Неприводимые многочлены и их свойства. Теорема о разложении в произведение неприводимых многочленов. Каноническое разложение.

Неприводимый многочлен $f(x) \in F[x]$ называется <mark>неприводимым</mark> над полем F, если его нельзя разложить в произведение многочленов меньшей степени, то есть если $\forall f(x) = g(x)h(x)$ либо $\deg g(x) = \deg f(x)$, либо $h(x) = \deg f(x)$

Разложимый многочлен Многочлен $f(x) \in F[x]$ приводим (разложим) над полем F, если существует f(x) = g(x)h(x), где $g(x), h(x) \in F[x]$

Теорема о разложении многочлена в произведение неприводимых многочленов

Каждый многочлен однозначно раскладывается в произведение неприводимых многочленов, с точностью до перестановки сомножителей и ассоциированности.

Доказательство существования

Докажем индукцией по степени многочлена.

- $oldsymbol{ iny L}$. Если f(x) неприводим, то f(x)=f(x)
- 2. Пусть доказано для многочленов степени меньше m. При этом, если f(x) разложим, то f(x) = g(x)h(x). При этом $\deg g(x)$, $\deg h(x) < \deg f(x)$, т.к. по предположению индукции g(x) и h(x) раскладываются в произведение неприводимых многочленов.

Доказательство единственности

Предположим, что есть два разложения для f(x):

$$f(x) = g_1(x) \dots g_k(x) = h_1(x) \dots h_m(x)$$

Так как $g_1(x)$ неприводим и $g_1(x) \mid h_1(x) \dots h_m(x)$, то по доказанному выше предложению существует j такое, что $g_1(x) \mid h_j(x)$. Перенумеруем h(x) и будем считать j=1. Тогда $g_1(x) \mid h_1(x)$. Так как $h_1(x)=q(x)g_1(x)$ и $h_1(x)$ неприводим, то $\deg h_1(x)=\deg g_1(x)$, то есть $h_1(x)$ и $g_1(x)$ ассоциированы.

$$g_1(x)g_2(x)\ldots g_k(x)=cg_1(x)h_2(x)\ldots h_m(x)$$

Получаем

$$g_2(x) \dots g_k(x) = ch_2(x) \dots h_m(x)$$

И продолжаем аналогичный процесс. Мы найдём для $g_2(x)$ ассоциированный многочлен $h_2(x)$, далее для $g_3(x)$, и т.д.

Предложение о неприводимых многочленах

Пусть g неприводим над полем F и $g \mid (h_1(x)h_2(x)\dots h_m(x))$. Тогда существует число i такое, что $g \mid h_i(x)$

Доказательство

Б.И. - для m=1 - очевидно

Ш.И. Предположим, что утверждение доказано для случая, когда менее m сомножителей. Рассмотрим случай m сомножителей. Пусть $d(x) = \text{HOД}(g(x), h_m(x))$. Тогда $\exists q(x) : g(x) = q(x)d(x)$. По условию теоремы g - неприводим, поэтому возможны два случая:

- 1. $\deg d(x) = \deg g$, тогда g(x) и g(x) ассоциированы.
- 2. Если d(x)=1, тогда g(x) и $h_m(x)$ взаимно просты, и, по доказанной лемме, $g(x)\mid h_1(x)\cdot\dots\cdot h_{m-1}(x)$. Тогда по предположению индукции получаем, что найдётся i такое, что $g(x)\mid h_i(x)$

Каноническое разложение Любой многочлен можно представить в виде $f(x)=a(x-x_1)(x-x_n)$, где x_n - корни, а $(x-x_1)\dots(x-x_n)$ неприводимые члены