Interpreting Hand Gestures from a Monocular Camera

Bruno Georgevich Ferreira

Motivation

Control systems by performing hand gestures

Applications

- Control Robots and Drones
- Remote Command Activation
 - Smart Home

Proposal

Develop a system capable of controlling a robot using only the hand to control it

Processo

Scenarios

Use of Faster R-CNN or Yolo for Hand Detection and Recognition

Important Notes

- Advantages
 - Good Detection
 - More than one hand simultaneously
 - Image Segmentation
- Disadvantages
 - Complex annotation process
 - Few datasets on the network

Scenarios

Use of CNN Gesture Recognition

Important Notes

- Advantages
 - Good Classification
 - Simpler annotation process
 - Many datasets available in the network
- Disadvantages
 - Do not offer segmentation
 - Difficulty classify more than one hand

Datasets

- http://vision.soic.indiana.edu/projects/egohands/
 - Good for hand detection
 - Mask Faster R-CNN
 - Do not has predefined gestures
 - 4,800 images

Datasets

- https://www-i6.informatik.rwth-aachen.de/~koller/1miohands/
 - Has a good set of gestures (61)
 - Do not offer segmentation
 - 1 million of annotated images 18 GB)

Difficulties

- It would not be possible classify the detected hands
 - Has not dataset available for it
 - It would be necessary create a dataset for it
- It was not possible annotate the 1Million Hand Dataset for segmentation
 - It would be hard to annotate 1,000,000 images

Chosen Model

- Method: CNN
- Dataset: 1Million
- Motivation
 - Well diversified dataset
 - It achieves the projects needs
 - Due the complexity of annotate the dataset to use in a Faster R-CNN
 - Difficulty of create my own dataset

Process Steps

- Define the CNN Topology
- Train and Test

Network Topology

- Inception V1
 - Well defined
 - Scale Invariant

Network Topology

Training

- 8 hours of training
 - 800,000 images for train
 - o 100,000 to validate
 - o 100,000 to test
- 61 classes
- Mean Filter
 - Extract Features

Execution

- Create a V-REP simulation and communicate the commands with the Robot via Python
 - Well documented

Execution

- Code: Github
- Methodology
 - 8 actions mapped to 8 gestures
 - Only gestures recognized above 85% accuracy
 - Robot performs the trajectory

Execution

Future Works

- Integrate more gestures
- Train a Faster R-CNN
 - Annotate the 1Million Dataset
- Use other robotic manipulators

