- **8.1** See Jupyter notebook.
- 8.2 See Jupyter notebook.
- 8.3

$$\max_{x,y} 4x + 3y$$
s.t. $15x + 10y \le 1800$
 $2x + 2y \le 350$
 $y \le 200$
 $x, y \ge 0$

8.4

$$\begin{aligned} & \underset{x_{i,j}}{\min} & 2x_{AB} + 5x_{AD} + 5x_{BC} + 9x_{BF} + 7x_{BE} + 2x_{BD} + 2x_{CF} + 3x_{EF} + 4x_{DE}, & i \neq j \\ & \text{s.t.} & x_{AB} + x_{AD} = 10 \\ & x_{BC} + x_{BD} + x_{BE} + x_{BF} - x_{AB} = 1 \\ & x_{CF} - x_{BC} = -2 \\ & x_{DE} - x_{AD} = -3 \\ & x_{EF} - x_{BE} - x_{DE} = 4 \\ & 0 - x_{CF} - x_{BF} - x_{EF} = -10 \\ & 0 \leq x_{i,j} \leq 6 \end{aligned}$$

8.5

(i)

$$\max 3x_1 + x_2$$
s.t. $x_1 + 3x_2 + w_1 = 15$

$$2x_1 + 3x_2 + w_2 = 18$$

$$x_1 - x_2 + w_3 = 4$$

$$\mathbf{x}, \mathbf{w} \ge 0$$

 $(x_1, x_2, w_1, w_2, w_3) = (6, 2, 0, 0, 0)$. The optimum point is (6, 2) with an optimum value of 20.

(ii)

$$\max 4x + 6y$$
s.t. $-x + y + w_1 = 11$

$$x + y + w_2 = 27$$

$$2x + 5y + w_3 = 90$$

$$x, y, \mathbf{w} \ge 0$$

ζ	=			4x	+	6y
w_1	=	11	+	\boldsymbol{x}	-	y
w_2	=	27	-	\boldsymbol{x}	-	y
w_3	=	90	-	2x	-	5y
ζ	=	66	+	10x	-	$6w_1$
\overline{y}	=	11	+	x	-	$\overline{w_1}$
w_2	=	16	-	2x	+	w_1
w_3	=	35	-	7x	+	$5w_1$
ζ	=	116	+	$\frac{8}{7}w_1$	-	$\frac{10}{7}w_{3}$
y	=	16	-	$\frac{2}{7}w_1$	-	$\frac{1}{7}w_{3}$
w_2	=	6	-	$\frac{3}{7}w_1$	+	$\frac{2}{7}w_{3}$
\underline{x}	=	5	+	$\frac{5}{7}w_1$	-	$\frac{1}{7}w_3$
ζ	=	132	-	$\frac{8}{3}w_{2}$	-	$\frac{2}{7}w_{3}$
\overline{y}	=	12	+		-	$\frac{1}{7}w_{3}$
w_1	=	14	-	$\frac{7}{3}w_2$	+	$\frac{2}{3}w_3$
\bar{x}		15	_	$\frac{5}{2}m_0$	+	$\frac{1}{3}w_3$

 $(x, y, w_1, w_2, w_3) = (15, 12, 0, 0, 0)$. The optimum point is (15, 12) with an optimum value of 132.

8.6

$$\max_{x,y} 4x + 3y$$
s.t.
$$15x + 10y + w_1 = 1800$$

$$2x + 2y + w_2 = 350$$

$$y + w_3 = 200$$

$$x, y, \mathbf{w} \ge 0$$

ζ	=			4x	+	3y
w_1	=	1800	-	15x	-	10y
w_2	=	300	-	2x	-	2y
w_3	=	200			-	y
ζ	=	450	+	x	-	$\frac{3}{2}w_{2}$
w_1	=	300	-	5x	+	$5w_2$
y	=	150	-	\boldsymbol{x}	-	$\frac{1}{2}w_{2}$
w_3	=	50	+	x	+	$\frac{1}{2}w_2$
ζ	=	510	-	$\frac{1}{5}w_1$	-	$\frac{1}{2}w_{2}$
\overline{x}	=	60	-	$\frac{1}{5}w_1$	+	w_2
y	=	90	+	$\frac{1}{5}w_1$	-	$\frac{\frac{3}{2}w_2}{\frac{3}{2}w_2}$
w_3	=	110	-	$\frac{1}{5}w_1$	+	$\frac{3}{2}w_2$

The optimal choice of each toy to manufacture: (x, y) = (60, 90) where x := GI Barb soldiers and y := Joey dolls. The maximal profit is \$510.

8.7

(i)

$$\max -x_0$$
s.t. $-4x_1 - 2x_2 + x_3 - x_0 = -8$

$$-2x_1 + 3x_2 + x_4 - x_0 = 6$$

$$x_1 + x_5 - x_0 = 3$$

$$\mathbf{x} \ge \mathbf{0}$$

ζ	=						-	x_0
$\overline{x_3}$	=	-8	+	$4x_1$	+	$2x_2$	+	x_0
x_4	=	6	+	$2x_1$	-	$3x_2$	+	x_0
x_5	=	3	-	x_1			+	x_0
ζ	=	-8	+	$4x_1$	+	$2x_2$	-	x_3
x_0	=	8	-	$4x_1$	-	$2x_2$	+	x_3
x_4	=	14	-	$2x_1$	-	$5x_2$	+	x_3
x_5	=	11	-	$5x_1$	-	$2x_2$	+	x_3
ζ	=						-	x_0
$\overline{x_1}$	=	2	-	$\frac{1}{2}x_2$	+	$\frac{1}{4}x_3$	-	$\frac{1}{4}x_0$
$\overline{x_4}$	=	10	-	$4x_2$	+	$\frac{1}{2}x_{3}$	+	$\frac{1}{2}x_0$
x_5	=	1	+	$\frac{1}{2}x_2$	-	$\frac{1}{4}x_3$	+	$\frac{5}{4}x_0$
ζ	=	2	+	$\frac{3}{2}x_2$	+	$\frac{1}{4}x_3$		
$\frac{\zeta}{x_1}$	=	2	+	$\frac{\frac{3}{2}x_2}{\frac{1}{2}x_2}$	+ +	$\frac{\frac{1}{4}x_3}{\frac{1}{4}x_3}$		
			-	 -				
x_1	=	2	-	$\frac{1}{2}x_2$	+	$\frac{1}{4}x_3$		
$\frac{x_1}{x_4}$	=	2 10	-	$\frac{\frac{1}{2}x_2}{4x_2}$	+	$\frac{\frac{1}{4}x_3}{\frac{1}{2}x_3}$		
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \end{array} $	=	2 10 1	- - +	$\frac{\frac{1}{2}x_2}{4x_2}$ $\frac{\frac{1}{2}x_2}{2}$	+	$\frac{\frac{1}{4}x_3}{\frac{1}{2}x_3}$ $\frac{\frac{1}{4}x_3}{\frac{1}{4}x_3}$		
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \\ \hline \zeta \end{array} $	= = =	2 10 1 3	- - +	$\frac{\frac{1}{2}x_2}{4x_2}$ $\frac{\frac{1}{2}x_2}{2}$	+	$ \begin{array}{c} \frac{1}{4}x_3 \\ \frac{1}{2}x_3 \\ \frac{1}{4}x_3 \end{array} $		
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \\ \hline \zeta \\ x_1 \end{array} $	= = = =	2 10 1 3 3	- - +	$ \begin{array}{c} \frac{1}{2}x_2\\4x_2\\\frac{1}{2}x_2\\2x_2\end{array} $	+	$ \begin{array}{c} \frac{1}{4}x_3 \\ \frac{1}{2}x_3 \\ \frac{1}{4}x_3 \\ x_5 \\ x_5 \end{array} $		
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \\ \hline \zeta \\ x_1 \\ x_4 \end{array} $	= = = =	2 10 1 3 3 12	- + +	$ \begin{array}{c} \frac{1}{2}x_2\\ 4x_2\\ \frac{1}{2}x_2\\ 2x_2\\ 3x_2 \end{array} $	+	$ \begin{array}{c} \frac{1}{4}x_3 \\ \frac{1}{2}x_3 \\ \frac{1}{4}x_3 \\ x_5 \\ x_5 \\ 2x_5 \end{array} $		
$ \begin{array}{c c} x_1 \\ x_4 \\ x_5 \\ \hline \zeta \\ x_1 \\ x_4 \\ x_3 \\ \end{array} $	= = = = = =	2 10 1 3 3 12 4	- + +	$ \frac{1}{2}x_2 $ $ 4x_2 $ $ \frac{1}{2}x_2 $ $ 2x_2 $ $ 3x_2 $ $ 2x_2 $	+			
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \\ \hline \zeta \\ x_1 \\ \hline x_4 \\ x_3 \\ \hline \zeta $	= = = = = = = = = = = = = = = = = = = =	2 10 1 3 3 12 4 11	- + +	$ \frac{1}{2}x_{2} \\ 4x_{2} \\ \frac{1}{2}x_{2} \\ 2x_{2} \\ 3x_{2} \\ 2x_{2} \\ \frac{2}{3}x_{4} \\ \frac{1}{3}x_{4} $	+	$ \begin{array}{r} \frac{1}{4}x_3 \\ \frac{1}{2}x_3 \\ \frac{1}{4}x_3 \\ x_5 \\ x_5 \\ 2x_5 \\ 4x_5 \\ \hline \frac{7}{3}x_5 \\ x_5 \\ \hline x_5 \\ x_5 \\ \hline x_5 \\ x_5 \\ \hline x_5 \\ x_5 \\ $		
$ \begin{array}{c c} x_1 \\ x_4 \\ \hline x_5 \\ \hline \zeta \\ x_1 \\ \hline x_4 \\ x_3 \\ \hline \zeta \\ x_1 \end{array} $	= = = = = = = = = = = = = = = = = = = =	2 10 1 3 3 12 4 11 3	- + +	$ \frac{\frac{1}{2}x_2}{4x_2} \\ 4x_2 \\ \frac{\frac{1}{2}x_2}{2x_2} \\ 2x_2 \\ 2x_2 \\ \frac{2}{3}x_4 $	+	$ \begin{array}{r} \frac{1}{4}x_3 \\ \frac{1}{2}x_3 \\ \frac{1}{4}x_3 \\ x_5 \\ x_5 \\ 2x_5 \\ 4x_5 \\ \hline \frac{7}{3}x_5 \\ x_5 \end{array} $		

In this case, the optimal point is $(x_1, x_2) = (3, 4)$ with optimal value 11.

(ii)

$$\max -x_0$$
s.t. $5x_1 + 3x_2 + x_3 - x_0 = 15$

$$3x_1 + 5x_2 + x_4 - x_0 = 15$$

$$4x_1 - 3x_2 + x_5 - x_0 = -12$$

$$\mathbf{x} \ge \mathbf{0}$$

In this case, we have reached an optimum. But note that we cannot get $x_0 = 0$. Thus the solution to the problem is infeasible.

In this case, the optimal point is $(x_1, x_2) = (0, 2)$ with optimal value 2.

8.8

8.9

8.10

8.11

8.12

$$\max 10x_1 - 57x_2 - 9x_3 - 24x_4$$
s.t.
$$0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_5 = 0$$

$$0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_6 = 0$$

$$x_1 + x_7 = 1$$

$$\mathbf{x} \ge 0$$

ζ	=		-	$10x_1$	-	$57x_2$	-	$9x_3$	-	$24x_4$
$\overline{x_5}$	=		-	$0.5x_1$	+	$1.5x_2$	+	$0.5x_{3}$	-	$\overline{x_4}$
x_6	=		-	$0.5x_1$	+	$5.5x_2$	+	$2.5x_{3}$	-	$9x_4$
x_7	=	1	-	x_1						
ζ	=		-	$27x_2$	+	x_3	-	$44x_{4}$	-	$20x_{5}$
$\overline{x_1}$	=			$3x_2$	+	x_3	-	$2x_4$	-	$2x_5$
x_6	=			$4x_2$	+	$2x_3$	-	$8x_4$	+	x_5
x_7	=	1	-	$3x_2$	-	x_3	+	$2x_4$	$+ 2x_5$	
$\frac{x_7}{\zeta}$	=	1	<u>-</u> -	$\frac{3x_2}{30x_2}$	<u>-</u> -	$\frac{x_3}{42x_4}$	+	$\frac{2x_4}{18x_5}$	$+2x_{5}$	$\overline{x_7}$
$\frac{x_7}{\zeta}$	= =	1 1 1	-		-				+ 2x ₅	$\frac{x_7}{x_7}$
ζ	=	1 1 1 2	-		-				$+2x_5$	

In this case, the optimal point is $(x_1, x_2, x_3, x_4) = (1, 0, 1, 0)$ with optimal value 1.

8.15

Proof. Let \mathbf{x} be a primal feasible point, and let \mathbf{y} be any feasible point of

the dual. Observe that

$$\mathbf{c}^{T}\mathbf{x} = \mathbf{x}^{T}\mathbf{c}$$

$$\leq \mathbf{x}^{T}A^{T}\mathbf{y}$$

$$= \mathbf{y}^{T}A\mathbf{x}$$

$$\leq \mathbf{y}^{T}\mathbf{b}$$

$$= \mathbf{b}^{T}\mathbf{y}$$

by the dual and primary problems.

8.17

Proof. Observe that by definition 8.6.1, the primal problem can be expressed as

$$\max \mathbf{c}^T \mathbf{x}$$
s.t. $A\mathbf{x} \le \mathbf{b}$

$$\mathbf{x} \ge \mathbf{0}$$

with dual problem

$$min \mathbf{b}^{T} \mathbf{y}$$
s.t. $A^{T} \mathbf{y} \ge \mathbf{c}$

$$\mathbf{y} \ge \mathbf{0}$$

Now observe that the dual of the dual is given by

$$min - \mathbf{c}^T \mathbf{x}$$
s.t. $-A\mathbf{x} \le -\mathbf{b}$

$$\mathbf{x} \ge \mathbf{0}$$

If we take the max of the dual of the dual instead of the min, we take the negative of it which yields the primal problem. \Box

8.18 The linear problem is given by

$$\max x_1 + x_2$$
s.t.
$$2x_1 + x_2 \le 3$$

$$x_1 + 3x_2 \le 5$$

$$2x_1 + 3x_2 \le 4$$

$$x_1, x_2 \ge 0$$

With dual problem

min
$$3y_1 + 5y_2 + 4y_3$$

s.t. $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Solving these by the Simplex Algorithm yields the optimizers $(1.25,\ 0.5)$ and $(0.25,\ 0,\ 0.25)$ respectively. Plugging these into the respected objective functions yields

$$1.25 + 0.5 = 1.75$$
$$3(0.25) + 5(0) + 4(0.25) = 1.75$$

Clearly, 1.75 = 1.75 and the optimal values are equal.