## Psychological Statistics

## Week 06: Counts, Table & Chi-Square Test

- Edited by Prof. Changwei Wu
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University

(1) Proportions: Bionomial distribution



```
In [31]: ### [ Example 3.9 ] Mice muscle destrophy

# → (a) Fewer than 5 will have muscular dystrophy: P(X<5)
pbinom(4,20,0.25) %>% round(3)

# → (b) 5 will have muscular dystrophy: P(X=5)
dbinom(4,20,0.25) %>% round(2)
```

0.19

0.415

### O Normal approximation (increasing trial number)

prop\_test {rstatix} | prop.test {stats}

```
In [9]: ### [ Example 3.18 ] Mice muscle destrophy -- Normal approximation
# → Binomial probability with P = 0.25 and n = 20

# What is the probability of fewer than 15 with muscular dystrophy out of 60?
(binom_orig <- pbinom(14, 60, 0.25) %>% round(3))

# Same question with Normal Approximation [mean = np; var = sqrt(npq)]
(binom_Zdist_noC <- pnorm(14, 60*.25, sqrt(60*.25*.75)) %>% round(3))
(binom_Zdist_wthC <- pnorm(14+0.5, 60*.25, sqrt(60*.25*.75)) %>% round(3))

0.451
0.383
0.441
```

# Example 11.2: Special thin growth ring of 1987 (Compared to a predefined proportion)

[ Hypothesis ] Majority of trees have the special growth ring. (1-tailed)

```
    Null hypothesis H<sub>0</sub>: Tree(1987ring) ≤ 0.5
    Alternative hyp. H<sub>1</sub>: Tree(1987ring) > 0.5
```

A rstatix\_test: 1 × 6

```
        n
        estimate
        conf.low
        conf.high
        p
        p.signif

        <dbl>
        <dbl>
        <dbl>
        <dbl>
        <dbl>
        <dbl>
        <chr>
        1
        0.02069473
        *
```

```
In [13]: ### [ Step.4 ] Effect size
# → Odd's ratio for Proportions

(ODD_ratio <- 0.75/0.5)</pre>
```

1.5

### ~ Report ~

In [29]: | ### [ Step.2 ] Assumption check

• Significant evidence exhibits that the majority of trees (75%) have growth rings of 1987 less than half their usual size (p < 0.021).

# Example 11.6: Death rate after stenting (Comparing 2 proportions)

### [ Hypothesis ] Stenting surgery saves lives. (2-tailed)

- Null hypothesis H<sub>0</sub>: Death\_rate(with stents) = Death\_rate(without stents)
- Alternative hyp. **H**<sub>1</sub>: Death\_rate(without stents) ≠ Death\_rate(without stents)

```
In [35]: | ### [ Step.1 ] Load data
          stent.data <- as.table(rbind(c(171, 179), c(1082, 1084)))
          dimnames(stent.data) <- list(</pre>
              case=c("Death", "Total"),
              group=c("Stent", "No Stent"))
          stent.data
                 group
                   Stent No Stent
          case
                     171
                              179
            Death
            Total 1082
                              1084
In [43]: | ### | Step.1 | Load data
          stent.data <- as.table(rbind(c(171, 1082), c(179, 1084)))
          dimnames(stent.data) <- list(</pre>
              group=c("Stent", "No Stent"),
case=c("Death", "Total"))
          stent.data
                     case
                      Death Total
          group
            Stent
                        171 1082
            No Stent
                        179 1084
```

# → Independent & Mutually exclusive for binomial distribution (not testable)

A rstatix\_test: 1 × 5

```
        n
        statistic
        df
        p
        p.signif

        <dbl>
        <dbl>
        <dbl>
        <dbl>
        <chr>

        1
        2516
        0.1044111
        1
        0.373
        ns
```

2-sample test for equality of proportions without continuity correction

```
data: stent.data
X-squared = 0.14496, df = 1, p-value = 0.3517
alternative hypothesis: less
95 percent confidence interval:
   -1.00000000   0.01744079
sample estimates:
   prop 1   prop 2
0.1364725   0.1417260
```

```
In [51]: ### [ Step.4 ] Effect size
# → Phi
cramer_v(stent.data, correct=F)
```

0.00759048560659339

#### ~ Report ~

• There is no evidence for a significant reduction in death rate with the implantation of stents in patients after heart attack (p = 0.35).

## (2) Data counts by Chi-Square Test

```
In [57]: ### [ Distribution plot ] Chi-square distribution

df = 1
    xvec <- seq(0,15,length=101)

pvec <- dchisq(xvec,df)

ggplot(data.frame(x = c(0, 15)), aes(x = x)) +
        stat_function(fun = dchisq, args = list(df))+
    labs(x= "Chi-square", y= "Probability",
        title=paste0("Chi-square Distribution: df=",df))</pre>
```



## Data count: freq\_table {rstatix} | xtabs {stats}

```
In [22]: ### 2.1 [ Frequency count (1)]
data("ToothGrowth")

ToothGrowth %>% freq_table(supp)

xtabs(~supp, ToothGrowth)
```

A tibble: 2 × 3

```
        supp
        n
        prop

        <fct>< <int>>
        <dbl>

        OJ
        30
        50

        VC
        30
        50

        supp
        0J
        VC

        30
        30
```

```
In [21]: ### 2.2 [ Frequency count (2)]
ToothGrowth %>% freq_table(supp, dose)
xtabs(~supp + dose, ToothGrowth)
```

A tibble: 2 × 3

| supp        | n           | prop        |
|-------------|-------------|-------------|
| <fct></fct> | <int></int> | <dbl></dbl> |
| OJ          | 30          | 50          |
| VC          | 30          | 50          |

supp OJ VC 30 30

### Chi-Square Test: chisq\_test {rstatix} | chi.test {stats}

(1) Goodness of Fit (compared with reference proportions)

**Example: Flowers** 

[ Hypothesis ] Are the flower colors equally common? (2-tailed)

- Null hypothesis  ${\it H}_{\rm 0}$ : flower colors are equally common
- Alternative hyp. H<sub>1</sub>: flower colors are NOT equally common

```
In [67]: ### [ Step.1 ] Load data
flower <- c(red = 55, pink = 132, white = 53)</pre>
```

A rstatix\_test: 1 × 6

```
n statistic p df method p.signif
<int> <dbl> <dbl> <dbl> <chr> 1 3 2.433333 0.296 2 Chi-square test ns
```

```
In [69]: ### [ Step.4 ] Effect size
pairwise_chisq_test_against_p(flower, , p = c(0.25, 0.5, 0.25))
```

A rstatix\_test: 3 × 9

|   | group       | observed    | expected    | n           | statistic   | р           | df          | p.adj       | p.adj.signif |
|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <chr></chr>  |
| 1 | red         | 55          | 60          | 2           | 0.555556    | 0.456       | 1           | 0.594       | ns           |
| 2 | g pink      | 132         | 120         | 2           | 2.4000000   | 0.121       | 1           | 0.363       | ns           |
| 3 | white       | 53          | 60          | 2           | 1.0888889   | 0.297       | 1           | 0.594       | ns           |

### ~ Report ~

• The sampled flower colour are reasonably consistent with the Mendelian model (p = .296).

### (2) Homogeneity of proportions (between groups)

**Example: Survivors of Titanic** 

[ Hypothesis ] Survival rate of different classes are equal. (2-tailed)

- Null hypothesis H<sub>0</sub>: Survival rate of 4 groups are similar.
- Alternative hyp. **H**<sub>1</sub>: Survival rate of 4 groups are different.

```
Class
Survived 1st 2nd 3rd Crew
Yes 203 118 178 212
No 122 167 528 673
```

## 

A rstatix\_test: 1 × 6

| if | p.signi                                                                                                                          | method          | df          | р           | statistic   | n           |   |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-------------|-------------|---|
| >  | <chr< th=""><th><chr></chr></th><th><int></int></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th></th></chr<> | <chr></chr>     | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |   |
| *  | ***                                                                                                                              | Chi-square test | 3           | 5e-41       | 190.4011    | 2201        | 1 |

## 

#### 0.294120103005126

A rstatix\_test: 6 × 5

|   | group1      | group2      | р           | p.adj       | p.adj.signif |
|---|-------------|-------------|-------------|-------------|--------------|
|   | <chr></chr> | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <chr></chr>  |
| 1 | 1st         | 2nd         | 3.13e-07    | 9.38e-07    | ***          |
| 2 | 1st         | 3rd         | 2.55e-30    | 1.27e-29    | ***          |
| 3 | 2nd         | 3rd         | 6.90e-07    | 1.38e-06    | ***          |
| 4 | 1st         | Crew        | 1.62e-35    | 9.73e-35    | ***          |
| 5 | 2nd         | Crew        | 1.94e-08    | 7.75e-08    | ***          |
| 6 | 3rd         | Crew        | 6.03e-01    | 6.03e-01    | ns           |

### ~ Report ~

• The survival rates are different (p < .001) between different classes in Titanic.

### (3) Test of Independence (between factors)

**Example: Color of eyes and color of hair** 

### [ Hypothesis ] Brown eyes leads to the dark hair. (2-tailed)

- Null hypothesis  ${\it H}_0$ : Eye color and hair color are independent.
- Alternative hyp. **H**<sub>1</sub>: Eye color and hair color are correlated.

```
Eyes
Hair Blue Brown
Fair 38 11
Dark 14 51
```

A rstatix\_test: 1 × 6

```
        n
        statistic
        p
        df
        method
        p.signif

        <dbl> <dbl> <dbl> <int>
        <chr> <chr>
        1
        114
        33.11197
        8.7e-09
        1
        Chi-square test
        *****
```

#### ~ Report ~

• There is significant positive association between fair hair and blue eyes for this group (p < 0.001).

## (3) CrossTable {gmodels}

### **Example: Age vs. Breast cancer**

# [ Hypothesis ] The age at first childbirth is an risk factor for breast cancer. (2-tailed)

- Null hypothesis  ${\it H}_0$ : Birth-giving age and breast cancer are 2 independent factors.
- Alternative hyp. H<sub>1</sub>: Birth-giving age and breast cancer has certain relationship with each other.

Eyes
Status age≥30 age<30
BCcase 683 2537
Control 1498 8747

```
In [77]: ### [ Step.3 ] CrossTable
#CrossTable(Age_BC)
CrossTable(Age_BC, fisher = TRUE, chisq = TRUE, expected = TRUE)
```

#### Cell Contents

| İ          |     | Νİ            |
|------------|-----|---------------|
| İ          |     | Expected N    |
| Chi-square | e ( | contribution  |
| j ·        |     | / Row Total   |
| İ          | N   | / Col Total   |
| j N        | /   | Table Total i |
|            |     | i             |

Total Observations in Table: 13465

|              | Eyes       |          |                 |
|--------------|------------|----------|-----------------|
| Status       | age≥30<br> | age<30   | Row Total  <br> |
| BCcase       | 683        | 2537     | 3220            |
|              | 521.561    | 2698.439 |                 |
|              | 49.970     | 9.658    |                 |
|              | 0.212      | 0.788    | 0.239           |
|              | 0.313      | 0.225    |                 |
|              | 0.051      | 0.188    |                 |
| Control      | 1498       | 8747     | <br>  10245     |
|              | 1659.439   | 8585.561 | İ               |
|              | 15.706     | 3.036    | İ               |
|              | 0.146      | 0.854    | 0.761           |
|              | 0.687      | 0.775    | İ               |
|              | 0.111      | 0.650    | ļ               |
|              |            | 11201    |                 |
| Column Total | 2181       | 11284    | 13465           |
|              | 0.162      | 0.838    |                 |
|              |            |          |                 |

Statistics for All Table Factors

Pearson's Chi-squared test

Chi<sup>2</sup> = 78.36984 d.f. = 1 p = 8.544684e-19

Pearson's Chi-squared test with Yates' continuity correction

Fisher's Exact Test for Count Data

-----

Sample estimate odds ratio: 1.571925

Alternative hypothesis: true odds ratio is not equal to 1

p = 5.873474e - 18

95% confidence interval: 1.419073 1.740189

Alternative hypothesis: true odds ratio is less than 1

p = 1

95% confidence interval: 0 1.712541

Alternative hypothesis: true odds ratio is greater than 1

p = 3.526441e-18

95% confidence interval: 1.442384 Inf

```
In [79]: ### [ Step.4 ] Effect size
         # → Function: odds.ratio() {questionr}
         odds.ratio(Age_BC)
          Registered S3 method overwritten by 'DescTools':
            method
                            from
            reorder.factor gdata
          1.57198193044674
         A odds.ratio: 1 × 4
                         OR
                               2.5 %
                                     97.5 %
                                                      p
                       <dbl>
                               <dbl>
                                       <dbl>
                                                   <dbl>
```

**Fisher's test** 1.571925 1.419073 1.740189 5.873474e-18

### ~ Report ~

• The breast cancer incidence is significantly associated with having a first child after age 30 (*p* < 0.001). Their odd is 56.6% higher than those having a first child before age 30.