1 Algorytm mrówkowy

Algorytm mrówkowy jest probabilistyczną techniką poszukiwania optymalnego rozwiązania w oparciu o obserwowane zachowania żywych kolonii mrówek. Mrówki, znajdując pożywienie oznaczają drogę do niego feromonem, dzięki któremu inne mrówki mogą w to miejsce trafić. Mrówki, które wybiorą krótszą ścieżkę dojścia do pożywienia, w oczywisty sposób szybciej oznakują i nasycą swoją drogę feromonem, który wpływa na wybór ścieżki dla pozostałych. Feromony z czasem parują i na długich i rzadko wykorzystywanych ścieżkach zanikają, a mrówki korzystają z najkrótszej znanej ścieżki prowadzącej je do pożywienia.

1.1 Dyskretyzacja

W dyskretnym przypadku przestrzenią poszukiwań jest przestrzeń wszystkich możliwych permutacji zbioru n-elementowego. Różnice między permutacjami określa nam całkowity koszt przydziału, czyli rozwiązanie, jakie daje nam dana permutacja.

1.2 Oznaczenia

- $A = a_{ij}$ macierz odległości (kosztów)
- $B = b_{ij}$ macierz przepływu
- n liczba mrówek
- α współczynnik wpływu feromonów
- β współczynnik wpływu odległości
- ρ współczynnik parowania feromonów
- q ilość pozostawianego przez każdą mrówkę feromonu na ścieżce
- q_0 ilość feromonu, powyżej której mrówki zaczynają zachowywać się zachłannie
- \bullet t_0 początkowa wartość feromonu na każdej ścieżce
- Q licznik we współczynniku odległości, zazwyczaj równy 1

- $T = (\tau_{ij})$ macierz feromonów
- $\eta = \frac{Q}{a_{ij}}$ heurystyczny współczynnik odległości

1.3 Ogólny szkic algorytmu

- 1. Inicjalizacja
 - Każda mrówka otrzymuje losową permutację
 - \bullet Inicializowana jest macierz feromonów wartością t_0
- 2. Poszukiwanie rozwiązań
 - Każda mrówka rozpoczyna od losowego węzła
 - Każda mrówka wybiera kolejny węzeł zgodnie z odpowiednim prawdopodobieństwem
- 3. Sprawdzanie znalezionych rozwiązań i ustalanie najlepszego
- 4. Aktualizacja śladu feromonowego dla najlepszej mrówki w danej iteracji

1.4 Inicjalizacja

Na początku działania algorytmu inicjalizowana jest tablica, w której mrówki będą przechowywać swoje permutacje. Każda mrówka jest inicjalizowana losową permutacją, która jest zapisywana w odpowiednie miejsca tablicy. Ponadto macierz feromonowa τ_{ij} jest ustawiana w całości na początkową wartość feromonów t_0 .

1.5 Poszukiwanie rozwiązań

Na tym etapie wykonujemy zdefiniowaną na początku ilość iteracji. Na każdą iterację algorytmu składa się:

- Sprawdzenie każdej mrówki pod kątem najlepszego rozwiązania
- Aktualizacja najlepszego rozwiązania
- Aktualizacja feromonów dla ścieżki najlepszej mrówki w danej iteracji
- Sprawdzenie, czy ilość feromonów jest wystarczająca, aby mrówki zachowywały się zachłannie

- Poszukiwanie, począwszy od losowego węzła rozwiązania kolejno przez każdą mrówkę
- $\bullet\,$ Wybór kolejnego węzła odbywa się według prawdopodobieństwa p_{ij}^k

1.6 Prawdopodobieństwo wyboru węzła

Kolejny węzeł każda mrówka wybiera według prawdopodobieństwa

$$p_{ij}^{k}(t) = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}{\sum_{n=1}^{k} [\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}$$
(1)

Jeżeli wartość feromonów przekroczy pewien ustalony poziom, wówczas mrówki zaczynają zachowywać się zachłannie i kolejne węzły są wybierane według prawdopodobieństwa

$$p_{ij}^k(t) = [\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta} \tag{2}$$

1.7 Aktualizacja feromonów

W każdej iteracji feromony aktualizowane są według wzoru

$$\tau_{ij}(t+1) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}. \tag{3}$$

gdzie

$$\Delta \tau_{ij} = \begin{cases} q, \text{ jeśli i jest przypisane do j w najlepszej mrówce} \\ 0 \text{ w przeciwnym wypadku} \end{cases}$$

czyli najpierw następuje parowanie (mnożenie całej macierzy przez współczynnik $(1-\rho)$), a następnie dodawanie feromonu na odpowiedniej najlepszej ścieżce, jaką udało się znaleźć w aktualnej iteracji.

1.8 Parametry algorytmu ustalane w programie

W aplikacji na zakładce "Algorytm mrówkowy" znajdują się następujące możliwe do ustalenia parametry działania algorytmu:

- Liczba iteracji
- Liczba mrówek
- Raportowanie co ile iteracji co ile iteracji aktualny wynik ma się pojawiać na wykresie
- Współczynnik do feromonów współczynnik wpływu feromonów na prawdopodobieństwo wyboru drogi parametr α we wzorze (1)

- Współczynnik do odległości współczynnik wpływu odległości na prawdopodobieństwo wyboru drogi parametr β we wzorze (1)
- Współczynnik parowania feromonów współczynnik ρ we wzorze (3)
 z zakresu od 0 (brak parowania) do 1 (całkowite parowanie)
- Ilość pozostawionego feromonu ilość feromonu, który zostawia po każdej iteracji mrówka, która znalazła najlepsze w danej iteracji rozwiązanie
- Ilość feromonu powyżej którego mrówki zachowują się zachłannie ilość feromonu na ścieżkach, która powoduje, że mrówki wybierają kolejne węzły z prawdopodobieństwem (2)
- Początkowa wartość feromonu wartość, jaką jest inicjalizowana macierz feromonów τ_{ij}
- \bullet Licznik we współczynniku odległości licznik Q we współczynniku η

1.9 Testy algorytmu

Poniżej przedstawiono kilka przykładowych wywołań algorytmu dla różnych przykładowych danych.

Rysunek 1: Plik bur
26a.dat - pierwszy zestaw parametrów (wynik optymalny: 5426670)

Rysunek 2: Plik bur26a.dat - drugi zestaw parametrów (wynik optymalny: 5426670)

Rysunek 3: Plik els
19.dat - pierwszy zestaw parametrów (wynik optymalny: 17212548)

Rysunek 4: Plik els
19.dat - drugi zestaw parametrów (wynik optymalny: 17212548)

Rysunek 5: Plik esc16a.dat - pierwszy zestaw parametrów (wynik optymalny: 68)

Rysunek 6: Plik esc16a.dat - drugi zestaw parametrów (wynik optymalny: 68)