ALAMN: Correction to large-r fit of a_{λ}

Hao Feng*

College of Physics, Sichuan University, Chengdu, Sichuan, 610065, P.R.China

(Dated: November 9, 2020)

^{*}Electronic address: ddsteed@163.com

I. BASIC CONCEPTS

Suppose the charge density of a closed-shell N-electron linear molecule be expanded in Legendre polynomials $P_{\lambda}(\cos \theta)$, viz.,

$$\rho(r,\theta) = \sum_{\lambda=0}^{\lambda_m ax} a_{\lambda}(r) P_{\lambda}(\cos \theta) \tag{1}$$

From the orthogonality relation for the Legendre polynomials, we find that the λ th expansion coefficient in Eq. (1) is given as a function of r by

$$a_{\lambda}(r) = \frac{2\lambda + 1}{2} \int_{0}^{\pi} \rho(r, \theta) P_{\lambda}(\cos \theta) \sin \theta \, d\theta \tag{2}$$

The integral in Eq. (2) is evaluated for values of r in a user-prescribed n-point mesh $\{r_i, i = 1, 2, ..., n\}$ by a 32-point Gauss-Legendre quadrature.

As r becomes large, the expansion coefficients $a_{\lambda}(r)$ of the molecular charge density $\rho(r,\theta)$ [Eq. (2)] can be fitted very accurately to the analytic form

$$a_{\lambda}(r) = A_{\lambda}r^{p_{\lambda}} \exp(-\alpha_{\lambda}r) \tag{3}$$

where A_{λ} , p_{λ} and α_{λ} are real numbers.

In Ref.[1], these parameters are determined by using the last three values of r at which $a_{\lambda}(r)$ is evaluated from Eq. (2), r_n , r_{n-1} and r_{n-2} . Letting a_n , a_{n-1} and a_{n-2} denote the values of a_{λ} at these values of r, we have

$$p_{\lambda} = \frac{h \ln \left(\frac{a_{n-1}}{a_n}\right) + \ln \left(\frac{a_{n-1}}{a_{n-2}}\right)}{h \ln \left(\frac{r_{n-1}}{r_n}\right) + \ln \left(\frac{r_{n-1}}{r_{n-2}}\right)}$$
(4)

where

$$h = \frac{r_{n-1} - r_{n-2}}{r_n - r_{n-1}} \tag{5}$$

And

$$\alpha_{\lambda} = \frac{1}{r_{n-1} - r_n} \ln \left[\frac{a_n}{a_{n-1}} \left(\frac{r_{n-1}}{r_n} \right)^{p_{\lambda}} \right]$$
 (6)

$$A_{\lambda} = a_n r_n^{-p_{\lambda}} \exp(\alpha_{\lambda} r_n) \tag{7}$$

NOTICE: There is a print error in Eq. (16) in Ref.[1], the source code of ALAMN is consistent with Eq. (7).

Thus the expansion coefficients and hence the charge density need not be calculated for $r > r_n$ even if $a_{\lambda}(r)$ is required for larger values of r.

II. SAHA'S CORRECTION TO e- N_2

We can get well-behaved large-r a_{λ} and static potential V_{st} for e-H₂ by using Eq. (3), Eq. (4), Eq. (6) and Eq. (7). But for e-N₂, if we choose the r-mesh as

and choose LAMMAX = 14, we get $A_{14} = 3.093 \times 10^{18}$, $p_{14} = -65.58$ and $\alpha_{14} = -8.408$ for $R = 2.020a_0$. Meanwhile, the static potential (v_{λ}) for $\lambda = 14$ are

r	v_{λ}
5.04000	-0.1131232954588831E+93
5.12000	-0.1410275599185811E+93
5.20000	-0.1752150266189247E+93
5.28000	-0.2169698823790784E+93
5.36000	-0.2678129626035787E+93
5.44000	-0.3295407561285985E+93
5.52000	-0.4042701040798804E+93
5.60000	-0.4944893200460516E+93
5.68000	-0.6031165389052729E+93
5.76000	-0.7335661891117883E+93
5.84000	-0.8898245787188291E+93
5.92000	-0.1076535689486381E+94
6.00000	-0.1299098386733144E+94

They are overflow! (They are too LARGE for other high $\lambda's$ and other internuclear distances!)

I searched our store directory and found that B. C. Saha wrote the following codes in the subroutine ALAM

C PSM=(DLOG(ABY2/ABY1)+RAT*DLOG(ABY2/ABY3))/(DLOG(R2/R1)+RAT*DLOG(R2

```
C #/R3))
c---
PSM=0.D+00
C IF(IFIX.EQ.1.AND.PSM.GT.1.D+00) PSM=1.D+00
QSM = -DLOG((ABY3/ABY2)*(R2/R3)**PSM)/(R3-R2)
C See the note for this modification 8/23/85
ASM = Y3*R3**(-PSM)*DEXP(QSM*R3)
```

We don't have his note, but from his codes I can guess his formula for large-r a_{λ} is

$$a_{\lambda}(r) = A_{\lambda} \exp(-\alpha_{\lambda} r) \tag{8}$$

By using Saha's formula we get $A_{14}=1.351\times 10^{-3},\ p_{14}=0.0$ and $\alpha_{14}=2.595$. The static potential (v_{λ}) for $\lambda=14$ are

r	v_{λ}
5.04000	.2155357141168185E-08
5.12000	.1772666466746914E-08
5.20000	.1458346809604667E-08
5.28000	.1200442725400119E-08
5.36000	.9890022814558143E-09
5.44000	.8157512135613536E-09
5.52000	.6738244745961844E-09
5.60000	.5575415032036261E-09
5.68000	.4622160475180030E-09
5.76000	.3839942571407144E-09
5.84000	.3197165625943484E-09
5.92000	.2667999764303344E-09
6.00000	.2231387506188567E-09

III. NEW CORRECTION TO LARGE-R FIT

Although Saha's codes corrected the large-r fit overflow, we can't reproduce e-H₂ static potential because Eq. (8) is different from Eq. (3). I guess that for some e-targets, the

parameters of A_{λ} , p_{λ} and α_{λ} cannot be chosen ONLY by the last three a_{λ} . So I will fit them by using more $a'_{\lambda}s$.

Eq. (3) can be rewritten as

$$\ln a_{\lambda} = \ln A_{\lambda} + p_{\lambda} \ln r - \alpha_{\lambda} r \tag{9}$$

Letting

$$b_{\lambda} = \ln a_{\lambda} \tag{10a}$$

$$g_{0\lambda} = \ln A_{\lambda} \tag{10b}$$

$$g_{1\lambda} = -\alpha_{\lambda} \tag{10c}$$

$$g_{2\lambda} = p_{\lambda} \tag{10d}$$

Then

$$b_{\lambda} = g_{0\lambda} + g_{1\lambda}r + g_{2\lambda}\ln r \tag{11}$$

So b_{λ} is linearly dependent on the fitting coefficients. We adopt "General Linear Least Squares" routine — SVDFIT (Signular Value Decomposition fit) [2] to fit the coefficients.

By using 10 a_{λ} to fit Eq. (11) we get $A_{14} = 2.597 \times 10^{-4}$, $p_{14} = 6.346$ and $\alpha_{14} = 4.627$. The static potential (v_{λ}) for $\lambda = 14$ are

r	v_{λ}	
	• • •	
5.04000	0.2154651146898829E-08	
5.12000	0.1771786323990111E-08	
5.20000	0.1457253305351663E-08	
5.28000	0.1199088632125510E-08	
5.36000	0.9873308802109118E-09	
5.44000	0.8136945736411463E-09	
5.52000	0.6713014542439685E-09	
5.60000	0.5544554312783496E-09	
5.68000	0.4584520410108206E-09	
5.76000	0.3794161238428322E-09	
5.84000	0.3141632320379888E-09	
5.92000	0.2600813953949083E-09	
6.00000	0.2150311719575100E-09	

By using 80 a_{λ} to fit Eq. (11) we get $A_{14}=25.275, p_{14}=-10.067$ and $\alpha_{14}=1.217$. The static potential for $\lambda=14$ are

r	v_{λ}
5.04000	0.2155529635889707E-08
5.12000	0.1772881510956653E-08
5.20000	0.1458613984169379E-08
5.28000	0.1200773569363670E-08
5.36000	0.9894106528899811E-09
5.44000	0.8162537098927050E-09
5.52000	0.6744409210914880E-09
5.60000	0.5582955194052478E-09
5.68000	0.4631357026518250E-09
5.76000	0.3851128268835364E-09
5.84000	0.3210734010977414E-09
5.92000	0.2684415191666285E-09
6.00000	0.2251196654564229E-09

I still keep the linear equation method (LEM) to solve A_{λ} , p_{λ} and α_{λ} by solving Eq. (4), Eq. (6) and Eq. (7). So for H₂, we have two methods to calculate large-r a_{λ} and static potential (v_{λ}) . For $\lambda = 6$, we get

LEM		SVDFIT	
A_{λ}	$0.1601316757808016\hbox{E-}23$	0.1189776202324306E-04	
p_{λ}	0.4523276259430859E + 02	$0.6724227178999224\mathrm{E}{+01}$	
α_{λ}	0.7923329439442724E+01	$0.3361975965910192\mathrm{E}{+01}$	

and static potential (v_{λ})

	• • •	•••
8.90000	-0.3738601412980983E-07	-0.3738604465762323E-07
9.00000	-0.3457238352675295E-07	-0.3457241617130511E-07
9.10000	-0.3199833271303255E-07	-0.3199836759524417E-07
9.20000	-0.2964111789027305E-07	-0.2964115513652894E-07
9.30000	-0.2748037669302244E-07	-0.2748041643535470E-07
9.40000	-0.2549785533465599E-07	-0.2549789771093117E-07
9.50000	-0.2367716973439954E-07	-0.2367721488850992E-07
9.60000	-0.2200359606053337E-07	-0.2200364414259235E-07
9.70000	-0.2046388677921551E-07	-0.2046393794575718E-07
9.80000	-0.1904610885409454E-07	-0.1904616326827752E-07
9.90000	-0.1773950121435192E-07	-0.1773955904616741E-07
10.00000	-0.1653434900198538E-07	-0.1653441042846955E-07

 v_{λ} (SVDFIT)

 v_{λ} (LEM)

^[1] M. A. Morrison, Comp. Phys. Comm. **21**, 63 (1980).

^[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes in Fortran* 77, vol. 1 (Press Syndicate of the University of Cambridge, 1997), 2nd ed.