HMM (continued)

Sriram Sankararaman

The instructor gratefully acknowledges Fei Sha, Ameet Talwalkar, Kai-Wei Chang, Eric Eaton, Andrew Moore and Jessica Wu whose slides are heavily used, and the many others who made their course material freely available online.

Administrivia

- Final exam on Tuesday March 21. Details posted on campuswire.
- Course evaluation open.

Outline

- Review of last lecture
 - Markov chains
 - Hidden Markov models

Markov Process

Also known as Markov Chain or Markov model

For a Markov process, the next state depends on the current state :

$$P(x_{t+1}|x_1,\ldots,x_t) = P(x_{t+1}|x_t)$$

Conditioned on the present, the future is independent of the past

 X_{t+1} is independent of $X_i, i < t$ given X_t

This property implies that

Specifying a Markov chain

Initial probability

$$\pi_i = P(X_1 = i)$$

Transition probability

$$q_{ij} = P(X_{t+1} = i | X_{\underline{t}} = \underline{j})$$

$$X_1, \ldots, X_T$$

$$P(X_T=i)$$

Compute $P(x_T = i)$

Assume uniform probability of starting in each of the states

$$Q = \begin{pmatrix} 0.5 & 0.1 & 0.0 \\ 0.3 & 0.0 & 0.4 \\ 0.2 & 0.9 & 0.6 \end{pmatrix} \qquad Q_{21}$$

What is the probability of observing a state $X_3 = 3$?

$$P(X_{1=1}, X_{2=1}, X_{3=3})$$

$$P(X_{1=1}, X_{2=2}, X_{3=3})$$

$$+$$

Compute
$$P(x_T = i)$$

X1 € {1.. k}

Assume uniform probability of starting in each of the states

$$Q = \begin{pmatrix} 0.5 & 0.1 & 0.0 \\ 0.3 & 0.0 & 0.4 \\ 0.2 & 0.9 & 0.6 \end{pmatrix}$$

What is the probability of observing a state $X_3 = 3$?

More generally, use the previous computation to sum over all paths of

length t that end in the state i

$$P(X_t = i) = \sum_{\substack{x_1, x_2, \dots, x_{t-1} \\ \text{onal cost?}}} P(x_1, x_2, \dots, x_{t-1}, x_t = i)$$

Computational cost?

 $O(K^{T-1})$: Exponential in T!

Compute $P(x_{\overline{U}} = i)$

Define $p_{\underline{t}}(i) = P(X_t = i)$.

$$p_1(i) = \pi_i$$

Assume we already know $\underline{p_{t-1}(i)}$ for all i. Use inductive definition to compute $p_t(i)$:

$$p_{t}(i) = P(X_{t} = i)$$

$$= \sum_{j} P(X_{t-1} = j, X_{t} = i)$$

$$= \sum_{j} P(X_{t-1} = j) P(X_{t} = i | X_{t-1} = j)$$

$$= \sum_{j} p_{t-1}(j) q_{ij}$$

Compute
$$P(x_T = i)$$

Define $p_t(i) = P(X_t = i)$.

$$p_1(i) = \pi_i$$

$$p_t(i) = \sum_{j} p_{t-1}(j) q_{ij}$$

Computational cost?

- Computing each $p_t(i)$ for a given t, i takes O(K).
- Computing each $p_t(i)$ for a given t and all i takes $O(K^2)$.
- Computing each $p_t(i)$ for all $t \in \{1, ..., T\}$ and all i takes $O(K^2(T-1))$.

Example of Dyanmic Programming

Hidden Markov models

In many applications, we observe only a noisy or indirect measurement of the state X_t

In POS tagging, the state is the part-of-speech which we do not see. Instead, we observe words.

In speech recognition, the state is the word spoken but we only get to see the waveform.

Hidden Markov models

- ullet Previously, in Markov chains, we directly observed the state X_t .
- Now, we observe a new random variable Y_t for each time t that is affected by the state X_t at that time t.
- ullet Can think of Y_t as a noisy version of the true state.

Having observed (Y_1,\ldots,Y_T) , we want to ask questions about X_1,\ldots,X_T

Hidden Markov models

- We now define the set of observed states (also called emission symbols) $B = \{1, \ldots, L\}$: the set of values that Y_t can take.
- Since X_t is not observed, X_t are called hidden states.

To link up the hidden and the observed states, we have emission probabilities

$$P(Y_t) = k = e_k(b)$$

Constraints: $\sum_{b} e_k(b) = 1$.

Hidden Markov model

Hidden states: $\{1, \dots, K\}$

Observed states: $\{1,\ldots,L\}$

Initial probability

$$\pi_i = P(X_1 = i)$$

Transition probability

$$q_{ij} = P(X_{t+1} = i | X_t = \underline{j})$$

Emission probability

$$e_i(b) = P(Y_t = b | X_t = i)$$

HMM: Example

The occasionally dishonest casino

- Hidden State: Is the casino using the fair or unfair die?
- Observed State: Roll of die $(\{1,\ldots,6\})$

Querying an HMM

We observe $(\underline{Y_1, \ldots, Y_5}) = (\underline{2, 6, 6, 1, 3})$. Can we infer for which of the throws the casino used the unfair die?

HMM

The joint probability of the sequence of hidden states and the observed states

$$P(\mathbf{y}, \mathbf{x}) = P(y_{1:T}, x_{1:T})$$

$$= P(y_{1:T}|x_{1:T})P(x_{1:T})$$

$$= \prod_{t=1}^{T} P(y_t|x_t) P(x_{1:T})$$

$$= \prod_{t=1}^{T} e_{x_t}(y_t)\pi_{x_1} \prod_{t=1}^{T-1} q_{x_{t+1}x_t}$$

Easy to compute but not very useful because we don't know the hidden states.

HMM: The most probable path problem

Given a sequence of observations (y_1, \ldots, y_T) , what is the most probable sequence of hidden states (x_1, \ldots, x_T) ?

- Often called the decoding problem.
- One way to solve this problem is to search over all possible values of $(x_{1:T})$.
- There are exponentially many of them $(O(\underline{K^T}))$
- Fortunately, it turns out there is an efficient dynamic programming algorithm to solve this problem.

MPP

Sigmore P(y1:7, X1:1)

t=1,2,., T

A recursive algorithm

• Suppose we have computed the the probability $v_t(k)$ for all values of $t \in \{1, \dots, T\}$ and $k \in \{1, \dots, K\}$:

The probability of the most probable path (MPP) for observations (y_1, \ldots, y_t) (so that path has length t) that ends up in state k.

$$t=1 - t=2$$

$$v_t(k) = \max_{x_{1:t-1}} P(y_{1:t}, x_{1:t-1}, x_t = k)$$

Why is this a useful quantity?

- If we look at $v_T(k)$, it tells us the probability of the MPP of length T that ends in state k.
- The answer to the MPP problem then is $\max_{U} v_T(k)!$

Can we compute $v_t(k)$ efficiently?

Assume we have computed $v_{t-1}(l)$.

We have computed the probability of the MPP of length t-1 that ends in state l for all values of l

How do we use this to compute the probability of MPP of length \underline{t} that ends in state \underline{k} ?

MPP for observations upto time t (backwards):

$$(2,1,mpp_{t-1}(1),mpp_{t-2}(mpp_{t-1}(1)),\ldots)$$

In other words, state 2 at time t, state 1 at time t-1,...

Can we compute $v_t(k)$ efficiently?

Begin with t=1

$$v_1(k) = P(y_1, x_1 = k)$$

= $P(y_1|x_1 = k)P(x_1 = k)$
= $e_k(y_1)\pi_k$

Can we compute $v_t(k)$ efficiently?

Assume we have computed $v_{t-1}(l)$.

We have computed the probability of the MPP of length t-1 that ends in state l for all values of l

How do we use this to compute the probability of MPP of length t that ends in state k?

Can we compute $v_t(\underline{k})$ efficiently?

The most probable path with last two states $(\underline{l})(\underline{k})$ is the most probable path with state l at time t-1 followed by a transition from state l to state k and emitting the observation at time t.

What is the probability of this path?

$$v_{t-1}(l)P(X_t = k|X_{t-1} = l)P(y_t|X_t = k)$$

$$= v_{t-1}(l)q_{lk}e_t(y_t)$$

So the most probable path that ends in state k at time t is obtained by maximizing over all possible states l in the previous time t-1.

$$v_t(k) = \max_{l} v_{t-1}(l) q_{kl} e_t(y_t) \qquad \qquad o(k^27)$$

Also keep a pointer to the state that lead to the current state

$$mpp_t(k) = l^*$$

$$l^* = \arg\max_{l} v_{t-1}(l) q_{kl} e_t(y_t)$$

Can we compute $v_t(k)$ efficiently?

Continue till we compute $v_{\mathbb{Z}}(k), k \in \{1, \dots, K\}$. Let:

$$k^* = \arg\max_k v_T(k)$$

To obtain the MPP, follow the pointers defined by $mpp_t(k)$.

Can we compute $v_t(k)$ efficiently?

$$v_t(k) = \max_{l} v_{t-1}(l) q_{kl} e_t(y_t)$$

- The cost of computing this is O(K) for a given k.
- The total cost of computing this is $O(K^2)$ for all k.
- Total cost of computing $v_T(k)$ is $O(TK^2)$.

Other HMM computations

Given a sequence of observations (y_1, \ldots, y_T) , what is the probability that state at time t is k?

$$P(X_t = k | y_{1:T}) \neq P(X_t = k | y_{t:t})$$

Given a sequence of observations (y_1, \ldots, y_T) , what is the probability of the observations ?

$$P(y_{1:T})$$

Can also be computed efficiently using dynamic programming.

Learning HMMs

We assume the parameters are known. Can we learn parameters from data?

Parameters of the HMM

$$oldsymbol{ heta} = (oldsymbol{\pi}, oldsymbol{Q}, oldsymbol{E})$$

Here E is the matrix of emission probabilities. $E_{kb} = e_k(b)$.

Given training data of observed states $(y_{1:T})$, find parameters θ that maximizes the log likelihood.

Learning HMMs

We assume the parameters are known. Can we learn parameters from data?

Our model contains observed and unobserved random variables and hence is incomplete.

- Observed: $\mathcal{D} = y_{1:T}$ Unobserved (hidden): $x_{1:T}$

$$\begin{aligned} \widehat{\boldsymbol{\theta}} &= \arg \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \log P(y_{1:T} | \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \log \sum_{x_{1:T}} P(y_{1:T}, x_{1:T} | \boldsymbol{\theta}) \end{aligned}$$

The objective function $\ell(\boldsymbol{\theta})$ is called the incomplete log likelihood.

We can optimize this function using the EM algorithm (we won't get into

Summary

HMM

- Allows us to model dependencies.
- Can perform computations efficiently using dynamic programming.
- Can learn the parameters using the EM algorithm.

Types of learning problems

- Supervised, unsupervised and reinforcement
- Labeled vs unlabeled data
- Labeled: Supervised learning. Type of label: classification (categorical) vs regression (quantitative)
- Unlabeled: Unsupervised learning.

- Model/hypotheses
- Loss function
- Regularizer
- Algorithm to solve optimization problem

Supervised learning

 Key goal is to pick hypothesis h that minimizes risk for some loss function:

$$\mathcal{R}[h(\boldsymbol{x})] = \sum_{\boldsymbol{x},y} \ell(h(\boldsymbol{x}),y)p(\boldsymbol{x},y)$$

Difficulty: we don't know the data generating distribution p(x, y).

• Instead pick h that minimizes empirical risk (a.k.a training error)

$$\mathcal{R}^{\text{EMP}}[h(\boldsymbol{x})] = \frac{1}{N} \sum_{n} \ell(h(\boldsymbol{x}_n), y_n)$$

- Setup: given a training dataset $\{x_n, y_n\}_{n=1}^N$, learn a function h(x) to predict y given x.
 - Choose hypothesis space/models.
 - Define a loss function.
 - Define a cost function (typically loss function evaluated over the training data + regularizer).
 - Algorithm to solve optimization problem.

- Hypotheses
 - Decision trees, Nearest neighbors
 - ▶ Linear models: $h(x) = w^T x$
 - Kernels to extend to non-linear functions.
 - lacktriangle Neural Networks: jointly learn $oldsymbol{\phi}$ and $oldsymbol{w}$.
 - Ensembles as a way to combine classifiers.
- Loss functions
 - Squared loss: least squares for regression
 - ▶ 0-1 loss for binary classification and surrogates for 0-1 loss.
 - Logistic loss, Exponential loss, Hinge loss
- Main principles Logistic Regrosion Adalast SUM
 - Many of these learning algorithms can be thought of as solving the problem of finding "good" parameters for some probabilistic model.
 - Principles for finding good parameters: Maximum likelihood, regularize likelihood
 - Generative vs discriminative models.

- Optimization
 - Convex vs non-convex optimization problems
 - Methods: gradient descent (batch vs stochastic)
 - Constrained optimization. Lagrange function. Primal vs dual formulations.
- Concepts
 - Training error vs generalization error
 - Overfitting vs underfitting
 - The role of inductive bias
- Practical issues
 - How to tune hyperparameters, how to estimate generalization error
 - Importance of train-validation-test setup and cross-validation

Unsupervised learning

- Finding structure in data.
- Dimensionality reduction, Clustering and mixture models, Modeling dependencies
- Clustering
 - K-means. Requires solving a non-convex problem
 - Can be viewed as a probabilistic model with hidden variable (GMM)
 - EM algorithm: iterative algorithm to estimate MLE
- PCA
 - Linear Dimensionality reduction
 - ► Finds projections that maximize variance, minimize reconstruction error
 - Obtained by computing the top eigenvectors
- Hidden Markov Models (HMM)
 - Model dependency among observations
 - Use dynamic programming to efficiently query the HMM

- Thank you for your participation!
- All the best for the exam!