

CSEE W4823 Advanced Logic Design Homework Assignment #2

- 1. Derive a minimal state table for a single-input and single-output Moore-type FSM that produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. Overlapping sequences should be detected.
- 2. Determine the number of gates needed to implement an n-bit carry-lookahead adder, assuming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs.
- 3. An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic operations on n-bit operands. The table below specifies the functionality of a simple ALU. This ALU has 2 four-bit data inputs, A and B, a three-bit select input, S, and a four-bit output F. As the table shows, F is defined by various arithmetic or Boolean operations on the inputs A and B. Each Boolean operation is done in a bitwise fashion. For example, F = A AND B produces the four-bit results $f_0 = a_0 b_0$, $f_1 = a_1 b_1$, $f_2 = a_2 b_2$, and $f_3 = a_3 b_3$. Please describe this ALU in Verilog. Please use the case statement.

Operation	Inputs s ₂ s ₁ s ₀	Outputs F
Clear	000	0000
B-A	001	B-A
А-В	010	A - B
ADD	011	A + B
XOR	100	A XOR B
OR	101	A OR B
AND	110	A AND B
Preset	111	1111