# Math Cram Packet

### Unit 6: Rational Functions

# Factoring

$$\circ$$
  $x^7 - 128$ 

$$\circ$$
 6x<sup>4</sup> + 11x<sup>2</sup> - 10

$$\circ$$
 4x<sup>2</sup> - 12xy + 9y<sup>2</sup>

$$(x + 3)^2 - 81$$

$$\circ$$
 3x<sup>2</sup> + 10x - 5

$$\circ x^4y^2 - x^2y^4$$

$$\circ$$
 4x<sup>3</sup> + x<sup>2</sup>y - 4xy<sup>2</sup> - y<sup>3</sup>

# Mult/Div/Complex

o <a href="https://mcckc.edu/tutoring/docs/bt/algebra/Multiplying Rational Expressions.pdf">https://mcckc.edu/tutoring/docs/bt/algebra/Multiplying Rational Expressions.pdf</a>

25. 
$$\frac{a^3-b^3}{3a^2+9ab+6b^2} \cdot \frac{a^2+2ab+b^2}{a^2-b^2}$$

26. 
$$\frac{x^3+y^3}{x^2+2xy-3y^2} \cdot \frac{x^2-y^2}{3x^2+6xy+3y^2}$$
 27. 
$$\frac{4x^2-9y^2}{8x^3-27y^3} \cdot \frac{4x^2+6xy+9y^2}{4x^2+12xy+9y^2}$$

55. 
$$\frac{8a^3+b^3}{2a^2+3ab+b^2} \div \frac{8a^2-4ab+2b^2}{4a^2+4ab+b^2}$$
 56. 
$$\frac{x^3+8y^3}{2x^2+5xy+2y^2} \div \frac{x^3-2x^2y+4xy^2}{8x^2-2y^2}$$

#### Add/Subtract

 http://www.kutasoftware.com/FreeWorksheets/Alg2Worksheets/Adding+Subtracting%20R ational%20Expressions.pdf

6) 
$$\frac{x+2}{2x^2+13x+20} - \frac{x+3}{2x^2+13x+20}$$

0

21) 
$$\frac{5n+5}{5n^2+35n-40} + \frac{7n}{3n}$$

0

26) 
$$\frac{\frac{5}{4}}{\frac{5}{m} - \frac{4}{m}}$$

- Graph Rational Functions
  - How to find HA:
    - Degree numerator greater than degree denominator no HA
    - Degree numerator less than degree denominator HA @ y=0
    - Same degree HA is y=ratio of leading coefficients
  - How to find VA: set the denominator equal to 0 and solve for x
  - How to find Hole: Holes in the graph of a rational function are generally produced by factors that are common to both the numerator and the denominator!
    - http://sites.csn.edu/istewart/Math126/graph\_rational\_func/graph\_rational\_func.htm
    - x-coordinate of the hole
      - set equal to 0 the factor that is common to both the numerator and the denominator of the function then solve

### y-coordinate of the hole

- First, we MUST create a new function by reducing the original function.
  Remember that we have to call it a "new" function since reducing changes the domain. Please note that functions are no longer equal if they have a different domain.
- Finally, to find the y-coordinate of the hole, we simply replace x in the new function with the x-coordinate of the hole.

f(x) = 
$$\frac{x+2}{x^2-4} = \frac{x+2}{(x+2)(x-2)}$$
, the function  $g(x) = \frac{1}{x-2}$  is the "new" function

and the y-coordinate of the hole is 
$$g(-2) = \frac{1}{-2-2} = -\frac{1}{4}$$
.

The coordinates of the hole are at  $(-2, -\frac{1}{4})$ 

# • Solve Rational Equations

- http://www.montereyinstitute.org/courses/Algebra1/COURSE\_TEXT\_RESOURCE/U11\_L
  T1 text final.html
- Find common denominator!

$$\frac{7}{x+2} + \frac{5}{x-2} = \frac{10x-2}{x^2-4}$$

#### Inverse/Direct

### Unit 7: Exponential and Logarithmic Functions

http://www.wou.edu/mathcenter/files/2015/09/Exponents-and-Logarithms.pdf

Simplify Exponential Expressions

$$\circ$$
 2x<sup>a</sup>-x<sup>a</sup>=

$$\circ$$
  $(x/y)^n =$ 

- x¹=
- 1a=
- $\circ$   $\mathbf{x}^0 =$
- xª≠negative number
- If b<sup>m</sup>=b<sup>n</sup>, m=n
- o 81<sup>3/4</sup>=
- o 64<sup>2/3</sup>=
- o 9<sup>-1/2</sup>=
- o 32<sup>-7/5</sup>=
- Simplify Log Expressions
  - $\circ$  Log<sub>b</sub>x+Log<sub>b</sub>y=
  - $\circ$  log<sub>b</sub>x-log<sub>b</sub>y=
  - log<sub>b</sub>x<sup>n</sup>=
  - log<sub>b</sub>b=
  - $\circ$  log<sub>b</sub>1=
  - log<sub>b</sub>x=log x / log b
  - $\circ \quad \text{Log } x = \log_{10} x$
  - $\circ$  Ln x =  $\log_e x$
  - b<sup>x</sup>=y iff log<sub>b</sub>y=x means b<sup>logb(y)</sup>=y and log<sub>b</sub>b<sup>x</sup>=x
  - $\circ$  (log<sub>a</sub>b)(log<sub>b</sub>c)=
  - $\circ$  (log<sub>a</sub>b)(log<sub>b</sub>c)(log<sub>c</sub>d)=
  - log<sub>a</sub>b=1/log<sub>b</sub>a
  - log<sub>a</sub>b=log b / log a
  - if log<sub>b</sub>m=log<sub>b</sub>n, m=n
  - \*remember to check order of operations
  - Don't forget to check your work!
- Solve Exponential Equations
  - Use exponential properties!
  - Simplify as much as possible!
  - o X<sup>4/3</sup>=81
  - o 4<sup>2X+3</sup>=1
  - o 5<sup>3-2X</sup>=5<sup>-X</sup>
  - o 3<sup>1-2X</sup>=243

$$\circ$$
 6<sup>3m</sup> \* 6<sup>-m</sup> = 6<sup>-2m</sup>

$$\circ$$
 2<sup>x</sup>/2<sup>x</sup>=2<sup>-2x</sup>

$$(\%)^{3x+2} * 216^{3x} = 1/216$$

- Solve Log Equations
  - Logs on both sides
    - Combine both sides into single logs
    - Apply the theorem + burn the logs
    - Solve for x
    - Check solutions!

1. 
$$2\log_4 x + \log_4 2x = \log_4 54$$

2. 
$$\log_8 x + \log_8 (x+6) = \log_8 (5x+12)$$

- Logs on one side only
  - Combine one side to single log
  - Convert to exponential form
  - Solve for x
  - Check solutions!

1. 
$$\log_4 x + \log_4 (x+3) = 1$$

2. 
$$\log_2(x+5)-\log_2(2x-1)=5$$

# 3. ln(6x-5)=3

- Exponential & Log Graphs
  - o They are inverses
  - Characteristics (14)
    - Domain
    - Range
    - Fxn, 1-1, cont
    - X-int
    - Y-int
    - Max (abs+local)
    - Min (abs+local)
    - Incr interval
    - Decr interval
    - CCU
    - CCD
    - Asymptotes (HA, VA)
  - o example:





- Exponential Modeling
  - o y=a \* b<sup>x</sup>
  - Find points (0,c) (1,d)
  - $\circ\quad \text{Plug (0,c)}$  into general equation to find particular equation
  - $\circ~$  To find b, plug in (1,d) to the result of step #2
  - Use the particular equation to solve the other problems
  - \*you <u>should not</u> round numbers while finding the particular equation, but when answering the questions, you <u>should</u> round
  - $\circ$  Ex. # of bacteria triples every minute find particular equation

- Finance Applications
  - Compounded annually
    - $A = P(1+r/n)^{nt}$ 
      - n= # of times interest is compounded per year
      - Aka  $A = P(1+r)^{\dagger}$  in this case
  - Compounded Quarterly
    - $A=P(1+r/4)^{4t}$
  - Compounded daily
    - $A = (1+r/365)^{365t}$
  - Compounded continuously
    - A=Pe<sup>rt</sup>



### **Unit 8: Radical Functions**

- Simplify: Add/Subtract
  - o \*you can only combine like radicals of the same root
  - Simplifying find the highest square that is a factor! + no radicals in denominator
  - \*tip: factor trees are helpful!
  - $\circ$   $-3\sqrt{(12)} + 3\sqrt{(3)} + 3\sqrt{(20)} =$

$$\circ$$
 -3<sup>6</sup> $\sqrt{(3)}$  - 2<sup>6</sup> $\sqrt{(192)}$  + <sup>6</sup> $\sqrt{(320)}$ =

$$\circ$$
 4<sup>6</sup> $\sqrt{(3)}$  + 2<sup>4</sup> $\sqrt{(32)}$  - 3<sup>6</sup> $\sqrt{(192)}$  - 2<sup>6</sup> $\sqrt{(192)}$  =

## Multiply

- \*when multiplying, only the root has to match
- $\circ$  2 $\sqrt{(7)}$  \* -3 $\sqrt{(3)}$  =
- $\circ$   $(4 + \sqrt{(6)})^2 =$
- $\circ$   $(\sqrt{7} 2)(\sqrt{7} + 2) =$
- $\circ$   $(7 + \sqrt{(6)})(1 + \sqrt{(6)})$
- $\circ (\sqrt{3} + \sqrt{5}x)(\sqrt{3} 5\sqrt{5}x)$

### • Rationalize Denominator

- o Multiply the fraction by 1 to eliminate the radical in the denominator
- o 1/√(2)
- o 2/5√(3)
- 2 / (5+√(3))
- o 4/³√(25)
- o 7/<sup>5</sup>√(128)
- $\circ$  7 $\sqrt{(3)}$  + 3 / 7 $\sqrt{(3)}$  3

- Solve Radical Equations
  - Type 1 one radical
    - Isolate radical
    - Undo the radical
    - Solve for x
    - Check answer(s)
- 1.  $5 + \sqrt[3]{(x-2)} = 7$
- 2.  $\sqrt[3]{(x+2)^2} = 9$ 
  - Type 2 more than one radical
    - Get 1 side with only 1 radical
    - Undo radical (square/cube/etc BOTH sides)
    - Repeat until all radicals are gone
    - Solve for x
    - Check answer(s)
- 1.  $\sqrt{(x+4)} + \sqrt{(x-4)} = 4$
- 2.  $\sqrt{(x+2)} + \sqrt{(x-3)} = 5$
- Radical Graphs: Even/Odd



o Even - the index of the radical is an even number (ex. 2)



o Odd - the index of the radical is an odd number (ex. 3)



- 1) Plug in numbers to graph points
- 2) Create graph
- 3) Use graph to fill in characteristics list
- Characteristics List:
  - o Even (14)
    - Domain
    - Range
    - Fxn, cont, 1-1
    - Max
    - Min
    - Incr
    - Decr
    - CCU
    - CCD
    - Elbow
    - X-int
    - Y-int
  - o Odd (14)
    - Domain
    - Range
    - Fxn, cont, 1-1
    - Max
    - Min
    - Incr
    - Decr
    - CCU
    - CD
    - POI (Point Of Inflection)

- X-int
- Y-int
- Modeling Problems
  - Define variables
  - General equation:  $y = k * x^n$
  - Known data (data points)
  - Solve for k store exact value in calculator!
  - Find particular equation
    - Plug in data points to find k first, then write particular equation
  - \*answers can be rounded in the word problems, but <u>not</u> when finding k or the particular equation!
  - o If the power (n) is unknown, you must solve for k as well as n!
    - Use either <u>elimination</u> or <u>substitution</u> to simplify the two <u>log</u> equations you made
- 1. [insert practice problem here]

Unit 9: Trigonometry

• Trig Graphs

 $Y = \sin \theta$ 





 $Y = \cot \theta$ 



- Characteristics when domain is  $(-2\pi, 2\pi)$
- o Sin ( $y = \sin x$ )
  - Domain: all real numbers
  - Range: [-1, 1]
  - Fxn? Y
  - Cont? Y
  - 1-1? N
  - **■** X-ints:  $-2\pi$ ,  $-\pi$ , 0,  $\pi$ ,  $2\pi$
  - Y-ints: 0
  - Max: 1
  - Min: -1
  - Incr:  $(-2\pi, -3\pi/2)$   $(-\pi/2, \pi/2)$   $(3\pi/2, 2\pi)$
  - Decr:  $(-3\pi/2, -\pi/2)$   $(\pi/2, 3\pi/2)$
  - **CCU**: (-π, 0) (π, 2π)
  - CCD:  $(-2\pi, -\pi)$   $(0, \pi)$
  - POI:  $(-2\pi,0)$   $(-\pi,0)$  (0,0)  $(\pi,0)$   $(2\pi,0)$
- $\circ$  Cos (y = cos x)
  - Domain: all real numbers
  - Range: [-1, 1]
  - Fxn? Y
  - Cont? Y
  - 1-1? N
  - X-ints:  $-3\pi/2$ ,  $-\pi/2$ ,  $\pi/2$ ,  $3\pi/2$
  - Y-ints: 1
  - Max: 1
  - Min: -1
  - Incr:  $(-\pi, 0)$   $(\pi, 2\pi)$
  - Decr:  $(-2\pi, -\pi)$   $(0, \pi)$
  - CCU:  $(-3\pi/2, -\pi/2)$   $(\pi/2, 3\pi/2)$
  - CCD:  $(-2\pi, -3\pi/2)$   $(0, \pi/2)$   $(3\pi/2, 2\pi)$
  - POI:  $(-3\pi/2, 0)$   $(-\pi/2, 0)$   $(\pi/2, 0)$   $3\pi/2, 0)$
- Coterminal and Reference Angles/Arcs
  - o Coterminal angles: angles that share a terminal ray
    - To find positive coterminal angle: add 360°

- To find <u>negative coterminal angle</u>: find angle that combined with original angle = 360°, then put negative sign in front
- Find a positive and a negative coterminal arc:  $-2\pi/3$
- Degrees/Radians
  - Degrees to Radians (multiply by π/180)
    - 36°
  - $\circ$  Radians to Degrees (multiply by 180/ $\pi$ )
    - **■** 3π/2
- Unit Circle/Special Triangles



Other Helpful Things

(x, y) (cos, sin)









- SOHCAHTOA/CHOSHACAO: Evaluate Trig Expressions
  - o \*if it is not a special angle, use a calculator
  - o tan 60°
  - o sin 90°
  - o cos 90°
  - o sin 225°
  - o cos 150°
  - o tan 240°
- Inverse Trig Functions
- Ranges:

| sin/csc                               | cos/sec | tan/cot |
|---------------------------------------|---------|---------|
| · · · · · · · · · · · · · · · · · · · |         | 10      |







- o arcsin (-1)
- o cos<sup>-1</sup>
- o arcsec (-2)
- o  $tan^{-1}(\sqrt{(3)/3})$
- tan  $(tan^{-1}\sqrt{3})$
- csc (tan<sup>-1</sup>1)
- cos (sec<sup>-1</sup>  $\sqrt{(2)}$ )
- Transformations: Sine
  - Y = a sin b (x c) + d
  - A = amplitude (cannot be negative when listing, -1 is saying whether it is reflected over x-axis or not)
    - Impacts max/min
  - $\circ$  B = # of cycles in 2π
    - Period =  $2\pi/b$  (length of 1 cycle)
  - C = phase shift (horizontal)
    - left/right shift
  - D = vertical shift
    - up/down shift that impacts the placement of the sinusoidal axis
- Transformations: Cosine
  - $\circ$  Y = a cos b (x c) + d
- Modeling Problems