Stats with geoms

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

ggplot2, course 2

- Statistics
- Coordinates
- Facets
- Data Visualization Best Practices

Statistics layer

- Two categories of functions
 - Called from within a geom
 - Called independently
- stats_

geom_ <-> stat_

```
p <- ggplot(iris, aes(x = Sepal.Width))
p + geom_histogram()</pre>
```


geom_ <-> stat_

```
p <- ggplot(iris, aes(x = Sepal.Width))
p + geom_histogram()
p + geom_bar()</pre>
```


geom_ <-> stat_

```
p <- ggplot(mtcars, aes(x = factor(cyl), fill = factor(am)))
p + geom_bar()
p + stat_count()</pre>
```


The geom_/stat_ connection

stat_	geom_
<pre>stat_bin()</pre>	<pre>geom_histogram(), geom_freqpoly()</pre>
stat_count()	geom_bar()

stat_smooth()

```
geom_smooth() using method = 'loess' and
formula 'y ~ x'
```


stat_smooth(se = FALSE)

```
geom_smooth() using method = 'loess' and
formula 'y ~ x'
```


$geom_smooth(span = 0.4)$

```
geom_smooth() using method = 'loess' and
formula 'y ~ x'
```


geom_smooth(method = "lm")

geom_smooth(fullrange = TRUE)

The geom_/stat_ connection

stat_	geom_
<pre>stat_bin()</pre>	<pre>geom_histogram() , geom_freqpoly()</pre>
stat_count()	<pre>geom_bar()</pre>
stat_smooth()	<pre>geom_smooth()</pre>

stat_	geom_
<pre>stat_boxplot()</pre>	<pre>geom_boxplot()</pre>

stat_	geom_
<pre>stat_boxplot()</pre>	<pre>geom_boxplot()</pre>
<pre>stat_bindot()</pre>	<pre>geom_dotplot()</pre>
stat_bin2d()	<pre>geom_bin2d()</pre>
<pre>stat_binhex()</pre>	<pre>geom_hex()</pre>

stat_	geom_
<pre>stat_boxplot()</pre>	<pre>geom_boxplot()</pre>
<pre>stat_bindot()</pre>	<pre>geom_dotplot()</pre>
<pre>stat_bin2d()</pre>	<pre>geom_bin2d()</pre>
<pre>stat_binhex()</pre>	<pre>geom_hex()</pre>
<pre>stat_contour()</pre>	<pre>geom_contour()</pre>
<pre>stat_quantile()</pre>	<pre>geom_quantile()</pre>
<pre>stat_sum()</pre>	<pre>geom_count()</pre>

Stats: sum and quantile

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Recall from course 1

	Cause of Over-plotting	Solutions
1.	Large datasets	Alpha-blending, hollow circles, point size
2.	Aligned values on a single axis	As above, plus change position
3.	Low-precision data	Position: jitter
4.	Integer data	Position: jitter

Plot counts to overcome over-plotting

	Cause of Over-plotting	Solutions	Here
1.	Large datasets	Alpha-blending, hollow circles, point size	
2.	Aligned values on a single axis	As above, plus change position	
3.	Low-precision data	Position: jitter	<pre>geom_count()</pre>
4.	Integer data	Position: jitter	<pre>geom_count()</pre>

Low precision (& integer) data

Jittering may give a wrong impressions

geom_count()

```
p +
geom_count()
```


The geom/stat connection

geom_	stat_
<pre>geom_count()</pre>	<pre>stat_sum()</pre>

stat_sum()

```
p +
  stat_sum()
```


Over-plotting can still be a problem!

geom_quantile()

Dealing with heteroscedasticity

```
library(AER)
data(Journals)
p <- ggplot(Journals,</pre>
             aes(log(price/citations),
                 log(subs))) +
  geom_point(alpha = 0.5) +
  labs(...)
p
```


Library price relative to total number of citations (log)

Using geom_quantiles

The geom/stat connection

geom_	stat_
<pre>geom_count()</pre>	stat_sum()
<pre>geom_quantile()</pre>	<pre>stat_quantile()</pre>

Stats outside geoms

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Basic plot

Calculating statistics

```
set.seed(123)
xx <- rnorm(100)
mean(xx)</pre>
```

[1] 0.09040591

```
mean(xx) + (sd(xx) * c(-1, 1))
```

```
[1] -0.822410 1.003222
```


Calculating statistics

```
set.seed(123)
xx <- rnorm(100)
# Hmisc
library(Hmisc)
smean.sdl(xx, mult = 1)
       Mean
                  Lower
                              Upper
 0.09040591 -0.82240997 1.00322179
# ggplot2
mean_sdl(xx, mult = 1)
                 ymin
                          ymax
1 0.09040591 -0.82241 1.003222
```


stat_summary()

Uses geom_pointrange() by default

stat_summary()

Not recommended!

95% confidence interval

```
ERR <- qt(0.975, length(xx) - 1) * (sd(xx) / sqrt(length(xx))) mean(xx)
```

0.09040591

```
mean(xx) + (ERR * c(-1, 1)) # 95% CI
```

-0.09071657 0.27152838

mean_cl_normal(xx)

y ymin ymax 0.09040591 -0.09071657 0.2715284

stat_	Description
<pre>stat_summary()</pre>	summarize y values at distinct x values.
<pre>stat_function()</pre>	compute y values from a function of x values.
stat_qq()	perform calculations for a quantile-quantile plot.

MASS::mammals

Normal distribution

QQ plot

```
ggplot(mam.new, aes(sample = body)) +
  stat_qq() +
  geom_qq_line(col = "red")
```

