A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 6EE

Bookmark

Show all steps: (

ON

Problem

Prove part:

Let p and q be distinct primes.

- (a) If $(p-1) \mid m$ and $(q-1) \mid m$, then $am \equiv 1 \pmod{pq}$ for any a such that $p \not = a$ and $q \not = a$.
- (b) If $(p-1) \mid m$ and $(q-1) \mid m$, then $a^{m+1} \equiv a \pmod{pq}$ for integers a.

Step-by-step solution

Step 1 of 4

(a)

Consider any two distinct prime numbers p and q. Suppose (p-1)|m and (q-1)|m. Then objective is to prove that $a^m \equiv 1 \pmod{pq}$, where $p \nmid a$ and $q \nmid a$.

Consider the following result:

If $a \equiv 1 \pmod{m}$ and $a \equiv 1 \pmod{n}$ where gcd(m, n) = 1, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 4

Since $p \nmid a$, therefore both are relatively primes, or $\gcd(p, a) = 1$. Similarly, from $q \nmid a$ one have $\gcd(q, a) = 1$.

Some result says that, if (p-1)|m and $p \nmid a$, then

$$a^m \equiv l \pmod{p}$$

Similarly, if
$$(q-1)|m$$
 and $q \nmid a$, then
$$a^m \equiv 1 \pmod{q}.$$
 As p and q are both distinct, from the above result it implies that
$$a^m \equiv 1 \pmod{pq}.$$
 Comment

Step 3 of 4

(b) If
$$(p-1)|m$$
 and $(q-1)|m$. Then show that $a^{m+1}\equiv a(\bmod{pq})$ for integers a . From above part, if $p,q\nmid a$ then $a^m\equiv 1(\bmod{pq})$. Then multiply by a both the side yields, $a^{m+1}\equiv a(\bmod{pq})$. If $p,q\mid a$ then $a\equiv 0(\bmod{pq})$. Then $a\equiv a(\bmod{pq})$. Then $a^{m+1}\equiv 0$ $\equiv a(\bmod{pq})$.

Comment

Step 4 of 4

Hence, if (p-1)|m and (q-1)|m then $a^{m+1} \equiv a \pmod{pq}$ for integers a.

Comment