Civil Engineering Project Documentation - Dataset $5\,$

Warsaw University of Technology

January 19, 2025

Contents

1	Civil Engineering Project Documentation - Dataset 5 1 1.1 1. Project Overview 1 1.1.1 1.1 Building Specifications 1 1.1.2 1.2 Drawing Set 1 1.2 2 Structural Analysis 2 1.2.1 2.1 Material Properties 2
	1.2.2 2.2 Load Calculations 2 1.2.3 2.3 Structural Design 3 1.3 3. Thermal Analysis 3 1.3.1 3.1 Wall Assembly 3 1.3.2 3.2 Roof Assembly 3 1.4 4. References 4
1	Civil Engineering Project Documentation - Dataset 5
1.	1 1. Project Overview
1.1	1.1 1.1 Building Specifications
1.1	1.1.1 1.1.1 Dimensions
	 Width (b) = 7.2m Length 1 (L1) = 6.6m Length 2 (L2) = 10.8m Height 1 (h1) = 2.5m Height 2 (h2) = 2.65m Roof angle = 16° Purlin spacing = 1.1m Ground level = -1.4 m.a.s.l
1.1	1.1.2 1.1.2 Materials
	 Walls: Max 220 block Insulation: Mineral wool Roofing: Steel tile 0.6mm Structure: C27 timber class

1.1.2 1.2 Drawing Set

1.1.2.1 1.2.1 Main Views (Scale 1:50)

- Vertical projection (front elevation)
 - Shows building heights, wall sections, and roof angle
 - Includes ground level reference (-1.4 m.a.s.l)
 - Details column placements and structural connections
- Horizontal projection (top view)
 - Displays building dimensions (b, L1, L2)
 - Shows purlin layout with 1.1m spacing
 - Indicates wall thickness and insulation layers

1.1.2.2 1.2.2 Detail Drawings (Scale 1:10)

- 1. Foundation-column connection
 - Shows 150×150 mm column section
 - Details 400mm foundation depth
 - Includes connection specifications
- 2. Roof-column connection
 - Details C27 timber joint design
 - Shows load transfer mechanisms
 - Includes fastener specifications
- 3. Wall-roof junction
 - Shows insulation continuity
 - Details vapor barrier placement
 - Includes flashing details
- 4. Insulation installation
 - Shows mineral wool placement
 - Details thermal bridge prevention
 - Includes air barrier specifications

1.2 2. Structural Analysis

1.2.1 2.1 Material Properties

1.2.1.1 2.1.1 C27 Timber (EN 338)

- Characteristic bending strength (fm,k) = 27 N/mm^2
- Characteristic compression parallel to grain $(fc,0,k) = 22 \text{ N/mm}^2$
- Mean modulus of elasticity (E0,mean) = 11.5 kN/mm^2
- Characteristic density (k) = 370 kg/m^3
- Partial safety factor $(\gamma_M) = 1.3$
- Modification factor $(k_{mod}) = 0.8$ (Service Class 2)

1.2.2 2.2 Load Calculations

1.2.2.1 **2.2.1** Dead Loads

- 1. Steel tile roofing (0.6mm): 0.047 kN/m^2
- 2. Timber structure:
 - Rafters: 0.15 kN/m^2
 - Purlins: 0.10 kN/m^2 Total dead load (gk) = 0.297 kN/m^2

1.2.2.2 Snow Load (EN 1991-1-3) For Warsaw, Poland: - Ground snow load (sk) = 0.7 kN/m² - Roof shape coefficient (μ_1) = 0.8 (α = 16°) - Exposure coefficient (Ce) = 1.0 - Thermal coefficient (Ct) = 1.0

Snow load on roof: $s = 1 \times Ce \times Ct \times sk = 0.8 \times 1.0 \times 1.0 \times 0.7 = 0.56 \text{ kN/m}^2$

1.2.2.3 Wind Load (EN 1991-1-4) Basic parameters for Warsaw: - Basic wind velocity (vb,0) = 22 m/s - Terrain category III - Reference height (ze) = 2.65 m

Wind pressure calculation: qp(z) = ce(z) × qb where: - ce(z) = 1.6 (exposure factor) - $q_b = 0.5 \cdot \rho \cdot v_{b,0}^2 = 0.302 \text{ kN/m}^2$

Peak velocity pressure: $q_p(z) = 1.6 \cdot 0.302 = 0.483 \text{ kN/m}^2$

1.2.3 2.3 Structural Design

1.2.3.1 Purlin Design Load transfer: - Design load (Ed) = 1.401 kN/m^2 - Purlin spacing = 1.1 m - Load per purlin = 1.541 kN/m

Section properties (80mm \times 160mm): - Maximum span = 1.8m - Design moment = 0.623 kNm - Section modulus = 341,333 mm³ - Design stress = 1.83 N/mm² < 16.62 N/mm² \checkmark

1.2.3.2 2.3.2 Rafter Design Load combination (ULS): $E_d = 1.35 \cdot g_k + 1.5 \cdot q_k + 1.5 \cdot \psi_0 \cdot q_w = 1.401 \text{ kN/m}^2$

Section properties (100mm \times 200mm): - Maximum span = 5.62m - Design moment = 6.12 kNm - Section modulus = 666,667 mm³ - Design stress = 9.18 N/mm² < 16.62 N/mm² <

1.2.3.3 Column Design Load calculation: - Tributary area = 5.94 m^2 - Design load (Ned) = 8.32 kN

Section properties (150mm \times 150mm): - Area = 22,500 mm² - Compressive stress = 0.37 N/mm² - Design strength = 13.54 N/mm²

1.3 3. Thermal Analysis

1.3.1 3.1 Wall Assembly

1.3.1.1 3.1.1 Components

- 1. Max 220 block:
 - Thickness = 220 mm
 - $\lambda = 0.33 \text{ W/(m \cdot K)}$
 - $R_1 = 0.667 \text{ m}^2\text{K/W}$
- 2. Mineral wool:
 - Thickness = 150 mm
 - $\lambda = 0.035 \text{ W/(m \cdot \text{K})}$
 - $R2 = 4.286 \text{ m}^2\text{K/W}$
- 3. Surface resistances (EN ISO 6946):
 - Rsi = $0.13 \text{ m}^2\text{K/W}$ (internal)
 - Rse = $0.04 \text{ m}^2\text{K/W}$ (external)

Total thermal resistance: $RT = 5.123 \text{ m}^2\text{K/W U-value} = 0.195 \text{ W/(m}^2\text{K)} < 0.20 \text{ W/(m}^2\text{K)}$

1.3.2 3.2 Roof Assembly

1.3.2.1 3.2.1 Components

- 1. Steel tile:
 - Thickness = 0.6 mm

- $\lambda = 50 \text{ W/(m \cdot \text{K})}$
- $R_1 = 0.000012 \text{ m}^2\text{K/W}$
- 2. Air gap:
 - $R2 = 0.16 \text{ m}^2\text{K/W}$ (ventilated)
- 3. Mineral wool:
 - Thickness = 200 mm
 - $\lambda = 0.035 \text{ W/(m \cdot K)}$
 - $R3 = 5.714 \text{ m}^2\text{K/W}$
- 4. Surface resistances:
 - Rsi = $0.10 \text{ m}^2\text{K/W}$
 - Rse = $0.04 \text{ m}^2\text{K/W}$

Total thermal resistance: $RT = 6.014 \text{ m}^2\text{K/W U-value} = 0.166 \text{ W/(m}^2\text{K)} < 0.18 \text{ W/(m}^2\text{K)}$

1.4 4. References

- 1. EN 338:2016 Structural timber Strength classes
- 2. EN 1990:2002 Basis of structural design
- 3. EN 1991-1-3:2003 Snow loads
- 4. EN 1991-1-4:2005 Wind actions
- 5. EN 1995-1-1:2004 Design of timber structures
- 6. EN ISO 6946:2017 Thermal resistance calculation