CHAPTER 4

Markov Partitions

We have studied dynamics of TA-maps and symbolic dynamics in the previous chapters. Our main task in this chapter is to show that every TA-homeomorphism has Markov partitions, and by them the TA-homeomorphism is realized on a symbolic dynamics. This symbolic dynamics is applied often to the ergodic theory of TA-homeomorphisms.

§4.1 Markov partitions and subshifts

Markov partitions for Anosov diffeomorphisms were first constructed by Sinai [Si1]. After that, Bowen [Bo2] found Markov partitions for basic sets of Axiom A diffeomorphisms. Ruelle [Ru] constructed Markov partitions for homeomorphisms satisfying some conditions that means local product structures.

Let $f: X \to X$ be a homeomorphism of a compact metric space. Let $\Delta(\varepsilon) = \{(x,y) : d(x,y) \le \varepsilon\}$ for $\varepsilon > 0$. Then we say that f has local product structure if the following conditions (A) and (B) are satisfied:

(A) There are $\delta_0 > 0$ and a continuous map $[\ ,\]: \Delta(\delta_0) \to X$ such that for $x,y,z \in X$

$$[x,x] = x,$$
 $[[x,y],z] = [x,z],$ $[x,[y,z]] = [x,z]$
 $f[x,y] = [f(x),f(y)]$

when the two sides of these relations are defined.

(B) There exist $0 < \delta_1 < \delta_0/2$ and $0 < \rho < \delta_1$ such that for each $x \in X$, letting

$$egin{aligned} V^u_{\delta_1}(x) &= \{y \in W^u_{\delta_0}(x) : d(x,y) < \delta_1\}, \ V^s_{\delta_1}(x) &= \{y \in W^s_{\delta_0}(x) : d(x,y) < \delta_1\}, \ N_x &= [V^u_{\delta_1}(x), V^s_{\delta_1}(x)], \end{aligned}$$

the conditions hold:

- (a) N_x is an open set of X and $diam(N_x) < \delta_0$,
- (b) $[,]: V_{\delta_1}^u(x) \times V_{\delta_1}^s(x) \to N_x$ is a homeomorphism,
- (c) $N_x \supset B_{\rho}(x)$ where $B_{\rho}(x) = \{y \in X : d(x,y) \leq \rho\}$.

If $f: X \to X$ has POTP, for $\delta > 0$ small we have $W^s_{\delta}(x) \cap W^u_{\delta}(y) \neq \emptyset$ when x is very near to y. If, in addition, f is expansive, then we see that $W^s_{\delta}(x) \cap W^u_{\delta}(y)$ is a set consisting of single point and it is denoted as [x, y].

Throughout this section let $f: X \to X$ be a TA-homeomorphism of a compact metric space.

Theorem 4.1.1. The homeomorphism f has a local product structure.

Proof. Let e>0 be an expansive constant for f and fix $\varepsilon_0=e/4$. Then there is $0<\delta_0<\varepsilon_0$ such that $W^s_{\varepsilon_0}(x)\cap W^u_{\varepsilon_0}(y)=[x,y]$ for $x,y\in X$ with $d(x,y)\leq \delta_0$.

First we show that $[\ ,\]:\Delta(\delta_0)\to X$ is continuous. Suppose a sequence $\{(x_n,y_n)\}$ of $\Delta(\delta_0)$ converges to $(x,y)\in\Delta(\delta_0)$. Put $z_n=[x_n,y_n]$. Since X is compact, there is a subsequence $\{z_{n_j}\}$ of $\{z_n\}$ that converges to $z\in X$. Since $z_{n_j}\in W^s_{\varepsilon_0}(x_{n_j})$, we have $d(f^i(x_{n_j}),f^i(z_{n_j}))\leq \varepsilon_0$ for $i\geq 0$ and n_j , and so $d(f^i(x),f^i(z))\leq \varepsilon_0$ for $i\geq 0$. Thus, $z\in W^s_{\varepsilon_0}(x)$. Similarly, $z\in W^u_{\varepsilon_0}(y)$ and z=[x,y]. This shows that $\{z_n\}$ converges to [x,y].

It is clear that [x,x]=x for all $x\in X$. Since $[x,y]\in W^s_{\varepsilon_0}(x)$, we have $[[x,y],z]\in W^s_{2\varepsilon_0}(x)\cap W^u_{\varepsilon_0}(z)$ and then [[x,y],z]=[x,z] by expansivity. Similarly, [x,[y,z]]=[x,z]. It is easily checked that f[x,y]=[f(x),f(y)] by uniform continuity.

To conclude the theorem we must prove (B). To do so define $g_1: X \times \Delta(\delta_0) \to \mathbb{R}$ by

$$g_1(x,(y,z))=d(x,[y,z])$$

for $x \in X$ and $(y, z) \in \Delta(\delta_0)$. Then g_1 is continuous and $g_1(x, (x, x)) = 0$. By uniform continuity of g_1 we can find $0 < \delta_1 < \delta_0/2$ such that $\operatorname{diam}(\{x, y, z\}) < 2\delta_1$ implies $d(x, [y, z]) < \delta_0/3$. If $(y, z) \in V^u_{\delta_1}(x) \times V^s_{\delta_1}(x)$, then $d(x, [y, z]) < \delta_0/3$ and thus $\operatorname{diam}(N_x) < \delta_0$.

To show openness of N_x let $w \in N_x$. Then there are $y \in V^u_{\delta_1}(x)$ and $z \in V^s_{\delta_1}(x)$ with w = [y, z]. Since $d(x, w) < \delta_0/3$, we can find maps

$$p_u: B_{\delta_0/3}(w) \to W^u_{\epsilon_0}(x), \quad p_s: B_{\delta_0/3}(w) \to W^s_{\epsilon_0}(x)$$

by $p_u(v) = [v,x]$ and $p_s(v) = [x,v]$ for $v \in B_{\delta_0/3}(w)$. They are clearly continuous. Since w = [y,z], we have $p_u(w) = [y,x] = y$ and $p_s(w) = z$. Thus there is a neighborhood $U \subset B_{\delta_0/3}(w)$ of w in X such that $p_u(U) \subset V_{\delta_1}^u(x)$ and $p_s(U) \subset V_{\delta_1}^s(x)$. If $v \in U$, then $v \in N_x$ since v = [[v,x],[x,v]] by expansivity. This implies that N_x is open in X. Therefore, (a) was proved.

(b) is easily checked as follows. Define a map $h: N_x \to V^u_{\delta_1}(x) \times V^s_{\delta_1}(x)$ by

$$h(w) = ([w, x], [x, w]), \quad w \in N_x.$$

Obviously, h is continuous and h is the inverse map of $[\ ,\]$; i.e. h is a homeomorphism.

To see (c) put

$$g_2(x, y) = \text{diam}\{x, [y, x], [x, y]\}$$

for $(x,y) \in \Delta(\delta_0)$. Then g_2 is a continuous map and there is $0 < \rho < \delta_1$ such that $d(x,y) < \rho$ implies $g_2(x,y) < \delta_1$. This shows that $[y,x] \in V^u_{\delta_1}(x)$ and $[x,y] \in V^s_{\delta_1}(x)$ and therefore $y = [[y,x],[x,y]] \in N_x$. \square

Remark 4.1.2. Let $x \in X$. Then $[y, z] \in N_x$ for $y, z \in N_x$.

For $y, z \in N_x$ there exist $u_1, u_2 \in V^u_{\delta_1}(x)$ and $v_1, v_2 \in V^s_{\delta_1}(x)$ such that $y = [u_1, v_1]$ and $z = [u_2, v_2]$. Thus $[y, z] = [[u_1, v_1], [u_2, v_2]] = [u_1, v_2] \in N_x$.

For convention we write

$$D_{x,y}^u = V_{\delta_1}^u(x) \cap N_y, \quad D_{x,y}^s = V_{\delta_1}^s(x) \cap N_y$$

for $x, y \in X$.

Lemma 4.1.3. For $x, y \in X$ with $d(x, y) < \rho$, $D_{x,y}^{\sigma}$ is an open neighborhood of x in $V_{\delta_{\tau}}^{\sigma}(x)$ ($\sigma = s, u$), and the maps

$$[\ ,y]:D^u_{x,y}\to D^u_{y,x},\ [y,\]:D^s_{x,y}\to D^s_{y,x}$$

are homeomorphisms.

Proof. Since N_y is open in X, $D_{x,y}^{\sigma}$ is open in $V_{\delta_1}^{\sigma}(x)$. If $d(x,y) \leq \rho$, then $x \in B_{\rho}(y) \subset N_y$ and $x \in D_{x,y}^{\sigma}$. Thus $D_{x,y}^{\sigma}$ is an open neighborhood of x in $V_{\delta_1}^{\sigma}(x)$. Let $z \in D_{x,y}^{u}$. Since $z \in N_y$, we have $[z,y] \in V_{\delta_1}^{u}(y)$. Since $z \in V_{\delta_1}^{u}(x) \subset N_x$ and $y \in B_{\rho}(x) \subset N_x$, we have $[z,y] \in N_x$. Thus $[z,y] \in D_{y,x}^{u}$. Similarly we have $[z,x] \in D_{x,y}^{u}$ for $z \in D_{y,x}^{u}$. That $[D_{x,y}^{u},y] = D_{y,x}^{u}$ follows from the properties of $[\ ,\]$. By (b) the map $[\ ,y]:D_{x,y}^{u} \to D_{y,x}^{u}$ is a homeomorphism and $[\ ,x]:D_{y,x}^{u} \to D_{x,y}^{u}$ is its inverse map. The same result is true for $\sigma = s$. \square

Lemma 4.1.4. For $x \in X$

- (a) $fV_{\delta_1}^s(x) \cap V_{\delta_1}^s(f(x))$ is open in $V_{\delta_1}^s(f(x))$,
- (b) $f^{-1}V^{u}_{\delta_{1}}(x) \cap V^{u}_{\delta_{1}}(f^{-1}(x))$ is open in $V^{u}_{\delta_{1}}(f^{-1}(x))$.

Proof. Take $w \in f(N_x) \cap V_{\delta_1}^s(f(x))$. Then $f^{-1}(w) \in N_x$ and $f^{-1}(w) = [y, z]$ for some $y \in V_{\delta_1}^u(x)$ and $z \in V_{\delta_1}^s(x)$. Since $V_{\delta_1}^u(z) \subset W_{\delta_0}^u(z)$, we have $f^{-1}(w) \in W_{\delta_0}^u(z)$.

On the other hand, since $w \in V^s_{\delta_1}(f(x))$, we have $w \in V^s_{\delta_1}(f(x)) \subset W^s_{2\delta_0}(f(z))$. By expansivity we have $f^{-1}(w) = z$ and so $w = f(z) \in fV^s_{\delta_1}(x)$. Therefore

$$f(N_x)\cap V^s_{\delta_1}(f(x))=fV^s_{\delta_1}(x)\cap V^s_{\delta_1}(f(x)).$$

Since N_x is open in X, we have (a) and similarly (b). \square

A subset R of X is called a rectangle if $diam(R) \leq \rho$ and $[x,y] \in R$ for $x,y \in R$.

Throughout this section let R denote a rectangle of X.

Remark 4.1.5. Since ρ is chosen such that $\rho < \delta_1$, we have $[x, y] = V^s_{\delta_1}(x) \cap V^u_{\delta_1}(y)$ for $x, y \in cl(R)$. Thus cl(R) is a rectangle.

For convention we write

$$V^s(x,R) = V^s_{\delta_1}(x) \cap R, \quad V^u(x,R) = V^u_{\delta_1}(x) \cap R$$

for $x \in X$. Denote as int $V^{\sigma}(x,R)$ the interior of $V^{\sigma}(x,R)$ in $V^{\sigma}_{\delta_1}(x)$ ($\sigma = s, u$) and write

$$\partial V^s(x,R) = V^s(x,R) \setminus \text{ int } V^s(x,R), \quad \partial V^u(x,R) = V^u(x,R) \setminus \text{ int } V^u(x,R).$$

Figure 15

Lemma 4.1.6. Let $x, y \in R$. Then

- (a) $R = [V^u(x,R), V^s(x,R)],$
- (b) $[\partial V^{u}(x,R),V^{s}(x,R)]=[\partial V^{u}(y,R),V^{s}(y,R)],$
- (c) $[V^u(x,R),\partial V^s(x,R)] = [V^u(y,R),\partial V^s(y,R)].$

Proof. Since R is a rectangle, clearly $[V^u(x,R),V^s(x,R)]\subset R$. Let $z\in R$, then

$$[z,x] \in R \cap V^u_{\delta_1}(x) = V^u(x,R)$$

and $[x,z] \in V^s(x,R)$. Thus

$$z = [[z, x], [x, z]] \in [V^u(x, R), V^s(x, R)]$$

(a) was proved.

Since diam $(R) \leq \rho$ and $y \in R$, we have $R \subset B_{\rho}(y) \subset N_y$ and so $V^u(x,R) \subset D^u_{x,y}$. Similarly, $V^u(y,R) \subset D^u_{y,x}$. Since $[V^u(y,R),y] = V^u(y,R)$, by Lemma 4.1.3 we have

$$[\partial V^u(y,R),x]=\partial V^u(x,R)$$

and thus

$$\begin{aligned} [\partial V^u(x,R),V^s(x,R)] &= [[\partial V^u(y,R),x],[x,V^s(y,R)]] \\ &= [\partial V^u(y,R),V^s(y,R)] \end{aligned}$$

(b) was proved. (c) is shown in the same way. \square

We write

$$\partial^s R = [\partial V^u(x,R), V^s(x,R)], \quad \partial^u R = [V^u(x,R), \partial V^s(x,R)].$$

By Lemma 4.1.6, $\partial^s R$ and $\partial^u R$ do not depend on $x \in R$. Since R is a rectangle, $\partial^s R \subset R$ and $\partial^u R \subset R$. Denote as $\operatorname{int}(R)$ the interior of R in X and write

$$\partial R = R \setminus \operatorname{int}(R)$$
.

Lemma 4.1.7.

- (a) $int(R) = [intV^u(x, R), intV^s(x, R)]$ for $x \in R$,
- (b) $\partial R = \partial^s R \cup \partial^u R$.

Proof. Since $R \subset N_x$ and N_x is open in X, the interior of R in N_x coincides with int(R). By Lemma 4.1.3, (a) follows from (B) (b). Thus

$$egin{aligned} \partial R &= R \setminus \operatorname{int}(R) \ &= [V^u(x,R),V^s(x,R)] \setminus [\operatorname{int}V^u(x,R),\operatorname{int}V^s(x,R)] \ &= \partial^s R \cup \partial^u R. \Box \end{aligned}$$

Remark 4.1.8. int(R) is a rectangle. This follows from Lemma 4.1.7 (a).

Lemma 4.1.9. Let $x \in R$. Then $intV^{\sigma}(x,R) = V^{\sigma}(x,int(R))$ for $\sigma = s,u$.

Proof. Since $\operatorname{int}(R)$ is open in X, $V^s(x,\operatorname{int}(R))$ is open in $V^s_{\delta_1}(x)$. Thus $V^s(x,\operatorname{int}(R))\subset\operatorname{int}V^s(x,R)$. Let $z\in\operatorname{int}V^s(x,R)$, then z=[x,z] and by Lemma 4.1.7 (a), $z\in\operatorname{int}(R)$. Therefore, $z\in V^s(x,\operatorname{int}(R))$. The same result is true for $\sigma=u$. \square

Lemma 4.1.10. Let $x \in R$. Then $\operatorname{cl}(V^{\sigma}(x,R)) = V^{\sigma}(x,\operatorname{cl}(R))$ for $\sigma = s,u$.

Proof. Since cl(R) is a rectangle, we have

$$[x,\operatorname{cl}(R)]\subset\operatorname{cl}(R)\cap V^s_{\delta_1}(x)=V^s(x,\operatorname{cl}(R)).$$

Let $z \in V^s(x,\operatorname{cl}(R))$, then $z \in V^s_{\delta_1}(x)$ and $z = [x,z] \in [x,\operatorname{cl}(R)]$. Thus $V^s(x,\operatorname{cl}(R)) = [x,\operatorname{cl}(R)]$. Since $[x,\operatorname{cl}(R)]$ is closed in X, we have $\operatorname{cl}(V^s(x,R)) \subset V^s(x,\operatorname{cl}(R))$. Similarly, $\operatorname{cl}(V^u(x,R)) \subset V^u(x,\operatorname{cl}(R))$. By Lemma 4.1.6 (a),

$$R = [V^u(x, R), V^s(x, R)]$$

and thus

$$R \subset [\operatorname{cl}(V^u(x,R)),\operatorname{cl}(V^s(x,R))]$$

which is closed in X. Thus

$$\operatorname{cl}(R) \subset [\operatorname{cl}(V^u(x,R)),\operatorname{cl}(V^s(x,R))]$$

 $\subset [V^u(x,\operatorname{cl}(R)),V^s(x,\operatorname{cl}(R))] = \operatorname{cl}(R).$

Therefore,

$$V^{s}(x,\operatorname{cl}(R)) = [x,\operatorname{cl}(R)] = [x,[\operatorname{cl}(V^{u}(x,R)),\operatorname{cl}(V^{s}(x,R))]$$
$$= [x,\operatorname{cl}(V^{s}(x,R))] = \operatorname{cl}(V^{s}(x,R)).\square$$

Figure 16

A rectangle R is said to be proper if $R = \operatorname{cl}(\operatorname{int}(R))$. A Markov partition for a homeomorphism $f: X \to X$ of a compact metric space is a finite cover $\{R_1, \dots, R_m\}$ of X such that

- (a) each R_i is a proper rectangle,
- (b) $int(R_i) \cap int(R_i) = \emptyset$ for $i \neq j$,
- (c) let $x \in int(R_i) \cap f^{-1}int(R_j)$, then

$$fV^s(x,R_i) \subset V^s(f(x),R_j)$$
 and $fV^u(x,R_i) \supset V^u(f(x),R_j)$.

§4.2 Construction of Markov partitions

With the preparation of §4.1 we construct a Markov partition for a TA-homeomorphism $f: X \to X$ of a compact metric space by using the method in Bowen [Bo1].

We say that a subset A of X is γ -dense if for every $x \in X$ there exists $y \in A$ such that $d(x, y) < \gamma$.

Choose $0 < \beta < \min\{\rho/2, e\}$ such that $d(x, y) < \beta$ implies $\max\{d(f(x), f(y)), d(f^{-1}(x), f^{-1}(y))\} < \delta_1$. Since f has POTP, let $0 < \alpha < \beta/2$ be a number such that any α -pseudo orbit is $\beta/2$ traced by some point of X. We choose $0 < \gamma < \alpha/2$ such that

$$d(x,y) < \gamma \Longrightarrow d(f(x),f(y)) < \alpha/2.$$

Let $P = \{P_1, \dots, P_r\}$ be a γ -dense finite set of X and define

$$\Sigma(P) = \{(q_j) \in P^{\mathbb{Z}} : d(f(q_j), q_{j+1}) < \alpha, j \in \mathbb{Z}\}.$$

Given $q \in \Sigma(P)$ there is a unique $\theta(q) \in X$ which $\beta/2$ -traces q. This implies that for any $x \in X$ there is $q \in \Sigma(P)$ with $x = \theta(q)$. Thus $\theta : \Sigma(P) \to X$ is surjective and the diagram

Here σ denotes the shift map defined as usual.

Now define

$$T_s = \{\theta(q) : q \in \Sigma(P), q_0 = P_s\}, \quad 1 \le s \le r.$$

Then $\operatorname{diam}(T_s) \leq \beta$ and $T = \{T_1, \dots, T_r\}$ is a cover of X. Fix $1 \leq s \leq r$. If $x, y \in T_s$, then there exist $q, q' \in \Sigma(P)$ such that

$$x = \theta(q), \ y = \theta(q') \ \ ext{and} \ \ q_0 = q_0' = P_s.$$

Put $q_j^* = q_j$ for $j \ge 0$, $q_j^* = q_j'$ for $j \le 0$ and write $q^* = (q_j^*) \in \Sigma(P)$. Then we have

$$d(f^{j}(\theta(q^{*})), f^{j}(\theta(q))) < \beta$$
 for $j \ge 0$,
 $d(f^{j}(\theta(q^{*})), f^{j}(\theta(q'))) < \beta$ for $j \le 0$.

Since $\beta < e$ and

$$[x,y] = [\theta(q),\theta(q')] \in W^s_\beta(\theta(q)) \cap W^u_\beta(\theta(q')),$$

we have $[x, y] = \theta(q^*)$, which is contained in T_s . Therefore, T_s is a rectangle.

We next prove that $\theta: \Sigma(P) \to X$ is continuous. If this is false, then there is $\lambda > 0$ so that for every N we can find $q^N, \tilde{q}^N \in \Sigma(P)$ with $q_j^N = \tilde{q}_j^N, |j| \leq N$, such that

$$d(\theta(q^N), \theta(\tilde{q}^N)) > \lambda.$$

Let $x_N = \theta(q^N)$ and $y_N = \theta(\tilde{q}^N)$. Then

$$d(f^j(x_N), f^j(y_N)) < 2\beta, \quad |j| \le N.$$

By taking a subsequence we have $x_N \to x$ and $y_N \to y$ as $N \to \infty$. Then $d(f^j(x), f^j(y)) \le 2\beta$ for all $j \in \mathbb{Z}$ and so x = y. On the other hand, since $d(x, y) \ge \lambda$, we have a contradiction.

Continuity of θ ensures that T_s is closed in X. Let $x \in X$ and define

$$T(x) = \{T_j \in T : x \in T_j\},$$
 $T^*(x) = \{T_k \in T : T_k \cap T_j \neq \emptyset \text{ for some } T_j \in T(x)\}.$

The set $Z = X \setminus \bigcap_{j=1}^r \partial T_j$, where each ∂T_j is the boundary in X, is open in X. Here we define

$$Z^* = \{x \in X : V^s_{\delta_1}(x) \cap \partial^s T_k = \emptyset, V^u_{\delta_1}(x) \cap \partial^u T_k = \emptyset \text{ for all } T_k \in T^*(x)\}.$$

Lemma 4.2.1. Z^* is dense in X.

Proof. For $x \in X$ we define

$$\partial_x^s = \bigcup \{\partial^s T_k : T_k \in T^*(x)\}, \quad \partial_x^u = \bigcup \{\partial^u T_k : T_k \in T^*(x)\}.$$

Since $diam(T_k) \leq \beta$, we have

$$\bigcup \{T_k : T_k \in T^*(x)\} \subset B_\rho(x) \subset N_x$$

and thus

$$[\partial_x^s,x] = \bigcup_{T_k \in T^{\bullet}(x)} [\partial^s T_k,x] = \bigcup_{T_k \in T^{\bullet}(x)} [\partial V^u(y_k,T_k),x] \subset V^u_{\delta_1}(x)$$

where $y_k \in T_k$. Since $V^u(y_k, T_k) \subset D^u_{y_k, x}$, by Lemma 4.1.3 we have $[\partial V^u(y_k, T_k), x] \subset D^u_{x, y_k}$. But $[\partial V^u(y_k, T_k), x]$ is nowhere dense in D^u_{x, y_k} and so is $V^u_{\delta_1}(x)$. Thus $[\partial_x^s, x]$ is nowhere dense in $V^u_{\delta_1}(x)$.

Let $x \in Z$, then there exists an open neighborhood $U_x \subset N_x$ of x in X such that T(x) = T(y) for any $y \in U_x$, from which $\partial_y^{\sigma} = \partial_x^{\sigma}$ for $\sigma = s, u$. Let us define

$$U'_{x} = U_{x} \bigcap [V_{\delta_{1}}^{u}(x) \setminus [\partial_{x}^{s}, x], V_{\delta_{1}}^{s}(x) \setminus [x, \partial_{x}^{u}]].$$

By (B)(b) we have that U_x' is dense in U_x . For $y \in U_x'$ there exist $y_1 \in V_{\delta_1}^u(x) \setminus [\partial_x^s, x]$ and $y_2 \in V_{\delta_1}^s(x) \setminus [x, \partial_x^u]$ such that $y = [y_1, y_2]$. Thus $V_{\delta_1}^s(y) \cap \partial_x^s = \emptyset$. Indeed, if $z \in V_{\delta_1}^s(y) \cap \partial_x^s$, then

$$y_1 = [y, x] = [[y, z], x] = [z, x] \in [\partial_x^s, x],$$

thus contradicting.

Similarly, $V_{\delta_1}^u(y) \cap \partial_x^u = \emptyset$. Therefore, $y \in Z^*$ and so $U_x' \subset Z^* \neq \emptyset$ for $x \in Z$. Since U_x is an open neighborhood of x, Z^* is dense in Z. Since Z is dense in X, Z^* is dense in X. \square

For $T_i, T_k \in T$ with $T_i \cap T_k \neq \emptyset$ we define

$$\begin{split} T_{j,k}^1 &= \{x \in T_j : V_{\delta_1}^u(x) \cap T_k \neq \emptyset, \ V_{\delta_1}^s(x) \cap T_k \neq \emptyset\}, \\ T_{j,k}^2 &= \{x \in T_j : V_{\delta_1}^u(x) \cap T_k \neq \emptyset, \ V_{\delta_1}^s(x) \cap T_k = \emptyset\}, \\ T_{j,k}^3 &= \{x \in T_j : V_{\delta_1}^u(x) \cap T_k = \emptyset, \ V_{\delta_1}^s(x) \cap T_k \neq \emptyset\}, \\ T_{j,k}^4 &= \{x \in T_j : V_{\delta_1}^u(x) \cap T_k = \emptyset, \ V_{\delta_1}^s(x) \cap T_k = \emptyset\}. \end{split}$$

Figure 17

Remark 4.2.2. If $T_j \cap T_k \neq \emptyset$ then $T_{j,k}^1 = T_j \cap T_k$ and $T_j = \bigcup_{n=1}^4 T_{j,k}^n$.

Remark 4.2.3. Each $T^n_{j,k}$ is a rectangle. Indeed, it is clear that $T^1_{j,k}$ is a rectangle. To see that $T^2_{j,k}$ is a rectangle, let $x,y\in T^2_{j,k}$. Then $z\in V^u_{\delta_1}(y)\cap T_k\neq\emptyset$ and $V^u_{\delta_1}(x)\cap T_k=\emptyset$. Since z=[z,y]=[z,[x,y]] and $d(z,[x,y])\leq 2\beta<\delta_1$, we have $z\in V^u_{\delta_1}([x,y])\cap T_k\neq\emptyset$. If $z'\in V^s_{\delta_1}([x,y])\cap T_k\neq\emptyset$, then z'=[[x,y],z']=[x,z']. Since $d(z',x)\leq 2\beta<\delta_1$, we have $z'\in V^s_{\delta_1}(x)\cap T_k\neq\emptyset$, a contradiction. Thus $V^s_{\delta_1}([x,y])\cap T_k=\emptyset$ and $[x,y]\in T^2_{j,k}$. This implies that $T^2_{j,k}$ is a rectangle. It is checked by the similar way that $T^3_{j,k}$ and $T^4_{j,k}$ are rectangles.

Lemma 4.2.4. For $T_i, T_k \in T$ with $T_i \cap T_k \neq \emptyset$

$$\begin{split} & \operatorname{int}(T^n_{j,k}) = \\ & \{x \in T^n_{i,k} : V^s_{\delta_i}(x) \cap (\partial^s T_j \cup \partial^s T_k) = \emptyset, \ V^u_{\delta_i}(x) \cap (\partial^u T_j \cup \partial^u T_k) = \emptyset \} \end{split}$$

for $1 \leq n \leq 4$.

Proof. Take $x \in \text{int}(T_{j,k}^n)$ and $z \in V_{\delta_1}^s(x) \cap \partial^s T_j \neq \emptyset$. By the definition of $\partial^s T_j$ there exist $z_1 \in \partial V^u(x,T_j)$ and $z_2 \in V^s(x,T_j)$ such that $z = [z_1,z_2]$. Since

$$x=[z_2,z_1]\in\partial V^u(x,T_j)\cap V^s(x,T_j),$$

we have

$$x = [[z_1, z_2], [z_2, z_1]] = z_1 \in \partial^s T_j.$$

This contradicts $x \in \text{int}(T_j)$ by Lemma 4.1.7 (b).

If $z \in V_{\delta_1}^s(x) \cap \partial^s T_k$, then $z = [z_1, z_2]$ for some $z_1 \in \partial V^u(z, T_k)$ and some $z_2 \in V^s(z, T_k)$. Thus

$$z = [[z_1, z_2], [z_2, z_1]] = z_1$$

and so $z \in \partial V^u(z, T_k)$. Since $d(x, z) \leq \rho$, by Lemma 4.1.3 there is a homeomorphism

$$[\ ,z]:D^u_{x,z}\to D^u_{z,x}$$

and then [x,z] = z since $z \in V_{\delta_1}^s(x)$. Note that $D_{x,z}^u \cap T_{j,k}^n$ is a neighborhood of x in $D_{x,z}^u$, and that $V^u(z,T_k)$ has no interior points in T_k . Then we can find the following

$$v \in D_{x,z}^u \cap T_{i,k}^n$$
 with $[v,z] \notin V^u(z,T_k)$.

For this v we have $V_{\delta_1}^s(v) \cap T_k = \emptyset$. Indeed, if $w \in V_{\delta_1}^s(v) \cap T_k \neq \emptyset$, then $[v,z] = [[w,v],z] \in V^u(z,T_k)$. But $[v,z] \notin V^u(z,T_k)$, thus contradicting.

Therefore, $V_{\delta_1}^s(x) \cap (\partial^s T_j \cap \partial^s T_k) = \emptyset$ when $x \in \operatorname{int}(T_{j,k}^n)$. By the similar way we can prove that

$$x \in \operatorname{int}(T_{i,k}^n) \Longrightarrow V_{\delta_1}^u(x) \cap (\partial^u T_i \cap \partial^u T_k) = \emptyset.$$

Suppose that

$$x \in \partial^s T_{j,k}^n$$
 and $V_{\delta_1}^s(x) \cap (\partial^s T_j \cup \partial^s T_k) = \emptyset$.

Then $x \in \partial V^u(x, T_{i,k}^n)$. If $x \in \partial V^u(x, T_i)$, then

$$x \in [\partial V^u(x,T_j), V^s(x,T_j)] = \partial^s T_j$$

and so $V_{\delta_1}^s(x) \cap \partial^s T_j \neq \emptyset$, thus contradicting. Therefore, $x \in \text{int}(V^u(x, T_j))$.

Since $d(x,y_k) \leq \rho$ for $y_k \in T_k$, by Lemma 4.1.3 there is a homeomorphism $[y_k]: D^u_{x,y_k} \to D^u_{y_k,x}$. Since $V^s_{\delta_1}(x) \cap \partial^s T_k = \emptyset$ and $\partial V^u(y_k,T_k) \subset \partial^s T_k$, we have $V^s_{\delta_1}(x) \cap \partial V^u(y_k,T_k) = \emptyset$ and thus $[x,y_k] \notin \partial V^u(y_k,T_k)$. Since T_k is closed, $V^u(y_k,T_k)$ is closed in X by Lemma 4.1.10. Since $V^u(y_k,T_k) \subset D^u_{y_k,x}$, $\partial V^u(y_k,T_k)$ is the boundary of $V^u(y_k,T_k)$ in $D^u_{y_k,x}$. Thus there is a neighborhood $U^u_x \subset V^u(x,T_j)$ of x in D^u_{x,y_k} such that

$$[U_x^u, y_k] \subset V^u(y_k, T_k)$$
 or $[U_x^u, y_k] \subset D_{y_k, x}^u \setminus V^u(y_k, T_k)$,

namely $V_{\delta_1}^s(v) \cap T_k \neq \emptyset$ for all $v \in U_x^u$ or $V_{\delta_1}^s(v) \cap T_k = \emptyset$ for all $v \in U_x^u$.

On the other hand, since $U^u_x \subset V^u(x,T_j)$, we have that either $V^u_{\delta_1}(v) \cap T_k \neq \emptyset$ for all $v \in U^u_x$, or $V^u_{\delta_1}(v) \cap T_k = \emptyset$ for all $v \in U^u_x$. Therefore, $U^u_x \subset T^n_{j,k}$ which contradicts $x \in \partial V^u(x,T^n_{j,k})$. It was proved that for $x \in T^n_{j,k}$

$$V^s_{\delta_1}(x)\cap(\partial^sT_j\cup\partial^sT_k)=\emptyset\Longrightarrow x\not\in\partial^sT^n_{j,k}.$$

Similarly we can prove that $V_{\delta_1}^u(x) \cap (\partial^u T_j \cup \partial^u T_k) = \emptyset$ implies $x \notin \partial^u T_{j,k}^n$. Therefore the conclusion is obtained by Lemma 4.1.7 (b) \square

Remark 4.2.5. Let $x \in Z^*$. If $T_j \cap T_k \neq \emptyset$ for $T_j \in T(x)$ and $T_k \in T$, by Lemma 4.2.4 we have $x \in \text{int}(T_{j,k}^n)$ for some n.

For $x \in Z^*$ define

$$R(x) = \bigcap \{ \operatorname{int}(T_{j,k}^n) : T_j \cap T_k \neq \emptyset \text{ for } T_j \in T(x), T_k \in T \text{ and } x \in \operatorname{int}(T_{j,k}^n) \}.$$

Remark 4.2.6. R(x) is an open rectangle and for $y \in R(x)$, R(x) = R(y) and T(x) = T(y).

The former is clear. If $T_k \in T(y)$ and $T_j \in T(x)$, then $y \in T_j \cap T_k \neq \emptyset$ and so $y \in R(x) \subset T_{j,k}^1$ and $T_k \in T(x)$. Therefore, $T(y) \subset T(x)$. It is clear that $T(x) \subset T(y)$. Thus T(x) = T(y). By definition, R(x) = R(y) for $y \in R(x)$.

Since T is finite, so is $\{R(x): x \in Z^*\}$. Thus there exist $x_1, \dots, x_m \in Z^*$ such that

$$Z^* = R(x_1) \cup \cdots \cup R(x_m)$$

is a disjoint union.

Lemma 4.2.7. Let $x \in R(x_i) \cap f^{-1}R(x_j)$ for $i \neq j$. Then

(a)
$$fV^s(x,R(x_i)) \subset V^s(f(x),R(x_j)),$$

(b)
$$fV^{u}(x,R(x_{i}))\supset V^{u}(f(x),R(x_{j})).$$

Proof. Fix $x \in R(x_i) \cap f^{-1}R(x_j)$ and let $v \in X$. Then $v = \theta(q)$ for some $q \in \Sigma(P)$. Suppose $q_0 = P_s$ and $q_1 = P_t$ for $P_s, P_t \in P = \{P_1, \dots, P_r\}$.

If $w \in V^s(v, T_s)$, then there is $q' \in \Sigma(P)$ such that $w = \theta(q')$ and $q'_0 = P_s$. Thus

$$w = [v, w] = [\theta(q), \theta(q')] = \theta(qq')$$

so that

$$f(w) = f \circ \theta(qq') = \theta \circ \sigma(qq') \in T_t.$$

Here $qq' = (\cdots, q'_{-2}, q'_{-1}, q_0, q_1, q_2, \cdots)$. Since $w = [v, w] \in V^s_{\delta_1}(v)$ and $d(v, w) < \beta$, we have $d(f(v), f(w)) < \delta_1$ and so

$$f(w) \in V_{\delta_1}^s(f(v)) \cap T_t = V^s(f(v), T_t).$$

Since w is arbitrary, we have

$$(1) fV^s(v,T_s) \subset V^s(f(v),T_t)$$

and in the similar way

$$(2) fV^u(v,T_s) \supset V^u(f(v),T_t).$$

Let $y \in V^s(x, R(x_i))$. Then $y \in V^s_{\delta_1}(x)$ and $R(x) = R(y) = R(x_i)$. We first prove that T(f(x)) = T(f(y)). If $f(x) \in T_j$ and $f(x) = \theta \circ \sigma(q)$ where $q_1 = P_j$ and $q_0 = P_s$, then $x = \theta(q) \in T_s$. By (1) we have

$$f(y) \in fV^s(x, T_s) \subset V^s(f(x), T_i)$$

and thus $f(y) \in T_j$. Similarly, $f(x) \in T_j$ when $f(y) \in T_j$.

Next we prove that if $T_j \in T(f(x)) = T(f(y))$ and $T_j \cap T_k \neq \emptyset$ for $T_k \in T$ then $f(x), f(y) \in T_{j,k}^n$. Since $f(y) \in V^s(f(x), T_j)$, f(x) and f(y) belong to $T_{j,k}^1 \cup T_{j,k}^3$ or $T_{j,k}^2 \cup T_{j,k}^4$. Suppose $V_{\delta_1}^u(f(y)) \cap T_k = \emptyset$ and $V_{\delta_1}^u(f(x)) \cap T_k \neq \emptyset$. Note that this assumption is equivalent to

(3)
$$V^{u}(f(y),T_{i})\cap T_{k}=\emptyset, \quad V^{u}(f(x),T_{i})\cap T_{k}\neq\emptyset.$$

Take $f(z) \in V^u(f(x), T_j) \cap T_k$. Let $f(x) = \theta \circ \sigma(q)$ for $q \in \Sigma(P)$ with $q_1 = P_j$ and $q_0 = P_s$. By (2) we have

$$f(z) \in V^u(f(x), T_j) \subset fV^u(x, T_s).$$

Let $f(z) = \theta \circ \sigma(q')$ for $q' \in \Sigma(P)$ with $q'_1 = P_k$ and $q'_0 = P_t$. Then $z \in T_t$ and $z \in T_s \cap T_t \neq \emptyset$. Since $x \in T_s$, we have $T_s \in T(x) = T(y)$. Since $z \in V^u(x, T_s) \cap T_t$ and x, y belong to the same set $T^n_{s,t}$, it follows that $V^u(y, T_s) \cap T_t \neq \emptyset$. Thus there is $z' \in V^u(y, T_s) \cap T_t$ and then

$$z'' = [z,y] = [z,z'] \in V^s(z,T_t)$$

and by (1)

$$f(z'') \in V^s(f(z), T_k).$$

Since $f(z), f(y) \in T_i$, we have

$$f(z'') = [f(z), f(y)] \in V^{u}(f(y), T_{j})$$

which contradicts (3).

Now we denote

$$R(f(x))' = \bigcap \{T^n_{j,k}: T_j \cap T_k \neq \emptyset \text{ for } T_j \in T(f(x)), T_k \in T \text{ and } f(x) \in T^n_{j,k}\}.$$

Then, $\operatorname{int}(R(f(x))') = R(f(x)) = R(x_j)$ since $f(x) \in R(x_j)$. Since diam $(R(x_j)) \leq \beta$, we have $fV^s(x, R(x_j)) \subset V^s_{\delta_s}(f(x))$ and thus

$$fV^s(x, R(x_j)) \subset V^s(f(x), R(f(x))').$$

Lemma 4.1.4 (a) ensures that $fV_{\delta_1}^s(x) \cap V_{\delta_1}^s(f(x))$ is open in $V_{\delta_1}^s(f(x))$ and $R(x_j)$ is also open in X. Thus $fV^s(x, R(x_i))$ is open in $V_{\delta_1}^s(f(x))$. Therefore, by Lemma 4.1.9

$$fV^s(x, R(x_i)) \subset \operatorname{int}(V^s(f(x), R(x_j))) = V^s(f(x), R(x_j)).$$

Similarly we can prove that $V^u(f(x), R(x_j)) \subset fV^u(x, R(x_i))$. \square

With the above preparations we have the following theorem.

Theorem 4.2.8. Let $f: X \to X$ be a homeomorphism of a compact metric space. If f is a TA-homeomorphism, then there exists in X Markov partitions with arbitrarily small diameter.

Proof. Let $R_j = \operatorname{cl}(R(x_j))$ for $1 \leq j \leq m$. Then $\mathcal{R} = \{R_1, \dots, R_m\}$ is a Markov partition of X. Indeed, \mathcal{R} is a cover of X, and each R_j is a proper rectangle with $\operatorname{diam}(R_j) \leq \beta$ and $\operatorname{int}(R_i) \cap \operatorname{int}(R_j) = \emptyset$ for $i \neq j$. The remainder of the proof is to check that if $x \in \operatorname{int}(R_i) \cap f^{-1}\operatorname{int}(R_j)$ then $fV^s(x,R_i) \subset V^s(f(x),R_j)$ and $fV^u(x,R_i) \supset V^u(f(x),R_j)$.

By Lemma 4.2.7

$$fV^s(x,R(x_i)) \subset V^s(f(x),R(x_j))$$

and by Lemma 4.1.10

$$fV^s(x,R_i)\subset V^s(f(x),R_j)$$

and then for $y \in R_i \cap f^{-1}(R_j)$

$$fV^{s}(y, R_{i}) = f[y, V^{s}(x, R_{i})]$$

= $[f(y), fV^{s}(x, R_{i})] \subset [f(y), V^{s}(f(x), R_{j})]$
= $V^{s}(f(y), R_{i}).$

The proof of one half has been given. The proof of the other half is similar and is therefore omitted. \Box

Remark 4.2.9. Let $f: X \to X$ be a homeomorphism of a compact metric space and let $\Omega(f)$ be the nonwandering set of f in X. If f is a TA-homeomorphism, then $f_{|\Omega(f)}$ has POTP by Theorem 3.1.8 and it is expansive. Thus $\Omega(f)$ has Markov partitions by Theorem 4.2.8. $\Omega(f)$ is expressed as the finite disjoint union $\Omega(f) = \bigcup \Omega_j$ of basic sets Ω_j which are open and closed in $\Omega(f)$ (see Theorems 3.1.2 and 3.1.11). Thus $f_{|\Omega_j|}: \Omega_j \to \Omega_j$ is a TA-homeomorphism. Therefore, each Ω_j has Markov partitions.

§4.3 Symbolic dynamics

Let $f: X \to X$ be a TA-homeomorphism of a compact metric space.

Let $\mathcal{R} = \{R_1, \dots, R_m\}$ be a Markov partition of a basic set Ω_s and define the transition matrix $A = A(\mathcal{R})$ by

$$A_{ij} = \left\{ egin{array}{ll} 1 & \quad ext{if} \quad ext{int}(R_i) \cap f^{-1}(ext{int}(R_j))
eq \emptyset \ & \quad ext{otherwise} \ . \end{array}
ight.$$

Lemma 4.3.1. Suppose $x \in R_i \cap f^{-1}(R_j)$ and $A_{ij} = 1$. Then $fV^s(x, R_i) \subset V^s(f(x), R_j)$ and $fV^u(x, R_i) \supset V^u(f(x), R_j)$.

Proof. This is the same as the last part of the proof of Theorem 4.2.8. \Box

Lemma 4.3.2. Let $D \subset V^s_{\delta_1}(x) \cap \Omega_s$ and $C \subset V^u_{\delta_1}(x) \cap \Omega_s$. Then the rectangle [C,D] is proper if and only if $D = \operatorname{cl}(\operatorname{int}(D))$ and $C = \operatorname{cl}(\operatorname{int}(C))$ as subsets of $V^s_{\delta_1}(x) \cap \Omega_s$ and $V^u_{\delta_1}(x) \cap \Omega_s$ respectively.

Proof. This follows from (B) (b). □

Let R, S be two rectangles in Ω_s . Then S is called a *u*-subrectangle of R if (a) $S \neq \emptyset$, $S \subset R$ and S is proper,

(b) $V^{u}(y,S) = V^{u}(y,R)$ for $y \in S$.

Lemma 4.3.3. Suppose S is a u-subrectangle of R_i and $A_{ij} = 1$. Then $f(S) \cap R_j$ is a u-subrectangle of R_j .

Proof. Take $x \in R_i \cap f^{-1}(R_j)$ and put $D = V^s(x, R_i) \cap S$. Since S is a u-subrectangle, we have

$$S = \bigcup \{V^{u}(y, R_{i}) : y \in D\} = [V^{u}(x, R_{i}), D].$$

Since S is proper and nonempty, by Lemma 4.3.2 we have $\emptyset \neq D = \operatorname{cl}(\operatorname{int}(D))$ and

$$f(S) \cap R_j = \bigcup \{ fV^u(y, R_i) \cap R_j : y \in D \}.$$

Since $A_{ij} = 1$, we have that $f(y) \in R_j$ for $y \in D$ and $y \in R_i \cap f^{-1}(R_j)$. Thus

$$fV^{u}(y,R_{i})\cap R_{j}=V^{u}(f(y),R_{j})$$

by Lemma 4.3.1 and so

$$f(S) \cap R_j = \bigcup \{V^u(y, R_j) : y \in f(D)\} = [V^u(f(x), R_j), f(D)].$$

Since $R_j = [V^u(f(x), R_j), V^s(f(x), R_j)]$ by Lemma 4.1.6 and R_j is proper, $V^u(f(x), R_j)$ is also proper. Since f maps $V^s(x, R_i)$ homeomorphically onto a neighborhood of $V^s(f(x), R_j)$, we have $f(D) = \operatorname{cl}(\operatorname{int}(f(D)))$ and so $f(S) \cap R_j$ is proper by Lemma 4.3.2. Since $f(D) \neq \emptyset$, we have $f(D) \cap R_j \neq \emptyset$. If $y'' \in f(S) \cap R_j$, then $y'' \in V^u(y', R_j)$ for some $y' \in f(D)$ and thus

$$V^u(y'',R_j)=V^u(y',R_j)\subset f(S)\cap R_j.$$

Therefore

$$V^{u}(y'',R_{j})=V^{u}(y'',f(S)\cap R_{j})$$

for $y'' \in f(S) \cap R_j$. This implies that $f(S) \cap R_j$ is a *u*-subrectangle of R_j . \square

Theorem 4.3.4. Let Σ_A be the compact subset of $Y_m^{\mathbb{Z}}$ defined by

$$\Sigma_A = \{x = (x_i) : A_{x_i x_{i+1}} = 1 \text{ for } i \in \mathbb{Z}\}$$

and $\sigma: \Sigma_A \to \Sigma_A$ be the shift map defined by $\sigma((x_i)) = (x_{i+1})$ as usual. For each $a \in \Sigma_A$, the set $\bigcap \{f^{-j}(R_{a_j}): j \in \mathbb{Z}\}$ consists of a single point which is denoted by $\pi(a)$. The map $\pi: \Sigma_A \to \Omega_s$ is a continuous surjection such that the diagram

and π is injective on the Baire set $Y = \Omega_s \setminus \bigcup \{f^j(\partial \mathcal{R}) : j \in \mathbb{Z}\}.$

Proof. If $A_{a_i a_{i+1}} = 1$ for $1 \le i \le n-1$, by using Lemma 4.3.3 inductively we have that

$$\bigcap_{j=1}^{n} f^{n-j}(R_{a_{j}}) = R_{a_{n}} \bigcap f(\bigcap_{j=1}^{n-1} (R_{a_{j}}))$$

is a *u*-subrectangle of R_{a_n} . Thus

$$K_n(a) = \bigcap \{f^{-j}(R_{a_j}) : -n \le j \le n\}$$

is nonempty. Since $K_n(a) \supset K_{n+1}(a) \supset \cdots$, we have

$$K(a) = \bigcap_{-\infty}^{\infty} f^{-j}(R_{a_j}) = \bigcap_{1}^{\infty} K_n(a) \neq \emptyset.$$

If $x, y \in K(a)$, then $f^j(x), f^j(y) \in R_{a_j}$ are close for all $j \in \mathbb{Z}$ and so x = y by expansivity. Thus K(a) is a single point. Here we define $\pi(a) = K(a)$.

Since $K(\sigma(a)) = \bigcap f^{-j}(R_{a_{j+1}}) = f(\bigcap f^{-j}(R_{a_j})) = f(K(a))$, we have $\pi \circ \sigma = f \circ \pi$. Continuity of π is easily checked. Since $\partial \mathcal{R}$ is nowhere dense, Y is a Baire set.

For $x \in Y$ take $a_j \in Y_m$ with $f^j(x) \in R_{a_j}$ for all $j \in \mathbb{Z}$. Then $f^j(x) \in \operatorname{int}(R_{a_j})$ and so $A_{a_ja_{j+1}} = 1$. Thus $a = (a_j) \in \Sigma_A$ and $x = \pi(a)$. If $x = \pi(b)$, then $f^j(x) \in R_{b_j}$ and $b_j = a_j$ since $f^j(x) \notin \partial R$. Thus π is injective on Y. Since $\pi(\Sigma_A)$ is a compact subset of Ω_s containing Y, we have $\pi(\Sigma_A) = \Omega_s$. \square

Theorem 4.3.5. The shift map $\sigma: \Sigma_A \to \Sigma_A$ is topologically transitive. If $f_{|\Omega_A|}$ is topologically mixing, so is $\sigma: \Sigma_A \to \Sigma_A$.

Proof. Let U and V be nonempty open subsets of Σ_A . Then there exist $a, b \in \Sigma_A$ and N > 0 such that

$$U \supset U_1 = \{x \in \Sigma_A : x_i = a_i, |i| \le N\},\$$

$$V \supset V_1 = \{x \in \Sigma_A : x_i = b_i, |i| \le N\},\$$

and

$$\emptyset \neq \operatorname{int}(K_N(a)) = \bigcap_{-N}^N f^{-j}(\operatorname{int}(R_{a_j})) = U_2,$$

$$\emptyset \neq \operatorname{int}(K_N(b)) = \bigcap_{-N}^N f^{-j}(\operatorname{int}(R_{b_j})) = V_2.$$

If $\pi(x) \in U_2$, then $f^j \circ \pi(x) \in R_{x_j}$ and $f^j \circ \pi(x) \in \operatorname{int}(R_{a_j})$, which implies $x_j = a_j$ for $|j| \leq N$. Thus, $\pi^{-1}(U_2) \subset U_1$. Similarly, $\pi^{-1}(V_2) \subset V_1$. Since $f_{|\Omega_s|}$ is topologically transitive, we have $f^n(U_2) \cap V_2 \neq \emptyset$ for some n. Then

$$\emptyset \neq \pi^{-1}(f^n(U_2) \cap V_2) = \pi^{-1}(f^n(U_2)) \cap \pi^{-1}(V_2)$$

\$\sigma \sigma^n(U) \cap V.\$

By the same argument we can prove that σ is topologically mixing if $f_{|\Omega_{\bullet}}$ is. \Box

Theorem 4.3.6 (Bowen [Bo3]). Under the notations and assumptions of Theorem 4.3.4, there exists an integer d such that $\pi: \Sigma_A \to \Omega_s$ is at most d-to-one map, i.e. $\operatorname{card}(\pi^{-1}(x)) \leq d$ for all $x \in \Omega_s$.

Remark 4.3.7. $\Sigma_A \ni x$ is a periodic point if and only if $\pi(x)$ is.

Since $f \circ \pi = \pi \circ \sigma$, it is clear that if x is a periodic point then $\pi(x)$ is. If $f^n(y) = y$ where $y = \pi(a)$, then $\pi^{-1}(y) \supset \{a, \sigma^n(a), \sigma^{2n}(a), \cdots\}$. Since $\pi^{-1}(y)$ is finite by Theorem 4.3.6, a is a periodic point of σ .

For the proof of Theorem 4.3.6 we need some notations and lemmas.

As above let $\mathcal{R} = \{R_1, \dots, R_m\}$ be a Markov partition for $f|_{\Omega_i}$. For $R_i, R_i \in \mathcal{R}$ we define

$$t(R_i, R_j) = \left\{ egin{array}{ll} 1 & & ext{if } f(ext{int}(Ri)) \cap ext{int}(R_j)
eq \emptyset, \\ 0 & & ext{otherwise} \end{array}
ight.$$

and

$$\Sigma = \{(R_{n_i})_{-\infty}^{\infty} : R_{n_i} \in \mathcal{R} \text{ and } t(R_{n_i}, R_{n_{i+1}}) = 1, i \in \mathbb{Z}\}.$$

Then Σ is a compact metric space under the topology defined as usual. The shift $\sigma: \Sigma \to \Sigma$ defined by $\sigma((R_{n_i}))_i = R_{n_{i+1}}, i \in \mathbb{Z}$, is a homeomorphism. Obviously (Σ, σ) is topologically conjugate to (Σ_A, σ) . Thus we identify (Σ_A, σ) with (Σ, σ) under the conjugacy.

Define $Set(x) = \{R \in \mathcal{R} : x \in R\}$ for $x \in \Omega_s$.

Lemma 4.3.8.

- (a) $Set(x) = \{R \in \mathcal{R} : R = x_0 \text{ for some } (x_i) \in \pi^{-1}(x)\},\$
- (b) $Set([x,y]) \supset Set(x) \cap Set(y)$.

Proof. (a): If $x = \pi((x_i))$, then $x_0 = R \in Set(x)$. That there is such a (x_i) for any member of Set(x) was proved in Theorem 4.3.4.

(b): If $x, y \in R$, then $[x, y] \in R$ since R is a rectangle. \square

Lemma 4.3.9. Let z be near enough x so that [x, z] is defined.

(a) If $z \notin \partial^u \mathcal{R}$, for $\delta > 0$ there exists

$$z' \in V^s_\delta(z) \setminus igcup_{-\infty}^\infty f^n(\partial^u \mathcal{R})$$

such that Set(z') = Set(z) and $[x, z'] \notin \partial^u \mathcal{R}$.

(b) If $z \notin \partial^{s} \mathcal{R}$, for $\delta > 0$ there exists

$$z' \in V^u_\delta(z) \setminus igcup_{-\infty}^\infty f^n(\partial^s \mathcal{R})$$

such that Set(z') = Set(z) and $[z', x] \notin \partial^s \mathcal{R}$.

Proof. Remember that $\partial^u \mathcal{R} = \bigcup \{\partial^u R : R \in \mathcal{R}\}$ where

$$\partial^{u}R = [V^{u}(x,R), \partial V^{s}(x,R)],$$

 $\partial V^{s}(x,R) = V^{s}(x,R) \setminus \operatorname{int}(V^{s}(x,R)).$

Since $\partial V^s(x,R)$ is closed and nowhere dense in $V^s_{\delta}(x)$, we see that if $z \notin \partial^u \mathcal{R}$ then

$$V = \bigcap_{R \in \operatorname{Set}(z)} \operatorname{int}(V^s(z,R)) \setminus \bigcup_{R \not \in \operatorname{Set}(z)} R$$

is an open neighborhood of z in $V_{\delta}^{s}(z)$. Obviously, $\operatorname{Set}(z') = \operatorname{Set}(z)$ for all $z' \in V$ and $V \cap \partial^{u} \mathcal{R} = \emptyset$. Since $\partial^{u} \mathcal{R} \cap V_{\delta}^{s}(x)$ is contained in a finite union of nowhere dense set of the form $\partial V^{s}(y,R)$, it is clear that $\partial^{u} \mathcal{R} \cap V_{\delta}^{s}(x)$ is nowhere dense in $V_{\delta}^{s}(x)$. Since each $f^{-n}(V_{\delta}^{s}(z))$ can be covered by finitely many $V_{\delta}^{s}(x)$, we have that

$$f^n(\partial^u\mathcal{R})\cap V^s_\delta(z)\subset f^n(\cup_x V^s_\delta(x)\cap \partial^u\mathcal{R})$$

is nowhere dense in $V_{\delta}^{s}(z)$. By Baire's theorem, $\bigcup_{n} f^{n}(\partial^{u}\mathcal{R}) \cap V_{\delta}^{s}(z)$ is nowhere dense in $V_{\delta}^{s}(z)$. By Lemma 4.1.3, $[x,]: V_{\delta}^{s}(z) \cap N_{x} \to V_{\delta}^{s}(x) \cap N_{z}$ is a homeomorphism. Therefore, $[x, z'] \notin \partial^{u}\mathcal{R}$ for some $z' \in V_{\delta}^{s}(z) \setminus \bigcup_{n} f^{n}(\partial^{u}\mathcal{R})$. \square

Lemma 4.3.10. Let $R_1, R_2, R_3 \in \mathcal{R}$. Suppose that

$$R_1 \neq R_2$$
, $x \in R_1 \cap R_2 \cap f^{-1}(R_3)$,
 $A_{13} = 1$, $A_{23} = 1$.

Then $x \in \partial^u \mathcal{R}$.

Proof. Lemma 4.3.1 gives

$$V = V^{u}(x, R_1) \cap V^{u}(x, R_2) \supset f^{-1}V^{u}(f(x), R_3).$$

Since $V^u(f(x), R_3)$ contains an open subset contained in every neighborhood of f(x) in $V^u_{\delta_1}(f(x))$, V contains an open subset contained in every neighborhood of x in $V^u_{\delta_1}(x)$. As the proof of Lemma 4.3.9 we can find $x' \in V$ such that $x' \notin \partial^s \mathcal{R}$. Since $R_1 \neq R_2$, we have $V \subset R_1 \cap R_2 \subset \partial R_1$. Since $\partial R_1 = \partial^u R_1 \cup \partial^s R_1$, we have $x' \in \partial^u R_1$ and then $V^u(x', R_1) \subset \partial^u R_1 \subset \partial^u \mathcal{R}$. Therefore, $x \in \partial^u \mathcal{R}$. \square

Lemma 4.3.11. (a) Suppose $z \notin \partial^u \mathcal{R}$. For $R_i \in \operatorname{Set}(f(z))$ there is a unique $R_j = T_z(R_i) \in \operatorname{Set}(z)$ such that $A_{ij} = 1$. The map $T_z : \operatorname{Set}(f(z)) \to \operatorname{Set}(z)$ is surjective. If $y \in V_{\delta_1}^s(z) \setminus \partial^u \mathcal{R}$ and $\operatorname{Set}(y) = \operatorname{Set}(z)$, then $\operatorname{Set}(f(y)) = \operatorname{Set}(f(z))$ and $T_y = T_z$.

(b) Suppose $z \notin \partial^s \mathcal{R}$. For $R_i \in \operatorname{Set}(f^{-1}(z))$ there is a unique $R_j = T'_z(R_i) \in \operatorname{Set}(z)$ such that $A_{ij} = 1$. The map $T'_z : \operatorname{Set}(f^{-1}(z)) \to \operatorname{Set}(z)$ is surjective. If $y \in V^u_{\delta_1}(z) \setminus \partial^s \mathcal{R}$ and $\operatorname{Set}(y) = \operatorname{Set}(z)$, then $\operatorname{Set}(f^{-1}(y)) = \operatorname{Set}(f^{-1}(z))$ and $T'_y = T'_z$.

Proof. By Lemma 4.3.8, for $R_i \in \text{Set}(f(z))$ there is $(w_i) \in \pi^{-1}(f(z))$ with $w_0 \in R_i$ and so $\sigma^{-1}((w_i)) \in \pi^{-1}(z)$. Thus $z \in R_{w_{-1}}$. Since $(w_i) \in \Sigma_A$, we have $A_{w_{-1}w_0} = A_{w_{-1}i} = 1$. By Lemma 4.3.10, w_{-1} is a unique since $z \notin \partial^u \mathcal{R}$. Thus T_z is well defined.

If $R_i \in \text{Set}(z)$, then there is $(z_i) \in \pi^{-1}(z)$ with $z_0 \in R_i$. Then $R_{z_1} \in \text{Set}(f(z))$ and $A_{z_0z_1} = 1$. Thus $T_z(R_{z_1}) = R_{z_0}$ and T_z is surjective.

Take $y \in V_{\delta_i}^s(z) \setminus \partial^u \mathcal{R}$ with Set(y) = Set(z). Then $y \in V^s(z, R_i)$ for $R_i \in Set(z)$. If $R_j \in Set(f(z))$ and $R_i = T_z(R_j)$, then Lemma 4.3.1 shows that

$$f(y) \in fV^s(z,R_i) \subset V^s(f(z),R_j) \subset R_j$$
.

Thus $\operatorname{Set}(f(z)) \subset \operatorname{Set}(f(y))$. Symmetrically, $\operatorname{Set}(f(y)) \subset \operatorname{Set}(f(z))$. Thus $\operatorname{Set}(f(y)) = \operatorname{Set}(f(z))$. Since the definition of T_z depends only on the sets $\operatorname{Set}(z)$ and $\operatorname{Set}(f(z))$ (not z itself), we can easily check that $T_y = T_z$. (b) is proved in the same way. \square

Let $\delta_1 > 0$ be as in (B). For $x \in \Omega_s$ define

$$J_s(x) = \{ \mathcal{D} \subset \mathcal{R} : \delta_1 > \forall \delta, \exists z \in V_{\delta}^s(x) \setminus \partial^u \mathcal{R} \text{ with } \operatorname{Set}(z) = \mathcal{D} \},$$

$$J_u(x) = \{ \mathcal{D} \subset \mathcal{R} : \delta_1 > \forall \delta, \exists z \in V_{\delta}^u(x) \setminus \partial^s \mathcal{R} \text{ with } \operatorname{Set}(z) = \mathcal{D} \},$$

Note that we can choose $\delta = \delta(x)$ so small that

Set
$$(z) \in J_s(x)$$
 if $z \in V_\delta^s(x) \setminus \partial^u \mathcal{R}$,
Set $(z) \in J_u(x)$ if $z \in V_\delta^u(x) \setminus \partial^s \mathcal{R}$.

Let N>0 and K_N be the set of all n-tuples (a_1,a_2,\cdots,a_n) of integers with $1\leq n\leq N,\ 1\leq a_i\leq N$ and $a_1\geq a_2\geq \cdots \geq a_n$. Define a partial ordering \leq on K_N by $(a_1,\cdots,a_n)\geq (b_1,\cdots,b_m)$ if either n>m or N=m and $b_i\geq a_i$ for all $1\leq i\leq m$ (note that this ordering is not the natural condition $a_i\geq b_i$). We write $(a_1,\cdots,a_n)>(b_1,\cdots,b_m)$ if $(a_1,\cdots,a_n)\geq (b_1,\cdots,b_m)$, but $(a_1,\cdots,a_n)\neq (b_1,\cdots,b_m)$.

Let $\sharp E$ denote the cardinality of E and $\mathcal{P}(B)$ denote the family of subsets of B. Fix $N \geq 2^{2\sharp \mathcal{R}}$. For $L \in \mathcal{P}(\mathcal{P}(\mathcal{R}))$ we define $L^* \in K_N$ to be (a_1, \dots, a_n) where $n = \sharp L$ and a_1, \dots, a_n denote the cardinalities of the n-sets in L.

Lemma 4.3.12.
$$J_s(f(x))^* \leq J_s(x)^*$$
 and $J_u(f^{-1}(x))^* \leq J_u(x)^*$.

Proof. Define the map $R_x^s: J_s(x) \to J_s(f(x))$ by $R_x^s(\mathcal{D}) = \operatorname{Set}(f(z))$ for $\mathcal{D} \in J_s(x)$. Lemma 4.3.11 ensures that R_x^s is well defined. We show that R_x^s is surjective.

If $\mathcal{E} \in J_s(f(x))$, by Lemma 4.3.9, for arbitrarily small $\delta > 0$ we can find $w \in V_{\delta}^s(f(x)) \setminus \partial^u \mathcal{R}$ with $\operatorname{Set}(w) = \mathcal{E}$ and $w \notin f(\partial^u \mathcal{R})$. Then $\mathcal{E} = R_x^s(\operatorname{Set}(f^{-1}(w)))$. Let $J_s(x)^* = (a_1, \dots a_n)$ where $a_i = \sharp \mathcal{D}_i$ and $J_s(x) = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$, and let $J_s(f(x))^* = (b_1, \dots, b_m)$ where $b_i = \sharp \mathcal{E}_i$ and $J_s(f(x)) = \{\mathcal{E}_1, \dots, \mathcal{E}_m\}$. Then R_x^s induces a surjection $g: [1, n] \to [1, m]$ by $R_x^s(\mathcal{D}_i) = \mathcal{E}_{g(i)}$. Here we can consider the two cases:

$$n > m$$
 and $(a_1, \dots, a_n) > (b_1, \dots, b_m)$, $n = m$ and g is bijective.

Considering the second case, for a certain z we have the surjection $T_z: \mathcal{E}_{g(i)} \to \mathcal{D}_i$ and thus $b_{g(i)} \geq a_i$. For any i there is $j \in [1, i]$ with $g(j) \geq i$. Otherwise

 $g([1,i]) \subset [1,i-1]$ which contradicts that g is one-to-one. Then $b_i \geq b_{g(j)} \geq a_j \geq a_i$. Here we use the fact that all a_i and b_i are arranged in descending order. The second statement is proved in the same way. \square

We say that $x \in \Omega_s$ is an s-branch (u-branch) point if there exist $(x_i), (y_i) \in \pi^{-1}(x)$ with $x_0 = y_0$ but $x_1 \neq y_1$ (but $x_{-1} \neq y_{-1}$).

Lemma 4.3.13. If $x \in \Omega_s$ is an s-branch point, then $J_s(x)^* > J_s(f(x))^*$. If $x \in \Omega_s$ is a u-branch point, then $J_u(x)^* > J_u(f^{-1}(x))^*$.

Proof. Let x be an s-branch point. It is enough to show that one of T_z with $z \in V^s_{\delta(x)}(x) \setminus \partial^u \mathcal{R}$ is not bijective. Indeed, if $(a_1, \dots, a_n) = (b_1, \dots, b_n)$, then g is a bijective and so

$$\sum_{i=1}^{n} b_i = \sum_{j=1}^{n} a_i \le \sum_{i=1}^{n} b_{g(i)} = \sum_{i=1}^{n} b_i.$$

We here use that $a_i \leq b_{g(i)}$. To have the equality we need $a_i = b_{g(i)}$ for all i, i.e. T_z is always a bijection. Since x is an s-branch point, we can find $R_i \in \text{Set}(x)$ and $R_j, R_k \in \text{Set}(f(x))$ with $R_j \neq R_k$ and $A_{ij} = A_{ik} = 1$. By Lemma 4.3.9 we can choose

$$z \in \{V^s(x, R_i) \cap V^s_{\delta(x)}(x)\} \setminus \partial^u \mathcal{R},$$

and since

$$fV^s(x,R_i) \subset V^s(f(x),R_j) \cap V^s(f(x),R_k)$$

(by Lemma 4.3.1), we have $R_j, R_k \in \text{Set}(f(z))$ and $T_z(R_j) = T_z(R_k) = R_i$. Therefore T_z is not bijective. \square

Proof of Theorem 4.3.6. Let $c = \sharp \mathcal{R}$ and e be the length of the longest chain in the partially ordered set (K_N, \leq) . Let $0 \leq n_1 < n_2 < \cdots < n_k$ be all the nonnegative integers such that $f^{n_i}(x)$ is an s-branch point. By Lemmas 4.3.12 and 4.3.13

$$J_s(f^{n_1}(x))^* > J_s(f^{n_2}(x))^* > \cdots > J_s(f^{n_k}(x))^*,$$

which shows $k \leq e$.

Let A_n be the set of all sequences $(R_{k_0}, \dots, R_{k_n})$ of elements of \mathcal{R} such that there is $(x_i) \in \pi^{-1}(x)$ with $x_i \in R_{k_i}$ for all $0 \le i \le n$. By the definition of s-branch points, $\sharp A_{n+1} = \sharp A_n$ unless $f^n(x)$ is an s-branch point. Thus $\sharp A_{n+1} \le c \sharp A_n$ for every n. Since $\sharp A_0 \le c$, we have

$$\sharp A_n \le c^{k+1} \le c^{e+1}$$

for all $n \geq 0$. Thus there exist at most c^{e+1} possibilities for $(x_i)_0^{\infty}$ with $(x_i) \in \pi^{-1}(x)$.

Similarly there exist at most c^{e+1} possibilities for $(x_i)_{-\infty}^0$ with $(x_i) \in \pi^{-1}(x)$. Therefore, $\sharp \pi^{-1}(x) < c^{2(e+1)}$. \square