

HUAWEI MC323-a CDMA2000 1X M2M 模块

硬件指南

文档版本 02

发布日期 2011-03-18

华为技术有限公司为客户提供全方位的技术支持,用户可与就近的华为办事处联系,也可直接与公司总部联 系。

华为技术有限公司

深圳市龙岗区坂田华为总部办公楼 公司总机: 0755-28780808 网址: www.huawei.com 服务热线: 8008308300 4008308300 0755-28560808 客户服务邮箱: mobile@huawei.com 邮编: 518129

图片仅供参考,请以实物为准。华为公司保留对产品外观及设计改进和改变的权利,恕不另行通知。

版权所有 © 华为技术有限公司 2011。 保留一切权利。

非经华为技术有限公司书面同意,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任 何形式传播。

本手册中描述的产品中,可能包含华为技术有限公司及其可能存在的许可人享有版权的软件,除非获得相关权 利人的许可,否则,任何人不能以任何形式对前述软件进行复制、分发、修改、摘录、反编译、反汇编、解 密、反向工程、出租、转让、分许可以及其他侵犯软件版权的行为,但是适用法禁止此类限制的除外。

商标声明

HUAWEI、华为、 是华为技术有限公司的商标或者注册商标。

在本手册中以及本手册描述的产品中,出现的其他商标、产品名称、服务名称以及公司名称,由其各自的所有 人拥有。

注意

本手册描述的产品及其附件的某些特性和功能,取决于当地网络的设计和性能,以及您安装的软件。某些特性 和功能可能由于当地网络运营商或网络服务供应商不支持,或者由于当地网络的设置,或者您安装的软件不支 持而无法实现。因此,本手册中的描述可能与您购买的产品或其附件并非完全一一对应。

华为技术有限公司保留随时修改本手册中任何信息的权利,无需进行任何提前通知且不承担任何责任。

无担保声明

本手册中的内容均"如是"提供,除非适用法要求,华为技术有限公司对本手册中的所有内容不提供任何明示 或暗示的保证,包括但不限于适销性或者适用于某一特定目的的保证。

在法律允许的范围内,华为技术有限公司在任何情况下,都不对因使用本手册相关内容而产生的任何特殊的、 附带的、间接的、继发性的损害进行赔偿,也不对任何利润、数据、商誉或预期节约的损失进行赔偿。

进出口管制

若需将此产品手册描述的产品(包含但不限于产品中的软件及技术数据等)出口、再出口或者进口,您应遵守 适用的进出口管制法律法规。

关于本文档

修改记录

文档版本	日期	章节	说明
01	2010-11-08		第一次发布
02	2011-03-18	3.2	原 pin2、4、6、8、10、12、 14、16,由 NC 改成 EAR1_N、 EAR1_P、EAR2_P、EAR2_N、 MIC1_N、MIC1_P、MIC2_P、 MIC2_N
		3.9	新增加本节
		5.5.2	表 5-5 中增加"通话模式"

目录

1	简介	6
2	总体介绍	7
	2.1 本章概述	7
	2.2 功能概述	7
	2.3 电路框图	8
	2.4 应用框图	9
3	应用接口说明	11
	3.1 本章概述	
	3.2 B2B 连接器接口	
	3.3 电源接口	
	3.3.1 概述	
	3.3.2 VBAT 接口	13
	3.3.3 VCOIN 接口	14
	3.3.4 VIO 接口	14
	3.4 开机/关机和 RESET 时序	15
	3.4.1 概述	15
	3.4.2 开机时序	15
	3.4.3 关机时序	16
	3.4.4 RESET	16
	3.5 控制信号接口	17
	3.5.1 概述	17
	3.5.2 输入控制信号接口	17
	3.5.3 输出控制信号接口	20
	3.6 UART 接口	21
	3.6.1 概述	21
	3.6.2UART 接口推荐电路	22
	3.7 RUIM 卡接口	23
	3.7.1 概述	23
	3.7.2 RUIM 卡接口推荐电路	24
	3.7.3 RUIM 卡接口 ESD 防护	25

HUAWEI MC323-a CDMA2000 1X M2M 模块

<u>H</u>	UAWEI	硬件指南	目录
	3.8	USB 接口	25
	3.9	音频接口	26
4	射频特	性	29
		工作频率	
		传导射频测量	
		4.3.1 测试环境	
		4.3.2 测试标准	
		传导射频特性	
		4.4.1 传导接收灵敏度	
		4.4.2 传导发射功率	30
		天线设计要求	
	4.6	天线测试环境	31
		天线的安装	
		同轴电缆线和射频连接器	
	4.9	天线接口 ESD 防护	35
_	由与知	可靠性特性	26
3		本章概述	
		极限工作条件	
		工作、存储环境	
		应用接口电气规范	
		电源特性	
		5.5.1 输入电源	
		5.5.2 工作电流	
		可靠性特性	
		ESD 特性	
6			
		本章概述	
		外形尺寸	
		B2B 连接器外形尺寸	
		MC323-a 模块装配说明	
	6.5	紧固件选用规格	47
7	附录 A	. 典型接口电路示意图	49
8	附录 B	缩略语	50

$oldsymbol{1}$ $_{lpha_{lpha}}$

本文描述了 HUAWEI MC323-a CDMA2000 1X M2M (以下简称 MC323-a 模块)使用过程中的硬件应用接口和空中接口。

通过本文,您可以了解到 MC323-a 模块使用过程中的接口规范、电气特性以及相关产品信息。为了更好应用于不同领域, MC323-a 模块还附带了相应的开发指导文档,您可以通过华为网站获取相关资料。

MC323-a 分为数据业务(Data only)版本和 Telematics 版本,其中数据业务版本不支持语音功能。

2 总体介绍

2.1 本章概述

本章主要对 MC323-a 模块进行总体介绍,包括:

- 功能概述
- 电路框图
- 应用框图

2.2 功能概述

表2-1 产品特性

产品特性	描述		
工作频段	CDMA2000 1X 800MHz		
工作温度	正常工作温度: -20°C to +70°C		
	极限工作温度: -30°C~-20°C 和 +70°C ~+75°C		
存储温度	-40°C to 85°C		
电源电压	3.3V~4.2V(推荐值 3.8V)		
协议	IS-2000		
AT 命令	请参考《HUAWEI MC323 CDMA M2M 模块 软件指南》		
应用接口(50-PIN	8 线 UART(最大速率 230.4kbps)		
B2B 连接器)	标准 RUIM 卡 (兼容 3V/1.8V)		
	USB2.0(全速)接口		
	硬件开、关机		
	硬件复位接口		

产品特性	描述			
	电源接口			
	外部唤醒/休眠接口			
	1 路 2.85V 数字电源输出			
	模块状态指示灯控制接口			
天线接口	支持 Hirose U.FL-R-SMT-1(80) 50 ohm 天线连接器			
	提供天线焊盘			
短消息业务	支持 MO 和 MT			
	短消息模式支持 TXT			
数据业务	CDMA2000 1X(rel.0): UL 153.6kbps /DL 153.6kbps			
	内嵌 TCP/IP 协议:支持多链接,提供 ACK 应答			
物理特性	尺寸: 35 mm × 32.5 mm × 3.05 mm			
	重量: 6.0g			
认证信息	RoHS、CCC、型号核准			

2.3 电路框图

图 2-1 是 MC323-a 模块的电路框图,主要有以下几个功能块:

- 中央处理器(集成基带处理器 MSM、射频处理器 RTR、电源管理芯片 PMIC)
- MCP 存储器(NOR Flash + PSRAM)
- 19.2MHz 晶体谐振器
- 射频电路
- 天线接口
- 50-Pin B2B 接口

图2-1 MC323-a 模块电路框图

2.4 应用框图

MC323-a 应用接口包括以下几个:

- UART 串口
- RUIM 卡 (兼容 1.8/3.0V)
- USB2.0 全速接口
- 外部电源
- 开关机和 RESET 控制
- 模块状态指标
- 休眠/唤醒控制

图2-2 MC323-a 应用框图

3 应用接口说明

3.1 本章概述

本章主要介绍 MC323-a 模块的对外应用接口,包括:

- B2B 连接器接口
- 电源接口
- 开机/关机和 RESET 时序
- 控制信号接口
- UART接口
- RUIM 卡接口
- USB接口

3.2 B2B 连接器接口

MC323-a 模块对外接口形态为 50pin B2B 连接器, B2B 连接器的型号及外形尺寸信息 请参见"6.3 B2B 连接器外形尺寸"。

以下是 MC323-a 模块 50-pin B2B 信号管脚定义和方向。

图3-1 MC323-a 引脚方向示意图

表3-1 50-pin B2B 连接器管脚定义

管脚号	信号名称	I/O	管脚	信号名称	I/O
1	R_UIM_CLK	0	2	EAR1_N	AO
3	VREG_RUIM	Р	4	EAR1_P	AO
5	R_UIM_DATA	I/O	6	EAR2_P	AO
7	R_UIM_RST_N	0	8	EAR2_N	AO
9	NC		10	MIC1_N	Al
11	GND	-	12	MIC1_P	Al
13	HOST_WAKEUP	0	14	MIC2_P	Al
15	MODEM_WAKEUP	1	16	MIC2_N	AI
17	USB_D-	I/O	18	GND	-
19	USB_D+	I/O	20	TERM_ON	0
21	NC		22	RESET	I
23	NC		24	/DCD	0
25	LED	0	26	NC	
27	NC		28	/CTS_OUT	0
29	/RXD_OUT	0	30	NC	
31	NC		32	/DTR	I
33	/TXD_IN	I	34	/RTS_IN	I
35	VCOIN	Р	36	/DSR	0
37	NC		38	/RING	0
39	NC		40	VIO	Р
41	GND	-	42	VBAT	Р
43	GND	-	44	VBAT	Р
45	GND	-	46	VBAT	Р
47	GND	-	48	VBAT	Р
49	GND	-	50	VBAT	Р

硬件指南

□ 说明:

- P表示电源管脚; I表示数字信号输入管脚; O表示数字信号输出管脚; AI表示模拟信号输入管脚; AO表示模拟信号输出管脚。
- NC 管脚未使用,请作悬空处理,不能接地或上、下拉。

3.3 电源接口

3.3.1 概述

MC323-a 模块 B2B 接口的电源部分主要包含:

- 供电电源 VBAT 接口
- 对外电源输出 VIO 接口
- 备用电源 VCOIN,用于瞬时断电(SMPL)保护

电源接口管脚定义如下表所示:

表3-2 电源接口管脚定义

管脚号	信号名称	I/O	描述
42、44、46、48、 50	VBAT	Р	3.3~4.2V, 供电电源电压输入管脚
41、43、45、47、 49	GND	-	地
35	VCOIN	Р	备用电源
40	VIO	Р	2.85V, 对外电源输出管脚

3.3.2 VBAT 接口

MC323-a 模块正常工作时需要通过 VBAT 管脚来提供供电电源,供电电源电压输入范围为 3.3V~4.2V(典型值 3.8V)。50PIN B2B 连接器为外部供电电源输入提供 5 个 VBAT 管脚和 5 个 GND 管脚,MC323-a 模块在正常使用时,需保证全部管脚都得到有效使用。

当 MC323-a 模块针对不同外部应用时,需重点关注供电电源方面的设计。由于实际网络环境的差异,当 MC323-a 模块以最大功率发射时可能会引起 VBAT 电压的跌落,所以,应确保 VBAT 在任何情况下供电电源电压的跌落不能低于 3.3V,否则可能会引起 MC323-a 模块重启等异常情况。

对于外部供电电源,推荐使用电流输出能力大于 1.5A 的 LDO 或开关电源,并且在模块的电源端口处并联一个 470μ F 以上的旁路电容和一个 0.1μ F 去耦电容。

硬件指南

□ 说明:

有关电源设计、PCB设计方面的详细指导,请参考《HUAWEI 模块电源设计指导》、《HUAWEI M2M 模块外围 PCB设计指导》。

3.3.3 VCOIN 接口

VCOIN 是用于模块瞬时掉电(SMPL)保护作用,当模块在使用过程中出现短时间的断电,VCOIN 可以维持模块正常工作。VCOIN 无需外接电池,只需外接一个储能电容,电容的大小可以根据需要而定。如果不使用此功能,此 PIN 可以作悬空处理。

表3-3 SMPL 对应电容

SMPL 时间	储能电容大小
0.5 sec	1.5µ F
1 sec	3.3µ F
2 sec	4.7μ F

图3-2 VCOIN 接口示意电路图

3.3.4 VIO 接口

VIO 接口可对外提供 2.85V 供电电压,可以用于外部电平转换或者其它相关应用,最大驱动电流 10mA。

当 MC323-a 模块处于 SLEEP 模式下, VIO 处于开启的低功耗状态(空载 typ. 5μA); 当 MC323-a 模块在关机模式时, VIO 则处于关闭状态。

3.4 开机/关机和 RESET 时序

3.4.1 概述

MC323-a 模块 B2B 接口的开/关机、RESET 控制部分主要包含:开/关机接口信号 TERM ON、硬件复位接口信号 RESET。接口管脚定义如下表所示:

表3-4 开关机,复位接口管脚定义

管脚号	信号名称	I/O	描述
20	TERM_ON	1	开/关机控制管脚
22	RESET	I	硬件复位管脚

3.4.2 开机时序

警告

- 请确保模块在推荐的工作电压范围和工作温度下开机,否则可能造成模块的损坏或者工作异常。
- 模块对外的任何应用接口的上电时间不得先于模块的开机时间。

MC323-a 模块可以通过"TERM_ON"进行开机,对 TERM_ON 输入>100ms 低电平脉冲即可开机(如图 3-3 所示),大约 18ms 后 VIO 电压升起,可提供 2.85V 供电电压。开机具体时序请参考图 3-4。

图3-3 MC323-a 开机和 RESET 控制信号示意

□ 说明

关于开/关机软件设置的具体信息,请参考《HUWEI MC323 CDMA2000 1X M2M 模块 软件指南》。

图3-4 开机时序图

□ 说明:

VBAT上电 20ms 后,可以对 $TERM_ON$ 输入低电平信号触发开机,大约 3s 后模块完成开机和初始化,用户可以正常对模块操作。

3.4.3 关机时序

关机方式,MC323-a 模块可以通过"TERM_ON"进行关机,向 TREM_ON 输入>2s 的低电平脉冲,即可完成关机。关机时序图如下图所示:

图3-5 关机时序图

□ 说明.

关机时 TERM_ON 低电平保持时间>2s 方可启动关机,关机过程大约会持续 1.5s; TERM_ON 的低电平时间需要<3.5s。

3.4.4 RESET

MC323-a 模块支持硬件复位功能。当 MC323-a 模块出现软件死机的情况时,您可以通过 RESET 信号控制模块实现硬件复位功能,复位方法如图 3-3 所示,对 RESET 引脚输入一个>10ms 的低电平脉冲。当硬件复位完成后,软件开始开机流程,开机过程如图 3-4 所示,开机后软件会根据实际设置情况上报相关信息。

□ 说明:

RESET低电平持续时间不能>2s,否则模块会关机.

3.5 控制信号接口

3.5.1 概述

MC323-a 模块 B2B 接口的控制信号部分主要包括:

- 开机/关机(TERM_ON)接口
- 硬件复位(RESET)接口
- 休眠/唤醒控制(MODEM_WAKEUP)接口
- 模块网络状态指示(LED)接口
- 休眠状态指示(HOST_WAKEUP)接口

控制信号接口管脚定义如下表所示。

表3-5 控制信号接口管脚定义

管脚号	信号名称	I/O	描述	
20	TERM_ON	T/关机控制管脚		
22	RESET	I	硬件复位管脚	
25	LED	0	模块状态指示管脚	
15	MODEM_WAKEUP	1	休眠/唤醒控制管脚	
13	HOST_WAKEUP	0	休眠状态指示管脚	

3.5.2 输入控制信号接口

对于输入控制信号接口部分,MC323-a 模块主要实现开/关机控制和硬件复位功能和休眠唤醒控制功能。

TERM_ON 管脚用于实现开/关机功能。当 TERM_ON 管脚收到 100ms 低电平脉冲后,即可开机;开机后,如果再次将 TERM_ON 管脚拉低≥2s,即可关机。

RESET 管脚用于实现模块硬件复位。当模块出现软件死机的情况时,通过一个>10ms 且<2s 的低电平脉冲触发硬件复位。

MODEM_WAKEUP 管脚用控制模块进入休眠模式或从休眠模式中唤醒模块。有两种方法可以控制模块进入休眠模式:

• 开机后自动进入休眠模式

如果模块同时满足:正常开机后 20s、网络注册成功、MODEM_WAKEUP 输入为低电平三个条件,若此时没有语音或数据业务,那么模块会自动进入休眠模式; 若此时有这些业务,模块将会在业务结束后进入休眠模式。

● 通过 MODEM WAKEUP 外部中断控制模块进入休眠模式

当 MC323-a 模式已注册上网络,正常工作情况下,可以对 MODEM_WAKEUP 输入一个由高到低的下降沿信号触发中断,此时会立即停止当前业务(如果有数据或语音业务存在),进入休眠模式,如图 3-7 所示。

如果模块进入休眠模式,将处于低功耗状态。

模块处于休眠模式时,如果有以下任何一种情况发生,都可以唤醒模块:

- 有语音呼叫或收到短信
- MODEM_WAKEUP 电平被拉高,如图 3-7 所示
- TERM_ON 有低电平脉冲触发,如图 3-8 所示

🕽 注意

RESET、TERM_ON 信号比较敏感,建议用户在靠近模块 B2B 的 RESET 和TERM_ON 管脚处添加 10nF 电容进行滤波处理。此外用户在接口板 PCB 上走线时,长度建议不超过 20mm,同时与板边缘至少有 2.54mm(100mil)的距离,并且进行包地处理,否则可能会因干扰等原因导致模块复位。

管脚连接示意电路如下图所示。

图3-6 TERM_ON、RESET 和 MODEM_WAKEUP 管脚连接示意电路图

注意

V_{IN}=1.8V 由用户提供,必须确保模块在使用过程中任何时候该电压都要<2.3V。

图3-7 休眠模式控制时序

□ 说明

硬件指南

- 如果 MODEM_WAKEUP 为高电平,可直接把它拉低;如果 MODEM_WAKEUP 为低电平,需要先把它拉高,再拉低,高电平保持时间需要 t >100 ms。模块立即进入休眠模式。
- 如果 MODEM_WAKEUP 和 HOST_WAKE 管脚不使用,可以作悬空处理,不要接地或上下拉。

图3-8 TERM ON 唤醒模块时序

3.5.3 输出控制信号接口

MC323-a 模块提供了一个网络状态指示接口 LED 和一个休眠模式指示接口 HOST_WAKEUP, 通过接口输出的脉冲信号来控制用户接口板上的 LED 状态指示 灯,显示网络连接的状态和休眠状态。

如果 MC323-a 处于休眠模式,HOST_WAKEUP 管脚会输出低电平,否则会输出高电平。

LED 管脚输出的状态,代表了不同的网络状态,如下表所示。

表3-6 LED 管脚状态指示说明

工作或网络状态	LED 管脚输出状态		
睡眠模式、关机	持续低电平		
开机初始化	持续高电平		
搜网状态或无网络时(含无 RUIM 卡或未解 PIN 码时)	周期 2s,高电平 100ms 低电平 1900ms		
已注册上 CDMA 网络	周期 2s,高电平 100ms 低电平 100ms 高电平 100ms 低电平 1700ms		
数据业务有流量	周期 0.2s,高电平 100ms 低电平 100ms		

在实际应用中,LED 管脚和 HOST_WAKEUP 管脚不能直接用于驱动 LED 状态指示灯,需要配合三极管使用,LED 灯的限流电阻选择,请根据 LED 的实际压降和额定电流选择合适的限流电阻,驱动参考电路如图所示。

图3-9 LED 或 HOST_WAKEUP 的参考驱动电路

3.6 UART 接口

3.6.1 概述

MC323-a 模块(DCE)对外提供一路异步 RS-232 UART(8 线全串口)通信接口。UART 支持标准 Modem 握手信号控制方式,通过 UART 接口与外界(DTE)进行串行通信和 AT 指令输入。 UART 主要特性有:

- 全双工
- 8 bit 数据长度
- 1 bit 停止位
- 系统时钟产生波特率时钟
- 最大波特率 230.4kbps,最小波特率 300bps,默认为 115,200bps

接口信号定义如下表所示:

表3-7 UART 接口信号定义表

管脚号	管脚名称	模块信号	描述	特性	方向
29	RXD_OUT	UART_RXD	模块数据发送端	DTE 接收串行数据	DCE→DTE
33	TXD_IN	UART_TXD	模块数据接收端	DTE 发送串行数据	DCE←DTE
34	/RTS_IN	UART_RTS	请求发送	DTE 通知 DCE 请 求发送	DCE←DTE

管脚号	管脚名称	模块信号	描述	特性	方向
28	/CTS_OUT	UART_CTS	模块清除发送	DCE 已切换到接收模式	DCE→DTE
32	/DTR	UART_DTR	设备就绪	DTE 准备就绪	DCE←DTE
36	DSR	UART_DSR	模块就绪	DCE 准备就绪	DCE→DTE
24	/DCD	UART_DCD	模块载波检测	数据链路已连接	DCE→DTE
38	/RING	UART_RING	模块振铃指示	通知 DTE 有远程 呼叫	DCE→DTE

3.6.2UART 接口推荐电路

MC323-a 模块(DCE) UART 接口与应用设备主机(DTE)的连接如下图所示。

图3-10 MC323-a UART 与应用设备接口连接示意图

MC323-a CDMA 模块可以通过使用 232 类芯片与标准 RS-232-C 的接口连接,设计涉及到 TTL 电平与 EIA 电平相互转换,如使用 2 线制串口时推荐使用 MAX3232 芯片,使用 8 线串口时,推荐使用 SP3238 或 MAX3238 等芯片进行接口设计。

当 MC323-a 模块接到短信息后,/RING(Pin38)管脚会输出一个 1s 的低电平,如下图所示。

图3-11 MC323-a 接到短信息后/RING 管脚输出信号波形

当 MC323-a 模块接到语音呼叫后,/RING 管脚会输出 1s 低电平和 4s 高电平的周期性信号,如下图所示。

图3-12 MC323-a 接到语音呼叫后/RING 管脚输出信号波形

□ 说明:

MC323-a UART的详细应用可以参照《HUAWEI 模块 UART 设计指导》

3.7 RUIM 卡接口

3.7.1 概述

MC323-a 模块提供了符合 C.S0023 标准的 RUIM 卡接口,支持自动检测 3.0V 和 1.8V RUIM 卡,RUIM 卡接口定义如下表所示。

表3-8 RUIM 卡接口定义表

管脚号	信号名称	I/O	描述	说明
1	R_UIM_CLK	0	RUIM 卡时钟信号	
3	VREG_RUIM	Р	RUIM 卡电源	
5	R_UIM_DATA	I/O	RUIM 卡数据信号	
7	R_UIM_RST_N	0	RUIM 卡复位信号	
11	GND		RUIM 卡地	与模块主地相连

3.7.2 RUIM 卡接口推荐电路

MC323-a 模块上没有预留 RUIM 卡座,而是通过 50pin 的 B2B 连接器将 RUIM 卡相关信号引到外部,由用户自行在接口板上放置 RUIM 卡座。RUIM 卡接口示意电路如下图所示。

图3-13 RUIM 卡驱动参考电路图

图3-14 RUIM 卡座方向示意图

pin1	VCC	pin2	RST
pin3	CLK	pin4	GND
pin5	VPP	pin6	DATA

注意

- 为了满足 3GPP TS 11.11 协议及 EMC 认证的要求, RUIM 卡座应该距离模块 B2B 接口较近的位置(建议 PCB 走线从模块 B2B 连接器到 RUIM 卡座长度不能超过 100mm)避免因走线过长,使波形发生畸变,从而影响信号质量。
- R_UIM_CLK 和 R_UIM_DATA 信号的走线最好进行包地处理,RUIM 卡座的 GND 管脚、模块 RUIM 卡的 GND 管脚都必须与给模块供电的电源地进行可靠连接。
- 在 VREG_RUIM与 GND 之间并联一个 0.1μF 或 0.22μF 的电容, R_UIM_DATA、R_UIM_RST_N、R_UIM_CLK与 GND 之间并联 33p 电容,滤除射频信号的干扰。
- MC323-a 模块内部 R_UIM_DATA 管脚已经通过 15KΩ 电阻连接到 VREG_RUIM 管脚进行上拉处理,用户设计时无需再对 R_UIM_DATA 管脚进行上拉处理。

3.7.3 RUIM 卡接口 ESD 防护

RUIM 卡座接口处建议用户进行 ESD 防护,示意电路如下图所示。其中图中的 TVS(瞬态电压抑制二极管)要尽量靠近 RUIM 卡座放置,防护器件的地必须和给模块供电的电源地良好连接。

图3-15 RUIM 卡 ESD 保护示意电路图

□ 说明.

防静电器件管需要尽可能靠近 RUIM 卡座,选用 Vbr>6.3V,结电容<10pF的器件。

3.8 USB 接口

MC323-a 模块支持 USB2.0(全速)接口,接口定义如下:

表3-9 USB 接口定义表

管脚号	信号名称	I/O	描述	说明
17	USB_D-	I/O	USB 差分数据信号-	
19	USB_D+	I/O	USB 差分数据信号+	

图3-16 USB 接口参考电路图

Ⅲ 说明:

MC323-a 模块的 USB 是通过 VBAT 供电,无需接 USB_VBUS。

USB 差分数据线串联阻抗需要视实际情况定,推荐电阻<4.7ohm。接口板的 USB 走线设计需要严格遵循 USB2.0 协议要求,差分走线,控制阻抗为 90ohm。

防静电器件需要尽可能靠近 USB 插座,选用 Vbr>6.3V,结电容<1pF 的器件。

3.9 音频接口

MC323-a 模块提供 2 路音频接口通道,接口定义如下:

表3-10 音频接口定义表

管脚号	信号名称	I/O	描述	说明
2	EAR1_N	AO	音频 1 通道输出负级	
4	EAR1_P	AO	音频 1 通道输出正极	
6	EAR2_P	AO	音频 2 通道输出正极	
8	EAR2_N	AO	音频 2 通道输出负极	

I/O 管脚号 信号名称 描述 说明 ΑI 10 音频 1 通道输入负极 MIC1_N ΑI 12 MIC1_P 音频 1 通道输入正极 ΑI 14 MIC2_P 音频 2 通道输入正极 ΑI 16 MIN2_N 音频 2 通道输入负极

音频 1 通道推荐应用 handset 设备(电话手柄, 32Ω 耳机), EAR 输出功率 35mW(典型值) $^{[1]}$ 。如果 MIC1 使用单端设备,可以参考图 3-17 的应用原理图。

图3-17 音频 1 通道应用原理图

^[1] +3dBm0 正弦全波输入 32Ω 耳机。

硬件指南

音频 2 通道支持 headset 设置。MIC2 通道可以支持差分或单端设备,外围电路设计如下图所示。

图3-18 MIC2 差分设备应用原理图

图3-19 MIC2 单端设备应用原理图

音频 2 通道的 EAR 内部是一个 D 类功率放大器,外部设备推荐使用 8Ω 喇叭,额定输出功率 500mW。外部应用电路需要加 LC 网络,否则设备会可能会出现自激振荡、啸叫等故障。

图3-20 EAR2 设备应用原理图

4 射频特性

4.1 本章概述

本章主要介绍 MC323-a 模块的射频特性:

- 工作频率
- 传导射频测量
- 传导射频特性
- 天线设计要求
- 天线测试环境
- 天线的安装
- 同轴电缆线和射频连接器
- 天线接口 ESD 防护

4.2 工作频率

表4-1 MC323-a 模块频段

工作频段	Tx	Rx
CDMA 2000 1X 800M	824~849MHz	869~894MHz

4.3 传导射频测量

4.3.1 测试环境

测试仪器: R&S CMU200

电源: KEITHLEY 2306

测试射频电缆: DRAKA COMTEQ 公司或 Rosenberger 公司 L08-C014-350

线长: 29 cm

补偿 BC0 补偿 0.5dB

藝生

补偿值的根据是相应射频电缆的频率特性来设定的,补偿方式与仪器也有一定的关系。

4.3.2 测试标准

华为模块都满足 3GPP2 协议中 2G 或 3G 的标准,工厂也经过严格的测试,能保证相应的射频性能。

4.4 传导射频特性

4.4.1 传导接收灵敏度

接收灵敏度指标是用来判断模块的接收机性能的一个重要参数。接收灵敏度是指在天线端口模块能够接收的最小信号,在此信号线 BER 满足 3GPP2 协议要求。

表4-2 MC323-a 传导接收灵敏度

频段	3GPP2 协议要求	测量值	单位
CDMA 2000 1X 800M	<-104	-107.5	dBm

□ 说明:

BER<1%,测量值是测试样品的平均值.

4.4.2 传导发射功率

传导发射功率是衡量模块性能的另外一个重要的指标,它是在天线端口测试的模块最大能发射的功率。在3GPP2协议中不同的功率等级对应的发射功率要求是不一样的。

表4-3 MC323-a 传导发射功率

频段	3GPP2 协议		测量值	单位
	最小功率	最大功率		
CDMA 2000 1X 800M	23	30	24	dBm

4.5 天线设计要求

天线设计指标需求如下图所示。

表4-4 推荐的天线设计参数

工作频率 824-960 MHz

端口阻抗 50Ω

驻波比 < 2.5

增益 > 0 dB

天线效率 > 60%

极化 线极化或圆极化

方向 全向

4.6 天线测试环境

天线的效率、增益、方向图,以及 TRP、TIS 的测试都可在微波暗室进行。HUAWEI公司拥有完整的 OTA 测试环境(SATIMO 微波暗室和 ETS 微波暗室),这些暗室已经通过专业机构认证,可以进行频率范围 380MHz-6GHz 的相关测试。具体测试内容如下:

- 无源测试(Passive Tests):
 - 天线效率(Antenna Efficiency)
 - 天线增益 (Gain)
 - 天线方向图 (Pattern shape)
 - 相关性系数(Envelope Correlation Coefficient)
- 有源测试(Active Tests):
 - TRP: GSM、WCDMA、CDMA、TD-SCDMA、LTE 制式
 - TIS: GSM、WCDMA、CDMA、TD-SCDMA、LTE 制式

图 4-1 说明了 SATIMO 微波暗室测试系统。

图4-1 天线测试环境示意图

4.7 天线的安装

MC323-a 模块支持两种连接天线的方式,一种是 HIROSE 公司序号为 U.FL-R-SMT-1(80)的扣合式射频连接器;另一种是以焊盘方式提供,建议使用扣合式的射频连接器连接天线。

注意

不论选用哪一种天线的连接方式,当 MC323-a 模块正常工作时,两种连接方式只能选用一种,否则会导致射频性能变差。

选用扣合式射频连接器时,建议使用 U.FL 系列 50Ω 的同轴电缆线,在使用这种电缆的时候,扣合连接器的高度会增加 0.8mm。

选用模块的焊盘连接天线时,需要将与天线连接的同轴电缆的芯线与焊盘连接,同时同轴线的屏蔽地和焊盘附近的参考地连接,您可以根据实际应用情况选用不同的焊接方向来适应安装的需要。

硬件指南

在保证同轴电缆的芯线和屏蔽地之间的开口尽可能的短的同时,还要防止同轴电缆的芯线和地之间可能发生的短路。

MC323-a 模块的主要材料属性:

- PCB: FR4
- 天线焊盘: 化学镍金焊盘

4.8 同轴电缆线和射频连接器

MC323-a 模块天线接口使用了 HIROSE 公司的 U.FL-R-SMT-1(80) RF 连接器,连接器的尺寸如下图所示。

图4-2 天线连接器尺寸

Recommended PCB mounting pattern

天线连接器主要特性参数如下表所示。

表4-5 RF 连接器特性表

额定条件	参数值
正常频率范围	直流到 3GHz
特征阻抗	50Ω
环境条件	参数值
温度范围	-40 ∼ 90℃
分类	材料
外壳	镀银磷铜
芯线	镀金的铜线
绝缘材料	插座: LCP

更多关于 HIROSE 公司的 U.FL-R-SMT-1(80) RF 连接器的详细参数,请登入 HIROSE 公司网站 http://www.hirose.com 查询。

天线连接器配套使用的同轴电缆,推荐使用 Hirose 公司的电缆,天线连接器配套电缆 特性如下图所示。

图4-3 天线连接器配套电缆特性

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.			87 3.4 97	82	185
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable

您可以登陆 http://www.hirose.com 网站查找该类射频连接线缆更详细的资料。

以 U.FL-LP-040 为例,天线安装示意图如下。

图4-4 天线安装示意图

4.9 天线接口 ESD 防护

藝牛

在实际应用时,请关注 MC323-a CDMA 模块天线接口对 ESD 的防护,如果操作不当可能会导致内部射频器件永久性损坏。

ESD 防护推荐电路如下图示。

图4-5 天线接口 ESD 防护推荐电路图

注意

对于TVS管的选型,建议客户需要重点关注TVS管结电容方面的参数,要求TVS管结电容的数值要小于1pF。

5 电气和可靠性特性

5.1 本章概述

本章主要介绍 MC323-a 模块接口的电气特性及可靠性特性,包括:

- 极限工作条件
- 工作、存储环境
- 应用接口电气规范
- 电源特性
- 可靠性特性
- ESD 特性

5.2 极限工作条件

警告

MC323-a 模块的极限工作条件如下表所示,超过这些条件使用可能造成 MC323-a 模块的永久性损坏。

表5-1 MC323-a CDMA 模块极限应用条件表

符号	参数	最小值	最大值	单位
VBAT	外部供电电压	-0.5	6.0	V
V _{REG_RUIM}	RUIM 卡供电电压	-0.3 -0.3	3.5 2.3	V
V _{IO}	数字输出电压	-0.3	3.3	V
V_{DD_PX}	I/O 口工作电压	-0.3	V _{DD_PX} +0.5	V

硬件指南

□ 说明:

- V_{DD_PX}是指 MC323-a 模块中不同数字 I/O 的电压,其中 UART 接口为 2.85V,RUIM 卡接口为 3.0V 或 1.8V,TERM_ON、RESET、HOST_WAKEUP、MODEM_WAKEUP 为 1.8V
- RUIM 兼容 1.8V 和 3.0V 两种

5.3 工作、存储环境

MC323-a 模块工作及存储温度范围如下表所示。

表5-2 MC323-a 模块工作及存储温度表

参数	最小值	最大值	单位
正常工作温度 [1]	-20	70	$^{\circ}$
极限工作温度 [2]	-30 ~ -20	70 ~ 75	$^{\circ}$
存储温度	-40	85	$^{\circ}$
湿度范围	5	95	%

□ 说明:

[1]: 在此温度条件内工作,MC323-a CDMA 模块全部射频指标满足 3GPP2 C.S0011-C 规范。

[2]: 在此温度条件内工作, MC323-a CDMA 模块部分射频指标无法满足 3GPP2 C.S S0011-C 规范。

5.4 应用接口电气规范

表5-3 MC323-a 应用接口电气性能

参量	描述	最小值	最大值	单位
V _{IH}	输入逻辑高电平	0.65*V _{DD_PX}	V _{DD_PX} +0.3	٧
V _{IL}	输入逻辑低电平	-0.3	$0.35^*V_{DD_PX}$	٧
I _{IH}	输入高电平漏电流	-	1	μА
I _{IL}	输入低电平漏电流	-1	-	μА
V _{OH}	输出逻辑高电平	V _{DD_PX} -0.45	V_{DD_PX}	٧
V _{OL}	输出逻辑低电平	0	0.45	V

硬件指南

参量	描述	最小值	最大值	单位
I _{OH}	输出高电平漏电流	-	1	μА
I _{OL}	输出低电平漏电流	-1	0	μА

□ 说明:

- V_{DD_PX}是指 MC323-a 模块中不同数字 I/O 的电压,其中 UART 接口为 2.85V,RUIM 卡接口为 3.0V 或 1.8V,TERM_ON、RESET、HOST_WAKEUP、MODEM_WAKEUP 为 1.8V
- I/O 口漏电流是指在无外接上拉或下拉条件下的漏电流

5.5 电源特性

5.5.1 输入电源

MC323-a 模块的输入电源要求如下表所示。

表5-4 MC323-a 模块输入电源要求

参数	最小值	典型值	最大值	纹波	单位
VBAT	3.3	3.8	4.2	TBD	٧

5.5.2 工作电流

MC323-a 模块的工作电流如下表所示,使用直流电源,供电电源输出典型值 3.8V。

表5-5 MC323-a 模块工作电流

工作模式		最大值	单位
关机模式		120	μΑ
待机模式	CDMA 1X 800M	3	mA
数据模式	CDMA 1X 800M	700	mA
通话模式	CDMA 1X 800M	1000	mA

5.6 可靠性特性

MC323-a 模块的可靠性测试条件及结果如下表所示。

表5-6 MC323-a 模块机械可靠性测试条件及结果

测试项目	测试条件	测试标准
低温存储	温度: -40 ±2°C 测试持续时间: 24h	IEC60068
高温存储	温度: 85 ±2℃ 测试持续时间: 24h	IEC60068
低温工作	温度: -30 ±2°C 测试持续时间: 24h	IEC60068
高温工作	温度: +75±2°C 测试持续时间: 24h	IEC60068
交变湿热	高温: 55°C ±2°C 低温: +25°C ±2°C 湿度: 95% 循环测试: 4 测试持续时间: 12h + 12h	IEC60068
温度冲击	低温: -40°C ±2°C 高温: +85°C ±2°C 温度变更时间: <30s 测试持续时间: 15min 循环次数: 100	IEC60068
凝露试验	温度: -40°C ±2°C 稳定时间: 2h 恢复温度: 25°C ±2°C 恢复时间: 5min 循环次数: 6	IEC60068
灰尘试验	灰尘浓度: 2Kg/ m3 灰尘种类: 干燥滑石粉 颗粒要求: <75μm 持续时间: 8h;	IEC60068
盐雾测试	温度: 35℃ Nacl 溶液浓度: 5%+/-1% 喷雾时间: 8h 温度时间: 16h	IEC60068

测试项目	测试条件	测试标准
太阳辐射	辐射强度: 1120W/m² 持续时间: 20h 循环次数: 3	IEC60068
正弦振动	频率范围: 5—200Hz 加速度: 10m/s2 扫频速率: 1oct/min。 测试周期: 3 个轴向,每轴向 5 个循环	IEC60068
冲击试验	半正弦波冲击 峰值加速度: 300 m/s2 冲击时间: 11ms 测试周期: 6 个轴向,每个轴向冲击一次	IEC60068
碰撞试验	半正弦波 峰值加速度: 180 m/s2 脉冲持续时间: 6ms 循环次数: 6 个方向,每个方向冲击 1000 次	IEC60068
跌落试验	先:高度 0.3 米,6 个面,2 个循环,跌落到水平大理石平台后:高度 0.8 米,6 个面,2 个循环,跌落到水平大理石平台	IEC60068

5.7 ESD 特性

注意

MC323-a 模块在使用时需要重点对 ESD (Electro-Static discharge 静电放电)问题进行防护处理,为了确保 MC323-a 模块与用户接口板之间工作参考地的充分搭接,建议用户接口板上的结构定位孔做露铜处理时(与接口板主参考地相连),通过铜螺柱或其他低阻抗金属紧固件结构上的连接,来实现 MC323-a 模块与用户接口板之间工作参考地的良好导通。具体装备方式与紧固件规格,可参考"6.4 MC323-a 模块装配说明"。

根据 EN61000-4-2 标准已经对 MC323-a 模块 ESD 性能进行了测试,性能如下表所示。

表5-7 ESD 性能表

HUAWEI MC323-a CDMA2000 1X M2M 模块硬件指南

电气和可靠性特性

ESD 测试规范	接触放电	空气放电
EN61000-4-2	±4 k V	±8 k V

6 结构

6.1 本章概述

本章主要描述 MC323-a 模块机械结构尺寸,包括:

- 外形尺寸
- B2B 连接器外形尺寸
- MC323-a 模块装配说明
- 紧固件选用规格

6.2 外形尺寸

尺寸: 35±0.15 × 32.5±0.15 × 3.05±0.3 mm(包括 B2B 连接器) 35±0.15 × 32.5±0.15 × 2.85±0.20 mm(不包括 B2B 连接器) 外形尺寸如下图所示。

重量: 6.0g

图6-1 MC323-a 模块外形尺寸图 (单位: mm)

6.3 B2B 连接器外形尺寸

MC323-a 模块连接器采用 HRS 公司的 DF12C(3.0)-50DS-0.5V(81), 50-pin B2B 连接器, 管脚间距 0.5mm。与该连接器配合使用的是 HRS 公司的 DF12 系列: DF12 # (**) - * DP - 0.5 V (**)。具体型号详见 HRS 公司网站: http://www.hirose.com。

图6-2 MC323-a 模块使用的连接器 HRS 公司的 DF12C

图6-3 用户接口板上建议与 MC323-a 模块配合使用的连接器 HRS 公司的 DF12E

表6-1 连接器订货型号和可以与 MC323-a 模块配合使用的 DF12 系列产品

项目	型号	配高 (mm)	HRS 公司号码
MC323-a 使用的型 号	DF12C(3.0)-50DS-0.5V(81)	3.0	537-0694-9- 81
建议接口板使用的 连接器型号	DF12E(3.0)-50DP-0.5V(81)	3.0	537-0834-6-**

6.4 MC323-a 模块装配说明

MC323-a 模块结构上预留了 3 个直径为 2mm 的结构定位孔(外表露铜,与模块主参考地相连)。如下图所示。

图6-5 结构定位孔示意图

用户可以使用机牙螺丝穿过 MC323-a 模块的结构定位孔与铜螺柱、螺母扣合,将 MC323-a 可靠地固定在接口板上[1]。其中,铜螺柱位于 MC323-a 模块与接口板之间,启到固定支撑和连接、导通二者之间参考地的作用。螺母位于接口板下方,用于与螺丝扣合。装配示意图如下图所示。

图6-6 MC323-a 模块装配示意图

□ 说明:

[1]: 在模块使用时需要用户特别注意对 ESD 问题进行防护处理,建议用户接口板上的结构定位孔做露铜处理(与接口板主参考地相连),通过使用上述铜螺柱或其他低阻抗金属紧固件结构上的连接,来实现 MC323-a CDMA 模块与用户接口板之间工作参考地的良好导通。

6.5 紧固件选用规格

为使 MC323-a 模块在使用过程中能够可靠地固定在用户的接口板上,建议选用 M1.6 或 M1.8 的机牙螺丝,您也可以定制螺丝,推荐使用下图所示的紧固件组合。机牙螺钉尺寸为: M1.6×7.5×3.0×1.0,铜螺柱建议采用表面镀金工艺,具体尺寸参照下面图示。

图6-7 机牙螺丝外形尺寸图

图6-8 螺母外形尺寸图

图6-9 铜螺柱外形尺寸图

了 附录 A 典型接口电路示意图

图7-1 MC323-a 典型接口电路示意图

分 附录 B 缩略语

缩略语	英文全名	中文解释
B2B	Board-to-Board Connector	板对板连接器
BER	Bit Error Rate	位误码率
ССС	China Compulsory Certification	中国强制认证
CDMA	Code Division Mutiple Access	码分多址
CE	European Conformity	欧共体
CS	Coding Scheme	编码方式
CSD	Circuit Switched Data	电路交换数据
DC	Direct Current	直流电
DCE	Data Communication Equipment	数据通讯设备
DTE	Data Terminal Equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EIA	Electronic Industries Association	电子工业联合会
EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
EU	European Union	欧盟
HR	Half Rate	半速率
IP	Internet Protocol	网际协议
ISO	International Standards Organization	国际标准化组织
LCP	Liquid Crystal Polyester	液晶高分子聚合物
LDO	Low-Dropout	低压差

缩略语	英文全名	中文解释
LED	Light Emitting Diode	发光二极管
MCP	Multi-Chip Package	多芯片封装
МО	Mobile Originated	移动发起
MT	Mobile Terminated	移动终止
NC	Not connected	未连接
PCB	Printed Circuit Board	印制线路板
QPSK	Quadrature Phase Shift Keying	正交相移键控
RAM	Random Access Memory	随机访问内存
RF	Radio Frequency	射频
RoHS	Restriction of the Use of Certain Hazardous Substances	电气、电子设备中限制使用 某些有害物质指令
RTC	Real-Time Clock	实时时钟
RUIM	Removable User Interface Module	用户身份识别卡
SM	Short Message	短信
SMPL	Sudden Momentary Power Loss	瞬时掉电
TCP	Transfer Control Protocol	传输控制协议
TTL	Transistor-Transistor Logic	晶体管-晶体管逻辑
TVS	Transient Voltage Suppressor	瞬时电压抑制器件
UART	Universal Asynchronous Receiver- Transmitter	通用异步收发器(机)
UL	Upload	上传
USB	Universal Serial Bus	通用串行总线
VSWR	Voltage Standing Wave Ratio	电压驻波比