

LABORATORY SESSIONS

NAME OF SCHOOL: SCIENCE AND TECHNOLOGY

SEMESTER: SPRING 2023

COURSE: APT1050: DATABASE SYSTEMS LECTURER: Prof. Elisha Toyne O. Omulo TIME/DAYS: ALL DAYS UNTIL 16/3/2023

VENUE: SHSS ICTLAB

CREDIT: 3 UNITS

OFFICE HOURS: ICT CENTRE LILINA BEAM BUILDING FACULTY OFFICE 10

CONTACT: EMAIL: elopiyo@usiu.ac.ke

NUMBER: 666248 **NAME:** SHARON JUSTINE NALUBIRI

1. INSTRUCTIONS

- 1. Laboratory sessions are designed to help you strengthen your hands on experienced for the course APT1050A/B database systems.
- 2. You need to work alone and document your experiences.
- 3. Submit the final report by week 9, latest week 10. It will count for your participation.
- 4. Use this document when reporting.
- 5. Your name and number should be on this document.
- 6. Send your final report to toyneo53@gmail.com or the mail above.

LABORATORY SESSION 1

Task: Conduct WEB search for the following items and report.

- 1. Available pdf version of the class text book, and download.
- 2. Any other one different textbook on Database Systems.
- 3. Use not more than 3 sentences to summarize the findings when you type the keyword phrase:

'Database systems in 2023'

DATES	SITES LOCATED	PDFS DOWNLOADED	CHALLENGES	COMPUTING
				USED- ON CA
				CAMPUS
18/2/2023	https://cs.franklin.edu/~	DATABASE PRINCIPLES	I managed to download	Off-Campus
	crawforl/DB10th.pdf		the book without any	

			challenges.	
18/2/2023	https://bayanbox.ir/vie w/8736593520639826 197/Ramakrishnan- Database- Management-Systems- 3rd-Edition-1-1.pdf	"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke	Finding the right link to download from was a bit challenging.	Off-Campus

2.

- "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke
 https://bayanbox.ir/view/8736593520639826197/Ramakrishnan-Database-Management-Systems-3rd-Edition-1-1.pdf
- "Database Systems: The Complete Book" by Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer
 Widom
- https://people.inf.elte.hu/miiqaai/elektroModulatorDva.pdf

3. However, based on current trends and advancements, it is expected that database systems in 2023 will continue to evolve towards cloud-based and hybrid systems, with increased use of NoSQL and NewSQL databases for big data processing and real-time analytics, while also incorporating more advanced security and privacy measures to protect sensitive data.

LABORATORY SESSION 2

Task: Conduct WEB search for the following items and report on:

- 1. List of database management systems in 2023.
- 2. Download and install Oracle 21c for Windows or Linux depending on your platform.
- 3. Download and acknowledge the source of one Conceptual Schema not highlighted anywhere in this course.

DATES	ITEMS AND SITES USED TO	CHALLENGES/INSTALLED	COMPUTING PLATFORM
	DOWNLOAD THEM		USED- ON CAMPUS OR OFF
			CAMPUS
20/02/2023	1) ManageEngine Applications	I did not find any	OFF CAMPUS
	Manager – Best overall	challenges accessing	
	database tracking software.	them.	
	2) DbVisualizer – Best for SQL		

-			
	database analysis and		
	development.		
	2) 81 - 5 - 1 501 0		
	3) Plan Explorer – SQL Query		
	Analysis.		
	4) MySQL – Best For Managing		
	business-critical SQL		
	applications.		
	applications.		
	5) Oracle Database – Best for its		
	security and reliability.		
	6) Valentina Studio – Best For		
	Small organizations with limited		
	budgets		
	7) Microsoft SQL Server – Best		
	For comprehensive database		
	management solution		
	8) IBM DB2 – Best for running		
	mission-critical workloads for		
	businesses		
	O) Hadaar HDEC Boot for		
	9) Hadoop HDFS – Best for		
	Parallel processing		
	10) PHPMyAdmin – Best for		
	Administration of MySQL over		
	the internet		
	11) MongoDb – Best for		
	Development and scaling		
	LINK:		
	LITAK.		
	https://www.guru99.com/best-		
	database-management-		
	software.html		
0 /00 /0000	001015010		OFF CANADUS
9/02/2023	ORACLE 21C	It was a bit had having to	OFF CAMPUS
		resave it in a different	

https://www.oracle.com/datab	folder	
ase/technologies/xe-		
downloads.html		

3. One conceptual schema that is not highlighted in this course is the Object-Role Modeling (ORM) schema.

ORM is a conceptual modeling language used to represent the semantic structure of information systems. It was developed by Terry Halpin in the 1980s and is now widely used in software engineering, database design, and business analysis. Certainly! Here's an example of an ORM schema for a simple online shopping system:

An example of an ORM schema for an online shopping system

In this schema, we have four entities: Customer, Product, Order, and Payment. A customer can place one or more orders, and an order can contain one or more products. Each product can have one or more orders associated with it. An order can have one payment associated with it, and a payment can only be associated with one order. Additionally, each order must be associated with exactly one customer.

LABORATORY SESSION 3

Task: Using an implementation of Oracle Express 18c or 21c:

1. Enter- user-name and password and leave. Create at least one table called mytable.

DATES	INSTALLATION OF ORACLE	CHALLENGES/TABLE	COMPUTING PLATFORM
	DBMS	CREATED	USED- ON CAMPUS OR OFF
			CAMPUS
24/2/23	Successful after getting	Username and password	Off Campus
	assistance	created successfully	
24/2/23		Table successfully	Off-Campus
		created.	

CREATE TABLE mytable (id INT PRIMARY KEY, name VARCHAR (50),

```
age INT,
email VARCHAR (100)
);
```

LABORATORY SESSION 4

Task: Create a database and three tables (mytable.) in Microsof Access DBMS and enter at least 10 records in each of the tables.

DATES	CREATION OF DATABASE AND TABLE IN MS ACCESS	CHALLENGES/ACCESS DATABASE CREATED AND TABLES POPULATED WITH DATA	COMPUTING PLATFORM USED- ON CAMPUS OR OFF CAMPUS
	Open Microsoft Access. Click "Blank database" in the "Available Templates" section of the startup screen. Choose a location and name for your new database, then click "Create". In the Navigation Pane on the left-hand side, click "Table Design" to create a new table. In the "Table Design" view, add the columns you want for your first table. For example, you might create a table called mytable1 with columns for id, name, age, and email. Be sure to set the appropriate data types and field sizes for each column. Save the table by clicking "Save" in the Quick Access Toolbar, or by pressing Ctrl+S. When prompted, enter a name for the table (e.g. mytable1) and click "OK".	It was a bit tiresome	OFF CAMPUS
	Repeat steps 4-6 to create two		

more tables called mytable2 and mytable3, each with their own set of columns. That's it! You now have a new Microsoft Access database with three tables: mytable1, mytable2, and mytable3. You	
can add data to each table by switching to "Datasheet" view, or you can create relationships between the tables using the "Relationships" tool in the "Database Tools" tab.	

LABORATORY SESSION 5

Task: Create an Oracle database schema tables for Product Orders see slides from week 5, slide number 16 [CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR];

- 1. Create the Schema.
- 2. Enter at least 15 records in each of the tables in the database.
- 3. Perform at least 5 queries using the SELECT command.
- 4. Modify at least one entry in each table.
- 5. Formulate at least 5 queries each with a different aggregated value.
- 6. Enforce referential integrity in at least two tables.

DATES	CREATION OF DATABASE TABLES; SELECT command.	CHALLENGES/WORKS	COMPUTING PLATFORM USED- ON CAMPUS OR OFF CAMPUS
09/03/2023	Created tables; CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR	Initially it was challenging then after several attempts I was successful	OFF CAMPUS

12/3/23	I managed to use the	I took several takes, and	OFF-CAMPUS
	update command to	with research on the	
	change the entries.	internet I managed to	
	I also managed to use		
	'sum', 'count', 'min',		
	'max', and 'average'		
	queries		
	Managed to create		
	referential integrity		
	between product and		
	vendor by using primary		
	key (V_CODE) in Vendor		
	table as foreign key in		
	Product table		

1.

```
Open your RDBMS and create a new database.
```

CREATE DATABASE mydatabase;

```
Create tables for your database, defining the columns and data types for each table.
```

```
CREATE TABLE customers (
      cust_id INT PRIMARY KEY,
      cust_lname VARCHAR(50),
      cust_fname VARCHAR(50),
      cust_email VARCHAR(50),
      cust_initial VARCHAR(5),
      cust_areacode VARCHAR(10),
      cust_phone VARCHAR(14)
);
CREATE TABLE vendor (
      v_code INT PRIMARY KEY,
      v_name VARCHAR(50),
      v_contact VARCHAR(100),
      v_areacode VARCHAR(50),
      v_phone VARCHAR(50),
      v_state VARCHAR(20),
      v_order VARCHAR(50),
);
CREATE TABLE product (
      pdt_code INT PRIMARY KEY,
      pdt_name VARCHAR(50),
      pdt_descript VARCHAR(100),
      pdt_indate VARCHAR(50),
```

```
pdt_min VARCHAR(12)
                  pdt_price DECIMAL(8,2),
                  pdt_discount DECIMAL(8,2),
                  v_code INT,
                  FOREIGN KEY (v_code) REFERENCES VENDOR(v_code) ON DELETE
            CASCADE
            );
            CREATE TABLE invoice (
                  invoice_num INT PRIMARY KEY,
                  customer_id INT,
                  invoice_date VARCHAR(10),
                  total_amount DECIMAL(8,2),
                  FOREIGN KEY (cust id) REFERENCES CUSTOMER(cust id) ON
            DELETE CASCADE
            );
            CREATE TABLE line (
                  line num INT PRIMARY KEY,
                  invoice_num INT,
                  pdt code INT,
                  line_units INT,
                  line price DECIMAL(8,2),
                  FOREIGN KEY (invoice_num) REFERENCES INVOICE(invoice_num) ON
            DELETE CASCADE.
                  FOREIGN KEY (pdt_code) REFERENCES PRODUCT(pdt_code) ON
            DELETE CASCADE
            );
4. Modify at least one entry in each table
            UPDATE customers SET cust_email = 'newemail@email.com' WHERE cust_id = 1;
            UPDATE pdt_QOH SET quantity = 7 WHERE v_code = 2;
5. Formulate at least 5 queries each with a different aggregated value.
      -- Count the number of customers
      SELECT COUNT(*) FROM customers;
      -- Get the average price of a product
      SELECT AVG(pdt_price) FROM product;
```

pdt_QOH VARCHAR(10),

- -- Get the total quantity of a product sold SELECT SUM(pdt_QOH) FROM product WHERE pdt_name = 'Widget';
- -- Get the minimum price of a product SELECT MIN(pdt_price) FROM product;
- -- Get the maximum quantity of a product sold SELECT MAX(pdt_QOH) FROM product WHERE pdt_name = 'Gadget';

LABORATORY SESSION 6

Task: SubQueries in SQL.

1. Using the schema from Laboratory Session 5, formulate at least 10 SQL Subqueries.

DATES	SUBQUERIES IN SQL	CHALLENGES/WORKS	COMPUTING PLATFORM USED- ON CAMPUS OR OFF CAMPUS
13/3/23	Managed to use the 'Where', 'Having', 'Select' and 'From' subqueries	Had several tries but managed after researching on the internet and following YouTube tutorials	On-Campus
14/3/23	Kept practicing on writing the subqueries.	Successful	Off-Campus