HW₂

Author: Juliette Decugis, Vinay Gautam, Adam Mills, Chenxi Yao

Import package and data

```
In [1]: import pandas as pd
import numpy as np
from os.path import join as oj
import datatable as dt
```

```
In [3]: DATA_DIR = '~/Downloads/poplar_climate_GWAS_data Homework Assigned'
```

1. Load in data

1.1 SNP data

```
In [4]: snp_orig_dt = dt.fread(oj(DATA_DIR, "869_NoCal_CR0.99.tagSNPs_BigLD0.7
In [5]: snp_orig_dt.shape
Out[5]: (869, 786075)
```

In [6]: snp_orig_dt[:, :10].head()

Out[6]:

	FID	IID	PAT	MAT	SEX	PHENOTYPE	Chr01_8003_G	Chr01_11528_T	Chr01_13272_(
0	BESC- 418	BESC- 418	0	0	0	-9	1	2	2
1	BESC- 52	BESC- 52	0	0	0	-9	2	1	2
2	BESC- 79	BESC- 79	0	0	0	-9	2	1	NA
3	BESC- 246	BESC- 246	0	0	0	-9	NA	NA	2
4	BESC- 313	BESC- 313	0	0	0	-9	2	1	2
5	BESC- 460	BESC- 460	0	0	0	-9	2	0	2
6	GW- 10958	GW- 10958	0	0	0	-9	2	1	2
7	DENA- 17-3	DENA- 17-3	0	0	0	-9	2	0	2
8	VNDL- 27-4	VNDL- 27-4	0	0	0	-9	2	0	2
9	BESC- 15	BESC- 15	0	0	0	-9	1	2	2

10 rows × 10 columns

Quick look at the number of NAs in the SNP data

In [6]: na_col_counts = snp_orig_dt.countna() # get number of NAs per column
pd.DataFrame(na_col_counts.to_numpy().T).describe()

Out[6]:

	0
count	786075.000000
mean	1.650722
std	2.205017
min	0.000000
25%	0.000000
50%	1.000000
75%	3.000000
max	8.000000

Converting datatable to pandas dataframe

```
In [7]: snp_orig = snp_orig_dt.to_pandas()
```

In [8]: snp_orig.iloc[:, :10].head()

Out[8]:

	FID	IID	PAT	MAT	SEX	PHENOTYPE	Chr01_8003_G	Chr01_11528_T	Chr01_1327
0	BESC- 418	BESC- 418	False	False	False	-9	1.0	2.0	
1	BESC- 52	BESC- 52	False	False	False	-9	2.0	1.0	
2	BESC- 79	BESC- 79	False	False	False	-9	2.0	1.0	
3	BESC- 246	BESC- 246	False	False	False	-9	NaN	NaN	
4	BESC- 313	BESC- 313	False	False	False	-9	2.0	1.0	

1.2 Response data

```
In [9]:
          cloud_dens_orig = pd.read_csv(oj(DATA_DIR, "cloud_dens_yearAvg"), sep=
          tmin_orig = pd.read_csv(oj(DATA_DIR, "tmin_yearAvg"), sep="\t", header
In [10]: cloud_dens_orig.shape
Out[10]: (869, 3)
In [11]: cloud dens orig.head()
Out[11]:
                            1
                                     2
          0 BESC-418 BESC-418
                               0.693175
              BESC-52
                       BESC-52 -0.025059
            BESC-79
                       BESC-79 0.151925
           3 BESC-246 BESC-246 -0.929824
           4 BESC-313 BESC-313 -0.689698
In [12]: |tmin_orig.shape
Out[12]: (869, 3)
In [13]:
          tmin_orig.head()
Out[13]:
                   0
                            1
                                    2
          0 BESC-418 BESC-418 0.377185
           1 BESC-52
                      BESC-52 0.391660
           2 BESC-79
                       BESC-79 0.490293
           3 BESC-246 BESC-246 0.080623
           4 BESC-313 BESC-313 0.467125
```

Checking if the samples in X, tmin, and cloud_dens in the same order

```
In [14]: tmin_orig[0].equals(cloud_dens_orig[0])
Out[14]: True
In [15]: tmin_orig[0].equals(snp_orig["FID"])
Out[15]: True
```

2 Basic Data Cleaning

2.1 Cloud_dens_orig

```
In [16]: y = cloud_dens_orig[2]
In [109]: |# Print cloud density data
Out[109]: 0
                  0.693175
          1
                 -0.025059
          2
                  0.151925
          3
                 -0.929824
                 -0.689698
          864
                  1.303344
          865
                  1.303344
          866
                  0.836930
          867
                  1.929748
                  1.929748
          868
          Name: 2, Length: 869, dtype: float64
In [17]: X = snp_orig.drop(columns=["FID", "IID", "PAT", "MAT", "SEX", "PHENOTY
          X. shape
Out[17]: (869, 8000)
 In [41]: \# get rid of samples with y = NA
          X = X[\sim y.isna()]
          y = y[\sim y.isna()]
In [42]: |X.shape, y.shape
Out[42]: ((869, 8000), (869,))
```

2.1 tmin_orig

```
In [86]: |y2 = tmin_orig[2]
In [87]: y2
Out[87]: 0
                 0.377185
          1
                 0.391660
          2
                 0.490293
          3
                 0.080623
          4
                 0.467125
          864
                -0.431626
          865
                -0.431626
                -0.742362
          866
          867
                 1.454448
          868
                 1.454448
         Name: 2, Length: 869, dtype: float64
In [50]: X2 = snp_orig.drop(columns=["FID", "IID", "PAT", "MAT", "SEX", "PHENOT
         X2.shape
Out[50]: (869, 8000)
In [91]: \# get rid of samples with y = NA
         X2 = X2[\sim y2.isna()]
         y2 = y2[\sim y2.isna()]
In [92]: | X2.shape, y2.shape
Out[92]: ((787, 8000), (787,))
```

3. Prediction Modeling

```
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer
from sklearn.metrics import r2_score, mean_squared_error
```

Data splitting

3.1 Cloud Density

In [45]: |ypred_valid = pipe.predict(X_valid)

```
In [26]: | mean_squared_error(y_valid, ypred_valid)
 Out[26]: 0.8832715473267992
 In [27]: | r2_score(y_valid, ypred_valid)
 Out [27]: 0.2504343832519683
 In [28]: pipe.score(X_valid, y_valid)
 Out[28]: 0.2504343832519683
          Different imputation methods, followed by either an untuned random forest or
          lasso
In [106]:
          imputers = {
              "simple_imputer": SimpleImputer(strategy="most_frequent"),
              "knn imputer": KNNImputer(),
              # "iterative_imputer": IterativeImputer(max_iter=10, random_state=
          models = {
              "rf": RandomForestRegressor(n estimators=100, min samples leaf=5),
              "lasso": Lasso()
          }
          pipes = {}
          for imputer_name, imputer in imputers.items():
              for model name, model in models.items():
                  pipe = Pipeline(steps=[(imputer_name, imputer), (model_name, m
                  pipe_name = imputer_name + "+" + model_name
                  pipes[pipe_name] = pipe
          pipes
Out[106]: {'simple imputer+rf': Pipeline(steps=[('simple imputer', SimpleImpute
          r(strategy='most_frequent')),
                            ('rf', RandomForestRegressor(min samples leaf=5))]),
           'simple_imputer+lasso': Pipeline(steps=[('simple_imputer', SimpleImp
          uter(strategy='most_frequent')),
                            ('lasso', Lasso())]),
           'knn_imputer+rf': Pipeline(steps=[('knn_imputer', KNNImputer()),
                            ('rf', RandomForestRegressor(min samples leaf=5))]),
           'knn imputer+lasso': Pipeline(steps=[('knn imputer', KNNImputer()),
          ('lasso', Lasso())])}
```

```
In [48]: | valid errs = {}
         for pipe_name, pipe in pipes.items():
             print(pipe name)
             pipe.fit(X_train, y_train)
             valid_errs[pipe_name] = pipe.score(X_valid, y_valid)
         valid errs
         simple_imputer+rf
         simple imputer+lasso
         knn imputer+rf
         knn_imputer+lasso
Out[48]: {'simple_imputer+rf': 0.275797321917584,
          'simple_imputer+lasso': -5.466587662650291e-05,
          'knn_imputer+rf': 0.2850098012091111,
          'knn_imputer+lasso': -5.466587662650291e-05}
         Add CV to tune hyperparameters
In [30]:
         cv_param_grid_all = {
             "rf__min_samples_leaf": [1, 3, 5, 10],
             "lasso__alpha": np.logspace(-2, 2, 10),
             "knn_imputer__n_neighbors": [2, 5, 10]
In [31]: | valid errs = {}
         for pipe_name, pipe in pipes.items():
             print(pipe name)
             # get relevant CV parameters given the steps of the pipeline
             cv param grid = {key: cv_param_grid_all[key] for key in cv_param_g
             # run CV for pipeline
             pipe_search = GridSearchCV(pipe, cv_param_grid)
             pipe_search.fit(X_train, y_train)
             valid_errs[pipe_name] = pipe_search.score(X_valid, y_valid)
         valid errs
         simple imputer+rf
         simple imputer+lasso
         knn imputer+rf
         knn_imputer+lasso
Out[31]: {'simple_imputer+rf': 0.2936561177260717,
          'simple_imputer+lasso': 0.4027961514529389,
          'knn_imputer+rf': 0.26632114468578716,
          'knn imputer+lasso': 0.4108366859284882}
```

From the result above, we can tell lasso is the best combined with KNN, however, KNN takes lots of computation power and it has a result close to simple imputer. Therefore, we use simple imputer and lasso as our choice for cloud density.

Refitting the model for cloud density

```
In [69]: pipe2 = Pipeline(steps=[('simple imputer', SimpleImputer(strategy="mos
 In [70]:
          pipe2.fit(X_train, y_train)
 Out [70]:
                Pipeline
            ▶ SimpleImputer
                ▶ Lasso
In [142]:
          pipe2.score(X_test, y_test)
Out[142]: 0.43038686910283286
 In [71]:
          ypred_valid2 = pipe2.predict(X_valid)
          print(ypred_valid2)
          335
           -1.64719567
                        0.3423671 - 0.71192526 0.28749428 0.65818941 - 0.34312
          286
           -1.16376705
                        0.57002179 0.85802755 -1.00911028 -0.83722108 -0.03178
          052
           -0.26040783
                        0.25149134 1.31536907 -0.81290353 -1.02278066 -0.46144
          838
            0.41214645 -0.11084475 -1.51859768 -0.48907929 0.73286823 -0.78642
          173
                        1.75494778 0.51973238 -0.20971153
            0.38631836
                                                             0.00600023
                                                                         0.23562
          943
                                    0.80047295 0.25438872 -0.1379638
            0.79452615
                        0.0445869
                                                                         0.06057
          494
            0.58912048 -0.98505592 0.34177154 0.69244811 0.64921148
                                                                         0.58553
          342
            0.74228156 -1.45083855 -0.02363657 -1.42208933 -1.23083792
                                                                         1.60400
           -0.27206128 -0.49519636
                                    1.0969544 -1.57994249
                                                             1.10720536
                                                                         0.11254
          963
```

Fit model for X train

```
In [74]: coefs = pipe2.named_steps['lasso'].coef_
    coefs = np.abs(coefs)
    coefs.sort()
    print(coefs[-5:])
```

[0.10600418 0.11446224 0.11833698 0.12735169 0.14595125]

Important Features

We implemented a MLP to better predict cloud density based on our features. We used a simple imputation method where every missing value was replaced with a 0. We got better results with this imputation method than with KNN when using our MLP to predict cloud density.

```
In [129]: imputer = SimpleImputer(strategy='constant')
X_train_cloud = imputer.fit_transform(X_train, y_train)
X_valid_cloud = imputer.transform(X_valid)
X_test_cloud = imputer.transform(X_test)
```

After experimenting on different hidden sizes and max number of iterations, we decide to use an MLP with two hidden layers (50x100) as it had the highest validation r^2 score. We use a small batch size of 32 as our training data only has 503 observations. We limit to 100 iterations to limit overfitting.

```
In [133]: del_cloud = MLPRegressor(hidden_layer_sizes=(50,100,), batch_size = 32
         del_cloud.fit(X_train_cloud, y_train)
Out[133]:
                                        MLPRegressor
          MLPRegressor(batch_size=32, hidden_layer_sizes=(50, 100),
                        learning rate='adaptive', max iter=100, random state=12
          34)
In [140]: model_cloud.score(X_train_cloud, y_train), model_cloud.score(X_valid_c
```

Out[140]: (0.9986111092881156, 0.6672565960472936)

```
In [141]: |model_cloud.score(X_test_cloud, y_test)
```

Out[141]: 0.5666171391768308

We observe that our best predictive model for predicting cloud density is the MLP with r squared score of 0.567 on our testing data. It outperforms naive RF and Lasso.

3.2 tmin orig

```
In [94]: # note: the following does NOT do a 60-20-20% train-valid-test split
         # tmin orig
         X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2, test_s
         X_train2, X_valid2, y_train2, y_valid2 = train_test_split(X_train2, y_
In [95]: X_train2.shape, y_train2.shape, X_valid2.shape, y_valid2.shape, X_test
Out[95]: ((503, 8000), (503,), (126, 8000), (126,), (158, 8000), (158,))
In [96]:
         imputer = SimpleImputer(strategy="most frequent")
         # imputer = IterativeImputer(max iter=10, random state=0)
         # imputer = KNNImputer()
         pipe3 = Pipeline(steps=[("impute", imputer), ("rf", RandomForestRegres
         pipe3.fit(X train2, y train2)
Out [96]:
                   Pipeline
               SimpleImputer
```

▶ RandomForestRegressor

```
In [98]: ypred_valid2 = pipe3.predict(X_valid2)
 In [99]: mean squared error(y valid2, ypred valid2)
 Out[99]: 0.12035077572975614
 In [27]: r2_score(y_valid2, ypred_valid2)
 Out [27]: 0.2504343832519683
In [101]: pipe3.score(X_valid2, y_valid2)
Out[101]: 0.2140312495990353
In [143]: pipe3.score(X_test2, y_test2)
Out[143]: 0.15416110955113194
          Our baseline score with random forest is 0.154.
 In [30]: | cv_param_grid_all = {
              "rf__min_samples_leaf": [1, 3, 5, 10],
              "lasso__alpha": np.logspace(-2, 2, 10),
              "knn imputer n neighbors": [2, 5, 10]
In [110]: | valid errs2 = {}
          for pipe name, pipe in pipes.items():
              print(pipe name)
              # get relevant CV parameters given the steps of the pipeline
              cv_param_grid = {key: cv_param_grid_all[key] for key in cv_param_g
              # run CV for pipeline
              pipe_search = GridSearchCV(pipe, cv_param_grid)
              pipe search.fit(X train2, y train2)
              valid_errs2[pipe_name] = pipe_search.score(X_valid2, y_valid2)
          valid_errs2
          simple_imputer+rf
          simple_imputer+lasso
          knn imputer+rf
          knn_imputer+lasso
Out[110]: {'simple_imputer+rf': 0.14134188398176828,
           'simple_imputer+lasso': 0.30374816054444964,
           'knn imputer+rf': 0.16090260963434755,
            'knn_imputer+lasso': 0.28875471561363075}
```

From the result above, we can tell the combination of simple imputer and lasso is the best.

Refitting the model for tmin_orig

Lasso outperform random forest on our test set for predicting tmin_orig.

10/25/22 19:42

In [113]: ypred_valid3 = pipe4.predict(X_valid2)
print(ypred_valid2)

[0.41187825 872	0.43634677	0.29025796	0.12145748	0.21748829	0.16424
0.09048975 754	0.21568202	0.43803613	0.46674313	0.18051005	0.13824
0.36712276 868	0.23958336	0.28328437	0.42789142	0.31077525	0.34663
0.31779365 34	0.2776505	0.2207284	0.24444646	0.24349301	0.37230
_	-0.23277802	0.20023299	0.24713388	0.27452704	0.32385
0.20924961	0.24247813	0.31234331	0.32797205	0.36529122	0.31237
305 0.25048439	0.2157966	0.23599516	0.17660388	0.23186038	0.37069
695 0.31524871	0.29976617	0.38092748	0.34429171	0.37250358	0.25514
861 0.33483552	0.31184103	0.28387718	0.30547735	0.33722874	0.23150
971 0.28132877	0.29783723	0.19949043	0.36821465	0.33283099	0.25213
019 0.46973476	0.28211138	0.2319981	0.29392823	0.31815873	0.25185
814 0.31405807	0.25329004	0.35588259	0.09069464	0.36010692	0.18532
63 0.0879145	0.28586066	0.1998263	0.4362639	0.04899116	0.24285
068 0.34689889	0.39979603	0.21889158	0.24362181	0.39159305	0.27767
403 0.24461391	0.21487575	0.22957772	0.17752595	0.10086186	0.37293
722 0.37445041	0.37495928	0.38674175	0.38401393	0.29086914	0.24962
468 0.44208309	0.39807676	0.2761764	0.25149452	0.26856781	0.35934
768 0.33624567	0.2756752	0.19684119	0.3488292	0.34541366	0.26923
681 0.24820126	0.37539845	0.13491313	0.24111524	0.25351751	0.31705
643 0.32006953	0.2870555	0.40487042	0.39367849	0.25998641	0.08349
13 0.29930421	0.25083182	0.32015468	0.31663399	0.34076998	0.30451
236]	112303102	110101010	110100000	212.070000	3.30.31

Fit model for X_train

```
In [114]: coefs2 = pipe4.named_steps['lasso'].coef_
    coefs2 = np.abs(coefs2)
    coefs2.sort()
    print(coefs2[-5:])
```

[0.03564754 0.03796517 0.0440869 0.04992194 0.05818797]

Important Features

We decided to implement a Multilayer Perceptron to predict minimum annual temperature based on the tree genotypes.

We decide to use a simple imputer since it worked well with our previous predictive models. We replaced all missing values with 0 therefore assuming missing genes did not variate from the norm.

```
In [118]: imputer = SimpleImputer(strategy='constant')
    X_train_temp = imputer.fit_transform(X_train2, y_train2)
    X_valid_temp = imputer.transform(X_valid2)
    X_test_temp = imputer.transform(X_test2)
In [119]: from sklearn.neural_network import MLPRegressor
```

We used the same MLP as previously as it also gave us the highest score:

We display our training and validation r^2:

```
In [123]: model.score(X_train_temp, y_train2)
```

Out[123]: 0.9963256131211797

```
In [124]: model.score(X_valid_temp, y_valid2)
```

Out[124]: 0.3509745564785275

We observe a large drop in scores from our training r^2 and validation r^2 which demonstrates our model does overfit to our data. We tried lowering the number of iterations and increasing batch size to reduce overfitting but that resulted in lower validation scores. Our MLP still beats all other models on the validation set so we decide to deploy it on our test set:

```
In [125]: model.score(X_test_temp, y_test2)
```

Out[125]: 0.36961568904600484

To understand our model errors using other metrics we compare the train, validation and testing MSE:

```
In [126]: def mse(y_pred, y_actual):
    return np.mean((y_pred-y_actual)**2)
```

```
In [127]:

train_pred = model.predict(X_train_temp)
mse_train = mse(train_pred, y_train2)

val_pred = model.predict(X_valid_temp)
mse_val = mse(val_pred, y_valid2)

test_pred = model.predict(X_test_temp)
mse_test = mse(test_pred, y_test2)
```

```
In [128]: mse_train, mse_val, mse_test
```

Out[128]: (0.0005683788723458275, 0.09938145194234478, 0.07217083498806695)

Our MLP as our best predictive model has testing MSE of 0.0722 on the t_min_orig dataset.

4. Graphics and Important Features

4.1 Feature Importance within our MLP

We want to understand what tree genotypes help in the prediction of our MLP. To calculate the feature importance of a given feature, we permute that feature and observe the mse loss as compared to our original model. We calculate the average over 10 permutations of each of the 8,000 features in our model. We can compute this as our MLP is small so it trains quickly.

A higher score corresponds to higher feature importance since if we permute that feature, the MLP performs worst on our data.

```
In [145]: def get_feature_importance(j, n, model, X, y, baseline):
    # j-th feature, n - # of permutations
    # X - feature, y - label, baseline: score of our model using X to
    total = 0.0
    for i in range(n):
        # select the indices to permute
        perm = np.random.permutation(range(X.shape[0]))
        X_ = X.copy()
        X_[:, j] = X_[perm, j] # X_ corresponds to the permuted copy of
        s_ij = model.score(X_, y)
        total += s_ij
    return baseline - total / n
In [147]: f = []
```

```
In [147]: f = []
    r_2_valid = model.score(X_valid_temp, y_valid2)

for i in range(X_valid_temp.shape[1]):
    if i%100 == 0:
        print(i)
    f_i = get_feature_importance(i, 10, model, X_valid_temp, y_valid2, f.append(f_i)
```

7700 7800 7900

```
In [149]: importance_scores = pd.Series(f)
importance_scores = importance_scores.sort_values(ascending=False)
importance_scores.head()

Out[149]: 2517    0.006238
```

We therefore identify variants on these features as most important in our MLP predictions based on r squarred scores after permutations:

Variants: Chr13_14989013_C, Chr16_347680_T and Chr01_24259832_C

4.2 Interesting Variants Plots

We draw plots to understand how these variants correlate with minimum annual temperature:

In [157]:

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="darkgrid")
sns.boxplot(x=X2.iloc[:, 2517], y=y2)
plt.xlabel('Gene Mutation')
plt.ylabel('Min Normalized Annual Temperature')
plt.title('Variation of ' + X.columns[2517] + ' vs. Minimum Annual Templt.show()
```


We observe that a larger variant on Chr13_14989013_C often correlates with higher climate temperature. Indeed, on our plot for SNP = 0 we have average minimum annual temperature closer to the mean whereas for SNP = 2, they are 1 standard deviation away from the mean. We also notice most clones that live in climates with high temperatures (more than one standard deviation from the mean) have SNP = 2 for Chr13_14989013_C.

We wanted to understand what other variants are correlated with variants on Chr13_14989013_C. We calculated the correlation of that feature and all others in the dataset and looked at the top correlations:

dtype: float64

In [182]: sns.jointplot(x = X2.loc[:, 'Chr13_14989013_C'], y=X2.loc[:, 'Chr11_83
plt.title('Distribution of ' + X.columns[1068] + ' Variants vs. ' +

Out[182]: <seaborn.axisgrid.JointGrid at 0x2b2d01cf0>

We compare the distribution of variants on Chr13_14989013_C and Chr11_8301773_C. We observe that variants in Chr13_14989013_C seem correlated with variants in Chr11_8301773_C as we have the highest overlap in SNP = 1 or 2 for Chr13_14989013_C and SNP = 2 for Chr11_8301773_C.

```
In [170]:
```

```
X2.columns[1068], X2.columns[2517]
```

```
Out[170]: ('Chr13_488792_C', 'Chr13_14989013_C')
```

We then plotted the combined effects of variations on Chr13_488792_C and Chr13_14989013_C on minimum annual temperature. Our x-axis gives the variant strength for Chr13_488792_C combined with different variant strengths on Chr13_14989013_C for each group.

When we have high variants on both features (SNP = 2 for both, last green boxplot) we observe higher minimum annual temperature values. When both variants have SNP of 0 we observe lower annual minimum temperature values. Therefore the combined effects of these features seems to play a role in predicting minimum annual temperature of the climate.

```
In [185]: sns.set(style="darkgrid")
    sns.boxplot(x=X2.iloc[:, 1068], hue=X2.iloc[:,2517], y=y2)
    plt.xlabel('Gene Variants of Chr13_488792_C')
    plt.ylabel('Min Normalized Annual Temperature')
    plt.title('Boxplots of Variants Chr13_488792_C and Chr13_14989013_C vs
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0
    plt.show()
```


We then extracted our relavant features from LASSO and looked at their values for cloud density:

```
In [181]: sns.set(style="darkgrid")
    sns.boxplot(x=X.loc[:, 'Chr17_11860996_G'], y=y)
    plt.xlabel('Gene Mutation')
    plt.ylabel('Cloud Density')
    plt.title('Variation of Chr17_11860996_G vs. Minimum Annual Temperatur
    plt.show()
```

Variation of Chr17_11860996_G vs. Minimum Annual Temperature of the Clone Climate

In [186]:

sns.set(style="darkgrid")
sns.boxplot(x=X.loc[:, 'Chr17_11860996_G'], hue=X.loc[:,'Chr01_2695098
plt.xlabel('Gene Variants of Chr17_11860996_G')
plt.ylabel('Cloud Density (Normalized)')
plt.title('Boxplots of Variants Chr17_11860996_G and Chr01_2695098_G v
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0
plt.show()

