实验报告: 使用高级访问控制列表

Hollow Man

一、实验小组拓扑

二、实验准备

1、路由器网络地址方案设计

	EO	E1	E2
А	219.246.2.1/24	219.246.1.1/24	
В	219.246.9.1/24	219.246.8.2/24	219.246.4.2/24
С	219.246.3.1/24	219.246.1.2/24	219.246.4.1/24
D	219.246.2.2/24	219.246.5.1/24	219.246.6.1/24
Е	219.246.7.1/24	219.246.8.1/24	219.246.6.2/24

2、PC 机设置方案

主机序号	IP 地址	网关
6-1	219.246.3.2/24	219.246.3.1/24
6-2	219.246.9.2/24	219.246.9.1/24
6-3	219.246.3.3/24	219.246.3.1/24
6-4	219.246.5.2/24	219.246.5.1/24
6-5	219.246.7.2/24	219.246.7.1/24

三、实验内容

实验 1: FTP 访问控制实验;

- (1)、在 PC5 上搭建 FTP server;
- (2)、测试各个主机是否能打开 ftp;
- (3)、禁止特定主机 PC3 访问 FTP;
- (4)、禁止特定网络 201.1.1.0/192 的所有主机访问 FTP;
- (5)、改变 FTP 的端口为 2121 后,禁止特定网络 201.1.1.0/192 的所有主机访问 FTP。
- 实验 2: 禁止使用 QQ 实验(假设 PC5 为 QQ 服务器,禁止网络上的主机访问 QQ,即访问到特定主机 PC5)。
 - (1)、禁止特定主机 PC3 访问 PC5:

(2)、禁止特定网络 201.1.1.0/192 中的主机访问 PC5

实验一: FTP 访问控制实验

(1)在 PC5 上搭建 FTP server;

在模拟器中设置 FTP 服务器:

设置 FTP 服务器端口号并启动服务器

(2)测试各个主机是否能打开 ftp

客户机 4 登录 ftp 成功

主机可正常登录 ftp 服务器,其余截图不予展示

(3)禁止特定主机 PC3 访问 FTP

添加访问规则:

添加访问规则后客户机 3 无法登录 ftp 服务器:

(4) 禁止特定网络 219.246.3.1/24 的所有主机访问 FTP

添加访问规则:

219.246.3.1 下的主机访问失败:

(5)改变 FTP 的端口为 2121 后,禁止特定网络 219.246.3.1/24 的所有主机访问 FTP

更改 ftp 服务器端口为 2121 并启动

客户机 4 更改端口,显示登录成功,其余截图不予展示

禁止特定网络 219.246.3.1/24 的所有主机访问 FTP 添加访问规则:

219.246.3.1 下的主机访问失败:

实验 2: 禁止使用 QQ 实验(假设 PC5 为 QQ 服务器,禁止 网络上的主机访问 QQ,即访问到特定主机 PC5

(1) 禁止特定主机 PC3 访问 PC5:

实验前 Pc3 可以访问 pc4 和 pc5

```
Malone to use PC Simulator!

Wolone to use PC Simulator!

Wohing 219-246.7.2: 32 data bytes, Press Ctrl C to break
From 219-246.9.2: Destination host unreachable
From 219-246.5.2: Destination host unreachable
From 219-246.9.2: Destination host unreachable
Fr
```

新建访问控制列表并设置到端口

设置完以后 pc3 可以访问 pc4, 无法访问 pc5, 说明操作成功 •

(2) 禁止特定网络 219.246.3.1/24 中的主机访问 PC5

添加访问规则

```
Early and a company to the process of the control o
```

添加完规则后 pc1 不能访问 pc5

Pc3 不能访问 pc5

但 Pc2 可以访问 pc5 其余截图不予展示

四、实验总结

1、实验结果

访问控制列表(ACL)是应用在路由器接口的指令列表。这些指令列表用来告诉路由器哪些数据包可以通过,哪些数据包需要拒绝。ACL使用包裹里从技术,在路由器上读取 OSI 七层模型的第三层和第四层包头中的信息,如源地址、目的地址、源端口、目的端口等。根据预先设定好的规则对包进行过滤,从而达到访问控制的目的。

通过本实验,我们发现其实际应用有:

阻止某个网段访问服务器

阻止 A 网段访问 B 网段,但 B 网段可以访问 A 网段。

禁止某些端口进入网络, 可达到安全性

2、心得体会

本次实验,在老师的指导下,和小组成员的共同努力之下, 完成的过程较为顺利。在本次实验中,我们并没有具体在一 个单独实验中测试,通过查阅相关资料,我们发现:

IPv4 ACL 支持两种匹配顺序:

配置顺序:按照用户配置规则的先后顺序进行规则匹配。

自动排序:按照"深度优先"的顺序进行规则匹配。