Listing of Claims:

- 1. (currently amended): A method of dyeing or printing cellulose-containing fibre material using a disperse dye, which comprises treating the fibre material according to an exhaust method or pad-dyeing method with an aqueous composition comprising a water-soluble or water-dispersible polyester resin and a water-soluble or water-dispersible acrylate binder.
- 2. (original): A method according to claim 1, wherein the disperse dye corresponds to formula

$$R_{1} = N = N - NR_{6}R_{7}$$

$$R_{3} R_{5}$$

$$R_{5}$$

$$R_{4}$$

$$NR_{6}R_{7}$$

$$R_{7}$$

$$R_{1} = NR_{6}R_{7}$$

$$R_{1} = NR_{6}R_{7}$$

$$R_{2} = NR_{6}R_{7}$$

$$R_{3} = NR_{6}R_{7}$$

wherein

R₁ is halogen, nitro or cyano,

R₂ is hydrogen, halogen, nitro or cyano,

R₃ is hydrogen, halogen or cyano,

R₄ is hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ alkoxy,

R₅ is hydrogen, halogen or C₂-C₄ alkanoylamino and

 R_6 and R_7 are each independently of the other hydrogen, allyl, or C_1 - C_4 alkyl unsubstituted or substituted by hydroxy, cyano, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy- C_1 - C_4 alkoxy, C_2 - C_4 alkoxy- C_1 - C_4 alkoxy-carbonyl, phenyl or by phenoxy,

$$R_{10}$$
 R_{11}
 NH
 O
 R_{13}
 R_{13}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

 R_8 is hydrogen, phenyl or phenylsulfonyl, the benzene ring in phenyl and phenylsulfonyl being unsubstituted or substituted by C_1 - C_4 alkyl, sulfo or by C_1 - C_4 alkylsulfonyloxy,

R₉ is unsubstituted or C₁-C₄ alkyl-substituted amino or is hydroxy,

R₁₀ is hydrogen or C₁-C₄ alkoxy,

 R_{11} is hydrogen, C_1 - C_4 alkoxy, phenoxy or the radical -O- C_6 H₅-SO₂-NH-(CH₂)₃-O- C_2 H₅, R_{12} is hydrogen, hydroxy or nitro and

R₁₃ is hydrogen, hydroxy or nitro,

wherein

 R_{14} is C_1 - C_4 alkyl unsubstituted or substituted by hydroxy or by phenyl or is phenyl, R_{15} is C_1 - C_4 alkyl,

R₁₆ is cyano,

 R_{17} is a radical of formula -(CH₂)₃-O-(CH₂)₂-O-C₆H₅, phenyl, or C₁-C₄ alkyl substituted by hydroxy or by phenyl,

R₁₈ is halogen, nitro or cyano and

R₁₉ is hydrogen, halogen, nitro, trifluoromethyl or cyano,

$$R_{23} \longrightarrow N = N \longrightarrow N$$

$$R_{21} \longrightarrow N \longrightarrow N$$

$$R_{22} \longrightarrow N \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{22} \longrightarrow N \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{22} \longrightarrow N$$

$$R_{23} \longrightarrow N$$

$$R_{24} \longrightarrow N$$

$$R_{25} \longrightarrow N$$

$$R_{25} \longrightarrow N$$

$$R_{26} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{22} \longrightarrow N$$

$$R_{23} \longrightarrow N$$

$$R_{24} \longrightarrow N$$

$$R_{25} \longrightarrow N$$

$$R_{25} \longrightarrow N$$

$$R_{26} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{28} \longrightarrow N$$

$$R_{29} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{22} \longrightarrow N$$

$$R_{23} \longrightarrow N$$

$$R_{24} \longrightarrow N$$

$$R_{25} \longrightarrow N$$

$$R_{26} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{27} \longrightarrow N$$

$$R_{28} \longrightarrow N$$

$$R_{29} \longrightarrow N$$

$$R_{21} \longrightarrow N$$

$$R_{22} \longrightarrow N$$

$$R_{23} \longrightarrow N$$

$$R_{24} \longrightarrow N$$

$$R_{25} \longrightarrow$$

 R_{20} is C_1 - C_4 alkyl,

 R_{21} is C_1 - C_4 alkyl unsubstituted or substituted by C_1 - C_4 alkoxy and

R₂₂ is the radical -COOCH₂CH₂OC₆H₅ and R₂₃ is hydrogen or

R₂₂ is hydrogen and R₂₃ is -N=N-C₆H₅,

$$\begin{array}{c|c}
 & NO_2 \\
\hline
 & N - SO_2 \\
\hline
 & B
\end{array}$$
(5),

wherein the rings A and B are unsubstituted or mono- or poly-substituted by halogen,

$$\begin{array}{c|c}
O & NH_2 & O \\
N - R_{24} & O \\
O & NH_2 & O
\end{array}$$
(6),

wherein

 R_{24} is C_1 - C_4 alkyl unsubstituted or substituted by hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_2 - C_4 alkoxy or by C_1 - C_4 alkoxy carbonyl,

$$\begin{array}{c} NC \\ C=CH \\ NC \\ H_3C \\ CH_2 \\ CH_2 \\ COONH \end{array}$$

$$R_{27} \xrightarrow{R_{25}} CN$$

$$R_{28} \qquad HO \qquad R_{26} \qquad (8),$$

 R_{25} is C_1 - C_4 alkyl,

R₂₆ is C₁-C₄ alkyl unsubstituted or substituted by C₁-C₄ alkoxy,

R₂₇ is hydrogen, C₁-C₄ alkoxy or halogen and

R₂₈ is hydrogen, nitro, halogen or phenylsulfonyloxy,

$$R_{30}$$
 R_{31}
 R_{32}
 R_{34}
 R_{34}
 R_{35}
 R_{36}
 R_{36}
 R_{39}
 R_{39}

wherein

R₂₉, R₃₀, R₃₁ and R₃₂ are each independently of the others hydrogen or halogen,

 R_{33} is hydrogen, halogen, $C_1\text{-}C_4$ alkyl or $C_1\text{-}C_4$ alkoxy,

R₃₄ is hydrogen, halogen or acylamino and

R₃₅ and R₃₆ are each independently of the other hydrogen, or C₁-C₄ alkyl unsubstituted or substituted by hydroxy, cyano, acetoxy or by phenoxy,

or the dye of formula

wherein

R₃₇ is hydrogen or halogen,

wherein

 R_{38} is hydrogen, C_1 - C_4 alkyl, tetrahydrofuran-2-yl, or a C_1 - C_4 alkoxycarbonyl radical unsubstituted or substituted in the alkyl moiety by C_1 - C_4 alkoxy,

$$R_{\overline{39}} \longrightarrow R_{41}$$

$$O \qquad SR_{42}$$

$$(12),$$

 R_{39} is hydrogen, or thiophenyl unsubstituted or substituted in the phenyl moiety by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy,

R₄₀ is hydrogen, hydroxy, amino, or phenylcarbonylamino wherein the phenyl moiety is unsubstituted or substituted by C₁-C₄ alkyl,

 R_{41} is hydrogen, halogen, cyano, or thiophenyl, phenoxy or phenyl each of which is unsubstituted or substituted in the phenyl moiety by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy and R_{42} is phenyl unsubstituted or substituted in the phenyl moiety by halogen, C_1 - C_4 alkyl or by C_1 - C_4 alkoxy,

$$R_{43}$$
 $N = N$ R_{46} R_{47} R_{46} R_{47} R_{48} R_{49} R_{49} R_{46} R_{47} R_{47} R_{48} R_{49} $R_$

wherein

R₄₃ is hydrogen or C₁-C₄ alkyl,

R₄₄ and R₄₅ are each independently of the other hydrogen, halogen, nitro or cyano,

 R_{46} is hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

R₄₇ is hydrogen, halogen or C₂-C₄ alkanoylamino and

 R_{48} and R_{49} are each independently of the other hydrogen, or C_1 - C_4 alkyl unsubstituted or substituted by hydroxy, cyano, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_2 - C_4 alkoxycarbonyl, phenyl or by phenoxy, or

$$R_{52}$$
 R_{54}
 R_{53}
 R_{53}
 R_{53}
 R_{53}
 R_{54}
 R_{53}

wherein

R₅₀ is hydrogen or C₁-C₄ alkyl,

R₅₁ is phenyl or phenylcarbonyl, in each of which the phenyl moiety may be substituted by C₁-C₄ alkyl,

R₅₂ and R₅₃ are each independently of the other hydrogen, C₁-C₄ alkyl or C₁-C₄ alkoxy and

R₅₄ is hydrogen or C₁-C₄ alkyl.

- 3. (previously presented): A method according to claim 1, wherein the aqueous composition additionally comprises a crosslinking agent.
- 4. (previously presented): A method according to claim 1, wherein the aqueous composition additionally comprises an agent imparting soft-handle properties.

- 5. (previously presented): A method according to claim 1, wherein the treatment of the fibre material with the aqueous composition is carried out as a pretreatment prior to the material being brought into contact with the disperse dye.
- 6. (original): A method according to claim 5, wherein the fibre material impregnated with the aqueous composition in a pretreatment step is dried and the applied polymer matrix is condensed.
- 7. (previously presented): A method according to claim 1, wherein, after the dyeing procedure, a further treatment of the fibre material with the aqueous composition is carried out.
- 8. (previously presented): A method according to claim 1, wherein the cellulose-containing fibre material is a fibre blend.
- 9. (previously presented): A method according to claim 1, wherein the cellulose-containing fibre material is a fibre blend consisting of cellulose and polyester.
- 10. (previously presented): A method according to claim 1, wherein the ratio by weight of polyester resin to acrylate binder in the composition is from 4:1 to 1:1.