Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till kvalificeringstävlingen den 8 oktober 1981

1.

$$\frac{x^3+1}{2} - \left(\frac{x+1}{2}\right)^3 = \frac{1}{8} \left(3x^3 - 3x^2 - 3x + 3\right)$$
$$= \frac{3}{8} (x-1) \left(x^2 - 1\right) = \frac{3}{8} (x-1)^2 (x+1) \ge 0.$$

Alternativ metod. Studera

$$y = \frac{x^3 + 1}{2} - \left(\frac{x+1}{2}\right)^3$$

och visa att $y_{\min} = 0$ inträffar för x = 1.

2. Uppdela i två fall.

I. $\sin x + \cos x < 0$. Då är den givna olikheten alltid uppfylld. Detta inträffar då $135^{\circ} < x < 315^{\circ}$.

II. $\sin x + \cos x \ge 0$. Då är den givna olikheten ekvivalent med

$$(\sin x + \cos x)^2 < 1 + \sin x \cos x$$

$$1 + 2\sin x \cos x < 1 + \sin x \cos x$$

$$\sin x \cos x < 0$$
.

Detta inträffar för $90^{\circ} < x \le 135^{\circ}$ och $315^{\circ} \le x < 360^{\circ}$.

Svar: $90^{\circ} < x < 360^{\circ}$

3. Sätt a + b + c = t. Ekvationssystemet

$$ab + ac = 2t$$

$$ac + bc = 4t$$

$$bc + ab = 8t$$

är linjärt i storheterna ab, ac och bc. Löses detta får man ab = 3t, ac = -t, bc = 5t.

Om t=0 måste två av a,b,c vara 0 och eftersom deras summa t är 0, måste då även den tredje vara 0. Detta ger lösningen a=b=c=0.

Låt $t \neq 0$. Då måste a, b, c alla vara $\neq 0$.

$$\frac{ab}{ac} = \frac{3t}{-t} = -3, \qquad c = -\frac{1}{3}b, \qquad \frac{bc}{ac} = \frac{5t}{-t} = -5, \qquad a = -\frac{1}{5}b.$$

Vi får $t=-\frac{1}{5}b+b-\frac{1}{3}b=\frac{7}{15}b$. Insättning i ac=-t ger $\frac{1}{15}b^2=-\frac{7}{15}b$ och eftersom $b\neq 0$ följer b=-7.

Svar: Lösningarna är $a=0,\,b=0,\,c=0$ och $a=\frac{7}{5},\,b=-7,\,c=\frac{7}{3}.$

Metod 1. Förläng CA över A till en punkt E för vilken EA = CA. Då är triangeln CBE likbent med basen BE. BA är en median i denna triangel och skärs i tyngdpunkten T av medianen EF. Eftersom medianerna skär varandra i förhållandet 2:1, är AD = AT. Då också AC = AE följer det att trianglarna ADC och ATE är kongruenta. Vi har att visa att ET är dubbelt så lång som AT, men detta följer direkt av att AT = FT (eftersom triangeln CBE är likbent) och av att T delar EF i förhållandet 2:1.

Metod 2. Sätt AC = b och AB = c. Då är BC = 2b, $AD = \frac{1}{3}c$, $BD = \frac{4}{3}c$. Kalla CD = x och låt A stå för vinkeln CAB. Tillämpa cos-satsen på trianglarna CAB och CAD:

$$4b^2 = b^2 + c^2 - 2bc\cos A$$

$$x^2 = b^2 + \frac{1}{9}c^2 + 2b\frac{c}{3}\cos A.$$

Härav följer

$$4b^2 + 3x^2 = 4b^2 + \frac{4}{3}c^2$$
, $x = \frac{2}{3}c$

$$dvs CD = 2AD$$
.

5. Vid varje tillfälle under proceduren betraktas summan av samtliga talen på de lappar som återstår. Då två lappar med talen a och b ersätts med en lapp med talet a - b eller b - a ersätts summan, säg s, med

$$s - a - b + (a - b) = s - 2b$$

eller

$$s - a - b + (b - a) = s - 2a$$
.

Varje gång ändras alltså summan med ett jämnt tal. Härav följer att den sista lappens tal är udda eller jämnt allteftersom den ursprungliga summan är udda eller jämn. Bland talen $1, 2, \ldots, 1981$ är 1982/2 = 991 tal udda, varför summan av talen är udda.

Variation. Man kan koncentrera sig på de udda lapparna. Deras antal ändras endast då man drar två udda lappar; i detta fall minskar antalet med 2. Då man startar med 991 udda lappar måste sista lappen vara udda.

6. Man söker det minsta talet t för vilket systemet

$$a + b + c + d + e + f + g = 1$$
 (1)

$$a + b + c \le t \tag{2}$$

$$b + c + d \le t \tag{3}$$

$$e + d + e \le t \tag{4}$$

$$d + e + f \le t \tag{5}$$

$$e + f + g \le t \tag{6}$$

är lösbart med talen a, b, \ldots, g alla ≥ 0 .

(1), (2) och (5) ger:
$$1 - g \le 2t$$
, $g \ge 1 - 2t$

(1), (2) och (6) ger:
$$1 - d \le 2t$$
, $d \ge 1 - 2t$.

(1), (3) och (6) ger:
$$1 - a \le 2t$$
, $a \ge 1 - 2t$

Villkoret $a, b, \ldots, g \ge 0$ ger nu:

$$1 = a + b + c + d + e + f + g \ge a + d + g \ge 3 - 6t, \qquad 6t \ge 2, \qquad t \ge \frac{1}{3}.$$

För att relationerna skall vara uppfyllda måste således $t \ge 1/3$.

Att t=1/3 kan uppnås inser man genom att sätta

$$b = c = e = f = 0,$$
 $a = d = g = \frac{1}{3}.$

Svar: Det minsta värdet är 1/3.

Lösningarna hämtade, med författarens tillstånd, ur:

Skolornas Matematiktävling Problem 1969 - 1990 med lösningar utarbetade av Olof Hanner