

Interpretability of CNN

20200827_文献分享_PANZHIYU

What is interpretability

- Simulatability (可仿真性): 对整体模型的可理解性。一个模型越简单,它的可理解性就越高。例如: 线性分类器或者回归器就是完全可理解的。
- Decomposability (可分解性): Modularized analysis: the inner working of a complicated system is factorized as a combination of functionalized modules.
- Algorithmic Transparency (算法透明度): Understand the train algorithm. 网络的目标函数优化往往是非凸的,训练得不到一个唯一解。但SGD-based的方法训练的结果往往都表现不错。

• In summary: Understanding the model; Understanding the train.

Why interpretability is difficult?

 Human: Even the most talented physicists know little about the essence of this problem, let alone to fully understand the predications of the neural network.

• Cost: ...

• Data: 数据源复杂 (it is often very hard to have high quality data such as structured data in many domains); 理解高维数据的mapping 复杂

 Algorithm: Compared to classical convex optimization problems, optimizing a deep learning model is a complex non-convex optimization problem, which is rather hard to comprehend.

- Network Dissection: Quantifying Interpretability of Deep Visual Representations CVPR 2017
- Interpretable Convolutional Neural Networks CVPR 2018
- Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention ICCV 2017
- Interpretable Transformations with Encoder-Decoder Networks ICCV 2017
- Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation CVPR 2020

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau*, Bolei Zhou*, Aditya Khosla, Aude Oliva, and Antonio Torralba

CSAIL, MIT

Target

- 以往文献说明网络的可解释性通过可视化,没有一个量化的衡量,本文采用分析性框架量化可解释性(Metric: part interpretability)
- → Define it in terms of alignment with a set of human-interpretable concepts

Representation disentangled, single units and single interpretable concepts 计算具有解释性的unit个数,以及具有单一概念的可解释性的个数

Broden dataset

• a ground truth set of exemplars for a broad set of visual concepts

Table 1. Statistics of each label type included in the data set.

V 1								
Categor	y Classes	Sources	Avg sample					
scene	468	ADE [43]	38					
object	584	ADE [43], Pascal-Context [19]	491					
part	234	ADE [43], Pascal-Part [6]	854					
materia	1 32	OpenSurfaces [4]	1,703					
texture	47	DTD [7]	140					
color 11		Generated	59,250					

Figure 2. Samples from the **Broden** Dataset. The ground truth for each concept is a pixel-wise dense annotation.

Scoring Unit Interpretability

- 1. 得到图片x 关于滤波器f的激活结果Ak(x), 然后得到激活结果的分布 (distribution) ak.
- 2. 确定top quantile level Tk ,选择原则 P(ak > Tk) = 0.005
- 3. 对Ak(x)进行上采样到原图大小(双线性插值), $M_k(\mathbf{x}) \equiv S_k(\mathbf{x}) \geq T_k$

$$IoU_{k,c} = \frac{\sum |M_k(\mathbf{x}) \cap L_c(\mathbf{x})|}{\sum |M_k(\mathbf{x}) \cup L_c(\mathbf{x})|}$$

 $IoU_{k.c}>0.04$ Input image Network being probed Pixel-wise segmentation

Freeze trained network weights

Upsample target layer

Evaluate on segmentation tasks

Result & Conclusion

	conv1	conv2	conv3	conv4	conv5
Interpretable units	57/96	126/256	247/384	258/384	194/256
Human consistency	82%	76%	83%	82%	91%
Network Dissection	37%	56%	54%	59%	71%

Human evaluation

Axis-Aligned Interpretability

Result & Conclusion

Accuracy on a representation when applied to a task is dependent not only on the number of concept detectors in the representation, but on the suitability of the set of represented concepts to the transfer task

宽度对可解释性有促进作用,但有 limitation

Interpretable Convolutional Neural Networks

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu

University of California, Los Angeles

Target

让网络的高层滤波器关注一个类别物品的一个局部 (an object part)

Filters in an interpretable CNN are more semantically meaningful than those in traditional CNNs

我们可以更清楚的看到网络记住了哪些特征, 更容易相信网络的预测结果

Figure 1. Comparison of a filter's feature maps in an interpretable CNN and those in a traditional CNN.

Method

- 整体思路: template matching
- Template: 正向传播时作为mask (filter out the noisy activations),反向传播用于跟特征图匹配算Loss

Back prop & Loss

$$\mathbf{T} = \{T^-, \mathbf{T}^+\}$$

• if $I \subseteq Ic$, the feature map x is expected to the assigned template T^{μ} , if $I^{\mu} \subseteq Ic$ we design a negative template I^{μ} and hope the feature map x matches to I^{μ} .

$$\mathbf{Loss}_f = -MI(\mathbf{X}; \mathbf{T}) \quad \text{for filter } f$$

$$= -\sum_{T} p(T) \sum_{x} p(x|T) \log \frac{p(x|T)}{p(x)}$$

$$\mathbf{Loss}_f = -H(\mathbf{T}) + H(\mathbf{T}' = \{T^-, \mathbf{T}^+\} | \mathbf{X})$$

$$+ \sum_{x} p(\mathbf{T}^+, x) H(\mathbf{T}^+ | X = x)$$

$$H(\mathbf{T}' = \{T^-, \mathbf{T}^+\} | \mathbf{X}) = -\sum_x p(x) \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy ; one single category properties} \quad \text{Low inter-category entropy } T = \sum_x p(x) \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy } T = \sum_T p(x) \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy } T = \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy } T = \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy } T = \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category entropy } T = \sum_T p(T|x) \log p(T|x) \quad \text{Low inter-category } T = \sum_T p(T$$

$$H(\mathbf{T}^+|X=x) = \sum_{\mu} \tilde{p}(T_{\mu}|x) \log \tilde{p}(T_{\mu}|x)$$
 Low spatial entropy; one single region

Result

Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention

Jinkyu Kim and John Canny

EECS, UC Berkeley, Berkeley, CA 94709, USA

Target

- 网络为E2E实现预测无人驾驶的操作角度(steer angle)
- 同时网络输出attention map, → 通过注意场景的哪部分做出的判断

Network

$$\alpha_{t,i} = \frac{\exp(f_{\text{attn}}(x_{t,i}, h_{t-1}))}{\sum_{j=1}^{L} \exp(f_{\text{attn}}(x_{t,j}, h_{t-1}))} \qquad \qquad \mathcal{L}_1(u_t, \hat{u}_t) = \sum_{t=1}^{T} |u_t - \hat{u}_t| + \lambda \sum_{i=1}^{L} \left(1 - \sum_{t=1}^{T} \alpha_{t,i}\right)$$

Interpretable Transformations with Encoder-Decoder Networks

Daniel E. Worrall Stephan J. Garbin Daniyar Turmukhambetov Gabriel J. Brostow

University College London

Target

• Propose a simple method to construct a deep feature space, with explicitly disentangled representations of several known transformations.

Figure 1. Three alternative feature spaces and how each encodes images of the same person. (Left) A feature space that is hard to interpret, similar to one learned by a typical CNN. While transformation information is present, it is not obvious how to extract that directly from the feature space. (Middle) A transformation-*invariant* feature space. (Right) An interpretable feature-space, where ordered transformations of the input subject relate to ordered, structured features. This is like a learned metric space, but also allows for image synthesis. Images of another person are not shown, but would ideally project similarly, albeit elsewhere in each feature space.

Method

• Problem setup:

$$\mathcal{D} = \{(\mathbf{x}^1, \tilde{\mathbf{x}}_{\theta^i}^1, \theta^1), ..., (\mathbf{x}^N, \tilde{\mathbf{x}}_{\theta^i}^N, \theta^N)\}$$

$$\tilde{\mathbf{x}}_{\theta} = \Pi[\mathcal{T}_{\theta}[\mathbf{o}]] = \Pi[\mathcal{T}_{\theta}[\Pi^{-1}[\mathbf{x}]]]$$

$$[ilde{\mathbf{x}}_{ heta} = \mathbf{d}ig(\mathcal{F}_{ heta^i}ig[\mathbf{e}(\mathbf{x}^i)ig]ig)$$

 $\mathbf{e}(\bullet)$ approximates $\Pi^{-1}[\bullet]$,

 \mathcal{F}_{θ} is the feature space equivalent to \mathcal{T}_{θ} ,

 $\mathbf{d}(\bullet)$ approximates $\Pi[\bullet]$,

The Feature Transform Layer

$$\mathbf{y} = \mathcal{F}_{\theta}[\mathbf{e}] = \mathbf{F}_{\theta}\mathbf{e}.$$

$$\mathbf{F}_{\theta_2\theta_1} = \mathbf{F}_{\theta_2}\mathbf{F}_{\theta_1}$$
.

$$\mathbf{F}_{\theta_1^{-1}} = \mathbf{F}_{\theta_1}^{-1}$$
.

$$\|\mathbf{R}_{\theta}\mathbf{e}\|_{2}^{2} = \mathbf{e}^{\top}\mathbf{R}_{\theta}^{\top}\mathbf{R}_{\theta}\mathbf{e} = \mathbf{e}^{\top}\mathbf{e} = \|\mathbf{e}\|_{2}^{2},$$

$$\mathbf{F}_{ heta}\mathbf{e} = egin{bmatrix} \mathbf{R}_{ heta_1} & & & \ & \ddots & & \ & & \mathbf{R}_{ heta_N} \end{bmatrix} \mathbf{e},$$

对应变换的不同自由度

Result

Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation

Edoardo Remelli; Shangchen Han; Sina Honari; Pascal Fua; Robert Wang

CVLab, EPFL, Lausanne, Switzerland; Facebook Reality Labs, Redmond, USA

Result

a) In-plane rotations (seen views)

 $R_z = 10^{\circ}$

 $R_z = 20^{\circ}$

 $R_z = 30^{\circ}$

b) Out-of-plane rotations (unseen views)

$$\phi = 30^{\circ}$$

$$\phi = 150^{\circ}$$

$$\phi = 180^{\circ}$$