

EE3019 – Integrated Electronics

Latches and Flip Flops

Learning Objectives

By the end of this lesson, you should be able to:

- Explain latches and flip-flops.
- Discuss Set Reset latch (SR) circuit and parasitic.
- Explain clocked JK latch.

There are three critical components in sequential circuits:

There are three critical components in sequential circuits:

Bistable circuits

Monostable circuits

Astable circuits

There are three critical components in sequential circuits:

Bistable circuits

Monostable circuits

Astable circuits

They have two stable states or operation modes, each of which can be obtained under certain current input and previous output conditions.

There are three critical components in sequential circuits:

Bistable circuits

Monostable circuits

Astable circuits

They only have one stable operating point (state). The output eventually returns to the single stable state after a certain time duration.

555 Timer circuit
$$i/p$$
 — 555 — o/p Default (e.g. door bell) t/p — t_d t_d

There are three critical components in sequential circuits:

Bistable circuits

Monostable circuits

Astable circuits

The is no stable operating point (state) which the circuit can preserve for a certain time period.

Ring oscillator

Behaviour of Bistable Elements – Cross-coupled Inverters

Intersecting voltage transfer curves of the two inverters

Qualitative view of the potential energy levels corresponding to the three operating points

CMOS SR Latch Based on NOR Gates

SR: Set - Reset

	SR Flip-flop			
	Inputs		Next state	Action
Dominant i/p is '1'	S	R	(Q _{n+1})	Action
	0	0	Q_n	Hold
	0	1	0	Reset
	1	0	1	Set
	1	1	,	Not allowed

SR Latch - Parasitic Capacitance

CMOS SR Latch with lumped load capacitance at both output nodes.

SR Latch - Parasitic Capacitance (Contd.)

Total parasitic capacitance at \overline{Q} and Q:

$$C_{\bar{Q}} = C_{gb3} + C_{gb7} + C_{db1} + C_{db2} + C_{db5} + C_{sb5} + C_{db6}$$

$$C_{Q} = C_{gb2} + C_{gb5} + C_{db3} + C_{db4} + C_{db7} + C_{sb7} + C_{db8}$$

Clocked SR Latch based on NOR Gates

CLK: Enable signal

(a) Gate-level schematic

(b) Transistor-level schematic

8 - Transistor Clocked SR Latch

6 - Transistor Clocked SR Latch

Transistor Sizing the SR Flip Flop

Example: $\mu_n C_{ox} = 50 \mu A/V^2$; $\mu_p C_{ox} = 20 \mu A/V^2$

$$V_{tn} = 0.6V ; V_{tp} = -0.8V ; V_{DD} = 5V$$

Assuming 0.25μm CMOS technology, Q=0:

$$\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_3 = \left(\frac{0.5\mu m}{0.25\mu m}\right) \qquad \left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_4 = \left(\frac{1.5\mu m}{0.25\mu m}\right)$$

Determine the minimum size of M_5 , M_6 , M_7 and M_8 to make the SR latch switchable.

Assume M_5 is identical to M_6 , i.e. $M_5 = \frac{W}{L}$ and $M_6 = \frac{W}{L}$; $M_{5_6} = \frac{W}{2L}$

Under this condition, the pull-down network can be modelled by a single transistor M_{5_6} , whose width is half the width of the individual devices, M_5 and M_6 .

Transistor Sizing the SR Flip Flop (Contd.)

Example: $\mu_n C_{ox} = 50 \mu A/V^2$; $\mu_p C_{ox} = 20 \mu A/V^2$

$$V_{tn} = 0.6V ; V_{tp} = -0.8V ; V_{DD} = 5V$$

To switch latch from Q=0 to Q=1, we equate the current in the inverter for $V_{\bar{Q}}=\frac{V_{DD}}{2}$ as given below:

 M_{5_6} and M_2 are in linear region.

$$\begin{aligned} |V_{DS}| &< |V_{GS}| - |V_{t}| \\ \frac{V_{DD}}{2} & V_{DD} \end{aligned}$$

$$k'_{n} \left(\frac{W}{L}\right)_{5_6} \left((V_{DD} - Vt_{n})V_{DSn} - \frac{V_{DSn}^{2}}{2}\right) = k'_{p} \left(\frac{W}{L}\right)_{2} \left((-V_{DD} - Vt_{p})V_{DSp} - \frac{V_{DSp}^{2}}{2}\right)$$

This implies that
$$\left(\frac{W}{L}\right)_{5_6} \ge 2.25$$
 and $\left(\frac{W}{L}\right)_5$ and $\left(\frac{W}{L}\right)_6 \ge 4.5$

Clocked JK Latch based on NOR Gates

17

Summary

Here are the key takeaways from this lesson.

- There are three critical components in sequential circuits, bistable circuits, monostable circuits and astable circuits.
- The behaviour of cross-coupled inverters is such that it switches the output from one stable state to another stable state through an unstable state.
- The CMOS SR Latch is based on NOR Gates where the delay of the latch is the total delay of NOR 1 and NOR 2 can be calculated based on the lump capacitance, $C_{\bar{0}}$ and C_{Q} .
- The lump capacitance of $C_{\overline{0}}$ and $C_{\overline{0}}$ are the total parasitic capacitance of all the transistors connected to \overline{Q} and Q.
- The number of transistors are reduced from 20 to 12 to 8 and finally to 6 in clocked NOR based SR latch.
- The transistor sizing of the transistors can be calculated in the 6-transistor clocked SR latch.

Thank You

Latches and Flip Flops

