Homework 01 - 1.2, 1.3

Due Wed 2/5 Uzair Hamed Mohammed

1.2 Review of Calculus

- 1. Show that the following equations have at least one solution in the given intervals.
 - a. $x \cos x 2x^2 + 3x 1 = 0$, [0.2, 0.3] and [1.2, 1.3]

For interval [0.2, 0.3]:

$$f(0.2) = 0.2\cos(0.2) - 2(0.2)^2 + 3(0.2) - 1 = -0.284$$

$$f(0.3) = 0.3\cos(0.3) - 2(0.3)^2 + 3(0.3) - 1 = 0.0066$$

For interval [1.2, 1.3]:

$$f(1.2) = 1.2\cos(1.2) - 2(1.2)^2 + 3(1.2) - 1 = 0.1548$$

$$f(1.3) = 1.3\cos(1.3) - 2(1.3)^2 + 3(1.3) - 1 = -0.132$$

Therefore, $x\cos x - 2x^2 + 3x - 1$ has at least one solution in both intervals due to sign changes and contunity of f(x)

b. $(x-2)^2 - \ln x = 0$, [1, 2] and [e, 4]

Sol:

For interval [1, 2]:

$$f(1) = (1-2)^2 - \ln(1) = 1$$

$$f(2) = (2-2)^2 - \ln(2) = -0.693$$

For interval [e, 4]:

$$f(e) = (e-2)^2 - \ln(e) = -0.484$$

$$f(4) = (4-2)^2 - \ln(4) = 2.61$$

Therefore, $(x-2)^2 - \ln x = 0$ has at least one solution in both intervals due to sign changes and contunity of f(x)

c. $2x\cos(2x) - (x-2)^2 = 0$, [2,3] and [3,4]

Sol

For interval [2,3]:

$$f(2) = 2(2)\cos(2 \times 2) - (2 - 2)^2 = -2.61$$

$$f(3) = 2(3)\cos(2 \times 3) - (3 - 2)^2 = 4.761$$

For interval [3, 4]:

$$f(3) = 2(3)\cos(2\times3) - (3-2)^2 = 4.761$$

$$f(4) = 2(4)\cos(2\times4) - (4-2)^2 = -5.164$$

Therefore, $2x\cos(2x) - (x-2)^2 = 0$ has at least one solution in both intervals due to sign changes and contunity of f(x)

d.
$$x - (\ln x)^x = 0$$
, [4, 5]

Sol:

For interval [4, 5]:

$$f(4) = 4 - (\ln 4)^4 = 0.306$$

 $f(5) = 5 - (\ln 5)^5 = -5.798$

Therefore, $x - (\ln x)^x = 0$ has at least one solution in the interval due to sign changes and contunity of f(x)

2. Find intervals containing solutions to the following equations.

a.
$$x - 3^{-x} = 0$$

Sol:

$$f(0) = 0 - 3^0 = -$$

 $f(1) = 1 - 3^{-1} = +$

The interval is [0,1]

b.
$$4x^2 - e^x = 0$$

Sol:

$$f(0) = 4(0)^{2} - e^{0} = -$$

$$f(1) = 4(1)^{2} - e^{1} = +$$

The interval is [0,1]

c.
$$x^3 - 2x^2 - 4x + 3 = 0$$

Sol:

$$f(0) = 0^3 - 2 * 0^2 - 4 * 0 + 3 = +$$

$$f(1) = 1^3 - 2^2 - 4 + 3 = -$$

The interval is [0,1]

d.
$$x^3 = 4.001x^2 + 4.002x = 1.101 = 0$$

Sol:

$$f(-3) = (-3)^3 = 4.001(-3)^2 + 4.002(-3) = 1.101 = -$$

 $f(-2) = (-2)^3 = 4.001(-2)^2 + 4.002(-2) = 1.101 = +$

The interval is [-3, -2]

3. Show that the first derivatives of the following functions are zero at least once in the given interests.

a.
$$f(x) = 1 - e^x + (e - 1)\sin(\frac{\pi}{2}x)$$
, [0, 1]
Sol:

$$f(0) = 1 - e^0 + (0 - 1)\sin(\frac{\pi}{2}0) = 0$$

$$f(1) = 1 - e^1 + (1 - 1)\sin(\frac{\pi}{2}1) = 0$$

Since f(x) is differentiable in the given open interval and continuous in the given closed interval, by Rolle's Theorem, there exists $c \in (0,1)$ such that f'(c) = 0

b.
$$f(x) = (x - 1) \tan x + x \sin \pi x$$
, [0, 1]
Sol:

$$f(0) = (0-1)\tan 0 + 0\sin \pi 0 = 0$$

$$f(1) = (1-1)\tan 1 + 1\sin \pi 1 = 0$$

Since f(x) is differentiable in the given open interval and continuous in the given closed interval, by Rolle's Theorem, there exists $c \in (0,1)$ such that f'(c) = 0

c.
$$f(x) = x \sin \pi x - (x - 2) \ln x$$
, [1,2]
Sol:

$$f(0) = 0 \sin \pi 0 - (0 - 2) \ln 0$$

$$f(1) = 1 \sin \pi 1 - (1 - 2) \ln 1$$

Since f(x) is differentiable in the given open interval and continuous in the given closed interval, by Rolle's Theorem, there exists $c \in (0,1)$ such that f'(c)=0

d.
$$f(x) = (x-2)\sin x \ln(x+2)$$
, $[-1,3]$

4. Find $\max_{a \le x \le b} |f(x)|$ for the following functions and intervals.

a.
$$f(x) = \frac{(2-e^x+2x)}{3}$$
, [0,1]
Sol:

$$f'(x) = \frac{2 - e^x}{3}$$

$$x = \ln 2$$

$$f(0) = \frac{1}{3}$$

$$f(1) = \frac{4 - e}{3}$$

$$Max = \frac{2 \ln 2}{3}$$

b.
$$f(x) = \frac{(4x-3)}{(x^2-2x)}$$
, [0.5, 1]
Sol:

$$f'(x) = \frac{-4x^2 + 6x - 6}{(x^2 - 2x)^2}$$
$$f(0.5) = \frac{4}{3}$$
$$f(1) = -1$$

$$Max = \frac{4}{3}$$

c.
$$f(x) = 2x\cos(2x) - (x-2)^2$$
, [2,4]
d. $f(x) = 1 + e^{-\cos(x-1)}$, [1,2]

5. Let
$$f(x) = x^3$$
Sol:

$$\begin{aligned} &\text{a.}P_2(x)=0\\ &\text{b. Error}=0.125\\ &\text{c.}P_2(x)=1+3(x-1)+3(x-1)^2\\ &\text{d.}R_2=-0.125, \text{ actual error}=-0.125 \end{aligned}$$

6. Let
$$f(x) = \sqrt{x+1}$$

Sol:

a.
$$P_3(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

b.0.7109, 0.8662, 1.1182, 1.2344
c. $-0.0038, -0.0002, -0.0002, -0.0097$

7. Find the second Taylor Polynomial $P_2(x)$ for the function $f(x) = e^x \cos x$ about $x_0 = 0$.

a. Use $P_2(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) - P_2(0.5)|$ using the error formula, and compare it to the actual error.

Sol:

$$\begin{split} P_2(x) &= 1 + x \\ P_2(0.5) &= 1.5 \\ \text{Actual } f(0.5) \approx 1.445 \\ \text{Error: } |1.445 - 1.5| = 0.055 \\ \text{Error bound: } \frac{4.473}{6}(0.5)^3 \approx 0.0932 \end{split}$$

b. Find a bound for the error $|f(x) - P_2(x)|$ in using $P_2(x)$ to approximate f(x) on the interval [0,1]. Sol:

Error bound:
$$\frac{7.525}{6} \cdot 1^3 = 1.254$$

c. Approximate $\int_0^1 f(x) dx$ using $\int_0^1 P_2(x) dx$.

$$\int_0^1 P_2(x) \, dx = 1.5 \quad \Rightarrow \quad 1.5$$

d. Find an upper bound for the error in 7c using $\int_0^1 |R_2(x)| dx$, and compare the bound to the actual error. Sol:

Error bound:
$$\frac{7.525}{24} \approx 0.3136$$

Actual error: $|1.394 - 1.5| = 0.106$

- 8. Find the Third Taylor polynomial $P_3(x)$ for the function $f(x) = (x 1)^{-1}$ $1) \ln(x) \text{ about } x_0 = 1.$
 - a. Use $P_3(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) - P_3(0.5)|$ using the error formula, and compare it to the actual error.

Sol:

$$P_3(x) = (x-1)^2 - \frac{1}{2}(x-1)^3$$

 $P_3(0.5) = 0.3125$
Actual $f(0.5) \approx 0.3466$
Error: 0.0341
Error bound: $\frac{112}{24} \cdot (0.5)^4 \approx 0.2917$

b. Find a bound for the error $|f(x) - P_3(x)|$ in using $P_3(x)$ to approximate f(x) on the interval [0.5, 1.5]. Sol:

Error bound:
$$\frac{112}{24} \cdot (0.5)^4 \approx 0.2917$$

c. Approximate $\int_{0.5}^{1.5} f(x) dx$ using $\int_{0.5}^{1.5} P_3(x) dx$. Sol:

$$\int_{0.5}^{1.5} P_3(x) \, dx \approx 0.0833$$

d. Find an upper bound for the error in 8c using $\int_{0.5}^{1.5} |R_3(x)| dx$, and compare the bound to the actual error. Sol:

Error bound: ≈ 0.0583 Actual error: $|0.088 - 0.0833| \approx 0.0047$

9. Use the error term of a Taylor polynomial to estimate the error involved in using $\sin x \approx x$ to approximate $\sin 1^{\circ}$.

Sol:

Convert 1° to radians: $x = \frac{\pi}{180} \approx 0.0174533$. Error term for $P_1(x) = x$ is $|R_1(x)| \leq \frac{|x|^3}{6}$. $|R_1| \leq \frac{(\pi/180)^3}{6} \approx 8.85 \times 10^{-7}$. Error bound: $\approx 8.85 \times 10^{-7}$.

10. Use a Taylor polynomial about $\frac{\pi}{4}$ to approximate $\cos 42^{\circ}$ to an accuracy of 10^{-6} .

Sol:

Convert 42° to radians: $x = \frac{7\pi}{30} \approx 0.733$. Center at $a = \frac{\pi}{4} \approx 0.785$. Compute $|x - a| = \frac{\pi}{60} \approx 0.05236$. Find smallest n such that $\frac{(\pi/60)^{n+1}}{(n+1)!} \leq 10^{-6}$. For $n = 3: \frac{(0.05236)^4}{24} \approx 3.12 \times 10^{-7} \leq 10^{-6}$. Use $P_3(x)$ about $\frac{\pi}{4}$ with terms up to $(x - \frac{\pi}{4})^3$.

- 11. Let $f(x) = e^{x/2} \sin(x/3)$. Determine the following:
 - a. The third Maclaurin polynomial $P_3(x)$. Sol:

$$P_3(x) = \frac{x}{3} + \frac{x^2}{6} + \frac{23}{648}x^3$$

b. A bound for the error $|f(x) - P_3(x)|$ on [0, 1]. Sol:

Error bound:
$$\frac{5}{1296} \approx 0.00386$$

- 12. Let $f(x) = \ln(x^2 + 2)$. Determine the following:
 - a. The Taylor polynomial $P_3(x)$ for f expanded about $x_0 = 1$. Sol:

$$P_3(x) = \ln 3 + \frac{2}{3}(x-1) + \frac{1}{9}(x-1)^2 + \frac{2}{81}(x-1)^3$$

b. The maximum error $|f(x) - P_3(x)|$ for $0 \le x \le 1$. Sol:

c. The Maclaurin polynomial $\tilde{P}_3(x)$ for f. Sol:

$$\tilde{P}_3(x) = \ln 2 + \frac{x^2}{2}$$

d. The maximum error $|f(x) - \tilde{P}_3(x)|$ for $0 \le x \le 1$. Sol:

e. Does $P_3(0)$ approximate f(0) better than $\tilde{P}_3(1)$ approximates f(1)? Sol:

Error at $P_3(0)$: $|\ln 2 - 0.5183| \approx 0.1748$

Error at $\tilde{P}_3(1) : |\ln 3 - 1.1931| \approx 0.0945$

No, $\tilde{P}_3(1)$ approximates f(1) better.

13. Find a bound for the maximum error when using $P_2(x) = 1 - \frac{1}{2}x^2$ to approximate $f(x) = \cos x$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Error term:
$$R_2(x) = \frac{f^{(4)}(c)}{4!}x^4$$
 $(c \in [-1/2, 1/2])$
Since $f^{(4)}(x) = \cos x$, $|f^{(4)}(c)| \le 1$
Max $|x|^4 \le \left(\frac{1}{2}\right)^4 = \frac{1}{16}$
Error bound: $|R_2(x)| \le \frac{1}{24} \cdot \frac{1}{16} = \frac{1}{384} \approx 0.0026$

- 14. The *n*-th Taylor polynomial for a function f at x_0 is sometimes referred to as the polynomial of degree at most n that best approximates f near x_0 .
 - a. Explain why this description is accurate.

Sol:

The *n*-th Taylor polynomial $P_n(x)$ matches f and its first n derivatives at x_0 . This ensures the polynomial shares the function's value, slope, curvature, and higher-order behaviors at x_0 , minimizing the approximation error near x_0 . The error $|f(x) - P_n(x)|$ grows only with $|x-x_0|^{n+1}$, making $P_n(x)$ the "best" local approximation among polynomials of degree $\leq n$.

b. Find the quadratic polynomial that best approximates a function f near $x_0 = 1$ if the tangent line at $x_0 = 1$ has equation y = 4x - 1, and f''(1) = 6.

Sol:

From the tangent line: f(1) = 3, f'(1) = 4. Quadratic polynomial:

$$P_2(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2$$

$$P_2(x) = 3 + 4(x-1) + 3(x-1)^2.$$

15. The error function is defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

a. Integrate the Maclaurin series for e^{-t^2} to show that

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)k!}.$$

Maclaurin series: $e^{-t^2} = \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{k!}$. Integrate term-by-term: $\int_0^x e^{-t^2} dt = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)k!} x^{2k+1}$. Multiply by $\frac{2}{\sqrt{\pi}}$ to obtain the series.

b. Verify that the two series agree for k=1,2,3,4. Sol:

Expand both series up to k=4: Series (a): $\frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} \right)$. Series (b): $\frac{2}{\sqrt{\pi}} e^{-x^2} \left(x + \frac{2x^3}{3} + \frac{4x^5}{15} + \frac{8x^7}{105} + \frac{16x^9}{945} \right)$. Multiply $e^{-x^2} \approx 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \frac{x^8}{24}$ into series (b): Result matches series (a) up to x^9 (coefficients agree).

c. Approximate $\operatorname{erf}(1)$ to within 10^{-7} . Sol:

Compute terms until
$$\frac{2}{\sqrt{\pi}} \cdot \frac{1}{(2k+1)k!} < 10^{-7}$$
.
At $k = 6 : \frac{2}{\sqrt{\pi}} \cdot \frac{1}{13 \cdot 6!} \approx 1.08 \times 10^{-8} < 10^{-7}$.
erf(1) ≈ 0.84270079 .

d. Use the same number of terms (k = 6) with the series in part (b). Sol:

Approximation: $erf(1) \approx 0.84270079$ (same accuracy as part c).

e. Explain difficulties using the series in part (b). Sol:

Series (b) requires multiplying two infinite series, leading to computational complexity and pot

- 16. Verify that $|\sin x| \le |x|$ for all x.
 - a. Show that for $x \geq 0$, $f(x) = x \sin x$ is non-decreasing, implying $\sin x \leq x$.

Sol:

$$f'(x) = 1 - \cos x \ge 0$$
 (since $\cos x \le 1$ for all x).
 $\Rightarrow f(x)$ is non-decreasing on $[0, \infty)$.
At $x = 0 : f(0) = 0 - \sin 0 = 0$.
For $x \ge 0 : f(x) \ge f(0) \implies x - \sin x \ge 0 \implies \sin x \le x$.

b. Conclude using $\sin(-x) = -\sin x$.

Sol:

For x < 0:

$$|\sin x| = |\sin(-x)| = |-\sin(-x)| = |\sin(-x)| \le |-x| = |x|$$
 (by part (a)).

Thus, $|\sin x| \leq |x|$ for all $x \in \mathbb{R}$.

1.3 Round-Off Error and Computer Arithmetic

1. Compute the absolute error and relative error in approximations of p by p^* .

a.
$$p = \pi, p^* = \frac{22}{7}$$

Sol:

Absolute error: $\frac{\left|\pi - \frac{22}{7}\right|}{\pi} \approx 0.001264$ Relative error: $\frac{0.001264}{\pi} \approx 0.000402$ (0.0402%)

b.
$$p = \pi, p^* = 3.1416$$

Sol:

Absolute error: $|\pi - 3.1416| \approx 0.00000735$ Relative error: $\frac{0.00000735}{\pi} \approx 0.00000234$ (0.000234%)

c.
$$p = e, p^* = 2.718$$

Sol:

Absolute error: $\frac{|e-2.718|}{e} \approx 0.0002818$ Relative error: $\frac{0.0002818}{e} \approx 0.0001037$ (0.01037%)

d.
$$p = \sqrt{2}, p^* = 1.414$$

Sol:

Absolute error: $\frac{\left|\sqrt{2}-1.414\right|}{\sqrt{2}} \approx 0.0002136$ Relative error: $\frac{0.0002136}{\sqrt{2}} \approx 0.000151$ (0.0151%)

e.
$$p = e^{10}, p^* = 22000$$

Sol:

Absolute error: $\left| e^{10} - 22000 \right| \approx 26.4658$ Relative error: $\frac{26.4658}{e^{10}} \approx 0.001201$ (0.1201%)

f.
$$p = 10^{\pi}, p^* = 1400$$

Absolute error:
$$|10^{\pi} - 1400| \approx 15$$

Absolute error:
$$|10^{\pi} - 1400| \approx 15$$

Relative error: $\frac{15}{10^{\pi}} \approx 0.01083$ (1.083%)

g.
$$p = 8!$$
, $p^* = 39900$
Sol:

Absolute error:
$$|40320 - 39900| = 420$$

Relative error: $\frac{420}{40320} \approx 0.0104$ (1.04%)

h.
$$p = 9!, p^* = \sqrt{18\pi} \left(\frac{9}{e}\right)^9$$
 Sol:

Absolute error:
$$|362880 - 359500| \approx 3380$$

Relative error: $\frac{3380}{362880} \approx 0.00931$ (0.931%)

2. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in (ii) and (iii).

a.
$$\frac{4}{5} + \frac{1}{3}$$

Sol:

(i) Exact:
$$\frac{17}{15} \approx 1.13333333333$$

b.
$$\frac{4}{5} \times \frac{1}{3}$$

Sol:

(i) Exact:
$$\frac{4}{15} \approx 0.26666666667$$

(ii) Chopping: 0.266

c.
$$\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$$

Sol:

(i) Exact:
$$\frac{139}{660} \approx 0.2106060606$$

$$\begin{array}{l} \text{(i) Exact: } \frac{139}{660} \approx 0.2106060606 \\ \text{(ii) Chopping: } 0.211 \quad \text{Error: } 0.187\% \end{array}$$

d.
$$\left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}$$

Sol:

- $\begin{array}{l} \text{(i) Exact: } \frac{301}{660} \approx 0.4560606061 \\ \text{(ii) Chopping: } 0.455 \quad \text{Error: } 0.232\% \end{array}$ (iii) Rounding: 0.456 Error: 0.0133%
- 3. Perform the following computations using three-digit rounding arithmetic and compute errors.
 - a. 133 + 0.921

- Exact: 133.921 Approx: 134
- Absolute error: 0.079 Relative error: 0.0590%
- b. 133 0.499

Sol:

- Exact: 132.501 Approx: 133
- Absolute error: 0.499 Relative error: 0.376%
- c. (121 0.327) 119

Sol:

- Exact: 1.673 Approx: 2.00
- Absolute error: 0.327 Relative error: 19.5%
- d. (121 119) 0.327

Sol:

- Exact: 1.673 Approx: 1.67
- Absolute error: 0.003 Relative error: 0.179%

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

Sol:

Exact: ≈ 1.9528 Approx: 1.80

Absolute error: 0.1528 Relative error: 7.82%

f.
$$-10\pi + 6e - \frac{3}{62}$$

Sol:

Exact: ≈ -15.1546 Approx: -15.1

Absolute error: 0.0546 Relative error: 0.360%

g.
$$\left(\frac{2}{9}\right) \times \left(\frac{9}{7}\right)$$

Sol:

Exact: ≈ 0.2857 Approx: 0.286

Absolute error: 0.000286 Relative error: 0.0999%

h.
$$\frac{\pi - \frac{22}{7}}{\frac{1}{17}}$$
 Sol:

Exact: ≈ -0.0215 Approx: 0.00

Absolute error: 0.0215 Relative error: 100%

4. Repeat question 3 using three-digit chopping arithmetic.

a.
$$133 + 0.921$$

Sol:

Exact: 133.921 Chopped: 133

Absolute error: 0.921 Relative error: 0.688%

b.
$$133 - 0.499$$

Exact: 132.501 Chopped: 132 Absolute error: 0.501 Relative error: 0.378%

c.
$$(121 - 0.327) - 119$$

 $\underline{\mathrm{Sol:}}$

Exact: 1.673 Chopped: 1.00

Absolute error: 0.673 Relative error: 40.2%

d.
$$(121 - 119) - 0.327$$

Sol:

Exact: 1.673 Chopped: 1.67 Absolute error: 0.003

Relative error: 0.179%

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

Sol:

Exact: ≈ 1.9528 Chopped: 2.36

Absolute error: 0.4072 Relative error: 20.8%

f.
$$-10\pi + 6e - \frac{3}{62}$$

Sol:

Exact: ≈ -15.1546 Chopped: -15.1Absolute error: 0.0546Relative error: 0.360%

g.
$$\left(\frac{2}{9}\right) \times \left(\frac{9}{7}\right)$$

Exact: ≈ 0.2857 Chopped: 0.284

Absolute error: 0.0017 Relative error: 0.599%

 $h. \frac{\pi - \frac{22}{7}}{\frac{1}{17}}$ $\underline{Sol:}$

Exact: ≈ -0.0215 Chopped: -0.017Absolute error: 0.0045Relative error: 20.9%

5. Repeat question 3 using four-digit rounding arithmetic.

a. 133 + 0.921Sol:

> Exact: 133.921 Approx: 133.9 Absolute error: 0.021 Relative error: 0.0157%

b. 133 - 0.499 Sol:

Exact: 132.501 Approx: 132.5

Absolute error: 0.001 Relative error: 0.000755%

c. (121 - 0.327) - 119Sol:

> Exact: 1.673 Approx: 1.700 Absolute error: 0.027 Relative error: 1.614%

d.
$$(121 - 119) - 0.327$$

Sol:

Exact: 1.673 Approx: 1.673 Absolute error: 0 Relative error: 0%

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

Sol:

Exact: ≈ 1.9538 Approx: 1.932

Absolute error: 0.0218 Relative error: 1.115%

f.
$$-10\pi + 6e - \frac{3}{62}$$

Sol:

Exact: ≈ -15.1546 Approx: -15.16Absolute error: 0.0054Relative error: 0.0356%

g.
$$\left(\frac{2}{9}\right) \times \left(\frac{9}{7}\right)$$

Sol:

Exact: ≈ 0.285714 Approx: 0.2857

Absolute error: 0.000014 Relative error: 0.0049%

h.
$$\frac{\pi - \frac{22}{7}}{\frac{1}{17}}$$
 Sol:

Exact: ≈ -0.0215 Approx: -0.01700Absolute error: 0.0045Relative error: 20.93%

6. Repeat question 3 using four-digit chopping arithmetic.

a.
$$133 + 0.921$$

Exact: 133.921Chopped: 133.9 Absolute error: 0.021 Relative error: 0.0157%

b. 133 - 0.499

Sol:

Exact: 132.501 Chopped: 132.5 Absolute error: 0.001 Relative error: 0.000755%

c.
$$(121 - 0.327) - 119$$

 $\underline{\text{Sol:}}$

Exact: 1.673 Chopped: 1.600Absolute error: 0.073 Relative error: 4.36%

d. (121 - 119) - 0.327Sol:

Exact: 1.673Chopped: 1.673 Absolute error: 0 Relative error: 0%

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

Sol:

Exact: ≈ 1.9538 Chopped: 1.983 Absolute error: 0.0292 Relative error: 1.5%

f.
$$-10\pi + 6e - \frac{3}{62}$$

Exact: ≈ -15.1553 Chopped: -15.15Absolute error: 0.0053 Relative error: 0.035%

g. $\left(\frac{2}{9}\right) \times \left(\frac{9}{7}\right)$ Sol:

Exact: ≈ 0.2857 Chopped: 0.2856

Absolute error: 0.000114 Relative error: 0.04%

h. $\frac{\pi - \frac{22}{7}}{\frac{1}{17}}$ Sol:

Exact: ≈ -0.0215 Chopped: -0.017Absolute error: 0.0045 Relative error: 20.9%

- 7. Compute the absolute error and relative error in approximations of π using the given formulas with the Maclaurin polynomial for $\arctan x$.
 - a. $4\left[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right]$ Sol:

Approximation: $4\left[\left(\frac{1}{2} - \frac{1}{24} + \frac{1}{160}\right) + \left(\frac{1}{3} - \frac{1}{81} + \frac{1}{1215}\right)\right] \approx 3.1456$ Absolute error: $|\pi - 3.1456| \approx 0.00398$ Relative error: $\frac{0.00398}{\pi} \approx 0.1268\%$

b. $14\arctan\left(\frac{1}{5}\right) - 4\arctan\left(\frac{1}{239}\right)$

Approximation: $16\left(\frac{1}{5} - \frac{1}{3}\left(\frac{1}{5}\right)^3 + \frac{1}{5}\left(\frac{1}{5}\right)^5\right) - 4\left(\frac{1}{239} - \frac{1}{3}\left(\frac{1}{239}\right)^3 + \frac{1}{5}\left(\frac{1}{239}\right)^5\right) \approx 3.1416$ Absolute error: $|\pi - 3.1416| = -2.83757402069e^{-05}$ Relative error: $\frac{3.1416}{\pi} = -9.03227863564e^{-06}\%$

Homework 02 - 1.4, 2.2

Due Tue 2/11 Uzair Hamed Mohammed

Hello