Test #2

Due Jun 12 at 11:59pm

Points 100

Questions 40

Available Jun 8 at 12:01am - Jun 12 at 11:59pm 5 days

Time Limit 60 Minutes

Instructions

This is called a "quiz" on Canvas, but it is really 100-point Test #2.

There is a time limit of 60 minutes on this test. Once you start, you must finish. Canvas will not let you pause and come back later.

This test is Open Notes, Closed Friends, and Closed Internet.

This is your last graded-anything in this class, so do a good job!

Thanks for a great quarter!

(1) Correct answers will be available on Jun 13 at 12:01am.

Score for this quiz: 100 out of 100

Submitted Jun 9 at 1:33pm This attempt took 41 minutes.

Question 1	2.5 / 2.5 pts
What is one reason that OpenCL uses a Command (Queue?
So that you don't need to know what each command do	pes
This paradigm is forced by how the hardware works	
To be compatible with CPU-SIMD	
So OpenCL can gobble up commands as fast as it can	

Question 2	2.5 / 2.5 pts
When OpenCL and OpenGL work together:	
They take turns accessing the vertex buffer	
It is just OpenCL that is able to access the vertex buff	fer
They both access the vertex buffer at the same time	
It is just OpenGL that is able to access the vertex buff	fer

In Project #3, the Functional Decomposition project, each individual quantity's function needed to have three barriers. The second barrier was there to: Indicate when that quantity's next value was done being copied to the global state Indicate when that quantity's function was done computing that quantity's next value Indicate when it was time to increment the month Indicate when the Watcher thread could print values

Question 4 2.5 / 2.5 pts

)	
ou should bould boultiplication	e able to get a 4x performance improvement in array
It uses a s	stack variable to hold each multiplication product
You can p	perform a multiply and an add in one instruction
It uses the	e stack to hold its pointers

Question 5	2.5 / 2.5 pts
In this class, the letters "MPI" stand for:	
Millions of Processor Instructions	
Message Passing Interface	
MegaCalculation Per Instruction	
Many-Processor Interfaces	

Question 6	2.5 / 2.5 pts
In MPI, a "derived type" is:	
Being able to pack multiple MPI_INTs into a single M	PI_LONG
You creating a struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like MPI_FLOAT, Make the struct that can act just like the struct that the struct that the struct that the struct the struct that the struct the struct that the struct that the struct the struct that the struct that the struct the struct that the struct that the struct the struct the struct that the struct the struct that the struct the structure the st	/IPI_INT, etc.
Being able to pack multiple MPI_CHARs into a single	e MPI_LONG

Linking multiple MPI	calls together to	send both MPI	_FLOATs and
MPI_INTs			

Question 7	2.5 / 2.5 pts
Joe Parallel wants to use OpenCL kernels to imexecution structure shown here. How?	plement the graph
He can't it is not possible in the current version of C be in the future	OpenCL, but might
He turns C and D into special OpenCL reduction to	functions
He has A, B, and C each throw events, and has C, C (respectively) wait for those events.	, and D
He sets up barriers at C and D	

Question 8	2.5 / 2.5 pts
In your C/C++ CUDA program, how do you show making a call to the GPU Kernel function?	v that you are
With the cudaExecuteKernel() function	

With the <<< >>> (chevron) syntax
With the cudaEnqueueNDRangeKernel() function
With the >>> <<< (chevron) syntax

In Project #3, the Functional Decomposition project, each individual quantity's function needed to have three barriers. The first barrier was there to: Indicate when that quantity's next value was done being copied to the global state Indicate when it was time to increment the month Indicate when that quantity's function was done computing that quantity's next value

Question 10	2.5 / 2.5 pts
MPI Reductions:	
Must be implemented by your application	
Are unnecessary because of the SIMD units on the CPUs	5
Are unnecessary because of the number of CPUs	

Are a built-in feature of the MPI API

Question 11	2.5 / 2.5 pts
When is it OK to use the less-precise "fast_norr instead of the full-precision "normalize()" call?	``
Always	
When using OpenCL for scientific computing	
When using OpenCL for computer graphics	
O Never	

Why did Jane Parallel use those typedefs (point, vector, color, sphere) in her OpenCL code? The compiler requires it It makes it more obvious what her code is doing The OpenCL standard requires it Those were indeed the real OpenCL names for those types of variables

Question 13 2.5 / 2.5 pts

the writing of our class notes, the 2022 IEEE Visualization rence:
Will be online-only
Has been cancelled
Will be held in Cambridge, MA
Will be held in Oklahoma City, OK

2.5 / 2.5 pts

Question 15	2.5 / 2.5 pts
One of the ways that CUDA differs from OpenCL	. is:
CUDA GPU code looks like Python and OpenCL GPU	code looks like C
In CUDA, the C/C++ and GPU code are placed in t	the same file

CUDA GPU code looks like C and OpenCL GPU code looks like Python

In OpenCL, the C/C++ and GPU code are placed in the same file

MPI follows what parallel programming model?

Single Program, Multiple Data (SPMD)

Single Instruction, Single Data (SISD)

Multiple Instructions, Multiple Data (MIMD)

Single Instruction, Multiple Data (SIMD)

Function calls on GPU hardware: Happen through the special "GPU-stack", which is different from a CPU-stack Happen exactly the same way as CPU hardware implements them End up being inlined because there is no stack to store arguments and return addresses

Happen through the special "GPU-stack", which is the same as a CPU-stack

Question 18	2.5 / 2.5 pts
GPU Reductions:	
Must be implemented by the .cl function you write	
Are unnecessary because of the GPU hardware instruction	tion set
Are unnecessary because of the GPU speed	
Are a built-in feature of the OpenCL API just like they are in	OpenMP

Question 19	2.5 / 2.5 pts
In your CUDA program, how do you show that a GPU Kernel function?	a function is the
By labeling it withdevice	
By labeling it withglobal	
By labeling it withlocal	
By labeling it withkernel	

Question 20 2.5 / 2.5 pts

CUDA, how r		
128		
O 16		
O 64		
32		

Question 21	2.5 / 2.5 pts
Let's beat the Yellow Robot metaphor to death. grippers represent:	The yellow robot's
○ SIMD banks	
Processing Elements	
Compute Units	
Separate CPU cores	

floating-point unit
1

Question 23	2.5 / 2.5 pts
Let's beat the Yellow Robot metaphor to death. represents:	The yellow robot
A Processing Element	
A separate CPU core	
A SIMD bank	
A Compute Unit	

Question 24	2.5 / 2.5 pts
In running your GPU program on the DGX serve type, for example:	r, you needed to
slurm montecarlo.csh	
○ ./montecarlo	
○ ./montecarlo.cu	
sbatch montecarlo.bash	

Question 25 In the OpenCL call "gid = get_global_id(0)", what does the argument of 0 indicate?

That you want only one value returned
Since the time at which the program started
In the X dimension
Relative to the first element of the dataset

Question 26 2.5 / 2.5 pts

In Project #1, you performed a multicore Monte Carlo simulation by using the NUMTRIALS for-loop. In Project #5, you re-created that same simulation using CUDA without any for-loop. Where did that NUMTRIALS for-loop go?

It is still there – it has just been written in CUDA-code instead of C/C++

It is still there – it has just been replaced with the special CUDA "foreach" capability

You don't need to include it— CUDA is smart enough to figure out what you are trying to do and adds it for you

It is not needed – it has been replaced by duplicating the simulation onto thousands of threads

Question 27 2.5 / 2.5 pts

What is special about using OpenCL/OpenGL interoperability?

The Khronos Group gives you a certificate for doing it The data never leaves GPU memory It allows GPU graphics to be driven by CPU multicore computing	Question 28	2.5 / 2.5 pts
	It allows GPU graphics to be driven by CPU multico	ore computing
The Khronos Group gives you a certificate for doing it	The data never leaves GPU memory	
	The Khronos Group gives you a certificate for doing	g it
It saves electrical power	It saves electrical power	

What is the relationship between Global Data Set Size, Work Group Size, and the Number of Work Groups?

Number of Work Groups = (Work Group Size) * (Global Data Set Size)

○ Global Data Set Size = (Number of Work Groups)^2 [i.e., squared]

Global Data Set Size = (Number of Work Groups) * (Work Group Size)

Work Group Size = (Global Data Set Size) * (Number of Work Groups)

Question 29 2.5 / 2.5 pts

In Project #3, the Functional Decomposition project, each individual quantity's function needed to have three barriers. The *third* barrier was there to:

Indicate when that quantity's next value was done being copied to the global state

2.5 / 2.5 pts **Question 30** There were several cases when OpenCL, in querying what sort of system it was running on, called the same function twice: status = clGetDevicelDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &numDevices); status = cIGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, numDevices, devices, NULL); Why? Once to get the information from a CPU, and once to get it from a GPU So you could get the information from two separate platforms Once to get the number of something, and once to retrieve that much information Once to get the information from a CPU/GPU, and once to get it from an FPGA (Field-Programmable Gate Array)

Question 31 2.5 / 2.5 pts

Comparing CPUs and GPUs, it is correct to say:

GPUs are better with linked-list data structures, CPUs data parallel arrays	are better with
CPUs are better with linked-list data structures, GPUs data parallel arrays	are better with
GPUs are better with integers, CPUs are better with	h floating-point
CPUs are better with integers, GPUs are better with	h floating-point

Question 32 2.5 / 2.5 pts		
A Sphere can be represented as four floats. What are they?		
XYZ of the center position and the radius		
The four hyperbolic radii		
The STP of the texture coordinates and the radius		
XYZ of the surface normal and the radius		

Question 33	2.5 / 2.5 pts
What is the advantage of a Fused-Multiply-Add?	
It reduces the possibility of False Sharing	
It can perform a multiply plus an add in about the same tir have done the multiply alone	me as it could

O You only have to write one line of code instead of two	
It implies that a SIMD operation should be performed	

In the CUDA call: cudaMemcpy(A, B, NUM_ELEMENTS*sizeof(float), cudaMemcpyHostToDevice); The CPU array B gets copied to the GPU array A The CPU array A gets copied to the GPU array B The GPU array A gets copied to the CPU array B The GPU array B gets copied to the CPU array A

Projects #1 and #5 ran roughly the same code on a CPU and a GPU, respectively. What can you say about their relative performance in Trials/Second? The GPU version was way faster The CPU version was way faster Within 10%, the two versions had about the same performance

Question 36 2.5 / 2.5 pts

1e C	OpenGL-created Vertex Buffer Object looks, to OpenCL, I
	A collection of separate X[], Y[], and Z[] arrays
	A hash table of XYZ arrays
	A linked list of XYZ coordinates
	A table of XYZ coordinates

Question 37 2.5 / 2.5 pts The primary purpose of MPI is to:		
To allow multicore		
To get computing access to a GPU		
○ To get SIMD performance		

Question 38	2.5 / 2.5 pts
What does the OpenCL call "gid = get_global_	id(0)" return?
It tells you where you are in the local dataset	
It tells you how big the global dataset is	
It tells you how big the local dataset is	
It tells you where you are in the global dataset	

Question 39	2.5 / 2.5 pts
Jane Parallel uses this line of OpenCL code:	
status = clEnqueueNDRangeKernel(cmdQueuNULL, A, B, C, D, E);	ue, kernel, 1,
what are the C and D variables used for?	
They specify what event to throw when this kernel is of	completed
The globalWorkSize and the localWorkSize	
They specify how many events to wait for and which or	ones they are
The context to use	

Question 40	2.5 / 2.5 pts	
Where is the OpenCL kernel compiler (as we used it this quarter) located?		
As an external program		
In the OpenCL driver		
On the Internet		
O In the GPU		

Quiz Score: 100 out of 100