

Spatial Sensitive Grad-CAM++: Improved Visual Explanation for Object Detectors via Weighted Combination of Gradient Map

Toshinori Yamauchi

Hitachi, Ltd. Research & Development Group

The 3rd XAI4CV Workshop

1. Introduction

- > Visual explanations for object detection
- Object detectors detect each instance in an image.
- Instance-specific heat maps need to be generated for each detected instance.
- Generated heat maps by existing methods may only highlight a part of important regions.
- > Contribution
- Propose SSGrad-CAM++, which improves SSGrad-CAM by incorporating weighted combination of gradient maps.
- SSGrad-CAM++ can generate more reliable heat maps.

2. Base Method: Spatial Sensitive Grad-CAM

It computes the importance of both features and space to generate instance-specific heat maps.

$$L^{c,det} = ReLU\left(\sum_{k}^{\mathbf{Grad-CAM}} (w_k^{c,det} A^k) \odot S_k^{c,det}\right)$$

 Y_{det}^c : Predicted score A^k : Feature map

Grad-CAM SSGrad-CAM

$$w_k^{c,det} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial Y_{det}^c}{\partial A_{i,j}^k}$$

Importance of features

Importance of space

Heat map comparison

3. Proposed Method: Spatial Sensitive Grad-CAM++

- > Room for improvement in computation of the importance of features SSGrad-CAM computes the importance of
 - features by averaging the gradient map.
- The magnitude of $w_k^{c,det}$ depends on the spatial size of the feature in A^k .
- Importance of features
- > Incorporation of weighted combination of gradient maps

Definition of the importance of features

Calculation of the

Assumption for score.

$$\alpha_{i,j}^{k,c,det} = \frac{\frac{\partial^{2}Y_{det}^{c}}{\left(\partial A_{i,j}^{k}\right)^{2}}}{2\frac{\partial^{2}Y_{det}^{c}}{\partial A_{i,i}^{k,det}} + \sum_{a}\sum_{b}A_{a,b}^{k}M_{a,b}^{k,det}\left(\frac{\partial^{3}Y_{det}^{c}}{\partial A_{det}^{k,det}}\right)}$$

second derivative $M_{ii}^{k,det}$: A binary mask with 1 for regions related to the detected instance

3. Experiment

Deletion (Del) and Insertion (Ins)

_			_	
	$score = s_1$		$score = s_2$	
Method	Del ↓	Ins ↑	Del↓	Ins ↑
Grad-CAM [10]	0.201	0.650	0.241	0.655
Grad-CAM++ [2]	0.104	0.853	0.142	0.851
D-RISE [8]	0.154	0.781	0.201	0.766
ODAM [18]	0.113	0.745	0.180	0.731
SSGrad-CAM [15]	0.071	0.916	0.135	0.867
ours	0.055	0.942	0.102	0.901

Pointing Game

Method	P(b)	P(m)	eP(b)	eP(m)
Grad-CAM [10]	0.389	0.330	0.127	0.08
Grad-CAM++ [2]	0.649	0.563	0.150	0.09
D-RISE [8]	0.624	0.505	0.119	0.070
ODAM [18]	0.916	0.804	0.737	0.546
SSGrad-CAM [15]	0.911	0.769	0.726	0.509
ours	0.981	0.880	0.743	0.512

SSGrad-CAM++ outperforms other methods, indicating that it generates higher quality heat maps.

3. Conclusion

- We propose SSGrad-CAM++, CAM-based visual explanations for object detectors.
- SSGrad-CAM++ improves SSGrad-CAM in terms of the computation of the importance of features.
- Our experiments show that SSGrad-CAM++ generates heat maps that more accurately capture the important regions.

References

- 1. Selvaraju, R. R., et al. 2. Chattopadhay, A., et al. 3. Petsiuk, V., et al.
- 4. Yamauchi, T. and Ishikawa, M. 5. Zhao, C. and Chan,