

Flervariabelanalys för civilingenjörer MA505G-0100

2022-10-27, kl. 15:15-20:15

Hjälpmedel: Endast skrivmateriel. Formelblad delas ut tillsammans med skrivningen.

Betygskriterier: Skrivningens maxpoäng är 60. Samtliga uppgifter bedöms utifrån kriterier för problemlösning och redovisning. För betyg 3/4/5 räcker det med 4 poäng inom vart och ett av huvudområdena differentialkalkyl, integralkalkyl och vektoranalys samt 30/40/50 poäng totalt. Detaljerna framgår av separat dokument publicerat på Blackboard.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg, rita tydliga figurer och svara exakt. Redovisa inte mer än en uppgift per blad. Lämna in bladen i uppgiftsordning.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Andreas Bergwall.

Lycka till!

Grundläggande uppgifter (6p/uppgift)

1. Studera ytorna i figuren nedan. x-axeln pekar åt höger, y-axeln in i pappret och z-axeln uppåt.

Vilken/vilka av ekvationerna nedan kan användas för att beskriva respektive yta? Komplettera med definitionsmängder eller andra lämpliga restriktioner.

(a)
$$z = \sin x + \cos y$$

(b)
$$x^2 + y^2 + z^2 = 1$$

(c)
$$x^2 + y^2 = 1$$

(d)
$$(x, y, z) = (\sin(s), \cos(t), \sin(s) + \cos(t))$$

(e)
$$(x, y, z) = (\cos(s), \sin(s), t)$$

(f)
$$(x, y, z) = (s, t, \sin s + \cos t)$$

- 2. Antag att grad $f(x,y) = (-3x^2y + 2xy, -x^3 + x^2 2y)$.
 - (a) Sett från punkten (1,-1), i vilken av riktningarna (1,1) och (2,1) växer f(x,y) snabbast?
 - (b) Beräkna $\int_{\gamma} (\operatorname{grad} f) \cdot d\mathbf{r}$ för valfri sluten kurva γ .
- 3. Lös differentialekvationen

$$x\frac{\partial f}{\partial x} - 2x^2 \frac{\partial f}{\partial y} = 4x^2, \qquad x > 0,$$

genom att införa variablerna $u = x^2 + y$, $v = x^2 - y$.

- 4. Beräkna flödet av vektorfältet $\boldsymbol{u}=(xy,2y-z,-x+z^2)$ ut genom randytan till $K=[0,1]\times[-1,1]\times[0,1]$.
- 5. Bestäm tröghetmomentet för ett halvklot K med radie R m.a.p. dess symmetriaxel. Densiteten antas vara $\rho=1.$

Anm: Tröghetsmomentet m.a.p. z-axeln ges av $J = \iiint_K (x^2 + y^2) \rho \, dx dy dz$.

Fördjupade uppgifter (10p/uppgift)

6. Låt $f(x,y) = e^{x^2 - 2x + y^2 - 4y + 5}$.

Bestäm största och minsta värdet (eller visa att de inte finns) då

- (a) $x^2 + y^2 = 25$,
- (b) $x^2 + y^2 \le 25$,
- (c) $(x, y) \in \mathbb{R}^2$.
- 7. Låt D vara den kvadratiska skivan i xy-planet som har sina hörn i punkterna $(\pm 1,0)$ och $(0,\pm 1)$. Låt

$$K = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, \quad (x, y) \in D\}.$$

Bestäm K:s massa om K:s densitet är $\rho(x,y,z)=\sqrt{1-x^2-y^2},$ d.v.s. beräkna

$$m = \iiint_K \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

8. Låt γ vara skärningen mellan planet x+y+z=1 och paraboloiden $z=x^2+y^2$. Beräkna $\int_{\gamma} (y+2z) \, \mathrm{d}x + (3x^2-z) \, \mathrm{d}y + (x-2y) \, \mathrm{d}z$ om γ genomlöps ett varv moturs sett från origo.

Kom ihåg att illustrera relevanta definitionsmängder, integrationsområden och orienteringar med tydliga figurer.

Lösningsförslag till Flervariabelanalys för civilingenjörer 20221027

- 1. Ytan i bild A är en "halv cylinder" och ges av
 - (c) $x^2 + y^2 = 1$, $y \ge 0$, $0 \le z \le 1$,
 - (e) $(x, y, z) = (\cos(s), \sin(s), t), \quad 0 \le s \le \pi, \quad 0 \le t \le 1.$

Ytan i bild B ges av

- (a) $z = \sin x + \cos y$, $0 \le x \le 2\pi$, $0 \le y \le 2\pi$,
- (f) $(x, y, z) = (s, t, \sin s + \cos t), \quad 0 \le s \le 2\pi, \quad 0 \le t \le 2\pi.$
- (b) beskriver enhetssfären och (d) en del av planet z = x + y.
- 2. (a) Beräkna $f_{\boldsymbol{v}}'(1,-1)=\operatorname{grad} f(1,-1)\cdot\boldsymbol{v}=(1,2)\cdot\boldsymbol{v}$ för $\boldsymbol{v}=\boldsymbol{v}_1=(1,1)/\sqrt{2}$ och $\boldsymbol{v}=\boldsymbol{v}_2=(2,1)/\sqrt{5}$. Observera att riktningsvektorena måste normeras. Vi får

$$f'_{v_1} = \frac{3}{\sqrt{2}}$$
 och $f'_{v_2} = \frac{4}{\sqrt{5}}$.

Eftersom $(3/\sqrt{2})^2 = 9/2 = 4,5$ är större än $(4/\sqrt{5})^2 = 16/5 = 3,2$ så är $f'_{v_1} > f'_{v_2}$. f växer alltså snabbare i riktningen (1,1) än i riktningen (2,1).

Uppgiften kan också lösas grafiskt. Om α är vinkeln mellan \boldsymbol{v} och gradfså är $\alpha \in [0,\pi]$ och

$$f'_{\mathbf{v}} = \operatorname{grad} f \cdot \mathbf{v} = |\operatorname{grad} f| \cdot 1 \cdot \cos \alpha.$$

Eftersom $\cos \alpha$ är strängt avtagande i $[0, \pi]$ så är riktningsderivatan större ju mindre α är. Man får alltså alltid ett större värde på riktningsderivatan ju mindre \boldsymbol{v} :s riktning avviker från grad f:s riktning. I just det här exemplet räcker det därför att ritar vektorerna (1,2), (1,1) och (2,1) med start i samma punkt. Då ser man direkt att vinkeln mellan (1,2) och (1,1) är mindre än vinkeln mellan (1,2) och (2,1). f växer alltså snabbare i riktningen (1,1) än i riktningen (2,1).

- (b) Eftersom grad f är ett potentialfält (f är ju dess potential) så blir integralen längs vilken sluten kurva som helst 0.
- 3. Låt z = f(x,y) där f är den funktion som ska bestämmas. När vi inför nya variabler $u = x^2 + y$ och $v = x^2 y$ så är tanken att det i någon mening ska vara lättare att ta reda på hur z beror av dessa nya variabler. Vi försöker alltså istället att hitta ett samband z = F(u,v) som är sådant att $F(x^2 + y, x^2 y) = f(x,y)$.

För enkelhets skull kan vi använda z som beteckning för funktionsvärden till både f och F. Det innebär t.ex. att $z'_u = F'_u(u, v)$ medan $z'_y = f'_y(x, y)$.

Hursomhelst, kedjeregeln ger att

$$z'_x = z'_u \cdot u'_x + z'_v \cdot v'_x = 2xz'_u + 2xz'_v$$
 och $z'_y = z'_u - z'_v$.

Insättning i diffekvationen ger (efter förenkling)

$$(2x^2z'_u + 2x^2z'_v) - (2x^2z'_u - 2x^2z'_v) = 4x^2 \Leftrightarrow z'_v = 1 \Leftrightarrow z = v + g(u),$$

d.v.s. lösningarna är $z = f(x,y) = x^2 - y + g(x^2 + y)$ där g är en godtycklig C^1 -funktion av en variabel.

4. Enligt Gauss sats så ges flödet ut genom ∂K av integralen av div u = y + 2 + 2z över K. Eftersom y-termen är en udda funktion av y och K är spegelsymmetrisk i planet y = 0 så kan vi bortse från y-termen. Flödet är alltså

$$2 \cdot (K:\text{s volym}) + \int_0^1 dx \int_{-1}^1 dy \int_0^1 2z dz = 6.$$

5. Om vi beskriver halvklotet som $x^2+y^2+z^2\leq R^2,\,z\geq 0$, så är z-axeln symmetriaxel och anvisad formel kan användas. Av symmetriskäl kan vi dock lika gärna integrera $2(x^2+y^2+z^2)/3$, vilket ger en enklare integrand. Med rymdpolära koordinater får vi då att tröghetsmomentet är

$$J = \frac{2}{3} \iiint_{[0,R] \times [0,\pi/2] \times [0,2\pi]} r^2 \cdot r^2 \sin \theta \, \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi = \frac{4\pi R^5}{15}.$$

6. I både (a) och (b) så kan man vara säker på att största och minsta värde finns eftersom f är kontinuerlig och såväl cirkeln $x^2 + y^2 = 25$ som cirkelskivan $x^2 + y^2 < 25$ är kompakta mängder.

Observera också att för att lösa (b) så måste man både studera inre stationära punkter och göra en randundersökning. Randundersökningen är dock exakt samma problem som (a)-uppgiften, så resultatet därifrån kan återanvändas. Det blir motsägelsfullt om man får andra resultat från randundersökningen i (b) än man fick i (a).

Eftersom exponentialfunktionen är strängt monoton så antar f(x, y) eventuella max- och min i samma punkter som $F(x, y) = x^2 - 2x + y^2 - 4y + 5$. Vi kan alltså lika gärna söka max- och minpunkter till denna funktion.

(a) Låt $g(x,y)=x^2+y^2$. I optimum är ∇F och ∇g parallella. Det leder till att y=2x vilket insatt i bivillkoret ger $x=\pm\sqrt{5}$. (För detta steg kan man antingen använda Lagranges multiplikatormetod eller sätta upp en lämplig determinantekvation.) Jämförelse av målfunktionsvärden ger att minsta värdet är $F(\sqrt{5},2\sqrt{5})=30-10\sqrt{5}$ och största $F(-\sqrt{5},-2\sqrt{5})=30+10\sqrt{5}$. f:s minsta och största värde är alltså $e^{30-10\sqrt{5}}$ resp. $e^{30+10\sqrt{5}}$.

Alternativt kan cirkeln parametriseras, t.ex. som $y=\pm\sqrt{25-x^2}$ eller $(x,y)=(5\cos t,5\sin t)$. I det första fallet fås en funktion av enbart x som ska optimeras över [-5,5], i det andra en funktion av t som ska optimeras över $[0,2\pi]$.

- (b) Optimum finns antingen på randen eller i en inre stationär punkt. (a) ger största och minsta värde på områdets rand. Det finns bara en stationär punkt: (x,y)=(1,2). Den ligger i områdets inre och har funktionsvärdet $f(1,2)=e^0=1$. Detta är mindre än det minsta randvärdet ovan. Alltså är minsta värdet f(1,2)=1 och största värdet $f(-\sqrt{5},-2\sqrt{5})=e^{30+10\sqrt{5}}$.
- (c) \mathbb{R}^2 är obegränsat så existensen av max och min måste utredas. Eftersom $F(x,y)=(x-1)^2+(y-2)^2\geq 0$ för alla $(x,y)\in\mathbb{R}^2$ och F(1,2)=0 så följer att f(1,2)=1 är minsta värdet även i \mathbb{R}^2 . Däremot är F(x,y) uppåt obegränsad. Det gäller ju t.ex. att $F(x,2)=(x-1)^2\to\infty$ då $x\to\infty$. Det ger att även f(x,y) är uppåt obegränsad, d.v.s. det finns inget största värde.

7. Kroppen K ges av olikheterna

$$-\sqrt{1-x^2-y^2} \le z \le \sqrt{1-x^2-y^2}, \qquad (x,y) \in D.$$

Observera att $1-x^2-y^2\geq 0$ i hela D. Däremot är D inte hela enhetscirkelskivan, så K är alltså inte ett klot. Rymdpolära koordinater passar därför inte bra.

För att bestämma K:s massa kan vi börja med en integrering i z-led enligt följande:

$$m = \iint_{D} \left(\int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} \sqrt{1-x^2-y^2} \, dz \right) dxdy = \iint_{D} 2(1-x^2-y^2) \, dxdy.$$

Observera att D:s hörn ligger på koordinataxlarna. Eftersom D är kvadratisk så passar det inte bra att införa planpolära koordinater. Av symmetriskäl (integranden är en jämn funktion av såväl x som y och D är spegelsymmetriskt i såväl x=0 som y=0) så kan vi dock integrera över den triangulära del T av D som ligger i 1:a kvadranten och multiplicera resultatet med 4. T ges av olikheterna $0 \le y \le 1-x, 0 \le x \le 1$. Massan är alltså

$$m = 4 \iint_T 2(1 - x^2 - y^2) \, dx dy = 8 \int_0^1 \left(\int_0^{1 - x} (1 - x^2 - y^2) \, dy \right) \, dx = \dots = \frac{8}{3}.$$

Av symmetriskäl går det lika bra att integrera $1-2x^2$ istället för $1-x^2-y^2$. Rotationssymmetrin hos ytan gör att man också kan byta kvadraten D mot vilken annan kvadrat som helst med centrum i origo och sidlängd $\sqrt{2}$.

Ett annat sätt att beräkna dubbelintegralen på är att göra ett variabelbyte som överför kvadraten i en axelparallell kvadrat, t.ex. variabelbytet u = x + y, v = x - y. Men det är enklast att vänta med detta variabelbyte till efter att man har integrerat i z-led.

8. Använd Stokes sats. γ är den positivt orienterade randkurvan till funktionsytan

$$\Gamma: \quad z = 1 - x - y, \quad (x + \frac{1}{2})^2 + (y + \frac{1}{2})^2 \le \frac{3}{2}$$

om den orienteras så att $\mathbf{n} dS = (z'_x, z'_y, -1) dxdy = (-1, -1, -1) dxdy$.

Låt D vara cirkelskivan ovan (d.v.s. den parametriserade ytans definitionsmängd). Rotationen av vektorfältet $(y+2z,3x^2-z,x-2y)$ är (-1,1,6x-1) vilket ger att kurvintegralens värde är

$$\iint_{\Gamma} (-1, 1, 6x - 1) \cdot \mathbf{n} \, dS = \iint_{D} (-1, 1, 6x - 1) \cdot (-1, -1, -1) \, dx dy$$
$$= \iint_{D} (-6x + 1) \, dx dy = \iint_{D} (-6(x + \frac{1}{2}) + 4) \, dx dy = 4 \cdot (D : s \text{ area}) = 6\pi.$$

Här har vi i näst sista steget också utnyttjat D:s spegelsymmetri i linjen x = -1/2.