Fundamentals of UQ (AM 238) Homework 3

Question 1: Consider a Gaussian random process $X(t;\omega)$ defined on the time interval [0,5]. The process has mean

$$\mu(t) = te^{\sin(3t)},\tag{1}$$

and covariance function

$$cov(t,s) = \exp(-|t-s|/\tau), \tag{2}$$

where $\tau > 0$ represents the temporal "correlation length" of the Gaussian process.

- a) Compute the stardard deviation of $X(t;\omega)$ at time t.
- b) Compute the covariance matrix of the random variables $X(1;\omega)$ and $X(2;\omega)$ as a function of τ . What happens when $\tau \to 0$?
- c) Plot a few samples of $X(t;\omega)$ for $\tau=0.02$ and $\tau=1$ on a temporal with 5000 points in [0,5] (two different figures). Show that such sample paths are approximately within $\mu(t) \pm 2\sigma(t)$, where $\sigma(t)$ is the standard deviation of the process.

Question 2: Show that the sequence of numbers $\{U_k\}$ defined as

$$U_k = \frac{(\widehat{X}_k - \widehat{Y}_k) \mod m_1}{m_1 + 1}.$$
(3)

where

$$\hat{X}_{k} = \begin{cases} X_{k} & \text{if } X_{k} \ge 0 \\ X_{k} - m_{1}X_{k} & \text{if } X_{k} < 0 \end{cases} \qquad \hat{Y}_{k} = \begin{cases} Y_{k} & \text{if } Y_{k} \ge 0 \\ Y_{k} - m_{2}Y_{k} & \text{if } Y_{k} < 0 \end{cases}$$
(4)

$$X_k = (1403580X_{k-2} - 810728X_{k-3}) \mod m_1 \tag{5}$$

$$Y_k = (527612Y_{k-1} - 1370589Y_{k-3}) \mod m_2 \tag{6}$$

 $m_1 = 2^{32} - 209$, $m_2 = 2^{32} - 22853$, and

$$X_{-3} = X_{-2} = X_{-1} = Y_{-3} = Y_{-2} = Y_{-1} = 111.$$
 (7)

is approximately uniformly distributed in [0,1]. To this end, generate $N=10^6$ numbers U_j $(j=1,\ldots,N)$ and plot the histogram of relative frequencies approximating the PDF in [0,1].

Question 3: Consider the stochastic differential equation (SDE)

$$dX(t;\omega) = -X(t;\omega)^3 dt + \frac{1}{2} dW(t;\omega) \qquad X(0;\omega) = X_0(\omega), \tag{8}$$

where $W(t;\omega)$ is a Wiener process, and $X_0(\omega)$ is a uniformly distributed random variable in [1, 2]. Let us discretize (8) with the Euler-Maruyama scheme

$$X_{k+1} = X_k - X_k^3 \Delta t + \frac{1}{2} \Delta W_k, \tag{9}$$

where $X_k = X(t_k, \omega)$, $\Delta t = t_{k+1} - t_k$ and $\{\Delta W_k\}$ are i.i.d. Gaussian random variables with zero mean and variance Δt .

- a) Write the Fokker-Planck (FKP) equation corresponding to the SDE (8).
- b) Using the FKP equation show that there exists a statistically stationary solution¹ and compute the PDF $p^*(x)$ of such stationary solution analytically. Is the equilibrium distribution $p^*(x)$ Gaussian?
- c) Write the conditional transition density $p(x_{k+1}|x_k)$ defined by discrete Markov process (9). Does the functional form of the transition density depend on the particular time t_k ? Or is it the same for all times?
- d) By using numerical integration show that the PDF $p^*(x)$ of the statistical steady state you computed in b) is a solution to the fixed point problem (Volterra integral equation)

$$p^*(x) = \int_{-\infty}^{\infty} p(x|y)p^*(y)dy \tag{10}$$

where p(x|y) is the transition density you computed in c). Given that $p^*(y)$ decays quite fast, for numerical purposes it is sufficient to approximate the infinite domain in the integral (10) to [-5,5].

- e) Plot a few sample paths of the SDE for $\Delta = 10^{-4}$ for $t \in [0, 5]$.
- f) By computing a sufficiently large number of sample paths, Estimate the PDF of $X(t;\omega)$ numerically (e.g. by using a kernel density PDF estimator or method of relative frequencies) at different times and show that it converges to the steady state PDF you computed in b).

¹To compute a stationary solution to the Fokker Planck equation, set the time derivative $\partial p/\partial t$ equal to zero.