```
import pandas as pd
```

#Importing the data

data = pd.read_excel('/BankNiftyFutures_Data5Min.xlsx')

data.head()

	Ticker	Date	Final Date format	Time	Open 5	High 5	Low 5	Clc
0	BANKNIFTY_F1	2015- 01-01	20150101	09:20:00	18861.3496	18867.9492	18793.0000	18808
1	BANKNIFTY_F1	2015- 01-01	20150101	09:25:00	18808.0000	18835.0000	18802.1992	18829
2	BANKNIFTY_F1	2015- 01-01	20150101	09:30:00	18826.9492	18833.4004	18820.0000	18826
3	BANKNIFTY_F1	2015- 01-01	20150101	09:35:00	18825.0508	18829.0996	18810.0000	18810
4	BANKNIFTY_F1	2015- 01-01	20150101	09:40:00	18805.0000	18808.9492	18775.0000	18803

data.shape

(91737, 10)

data.isnull().sum()

Ticker	0
Date	0
Final Date format	0
Time	0
Open 5	0
High 5	0
Low 5	0
Close 5	0
Volume 5	0
Year	0
dtype: int64	

data.dtypes

Ticker	object
Date	datetime64[ns]
Final Date format	int64
Time	object
Open 5	float64
High 5	float64
Low 5	float64

Close 5 float64
Volume 5 int64
Year int64

dtype: object

import datetime

data['Date '] = pd.to_datetime(data['Date'], errors='coerce').dt.floor('d')

data.head()

	Ticker	Date	Final Date format	Time	Open 5	High 5	Low 5	Clc
0	BANKNIFTY_F1	2015- 01-01	20150101	09:20:00	18861.3496	18867.9492	18793.0000	18808
1	BANKNIFTY_F1	2015- 01-01	20150101	09:25:00	18808.0000	18835.0000	18802.1992	18829
2	BANKNIFTY_F1	2015- 01-01	20150101	09:30:00	18826.9492	18833.4004	18820.0000	18826
3	BANKNIFTY_F1	2015- 01-01	20150101	09:35:00	18825.0508	18829.0996	18810.0000	18810
4	BANKNIFTY_F1	2015- 01-01	20150101	09:40:00	18805.0000	18808.9492	18775.0000	18803

data.dtypes

Ticker	object
Date	datetime64[ns]
Final Date format	int64
Time	object
Open 5	float64
High 5	float64
Low 5	float64
Close 5	float64
Volume 5	int64
Year	int64
Date	datetime64[ns]

dtype: object

```
data.loc[:,'Date'] = pd.to_datetime(data.Date.astype(str)+' '+data.Time.astype(str))
```

data.drop(data.columns[[-1,]], axis=1, inplace=True)

data.head(5)

		Ticker	Date	Final Date format	Time	Open 5	High 5	Low 5	
	0	BANKNIFTY_F1	2015- 01-01 09:20:00	20150101	09:20:00	18861.3496	18867.9492	18793.0000	188
	1	BANKNIFTY_F1	2015- 01-01 09:25:00	20150101	09:25:00	18808.0000	18835.0000	18802.1992	188
del d	? ata	RANKNIFTV F1	2015- n1_n1	20150101	บอ・รบ・บบ	18826 0/02	18833 ለበበለ	18820 0000	185
			2015-						
del d	ata	['Final Date fo	rmat']						
data.	ren	ame(columns = {	'Date':'D	ate_Time'}	, inplace	= True)			
data.	hea	d(5)							

data.head(5)

	Ticker	Date_Time	Open 5	High 5	Low 5	Close 5	Volume 5	,
(BANKNIFTY_F1	2015-01- 01 09:20:00	18861.3496	18867.9492	18793.0000	18808.3496	84825	
1	I BANKNIFTY_F1	2015-01- 01 09:25:00	18808.0000	18835.0000	18802.1992	18829.0000	40925	4
		2015-01-						

data.dtypes

Ticker	object
Date_Time	<pre>datetime64[ns]</pre>
Open 5	float64
High 5	float64
Low 5	float64
Close 5	float64
Volume 5	int64
Year	int64
dtype: object	t

data.head()

```
Volume
                                                                         Close 5
                Ticker Date_Time
                                       Open 5
                                                  High 5
                                                               Low 5
                                                                                       5
                          2015-01-
        BANKNIFTY_F1
                                   18861.3496 18867.9492 18793.0000 18808.3496
                               01
                                                                                   84825
                          09:20:00
# Convert the Timestamp column to the correct format
data['Timestamp'] = pd.to_datetime(data['Timestamp'], unit='s')
# Index by time to allow us to use .resample()
data.set_index('Timestamp', inplace=True)
import numpy as np
# Resample and Aggregate appropriately.
df = data.groupby(pd.Grouper(freq='15Min',closed='right',label='right')).agg({
                                        "Open 5": "first",
                                        "High 5":
                                                   "max",
                                        "Low 5":
                                                    "min",
                                        "Close 5": "last",
                                        "Volume 5": "sum"
```

df

	Open 5	High 5	Low 5	Close 5	Volume 5
Timestamp					
2015-01-01 09:30:00	18861.3496	18867.9492	18793.0000	18826.0996	152750
2015-01-01 09:45:00	18825.0508	18829.9004	18775.0000	18821.0000	104675
2015-01-01 10:00:00	18821.0000	18850.0000	18820.0000	18838.9492	66825
2015-01-01 10:15:00	18835.0508	18858.5996	18830.6504	18836.4004	49100
2015-01-01 10:30:00	18835.6992	18848.0000	18828.5996	18830.0000	16600
2019-12-31 14:30:00	32444.0000	32450.0000	32384.0000	32409.8496	96960
2019-12-31 14:45:00	32409.8496	32459.0000	32401.1992	32426.0996	56520
2019-12-31 15:00:00	32426.0996	32439.9492	32374.3008	32382.9492	114820
2019-12-31 15:15:00	32380.6504	32407.6992	32376.6504	32382.0000	95220
2019-12-31 15:30:00	32383.5000	32392.6992	32320.0000	32379.9004	259300

})

175225 rows × 5 columns

```
df.reset_index(level=0, inplace=True)
```

```
df['year'] = pd.Index(df['Timestamp']).year
df.head()
```

	Timestamp	Open 5	High 5	Low 5	Close 5	Volume 5	year
0	2015-01-01 09:30:00	18861.3496	18867.9492	18793.0000	18826.0996	152750	2015
1	2015-01-01 09:45:00	18825.0508	18829.9004	18775.0000	18821.0000	104675	2015
2	2015-01-01 10:00:00	18821.0000	18850.0000	18820.0000	18838.9492	66825	2015
3	2015-01-01 10:15:00	18835.0508	18858.5996	18830.6504	18836.4004	49100	2015
4	2015-01-01 10:30:00	18835.6992	18848.0000	18828.5996	18830.0000	16600	2015

```
def calculateVwap(df):
    df['TP'] = (df['High 5']+df['Low 5']+df['Close 5'])/3.0
    df['TradedValue'] = df['TP']*df['Volume 5']
    df['CumVolume'] = df['Volume 5'].cumsum()
    df['CumTradedValue'] = df['TradedValue'].cumsum()
    df['VWAP'] = df['CumTradedValue'] /df['CumVolume']
    return df
```

```
VWAP = df.groupby('Timestamp').apply(calculateVwap)
VWAP
```

	Timestamp	Open 5	High 5	Low 5	Close 5	Volume 5	year	
0	2015-01- 01 09:30:00	18861.3496	18867.9492	18793.0000	18826.0996	152750	2015	18829
1	2015-01- 01 09:45:00	18825.0508	18829.9004	18775.0000	18821.0000	104675	2015	1880{
2	2015-01- 01 10:00:00	18821.0000	18850.0000	18820.0000	18838.9492	66825	2015	1883(
3	2015-01-	18835.0508	18858.5996	18830.6504	18836.4004	49100	2015	1884 ⁻

import matplotlib.pyplot as plt

VWAP.plot(x="Timestamp", y=["Close 5", "VWAP"])
plt.show()

VWAP['Buy/Sell'] = np.where(VWAP['VWAP']<VWAP['Close 5'], 'Buy', 'Sell')</pre>

VWAP.head(20)

10.00.00

5	2015-01- 01 10:45:00	18830.0000	18841.1504	18825.0000	18829.1992	14175	2015	18831.783
6	2015-01- 01 11:00:00	18830.1504	18846.2500	18830.0996	18843.2500	15650	2015	18839.866
7	2015-01- 01 11:15:00	18843.5000	18848.6992	18832.0000	18840.0000	18675	2015	18840.233
8	2015-01- 01 11:30:00	18840.0000	18889.9004	18840.0000	18872.0000	87525	2015	18867.300
9	2015-01- 01 11:45:00	18871.0508	18874.0000	18851.9492	18869.0000	18075	2015	18864.983
10	2015-01- 01 12:00:00	18868.0508	18889.0000	18857.0000	18878.0996	47275	2015	18874.699
11	2015-01- 01 12:15:00	18875.9492	18880.0000	18865.0000	18875.0000	20675	2015	18873.333
12	2015-01- 01 12:30:00	18875.0000	18875.0000	18855.3496	18857.0000	13800	2015	18862.449
13	2015-01- 01 12:45:00	18858.0996	18867.9004	18850.0000	18857.0000	16025	2015	18858.300
14	2015-01- 01 13:00:00	18857.4492	18873.0000	18857.0000	18865.0000	9925	2015	18865.000
15	2015-01- 01 13:15:00	18865.0000	18865.0000	18857.3496	18860.0000	6575	2015	18860.783
16	2015-01- 01 13:30:00	18860.0000	18869.7500	18853.0000	18856.0000	9825	2015	18859.583
17	2015-01- 01 13:45:00	18857.0000	18879.5996	18853.0508	18873.8008	15625	2015	18868.817
18	2015-01- 01 14:00:00	18873.8008	18909.9492	18861.1504	18892.3008	60975	2015	18887.800
19	2015-01- 01 14:15:00	18897.0000	18897.0000	18870.0000	18887.3496	34000	2015	18884.783

```
VWAP['transaction'] = np.where(VWAP['Buy/Sell'] == 'Sell', -1 * VWAP['Close 5'], VWAP['Close
VWAP['transaction']
             -18826.0996
    1
              18821.0000
              18838.9492
             -18836.4004
            -18830.0000
     175220 -32409.8496
    175221 -32426.0996
    175222 -32382.9492
    175223 -32382.0000
    175224
              32379.9004
    Name: transaction, Length: 175225, dtype: float64
VWAP['transaction'].sum()
     10137370.475199997
TransactionBy_date=VWAP.resample('D', on='Timestamp').transaction.sum()
TransactionBy_date.astype(int)
    Timestamp
     2015-01-01
                  -18661
     2015-01-02
                  211085
     2015-01-03
                       0
     2015-01-04
     2015-01-05
                  19284
     2019-12-27
                   97075
     2019-12-28
     2019-12-29
                       0
     2019-12-30
                  -31677
     2019-12-31
                  -97205
     Freq: D, Name: transaction, Length: 1826, dtype: int64
TransactionBy_year=VWAP.resample('Y', on='Timestamp').transaction.sum()
TransactionBy_year.astype(int)
     Timestamp
     2015-12-31
                  295679
     2016-12-31 1053645
     2017-12-31
                 2697544
     2018-12-31
                 4203946
```

2019-12-31 1886553

Enga: A-DEC Name: transaction dtype: int64

TransactionBy_year.plot.bar()

<matplotlib.axes._subplots.AxesSubplot at 0x7f8d5673c490>

Best Performing Year is 2018 with Total profit = 4203946

×