

Generative Modeling

ENEE 6583 Neural Nets

Dr. Alsamman

Slide Credits:

Supervised vs Unsupervised Learning

- ❖ Supervized (SL) : $\{X,Y\}$: $M\{X\} \rightarrow Y$
 - \triangleright Given inputs X, corresponding labels (outputs) Y
 - \triangleright Learn mapping M that maps X to Y
- ❖ Unsupervised (USL): $M\{X\}$ → Y
 - ➤ Given only inputs *X*
 - > Find a mapping to Y that optimizes some objective function

Alsamman

Why Unsupervised: No label possible

- Hidden data representation
 - Data compression
 - Data organization
 - > Explore hidden structures within data

Applications:

- Organize computer clusters
- Group users according to interest
- ➤ Marketing: Recommend products/services
- Detect fault/intrusion
- > Find similarity
- Driven by an objective function

Why Unsupervised: Price

Data is

- Decreasing in price
- > Increasing in: volume, speed,
- Varying in modality

Advanced tech =>

- cheaper tech => cheaper data (price)
- better sensors => more data (volume, speed)
- more tech services => user data (modes, speed)

Expert labeling is expensive

Mechanical Turk Is 'data labeling' the new blue-collar job of the AI era? www.techrepublic.com/article/is-data-labeling-the-new-blue-collar-job-of-the-ai-era/

Autoencoder

- \bullet Encode the input: $M\{X\} \to Y$
 - Analysis
- ❖ Decoder is the reverse: $M^{-1}\{Y\}$ → \hat{X}
 - > Synthesis
 - > Identical to encoder network
- Unsupervised learning
- •• Objective function: $X \approx \hat{X}$

$$E = |X - \widehat{X}|^2 = 0$$

 \triangleright Find W for $E \approx 0$

ENCODER

Linear AE

- Linear encoding: Linear activations
- Equations:

$$Y = WX$$

$$\hat{X} = W^{T}Y$$

$$E = |X - W^{T}WX|^{2}$$

- $\triangleright W$ is a principal component (PCA)
- ➤ Line along that max energy
- ➤ Matrix theory: max Eigen vector

Nonlinear AE

- Nonlinear activations
- Nonlinear CA
- Learn the nonlinear manifold

DECODER

ENCODER

Alsamman ENEE 6583

Applications

- Denoising data
- Data compression/encryption
- Classification
 - > Reduced dimension leads to a unique manifold
- Mix source separation
 - > Multiple sources with unique manifolds linearly mixed together
 - > Encoder: Source separation
 - > Decoder: Generate sources

Alsamman ENEE 6583

Generative Models

- Discriminative learning: classification
 - > Supervised process
 - > Find difference
 - E.g.: MNIST classify digit as 0,1,...,9
- Generative learning: creation
 - Unsupervised learning
 - > Find similarity
 - E.g.: machine translation

Latent Space Generative Models

- Data are generated from a real-valued latent space
- Latent space: unknown model space of given data
 - \triangleright Model is probabilistic (PDF/PMF, μ , Σ)
- Data: samples from that space are used to create
- Factor Analysis:
 - ➤ Assume a model PDF/PMF
 - \triangleright Objective: based on given data observation, \mathbf{x} , determine statistics (μ, Σ) and $p(\mathbf{x})$

Alsamman ENEE 6583

Variational AE

*Decoder: $p(x_i|z_i, W)$

- Nnet, Generative model
- Estimates the probability distribution of input X given the laten variable Z

- Normally distributed Latent Space
- characterized by μ , σ

- Nnet, Inference model
- Estimates the probability distribution of the latent space given the data X

 \bullet Encoder: $q(z_i|x_i,W)$

X

Alsamman CSCI 6521

Encoder

- $q(z_i|x_i,\phi) = \mathcal{N}(z_i|\mu_{e_i},\Sigma_{e_i})$
- *Encoder output is : $\mu_{e_i} = u_e(x_i, W_1), \quad \Sigma_{e_i} = \operatorname{diag}(s_e(x_i, W_2))$
- *Two networks: u_e , s_e
- W_1 : weights of network u_e
- W_2 : weights of network s_e
- ϕ : combination of weights W_1 , W_2

Alsamman

CSCI 6521

Decoder

- $p(x_i|z_i,\theta) = \mathcal{N}(x_i|\mu_{e_i},\Sigma_{e_i})$
- ightharpoonup Sample Z space: generate z_i based on μ_{e_i} and Σ_{e_i}
- Decoder output: $\widehat{x_i}$

KL Divergence

Kullback-Leibler divergence

 \triangleright Measures the information lost when a probability distribution, q, is used to approximate another probability distribution p.

$$D_{KL}(p(x)||q(x)) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- Weighted sum of similarity
- Measures how much p differs from q

Alsamman

CSCI 6521

Reparametrization

- $\bullet \operatorname{Let} z_i = g(\epsilon_i, x_i, \phi)$
- $\bullet \epsilon_i$ drawn from Gaussian $p(\epsilon)$
- *Z deterministic depends on ϕ
- Now we can backpropagate!

$$z = \mu + \sigma \odot \epsilon$$

$$\epsilon \sim \mathcal{N}(0,1)$$

Re-parametrization

loss =
$$C || x - \hat{x} ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

VAE KL loss

*Measure how different our normal distribution, $p \sim N(\mu, \sigma)$, differs from N(0,1)

$$D_{KL}(N(\mu,\sigma)||N(0,1)) = \frac{1}{2}\sum_{i=1}^{N} 1 + \log \sigma^2 - \mu^2 - \sigma^2$$

- $> \log \sigma^2$ aka $\log var$
- $rac{1}{r} \sigma^2 = \exp(\log var)$
- > Sum of dimensions of latent space
- \triangleright KL loss is min when $\mu=0, \sigma=1$
 - Other statistics increase cost
 - Forces clusters of similar points to be very close to each other
 - Efficient use of space around origin

Manifold Learning

Alsamman

CSCI 6521

Denoising

https://blog.keras.io/building-autoencoders-in-keras.html

Encoder-latent z-Decoder

Encoder:

- > Can be a "dense" network
- > Can be CNN

Latent z:

- \triangleright 2 dense networks to generate μ and $\log var$
- \triangleright Generated using reparameterization trick: $z = \mu + \sigma \odot \epsilon$

❖ Decoder:

- > Flip/mirror of encoder
- > Transpose convolution, unmax pooling can be used to mirror encoder

Convolution vs Transposed Convolution

Max Pooling vs Unpooling

Adversarial Autoecoder (AAE)

Alsamman CSCI 6521

AAE

- uses adversarial loss to regularize the latent code instead of the KL-divergence
- 3 components:
 - > Encoder, Decoder, Discriminator
- Encoder options:
 - Deterministic (AE)
 - Gaussian Posterior (VAE)
 - Universal Approximator Posterior

Discriminator:

- ➤ Input: random vector z sampled from the chosen distribution (real)
- ➤ Input: latent code z (fake) from the encoder
- Determines if input is real or fake.

Alsamman CSCI 6521

AAE Application

- Anomaly/intrusion/fake detection
 - ➤ Label deficient problem
 - Unsupervised learning
 - > Application 1: Data is encoded and compared to non-anomalous encodings
 - Distance measure to encoding mean
 - > Application 2: Data is reconstructed and compared to original
 - Difference in data is considered anomalous
- Denoising/Super-resolution/Style transfer
 - Generation can used to learn

GANs: Density Network

- ❖ x data sample
- ❖ z latent sample
 - ➤ simple distribution (Gaussian)
- ❖ Goal: compute function G
 - ➤ differentiable
 - \triangleright maps z to an x in data space

Alsamman

GAN

- Generative Adversarial Networks (GANs)
- Composed of two different networks
 - \triangleright Generator network (G): a density network produces realistic-looking samples
 - ➤ Discriminator network (*D*): determines if input came from the training set or the generator network
- G(z) is a data vector
 - \triangleright Same dimension as x
- D(x) is 0 or 1
 - $\triangleright x$ is fake or real
- ❖ Goal: G must fool D
 - $\triangleright z$ will be a good model of x

Learning D(x)

- Feed foward an input, x, or generated input G(z).
- Calculate loss, backprop

Alsamman CSCI 6521

Learning G(z)

- $\bullet G$ and D playing zero-sum game
 - > D minimizes the probability of wrong guess
 - ➤ G maximizes the probability of wrong guess
- $\bullet G$ objective function is the opposite of D
 - Minmax formulation

Alsamman

CSCI 6521

Saturation

Square error causes saturation: $(1 - D(G(z)))^2$

❖ Instead use cross-entropy: $-\log(D(G(z)))$

Applications: Image to Image Translations

Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.