Logistic Regression

Sargur N. Srihari
University at Buffalo, State University of New York
USA

Topics in Linear Classification using Probabilistic Discriminative Models

- Generative vs Discriminative
- 1. Fixed basis functions
- 2. Logistic Regression (two-class)
- 3. Iterative Reweighted Least Squares (IRLS)
- 4. Multiclass Logistic Regression
- 5. Probit Regression
- 6. Canonical Link Functions

Topics in Logistic Regression

- Logistic Sigmoid and Logit Functions
- Parameters in discriminative approach
- Determining logistic regression parameters
 - Error function
 - Gradient of error function
 - Simple sequential algorithm
 - An example
- Generative vs Discriminative Training
 - Naiive Bayes vs Logistic Regression

Logistic Sigmoid and Logit Functions

• In two-class case, *posterior* of class C_1 can be written as as a logistic sigmoid of feature vector $\phi = [\phi_1,...\phi_M]^T$

$$p(C_1|\mathbf{\phi}) = y(\mathbf{\phi}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{\phi})$$

with
$$p(C_2|\phi) = 1 - p(C_1|\phi)$$

Here σ (.) is the logistic sigmoid function

- Known as logistic regression in statistics
 - Although a model for classification rather than for regression

Logit function:

- It is the log of the odds ratio
 - It links the probability to the predictor variables

Properties:

A. Symmetry

$$\sigma(-a)=1-\sigma(a)$$

B. Inverse

 $-f(x) = \log \frac{x}{1-x}$

$$a=\ln(\sigma/1-\sigma)$$

known as logit.

Also known as log odds since it is the ratio

it is the ratio

$$\ln[p(C_1|\phi)/p(C_2|\phi)]$$

C. Derivative

$$d\sigma/da = \sigma (1-\sigma)$$

Fewer Parameters in Linear Discriminative Model

- Discriminative approach (Logistic Regression)
 - For M -dim feature space ϕ :
 - M adjustable parameters
- Generative based on Gaussians (Bayes/NB)
 - 2M parameters for mean
 - M(M+1)/2 parameters for shared covariance matrix
 - Two class priors
 - Total of M(M+5)/2 + 1 parameters
 - Grows quadratically with M
 - If features assumed independent (naïve Bayes) still $_{\it 5}$ needs $M{+}3$ parameters

Determining Logistic Regression parameters

- Maximum Likelihood Approach for Two classes
- For a data set (ϕ_n, t_n) where $t_n \in \{0,1\}$ and $\phi_n = \phi(x_n), n = 1,...,N$
- Likelihood function can be written as

$$p(\mathbf{t} \mid \boldsymbol{w}) = \prod_{n=1}^N y_n^{t_n} \left\{1 - y_n\right\}^{1 - t_n}$$
 where $\mathbf{t} = (t_1, ..., t_N)^{\mathrm{T}}$ and $y_n = p(C_1 | \boldsymbol{\phi}_n)$

 y_n is the probability that $t_n = 1$

Error Fn for Logistic Regression

Likelihood function is

$$p(t \mid \mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

 By taking negative logarithm we get the Cross-entropy Error Function

$$E(\boldsymbol{w}) = -\ln p(t \mid \boldsymbol{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}$$

where
$$y_n = \boldsymbol{\sigma}(a_n)$$
 and $a_n = \boldsymbol{w}^T \boldsymbol{\phi}_n$

We need to minimize E(w)
 At its minimum, derivative of E(w) is zero
 So we need to solve for w in the equation

$$\nabla E(\boldsymbol{w}) = 0$$

Gradient of Error Function

Error function

$$E(\boldsymbol{w}) = -\ln p(t \mid \boldsymbol{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}$$
 where $y_n = \sigma(\boldsymbol{w}^T \boldsymbol{\phi}_n)$

Using Derivative of logistic sigmoid $d\sigma/da = \sigma(1-\sigma)$

Gradient of the error function

$$\nabla E(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

Error x Feature Vector

Contribution to gradient by data point n is error between target t_n and prediction $y_n = \sigma(\mathbf{w}^T \phi_n)$ times basis ϕ_n

Proof of gradient expression

Let
$$z = z_1 + z_2$$

where $z_1 = t \ln \sigma(w\phi)$ and $z_2 = (1-t) \ln[1-\sigma(w\phi)]$

$$\frac{dz_1}{dw} = \frac{t\sigma(w\phi)[1-\sigma(w\phi)]\phi}{\sigma(w\phi)}$$

$$\frac{d\sigma}{da} = \sigma(1-\sigma)$$
Using $\frac{d}{dx}(\ln ax) = \frac{a}{x}$

$$\frac{dz_2}{dw} = \frac{(1-t)\sigma(w\phi)[1-\sigma(w\phi)](-\phi)}{[1-\sigma(w\phi)]}$$
8

Therefore $\frac{dz}{dw} = (\sigma(w\phi)-t)\phi$

Simple Sequential Algorithm

Given Gradient of error function

$$\nabla E(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$
 where $y_n = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}_n)$

Solve using an iterative approach

$$oldsymbol{w}^{ au+1} = oldsymbol{w}^{ au} - \eta
abla E_n$$

where

$$\nabla E_n = (y_n - t_n)\phi_n$$

Error x Feature Vector

Takes precisely same form as Gradient of Sum-of-squares error for linear regression

Samples are presented one at a time in which each each of the weight vectors is updated

ML solution can over-fit

- Severe over-fitting for linearly separable data
- 2 0 0 -2 -4 -4 --2 0 2 4 --6 --8

- Because ML solution occurs at $\sigma = 0.5$
 - With $\sigma > 0.5$ and $\sigma < 0.5$ for the two classes
 - Solution equivalent to $a=w^{T}\phi=0$
- Logistic sigmoid becomes infinitely steep
 - A Heavyside step function ||w|| goes to infinity
 - Penalizing wts can avoid this

An Example of 2-class Logistic Regression

Input Data

C1 =	
3.7000	3.0000
3.2000	3.5000
3.5000	5.0000
3.6000	4.5000
3.5000	4.0000

C2 =	
1.1000	-1.3000
0.2000	0.5000
1.5000	0.3000
0.2000	0.8000
1.0000	0.7000

 $\phi_0(\mathbf{x})=1$, dummy feature

Initial Weight Vector, Gradient and Hessian (2-class)

Weight vector

Gradient

Hessian

```
H =

3.5000 5.3750 5.2500
5.3750 17.4825 17.4950
5.2500 17.4950 22.4150
```

Final Weight Vector, Gradient and Hessian (2-class)

Weight Vector

W =
704.5915
-20.9086
-337.6170

Gradient

Delta_E =
-12.3917
-1.6321
4.9025

Hessian

Number of iterations: 10

Error (Initial and Final): 15.0642, 1.0000e-009

Generative vs Discriminative Training

Variables $\boldsymbol{x} = \{x_1, ... x_M\}$ and classifier target y

1. Generative: estimate parameters of variables independently

For classification: Determine joint: $p(y, \boldsymbol{x}) = p(y) \prod p(x_i \mid y)$

From joint get required conditional p(y|x)

Simple estimation

independently estimate M sets of parameters But independence is usually false We can estimate M(M+1)/2 covariance matrix

2. Discriminative: estimate joint parameters w_i

For classification:

Unnormalized
$$\tilde{P}(y=1|\mathbf{x}) = \exp\left\{w_0 + \sum_{i=1}^{M} w_i x_i\right\}$$

Normalized

$$P(y=1|x) = \exp\left\{w_0 + \sum_{i=1}^{\infty} w_i x_i\right\}$$

$$\tilde{P}(y=0 \mid x) = \exp\{0\} = 1$$

$$P(y=1 \mid \boldsymbol{x}) = \operatorname{sigmoid}\left\{w_0 + \sum_{i=1}^{M} w_i x_i\right\} \text{ where } \operatorname{sigmoid}(z) = \frac{e^z}{1 + e^z}$$

Logistic Regression

Jointly optimize *M* parameters More complex estimation but correlations accounted for

Can use much richer features:

Edges, image patches sharing same pixels,

multiclass

$$p(y_i \mid \phi) = y_i(\phi) = \frac{\exp(a_i)}{\sum_{j} \exp(a_j)}$$

where
$$a_j = \boldsymbol{w}_j^{\mathrm{T}} \boldsymbol{\phi}$$

Logistic Regression is a special architecture of a neural network

