CS262- Problem Set 1 CS262- Data Base Systems

Muhammad Mudassir 2022-CS-32

February 15, 2024

Problem 1: Products with Cost Above Average

Relational Algebra

$$\pi_{\text{name}}(\sigma_{\text{cost>avg cost}}(Product \times (\rho_{\text{avg cost}}(\gamma_{\text{avg(cost)}}(Product)))))$$

SQL

Cartesian Product

SELECT name

FROM Product, (SELECT AVG(cost) AS Avg-cost FROM Product) AS Avg-table WHERE cost > Avg-cost;

Join

SELECT name
FROM Product
JOIN (SELECT AVG(cost) AS Avg-cost FROM Product) AS Avg-table
ON cost > Avg-cost;

Subquery

SELECT name FROM Product WHERE cost > (SELECT AVG(cost) FROM Product);

Problem 2: Companies whose Products are Bought by Aslam

Relational Algebra

 $\pi_{\text{name}}(\sigma_{\text{buyer='}} \text{ Aslam'} (\text{Purchase} \triangleright \triangleleft \text{Company}))$

SQL

Cartesian Product
SELECT DISTINCT C.name FROM
Company C, Purchase P
WHERE C.name = P.company AND P.buyer = 'Aslam';

Join

SELECT DISTINCT C.name FROM Company C JOIN Purchase P ON C.name = P.company WHERE P.buyer = 'Aslam';

Subquery

SELECT DISTINCT name FROM Company WHERE name IN (SELECT company FROM Purchase WHERE buyer = 'Aslam');

Problem 3: Products More Expensive than Unilever's

Relational Algebra

$$\pi_{\text{name}}(\sigma_{\text{cost>max cost}}(Product_{\star} \ (\rho_{\text{max cost}}(\gamma_{\text{max(cost)}}(\sigma_{\text{maker=' Unilever'}} \ (Product)))))))$$

SQL

Cartesian Product

SELECT name

FROM Product, (SELECT MAX(cost) AS max_cost FROM Product WHERE maker = 'Unilever') AS max_table WHERE cost > max_cost;

Join

SELECT name

FROM Product

JOIN (SELECT MAX(cost) AS max_cost FROM Product WHERE maker = 'Unilever') AS max_table ON cost > max_cost;

Subquery

SELECT name

FROM Product

WHERE cost > (SELECT MAX(cost) FROM Product WHERE maker = 'Unilever');

Problem 4: Copy Cat Products

Relational Algebra

 $\pi_{\text{Product.name, Product.maker} \stackrel{'}{=} \text{Unilever'} \text{NProduct.name} \in (\pi_{\text{name}}(\sigma_{\text{maker} = '} \text{Unilever'} \text{(Product)}))} (Product))$

SQL

Cartesian Product SELECT

P1.name, P1.maker

FROM Product AS P1, Product AS P2

WHERE P1.maker <> 'Unilever' AND P1.name = P2.name AND P2.maker = 'Unilever';

Ioin

SELECT P1.name, P1.maker

FROM Product AS P1

JOIN Product AS P2 ON P1.name = P2.name

WHERE P1.maker <> 'Unilever' AND P2.maker = 'Unilever';

Subquery

SELECT name, maker

FROM Product

WHERE maker <> 'Unilever' AND name IN (SELECT name FROM Product WHERE maker = 'Unilever');

Problem 5: Buyers of Products Produced in Lahore

Relational Algebra

 π buyer(σ city=' Lahore' (Product $\triangleright \triangleleft$ Purchase))

SQL

Cartesian Product SELECT DISTINCT buyer

FROM Product, Purchase

WHERE Product.name = Purchase.product AND Product.city = 'Lahore';

Join

SELECT DISTINCT buyer
FROM Product
JOIN Purchase ON Product.name = Purchase.product
WHERE Product.city = 'Lahore';

Subquery

SELECT DISTINCT buyer FROM Purchase

WHERE product IN (SELECT name FROM Product WHERE city = 'Lahore');

Problem 6: Buyers Who Only Buy Products Made in Karachi

Relational Algebra

 $\pi_{\text{buyer}}(\sigma_{\text{city}} = Karachi')$ (Product $\triangleright \triangleleft$ Purchase) – $\pi_{\text{buyer}}(\sigma_{\text{city}} = Karachi')$ (Product $\triangleright \triangleleft$ Purchase)))

SQL

Cartesian Product SELECT
DISTINCT P1.buyer
FROM Product AS P1, Product AS P2, Purchase
WHERE P1.name = Purchase.product AND P2.name = Purchase.product AND P1.city = 'Karachi' AND P2.city

Join

SELECT DISTINCT P1.buyer
FROM Product AS P1
JOIN Product AS P2 ON P1.name = P2.name
JOIN Purchase ON P1.name = Purchase.product
WHERE P1.city = 'Karachi' AND P2.city <> 'Karachi';

Subquery

SELECT DISTINCT buyer

FROM Purchase

WHERE product IN (SELECT name FROM Product WHERE city = 'Karachi')

AND buyer NOT IN (SELECT buyer FROM Purchase WHERE product IN (SELECT name FROM Product WHERE city <

Problem 7: Products Bought by More than Five Customers

Relational Algebra

$$\pi_{\text{name, price}}(\sigma_{\text{count>5}}(\gamma_{\text{name, price, count}}(Purchase)))$$

SQL

-- Cartesian Product SELECT name, price FROM Purchase GROUP BY name, price HAVING COUNT(*) > 5;

Join

SELECT name, price FROM Purchase AS P JOIN (

```
SELECT product, COUNT(*) AS cnt
FROM Purchase
GROUP BY product
HAVING COUNT(*) > 5
) AS P_cnt ON P.product = P_cnt.product;
```

Subquery

SELECT name \begin{verbatim} , price

FROM Purchase
WHERE product IN (
SELECT product FROM
Purchase GROUP BY
product HAVING
COUNT(*) > 5);

Problem 8: Products More Expensive than Previous Years

Relational Algebra

name (Product Product.name (Product.year ; 2015 (Product) Product)) name (Product Product.name (Product.year; 2015 (Product))

SQL

Cartesian Product
SELECT DISTINCT P1.name
FROM Product AS P1, Product AS P2
WHERE P1.name = P2.name AND P1.year >= 2015 AND P2.year < 2015 AND P1.cost > P2.cost;

Join
SELECT DISTINCT P1.name
FROM Product AS P1
JOIN Product AS P2 ON P1.name = P2.name AND P1.year >= 2015 AND P2.year < 2015 AND P1.cost > P2.cost

Subquery

SELECT DISTINCT P1.name FROM Product AS P1

WHERE P1.year >= 2015 AND P1.cost > ALL (SELECT cost FROM Product WHERE name = P1.name AND year < 20

Problem 9: Companies Never Selling at Loss

Relational Algebra

name (Company Company.name (Purchase.price; Product.cost (Purchase Product Company)) name (Company Company.name (Purchase.price; Product.cost (PurchaseProductCompany)))

SOL

Cartesian Product SELECT
DISTINCT C.name
FROM Company AS C, Purchase, Product
WHERE C.name = Purchase.buyer AND Purchase.product = Product.name AND Product.maker = C.name AND Pur

Join

SELECT DISTINCT C.name

```
FROM Company AS C
JOIN Purchase ON C.name = Purchase.buyer
JOIN Product ON Purchase.product = Product.name AND Product.maker = C.name
WHERE Purchase.price >= Product.cost;
Subquery
SELECT DISTINCT name
FROM Company
WHERE name NOT IN (
SELECT DISTINCT C.name
FROM Company AS C
JOIN Purchase ON C.name = Purchase.buyer
JOIN Product ON Purchase.product = Product.name AND Product.maker = C.name
WHERE Purchase.price < Product.cost
);
Problem 10: Products with More than Average Revenue in 2015
and Below Average Revenue in 2016
Relational Algebra
πproduct name (σrevenue 2015>avg revenue 2015∧revenue 2016<a yr revenue 2016 (Products ⋈ product id=product 
Sales))
SQL
Cartesian Product SELECT
DISTINCT P.name FROM Product
AS P, Purchase
WHERE P.name = Purchase.product AND P.year = 2015 AND Purchase.year = 2015 GROUP
BY P.name
HAVING SUM(Purchase.price) > (
SELECT AVG(revenue_2015)
FROM (
SELECT SUM(price) AS revenue_2015
FROM Purchase
WHERE year = 2015
GROUP BY product )
AS avg_table
AND SUM(Purchase.price) < (
SELECT AVG(revenue_2016)
FROM (
SELECT SUM(price) AS revenue_2016
FROM Purchase
```

Ioin

WHERE year = 2016 GROUP BY product) AS avg_table);

SELECT DISTINCT P.name
FROM Product AS P
JOIN (
SELECT product, SUM(price) AS revenue_2015

```
FROM Purchase
WHERE year = 2015
GROUP BY product
) AS revenue_2015 ON P.name = revenue_2015.product
JOIN (
SELECT product, SUM(price) AS revenue_2016
FROM Purchase
WHERE year = 2016
GROUP BY product
) AS revenue_2016 ON P.name = revenue_2016.product
WHERE revenue_2015 > (
SELECT AVG(revenue_2015)
FROM (
SELECT SUM(price) AS revenue_2015
FROM Purchase
WHERE year = 2015
GROUP BY product
) AS avg_table
)
AND revenue_2016 < ( SELECT
AVG(revenue_2016) FROM (
SELECT SUM(price) AS revenue_2016
FROM Purchase
WHERE year = 2016
GROUP BY product
) AS avg_table
);
Subquery
SELECT DISTINCT name
FROM Product
WHERE name IN (
SELECT product
FROM Purchase
WHERE year = 2015
GROUP BY product
HAVING SUM(price) > (
SELECT AVG(revenue_2015)
FROM (
SELECT SUM(price) AS revenue_2015
FROM Purchase
WHERE year = 2015
GROUP BY product
) AS avg_table
AND name IN (SELECT
product FROM Purchase
WHERE year = 2016 GROUP
BY product HAVING
SUM(price) < ( SELECT
AVG(revenue_2016) FROM (
SELECT SUM(price) AS revenue_2016
FROM Purchase
WHERE year = 2016
```

```
GROUP BY product
) AS avg_table
)
);
```