QuTiP lecture: Single-Atom-Lasing

Author: J.R. Johansson, robert@riken.jp

http://dml.riken.jp/~rob/

Latest version of this ipython notebook lecture is available at: http://github.com/jrjohansson/qutip-lectures

```
In [1]: # setup the matplotlib graphics library and configure it to show
         # figures inline in the notebook
        %pylab inline
```

Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline]. For more information, type 'help(pylab)'.

In [2]: # make qutip available in the rest of the notebook from qutip import *

Introduction and model

Consider a single atom coupled to a single cavity mode. If there atom excitation rate exceeds the relaxation rate, a population inversion can occur in the atom, and if coupled to the cavity the atom can then act as a photon pump on the cavity.

The coherent dynamics in this model is described by the Hamiltonian

$$H = \hbar \omega_0 a^\dagger a + \frac{1}{2} \hbar \omega_a \sigma_z + \hbar g \sigma_x (a^\dagger + a)$$

where ω_0 is the cavity energy splitting, ω_a is the atom energy splitting and g is the atom-cavity interaction strength.

In addition to the coherent dynamics the following incoherent processes are also present: 1) κ relaxation and thermal excitations of the cavity, Γ atomic excitation rate (pumping process).

The Lindblad master equation for the model is:

$$\begin{split} \frac{d}{dt}\,\rho &= -i[H,\rho] + \Gamma\Big(\sigma_+\rho\sigma_- - \frac{1}{2}\,\sigma_-\sigma_+\rho - \frac{1}{2}\,\rho\sigma_-\sigma_+\Big) \\ &+ \kappa(1+n_{\rm th})\Big(a\rho a^\dagger - \frac{1}{2}\,a^\dagger a\rho - \frac{1}{2}\,\rho a^\dagger a\Big) \\ &+ \kappa n_{\rm th}\left(a^\dagger\rho a - \frac{1}{2}\,aa^\dagger\rho - \frac{1}{2}\,\rho aa^\dagger\right) \end{split}$$

in units where $\hbar=1$.

References:

- Yi Mu, C.M. Savage, Phys. Rev. A 46, 5944 (1992)
 D.A. Rodrigues, J. Imbers, A.D. Armour, Phys. Rev. Lett. 98, 067204 (2007)
- S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, New J. Phys. 11, 023030 (2009)

Problem parameters

```
In [3]: w0 = 1.0 * 2 * pi # cavity frequency
```

```
wa = 1.0 * 2 * pi # atom frequency
g = 0.05 * 2 * pi # coupling strength

kappa = 0.04 # cavity dissipation rate
gamma = 0.00 # atom dissipation rate
Gamma = 0.35 # atom pump rate

N = 50 # number of cavity fock states
n_th_a = 0.0 # avg number of thermal bath excitation

tlist = linspace(0, 150, 101)
```

Setup the operators, the Hamiltonian and initial state

```
In [4]: # intial state
    psi0 = tensor(basis(N,0), basis(2,0)) # start without excitations
# operators
a = tensor(destroy(N), destroy(2))
sm = tensor(qeye(N), destroy(2))
sx = tensor(qeye(N), sigmax())
# Hamiltonian
H = w0 * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() + a) * sx
```

Out [5]: Quantum object: dims = [[50, 2], [50, 2]], shape = [100, 100], type = oper, isHerm = True

(0.0	0.0	0.0	0.314159265359	0.0	•••	0.0	0.0	0.0
0.0	6.28318530718	0.314159265359	0.0	0.0	•••	0.0	0.0	0.0
0.0	0.314159265359	6.28318530718	0.0	0.0	•••	0.0	0.0	0.0
0.314159265359	0.0	0.0	12.5663706144	0.444288293816	•••	0.0	0.0	0.0
0.0	0.0	0.0	0.444288293816	12.5663706144	•••	0.0	0.0	0.0
:	:	:	:	:	٠.	:	:	:
0.0	0.0	0.0	0.0	0.0	•••	301.592894745	2.17655923708	0.0
0.0	0.0	0.0	0.0	0.0	•••	2.17655923708	301.592894745	0.0
0.0	0.0	0.0	0.0	0.0		0.0	0.0	307.8760800:
0.0	0.0	0.0	0.0	0.0	•••	0.0	0.0	2.199114857:
0.0	0.0	0.0	0.0	0.0	•••	0.0	2.19911485751	0.0

Create a list of collapse operators that describe the dissipation

Evolve the system

In [5]: H

Here we evolve the system with the Lindblad master equation solver, and we request that the expectation values of the operators $a^{\dagger}a$ and $\sigma_{+}\sigma_{-}$ are returned by the solver by passing the list [a.dag()*sm] as the fifth argument to the solver.

```
In [7]: opt = Odeoptions(nsteps=2000) # allow extra time-steps
output = mesolve(H, psi0, tlist, c_ops, [a.dag() * a, sm.dag() * sm], options=opt)
```

Visualize the results

Here we plot the excitation probabilities of the cavity and the atom (these expectation values were calculated by the mesolve above).

```
In [8]: n_c = output.expect[0]
n_a = output.expect[1]
fig, axes = subplots(1, 1, sharex=True, figsize=(12,8))
```

```
axes.plot(tlist, n_c, label="Cavity")
axes.plot(tlist, n_a, label="Atom excited state")
axes.set_xlim(0, 150)
axes.legend(loc=0)
axes.set_xlabel('Time')
axes.set_ylabel('Occupation probability')
```

Out [8]: <matplotlib.text.Text at 0x2e08e50>

Steady state: cavity fock-state distribution and wigner function

```
In [9]: rho_ss = steadystate(H, c_ops)

In [10]: fig, axes = subplots(1, 2, figsize=(16,6))
    xvec = linspace(-5,5,200)
    rho_cavity = ptrace(rho_ss, 0)
    W = wigner(rho_cavity, xvec, xvec)
    wlim = abs(W).max()

    axes[1].contourf(xvec, xvec, W, 100, norm=mpl.colors.Normalize(-wlim,wlim), cmap=get_cmap('RdBu'))
    axes[1].set_xlabel(r'Im $\alpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha}$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha}$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha$\sqrt{shalpha
```

Out [10]: <matplotlib.text.Text at 0x3273b50>

Cavity fock-state distribution and Wigner function as a function of time

```
In [11]: opt = Odeoptions(nsteps=5000) # allow extra time-steps
          output = mesolve(H, psi0, linspace(0, 25, 5), c_ops, [], options=opt)
In [22]: rho_ss_sublist = output.states
          xvec = linspace(-5,5,200)
          fig, axes = subplots(2, len(rho_ss_sublist), figsize=(3*len(rho_ss_sublist), 6))
          for idx, rho_ss in enumerate(rho_ss_sublist):
              # trace out the cavity density matrix
              rho_ss_cavity = ptrace(rho_ss, 0)
              # calculate its wigner function
              W = wigner(rho_ss_cavity, xvec, xvec)
              # plot its wigner function
              wlim = abs(W).max()
              axes[0,idx].contourf(xvec, xvec, W, 100, norm=mpl.colors.Normalize(-wlim,wlim), cmap=get_cmap('RdBu'))
              # plot its fock-state distribution
              axes[1,idx].bar(arange(0, N), real(rho_ss_cavity.diag()), color="blue", alpha=0.8)
              axes[1,idx].set_ylim(0, 1)
              axes[1,idx].set_xlim(0, 15)
           -2
           1.0
                                  1.0
                                                         1.0
                                                                                                       1.0
                                                                                1.0
           0.8
                                                                                0.8
           0.6
                                  0.6
                                                         0.6
                                                                               0.6
                                                                                                       0.6
           0.4
                                  0.4
                                                         0.4
                                                                                0.4
                                                                                                       0.4
           0.2
                                  0.2
                                                         0.2
                                                                                0.2
                                  0.0 0 2 4 6 8 10 12 14
                                                         0.0 0 2 4 6 8 10 12 14
                                                                               0.0 0 2 4 6 8 10 12 14
                                                                                                      0.0 0 2 4 6 8 10 12 14
               2 4 6 8 10 12 14
```

Steady state average photon occupation in cavity as a function of pump rate

References:

• S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, New J. Phys. 11, 023030 (2009)

```
In [13]: def calulcate_avg_photons(N, Gamma):
              # collapse operators
              c_{ops} = []
              rate = kappa * (1 + n_th_a)
if rate > 0.0:
                  c_ops.append(sqrt(rate) * a)
              rate = kappa * n_th_a
              if rate > 0.0:
                  c_ops.append(sqrt(rate) * a.dag())
              rate = gamma
              if rate > 0.0:
                  c_ops.append(sqrt(rate) * sm)
              rate = Gamma
              if rate > 0.0:
                  c ops.append(sqrt(rate) * sm.dag())
              # Ground state and steady state for the Hamiltonian: H = H0 + g * H1
              rho_ss = steadystate(H, c_ops)
```

```
n_cavity = expect(a.dag() * a, rho_ss)
return n_cavity
```

```
In [14]: Gamma_max = 2 * (4*g**2) / kappa
Gamma_vec = linspace(0.0, Gamma_max, 50)

n_avg_vec = [calulcate_avg_photons(N, Gamma) for Gamma in Gamma_vec]
```

Out [15]: <matplotlib.legend.Legend at 0x616dc10>

Here we see that lasing is suppressed for $\Gamma \kappa / (4g^2) > 1$.

Let's look at the fock-state distribution at $\Gamma \kappa/(4g^2) = 0.5$ (lasing regime) and $\Gamma \kappa/(4g^2) = 1.5$ (suppressed regime):

Case 1: $\Gamma \kappa / (4g^2) = 0.5$

Case 2: $\Gamma \kappa / (4g^2) = 1.5$

Out [21]: (0, 50)

Too large pumping rate Γ kills the lasing process: reversed threshold.