

AMENDMENTS TO THE CLAIMS

1-47. (CANCELED).

48. (CURRENTLY AMENDED) A blood glucose monitoring system for monitoring a blood glucose level and for providing health-related information comprising:

(a) a display device including a display screen which displays the blood glucose level as measured;

(b) an audio speaker;

(c) a processor configured to provide audio and visual signals to the audio speaker and the display device respectively;

(d) at least one built-in memory including read-only digital memory (ROM) or writeable digital memory (RAM), or both, having stored therein operation data and operation software routines executable by the processor for:

(i) controlling the blood glucose monitoring system;

(ii) comparing the blood glucose level as measured with stored measurements;

(iii) performing one or more further processing functions in response to the comparing;

(iv) connecting the processor to a remotely located computer via a communication network in response to receiving a network address of the remotely located computer from a removable memory card attached to the system, wherein (a) the network address identifies the remotely located computer within the communication network and (b) the remotely located computer is located distant from the processor; and

(v) receiving the health-related information at the processor via the communication network from the remotely located computer;

30 (e) at least one physiological data monitor configured
to (i) provide a measurement signal representative of a
physiological parameter of a user and (ii) reside outside a first
housing containing said processor; and

35 (f) an input device in communication with the processor
and configured to (i) receive an input from the user including an
identification code, (ii) enable the user to (1) make selections
and (2) control one or more user functions of the blood glucose
monitoring system and (iii) provide a control signal to the
processor based upon the input, thereby to cause the health related
information to be provided to the user based upon (a) the
40 measurement signal representative of the blood glucose level, (b)
the identification code received from said user, and (c) a
destination address programmed by a physician prior to the user
receiving the processor the control signal, wherein the
physiological parameter includes the blood glucose level and the
45 physiological data monitor includes a blood glucose indicator.

49. (CANCELED).

50. (CANCELED).

51. (CURRENTLY AMENDED) A system for interactively
monitoring a blood glucose level and for interactively providing
health-related information comprising:

5 (a) a glucose monitor adapted to measure the blood
glucose level of a user and for generating a first signal in
response to a measurement of the blood glucose level;

10 (b) a processor (i) for receiving a second signal that
is a function of the first signal and (ii) being contained within
a housing, said glucose monitor being disposed outside said housing
containing said processor;

(c) a memory coupled to the processor for storing blood glucose level data, the memory including read-only digital memory (ROM) or writeable digital memory (RAM), or both, having stored therein operation data and operation software routines executable by the processor for:

15 by the processor for:

- (i) controlling the system;
- (ii) comparing the blood glucose level as measured with stored measurements;

(iii) performing one or more further processing functions in response to the comparing;

(iv) connecting the processor to a remotely located computer via a communication network in response to receiving a network address of the remotely located computer from a removable memory card attached to the system, wherein (a) the network address identifies the remotely located computer within the communication network and (b) the remotely located computer is located distance from the processor; and

(v) receiving the health-related information at the processor via the communication network from the remotely located computer;

(d) a display system coupled to the processor for displaying a representation of the blood glucose level, so as to provide the health related information to the user in an interactive manner based upon (a) the first signal representative of the blood glucose level, (b) an identification code received from said user, and (c) a destination address programmed by a physician prior to the user receiving the processor; and

(e) an input device (i) in communication with the processor, (ii) enabling the user (1) to make selections and (2) to control one or more user functions of the system and (iii) provide a control signal to the processor based upon the input.

52. (CANCELED).

53. (CANCELED).

54. (CANCELED).

55. (PREVIOUSLY PRESENTED) The system according to claim 48 wherein the input device is hand-held.

56. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the input device receives the input from the user through at least one push button switch.

57. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the health related information provided from the remotely located computer to the user includes moving images displayed on the display screen.

58. (PREVIOUSLY PRESENTED) The system according to claim 57, wherein the health related information provided from the remotely located computer to the user further includes a comparison of measurements of the blood glucose level with previously stored measurements of the blood glucose level.

59. (PREVIOUSLY PRESENTED) The system according to claim 57, wherein the health related information provided from the remotely located computer to the user includes educational information.

60. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the blood glucose monitoring system is configured to

store particular information on the at least one built-in memory for later retrieval.

61. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the display device is a television.

62. (CURRENTLY AMENDED) A method for monitoring a physiological condition and for providing health-related information with a system, the method comprising:

5 (a) using at least one physiological data monitor to provide a measurement signal representative of a user physiological parameter;

10 (b) providing a processor to produce audio and visual signals for reproduction at an audio speaker and a display screen, respectively, and (i) providing said processor within a housing and (ii) said physiological data monitor being disposed outside said housing containing said processor;

15 (c) using an input device in communication with the processor to (i) receive an input from the user and (ii) provide one or more controller signals to the processor based upon the input from the user;

20 (d) in response to and based upon (i) the measurement signal representative of the user physiological parameter and (ii) the input from the user, having the processor cause the visual and the audio signals of the health related information to be presented to the user, wherein the user physiological parameter includes a blood glucose level and the physiological data monitor includes a blood glucose indicator;

25 (e) providing a memory coupled to the processor, the memory including read-only digital memory (ROM) or writeable digital memory (RAM), or both, the memory having stored therein the

blood glucose level and operation software routines executable by the processor for:

(i) controlling the system;

30 (ii) comparing the blood glucose level as measured with stored measurements;

(iii) performing one or more further processing functions in response to the comparing;

35 (iv) connecting the processor to a remotely located computer via a communication network in response to receiving a network address of the remotely located computer from a removable memory card attached to the system, wherein (a) the network address identifies the remotely located computer within the communication network and (b) the remotely located computer is located distant from the processor; and

40 (v) receiving the health-related information at the processor via the communication network from the remotely located computer based upon (a) the measurement signal representative of the blood glucose level, (b) an identification code received from said user, and (c) a destination address programmed by a physician prior to the user receiving the processor.

45 63. (CANCELED).

64. (CANCELED).

65. (CANCELED).

66. (CANCELED).

67. (CANCELED).

68. (PREVIOUSLY PRESENTED) The method according to claim 62 wherein the input device is hand-held.

69. (PREVIOUSLY PRESENTED) The method according to claim 62, wherein the input device receives the input from the user through at least one push button switch.

70. (PREVIOUSLY PRESENTED) The method according to claim 62, wherein the health related information provided from the remotely located computer to the user includes moving images displayed on the display screen.

71. (PREVIOUSLY PRESENTED) The method according to claim 70, wherein the health related information provided from the remotely located computer to the user further includes a comparison of measurements of the user physiological parameter with previously stored measurements of the user physiological parameter.
5

72. (PREVIOUSLY PRESENTED) The method according to claim 70, wherein the health related information provided from the remotely located computer to the user includes educational information.

73. (PREVIOUSLY PRESENTED) The method according to claim 62, further comprising storing particular information in the memory for later retrieval.

74. (PREVIOUSLY PRESENTED) The method according to claim 62, wherein the display screen comprises a television, and the visual signals are reproduced on the television.

75. (CURRENTLY AMENDED) An apparatus for interactively monitoring a blood glucose level and for interactively providing health-related information comprising:

a. a display device comprising a display screen;

5 b. a processor coupled to provide a visual signal to the display screen, wherein the processor is contained within a housing;

c. a glucose monitor coupled to provide a measurement signal representative of the blood glucose level to the processor;

10 d. at least one built-in memory, including read-only digital memory (ROM) or writeable digital memory (RAM), or both, having stored therein operation data and operation software routines executable by the processor for:

(i) controlling the apparatus;

15 (ii) comparing the blood glucose level as measured with stored measurements;

(iii) performing one or more further processing functions in response to the comparing;

20 (iv) connecting the processor to a remotely located computer via a communication network in response to receiving a network address of the remotely located computer from a removable memory card attached to the apparatus, wherein (a) the network address identifies the remotely located computer within the communication network and (b) the remotely located computer is located distant from the processor; and

25 (v) receiving the health-related information at the processor via the communication network from the remotely located computer; and

30 e. an input device in communication with the processor and configured to (i) receive an input from the user, (ii) enable the user (1) to make selections and (2) to control one or more user functions of the apparatus; and (iii) provide a control signal to

35 the processor based upon the input from the user, wherein health related information is sent to said user based upon (a) the measurement signal representative of the blood glucose level, (b) an identification code received from said user, and (c) a destination address programmed by a physician prior to the user receiving the processor.

76. (PREVIOUSLY PRESENTED) The apparatus according to claim 75 wherein the processor comprises a video game console.

77. (PREVIOUSLY PRESENTED) The apparatus according to claim 75 wherein the display device comprises a television set.

78. (PREVIOUSLY PRESENTED) The apparatus according to claim 75, further comprising:

a CD-ROM drive; and

5 an interchangeable compact disk removably coupled to the CD-ROM drive for providing additional functionality to the processor.

79. (CANCELED).

80. (CANCELED).

81. (CURRENTLY AMENDED) An apparatus for interactively monitoring a blood glucose level and for interactively providing health-related information comprising:

5 a. a display device comprising a display screen and an audio speaker;

b. a processor contained within a housing and coupled to provide a visual signal to the display screen;

c. a glucose monitor coupled to provide a measurement signal representative of the blood glucose level of a user to the processor;

d. at least one built-in memory, including read-only digital memory (ROM) or writeable digital memory (RAM), or both, having stored therein operation data and operation software routines executable by the processor for:

(i) controlling the apparatus;
(ii) comparing the blood glucose level as measured with stored measurements;

(iii) performing one or more further processing functions in response to the comparing;

(iv) connecting the processor to a remotely located computer via a communication network in response to receiving a network address of the remotely located computer from a removable memory card attached to the apparatus, wherein (a) the network address identifies the remotely located computer within the communication network and (b) the remotely located computer is located distant from the processor; and

(v) receiving the health-related information at the processor via the communication network from the remotely located computer; and

e. an input device in communication with the processor and configured to (i) receive an input from the user, (ii) enable the user to (1) make selections and (2) control one or more user functions of the apparatus and (iii) provide a control signal to the processor based upon the input, wherein health related information is sent to said user based upon (a) the measurement signal representative of the blood glucose level, (b) an identification code received from said user, and (c) a destination address programmed by a physician prior to the user receiving the processor.

82. (PREVIOUSLY PRESENTED) The apparatus according to claim 81 wherein the processor comprises a video game console.

83. (PREVIOUSLY PRESENTED) The apparatus according to claim 81 further comprising:

a CD-ROM drive; and

an interchangeable compact disk removably coupled to the
5 CD-ROM drive for providing additional functionality to the processor.

84. (CANCELED).

85-95. (CANCELED).

96. (PREVIOUSLY PRESENTED) The system according to claim 48, further comprising one or more communication ports configured to connect the blood glucose monitoring system to an information superhighway.

97. (PREVIOUSLY PRESENTED) The system according to claim 48, further comprising a slot for accepting a flash memory card.

98. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the blood glucose monitoring system is configured for downloading particular information obtained from the user to a separate computer.

99. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the at least one built-in memory further has stored therein alarm data and alarm software routines for triggering an

alarm if the blood glucose level as measured falls outside a
5 predetermined range.

100. (PREVIOUSLY PRESENTED) The system according to claim
51, further comprising one or more communication ports configured
to connect the system to an information superhighway.

101. (PREVIOUSLY PRESENTED) The system according to claim
51, further comprising a slot for accepting a flash memory card.

102. (PREVIOUSLY PRESENTED) The system according to claim
51, wherein the system is configured for downloading particular
information obtained from the user to a separate computer.

103. (PREVIOUSLY PRESENTED) The system according to claim
51, wherein the memory further has stored therein alarm data and
alarm software routines for triggering an alarm if the blood
glucose level as measured falls outside a predetermined range.

104. (PREVIOUSLY PRESENTED) The method according to claim
62, further comprising connecting to an information superhighway.

105. (PREVIOUSLY PRESENTED) The method according to claim
62, further comprising accepting a flash memory card into a pre-
configuration slot.

106. (PREVIOUSLY PRESENTED) The method according to claim
62, further comprising downloading particular information obtained
from the user to a separate server.

107. (PREVIOUSLY PRESENTED) The method according to claim
62, wherein the memory further has stored therein alarm data and

alarm software routines for triggering an alarm if the blood glucose level as measured falls outside a predetermined range.

108. (PREVIOUSLY PRESENTED) The apparatus according to claim 75, further comprising one or more communication ports configured to connect the system to an information superhighway.

109. (PREVIOUSLY PRESENTED) The apparatus according to claim 75, further comprising a slot for accepting a flash memory card.

110. (PREVIOUSLY PRESENTED) The apparatus according to claim 75, wherein the apparatus is configured for downloading particular information obtained from the user to a separate computer.

111. (PREVIOUSLY PRESENTED) The apparatus according to claim 75, wherein the memory further has stored therein alarm data and alarm software routines for triggering an alarm if the blood glucose level as measured falls outside a predetermined range.

112. (PREVIOUSLY PRESENTED) The apparatus according to claim 81, further comprising one or more communication ports configured to connect the system to an information superhighway.

113. (PREVIOUSLY PRESENTED) The apparatus of claim 81, further comprising a slot for accepting a flash memory card.

114. (PREVIOUSLY PRESENTED) The apparatus according to claim 81, wherein the apparatus is configured for downloading particular information obtained from the user to a separate computer.

115. (PREVIOUSLY PRESENTED) The apparatus according to claim 81, wherein the memory further has stored therein alarm data and alarm software routines for triggering an alarm if the blood glucose level as measured falls outside a predetermined range.

116. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the operational data and the operation software routines are configured to guide the user through additional measurements based on the comparing.

117. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the operational data and the operation software routines are configured to store particular information to support later retrieval or downloading based on the comparing.

118. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the operational data and the operation software routines are configured to recommend a certain action be taken by the user based on the comparing.

119. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the operational data and the operation software routines are configured to ask questions of the user based on the comparing.

120. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the operational data and the operation software routines are configured to give advice as to diet or exercise habits of the user based on the comparing.

121. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the input device is in wireless communications with the processor.

122. (PREVIOUSLY PRESENTED) The system according to claim 48, wherein the physiological data monitor and the input device are in a second housing separate from the first housing containing the processor.