Formules sur le cours 5

Formules: ipp et iPC

- 1- Cas d'un seul flux (P) avec v=1 et m≥1:
 - a- Calculer le taux effectif par année : $i=(1+r/m)^m-1$ $F=P(1+i)^n$

Ou bien:

- b- Calculer le taux effectif par PC : $i_{PC} = r/m$ $F=P(1+r/m)^{(m \times n_a)} = P(1+i_{PC})^{(m \times n_a)}$ $n=n_a * m$
- 2- Cas de plusieurs flux constants (A) : m>1 et v>1; $r_p \longrightarrow r \longrightarrow i_{pp}$
 - a. Calculer le taux effectif par PP : i PP = (1+r/m)(m/v)-1
 - **b.** $F=A(F/A;i_{pp};n)$ $n=n_a * v$
- 3- Remboursement d'une dette (Po) par des montants périodiques constants (A) :
 - a. Calculer le taux effectif par PP: $i_{PP} = (1+r/m)^{(m/v)}-1$
 - b. n=n_a * v
 - **c.** $A=P_0(A/P; i_{PP}, n)$

Où:

r= taux d'intérêt nominal par année;

i= taux d'intérêt effectif par année;

n_a=nombre d'années;

n=nombre de périodes;

m=nombre de capitalisations de l'intérêt dans l'année;

V=nombre de périodes de flux monétaire (période de paiement) dans l'année;

i PP= taux d'intérêt par période de flux monétaire (période de paiement);

i PC= taux d'intérêt par période de capitalisation;

Équivalence des taux i v et i z

i_{période y}est équivalent à i_{période z} si la Valeur acquise par un même placement P₀ au bout d'une même période est la même que l'on utilise i_{période x ou} i_{période z}

 $P_0 (1+i_{période})$ nombre de périodes y dans l'année = $P_0 (1+i_{période})$ nombre de périodes z dans l'année

$$P_0 (1+i_y)^y = P_0 (1+i_z)^z$$
, alors $i_y = (1+i_z)^{z/y} - 1$

Exemple: i mois = 1%

Période	y ou z	Taux effectif
semestre	2	$(1+i_{semestre})^2 = (1+0.01)^{12}$ $i_{semestre} = (1.01)^{12/2} - 1 = 6.15\%$
trimestre	4	$(1+i_{trimestre})^4 = (1+0.01)^{12}$ $i_{trimestre} = (1.01)^{12/4} - 1 = 3.03\%$
quotidien	365	$(1+i_{quotidien})^{365}=(1+0.01)^{12}$ i quotidien= $(1.01)^{12/365}-1=0.033\%$

> RENDEMENT À L'ÉCHÉANCE (j*) D'UNE OBLIGATION :

$$RA\acute{E} = i^* = i_1 + \frac{VAN(i_1)}{VAN(i_1) - VAN(i_2)}(i_2 - i_1)$$

 i_1 = taux qui a permis de calculer VAN $(i_1) > 0$

 i^* = taux qui annule la VAN VAN $(i^*) = 0$

 i_2 = taux qui a permis de calculer VAN (i_2) < 0

VAN (i_1) = valeur actuelle nette, calculée avec i_1 VAN (i_2) = valeur actuelle nette, calculée avec i_2 i^* = rendement à l'échéance de l'obligation (RAÉ)

> CAPITAL ET INTÉRÊT

i=Taux d'intérêt par période de paiement

C₀= Capital emprunté

 $A=C_0(A/P,i,n)$ (versements périodiques capital et intérêt)

 $I_{t}=iC_{(t-1)}$ (part de l'intérêt versé)

 $\mathbf{CR}_{t} = A(P/F, i, (n-t+1)) = A(1+i\%)^{-(n-t+1)} = C_{(t-1)} - C_{t}$ (part du capital versé)

 $A=I_t+CR_t$

 C_t = A(P/A,i,(n-t)) (partie du capital non remboursé)

> TAUX D'INTÉRÊT et INFLATION

$$i = \frac{i_f - f}{1 + f}$$
 et $i_f = (1+i)(1+f) - 1$
= $i + f + if$

i = taux d'intérêt réel

*i*_f = taux d'intérêt du marché (tient compte de l'inflation)

f = taux d'inflation

➤ Pouvoir d'achat en dollars constants : F= P(1+i_f)ⁿ/(1+f)ⁿ

> Coût moyen pondéré du capital (CMPC)=

$$CMPC = \frac{C_{cp}}{C_d + C_{cp}} \times k_{cp} + \frac{C_d}{C_d + C_{cp}} \times k_d$$