環の局所化

N'Tree

2022年3月12日

目次

1	整数環から有理数体を作る	1
2	整域の局所化	2
3	環の局所化	3

1 整数環から有理数体を作る

整数環 ℤ から有理数体 ℚ を作る方法を思い出そう。有理数体は

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z} \setminus \{0\} \right\}$$

となっていた。体であるから和と積が定まっているが、それは

$$\frac{m_1}{n_1} + \frac{m_2}{n_2} = \frac{m_1 n_2 + m_2 n_1}{n_1 n_2}$$
$$\frac{m_1}{n_1} \cdot \frac{m_2}{n_2} = \frac{m_1 m_2}{n_1 n_2}$$

をみたしていた。いま $\mathbb Z$ のみを用いて $\mathbb Q$ を定義したい。そのために、集合 $\mathbb Z \times (\mathbb Z\setminus\{0\})$ の元 (m,n) を $\frac{m}{n}$ に対応させよう。上の式と対応させながら、 $\mathbb Z \times (\mathbb Z\setminus\{0\})$ 上に和と積を

$$(m_1, n_1) + (m_2, n_2) = (m_1 n_2 + m_2 n_1, n_1 n_2)$$

 $(m_1, n_1) \cdot (m_2, n_2) = (m_1 m_2, n_1 n_2)$

と定める。ただしこのままでは (1,2) と (2,4) は異なる元となっている。そこで約分して等しくなるような 2 元を同じと見なすために、同値関係を導入する。 $\mathbb Q$ において $\frac{m_1}{n_1}=\frac{m_2}{n_2}$ は $m_1n_2-m_2n_1=0$ と同値だったので、 $\mathbb Z\times(\mathbb Z\setminus\{0\})$ 上に同値関係を

$$(m_1, n_1) \sim (m_2, n_2) \iff m_1 n_2 - m_2 n_1 = 0$$

と定める。

演習問題 1. 同値関係 \sim による商集合 $(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/\sim$ 上に和と積が誘導されることを示せ。

この和と積により $(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/\sim$ が体になることが確かめられる。この体を有理数体 \mathbb{Q} と定義する。以上が \mathbb{Q} の定義の復習であった。

2 整域の局所化

整域の局所化は上とほぼ同じ流れでできる。以下、環はすべて可換環とする。

定義 2. A を環とする。A の部分集合 S が乗法的集合であるとは、次を満たすことをいう。

- $1 \in S, 0 \notin S$
- $a,b \in S$ $ab \in S$

補題 3. A を整域、 $S \subset A$ を乗法的集合とする。このとき集合 $A \times S$ 上に同値関係 \sim を

$$(a_1, s_1) \sim (a_2, s_2) \iff a_1 s_2 - a_2 s_1 = 0$$

により定義できることを示せ。

証明. 反射律、対称律は簡単にわかる。推移律については、 $(a_1,s_1),(a_2,s_2),(a_3,s_3) \in A \times S$ に対して $(a_1,s_1) \sim (a_2,s_2),(a_2,s_2) \sim (a_3,s_3)$ と仮定すると、 $a_1s_2-a_2s_1=0,a_2s_3-a_3s_2=0$ が成り立つ。このとき

$$s_3(a_1s_2 - a_2s_1) + s_1(a_2s_3 - a_3s_2) = s_2(a_1s_3 - a_3s_1) = 0$$

となる。 $0 \notin S$ かつ \underline{A} は整域なので $a_1s_3 - a_3s_1 = 0$ となり、 $(a_1, s_1) \sim (a_3, s_3)$ が従う。

この同値関係による商を $S^{-1}A$ とし、(a,s) の同値類を $\frac{a}{s}$ と表す。和と積を $a_1,a_2\in A,s_1,s_2\in S$ に対し

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2}$$
$$\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$$

により定める。

演習問題 4. この定義が well-defined であり、 $S^{-1}A$ が環になることを確かめよ。

定義 5. 環 $S^{-1}A$ を A の S による局所化という。

A は整域なので、 $A\setminus\{0\}$ は乗法的集合である。このときの局所化は体となることを見よう。

命題 6. A は整域、 $S = A \setminus \{0\}$ とする。このとき局所化 $S^{-1}A$ は体である。

証明. 0 でない元 $\frac{a}{s}$ が逆元をもつことを示せばよい。 $\frac{a}{s}=0 (=\frac{0}{1})$ は a=0 と同値なので、 $\frac{a}{s}$ が 0 でないとき a も 0 でない。よって $a\in S$ であり、元 $\frac{s}{a}$ を考えることができる。このとき

$$\frac{a}{s} \cdot \frac{s}{a} = \frac{1}{1} = 1$$

なので、 $\frac{s}{a}$ は $\frac{a}{s}$ の逆元である。

定義 7. この体を A の商体という。

例えば $\mathbb Z$ の商体は $\mathbb Q$ である。このように、整域の局所化は $\mathbb Z$ から $\mathbb Q$ を作る操作とほぼ同じである。つまり小学生は整域の局所化を理解しているのである。

3 環の局所化

整域とは限らない一般の (可換) 環の局所化を考える。乗法的集合の定義は上で与えたものと同一である。しかし、 $A \times S$ 上の関係 \sim は一般に同値関係にならない (補題 3 の証明の下線部に注意せよ)。そのため、 \sim の定義を修正する必要がある。

補題 8. A を環、 $S \subset A$ を乗法的集合とする。このとき集合 $A \times S$ 上に同値関係 \sim を

$$(a_1, s_1) \sim (a_2, s_2) \iff \exists s \in S, s(a_1 s_2 - a_2 s_1) = 0$$

により定義できることを示せ。

証明. 推移律のみ確かめる。 $(a_1,s_1)\sim (a_2,s_2), (a_2,s_2)\sim (a_3,s_3)$ とすると、ある $s,s'\in S$ に対し $s(a_1s_2-a_2s_1)=0, s'(a_2s_3-a_3s_2)=0$ となる。このとき

$$ss's_3(a_1s_2 - a_2s_1) + ss's_1(a_2s_3 - a_3s_2) = ss's_2(a_1s_3 - a_3s_1) = 0$$

となるので、 $(a_1, s_1) \sim (a_3, s_3)$ である。

残りの展開は整域の場合と同様である。この同値関係による商を $S^{-1}A$ とし、(a,s) の同値類を $\frac{a}{s}$ と表す。和と積を $a_1,a_2\in A,s_1,s_2\in S$ に対し

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2}$$
$$\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$$

により定める。

演習問題 9. この定義が well-defined であり、 $S^{-1}A$ が環になることを確かめよ。

なお、 $S^{-1}A$ は体になるとは限らない。

局所化とは大雑把に言えば、S の元を可逆になるようにした環である。実際、 $A \to S^{-1}A$ を標準的な準同型 $a \mapsto \frac{a}{1}$ としたとき、S の像に含まれる元はすべて可逆である。局所化が次の普遍性をみたすことを示してこのミニノートの締めくくりとする。

命題 11 (局所化の普遍性). A,B を環、 $S\subset A$ を乗法的集合、 $\varphi\colon A\to B$ を準同型とする。 すべての元 $s\in S$ に対して像 $\varphi(s)\in B$ が可逆であるとする。このとき準同型 $\psi\colon S^{-1}A\to B$ であって、任意の $a\in A$ に対し $\psi(\frac{a}{1})=\varphi(a)$ をみたすものがただ 1 つ存在する。

証明. 写像 $f\colon S\times A\to B$ を $f(s,a)=\varphi(a)/\varphi(s)$ により定める $(\varphi(s)$ は可逆である)。 $a_1,a_2\in A, s_1,s_2\in S$ が $\frac{a_1}{s_1}=\frac{a_2}{s_2}$ をみたすとき、ある $s\in S$ が存在して $s(a_1s_2-a_2s_1)=0$ となる。 このとき $\varphi(s)(\varphi(a_1)\varphi(s_2)-\varphi(a_2)\varphi(s_1))=0$ であり、 $\varphi(s)$ は可逆なので $\varphi(a_1)\varphi(s_2)-\varphi(a_2)\varphi(s_1)=0$ を得る。 さらに $\varphi(s_1),\varphi(s_2)$ も 可逆なので

$$\frac{\varphi(a_1)}{\varphi(s_1)} = \frac{\varphi(a_2)}{\varphi(s_2)}$$

を得る。ゆえに $f(s_1,a_1)=f(s_2,a_2)$ となる。従って $\psi(a/s)=\varphi(a)/\varphi(s)$ をみたす写像 $\psi\colon S^{-1}A\to B$ が誘導される。これは環準同型となり、 $\psi(a/1)=\varphi(a)/\varphi(1)=\varphi(a)$ なので条件を満たす。

逆に ψ が任意の $a\in A$ に対し $\psi(a/1)=\varphi(a)$ をみたす準同型のとき、 $a\in A, s\in S$ に対して

$$\varphi(a) = \psi(a) = \psi(a/s)\psi(s) = \psi(a/s)\varphi(s)$$

より、 $\psi(a/s) = \varphi(a)/\varphi(s)$ となる。よって ψ は一意的である。

参考文献

[1] 雪江明彦, 代数学 2 環と体とガロア理論, 日本評論社, 2010.