

TAVA: Template-free Animatable Volumetric Actors

Michael Zollhofer³ Jurgen Gall² Angjoo Kanazawa¹ Christoph Lassner³ ³Meta Reality Labs Research ²University of Bonn

Problem

Ruilong Li^{1,3}

Previous Approaches

1. Rely on body template such as SMPL

Not generalizable to other creatures beyond human

Julian Tanke^{2,3}

Minh Vo³

¹UC Berkeley

e.g. Peng et al. CVPR 21, ICCV21, Liu et al. TOG21

2. Formulate deformation as pose-conditioned inverse warping

Not generalizable to novel poses

e.g. Peng et al. ICCV21, Noguchi et al. ICCV22, Su et al. NeurIPS21

Nugget

Our Approach

Volumetric rendering is consistent with RGB

Skinning weights on bones are one-hot

Delta deformation on bones are zero

Results

Novel Pose Synthesis on ZJU-Mocap dataset

Dense Correspondence

Automatic Propagation

User Edits

Rendering with Content Editing

Novel Pose Synthesis on animal subjects

skinning weights