Parallel Tracking and Mapping for Small AR Workspaces

Georg Klein and David Murray Active Vision Lab, Oxford

This is a PDF of the slides of the talk given at ISMAR 2007

- AR with a hand-held camera
- Visual Tracking provides registration

- AR with a hand-held camera
- Visual Tracking provides registration

- AR with a hand-held camera
- Visual Tracking provides registration
- Track without prior model of world

- AR with a hand-held camera
- Visual Tracking provides registration
- Track without prior model of world
- Challenges:
 - Speed
 - Accuracy
 - Robustness
 - Interaction with real world

Existing attempts: SLAM

- Simultaneous Localisation and Mapping
- Well-established in robotics (using a rich array of sensors)

Existing attempts: SLAM

Simultaneous Localisation and Mapping

 Well-established in robotics (using a rich array of sensors)

Existing attempts: SLAM

Simultaneous Localisation and Mapping

 Well-established in robotics (using a rich array of sensors)

 Demonstrated with a single handheld camera by Davison 2003

SLAM applied to AR

Model-based tracking vs SLAM

Model-based tracking vs SLAM

- Model-based tracking is
 - More robust
 - More accurate
- Why?
 - SLAM fundamentally harder?

Frame-by-frame SLAM

- Updating entire map every frame is expensive
- Mandates "sparse map of high-quality features"

- A. Davison

Our approach

- Use dense map (of low-quality features)
- Don't update the map every frame: Keyframes
- Split the tracking and mapping into two threads

Parallel Tracking and Mapping

Parallel Tracking and Mapping for Small AR Workspaces

Tracking thread:

- Responsible estimation of camera pose and rendering augmented graphics
- Must run at 30Hz
- Make as robust and accurate as possible

Mapping thread:

- Responsible for providing the map
- Can take lots of time per keyframe
- Make as rich and accurate as possible

Mapping thread

Stereo Initialisation

- Use five-point-pose algorithm (Stewenius et al 'o6)
- Requires a pair of frames and feature correspondences
- Provides initial map
- User input required:
 - Two clicks for two keyframes
 - Smooth motion for feature correspondence

Wait for new keyframe

Tracker

- Keyframes are only added if:
 - There is a baseline to the other keyframes
 - Tracking quality is good
- When a keyframe is added:
 - The mapping thread stops whatever it is doing
 - All points in the map are measured in the keyframe
 - New map points are found and added to the map

Add new map points

- Want as many map points as possible
- Check all maximal FAST corners in the keyframe:
 - Check Shi-Tomasi score
 - Check if already in map
- Epipolar search in a neighbouring keyframe
- Triangulate matches and add to map
- Repeat in four image pyramid levels

Optimise map

- Use batch SFM method: Bundle Adjustment*
- Adjusts map point positions and keyframe poses
- Minimises reprojection error of all points in all keyframes (or use only last N keyframes)
- Cubic complexity with keyframes, linear with map points
- Compatible with M-estimators (we use Tukey)

Map Maintenance

- When camera is not exploring, mapping thread has idle time – use this to improve the map
- Data association in bundle adjustment is reversible
- Re-attempt outlier measurements
- Try to measure new map features in all old keyframes

Mapping thread

- Responsible estimation of camera pose and rendering augmented graphics
- Must run at 30Hz
- Make as robust and accurate as possible
- Track/render loop with two tracking stages

Pre-process frame

 Make mono and RGB version of image

Pre-process frame

- Make mono and RGB version of image
- Make four pyramid levels

Pre-process frame

- Make mono and RGB version of image
- Make four pyramid levels
- Detect FAST corners

Project Points

- Use motion model to update camera pose
- Project all map points into image to see which are visible, and at what pyramid level
- Choose subset to measure
 - ~50 biggest features for coarse stage
 - 1000 randomly selected for fine stage

Measure Points

- Generate 8x8 matching template (warped from source keyframe)
- Search a fixed radius around projected position
 - Use zero-mean SSD
 - Only search at FAST corner points
- Up to 10 inverse composition iterations for subpixel position (for some patches)
- Typically find 60-70% of patches

Update camera pose

- 6-DOF problem
- 10 IRWLS iterations
- Tukey M-Estimator

Draw graphics

- What can we draw in an unknown scene?
 - Assume single plane visible at start
 - Run VR simulation on the plane
- Radial distortion
- Want proper blending

Parallel Tracking and Mapping for Small AR Workspaces Undistort 1600x1200

Parallel Tracking and Mapping for Small AR Workspaces

Tracking Quality Monitoring

- Heuristic check based on fraction of found measurements
- Three quality levels: Good, Poor, Lost
- Only add to map on `Good'
- Stop tracking and relocalise on `Lost'

Results

- Is it any good?
 - Yes

Comparison to EKF-SLAM

- More accurate
- More robust
- Faster tracking

Results Video

Areas in need of improvement

- Outlier management
- Still brittle in some scenarios
 - Fine repeated texture
 - Stereo initialisation
- No occlusion reasoning
- Point cloud is inadequate for AR

- No occlusion reasoning
- Point cloud is inadequate for AR
- User interaction?
 - replace disk

 Reitmayr et al ISMAR 2007

Automatic primitive detection?

Live dense reconstruction?

Parallel Tracking and Mapping for Small AR Workspaces

Georg Klein and David Murray Active Vision Lab, Oxford