DM134B · DM135B

Version: A.001

Issue Date: 2004/4/29

File Name : SP-DM134B,135B-A.001.doc

Total Pages: 18

16-Bit Constant Current LED Drivers with 3.3v ~ 5v Supply Voltage

DM134B - DM135B

16-Bit Constant Current LED Drivers with

3.3v ~ 5v Supply Voltage

General Description

The DM134B \cdot DM135B are constant current drivers specifically designed for LED display applications. The value of constant current can be varied using an external resistor. The devices include a 16-bit shift register, latches, and constant current drivers on a single Silicon CMOS chip.

Features

• 3.3V~5V CMOS Compatible Input

Maximum Clock Frequency: 25MHz (Cascade Operation)

• Maximum Output Voltage: 17V

• Package: DIP24, SOP24, SSOP24, QFN32

• Package and Pin Layout: Pin layout and functionality are similar to those of the ST2221C.

(Each characteristic value is different.)

• Constant Current Matching: $(Ta = 25^{\circ}C \cdot VDD = 5.0V)$

Chip-to-Chip: $\pm 10.0\%$

Bit-to-Bit:

DM134B: $\pm 4.0\%$ @ Iout = 30 ~ 90mA

 $\pm 6.0\%$ @ Iout = $20 \sim 30$ mA

DM135B: $\pm 4.0\%$ @ IouT = $20 \sim 60$ mA

 $\pm 6.0\%$ @ Iout = $5 \sim 20$ mA

Pin Connection (Top view)

DIP24 · SOP24 · SSOP24

Pin Connection (Bottom view)

Block Diagram

Timing Diagram

(Note) Latches are level sensitive (not edge triggered).

 $\overline{\text{LATCH}}$ -terminal = H level, latches become transparent; $\overline{\text{LATCH}}$ -terminal = L level, latches hold data.

 $\overline{\text{ENABLE}}$ -terminal = H level, all outputs (OUT0~15) are off.

An external resistor is connected between R-EXT and GND for setting up the value of constant current.

SERIAL-OUT changes state on the rising edges of clock.

Pin Description

PIN No.	PIN NAME	FUNCTION
1	GND	Ground terminal
2	SERIAL-IN	Input terminal of a data shift register
3	CLOCK	Input terminal of a clock for shift register
4	LATCH	Input terminal of data strobe
5~20	OUT0~15	Output terminals
21	ENABLE	Input terminal of output enable (active low)
22	SERIAL-OUT	Output terminal of a data shift register
23	R-EXT	Input terminal of an external resistor
24	V_{DD}	5V Supply voltage terminal

Equivalent Circuit of Inputs and Outputs

1. ENABLE terminal

2. LATCH terminal

3. CLOCK, SERIAL-IN terminal

4. SERIAL-OUT terminal

Maximum Ratings (Ta = 25°C, Tj_(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	Vdd	0 ~ 7.0	V	
Input Voltage	Vin	-0.4 ~ VDD+0.4	V	
Output Current	Iout	90 (DM134B)		
Output Current	1001	60 (DM135B)	mA	
Output Voltage	Vout	- 0.3 ∼ 17	V	
Clock Frequency	fCLK	25	MHz	
GND Terminal Current	IGND	1440 (DM134B)	mA	
GND Terminal Current	IGND	960 (DM135B)	шА	
		2.5 (DIP-24 : Ta=25°C)		
Power Dissipation	PD	1.58 (SOP-24 : Ta=25°C)		
(On 4-layer PCB)		1.39 (SSOP-24 : Ta=25°C)	W	
		3.08 (QFN-32 : Ta=25°C)		
		50.0 (DIP-24)		
Thermal Resistance	Dag 3	79.2 (SOP-24)	00/11/	
(On 4-layer PCB)	Rth(j-a)	90.2 (SSOP-24)	°C/W	
		40.6 (QFN-32)		
Operating Temperature	Topr	-40 ~ 85	°C	
Storage Temperature	Tstg	- 55 ∼ 150	°C	

Recommended Operating Condition

	1						
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Voltage	Vdd	_	3.0	5.0	5.5	V	
Output Voltage	Vout				17	V	
Operating temperature	T_{OPR}		-40		85	$^{\circ}\!\mathbb{C}$	
Output Current	Іон	SERIAL-OUT			1.0	mA	
Output Current	IOL	SERIAL-OUT			-1.0	mA	
Innut Valtage	VIH		0.7VDD		VDD+0.3	V	
Input Voltage	VIL		-0.3		0.3VDD	V	
LATCH Pulse Width	tw LAT		15			ns	
CLOCK Pulse Width	tw CLK		15		_	ns	
Set-up Time for DATA	tsetup(D)	$V_{DD} = 3.0 \sim 5.5 \text{ V}$	20		_	ns	
Hold Time for DATA	thold(D)		20		_	ns	
Set-up Time for LATCH	tsetup(L)		15			ns	
Clock Frequency	fCLK	Cascade operation			25	MHz	

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYM	IBOL	CONDI	ITION	MIN.	TYP.	MAX.	UNIT	
Input Voltage "H" Level	V	IH	_		0.7VDD	_	VDD	V	
Input Voltage "L" Level	V	IL	_		GND	_	0.3VDD	V	
Output Leakage Current	IC	Ή	VOH = 17 V		_	_	1.0	uA	
Outrot Valtage (C. OUT)	VOL		IOL = 1.0 mA		_	_	0.4	V	
Output Voltage (S - OUT)	V	ЭН	IOH = -1.0 mA		4.6	_	_	v	
Output Current (Bit-Bit)	∆Iout	DM134B	VOUT = 1.2V	$REXT = 377\Omega$		±1.5	+4	%	
Output Current (Bit-Bit)	Δ10ut	DM135B	(1 channel on)	$REXT = 900\Omega$		11.5	± 4	%0	
Output Current (Chip-Chip)		DM134B	VOOT = 1.2V (1 channel on)	$REXT = 377\Omega$	36.0	40.0	44.0	mA	
Output Current (Cmp-Cmp)	Iout	DM135E		$REXT = 900\Omega$	18.0	20.0	22.0		
Output Valtage Begulation	IDM134B IDM135B		Vout = $1.2V \sim 5.0V$ REX	$REXT = 377\Omega$		0.1	0.5	% / V	
Output Voltage Regulation			(% / Vout) REXT =900Ω			0.1	0.5	/0 / V	
Supply Voltage Regulation	%/	VDD	$Vdd = 3.0V \sim 5.5V$		_	1	3	% / V	
Pull-Up Resistor	RIN	(up)	_	_	150	300	600	ΚΩ	
Pull-Down Resistor	RIN(down)	_	_	100	200	400	ΚΩ	
	Idd (off)	DM134B	REXT = OPEN, all outputs off		_	2	4		
Supply Current "OFF"		DM134B	REXT = 210Ω , all or	utputs off	_	14	28		
Supply Cultent Off		DM135B	REXT = OPEN, all o	outputs off	_	2	4	mA	
		DM133B	REXT = 300Ω , all outputs off		_	14	28	111/ 1	
Supply Current "ON"	Idd	DM134B	REXT = 210Ω , all outputs on		_	14	28		
Supply Cultent Olv	(on)	DM135B	REXT = 300Ω , all outputs on		_	14	28		

Switching Characteristics (Ta = 25 °C unless otherwise noted)

DM134B

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation ENABLE-OUTn	4	VDD=5.0V		20	40	
Delay Time ("L" to "H")	tрLН	VIH=VDD VIL=GND		20	25	ns
Propagation ENABLE-OUTn		REXT= 210Ω		50	100	
Delay Time ("H" to "L")	tрнL	VL=5.0V RL=47Ω		20	25	ns
Output Current Rise Time	tor	CL=15pF	_	550	800	ns
Output Current Fall Time	tof		_	20	40	ns

DM135B

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation ENABLE-OUTn		VDD=5.0V		20	40	
Delay Time ("L" to "H")	tplh	VIH=VDD VIL=GND		20	25	ns
Propagation ENABLE-OUTn		REXT=630Ω		30	60	
Delay Time ("H" to "L")	tphl	VL=5.0V $RL=150\Omega$		20	25	ns
Output Current Rise Time	tor	CL=13pF	25	50	100	ns
Output Current Fall Time	tof		15	30	60	ns

Test Circuit

DC characteristic

AC characteristic

Timing Diagram

1. CLOCK-SERIAL-IN, SERIAL-OUT, OUTn (current)

2. CLOCK-LATCH

3. ENABLE-OUTn (current)

Output Current vs. External Resistor

DM134B

Ι

Conditions: Vret=1.30V

DM134B:Iout \approx Vref / Rext * 13.1, DM135B:Iout \approx Vref / Rext * 13.9.

Note: The resistor should be placed as close to the Rext terminal as possible to avoid the noise influence.

Output Current Performance vs. Output Voltage

DM134B

Iout - Vout

DM135B

Iout - Vout

Note:

In order to obtain a good constant current output, a suitable output voltage is necessary. Users can get related information about the minimum output voltage from the above graphs. Even under the same output current condition, the minimum output voltage required for each part is different.

Note

As the power dissipation of a semiconductor chip is limited by its package and ambient temperature, this device requires a maximum output current given by an operating condition. The maximum allowable power consumption (Pd (max)) of this device is calculated as follows:

$$Pd(\max)(Watt) = \frac{(\text{Tj (junction temperature) (max) - Ta (ambient temperature))(^{\circ}C)}{\text{Rth (}^{\circ}C/Watt)}$$

Based on the Pd (max), the maximum allowable current can be calculated as follows:

$$Iout = (Pd - V_{DD} \cdot I_{DD}) / (\# outputs \cdot Vo \cdot Duty)$$

System Configuration Example

[1] Output current (I_{OUT})

Sink current is set by the external resistor as shown in the figure of Iout vs. Rext. [2] LED supply voltage (V_{LED}) setup

$$V_{LED} = V_{CE} (T_r V_{sat}) + V_f (LED \text{ forward voltage}) + V_O (IC \text{ output voltage})$$

To prevent too much power from dissipating by the higher V_{LED} of the device, an additional R can be used to reduce the Vout when the outputs consume current is as follows:

$$R = \frac{V_{LED} - V_{CE} - V_f - V_O(\min)}{I_O(\max) * Bit(\max)}$$

Note

This device has only one ground pin shared by signal, output sink current, and power ground. It is advisable to pattern the ground layout with minimized inductance so that the switching noise induced by the input signals and the output sink current would not cause chip malfunction. To prevent drivers' outputs from damaging by overshoot stresses, it is also advisable not to turn off the drivers and scan transistors simultaneously. For the QFN package, the IC's thermal pad, which is internally connected to the bottom side of chip, should be connected to GND. In addition, a good PCB layout pattern of the thermal pad is required in order to have a better performance in thermal effect.

P-DIP 24 UNIT: INCH

SOP24 UNIT: INCH

SSOP24 UNIT: INCH

QFN32

SYMBOL		DIMENSION (mm)		DIMENSION (MIL)			
5111252	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	27.6	29.5	31.5	
A1	0	0.02	0.05	0	0.79	1.97	
A3		0.25 REF		9.84 REF			
b	0.18	0.23	0.30	7.09	9.06	11.81	
D		5.00 BSC		196.85 BSC			
D2	1.25	2.70	3.25	49.21	106.30	127.95	
Е		5.00 BSC		196.85 BSC			
E2	1.25	2.70	3.25	49.21	106.30	127.95	
e		0.50 BSC			19.69 BSC		
L	0.30	0.40	0.50	11.81	15.75	19.69	
у		0.10			3.94		

Note: 1.DIMENSIONING AND TOLERANCING CONFORM TO ASME Y145.5M-1994.

2. REFER TO JEDEC STD. MO-220 WHHD-2 ISSUE A

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.