El teorema de la proyección

Teorema de la proyección - Sean H un subespacio de \mathbb{R}^n y $\mathfrak{B}_H = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ una base ortonormal de H. Definimos la proyección sobre H, $\mathsf{P}_H : \mathbb{R}^n \longmapsto \mathbb{R}^n$ por

$$\mathsf{P}_H(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p$$

- (1) P_H es lineal, $Im(P_H) = H$ y $P_H^2 = P_H$.
- (2) Para todo $\mathbf{x} \in \mathbb{R}^n$, se verifica que $\mathbf{x} \mathsf{P}_H(\mathbf{x}) \in H^{\perp}$.
- (3) $\ker(\mathsf{P}_H) = H^{\perp}$.
- (4) $Si \ \mathbf{x} \in \mathbb{R}^n$, $\mathbf{u} \in H \ y \ \mathbf{u} \neq \mathsf{P}_H(\mathbf{x})$, entonces $\|\mathbf{x} \mathbf{u}\| > \|\mathbf{x} \mathsf{P}_H(\mathbf{x})\|$.
- (5) $P_H(\mathbf{x})$ no depende de la base \mathcal{B}_H elegida.

DEMOSTRACIÓN:

(1) - Sean $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ y $\lambda, \mu \in \mathbb{R}$. El que P_H es lineal se prueba con un simple cálculo.

$$P_{H}(\lambda \mathbf{x} + \mu \mathbf{y}) = ((\lambda \mathbf{x} + \mu \mathbf{y}) \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \cdots + ((\lambda \mathbf{x} + \mu \mathbf{y}) \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

$$= (\lambda(\mathbf{x} \cdot \mathbf{u}_{1}) + \mu(\mathbf{y} \cdot \mathbf{u}_{1}))\mathbf{u}_{1} + \cdots + (\lambda(\mathbf{x} \cdot \mathbf{u}_{p}) + \mu(\mathbf{y} \cdot \mathbf{u}_{p}))\mathbf{u}_{p}$$

$$= \lambda(\mathbf{x} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \mu(\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \cdots + \lambda(\mathbf{x} \cdot \mathbf{u}_{p})\mathbf{u}_{p} + \mu(\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

$$= \lambda [(\mathbf{x} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \cdots + (\mathbf{x} \cdot \mathbf{u}_{p})\mathbf{u}_{p}] + \mu [(\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \cdots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}]$$

$$= \lambda P_{H}(\mathbf{x}) + \mu P_{H}(\mathbf{y})$$

Si $\mathbf{u} \in H$, entonces $\mathbf{u} = (\mathbf{u} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{u} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{u} \cdot \mathbf{u}_p)\mathbf{u}_p \implies \mathsf{P}_H(\mathbf{u}) = \mathbf{u}$ y puesto que $\mathsf{P}_H(\mathbf{x}) \in H$ para todo $\mathbf{x} \in \mathbb{R}^n$, se tiene que $\mathsf{Im}(\mathsf{P}_H) = H$ y que $\mathsf{P}_H^2 = \mathsf{P}_H$.

(2) - Hay que probar que si $\mathbf{x} \in \mathbb{R}^n$ y $\mathbf{u} \in H$, entonces $(\mathbf{x} - \mathsf{P}_H(\mathbf{x})) \cdot \mathbf{u} = 0$ lo cual, es lo mismo, que probar que $\mathbf{x} \cdot \mathbf{u} = \mathsf{P}_H(\mathbf{x}) \cdot \mathbf{u}$

$$\mathbf{x} \cdot \mathbf{u} = \mathbf{x} \cdot ((\mathbf{u} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{u} \cdot \mathbf{u}_p)\mathbf{u}_p) = (\mathbf{u} \cdot \mathbf{u}_1)(\mathbf{x} \cdot \mathbf{u}_1) + \cdots + (\mathbf{u} \cdot \mathbf{u}_p)(\mathbf{x} \cdot \mathbf{u}_p)$$

$$\mathsf{P}_H(\mathbf{x}) \cdot \mathbf{u} = ((\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p) \cdot \mathbf{u} = (\mathbf{x} \cdot \mathbf{u}_1)(\mathbf{u} \cdot \mathbf{u}_1) + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)(\mathbf{u} \cdot \mathbf{u}_p)$$

(3) - Si
$$\mathbf{x} \in \ker(\mathsf{P}_H)$$
, entonces $\mathsf{P}_H(\mathbf{x}) = \vec{\mathbf{0}} \implies \mathbf{x} = \mathbf{x} - \mathsf{P}_H(\mathbf{x}) \in H^{\perp} \implies \ker(\mathsf{P}_H) \subseteq H^{\perp}$
- Si $\mathbf{x} \in H^{\perp} \implies \overbrace{\mathsf{P}_H(\mathbf{x}) = \mathsf{P}_H(\mathbf{x}) - \mathbf{x}}^{\in H^{\perp}} + \overbrace{\mathbf{x}} \implies \mathsf{P}_H(\mathbf{x}) \in H \cap H^{\perp} = \{\vec{\mathbf{0}}\} \implies \mathbf{x} \in \ker(\mathsf{P}_H)$

(4) - Sean $\mathbf{x} \in \mathbb{R}^n$ y $\mathbf{u} \in H$ tales que $\mathbf{u} \neq \mathsf{P}_H(\mathbf{x})$.

$$\begin{aligned} \|\mathbf{x} - \mathbf{u}\|^2 &= \|\mathbf{x} - \mathsf{P}_H(\mathbf{x}) + \mathbf{P}_H(\mathbf{x}) - \mathbf{u}\|^2 \\ &= \{\text{Teorema de Pitágoras}\} = \|\mathbf{x} - \mathsf{P}_H(\mathbf{x})\|^2 + \|\mathsf{P}_H(\mathbf{x}) - \mathbf{u}\|^2 > \|\mathbf{x} - \mathsf{P}_H(\mathbf{x})\|^2 \end{aligned}$$

(5) - Sea $\mathcal{B}'_H = \{\mathbf{u}'_1, \mathbf{u}'_2, \cdots, \mathbf{u}'_p\}$ otra base ortonormal de H. Igual que en el caso anterior, podemos definir la proyección $\mathsf{P}'_H : \mathbb{R}^n \longmapsto H$ haciendo

$$\mathsf{P'}_H(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u'}_1)\mathbf{u'}_1 + (\mathbf{x} \cdot \mathbf{u'}_2)\mathbf{u'}_2 + \cdots + (\mathbf{x} \cdot \mathbf{u'}_p)\mathbf{u'}_p$$

Obviamente, se pueden reproducir todas las demostraciones anteriores para $\mathsf{P'}_H$. Probaremos ahora que $\mathsf{P'}_H = \mathsf{P}_H$. Supongamos que para algún $\mathbf{x} \in \mathbb{R}^n$, se tiene que $\mathsf{P'}_H(\mathbf{x}) \neq \mathsf{P}_H(\mathbf{x})$:

- La demostración anterior, para $\mathsf{P}_H,$ prueba que $\|\mathbf{x}-\mathsf{P'}_H(\mathbf{x})\|>\|\mathbf{x}-\mathsf{P}_H(\mathbf{x})\|$
- La demostración anterior, para $\mathsf{P'}_H$, prueba que $\|\mathbf{x} \mathsf{P'}_H(\mathbf{x})\| < \|\mathbf{x} \mathsf{P}_H(\mathbf{x})\|$

La contradicción anterior prueba que $P'_H(\mathbf{x}) = P_H(\mathbf{x})$ para todo $\mathbf{x} \in \mathbb{R}^n$.

Corolario - Si H es un subespacio de \mathbb{R}^n , se cumple que $H \oplus H^{\perp} = \mathbb{R}^n$.

DEMOSTRACIÓN: $\mathbf{x} \in H$ $\mathbf{x} \in H^{\perp}$ Si $\mathbf{x} \in \mathbb{R}^n$, entonces $\mathbf{x} = \mathsf{P}_H(\mathbf{x}) + \mathbf{x} - \mathsf{P}_H(\mathbf{x}) \implies \mathbf{x} \in H \oplus H^{\perp}$