Computer Graphics, Lab Assignment 9

Handed out: May 4, 2021

Due: 23:59, May 5, 2021 (NO SCORE for late submissions!)

- Only accept answers submitted via git push to this course project for you at https://hconnect.hanyang.ac.kr (<Year>_<Course no.>_<Class code>/<Year>_<Course no.>_<Student ID>.git).
- Place your files under the directory structure <Assignment name>/<Problem no.>/<your file> just like the following example.

```
+ 2021_ITE0000_2019000001

+ LabAssignment9/

+ 1/

- 1.py

+ 2/

- 2.py

+ 3/

- 3.py
```

- The submission time is determined not when the commit is made but when the git push is made.
- 1. Write down a Python program to visualize ZXZ Euler angles.
 - A. This is how ZXZ Euler angles works
 - i. Rotate along Z-axis by $\boldsymbol{\alpha}$
 - ii. Rotate along X-axis of the new frame by $\boldsymbol{\beta}$
 - iii. Rotate along Z-axis of the new frame by γ
 - B. Start from 9-Orientation&Rotation practice code, implement ZXZ Euler angles and add code to change α , β , γ values in the following way.
 - i. If you press or repeat a key, the value of α , β , γ should be changed as shown in the table:

Key	Transformation
Α	Increase α by 10°
Z	Decrease α by 10°
S	Increase β by 10°
Χ	Decrease β by 10°
D	Increase γ by 10°
C	Decrease γ by 10°
V	Initialize orientation

- C. Hint: You do not need to store a composed rotation matrix as a global variable. You can just store α , β , γ as global variables.
- D. Set the window title to **your student ID** and the window size to (480,480).
- E. Expected result: Uploaded LabAssignment9-1.mp4
- F. Files to submit: A Python source file (Name the file whatever you want (in English). Extension should be .py)
- 2. Write down a Python program to compare 4 orientation interpolation methods.
 - A. First, implement following functions:
 - B. exp & log functions

i. exp(rv)

- 1. Converts a rotation vector to a rotation matrix
- 2. You can use Rodrigues' rotation formula or the method in 9-Orientation& Rotation
- 3. Returns a rotation matrix

ii. log(R)

- 1. Converts a rotation matrix to a rotation vector
- 2. You can use the method in 9-Orientation& Rotation slides.
- 3. Returns a rotation vector (the length of the vector is the rotation angle)
- C. Interpolation functions:
 - i. slerp(R1, R2, t) slerp
 - 1. R1 & R2: rotation matrices for start & end orientations

- ii. **interpolateRotVec(rv1, rv2, t)** interpolate each element of two vectors
 - 1. rv1 & rv2: rotation vectors for start & end orientations
- iii. **interpolateZYXEuler(euler1, euler2, t)** interpolate each element of two euler angle tuples
 - 1. euler1 & euler2: tuples of ZYX Euler angles for start & end orientations (euler1[0]: xang, euler1[1]: yang, euler1[2]: zang)
- iv. interpolateRotMat(R1, R2, t) interpolate each element of two matrices
 - 1. R1 & R2: rotation matrices for start & end orientations
- D. For all interpolation functions:
 - i. All interpolation functions return a rotation matrix
 - ii. The parameter t ranges from 0.0 to 1.0
- E. Start from the uploaded code skeleton (LabAssignment9-2-code-skeleton.py).
- F. You will need to use
 - i. The given lerp() for interpolateRotVec(), interpolateZYXEuler(), interpolateRotMat()
 - ii. The given ZYXEulerToRotMat() for interpolateZYXEuler()
 - iii. Your exp(), log() implementation for slerp(), interpolateRotVec()
- G. Program usage (already implemented in the code skeleton):
 - i. When the program is run, only slerp() result is visible
 - ii. A key: Toggle slerp() result
 - iii. S key: Toggle interpolateRotVec() result
 - iv. D key: Toggle interpolateZYXEuler() result
 - v. F key: Toggle interpolateRotMat() result
 - vi. Z key: Hide all results
 - vii. X key: Show all results
- H. Set the window title to **your student ID** and the window size to (480,480).
- I. Expected result: Uploaded LabAssignment9-2.mp4

J.	Files to su		source	file	(Name	the	file	whatever	you	want	(in	English).