Linear Regression

- **1.** A convenience store manager notices that sales of soft drinks are higher on hotter days, so he assembles the data in the table.
 - (a) Make a scatter plot of the data.

\neg		T										П		Г			
_			_	_	_	_	\vdash			_	_	_				_	
			-			-	\vdash										
							_										_
-	_	-	-	-	_	-			-			\vdash	\vdash			\vdash	
- 1																	
						1											
-		-	_	_			_		_	_	_	-	-			_	_
- 1									9								
_	-	1	-							_						-	-
						1											
-	_	-	-	-		-	_		-	-	_	-	-		-	-	-
_ 1																	
													\Box				
-	_	-						_		_		_	⊢				_
									î li								
-		1					_			-		-				\vdash	
	_								,								
+	-	-			_								-				

High	Number
Temperature	of cans
(°F)	sold
55	340
58	335
64	410
68	460
70	450
75	610
80	735
84	780

- (b) Find and graph a linear regression equation that models the data
- (e) Use the model to predict soft-drink sales if the temperature is $95\mathbf{F}$
- (d) What does the model predict for the temperature if the number of cans sold was only95?

- 2) A company wants to launch a new product and wants to know whether it will turn out to be a success or failure. We have information on the last 100 products this company launched, including if it was a success/failure, price, weight, color, and several other variables
- b) We have information on several Bay Area Tech Companies, including size, industry, revenue, average employee salary, and more. We want to know which features influence the average employee salary.
- c)You are given data of 100 individuals and their sequenced DNA and want to know whether these individuals will exhibit a particular disease based off their genomic mutations. We have information on 10,000 individual genomes and whether or not they exhibit the particular disease.
- 3)Suppose you have been given the following scenario for training and validation error for Linear Regression.

Hyperparameter setting	Learning Rate	Number of iterations	Training Error	Validation Error
1	0.1	1000	100	110
2	0.2	600	105	105
3	0.3	400	110	110
4	0.4	300	120	130
5	0.4	250	130	150

Which of the following hyperparameter settings is seemingly the best? **State your reason**

4) . Obtain a linear regression for the data in Table 1 assuming that y is the independent variable.

Table1: Example data for simple linear regression

X	1.0	2.0	3.0	4.0	5.0
у	1.00	2.00	1.30	3.75	2.25