Linear Algebra

Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4th term Spring 2019

Lecture 9. Orthogonalization and QR

Outline

- Orthonormal bases and orthogonal matrices
 - Orthonormal bases in \mathbb{R}^n
 - Orthogonal matrices
- Gram-Schmidt orthogonalization and QR-decomposition
 - Gram–Schmidt orthogonalization
 - QR-decomposition
 - Applications of QR
- Fourier transform
 - Hilbert spaces

Orthogonal systems

Definition

A set $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ of nonzero vectors in \mathbb{R}^n is orthogonal if $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0$ for $i \neq j$.

An orthogonal set S s.t. $\|\mathbf{u}\| = 1$ for each $\mathbf{u} \in S$ is orthonormal.

Example

- The standard basis system of \mathbb{R}^n is an orthonormal set
- The set (1,0,1), (1,1,-1) and (1,-2,-1) is orthogonal

Remark

Every orthogonal set S can be made orthonormal if we replace each ${\bf u}$ in S by ${\bf u}/\|{\bf u}\|$.

Orthogonal sets are linearly independent

Lemma

Every orthogonal set is linearly independent.

Proof.

Assume that a set $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is orthogonal and $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}$. Then

$$0 = \langle \mathbf{u}_m, \mathbf{0} \rangle = \langle \mathbf{u}_m, c_1 \mathbf{u}_1 + \cdots + c_k \mathbf{u}_k \rangle$$

$$= c_1 \langle \mathbf{u}_m, \mathbf{u}_1 \rangle + \cdots + c_k \langle \mathbf{u}_m, \mathbf{u}_k \rangle = c_m \|\mathbf{u}_m\|^2$$

yielding $c_m = 0$.

Every orthogonal set $S \subset \mathbb{R}^n$ is contained in an orthogonal basis of \mathbb{R}^n :

- If $ls(S) \neq \mathbb{R}^n$, take any nonzero vector $\mathbf{u} \in (ls(S))^{\perp}$
- Denote $S' := S \cup \{u\}$; then S' is orthogonal
- Continue (finitely many times) to get $ls(S') = \mathbb{R}^n$

Coordinate representation in orthogonal bases

Theorem

Assume that $S = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ is an orthonormal basis (ONB) of \mathbb{R}^n .

Then, for every
$$\mathbf{u} \in \mathbb{R}^n$$
,
$$\boxed{\mathbf{u} = \langle \mathbf{u}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{u}, \mathbf{u}_n \rangle \mathbf{u}_n}$$

Proof.

The vector $\mathbf{v} := \mathbf{u} - \langle \mathbf{u}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{u}, \mathbf{u}_n \rangle \mathbf{u}_n$ is orthogonal to every \mathbf{u}_k , thus to $\mathrm{ls}\{\mathbf{u}_1, \dots, \mathbf{u}_n\} = \mathbb{R}^n \implies \mathbf{v} = \mathbf{0}$.

Corollary

every $\mathbf{u} \in \mathbb{R}^n$,

Assume that $S = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ is an orthogonal basis of \mathbb{R}^n . Then, for

$$u = \frac{\langle \mathbf{u}, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 + \dots + \frac{\langle \mathbf{u}, \mathbf{u}_n \rangle}{\|\mathbf{u}_n\|^2} \mathbf{u}_n$$

 $\langle \mathbf{u}, \mathbf{u}_k \rangle / \|\mathbf{u}_k\|^2$ is the k^{th} coordinate of \mathbf{u} in the basis $\mathbf{u}_1, \dots, \mathbf{u}_n$ $(\langle \mathbf{u}, \mathbf{u}_k \rangle / \|\mathbf{u}_k\|^2) \mathbf{u}_k$ is the component = projection of \mathbf{u} onto \mathbf{u}_k .

Orthogonal columns and least squares solutions

Properties of matrices with orthogonal columns:

• If an $m \times n$ matrix A = Q has orthonormal columns ($\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$), then

$$Q^TQ = I_n$$

- the least squares solution of $Q\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} = (\mathbf{Q}^T \mathbf{Q})^{-1} \mathbf{Q}^T \mathbf{b} = \mathbf{Q}^T \mathbf{b}$
- the projection \mathbf{p} , i.e., the best approximation in $\mathcal{C}(Q)$ is $QQ^T\mathbf{b}$

• the orthogonal projection operator onto
$$\mathcal{C}(Q) \subset \mathbb{R}^m$$
 is $P = QQ^T$

• $\mathbf{p} = QQ^T\mathbf{b}$ is the basis decomposition of \mathbf{p} in the ONB \mathbf{q}_k of $\mathcal{C}(Q)$:

$$\mathbf{p} = \mathbf{q}_1(\mathbf{q}_1^T\mathbf{b}) + \mathbf{q}_2(\mathbf{q}_2^T\mathbf{b}) + \cdots + \mathbf{q}_n(\mathbf{q}_n^T\mathbf{b})$$

• When columns of Q are only orthogonal, then the above becomes

$$\mathbf{p} = \frac{\mathbf{q}_1^T \mathbf{b}}{\|\mathbf{q}_1\|^2} \mathbf{q}_1 + \frac{\mathbf{q}_2^T \mathbf{b}}{\|\mathbf{q}_2\|^2} \mathbf{q}_2 + \dots + \frac{\mathbf{q}_n^T \mathbf{b}}{\|\mathbf{q}_n\|^2} \mathbf{q}_n$$

Orthogonal projectors

Explicit formula for the orthogonal projector P_W onto a subspace W

- Assume W is a subspace of \mathbb{R}^m of dimension n
- Choose an orthogonal basis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ of W
- Denote by Q the $m \times n$ matrix with columns \mathbf{q}_j
- Then

$$P_{W} = Q(Q^{T}Q)^{-1}Q^{T} = \frac{\mathbf{q}_{1}\mathbf{q}_{1}^{T}}{\|\mathbf{q}_{1}\|^{2}} + \frac{\mathbf{q}_{2}\mathbf{q}_{2}^{T}}{\|\mathbf{q}_{2}\|^{2}} + \cdots + \frac{\mathbf{q}_{n}\mathbf{q}_{n}^{T}}{\|\mathbf{q}_{n}\|^{2}}$$

and the projection $P_W \mathbf{x}$ is equal to

$$P_{W}\mathbf{x} = \frac{\mathbf{q}_{1}^{T}\mathbf{x}}{\|\mathbf{q}_{1}\|^{2}}\mathbf{q}_{1} + \frac{\mathbf{q}_{2}^{T}\mathbf{x}}{\|\mathbf{q}_{2}\|^{2}}\mathbf{q}_{2} + \dots + \frac{\mathbf{q}_{n}^{T}\mathbf{x}}{\|\mathbf{q}_{n}\|^{2}}\mathbf{q}_{n}$$

Example (Orthogonal projection)

Let $\mathbf{x} = (x_1, x_2, x_3)^{\top}$, $\mathbf{q}_1 = (1, 1, 0)^{\top}$, and $\mathbf{q}_2 = (1, -1, 0)^{\top}$. Find an orthogonal projection of the vector \mathbf{x} onto the plane $W = \operatorname{ls}\{\mathbf{q}_1, \mathbf{q}_2\}$.

Solution

Since $\mathbf{q}_1 \perp \mathbf{q}_2$ and $\|\mathbf{q}_1\| = \|\mathbf{q}_2\| = \sqrt{2}$, the orthogonal projector onto W is equal to

$$P_{W} = \frac{\mathbf{q}_{1}\mathbf{q}_{1}^{\top}}{2} + \frac{\mathbf{q}_{2}\mathbf{q}_{2}^{\top}}{2} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{diag}\{1, 1, 0\}$$

i.e., P_W is the projector onto the xy-plane. Clearly, $P_W \mathbf{x} = (x_1, x_2, 0)^{\top}$. Alternatively, we find the orthogonal projection via

 $P_W \mathbf{x} = \frac{\mathbf{q}_1^{\top} \mathbf{x}}{2} \mathbf{q}_1 + \frac{\mathbf{q}_2^{\top} \mathbf{x}}{2} \mathbf{q}_2 = \frac{x_1 + x_2}{2} \mathbf{q}_1 + \frac{x_1 - x_2}{2} \mathbf{q}_2 = (x_1, x_2, 0)^{\top}$

Orthogonal matrices

• When Q has orthonormal columns and is square, then $Q^{-1} = Q^T$

• the least squares solution is then exact: $\hat{\mathbf{x}} = Q^T \mathbf{b} \implies Q\hat{\mathbf{x}} = \mathbf{b}$

Definition

An $n \times n$ matrix U is called orthogonal if $U^{-1} = U^T$, i.e., if $U^T U = U U^T = I_n$

Criterion for orthogonality

U is orthogonal \iff its columns form an ONB of \mathbb{R}^n

If \mathbf{u}_i is the j^{th} column of U, then $U^{\top}U = I_n$ amounts to $\mathbf{u}_k^{\top}\mathbf{u}_i = \delta_{ik}$.

Another derivation of $\mathbf{u} = \langle \mathbf{u}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{u}, \mathbf{u}_n \rangle \mathbf{u}_n$

- u = c₁u₁ + ··· + c_nu_n is just the matrix equality u = Uc
 if {u₁,..., u_n} forms an ONB of Rⁿ, then c = U⁻¹u = U^Tu
- then $\mathbf{u} = U\mathbf{c} = UU^T\mathbf{u}$ reads componentwise

$$\mathbf{u} = \mathbf{u}_1(\mathbf{u}_1^T\mathbf{u}) + \mathbf{u}_2(\mathbf{u}_2^T\mathbf{u}) + \cdots + \mathbf{u}_n(\mathbf{u}_n^T\mathbf{u})$$

Properties of orthogonal matrices

An orthogonal matrix *U* does not change scalar products

Reason: $\langle U\mathbf{u}, U\mathbf{v} \rangle = \langle U^T U\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$

Orthogonality criterion for square matrices

A matrix U is orthogonal $\iff U$ does not change length of vectors

 \Rightarrow from the above

 \longleftarrow if $\forall \mathbf{x} \parallel U\mathbf{x} \parallel = \parallel \mathbf{x} \parallel$, then $\forall \mathbf{u}, \mathbf{v} : \langle U^T U \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle \implies U^T U = I$

Corollary: An orthogonal matrix preserves the angle between vectors

Reason: $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos \phi$

Orthogonal matrices and bases

A matrix U is orthogonal $\iff U$ sends every ONB into ONB

 \leftarrow because then U is square and does not change length of vectors

Gram-Schmidt orthogonalization

Remark

Having a matrix with orthogonal columns or an orthogonal set is very useful

Problem: Construct an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \dots$ given a system of linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots$

- set $\mathbf{w}_1 = \mathbf{v}_1$; \mathbf{v}_2 need not be orthogonal to \mathbf{w}_1
- subtract from v₂ its projection onto w₁:

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\mathbf{w}_1^{\mathsf{T}} \mathbf{v}_2}{\mathbf{w}_1^{\mathsf{T}} \mathbf{w}_1} \mathbf{w}_1 \implies \mathbf{w}_2^{\mathsf{T}} \perp \mathbf{w}_1 = 0$$

• subtract from \mathbf{v}_3 its projection onto the plane $ls\{\mathbf{w}_1, \mathbf{w}_2\}$:

$$\mathbf{w}_3 := \mathbf{v}_3 - \frac{\mathbf{v}_3^T \mathbf{w}_1}{\mathbf{w}_1^T \mathbf{w}_1} \mathbf{w}_1 - \frac{\mathbf{v}_3^T \mathbf{w}_2}{\mathbf{w}_2^T \mathbf{w}_2} \mathbf{w}_2$$

• and so on for \mathbf{w}_4 , \mathbf{w}_5 , ...

Gram-Schmidt orthogonalization

Example (Gram-Schmidt orthogonalization)

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$$

Solution:

$$\mathbf{w}_1 = \mathbf{v}_1; \qquad \mathbf{w}_2 =$$

$$\mathbf{w}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3^T \mathbf{w}_1}{\mathbf{w}_1^T \mathbf{w}_1} \mathbf{w}_1 - \frac{\mathbf{v}_3^T \mathbf{w}_2}{\mathbf{w}_2^T \mathbf{w}_2} \mathbf{w}_2 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

$$=\begin{pmatrix}1\\1\\1\end{pmatrix}$$

$$\boldsymbol{w}_1 = \boldsymbol{v}_1; \qquad \boldsymbol{w}_2 = \boldsymbol{v}_2 - \frac{\boldsymbol{v}_2^\top \boldsymbol{w}_1}{\boldsymbol{w}_1^\top \boldsymbol{w}_1} \boldsymbol{w}_1 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 3\\3\\3\\3 \end{pmatrix} - 3 \begin{pmatrix} 1\\-1\\0 \end{pmatrix} + \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

QR factorization = matrix form of Gram-Schmidt

- Assume A has linearly independent columns $\mathbf{a}_1, \dots, \mathbf{a}_n$
- perform Gram–Schmidt orthogonalization to get an orthogonal set $\mathbf{w}_1, \dots, \mathbf{w}_n$
- then normalize to get $\mathbf{q}_1, \dots, \mathbf{q}_n$
- at each step, \mathbf{q}_k is a linear combination of \mathbf{a}_k , $\mathbf{q}_1, \ldots, \mathbf{q}_{k-1}$
- thus \mathbf{a}_k is in the span of $\mathbf{q}_1, \ldots, \mathbf{q}_k$
- ullet $\mathbf{a}_k = P_1 \mathbf{a}_k + \cdots + P_k \mathbf{a}_k = \mathbf{q}_1 \mathbf{q}_1^{\mathsf{T}} \mathbf{a}_k + \cdots + \mathbf{q}_k \mathbf{q}_k^{\mathsf{T}} \mathbf{a}_k$
- in matrix form, this becomes a *QR* factorization:

$$\underbrace{\begin{pmatrix} a_1 \ a_2 \dots a_n \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} q_1 \ q_2 \dots q_n \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} q_1^\top a_1 & q_1^\top a_2 & \dots & q_1^\top a_n \\ & q_2^\top a_2 & \dots & q_2^\top a_n \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

• then $R = Q^{T}A$: indeed, $Q^{T}A = Q^{T}(QR) = (Q^{T}Q)R = R$

where

QR factorization, or QR decomposition

QR factorization of an $m \times n$ matrix $A \equiv$ its representation as A = QR,

- an $m \times n$ matrix Q has orthonormal columns:
- an $n \times n$ matrix R is upper-triangular.

A has linearly independent columns $\iff R$ is non-singular

$$A^{\top}A = (QR)^{\top}QR = R^{\top}(Q^{\top}Q)R = R^{\top}I_{n}R = R^{\top}R$$

Another reason: rank $A = n \iff \text{rank}(QR) = n \stackrel{?}{\iff} \text{rank } R = n$

- Uniqueness of QR-factorization of A with linearly independent columns:
 - $Q_1R_1 = Q_2R_2 \iff Q_2^\top Q_1 = R_2R_1^{-1}$ upper triangular
 - however, $Q_2^{\top}Q_1$ is lower triangular since linear spans of the first k columns of Q_1 and Q_2 are the same for k = 1, ..., n
 - thus $Q_2^\top Q_1$ is a diagonal matrix $D \implies R_2 = DR_1$ and $Q_1 = Q_2D$
 - columns of Q_i are of length 1 \implies $D = \text{diag}\{\pm 1, \pm 1, \dots, \pm 1\}$

Lifehack: normalize at the very end!

- In the above algorithm, $\mathbf{q}_k = \mathbf{w}_k/\|\mathbf{w}_k\|$, where $\mathbf{w}_1, \dots, \mathbf{w}_n$ are obtained by GS algorithm from columns of A (\mathbf{w}_k not normalized!)
- denote by W the matrix with columns $\mathbf{w}_1, \ldots, \mathbf{w}_n$ and by D the diagonal matrix diag{ $\|\mathbf{w}_1\|, \ldots, \|\mathbf{w}_n\|$ }
- then $Q = WD^{-1}$ and $R = Q^{T}A = D^{-1}W^{T}A$
- therefore, must divide by $\|\mathbf{w}_k\|$ the k^{th} column of W and the k^{th} row of $W^{\top}A$ to get Q and R respectively

Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{pmatrix}, W = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -2 & 1 \end{pmatrix}, D = \text{diag}\{\sqrt{2}, \sqrt{6}, \sqrt{3}\}$$

$$Q \leftarrow \frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{6}} \quad \frac{1}{\sqrt{3}}$$

$$(2 \quad 2 \quad 6) : \sqrt{2}$$

$$DR = W^{T}A = \begin{pmatrix} 2 & 2 & 6 \\ 0 & 6 & -6 \\ 0 & 0 & 3 \end{pmatrix} : \frac{\sqrt{2}}{\sqrt{3}} \rightarrow R$$

Full QR factorization and applications

- In the above form, Q is $m \times n$ and R is $n \times n$
- often called the reduced QR factorization
- Q is not orthogonal (as it is not square)
- add m-n columns to get an orthogonal \tilde{Q} and add m-n zero rows to R; then $A=\tilde{Q}\tilde{R}$ is the full QR factorization

Application of QR to least squares:

- since $A^{T}A$ is invertible, such is also $R^{T}R$ and thus R
- therefore, $R^{\top}R\hat{\mathbf{x}} = R^{\top}Q^{T}\mathbf{b} \implies R\hat{\mathbf{x}} = Q^{\top}\mathbf{b}$
- as R is upper-triangular, this is very fast!

Advantages of QR-decomposition:

Orthogonal columns of *Q* make algorithm stable (norms do not increase or decrease)

Householder's reflection algorithm of QR

- another methods to find Q and R involve Householder's reflections $Q = I 2\mathbf{v}\mathbf{v}^T$ with ||v|| = 1
- Householder's reflection Q can be chosen so that $Q\mathbf{x} = \|\mathbf{x}\|\mathbf{e}_1$: set $\mathbf{u} = \mathbf{x} \|\mathbf{x}\|\mathbf{e}_1$ and $\mathbf{v} = \mathbf{u}/\|\mathbf{u}\|$

• the impact on A: take x to be the first column of A; then

$$QA = \begin{pmatrix} \|\mathbf{x}\| & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \vdots \\ 0 & * & \dots & * \end{pmatrix}$$

• Then consider $(n-1) \times (n-1)$ submatrix and continue

Givens rotations and QR

The idea in dimension 2

Rotate a vector $(x, y)^{\top}$ of length r to make it collinear to $\mathbf{e}_1 = (1, 0)^{\top}$:

$$G(\theta)\mathbf{x} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mathbf{x} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix} = \begin{pmatrix} r \\ 0 \end{pmatrix}$$

We easily find that $\cos \theta = x/r = x/\sqrt{x^2 + y^2}$ and $\sin \theta = -y/\sqrt{x^2 + y^2}$

Algrithm:

Apply Givens rotations in coordinates 1 and n, then 1 and n-1 etc to make all entries below the (1,1)-entry zero

Pros:

- easily parallelized
- fast for sparse matrices

Applications

- QR eigenvalue algorithm
- Fourier transform and Fast Fourier transform
- ...

Hilbert space $L_2(0, 2\pi)$

• Consider the space of functions over $[0, 2\pi]$ that are square integrable:

$$||f||^2 := \int_0^{2\pi} |f(t)|^2 dt$$

- this is the inner product space called the Hilbert space $L_2(0,2\pi)$
- scalar product:

$$\langle f,g \rangle := \int_0^{2\pi} f(t) \overline{g(t)} \, dt$$

• the set of functions 1, $\cos nx$, $\sin nx$, n = 1, 2, ..., forms an orthogonal set in $L_2(0, \pi)$:

$$\sin nx \cos mx = \frac{1}{2}\sin(n+m)x + \frac{1}{2}\sin(n-m)x \implies \\ \langle \sin nx, \cos mx \rangle = 0; \\ \langle 1, \sin nx \rangle = \langle 1, \cos mx \rangle = 0 \quad \text{etc}$$

Fourier series

- $\{1/\sqrt{2\pi}, \sin nx/\sqrt{\pi}, \cos nx/\sqrt{\pi}\}\$ forms an orthonormal basis of $L_2(0, 2\pi)$
- every function $f \in L_2(0, 2\pi)$ is equal (in some sense) to its Fourier series

$$f(x) \sim \frac{1}{2}a_0 + \sum_{k>0} (a_k \cos kx + b_k \sin kx)$$

with

$$a_k := \frac{1}{\pi} \int_0^{2\pi} f(t) \cos kt \, dt, \qquad b_k := \frac{1}{\pi} \int_0^{2\pi} f(t) \sin kt \, dt,$$

being the Fourier coefficients of f

- This time we consider complex-valued functions over $(0, 2\pi)$
- can associate any such function with a function on the unit circle
- Another basis for $L_2(0,2\pi)$ is $\{e^{inx}\}, n \in \mathbb{Z}$, with $i = \sqrt{-1}$
- This is an orthogonal basis:

$$\langle e^{\textit{inx}}, e^{\textit{imx}}
angle = \int_0^{2\pi} e^{\textit{inx}} \overline{e^{\textit{imx}}} \, dx = \int_0^{2\pi} e^{\textit{i}(n-m)x} \, dx = 2\pi \delta_{n,m}$$

• Fourier series of a function *f*:

$$f \sim \sum_{k=-\infty}^{\infty} c_k e^{ikx},$$

where

Bases

$$c_k := \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt$$

are the Fourier coefficients

The Fourier transform

Definition

The mapping $\mathscr{F}\,:\,L_2(0,2\pi)\to\ell_2(\mathbb{Z})$ given by

$$\mathscr{F}(f)=(c_k)$$

is the Fourier transform

- ℓ_2 is a vector space of all complex-valued sequences $\mathbf{c} = (c_k)_{k=-\infty}^{\infty}$ with norm $\|\mathbf{c}\| = \sqrt{\sum |c_k|^2}$
- The Pythagorean thm = Parseval thm:

$$||f||^2 = \sum |c_k|^2$$

ullet Plancherel thm: $f \sim \sum c_k e^{ikx}, \ g \sim \sum d_k e^{ikx} \implies \langle f,g
angle = \sum c_k \overline{d_k}$

Example (Fourier transform of
$$f = \cos 2x$$
)

 $\cos 2x = \frac{1}{2}e^{2ix} + \frac{1}{2}e^{-2ix}$ is the Fourier series of f;