Laboratorium 6

Biblioteki: numpy, matplotlib, scikit-image

Celem laboratorium 6. jest zapoznanie się z metodą regeneracji obrazu przy użyciu filtracji transformaty Fouriera.

Zadanie 1:

- Przygotować wykres o 3 wierszach i 2 kolumnach.
- Wczytać obraz <u>image1.jpeg</u> za pomocą funkcji <u>plt.imread</u>. Obliczyć średnią kanałów barwnych w celu otrzymania obrazu monochromatycznego (<u>np.mean</u>).
- W pierwszej komórce wykresu zaprezentować monochromatyczny obraz.
- Obliczyć transformatę Fouriera obrazu. Logarytm wartości bezwzględnej zaprezentować w drugiej komórce wykresu.
- Obraz transformaty należy poddać normalizacji 0-1 i progowaniu z progiem ustawionym na 0.5 i 0.8.
 - Progowanie to operacja binaryzacji danych, która wszystkim wartościom poniżej progu przypisuje wartość negatywną a powyżej progu pozytywną.
- W kolejnym wierszu wykresu zaprezentować obraz transformaty po progowaniu.
- Określić i wyświetlić w konsoli współrzędne punktów widocznych na obrazie po progowaniu, które mogą powodować zanieczyszczenie. Użyć funkcji np.argwhere.

Przy progu 0.8 widać największe zanieczyszczenia. Oczekiwanym efektem jest określenie współrzędnych dwóch lub czterech punktów.

Efekt zadania 1:

Laboratorium 6 1

Zadanie 2:

- Z transformaty Fouriera usunąć składowe (ustawić ich wartość na zero) leżące w wierszach, w których spodziewamy się zanieczyszczeń.
- Obliczyć transformatę odwrotną i zaprezentować na wykresie w kolejnym wierszu, wraz z reprezentacją zmodyfikowanej transformaty Fouriera.

Efekt zadania 2:

Zadanie 3:

- Przygotować wykres o 2 kolumnach i 2 wierszach.
- Wczytać obraz image2.jpg.
- Obliczyć jego transformatę Fouriera.
- Obraz i transformatę zaprezentować na wykresie, kolejno w pierwszej i w drugiej komórce.
- Użyć funkcji disc z biblioteki scikit-image do filtracji transformaty Fouriera.
 Przykład:

Laboratorium 6 3

- Współrzędne punktów centralnych dysków i jego promień wyznaczyć przy użyciu progowania lub empirycznie.
- Zaprezentować transformatę po filtracji oraz obraz uzyskany w wyniku transformaty odwrotnej.

Przykładowy efekt zadania 3:

Laboratorium 6