<u>Further Stats 1</u>

Contents

obability Distributions	4
Poisson	4
Geometric	6

Probability Distributions

Poisson

The Poisson distribution is used to model a situation where an event occurs at a fixed rate.

You can model X as a Poisson distribution if:

- The events must occur independently
- They must occur singly in space or time
- The events must occur at a constant average rate

If
$$X \sim \text{Po}(\lambda)$$
, then $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} (x \ge 0)$

Geometric

The Geometric distribution is used to model a situation where you try an event several times until a success occurs, and you want to know how many tries it will take.

You can model X as a Geometric distribution if:

- Each attempt is independent
- Each attempt has the same probability

If
$$X \sim \text{Geo}(p)$$
, then $P(X = x) = p(1 - p)^{x-1}$ $(x > 0)$

•
$$P(X \le x) = 1 - (1 - p)^x$$

•
$$P(X \le x) = 1 - (1 - p)^x$$

• $P(X \ge x) = (1 - p)^{x-1}$
• $P(X > x) = (1 - p)^x$
• $P(X < x) = 1 - (1 - p)^{x-1}$

•
$$P(X > x) = (1 - p)^x$$

•
$$P(X < r) = 1 - (1 - r)^{x-1}$$