Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 3

Date Due: 10:00 AM, Thursday, the 13th of October 2016

Exercise 3.1. In classical analytical mechanics, the total energy of a system is represented by the *Hamilton function* H = T + V, where T represents the kinetic energy and V is the potential energy. For a harmonic oscillator,

$$H(x,p) = \frac{p^2}{2m} + \frac{k}{2}x^2,$$

where m is the mass, p the momentum, x the position and k the spring constant of the oscillator. By non-dimensionalizing, we can obtain $H = p^2 + x^2$. In quantum mechanics, the classical Hamilton function is translated to a *Schrödinger operator* (also denoted H) on a certain Hilbert space. This operator is obtained by replacing p by $i\frac{d}{dx}$ and the potential V by a multiplication operator with V(x). For the harmonic oscillator this yields

$$H = -\frac{d^2}{dx^2} + x^2.$$

The eigenvalue problem

$$H\psi = \lambda\psi$$

is called the *Schrödinger equation* and the eigenvalues λ determine the possible energy levels of the quantum-mechanical harmonic oscillator.

The goal of this exercise is to investigate the eigenvalues λ_n and eigenfunctions ψ_n of H in a simplified setting. We assume that the domain of H is

$$V := \{ \psi \in C^{\infty}(\mathbb{R}) \colon \psi(x) = e^{-x^2/2} p(x), \ p \in \mathcal{P}(\mathbb{R}) \},$$

where $\mathcal{P}(\mathbb{R})$ is the (infinite-dimensional) vector space of real polynomials over \mathbb{R} . On V we define a scalar product by

$$\langle \psi, \varphi \rangle = \int_{-\infty}^{\infty} \psi(x) \varphi(x) dx.$$

The results below essentially agree with calculations in quantum mechanics textbooks. In physics, the quantum mechanical harmonic oscillator can be used to model, for example, two-atom molecules such as HCl (hydrogen chloride) as two masses joined by a spring. The eigenvalues below correspond to the possible quantized oscillation/vibration energy levels (after norming with physical constants) and can be observed through spectroscopy (e.g., Raman spectroscopy).

- i) Prove that H is well-defined, i.e., prove that $H\psi \in V$ if $\psi \in V$.
- ii) Prove that H is symmetric, i.e., $\langle H\psi, \varphi \rangle = \langle \psi, H\varphi \rangle$ for all $f, g \in V$. We will show later that this guarantes that the eigenvalues are real and that the eigenfunctions are orthogonal, i.e., $\langle \psi_n, \psi_m \rangle = 0$ if $n \neq m$. You may use these two facts for now without proof.
- iii) We define the creation operator $A: V \to V, A = -\frac{d}{dx} + x$. Show the commutation relation

$$[H, A] := HA - AH = 2A.$$

- iv) Let $\psi \in V$ be an eigenfunction of H for the eigenvalue $\lambda \in \mathbb{R}$. Assume that $A\psi \neq 0$. Prove that then $A\psi$ is an eigenfunction of H for the eigenvalue $\lambda + 2$.
- v) For $n \in \mathbb{N}$ the Hermite polynomials are defined by $H_n(x) := (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$. Calculate H_0, H_1 and H_2 and use Mathematica to plot their graphs.
- vi) Verify that

$$H(e^{-x^2/2}) = e^{-x^2/2}$$
 and $Af(x) = e^{x^2/2} \left(-\frac{d}{dx}\right) (e^{-x^2/2} f(x)).$ (***)

Use (***) to show that the eigenfunctions of H to eigenvalues $\lambda_n = 2n + 1$, $n \in \mathbb{N}$, may be written in the form $\psi_n(x) = e^{-x^2/2}H_n(x)$.

- vii) Prove by induction that $H'_n = 2nH_{n-1}$ for $n \in \mathbb{N} \setminus \{0\}$. (*Hint*: prove first that $H_{n+1}(x) = 2xH_n(x) + H'_n(x)$.)
- viii) Show that $\|\psi_n\|^2 = \langle \psi_n, \psi_n \rangle = \sqrt{\pi} 2^n n!$. Recall that $\int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi}$.

$$(1+1+1+2+2+2+2+2$$
 Marks)

Exercise 3.2. Determine the eigenvalues, eigenvectors and eigenspaces for the following matrices:

$$A = \begin{pmatrix} -2 & -2 \\ -5 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

(2+2 Marks)

Exercise 3.3. Let $A \in \operatorname{Mat}(n \times n; R)$ be symmetric $(A = A^T)$ and $Q_A : \mathbb{R}^n \to \mathbb{R}$, $Q_A(x) = \langle x, Ax \rangle$ the associated quadratic form. Show that the maximum (resp. minimum) value of Q_A when restricted to the unit sphere is given by the largest (resp. smallest) eigenvalue of A.

Hint: Use Lagrange multipliers for finding the extremum under the constraint $|x|^2 = \langle x, x \rangle = 1$. (2 Marks)

Exercise 3.4. A cylindrical flywheel $(r = h = 30 \,\mathrm{cm}, \,\mathrm{mass} \, M = 1 \,\mathrm{kg})$ has a point-mass of $m = 0.1 \,\mathrm{kg}$ attached at its edge. In the sketched coordinate system (fixed to the cylinder) the *inertial tensor* has the form

$$I = \begin{pmatrix} \frac{M}{12}(3r^2 + 4h^2) + mh^2 & 0 & -mrh \\ 0 & \frac{M}{12}(3r^2 + 4h^2) + m(h^2 + r^2) & 0 \\ -mrh & 0 & \frac{M}{2}r^2 + mr^2 \end{pmatrix}$$

If the rotational velocity of the flywheel is $\vec{\omega}$, then the *rotational energy* is the quadratic form

$$T = \frac{1}{2} \langle \vec{\omega}, I \vec{\omega} \rangle$$

- i) Calculate the numerical value of I as well as of \vec{L} and T when $\vec{\omega} = \vec{e}_3$.
- ii) Using the above numerical values, find the principal moments of inertia (eigenvalues of I) and the principal axes of inertia (eigenvectors of I). For which axes $\vec{\omega}$ with $|\vec{\omega}| = 1$ is T maximal and minimal (see Exercise 3.3 above)? Comment on the nutation for these axes.

(2+3 Marks)

