Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

Voita et al.

Elbakian Movses

National Research University Higher School of Economics

2019

Plan

- Research objectives
- Brief reminder about Transformer
- Datasets
- Metrics for attention heads classification
- Attention heads classification
- Pruning attention heads
- Results
- References

Research objectives

- To what extent does translation quality depend on individual encoder heads?
- Do individual encoder heads play consistent and interpretable roles? If so, which are the most important ones for translation quality?
- Which types of model attention (encoder self-attention, decoder self-attention or decoder-encoder attention) are most sensitive to the number of attention heads and on which layers?
- Can we significantly reduce the number of attention heads while preserving translation quality?

Transformer

Transformer. Self-Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Mo

Thinking Machines

 W_0^Q

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Datasets

- English is a source language. Russian, German and French are target languages.
- 2.5m pairs of sentences for training from WMT
- Also English-Russian OpenSubtitles2018 was used for pruning experiments

Metrics for attention heads classification. Confidence

- Confidence is an average of head's maximum attention weight excluding the end of sentence symbol, where average is taken over tokens
- Confident head is one that usually assigns a high proportion of its attention to a single token.

Metrics for attention heads classification. Layer-wise relevance propagation. General Idea

- f real-valued output of model
- $z=(z_d^{(l)})_{d=1}^{V(l)}$ I-th layer
- $R_d^{(l)}$ relevance score

•
$$f=\ldots=\sum_{d\in l+1}R_d^{(l+1)}=\sum_{d\in l}R_d^{(l)}=\cdots=\sum_dR_d^{(1)}$$
 – conservation principle

Total contribution of neurons at each layer is constant!

Metrics for attention heads classification. Layer-wise relevance propagation. Formulas

Weight ratio:

$$w_{u \to v} = \frac{W_{u,v}u}{\sum\limits_{u' \in IN(v)} W_{u',v}u'} \quad \text{if } v = \sum\limits_{u' \in IN(v)} W_{u',v}u',$$

$$w_{u \to v} = \frac{u}{\sum\limits_{u' \in IN(v)} u'} \quad \text{if } v = \prod\limits_{u' \in IN(v)} u'.$$

Relevance of neuron u to preceding neuron v:

$$r_{u \leftarrow v} = \sum_{z \in OUT(u)} w_{u \to z} r_{z \leftarrow v}.$$

Metrics for attention heads classification. Layer-wise relevance propagation. Heads relevance

Attention heads classification

- positional: the head points to an adjacent token
- syntactic: the head points to tokens in a specific syntactic relation
- rare words: the head points to the least frequent tokens in a sentence.

Attention heads classification. Positional and rare words

- Head is "positional" if at least 90% of the time its maximum attention weight is assigned to a specific relative position(i.e. ±1)
- Head is "rare" if it points at the rarest word in a sentence more than in 50% of cases

Attention maps of the rare words head

Attention heads classification. Syntactic heads

Analyzed dependency relations:

- nominal subject (nsubj)
- direct object (dobj)
- adjectival modifier (amod)
- adverbial modifier (advmod)

"Accuracy" of head = how often it assigns its maximum attention weight (excluding EOS) to a token with which it is in one of the aforementioned dependency relations

Attention heads classification. Syntactic heads

Head is "syntactic" if its accuracy is at least 10% higher than the baseline that looks at the most frequent relative position for this dependency relation.

dep.	direction	best head / baseline accuracy	
		WMT	OpenSubtitles
nsubj			
	$\mathrm{v} ightarrow \mathrm{s}$	45 / 35	77 / 45
	$s \to v$	52 / 35	70 / 45
dobj			
	$v \rightarrow o$	78 / 41	61 / 46
	$o \to v$	73 / 41	84 / 46
amod			
noun \rightarrow adj.m.		74 / 72	81 / 80
adj.m. \rightarrow noun		82 / 72	81 / 80
advmo	od		
$v \rightarrow adv.m.$		48 / 46	38 / 33
adv.m. \rightarrow v		52 / 46	42 / 33

Pruning attention heads

 $MultiHead(Q, K, V) = Concat_i(g_i \cdot head_i)W^O$

$$L_{0}(g_{1},...,g_{h}) = \sum_{i=1}^{h} (1 - [[g_{i} = 0]]) \qquad \longrightarrow \qquad L_{C}(\phi) = \sum_{i=1}^{h} (1 - P(g_{i} = 0|\phi_{i})) \quad g_{i} \sim HardConcrete(\phi_{i})$$

Loss:

$$L(\theta, \phi) = L_{xent}(\theta, \phi) + \lambda L_C(\phi)$$

Pruning attention heads. Results

Pruning attention heads. Results

	attention	BLEU	
	heads	from	from
	(e/d/d-e)	trained	scratch
WMT, 2.5m			
baseline	48/48/48	29.6	
sparse heads	14/31/30	29.62	29.47
	12/21/25	29.36	28.95
	8/13/15	29.06	28.56
	5/9/12	28.90	28.41
OpenSubtitle	es, 6m		
baseline	48/48/48	32.4	
sparse heads	27/31/46	32.24	32.23
	13/17/31	32.23	31.98
	6/9/13	32.27	31.84

Results

- Found consistent roles played by attention heads
- Investigated effective pruning method without model's quality loss
- Only a small subset of heads ap- pear to be important for the translation task

References

- https://arxiv.org/abs/1905.09418
- https://arxiv.org/abs/1706.03762
- http://jalammar.github.io/illustrated-transformer/