- 6.5 1) Supposons qu'il existe $k \in \mathbb{N}$ avec $1 \le k < m$ tel que $a^k \equiv 1 \mod m$. L'équation $a x \equiv 1 \mod m$ admet a^{k-1} comme solution. Vu la proposition de la page 4.1, a et m sont premiers entre eux.
 - 2) Supposons a et m premiers entre eux.
 - (a) Clairement $\operatorname{pgcd}(1,m)=1$. Par hypothèse, $\operatorname{pgcd}(a,m)=1$. L'exercice 6.2 certifie que $\operatorname{pgcd}(a^n,m)=1$ pour tout $n\in\mathbb{N}$. Ainsi, $\overline{a^n}$ est une unité de $\mathbb{Z}/m\mathbb{Z}$ pour tout $n\geqslant 0$.
 - (b) $\mathbb{Z}/m\mathbb{Z}$ ne peut avoir au plus que m-1 unités. En effet, $\mathbb{Z}/m\mathbb{Z}$ contient m classes de congruence et $\overline{0}$ n'est pas une unité.
 - (c) Puisqu'il ne peut y avoir plus de m-1 unités, parmi les m unités $\overline{1}$, \overline{a} , $\overline{a^2}$, $\overline{a^3}$, ..., $\overline{a^{m-1}}$, il y en a deux d'entre elles qui sont égales. C'est pourquoi, il existe $n \ge 0$ et $1 \le k \le m-1$ tels que $\overline{a^{n+k}} = \overline{a^n}$, c'est-à-dire $a^{n+k} \equiv a^n \mod m$.
 - (d) Attendu que $\operatorname{pgcd}(a^n, m) = 1$, l'exercice 4.2 permet de simplifier la congruence $a^{n+k} \equiv a^n \mod m$, pour obtenir $a^k \equiv 1 \mod m$.