算法简化描述

陈磊

September 12, 2016

Contents

1	微分	方程数值解	1
	1.1	龙格库塔 (Runge Kutta)	1
		1.1.1 四阶龙格库塔	1
2	最优	化算法	2
	2.1	停止准则	2
	2.2	步长	2
		2.2.1 Backtracking Search	2
	2.3	直接搜索	2
		2.3.1 单纯形法 (Simplex Search Method)	2
	2.4	梯度法 (Gradient Method)	2
		2.4.1 梯度法 (Gradient Descent Method)	2
		2.4.2 加速邻近梯度法 (Accelerated Proximal Gradient Method)	2
		2.4.3 自适应重启加速梯度法	3
	2.5	牛顿法及拟牛顿法	3
		2.5.1 Broyden–Fletcher–Goldfarb–Shanno Algorithm	3

List of Algorithms

1	四阶龙格库塔	
	梯度法	
3	加速邻近梯度法 [2, 1](APG)	•
4	自适应重启加速梯度法 [3]	,

Chapter 1

微分方程数值解

Problem 1 (帯初值常微分方程)

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(0) = y_0 \end{cases}$$
 (1.1)

1.1 龙格库塔 (Runge Kutta)

1.1.1 四阶龙格库塔

Algorithm 1 四阶龙格库塔

Require: f, y_0, h, n

- 1: **for** $i = 0, 1, \dots$ **do**
- $2: k_1 = f(x_i, y_i)$
- 3: $k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$
- 4: $k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$
- 5: $k_4 = f(x_i + h, y_i + k_3 h)$
- 6: $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$
- 7: end for

求解微分方程组.

Chapter 2

最优化算法

Problem 2 (无约束极小化)

$$\min_{x} f(x) \tag{2.1}$$

- 2.1 停止准则
- 2.2 步长
- 2.2.1 Backtracking Search
- 2.3 直接搜索

指无需对目标函数求导的搜索方法, 比如文献 [4] 中的方法.

- 2.3.1 单纯形法 (Simplex Search Method)
- 2.4 梯度法 (Gradient Method)
- 2.4.1 梯度法 (Gradient Descent Method)

梯度法或称梯度下降法.

2.4.2 加速邻近梯度法 (Accelerated Proximal Gradient Method)

此方法由 Nesterov[2] 首先提出. 其中, $\theta_{k+1} \in (0,1)$ 见文献 [1] 91 页. 当 q=1 时, 该算法为梯度法.

Algorithm 2 梯度法

Require: $x_0 \in \mathbf{R}^n$

- 1: **for** $k = 0, 1, \dots$ **do**
- $2: x_{k+1} = y_k t_k \nabla f(y_k)$
- 3: end for

Algorithm 3 加速邻近梯度法 [2, 1](APG)

Require: $x_0 \in \mathbf{R}^n, y_0 = x_0, \theta_0 = 1, q \in [0, 1]$

- 1: **for** $k = 0, 1, \dots$ **do**
- 2: $x_{k+1} = y_k t_k \nabla f(y_k)$
- 3: $\theta_{k+1}^2 = (1 \theta_{k+1})\theta_k^2 + q\theta_{k+1}, \theta_{k+1} \in (0,1), \ \text{\vec{x} if θ_{k+1}}$
- 4: $\beta_{k+1} = \theta_k (1 \theta_k) / (\theta_k^2 + \theta_{k+1})$
- 5: $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} x_k)$
- 6: end for

2.4.3 自适应重启加速梯度法

加速邻近梯度法 (算法3) 迭代到一定程度时, 外推系数 β_k 趋于 0, 算法退化成梯度法 (算法2). 使用该算法自适应的重置参数, 能够保持加速邻近梯度法的快速收敛.

Algorithm 4 自适应重启加速梯度法 [3]

Require: $x_0 \in \mathbf{R}^n, y_0 = x_0, \theta_0 = 1$

- 1: **for** $j = 0, 1, \dots$ **do**
- 2: 取 q = 0 执行算法3, 直到 $f(x_k) > f(x_{k-1})$ 时停止 (或可以在 $\nabla f(y_{k-1})^T(x_k x_{k-1})$ 时停止, 两者选其中一种)
- 3: $x_0 = x_k, y_0 = x_k, \theta_0 = 1$
- 4: end for

2.5 牛顿法及拟牛顿法

2.5.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm(BFGS)

Bibliography

- [1] Yu Nesterov. Introductory lectures on convex programming volume i: Basic course. *Lecture notes*, 1998.
- [2] Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). In *Soviet Mathematics Doklady*, volume 27, pages 372–376, 1983.
- [3] Brendan O'Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, 15(3):715–732, 2015.
- [4] Oliver Schütze, Adriana Lara, and CA Coello Coello. The directed search method for unconstrained multi-objective optimization problems. *Proceedings of the EVOLVE-A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation*, pages 1–4, 2011.