		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Input Parameters

Module	Seated Angle Connection
Main Module	Shear Connection
Connectivity	Column Flange-Beam Web
Shear Force (kN)	27.0

Supporting Section - Mechanical Properties

Supporting Section - Mechanical Properties					
Supporting S	ection	Н	B 150*		
Materia	l	E 250 (Fe 410 W)A		
Ultimate Strength.	F_u (MPa)		410		
Yield Strength, I	F_y (MPa)		250		
Mass, $m \text{ (kg/m)}$	30.15	$I_z \text{ (cm}^4)$	1510.0		
Area, $A \text{ (cm}^2)$	38.4	$I_y(\mathrm{cm}^4)$	435.0		
D (mm)	150.0	r_z (cm)	6.27		
B (mm)	150.0	r_y (cm)	3.36		
t (mm)	8.4	$Z_z \text{ (cm}^3)$	201.0		
T (mm)	9	$Z_y \text{ (cm}^3)$	58.0		
Flange Slope	94	$Z_{pz} \ (\mathrm{cm}^3)$	228.0		
$R_1 \text{ (mm)}$	8.0	$Z_{py} (\mathrm{cm}^3)$	94.7		
$R_2 \text{ (mm)}$	4.0				

Supported Section	Supported Section - Mechanical Properties					
Supported S	ection		JB 225			
Materia	al	E 250	(Fe 410 W)A			
Ultimate Strength	$_{\rm n}, F_u ({\rm MPa})$		410			
Yield Strength,	F_y (MPa)		250			
Mass, m (kg/m)	12.78	$I_z \text{ (cm}^4)$	1310.0			
Area, $A \text{ (cm}^2)$	16.2	$I_y(\mathrm{cm}^4)$	40.4			
D (mm)	225.0	r_z (cm)	8.97			
B (mm)	80.0	r_y (cm)	1.57			
t (mm)	3.7	$Z_z \text{ (cm}^3)$	116.0			
T (mm)	5.0	$Z_y \text{ (cm}^3)$	10.1			
Flange Slope	91.5	$Z_{pz} (\mathrm{cm}^3)$	134.0			
$R_1 \text{ (mm)}$	6.5	$Z_{py} \ (\mathrm{cm}^3)$	16.2			
$R_2 \text{ (mm)}$	1.5					

 Bolt Details - Input and Design Preference

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

		[np.int64(8), np.int64(10), np.int64(12), np.int64(14),
		np.int64(16), np.int64(18), np.int64(20), np.int64(22),
Diameter	(mm)	np.int64(24), np.int64(27), np.int64(30), np.int64(33)
Diameter	Diamotor (min)	, np.int64(36), np.int64(39), np.int64(42), np.int64(45
), np.int64(48), np.int64(52), np.int64(56), np.int64(6
		0), np.int64(64)]
		[np.float64(3.6), np.float64(4.6), np.float64(4.8), np.f
Duranantu	Class	loat64(5.6), np.float $64(5.8)$, np.float $64(6.8)$, np.float
Property	Ciass	64(8.8), np.float64(9.8), np.float64(10.9), np.float64(
		12.9)]
Туре		Friction Grip Bolt
Hole Type		Standard
Slip Factor, (μ_f)		0.3
	Detailing - Design Prefe	rence
Edge Preparati	on Method	Sheared or hand flame cut
Gap Between Members (mm)		10.0
Are the Members Exposed t	to Corrosive Influences?	False
	Seated and Top Angle D	Details
	Section Size*	50 × 50 × 7

	Seated and Top Angle Details					
	Section Siz	ze*	50 :	x 50 x 7		
	Material	1	E 250 (Fe 410 W)A		
1	Ultimate Strength,	F_u (MPa)		410		
	Yield Strength, I	F_y (MPa)		250		
	Mass, m (kg/m)	2.34	$I_u \text{ (cm}^4)$	11.4		
	Area, $A \text{ (cm}^2)$	2.99	$I_v(\mathrm{cm}^4)$	3.01		
	A (mm)	50.0	r_z (cm)	1.55		
	B (mm)	50.0	r_y (cm)	1.55		
	t (mm)	3.0	r_u (cm)	1.96		
	$R_1 \text{ (mm)}$	6.0	r_v (cm)	1.0		
	$R_2 \text{ (mm)}$	0.0	$Z_z \text{ (cm}^3)$	1.97		
	C_y (mm)	13.4	$Z_y \text{ (cm}^3)$	1.97		
_	C_z (mm)	13.4	$Z_{pz} \ (\mathrm{cm}^3)$	3.53		
	$I_z \text{ (cm}^4\text{)}$	7.21	$Z_{py} \ (\mathrm{cm}^3)$	1.97		
	$I_y(\mathrm{cm}^4)$	7.21				
	Section Siz	ze*	60 :	x 60 x 6		

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Materia	.1	E 250 ((Fe 410 W)A
Ultimate Strength	F_u (MPa)		410
Yield Strength,	F_y (MPa)		250
Mass, m (kg/m)	5.44	$I_u \text{ (cm}^4)$	37.1
Area, $A \text{ (cm}^2)$	6.93	$I_v(\mathrm{cm}^4)$	9.69
A (mm)	60.0	r_z (cm)	1.84
B (mm)	60.0	r_y (cm)	1.84
t (mm)	6.0	r_u (cm)	2.31
$R_1 \text{ (mm)}$	6.5	r_v (cm)	1.18
$R_2 \text{ (mm)}$	0.0	$Z_z (\mathrm{cm}^3)$	5.46
C_y (mm)	17.1	$Z_y \text{ (cm}^3)$	5.46
C_z (mm)	17.1	$Z_{pz} (\mathrm{cm}^3)$	9.81
$I_z \text{ (cm}^4)$	23.4	$Z_{py} \ (\mathrm{cm}^3)$	5.46
$I_y(\mathrm{cm}^4)$	23.4		

1.1 List of Input Section

Seated Angle List

 $\begin{array}{c} 50\times50\times3',\ 50\times50\times4',\ 50\times50\times4',\ 50\times50\times5',\ 50\times50\times6',\ 55\times55\times4',\ 55\times55\times5',\ 55\times55\times6',\ 55\times55\times6',\ 55\times55\times8',\ 60\times60\times4',\ 60\times60\times5',\ 60\times60\times6',\ 60\times60\times8',\ 65\times65\times4',\ 65\times65\times5',\ 65\times65\times6',\ 65\times65\times8',\ 70\times70\times70\times5',\ 70\times70\times6',\ 70\times70\times8',\ 70\times70\times10',\ 775\times75\times5',\ 775\times75\times6',\ 775\times75\times8',\ 775\times7$

1.2 List of Input Section

Top Angle List

 $\begin{array}{c} {}^{\prime}50\times50\times3^{\prime}, {}^{\prime}50\times50\times4^{\prime}, {}^{\prime}50\times50\times5^{\prime}, {}^{\prime}50\times50\times5^{\prime}, {}^{\prime}55\times55\times4^{\prime}, {}^{\prime}55\times55\times5^{\prime}, {}^{\prime}55\times55\times6^{\prime}, {}^{\prime}55\times55\times8^{\prime}, {}^{\prime}60\times60\times8^{\prime}, {}^{\prime}70\times70\times8^{\prime}, {}^{\prime}70\times70\times8^{\prime}, {}^{\prime}70\times70\times8^{\prime}, {}^{\prime}70\times70\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}75\times75\times8^{\prime}, {}^{\prime}70\times70\times8^{\prime}, {}^{\prime}80\times80\times80\times8^{\prime}, {}^{\prime}80\times80\times80\times8^{\prime}, {}^{\prime}80\times80\times80\times8^{\prime}, {}^{\prime}80\times80\times80\times8^{\prime}, {}^{\prime}90\times90\times8^{\prime}, {}^{\prime}90\times90\times8$

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

2 Design Checks

Design Status	Pass
---------------	------

2.1 Section Design

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dy} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{225.0 \times 3.7 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 182.06$	
		[Ref. IS 800:2007, Cl.10.4.3]	
Allowable Shear Capacity (kN)	27.0	$V_d = 0.6 V_{dy}$ $= 0.6 \times 182.06$ $= 109.237$	Pass
		[Limited to low shear]	

2.2 Load Consideration

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 182.06, \ 40.0)$	
		= 40	
Applied Shear Force (kN)	27.0	$V_u = \max(V_y, \ V_{y_{\min}})$	
		$= \max(27.0, 40)$	
		= 40	
		[Ref. IS 800:2007, Cl.10.7]	

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

${\bf 2.3}\quad {\bf Bolt\ Design\ Checks\ on\ Column}$

Check	Required	Provided	Remarks
Diameter (mm)		8	
Property Class		12.9	
Plate Thickness (mm)		7.0	
	if $l_g \geq 5d$, then $V_{\rm rd} = \beta_{lg} V_{\rm db}$		
	if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$	$l_g = \Sigma \left(t_p + t_{\text{member}} \right)$	
	$l_g \le 8d$	= 16.0	
Laura Cain Laurath Da	where,	5d = 40	Deser
Large Grip Length Reduction Factor	$l_g = \Sigma (t_{\mathrm{ep}} + t_{\mathrm{member}})$	8d = 64	Pass
		since, $l_g < 5d$; $\beta_{lg} = 1.0$	
	$\beta_{lg} = 8d/(3d + l_g)$	[Ref. IS 800:2007, Cl.10.3.3.2]	
	but $\beta_{lg} \leq \beta_{lj}$		
	[Ref. IS 800:2007, Cl.10.3.3.2]		
No. of Bolt Columns		4	
No. of Bolt Rows	$1 \le n_r \le 2$	1	Pass
	$p_{\min} = 2.5d$ $= 2.5 \times 8$		
Min. Pitch Distance (mm)	= 20.0	20	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 7.0, 300)$		
	$= \min(224.0, 300)$		
Max. Pitch Distance	= 224.0	20	Pass
(mm)	Where, $t = \min(7.0, 9)$		
	[Ref. IS 800:2007, Cl.10.2.3]		

		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
Mi F. I. Di A	$e_{\min} = 1.7d_0$ = 1.7 × 8		D
Min. End Distance (mm)	= 13.6 [Ref. IS 800:2007, Cl.10.2.4.2]	22	Pass
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 7.0 \times \sqrt{\frac{250}{250}} = 84.0$ $e_2 = 12 \times 9 \times \sqrt{\frac{250}{250}} = 108.0$ $e_{\text{max}} = \min(e_1, e_2) = 84.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	22	Pass
Min. Edge Distance	$e'_{\min} = 1.7d_0$ = 1.7 × 8 = 13.6 [Ref. IS 800:2007, Cl.10.2.4.2]	15.0	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 7.0 \times \sqrt{\frac{250}{250}} = 84.0$ $e_2 = 12 \times 9 \times \sqrt{\frac{250}{250}} = 108.0$ $e'_{\text{max}} = min(e_1, \ e_2) = 84.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	15.0	Pass

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
Slip Resistance (kN)		$V_{dsf} = \frac{\mu_f n_e K_h F_o}{\gamma_{mf}}$ Where $, F_o = 0.7 f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 \times 1 \times 1.0 \times 0.7 \times 1220.0 \times 36.6}{1.25 \times 10^3}$ = 7.5 [Ref. IS 800:2007, Cl.10.4.3]	
Capacity (kN)	$V_{bv} = \frac{V}{n}$ $= \frac{27.0}{4}$ $= 6.75$	7.5	
Capacity (kN)	6.75	7.5	Pass

2.4 Detailing Check

Check	Required	Provided	Remarks
Minimum Width (mm) (on column)	$4 \times e' + t_w + 2 \times r_r + \left(\frac{n_c}{2} - 1\right) \times g$ $= 4 \times 15 + 8.4 + 2 \times 8.0 + \left(\frac{4}{2} - 1\right) \times 20$ $= 104.4$	150.0	Pass
Minimum Width (mm) (on beam)	$4 \times e' + t_w + 2 \times r_r$ = $4 \times 15 + 8.4 + 2 \times 8.0$ = 76.7	80.0	Pass
Min. Leg Length (mm) (on column)	$2 \times e' + t + r_{ra} + (n_r - 1) \times p$ $= 2 \times 15 + 7.0 + 6.0 + (1 - 1) \times 20$ $= 43.0$	50.0	Pass

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

2.5 Seated Angle Checks

Check	Required	Provided	Remarks
Designation		50 x 50 x 7	
Shear Capacity (kN)	27.0	$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{125 \times 7.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 114.814$ [Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 114.814$	
Allowable Shear Capacity (kN)	27.0	= 68.89	Pass
		[Limited to low shear]	
		$b_{l_{\text{req}}} = \frac{V\gamma_{m0}}{t_{w}f_{y}} - t_{f} - r_{r}$ $= \frac{27.0 \times 1.1}{3.7 \times 250} - 5.0 - 6.5$ $= 20.61$	
		$k = t_f + r_r$	
Bearing Length		$k = t_f + r_r$ $k = 5.0 + 6.5 = 11.5$	
Dearing Dength		k = 5.0 + 0.5 = 11.5	
		$b_1 = \max(b_{1_{\text{req}}}, \ k) = 20.61$	
		$b_2 = b_1 + \text{gap} - t - r_{r_a}$	
		$b_2 = 20.61 + 10.0 - 7.0 - 6.0$	
		$b_2 = \max(b_2, \ 0) = 17.61$	
Minimum Leg Length (mm)	$b_1 + \text{gap} = 30.61$	50.0	Pass

		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
Moment Capacity (kNm)	$M = V \times ecc$ if $b_2 \le b_1$, $ecc = \frac{b_2}{b_1} \times \frac{b_2}{2}$ $ecc = \frac{17.61}{20.61} \times \frac{17.61}{2}$ = 7.52	$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$ $= \frac{1.0 \times 1225.0 \times 250}{1.1 \times 10^6}$ $= 0.28$	Pass
	$M = 27.0 \times 7.52 \times 10^{-3}$	[Ref. IS 800:2007, Cl.8.2.1.2]	
	= 0.203		

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

3 3D Views

4 Design Log

2024-12-26 08:59:47 - Osdag - INFO - Based on the thumb rules, a minimum top angle leg size of 56.25 mm and a thickness of 6 mm is required to provide stability to JB 225.

2024-12-26 08:59:47 - Osdag - INFO - === End Of Design ===