Introducción a elementos finitos Examen final II-2016

1. Dada la placa delgada de espesor t en tensión plana simplemente apoyada, sujeta a una carga q por unidad de superficie. Si se resuelve usando elementos finitos rectangulares, deduzca la matriz de rigidez para dicho elemento.

Solución

Principio de los trabajos virtuales

$$\iiint\limits_{V} \varepsilon^{\mathrm{T}} \, \sigma \, dV - \iiint\limits_{V} u^{\mathrm{T}} f_{V} \, dV - \iint\limits_{\Omega} u^{\mathrm{T}} f_{\Omega} \, d\Omega - \sum_{i=1}^{n} u_{i} P_{i} = 0$$

Reemplazando la ley de Hooke generalizada y los campos de aproximación para desplazamientos y deformaciones unitarias

$$\iiint\limits_{V} (B u_i)^{\mathrm{T}} C (B u_i) dV - \iiint\limits_{V} (N u_i)^{\mathrm{T}} f_V dV$$
$$- \iint\limits_{\Omega} (N u_i)^{\mathrm{T}} f_{\Omega} d\Omega - \sum_{i=1}^{n} u_i^{\mathrm{T}} P_i = 0$$

Reordenando términos

$$\iiint\limits_{V} u_{i}^{\mathrm{T}} B^{\mathrm{T}} C B u_{i} dV - \iiint\limits_{V} u_{i}^{\mathrm{T}} N^{\mathrm{T}} f_{V} dV$$
$$- \iint\limits_{\Omega} u_{i}^{\mathrm{T}} N^{\mathrm{T}} f_{\Omega} d\Omega - \sum_{i=1}^{n} u_{i}^{\mathrm{T}} P_{i} = 0$$

Las constantes salen del integrando

$$u_i^{\mathrm{T}} \iiint_V B^{\mathrm{T}} C B dV u_i - u_i^{\mathrm{T}} \iiint_V N^{\mathrm{T}} f_V dV$$
$$- u_i^{\mathrm{T}} \iint_{\Omega} N^{\mathrm{T}} f_{\Omega} d\Omega - u_i^{\mathrm{T}} \sum_{i=1}^n P_i = 0$$

Simplificando

$$\iiint\limits_V B^{\mathrm{T}} C B dV u_i - \iiint\limits_V N^{\mathrm{T}} f_V dV - \iint\limits_{\Omega} N^{\mathrm{T}} f_{\Omega} d\Omega - \sum_{i=1}^n P_i = 0$$

Reordenando

$$\iiint\limits_V B^{\mathrm{T}} C B dV u_i = \iiint\limits_V N^{\mathrm{T}} f_V dV + \iint\limits_{\Omega} N^{\mathrm{T}} f_{\Omega} d\Omega + \sum_{i=1}^n P_i$$

La matriz de rigidez es

$$K = \iiint_{\mathcal{M}} B^{\mathrm{T}} C B dV$$

Reemplazando $dV = t \, dy \, dx$

$$K = \int_{x_1}^{x_2} \int_{y_2}^{y_2} B^{\mathrm{T}} C B t \, dy \, dx$$

2. Dada la armadura sujeta a una carga P, con barras de sección transversal A. Encontrar la matriz de rigidez en coordenadas globales para cada uno de los elementos de la armadura de módulo elástico E.

Solución

Coordenadas de nodos

Elemento 1, dirección 3 - 4

$$L = \sqrt{(4a - 3a)^2 + \left(0 - \frac{b}{2}\right)^2} = \frac{\sqrt{4a^2 + b^2}}{2}$$
$$\lambda_x = \frac{4a - 3a}{\frac{\sqrt{4a^2 + b^2}}{2}} = \frac{2a}{\sqrt{4a^2 + b^2}}$$
$$\lambda_y = \frac{0 - \frac{b}{2}}{\frac{\sqrt{4a^2 + b^2}}{2}} = -\frac{b}{\sqrt{4a^2 + b^2}}$$

Matriz de rotación

$$T = \begin{bmatrix} \lambda_x & -\lambda_y \\ \lambda_y & \lambda_x \end{bmatrix} = \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & \frac{b}{\sqrt{4a^2 + b^2}} \\ -\frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix}$$

Matriz de rigidez

$$\begin{split} k &= T^{\mathrm{T}} \, k \, T \\ &= \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & -\frac{b}{\sqrt{4a^2 + b^2}} \\ \frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix} \frac{EA}{\frac{4a^2 + b^2}{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & \frac{b}{\sqrt{4a^2 + b^2}} \\ -\frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix} \\ &= \frac{2EA}{\sqrt{(4a^2 + b^2)^3}} \begin{bmatrix} (2a + b)^2 & -(2a - b)(2a + b) \\ -(2a - b)(2a + b) & (2a - b)^2 \end{bmatrix} \end{split}$$

Elemento 2, dirección 1 - 4

$$L = \sqrt{(3a - 2a)^2 + \left(\frac{b}{2} - 0\right)^2} = \frac{\sqrt{4a^2 + b^2}}{2}$$
$$\lambda_x = \frac{3a - 2a}{\frac{\sqrt{4a^2 + b^2}}{2}} = \frac{2a}{\sqrt{4a^2 + b^2}}$$
$$\lambda_y = \frac{\frac{b}{2} - 0}{\frac{\sqrt{4a^2 + b^2}}{2}} = \frac{b}{\sqrt{4a^2 + b^2}}$$

Matriz de rotación

$$T = \begin{bmatrix} \lambda_x & -\lambda_y \\ \lambda_y & \lambda_x \end{bmatrix} = \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & -\frac{b}{\sqrt{4a^2 + b^2}} \\ \frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix}$$

Matriz de rigidez

$$\begin{split} k &= T^{\mathrm{T}} \, k \, T \\ &= \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & \frac{b}{\sqrt{4a^2 + b^2}} \\ -\frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix} \frac{EA}{\frac{2a}{\sqrt{4a^2 + b^2}}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \frac{2a}{\sqrt{4a^2 + b^2}} & -\frac{b}{\sqrt{4a^2 + b^2}} \\ \frac{b}{\sqrt{4a^2 + b^2}} & \frac{2a}{\sqrt{4a^2 + b^2}} \end{bmatrix} \\ &= \frac{2EA}{\sqrt{(4a^2 + b^2)^3}} \begin{bmatrix} (2a - b)^2 & -(2a - b)(2a + b) \\ -(2a - b)(2a + b) & (2a + b)^2 \end{bmatrix} \end{split}$$

Elemento $\boxed{3}$, dirección $\boxed{2}$ - $\boxed{4}$

$$L = \sqrt{(3a - 3a)^2 + \left(\frac{b}{2} - 0\right)^2} = \frac{b}{2}$$

$$\lambda_x = \frac{3a - 3a}{\frac{b}{2}} = 0$$

$$\lambda_y = \frac{\frac{b}{2} - 0}{\frac{b}{2}} = 1$$

Matriz de rotación

$$T = egin{bmatrix} \lambda_x & -\lambda_y \ \lambda_y & \lambda_x \end{bmatrix} = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$$

Matriz de rigidez

$$\begin{aligned} k &= T^{\mathrm{T}} k T \\ &= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \frac{EA}{\frac{b}{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \\ &= \frac{2EA}{b} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{aligned}$$

3. Resolver la estructura.

Solución

Estructura equivalente

Suma de fuerzas y momentos

$$V_A - qL + V_B = 0$$

$$M_A - qL\left(\frac{3L}{2}\right) + V_B(3L) = 0$$

Despejando V_A y M_A

$$V_A = qL - V_B$$

$$M_A = \frac{3qL^2}{2} - 3LV_B$$

Momento de $0 \leqslant x \leqslant L$

$$M = -M_A + V_A x = -\frac{3qL^2}{2} + 3LV_B + (qL - V_B)x$$

Momento de $L \leqslant x \leqslant 2L$

$$M = -M_A + V_A x - \frac{q}{2} (x - L)^2 = -2qL^2 + 3LV_B + 2qLx - V_B x - \frac{q}{2} x^2$$

Momento de $L \geqslant x \geqslant 0$

$$M = V_B x$$

Energía de deformación por flexión

$$U_{i} = \int_{0}^{L} \frac{M^{2}}{2EI} dx + \int_{L}^{2L} \frac{M^{2}}{2EI} dx + \int_{0}^{L} \frac{M^{2}}{2EI} dx$$

Reemplazando

$$U_{i} = \frac{1}{2EI} \int_{0}^{L} \left[-\frac{3qL^{2}}{2} + 3LV_{B} + (qL - V_{B})x \right]^{2} dx$$
$$+ \frac{1}{2EI} \int_{L}^{2L} \left(-2qL^{2} + 3LV_{B} + 2qLx - V_{B}x - \frac{q}{2}x^{2} \right)^{2} dx$$
$$+ \frac{1}{2EI} \int_{0}^{L} (V_{B}x)^{2} dx$$

Integrando

$$U_i = \frac{L^3}{120EI} \left(68q^2L^2 - 345qLV_B + 540V_B^2 \right)$$

Minimizando

$$\frac{dU_i}{dV_B} = -\frac{L^3}{8EI} \Big(23qL - 72V_B \Big) = 0$$

Despejando V_B

$$V_B = \frac{23qL}{72}$$

Reemplazando en las demás reacciones

$$V_A = qL - V_B = qL - \frac{23qL}{72} = \frac{49qL}{72}$$
$$M_A = \frac{3qL^2}{2} - 3LV_B = \frac{3qL^2}{2} - 3L\left(\frac{23qL}{72}\right) = \frac{13qL^2}{24}$$

4. Escribir las estructuras para hallar los puntos de Gauss y los pesos por el método de Newton-Cotes.

Solución

Puntos de muestreo

$$\int_{-1}^{+1} P(r) r^k dr = 0 \quad \text{para} \quad k = 0, 1, 2, \dots, n - 1$$

Pesos

$$w_i = \int_{-1}^{+1} \ell_i(r) dr$$
 para $k = 1, 2, 3, \dots, n$