGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCCTGCAAGGCCTCCTTGGAACCCAGCTTCTCCACAGGGCAGGACCACAGCTCACAAAGGATCCCAATGCCATCTTCCCTGAGCTTCAACACCTGCTCCAGGGAAAGGTGCGTTCTGATGCTTAGGAAGGTCCACCCCTCTGCGTCAGGGAATTCGCGGGCACAGGGCGAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAGTCCCTCACAGCAGAUTGAGCCAGTGCCCCAGAGGTTCACCCCTTGCCTACACCTGTCCGTGCTGCCTGCTGTG
(SEQ ID NO:146)

10

pMON28538

15 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCCTTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
20 TCTGGTCCAATCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCAA
CATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGA
CCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTGCCCTCTCATCC
CTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCTGGGGCCCTGCAGAGCCTCCTTGG
AACCCAGCTTCCCTCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTCCTGA
25 GCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTGTAGGAGGGTCCACCCCTC
TGCCTCAGGGATTGGCGAACGGCGGAAACATGGCGTCCCCAGCGCCGCTGCTGTGA
CCTCCGAGTCCTCAGTAAACTGCTCGTGAACCTGCCTCACAGCAGACTGAGCCAGT
GCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
(SEQ ID NO: 147)

30

pMON28539

35 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTTGCCACGGCCGCACCCTCTGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
40 TCTGGTCCAATCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAATCTCCAAA
CATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCC
TTGGGGCCCTGCAGAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAGCTCAC
AAGGATCCAATGCCATCTTCCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCGTTCT
GATGCTTGTAGGAGGGTCCACCCCTCTGCGTCAGGGAATTGGCGCAACGGCGGAAACATGG
45 CGTCCCCAGCGCCGCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCCTTGCCTACACCTGTCCGT

GCCTGCTGTGGACTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGG
ACATTCTGGAGCAGTGACCCTCTGCTGGAGGGAGTGTGGCAGCACGGGACAACCTG
(SEQ ID NO:148)

5

PMON28540

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
10 TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTTGCCACGGCCGCACCCCTCTGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
15 CATGGGAACCCAGCTCCACAGGGCAGGACCACAGCTACAAGGATCCCAATGCCATCT
TCCTGAGCTCCAACACCTGCTCCGAGGAAAGGTGCGTTCTGATGCTTGAGGAGGGTCC
ACCCCTCTGCGTCAGGGAAATTGGCGGCAACGGCGAACATGGCGTCCCAGCGCCGCGCTGC
TTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCATGTCCTTCACAGCAGACTGA
GCCAGTGCCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGCTGGACTTAGC
20 TTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGAGCAGTGAC
CCTTCTGCTGGAGGGAGTGTGGCAGCACGGGACAACACTGGGACCCACTTGCCCTCATCCC
TCCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTGGGGCCCTGCAGAGCCTCCTT
(SEQ ID NO:149)

25

PMON28541

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
30 TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTTGCCACGGCCGCACCCCTCTGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
35 CATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTCCTGAGCTTCAAACACCTGC
TCCGAGGAAAGGTGCGTTCTGATGCTTAGGAGGGTCCACCCCTGCGTCAGGGAAATTC
GGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCTGCTGTGACCTCCGAGTCCTCAG
TAAACTGCTCGTACTCCATGTCCTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CTTGCCCTACACCTGTCCTGCTGCCCTGCTGGACTTAGCTGGAGAATGGAAAACCCAG
40 ATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGT
GGCAGCACGGGGACAACCTGGACCCACTTGCCCTCATCCCTCCTGGGGCAGCTTCTGGAC
AGGTCCGTCTCCTCCTGGGGCCCTGCAGAGCCTCCTGGAAACCCAGCTCCTCCACAG
(SEQ ID NO:150)

45

PMON28542

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
5 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCCAAA
CATGGCTCACAGGATCCCAATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGG
10 TGCGTTTCCTGATGCTTAGGGAGGTCCACCCCTCTCGTCAGGAAATTGGCGGAAACGGC
GGCAACATGGCGTCCCAGCGCCGCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCG
TGACTCCCAGTGCCTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCCCTTGCCTACAC
CTGTCCCTGCTGCCTGCTGGACTTTAGCTGGAGAACATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGTGGCAGCACGGGG
ACAACGGGACCCACTTGCCCTCATCCCTGGCAGCTTCTGGACAGGTCCGTTCC
15 TCCTGGGGCCCTGCAGAGCCTCCTTGAACCCAGCTCCTCCACAGGGCAGGACCACA
(SEQ ID NO:151)

PMON28543

20 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
25 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCCAAA
CATGGATCCCAATGCCATCTCCTGAGCTTCAACACCTGCTCCGAGGAAAGGTGCGTTCC
TGATGCTTAGGGAGGTCCACCCCTCTCGTCAGGAAATTGGCGGAAACGGCGGAAACATG
30 GCGTCCCAGCGCCGCTGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCA
TGTCCCTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCCCTTGCCCTACACCTGTCTGC
TGCCTGCTGTGGACTTTAGCTGGAGAACATGGAAAACCCAGATGGAGGAGACCAAGGCACAG
GACATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGTGGCAGCACGGGGACAACCTGGG
ACCCACTTGCCTCTCATCCCTGGCAGCTTCTGGACAGGTCCGTCCTCCCTGGGG
35 CCCTGCAGAGCCTCCTTGAACCCAGCTCCTCCACAGGGCAGGACCACAGCTCACAAG
(SEQ ID NO:152)

PMON28544

40 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTTT
GCTGGACCCGAACAACCTCAATGACGAAGACGTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACCTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGACCCTCTCGACATCC
45 AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAACATCTCATAAAATCTCCAAA

CATGGCCATCTCCTGAGCTCCAACACACTGCTCCGAGGAAGGTGCCTTGATGCTTG
TAGGAGGGTCCACCCTCTCGTCAGGAAATTGGCGCAACGGCGAACATGGCGTCCCCA
GCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCCATGTCCTCA
CAGCAGACTGAGCCAGTGCCAGAGGTTCACCCCTTGCCTACACCTGTCCTGCTGCCTGCTG
5 TGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTG
CCTCTCATCCCTCTGGGCAGCTTCTGGACAGGTCCGTCCCTCCTGGGCCCTGCAGA
GCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTACAAGGATCCCAAT
(SEQ ID NO:153)

10

PMON28545

GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCTT
15 GCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTTCGAC
TTCCAAACCTGGAGAGCTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTATTGAG
GCAATTCTCGTAATCTCAACCATGTCTGCCCTTGCCACGGCCGACCCCTCGACATCC
AATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTCTATCTGGTTA
CCCTTGAGCAAGCGCAGGAACAAACAGTAGCTAGAGGGCGGTGGAGGCTCCCCGGGTGAACCG
20 TCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCTCATAAAATCTCCAAA
CATGGATCCCAATGCCATCTCCTGAGCTTCAAACACCTGCTCCGAGGAAAGGTGCCTTCC
TGATGCTGTAGGAGGGTCCACCCCTCTCGTCAGGAATTGGCGGCAACATGGCGTCTCCC
GCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTCGTACTCCCATGTCCTCA
CAGCAGACTGAGCCAGTGCCAGAGGTTCACCCCTTGCCTACACCTGTCCTGCTGCCTGCTG
25 TGGACTTTAGCTTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCACGGGACAACACTGGGACCCACTTG
CCTCTCATCCCTCTGGGCAGCTTCTGGACAGGTCCGTCCCTCCTGGGCCCTGCAGA
GCCTCCTGGAACCCAGGGCAGGACCACAGCTACAAG (SEQ ID NO:154)

30

PMON15981

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
51 ACCACCTGCA CCTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
35 101 CTATCCTGAT GGATCGAAAC CTTGACTTC CAAACCTGGA GAGCTTCGTA
151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
201 TAATCTCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTGACATC
251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGG AAAACTGACG
301 TTCTATCTGG TTACCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
40 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTACAAG
451 CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC
501 CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA GGCCCTGCAAG CTGGCAGGCT
551 GCTTGAGCCA ACTCCATAGC GGCCTTTCC TCTACCAGGG GCTCCTGCA
45 601 GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA
651 GCTGGACGTC GCCGACTTTG CCACCAACCAT CTGGCAGCAG ATGGAAGAAC
701 TGGGAATGGC CCCTGCCCTG CAGCCCCACCC AGGGTGCCAT GCCGGCCTTC

751 GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCCCTGGTTG CTAGCCATCT
 801 GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC CTTGCGCAGC
 851 CCGGCAGCGG CTCTGACATG GCTACACCAT TAGGCCCTGC CAGCTCCCTG
 901 CCCCCAGAGCT TCCTGCTCAA GTCTTAGAG CAAGTGAGGA AGATCCAGGG
 5 951 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAA TAA;
 (SEQ ID NO:155)

pMON15982

10 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 15 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTCCCGAG
 451 TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
 20 501 CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCCCT GCCCTGCAGC
 551 CCACCCAGGG TGCCATGCCG GCCTTCGCT CTGCTTTCCA GCGCCGGGCA
 601 GGAGGGGTCC TGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
 651 CCGCGTTCTA CGCCACCTTG CGCAGCCCG CGCGGGCTCT GACATGGCTA
 701 CACCATTAAGG CCTGCCAGC TCCCTGCCCC AGAGCTTCCT GCTCAAGTCT
 25 751 TTAGAGCAAG TGAGGAAGAT CCAGGGCGAT GGCGCAGCGC TCCAGGAGAA
 801 GCTGTGTGCC ACCTACAAGC TGTGCCACCC CGAGGAGCTG GTGCTGCTCG
 851 GACACTCTCT GGGCATCCCC TGGGCTCCCC TGAGCTCCTG CCCCAGCCAG
 901 GCCCTGCAGC TGGCAGGCTG CTTGAGCCAA CTCCATAGCG GCCTTTCCCT
 951 CTACCAGGGG CCTCTGCAGG CCCTGGAAGG GATATCCTAA TAA;
 30 (SEQ ID NO:156)

pMON15965

35 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 40 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTCTGCT
 451 TTCCAGCGCC GGGCAGGAGG GGTCTGGTT GCTAGCCATC TGCAAGAGCTT
 45 501 CCTGGAGGTG TCGTACCGCG TTCTACGCCA CCTTGCGCAG CCCGGCGGCG
 551 GCTCTGACAT GGCTACACCA TTAGGCCCTG CCAGCTCCCT GCCCCAGAGC
 601 TTCCTGCTCA AGTCTTAGA GCAAGTGAGG AAGATCCAGG GCGATGGCGC

651 AGCGCTCCAG GAGAAGCTGT GTGCCACCTA CAAGCTGTGC CACCCCGAGG
 701 AGCTGGTGT GCTCGGACAC TCTCTGGCA TCCCCTGGC TCCCCTGAGC
 751 TCCTGCCCA GCCAGGCCT GCAGCTGGCA GGCTGCTTGA GCCAACTCCA
 801 TAGCGGCCTT TTCTCTAAC AGGGGCTCCT GCAGGCCCTG GAAGGGATAT
 5 851 CCCCCGAGTT GGGTCCCACC TTGGACACAC TGCAAGCTGGA CGTCGCCGAC
 901 TTTGCCACCA CCATCTGGCA GCAGATGGAA GAACTGGAA TGGCCCTGC
 951 CCTGCAGCCC ACCCAGGGTG CCATGCCGGC CTTCGCCTAA TAA
 (SEQ ID NO:157)

10

PMON15966

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 15 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTACA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 20 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTATGGCC
 451 CCTGCCCTGC AGCCCACCCA GGGTGCCATG CGGCCCTTCG CCTCTGCTTT
 501 CCAGCGCCGG GCAGGAGGGG TCCTGGTTGC TAGCCATCTG CAGAGCTTCC
 551 TGGAGGTGTC GTACCGCGTT CTACGCCACC TTGCGCAGCC CGGCGCGGC
 25 601 TCTGACATGG CTACACCATT AGGCCCTGCC AGCTCCCTGC CCCAGAGCTT
 651 CCTGCTCAAG TCTTTAGAGC AAGTGAGGAA GATCCAGGGC GATGGCGCAG
 701 CGCTCCAGGA GAAGCTGTGT GCCACCTACA AGCTGTGCCA CCCCAGGGAG
 751 CTGGTGCTGC TCGGACACTC TCTGGGCATC CCCTGGGCTC CCCTGAGCTC
 801 CTGCCCCAGC CAGGCCCTGC AGCTGGCAGG CTGCTTGAGC CAACTCCATA
 30 851 GCGGCCTTT CCTCTACCAG GGGCTCCTGC AGGCCCTGGA AGGGATATCC
 901 CCCGAGTTGG GTCCCACCTT GGACACACTG CAGCTGGACG TCGCCGACTT
 951 TGCCACCACC ATCTGGCAGC AGATGGAAGA ACTGGGATAA TAA
 (SEQ ID NO:158)

35

PMON15967

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 40 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTACA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 45 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTACCCAG
 451 GGTGCCATGC CGGCCTTCGC CTCTGCTTC CAGCGCCGGG CAGGAGGGGT

501 CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
 551 TAGGCCACCT TCGCAGCCC GGCAGCGGCT CTGACATGGC TACACCATT
 601 GGCCCTGCCA GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT CTTTAGAGCA
 651 AGTGAGGAAG ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG
 5 701 CCACCTACAA GCTGTGCCAC CCCGAGGAGC TGGTGCTGCT CGGACACTCT
 751 CTGGGCATCC CCTGGGCTCC CCTGAGCTCC TGCCCCAGCC AGGCCCCTGCA
 801 GCTGGCAGGC TGCTTGAGCC AACTCCATAG CGGCCTTTTC CTCTACCAGG
 851 GGCTCCTGCA GCCCCTGGAA GGGATATCCC CCGAGTTGGG TCCCACCTTG
 901 GACACACTGC AGCTGGACGT CGCCGACTTT GCCACCACCA TCTGGCAGCA
 10 951 GATGGAAGAA CTGGGAATGG CCCCTGCCCT GCAGCCCTAA TAA
 (SEQ ID NO:159)

PMON15960

15 1 ATGGCTACAC CATTGGGCC TGCCAGCTCC CTGCCCGAGA GCTTCCTGCT
 51 CAAGTCTTA GAGCAAGTGA GGAAGATCCA GGGCGATGGC GCAGCGCTCC
 101 AGGAGAAAGCT GTGTGCCACC TACAAGCTGT GCCACCCCGA GGAGCTGGTG
 151 CTGCTCGGAC ACTCTCTGGG CATCCCCTGG GCTCCCTGA GCTCCTGCC
 20 201 CAGCCAGGCC CTGCAGCTGG CAGGCTGCTT GAGCCAACTC CATAGCGGCC
 251 TTTTCCTCTA CCAGGGGCTC CTGCAGGCC TGGAAGGGAT ATCCCCCGAG
 301 TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
 351 CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCC GCCCTGCAGC
 401 CCACCCAGGG TGCCATGCCG GCCTTCGCT CTGCTTTCCA GCGCCGGGCA
 25 451 GGAGGGGTCC TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
 501 CCGCGTTCTA CGCCACCTTG CGCAGCCCG CGCGGGCTCT GACATGGCTA
 551 CACCATGGG CCCTGCCAGC TCCCTGCCCG AGAGCTTCCT GCTCAAGTCT
 601 TTAGAGCAAG TGAGGAAGAT CCAGGGCGAT GGCAGCAGCGC TCCAGGAGAA
 651 GCTGTGTGCC ACCTACAAGC TGTGCCACCC CGAGGAGCTG GTGCTGCTCG
 30 701 GACACTCTCT GGGCATCCCC TGGGCTCCCC TGAGCTCCTG CCCCAGCCAG
 751 GCCCTGCAGC TGGCAGGCTG CTTGAGCCAA CTCCATAGCG GCCTTTCC
 801 CTACCAGGGG CTCCCTGCAGG CCCTGGAAGG GATATCCCC GAGTTGGGTC
 851 CCACCTTGGA CACACTGCAG CTGGACGTCG CCGACTTTGC CACCACCATC
 901 TGGCAGCAGA TGGAAGAACT GGGAAATGCC CCTGCCCTGC AGCCCACCCA
 35 1001 TCCTGGTTGC TAGCCATCTG CAGAGCTTC TGGAGGTGTC GTACCGCGTT
 1051 CTACGCCACC TTGCGCAGCC CTGATAA (SEQ ID NO:160)

PMON32132

40 TCTCCCGCTCCGCCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGT
 CCTTCACAGCAGACTGAGGCCAGTGCCCAGAGGTTCACCCCTTGCCTACACCTGCTCCTGCTGC
 CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
 ATTCTGGGAGCAGTGACCCCTCTGCTGGAGGGAGTGATGGCAGCAGCAGGGACAACGGGACC
 45 CACTTGCCTCTCATCCCTCCTGGGAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCC
 TGCAAGCCTCCTGGAACCCAGCTTCCACAGGGCAGGACCACAGCTCACAGGATCCC

AATGCCATCTCCTGAGCTCCAACACCTGCTCCGAGGAAGGTGCCTTCCTGATGCTTGT
AGGAGGGTCCACCCTCTCGTCAGG
(SEQ ID NO:249)

5

PMON32133

TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGT
CCTTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGC
10 CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGGAGTGTGACAGCAGCAGGGACAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTCTGCTGGAGGGAGTGTGACAGCAGCAGGGACAAGGCACAGGAC
CACTTGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCC
TGCAGAGCCTCCTGGAACCCAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTC
15 CTGAGCTTCCAACACCTGCTCCGAGGAAGGTGCCTTCCTGATGCTTGTAGGAGGGTCCAC
CCTCTCGTCAGG (SEQ ID NO:250)

PMON32134

TCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGT
20 CCTTCACAGCAGACTGAGCCAGTGCCAGAGGTTCACCTTGCCTACACCTGTCCTGCTGC
CTGCTGTGGACTTTAGCTGGAGAATGGAAAACCCAGATGGAGGGAGTGTGACAGCAGGGACAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTCTGCTGGAGGGAGTGTGACAGCAGCAGGGACAAGGCACAGGAC
CACTTGCCTCTCATCCCTCTGGGGCAGCTTCTGGACAGGTCCGTCTCCTCCTGGGGCCC
TGCAGAGCCTCCTGGAACCCAGCTCCTCACAGGGCAGGACCACAGCTCACAAGGATCCC
25 AATGCCATCTCCTGAGCTCCAACACCTGCTCCGAGGAAGGTGCCTTCCTGATGCTTGT
AGGAGGGTCCACCCTCTCGTCAGG
(SEQ ID NO:251)

30 Pmon13181

1 CCATGGCTAA CTGCTCTATA ATGATCGATG AAATTATACA TCACTTAAAG
51 AGACCACCTG CACCTTGCT GGACCCGAAC AACCTCAATG ACGAAGACGT
101 CTCTATCCTG ATGGATCGAA ACCTTCGACT TCCAAACCTG GAGAGCTTCG
35 151 TAAGGGCTGT CAAGAACTTA GAAAATGCAT CAGGTATTGA GGCAATTCTT
201 CGTAATCTCC AACCATGTCT GCCCTCTGCC ACGGCCGCAC CCTCTCGACA
251 TCCAATCATC ATCAAGGCAG GTGACTGGCA AGAATTCCGG GAAAAACTGA
301 CGTTCTATCT GTTACCCCTT GAGCAAGCCG AGGAACAACA GTACGTAag
351 ggcgggtggag gctccccggg TGAACCGTCT GGTCCAATCT CTACTATCAA
40 401 CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC ATGTAAGGTA
451 CCGCATGCAA GCTT (SEQ ID NO:257)

Pmon13180.Seg

45 1 CCATGGCTAA CTGCTCTATA ATGATCGATG AAATTATACA TCACTTAAAG
51 AGACCACCTG CACCTTGCT GGACCCGAAC AACCTCAATG ACGAAGACGT
101 CTCTATCCTG ATGGATCGAA ACCTTCGACT TCCAAACCTG GAGAGCTTCG

151 TAAGGGCTGT CAAGAACTTA GAAAATGCAT CAGGTATTGA GGCAATTCTT
 201 CGTAATCTCC AACCATGTCT GCCCTCTGCC ACAGGCGCAC CCTCTCGACA
 251 TCCAATCATC ATCAAGGCAG GTGACTGGCA AGAATTCCGG GAAAAACTGA
 301 CGTTCTATCT GGTTACCCCTT GAGCAAGCGC AGGAACAACA GTACGTAag
 5 351 ggcgggtggag gctccccggg TGGTGGTTCT GGCGGCGGCT CCAACATGTA
 401 AGGTACCGCA TGCAAGCTT (SEQ ID NO:258)

pmon16017.seq

10 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAC CCTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCCT TCTCGACATC
 15 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTTTAGGC
 451 CCTGCCAGCT CCCTGCCCA GAGCTTCCTG CTCAAGTCTT TAGAGCAAGT
 20 501 GAGGAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG CTGTGTGCCA
 551 CCTACAAAGCT GTGCCACCCC GAGGGAGCTGG TGCTGCTCGG ACACTCTCTG
 601 GGCATCCCCT GGGCTCCCCT GAGCTCCTGC CCCAGCCAGG CCCTGCAGCT
 651 GGCAGGCTGC TTGAGCCAAC TCCATAGCGG CCTTTCTCTC TACCAGGGGC
 701 TCCTGCAGGC CCTGGAAGGG ATATCCCCG AGTTGGGTCC CACCTTGGAC
 25 751 ACACTGCAGC TGGACGTCGC CGACTTTGCC ACCACCATCT GGCAGCAGAT
 801 GGAAGAACTG GGAATGGCCC CTGCCCTGCA GCCCACCCAG GGTGCCATGC
 851 CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT CCTGGTTGCT
 901 AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC TACGCCACCT
 951 TGCGCAGCCC GACATGGCTA CACCA (SEQ ID NO:259)

30 pmon16018.seq

1 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAC CCTCGACTTC CAAACCTGGA GAGCTTCGTA
 35 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCCT TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 40 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTCAGAGC
 451 TTCCTGCTCA AGTCTTTAGA GCAAGTGGAGG AAGATCCAGG GCGATGGCGC
 501 AGCGCTCCAG GAGAAGCTGT GTGCCACCTA CAAGCTGTGC CACCCCGAGG
 551 AGCTGGTGCT GCTCGGACAC TCTCTGGCA TCCCCTGGGC TCCCCTGAGC
 601 TCCTGCCCA GCCAGGCCCT GCAGCTGGCA GGCTGCTTGA GCCAACTCCA
 45 651 TAGCGGCCTT TTCCTCTACC AGGGGCTCCT GCAGGCCCTG GAAGGGATAT
 701 CCCCCGAGTT GGGTCCCACC TTGGACACAC TGCAGCTGGA CGTCGCCGAC
 751 TTTGCCACCA CCATCTGGCA GCAGATGGAA GAACTGGGAA TGGCCCCCTGC

801 CCTGCAGCCC ACCCAGGGTG CCATGCCGGC CTTGCCTCT GCTTCCAGC
 851 GCCGGGCAGG AGGGGTCTTG GTTGCTAGCC ATCTGCAGAG CTTCTGGAG
 901 GTGTCGTACC GCGTTCTACG CCACCTTGC GAGCCGACA TGGCTACACC
 951 ATTAGGCCCT GCCAGCTCCC TGCCC (SEQ ID NO:260)

5

pmont16019.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 10 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 15 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTTCCTG
 451 CTCAAGTCTT TAGAGCAAGT GAGGAAGATC CAGGGCGATG GCGCAGCGCT
 501 CCAGGAGAAG CTGTGTGCCA CCTACAAGCT GTGCCACCC GAGGAGCTGG
 20 551 TGCTGCTCGG ACACCTCTTG GGCATCCCC GGGCTCCCC GAGCTCCTGC
 601 CCCAGCCAGG CCCTGCAGCT GGCAGGCTGC TTGAGCCAAC TCCATAGCGG
 651 CCTTTCCCTC TACCAGGGGC TCCTGCAGGC CCTGGAAGGG ATATCCCCG
 701 AGTTGGGTCC CACCTTGGAC ACACTGCAGC TGGACGTCGC CGACTTTGCC
 751 ACCACCATCT GGCAGCAGAT GGAAGAACTG GGAATGGCCC CTGCCCTGCA
 25 801 GCCCACCCAG GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG
 851 CAGGAGGGGT CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG
 901 TACCGCGTTC TACGCCACCT TGCGCAGCCC GACATGGCTA CACCATTAGG
 951 CCCTGCCAGC TCCCTGCCCTC AGAGC (SEQ ID NO:261)

30 pmont16020.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 35 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 40 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTGAGCAA
 451 GTGAGGAAGA TCCAGGGCGA TGGCGCAGCG CTCCAGGAGA AGCTGTGTCG
 501 CACCTACAAG CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC
 551 TGGGCATCCC CTGGGCTCCC CTGAGCTCCT GCCCGAGCCA GGCCCTGCAG
 601 CTGGCAGGCT GCTTGAGCCA ACTCCATAGC GGCCTTTCC TCTACCAGGG
 45 651 GCTCCTGCAG GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG
 701 ACACACTGCA GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG
 751 ATGGAAGAAC TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT

801 GCCGGCCTTC GCCTCTGCTT TCCAGGCCG GGCAGGAGGG GTCCTGGTTG
 851 CTAGCCATCT GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC
 901 CTTGCGCAGC CCGACATGGC TACACCATTA GGCCCTGCCA GCTCCCTGCC
 951 CCAGAGCTTC CTGCTCAAGT CTTA (SEQ ID NO:262)

5

pmon16021.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 10 101 CTATCCTGAT GGATCGAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 15 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTCTGCTC
 451 GGACACTCTC TGGGCATCCC CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA
 501 GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA ACTCCATAGC GGCCCTTTCC
 551 TCTACCAGGG GCTCCTGCAG GCCCTGGAAG GGATATCCCC CGAGTTGGGT
 20 601 CCCACCTTGG ACACACTGCA GCTGGACGTC GCCGACTTTG CCACCAACAT
 651 CTGGCAGCAG ATGGAAGAAC TGGGAATGGC CCCTGCCCTG CAGCCCACCC
 701 AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG
 751 GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT CGTACCGCGT
 801 TCTACGCCAC CTTGCGCAGC CCGACATGGC TACACCATTA GGCCCTGCCA
 25 851 GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT CTTAGAGCA AGTGAGGAAG
 901 ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG CCACCTACAA
 951 GCTGTGCCAC CCCGAGGAGC TGGTG (SEQ ID NO:263)

30 pmon16022.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 35 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTCCCTG
 451 AGCTCCTGCC CCAGCCAGGC CCTGCAGCTG GCAGGCTGCT TGAGCCAAC
 501 CCATAGCGGC CTTTCCCTCT ACCAGGGCT CCTGCAGGCC CTGGAAGGG
 551 TATCCCCCGA GTTGGGTCCC ACCTTGGACA CACTGCAGCT GGACGTCGCC
 601 GACTTTGCCA CCACCATCTG GCAGCAGATG GAAGAACTGG GAATGGCCCC
 45 651 TGCCCTGCAG CCCACCCAGG GTGCCATGCC GGCCCTCGCC TCTGCTTTCC
 701 AGCGCCGGGC AGGAGGGGTC CTGGTTGCTA GCCATCTGCA GAGCTTCTG
 751 GAGGTGTCGT ACCGCGTTCT ACGCCACCTT GCGCAGCCCG ACATGGCTAC

801 ACCATTAGGC CCTGCCAGCT CCCTGCCCA GAGCTTCCTG CTCAAGTCTT
 851 TAGAGCAAGT GAGGAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG
 901 CTGTGTGCCA CCTACAAGCT GTGCCACCCC GAGGAGCTGG TGCTGCTCGG
 951 ACACTCTCTG GGCATCCCTT GGGCT (SEQ ID NO:264)

5

pmont16023.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTCAGGCC
 . 451 CTGCAGCTGG CAGGCTGCTT GAGCCAACTC CATAGCGGCC TTTCCCTCTA
 501 CCAGGGGCTC CTGCAGGCCCT TGGAAAGGGAT ATCCCCCGAG TTGGGTCCCA
 20 551 CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC CACCATCTGG
 601 CAGCAGATGG AAGAACTGGG AATGGCCCT GCCCTGCAGC CCACCCAGGG
 651 TGCCATGCCG GCCTTCGCCT CTGCTTCCA GCGCCGGGCA GGAGGGGTCC
 701 TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA CCGCGTTCTA
 751 CGCCACCTTG CGCAGCCGA CATGGCTACA CCATTAGGCC CTGCCAGCTC
 25 801 CCTGCCCAAG AGCTTCCTGC TCAAGTCTT AGAGCAAGTG AGGAAGATCC
 851 AGGGCGATGG CGCAGCGCTC CAGGAGAAAGC TGTGTGCCAC CTACAAGCTG
 901 TGCCACCCCG AGGAGCTGGT GCTGCTCGGA CACTCTCTGG GCATCCCCTG
 951 GGCTCCCCCTG AGCTCCTGCC CCAGC (SEQ ID NO:265)

30

pmont16024.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 35 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAAT CTCCAAACAT GGCTCTGCAG
 451 CTGGCAGGCT GCTTGAGCCA ACTCCATAGC GGCCTTTCC TCTACCAGGG
 501 GCTCCTGCAG GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG
 551 ACACACTGCA GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG
 45 601 ATGGAAGAAC TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT
 651 GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCCCTGGTTG
 701 CTAGCCATCT GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC

751 CTTGCGCAGC CCGACATGGC TACACCATT A GCCCTGCCA GCTCCCTGCC
 801 CCAGAGCTTC CTGCTCAAGT CTTTAGAGCA AGTGAGGAAG ATCCAGGGCG
 851 ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC
 901 CCCGAGGAGC TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC
 5 951 CCTGAGCTCC TGCCCCAGCC AGGCC (SEQ ID NO:266)

pmon16025.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 10 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 15 301 TTCTATCTGG TTACCCCTGTA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTCTGGCA
 451 GGCTGCTTGA GCCAACTCCA TAGCGGCCCTT TTCCCTCTACC AGGGGCTCCT
 501 GCAGGCCCTG GAAGGGATAT CCCCCGAGTT GGGTCCCACC TTGGACACAC
 20 551 TGCAGCTGGA CGTCGCCGAC TTTGCCACCA CCATCTGGCA GCAGATGGAA
 601 GAACTGGAA TGGCCCCCTGC CCTGCAGGCC ACCCAGGGTG CCATGCCGGC
 651 CTTCGCCTCT GTTTCCAGC GCCGGGCAGG AGGGGTCTTG GTTGCTAGCC
 701 ATCTGCAGAG CTTCCTGGAG GTGTCGTACC GCGTTCTACG CCACCTTGCG
 751 CAGCCCGACA TGGCTACACC ATTAGGCCCT GCCAGCTCCC TGCCCCAGAG
 25 801 CTTCCTGCTC AAAGTCTTGTAG AGCAAGTGAG GAAGATCCAG GGCAGATGGCG
 851 CAGCGCTCCA GGAGAAAGCTG TGTGCCACCT ACAAGCTGTG CCACCCCGAG
 901 GAGCTGGTGC TGCTCGGACA CTCTCTGGGC ATCCCCCTGGG CTCCCCCTGAG
 951 CTCCTGCCCT AGCCAGGCC TGCAG (SEQ ID NO:267)

30

pmon16026.seq

1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 35 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGTA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTGAACCTG
 451 GGAATGGCCC CTGCCCTGCA GCCCACCCAG GGTGCCATGC CGGCCTTCGC
 501 CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT CCTGGTTGCT AGCCATCTGC
 551 AGAGCTTCCT GGAGGTGTG TACCGCGTTC TACGCCACCT TGCGCAGCCC
 45 601 GACATGGCTA CACCATTAGG CCCTGCCAGC TCCCTGCCCT AGAGCTTCCT
 651 GCTCAAGTCT TTAGAGCAAG TGAGGAAGAT CCAGGGCGAT GGCAGCAGCGC
 701 TCCAGGAGAA GCTGTGTGCC ACCTACAAGC TGTGCCACCC CGAGGAGCTG

751 GTGCTGCTCG GACACTCTCT GGGCATCCCC TGGGCTCCCC TGAGCTCCTG
 801 CCCCAGCCAG GCCCTGCAGC TGGCAGGCTG CTTGAGCCAA CTCCATAGCG
 851 GCCTTTCCCT CTACCAGGGG CTCCTGCAGG CCCTGGAAGG GATATCCCCC
 901 GAGTTGGGTC CCACCTTGGA CACACTGCAG CTGGACGTG TGAGCTTGC
 5 951 CACCACCATC TGGCAGCAGA TGGAA (SEQ ID NO:268)

pmont16027.seq

10 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 15 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTGGAATG
 451 GCCCCTGCCCG TGCAGCCCCAC CCAGGGTGCCT ATGCCGGCCT TCGCCTCTGC
 20 501 TTTCCAGCGC CGGGCAGGAG GGGTCCTGGT TGCTAGCCAT CTGCAGAGCT
 551 TCCTGGAGGT GTCGTACCGC GTTCTACGCC ACCTTGCAGCA GCCCGACATG
 601 GCTACACCAT TAGGCCCTGC CAGCTCCCTG CCCCAGAGCT TCCTGCTCAA
 651 GTCTTTAGAG CAAGTGAGGA AGATCCAGGG CGATGGCGCA GCGCTCCAGG
 701 AGAAGCTGTG TGCCACCTAC AAGCTGTGCC ACCCGAGGA GCTGGTGCTG
 25 751 CTCGGACACT CTCTGGGCAT CCCCTGGCT CCCCTGAGCT CCTGCCCGAG
 801 CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG CCAACTCCAT AGCGGCCTTT
 851 TCCTCTACCA GGGGCTCCTG CAGGCCCTGG AAGGGATATC CCCCAGGTTG
 901 GGTCCCCACCT TGGACACACT GCAGCTGGAC GTCGCCGACT TTGCCACAC
 951 CATCTGGCAG CAGATGGAAG AACTG (SEQ ID NO:269)
 30

pmont16028.seq

35 1 ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
 51 ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
 101 CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
 201 TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCGCACCC TCTCGACATC
 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
 301 TTCTATCTGG TTACCCCTGGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
 351 CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTAGCTTC
 451 CTGGAGGGTGT CGTACCGCGT TCTACGCCAC CTGGCGCAGC CCGACATGGC
 501 TACACCATTA GGCCCTGCCA GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT
 45 551 CTTTAGAGCA AGTGAGGAAG ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG
 601 AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC TGGTGCTGCT
 651 CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC TGCCCCAGCC

701 AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG CGGCCTTTTC
751 CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC CCGAGTTGGG
801 TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT GCCACCACCA
851 TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT GCAGCCCACC
5 901 CAGGGTGCCA TGCCGGCCTT CGCCTCTGCT TTCCAGCGCC GGGCAGGAGG
951 GGTCTGGTT GCTAGCCATC TGCAG (SEQ ID NO:270)

10 1 ATGGCTGGAC CCACTTGCCT CTCATCCCTC CTGGGGCAGC TTTCTGGACA
51 GGTCCGTCTC CTCCTTGGGG CCCTGCAGAG CCTCCTTGGA ACCCAGCTTC
101 CTCCACAGGG CAGGACCACA GCTCACAAAGG ATCCCAATGC CATCTTCCTG
151 AGCTTCCAAC ACCTGCTCCG AGGAAAGGTG CGTTTCTGTA TGCTTGTAGG
201 AGGGTCCACC CTCGCCGTCA GGGATTCTGG CGGCAACATG GCGTCTCCGG
251 CGCCGCCTGC TGCTGACCTC CGAGTCCTCA GTAAACTGCT TCGTGACTCC
301 CATGTCTTC ACAGCAGACT GAGCCAGTGC CCAGAGGTTT ACCCTTGCC
15 351 TACACCTGTC CTGCTGCCTG CTGTGGACTT TAGCTTGGGA GAATGGAAAA
401 CCCAGATGGA GGAGACCAAG GCACAGGACA TTCTGGGAGC AGTGACCCTT
451 CTGCTGGAGG GAGTGATGGC AGCACGGGGA CAACTG
(SEQ ID NO:286)

20 1 ATGGCTGGCA GGACCACAGC TCACAAGGAT CCCAATGCCA TCTTCCTGAG
51 CTTCCAACAC CTGCTCCGAG GAAAGGTGCG TTTCTGTATG CTTGTAGGAG
101 GGTCCACCCCT CGCCGTCAAGG GAATTCTGGCG GCAACATGGC GTCTCCGGCG
151 CCGCCTGCTG CTGACCTCCG AGTCCTCAGT AACTGCTTC GTGACTCCCC
201 TGTCTTCAC AGCAGACTGA GCCAGTGCC AGAGGTTCAC CCTTTGCCTA
25 251 CACCTGTCCT GCTGCCTGCT GTGGACTTTA GCTTGGGAGA ATGGAAAACC
301 CAGATGGAGG AGACCAAGGC ACAGGACATT CTGGGAGCAG TGACCCCTCT
351 GCTGGAGGGGA GTGATGGCAG CACGGGGACA ACTGGGACCC ACTTGCCTCT
401 CATCCCTCCT GGGGCAGCTT TCTGGACAGG TCCGTCTCCT CCTTGGGGCC
451 CTGCAGAGCC TCCTTGGAAC CCAGCTTCCT CCACAG
30 (SEQ ID NO:287)

TABLE 3
PROTEIN SEQUENCES

5 pMON26458pep

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
10 GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe
15 (SEQ ID NO:161)

pMON28548pep

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
20 ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
25 HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
30 GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro
AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu
ValGlyGlySerThrLeuCysValArg (SEQ ID NO:162)

35 pMON28500

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVa
lLeu
40 HisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuProAl
aVal
AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGly
yAla
ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSe
rSer
45 LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGly
yThr

GlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPh
eGln

HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValAr
gGlu

5 PheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLe
uArg

AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPr
oval

10 LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAl
aGln

AspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGl
yPro

ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLe
uGln

15 SerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAl
aIle

PheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySe
rThr

LeuCysValArg (SEQ ID NO:163)

20

pMON28501

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu

25 LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg

30 PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu

LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
35 LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:164)

40 pMON28502

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu

45 LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla

HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGly
AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg
AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr
5 ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu
ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAla
ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal
ArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg
ThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGly
10 LysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg
(SEQ ID NO:165)

13182.Pept

15 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
20 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
25 Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala
Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr
Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile
Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
30 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly
Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
35 Ala Thr (SEQ ID NO:166)

13183.Pept

40 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
45 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Ser Pro

Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala
5 Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr
Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile
Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
10 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly
Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
Ala Thr (SEQ ID NO:167)

15

13184.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
20 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
25 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Pro Glu Leu Gly
Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
30 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln
Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser
Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu
Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
35 Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu
Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly
Ile Ser (SEQ ID NO:168)

40

13185.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
45 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile

Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
5 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly
Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln
10 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser
Gly Gly Ser Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu
Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu
15 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly
Ile Ser (SEQ ID NO:169)

20

13186.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
25 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
30 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Met Ala Pro Ala
Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
35 Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu
Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu
40 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu
Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu
Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu
Leu Gly (SEQ ID NO:170)

45

13187.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
 5 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
 Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
 Gln Ala Gln Glu Gln Tyr Val Glu Gly Gly Gly Ser Pro
 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
 10 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala
 Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
 Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
 Ser Gly Gly Ser Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu
 15 Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
 Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
 Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
 Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu
 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu
 20 Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu
 Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu
 Leu Gly (SEQ ID NO:171)

25 13188.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
 30 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
 Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
 Gln Ala Gln Glu Gln Tyr Val Glu Gly Gly Gly Ser Pro
 35 Gly Gly Ser Gly Gly Ser Asn Met Ala Thr Gln Gly Ala
 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val
 Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg
 Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser
 Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln
 40 Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys
 Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly
 Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln
 Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr
 Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly
 45 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
 Gln Pro (SEQ ID NO:172)

13189.Pept

5 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
10 Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala
15 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val
Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg
Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser
Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln
Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys
20 Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly
Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln
Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr
Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly
Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
25 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
Gln Pro (SEQ ID NO:173)

13190.Pept

30 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
35 Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Ser Ala Phe Gln
40 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser
Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu
Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu
45 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly

Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp
Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu
Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala
Phe Ala (SEQ ID NO:174)

5

13191.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
10 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
15 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln
Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
20 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser
Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu
Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu
Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
25 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly
Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp
Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu
Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala
30 Phe Ala (SEQ ID NO:175)

13192.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
35 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
40 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
45 Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala
Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr

Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile
Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
5 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu
Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu
Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys Leu Cys Ala Thr (SEQ ID NO:176)

10

13193.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
15 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
20 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala
25 Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr
Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile
Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
30 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu
Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu
Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys Leu Cys Ala Thr (SEQ ID NO:177)

35

25190.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
40 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
45 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Gly Ser Gly Gly Ser Asn Met Ala Pro Glu Leu Gly

Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln
 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
 5 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr
 Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
 Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu
 Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu
 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu
 10 Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser
 Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala
 Leu Glu Gly Ile Ser (SEQ ID NO:178)

15 pMON25191.Pep

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
 20 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
 25 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly
 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr
 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln
 30 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr
 Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
 Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu
 Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu
 35 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu
 Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser
 Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala
 Leu Glu Gly Ile Ser (SEQ ID NO:179)

40 13194.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
 45 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr

Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Met Ala Pro Ala
5 Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu
Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala
10 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu
Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro
Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu
Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln
Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr
15 Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln
Met Glu Glu Leu Gly (SEQ ID NO:180)

13195.Pept
20 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
25 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
30 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala
Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu
35 Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala
Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu
Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro
Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu
Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln
40 Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr
Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln
Met Glu Glu Leu Gly (SEQ ID NO:181)

45 13196.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg

Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
5 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Thr Gln Gly Ala
Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val
10 Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg
Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser
Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg
Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala
Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His
15 Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln
Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu
Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro
Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala
20 Pro Ala Leu Gln Pro (SEQ ID NO:182)

13197.Pept

25 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
30 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala
35 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val
Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg
Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser
Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg
Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala
40 Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His
Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln
Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu
Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro
Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
45 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala
Pro Ala Leu Gln Pro (SEQ ID NO:183)

13198.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
5 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
10 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Gly Ser Gly Gly Ser Asn Met Ala Ser Ala Phe Gln
Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr
15 Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu
Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu
Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu
Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser
20 Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala
Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu
Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met
Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala
Met Pro Ala Phe Ala (SEQ ID NO:184)
25

13199.Pept

Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
30 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile
Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr
35 Ala Ala Pro Ser Arg His Pro Ile Ile Lys Ala Gly Asp Trp
Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro
Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro
Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln
40 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr
Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu
Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu
45 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu
Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser
Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala

Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu
Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met
Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala
Met Pro Ala Phe Ala (SEQ ID NO:185)

5

31104.Pep

Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met
10 Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala
Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg
Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
His Pro Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu
Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
15 Gln Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile
His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly
Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn
Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
20 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly
Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly
25 His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser
Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met
30 Ala Pro Ala Leu Gln Pro (SEQ ID NO:186)

31105.Pep

Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys
Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile
Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr
Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Ser
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg
40 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu
Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly
Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn
Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala
45 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly

Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly
His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser
5 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met
Ala Pro Ala Leu Gln Pro (SEQ ID NO:187)

10

31106.Pep

15 Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln
Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln
Ala Gln Glu Gln Gln Gly Gly Ser Asn Cys Ser Ile Met Ile
Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu
Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp
Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val
20 Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn
Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly
Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn
Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
25 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly
Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly
30 His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser
Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met
35 Ala Pro Ala Leu Gln Pro (SEQ ID NO:188)

31107.Pep

40 Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu
Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Ser Asn
Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro
Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val
Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
45 Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu
Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala
Ala Pro Ser Arg His Pro Ile Ile Lys Tyr Val Glu Gly Gly

Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn
Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu
5 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly
Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly
His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser
10 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met
Ala Pro Ala Leu Gln Pro (SEQ ID NO:189)

15

31108.Pep

Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met
20 Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala
Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg
Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu
Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
25 Gln Gly Gly Ser Gly Gly Ser Gly Gly Ser Asn Cys
Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro
Ala Pro Leu Tyr Val Glu Gly Gly Ser Pro Gly Glu Pro
Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu
Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala
30 Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His Leu Ala Gln Pro Ser Gly Gly Ser Gly Ser Gln Ser Phe
Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His
35 Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp
Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly
Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp
40 Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
(SEQ ID NO:190)

31109.Pep

45 Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys
Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile
Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr

Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser
Gly Gly Ser Gly Gly Ser Asn Cys Ser Ile Met Ile Asp
Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp
Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg
5 Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys
Asn Leu Glu Tyr Val Glu Gly Gly Ser Pro Gly Glu Pro
Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu
Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala
Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
10 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe
Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His
Pro Glu Glu Leu Val Leu Gly His Ser Leu Gly Ile Pro Trp
15 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly
Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp
Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
20 (SEQ ID NO:191)

31110.Pep

Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln
25 Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln
Ala Gln Glu Gln Gln Gly Gly Ser Gly Gly Ser Gly Gly
Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu
Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp
Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn
30 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser
Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser
Ala Thr Ala Tyr Val Glu Gly Gly Ser Pro Gly Glu Pro
Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu
Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala
35 Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe
Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His
40 Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp
Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly
Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp
45 Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
(SEQ ID NO:192)

31111.Pep

Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu
Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Ser Gly
5 Gly Gly Ser Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu
Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro
Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn
Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn
Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln
10 Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile
Ile Ile Lys Tyr Val Glu Gly Gly Ser Pro Gly Glu Pro
Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu
Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala
Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
15 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His Leu Ala Gln Pro Ser Gly Gly Ser Gly Ser Gln Ser Phe
Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His
Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp
20 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly
Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp
Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
25 (SEQ ID NO:193)

pMON15981

Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala
30 Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn
Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser
Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr
Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Tyr Val Glu Gly Gly Gly
35 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu
Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu
Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln
Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln
Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val
40 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu
Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly
Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His
Leu Ala Gln Pro Gly Gly Ser Asp Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu
Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala
45 Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:194)

pMON15982

MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla
ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn
LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer
5 GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro
SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr
PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu
10 AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro
AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla
GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu
ArgHisLeuAlaGlnProGlyGlySerAspMetAlaThrProLeuGlyProAlaSer
SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp
15 GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu
ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln
AlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGly
LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:195)

20 pMON15965

MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla
ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn
LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer
25 GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro
SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr
PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal
30 AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln
ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer
PheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGln
GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis
SerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAla
35 GlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu
GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp
PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro
ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196)

40 pMON15966

MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla
ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn
LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer
45 GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro
SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr
PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGly

SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet
ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu
GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly
5 SerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLeuLeuLys
SerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCys
AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle
ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer
GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSer
10 ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr
IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:197)

pMON15967

15 MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla
ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn
LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer
GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro
SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr
20 PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe
GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer
TyrArgValLeuArgHisLeuAlaGlnProGlyGlySerAspMetAlaThrProLeu
25 GlyProAlaSerSerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLys
IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHis
ProGluGluLeuValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSer
CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe
LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu
30 AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu
LeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:198)

pMON31112.pep

35 MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu
ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn
LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer
AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro
40 ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr
PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe
GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer
45 TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe
LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu
LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer

LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly
CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu
GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe
AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro

5 (SEQ ID NO:199)

pMON31113.pep

10 MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu
ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn
LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer
AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro
ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr
15 PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe
GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer
TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro
20 GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla
LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu
GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln
LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln
AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal
25 AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu
GlnPro (SEQ ID NO:200)

pMON31114.pep

30 MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu
ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn
LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer
AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro
ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr
PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe
GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer
TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe
LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu
LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer
LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly
CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu
45 GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe
AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro
(SEQ ID NO:201)

pMON31115.pep

5 MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu
ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspArgAsnAsn
LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer
AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro
ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr
10 PheTyrLeuLysThrLeuGluAsnAlaGlnGlnTyrValGluGlyGlyGly
SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu
SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe
GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer
TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro
15 GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla
LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu
GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln
LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln
AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal
20 AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu
GlnPro (SEQ ID NO:202)

pMON28505

25 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
30 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal
AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu
35 GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr
CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGlyAlaLeu
GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro
AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu
ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaPro
40 ProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSer
ArgLeuSerGlnCysPro (SEQ ID NO:203)

pMON28506

45 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly

IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
5 HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu
GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr
LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer
LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeu
GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePhe
10 LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer
ThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAsp
LeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGln
CysProGluValHisPro (SEQ ID NO:204)

15 pMON28507

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
20 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys
25 ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGlu
GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln
LeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu
ProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGln
HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal
30 ArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu
SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal
HisProLeuProThrPro (SEQ ID NO:205)

pmON28508

35 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
40 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAla
45 AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly
ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg

GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu
ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro
ThrProValLeuLeuPro (SEQ ID NO:206)

5

pMON28509

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
10 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
15 HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr
LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArg
GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg
LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr
ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys
20 ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn
MetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAsp
SerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro
ValLeuLeuProAlaVal (SEQ ID NO:207)

25

pMON28510

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
30 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp
35 IleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly
ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGly
AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
40 MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro
AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu
HisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro
AlaValAspPheSerLeu (SEQ ID NO:208)

pMON28511

45

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu

ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGlnTyrValGluGlyGlyGlySer
5 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly
GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln
GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu
ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe
10 GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu
LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu
ProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMet
GluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMet
AlaAlaArgGlyGlnLeu (SEQ ID NO:209)

15

pMON28512

20

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
25 HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro
AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu
HisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro
30 AlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp
IleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly
ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly
AlaLeuGlnSerLeuLeu (SEQ ID NO:210)

35

pMON28513

40

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu
45 SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr
LeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeu
ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCys

ProGluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGly
GluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeu
LeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeu
LeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGly
5 ThrGlnLeuProProGln (SEQ ID NO:211)

pmON28514

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
10 LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
15 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis
LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg
GluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer
LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis
20 ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr
GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGly
ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu
SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro
ProGlnGlyArgThrThr (SEQ ID NO:212)

25

pmON28515

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
30 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
35 HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu
ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro
ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
40 GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly
ArgThrThrAlaHisLys (SEQ ID NO:213)

45 pmON28516

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro

LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
5 TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal
ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMet
AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer
10 HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal
LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys
AlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGly
GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu
LeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThr
15 AlaHisLysAspProAsn (SEQ ID NO:214)

PMON28519

20 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
25 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal
AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu
GlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr
CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGlyAlaLeu
30 GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro
AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu
ValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProPro
AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg
LeuSerGlnCysPro (SEQ ID NO:215)

35 PMON28520

40 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
45 HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu
GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr
LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer

LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu
GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePhe
LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer
ThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeu
5 ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCys
ProGluValHisPro (SEQ ID NO:216)

pMON28521

10 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
15 TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys
ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGlu
GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln
20 LeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu
ProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGln
HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal
ArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer
LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis
25 ProLeuProThrPro (SEQ ID NO:217)

pMON28522

30 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
35 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly
40 ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg
AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr
ProValLeuLeuPro (SEQ ID NO:218)

45

pMON28523

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
5 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr
LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg
10 GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg
LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr
ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys
ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMet
AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer
15 HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal
LeuLeuProAlaVal (SEQ ID NO:219)

pMON28524

20 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
25 TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp
IleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly
ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGly
30 AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla
ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis
SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla
35 ValAspPheSerLeu (SEQ ID NO:220)

pMON28525

40 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
45 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly
GlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln

GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu
ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe
GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu
ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro
5 ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeu (SEQ ID NO:221)

PMON28526

10 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
15 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
20 MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla
ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis
SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla
ValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIle
LeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyPro
25 ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAla
LeuGlnSerLeuLeu (SEQ ID NO:222)

PMON28527

30 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
35 TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu
SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr
LeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg
40 ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro
GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu
TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu
LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu
GlyGlnLeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr
45 GlnLeuProProGln (SEQ ID NO:223)

PMON28528

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
5 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis
10 LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg
GluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLys
LeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisPro
LeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGln
MetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyVal
15 MetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSer
GlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProPro
GlnGlyArgThrThr (SEQ ID NO:224)

PMON28529

20 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
25 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
30 AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg
AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr
ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu
ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAla
ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal
35 ArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg
ThrThrAlaHisLys (SEQ ID NO:225)

PMON28530

40 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
45 TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal

ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAla
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
5 GlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsn (SEQ ID NO:226)

10 pMON28533

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
15 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal
20 AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu
GlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr
CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu
GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro
AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu
25 ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSer
ProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVal
LeuHisSerArgLeuSerGlnCysPro (SEQ ID NO:227)

pMON28534

30 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu
GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr
40 LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer
LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu
GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePhe
LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer
ThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProPro
45 AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg
LeuSerGlnCysProGluValHisPro (SEQ ID NO:228)

pMON28535

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
5 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
10 HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys
ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGlu
GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln
LeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu
ProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGln
15 HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal
ArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeu
ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCys
ProGluValHisProLeuProThrPro (SEQ ID NO:229)

20 pMON28536

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
25 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
30 GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly
ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
35 GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer
LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis
ProLeuProThrProValLeuLeuPro (SEQ ID NO:230)

40 pMON28537

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
45 ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer

HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr
LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg
GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg
LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr
5 ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys
ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn
GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu
LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu
ProThrProValLeuLeuProAlaVal (SEQ ID NO:231)

10

pMON28538

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
15 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
20 HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp
IleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly
ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuGly
AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
25 MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet
AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer
HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal
LeuLeuProAlaValAspPheSerLeu (SEQ ID NO:232)

30

pMON28539

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
35 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly
40 GlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln
GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu
ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe
GlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu
SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal
45 HisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys
ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGlu
GlyValMetAlaAlaArgGlyGlnLeu (SEQ ID NO:233)

pMON28540

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
5 LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
10 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys
AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu
MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet
AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer
15 HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal
LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys
AlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGly
GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu
LeuLeuGlyAlaLeuGlnSerLeuLeu (SEQ ID NO:234)

20

pMON28541

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
25 ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
30 HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu
SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr
LeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAla
CysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeu
SerGlnCysProGluValHisProLeuProThrProValLeuLeuProAlaValAspPhe
35 SerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAla
ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeu
SerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSer
LeuLeuGlyThrGlnLeuProProGln (SEQ ID NO:235)

40

pMON28542

AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
45 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlySer

ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis
LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg
GluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg
5 ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro
GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu
TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu
LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu
10 GlyGlnLeuSerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr
GlnLeuProProGlnGlyArgThrThr (SEQ ID NO:236)

PMON28543

15 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
20 ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer
LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis
25 ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr
GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGly
ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu
SerGlyGlnValArgLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro
ProGlnGlyArgThrThrAlaHisLys (SEQ ID NO:237)

30 PMON28544

35 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
40 HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal
ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGly
GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu
ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro
ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
45 GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly

ArgThrThrAlaHisLysAspProAsn (SEQ ID NO:238)

pMON28545

5 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro
LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu
ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer
ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe
10 TyrLeuValThrLeuGluGlnAlaGlnGluGlnTyrValGluGlyGlyGlySer
ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer
HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg
GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly
GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu
15 ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro
ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu
GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla
AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln
ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAla
20 HisLys (SEQ ID NO:239)

pMON32132

25 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
30 LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:252)

35 PMON32133

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
40 GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro
AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu
ValGlyGlySerThrLeuCysValArg (SEQ ID NO:253)

45

pMON32134

SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis
ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu
LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
5 GlnAspIleLeuGlyAlaValThrLeuLeuLeuGlyValMetAlaAlaArgGlyGln
LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu
LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg
PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:254)

10

pmont6017.pep

1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
15 16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 32 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
46 47 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
20 Ser
61 62 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 77 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 92 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Thr
106 107 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
121 122 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
30 Ser
136 137 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Leu
Gly
151 152 Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu
Glu
35 166 167 Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys
181 182 Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
Leu
196 197 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
40 Cys
211 212 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu
His
226 227 Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu
Gly
45 241 242 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu
Asp

256 Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu
Leu
271 Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro
Ala
5 286 Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val
Ala
301 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu
Arg
316 His Leu Ala Gln Pro Asp Met Ala Thr Pro (SEQ ID NO:271)

10

pmont16018.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 31 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Leu
Gly
151 Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu
Glu
35 176 Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys
191 Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
Leu
40 206 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
Cys
221 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu
His
236 Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu
Gly
45 251 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu
Asp

266 Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu
Leu
281 Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro
Ala
5 296 Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val
Ala
311 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu
Arg
326 His Leu Ala Gln Pro Asp Met Ala Thr Pro (SEQ ID NO:272)

10

pmont16019.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Phe
Leu
151 Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly
Ala
35 166 Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His
Pro
181 Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp
Ala
40 196 Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly
Cys
211 Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu
Leu
226 Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu
Asp
45 241 Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp
Gln

256 Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr
Gln
271 Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala
Gly
5 286 Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val
Ser
301 Tyr Arg Val Leu Arg His Leu Ala Gln Pro Asp Met Ala Thr
Pro
316 Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser (SEQ ID NO:273)

10

pmont16020.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Glu
Gln
151 Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
Leu
35 166 Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu
Leu
181 Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
Pro
40 196 Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser
211 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly
Ile
226 Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp
45 Val
241 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu
Gly

256 Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala
Phe
271 Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
Ser
5 286 His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His
301 Leu Ala Gln Pro Asp Met Ala Thr Pro Leu Gly Pro Ala Ser
Ser
316 Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu (SEQ ID NO:274)
10

pmont16021.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Leu
Leu
151 Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
35 Pro
166 Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
Ser
181 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly
Ile
40 196 Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp
Val
211 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu
Gly
226 Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala
Phe
45 241 Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala
Ser

256 His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg
His
271 Leu Ala Gln Pro Asp Met Ala Thr Pro Leu Gly Pro Ala Ser
Ser
5 286 Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg
Lys
301 Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala
Thr
316 Tyr Lys Leu Cys His Pro Glu Glu Leu Val (SEQ ID NO:275)
10

pmon16022.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro
Leu
151 Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu
35 Ser
166 Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln
Ala
181 Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr
Leu
40 196 Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln
Met
211 Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly
Ala
226 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly
45 Val
241 Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr
Arg

256 Val Leu Arg His Leu Ala Gln Pro Asp Met Ala Thr Pro Leu
Gly
271 Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu
Glu
5 286 Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu
Lys
301 Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
Leu
316 Leu Gly His Ser Leu Gly Ile Pro Trp Ala (SEQ ID NO:276)

10

pmont16023.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
25 Gly
91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Gln
Ala
151 Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu
35 Phe
166 Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro
Glu
181 Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
Phe
40 196 Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala
Pro
211 Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser
Ala
226 Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu
Gln
45 241 Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala
Gln

256 Pro Asp Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro
Gln
271 Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln
Gly
5 286 Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys
Leu
301 Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly
Ile
316 Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser (SEQ ID NO:277)
10

pmon16024.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
25 Gly
91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Leu
Gln
151 Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu
35 Tyr
166 Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu
Gly
181 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala
Thr
40 196 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala
Leu
211 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
Gln
226 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
Phe
45 241 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
Asp

256 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser
Phe
271 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp
Gly
5 286 Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys
His
301 Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
Trp
316 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala (SEQ ID NO:278)

10

pmont16025.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Leu
Ala
151 Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln
Gly
35 166 Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro
Thr
181 Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr
Ile
40 196 Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln
Pro
211 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg
Arg
226 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu
Glu
45 241 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Asp Met
Ala

256 Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu
Leu
271 Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala
Ala
5 286 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro
Glu
301 Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala
Pro
316 Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln (SEQ ID NO:279)

10

pmont16026.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Glu
Leu
151 Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro
35 Ala
166 Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val
Ala
181 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu
Arg
40 196 His Leu Ala Gln Pro Asp Met Ala Thr Pro Leu Gly Pro Ala
Ser
211 Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val
Arg
226 Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys
45 Ala
241 Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly
His

256 Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser
Gln
271 Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu
5 286 Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
Pro
301 Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
Asp
316 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu (SEQ ID NO:280)
10

pmon16027.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Gly
Met
151 Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe
Ala
35 166 Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser
His
181 Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His
Leu
40 196 Ala Gln Pro Asp Met Ala Thr Pro Leu Gly Pro Ala Ser Ser
Leu
211 Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys
Ile
226 Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr
Tyr
45 241 Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser
Leu

256 Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala
Leu
271 Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe
Leu
5 286 Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu
Leu
301 Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe
Ala
316 Thr Thr Ile Trp Gln Gln Met Glu Glu Leu (SEQ ID NO:281)
10

pmon16028.pep

15 1 Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His
Leu
16 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn
Asp
31 Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro
Asn
20 46 Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala
Ser
61 Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro
Ser
76 Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala
Gly
25 91 Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val
Thr
106 Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly
Gly
30 121 Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro
Ser
136 Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser
Phe
151 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
Asp
35 166 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser
Phe
181 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp
Gly
40 196 Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys
His
211 Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
Trp
226 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala
Gly
45 241 Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly
Leu

256 Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr
Leu
271 Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile
Trp
5 286 Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
Thr
301 Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg
Ala
316 Gly Gly Val Leu Val Ala Ser His Leu Gln (SEQ ID NO:282)

10

MetAlaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis
LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuAlaValArg
GluPheGlyGlyAsnMetAlaSerProAlaProProAlaAlaAspLeuArgValLeuSer
15 LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis
ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr
GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly
ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu
20 SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro
ProGln (SEQ ID NO:284);

MetAlaGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu
LeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThr
AlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal
25 ArgPheLeuMetLeuValGlyGlySerThrLeuAlaValArgGluPheGlyGlyAsnMet
AlaSerProAlaProProAlaAlaAspLeuArgValLeuSerLysLeuLeuArgAspSer
HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal
LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys
AlaGlnAspIleLeuGlyAlaValThrLeuLeuGluGlyValMetAlaAlaArgGly
30 GlnLeu (SEQ ID NO:285)