بسمه تعالى

دانشکدهی مهندسی کامپیوتر

آزمون میان ترم	عماری کامپیوتر (۳۲۳–۴۰)
1894 مامتیشمیری ا	94-97 000 11

زمان: ۹۰ دقیقه

شمارهی دانشجویی:	م خانوادگی:	، و نام	نام
------------------	-------------	---------	-----

سوالات این آزمون مربوط به پردازنده ای است که ISA آن در زیر نشان داده شده است. پردازنده دارای یک بانک ثبات ٤ تایی ١٦ بیتی می باشد که ثبات شماره ۳ نقش Stack pointer را هم دارد. پردازنده ٦٤ کیلوبایت حافظه ۸ بیتی دارد. هر کلمه حافظه ۸ بیت است. فرمت و مجموعه دستورالعملهای پردازنده به شرح زیر است:

7	4		3	2	1	0
	Opcode		op1		(pp2
7						0
Imm. / Offset						

توجه کنید که فقط برخی دستورات بیش از یک بایت طول داشته و نیاز به خواندن بایتهای بعدی دارند. مجموعه دستورالعملها عبارتند از:

Symbol	Opcode	Description
ADD	0000	Add two registers: op1 ← op1 + op2
ADDM	0001	Add memory to register: op1 ← op1 + DATA
NAND	0010	Nand two registers: op1 ← op1 & op2
NANDM	0011	Nand memory to register: op1 ← op1 & DATA
JMP	0100	Jump to ADDR
CALL	0101	Call the subroutine at ADDR. Save return address on stack
BPO	0110	Branch to ADDR if op1 register is positive or zero
CLEAR	0111	Clear both op1 and op2 registers to zero
IN	1000	op1=00, Input from input-register to op2 register
OUT	1000	op1=00, Output from op2 register to output-register
SKI	1000	op1=01, op2=00: Skip on input flag
SKO	1000	op1=01, op2=01: Skip on output flag
ION	1000	op1=01, op2=10: Interrupts ON
IOF	1000	op1=01, op2=11: Interrupts OFF
PUSH	1000	op1=10: Push op2 register on stack
PUSHM	1001	op1=10: Push DATA on stack
POP	1000	op1=11: Pop from stack to op2 register
POPM	1001	op1=11: Pop from stack to DATA
Other opcode, op1 and op2 combinations: reserved		

بخش DATA که در بالا استفاده شده براساس op2 بدین صورت به دست می آید:

Symbol	op2	DATA Description
Base+offset addressing		حاصلجمع یک بایت بعدی دستور با RO، آدرس داده را نشان می دهد.
base+offset addressing	01	حاصلجمع یک بایت بعدی دستور با R1، آدرس داده را نشان می دهد.
Immediate addressing	10	یک بایت بعدی دستور، داده مورد نظر را در خود دارد.
PC-Relative addressing	11	حاصلجمع یک بایت بعدی دستور با PC، آدرس داده را نشان می دهد.

بخش ADDR که در بالا استفاده شده بشکل مشابه براساس op2 بدین صورت به دست می آید:

Symbol	op2	ADDR Description
	00	حاصلجمع یک بایت بعدی دستور با R0، آدرس موردنظر را نشان می دهد.
Base+offset addressing	01	حاصلجمع یک بایت بعدی دستور با R1، آدرس موردنظر را نشان می دهد.
	10	حاصلجمع یک بایت بعدی دستور با R2، آدرس موردنظر را نشان می دهد.
PC-Relative addressing	11	حاصلجمع یک بایت بعدی دستور با PC، آدرس موردنظر را نشان می دهد.

معماری کامپیوتر (۳۲۳–۴۰) آزمون میان ترم نیمسال دوم ۹۳–۹۴ ۱ اردیبهشت،ماه ۱۳۹۴

دانشكدهى مهندسي كامييوتر

با آمدن وقفه، پردازنده آدرس بازگشت را در پشته ثبت کرده و به آدرسی که در خانه های شماره صفر و یک حافظه ثبت شده است، پرش می نماید. (تمام آدرسها بصورت Little Endian در حافظه نگهداری می شوند.)

توجه کنید دسترسی به حافظه ممکن است بیش از یک پالس ساعت طول بکشد. واحد حافظه آماده شدن داده را با یک كردن سيگنال READY به واحد كنترل اطلاع مي دهد.

به سوالات زير پاسخ دهيد.

۳۰ نمره

سوال ۱. الف. نمودار چرخه دستورالعمل را، همراه سیکل وقفه، در این پردازنده رسم نمایید.

ب. بلوک دیاگرام ساختار مناسبی که برای واحد Data Path پیشنهاد می کنید رسم کنید. تعداد بیتهای ثباتها و مسیرهای ارتباطی را حتما ذکر کنید.

پ. بلوک دیاگرام اجزای داخلی واحد کنترل، با روش سیمبندی شده، را رسم کنید.

سوال ۲. ریزعملیات واکشی (Fetch)، کدگشایی (Decode)، و محاسبه Effective Address را در کمترین چرخه ساعت ۲۰ نمره ارائه دهند.

۲۰ نمره

سوال ۳. الف. ریزعملیات بخش اجرای دستور CALL را در کمترین چرخه ساعت ارائه دهید.

ب. ریزعملیات بخش اجرای یک دستور دیگر، بجز ION و IOF، را به انتخاب خودتان در کمترین چرخه ساعت ارائه دهید.

۲۰ نمره

سوال ٤. الف. ريزعمليات سيكل وقفه را ارائه دهيد.

ب. یک روتین وقفه نمونه بنویسید. بخصوص به دستوراتی که باید حتما نوشته شوند، بدقت اشاره کنید.

سوال ۵. ثبات PC چه ورودیهای کنترلی باید داشته باشد؟ براساس ریزعملیاتی که در سوالهای بـالا نوشــته ایــد،تابع ۱۰ نمره منطقی آن سیگنالهای کنترلی را ارائه دهید.

موفق باشىيد

گودرزی

توضيحات تكميلي:

ثباتها می توانند از هریک از انواع مطرح شده در درس یا مورداستفاده در طراحی کامپیوتر پایه انتخاب شوند.

عملیاتی که ALU یشتیبانی می کند عبار تند از:

ADD, AND, OR, NAND, NOR of its two inputs, INCREMENT, COMPLEMENT (bitwise NOT) of either of its inputs

هرجا نیاز به اطلاعات یا فرضیات بیشتری هست، می توانید به انتخاب خود، فرض معقولی انجام دهید. توجمه کنید که حتما ایس فرض خود را در پاسخنامه بنویسید. خوانایی پاسخ نامه قطعا در امتیازتان موثر خواهد بود. پس با دقت و خوانا بنویسید.