

Multi-Modal Graph Neural Network with Transformer-Guided Adaptive Diffusion for Preclinical Alzheimer Classification

Jaeyoon Sim¹ Minjae Lee¹ Guorong Wu² Won Hwa Kim¹

¹Pohang University of Science and Technology, Pohang, South Korea ²University of North Carolina at Chapel Hill, Chapel Hill, USA

INTRODUCTION

- ► Key Idea: Guiding diffusion process at each node by a downstream transformer via diffusion-kernel and multi-head attention.
- ► Problem: Limitations in interpreting the brain networks in a scenario with multiple imaging biomarkers.
 - Convolutional approaches ineffectively aggregate information from distant nodes, while attention-based methods exhibit deficiencies in capturing node-centric information, particularly in retaining critical properties from pivotal nodes.
 - These shortcomings reveal challenges for identifying disease-specific variation from diverse features from different modalities.

▶ Contribution:

- Proposing a novel framework to aggregate both short- and long- range properties for better prediction of graph labels.
- Demonstrating superior performance on graph classification in comparisons to the state-of-the-art methods.
- Showing interpretability on the brain networks in a scenario with multiple imaging biomarkers.

PRELIMINARY: GRAPH KERNEL CONVOLUTION

- An undirected graph $G = \{V, E\}$ with N nodes comprises a node set V and an edge set E. A symmetric adjacency matrix A and a diagonal degree matrix D can be computed from E. A graph Laplacian is defined as L = D A. It has a complete set of orthonormal eigenvectors $U = [u_1|u_2|...|u_N]$ and corresponding real and non-negative eigenvalues $0 = \lambda_1 \le ... \le \lambda_N$, so does the normalized Laplacian $\hat{L} = D^{-1/2}LD^{-1/2}$.
- From Spectral Graph Theory, the choice of a kernel function determines specific graph characteristics. A heat-kernel between nodes *p* and *q* is spanned by *U* as

$$h_s(p,q) = \sum_{i=1}^{N} e^{-s\lambda_i} u_i(p) u_i(q)$$
 (1)

where u_i is the *i*-th eigenvector. The kernel $e^{-s\lambda_i}$ captures smooth transition between nodes within the scale s as a low-pass filter. Graph Fourier transform, i.e., $\hat{x} = U^T x$, defines the graph convolution * of a signal x(p) with a filter h_s as

$$h_s * x(p) = \sum_{i=1}^{N} e^{-s\lambda_i} \hat{x}(i) u_i(p)$$
 (2)

whose band-width is controlled by the scale s.

GNN with Transformer-guided Adaptive Diffusion (GTAD)

Figure: Illustration of our framework (GTAD). A novel end-to-end framework GTAD that learns node-centric parameters of a diffusion kernel which are governed by a transformer.

▶ Modality-wise Adaptive Convolution Block. Consider G given as $\hat{L} \in \mathbb{R}^{N \times N}$, a set of features (i.e., imaging measures) $X = \{\boldsymbol{x}^m\}_{m=1}^M$ defined on N nodes from M modalities, a set of trainable scales $\{\boldsymbol{s}^m\}_{m=1}^M$ where $\boldsymbol{s}^m \in \mathbb{R}^N$ and a graph label Y. Each encoder consists of multiple graph convolution layers that adaptively aggregate features for each node with a non-linear activation function σ_z as

$$H_z^m = \sigma_z (e^{-\mathbf{s}^m \hat{L}} H_{z-1}^m W_z^m). \tag{3}$$

▶ **Modality-wise Self-Attention Block.** The obtained embeddings $\{H_Z^m\}_{m=1}^M$ are inputted to an attention block to compute node-wise attention scores. Using the self-attention scores, a self-attention value is computed as

$$\phi(Q^m, K^m, V^m) = \sigma(\frac{Q^m K^m}{\sqrt{C}})V^m. \tag{4}$$

▶ **Transformer-Guided Scale Update.** To update a scale s_n^m at the n-th node for the m-th encoder, the objective function is defined by cross-entropy between the true value Y_{ti} and the prediction \hat{Y}_{ti} .

$$\mathcal{L} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{J} Y_{tj} \ln \hat{Y}_{tj} + \alpha \frac{1}{M} \sum_{m=1}^{M} \sum_{n=1}^{N} \mathbb{1}_{s < 0} |s_n^m|.$$
 (8)

Update of the modality-specific scales is performed as $s \leftarrow s - \beta \frac{\partial L}{\partial s}$ via gradient-descent with a learning rate β .

ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE (ADNI)

- ▶ On the same parcellation, region-wise imaging features such as Standard Uptake Value Ratio (SUVR) of metabolic intensity from FDG-PET, β -Amyloid protein from Amyloid-PET and cortical thickness from MRI were measured.
- ► Diagnostic labels: Control (CN), Significant Memory Concern (SMC), Early Mild Cognitive Impairment (EMCI)

Table: Demographics of the preclinical ADNI dataset.

Category	CN	SMC	EMCI
# of subjects	333	172	414
Gender (Male / Female)	156 / 177	62 / 110	240 / 174
Age (Mean±Std)	73.0 ± 5.9	71.7 ± 5.2	71.0 ± 7.7

CLASSIFICATION RESULT

Table: Preclinical AD classification performance (CN/SMC/EMCI) on ADNI data.

Modalities	Cortical Thickness & β-Amyloid		Cortical Thickness & FDG			
Methods	Accuracy	Precision	Recall	Accuracy	Precision	Recall
GCN	0.861±0.04	0.772 ± 0.06	0.780 ± 0.06	0.873±0.02	0.802 ± 0.02	0.813±0.03
GAT	$0.896{\pm}0.01$	$0.827 {\pm} 0.03$	$0.839 {\pm} 0.02$	$0.882{\pm}0.02$	0.811 ± 0.03	$0.844{\pm}0.03$
GraphHeat	$0.868 {\pm} 0.02$	$0.777 {\pm} 0.05$	$0.797{\pm}0.04$	$0.887{\pm}0.03$	0.821 ± 0.04	$0.834{\pm}0.03$
GDC	$0.858{\pm}0.02$	$0.767 {\pm} 0.03$	$0.786 {\pm} 0.04$	$0.842{\pm}0.01$	$0.743 {\pm} 0.02$	$0.765 {\pm} 0.03$
ADC	$0.906{\pm}0.02$	$0.835{\pm}0.03$	0.861 ± 0.04	$0.896{\pm}0.01$	$0.831 {\pm} 0.01$	$0.847{\pm}0.02$
LSAP	0.911 ± 0.01	$0.847{\pm}0.03$	0.872 ± 0.02	$0.934{\pm}0.02$	$0.899{\pm}0.05$	$0.904{\pm}0.03$
NodeFormer	0.916±0.02	$0.856{\pm}0.04$	$0.865{\pm}0.02$	$0.944{\pm}0.01$	0.913 ± 0.03	0.921 ± 0.02
DIFFormer	$0.930{\pm}0.01$	$0.877{\pm}0.03$	$0.900 {\pm} 0.02$	$0.954{\pm}0.01$	0.923 ± 0.02	$0.944{\pm}0.01$
SGFormer	0.941 ± 0.01	$0.894{\pm}0.03$	0.911 ± 0.02	$0.959{\pm}0.01$	0.931 ± 0.01	$0.945{\pm}0.01$
GTAD (Ours)	0.945±0.02	0.901 ± 0.03	0.919 ± 0.02	0.963±0.01	$0.935{\pm}0.02$	0.948 ± 0.01
Modalities	β -Amyloid & FDG		All Imaging Features			
Methods	Accuracy	Precision	Recall	Accuracy	Precision	Recall
GCN	0.880±0.01	$0.806 {\pm} 0.02$	0.813 ± 0.02	$0.888 {\pm} 0.02$	0.816 ± 0.02	0.826 ± 0.02
GAT	0.877 ± 0.02	$0.815 {\pm} 0.03$	0.814 ± 0.04	0.912 ± 0.01	$0.858 {\pm} 0.02$	$0.864 {\pm} 0.02$
GraphHeat	$0.880 {\pm} 0.02$	$0.804{\pm}0.05$	$0.824{\pm}0.03$	$0.893 {\pm} 0.02$	$0.824 {\pm} 0.03$	$0.839 {\pm} 0.03$
GDC	$0.866{\pm}0.02$	0.787 ± 0.03	0.790 ± 0.03	0.867 ± 0.02	0.779 ± 0.03	$0.799 {\pm} 0.02$
ADC	0.910 ± 0.01	$0.865 {\pm} 0.02$	$0.856 {\pm} 0.02$	$0.904{\pm}0.02$	$0.855{\pm}0.04$	$0.858 {\pm} 0.02$
LSAP	$0.922{\pm}0.02$	$0.862 {\pm} 0.05$	$0.893{\pm}0.03$	0.912 ± 0.01	$0.844{\pm}0.04$	0.879 ± 0.02
NodeFormer	0.931 ± 0.01	$0.887{\pm}0.03$	$0.893{\pm}0.03$	$0.938 {\pm} 0.02$	$0.900 {\pm} 0.03$	0.902 ± 0.03
DIFFormer	0.951 ± 0.01	0.919 ± 0.03	$0.933{\pm}0.02$	$0.953{\pm}0.01$	0.920 ± 0.02	$0.936 {\pm} 0.02$
SGFormer	$0.954{\pm}0.01$	$0.923 {\pm} 0.03$	$0.936 {\pm} 0.02$	0.951 ± 0.01	0.911 ± 0.02	$0.933 {\pm} 0.02$
GTAD (Ours)	0.962±0.01	$0.935{\pm}0.02$	$0.946{\pm}0.02$	0.963±0.01	$0.943{\pm}0.01$	0.941 ± 0.02

INTERPRETATION OF THE TRAINED GTAD

Discussion on the Scales

• The trained model yields node-wise optimized scales, where each node corresponds to a specific ROI in the brain.

Figure: Visualization of learned scales on the cortical regions of left (top) and right (bottom) hemispheres.

► Pre-clinical AD via ROI Attention

- From the attention block, each ROI gains long-range characteristics from other ROIs by modality-wise attention mechanism.
- Most relevant ROIs in Preclinical AD prediction can be detected by total attention scores that represent the intensity of attention at each ROI in the brain.

Figure: Distribution of attention scores across all brain regions with cortical thickness (left), β -Amyloid (center) and FDG (right).

Ablation Study on the Blocks

• To explore the effect of each block, ablation study on convolution types and attention types for preclinical AD classification is given.

Table: Performance comparisons of different blocks. For attention block, our multi-modal (MM) attention and existing position-wise attention are compared.

Convolution Block	MM Attention	Accuracy	Precision	Recall
Multi-Layer Perceptron	×	$0.939{\pm}0.03$	$0.893{\pm}0.05$	0.913 ± 0.04
	✓	$0.947{\pm}0.02$	$0.906{\pm}0.04$	$0.933 {\pm} 0.02$
Graph Convolution Layer	×	0.899±0.01	$0.835{\pm}0.03$	0.849 ± 0.03
	✓	$0.900{\pm}0.01$	$0.834{\pm}0.03$	$0.852{\pm}0.02$
Adaptive Convolution Layer (Ours)	×	0.945±0.03	$0.903{\pm}0.05$	0.922±0.04
	✓	0.963±0.01	$0.943{\pm}0.01$	0.941 ± 0.02