5-V Low-Drop Voltage Regulator

TLE 4260

Features

- Low-drop voltage
- Very low quiescent current
- Low starting current consumption
- Integrated temperature protection
- Protection against reverse polarity
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Suited for automotive electronics
- Wide temperature range
- EMC proofed (100 V/m)

	Туре	ype Ordering Code			
\blacksquare	TLE 4260	Q67000-A8187	P-TO220-5-1		
lacktriangle	TLE 4260 S	Q67000-A9044	P-TO220-5-2		

Functional Description

TLE 4260; S is a 5-V low-drop fixed-voltage regulator in a P-TO220-5-H/S package. The maximum input voltage is 42 V (65 V/≤ 400 ms). The device can produce an output current of more than 500 mA. It is shortcircuit-proof and incorporates temperature protection that disables the circuit at unpermissibly high temperatures.

Due to the wide temperature range of $-40\,$ to 150 °C, the TLE 4260; S is also suitable for use in automotive applications.

The IC regulates an input voltage $V_{\rm I}$ in the range 6 < $V_{\rm I}$ < 35 V to $V_{\rm Qnominal}$ = 5.0 V. A reset signal is generated for an output voltage of $V_{\rm Q}$ < 4.75 V. The reset delay can be set externally with a capacitor. If the output current is reduced below 10 mA, the regulator switches internally to standby and the reset generator is turned off. The standby current drops to max. 700 μ A.

Pin Configuration

(top view)

Pin Definitions and Functions (TLE 4260 and TLE 4260 S)

Pin No.	Symbol	Function
1	V_{I}	Input; block directly to ground at the IC by a 470-nF capacitor
2	QVRES	Reset output; open collector output controlled by the reset delay
3	GND	Ground
4	DRES	Reset delay; wired to ground with a capacitor
5	V_{Q}	5-V output voltage ; block to ground with a 22-μF capacitor

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage goes below 96% of its typical value, an external capacitor is discharged on pin 4 by the reset generator. If the voltage on the capacitor reaches the lower threshold $V_{\rm ST}$, a reset signal is issued on pin 2 and not cancelled again until the upper threshold $V_{\rm DT}$ is exceeded. For an output current of less than $I_{\rm QN~Off}=10$ mA the standby changeover turns off the reset generator. The latter is turned on again when the output current increases, the output voltage drops below 4.2 V or the delay capacitor is discharged by external measures.

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Block Diagram

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Input (Pin 1)					
Input voltage	V_{l}	- 42	42	V	_
	V_{I}	_	65	V	<i>t</i> ≤ 400 ms
Input current	I_{I}	_	1.6	Α	_
Voltage	V_{R}	- 0.3	42	V	_
Voltage	V_{R}	- 0.3	42	V	_
Current	I_{R}	_	_	_	internally limited
Ground (Pin 3)					
Current	I_{GND}	- 0.5	_	А	_
Current Reset Delay (Pin 4)	I_{GND}	- 0.5	_	А	_
	I_{GND}	- 0.5	42	A V	_

Output (Pin 5)

Differential voltage	$V_{I} - V_{Q}$	- 5.25	V_{I}	V	_
Current	I_{Q}	_	1.4	Α	_

Temperature

Junction temperature	$T_{\rm j}$	_	32	°C	_
Storage temperature	$T_{ m stg}$	- 50	150	°C	_

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input voltage	V_{I}	_	32	V	1)
Junction temperature	T_{j}	- 40	165	°C	_

Thermal Resistances

Junction ambient	R_{thja}	_	65	K/W	_
Junction case	R_{thjc}	_	3	K/W	_

¹⁾ See diagram "Output Current versus Input Voltage"

Characteristics

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; (unless otherwise specified)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Normal Operation

Output voltage	V_{Q}	4.75	5.0	5.25	V	25 mA $\leq I_{Q} \leq$ 500 mA 6 V $\leq V_{I} \leq$ 28 V
Short -circuit current	$I_{ m SC}$	500	1000	_	mA	$-40 \text{ °C} \le T_j \le 125 \text{ °C}$ $V_1 = 17 \text{ V to } 28 \text{ V};$ $V_Q = 0 \text{ V}$
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	8.5	10	mA ¹⁾	$6 \text{ V} \le V_{\text{I}} \le 28 \text{ V}$ $I_{\text{Q}} = 150 \text{ mA}$
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	50	65	mA ¹⁾	$6 \text{ V} \le V_{\text{I}} \le 28 \text{ V}$ $I_{\text{Q}} = 500 \text{ mA}$
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	_	80	mA ¹⁾	$V_{\rm I} \le 6 \text{ V}$ $I_{\rm Q} = 500 \text{ mA}$
Drop voltage	V_{DR}	_	0.35	0.5	V	$V_{\rm I}$ = 4.5 V; $I_{\rm Q}$ = 0.5 A
Drop voltage	V_{DR}	_	0.2	0.3	V	$V_{\rm I}$ = 4.5 V; $I_{\rm Q}$ = 0.15 A
Load regulation	ΔV_{Q}	_	15	35	mV	$25 \text{ mA} \leq I_{\text{Q}} \leq 500 \text{ mA}$
Supply-voltage regulation	ΔV_{Q}	_	15	50	mV	$V_{\rm I} \le 6 \text{ V to } 28 \text{ V};$ $I_{\rm Q} = 100 \text{ mA}$
Supply-voltage regulation	ΔV_{Q}	_	5	25	mV	$V_{\rm I} \le 6 \text{ V to } 16 \text{ V};$ $I_{\rm Q} = 100 \text{ mA}$
Ripple rejection	SVR	_	54	_	dB	f = 100 Hz; $V_{\rm r}$ = 0.5 V _{pp}
Temperature drift of output voltage ¹⁾	α_{VQ}	_	2 × 10 ⁻⁴	_	1/°C	_

Standby Operation

Quiscent current; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	500	700	•	10 V $\leq V_{\rm I} \leq$ 16 V; $I_{\rm Q}$ = 0 mA
Quiscent current; $I_{q} = I_{l} - I_{Q}$	I_{q}	ı	750	850	•	10 V $\leq V_{\rm I} \leq$ 16 V; $I_{\rm Q} = 5 {\rm mA}$

Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; (unless otherwise specified)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Standby Off/Normal On

Current consumption	I_{qSOFF}	_	1.0	1.2	mA	see test diagram
Current consumption	I_{qNON}	_	1.7	2.2	mA	see test diagram

Normal Off/Standby On

Current consumption	I_{qNOFF}	_	1.55	2.00	mA	see test diagram
Current consumption	I_{qSON}	_	850	1050	μΑ	see test diagram
Switching threshold	I_{QNOFF}	7.5	10	12.5	mA	see test diagram
Switching hysteresis	ΔI_{Q}	2.25	3	4	mA	see test diagram

Reset Generator

Switching threshold	V_{RT}	94	96	97	%	in % of $V_{\rm O}$;
J	KI					$I_{\rm Q} > 500 {\rm mA}; V_{\rm I} = 6 {\rm V}$
Saturation voltage	V_{R}	_	0.25	0.40	V	$I_{\rm R}$ = 3 mA; $V_{\rm I}$ = 4.5 V
Reverse current	I_{R}	_	_	1	μΑ	V_{R} = 5 V
Charge current	I_{D}	7	10	13	μΑ	_
Switching threshold	V_{ST}	0.9	1.1	1.3	V	_
Delay switching threshold	V_{DT}	2.15	2.50	2.75	V	_
Delay time	t_{D}	_	25	_	ms	$C_{\rm D}$ = 100 nF
Delay time	t_{t}	_	5	_	μs	$C_{\rm D}$ = 100 nF

General Data

Turn-Off voltage	V_{IOFF}	40	43	45	V	I _Q < 1 mA
Turn-Off hysteresis	ΔV_{l}	_	3.0	_	V	_
Leakage current	I_{QS}	_	500	_	μΑ	$V_{\rm Q} = 0 \text{ V}; \ V_{\rm I} = 45 \text{ V}$
Reverse output current	I_{QR}	_	_	1.5	mA	$V_{\rm Q}$ = 5 V; $V_{\rm I}$ = open

¹⁾ See diagram

Application Circuit

Test Circuit

Time Responce

Time Responce in Standby Condition

Standby/Normal Changeover

Output Voltage versus Temperature

Drop Voltage versus Output Current

Current Consumption versus Output Current

Current Consumption versus Input Voltage

Output Voltage versus Input Voltage

Output Current versus Input Voltage

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm