1 - rodar: sigma_meson.f + cteq6l.tbl

2 - PDG: https://pdg.lbl.gov/

Capítulo 1. A estrutura dos hádrons

Fig. 1.1: Representação do espalhamento profundamente inelástico elétron-próton.

Fig. 1.2: Interpretação do DIS através do modelo de pártons.

Fig. 1.4: Gráfico de α_s em função de Q [18].

Fig. 1.5: Espalhamento elétron-párton (eq), em que xp é a fração de quadrimomentum do próton carregado pelo párton q, e Q² o módulo do quadrado do quadrimomentum transferido ao fóton pelo elétron.

Fig. 1.6: Diagramas do processo $\gamma q \to qg$, em que yp é o quadrimomentum do quark inicial, z(yp) = xp o quadrimomentum do quark virtual, e Q^2 o módulo do quadrado do quadrimomentum do fóton.

Fig. 1.7: Diagrama do processo $\gamma g \rightarrow q\bar{q}$, em que Q^2 é o módulo do quadrado do quadrimomentum do fóton.

Fig. 1.8: Diagramas de Feynman para P_{qq} e P_{qg} .

Fig. 1.9: Diagramas de Feynman para P_{gq} e P_{gg} .

Capítulo 2

As parametrizações das distribuições partônicas

Os diferentes conjuntos e suas características mais básicas estão listados abaixo:

- MSTW: O grupo MSTW (MRST/MSTW de A. D. Martin, R. G. Roberts, W. J. Stirling, R. S. Thorne, e G. Watt) [24, 25] tem produzido distribuições de pártons por muitos anos a partir de ajustes globais para uma vasta variedade de dados, incluindo alguns mais recentes para Tevatron e HERA. Este é o único grupo a incluir dados de jatos do HERA. O grupo produz PDFs em ordem dominante (LO), próxima ordem dominante (NLO) e próxima próxima ordem dominante (NNLO).
- CTEQ: O grupo CTEQ (The Coordinated Theoretical Experimental Project on QCD CTEQ Collaboration) [24, 26] é outro que tem realizado ajustes globais durante muitos anos, e tem uma abordagem que é muito semelhante ao do MSTW. Novamente, o grupo faz o ajuste para a grande maioria dos dados disponíveis. É ligeiramente mais antiga que os conjuntos MSTW2008 e não é tão atualizada em dados do Tevatron e também não inclui a mais recente combinação de dados da função de estrutura em HERA, embora um conjunto atualizado, CT10 apareceu recentemente e inclui os citados conjuntos de dados. As PDFs também são disponibilizadas em NLO.

- NNPDF: O grupo NNPDF (Neural Network Parton Distribution Functions NNPDF Collaboration) [24, 28] utiliza um procedimento bastante distinto. Foi desenvolvendose continuamente nos últimos anos, mas com NNPDF2.0 (e com NNPDF2.1), que incluem dados do Tevatron, eles atingiram o status de um ajuste global. O ajuste NNPDF2.0 inclui todos os dados discutidos acima, exceto dados para jatos em HERA e funções de estrutura de sabor pesado. Não incluem os dados combinados de HERA, e nota-se um efeito moderado em comparação com os conjuntos de dados individuais originais, mais notadamente uma incerteza menor nos glúons e singletos de quarks abaixo de $x = 5 \times 10^{-4}$. As PDFs são disponibilizadas em NLO.
- H1 e ZEUS: Nos últimos anos, tem havido uma série de ajustes globais realizados pelas colaborações H1 e ZEUS [24]. Estes têm, por vezes, incluído alvo fixo para dados da função de estrutura ou dados para jatos em HERA. As PDF's são produzidas em NLO. A atualização preliminar disponível inclui resultados NNLO.
- <u>ABKM</u>: Formado por S. Alekhin, J. Bluemlein e S. Moch [24, 29], o primeiro conjunto de PDF obtido pela grupo vem de um ajuste da função de estrutura, alvo fixo do processo Drell-Yan, e os dados de produção de dimuon. Não inclui dados do Tevatron. As PDF's são produzidas em ordem NLO e evolução NNLO.
- GJR: Constituído por M. Glück, P. Jimenez-Delgado, E. Reya, e A. Vogt [24, 30] suas distribuições de pártons são baseadas na idéia que as PDFs são geradas a partir de um modelo de entrada de valência semelhante para uma escala muito baixa começando em $Q_0^2 \lesssim 0.5 \,\text{GeV}^2$. Elas são obtidas a partir de um ajuste da função de estrutura, do alvo fixo Drell-Yan e de dados para jatos no Tevatron. As PDFs são disponibilizadas em LO, NLO e evolução NNLO.

Capítulo 3

A produção difrativa de mésons vetoriais

Méson	Conteúdos de Quarks	Carga	Massa	Tempo de Vida	Principais decaimentos
ρ	$u\bar{d},(u\bar{u}-d\bar{d})/\sqrt{2},d\bar{u}$	1, 0, -1	775,5	4×10^{-24}	$\pi\pi$
K^*	$u\bar{s}, d\bar{s}, s\bar{d}, s\bar{u}$	1, -1	894	1×10^{-23}	$K\pi$
ω	$(u\bar{u}+d\bar{d})/\sqrt{2}$	0	782,6	8×10^{-23}	$\pi\pi\pi,\pi\gamma$
ψ	$c\bar{c}$	0	3097	7×10^{-21}	$e^+e^-, \mu^+\mu^-\pi, 5\pi, 7\pi$
D^*	$c\bar{d},c\bar{u},u\bar{c},d\bar{c}$	1, 0, -1	2008	3×10^{-21}	$D\pi, D\gamma$
Υ	$b\bar{b}$	0	9460	1×10^{-20}	$e^+e^-, \mu^+\mu^-\pi, \tau^+\tau^-$

Tab. 3.1: Algumas propriedades físicas dos mésons vetoriais, sendo suas massas dadas em MeV/c², o tempo de vida em segundos e carga em unidade de carga do próton [2].

$$\frac{d\sigma^{\gamma^{(*)}p\to Vp}}{dt}|_{t=0} \propto [\alpha_s x_{\mathbb{P}} g(x_{\mathbb{P}}, \tilde{Q}^2)]^2, \tag{3.6}$$

$$\tilde{Q}^2 \simeq \frac{Q^2 + M_V^2}{4}$$
 (3.7)

Fig. 3.1: Produção de méson vetorial via troca de dois glúons [32].

$$\frac{d\sigma_T^{\gamma^{(*)}p \to \psi p}}{dt} \bigg|_{t=0} = \frac{16\Gamma_{e^+e^-}^{\psi} M_{\psi}^3 \pi^3}{3\alpha_{em}(Q^2 + M_{\psi}^2)^4} [\alpha_s(\tilde{Q}^2) x_{\mathbb{P}} g(x_{\mathbb{P}}, \tilde{Q}^2)]^2$$
(3.21)

Fig. 3.3: Seção de choque total para J/ψ em função da energia de centro de massa com $b_V = 4.5 \,\mathrm{GeV^{-2}}$ e $\alpha_s = 0.20$ fixos para $\mu^2 = 2.4 \,\mathrm{GeV^2}$ e $\mu^2 = 9.0 \,\mathrm{GeV^2}$, respectivamente.