算法分析与设计

第4章: 贪心算法

(Greedy Algorithm)

知识要点

∞ 理解贪心算法的概念和基本要素

- → 最优子结构性质和贪心选择性质
- → 理解贪心算法与动态规划算法的差异

∞ 贪心设计策略的典型例子

- → 活动安排问题;最优装载问题
- → 单源最短路径;最小生成树
- → 哈夫曼编码;多机调度问题

贪心算法的例子:找零钱问题

∞ 找零钱问题

- 假设有4种面值的硬币:二角五分、一角、五分和一分
- 如果要找给顾客六角三分钱,怎样使找出的硬币个数最少?
- 直觉:选择2个两角五分、1个一角、3个一分

∞ 问题的求解过程

- 首先选出1个面值不超过六角三分的最大硬币(两角五分)
- 然后从六角三分中减去两角五分(剩下三角八分)
- 再选出1个面值不超过三角八分的最大硬币(两角五分)
- 如此一直做下去……直到找出的硬币总额为六角三分
- 这里用到的方法就是贪心算法
- 在这个例子中,贪心算法得到的结果是整体最优解

贪心算法的例子:找零钱问题

∞ 是否可以用动态规划算法求解?

- 首先:看问题本身是否具有最优子结构性质
 - 提示:若m[38]+1是问题63的最优解?
- 然后:设定问题的最优解(设给定金额为n)
 - o m[i]表示凑出面值 i 所需最少的硬币数量
 - 原问题的最优解为:m[n]
- 接着:列出递归求解最优值的表达式

$$m[i] = \min_{0 \le k \le 3} \{ m[i - coin[k]] + 1 \}$$

动态规划法求解找零钱问题

```
void change(int C[], int M[], int S[], int m, int n){
  int i, k; M[0] = 0; S[0] = 0;
  for(i = 1; i \le m; i++) M[i] = INT_MAX;
  for(i = 1; i \le m; i++){
    for(k = 0; k < n; k++){
       if(C[k] \le i \&\& (M[i - C[k]] + 1) < M[i]){
          M[i] = M[i - C[k]] + 1;
          S[i] = k;
                      算法复杂度? O(mn)
```


找零钱问题小结

- 问题具有最优子结构性质:因此可用动态规划求解
 - 然而:用贪心算法更简单,而且计算效率更高
- 在这个例子中采用贪心算法得到的结果是全局最优解
 - 然而: 贪心算法并不能总是保证得到全局最优解
 - 思考:什么情况下不能用贪心算法求解找零钱问题?
 - 找零钱问题的解和硬币面值的设定有关
 - 如果将硬币面值改为:一分、五分和一角一分,
 - 假设要找给顾客一角五分?
 - 贪心算法:1个一角一分的硬币和4个一分硬币
 - 然而问题的全局最优解为:3个五分硬币

贪心算法的基本思想

- ∞ 回顾我们目前已经见过的优化问题
 - 矩阵链加括号,最大子段和,背包问题,找零问题……
 - 优化问题的算法往往包含一系列步骤
 - 求解过程的每一步都面临一组选择
- ∞ 贪心算法的基本思想
 - 贪心算法在求解问题时并不着眼于整体最优
 - 在每一步选择中都采取在当前状态下最优的选择
 - 贪心算法能否得到整体最优解?……具体问题,具体分析
- ∞ 贪心算法在有最优子结构的问题中尤为有效
 - 问题能够分解成子问题来解决
 - 局部最优解能决定全局最优解

贪心算法与动态规划的区别

- ∞ 动态规划算法
 - 每一步的最优解通过对上一步的局部最优解进行选择得到
 - 因此需要保存之前求解的所有子问题的最优解备查
- ca 贪心算法
 - 贪心策略:下一步的最优解直接由上一步的最优解推导得到
 - 当前最优解包含上一步的最优解,之前的最优解则不作保留
 - 因此在贪心算法中作出的每步决策都无法改变(不能回退)
- ∞ 贪心算法本质上是一种动态规划算法(更快捷)
 - 算法正确的条件:每一步的最优解一定包含上一步的最优解
 - 如果可以证明:在递归求解的每一步,按贪心选择策略选出的局部最优解,最终可导致全局最优解,则二者是等价的

贪心算法的基本思想

- 再次强调: 贪心算法得到的结果不能保证全局最优
 - 但是:有不少问题能采用贪心算法得到全局最优解
 - 如单源最短路径和最小生成树问题等
 - 在另一些情况下:贪心算法的结果是最优解的良好近似
 - 在科研和工程实践中被广泛应用

1. 活动安排问题

(Activity-Selection Problem)

活动安排问题

- ∞ 设:有n个活动的集合 A={1,2,...,n}
 - 其中:每个活动都要求竞争使用同一资源(如演讲会场等)
 - 而在同一时间内只有一个活动能使用这一资源
 - o 每个活动 i 都有一个请求使用该资源的起始时间 si
 - o 每个活动 i 都有一个使用资源的结束时间 f_i , 且 $s_i < f_i$
 - 如果选择了活动 i , 则它在半开时间区间[s_i, f_i)内占用资源
 - 活动 i 与活动 j 相容:区间[s_i, f_i)与[s_i, f_i)不相交
 - 即:当 s_i ≥ f_j 或 s_j≥f_i 时,活动 i 与 j 相容
- 活动安排问题:在给定活动集合中选出最大的相容活动子集合
 - 即:使得尽可能多的活动能兼容地使用公共资源

求解活动安排问题

设:待安排的11个活动如下:

i	1	2	3	4	5	6	7	8	9	10	11
S[i]	0	1	2	3	3	5	5	6	8	8	11
F[i]	6	4	13	5	8	7	9	10	11	12	14

按活动开始时间 S[i] 排序:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

设:待安排的11个活动按持续时间的非递减顺序排列如下:

i	1	2	3	4	5	6	7	8	9	10	11
S[i]	3	5	11	1	8	5	6	8	3	0	2
F[i]	5	7	14	4	11	9	10	12	8	6	13

问题:这种解法能否确保全局最优?

例:设待安排的11个活动按结束时间的非递减顺序排列如下:

	1	2	3	4	5	6	7	8	9	10	11
S[i]	1	3	0	5	3	5	6	8	8	2	12
F[i]	4	5	6	7	8	9	10	11	12	13	14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

问:这种解法能否确保全局最优?

∞ 证明:按F[1:n]递增顺序进行贪心选择可得全局最优解

- ∞ 证明思路
 - 用数学归纳法证明贪心算法的解是全局最优解
 - 首先需要证明活动安排问题有一个最优解以贪心选择开始
- ∞ 证明:活动安排问题有一个最优解以贪心选择开始
 - 设:A={1,...,n}为给定活动集合(按F[k]非减序编号)
 - 显然:活动1具有最早的完成时间
 - 设:集合B是该问题的一个最优解(元素按F[k]非减序排列)
 - 不妨设:B中的第一个活动是活动 k

∞ 证明:活动安排问题有一个最优解以贪心选择开始

- 若 k=1 则:B 就是一个以贪心选择开始的最优解
- 若 k>1?
 - o 设:C=(B-{k})∪{1}
 - o 由于:F[1]≤F[k]
 - → 且B中活动相容,故C中活动也相容
 - 由于C和B中包含的活动个数相同,故C也是最优的
- 得证:总存在一个以贪心选择开始的最优活动安排方案
- ∞ 据此可利用数学归纳法证明:贪心算法的解是全局最优解

- 数学归纳法证明: 贪心算法的解是全局最优解
 - 在做出贪心选择(A₁)之后,原问题简化为:
 - o 子问题 A':对A中所有与 A₁相容的活动进行安排
 - 显然: B'=B-{1}是活动安排问题 A' 的一个最优解
 - → 证明:若存在A'的最优解C',包含比B'更多的活动
 - → 则:C'+{1}将包含比B更多的活动,矛盾
 - 因此:每一步做出的贪心选择都将当前问题简化为
 - → 规模更小且与原问题具有相同形式的子问题
 - 对贪心选择次数进行数学归纳:对于任意活动安排问题
 - 必然存在一个以贪心选择开始的最优活动安排方案
 - 因此贪心选择次数,就是全局最优解

- ∞ 算法设计:设活动集合A中的活动总数为n
 - 设:数组B[1:n]存储所选择的活动
 - 若活动i在集合B中,则B[i]=1;否则B[i]=0
 - 设:各活动的起止时间分别存储于数组S[1:n]和F[1:n]中
 - 且数组F[1:n]按活动结束时间的非递减顺序排列
 - 按下标顺序依次从F[1:n]中选择活动 i 尝试加入集合B
 - 设:变量k记录B中最近一次加入的活动
 - 思考:k与B中已有活动的关系? (提示: F[1:n]有序)
 - F[k]总是集合B中当前所有活动的最晚结束时间

∞ 算法设计(续)

- 按下标顺序依次从F[1:n]中选择活动 i 尝试加入集合B
 - 设:变量k记录B中最近一次加入的活动
- 然后依次检查活动 i 是否与B中已有的所有活动相容
 - o 活动 i 与B中所有活动相容的充要条件是: S[i]≥F[k]
 - ⇒ 即:活动 i 的开始时间不早于k的结束时间
 - 若相容:则活动 i 取代 k 成为最近加入B的活动
 - 若S[i]<F[k]:则放弃活动 i
- 继续检查F[1:n]中下一个活动与集合B中活动的相容性
- 直到所有活动均已检查完毕,程序结束


```
void greedy(int S[], int F[], int B[], int n){
   B[0] = 1; // 贪心选择:A1加入集合B
   int k = 1; // k记录最近一次加入B的活动
   for (int i = 1; i < n; i++){
      if(S[i] >= F[k]){
          B[i] = 1; k = i;
      else{
          B[i] = 0;
                      算法复杂度? O(n)
```


活动安排问题小结

- ∞ 算法分析
 - 算法复杂度:为使最多的活动相容地使用公共资源
 - 对所有活动按结束时间的非递减顺序排序:O(nlogn)
 - 采用贪心选择策略进行活动安排:O(n)
- □ 思考:本例中的贪心选择策略是什么?意义何在?
 - 贪心选择策略:按 F_i递增顺序选择最早结束的相容活动
 - 意义:这种方式可以为后序活动的预留尽可能多的时间
 - 使剩余时间段极大化以便安排尽可能多的相容活动
- □ 思考:对活动安排问题采用贪心算法为何能求得全局最优解?
 - 对贪心选择次数的全局最优性采用数学归纳法证明
 - 活动安排问题具有贪心选择性质!

贪心算法的基本要素

贪心算法的基本要素

- □ 应用贪心算法解决具体问题时需要考虑如下两个问题
 - 该问题是否可以采用贪心算法求解?
 - 采用贪心算法能否得到问题的最优解?
- ∞ 遗憾的是:对许多实际问题而言,很难给出肯定的回答 ⊗
 - 经验:可用贪心算法求解的问题—般具有如下特征
 - 最优子结构性质
 - o 贪心选择性质
 - 绝大多数可用贪心算法求解的问题都具有这两个性质

贪心选择性质

- ∞ 贪心选择性质是贪心算法可行的第一个基本要素
- ∞ 贪心选择性质的定义
 - 所求问题的全局最优解可以通过一系列局部最优的选择得到
- ∞ 要想确定一个问题是否具有贪心选择性质
 - 必须证明每一步的贪心选择最终能够导致问题的全局最优解
- 含心选择性质是含心算法与动态规划算法的主要区别
 - 动态规划算法通常以自底向上的方式求解各子问题
 - 贪心算法则通常以自顶向下的方式迭代地做出贪心选择
 - 每一次贪心选择就将所求问题简化为规模更小的子问题

最优子结构性质

- 最优子结构性质是贪心算法可行的第二个基本要素
- ∞ 回顾:什么是最优子结构性质?
 - 所求问题的全局最优解包含其子问题的最优解
- ∞ 这是一个问题可用动态规划算法或贪心算法求解的关键特征
 - 二者的共同点:都要求问题具有最优子结构性质
 - 问题:是否能用动态规划求解的问题也能用贪心算法求解?
 - 通过比较两个经典的组合优化来说明二者的主要差别
 - 背包问题和最优装载问题

小结: 贪心算法的基本要素

∞ 以活动安排问题为例

- 贪心选择性质
 - 总存在以贪心选择开始的最优活动安排方案
 - 贪心选择次数就是活动安排问题的全局最优解
- 最优子结构性质
 - 每一步做出的贪心选择都将当前问题简化为
 - 一个规模更小的与原问题具有相同形式的子问题

2. 背包问题

背包问题

○ 0-1背包问题

- 给定n种物品和一个背包,背包的容量为C
- 设物品i的重量是W[i],其价值为V[i]。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
- 限制条件:在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包;不能将物品i装入背包多次,也不能 只装入部分的物品i。(因此称为0/1背包问题)

∞ 背包问题

- 与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以 选择物品i的一部分,而不一定要全部装入背包
- 这两类问题都具有相似的最优子结构性质,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解!

两种背包问题的形式化表达

○ 0/1背包问题:

- 给定:c>0, w_i>0, v_i>0, 1≤i≤n
- 要求找出一个n元<mark>0/1向量(x₁, x₂,..., x_n)</mark>

• 满足:
$$\sum_{i=1}^{n} w_i x_i \le c \quad (x_i \in \{0,1\})$$

• 使得下式最大化: $\sum_{i=1}^{n} v_i x_i$

∞ 背包问题:

- 给定: c>0, w_i>0, v_i>0, 1≤i≤n
- 要求找出一个n元实数向量(x₁, x₂,..., x_n)

• 满足:
$$\sum_{i=1}^n w_i x_i \le c \quad (0 \le x_i \le 1)$$

• 使得下式最大化:
$$\sum_{i=1}^{n} v_i x_i$$

两种背包问题都具备最优子结构性质

∞ 0-1背包问题

- 设:A是能装入背包并使价值总和最大的物品集合
- 则:A[k]=A-{k}表示n-1个物品(1,2,..., k-1, k+1,...,n)
 - 。 可装入容量为C-w[k]的背包的最大价值物品集合

∞ 背包问题

- 若:它的一个最优解A包含物品k的一部分
- 则:从A中拿出所含物品k的那部分重量(w_k')
- 剩余的就是从n-1个原有物品(1, 2,..., k-1, k+1,..., n)
 - 。 以及重量为(w_k-w_k′)的物品<mark>k</mark>当中
 - 。 可装入容量为($C-w_k'$)的背包的最大价值物品集合

采用贪心算法求解背包问题

∞ 贪心算法解背包问题的基本步骤

- 首先计算每种物品单位重量的价值:V_i/W_i
- 然后按照贪心选择策略
 - 。 将尽可能多的单位重量价值最高的物品装入背包
 - 。 若将这种物品全部装入后,背包内的物品总重量未超过C
 - 。 则选择单位重量价值次高的物品并尽可能多地装入背包
- 依此策略一直地进行下去,直到背包装满为止

□ 算法复杂度分析

- 计算时间主要用于对各种物品按单位重量的价值排序
- 因此算法的计算时间上界为:O(nlogn)

贪心算法与动态规划算法的差异

- ∞ 例子:总共3件物品,背包容量50磅
 - 物品1重10磅,价值60元,每磅价值6元
 - 物品2重20磅,价值100元,每磅价值5元
 - 物品3重30磅,价值120元,每磅价值4元
- ∞ 对于0-1背包问题而言
 - 按照贪心策略,应首先选择物品1
 - 显然最优解是选取物品2和3,包含物品1的可能解都是次优的
- - 按照贪心策略,首先选择物品1可以达到全局最优
 - 最优解:物品1(10磅)+物品2(20磅)+物品3(20磅)

分析: 贪心算法与动态规划算法的差异

- ∞ 思考:对于0-1背包问题,贪心选择为什么不能得到最优解
 - 因为对该问题采用贪心选择策略无法确保最终能将背包装满
 - 部分闲置的背包空间降低了每公斤背包空间的价值
- ∞ 思考:求解0-1背包问题应采取什么样的思路?
 - 对每个物品,应比较选择和不选择该物品所形成的方案
 - 然后再作出最优选择(自底向上逐步求解)
 - 由此会导致出现许多互相重叠的子问题
 - 例如:装入物品k和k+1时,都要考虑物品n是否装入
 - 重叠子问题性质正是问题可用动态规划算法求解的重要特征
 - 事实上动态规划算法的确可以有效求解0/1背包问题

3. 最优装载问题

最优装载问题

○ 问题描述:有一批集装箱要装船

• 其中:集装箱i的重量为wi,轮船最大载重量为c

• 要求:在不受体积限制的情况下,将尽可能多的集装箱装船

○ 问题形式化描述

- 给定: c>0, w_i>0, v_i>0, 1≤i≤n
- 要求:找出一个n元0/1向量 $\mathbf{x}=(\mathbf{x_1},\mathbf{x_2},...,\mathbf{x_n})$ 其中 $\mathbf{x_i} \in \{0,1\}$
- 使得: $\sum_{i=1}^n w_i x_i \le c$, 而且 $\sum_{i=1}^n x_i$ 达到最大
- ∞ 问题分析
 - 首先再看该问题是否满足贪心选择性质
 - 然后看该问题是否具有最优子结构性质

证明:最优装载问题满足贪心选择性质

设:集装箱已按重量从小到大排序

设: $X=(x_1, x_2,..., x_n)$ 是最优装载问题的一个最优解

设: $k = min\{i \mid x_i=1, 1 \le i \le n\}$ (第一个非零元素的下标)

- 易知,如果给定的最优装载问题有解,则1 ≤ k ≤ n
- 当k=1时, X 是一个满足贪心选择性质的最优解
- 当k>1时,取y₁=1;y_k=0;y_i=x_i,1 < i ≤ n,i≠k,则:

$$\sum_{i=1}^{n} w_i y_i = (w_1 - w_k) + \sum_{i=1}^{n} w_i x_i \le \sum_{i=1}^{n} w_i x_i \le c$$

• 因此: $Y=(y_1, y_2, ..., y_n)$ 是所给最优装载问题的可行解

由于: $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_i$ 故:Y也是满足贪心选择性质的最优解

因此:最优装载问题满足贪心选择性质!

最优装载问题

- □ 最优装载问题具有最优子结构性质
 - 设:X=(x₁,x₂,...,x_n)是满足贪心选择性质的的一个最优解
 - 由该问题的贪心选择性质易知: $x_1=1$
 - 且:X'=(x₂, x₃,...,x_n) 是如下子问题的最优解
 - 载重量为c-w₁,集装箱为{2,3,...,n}的最优装载问题
 - 因此:最优装载问题具有最优子结构性质!
- ∞ 贪心算法描述
 - 贪心选择策略:重量最轻者先装船
 - 根据以上分析:由此可产生该装载问题的最优解

最优装载问题的贪心算法

```
void loading(int x[], int w[], int c, int n) {
   int *R = (int *)malloc((n+1)*sizeof(int));
   sort(w, R, n); // 根据w递增排序, R记录调整后的序号
   for (int i = 1; i <= n; i++) x[i] = 0;
   for (int i = 1; i <= n; i++) {
       int id = R[i];
       if (w[id] > c) break;
       x[id] = 1; c -= w[id];
   } // free(R);
                            时间复杂度:O(nlogn)
```

4. 哈夫曼编码

(Huffman Code)

哈夫曼编码

- ∞ 哈夫曼编码
 - 是广泛应用于数据文件压缩的一种十分有效的编码方法
 - 其压缩率通常在20%~90%之间
- ∞ 哈夫曼编码算法
 - 使用字符在文件中出现的频率表作为输入
 - 目标是:构建一个用0/1位串表示各字符的最优表示方式
 - 基本思路是
 - 为出现频率较高的字符赋予较短的编码
 - 为出现频率较低的字符赋予较长的编码
 - 由此实现对文件总编码长度的压缩

等长编码

例如:需将文字"ABACCDA"转换成电文

分析:文字中有四种字符,用2位二进制便可分辨

编码方案

等长编码

A	В	С	D
00	01	10	11

则上述文字的电文为:00010010101100 共14位

译码时:只需每2位一译即可

特点:等长等频率编码,译码容易,但电文不一定最短

不等长编码

例如:需将文字"ABACCDA"转换成电文

编码方案2

不等长编码

A	В	С	D
0	00	1	01

采用不等长编码,让出现次数多的字符用短码

则ABACCDA文字的电文为:000011010 共9位

但无法译码:既可译为BBCCACA,也可译为AAAACCDA等

前缀码

例如:需将文字"ABACCDA"转换成电文

编码方案3

前缀码

A	В	С	D
0	110	10	111

采用不等长编码

- 出现次数多的字符用短码
- 且任一编码不能是另一编码的前缀

则ABACCDA文字的电文为:0110010101110 共13位

前缀码 (prefix code)

- ∞ 前缀码:对每一个字符规定一个0/1串作为其代码
 - 要求:任一字符的代码都不是其他字符代码的前缀
 - 这种编码称为前缀码(标准书面语, prefix-free code)
- ∞ 为什么要关注前缀码
 - 已经证明:通过字符编码获得的最优数据压缩方式总可用某种前缀编码来表达,因此算法设计时考虑前缀码不失一般性
 - 编码的前缀性质可以简化编解码方式
 - 编码:只要将文件中表示每个字符的编码并置起来即可
 - 解码:只需对第一个编码进行解码,然后迭代进行解码
 - 由于是前缀码,因此被编码文件的起始编码是确定的

前缀码的二叉树表示

- ∞ 前缀码可以采用二叉树进行表示
 - 利用二叉树的性质,可以很方便地对前缀码进行解码
- ∞ 前缀码二叉树的数据结构
 - 二叉树的叶节点表示一个特定字符。
 - 出现的频率(即权重)
 - 二叉树的内节点表示
 - 其子树中所有叶子的频率之和
 - 字符的编码为从根至该字符的路径
 - 路径上的字符0表示:转向左子节点
 - 路径上的字符1表示:转向右子节点

最优前缀码

∞ 平均编码长度

- 设:字母表A中的某个字符c在文件中出现的频率为:f(c)
- 对于给定的编码方案,设对应的二叉树表示为T
- 则:字符c在T中的深度 $d_{r}(c)$ 就是该字符的编码长度
- 该编码方案的平均码长定义为 : $B(T) = \sum_{c \in A} f(c) \cdot d_T(c)$
- 即:编码该文件需要的位(bit)数,也称为树T的代价

∞ 最优前缀码

- 使平均编码长度达到最小的前缀编码方案
- 称为给定字符集A的最优前缀码

最优前缀码的性质

- ∞ 表示最优前缀码的二叉树总是一棵完全二叉树
 - 即:树中任何一个内节点都有2个子节点
- ∞ 如果A是包含待编码字符的字母表
 - 则:表示最优前缀编码的树T中恰有|A|片叶子
 - 每个叶节点表示字母表中的一个字母
 - 表示最优前缀编码的树T中共有|A|-1个内节点
- ∞ 若给定对应一种前缀编码的二叉树T
 - 容易计算出编码一个文件所需要的位数
 - 对所有叶节点求和:叶节点深度 x 叶节点在文件中的频率

哈夫曼编码

- ∞ 哈夫曼提出了一种构造最优前缀码的贪心算法
 - 由此产生的编码方案称为哈夫曼编码
- ∞ 哈夫曼算法
 - 以自底向上的方式构造表示最优前缀码的二叉树T
 - 这棵树通常被称为哈夫曼树
 - 算法从|A|个节点开始,选择权重最小的节点进行合并
 - 执行|A|-1次的合并运算后,产生最终所要求的树T

哈夫曼树 (Huffman Tree)

- ∞ 哈夫曼树的定义:平均码长(带权路径长度)最短的二叉树
 - 假设给定n个权值: {f(1), ..., f(n) }
 - 据此构造一棵有n个叶结点的二叉树 $B(T) = \sum_{c \in A} f(c) \cdot d_T(c)$
 - 其中B(T)最小的二叉树称为Huffman树

B(T) = 46

B(T) = 36

B(T) = 35 Huffman树

Huffman树的构造方法: Huffman算法

- 1. 根据给定的n个权值: $\{w_1, w_2,w_n\}$,构造n棵只含根结点的二叉树,令每棵树的权值为相应的结点权值(w_j)
- 2. 在森林中选取两棵根结点权值最小的树作为左右子树,构造一棵新的二叉树,新树根节点权值为其左右子树根结点权值之和
- 3. 在森林中删除这两棵树,同时将新得到的二叉树加入森林中
- 4. 重复上述两步直到森林中只含一棵树为止,这棵树即哈夫曼树

Huffman编码方法

- ∞ 设:字母表中有n种字符
 - 每种字符在电文中出现的次数为 f(i), 其编码长度为d(i)
 - 则整个电文总长度为Σf(i)d(i) (i=1,2,...n)
- 突 要使Σf(i)d(i)最小(电文长度最短)
 - 以字符出现的次数为权值构造一棵Huffman树
 - 规定左分支编码为0,右分支编码为1
 - 则字符的编码为:从根节点出发到该字符所在的叶结点
 - 经过的路径上的分支编号构成的序列

Huffman编码

Huffman编码的译码操作

∞ 从待译码电文中逐位读取编码

- 从Huffman树根开始
 - 若编码是0:则沿Ichild下行
 - 若编码是1:则沿rchild下行
 - 到达叶结点:则译出一个字符
- 重复上述步骤,直到电文结束

明文是: CAS; CAT

编码为:11010111011101000

密文是:1101000

译文为:CAT

哈夫曼算法的正确性证明

- ∞ 思考:如何证明哈夫曼算法的正确性?
 - 证明最优前缀码问题具有贪心选择性质和最优子结构性质
- ∞ 思考:什么是最优前缀码的贪心选择性质?
 - 可以通过迭代进行贪心选择来完成最优二叉树的构造
 - 每一步选择两个频率最低的子树进行合并
- 问题:什么是最优前缀码的最优子结构性质?
 - 设:T是字符集A的最优前缀码对应的完全二叉树
 - 设:x和y是T中的两个兄弟叶节点(z是其父节点)
 - $\diamondsuit : T'=T-\{x,y\} ; A'=(A-\{x,y\}) \cup \{z\}$
 - 则:T'为字符集A'的一个最优前缀码

哈夫曼算法的正确性证明

∞ 引理1

- 设:字符集A中字符c的频率为f(c)
- 设:x和y是A中具有最小频率的两个字符
- 则:存在A的最优前缀编码使得
 - o x和y的编码长度相同,且仅最后一位编码不同

ca 证明思路

- 设:树**T**表示A的任意一种最优前缀码
- 需证明:对T做适当修改后可以得到一棵新的二叉树T"
 - o 使字符x和y在树T''中成为具有最大深度的兄弟叶节点
 - o 同时T''所表示的前缀码也是▲的一个最优前缀码
- 则字符x和y在T"中的编码等长,并且仅最后一位不同

- 设:x和y是A中具有最小频率的两个字符
- ∞ 设:a和b为树T中具有最大深度的兄弟叶子节点
- ∞ 不失一般性,假设:f(a)≤f(b), f(x)≤f(y)
 - 由前提假设可知: f(x)≤f(y)≤f(a)≤f(b)
 - 交换a和x在树T中的位置产生树T'
 - 交换b和y在树T中的位置产生树T"

∞ 树T和树T′所表示的前缀码的平均码长之差为

$$\begin{split} B(T) - B(T') &= \sum_{c \in A} f(c) \cdot d_T(c) - \sum_{c \in A} f(c) \cdot d_{T'}(c) \\ &= f(x) \cdot d_T(x) + f(a) \cdot d_T(a) - f(x) \cdot d_{T'}(x) - f(a) \cdot d_{T'}(a) \\ &= f(x) \cdot d_T(x) + f(a) \cdot d_T(a) - f(x) \cdot d_T(a) - f(a) \cdot d_T(x) \\ &= \left(f(a) - f(x) \right) \cdot \left(d_T(a) - d_T(x) \right) \ge 0 \end{split}$$

- ∞ 同理可证在T'中交换y与b的位置也不增加平均码长
 - $\mathbb{P}: B(T') B(T'') \ge 0 \Rightarrow B(T) \ge B(T'')$
 - 根据假设:T为最优前缀码,即 B(T) ≤ B(T")
 - 因此:B(T)=B(T"),引理得证
 - 存在A的最优前缀码使x和y编码长度相同,仅最后一位不同

证明:最优前缀码问题具有贪心选择性质

- 引理1:设:x和y是A中具有最小频率的两个字符
 - 则:存在A的最优前缀编码使得
 - x和y的编码长度相同且仅最后一位编码不同
- ∞ 证明:由引理1可知
 - 采用合并的方式构造一棵最优树的过程
 - o 可以(贪心地)从合并两个频率最低的字符开始
 - 并且可通过迭代进行贪心选择来完成最优二叉树的构造
 - 由此证明了构造哈夫曼编码的问题具有贪心选择性质

证明:最优前缀码问题具有最优子结构性质

- ∞ 引理2:设T是字符集A的最优前缀码对应的完全二叉树
 - A中字符c的频率为f(c)
 - 设:x和y是T中的两个兄弟叶节点,z是它们的父节点
 - 若:将z看作是具有频率 f(z)=f(x)+f(y) 的字符
 - 设:**T′**=T-{x,y} ; **A′**=(A-{x,y})∪{z}
 - 则:树 T' 表示字符集 A' 的一个最优前缀码
- ∞ 思考:为什么要引入引理2?
 - 已知: T是A的最优解,且T'⊂T,A'⊂A
 - 若引理2成立,则最优子结构性质成立

证明:最优前缀码问题具有最优子结构性质

- 引理2:设T是字符集A的最优前缀码对应的完全二叉树
 - A中字符c的频率为 f(c)
 - 设:x和y是T中的两个兄弟叶节点,z是它们的父节点
 - 若:将z看作是具有频率 f(z)=f(x)+f(y) 的字符
 - 设:T'=T-{x,y} ; A'=(A-{x,y})∪{z}
 - 则:树 T' 表示字符集 A' 的一个最优前缀码
- ∞ 思考:如何证明引理2?
 - 反证法:假设 T' 不是A' 的最优前缀码
 - 则不妨设:存在 A'的前缀码 T"使得:B(T")<B(T')
 - 将x和y加入树T"中作为z的左右孩子节点
 - 则有: B(T'') + f(x) + f(y) < B(T') + f(x) + f(y)

○ 首先证明T的平均码长: B(T) = B(T') + f(x) + f(y)

- 对于任意 c∈A-{x,y} 有:d_T(c) = d_T(c)
 - 显然: $f(c) d_{\mathbf{T}}(c) = f(c) d_{\mathbf{T}'}(c)$
- 由题意知: f(z) = f(x) + f(y)
- 由题意知: $d_{\mathbf{T}}(x) = d_{\mathbf{T}}(y) = d_{\mathbf{T}'}(z) + 1$

$$f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1)$$
$$= f(x) + f(y) + f(z) \cdot d_{T'}(z)$$

由此可知:B(T) = B(T') + f(x) + f(y)

最优前缀码问题的最优子结构性质

∞ 接下来采用反证法证明引理2

- 假设: T'不是A' 的最优前缀码
- 不妨设:存在T"表示A"的前缀码,使得B(T")<B(T')
- 由于: z 可以被看作 A'的一个字符
 - 因此: z 是 T"的一个叶节点
- 若将x和y加入树 T" 中作为z的左右孩子节点
- 则可以得到表示字符集A的前缀码的二叉树T"",且有:

$$B(T''') = B(T'') + f(x) + f(y) < B(T') + f(x) + f(y) = B(T)$$

- 与T是最优前缀码矛盾,故子问题A'的解T'是最优的
- 因此哈夫曼算法具有最优子结构性质

Huffman算法

∞ Huffman算法流程

- 首先将n个叶结点存入大小为2n-1的数组
 - 结点的父指针均置为-1(表示该结点为根结点)
- 对数组中元素进行循环处理(直至数组被填满)
 - 从现有子树的根结点中选择两个权重最小者
 - 构造新子树的根结点加入数组
 - 更新新根节点的孩子指针和权重值
 - 同时修改选中结点的父指针:指向新的根结点

Huffman算法

weight Ichild rchild parent

- ∞ Huffman树的结点数据结构
 - 权值
 - 叶节点权值已知
 - 中间结点的权值在子树合并时通过计算得到
 - 左右孩子指针:左右子树根节点的下标
 - 父结点指针
 - 记录当前结点隶属于哪个中间结点
 - o 根节点的父指针为-1

Huffman:子树选择算法

```
void select_subtree(Hnode* pht, int n, int *subA, int *subB){
   int id, idxa = -1, idxb = -1;
   int wa = INT_MAX, wb = INT_MAX; // wa最小值 wb次小值
   for(id = 0; id <= n; id++){
       if(pht[id].parent == -1){
          if( pht[id].weight < wa ){</pre>
              idxb = idxa; idxa = id; wa = pht[id].weight;
          else if(pht[id].weight < wb ){ //
              idxb = id; wb = pht[id].weight;
                                  算法复杂度:O(n²)
   *subA = idxa; *subB = idxb;
                                   return;
```

构建Huffman树

```
Hnode* create_htree( int weights[], int n ){
   Hnode* pht; int i, subA, subB, ntotal = 0;
   ntotal = (2 * n) - 1; // Huffman树的结点总数
   pht = (HNode *) malloc( sizeof( HNode ) * ntotal );
   for( i = 0; i < ntotal; ++i ){ // HTree初始化
       pht[i].weight = (i < n) ? weights[i] : 0;
       pht[i].lchild = -1; pht[i].rchild = -1; pht[i].parent = -1;
   for(i = n; i < ntotal; ++i){ // 构建Huffman树
       select_subtree( pht, (i-1), &subA, &subB );
       pht[subA].parent = i; pht[subB].parent = i;
       pht[i].lchild = subA; pht[i].rchild = subB;
       pht[i].weight = pht[subA].weight + pht[subB].weight;
   return pht;
```

哈夫曼编码方法

- ∞ 通过回溯生成字符的哈夫曼编码(编码本)
 - 1. 选择哈夫曼树的某个叶结点(设其下标为 idxa)
 - 2. 利用parent指针找到其父结点(设其下标为 idxb)
 - 3. 利用父结点的孩子指针域判断该结点是左孩子还是右孩子
 - 若该结点是左孩子(lchild== idxa),则生成代码0
 - 若该结点是右孩子(rchild==idxb),则生成代码1
 - 4. 重复步骤(2)~(3) 直至回溯到根节点,得到一个0/1序列
 - 思考:这个0/1序列是否为该字符的Huffman编码?
 - 该序列是Huffman编码的逆序:将其反序得到字符编码
 - 5. 重复步骤(1)~(4), 实现对全部叶节点的编码

哈夫曼编码的存储结构

哈夫曼编码算法

```
// 根据哈夫曼树pht求哈夫曼编码表book
void encoding (PHT pht, TCode *book, int n){
   int i, c, p, start; // start表示编码在cd中的起始位置
   char cd[n+1]; cd[n]=`\0'; // 临时存放编码
   for(i = 0, i < n, i++){ // 依次求叶子pht[i]的编码
      book[i].ch = pht[i].ch; // 读入叶结点pht[i]对应的字符
      start = LEN; c = i; // 从叶结点pht[i]开始上溯
      while(p = pht[c].parent > 0){
          if(pht[p].lchild == c){ cd[--start]='0'; }
         else{ cd[--start] = 1; }
         c = p; } // 继续上溯直到根节点
      strcpy(book[i].code, &cd[start]); // 复制编码位串
```

Huffman编码的译码操作

明文是: CAS; CAT

编码为:11010111011101000

密文是:1101000

译文为: CAT

T:3 00 ;:3 01 ;:3 01 A:4 10 C:2 110 S:2 111

∞ 从待译码电文中逐位读取编码

- 从Huffman树根开始
 - 若编码是'0': 则沿Ichild下行
 - o 若编码是'1':则沿rchild下行
- 若到达叶结点:则译出一个字符
- 重复上述步骤,直到电文结束

哈夫曼解码算法

```
void decoding(PHT pht, char* codes, int n){
  int i = 0, p = 2*n - 2;  // 从根结点开始
  while(pht[p].lchild != -1 \&\& pht[p].rchild <math>!= -1){
      if (codes[i]==`0') p = pht[p].lchild;
      else p = pht[p].rchild;
      i++;
    printf("%c", pht[p].ch); p = 2*n-2;
  printf("\n");
```

5. 最小生成树

(Minimum Spanning Tree)

最小生成树

- 若子图G'满足如下三个条件:
 - 1. V(G')=V(G) (顶点个数相同)

G的生成树

- ∞ 性质:对于具有n个顶点的无向连通图G而言
 - 1. 其任一生成树(G')恰好包含含n-1条边
 - 2. 生成树不一定唯一

∞ 则称子图G′是图G的生成树

最小生成树

c≈ 生成树的代价

- 对图中每条边赋予一个权值(代价)则构成一个网
- 定义:网的生成树的代价为图中各边的权值之和

∞ 最小生成树

- 网的所有可能的生成树中代价最小者称为最小生成树
 - o 简称 MST: Minimum Spanning Tree
- 最小生成树也不一定唯一
- ∞ 典型应用:通信网络规划,交通规划

MST性质

- ∞ 最小生成树(MST)的性质
 - 设:N=(∀, {E})是一个连通网
 - 将顶点分为两个不相交的非空子集:U和V-U
 - 若:(u, v)是一条具有最小权值的边(其中u∈U, v∈V-U)
 - o 即: $(u, v) = min\{ cost(x,y) | x \in U, y \in V-U \}$
 - 则:必存在一棵包含边(u,v)的最小生成树

利用MST性质求解最小生成树问题

∞ MST性质

- 若:(u, v) = min{ cost(x,y) | x∈U, y∈V-U }
 - 则必定存在一棵包含边(u,v)的最小生成树
- MST性质实际上揭示了MST问题的贪心选择性质
- ∞ 因此可以利用贪心算法设计策略求解
 - 第一种贪心选择策略:子树生长法(断集法)
 - **o** Prim算法
 - 第二种贪心选择策略:短边优先法(避圈法)
 - o Kruskal算法

Prim算法

∞ Prim算法设计思想

- 在生成树的构造过程中,图中 n 个顶点分属两个集合:
 - 已加入到生成树中的顶点集:U
 - 尚未加入到生成树中的顶点集:V-U
- 在所有连通U和V-U的边中选取权值最小的边加入MST中

Prim算法

生成树代价 = 14+8+3+5+16+21 = 67

- ∞ 思考:如何证明Prim算法的正确性?
 - 贪心选择性质? **MST性质即贪心选择性质**
 - 最优子结构性质 ? **即证明每次贪心选择均产生部分最优解**
- ∞ 只要证明如下等价命题
 - 对 ∀ k<n:均存在一棵MST包含算法前k步选择的边
 - 在此基础上通过数学归纳可以证明Prim算法的正确性
- ∞ 思考:如何证明该等价命题?
 - 反证法:

∞ 等价命题:对∀k<n均存在一棵MST包含算法前k步选择的边

- 首先考察 k = 1 的情况
 - o 设: $e_i = (v_0, v_i)$ 是所有关联 v_0 的边中权重最小的
 - 目标是证明:存在一棵包含边 e_i 的最小生成树
 - 设:T为一棵不包含 e_i 的最小生成树
 - 由MST的定义可知: T∪{ e_i} 必然含有一条回路
 - 设:其中关联 v₀ 的另一条边为 e_j = (v₀, v_j)
 - o \diamondsuit : T'= (T − e_j) \cup { e_i }
 - o 则: T' 也是生成树, 且 W(T') ≤ W(T) □

ca 数学归纳

- 假设:算法进行了k-1步
 - o 生成树的边集为{e₁, e₂, ..., e_{k-1}}
 - 这些边的 k 个顶点构成顶点集合 U
- 由归纳假设:存在G的一棵最小生成树T包含这些边
- 设:算法第 k 步选择了顶点 V_{k+1}
 - 由MST性质知: ∨_{k+1} 到 U 中顶点的边权重最小
- 设:这条边为 e_k=(v_{k+1}, v_x), 并假设T不含有 e_k
 - \bullet 则:将 e_k 加入 T 中将会形成回路
 - 这条回路有另外一条边 e , 连接 U 与 V-U 中的顶点

∞ 数学归纳

- 设:算法第 k 步选择了顶点 vk+1
- 设:这条边为 e_k=(v_{k+1}, v_x), 并假设T不含有 e_k
 - \bullet 则:将 e_k 加入 T 中将会形成回路
 - 这条回路有另外一条边 e,连接 U与 V-U 中的顶点
- \diamondsuit : T' = (T e) \cup {e_k}
 - o 则: T'是G的一棵生成树,包含 {e₁, e₂, ..., eょ}
 - ■: W(T')≤W(T)

Kruskal算法

- ☆ Kruskal算法设计思想
 - 逐步向森林T中添加不与T中的边构成回路的当前最小代价边
 - 算法特点:以最小代价边主
- ∞ Kruskal算法思路
 - 先构造一个只含 n 个顶点的子图 T
 - 然后从权值最小的边 e_i 开始考察
 - 若添加 e; 不使T中产生回路,则在T中加上这条边
 - 如此重复,直至加上 n-1 条边为止

Kruskal算法

∞ Kruskal算法流程

- 设 G = {V, {E}} 为给定的连通网
- 将生成树T的初始状态置为 T={V, {Φ}}
- 当T中边数小于n-1时, 重复下列步骤:
 - 1. 从E中选取代价最小的边(v, u)
 - 2. 若顶点v和u落在T中不同的连同分量上
 - ※则:将其加入生成树T中,并从E中将其删除
 - 3. 否则:从E中将其删除,选择下一条代价最小的边

Kruskal算法

生成树代价 = 14+8+3+5+16+21 = 67

Kruskal算法的正确性

□ 思考:如何证明? 等价命题是什么?

∞ 等价命题: Kruskal算法对于任意n阶图能得到一棵最小生成树

∞ 证明等价命题

- 设n = 2,只有一条边,命题显然为真
- 假设对n个顶点的图而言算法正确,考虑n+1个顶点的图G
 - 设:G中最小权边为 e=(v_i, v_i)
 - → 从G中短接 v_i 和 v_j,得到图G'
 - 由归纳假设:若T'表示G'的MST, 令:T = T'∪{e}
 - 目标是证明:T是关于G的一棵最小生成树

Kruskal算法的正确性

- ∞ 等价命题: Kruskal算法对于任意n阶图能得到一棵最小生成树
- 证明:设:G中最小权边为 e=(v_i, v_j)
 - 从G中短接 v_i 和 v_j,得到图G', T'表示G'的MST
 - ◆ 令: T = T'∪{e} 需证明: T是关于G的一棵最小生成树
- ∞ 反证:设存在G的最小生成树T*,使得W(T*)<W(T)
 - 若:e∈T*,则短接e得到G'的生成树T*-{e}
 - 且W(T*-{e})<W(T'),与T'的最优性矛盾
 - 若:e不属于T*,则在T*加入边e,将形成回路
 - 去掉回路中任意一条其他边
 - 所得生成树的权小于W(T*),与W(T*)的最优性矛盾□

6. 单源最短路径

(Single Source Shortest Paths)

单源最短路径

∞ 最短路径问题

- 在有向图中寻找从某个源点到其余各个顶点或者每一对顶点 之间的最短带权路径的运算, 称为最短路径问题
- 单源最短路径问题
 - 给定:带权有向图G=(V,E)
 - 其中:每条边的权是非负实数
 - 给定顶点集合V中的一个顶点v,称为源点
 - 求解:从源点v到G中其余各顶点之间的最短路径
 - 这里路径长度是指各条边的权值之和

vo 到各顶点的最短路径

源点	终点	最短路径	路径长度	
v _o	V ₁			
	V ₂	(V ₀ v ₂)	10	
	V ₃	(v_0, v_4, v_3)	50	
	V ₄	(V ₀ , v ₄)	30	
	V ₅	(V ₀ , V ₄ , V ₃ , V ₅)	60	

例如:在带权有向图G中求出v₀到其余各顶点之间的最短路径

- 从图中可见:从v₀到v₁没有路径
- 从v₀到v₃有两条不同的路径:(v₀, v₂, v₃)和(v₀, v₄, v₃)
 - 前者长度为60,而后者长度为50
- 因此后者是从v₀到v₃的最短路径

迪杰斯特拉(Dijkstra)算法

- ∞ Dijkstra算法是求解单源最短路径问题的一种有效算法
- ∞ 算法基本思路
 - 按路径长度递增的次序产生到各顶点的最短路径
 - 设置顶点集合 $S = \{V_n\}$ 并不断地做贪心选择来扩充S
- ∞ 贪心选择策略
 - 顶点 $V_{\mathbf{k}}$ 属于S当且仅当从源到 $V_{\mathbf{k}}$ 的最短路径长度已知
 - 可以证明: vo到 T=V-S 中顶点vk的最短路径
 - \bullet 或者是从 v_0 到 v_k 的直接路径的权值
 - o 或者是从vo经S中顶点到vk的路径权值之和

迪杰斯特拉(Dijkstra)算法

- ∞ 把图G的顶点V分成两组
 - S:已求出最短路径(SP)的顶点的集合
 - T=V-S:尚未确定最短路径的顶点集合
- ∞ 将T中顶点按最短路径递增的次序加入到S中并确保
 - 从v₀到S中任意顶点的SP ≤ 从V₀到T中任意顶点的SP
- ∞ 定义:从源vo到顶点vk的特殊路径
 - 从源vo到vk并且中间只经过S中顶点的路径
 - 由此:每个顶点对应一个距离值
 - o S中顶点:从v₀到此顶点的最短路径长度
 - o T中顶点:从vo到此顶点的最短特殊路径长度

Dijkstra算法的贪心选择策略的有效性

- ☆ 贪心选择依据: v₀ 到 T=V-S 中顶点v_k的最短路径(d)
 - 或者是从 v_0 到 v_k 的直接路径的权值
 - 或者是从vo 经S中顶点到vk的路径权值之和
- ∞ 问题:贪心选择的依据是否正确?
 - 反证:假设从 v_0 到 v_k 的最短路径d'经过T中的顶点 v_x

Dijkstra算法的贪心选择策略的有效性

- ∞ 贪心选择策略:
 - 按路径长度递增的次序产生到各顶点的最短路径
- ∞ 问题:这种策略能否保证得到全局最优解?
 - 设图中标出的路径长度为从v₀到相应顶点的特殊路径长度
 - 不妨设: d₁ ≤ d₂ ≤ d₃
 - 则:从 v_0 出发到V-S的任意顶点的最短路径长度 ≥ d_1

Dijkstra算法流程

1. 初始化

- 令: S={v_o}, T={其余顶点}
- T中顶点 v_i 与v_o的距离值 D_i 定义为
 - o 若存在 $\langle v_0, v_i \rangle$: D_i 为弧 $\langle v_0, v_i \rangle$ 上的权值
 - o 若不存在<v₀, v_i>: D_i 为∞
- 2. 从T=V-S中选取一个与 V_0 的距离值最小的顶点 V_w 加入S
 - 同时更新T中顶点的距离值:若增加vw作中间顶点之后
 - \bullet 从 v_0 经 v_w 到 v_i 的距离值比之前的特殊路径短
 - 则更新 V_i 距离值(为较小的值)
- 3. 重复上述步骤,直到S中包含所有顶点(即S=V)为止

例子

终点	从vo到各终点的最短路径和路径长度值(dist)						
V ₁	8	8	8	8	8		
V ₂	10 (v ₀ ,v ₂)	X	X	X	X		
V ₃	8	60(v ₀ ,v ₂ ,v ₃)	50(v ₀ ,v ₄ ,v ₃)	X	X		
V ₄	30 (v ₀ ,v ₄)	30(v ₀ ,v ₄)	X	X	X		
V ₅	100(v ₀ ,v ₅)	100(v ₀ ,v ₅)	90(v ₀ ,v ₄ ,v ₅)	60(v ₀ ,v ₄ ,v ₃ ,v ₅)	X		
V _i	V ₂	V_4	V ₃	v ₅			

Dijkstra算法流程

- ∞ Dijkstra算法的数据结构设计
 - 使用带权邻接矩阵表示有向图G
 - 数组S[n]:顶点集合(n 为图中顶点数)
 - 记录已找到从Vo出发的最短路径的顶点
 - 数组dist[n]
 - 存放各顶点距离Vo的当前最短路径长度
 - 辅助数组: path[n](存储最短路径)
 - o path[i]表示从Vo到Vi的SP上, Vi的前序顶点的序号
 - o 若从Vo到某顶点Vi无路径,则path[i]=-1

Dijkstra算法的存储结构

```
// 图中顶点总数
#define NV 6
typedef struct {
                    // 顶点数组
  int vex[NV];
  int arc[NV][NV]; // 邻接矩阵
}TGraph;
```


Dijkstra算法

```
// 求有向网G的v0顶点到其余顶点的最短路径
                                    typedef struct {
                                      int vex[NV];
void dijkstra(TGraph G, int v0, int pat
                                      int arc[NV][NV];
   int S[NV] = \{0\}; S[v0] = 1; //
                                    }TGraph;
   for(int i = 0; i < NV; i++) {
       dist[i] = G.arc[v0][i]; // v0到其他顶点的当前最短距离
       if( dist[i] < INT_MAX ) path[i] = v0; // 记录前驱
       else path[i] = -1;
```

Dijkstra算法

```
for(int i = 0; i < NV; ++i) {
   if( i != v0 ){
       int min = INT_MAX, v = -1;
      for( int k = 0; k < NV; k++){ // 找出最小的dist[k]
          if(S[k] = 0 \&\& dist[k] < min) {
             v = k; min = dist[k]; } }
       if(v == -1) break; // 已无顶点可加入S中
      S[v] = 1; // 将顶点v并入集合S
      for(int k = 0; k < NV; k++){
       if(S[k]==0 \&\& min < (dist[k] - G.arc[v][k])){
          dist[k] = min + G.arc[v][k]; path[k] = v;
```

单源最短路径

∞ 算法复杂性分析

- 对于有n个顶点和e条边的带权有向图G
 - 采用带权邻接矩阵表示图G
 - 在dist[]数组中查找最小值需时:O(n)
 - 需对n-1的顶点执行上述操作
 - 算法的其余部分需时不超过O(n²)
 - Dijkstra算法的复杂度为:O(n²)
- 算法改进?
 - 采用基于堆的优先队列:O(nlogn)

堆排序

∞ n个元素(k_i)的序列,当且仅当满足下列关系时,称之为<mark>堆</mark>

∞ 例: (13,38,27,50,76,65,49,97)

输出堆顶元素后调整剩余元素成为一个新堆

- ∞ 解决方案(以小顶堆为例)
 - 输出堆顶元素之后,以堆中最后一个元素替代之
 - 比较根结点与左右子树根结点的值并与其中小者进行交换
 - 重复上述操作直至叶结点,将得到新的堆
- ∞ 称这个从堆顶至叶结点的调整过程为"筛选"(Sift)

堆排序的筛选算法

```
// p是长度为n+1的数组(p[1:n]为堆元素序列)
void sift (int *p, int r, int n){ // r为指定的堆顶元素下标
  int k = 2 * r, p[0] = p[r];
  while (k \le n)
    if ((k < n) \&\& p[k + 1] < p[k]) k++;
    if (p[k] >= p[0]) \{ break; \}
    p[r] = p[k]; r = k;
    k = 2 * r;
                                  时间复杂度
  p[r] = p[0];
                 return;
                              T(n) = O(\log n)
```

堆排序算法

- ∞ 如何由n个元素构成的无序序列构建一个堆?
 - 从无序序列的第 [n/2] 个元素起
 - 至第一个元素止,进行反复筛选
- 无序序列的第 [n/2] 个元素是什么意思?
 - 即:该序列对应的完全二叉树的最后一个非叶结点

堆排序的建堆算法

```
// p是长度为n+1的数组(p[1:n]为堆元素序列)
void build_heap (int *p, int n) {
   for( int i = n/2; i > = 1; --i){
      sift (pbt, i, n);
                   时间复杂度
             T(n) = O(nlogn)
```


堆排序算法

```
void heap_sort(int *p, int n) {
   int i, p[0];
   for( i = n; i >= 2; --i){
      p[0] = p[1]; // 保存堆顶元素
      p[1] = p[i]; // 将队尾元素交换到堆顶
      p[i] = p[0]; // p[i] 用于保存排序结果
      sift (p, 1, i-1);
```


7. 多机调度问题

(MultiProcessor Scheduling)

- 问题定义: 有n个独立的作业 {1,2...n}
 - 设:这n个作业由m台相同的机器进行加工处理
 - 作业 i 所需要的执行时间为:t_i
 - 约定:
 - 每个作业均可以在任何一个机器加工处理
 - 但作业未完成之前不容许中断处理
 - 作业也不能拆分为更小的子作业
 - 多机调度问题要求:给出一种作业调度方案
 - 使n个作业在尽可能短的时间内由m台机器完成处理

- ∞ 贪心算法求解多机调度问题
 - 贪心选择策略:最长处理时间作业优先
 - 当 n≤m 时
 - 只要将机器 i 的 $[0, t_i]$ 时间区间分配给作业 i 即可
 - 算法只需要O(1)时间
 - 当 n>m 时
 - 首先将n个作业依其所需的处理时间从大到小排序
 - 然后依次顺序将作业分配给空闲的机器
 - 算法所需的计算时间为O(nlogn)

∞ 设:有7个独立作业{1,2,3,4,5,6,7}交由3台机器处理

- 各作业所需的处理时间分别为: {2, 14, 4, 16, 6, 5, 3}
- 上述贪心算法产生的作业调度如图所示
 - 所需的加工时间总长度为17

∞ 多机调度问题小结

- 这个问题是NP完全问题
 - 到目前为止还没有十分有效的解法
- 对于这一类问题(NP完全问题)
 - 用贪心选择策略有时可以设计出较好的近似算法
 - 即:采用**最长处理时间作业优先**的贪心选择策略

NP完全性问题简介

(Introduction to NP-Complete)

看似简单的问题未必简单: NP-Complete

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

算法理论的研究对象:两类抽象问题

- ∞ 优化问题(也称为极值问题)
 - 一个优化问题通常可以用以下四个部分来描述
 - 实例集合:若干实例 I 组成集合D
 - → 其中每一个实例 I 含有一个问题所有输入的数据信息
 - 可行解集:每一个实例 I 有一个解集合 S(I)
 - → 其中的每一个解都满足问题的条件, 称为可行解
 - 目标函数:映射c(σ): S(I)→ℜ
 - ο 最优化:求最优解 $σ_{opt}(I) ∈ S(I)$,使得对任意一个可行解 σ∈S(I),都有 $c(σ_{opt}(I)) ≥ c(σ)$ 或者 $c(σ_{opt}(I)) ≤ c(σ)$
 - 一个优化问题也可以视为一个判定问题

算法理论的研究对象:两类抽象问题

- ∞ 判定问题(也称为识别问题)
 - 仅有两种可能的答案: "是"或者"否"
 - 可以将一个判定问题视为一个函数
 - 它将问题的输入集合 I 映射到问题解的集合{0 1}
 - 以路径判断问题为例:
 - 给定一个图G=(V, E) 和顶点集V中的两个顶点u, v
 - 判断 G 中是否存在一条 u 和 v 之间的路径
 - 如果用 i=<G, u, v>表示该问题的一个输入
 - → 则:函数PATH(i)=1 (当u和v之间存在路径)
 - → 则:函数PATH(i)=0 (当u和v之间不存在路径)

算法理论的研究对象:非确定性

- ∞ 非确定性是算法理论研究领域的一个基本问题
- ∞ 非确定性的定义
 - 给定某种计算机模型(自动机)
 - 若在任意时刻,对于自动机的当前状态和输入
 - 自动机有多个动作可供选择,则称机器为非确定性的
 - 若在任意时刻,对于自动机的当前状态和输入
 - 自动机的动作可唯一确定,则称机器为确定性的
 - 核心课题:非确定性能否提高机器的计算能力

P和NP

∞ P和NP都是问题的集合

- P是所有可在**多项式时间**内用**确定算法求解**的判定问题的集合
 - 对于一个问题X,若存在一个算法Xsolver
 - 能在O(n^k)时间内求解(k为某个常数)
 - 那么就称这个问题属于P
- NP是所有可用多项式时间算法验证其猜测准确性的问题的集合

 - 能在多项式时间复杂度内给出验证结果
 - 那么就称这个问题属于NP

P和NP

∞ 数学的世纪难题,计算机科学领域的顶级难题: P = NP?

- 目前的研究结果倾向于认为:P!=NP
- 即:有些不可快速计算的问题就是难处理的问题
- 鉴于不能在多项式时间内给出解的算法的时间代价增长过快
- 通常将可以由多项式时间的算法解决的问题看作是易处理的

计算复杂性的层次结构

NPC: NP-Complete

- ∞ NP-Complete的非形式化定义
 - 如果一个问题属于NP,且该问题与NP中的任何问题是一样难的
 - 则称该问题属于NP完全的(NPC, NP-Complete)
- 研究意义: NPC问题是20世纪的最伟大的发现之一
 - 1971年,Cook发现所有的NP问题都可以规约到SAT问题
 - SAT: SATISFIABLITY 布尔逻辑的可满足性问题
 - 1972年, Karp证明了21种问题是NP完全的
 - 直接推论:如果任何一个NPC问题可以在多项式时间内解决
 - 则NP中的所有问题都有一个多项式时间的算法
 - 迄今尚未发现任何一个NPC问题的多项式时间解决方案

NP完全性的证明

- ∞ 如何证明一个问题属于NPC类?
 - 证明一个问题是NP完全问题时(目的是证其困难)
 - 不是要证明存在某个有效的算法
 - 而是要证明不太可能存在一个有效的算法
 - 证明的方法依赖于三个关键概念:
 - 判定问题: NP完全性只适用于判定问题
 - 规约: NP完全性的定义和证明方法
 - 第一个NP完全问题:应用规约技术的前提
 - 已知一个NPC问题
 - 才能通过规约的方法证明另一个问题也是NPC的

问题的规约

- ∞ 对于给定的判定问题A,希望在多项式时间内解决该问题
 - 称某一特定问题的输入为该问题的一个实例(instance)
 - 假设有另一个不同的判定问题B可以在多项式时间内求解
 - 假设有如下过程
 - o 可以将A的任意实例α转化为B的实例β
 - 转化操作需要多项式时间
 - o 两个实例的答案相同(a的答案为真 iff β的答案为真)
 - 称该过程为多项式时间的规约算法(reduction algorithm)

问题的规约

- ∞ 规约算法提供了一种在多项式时间内解决问题A的方法
 - 1. 首先利用规约算法将A的实例α转化为B的实例β
 - 2. 然后对实例β运行B的多项式时间判定算法
 - 3. 最后将β的答案作为α的答案
 - o a的答案为真 iff β的答案为真
- ∞ 由于每一步只需多项式时间,因此判定a只需多项式时间
- ∞ 小结:通过将对问题A的求解规约为对问题B的求解
 - 就可以利用B的"易求解性"来证明A的"易求解性"
 - 思考:如果想证明某一问题是NP完全的?

问题的规约

- ∞ 证明某一问题是NPC的思路恰恰与前面的思路相反
 - 利用规约表明对特定问题而言不存在多项式时间的算法
- ∞ 设:已知判定问题A不可能存在多项式时间的确定算法
 - 并设有一个多项式时间的规约将A的实例转化为B的实例
 - 则可以利用反证法证明B不可能存在多项式时间的算法
 - 反假设:B有一个多项式时间的算法
 - 根据规约算法:可以在多项式时间内解决问题A
 - 显然与已知矛盾(判定问题A没有多项式时间的算法)
 - 注意:无法假设问题A绝对没有多项式时间的算法

NPC和NPH

- ∞ NP-Complete的形式化定义
 - 如果一个判定问题A属于NP类
 - 而且NP中的任何问题均可在多项式时间内规约到A
 - 则称问题A是NP完全的(NP-Complete)
 - 判断A是否属于NP可以看其解是否可在多项式时间内被验证
- ∞ NP-Hard的形式化定义
 - 如果一个问题B满足上述条件2,则称之为NP-Hard问题
 - 也就是说:无论问题B是否属于NP类(是否满足条件1)
 - 若某一NPC问题可在多项式时间内规约到B
 - ο 则称问题B是NPH问题(NP-Hard)

几类问题之间的关系

一些经典的NP问题

∞ SAT问题

- 对于输入的包含n个布尔变量的逻辑表达式
- 求解使表达式为真的变量值组合

∞ 背包问题

- 给定背包容量C和n件物品及其重量
- 求解物品选取方案,使得选出的物品重量之和恰好为C

∞ n皇后问题

- 对于给定的nxn国际象棋棋盘
- 要求输出一个在棋盘上放置n个互不攻击的皇后的方案

□ 精确覆盖问题

- 对于输入的0/1矩阵,要求输出矩阵的若干个行号
- 使得输入的0/1矩阵只保留输出的行后每列正好有一个1

一些经典的NP问题

∞ 旅行商问题(最优):经典NPC问题

- 对于输入的包含n个点的带权完全图
- 要求输出一条遍历了所有顶点的总权值和最小的路径
- ∞ 旅行商问题: NP-Hard问题
 - 对于输入的包含n个点的带权完全图和一个正实数c
 - 要求输出一条遍历了所有顶点的总权值和不超过c的路径

NP完全性小结

- ∞ 一个判定问题A是NP完全的
 - 如果问题A属于NP类
 - 而且NP中的任何问题均可在多项式时间内规约到A
- ∞ 研究NP完全问题的意义
 - 如果任何一个NPC问题可以在多项式时间内解决
 - 则NP中的所有问题都有一个多项式时间的算法
 - 要成为一名优秀的算法设计者,熟悉这类问题是非常重要的
 - 很多有趣的自然问题并不比图的搜索等问题更困难
 - 目前已经证明的NP完全问题高达上千种
 - 如果问题是NPC的,更好的做法是采用近似算法求解

搜索算法简介

- ∞ 穷举搜索 (brute-force)
- ∞ 盲目搜索 (blind search)
 - 深度优先(DFS):回溯法
 - 广度优先搜索(BFS):分支限界法
 - 博弈树搜索(game-tree):α-β剪枝算法
- ∞ 启发式搜索 (heuristic search)
 - A*算法:IDA*算法, B*, 局部择优搜索法
 - 仿生算法:蚁群算法,蜂群算法,禁忌算法,粒子群算法
 - 进化计算:遗传算法(1975)
 - 随机搜索:将随机过程引入搜索
 - 随机梯度下降算法,随机爬山算法
 - 模拟退火算法(1983),量子退火算法

算法之美

∞ 大道至简:简单就是美

- 爱因斯坦质能方程: E=mc² (1905)
- 冯·诺依曼体系结构(1946)
 - 将指令和数据同时存放在存储器中
 - 计算机组成:控制器、运算器、存储器、输入、输出设备
- 递归: PageRank algorithm (Larry Page, 1998)

$$\frac{\mathbf{PR}(p_i) = \frac{1 - \alpha}{n} + \alpha \sum_{p_j \in N(p_i)} \frac{\mathbf{PR}(p_j)}{D(p_j)}$$

• 动态规划:Viterbi algorithm (Andrew Viterbi , 1967)

三类常用算法小结

- Divide-and-conquer
 - Break up a problem into some sub-problems
 - solve each sub-problem independently
 - and combine solution to sub-problems to form solution to original problem.
- □ Dynamic programming
 - Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
- ca Greed
 - Build up a solution incrementally
 - myopically optimizing some local criterion.

