ΜΕΜ-205 Περιγραφική Στατιστική

Τμήμα Μαθηματικών και Εφ. Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (kesmarag@pm.me)

13-02-2023

Τεταρτημόρια

 ${
m Q}_1 \equiv {
m P}_{0.25}$ (Πρώτο Τεταρτημόριο)

 ${
m Q}_2 \equiv {
m M} \equiv {
m P}_{0.5}$ (Δεύτερο Τεταρτημόριο ή Διάμεσος)

 $\mathrm{Q}_3 \equiv \mathrm{P}_{0.75}$ (Τρίτο Τεταρτημόριο)

Υπάρχει μοναδικός δείκτης j τέτοιος ώστε

$$F_{j-1} < qN/4 \le F_j.$$

Άρα το $M \in [a_j, a_{j+1})$. Υποθέτοντας ότι οι τιμές σε αυτό το διάστημα ακολουθούν iομοιόμορφη κατανομή έχουμε

$$\begin{aligned} Q_q &= a_j + \overbrace{d \frac{qN/4 - F_{j-1}}{f_j}}, \\ \mathbf{Q}_{\mathbf{q}} &\qquad \qquad \mathbf{Q}_{\mathbf{j+1}} - \mathbf{Q}_{\mathbf{j}} \end{aligned}$$

Τεταρτημόρια

Παράδειγμα - Τεταρτημόρια ομαδοποιημένων παρατηρήσεων

	هر بر <i>ي</i>			
[0,1)	3	3	
~ i	1,2)	4	7	
[2,3)	5	12	
ا و	3,4)	2	14 15	
$Q_3 \rightarrow 1$	4,5)	4	18	
[5,6)	2	20	
Т	otal	20		

$$Q_1 = 1 + 1 - \frac{20/4 - 3}{4} = 1 + \frac{2}{4} = 1 - 5$$

$$Q_3 = 4 + 1 - \frac{15 - 14}{4} = 4 + \frac{1}{4} = 4.25$$

Ενδοτεταρτημοριακό Εύρος (Interquartile Range-IQR)

$$\mathsf{IQR} = Q_3 - Q_1$$

Περιλαμβάνει το 50 % (κεντρικότερες) παρατηρήσεις του δείγματος

Ακραίες Παρατηρήσεις (Outliers)

- ▶ Ως ακραία παρατήρηση χαρακτηρίζεται εκείνη που διαφέρει σημαντικά από τις περισσότερες παρατηρήσεις.
- Μια ακραία παρατήρηση μπορεί να οφείλεται σε μεταβολές των συνθηκών μέτρησης ή μπορεί να υποδηλώνει κάποιο πειραματικό σφάλμα.

Κριτήριο 1.5*IQR για αναγνώριση Ακραίων τιμών

Το κριτήριο αναγνωρίζει ως ακραίες τις παρατηρήσεις οι οποίες είναι μικρότερες από $Q_1-1.5*{\rm IQR}$ ή μεγαλύτερες από $Q_3+1.5*{\rm IQR}$.

Παράδειγμα - Μετρώντας τη ταχύτητα του φωτός

Χρόνος ταξιδιού:

$$24.8 + 0.001 * x$$
 nanoseconds

Απόσταση: $\approx 7444~\mathrm{m}$ Μετρήσεις του x:

-											
	28	26	33	24	34	-44	27	16	40	-2	29
	22	24	21	25	30	23	29	31	19	24	20
	36	32	36	28	25	21	28	29	37	25	28
	26	30	32	36	26	30	22	36	23	27	27
	28	27	31	27	26	33	26	32	32	24	39
	28	24	25	32	25	29	27	28	29	16	23

Παράδειγμα

Παράδειγμα - Μετρώντας τη ταχύτητα του φωτός

Χρόνος ταξιδιού:

$$24.8 + 0.001 * x$$
 nanoseconds.

Απόσταση: $\approx 7444 \text{ m}$

Διατεταγμένες μετρήσεις του x:

-44	-2	16	16	19	20	21	21	22	22	23
23	23	24	24	24	24	24	25	25	25	25
25	26	26	26	26	26	27	27	27	27	27
27	28	28	28	28	28	28	28	29	29	29
29	29	30	30	30	31	31	32	32	32	32
32	33	33	34	36	36	36	36	37	39	40

- ightharpoonup Μέση τιμή $\bar{X} = 26.21$
- Διάμεσος M = 27.0 = Q₂
- ightharpoonup Πρώτο τεταρτημόριο $Q_1 = 24.0$, Τρίτο τεταρτημόριο $Q_3 = 30.75$
- ightharpoonup Ενδοτεταρτημορικό εύρος $IQR = Q_3 Q_1 = 30.75 24.0 = 6.75$
- $ightharpoonup (Q_1 1.5 * IQR, Q_3 + 1.5 * IQR) = (13.875, 40.875)$
- ▶ Ακραίες τιμές κατά 1.5*IQR : -44 και -2

Παράδειγμα

$$\frac{R}{L(x) \cdot 10^{-9}} = \frac{R}{L(x)} \cdot 10^9 \text{ m/s}$$

- ▶ Προσέγγιστική τιμή της ταχύτητας του φωτός σήμερα: 299792 km/s
- ► Προσέγγιση με τη μέση τιμή των παρατηρήσεων: 299844 km/s
- ► Προσέγγιση με τη διάμεσο των παρατηρήσεων: 299835 km/s
- ► Προσέγγιση με τη μέση τιμή εκτός των ακραίων παρατηρήσεων: 299809 km/s

Γράφημα Box-and-Whisker ς

Γράφημα Box-and-Whisker

Άσκηση

Κατασκευάστε το γράφημα box-and-whisker για τις διατεταγμένες παρατηρήσεις:

$$Q_{1} = P_{0.25}$$

$$Q_{2} = P_{0.25}$$

$$Q_{3} = P_{0.25}$$

$$Q_{4} = P_{0.25}$$

$$Q_{5} = P_{0.25}$$

$$Q_{6} = P_{0.25}$$

$$Q_{7} = P_{0.25}$$

$$Q_{8} = P_{0.25}$$

$$Q_{1} = -4 + [0 - (-4)] \cdot 0.75 = -4 + 4 \cdot 0.75 = -1$$

$$Q_3 = -4 + (p - (-4)) - 0.75 = -4 + 4 \cdot 0.75 = -1$$

$$Q_3 = 5 + 1.0.25 = 5.25$$

 $Q_3 = 5 + 1.0.25 = 5.25$
 $Q_3 = 5 + 1.0.25 = 5.25$

Γεωμετρικός Μέσος

Έστω παρατηρήσεις μιας μεταβλητής Χ. Ο γεωμετρικός μέσος G ορίζεται ως:

$$G = (x_1 \cdot x_2, \cdot, \dots, \cdot x_N)^{1/N}$$

Χρησιμοποιήται κυρίως σε οικονομικά και επιχειρηματικά προβλήματα για την μελέτη των ρυθμών μεταβολής οικονομικών μεγεθών με το χρόνο. Τις περισσότερες φορές είναι ευκολότερο να υπολογίσουμε τον λογάριθμο του G.

$$\log G = \frac{1}{N} \sum_{n=1}^{N} \log x_n$$

Παράδειγμα

Να βρεθεί ο γεωμετρικός μέσος των παρατηρήσεων:

$$\log G = \frac{1}{5} \left(\log(14) + \log(5) + \log(10) + \log(20) + \log(1) \right) = \frac{4.146128}{5} = 0.829226$$

$$G = 10^{0.829226} = 6.748785$$

Γεωμετρικός Μέσος και Ανατοκισμός

$$\chi^1 = \chi^0 (T+L^T)$$
 $\chi^S = \chi^1 (T+L^S)$

Έστω x_0 ένα αρχικό κεφάλαιο και $x_j,\ j=1,\dots,N$ το κεφάλαιο μετά από j έτη. Έστω επίσης ότι κάθε έτος έχουμε διαφορετικό επιτόκιο r_j εκφρασμένο ως δεκαδικό αριθμό.

ightharpoonup Μετά το Ν-οστό έτος θα έχουμε κεφάλαιο: $x_N = x_0 \prod_{n=1}^N (1+r_n)$

Θέλουμε να βρούμε "μέσο επιτόκιο" ${
m r}$ τέτοιο ώστε:

$$(1+r) = \left((1+r_1)(1+r_2)\cdots(1+r_N) \right)^{1/N}$$

Άρα

Έχουμε:

$$r = G - 1$$

όπου Gο γεωμετρικός μέσος των $\{(1+r_n)\}_{n=1}^N$

- ► Είναι η τιμή της μεταβλητής με τη μεγαλύτερη συχνότητα εμφάνισης.
- ▶ Ορίζεται και για ποιοτικές μεταβλητές.
- Αν δυο ή περισσότερες τιμές έχουν την ίδια μέγιστη συχνότητα δεν ορίζεται επικρατέστερη τιμή.

Παράδειγμα

Έστω παρατηρήσεις: 2, 3, 4, 1, 2, 6, -2, 2

Το 2 με συχνότητα 3 είναι η επικρατέστερη τιμή του δείγματος.

Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

Έστω οι κλάσεις που ορίζονται από τα διαστήματα με ίσο πλάτος d:

$$[a_1,a_2),[a_2,a_3),\ldots,[a_j,a_{j+1}),\ldots,[a_K,a_{K+1}).$$

Εάν υπάρχει μοναδικός δείκτης j τέτοιος ώστε

$$f_j>f_k, \ \forall k\neq j.$$

Τότε $M_0 \in [a_j, a_{j+1})$.

$$M_0 = a_j + d \frac{f_j - f_{j-1}}{(f_j - f_{j-1}) + (f_j - f_{j+1})}$$

Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

Παράδειγμα - Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

	f
[0,1)	3
[1,2)	4
[2,3)	5
[3,4)	2
[4,5)	4
[5,6)	2
Total	20

$$M_0 = 2 + 1. \frac{s-4}{(s-4) + (s-2)} = 2 + \frac{4}{4} = 2.25$$

Περιγραφικά Μέτρα που έχουμε μελετήσει εώς τώρα

Μέτρα κεντρικής τάσης

- ▶ Μέση τιμή X̄
- Διάμεσος Μ
- ▶ Γεωμετρικός μέσος G
- ► Επικρατέστερη τιμή M₀

Μέτρα μεταβλητότητας

- ► Εύρος R
- ► Ενδοτεταρτημορικό εύρος IQR ← Τις κεννεικότερες Τ τις (ςοχ)

Μέση Τιμή του Πληθυσμού vs Μέση Τιμή του Δείγματος

- Μέση τιμή δείγματος: X̄
- Μέση τιμή πληθυσμού: μ

Έστω $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ παρατηρήσεις που αντιστοιχούν σε ένα τυχαίο δείγμα ενός πληθυσμού.

Έχουμε ορίσει ως μέση τιμή των παρατηρήσεων του δείγματος την ποσότητα:

$$\bar{X} = 1/N \sum_{n=1}^{N} x_n$$

Αυτή η μέση τιμή εκφράζει μόνο το δείγμα και όχι τον πληθυσμό, αν και για μεγάλο N προσεγγίζει την αντίστοιχη μέση τιμή μ του πληθυσμού.

Μέση Τιμή του Πληθυσμού vs Μέση Τιμή του Δείγματος

Ανεξάρτητα των τιμών του δείγματος ισχύει η ανισότικη σχέση

$$\sum_{n=1}^{N} (x_n - \bar{X})^2 \le \sum_{n=1}^{N} (x_n - \mu)^2 \qquad \bigstar$$

με ισότητα μόνο αν $\bar{X} = \mu$.

$$f(x) = \sum_{n=1}^{N} (x_n - x)^2 \Rightarrow f(x) = -2 \sum_{n=1}^{N} (x_n - x) = 0 \Rightarrow$$

$$\Rightarrow \sum_{n=1}^{N} x_n = \sum_{n=1}^{N} x = Nx \Rightarrow x = \frac{1}{N} \sum_{n=1}^{N} x_n = \overline{X}$$

$$f''(x) > 0 \qquad \text{apa } \overline{X} \text{ sivan Examples.}$$

$$\text{four } h \neq \overline{X} \text{ Tots Issish in } x \text{ he } \angle$$

Μέση Τιμή του Πληθυσμού vs Μέση Τιμή του Δείγματος

Παράδειγμα

Έστω το πείραμα της ρίψης ενός αμερόληπτου ζαριού.

$$\mu = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = 3.5$$

Ρίχνουμε το ζάρι 3 φορές και λαμβάνουμε τα αποτελέσματα: 3,2,6 Έχουμε $\bar{X}=3.66$

$$\sum_{i=1}^{3} (x_i - \bar{X})^2 = 8.66 < 8.75 = \sum_{i=1}^{3} (x_i - \mu)^2$$

Διασπορά πληθυσμού

Ορίζεται ως η μέση τιμή του συνόλου τιμών

$$\{(\mathbf{x} - \mu)^2\}$$

για κάθε παρατήρηση x του πληθυσμού. Η διασπορά του πληθυσμού συμβολίζεται με σ^2 .

Διασπορά στατιστικού δείγματος

$$s^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{X})^2$$

Μπορούμε να γράψουμε ισοδύναμα:

$$s^{2} = \frac{\sum_{n=1}^{N} x_{n}^{2} - \frac{(\sum_{n=1}^{N} x_{n})^{2}}{N}}{N-1}$$

Όσο το N αυξάνεται έχουμε $s^2 o \sigma^2$.

Διασπορά στατιστικού δείγματος

$$s^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{X})^2$$

Γιατί διαιρούμε με N-1 και όχι απλά με N;

Διασπορά ομαδοποιημένων δεδομένων

$$s^2 = \frac{1}{N-1} \sum_{j=1}^{K} f_j (m_j - \bar{X})^2$$

Μπορούμε να γράψουμε ισοδύναμα:

$$s^2 = \frac{\sum_{j=1}^K m_j^2 f_j - \frac{(\sum_{j=1}^K m_j f_j)^2}{N}}{N-1}$$

$$s^2 = \frac{\sum_{j=1}^K m_j^2 f_j - \frac{(\sum_{j=1}^K m_j f_j)^2}{N}}{N-1}$$

Άσκηση - Διασπορά ομαδοποιημένων δεδομένων

	f
[0,2)	3
[2,4)	4
[4,6)	5
[6,8)	2
[8,10)	4
[10,12)	2
Total	20