Ermüdung und Verschleiß

Prof. Dr.-Ing. Christian Willberg

Hochschule Magdeburg-Stendal

Kontakt: christian.willberg@h2.de
Teile des Skripts sind von Prof. Dr.Ing. Jürgen Häberle übernommen

Ermüdung

► Was ist Ermüdung?

- Tritt typischerweise bei zyklischer Belastung auf
 - Isotherme mechanische Ermüdung
 - Oszillierende Last
 - Flugzeugrümpfe (Druckaufbau und -abfall)
 - Thermische Ermüdung
 - Öfen, Heizelemente
 - Thermomechanische Ermüdung
 - Hochdruckbehälter
 - Elektrothermische Ermüdung
 - Stromleiter (Glühfäden)

Ermüdung

- ullet Die Belastung liegt unterhalb der Streckgrenze $R_{p0,2}$
 - \circ Erinnerung: Was bedeutet $R_{p0,2}$?
- Spannungs-Konzentrationen entstehen an Materialfehlern (Poren, Mikrorisse) oder im Kristall (Versetzungen, Fehlstellen)
- Zunächst bilden sich unter wechselnder Last lokal zufällige Bereiche plastischer Verformung
- Diese Punkte repräsentieren Spannungs-Konzentrationsbereiche, die sich mit der Zeit vergrößern und zu Bruch führen können

Erklärvideo

Begriffe

- Lebensdauer
- Ermüdungsriss
- Ermüdungsbruch
- Kurzzeitfestigkeit (K)
- Zeitfestigkeit (Z)
- Dauerfestigkeit (D)

Gegenmaßnahmen

- Kerbwirkung verringern
- Materialanpassung
- Konstruktion anpassen, damit lokale Spannung zulässige Grenzen nicht überschreitet
- Regelmäßige Inspektionen

Verschleiß

- Permanente Verformung und Materialverlust an der Oberfläche von Festkörpern durch Reibung
- Technologisch unerwünscht und kann zu Funktionsausfällen führen
- Beeinflusst durch:
 - Reibpaarung
 - Oberflächenschicht und Zwischensubstanz
 - Bewegungsart
 - Lastintensität

Verschleißart	Erscheinung	Primäres Vorkommen
Gleitverschleiß	Rillen oder Riefen durch Abrieb, Materialübertragung oder lokales Schmelzen	Un-geschmierte Lager, Kupplungen, Bremsen
Rollverschleiß	Abblättern durch Ermüdungsrisse	Rad/Schiene, Wälzlager
Pittings	Grübchenbildung: Pitting	Wälzkörper, speziell Zahnräder
Abrasivverschleiß	Plastische Verformung, Erosion	Bagger, Schüttguttransport, Partikelaufprall
Kavitation	Oberflächenschädigung durch	Wasserturbinen, Pumpen

Gleitverschleiß

- Beeinflusst durch
 - \circ Die mittlere Rauheitstiefe R_z
 - Anpressdruck
 - $^{\circ}$ Verschleißpfadverhältnis $W=krac{F_{N}}{A}10^{6}$
 - \circ k in $\left[\frac{mm^3}{Nm}\right]$ spezifischer Verschleißkoeffizient (lastunabhängig)

Rollverschleiß

- Rollen umfasst
 Schlupfkomponenten, die dem Rollvorgang überlagert sind
- Kleine Kontaktfläche; hohe Flächenpressung
- Oberflächenabbau (plastische Verformung, Mikrostrukturveränderungen usw.)
- ullet Kann durch Schmierung signifikant reduziert werden ightarrow spezifische Schmierfilm-Dicke λ

Kavitation

Video

► Physikalische Ursache?

- Lokale Belastung an der Oberfläche
- Diese Bereiche werden geschwächt und blättern ab
- Auswirkungen auf die Oberfläche:
 - Wirkungsgradverlust
 - Korrosion
 - Bereiche, in denen sich Risse bilden können

Reibkorrosion

- Gleitbewegungen zwischen zwei hochbelasteten Komponenten
- ullet Tritt typischerweise bei unzureichendem Presssitz auf o Passungen

![bg right fit](https://upload.wikimedia.org/wikipedia/commons/2/27/Corrosion_de