Monitor the Performance of Virtual Machines by using Azure Monitor VM Insights

Exercise - Set up a Log Analytics workspace and Azure Monitor VM Insights

Objectives:

- Deploy monitoring for workloads on virtual machines.
- Set up a log analytics workspace, onboard virtual machines to Azure Monitor VM Insights
- Build log queries by using Kusto Query Language.

In this unit, we will:

- 1. Create a Log Analytics workspace.
- 2. Configure the Log Analytics workspace permissions model for the environment you're supporting.
- 3. Create two virtual machines and onboard both to Azure Monitor VM Insights.

Creating a Log Analytics workspace

Home > Log Analytics workspaces >

Create Log Analytics workspace

Look for the access control mode, and select Use resource or workspace permissions. This setting changes the access mode to use the resource-context.

Creating the virtual machines

Creating the first virtual machine:

Run this command in Azure Cloud Shell:

```
az vm create \
```

- --resource-group learn-7df27ab4-6a90-4303-85d6-1ebbdda17587 \
- --location westus \
- --name SampleVM1 \
- --image UbuntuLTS \
- --admin-username azureuser \
- --generate-ssh-keys \
- --verbose

- Creating the second virtual machine:

az vm create \

- --resource-group learn-7df27ab4-6a90-4303-85d6-1ebbdda17587 \
- --location westus \
- --name SampleVM2 \
- --image UbuntuLTS \
- --admin-username azureuser \
- --generate-ssh-keys \
- --verbose

```
andrijana sh [ ~ ]$ az vm create \
--resource-group learn-7df27ab4-6a00-4303-85d6-lebbdda17587 \
--location westus \
--name SumpleW0 \
--inage UbuntulTS \
--same insuper UbuntulTS \
-
```

Onboard virtual machines to Azure Monitor VM Insights

Here are the created virtual machines that we will use as samples for this task:

Virtual machine

Enable

We configure the monitoring by selecting the log analytics workspace we created in the beginning:

We do the same for the second virtual machine.

We get the monitoring results:

We can review clients, processes, ports, etc.

This is the **Performance Tab**:

Explore the different graphs for:

- Logical Disk Performance
- CPU Utilization
- Available Memory
- Logical Disk IOPS
- Logical Disk MB/s
- Logical Disk Latency (ms)
- Max Logical Disk Used %
- Bytes Sent Rate
- Bytes Received Rate

Data from Min CPU utilization

Data for Avg CPU utilization

Data for Max CPU utilization

Sample VM1 Insights

Log Events:

InsightMetrics log:

- The logs section of a Log Analytics workspace opens with a prepopulated query showing the data being collected.

Virtual Machine 2 Insights:

>>

Properties Log Events Alerts Connections Changes

Select an event type to open in Log Analytics

EVENT TYPE	COUNT
Heartbeat	30
InsightsMetrics	719
ServiceMapProcess_CL	4
VMBoundPort	87
VMConnection	265
VMProcess	6

Displaying the results as a chart:

Build log queries by using the Kusto Query Language

- Capturing the information of the Heartbeat table

Using tabular operator *distinct* to make sure only the virtual machines we've created are reporting to the Log Analytics workspace

Build log queries

In this unit, we will:

- 1. Take an existing query, run the query, and analyze the visualizations.
- 2. Edit the existing query, run the query, and analyze the visualizations.

The query we used:

```
InsightsMetrics

| where TimeGenerated > ago(1h)

| where Origin == "vm.azm.ms"

| where Namespace == "Processor"

| where Name == "UtilizationPercentage"

| summarize avg(Val) by bin(TimeGenerated, 5m), Computer //split up by computer

| render timechart
```


- These results are shown only for SampleVM2 - the second virtual machine

Summarizing the maximum value:

Pinning the results to a dashboard I've created:

Pin to dashboard × Existing Create new Type ① Private Shared Dashboard

MyDashboard