CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

1 (a) (i)

[2]

(ii) (colour due to absorbance of visible light)due to electron promoted (from lower) to upper orbital/energy level

in Zn^{2+} there's no space in higher orbital for the electron to go *or* completely filled <u>d-</u>orbitals/shell

[1] **4**

[1]

[1]

(b) (i) yellow is due to $[CuCl_4]^{2-}$

reaction is ligand displacement/exchange [1]

(ii) (solution goes blue) due to $[Cu(H_2O)_6]^{2+}$ [1]

blue **ppt**. or (**s**) [1] of $Cu(OH)_2$ or $[Cu(H_2O)_4(OH)_2]$ etc. [1]

purple or deep/dark blue solution or (aq) [1] due to $[Cu(NH_3)_4]^{2+}$ or $[Cu(NH_3)_4(H_2O)_2]^{2+}$ [1]

7

- (c) (i) $2KI + K_2S_2O_8 \longrightarrow 2K_2SO_4 + I_2$ or ionic: $2I^- + S_2O_8^{2-} \longrightarrow 2SO_4^{2-} + I_2$ [1]
 - (ii) Fe²⁺ is a homogeneous catalyst [1]
 - (iii) equations: $2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$ $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$

or verbal equivalent, e.g. reactants are both negative ions, so repel each other or Fe²⁺ can be oxidised by S₂O₈²⁻ **and** Fe³⁺ can be reduced by I⁻

3

[1]

-	· ugo v		mark continu	- Cynabac	ı upoı
			GCE A LEVEL – May/June 2014	9701	42
2	(a) A:	voltr	meter or V or potentiometer		[1]
	B:	plati	num <i>or</i> Pt		[1]
	C:	1 mc	oldm ⁻³ and H ⁺ or HC l (or 0.5 M H ₂ SO ₄)		[1]
	D:	lead	(metal) or Pb		[1]
					4
	(b) (i)	a co e.g. over	in the box next to –0.17 V mment that the [Pb ²⁺] has decreased plus a description as [Pb ²⁺] decreases (from 1 mol dm ⁻³), Pb ²⁺ (aq) + 2000 to the left hand side, <i>or</i> as [Pb ²⁺] decreases, Pb ²⁺	$e^- \rightleftharpoons Pb(s) gc$	es be
		redu	iced		[1]
	(ii)	$(K_{sp}$	=) $[Pb^{2+}][Cl^{-}]^{2}$		[1]
	(iii)	if [Pl	${\rm pc}l_2] = 3.5 \times 10^{-2}$, ${\rm [Pb^{2^+}]} = 3.5 \times 10^{-2}$ and ${\rm [C}l^-] = 7.0 \times 10^{-2}$, ${\rm cm} = (3.5 \times 10^{-2}) \times (7.0 \times 10^{-2})^2 = 1.715 (1.7) \times 10^{-4} {\rm mo}$	10 ⁻² I ³ dm ⁻⁹ (≥2sf)	[1] +[1]
					5
	(c) (i)	the ((M^{2+}/M) E^{e} for the two elements are very similar or are	–0.13 and –0.14	4V [1]
		E [⊕] (\$	Sn^{4+}/Sn^{2+}) = 0.15 V and E° (Pb ⁴⁺ /Pb ²⁺) = 1.69 V		[1]
		not	Sn ²⁺ is quite easily oxidised (to Sn ⁴⁺) or is a stronger reeasily oxidised (to Pb ⁴⁺) or Pb ⁴⁺ is a stronger oxidar	eductant or Pb ²⁻ at or Pb ⁴⁺ is eas	is sily
		redu	iced		[1]
	(ii)	_	$PbCl_2 + Zn \longrightarrow Pb + ZnCl_2$ (or ionic) er acceptable reductants: Fe, Mg, Ca but not Na or K)		[1]
			$+ Br_2 \longrightarrow Sn^{4+} + 2Br_1$	= 3+ M O =\	[1]
		(otn	er acceptable oxidants: VO ²⁺ , Cr ₂ O ₇ ²⁻ , Ag ⁺ , C <i>l</i> ₂ , Br ₂ , F ₂	, Fe°, MNO ₄)	5
	(d) (i)	Pb ²⁺	$l(g) + 2Cl^{-}(g) \longrightarrow PbCl_2(s)$		[1]
	(ii)	–359 LE	$= \Delta H_{at} + E(Cl - Cl) + 1^{st} IE + 2^{nd} IE + 2 \times E_A(Cl) + LE$ $9 = 195 + 242 + 716 + 1450 - 2 \times 349 + LE$ $= 2 \times 349 - 359 - 195 - 242 - 716 - 1450$		
		LE =	= –2264 (kJ mol ^{–1})		[3]
		/-			

Mark Scheme

Syllabus

Paper

Page 3

[Total: 20]

[1]

[1]

6

because C1⁻/chloride anion has smaller radius/size than Br⁻/bromide

(iii) $LE(PbCl_2) > LE(PbBr_2)$ or more exothermic or stronger lattice

	Pa	ige 4	ļ	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – May/June 2014	9701	42
3	(a)	(i)	B ar	nd D		[1] + [1]
		(ii)	D			[1]
						3
	(b)	hea	at with	dilute H⁺(aq) <i>or</i> H₂SO₄(aq)		[1]
						1
	(c)	(i)		arger than that for ethanol because ethanoate ion/CH ₃ CO ₂ is stabilised by charge delocated	llisation	
			the	O–H bond is weakened due to its proximity to C=O, second electronegative/oxygen atom	carbonyl group	or [1]
			elec	maller than that for chloroethanoic acid because tron-withdrawing/electronegative chlorine (atom) mak le <i>or</i> O–H bond weaker <i>or</i> H more easily lost	es the anion mo	re [1]
		(ii)	[H ⁺]	= $\sqrt{([CH_3CO_2H] \times K_a)}$ = $\sqrt{(0.1 \times 1.75 \times 10^{-5})}$ = 1.32(3)	× 10⁻³ (mol dm ⁻³) [1]
			pH =	$=-\log_{10}[H^+]=$ 2.88 (2.9)		[1]
						4
	(d)	(i)		aOH) at start = $0.1 \times 20/1000 = 2.0 \times 10^{-3}$ mol aOH) at finish = 1.0 × 10 ⁻³ mol		[1]
		(ii)		is in 30 cm ³ of solution, NaOH] at finish = 1.0 × 10 ⁻³ /0.030 = 3.3(3) × 10⁻² mo ı (i)	Idm ⁻³ (≥2 s.f.) e	cf [1]
		(iii)		= $K_{\rm w}/[{\rm OH^-}]$ = 1 × 10 ⁻¹⁴ /3.33 × 10 ⁻² = 3.0 × 10 ⁻¹³ m = $-{\rm log_{10}}[{\rm H^+}]$ = 12.5(2)	ol dm ⁻³	[1]
				OH = $-\log_{10}(3.33 \times 10^{-2}) = 1.48$ = $pK_w - pOH = 14 - 1.48 = 12.5(2)$		[1]
		(iv)	pH/	vol curve: start at pH 2.88 (2.9) ecf		[1]
			verti	cal (over at least 2 pH units) portion at V = 10 cm ³		[1]
			leve	Is off at pH 12.5 \pm 0.3 ecf		[1]
		(v)	indic	cator is thymolphthalein		[1]

[Total: 15]

7

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

4. (a) (i) addition

AND

(ii) substitution [1]

1

(b)
$$Br_2 + AlBr_3 \longrightarrow Br^+ + AlBr_4$$
 (or can use $AlCl_3$ or $FeCl_3$ or $FeBr_3$ etc.) [1]

1

(c) (i) The two intermediate cations:

(ii) The ring (of π electrons) in benzene is a stable configuration *or* is unchanged after the reaction.

[1]

(d) E is benzoic acid

[1]

reaction 1: heat with KMnO₄ (+ OH⁻ or H⁺)

[1]

reaction 2: heat with $Cl_2 + AlCl_3$ or $FeCl_3$

[1]

3

(e) G is

[1]

reaction 3: SOC *l*₂ or PC *l*₅

[1]

reaction 4: LiA1H4

[1]

3

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

5. (a) (i) Na reacts with –OH *or* hydroxyl/alcohol groups

[1]

(ii) Fehling's solution reacts with -CHO or aldehyde groups

[1] **2**

(b) alkene or C=C or carbon double bond or phenol or phenylamine

[1]

1

(c) CH₃CH₂CH(OH)CHO

CH₃CH(OH)CH₂CHO

HOCH₂CH₂CH₂CHO

[1] + [1] + [1]

(d) (i) the CH₃CH(OH) group *or* the CH₃CO group *or* methyl secondary alcohol *or* methyl ketone

[1]

3

(ii) CH₃CH(OH)CH₂CHO

[1] **2**

(e) (i) optical isomerism

[1]

(ii)

HO, IIIH CHO

[1]

2

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

Section B

6. (a) (i)

Peptide bond correct [1] Rest of structure correct (skeletal, displayed or structural formula, or a mix)

(ii) Condensation *or* nucleophilic substitution *or* addition-elimination [1]

(iii) Water/H₂O [1]

4

(b)

•		
	DNA	RNA
	Contains deoxyribose	Contains ribose
	Contains thymine/T	Contains uracil/U
	Double strand/chain/helix or two strands	Single strand/chain

[3]

3

(ii) Mutations or addition/insertion/deletion/substitution/replacement (of a base) [1]

(iii) Changing A (or the 14th base) into U [1]

3

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

- 7 (a) (i) (Electrophoresis): the size/shape/ M_r of the amino acid or its charge
 - (ii) (Paper chromatography): the partition of the amino acid between, *or* the relative solubility of the compound in, the 2 phases *or* solvent/water and stationary phase/filter paper.

[1]

2

1

[1]

(b) Use ninhydrin as a locating agent

[1]

(c) The R_f value or retardation/retention factor *or* the distance travelled by the acid compared to that travelled by a standard sample of the amino acid

[1]

1

(d) R – glutamic acid; S – glycine; T – lysine

 $3 \times [1]$

3

(e)

3 × [1]

3

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

- **8. (a) (i)** Any addition polymer (e.g. polyethene, polypropene, polystyrene, PVC, PTFE, PVA, *Teflon*) [1]
 - (ii) Any condensation polymer (e.g. polyamide, polyester, nylon, *Terylene*, PET, PLA, *Kevlar*, *Nomex*) [1]
 - **(b)** Hydrolysis *or* nucleophilic substitution [1]
 - Ester **and** amide/peptide or –CO₂– **and** –CONH– [1]

2

2

2

1

3

CH₃

- Correct ester linkage [1]
- CH₃ side chain on only one monomer unit [1]
- (d) Plant materials do not generally contain unsaturated hydrocarbons/alkenes/ C=C [1]
- (e) (i) Y van der Waals' forces [1]
 - **Z** hydrogen bonding [1]
 - (ii) **Z**, because it can form hydrogen bonds with water *or* it contains polar CO and NH groups [1]