Assignment 2

1.(a)(i)

```
> a <- rexp(1000, 0.001)
> b <- rexp(1000, 0.001)
> plot(a, b, main="Scatterplot", xlab="alpha", ylab="beta")
```

Scatterplot

(ii)

- > x = seq(0,1.5,length=100)
- > y = dbeta(x,700,700)
- > plot(x,y,type="l")

(b)(i)

```
> phi1<-runif(1000, 0, 1)</pre>
```

- > phi2<-runif(1000,0,1000)</pre>
- > alpha<-phi1/phi2^2</pre>
- > beta<-(1-phi1)/phi2^2
- > plot(alpha, beta, main="Scatterplot", xlab="alpha", ylab ="beta")

Scatterplot

> plot(alpha, beta, main="Scatterplot", xlab="alpha", ylab = "beta", xlim = c(0, 0.2), ylim=c(0, 0.2))

Scatterplot

> plot(alpha, beta, main="Scatterplot", xlab="alpha", ylab = "beta", xlim = c(0, 0.05), ylim=c(0, 0.10))

Scatterplot


```
(ii)
> x<-seq(0,1,length=100)
> y<-dbeta(x,0.000002,0.000002)
> plot(x,y,type="l")
```


2.(a) ψ_0 and σ_0 are the hyperparameters.

(b)

(c)

model {

```
for (j in 1:12) {
    psihat[j] ~ dnorm(psi[j],1/sigma[j]^2)
    psi[j] ~ dnorm(psi0, 1/sigmasq0)
  }
  psi0 ~ dnorm(0,1/1000^2)
  sigma0 ~ dunif(0, 1000)
  sigmasq0 <- pow(sigma0, 2)
}
(d)data.txt:
  psi sigma
  1.055 0.373
  -0.0970.116
  0.626 0.229
4 0.017 0.117
  1.068 0.471
5
  -0.0250.120
  -0.1170.220
  -0.3810.239
  0.507 0.186
```

```
10 0.000 0.328
11 0.385 0.206
12 0.405 0.254
> d <- read.table("data.txt", header = TRUE)</pre>
> m <- jags.model("a2.bug", d)</pre>
Compiling model graph
  Resolving undeclared variables
  Allocating nodes
Graph information:
  Observed stochastic nodes: 12
  Unobserved stochastic nodes: 14
  Total graph size: 70
Initializing model
 0%
> update(m, 12000)
 | ************** | 10
0%
> x <- coda.samples(m,c("psi0","sigmasq0"),n.iter = 10000</pre>
 | ************** | 10
0%
> summary(x)
Iterations = 13001:113000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1e+05
1. Empirical mean and standard deviation for each variabl
  plus standard error of the mean:
               SD Naive SE Time-series SE
       0.2878 0.1584 0.0005008
0isq
                                0.0005049
```

sigmasq0 0.3001 0.1744 0.0005516 0.0009059

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5% psi0 -0.02938 0.1884 0.2881 0.3872 0.6018 sigmasg0 0.11770 0.1914 0.2571 0.3555 0.7405

posterior expected values: psi0 0.2878

sigmasq0 0.3001

posterior standard deviations: psi0 0.1584

sigmasq0 0.1744

95% central posterior intervals: psi0: (-0.02938, 0.6018)

sigmasq0: (0.11770, 0.7405)

(e)(i)


```
(ii)
model {
    for (j in 1:12) {
        psihat[j] ~ dnorm(psi[j],1/sigma[j]^2+1/0.2^2)
        psi[j] ~ dnorm(psi0, 1/sigmasq0)
    }

    psi0 ~ dnorm(0,1/1000^2)
    sigma0 ~ dunif(0, 1000)
```

```
> m <- jags.model("a2.bug", d)</pre>
Compiling model graph
  Resolving undeclared variables
  Allocating nodes
Graph information:
  Observed stochastic nodes: 12
  Unobserved stochastic nodes: 14
  Total graph size: 85
Initializing model
 0%
> update(m, 12000)
 | ****************
> x <- coda.samples(m,c("psihat"),n.iter = 100000)</pre>
 | ************* | 10
0%
> summary(x)
Iterations = 13001:113000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1e+05
1. Empirical mean and standard deviation for each variabl
e,
  plus standard error of the mean:
                    SD Naive SE Time-series SE
             Mean
psihat[1]
          1.0551807 0.1755 0.0005549
                                       0.0005549
psihat[2]
         -0.0966936 0.1002 0.0003168
                                       0.0003168
psihat[3]
          0.6258504 0.1507 0.0004765
                                       0.0004765
psihat[4]
          0.0167642 0.1008 0.0003187
                                       0.0003187
          1.0689535 0.1832 0.0005795
psihat[5]
                                       0.0005795
psihat[6] -0.0251337 0.1031 0.0003261
                                       0.0003227
psihat[7] -0.1171585 0.1477 0.0004670
                                       0.0004670
psihat[8] -0.3810007 0.1534 0.0004851
                                       0.0004851
psihat[9] 0.5060688 0.1360 0.0004301
                                       0.0004301
```

}

2. Quantiles for each variable:

	2.5%	25%	50%	75% 97	. 5%
psihat[1]	0.71077	0.93713	1.055e+00	1.17396	1.39790
psihat[2]	-0.29363	-0.16415	-9.638e-02	-0.02903	0.09930
psihat[3]	0.33118	0.52467	6.259e-01	0.72745	0.92130
psihat[4]	-0.18022	-0.05110	1.650e-02	0.08461	0.21636
psihat[5]	0.70986	0.94582	1.069e+00	1.19249	1.42771
psihat[6]	-0.22786	-0.09487	-2.527e-02	0.04412	0.17784
psihat[7]	-0.40709	-0.21658	-1.169e-01	-0.01781	0.17203
psihat[8]	-0.68017	-0.48413	-3.809e-01	-0.27814	-0.07929
psihat[9]	0.24014	0.41393	5.061e-01	0.59770	0.77286
psihat[10]	-0.33409	-0.11488	3.103e-05	0.11490	0.33498
psihat[11]	0.10319	0.28846	3.846e-01	0.48160	0.66673
psihat[12]	0.09856	0.29790	4.045e-01	0.51043	0.71278