

UDESC – Universidade do Estado de Santa Catarina

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Linguagem de Programação

Professora: Luciana Rita Guedes

EXERCÍCIOS DE FIXAÇÃO Nº 1.1 Estruturas de Seleção

1) Coordenadas de um Ponto

Leia 2 valores com uma casa decimal (x e y), que devem representar as coordenadas de um ponto em um plano. A seguir, determine qual o quadrante ao qual pertence o ponto, ou se está sobre um dos eixos cartesianos ou na origem (x = y = 0).

Se o ponto estiver na origem, escreva a mensagem "Origem". Se o ponto estiver sobre um dos eixos escreva "Eixo X" ou "Eixo Y", conforme for a situação.

Entrada

A entrada contém as coordenadas de um ponto.

Saída

A saída deve apresentar o quadrante em que o ponto se encontra.

Exemplo de Entrada	Exemplo de Saída
4.5 -2.2	Q4
0.1 0.1	Q1
0.0 0.0	Origem

UDESC – Universidade do Estado de Santa Catarina

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Linguagem de Programação

Professora: Luciana Rita Guedes

2) Tipos de Triângulos

Leia 3 valores de ponto flutuante A, B e C e ordene-os em ordem decrescente, de modo que o lado A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

- se A ≥ B+C, apresente a mensagem: NAO FORMA TRIANGULO
- se $A^2 = B^2 + C^2$, apresente a mensagem: **TRIANGULO RETANGULO**
- se $A^2 > B^2 + C^2$, apresente a mensagem: **TRIANGULO OBTUSANGULO**
- se $A^2 < B^2 + C^2$, apresente a mensagem: **TRIANGULO ACUTANGULO**
- se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO
- se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCELES

Entrada

A entrada contem três valores de ponto flutuante de dupla precisão A (0 < A), B (0 < B) e C (0 < C).

Saída

Imprima todas as classificações do triângulo especificado na entrada.

Exemplos de Entrada	Exemplos de Saída
7.0 5.0 7.0	TRIANGULO ACUTANGULO TRIANGULO ISOSCELES
6.0 6.0 10.0	TRIANGULO OBTUSANGULO TRIANGULO ISOSCELES
6.0 6.0 6.0	TRIANGULO ACUTANGULO TRIANGULO EQUILATERO
5.0 7.0 2.0	NAO FORMA TRIANGULO
6.0 8.0 10.0	TRIANGULO RETANGULO

UDESC – Universidade do Estado de Santa Catarina Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Linguagem de Programação

Professora: Luciana Rita Guedes

3) Tempo de Jogo

Leia a hora inicial e a hora final de um jogo. A seguir calcule a duração do jogo, sabendo que o mesmo pode começar em um dia e terminar em outro, tendo uma duração máxima de 24 horas.

Entrada

Dois números inteiros representando o início e o fim do jogo.

Saída

Mostre a duração do jogo conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
16 2	O JOGO DUROU 10 HORA(S)
0 0	O JOGO DUROU 24 HORA(S)
2 16	O JOGO DUROU 14 HORA(S)

UDESC - Universidade do Estado de Santa Catarina

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Linguagem de Programação Professora: Luciana Rita Guedes

4) Número de Dias

Leia o dia e o mês em que um evento irá ocorrer neste ano. A seguir calcule o número de dias que passarão desde o início do ano (01 de janeiro) até o dia do evento. Considere o número de dias precisos que há em cada mês e suponha que o ano não seja bissexto.

Entrada

Dois números inteiros representando o dia e o mês de ocorrência do evento.

Saída

Mostre o número de dias decorridos desde o início do ano até a ocorrência do evento.

Exemplo de Entrada 15 2	Exemplo de Saída 46 DIA(S) DO INICIO DO ANO ATE O EVENTO.
(31+15=46 dias)	
1 1	1 DIA(S) DO INICIO DO ANO ATE O EVENTO.
(1 dia apenas)	
8 10	281 DIA(S) DO INICIO DO ANO ATE O EVENTO.
(31+28+31+30+31+30+ 31+31+30+8=281 dias)	