2 pages 1

```
Source | Model | Option | Model Option | Help on tr methods | Archived Tests
```

tr_rogersstapleton_downout

Output parameters:

- Price
- Delta

Description: Rogers and Stapelton [1] propose to approximate the logarithm of the stock price $(X_t = X_0 + \sigma W_t + (r - \delta - \sigma^2/2)t)_t$ by the random walk $(\xi_n)_n$ where for some fixed $\Delta x > 0$,

$$\begin{cases} \xi_n = X_{\tau_n} \\ \tau_0 = 0, \ \tau_{n+1} = \inf\{t > \tau_n, \ |X_t - X_{\tau_n}| > \Delta x \} \end{cases}$$

The price of the European option with payoff function φ , maturity T, up and out barrier b^* (resp. down and out barrier b_*) and rebate R is approximated by

$$\sum_{n\geq 0} \mathbb{P}(\nu=n) \mathbb{E}\left(e^{-r\eta T/n} R \mathbb{1}_{\{\eta < n\}} + e^{-rT} \varphi(\xi_n) \mathbb{1}_{\{\eta \geq n\}} \middle| \nu = n\right)$$
(1)

where $\nu = \sup\{n : \tau_n \leq T\}$ and $\eta = \inf\{n : \xi_n \geq \log(b^*)\}$ (resp inf $\{n : \xi_n \leq \log(b_*)\}$).

Computes the probabilities of an up step $\mathbb{P}(\xi_n = x + \Delta x | \xi_n = x)$ and a down step $\mathbb{P}(\xi_n = x - \Delta x | \xi_n = x)$. For $x = x^*$ the grid point immediately below the up-barrier b^* or $x = x_*$ the grid point immediately above the down-barrier b_* , modified probabilities are calculated.

Computes the three first moments of the random variable τ_1 .

REFERENCES 2

Initializes the variables before the

The price is computed according to (1) thanks to a recursion on the number n of time-steps.

Computation of the probability $\mathbb{P}(\nu=n)$ thanks to a refinement of the Central Limit Theorem. When this probability which appears as a multiplicative coefficient in (1) is smaller than 0.000005, the conditional expectation

$$\mathbb{E}\left(e^{-r\eta T/n}R1_{\{\eta< n\}} + e^{-rT}\varphi(\xi_n)1_{\{\eta\geq n\}}\middle|\nu=n\right) \text{ is not calculated. Otherwise,}$$

/*contribution for a fixed number of time-steps*/

it is computed thanks to a backward resolution on a tree with n time steps. Two cases are distinguished to construct the tree. If $\log(b^*) \leq X_0 + n\Delta x$ (resp. $\log(b_*) \geq X_0 - n\Delta x$) the barrier can be hit (/*Barrier hit*/). Otherwise it cannot and the construction is simpler. (/*Barrier not hit*/).

The recursion on the number n on time-steps ends when the cumulative probability $Q = \sum_{m=0}^{n} \mathbb{P}(\nu = m)$ becomes greater than 0.99999.

References

[1] L.C.G.ROGERS E.J.STAPLETON. Fast accurate binomial pricing. preprint, 1997. 1