МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА) Кафедра алгоритмической математики

КУРСОВАЯ РАБОТА по дисциплине «Дифференциальные уравнения» Тема: Остывание предмета в комнате

	Кобенко В.П.
Студенты гр. 8382	 Черницын П.А.
Преподаватель	 Павлов Д.А.

Санкт-Петербург 2021

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Кобенко В.П. Студент Черницын П.А. Группа 8382

Тема работы: Остывание предмета в комнате

Исходные данные:

Остывание предмета в комнате

Содержание пояснительной записки:

«Содержание», «Введение», «Закон Ньютона-Рихмана», «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса», «Графический интерфейс», «Заключение», «Список использованных источников».

Предполагаемый объем пояснительной записки: Не менее 20 страниц.

Дата выдачи задания: 09.05.2021

Дата сдачи курсовой работы: 14.06.2021

Дата защиты курсовой работы: 14.06.2021

	Кобенко В.П.
Студенты	Черницын П.А.
	_
Преподаватель	Павлов Д.А.

АННОТАЦИЯ

В курсовой работе рассмотрена задача остывания предмета в комнате. Для этого использовался закон Ньютона — Рихмана, его дифференциальная формулировка. Для решения поставленной задачи было использовано несколько методов: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса». Результаты решения данного уравнения были представлены в виде графиков в графическом интерфейсе.

SUMMARY

In the course work, the problem of cooling an object in a room is considered. For this, the Newton-Richman law, its differential formulation, was used. To solve the problem, several methods were used: "Forward Newton's method", "Backward Newton's method", "Runge-Kutta-Felberg method of the 4-5th order", "Heun's method", "Adams method". The results of solving this equation were presented in the form of graphs in the graphical interface.

СОДЕРЖАНИЕ

ЗАДАНИЕ	
НА КУРСОВУЮ РАБОТУ	
АННОТАЦИЯ	
Введение	
Закон Ньютона-Рихмана	
Прямой метод Эйлера	
Обратный метод Эйлера	
Метод Рунге-Кутты-Фельберга 4-5 порядка	
Метод Хойна	1
Метод Адамса-Башфорта	12
GUI	
Вывод	18
Используемая литература	19
ПРИЛОЖЕНИЕ А. Код программы	

Введение

Дифференциальное уравнение является одним из фундаментальных широко применяемое математики, В различных современных наук. Оно также применимо в физических процессах, один из которых рассматривается в данной курсовой работе. Остывание предмета в является процессом. Были использованы комнате ЭТИМ интегрирования дифференциальных уравнений динамических систем для решения закона Ньютона-Рихмана, такие как: «Прямой метод Ньютона», «Метод Рунге-Кутты-Фельберга «Обратный метод Ньютона», порядка», «Метод Хойна», «Метод Адамса».

Закон Ньютона-Рихмана

Закон Ньютона-Рихмана — эмпирическая закономерность, выражающая тепловой поток между разными телами через температурный напор. Он будет использоваться для подсчета скорости остывания тела. Дифференциальная формулировка выглядит так:

$$\frac{dT}{dt}$$
 = + $k*(T-T0)$, при k < 0

$$\frac{dT}{dt} = -k * (T - T0)$$
, при k > 0

 Γ де T — температура предмета, t — время, T0 — температура окружения(в нашем случае — это температура комнаты), k — коэффициент(зависящая от объекта).

Так как мы рассматриваем задачу остывания тела до температуры окружения, то будем использовать эту формулу:

$$\frac{dT}{dt} = -k * (T - T0)$$

Умножим уравнение на $\frac{dt}{(T-T0)}$ и получим:

$$\frac{dT}{(T-T0)} = -k * dt$$

Проинтегрируем обе части уравнения:

$$\int \frac{1}{(T-T0)} dT = -k * \int dt$$

Получаем:

$$\ln|T - T0| = -kt + const$$

Избавимся от логарифма и получим:

$$|T - T0| = C * \exp(-kt)$$

Раскроем модуль:

$$T - T0 = \pm C * \exp(-kt)$$

$$T(t) = T0 + C * \exp(-kt)$$

Пусть T(0) = T' будет начальным условием(т.е температурой предмета), тогда формула примет вид:

$$T = T0 + (T' - T0) * \exp(-kt)$$

Прямой метод Эйлера

Пусть дана система дифференциальных уравнений с непрерывным временем:

$$\dot{x} = f(x,t), x(t_0) = x_0$$

последовательностью точек $x_0, x_1, ...$ в соответствующие моменты времени $t_0, t_1, ...$ Значения точек должны удоволетворять приближенному равенству:

$$x_k \approx \psi_t(x_0, t_0)$$

Если специально не оговорено иное, то предполагается, что моменты времени выбираются через равные интервалы с величиной шага h>0, то есть

$$t_{k+1} = t_0 + kh, \quad k = 0, 1, \dots$$

Аппроксимируем производную в момент времени t_k соотношением

$$\dot{x}(t_k) \approx (x_{k-1} - x_k)/h$$

При такой аппроксимации уравнение примет вид:

$$x_{k+1} = x_k + h f(x_k, t_k)$$

Эта формула известна как прямой метод Эйлера.

В нашем коде этот метод был реализован так:

```
for i in range(x_len):
    F_x_t = mf.myFunc(y, self.env_temp)

for j in range(y_len):
    y[j] = y[j] + self.h*F_x_t[j]

x += self.h
    self.f.write(str(x) + ' ')

for r in range(len(y)):
    y_res = np.append(y_res, y[r])
```

 $F_x_t - \phi$ ункция f(x, t), self.h – это длина шага по x, y[j] – температура на текущем шаге, my_t ипс.py выглядит так:

```
def myFunc(y, env_temp):
    dy = np.zeros((len(y)))
    # dy[0] = 3*(1+x) - y[0]
    dy[0] = 1/25 * np.log(2) * (env_temp - y)
    return dy
```

 Γ де env_temp — это температура окружения, а 1/25 * np.log(2) — k.

Обратный метод Эйлера

Обратный метод Эйлера подобен прямому, но есть одно отличие в аппроксимации для производной:

$$\dot{x}(t_k) \approx \tfrac{x_k - x_{k-1}}{h}$$

Такая аппроксимация дает формулу обратного метода Эйлера:

$$x_{k+1} = x_k + hf(x_{k+1}, t_{k+1})$$

Обратный метод Эйлера - это пример неявного алгоритма интегрирования, где x_{k+1} является функцией от самой себя. И напротив, прямой метод Эйлера представляет собой явный алгоритм. В неявных алгоритмах для определения x_{k+1} требуются дополнительные вычисления, но они по сравнению с аналогичными прямыми алгоритмами более устойчивы и дают более высокую точность вычислений.

В нашем коде этот метод был реализован так:

```
for i in range(x_len):
    F_x_t = mf.myFunc(y, self.env_temp)/(1+self.h)
    # print(">> ", x, h, y, F_x_t)

    for j in range(y_len):
        y[j] = y[j] + self.h*F_x_t[j]

    x += self.h
    self.f.write(str(x) + ' ')

    for r in range(len(y)):
        y_res = np.append(y_res, y[r])
```

Где $F_x_t - \phi$ ункция f(x, t), self.h – это длина шага по x, y[j] – температура на текущем шаге, self.env_temp – температура окружения.

Метод Рунге-Кутты-Фельберга 4-5 порядка

Метод Рунге-Кутты-Фельберга 4-5 порядка — адаптивный метод, в котором каждый шаг требует использования шести следующих значений:

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f\left(x_{i} + \frac{1}{5}h, y_{i} + \frac{1}{5}hk_{1}\right)$$

$$k_{3} = f\left(x_{i} + \frac{3}{10}h, y_{i} + \frac{3}{40}hk_{1} + \frac{9}{40}hk_{2}\right)$$

$$k_{4} = f\left(x_{i} + \frac{3}{5}h, y_{i} + \frac{3}{10}hk_{1} - \frac{9}{10}hk_{2} + \frac{6}{5}hk_{3}\right)$$

$$k_{5} = f\left(x_{i} + h, y_{i} - \frac{11}{54}hk_{1} + \frac{5}{2}hk_{2} - \frac{70}{27}hk_{3} + \frac{35}{27}hk_{4}\right)$$

$$k_{6} = f\left(x_{i} + \frac{7}{8}h, y_{i} + \frac{1631}{55296}hk_{1} + \frac{175}{512}hk_{2} + \frac{575}{13824}hk_{3} + \frac{44275}{110592}hk_{4} + \frac{253}{4096}hk_{5}\right)$$

Аппроксимация для этого метода выглядит так:

$$y_{i+1} = y_i + h\left(\frac{37}{378}k_1 + \frac{250}{621}k_3 + \frac{125}{594}k_4 + \frac{512}{1771}k_6\right)$$

Этот метод был реализован таким образом:

```
for i in range(x_len):
    k1 = mf.myFunc(y, self.env_temp)

yp2 = y + k1*(h/5)

k2 = mf.myFunc(yp2, self.env_temp)

yp3 = y + k1*(3*h/40) + k2*(9*h/40)

k3 = mf.myFunc(yp3, self.env_temp)

yp4 = y + k1*(3*h/10) - k2*(9*h/10) + k3*(6*h/5)

k4 = mf.myFunc(yp4, self.env_temp)

yp5 = y - k1*(11*h/54) + k2*(5*h/2) - k3*(70*h/27) + k4*(35*h/27)

k5 = mf.myFunc(yp5, self.env_temp)

yp6 = y + k1*(1631*h/55296) + k2*(175*h/512) + k3*(575*h/13824) + k4*(44275*h/110592) + k5*(253*h/4096)

k6 = mf.myFunc(yp6, self.env_temp)

for j in range(y_len):
    y[j] = y[j] + h*(37*k1[j]/378 + 250*k3[j]/621 + 125*k4[j]/594 + 512*k6[j]/1771)
```

Метод Хойна

В математике и вычислительной науке, Метод Хойна(Разностная схема Хойна) может относиться к улучшенному или модифицированному методу Эйлера (то есть, явному правилу трапеции) или аналогичному двух- этап Метод Рунге — Кутта. Он назван в честь Карла Хойна и представляет собой числовую процедуру для решения обыкновенных дифференциальных уравнений с заданным начальным значением. Оба варианта можно рассматривать как расширение метода Эйлера до двухэтапных методов Рунге — Кутты второго порядка.

Разностную схему Хойна (вернее рекуррентный переход от xi-1 к xi) часто записывают в виде двух полушагов, поэтому на обычно называется схемой предиктор-корректор: на первом полушаге приближенное решение "предсказывается" (от англ. to predict — предсказывать) с первым порядком точности, а на втором — "корректируется" (от to correct — исправлять, корректировать) с целью повышения точности.

В работе метод был реализован так:

```
for i in range(x_len):
    y0prime = mf.myFunc(y, self.env_temp)

k1 = y0prime * h

ypredictor = y + k1

y1prime = mf.myFunc(ypredictor, self.env_temp)

for j in range(y_len):
    y[j] = y[j] + (h/2)*y0prime[j] + (h/2)*y1prime[j]

x = x + h
    self.f.write(str(x) + ' ')

for r in range(len(y)):
    y_res = np.append(y_res, y[r])
```

 Γ де ypredictor — является предиктором, а корректором является выражение в цикле for j in range(y_len).

Метод Адамса-Башфорта

Метод Адамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.

Пусть дана система дифференциальных уравнений первого порядка

$$y' = f(x, y), y(x_0) = y_0,$$

для которой надо найти решение на сетке с постоянным шагом

$$x_n - x_0 = (n-1)h$$

Формула метода Адамса для решения этой системы имеет вид:

$$y_{n+1} = y_n + h \sum_{\lambda=0}^k u_{-\lambda} f(x_{n-\lambda}, y_{n-\lambda}),$$

Явные методы Адамса — Башфорта:

$$egin{aligned} y_{n+1} &= y_n + h f(t_n, y_n), \ y_{n+2} &= y_{n+1} + h \left(rac{3}{2} f(t_{n+1}, y_{n+1}) - rac{1}{2} f(t_n, y_n)
ight), \ y_{n+3} &= y_{n+2} + h \left(rac{23}{12} f(t_{n+2}, y_{n+2}) - rac{4}{3} f(t_{n+1}, y_{n+1}) + rac{5}{12} f(t_n, y_n)
ight), \ y_{n+4} &= y_{n+3} + h \left(rac{55}{24} f(t_{n+3}, y_{n+3}) - rac{59}{24} f(t_{n+2}, y_{n+2}) + rac{37}{24} f(t_{n+1}, y_{n+1}) - rac{3}{8} f(t_n, y_n)
ight), \end{aligned}$$

Для предварительного вычисления решения в k начальных точках был использован метод Рунге-Кутты 4-ого порядка. Сам же метод Адамса-Башфорта в работе выглядит так:

```
for i in range(3, dx):
    x00 = self.x[i]; x11 = self.x[i-1]; x22 = self.x[i-2]; x33 = self.x[i-3]; xpp = self.x[i]+self.h
   y00 = np.array([y[i]])
   y11 = np.array([y[i - 1]])
   y22 = np.array([y[i - 2]])
   y33 = np.array([y[i - 3]])
   y0prime = mf.myFunc(y00, self.env_temp)
   y1prime = mf.myFunc(y11, self.env_temp)
   y2prime = mf.myFunc(y22, self.env_temp)
   y3prime = mf.myFunc(y33, self.env_temp)
   ypredictor = y00 + (self.h/24)*(55*y0prime - 59*y1prime + 37*y2prime - 9*y3prime)
   ypp = mf.myFunc(ypredictor, self.env_temp)
   for j in range(y_len):
       yn[j] = y00[j] + (self.h/24)*(9*ypp[j] + 19*y0prime[j] - 5*y1prime[j] + y2prime[j])
    xsol = np.append(xsol, xs)
   for r in range(len(yn)):
       y_res = np.append(y_res, yn)
```

Был реализован графический интерфейс на языке Python с помощью библиотеки PySimpleGUI. Код программы представлен в приложении A.

Интерфейс программы включает в себя 6 кнопок, 3 слайдера, окно для графиков и лэйбл с выводом информации об успешном/неуспешном запуске программы:

Первые пять кнопок в интерфейсе вызывают численные методы:

Forward Euler:

Backward Euler:

Runge Kutt:

Heun:

Adams-Bashfourth:

С помощью слайдеров можно менять условия поставленной задачи:

Тор temp отвечает за температуру предмета, Enviroment Temp за температуру среды, Time – за время, кнопка Discard params – сбрасывает значения на исходные.

Если температура окружающей среды окажется больше, чем температура предмета, то выведется такой результат:

Вывод

В курсовой работе был рассмотрен процесс остывания тела в комнате. Для решения задачи были использованы такие методы, как: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса». Было написано приложение на языке Руthon, решающее поставленную задачу данными методами. Графический интерфейс позволяет увидеть отличия между методами на графиках.

Используемая литература

https://old.math.tsu.ru/EEResources/pdf/diff_equation.pdf

http://math.smith.edu/~callahan/cic/ch4.pdf

https://en.wikipedia.org/wiki/Newton%27s law_of_cooling

https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9

<u>0%D0%B4%D0%B0%D0%BC%D1%81%D0%B0</u>

http://w.ict.nsc.ru/books/textbooks/akhmerov/nm-ode_unicode/1-3.html

https://tftwiki.ru/wiki/Heun%27s_method

https://pysimplegui.readthedocs.io/en/latest/

https://www.python.org/

ПРИЛОЖЕНИЕ А. Код программы

Файл main.py:

```
import tkinter as tk
import gui
root = tk.Tk()
gui.MainApplication(root)
root.mainloop()
Файл gui.py:
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from tkinter import ttk
import tkinter as tk
import numpy as np
import backward_euler
import forward_euler
import runge_kutta
import heun
import adams_bashforth_moulton
import os
class Plotter(FigureCanvasTkAgg):
    def __init__(self, master):
        self.figure = Figure(dpi=100)
        super().__init__(self.figure, master=master)
        self.axes = self.figure.add_subplot(111)
        self.get_tk_widget().grid(column=0, row=0, sticky='nsew')
    def draw_lists(self, flag):
```

```
self.axes.clear()
       x = [[],[],[],[]]
        i = 0
       f = open('tmp.txt', 'r')
       for line in f:
            if (line == '\n'):
                    continue
            for elem in line.split(' '):
                if (elem == '\n'):
                    continue
                x[i].append(float(elem))
            i+=1
        f.close()
        self.axes.plot(x[0], x[1], color='y')
        self.axes.plot(x[2], x[3], color='b')
        self.axes.set_xlabel('Time')
        self.axes.set_ylabel('Temperature')
        self.draw_idle()
class MainApplication(ttk.Frame):
   def __init__(self, master, *args, **kwargs):
        super().__init__(master)
        self.grid(column=0, row=0, sticky='nsew')
        frame = ttk.Frame(self, borderwidth=8)
        frame.grid(column=0, row=0, sticky='nsew')
        frame.rowconfigure(0, weight=1)
```

```
notes = ttk.Notebook(frame)
        notes.grid(column=0, row=0, sticky='nsew')
        notes.rowconfigure(0, weight=1)
        page = ttk.Frame(notes)
        notes.add(page, text='Picture')
        self.plot = Plotter(page)
        input_frame = ttk.Frame(self)
        input_frame.grid(column=1, row=0, sticky='nsew')
        label_top_temp = ttk.Label(input_frame)
        self.slider_top_temp = ttk.Scale(input_frame, from_ = 20, to_ = 200,
                            command=lambda x:
                            label top temp.config(text = "Top Temp = " +
str(int(self.slider_top_temp.get()))))
        self.slider_top_temp.set(100)
        label_top_temp.config(text = "Top Temp = " +
str(int(self.slider_top_temp.get())))
        label_env_temp = ttk.Label(input_frame)
        self.slider_env_temp = ttk.Scale(input_frame, from_ = 0, to_ = 180,
                            command=lambda x:
                            label_env_temp.config(text = "Environment Temp = " +
str(int(self.slider_env_temp.get()))))
        self.slider_env_temp.set(50)
        label_env_temp.config(text = "Environment Temp = " +
str(int(self.slider_env_temp.get())))
        label_time = ttk.Label(input_frame)
        self.slider_time = ttk.Scale(input_frame, from_ = 20, to_ = 1000,
                            command=lambda x:
                            label_time.config(text = "Time = " +
str(int(self.slider_time.get()))))
```

```
self.slider time.set(200)
        label_time.config(text = "Time = " + str(int(self.slider_time.get())))
        self.label err msg = ttk.Label(input frame)
        self.label_err_msg.config(text = "")
        button_BE = ttk.Button(input_frame, text='Backward Euler', command =
self.button BE clicked)
        button FE = ttk.Button(input frame, text='Forward Euler', command =
self.button_FE_clicked)
        button RK = ttk.Button(input frame, text='Runge Kutt', command =
self.button RK clicked)
        button_H = ttk.Button(input_frame, text='Heun', command =
self.button_H_clicked)
       button ADM = ttk.Button(input frame, text='Adams-Bashforth-Moulton',
command = self.button_ADM_clicked)
        button_discard_param = ttk.Button(input_frame, text='Discard params',
command = self.button_discard_param_clicked)
        button BE.grid(column=0, row=0, columnspan=2, sticky='ew')
        button FE.grid(column=0, row=1, columnspan=2, sticky='ew')
        button_RK.grid(column=0, row=2, columnspan=2, sticky='ew')
        button H.grid(column=0, row=3, columnspan=2, sticky='ew')
        button_ADM.grid(column=0, row=4, columnspan=2, sticky='ew')
        label top temp.grid(column=0, row=5, columnspan=2, sticky='ew')
        self.slider top temp.grid(column=0, row=6, columnspan=2, sticky='ew')
        label env temp.grid(column=0, row=7, columnspan=2, sticky='ew')
        self.slider env temp.grid(column=0, row=8, columnspan=2, sticky='ew')
        label time.grid(column=0, row=9, columnspan=2, sticky='ew')
        self.slider_time.grid(column=0, row=10, columnspan=2, sticky='ew')
        button_discard_param.grid(column=0, row=11, columnspan=2, sticky='ew')
```

```
self.label_err_msg.grid(column=0, row=12, columnspan=2, sticky='ew')
   def button_BE_clicked(self):
        if (self.check sliders()):
            self.plot.draw_lists(backward_euler.BackwardEuler(
                0.2, int(self.slider_time.get()), self.slider_top_temp.get(),
self.slider_env_temp.get()
                ).execute())
   def button_FE_clicked(self):
        if (self.check_sliders()):
            self.plot.draw_lists(forward_euler.ForwardEuler(
                0.2, int(self.slider_time.get()), self.slider_top_temp.get(),
self.slider_env_temp.get()
                ).execute())
   def button_RK_clicked(self):
        if (self.check_sliders()):
            self.plot.draw_lists(runge_kutta.Runge_Kutt(
                0.2, int(self.slider_time.get()), self.slider_top_temp.get(),
self.slider_env_temp.get()
                ).execute())
   def button_H_clicked(self):
        if (self.check_sliders()):
            self.plot.draw_lists(heun.Heun(
                0.2, int(self.slider_time.get()), self.slider_top_temp.get(),
self.slider_env_temp.get()
                ).execute())
   def button_ADM_clicked(self):
        if (self.check_sliders()):
            self.plot.draw_lists(adams_bashforth_moulton.ABM(
                0.2, int(self.slider_time.get()), self.slider_top_temp.get(),
self.slider_env_temp.get()
                ).execute())
```

```
def button_discard_param_clicked(self):
        self.slider_env_temp.set(50)
        self.slider_top_temp.set(100)
        self.slider_time.set(200)
        self.check_sliders()
    def check_sliders(self):
        # print("hi")
        if (self.slider_top_temp.get() <= self.slider_env_temp.get()):</pre>
            self.label_err_msg.config(text = "\n\nStatus: ERROR!\nTop Temp <= Env</pre>
Temp")
            return False
        else:
            self.label_err_msg.config(text = "\n\nStatus: DONE!")
            return True
    def __del__(self):
        os.remove('tmp.txt')
        pass
Файл adams_bashforth_moulton.py:
import numpy as np
import matplotlib.pyplot as plt
import my_func as mf
class ABM:
    def __init__(self, _h = 0.2, _x = 200, _y0 = 100, env_temp_ = 50):
        self.h = h
        self.x = np.array([0.0, _x])
        self.y0 = np.array([_y0])
        self.start_temp = _y0
        self.env_temp = env_temp_
        self.f = open('tmp.txt', 'w')
```

```
def __del__(self):
    self.f.close()
    pass
def RungeKutta4thOrder(self, x):
    y_{len} = len(self.y0)
    x_{en} = int((x[-1] - x[0]) / self.h)
   x = x[0]
    y = self.y0
    xsol = np.empty((0))
    xsol = np.append(xsol, x)
   y_res = np.empty((0))
    y_res = np.append(y_res, y)
    for i in range(x_len):
        k1 = mf.myFunc(y, self.env_temp)
        yp2 = y + k1*(self.h/2)
        k2 = mf.myFunc(yp2, self.env_temp)
        yp3 = y + k2*(self.h/2)
        k3 = mf.myFunc(yp3, self.env_temp)
        yp4 = y + k3*self.h
        k4 = mf.myFunc(yp4, self.env_temp)
        for j in range(y_len):
            y[j] = y[j] + (self.h/6)*(k1[j] + 2*k2[j] + 2*k3[j] + k4[j])
```

```
x = x + self.h
            xsol = np.append(xsol, x)
            for r in range(len(y)):
                y_res = np.append(y_res, y[r])
        return [xsol, y_res]
   def ABM4thOrder(self):
       y_{len} = len(self.y0)
       dx = int((self.x[-1] - self.x[0]) / self.h)
       xrk = [self.x[0] + k * self.h for k in range(dx + 1)]
        [xx, yy] = self.RungeKutta4thOrder((xrk[0], xrk[3]))
        self.x = xx
       xsol = np.empty(0)
       xsol = np.append(xsol, self.x)
       y = yy
       yn = np.array([yy[0]])
       y_res = np.empty(0)
       y_res = np.append(y_res, y)
       for i in range(3, dx):
            x00 = self.x[i]; x11 = self.x[i-1]; x22 = self.x[i-2]; x33 =
self.x[i-3]; xpp = self.x[i]+self.h
            y00 = np.array([y[i]])
            y11 = np.array([y[i - 1]])
```

```
y22 = np.array([y[i - 2]])
            y33 = np.array([y[i - 3]])
            y0prime = mf.myFunc(y00, self.env_temp)
            y1prime = mf.myFunc(y11, self.env_temp)
            y2prime = mf.myFunc(y22, self.env_temp)
            y3prime = mf.myFunc(y33, self.env_temp)
            ypredictor = y00 + (self.h/24)*(55*y0prime - 59*y1prime + 37*y2prime
- 9*y3prime)
            ypp = mf.myFunc(ypredictor, self.env_temp)
            for j in range(y_len):
                yn[j] = y00[j] + (self.h/24)*(9*ypp[j] + 19*y0prime[j] -
5*y1prime[j] + y2prime[j])
            xs = self.x[i] + self.h
            xsol = np.append(xsol, xs)
            self.x = xsol
            for r in range(len(yn)):
                y_res = np.append(y_res, yn)
            y = y_res
        return [xsol, y_res]
   def execute(self):
        [ts, ys] = self.ABM4thOrder()
        for index in ts:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        for index in ys:
            self.f.write(str(index) + ' ')
```

```
self.f.write('\n')
        t = np.arange(0, self.x[-1], 1)
        for index in t:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        for i in t:
            y_math_res = self.env_temp + (self.start_temp - self.env_temp) *
np.e^{**}(-(np.log(2) * i/25))
            self.f.write(str(y_math_res) + ' ')
        self.f.write('\n')
        return 0
Файл backward_euler.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class BackwardEuler:
    def __init__(self, _h = 0.2, _x = 200, _y0 = 100, env_temp_ = 50):
        self.h = _h
        self.x = np.array([0.0, _x])
        self.y0 = np.array([_y0])
        self.start_temp = _y0
        self.env_temp = env_temp_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_BE(self):
        y_{len} = len(self.y0)
```

```
x_{en} = int((self.x[-1] - self.x[0])/self.h)
   x = self.x[0]
   y = self.y0
    self.f.write(str(x) + ' ')
   y_res = np.empty(0)
   y_res = np.append(y_res, y)
   for i in range(x_len):
        F_x_t = mf.myFunc(y, self.env_temp)/(1+self.h)
        # print(">> ", x, h, y, F_x_t)
        for j in range(y_len):
            y[j] = y[j] + self.h*F_x_t[j]
       x += self.h
        self.f.write(str(x) + ' ')
        for r in range(len(y)):
            y_res = np.append(y_res, y[r])
    self.f.write('\n')
    return y_res
def execute(self):
   ys = self.main_BE()
   for index in ys:
        self.f.write(str(index) + ' ')
    self.f.write('\n')
```

```
t = np.arange(0, self.x[-1], 1)
        for index in t:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        for i in t:
            y_math_res = self.env_temp + (self.start_temp - self.env_temp) *
np.e^{**}(-(np.log(2) * i/25))
            self.f.write(str(y_math_res) + ' ')
        self.f.write('\n')
        return 0
Файл forward_euler.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class ForwardEuler:
    def __init__(self, _h = 0.2, _x = 200, _y0 = 100, env_temp_ = 50):
        self.h = _h
        self.x = np.array([0.0, _x])
        self.y0 = np.array([_y0])
        self.start_temp = _y0
        self.env_temp = env_temp_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_FE(self):
       y_len = len(self.y0)
        x_{en} = int((self.x[-1] - self.x[0])/self.h)
```

```
x = self.x[0]
   y = self.y0
    self.f.write(str(x) + ' ')
   y_res = np.empty(0)
   y_res = np.append(y_res, y)
   for i in range(x_len):
        F_x_t = mf.myFunc(y, self.env_temp)
        for j in range(y_len):
            y[j] = y[j] + self.h*F_x_t[j]
       x += self.h
        self.f.write(str(x) + ' ')
        for r in range(len(y)):
            y_res = np.append(y_res, y[r])
    self.f.write('\n')
    return y_res
def execute(self):
   ys = self.main_FE()
   for index in ys:
        self.f.write(str(index) + ' ')
    self.f.write('\n')
   t = np.arange(0, self.x[-1], 1)
   for index in t:
        self.f.write(str(index) + ' ')
    self.f.write('\n')
```

```
for i in t:
            y_math_res = self.env_temp + (self.start_temp - self.env_temp) *
np.e^{**}(-(np.log(2) * i/25))
            self.f.write(str(y_math_res) + ' ')
        self.f.write('\n')
        return 0
      Файл heun.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class Heun:
    def __init__(self, _h = 0.2, _x = 200, _y0 = 100, env_temp_ = 50):
        self.h = _h
        self.x = np.array([0.0, _x])
        self.y0 = np.array([_y0])
        self.start_temp = _y0
        self.env_temp = env_temp_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_H(self, y0, x_range, h):
       y_{len} = len(y0)
        x_{en} = int((x_{en}) - x_{en})/h)
       x = x_nege[0]
        y = y0
```

```
self.f.write(str(x) + ' ')
   y_res = np.empty(0)
   y_res = np.append(y_res, y)
   for i in range(x_len):
        y0prime = mf.myFunc(y, self.env_temp)
        k1 = y0prime * h
        ypredictor = y + k1
        y1prime = mf.myFunc(ypredictor, self.env_temp)
        for j in range(y_len):
            y[j] = y[j] + (h/2)*y0prime[j] + (h/2)*y1prime[j]
       x = x + h
        self.f.write(str(x) + ' ')
        for r in range(len(y)):
            y_res = np.append(y_res, y[r])
    self.f.write('\n')
    return y_res
def execute(self):
   ys = self.main_H(self.y0, self.x, self.h)
   for index in ys:
        self.f.write(str(index) + ' ')
    self.f.write('\n')
   t = np.arange(0, self.x[-1], 1)
```

```
for index in t:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        for i in t:
            y_math_res = self.env_temp + (self.start_temp - self.env_temp) *
np.e^{**}(-(np.log(2) * i/25))
            self.f.write(str(y math res) + ' ')
        self.f.write('\n')
        return 0
      Файл runge_kutta.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class Runge_Kutt:
    def __init__(self, _h = 0.2, _x = 200, _y0 = 100, env_temp_ = 50):
        self.h = _h
        self.x = np.array([0.0, _x])
        self.y0 = np.array([_y0])
        self.start_temp = _y0
        self.env_temp = env_temp_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def RKF45(self, y0, x_range, h):
        y_{len} = len(y0)
        x_{len} = int((x_{range}[-1] - x_{range}[0])/h)
```

```
x = x_nege[0]
        y = y0
        self.f.write(str(x) + ' ')
       y_res = np.empty(0)
        y_res = np.append(y_res, y)
        for i in range(x_len):
            k1 = mf.myFunc(y, self.env_temp)
            yp2 = y + k1*(h/5)
            k2 = mf.myFunc(yp2, self.env_temp)
            yp3 = y + k1*(3*h/40) + k2*(9*h/40)
            k3 = mf.myFunc(yp3, self.env_temp)
            yp4 = y + k1*(3*h/10) - k2*(9*h/10) + k3*(6*h/5)
            k4 = mf.myFunc(yp4, self.env_temp)
            yp5 = y - k1*(11*h/54) + k2*(5*h/2) - k3*(70*h/27) + k4*(35*h/27)
            k5 = mf.myFunc(yp5, self.env_temp)
            yp6 = y + k1*(1631*h/55296) + k2*(175*h/512) + k3*(575*h/13824) +
k4*(44275*h/110592) + k5*(253*h/4096)
            k6 = mf.myFunc(yp6, self.env_temp)
            for j in range(y_len):
                y[j] = y[j] + h*(37*k1[j]/378 + 250*k3[j]/621 + 125*k4[j]/594 +
512*k6[j]/1771)
```

```
self.f.write(str(x) + ' ')
            for r in range(len(y)):
                y_res = np.append(y_res, y[r])
        self.f.write('\n')
        return y_res
    def execute(self):
        ys = self.RKF45(self.y0, self.x, self.h)
       for index in ys:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        t = np.arange(0, self.x[-1], 1)
        for index in t:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
        for i in t:
            y_math_res = self.env_temp + (self.start_temp - self.env_temp) *
np.e^{**}(-(np.log(2) * i/25))
            self.f.write(str(y_math_res) + ' ')
        self.f.write('\n')
        return 0
      Файл my_func.py:
      import numpy as np
      def myFunc(y, env_temp):
          dy = np.zeros((len(y)))
```

x = x + h

```
# dy[0] = 3*(1+x) - y[0]

dy[0] = 1/25 * np.log(2) * (env_temp - y)

return dy
```