

Tribhuvan University
Institute of Science and Technology
Department of Computer Science and Technology

Data Structure and Algorithms Micro-Syllabus

S.No.	Unit	Hours	Total Hours	Marks
1	Concept and Definition of Data Structures a. Information and its meaning b. Array in C c. The array as an ADT d. One dimensional array e. Two dimensional array f. Multi-dimensional array g. Structure h. Union i. Pointer	4	4	5
2	Algorithm a. Concept and Definition b. Design of algorithm c. Characteristic of algorithm d. Big O notation	2	2	3
3	The Stack a. Concept and Definition • Primitive Operations • Stack as an ADT • Implementing PUSH and POP operation • Testing for overflow and underflow conditions b. The Infix, Postfix and Prefix • Concept and Definition • Evaluating the postfix operation • Converting from infix to postfix c. Recursion • Concept and Definition • Implementation of: ➤ Multiplication of Natural Numbers ➤ Factorial ➤ Fibonacci Sequences ➤ The Tower of Hanoi	3	8	11
4	 Queues a. Concept and Definition b. Queue as ADT c. Implementation of Insert and Delete operation of • Linear Queue • Circular Queue d. Concept of Priority Queue 	1 2 1	4	5
5	 Linked List a. Concept and Definition b. Inserting and deleting nodes c. Linked implementation of a stack (PUSH / POP) d. Linked implementation of a queue (Insert / Remove) e. Circular List Stack as a circular list (PUSH / POP) 	1 2 2	6	8

		1		ele CSII Portal
	• Queue as a circular list (Insert / Remove)			
	f. Doubly Linked List (Insert / Remove)	1		
6	Tree		7	9
	a. Concept and Definition			
	b. Binary Tree			
	c. Introduction and application	1		
	d. Operation			
	e. Types of Binary Tree			
	• Complete	1		
	Strictly			
	Almost Complete			
	f. Huffman algorithm	1		
	g. Binary Search Tree			
	 Insertion 	2		
	 Deletion 			
	 Searching 			
	h. Tree traversal	2		
	Pre-order traversal			
	 In-order traversal 			
	 Post-order traversal 			
7	Sorting		5	7
	a. Introduction	2		
	b. Bubble Sort			
	c. Insertion			
	d. Selection	2		
	e. Quick			
	f. Merge			
	g. Comparison and Efficiency of sorting	1		
8	Searching		5	7
	a. Introduction	2		
	b. Sequential Searching			
	c. Binary Search	2		
	d. Comparison and Efficiency of Searching			
	e. Hashing	1		
	 Probing (Linear and Quadratic) 			
_				
9	Graph		4	5
	a. Introduction			
	b. Representation of Graph	1		
	• array			
	• linked list			
	c. Traversal			
	 Depth First Search 	2		
	Breadth First Search			
	d. Minimum spanning Tree			
	Kruskal's algorithm	1		

Text Book:

Data Structures using C and C++, Y. Langsam, M. J. Augenstein, A. M. Tenenbaum

Reference Book:

The Design and Analysis of Algorithm, Nitin Upadhyay, SK Kataria & Sons

Prerequisite: C