Cours **PRODUIT SCALAIRE**

PROF: ATMANI NAJIB 1BAC SM BIOF

PRODUIT SCALAIRE DANS V_2 **Etude analytique (1)**

I) BASE ET REPERE ORTHONORMES

Définitions: Soit $B(\vec{i}, \vec{j})$ une base de V_2 .

- 1) La base B est dite **orthogonale** si $\vec{i} \cdot \vec{j} = 0$
- **2)** La base B est dite **normée si** $\|\vec{i}\| = \|\vec{j}\| = 1$
- **3)** Une base orthogonale et normée s'appelle une base orthonormée.
- 4)Soit O un point du plan

Soit $\mathcal{R}\left(O; \vec{i}; \vec{j}\right)$ un repère du plan (\mathcal{P})

On dit que le repère $\mathcal R$ est orthonormé si la base $B(\vec i; \vec j)$ associé à $\mathcal R$ est orthonormée.

On pose : $\vec{i} = \overrightarrow{0I}$ et $\vec{j} = \overrightarrow{0J}$

II) EXPRESSION ANALYTIQUE DU PRODUIT SCALAIRE.

Soit $B(\vec{i}; \vec{j})$ une base orthonormée de V_2 .

Soient : $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$ deux vecteurs

de
$$V_2$$
 ; on a : $\vec{u}.\vec{v} = \left(\vec{xi} + \vec{yj}\right)\left(\vec{x'i} + \vec{y'j}\right)$

Et d'après la bilinéarité du produit scalaire on a :

$$\vec{u}.\vec{v} = xx'\vec{i}\vec{i} + yy'\vec{j}\vec{j} \operatorname{car} \vec{i}.\vec{j} = 0$$

$$\vec{u}.\vec{v} = xx' + yy'$$
 puisque: $\|\vec{i}\| = 1$ et $\|\vec{j}\| = 1$

On a donc la propriété suivante :

 ${\bf Propriét\'e:} {\bf L'espace} \ V_2 \ {\it est rapport\'e \`a une base }$

orthonormée $B(\vec{i};\vec{j})$

Soient : $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$ deux vecteurs

de V_2 ; on a:

$$1) \vec{u}.\vec{v} = xx' + yy'$$

2)
$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$

3)
$$\vec{u} \perp \vec{v} \Leftrightarrow xx' + yy' = 0$$

Si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors

$$AB = \left\| \overrightarrow{AB} \right\| = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2}$$

Exercice: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O; \vec{i}; \vec{j}\right)$ Considérons les

points A(1;-3) et B(3;7) et C(-3;1)

1)Montrer que le triangle ABC est rectangle en C

2)Calculer la surface du triangle ABC

Solution: 1)

Methode1: $\overrightarrow{BC}(-6,-6)$ et $\overrightarrow{AC}(-4,4)$ et $\overrightarrow{AB}(2,10)$

$$AB = \|\overrightarrow{AB}\| = \sqrt{2^2 + 10^2} = \sqrt{104} = 2\sqrt{26}$$

$$AC = \sqrt{32} = 4\sqrt{2}$$

$$BC = \sqrt{72} = 6\sqrt{2}$$

Puisque : $AC^2 + BC^2 = 32 + 72 = 104$ et $AB^2 = 104$

Donc : $AC^2 + BC^2 = AB^2$

Donc : le triangle ABC est rectangle en C

Methode2: $\overline{BC}(-6,-6)$ et $\overline{AC}(-4,4)$

Donc: $\overrightarrow{AC} \cdot \overrightarrow{BC} = 24 - 24 + 0$ Donc: $\overrightarrow{AC} \perp \overrightarrow{BC}$

Donc : le triangle ABC est rectangle en C

2) puisque le triangle ABC est rectangle en C alors :

$$S = \frac{1}{2}CA \times CB = \frac{1}{2}4\sqrt{2} \times 6\sqrt{2} = 24$$

Exercice:

Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$

Considérons la droite (*D*): 2x - y + 1 = 0 et *N* un point sur la droite (*D*) d'abscisse α .

- 1- Déterminer les coordonnées de N.
- 2- Déterminer la distance ON.
- 3- Déterminer pour quelle valeur de α la distance ON est minimale.

III) PRODUIT SCALRE ET LIGNES TRIGONOMETRIQUES.

1) L'expression de cos:

Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$

Soient : $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$ deux vecteurs de V_2 ; on a : $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \cos(\vec{u}; \vec{v}) = xx' + yy'$

Par suite : $\cos(\vec{u}; \vec{v}) = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$

2) L'expression de sin :

2.1 L'écriture trigonométrique d'un vecteur.

L'espace V_2 est rapporté à une base orthonormée $B\left(\vec{i};\vec{j}\right)$

 $\vec{u}(x;y)$ et α la mesure da l'angle **polaire** $(\vec{i};\vec{u})$

Puisque $\vec{i}(1;0)$ alors : $\vec{u} \cdot \vec{i} = x$ et puisque $\vec{j}(0;1)$ alors

 $\vec{u} \cdot \vec{j} = y$ D'autre part: $\vec{u} \cdot \vec{i} = ||\vec{u}|| \times ||\vec{i}|| \cos(\vec{u}; \vec{i}) = ||\vec{u}|| \cos \alpha$

$$\vec{u} \cdot \vec{j} = \|\vec{u}\| \times \|\vec{j}\| \cos(\vec{u}; \vec{j}) = \|\vec{u}\| \cos(\frac{\pi}{2} - \alpha)$$

 $\vec{u} \cdot \vec{j} = ||\vec{u}|| \sin \alpha$

On peut conclure que : $\begin{cases} x = \|\vec{u}\| \cos \alpha \\ y = \|\vec{u}\| \sin \alpha \end{cases}$

Et par suite: $\vec{u} = \|\vec{u}\| \cos \alpha \vec{i} + \|\vec{u}\| \sin \alpha \vec{j} = \|\vec{u}\| (\cos \alpha \vec{i} + \sin \alpha \vec{j})$

Cette écriture s'appelle l'écriture trigonométrique du vecteur \overrightarrow{u} .

2.2 L'expression de sin :

 $\vec{u}(x;y)$ et α la mesure da l'angle polaire $(\vec{i};\vec{u})$

et \overrightarrow{w} le vecteur tel que : $\|\overrightarrow{u}\| = \|\overrightarrow{w}\|$ et $(\overrightarrow{u}; \overrightarrow{w}) = \frac{\pi}{2} [2\pi]$

D'après l'écriture trigonométrique du vecteur \overrightarrow{w}

on a :
$$\overrightarrow{w} = \|\overrightarrow{w}\|\cos\left(\alpha + \frac{\pi}{2}\right)\overrightarrow{i} + \|\overrightarrow{w}\|\sin\left(\alpha + \frac{\pi}{2}\right)\overrightarrow{j}$$

$$\overrightarrow{w} = -\left\| \overrightarrow{w} \right\| \sin \alpha \overrightarrow{i} + \left\| \overrightarrow{w} \right\| \cos \alpha \overrightarrow{j} = -\left\| \overrightarrow{u} \right\| \sin \alpha \overrightarrow{i} + \left\| \overrightarrow{u} \right\| \cos \alpha \overrightarrow{j}$$

(car:
$$\|\vec{u}\| = \|\vec{w}\|$$
) $\vec{w} = -y\vec{i} + x\vec{j}$

Par suite $\overrightarrow{w}(-y;x)$

D'où on peut conclure que :

$$\vec{v} \cdot \vec{w} = -x'y + xy'$$

et on a:

$$\vec{v} \cdot \vec{w} = \|\vec{v}\| \cdot \|\vec{w}\| \sin\left(\frac{\pi}{2} - \theta\right) = \|\vec{v}\| \cdot \|\vec{w}\| \cos \theta$$

où : $(\vec{u}; \vec{v}) \equiv \theta[2\pi]$ Ce qui nous permet de confirmer

que :
$$\|\vec{u}\| \cdot \|\vec{v}\| \sin \theta = -x'y + xy'$$

et donc :
$$\sin \theta = \frac{xy' - x'y}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{\det(\vec{u}; \vec{v})}{\|\vec{u}\| \cdot \|\vec{v}\|}$$

Théorème :L'espace V_2 est rapporté à une base orthonormée $B(\vec{i};\vec{j})$ Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$

$$\cos(\vec{u}; \vec{v}) = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$$

$$\sin \theta = \frac{xy' - x'y}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{\det(\vec{u}; \vec{v})}{\|\vec{u}\| \cdot \|\vec{v}\|}$$

Exercice: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ Considérons les points

$$A(5;0)$$
 et $B(2;1)$ et $C(6;3)$

1) Calculer $\cos(\overrightarrow{AB}; \overrightarrow{AC})$ et $\sin(\overrightarrow{AB}; \overrightarrow{AC})$

2)en déduire une mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$

$$\cos\left(\overline{AB}; \overline{AC}\right) = \frac{\overline{AB} \cdot \overline{AC}}{\left\|\overline{AB}\right\| \times \left\|\overline{AC}\right\|} \text{ et }$$

$$\sin\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \frac{\det\left(\overrightarrow{AB}; \overrightarrow{AC}\right)}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|}$$

et on a : $\overrightarrow{AB}(-3;1)$ et $\overrightarrow{AC}(1;3)$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -3 \times 1 + 1 \times 3 = -3 + 3 = 0$$

$$\det\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \begin{vmatrix} -3 & 1\\ 1 & 3 \end{vmatrix} = -10$$

$$AB = \|\overrightarrow{AB}\| = \sqrt{(-3)^2 + 1^2} = \sqrt{10}$$
 et $AC = \sqrt{10}$

$$\cos\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \frac{0}{\sqrt{10} \times \sqrt{10}} = 0$$

$$\sin\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \frac{-10}{\sqrt{10} \times \sqrt{10}} = -1$$

2) on a : $AB \cdot AC = 0$ et AB = AC donc le triangle ABC est rectangle et isocèle en A

$$\left(\overline{\overrightarrow{AB}}; \overline{\overrightarrow{AC}}\right) = \frac{-\pi}{2} [2\pi] \text{ car } : \left(\overline{\overrightarrow{AC}}; \overline{\overrightarrow{BC}}\right) = \frac{-\pi}{4} [2\pi] \text{ et}$$

 $\sin(\overline{AB}; \overline{AC}) = -1$

$$\mathsf{Donc}: \left(\overline{\overrightarrow{AB}; \overrightarrow{BC}}\right) \!=\! \left(\overline{\overrightarrow{AB}; \overrightarrow{AC}}\right) \!+\! \left(\overline{\overrightarrow{AC}; \overrightarrow{BC}}\right) \! \left[2\pi\right]$$

$$\left(\overline{\overrightarrow{AB}};\overline{\overrightarrow{BC}}\right) = \frac{-\pi}{2} - \frac{\pi}{4} \left[2\pi\right] = -\frac{3\pi}{4} \left[2\pi\right]$$

IV) DISTANCE D'UN POINT PAR RAPPORT A UNE DROITE.

1) Vecteur normal sur une droite.

Définition: Soit $D(A; \vec{u})$ la droite passante par A et de vecteur directeur \vec{u} ; tout vecteur \vec{n} non nul et orthogonal à \vec{u} s'appelle un vecteur normal sur la droite (D).

Remarque:

 \vec{Si} \vec{n} est normal sur une droite (D); Tout Vecteur non nul colinéaire avec \vec{n} est aussi Normal sur la droite (D).

Si (D): ax + by + c = 0 est une droite dans le plan alors u(-b;a)) est un vecteur directeur de la droite (D), et le vecteur $\vec{n}(a;b)$ est non nul et orthogonal à u donc normal sur la droite (D).

2) Equation d'une droite définie par un point donné et un vecteur normal.

Soient $A(x_A; y_A)$ un point donné, $\overrightarrow{etv}(a;b)$ un vecteur non nul. Soit (D) la droite qui passe par A et qui admet \vec{v} comme vecteur normal.

$$M(x; y) \in (D) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{v} = 0 \Leftrightarrow a(x - x_A) + b(y - y_A) = 0$$

$$\Leftrightarrow ax + by - (ax_A + by_A) = 0$$

Propriété : Soient $A(x_A; y_A)$ un point donné, et $\vec{n}(a;b)$ un vecteur non nul. La (D) la droite qui passe par A et qui admet \vec{n} comme vecteur normal a une équation cartésienne de la forme : (D): $a(x-x_A)+b(y-y_A)=0$

Exercice: déterminer une équation cartésienne de la droite (D) qui passe par A(0;1) et qui admet n(2;1) comme vecteur normal

Solution: on a (D) qui passe A(0;1) et n(2;1) un vecteur normal donc : une équation cartésienne de la droite (D) est : 2(x-0)+1(y-1)=0donc: (D): 2x + y - 1 = 0

Exercice: donner un vecteur normal a la droite (D) dans les cas suivants : 1)(D):x - 2y + 5 = 0

2)(D): 2y-3=03)(D):x-1=0

Solution: un vecteur normal a la droite (D) d'équation cartésienne : ax + by + c = 0Est $\vec{n}(a;b)$

1)(D):x - 2y + 5 = 0: $\vec{n}(1, -2)$ un vecteur normal

2) (*D*):0x+2y-3=0: $\vec{n}(0;2)$ un vecteur normal

2) (D):1x+0y-1=0: n(1;0) un vecteur normal

Exercice: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}(O; \vec{i}; \vec{j})$ Considérons les

points A(-3;0) et B(3;0) et C(1;5)

1) déterminer une équation cartésienne

de la droite (D) perpendiculaire à la droite (AB)

passant par $\it C$

2) déterminer une équation cartésienne de la droite (Δ) parallèle à la droite (AB)

passant par C

Solution : 1)soit M un point du plan (\mathcal{P})

$$M \in (D) \Leftrightarrow \overrightarrow{CM} \cdot \overrightarrow{AB} = 0 \Leftrightarrow 6(x-1)-(y-5) = 0$$

$$\Leftrightarrow$$
 6x - y -1 = 0

Donc: (D): 6x - y - 1 = 0

1)soit M(x; y) un point du plan (\mathcal{P})

$$M \in (\Delta) \Leftrightarrow \overrightarrow{CM} \cdot \overrightarrow{n} = 0$$

Avec \vec{n} un vecteur normal a la droite (AB)

Le vecteur : $\overrightarrow{AB}(6,-1)$ est un vecteur directeur de

la droite (AB) et on a : $\vec{n}(1,6)$

On a donc:
$$M \in (\Delta) \Leftrightarrow (x-1)+6(y-5)=0$$

$$\Leftrightarrow x + 6y - 31 = 0 \text{ Donc} : (\Delta) : x + 6y - 31 = 0$$

Exercice : dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ Considérons les

points
$$A(1;2)$$
 et $B(-2;3)$ et $C(0;4)$

1) déterminer une équation cartésienne de la droite (D) médiatrice du segment AB

2) déterminer une équation cartésienne de la droite

 (Δ) la hauteur du triangle ABC passant par A

Solution : 1) (D)/ax+by+c=0

Avec $\overrightarrow{AB}(a,b)$ un vecteur normal a (D)

$$\overrightarrow{AB}(-3,1)$$
 donc: $(D)/-3x + y + c = 0$

Or $I \in (D)$ I est le milieu du segment [AB]

$$I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) \text{ donc } I\left(\frac{-1}{2}, \frac{5}{2}\right)$$

$$\mathsf{Donc}: -3\left(-\frac{1}{2}\right) + \frac{5}{2} + c = 0 \Leftrightarrow \frac{3}{2} + \frac{5}{2} + c = 0 \Leftrightarrow c = -4$$

Par suite : (D)/-3x+y-4=0

 $2)(\Delta)$ la hauteur du triangle ABC passant par A

Donc : (Δ) perpendiculaire a (BC) passant par A

Donc $\overrightarrow{BC}(2,1)$ un vecteur normal a (Δ) donc

 $(\Delta)/2x + y + c = 0$ et on a $A \in (\Delta)$ donc

$$2 \times 1 + 2 + c = 0 \Leftrightarrow c = -4$$

 $(\Delta)/2x + y - 4 = 0$

Exercice : Considérons le triangle ABC où A (2,1) B (5,0) et C (7,6)

1- a) Montrer que le triangle *ABC* est rectangle en *B*.

b) En déduire les coordonnées du point Ω le centre du cercle circonscrit au triangle ABC

2) Déterminer les coordonnées du point G centre de gravité de ABC.

3) Déterminer les coordonnées du point H, orthocentre du triangle ABC.

4) Vérifier que les points Ω , G et H sont alignés

3) droites perpendiculaires

proposition :Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}(O; \vec{i}; \vec{j})$

on considère les deux droites : (D): ax + by + c = 0

et
$$(D')$$
: $a'x + b'y + c' = 0$

$$(D) \perp (D') \Leftrightarrow \vec{n} \perp \vec{n'} \Leftrightarrow aa' + bb' = 0$$

Avec \vec{n} le vecteur normal de (\mathbf{D}) et \vec{n}' le vecteur normal de (\mathbf{D}')

Exercice: (D) 2x+3y-1=0 et (D') $\frac{3}{2}x-y+4=0$

Etudier la position relative de (D) et (D')

Solution:

 $\vec{n}(2;3)$ est un vecteur normal de(D)

$$\overrightarrow{n'}\left(\frac{3}{2};-1\right)$$
 est un vecteur normal de (D')

$$\vec{n} \cdot \vec{n'} = 2 \times \frac{3}{2} + 3 \times (-1) = 3 - 3 = 0 \text{ donc } \vec{n} \perp \vec{n'}$$

donc $(D) \perp (D')$

4) Distance d'un point par rapport à une droite.

Définition: Soient (D) une droite et M_0 un point dans le plan. La distance du point M_0 à la droite (D) est la distance M_0H où H est la projection orthogonal de M_0 sur (D). On la note : $d\left(M_0;(D)\right)$

Remarque :La distance d'un point $M_{\scriptscriptstyle 0}$ à une droite

(D) est la plus petite distance de $\,M_{_0}\,$ à un point M

$$\operatorname{de}(D) \ d\left(M_0; (D)\right) = \min\left(M_0M\right)$$

Preuve: Soit la droite (*D*): ax + by + c = 0 et $M_0(x_0; y_0)$; Soit *H* la projection orthogonale de M_0 sur (*D*), $\vec{n}(a;b)$ est normal sur (*D*).

On a pour tout point $A(x_A; y_A)$ de la droite(D):

$$\overrightarrow{M_0}\overrightarrow{A}.\overrightarrow{n} = \left(\overrightarrow{M_0}\overrightarrow{H} + \overrightarrow{H}\overrightarrow{A}\right).\overrightarrow{n} = \overrightarrow{M_0}\overrightarrow{H}.\overrightarrow{n} + \overrightarrow{H}\overrightarrow{A}.\overrightarrow{n} = \overrightarrow{M_0}\overrightarrow{H}.\overrightarrow{n}$$

Donc:
$$\overrightarrow{M_0H}.\overrightarrow{n} = \overrightarrow{M_0A}.\overrightarrow{n}$$

On conclue que $\left| \overrightarrow{M_0 H} . \overrightarrow{n} \right| = \left| \overrightarrow{M_0 A} . \overrightarrow{n} \right|$ par suite

$$\left\| \overrightarrow{M_0 H} \right\| \left\| \overrightarrow{n} \right\| = \left| \overrightarrow{M_0 A} . \overrightarrow{n} \right|$$
 et finalement : $M_0 H = \frac{\left| \overrightarrow{M_0 A} . \overrightarrow{n} \right|}{\left\| \overrightarrow{n} \right\|}$

En passant à l'expression analytique :

$$\vec{n}(a;b)$$
) et $\overrightarrow{M_0A}(x_A-x_0;y_A-y_0)$

par suite :
$$M_0 H = \frac{\left| a(x_A - x)_0 + b(y_A - y_0) \right|}{\sqrt{a^2 + b^2}}$$

$$M_0 H = \frac{\left| ax_A - ax_0 + by_A - by_0 \right|}{\sqrt{a^2 + b^2}}$$

$$M_0 H = \frac{\left| ax_A + by_A - ax_0 - by_0 \right|}{\sqrt{a^2 + b^2}}$$

Or
$$A \in (D) \iff ax_{A} + by_{A} + c = 0$$

$$\Leftrightarrow ax_A + by_A = -c$$

D'où
$$M_0H = \frac{\left|-c - ax_0 - by_0\right|}{\sqrt{a^2 + b^2}} = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}$$

Théorème: Soient la droite (*D*): ax + by + c = 0 et $M_0(x_0; y_0)$ un point dans le plan.

La distance du point $M_{\,0}\,$ à la droite (D) est :

$$M_0H = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

Exercice : Soient la droite (D) d'équation :

$$(D): 3x+4y+5=0$$

- 1)Déterminer les coordonnées du point H la projection orthogonale de O sur (D)
- 2)calculer La distance du point O à la droite (D)
- 3)Déterminer les coordonnées du point O' le symétrique de O par rapport à la droite (D)

Solution :1) puisque H est la projection orthogonale de O sur (D) alors H est le point d'intersection de la droite (D) et la droite (Δ) qui passe par O et perpendiculaire a (D) on va donc résoudre le

système suivant : $\begin{cases} (D): 3x + 4y + 5 = 0 \\ (\Delta): 4x - 3y = 0 \end{cases}$ On trouve :

$$x = \frac{-3}{5}$$
 et $y = \frac{-4}{5}$ donc $H\left(\frac{-3}{5}; \frac{-4}{5}\right)$

Autre méthode : Soit $H(x_H; y_H)$ on a

$$H \in (D) \Leftrightarrow 3x_H + 4y_H + 5 = 0$$

 \overrightarrow{OH} est normal a la droite (D) donc colinéaire avec

$$\vec{u}(3;4)$$
 Donc: $\exists k \in \mathbb{R} / \overrightarrow{OH} = k\vec{u} \Leftrightarrow \begin{cases} x_H = 3k \\ y_H = 4k \end{cases}$

Pour déterminer x_H et y_H on va donc résoudre le

système suivant :
$$\begin{cases} (1)x_H = 3k \\ (2)y_H = 4k \\ (3)3x_H + 4y_H + 5 = 0 \end{cases}$$

On remplace (1) et (2) dans (3) on trouve:

$$k = \frac{-1}{5}$$
 Donc:
$$\begin{cases} x_H = \frac{-3}{5} \\ y_H = \frac{-4}{5} \end{cases}$$

2)
$$d(O;(D)) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} = \frac{|3 \times 0 + 4 \times 0 + 5|}{\sqrt{3^2 + 4^2}} = \frac{5}{5} = 1$$

3) O' le symétrique de O par rapport à la droite (D) Donc H est le milieu du segment [OO']

Donc: $\overrightarrow{O'H} = -\overrightarrow{OH}$ on pose: O'(x; y)

Donc:
$$\begin{cases} \frac{-3}{5} - x = \frac{3}{5} \\ \frac{-4}{5} - y = \frac{4}{5} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{6}{5} \\ y = -\frac{8}{5} \end{cases} \text{ Donc : } O'\left(-\frac{6}{5}; -\frac{8}{5}\right)$$

Exercice: Considérons la parabole d'équation:

- (P): $y = x^2$ et la droite (D): y = x 1
- 1- Tracer la droite (D) et la parabole (P).
- 2- Soit $N\alpha$ un point d'abscisse α et varie sur la parabole (P)
- a) Déterminer en fonction de α la distance $d(N\alpha, (D))$.
- b) Pour quelle valeur de α la distance $d(N\alpha$, (D)) est minimale.
- V) L'INTERPRETATION ANALYTIQUE DE L'INEGALITE DE CAUCHY-SCHWARZ

Activité 1: Considérons deux vecteurs \vec{u} et \vec{v} non nuls et le trinôme $f(x) = (x\vec{u} + \vec{v})^2$

- 1- Développer f(x).
- 2- Déterminer le signe de f(x).
- 3- Déterminer le discriminant de f(x).
- 4- en déduire que pour tout vecteurs \vec{u} et \vec{v} on a : $\vec{u} \cdot \vec{v} \le |\vec{u} \cdot \vec{v}| \le |\vec{u}| \times |\vec{v}|$
- 5- Quand est ce qu'on a l'égalité ?

Activité 2: On sait que pour trois points donnés dans le plan on a : $MA + MB \ge AB$ le but de cette activité c'est de démontrer ce résultat.

Considérons deux vecteurs \vec{u} et \vec{v} non nuls.

- 1- Développer $(\vec{u} + \vec{v})^2$
- 2- En utilisant l'inégalité précédente montrer que ll \vec{u}
- $+\vec{v} \| \le \|\vec{u}\| + \|\vec{v}\|.$
- 3- Quand est ce qu'on a l'égalité ?

L'inégalité de Cauchy-Schwarz

a)Pour tout vecteurs \vec{u} et \vec{v} on a :

$$\vec{u}.\vec{v} \le |\vec{u}.\vec{v}| \le |\vec{u}| \times |\vec{v}|$$

b) l'égalité est vérifiée si et seulement si $\stackrel{\rightarrow}{u}$ et $\stackrel{\rightarrow}{v}$ sont colinéaires.

L'inégalité triangulaire.

a) Pour tout vecteurs \vec{u} et \vec{v} on a :

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|.$$

b) l'égalité est vérifié si \vec{u} et \vec{v} sont colinéaires et de même sens.

Propriétés : L'espace V_2 est rapporté à une base orthonormée $B(\vec{i};\vec{j})$ Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ on a

1) L'inégalité de Cauchy-Schwarz

$$\vec{u}.\vec{v} \le |\vec{u}.\vec{v}| \le |\vec{u}| \times |\vec{v}| \iff$$

$$xx' + yy' \le |xx' + yy'| \le \sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}$$

2) L'inégalité triangulaire.

$$: \|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|. \Leftrightarrow$$

$$\sqrt{(x+x')^2+(y+y')^2} \le \sqrt{x^2+y^2} + \sqrt{x'^2+y'^2}$$

Exercice: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé et direct $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ Considérons les

points
$$A(1;-1)$$
 et $B(4;-1)$ et $C(-2;2)$

1) Calculer : $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\det(\overrightarrow{AB}; \overrightarrow{AC})$

- 2)en déduire une mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$
- 3)Calculer la surface du triangle ABC
- 4) déterminer une équation cartésienne
- de la hauteur du triangle ABC passant par A
- 5) déterminer une équation cartésienne

de la bissectrice de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$

Solution :1) on a : $\overrightarrow{AB}(3;0)$ et $\overrightarrow{AC}(-3;3)$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 3 \times (-3) + 0 \times 3 = -9$$

$$\det\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \begin{vmatrix} 3 & -3 \\ 0 & 3 \end{vmatrix} = 9$$

2)soit lpha une mesure de l'angle $\left(\overrightarrow{AB};\overrightarrow{AC}\right)$ on a :

$$\cos\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|} \text{ et } \sin\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \frac{\det\left(\overrightarrow{AB}; \overrightarrow{AC}\right)}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|}$$

$$AB = \|\overrightarrow{AB}\| = \sqrt{3^2 + 0^2} = 3$$
 et $AC = 3\sqrt{2}$

Donc:
$$\cos \alpha = \frac{-9}{9\sqrt{2}} = \frac{-\sqrt{2}}{2}$$
 et $\sin \alpha = \frac{9}{9\sqrt{2}} = \frac{\sqrt{2}}{2}$

Donc :
$$\alpha = \frac{3\pi}{4}$$

3) on a:
$$S = \frac{1}{2} \left| \det \left(\overrightarrow{AB}; \overrightarrow{AC} \right) \right| = \frac{9}{2} cm^2$$

4)soit(Δ) la hauteur du triangle ABC passant par A

Donc : (Δ) perpendiculaire a (BC) passant par A

Donc $\overrightarrow{BC}(-6,3)$ un vecteur normal a (Δ) donc

$$(\Delta)/-6x+3y+c=0$$
 et on a $A(1;-1)\in(\Delta)$ donc

$$-6 \times 1 - 3 + c = 0 \Leftrightarrow c = 9$$

$$(\Delta)/-6x+3y+9=0$$
 donc: $(\Delta)/2x-y-3=0$

4)soit(D) la bissectrice de l'angle $\left(\overrightarrow{AB};\overrightarrow{AC}\right)$

Pour Chaque point M(x, y) de la droite (D)

On a:
$$d(M;(AB)) = d(M;(AC))$$

D'où
$$\frac{|y+1|}{\sqrt{0^2+1^2}} = \frac{|x+y|}{\sqrt{0^2+1^2}}$$

$$\Leftrightarrow \sqrt{2}|y+1| = |x+y|$$

On remarque que $\left(D\right)$ se trouve dans le demi plan tel

que:
$$\begin{cases} y+1 \ge 0 \\ x+y \ge 0 \end{cases}$$
 donc: $\sqrt{2}(y+1) = x+y$

donc : l'équation cartésienne de (D)est :

$$\begin{cases} x + \left(1 - \sqrt{2}\right)y - \sqrt{2} = 0 \\ y + 1 \ge 0 \end{cases}$$
 est un demi droite

C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

