CSC210: Data Structures and Algorithms

Barbara Morawska

August 1, 2018

Sore additional points by presenting in class the proofs of the numbered equations.

Standard notations and common functions (ch. 3.2)

Monotonicity

f(n) is:

- monotonically increasing if $m \le n$ implies $f(m) \le f(n)$
- monotonically decreasing if $m \le n$ implies $f(m) \ge f(n)$
- strictly increasing if m < n implies f(m) < f(n)
- strictly decreasing if m < n implies f(m) > f(n)

Floor and ceiling are monotonically increasing

floor of x, $\lfloor x \rfloor$, is the greatest integer y such that $y \leq x$

ceiling of x, $\lceil x \rceil$, is the smallest integer y such that $y \ge x$

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1 \tag{1}$$

For any integer n:

$$\lceil n/2 \rceil + |n/2| = n \tag{2}$$

For any real number $x \ge 0$ and integers a, b > 0:

$$\left\lceil \frac{\left\lceil \frac{x}{a} \right\rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil \tag{3}$$

$$\lfloor \frac{\lfloor \frac{x}{a} \rfloor}{b} \rfloor = \lfloor \frac{x}{ab} \rfloor \tag{4}$$

$$\lceil \frac{a}{b} \rceil \le \frac{a + (b - 1)}{b} \tag{5}$$

$$\lfloor \frac{a}{b} \rfloor \ge \frac{a - (b - 1)}{b} \tag{6}$$

Modular arithmetic

For any integer a and a positive integer n, $a \mod n$ is a remainder of the quotient $\frac{a}{n}$

$$a \mod n = a - n \lfloor \frac{a}{n} \rfloor \tag{7}$$

$$0 \le a \bmod n < n \tag{8}$$

We say $a \equiv b \pmod{n}$ iff $n \mid (b-a) \pmod{n}$ is a divisor of (b-a)

$$a \equiv b \pmod{n} \iff a \bmod n = b \bmod n$$
 (9)

Exponentials

For all real constants a, b such that a > 1:

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \tag{10}$$

$$n^b = o(a^n) (11)$$

For real x

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (12)

$$e^x \ge 1 + x \tag{13}$$

For $|x| \leq 1$

$$1 + x \le e^x \le 1 + x + x^2 \tag{14}$$

For all x

$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x \tag{15}$$

Logarithms

Notation: $\lg n = \log_2 n, \, \ln n = \log_e n, \, \lg^k n = (\lg n)^k, \, \lg \lg n = \lg(\lg n)$

Notice how logarithm binds its argument: $\lg n + k = (\lg n) + k$ and thus $\lg n + k \neq \lg(n+k)$

For b > 1, n > 0, $\log_b n$ is strictly increasing.

For all real a>0,b>0,c>0 and n (and the base of the logarithms is not 1):

$$a = b^{\log_b a} \tag{16}$$

$$\log_c(a, b) = \log_c a + \log_c b \tag{17}$$

$$\log_b a^n = n \log_b a \tag{18}$$

$$\log_b a = \frac{\log_c a}{\log_c b} \tag{19}$$

$$\log_b(1/a) = -\log_b a \tag{20}$$

$$\log_b a = \frac{1}{\log_a b} \tag{21}$$

$$a^{\log_b c} = c^{\log_b a} \tag{22}$$

For |x| < 1:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$
 (23)

For x > -1:

$$\frac{x}{1+x} \le \ln(1+x) \le x \tag{24}$$

For any constant a > 0:

$$\lg^b n = o(n^a) \tag{25}$$

Factorials

Note the recursive definition of the factorial function:

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

The Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$n! = o(n^n) \tag{26}$$

$$n! = \omega(2^n) \tag{27}$$

$$\lg(n!) = \Theta(n \lg n) \tag{28}$$

Fibonacci numbers:

Definition:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_i = F_{i-1} + F_{i-2} \quad \text{ for } i \ge 2$$

Golden ratio

$$\phi = \frac{1 + \sqrt{5}}{2}$$

conjugate of golden ratio:

$$\phi = \frac{1 - \sqrt{5}}{2}$$

Golden ration and its conjugate are two roots of the equation:

$$x^2 = x + 1$$

$$F_i = \frac{\phi^i - \hat{\phi}_i}{\sqrt{5}} \tag{29}$$