第 4 节 含 e^x 或 ln x 的方程、不等式的处理技巧 (★★★)

强化训练

1. (2023・全国模拟・★★)证明: 当x>0时, $(x-2)e^x+x+2>0$.

证法 1: (目标不等式不复杂,可考虑直接求导分析)

设 $f(x) = (x-2)e^x + x + 2(x > 0)$,则 $f'(x) = e^x + (x-2)e^x + 1 = (x-1)e^x + 1$,(不易直接判断正负,故二次求导)

所以 $f''(x) = e^x + (x-1)e^x = xe^x > 0$,故 f'(x)在 $(0,+\infty)$ 上单调递增,又 f'(0) = 0,所以 f'(x) > 0恒成立,

故 f(x)在 $(0,+\infty)$ 上单调递增,因为 f(0)=0,所以 f(x)>0,故当 x>0时, $(x-2)e^x+x+2>0$.

证法 2: (目标不等式中含 e^x 这一项与后面的 x+2 是相加的,可考虑将其化为 $\varphi(x)e^x$ 这种结构,再求导)

当
$$x > 0$$
时, $(x-2)e^x + x + 2 > 0 \Leftrightarrow \frac{x-2}{x+2}e^x + 1 > 0$ ①,

设
$$g(x) = \frac{x-2}{x+2}e^x + 1(x>0)$$
,则 $g'(x) = \frac{x+2-(x-2)}{(x+2)^2}e^x + \frac{x-2}{x+2}e^x = \frac{x^2e^x}{(x+2)^2} > 0$,所以 $g(x)$ 在 $(0,+\infty)$ 上单调递增,

又g(0)=0,所以g(x)>0,即 $\frac{x-2}{x+2}$ $e^x+1>0$,结合①可得当x>0时,(x-2) $e^x+x+2>0$ 成立.

2.
$$(2022 \cdot 广东开学 \cdot \star \star \star)$$
 已知函数 $f(x) = \frac{2(e^x - x - 1)}{x^2}$, 证明: 当 $x > 0$ 时, $f(x) > 1$.

证法 1:(若直接对 f(x) 求导,则计算较为繁琐,所以先将原不等式等价转化,再证,一种转化方法是两端同乘以 x^2 去分母,再作差构造)

$$f(x) > 1 \Leftrightarrow 2(e^x - x - 1) > x^2 \Leftrightarrow 2(e^x - x - 1) - x^2 > 0$$
,所以只需证 $2(e^x - x - 1) - x^2 > 0$,

设
$$g(x) = 2(e^x - x - 1) - x^2(x > 0)$$
,则 $g'(x) = 2(e^x - 1) - 2x = 2(e^x - x - 1)$, $g''(x) = 2(e^x - 1) > 0$,

所以g'(x)在 $(0,+\infty)$ 上 \nearrow ,又g'(0)=0,所以g'(x)>0,故g(x)在 $(0,+\infty)$ 上 \nearrow ,

因为g(0)=0,所以g(x)>0,即 $2(e^x-x-1)-x^2>0$,故当x>0时,f(x)>1.

证法 2: (将 f(x) > 1 等价转化为 $2(e^x - x - 1) > x^2$ 后,考虑到 e^x 与其余部分做乘法或除法,更易于求导研究, 所以也可朝此方向等价转化)

$$f(x) > 1 \Leftrightarrow 2(e^x - x - 1) > x^2 \Leftrightarrow 2e^x > x^2 + 2x + 2 \Leftrightarrow \frac{x^2 + 2x + 2}{e^x} < 2$$
,所以要证 $f(x) > 1$,只需证 $\frac{x^2 + 2x + 2}{e^x} < 2$,

设
$$h(x) = \frac{x^2 + 2x + 2}{e^x}(x > 0)$$
,则 $h'(x) = \frac{(2x + 2)e^x - e^x(x^2 + 2x + 2)}{(e^x)^2} = -\frac{x^2}{e^x} < 0$,

所以h(x)在 $(0,+\infty)$ 上〉,又h(0)=2,所以h(x)<2,即 $\frac{x^2+2x+2}{e^x}<2$,故当x>0时,f(x)>1.

3. (2022・新高考 I 卷节选・★★★)已知函数 $f(x) = e^x - ax$ 和 $g(x) = ax - \ln x$ 有相同的最小值,求 a.

解: (题干提到了最小值,所以先求导,研究单调性)

由题意, $f'(x) = e^x - a(x \in \mathbf{R})$, $g'(x) = a - \frac{1}{x} = \frac{ax - 1}{x}(x > 0)$, (观察可得 f'(x)和 g'(x)是否有零点,都是与 a

的正负有关, 所以据此讨论)

当 $a \le 0$ 时, g'(x) < 0, 所以 g(x) 在 (0,+∞) 上单调递减,故 g(x)没有最小值,不合题意;

当a > 0时, $f'(x) > 0 \Leftrightarrow x > \ln a$, $f'(x) < 0 \Leftrightarrow x < \ln a$,

所以 f(x) 在 $(-\infty, \ln a)$ 上单调递减,在 $(\ln a, +\infty)$ 上单调递增,故 $f(x)_{\min} = f(\ln a) = a - a \ln a$,

$$g'(x) > 0 \Leftrightarrow x > \frac{1}{a}$$
, $g'(x) < 0 \Leftrightarrow 0 < x < \frac{1}{a}$, 所以 $g(x)$ 在 $(0, \frac{1}{a})$ 上单调递减,在 $(\frac{1}{a}, +\infty)$ 上单调递增,

故
$$g(x)_{\min} = g(\frac{1}{a}) = 1 - \ln \frac{1}{a} = 1 + \ln a$$
,由题意, $a - a \ln a = 1 + \ln a$,所以 $a - 1 - (a + 1) \ln a = 0$ ①,

(观察可得a=1是此方程的解,但要说明解的唯一性,还需构造函数求导分析,式①中有 $(a+1)\ln a$,故同除以a+1将 $\ln a$ 孤立出来,便于求导研究)

式①等价于
$$\frac{a-1}{a+1}$$
-ln $a=0$ ②,

设
$$h(a) = \frac{a-1}{a+1} - \ln a(a > 0)$$
,则 $h'(a) = \frac{2}{(a+1)^2} - \frac{1}{a} = -\frac{a^2+1}{a(a+1)^2} < 0$,所以 $h(a)$ 在 $(0,+\infty)$ 上单调递减,

又h(1)=0,所以h(a)有唯一的零点 1,从而当且仅当a=1时,方程②成立,故a=1.

4. (2021・全国乙卷・★★★★) 设函数
$$f(x) = \ln(a-x)$$
, 已知 $x = 0$ 是函数 $y = xf(x)$ 的极值点.

(1) 求a;

(2) 设函数
$$g(x) = \frac{x + f(x)}{xf(x)}$$
, 证明: $g(x) < 1$.

解: (1) 由题意,
$$y = xf(x) = x\ln(a-x)$$
, $y' = \ln(a-x) + x \cdot \frac{-1}{a-x}$,

因为x = 0是函数y = xf(x)的极值点,所以 $y'|_{x=0} = \ln a = 0$,解得: a = 1,

 $(y'|_{x=0} = 0$ 只是 x = 0 为极值点的必要条件,所以还需检验充分性)

此时
$$xf(x) = x \ln(1-x)$$
, $x < 1$, 且 $y' = \ln(1-x) - \frac{x}{1-x}$,

当
$$x < 0$$
时, $\ln(1-x) > 0$, $-\frac{x}{1-x} > 0$,所以 $y' > 0$; 当 $0 < x < 1$ 时, $\ln(1-x) < 0$, $-\frac{x}{1-x} < 0$,故 $y' < 0$;

所以 y = xf(x) 在 $(-\infty,0)$ 上单调递增,在 (0,1) 上单调递减,满足题意,故 a = 1.

(2) 证法 1: 由题意,
$$g(x) = \frac{x + f(x)}{xf(x)} = \frac{x + \ln(1-x)}{x\ln(1-x)}$$
, $x < 1$ 且 $x \ne 0$,

(接下来证明g(x) < 1, 直接对g(x) 求导显然很麻烦,所以把分母乘过去再证,先判断分母的正负)

当x < 0时, $\ln(1-x) > 0$,所以 $x \ln(1-x) < 0$;当0 < x < 1时, $\ln(1-x) < 0$,所以 $x \ln(1-x) < 0$,

故 $g(x) < 1 \Leftrightarrow x + \ln(1-x) > x \ln(1-x) \Leftrightarrow x + (1-x) \ln(1-x) > 0$,(下面先尝试直接构造函数分析)

设
$$h(x) = x + (1-x)\ln(1-x)$$
, $x < 1$ 且 $x \ne 0$, 则 $h'(x) = 1 - \ln(1-x) + (1-x) \cdot \frac{-1}{1-x} = -\ln(1-x)$,

由 h'(x) > 0得: 0 < x < 1,由 h'(x) < 0得: x < 0,所以 h(x)在 $(-\infty,0)$ 上单调递减,在 (0,1)上单调递增,故 h(x) > h(0) = 0,即 $x + (1-x)\ln(1-x) > 0$,所以 g(x) < 1.

证法 2: (同证法 1 得到 $g(x) < 1 \Leftrightarrow x + (1-x) \ln(1-x) > 0$,接下来也可两端除以 1-x,将 $\ln(1-x)$ 孤立出来)

$$g(x) < 1 \Leftrightarrow x + (1-x)\ln(1-x) > 0 \Leftrightarrow \frac{x}{1-x} + \ln(1-x) > 0$$
, $\forall u(x) = \frac{x}{1-x} + \ln(1-x)$, $x < 1 \perp x \neq 0$,

则
$$u'(x) = \frac{1-x-(-1)\cdot x}{(1-x)^2} - \frac{1}{1-x} = \frac{x}{(1-x)^2}$$
,由 $u'(x) > 0$ 得: $0 < x < 1$,由 $u'(x) < 0$ 得: $x < 0$,

所以u(x)在 $(-\infty,0)$ 上单调递减,在(0,1)上单调递增,故u(x)>u(0)=0,即 $\frac{x}{1-x}+\ln(1-x)>0$,所以g(x)<1.

【反思】大部分题将 ln x 孤立会比较简单,但也有例外,例如本题证法 1 和证法 2 相比,也不复杂.

《一数•高考数学核心方法》