МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Южно-Уральский государственный университет (национальный исследовательский университет)"

Высшая школа электроники и компьютерных наук Кафедра «Электронные вычислительные машины»

Отчет по лабораторной работе № 2

на тему «Синтез комбинационных схем» Вариант № 29

Авт	ор работы:	
сту	дент групп	ы КЭ-303
	/ Д	.В. Старостенок
<u> </u>	<u></u> »	2023 г.
Про	верил	
	/ И	.Л. Кафтанников
"	<i>>></i>	2023 г

ОГЛАВЛЕНИЕ

ЗАДАНИЕ	3
ЗАВИСИМОСТЬ С ТАБЛИЦЕЙ ПЕРЕХОДОВ НА БАЗЕ ЈК-ТРИГГЕРА	4
МИНИМИЗАЦИЯ СХЕМЫ	5
ПОСТРОЕНИЕ И РЕАЛИЗАЦИЯ СХЕМЫ	6
РАСЧЕТ ПАРАМЕТРОВ	7
ПОСТРОЕНИЕ ВРЕМЕННОЙ ДИАГРАММЫ	9
СПИСОК ЛИТЕРАТУРЫ	. 10

ЗАДАНИЕ

Исследовать методы и способы реализации триггерных схем различного типа.

Дан произвольный закон функционирования (Вариант 29), представленный в развернутом виде таблицей:

A1	A2	A3	Q^+
0	0	0	$\overline{\mathbb{Q}}$
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	Q
1	0	1	$\overline{\overline{Q}}$
1	1	0	0
1	1	1	1

Необходимо:

- 1. Составить зависимость с заданной таблицей переходов на базе ЈКтриггера.
 - 2. Минимизировать схемы с помощью карты Карно
 - 3. Преобразовать схемы в базис И-НЕ
 - 4. Реализовать логическую функцию на элементах серии КР1533
 - 5. Рассчитать основные интегральные параметры схем
 - 6. Построить временную диаграмму

ЗАВИСИМОСТЬ С ТАБЛИЦЕЙ ПЕРЕХОДОВ НА БАЗЕ JK-ТРИГГЕРА Таблица переходов.

$Q ext{->} Q^{\scriptscriptstyle +}$	f_j	f_k
0 -> 0	0	x
0 -> 1	1	X
1 -> 0	x	1
1 -> 1	x	0

В соответствии с таблицами выше составим зависимость между сигналами, которые нужно подать на входы J и K триггера и требуемым состоянием после его переключения.

A_1	A_2	A_3	Q_n	Q_{n+1}	F_j	F_k
0	0	0	0	$\overline{\mathbb{Q}}$	1	X
U	U	U	$0 \qquad \qquad 1 \qquad \qquad Q$	Ų	X	1
0	0	1	0	1	1	X
U	U		1	1	X	0
0	1	0 0	0	0	X	
U	1	U	1	U	X	1
	1	1	0	1	1	X
U	1	1	1		X	0
1	1 0	0	0	Q	0	X
1			1		X	0
1	1 0	1	0	$\overline{\mathbb{Q}}$	1	X
1	U		1		X	1
1	1	0	0	0	0	X
	1	U	1		X	1
1	1 1	1	0	1	1	X
1		1	1		X	0

МИНИМИЗАЦИЯ СХЕМЫ

На основе таблицы составим карту Карно для функции F_j :

A_3Q A_1A_2	00	01	11	10
00		X	X	X
01	0	X	X	1
11	0	X	X	1
10	0	X	X	1/

Минимизированная функция:

$$F_j = A_3 \vee \overline{A_1 A_2}$$

Приведение функции F_j к базису И-НЕ:

$$F_{j} = \overline{\overline{A_{3}} \& \overline{\overline{A_{1}} \overline{A_{2}}}}$$

На основе таблицы составим карту Карно для функции F_k:

A_3Q A_1A_2	00	01	11	10
00	X		0	X
01	X		0	X
11	X	1	0	X
10	X	0	1	X

Минимизированная функция:

$$F_k = \overline{A_1 A_3} \vee A_2 \overline{A_3} \vee A_1 \overline{A_2} A_3$$

Приведение функции F_k к базису И-НЕ:

$$F_{k} = \overline{\overline{A_{1}A_{3}}} \& \overline{A_{2}\overline{A_{3}}} \& \overline{A_{1}\overline{A_{2}}A_{3}}$$

ПОСТРОЕНИЕ И РЕАЛИЗАЦИЯ СХЕМЫ

Функцию, представленную в базисе И-НЕ представим в виде схемы (Рис. 1)

Рис. 1 – Схема в базисе И-НЕ

Для построения схемы нам необходимо:

- 2 логических элемента и-не с 3 входами.
- 3 логический элемент и-не с 2 входами.
- ЈК триггер

Для этих целей нам подойдут элементы:

- 1 корпус DD1 КР1533ЛА3 (Четыре логических элемента 2И-НЕ);
- 1 корпус DD2 КР1533ЛА4 (Три логических элемента 3И-НЕ);
- 1 корпус DD3 KP1533TB6 (два JK триггера со сбросом)

Далее представлена схема реализации на этих элементах (Рис. 2).

Рис. 2 – Комбинационная схема на основе КР 1533

В схеме используются микросхемы:

- DD1 KP1533ЛА3
- DD2 KP1533ЛA4
- DD3 KP1533TB6

РАСЧЕТ ПАРАМЕТРОВ

Время задержки у КР1533ЛА3 равно 11 нс.

Время задержки у КР1533ЛА4 равно 11 нс.

Время задержки у КР1533ТВ6 равно 20 нс.

Быстродействие на первом уровне = 11 нс.

Быстродействие на втором уровне = 11 нс.

Поэтому, общее быстродействие равно:

Аппаратные затраты:

М=3 ЭК

Для КР1533ЛА3:

Ток потребления при высоком уровне выходного напряжения: 0.85 мA Ток потребления при низком уровне выходного напряжения: 3 мA При напряжении U = 5 B.

Средняя потребляемая мощность $N_2 = 5 \cdot (((0.85+3))/2) = 9.625$ мВт Для КР1533ЛА4:

Ток потребления при высоком уровне выходного напряжения: 0.6 мA Ток потребления при низком уровне выходного напряжения: 2.2 мA При напряжении U = 5 B.

Средняя потребляемая мощность $N_1 = 5 \cdot (((0.6+2.2))/2) = 7$ мВт Для КР1533ТВ6:

Ток потребления: 4,5 мА

Средняя потребляемая мощность $N_3 = 5 *4,5 = 22.5 \text{ мВт.}$

Потребляемая мощность:

N = 9.625 MBT + 7 MBT + 22.5 MBT = 39.125 MBT

ПОСТРОЕНИЕ ВРЕМЕННОЙ ДИАГРАММЫ

Схема с $\overline{Q} = 0$ (Рис. 3)

Рис. 3 — Временная диаграмма вариант 1

Схема с $\overline{Q} = 1$ (Рис. 4)

Рис. 4 — Временная диаграмма вариант 2

СПИСОК ЛИТЕРАТУРЫ

- 1) Справочник «Логические ИС КР 1544 КР1554» Часть 1
- 2) Кафтанников И.Л., Винников Б.В. Схемотехника ЭВМ. Часть 1. Учебное пособие к лабораторным работам по курсу "Схемотехника ЭВМ"