NLP Assignment-3 Team-32

Prasham Walvekar - CS21BTECH11047

Kallu Rithika - Al22BTECH11010

Armaan - CS22BTECH11051

Q.1 Multi-label Emotion Classification

Problem Statement

Classify text samples into appropriate emotion categories - such as anger, fear, joy, sadness, and surprise by developing a model that can identify the presence or absence of each emotion in multilingual datasets.

Languages Chosen

- English (most commonly used, easy interpretability and understanding)
- Hindi + Marathi
 - a. Linguistic similarity similar words, and similar script devanagari
 - b. Belong to the top 100 languages of the world which SOTA transformer models are trained on
 - c. We understand both languages

ENGLISH

Architectural Approaches

- Experimented with different pretrained transformers and classification techniques.
- 2. Transformers used: (from Hugging Face)
 - a. bert-base-uncased
 - b. roberta-base
 - c. distilbert-base-uncased
 - d. xlm-roberta-base
- 3. Classifiers used:
 - a. MLP head with 1 hidden layer (num layers = 1)
 - b. MLP head with num layers = 2
 - c. BiLSTM (hidden_state = 64, num_lstm_layers = 2) + MLP head (num_layers = 2)
 - d. Attention Pooling + MLP head (num_layers = 2) -> pools based on attention scores given to tokens (instead of using the class token) before passing to classification head

Training Approach

- Dataset
 - a. train.csv (split: 90% train, 10% validation): 2768 samples
 - b. test.csv: 2767 samples
- Training approach
 - a. Phase-1: Transfer Learning (for first 3-5 epochs)
 - i. Freeze all layers of transformer
 - b. Phase-2: Fine-tuning (for rest of the epochs)
 - i. Unfreeze a fixed number of last few layers of transformer
 - ii. Dynamically unfreeze a few layers of transformer incrementally with each epoch
 - iii. Unfreeze all layers of transformer (we found this to give best results)
- Loss criterion
 - a. BCEWithLogitsLoss
 - i. Helpful for multi-label classification tasks
 - i. Outputs logits (probability vector) with same length as number of labels / emotions
 - b. Focal Loss
 - i. Focal Loss helps NLP models focus on hard-to-classify texts (like rare classes) by down-weighting easy predictions, making it useful for imbalanced or multi-label text classification.
- 4. Other important features
 - a. Optimizer AdamW (works best for fine-tuning of transformers)
 - b. Learning Rate Scheduler (reduces/increases LR based on validation score for better convergence)

Results (BCE LogitsLoss)

1. Using bert-base-uncased

Model & Setup	F1 Macro	Precision Macro	Recall Macro
bert-base-uncased (unfreeze last 4 layers after epoch=3, MLP layers=1, epochs=7)	0.6867	0.7463	0.6522
bert-base-uncased (unfreeze all layers after epoch=3, MLP layers=1, epochs=7)	0.6944	0.7350	0.6702
bert-base-uncased (unfreeze all layers after epoch=3, MLP layers=2, LR scheduler, epochs=8)	0.7064	0.7219	0.6931
bert-base-uncased + BiLSTM (unfreeze all layers after epoch=3, MLP layers=2, LR scheduler, epochs=9, BiLSTM=128, 2 layers)	0.6681	0.7167	0.6321
bert-base-uncased (attention pooling, num_layers=2, epochs=7)	0.6999	0.7376	0.6749

Results (Contd.)

2. Using roberta-base: (Best Performance)

Model & Setup	F1 Macro	Precision Macro	Recall Macro
roberta-base (unfreeze all layers after epoch=3, MLP layers=2, LR scheduler, epochs=7)	0.7135	0.7474	0.6908
roberta-base (attention pooling, num_layers=2, epochs=7)	0.7068	0.7497	0.6847

3. Using xlm-roberta-base:

Model & Setup	F1 Macro	Precision Macro	Recall Macro
xlm-roberta-base (epochs = 10)	0.6374	0.6842	0.6082

Results (Contd.)

4. Using DistilBERT

Model & Setup	F1 Macro	Precision Macro	Recall Macro
distilbert-base (unfreeze all layers after epoch 3, MLP layers = 2, LR scheduler, epochs = 7)	0.6713	0.6975	0.6539
distilbert-base (unfreeze all layers after epoch 3, MLP layers = 2, LR scheduler, epochs = 9)	0.6825	0.6721	0.7039

Results (Focal Loss)

Experimental Results Using Focal Loss

Model & Setup	F1 Macro	Precision Macro	Recall Macro
bert-base-uncased (focal loss, epochs=7, num_layers=2)	0.6571	0.7880	0.5755
roberta-base (focal loss, epochs=7, num_layers=2)	0.6860	0.7908	0.6232

MULTI-LINGUAL

(HINDI + MARATHI)

Architectural Approaches

- 1. Experimented with different pretrained transformers and classification techniques.
- 2. Transformers used: (from Hugging Face)
 - a. xlm-roberta-base
 - b. xlm-roberta-large
 - c. bert-base-multilingual-cased (mBERT)
 - d. ai4bharat/indic-bert
- 3. Classifiers used:
 - a. MLP head with 1 hidden layer (num_layers = 1)
 - b. MLP head with num_layers = 2
 - c. Attention Pooling + MLP head (num_layers = 2)

Training Approach

- Dataset -
 - Training: interleaved marathi and hindi datasets (split: 90% train, 10% validation)
 Total samples:
 - i. Marathi: 2415
 - ii. Hindi: 2556
 - b. Testing: interleaved marathi and hindi datasets

Total samples:

- i. Marathi: 1000
- ii. Hindi: 1010
- Training Approach (Transfer learning + fine-tuning), Loss criterion, Optimizer, LR Scheduler - Same as we did for English

Results (BCEWithLogitsLoss)

1. Using xlm-roberta-base:

Model	Experiment Details	F1 Macro	Precision Macro	Recall Macro
XLM-RoBERTa-Base	num_layers=2, num_epochs=7	0.7589	0.8089	0.7299
XLM-RoBERTa-Base	attention pooling, num_layers=2, epochs=7	0.7695	0.8305	0.7304
XLM-RoBERTa-Base	attention pooling, num_layers=2, epochs=15	0.8246	0.8465	0.8044
XLM-RoBERTa-Base + BiLSTM	- (BiLSTM gave bad F1, ignored)	(bad)	(ignored)	(ignored)

Results (Contd.)

2. Using xlm-roberta-large: (best performance)

Model	Experiment Details	F1 Macro	Precision Macro	Recall Macro
XLM-RoBERTa- Large	num_layers=2, num_epochs=7	0.8730	0.8884	0.8627
XLM-RoBERTa- Large	attention pooling, num_layers=2, epochs=7	0.7584	0.9429	0.6943

3. Using bert-base-multilingual-cased (mBERT):

Model	Experiment Details	F1 Macro	Precision Macro	Recall Macro
mBERT	num_layers=2, num_epochs=7	0.7135	0.7662	0.6745

Results (Focal Loss)

Experimental Results Using Focal Loss

Model	Experiment Details	F1 Macro	Precision Macro	Recall Macro
XLM-RoBERTa-Large	focal loss, num_layers=2, epochs=7	0.8722	0.9355	0.8191
XLM-RoBERTa-Base	focal loss, num_layers=2, epochs=12	0.8105	0.8902	0.7479
IndicBERT	focal loss, num_layers=2, epochs=15	0.7278	0.8993	0.6166

INTERPRETABILITY

Interpretability and Faithfulness Check

- Tool Used : LIME (Local Interpretable Model-agnostic Explanations)
- Goal: Check if the model relies on real emotional context or just keyword shortcuts.

• Approach:

- 1. Used LIME to highlight important words per emotion.
- 2. Tested sentence variants with negations, sarcasm, and misleading patterns, punctuations (ex: exclamations)

Findings:

- Model relied on keywords like "sad" or "thrilled" for example, ignoring the context.
- 2. Shows signs of undesirable shortcut learning.

Results

I was thrilled until everything went

Interpretability - Roberta-base Model on English Sentences

Why do you think I am sad? Infact I am quite the opposite.

Text with highlighted words

It may look like I'm sad, but appearances can be deceiving.

Text with highlighted words

Sure, I'm sad.

Results

Interpretability - xlm roberta base Model on Hindi and Marathi Sentences

Text with highlighted words

यह हो **सकता** है कि मुझे दुखी लगे, लेकिन बाहरी रूप धोखा दे **सकते** हैं।

Summary of unfaithfulness (English)

Set1:

S4: "I am not sad today" -> predicts sadness due to emphasis on "sad"

Set2: (Undesirable shortcuts observed)

- 1. S2: "I was thrilled until everything went wrong." -> predicts joy based on "thrilled" (but the sentence indicates the opposite, indirectly)
- 2. S3: "Everyone expects me to be thrilled, but I'm not." -> predicts joy (the speaker is not feeling joy)
- 3. S4: "Sure, thrilled. Totally." -> predicts joy (can't recognize the sarcasm)

Set3: (Undesirable shortcuts observed)

- 1. S1: "I am not sad today" -> predicts sadness due to word "sad" (can't recognize negation here due to "not")
- 2. S2: "Why do you think I am sad? In fact I am quite the opposite." -> predicts sadness (but the speaker clearly indicates the opposite)
- 3. S3: "It may look like I'm sad, but appearances can be deceiving." -> predicts sadness (though the speaker suggests the opposite, indirectly)
- 4. S4: "Sure, I'm sad."-> predicts sadness (Can't recognize sarcasm)

Summary of unfaithfulness (Hindi + Marathi)

Set1:

Hindi:

Wrong prediction for "I am not sad" -> emphasis on word "sad" (undesirable shortcut to associate "dukhi" to sadness)

Marathi:

Wrong prediction for "I am not sad" -> emphasis on word "sad" (undesirable shortcut to associate "dukhi" to sadness)

Set2:

Hindi:

- 1. S2: "I was happy until everything went wrong" -> predicts joy based on word "khushi"
- 2. S4: "Sure! I am totally happy." -> predicts joy, can't understand sarcasm

Marathi:

- 1. S2 and S4: same prediction and reason as Hindi
- 2. S3: "I was happy, until everything went wrong" -> predicts joy based on the word "anandit"

Summary of unfaithfulness (Hindi + Marathi) (Contd...)

Set3:

Hindi:

- 1. S1: "I am not sad today." -> predicts sadness (can't capture negation)
- 2. S2: "Why do you think I am sad? In fact, I am quite the opposite." -> predicts sadness (even though it mentions in the end that it's the opposite)
- 3. S3: "It may look like I am sad, but external looks can be deceiving." -> predicts sadness (even though indirectly the person means the opposite)
- 4. S4: "Sure, I am sad." -> predicts sadness (can't capture sarcasm)

Marathi:

Same predictions and reasons mentioned above for hindi

Mitigation Strategy based on Interpretability Analysis

Contrastive Learning:

We can use contrastive loss to teach the model to differentiate between subtle language features like irony, sarcasm, or sarcasm-like patterns.

Or even patterns like negation.

Adversarial training:

Include samples which the model predicts wrongly (adversarial samples) based from interpretability analysis and re-train the model on the modified datasets

THANK YOU