Cuaderno Estructural

David Cardozo

February 2014

1 Seccion 1.6

Sean $A, B, C, A', B' \subseteq U$ Como se comparan los siguientes conjuntos?

1.1 $(A \times B) \cup (C \times D)$

Sea $(x,y) \in (A \times B) \cup (C \times D)$ luego $(x,y) \in A \times B$ o $(x,y) \in C \times D$ Realizemos la prueba por casos:

Caso 1:

 $x \in A, y \in B$ Entonces como $A \subseteq A \cup C$ y $B \in B \cup D$, entonces $x \in A \cup C$ y $y \in B \cup D$. Entonces $(x,y) \in (A \cup C) \times (B \cup D)$.

Similar "Left as an exercise to the reader"

1.2
$$(A \times B) \cap (C \times D)$$
 vs $(A \cap C) \times (B \cap D)$

Sea $(x, y) \in (A \times B) \cap (C \times D)$

Entonces $(x, y) \in A \times B$ y $(x, y) \in C$

es decir, $x \in A, y \in B, x \in C, y \in D$.

ssi: $x \in (A \cap C)$ y $y \in B \cup D$

ssi: $(x,y) \in (A \cap C) \times (B \cap D)$

el si y solo si nos dimos cuenta por ser todos los pasos por "reversibles

2 Para todo $a \in \mathbb{R}$

$$H_a = \left\{ x, y \in \mathbb{R}^2 : y = a \right\} \tag{1}$$

$$V_a = \left\{ x, y \in \mathbb{R}^2 : x = a \right\} \tag{2}$$

Dibuje en el plano.

$$B = \bigcup_{a \in [2,5]} (H_a \cap Va)$$

Entonces

$$B = \{(x, y) : x = y, x \in [2, 5]\}$$

3 Sea

$$A = \bigcup_{a \in [0,1)} \big(\bigcap_{b \in (a,6]} [b,b+a) \big)$$

Para el caso particular, observemos

$$\bigcap_{b \in (\frac{1}{2},6]} [b,b) + \frac{1}{2} = \emptyset$$

Entonces probemos que para todo $a \in [0, 1]$

$$B = \bigcap_{b \in (a,b]} [b,b+a) = \emptyset$$

Demostracion: Sea $a \in [0,1]$. Entonces considere los intervalos [1,1+a] y [6,6+a]

Como $0 \le a < 1$, entonces 1 + a < 2 < 6, luego $[1, 1 + a) \cap [6, 6 + a]$

No puede existir un x que pertenezca a todo]b,b+a) para $b\in(a,6]$ o sea, $b=\emptyset$

4 Sea A un conjunto

Dado $a \in A$, sea $E_a = B \in B(A) : A \in B$

Demostrar

$$\bigcup_{a \in A} E_a = P(a) \backslash \emptyset$$

Demostracion:

Por doble contenencia, Sea

$$x \in \bigcup_{a \in A} E_a$$

Entonces $X \in E_a$ para algun $a \in A$.

Por definicion de $E_a, X \in P(A)$ y $a \in X$

Entonces $x \neq \emptyset$ Luego $X \in P(A)$ y $X \notin \emptyset$ entonces $X \in P(A) \setminus \emptyset$

Parte 2

Sea $X \in P(A) \backslash \emptyset$.

Entonces $X \in P(A) \ Y \ X \notin \emptyset$

por lo tanto $X \neq \emptyset$.

Entonces existe un $c \in X$

Como $X \in P(A)$ y $c \in X$ entonces $X \in E_c$ Pero $c \in A$, entonces $c \in X$ y $X \in P(A)$

o sea, $X \subseteq A$

Luego, $X \in \bigcup_{a \in A} E_a$