

Geometría

Puntos notables

Intensivo UNI 2024 - III

- 1. En un triángulo *ABC*, m∢*BAC*=140° v *O* es su circuncentro. Calcule m∢BOC.
 - A) 100°
 - B) 70°
 - C) 65°
 - D) 80°
 - E) 110°
- En un triángulo rectángulo ABC, recto en C, la longitud de la hipotenusa es 30 y m∢CAB=53°. Calcule la distancia del baricentro de la región ABC hacia el cateto BC.
 - A) 3.6
 - B) 4,8
 - C) 5,2
 - D) 8
 - E) 6
- 3. En un triángulo ABC, sobre los lados \overline{BC} y \overline{AC} se ubican los puntos M y N, respectivamente. Luego \overline{AM} y \overline{BN} se intersecan en Q, de modo que m $\angle BQM$ =110°, NQ=MN y Q es baricentro de la región *ABC*. Calcule m∢*NBA*.
 - A) 30°
 - B) 40°
 - C) 55°
 - D) 25°
 - E) 35°
- En un triángulo ABC de excentro E, m∢BAC=74° y EB=5. Calcule la distancia del vértice B hacia \overline{EC} .
 - A) 3
- B) 4
- C) 2.4

D) 1,5

E) 6

5. Según el gráfico. *H* es ortocentro. Calcule *x*.

- A) 70°
- B) 50°
- C) 60°

D) 55°

- E) 65°
- En un triángulo acutándulo ABC, O es su circuncentro y \overline{BH} es una altura, de modo que $\overline{AO} \cap \overline{BH} = \{D\}$ y la prolongación de \overline{CO} interseca a \overline{BH} en E. Si AD = m y CE = n, halle OD.
 - A) $\frac{m+n}{2}$ B) $\frac{m+n}{4}$ C) $\frac{m-n}{2}$

- En el gráfico, E es circuncentro de ABC y ortocentro de *POC*. Calcule m∢*EBC*.

- A) 10°
- B) 15°
- C) 30°

D) 18°

E) 20°

- Según el gráfico, E es excentro del triángulo ABC, ME/AC, MN=4 y NE=6. Calcule AC. Considere que la circunferencia está inscrita en AMNC.

- A) 10
- B) 13
- C) 12
- D) 9
- E) 11

11. Según el gráfico, ABCD es un paralelogramo. Si AM = MD, calcule x.

- A) 90°
- B) 120°
- C) 100° E) 60°

- D) 75°
- 12. En un triángulo acutángulo ABC de ortocentro H y circuncentro O. Si BH=6 y BO=5, calcule m≪ABC.
 - A) 45°
- B) 37°
- C) 60°

D) 50°

E) 53°

9. Sea I el incentro del $\triangle ABC$. Calcule la $m \not AIB + m \not MIN$.

- **13.** Dado un triángulo acutángulo, su recta de Euler interseca a los lados \overline{AB} y \overline{BC} en P y Q, respectivamente. Si PB = QB, calcule m∢ABC.
 - A) 50°
- B) 70°
- C) 45°

D) 60°

- E) 53°
- **14.** En un triángulo acutángulo ABC, la ceviana interior \overline{BD} contiene al circuncentro O, y la circunferencia circunscrita al $\triangle ADO$ interseca a \overline{AB} en P. Si $\widehat{MOP} = 70^{\circ}$ y BO = AD, halle m $\angle OBC$.
 - A) 5°
- B) 10°
- C) 15°

D) 20°

- E) 25°
- **15.** Del gráfico mostrado, se sabe que *H* e *I* son ortocentro e incentro, respectivamente, de modo que m∢*IAH*=m∢*HBC*. Halle m∢*ABH*.

B) 10°

A) 40°

A) 360°

B) 330°

C) 300°

D) 270°E) 235°

B) 35°

 $m \not< ADB = 2 (m \not< BCA) = 50^{\circ}$ $m \not< ABD = 2 (m \not< ACD) = 60^{\circ}$

Calcule m∢CAD.

10. En un cuadrilátero ABCD se cumple lo siguiente:

C) 30°

D) 45°

E) 37°

- A) 9°
- D) 16°

- C) 15°
- E) 18°

16. Según el gráfico, las regiones *ABP* y *BIC* son congruentes. Si *I* es incentro del triángulo *PBC*, calcule m∢*BAC*.

- A) 40°
- B) 30°
- C) 60°
- D) 50° E) 45°
- 17. En un triángulo ABC, su altura \overline{AH} y el lado \overline{PQ} de su triángulo mediano PQR se intersecan en $E(Q \in \overline{HC})$. Si ER = RQ, calcule $m \not\prec BCA$.
 - A) 30°
- B) 45°
- C) 60°
- D) 37°
- E) 55°
- 18. P es un punto de la región interior de un triángulo ABC (AB=BC), de modo que se cumple que m≪PBC=3m≪PBA.

Si, además,
$$\frac{m < PAC}{3} = \frac{m < PCB}{2} = m < BAP$$
 calcule $m < BAP$.

- A) 16°
- B) 14°
- C) 17°

D) 18°

- E) 15°
- **19.** En un triángulo ABC, se traza la altura \overline{BH} , I es el incentro del triángulo AHB e I_1 es el incentro del triángulo BHC. Además, IE=1 e $I_1F=7$, donde E y F son las proyecciones ortogonales de I e I_1 en \overline{AC} , respectivamente. Calcule la medida del menor ángulo determinado por \overline{II}_1 con \overline{BH} .
 - A) 37°
- B) 53°
- C) 30°

D) 60°

- E) 45°
- **20.** Sea un triángulo ABC de alturas \overline{CM} y \overline{BN} . Si O es su circuncentro y $\overline{MN}//\overline{BO}$, calcule $m \ll BCA$.
 - A) 23°
- B) 37°
- C) 30°

D) 45°

E) 60°

21. Si H y O son ortocentro y circuncentro del $\triangle ABC$ y $\widehat{mAM} = 100^{\circ}$, halle \widehat{mOH} .

A) 10°

- B) 15°
- C) 20°

D) 30°

- E) 40°
- **22.** Dado un triángulo ABC, se ubican el circuncentro O y el excentro E exterior y relativos a \overline{AC} y \overline{BC} , respectivamente, de modo que $m \not\prec ABC = m \not\prec AOC$. Calcule $m \not\prec AEO$.
 - A) 40°
- B) 15°
- C) 20°

D) 30°

- E) 18°
- **23.** En un triángulo rectángulo *ABC*, y recto en *B*, se traza la altura \overline{BH} . Si *I*, I_1 e I_2 son los incentros de los triángulos *ABC*, *ABH* y *BHC*, respectivamente, ¿qué punto notable es *I* del triángulo BI_1I_2 ?
 - A) incentro
 - B) baricentro
 - C) ortocentro
 - D) circuncentro
 - E) cevacentro
- **24.** Indique el valor de verdad (V) o falsedad (F) de las siguientes proposiciones.
 - I. En un triángulo rectángulo, su triángulo órtico es también rectángulo.
 - II. En un triángulo obtusángulo, su triángulo órtico es siempre obtusángulo.
 - III. En un triángulo acutángulo, su triángulo órtico puede ser rectángulo.
 - A) VVV
- B) FFF
- C) FVF

D) FFV

E) FVV