What is claimed is:

-			
7	AVOICE	MATACTOR	comprising:
	/ VOICE	actedioi	comprising.

a plurality of Goertzel filters each operating at a different frequency within a voice range, some of the filters operating at frequencies of control signals and others of the filters operating at frequencies other than the control signals' frequencies, each filter for receiving a signal to be analyzed for presence of voice and detecting energy of the signal at the operating frequency of the filter; and

a comparator connected to the filters, for comparing the energies detected by the filters against thresholds and responsive to at least three of the filters simultaneously detecting energy above a noise threshold and below a control signal threshold by indicating that the signal comprises voice.

2. The voice detector of claim 1 wherein:

the comparator is responsive to a filter of the filters operating at a frequency of a control signal and detecting energy above a control signal threshold by indicating that the analyzed signal comprises the control signal.

3. The voice detector of claim 1 wherein:

the comparator is responsive to one of the filters operating at a frequency of a single-frequency control signal detecting energy above a first control signal threshold by indicating that the analyzed signal comprises the single-frequency control signal, and is responsive to two of the filters operating at frequencies of a dual-frequency control signal each detecting energy above a second control signal threshold different from the first control signal threshold by indicating that the analyzed signal comprises the dual-frequency control signal.

18

1 4. The voice detector of claim 1 further comprising: 2 a detector that detects total energy of the signal to be analyzed; wherein 3 4 the comparator is responsive to the total detected energy being below a noise threshold by indicating that the analyzed signal comprises 5 noise or silence. 6 1 5. The voice detector of claim 4 wherein: 2 the comparator compares the energies detected by the filters against the thresholds by comparing ratios of the energies detected by 3 4 individual ones of the filters and the total detected energy against the thresholds. 5 6. A call classifier comprising: 1 2 a plurality of Goertzel filters each operating at a different frequency 3 within a voice range, some of the filters operating at frequencies of control 4 signals and others of the filters operating at frequencies other than the 5 control signals frequencies, each filter for receiving windows of a signal to 6 be analyzed for presence of voice and detecting energy of the signal in the 7 windows at the operating frequency of the filter; 8 a detector that detects in the windows total energy of the signal to 9 be analyzed; and 10 a comparator connected to the filters, for comparing ratios of the 11 energies detected by the individual filters in a window and the total 12 detected energy in the window against thresholds, responsive to the total detected energy in the widow not exceeding a noise threshold by 13 14 indicating that the analyzed signal comprises silence or noise, responsive 15 to one of the filters operating at a frequency of a single-frequency control 16 signal detecting energy whose ratio exceeds a first control signal threshold 17 by indicating that the analyzed signal comprises said single-frequency

control signal, responsive to two of the filters operating at frequencies of a

9

and

- 19 dual-frequency control signal each detecting energy whose ratio exceeds 20 a second control signal threshold by indicating that the analyzed signal comprises said dual-frequency control signal, and responsive to at least 21 22 three of the filters each detecting energy whose ratio exceeds a voice 23 threshold by indicating that the signal comprises voice. 1 7. The call classifier of claim 6 wherein: 2 each window represents a different segment of the signal to be 3 analyzed. 1 8. The call classifier of claim 6 wherein: each window represents a different tapered segment of the signal 2 3 to be analyzed. 1 9. The call classifier of claim 6 wherein: 2 each window represents a different segment of the signal to be 3 analyzed and wherein consecutive said windows partly overlap each other. 4 1 10. A method of detecting voice in a signal to be analyzed for presence of voice, comprising: 2 3 detecting energy of the signal at operating frequencies of a plurality 4 of Goertzel filters each operating at a different frequency within a voice 5 range with some of the filters operating at frequencies of control signals 6 and others of the filters operating at frequencies other than the control signals' frequencies; . 7 8 comparing the energies detected by the filters against thresholds;
- in response to at least three of the filters simultaneously detecting
 energy above a noise threshold and below a control signal threshold,
 indicating that the signal comprises voice.

1	11. The method of claim 10 further comprising:
2	in response to a filter of the filters operating at a frequency of a
3	control signal detecting energy above a control signal threshold, indicating
4	that the analyzed signal comprises the control signal.
1	12. The method of claim 10 further comprising:
2	in response to one of the filters operating at a frequency of a single-
3	frequency control signal detecting energy above a first control signal
4	threshold, indicating that the analyzed signal comprises the single-
5	frequency control signal; and
6	in response to two of the filters operating at frequencies of a dual-
7	frequency control signal each detecting energy above a second control
8	signal threshold different from the first control signal threshold, indicating
9	that the analyzed signal comprises the dual-frequency control signal.
1	13. The method of claim 10 further comprising:
2	detecting total energy of the signal to be analyzed;
3	comparing the total detected energy against a noise threshold; and
4	in response to total detected energy being below the noise
5	threshold, indicating that the analyzed signal comprises noise or silence.
1	14. The method of claim 13 wherein:
2	comparing the energies detected by the filters comprises
3	comparing ratios of the energies detected by individual ones of the
4	filters and the total detected energy against the thresholds.
1	15. A method of detecting voice in a signal to be analyzed for
2	presence of voice, comprising:
3	detecting energy of the signal at operating frequencies of a plurality

to be analyzed.

3

4	of Goertzel filters each operating at a different frequency within a voice
5	range, some of the filters operating at frequencies of control signals and
6	others of the filters operating at frequencies other than the control signals
7	frequencies, wherein each filter receives windows of the signal to be
8	analyzed for presence of voice and detects energy of the signal in the
9	windows at the operating frequency of the filter;
10	detecting in the windows total energy of the signal to be analyzed;
11	comparing ratios of the energies detected by the individual filters in
12	a window and the total detected energy in the window against thresholds;
13	in response to the total detected energy in the widow not exceeding
14	a noise threshold, indicating that the analyzed signal comprises silence or
15	noise;
16	in response to one of the filters operating at a frequency of a single-
17	frequency control signal detecting energy whose ratio exceeds a first
18	control signal threshold, indicating that the analyzed signal comprises said
19	single-frequency control signal;
20	in response to two of the filters operating at frequencies of a dual-
21	frequency control signal each detecting energy whose ratio exceeds a
22	second control signal threshold, indicating that the analyzed signal
23	comprises said dual-frequency control signal; and
24	in response to at least three of the filters each detecting energy
25	whose ratio exceeds a voice threshold, indicating that the signal
26	comprises voice.
1	16. The method of claim 15 wherein:
2	each window represents a different segment of the signal to be
3	analyzed.
1	17. The method of claim 15 wherein:
2	each window represents a different tapered segment of the signal
	, , , , , , , , , , , , , , , , , , , ,

- 1 18. The method of claim 15 wherein:
- each window represents a different segment of the signal to be
- 3 analyzed and wherein consecutive said windows partly overlap each
- 4 other.