A Study Of Man's Physical Capabilities On The Moon

VOLUME III

WORK PHYSIOLOGY RESEARCH PROGRAM

By W. Kuehnegger, H.P. Roth, and F.C. Thiede

GPO PRICE \$_	
CFSTI PRICE(S) \$	
	,
Hard copy (HC)	4.25
Microfiche (MF)	2.00
ff 653 July 65	į.

Ņ	6 6. 3. 8. 7. 9. 8	(THRU)
FORM 60	382	(CODE)
FACILITY	CR CR OR TMX OR AD NUMBER)	(CATEGORY)

Prepared under Contract No. NAS 1-4449 by NORTHROP SPACE LABORATORIES 3401 West Broadway Hawthorne, California

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

A Study Of Man's Physical Capabilities On The Moon

VOLUME III

WORK PHYSIOLOGY RESEARCH PROGRAM

By W. Kuehnegger, H.P. Roth, and F.C. Thiede

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 1-4449 by NORTHROP SPACE LABORATORIES 3401 West Broadway Hawthorne, California

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

A STUDY OF MAN'S PHYSICAL CAPABILITIES

ON THE MOON

ABSTRACT

A study was made to compare man's energy expenditure and gait characteristics, during self locomotion at various rates, in earth and in simulated lunar gravity conditions. The tests were made for the subject walking and running on the level and on grades up to 30° while in shirt sleeves and while wearing a suit pressurized to 3.5 psig. The results, presented in four volumes, may be useful for the design of space suits and life support systems and the planning of lunar exploration missions and their logistics.

FOREWORD

This volume covers the research in work physiology conducted in "A Study of Man's Physical Capabilities on the Moon", under NASA Contract NAS 1-4449. This contract was administered by Langley Research Center, with Mr. William Letko serving as NASA Technical Monitor.

The study was performed by Northrop Space Laboratories in associated with Case Institute of Technology, Cleveland, Ohio. Dr. Walter Kuehnegger served as the Principal Investigator for NSL. Professor James B. Reswick, Director of the Case Institute Engineering Design Center, guided and directed the work conducted at Case under subcontract.

In view of the complexity and scope of the work performed under this contract, the final report has been organized in four separate volumes (numbered I thru IV). Since the work itself was broken down into phases it was possible to treat each phase individually and document them correspondingly. The four volumes which comprise this report are identified as follows.

CR-66115 Volume I, Part 1 - Lunar Gravity Simulation Facility

CR-66116 Volume I, Part 2 - Instrumentation

CR-66117 Volume II, Part 1 - Biomechanics Research Program

CR-66118 Volume II, Part 2 - Biomechanics Research Program Appendices

CR-66119 Volume III - Work Physiology Research Program

CR-66120 Volume IV - Investigation of Lunar Gravity Simulation Techniques

Volumes I thru III were produced by NSL and have been assigned Northrop Space Laboratories' document number NSL 65-153. Volume IV was prepared from material contributed by Case Institute and reports on their portion of the contract effort. The total report (all four volumes) summarizes the performance during the contract period from 2 November 1964 to 30 September 1966.

The authors of this report (Volume III) wish to express their appreciation to Messrs. F.R. Rizzo, J.L. Schuessler and T.P. Martin for their concentration and effort in the performance of testing and other helpful contributions. Further appreciation is expressed to Messrs. G.D. Fitzgerald and B.P. Lauffer for their endurance as test subjects as well as to Mr. K. L. Forsen for the establishment of the computer program.

NORTHROP SPACE LABORATORIES—

CONTENTS

	Page
FOREWORD	iii
SUMMARY	1
INTRODUCTION	3
METHOD	5
Respiration	6
Metabolism	7
Basal metabolism determination	7
Metabolic rate	8
Respirometers	8
Gas analysis	11
Metabolic rate calculations	11
Respirometer check on 100% oxygen breathing	13
Cardiovascular Function	13
	17
Body Temperature	
Physiological "Steady State"	20
Computer Program	21
PROCEDURES	21
Test Session Scheduling	21
Subject Preparation and Pretest Checkout	22
Test Procedure	23
Baseline Tests	24
Environmental Temperatures	25
RESULTS	27
Curve Plot Symbols	32
DATA CURVE INTERPRETATION	32
Stair Stepping	231
DISCUSSION	294
Respiratory Minute Volume	296
Respiration Rate	296
Oxygen Consumption and Metabolism	296
Test series 1000 and 5000	296
Test series 2000 and 3000	302
Test series 5500-8000	302
Test series 1180, 2180 and 3180	302
Inter-series comparisons	307
Suit pressurization	307
Respiratory exchange ratio; respiratory quotient	310
Cardiovascular Function	311
Body Temperature	311
RECOMMENDATIONS	320
	321
Methods	321
Respiratory hardware	321
Expired air sampling rate	321
Expired air sample	
Procedures	321
Test duration	321
Additional testing	321
Results	322

VOL III

CONTENTS (Continued)

	Page
APPENDIX A - SUBJECT DATA	323
GENERAL	323
SUBJECT SELECTION	323
Pressure Suit Training	325
LGS Indoctrination	326
Effects of Training on Physical Performance	326
APPENDIX B - COMPUTER PROGRAM FOR THE DETERMINATION OF MEAN BODY TEMPERATURE AND METABOLIC ENERGY	
EXPENDITURE	329
EVALUATION	332
COMPUTER PROGRAM LAYOUT	333
SUGGESTIONS FOR THE INTERPRETATION OF COMPUTER	
OUTPUT	333
REFERENCES	340

vi

NORTHROP SPACE LABORATORIES

ILLUSTRATIONS

	<u>Title</u>	Page
1	Work physiological parameters	4
2	Work physiological parameters	6
3	Instrumentation used for monitoring	7
4	Determination of basal metabolic rate	8
5	Metabolic determination of subject on treadmill	^
	using Tissot gasometer	9
6	Sample Tissot gasometer record	9
7	Metabolic determination of subject on treadmill	10
_	employing the Mueller-Franz Respirometer	10
8	Typical Meuller-Franz readout in litres with collected expired aliquot	10
9	Set-up of gas analysis equipment	11
10	Test setup for metabolism procedure check-out	13
11	Bilateral electrode placement	14
12	Placement of E. C. G. electrode	15
13	Sternal electrode placement	15
14	Bilateral electrode placement	16
15	Sample strip chart record	17
16	Location of individual thermistors on the body and	
	divisions of the skin surface for weighting	18
17	Attachment of skin thermistors	19
18	Subject preparation	19
19	Sternal electrode placement	22
20	ECG pretest checkout	23
21	Shirtsleeve test series 1000	25
22	Pressure suit test series 3180	26
23	Test identification numbers	31
24	Illustration of test arrangement for test series 1000	35
25	Average respiratory rate versus subject velocity	36
00	walking and running horizontally	50
26	Average mean respiratory volume versus subject velocity walking and running horizontally	37
0.77	velocity walking and running norizontariy	٥.
27	Average metabolic energy expenditure rate versus subject velocity horizontal walking and running	38
00	Average metabolic energy expenditure per unit length	
28	versus subject velocity walking and running	39
	horizontally	50
29	Average oxygen consumption versus subject velocity walking and running horizontally	40
30	Average oxygen consumption per unit length versus subject velocity walking and running horizontally	41
31	Average cardiac rate versus subject velocity	
91	walking and running horizontally	42
32	Mean body temperature (and ambient globe temperature	
	at time of observation) versus subject velocity	
	walking and running horizontally	43
33	Illustration of test arrangement for test series 2000	45

vii

	Title	Page
34	Average respiratory rate versus subject velocity walking and running horizontally	46
35	Average mean respiratory volume versus subject velocity walking and running horizontally	47
36	Average metabolic energy expenditure rate versus subject velocity walking and running horizontally	48
37	Average metabolic energy expenditure per unit length versus subject velocity walking and running	
38	horizontally	49
39	walking and running horizontally	50
40	subject velocity walking and running horizontally Average cardiac rate versus subject velocity walking and running horizontally	51
41	walking and running horizontally	52
42	walking and running horizontally	53
43	Illustration of test arrangement for test series 3000	54 56
44	Respiratory rate versus subject velocity walking and running horizontally	57
45	Average mean respiratory volume versus subject velocity walking and running horizontally	58
46	Average metabolic energy expenditure rate versus subject velocity walking and running horizontally	59
47	Average metabolic energy expenditure per unit length versus subject velocity walking and running	
4 8	horizontally	60
49	Average oxygen consumption per unit length versus subject velocity walking and running horizontally	61 62
50	Average cardiac rate versus subject velocity walking and running horizontally	63
51	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	
52	walking and running horizontally	64
53	subject velocity, walking and running horizontally Illustration of test arrangement for test series 5000	65 67
54	Average mean respiratory volume versus subject velocity walking and running horizontally	68
55	Average metabolic energy expenditure rate versus subject velocity walking and running horizontally	69
56	Average metabolic energy expenditure per unit length versus subject velocity walking and running horizontally	70

viii vol III

	Title	Page
57	Average oxygen consumption versus subject velocity	
	walking and running horizontally	71
58	Average oxygen consumption per unit length versus	
	subject velocity walking and running horizontally	72
59	Illustration of test arrangement for test series 5500	74
60	Average respiratory rate versus subject velocity	1.2
00	walking horizontally	75
61	Average mean respiratory volume versus subject	10
O1	real soits and bring having the line	=0
62	velocity walking horizontally.	76
04	Average metabolic energy expenditure rate versus	
0.0	subject velocity walking horizontally	77
63	Average oxygen consumption versus subject velocity	
	walking horizontally	78
64	Average cardiac rate versus subject velocity	
	walking horizontally	79
65	Illustration of test arrangement for test series 6000	81
66	Average respiratory rate versus subject velocity	
	walking horizontally	82
67	Average mean respiratory volume versus subject	
	velocity walking horizontally	83
68	Average metabolic energy expenditure rate versus	•
•	subject velocity walking horizontally	84
69	Average oxygen consumption versus subject velocity	0-1
•	walking horizontally	85
70	Average cardiac rate versus subject velocity in	09
• •	walking horizontally	86
71	Mean body temperature (and ambient globe temperature	00
• •	at time of observation) versus subject velocity	
		0.5
72	walking horizontally	87
73	Illustration of test arrangement for test series 6500	8 9
13	Average respiratory rate versus subject velocity	
F7.4	walking horizontally	90
74	Average mean respiratory volume versus subject	
	velocity walking horizontally.	91
75	Average metabolic energy expenditure rate versus	
	subject velocity walking horizontally	92
76	Average oxygen consumption versus subject velocity	
	walking horizontally	93
77	Average cardiac rate versus subject velocity	
	walking horizontally	94
78	Illustration of test arrangement for test series 7000	96
79	Average respiratory rate versus subject velocity	
	walking horizontally	97
80	Average mean respiratory volume versus subject	- ,
	velocity walking horizontally	98
81	Average metabolic energy expenditure rate versus	•
	subject velocity walking horizontally	99
82	Average oxygen consumption versus subject velocity	33
	walking horizontally	100
	waining northoniany	100

vol III ix

	Title	Page
83	Average cardiac rate versus subject velocity walking	
	horizontally	101
84	Mean body temperature (and ambient globe temperature	
	at time of observation) versus subject velocity	100
	walking horizontally	102
85	Illustration of test arrangement for test series 8000	104
86	Average respiratory rate versus subject velocity	105
0.7	walking horizontally	105
87	Average mean respiratory volume versus subject	106
88	velocity walking horizontally	100
00	subject velocity walking horizontally	107
89	Average oxygen consumption versus subject velocity	101
09	walking horizontally	108
90	Mean body temperature (and ambient globe temperature	200
	at time of observation) versus subject velocity	
	walking horizontally	109
91	Ambient (globe thermometer) and pressure suit (inlet	
	and outlet) ventilating air temperatures, versus	
	subject velocity, walking horizontally	110
92	Average respiratory rate versus subject velocity	
	ascending at 10 degrees walking and running	112
93	Average mean respiratory volume versus subject	
	velocity ascending at 10 degrees walking and running	113
94	Average metabolic energy expenditure rate versus	
	subject velocity ascending at 10 degrees walking	114
	and running	114
95	Average metabolic energy expenditure per unit length	
	versus subject velocity ascending at 10 degrees	115
00	walking and running	110
96	Average oxygen consumption versus subject velocity ascending at 10 degrees walking and running	116
97	Average oxygen consumption per unit length versus	110
31	subject velocity ascending at 10 degrees walking	
	and running	117
98	Average cardiac rate versus subject velocity	
•	ascending at 10 degrees walking and running	118
99	Mean body temperature (and ambient globe temperature	
	at time of observation) versus subject velocity	
	ascending 10 degrees walking and running	119
100	Respiratory rate versus subject velocity	
	ascending at 10 degrees walking and running	121
L 01	Metabolic energy expenditure rate versus subject	
	velocity ascending at 10 degrees walking and	400
	running	122
102	Oxygen consumption versus subject velocity	100
	ascending at 10 degrees walking and running	123
103	Cardiac rate versus subject velocity ascending	124
	at 10 degrees walking and running	14

	Title	Page
104	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending 10 degrees walking and running	105
105	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity ascending at 10 degrees walking and running	125 126
106	Respiratory rate versus subject velocity ascending at 10 degrees walking	128
107	Average metabolic energy expenditure rate versus subject velocity ascending at 10 degrees walking	129
108	Oxygen consumption versus subject velocity ascending at 10 degrees walking	130
109	Cardiac rate versus subject velocity ascending at 10 degrees walking and running	131
110	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 10 degrees walking	132
111	Ambient (ambient thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity ascending at 10 degrees walking and running	133
112	Average respiratory rate versus subject velocity ascending at 10 degrees walking	135
113	Average mean respiratory volume versus subject velocity ascending at 10 degrees walking	136
114	Average metabolic energy expenditure rate versus subject velocity in ascending at 10 degrees walking	137
115	Average oxygen consumption versus subject velocity ascending at 10 degrees walking	138
116	Average cardiac rate versus subject velocity ascending at 10 degrees walking	139
117	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 10 degrees walking	140
118	Average respiratory rate versus subject velocity ascending at 20 degrees walking	142
119	Average mean respiratory volume versus subject velocity ascending at 20 degrees walking	143
120	Average metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking	144
121	Average metabolic energy expenditure per unit length versus subject velocity ascending at 20 degrees walking	145
122	Average oxygen consumption versus subject velocity ascending at 20 degrees walking	146
123	Average oxygen consumption per unit length versus subject velocity ascending at 20 degrees walking	147

vol m xi

	Title	Page
124	Average cardiac rate versus subject velocity	148
125	ascending at 20 degrees walking	140
	ascending at 20 degrees walking	149
126	Respiratory rate versus subject velocity ascending at 20 degrees walking	151
127	Metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking	152
128	Oxygen consumption versus subject velocity	153
129	ascending at 20 degrees walking	
130	at 20 degrees walking	154
100	at time of observation) versus subject velocity ascending at 20 degrees walking	155
131	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus	
	subject velocity, ascending at 20 degrees walking	156
132	Respiratory rate versus subject velocity ascending at 20 degrees walking	158
133	Metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking	159
134	Oxygen consumption versus subject velocity ascending at 20 degrees walking	160
135	Cardiac rate versus subject velocity ascending at 20 degrees walking	161
136	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	162
137	ascending at 20 degrees walking	102
	and outlet) ventilating air temperatures, versus subject velocity, ascending at 20 degrees walking	163
138	Average respiratory rate versus subject velocity ascending at 30 degrees walking	165
139	Average mean respiratory volume versus subject velocity ascending at 30 degrees walking	166
140	Average metabolic energy expenditure rate versus subject velocity ascending at 30 degrees walking	167
141	Average metabolic energy expenditure per unit length	
	versus subject velocity ascending at 30 degrees walking	168
142	Average oxygen consumption versus subject velocity ascending at 30 degrees walking	169
143	Average oxygen consumption per unit length versus subject velocity ascending at 30 degrees walking	170
144	Average cardiac rate versus subject velocity ascending at 30 degrees walking	171

xii

VOL III

	Title	Page
145	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 30 degrees walking	172
146	Average respiratory rate versus subject velocity descending at 10 degrees walking and running	174
147	Average mean respiratory volume versus subject velocity descending at 10 degrees walking and running	175
148	Average metabolic energy expenditure rate versus subject velocity descending at 10 degrees walking	176
149	and running	
150	walking and running	177
151	descending at 10 degrees walking and running	178
152	and running	179 180
153	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 10 degrees walking and running	181
154	Respiratory rate versus subject velocity descending at 10 degrees walking	183
155	Metabolic energy expenditure rate versus subject velocity descending at 10 degrees walking	184
156	Oxygen consumption versus subject velocity descending at 10 degrees walking	185
157	Cardiac rate versus subject velocity descending at 10 degrees walking	186
158	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 10 degrees walking	187
159	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus	
160	subject velocity descending at 10 degrees walking Respiratory rate versus subject velocity descending at 10 degrees walking	188 190
161	Metabolic energy expenditure rate versus subject velocity descending at 10 degrees walking	191
162	Oxygen consumption versus subject velocity descending at 10 degrees walking	192
163	Cardiac rate versus subject velocity descending at 10 degrees walking	193
164	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	404
	descending at 10 degrees walking	194

	Title	Page
165	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject	
166	velocity, descending at 10 degrees walking	195
167	descending at 20 degrees walking	197
168	Average metabolic energy expenditure rate versus subject velocity descending at 20 degrees walking	198 199
169	Average metabolic energy expenditure per unit length versus subject velocity descending at 20 degrees walking	200
170	Average oxygen consumption versus subject velocity descending at 20 degrees walking	201
171	Average oxygen consumption per unit length versus subject velocity descending at 20 degrees walking	202
172	Average cardiac rate versus subject velocity descending at 20 degrees walking	202
173	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	
174	descending at 20 degrees walking	204
175	horizontally	206
176	Average metabolic energy expenditure rate versus subject velocity jumping horizontally	207
177	Average metabolic energy expenditure per unit length versus subject velocity jumping horizontally	208
178	Average oxygen consumption versus subject velocity jumping horizontally	209
179	Average oxygen consumption per unit length versus subject velocity jumping horizontally	210
180	Average cardiac rate versus subject velocity	211
181	jumping horizontally	212
182	jumping horizontally	213
183	horizontally	215
184	Average metabolic energy expenditure rate versus	216
185	subject velocity jumping horizontally	217
186	jumping horizontally	218 219

	Title	Page
187	Mean body temperature (and ambient globe temperature	
101	at time of observation) versus subject velocity	
	jumping horizontally	220
188	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus	
	subject velocity jumping horizontally	221
189	Average respiratory rate versus subject velocity	
	jumping horizontally	223
190	Average mean respiratory volume versus subject	004
101	velocity jumping horizontally	224
191	Average metabolic energy expenditure rate versus subject velocity jumping horizontally	225
192	Average oxygen consumption versus subject velocity	
102	jumping horizontally	226
193	Average cardiac rate versus subject velocity	
	jumping horizontally	227
194	Mean body temperature (and ambient globe temperature	
	at time of observation) versus subject velocity jumping horizontally	228
195	Ambient (globe thermometer) and pressure suit (inlet	
190	and outlet) ventilating air temperatures, versus	
	subject velocity jumping horizontally	229
196	Illustration of test arrangement for test series 1180	231
197	Average respiratory rate versus subject velocity	232
100	stair stepping	434
198	Average mean respiratory volume versus subject velocity stair stepping	233
199	Average metabolic energy expenditure rate versus	
100	subject velocity stair stepping	234
200	Average metabolic energy expenditure per unit length	
	versus subject velocity stair stepping	235
201	Average oxygen consumption versus subject velocity	236
909	stair stepping	200
202	subject velocity stair stepping	237
203	Average cardiac rate versus subject velocity	
	stair stenning	238
204	Mean body temperature (and ambient globe temperature	
	at time of observation) versus subject velocity	239
905	stair stepping	241
$\begin{array}{c} 205 \\ 206 \end{array}$	Respiratory rate versus subject velocity stair	
200	stenning	242
207	Metabolic energy expenditure rate versus subject	
	velocity stair stepping	243
208	Metabolic energy expenditure per unit length versus	244
	subject velocity stair stepping	444

	Title	Page
209	Oxygen consumption versus subject velocity	
010	stair stepping	245
210	Oxygen consumption per unit length versus subject	
211	velocity stair stepping	246
212	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	247
213	stair stepping	248 249
214	Illustration of test arrangement for test series 3180	249 251
215	Respiratory rate versus subject velocity stair stepping	252
216	Metabolic energy expenditure rate versus subject velocity stair stepping	253
217	Metabolic energy expenditure per unit length versus subject velocity stair stepping	254
218	Oxygen consumption versus subject velocity stair stepping	
219	Oxygen consumption per unit length versus subject velocity stair stepping	255
220	Cardiac rate versus subject velocity stair stepping	256
221	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	257
222	stair stepping	258
223	subject velocity stair climbing	259
224	Average mean respiratory volume versus subject velocity	261
225	loping horizontally	262
226	velocity loping horizontally	263
227	versus subject velocity loping horizontally	264
228	loping horizontally	265
229	velocity loping horizontally	266
230	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity	267
231	Average respiratory rate versus subject velocity	268
	loping horizontally	270

	Title	Page
232	Average mean respiratory volume versus subject	
233	velocity loping horizontally	271
200	subject velocity loping horizontally	272
234	Average oxygen consumption versus subject velocity loping horizontally	273
235	Average cardiac rate versus subject velocity	
236	loping horizontally	274
237	loping horizontally	275
238	velocity loping rotizontally	276
239	horizontally	278
240	velocity loping horizontally	279
	subject velocity loping horizontally	280
241	Average oxygen consumption versus subject velocity loping horizontally	281
242	Average cardiac rate versus subject velocity loping horizontally	282
243	Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity loping horizontally	283
244	Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity loping horizontally	284
245	Respiratory rate versus subject velocity crawling horizontally	286
246	Average mean respiratory volume versus subject	
247	velocity crawling horizontally	287
248	velocity crawling horizontally	288
249	subject velocity crawling horizontally	289
250	horizontally	290
251	velocity crawling horizontally	291
252	horizontally	292 293
	crawing norizonally	430

vol III xvii

	Title	Page
253	Respiratory rate versus velocity 1/6 g; summary of 1000 series shirtsleeve condition with Pack I; walking and running except as noted	297
254	running except as noted	297
255	Respiratory rate versus velocity at 1/6 g; summary of 3000 series; pressure suit (pressurized); Pack II; walking and	
256	running except as noted	299
257	men't noted; shirtsleeve except as noted Oxygen consumption versus velocity at 1/6 g; summary of 1000 series; shirtsleeve with Pack I; walking and run-	300
258	ning except as noted	301
259	Pack II; walking and running except as noted Oxygen consumption versus velocity on 1/6 g; summary of 3000 series; pressure suit at 3.5 psi, with Pack II;	303
260	walking and running except as noted	304
200	walking and running at 1 g; test series number noted; see code block and curve labels for test conditions, clothing and equipment carried	305
261	Summary of heart rate and oxygen consumption for stair climbing	306
262	Average oxygen consumption versus velocity, walking and running on level, 1/6 g	308
263	Oxygen consumption versus velocity, walking and running ascending or descending at 10 degrees at 1/6 g and 1 g; test series number, clothing and	
264	equipment load as noted	309
265	running except as noted	312
266	walking and running except as noted	313
267	and running except as noted	314
268	equipment load as noted	315
	clothing and equipment load as noted	316

xviii vol III

	Title	Page
269 270	Heart rate summary for walking and running in 1 g test (series noted)	317 319
A1 A2 A3 A4 B1 B2 B3 B4 B5 B6 B7	Test arrangement for PFI determination and physiological base line data	324 326 327 328 332 333 334 335 336 337 339
	TABLES	
		Page
1 2	Body Temperature Sensor Data	18 28
3 4 5 6 7	Summary of Work Physiology Test Modes and Series Conducted on Lunar Gravity Simulator	29 30 32 33
A1 A2	Work Physiological Data	294 325 325
B1 B2	Notation Record for Mean Body Temperature and Metabolic Determination Program Computer Notation Symbols	329 330

vol III xix

A STUDY OF MAN'S PHYSICAL CAPABILITIES ON THE MOON

VOLUME III - WORK PHYSIOLOGY

By W. Kuehnegger, H. P. Roth, and F. C. Thiede

Northrop Space Laboratories

SUMMARY

This portion of the study was performed to investigate certain work physiological parameters parallel to those of biomechanics on a set of predetermined modes and series of experiments under simulated lunar gravity. The physiological studies under this program therefore had the following principal objectives:

- (1) To monitor and record physiological data on respiratory rate and volume, metabolic rate, cardiovascular function and body temperature.
- (2) To provide information on the relative bioenergetic stress levels associated with locomotion and performance of tasks under simulated lunar gravity.
- (3) To provide physiological criteria relative to performance and tolerance limits, as an aid to operational task planning.
- (4) To provide information useful in establishing design criteria for life support systems.
- (5) Indirectly, to aid in determining the kinds and degrees of physical activity which may contribute to maintaining physical fitness.

The test results and recordings show that these objectives were achieved by this study. The work physiological and biomechanics results show that man is capable of self locomotion and physical work under simulated lunar gravity conditions. When compared to equivalent earth gravity experiments, it was found that his capability, in general, is greatly enhanced by the reduction in gravity. This was very evident in the self locomotion experiments conducted in pressurized suits.

Valuable data for the logistic support of man, his life support and ECS equipment has been derived. Furthermore, optimum locomotion velocities have been established which are of great importance in the conservation of energy and prevention of fatigue.

The pressure suited experiments have produced data which will be of value in the design of future space suits and in the design of ECS equipment.

The data obtained in this study, although only based on the results produced by one to three test subjects, nevertheless comprises a great step in the determination of man's physical capabilities on the Moon.

The purpose of this pioneering study was to investigate certain tests and to determine first whether they were physically possible or not. Once this possibility was verified, it was investigated further by a complete series of tests. In this way a much wider range of different activities could be explored with a limited number of test subjects. Only when the range of possible activities are established will it become practical to employ a considerable number of test subjects for the establishment of statistical data.

INTRODUCTION

Until man actually lands on the Moon and carries on physical activities under its one-sixth g gravity, information on lunar gravitational effects on his physiological functioning, as well as on his biomechanical performance, will have to be obtained through simulations achievable on Earth.

The method of simulation employed in this program provides a 1/6 g vector through the cg of the subject, normal to a walkway which serves as a simulation of the lunar surface for purposes of experimentation with biomechanical and work physiological performance. Its dominant limitation from the biomechanical standpoint is that body motions are constrained into a single plane.

From an intuitive point of view, it might be expected that the near-horizontal position of the body, providing a one g gravitational force vector acting within the vestibular (position and motion sensing) mechanism of the inner ear in an unaccustomed direction for the "standing" position of the body, could cause problems of orientation through conflict of various sensory inputs. However, it was soon found that after minimal experience and training, and with concentration on the visual clues to positional orientation, the subjects experienced no difficulty. No overt physiological or psychological problems, associated with position, were encountered during the test program.

At the outset, there was no doubt that the simulation technique would produce useful data in biomechanics of body motion. There was less certainty as to the results which might be anticipated in work physiology studies, since the earth gravity vector would be changed in direction, relative to body position in normal activities, though its value would remain the same. This might mean that the work physiological study results would be relevant only in terms of the effects of the simulated lunar gravity on biomechanics. However, as more and more test data developed and was analyzed, and similar maneuvers in earth gravity and under simulated lunar gravity were compared, the initial reservations as to usefulness of the technique were largely dispelled.

Work Activities

The work activities investigated in this study belong to the classification of human self-locomotion, which in turn is defined by particular methods of displacing the human body under its own power. These methods of displacement (self-locomotion) range from crawling to jumping and encompass all body motions involved in the mechanics of progression, whether horizontally or otherwise. Human self-locomotion is produced by a complex interplay between a series of controlled angular segment motions. The following methods of self locomotion were investigated according to Table 2 of this volume:

Walking

Running

Loping

Jumping

Stepping

Climbing a pole

Crawling

The purpose of this discussion is to briefly define these different methods.

Walking: Walking is defined as the gait of a biped in which the feet are lifted alternately with one foot not lifted off the ground before the other touches down. As such, it involves a disturbance of body equilibrium with displacement of the lower extremities that alternately carry the body weight. The body and its segments (limbs) oscillate in walking. Arms and legs tend to swing together with some movement of the head. An activity (walking) cycle for each leg consists of two phases, the stance (weight bearing) phase and the swing phase. There is also a period called "double support" when both feet are on the ground.

Running: This method of self-locomotion is an extension to walking, whereby man proceeds by springing steps. Here the period of "double support" gradually disappears with increasing speed until both feet leave the ground for an instant in each activity cycle. Arms and legs follow the same tendency to swing together but at a correspondingly higher rate.

Loping: This is a variation from the running activity with no period of 'double support'. The stronger spring steps in loping produce generally a higher translation in height with a simultaneous increase in activity cycle (stride) length. Alternately during the cycle each leg once fully absorbs the impact loads of the body weight. This is followed by the support of the body weight and the propulsion of same. Again the arms will tend to swing in unison with the legs and in fact their inertia may be used to increase the activity cycle (stride) length during loping.

Jumping: As referred to in the experiments conducted, "jumping" is defined as springing freely from the ground while supported by both legs simultaneously.

Man then propels himself like a projectile until he lands on both feet at the end of the cycle. In all of the experiments performed, it was noted that the subject preferred to put one foot slightly forward of the other during the landing and takeoff stance period. This is illustrated in Figure 1.

Figure 1. - Foot positions during jumping cycles

Because of this preference, the feet leave the ground almost simultaneously, but land in their positions at different times with the forward leg impacting last. The arms did not swing alternately as during the previous methods of self-locomotion, but swung in parallel. Swinging of both arms forward and up at the highest point of the jump trajectory resulted in increased activity cycle lengths.

Jumping vertically up to and down from a platform is defined by Figure 197 in the test result section of Volume II, Part 1.

Stepping: The stepping experiments for this investigation consisted of stepping stairs in ascending and descending. Thus, it is defined as the alternate raising of the feet and bringing them down elsewhere simultaneously raising or lowering the body, the motion of the arms being similar to walking.

Climbing a Pole: This is defined as an activity during which the human body is raised or lowered with the assistance of a pole. The locomotion method is produced by alternate activities between the arms and the legs. Both hands grasping the pole pull the body upwards while the feet slide loosely along the pole. Upon completion of the arm stroke, the legs and feet grasp the pole supporting the body weight. Extension of the knee joints raises the body farther while the hands slide loosely along the pole. At the end of the leg stroke, the hands grasp the pole, repeating the cyclic activity.

<u>Crawling:</u> This form of locomotion was performed by supporting the body simultaneously with hands, feet and knees at low speeds. At higher rates, the knees were no longer able to touch the ground and the subject moved forward very similarly to a quadruped. During very high rates, the subject supported himself mostly by his toes and fingers rather than his heels and palm of the hand.

METHODS

The method of 1/6 g simulation employed in this program had a major influence on the instrumentation and techniques used to study the physiological effects produced. The geometry and mechanics of this subject suspension system have been described fully in Volume I of this report. The cable suspension from a dolly riding on a rail, with the subject progressing along an inclined walkway, served very well for study of some of the biomechanical aspects of forward locomotion at various rates. However, it did not lend itself as well to the physiological studies, particularly where it was necessary to maintain a certain level of a specific type of activity for a period long enough to obtain valid physiological measurements.

For this purpose, the inclined motor-driven treadmill, described in Part 1, was installed as part of the inclined walkway. This section will therefore be confined primarily to discussion of the physiological methods and instrumentation.

The physiological stresses imposed by various kinds and intensities of physical activity may be evaluated by their effects on a variety of vital body functions. These body functions include respiration, metabolic rate, and cardiovascular function, as well as changes in body temperature, both as an averaged value and as a collection of gradients between various points.

A schematic describing the work physiological parameters monitored and derived from the subject is shown in Figure 2.

Figure 2.- Work physiological parameters

Respiration

Data on respiration while working in a space suit is needed for two reasons: (1) the severity of physical exertion may be estimated by measuring certain respiratory processes and comparing them with "at rest" baseline values; (2) man's respiratory requirements are basic to adequate suit, helmet and backpack design.

The primary variables measured were respiratory rate (breaths per minute) and minute volume (the product of rate and average volume per breath.)

Respiratory function was evaluated with the aid of a variety of equipment, most of which was also employed in the metabolic rate measurements by the method of indirect calorimetry which depends on measurement of oxygen consumption, carbon dioxide output, or both. Respiratory rate was monitored by use of a sensor in the expiratory air circuit, which actuated a microswitch as each exhalation began. Readout was provided by a respiration tachometer. This tachometer had a meter calibrated in breaths per minute, which indicated the respiratory rate per minute equivalent to the time period per breath. This meter is the upper one of the three seen in Figure 3 and was used, as was the cardiotachometer, to follow the condition of the subject during a test. A permanent record of the respiration was also provided by a galvanometer tracing on the strip chart recorder. Data from this tracing, rather than from the monitoring panel meter, were used in the subsequent physiological analysis.

Figure 3. - Instrumentation used for monitoring and recording of work physiological parameters

Metabolism

The use of a treadmill versus actual walking for metabolic studies was investigated. In comparing the energy expenditure between treadmill walking and floor walking, H.J. Ralston (ref. 19) had proved that the energy contribution by the treadmill motor at velocities from 2.93 to 5.86 km/h (1.82 to 3.64 mph) were insignificant. A brief visual verification was also made in Vol. II by comparing the biomechanics of locomotion of actual walking with treadmill walking. This comparison indicated no significant differences.

Basal metabolism determination. - The basal metabolism tests of the subjects, during their preliminary evaluation, were performed with a clinical metabolism apparatus, as shown in Figure 4A; a typical record is seen in Figure 4B. For a basal test, the subject reports in the morning in the post-absorptive state (with no food intake for 12 or more hours previously), and rests, lying down, for about 20 minutes prior to the test. The metabolism determination by this apparatus depends on measuring the rate of oxygen consumption by the change in level of a spirometer bell during the course of the test. A closed circuit is used; oxygen is added to the spirometer prior to the test, and the carbon dioxide exhaled is absorbed as the expired gas passes through a CO₂-absorbent chemical bed within the apparatus. The apparatus provides a graphic record of respiration, during which the metabolic use of oxygen by the body causes a continuous change in the level of the spirographic record. The change in this level for a six minute (0.1

hour) period is corrected to standard conditions and expressed as a metabolic rate in kilogram-calories (kcal) per hour. This figure is then compared with statistical averages to determine whether or not it is "normal."

From the control of t

A. - Test arrangement using Benedict-Roth apparatus

B. - Sample BMR record

Figure 4.- Determination of basal metabolic rate

Metabolic rate. - Determination of metabolic rate during work performance provides a quantitative measure of the energy-exhange level involved in work activity. It is customarily expressed as the rate of heat production of the body per unit of time (minute or hour). Metabolic rate may be computed from the rate of oxygen consumption, to which it is directly proportional. The method of "indirect calorimetry" chosen from this program depends on the measurement of the pulmonary ventilation volume (minute volume) and determination of the difference in oxygen concentration between inspired and expired air. The rate of production of carbon dioxide (when it can be determined accurately) is an auxiliary metabolic measure related to the rate of heat production. Problems associated with its use and interpretation will be discussed separately.

Respirometers. - The need for measuring metabolic rates during subject activity on the LGS imposed rather stringent limitations on the equipment which might be used for this purpose. In general, clinical-type or physiological laboratory apparatus was unsuitable because of weight, size, or position limitations. Much work physiology determination is done in the laboratory using the Tissot open-circuit method, which typically requires a large gasometer or gas-holder of 120-liter size or larger, in which all exhaled air can be collected for a given test period (see Figures 5 and 6).

Figure 6. — Sample Tissot gasometer record

The Mueller-Franz meter, chosen for this project, was designed especially for physiological studies of work or exercise, where light weight and compactness are necessary. Figure 7 shows a subject carrying one of these meters, rucksack-fashion, for evaluation of lung ventilation and metabolic rate during a treadmill test. It precludes need for collection of all the expired air, by measuring the volume of exhaled air by a compact meter, and simultaneously extracting a continous, proportional sample or "aliquot" which is collected in a butyl rubber sampling bag. The sample is typically 0.6 percent of the exhaled air; the volume collected in a typical length of test period is sufficient to provide samples for analysis to determine the oxygen and carbon dioxide concentrations.

A window in the meter case permits reading the accumulated volume indication of the recorder, in liters, at desired intervals; in this case, before and after each test period. Figure 8 shows the reading window; the sampling bag is seen at the left, below.

Two Mueller-Franz meters were used in this program. Each was calibrated for accuracy of gas measurement by displacement of gas from a chain-compensated Tissot-type 120-liter gasometer equipped with a kymograph. The correction factor for Instrument No. 1 on ambient air was 1.02, and on oxygen 0.98. For Instrument No. 2 the respective factors were 1.07 and 1.06.

Figure 7.- Metabolic determination of subject on treadmill employing the Mueller-Franz Respirometer

Figure 8. - Typical Mueller-Franz readout in litres with collected expired aliquot

As described in the report section on Instrumentation (Volume I, Part 2), a subject-actuated control was provided which started and stopped operation of the Mueller-Franz meter, including both ventilation volume measurement and collection of the aliquot sample. The signal for starting and stopping meter operation was given by the test director, who timed the period of measurement by a stopwatch and recorded this time period on the test log sheet.

In order to evaluate possible changes in the gas concentrations of collected samples which might occur between the time of collection and time of analysis, a check was made. Sequential tests at half-hour intervals were performed on typical samples with near-maximum CO_2 concentration (about four to five percent) over periods of 24 and 48 hours. The CO_2 concentration was found to decrease at a rate of only about three parts in 100 per hour. In view of the fact that the concentration of this gas plays only an indirect and minor part in the calculation of the metabolic rate, and since the samples with CO_2 concentrations in the higher ranges were held the shortest times (analysis was usually performed within about 15 to 30 minutes at the most, after the end of a test session) it was concluded that the effects of CO_2 diffusion were negligible.

<u>Gas analysis</u>. - The expired air samples collected during each period of work activity were analyzed for oxygen and carbon dioxide using standard electro-physical gas analysis instruments. Each instrument was checked for accuracy daily, before test sample analyses, using gas mixtures of certified analysis and one containing gas mixtures whose composition was similar to that of the test samples. The gas analysis apparatus is shown in Figure 9.

Figure 9.- Set-up of gas analysis equipment

Metabolic rate calculations. - All gas volumes used in the metabolic rate calculations were adjusted to standard temperature and pressure conditions STPD₁ (0° C and 760 mm Hg.). Metabolic rate, in terms of heat production, was calculated from the pulmonary minute volume as derived from the Mueller-Franz meter readings, and the changes in $\rm O_2$ and $\rm CO_2$ concentration between inspired and expired gas (air or $100\% \rm O_2$), and the analyses of expired gas samples. The respiratory exchange ratio (RER) previously known as the respiratory quotient, (R.Q.), the ratio of volume of $\rm CO_2$ exhaled to the volume of $\rm O_2$ absorbed in the lungs, per unit time period, was calculated for the sample from each separate test period. It was used, when within limits of 0.7 to 1.0, as a factor determining the caloric equivalent of the oxygen used.

Expired air collected either in the sampling bag of the portable Mueller-Franz respirometer or the clinical Tissot Gasometer during an interval of work activity was analyzed for ${\rm O}_2$ concentration in a Beckman Model E-2 Oxygen Analyzer and for

 ${
m CO}_2$ concentration in a Beckman Model LB-1 Medical Gas Analyzer. Calculations of ${
m O}_2$ consumption, ${
m CO}_2$ production and metabolic rate are made in the following manner:

O, Consumption

(1)
$$*\dot{\mathbf{v}}_{O_2} = (\dot{\mathbf{v}}_{\mathbf{I}} \cdot \mathbf{F}_{\mathbf{I}_{O_2}}) - (*\dot{\mathbf{v}}_{\mathbf{E}} \cdot \mathbf{F}_{\mathbf{E}_{O_2}})$$

(2)
$$*\dot{v}_{O_2} = *\dot{v}_{I_{O_2}} - *\dot{v}_{E_{O_2}}$$

*All volumes adjusted to STPD conditions (0°C + 760 mm. Hg)

(3)
$$\dot{\mathbf{v}}_{\mathbf{I}} = \dot{\mathbf{v}}_{\mathbf{E}} \cdot \frac{\mathbf{F}_{\mathbf{E}_{\mathbf{N}_{2}}}}{\mathbf{F}_{\mathbf{I}_{\mathbf{N}_{2}}}}$$

${ m CO}_2$ Production & Respiratory Exchange Ratio

(4)
$$\dot{\mathbf{v}}_{CO_2} = \dot{\mathbf{v}}_{E}(\mathbf{F}_{E_{CO_2}} - \mathbf{F}_{I_{CO_2}})$$

(5)
$$R = \frac{\dot{V}_{CO_2}}{V_{O_2}}$$

(6)
$$MR = \dot{v}_{O_2} \cdot O_{2CE} \cdot 60$$

$$\dot{V}_{O_2} = O_2$$
 consumption (liters/min)

$$\dot{V}_{I}$$
 = inspired minute volume (liters/min)

$$\dot{V}_{E}$$
 = expired minute volume (liters/min)

$$\dot{v}_{I_{O_2}}^{\text{= inspired } O_2}$$
 volume (cc/min)

$$\dot{v}_{E_{O_2}}$$
 = expired O_2 volume (cc/min)

$$F_{I_{O_2}}$$
 = fraction of inspired O_2

$$\mathbf{F}_{\mathbf{E}_{\mathbf{O}_2}}$$
 = fraction of expired \mathbf{O}_2

$$F_{E_{N_2}}$$
 = fraction of expired N_2

$$F_{I_{N_2}}$$
 = fraction of inspired N_2

$$\dot{v}_{CO_2}$$
 = CO_2 production (cc/min)

$$F_{E_{CO_2}}$$
 = fraction of expired CO_2

$$F_{I_{CO_2}}$$
 = fraction of inspired CO_2

MR = metabolic rate (K cal/hr)

Respirometer check on 100% oxygen breathing. - Figure 10 shows the setup for a test which was conducted as a check on procedure for estimation of metabolism, using the Mueller-Franz respirometer while the subject breathes 100 percent oxygen from the gasometer. The decrease in gasometer volume provided a measure of the inhalational lung ventilation rate (\mathring{V}_{E}) , while the respirometer reading provided the exhalational lung ventilation rate (\mathring{V}_{E}) .

Figure 10. - Test setup for metabolism procedure check—out

Information on both these factors is necessary, in addition to the analysis of exhaled air, to enable calculation of metabolic rate by the open circuit method when the subject breathes 100 percent oxygen as was done when the suit was used in pressurized condition. In this test, as well as in pressurized suit operation, the subject breathed pure oxygen for a preliminary period of at least 10 minutes, to wash out nitrogen from the lungs.

Cardiovascular Function

One of the most important physiological changes produced by muscular activity is the resultant increase in blood circulation to the exercising muscles. Monitoring of cardiovascular function provides useful information regarding the level of work stress. The heart rate was measured to determine the extent of functional response of the cardiovascular system to work. Furthermore, it is now recognized that changes in heart rate correlate well with work load through a considerable range of experimental conditions. This is particularly true if subjects can be individually "calibrated", and providing thermal stress does not become a significant factor.

Cardiac rate or heart rate was first monitored using a modification of the system suggested by Freiman et al (ref. 6). One positive and one negative electrode were placed bilaterally on the anterio-lateral aspect of the rib cage at the level of the 8th or 9th rib. A ground was placed between the shoulder blades at the 5th or 6th thoracic vertebra as shown in figure 11.

Figure 11. - Bilateral placement of electrodes

Unstable read-out of heart rate record while on the lunar gravity simulator, due to pressure from the body suspension on the sensing electrodes, dictated a change-over to sternal leads. These permitted their placement nearly directly over bone, which cut down muscle artifacts. Further, the attachment over bone insured longer lasting skinelectrode contact. Sternal leads have produced readings with higher voltage amplitudes, because of their proximity and orientation to the heart.

In addition, a protective rubber ring was secured over the electrode to prevent the body suspension hardware from pressing the suit and causing it to rub directly on the electrode. Installation of a new coaxial cable improved the stability of the cardiac rate meter.

With this electrode configuration as shown in Figure 12, cardiac rate was discernible from the Sanborn graphs 85% of the time; however, the signal was still intermittent and the cardiac rate meter was very unstable at times.

Figure 12. - Placement of ECG electrode

Modified Mercury ECG flight electrodes, procured through NASA Manned Space-craft Center (MSC), were tried as a means of eliminating noise caused by the former telemedic electrodes. The new Mercury ECG electrodes were first applied to the sternum with a ground on the back of Subject A; this provided poor cardiac rate readouts during task performance on the lunar simulator. The electrodes were then applied in the original bilateral placement resulting in discernible cardiac rate from the biomedical recorder during 95% of the time. The cardiac rate meter's stability improved and deflected only during a vigorous task, but returned to a stable position 2-3 seconds from completion of the vigorous task.

Typical samples of ECG recordings according to the electrode placement in Figure 12 are shown in Figures 13 and 14.

Figure 13. - Sternal electrode placement

Figure 14. - Bilateral electrode placement

The modified Mercury ECG flight electrodes were later replaced by Beckman electrodes which yielded an excellent signal-to-noise ratio even during vigorous activity. Filtering of muscle potential was accomplished using the band-pass filter of the Sanborn 350-2700 high gain amplifier.

The resulting series of electrical impulses, one for each heart beat, was fed into a cardiotachometer (the middle instrument of the three at the left of the monitoring console shown in Figure 2, Vol. 1, pt. 2) which provided a direct reading of heart rate in beats per minute.

The heart voltage pulses were also fed to a galvanometer unit on the stripchart recorder. This provided a continual graphic record of heart rate during each experimental period, for correlation with other physiological data similarly recorded.

These two means of measuring the heart rate were complementary and therefore valuable in different ways. The meter indication of the cardiotachometer was used primarily to follow the condition of the subject during the test, particularly in response to changing conditions. Sudden changes in the indicated rate were usually associated with artifactual electrical input due to electrode trouble or impulses from non-cardiac sources, and could be easily disregarded.

The beat-by-beat trace of the T-wave on the strip-chart recorder provided the basic heart rate information for the physiological analysis. Here also, irregularities due to electrical artifacts could be detected and only those portions of the record used for heart rate estimation which obviously were valid, "clean" records. Both chart movement at the known rate and the one-second-pip timing trace provided the time base which enabled calculation of the heart rate from the number of beats per unit of time. Most heart rate counts were for a full half-minute.

A typical strip chart record obtained during a test is shown in Figure 15.

1) Real time - cardiac rate 2) Play back - respiration rate 3) Play back - cardiac rate Figure 15. - Sample strip chart record

Body Temperature

Activity and work generate heat which is additive to the normal rate of heat production of the internal living processes of the body at rest. This heat constitutes roughly 80 per cent of the energy "consumed" in the activity. Adjustments of physiological processes (principally blood circulation) to keep the rate of heat transfer to the environment in balance with the total rate of heat production constitute the principal bodily response to increased activity, from the thermal point of view. If metabolic heat is not dissipated, the body will "store" heat and its temperature will rise. A slight rise in body temperature is practically inescapable in any activity.

Monitoring of body temperature is thus a useful measure of stress associated with activity, though the effect of the body's thermal environment on rate of heat loss must also be considered. It is particularly important for a man in a space suit, since this type of garment interferes with convection, vapor transfer, and radiation. Consequently, either forced ventilation of the interior of the suit or some other thermal transport system is required to help maintain body temperature near equilibrium so that the man may perform his tasks adequately. Experience has indicated that at activity levels well within those probable for astronauts on the lunar surface, undesirable body heat storage does occur with a gas-cooled system, particularly in a low pressure environment (refs. 1-4). Experimental procedures on the lunar gravity simulator therefore provided for monitoring body temperature as a means of estimating body heat storage should it occur. In addition, body temperature rise causes a change in the level of functioning in virtually all body system, heart rate in particular.

Estimation of average body temperature was performed according to the general method proposed by Hardy and DuBois (ref. 7), in which temperature measurements are made in a multiplicity of locations, including both surface and core.

Hardy and DuBois empirically determined these weighting factors which actually represent fractions of the total body surface area which are shown in Figure 16.

Figure 16. - Location of individual thermistors on the body and divisions of the skin surface for weighting

Ten skin temperature measurements were taken, using surface thermistors, and each was multiplied by a weighting factor (the sum of the weighting factors being 1.0). The mean of these weighted values provides a mean skin temperature, taking all anatomical regions into account, which reflects their relative contributions to a physiologically significant average. The weighting factors and thermistor placement for these anatomical regions are given in Table 1.

TABLE 1 - BODY TEMPERATURE SENSOR DATA

Modified Weighting Factor	Anatomical Region	Thermistor Placement		
. 07	Head	Mid-forehead		
. 05	Hand	Back of hand		
.06	Forearm	Right upper mid-forearm		
.08	Upper arm	Left outer mid-upper arm		
.19	Thigh	Right upper mid-thigh		
. 13	Calf	Left mid-calf		
. 07	Foot	Dorsum of right foot		
. 17	Back	Midline of back over 8th thoracic vertebra		
.09	Chest	Mid-sternum		
. 09	Abdomen	Mid-abdomen		

The subdivisions of the body surface, and the corresponding weightings shown in Table 1 differ from those originally proposed by Hardy and DuBois only in that lumped values for arms and trunk were further subdivided in accordance with proposals of Blockley and Taylor (ref. 8), and ten skin temperature readings taken instead of seven.

The bioharness described in Volume I, part 2 of this report series was designed to provide the attachment of thermistors for these ten skin temperature positions as well as for the rectal probe attachment. A detail of the thermistor attachment and bioharness is shown in Figures 17 and 18.

Figure 17. - Attachment of skin thermistors

Figure 18. - Subject preparation

Rectal temperature was measured by a rectal thermistor probe, inserted to a depth of six in. by the subject during his pre-test preparation. Skin and rectal temperatures were then weighted and combined into a mean body temperature.

Temperature readouts were provided by the meter at the lower left of the monitoring panel shown in Figure 3, together with temperatures at suit inlet and outlet.

The following two formulas describe the method of weighting the skin temperatures into a mean skin temperature.

$$t_{SF} = t_{s} \cdot F_{W}$$
 $t_{SF} = Skin temperature fraction (°F)$
 $t_{s} = Skin temperature of anatomical region (°F)$
 $F_{W} = Weighting factor of anatomical region$
 $\bar{t}_{sW} = \Sigma t_{SF}$ (of all anatomical regions)

 $\bar{t}_{sW} = Mean weighted skin temperature$

Rectal temperature weighting along with the mean skin temperature provides the mean body temperature according to the following formula:

$$\bar{t}_b = .33 \bar{t}_{sw} + .67 t_r$$

$$\bar{t}_b = Mean body temperature (°F)$$

$$t_n = Rectal temperature (°F)$$

Physiological "Steady State"

When the energy-exchange level of any activity is changed, some time is required before the various physiological systems of the body adjust to the new conditions. Where possible, it is desirable to make measurements while the body is in a "steady state" of functioning in terms of heart rate, respiratory rate and volume, and oxygen consumption. at each activity level. At light to moderate work levels, without external thermal stress conditions, a steady state satisfactory for physiological measurements generally develops within 5 minutes or less. Under heavy to maximal work loads, or when appreciable unbalance between heat production and heat loss exists, a true steady state is never achieved. One aspect of this is that when energy requirements are not met by maximal oxygen intake, the body must depend in part upon non-oxidative breakdown of body energy stores in the form of glycogen: a process known as anaerobic metabolism. An "oxygen debt" develops, requiring cautious interpretation of oxygen consumption patterns in the nearmaximal range of physical activity. The other aspect is that heart rate is affected not only by oxygen transport requirements in support of metabolic processes, but also by rise of body temperature during storage of heat when heat loss does not balance heat production. In such a situation, heart rate will continue to rise even when oxygen consumption has stabilized and no "oxygen debt" is developing.

During this research program, the preconditioning and familiarization period was used for preliminary evaluation of some of the more strenuous task levels. This permitted planning of the test sessions and data-collecting procedures during the experimental program withdue allowance for steady-state requirements.

Computer Program

For determination of average body temperature, and calculation of metabolic rates from the Mueller-Franz Respirometer and gas analysis data, extensive computational procedures were required which were well suited to computer processing and readout. In the case of body temperature, this involved weighted averaging of eleven temperature measurements at least once for each individual test period, of which there were hundreds. The metabolic determinations required the following.

- (1) Correction of gas volumes for temperature and barometric pressure.
- (2) Estimation of the RER from the ${\rm O_2}$ and ${\rm CO_2}$ analyses.
- (3) Use of a caloric equivalent for O_2 , based on the RER.
- (4) Calculation and listing of the actual metabolic rate in Btu/hr.
- (5) Calculating of the equivalent rate for a "standard man."
- (6) Calculation of the metabolic rate per unit body surface area, in kilo-calories per square meter per hour.

The "standard man" was assumed to have a surface area of 1.80 square meters. This would be the surface area of a man with a height of 67.5 in. (172 cm) and a weight of 150 lb (68.3 kg) though, of course, other combinations of height and weight provide the same estimated surface area.

Information on the setting up, use and interpretation of the computer program is contained in Appendix B. The printout included related environmental temperature and barometric pressure information, with the corresponding gas volume correction factor.

PROCEDURES

Test Session Scheduling

A typical test session required a schedule time of half a working day — morning or afternoon. Testing of one subject in both morning and afternoon sessions was attempted. but abandoned due to a number of problems involving both the subject and the test crew. Subjects proved to be in definitely better condition in the morning. Unless a basal test was required, with the subject in post-absorptive condition, breakfast was allowed. Each subject was encouraged to standardize on a light breakfast of his own choice. Departure from a "standard" meal was found to produce no apparent effect except sometimes to elevate the RER if carbohydrate intake (such as sugar in coffee) was unusually high. It was found that the work physiological data produced by the subject closely after a meal (especially at noon) became questionable. Fatigue produced by the procedure also exerted some effect on an afternoon session if preceded by one in the morning. Furthermore, removal of the cardiac electrodes at the end of a day resulted in undue tissue irritation (and sometimes tissue removal) which made a full test day an unacceptable practice. Most tests were therefore run in the morning. The extreme concentration and cooperation of the members of the test crew, required for successful conduct of a session, was markedly

decreased in afternoon sessions, and resulted in errors of data recording and other human errors. Morning sessions were much more uniformly successful, and most tests started about mid-morning.

Subject Preparation and Pretest Checkout

Prior to each test session, the subject was checked and his condition recorded on a data sheet. Data recorded included information on the last prior meal, his body temperature, heart rate, and general condition including any unusual aspects of activity or food intake for the prior evening. The bioharness was then installed. Figure 18 showed a subject in process of harness installation. Details of cardiac rate sensor and thermistor placement are shown in Figures 11, 12 and 17. Figure 19 shows a full front view of a subject in the bioharness.

Figure 19. - Subject in bioharness

The cardiac rate sensors are a few inches below each nipple (a ground electrode is in back). Thermistors may be seen in several locations. On the front of the belt is the multiple connector for the biomedical circuitry.

If the test was to include the pressure suit, this was donned, after which the support harness was installed. Then, shortly before the actual test procedure started, an ECG check was made in the laboratory, as shown in Figure 20. In the early stages

22

Figure 20. - ECG pre-test check out

of the project, a post-test ECG check was also made, but soon found unnecessary. Pulse counts by manual palpation were made during the period of validation of the heart rate indicating and recording instrumentation, but were abandoned when it became evident that they were redundant.

Test Procedure

Although the procedure necessarily varied somewhat depending on the purpose of each test session and the nature of the physical activity involved, much procedure was common to all tests. Typically, a series of individual tests were performed during each test session. The first set of readings would be taken with the subject at rest (standing) to provide a "base line" for that session. Following this determination, a series of tests would be performed, spaced by short rest periods, and generally in order of increasing level of energy expenditure. Each would be continued for a sufficient length of time to achieve the "steady state" previously discussed. This was judged by reaching substantially constant heart and respiration rate readings as indicated on the tachometer meters for each. An average test had a duration of from 5 to 10 minutes and sometimes longer.

The duration of a complete test session depended on the number of individual tests (usually from 3 to 5) and ranged from about 60 to about 90 (sometimes 120) minutes for "shirt-sleeve" tests. Some of the pressure suit test sessions reached as much as 160 minutes' duration. Maximum duration was based on not exceeding the tolerance of the subject in terms of his physiological reactions. A heart rate of 180 beats/minute was the accepted endpoint for a test. Because of lag in the tachometer indication, it was occasionally found from the graphic record that the rate went as high as 200 beats/minute before starting to decline during the post-exercise period.

Baseline Tests

Since one of the principal purposes of the physiological observations made in this program was to evaluate the relative effects of various conditions and activities, establishment of baseline values for use in these comparisons was necessary. Typical baseline observations were made under the following conditions.

- (1) Occasionally with the subject in the "basal" state, i.e., lying at rest in the postabsorptive state.
- (2) With the subject standing at rest relative to normal earth gravity and then relative to the simulated lunar gravity. Observations of this kind were routinely made at the beginning of a test in any mode, with whatever clothing or equipment required for that test.
- (3) Another type of baseline was the series of data points obtained for a given procedure under earth gravity, to enable comparison with the same procedure on the LGS.

Figure 5 shows a gasometer kymographic chart record of a baseline test at one g, and illustrates the subject's respiratory response in a series of tests progressing from rest to walking at speeds up to four mph on the treadmill. The subject exhaled into the gasometer; the bell rises a distance proportional to the volume of each exhalation and the total rise per minute is a measure of the exhaled minute volume of lung ventilation ($\mathring{\mathbf{V}}_{\mathbf{E}}$). The arrangement of the recording system is such that when the chart is removed from the kymograph for review, the progressive increase in collected exhaled air is measured on the ordinate, with time on the abscissa. Since the gasometer bell does not move while the subject inhales, the line is horizontal during that period, giving the tracing its characteristic step-like appearance.

Each of the six tracings shown on this chart begins at the bottom, and slants upward to the right. The slope of the trend-line of the tracing is a measure of the lung ventilation rate at that time, which may be expressed in any convenient unit, such as liters or cubic meters per minute. Each vertical line on the grid indicates 1 minute, and the rise of the tracing in a given period thus is a measure of the ventilation rate

per minute when divided by the number of minutes. Volumes are calculated from the line rise in millimeters, multiplied by the bell calibration factor (volume per mm), in this case 133 ml per mm.

The effect of the progressively-increasing energy expenditure level on ventilation is seen in terms of the progressively-increased slopes, as the subject went from rest to the four mph walking rate. Note in particular that ventilation actually declined slightly during the six minutes of sitting at rest. This is typical of the body's adjustment to rest after prior activity. Note also that the ventilation rate when standing at rest was practically constant and substantially the same as when sitting. At the higher walking speeds, the ventilation rate increased slightly as each test progressed.

Environmental Temperatures

The ambient thermal conditions were evaluated in terms of the globe temperature. The globe thermometer used is described in Volume I, Part 2 in Instrumentation. In tests in the earth gravity mode, the globe thermometer was located so as to be near both the subject and the instrument pack containing the respiration meter. When the LGS was used, the globe thermometer was located on the catwalk above the subject's test area, as shown in Figure 24 of Volume I, Part 2.

Figures 21 and 22 show the subject in his suspension gear on the LGS.

In experiments involving use of the pressure suit, the temperature of the ventilating air flow at suit inlet and outlet was also recorded. Since the tests were conducted outdoors, the test log also recorded the weather conditions.

Figure 21. - Shirtsleeve test series 1000

Figure 22.- Pressure suit test series 3180

RESULTS

The results of this study are presented as a series of data records and curves of experimental data following the established test identification numbers in tables 2 through 4.

Each test series or group of test series is preceded by a cover sheet. Described in one paragraph are the test conditions. These indicate the type of work activity and work variable investigated. It further states under what gravitational environment the test series was conducted and on what facility. If available an illustration of the specific test set up was provided or referenced.

The second paragraph entitled "test results" shows the number of test subjects used and the number of tests performed by each individual subject in the series. This is followed by a listing of the data recorded, analyzed and presented in tabular or curve form.

The collection of curves is arranged according to their activity and follows the previously mentioned sequence which will aid in the comparison of the physiological parameters measured.

For each individual test series in each major mode, curves plotted as a function of subject velocity are included for the following work physiological data:

- (1) Respiratory rate, breaths/min
- (2) Respiratory volume expired, liters/min
- (3) Metabolic energy expenditure rate, kcal/h and Btu/h
- (4) Metabolic energy expenditure per unit length, kcal/m and Btu/ft
- (5) Oxygen consumption, liter/min and cu ft/min
- (6) Oxygen consumption per unit length, liter/m and cu ft/ft
- (7) Cardiac rate, beats/min
- (8) Mean body temperature, degrees F and degrees C
- (9) Pressure suit environmental data

Each data point in these curves for each subject at a given velocity represents either his average for that velocity (if more than one test was run) or a single observation made during the presumed steady state. The average or trend-line for each graph was located through points representing the averages for the data points for the several subjects at each velocity, except where specific allowance has had to be made for known disturbing factors, especially environmental temperature.

The graphs for minute volume of lung ventilation were plotted from data which has been corrected to standard conditions (Standard Temperature and Pressure Dry, STPD). In the case of the data obtained during the pressurized suit test series, conducted at an

TABLE 2 SUMMARY OF WORK PHYSIOLOGY BASELINE TEST MODES AND SERIES CONDUCTED

		T	T	TI	<u> </u>		T	Т	T -	Т	П	
	nst.		C	12	11			PSI ck II		S	က	
000	eve ar & I	Subject	B	9			3000	t - 3.5 ent Pa	Subject	В		
Mode 6000 Shirt Sleeve 1g - Susp. Gear & Inst. Pack I		S	A	9	4		Mode 8000	re Sui trume	N N	A	3	
			Series	(08)0009	6020(134)		2	Pressure Suit - 3,5 PSI 1g - Instrument Pack II		Series	8000(103)	
Mode 5500 Shirt Sleeve 1g - No Instrument Pack			C	12				low II		С	9	
		Subject	В	9			00	Vent F it Pack	Subject	В		
			А	22			Mode 7000	Suit-	SZ.	A	9	
		1g - No In		5500(73)	5520		Mod	Pressure Suit-Vent Flow 1g - Instrument Pack II		Series	7000(95)	
	Shirt Sleeve 1/6 g - No Instrument Pack	nt Pack	C	∞				Shirt Sleeve Suspension Gear Only		С	12	
Mode 5000		l bo	No Instrumen	В				Mode 6500	Shirt Sleeve spension Gea	Subject	В	
				А	∞				hirt S ensic	S	A	9
				Series	5000(66)	5020			S 1g - Susi		Series	6500(88)
Work Classification Non-Performance Work		mance Work Work		Horizontally	Ascending (Max. Grade)			Work Classification Non-Performance Work	Mosk	Variable	Horizontally	
		Work	Activity	Walking				Work C Non-Perfo	$4\pi O M$	Activity	Walking	

The test results for each of the tests conducted can be found by the page number given adjacent to the series number of tests in Tables 2 and 3. Note:

TABLE 3 SUMMARY OF WORK PHYSIOLOGY TEST MODES AND SERIES CONDUCTED ON LUNAR GRAVITY SIMULATOR

							† †	 					
Work C	Work Classification	M	Mode 1000	000		Mc	Mode 2000	000		Me	Mode 3000	000	
Non-Perf	Non-Performance Work	Sh. Instru	Shirt Sleeve trument Pac	Shirt Sleeve Instrument Pack I	I	Pressure Suit-Vent Flow Instrument Pack II	Suit- ment	Vent Dack	ilow II	Pressure Suit - 3.5 PSI.* Instrument Pack II	Suit - ment	- 3.5 l Pack	PSI.* II
Work	Juo/M		S	Subject			S	Subject			S	Subject	
Activity	Variable	Series	A	В	C	Series	Ą	В	၁	Series	A	В	۵
Walking	Horizontally	1000(34)	12	16	13	2000(44)	6		12	3000(55)	2		13
•		1020(111)	6	5	7	2020(120)			7	3020(127)			2
	Ascending (Max. Grade)	1030(141)	2	9	9	2030(150)			9	3030(157)			3
		1040(164)	5		5	2040				3040			
	Descending	1050(173)	8		5	2050(182)			5	3050(189)			9
	(Max. Grade)	1060(196)	3		3	2060				3060			
Jumping	Horizontally	1120(205)	17	2	5	2120(214)	4		4	3120(222)	4		4
Stepping on Stairs	Ascending and 1180 Descending	1180(230)	5	5	5	2180(240)			5	3180(250)			4
Loping	Horizontally	1200(260)	5		4	2200(269)	4		4	3200(277)	5		ō
Crawling	Horizontally	1230(285)	9			2230				3230			

Note: The test results for each of the tests conducted can be found by the page number given adjacent to the series number of tests in Tables 2 and 3.

TABLE 4 SUMMARY OF INDIVIDUAL SUBJECT PARTICIPATION IN VARIOUS TEST MODES

		nber of Tes for Each	1
	A	В	С
Lunar Series			
1000	77	39	53
2000	17	-	43
3000	16		39
Series Total	110	39	135
Baseline Series			
5000	8	-	8
5500	27	6	12
6000	10	6.	23
6500	6	_	12
7000	6	_	6
8000	3	_	3
Series Total	60	12	64
Grand Total	170	51	199

absolute pressure 3.5 psi above atmospheric, this has resulted in minute volumes which are approximately 24 percent above parallel values obtained in the other series conducted at atmospheric pressure. These data should therefore not be compared directly with most lung ventilation volume data in the physiological literature, customarily expressed in terms of the volumetric exchange under the conditions of measurement (Body Temperature and Pressure Saturated, BTPS).

Curves for the metabolic energy expenditure per unit length and for the oxygen consumption per unit length were plotted for the purpose of establishing optimum locomotion velocities. In addition to yielding the optimum, these curves will provide useful information for the logistic support requirements of man when assigned lunar mision tasks. They will provide data for the cross-sectional sizing of lines in the life support and ECS equipment as well as the determination of life support and ECS capacities. It should be noted, however, that the plotted work physiological data was the result of tests conducted for relatively short durations with a maximum of 10 minutes. These tests did not include the effect of duration and fatigue when such experiments are conducted for prolonged periods of time and this aspect must be recognized.

In association with the figures showing average body temperature as a function of subject velocity in the various test modes and series, graphs have also been prepared to show the thermal environment of the subjects during the tests in which pressure suits were worn. The temperature relationships of experiments conducted in the pressure suit at a constant flow rate provide important data for the design of ECS

equipment. These graphs show the ambient temperature as measured by the globe thermometer, and the suit ventilating air temperatures at the suit inlet and outlet. These are plotted against subject velocity to conform to the other graph series in this report. The time of day at which the readings were taken is also indicated, both to illuminate the changes in ambient temperature during a test session, and the time factors in its effect on the suit ventilating air temperatures. These were of course also affected by the level of activity and heat production of the subject. These graphs follow the graphs of body temperature in the numerical groupings under each test mode.

In addition to the foregoing graphs on individual test series, summary graphs have been prepared. These have been cross-plotted to provide comparison, for instance. of the oxygen consumption curves under various test conditions. The summary curves will be included in the Discussion section which follows.

The third paragraph reserved a smaller space for some on-the-spot comments particular to the test series.

Test Identification Numbers

Originally the test program was perted whereby each test was identified by a part number. Because of sudden changes sometimes necessary in the test schedule, a different method of test designation was adopted in the initial phase of the test program. A typical sample and explanation of the test identification number is shown in Figure 23.

Figure 23. - Test identification numbers

*This number does not always directly indicate the speed, since some test series started with standing at rest, followed by a test at 0.5 mph. Thus a number 7 would stand for 5 mph.

In addition to the major series number coding, distinguishing terminal 2- and 3digit combinations were also assigned to conditions or activities common to all series, as follows:

- (1) xx00 -- Walking and running horizontally
- (2) xx20 -- Same, ascending at 10° grade

- (3) xx30 -- Same, ascending at 10 grade
 (4) xx40 -- Same, ascending at 30° grade
 (5) xx50 -- Same, descending at 10° grade
 (6) xx60 -- Same, descending at 20° grade
- (7) x120 -- Jumping horizontally
- (8) x130 -- Jumping vertically up
- (9) x140 -- Jumping vertically down
- (10) x150 -- Jumping horizontally down

- (11) x180 -- ascending and descending stairs
- (12) x200 -- Loping horizontally
- (13) x230 -- Crawling horizontally

Curve Plot Symbols

Since most of the test results are presented by data points on individual or summary curve plots, it became necessary to assign meaningful curve plot symbols. These are defined in Table 5. These symbols have been based on those specified in NASA Publications Manual, NASA SP-7013. Because of the great number of data point and line symbols required, some additional ones had to be established. This was done by expanding those recommended in the NASA Publications Manual.

TABLE 5. CURVE PLOT SYMBOLS

Т	'est		S	Subjec	t	
Se	eries	Line Symbol	A	В	C	Description
	1000		0		Δ	Shirt Sleeve, instrument pack I
series	2000		ď	Ц	۸	Pressure suit, vent flow, instrument pack II
1	3000		σ̂		Δ	Pressure suit, pressurized, instrument pack II
Lunar,	4000		D	口	\nearrow	Pressure suit, pressurized, instrument pack III
1			A	Shirt sleeve, no instrument pack		
					<u> </u>	
w .	5500		•	,	^	Shirt sleeve, no instrument pack
series	6000		•	=	A	Shirt sleeve, suspension gear, instrument pack I
I	6500		•	,	_	Shirt sleeve, suspension gear only
Earth,	7000		•		4	Pressure suit, vent flow, suspension gear, instrument pack II
	8000		•^		•	Pressure suit, pressurized, suspension gear, instrument pack II

It can be seen that the open symbols are used to define the experiments conducted under simulated lunar gravity while the full symbols indicate the experiments conducted under earth gravity. The symbol expansion itself signified the type of test conditions. Two identical symbol expansions, but one in full and the other open, indicate that the same test conditions prevailed in both tests and only varied by the gravitational environment.

Although the data was presented according to the requirements of NASA Spec. SP-7013, certain special conditions still occurred in the drawing of data curves which warrant a separate explanation. Table 6 is used to provide this explanation.

TABLE 6 — DATA CURVE INTERPRETATION

The data point for each subject at a given velocity represents either his average for that velocity (if more than one test was run) or a single observation made during the presumed steady state. The average or trend-line for each graph was located through points representing the averages for the data points for the several subjects at each velocity.

Test Series 100)0		
Test Conditions:			
Shirtsleevex	. Pressure si	uit in vent flow	
	Pressure su	uit at 3.5 psig	
Instrument Pack Ix	Instrument	Pack II	
Work Activity walking and running	. Work Varia	ble <u>horizontally</u>	
Gravity: Lunarx	Earth		
Test Location:			
1/6 g Treadmillx	One g Trea	dmill	
<u></u>			
Test Results:			
	X D	x cx	
v	12 B —	16 13	
Number of Tests			
Respiration, respiratory rate		Figure 25	*
respiratory volume expi	red	Figure 26	
Metabolism, metabolic energy expend	liture rate	Figure 27	**
metabolic energy expend per unit length	liture rate	Figure 28	**
oxygen consumption		Figure 29	**
oxygen consumption per	unit length	Figure 30	**
Cardiovascular function, cardiac rate		Figure 31	
Body temperature, mean body temper		Figure 32	
Pressure suit environmental data		Not Obtained	<u> </u>
Comments:			
The arrangement for the test conduc Figure 24.	cted in this ser	ies is shown in	
*The lower respiratory rate of subje may be due to the second wind pheno **Figures 27 through 30 were modifie	omenon.		es.

Figure 24. - Illustration of test arrangement for test series 1000

Figure 25. — Average respiratory rate versus subject velocity walking and running horizontally.

Figure 26. — Average mean respiratory volume versus subject velocity walking and running horizontally.

Figure 27. — Average metabolic energy expenditure rate versus subject velocity walking and running horizontally.

Figure 28. — Average metabolic energy expenditure per unit length versus subject velocity walking and running horizontally.

VOL III

Figure 29. — Average oxygen consumption versus subject velocity walking and running horizontally.

Figure 30. — Average oxygen consumption per unit length versus subject velocity walking and running horizontally.

Figure 31. - Average cardiac rate versus subject velocity walking and running horizontally.

Figure 32. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking and running horizontally.

	Test Series 200	00	
Test Conditions:			
Shirtsleeve		Pressure su	iit in vent flowx
			uit at 3.5 psig
Instrument Pack I_			Pack IIx
Work Activity <u>wa</u>	lking and running	Work Varia	ble horizontally
Gravity: Lunar	X	Earth	
Test Location:			
1/6 g Treadmill	X	One g Trea	dmill
			· · · · · · · · · · · · · · · · · · ·
Test Results:			•
Results for Subject	Α	x B	Cx
Number of Tests		9	12
Respiration, respir	atory rate		Figure 34*
respir	atory v olume expire	ed .	Figure 35
Metabolism, metabo	olic energy expendit	ture rate .	Figure 36
	olic energy expendit it length	ture rate	Figure 37
oxygen	consumption		Figure 38
oxygen	consumption per u	nit length .	Figure 39
Cardiovascular func	tion cardiac rate		Figure 40**
Body temperature,	•	ture .	Figure 41
Pressure suit envir	-	•	Figure 42
Comments:			
The arrangement for Figure 33	the tests conducted	d in this serie	s is shown in
*Respiratory rate for	Subject A could not	t be obtained b	peyond 4 mph
**Figure 40 was modi Cardiac rate for Sub	fied according to in ject A at 5 mph was	termediate av	erages

Figure 33. - !!lustration of test arrangement for test series 2000

Figure 34. — Average respiratory rate versus subject velocity walking and running horizontally.

Figure 35. — Average mean respiratory volume versus subject velocity walking and running horizontally.

Figure 36. — Average metabolic energy expenditure rate versus subject velocity walking and running horizontally.

Figure 37. — Average metabolic energy expenditure per unit length versus subject velocity walking and running horizontally.

Figure 38. — Average oxygen consumption versus subject velocity walking and running horizontally.

Figure 39. - Average oxygen consumption per unit length versus subject velocity walking and running horizontally.

Figure 40. — Average cardiac rate versus subject velocity walking and running horizontally.

Figure 41. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking and running horizontally.

Test conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 42. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, walking and running horizontally.

Test conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Test Series3	000
Test Conditions:	
Instrument Pack I Work Activity walking and running Gravity: Lunar x Test Location: 1/6 g Treadmill x	Pressure suit in vent flow Pressure suit at 3.5 psig x Instrument Pack II x Work Variable horizontally Earth One g Treadmill
Test Results: Results for Subject A Number of Tests	x B C x 13
Respiration, respiratory rate respiratory volume exp	
Metabolism, metabolic energy experimentabolic experimentabolic energy experime	rigure 47** Figure 48**
oxygen consumption per Cardiovascular function, cardiac ra Body temperature, mean body temperature suit environmental data	te Figure 50***
Comments	

The arrangement for the tests conducted in this series is shown in Figure 43. This figure shows the subject walking on the treadmill with the suit pressurized via the ECS in Instrument Pack II, which he is carrying. In this test, respiration and metabolism are monitored by the respirometer contained in the sealed compartment of Pack II which is pressurized at the suit differential pressure level.

- *Respiratory rate for Subject A was obtained only for standing at rest and for Subject B only at rest, .5, 1.0 and 5.0 mph
- **Figures 46 thru 49 were modified according to intermediate averages
- ***Cardiac rate for Subject C at 3 mph was not obtained

Figure 43. - Illustration of test arrangement for test series 3000

Figure 44. — Respiratory rate versus subject velocity walking and running horizontally.

Figure 45. — Average mean respiratory volume versus subject velocity walking and running horizontally.

Figure 46. - Average metabolic energy expenditure rate versus subject velocity walking and running horizontally.

Figure 47. — Average metabolic energy expenditure per unit length versus subject velocity walking and running horizontally.

Figure 48. — Average oxygen consumption versus subject velocity walking and running horizontally.

Figure 49. — Average oxygen consumption per unit length versus subject velocity walking and running horizontally.

Figure 50. — Average cardiac rate versus subject velocity walking and running horizontally.

Figure 51. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking and running horizontally.

Test conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 52. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, walking and running horizontally.

Test Conditions:		
Shirtsleevex	Pressure su	it in vent flow
	Pressure su	nit at 3.5 psig
Instrument Pack I none	Instrument	Pack II
Work Activity walking and running	_ Work Varial	ole <u>horizontally</u>
Gravity: Lunar <u>x</u>	Earth	
Test Location:		
1/6 g Treadmillx	_ One g Trea	dmill
Test Results:		
	Х	Cx
Results for Subject A	8 —	8
Number of Tests —		
Respiration, respiratory rate		Not Obtained
respiratory volume exp	pired .	Figure 54
Metabolism, metabolic energy exper	nditure rate	Figure 55
metabolic energy exper	nditure rate	Figure 56 *
per unit length		Figure 57
oxygen consumption	n unit langth	Figure 58*
oxygen consumption pe	r unit length	Not Obtained
Cardiovascular function, cardiac ra		Not Obtained
Body temperature, mean body temperature		Not Obtained
Pressure suit environmental data	•	-

*Figures 56, and 58 were modified according to intermediate averages

Figure 53. - Illustration of test arrangement for test series 5000

Figure 54. — Average mean respiratory volume versus subject velocity walking and running horizontally.

Figure 55. — Average metabolic energy expenditure rate versus subject velocity walking and running horizontally.

Figure 56. — Average metabolic energy expenditure per unit length versus subject velocity walking and running horizontally.

Figure 57. — Average oxygen consumption versus subject velocity walking and running horizontally.

Figure 58. — Average oxygen consumption per unit length versus subject velocity walking and running horizontally.

Test Series	5500	
Test Conditions:		
Shirtsleevex	Pressure s	uit in vent flow
	Pressure s	uit at 3.5 psig
Instrument Pack I none		Pack II
Work Activity walking	Work Varia	ble <u>horizontally</u>
Gravity: Lunar		X
Test Location:		
1/6 g Treadmill	One g Trea	dmillx*
Test Results:		•
Results for Subject A_	x B	x cx
Number of Tests -	27	612
Pagningtion requiretony rate		Figure 60
Respiration, respiratory rate respiratory volume ex	mired	Figure 61
respiratory volume ex	spireu	
Metabolism, metabolic energy expe	enditure rate	Figure 62
metabolic energy experience per unit length	enditure rate	Not Obtained
oxygen consumption		Figure 63
oxygen consumption p	er unit length	Not Obtained
Cardiovascular function, cardiac r		Figure 64
Body temperature, mean body temp		Not Obtained
Pressure suit environmental data	501 4141 0	Not Obtained
Tressure suit environmentar data		_
Comments:		
The arrangement for the tests cond Figure 59 shows a subject on the tr with the Mueller-Franz meter in us rate.	readmill, with Ins se to measure res	trument Pack I at one side;
*One g treadmill speed limited to 4 mpl	h.	

Figure 59. - Illustration of test arrangement for test series 5500

Figure 60. - Average respiratory rate versus subject velocity walking horizontally.

Test conditions: 1 g, shirtsleeve, no susp. gear, no pack

Figure 61. — Average mean respiratory volume versus subject velocity walking horizontally.

Subject velocity, V, m/s

Figure 62. — Average metabolic energy expenditure rate versus subject velocity walking horizontally.

3

Figure 63. — Average oxygen consumption versus subject velocity walking horizontally.

Figure 64. — Average cardiac rate versus subject velocity walking horizontally.

Test Conditions: 1 g, shirtsleeve, no susp. gear, no pack

Test Series 600	00
Test Conditions:	
Shirtsleevex	Pressure suit in vent flow
	Pressure suit at 3.5 psig
Instrument Pack IX	Instrument Pack II
Work Activity <u>walking</u>	Work Variable horizontally
Gravity: Lunar	Earthx
Test Location:	
1/6 g Treadmill	One g Treadmill x
Test Results:	
Results for Subject A	x B x C x
Number of Tests	6 6 12
Respiration, respiratory rate	Figure 66
respiratory volume expire	ed Figure 67
Metabolism, metabolic energy expendit	ure rate Figure 68
metabolic energy expendit per unit length	ure rate Not Obtained
oxygen consumption	Figure 69
oxygen consumption per u	nit length Not Obtained
Cardiovascular function, cardiac rate	Figure 70
Body temperature, mean body temperature	ture Figure 71
Pressure suit environmental data	Not Obtained

Comments:

The arrangement for the tests conducted in this series is shown in Figure 65. In Figure 65, the subject is wearing the suspension gear, and is also carrying Instrument Pack I with the respirometer. Note the globe thermometer on the framework next to the subject, and the earphone-microphone sets worn by the two operators (are inside the control center) which enable communication between themselves and with the subject.

Figure 65. - Illustration of test arrangement for test series 6000

Figure 66. — Average respiratory rate versus subject velocity walking horizontally.

Figure 67. — Average mean respiratory volume versus subject velocity walking horizontally.

Figure 68. — Average metabolic energy expenditure rate versus subject velocity walking horizontally

Figure 69. — Average oxygen consumption versus subject velocity walking horizontally.

Figure 70. — Average cardiac rate versus subject velocity walking horizontally.

Test Conditions: 1 g, shirtsleeve, susp. gear, pack !

Figure 71. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking horizontally.

	Pressure suit in vent flowPressure suit at 3.5 psig
Instrument Pack I none, but suspension gear	Instrument Pack II
Charity, Inner	Work Variable horizontally
Test Location:	Earthx
1/6 g Treadmill	One g Treadmillx
Test Results:	·
Results for Subject A x	B C x
Number of Tests 6	12
Respiration, respiratory rate	Figure 73*
respiratory volume expired	Figure 74
Metabolism, metabolic energy expenditure	e rate Figure 75
metabolic energy expenditure per unit length	
oxygen consumption	Not Obtained
oxygen consumption per unit l	length Figure 76
Cardiovascular function. cardiac rate	Figure 77
Body temperature, mean body temperature	
Pressure suit environmental data	Not Obtained
	-
Comments:	
The arrangement for the tests conducted in Figure 72. Figure 72 shows a shirtsleeve t gear added.	this series is shown in est with the suspension
*Respiratory rate for Subject A was not obtain	ined at 2.0 and 3.0 mph

Figure 72. - Illustration of test arrangement for test series 6500.

Figure 73. — Average respiratory rate versus subject velocity walking horizontally.

Test conditions: 1 g, shirtsleeve, susp. gear, no pack

Figure 74. — Average mean respiratory volume versus subject velocity walking horizontally.

Test conditions: 1 g, shirtsleeve, susp. gear, no pack

Figure 75. - Average metabolic energy expenditure rate versus subject velocity walking horizontally.

Test Conditions: 1 g, shirtsleeve, susp. gear, no pack

Figure 76. — Average oxygen consumption versus subject velocity walking horizontally.

Test Conditions: 1 g, shirtsleeve, susp. gear, no pack

Figure 77. — Average cardiac rate versus subject velocity walking horizontally.

Test Conditions: 1 g, shirtsleeve, susp. gear, no pack

Test Series	7000	
Test Conditions:		
Shirtsleeve	Pressure a	suit in vent flowx
	Pressure s	
Instrument Pack I		Pack IIx
Work Activity walking		able <u>horizontally</u>
Gravity: Lunar		X
Test Location:		
1/6 g Treadmill	One g Tre	admillx
Test Results:		·
Results for Subject A_	x B	C x
Number of Tests	6	6
		• • •
Respiration, respiratory rate		Figure 79
respiratory volume exp	pired	Figure 80
Metabolism, metabolic energy exper	nditure rate	Figure 81
metabolic energy exper per unit length	nditure rate	Not Obtained
oxygen consumption		Figure 82
oxygen consumption per	r unit length	Not Obtained
Cardiovascular function, cardiac rate		Figure 83
Body temperature, mean body temperature		Figure 84
Pressure suit environmental data		Not Obtained
Comments:		
The arrangement for the tests cond In Figure 78, the subject is wearing only, controlled by the ECS in Instruction and metabolic rate is made and pack I, which rests on the frame all physiological monitoring circuits, of the subject's rear.	g the pressure s rument Pack II, nonitored by the head of him. Th	wit, with ventilation flow which he is carrying. His respirometer in Instrument ne umbilical lines for the

Figure 78. - Illustration of test arrangement for test series 7000

Figure 79. — Average respiratory rate versus subject velocity walking horizontally.

Test Conditions: 1 g, pressure suit-vent flow, susp. gear, pack II

Figure 80. - Average mean respiratory volume versus subject velocity walking horizontally.

Test Conditions: 1 g, pressure suit-vent flow, susp. gear, pack II

Figure 81. - Average metabolic energy expenditure rate versus subject velocity walking horizontally.

Test Conditions: 1 g, pressure suit-vent flow, susp. gear, pack II

Figure 82. — Average oxygen consumption versus subject velocity walking horizontally.

Test Conditions: 1 g, pressure suit-vent flow, susp. gear, pack ll

Figure 83. — Average cardiac rate versus subject velocity walking horizontally.

Test Conditions: Comparison of 1 g, test conditions between vent flow and pressure

Figure 84. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking horizontally.

Test Conditions: 1 g, pressure suit-vent flow, susp. gear, pack II

Pressur nstrum Work Va Earth <u></u>	re suit in versuit at 3 ent Pack I ariablex readmill	Ihorizont	x x ally
nstrum Work Va Earth <u></u>	ent Pack I ariablex	Ihorizont	x ally
nstrum Work Va Earth <u></u>	ent Pack I ariablex	Ihorizont	x ally
Earth <u> </u>	X	.,.	· · · · · · · · · · · · · · · · · · ·
One g T	readmill_		X
One g T	readmill_		X
			•
			·
			v
В		C	3

Respiration, respiratory rate		gure 86	
	Fig	gure 87	
a roto	Fig	gure 88	
	No	t Obtained	l
	Fig	Figure 89	
oxygen consumption oxygen consumption per unit length		Not Obtained	
	Fi	gure 83	
Cardiovascular function, cardiac rate Body temperature, mean body temperature			
Pressure suit environmental data			
		-	
€	_	e rate Figure 1 Figure 1 Figure 2 Figure 2 Figure 2 Figure 3 Figure 2 Figure 2 Figure 3 Figur	Not Obtained Figure 89 Not Obtained Figure 83 Figure 83

Figure 85. - Illustration of test arrangement for test series 8000

Figure 86. — Average respiratory rate versus subject velocity walking horizontally.

Figure 87. - Average mean respiratory volume versus subject velocity walking horizontally.

Figure 88. — Average metabolic energy expenditure rate versus subject velocity walking horizontally.

Figure 89. — Average oxygen consumption versus subject velocity walking horizontally.

Figure 90. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity walking horizontally.

Figure 91. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, walking horizontally.

Test Conditions:			
Shirtsleevex	Pressure suit in vent flow		
	Pressure suit at 3.5 psig		
Instrument Pack IX	Instrument Pack II Work Variableascending at 10° Earth		
Work Activity walking and running			
Gravity: Lunarx			
Test Location:			
1/6 g Treadmillx	One g Treadmill		
, , ,	One g Treadmill		
Test Results:	•		
Results for Subject A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Number of Tests	3 1		
Respiration, respiratory rate	Figure 92		
respiratory volume expire	ed Figure 93		
Metabolism, metabolic energy expendi	Figure 04		
metabolic energy expendi	ture rate		
per unit length	Figure 95		
oxygen consumption	Figure 96		
oxygen consumption per u	nit length Figure 97		
Cardiovascular function, cardiac rate	Figure 98		
Body temperature, mean body tempera	Diama 00		
Pressure suit environmental data	Not Obtained		
·	·		

Figure 92. — Average respiratory rate versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 93. — Average mean respiratory volume versus subject velocity ascending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 94. — Average metabolic energy expenditure rate versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g shirtsleeve, susp. gear, pack I

Figure 95. — Average metabolic energy expenditure per unit length versus subject velocity ascending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Subject velocity, V, m/s
Figure 96. — Average oxygen consumption versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Subject velocity, V, m/s
Figure 97. — Average oxygen consumption per unit length versus subject velocity ascending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 98. — Average cardiac rate versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 99. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending 10 degrees walking and running.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Shirtsleeve		Pressure suit at 3.5 psig		
	walking and running			
Gravity: Lu	nar <u>X</u>	Earth		
Test Location:	v			
1/6 g Tread	millx	One g Tread	dmill	
			-	
Test Results:				
Results for	Subject A	В	Cx	
Number of	Cests		7	
Descripation	no animatomy mata		Figure 100 *	
Respiration, respiratory rate respiratory volume expir	ed .	Figure 93		
· 1 11			Figure 101	
Metabolism	Metabolism, metabolic energy expendi		116410 101	
metabolic energy expendi per unit length	iture rate	Figure 95		
	oxygen consumption		Figure 102 *	
	oxygen consumption			
	oxygen consumption oxygen consumption per u	ınit length	Figure 97	
Cardiovasci	oxygen consumption per t			
	oxygen consumption per u		Figure 97	
Body temper	oxygen consumption per t		Figure 97 Figure 103	

Figure 100. — Respiratory rate versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 101. — Metabolic energy expenditure rate versus subject velocity in ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

122

Figure 102. — Oxygen consumption versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 103. — Cardiac rate versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 104. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 105. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity ascending at 10 degrees walking and running.

Test Conditions:				
Shirtsleeve _		Pressure suit in vent flow		
		Pressure s	suit at 3.5 psigx	
Instrument I	Pack I			
Work Activit	ty <u>walking</u>			
	nar <u>x</u>			
Test Location:				
1/6 g Tread	millx	One g Trea	One g Treadmill	
-/ o g 11000				
			•	
Test Results:				
Results for S	Subject A	В —	Cx	
Number of T	'ests		5	
Respiration	respiratory rate		Figure 106 *	
ttespii ation,	respiratory volume expir	ed	Figure 93	
	-		Ti'	
Metabolism,	metabolic energy expenditure rate		Figure 107	
	metabolic energy expendi per unit length	ture rate	Figure 95	
	oxygen consumption	•	Figure 108*	
	oxygen consumption per u	nit length	Figure 97	
Cardiova con	lar function cardiac rate		Figure 109	
Cardiovascular function, cardiac rate Body temperature, mean body temperature			Figure 110	
Pressure suit environmental data		Figure 111		
	— and the state of		-	
Comments:				
*Figures 106	thru 108 were modified ac	cording to inte	rmediate averages	

Figure 106. — Respiratory rate versus subject velocity ascending at 10 degrees walking.

Figure 107. — Average metabolic energy expenditure rate versus subject velocity ascending at 10 degrees walking.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Subject velocity, V, m/s consumption versus subject velocity ascending

Figure 108. — Oxygen consumption versus subject velocity ascending at 10 degrees walking.

Figure 109. — Cardiac rate versus subject velocity ascending at 10 degrees walking and running.

Figure 110. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 10 degrees walking.

Figure 111. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity ascending at 10 degrees walking and running.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Test Conditions: Shirtsleevex		suit in vent flow	
Instrument Pack Ix Work Activity _walking Gravity: Lunar	Instrument	Pressure suit at 3.5 psig Instrument Pack II Work Variable ascending at 10° Earthx	
Test Location: 1/6 g Treadmill	One g Tre	admillx	
Test Results:			
Results for Subject Number of Tests	A B	C X 11	
Respiration, respiratory rate respiratory volume	e expired	Figure 112 Figure 113*	
Metabolism, metabolic energy e metabolic energy e per unit length		Figure 114 Not Obtained	
oxygen consumption oxygen consumption		Figure 115 Not Obtained	
Cardiovascular function, cardiae Body temperature, mean body te Pressure suit environmental data	Figure 116 Figure 117 Not Obtained		
Comments: *The respiratory volume expired by	by Subject A was not	obtained at . 5 mph	

Figure 112. — Average respiratory rate versus subject velocity ascending at 10 degrees walking.

Figure 113. — Average mean respiratory volume versus subject velocity ascending at 10 degrees walking.

Figure 114. — Average metabolic energy expenditure rate versus subject velocity ascending at 10 degrees walking.

Figure 115. — Average oxygen consumption versus subject velocity ascending at 10 degrees walking.

Figure 116. — Average cardiac rate versus subject velocity ascending at 10 degrees walking.

Subject velocity, V, m/s
Figure 117. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 10 degrees walking.

Test Series 10	30	Control of the Contro		
Test Conditions:				
Shirtsleeve X	Pressure a	suit in vent flow		
	Pressure suit at 3.5 psig			
Instrument Pack I X	Instrument Pack II			
Work Activity walking		Work Variable ascending at 20°		
Gravity: Lunar X	Gravity: Lunar X Farth			
Test Location:				
1/6 g TreadmillX	One g Tre	acmill		
Test Results:	The second secon			
Results for Subject A	X B	х С	X	
Number of Tests	7 ************************************	6	6	
Respiration, respiratory rate		Figure 118		
respiratory volume expir	ed	Figure 119		
Metabolism, metabolic energy expends	ture rate	Figure 120		
metabolic energy expenditure raper unit length		Figure 121		
oxygen consumption		Figure 122		
oxygen consumption per unit length		Figure 123		
Cardiovascular function, cardiac rate		Figure 124		
Body temperature. mean body tempera	Figure 125			
Pressure suit environmental data		Not Obtained		
Comments:		See T Proceedings with the second sec		

Figure 118. — Average respiratory rate versus subject velocity ascending at 20 degrees walking.

Figure 119. — Average mean respiratory volume versus subject velocity ascending at 20 degrees walking.

Comparison of 1/6 g test conditions between shirtsleeve, vent flow and pressure

Figure 120. — Average metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking.

Figure 121. — Average metabolic energy expenditure per unit length versus subject velocity in ascending at 20 degrees walking.

Comparison of 1/6 g test conditions between shirtsleeve, vent flow and pressure

Figure 122. — Average oxygen consumption versus subject velocity ascending at 20 degrees walking.

velocity ascending at 20 degrees walking.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 124. — Average cardiac rate versus subject velocity ascending at 20 degrees walking.

Figure 125. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 20 degrees walking.

Test Series 2030				
Test Conditions:				
Shirtsleeve	Pressure suit in vent flowX			
	Pressure suit at 3.5 psig			
Instrument Pack I	Instrument Pack IIx			
Work Activity <u>walking</u>	Work Variable ascending at 20°			
Gravity: Lunarx	Earth			
Test Location:				
1/6 g TreadmillX	One g Treadmill			
Test Results:				
Results for Subject A	B Cx			
Number of Tests	6			
Respiration, respiratory rate	Figure 126*			
respiratory volume expire	d			
Metabolism, metabolic energy expenditu	ure rate Figure 127			
metabolic energy expenditu per unit length				
oxygen consumption	Figure 128			
oxygen consumption per un	it length Figure 123			
Cardiovascular function, cardiac rate	Figure 129			
Body temperature, mean body temperati	T' 190			
Pressure suit environmental data	Figure 131			
*Figure 126 was modified according to intermediate averages				

Figure 126. — Respiratory rate versus subject velocity ascending at 20 degrees walking.

Figure 127. — Metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking.

Figure 128. — Oxygen consumption versus subject velocity ascending at 20 degrees walking.

Figure 129. — Cardiac rate versus subject velocity ascending at 20 degrees walking.

Figure 130. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 20 degrees walking.

Figure 131. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, ascending at 20 degrees walking.

	Test Series30)30		
Test Conditions:				
Shirtsleeve .		Pressure s	suit in vent flow	
		Pressure suit at 3.5 psigx		
Instrument 1			astrument Pack IIx	
Work Activi	Work Activity walking		Work Variable ascending at 20°	
Gravity: Lu	Gravity: Lunarx		Earth	
Test Location:				
1/6 g Treadmillx One g Treadmill		admill		
Test Results:				
Results for S	Subject A	В	Cx	
Number of T			3	
Respiration, respiratory rate			Figure 132	
	respiratory volume expire	d	Figure 119	
Metabolism.	metabolic energy expendit	ure rate	Figure 133	
	metabolic energy expendit per unit length	ure rate	Figure 121	
	oxygen consumption	·	Figure 134	
	oxygen consumption per un	it length	Figure 123	
Cardiovascular function, cardiac rate		Figure 135		
Body temperature, mean body temperature			Figure 136	
Pressure suit environmental data		Figure 137		
	····		-	
Comments:				
		•		
			İ	

VOL III

Figure 132. — Respiratory rate versus subject velocity ascending at 20 degrees walking.

Figure 133. — Metabolic energy expenditure rate versus subject velocity ascending at 20 degrees walking.

159

Subject velocity, V, m/s

Figure 134. — Oxygen consumption versus subject velocity ascending at 20 degrees walking.

Figure 135. — Cardiac rate versus subject velocity ascending at 20 degrees walking.

Figure 136. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 20 degrees walking.

Figure 137. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, ascending at 20 degrees walking.

Test Series 1040				
Test Conditions: Shirtsleevex Instrument Pack Ix Work Activitywalking Gravity: Lunarx Test Location:	Pressure suit in vent flow Pressure suit at 3.5 psig Instrument Pack II Work Variableascending at 30° Earth			
1/6 g Treadmillx	One g Treadmill			
Test Results:				
Results for Subject A Number of Tests	x B			
Respiration, respiratory rate respiratory volume expiratory		gure 138 gure 139		
Metabolism, metabolic energy expend metabolic energy expend per unit length	ture rate	gure 140 gure 141		
oxygen consumption oxygen consumption per		gure 142 gure 143		
Cardiovascular function, cardiac rate Body temperature, mean body temper Pressure suit environmental data	ature Fi	gure 144 gure 145 ot Obtained		
Comments:				
,				

Figure 138. — Average respiratory rate versus subject velocity ascending at 30 degrees walking.

Figure 139. — Average mean respiratory volume versus subject velocity ascending at 30 degrees walking.

Figure 140. — Average metabolic energy expenditure rate versus subject velocity ascending at 30 degrees walking.

Figure 141. — Average metabolic energy expenditure per unit length versus subject velocity ascending at 30 degrees walking.

Figure 142. — Average oxygen consumption versus subject velocity ascending at 30 degrees walking.

Figure 143. — Average oxygen consumption per unit length versus subject velocity ascending at 30 degrees walking.

Figure 144. — Average cardiac rate versus subject velocity ascending at 30 degrees walking.

Figure 145. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity ascending at 30 degrees walking.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Subject velocity, V, m/s

Test Series1050				
Test Conditions:				
Shirtsleeve .	<u>x</u>	Pressure s	suit in vent flow	
		Pressure suit at 3.5 psig		
Instrument 1	Pack Ix	Instrument Pack II		
Work Activi	ty walking and running	Work Variable <u>descending at 10°</u>		
Gravity: Lu	nar <u>x</u>	Earth		
Test Location:	•			
1/6 g Tread	millx*	One g Treadmill		
		• •	•	
Test Results:				
Results for S	Subject A	х в	Cx	
Number of T	•	8	5	
Recoination	no animatany na ta		Figure 146*	
Respiration,	respiratory rate	ر. د	Figure 147	
	respiratory volume expire			
Metabolism,	metabolic energy expendi		Figure 148	
-	metabolic energy expendi- per unit length	ture rate	Figure 149	
	oxygen consumption		Figure 150	
	oxygen consumption per u	nit length	Figure 151	
Cardiovascu	Cardiovascular function, cardiac rate		Figure 152*	
Body temper	Body temperature, mean body temperature		Figure 153	
Pressure suit environmental data		Not Obtained		
*No respiratory rate and cardiac rate was obtained for Subject C at 3.0 mph Subject A only performed tests at 4.0 and 5.0 mph				
*1/6 g trea	dmill speed limited to 5 m	ph.		

Figure 146. — Average respiratory rate versus subject velocity descending at 10 degrees walking and running.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 147. — Average mean respiratory volume versus subject velocity descending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 148. — Average metabolic energy expenditure rate versus subject velocity descending at 10 degrees walking and running.

Figure 149. — Average metabolic energy expenditure per unit length versus subject velocity descending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Subject velocity, V, m/s

Figure 150. — Average oxygen consumption versus subject velocity descending at 10 degrees walking and running.

Figure 151. — Average oxygen consumption per unit length versus subject velocity descending at 10 degrees walking and running.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 152. — Average cardiac rate versus subject velocity descending at 10 degrees walking and running.

Figure 153. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 10 degrees walking and running.

Test Series		
Test Conditions:		
Shirtsleeve	Pressure suit in vent flowx	
	Pressure suit at 3.5 psig	
Instrument Pack I	Instrument Pack IIx	
Work Activity walking	Work Variabledescending at 10°	
Gravity: Lunarx		
Test Location:		
1/6 g Treadmillx ·	One g Treadmill	
Test Results:		
Results for Subject A	B Cx	
Number of Tests		
Respiration, respiratory rate	Figure 154*	
respiratory volume expir	red Figure 147	
Metabolism, metabolic energy expend	iture rate Figure 155	
metabolic energy expend per unit length	iture rate Figure 149	
oxygen consumption	Figure 156	
oxygen consumption per	unit length Figure 151	
Cardiovascular function, cardiac rate	Figure 157**	
Body temperature, mean body temper	TV 1 EQ	
Pressure suit environmental data	Figure 159	
	· -	
Comments:		
*No respiratory rate was obtained for Subject C at 1.0 mph		
**No cardiac rate was obtained for Subject C at 1.0 thru 3.0 mph		

Figure 154. — Respiratory rate versus subject velocity descending at 10 degrees walking.

Subject velocity, V, m/s
Figure 155. — Metabolic energy expenditure rate versus subject velocity

descending at 10 degrees walking.

Subject velocity, V, m/s

Figure 156. — Oxygen consumption versus subject velocity descending at 10 degrees walking.

Figure 157. — Cardiac rate versus subject velocity descending at 10 degrees walking.

Figure 158. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 10 degrees walking.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 159. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity descending at 10 degrees walking.

Test Series 3050			
Test Conditions:			
Shirtsleeve	Pressure suit in vent flow		
	Pressure suit at 3.5 psigx		
Instrument Pack I	Instrument Pack IIx		
Work Activity walking	Work Variable descending at 10°		
Gravity: Lunarx	Earth		
Test Location:			
1/6 g Treadmillx	One g Treadmill		
Test Results:			
Results for Subject A	B C x		
Number of Tests			
Respiration, respiratory rate	Figure 160		
respiratory volume expi	ired Figure 147		
Metabolism, metabolic energy expend			
metabolic energy expend per unit length			
oxygen consumption	Figure 162		
oxygen consumption per	unit length Figure 151		
Cardiovascular function, cardiac rate	e Figure 163		
Body temperature, mean body temper	rature Figure 164		
Pressure suit environmental data	Figure 165		
Comments:			
·			

Figure 160. — Respiratory rate versus subject velocity descending at 10 degrees walking.

Figure 161. — Metabolic energy expenditure rate versus subject velocity descending at 10 degrees walking.

Figure 162. — Oxygen consumption versus subject velocity descending at 10 degrees walking.

Figure 163. — Cardiac rate versus subject velocity descending at 10 degrees walking.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 164. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 10 degrees walking.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 165. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, descending at 10 degrees walking.

Test Se	ries1060		
Test Conditions:			
Shirtsleevex	Pressure	suit in vent flow	
	Pressure	suit at 3.5 psig	
Instrument Pack I X		Instrument Pack II	
Work Activity walking		Work Variable <u>descending at 20</u> °	
Gravity: Lunarx	Earth	Earth	
Test Location:			
1/6 g Treadmill x*	One g Tre	One g Treadmill	
Test Results:			
Results for Subject		Cx	
Number of Tests	3	3	
Respiration, respiratory rat	te	Figure 166 **	
respiratory vol	lume expired	Figure 167	
Metabolism, metabolic ener	Metabolism, metabolic energy expenditure rate		
metabolic energy expenditure rate per unit length		Figure 169	
oxygen consum	oxygen consumption		
oxygen consumption per unit length		Figure 171	
Cardiovascular function, cardiac rate		Figure 172	
Body temperature, mean boo	Body temperature, mean body temperature		
Pressure suit environmental data		Not obtained	
Comments: *1/6 g treadmill speed limited to 2 mph			
**The respiratory rate of Subject A at 2 mph appears to be incorrect			

Figure 166. — Average respiratory rate versus subject velocity descending at 20 degrees walking.

Figure 167. — Average mean respiratory volume versus subject velocity descending at 20 degrees walking.

Figure 168. — Average metabolic energy expenditure rate versus subject velocity descending at 20 degrees walking.

Figure 169. — Average metabolic energy expenditure per unit length versus subject velocity descending at 20 degrees walking.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 170. — Average oxygen consumption versus subject velocity descending at 20 degrees walking.

Figure 171. — Average oxygen consumption per unit length versus subject velocity descending at 20 degrées walking.

Subject velocity, V, m/s

1

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

3

Figure 172. — Average cardiac rate versus subject velocity descending at 20 degrees walking.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 173. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity descending at 20 degrees walking.

Test Series	1120		
Test Conditions:			
Shirtsleevex	Pressure suit in vent flow Pressure suit at 3.5 psig		
Instrument Pack Ix	· · · · · · · · · · · · · · · · · · ·		
Work Activityjumping			
Gravity: Lunarx	Earth		
Test Location:			
1/6 g Treadmillx	One g Treadmill		
-, og 110mmm			
Test Results:			
Results for Subject A_	x B x C x		
Number of Tests	<u> </u>		
Respiration, respiratory rate	Figure 174		
respiratory volume exp	rired Figure 175 *		
Metabolism, metabolic energy exper	Dim 170		
metabolic energy exper			
per unit length	Figure 177		
oxygen consumption	Figure 178		
oxygen consumption per	r unit length Figure 179		
Cardiovascular function, cardiac ra	te Figure 180		
Body temperature, mean body tempe	erature Figure 181		
Pressure suit environmental data	Not obtained		
<u> </u>	<u>-</u>		
Comments:			
*Only Subjects A and B performed tes	ta at 2.0 and 4.0 mmh		
omy subjects A and B performed tes	is at 3.0 and 4.0 mpn		

Figure 174. — Average respiratory rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 175. — Average mean respiratory volume versus subject velocity jumping horizontally.

Subject velocity, V, m/s
Figure 176. — Average metabolic energy expenditure rate versus subject velocity jumping horizontally.

Figure 177. — Average metabolic energy expenditure per unit length versus subject velocity jumping horizontally.

Comparison of 1/6 g, test conditions between shirtsleeve vent flow and pressure

Figure 178. — Average oxygen consumption versus subject velocity jumping horizontally.

Subject velocity, V, m/s

Figure 179. — Average oxygen consumption per unit length versus subject velocity jumping horizontally.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 180. — Average cardiac rate versus subject velocity jumping horizontally.

Figure 181. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity jumping horizontally.

Test Series	2120				
Test Conditions:					
Shirtsleeve	Pressure suit in vent flowx				
	Pressure suit at 3.5 psig				
Instrument Pack I	Instrument Pack IIx				
Work Activity jumping	Work Variable horizontally				
Gravity: Lunarx	Earth				
Test Location:					
1/6 g Treadmillx	One g Treadmill				
·					
Test Results:					
Results for Subject A	x B	Cx			
Number of Tests	4	4			
Respiration, respiratory rate		Figure 182*			
respiratory volume expi	red	Figure 183			
	Metabolism, metabolic energy expenditure rate				
metabolic energy expenditure rate per unit length		Figure 177			
oxygen consumption		Figure 185			
oxygen consumption per	unit length	Figure 179			
Cardiovascular function, cardiac rate		Figure 186			
Body temperature, mean body temper		Figure 187			
Pressure suit environmental data		Figure 188			
·		-			
Comments:					
*Respiratory rate for subject A was:	not obtained				
mospitatory rate for subject A was	IIOI Ophaliioa				
,					

Figure 182. — Respiratory rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

vol III

Figure 183. - Average mean respiratory volume versus subject velocity jumping horizontally.

Figure 184. — Average metabolic energy expenditure rate versus subject velocity jumping horizontally.

Subject velocity, V, m/s
Figure 185. — Average oxygen consumption versus subject velocity jumping horizontally.

Figure 186. — Average cardiac rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 187. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity jumping horizontally.

Figure 188. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Test Series	3120				
Test Conditions:					
Shirtsleeve	Pressure s	Pressure suit in vent flow			
	Pressure s	Pressure suit at 3.5 psigx			
Instrument Pack I	Instrument	Pack IIx			
Work Activity jumping	Work Varia	Work Variable horizontally			
Gravity: Lunar <u>x</u>	Earth				
Test Location:					
1/6 g Treadmillx	One g Treadmill				
Test Results:					
Results for Subject A_	x B	Cx			
Number of Tests	4	4			
Pagnization regnizatory rate		Figure 189*			
-	Respiration, respiratory rate				
respiratory volume expired		Figure 190 Figure 191			
	polism, metabolic energy expenditure rate				
metabolic energy expenditure rate per unit length		Figure 177			
oxygen consumption		Figure 192			
oxygen consumption per unit length		Figure 179			
Cardiovascular function, cardiac rate		Figure 193			
Body temperature, mean body temperature		Figure 194			
Pressure suit environmental data		Figure 195			
<u> </u>		•			
Comments:					
*Only the respiratory rate for subj	ect C standing at	rest was obtained			
omy me respiratory rate for subj	cot o sumaing at	TODY Man operation.			
·					

Figure 189. — Average respiratory rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 190. — Average mean respiratory volume versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 191. — Average metabolic energy expenditure rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 192. — Average oxygen consumption versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 193. — Average cardiac rate versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 194. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack 11

Subject velocity, V, m/s
Figure 195. - Ambient (globe thermometer) and pressure suit (inlet and outlet)
ventilating air temperatures, versus subject velocity jumping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Test Series	1180				
Test Conditions:					
Shirtsleevex	Pressure s	Pressure suit in vent flow			
	Pressure s	Pressure suit at 3.5 psig			
Instrument Pack IX		Instrument Pack II			
Work Activitystair stepping	Work Varia	Work Variable ascend. & descend, at 35°			
Gravity: Lunarx	Earth	Earth			
Test Location: *					
1/6 g Treadmill	One g Trea	One g Treadmill			
	· -				
Test Results:					
Results for Subject A_	x B	x	С —	x	
Number of Tests -	B 	_5		5	
Number of Tests					
Respiration, respiratory rate		Figure 197			
respiratory volume expired		Figure 198			
Metabolism, metabolic energy expe	sm, metabolic energy expenditure rate		Figure 199		
metabolic energy expe per unit length	metabolic energy expenditure rate		Figure 200		
oxygen consumption			Figure 201		
oxygen consumption per unit length		Figu	Figure 202		
Cardiovascular function, cardiac ra	· -		Figure 203		
Body temperature, mean body temperature		Figu	Figure 204		
Pressure suit environmental data		Not obtained			
Comments:					
The arrangement for the tests conducted in this series is shown in Figure 196 .					
* See discussion on following page.					

Stair Stepping. - Since the biomechanical studies included stair stepping, it was desirable to include this type of activity in the physiological tests. The stairs used are described fully in Volume I, Part 2. There were 18 steps, each having seven inch rise with ten inch tread. The resulting flight of stairs made an angle of 35° with the simulated "horizontal" of the LGS.

The inherent constraint of the LGS support system made it necessary, in the physiological study, for the subject to climb upward facing forward, and then in effect to back down the stairs. This process was repeated at various stepping rates, for seven or eight minutes at each velocity in the shirt sleeve condition, for four to seven minutes in the ventilated pressure suit condition, and for three minutes in the pressurized suit condition. Comparable tests at one g were not performed.

The distance covered by the subject, as used in the computations, was measured along the angle of the stairs. The velocity of progression was calculated from the total distance (up and down) accumulated in the time period of each test. Actual velocities achieved were in the range from .25 to 1.89 mph (.5 to 3 km/h). Figure 196 shows a subject on the stairs, in shirt sleeve suit, carrying instrument pack I.

Figure 196. — Illustration of test arrangement for test series 1180.

Figure 197. — Average respiratory rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 198. — Average mean respiratory volume versus subject velocity stair stepping.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Subject velocity, V, m/s

Figure 199. — Average metabolic energy expenditure rate versus subject velocity in stair stepping.

Figure 200. — Average metabolic energy expenditure per unit length versus subject velocity stair stepping.

Figure 201. — Average oxygen consumption versus subject velocity stair stepping.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 202. — Average oxygen consumption per unit length versus subject velocity stair stepping

Figure 203. — Average cardiac rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 204. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity stair stepping.

Test Series	2180	
Test Conditions:		
Shirtsleeve	Pressure suit in vent flowx	
	Pressure suit at 3.5 psig	
Instrument Pack I	• •	
Work Activity stair stepping	Work Variable ascend. & descend at 35	
Gravity: Lunarx	Earth	
Test Location: *		
1/6 g Treadmill One g Treadmill		
Test Results:		
Results for Subject A	B CX	
Number of Tests	5	
Respiration, respiratory rate	ation, respiratory rate Figure 206	
respiratory volume expire	ed Figure 198	
Metabolism, metabolic energy expendit	ture rate Figure 207	
metabolic energy expendit per unit length		
oxygen consumption	Figure 209	
oxygen consumption per u	nit length Figure 210	
Cardiovascular function, cardiac rate	Figure 211	
Body temperature, mean body temperature.	ture Figure 212	
Pressure suit environmental data	Figure 213	
Comments: The arrangement for the tests conducte Figure 205. *See Test 1180 Sheet.	ed in this series is shown in	

Figure 205. - Illustration of test arrangement for test series 2180

Figure 206. — Respiratory rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 207. — Metabolic energy expenditure rate versus subject velocity stair stepping.

Subject velocity, V, m/s

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 208. — Metabolic energy expenditure per unit length versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 209. — Oxygen consumption versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 210. — Oxygen consumption per unit length versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 211. — Cardiac rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 212. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Subject velocity, V, m/s

Figure 213. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity, stair stepping.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Test Series	3180			
Test Conditions:				
Shirtsleeve	Pressure suit in vent	flow		
	Pressure suit at 3.5 p			
Instrument Pack I		_		
Work Activitystair stepping		Work Variable ascend. & descend. at 35		
Gravity: Lunarx				
Test Location: *				
1/6 g Treadmill				
Test Results:				
Results for Subject	А В	. C <u>x</u>		
Number of Tests		4		
	12.			
Respiration, respiratory rate	771	Figure 215** Figure 198		
respiratory volume	expiredrigure	190		
Metabolism, metabolic energy e	xpenditure rate Figure	216		
metabolic energy e per unit length	xpenditure rateFigure	217		
oxygen consumption	Figure	218		
oxygen consumption	per unit length Figure	219		
Cardiovascular function, cardiae	rateFigure	Figure 220**		
Body temperature, mean body te		Figure 221		
Pressure suit environmental dat	FigureFigure	222		
Comments:				
The arrangement for the tests of Figure 214	onducted in this series is shown	n in		
* See Test 1180 Sheet.				
** Only one data point was obtain	ed for subject C at .5 mph.			

Figure 214. - Illustration of test arrangement for test series 3180

Figure 215. — Respiratory rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 216. — Metabolic energy expenditure rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 217. — Metabolic energy expenditure per unit length versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 218. — Oxygen consumption versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Subject velocity, V, m/s
Figure 219. — Oxygen consumption per unit length versus subject velocity stair stepping.

. 25

Subject velocity, V, km/h

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

. 75

Figure 220. — Cardiac rate versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 221. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity stair stepping

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

258

Figure 222. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity stair stepping.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Shirtsleeve _	X	Pressure s	uit in vent flow	
Sitt taleeve		Pressure suit at 3.5 psig		
Instrument P	Pack IX			
Work Activit	y loping			
	nar <u> </u>	Earth		
Test Location:				
1/6 g Treadr	eadmillx One g Tre		idmill	
	· · · · · · · · · · · · · · · · · · ·		-	
Test Results:				
Results for S	Subject A		C	
Number of T	ests		4	
Respiration, respiratory rate			Figure 223	
,	respiratory volume expi	red	Figure 224	
Metabolism.			Figure 225	
	Metabolism, metabolic energy expenditure rate metabolic energy expenditure rate per unit length oxygen consumption		Figure 226	
			Figure 227	
oxygen consumption per unit length		unit length	Figure 228	
Cardiovascular function, cardiac rate		Figure 229		
Body temperature, mean body temperature		Figure 230		
Pressure suit environmental data		Not obtained		
			-	

, 260

Figure 223. — Average respiratory rate versus subject velocity loping horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 224. — Average mean respiratory volume versus subject velocity loping horizontally.

Figure 225. — Average metabolic energy expenditure rate versus subject velocity loping horizontally.

Figure 226. — Average metabolic energy expenditure per unit length versus subject velocity loping horizontally.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 227. — Average oxygen consumption versus subject velocity loping horizontally.

Figure 228. — Average oxygen consumption per unit length versus subject velocity loping horizontally.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Figure 229. — Average cardiac rate versus subject velocity loping horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 230. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity loping horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack 1

					٠
Shirtsleeve			Pressure suit in vent flowx		
			Pressure s	suit at 3.5 psig_	X
Instrument P	ack I		Instrument Pack II		· · · · · · · · · · · · · · · · · · ·
Work Activity	y <u>loping</u>		Work Variable horizontally		
Gravity: Lur	nar <u> </u>		Earth		
est Location:					
1/6 g Treadr	6 g Treadmill X One g Tre			admill	
'est Results:					
Results for S	ubiect	Α	х в	C _	x
Number of To	•				
_	•			Di 001	
Respiration, respiratory rate				Figure 231	
	respiratory volu	me expire	ed	Figure 232	
Metabolism,	metabolic energ	y expendit	ure rate	Figure 233	
	metabolic energy per unit length	y expendit	ure rate	Figure 226	
	oxygen consumpt	ion		Figure 234	, , , , , , , , , , , , , , , , , , , ,
	oxygen consumpt	tion per u	nit length	Figure 228	
Cardiovascul	ar function card	liac rate		Figure 235	
Cardiovascular function, cardiac rate Body temperature, mean body temperature		Figure 236			
	t environmental	_		Figure 237	
				-	

Figure 231. — Average respiratory rate versus subject velocity loping horizontally.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 232. — Average mean respiratory volume versus subject velocity loping horizontally.

Figure 233. — Average metabolic energy expenditure rate versus subject velocity loping horizontally.

Figure 234. — Average oxygen consumption versus subject velocity loping horizontally

Test Conditions: 1/6 a, pressure suit-vent flow, susp. gear

Figure 235. — Average cardiac rate versus subject velocity loping horizontally.

Test Conditions: 1/6 g, pressure suit-vent flow, susp. gear, pack II

Figure 236. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity loping horizontally.

Figure 237. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity loping horizontally.

Test Series	3200		
Test Conditions:			
Shirtsleeve	Pressure s	suit in vent flow	
		suit at 3.5 psigx	
Instrument Pack I		Pack IIx	
Work Activity loping			
Gravity: Lunarx			
Test Location:	_		
1/6 g Treadmillx	Ome o Tre	admill	
1/05 110441111	J 8	admill	
Test Results:			
Results for Subject A	x B	Cx	
Number of Tests		5	
Respiration, respiratory rate respiratory volume expired Metabolism. metabolic energy expenditure rate metabolic energy expenditure rate per unit length		Figure 238	
		Figure 239*	
		Figure 240	
		Figure 226	
oxygen consumption		Figure 241	
oxygen consumption per	unit length	Figure 228	
Cardiovascular function, cardiac rate		Figure 242	
Body temperature, mean body temperature		Figure 243	
Pressure suit environmental data		Figure 244	
* The expired respiratory volume an subject C because this was his first different day.		• • • • • • • • • • • • • • • • • • •	

Figure 238. — Respiratory rate versus subject velocity loping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Figure 239. — Average mean respiratory volume versus subject velocity loping horizontally.

Figure 240. — Average metabolic energy expenditure rate versus subject velocity loping horizontally.

Figure 241. — Average oxygen consumption versus subject velocity loping horizontally.

Figure 242. — Average cardiac rate versus subject velocity loping horizontally.

Figure 243. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity loping horizontally.

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

Subject velocity, V, fps

Figure 244. — Ambient (globe thermometer) and pressure suit (inlet and outlet) ventilating air temperatures, versus subject velocity loping horizontally.

284

Test Conditions: 1/6 g, pressure suit-pressurized, susp. gear, pack II

VOL III

Test Series	1230	
Test Conditions:		
Shirtsleevex	Pressure suit in vent flow	
	Pressure suit at 3.5 psig	
Instrument Pack IX	Instrument Pack II	
Work Activity crawling	Work Variable horizontally	
Gravity: Lunar X	Earth	
Test Location:		
1/6 g Treadmillx	One g Treadmill	
Test Results:		
Results for Subject A	x B C	
Number of Tests	6	
Respiration, respiratory rate	Figure 245*	
respiratory volume expire	ed Figure 246	
Metabolism, metabolic energy expendit	ture rate Figure 247	
metabolic energy expendit per unit length	ture rate Figure 248	
oxygen consumption	Figure 249	
oxygen consumption per ur	nit length Figure 250	
Cardiovascular function, cardiac rate	Figure 251**	
Body temperature, mean body temperat	ture Figure 252	
Pressure suit environmental data	Not obtained	
* The lower respiratory rate of subsecond wind phenomenon. ** Cardiac rate was not obtained at 2 artifacts.		

Figure 245. — Respiratory rate versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 246. — Average mean respiratory volume versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack 1

Figure 247. - Average metabolic energy expenditure rate versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack !

Figure 248. — Metabolic energy expenditure per unit length versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

Figure 249. — Oxygen consumption versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack !

Figure 250. — Oxygen consumption per unit length versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 251. — Cardiac rate versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack l

Figure 252. — Mean body temperature (and ambient globe temperature at time of observation) versus subject velocity crawling horizontally.

Test Conditions: 1/6 g, shirtsleeve, susp. gear, pack I

DISCUSSION

The discussion that follows conforms in general to the sequence adopted for the Methods and Results sections of this report. The purpose of this discussion is to point out noteworthy results and comparisons of the data obtained. Table 7 indicates the comparable test modes between earth and lunar gravity for the purpose of establishing the difference in the physiological results. The weight bearing influences of instrument packs I and II. as well as those of the suit pressurization on the physiological results, were also found by comparing the different test modes according to Table 7.

TABLE 7.- DETERMINATION OF INFLUENCES AND DIFFERENCES IN WORK PHYSIOLOGICAL DATA

To establish the differences between earth an	d lunar gravity:
for shirt sleeve, Instrument Pack I suspension gear	- compare mode 6000 vs. 1000
for pressure suit vent flow, Instrument Pack II suspension gear	- compare mode 7000 vs. 2000
for pressure suit pressurized, Instrument Pack II suspension gear	- compare mode 8000 vs. 3000
To establish the influence:	
of Instrument Pack I	- compare mode 1000 vs. 5000
of Instrument Pack II and suit vent flow	- compare mode 2000 vs. 5000
of Instrument Pack II and suit pressurized	- compare mode 3000 vs. 5000
of suit pressurized	- compare mode 3000 vs. 2000

In evaluating the physiological data recorded during this program and expressed in the detailed data graphs, it is desirable to keep in mind some of the basic limitations of research on the human body.

In comparison with research on purely physical (non-living) systems, physiological test results are generally much more variable, in some cases unexplainably so. Insight into the complexity of the human mechanism and its patterns of response to activity and environmental conditions helps in interpretations, but cannot always explain unexpected variability in recorded data. Multiple experiments on the same individual, or on a large population, can yield smoother data by application of statistical principles.

The nature of this program was such that few duplicate tests on single subjects could be performed, and there was not a large population of subjects. In general, data points for a given experimental condition represent averages of single measures from one to three subjects.

Due to the physical location of the primary research facility (the LGS) outdoors, environmental conditions were not subject to control. The large number of tests which had to be accomplished within the scheduled time period made it impossible to conduct tests only when environmental conditions fell within limits which could reasonably be considered as "standardized." Variation in the thermal environment (both air tempera ture and mean radiant temperature at the LGS was the primary disturbing factor. Study of the data. in relation to the thermal environment during each test (as evaluated by the globe thermometer) had disclosed significant effects on physiological variables. Where a given activity cycle had to be tested in two or more sessions for a given subject (fortunately true in relatively few cases), it was found that significant differences in environmental temperature caused greater or lesser degrees of nonlinearity in the data points which were intended to show change in individual physiological functions in response to changing level of physical activity. Similarly, where a data graph contains results from two or more subjects, the inevitable occasional difference in environmental conditions in some cases lessens the rigorous comparability of data. In a few cases, effects of changing environmental temperature during a single test session could be recognized.

Variations in subjects' physiological and psychological condition (including differences in motivational level both between subjects and in one subject from day to day) cannot be eliminated and produce effects which constitute one of the most fundamental problems in physiological research, especially on humans.

The combined effects of the factors mentioned above have made the location of "average trend" curves on the individual test graphs much more difficult and less precise than if more tests on more subjects, under controlled environmental conditions, could have been performed. In a few instances, drawing trend curves through points representing the averages of data at each experimental condition made it necessary to modify the curves by intermediate averages.

Considering the foregoing problems, it is gratifying that the graphed data on the whole exhibits good evidence of reliability and consistency. This is true especially in the case of the basic physiological measures such as oxygen consumption, lung ventilation volume, and heart rate most responsive to the intentional variables of the test program and least subject to adventitious influences.

The graphs included in the "Result Section" provide detailed data on the physiological variables which were monitored. These show individual data-points for each subject in the respective test modes and levels of activity. Their principal function is to show, for each test series, the relative response of the given physiological variable as a function of increasing level of physical activity. Trend curves were located on each graph to show the average response (where data were obtained from two or three subjects), subject to the qualification stated previously regarding environmental temperature effects and other disturbing factors.

In order to enable comparison of the results in different test modes, graphs have been prepared which group in different ways the trend-lines from the individual test graphs. These are presented as Figures 253 through 270 in this section of the report. The figure captions, and labelling of the curves, are largely self-explanatory to the reader who is interested in evaluating the relative effects thus portrayed. For that reason, discussion here will be held to a minimum.

Respiratory Minute Volume

The detailed graphic data on respiratory minute volume, contained in the Results section, constitutes some of the most consistent of the physiological data from the program. These data, of course, were obtained from the Mueller-Franz Respirometer, and were subject to fewer artifacts of measurement than some of the other physiological functions monitored. This is shown both by the more consistent relationship between the minute volume and the increasing levels of subject velocity in the various test series.

There are a few instances in which the data spread between subject is abnormally great, indicating the possibility of some technical problem in operation of the system. The most conspicuous of these is in the tests on the treadmill at one g with the suit pressurized (Series 8000). The great differences in minute volume, between subjects A and C, cannot be explained except through possible malfunction of some component of the respiration equipment.

Respiration Rate

Detailed data on the respiration rates recorded for the various tests are contained in the "Result Section".

The difficulty experienced early in the program through erratic operation of the sensor in the exhaled air line sometimes resulted in the loss of respiration rate data.

All three subjects had resting respiration rates in the range of 10 to 12 breaths per minute. During tests, the rates rose to levels which were roughly proportional to the level of energy expenditure and consequent lung ventilation rate requirements. Figures 253 through 256 provide grouped curves for Series 1000, 2000, 3000, and 5500-8000, respectively.

Respiration rate as such is a less significant measure of physiological response to various kinds and levels of activity than minute volume of lung ventilation, since the rate of breathing is influenced by psychological factors as well as the operating characteristics of equipment used, while minute volume is basically determined by physiological requirements in the long run.

Oxygen Consumption and Metabolism

To enable comparison of the differences in oxygen consumption rate in the various test modes, several graphs have been prepared which group the summary curves in various ways. This has not been duplicated for the metabolic rate curves, since they would be substantially identical in their relative positions and would differ significantly only in scale units.

Test Series 1000 and 5000. - Figure 257 presents comparative curves for oxygen consumption rate in the Series 1000 tests of performance on the LGS with the subject in shirtsleeve garb, carrying Instrument Pack I. (One curve from Series 5000, similar except performed without the instrument pack, is also included.)

Figure 253. - Respiratory rate versus velocity at 1/6 g; summary of 1000 series shirtsleeve condition with Pack I; walking and running except as noted

Figure 254. - Respiratory rate versus velocity at 1/6 g; summary of 2000 series: pressure suit-vent flow; Pack II; walking and running except as noted

Figure 255. – Respiratory rate versus velocity at 1/6 g; summary of 3000 series; pressure suit (pressurized); Pack II; walking and running except as noted

Figure 256. - Respiratory rate versus velocity: summary for 1 g tests; walking and running on level; series and equipment noted; shirtsleeve except as noted.

Figure 257. – Oxygen consumption versus velocity at 1/6 g; summary of 1000 series; shirtsleeve with Pack I; walking and running except as noted

A minimum envelope of oxygen consumption vs subject velocity is seen, rising from about .5 to .6 ℓ /min with the subject standing at rest, to about 1.2 ℓ /min in level running at 7 mph. Values for the Series 5000 run, without pack, were generally slightly lower. Those for walking descending at 10° and 20° grade angles were in the same range of values for the velocities achieved.

Values for ascending the 10° , 20° and 30° degree grades, were correspondingly higher, as would be expected. The activity cycles of horizontal loping and horizontal jumping, performed only at the higher velocities, showed oxygen consumption rates approximately 20 to 25 per cent greater than running on the level at the same velocities, i.e., in the range of 1 to 2 ℓ /min.

The single curve for horizontal crawling showed a consumption rate approximately the same as for ascending a 30° slope.

Test Series 2000 and 3000. - Figures 258 and 259 summarize the oxygen consumption rates for tests in the pressure suit on the LGS, the former for activity with the suit unpressurized (ventilation airflow only), the latter for the pressurized condition. Aside from the obvious effect of grade climbing, the most interesting indication from the curves in both groups is that consumption rates were almost the same for all methods of progression on the level: walking-running, loping and jumping.

The trend curves in Figure 259, (suit pressurized) show peculiarities of configuration which reflect the fact that technical problems of measuring oxygen consumption in a pressurized suit, especially with the subject in relatively violent physical activity on the LGS, are considerably greater than for corresponding measurements on shirtsleeved subjects walking on a treadmill in the laboratory.

Test Series 5500-8000. - Figure 260 groups the data obtained for walking and running on a treadmill at one g, with various combinations of clothing and load carried. Effects of added load, of grade climbing (shirtsleeve only), and of wearing the suit both unpressurized and pressurized, are obvious and will not be commented on here.

Test Series 1180, 2180 and 3180. - A separate graph, Figure 261, shows comparative results from the three series of stair climbing tests on the LGS: Series 1180 (shirt-sleeve), Series 2180 (unpressurized suit) and Series 3180 (pressurized suit). The technical problems experienced in these three tests, so far as physiological measurements were concerned, were even greater than the LGS tests in which the treadmill could be used. The reliability of the data is open to considerable question, as is shown in part by the paradoxical indication that oxygen consumption for stair climbing in the unpressurized suit was lower, for all velocities, than for shirtsleeve climbing, and that values for the pressurized suit test were seemingly independent of velocity.

In order to use the known parallelism of heart rate and oxygen consumption, a plot of heart rates for the three series was also included in Figure 261 (lower section). The curves for Series 1180 and 2180 would seem to corroborate the relative oxygen consumption values discussed above, so the paradoxical relationship is for the present unexplained, except possibly through the factor of considerable more training.

Figure 258. - Oxygen consumption versus velocity at 1/6 g; summary of 2000 series; pressure suit (vent flow only) with Pack II; walking and running except as noted

Figure 259. - Oxygen consumption versus velocity at 1/6 g; summary of 3000 series; pressure suit at 3.5 psi, with Pack II; walking and running except as noted

Figure 260. - Oxygen consumption versus velocity, summary for walking and running at 1g; test series number noted; see code block and curve labels for test conditions, clothing and equipment carried

Figure 261. — Summary of heart rate and oxygen consumption for stair stepping.

Comparison of 1/6 g, test conditions between shirtsleeve, vent flow and pressure

Inter-Series Comparisons. - Figures 262 and 263 group the data on walking and running on the level and on up and down grades, both on the LGS and at 1 g. They show the relative effects of the clothing, load and gravitational variables in the program. Of particular interest are the differences between the oxygen consumption at 1/6 g and at one g, in activities with identical clothing and load conditions. Paired comparisons are provided by the curves for the following series:

Shirtsleeve condition; 1/6 vs one g: 1000 vs 6500.

Unpressurized suit; 1/6 g vs one g: 2000 vs 7000.

Pressurized suit; 1/6 g vs one g: 3000 vs 8000.

Pack vs no pack at 1/6 g: 1000 vs 5000.

Unpressurized vs pressurized suit; at 1/6 g: 2000 vs 3000.

at one g: 7000 vs 8000.

Effect of LGS suspension gear at one g: 5500 vs 6500.

From Figure 262 it may be seen that at 1/6 g, there was little significant difference in oxygen consumption rates, walking or running on the level in the shirtsleeve condition with or without the instrument pack (possibly slightly lower without the pack), or in the unpressurized suit with the instrument pack.

Suit Pressurization. - On the LGS, in the middle range of subject velocities (3 to 5 mph), it is evident that the greater resistance to body movement offered by suit pressurization (3.5 psi above ambient) increased oxygen consumption considerably. It appears that if the increase in oxygen consumption over the resting level is chosen as the basis of comparison, suit pressurization nearly doubles oxygen consumption for walking in the middle range of velocity on the LGS.

With the subjects wearing the pressurized suit on the treadmill at one g, the effort of walking was so great that total physiologic strain (of which oxygen consumption was only one measure) limited subject velocity to 1 mph, while on the LGS it was possible to achieve 5 mph with the suit pressurized, with no greater rate of oxygen consumption. It even appears that the physiologic cost of progression on the level on the LGS, at 5 mph, was no greater than walking 4 mph at one g in the shirtsleeve condition without a pack, or 3.7 mph at 1 g, shirtsleeve with pack. The same general picture is seen in the data for grade walking and running. These important relationships are seen illustrated in Figure 262 and represent one of the most significant findings of this study.

Even with allowance for the lack of statistical validation of the data from this program, because of the limited number of tests performed for each type and level of activity in the pressurized-suit condition, the oxygen cost of walking or running at 1/6 g is a great deal lower, in the velocity range of 1 to 5 mph, than at one g.

This finding is tremendously significant because it demonstrates that prediction of the metabolic cost of activity in pressurized suits on the moon's surface cannot validly be established by physiologic tests conducted at one g. It also shows that the physiological requirements for locomotion over the moon's surface (in terms of oxygen required and heat produced for covering given distances) cannot be predicted from results of one g

Figure 262. - Average oxygen consumption versus subject velocity, walking and running horizontally.

Comparison of 1/6 g and 1 g test conditions between shirtsleeve, vent flow and pressure.

Figure 263. — Oxygen consumption versus velocity, walking and running ascending or descending at 10 degrees at 1/6 g and 1 g; test series number, clothing and equipment load as noted.

VOL III

research on work physiology accumulated in the past. The reduced rate of metabolic heat production, for various rates of progression (and presumably for all "work" activities involving handling of various masses) is especially significant in relation to requirements for design of environmental control systems.

In that regard, however, it should be kept in mind that although the metabolic requirements for given activities on the moon may be a fraction of what they are at earth gravity, the astronauts, for this reason, may augment their activities (using greater velocities in self locomotion and handling greater loads), governing these activities in terms of physiological strain levels (such as lung ventilation and oxygen consumption levels, heart rate, etc.) comparable to those which impose basic limitations to physical activity here on earth.

The values of oxygen consumption in walking and running in the shirtsleeve condition at one g, obtained in this program, appear to be generally comparable with average values from other studies. Direct comparison is somewhat difficult because of the fact that most past physiological research on grade walking has been at grade increments of 5 per cent, rather than in increments of 10 degrees, which were employed in this program because of the much lower work-lift values at a given grade, under the $1/6~{\rm g}$ environment.

The minimum grade used in this program was 10°, which is a 17.4 per cent grade --considered a rigorous climbing task in conventional exercise physiology research at one g. In fact, this grade is near the end-point of performance of many subjects in the Balke test for physical fitness, which was used for subject evaluation and is described in Appendix A of this report. Oxygen consumption at 1 mph at one g on the 10° grade, carrying Pack I (see curve 6020 in Figure 263) was approximately 1.2 liter/min. This is very close to average data from other studies, extrapolated to this grade.

On the LGS, the comparable test (curve 1020) showed an oxygen consumption of approximately .44 ℓ /min. This is only 1/3 as great, in total, as at one g. If the comparison is made on the basis of the increment only, over the baseline (standing resting) level, the oxygen cost for the 10° grade climb at 1/6 g (approximately .2 ℓ /min) is seen to be only about 1/5 of the comparable increment at one g (approximately 1.0 ℓ /min.)

Respiratory exchange ratio; respiratory quotient. — In the course of the analysis of the data from the measures of lung ventilation, oxygen consumption and carbon dioxide output in this program, values for the ratio of carbon dioxide output to oxygen consumption were tabulated, but will not be included in this report. In general, values tended to correspond to the expected range of values obtained in studies of work physiology: i.e., from about .75 to somewhat above 1.0. It was quite evident that the activity cycles employed in the program sometimes affected breathing.

In this connection it is preferable to use the latter term for the $\rm CO_2/O_2$ ratio, as measured in expired air. Rossier et al (ref. 9) and Richards (ref. 10) stress the need for distinguishing between "tissue RQ" and "Ventilation RQ", the latter being preferably designated as the RER. Rossier et al present data on the time course of

change in RQ during the early minutes of exercise, and state that at moderate levels of activity. the RQ tends to stabilize at values between .9 and 1.0, although the measured RER may rise to values as high as 1.2 to 1.4 or above, due to 'washing-out' of carbon dioxide if the type of physical activity induces unusually high values of lung ventilation.

The effect of high lung ventilation rates on RER is discussed at length by Haggard and Greenburg (ref. 11). Their extensive study, published in 1935, is relatively seldom cited.

Is sekutz and Rodahl (ref. 12) have also rigorously examined respiratory quotient during exercise, and distinguish between "metabolic ${\rm CO_2}$ " and "nonmetabolic excess ${\rm CO_2}$ ", which they postulate is due to an aerobic metabolism resulting in increasing levels of lactic acid in the blood. According to their data, obtained in studies using a bicycle ergometer, blood lactate rise was first noted at oxygen consumption rates in the vicinity of 1.7 1/min, and increased progressively with higher oxygen consumption rates. This could well explain the high ${\rm CO_2}$ outputs observed in the very strenuous physical activity at higher subject velocities, particularly in the Earth g environment.

Cardiovascular Function

Figures 264 through 269 are heart rate summary curves, grouped similarly to the oxygen consumption grouped curves. Not quite as many heart rate curves as oxygen consumption curves were obtained, because greater technical difficulty was encountered in pickup, transmission and recording of heart impulses, especially during the more strenuous physical activity levels.

The heart rate curves may be evaluated generally in the same terms as those on oxygen consumption, since these are parallel functions. There is a growing literature validating the parallelism of heart rate and oxygen consumption; it is even proposed that if subjects can be maintained in satisfactory thermal equilibrium, heart rate might be used as an indirect measure of metabolic rate where measurement via respiratory gas exchange is difficult, unreliable or unfeasible (refs. 13-18). It is recognized that to achieve satisfactory validity of data, it is necessary to "calibrate" subjects by conducting an adequate number of preliminary experiments in which simultaneous determinations of heart rate and respiratory gas exchange are performed over a wide range of physical activity levels, preferably with periodic re-checks.

Body Temperature

Variations in environmental temperature both during the test series as a whole, and even during individual tests, complicated the interpretation of data on body temperature. Effects have been seen regardless of whether the subject was in the "shirt-sleeve" environment in ordinary clothing, or in the pressure suit. The suit was supplied with ventilating air from a source providing some degree of temperature control. A flow rate of 4 cfm was kept constant regardless of whether the suit was used unpressurized, or pressurized to 3.5 psig. The fact that the suit ventilating air had to be delivered through the long umbilical line made it responsive to the ambient temperature, more so than had been expected.

Figure 264. - Heart rate summary for 1000 series at 1/6 g; shirtsleeve condition with suspension gear and Pack I; walking and running except as noted

Figure 265. – Heart rate summary for 2000 series at 1/6 g; pressure suit (vent flow only); suspension gear and Pack II; walking and running except as noted

Figure 266. - Heart rate summary for 3000 series at 1/6 g; pressure suit at 3.5 psi; suspension gear and Pack II; walking and running except as noted

Figure 267. – Heart rate summary for level walking and running at 1/6 g and 1 g; test series number, clothing and equipment load as noted

Figure 268. – Heart rate summary for 10° grade walking and running at 1/6 g and 1 g; test series number, clothing and equipment load as noted.

Figure 269. - Heart rate summary for walking and running in 1g tests (series noted)

When the data on mean body temperature was first graphed, location of satisfactory trend lines for body temperature as a function of the subjects' activity level (expressed as subject velocity) proved difficult in some cases. Paradoxical trends were sometimes seen, especially in cases where data on a given test series included results from two or three subjects, or separate runs on the same subject in the same series, sometimes required because of fatigue or other reasons.

When the body temperature data graphs were checked against simultaneous graphs of the ambient (globe) temperature, it immediately became evident that ambient temperature was exerting a dominant influence, often overshadowing the changes in body temperature which normally accompany the increase in body heat production at higher energy expenditure levels. It is for this reason that the body temperature graphs in the preceding result section have been accompanied by graphs showing simultaneous ambient temperature readings.

Although environmental temperatures affected the body temperature readings, it does not appear that the latter changed sufficiently to have affected either metabolic rate or heart rate data significantly. Where a single test session continued for a considerable length of time and involved a series of increasing and relatively high rates of energy expenditure as the test progressed, some rise in average body temperature was observed. At most, the rise was of the order of $1^{\circ}F$, and usually less. In the great majority of test sessions, any change was usually only 0.1° or $0.2^{\circ}F$ at the most. Occasional slight declines in body temperature were seen, and are believed to be due either to a dropping environmental temperature or to evaporation of perspiration.

Comparison of the temperature data obtained in test sessions which were, respectively, in the lower and higher ranges of environmental temperature (globe temperatures in the 60's vs the high 80's or 90's) showed that the average body temperatures were considerably more influenced by the environmental temperature than by the subject's relative level of energy expenditure, though also by the clothing worn. A test in which the pressure suit was worn usually resulted in a higher body temperature than one in shirtsleeves, for the same range of environmental temperature.

In comparing shirtsleeve tests on one subject, the body temperature was as low as 93.6°F on a day with globe temperature in the low 60's, and as high as 97.2°F on a day with globe temperatures in the 80's. The range of energy expenditure was comparable. Another subject had an average body temperature in some tests as low as 95.5, and as high as 98.3°F in others. In both cases, the environmental temperature appeared clearly to be the dominant factor.

If the environmental temperature happened to rise in the course of a test session in which there was a relatively small change in the level of energy expenditure, body temperature sometimes rose more than if the environment had remained the same and the rate of energy expenditure had increased markedly. On the other hand, in some tests in which energy expenditure progressively increased to a high level, this was sometimes largely offset by a drop in environmental temperature and the net change in body temperature would be slight.

Figure 270 contains a group of curves which illustrate some of the typical situations just discussed. In this figure, mean body temperature has been plotted separately for subjects A and C against the rate of energy expenditure, in several experimental

Figure 270. - Course of mean body temperature versus rate of energy expenditure in typical tests. Environmental (globe) temperature noted adjacent to each data point to enable combined evaluation of factors affecting body temperature. Data from subjects A and C presented separately.

runs. Adjacent to each curve is indicated the date of the test run (e.g. 5-28, 6-7, 6-16 etc.), and at each data point is indicated the globe temperature at the time of the body temperature observation.

A detailed description of the various curves will not be given here. However, study of the curves will clearly disclose the separate effects of environmental temperature and metabolic energy expenditure in determining the average body temperature. Note that when environmental temperature was low (in the 70's or lower), mean body temperature tended to decline during a test until the rate of energy expenditure reached about 1000 Btu/hr (250 kcal/hr), or even higher on occasion. On the other hand, when the environmental temperature was in the 80's and above, body temperature tended to rise even at the lower energy expenditure rates, but still more rapidly at the higher metabolic levels.

In view of the body temperature findings discussed above, modification of the temperature measurement procedure is believed to be desirable for future tests in work physiology. Two major considerations are involved: (1) the monitoring points and the weighting schedule used in this program made the resultant average temperature particularly responsive to skin temperature variations, and (2) rectal temperature has considerable lag in its response to changing temperature in tissue masses where heat is generated (particularly the muscles.) It is therefore less valuable as an indication of body core temperature as a whole (as distinguished from skin temperature, which reflects temperature of a thin surface layer only). Although tympanic and esophageal temperatures present practical procedural problems, their use is being favored where it is desired to follow relatively rapid changes in body core temperature, as reflected in blood temperature to which they are principally responsive.

Although the procedure for estimating average body temperature in this program derived from one established by distinguished authorities in the field of metabolic physiology, it is now evident that it is better adapted to the experimental situation in which it was developed than to the dynamic situation comprised in this program. That is, the Hardy-Dubois method is undoubtedly best suited to physiological experiments in a respiration colorimeter, in which air and wall temperatures are substantially the same and change only slowly, and subjects are observed for relatively long periods of time at constant (and generally low) levels of metabolic energy expenditure. Additional analysis of the data from this program should make possible the formulation of body temperature measuring procedures which will provide a more adequate picture of the changing thermal condition of the body as a whole, and its various components, in an experimental program as comprehensive as this.

RECOMMENDATIONS

Although a considerable number of these have already been made throughout the discussion there are several recommendations that are significant and require special attention.

As a result of the experiences gained in the work physiological research of this study the following changes or considerations for future work are recommended and listed on the following page.

Methods

Respiratory hardware. - Since this study included the determination of physical maximum values limited only by a cardiac rate of 180 beats/min, the test subject was exposed to short but very strenuous activities demanding his maximum performance. In the subsequent debriefings the subjects repeatedly emphasized the resistance to breathing and lack of ventilation volume available for inspiration during maximum performance both in the shirt sleeve and pressure suited mode. A small number of tests especially in the pressure suited mode were terminated not by the cardiac rate but by the lack of ventilation volume. The cross sectional diameter of passages in the respiratory hardware for both modes was 0.75 inches. It is consequently recommended that respiratory hardware with a minimum of 1.25 inches diameter be used for human performance testing which reach maximum values. This is in accord with new current recommendations in pulmonary functional testing equipment.

Expired air sampling rate. - Collection of the gas sample from the Mueller-Franz respirometer is controlled by a 0.3% or 0.6% sampling rate. During lower levels of activity and shorter durations these samples were always very small and difficult to analyze correctly. It is recommended that a modification be made to the respirometer to increase the sampling rate control from 0.3% to 2.0%.

Expired air sample. - Collection of gas samples expired under pure oxygen breathing in the aliquot have revealed unstable diffusion problems resulting in a difficult indirect calorimetric analysis. The recommendation is made to investigate aliquot bag materials and to find one that is less permeable to samples expired during pure oxygen breathing.

Procedures

Test duration. - The duration of tests conducted in this study very seldom exceeded 10 minutes. The resulting test data represents the physiological response associated with this finite time period only. It is strongly recommended that similar tests be performed under continuous monitoring to investigate the effects of duration and fatigue upon the physiological parameters of human performance. Only when this is done can complete and confident predictions be made for the assignment of tasks to man on the lunar surface. These assignments can then be made not only for the type of the activity but also its duration.

Additional testing. - Based on the planned lunar surface missions for man the following additional tests are hereby recommended:

- (1) unloading and loading of packages and containers to and from different platform heights, the effect of pick-up points, size, shape and weight upon same;
- (2) carrying of packages and containers, the effect of pick-up points, size, shape and weight upon same;
 - (3) pushing, pulling, torquing and hammering at different heights;
 - (4) effects of different surface features.

Results

Energy consumption of activity. - Further analyses are recommended to determine the energy cost of the activities themselves since the data presented in the results herein includes the energy cost for resting (body maintenance) and thus indicates the absolute energy consumption, rather than the increment due to the work load as such.

APPENDIX A

SUBJECT DATA

By W. Kuehnegger and H. P. Roth

Since one of the primary applications of information derived from this program is estimation of astronaut performance capabilities and limitations under lunar gravity conditions, selection of subjects whose physical and physiological characteristics were reasonably comparable to those of astronaut candidates was considered essential.

GENERAL

Three male subjects were used in the program, two because of availability (especially during the early stages of the program), the third to meet NASA requirements which specified a male subject, age 25 to 31 years; height 5 ft 9 in. to 5 ft 10-3/4 in.; weight 165 ± 10 lb. One of the first two was a research scientist (the principal investigator): age 38; height 67.7 in. (172 cm); weight 186 lb (84.5 kg). The second was a personal equipment specialist: age 32, height 68.5 in. (174 cm); weight 185 lb (83.9 kg). The third was a biology student: age 30, height 68.0 in. (173 cm); weight 135 lb. (70.3 kg). Complete data on anthropometric features and percentile man relationships are found in Volume II, Appendix A.

SUBJECT SELECTION

All subjects had to pass an FAA Class II flight physical examination successfully, and in addition were given periodic tests throughout the program for determination of the physical fitness index (PFI). Such a test is important in selection and determination of the suitability of subjects for human performance testing. It was repeated at intervals throughout the program to check possible conditioning of the subjects. It was found that the PFI remained constant; significant changes would have complicated interpretation of test results. The subjects' physical fitness index (PFI) was determined using the Balke treadmill test of optimal work capacity as illustrated in figure A1.

Figure A1. - Test arrangement for PFI determination and physiological base line data

Figure A1 shows a subject on the treadmill; a gasometer is being used to collect exhaled air for determination of his ventilation rate changes during the progressively-increased work levels of the Balke test. The same figure also shows procedure for taking blood pressure during the test. Physiological observations made during the PFI tests provided base-line values for comparison with observations made during the test program proper.

Procedures and calculation of the PFI were as described by Consolazio (ref. 5). The test is performed by having the subject walk on a motor-driven treadmill at 3.4 ± 0.1 mph (90 meters/min). Walking for the first minute is on the level. At the end of the first minute the grade of the walking surface (ratio of vertical rise to distance along the surface) is elevated by two percent. At the end of each succeeding minute, the grade is increased an additional one percent. Walking is continued until the subject's heart rate reaches 180 beats/min. Heart rate and blood pressures are recorded just before the start, during the last half of each minute, and at five minutes after the test ends.

Fitness is estimated by the test duration in minutes prior to reaching heart rate 180. Seventeen minutes is average. Above-average classifications are: good, 18 and 19 min; very good, 20 and 21 min; excellent, 22 and 23 min. A few exceptionally trained individuals may approach 30 min.

The average PFI for the subjects during the test program was computed and is shown in table A1.

TABLE A1. - AVERAGE PFI VALUES

Subject	Duration of Test Min	Balke Rating	Billings et al. Rating
A	15	fair	fair
В	12	very poor	poor
С	18	good	very good

Thus all subjects were in good physical condition. Each was given a basal metabolism test (BMR) during initial evaluation. The resulting metabolic rates were recorded in Table A2 and found to be in the normal range.

TABLE A2. - COMPILATION OF BASAL METABOLIC RATES

Subject	Date	Age	Height/cm.	Weight Kg.	Body Surface Area (m ²)	Normal Calories/Hr.*	Actual Calories/Hr.	BMR in %
A	1/29/65	36	172.1	84. 5	1.99	77.3	76.0	-1.8
В	2/1/65	31	173.0	83.9	1.98	77.1	75.0	-2.7
С	7/23/65	30	172.7	70.3	1.82	73.2	79.6	+4.7

^{*} American Journal of Physiology, July 1936

By calculating the B. M. R., which takes into account age, height, and weight, it is possible to compare one person's metabolic rate with that of another. Having obtained a B. M. R. value it is customary to express this value as normal or as a percentage above (+) or below (-) the normal.

The test method used for this investigation was described earlier in this report and is illustrated in figure 3A and 3B.

Pressure Suit Training

Since experiments with subjects wearing pressure suits, both unpressurized and pressurized, were programmed as part of the study, subject indoctrination in pressure suit use was necessary. Subject A had completed this indoctrination almost two years before and was exposed to refresher courses at six-month intervals. Subject B was not used in the pressure suit phase of the program, and hence did not undergo indoctrination. Subject C successfully completed the indoctrination during the training program.

LGS Indoctrination

Subject A was continuously exposed to testing during construction and checkout of the Northrop LGS. For this reason, his learning curve in experience with 1/6 g could not be recorded and evaluated. Subjects B and C underwent identical training on four successive days. Each day's session consisted of six trials each of three maneuvers under 1/6 g, on the LGS, followed by six trials of the same maneuver under one g, to provide baseline values for comparative purposes. The three maneuvers used were the Long Jump, Step and Jump, and Vertical Jump. Performance was scored by the distance (or height) achieved; the average for six attempts was used as the score for each set of trials, Performance ratios for each day's training session were computed, consisting of the ratio of the average performance score at 1/6 g to the average of one g. This permitted more valid inter-individual comparisons because of their anthropometric differences. Figures A2, A3, and A4 show the performance ratios for each maneuver, for the four successive training sessions, each subject being shown by a separate symbol. Improvement in performance under 1/6 g, as training progresses, is evident.

Effects of Training on Physical Performance

It is recognized that repetition of any task will train the subject to perform that task more effectively and with less expenditure of energy. For this reason, it is desirable to precondition test subjects so that their efficiency in performance of tasks used in the experimental program will not vary during the course of the program. This was provided for in the experimental procedures.

Figure A2. - Average learning curve in long jumps

Figure A3. - Average learning curve in step and jump

Figure A4. - Average learning curve in vertical jump

APPENDIX B

COMPUTER PROGRAM FOR THE DETERMINATION OF MEAN BODY TEMPERATURE AND METABOLIC ENERGY EXPENDITURE

bv

K. L. Forsen

This Appendix describes a computer program to analyze the physiological functions derived from tests conducted under contract NAS 1-4449, "A Study of Man's Physical Capabilities on the Moon." The computer program objectives were to perform necessary calculations required to determine the mean body temperature and metabolic rate of the test subject under simulated lunar gravity conditions, and provide a readout of data in convenient, standardized form.

The Mean Body Temperature and Metabolic Program was based on mathematical information obtained from Reference 20, pages 756 and 762, and Reference 5, page 27. This program embodies two separate subroutine programs that involve the Least Square curve fit method.

Actual data notation is explained in Table B1. The symbols used in the program are explained in Table B2. The derivation of required physiological information translated into mathematical language for computer usage is then discussed. Illustrations of typical elements in the FORTRAN IV computer program layout are also provided. Finally, suggestions for the interpretation of the computer output are offered.

TABLE B1

NOTATION RECORD FOR MEAN BODY TEMPERATURE
AND METABOLIC DETERMINATION PROGRAM

Α	(I)		Field Length
	1	Subject letter (A, B, C, etc.)	A1
	2	Test number	A4
	3 ·	Type of test (Baseline, 1st, 2nd, test)	A 1
	4	Month	I 2
	5	Day	12
	6	Year	12
	7	Hour	12
	8	Minute	12
	9	AM or PM	A2
	10	Globe Temperature (°F)	F7.0
<u> </u>	11	Barometric Pressure, (in. Hg.)	F7.0

TABLE B1

NOTATION RECORD FOR MEAN BODY TEMPERATURE AND METABOLIC DETERMINATION PROBLEM (Continued)

		Fie	ld Length
В	(I)	NOTE: Temperatures are given in °F and then converted to °C	
	1	Right hand temperature	F6.0
	2	Right upper arm temperature	F6.0
	3	Left forearm temperature	F6. 0
	4.	Forehead temperature	F6.0
	5	Abdomen temperature	F6.0
-	6	Mid back temperature	F6.0
	7.	Mid sternum temperature	F6.0
	8	Left thigh temperature	F6.0
1	9	Right calf temperature	F6.0
	10	Left foot temperature	F6.0
	11	Rectal probe temperature	F6.0
	12	Height (inches)	F6.0
C	(I)		
	1	Weight, (lbs.)	F7.2
	2	(M-F) volume reading, (liters)	F7.2
	3	(M-F) temperature, ($^{\circ}$ F)	F7.2
	4	Barometric pressure, (in. Hg.)	F7.3
1	5	(M-F) Correction factor	F6.2
1	6	Time, (minutes)	F5.1
	7	FEO ₂ , reading	F6.5
	8	FECO ₂ , reading	F6.5

TABLE B2

COMPUTER NOTATION SYMBOLS

CA	Total body temperature, (°F)
СВ	1/3 total body temperature, (°F)

TABLE B2

COMPUTER NOTATION SYMBOLS (Continued)

. }	,
CC	2/3 rectal probe temperature, (°F)
CD	Mean body temperature, (°F), (CB+CC)
CE	Subject weight, (kg) (not to be confused with caloric Equivalent Figure B2)
CF	Subject height, (cm)
CG	Surface area, (m ²)
DA	(M-F) temperature, (°C)
DB	H ₂ O vapor pressure equation, per temperature, (°C)
DC	Barometric pressure converted to mm of Hg
Test	Test for pressure suit mode. If pressure suit is used DC = 941 . 941 mm of Hg at 3.5 psia.
DD	Bar. Pres H ₂ O vapor pressure, (DC-DB)
СН	Reduction to 0° C and 760 mm of Hg and dry of 1 liter of air saturated with humidity
CI	(M-F) volume x correction factor/test duration, (min.)
CJ	Volume expired in liters/min @ STPD, (CI x CH)
CK	$1 - (FEO_2 + FECO_2), 1 - (C(7) + C(8))$
CL	Vol. O_2 in cc/min, ((CJ x CK x .265) - C(7)) 1000, .265 is a constant
	factor of 02, N2 relation between expired air/inspired air.
PK	Correction factor for the use of 100% O ₂ .
Test	Test for pressure suit mode. During pressure suit mode, CL = CJ x PK (1-C(7) x 1000).
CM	Vol. CO ₂ (cc/min) CJ (C(8)0003) 1000
Test	Test for pressure suit mode. If applicable, $CM = CJ \times C(8) \times 1000$.
CN	Respiratory exchange ratio (RER) vol. CO ₂ /vol. O ₂ , CM/CL
СО	Curve fit of RER vs. kcal/liter of O ₂ , chart
Test	Test for exchange ratio greater than 1.0, IF (CN. GE. 1.0)
Test	Test for exchange ratio less than .707, IF (CN. LE707).
CP	kcal/hr, (CL x CO x 60) / CG x 1000
CR	Standard Man, BTU/hr., (MR), (.369 x 19.37 x CP), Conversion from kcal to BTU x surface area, m^2 to ft ²
cs	10.76 x surface area, (10.76 x CG), Conversion from m ² to ft ²
CT	BTU/hr, (MR), (.369 x CS x CP)
I	

DERIVATION OF REQUIRED EQUATIONS FOR METABOLIC EVALUATION

I. Surface Area: program symbol CG

W = weight (kg)

H = height (cm)

S = surface area (m²)

 $S = W^{.425} \times H^{.725} \times 7.184 \times 10^{-3}$ (ref 5).

- II. Reduction to 0°C and 760 mm Hg and dry of 1 liter of air saturated with humidity. Program symbol CH
 - A. Obtain water vapor pressure value per temperature in °C (see Figure B1). Program symbol DB (ref. 21).

Figure B1. - Vapor pressure versus temperature

- B. Subtract: the Vapor Pressure value (DB) from the barometric reading for a given day calculated to mm of Hg (DC). Reference computer program (DD = DC-DB)
- C. To obtain standard temperature and pressure, multiply the corrected Hg reading ((DD)/760 mm Hg) by the corrected absolute temperature.

Example: Barometric pressure = 751.5 mm Hg

M-F temperature = 20° C

Computer program symbol = CH

751.5 mm Hg - 17.5 mm Hg = 734 mm Hg = DD

CH =
$$\frac{734 \text{ mm Hg}}{760 \text{ mm Hg}} \times \frac{273^{\circ} \text{K}}{273^{\circ} \text{K} + 20^{\circ} \text{C}} = .89999 \text{ (ref. 20)}$$

Exchange Ratio vs. caloric equivalent kcal/liter of O_2 (see Figure B2). Program symbol CO. To obtain the required kcal per liter of O_2 , find the exchange ratio value (CN) on the exchange ratio scale, then read the corresponding value for the kcal/liter O_2 .

Figure B2. - Respiratory exchange ratio versus metabolic cost

The true value of RER was used within the limits of RER $^{+1.000}_{+0.707}$. When the true ratio exceeded 1.000, the value of 1.000 was used in its place in continuing the computation. When the true value fell below 0.707, the value of 0.707 was used.

COMPUTER PROGRAM LAYOUT

Recording of test data requires a specific punched card format. This format is shown in detail on a typical key punch form (see Figure B3). The arrangement of card sequence for computer processing is illustrated graphically in Figure B4. A diagram showing the flow of operations in the FORTRAN IV program is given in Figure B5, while a print out of the FORTRAN IV program is also included for reference purposes (see Figure B6).

SUGGESTIONS FOR THE INTERPRETATION OF COMPUTER OUTPUT

When there are no body temperatures to be analyzed, recording of the test subject's height is the only data required on card "B". The resulting output for Total Body Temperature, 1/3 Body Temperature, 2/3 Rectal Probe Temperature and Mean Body Temperature will read-0.. If the data cards are incorrectly punched or arranged incorrectly, the computer will either produce an output to read "error source" or will not execute the required data and state the source of error. When any metabolic output reads 0. or -0., the data on cards A, B, or C was incorrectly punched or not given. A sample of the computer output is shown in Figure B7.

XXX XXX XXX BAROMETRIC PRESS. (XX.XXX), (INCHES Hg) 9 Blk M-F VOLUME (XXX.XX), (LITERS) M-F TEMP. OF (XXX.XX), (°F) 12 CORRECTION FACTOR (XX.XX) WEIGHT (XXX.XX), (LBS.) DURATION (XX,X), (MIN.) FECO, READING (.XXXX) FEO, READING (.XXXX) NOTE: All figures are right adjusted. Label all figures from right side of the indicated field. (E) BLANK 2 2895 Ext. 2894, K. Forsen BLANK RT. UPPER ARM TEMP. (XX.XX), ("F) MID STERNUM TEMP. (XX.XX), (°F) Label only one number or decimal per space. L. FOREARM TEMP. (XX.XX), (°F) RECTAL PROBE (XX.XX), (°F) HEIGHT (XX, XX), (INCHES), RT. HAND TEMP. (XX.XX), (°F) FOREHEAD TEMP. (XX.XX), (°F) MID BACK TEMP. (XX.XX), (°F) L. THIGH TEMP. (XX.XX), (*F) Man on the Moon - Mean Body Temperature and Metabolic Determination open SERIAL NO. PREJ FOR ORGN. NO. ABDOMEN TEMP. (XX,XX), (°F) R., CALF, TEMP. (XX,XX),, (°F) L. FOOT TEMP. (XX.XX), (°F) NSL-473, Zone 61 Index numbers are always 1, 2, 3, as shown. Next set are all 1, etc. Begin in column #79. B() First set of numbers are all "0". KEY PUNCH FORM - GENERAL PURPOSE FORM 20-708 (N.7-63) BAR. PRESSURE (XX.XXX), (INCHES Hg.) GLOBE, TEMP. (XX.XX - XXX.XX), (°F) 2 SEQUENCE TEST NO. (0, 1, 2, 3) HOUR (9, 10, 11, 12, 1, ETC.) 6 HONTH, (1, -, 12) SUBJECT LETTER A, B, ETC. ∞ A (3) 7,0 YEAR (64, 65, or, 66) 9 0 8. HINUTE (1, - 59) TEST No., (XXXX) 2 0'0'-'0' DAY (1, - 31) 4 3 AM, QR, PM, 2 4 Ø

Figure B3. - Typical key punch form

Figure B4. - Arrangement of card sequence for computer processing

Figure B5. - Fortran IV flow chart

```
#RITE(6,25)(A(I),I=1,11)
25 FOR AT(1:09HTEST NO. 1A1,1H-1A4,1H-1A1,2X5HDATE I2,1H-12,1H-12,7H
1 TI & I2,1H-12,1H-A2,17H GLOJE TEMP(F)=F7,2,13H BAR, PRES,=F7,3
                                                                                    | FOR.AT(1.17///////14x97HMEAN BORY TEMPERATURE AND METABOLIC | LOETER INATION FOR THE MAN ON THE MOON PROJECT, 6-65 K. FORSEN/THI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               hRIJE(6,35)CA,CB,CC,CD
35 FOR: AT(1H 28HHEAT TABLE TOTAL BODY TEMP.=F8.3, 17H 1/3 BODY TEMP
1.=F7.3, 25H 2/3 RECTAL PROB, TEMP.=F7.3/
21H 16HMEAN BODY TEMP.=F8.3)
WRIJE(6,40)(A(I),1=1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       40 FOR AT (INUSTHMETABOLIC DETERMINATION PER TEST NO. 1A1,1H-1A4,1H-1A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               JB=+.5861+(.3275*DA)+(.J1177*(DA**2.))+(.00012865*(DA**3.))+(.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (1(2).6E.11.AND.A(2).LE.12.0R.A(2).6E.13.AND.A(2).LE.T4)DC=941.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CATC(1)*.U5+8(2)*.08+3(3)*.06+8(4)*.07+8(5)*.09
1+8(5)*.17+8(7)*.09+8(8)*.19+8(9)*.13+8(10)*.07
                               UATA 11:12:13:T4/4H3000:4H4999;4H8000:4HB999/
                                                                                                                                                                                                                                                                                                                           3 FUR AT (3F7.21F7.31F6.21F5.112F6.51F3.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (+C.E4.941.)CL#CJ*PX*(1.-C(7))*1000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CG=((CE**,425)*(CF**,725)*,007184)
                                                                                                                                                                                                                                                                   FURAT(141.144.141.512.142.2F7.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CM=CJ*(C(8)~.0003)*1060.
IF(LC.EG.941.)CM=CJ*C(8)*1000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CH=(DD/760.)*(273./(273.+DA))
UIMENSION A(50)+3(50)+C(50)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CL=CJ*((CK*.265)-C(7))*1000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CP#(CL*CC*60.)/(CG*1000.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CO#5.81554+(1.23159*CW)
                                                                                                                                                                              READ(5,2)(A(1),1=1,11)
READ(5,8)(B(1),1=1,12)
READ(5,3)(C(1),1=1,8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF (CK.LE.. 7U7) CU=4.680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |F(C> GE - 1 - CC) CO#5 - C47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C1=(C(5)*C(2))/(C(6))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CB=(CA)/3.
CC=(2.#B(11)#.67)/3.
CD=(CE+CC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DA=.556*(C(3)-32.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CK=1.-(C(7)+C(8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ECHC (4) #2.54#10.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CE=(C(1)*.45359)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CF=(3(12)*2,54)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (04101+(02++40))
                                                                                                                                                                                                                                                                                                   8 FOR AT (12F6.0)
                                                                 *RI1E (6,20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (コン) / (ミン) エソン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2+8(11)**67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (コローンご) =つご
                                                                                                                                                    つことという
                                                                                                                                                                                   S
```

Figure B6. - Fortran IV program computer listing

```
Ch=(.c69*19.37*CP)
CS=(10.76*C6)
CT=(.369*CS*CP)
WRITe(6.45)CH.CJ.CL.Cd.CN.CT.CR.CP
WRITe(6.45)CH.CJ.CL.Cd.CN.CT.CR.CP
WRITe(6.45)CH.CJ.CL.Cd.CN.CT.CR.CP
WRITe(6.45)CH.CJ.CL.Cd.CN.CT.CR.CP
US CCCMIN.=F9.37
21H z11RESP. ExCHANGE RATIO=F7.3. 14H MR. BTU/HR.=F9.37
3MAN 3TU/HR.=F9.3.23H TOTAL K.CAL./**M/HR.=F9.3//)
UNMTELUJMP+1
IF(CUSP.EG.4) WRITE(6.100)
IF(CUSP.EG.4) UNMP=0
60 10 55
END
```

Figure B6. - Fortran IV program computer listing (continued)

2/3 RECTAL PROB. TEMP.= 44.220 DAK. PKES.= 29.860 66.33 GLOPE TEMP. (F)= 1/3 BODY TEMP.= 52.912 3-15-PM 5-16-65 TINE HENT TABLE TOTAL BODY TEMP.# 158-735 MEAN BOLY TEMP.# 97-132 OATE TEST NO. /-1041-1

METABOLIC JETEKMINATION PER TEST NG. A-1941-1 HG. FACTOR = 0.8868 VE. LITERS/HIN.= 28.348 VOL. UF OZ CC/MIN.= 1011.667 VOL. OF COZ CC/MIN.= 1111.239 RESP. EXCRAIGE RATID= 1.096 HR. BTU/HR.= 1216.356 STD. VAN BTU/HR.= 11u3.430 TOTAL K.CAL./W#M/HR.= 154.379

1/3 800Y TENP.= 52.983 2/3 RECTAL PRUB. TEMP.= 44.220 BAK. PRES.= 29.860 GL38E TEMP.(F)= 78.50 3-25-PM 6-16-65 TIME HEAT TABLE TOTAL BODY TEMP.= 158.950 97.203 DATE TEST NO. A-1642-1 MEAN BODY TEMP. #

METABOLIC DETERMINATION PER TEST NO. A-1042-1 HG. FACTON= 0.8861 VE. LITERS/MIN.= 36.381 VOL. OF OZ CC/KIN.= 1275.349 VOL. OF COZ CC/MIN.= 1426.150 RESP. EXCHANSE RATIG= 1.118 MR. BTU/HR.= 1533.389 STD. MAN BTU/HR.= 1391.029 TOTAL K.CAL./M#M/HR.= 194.617

1/3 BODY TEMP.= 52.743 2/3 RECTAL PROB. TEMP.= 44.443 BAR. PRES.= 29.860 3-40-PM GLOBE TENP.(F)= 76.00 DATE 6-16-65 TIME HEAT TABLE TOTAL BODY TEMP.= 158.230 97.187 TEST NO. A-1043-1 MEAN BODY (EMP.=

METABOLIC DETERMINATION PER TEST NO. A-1043-1 HG. FACTON = 6.8507 VE. LITERS/MIN.= 55.358 VOL. OF OZ CC/MIN.= 1758.163 VOL. OF COZ CC/MIN.= 2197.704 RESP. EXCHANGE RATIO= 1.250 MR. BTU/HR.= 2113.890 STD. MAN BTU/HR.= 1917.636 TOTAL K.CAL./M#M/HR.= 268.294

BAR. PRES. = 29.980 GLUBE TEMP.(F)= 71.00 6-17-65 TIME 10-15-AM DATE TEST NO. A-1050-0

1/3 B3DY TEMP.= 50.840 2/3 RECTAL PROB. TEMP.= 44.220 HEAT TABLE TOTAL BODY TEMP.= 152.520 MEAN BODY TEMP.= 95.060

METABOLIC DETERMINATION PEN TEST NO. A-1350-0 HG. FACTONE 0.9095 VE. Liters/Min.= 6.692 vol. of O2 CC/Min.= 239.628 vol. of CO2 CC/Min.= 195.410 RESP. EXCHANGE RATIOE 0.815 HR. JID/HR.= 275.135 STD. MAN BID/HR.= 250.016 TOTAL K.CAL./M+M/HR.= 34.91

Figure B7. - Typical body temperature and metabolic printout

REFERENCES

- 1. Wortz, E. C. et al: Body heat storage in full pressure suits. Paper presented at Symposium on Physiological and Performance Determinants of Manned Space Systems Design (sponsored by A.A.S.) April 1965.
- 2. Lang, R.: Experimental evaluation of ventilation effectiveness of International Latex MK-2 full pressure suit for Apollo space suit program. Report SVI + SER-2599 Hamilton Standard Div. of United Aircraft, April 15, 1963.
- 3. Wortz, E. C. et al: Full pressure suit heat balance studies. AiResearch Mfg. Co. Report LS-140, Feb. 1965 (Contract NAS9-2886).
- 4. Roth, H.P. and D.J. Dugas: Thermal balance: a basic problem in space suit design; The RAND Corp. (Internal report) Sept. 2, 1965.
- 5. Consolazio, C. F., et al: Physiological Measurements of Metabolic Functions in Man. McGraw-Hill Book Co., Inc., 1963, pp 371-374.
- 6. Freiman, A.H., et al: The electrocardiogram during exercise. J. Cardiol. 20: 506-515, April 1960.
- 7. Hardy, J.D. and E.F. DuBois: The technique of measuring radiation and convection. J. Nutrition 15: 461-475, May 1938.
- 8. Blockley, W. V., J. W. McCutchan and C. L. Taylor: Prediction of human tolerance for heat in aircraft; a design guide. WADC-TR 53-346, May 1954.
- 9. Rossier, P. H. et al: Repiration: Physiologic Principles and their Clinical Applications, (transl. by Luchsinger, D. C. and K. M. Moser), C. V. Mosby Co., 1960, p. 186 et seq.
- 10. Richards, D.W. Jr.: Respiratory system: external respiration, in Medical Physics. V. 2, O. Glasser, ed., Yearbook Publishers, 1950, p. 836.
- 11. Haggard, H.W. and L.A. Greenburg: Diet and Physical Efficiency, Yale University Press, 1935, pp. 62,63,68.
- 12. Issekutz, B., Jr. and K. Rodahl: Respiratory quotient during exercise. J. Appl. Physiol. 16: 606-610, 1961.
- 13. Poulsen, E., and E. Asmussen: Energy requirements of practical jobs from pulse increase and ergometer test. Ergonomics 5: 33-36, 1962.
- 14. Margaria, R. et al: Indirect determination of maximal O₂ consumption in man. J. Appl. Physiol. 2: 1070-1073, 1965.
- 15. Berggren, G. and E. H. Christensen: Heart rate and body temperature as indices of metabolic rate during work. Intern. Z. Angew. Physiol. 14: 255-260, 1950.
- 16. Brouha, L.: Physiology in Industry, Pergamon Press, 1960, p. 8.
- 17. Brouha, L.: Discrepancy between heart rate and oxygen consumption during work in the warmth. J. Appl. Physiol. 18: 1095-1098, 1963.
- 18. Maxfield, M.E. and L. Brouha: Validity of heart rate as an indicator of cardiac strain. J. Appl. Physiol. 18: 1099-1104, 1963.
- 19. Ralston, H.J.: Comparison of Energy Expenditure During Treadmill Walking and Floor Walking, Jr. of Appl. Physiology Vol. 15, Nov. 1960
- 20. Best, C. H., and N. B. Taylor: The Physiological Basis of Medical Practice, 7th Edition, the Williams & Wilkins Company, 1961.
- 21. Hodgman, C. D.: Handbook of Chemistry and Physics, 35th Edition, Chemical Rubber Company, 1953 1954.