图像处理中的数学方法第四次作业报告

安捷 1601210097 2017 年 5 月 4 日

1 算法描述

在这一次作业中,我分别实现了利用 DWT 算子的 ADMM 算法和 PFBS 算法,我分别用这两种算法进行了图像 deblur 的数值实验,现将结果报告如下。

ADMM 算法流程

Algorithm 1 ADMM with DWT

- 1 导入图像,并对图像做进行 double 化,归一化,对于多通道图像进行 rgb2gray,权衡计算速度调整图像大小;
- 2 对图像添加模糊;
- 3 算法初始化,初始化 d,b,并预先计算迭代中需要使用的量以加快迭代速度;
- 4 开始迭代,按照以下公式进行迭代 $u_{k+1} = (A^T A + \mu I)^{-1} (A^T f + \mu W^T (d_k b_k))$
- 5 $d_{k+1} = \mathcal{T}_{\lambda/\mu} (W u_{k+1} + b_k)$
- 6 $b_{k+1} = b_k + \delta (Wu_{k+1} d_{k+1})$
- 7 记录误差, 判断是否满足迭代终止条件, 若满足则终止迭代;
- 8 展示结果;

1.1 PFBS 算法流程

Algorithm 2 PFBS with DWT

- 1 导人图像,并对图像做进行 double 化,归一化,对于多通道图像进行 rgb2gray,权衡计算速度调整图像大小;
- 2 对图像添加模糊;
- 3 算法初始化,初始化 α_0
- 4 开始迭代,按照以下公式进行迭代 $g_k = \alpha_k \nabla F_2(\alpha_k)/L$
- 5 $\alpha_{k+1} = \mathcal{T}_{\lambda/L}(g_k)$
- 6 直到达到最大迭代数,停止迭代;
- 7 展示结果;

MATLAB 子函数功能说明

函数名称	函数功能
$admm_dwt.m$	ADMM with DWT 算法实现主脚本
$gradient_F2.m$	$ abla F_2$ 计算函数
$PFBS_dwt.m$	PFBS with DWT 算法实现主脚本

参数名称及功能

参数名称	参数功能	ADMM 参数值	PFBS 参数值
IMG_PATH	图像路径		
SIGMA	图像高斯模糊参数	1.5	1.5
NOISE_SCALE	图像高斯噪声参数	200000	200000
MAX_ITERATION	最大迭代次数	800	800
$KERNEL_SIZE$	图像卷积核大小	15	15
MU	ADMM 算法迭代参数	1	
LAMBDA	算法迭代参数	0.000001	0.000001
TOL	ADMM 终止阈值	1e-15	
DELTA	ADMM 迭代参数	0.5	
KAPPA	PFBS 迭代参数		1
L	PFBS 迭代参数		0.2+KAPPA
FRAME	小波框架	1	1
LEVEL	小波分解层数	2	2

2 数值实验结果

2.1 ADMM with DWT 实验结果

图 1: ADMM, SIGMA=1.5

图 2: ADMM, SIGMA=1.5

图 3: ADMM, SIGMA=3.5

400 500

图 4: ADMM, SIGMA=3.5

图 5: ADMM, SIGMA=1.5

图 6: ADMM, SIGMA=1.5

2.2 PFBS with DWT 实验结果

图 7: PFBS, SIGMA=1.5

图 8: PFBS, SIGMA=1.5

图 9: PFBS, SIGMA=3.5

图 10: PFBS, SIGMA=3.5

图 11: PFBS, SIGMA=1.5

图 12: PFBS, SIGMA=1.5

3 总结

- 1. ADMM 算法与 PFBS 算法在使用 DWT 算子的情况下都可以实现一定的 deblur 效果;
- 2. 在 blur 较轻的情况下, ADMM 算法与 PFBS 算法的效果相当, blur 较重时, PFBS 算法的效果略优于 ADMM 算法;
- 3. ADMM 算法在使用 DWT 算子的情况下, deblur 可以保留较多的细节, 但是边缘不够锐利, 在使用 TV 算子的情况下, 可以有更锐利的边缘, 但是细节损失更为严重, 二者在观感上各有利弊, 总体而言, DWT 算子的效果更为趋真, 尤其是在 blur 较小的情况下几乎可以完美的恢复原图像;