Ficha 4 - Sucessões e Limites II

Indicações de Resolução e correcções

Exercício 1

Determine os sublimites das seguintes sucessões limitadas indicando os seus limites superior e inferior.

(a)
$$\cos\left(\frac{n\pi}{4}\right)$$
 (b) $\left(1 + \frac{(-1)^n}{n}\right)^n$ (c) $n\sin\left(\frac{1 + (-1)^n}{n}\right)$

(d)
$$\cos\left(\frac{n\pi}{3}\right)\sin\left(\frac{n\pi}{3}\right)$$
 (e) $\arctan\left((-1)^n n\right)$

 $\textbf{Indicações:} \ (\text{a}) \ \left\{-1, -\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1\right\}; \ (\text{b}) \ \{e^{-1}, e\}; \ (\text{c}) \ \{0, 2\};$

(d) recorde $\sin(2x) = 2\sin(x)\cos(x)$; (e) $\{-\pi/2, \pi/2\}$.

Exercício 2

(a) Mostre que se (a_n) é uma sucessão de termos positivos convergindo para um valor l finito e positivo então

$$\lim \sqrt[n]{a_1 \, a_2 \cdots a_n} = l$$

(nota: o resultado permanece válido se l = 0 ou $l = +\infty$).

Sugestão: aplique a função $\ln(x)$ a ambos os membros da equação e utilize o facto de que se $u_n \to l$ então $\frac{u_1 + \dots + u_n}{n} \to l$.

(b) Conclua que se (b_n) é uma sucessão de termos positivos tal que $\frac{b_{n+1}}{b_n} \to l$ então

$$\lim \sqrt[n]{b_n} = l$$

Indicações: Na alínea (b) escreva

$$b_n = a_1 \cdot \frac{a_2}{a_1} \cdot \dots \cdot \frac{a_n}{a_{n-1}}$$

e observe que a sucessão

$$u_1 = a_1, \qquad u_n = \frac{a_n}{a_{n-1}} \text{ se } n \ge 2$$

é convergente para l. Conclua utilizando a alínea (a).

Exercício 3

Utilize um resultado da teórica ou os resultados referidos no exercício anterior para calcular o limite das seguintes sucessões:

(a)
$$\sum_{k=1}^{n} \frac{k}{n} \sin\left(\frac{1}{k}\right)$$
 (b) $\sqrt[n]{\cos(1) \cdots \cos\left(\frac{1}{n}\right)}$ (c) $\sqrt[n]{n2^n}$ (d) $\frac{1}{n} \sqrt[n]{n!}$

Indicações: (a) 1; (b) 1; (c) 2;

(d) Escreva
$$\frac{1}{n} \sqrt[n]{n!} = \sqrt[n]{\frac{n!}{n^n}} = \sqrt[n]{b_n}$$
. Descubra que $\lim \frac{b_{n+1}}{b_n} = e^{-1}$.

Exercício 4

Considere a sucessão definida por recorrência

$$u_1 = 1$$
, $u_{n+1} = \sqrt{2u_n}$.

- (a) Mostre por indução que $u_n \in [1,3]$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que, para $n \in \mathbb{N}, |u_{n+2} u_{n+1}| \leq \frac{\sqrt{2}}{2} |u_{n+1} u_n|$.
- (c) Conclua que (u_n) é convergente e que o seu limite l verifica $l = \sqrt{2l}$. Qual o valor de l?

Indicações:

(a) A base de indução verifica-se trivialmente. Admita que $u_n \in [1,3]$. Temos então que

$$\sqrt{2} < \sqrt{2u_n} < \sqrt{6}$$

ou seja $u_{n+1} \in [\sqrt{2}, \sqrt{6}] \subset [1, 3]$ o que demonstra a indutividade.

(b) Observe que, atendendo a alínea anterior, podemos escrever, multiplicando e dividindo pela expressão conjugada $\sqrt{u_{n+1}} + \sqrt{u_n}$,

$$|u_{n+2} - u_{n+1}| = \left| \sqrt{2u_{n+1}} - \sqrt{2u_n} \right| = \frac{2(u_{n+1} - u_n)}{\sqrt{2} \cdot (\sqrt{u_{n+1}} + \sqrt{u_n})}$$

tendo-se

$$\sqrt{2} \cdot (\sqrt{u_{n+1}} + \sqrt{u_n}) \ge \sqrt{2} \cdot 2$$

pois $u_n, u_{n+1} \ge 1$. Podemos concluir

$$|u_{n+2} - u_{n+1}| \le \frac{2}{2\sqrt{2}} |u_{n+1} - u_n|$$

(racionalize o denominador da expressão $1/\sqrt{2}$ para obter a expressão final).

(d) Utilize um resultado da teórica para justificar que (u_n) é de Cauchy. Passa ao limite a igualdade $u_{n+1} = \sqrt{2u_n}$ para obter a igualdade pretendida para o limite. Resolva a equação tendo em conta que l pertence ao intervalo [1,3].

Exercício 5

Considere a sucessão definida por recorrência

$$x_1 = 2$$
, $x_{n+1} = \frac{1}{x_n + 1}$

- (a) Mostre por indução que $x_n \in \left[\frac{1}{3}, 2\right]$ para todo o $n \in \mathbb{N}$.
- (b) Conclua que $|x_{n+2} x_{n+1}| \le \frac{9}{16}|x_{n+1} x_n|$ para todo o $n \in \mathbb{N}$.
- (c) Conclua a convergência de (x_n) e determine o seu limite.

Indicações:

(b) Escreva

$$|u_{n+2} - u_{n+1}| = \frac{1}{(1+u_n)(1+u_{n+1})} \cdot |u_{n+1} - u_n|$$

e tenha em conta que, se $u_n,u_{n+1}\geq \frac{1}{3},$ então

$$\frac{1}{(1+u_n)(1+u_{n+1})} \le \frac{9}{16}$$

(podem obter-se outras constantes inferiores a $\frac{9}{16}$ se formos mais cuidadosos na majoração.)

Problema 6

(a) Seja $f:[a,b]\mapsto \mathbb{R}$ uma função tal que, para um certo $0<\alpha<1,$ tem-se

$$|f(x) - f(y)| \le \alpha |x - y| \quad \forall x, y \in [a, b]$$

Verifique que se x_1 e x_2 pertencentes a [a,b] são tais que

$$x_1 = f(x_1)$$
 e $x_2 = f(x_2)$

então $x_1 = x_2$.

(b) Mostre que a sucessão definida por

$$x_1 = 1,$$
 $x_{n+1} = 1 + \frac{1}{\sqrt{x_n}}$

converge para a única solução da equação $x-1-\frac{1}{\sqrt{x}}=0$. Para tal, comece por observar que qualquer solução pertence necessariamente ao intervalo [1,2].

Exercício 7

Considere a sucessão definida por recorrência

$$u_1 = \frac{\pi}{2}$$
, $u_{n+1} = \sin(u_n)$.

Verifique que, para todo o $n \in \mathbb{N}$, $u_n \in [0, \frac{\pi}{2}]$. Conclua sobre a monotonia de (u_n) . O que podemos afirmar quanto à convergência de (u_n) ?

Tenha em conta os seguintes factos: para todo o x > 0 tem-se $\sin(x) < x$; a equação $x = \sin(x)$ possui uma única solução.