

Kaggle 다중 분류 모델 대회

팀장: 박지건

팀원 : 김수현

팀원 : 양인선

팀원:송인동

Contents

- 1. Introduction to the competition
 - 2. Evaluation metrics
 - 3. Modeling Process

INTRODUCTION

E.D.A

MODEL EVALUATION

- 1. RandomForest
 - 2. XGBoost
 - 3. CatBoost
 - 4. LightGBM
- 5. Final Model Selection

1. Introduction to the competition

k

KAGGLE · PLAYGROUND PREDICTION COMPETITION · 5 DAYS AGO

Late Submission

•••

Multi-Class Prediction of Obesity Risk

Playground Series - Season 4, Episode 2

주제	비만 위험도 예측
유형	Playground
제출방식	Simple Competition (csv 파일 제출)
주최	Kaggle
문제 유형	멀티-클래스 분류(Multiclass classification)
데이터 타입	정형(Tabular) 데이터
평가지표	정확도(Accuracy)
대회 참가팀	3587팀
대회 기간	24.02.01 ~ 24.02.29, 11:59 PM UTC

대회 목표

개인의 다양한 생활 습관과 건강 데이터 등 다양한 요인들을 기반으로 개인의 비만 위험 수준을 예측하는 것

참가인원

4 Persosns

참여기간

7days (2.23~2.29)

1. Introduction to the competition

데이터셋 소개

- 대상: 멕시코, 페루, 콜롬비아 국가의 14세에서 61세 사이의 사람들
- 내용: 다양한 식습관과 신체 상태를 반영한 비만 수준 추정치
- 생성: 원본 비만 위험 데이터셋을 기반으로 심층 학습 모델 훈련을 통해 생성 -> 원본 데이터셋을 사용하면 성능이 향상

결합된 데이터 셋

데이터 수: 22869개 컬럼 수: 17개 (id 컬럼 제외)

결측치와 중복되는 값은 없음

2. Evaluation metrics

정확도(Accuracy)

• 분류 문제에서 가장 기본적이고 직관적인 성능 평가 지표 중 하나

• 정확도
$$(Accuracy) = \frac{$$
올바르게 예측된 케이스의 수 $}{ 전체 케이스의 수 } = \frac{TP+TN}{TP+TN+FP+FN}$

		실제 정답				
		True	False			
분류 결과	True	TP (True Positive)	FP (False Positive)			
군규 걸시	False	FN (False Negative)	TN (True Negative)			

3. Modeling Process

Part 2 E.D.A

1. Imformation about Features in the data

수치형 변수

명목형 변수

변수명	내용	변수명	내용				
id	인덱스	Gender	성별				
Age	나이	Family_history_with_overweight	가족 중 비만이 있는지 여부				
Height	키	FAVC	고칼로리 음식 선호 여부 식사 사이에 음식을 섭취하는 습관				
Weight	몸무게	CAEC					
FCVC	하루에 야채를 섭취하는 빈도	SMOKE	흡연 여부				
NCP	하루에 주요 식사를 하는 횟수	scc	칼로리 섭취량 모니터링 여부				
CH20	하루에 물을 마시는 양	CALC	알코올 섭취 빈도				
FAF	일주일에 신체 활동을 하는 빈도	MTRANS	주요 교통 수단				
TUE	기술 장치 사용 시간	NObeyesdad	비만 수준, 타겟 변수				

2. EDA

이상치 식별을 위한 박스 플롯 시각화

- 'Age'에서 많은 이상치 발견
- 그러나 최솟값은 14세, 최댓값은 61세로 데이터 설명 내의 범위에 존재 -> 정상적인 값으로 간주

2. EDA

성별에 따른 평균 BMI 시각화

여성 그룹에서 BMI가 다소 높게 나타남

2. EDA

성별에 따른 Nobeyesdad 분포 시각화

- Obesisty_Type_III: 주로 여성에게서 관찰됨
- Obesisty_Type_II: 주로 남성에게서 관찰됨

Part 3 MODEL EVALUATION

Key algorithms for machine learning

RandomForest Classifier	001
XGBoost	002
CatBoost	003
LightGBM	004

1. Random Forest

StandardScaler OneHotEncoder

BMI

RandomForestClassifier GradientBoostingClassifier

제목	÷	모델 알고리즘 ⁻	데이터 재가공 =	feature engineering	교차 검증 😑	하이퍼 파라미터 튜닝 😑	정확도 \Xi
RandomForest 1		RandomForest Classifier	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ	StratifiedKFold(n_s plits=5, shuffle=True, random_state=42) 0.898640994184376		0.898
RandomForest 1-1		RandomForest Classifier	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ	random_state=42),	param_dist ={'n_estimators': 120, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_depth': None}	0.902
RandomForest 1-2. ensemble		RandomForest Classifier, GradientBoosti ngClassifier	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ		RandomForestClassifier: param_dist ={'n_estimators': 120, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_depth': None}, GradientBoostingClassifier: param_dist ={n_estimators: 140, min_samples_split: 9, min_samples_leaf: 2, max_depth: 5}	0.905

순위: 2174 / 3578

2. XGBoost

StandardScaler OneHotEncoder

BMI

StratifiedK Fold

Optuna

제목 =	모델 알고리즘 -	데이터 재가공 =	feature –	교차 검증 束	하이퍼 파라미터 튜닝 😑	정확도 🛨
XGBoost 1	XGBoost	StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	BMI, 연령대(10단위)	0.904552878	{'classifierlearning_rate': 0.1, 'classifiermax_depth': 5, 'classifiern_estimators': 200}	0.906069
XGBoost 2	XGBoost	StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	BMI, 연령대(10단위)	StratifiedKFold(n_sp lits=5, shuffle=True, random_state=42) 0.903589131683677 5	classifiern_estimators': randint(100, 1000), 'classifierlearning_rate': uniform(0.01, 0.6), 'classifiermax_depth': randint(3, 10), 'classifiercolsample_bytree': uniform(0.5, 0.5), 'classifiersubsample': uniform(0.5, 0.5)	0.908
XGBoost3	XGBoost	StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	ВМІ	StratifiedKFold(n_sp lits=5, shuffle=True, random_state=42) 0.908165794414650 3	pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', XGBClassifier(subsample=0.7, n_estimators=900, max_depth=4, learning_rate=0.03, colsample_bytree=0.5, use_label_encoder=False, eval_metric='mlogloss')) 1)	0.91076

순위: 813/ 3578

3. Catboost

FunctionTransformer

BMI

StratifiedK Fold

Optuna

제목	₹	모델 알고리즘	÷	데이터 재가공 =	feature engineering	=	교차 검증	÷	하이퍼 파라미터 튜닝 =	= 7	정확도 🛨
Catboost Model		Catboost		FunctionTransformer(age_roun der:Age반올림/height_rounder: Height반올림/extract_features: BMI구하기/col_rounder:FCVC, NCP,CH2O,FAF,TUE반올림) / .select_dtypes(include=['int64', 'float64']).columns.tolist(): 수치형 데이터 인코딩 / .select_dtypes(include=['object']).columns.tolist() & .remove('NObeyesdad'): 범주형 데이터 인코딩	BMI		StratifiedKFold(n_s lits=5, shuffle=True random_state=42)	sp e,	CB = make_pipeline(CatBoostClassifier(**params, cat_features=categorical_columns)) params = {'learning_rate 0.13762007048684638, 'depth': 5, 'l2_leaf_reg': 5.285199432056192, 'bagging_temperature': 0.6029582154263095, 'random_seed': RANDOM_SEED, 'verbose': False, 'task_type':"GPU", 'iterations':1000}		0.911

4. LightGBM

LabelEncoder 루트 변환

BMI

StratifiedK Fold

Optuna

제목 =	모델 알고리즘 ⁻	=	데이터 재가공 😑	-	feature engineering	교	차 검증 -	÷	하이퍼 파라미터 튜닝	÷	정확도 束
LightGBM	LightGBM		결측치 제거, 중복값 제거, LabelEncoder() 사용 scale_cols = ['Age','Height', 'Weight','FCVC','NCP','CH2O',' FAF','TUE']for c in scale_cols: X_train[c] = X_train[c].pow(0.5) X_test[c] = X_test[c].pow(0.5)		ВМІ	its	tratifiedKFold(n_s =5,random_state shuffle=True)	: =	<pre>{'objective': 'multiclass', 'metric': 'multi_logloss', 'verbosity': -1, 'boosting_type': 'gbdt', 'random_state': 42, 'num_class': 7, 'learning_rate': 0.03096221154683276, 'n_estimators': 500, 'lambda_l1': 0.009667446568254372, 'lambda_l2': 0.040186414373018, 'max_depth': 10, 'colsample_bytree': 0.4097712934687264, 'subsample': 0.9535797422450176, 'min_child_samples': 26}</pre>	_	0.91943

순위: 480/ 3578

5. Final Model Selction

새로운 변수 생성 활동 점수: FAF, TUE, MTRANS 식사 패턴 점수: FCNC, NCP, CAEC

Grid, Random, Kfold 등 다른 방법 시도 순위: 480 / 3857

Conclusion and Insigths Summary

데이터 분석

- 정형 데이터이고, 결측치와 중복 값이 없어 분석이 용이
- 비흡연자 분포 과다
- 가상 데이터 특성상 식사 횟수 및
 야채 섭취 빈도 등이 소수점으로
 나타나 과적합 주의 필요

Feature Engineering

- BMI 생성: 예측에 도움을 준 주요 변수이고, 모델 별 변수 중요도를 시각화 했을 때, Weight 다음으로 변수 중요도 높음
- 명목형 변수 라벨 인코딩
- 수치형 변수 루트 변환: 데이터 분포를 정규 분포에 가깝게 조정, 극단값 영향 감소
- BMI 말고 도움이 되는 다른 변수도 있지 않았을까 하는 아쉬움

모델

- LightGBM: 대 부 분 의 Gradient Boosting 모델과 달리, leaf-wise 성장 전략을 사용해 과적합 위험이 줄어 높은 정확도가 나온게 아닐까 추측
- 개선 가능성: 다른 앙상블 조합 및 스태킹 방법 등을 통한 성능 개선 가능성 존재

Thank you!