

Day 38 機器學習

Regression 模型-程式碼

楊証琨

出題教練

知識地圖 機器學習-模型選擇-線性回歸/邏輯斯回歸程式碼撰寫

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

前處理 Processing 探索式 數據分析 Exploratory Data Analysis 特徵 工程 Feature Engineering 模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble 非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

模型選擇 Model selection

概論

驗證基礎

預測類型

評估指標

基礎模型 Basic Model

線性回歸 Linear Regression

邏輯斯回歸 Logistic Regression

套索算法 LASSO

嶺回歸 Ridge Regression

樹狀模型 Tree based Model

決策樹 Decision Tree

隨機森林 Logistic Regression

梯度提升機 Gradient Boosting Machine

Scikit-learn 中的 linear regression

- 使用 Sklearn 套件中的線性回歸非常簡單
- 第一行引入所需的套件
- 第二行建立線性回歸模型,並將 X, y 資料送進模型中訓練
- Reg 就是訓練好的模型,可以用 .predict 來預測新資料

from sklearn.linear_model import LinearRegression reg = LinearRegression().fit(X, y)

Scikit-learn 中的 Logistic Regression

- 使用 Sklearn 套件中的 Logistic 回歸也非常簡單
- 第一行引入所需的套件
- 第二行建立 Logistic 回歸模型,並將 X, y 資料送進模型中訓練
- Reg 就是訓練好的模型,可以用 .predict 來預測新資料

from sklearn.linear_model import LogisticRegression reg = LogisticRegression().fit(X, y)

Scikit-learn 中的 Logistic Regression 參數

- Penalty: "L1", "L2"。使用 L1 或 L2 的正則化參數,後續有更詳細介紹
- C:正則化的強度,數字越小,模型越簡單
- Solver:對損失函數不同的優化方法。更詳細的內容請參考連結
- Multi-class:選擇 one-vs-rest 或 multi-nominal 分類方式,當目標是 multi-class 時要特別注意,若有 10 個 class, ovr 是訓練 10 個二分類模型,第一個模型負責分類 (class1, non-class1);第二個負責 (class2, non-class2),以此類推。multi-nominal 是直接訓練多分類模型。詳細參考連結

常見問題

Q: Logit regression 跟 Logistic regression 有什麼差

别?

A:Logit function 跟 Logistic function 互為反函數,但

這兩個 regression 其實是指同樣的模型,更詳細可參

考連結

請跳出PDF至官網Sample Code&作業 開始解題

