도로네트워크에서 매개중심성으로 본 교통중심지 분석

송 우 석*, 박 상 준, 손 승 우† 복잡계 연구실, 응용물리학과, 한양대학교

t01094715372@gmail.com sonswoo@gmail.com

Introduction

도로네트워크는 여러 도로와 교통수단들이 서로 상호작용하는 계이므로 복잡성을 가지고 있는 네트워크다. 본 연구에서는 도로네트워크를 구현하고 변화를 주며 매개중심성이라는 척도를 이용하여 도로네트워크의 전반적인 특성을 분석하려고 하려고 한다.

Background

네트워크

복잡계의 구성요소들과 그들 간의 상호작용을 점(노드)과 선(링크)으로 단순화시킨 것이다. 교차로를 노드, 교차로와 교차로를 잇는 도로를 링크로 생각하고 네트워크를 구현했다.

그림1.

5개의 노드와 링크로 이루어진 네트워크

매개중심성($C_B(v)$)

어떤 노드에서 다른 노드로 가는 최단 경로들 중에서 특정 노드를 지나가는 횟수로 결정한다.

매개중심성이 높은 곳

교통중심지

$$C_B(v) = \sum_{S \neq t} \frac{\sigma_{St}(v)}{\sigma_{St}}$$

 $C_B(v) = \sum_{S \neq t} \frac{\sigma_{St}(v)}{\sigma_{St}}$. $\sigma_{st}: s$ 에서 t로 가는 가장 짧은 경로의 수 $\sigma_{st}(v): s$ 에서 t로 가는 가장 짧은 경로 중 v를 지나는 경로의 수

멱함수 법칙

멱함수 법칙이란 다수의 작은 사건들과 소수의 큰 사건들이 공존하는 것이다. 도로네트워크는 노드들의 매개중심성을 크기 *s*에 따른 빈도수 P(s)로 정리했을 때 멱함수 법칙을 따른다.

$$P(s) \sim s^{-r}$$
.

데이터

우리나라 7개의 주요도시의 교차로(노드)와 도로(링크) 정보를 지능형 교통체계 관리시스템으로부터 수집했다.

	서울	인천	광주	대구	대전	부산	울산
노드수(개)	7,867	3,267	2,742	1,883	2,671	3,243	3,031
링크수(개)	20,708	9,466	7,964	5,732	7,501	9,556	8,582
면적(km²)	605.2	1,063	431	883.5	539.8	770	1,057

표1. 7개 도시의 노드, 링크 수, 면적

Analysis

1. 각 도시별 매개 중심성 분포

도시	기울기		
대전	0.934		
대구	0.905		
서울	1.208		
인천	1.114		
울산	1.130		
광주	1.118		
부산	1.185		

표2. 7개 도시의 매개중심성 분포를 크기에 따른 빈도수로 나타내 보았을 때, 분포의 추세선이 따르는 $\frac{10}{10}$ 기울기의 절대값

그림2. 각 도시별 매개중심성을 크기에 따른 빈도수로 정규화시켜서 나타낸 그래프이다.

2. 상위 10%의 매개중심성을 가진 노드를 2가지 방법으로 제거하면서 확인한 네트워크의 변화

그림3. (a)는 원래 네트워크에서 계산한 노드들의 매개중심성을 기준으로 상위 10퍼센트 까지의 노드들을 제거하면서 확인한 매개중심성 분포의 기울기 변화이고 (b)는 노드하나를 제거 할 때마다 남은 노드들의 매개중심성을 다시 계산하고, 가장 높은 매개중심성을 가진 노드를 제거해 나가며 확인한 매개중심성분포의 기울기 변화이다.

3. 각 노드가 다른 노드들에게 미치는 영향력(각 교차로가 다른 교차로들에게 미치는 영향력)

서울시의 노드 하나를 제거하고 나머지 노드들의 매개중심성의 변화량, A(매개중심성)을 측정한다. 모든 노드에 대해 이 과정을 반복하면 각 노드가 다른 노드들에게 미치는 영향력을 알 수 있다.

그림4. '서울시 도로네트워크'의 n 번째 노드의 원래 매개중심성(x축)과 n번째 노드를 제거했을 때 나머지 노드들의 매개중심성 변화량의 평균(y축)의 관계 (n=7,867)

그림5. 그래프3에서 매개중심성 변화량의 평균이 가장 큰 노드를 서울시 도로네트워크 지도에서 찾아보니 서울시의 내부순환도로 위에 있는 교차로들 이었다.

Discussion

- 1. 각각의 도시는 서로 다른 도로와 교통수단들이 상호작용하고 있고 면적, 도로 길이가 각각 다르지만 7개의 도로네트워크의 매개중심성 분포는 모두 기울기의 크기를 1정도 가지며 멱함수 법칙을 따랐고 평면네트워크의 특성과 들어 맞았다.
- 2. 가장 높은 매개중심성을 가진 노드들을 제거할 때 마다 나머지 노드들의 매개중심성을 최신화 해주면서 분포의 기울기 변화를 확인해 보니 큰 변화가 없이 -1 정도의 기울기에 머물렀다. 매개중심성이 높은 교통중심지를 막거나 제거한다고 해도 최신화된 도로네트워크는 여전히 원래 도로 네트워크와 비슷한 매개중심성 분포를 따랐다.
- 3. 특정 노드가 다른 노드들에 미치는 영향력은 그 노드의 원래 매개중심성의 크기에 비례했다. 다른 노드들에게 영향력이 큰 노드, 즉 매개중심성 변화량의 평균이 가장 큰 노드를 직접 서울의 네트워크 지도에서 확인해보니 교통 중심지라고 생각할 수 있었다.

Reference

- [1] 전국 표준 노드/링크 현황, 지능형 교통체계 관리 시스템, nodelink. its.go.kr
- [2] 손승우. (2004). "간단한 섭동으로부터 발생하는 반응 네트워크". 한국과학 기술원