概率论与数理统计

WXF(A 卷) 2016.6.15

- 1. (15 分)在商店中茶杯以三个为一套,一套茶杯无次品和只有一个次品的概率分别为 4/5 和 1/5,客人来商店买一套茶杯,随机挑其中的一个,如果不是次品则会购买,试问:
 - (1) 客人购买这套茶杯的概率
 - (2) 客人购买的这套茶杯确实是无次品的概率
- 2. (15 分)排球比赛中,采取五局三胜制度(即3:0,3:1都会直接结束比赛)。积分规则为:如果胜者以3:0,3:1获胜,胜者积3分,负者积0分;如果胜者3:2胜,胜者积2分,负者积1分。以下假设每局双方均是势均力敌。
 - (1) 设比赛局数为 X, 求 X 的分布列
 - (2) 求胜者获得的积分 Y 的期望
- 3. (20 分)随机向量(X,Y)在 D { 0 < y < x < 1 } 上为均匀分布
 - (1) 求 X,Y 的联合概率密度函数 p(x,y)
 - (2) 求 X,Y 的边际密度函数
 - (3) 求 Cov(X,Y)
 - (4) 0<x<1 时求 E(Y|X)
- 4. (15 分)经过保险公司的统计分析,索求赔偿的用户有 20%是遭受了偷盗的灾害。保险公司 搜集了 100 份用户索赔资料,其中 X 份是偷盗损失。
 - (1) 试求 X 的概率分布
 - (2) 近似估计被偷盗的用户不大于 30 户且不小于 14 户的概率 (可用标准正态函数 $\Phi(\cdot)$ 表示)
- 5. (15分)先有一元、五角、一角三枚硬币,尝试用三次独立的天平称重来估算三枚硬币的重量,每次称重误差符合 U(-0.05,0.05)

	天平左侧	天平右侧	砝码和游码重
第一次	一元、五角、一角	砝码	W_1
第二次	一元	五角、一角、砝码	W_2
第三次	五角	一角、砝码	W ₃

用 W_1 , W_2 , W_3 表示三枚硬币重量的无偏估计,并计算其方差

- (20分)总体符合 N(μ,σ²),独立同分布地取样 x₁.....x₁₀, 现已知 x₁+x₂+.....+x₁₀=10, x₁²+x₂²+.....+x₁₀²=19
 - (1) 求 μ , σ^2 的极大似然估计
 - (2) 找出最短的区间 I=(a,b), 使得区间包含的概率不小于 95%