STAT 850 Notes

BY LANGTIAN MA

1 Randomized Block Design

Problem Setting:

- One block factor with b levels. and one treatment factor with t levels.
- Treatments randomized with blocks.
- No replicate observations. Our observed data y_{ij} represents the data in ith block with jth factor.

	Τ	reat			
	A	В	\mathbf{C}	D	Mean
Block 1	89	88	97	94	92
Block 2	84	77	92	79	83
Block 3	81	87	87	85	85
Block 4	87	92	89	84	88
Block 5	79	81	80	88	82
Mean	84	85	89	86	86

Table 1.

Model without block-treatment interactions:

$$y_{ij} = \mu + b_i + t_j + \epsilon_{ij}$$
 $i \in 1: B, j = 1: T$

with $\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ and $\sum_j t_j = 0$. b_i s and t_j s indicate block and factor effects.

There are two settings for the block effects in the model:

- Fixed block effects: $\sum_{i=1}^{N} b_i = 0$ (sum to zero constraint for block effects)
- Random block effects: $b_1, \ldots, b_B \overset{\text{iid}}{\sim} N(0, \sigma_B^2)$

Data decomposition: the observed data can be decomposed to a summation of the (estimated) effects:

$$\begin{aligned} y_{ij} &= y_{\cdot \cdot \cdot} + (y_{i \cdot} - y_{\cdot \cdot}) + (y_{\cdot j} - y_{\cdot \cdot}) + (y_{ij} - y_{i \cdot} - y_{\cdot j} + y_{\cdot \cdot}) \\ &= \hat{\mu} + \hat{b}_i + \hat{t}_j + \hat{\epsilon}_{ij} \end{aligned}$$

ANOVA decomposition: the total sum of squares can be decomposed to:

$$\underbrace{\sum_{i} \sum_{j} (y_{ij} - y_{..})^{2}}_{\text{Total sum of squares}} = \underbrace{t \sum_{i} (y_{i} - y_{..})^{2}}_{\text{Blocks}} + \underbrace{b \sum_{j} (y_{.j} - y_{..})^{2}}_{\text{Treatments}} + \underbrace{\sum_{i} \sum_{j} (y_{ij} - y_{i.} - y_{.j} + y_{..})^{2}}_{\text{Erorrs}}$$

Source	SS	df	$\mathbb{E}(MS = SS/df)$				
Fixed block effects							
Blocks	$t\sum_{i}(y_{i.}-y)^2$	b-1	$\sigma^2 + t (b-1)^{-1} \sum_i b_i^2$				
Treatments	$b\sum_{j}(y_{\cdot j}-y_{\cdot \cdot})^2$	t-1	$\sigma^2 + b (t-1)^{-1} \sum_j t_j^2$				
Error	$\sum_{ij} (y_{ij} - y_{i.} - y_{.j} + y)^2$	(b-1)(t-1)	σ^2				
Total	$\sum_{ij} (y_{ij} - y)^2$	bt-1					
Random block effects							
Blocks	$t \sum_{i} (y_{i.} - y)^2$	b-1	$\sigma^2 + t \sigma_b^2$				
Treatments	$b\sum_{j}(y_{\cdot j}-y_{\cdot \cdot})^2$	t-1	$\sigma^2 + b (t-1)^{-1} \sum_j t_j^2$				
Error	$\sum_{ij} (y_{ij} - y_{i.} - y_{.j} + y_{})^2$	(b-1)(t-1)	σ^2				
Total	$\sum_{ij} (y_{ij} - y)^2$	bt-1					

Table 2. ANOVA table for Randomized Block Design

2 Factorial treatment structure

2.1 Model Setting

Consider an experiment with two factors P and Q (P and Q may have interactions) with levels j = 1, 2, ..., p, and k = 1, 2, ..., q, replicated r times (l = 1, 2, ..., r), with model

$$y_{jkl} = \mu_{jk} + \epsilon_{jkl}$$

Group effect parameters:

- Grand mean: $\mu = (pq)^{-1} \sum_{j} \sum_{k} \mu_{jk}$
- Group means for factor $P: \mu_j = q^{-1} \sum_k \mu_{jk}$
- Group means for factor $Q: \mu_{k} = p^{-1} \sum_{j} \mu_{jk}$
- Effect of factor $P: p_j = \mu_j \mu_i$.
- Effect of factor $Q: q_k = \mu_{\cdot k} \mu_{\cdot \cdot}$

We have sum to zero constrains under this setting:

$$\sum_{j} p_j = 0, \quad \sum_{k} q_k = 0$$

Interaction effect parameters:

$$(pq)_{jk} = \mu_{jk} - (\mu_{..} + p_j + q_k) = (\mu_{jk} - \mu_{.k}) - (\mu_{j.} - \mu_{..})$$

Also, we have

$$\sum_{j} (pq)_{jk} = 0 \quad \text{for all } k, \quad \sum_{k} (pq)_{jk} = 0 \quad \text{for all } j$$

Then the model can be expand as:

$$\mu_{jk} = \mu_{..} + p_j + q_k + (pq)_{jk}. \tag{1}$$

Remark 1. p and q without subscripts denote the number of levels for fator P and Q, while p_i and q_j denote the effect parameter for each level.

Example 1. $(4 \times 4 \text{ Design})$

μ_{jk}			μ_{j} .	p_j	$(pq)_{jk}$					
	4 10									
	14 20	40	50	31	9	-8	-9	6	11	
	14 20	10	20	16	-6	7	6	-9	-4	
	20 30	30	20	25	3	4	7	2	-13	
$\mu_{\cdot k}$	13 20	25	30	22						_
q_k	-9 -2	3	8							

Table 3. 4×4 design data table

2.2 Compare differences between treatments

To compare differences between treatments, we define contrast and interaction contrast:

Definition 1. A contrast for the main effects of factor P is defined as

$$C_P = \sum_{j=1}^p l_j \mu_j.,$$

where l_1, \ldots, l_p are coefficients with $\sum_{j=1}^p l_j = 0$.

Example 2. (Simple Pairwise Comparison)

$$C_P = \mu_1 - \mu_2$$
.

Definition 2. An interaction contrast is defined as:

$$C_{PQ} = \sum_{j=1}^{p} \sum_{k=1}^{q} l_j m_k \mu_{jk},$$

where m_1, \ldots, m_q are also coefficients with $\sum_{k=1}^q m_k = 0$.

Example 3. Test whether the difference between levels of P depends on true level of Q.

$$C_{PQ} = (\mu_{11} - \mu_{12}) - (\mu_{21} - \mu_{22})$$

Interpretation of main and interaction effects:

- 1. **Always start by checking main effects.** Interactions modify these effects and only make sense in that context.
- 2. If interactions are negligible, simplify the interpretation and focus on main effects.
- 3. If 3 or higher order interactions are negligible, but second-order interactions are significant, then we should focus on both main effects and second-order interactions.
- 4. If a two-factor interaction is **very important**, and its **mean square (MS) value is similar to the MS values for main effects**, then the best way to interpret results is by **looking at the mean values for two-factor combinations** rather than just reporting main effects.

5. If ar two-factor interaction is significant, but one or both main effects are much larger than the interaction, then the interpretation should consider main effects first, with adjustments for interaction effects.

2.3 Least-squares estimation for an unreplicated 2×3 design

Consider a two-way factorial design with p=2 and q=3

$$\mu_{jk} = \mu_{..} + p_j + q_k + (p \, q)_{jk}$$

$$\begin{array}{c|ccccc} & 1 & 2 & 3 \\ \hline 1 & y_{11} & y_{12} & y_{13} \\ 2 & y_{21} & y_{22} & y_{23} \end{array}$$

Table 4

$$\mathbf{y} = \begin{pmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{pmatrix} = \mathbf{X}\beta = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 1 & 0 & -1 \\ 1 & -1 & -1 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \mu \dots \\ p_1 \\ q_1 \\ q_2 \\ (p \, q)_{11} \\ (p \, q)_{12} \end{pmatrix} + \epsilon$$

The columns of \mathbf{X} w.r.t. different parameter groups are orthogonal. In this case, the columns with respect to p and columns with respect to q are orthogonal. Also, they are orthogonal to the columns w.r.t. pq. Therefore, $\mathbf{X}^T\mathbf{X}$ appears to be block diagonal:

$$\mathbf{X'X} = \begin{pmatrix} 6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 2 & 4 \end{pmatrix}$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} 1/6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & -1/6 & 0 & 0 \\ 0 & 0 & -1/6 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & -1/6 \\ 0 & 0 & 0 & 0 & -1/6 & 1/3 \end{pmatrix}$$

The least square solution gives

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \begin{pmatrix} y.. \\ y_1. - y.. \\ y._1 - y.. \\ y._2 - y.. \\ y_{11} - y_{1.} - y._1 + y.. \\ y_{12} - y_{1.} - y._2 + y.. \end{pmatrix}.$$

Note that the number of parameter equals to the number of observations, **X** is invertable, $\hat{\beta}$ is the solution to $\mathbf{X}\beta = \mathbf{y}$.

Now we consider an additive model without interactions:

$$\mu_{jk} = \mu_{..} + p_j + q_k,$$

the least square solution gives:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{y} = (y_{..} y_{1.} - y_{..} y_{.1} - y_{..} y_{.2} - y_{..})^T,$$

which align with the solution of the model with interactions. This is due to the orthogonality.

2.4 Experiment with Replication

The model for an experiment with replication can be written as:

$$y_{jkl} = \mu + p_j + q_k + (pq)_{jk} + \epsilon_{jkl}, j = 1, \dots, p; k = 1, \dots, q, l = 1, \dots, r,$$

where ϵ_{jkl} are i.i.d. $\mathcal{N}(0, \sigma^2)$. We can decompose data as:

$$y_{jkl} = \hat{\mu} + \hat{p}_j + \hat{q}_k + \widehat{(p \, q)}_{jk} + \hat{\epsilon}_{jkl}$$

= $y... + (y_j... - y...) + (y_j... - y...) + (y_jk... - y_j... - y_j... + y...) + (y_jkl - y_jk.).$

The sum of squares are defined as:

$$S_{P} = q r \sum_{j} (y_{j..} - y_{...})^{2}$$

$$S_{Q} = p r \sum_{k} (y_{.k.} - y_{...})^{2}$$

$$S_{PQ} = r \sum_{j} \sum_{k} (y_{jk.} - y_{j..} - y_{.k.} + y_{...})^{2}$$

$$S_{R} = \sum_{j} \sum_{k} \sum_{l} (y_{jkl} - y_{jk.})^{2}$$

$$S_{D} = \sum_{j} \sum_{k} \sum_{l} (y_{jkl} - y_{...})^{2}$$

Source	SS	df	MS	Ratio
Factor P	$S_P = 1.03301$	p - 1 = 2	$s_P^2 = 0.51651$	$s_P^2/s_R^2 = 23.22$
Factor Q	$S_B = 0.92121$	q - 1 = 3	$s_Q^2 = 0.30707$	$s_Q^2/s_R^2 = 13.81$
Interaction	$S_{PQ} = 0.25014$	(p-1)(q-1)=6	$s_{PQ}^2 = 0.04169$	$s_{PQ}^2/s_R^2 = 1.87$
Residual	$S_R = 0.80073$	$pq\left(r-1\right) = 36$	$s_R^2 = 0.02224$	
Total	$S_D = 3.00508$	pqr - 1 = 47		

Table 5. ANOVA table for two factors experiments with replications

2.5 Model Checking

- 1. Define the estimated value of μ_{jk} under the full model as $\hat{\mu}_{jk} = y_{jk}$. Let $\tilde{\mu}_{jk} = y_{j..} + y_{.k.} y_{...}$ denote the estimated value of μ_{jk} assuming no inetractions.
- 2. To assess the homogeneity of variance in interactions, create a plot of the residuals $y_{jkl} \hat{\mu}_{jk}$ against the fitted values $\hat{\mu}_{jk}$. A consistent spread of residuals across different values of $\hat{\mu}_{jk}$ suggests homogeneity, while a pattern or funnel shape may indicate variance issues.

3. To detect possible nonadditivity, plot $y_{jk} - \tilde{\mu}_{jk}$ against $\tilde{\mu}_{jk}$. If the plot exhibits a curvilinear pattern, this suggests the presence of transformable nonadditivity, meaning that a transformation of the response variable may be necessary for a better model fit.

Figure 1. Model checking plots suggesting heteroscedasticity and non-additivity

2.6 Transformations

2.6.1 Taylor Power Transformation

Consider heterogeneous data $\operatorname{Var}(y_{jkl}) = \sigma_{jk}^2$ and assume that $\sigma_{jk}^2 \propto \mu_{jk}^\beta$ for some β . We can use **Taylor power transformation** to deal with the heteroscedasticity (Assume $y_{jk} > 0$).

- 1. Calculate the sample mean y_{jk} and sample standard deviation s_{jk} for each (j,k) cell.
- 2. Fit a linear regression on $\log s_{jk} \sim \log y_{jk}$.
- 3. The fitted slope $\hat{\beta}$ is an estimate of β .
- 4. Use the transformation $(y^{\lambda}-1)/\lambda$ with $\lambda := 1-\hat{\beta}$.
- 5. If $\lambda = 0$, apply the log transformation $y_{jkl}^* = \log(y_{jkl})$.

Remark 2. Simple power transformation uses y^{λ} , which doesn't smoothly transit to $\log y$ as $\lambda \to 0$.

Justification for the method:

Define

$$z = f_{\lambda}(y) = \begin{cases} (y^{\lambda} - 1)/\lambda, & \lambda \neq 0 \\ \log y, & \lambda = 0 \end{cases}$$
 (2)

By Taylor expansion:

$$z_{jkl} = f_{\lambda}(y_{jkl}) \approx f_{\lambda}(\mu_{jk}) + f_{\lambda}'(\mu_{jk}) (y_{jkl} - \mu_{jk}).$$

Since $f'(y) = y^{\lambda - 1}$,

$$\operatorname{Var}(z_{jkl}) \approx (f_{\lambda}'(\mu_{jk}))^{2} \operatorname{Var}(y_{jkl})$$

$$= \mu_{jk}^{2(\lambda-1)} \sigma_{jk}^{2}$$

$$\propto \mu_{jk}^{2(\lambda-1)} \mu_{jk}^{2\beta}$$

$$= \mu_{jk}^{2(\lambda-1+\beta)},$$

and $Var(z_{jkl})$ becomes a constant if $\lambda = 1 - \beta$.

Figure 2. Power transformations

2.6.2 Box-Cox Transformation

Assumptions: There exists a λ such that $\{f_{\lambda}(y_i)\}_{i=1}^n$:

- are mutually independent
- are normally distributed
- have constant variance
- satisfy a linear model $f_{\lambda}(\mathbf{y}) = \mathbf{X}\beta + \epsilon$

2.6.3 Maximum Likelihood Estimation of Box-Cox λ

Assume $\mathbf{y}^{(\lambda)} = f_{\lambda}(\mathbf{y}) = \mathbf{X}\beta + \mathbf{\epsilon}$ where f_{λ} is defined in (2) with $\mathbf{\epsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ for some λ . Then the likelihood function for the untransformed data follows:

$$L(\lambda,\beta,\sigma) = \frac{1}{(2\,\pi\,\sigma^2)^{n/2}} \exp\left\{-\frac{(\mathbf{y}^{(\lambda)} - \mathbf{X}\boldsymbol{\beta})^T\,(\mathbf{y}^{(\lambda)} - \mathbf{X}\boldsymbol{\beta})}{2\,\sigma^2}\right\} J(\lambda,\mathbf{y})$$

with Jacobian

$$J(\lambda, y) = \prod_{i=1}^{n} y_i^{\lambda - 1}$$

We first find the LSEs of β and σ_{λ} for fixed λ :

$$\hat{\beta}_{\lambda} = (X^T X)^{-1} X^T \mathbf{y}^{(\lambda)}, \quad \hat{\sigma}_{\lambda} = \frac{(\mathbf{y}^{(\lambda)} - \mathbf{X} \hat{\boldsymbol{\beta}}_{\lambda})^T (\mathbf{y}^{(\lambda)} - \mathbf{X} \hat{\boldsymbol{\beta}}_{\lambda})}{n - p - 1},$$

then we have

$$\begin{split} \ell(\lambda, \hat{\beta}_{\lambda}, \hat{\sigma}_{\lambda}) = & \frac{\exp\left(-(n-p-1)/2\right)}{(2\pi)^{n/2} \hat{\sigma}_{\lambda}^{n}} J(\lambda, \mathbf{y}) \\ = & \hat{\sigma}_{\lambda}^{-n} \prod_{i=1}^{n} y_{i}^{\lambda-1} \frac{\exp\left(-(n-p-1)/2\right)}{(2\pi)^{n/2}} \end{split}$$

Let $\ell(\lambda) = \log L(\lambda, \hat{\beta}_{\lambda}, \hat{\sigma}_{\lambda})$, and find the MLE $\hat{\lambda}$ that maximizes $\ell(\lambda)$.

The **confidence interval** follows from the standard result that the log-likelihood ratio statistic follows a chi-square distribution with 1 degree of freedom

$$2(\ell(\hat{\lambda}) - \ell(\lambda)) \sim \chi_1^2$$
.

Then the confidence interval is the root for $\ell(\lambda) = \ell(\hat{\lambda}) - 0.5\chi_{1.\alpha}^2$.

Remark 3. The boxcox function in MASS library gives the MLE of λ .

```
library(MASS)
bc <- boxcox(y ~ p+q)
title(paste("Without interaction, lambda =",round(bc$x[which.max(bc$y)],2)))
bc <- boxcox(y ~ p*q)
title(paste("With interaction, lambda =",round(bc$x[which.max(bc$y)],2)))</pre>
```


Figure 3. Likelihood of Box-Cox Transformation

Example 4. For the Poison data, we present the ANOVA table after the two transformations.

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	P-value
Poison	2	34.877	17.4386	70.6302	5.17e - 13
Treatment	3	20.414	6.8048	27.5610	$2.48e{-09}$
Interaction	6	1.571	0.2618	1.0603	0.4046
Residuals	35	8.643	0.2469		
Poison	2	11.926	5.9631	66.5525	$1.18e{-12}$
Treatment	3	7.158	2.3860	26.6295	3.76e - 09
Interaction	6	0.486	0.0810	0.9040	0.5032
Residuals	35	3.136	0.0896		

Table 6. ANOVA table after simple Taylor power transformation $(y^{(\lambda)} = y^{\lambda})$ with $\lambda = -1$ (above) and Box-Cox transformation (below).

Remark 4. The residual Df is reduced by 1 to compensate for the estimation of λ .

2.7 Confidence Intervals

2.7.1 When interactions are not significant

Let $u_j = \mu + p_j$ and $v_k = \mu + q_k$. Let the unbiased estimators be $\hat{u}_j = y_j$.. and $\hat{v}_k = y_{\cdot k}$. with $\operatorname{Var}(\hat{u}_j) = \sigma^2/(pr)$, $\operatorname{Var}(\hat{v}_j) = \sigma^2/(qr)$. The sample standard deviation is

$$s(\hat{u}_j) = S_R / \sqrt{pr}, s(\hat{v}_k) = S_R / \sqrt{qr}.$$

Then $100(1-\alpha)\%$ confidence interval for u_j is $\hat{u}_j \pm t_{\nu_R;\alpha/2} \times \text{se}(\hat{u}_j)$, where $\nu_R = pq(r-1)$ is the degree of freedom for S_R .

For simultaneous confidence intervals, we define the contrast of interest be

$$L = \sum_{j=1}^{p} c_j u_j$$
, where $\sum_{j=1}^{p} c_j = 0$

with its estinator

$$\hat{L} = \sum_{j=1}^{p} c_j y_j$$
.. with $s(\hat{L}) = S_R \sqrt{(qr)^{-1} \sum_{j=1}^{p} c_j^2}$

Then a $100(1-\alpha)\%$ simultaneous confidence interval for L takes the form:

$$\hat{L} \pm Ts(\hat{L})$$
.

where T is a multiplier that depends on the type of the inference method used.

1. Tukey's Method (Pairwise Comparisons): Tukey's method is designed for simultaneous confidence intervals when comparing all possible pairwise differences between group means. The multiplier is:

$$T = \frac{q(p, \nu_R; \alpha)}{\sqrt{2}}$$

where $q(p, \nu_R; \alpha)$ is the studentized range statistic for p groups and residual degrees of freedom ν_R .

When comparing all pairs, each pairwise difference is a contrast (with coefficients $c_j = 1$ for one group and $c_j = -1$ for the other, and 0 elsewhere). Each interval is given by:

CI for
$$(u_j - u_k)$$
: $(y_{j..} - y_k) \pm \frac{q(p, \nu_R; \alpha)}{\sqrt{2}} s_R \sqrt{\frac{1^2 + (-1)^2}{q r}}$

Here, the multiplier $\frac{q(p,\nu_R;\alpha)}{\sqrt{2}}$ is applied to each pairwise contrast.

2. Scheffé's Method (All Contrasts): Scheffés method is more conservative and applies to all possible contrasts, not just pairwise comparisons. The multiplier is:

$$T = \sqrt{(p-1) F_{(p-1),\nu_R;\alpha}}$$

where $F_{(p-1),\nu_R;\alpha}$ is the critical value from the F-distribution with p-1 and ν_R degrees of freedom.

For any contrast $L = \sum_{j} c_{j} u_{j}$, the simultaneous confidence interval is:

$$\hat{L} \pm \sqrt{(p-1) F_{(p-1),\nu_R;\alpha}} S_R \sqrt{\frac{1}{q r} \sum_j c_j^2}$$

This interval applies to every possible contrast you might form.

3. **Bonferroni's Method (For** *g* **Comparisons):** The Bonferroni method controls the familywise error rate by adjusting the significance level for multiple comparisons. For any set of *g* comparisons, the multiplier is:

$$T = t_{\nu_B;\alpha/(2q)}$$

where $t_{\nu_R;\alpha/(2g)}$ is the t-distribution critical value with residual degrees of freedom ν_R and a Bonferroni-adjusted significance level of $\alpha/(2g)$.

If you have a specific set of g comparisons (contrasts) you plan to test, each interval is:

$$\hat{L} \pm t_{\nu_R;\alpha/(2g)} S_R \sqrt{\frac{1}{q r} \sum_j c_j^2}.$$

Each of the g contrasts gets its own interval, with the critical value adjusted by dividing α by 2 g.

2.7.2 When interactions are significant

In this case, each combination of factor levels has its own mean:

$$\mu_{jk} = \mu + p_j + q_k + (pq)_{jk}$$

If we are interested in comparing the means of two specific treatment combinations, say $\mu_{j_1k_1}$ and $\mu_{j_2k_2}$, we are comparing two of the pq treatments.

1. Tukey's Method: for all possible pairs of treatment means,

$$(\hat{\mu}_{j_1k_1} - \hat{\mu}_{j_2k_2}) \pm \frac{q(p\,q,\nu_R;\alpha)}{\sqrt{2}} S_R \sqrt{\frac{2}{r}}$$

where $q(pq, \nu_R; \alpha)$ is the quantile of the studentized range statistic for pq treatments and ν_R is the residual degrees of freedom.

2. Bonferroni's Method: for g pairs of comprisons,

$$(\hat{\mu}_{j_1k_1} - \hat{\mu}_{j_2k_2}) \pm t_{\nu_R;\alpha/(2g)} s_R \sqrt{\frac{2}{r}},$$

where $t_{\nu_R;\alpha/(2g)}$ is the quantile from t-distirbution.

3. Scheffé's Method for General Contrasts: the contrast takes the form:

$$L = \sum_{j=1}^{p} \sum_{k=1}^{q} c_{jk} \mu_{jk}$$
, with $\sum_{j,k} c_{jk} = 0$

The confidence interval for the contrast L is given by:

$$\hat{L} \pm \sqrt{(p\,q-1)\,F_{(p\,q-1),\nu_R;\alpha}}\,s(\hat{L})$$

where:

- $\bullet \quad \hat{L} = \sum_{j,k} c_{jk} \hat{\mu}_{jk},$
- $s(\hat{L}) = s_R \sqrt{\sum_{j,k} \frac{c_{jk}^2}{r}}$ (assuming balanced replication),
- $F_{(pq-1),\nu_R;\alpha}$ ris the critical value from the F-distribution with pq-1 and ν_R degrees of freedom.

2.8 Two-way Factorial with Blocks