Homework 3: Gradient Descent and Least Squares

Due November 2, 2023 (100 points)

Problem 1 (25 points). Suppose $X \in \mathbb{R}^{d \times n}$ is a data matrix with d > n, and let $\mathbf{y} \in \mathbb{R}^n$ be a vector of targets. We would like to find a weight vector $\mathbf{w} \in \mathbb{R}^d$ that solves $X^\top \mathbf{w} = \mathbf{y}$. Unlike our typical setup in linear regression, the system $X^\top \mathbf{w} = \mathbf{y}$ is now *underdetermined*: It may have infinitely many solutions.

In this problem, we will derive an expression for the *minimum 2-norm* solution to $X^{\top}\mathbf{w} = \mathbf{y}$. Assume throughout this problem that the columns of X are linearly independent.

- (a) Set up an optimization problem for finding the minimum 2-norm solution \mathbf{w}^* satisfying $X^{\mathsf{T}}\mathbf{w} = \mathbf{y}$.
- (b) Using the method of Lagrange multipliers, find an expression for **w*** in terms of *X* and **y**. You do *not* need the SVD for this problem.
- (c) Any solution to $X^{\top}\mathbf{w} = \mathbf{y}$ has the form $\mathbf{w} = \mathbf{w}^* + \mathbf{w}_0$, where \mathbf{w}^* is the solution we found earlier and $\mathbf{w}_0 \in \ker(X^{\top})$. Use this fact to give an alternative proof that \mathbf{w}^* is the minimum-norm solution to $X\mathbf{w} = \mathbf{y}$.
- (d) Suppose we factor X = QR, where $Q \in \mathbb{R}^{d \times n}$ and $R \in \mathbb{R}^{n \times n}$. Not counting the time needed to compute the factorization, what is the big-O complexity of computing \mathbf{w}^* ?

Problem 2 (25 points). We now show that gradient descent on $\min_{\mathbf{w}} f(\mathbf{w}) := \frac{1}{2} ||X^{\top}\mathbf{w} - \mathbf{y}||^2$, without Tikhonov regularization, converges to the minimum-norm solution of $X^{\top}\mathbf{w} = \mathbf{y}$.

- (a) We will use a constant step size for simplicity. Derive a constant step size t that guarantees that gradient descent converges to a minimizer of f.
- (b) Suppose we initialize gradient descent at $\mathbf{w}_0 = \mathbf{0} \in \mathbb{R}^d$. Show that every subsequent iterate \mathbf{w}_k is contained in im(X).
- (c) Argue that the iterates \mathbf{w}_k converge to a minimum-norm solution to $X^{\mathsf{T}}\mathbf{w} = \mathbf{y}$.

Problem 3 (20 points). Given a collection of n data points $\mathbf{x}_i \in \mathbb{R}^d$, one way to obtain an underdetermined regression problem is to map each column \mathbf{x}_i to a new point $\phi(\mathbf{x}_i) \in \mathbb{R}^D$ for D > n and instead solve $\phi(X)\mathbf{w} = \mathbf{y}$, where $\phi(X) \in \mathbb{R}^{D \times n}$ is the matrix whose i-th column is $\phi(\mathbf{x}_i)$.

In Problem 5(d) of HW1, we showed that one can solve this regression problem while only evaluating the function $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$. In particular, letting $K_{\mathbf{x}\mathbf{x}} \in \mathbb{R}^{n \times n}$ be the *kernel matrix* whose (i, j)-th entry is $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$, we:

- 1. Solve $K_{\mathbf{x}\mathbf{x}}\mathbf{c} = \mathbf{y}$ for $\mathbf{c} \in \mathbb{R}^n$.
- 2. Obtain new predictions $\mathbf{z} \in \mathbb{R}^d$ by computing the vector $\mathbf{k}_{\mathbf{z}} \in \mathbb{R}^n$ whose elements are $k(\mathbf{z}, \mathbf{x}_i)$ for $i \in \{1, ..., n\}$ and then computing $f(\mathbf{z}) = \mathbf{c}^{\top} \mathbf{k}_{\mathbf{z}}$.

This procedure is called *kernel regression*, and it works even if $\phi(\cdot)$ maps points $\mathbf{x} \in \mathbb{R}^d$ to *functions*: We can think of functions as infinite-dimensional vectors. It might be difficult to solve $\phi(X)^{\top}\mathbf{w} = \mathbf{y}$ directly when the "columns" of $\phi(X)$ are infinite-dimensional, but the kernel matrix K_{xx} is still $n \times n!$ So long as we can compute the inner products $k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$, we can carry out kernel regression.

In this problem, we will derive an expression for $k(\mathbf{x}_i, \mathbf{x}_j)$ given the feature map $\phi : \mathbf{x} \mapsto k_{\mathbf{x}}(\cdot)$, where $k_{\mathbf{x}}(\cdot)$ is a function given by $k_{\mathbf{x}}(\mathbf{p}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{p}\|_2^2}{2\sigma^2}\right)$. This $k(\mathbf{x}_i, \mathbf{x}_j)$ is the well-known radial basis function (RBF) kernel.

- (a) Propose an inner product $k_{\mathbf{x}_i}(\cdot) \cdot k_{\mathbf{x}_j}(\cdot)$ between *functions* $k_{\mathbf{x}_i}(\cdot)$ and $k_{\mathbf{x}_j}(\cdot)$.

 Hint: The standard inner product on \mathbb{R}^d is the "dot product" $\mathbf{u} \cdot \mathbf{v} = \sum_{k=1}^d u_k v_k$. What is an infinite-dimensional analog to this sum?
- (b) Using your proposed inner product, provide a formula for computing $k(\mathbf{x}_i, \mathbf{x}_j) = k_{\mathbf{x}_i}(\cdot) \cdot k_{\mathbf{x}_i}(\cdot)$.

Problem 4 (30 points). In this problem, we'll implement kernel regression using the RBF kernel derived in Problem 3 and use it to classify the well-known MNIST handwritten digits into classes "0", "1,",..., "9". We will learn 10 weight vectors $c_m \in \mathbb{R}^n$, each parametrizing a linear function $f_m(\mathbf{z}) = \mathbf{c}_m^{\top} \mathbf{k}_z$. To predict the class of a new handwritten digit \mathbf{z} , we compute $f_m(\mathbf{z})$ for each $m \in \{1, ..., 10\}$ and predict the class as $m^* = \operatorname{argmax}_m f_m(\mathbf{z})$.

- (a) Implement a function that computes the RBF kernel matrix $K_{xy} \in \mathbb{R}^{n_x \times n_y}$ given $X \in \mathbb{R}^{n_x \times d}$ and $Y \in \mathbb{R}^{n_y \times d}$. The (i, j)-th entry of K_{xy} should be $k(\mathbf{x}_i, \mathbf{y}_j)$ for the RBF kernel you derived in Problem 3(b).
- (b) Kernel regression entails solving $K_{xx}c = y$ for a weight vector $c \in \mathbb{R}^n$. As the MNIST training set contains 60,000 images, the kernel matrix K_{xx} is 60,000 \times 60,000. This linear system may be difficult to directly solve on your laptop.

An alternative approach for large datasets is to solve min_c $\frac{1}{n} ||K\mathbf{c} - \mathbf{y}||_2^2$ using *stochastic gradient descent* (SGD). Given an objective of the form $f(\mathbf{c}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{c})$, an SGD iteration:

- i) Randomly draws $L \leq N$ indices $i_1, ..., i_L$
- ii) Approximates $f(\mathbf{c}_k)$ with $\hat{f}(\mathbf{c}_k) = \frac{1}{L} \sum_{\ell=1}^{L} f_{i_{\ell}}(\mathbf{c}_k)$
- iii) Takes a gradient step with respect to $\hat{f}(\mathbf{c}_k)$

Assuming we sample L indices i_1, \ldots, i_L , derive an expression for the k+1-th SGD iterate \mathbf{c}_{k+1} for the objective $f(\mathbf{c}) = \frac{1}{2} \| K\mathbf{c} - \mathbf{y} \|_2^2$. You can assume a constant step size t. What is the big-O complexity of computing \mathbf{c}_{k+1} in terms of L and n?

(c) Implement SGD for solving the kernel regression problem on MNIST. Use the hyperparameters (batch size, step size, number of iterations, and kernel bandwidth $\frac{1}{2\sigma^2}$) that have been provided in the starter code. What is the accuracy of the kernel classifier on the test set?