

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df = pd.read_csv(r"/content/Inc_Exp_Data.csv")
In [3]: df
```

Out[3]:	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt
	o 5000	8000	3	2000
	1 6000	7000	2	3000
	2 10000	4500	2	0
	3 10000	2000	1	0
	4 12500	12000	2	3000
	5 14000	8000	2	0
	6 15000	16000	3	35000
	7 18000	20000	5	8000
	8 19000	9000	2	0
	9 20000	9000	4	0
1	0 20000	18000	4	8000
1	1 22000	25000	6	12000
1	2 23400	5000	3	0
1	3 24000	10500	6	0
1	4 24000	10000	4	0
1	5 25000	12300	3	0
1	6 25000	20000	3	3500
1	7 25000	10000	6	0
1	8 29000	6600	2	2000
1	9 30000	13000	4	0
2	o 30500	25000	5	5000
2	1 32000	15000	4	0
2	2 34000	19000	6	0
2	3 34000	25000	3	4000
2	4 35000	12000	3	0
2	5 35000	25000	4	0
2	6 39000	8000	4	0
2	7 40000	10000	4	0
2	8 42000	15000	4	0
2	9 43000	12000	4	0
3	o 45000	25000	6	0

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt
31	45000	40000	6	3500
32	45000	10000	2	1000
33	45000	22000	4	2500
34	46000	25000	5	3500
35	47000	15000	7	0
36	50000	20000	4	0
37	50500	20000	3	0
38	55000	45000	6	12000
39	60000	10000	3	0
40	60000	50000	6	10000
41	65000	20000	4	5000
42	70000	9000	2	0
43	80000	20000	4	0
44	85000	25000	5	0
45	90000	48000	7	0
46	98000	25000	5	0
47	100000	30000	6	0
48	100000	50000	4	20000
49	100000	40000	6	10000

In [4]: df.describe()

Out[4]:

		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_A
	count	50.000000	50.000000	50.000000	50.000(
	mean	41558.000000	18818.000000	4.060000	3060.0000
	std	26097.908979	12090.216824	1.517382	6241.4349
	min	5000.000000	2000.000000	1.000000	0.0000
	25% 50%	23550.000000	10000.000000	3.000000	0.0000
		35000.000000	15500.000000	4.000000	0.0000
	75 %	50375.000000	25000.000000	5.000000	3500.0000
	max	100000.000000	50000.000000	7.000000	35000.0000

[5]: d	f.head()			
ıt[5]:	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt
C	5000	8000	3	2000
1	6000	7000	2	3000
2	10000	4500	2	0

2000

12000

2

3000

Analyze data

In [6]: df.info()

3

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 7 columns):

10000

12500

#	Column	Non-Null Count	Dtype
0	Mthly_HH_Income	50 non-null	int64
1	Mthly_HH_Expense	50 non-null	int64
2	No_of_Fly_Members	50 non-null	int64
3	Emi_or_Rent_Amt	50 non-null	int64
4	Annual_HH_Income	50 non-null	int64
5	<pre>Highest_Qualified_Member</pre>	50 non-null	object
6	No_of_Earning_Members	50 non-null	int64
	1 . 6 . (6)		

dtypes: int64(6), object(1)
memory usage: 2.9+ KB

In [8]: df.shape

Out[8]: (50, 7)

In [9]: df.describe().T

Out[9]:

		count	mean	std	min	25%	
	Mthly_HH_Income	50.0	41558.00	26097.908979	5000.0	23550.0	35
	Mthly_HH_Expense	50.0	18818.00	12090.216824	2000.0	10000.0	15
	No_of_Fly_Members	50.0	4.06	1.517382	1.0	3.0	
	Emi_or_Rent_Amt	50.0	3060.00	6241.434948	0.0	0.0	
	Annual_HH_Income	50.0	490019.04	320135.792123	64200.0	258750.0	447
No	o_of_Earning_Members	50.0	1.46	0.734291	1.0	1.0	

```
0
Out[10]:
                 Mthly HH Income False
                Mthly_HH_Expense False
                No_of_Fly_Members False
                  Emi_or_Rent_Amt False
                Annual_HH_Income False
         Highest_Qualified_Member False
           No of Earning Members False
        dtype: bool
In [14]: #what is mean expence of houshold
         df["Mthly HH Expense"].mean()
Out[14]: np.float64(18818.0)
In [15]: #what is median expence of houshold
         df["Mthly HH Expense"].median()
Out[15]: 15500.0
In [16]: #what is montly
         mth exp tmp = pd.crosstab(index= df['Mthly HH Expense'], columns="count")
         mth exp tmp.reset index(inplace=True)
         mth exp tmp[mth exp tmp['count'] == df.Mthly HH Expense.value counts().max()]
Out[16]: col_0 Mthly_HH_Expense count
           18
                            25000
                                       8
In [17]: #Plot the Histogram tocount the Higest Qualified member
         df["Highest Qualified Member"].value counts().plot(kind="bar")
Out[17]: <Axes: xlabel='Highest Qualified Member'>
```



```
In [20]: #Calculate IQR (inter quantile range) 75% and 25%
    df.plot(x="Mthly_HH_Income", y='Mthly_HH_Expense')
    IQR = df['Mthly_HH_Expense'].quantile(0.75)-df['Mthly_HH_Expense'].quantile(0.10R)
```

Out[20]: np.float64(15000.0)


```
In [19]: df.plot(x="Mthly_HH_Income", y='Mthly_HH_Expense')
    IQR = df['Mthly_HH_Expense'].quantile(0.50)-df['Mthly_HH_Expense'].quantile(0.10R)
```

Out[19]: np.float64(5500.0)

In [22]: #calculate SD for first 4 columns
pd.DataFrame(df.iloc[:,0:5].std().to_frame()).T # iloc - index location

 Out[22]:
 Mthly_HH_Income
 Mthly_HH_Expense
 No_of_Fly_Members
 Emi_or_Rent_Amt

 0
 26097.908979
 12090.216824
 1.517382
 6241.434948

In [24]: #calculate variance for first 3 columns
pd.DataFrame(df.iloc[:,0:4].std().to_frame()).T

 Out[24]:
 Mthly_HH_Income
 Mthly_HH_Expense
 No_of_Fly_Members
 Emi_or_Rent_Amt

 0
 26097.908979
 12090.216824
 1.517382
 6241.434948

In [28]: #Calculate the count of highest qualified member
df["Highest_Qualified_Member"].value_counts().to_frame()

Out[28]: count

Highest_Qualified_Member

3 (
Graduate	19
Under-Graduate	10
Professional	10
Post-Graduate	6
Illiterate	5

```
In [29]: #Plot the histogram to count the number of earning member
df['No_of_Earning_Members'].value_counts().plot(kind="bar")
```

Out[29]: <Axes: xlabel='No_of_Earning_Members'>

In [33]: #Suppose you have option to invest in stock A or stock B. The stock have a dif
Coeff_of_var_StockA = 10/15
print(Coeff_of_var_StockA)
Coeff_of_var_StockB=5/10
print(Coeff_of_var_StockB)

0.5