Introduction to Sustainable Energy Transformation, 1st Edition, 2022

Henryk Anglart

ERRATA (2022-08-11)

Place in Book	Is	Should be	Reported by
P. 111, Eq. 7.76	$\frac{q_a}{\overline{T}_a} - \frac{q_a}{\overline{T}_e} - \frac{q_{loss}}{\overline{T}_e} + \frac{N_e}{\overline{T}_e} \left(\frac{dS}{dt}\right)_{loss} + \left(\frac{dS}{dt}\right)_{gen} = 0$	$\frac{q_a}{\overline{T}_a} - \frac{q_a}{\overline{T}_e} - \frac{q_{loss}}{\overline{T}_e} + \frac{N_e}{\overline{T}_e} + \left(\frac{dS}{dt}\right)_{loss} + \left(\frac{dS}{dt}\right)_{gen} = 0$	Zakarie Bruyr
P. 135, Eq. 8.83	$\frac{1}{\pi R^2} \int_0^R w(r) 2\pi dr$	$\frac{1}{\pi R^2} \int_0^R w(r) 2\pi r dr$	Nicolas Gueritat
P. 147, Eq. 8.143	$pA + \rho_m U_m U_m A - (p + dp)A - $ $[\rho_m U_m U_m A + d(\rho_m U_m U_m A)]A = 0$	$pA + \rho_m U_m U_m A - (p + dp)A - $ $[\rho_m U_m U_m + d(\rho_m U_m U_m)]A = 0$	Zakarie Bruyr
P. 158, Eq. 9.21	$\lambda \frac{dT}{dx}\bigg _{x=L} = h_2 \left(T_{2\infty} - T_{2s} \right) = q''$	$-\lambda \frac{dT}{dx}\bigg _{x=L} = h_2 \left(T_{2s} - T_{2\infty} \right) = q''$	Zakarie Bruyr
P. 164, Eq. 9.59	$=2\pi A \int_{0}^{r_0} I_0(kr)dr$	$=2\pi A\int_{0}^{r_{0}}rI_{0}(kr)dr$	Nicolas Gueritat
P. 167, Eq. 9.86	$q'' = -\lambda \left(\frac{dT}{dr}\right)_{r=R} = \frac{\lambda UR}{2a} \frac{dT_m}{dz}$	$q'' = \lambda \left(\frac{dT}{dr}\right)_{r=R} = \frac{\lambda UR}{2a} \frac{dT_m}{dz}$	Nicolas Gueritat
P. 170, row 6 fr. top	and all $\partial^2/\partial y^2$ terms	and all $\partial^2/\partial x^2$ terms	Nicolas Gueritat
P. 171, Eq. 9.109	ΔT is used that is not defined and could be confused with ΔT appearing in Eq. 9.106	After the equation it should be added; where $\Delta T = T_{_W} - T_{_{\infty}}$.	Nicolas Gueritat
Row 5 below Eq. 15.83	$y_{z\rightarrow k}$ — probability that a neutron capture in nuclide z produces	$\gamma_{z \to k}$ — probability that a neutron capture in nuclide z produces	Nicolas Gueritat
Row 4 below Eq. 15.10	$\mathbf{W} \cdot \mathbf{m}^{-3} \cdot \mathbf{s}^{-1}$	$\dots \mathbf{W} \cdot \mathbf{m}^{-3} \dots$	Nicolas Gueritat

P.	and ²³⁴ U (0.0.006%).	and ²³⁴ U (0.006%).	
268,			
row 4			
fr. top			
P. 248, Eq. 14.39	$\eta_{coll,max} = \frac{N_{max}}{N_{tot}} = \frac{E_g}{k_B T} \frac{\int_{E_g}^{\infty} \frac{E^2}{e^{E/k_B T} - 1} dE}{\int_{0}^{\infty} \frac{E^3}{e^{E/k_B T} - 1} dE}$	$\eta_{coll,max} = \frac{N_{max}}{N_{tot}} = E_g \frac{\int_{E_g}^{\infty} \frac{E^2}{e^{E/k_B T} - 1} dE}{\int_{0}^{\infty} \frac{E^3}{e^{E/k_B T} - 1} dE}$	Nicolas Gueritat
p. 241, below Eq. 14.11	where ET is expressed in hours	Where ET is expressed in minutes	Stanisla s Raguin