1 EXOS chapitre polynômes et fractions rationnelles

Ce document contient les réponses/correction des exo 4.4, 4.6, 4.7, 4.8, 4.9 et 4.12.

Exercice. (Exo 4.4) Soit $P(X) = 1 - X^{n+1}$. On calcule $P(1) = 1 - 1^{n+1} = 0$ donc 1 est racine de P. On déduit que X - 1 divise P(X). Par ailleurs, soit $\sum_{k=0}^{n} X^k$ la somme des termes d'une suite géométrique "de raison X", on remarque que la somme $(1 - X) \sum_{k=0}^{n} X^k$ se télescope en

$$(1-X)\sum_{k=0}^{n} X^k = 1 - X^{n+1}.$$

Donc le quotient de $1 - X^{n+1}$ dans la division par 1 - X est $\sum_{k=0}^{n} X^k$.

Exercice. (Exo 4.6) (1) Soit $P(X) = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$ avec $d = \deg(P(X)) \ge 1$, de sorte qu'on ait $a_d \ne 0$. Par définition on a

$$P'(X) = \sum_{k=0}^{d-1} (k+1)a_{k+1}X^k = \sum_{k=1}^{d} ka_k X^{k-1}.$$

En particulier comme $d \ge 1$, on a $da_d \ne 0$ et donc $\deg(P'(X)) = d - 1 = \deg(P(x)) - 1$.

(2) Si P(X) = c avec $c \in \mathbb{C}$, alors P'(X) = 0 par définition. Réciproquement, si $P(x) = \sum_{k=0}^{n} a_k X^k$ est tel que P'(X) = 0, alors on a $ka_k = 0$ pour tout $k \in \{0, \ldots, n\}$. Il vient que $a_k = 0$ pour tout $k \in \{1, \ldots, n\}$ donc $P(X) = a_0$ est constant.

Par double implication, on a montré que $P \in \mathbb{K}[X]$ est constant si et seulement si P'(X) = 0.

Exercice. (Exo 4.7) Supposons par l'absurde qu'il existe $P(X) = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ tel que

$$P(X) - XP'(X) = X.$$

On commence par remarquer que $\deg(P(X)) \ge 1$. En effet si $\deg(P(X)) \le 0$ alors P'(X) = 0 et $\deg(P(X) - XP'(X)) = \deg(P) < \deg(X)$. Il vient que

$$P(X) = \sum_{k=0}^{n} a_k X^k$$
, et $P'(X) = \sum_{k=1}^{n} k a_k X^{k-1}$.

Le coefficient devant X^n dans P(X) - XP'(X) est donc $(1 - n)a_n$. On déduit que $\deg(P) \le 1$ car sinon $\deg(P(X) - XP'(X)) > 1 = \deg(X)$. Mais alors le coefficient devant X dans P(X) - XP'(X) est 0 donc $\deg(P(X) - XP'(X)) \le 0 < \deg(X)$ ce qui contredit nos hypothèses sur P.

Exercice. (Exo 4.8) Déterminons les polynômes non constants $P \in \mathbb{K}[X]$ tels que P' divise P. Déjà, si $\deg(P) = 1$ alors $\deg(P') = 0$ donc P' divise P car les constantes non nulles sont des diviseurs de tous les polynômes de $\mathbb{K}[X]$.

Au cours de cette exo, nous allon utiliser le lemme suivant sur la dérivée produit :

Lemme. Soient $P, Q \in \mathbb{K}[X]$ alors

$$(P(X)Q(X))' = P'(X)Q(X) + P(X)Q'(X).$$

Proof. Soient $n, m \in \mathbb{N}$, supposons que $P(X) = \sum_{k=0}^{\infty} a_k X^k$ et $Q(X) = \sum_{k=0}^{\infty} b_k X^k$ avec $a_k = 0$ pour tout k > n et $b_k = 0$ pour tout k > m. On peut montrer que

$$P(X)Q(X) = \sum_{k=0}^{n+m} c_k X^k, \quad \text{avec } c_k = \sum_{j=0}^k a_j b_{k-j} = a_k b_0 + a_{k-1} b_1 + \dots + a_0 b_k.$$

Donc $(P(X)Q(X))' = \sum_{k=0}^{n+m-1} (k+1)c_{k+1}X^k$. De même

$$P'(X)Q(X) = \sum_{k=0}^{n+m-1} d_k X^k$$
, avec $d_k = \sum_{j=0}^{k} (j+1)a_{j+1}b_{k-j}$,

et

$$P(X)Q'(X) = \sum_{k=0}^{n+m-1} e_k X^k$$
, avec $e_k = \sum_{j=0}^{k} (j+1)b_{j+1}a_{k-j}$.

Montrons que $d_k + e_k = (k+1)c_{k+1}$ pour tout $k \in \{0, \ldots, n+m-1\}$. On effectue le changement d'indice de sommation j = k - (l+1) autrement dit l = k - (j+1) dans e_k . Comme $1 \le j+1 \le k+1$ on a $-1 \le l \le k-1$ et

$$e_k = \sum_{l=-1}^{k-1} (k-l)a_{l+1}b_{k-l} = k + 1a_0b_{k+1} + \sum_{l=0}^{k-1} (k-l)a_{l+1}b_{k-l}.$$

De même $d_k = (\sum_{j=0}^{k-1} (j+1)a_{j+1}b_{k-j}) + (k+1)a_{k+1}b_0$ En sommant d_k et e_k on déduit

$$d_k + e_k = (k+1)a_0b_{k+1} + (\sum_{j=0}^{k-1} \underbrace{(j+1+k-j)}_{=k+1} a_{j+1}b_{k-j}) + (k+1)a_{k+1}b_0,$$

$$= (k+1)(a_0b_{k+1} + (\sum_{j=0}^{k} a_jb_{k+1-j}) + a_{k+1}b_0)$$

$$= (k+1)c_{k+1}$$

(1)(i) Supposons que $n = \deg P > 2$ et que P' divise P. Donc il existe $Q(X) \in \mathbb{K}[X]$ tel que P(X) = Q(X)P'(X). En particulier $\deg(Q(X)) = 1$ donc Q(X) = cX + d avec $c, d \in \mathbb{K}$. Soit a_n le coefficient dominant de P, comme le coefficient dominant de Q(X)P'(X) est cna_n il vient que c = 1/n. En posant b = d on a

$$P(X) = \frac{1}{n}(X + nb)P'(X).$$

(ii) En considérant le polynôme dérivé de $\frac{1}{n}(X+nb)P'(X)$ on déduit avec le Lemme :

$$P'(X) = \left(\frac{1}{n}(X+nb)P'(X)\right)' = \frac{1}{n}P'(X) + \frac{1}{n}(X+nb)P''(X),$$

$$\left(1 - \frac{1}{n}\right)P'(X) = \frac{1}{n}(X+nb)P''(X)$$

$$\frac{n-1}{n}P'(X) = \frac{1}{n}(X+nb)P''(X)$$

$$P'(X) = \frac{1}{n+1}(X+nb)P''(X).$$

(iii) et (iv) On peut montrer par récurrence que pour tout $k \leq n$ on a

$$P(X) = \frac{(n-k)!}{n!} (X+nb)^k P^{(k)}(X),$$

ou $P^{(k)}$ est le polynôme dérivé k-ième de P. En particulier $P(X) = \frac{1}{n!}(X+nb)^n P^{(n)}(X)$, avec $\deg(P^{(n)}(X)) = 0$. Donc -nb est racine de multiplicité n de P et $P(X) = a(X+d)^n$ avec $a = \frac{1}{n!}P^{(n)}(0)$ et d = nb.

(2) Supposons réciproquement que $P(X) = a(X+b)^n$ pour certains $a, b \in \mathbb{K}$ avec $a \neq 0$ et un entier $n \geq 1$. Comme $n \geq 1$ et $a \neq 0$ on a que P(X) est non constant et $\deg(P(X)) = n$. On calcule en appliquant le Lemme n fois

$$P'(X) = a\Big((X+b)^n\Big)' = a\Big((X+b)^{n-1} + (X+b)\Big((X+b)^{n-1}\Big)'\Big) \underbrace{=}_{n-1 \text{ applications du Lemme}} an(X+b)^{n-1}$$

On en déduit $P(X) = \frac{1}{n}(X+b)P'(X)$, ce qui conclut.

Exercice. (Exo 4.9) Soit $P, Q \in \mathbb{K}[X]$, (i) Pour montrer que $P \circ Q(X)$ est un polynôme il suffit de montrer que $P_k \circ Q(X)$ est un polynôme avec $P_k(X) = X^k$, $k \in \mathbb{N}$.

Par définition $P_k \circ Q(X) = (Q(X))^k$ le produit de k-copies de Q avec $(Q(X))^0 = 1$ par convention. Comme le produit de deux polynômes reste un polynôme, on peut montrer par récurrence que $P_k \circ Q(X) \in \mathbb{K}[X]$ ce qui conclut.

(ii) On calcule en itérant la formule $\deg(Q(X)P(X)) = \deg(Q(X)) + \deg(P(X))$:

$$\deg P_k \circ Q(X) = \deg(Q(X)^k) = k \deg(Q(X)), \text{ pour tout } k \ge 1.$$

Cette formule s'étend à k=0 si et seulement si $Q \neq 0$. Supposons que $Q \neq 0$. Si $n=\deg P \geq 1$ et $P(X)=\sum_{k=0}^n a_k X^k$, on a

$$\deg(P \circ Q(X)) \le \max_{k \in \{0,\dots,n\}} \deg(a_k P_k \circ Q(X)) \le \max_{k \in \{0,\dots,n\}} k \deg(Q(X)) \le n \deg(Q(X)).$$

Comme $n = \deg(P(X))$, on conclut que $\deg(P \circ Q(X)) = \deg(P(X)) \times \deg(Q(X))$. Si Q = 0 on a $P \circ Q(X) = P(0)$ et la formule devient fausse lorsque $P(0) \neq 0$. **Exercice.** (Exo 4.12) Soient $(P,Q) \in \mathbb{C}[X]^2$ vérifiant pour tout $z \in \mathbb{C}$

$$|P(z)| = |Q(z)|.$$

(1) Montrons que $\alpha \in \mathbb{C}$ est une racine de P si et seulement si α est une racine de Q. En effet $P(\alpha) = 0 \iff |P(\alpha)| = 0$. Comme |Q(z)| = |P(z)| pour tout $z \in \mathbb{C}$ il vient que

$$P(\alpha) = 0 \iff |P(\alpha)| = 0 \iff |Q(\alpha)| = 0 \iff Q(\alpha) = 0.$$

(2) Supposons que $\alpha \in \mathbb{C}$ soit racine de multiplicité $m \in \mathbb{N}^*$ avec $m \geq 2$ c'est à dire

$$P(X) = (X - \alpha)^m P_2(X),$$

avec $P_2 \in \mathbb{C}[X]$ vérifiant $P_2(\alpha) \neq 0$. Montrons par récurrence que α est une racine de Q de multiplicité au moins $k \in \mathbb{N}^*$ pour tout $k \geq m$.

Initialisation : On sait par la question (1) que α est racine de multiplicité au moins 1.

Hérédité : Supposons que α soit racine de Q avec multiplicité au moins k pour un certain entier k < m. Montrons que α est racine de Q avec multiplicité au moins k + 1.

Par hypothèse de récurrence on a $Q = (X - \alpha)^k Q_1(X)$ pour un certain $Q \in \mathbb{C}[X]$. On déduit que

$$|(z-\alpha)^m P_2(z)| = |(z-\alpha)^k Q_1(z)|,$$
 pour tout $z \in \mathbb{C}$.

Donc $|(z-\alpha)^{m-k}P_2(z)| = |Q_1(z)|$ pour tout $z \neq \alpha$. En faisant tendre z vers α le terme de gauche tend vers 0 et comme Q_1 est une fonction continue $\lim_{z\to\alpha}Q(z)=Q_1(\alpha)$. Il vient que α est racine de Q_1 et donc $Q(X)=(X-\alpha)^{k+1}Q_2(X)$ ce qui conclut. En conclusion par le principe de récurrence on trouve que α est racine de Q de multiplicité au moins m. En écrivant $Q=(X-\alpha)^mQ_3(X)$, on trouve que $Q_3(\alpha)\neq 0$ en raisonnant de manière simillaire avec l'hypothèse sur |P(z)|=|Q(z)| pour tout $z\in\mathbb{C}$.

(3) On rappelle qu'un polynôme non nul de degré n a au plus n racines. Supposons que $\deg(P(X)) \geq 0$. Si α_j $j \in \{1, \ldots, n\}$ sont les racines de P et Q (avec possible répétitions), on a pour certains $\nu, \mu \in \mathbb{C}^*$

$$P(X) = \nu \prod_{j=1}^{n} (X - \alpha_j), \text{ et } Q(X) = \mu \prod_{j=1}^{n} (X - \alpha_j),$$

avec la convention que $\prod_{j=1}^0=1$. On trouve que $P(X)=\frac{\nu}{\mu}Q(X)$ et pour tout $z\in\mathbb{C}$

$$|P(z)| = \left|\frac{\nu}{\mu}Q(z)\right| = \left|\frac{\nu}{\mu}\right||Q(z)| = |Q(z)|.$$

Il vient que pour tout $z\in\mathbb{C}$ Q(z)=0 ou $\frac{\nu}{\mu}=1$. Le premier cas n'est pas possible car sinon P(z)=0 pour tout $z\in\mathbb{C}$ et donc P(X)=0 ce qui contredit $\deg(P(X))\geq 0$. Si maintenant P(X)=0, on a Q(z)=0 pour tout $z\in\mathbb{C}$ et donc Q(X)=0 ce qui conclut.