Maß und Integral WS2018/19

Dozent: Prof. Dr. Rene Schilling

24. Oktober 2018

In halts verzeichnis

1	Einleitung	 	 	2
2	Sigma-Algebren .	 	 	3
Anhang	<u>r</u>			5
Index	,			5

Vorwort

1. Einleitung

messen: Längen, Flächen, Volumina, $\mathbb{N} \to \text{zählen}$, Wahrscheinlichkeiten, Energie \to Integrale, ... Wenn man ein Integral hat: $\int_{t_0}^t F(t) dt$, also wird das dt durch ein Maß $\mu(dt)$ ersetzt. Wir messen Mengen:

$$\mu: \mathcal{F} \to [0, \infty] \text{ mit } \mathcal{F} \subset \mathcal{P}(X)$$

Dabei ist:

- \bullet X eine beliebige Grundmenge
- $\mathcal{P}(X) = \{A \mid A \subset X\}$ die Potenzmenge von X
- $F \to \mu(F) \in [0, \infty]$

Konvention:

- Familien von Mengen: $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{F}, \dots, \mathcal{R}$
- Mengen: A, B, X
- Maße: $\mu, \lambda, \nu, \rho, \delta$
- Beispiel 1.1 (Flächenmessung)

$$\mu(F) = g \cdot h = \mu(F_1) + \mu(F_2) + \mu(F_3)$$
$$= g' \cdot h + h' \cdot g'' + h'' \cdot g''$$
$$= \dots \stackrel{!}{=} gh$$

 F_1, F_2, F_3 disjunkt bzw. nicht überlappend!

$$\mu(F) = \mu(\Delta_1) + \mu(\Delta_2) \text{ mit } \mu(\Delta) = 0.5gh$$

Allgemein für Dreiecke:

 $\mu(\Delta) = 0.5gh \stackrel{!}{=} 0.5g'h'$ und das ganze ist wohldefiniert!

Dreiecke lassen allgemeine Flächenberechnung zu - Triangulierung!

$$F=\biguplus_{n\in\mathbb{N}}\Delta_n\,(\text{disjunkte Vereinigung }\Delta_i\cap\Delta_k=\emptyset\quad k\neq i)$$

2. Sigma-Algebren

Ziel: Charakterisierung der Definitionsgebiete von Maßen.

Definition 2.1 (σ -Algebra, messbar)

Eine $\underline{\sigma}$ -Algebra über einer beliebigen Grundmenge $X \neq \emptyset$ ist eine Familie von Mengen in $\mathcal{P}(X)$, $\mathcal{A} \subset \mathcal{P}(X)$:

- (S1): $X \in \mathcal{A}$
- (S2): $A \in \mathcal{A} \to A^C = X \setminus A \in \mathcal{A}$
- (S3): $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$

Eine Menge $A \in \mathcal{A}$ heißt $\underline{\text{messbar}}$.

Satz 2.2 (Eigenschaften einer σ -Algebra)

Sei \mathcal{A} eine σ -Algebra über X.

- (a) $\emptyset \in \mathcal{A}$
- (b) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- (c) $(A_n)_{i\in\mathbb{N}}\subset\mathcal{A}\Rightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}$
- (d) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- (e) $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$

Beweis. (a) $\emptyset = X^C \in \mathcal{A}$

- (b) $A_1 = A$, $A_2 = B$ m $A_3 = A_4 = ... = \emptyset \Rightarrow A \cup B = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- (c) $A_n \in \mathcal{A} \stackrel{\text{S2}}{\Longrightarrow} A_n^C \in \mathcal{A} \stackrel{\text{S3}}{\Longrightarrow} \bigcup_{n \in \mathbb{N}} A_n^C \in \mathcal{A} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n = \left(\bigcap_{n \in \mathbb{N}} A_n^C\right)^C \in \mathcal{A}$
- (d) wie (b)

(e)
$$A \setminus B = A \cap B^C \in \mathcal{A}$$

Fazit: Auf einer σ -Algebra kann man alle üblichen Mengenoperationen abzählbar oft durchführen ohne \mathcal{A} zu verlassen!

■ Beispiel 2.3

 $X \neq \emptyset$ Menge, $A, B \subset X$

- (a) $\mathcal{P}(X)$ ist eine σ -Algebra (größtmögliche)
- (b) $\{\emptyset, X\}$ ist eine σ -Algebra (kleinstmögliche)
- (c) $\{\emptyset, A, A^C, X\}$ ist eine σ -Algebra
- (d) $\{\emptyset, B, X\}$ ist eine σ -Algebra, wenn $B = \emptyset$ oder B = X
- (e) $\mathcal{A} = \{A \subset X \mid \#A \leq \#\mathbb{N} \text{ oder } \#A^C \leq \#\mathbb{N}\}$ ist eine σ -Algebra

Index

 $\sigma\text{-Algebra},\, {\color{red}2}$

messbar, $\frac{2}{2}$