Problem 2.9 - Uncertainty Analysis, Case A

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{\rho}{2} \left(\mathbf{v}_2^2 - \mathbf{v}_1^2 \right) \mapsto \begin{pmatrix} \mathbf{v}_2 & 220 \pm 0.5 & \text{Uniform} \mathcal{D} \\ \mathbf{v}_1 & 180 \pm 0.5 & \text{Uniform} \mathcal{D} \\ \rho & 1.0 \pm 0.05 & \text{Uniform} \mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{1}{2} (x_1^2 - x_2^2) x_3$$

Variable		Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
x ₁	v ₂ v ₁ ρ	$(2.200 \pm 0.005) \times 10^{2}$	Uniform	2.2×10^{2}
x ₂		$(1.800 \pm 0.005) \times 10^{2}$	Uniform	1.8×10^{2}
x ₃		$(1.00 \pm 0.05) \times 10^{0}$	Uniform	$8. \times 10^{3}$

У	8000	
Ymin Ymax	7410 8610	= y - 590. = y + 610.
ε_{max} $y \pm \varepsilon_{\text{max}}$	$(8.0 \pm 0.6) \times 10^3$	= 7.5% = $8.0(6) \times 10^3$
u _c y ± u _c	$245.085019262024 (8.0 \pm 0.3) \times 10^{3}$	= 3.06% = $8.0(3) \times 10^3$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{\text{i=1}}^{n} \mid \partial_{\mathbf{x}_{\text{i}}} \ \mathbf{f}[\mathbf{x}] \mid \, \varepsilon_{\text{i}}; \quad \mathbf{f}[\mathbf{x}] \, \pm \, \varepsilon_{\text{max}} \ // \ \text{QUCE}$$

```
8000 ± 600

\in [7400; 8600]

\simeq (8.0 \pm 0.6) \times 10^3 = 8.0(6) \times 10^3
```

Combined Standard Uncertainty

$$\mathbf{u_c} = \left(\sum_{i=1}^{n} \left(\partial_{\mathbf{x}_i} \ \mathbf{f}[\mathbf{x}]\right)^2 \mathbf{u}_i^2\right)^{1/2}; \ \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_c \ // \ \text{QUCA}$$

```
8000 \pm 245.085

\in [7754.9; 8245.1]

\approx (8.0 \pm 0.3) \times 10^3 = 8.0(3) \times 10^3
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
    8000.0231617218 ± 245.375
     ∈ [7754.6; 8245.4]
     \simeq (8.0 ± 0.3) \times 10<sup>3</sup> = 8.0(3) \times 10<sup>3</sup>
```