Arithméthique

Table des matières

1	Rappels	2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3	Division euclidienne	
4	Congruence	8

1 Rappels

On désigne par :

 $\bullet\,$ $\,\mathbb N$ l'ensemble des entiers naturels

$$\mathbb{N} \ = \ \{0, 1, 2, 3, \ldots\}$$

$$\mathbb{N}^* \ = \ \{1, 2, 3, \ldots\}$$

 $\bullet~\mathbbmss{Z}$ l'ensemble des entiers relatifs

$$\mathbb{Z} \ = \ \left\{ \ldots, -2, -1, 0, 1, 2, \ldots \right\}$$

$$\mathbb{N} \in \mathbb{Z}$$

 $\bullet \ \mathbb D$ l'ensemble des nombres décimaux (nombres à virgule)

$$\mathbb{D} = \{ \ \frac{a}{10^n}, \, \text{avec} \ a \in \mathbb{Z} \ \text{et} \ n \in \mathbb{Z} \ \}$$

 $\bullet \ \mathbb{Q}$ l'ensemble des nombres rationnels

$$\mathbb{Q} = \{ \ \frac{a}{b}, \, \text{avec} \,\, a \in \mathbb{Z} \,\, \text{et} \,\, b \in \mathbb{N}^* \,\, \}$$

 $\bullet \ \mathbb{R}$ l'ensemble des nombres réels

$$\mathbb{N} \in \mathbb{Z} \in \mathbb{D} \in \mathbb{Q} \in \mathbb{R}$$
$$\sqrt{2} \in \mathbb{R} , \sqrt{2} \notin \mathbb{Q}$$

2 Divisibilité dans \mathbb{Z}

2.1 Définition et exemples

Définition:

Soient $a, b \in \mathbb{Z}$

On dit que a divise b s'il existe $k \in \mathbb{Z}$ tel que $b = k \times a$

On dit aussi que -b est un multiple de a et que a est un diviseur de b

Notation: $a \mid b$ a divise b

Exemple 1:

1)
$$a = -2$$
, $b = 6$
 $6 = (-3) \times (-2)$
 -2 divise 6

2)
$$b = 12$$

3) a = -2, b = 6

6 n'est pas un multiple de 4, donc 4 ne divise pas 6

Diviseurs de 12 :
$$D_{12} = \{-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12\}$$

4)
$$a = -50$$

Multiples de -50:

$$M_{-50} = \{\dots, -150, -100, -50, 0, 50, 100, 150, 200, \dots\}$$

Remarque:

Les diviseur de b sont finis $(b \neq 0)$

Les multiples de a sont infinis

Exercice 1:

1) Donner la liste des diviseurs de 16 :

$$D_{16} = \{-16, -8, -4, -2, -1, 1, 2, 4, 8, 16\}$$

2) Donner la liste des entiers qui divisent à la fois 16 et 24 :

$$D_{24} = \{-24, -12, -8, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 8, 12, 24\}$$

$$D_{16} \cap D_{24} = \{-8, -4, -2, -1, 1, 2, 4, 8\} \quad \begin{array}{c} PGCD \ (16, 24) \\ = 8 \end{array}$$

Exercice 2:

Déterminer tous les couples $(x, y) \in \mathbb{N} \times \mathbb{N}$

$$x^{2} - 2xy = 15$$

$$5^{2} - 2 \times 5 \times 1$$

$$x \times x - 2x \times y = 15$$

$$x(x - 2y) = 15$$

x est un diviseur positif de 15

$$D_{15} = \{1, 3, 5, 15\}$$

cas 1)
$$x = 1$$
 donc $1 - 2y = 15$ $-2y = 14$ $y = -7$

cas 2)
$$x = 3$$
 donc $3 - 2y = 5$ \times $-2y = 2$ $y = -1$

cas 3)
$$x = 5$$
 donc $5 - 2y = 3$ \checkmark $\{5, 1\}$ $-2y = -2$ $y = 1$

cas 4)
$$x = 15$$
 donc $15 - 2y = 1$ \checkmark {15,7} $-2y = -14$ $y = 7$

x	x-2y	x(x-2y)
1	15	15
3	5	15
5	3	15
15	1	15

Exercice 3:

Déterminer tous les couples (x, y) dont non naturelles tel que :

$$x^2 - 7xy = 17$$

$$x \times x - 7xy = 17$$
 $D_{17} = \{1, 17\}$

cas 1)
$$x = 1$$
 donc $1 - 7y = 17$ \times $-7y = 16$ $y = \frac{16}{-7}$

cas 2)
$$x = 17$$
 donc $17 - 7y = 17$ \times $-7y = -16$ $y = \frac{-16}{-7}$

2.2 Propriétés

Exemple 2:

$$a = 5$$

$$b = 25$$

$$c = 75$$

$$\begin{cases} a \mid 25 & a \mid b + c \\ & \text{alors } a \text{ divise} = \\ a \mid 75 & a \mid b - c \end{cases}$$

et plus généralement $a \mid nb + mc$

Exemple :
$$n=4$$

$$m=2$$

$$nb+mc=100-150$$

$$=-50 \quad (a)5 \mid -50$$

Proposition:

Si
$$a \mid b$$
 et $b \mid c$ alors

$$a \mid b + c$$

$$a \mid b - c$$

et plus généralement

$$a \mid nb + mc \text{ avec } n, m \in \mathbb{Z}$$

3 Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}$, $b \neq 0$

Définition:

Il existe un unique couple $(q; r), q \in \mathbb{Z}$ $r \in \mathbb{N}$ tel que

$$b = q \cdot a + r$$
 et $0 \leqslant r < a$

 \uparrow La division euclidienne de b par a

Exemple 3:

$$\begin{array}{ccc} \bullet & b & = & 27 \\ a & = & 10 \end{array}$$

$$\begin{array}{ccc} \bullet & b & = & -27 \\ a & = & 10 \end{array}$$

$$\begin{array}{c|c} -27 & 10 \\ \hline 3 & -3 \end{array} \quad -27 = (-3) \times 10 + 3$$

Exercice 4:

Effectuer la division euclidienne de b par a dans les cas suivantes :

1)
$$b = 75$$
 $a = 11$

$$\begin{array}{c|c}
75 & 11 \\
9 & 6
\end{array}$$

2)
$$b = -75$$
 $a = 11$

$$\begin{array}{c|c}
-75 & 11 \\
2 & -7
\end{array}$$

3)
$$b = 63$$
 $a = 9$

Exercice 5:

Trouver tous les entiers qui sont divisés par 5 donnent un quotient égal 3 fois le reste :

Remarque:

Si
$$b = q \times a + r$$
 $0 \le r < a$
 $b - r = q \cdot a$
 $a \mid b - r$

4 Congruence

Commençons par un exemple :

$$n = 7$$

$$a = 75$$

$$b = 89$$

Méthode 1

$$b - a = 89 - 75$$
$$= 14$$

14 est un multiple de $7\,$

$$89 \equiv 75 [7]$$

Méthode 2

89 est congru à 75 modulo 7

$$89 \equiv 75 [7]$$

Définition:

Soit n est un entier naturel $n \ge 2$ et soient a et b deux entiers relatifs. On dit que a est congru à b modulo n et on écrit $a \equiv b [n]$ si :

$$-n \mid b-a$$
 ou

a et b ont le même reste dans la division euclidienne par n

Propriété:

Soient $a, b, c \in \mathbb{Z}$ Soit $n \in \mathbb{N}$, $n \geqslant 2$

- $a \equiv a [n]$ (réflexivité)
- $a \equiv b[n] \Leftrightarrow b \equiv a[n]$ (symétrie)

Si $a \equiv b [n]$ et $b \equiv c [n]$ alors $a \equiv c [n]$ (transitivité)

Théorème:

$$a \equiv b[n] \Leftrightarrow a - b \equiv 0[n]$$

Remarque:

Effectuons loi D.E de a par \boldsymbol{n}

$$\begin{vmatrix} a \\ r \end{vmatrix} \frac{n}{q} \qquad 0 \leqslant r < n$$

$$a = nq + r$$

$$a - r = nq$$

$$a - r \equiv 0 [n]$$

$$a \equiv r [n]$$

Exemple 4:

$$n = 5$$
$$a = -24$$

$$-24 \mid 5$$

$$1 \mid 5$$

$$-24 \equiv 1 \mid 5 \mid$$

Exercice 6:

Trouver le plus petit entier positif r tel que $a \equiv r[n]$ dans les cas suivants :

1)
$$a = 17$$
, $n = 3$

$$\begin{array}{c|c} 17 & 3 \\ \hline 2 & 5 \end{array}$$
 $17 \equiv 2 [3] \; , \; r = 2$

2)
$$a = -17$$
, $n = 3$

$$\begin{array}{c|c}
-17 & 3 \\
\hline
1 & -6
\end{array}$$
 $-17 \equiv 1 [3] , r = 1$

3)
$$a = 72$$
, $n = 5$

$$\begin{array}{c|c} 72 & 5 \\ 2 & 14 \end{array} \qquad 72 \equiv 2 \, [5] \; , \; r = 2$$

4)
$$a = -72$$
, $n = 5$

$$\begin{array}{c|c} -72 & 5 \\ \hline 3 & -15 \end{array} \qquad -72 \equiv 3 \ [5] \ , \ r = 3$$

Théorème (de compatibilité):

$$a \equiv b \ [n]$$

$$c \equiv d \ [n]$$
alors
$$a + c \equiv b + d \ [n]$$

$$a - c \equiv b - d \ [n]$$

$$a \times c \equiv b \times d \ [n]$$

Pour tout $k \in \mathbb{N}$:

$$a^k \equiv b^k [n]$$

Exemple 5:

$$a = 50^{172}$$

Déterminons le reste de la D.E de a par 7:

$$\begin{array}{c|c}
50 & \pm 1 & [7] \\
50 & 1 & 7 \\
\hline
7 & 50^{172} & \pm 1^{172} & [7] \\
50^{172} & \pm 1 & [7]
\end{array}$$

Le reste est 1

Exemple 6:

Déterminer le reste de loi D.E de a par 7:

1)
$$a = 55^{63}$$

$$55 \equiv 6 \ [7]$$

$$6 \equiv -1 \ [7]$$

$$55 \equiv -1 \ [7]$$

$$55^{63} \equiv (-1^{63})$$

$$55^{63} \equiv -1 \ [7]$$

$$55^{63} \equiv 6 \ [7]$$

Le reste est 6

2)
$$a = 55^{64}$$

$$55 \equiv 6 \ [7]$$

$$6 \equiv -1 \ [7]$$

$$55 \equiv -1 \ [7]$$

$$55^{64} \equiv (-1^{64})$$

$$55^{64} \equiv -1 \ [7]$$

Le reste est 1

3)
$$a = 78^{15}$$
, $n = 11$

Le reste est $1\,$

Exercice 7:

a) Vérifier que :

1)
$$2^4 \equiv -1 [17]$$

$$2^4=16$$

$$16-(-1)=17$$
 qui est un multiple de 17
$$donc\ 16\equiv -1\ [17]$$

$$2^4\equiv -1\ [17]$$

2)
$$6^2 \equiv 2 [17]$$

$$6^2=36$$

$$36-2=34$$
 qui est un multiple de 17
$$donc\ 36\equiv 2\ [17]$$

$$6^2\equiv 2\ [17]$$

b) En déduire le reste de la division euclidienne de 1532^{20} et 346^{12} par 17

Le reste est 13

Exercice 8:

• Déterminer tout les couples des entiers naturel $(x\ ,\, y)$ tel que

$$x^{2} = y^{2} + 21$$

 $x^{2} - y^{2} = 21$
 $(x + y)(x - y) = 21$

$$21 \times 1 \quad \begin{cases} x+y=21 \\ x-y=1 \end{cases} \qquad 2x=22 \quad \boxed{ \begin{cases} x=11 \\ y=10 \end{cases} }$$

$$7 \times 3 \quad \left\{ \begin{array}{c} x+y=7 \\ x-y=3 \end{array} \right. \quad 2x=10 \quad \left[\begin{array}{c} x=5 \\ y=2 \end{array} \right]$$

• Déterminer tout les couples des entiers naturel (x , y) tel que

$$x^{2} - 7xy = 17$$

$$x(x - 7y) = 17$$

$$D_{17} = \{1, 17\}$$

$$\begin{cases} x = 17 \\ x - 7y = 1 \end{cases} \qquad \begin{cases} x = 1 \\ x - 7y = 17 \end{cases}$$

$$17 - 7y = 1$$

$$-7y = -16$$

$$7y = 16$$

$$y = \frac{16}{7}$$

$$y = \frac{16}{7}$$

$$x = 1$$

$$x - 7y = 17$$

$$-7y = 16$$

$$y = \frac{16}{7}$$

Donc il n'y a pas de solution

${\bf Conclusion:}$

$$\begin{array}{l} a \, \equiv \, b \, \Leftrightarrow \, a-b \, \equiv \, 0 \, [n] \\ a \, \equiv \, r \quad \text{ou} \, r \, \text{est le reste de la division euclidienne de} \, a \, \text{par} \, n \end{array}$$

$$\begin{array}{ccc}
a \equiv b \\
b \equiv c
\end{array} \Rightarrow a \equiv c$$

$$a \equiv b$$
$$c \equiv d$$