SEMAINE DU 21/01 AU 25/01

1 Cours

Arithmétique

 $\textbf{Division dans} \ \mathbb{Z} \ \ \text{Relation de divisibilit\'e}. \ \text{Op\'erations sur la divisibilit\'e}. \ \text{Relation de congruence}. \ \text{Op\'erations sur la congruence}.$

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Si a|n et b|n avec $a \land b = 1$, alors ab|n. Si $a \land n = 1$ et $b \land n = 1$, alors $ab \land n = 1$. PPCM : définition, existence et unicité d'un ppcm positif. Relation $(a \lor b)(a \land b) = |ab|$. Opérations sur le ppcm.

Nombres premiers Définition. Lemme d'Euclide. Tout entier n > 1 admet un diviseur premier. Infinité des nombres premiers. Décomposition en facteurs premiers. Valuation p-adique. Lien avec la divisibilité, le pgcd et le ppcm.

Compléments PGCD d'un nombre fini d'entiers. Théorème de Bézout. Entiers premiers entre eux dans leur ensemble. Théorème de Bézout (équivalence).

2 Méthodes à maîtriser

- ► De manière générale, divisibilité = factorisabilité.
- ► Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre (notamment pour montrer que deux PGCD sont égaux).
- ▶ Pour montrer qu'un entier a divise un entier b, on peut suivant le cas :
 - factoriser b par a (on pensera notamment à la formule de Bernoulli);
 - montrer que $b \equiv 0[a]$.
- ► Calculer avec des congruences (notamment lorsque $a \equiv 1[n]$, alors $a^k \equiv 1[n]$).
- ► Caractériser le reste d'une division euclidienne par une relation de congruence.
- ightharpoonup Résoudre des équations diophantiennes linéaires i.e. du type ax + by = c avec $a, b, c \in \mathbb{Z}$ et x, y des inconnues entières.
- ► Résoudre un système de congruences.
- ▶ Se ramener à des entiers premiers entre eux en factorisant par le pgcd.
- ▶ Pour montrer que des entiers sont premiers entre eux, on peut suivant le cas :
 - montrer que leur PGCD divise 1 et donc vaut 1;
 - exhiber une relation de Bezout;
 - montrer par l'absurde qu'ils ne possèdent pas de diviseur premier commun ;
- ▶ Montrer qu'un entier p est premier : on se donne un diviseur positif de p et on montre qu'il vaut 1 ou p.

3 Questions de cours

- **Equations diophantiennes linéaires** Résoudre une équation diophantienne du type ax + by = c au choix de l'examinateur.
- ▶ Petit théorème de Fermat Démontrer le petit théorème de Fermat : si p est un nombre premier, alors pour tout $x \in \mathbb{Z}$, $x^p \equiv x[p]$.
- ▶ Système de congruences Résoudre un système de congruences $\begin{cases} x \equiv a[m] \\ x \equiv b[n] \end{cases}$ d'inconnue $x \in \mathbb{Z}$ au choix de l'examinateur (je précise que le candidat doit pouvoir expliquer pourquoi $(m \mid x \text{ ET } n \mid x) \iff m \lor n \mid x$).
- ▶ Nombres de Mersenne Soit a et r deux entiers supérieurs ou égaux à 2. Montrer que si $a^r 1$ est premier, alors a = 2 et r est premier.
- ▶ Soit $(a, b, c) \in (\mathbb{N}^*)^3$ tel que $a \land b = 1$ et ab = c. Montrer que si c est un carré d'entier, alors a et b le sont également.