Based on this likelihood table, we will calculate conditional probabilities as below

Frequency Table		Ви	ıy	
		Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Libelih	Likelihood Table		ıy	
Likelin	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

```
P(B) = P(Weekday) = 11/30 = 0.367
```

$$P(A) = P(No Buy) = 6/30 = 0.2$$

$$P(B|A) = P(Weekday | No Buy) = 2/6 = 0.33$$

$$P(A|B) = P(No Buy | Weekday)$$

$$= (0.33 * 0.2) / 0.367 = 0.179$$

ST?

Based on this likelihood table, we will calculate conditional probabilities as below

Likelihood Table		Ви	ıy	
Likelin	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

P(B) = P(Weekday) = 11/30 = 0.367

P(A) = P(Buy) = 24/30 = 0.8

P(B|A) = P(Weekday | Buy) = 2/6 = 0.375

If A equals Buy, then

P(A|B) = P(Buy | Weekday)

= P(Weekday| Buy) * P(Buy) / P(Weekday)

= (0.375 * 0.8) / 0.367 = 0.817

As the Probability(Buy | Weekday) is more than Probability(No Buy | Weekday), we can conclude that a customer will most likely buy the product on a Weekday

Similarly, we can find the likelihood of occurrence of an event involving all three variables

WE HAVE THE FREQUENCY TABLES
OF ALL THE THREE INDEPENDENT
VARIABLES. WE WILL NOW
CONSTRUCT LIKELIHOOD TABLES
FOR ALL THE THREE

Frequency Table		Buy	
Freque	ency lable	Yes	No
	Weekday	3	7
Day	Weekend	8	2
	Holiday	9	1

Likelihood Table		Ви	ıy	
Likeliii	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Likelihood Tables

Likelihood Table		Bu	ıy	
Likelin	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		В	Buy	
		Yes	No	
6.	Yes	19/24	1/6	20/30
Discount	No	5/24	5/6	10/30
		24/30	6/30	

Frequency		Buy		
Table	•	Yes No		
Free	Yes	21/24	2/6	23/30
Delivery	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = No Buy

P(A|B) = P(No Buy | Discount = Yes, Free Delivery = Yes, Day = Holiday)

= P(Discount = Yes | No) * P(Free Delivery = Yes | No) * P(Day = Holiday | No) * P(No Buy)

P(Discount=Yes) * P(Free Delivery=Yes) * P(Day=Holiday)

 $= \frac{(1/6) * (2/6) * (3/6) * (6/30)}{(20/30) * (23/30) * (11/30)}$

= 0.178

Likelihood Tables

Likalih	ikelihood Table		Buy		
Likelin	ood lable	Yes	No		
	Weekday	9/24	2/6	11/30	
Day	Weekend	7/24	1/6	8/30	
	Holiday	8/24	3/6	11/30	
		24/30	6/30		

Frequency		В	ıy	
Table	Table		No	
6:	Yes	19/24	1/6	20/30
Discount	No	5/24	5/6	10/30
		24/30	6/30	

Frequency		Buy		
Table	•	Yes No		
Free	Yes	21/24	2/6	23/30
Delivery	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = Buy

P(A|B) = P (Yes Buy | Discount = Yes, Free Delivery = Yes, Day = Holiday)

P(Discount = Yes | Yes) * P(Free Delivery = Yes | Yes) * P(Day = Holiday | Yes) * P(Yes Buy)

P(Discount = Yes) * P(Free Delivery = Yes) * P(Day = Holiday)

$$= \frac{(19/24) * (21/24) * (8/24) * (24/30)}{(20/30) * (23/30) * (11/30)}$$

0.986

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

FINALLY, WE HAVE CONDITIONAL PROBABILITIES OF PURCHASE ON THIS DAY!

LET US NOW NORMALIZE THESE PROBABILITIES TO GET THE LIKELIHOOD OF THE EVENTS SUM OF PROBABILITIES = 0.986 + 0.178 = 1.164

LIKELIHOOD OF PURCHASE = 0.986 / 1.164 = 84.71 %

LIKELIHOOD OF NO PURCHASE = 0.178 / 1.164 = 15.29 %

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

AS 84.71% IS GREATER THAN 15.29%, WE CAN CONCLUDE THAT AN AVERAGE CUSTOMER WILL BUY ON A HOLIDAY WITH DISCOUNT AND FREE DELIVERY

Example 2

From the dataset we have obtained, we will populate frequency tables for each of the attribute

Frequency Table		Play		
		Yes	No	
Sunny	Yes	3 ₺	4	
	No	6	1	

Frequency Table		Play	
		Yes	No
Windy	Yes	6	2
	No	3	3

Frequency Table		Play	
		Yes	No
Season	Summer	3	2
	Monsoon	4	0
	Winter	2	3

For each of the frequency tables, we will find the likelihoods for each of the cases

Here, c = Play and x = Variables like Season, Sunny & Windy.

Likelihood of 'Yes' given Summer is:

 $P(c \mid x) = P(Yes \mid Summer) = P(Summer \mid Yes)* P(Yes) / P(Summer) = (0.33 x 0.64) / 0.36 = 0.60$

Let us use the likelihood table to predict whether to play football on (Season = Winter, Sunny = No , Windy = Yes)

```
P(c \mid x) = P(Play = Yes \mid Winter, Sunny = No, Windy = Yes)
```

= P(Winter | Yes) * P(Sunny = No | Yes) * P(Windy = Yes | Yes) * P(Yes)

P(Winter) * P(Sunny = No) * P(Windy = Yes)

= (2/9) * (6/9) * (6/9) * (9/14) / (5/14) * (7/14) * (8/14) = 0.6223

Since the probability is greater than 0.5, we should play football on that day.

