## Natural Language and Speech Processing

Lecture 6: Classifying words

Tanel Alumäe

## Why classify words?

- Classifying words into categories is useful for many NLP tasks:
  - Part-of-speech tagging: classify words according their class (noun, verb, adjective)
  - Find names (persons, locations, companies, etc)
  - Find time expressions
- More generally, we want to tag (classify) each item (word) in a sequence (sentence)
  - Machine learning: sequence tagging problem

### Part-of-speech tagging

Task: assign a syntactic category for each word

```
Mrs. Shaefer never got around to joining NNP NNP RB VBD RP TO VBG
```

- Useful for downstream text processing tasks
  - Speech synthesis (record, lead)
  - Lemmatization (saw → see, saw → saw)
  - Parsing

### **English POS tags**



## English POS tags

| CC    | conjunction, coordinating                    | and both but either or                    |
|-------|----------------------------------------------|-------------------------------------------|
| CD    | numeral, cardinal                            | mid-1890 nine-thirty 0.5 one              |
| DT    | determiner                                   | a all an every no that the                |
| EX    | existential there                            | there                                     |
| FW    | foreign word                                 | gemeinschaft hund ich jeux                |
| IN    | preposition or conjunction, subordinating    | among whether out on by if                |
| JJ    | adjective or numeral, ordinal                | third ill-mannered regrettable            |
| JJR   | adjective, comparative                       | braver cheaper taller                     |
| JJS   | adjective, superlative                       | bravest cheapest tallest                  |
| MD    | modal auxiliary                              | can may might will would                  |
| NN    | noun, common, singular or mass               | cabbage thermostat investment subhumanity |
| NNP   | noun, proper, singular                       | Motown Cougar Yvette Liverpool            |
| NNPS  | noun, proper, plural                         | Americans Materials States                |
| NNS   | noun, common, plural                         | undergraduates bric-a-brac averages       |
| POS   | genitive marker                              | ''s                                       |
| PRP   | pronoun, personal                            | hers himself it we them                   |
| PRP\$ | pronoun, possessive                          | her his mine my our ours their thy your   |
| RB    | adverb                                       | occasionally maddeningly adventurously    |
| RBR   | adverb, comparative                          | further gloomier heavier less-perfectly   |
| RBS   | adverb, superlative                          | best biggest nearest worst                |
| RP    | particle                                     | aboard away back by on open through       |
| ТО    | "to" as preposition or infinitive marker     | to                                        |
| UH    | interjection                                 | huh howdy uh whammo shucks heck           |
| VB    | verb, base form                              | ask bring fire see take                   |
| VBD   | verb, past tense                             | pleaded swiped registered saw             |
| VBG   | verb, present participle or gerund           | stirring focusing approaching erasing     |
| VBN   | verb, past participle                        | dilapidated imitated reunifed unsettled   |
| VBP   | verb, present tense, not 3rd person singular | twist appear comprise mold postpone       |
| VBZ   | verb, present tense, 3rd person singular     | bases reconstructs marks uses             |
| WDT   | WH-determiner                                | that what whatever which whichever        |
| WP    | WH-pronoun                                   | that what whatever which who whom         |
| WP\$  | WH-pronoun, possessive                       | whose                                     |
| WRB   | Wh-adverb                                    | however whenever where why                |
|       |                                              |                                           |

## Part-of-speech ambiguity

 Word can have multiple parts-ofspeech:

```
Fed raises interest rates 0.5 percent VBD NNS VB VBZ CD NN VBN VBZ VBP NNS NNP NN
```

## Named Entity Recognition (NER)

Find and classify names in text, for example:

It's believed to be the first time the young leader has spoken face-to-face with officials from the South since he took power in 2011. Among those Kim is meeting with are South Korea's National Security Chief, Chung Eui-yong, and the country's spy chief, Suh Hoon.

#### Potential tags:

LOCATION

ORGANIZATION

DATE

MONEY

PERSON

PERCENT

TIME

### Named Entity Recognition

### Applications:

- Document indexing, linking
- Sentiment can be attributed to companies and products
- Information extraction: find associations between names
- Question answering: answers to natural language questions are often named entities (e.g. Who is the prime minister of Estonia? What is the largest country in Africa?)

### Other uses of word classification

- Extract specific noun phrases:
  - Dear Santa! How are you and the reindeer doing? I am doing fine I want a new football game and a football because my little brother always tries to steal mine he may look sweet but he is the devil. I also want a remote control truck. Love, Evan. ...

| Dear, Santa                                                                  |
|------------------------------------------------------------------------------|
| How are you and the reindeer doing?                                          |
| How are you and the reindeer doing?<br>I am doing fine I want a new football |
| game and football because my little brother                                  |
| Sweet but he is the devil I also                                             |
| want a remote control truck.                                                 |
| <br>Love, Evan                                                               |
| P.S. How do you get in to my house on Christmas?                             |
| on Christmas?                                                                |

Football game
Football
Remote control truck

### Word classification task

POS tagging

Mrs. NNP
Shaefer NNP
never RB
got VBD
around RP
to TO
joining VBG
:

 Named Entity Recognition

Foreign ORG
Ministry ORG
spokesman O
Shen PER
Guofang PER
told O
Reuters ORG

### Features for word classification

- Words
  - Current word itself (what class is assigned to this word in training data?)
  - Previous/next word (context)
- Other inferred linguistic classification
  - E.g. use inferred POS tags when doing NER
- Word features
  - Prefixes, suffixes, other substrings (e.g. surprisingly → RB)
  - Word shape (Is word all lowercase? Is word in Title-case? Is word in UPPERCASE? Is it all-digits?)
- Gazzetteers: dictionaries from external sources (e.g., for NER: make a collection of all company names in Estonia, and use a feature: Is the word in the collection?)
- Handcrafted features, looking at the word context (e.g., for NER: is the current word uppercase and followed within 3 words by *Co., Inc.,* or *LLC*?)
- Label (word class) context
  - Class of the previous (and perhaps the next) word
  - Available during training, but how to perform decoding?

## Maximum entropy models

- The task of classifying words is similar to document classification
- However, here the features are typically even more correlated than in document classification
  - E.g. word=surpringly, suffix1=y, suffix2=ly, suffix3=gly, prefix2=su
- Therefore, Naive Bayes doesn't work well for word classification
- Maximum entropy models (aka multinomial logistic regression models) are popular machine learning models that allow feature dependence

### Maximum entropy classifiers

- Naibe Bayes is a *generative* model: in order to estimate P(y|x), we evaluate P(x|y) the probability that the class y generated the observation x
- Maximum entropy classifer is a discriminative model: it estimates P(y|x) directly:

$$\hat{y} = argmax_y P(y|x)$$

### Linear classifier

- As Naive Bayes, MaxEnt is linear classifier
- Linear classifiers:
  - Extract some set of features from input
  - Multiply each active feature with its weight
  - Add up the weighted features
  - Apply some function to this combination

### Linear classifier

 The simplest linear classier is potentially like this:

$$P(y|x) = \sum_{i=1}^{N} w_i f_i(x,y) \qquad \bullet \qquad \text{DOESN'T WORK!}$$

- However, the above doesn't produce a legal probability distribution
  - $w_i f_i(x, y)$  could be negative!
  - The sum over all classes doesn't sum to one!

## 'Fixing' the simple linear classifier

- The maximum entropy classifier is a simple linear classifer, "fixed" using two tricks
  - First, we exponentiate the weighted sum so that it's always positive:

$$\exp \sum_{i=1}^{N} w_i f_i(x, y)$$

This is positive
But not between 0 and 1

 Second, we normalize this expression (using the sum over all classes), so that the sum will be exactly 1, resulting in legal probability distribution

$$P(y|x) = \frac{\exp \sum_{i=1}^{N} w_i f_i(x, y)}{\sum_{y' \in Y} \exp \sum_{j=1}^{N} w_j f_j(x, y')}$$

This is positive and between 0 and 1
Also, the sum over all classes Is exactly 1

### Features in MaxEnt classifier

- The features in the MaxEnt classifer are slightly different from the features in other machine learning model
- And a bit unintuitive
- It's actually better to call them indicator functions
- The indicator functions are typically functions of both a traditional features and a class
- That is, they link aspects of the observation with the class that we want to predict
  - $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]$
  - $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$
  - $f_3(c, d) = [c = DRUG \land ends(w, "c")]$







PERSON saw Sue

## Indicator functions and weights in MaxEnt model

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$



- Model assigns each indicator function a weight:
  - A positive weight "votes" that this feature-class combination is likely correct
  - A negative weight "votes" that this feature-class combination is likely incorrect
- Weights are learned from training data (we'll see how)

## Classification example

- Task: document sentiment analysis
- Classes: -, +
- Features:

$$f_1(c,x) = \begin{cases} 1 & \text{if "great"} \in x \& c = +\\ 0 & \text{otherwise} \end{cases}$$

$$f_2(c,x) = \begin{cases} 1 & \text{if "second-rate"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

$$f_3(c,x) = \begin{cases} 1 & \text{if "no"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

$$f_4(c,x) = \begin{cases} 1 & \text{if "enjoy"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

- Learned weights:
  - $w_1 = 1.9$
  - $w_2 = 0.9$
  - $w_3 = 0.7$
  - $W_4 = -0.8$
- Find the class probabilities for the following document:

... there are virtually no surprises, and the writing is second-rate So why did I enjoy it so much? For one thing, the cast is great 1.9

• Formula:

$$P(y|x) = \frac{\exp \sum_{i=1}^{N} w_{i} f_{i}(x, y)}{\sum_{y' \in Y} \exp \sum_{j=1}^{N} w_{j} f_{j}(x, y')}$$

## Classification example

- Task: document sentiment analysis
- Classes: -, +
- Features:

$$f_1(c,x) = \begin{cases} 1 & \text{if "great"} \in x \& c = +\\ 0 & \text{otherwise} \end{cases}$$

$$f_2(c,x) = \begin{cases} 1 & \text{if "second-rate"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

$$f_3(c,x) = \begin{cases} 1 & \text{if "no"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

$$f_4(c,x) = \begin{cases} 1 & \text{if "enjoy"} \in x \& c = -\\ 0 & \text{otherwise} \end{cases}$$

Learned weights:

$$- w_1 = 1.9$$

$$- w_2 = 0.9$$

$$- w_3 = 0.7$$

$$- W_4 = -0.8$$

 Find the class probabilities for the following document:

Solution

$$P(y|x) = \frac{\exp \sum_{i=1}^{N} w_i f_i(x, y)}{\sum_{y' \in Y} \exp \sum_{j=1}^{N} w_j f_j(x, y')} \longrightarrow P(+|x) = \frac{e^{1.9}}{e^{1.9} + e^{.9 + .7 - .8}} = .82$$

$$P(-|x) = \frac{e^{1.9}}{e^{1.9} + e^{.9 + .7 - .8}} = .18$$

### Exercise

3 class decision: LOCATION, PERSON, or DRUG; 3 features as below, what are:

- P(PERSON | by Goéric) =
- P(LOCATION | by Goéric) =
- P(DRUG | by Goéric) =
- 1.8  $f_1(c, d) \equiv [c = \text{LOCATION }^{\land} w_{-1} = \text{"in"}^{\land} \text{ isCapitalized}(w)]$
- -0.6  $f_2(c, d) \equiv [c = \text{LOCATION }^{\land} \text{ hasAccentedLatinChar}(w)]$
- 0.3  $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")]$

by Goéric

DRUG by Goéric

$$P(y|x) = \frac{\exp \sum_{i=1}^{N} w_i f_i(x, y)}{\sum_{y' \in Y} \exp \sum_{j=1}^{N} w_j f_j(x, y')}$$

## Training MaxEnt model

- Intuition: choose weights for indicator functions so that the classes observed in training data will be more likely
- That is: conditional maximum likelihood estimation
- That means, we choose weights that maximize the (log) probability of labels y(i) in the training data, given the observations x(i):

$$\widehat{w} = argmax_{w} \sum_{j} \log P(y^{(j)}|x^{(j)}) = argmax_{w} \sum_{j} \log \frac{\exp \sum_{i=1}^{N} w_{i} f_{i}(y^{(j)}, x^{(j)})}{\sum_{y' \in Y} \exp \sum_{k=1}^{N} w_{k} f_{k}(y', x^{(j)})}$$

## Training MaxEnt model

The function that we want to maximize is the objective function:

$$L(w) = \sum_{j} \log P(y^{(j)}|x^{(j)})$$

- In Naive Bayes, we found the parameters of the model analytically, by just counting the items in the training data
- The parameters of the MaxEnt models cannot be found analytically, instead we use "hill-climbing" methods like stochastic gradient ascent or L-BFGS
- Such gradient ascent methods start with a zero weight vector and move in the direction of the gradient, L'(w) the partial derivative of the objective function L(w) with respect to the weights
- Neural networks are trained very similarly

## A likelihood surface



### **Features**

- Features correspond to word/context attributes that are distinctive enough to deserve model parameters
  - E.g. word itself, word suffix, suffix of previous word, etc
- Features are often added during development phase to target errors
  - Think of useful word/class combinations
  - Also, think of "bad combinations" that should get negative weights. E.g.: "word contains digit" combined with *Personal name* should get a useful negative weight in NER
- Usually, we use feature templates that automatically generate all features that occur in training data, according to some template:
  - word[i], word[i-1], word[i+1]
  - suffix1(word[i]), suffix2(word[i]), suffix3(word[i])...
- MaxEnt models do not automatically model feature combinations
- Therefore, it's often beneficial to include feature conjunctions, e.g.:
  - word[i-1]+word[i], word[i]+word[i+1]
  - word[i]+suffix2(word[i-2])
- But be careful: too many combinations generate too much features → overfitting

## Regularization

- Usually it's not good if we learn weights that make the model perfectly match the training data
- The weights try to match the data too perfectly
- Often, the features start to model noisy factors in the training data that just accidentally correlate with the class
- This is called overfitting
- To avoid overfitting, we often add a regularization term to the objective function:

$$\widehat{w} = \operatorname{argmax}_{w} = \sum_{j} \log P(y^{(j)}|x^{(j)}) - \alpha R(w)$$

### L2 regularization

- The regularization term R(w) penalizes large weights
- Thus a setting of the weights that matches the training data perfectly, but uses weights with high values, will be penalized more than than a setting that matches the data less well, but does so using smaller weights
- One of the most common regularization methods is L2 regularization

$$\widehat{w} = \operatorname{argmax}_{w} = \sum_{j} \log P(y^{(j)}|x^{(j)}) - \alpha R(w)$$

$$R(w) = \sum_{j=1}^{N} w_j^2$$

# Why the surrounding classes improve performance

- Often, the classes of words can be inferred better if the classifier 'sees' the classes of the previous/next words:

  - NER:
    0 0 LOC LOC
    I saw Mount Washington

    0 0 PER PER
    I saw George Washington

## Classifying sequences of words

- Training sequence models (that use the classes of previous words as features) is relatively straightforward: classes of previous words are given in training data
- But how to decode? The classes of previous words are not known during decoding!
- Solutions:
  - Greedy decoding,
  - Greedy decoding, and use model-inferred classes during training
  - Beam search
  - Use a model like *Conditional Random Field (CRF)* that models the sequence of classes jointly

## Classifying sequences of words

- Training sequence models (that use the classes of previous words as features) is relatively straightforward: classes of previous words are given in training data
- But how to decode? The classes of previous words are not known during decoding!
- Solutions:
  - Greedy decoding,
  - Greedy decoding, and use model-inferred classes during training
  - Beam search
  - Use a model like *Conditional Random Field (CRF)* that models the sequence of classes jointly

### Greedy decoding

- In greedy decoding, we choose the best class for each word, step-by-step
- When a feature needs the class of the previous word, we simply use the predicted class
- Problems:
  - Cannot use classes of future words
  - Errors accumulate: if we make a mistake in classifying a previous word, the next word is also likely to be classified incorrectly because of the hard (wrong) decision

- Correct: 0 0 0 LOC LOC Predicted: 0 0 PER ???

Words: I live on Grace Road

### Greedy decoding, improved

- The problem with greedy decoding:
  - The model relies too much on the classes of previous words (because they are given in training data)
- A bit hacky solution: use model-predicted classes for previous words also during training
- This makes the training and decoding data more similar
- The model learns that the classes of previous words are not too reliable
- Works well in many cases, and it's simple to implement

### Beam search

- Beam search: maintain N best hypotheses during decoding
- Return the class sequence that gives the **best total score** (probability)
- Still only previous class predictions can be used
- But wrong predictions can be overturned when more evidence is encountered
- Example with N=2
  - Classes: PER (peron), LOC (location), O (other)
     I live on Grace Road
     Word 1: I→0 (P=0.95)

• Word 5: I→O live→O on→O Grace→LOC Road→LOC (P=0.75)

I→O live→O on→O Grace→PER Road→PER (P=0.25)

### Conditional Random Field

- CRF is a MaxEnt model over sequence
- Decoding finds the best class sequence for a given word sequence that gives the best joint probability
- Training requires more memory and computation than word-based models