Machine Learning com Python

Métricas de Desempenho

Cálculo do erro

$$E = \hat{y} - y$$

Onde:

E = erro

 \hat{y} = valor esperado.

y = valor calculado ou observado.

		Erro (E)
1	0	1
0	0	0
1	1,5	-0,5

Erro absoluto

$$E_A = |E|$$

É o módulo do erro, todos os valores tornam-se positivos.

		Erro (E)	Erro absoluto (E _A)
1	0	1	1
0	0	0	0
1	1,5	-0,5	0,5

Erro Quadrático Médio - EQM (Mean Squared Error - MSE)

$$EQM = MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2$$

Raiz do Erro Quadrático Médio - REQM (Root Mean Squared Error – RMSE)

$$REQM = RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2}$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2$$
 $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2}$

1	0	1	1
0	0	0	0
1	1,5	-0,5	0,25
		Soma	1,25
			0,417
		RMSE	0,646

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2}$$

1	0	1	1
0	0	0	0
1	1,5	-0,5	0,25
		Soma	1,25
			0,417
		RMSE	0,646

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2$$
 $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y_i)^2}$

1	0	1	1
0	0	0	0
1	1,5	-0,5	0,25
		Soma	1,25
			0,417
		RMSE	0,646