An Analytical Introduction to Probability Theory

14. Submartingales

DASN, NTU

https://personal.ntu.edu.sg/wptay/

14.1 Submartingales

Definition 14.1. Consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and a filtration $\mathscr{F}_0 \subset \mathscr{F}_1 \subset \ldots \subset \mathscr{F}$. Suppose $X_n \in \mathscr{F}_n$ and $\mathbb{E}|X_n| < \infty$. If for all $m \geq n$, $\mathbb{E}[X_m | \mathscr{F}_n] \geq X_n$, then we say that $(X_n, \mathscr{F}_n)_{n \geq 0}$ is a submartingale. If $\mathbb{E}[X_m | \mathscr{F}_n] \leq X_n$, $(X_n, \mathscr{F}_n)_{n \geq 0}$ is called a supermartingale.

The same proof as in Theorem 12.1 shows that the martingale transform w.r.t. a predictable sequence (A_n) , which is bounded and non-negative, of a submartingale or supermartingale remains as a submartingale or supermartingale, respectively.

Theorem 14.1 (MTT). If (A_n) is predictable w.r.t. (\mathscr{F}_n) , non-negative and bounded, and $(X_n, \mathscr{F}_n)_{n\geq 0}$ is a submartingale (supermartingale), then $(\widetilde{X}_n, \mathscr{F}_n)_{n\geq 0}$ is a submartingale (supermartingale).

Example 14.1. In a casino game, let X_n be the amount of money you win at time n if you had bet one dollar at each time, starting with $X_0 = 0$. Recall that a predictable sequence (A_n) is a gambling strategy so that the winnings at time n is

$$\widetilde{X}_n = \sum_{k=1}^n A_k (X_k - X_{k-1}).$$

Suppose that $M_n = X_n - X_{n-1} \in \{-1, 1\}$ has distribution Bern (p). Your friend claims that a "sure-win" strategy is to choose $A_1 = 1$ and for $n \ge 2$,

$$A_n = \begin{cases} 2A_{n-1} & \text{if } M_{n-1} = -1, \\ 1 & \text{if } M_{n-1} = 1. \end{cases}$$

Assuming that p > 0, $\{M_n = 1 \text{ i.o.}\}\$ has probability one. Once $M_n = 1$, the above strategy recoups all your previous losses with a winning of $-1 - 2 - \ldots - 2^{n-1} + 2^n = 1$. Therefore, this strategy seems to suggest you can always beat the house. But if M_n is a supermartingale (i.e., $\mathbb{E}[M_m \mid \mathscr{F}_n] \leq M_n$ for $m \geq n$ and this is usually true has the house incorporates some advantages), then M_n is also a supermartingale. This means no strategy can beat the house, in an expectation sense. Many gamblers have gone bankrupt using the above strategy!

Lemma 14.1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex, $(X_n, \mathscr{F}_n)_{n \geq 0}$ is an adaptation with $\mathbb{E}|f(X_n)| < \infty$ for all $n \geq 0$. Then if either

i) $(X_n, \mathscr{F}_n)_{n\geq 0}$ is a martingale; or

ii) $(X_n, \mathscr{F}_n)_{n\geq 0}$ is a submartingale and f is increasing,

then $(f(X_n), \mathscr{F}_n)_{n\geq 0}$ is a submartingale.

Proof. To prove i), from Jensen's inequality, for $n \leq m$, we have $f(X_n) = f(\mathbb{E}[X_m \mid \mathscr{F}_n]) \leq \mathbb{E}[f(X_m) \mid \mathscr{F}_n]$. The proof of ii) is similar.

Theorem 14.2. A submartingale $(X_n, \mathscr{F}_n)_{n\geq 0}$ can be decomposed a.s. uniquely as $X_n = Y_n + Z_n$, where $(Y_n, \mathscr{F}_n)_{n\geq 0}$ is a martingale and $(Z_n)_{n\geq 0}$ is predictable with $Z_0 = 0$ and $Z_n \leq Z_{n+1}$ a.s.

Proof. We first construct a decomposition as follows: Let $Z_0 = 0$,

$$Z_n = \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} \,|\, \mathscr{F}_{k-1}]$$

and $Y_n = X_n - Z_n$. By our construction, $Z_n \in \mathscr{F}_{n-1}$ is predictable and since

$$\mathbb{E}[X_k - X_{k-1} \,|\, \mathscr{F}_{k-1}] = \mathbb{E}[X_k \,|\, \mathscr{F}_{k-1}] - X_{k-1} \ge 0,$$

we have $Z_n \leq Z_{n+1}$ a.s. Furthermore, $Z_n - Z_{n-1} = \mathbb{E}[X_n \mid \mathscr{F}_{n-1}] - X_{n-1}$ and we obtain

$$\mathbb{E}[Y_n \,|\, \mathscr{F}_{n-1}] = \mathbb{E}[X_n - Z_n \,|\, \mathscr{F}_{n-1}] = \mathbb{E}[X_n \,|\, \mathscr{F}_{n-1}] - Z_n = X_{n-1} - Z_{n-1} = Y_{n-1},$$

showing that Y_n is a martingale.

To show uniqueness, we proceed by induction. The requirement that $Z_0 = 0$ implies that $Y_0 = X_0$ uniquely. Suppose the decomposition is unique a.s. up to X_{n-1} . Then for any decomposition $X_n = Y_n + Z_n$ meeting the criteria,

$$Z_n = \mathbb{E}[Z_n \,|\, \mathscr{F}_{n-1}] = \mathbb{E}[X_n - Y_n \,|\, \mathscr{F}_{n-1}] = \mathbb{E}[X_n \,|\, \mathscr{F}_{n-1}] - Y_{n-1},$$

because Y_n is a martingale. This implies that Z_n is unique a.s., and hence so is $Y_n = X_n - Z_n$. The proof is now complete.

14.2 Doob's Inequalities

Theorem 14.3 (Doob's maximal inequality). Suppose $(X_n, \mathscr{F}_n)_{n\geq 0}$ is a non-negative submartingale. Let $X_n^* = \max_{0\leq k\leq n} X_k$. Then for all $\lambda \geq 0$,

$$\lambda \mathbb{P}(X_n^* \ge \lambda) \le \mathbb{E} X_n \mathbf{1}_{\{X_n^* \ge \lambda\}} \le \mathbb{E} X_n. \tag{1}$$

Proof. Let $\tau = \inf\{k : X_k \ge \lambda\}$ be a stopping time. Then $\{X_n^* \ge \lambda\} = \{\tau \le n\}$ and

$$\lambda \mathbf{1}_{\{\tau \le n\}} \le X_{\tau} \mathbf{1}_{\{\tau \le n\}} = \sum_{k=0}^{n} X_{k} \mathbf{1}_{\{\tau = k\}}.$$
 (2)

Since $X_k \leq \mathbb{E}[X_n | \mathscr{F}_k] \ \forall k \leq n \text{ and } \{\tau = k\} \in \mathscr{F}_k, \ \mathbb{E}X_k \mathbf{1}_{\{\tau = k\}} \leq \mathbb{E}X_n \mathbf{1}_{\{\tau = k\}} \text{ for all } k \leq n.$ Taking expectations in (2), we obtain

$$\lambda \mathbb{P}(\tau \leq n) \leq \mathbb{E} \sum_{k=0}^{n} X_k \mathbf{1}_{\{\tau = k\}}$$

$$\leq \mathbb{E} \sum_{k=0}^{n} X_n \mathbf{1}_{\{\tau = k\}}$$

$$= \mathbb{E} X_n \mathbf{1}_{\{\tau \leq n\}}$$

$$= \mathbb{E} X_n \mathbf{1}_{\{X_n^* \geq \lambda\}}$$

$$\leq \mathbb{E} X_n.$$

Corollary 14.1. For $\lambda > 0$ and $p \geq 1$,

$$\mathbb{P}(X_n^* \ge \lambda) \le \frac{1}{\lambda^p} \mathbb{E} X_n^p.$$

Proof. From Lemma 14.1, (X_n^p) is a non-negative submartingale. We then apply Theorem 14.3.

Example 14.2. Suppose X_i , $i \ge 1$ are independent with $\mathbb{E}X_i = 0$. From Example 12.3, S_n is a martingale. Doob's maximal inequality (or its corollary) recovers Kolmogorov's maximal equality:

$$\mathbb{P}\left(\max_{1 \le k \le n} |S_k| \ge \lambda\right) \le \frac{1}{\lambda^2} \mathbb{E} S_n^2.$$

Let $p \geq 1$. A r.v. $X \in L^p$ if $||X||_p = \{\mathbb{E}|X|^p\}^{1/p} < \infty$. Hölder's inequalty says that for $1 \leq p < \infty, \ p+q=1$ (i.e., $q=\frac{p}{p-1}$), then for any r.v.s X,Y,

$$||XY||_1 \le ||X||_p ||Y||_q.$$

Lemma 14.2. Suppose $X, Y \geq 0$, $\mathbb{E}Y^p < \infty$ for p > 1 and for all $\lambda \geq 0$, we have

$$\lambda \mathbb{P}(X \ge \lambda) \le \mathbb{E}Y \mathbf{1}_{\{X \ge \lambda\}}.$$

Then,

$$||X||_p \le \frac{p}{p-1} ||Y||_p. \tag{3}$$

Proof. Let $X_n = X \wedge n$. We use the fact that

$$z^{p} = p \int_{0}^{z} x^{p-1} dx = p \int_{0}^{\infty} x^{p-1} \mathbf{1}_{\{z \ge x\}} dx$$

to obtain

$$\begin{split} \mathbb{E}X_n^p &= \mathbb{E}\Big[p\int_0^\infty x^{p-1}\mathbf{1}_{\{X_n \geq x\}}\,\mathrm{d}x\Big] \\ &\stackrel{\mathrm{Fubini}}{=} p\int_0^\infty x^{p-1}\mathbb{P}(X_n \geq x)\,\mathrm{d}x \\ &\leq p\int_0^\infty x^{p-2}\mathbb{E}\Big[Y\mathbf{1}_{\{X \geq x\}}\Big]\,\mathrm{d}x \ \text{ since } \{X_n \geq x\} \subset \{X \geq x\} \\ &\stackrel{\mathrm{Fubini}}{=} p\mathbb{E}\Big[Y\int_0^\infty x^{p-2}\mathbf{1}_{\{X \geq x\}}\,\mathrm{d}x\Big] \\ &= \frac{p}{p-1}\mathbb{E}\Big[YX^{p-1}\Big] \\ &\stackrel{\mathrm{H\"older}}{\leq} \frac{p}{p-1}\|Y\|_p\|X\|_p^{p-1}. \end{split}$$

Therefore, from Fatou's lemma,

$$||X||_p^p \le \liminf_{n \to \infty} \mathbb{E} X_n^p \le \frac{p}{p-1} ||Y||_p ||X||_p^{p-1},$$

and we obtain (3) (the case $||X||_p = 0$ is trivial).

Theorem 14.4 (Doob's L^p inequality). If (X_n, \mathscr{F}_n) is a non-negative submartingale, then for all p > 1,

$$||X_n^*||_p \le \frac{p}{p-1} ||X_n||_p. \tag{4}$$

Proof. We apply Lemma 14.2 with $X = X_n^*$ and $Y = X_n$, together with Doob's maximal inequality (Theorem 14.3).

Theorems 14.3 and 14.4 require (X_n, \mathscr{F}_n) to be non-negative. For a general submartingale (X_n, \mathscr{F}_n) , we can apply these results to (X_n^+, \mathscr{F}_n) since this is a non-negative submartingale from Lemma 14.1.

Theorem 14.4 holds only for p > 1. Indeed, there is no corresponding result for p = 1 as shown in the following example.

Example 14.3. Consider the random walk in Example 13.1 with $S_0 = 0$. Take B = 1 and $\tau = \inf\{n : S_n = -1\}$. Let $X_n = S_{n \wedge \tau}$. Then using a result in Example 13.1 in the second equality below, we have

$$\mathbb{E}\left[\max_{m\geq 0} X_m\right] = \sum_{A=1}^{\infty} \mathbb{P}\left(\max_{m\geq 0} X_m \geq A\right) = \sum_{A=1}^{\infty} \frac{1}{A+1} = \infty.$$

The MCT then implies that $\mathbb{E}[\max_{0 \le m \le n} X_m] \to \infty$ as $n \to \infty$.

14.3 Uniform Integrability

Definition 14.2. A collection of r.v.s $(X_n)_{n\in\mathbb{N}}$ is uniformly integrable if

$$\sup_{n \in N} \mathbb{E}|X_n|\mathbf{1}_{\{|X_n| > K\}} \to 0, \tag{5}$$

as $K \to \infty$.

If $(X_n)_{n\in\mathbb{N}}$ is uniformly integrable, then for K sufficiently large, we have $\sup_{n\in\mathbb{N}} \mathbb{E}|X_n|\mathbf{1}_{\{|X_n|>K\}} \le 1$ and $\sup_n \mathbb{E}|X_n| \le K+1 < \infty$ is uniformly bounded. Clearly, the converse is false.

Example 14.4. If $|X_n| \leq Y$, $\forall n \in \mathbb{N}$, and $\mathbb{E}Y < \infty$, then

$$\mathbb{E}|X_n|\mathbf{1}_{\{|X_n|>K\}} \le \mathbb{E}Y\mathbf{1}_{\{Y>K\}} \to 0,$$

as $K \to \infty$ from DCT. Therefore $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable.

Lemma 14.3. If $X \in L^1$, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $\mathbb{P}(A) \leq \delta$, then $\mathbb{E}|X|\mathbf{1}_A \leq \epsilon$.

Proof. If $\mathbb{P}(A) \leq \delta$, we have for all K > 0,

$$\mathbb{E}|X|\mathbf{1}_A \le K\mathbb{P}(A) + \mathbb{E}|X|\mathbf{1}_{\{|X|>K\}} \le K\delta + \mathbb{E}|X|\mathbf{1}_{\{|X|>K\}}.$$

Choose K sufficiently large so that $\mathbb{E}|X|\mathbf{1}_{\{|X|>K\}} \leq \frac{\epsilon}{2}$ and set $\delta = \frac{\epsilon}{2K}$. Then from above, we have $\mathbb{E}|X|\mathbf{1}_A \leq \epsilon$.

Proposition 14.1. Let $X \in L^1(\Omega, \mathscr{F}, \mathbb{P})$. Then $\{\mathbb{E}[X \mid \mathscr{F}'] : \mathscr{F}' \text{ is a } \sigma\text{-algebra} \subset \mathscr{F}\}$ is uniformly integrable.

Proof. Fix $\epsilon > 0$ and choose $\delta > 0$ as in Lemma 14.3. Pick K large so that $\mathbb{E}|X|/K \leq \delta$. Let $Y = \mathbb{E}[X \mid \mathscr{F}']$. From Jensen's inequality, $|Y| \leq \mathbb{E}[|X| \mid \mathscr{F}']$, therefore we have

$$\begin{split} \mathbb{E} \big[|Y| \mathbf{1}_{\{|Y| > K\}} \big] &\leq \mathbb{E} \big[\mathbb{E}[|X| \, | \, \mathscr{F}'] \mathbf{1}_{\{\mathbb{E}[|X| | \mathscr{F}'] > K\}} \big] \\ &= \mathbb{E} |X| \mathbf{1}_{\{\mathbb{E}[|X| | \mathscr{F}'] > K\}} \quad \text{since } \{ \mathbb{E}[|X| \, | \, \mathscr{F}'] > K \} \in \mathscr{F}' \\ &\leq \epsilon, \end{split}$$

where the last inequalty follows from Lemma 14.3 as $\mathbb{P}(\mathbb{E}[|X| | \mathscr{F}'] > K) \leq \mathbb{E}|X|/K \leq \delta$. \square

Proposition 14.2. Suppose $\varphi : \mathbb{R} \mapsto \mathbb{R}_+$ is such that $\lim_{x\to\infty} \frac{\varphi(x)}{x} = \infty$. (Examples include $\varphi(x) = x^p$, for p > 1 and $\varphi(x) = x \log^+ x$.) If $\mathbb{E}\varphi(|X_n|) \leq C < \infty$, then $(X_n)_{n\in\mathbb{N}}$ is uniformly integrable.

Proof. Let $\epsilon_K = \sup\{x/\varphi(x) : x \ge K\}$. Note that $\epsilon_K \to 0$ as $K \to \infty$ because for any $\epsilon > 0$, $\exists K$ sufficiently large so that $x/\varphi(x) \le \epsilon$ for all x > K. Then we have

$$\mathbb{E}|X_n|\mathbf{1}_{\{|X_n|>K\}} \le \epsilon_K \mathbb{E}[\varphi(|X_n|)\mathbf{1}_{\{|X_n|>K\}}] \le C\epsilon_K \to 0,$$

as $K \to \infty$.

Lemma 14.4. Suppose $\mathbb{E}|X_n| < \infty$ for all $n \in N$ and $\mathbb{E}|X| < \infty$, then the following are equivalent:

(i)
$$X_n \to X$$
 in L^1 , i.e., $\mathbb{E}|X_n - X| \to 0$ as $n \to \infty$.

(ii) $(X_n)_{n\in\mathbb{N}}$ is uniformly integrable and $X_n \stackrel{p}{\longrightarrow} X$.

(iii)
$$X_n \stackrel{\mathrm{p}}{\longrightarrow} X$$
 and $\mathbb{E}|X_n| \to \mathbb{E}|X|$.

Proof. We show $(ii) \implies (i) \implies (iii) \implies (ii)$.

 $(ii) \implies (i): \forall \epsilon > 0, K > 0, \text{ we have}$

$$\mathbb{E}|X_n - X| \le \epsilon + \mathbb{E}|X_n - X|\mathbf{1}_{\{|X_n - X| > \epsilon\}}$$

$$\le \epsilon + \mathbb{E}|X_n|\mathbf{1}_{\{|X_n - X| > \epsilon\}} + \mathbb{E}|X|\mathbf{1}_{\{|X_n - X| > \epsilon\}}$$

$$\le \epsilon + 2K\mathbb{P}(|X_n - X| > \epsilon) + \mathbb{E}|X_n|\mathbf{1}_{\{|X_n| > K\}} + \mathbb{E}|X|\mathbf{1}_{\{|X| > K\}}$$

and

$$\lim_{n \to \infty} \sup_{x \to \infty} \mathbb{E}|X_n - X| \le \epsilon + \sup_{x \to \infty} \mathbb{E}|X_n| \mathbf{1}_{\{|X_n| > K\}} + \mathbb{E}|X| \mathbf{1}_{\{|X| > K\}}.$$

Taking $\epsilon \to 0$ and $K \to \infty$ completes the proof.

(i) \Longrightarrow (iii): From Markov's inequality, for any $\epsilon > 0$, we obtain $\mathbb{P}(|X_n - X| > \epsilon) \le \epsilon \mathbb{E}|X_n - X| \to 0$ as $n \to \infty$. We also have

$$|\mathbb{E}|X_n| - \mathbb{E}|X|| \le \mathbb{E}||X_n| - |X|| \le \mathbb{E}|X_n - X| \to 0,$$

as $n \to \infty$.

(iii) \implies (ii): For any $\epsilon > 0$, $\exists n_0$ such that $\forall n \geq n_0$, $\mathbb{E}|X_n| \leq \mathbb{E}|X| + \epsilon/2$. Let

$$\phi_K(x) = \begin{cases} x, & \text{for } x \in [0, K-1], \\ 0, & \text{for } x > K, \\ \text{linear}, & \text{for } x \in [K-1, K]. \end{cases}$$

Then from the DCT, for K sufficiently large,

$$\mathbb{E}|X| - \mathbb{E}\phi_K(|X|) \le \epsilon.$$

Since ϕ_K is continuous, the DCT also yields $\mathbb{E}\phi_K(|X_n|) \to \mathbb{E}\phi_K(|X|)$ as $n \to \infty$. Therefore, since $x \ge \phi_K(x) + x \mathbf{1}_{\{x > K\}}$ for all $x \ge 0$, we have

$$\mathbb{E}|X_n|\mathbf{1}_{\{|X_n|>K\}} \leq \mathbb{E}|X_n| - \mathbb{E}\phi_K(|X_n|)$$

$$\leq \mathbb{E}|X| - \mathbb{E}\phi_K(|X|) + \epsilon$$

$$\leq 2\epsilon,$$

for all n and K sufficiently large and the proof is complete.