UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

NAM, Facultad de Ingeniería utor: Santiago Cruz Carlos	21/10/2017 22:33 Titulo: sim 555				
sábado, 21 de octubre de 2017,	sábado, 21 de octubre de 2017, Ciudad Universitaria, México, DF				
2 de					

TITULO: simulación 555

setup: 0.01[s]

$$t_1 = 0.693(R_A + R_B)C$$
$$t_2 = 0.693(R_B)C$$

t1 tiempo de carga; tiempo alto t2 tiempo de descarga; tiempo en bajo

$$D = \frac{t_{bajo}}{t_{bajo} + t_{alto}} = \frac{t_{descarga}}{t_{descarga} + t_{carga}} = \frac{0.693(R_B)C}{0.693(R_B)C + 0.693(R_A + R_B)C}$$

$$D = \frac{(R_B)}{(R_B) + (R_A + R_B)}$$

$$D = \frac{(R_B)}{(R_A + 2R_B)}$$

 $V_{CC} = 5V$

Top Trace: Output 5V/Div.

TIME = 20µs/DIV.

Bottom Trace: Capacitor Voltage 1V/Div.

 $R_A = 3.9k\Omega$

 $R_B = 3k\Omega$

 $C = 0.01 \mu F$

$$T = t_1 + t_2 = 0.693(R_A + 2R_B)C$$

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C}$$

$$D = \frac{R_B}{R_A + 2R_B}$$

1.- Realice los cálculos necesarios para que el primer 555 opere a una frecuencia de **35 Hz** con un ciclo de trabajo del **10** % y determine los valores del segundo 555 para que el tiempo de duración del pulso de salida varie de 1 a 10 ms. Arme el circuito y verifique su funcionamiento.

Realice las mediciones correspondientes y sus respectivas gráficas de salida de ambos 555

	TEO	EXP
F		
D		

	TEO	EXP
Tmin		
Tmax		

X

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C}$$
$$35 = \frac{1.44}{(R_A + 2R_B)C}$$
$$35(R_A + 2R_B)C = 1.44$$
$$(35R_A + 70R_B) = \frac{1.44}{C}$$
$$R_A = \left(\frac{1.44}{C} - 70R_B\right)\frac{1}{35}$$

$$R_A = \left(\frac{1.44}{C} - 70R_B\right) \frac{1}{35}$$

$$D = \frac{R_B}{R_A + 2R_B} = 0.1$$

$$R_B = 0.1(R_A + 2R_B)$$

$$R_B = 0.1R_A + 0.2R_B$$

$$0.8R_B = 0.1R_A$$

$$8R_B = R_A$$

igualando:

$$(35(8R_B) + 70R_B) = \frac{1.44}{C}$$

$$(280R_B + 70R_B) = \frac{1.44}{C}$$

$$(350R_B) = \frac{1.44}{C}$$

$$R_B = \frac{1.44}{350C}$$

$$R_B = \frac{1.44}{350C}$$

$$8R_B = R_A$$

Metiéndolo en una tabla de excel:

C RB=1.44/(350C) RA=8*RB

0,000001	4114,285714	32914,2857
0,00001	411,4285714	3291,42857
0,0001	41,14285714	329,142857
0,001	4,114285714	32,9142857

Simulando:

$$T = 28.5 [ms]$$

UNAM, Facultad de Ingeniería Autor: Santiago Cruz Carlos

Titulo: sim 555

el periodo es aproximado de 28.4[ms} tapagado=2.87[ms]

Para el segundo 555, tiempo encendido de 1[ms]

С	RA
0,0000001	9090,90909
0,000001	909,090909
0,00001	90,9090909
0,0001	9,09090909
0,001	0,90909091

Para 10[ms]

Haciéndolo en una hoja de excel

1	0,4	0,001	576	288	
1	0,4	0,0001	5760	2880	
1	0,4	0,00001	57600	28800	
1	0,4	0,000001	576000	288000	
1	0,4	0,0000001	5760000	2880000	
1	0,45	0,000068	9529,41176	2117,64706	
1	0,4	0,000068	8470,58824	4235,29412	
1	0,4	0,0000047	122553,191	61276,5957	
1	0,4	0,00022	2618,18182	1309,09091	
1	0,4	0,00068	847,058824	423,529412	

Simulando uno de los incisos ja: