Computer System Software(2) Normal Form Homework

Qingfu Wen

2011013239 thssvince@163.com

April 8, 2014

I PROBLEM 1

Compute the closure of the following set F of functional dependencies for relation schema r(A, B, C, D, E).

$$A \rightarrow BC$$
 $CD \rightarrow E$
 $B \rightarrow D$
 $E \rightarrow A$

List the candidate keys for R.

 $F^+isBD \to BD, B \to B, D \to D, C \to C, BD \to B, BD \to D, B \to D, B \to BD$. And $A* \to \beta, BC* \to \beta, CD* \to \beta, E* \to \beta$ where * is any set of attributes in R and β is any subset of A, B, C, D, E . So the candidate keys are A, BC, CD and E.

$$(A)^{+} = A, B, C, D, E$$

 $(CD)^{+} = A, B, C, D, E$
 $(BC)^{+} = A, B, C, D, E$
 $(E)^{+} = A, B, C, D, E$

II PROBLEM 2

Consider the following set F of functional dependencies on the relation schemar(A, B, C, D,E,F):

$$A \rightarrow BCD$$

$$BC \rightarrow DE$$

$$B \rightarrow D$$

$$D \rightarrow A$$

a. Compute B^+ .

$$\therefore B \to D \text{ and } D \to A, \therefore B \to A.$$

and $\therefore A \to BCD, \therefore B \to ABCD.$
 $\therefore BC \to DE, \therefore B \to ABCDE$
 $B^+ = \{A, B, C, D, E\}$

b. Prove (using Armstrong's axioms) that AF is a superkey.

$$\therefore A \rightarrow BCD, B \rightarrow ABCDE, \therefore A \rightarrow ABCDE$$

 $\therefore F \rightarrow F, \therefore AF \rightarrow ABCDEF$
thus, AF is a superkey.

- c. Compute a canonical cover for the above set of functional dependencies F; give each step of your derivation with an explanation.
 - First, we can test left-hand side. All the functional dependencies in F is not redundant except BC→DE which may be redundant.

Suppose B is extraneous, C^+ in F is $\{C\}$, C^+ does not contain DE, B is not extraneous.

Suppose C is extraneous, B^+ in F is $\{A,B,C,D,E\}$, B^+ contains DE, C is extraneous.

- Now, we test right-hand side.

For $A \rightarrow BCD$:

Suppose B is extraneous, A^+ in F' is $\{A,C,D\}$, A^+ does not contain B, B is not extraneous.

Suppose C is extraneous, A^+ in F' is {A,B,D}, A^+ does not contain C, C is not extraneous.

Suppose D is extraneous, A^+ in F' is $\{A,B,C,D,E\}$, A^+ contains D, D is extraneous. BC \rightarrow DE:

Suppose D is extraneous, BC^+ in F' is $\{A,B,C,D,E\}$, $\therefore BC^+$ contains D, D is extraneous

Suppose E is extraneous, BC^+ in F' is $\{A,B,C,D\}$, $\therefore BC^+$ does not contain E, E is not extraneous.

Thus, the canonical cover of F is

 $A \rightarrow BC$ $B \rightarrow DE$ $D \rightarrow A$

III PROBLEM 3

Given the database schema R(a,b,c), and a relation r on the schema R, write an SQL query to test whether the functional dependency $b \rightarrow c$ holds on relation r.Also write an SQL assertion that enforces the functional dependency; assume that no null values are present. (Although part of the SQL standard, such assertions are not supported by any database implementation currently.)

```
select b
from r
group by b
having count(distinct c) > 1
```

If the result is empty, $b \rightarrow c$ holds on r.

create assertion assertion_b_c check
(not exists

(**select** b **from** r

```
group by b \label{eq:count} \text{having count}(\text{distinct }c) > 1 )
```