Vector Calculus VI: Integrals Over Paths and Surfaces

Oliver Zhao

Contents

1	The Path Integral 1.1 Definition of Path Integral	49 49 49
2	Line Integrals 2.1 Definition of the Line Integral	50 50 50 51 52 53
3	Parametrized Surfaces 3.1 Graphs Are Too Restrictive 3.2 Parametrized Surfaces as Mappings 3.3 Tangent Vectors to Parametrized Surfaces 3.4 Regular Surfaces 3.5 Tangent Plane to a Parametrized Surface	53 53 54 54 54
4	Area of a Surface 4.1 Definition of Surface Area 4.2 Surface Area of a Graph 4.3 Surfaces of Revolution 4.4 Integrals of Scalar Functions Over Surfaces 4.5 Surface Integrals Over Graphs 4.6 Integrals Over Graphs	55 55 56 56 57
5	Surface Integrals of Vector Fields 5.1 Definition of the Surface Integral 5.2 Orientation	58 58 58 59 59 59
6	Summary: Formulas for Surface Integrals	60

1 The Path Integral

1.1 Definition of Path Integral

Suppose we have a scalar function $f: \mathbb{R}^3 \to \mathbb{R}$, such that f sends points in \mathbb{R}^3 to real numbers. It would be useful to define the integral of such a function f along a path $\mathbf{c}: I = [a, b] \to \mathbb{R}^3$, where $\mathbf{c}(t) = (x(t), y(t), z(t))$.

The path integral, or the integral of f(x, y, z) along the path \mathbf{c} , is defined when $\mathbf{c}: I = [a, b] \to \mathbb{R}^3$ is of class C^1 and when the composite function $t \mapsto f(x(t), y(t), z(t))$ is continuous on I. We define this path integral as

$$\int_{\mathbf{c}} f \ ds = \int_{f}^{b} (x(t), y(t), z(t)) ||\mathbf{c}'(t)|| dt. \tag{1}$$

Sometimes $\int_{\mathbf{c}} f \ ds$ is denoted as

$$\int_{\mathcal{C}} f(x, y, z) \ ds \tag{2}$$

or

$$\int_{a}^{b} f(\mathbf{c}(t))||\mathbf{c}'(t)|| dt. \tag{3}$$

If $\mathbf{c}(t)$ is only piecewise C^1 or $f(\mathbf{c}(t))$ is piecewise continuous, we define $\int_{\mathbf{c}} f \, ds$ by breaking [a,b] into pieces over which $f(\mathbf{c}(t))||\mathbf{c}'(t)||$ is continuous, and summing the integral over the pieces.

1.2 The Path Integral for Planar Curves

When the path \mathbf{c} describes a plane curve. Suppose that all points $\mathbf{c}(t)$ lie in the xy plane and f is a real-valued function of two variables. The path integral of f along \mathbf{c} is

$$\int_{\mathbf{c}} f(x,y) \ ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt. \tag{4}$$

When $f(x,y) \ge 0$, this integral can be geometrically interpreted as the "area of a fence".

2 Line Integrals

2.1 Definition of the Line Integral

Let **F** be a vector field on \mathbb{R}^3 that is continuous on the C^1 path $\mathbf{c} : [a, b] \to \mathbb{R}^3$. We define $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, the line integral of **F** along **c**, by the formula

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt.$$
 (5)

That is, we integrate the dot product of **F** with \mathbf{c}' over interval [a, b]. For paths \mathbf{c} that satisfy $\mathbf{c}'(t) \neq \mathbf{0}$, there is another useful formula for the line integral. Namely, if $\mathbf{T}(t) = \mathbf{c}'(t)/||\mathbf{c}'(t)||$ denotes the unit tangent vector, we have

$$\int \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$= \int_{a}^{b} \left[\mathbf{F}(\mathbf{c}(t)) \cdot \frac{\mathbf{c}'(t)}{||\mathbf{c}'(t)||} \right] ||\mathbf{c}'(t)|| dt$$

$$= \int_{a}^{b} [\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{T}(t)] ||\mathbf{c}'(t)|| dt.$$
(6)

Either Equations (5) or (6) can be used, depending on whichever is easier.

Another common way of writing line integrals is

$$\int_{\mathbf{c}} F_1 dx + F_2 dy + F_3 dz = \int_a^b \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt} \right) dt = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}.$$
 (7)

2.2 Reparametrizations

The line integral $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$ depends not only on the field \mathbf{F} but also on the path $\mathbf{c} : [a, b] \to \mathbb{R}^3$. In general, if \mathbf{c}_1 and \mathbf{c}_2 are two different paths in \mathbb{R}^3 , $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} \neq \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$. On the other hand, it is true that $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} = \pm \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$ for every vector field \mathbf{F} if \mathbf{c}_1 is what we call a reparametrization of \mathbf{c}_2 . This means that \mathbf{c}_1 and \mathbf{c}_2 are different descriptions of the same geometric curve.

Let $h: I \to I_1$ be a C^1 real-valued function that is a one-to-one map of an interval I = [a, b] onto another interview $I_1 = [a_1, b_1]$. Let $\mathbf{c}: I_1 \to \mathbb{R}^3$ be a piecewise C^1 path. Then we call the composition

$$\mathbf{p} = \mathbf{c} \circ h : I \to \mathbb{R}^3 \tag{8}$$

A reparametrization of **c**. This means that $\mathbf{p}(t) = \mathbf{c}(h(t))$, and so h changes the variable.

It is implicit in the definition that h must carry the endpoints, where either $h(a) = a_1$ and $h(b) = b_1$, or $h(a) = b_1$ and $h(b) = a_1$. We thus distinguish between two types of parametrizations. If $\mathbf{c} \circ h$ is a reparametrization of \mathbf{c} , then either

$$(\mathbf{c} \circ h)(a) = \mathbf{c}(a_1) \text{ and } (\mathbf{c} \circ h)(b) = \mathbf{c}(b_1)$$
 (9)

or

$$(\mathbf{c} \circ h)(a) = \mathbf{c}(b_1) \text{ and } (\mathbf{c} \circ h)(b) = \mathbf{c}(a_1)$$
 (10)

In the first case, the reparametrization is orientation-preserving. In the second case, the reparametrization is orientation-reversing.

Let **F** be a vector field continuous on the C^1 path $\mathbf{c}:[a_1,b_1]\to\mathbb{R}^3$, and let $\mathbf{p}:[a,b]\to\mathbb{R}^3$ be a reparametrization of **c**. If **p** is orientation-preserving, then

$$\int_{\mathbf{R}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s},\tag{11}$$

and if \mathbf{p} is orientation-reversing, then

$$\int_{\mathbf{R}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}.$$
 (12)

While the line integral is an oriented integral, the path integral does not have this property. Thus, if we let \mathbf{c} be piecewise C^1 , let f be a continuous (real-valued) function on the image \mathbf{c} , and let \mathbf{p} be any reparametrization of \mathbf{c} , then

$$\int_{\mathbf{c}} f(x, y, z) \ ds = \int_{\mathbf{p}} f(x, y, z) \ ds. \tag{13}$$

2.3 Line Integrals of Gradient Fields

Recall that a vector field \mathbf{F} is a gradient vector field if $\mathbf{F} = \nabla f$ for some real-valued function f. Thus,

$$\mathbf{F} = \frac{\delta f}{\delta x}\mathbf{i} + \frac{\delta f}{\delta y}\mathbf{j} + \frac{\delta f}{\delta z}\mathbf{k}.$$
 (14)

Suppose g and G are real-valued continuous functions defined on a closed interval [a, b], that is G is differentiable on (a, b) and that G' = g. Then by the fundamental theorem of calculus,

$$\int_{a}^{b} g(x)dx = G(b) - G(a). \tag{15}$$

Thus, the value of the integral of g depends on the value of G at the endpoints of the interval [a,b]. Because ∇f represents the derivative of f, we can ask whether $\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s}$ is completely determined by the value of f at the endpoints $\mathbf{c}(a)$ and $\mathbf{c}(b)$.

Suppose $f:\mathbb{R}^3\to\mathbb{R}$ is of class C^1 and that $\mathbf{c}:[a,b]\to\mathbb{R}^3$ is a piecewise C^1 path. Then

$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s} = f(\mathbf{c}(b)) - f(\mathbf{c}(a)). \tag{16}$$

2.4 Line Integrals Over Geometric Curves

We define a simple curve C to be the image of a piecewise C^1 map $\mathbf{c}: I \to \mathbb{R}^3$ that is one-to-one on an interval $I; \mathbf{c}$ is called a parametrization of C. Thus, a simple curve does not intersect itself. If I = [a, b], we call $\mathbf{c}(a)$ and $\mathbf{c}(b)$ endpoints of the curve. Each simple curve C has two orientation or directions associated with it. If P and Q are the endpoints of the curve, then we can consider C as directed from P to Q or from Q to P. The simple curve C together with a sense of direction is called an oriented simple curve or directed simple curve.

By a simple closed curve we mean the image of a piecewise C^1 map $\mathbf{c} : [a, b] \to \mathbb{R}^3$ that is one-to-one [a, b) and satisfies $\mathbf{c}(a) = \mathbf{c}(b)$. If \mathbf{c} satisfies the condition $\mathbf{c}(a) = \mathbf{c}(b)$, but is not necessarily one-to-one on [a, b), we call its image a closed curve. Simple closed curves have two orientations.

For line integrals and path integrals over oriented simple curves and simple closed curves C,

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} \quad \text{and} \quad \int_{C} f \ ds = \int_{\mathbf{c}} f \ ds \tag{17}$$

These integrals do not depend on the choice of \mathbf{c} as long as \mathbf{c} is one-to-one. Although a curve must be parameterized to make integration along it tractable, it is not necessary to include the parametrization in our notation for the integral.

2.5 The dr Notation for Line Integrals

Sometimes we write a line integral using the notation

$$\int_{C} \mathbf{F} \cdot d\mathbf{r}.\tag{18}$$

This is because we think of a C^1 path \mathbf{c} in terms of a moving position vector based at the origin and ending at the point $\mathbf{c}(t)$ at time t. Position vectors are often denoted by $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, so the curve is described using the notation $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ in place of $\mathbf{c}(t)$. By definition, the line integral is given by

$$\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt. \tag{19}$$

We can cancel out the dt's and replace the limits of integration with the geometric curve C, arriving at the notation $\int_C \mathbf{F} \cdot d\mathbf{r}$.

3 Parametrized Surfaces

3.1 Graphs Are Too Restrictive

One kind of surface is the graph of a function f(x,y). However, many surfaces arise as level surfaces of functions. Suppose our surface S is a set of points (x,y,z), where $x-z+z^3=0$. Here S is not the graph of some functions z=f(x,y), because this means that for each $(x_0,y_0) \in \mathbb{R}^2$, there must be one z_0 with $(x_0,y_0,z_0) \in S$. By extending the definition of a graph to three variables, we can think of planes as being "pushed", "twisted", or "rolled" around.

3.2 Parametrized Surfaces as Mappings

Previously we dealt with mappings $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$. Taking n=2 and m=3 correspondings to the case of a 2D surface in 3D space.

A parametrization of a surface is a function $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, where D is some domain in \mathbb{R}^2 . The surface S corresponding to the function Φ is its image: $S = \Phi(D)$. We can write

$$\mathbf{\Phi}(u,v) = (x(u,v), y(u,v), z(u,v)). \tag{20}$$

If Φ is differentiable or is of class C^1 , we call S differentiable or a C^1 surface. Thus the Φ function can be thought as a function taking a 2D plane and distorting it to generate a 3D surface.

3.3 Tangent Vectors to Parametrized Surfaces

Suppose that Φ is a parametrized surface that is differentiable at $(u_0, v_0) \in \mathbb{R}^2$. Fixing u at u_0 , we get a map $\mathbb{R} \to \mathbb{R}^3$, given by $t \mapsto \Phi(u_0, t) \in \mathbb{R}^2$, whose image is a curve on the surface. The vector tangent to this curve at the point $\Phi(u_0, v_0)$, which we denote by \mathbf{T}_v , is

$$\mathbf{T}_{v} = \frac{\delta \mathbf{\Phi}}{\delta v} = \frac{\delta x}{\delta v} (u_{0}, v_{0}) \mathbf{i} + \frac{\delta y}{\delta v} (u_{0}, v_{0}) \mathbf{j} + \frac{\delta z}{\delta v} (u_{0}, v_{0}) \mathbf{k}.$$
 (21)

Similarly, if we fix v and consider the curve $t \mapsto \Phi(t, v_0)$, we obtain the tangent vector to this curve at $\Phi(u_0, v_0)$, given by

$$\mathbf{T}_{u} = \frac{\delta \mathbf{\Phi}}{\delta u} = \frac{\delta x}{\delta u} (u_{0}, v_{0}) \mathbf{i} + \frac{\delta y}{\delta u} (u_{0}, v_{0}) \mathbf{j} + \frac{\delta z}{\delta u} (u_{0}, v_{0}) \mathbf{k}.$$
 (22)

3.4 Regular Surfaces

Because the vectors \mathbf{T}_u and \mathbf{T}_v are tangent to two curves on the surface at a given point, the vector $\mathbf{T}_u \times \mathbf{T}_v$ ought to be normal to the surface at the same point.

We say that the surface S is regular or smooth at $\Phi(u_0, v_0)$, provided that $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$ at (u_0, v_0) . This surface is called regular if it is regular at all points $\Phi(u_0, v_0) \in S$.

3.5 Tangent Plane to a Parametrized Surface

We can use the fact that $\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$ is normal to the surface to define the tangent plane and compute it.

If a parametrized surface $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ is regular at $\Phi(u_0, v_0)$ - that is, if $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$ - we define the tangent plane of the surface at $\Phi(u_0, v_0)$ to be the plane determined by the vectors \mathbf{T}_u and \mathbf{T}_v . Thus, $\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$ is a normal vector, and an equation of the tangent plane at (x_0, y_0, z_0) is given by

$$(x - x_0, y - y_0, z - z_0) \cdot \mathbf{n} = 0, \tag{23}$$

Where n is evaluated at (u_0, v_0) ; that is, the tangent plane is the set of (x, y, z) satisfying the condition above. If $\mathbf{n} = (n_1, n_2, n_3) = n_a \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$, then the formula above becomes

$$n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0.$$
 (24)

4 Area of a Surface

4.1 Definition of Surface Area

We define a parametrized surface S to be the image of a function $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, written as $\Phi(u,v) = (x(u,v),y(u,v),z(u,v))$. The map Φ was called the parametrization of S and S was said to be regular at $\Phi(u,v) \in S$ provided that $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$.

In the rest of this chapter and the next one, we will consider only piecewise regular surfaces that are unions of images of parametrized surfaces $\Phi_i: D_i \to \mathbb{R}^3$ for which

- 1. D_i is an elementary region in the plane;
- 2. Φ_i is of class C^1 and one-to-one, except possibly on the boundary of D_i ; and
- 3. S_i , the image of Φ_i , is regular, except possibly at a finite number of points.

We define the surface area A(S) of a parametrized surface by

$$A(S) = \iint_D ||\mathbf{T}_u \times \mathbf{T}_v|| du \ dv, \tag{25}$$

Where $||\mathbf{T}_u \times \mathbf{T}_v||$ is the norm of $\mathbf{T}_u \times \mathbf{T}_v$. If S is a union of surfaces S_i , its area is the sum of the areas of the S_i .

4.2 Surface Area of a Graph

A surface S given in the form z=g(x,y), where (x,y) ϵ D, admits the parametrization

$$x = u \quad y = v \quad z = g(u, v) \tag{26}$$

For $(u, v) \in D$. When g is of class C^1 , this parametrization is smooth and the formula for surface area reduces to

$$A(S) = \iint_{D} \left(\sqrt{\left(\frac{\delta g}{\delta x}\right)^{2} + \left(\frac{\delta g}{\delta y}\right)^{2} + 1} \right) dA, \tag{27}$$

After applying the formulas

$$\mathbf{T}_{u} = \mathbf{i} + \frac{\delta g}{\delta u} \mathbf{k}, \quad \mathbf{T}_{v} = \mathbf{i} + \frac{\delta g}{\delta v} \mathbf{k},$$
 (28)

and

$$\mathbf{T}_{u} \times \mathbf{T}_{v} = -\frac{\delta g}{\delta u} \mathbf{i} - \frac{\delta g}{\delta v} \mathbf{j} + \mathbf{k} = -\frac{\delta g}{\delta x} \mathbf{i} - \frac{\delta g}{\delta v} \mathbf{j} + \mathbf{k}.$$
 (29)

4.3 Surfaces of Revolution

The lateral surface area generated by revolving the graph of a function y = f(x) about the x axis is given by

$$A = 2\pi \int_{a}^{b} (|f(x)|\sqrt{1 + [f'(x)]^{2}}) dx.$$
 (30)

If the graph is revolved about the y axis, the surface area is

$$A = 2\pi \int_{a}^{b} (|x|\sqrt{1 + [f'(x)]^{2}}dx.$$
 (31)

4.4 Integrals of Scalar Functions Over Surfaces

The integral of a scalar function f over a surface S is analogous to considering the path integral as a generation of arc length.

Let us start with a surface S parametrized by a mapping $\Phi : D \to S \subset \mathbb{R}^3$, where D is an elementary region, which we write as $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$.

If f(x, y, z) is a real-valued continuous function defined on a parametrized surface S, we define the integral of f over S to be

$$\iint_{S} f(x, y, z)dS = \iint_{S} f \ dS = \iint_{D} f(\mathbf{\Phi}(u, v)) ||\mathbf{T}_{u} \times \mathbf{T}_{v}|| du \ dv. \tag{32}$$

4.5 Surface Integrals Over Graphs

Suppose S is a graph of a C^1 function z = g(x, y). Recall that we can parametrize S by setting

$$x = u, \quad y = v, \quad z = g(u, v), \tag{33}$$

And that in this case

$$||\mathbf{T}_{u} \times \mathbf{T}_{v}|| = \sqrt{1 + \left(\frac{\delta g}{\delta u}\right)^{2} + \left(\frac{\delta g}{\delta v}\right)^{2}},$$
 (34)

So

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\delta g}{\delta u}\right)^{2} + \left(\frac{\delta g}{\delta v}\right)^{2}} dx dy.$$
 (35)

4.6 Integrals Over Graphs

We can also develop another formula for surface integrals when the surface can be represented as a graph. We let S be the graph of z = g(x, y) and consider the formula from the previous section. We claim that

$$\iint_{S} f(x, y, z) dS = \iint_{D} \frac{f(x, y, g(x, y))}{\cos \theta} dx dy, \tag{36}$$

Where θ is the angle the normal to the surface makes with the unit vector **k** at the point (x, y, g(x, y)). Describing the surface by the equation $\phi(x, y, z) = z - g(x, y) = 0$, a normal vector **N** is $\nabla \phi$; that is,

$$\mathbf{N} = -\frac{\delta g}{\delta x}\mathbf{i} - \frac{\delta g}{\delta y}\mathbf{j} + \mathbf{k}.$$
 (37)

Thus,

$$\cos\theta = \frac{\mathbf{N} \cdot \mathbf{k}}{||\mathbf{N}||} = \frac{1}{\sqrt{(\delta g/\delta x)^2 + (\delta g/\delta y)^2 + 1}}.$$
 (38)

Note that $\cos\theta = \mathbf{n} \cdot \mathbf{k}$, where $\mathbf{n} = \mathbf{N}/||\mathbf{N}||$ is the unit normal. Thus, we can write

$$d\mathbf{S} = \frac{dx \ dy}{\mathbf{n} \cdot \mathbf{k}}.\tag{39}$$

5 Surface Integrals of Vector Fields

5.1 Definition of the Surface Integral

Let **F** be a vector field defined on S, the image of a parametrized surface Φ . The surface integral of **F** over Φ is denoted by

$$\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{T}_{u} \times \mathbf{T}_{v}) \ du \ dv. \tag{40}$$

5.2 Orientation

An oriented surface is a two-sided surface with one side specified as the outside or positive side; the other side is the inside or negative side. At each point (x, y, z) ϵ S there are two unit normal vectors \mathbf{n}_1 and \mathbf{n}_2 , where $\mathbf{n}_1 = -\mathbf{n}_2$. To specify the side of a surface S, at each point we choose a unit normal vector \mathbf{n} that points away from the positive side of S at that point.

Let $\Phi: D \to \mathbb{R}^3$ be a parametrization of an oriented surface S and suppose S is regular at $\Phi(u_0, v_0), (u_0, v_0) \in D$; thus, the vector $(\mathbf{T}_{u_0} \times \mathbf{T}_{v_0})/||\mathbf{T}_{u_0} \times \mathbf{T}_{v_0}||$ is defined. If $\mathbf{n}(\Phi(u_0, v_0))$ denotes the unit normal to S at $\Phi(u_0, v_0)$, it follows that

$$(\mathbf{T}_{u_0} \times \mathbf{T}_{v_0})/||\mathbf{T}_{u_0} \times \mathbf{T}_{v_0}|| = \pm \mathbf{n}(\mathbf{\Phi}(u_0, v_0)). \tag{41}$$

The parametrization Φ is orientation-preserving when using the + sign. In other words, Φ is orientation-preserving if the vector $\mathbf{T}_u \times \mathbf{T}_v$ points to the outside of the surface, and orientation-reversing if the vector $\mathbf{T}_u \times \mathbf{T}_v$ points to the inside of the surface.

5.3 Orientation and the Vector Surface Element of a Sphere

Consider the sphere of radius R, where $x^2 + y^2 + z^2 = R^2$. It is standard practice to orient the sphere with the outward unit normal. In terms of the position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, the outward unit normal is given by

$$\mathbf{n} = \frac{\mathbf{r}}{R}.\tag{42}$$

The surface-area element is then given by

$$d\mathbf{S} = \mathbf{n} \cdot (\mathbf{T}_{\phi} \times \mathbf{T}_{\theta}) \ d\phi \ d\theta = \mathbf{r} R \sin\phi \ d\phi \ d\theta = \mathbf{n} R^2 \sin\phi \ d\phi \ d\theta. \tag{43}$$

5.4 Independence of Parametrization

The integral over an oriented surface is independent of the parametrization. Let S be an oriented surface and let Φ_1 and Φ_2 be two regular orientation-preserving parametrizations, with \mathbf{F} a continuous vector field defined on S. Then

$$\iint_{\mathbf{\Phi}_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{\Phi}_2} \mathbf{F} \cdot d\mathbf{S}. \tag{44}$$

If Φ_1 is orientation-preserving and Φ_2 is orientation-reversing, then

$$\iint_{\mathbf{\Phi}_1} \mathbf{F} \cdot d\mathbf{S} = -\iint_{\mathbf{\Phi}_2} \mathbf{F} \cdot d\mathbf{S}. \tag{45}$$

If f is a real-valued continuous function defined on S, and if Φ_1 and Φ_2 are parametrization of S, then

$$\iint_{\mathbf{\Phi}_1} f \ dS = \iint_{\mathbf{\Phi}_2} f \ dS. \tag{46}$$

5.5 Relation with Scalar Integrals

 $\iint_S \mathbf{F} \cdot d\mathbf{S}$, the surface integral of \mathbf{F} over S, is equal to the integral of the normal component of \mathbf{F} over the surface. In short,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS. \tag{47}$$

This observation can often save computational effort.

5.6 Surface Integrals Over Graphs

Let us derive the surface-integral formulas for vector fields **F** over surfaces S that are graphs of functions. Consider the surface S described by z = g(x, y), where $(x, y) \in D$, where S is oriented with the upward-pointing unit normal:

$$\mathbf{n} = \frac{-\frac{\delta g}{\delta x}\mathbf{i} - \frac{\delta g}{\delta y}\mathbf{j} + \mathbf{k}}{\sqrt{\left(\frac{\delta g}{\delta x}\right)^2 + \left(\frac{\delta g}{\delta y}\right)^2} + 1}$$
(48)

We have previously seen that we can parametrize S by $\Phi: D \to \mathbb{R}^3$ given by $\Phi(x,y)=(x,y,g(x,y))$. In this case, $\iint_S \mathbf{F} \cdot d\mathbf{S}$ can be written in a simple form. We have

$$\mathbf{T}_x = \mathbf{i} + \frac{\delta g}{\delta x} \mathbf{k}, \quad \mathbf{T}_y = \mathbf{j} + \frac{\delta g}{\delta y} \mathbf{k}.$$
 (49)

Thus, $\mathbf{T}_x \times \mathbf{T}_y = -(\delta g/\delta x)\mathbf{i} - (\delta g)(\delta y)\mathbf{j} + \mathbf{k}$. If $\mathbf{F} = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$ is a continuous vector field, we get that the surface integral of a vector field over a graph S is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{T}_{x} \times \mathbf{T}_{y}) \, dx \, dy$$

$$= \iint_{D} \left[F_{1} \left(-\frac{\delta g}{\delta x} \right) + F_{2} \left(-\frac{\delta g}{\delta y} \right) + F_{3} \right] \, dx \, dy$$
(50)

6 Summary: Formulas for Surface Integrals

Parametrized Surface: $\Phi(u, v)$

1. Integral of a scalar function f:

$$\iint_{S} f \ dS = \iint_{D} f(\mathbf{\Phi}(u, v) || \mathbf{T}_{u} \times \mathbf{T}_{v} || \ du \ dv \tag{51}$$

2. Scalar surface element:

$$dS = ||\mathbf{T}_u \times \mathbf{T}_v|| \ du \ dv \tag{52}$$

3. Integral of a vector field **F**:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{T}_{u} \times \mathbf{T}_{v}) \ du \ dv \tag{53}$$

4. Vector surface element:

$$d\mathbf{S} = (\mathbf{T}_u \times \mathbf{T}_v) \ du \ dv = \mathbf{n} \ dS \tag{54}$$

Graph: z = g(x, y)

1. Integral of a scalar function f:

$$\iint_{S} f \ dS = \iint_{D} \frac{f(x, y, g(x, y))}{\cos \theta} dx \ dy \tag{55}$$

2. Scalar surface element:

$$dS = \frac{dx \, dy}{\cos \theta} = \sqrt{\left(\frac{\delta g}{\delta x}\right)^2 + \left(\frac{\delta g}{\delta y}\right)^2 + 1} \, dx \, dy \tag{56}$$

Where $\cos\theta = \mathbf{n} \cdot \mathbf{k}$, and \mathbf{n} is a unit normal vector to the surface.

3. Integral of a vector field **F**:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-F_{1} \frac{\delta g}{\delta x} - F_{2} \frac{\delta g}{\delta y} + F_{3} \right) dx \ dy \tag{57}$$

4. Vector surface element:

$$d\mathbf{S} = \mathbf{n} \cdot dS = \left(-\frac{\delta g}{\delta x}\mathbf{i} - \frac{\delta g}{\delta y}\mathbf{j} + \mathbf{k}\right)dx \ dy \tag{58}$$

Sphere: $x^2 + y^2 + z^2 = R^2$

1. Scalar surface element:

$$dS = R^2 \sin\phi \ d\phi \ d\theta \tag{59}$$

2. Vector surface element:

$$d\mathbf{S} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})R\sin\phi \ d\phi \ d\theta = \mathbf{r}R\sin\phi \ d\phi \ d\theta = \mathbf{n}^2\sin\phi \ d\phi \ d\theta$$
 (60)