Álgebra Linear e Geometria Analítica - A

Exame Final 19 de Janeiro de 2024

Justifique devidamente as respostas a todas as questões

Duração total do exame: 2h30m

$$(2 \ val.)$$
1) Considere a matriz $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$, o vetor $b = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ e o sistema de equações

lineares AX=b, onde $X=\begin{bmatrix}x\\y\\z\end{bmatrix}$ é o vetor das incógnitas. Resolva o sistema AX=b, através do método de fatorização A=LU.

(Nota: em alternativa pode resolver o sistema pelo método de eliminação de Gauss, mas neste caso a questão terá a cotação de 1 valor).

$$\textit{(2 val.)2)} \text{ Considere a matriz } A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \text{ o vetor } b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ e o sistema de equações lineares }$$

AX = b, onde $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ é o vetor das incógnitas. Justifique que o sistema AX = b é um sistema de Cramer e determine o valor da incógnita z pela regra de Cramer.

(2 val.)3) Determine a matrix A tal que
$$(A + I_2)^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
.

(4 val.)4) Considere o subespaço vetorial de \mathbb{R}^3 , F, com base $\mathscr{B} = \left((\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0), (0, 0, 1)\right)$.

- a) Mostre que \mathcal{B} é uma base ortonormada de F.
- b) Determine a projeção ortogonal do vetor (1,2,3) sobre F.
- c) Encontre a solução dos mínimos quadrados do sistema

$$\begin{cases} x - y = 1 \\ x - y = 2 \\ y = 3 \end{cases}$$

e calcule o erro dos mínimos quadrados.

(2 val.)5) Considere a matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & a & 2 \end{bmatrix}$, onde a é um parâmatro real.

- a) Calcule os valores próprios de A.
- b) Determine os valores de a para os quais a matriz A é diagonalizável.

(1,5 val.)6) Considere a matriz simétrica $A = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 3 & 1 \\ -3 & 1 & 20 \end{bmatrix}$.

- a) Usando o Critério de Sylvester, justifique que a forma quadrática $Q: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $Q(X) = X^T A X$, para $X \in \mathbb{R}^3$, é definida positiva.
- b) O que pode dizer acerca dos valores próprios de A?

(2,5 val.)7) Considere a cónica de equação

$$5x^2 - 4xy + 5y^2 + \sqrt{2}x + \sqrt{2}y = 0.$$

Obtenha uma equação reduzida da cónica e classifique-a.

(3 val.)8) Considere a aplicação linear $L: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$L(x, y, z) = (x - z, -y + 2z, x - y + z).$$

- a) Determine uma base do núcleo de L e a sua dimensão. L é injetiva?
- b) Determine a matriz de representativa de L relativamente à base $\mathscr{B} = ((1,-1,0),(1,0,1),(0,0,1))$ de \mathscr{R}^3 , $[L]_{\mathscr{B},\mathscr{B}}$.

(1 val.)9) Justifique as seguintes afirmações (verdadeiras).

- a) Considere a aplicação linear $L: \mathbb{R}^4 \to \mathbb{R}^n$. Se L é injetiva então $n \geq 4$.
- b) Seja $\{u, v, w\}$ um conjunto ortogonal de vetores de \mathbb{R}^n . Então $\{u, \alpha v + \beta w\}$ é também um conjunto ortogonal, para todos $\alpha, \beta \in \mathbb{R}$.