Single-Domain Generalized Object Detection

Anonymous submission

Method	bus	bike	car	motor	person	rider	truck	mAP
FPN	56.2	47.4	69.8	50.5	54.6	50.5	56.8	55.1
SW[4]	55.6	44.3	69.5	46.5	52.7	47.5	55.9	53.2
IBN-Net[3]	57.3	46.3	70.0	47.1	56.3	50.4	58.6	55.1
IterNorm[2]	51.5	42.2	69.2	41.1	50.9	45.2	52.4	50.4
ISW[1]	57.2	47.3	70.2	47.8	57.2	51.3	59.0	55.7

Table 1: Experimental results (%) on the daytime-sunny scene. Here, "motor" indicates the motorcycle category.

Method	bus	bike	car	motor	person	rider	truck	mAP
FPN	37.4	33.1	62.2	21.4	42.5	32.1	40.9	38.6
SW[4]	35.4	28.6	56.7	18.4	38.2	26.2	39.3	34.7
IBN-Net[3]	40.2	31.4	62.1	19.0	42.9	29.3	44.2	38.4
IterNorm[2]	28.8	29.2	55.7	12.3	35.9	25.4	35.4	31.8
ISW[1]	37.4	32.2	60.4	16.5	41.0	29.2	43.0	37.1

Table 2: Experimental results (%) on the night-sunny scene.

Method	bus	bike	car	motor	person	rider	truck	mAP
FPN	38.3	20.7	59.0	13.8	24.8	15.6	39.0	30.2
SW[4]	41.6	28.2	64.0	12.1	35.1	21.8	43.7	35.2
IBN-Net[3]	44.6	25.7	65.5	18.4	38.6	23.6	46.2	37.5
IterNorm[2]	34.8	20.7	58.5	4.2	26.0	11.5	35.7	27.3
ISW[1]	44.9	31.5	66.1	19.3	38.8	24.8	45.5	38.7

Table 3: Experimental results (%) on the dusk-rainy scene.

Method	bus	bike	car	motor	person	rider	truck	mAP
FPN	19.8	9.5	31.6	0.2	11.1	9.3	16.5	14.0
SW[4]	25.4	14.2	36.7	0.5	16.0	11.0	20.9	17.8
IBN-Net[3]	28.7	10.8	36.4	0.6	17.7	10.6	21.6	18.0
IterNorm[2]	17.9	10.2	32.3	0.2	12.2	9.4	17.7	14.3
ISW[1]	31.2	11.5	40.3	2.7	18.5	9.9	27.5	20.2

Table 4: Experimental results (%) on the night-rainy scene.

Method	bus	bike	car	motor	person	rider	truck	mAP
FPN	30.5	29.7	52.1	28.4	33.9	40.4	21.0	33.7
SW[4]	32.0	28.4	52.3	28.8	33.5	39.5	21.9	33.8
IBN-Net[3]	32.5	31.4	52.5	31.1	38.0	42.1	23.5	35.9
IterNorm[2]	25.3	27.4	50.4	24.0	32.2	37.4	18.6	30.7
ISW[1]	31.9	30.5	51.9	30.8	37.5	40.9	21.9	35.1

Table 5: Experimental results (%) on the daytime-foggy scene.

References

- [1] Choi, S.; Jung, S.; Yun, H.; Kim, J. T.; Kim, S.; and Choo, J. 2021. Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 11580–11590.
- [2] Huang, L.; Zhou, Y.; Zhu, F.; Liu, L.; and Shao, L. 2019. Iterative normalization: Beyond standardization towards efficient whitening. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 4874–4883.
- [3] Pan, X.; Luo, P.; Shi, J.; and Tang, X. 2018. Two at once: Enhancing learning and generalization capacities via ibn-net. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 464–479.
- [4] Pan, X.; Zhan, X.; Shi, J.; Tang, X.; and Luo, P. 2019. Switchable whitening for deep representation learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 1863–1871.