高等数学I课后作业

Schedule: 2021FallProfessor: ZHYFrom: JNU-智科院Version: 题目纯享版

- 高等数学I课后作业
 - Week4
 - **1-1**
 - 1(8)求函数自然定义域
 - 9(6) 求反函数
 - 11(5) 求复合函数, 并根据*x*_1, *x*_2求出函数值
 - **1-2**
 - 1(2)(8)求极限
 - **3**
 - Week5
 - ■加练
 - **1**
 - **2**
 - **1-3**
 - **4**
 - **1-4**
 - **1**
 - **6**
 - Week7
 - ■加练
 - **1**
 - **1-5**
 - 1.求极限
 - **1-6**
 - 2(4)求极限
 - 4(4)证明:
 - **1-6**

- 4(2)证明x→0时,有

 Week8
 1-8
 3(1)间断点类型
 4
 3(3)(6).求极限
 4(5)(7)求极限

 Week9
 5
 总习题一
 9(6)求极限
 2-2
 7(8)求导
 10(2)求导
 11(9)求导
 - **2-3**

Week10

- 1(9)(12)求二阶导数
- 3(1)求二阶导数
- **2-4**
 - **2**
 - 4(1)用对数求导法求函数导数
 - 8(2)(4)求参数方程二阶导数
- Week11
 - **2-5**
 - 3(7)求微分
 - 4(8)填入式子使等号成立
 - **3-1**
 - 10.设a>b>0,证明:
 - **3-2**
 - 1(3)(9)(13)(14)用洛必达求极限
- Week12
 - **3-3**
 - 4.求函数f(x) = lnx按(x-2)的幂展开的带有皮亚诺余项的n阶泰勒公式
 - 6.求函数f(x) = tanx带有皮亚诺余项的3阶麦克劳林公式
 - **3-4**
 - 10(5)求函数拐点和凹凸区间
 - 13问a,b为何值时,点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点

- o Week13
 - **3-5**
 - 1(4)求极值
 - 9.问函数 $y = fracxx^2 + 1(x geq0)$ 何时取到最大值
 - **3-7**
 - $lacksymbol{1}$ 2.求曲线y=lnsecx在点(x,y)处的曲率及曲率半径
 - 总习题三
 - 13.设a $1, f(x) = a^x ax$ 在(-infty, + infty)内的驻点为X(a).问a为何值时,X(a)最小,并求出最小值
 - **4-1**
 - 2(9)(18)(22)(26)求不定积分
- Week14
 - **4-2**
 - 2(9)(18)(19)(29)(35)(38)(40)(43)求不定积分
 - **4-3**
 - 10. $intxtan^2xdx$
 - 21. $int(arcsinx)^2 dx$
- Week15
 - **4-4**
 - $egin{aligned} ullet 9. \ int \ fracdx(x^2+1)(x^2+x) \end{aligned}$
 - 10. int $frac1x^4 1dx$
 - 15. int fracdx3 + cosx
 - $\begin{aligned} & \bullet & 21. \\ & int \\ & fracsqrtx + 1 1sqrtx + 1 + 1dx \end{aligned}$
 - **5-1**
 - 5.设a<b,问a、b取什么值时,积分

```
int_{-}a^{b}(x-x^{2})dx取得最大值
      ■ 11.设f(x)在
                                        0, 1
        上连续,证明
        int\_0^1f^2(x)dx
        geq(
        int\_0^1 f(x) dx)^2
   5-2
      ■ 8(8)(12)求定积分
Week16
   5-2
       ■ 3.求由
        int\_0^y e^t dt +
        int_0^x cost dt = 0所确定的隐函数对x的导数
        fracdydx
      ■ 5(3)求导数
      ■ 11(1)求极限
      ■ 12.求
        phi(x) =
        int\_0^x f(t) dt在
                                        0, 2
        的表达式,并讨论
        phi(x)
                                        0, 2
         内的连续性
   5-3
      ■ 1(7)(24)求定积分
      ■ 7(4)(11)求定积分
Week17-18
```

- - **5-4**
 - 1(3)(8)判断反常积分收敛性,若收敛,计算反常积分其值
 - 4.计算反常积分 $int_0^1 lnx dx$
 - **6-2**

- 4.求抛物线 $y^2 = 2px$ 及其在点(p/2,p)处的法线所围成的图形的面积
- 8(1)求曲线围成公共部分面积
- 21.设由抛物线 $y=2x^2$ 和直线x=a,x=2及y=0所围成的平面图形为 D_1 ,设由抛物线 $y=2x^2$ 和直线x=a,y=0所围成的平面图形为 $y=2x^2$ 和直线 $y=2x^2$ 和自
- 28.求对数螺线

$$rho = e^{atheta}$$
相应于 0
 leq
 $theta$
 leq
 psi 对应的一段弧长

- 总习题六
 - 6.设抛物线 $y = ax^2 + bx + c$ 通过点(0,0),且当x in

0, 1

时, y

geq0.试确定a,b,c的值,使得抛物线 $y=ax^2+bx+c$ 与直线x=1,y=0所围成的图形面积为4/9.且使该图形绕x轴旋转而成的旋转体体积最小.

Week4

• 2021/9/23

1-1

1(8)求函数自然定义域

$$y = \sqrt{3-x} + \arctan\frac{1}{x}$$

9(6) 求反函数

$$y = rac{2^x}{2^x + 1}$$

11(5) 求复合函数,并根据 x_1, x_2 求出函数值

$$y=u^2, u=e^x, x_1=1, x_2=-1$$

1(2)(8)求极限

(2): $(-1)^n \frac{1}{n}$

(8):
$$[(-1)^n + 1] \frac{n+1}{n}$$

3

- 3. 下列关于数列 $\{x_n\}$ 的极限是a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例.
 - (1) 对于任意给定的 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $x_n a < \varepsilon$ 成立;
 - (2) 对于任意给定的 $\varepsilon>0$,存在 $N\in\mathbb{N}_+$, 当 n>N 时,有无穷多项 x_n ,使不等式 $|x_n-a|<\varepsilon$ 成立;
- (3) 对于任意给定的 $\varepsilon>0$,存在 $N\in\mathbb{N}_+$, 当 n>N 时,不等式 $|x_n-a|< c\varepsilon$ 成立,其中 c 为某个正常数;
 - (4) 对于任意给定的 $m \in \mathbb{N}_+$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|x_n a| < \frac{1}{m}$ 成立.

Week5

2021/9/27

加练

1

设函数
$$f(x)=egin{cases} ax^2,x\leq 1\ 2x+1,x>1 \end{cases}$$
,且 $\lim_{x o 1}f(x)$ 存在,则a=_____.

2

设
$$\lim_{x o 0}rac{f(x)}{sinx}=2$$
,则去心领域正负性为_____.

1-3

4

求 $f(x)=rac{x}{x},\phi(x)=rac{|x|}{x}$,当xo0时的左右极限,并说明他们在xo0时的极限是否存在

1

两个无穷小的商是否一定是无穷小, 举例说明

6

函数 $y = x \cos x$ 在 $(-\infty, +\infty)$ 内否有界? 这个函数是否为 $x \to +\infty$ 时的无穷大,为什么?

Week7

• 2021/10/11

加练

1

设 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 均为非负数列, $\lim_{n\to\infty}a_n=0,\lim_{n\to\infty}b_n=1,\lim_{n\to\infty}c_n=\infty$,则下列正确的是

$$A.a_n < b_n n \in N+, B.b_n < c_n n \in N+$$

$$C.\lim_{n o\infty}a_nc_n$$
不存在, $D.\lim_{n o\infty}b_nc_n$ 不存在

1-5

1.求极限

(5)
$$\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h}$$

$$(14)\lim_{x\to 1}(\frac{1}{1-x}-\frac{3}{1-x^3})$$

2(4)求极限

$$\lim_{x o \infty} (1 - rac{1}{x})^{kx}, k$$
为正整数

4(4)证明:

$$\lim_{x\to 0}\sqrt[n]{1+x}=1$$

1-6

4(2)证明x→0时,有

$$secx-1 \sim rac{x^2}{2}$$

Week8

• 2021/10/18

1-8

3(1)间断点类型

$$y = \frac{x^2 - 1}{x^2 - 3x + 2}, x = 1, x = 2$$

4

讨论函数 $f(x)=\lim_{n o\infty}rac{1-x^{2n}}{1+x^{2n}}x$ 的连续性,若有间断点,则判别其类型

3(3)(6).求极限

$$(3)\lim_{x o rac{\pi}{6}}ln(2cos2x)$$

$$(6)\lim_{x olpha}rac{sinx-sinlpha}{x-lpha}$$

4(5)(7)求极限

$$(5)\lim_{x\to\infty}(\frac{3+x}{6+x})^{\frac{x-1}{2}}$$

$$(7)\lim_{x\to e}\frac{lnx-1}{x-e}$$

Week9

2021/10/25

5

若f(x)在[a,b]上连续, $a < x_1 < x_2 < x_3 < ... < x_n < b (n \geq 3)$,则在 (x_1,x_n) 内至少有一点 ϵ ,使 $f(\epsilon)=\frac{f(x_1)+f(x_2)+...+f(x_n)}{n}$

总习题一

9(6)求极限

$$\lim_{x o rac{\pi}{2}} (sinx)^{tanx}$$

2-2

7(8)求导

$$y = ln(x + \sqrt{a^2 + x^2})$$

10(2)求导

$$y = f(sin^2x) + f(cos^2x)$$

$$= sin2x(f'(sin^2x) - f'(cos^2x))$$

11(9)求导

$$y=xarcsinrac{x}{2}+\sqrt{4-x^2}$$

Week10

• 2021/11/1

2-3

1(9)(12)求二阶导数

$$(9)y = (1+x^2)arctanx$$

$$(12)y = ln(x + \sqrt{1 + x^2})$$

3(1)求二阶导数

$$(1)y = f(x^2)$$

2-4

2

求曲线 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ 在点 $(rac{\sqrt{2}}{4}a,rac{\sqrt{2}}{4}a)$ 处的切线方程和法线方程

4(1)用对数求导法求函数导数

$$y = (\frac{x}{1+x})^x$$

8(2)(4)求参数方程二阶导数

$$(2) \begin{cases} x = a cost \\ y = b sint \end{cases}$$

$$(4) \begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$$

Week11

3(7)求微分

$$y = arcsin\sqrt{1-x^2}$$

4(8)填入式子使等号成立

$$d() = sec^2 3x dx$$

3-1

10.设a>b>0,证明:

$$\frac{a-b}{a} < ln\frac{a}{b} < \frac{a-b}{b}$$

3-2

1(3)(9)(13)(14)用洛必达求极限

(3) $\lim_{x\to 0} \frac{tanx-x}{s-sinx}$

(9)
$$\lim_{x\to\infty} \frac{ln(1+\frac{1}{x})}{arccotx}$$

(13)
$$\lim_{x\to 1} \left(\frac{2}{x^2-1}-\frac{1}{x-1}\right)$$

$$(14)\lim_{x\to\infty} (1+\frac{a}{x})^x$$

Week12

• 2021/11/15

4.求函数f(x)=lnx按(x-2)的幂展开的带有皮亚诺余项的n阶泰勒公式

6.求函数f(x)=tanx带有皮亚诺余项的3阶麦克劳林公式

3-4

10(5)求函数拐点和凹凸区间

$$y = e^{arctanx}$$

13问a,b为何值时,点(1,3)为曲线 $y=ax^3+bx^2$ 的拐点

Week13

• 2021/11/22

3-5

1(4)求极值

$$y = x + \sqrt{1 - x}$$

9.问函数 $y=rac{x}{x^2+1}(x\geq 0)$ 何时取到最大值

3-7

 $\mathbf{2}$.求曲线y = lnsecx在点(x,y)处的曲率及曲率半径

总习题三

13.设 $a>1, f(x)=a^x-ax$ 在 $(-\infty,+\infty)$ 内的驻点为X(a).问a为何值时,x(a)最小,并求出最小值

4-1

2(9)(18)(22)(26)求不定积分

$$(9)\int \frac{dh}{\sqrt{2gh}}$$

 $(18)\int secx(secx-tanx)dx$

(22)
$$\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx$$

(26)
$$\int \frac{3x^4 + 2x^2}{x^2 + 1} dx$$

Week14

• 2021/11/29

4-2

2(9)(18)(19)(29)(35)(38)(40)(43)求不定积分

$$(9)\int \frac{x}{\sqrt{2-3x^2}}dx$$

(18)
$$\int rac{10^{2arctanx}}{\sqrt{1-x^2}} dx$$

(19)
$$\int tan\sqrt{1+x^2} rac{xdx}{\sqrt{1+x^2}}$$

 $(29)\int tan^3xsecxdx$

(35)
$$\int \frac{x}{x^2 - x - 2} dx$$

(38)
$$\int \frac{dx}{\sqrt{(x^2+1)^3}}$$

$$(40)\int \frac{dx}{1+\sqrt{2x}}$$

(43)
$$\int \frac{x-1}{x^2+2x+3} dx$$

10.
$$\int x tan^2 x dx$$

21.
$$\int (arcsinx)^2 dx$$

Week15

• 2021/12/06

9.
$$\int \frac{dx}{(x^2+1)(x^2+x)}$$

10.
$$\int \frac{1}{x^4-1} dx$$

15.
$$\int \frac{dx}{3 + cosx}$$

21.
$$\int rac{\sqrt{x+1}-1}{\sqrt{x+1}+1} dx$$

5-1

5.设a
b,问a、b取什么值时,积分 $\int_a^b(x-x^2)dx$ 取得最大值

11.设f(x)在[0,1]上连续,证明 $\int_0^1 f^2(x) dx \geq (\int_0^1 f(x) dx)^2$

5-2

8(8)(12)求定积分

$$(8) \int_{-1}^{0} \frac{3x^4 + 3x^2 + 1}{x + 1} dx$$

(12)
$$\int_0^2 f(x)dx$$
,其中 $f(x)=egin{cases} x+1,x\leq 1\ rac{1}{2}x^2,x>1 \end{cases}$

Week16

• 2021/12/13

5-2

3.求由 $\int_0^y e^t dt + \int_0^x cost dt = 0$ 所确定的隐函数对 ${f x}$ 的导数 $rac{dy}{dx}$

5(3)求导数

$$\frac{d}{dx} \int_{sinx}^{cosx} cos(\pi t^2) dt$$

11(1)求极限

$$\lim_{x o 0} rac{\int_0^x cost^2 dt}{x}$$

12.求 $\phi(x)=\int_0^x f(t)dt$ 在[0,2]的表达式,并讨论 $\phi(x)$ [0,2]内的连续性

$$f(x)=egin{cases} x^2,x\in[0,1)\ x,x\in[1,2] \end{cases}$$

5-3

1(7)(24)求定积分

$$(7)\int_{-\sqrt{2}}^{\sqrt{2}}\sqrt{8-2y^2}dy$$

$$(24)\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{\cos\!x-\cos^3\!x}dx$$

7(4)(11)求定积分

$$(4)\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{x}{\sin^2 x}dx$$

(11)
$$\int_{rac{1}{a}}^{e}|lnx|dx$$

Week17-18

• 2021/12/20

5-4

1(3)(8)判断反常积分收敛性,若收敛,计算反常积分其值

(3)
$$\int_0^{+\infty}e^{-ax}dx$$
,(a>0)

$$(8)\int_0^2 \frac{dx}{(1-x)^2}$$

4.计算反常积分 $\int_0^1 lnxdx$

6-2

4.求抛物线 $y^2=2px$ 及其在点(p/2,p)处的法线所围成的图形的面积

8(1)求曲线围成公共部分面积

$$ho = 3cos htext{D}$$
 $ho = 1 + cos htext{ heta}$

21.设由抛物线 $y=2x^2$ 和直线x=a,x=2及y=0所围成的平面图形为 D_1 ,设由抛物线 $y=2x^2$ 和直线x=a,y=0所围成的平面图形为 D_2 ,其中0<a<2.

(1)求D1绕x轴旋转而成的旋转体体积V1, D2绕y轴旋转而成的旋转体体积V2;

(2)问当a为何值时, V1+V2取得最大值, 求这个最大值

28.求对数螺线 $ho=e^{a heta}$ 相应于 $0\leq heta\leq \psi$ 对应的一段弧长

总习题六

6.设抛物线 $y=ax^2+bx+c$ 通过点(0,0),且当 $x\in$ [0,1]时, $y\geq0$.试确定a,b,c的值,使得抛物线 $y=ax^2+bx+c$ 与直线x=1,y=0所围成的图形面积为4/9.且使该图形绕x轴旋转而成的旋转体体积最小.