

Ezercicio 2 Seleccione, encerronob en un circulo la letra indice, todas las expresiones equivalentes a la función X = (A + B)BC + A

a)
$$X = AB + (B + C)A$$

c)
$$X = (B + A)_{+} (BC)_{A}^{A}$$

$$\beta) X = BC(1+A)+A$$

Esercicio 3 Encontrar la expresión minimizado de la función X = B'(CD+C')+CD'((A+B)+AB)utilizando el siguiente mapa de Karnaugh. Indicar con claridad los agrupamientos realizados.

función minimizada X = ABCD + BCD + AB + BC

Ezercicio 6

Se requiere implementar un circuito contador de dos bits de salida (C_1,C_0) y obs señales de entrada (INC_y) DEC). El contador incrementa su cuenta mientras INC=1, y decrementa su cuenta si DEC=1. Si ambas señales estań en 0 simultaneamente, el valor de cuenta no cambia, mientras que si ambas señales estuvieran en 1, el contador se resetea y da salida 0. A continuación se muestra el diagrama de estados que modela su comportamiento.

de estados								
Estados	Q _o	Qı						
E ₀	0	0						
E,	0	1						
E2	1	0						
E3	1	1						

tabla de codificación

Responder

a) Cual de estas opciones representa la función canonica de la salida C, del combinacional de salida?

i) $C_1 = Q_1$ ii) $C_1 = Q_1 \cdot Q_0 + Q_1 \cdot Q_0'$ iii) $C_1 = Q_1 \cdot Q_0$ iii) $C_1 = Q_1 \cdot Q_0$ iv) $C_1 = Q_1 \cdot Q_0 + Q_1 \cdot Q_0'$

b) Calcular la minima expresión de las siguientes fonciones del combinacional do estados

Qı	Qo	Lnc	Dee	D.	Q _o		Q C	2.	G	Go					
Ø	O.	0	0	Q	0			5	6	6	() =	Q,	00	+ Q0))0
ρ	0	0	3	N N	0		ρ		0	(=	Q_1	(8)	+00	
p	0	1	p		1			\circ	1	0	ي	- Oi			
P	Ø	((Q	0		,		l	(
p	i	0	$ \rho $	Q		7,									
P	(0	1	Q	0	Inc Di Pec Oo				Inc Or Po					
P	J	}	φ	L L	0	Di Pec co	0(11	to		O, Po	QQ	<u>01</u>	1 8	20	
Þ	1	1	1	Q	0										
1	0	0	Φ		0	(QB)		ÒØ		00	0	P	0	1	
)	0	0		Q	1							0			
1	ρ)	0	1	0) (9	4		8	0	
(0)		Q	0										
(l	P	0	٨	1	C I I				N		0	0	0	
1	}	0		1	0		0								
)	1	1	0	Q	0	10	00	A		10		A	0	1	
ļ	1	l	1 (0	0										
						$\mathbb{D}_{i} = \mathbb{Q}_{i}$	Qo De	7 2 +		Do	= Q _©	Inc	Dec	5 +	
						Zio	nc Dec	5 t							
						00	o Ino	+			$\widetilde{Q}_{\mathcal{D}}$	Inc	Dec	y +	
						0,0	5 Ino 1	ect			Q 3	Inc	De	8	
						200	Ind	Dee .			`				

c) Implementar el circuito del combinacional de estados mediente el uso de compuentas básicas (AND, NAND, OR, NOR, XOR y/o NOT) de la contidad de entrodas necesarias. Dibuzar el circuito. Ezeraiaio 7 a) En el siguiente recuadro diseñar un registro de autro bits en el aval se pueda elegir, mediante una entrada llamada Sel uno de los siguientes funciona mientos -Sel=0: La información ingresa por IN-S, se desplaza hacia la derecha y sale por OUT_S - Sel = 1: los datos registrados se reorganizan de forma invertida, es decir, por exemplo si el dato almacenado es 1011, en el siguiente ciclo de clock, quedaria 1101. sel du Ezercicio 8 Basados en el sistema de memoria mostrado en la figura a) Completar los ditos faltantes de faltantes de cantidad de señales / denominación $(E_5.' 16/A[0-15])$ para be cuadros en linea de pontos denotados con el número 2. (vadros "2":

