

Архитектура компьютера и операционные системы

Лекция 9. Уровень микроархитектуры. Оптимизация

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- Микроархитектура
 - Микропрограммное управление Міс-1
 - Ускорение и оптимизация
 - Mic-2
 - Mic-3
- Домашнее задание

IJVM (повторение)

- IJVM является 32-разрядной архитектурой:
 - и числа, над которыми выполняются арифметические действия,
 - и адреса в памяти занимают 32 бита.
- Коды микрокоманд занимают 1 байт.
- IJVM стековая машина

Полная диаграмма микроархитектуры Mic-1

Сигналы управления памятью (rd, wr, fetch) 3 Декодер с 4 входами MAR и 9 выходами **MDR MPC** PC MBR → Управляющая память объемом 512 × 36 битов для хранения SP 9 микропрограммы LV **JMPC** MIR CPP МВ Addr АЛУ С TOS JAMN/JAMZ OPC Старший Шина В бит Сигналы 1-разрядный управления триггер Управление АЛУ АЛУ Ζ Разрешающий сигнал Схема сдвига ◄ на шину В 2 Шина С Сигнал записи с шины С в регистр

Формат микрокоманды

- Addr адрес следующей потенциальной микрокоманды;
- **JAM** определение того, как выбирается следующая микрокоманда;
- ALU функции АЛУ и схемы сдвига;
- С выбор регистров, которые записываются с шины С;
- Mem функции памяти;
- **В** выбор источника для шины В (закодированный номер)

Регистры шины В

Микропрограмма для Міс-1

■ Main1 PC = PC + 1; fetch; goto (MBR)

ILOAD k

```
iload1 H = LV

iload2 MAR = MBRU + H; rd

iload3 MAR = SP = SP + 1

iload4 PC = PC + 1; fetch; wr

iload5 TOS = MDR; goto Main1
```


Ускорение работы Міс-1

Параметры

- Число циклов на одну команду (другая шина В)
- Время выполнения одного цикла (декодер)
- Параллельность исполнения

- Возможная реализация
 - Блок
 предварительной
 выборки инструкций
 (ILU)
 - 3-шинная архитектура
 - конвейеризация

Дополнительные возможности ускорения

- Спекулятивное исполнение и прогнозирование ветвлений
- Введение доп. регистров (для спекулятивного исполнения)
- Изменение последовательности инструкций
- Кэш-память

Слияние заголовка цикла и микропрограммы

Main1 PC = PC + 1; fetch; goto (MBR)

• • •

...; goto Main1

Старая реализация РОР

pop1 MAR = SP = SP - 1; rd
pop2
pop3 TOS = MDR; goto Main1

Новая реализация РОР

pop1 MAR = SP = SP - 1; rd
pop2 PC = PC+1; fetch
pop3 TOS = MDR; goto
(MBR)

Трёхшинная микроархитектура Mic-2

3-шинная микроархитектура

- - реализация ILOAD на Mic-1 реализация ILOAD на Mic-2

$$1 ext{H} = LV$$

$$2 \quad MAR = MBRU + H; rd$$

$$3 \qquad MAR = SP = SP + 1$$

4
$$PC = PC + 1$$
; fetch; wr

$$1 \quad MAR = MBRU + LV; rd$$

$$2 \quad MAR = SP = SP + 1$$

$$3 \quad PC = PC + 1$$
; fetch; wr

Логическая схема блока IFU

Конечный автомат для регистра сдвига в IFU

Переходы

MBR1: Происходит при чтении MBR1

MBR2: Происходит при чтении MBR2

Вызов слова; Происходит при считывании слова из памяти и помещении 4 байтов в регистр сдвига

Сравнение реализаций ILOAD k

- Старая реализация ILOAD k
- Новая реализация ILOAD k

$$1 \quad MAR = MBRU + LV; rd$$

$$2 \quad MAR = SP = SP + 1$$

$$3 \quad PC = PC + 1$$
; fetch; wr

$$1 \quad MAR = MBR1U + LV; rd$$

$$2 \quad MAR = SP = SP + 1$$

$$TOS = MDR; wr; goto (MBR1)$$

■ Выполнение сократилось на 2 цикла тракта данных

Сравнение реализаций IINC k n

- Старая реализация IINC k n Новая реализация IINC k n
- 1 H=IV
- $2 \quad MAR = MBRU + H; rd$
- 3 PC = PC + 1; fetch
- 4 H=MDR
- 5 PC=PC+1; fetch
- 6 MDR=MBR+H; wr; goto Main1

- $1 \quad MAR = MBR1U + LV; rd$
- 2 H = MBR1
- 3 MDR=MDR+H; wr; goto (MBR1)

Микроархитектура Міс-3

Конвейер Міс-3

Команда SWAP

Старая реализация для МІС-1

```
swap1 MAR = SP - 1; rd
```

swap2
$$MAR = SP$$

swap3
$$H = MDR$$
; wr

swap4
$$MDR = TOS$$

swap5
$$MAR = SP - 1; wr$$

swap6
$$TOS = H$$
; goto Main1

Конвейерная реализация

Swap1 Swap2 Swap3 Swap5 Swap6 Swap4 IIикл |MAR = SP - 1; |MAR =H =MDR =MAR = SP - 1; TOS = H; SPMDR; wr TOS goto (MBR1) rd wr B = SP1 2 C = B - 1B = SP3 MAR = C; rdC = BMAR = CMDR = Mem4 5 B = MDR6 C = BB = TOS7 H = C; $wr \mid C = B$ B = SPMem = $MDR = C \mid C = B - 1$ B = HMDR MAR = C; wrC=B9 10 Mem = MDRTOS = C11 goto (MBR1)

Домашнее задание

■ Подготовка к тесту по лекции

- раздел книги Таненбаума и Остина, пример архитектуры набора команд
- IJVM (глава 4).