Hall Effect

Advanced Placement Physics C

Dr. Timothy Leung

August 26, 2020

Olympiads School, Toronto, ON, Canada

Current Through the Conductor

The electric current through conductor is the rate at which charge carriers pass through a point in the conductor:

$$\boxed{I = \frac{dQ}{dt}} = \left(\frac{Q}{V}\right) \frac{dV}{dt} = [ne] [Av_d]$$

where

- Q/V is the amount of charges *per volume*, which is just the charge carrier density n times the elementary charge e
- dV/dt is the rate the volume of charges moves through the conductor, give by the cross-section area of the conductor A times the **drift velocity** v_d of the charge carrier

For simplicity, we assume that charge carriers are positive. While the opposite is true, the behavior will be almost identical.

2

Current Through the Conductor

$$I = \frac{dQ}{dt} = neAv_d$$

Quantity	Symbol	SI Unit
Current	I	А
Charge carrier density (carriers per volume)	n	/m ³
Elementary charge	е	С
Cross-section area of the conductor	A	m ²
Drift velocity of the charge carriers	v_d	m/s

The terms nev_d is also called the **current density** J, which has the unit *ampère* per meter squared (A/m²).

Charge Carrier Density

Finding the charge carrier density n in a conductor requires some additional physical information about the material:

- 1. Divide the metals density ρ by the metal's molar mass M to find the number of moles of atams per unit volume
- 2. Multiply by Avagadro's number N_A to find number of atoms per unit volume
- 3. Multiply by the number of free electrons per atom k for that particular metal

Charge Carrier Density

Collecting all the terms from the last slide, we can see that the charge carrier density is given by:

$$n = \frac{\rho k N_A}{M}$$

Quantity	Symbol	SI Unit
Charge carrier density	n	/m ³
Density of material	ρ	kg/m ³
Number of free electrons per atom	k	
Avogadro's number	N_A	/mol
Molar mass	M	kg/mol

For copper, $M=63.54\times 10^{-3}$ kg/mol, $\rho=9.0\times 10^3$ kg/m³, k=1 and therefore $n=8.5\times 10^{28}$ /m³.

Hall Effect

When a current I flows through a conductor in a magnetic field \mathbf{B} , the magnetic field exerts a transverse (i.e. perpendicular to motion) magnetic force \mathbf{F}_m on the moving charges which pushes them toward one side of the conductor.

This is most evident in a thin, flat conductor as illustrated.

Magnetic Force

As the charges enter the magnetic field, \mathbf{F}_m is directed toward the top:

$$\mathbf{F}_m = e\mathbf{v}_d \times \mathbf{B} = \frac{e\mathbf{I} \times \mathbf{B}}{neA} = \frac{\mathbf{I} \times \mathbf{B}}{nA}$$

leading to a surplus of positive charges on the top edge of the conductor, and negative charges on the bottom.

Hall Voltage

The charge imbalance on the conductor creates an electric field \mathbf{E} , pointing toward the bottom, and therefore a voltage across two sides of the conductor (width W), called the **Hall voltage**:

$$V_H = EW$$

Balancing Electrostatic & Magnetic Forces

Subsequently, charge carriers entering the magnetic field will experience both a magnetic force and an electrostatic force. At equilibrium, the two forces are balanced:

$$\mathbf{F}_m + \mathbf{F}_q = \mathbf{0}$$

Calculating Hall Voltage

The electrostatic force on the charge carrier can be expressed in terms of the Hall voltage V_H across the two sides of the plate:

$$F_q = eE = \frac{eV_H}{W}$$

Equating the magnitudes of electrostatic and magnetic forces, we can solve for the Hall voltage:

$$F_m = F_q \quad \to \quad \frac{IB}{nA} = \frac{eV_H}{W}$$

Hall Voltage

Cancelling terms and noting that the thickness of the conductor is

$$d = \frac{A}{W}$$

we find the expression for the Hall voltage V_H :

$$V_H = \frac{IB}{ned}$$

Hall Probe

Large magnetic fields (\sim 1 T) is often measured using a **Hall probe**. A thin film Hall probe is placed in the magnetic field and the transverse voltage (usually measured in on the order of 10^{-6} V) is measured.

The polarity of the Hall voltage for a copper probe shows that electrons (negative charge) are the charge carriers.

12