Intrinsic Finite Element Methods over Manifolds

Martin Licht Michael Holst Department of Mathematics University of California, San Diego

The Poisson Problem Strong and Weak Formulation

(i) Consider the Poisson Problem over a domain Ω :

$$-\nabla \cdot \nabla u = f$$
, $u_{|\Gamma_D} = 0$, $\vec{n} \cdot \nabla u_{|\Gamma_N} = 0$.

For $f \in L^2(\Omega)$ we seek u in

$$\{u \in H^1(\Omega) \mid \nabla u \in H(\mathsf{div})\}$$

(ii) This is equivalent to seeking $u \in H^1_D(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \quad v \in H_D^1(\Omega).$$

In other words, the divergence is applied merely in the sense of distributions.

The Poisson Problem Boundary Conditions

(i) We may impose inhomogeneous boundary conditions:

$$u_{|\Gamma_D} = g, \quad \vec{n} \cdot \nabla u_{|\Gamma_N} = h.$$

(ii) Let u_g satisfy tr $u_g = g$ along Γ_D . We then seek $u_0 \in H^1_D(\Omega)$ such that for all $v \in H^1_D(\Omega)$ we have

$$\int_{\Omega} \nabla u \cdot \nabla v \; \mathrm{d}x = \int_{\Omega} f v - \nabla u_{\mathsf{g}} \cdot \nabla v \; \mathrm{d}x + \int_{\partial \Omega} h \vec{n} \cdot \nabla v \; \mathrm{d}s.$$

(iii) Hence it makes sense to assume that the right-hand side is a linear functional over $H_D^1(\Omega)$, say,

$$F(v) = \int_{\Omega} fv - \nabla u_{g} \cdot \nabla v \, dx + \int_{\partial \Omega} h \vec{n} \cdot \nabla v \, ds.$$

- (i) Let $A: \Omega \to \mathbb{R}^{n \times n}$ be a symmetric matrix field with eigenvalues uniformly bounded above and below.
- (ii) We may generally consider the Poisson Problem with diffusion tensor: Find $u_0 \in H^1_D(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot A \nabla v \, dx = F(v), \quad v \in H_D^1(\Omega).$$

(iii) Wellposedness follows (again) by functional analysis.

The Poisson Problem Galerkin Approximation

(i) Original Problem:

Find $u_0 \in H^1_D(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot A \nabla v \, dx = F(v), \quad v \in H_D^1(\Omega).$$

(ii) Galerkin Formulation:

Let $V_h \subseteq H^1_D(\Omega)$ be a closed subspace.

Find $u_h \in V_h$ such that

$$\int_{\Omega} \nabla u_h \cdot A \nabla v_h \, \mathrm{d}x = F(v_h), \quad v_h \in V_h.$$

(iii) Quasi-optimal approximation:

$$||u - u_h||_{H^1(\Omega)} \le C \inf_{v \in V_c} ||u - v||_{H^1(\Omega)}.$$

The Poisson Problem Finite Element Method

Let \mathcal{T}_h be a triangulation of the domain and

$$\begin{split} \mathcal{P}_{r,DC}(\mathcal{T}_h) := \left\{ v \in L^2(\Omega) \mid v_{\mid T} \in \mathcal{P}_r(T), T \in \mathcal{T}_h \right\}, \\ \mathcal{P}_{r,0}(\mathcal{T}_h) := H^1_D(\Omega) \cap \mathcal{P}_{r,DC}(\mathcal{T}_h). \end{split}$$

The finite element method is the Galerkin method with

$$V_h = \mathcal{P}_{r,0}(\mathcal{T}_h).$$

Best approximation, concretized: if $u \in H^s(\Omega)$ with $s \ge 1$, then

$$||u-u_h||_{H^1(\Omega)} \le C \inf_{v \in V_h} ||u-v||_{H^1(\Omega)} \le C \sum_{T \in T_h} h_T^{s-1} ||u||_{H^s(T)}.$$

- ► The finite element method uses a triangulation to define the approximation space.
- ► Triangulations can be found only for domains with flat boundary.
- ► How to extend FEM to domains with curved boundaries?
- More generally, how to extend FEM to manifolds?

Coordinate Transformation Physical and Parametric Domain

- (i) Let Ω be the **physical** domain.
- (ii) Let $\widetilde{\Omega}$ be the (polyhedral) **parametric** domain.
- (iii) Suppose we have a homeomorphism

$$\Phi:\widetilde{\Omega}\to\Omega$$

such that Φ and Φ^{-1} feature regularity $W^{1,\infty}$.

(iv) In particular, their Jacobians are essentially bounded. Restriction of Φ to any cell is a diffeomorphism in practice.

Coordinate Transformation Physical and Parametric PDE

(i) **Physical Poisson Problem:** Find $u_0 \in H_D^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot A \nabla v \, dx = F(v), \quad v \in H^1_D(\Omega).$$

(ii) Parametric Poisson Problem: Find $\widetilde{u}_0 \in H^1_D(\widetilde{\Omega})$ such that

$$\int_{\widetilde{\Omega}} \nabla \widetilde{u} \cdot \widetilde{A} \nabla \widetilde{v} \, d\widetilde{x} = \widetilde{F}(\widetilde{v}), \quad \widetilde{v} \in H_D^1(\widetilde{\Omega}),$$

where we use

$$\widetilde{F}(\widetilde{v}) = F(\widetilde{v} \circ \Phi^{-1}),$$
 $\widetilde{A} = |\det D \Phi|(D \Phi^{-t} \circ \Phi)(A \circ \Phi)(D \Phi^{-1} \circ \Phi).$

(iii) The solutions are related by $u = \widetilde{u} \circ \Phi^{-1}$.

Coordinate Transformation Parametric FEM

(i) Find $\widetilde{u}_h \in \mathcal{P}_{r,0}(\mathcal{T})$ such that

$$\int_{\widetilde{\Omega}} \nabla \widetilde{u}_h \cdot \widetilde{A} \nabla \widetilde{v}_h \; \mathrm{d}\widetilde{x} = \widetilde{F}(\widetilde{v}_h), \quad v_h \in \mathcal{P}_{r,0}(\mathcal{T}).$$

We approximate the physical solution by $u_h = \widetilde{u}_h \circ \Phi^{-1}$.

(ii) Quasi-optimal error estimate:

$$||u-u_h||_{H^1(\Omega)} \le C \inf_{v_h \in \mathcal{P}_{r,0}(\mathcal{T})} ||u-v_h||_{H^1(\Omega)} + Consistency$$

- (iii) **Problem:** We generally have no noteworthy global regularity of \widetilde{u} . Standard approximation estimates do not apply.
- (iv) **Solution:** For reasonable choices of the coordinate transformation, we have piecewise regularity over each cell $T \in \mathcal{T}_h$. Generalized approximation results exploit this.

Coordinate Transformation Context of approximation result

Let $\widetilde{u} \in H^1(\widetilde{\Omega})$.

Easy inequality:

$$\inf_{\mathbf{v}_h \in \mathcal{P}_{\mathbf{r},DC}(\mathcal{T})} \|\widetilde{\mathbf{u}} - \mathbf{v}_h\|_{H^1(\widetilde{\Omega})} \le \inf_{\mathbf{v}_h \in \mathcal{P}_{\mathbf{r},DC}(\mathcal{T})} \|\widetilde{\mathbf{u}} - \mathbf{v}_h\|_{H^1(\widetilde{\Omega})}. \tag{1}$$

Very recent inequality:

$$\inf_{v_h \in \mathcal{P}_{r,0}(\mathcal{T})} \|\widetilde{u} - v_h\|_{H^1(\widetilde{\Omega})} \le C \inf_{v_h \in \mathcal{P}_{r,DC}(\mathcal{T})} \|\widetilde{u} - v_h\|_{H^1(\widetilde{\Omega})}.$$
 (2)

Let $\widetilde{u} = u \circ \Phi$ be the solution of the parametric problem. Then

$$u_{|\Phi(T)} \in H^s(\Omega) \implies \widetilde{u}_{|T} \in H^s(\Omega).$$

Conclusion: despite the lack of global regularity, we get optimal convergence rates thanks to piecewise regularity and (2).

Coordinate Transformation An approximation result

A very recent result:

Theorem

Let $\widetilde{u} \in H^1(\widetilde{\Omega})$ and $s \ge 1$ with $\widetilde{u}_{|T} \in H^s(T)$ for each $T \in \mathcal{T}$. Then

$$\inf_{v_h \in \mathcal{P}_{r,0}(\mathcal{T})} \|\widetilde{u} - v_h\|_{H^1(\widetilde{\Omega})} \leq C \sum_{T \in \mathcal{T}_h} h_T^{s-1} \|\widetilde{u}\|_{H^s(T)}.$$

- A. Veeser, Approximating Gradients with Continuous Piecewise Polynomial Functions.
- F. Camacho and A. Demlow, L_2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces.

Areas of Applications

- (i) **Domains:** alternative to isoparametric FEM
- (ii) Surface FEM: see contribution by Camacho and Demlow.
- (iii) NE-FEM: Nurbs-enhanced finite element methods.
 - R. Sevilla, S. Fernández-Méndez, and A. Huerta, NURBS-Enhanced Finite Element Method (NEFEM).
- (iv) Parametric FEM:
 - P. Zulian, T. Schneider, K. Hormann, and R. Krause, Parametric finite elements with bijective mappings.
- (v) Instrinsic FEM over Manifolds

Extension to Vector-Valued FEM

Goal: numerically solve the Hodge-Laplace equation over manifolds with intrinsic description.

Theorem

Let $\widetilde{u} \in H^s \Lambda^k(\widetilde{\Omega})$ and $s \ge 1$ with $\widetilde{u}_{|T} \in H^s(T)$ for each $T \in \mathcal{T}$. Then

$$\inf_{v_h \in \mathcal{P}_{r,0} \Lambda^k(\mathcal{T})} \|\widetilde{u} - v_h\|_{H^1 \Lambda^k(\widetilde{\Omega})} \leq C \sum_{T \in \mathcal{T}_h} h_T^{s-1} \|\widetilde{u}\|_{H^s \Lambda^k(T)}.$$

The proof involves a Scott-Zhang-type interpolant for differential forms. *Ongoing work with E. Gawlik and M. Holst.*

Summary

- (i) Best approximation error estimates with optimal convergence rates.
- (ii) Consistency terms estimated by Strang's lemma and polynomial approximation estimates.
- (iii) Trade-off: simple geometry for non-simple coefficients.

Thank you for your attention!

Remarks? Questions?