Contents

1	The Real Numbers					2	
	1.1	Fields	s			2	
		111	Ordered Fields			2	

1

The Real Numbers

1.1 Fields

Definition 1.1.1 ▶ Field

A set *F* with two binary operations, namely addition and multiplication, is called a **field** if it satisfies the following axioms:

- 1. $\forall a, b \in F, a + b = b + a$.
- 2. $\forall a, b, c \in F, (a + b) + c = a + (b + c).$
- 3. $\exists 0_F \in F$ such that $\forall a \in F, 0_F + a = a + 0_F = a$.
- 4. $\forall a \in F, \exists a' \in F \text{ such that } a + a' = 0_F.$
- 5. $\forall a, b \in F, a \cdot b = b \cdot a$.
- 6. $\forall a, b, c \in F, (a \cdot b) \cdot c = a \cdot (b \cdot c).$
- 7. $\forall a, b, c \in F$, $a \cdot (b + c) = a \cdot b + a \cdot b$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.
- 8. $\exists 1_F \in F$ such that $\forall a \in F, 1_F \cdot a = a \cdot 1_F = a$.
- 9. $\forall a \in F, \exists a' \in F \text{ such that } a \cdot a' = 1_F.$

If we denote addition by " $+_F$ " and multiplication by " \cdot_F " or " \times_F ", then we can denote the field over F by $(F, +_F, \cdot_F)$ or $(F, +_F, \times_F)$.

1.1.1 Ordered Fields

Definition 1.1.2 ► **Total Order**

A **total order** on a set *X* is a binary relation *R* over *X* such that for all $a, b, c \in X$:

- 1. aRa.
- 2. *aRb* and *bRc* implies *aRc*.
- 3. aRb and bRa implies a = b.
- 4. aRb or bRa.

Definition 1.1.3 ► Strict Total Order

A strict total order on a set X is a binary relation R over X such that for all $a, b, c \in X$:

- 1. $(a, a) \notin R$.
- 2. aRb implies $(b, a) \notin R$.

- 3. *aRb* and *bRc* implies *aRc*.
- 4. trichotomy is satisfied.

Define a field $(\mathbb{R}, +, \times)$ together with the total order \leq (or the strict total order <), then clearly this field is an ordered field, which is known as the real numbers.

Theorem 1.1.4

If $a, b \in \mathbb{R}$, then -ab + ab = 0.

Theorem 1.1.5

For all $a \in \mathbb{R}$ with $a \neq 0$, $a^2 > 0$.

Theorem 1.1.6

If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for all $\epsilon \in \mathbb{R}^+$, then a = 0.

Theorem 1.1.7 ▶ Bernoulli's Inequality

If x > -1, then $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.