GraphR: Accelerating Graph Processing Using ReRAM

<u>Linghao Song</u>*, Youwei Zhuo[#], Xuehai Qian[#], Hai Li*, Yiran Chen*

*Duke University #University of Southern California

CEI cei.pratt.duke.edu

ALCHEM alchem.usc.edu

Graph Processing

- To understand relationships in a group of nodes
- A wide range of application domains
 - —Bioinformatics, Social Networks, Cyber Security, Data Mining...
- Classic algorithms:
 - —Sparse Matrix Vector Multiplication (SpMV)
 - —Single Source Shortest Path (SSSP)
 - —Page Rank

The Need for Graph Processing Accelerators

- Graph processing algorithms:
 - Generate random access
 - Require high memory bandwidth
- Good target for hardware acceleration
 - Tesseract (ISCA'15): HMC+Inorder-Cores
 - Graphicionado (MICRO'16): dedicated memory accessing module
 - Energy Efficient Architecture for Graph (**ISCA'16**): asynchronous execution
- These accelerators are based on:
 - Vertex-centric processing model
 - Conventional CMOS technology

ReRAM Based Acceleration

• ReRAM Xbar for Matrix-Vector Multiplication

Graph Processing in Action

Vertex-centric processing model

random access

High memory bandwidth

— little computation on the randomly fetched data global random access

CEI cei.pratt.duke.edu

ALCHEM alchem.usc.edu

Graph Processing in Action

(X-Stream SOSP'13) Edge-centric Processing Model Read & Process sequential write Generate Updates sequential read

Sequential edge access. Random vertex access.

GraphR: Graph Processing with ReRAM Xbar

But, WAIT!
A Xbar with
a size of V-by-V?
The matrix is **sparse**.

ReRAM
Crossbar (CB)
perform SpMV in analog
manner

CEI cei.pratt.duke.edu

Storage and Computation Efficier

CEI cei.pratt.duke.edu

ALCHEM alchem.usc.edu

GraphR Overview

Stream-Apply Execution

Graph Engine (GE) Processing Patterns

- Different algorithms achieve different parallelism when mapped to Xbars
- Assuming an N×N Xbar
- Parallel Multiply-Accumulate (MAC)
 - Performing N² multiplications and N² additions in parallel
- Parallel Add-op
 - Performing N additions and N ops (can be defined) in parallel

Parallel MAC

• Performing N^2 multiplications and N^2 additions in parallel

16 MULT, 16 ADD

Parallel Add-op

• Performing N additions and N ops (can be defined) in parallel

Also in the paper ...

- Graph dataset preprocessing method
- Hardware components in GraphR
- Detailed comparison to other accelerators (Table 1)

Evaluation

- Evaluation Setup
 - Data Sets

Dataset	# Vertices	#Edges
WikiVote(WV) [32]	7.0 K	103K
Slashdot(SD) [32]	82K	948K
Amazon(AZ) [32]	262K	1.2M
WebGoogle(WG) [32]	0.88M	5.1M
LiveJournal(LJ) [32]	4.8M	69M
Orkut(OK) [51]	3.0M	106M
Netflix(NF) [8]	480K users, 17.8K movies	99M

- Applications: PageRank, BFS, SSSP, SpMV
- CPU: Intel Xeon E5-2630 V3
- GPU: NVIDIA Tesla K40c
- GraphR: 8-8 Xbar, 32 Xbars/GE, 64 GEs

CPU Comparison: Performance

- Gmean: Performance 16.01x
- SpMV, PageRank > BFS, SSSP
 - Parallel MAC leads to higher speedup

CPU Comparison: Energy Efficiency

- Energy Efficiency 33.82x
- SpMV, PageRank > BFS, SSSP
 - Parallel MAC leads to higher energy efficiency

GPU Comparison

- Speedup: 1.69× to 2.19×
- Energy Efficiency: 4.77× to 8.91×

Accelerator Comparison

- Speedup: 1.16× to 4.12×
- Energy Efficiency: 3.67× to 10.96×

Sensitivity to Density

- Density \ -> Speedup & Energy Efficiency \
 - Achieving greater parallelism

Conclusion

- We propose GraphR:
 - A graph processing accelerator based on ReRAM
- Key Insights/Results:
 - ReRAM based SpMV for processing in graph engine
 - Stream-apply execution
 - Parallel MAC and Add-Op patterns
 - 16.01x performance gain and 33.82 in energy efficiency

GraphR: Accelerating Graph Processing Using ReRAM

<u>Linghao Song</u>*, Youwei Zhuo[#], Xuehai Qian[#], Hai Li*, Yiran Chen*

*Duke University #University of Southern California

CEI cei.pratt.duke.edu

ALCHEM alchem.usc.edu