N₂1

Условие

Найти Int(0,1) в топологии Зарисского

 $X=\mathbb{R}$

T= всевозможные дополнения конечных множеств, или пустое

Решение

$$A=\mathbb{R}ackslash(-\infty,0]\cup[1;+\infty]$$

Предположим противное, что $\exists U_x \in A: U_x \in Int(A): U_x = \mathbb{R} \backslash V$, такое, что V - конечное.

$$V=\mathbb{R}ackslash U_x$$

 $\mathbb{R}ackslash A\subset V$

$$V\supset \mathbb{R}ackslash A=(-\infty,0]\cup [1;+\infty]$$

Следовательно V - бесконечное.

Получили противоречие.

Следовательно, $Int(0,1) = \emptyset$

№2

Условие

В
$$\mathbb{R}$$
, с $T_{\kappa a h o h u q}:Cl\left[0,1
ight],Cl\mathbb{Q},Cl(\mathbb{R}ackslash\mathbb{Q}),$ $Cl\{a\}$ в ξ

 ξ :

$$X = \{a, b, c, d\}$$

$$T_X = \{\emptyset, X, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}, \{a,b\}\}$$

Решение

Множество всех точек прикосновения A называется замыканием A и обозначается как

$$Cl_XA$$

$$Cl(A) = \{x \in X | orall U_x \ U_x \cap A
eq \emptyset \}$$

$$Cl(A) = \cap F_i: \ F_i$$
 - замкнуто и $F_i \supset A$

Каноническая топология на ${\mathbb R}$ это топология, базой которой служат открытые круги, т. е.

$$U \in T \iff egin{cases} U = \emptyset \ orall x \in U & \exists V : V = \{x | x - x_0 < \epsilon\} : & V \in U \end{cases}$$

 $\mathbb{R}ackslash A=(-\infty,0)\cup(1;+\infty]$ - открытое

 $\implies [0,1]$ - замкнуто, и является наименьшим замкнутым множеством, содержащим A

$$Cl([0,1]) = [0,1]$$

 $Cl\left(\mathbb{Q}\right)$

 $orall x \in \mathbb{R} \; orall U_x$ в ней существуют рациональные точки Следовательно, любая точка \mathbb{R} - точка прикосновения \mathbb{Q}

$$Cl\left(\mathbb{Q}\right) = \mathbb{R}$$

 $Cl(\mathbb{R})$

 $orall x \in (\mathbb{R} ackslash \mathbb{Q}) \ orall U_x$ в ней существуют рациональные точки.

Следовательно, любая точка $\mathbb{R} R$ - точка прикосновения $\mathbb{R} \setminus \mathbb{Q}$

$$Cl(\mathbb{R}\backslash\mathbb{Q})=\mathbb{R}$$

 $Cl(\{a\})$

$$\{a,c,d\}=X\backslash\{d\}$$

$$Cl\left(\left\{ a\right\} \right)=\left\{ a,c,d\right\}$$

Nº3

Условие

Множество A замкнуто \iff граница $A\subseteq A$

Решение

Граница
$$A=\partial A$$
 (\Longrightarrow)
$$A$$
 - замкнуто $\Longrightarrow X\backslash A\in T \implies \forall x\in X\backslash A\ \exists U_x=X\backslash A: U_x\cap A=\emptyset$ $\Longrightarrow x$ - не граничная для $A\ \forall x\in X\backslash A \implies \partial A\subseteq A$ (\Longleftrightarrow)
$$\partial A\subseteq A \implies \exists x\in A: \forall U_x\ U_x\cap A\neq\emptyset\ U_x\cap V\neq\emptyset,\ V=X\backslash A$$
 Так как $\partial A\not\subseteq V$, то $\forall x\in V\ \exists U_x\subseteq V$, то есть $U_x\cap A=\emptyset$

Следовательно, Cl(A)=A Так как Cl - замкнуто, то и A - замкнуто