南开大学 2019 级"文科概率统计"统考试卷 (A卷)

			177	175-7		人作	111/11-	/L / I -	JU J MY	U (A 也)		
		3	姓名		_ 学号 _		专业	<u></u>		任课教	7师	
(设	说明:答案	案务必写	在草稿区	(外)								
题号	_		三	四	五	六	七	八	九	卷面成绩	核分签名	复核签名
得分												
											得分:	

	一、	填空题,	每小题2分,	共 20 分。
--	----	------	--------	---------

- 2、 在房间有 10 个人,分别佩戴从 1 到 10 号的纪念章,任选 3 人记录其纪念章号码,求最小号码为 5 的概率
- 3、 设两个事件 A、B, 若概率 P(A)=1/3, P(B)=1/4, P(AUB)=1/2, 则 P(ĀUĒ)=______.
- 4、 三个人独立破译出密码的概率分别为 1/5,1/3,1/4, 问能将此密码破译出的概率 .
- 5、 设随机变量 X 的概率分布列为 P{X=k}=k/c, k=1,2,…,5, 则 P(X=2)= ...
- 6、 设随机变量X, E(X) = 1, 则 D(E(X)) = .
- 7、 已知随机变量 X 服从标准正态分布,则 $E[X^2] =$.
- 8、 已知 (0,1,0,1,3)为来自某总体的样本,则样本方差为
- 9、 设(2.8.10.1.4) 是取自总体 N(μ, σ^2) 的样本,则 σ^2 的矩估计量= .
- 10、假设总体 X 服从参数为 0.5 的(0-1)分布, 求 D(-5X+10)=______.

二(本题 10 分) 加工某一零件供需要四道工序,设第一、二、三、四道工序的次品率分别为 20%,30%,50%,60%,假定割刀工序的加工互不影响,求加工出零件的次品率是多少? 得分:

草稿区

三(本题 10 分) 某高校学生高等数学考试成绩 $X\sim N(78,5^2)$,现在某系有学生 100 人参加考试,是从理论上计算本系成绩在 [80,90] 分数段的人数。 (已知: $\Phi(0.4)=0.6554$, $\Phi(2.4)=0.9918$)

得分:

草稿区

四(本题 10 分)设 X 的概率密度函数为 $p(x) = \begin{cases} Ax(x-2)^2, 0 \le x \le 2 \\ 0, 其他 \end{cases}$,求 X 的期望和方差。

得分:

五(本题 10 分) 设总体 $X \sim N(\mu, \sigma^2)$, $(X_1, X_2, ..., X_n)$ 是一组样本,样本均值为 \bar{X} , 要使 $P(|\bar{X} - \mu| > \sigma) \leq 0.05$, 问n至少应该等于多少。(已知 $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$)

六(本题 10 分) 设某公司员工体重 X 服从正态分布, $X\sim N(\mu,5^2)$,抽取其中 25 人进行测量,得到其样本均值为 80Kg,求 其体重均值 95%的区间估计. 已知 $\Phi(1.645)=0.95$, $\Phi(1.96)=0.975$.

草稿区

七(本题 10 分)设某次考试的考生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,算得样本平均成绩为 66.5 分,样本标准差为 15 分。问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分,并给出检验过程。

(已知: $\Phi(1.64) = 0.95, \Phi(1.96) = 0.975, t_{0.05}(35) = 1.6896, t_{0.025}(35) = 2.0301,$

得分:

 $t_{0.05}(36) = 1.6883, t_{0.025}(36) = 2.0281$

八(本题 10 分) 已知观测数据 (x_i, y_i) ,

设 $\sum_{i=1}^{n} x_i = 200$, $\sum_{i=1}^{n} y_i = 240$, $\sum_{i=1}^{n} x_i^2 = 4200$, $\sum_{i=1}^{n} y_i^2 = 5960$, $\sum_{i=1}^{n} x_i y_i = 4980$. 请根据以上数据确定x和y之间关系的回归方程,在 $\alpha = 0.01$ 下检验回归方程的显著性。(已知: $r_{0.01}(8) = 0.765$, $r_{0.01}(9) = 0.735$, $r_{0.01}(10) = 0.708$)

九(本题 10 分) 某产品主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总数的 15%, 80%, 5%。其次品率分别为 0.02, 0.01, 0.03。试求:(1)从这批产品中任取一件是不合格品的概率; (2)若已知取出的一件产品是不合格品,问这件产品由哪家生产的可能性最大?

得分:

得分: