

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07K 14/47, 14/52, C12N 15/12, 15/19, 15/63, A61K 38/16, 38/19, 48/00		A1	(11) International Publication Number: WO 99/29728 (43) International Publication Date: 17 June 1999 (17.06.99)
(21) International Application Number: PCT/US98/26291		(74) Agent: BARRETT, William, A.; Intellectual Property/Technology Law, P.O. Box 14329, Research Triangle Park, NC 27709 (US).	
(22) International Filing Date: 11 December 1998 (11.12.98)		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/069,281 11 December 1997 (11.12.97) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 60/069,281 (CON) Filed on 11 December 1997 (11.12.97)			
(71) Applicant (<i>for all designated States except US</i>): UNIVERSITY OF MARYLAND BIOTECHNOLOGY INSTITUTE [US/US]; 4321 Hartwick Road, College Park, MD 20740 (US).			
(72) Inventors; and			
(75) Inventors/Applicants (<i>for US only</i>): GALLO, Robert, C. [US/US]; 8513 Thornden Terrace, Bethesda, MD 20817 (US). DEVICO, Anthony, L. [US/US]; 4533 Peacock Avenue, Alexandria, VA 22304 (US). GARZINO-DEMO, Alfredo [IT/US]; 601 North Eutaw Street, Baltimore, MD 21201 (US).			
(54) Title: METHOD AND COMPOSITION TO ENHANCE THE EFFICACY OF A VACCINE USING CHEMOKINES			
(57) Abstract			
<p>The present invention relates to a method to enhance the efficacy of a vaccine in a subject treated with the vaccine comprising administering to the subject in combination with the vaccine a one or more chemokines. The present invention also relates to compositions of vaccines containing chemokines.</p>			

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

METHOD AND COMPOSITION TO ENHANCE THE EFFICACY OF A VACCINE USING CHEMOKINES

1. CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Application Serial No. 60/069,281 filed December 11, 1997.

2. BACKGROUND OF THE INVENTION

The present invention relates to a method to enhance the efficacy of a vaccine by administration of a chemokine, such as macrophage derived chemokine (MDC), in conjunction with the vaccine. The present invention also relates to compositions useful in the method.

2.1. GENERATION OF AN IMMUNE RESPONSE

The introduction of a foreign antigen into an individual elicits an immune response consisting of two major components, the cellular and humoral immune responses, mediated by two functionally distinct populations of lymphocytes known as T and B cells, respectively (see generally Coutinho, 1991, Immune System, *Encyclopedia of Human Biology*, Vol. 4, Ed. Dulbecco, Academic Press, Inc.). A subset of T cells responds to antigen stimulation by producing lymphokines which "help" or activate various other cell types in the immune system.

Another T cell subset is capable of developing into antigen-specific cytotoxic effector cells, which can directly kill antigen-positive target cells. On the other hand, the B cell response is primarily carried out by secretory proteins, antibodies, which directly bind and neutralize antigens.

Helper T cells (TH) can be distinguished from classical cytotoxic T lymphocytes (CTL) and B cells by their cell surface expression of the glycoprotein marker CD4. Although the mechanism by which CD4⁺ TH function has not been fully elucidated, the existence of functionally distinct subsets within the CD4⁺ T cell compartment has been reported (Mosmann and Coffman, 1989, *Ann. Rev. Immunol.*

7:145-173). In the mouse, type 1 helper T cells (TH1) produce interleukin-2 (IL-2) and τ -interferon (τ -IFN) upon activation, while type 2 helper T cells (TH2) produce IL-4 and IL-5. Based on the profile of lymphokine production, TH1 appear to be involved in promoting the activation and proliferation of other T cell subsets including CTL, whereas TH2 specifically regulate B cell proliferation and differentiation, antibody synthesis, and antibody class switching.

A second T cell subpopulation is the classical CTL which express the CD8 surface marker. Unlike most TH, these cells display cytolytic activity upon direct contact with target cells, rather than through the production of lymphokines. *In vivo*, CTL function is particularly important in situations where an antibody response alone is inadequate. Significant experimental evidence indicates that CTL rather than B cells and their antibody products play a principal role in the defense against viral infections and cancer.

A salient feature of both T and B cell responses is their exquisite specificity for the immunizing antigen; however, the mechanisms for antigen recognition differ between these two cell types. B cells recognize antigens by antibodies, either acting as cell surface receptors or as secreted proteins, which bind directly to antigens on a solid surface or in solution, whereas T cells only recognize antigens that have been processed or degraded into small fragments and presented on a solid phase such as the surface of antigen-presenting cells (APC). Additionally, antigenic fragments must be presented to T cells in association with major histocompatibility complex (MHC)-encoded class I or class II molecules. The MHC refers to a cluster of genes that encode proteins with diverse immunological functions. In man, the MHC is known as HLA. Class I gene products are found on all somatic cells, and they were originally discovered as targets of major transplantation rejection responses. Class II gene products are mostly expressed on cells of various hematopoietic lineages, and they are involved in cell-cell interactions in the immune system. Most importantly, MHC-encoded proteins have been shown to function as receptors for processed antigenic fragments on the surface of APC (Bjorkman et al., 1987, *Nature* 329:506-512).

Another level of complexity in the interaction between a T cell and an antigenic fragment is that it occurs only if the MHC molecules involved are the same on the APC and the responding T cells. In other words, a T cell specific for a particular antigenic epitope expresses a receptor having low affinity for self MHC

proteins, which when such MHC proteins on APC are occupied by the epitope, engage the T cell in a stronger interaction leading to antigen-specific T cell activation. The phenomenon of a T cell reacting with a processed antigen only when presented by cells expressing a matching MHC is known as MHC-restriction.

The specificity of T cell immune responses for antigens is a function of the unique receptors expressed by these cells. The T cell receptor (TCR) is structurally homologous to an antibody; it is a heterodimer composed of disulfide-linked glycoproteins. Four TCR polypeptide chains known as α , β , τ , and δ have been identified, although the vast majority of functional T cells express the $\alpha\beta$ heterodimeric TCR. Transfer of α and β genes alone into recipient cells was shown to be both necessary and sufficient to confer antigen specificity and MHC-restriction (Dembic et al., 1986, *Nature* 320:232-238). Thus, the $\alpha\beta$ TCR appears to be responsible for recognizing a combination of antigenic fragment and MHC determinants.

The apparent basis of MHC restriction is that CD4 $^{+}$ T cells express $\alpha\beta$ TCR which recognize antigenic fragments physically associated with MHC class II proteins, while the TCR on CD8 $^{+}$ CTL recognize MHC class I-associated fragments. Thus, CD4 $^{+}$ T cells can recognize only a restricted class of APC that are class II $^{+}$, whereas CD8 $^{+}$ CTL can interact with virtually any antigen-positive cells, since all cells express class I molecules. CD4 $^{+}$ CTL have been identified, and they are MHC class II restricted, and lyse target cells only if the latter express self-MHC class II determinants associated with specific antigenic fragments. Both CD4 and CD8 molecules also contribute to this interaction by binding to monotypic determinants on the MHC class II and I molecules, respectively.

A second type of TCR composed of $\tau\delta$ heterodimers is expressed by a small percentage of T cells, but the involvement of $\tau\delta$ T cells in antigen-specific recognition is still poorly understood. Some studies have shown that functionally active $\tau\delta$ T cells can be cytolytic in a MHC non-restricted manner.

In summary, the generation of an immune response begins with the sensitization of CD4 $^{+}$ and CD8 $^{+}$ T cell subsets through their interaction with APC that express MHC-class I or class II molecules associated with antigenic fragments. The sensitized or primed CD4 $^{+}$ T cells produce lymphokines that participate in the activation of B cells as well as various T cell subsets. The sensitized CD8 $^{+}$ T cells increase in numbers in response to lymphokines and are capable of destroying any

cells that express the specific antigenic fragments associated with matching MHC-encoded class I molecules. For example, in the course of a viral infection, CTL eradicate virally-infected cells, thereby limiting the progression of virus spread and disease development.

2.2. ANTIGEN PRESENTING CELLS

The presentation of antigens to T cells is carried out by specialized cell populations referred to as antigen presenting cells (APC). Typically, APC include macrophages/monocytes, B cells, and bone marrow-derived dendritic cells (DC). APC are capable of internalizing exogenous antigens, cleaving them into smaller fragments in enzyme-rich vesicles, and coupling the fragments to MHC-encoded products for expression on the cell surface (Goldberg and Rock, 1992, *Nature* 357:375-379). Since APC express both MHC-encoded class I and class II glycoproteins, they can present antigenic fragments to both CD4⁺ and CD8⁺ T cells for the initiation of an immune response.

By definition, APC not only can present antigens to T cells with antigen-specific receptors, but can provide all the signals necessary for T cell activation. Such signals are incompletely defined, but probably involve a variety of cell surface molecules as well as cytokines or growth factors. Further, the factors necessary for the activation of naive or unprimed T cells may be different from those required for the reactivation of previously primed memory T cells. The ability of APC to both present antigens and deliver signals for T cell activation is commonly referred to as an accessory cell function. Although monocytes and B cells have been shown to be competent APC, their antigen presenting capacities *in vitro* appear to be limited to the re-activation of previously sensitized T cells. Hence, they are not capable of directly activating functionally naive or unprimed T cell populations.

Although it had been known for a long time that APC process and present antigens to T cells, it was not shown until relatively recently that small antigenic peptides could directly bind to MHC-encoded molecules (Babbit et al., 1985, *Nature* 317:359; Townsend et al., 1986, *Cell* 44:959). However, it is believed that, normally, complex antigens are proteolytically processed into fragments inside the APC, and become physically associated with the MHC-encoded proteins intracellularly prior to

trafficking to the cell surface as complexes. Two distinct pathways for antigen presentation have been proposed (Braciale et al., 1987, *Immunol. Rev.* 98:95-114). It was thought that exogenous antigens were taken up by APC, processed and presented by the exogenous pathway to class II restricted CD4⁺ T cells, while the endogenous pathway processed intracellularly synthesized proteins, such as products of viral genes in virally-infected cells, for association with MHC class I proteins and presentation to CD8⁺ CTL. However, although the two pathways in antigen processing and presentation may still be correct in some respects, the distinction is blurred in light of recent findings that exogenously added antigens may also be presented to class I-restricted CTL (Moore et al., 1988, *Cell* 54:777).

The term "dendritic cells" (DC) refers to a diverse population of morphologically similar cell types found in a variety of lymphoid and non-lymphoid tissues (Steinman, 1991, *Ann. Rev. Immunol.* 9:271-296). These cells include lymphoid DC of the spleen, Langerhans cells of the epidermis, and veiled cells in the blood circulation. Although they are collectively classified as a group based on their morphology, high levels of surface MHC-class II expression, and absence of certain other surface markers expressed on T cells, B cells, monocytes, and natural killer cells, it is presently not known whether they derive from a common precursor or can all function as APC in the same manner. Further, since the vast majority of published reports have utilized DC isolated from the mouse spleen, results from these studies may not necessarily correlate with the function of DC obtained from other tissue types. (Inaba et al., 1997, *J. Exp. Med.* 166:182-194; Henzel et al., 1987, *J. Immunol.*, 139:4196-4202; Kaut et al., 1988, *J. Immunol.*, 140:3186-3193; Romani et al., 1989, *J. Exp. Med.* 169:1169-1178; Macatonia et al., 1989, *J. Exp. Med.* 169:1255-1264; Inaba et al., 1990, *J. Exp. Med.* 172:631-6640). For example, despite high levels of MHC-class II expression, mouse epidermal Langerhans cells, unlike splenic DC, are not active APC in mixed leucocyte reaction (MLR), unless cultured with granulocyte-macrophage colony stimulating factor (GM-CSF) (Witmer-Pock et al., 1987, *J. Exp. Med.* 166:1484-1498; Heufler et al., 1988, *J. Exp. Med.* 167:700-705). Most human Langerhans cells express the CD1 and CD4 markers, while blood DC do not. Additionally, it has not been established the extent to which the functional characteristics observed with mouse DC are applicable to human DC, especially the DC obtained from non-splenic tissues; in part, due to inherent differences between the

human and murine immune systems.

Recently, a few studies have described the isolation of human DC from the peripheral blood, which involves the use of sheep red blood cells and/or fetal calf serum (Young and Steinman, 1990, *J. Exp. Med.* 171:1315-1332; Freudenthal and Steinman, 1990, *Proc. Natl. Acad. Sci. USA* 87:7698-7702; Macatonia et al., 1989 *Immunol.* 67:285-289; Markowicz and Engleman, 1990, *J. Clin. Invest.* 85:955-961). Engleman et al. described a partial purification procedure of DC from human blood, which does not involve the use of sheep red blood cells and/or fetal calf serum, and showed that the partially purified human DC can, in fact, present exogenous antigens to naive T cells (PCT Publication WO 94/02156 dated February 3, 1994 at page 9, lines 5-32).

Recent studies have indicated that DCs are superior APCs as compared to other APCs such as macrophages and monocytes. First, the potent accessory cell function of DCs provides for an antigen presentation system for virtually any antigenic epitopes which T and B cells are capable of recognizing through their specific receptors. For example, Engleman et al. demonstrate that human DCs can present both complex protein antigens and small peptides to CD4⁺ T cells as well as to CD8⁺ CTL (PCT Publication WO 94/02156 dated February 3, 1994, Example 7, from page 29, line 10 to page 34, line 16). Engleman et al. also show that the *in vitro* priming effect of DCs does not require the addition of exogenous lymphokines, indicating that DCs produce all of the necessary signals in antigen presentation leading to the activation of T cells (PCT Publication WO 94/02156 dated February 3, 1994, from page 32, line 36 to page 33, line 2). More importantly, DCs can induce a primary CD4⁺ T cell-mediated proliferative response when similarly prepared monocytes can not induce such a response (PCT Publication WO 94/02156 dated February 3, 1994 at page 31, lines 23-30). Similarly, when DCs and monocytes were compared for their ability to present antigens for re-activating secondary T cell response, it was observed that DCs were capable of stimulating a stronger response than monocytes (PCT Publication WO 94/02156 dated February 3, 1994 at page 32, lines 12-16).

2.3. CHEMOKINES

Chemokines, or chemoattractant cytokines, are a subgroup of immune factors

that have been shown to mediate chemotactic and other pro-inflammatory phenomena (see, Schall, 1991, *Cytokine* 3:165-183). Chemokines are small molecules of approximately 70-80 residues in length and can generally be divided into two subgroups, α which have two N-terminal cysteines separated by a single amino acid (CxC) and β which have two adjacent cysteines at the N terminus (CC). RANTES, MIP-1 α and MIP-1 β are members of the β subgroup (reviewed by Horuk, R., 1994, *Trends Pharmacol. Sci.* 15:159-165; Murphy, P.M., 1994, *Annu. Rev. Immunol.* 12:593-633; Baggolini et al. *Annu. Rev. Immunol.* 1997, 15:675-705).

MCP-1 has been shown to attract monocytes but not neutrophils. MCP-1, MCP-2, and MCP-3 share a pyroglutamate proline NH₂-terminal motif and are structurally closely related to each other and to eotaxin (56% to 71% amino acid sequence identity). MCP-1, MCP-2, and MCP-3 attract monocytes, CD4 $^{+}$ and CD8 $^{+}$ T lymphocytes (Loetscher et al. *FAESB J.* 1994, 8:1055-60), as well as basophil leukocytes. MCP-2, MCP-3, and MCP-4 (but not MCP-1) attracts eosinophil leukocytes. All four MCPs attract activated T lymphocytes, natural killer (NK) cells, and dendritic cells (see Baggolini et al. *Annu. Rev. Immunol.* 1997, 15:675-705).

Eotaxin acts on eosinophils and is inactive on neutrophils and monocytes, but has weak-to-moderate chemotactic activity toward IL-2-conditioned T lymphocytes (see Baggolini et al. *Annu. Rev. Immunol.* 1997, 15:675-705). Due to its preferential, powerful action on eosinophils and its occurrence in different species, eotaxin is considered to be an important chemokine in the pathophysiology of allergic conditions and asthma (See Baggolini et al. *Annu. Rev. Immunol.* 1997, 15:675-705).

IP10 is a CXC chemokine attracts human monocytes, T lymphocytes, and NK cells, and Mig attracts tumor-infiltrating T lymphocytes. It has been suggested that IP10 and Mig may also be involved in the regulation of lymphocyte recruitment and the formation of the lymphoid infiltrates observed in autoimmune inflammatory lesions, delayed-type hypersensitivity, some viral infections, and certain tumors (Baggolini et al. *Annu. Rev. Immunol.* 1997, 15:675-705).

SDF-1 (stromal cell-derived factor 1), including SDF-1 and SDF-1 β stimulates the proliferation of B cell progenitors, and attracts mature dendritic cells (Finkel et al. *Immunobiology* 1998, 198:490-500). Synthetic human SDF-1 stimulates monocytes, neutrophils, and peripheral blood lymphocytes, as is indicated by [Ca²⁺]i changes and chemotaxis. SDF-1 is also a powerful HIV-suppressive factor (See Baggolini et al.

Ann. Rev. Immunol. 1997, 15:675-705).

The amino terminus of the β chemokines RANTES, MCP-1, and MCP-3 has been implicated in the mediation of cell migration and inflammation induced by these chemokines. This involvement is suggested by the observation that the deletion of the amino terminal 8 residues of MCP-1, amino terminal 9 residues of MCP-3, and amino terminal 8 residues of RANTES and the addition of a methionine to the amino terminus of RANTES, antagonize the chemotaxis, calcium mobilization and/or enzyme release stimulated by their native counterparts (Gong et al., 1996, *J. Biol. Chem.* 271:10521-10527; Proudfoot et al., 1996 *J. Biol. Chem.* 271:2599-2603). Additionally, α chemokine-like chemotactic activity has been introduced into MCP-1 via a double mutation of Tyr 28 and Arg 30 to leucine and valine, respectively, indicating that internal regions of this protein also play a role in regulating chemotactic activity (Beall et al., 1992, *J. Biol. Chem.* 267:3455-3459).

The monomeric forms of all chemokines characterized thus far share significant structural homology, although the quaternary structures of α and β groups are distinct. While the monomeric structures of the β and α chemokines are very similar, the dimeric structures of the two groups are completely different. An additional chemokine, lymphotactin, which has only one N terminal cysteine has also been identified and may represent an additional subgroup (γ) of chemokines (Yoshida et al., 1995, *FEBS Lett.* 360:155-159; and Kelner et al., 1994, *Science* 266:1395-1399).

Receptors for chemokines belong to the large family of G-protein coupled, 7 transmembrane domain receptors (GCR's) (See, reviews by Horuk, R., 1994, *Trends Pharmacol. Sci.* 15:159-165; and Murphy, P.M., 1994, *Ann. Rev. Immunol.* 12:593-633). Competition binding and cross-desensitization studies have shown that chemokine receptors exhibit considerable promiscuity in ligand binding. Examples demonstrating the promiscuity among β chemokine receptors include: CCR-1, which binds RANTES and MIP-1 α (Neote et al., 1993, *Cell* 72:415-425), CCR-4, which binds RANTES, MIP-1 α , and MCP-1 (Power et al., 1995, *J. Biol. Chem.* 270:19495-19500), and CCR-5, which binds RANTES, MIP-1 α , and MIP-1 β (Alkhatib et al., 1996, *Science* 272:1955-1958 and Dragic et al., 1996, *Nature* 381:667-674). Erythrocytes possess a receptor (known as the Duffy antigen) which binds both α and β chemokines (Horuk et al., 1994, *J. Biol. Chem.* 269:17730-17733; Neote et al., 1994, *Blood* 84:44-52; and Neote et al., 1993, *J. Biol. Chem.* 268:12247-12249). Thus the sequence and

structural homologies evident among chemokines and their receptors allow some overlap in receptor-ligand interactions.

Godiska et al. identified and described the nucleic acid and amino acid sequences of an additional β chemokine designated macrophage derived chemokine (MDC) (PCT Publication WO 96/40923 dated December 19, 1996, and 1997, *J. Exp. Med.* 185:1595-1604). PCT publication WO 96/40923 further provides materials and methods for the recombinant production of the chemokine, the purified and isolated chemokine protein, and polypeptide analogues thereof. The PCT publication WO 96/40923 does not disclose that the human MDC has chemotactic activity upon DC. While Godiska et al. (1997, *J. Exp. Med.* 185:1595-1604) showed that, in a microchamber migration assay, monocyte-derived DC migrated toward the human MDC, the reference fails to teach that MDC can enhance an immune response to an antigen *in vivo*.

Chang et al. (1997, *J. Biol. Chem.* 272(40):25229-25237), isolated a stimulated T cell chemotactic protein (STCP-1) from an activated macrophage cDNA library. The nucleotide sequence of the STCP-1 is identical to that of the MDC isolated by Godiska et al. (PCT Publication WO 96/40923 dated December 19, 1996, and 1997, *J. Exp. Med.* 185:1595-1604). However, unlike the results observed by Godiska et al. (1997, *J. Exp. Med.* 185:1595-1604), Chang et al. (1997, *J. Biol. Chem.* 272(40):25229-25237) showed that although the STCP-1 acted as a mild chemoattractant for primary activated T lymphocytes and a potent chemoattractant for chronically activated T lymphocytes, the STCP-1 has no chemoattractant activity for monocytes, neutrophils, eosinophils and resting T lymphocytes. Chang et al. further showed that the STCP-1 does not induce Ca^{2+} mobilization in monocytes, dendritic cells, neutrophils, eosinophils, lipopolysaccharide-activated B lymphocytes, and freshly isolated resting T lymphocytes.

2.4. HIV VACCINES

Human immunodeficiency virus (HIV) induces a persistent and progressive infection leading, in the vast majority of cases, to the development of the acquired immunodeficiency syndrome (AIDS) (Barre-Sinoussi et al., 1983, *Science* 220:868-870; Gallo et al., 1984, *Science* 224:500-503). The HIV envelope surface glycoproteins are

synthesized as a single 160 kilodalton precursor protein which is cleaved by a cellular protease during viral budding into two glycoproteins, gp41 and gp120. gp41 is a transmembrane glycoprotein and gp120 is an extracellular glycoprotein which remains non-covalently associated with gp41, possibly in a trimeric or multimeric form (Hammerskjold, M. and Rekosh, D., 1989, *Biochem. Biophys. Acta* 989:269-280). The V3 loop of gp120 is the major determinant of sensitivity to chemokine inhibition of infection or replication (Cocchi et al., 1996, *Nature Medicine* 2:1244-1247; and Oravecz et al., 1996, *J. Immunol.* 157:1329-1332).

Although considerable effort is being put into the design of effective therapeutics, currently no curative anti-retroviral drugs against AIDS exist. The HIV-1 envelope proteins (gp160, gp120, gp41) have been shown to be the major antigens for neutralizing anti-HIV antibodies present in AIDS patients (Barin et al., 1985, *Science* 228:1094-1096). Thus far, therefore, these proteins seem to be the most promising candidates to act as antigens for anti-HIV vaccine development. Several groups have begun to use various portions of gp160, gp120, and/or gp41 as immunogenic targets for the host immune system (see, for example, Ivanoff et al., U.S. Pat. No. 5,141,867; Saith et al., PCT publication WO 92/22654; Shafferman, A., PCT publication WO 91/09872; Formoso et al., PCT publication WO 90/07119). Therefore, methods to increase the efficacy of vaccines against HIV, especially vaccines using gp120 as the antigen, are needed.

Additionally a novel vaccine technology, designated genetic vaccination, nucleic acid vaccination or DNA vaccination, has been explored to induce immune responses *in vivo*. Injection of cDNA expression cassettes results in *in vivo* expression of the encoded proteins (Dubensky et al., 1984, *Proc. Natl. Acad. Sci. USA* 81:7529-7533; Raz et al., 1993, *Proc. Natl. Acad. Sci. USA* 90:4523; Wolff et al., 1990, *Science* 247:1465-1468), with the concomitant development of specific cellular and humoral immune responses directed against the encoded antigen(s) (Wang et al., 1995, *Hum. Gene Ther.* 6:407-418; Ulmer et al., 1993, *Science* 259:1745-1749; Tang et al., 1992, *Nature* 356:152-154; Michel et al., 1995, *Proc. Natl. Acad. Sci. USA* 92:5307-5311; and Lowrie et al., 1994, *Vaccine* 12:1537-1540). Humoral and cellular responses have been induced to HIV-1 and SIV antigens through various applications of this technology in macaques (Wang et al., 1995, *Virology* 221:102-112; Wang et al., 1993, *Proc. Natl. Acad. Sci. USA* 90:4156-4160; and Boyer et al., 1996, *J. Med.*

Primateol. 25:242-250) as well as mice (Wang et al., 1995, *Virology* 221:102-112; Lu et al., 1995, *Virology* 209:147-154; Haynes et al., 1994, *AIDS Res. Hum. Retroviruses* 10 (Suppl. 2):S43-S45; Okuda et al., 1995, *AIDS Res. Hum. Retroviruses* 11:933-943).

Recently, Lekutis et al. (1997, *J. Immunol.* 158:4471-4477), assessed the TH cell response elicited by an HIV-1 gp120 DNA vaccine in rhesus monkeys by isolation of gp120-specific, MHC class II-restricted CD4⁺ T cell lines from the vaccinated animals. Lekutis et al. showed that the isolated cell lines proliferated in response to APC in the presence of recombinant gp120, as well as to APC expressing HIV encoded env protein. Lekutis et al. further showed that these cell lines responded to env by secreting IFN- γ and IFN- α without appreciable IL-4 production. These results demonstrate that the animals exhibited a cellular immune response to the DNA vaccine.

Boyer et al. (1997, *Nature Medicine* 3:625-532), inoculated chimpanzees with an HIV-1 DNA vaccine encoding env, rev, and gag/pol, and found that the immunized animals developed specific cellular and humoral immune responses to these proteins. After challenging the immunized animals with a heterologous chimpanzee titrated stock of HIV-1 SF2, Boyer et al. further found, using a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay, that those animals vaccinated with the DNA vaccine were protected against infection whereas the control animals were not so protected.

Kim et al., (1997 *J. Immunol.* 158:816-826), investigated the role of co-delivery of genes for IL-12 and GM-CSF along with DNA vaccine formulation for HIV-1 antigens env and gag/pol in mice. Kim et al. observed a dramatic increase in specific CTL response from the mice immunized with the HIV-1 DNA vaccine and IL-12. Kim et al. also observed that the co-delivery of IL-12 genes resulted in the reduction of specific antibody response, whereas the codelivery of GM-CSF genes resulted in the enhancement of specific antibody response. Kim et al. further observed that co-delivery of IL-12 gene with a HIV DNA vaccine results in splenomegaly (Kim et al. 1997, *J. Immunol.*, 158:816-826), which has been shown in mice to have toxic effects such as weight reduction or even death (Eng et al., 1995, *J. Exp. Med.* 181:1893; Stevenson et al., 1995, *J. Immunol.* 155:2545; and Orange et al., 1995, *J. Exp. Med.* 181:901).

Notwithstanding the recent developments of the HIV DNA vaccine, there still

exists a need for a method to enhance the efficacy of a vaccine, especially an HIV DNA vaccine. For instance, for efficacious vaccine against HIV-1 one preferably induces both cellular and humoral immune responses to control the infection (Boyer et al., 1997, *Nature Medicine* 3:625-532). The induction of both cellular and humoral immune response by the Berjer et al. method is still quite low because only one of the three immunized chimpanzees developed both cellular and humoral responses. Similarly, although co-delivery of an IL-12 encoding gene with a HIV DNA vaccine, as described in Kim et al. (1997, *J. Immun.* 158:816-826), may have enhanced the cellular immune response, this co-delivery also decreased the humoral response.

Citation of a reference hereinabove shall not be construed as an admission that such reference is prior art to the present invention.

3. SUMMARY OF THE INVENTION. SUMMARY OF THE INVENTION. SUMMARY OF THE INVENTION

The present invention is based upon the ability of chemokines, such as MDC, Rantes, MIP-1 α , MIP-1 β , and I-309, to enhance the immune response to an antigen, particularly a vaccine. Accordingly, in a first aspect, the present invention provides a method for enhancing the efficacy of a vaccine, which method comprises administration to a subject of one or more purified chemokines, or biologically active fragments, analogues or derivatives thereof, either concurrently with one or more purified antigens against which an immune response is desired or within a time period either before or after administration of the antigens such that the immune response against the antigens is enhanced.

In a second aspect, the present invention provides a method to enhance the efficacy of a vaccine, which method comprises administration to a subject of a first set of one or more purified nucleic acids comprising one or more nucleotide sequences encoding one or more chemokines, or fragments, derivatives, analogues, and/or truncation isoforms thereof, and a second purified nucleic acid comprising a nucleotide sequence encoding one or more antigens against which an immune response is desired; such that, the one or more chemokine(s) and the antigen(s) are expressed in a coordinated manner upon introduction into a suitable cell. Alternatively, the nucleotide sequences encoding one or more chemokines, or

fragments, derivatives, and/or analogues thereof, and the antigens against which an immune response is desired are present on the same nucleic acid.

In a preferred embodiment, the invention provides a method to enhance the efficacy of an HIV vaccine.

In yet another aspect, the present invention provides a composition comprising an immunogenic amount of one or more purified antigens, an amount of one or more purified chemokines, or a fragments, derivatives, analogues and/or truncation isoforms thereof, effective to enhance the immune response to the antigen. In another aspect, the present invention provides a composition comprising a first set of one or more purified nucleic acids comprising one or more nucleotide sequences encoding one or more chemokines, fragments, derivatives analogues and or truncation isoforms thereof, and a second set of purified nucleic acids comprising one or more nucleotide sequences encoding one or more antigens against which an immune response is desired, such that, the chemokine(s) and the antigen are expressed in a coordinated manner upon introduction into a suitable cell. In a preferred embodiment, the antigen is an HIV antigen. In another preferred embodiment, the chemokine is selected from the group consisting of: Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIG, H174, Interferon-stimulated T-cell alpha

chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.

4. DESCRIPTION OF FIGURES

Figures 1A and 1B. The nucleotide and amino acid sequences of MDC. 1A depicts the nucleotide sequence of MDC (SEQ ID NO:1), with the coding region indicated by the appearance of the amino acid sequence in the line below; and 1B depicts the amino acid of MDC (SEQ ID NO:2) from GenBank accession no. U83171 (Godiska et al., 1997, *J. Exp. Med.* 185:1595-1604).

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a method for enhancing the efficacy of a vaccine in a subject comprising administering to the subject one or more purified antigens in conjunction with one or more purified chemokines, or more purified fragments, derivatives or analogues and/or truncation isoforms thereof.

While any chemokine may be employed according to the present invention, the chemokine is preferably selected from the following table:

Chemokine Class	Chemokines	Abbreviations	Accession Number
CC Chemokines	Macrophage-derived chemokine	MDC/STCP-1	u83171; u83239
	Monocyte chemotactic protein 1	MCP-1	x14768
	Monocyte chemotactic protein 2	MCP-2	X99886
	Monocyte chemotactic protein 3	MCP-3	x72308; s57464
	Monocyte chemotactic protein 4	MCP-4	u46767
	activated macrophage specific chemokine 1	AMAC-1	Y13710
	Macrophage inflammatory protein 1 alpha	MIP-1 α	AF043339; X03754; D90144

Chemokine Class	Chemokines	Abbreviations	Accession Number
CC Chemokines (continued)	Macrophage inflammatory protein 1 beta	MIP-1 β	j04130; d90145
	Macrophage inflammatory protein 1 gamma	MIP-1 γ	
	Macrophage inflammatory protein 1 delta	MIP-1 δ	AF031587
	Macrophage inflammatory protein 2 alpha	MIP-2 α	AF043340
	Macrophage inflammatory protein 3 alpha	MIP-3 α	u77035
	Macrophage inflammatory protein 3 beta	MIP-3 β	u77180
	Regulated upon activation, normal T cell expressed and secreted (and its variants)	RANTES	M21211
	I-309		M57502
	EBI1-ligand chemokine	ELC	AB000887
	Pulmonary and activation-regulated chemokine	PARC/DC-CK-1/MIP4	AB000221
	Liver and activation-regulated chemokine	LARC	D86955
	Thymus and activation regulated chemokine	TARC	D43767
	Eotaxin (and variants)		D49372; Z69291; Z75669; Z75668
	Human chemokine 1	HCC1; NCC2	Z49270; z49269
	Human chemokine 2	HCC2; NCC3, MIP-5, MIP-1 δ	Z70292
	Human chemokine 3	HCC3	Z70293
	IL-10-inducible chemokine	HCC4	U91746
	liver-expressed chemokine.	LEC; HCC4;NCC4	AB007454
	6Ckine		AF001979
	Exodus 1		u64197
	Exodus 2		U88320
	Exodus 3		U88321
	thymus-expressed chemokine	TECK	U86358
	Secondary Lymphoid tissue chemokine	SLC	AB002409

Chemokine Class	Chemokines	Abbreviations	Accession Number
CC Chemokines (continued)	Lymphocyte and Monocyte chemoattractant; Monotactin	LMC	AF055467
	Activation-induced, chemokine-related molecule	ATAC	x86474
	Myeloid progenitor inhibitory factor-1	MPIF-1; MIP-3 or ckbeta8	u85767
	Myeloid progenitor inhibitory factor-2	MPIF-2	u85768
	Stromal cell-derived factor 1 alpha	SDF-1 α ; PBSF	L36034
CXC chemokines	Stromal cell-derived factor 1 beta	SDF-1 β ; PBSF	L36033
	B-cell-attracting chemokine 1	BLA	AJ002211
	HuMIG		x72755 s60728
	H174		AF002985
	Interferon-stimulated T-cell alpha chemoattractant	ITAC	AF030514
	Interleukin-8	IL-8	m17017; y00787
	IP-10		X02530
	platelet factor 4	PF4	M20901
	growth-regulated gene-alpha	GRO- α	J03561
	growth-regulated gene-beta	GRO- β	M36820
	growth-regulated gene-gamma	GRO- γ	M36821
	Neutrophil-activating protein 2	NAP-2; CTAP-3	M54995; M38441
	ENA-78		L37036
	granulocyte chemotactic protein 2	GCP-2	Y08770
C-CHEMOKINES	LYMPHOTACTIN	SCM-1	D63789 D63790
Cx3C-CHEMOKINES	Fractalkine/neurotactin		U91835 U84487

The present invention also relates to the use of fragments, analogues and derivatives of the foregoing chemokines, as well as truncation isoforms of such chemokines which are known in the art.

The present invention also relates to therapeutic compositions comprising one or more chemokines, nucleic acids encoding one or more chemokines, derivatives, analogues, and/or truncation isoforms thereof, and nucleic acids encoding the same, that are effective to enhance the immune response of a subject to a vaccine.

In another preferred embodiment of the invention, nucleic acids comprising

nucleotide sequences encoding one or more chemokines or fragments or derivatives, including truncation isoforms, thereof, and encoding one or more antigens against which an immune response is desired, which coding sequences are operatively linked to gene regulatory sequences capable of directing the expression of the one or more chemokines and the one or more antigens upon introduction into a suitable cell, for example, but not limited to, the cell (of a subject), are administered to a subject such that the one or more chemokines, or fragments or derivatives, including truncation isoforms, thereof, and one or more antigens, are expressed in the subject.

For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the subsections which follow.

5.1. METHODS AND COMPOSITIONS TO ENHANCE THE EFFICACY OF A VACCINE

The present invention provides methods for enhancing the efficacy of a vaccine in a subject, which methods comprise administering to a subject an immunogenic amount of one or more purified antigens against which an immune response is desired in the subject in conjunction with an amount of one or more purified chemokines, or fragments, derivatives, analogues and/or truncation isoforms thereof, effective to enhance the immune response against the antigen. In one aspect, the purified chemokine(s), or fragment(s), derivative(s), analogue(s) and/or truncation isoforms thereof, are administered to the subject concurrently with (e.g., in the same composition with) the purified antigen or antigens against which an immune response is desired. In another, aspect, the purified chemokine(s), or fragment(s), derivative(s), analogue(s) and/or truncation isoforms thereof, are administered either before or after the administration of one or more purified antigens against which immunity is desired in the subject, but is administered within such time that the chemokine(s) enhance the immune response to the one or more antigens. For example, but not by way of limitation, the purified chemokine(s) are administered during the time that the subject mounts an immune response against the administered one or more antigens, or, the purified MDC is administered within, for example, but not limited to, 30 minutes, 1 hour, 5 hours, 10 hours, 1 day, 2 days of (preferably, after) administration of the one or more purified antigens against which immunity is desired.

In a preferred embodiment, the present invention provides compositions comprising an immunogenic amount of one or more purified antigens and an amount of purified MDC, or one or more fragments, derivatives or analogues thereof, effective to enhance the immune response to said antigen and, preferably, the composition further comprises a pharmaceutically acceptable carrier.

A preferred chemokine for use in the methods and compositions of the present invention is any MDC protein, fragment or derivative thereof, that is capable of enhancing the efficacy of a vaccine (for example, but not limited to, as determined by the assays described in Section 5.4, infra). In one specific embodiment, the MDC is purified full length MDC, preferably full length MDC having the amino acid sequence of SEQ ID NO: 2 (Figure 1B). In another embodiment, the MDC is a purified protein, the amino acid sequence of which consists of amino acid numbers 2-69 of SEQ ID NO: 2 (Figure 1B). In another specific embodiment, the MDC is a purified protein, the amino acid sequence of which consists of amino acid numbers 3-69 of SEQ ID NO: 2 (Figure 1B). In still another specific embodiment, the MDC is a purified protein, the N-terminal amino acid sequence of which consists of the amino acid sequence Tyr-Gly-Ala-Asn-Met-Glu-Asp-Ser-Val-Cys-Cys-Arg-Asp-Tyr-Val-Arg-Tyr-Arg-Leu (portion of SEQ ID NO: 2). In yet another specific embodiment, the MDC is a purified protein, the N-terminal amino acid sequence of which consists of the amino acid sequence Pro-Tyr-Gly-Ala-Asn-Met-Glu-Asp-Ser-Val-Cys-Cys-Arg (portion of SEQ ID NO: 2). In yet another specific embodiment, the MDC is a purified derivative of a protein, the N-terminal amino acid sequence of which protein consists of the amino acid sequence Tyr-Gly-Ala-Asn-Met-Glu-Asp-Ser-Val-Cys-Cys-Arg-Asp-Tyr-Val-Arg-Tyr-Arg-Leu (SEQ ID NO:2), which derivative has activity to enhance the efficacy of the vaccine. In yet another specific embodiment, the MDC is a purified derivative of a protein, the N-terminal amino acid sequence of which protein consists of the amino acid sequence Pro-Tyr-Gly-Ala-Asn-Met-Glu-Asp-Ser-Val-Cys-Cys-Arg (SEQ ID NO:2), which derivative has activity to enhance the efficacy of the vaccine.

In yet another specific embodiment, the chemokine is a purified derivative of the protein, which derivative has one or more insertions of or substitutions with one or more non-classical amino acids relative to a corresponding wildtype chemokine, which derivative will enhance the efficacy of the vaccine. In yet another specific

embodiment, the chemokine is a purified derivative of the protein that has only one or more conservative substitutions in sequence relative a corresponding wildtype chemokine, which derivative will enhance the efficacy of the vaccine. The chemokines useful in the present invention may be derived from any suitable source and obtained by any method known in the art, for example but not limited to the methods described in Section 5.2 infra.

Preferably, the chemokine(s) are of the same species as the subject to which the vaccine is administered. In a preferred embodiment, one or more human chemokines are administered to a human subject, e.g., human MDC is administered to a human subject, alone or in combination with another chemokine.

The present invention also provides a method to enhance the efficacy of a vaccine in a subject, which method comprises administering to a subject a purified first nucleic acid comprising a nucleotide sequence encoding an antigen against which an immune response is desired in a subject and a purified second nucleic acid comprising a nucleotide sequence encoding one or more chemokines, or fragment(s), derivative(s) or analogue(s) thereof, where the expression of the encoded antigen(s) and chemokine(s), or fragment(s), derivative(s) or analogue(s) thereof, are under control of one or more appropriate gene regulatory elements (which regulatory elements can be any regulatory element known in the art, for example, but not limited to, those regulatory elements described in Section 5.2 supra), such that, upon introduction of said first and second nucleic acids into a suitable cell (e.g., a cell of the subject), the antigen and chemokine(s), or fragment(s), derivative(s) or analogue(s) thereof, are coordinately expressed, i.e., are expressed either at the same time or within an appropriate time period (i.e., sufficient for the chemokine(s) to enhance the immune response against the antigen relative to a corresponding immune response in the absence of the chemokine) and the antigen(s) are expressed in an immunogenic amount and the chemokine(s), or fragment(s), derivative(s) or analogue(s) thereof, are expressed in an amount sufficient to enhance the immune response against the antigen(s). In a specific embodiment, the nucleotide sequences encoding the chemokine(s) and the antigen are present on separate nucleic acids. In another embodiment, the nucleotide sequences encoding the chemokine(s) and the antigen(s) are present on the same nucleic acid.

The present invention also provides compositions to enhance the

efficacy of a vaccine in a subject, which compositions comprise a purified first nucleic acid comprising a nucleotide sequence encoding one or more antigen(s) and a purified second nucleic acid comprising a nucleotide sequence encoding one or more chemokines, or fragments or derivatives, including truncation isoforms, thereof, wherein the nucleotide sequences encoding the antigens and the chemokine(s) are operably linked to one or more gene regulatory elements such that, upon introduction of said first and second nucleic acids into a suitable cell (e.g., a cell of the subject), the antigen(s) and chemokine(s) are expressed in a coordinated manner and the antigen(s) are expressed in an immunogenic amount and the chemokine(s) are expressed in an amount effective to enhance the immune response against the antigen, relative to a corresponding immune response in the absence of such chemokine(s).

The present invention also provides compositions to enhance the efficacy of a vaccine in a subject, which compositions comprise a purified first set of one or more purified nucleic acids comprising one or more nucleotide sequences encoding one or more antigens and a purified second set of one or more purified nucleic acids comprising a nucleotide sequence encoding one or more chemokines, or fragments, analogues, derivatives, (including truncation isoforms) thereof, wherein the nucleotide sequence(s) encoding the antigen(s) and the chemokine(s) are operably linked to one or more gene regulatory elements such that, upon introduction of said first and second sets of nucleic acids into a suitable cell (e.g., a cell of the subject), the antigen(s) and chemokine(s) are expressed in a coordinated manner and the antigen(s) are expressed in an immunogenic amount and the chemokine(s) are expressed in an amount effective to enhance the immune response against the antigen, relative to a corresponding immune response in the absence of such chemokine(s).

The present invention also provides compositions to enhance the efficacy of a vaccine in a subject, which compositions comprise a purified nucleic acid comprising a first set of one or more nucleotide sequences encoding one or more antigens and a second set of one ore more nucleotide sequence encoding one or more chemokines, or fragments, derivatives, or analogues thereof (including truncation isoforms), wherein the first and second sets of nucleotide sequences are operably linked to one or more gene regulatory elements such that, upon introduction into a suitable cell, the antigen(s) and the chemokine(s) are expressed in a coordinated manner and the antigen(s) are expressed in an immunogenic amount and the chemokine(s) are

expressed in an amount effective to enhance the immune response against the antigen(s).

Any nucleic acid comprising a nucleotide sequence encoding one or more chemokine proteins, or fragments or derivatives, thereof (including truncation isoforms), that are capable of enhancing the immune response to the antigen (for example, but not limited to, as determined by any of the assays described in Section 5.2., *infra*) can be used in the methods and compositions of the present invention.

In a preferred embodiment, the nucleotide sequence encodes MDC. In another embodiment, the MDC-encoding nucleotide consists of the nucleotide sequence of SEQ ID NO:1 (Figure 1A). In another specific embodiment, the method or composition of the invention uses a nucleic acid encoding an MDC derivative having deletional, insertional or substitutional mutations and combination thereof, which derivative has activity to enhance the immune response against an antigen in a subject.

Such compositions of nucleic acids encoding an antigen are often referred to as DNA vaccines.

Such DNA vaccines are produced by any method known in the art for constructing an expression plasmid vector containing the nucleotide sequences of the antigen(s) and/or chemokine(s) to be expressed which vector is suitable for expression of the encoded proteins in the subject or in cells recombinant for the expression vector, which cells are to be provided to the subject. Such expression vectors may contain various promoters, terminators and polyadenylation coding regions to control the expression of the encoded protein.

The DNA vaccine can be administered by any method known in the art for administration of DNA. The DNA vaccine may be delivered either directly, in which case the subject is directly exposed to the DNA vaccine such that the DNA enters and is expressed in cells of the subject, or indirectly, in which case, the DNA vaccine is first introduced into suitable cells by any method known in the art *in vitro*, then the cells containing the DNA vaccine are transplanted into the subject.

In a specific embodiment, the DNA vaccine is directly administered *in vivo*, where it is expressed to produce the encoded antigens and chemokine(s). This can be accomplished by any of numerous methods known in the art, e.g., by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or

other viral vector (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering it in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see e.g., Wu and Wu, *J. Biol. Chem.* 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In a preferred embodiment, the nucleic acid of a DNA vaccine is injected into the muscle of the subject to be immunized.

Another approach is to introduce the nucleic acid of the DNA vaccine into a cell prior to administration *in vivo* of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign nucleic acid into cells (see e.g., Loeffler and Behr, *Meth. Enzymol.* 217:599-618 (1993); Cohen et al., *Meth. Enzymol.* 217:618-644 (1993); Cline, *Pharmac. Ther.* 29:69-92 (1985)) and may be used in accordance with the present invention. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene.

Cells into which a DNA vaccine can be introduced for purposes of immunization encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

The resulting recombinant cells can be delivered to a subject by various

methods known in the art. In a preferred embodiment, the recombinant cells are injected, e.g., subcutaneously. In another embodiment, recombinant skin cells may be applied as a skin graft onto the patient. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The cells can also be encapsulated in a suitable vehicle and then implanted in the subject (see, e.g., Dionne et al. PCT Publication WO 92/19195, dated November 12, 1992). The amount of cells envisioned for use depends on the desired effect, subject state, etc., and can be determined by one skilled in the art.

By way of example, and not by way of limitation a DNA vaccine may be generated as described by Lekutis et al. for an HIV DNA vaccine (1997, *J. Immunol.* 158:4471-4477). Briefly, an expression vector is constructed with the promoter, enhancer and intron A of human cytomegalovirus (CMV) and the termination and polyadenylation sequences of bovine growth hormone in a plasmid backbone. Additionally, the nucleotide sequence for signal sequence of tissue plasminogen activator is either substituted for the signal sequence of the antigen, if the antigen has a signal sequence or is added onto the amino-terminus of the antigen, thereby eliminating the dependence on viral proteins for expression (e.g., in the case of gp120 expression, rev and env proteins are required unless the HIV-1 signal sequence is so substituted). The resulting formulation is then injected intra-muscularly.

Further examples of DNA vaccines are set forth in Boyer et al. (1996, *J. Med. Primatol.*, 25:242-250), which describes the construction of a plasmid encoding the HIV-1 gp160 envelope glycoprotein as well as the rev-tax region cloned into pMAMneoBlue vector (Clonetech, Inc., Palo Alto, CA), and a vector encoding the envelope glycoprotein and rev from HIV-1 strain MN under the control of the CMV promoter. Another vector which can be used in the present invention is as described in Boyer et al. (1997, *Nature Medicine* 3:526-532) and contains expression cassettes encoding the envelope and Rev proteins of HIV-1 strain MN, and encoding the Gag/Pol proteins of HIV-1 strain IIIB.

For the practice of the present invention, the nucleotide sequence for the one or more chemokines, or fragments, derivatives, or analogues thereof, can either be incorporated into the same expression vector containing the nucleotide sequence encoding the antigen in such a manner that the chemokine(s) are expressed. Alternatively, the nucleotide sequence encoding the chemokine(s), or fragment(s),

derivative(s) or analogue(s) thereof, can be cloned into a separate expression vector (e.g., as described above for the expression vector containing the sequences coding for antigen) and the expression vector that expresses the antigen(s) mixed with the expression vector that expresses the chemokine(s). The mixture of the two expression vectors can then be administered to the subject.

The methods and compositions of the present invention may be used as a vaccine in a subject in which immunity for the antigen(s) is desired. Such antigens can be any antigen known in the art to be useful in a vaccine formulation. The methods and compositions of the present invention can be used to enhance the efficacy of any vaccine known in the art. The vaccine of the present invention may be used to enhance an immune response to infectious agents and diseased or abnormal cells, such as but not limited to bacteria, parasites, fungi, viruses, tumors and cancers. The compositions of the invention may be used to either treat or prevent a disease or disorder amenable to treatment or prevention by generating an immune response to the antigen provided in the composition. In one preferred embodiment, the antigen(s) are proteins, fragments or derivatives, including truncation isoforms, thereof, encoded by any genes of the HIV genome including the *env*, *gag*, *pol*, *nef*, *vif*, *rev*, and *tat* genes. In a more preferred embodiment, the antigen is an HIV-associated gp120 protein.

The methods and compositions of the present invention may be used to elicit a humoral and/or a cell-mediated response against the antigen(s) of the vaccine in a subject. In one specific embodiment, the methods and compositions elicit a humoral response against the administered antigen in a subject. In another specific embodiment, the methods and compositions elicit a cell-mediated response against the administered antigen in a subject. In a preferred embodiment, the methods and compositions elicit both a humoral and a cell-mediated response.

The subjects to which the present invention is applicable may be any mammalian or vertebrate species, which include, but are not limited to, cows, horses, sheep, pigs, fowl (e.g., chickens), goats, cats, dogs, hamsters, mice and rats, monkeys, rabbits, chimpanzees, and humans. In a preferred embodiment, the subject is a human. The compositions and methods of the invention can be used to either prevent a disease or disorder, or to treat a particular disease or disorder, where an immune response against a particular antigen or antigens is effective to treat or prevent the

disease or disorder. Such diseases and disorders include, but are not limited to, viral infections, such as HIV, CMV, hepatitis, herpes virus, measles, etc, bacterial infections, fungal and parasitic infections, cancers, and any other disease or disorder amenable to treatment or prevention by eliciting an immune response against a particular antigen or antigens. In another preferred embodiment, the subject is infected or at risk of being infected with HIV virus.

In another preferred embodiment the invention provides methods and compositions to enhance the efficacy of an HIV vaccine, such a vaccine can be administered to either prevent or treat HIV.

5.2. CHEMOKINE GENES AND PROTEINS

Chemokine proteins and nucleic acids can be obtained by any method known in the art. Chemokine nucleotide and amino acid sequences are available in public databases such as Genbank and are also published in various references known to those of skill in the art. The gene bank accession numbers for the preferred chemokines of the present invention are provided in Table I, in Section 5 above. The ensuing discussion uses MDC by way of example, but applies equally to other chemokines as well.

The MDC nucleotide and amino acid sequences for, *inter alia*, human, are available in the public databases (e.g. Genbank accession No. U83171) also published in Godiska et al., 1997, *J. Exp. Med.* 185:1595-1604. The nucleotide sequence and the amino acid sequence for the human MDC are provided in Figures 1A and B (SEQ ID NOS:1 and 2, respectively).

Chemokines used herein include, but are not limited to, chemokines from mice, hamsters, dogs, cats, monkeys, rabbits, chimpanzees, and human. In one preferred embodiment, the chemokine is of human origin.

Any vertebrate cell potentially can serve as the nucleic acid source for the isolation of chemokine nucleic acids. The nucleic acid sequences encoding the chemokine(s) can be isolated from vertebrate, mammalian, human; porcine, bovine, feline, avian, equine, canine, as well as additional primate sources, etc. The DNA may be obtained by standard procedures known in the art from cloned DNA (e.g., a

DNA "library"), by chemical synthesis, by cDNA cloning, or by the cloning of genomic DNA, or fragments thereof, purified from the desired cell (see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Glover, D.M. (ed.), 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II.) Clones derived from genomic DNA may contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA will contain only exon sequences. Whatever the source, the gene should be molecularly cloned into a suitable vector for propagation of the gene.

In the molecular cloning of the gene from cDNA, cDNA is generated from totally cellular RNA or mRNA by methods that are well known in the art. The gene may also be obtained from genomic DNA, where DNA fragments are generated (e.g. using restriction enzymes or by mechanical shearing), some of which will encode the desired gene. The linear DNA fragments can then be separated according to size by standard techniques, including but not limited to, agarose and polyacrylamide gel electrophoresis and column chromatography.

Once the DNA fragments are generated, identification of the specific DNA fragment containing all or a portion of the chemokine gene may be accomplished in a number of ways.

A preferred method for isolating a chemokine gene is by the polymerase chain reaction (PCR), which can be used to amplify the desired chemokine sequence in a genomic or cDNA library or from genomic DNA or cDNA that has not been incorporated into a library. Oligonucleotide primers which would hybridize to chemokine sequences can be used as primers in PCR.

Additionally, a portion of the chemokine (of any species) gene or its specific RNA, or a fragment thereof, can be purified (or an oligonucleotide synthesized) and labeled, the generated DNA fragments may be screened by nucleic acid hybridization to the labeled probe (Benton, W. and Davis, R., 1977, Science 196:180; Grunstein, M. And Hogness, D., 1975, Proc. Natl. Acad. Sci. U.S.A. 72:3961). Those DNA fragments with substantial homology to the probe will hybridize. Chemokine nucleic acids can be also identified and isolated by expression cloning using, for example, anti-chemokine antibodies for selection.

Alternatives to obtaining the chemokine DNA by cloning or amplification

include, but are not limited to, chemically synthesizing the gene sequence itself from the known chemokine sequence or making cDNA to the mRNA which encodes the chemokine protein. Other methods are possible and within the scope of the invention. Once a clone has been obtained, its identity can be confirmed by nucleic acid sequencing (by any method well known in the art) and comparison to known chemokine sequences. DNA sequence analysis can be performed by any techniques known in the art, including but not limited to the method of Maxam and Gilbert (1980, *Meth. Enzymol.* 65:499-560), the Sanger dideoxy method (Sanger, F., et al., 1977, *Proc. Natl. Acad. Sci. U.S.A.* 74:5463), the use of T7 DNA polymerase (Tabor and Richardson, U.S. Patent No. 4,795,699), use of an automated DNA sequenator (e.g., Applied Biosystems, Foster City, CA) or the method described in PCT Publication WO 97/ 15690.

Nucleic acids which are hybridizable to a chemokine nucleic acid, or to a nucleic acid encoding a chemokine derivative can be isolated, by nucleic acid hybridization under conditions of low, high, or moderate stringency (see also Shilo and Weinberg, 1981, *Proc. Natl. Acad. Sci. USA* 78:6789-6792). For example, the nucleic acid of SEQ ID No: 1 is hybridizable to an MDC nucleic acid.

Chemokine proteins and derivatives, analogs and fragments of chemokine proteins can be obtained by any method known in the art, including but not limited to recombinant expression methods, purification from natural sources, and chemical synthesis.

For example, chemokines can be obtained by recombinant protein expression techniques. For recombinant expression, the chemokine gene or portion thereof is inserted into an appropriate cloning vector for expression in a particular host cell. A large number of vector-host systems known in the art may be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, or plasmids such as pBR322 or pUC plasmid derivatives or the Bluescript vector (Stratagene). The insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. However, if the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules may be enzymatically modified. Alternatively, any site

desired may be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers may comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences. In an alternative method, the cleaved vector and chemokine gene may be modified by homopolymeric tailing. Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, etc., so that many copies of the gene sequence are generated.

In an alternative method, the desired gene may be identified and isolated after insertion into a suitable cloning vector in a "shot gun" approach. Enrichment for the desired gene, for example, by size fractionation, can be done before insertion into the cloning vector.

In specific embodiments, transformation of host cells with recombinant DNA molecules that incorporate the isolated chemokine gene, cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene. Thus, the gene may be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.

The nucleotide sequence coding for a chemokine protein or a functionally active analog or fragment or other derivative thereof, can be inserted into an appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. The necessary transcriptional and translational signals can also be supplied by the native chemokine gene and/or its flanking regions. A variety of host-vector systems may be utilized to express the protein-coding sequence. These include but are not limited to mammalian cell systems infected with virus (*e.g.*, vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (*e.g.*, baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.

Any of the methods previously described for the insertion of DNA fragments into a vector may be used to construct expression vectors containing a chimeric gene consisting of appropriate transcriptional/translational control signals and the protein

coding sequences. These methods may include *in vitro* recombinant DNA and synthetic techniques and *in vivo* recombinants (genetic recombination). Expression of nucleic acid sequence encoding a chemokine protein or peptide fragment may be regulated by a second nucleic acid sequence so that the chemokine protein or peptide is expressed in a host transformed with the recombinant DNA molecule. For example, expression of a chemokine protein may be controlled by any promoter/enhancer element known in the art. Promoters which may be used to control chemokine expression include, but are not limited to, the SV40 early promoter region (Benoist and Chambon, 1981, *Nature* 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, *Cell* 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, *Nature* 296:39-42); prokaryotic expression vectors such as the β -lactamase promoter (Villa-Kamaroff, et al., 1978, *Proc. Natl. Acad. Sci. U.S.A.* 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, *Proc. Natl. Acad. Sci. U.S.A.* 80:21-25); see also "Useful proteins from recombinant bacteria" in *Scientific American*, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, *Cell* 38:639-646; Ornitz et al., 1986, *Cold Spring Harbor Symp. Quant. Biol.* 50:399-409; MacDonald, 1987, *Hepatology* 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, *Nature* 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, *Cell* 38:647-658; Adames et al., 1985, *Nature* 318:533-538; Alexander et al., 1987, *Mol. Cell. Biol.* 7:1436-1444), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, *Cell* 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, *Genes and Devel.* 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, *Mol. Cell. Biol.* 5:1639-1648; Hammer et al., 1987, *Science* 235:53-58; alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, *Genes and Devel.* 1:161-171), beta-globin gene control region

which is active in myeloid cells (Mogram et al., 1985, *Nature* 315:338-340; Kollias et al., 1986, *Cell* 46:89-94), myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, *Cell* 48:703-712); myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, *Nature* 314:283-286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, *Science* 234:1372-1378).

For example, a vector can be used that comprises a promoter operably linked to an chemokine-encoding nucleic acid, one or more origins of replication, and, optionally, one or more selectable markers (e.g., an antibiotic resistance gene).

In a specific embodiment, an expression construct is made by subcloning a chemokine coding sequence into the EcoRI restriction site of each of the three pGEX vectors (Glutathione S-Transferase expression vectors; Smith and Johnson, 1988, *Gene* 7:31-40). This allows for the expression of the chemokine protein product from the subclone in the correct reading frame.

Expression vectors containing chemokine gene inserts can be identified by three general approaches: (a) nucleic acid hybridization, (b) presence or absence of "marker" gene functions, and (c) expression of inserted sequences. In the first approach, the presence of a chemokine gene inserted in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to an inserted chemokine gene. In the second approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of a chemokine gene in the vector. For example, if the chemokine gene is inserted within the marker gene sequence of the vector, recombinants containing the chemokine insert can be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying the product expressed by the recombinant. Such assays can be based, for example, on the physical or functional properties of the chemokine protein in *in vitro* assay systems, e.g., binding with anti-chemokine antibody or the chemokine's receptor.

Once a particular recombinant DNA molecule is identified and isolated, several methods known in the art may be used to propagate it. Once a suitable host

System and growth conditions are established, recombinant expression vectors can be propagated and prepared in quantity. As previously explained, the expression vectors which can be used include, but are not limited to, the following vectors or their derivatives: human or animal viruses such as vaccinia virus or adenovirus; insect viruses such as baculovirus; yeast vectors; bacteriophage vectors (e.g., lambda), and plasmid and cosmid DNA vectors, to name but a few.

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Expression from certain promoters can be elevated in the presence of certain inducers; thus, expression of the genetically engineered protein may be controlled. Furthermore, different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification (e.g., glycosylation, phosphorylation of proteins). Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the foreign protein expressed. For example, expression in a bacterial system can be used to produce an unglycosylated core protein product. Expression in yeast will produce a glycosylated product. Expression in mammalian cells can be used to ensure "native" glycosylation of a heterologous protein. Furthermore, different vector/host expression systems may effect processing reactions to different extents.

In other specific embodiments, the chemokine protein(s), fragment(s), analogue(s), or derivative(s) may be expressed as a fusion, or chimeric protein product (comprising the protein, fragment, analog, or derivative joined via a peptide bond to a heterologous protein sequence (of a different protein)). Such a chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other by methods known in the art, in the proper coding frame, and expressing the chimeric product by methods commonly known in the art. Alternatively, such a chimeric product may be made by protein synthetic techniques, e.g., by use of a peptide synthesizer. In a specific embodiment, a chimeric protein containing all or a portion of the chemokine is joined via a peptide bond to all or a portion of an antigen against which immunity is desired.

Both cDNA and genomic sequences can be cloned and expressed.

The chemokine protein(s) may also be isolated and purified by standard methods including chromatography (e.g., ion exchange, affinity, and sizing column

chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. The functional properties may be evaluated using any suitable assay (see Section 5.5). Alternatively, the protein can be synthesized by standard chemical methods known in the art (e.g., see Hunkapiller, M., et al., 1984, *Nature* 310:105-111). The chemokine-encoding nucleic acid sequence(s) can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions. Any technique for mutagenesis known in the art can be used, including, but not limited to, *in vitro* site-directed mutagenesis (Hutchinson et al., 1978, *J. Biol. Chem.* 253:6551), use of TAB linkers (Pharmacia), mutation-containing PCR primers, etc.

The experimentation involved in mutagenesis consists primarily of site-directed mutagenesis followed by phenotypic testing of the altered gene product. Some of the more commonly employed site-directed mutagenesis protocols take advantage of vectors that can provide single stranded as well as double stranded DNA, as needed. Generally, the mutagenesis protocol with such vectors is as follows. A mutagenic primer, i.e., a primer complementary to the sequence to be changed, but consisting of one or a small number of altered, added, or deleted bases, is synthesized. The primer is extended *in vitro* by a DNA polymerase and, after some additional manipulations, the now double-stranded DNA is transfected into bacterial cells. Next, by a variety of methods, the desired mutated DNA is identified, and the desired protein is purified from clones containing the mutated sequence. For longer sequences, additional cloning steps are often required because long inserts (longer than 2 kilobases) are unstable in those vectors. Protocols are known to those skilled in the art and kits for site-directed mutagenesis are widely available from biotechnology supply companies, for example from Amersham Life Science, Inc. (Arlington Heights, IL) and Stratagene Cloning Systems (La Jolla, CA).

In other specific embodiments, the chemokine derivative(s) or analogue(s) may be expressed as a fusion, or chimeric protein product (comprising the protein, fragment, analogue, or derivative joined via a peptide bond to a heterologous protein sequence (of a different protein)). Such a chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other by methods known in the art, in the proper coding frame, and expressing the chimeric product by methods commonly known in the art.

In addition, chemokine proteins, derivatives (including fragments and chimeric proteins), and analogues can be chemically synthesized. See, e.g., Clark-Lewis et al., 1991, *Biochem.* 30:3128-3135 and Merrifield, 1963, *J. Amer. Chem. Soc.* 85:2149-2156. For example, chemokines, derivatives and analogues can be synthesized by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography (e.g., see Creighton, 1983, *Proteins, Structures and Molecular Principles*, W.H. Freeman and Co., N.Y., pp. 50-60). Chemokines, derivatives and analogues that are proteins can also be synthesized by use of a peptide synthesizer. The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, 1983, *Proteins, Structures and Molecular Principles*, W.H. Freeman and Co., N.Y., pp. 34-49).

The chemokine proteins, derivatives, or analogues of the invention may be synthesized in their entirety by the sequential addition of amino acid residues or alternatively as fragment subcomponents which may be combined using techniques well known in the art, such as, for example, fragment condensation (Shin et al., 1992, *Biosci. Biotech. Biochem.* 56:404-408; Nyfeler et al., 1992, *Peptides, Proc. 12th Amer. Pep. Soc.*, Smith and Rivier (eds), Leiden, pp 661-663); and Nokihara et al., 1990, *Protein Research Foundation*, Yanaihara (ed), Osaka, pp 315-320).

In a less preferred embodiment, chemokine derivatives can be obtained by proteolysis of the protein followed by purification using standard methods such as those described above (e.g., immunoaffinity purification).

In another alternate embodiment, native chemokine proteins can be purified from natural sources, by standard methods such as those described above (e.g., immunoaffinity purification).

5.3. COMPOSITION FORMULATIONS AND METHODS OF ADMINISTRATION

The composition formulations of the invention comprise an effective immunizing amount of an immunologically active ingredient, i.e., one or more antigens, and an amount of one or more chemokine(s), or fragment(s) or derivative thereof, effective to enhance the immune response against the antigen in a subject, and a pharmaceutically acceptable carrier or excipient. In a specific embodiment, the

chemokines are selected from the group consisting of Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIG, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.

Pharmaceutically acceptable carriers or excipients are well known in the art and include but are not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, sterile isotonic aqueous buffer, and combinations thereof. One example of such an acceptable carrier is a physiologically balanced culture medium containing one or more stabilizing agents such as stabilized, hydrolyzed proteins, lactose, etc. The carrier is preferably sterile. The formulation should suit the mode of administration.

In addition, if desired, the vaccine or composition preparation may also include minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine or composition. Suitable adjuvants may include, but are not limited to: mineral gels,

e.g., aluminum hydroxide; surface active substances such as lysolecithin, pluronic polyols; polyanions; peptides; oil emulsions; alum, MDP, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine, and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine. The effectiveness of an adjuvant may be determined by comparing the induction of antibodies directed against a MDC-containing composition in the presence and in the absence of various adjuvants.

In instances where the recombinant antigen is a hapten, i.e., a molecule that is antigenic in that it can react selectively with cognate antibodies, but not immunogenic in that it cannot elicit an immune response, the hapten may be covalently bound to a carrier or immunogenic molecule; for instance, a large protein such as serum albumin will confer immunogenicity to the hapten coupled to it. The hapten-carrier may be formulated for use as a vaccine.

The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.

The chemokine(s), or fragment(s) or derivative(s) thereof, and/or the antigen(s) may be formulated into the composition as neutral or salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with free amino groups of the peptide) and which are formed with inorganic acids, such as, for example, hydrochloric or phosphoric acids, or organic acids such as acetic, oxalic, tartaric, maleic, and the like. Salts formed with free carboxyl groups may also be derived from inorganic bases, such as, for example, sodium potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.

The vaccines of the invention may be multivalent or univalent. Multivalent vaccines are made from recombinant viruses that direct the expression of more than one antigen.

An effective dose (immunizing amount) is that amount sufficient to produce an immune response to the antigen(s) in the host to which the vaccine preparation is administered. The precise dose of the composition to be employed in the formulation will depend on the route of administration, and the nature of the subject to be

immunized, and should be decided by the practitioner according to standard clinical techniques. Effective doses of the vaccines or compositions of the present invention may also be extrapolated from dose-response curves derived from animal model test systems.

The invention also provides a pharmaceutical pack or kit comprising one or more containers comprising one or more of the ingredients of the composition formulations of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is administered by injection, an ampoule of sterile diluent can be provided so that the ingredients may be mixed prior to administration.

In a specific embodiment, a lyophilized immunologically active ingredient and one or more chemokine polypeptide(s) of the invention are provided in a first container; a second container comprises diluent consisting of an aqueous solution of 50% glycerin, 0.25% phenol, and an antiseptic (e.g., 0.005% brilliant green).

Many methods may be used to introduce the composition formulations of the invention; these include but are not limited to oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal routes, and via scarification (scratching through the top layers of skin, e.g., using a bifurcated needle).

The DNA vaccines of the invention can be administered by any method known in the art for delivery of DNA to subject (for example, as described in Section 5.3 supra)

5.4. DETERMINATION OF COMPOSITION EFFICACY

The activity of one or more chemokines, or a fragment, derivative or analogue thereof, to enhance immune response to an antigen can be determined by monitoring the immune response in test animals following immunization with a composition containing the chemokine(s) and an antigen and comparing the response to that following immunization with the antigen in the absence of the chemokine(s). Generation of a humoral (antibody) response and/or cell-mediated immunity, may be taken as an indication of an immune response. Test animals may include mice, hamsters, dogs, cats, monkeys, rabbits, chimpanzees, etc., and eventually human subjects. Assays for humoral and cell-mediated immunity are well known in the art.

Methods of introducing the composition may include oral, intracerebral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal or any other standard routes of immunization. The immune response of the test subjects can be analyzed by various approaches well known in the art, such as but not limited to: testing the reactivity of the resultant immune serum to the antigen of the chemokine-containing vaccine, as assayed by known techniques, e.g., immunosorbant assay (ELISA), immunoblots, radioimmunoprecipitations, etc.

As one example of suitable animal testing, a composition of the present invention may be tested in mice for the ability to enhance an antibody response to an antigen (using for example, but not limited to, the method as described in Section 6, *infra*) and the delayed-type hypersensitivity (DTH) response (also described in Section 6 *infra*), measured by an increase in footpad swelling after inoculation in the footpad of the test animal, as compared to the measurements in animals administered the antigen in a composition not containing chemokine. For example, as test animals BALB/c mice may be used. The test group each receives an inoculation with fixed amount of antigen and varying amount of one or more chemokines. The control group receives an inoculation of comparable amount of antigen alone.

Serum samples may be drawn from the mice after the final inoculation (for example every one or two weeks after inoculation), and serum is analyzed for antibodies against the antigen using known methods in the art, e.g., using an ELISA. DTH responses to the antigen may be measured after the final inoculation (e.g. within 1-7 days). An increase in the serum titer of antibodies recognizing the antigen and/or

an increase in footpad swelling in the animals receiving the antigen-compositions containing the chemokine(s) as compared to the serum titer of antibodies against the antigen and/or the footpad swelling in the animals receiving the antigen composition not containing the chemokine(s), indicates that the chemokine(s) enhance the immune response to antigen. An increase in the serum titer of antibodies recognizing the antigen and/or an increase in footpad swelling in the animals receiving the antigen-compositions containing the chemokines as compared to the serum titer of antibodies against the antigen and/or the footpad swelling in the animals receiving the antigen composition not containing chemokine(s), indicates that the chemokine(s) enhances the immune response to antigen. An increase in the serum titer of antibodies recognizing the antigen and/or an increase in footpad swelling in the animals receiving the antigen-compositions containing MDC as compared to the serum titer of antibodies against the antigen and/or the footpad swelling in the animals receiving the antigen composition not containing MDC, indicates that the MDC enhances the immune response to antigen. An increase in the serum titer of antibodies recognizing the antigen and/or an increase in footpad swelling in the animals receiving the antigen-compositions containing MDC as compared to the serum titer of antibodies against the antigen and/or the footpad swelling in the animals receiving the antigen composition not containing MDC, indicates that the MDC enhances the immune response to antigen.

6. EXAMPLE: IMMUNIZATION WITH MDC-CONTAINING COMPOSITION

The following experiment illustrates the evaluation of whether MDC will act as an adjuvant for a protein antigen and enhance the efficacy of a vaccine. However, it will be appreciated that the description applies equally to other chemokines and combinations of chemokines.

6.1. MATERIALS AND METHODS

6.1.1. ANIMALS AND REAGENTS

BALB/c mice are purchased from Harlan-Sprague-Dawley (Indianapolis, IN).

Human MDC (hMDC) was obtained from CD8⁺ T cell clones immortalized *in vitro* prepared as previously described (Markham et al., 1983 *Int. J. Cancer* 31:413; Markham et al. 1984, *Int. J. Cancer* 33:13). One such immortalized CD8⁺ T cell clone, F3b Clone 19, was adapted to growth in serum-free medium by the following procedure and used for further studies. F3b Clone 19 cells were grown in complete medium containing rIL-2 (16 ng/ml) at 37°C in a CO₂ incubator. After expanding the culture to 200 ml, the cells were pelleted and resuspended in RPMI medium containing HB101 (Irvine Scientific) supplemented with 16 ng/ml of rIL-2, 1% glutamine and 1% penicillin/streptomycin. The cells were grown to full confluence and the medium harvested by centrifugation at 670 x g for 10 minutes.

Human MDC (hMDC) was purified from F3b Clone 19 as described in Pal et al., 1997, *Science* 278:695-698. Briefly, the cell free culture supernatant from F3b Clone 19 was clarified by high speed centrifugation and fractionated by heparin affinity chromatography, taking advantage of the heparin binding characteristics of chemokines (Witt and Lander, 1994, *Current Biology* 4:394; Proost et al., 1996, *Method: A Companion to Methods in Enzymology* 10:82). Culture supernatant (1200 ml) from F3b Clone 19, grown to high cell density in serum-free medium supplemented with rIL-2 was clarified by high speed centrifugation (100,000 x g for 60 minutes at 4°C) and applied to a 5 ml HiTrap heparin affinity FPLC column (Pharmacia) equilibrated in 10 mM Tris-HCl, pH 7.6 containing 0.1 M NaCl (column buffer). The column was then washed extensively with column buffer and the bound proteins eluted from the column with 10 mM Tris-HCl, pH 7.6 containing 2.0 M NaCl at a flow rate of 0.5 to 1 ml/minute. Virtually all of the HIV suppressive activity effective against primary NSI and SI isolates and HIV-1_{IIIb} was recovered in the column eluate (data not shown). The heparin affinity column eluate was brought to pH 2.0 by addition of trifluoroacetic acid (TFA) and subjected to reversed phase HPLC on a PEEK C-18 column (Waters Instruments) equilibrated in H₂O containing 0.1 % TFA. Proteins bound to the column were eluted with a 5 minute linear gradient of aqueous acetonitrile (0 to 35 %) containing 0.1% TFA. After 10 minutes at 35% acetonitrile, the column was further developed with a 60 minute linear gradient of 35-70% aqueous acetonitrile in TFA. The flow rate was maintained at 0.5 to 1 ml/minute. The fractions obtained were then tested for suppressor activity in the acute infectivity assay using HIV-1_{IIIb}. Active fractions were pooled, diluted twofold in H₂O with 0.1 % TFA.

and reapplied to the column. The column was then developed with a 30 minute linear aqueous acetonitrile gradient (0-60%) containing 0.1% TFA at a flow rate of 0.5 to 1 ml/minute. The fractions obtained were assayed as above. Active fractions were pooled, diluted with H₂O/0.1 % TFA and fractionated under the same conditions to obtain a single protein peak. The fraction corresponding to the peak and flanking fractions were tested in the infectivity assay to verify that suppressor activity was cofractionated with the protein.

Suppressive activity against HIV-1^{IIIB} in the absence of cytotoxic effects consistently copurified with a single protein peak that appeared as a homogeneous 8 kDa band when analyzed by SDS-polyacrylamide gel electrophoresis. This protein was not reactive in ELISAs for RANTES, MIP-1 α or MIP-1 β (R&D Systems).

Recombinant gp120 protein derived from HIV-1 IIIB isolate is purchased from Intracel (Foster City, CA).

6.1.2 IMMUNIZATION OF MICE

The hMDC and the gp120 is resuspended in a total volume of 50 μ l of phosphate-buffered saline (PBS). Mice are divided into 5 groups with 3-4 mice in each group. Groups 1-4 are inoculated with 10 μ g gp120 and 0.3 μ g, 0.1 μ g, 0.03 μ g, and 0.01 μ g of hMDC, respectively. As a control, group 5 is inoculated with 10 μ g of gp120 in the absence of hMDC. For primary inoculation, each group of mice is inoculated with 10 μ l of the hMDC and gp120 solution via footpad. Two to three weeks after the primary inoculation, each mouse is given the same doses of hMDC/gp120 that is used in primary inoculation.

6.1.3 ELISA ASSAY

Serum samples are collected one week after the second inoculation via tail vein bleed. gp120 serum responses are measured using standard gp120 antibody ELISA assays.

6.1.4 DTH ASSAY

The delayed-type hypersensitivity (DTH) response is measured from 1-7 days after the second inoculation. A caliper is to be used to measure footpad swelling.

6.2. RESULTS

Mice inoculated with hMDC/gp120 are expected to have greater serum antibody and DTH responses than mice inoculated with gp120 alone. The improved responses will be reflected in either increased titers of serum antibody responses or increased footpad swelling. A dose response effect is expected - increasing the dose of hMDC used is expected to cause a corresponding improvement in the serum and DHT gp120-specific responses.

7. EXAMPLE: OTHER CHEMOKINES AND COMBINATIONS OF CHEMOKINES

The foregoing experiments can be repeated using other chemokines and combinations of chemokines. For example, the experiments are preferably repeated using one or more chemokines selected from the group consisting of: Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine., 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIC, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

Various references are cited herein, the disclosures of which are incorporated by reference in their entireties.

THE CLAIMS:

1. A method to enhance the efficacy of a vaccine in a subject comprising administering to the subject an immunogenic amount of one or more purified antigens against which an immune response is desired in the subject and an amount of one or more chemokines, or purified fragments or derivatives thereof, effective to enhance the efficacy of said vaccine.
2. The method of claim 1, wherein the one or more chemokines are selected from a chemokine class selected from the group consisting of: CC, CXC, C-C and CX3C.
3. The method of claim 1, wherein the one or more chemokines are selected from the group consisting of: Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIG, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-

- regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.
- 4. The method of claim 1, wherein the one or more chemokines are selected from the group consisting of: MDC, SDF-1, BLC, and MCP-1.
- 5. The method of claim 1 wherein the fragment(s) or derivative(s) are truncation isoforms.
- 6. The method of claim 1, wherein the one or more chemokines include MDC comprising the amino acid sequence of SEQ ID NO: 2.
- 7. The method of claim 1, wherein the one or more chemokine fragment includes an MDC fragment selected from the group consisting of amino acid numbers 2-69, 3-69, 5-69, 7-69 and 9-69 of SEQ ID NO: 2.
- 8. The method of claim 1, wherein the one or more chemokine fragment includes an MDC fragment selected from the group consisting of amino acid numbers 2-69, 3-69, 5-69, 7-69 and 9-69 of SEQ ID NO: 2., which derivative has activity to enhance the efficacy of the vaccine.
- 9. The method of claim 1, wherein the one or more chemokine derivatives has one or more insertions or substitutions with one or more non-classical amino acids relative to a corresponding wildtype chemokine, which derivative has activity to enhance the efficacy of the vaccine.
- 10. The method of claim 1, including a chemokine derivative having one or more conservative substitutions in sequence relative a wildtype MDC, which derivative has activity to enhance the efficacy of the vaccine.
- 11. The method of claim 1, wherein the one or more chemokines include a human chemokine.

12. The method of claim 1, wherein the purified chemokine(s) or purified fragment(s) or derivative(s) thereof is/are administered concurrently with the purified antigen(s).
13. The method of claim 1 wherein the purified chemokine(s) or purified fragment(s) or derivative(s) thereof, are administered within a time period before or after administration of the purified antigen, which time period permits the purified MDC or purified fragment or derivative thereof MDC to enhance the efficacy of the vaccine.
14. The method of claim 1, wherein the antigen is an HIV antigen.
15. The method of claim 14, wherein the HIV antigen is HIV-associated gp120 protein.
16. The method of claim 1, wherein the subject is a human.
17. The method of claim 1, wherein the subject is infected or at risk of being infected with HIV virus.
18. The method of claim 1, wherein the vaccine elicits a humoral response against the antigen in the subject.
19. The method of claim 1, wherein the vaccine elicits a cell-mediated response against the antigen in the subject.
20. The method of claim 1, wherein the vaccine elicits both a humoral and a cell-mediated response against the antigen in the subject.
21. The method of claim 1, wherein the vaccine further comprises pharmaceutically acceptable excipient, auxiliary substance, adjuvant, wetting or emulsifying agent, or pH buffering agent.

22. A method to enhance the efficacy of a vaccine in a subject comprising administering to the subject a first amount of a first set of one or more purified nucleotide sequences encoding one or more antigens against which an immune response is desired in the subject and a second second set of one or more purified nucleic acids, each comprising a nucleotide sequence encoding one or more chemokines, or fragments or derivatives thereof, wherein the antigen(s) and the chemokine(s) are expressed in a coordinated manner upon introduction into a suitable cell, said first amount is immunogenic and said second amount is effective in enhancing the efficacy of the vaccine.
23. The method of claim 22, wherein the one or more chemokines are selected from a chemokine class selected from the group consisting of: CC, CXC, C-C and CX3C.
24. The method of claim 22, wherein the one or more chemokines are selected from the group consisting of: Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine

- 1, HuMIG, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.
25. The method of claim 22, wherein the one or more chemokines are selected from the group consisting of: MDC, SDF-1, BLC, and MCP-1.
26. The method of claim 22 wherein the fragment(s) or derivative(s) are truncation isoforms.
27. The method of claim 22, wherein the nucleotide sequence encoding one or more chemokines comprises the nucleotide sequence of SEQ ID NO:1.
28. The method of claim 22, wherein one or more of the chemokine derivative(s) have deletional, insertional or substitutional mutations and combination thereof, which derivative has activity to enhance the efficacy of the vaccine.
29. The method of claim 22, wherein the vaccine elicits a humoral response against the antigen in the subject.
30. The method of claim 22, wherein the vaccine elicits a cell-mediated response against the antigen in the subject.
31. The method of claim 22, wherein the vaccine elicits both a humoral and a cell-mediated response against the antigen in the subject.
32. The method of claim 22, wherein the vaccine further comprises pharmaceutically acceptable excipient, auxiliary substance, adjuvant, wetting or emulsifying agent, or pH buffering agent.
33. A composition comprising: an immunogenic amount of one or more purified antigens and an amount of one or more purified chemokines, or purified

- fragments or derivatives thereof, effective to enhance the immune response to said antigen(s); and a pharmaceutically acceptable carrier.
- 34. The composition of claim 33, wherein the one or more chemokines are selected from the group consisting of: MDC, SDF-1, BLC, and MCP-1.
- 35. The composition of claim 33, wherein the one or more chemokines are selected from a chemokine class selected from the group consisting of: CC, CXC, C-C and CX3C.
- 36. The composition of claim 33, wherein the one or more chemokines are selected from the group consisting of: Macrophage-derived chemokine, Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIC, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating

- protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.
- 37. The composition of claim 33, wherein the fragment(s) or derivative(s) are truncation isoforms.
- 38. The composition of claim 33, wherein the one or more chemokine fragment includes an MDC fragment selected from the group consisting of amino acid numbers 2-69, 3-69, 5-69, 7-69 and 9-69 of SEQ ID NO: 2.
- 39. The composition of claim 33, wherein the one or more chemokine fragment includes an MDC fragment selected from the group consisting of amino acid numbers 2-69, 3-69, 5-69, 7-69 and 9-69 of SEQ ID NO: 2, which derivative has activity to enhance the efficacy of the vaccine.
- 40. The composition of claim 33, wherein the one or more chemokine derivatives has one or more insertions of or substitutions with one or more non-classical amino acids relative to a corresponding wildtype chemokine, which derivative has activity to enhance the efficacy of the vaccine.
- 41. The composition of claim 33, wherein the one or more chemokine derivatives has one or more conservative substitutions in sequence relative a corresponding wildtype chemokine, which derivative has activity to enhance the efficacy of the vaccine.
- 42. The composition of claim 33, wherein the chemokine is a human chemokine.
- 43. The composition of claim 33, wherein the antigen is an HIV antigen.
- 44. The composition of claim 43, wherein the antigen is HIV associated gp120 protein.
- 45. A composition comprising an amount of a first set of purified nucleic acids comprising one or more nucleotide sequences encoding one or more antigens

- and a second set of purified nucleic acids comprising one or more nucleotide sequences encoding one or more chemokines, or fragments or derivatives thereof, wherein the antigen(s) and the chemokine(s), or fragment(s) or derivative(s) thereof, are expressed from said first set of nucleic acid(s) and second set of nucleic acid(s) in a coordinated manner such that upon introduction into a suitable cell, the amount of said first set of nucleic acid(s) is sufficient to express an immunogenic amount of the antigen and the amount of the said second set of nucleic acid(s) is effective in enhancing the efficacy of the vaccine; and a pharmaceutically acceptable carrier.
46. The composition of claim 45, wherein the chemokine is MDC and the nucleic acid encoding the MDC comprises the nucleotide sequence of SEQ ID NO: 1.
47. The composition of claim 45, wherein the chemokine derivative(s) have deletional, insertional or substitutional mutations and/or combinations thereof, and the derivative(s) have activity to enhance the efficacy of the vaccine.
48. The composition of claim 45, further comprising pharmaceutically acceptable excipient, auxiliary substance, adjuvant, wetting or emulsifying agent, or pH buffering agent.
49. A composition comprising a first set of purified nucleotide sequences encoding one or more antigens and a second set of purified nucleotide sequences encoding one or more chemokines, or fragments or derivatives thereof, wherein the antigen(s) and the chemokine(s) are expressed in a coordinated manner such that upon introduction into a suitable cell, the sets produce an amount of said antigen(s) that is immunogenic and an amount of chemokine(s), or fragment(s) or derivative(s) thereof, that is effective in enhancing the efficacy of the vaccine relative to a corresponding vaccine composition without such chemokine(s), fragment(s) or derivative(s) thereof.
50. The composition of claim 49, wherein the one or more chemokines are selected from the group consisting of: Macrophage-derived chemokine,

Monocyte chemotactic protein 1, Monocyte chemotactic protein 2, Monocyte chemotactic protein 3, Monocyte chemotactic protein 4, activated macrophage specific chemokine 1, Macrophage inflammatory protein 1 alpha, Macrophage inflammatory protein 1 beta, Macrophage inflammatory protein 1 gamma, Macrophage inflammatory protein 1 delta, Macrophage inflammatory protein 2 alpha, Macrophage inflammatory protein 3 alpha, Macrophage inflammatory protein 3 beta, Regulated upon activation, normal T cell expressed and secreted (and its variants), I-309, EBI1-ligand chemokine, Pulmonary and activation regulated chemokine, Liver and activation-regulated chemokine, Thymus and activation regulated chemokine, Eotaxin (and variants), Human CC chemokine 1, Human CC chemokine 2, Human CC chemokine 3, IL-10-inducible chemokine, liver-expressed chemokine, 6Ckine, Exodus 1, Exodus 2, Exodus 3, thymus-expressed chemokine, Secondary Lymphoid tissue chemokine, Lymphocyte and Monocyte chemoattractant; Monotactin, Activation-induced, chemokine-related molecule, Myeloid progenitor inhibitory factor-1, Myeloid progenitor inhibitory factor-2, Stromal cell-derived factor 1 alpha, Stromal cell-derived factor 1 beta, B-cell-attracting chemokine 1, HuMIG, H174, Interferon-stimulated T-cell alpha chemoattractant, Interleukin-8, IP-10, platelet factor 4, growth-regulated gene-alpha, growth-regulated gene-beta, growth-regulated gene-gamma, Neutrophil-activating protein 2, ENA-78, granulocyte chemotactic protein 2, LYMPHOTACTIN, and Fractalkine/neurotactin.

51. The method of claim 49, wherein the one or more chemokines are selected from a chemokine class selected from the group consisting of: CC, CXC, C-C and CX3C.
52. The method of claim 49, wherein the one or more chemokines are selected from the group consisting of: MDC, SDF-1, BLC, and MCP-1.
53. The composition of claim 49, wherein the fragment(s) or derivative(s) are truncation isoforms.

54. The composition of claim 49, wherein the nucleic acid is administered directly to the subject.
55. The composition of claim 49, wherein the nucleic acid is introduced into a suitable host cell and said suitable host cell is introduced into the subject.

GAGACATACA	GGACAGAGC	ATG	GCT	CGC	CTA	CAG	ACT	GCA	CTC	CTG	GTT	GTC	52
Met	Ala	Arg	Leu	Gln	Thr	Ala	Leu	Leu	Val	Val			
-24							-20						
CTC	GTC	CTC	CTT	GCT	GTG	GGC	CTT	CAA	GCA	ACT	GAG	GCA	100
Leu	Val	Leu	Leu	Ala	Val	Ala	Leu	Gln	Ala	Thr	Glu	Ala	TAC
-10													-5
GGC	GCC	AAC	ATG	GAA	GAC	AGC	GTC	TGC	CGT	GAT	TAC	GTC	148
Gly	Ala	Asn	Met	Glu	Asp	Ser	Val	Cys	Cys	Arg	Asp	Tyr	TAC
5													15
CGT	CTG	CCC	CTG	CGC	GTG	AAA	CAC	TTC	TAC	TGG	ACC	TCA	196
Arg	Leu	Pro	Leu	Arg	Val	Val	Lys	His	Phe	Tyr	Trp	Thr	Ser
20													30
TGC	CCG	AGG	CCT	GGC	GTG	TTG	CTA	ACC	TTC	AGG	GAT	AAG	244
Cys	Pro	Arg	Pro	Gly	Val	Val	Leu	Leu	Thr	Phe	Arg	Asp	Ser
40													45
TGT	GCC	GAT	CCC	AGA	GTG	CCC	TGG	GTG	AAG	ATG	ATT	CTC	292
Cys	Ala	Asp	Pro	Pro	Arg	Val	Pro	Trp	Val	Lys	Met	Ile	Lys
55													60

AGC CAA TGAAGAGCC ACTCTGATGA CCGGTGGCCTT GGCTCCCA GGAAGGGCTCA
Ser Gln

GGAGGCCCTAC CTCCCTGCCA TTATAGCTGC TCCCCGCCAG AAGCCTGTGC CAACTCTCTG 408
 CATTCCCTGA TCTCCATCCC TGTGGCTGTC ACCCTTGTC ACCTCCGTGC TGTCACTGCC 468
 ATCTCCCCC TGACCCCTCT AACCCATCT CTGCCCTCCCT CCCTGCAGTC AGAGGGTCCCT 528
 GTTCCCATCA GCGATTCCCC TGCTTAACC CTTCCATGAC TCCCCACTGC CCTAAAGCTGA 588 2/6
 GGTCA^GTCTC CCAAGCC^G CATGGGCC TCTGGATCTG GTTCCATCT CTGTCTCCAG 648
 CCTGCCACT TCCCTTCATG AATGTTGGT TCTAGCTCCC TGTCTCCAA ACCCATACTA 708
 CACATCCCAC TTCTGGTCT TTGCCCTGGGA TTGCTGTC ACTCAGAAAG TCCCACCCACC 768
 TGCACATGTG TAGCCCCACC AGCCCTCCAA GGCAATTGCTC GCCCAAGCAG CTGGTAATTG 828
 CATTCA^TATTAGATGTC CCCTGGCCCT CTGTCCCTC TTAATAACCC TAGTCACAGT 888
CTCCGCA^GAT TCTTGGGAT TGGGGTTT. CTCCCCCACC TCTCCCACTAG TTGGACCAAG 948

FIG. IA-2

<u>GTTTCTAGCT</u>	<u>AAGTTACTCT</u>	<u>AGTCTCCAAG</u>	<u>CCTCTAGCAT</u>	<u>AGAGCACTGCG</u>	<u>AGACAGGGCCC</u>	1008
TGGCTCAGAA	TCAGAGCCCA	GAAAGTGGCT	GCAGACAAAA	TCAAATAAAC	TAATGTCCCT	1068
CCCCTCTCCC	TGCCAAAAGG	CAGTTACATA	TCAAATACAGA	GACTCAAGGT	CACTAGAAAT	1128
GGGCCAGCTG	GGTCAATGTG	AAGCCCCAAA	TTTGCCAGA	TTCACCTTTC	TTCCCCCACT	1188
CCCTTTTTT	TTTTTTTTT	TTTGAGATGG	AGTTTCGCTC	TTGTCAACCA	CGCTGGAGTG	1248
CAATGGTGTG	GTCTTGGCTT	ATTGAAGCCT	CTGCCTCCTG	GGTCAAGTG	ATTCTCTTGC	1308 3/6
CTCAGCCTCC	TGAGTAGCTG	GGATTAACAGG	TTCCCTGCTAC	CACGCCAGC	TAATTTTGT	1368
ATTTTTAGTA	GAGACGAGGC	TTCACCATGT	TGGCCAGGGCT	GGTCTCGAAC	TCCTGTCCCTC	1428
AGGTAATCCG	CCCACCTCAG	CCTCCCAAAG	TGCTGGGATT	ACAGGGGTGA	GCCACACGTGC	1488
CTGGCCTCTT	CCCTCTCCCC	ACTGCCCCC	CCAACTTTT	TTTTTTTTT	ATGGCAGGGT	1548
CTCACTCTGT	CGCCCAGGCT	GGAGGTGCAGT	GGCGTGATCT	CGGCTCACTA	CAACCTCGAC	1608
<u>CTCCTGGGTT</u>	<u>CAAGTGAATC</u>	<u>TCCCAACCCAA</u>	<u>GCCTCCCCAA</u>	<u>TACAGGGAT</u>	<u>TACAGGGTGTG</u>	<u>1668</u>

FIG. IA-3

TGCCACTTACG GCTGGCTAAT TTTGTATT TAGTAGAGA CAGGTTTCAC CATATTGCC 1728
AGGCTGGTCT TGAACCTCCTG ACCTCAAGTG ATCCACCTTC CTTGTGCTCC CAAAGTGCTG 1788
AGATTACAGG CGTGAGCTAT CACACCCAGC CTCCCCCTTT TTTCCCTTAAT AGGAGACTCC 1848
TGTACCTTTC TCGTTTTAC CTATGTCG TGTCTGCTTA CATTTCTTC TCCCCTCAGG 1908
CTTTTTGG GTGGTCCCTCC AACCTCCAAT ACCCAGGCCT GGCCTCTTCA GAGTACCCCC 1968
CATTCCACTT TCCCTGCCTC CTTCCTTAA TAGCTGACAA TCAAATTCAT GCTATGGTGT 2028 4/6
GAAAGACTAC CTTGTGACTTG GTATTATAAG CTGGAGTTAT ATATGTATT GAAAACAGAG 2088
TAAATACTTA AGAGGCCAA TAGATGAATG GAAGAATT AGGAACGTGTG AGAGGGGAC 2148
AAGGTGAAGC TTTCCTGGCC CTGGGAGGAA GCTGGCTGTG GTAGCGTAGC GCTCTCTCTC 2208
TCTGTCTGTG GCAGGAGCCA AAGAGTAGGG TGTAATTGAG TGAAGGAATC CTGGGTAGAG 2268
ACCATTCTCA GGTGGTTGGG CCAGGCTAAA GACTGGGAGT TGGGTCTATC TATGCCTTTC 2328
TGGCTGATT TTGTAGAGAC GGGGTTTGGC CATGTTACCC AGGCTGGTCT CAAACCTCCTG 2388

FIG. 1A-4

GGCTCAAGCG	ATCCTCCCTGG	CTCAGCCICC	CAAAGCTCTG	GGATTACAGG	CGTGAATCAC	2448
TGCCTGGC	TTCCTCTTC	TCTTGAGAAA	TATTCTTTTC	ATACAGCAAG	TATGGGACAG	2508
CAGTGTCCA	GGTAAAGGAC	ATAAATGTTA	CAAGTGTCTG	GTCCTTCTG	AGGGAGGCTG	2568
GTGCCGCTCT	GCAGGGTATT	TGAAACCTGTG	GAATTGGAGG	AGGCCATTTC	ACTCCCCTGAA	2628
CCCAGCCTGA	CAAATCACAG	TGAGAATGTT	CACCTTATAG	GCTTGCTGTG	GGGCTCAGGT	2688
TGAAAGTGTG	GGGAGTGACA	CTGCCTAGGC	ATCCAGCTCA	GTGTCACTCCA	GGGCCTGTGT	⁵ /27486
CCCTCCCGAA	CCCAGGGTCA	ACCTGCCTGC	CACAGGCACT	AGAAGGACGA	ATCTGCCCTAC	2808
TGCCCATGAA	CGGGGCCCTC	AAGCGTCCTG	GGATCTCCCT	CTCCCTCCCTG	TCCTGTCCCT	2868
GCCCCCTCAGG	ACTGCTGGAA	AATAAAATCCT	TTAAAATAGT	AAAAAA	AAAAAA	2923

FIG. IA-5**FIG. IA-1****FIG. IA-2****FIG. IA-3****FIG. IA-4****FIG. IA-5**

6/6

Met	Ala	Arg	Leu	Gln	Thr	Ala	Leu	Leu	Val	Val	Leu	Val	Leu	Leu	Ala
-24															-10
	-20														-15
Val	Ala	Leu	Gln	Ala	Thr	Glu	Ala	Gly	Pro	Tyr	Gly	Ala	Asn	Met	Glu
															-5
Asp	Ser	Val	Cys	Cys	Arg	Asp	Tyr	Val	Arg	Tyr	Arg	Leu	Pro	Leu	Arg
															5
	10														20
Val	Lys	His	Phe	Tyr	Tyr	Trp	Thr	Ser	Asp	Ser	Cys	Pro	Arg	Pro	Gly
															35
	25														40
Val	Val	Leu	Leu	Thr	Phe	Arg	Asp	Lys	Glu	Ile	Cys	Ala	Asp	Pro	Arg
															50
															55
Val	Pro	Trp	Val	Lys	Met	Ile	Leu	Asn	Lys	Leu	Ser	Gln			
															60
															65

FIG. 1B

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: Gallo, Robert C.
DeVico, Anthony L.
Garzino, Alfredo

(ii) TITLE OF THE INVENTION: METHOD AND COMPOSITION TO ENHANCE THE EFFICACY OF A VACCINE USING MACROPHAGE DERIVED CHEMOKINE

(iii) NUMBER OF SEQUENCES: 2

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Pennie & Edmonds LLP
(B) STREET: 1155 Avenue of the Americas
(C) CITY: New York
(D) STATE: New York
(E) COUNTRY: USA
(F) ZIP: 10036/2711

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: DOS
(D) SOFTWARE: FastSEQ Version 2.0

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: To be assigned
(B) FILING DATE: Herewith
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Misrock, S. Leslie
(B) REGISTRATION NUMBER: 18,872
(C) REFERENCE/DOCKET NUMBER: 8769-029

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 212-790-9090
(B) TELEFAX: 212-869-8864
(C) TELEX: 66141 PENNIE

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2923 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: mat_peptide
(B) LOCATION: 92..298

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAGACATACA GGACAGAGC ATG GCT CGC CTA CAG ACT GCA CTC CTG GTT GTC	52
Met Ala Arg Leu Gln Thr Ala Leu Val	
-24 -20 -15	
CTC GTC CTC CTT GCT GTG GCG CTT CAA GCA ACT GAG GCA GGC CCC TAC	100
Leu Val Leu Ala Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr	
-10 -5 1	
GGC GCC AAC ATG GAA GAC AGC GTC CGT GAT TAC GTC CGT TAC	148
Gly Ala Asn Met Glu Asp Ser Val Cys Arg Asp Tyr Val Arg Tyr	
5 10 15	
CGT CTG CCC CTG CGC GTG AAA CAC TTC TAC TGG ACC TCA GAC TCC	196
Arg Leu Pro Leu Arg Val Lys His Phe Tyr Trp Thr Ser Asp Ser	
20 25 30 35	
TGC CCG AGG CCT GGC GTG TTG CTA ACC TTC AGG GAT AAG GAG ATC	244
Cys Pro Arg Pro Gly Val Leu Thr Phe Arg Asp Lys Glu Ile	
40 45 50	
TGT GCC GAT CCC AGA GTG CCC TGG GTG AAG ATG ATT CTC AAT AAG CTG	292
Cys Ala Asp Pro Arg Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu	
55 60 65	
AGC CAA TGAAGAGCCT ACTCTGATGA CCGTGGCCTT GGCTCCTCCA GGAAGGCTCA	348
Ser Gln	

GGAGCCCTAC	CTCCCTGCCA	TTATAGCTGC	TCCCCGCCAG	AAGCTGTGC	CAACTCTCTG	408
CATTCCCTGA	TCTCCATCCC	TGTGGCTGTC	ACCCCTGGTC	ACCTCCGTGC	TGTCACTGCC	468
ATCTCCCCC	TGACCCCTCT	AACCCATCCT	CTGCCCTCCCT	CCCTGCAGTC	AGAGGGCCT	528
GTTCCCATCA	GCGATTCCCC	TGCTTAAACC	CTTCCCATGAC	TCCCCACTGC	CCTAAGCTGA	588
GGTCAGTCTC	CCAAGCCTGG	CATGTGGCCC	TCTGGATCTG	GGTTCCATCT	CTGTCTCCAG	648
CCTGCCACT	TCCCTTCATG	ATATGTTGGGT	TCTAGCTCCC	TGTTCTCAA	ACCCATACTA	708
CACATCCCAC	TTCTGGTCT	TTGCCCTGGGA	TGTTGCTGAC	ACTCAGAAAG	TCCCACCAAC	768
TGCACATGTC	TAGCCCCACC	AGCCCTCCAA	GGCATTGCTC	GCCCAAGCAG	CTGGTAATT	828
CATTTCATGT	ATTAGATGTC	CCCTGGGCCCT	CTGCCCCCTC	TTAACAAACCC	TAGTCACAGT	888
CTCCGCAGAT	TCTTGGGATT	TGGGGGTTTT	CTCCCCCAC	TCTCCACTG	TTGGACCAAG	948
GTTTCTAGCT	AAGTTACTCT	AGTCTCCAAG	CCTCTAGCAT	AGAGCACTGC	AGACAGGCC	1008
TGGCTCAGAA	TCAGAGCCCA	GAAAGTGGCT	GCAGACAAAAA	TCAATAAAAC	TAATGTCCCT	1068
CCCCCTCTCCC	TGCCAAAAGG	CAGTTACATA	TCAAATACAGA	GACTCAAGGT	CACTAGAAAT	1128
GGGCCAGCTG	GGTCATGTC	AAGCCCCAAA	TTTGGCCAGA	TTCACCTTGA	TTCCCCCACT	1188
CCCTTTTTT	TTTTTTTTT	TTTGAGATGG	AGTTTCGCTC	TTGTCACCCA	CGCTGGAGTG	1248
CAATGGTGTG	GTCTTGGCTT	ATTGAAGCCT	CTGCCCTCTG	GGTCAAGTG	ATTCTCTTGC	1308
CTCAGCTCTC	TGAGTAGCTG	GGATTACAGG	TTCCTGCTAC	CACGCCAGC	TAATTTTGT	1368
ATTTTTAGTA	GAGACGAGGC	TTCACCATGT	TGGCGAGCT	GGTCTGGAAC	TCTGTCTCTC	1428
AGGTAATCGG	CCACACCTCG	CCTCCCAAAG	TGCTGGATT	ACAGCGTGA	GCCACAGTGC	1488
CTGGCCTCTT	CCCTCTCCCC	ACTGCCCCCC	CCAACTTTT	TTTTTTTTT	ATGGCAGGGT	1548
CTCACTCTGT	CGCCCAAGGCT	GGAGTGCAGT	GGCGTGAATCT	CGGCTCACTA	CAACCTCGAC	1608
CTCCCTGGTT	CAAGTGATTC	TCCCACCCCA	GGCTCCCAAG	TAGCTGGAT	TACAGGTGTG	1668
TGCCACTACG	GCTGGCTAAT	TTTTGTATT	TTAGTAGAGA	CAGGGTTTAC	CATATTGGCC	1728
AGGCTGGCT	TGAACCTCTG	ACCTCAAGTG	ATACCCCTTC	TTTGTGCTCC	CAAAGTGTG	1788
AGATTAACTAGG	CGTGAGCTAT	CACACCCAGC	CTCCCCCTTT	TTTTCTTAAT	AGGAGACTCC	1848
TGTACCTTC	TTCTGTTTAC	CTATGTGTCC	TGTCTGCTTA	CATTTCCTTC	TCCCCTCAGG	1908
CTTTTTTGG	GTGGCTCTCC	ACACCTCCAA	ACCCAGGCC	GGCCTCTTCA	GAGTACCCCC	1968
CATTCACCT	TCCCTGCCCTC	CTTCTCTTAA	TAGCTGACAA	TCAAAATTCAT	GCTATGGTGT	2028
GAAAGACTAC	CTTTGACTTG	GTATTATAAG	CTGGAGTTAT	ATATGTTATT	GAAAACAGAG	2088
TAATAACTTA	AGAGGCCAA	TAGATGAATG	GAAGAATT	AGGAACGTG	AGAGGGGAC	2148
AAGGTGAAGC	TTCTCTGGCC	CTGGGAGGAA	GCTGGCTGTG	GTAGCGTAGC	GCTCTCTCTC	2208
TCTGTCTGTG	GCAGGAGCCA	AAGAGTAGGG	TGAATTGAG	TGAAGGAATC	CTGGGTAGAG	2268
ACCATTCTCA	GGTGGTTGGG	CCAGGCTAA	GACTGGGAGT	TGGGTCTATC	TATGCCCTTC	2328
TGCGTGAATT	TTGTAGAGAC	GGGGTTTTGC	CATGTTACCC	AGGCTGGCT	CAAACCTCTG	2388
GGCTCAAGCG	ATCCTCTTGG	CTCAGCCTCC	CAAAGTGTG	GGATTACAGG	CGTGAATCAC	2448
TGCCCTGGC	TTCCCTCTTC	TCTTGAGAAA	TATCTTTTC	ATACAGCAAG	TATGGGACAG	2508
CAGTGTCCA	GGTAAAGGAC	ATAATGTTA	CAAGTGTCTG	GTCTTCTTG	AGGGAGGCTG	2568
GTGCCGCTCT	GCAGGGTATT	TGAACCTGTG	GAATTGGAGG	AGGCCATTTC	ACTCCCTGAA	2628
CCCAGCCIGA	CAAATCACAG	TGAGAATGTT	CACCTTATAG	GCTMCTGTG	GGGCTCAGGT	2688
TGAAAGTGTG	GGGAGTGTACA	CTGCCCTAGGC	ATCCAGCTCA	GTGTCATCCA	GGGCCTGTGT	2748
CCCTCCGAA	CCCAGGGTCA	ACCTGCCTGC	CACAGGCACT	AGAAGGACGA	ATCTGCCCTAC	2808
TGCCCATGAA	CGGGGCCCTC	AAGCGTCTG	GGATCTCTT	CTCCCTCTG	TCTGTCTCTT	2868
GCCCCCTCAGG	ACTGCTGGAA	AATAAATCC	TTAAAATAGT	AAAAAAAAA	AAAAAA	2923

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 93 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(iii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

```

Met Ala Arg Leu Gln Thr Ala Leu Val Leu Val Leu Ala
-24          -20           -15           -10
Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr Gly Ala Asn Met Glu
      -5           1           5
Asp Ser Val Cys Arg Asp Tyr Val Arg Tyr Arg Leu Pro Leu Arg
      10          15          20
Val Lys His Phe Tyr Trp Thr Ser Asp Ser Cys Pro Arg Pro Gly
      25          30          35          40
Val Leu Thr Phe Arg Asp Lys Glu Ile Cys Ala Asp Pro Arg
      45          50          55
Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu Ser Gln
      60          65

```

C-CHEMOKINES

LYMPHOTACTIN

(SCM-1)

D63789 D63790

CX3C-chemokines

Fractalkine/neurotactin

U91835 U84487

LOCUS HSU83171 **2923 bp** **mRNA**
DEFINITION Human macrophage-derived chemokine precursor (MDC) mRNA,
complete
ACCESSION U83171
NID g1931580
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Hominidae; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
Homo.
REFERENCE 1 (bases 1 to 2923)
AUTHORS Godiska,R., Chantry,D., Raport,C.J., Sozzani,S., Allavena,P.,
Levitin,D., Mantovani,A. and Gray,P.W.
TITLE Human macrophage-derived chemokine (MDC), a novel
chemoattractant for monocytes, monocyte-derived dendritic cells, and natural
killer cells
JOURNAL J. Exp. Med. 185 (9), 1595-1604 (1997)
MEDLINE 97296313
REFERENCE 2 (bases 1 to 2923)
AUTHORS Godiska,R. and Gray,P.W.
TITLE Direct Submission
JOURNAL Submitted (23-DEC-1996) ICOS Corporation, 22021 20th Avenue SE,
Bothell, WA 98021, USA
FEATURES
source Location/Qualifiers
1..2923
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="16"
gene 20..301
/gene="MDC"
sig_peptide 20..91
/gene="MDC"
CDS 20..301
/gene="MDC"
/function="chemotactic for dendritic cells and natural
killer cells"
/codon_start=1
/product="macrophage-derived chemokine precursor"
/db_xref="PID:g1931581"
/translation="MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCR DYVRYR
mat_peptide LPLRVVKHFYWTSDCPRPGVVLLTFRDKEICADPRVPWVKMILNKLSQ"
92..298
/gene="MDC"
/repeat_region /product="macrophage-derived chemokine"
complement(1194..1805)
/rpt_family="ALU"
/repeat_region complement(2335..2443)
/rpt_family="ALU"
BASE COUNT 605 a 861 c 669 g 788 t
ORIGIN
1 gagacataca ggacagagca tggctcgcc acagactgca ctccctgggtt tcctcgctt
61 ctttgcgttg gcgttcaag caactgaggc aggccccctac ggcgccaaca tggaagacag
121 cgtctgtgc cgtgattacg tccgttaccg tctgcccctg cgcgtggta aacacttca
181 ctggacctca gactctgtcc cgaggccctgg cgtgggttg ctaaccttca gggataagga
241 gatctgtgcc gatcccagag tggccctggg gaagatgtt ctcataaaagc tgagccaatg
301 aaggccctac tctgtatgacc gtggccctgg ctccctccagg aaggctcagg agccctac
361 ccctgccatt atagctgctc cccggccagaa gcctgtgcca actctctgca ttccctgtac
421 tccatccccctg tgctgtcac ctttggtcaac ctccgtgtc tcaactgcat ctccccctg
481 acccccttaa cccatcccttgccttcccttcc ctgcagttag agggctctgt tccccatcagc
541 gattccccctg cttaaacccct tccatgtacttcccaactgccc taagctgagg tcagtcctccc
601 aaggccctggca tggccctgg tggatctggg ttccatcttgc tgcctccagcc tgcccacttc
661 cttccatgaa tggccctggatc tagetcccttgc ttctccaaac ccataactaca catccccactt
721 ctgggtcttt gcctggatc ttgtgtacac tcagaaatgtt ccacccatctg cacatgtta
781 gccccccatgg ccctccaaagg cattgtcgcc ccaaggatgtt ggttaattccca tttcatgtat
841 tagatgtcccc ctggcccttgc tttccatcttgc tgcacatgtt ccgcacatgtt

901 ttgggattttg ggggtttctt ccccaccc tccactagt ggaccaaggt ttcttagctaa
 961 gttaatcttag ttc当地agcc tctagcatag agcactgcag acaggccctg gctcagaatc
 1021 agagccaga aagtggctgc agacaaaatc aataaaaacta atgtccctcc ccttccccctg
 1081 cccaaaggca gttacatatac aatacagaga cttcaaggtca cttagaaatgg gccagctggg
 1141 tcaatgtgaa gccccaaatt tgcccagatt caccttctt ccccaactcc cttttttttt
 1201 ttttttttt tgagatggag ttctgcctt gtcacccacg ctggagtgcg atggtgtgg
 1261 ctggcttat tgaaggctctt geccctctggg ttcaagtgat ttc当地ctt cagccctctg
 1321 agtagctggg attacaggtt cctgtacca cggccagacta atttttgtat ttttagtaga
 1381 gacgaggctt caccatgtt gccaggctgg ttctcgaaatc ctgtccctcg gtaatccgccc
 1441 cacccatggcc tcccaaagtg ctgggattac aggctgtgac cacagtgcct ggccttcc
 1501 ctctccccac tggcccccac aactttttt ttttttttat ggcagggtctt cactctgtcg
 1561 cccaggctgg agtgcgtgg cgtgatctcg gtc当地acta acctcgaccc cctgggttca
 1621 agtggattctt ccaccccccgc cttccaaatc gtc当地ggattt caggtgtgtg ccactacggc
 1681 tggcttaattt ttgtatattt agtagagaca ggttcccca tattggccag gctggcttgg
 1741 aactctgtac ctcaagtgat ccacccctt tttgtcttcca aagtgtcgag attacaggcg
 1801 tgagctatca caccggctt cccctttttt ttccatataat gggactccgt tacccctt
 1861 cgttttaccc atgtgtctgt ttc当地tata ttcccttcc cccctcaggct ttttttgggt
 1921 ggtctccaa cttccaaatc ccaggctgg cttccataga gtaccccca ttccactttt
 1981 cctgcctctt tccttaataa gtc当地aaatc aaatttcatgc tatgggtgtga aagactaccc
 2041 ttgacttggg attataatg ggagttatat atgtatatttga aaacagatgaa aataacttaag
 2101 agggccaaata gatgaatggaa agaatttttag gaaactgtgag agggggacaa ggtgaagctt
 2161 tccctggccctt gggagaaatc ttcttttcatc acagcaagtg tgggacacca gttttttt
 2221 aggagccaaa gagtaggggtg taatttgcgtt aaggaaatcc gggtagagac cattttcagg
 2281 tggttggcc aggtctaaaga ctgggatgg ggtctatcta tggcttctg gctgatttt
 2341 gttagagacgg ggttttgcctt tgttaccagg gtc当地gtctca aactccctggg ctcaagcgat
 2401 cctctggccctt caccctccca aagtgtctggg attacaggcg tgaatctactg cgcctggctt
 2461 cctcttccctt ttggagaaatc ttcttttcatc acagcaagtg tgggacacca gttttttt
 2521 taaaggacat aaatgttaca agtgcgtgtt ctttttgcgtt ggaggtctgg ggcgtctgc
 2581 agggatattttaaactctggaa atttggggag gccatccac tcccttgcacc cagccgtaca
 2641 aatcacatggaaatggatggaaatggatggaaatggatggaaatggatggaaatggatggaaatgg
 2701 gagtgacact gccttaggcat ccagcttcagg ttc当地tggggatggatggatggatggatgg
 2761 cagggtcaac ctgcctggcc caggcactag aaggacgaaatc ctgcctactg cccatgtaaac
 2821 gggccctcaa gctgccttggg atctccctt ccctccctgtc ctgtcccttgc ccctcaggac
 2881 tgctggaaaaaaatccctt aaaaatgtt aaaaaaaaaaaa aaa

//

LOCUS HSU83239 932 bp mRNA PRI 02-MAY-1997
DEFINITION Human CC chemokine STCP-1 mRNA, complete cds.
ACCESSION U83239
NID g2062424
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 932)
AUTHORS Chang,M.S., McNinch,J., Elias III,C., Manthey,C.L.,
Grosshans,D., Meng,T., Boone,T. and Andrew,D.P.
TITLE Molecular cloning and functional characterization of a novel CC
chemokine STCP-1 which specifically acts on activated T
lymphocytes
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 932)
AUTHORS Chang,M.S., McNinch,J., Elias III,C., Manthey,C.L.,
Grosshans,D., Meng,T., Boone,T. and Andrew,D.P.
TITLE Direct Submission
JOURNAL Submitted (26-DEC-1996) Research Computing, Amgen Institute,
620 University Ave, Suite 706, Toronto, ON M5G 2C1, Canada
FEATURES Location/Qualifiers
source 1..932
/organism="Homo sapiens"
/note="Amgen EST program"
/db_xref="taxon:9606"
CDS 15..296
/codon_start=1
/product="CC chemokine STCP-1"
/db_xref="PID:g2062425"

/translation="MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCR DYVRYR

BASE COUNT 166 a 330 c 201 g 235 t
 ORIGIN

```

  1 atacaggaca gaggatggct cgccctacaga ctgcactctt ggttgtcctc gtcccttccttg
  61 ctgtggcgct tcaagcaact gaggcaggcc cctacggcgc caacatggaa gacagcgtct
  121 gtcggcgta ttacgtccgt taccgtctgc ccctgcgcgt ggttggaaacac ttctactgga
  181 ctcagactc ctggcccgagg cctggcggt tggttgcataac cttcaggat aaggagatct
  241 gtggatccc cagagtggcc tgggtgaaga tgatttcaaa taagctgagc caatgaagaa
  301 cctacttgc tgaccgtggc tgggtgcctt ccaggaaggc tcagggcccc tacctccctg
  361 ccattatacg tgcgtccccgc cagaaggctt tgcaacttctt ctgcattttt tgatctccat
  421 ccctgtggct gtcacccttg gtcacccctcg tgctgtcaacttccatccccc ccctgaccc
  481 tctaaccat cctctgcctc cctcccttgcgca gtcagagggt cctgttccca tcagcgatcc
  541 cccctgtttaa acccttccat gactcccccac tggccctaaagc tgagggtcaatg ctcccaagcc
  601 tggcatgtgg ccctctggat tgggttccatc tctctgttccatc cagctggcc acttcccttcc
  661 atgaatgttg ggttcttagctt cccctgttccatc caaaccatata ctacacatcacttctgg
  721 tctttggctg ggatgttgcg gacactcaga aagtcccaacc acctgcacat gtgttagcccc
  781 accagccctc caaggcatttgc tccggccaaag cagctggtaa ttccatttca tgtagatttt
  841 gtcggcccttgc cctctgttccatc cctttaataaa cccttagtcac agtctccgcg aatttcttggg
  901 atttgggggt ttcttcccccc acctctccac ta
  //
```

LOCUS HSMCP1 725 bp RNA PRI 03-APR-1995
DEFINITION *H.sapiens mRNA for monocyte chemoattractant protein 1 (MCP-1).*
ACCESSION X14768
NID g34513
KEYWORDS monocyte chemoattractant protein 1.
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 725)
AUTHORS Yoshimura,T., Yuhki,N., Moore,S.K., Appella,E., Lerman,M.I. and Leonard,E.J.
TITLE Human monocyte chemoattractant protein-1 (MCP-1). Full-length
cDNA
JOURNAL cloning, expression in mitogen-stimulated blood mononuclear
leukocytes, and sequence similarity to mouse competence gene JE
MEDLINE FEBS Lett. 244 (2), 487-493 (1989)
COMMENT 89153605
ZAPII.
FEATURES
source Location/Qualifiers
1..725
/organism="Homo sapiens"
/db_xref="taxon:9606"
/cell_type="glioma cells"
/cell_line="U105MG"
/clone_lib="lambda"
sig_peptide 54..122
/note="signal peptide (AA -23 to -1)"
54..353
/codon_start=1
/product="monocyte chemoattractant preprotein"
/db_xref="PID:g34514"
/db_xref="SWISS-PROT:P13500"

translation="MKVSAALLCLLLIAATFIPQGLAQPDAINAPVTCCYNFTNRKIS
QLASYRRITSSKCPKEAVIFKTIVAKEICADPKQKWVQDSMDHLDKQTQTPKT"
mat_peptide 123..350
/note="MCP-1 (AA 1 - 76)"
misc_feature 162..170
/note="pot. N-linked glycosylation site"
misc_feature 707..712
/note="pot. polyA signal"
polyA_site 725
/note="polyA site"
BASE COUNT 208 a 171 c 126 g 220 t
ORIGIN

```

  1 ctaacccaga aacatccaat tctcaaactg aagctcgac tctcgccctcc agcatgaaaag
  61 tctctggccgc ccttctgtgc ctgctgtca tagcagccac ttccattttcc caagggtctg
  121 ctcagccaga tgcaatcaat gccccagtc cctgctgtta taacttcacc aataggaaga
  181 tctcagtgcg gaggctcgca agctatagaa gaatcacccag cagcaagtgt cccaaagaag
  
```

```

241 ctgtgatctt caagaccatt gtggccaagg agatctgtgc tgaccccaag cagaagtggg
301 ttcaggattc catggaccac ctggacaagg aaacccaaac tccgaagact tgaacactca
361 ctccacaacc caagaatctg cagctaactt atttttccc agctttcccc agacacctcg
421 ttttatttttta ttataatgaa ttttgtttgt tgatgtgaaa cattatgcct taagtaatgt
481 taatttttat ttaagttatt gatgtttaa gtttatcttt catggacta gtgtttttt
541 gatacagaga ctggggaaa ttgtttttcc tcttgaacca cagttctacc cctggatgt
601 tttgagggtc ttgcagaa tcattaatac aaagaatttt ttttaacatt ccaatgcatt
661 gctaaatat tattgtggaa atgaatattt tgtaactatt acaccaaata aatataatttt
721 tgtac

//  

LOCUS      HSMCP2      2991 bp      DNA          PRI      20-MAR-1997  

DEFINITION H.sapiens MCP-2 gene.  

ACCESSION  X99886  

NID        g1905800  

KEYWORDS   MCP-2 gene; monocyte chemotactic protein 2; SCYA10 gene.  

SOURCE     human.  

ORGANISM   Homo sapiens  

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  

REFERENCE  Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.  

1 (bases 1 to 2991)  

AUTHORS    Van Coillie,E., Fiten,P., Nomiyama,H., Sakaki,Y., Miura,R.,  

Yoshie,O., Van Damme,J. and Opdenakker,G.  

TITLE      The human MCP-2 gene (SCYA8): cloning, sequence analysis,  

tissue  

expression, and assignment to the CC chemokine gene contig on  

chromosome 17q11.2  

JOURNAL    Genomics 40 (2), 323-331 (1997)  

MEDLINE    97237052  

REFERENCE  2 (bases 1 to 2991)  

AUTHORS    Opdenakker,G.M.M.  

TITLE      Direct Submission  

JOURNAL   Submitted (07-AUG-1996) G.M.M. Opdenakker, Rega Institute for  

Medical Research, Minderbroedersstraat 10, B 3000 Leuven.  

BELGIUM  

FEATURES   Location/Qualifiers  

source      1..2991  

/organism="Homo sapiens"  

/db_xref="taxon:9606"  

/chromosome="17"  

/map="q11.2"  

repeat_region 209..219  

/note="DR-A"  

/rpt_type=DIRECT  

repeat_region 240..248  

/note="DR-B"  

/rpt_type=DIRECT  

CAAT_signal 296..300  

repeat_region 310..318  

/note="IR-A"  

/rpt_type=INVERTED  

repeat_region 406..415  

/note="DR-B"  

/rpt_type=DIRECT  

repeat_region 407..416  

/note="IR-B"  

/rpt_type=INVERTED  

repeat_region 425..435  

/note="DR-A"  

/rpt_type=DIRECT  

repeat_region 429..437  

/note="IR-B"  

/rpt_type=INVERTED  

repeat_region 455..465  

/note="IR-C"  

/rpt_type=INVERTED  

TATA_signal 467..472  

repeat_region 492..502  

/note="IR-C"  

/rpt_type=INVERTED  

repeat_region 492..500  

/note="IR-A"

```


2401 tataataacta tggaattttg aaaaaaaatt tcaaaaagaa aaaaatataat ataatttaac
 2461 actacttagt ctatttc ttggggtaac attagctgg gagttagttt tgggcattcat
 2521 gggtagactt ttgggcattt acggccatt tttcaagaat gtcttctggc tacgctggac
 2581 tcaaccaagg ttctcagaga acttggtggg accagggccatg gatgttccat
 2641 ctatcccta acttcagcag ccctgattcg ctatcccttc ttgtttctt tggttatata
 2701 ttatccagcc taaggattt tgtagtact gccccaaaag actaagataa tctccatcac
 2761 tctaccccca accccaatcc caagaacttg caagcattca tttaaaggcg tggaaacctt
 2821 tcttttgac agcctttaa ggtcaagatt cccctgtact tagttagttt agctgaatct
 2881 tcttacaaac atgtgaccgg ccatttttag ccatacatac cgagcttattt attttccat
 2941 cttatggga aaacacgtct aaggcaaca aatttattgt actgttgaac c
 //LOCUS HSY16645 1368 bp mRNA PRI 25-SEP-1998
 DEFINITION Homo sapiens mRNA for monocyte chemotactic protein-2.
 ACCESSION Y16645
 NID g2916795
 KEYWORDS MCP-2 gene; monocyte chemotactic protein 2.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1368)
 AUTHORS Van Coillie,E.
 TITLE Functional comparison of two human monocyte chemotactic
 protein-2
 isoforms, role of the amino-terminal pyroglutamic acid and
 processing by CD26/dipeptidyl peptidase IV
 JOURNAL Biochemistry 37, 12672-12680 (1998)
 REFERENCE 2 (bases 1 to 1368)
 AUTHORS Van Coillie,E.
 TITLE Direct Submission
 JOURNAL Submitted (23-FEB-1998) E. Van Coillie, Rega Institute for
 Medical Research, Minderbroedersstraat 10, 3000 Leuven, BELGIUM
 COMMENT Related sequences: X99886, Y10802.
 FEATURES Location/Qualifiers
 source 1..1368
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="17"
 /tissue_type="testis"
 /clone_lib="Clontech"
 /clone="HL1142q"
 /map="ql1.2"
 gene 473..772
 /gene="MCP-2"
 sig_peptide 473..541
 /gene="MCP-2"
 CDS 473..772
 /gene="MCP-2"
 /codon_start=1
 /product="monocyte chemotactic protein-2"
 /db_xref="PID:e1253690"
 /db_xref="PID:g2916796"
 /translation="MKVSAALLCLLMAATFSPQGLAQPDVSIPITCCFNVINRKIP
 IQRLESYTRITNIQCPKEAVIFKTKRGKEVCADPKERWVRDSMKHLDQIFQNLKP"
 mat_peptide 542..769
 /gene="MCP-2"
 variation 677
 /gene="MCP-2"
 /note="polymorphism, Lys -> Gln"
 /replace="c"
 BASE COUNT 457 a 292 c 243 g 376 t
 ORIGIN
 1 atccattgtg ctctaaagtg atggagagca ccagcaaagc ctttagggccc atccctggcc
 61 tccctgttacc cacaggggg tagggcccttg gctctttcc actatgacgt cagcttccat
 121 tcttccttc ttatagacaa ttttccattt caagggaaatc agagccctta atagttcagt
 181 gaggtcaatt tgctgagcac aatcccatac ctttcagccct ctgtccaca gagcctaagc
 241 aaaagataga aactcacaac ttctttgttt tgtagtactt aaattatccc aggatctgg
 301 gcttactcag catatcaag gaaggcttta cttcatttt ctttgcattt gaccatgcc
 361 aggctcttg ctccctataa aaggcaggca gagccaccga ggagcagaga gtttggaaac

421 aacccagaaa cttcaccc tcatgtcaa gtcacaccc ttgcctcca agatgaaggt
 481 ttctgcagcg cttctgtgcc tgetgtcat ggcagccact ttca gccctc agggacttgc
 541 tcagccagat tcagttcca ttccaaatcac ctgtgtttt aacgtgatea ataggaaaat
 601 tccttatccag aggctgaga gctacacaag aatccaaac atccaatgtc ccaaggaaagc
 661 tgtatcttc aagaccaaac ggggcaagga ggtgtgtct gaccccaagg agagatgggt
 721 caggattcc atgaagcatc tggaccataat attcaaaaat ctgaagccat gagccttcat
 781 acatggactg agatgtcagag cttgaagaaa agcttattta ttttccccaa cttccccag
 841 gtgcagtgtc acattatattt attataacat ccacaagag attatttta aataattaa
 901 agcataataat ttcttaaaaaa gtatTTAATT atatTTAAGT tgTTgtgtt ttaacttat
 961 ctgtcataca tcctagtga tgtaaaatgc aaaatctgg tgatgtgtt tttgttttg
 1021 ttccctgtg agtcacta agttcacccgcaaaaatgtcat tgTTctccct cctacctgtc
 1081 ttagtgttg tggggcttc ccatggatca tcaaggtaa acactttgggt attcttggc
 1141 aatcagtgtc ctgttaagtc aatgtgtgc ttgtactgc tgTTgtgtgaa attgtatgt
 1201 ctgtatataa ctatggaaatt ttggaaaaaaa attcaaaaaa gaaaaaaaata tatataattt
 1261 aaaaactaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 1321 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 //LOCUS HSMCP3A 1085 bp DNA PRI 25-JUL-1994
 DEFINITION H.sapiens MCP-3 mRNA for monocyte chemotactic protein-3.
 ACCESSION X72308 S57464
 NID g313707
 KEYWORDS monocyte chemotactic protein 3.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 1085)
 REFERENCE Opdenakker,G., Froyen,G., Fiten,P., Proost,P. and Van Damme,J.
 AUTHORS TITLE Human monocyte chemotactic protein-3 (MCP-3): molecular cloning
 of
 JOURNAL the cDNA and comparison with other chemokines
 Biochem. Biophys. Res. Commun. 191 (2), 535-542 (1993)
 MEDLINE 93213290
 REFERENCE 2 (bases 1 to 1085)
 AUTHORS Opdenakker,G.M.
 TITLE Direct Submission
 JOURNAL Submitted (27-MAY-1993) G.M. Opdenakker, Rega Institute,
 University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, BELGIUM
 3 (bases 1 to 1085)
 REFERENCE Opdenakker,G., Fiten,P., Nys,G., Froyen,G., Van Roy,N.,
 AUTHORS Speleman,F., Laureys,G. and Van Damme,J.
 TITLE The human MCP-3 gene (SCYA7): cloning, sequence analysis, and
 assignment to the C-C chemokine gene cluster on chromosome
 17q11.2-q12
 JOURNAL Genomics 21 (2), 403-408 (1994)
 MEDLINE 94375065
 FEATURES Location/Qualifiers
 source 1..1085
 /organism="Homo sapiens"
 gene /db_xref="taxon:9606"
 299..810
 /gene="MCP-3"
 CDS 299..628
 /gene="MCP-3"
 /codon_start=1
 /product="monocyte chemotactic protein-3"
 /db_xref="PID:g313708"
 /db_xref="SWISS-PROT:P80098."
 /translation="MWKPMPSNPKASAALLCLLLTAAAFSPQGLAQPVGINTSTTC
 CYRFINKKIPKQRLESYRRTTSSHCPCREAVIFKTLDKEICADPTQKWVQDFMKHL
 DKG
 sig_peptide 299..397
 /gene="MCP-3"
 mat_peptide 398..625
 /gene="MCP-3"
 polyA_signal 806..810
 /gene="MCP-3"
 BASE COUNT 314 a 214 c 229 g 328 t

'ORIGIN

```

1 ggtttctatt gacttgggtt aatcgtgtga ccgcgggtggc tggcacgaaa ttgaccaacc
61 ctggggtag tatacgtag taaaacttc gtttattgtc aaaggtaat cactgcttt
121 tcccggtggg gtgtggctag gctaagcggt ttgagctgca ttgctgcgtg cttgatgctt
181 gtccttttg atcgtgggtaa tttagaggt gaacttactg gaatggggat gcttgcgtt
241 gtaatcttac taagagctaa tagaaaggct aggaccaaacc cagaacacctc caattctcat
301 gtggaaagccc atgccttac cctccaacat gaaaggcttgc gcaacttgc tttgtctgt
361 gctcacagca gctgtttca gccccaggg gcttgcgtc ccagtggga ttaatacttc
421 aactacactgc tgctacagat ttatcaataa gaaaatccct aagcagaggc tggagagcta
481 cagaaggacc accagtagcc actgtccccg ggaagctgtat atcttcaaga ccaaactgaa
541 caaggagatc tggtgttgc ccacacagaa gtgggtccag gactttatgt agcacactgaa
601 caagaaaaacc caaactccaa agcttgaac attcatgact gaactgaaaaa caagccatgaa
661 cttgagaaac aaataatttgc tataccctgt cctttccatc agtgggtctg agattattt
721 aatctaatttca taaggaatat gagctttatg taataatgt aatcatgtt ttttttagta
781 gatttttaaaa gtatttaata tttaattttt atcttccatg gattttgggt gtttttgaac
841 ataaaggccctt ggatgttatgt gtcatttcgt tgctgtaaaaa actgtgggat gtcctccct
901 tctcttacccat atgggggtat ttgtataatgt cttgtcaagaa tcagtgcacaa gatttgcctt
961 aattgttaag atatgtatgtc cctatggaaag catattgtt ttatataattt acatatttgc
1021 atatgtatgtca cttccaaattt ttccatataaa atagattttt gtataacaaa aaaaaaaaaaa
1081 aaaaaa
//
```

LOCUS HSMCP3A 1085 bp DNA **PRI** 25-JUL-1994
DEFINITION H.sapiens MCP-3 mRNA for monocyte chemotactic protein-3.
ACCESSION X72308 S57464
NID g313707
KEYWORDS monocyte chemotactic protein 3.
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
AUTHORS Opdenakker,G., Froyen,G., Fiten,P., Proost,P. and Van Damme,J.
TITLE Human monocyte chemotactic protein-3 (MCP-3): molecular cloning
of
JOURNAL the cDNA and comparison with other chemokines
MEDLINE Biochem. Biophys. Res. Commun. 191 (2), 535-542 (1993)
93213290
REFERENCE
AUTHORS Opdenakker,G.M.
TITLE Direct Submission
JOURNAL Submitted (27-MAY-1993) G.M. Opdenakker, Rega Institute,
University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, BELGIUM
REFERENCE
AUTHORS Opdenakker,G., Fiten,P., Nys,G., Froyen,G., Van Roy,N.,
Speleman,F., Laureys,G. and Van Damme,J.
TITLE The human MCP-3 gene (SCYA7): cloning, sequence analysis, and
assignment to the C-C chemokine gene cluster on chromosome
17q11.2-q12
JOURNAL Genomics 21 (2), 403-408 (1994)
MEDLINE 94375065
FEATURES
source Location/Qualifiers
1..1085
/organism="Homo sapiens"
/db_xref="taxon:9606"
gene 299..810
/gene="MCP-3"
299..628
/gene="MCP-3"
/codon_start=1
/product="monocyte chemotactic protein-3"
/db_xref="PID:g313708"
/db_xref="SWISS-PROT:P80098"

/translation="MWKPMPSPSNMKASAALLCLLLTAAAFSPQGLAQPVGINTSTTC
CYRFINKKIPKQRLESYRRTTSSHCPRRAVIFKTKLDKEICADPTQKWVQDFMKHL
DK KTQTPKL"
sig_peptide 299..397
/gene="MCP-3"
mat_peptide 398..625

```

/gene="MCP-3"
/product="monocyte chemotactic protein-3"
polyA_signal 806..810
/gene="MCP-3"
BASE COUNT      314 a    214 c    229 g    328 t
ORIGIN
1 ggtttctatt gacttgggtt aatcggtgta ccgcgggtggc tggcacgaaa ttgaccaacc
61 ctggggtag tatagcttag ttaaacttc gtttattgtc aaaggtaat cactgctgtt
121 tcccggtggg gtgtggctag gctaagcgtt ttgagctgca ttgctgcgtg cttgatgtt
181 gtccttttgc atcggtgta tttagagggt gaactcaactg gaatggggat gttgcgtt
241 gtaatcttac taagagctaa tagaaaggct aggaccaaacc cagaaacctc caattctcat
301 gtggaaagccc atgccttac cctccaaacat gaaaggctct gcagcacttc tggctgtt
361 gtcacagca gtcgtttca gccccccaggc gttgtctcag ccagggtggg ttaataacttc
421 aactaacatgc tgctacagat ttatcaataa gaaaatccct aagcagaggc tggagagcta
481 cagaaggacc accagtagcc actgtcccg ggaagctgtt atcttcaaga ccaaactggaa
541 caaggagatc tggctgttccac ccacacagaa gtgggtccag gactttatgtt agcacctggaa
601 caagaaaaacc caactccaa agctttgaaatccatgtt attcatgact gaactgaaaaa caagccatgtt
661 cttgagaaac aaataatttg tatacccttgc ctttttcag agtgggttctg agattatttt
721 aatctaatttca taaggaatat gagctttatg taataatgtt aatcatgtt ttttttagta
781 gattttaaaaa gtttataataa tttttaatttta atcttccatgtt gattttgtt gttttgtt
841 ataaaggctt ggttgttatgtt gtcatcttgc tgctgttccatgtt gttttgtt
901 tctcttccatgtt gtttgttatgtt gtcatcttgc tgctgttccatgtt gttttgtt
961 aattgtttaag atatgtatgtt cttatggaaat catatgtt ttatataattt acatattttgtt
1021 atatgtatgtt cttccaaattt ttcacataaa atagatttt gtaataacaaa aaaaaaaaaaaa
1081 aaaaaa

//LOCUS          HSU46767      825 bp     mRNA      PRI      16-DEC-1996
DEFINITION      Human monocyte chemoattractant protein-4 precursor (MCP-4)
mRNA,
                           complete cds.
ACCESSION       U46767
NID             g1732122
KEYWORDS
SOURCE          human.
ORGANISM        Homo sapiens
                 Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
                 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE        1 (bases 1 to 825)
AUTHORS         Garcia-Zepeda,E.A., Combadiere,C.C., Rothenberg,M.E.,
Sarafi,M.N.,
TITLE           Lavigne,F., Hamid,Q., Murphy,P. and Luster,A.D.
Human monocyte chemoattractant Protein (MCP)-4: A novel CC
chemokine with activities on monocytes, eosinophils, and
basophils
induced in allergic and non-allergic inflammation that signals
through the CC chemokine receptors CCR-2 and 3
J. Immunol. 158 (1996) In press
REFERENCE        2 (bases 1 to 825)
AUTHORS         Garcia-Zepeda,E.A. and Luster,A.D.
TITLE           Direct Submission
JOURNAL          Submitted (22-JAN-1996) Eduardo A. Garcia-Zepeda. Infectious
Disease Unit, Massachusetts General Hospital, 149 13th St.,
Charlestown, MA 02129, USA
FEATURES
source          Location/Qualifiers
                1..825
                /organism="Homo sapiens"
                /db_xref="taxon:9606"
                /tissue_type="heart"
                /clone_lib="EG3.16"
sig_peptide      34..102
                /gene="MCP-4"
CDS              34..330
                /gene="MCP-4"
                /note="small cytokine; intercrine/chemokine; C-C
subfamily        signature; chemoattractant for monocytes, eosinophils"
precursor        /codon_start=1
                /product="monocyte chemoattractant protein-4"
                /db_xref="PID:g1732123"
/translation="MKVSAVLLCLLMTAAFNPQGLAQPDALNVPSTCCFTFSSKKIS"

```

LQRLKSYVITTSRPCPKAVIFRTKLGEKICADPKEKWVQNYMKHLGRKAHTLKT*
 gene 34..330
 /gene="MCP-4"
 mat_peptide 103..327
 /gene="MCP-4"
 BASE COUNT 221 a 175 c 185 g 244 t
 ORIGIN
 1 acatgtgaa atctccaact cttaacccctt aacatggaaag tctctgcagt gcttctgtgc
 61 ctgctgctca tgacagcgcg tttcaacccc caggacttgc tcagccaga tgcactcaac
 121 gtcccatcta cttgctgtttt cacatggtag agtaagaaga ttccttgcg gaggtgaag
 181 agctatgtga tcaccaccag cagggttccc cagaaggctg tcatcttcg aaccacttg
 241 ggcaggaaag ttcttgcgtttt cccaaaggag aagtgggtcc agaattataat gaaacacctg
 301 ggccggaaag ctcacaccctt gaagacttgc actctgtttc ccctactgaa atcaagctgg
 361 agtacgtgaa atgacttttcc tattttccctt tggcccttcc ttctatgtttt tggaatactt
 421 ctaccataat ttccaaatag gatgcattcg gttttgtat taaaatgtt tttttttttt tttttttttt
 481 agtaatattt gctattttt gacttgttgc tgggttggag tttttttttt tttttttttt
 541 ctttttttttt gcaaggccctt gaggcaatgtt gttgtgtttt ctaagcccccc ttcccttccca
 601 ctatgatgttgc tttttttttt gttgttccctt gttcccttccggg gttttttttt tttttttttt
 661 agtcatggac atgaagggtt gttttttttt gttttttttt gttttttttt tttttttttt
 721 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 781 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 //LOCUS HSAMAC1 803 bp RNA PRI 10-AUG-1997
 DEFINITION Homo sapiens mRNA for alternative activated macrophage specific
 CC chemokine 1.
 ACCESSION Y13710
 NID g2326515
 KEYWORDS AMAC-1 gene; CC-chemokine 1.
 SOURCE human. ORGANISM Homo sapiens
 Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae;
 REFERENCE 1 (bases 1 to 803)
 AUTHORS Politz,O.
 TITLE Direct Submission
 JOURNAL Submitted (10-JUN-1997) Politz O., Dermatology, Free University
 Benjamin Franklin Medical Center, Hindenburgdamm 30; 12200
 Berlin GERMANY
 REFERENCE 2 (bases 1 to 803)
 AUTHORS Kodelja,V., Mueller,C., Politz,O., Hakiy,N., Orfanos,C.E. and
 Goerdt,S.
 TITLE Cloning of alternative activated macrophage associated CC
 chemokine
 JOURNAL Unpublished
 FEATURES Location/Qualifiers
 source 1..803
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /cell_type="macrophage"
 sig_peptide 71..133
 /gene="amac-1"
 CDS 71..340
 /gene="amac-1"
 /note="macrophage specific"
 /codon_start=1
 /product="CC-chemokine 1"
 /db_xref="PID:e321838"
 /db_xref="PID:g2326516"
 /translation="MKGLAAALLVLVCTMALCSAQVGTNKELCCLVYT SWQIPQKFI
 VDYSSETSPQCPKPGVILLTKRGRQICADPNKKWVQKYISDLKLNA"
 gene 71..340
 /gene="amac-1"
 mat_peptide 134..337
 /gene="amac-1"
 BASE COUNT 214 a 213 c 160 g 216 t
 ORIGIN

```

1 cccgcacgag aggagttgtc agtttccaag ccccagctca ctctgaccac ttctctgcct
61 gcccagcatc atgaaggccc ttgcagctgc ctccttgc tcgtctgca ccattggccct
121 ctgctcctgt gcacaagttg gtaccaacaa agagctctgc tgcctcgat atacctctg
181 gcagattcca caaaagtca tagtgcata ttctgaaacc agccccccagt gcccccaagcc
241 aggtgtcatc ctccctaaccgc acatcgacgt gatgcctgaa gggccctgga atagaagtg
301 ggtccagaaa tacatcagcg acatcgacgt gatgcctgaa gggccctgga atgtgcgagg
361 gcccagtggaa ctgggtgggc ccaggaggaa acaggagcc gaggccaggaa aatggccctg
421 ccacccctggaa gcccacccatc tctaagagtc ccattctgcata tgccagccca cattactaa
481 cttaatctt agtttatgcata ttatatttca ttttggaaatt gatcttattt gttgagctgc
541 attatggaaat tagtattttc tctgacatc catgacattt tctttatcat cttttccctt
601 ttcccttcaa ctcttcgtac attcaatgca tggatcaatc agtgtgatta gtttctcag
661 cagacattgt gccatatgtt tcaaattgaca aatcttattt gaatggttt gtcagcacc
721 accttttaat atattggcag tacttattat ataaaggta aaccaggatt ctcaactgtga
781 aaaaaaaaaaaaaaaa aaa

//
```

LOCUS HUMLD78A 3176 bp DNA **PRI** 17-JAN-1992

DEFINITION Human LD78 alpha gene.

ACCESSION D90144

NID g219905

KEYWORDS LD78; LD78 alpha; cytokine; inducible gene family; secreted peptide.

SOURCE Human blood lymphocyte DNA, clone Lm LD-3.

ORGANISM Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 3176)

AUTHORS Nakao,M., Nomiyama,H. and Shimada,K.

TITLE Structures of human genes coding for cytokine LD78 and their expression

JOURNAL Mol. Cell. Biol. 10 (7), 3646-3658 (1990)

MEDLINE 90287155

COMMENT These data kindly submitted in computer readable form by: Misayuki Nomiyama
Department of Biochemistry
Kumamoto University Medical School
2-2-1 Honjo, Kumamoto 860 Japan
Phone: 096-344-2111
Fax: 096-372-6140.

FEATURES

source	Location/Qualifiers
	1..3176
	/organism="Homo sapiens"
	/db_xref="taxon:9606"
TATA_signal	1041..1045
exon	1069..1227
	/number=1
prim_transcript	1069..2957
	/note="LD78 alpha mRNA and introns"
sig_peptide	1155..1220
	/note="LD78 alpha signal peptide"
CDS	join(1155..1227,1916..2030,2451..2541)
	/codon_start=1
	/product="LD78 alpha precursor"
	/db_xref="PID:d1014875"
	/db_xref="PID:g219906"

translation="MQVSTAALAVLLCTMALCNQFSASLAADTPTACCFSYTSRQIPQNFIA

mat_peptide **join(1218..1227,1916..2030,2451..2538)**

introns **/partial**

exon **1228..1915**

introns **/partial**

exon **1916..2030**

introns **/partial**

exon **2031..2450**

introns **/partial**

exon **2451..2957**

introns **/partial**

exon **2958..3176**

BASE COUNT 833 a 741 c 752 g 850 t
 ORIGIN

```

  1 acccagggac ctatcacaca aatataagaa ctattcatc tttaaggcat gtatccaa
  61 gccttgtat tttttccat gcttagggtt gcaaggaat atatatata ttgtacaaat
  121 atatatgtat atatgtacaa atacatgtat atatagtaca aatatataaa tatatttgta
  181 caattttca gacttttag aatttgtata atgtcgatc ttgtttttt taaccactga
  241 tggataaagc atatattatgc cacttcattc attttagaga ctaataata aatgatctag
  301 tggataaattt atcatcccc gatggagaaa aatttagctt tgtttatttt agagttataa
  361 acgatgtcg gtcaggtatc tttatgttg aagatggctc catatgggg ttgtttccac
  421 agaactttt cctagaaatg cttttctag gtaatggct acagatattt ctggcacct
  481 gacatattga caccacaccc taaagattt ttagatcca caactagctg taaacacage
  541 gcccattca ctatcatgact aataaaataga caaatgactg aaacatgacc tcattgtttc
  601 tattcttca gtttcattc agtttttgcc ctctgggagg aggaagggtt gtgcageccct
  661 ccacagcata agccatcaa ccctatccctt gtgggtatag cagctgagga agcagaattt
  721 cagcttctgtt ggaaggaaatg gggctggaga gttcatgcac agaccgttc ttatgagaag
  781 ggactgacta agaatacgct tgggttgcata tatacccttc ttacactca caggagaaac
  841 cattttcccta tggaaactata acaagtcatg agttgagagc tgagagttt agaatacgct
  901 aaagatgtca ttcttggata tccttgcaccc ctgtggtcac caggaccctt gagggttgc
  961 acttagatcg acagcatcata tacgtttaaa cttttccctt ctacccccc gattccattt
  1021 cccatccgc cagggtgcgc tataaaaggaggg agagctgtt tcagacttca gaaggacacg
  1081 ggcagcagac agtggtcagt cttttcttgc ctctgtgc acctgagccc acattccgtc
  1141 acctgtcg aatcatgcag gtctccactg ctggcccttc tgcaccatgg
  1201 ctctctgcata ccagttcttgcatcactg agtctgtt tcgttgtggg tattaccact
  1261 ctctggccat ggttagacca catcaatctt ttcttgcaccc taaaaagggcc ccaagagaaa
  1321 agagaacttc taaaagggtt gccaaacatc ttggctttc tcttaaagac tttttttttt
  1381 atctcttagaa ggggttcttag cccccttagt tccaggatgt agaatcttagg caggggcagg
  1441 ggagttagac tcccttttac agatggaaaac acagggttcg aaacgaaatca gttagcaaga
  1501 ggcagaatcc agggtgtctt acttcccttgc ggggtatgtt gttcaacttc cagctcactc
  1561 taggtctccc aggagctctg tcccttgc gttcttgcag agatgtccaa ggcttcttctt
  1621 ggggtgggtt atgacttctt gaaaccagaca aaattccctt aagagaactg agataagaga
  1681 acagtccgtt cagttatcgatc gatcacacag agaaaacagag aacccactat gaagagtcaa
  1741 ggagaaagaa ggatacagac agaaaacaaag agatcttgc tggccaaat gcccuaatgc
  1801 cttccaggta cttgtctga gcaagcctgc ctggcttcaac tgctggggg tcaagactg
  1861 cttggccctt tctctgttgc tttttttttt tttttttttt tttttttttt tttttttttt
  1921 gctgacacgc cgaccgcctg ctgccttcagc tacacccccc ggcagattcc acagaattt
  1981 atagctgact actttgagac gaggccgc gtccttcaagc cccgggtgtcat gtaagtgc
  2041 gtcttcttgc tcaccccttat ggggttgcaccc aggggttgc gggggcaga gacaggccag
  2101 aaggctatcc tggaaaggcc cagcccttcag gggcttgcaccc gggatcagg acggccggct
  2161 cccgggtgtg acctgttgc tttttttttt tttttttttt tttttttttt tttttttttt
  2221 gcccagccc agagggaaagg gacaggaagg aggaggccgc gggccacactt gggggccacc
  2281 cctactgttgc cacttgcaccc agtcttgcaccc agcagatgtt gggggccatgg tggcccccagg
  2341 gagcaagccc tggatgttgc acggccggcc agggatcagg gggatcagg acggccggct
  2401 attcccttgc tggatgttgc agtgcattttt tttttttttt tttttttttt tttttttttt
  2461 aagcgaagcc ggcagggtgtg tttttttttt tttttttttt tttttttttt tttttttttt
  2521 gacccgttgc tggatgttgc tttttttttt tttttttttt tttttttttt tttttttttt
  2581 ccagggtttttt gggccggcc tttttttttt tttttttttt tttttttttt tttttttttt
  2641 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  2701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  2761 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  2821 aaccgggtttt ctgtcatcgt tttttttttt tttttttttt tttttttttt tttttttttt
  2881 aatgtgtat cggatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
  2941 ctctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  3001 ctgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  3061 agatgggggg ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
  3121 tggaaactacg aatatgttat aactcaaaatc ataacatgc tgctcttagga gaattt
  //
```

LOCUS AF043339 225 bp mRNA PRI 23-FEB-1998
 DEFINITION Homo sapiens macrophage inflammatory protein 1 alpha (MIP1_α)
 mRNA,
 partial cds.

ACCESSION AF043339
 NID g2905627
 KEYWORDS
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 225)
 AUTHORS Jang,J.S. and Kim,B.E.
 TITLE Direct Submission
 JOURNAL Submitted (15-JAN-1998) Protein Engineering, General Institute

of

Technology, Hyundai Pharm. Ind. Co., Ltd., 213 Sosa Bon 1-dong,
Sosa-gu, Bucheon 422-231, Korea

COMMENT forward primer (5'-tgcgcatacttgctgtgaca-3')
reverse primer (5'-cttctggaccctcaggact-3').

FEATURES

source	Location/Qualifiers 1..225 /organism="Homo sapiens" /db_xref="taxon:9606" /cell_type="PHA-treated peripheral blood leukocyte"
gene	<1..225 /gene="MIP1a" <1..19 /gene="MIP1a" /PCR_conditions="94C-1min, 50C-1min, 72C-3min, 30
primer_bind	
cycles;	
CDS	DeltaCycler II from Ericomp. <1..213 /gene="MIP1a" /function="CC chemokine" /function="proinflammatory cytokine involved in inflammation" /note="8-10 kDa" /codon_start=1 /product="macrophage inflammatory protein 1 alpha" /db_xref="PID:g2905628"

/translation="ASLAADTPTACCFSYTSRQIPQNFIADYFETSSQCSKPGVIFLT
KRSRQVCADPSEEWVQKYVSDLELSA"

primer_bind complement(205..225)
/gene="MIP1a"

BASE COUNT 50 a 68 c 62 g 45 t

ORIGIN

```

1 gcatcaactt ctgtgtacac gccgacccgc tgctgtttca gtcacaccc tcggcagatt
61 ccacagaatt tcatagctga ctacttttag acgagcagcc agtgctccaa gccccgtgtc
121 atcttcttaa ccaagcgaag cccgcaggcc tggctgtacc ccagtggagga gtgggtccag
181 aaatatgtca ggcacccgttca gctgtgttcc tgaggggttcc agaag
//
```

LOCUS HUMLD78B 3112 bp DNA PRI 17-JAN-1992

DEFINITION Human LD78 beta gene.

ACCESSION D90145

NID g219907

KEYWORDS LD78; LD78 beta; cytokine; inducible gene family; secreted peptide.

SOURCE Human placenta DNA, clone LM LD-1.

ORGANISM Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo.

REFERENCE 1 (bases 1 to 3112)

AUTHORS Nakao, M., Nomiyama, H. and Shimada, K.

TITLE Structures of human genes coding for cytokine LD78 and their expression

JOURNAL Mol. Cell. Biol. 10 (7), 3646-3658 (1990)

MEDLINE 90287155

COMMENT These data kindly submitted in computer readable form by:
Hisayuki Nomiyama

Department of Biochemistry
Kumamoto University Medical School
2-2-1 Honjo, Kumamoto 860
Japan
Phone: 096-344-2111
Fax: 096-372-6140.

FEATURES

source	Location/Qualifiers 1..3112 /organism="Homo sapiens" /db_xref="taxon:9606"
repeat_unit	498..797 /note="Alu repeat"

```

TATA_signal    1078..1082
prim_transcript 1106..2995
               /note="LD78 beta mRNA and introns"
exon          1106..1267
               /note="LD78 beta precursor, coding region of exon 1"
               /number=1
CDS           join(1192..1267,1953..2067,2488..2578)
               /partial
               /codon_start=1
               /product="LD78 beta precursor"
               /db_xref="PID:d1014876"
               /db_xref="PID:g219908"


sig_peptide   1192..1260
               /partial
               /note="LD78 beta signal peptide"
mat_peptide   join(1258..1267,1953..2067,2488..2575)
               /partial
               /note="LD78 beta mature peptide"
intron        1268..1952
exon          1953..2067
               /number=2
intron        2068..2487
exon          2488..2955
               /number=3

BASE COUNT      756 a     775 c     780 g     801 t
ORIGIN

1 ttagagactt aataataaaag gatcttgtgg ataatttac attccctgat agagaaaaat
61 ttagcttgc ttatttaga gttataaaatg atgctgggtc aggtatctt atgtttgaag
121 atggctccat attgggttg tttccacaga actcttccc agaaatgctt tttcttaggtt
181 aatggctaca catatttcta ggcacacctgac atactgacac ccacctctaa agtattttta
241 ttagccacaa cttagcttta acacaggccg ccagtcaact cgagactaat aaatagacaa
301 atgactgaaa cgtgacacta tgctttctat tcctccagct ttcatgtgagt tcctttcc
361 tgggaggact ggggttgtc tagccctcca cagcatcagc ccattgaccc tateccttgc
421 gttatagcg ctgaggaaagc agaattacag ctctgtgggaa aggaatgggg ctggagagg
481 catgcatacg ccaattttt tttttttagat ggatgttcac ttttgggttgc
541 caggctggag tgaatggca tgatctcagc tcaccacage ccccacctcc tgggttcaag
601 cgatttctt gccttcagcc tcccggatgt ctgggattac aggcattgtgc caccacgc
661 gactactttt gtattttag tagagatgaa gttttctttt ctgggtcagg ttggtctcaa
721 actcctgacc tcaggatc cgcggctcg gcctcccaaa gtgttgggat tacagggtgt
781 agcggccatg cttggctgca tagaccagg cttagagaa ggatcaact aagaatagcc
841 ttgggttgc acacacccct cttcacactc acaggagaaa ccccatgaag cttagaaccag
901 tcatgagttt agactgaga gtttagagat agtcagaga tgctattttt ggatattctt
961 agccctgtg gtacccagg gtcacccatgtt acccctggat gtgcacact cagcatgaca gcatcaact
1021 actttaaaaat ttcccttc ccccccggatgtt tccatttccc catccggccag ggctgcctat
1081 aaagaggaga gatggcttca gacatcagaa ggacgcaggc agcaaagagt agtcagttcc
1141 ttcttggtct tgcgtacact cggccccaca ttccatcacc tgcgtccaaat catgcaggct
1201 tccatctgtt cccctggctt cccctctgc accatggctc tgcaccaacca ggatctctt
1261 gcacccacgtg agtcatgtt gtttgttgg gtatccacac tctctggcca tgggttagacc
1321 acatcagtct ttttttgcgg cctggatggc cccggagagaa aagaaggaaag ttcttaaaggc
1381 gctgccaaac accttggctt ttttttccac aacttttatt ttatcttca gaagggtct
1441 tagccctctt agttccaggat tgcgtacact taggcagggg caggggagtt acagttccctt
1501 gtacagatag aaaacagggg ttcaaaaacga atcgtttgc aaggaggcaga atccagggtc
1561 gcttacttcc cagttgggtc tgggttccac tctccatgtc acccttaggtc tcccaggagc
1621 cctgtccctt ggatgtctt tgagagatgt ccagggttcc tcttgggtctt gggatgtact
1681 tcttgaaccg aaaaattcc atgaagagag ctaagagaac agtccattca ggtatcttgg
1741 tcacatagag aaacagagaaa cccactataga agtgcacgg gaaaagggaa atatagacag
1801 aaacaaagag acattttctt cccaaatggct tgcgtcaact tgggtctgac
1861 aaggctggcc tcctcaacca ctcagggttc agaagctgcc tggccttttcc ttctgagctg
1921 tgactcgggc ttatcttc ctttctccgc agttgtgtc gacacggccgaa cccctctgtct
1981 cttcaactac acctcccgac agatccaca gaattttcata gctgactact ttgagacgag
2041 cagccagtgc tccaaggccca gttgtatgc agtgcacggc ttctgtctca cctcttaggg
2101 ggttagggatgtcagggtgg gggcggaaaac aggccggaaag gccatcttgg aaaggccccag
2161 ccttcaggag cctatcggtt atacaggacg cagggcactg aggtgtgacc tgacttgggg
2221 ctggagttagt gttgggtgtt cagagtccagg aagggtgtcc ccaggccaga gaaaagggaa
2281 aggaagaagg aggccaggc acatctgtc gggcccttgc cctggatgtca ctgagagaaag
2341 ctctcttagac ggagatggc agggggccccc tgagagagga gcaaggcccttgc agtgccccaag
2401 gacagagacg aggtatgtcag gccatgggtt gcccaggatt ccccggttgg atttccccag
2461 gcttaactct tccctcccttc ctcacagctt cctaaccac agaggccggc aggtctgtgc

```

```

2521 tgaccccagt gaggagtggg tccagaaaata cgtcagtgc ctggagctga gtgcctgagg
2581 ggtccagaag cttcgaggcc cagcgcacctc agtggggccca gtggggagga gcaggagcc
2641 gagccttggg aacatgcgtg tgaccttac agctacccct tctatggact ggttattggc
2701 aaacagccac actgtgggac tcttcttaac ttaaatttttta atttattttat actatttagt
2761 ttttataatt tatttttgat ttcacagtgt gtttggatt gtttgcctgt agagttcccc
2821 ctgtcccccc caccctccct cacagtgtgt ctggtgacga ccgagtggct gtcatcgcc
2881 tggtaggca gtcatggcaca caaagccacc agactgacaa atgtgtatca gatgcttttg
2941 ttccaggctg tgatccgcctt gggaaataa taaagatgtt cttttaaacg gtaaaccagg
3001 attgagtttggttt tctggcaaat caaaatcaact agttaagagg aatcataggc
3061 aaagattagg aagaggtgaa atggagggaa actgggagag atggggagcg ct

// LOCUS HUMACT2A 696 bp mRNA PRI 30-OCT-1994
DEFINITION Human activation (Act-2) mRNA, complete cds.
ACCESSION J04130
NID g178017
KEYWORDS act2 gene; immune activation gene.
SOURCE Human (Hut-102B2 library) activated T cells, cDNA to mRNA.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 696)
AUTHORS Lipes,M.A., Napolitano,M., Jeang,K.T., Chang,N.T. and
Leonard,W.J.
TITLE Identification, cloning, and characterization of an immune
activation gene
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 85 (24), 9704-9708 (1988)
MEDLINE 89071764
COMMENT Draft entry and computer-readable sequence [1] kindly submitted
by W.Leonard, 09-JAN-1989.
FEATURES Location/Qualifiers
source 1..696
/organism="Homo sapiens"
/db_xref="taxon:9606"
/map="Unassigned"
mRNA <1..696
/note="act-2 mRNA"
sig_peptide 109..177
/gene="LAG2"
/note="act-2 protein signal peptide"
gene 109..387
/gene="LAG2"
CDS 109..387
/gene="LAG2"
/note="act-2 protein precursor"
/codon_start=1
/db_xref="GDB:G00-127-452"
/db_xref="PID:g178018"

/translation="MKLCVTVLSSLMVAAFCSPALSAPMGSDPPTACCFSYTARKLP
RNFVVVDYYETSSLCSQPAVVFQTKRSKQVCADPSESWVQEYVYDLELN"
mat_peptide 178..384
/gene="LAG2"
/note="act-2 protein"
BASE COUNT 157 a 203 c 139 g 197 t
ORIGIN Unreported.
1 tttttttttttt cccccccccc ccccgcccgaa gcacaggaca cagctgggtt ctgaagcttc
61 tggatctgc agccctcacct ctgagaaaaac ctctttcca ccaataccat gaagctctgc
121 gtgactgtcc tttttttttt catgttagta gtcgtttttt gctctccagc gctctcagca
181 ccaatgggtt cagaccctcc caccgccttc tgctttttt acaccgcggag gaagcttcc
241 cgcaactttt tgtagatgtt ctatggacc agcaggctctt gtcgtttttt agctgtggta
301 ttccaaaccaa aaaggaaagcaa gcaagtctgt gtcgtttttt gtaatccctg ggtccaggag
361 tacgtgtatg acctggaaact gaaactggatc gtcgtttttt cttttttttt cttttttttt
421 cacctggggcc cggatgtttt tccatggac acatcttc cttttttttt cttttttttt
481 gcaatggggcc tccctttttttt taatttttttt tttttttttt gtcgtttttt tttttttttt
541 gtcattttttt tttttttttt tagttttttttt aaaggataag tttttttttt ggtttttttt
601 ctgtcaactgt ttctctgtttt ttgtttttttt tttttttttt tttttttttt tttttttttt
661 ccataataaa actttttttt aaaaatggcaga cttttttttt tttttttttt tttttttttt

// LOCUS AF031587 481 bp mRNA PRI 02-JAN-1998
DEFINITION Homo sapiens MIP-1 delta mRNA, complete cds.

```

ACCESSION AF031587
 NID g2739163
 KEYWORDS
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 481)
 AUTHORS Wang,W.
 TITLE Molecular cloning and characterization of a new CC chemokine
 MIP-1
 delta
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 481)
 AUTHORS Wang,W.
 TITLE Direct Submission
 JOURNAL Submitted (27-OCT-1997) Immunobiology, DNAX Research Institute,
 901 California Ave, Palo Alto, CA 94304, USA
 FEATURES Location/Qualifiers
 source 1..481
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="17"
 CDS 1..342
 /note="CC or beta chemokine"
 /codon_start=1
 /product="MIP-1 delta"
 /db_xref="PID:g2739164"
 /translation="MKVSVAALSLMLVAVLGSQAQFINDAETELMMSKLPLENPVVL
 NSFHFADDCTSYISQSIPCSLMKSYFETSSECSKPGVIFLTKKGRQVCAKPSGPGVQ
 DCMKKLPYSI."
 BASE COUNT 140 a 112 c 100 g 129 t
 ORIGIN
 1 atgaagggtct ccgtggctgc cctctcctgc ctcatgttg ttgctgtctt tggatcccaag
 61 gcccagtta taatgtatgc agagacagag ttaatgtatgt caaatgtttcc actggaaat
 121 ccagtagttc tgaacagactt tcactttgtct gctgactgtct gcacccctta catctcacaa
 181 agcatccccgt gttaactcat gaaaaggat tat ttgaaacga gcagcgagtg ctccaaggca
 241 ggtgtcatat tccttcaccaa gaagggggagg caagtctgtg ccaaaccagg tggtccggga
 301 gttcaggatt gcataaaaaa gctgaagccc tacttaatat aataataaaag agacaaaaaga
 361 gggcagccac ccaccccttccaa caccccttgtt gagtttttttggt gtcgaaata cttaaaaaat
 421 atatatatttgc ttgtgtctgg taatgaaagt aatgcataataaagagata ttcaattttt
 481 t
 //
 LOCUS AF043340 234 bp mRNA PRI 23-FEB-1998
 DEFINITION Homo sapiens macrophage inflammatory protein 2 alpha (MIP2a)
 mRNA,
 partial cds.
 ACCESSION AF043340
 NID g2905629
 KEYWORDS
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 234)
 AUTHORS Jang,J.S. and Kim,B.E.
 TITLE Direct Submission
 JOURNAL Submitted (15-JAN-1998) Protein Engineering, General Institute
 of
 Technology, Hyundai Pharm. Ind. Co., Ltd., 213 Sosa Bon 1-dong,
 Sosa-gu, Bucheon 422-231, Korea
 COMMENT forward primer (5'-tgcgcacccctggccactgaactg-3')
 reverse primer (5'-cttcccttctggtcagttgga-3').
 FEATURES Location/Qualifiers
 source 1..234
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /cell_type="PHA-treated peripheral blood leukocyte"

```

        gene      <1..234
        /gene="MIP2a"
primer_bind <1..21
        /gene="MIP2a"
cycles:      /PCR_conditions="94C-1min,    50C-1min,    72C-3min,    30
CDS          DeltaCycler II from Ericomp.
<1..222
        /gene="MIP2a"
        /function="CXC chemokine"
        /function="proinflammatory cytokine involved in
        inflammation"
        /note="8-10 kDa"
        /codon_start=1
        /product="macrophage inflammatory protein 2 alpha"
        /db_xref="PID:g2905630"



LOCUS HSU77035 764 bp mRNA PRI 23-JAN-1997  

DEFINITION Human macrophage inflammatory protein 3 alpha (MIP-3a) mRNA, complete cds.  

ACCESSION U77035  

NID g1790924  

KEYWORDS  

SOURCE human.  

ORGANISM Homo sapiens  

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  

Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.  

REFERENCE 1 (bases 1 to 764)  

AUTHORS Rossi, D.L., Vicari, A.P., Franz-Bacon, K., McClanahan, T.K. and Zlotnik, A.  

TITLE Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta  

JOURNAL J. Immunol. 158 (3), 1033-1036 (1997)  

MEDLINE 97166046  

REFERENCE 2 (bases 1 to 764)  

AUTHORS Rossi, D.L. and Zlotnik, A.  

TITLE Direct Submission  

JOURNAL Submitted (31-OCT-1996) Immunology, DNAX Research Institute,  

901 California Ave., Palo Alto, CA 94304, USA  

FEATURES Location/Qualifiers  

source 1..764
        /organism="Homo sapiens"
        /db_xref="taxon:9606"
        /cell_type="elutriated monocytes activated with
        LPS/IFN-GAMMA"
gene 1..291
        /gene="MIP-3a"
CDS 1..291
        /gene="MIP-3a"
        /note="chemokine"
        /codon_start=1
        /product="macrophage inflammatory protein 3 alpha"
        /db_xref="PID:g1790925"


```

```

61 tgcggcgaat cagaaggcagc aagcaactt gactgctgtc ttggatacac agaccgtatt
121 cttcatccta aatttattgt gggcttcaca cggcagctgg ccaatgaagg ctgtgacate
181 aatgttatca tccttcacac aaagaaaaag ttgtctgtgt gccaaatcc aaaacagact
241 tgggtgaaat atattgtgcg tctcctca gaaaaagtca agaacatgt aaaaactgtgg
301 ctttcttgcg atggatgg acatagccca agaacagaaa gaaccttgc ggggttggag
361 gtttcaacttg cacatcatgg agggttagt gcttattcaa ttgtgcctc actggacttg
421 tccaattaat gaagtttgc catatgtcat catagttgc ttgtttaaag catcacatta
481 aagttaaact gtatTTTATG ttatTTATAG ctgttagttt ctgtgtttt gctatTTAAT
541 actaatttc cataaggctat ttgggttagt tgcaaaagtat aaaaattatat ttggggggga
601 ataagattat atggatTTTGT ttgtcttcata aattgtgtat attgcattat aaaaataagaa
661 attctttgtt ttatTTTGTG ttgtcttcata aattgtgtat attgcattat aaaaataagaa
721 aatattaaat aagacaaata ttggaaataa agaaacaaaaa agttt
//
```

LOCUS HSU77180 545 bp mRNA PRI 23-JAN-1997

DEFINITION Human macrophage inflammatory protein 3 beta (MIP-3beta) mRNA, complete cds.

ACCESSION U77180

NID g1791002

KEYWORDS

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;

Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 545)

AUTHORS Rossi, D.L., Vicari, A.P., Franz-Bacon, K., McClanahan, T.K. and Zlotnik, A.

TITLE Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta

JOURNAL J. Immunol. 158 (3), 1033-1036 (1997)

MEDLINE 97166046

REFERENCE 2 (bases 1 to 545)

AUTHORS Vicari, A. and Zlotnik, A.

TITLE Direct Submission

JOURNAL Submitted (01-NOV-1996) Immunology, DNAX Research Institute, 901

FEATURES California Ave, Palo Alto, CA 94304, USA

source Location/Qualifiers

1..545

/organism="Homo sapiens"

/db_xref="taxon:9606"

/cell_type="macrophages activated with LPS or IFNg"

/chromosome="9"

gene 1..297

/gene="MIP-3beta"

CDS 1..297

/gene="MIP-3beta"

/function="chemokine"

/codon_start=1

/product="macrophage inflammatory protein 3 beta"

/db_xref="PID:g1791003"

translation=MALLLALSLLVLWTSPAPTLSPGTNDADCCLSVTQKPIPGYIVR

NFHYLLIKDGCRVPAAVFTTLRGRQLCAPPDQPWVERIIQRLQRTSAKMRRSS*

BASE COUNT 125 a 160 c 153 g 107 t

ORIGIN

```

1 atggccctgc tactggccct cagcctgtc gttctctgga cttccccagc cccaaactctg
61 agtggcacca atgatgtca agactgtcg ctgtctgtg cccagaaacc catccctggg
121 tacatgtca ggaacttcca ctaccttctc atcaaggatg gctgcagggt gctgtgtgt
181 gtgttccacca cactgagggg cggccagctc tggcaccccc cagaccagcc ctgggttagaa
241 cgcacatcc agagactgca gaggacactca gccaagatga agcgcgcag cagttaaacct
301 atgaccgtgc agagggagcc cggagtccga gtcaaggattt gtgaattt acctaacctg
361 gggaaaccgg gaccagaagg aaggaccagg cttccagctc ctctgcacca gacctgacca
421 gccaggacag ggcctgggtt gtgtgtgtgt gctggatgtca gcgaggggt gatgtggc
481 tagatggaaat ctgcgtccacc cccagattgc aatgttacca ataaagccgc ctgggtttt
541 caact
//
```

LOCUS HUMTCM 1160 bp mRNA PRI 15-JUN-1989

DEFINITION Human T cell-specific protein (RANTES) mRNA, complete cds.

ACCESSION M21121

NID g339420

KEYWORDS Alu repeat; T-cell-specific protein.
SOURCE Human peripheral blood (T lymphocyte) cell line AH2, cDNA to mRNA,
ORGANISM Homo sapiens
EUKARYOTAE; mitochondrial eukaryotes; Metazoa; Chordata;
REFERENCE Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
AUTHORS 1 (bases 1 to 1160)
 Clayberger,C., Schall,T.J., Jongstra,J., Dyer,B.J., Jorgensen,J.,
 Davis,M.M. and Krensky,A.M.
TITLE A human T cell-specific molecule is a member of a new gene family
JOURNAL J. Immunol. 141, 1018-1025 (1988)
MEDLINE 88285659
COMMENT Draft entry and computer-readable sequence for [1] kindly provided by A.M.Krensky, 24-OCT-1988.
FEATURES Location/Qualifiers
source 1..1160
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
CDS 27..302
 /note="T cell-specific protein precursor"
 /codon_start=1
 /db_xref="PID:g339421"

/translation="MKVSAARLAVILIATALCAPASASPYSSDTTPCCFAYIARPLPR
AHIKEYFYTSRKCSNPAVVVFVTRKNRQVCANPEKKWVREYINSLEMS"
sig_peptide 27..95
 /note="T cell-specific protein signal peptide"
mat_peptide 96..299
 /note="T cell-specific protein"
repeat_region 450..950
 /note="Alu-related repeats"
BASE COUNT 298 a 332 c 295 g 235 t
ORIGIN 276 bp upstream of RsaI site.
 1 cctccgacag ccctccaca ggtaccatga aggtctccgc ggcacgcctc gctgtcatcc
 61 tcattgtctac tgccctctgc gtcctcgat ctgcctcccc atatccctcg gacaccacac
 121 cctgctgtt tgccctacatt gcccggccac tgccctcgat ccacatcaag gagttttct
 181 acaccagtgg caagtgtcc aaccgcagtg tgctttgtt caccggaaag aaccggccaag
 241 tgtgtccaa cccagagaag aaatgggttc gggagttacat caactcttg gagatgagct
 301 agatggaga gtccttgaac ctgaacttac acaaatttgc ctgttttgc ttgtcttgt
 361 ccttagttgg gaggcttccc ctcaactatcc tacccttgc gctcttggaa gggcccgat
 421 tctgaccacg acgagcagca gttacaaaaa cttcccccag gctggacgtg gtggctcagc
 481 cttgttaatcc cagcactttg ggaggccaaag gtgggtggat cacttgaggat caggagttcg
 541 agacagcctg gccaacatga taaaacccca tgtgtactaa aaataaaaaa aattagccgg
 601 gcgtgttagc ggccgcctgt agtcccacgt actcgggggg ctgaggcagg agaatggcgt
 661 gaaccgggaa gcccggatgg cagtggccg agatccgc actgcactcc agccctggcg
 721 acagagcggag actccgttc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaataca aaaattagcc
 781 gcgtgtggc ccacgcctgt aatcccacgt actcggggagg ctaaggcagg aaaattgtt
 841 gaaccggagggatggggactgt gcaactgtggact gatgtgtgc cacttcaact cagcctgggt
 901 gacaaagtga gactccgtca caacaaacaaac aaaaaaaagc ttcccaact aaaggcctaga
 961 agagcttctg aggccgtgtt tggtccaaaagaa gaaatctcta gtttctgagc tctggcttgg
 1021 cttggcttt gcaagggtct tggacaagg aaggaaatgtca gcatgcctct agaggcaagg
 1081 aaggggaggaa cactgcactc ttaagcttcc gccgtctcaa cccctcacag gagcttactg
 1141 gcaaacatga aaaaatgggg
 //
LOCUS HUMTLI309 520 bp mRNA PRI 14-JAN-1995
DEFINITION Human secreted protein (I-309) mRNA, complete cds.
ACCESSION M57502
NID g339728
KEYWORDS secreted protein.
SOURCE Human T-cell, cDNA to mRNA.
ORGANISM Homo sapiens
EUKARYOTAE; mitochondrial eukaryotes; Metazoa; Chordata;
REFERENCE Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
AUTHORS 1 (bases 1 to 520)
TITLE Miller,M.D., Hata,S., De Waal Malefyt,R. and Krangel,M.S.
JOURNAL A novel polypeptide secreted by activated human T lymphocytes J. Immunol. 143 (9), 2907-2916 (1989)

MEDLINE 90038522
 FEATURES source Location/Qualifiers
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /cell_type="T-cell"
 /germline
 /map="17"
 mRNA <1..520
 /gene="SCYA1"
 /note="G00-118-872"
 gene 1..520
 /gene="SCYA1"
 CDS 51..341
 /gene="SCYA1"
 /codon_start=1
 /db_xref="GDB:G00-118-872"
 /product="secreted protein I-309"
 /db_xref="PID:g339729"

 /translation="MQIITTAALVCLLLAGMWPEDVDSKSMQVPFSRCCFSFAEQEIP
 RAILCYRNTSSICSNEGLIFKLKRGEACALDTVGVWQRHRKMLRHCP SKRK"
 BASE COUNT 140 a 137 c 122 g 121 t
 ORIGIN
 1 accagggctca tcaaaggctgc tccaggaagg cccaaggccag accagaagac atgcagatca
 61 tcaccacacgc cctgtgtgc ttgctgttag ctggatgtg gcccgaagat gtggacagca
 121 agagcatgca ggtacccttc tccagatgtt gttcttcatt tgccggacaa gagattcccc
 181 tgaggggcaat cctgtgttac agaaataccca gctccatctg ctccaatgag ggcttaatat
 241 tcaagctgaa gagggccaaa gagggcgtcg cttccggacac agttggatgg gttccagggc
 301 acagaaaaat gctggggcac tgcccgtaa aaagaaaaatg agcagatttc ttccatttg
 361 gggctctgga aaccacatgg cttcacctgt ccccgaaact accagcccta caccattct
 421 tctgcctgc ttttgttac agggatgg tctgcttgg tttgtataaagc tatgtttgttg
 481 cactttaaac atttaaatta tacaatcata aacccccaac
 //
 LOCUS AB000887 687 bp mRNA PRI 05-JUN-1997
 DEFINITION Human mRNA for EBI1-ligand chemokine, complete cds.
 ACCESSION AB000887
 NID g2189952
 KEYWORDS EBI1-ligand chemokine; ELC.
 SOURCE Homo sapiens fetal tissue_lib:lung cDNA to mRNA.
 ORGANISM Homo sapiens
 Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae;
 Homo.
 REFERENCE 1 (bases 1 to 687)
 AUTHORS Yoshida,R., Imai,T., Hieshima,K., Kusuda,J., Baba,M.,
 Kitaura,M.,
 Nishimura,M., Kakizaki,M., Nomiyama,H. and Yoshie,O.
 TITLE Direct Submission
 JOURNAL Submitted (05-FEB-1997) to the DDBJ/EMBL/GenBank databases.
 Hisayuki Nomiyama, Kumamoto University Medical School,
 Department of Biochemistry; Honjo 2-2-1, Kumamoto, Kumamoto 860, Japan
 (E-mail:nomiyama@gpo.kumamoto-u.ac.jp, Tel:+81-96-373-5063)
 REFERENCE 2 (sites)
 AUTHORS Yoshida,R., Imai,T., Hieshima,K., Kusuda,J., Baba,M.,
 Kitaura,M.,
 Nishimura,M., Kakizaki,M., Nomiyama,H. and Yoshie,O.
 TITLE Molecular cloning of a novel human CC chemokine EBI1-ligand
 chemokine that is a specific functional ligand for EBI1, CCR7
 JOURNAL J. Biol. Chem. 272 (21), 13803-13809 (1997)
 MEDLINE 97298088
 FEATURES source Location/Qualifiers
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /dev_stage="fetal"
 /tissue_lib="lung"
 gene 139..435
 /gene="ELC"

CDS

```

139..435
/gene="ELC"
/note="CC chemokine"
/codon_start=1
/product="EBI1-ligand chemokine"
/db_xref="PID:d1021215"
/db_xref="PID:g2189953"

/translation="MALLLALSLLVLWTSPAPLTSQTNDAEDCCLSVTQKPIPGYIVR

NFHYLLIKDGCRRVPAVVFTTLRGRQLCAPPDPWVERIIQRLQRTSAKMRRSS"
mat_peptide 202..432
/gene="ELC"
/product="EBI1-ligand chemokine"
polyA_signal 657..662

```

BASE COUNT 154 a 223 c 173 g 137 t

ORIGIN

```

1 cattcccaage ctcacatcac tcacacacctg catttcaccc ctgcataccc gtcggccctgc
61 agcctcacac agatcctgca cacacccaga cagctggcgc tcacacattt accgttggcc
121 tgcctctgtt cacccctccat ggcctctgtt ctggccctca gcttgcgtt ttcttgact
181 tccccagccc caactctgag tggcaccaat gatgctgaag actgctgcct gtctgtgacc
241 cagaacacca tccctggta catcgtagg aactttcaact accttctcat caaggatggc
301 tgcagggtgc ctgcgttagt gttcaccaat ctggggccgc gccagctctg tgcaccccca
361 gaccagccct gggtagaaacg catccatccag aactgcaga ggacccctcage caagatgaag
421 cgccgcagca gttAACCTAT gaccgtcgag agggggcccg gagtcggagt caagcattgt
481 gaattattac ctaacctggg gaaccggagga ccagaaggaa ggaccaggct tccagctcc
541 ctgcaccaga cctgaccagc caggacaggg cctgggtgt gtgtgagtgt gagtgtgagc
601 gagagggta gtgtggtcag agtaaagctg ctccacccca agattgcaat gctaccaata
661 aagccgcctg gtgtttacaa ctaattt

```

//

LOCUS AB000221 760 bp mRNA PRI 31-JUL-1997

DEFINITION Homo sapiens mRNA for CC chemokine, complete cds.

ACCESSION AB000221

NID 92289718

KEYWORDS CC chemokine; PARC; pulmonary and activation-regulated chemokine.

SOURCE Homo sapiens lung cDNA to mRNA.

ORGANISM Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini; Hominidae;

REFERENCE 1 (bases 1 to 760)

AUTHORS Nomiyama,H.

TITLE Direct Submission

JOURNAL Submitted (04-JAN-1997) to the DDBJ/EMBL/GenBank databases.

Department Hisayuki Nomiyama, Kumamoto University Medical School, of Biochemistry: Honjo 2-2-1, Kumamoto, Kumamoto 860, Japan (E-mail:nomiyama@gpo.kumamoto-u.ac.jp, Tel:81-96-373-5063, Fax:81-96-372-6140)

REFERENCE 2 (sites)

AUTHORS Hieshima,K., Imai,T., Baba,M., Shoudai,K., Ishizuka,K., Nakagawa,T., Tsuruta,J., Takeya,M., Sakaki,Y., Takatsuki,K., Miura,R., Opdenakker,G., Damme,J., Yoshie,O. and Nomiyama,H.

TITLE A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1alpha/LD78alpha and

chemotactic

JOURNAL for T lymphocytes, but not for monocytes

MEDLINE J. Immunol. 159 (3), 1140-1149 (1997)

97376836

FEATURES Location/Qualifiers

source 1..760

/organism="Homo sapiens"

/db_xref="taxon:9606"

/tissue_type="lung"

gene 64..333

/gene="PARC"

CDS 64..333

/gene="PARC"

/note="pulmonary and activation-regulated chemokine"

```

/codon_start=1
/product="CC chemokine"
/db_xref="PID:d1022520"
/db_xref="PID:g2289719"



LOCUS D86955 799 bp mRNA PRI 06-MAR-1997



DEFINITION Human mRNA for CC chemokine LARC precursor, complete cds.



ACCESSION D86955



NID g1871138



KEYWORDS CC chemokine LARC precursor.



SOURCE Homo sapiens cDNA to mRNA.



ORGANISM Homo sapiens



Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  
Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;



Hominidae; Homo.



REFERENCE 1 (sites)



AUTHORS Hieshima,K., Imai,T., Opdenakker,G., Van Damme,J., Kusuda,J., Tei,H., Sakaki,Y., Takatsuki,K., Miura,R., Yoshie,O. and Nomiyama,H.



TITLE Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2



JOURNAL J. Biol. Chem. 272 (9), 5846-5853 (1997)



MEDLINE 97190319



REFERENCE 2 (bases 1 to 799)



AUTHORS Hieshima,K., Imai,T., Opdenakker,G., Van Damme,J., Kusuda,J., Tei,H., Sakaki,Y., Takatsuki,K., Miura,R., Yoshie,O. and Nomiyama,H.



JOURNAL Unpublished (1996)



REFERENCE 3 (bases 1 to 799)



AUTHORS Nomiyama,H.



TITLE Direct Submission



JOURNAL Submitted (08-AUG-1996) to the DDBJ/EMBL/GenBank databases.



Department Hisayuki Nomiyama, Kumamoto University Medical School, of Biochemistry; Honjo 2-2-1, Kumamoto, Kumamoto 860, Japan (E-mail:nomiyama@gpo.kumamoto-u.ac.jp, Tel:+81-96-373-5063)



FEATURES Location/Qualifiers



source 1..799



/organism="Homo sapiens"



/db_xref="taxon:9606"



/chromosome="2"



/map="q33-37"



sig_peptide 59..136



/gene="LARC"



CDS 59..349



/gene="LARC"



/codon_start=1



/product="CC chemokine LARC precursor"



/db_xref="PID:d1013880"



/db_xref="PID:g1871139"


```

```



LOCUS HUMAR 538 bp mRNA PRI 11-SEP-1996



DEFINITION Human mRNA for chemokine, complete cds.



ACCESSION D43767



NID g1536878



KEYWORDS chemokine, thymus and activation-regulated; chemokine.



SOURCE Homo sapiens male peripheral blood cDNA to mRNA, clone:D3A.



ORGANISM Homo sapiens



Eukaryote; mitochondrial eukaryotes; Metazoa; Chordata;



Hominidae; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;



REFERENCE 1 (sites)



AUTHORS Imai,T., Yoshida,T., Baba,M., Nishimura,M., Kakizaki,M. and Yoshie,O.



TITLE Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus



vector J. Biol. Chem. 271 (35), 21514-21521 (1996)



JOURNAL 96355526



REFERENCE 2 (bases 1 to 538)



AUTHORS Imai,T.



JOURNAL Unpublished (1996)



REFERENCE 3 (bases 1 to 538)



AUTHORS Imai,T.



TITLE Direct Submission



JOURNAL Submitted (07-DEC-1994) to the DDBJ/EMBL/GenBank databases.



Toshio Imai, Shionogi Institute for Medical Science; 2-5-1 Mishima, Settsu, Osaka 566, Japan (Tel:06-382-2612, Fax:06-382-2598)



FEATURES Location/Qualifiers



source 1..538



/organism="Homo sapiens"



/db_xref="taxon:9606"



/clone="D3A"



/sex="male"



/tissue_type="peripheral blood"



CDS 53..337



/note="thymus and activation regulated"



/codon_start=1



/product="chemokine"



/db_xref="PID:d1008410"



/db_xref="PID:g1536879"



```



```


```

BASE COUNT 118 a 168 c 149 g 103 t
 ORIGIN

```

  1 ccctgagcag agggacctgc acacagagac tccttcctgg gtcctggca ccatggcccc
  61 actgaagatg ctggccctgg tcaccctctt cctgggggtct tctctgcage acatccacgc
  121 agtcggggg accaatgtgg gcccggagtgc tgccctggag tacttcaagg gaggcattcc
  181 ctttagaaag ctgaagacgt gttaccagac atcttgcaggac tgctccaggat agccatcg
  241 tttttaact gtgcggggca gggccatctg ttccggacccc aacaacaaga gagtgaagaa
  301 tgcagttaaa tacctgcaaa gccttgagag gtcttgcaggc ctccctccccc cagactctcg
  361 actgtctccc gggactacct gggacctcca ccgttggtgt tcaccggcccc caccctgagc
  421 gcctgggtcc agggagggcc ttccaggggac gaagaagac cacagtgagg gagatcccat
  481 ccccttgct gaactggagc catgggcaca aagggccca attaaagtct ttatcctc
  //
```

LOCUS HUMEOTAXIN 807 bp mRNA **PRI** 25-SEP-1996
DEFINITION Human mRNA for eotaxin, complete cds.
ACCESSION D49372
NID g1552240
KEYWORDS eotaxin; eosinophil-selective CC chemokine; chemoattractant.
SOURCE Homo sapiens Small intestine, proximal cDNA to mRNA, clone:141.
ORGANISM Homo sapiens
HOMINIDAE; Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
REFERENCE 1 (bases 1 to 807)
AUTHORS Kitaura,M., Nakajima,T., Imai,T., Harada,S., Combadiere,C.,
Tiffany,H.L., Murphy,P.M. and Yoshie,O.
TITLE Molecular cloning of human eotaxin, an eosinophil-selective CC
chemokine, and identification of a specific eosinophil eotaxin
receptor, CC chemokine receptor 3
JOURNAL J. Biol. Chem. 271 (13), 7725-7730 (1996)
MEDLINE 96205964
REFERENCE 2 (bases 1 to 807)
AUTHORS Yoshie,O.
TITLE Direct Submission
JOURNAL Submitted (15-FEB-1995) to the DDBJ/EMBL/GenBank databases.
Osamu
Yoshie, Shionogi Institute for Medical Science; 2-5-1 Mishima,
Settsu, Osaka 566, Japan (E-mail:osamu.yoshie@shionogi.co.jp,
Tel:06-382-2612, Fax:06-382-2598)
COMMENT On Sep 20, 1996 this sequence version replaced gi:1313900.
FEATURES
source Location/Qualifiers
1..807
/organism="Homo sapiens"
/db_xref="taxon:9606"
/clone="141"
/tissue_type="Small intestine, proximal"
CDS
99..392
/codon_start=1
/product="eotaxin"
/db_xref="PID:d1008966"
/db_xref="PID:g1552241."

polyA_signal 775..780
polyA_site 807

BASE COUNT 229 a 198 c 147 g 233 t
ORIGIN
 1 gcatttttc aagttttatg atttatttaa cttgtggAAC aaaaataaaAC cagaaaccAC
 61 cacccttcac gccaagact acacccttcg cctccaaacat gaaggcttcc gcagcacttc
 121 tgtggctgt gtcatacgca gtcgttcgac gccccccagg gtcgtctggg ccgacttctgg
 181 tcccaaacccat ctgtctgtt aacctggcca atagagaat accccttcag cgactagaga
 241 gctacaggag aatcaccagt ggccaaatgtc cccagaaAGC tggatcttc aagaccaaaAC
 301 tggccaaggat tatctgtggc gaccccaaga agaagtgggt gcaggattcc atgaagtatc
 361 tggccaaaaa atctccaact cccaaagccat aaataatcac catttttgaa accaaaccag
 421 agcctgtggat ttgcctaatt tttttccct tcttacaatg catttcgagg taaccttcatt
 481 atcagtccaa agggcatggg tttttatata tatatatata tttttttttt aaaaaaaaaAC
 541 gtattgcatt taatttatttgg aggctttaaa acttatccctc catgaatatac aqttttttt
 //

601 aaactgtaaa gctttgtca gattcttac cccctggag ccccaattcg atcccctgtc
 661 acgtgtggc aatgttcccc ctctcccttc ttccctccgc gaatcttgta aaggctctgg
 721 caaagatgt cagtatgaa atgtcatgt tcttgtgaac ccaaagtgtg actcattaaa
 781 tggaaagtaaa tggtgttta ggaatac
 //
 LOCUS HSCCCHEM 232 bp RNA PRI 10-SEP-1996
 DEFINITION H.sapiens mRNA for CC-chemokine.
 ACCESSION Z69291
 NID g1181148
 KEYWORDS CC-chemokine.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 232)
 AUTHORS Bartels,J.H., Schlueter,C., Richter,E., Christophers,E. and
 Schroeder,J.M.
 TITLE Cloning of a novel human chemokine homologous to human monocyte
 chemoattractant proteins and rodent eotaxins
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 232)
 AUTHORS Bartels,J.H.
 TITLE Direct Submission
 JOURNAL Submitted (01-FEB-1996) Bartels J. H.,
 Christian-Albrechts-Universitaet zu Kiel,
 Dermatology/Hautklinik,
 Mol.Biol.Lab.609, Schittenhelmstr. 7, Kiel, Schleswig-Holstein,
 Germany, D-24105
 REFERENCE 3 (bases 1 to 232)
 AUTHORS Bartels,J., Schluter,C., Richter,E., Noso,N., Kulke,R.,
 Christophers,E. and Schroder,J.M.
 TITLE Human dermal fibroblasts express eotaxin: molecular cloning,
 mRNA expression, and identification of eotaxin sequence variants
 JOURNAL Biochem. Biophys. Res. Commun. 225 (3), 1045-1051 (1996)
 MEDLINE 96374440
 FEATURES Location/Qualifiers
 source 1..232
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="clones 4(9512),
 14(9512),15(9512),10(9601),11(9601)"
 /tissue_type="foreskin"
 /cell_type="fibroblast"
 /sex="Male"
 mRNA <1..>232
 /citation=[1]
 /product="CC-chemokine"
 sig_peptide 56..109
 /citation=[1]
 CDS 56..>232
 /function="putative chemoattractant protein"
 /note="sequence homology to human MCP-1, MCP-2 and
 MCP-3
 and to rodent eotaxins"
 /citation=[1]
 /codon_start=1
 /product="CC-chemokine, preprotein"
 /db_xref="PID:e221070"
 /db_xref="PID:g1181149"
 /db_xref="SWISS-PROT:P50877"
 /translation="MKVSAALLWLLLIAAAFSPOGLAGPASVPTTCCFNLANRKIPLQ
 RLESYRRITSGKCPQ"
 mat_peptide 110..>232
 /citation=[1]
 /function="putative chemoattractant protein"
 /product="CC-chemokine"
 BASE COUNT 55 a 82 c 50 g 42 t 3 others
 ORIGIN 1 accaaaccag aaaccwccam ytctcacgcc aaagctcaca ccttcagcct ccaacatgaa

61 ggtctccgca gcgcgttctgt ggctgtgtct catagcggt gccttcagcc cccaggggct
 121 cgctggcca gcttctgtcc caaccacccgt ctgttttaac ctggccaataa ggaagatacc
 181 cttcagcga ctagagagct acaggagaat caccagtggc aatgtcccc ag
 //
 LOCUS HSHCC1GEN 4037 bp DNA PRI 01-OCT-1995
 DEFINITION H.sapiens gene for chemokine HCC-1.
 ACCESSION Z49269
 NID g1004266
 KEYWORDS chemokine.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 4037)
 AUTHORS Pardigol,A., Maegert,H.J., Cieslak,A., Hill,O., Schulz-
 Knappe,P.
 TITLE and Forssmann,W.G.
 JOURNAL Nucleotide Sequence of the Gene for the Human Chemokine HCC-1
 REFERENCE Unpublished
 2 (bases 1 to 4037)
 AUTHORS Pardigol,A.
 TITLE Direct Submission
 JOURNAL Submitted (18-MAY-1995) Andreas Pardigol, Molecular Biology,
 Lower Saxony Institute for Peptide Research, Feodor-Lynen-Strasse 31,
 Hannover, Lower Saxon, 30625, Germany
 FEATURES source Location/Qualifiers
 1..4037
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="ph3b7"
 /dev_stage="adult"
 /tissue_type="placenta"
 /clone_lib="lambda FIX II, Cat.Nr. 946203, Stratagene"
 /sex="male"
 TATA_signal 727..733
 5'UTR /note="putative, determined by consensus rules."
 764..833
 /note="first base determined by means of consensus
 rules"
 exon 764..912
 /note="first base determined by means of consensus
 rules;
 CDS base 780 is the first base of cDNA (Z49270)
 /number=1
 join(834..912,3021..3135,3585..3672)
 /codon_start=1
 /product="chemokine HCC-1"
 /db_xref="PID:g1004267"
 /translation="MKISVAAIPFLLITIALGKTTESSSRGPYHPSECCFTYTTYKI
 PRQRIMDYYETNSQCSKPGIVFITKRGHSVCTNPSDKWVQDYIKDMKEN"
 intron 913..3020
 /number=1
 exon 3021..3135
 /number=2
 intron 3136..3584
 /number=2
 exon 3585..3817
 /number=3
 3'UTR 3673..3817
 BASE COUNT 1023 a 1048 c 1004 g 962 t
 ORIGIN
 1 gagctccgtt gggagtccca tggatccatata tggcataatg ggtgagaaca cagacttgg
 61 agccaaacca cctgtatcc aaccccgat ccattacca actgtcaaaa gcttaggctt
 121 tgattctaag cctgtttccct caactgtgt tctaaagatt aaataggcta atattcataa
 181 ggcaactggg acatgggtt gtgtgtatag caaccattat ataagtgaat tatctactga
 241 gcaccacccg acattttcac tccatgggtt ggtgaccaga atggagatga gacagagaac
 301 tgcagggttct gttcatgggt taatgttaga ttcccttgc ccaatggatgc ctgacttgg
 361 ggagtccgtt cctcattccca ttaccccaa cacccttgc tctctatgt aacagatcc
 421 gaatgtccag gccccacgtg gcctgttcta aaggcctgaga tggatgttgc tacaggac

//
LOCUS HS221 925 bp mRNA PRI 30-JUN-1998
DEFINITION H.sapiens mRNA for chemokine CC-2 and CC-1.
ACCESSION Z70292
NID g1296608
KEYWORDS chemokine CC-1; chemokine CC-2.
SOURCE human.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 925)

AUTHORS Pardigol,A., Forssmann,U., Zucht,H.D., Loetscher,P.,
 TITLE Schulz-Knappe,P., Baggolini,M., Forssmann,W.G. and Magert,H.J.
 and HCC-2, a human chemokine: gene structure, expression pattern,
 biological activity
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 95 (11), 6308-6313 (1998)
 MEDLINE 98263352
 REFERENCE 2 (bases 1 to 925)
 AUTHORS Pardigol,A.
 TITLE Direct Submission
 JOURNAL Submitted (25-MAR-1996) Andreas Pardigol, IV - Molecular
 Biology, Lower Saxony Institute for Peptide Research, Feodor-Lynen-
 Strasse 31, Hannover, Lower Saxony, 30625, Germany
 FEATURES Location/Qualifiers
 source 1..925
 /organism="Homo sapiens"
 /db_xref="taxon:960"
 /dev_stage="adult"
 /tissue_type="liver"
 /clone_lib="PCR fragments"
 5'UTR 1..55
 CDS 56..397
 /note="putative; first coding region of a bicistronic
 mRNA"
 /codon_start=1
 /product="chemokine CC-2"
 /db_xref="PID:e233855"
 /db_xref="PID:g1296609"
 /db_xref="SWISS-PROT:Q16663".

 /translation="MKVVAALSLMLVAVLGSQAQFTNDAETELMMSKLPLENPVVL
 NSFHFAADCCTSYISQSIPCSLMKSYFETSSECSKPGVIFLTKKGRQVCAKPSGPGVQ
 DCMKKLKPYSI"
 misc_feature 398..498
 /note="spacing region between two coding regions of
 the bicistronic mRNA"
 CDS 499..780
 /codon_start=1
 /evidence=experimental
 /product="chemokine CC-1"
 /db_xref="PID:e233856"
 /db_xref="PID:g1296610"
 /db_xref="SWISS-PROT:Q16662".

 /translation="MKISVAAIPIFFLLITIALGKTTESSSRGPYHPSECCFTYTTYKI
 PRQRIMDYETNSQCSKPGIVFITKRGSVCTNPSDKWVQDYIKDMKEN"
 3'UTR 781..925
 polyA_signal 902..908
 BASE COUNT 240 a 296 c 199 g 190 t
 ORIGIN
 1 ccaggaagca gtgagccca gagtccctgg ccagccctgc ctgcccacca ggaggatgaa
 61 ggtctccgtg gtcgtccctct cctgcctcat gcttgttgct gtccctggat cccaggccca
 121 gttcacaaat gatgcagaga cagagttat gatgtcaaag cttccactgg aaaatccagt
 181 agttctgaaac agcttcaact ttgctgtcga ctgctgcacc tcctacatct cacaaggcat
 241 cccgtgttca ctcataaaaa gttattttga aacgagcagc gagtgctcca agccaggtgt
 301 catattccctc accaagaagg ggccgcaagt ctgtgccaaa cccagtggtc cgggagttca
 361 ggattgcatg aaaaagctga agccctactc aatataataa taaagagaca aaagaggccca
 421 gcccacccacc tccaaacacct cctgagccctc tgaagctccc accaggccag ctctccctccc
 481 acaacacgtt cccacacgtt gaagatctcc gtggctgcca ttcccttctt cccctctcatc
 541 accatcgcccc tagggaccaa gactgaatcc tcctcacaagg gaccttacca cccctcagag
 601 tgctgcttca cttacactac ctacaagatc cccgtgtcagg ggattatggta ttactatgag
 661 accaacacgtt agtgcgtccaa gccccgaaatt gtcttcatca cccaaagggg ccattccgtc
 721 tgtaccaacc ccagtgcacaa gtgggtggcc gactatatca aggacatgaa ggagaactga
 781 gtgaccacaga aggggtggcg aaggcacagc tcagagacat aaagagaaga tgccaaaggcc
 841 ccctcccttca cccacccgtt actctcaggcc ccagtccaccc tcttggagct tccctgctt
 901 gaattaaaga ccactcatgc tttc
 //

LOCUS HSCC23 973 bp RNA **PRI** 03-MAY-1996
DEFINITION H.sapiens mRNA for chemokine CC-2 and CC-3.
ACCESSION Z70293
NID g1296611
KEYWORDS Human chemokine CC-2; Human chemokine CC-3.
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 973)
AUTHORS Pardigol,A., Maegert,H.J., Zucht,HD., Forssmann,W.G. and
Schulz-Knappe,P.
TITLE Transcription of a Human Tandem Gene results in a Mature
Bicistronic mRNA encoding two Novel CC-Chemokines
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 973)
AUTHORS Pardigol,A.
TITLE Direct Submission
JOURNAL Submitted (25-MAR-1996) Andreas Pardigol, IV - Molecular
Biology
Strasse Lower Saxony Institute for Peptide Research, Feodor-Lynen-
31, Hannover, Lower Saxony, 30625, Germany
FEATURES
source Location/Qualifiers
1..973
/organism="Homo sapiens"
/db_xref="taxon:9606"
/dev_stage="adult"
/tissue_type="liver"
/clone_lib="PCR fragments"
1'..55
56..397
/note="putative; first coding region of a bicistronic
mRNA"
/codon_start=1
/product="chemokine CC-2"
/db_xref="PID:e233857"
/db_xref="PID:g1296612"

/translation="MKVSVAALSCLMLVAVLGSQAQFTNDAETELMSKLPLENPVVL
NSFHFAADCCTS YISQSIPCSLMKSYFETSSECSKPGVIFLT KGRQVCAKPSGPGVQ
DCMKKLKPYSI"
misc_feature 398..498
/note="spacing region between two coding regions of
the
bicistronic mRNA"
CDS 499..828
/note="putative"
/codon_start=1
/product="chemokine CC-3"
/db_xref="PID:e233858"
/db_xref="PID:g1296613"

/translation="MKISVAAIPFLLITIALGKTTESSSQGGKPKVVKIQLKLVGG
PYHPSECCFTTYKIPRQRIMDYETNSQCSKPGIVFITKRGHSVCTNPSDKWVQDY
IKDMKEN"
3'UTR 829..973
polyA_signal 950..956
BASE COUNT 257 a 301 c 215 g 200 t
ORIGIN
1 ccaggaagca gtgagccag gagtcctcg ccagccctgc ctgcccacca ggaggatgaa
61 ggtctccgtg gctgccctct cctgcctcat gcttggct gtccttggat cccaggccca
121 gttcacaaat gatgcagaga cagatgtt gatgtcaaaag cttccactgg aaaatccagt
181 agttctgaac agcttcaact ttgtctgtga ctgtctgcacc tcctacatct cacaaagcat
241 cccgtgtca ctcatgaaaa gttatgttga aacgagcagc gagtgctcca agccaggtgt
301 catattcctc accaagaagg ggcggcaagt ctgtccaaa cccagtggtc cgggagttca
361 ggattgcattt aaaaagctga agccctactc aatataataa taaagagaca aaagaggcca
421 gccaccacc tccaacacct cctgagccctc tgaagctccc accaggccag ctctccccc

```

481 acaacagctt cccacagcat gaagatctcc gtggctgcca ttccccttc cctcctcatt
541 accatcgccc tagggaccaa gactaatcc tcctcacaaa ctggggggaa accgaagggtt
601 gttaaaatac agctaaatgtt ggtggggggaa ctttaccacc cctcagagtgc tgcgttcacc
661 tacactacct acaagatccc gcgtcagccg attatggatt actatgagac caacagccag
721 tgctccaagc cggaaattgtt cttcatcacc aaaaggggcc attccgtctg taccaacccc
781 agtgacaagt gggtccagga ctatatacg gacatgaagg agaactgagt gacccagaag
841 gggtggcgaa ggacacagctc agagacataa agagaagatg ccaaggcccc ctccctcacc
901 caccgctaacttc tctcagcccc agtcaccctc ttggagcttc cctgcttga attaaagacc
961 actcatgctc ttc
//
```

LOCUS HSU91746 1430 bp mRNA **PRI** 12-MAR-1998
DEFINITION Homo sapiens IL-10-inducible chemokine (HCC-4) mRNA, complete
cds.
ACCESSION U91746
NID g2581780
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1430)
AUTHORS Hedrick,J.A., Helms,A., Gorman,D. and Zlotnik,A.
TITLE Identification of a novel human CC chemokine upregulated by IL-
10
JOURNAL Blood (1998) In press
REFERENCE 2 (bases 1 to 1430)
AUTHORS Hedrick,J.A., Helms,A., Gorman,D. and Zlotnik,A.
TITLE Direct Submission
JOURNAL Submitted (02-MAR-1997) Immunology, DNAX Research Institute,
901 California Ave, Palo Alto, CA 94304, USA
FEATURES Location/Qualifiers
source 1..1430
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="17"
gene: 1..1430
/gene="HCC-4"
CDS 1..363
/gene="HCC-4"
/note="CC or beta chemokine family member"
/codon_start=1
/product="IL-10-inducible chemokine"
/db_xref="PID:g2581781"

/translation="MKVSEAALSLVLILIIITSASRSQPKVPEWVNTPSTCCLKYEK
VLPRRLVVGYRKALNCHLPAlIFVTKRNREVCTNPNDWWVQEYIKDPNLPLLPTRNLS
TVKIITAKNGQPQLLNSQ"
BASE COUNT 401 a 351 c 293 g 385 t
ORIGIN

```

1 atgaaggctt ccgaggctgc cctgtctctc cttgtcctca tccttatcat tacttcggct
61 tctcgacgccc agccaaatgtt cttctggatggt gtgaacaccc catccacccgt ctgcctgaag
121 tattatgaga aagtgttgcc aaggagacta gtgggtggat acagaaaggcc cctcaactgt
181 cacctgccag caatcatctt cgtcaccaag aggaacccgg aagtctgcac caaccccaat
241 gacgactggg tccaaagagta catcaaggat cccaaacctac ctttgcgtcc taccagggaa
301 ttgtccacgg taaaattat tacagcaaag aatggtaaac cccagcttctt caactcccaag
361 tggatggccatc gtttttaggg aagcccttgc ttacacaaaga gagggtaaa cctatgaaaa
421 caggggaaaggc ttataggc tgaaatagtc cagtcacatt gagagaagca gaacaatgtt
481 caaaataaaag gagaagtattt tcgaatattt ttcataatcattt aggaggaaat accaaagtta
541 agggacgtgg gcagaggtac gctttttat ttttatattt atattttat tttttggaga
601 taggtttcacat tcttgtccccc aggctggatgtt gcaatgggtt gatcttggctt cacttgatct
661 tggctcactg taacccatccc cttccaggatc caatgttttcccccacccca gctcccccgg
721 tagctggac tacaggcttgc cggccacca cttggatattt ttggtagaga
781 cgggatcttca ccatgttgcc caggctggcc tcaaaactgtt gtgcggccaaatccacctg
841 cctcaggccctt cccaaatgtcc tgggattaca ggcgtggcc accacatccg gccatgtgcac
901 tcttaatacaca cagaaaaataat ttttccat ctttcttgc ttcttcttca atttcttact
961 tcacaccatc acacaagccat ttttccat ctttccat ctttccat ctttccat ctttccat
1021 ttggccctctt ggttttgcaccat ctttccat ctttccat ctttccat ctttccat ctttccat
1081 ctttccat ctttccat ctttccat ctttccat ctttccat ctttccat ctttccat ctttccat
```

1141 ttttcatag gaagtccgga tggaatatt cacattaatc attttgtag agactttgt
 1201 agatcctctc atatttgtc ttccctcagg tggcagggtt acagagatg cctgatttgg
 1261 aaaaaaaaaaa aaagagagag agagagaaga agaagaagaa gagacacaaa tctctaccc
 1321 ccatgttaag ctgcagga caggaaaga aaggatgaa gacacggcta gggtaact
 1381 cttatccaa aacccaagca tgcaataat aaaactccct tatttgacaa
 //

LOCUS AB007454 1503 bp mRNA PRI 09-APR-1998
 DEFINITION Homo sapiens mRNA for chemokine LEC precursor, complete cds.
 ACCESSION AB007454
 NID g2723285
 KEYWORDS chemokine LEC precursor.
 SOURCE Homo sapiens liver cDNA to mRNA.
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (sites)
 AUTHORS Shoudai,K., Hieshima,K., Fukuda,S., Iio,M., Miura,R., Imai,T.,
 Yoshie,O. and Nomiyama,H.
 TITLE Isolation of cDNA encoding a novel human CC chemokine NCC-4/LEC
 JOURNAL Biochim. Biophys. Acta 1396 (3), 273-277 (1998)
 MEDLINE 98207719
 REFERENCE 2 (bases 1 to 1503)
 AUTHORS Nomiyama,H.
 TITLE Direct Submission
 JOURNAL Submitted (19-SEP-1997) to the DDBJ/EMBL/GenBank databases.
 Hisayuki Nomiyama, Kumamoto University Medical School,
 Department of Biochemistry; Honjo 2-2-1, Kumamoto, Kumamoto 860-0811,
 Japan (E-mail:nomiyama@gpo.kumamoto-u.ac.jp, Tel:81-96-373-5063,
 Fax:81-96-372-6140)
 FEATURES Location/Qualifiers
 source 1..1503
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /tissue_type="liver"
 sig_peptide 77..145
 CDS 77..439
 /codon_start=1
 /product="chemokine LEC precursor"
 /db_xref="PID:d1024963"
 /db_xref="PID:g2723286"
 /translation="MKVSEAALSLVLILITASRSQPKVPEWVNTPSTCLKYEK
 VLPRLLVGYRKALNCHLPAIIFVTKRNREVCTNPNDWVQEYIKDPNLPLPTRNLS
 TVKIITAKNGQPQLLNSQ"
 mat_peptide 146..436
 polyA_signal 560..565
 polyA_signal 1485..1490
 BASE COUNT 417 a 374 c 312 g 400 t
 ORIGIN
 1 gttggcaagc ggaccaccag caacagacaa catttcatt cggctctccc tgaagctgt
 61 ctgcctcgct gagaggatga aggttcggc ggcttcgtc tcttccttgc tcctcatcc
 121 tatcatact tcggcttc gcagccagcc aaaaagtttctt gatgggttgc acaccccatc
 181 cacctgtgc ctgaagtatt atgagaaatg gttgccaagg agactatgtgg tgggatcacag
 241 aaaggccctc aactgtcacc tgccagcaat catttcgtc accaagagga accggagaatg
 301 ctgcaccaac cccaaatggc actgggtcca agatgtatc aaggatcccc acctaccc
 361 gctgccttacc aggaacttgtt ccacgggttta aattttaca gcaagaatg gtcaacccca
 421 gctcctcaac tcccaatgtt gaccaggctt tagtggaaagc ctttttttac agaagagagg
 481 ggttaaaccta tgaaaacagg ggaaggctta ttggcttgc aatagccctt cacattgaga
 541 gaagcagaac aatgtatcaa ataaaggaga agtatttgcg atatttttc aatcttagga
 601 ggaataccat aagttaaggc acgtggcggc aggtacgttcc ttttattttt atatttttat
 661 tttttttttt ttggatagg gtcttactt gtcacccagg ctggatgtca gtgggtgtat
 721 cttggctcac ttgtatcttgg ctcactgtaa cttccaccc tcaggttcaaa gtgatccct
 781 caccctcgcc tcccgatgtt ctggactac aggcttgcgc caccacaccc ggctaaattt
 841 tgtatcttgc gttagagacgg gattctacca tggcccttgc gctggctca aactcgatgt
 901 cccaaatggc ccacccgttccaa aagtgttgcg gattacaggc gtggccacc
 961 acatccggcc agtgcactt taatacacaag aaaaaatata ttccatccct ttcctgtcc
 1021 tctttcaatt ctcacttca caccgttaca caagccatcc taaatacttca gccaggttcc

1081 agccttccag atgatctttg ccctctgggt cttgaccat taagagcccc atagaactct
 1141 tgatTTTCC tgcctcatct tatggattt tctggatcta tattttcttc aattattctt
 1201 tcattttata atgcaactt ttcataggaa gtccggatgg gaattttcac attaatcat
 1261 ttgcagaga cttagtctaga tcctctata ttttgccttc ctcagggtgg caggggtaca
 1321 gagatgtcct gatggaaaa aaaaaaaaaa gagagagaga gagaagaaga agaagaagag
 1381 acacaaatct ctaccccata tgtaagct tgcaaggacag gaaaagaaag ggtatgagac
 1441 acggctaggg gttaacttctt agtccaaaac ccaagcatgc aataaataaa actcccttat
 1501 ttg

//

LOCUS AF001979 800 bp mRNA PRI 20-NOV-1997
 DEFINITION Homo sapiens beta chemokine mRNA, complete cds.

ACCESSION AF001979
 NID g2624924

KEYWORDS human.
 SOURCE

ORGANISM Homo sapiens

Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 800)

AUTHORS Hedrick,J.A. and Zlotnik,A.

TITLE Identification and characterization of a novel beta chemokine
 containing six conserved cysteines

JOURNAL J. Immunol. 159 (4), 1589-1593 (1997)

MEDLINE 97400322

REFERENCE 2 (bases 1 to 800)

AUTHORS Hedrick,J.A. and Zlotnik,A.

TITLE Direct Submission

JOURNAL Submitted (01-MAY-1997) Immunobiology, DNAX Research Institute,
 901

FEATURES California Ave, Palo Alto, CA 94304, USA
 source Location/Qualifiers

1..800
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 CDS 1..405
 /note="6Ckine; CC chemokine"
 /codon_start=1
 /product="beta chemokine"
 /db_xref="PID:g2624925"

/translation="MAQSLALSLLILVLAFGIPRTQGSDGQAQDCCLKYSQRKIPAKV

VRSYRKQEPLGCSIPAILFLPRKRKSQAECLADPKELWVQQLMQHLDKTPSPQKPAQG
 CRKDGRASKTGKGKGSKGCKRTERSQTQPKGP"

BASE COUNT 203 a 248 c 210 g 139 t
 ORIGIN

1 atggctcagt cactggctct gaggcctcctt atcctggttc tggcctttgg aatccccagg
 61 acccaaggca gtatggagg ggctcaggac tttgcctca agtacagcca aaggaaggatt
 121 cccgccaagg ttgtccgcag ctacccggaa caggaaccaa gcttaggctg ctccatccca
 181 gctatccgt tcttgcctcg caagcgctct caggcagagc tatgtgcaga cccaaaggag
 241 ctctgggtgc agcagctgtat gcagcatctg gacaagacac catccccaca gaaaccagcc
 301 cagggctgca ggaaggacag gggggctcc aagactggca agaaaggaaa gggctccaaa
 361 ggctgcaaga ggactggagcg gtcacagacc cctaaaggccat ctagcccgat tgacgaccc
 421 ggagccctgg agacccacc agcttcacca ggcgttggaa cctgaacccca agatgcaaga
 481 aggaggctat gtcaggggc cctggagcag ccacccatg ctggccttgc cacactttt
 541 ctccctgtttt aaccacccca ttcgcattcc cagcttacc ctgcattggct gagctgcccc
 601 cagcaggccca ggtccagaga gaccgaggag ggagatgttc ccaaggagca tgagaggagg
 661 cagcaggact gtccttgcaggaaatca tcaggaccc ggacctgata cggctccca
 721 gtacacccca cctttctt gttaatatga ttataccata actgaataaa aagctgttct
 781 gtctteccac ccaaaaaaaaaa

//

LOCUS HSU64197 821 bp mRNA PRI 25-JUN-1997
 DEFINITION Homo sapiens chemokine exodus-1 mRNA, complete cds.

ACCESSION U64197
 NID g1778716

KEYWORDS human.

SOURCE

ORGANISM Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;

TITLE Schnizlein-Bick,C. and Broxmeyer,H.E.
 chemokine Isolation and characterization of Exodus-2, a novel C-C
 with a unique 37-amino acid carboxyl-terminal extension
 JOURNAL J. Immunol. 159 (6), 2554-2558 (1997)
 MEDLINE 97444139
 REFERENCE 2 (bases 1 to 828)
 AUTHORS Hromas,R.A.
 TITLE Direct Submission.
 JOURNAL Submitted (04-FEB-1997) Medicine, Indiana University Medical
 Center, 975 West Walnut, Indianapolis, IN 46202, USA
 FEATURES Location/Qualifiers
 source 1..828
 /organism="Homo sapiens"
 /note="PCR amplified from activated THP-1 cells"
 /db_xref="taxon:9606"
 /clone_lib="Soares human placenta cDNA"
 /cell_line="THP-1"
 /cell_type="monoblast"
 CDS 15..419
 /codon_start=1
 /product="beta chemokine Exodus-2"
 /db_xref="PID:g2196920"

 /translation="MAQSLALSLLILVLAFIGIPRTQGSDGGAQDCCCLKYSQRKIPAKV
 VRSYRKQEPLGCSPAILFLPRKRSQAELCADPKELWVQQLMQHLDKTPSPQKPAQG
 CRKDRGASKTGKKGKGSKGCKRTERSQTPKGP"
 BASE COUNT 218 a 255 c 216 g 139 t
 ORIGIN
 1 ggcacgagggc agacatggct cagtcactgg ctctgagccct ctttatcctg gttctggcct
 61 ttggcatccc caggacccaa ggcagtgtatc gaggggtctca ggactgttgc ctcagaatcaca
 121 gccaaaggaa gattcccccc aagggttgtcc gcagctaccg gaagcaggaa ccaagcttag
 181 gctgtccat cccagctatc ctgttcttc cccgcaagcg ctctcaggca gagctatgtg
 241 cagacccaaa ggagctctgg gtgcagcagc tgatgcagca tctggacaag acaccatccc
 301 cacagaaacc agcccgaggc tgcaggaagg acaggggggc ctccaagact ggcaagaaaag
 361 gaaagggtctc caaaggctgc aagaggactg agcgggtcaca gaccctaaa gggccatagc
 421 ccagttagca gcctggagcc ctggagaccc caccaggctc accagcgctt gaaggcctgaa
 481 cccaaagatgc aagaaggagg ctatgtccat gggcccttgg gacgcacccc catgttgcc
 541 ttggccacact ctttctcctg cttaaccac cccatctgca ttccagctc tcaccctgca
 601 tggctgatgc tgcccacgc aggccaggtc cagagagacc gaggaggag agtctcccag
 661 ggagcatgag aggaggcagc aggactgtcc ctttggaaaggaa gaatcatcag gaccctggac
 721 ctgtatacggc tccccagttc accccacccctt ttccttggaa atatgattta tacctaactg
 781 aataaaaaagc tggctgtct tcccaaaaaaa aaaaaaaaaa aaaaaaaaaa
 //
 LOCUS HSU88321 502 bp mRNA PRI 22-JUN-1998
 DEFINITION Human beta chemokine Exodus-3 mRNA, complete cds.
 ACCESSION U88321
 NID g2196921
 KEYWORDS
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 502)
 AUTHORS Hromas,R.A., Gray,P., Klemsz,M., Fife,K. and Broxmeyer,H.
 TITLE DCCL chemokines represent a novel beta chemokine subfamily
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 502)
 AUTHORS Hromas,R.A.
 TITLE Direct Submission
 JOURNAL Submitted (04-FEB-1997) Medicine, Indiana University Medical
 Center, 975 West Walnut, Indianapolis, IN 46202, USA
 REFERENCE 3 (bases 1 to 502)
 AUTHORS Hromas,R.A.
 TITLE Direct Submission
 JOURNAL Submitted (22-JUN-1998) Medicine, Indiana University Medical
 Center, 975 West Walnut, Indianapolis, IN 46202, USA
 REMARK Amino acid sequence updated by submitter
 FEATURES Location/Qualifiers
 source 1..502

```

/organism="Homo sapiens"
/note="PCR amplified from THP-1 cells"
/db_xref="taxon:9606"
/cell_line="THP-1"
/cell_type="monoblast"
/dev_stage="adult"
CDS 120..416
/note="Mip-3alpha/ELC/CKbeta1"
/codon_start=1
/product="beta chemokine Exodus-3"
/db_xref="PID:g3243080"



LOCUS HSU86358 879 bp mRNA PRI 11-SEP-1997  

DEFINITION Human chemokine (TECK) mRNA, complete cds.  

ACCESSION U86358  

NID 92388626  

KEYWORDS  

SOURCE human.  

ORGANISM Homo sapiens  

Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;  

Primates; Catarrhini; Hominidae; Homo.  

REFERENCE 1 (bases 1 to 879)  

AUTHORS Vicari,A.P., Figueroa,D.J., Hedrick,J.A., Foster,J.S.,  

Singh,K.P., Menon,S., Copeland,N.G., Gilbert,D.J., Jenkins,N.A., Bacon,K.B.  

and Zlotnik,A.  

TITLE TECK: a novel cc chemokine specifically expressed by thymic  

dendritic cells and potentially involved in T cell development  

JOURNAL Immunology 7, 291-301 (1997).  

REFERENCE 2 (bases 1 to 879)  

AUTHORS Vicari,A.P. and Zlotnik,A.  

TITLE Direct Submission  

JOURNAL Submitted (21-JAN-1997) Immunology, DNAX Research Institute,  

901 California Ave., Palo Alto, CA 94304, USA  

FEATURES Location/Qualifiers  

source 1..879  

/organism="Homo sapiens"  

/db_xref="taxon:9606"  

/chromosome="4"  

/tissue_type="thymus"  

gene 1..879  

/gene="TECK"  

CDS 1..453  

/gene="TECK"  

/codon_start=1  

/product="chemokine"  

/db_xref="PID:g2388627"


```

ORIGIN

```

1 atgaacctgt ggctcctggc ctgcctggc gcccgttcc tgggagcctg ggcccccgct
61 gtccacaccc aagggtgtctt tgaggactgc tgcctggctt accactaccc cattgggtgg
121 gctgtgtcc ggcgcgcctg gacttacccg atccaggagg tgagcgggg ctgcaatctg
181 cctgtgtcga tattctacct ccccaagaga cacaggagg tgggtggaa ccccaaaaagc
241 agggagggtc agagagccat gaagcttcctg gatgtcgaa ataagggttt tgcaaagctc
301 caccacaaca tgcagacctt ccaaggcaggc cctcatgtg taaaagaagtt gagttctgga
361 aactccaagt tatcatcata caagtttagc aatccatca gcagcagcaa gaggaaatgc
421 tccctctgtt ttcaggactg tgagccggct catttctggg ctccatcgcc
481 acaggagggg ccggatcttt ctccgataaa accgtcgcctc tacagaccca gctgtccca
541 cgccctgtc ttttgggtca agtcttaatc cctgcacccg agtgggtctt ccctctgcac
601 ccccaaccc tccctggccctg ttggcaactg gaaagaaggaa gttggcctga ttttaacctt
661 ttggccgtcc ggggaaacagc acaatcctgg gcagccaggc gctcttgtag agaaaactta
721 ggataacctt ctcactttct gtttcttgcc gtccaccccg ggcattgcctg gtgtgtccct
781 tgggtccctt cccaaaatct ggtcattcaa ggatccctc ccaaggctat gctttctat
841 aacttttaaa taaaccttgg ggggtgaatg gaataaaaa
//
```

LOCUS AB002409 852 bp mRNA PRI 15-AUG-1997
DEFINITION Homo sapiens mRNA for SLC, complete cds.
ACCESSION AB002409
NID g2335034
KEYWORDS SLC; mature ELC.
SOURCE Homo sapiens cDNA to mRNA.
ORGANISM Homo sapiens
Eukaryotes; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae;
Homo.
REFERENCE 1 (bases 1 to 852)
AUTHORS Nomiyama,H.
TITLE Direct Submission
JOURNAL Submitted (28-MAR-1997) to the DDBJ/EMBL/GenBank databases.
Hisayuki Nomiyama, Kumamoto University Medical School,
Department of Biochemistry; Honjo 2-2-1, Kumamoto, Kumamoto 860, Japan
(E-mail:nomiyama@gpo.kumamoto-u.ac.jp, Tel:81-96-373-5063,
Fax:81-96-372-6140)
REFERENCE 2 (bases 1 to 852)
AUTHORS Nagira,M., Imai,T., Hieshima,K., Kusuda,J., Ridanpaa,M.,
Takagi,S.,
TITLE Nishimura,M., Kakizaki,M., Nomiyama,H. and Yoshie,O.
Molecular Cloning of a Novel Human CC Chemokine Secondary
Lymphoid-Tissue Chemokine (SLC) That is an Efficient
Chemoattractant for Lymphocytes and Mapped to Chromosome 9p13
JOURNAL Unpublished (1997)
FEATURES
source Location/Qualifiers
1..852
/organism="Homo sapiens"
/db_xref="taxon:9606"
CDS 59..463
/codon_start=1
/product="SLC"
/db_xref="PID:d1022673"
/db_xref="PID:g2335035"

/translation="MAQSLALSLLILVLAFLGIPRTQGSDGGAQDCLKYSQRKIPAKV
VRSYRKQEPLGCSIPAILFLPRKRSQAELCADPKELWVQQLMQHLDKTPSPQKPAQG
CRKDRGASKTGKKGKGSKGCKRTERSQTGKGP"
mat_peptide <107..460
/product="mature ELC"
polyA_site 823..828
BASE COUNT 205 a 279 c 217 g 151 t
ORIGIN
1 cttgcagctg cccacctcac cctcagctct ggcctttac tcacccctta ccacagacat
61 ggctcagtc ctggctctga gcctccttat cctgggtctg gcctttggca tccccaggac
121 ccaaggcagt gatggagggg ctcaaggactg ttgcctcaag tacacccaa ggaagattcc
181 cgccaaagggtt gtccgcagct accggaagca ggaaccaagc ttaggctgtc ccatcccagc
241 tatcctgttc ttggcccgca agcgctctca ggcagagct tgcagaccc gaaaggagct
301 ctgggtgcag cagctgatgc agcatctgga caagacacca tccccacaga aaccagccca

361 gggctgcagg aaggacaggg gggcctccaa gactggcaag aaaggaaagg gctccaaagg
 421 ctgcaagagg actgagcggt cacagacccc taaaggccca tagcccttgt agcagccctgg
 481 agcccttgag accccaccc cctcaccaac gcttgaagcc tgaacccaag atgcaagaag
 541 gaggttatgc tcaggggccc tggagccccc accccatgt ggccttgcca cactcttct
 601 cctgctttaa ccaccccatc tgatccccca gcttacccct gcatggctga gtcggccaca
 661 gcaggccagg tccagagaga ccgaggaggg agagtcctcc agggagcatg agaggaggca
 721 gcaggactgt ccccttgaag gagaatcatc aggaccctgg acctgatacg gtcggccact
 781 acacccccc tcttccttgc aaatatgatt tataacctaac tgaataaaaaa gctgttctgt
 841 cttccccaccc gc

//

LOCUS	AF055467	1481 bp	mRNA	PRI	06-AUG-1998
DEFINITION	Homo sapiens monotactin-1 mRNA, complete cds.				
ACCESSION	AF055467				
NID	g3395775				
KEYWORDS					
SOURCE	human.				
ORGANISM	Homo sapiens				
Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.					
REFERENCE	1 (bases 1 to 1481)				
AUTHORS	Youn, B.S., Zhang, S., Broxmeyer, H.E., Antol, K., Fraser, M.J. Jr., Hangoc, G. and Kwon, B.S.				
TITLE	Isolation and characterization of LMC, a novel lymphocyte and monocyte chemoattractant human CC chemokine, with myelosuppressive activity				
JOURNAL	Biochem. Biophys. Res. Commun. 247 (2), 217-222 (1998)				
MEDLINE	98308096				
REFERENCE	2 (bases 1 to 1481)				
AUTHORS	Youn, B.S. and Kwon, B.S.				
TITLE	Direct Submission				
JOURNAL	Submitted (24-MAR-1998) Microbiology and Immunology, Indiana University, School of Medicine, 605 Barnhill Dr. Medical Science				
FEATURES	Bldg., Indianapolis, IN 46202, USA				
source	Location/Qualifiers				
5'UTR	1..1481				
CDS	/organism="Homo sapiens"				
	/db_xref="taxon:9606"				
	/chromosome="17"				
	1..34				
	35..397				
chemoattractant	/note="Mtn-1; LMC; lymphocyte and monocyte				
	CC chemokine-				
	/codon_start=1				
	/product="monotactin-1"				
	/db_xref="PID:g3395776"				
translation="MKVSEAALSLVLILIIITSASRSQPKVPEWVNTPSTCCLKYKEK LPRLVVGYRKALNCHLPAIIFVTKRNRREVCTNPNDWVQEYIKDPNLPLLPTRNLS TVKIITAKNGQPQLLSNQ"					
3'UTR	398..1481				
ASE COUNT	412 a	362 c	302 g	405 t	
RIGIN					
1	gcacgagctg aagctgtact gcctcgctga gaggatgaag gtctccgagg ctgccctgtc				
61	tctccttgcc ctcatcccta tcattacttc ggcttcttcg acggccggaa aagtccctgtca				
121	gtgggtgaac accccatcca cctgtctgcct gaagtattat gagaaggatgt tgccaaggag				
181	actagtggtg ggatacagaa aggcctcaa ctgtcaccc ccagcaatca tcttcgtcac				
241	caagaggaac cgagaaggct gcaccaaccc caatgacgac tgggtccaag agtacatcaa				
301	ggatcccaa ctaccccttgc tgccctaccag gaacttgc acggttaaaa ttattacagc				
361	aaaagaatgtt caaccccgcc tccctcaactc ccgtatgtaa ccaacttta gtggaaagccc				
421	tttgtttagcc aagaggggg taaatctgtaa acacgggaa agcccttata ggtctggaaact				
481	agccagtcac attgagagaa gcagaacaat gatccaaat aaggagaagt atttcgtacata				
541	ttttctcaat cttaggagga aataccaaag ttaaggacg tggcagagg tacgtctttt				
601	tatttttat tttatattttt tttttttt agatagggtc ttactctgtc acccaggctg				
661	gagtgcagg tggatctt ggctcaactt atcttggctc actgttaacctt ccacccatccca				
721	ggctcaagg tgcacccccc cccacccctcc cgatgtggat ggactacagg ctggcggccac				
781	cacacctggc taattttgtt atttttgtt gagaacggat tctaccatgt tqcccaaggct				

841 ggtctcaaac tcgtgtgcc aagcaatcca cctgcctcag cttccaaaa gtgctggct
 901 tacaggcgta agccaccaca tccggccagt ccactttaa tacacagaaa aatatatttc
 961 acatccctct cctgtcttcc tcaattcc cactcacac cagtagacaa gccattctaa
 1021 atacttagcc agtccccggc ttcccgatg atcttgcctt ctgtgggtttt gacccattaa
 1081 gagccccata gaactttaa ttttccctgt ccatctttat gggattttc tggatctata
 1141 ttttcttcaa ttattttttt attttataat gcaactttt cataggaatg ccggtaggg
 1201 atattcacat taatcatttt tgccagact ttgcttagatc ctctcatatt ttgtcttcct
 1261 cagggtggca ggggtacaga agtgcctgtat gggtttttt ttttttgag agagagagag
 1321 aagaagaaga agaagagaca caaatctt cctcccattt taatgtttgc aggacaggga
 1381 aagaagggt atgagacacg gctaggtaa actcttagtc caaaaacccaa gcatgcaata
 1441 aataaaactc ctttatttta caaaaaaaaaaaaaaaaaaaaaa a

//

LOCUS HSRNAATAC 557 bp RNA PRI 06-JUL-1995
 DEFINITION H.sapiens mRNA for ATAC protein.
 ACCESSION X86474
 NID g895846
 KEYWORDS ATAC gene.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 557)
 AUTHORS Muller,S., Dorner,B., Korthauer,U., Mages,H.W., D'Apuzzo,M.,
 Senger,G. and Kroczeck,R.A.
 TITLE Cloning of ATAC, an activation-induced, chemokine-related
 molecule
 exclusively expressed in CD8+ T lymphocytes
 JOURNAL Eur. J. Immunol. 25 (6), 1744-1748 (1995)
 MEDLINE 95339892
 REFERENCE 2 (bases 1 to 557)
 AUTHORS Kroczeck,R.A.
 TITLE Direct Submission
 JOURNAL Submitted (20-APR-1995) R.A. Kroczeck, Molecular Immunology,
 Robert-Koch-Institute, Nordufer 20, 13353 Berlin, FRG
 FEATURES Location/Qualifiers
 source 1..557
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /tissue_type="peripheral blood"
 /cell_type="lymphocyte"
 /chromosome="1"
 /map="q23"
 gene 25..369
 /gene="ATAC"
 CDS 25..369
 /gene="ATAC"
 /codon_start=1
 /product="CD8+T cell specific protein"
 /db_xref="PID:g895847"
 /db_xref="SWISS-PROT:P47992"

/translation="MRLLILALLGICSLTAYIVEVGVGSEVDKRTCVSLTTQRLPVSR

IKYTYTITEGSLRAVIFITKRGKLVCADPQATWVRDVVRSMRDKSNTRNNMIQTKPTGT
 QQSTNTAVTLTG"

polyA_signal 469..474

polyA_signal 534..539

BASE COUNT 157 a 139 c 112 g 149 t

ORIGIN

1 gcacagctca gcaggaccc agccatgaga cttctcatcc tggccctcct tggcatctgc
 61 tctctcaactg catacattgt ggaagggtta gggaggtaaag tctcagataa gaggacctgt
 121 gtgagcctca ctaccctcg actgcccgggtt agcagaatca agacccatcac catcacggaa
 181 ggctcccttga gaggcataat ttttattacc aaacgtggcc taaaagtctg tgctgatcca
 241 caagccacat gggtagaga cgtggtcagg agcatggaca gggaaatccaa caccagaaat
 301 aacatgatcc agaccaagcc aacaggaacc cagcaatcga ccaatacagc tgtgactctg
 361 actggcttagt agtctctggc accctgtccg tctccagcca gccagctcat ttcactttac
 421 acgtctcatgg actgagttt tactcgcctt ttatgaaagc actgcatgaa taaaattatt
 481 cttttgtatt ttatcttttta aatgtttctt gtattcaactt atatgtttca attaataaaat
 541 tattttattat taagaat

//

LOCUS HSU85767 **563 bp** **mRNA** **PRI** **01-APR-1997**
DEFINITION Human myeloid progenitor inhibitory factor-1 MPIF-1 mRNA,
complete
cds.
ACCESSION U85767
NID g1916249
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 563)
AUTHORS Patel,V.P., Kreider,B.L., Li,Y., Li,H., Leung,K., Salcedo,T.,
Nardelli,B., Pippalla,V., Gentz,S., Thotakura,R., Parmelee,D.,
Gentz,R. and Garotta,G.
TITLE Molecular and functional characterization of two novel human C-
C chemokines as inhibitors of two distinct classes of myeloid
progenitors
JOURNAL J. Exp. Med. (1997) In press
REFERENCE 2 (bases 1 to 563)
AUTHORS Li,H. and Patel,V.P.
TITLE Direct Submission
JOURNAL Submitted (17-JAN-1997) Cell Biology, Human Genome Sciences,
9410
Keywest Ave., Rockville, MD 20850, USA
FEATURES
source Location/Qualifiers
1..563
/organism="Homo sapiens"
/db_xref="taxon:9606"
CDS 31..393
/note="myeloid progenitor inhibitory factor-1"
/codon_start=1
/product="MPIF-1"
/db_xref="PID:g1916250."

/translation="MKVSVAAALSCMLVTALGSQARVTKDAETEFMMSKLPLENPVLL
DRFHATSADCCISYTPRSIPCSLLESYFETNSECSKPGVIFLTKKGRRCANPSDKQV
QVCMRMLKLDTRIKTRKN"
BASE COUNT 164 a 143 c 117 g 139 t
ORIGIN
1 ctcagccagc cctgcctgcc caccaggagg atgaaggctt ccgtggctgc ccttcctgc
61 ctcatgcttg ttactgcctt tgatcccaag gcccgggtca caaaagatgc agagacagag
121 ttcatgatgt caaagcttcc attggaaaat ccagtacttc tgacagatt ccatgctact
181 agtgcgtact gctgcatttc ctacacccca cgaagcatcc cgtgttact cctggagagt
241 tactttgaaa cgaacagcgea gtgctccaag cgggggtca ttttcctcac caagaagggg
301 cgacgtttct gtgccaaccc cagtgataag caagttcagg ttgcattgaaatgcgtgaag
361 ctggacacac ggatcaagac caggaagaat tgaacttgc aaggtgaagg gacacaagg
421 gccagccacc aactttcttg cctcaactac cttccctgaat tttttttta agaaggcatt
481 attcttgtt tctggattta gagcaattca tctaataaac agtttctcac ttttaaaaaaa
541 aaaaaaaaaa aaaaaaaaaa aaa
//
LOCUS HSU85768 **360 bp** **mRNA** **PRI** **01-APR-1997**
DEFINITION Human myeloid progenitor inhibitory factor-1 MPIF-2 mRNA,
complete
cds.
ACCESSION U85768
NID g1916251
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 360)
AUTHORS Patel,V.P., Kreider,B.L., Li,Y., Li,H., Leung,K., Salcedo,T.,
Nardelli,B., Pippalla,V., Gentz,S., Thotakura,R., Parmelee,D.,
Gentz,R. and Garotta,G.
TITLE Molecular and functional characterization of two novel human C-

C

chemokines as inhibitors of two distinct classes of myeloid progenitors

JOURNAL J. Exp. Med. (1997) In press
 REFERENCE 2 (bases 1 to 360)
 AUTHORS Li, H. and Patel, V.P.
 TITLE Direct Submission
 JOURNAL Submitted (17-JAN-1997) Cell Biology, Human Genome Sciences,
 9410 Keywest Ave., Rockville, MD 20850, USA
 FEATURES Location/Qualifiers
 source 1..360
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 CDS 1..360
 /note="myeloid progenitor inhibitory factor-2"
 /codon_start=1
 /product="MPIF-2"
 /db_xref="PID:g1916252"
 /translation="MAGLMTIVTSLLFLGVCAHHIPTGSVVIPTSPCCMFVSKRIPE
 NRVVSYQLSSRSTCLKGGVIFTTKKGQQFCGDPKQEWVQRYMKNLDAKQKKASPRARA
 VAVKGPVQRYPGNQTT"
 BASE COUNT 85 a 106 c 96 g 73 t
 ORIGIN
 1 atggcaggcc tgatgaccat agtaaccagg cttctgttcc ttgggtgtctg tgcccaccaac
 61 atcatcccta cgggctctgt ggtcataccccc tctccctgt gcatgttctt tgtttccaag
 121 agaatttcctg agaaccggagt ggtagtctac cagctgtccca gcaggaggcac atgcctcaag
 181 ggaggaggatgta tcttcaccac caagaagggc cagcgttct gtggcgaccc caagcaggag
 241 tgggtccaga ggtacatgaa gaacctggac gcacaaggcaga agaaggcttc ccctagggcc
 301 agggcagtgg ctgtcaaggg ccctgtccag agatatcctg gcaaccaaac cacctgtctaa
 //

LOCUS HUMSDF1A 1847 bp mRNA PRI 26-DEC-1996
 DEFINITION Human pre-B cell stimulating factor homologue (SDF1a) mRNA, complete cds.
 ACCESSION L36034
 NID g1220363
 KEYWORDS intercrine; intercrine CXC subfamily; pre-B cell stimulating factor homologue; alpha-chemokine.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1847)
 AUTHORS Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H., Shinohara, T. and Honjo, T.
 TITLE Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene
 JOURNAL Genomics 28 (3), 495-500 (1995)
 MEDLINE 96039262
 FEATURES Location/Qualifiers
 source 1..1847
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="h5"
 /cell_line="FLEB14-14"
 sig_peptide 80..142
 /gene="SDF1a"
 CDS 80..349
 /codon_start=1
 /product="pre-B cell stimulating factor homologue"
 /db_xref="PID:g1220364"
 /translation="MNAAKVVVVVLVLVLTALCLSDGKPVSLSYRCPCRFFFESHVARANV
 KHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWIQEYLEKALNK"
 gene 80..346
 /gene="SDF1a"
 mat_peptide 143..346

LOCUS HUMSDF1B 3524 bp mRNA PRI 26-DEC-1996
DEFINITION Human pre-B cell stimulating factor homologue (SDF1b) mRNA, complete cds.
ACCESSION L36033
NID g1220365
KEYWORDS intercrine; intercrine CXC subfamily; pre-B cell stimulating factor
SOURCE homologue; alpha-chemokine.
ORGANISM human.
REFERENCE Homo sapiens
AUTHORS Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
1 (bases 1 to 3524)
TITLE Shirozu,M., Nakano,T., Inazawa,J., Tashiro,K., Tada,H., Shinohara,T. and Honjo,T.
JOURNAL Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene
MEDLINE Genomics 28 (3), 495-500 (1995)
FEATURES 96039262
source Location/Qualifiers
1..3524
/organism="Homo sapiens"
/db_xref="taxon:9606"
/clone="h17"
/cell_line="FLEB14-14"
sig_peptide 80..142
/gene="SDF1b"
CDS 80..361
/codon_start=1
/product="pre-B cell stimulating factor homologue (SDF1b) mRNA, complete cds."

/translation="MNAKVVVVLVVLVTALCLSDGKPVSLSYRCPCRFRESHVARANV
/db_xref=PID:g1220366."

gene 80..358
 /gene="SDF1b"
 mat_peptide 143..358
 /gene="SDF1b"
 /product="pre-B cell stimulating factor homologue"
 BASE COUNT 903 a 886 c 793 g 942 t
 ORIGIN
 1 ttcggcgtca cgccattgcc cgctcgccgt ccggcccccg acccggtctc gtccgcccgc
 61 ccggccggcc gccggccca tgaacggccaa ggtcgtggtc gtgtgtggcc tcgtgtgtgac
 121 cgcgtctgc ctacgcgac ggaaggcccg cagccgtgac tacagatgcc catggcgat
 181 cttcgaaaagc catgttgcga gagccaaacgt caagcatctc aaaatttca acactccaaa
 241 ctgtgcccctt cagattgttag cccggctgaa gaacaacaac agacaagtgt gcattgacc
 301 gaagctaaagc tggttgcagg agtacctgga gaaagcttta aacaagggat tcaagatgt
 361 agagggtcag acgcctgagg aacccttaca gttaggagccc agctctggaaa ccagtgttag
 421 gaaaggccctt gccacagcgc cccctggccag ggcaggggcc caggcattgc caagggttt
 481 gttttgcaca ctttgcata ttttccatcat ttgattatgt agccaaatac atgacattta
 541 ttttttattt agtttgatta ttcagtgtca ctggcgcacac gtacgcgtt agactaaggc
 601 cattattgtt cttgccttat tagagtgtct ttccacggag ccactcttct gactcagggc
 661 tcctgggttt tgatttcttct gactgtgca ggtggggaga ctgggctgag ggagcgttgc
 721 cccatgtca gcccattgggt gggagggccca caagaggggac gcctgggggtt gccaggacc
 781 gtcaaacctgg gcaaaggccca tgaaggcctt ctctctgtgg gatggggatgg tggggggcca
 841 catgggaggc tcaccccccctt cccatccac atgggagccg ggtctgcctt ttctggggagg
 901 gcagcagggg tacccctgagc tgaggcagca gtgtgaggcc agggcagagt gagacccaggc
 961 cctcatcccg agacacccca cccatccac gttctgtca tcatttcctt tctccatccat
 1021 catcatgtgt gtccacgact gtcctccatgg ccccgccaaa ggactcttcg gaccggaaact
 1081 ttcatgtaaa ctgtgcacca agcagggaaat gaaaatgtct tttgttaccc gaaaacactg
 1141 tgcacatctg tgcttctgtgt ggaatattgtt ccattgttcca atccatgttt tttgttcaaa
 1201 gccagcgtcc tcctctgtga ccaatgtttt gatgcatgc ctgtttcccc tttgtgcggcc
 1261 ctgagcgggg agatgtcttct tggggccctt gatgtcgc tttgttcggcc cctgtgttcc
 1321 ttgggggtt gaa ctacccctgt tttttccactt gttccatggggatggggatggggatgg
 1381 agcccaagggg aattcgggtgt gcaccagggt tgaccggaga ggttgcgtc cccatcagt
 1441 ctccctccaca tgcgttgcatttccatccatccatccatccatccatccatccatccatccat
 1501 agcattcaca acttggttttt ggtttttttt acccagtccca ctttttttttttttttttttt
 1561 atgaagatcc ttccatccatttccatccatccatccatccatccatccatccatccatccatccat
 1621 catctcttcg ctccctccctg gcccctctt gtttttttttttttttttttttttttttttttt
 1681 tccccacaggc catttcttccatccatccatccatccatccatccatccatccatccatccat
 1741 gacatttggg gtgttcccttccatccatccatccatccatccatccatccatccatccatccat
 1801 aaatgttccatccatccatccatccatccatccatccatccatccatccatccatccatccatccat
 1861 ctttacaaata cttttggccctt gtt
 1921 agtggaaaac aaggaaagtca aacccatccatccatccatccatccatccatccatccatccat
 1981 attatgttgc ttt
 2041 tagtaacatgc ttt
 2101 aaacccatca aaaaaatttgc ttt
 2161 atattgaaaa aatagagccctt gtt
 2221 aaacccatccatccatccatccatccatccatccatccatccatccatccatccatccatccatccat
 2281 attatccaggc taatccaaatccatccatccatccatccatccatccatccatccatccatccat
 2341 cccaaatccatccatccatccatccatccatccatccatccatccatccatccatccatccatccat
 2401 ctttgcataca gtcaggaaag gtt
 2461 gagtagaaac tgcaggggaaa ttt
 2521 tcctggagac tgcccgatca aacccatccatccatccatccatccatccatccatccatccat
 2581 aaaaatccatccatccatccatccatccatccatccatccatccatccatccatccatccatccat
 2641 gagctgttta ctagggatcc ttt
 2701 cactcccttg ggctccctgt ttt
 2761 cccagaggaa gggggccagag ttt
 2821 ctt
 2881 ccaggaggca ctt
 2941 gcagaggggc tgaatagcag ttt
 3001 ccattggatcc tcattggacc ttt
 3061 gctcttt
 3121 gaatt
 3181 tcctggggaaa ttt
 3241 gtagaaaaatt ttt
 3301 cagtgtttaaa ttt
 3361 gtgaaaaatgg tccaggagaa ttt
 3421 gaaacaacttc ttt
 3481 tatgcactta taatccatccatccatccatccatccatccatccatccatccatccatccatccat

LOCUS HSJ002211 663 bp mRNA PRI 11-MAR-1998
DEFINITION Homo sapiens cDNA for a CXC chemokine.
ACCESSION AJ002211

NID g2832410
 KEYWORDS CXC chemokine.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 663)
 AUTHORS Legler,D.F., Loetscher,M., Roos,R.S., Clark-Lewis,I.,
 Baggiolini,M.
 and Moser,B.
 TITLE B cell-attracting chemokine 1, a human CXC chemokine expressed
 in lymphoid tissues, selectively attracts B lymphocytes via
 BLR1/CXCR5
 JOURNAL J. Exp. Med. 187 (4), 655-660 (1998)
 MEDLINE 98130629
 REFERENCE 2 (bases 1 to 663)
 AUTHORS Moser,B.
 TITLE Direct Submission
 JOURNAL Submitted (05-NOV-1997) Moser B., University of Bern, Theodor
 Kocher Institute, Freiestrasse 1, CH-3012 Bern, SWITZERLAND
 FEATURES Location/Qualifiers
 source 1..663
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /cell_type="PBL"
 sig_peptide 35..100
 /gene="BCA-1"
 CDS 35..364
 /gene="BCA-1"
 /codon_start=1
 /product="CXC chemokine"
 /db_xref="PID:e1249325"
 /db_xref="PID:g2832411"

 /translation="MKFISTSLMLLVSSLSPVQGVLEVYYTSLRCRCVQESSVFIP
 RRFIDRIQILPRNGCPRKEIIWKKKNKSIVCVDPQAEWIQRMMEVLRKSSSTLPVP
 VFKRKIP"
 gene 35..364
 /gene="BCA-1"
 mat_peptide 101..361
 /gene="BCA-1"
 BASE COUNT 176 a 136 c 145 g 198 t 8 others
 ORIGIN
 1 cagagctcaa gtctgaactc tacctccaga cagaatgaag ttcatctcgaa catctctgct
 61 ttcgtatgtgc ctggtagcga gcctctctcc agtccaagggt ttcttgagg tctattacac
 121 aagcttgagg ttagatgtg tccaagagag ctcagttttt atccctagac gtttcatgg
 181- tcgaattcaa atcttgcggcc gttggaaatgg ttgtccaaaga aaagaaatca tagcttggaa
 241 gaaagaacaag tcaatttgtt gtgtggacc tcaagctgaa tggataaaaaa gaatgtggaa
 301 agtattggaaa aaaaagaagt tttcaactt accagttcca gtgtttaaga gaaagattcc
 361 ctgtatgtca tattttccat aagaacacact gcattttccctt attatccctg ctctgggatt
 421 ttatgtttgtt gcttagttaa atctttccaa gggagaaaaa acttccccat acaaataaagg
 481 catgaggact atgtaaaaat aaccttgcag gagctggatg gggggccaaa ctaagcttc
 541 ttcaactcca caggcacccat attntacact tgggggtttt gcnttcttn tttcnctcagg
 601 gggggggaaa gtttcttttg gaaantagtt nttccagttt ttaggttata cagggttntt
 661 ttt
 //
 LOCUS HSHUMIG 2545 bp RNA PRI 16-NOV-1993
 DEFINITION H.sapiens Humig mRNA.
 ACCESSION X72755 S60728
 NID g311375
 KEYWORDS chemokine; cytokine; Humig gene; secreted protein.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 2545)
 AUTHORS Farber,J.M.
 TITLE Direct Submission
 JOURNAL Submitted (22-MAR-1993) J.M. Farber, Johns Hopkins Univ. School

of

USA Medicine, Ross 1147, 720 Rutland Avenue, Baltimore, MD 21205,

REFERENCE 2 (bases 1 to 2545)
AUTHORS Farber, J.M.

TITLE HuMig: a new human member of the chemokine family of cytokines
JOURNAL Biochem. Biophys. Res. Commun. 192 (1), 223-230 (1993)

MEDLINE 93236577

FEATURES Location/Qualifiers

source 1..2545
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /germline
 /dev_stage="child"
 /tissue_type="leukaemia"
 /cell_type="monocyte"
 /cell_line="THP-1"
 /clone_lib="THP-1/IFN-gamma cDNA"
 /clone="H-1-3"
 misc_feature 13..19
 /note="cis-acting element; putative"
 gene 40..417
 /gene="Humig"
 CDS 40..417
 /gene="Humig"
 /codon_start=1
 /db_xref="PID:g311376"
 /db_xref="SWISS-PROT:Q07325"

/translation="MKKSGVLFLIGIILVQGTPVVRKGRCSICSTNQGTIHLQ

SLKDLKQFAPSPSCEKIEIIATLKVQTLNPKDSADVKEIKKKWEQVSQKKQKNG
KKHQKKVKLVKVRKSQRSRQKTT"

BASE COUNT 755 a 581 c 457 g 752 t
ORIGIN

```

1 atccaaataca ggagtgactt ggaactccat tctatcaata tgaagaaaag tggtgttctt
61 ttccctttgg gcatcatctt gtgggttcgtt attggagtg aaggaacccc agtagtgaga
121 aagggtcgct gttcctgcatt cagcaccaac caaggacttccatcata atcccttggaaa
181 gaccttaaac aatttgcctt aagcccttccatcata ttggaaatcat tgctacactg
241 aagaatggag ttcaaaatcatg tctaaacccca gattcagcag atgtgaagga actgattaaaa
301 aagtgggaga aacagggtcg ccaaaagaaaa aagcaaaaga atggggaaaa acatcaaaaa
361 aagaaatgttccatcata aatccatcgat cgttctcgcc aaaagaagac tacataagag
421 accacttcac caataatgttccatcata aatccatcgat ttttattaccgtatcata
481 ttccaaagga ggatggcata taatacaaaag gcttattat ttgactagaa aattttaaaac
541 attactctga aattgttaact aaagttagaa agttgattt aagaatccaa acgtttaagaa
601 ttgttaaagg ctatgatgt ctgtttctt ctaccaccca ccagttgaaat ttcatcatgc
661 tttagggccat gatttttaga ataccatcgat ctacacatcgat ttccacccaa ccacatccca
721 ctcacaaacag ctgcctggaa gagcagccct aggttccac gtactgcagc cttccagagag
781 tatctgaggc acatgtcagc aagtccatcgat cctgttagca tgctggtag ccaagcagg
841 tgaaatgttccatcata ccaagctgttccatcata acctctgtat ttgaaatcage
901 ctacaggccat cacacaaatcgat gtttgcgttccatcata gatttgcgttccatcacc
961 actggagatc accagtgtgt ggcttccatcata gccttccttccatcata agccatgtga
1021 ttccatcttccatcata cccgttcagg ctgaccactt tattttttttt tggtttccatcata
1081 aagtccatcata tttttccatcata taccacaaatcgat cagtccatcata ttccatcata
1141 catatcttccatcata gatttgcgttccatcata tttttccatcata tgccccaaac accccacaga
1201 agtgcgttccatcata tttttccatcata cttccatcata cttccatcata tgccccaaac accccacaga
1261 aaataaaaccc tttttggacac acaaatttccatcata ttccatcata cttccatcata tgccccaaac accccacaga
1321 cacatgggttccatcata aacactcaat gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1381 agatgttccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1441 ctaataatcgat tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1501 tggcaaccatc accattgttccatcata cttccatcata tgccccaaac accccacaga
1561 ctggccatc tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1621 gatgttccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1681 gcacgttccatcata aacactcaat gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1741 aaaaatccatcata aatccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1801 ccaaccatc aaaaatttccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1861 tctaagatct aacaagatcgat ccaccgttccatcata aatccatcata gtttgcgttccatcata tgccccaaac accccacaga
1921 agtttttgcgttccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
1981 tttttccatcata aaaaatccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
2041 tagtggaaatcgat tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga
2101 ggaggttccatcata tttttccatcata gtttgcgttccatcata ttccatcata tgccccaaac accccacaga

```

2161 ctttccaaa ttgaatcaact gctcacactg ctgatgattt agagtgcgtt ccgggtggaga
 2221 tcccacccga acgtcttatac taatcatgaa actccctagt tccttcatgt aacttccctg
 2281 aaaaatctaa gtgttcata aatttgagat tctgtgaccc acttacccatg catctcacag
 2341 gtagacagta tataactaac aaccaaagac tacatattgt cactgacaca cacgttataa
 2401 tcatttatca tatataataca tacatgata cactctcaaa gcaaataatt tttcaactca
 2461 aaacagtatt gacttgtata ccttgttaatt tgaaatattt tctttgttaa aatagaatgg
 2521 tatcaataaa tagaccatta atcag
 //

LOCUS HSHUMIG 2545 bp RNA PRI 16-NOV-1993
 DEFINITION H.sapiens Humig mRNA.
 ACCESSION X72755 S60728
 NID g311375
 KEYWORDS chemokine; cytokine; Humig gene; secreted protein.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 2545)
 AUTHORS Farber, J.M.
 TITLE Direct Submission
 JOURNAL Submitted (22-MAR-1993) J.M. Farber, Johns Hopkins Univ. School
 of Medicine, Ross 1147, 720 Rutland Avenue, Baltimore, MD 21205,
 USA
 REFERENCE 2 (bases 1 to 2545)
 AUTHORS Farber, J.M.
 TITLE HuMic: a new human member of the chemokine family of cytokines
 JOURNAL Biochem. Biophys. Res. Commun. 192 (1), 223-230 (1993)
 MEDLINE 93236577
 FEATURES Location/Qualifiers
 source 1..2545
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /germline
 /dev_stage="child"
 /tissue_type="leukaemia"
 /cell_type="monocyte"
 /cell_line="THP-1"
 /clone_lib="THP-1/IFN-gamma cDNA"
 /clone="H-1-3"
 misc_feature 13..19
 /note="cis-acting element; putative"
 gene 40..417
 /gene="Humig"
 CDS 40..417
 /gene="Humig"
 /codon_start=1
 /db_xref="PID:g311376"
 /db_xref="SWISS-PROT:Q07325"
 /translation="MKKSGVLFLLGIIILVLIGVQGTPVVRKGRCSCISTNQGTIHLQ
 SLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVKELEKKWEQVSQKKQKNG
 KKHQKKVVLKVRKSQRSRQKKTT"
 BASE COUNT 755 a 581 c 457 g 752 t
 ORIGIN

1 atccaataca ggagtgcattt ggaactccat tctatcaacta tgaagaaaaag tggtgttctt
 61 ttccctttgg gcatacatctt gctggttctg attggagtgc aaggaaaccc agtagtgaga
 121 aagggtcgct gttcctgcattt cagcaccaac caagggacta tccacccata atccttggaa
 181 gaccttaaac aatttgcattt aagcccttcc tgcgagaaaa ttgaaatcat tgctacactg
 241 aagaatggag ttcaaacatg ttcaaaacccat gattcagcag atgtgaagga actgattaaa
 301 aagtgggaga aacaggtagt cccaaagaaa aagcaaaaatgaaaaaaa acatcaaaaa
 361 aagaaagtcc ttgaaatcttcaaaatctcaa cgttctcgatc aaaaagaagac tacataagag
 421 accacttcac caataagtat tctgtgtttaaa aatgttctttaattt accgctatca
 481 ttccaaagga ggatggcata taatcacaag gcttataat ttgactgaa aattttaaaac
 541 attactctga aatttgcattt aatgttagaa agttgatttt aagaatccaa acgttaagaa
 601 ttgttaaagg ctatgattgt ctgttgcattt ctaccacccca ccagttgaat ttcatcatgc
 661 ttaaggccat gattttagca atacccatgt ctacacagat gttcacccca ccacatccca
 721 ctcacaaacag ctgcctggaa gagcagccctt aggctccac gtactgcgc ctccagagag
 781 tatctgaggc acatgtcagc aagtccaaatg cctgttagca tgctggtagc ccaagcagg

```

841 tgaattttagat ctggacacctca ccaagctgt gtggccatca acctctgtat ttgaatcagg
901 ctacaggcct cacacacaat gtgtctgaga gattcatgt gatttttattt gggatccacc
961 actggagatc accagtgtgt ggcttcaga gcctccccc tggcttttggaa agccatgtga
1021 ttccatcttg cccgctcagg ctgaccactt tattttttt ttttccctt tgcttcattc
1081 aagtctcgctc ttctccatcc taccacaatg cagtgcctt ctttctatcc tgccacatgt
1141 catatgtctt gattttatctg agtcaactcc ttctccatct ttttccaaac accccacacaga
1201 agtgccttct tctcccaatt catcctcaat cagtccagct tagtccaaatg cctgccttct
1261 aaataaaacct ttttggacac acaaatttac ttttccaaatcc ttatccactt ggttcaactt
1321 cacatgggtg aacactcaat ggttaactaa ttcttgggtg ttatccat ttttccaaacc
1381 agatgtcag ctcttggagg gcaagagccaa cagtatattt ccctgtttct tccacagtgc
1441 ctaataatac tggaaacta ggttttaata attttttaat tgatgttggg atggggcagga
1501 tggcaaccac accattgtct cagggcagg gctggctt ttttggctac tccatgttgg
1561 cttagctctg gtaacacctt acttatttac ttccaggacac tcactacagg gaccaggat
1621 gatgcaacat ccttgcctt ttatgacagg atgtttgtc agtcttcata acaataagaa
1681 gcacgtggta aacacttgc ggatattctg gactgtttt aaaaatata cagtttaccc
1741 aaaaatataat aatcttacaa tgaaaaggac ttatagatc agccagtgc caacccccc
1801 ccaaccatata aaaaattctt ttccggaa gaaaagggtt ttccatataa gcctcagtt
1861 tctaagatct aacaagatag ccaccggat ctttategaa acttattttt gccaatata
1921 agtttatttgc tcggttact ttgttccatgag ttgttgcattt gattatcaat taccacacca
1981 tctccatgaa agaaaggaa cgggtgaacta ctaaggctta gaggaaaggc ccaagtcgg
2041 tagtggaaagc atgatttgc cccgttgc ttctgcaggaa tggaaacc ttcttccagg
2101 ggagggttgc tgaatttgc aggagaggtt gtctgtggcc agatattttttaa cttataactca
2161 ttcccccataa ttgaatctact gttcacactg ttgtatgat agagtgcgtt ccgggtggaga
2221 tcccccccgaa agtcttatac taatcatgaa actccctgtt ttccatgtt aacttccctg
2281 aaaaatcttaa gtgtttcata aatttggag tctgtgaccc acttacccctt catctcacaag
2341 gtagacagta tataactaac aacccaaagac tacatattgtt cactgacaca cacgttataa
2401 tcatttatca tatataatac tacatgcata cactctaaa gcaataatt ttctacttca
2461 aacacgtt gacttgcata ccttgcataa ttgttgcataa aatagaatgg
2521 tatcaataaa tagaccattt atcag
//
```

LOCUS AF002985 995 bp mRNA **PRI** 01-NOV-1997
DEFINITION Homo sapiens putative alpha chemokine (H174) mRNA, complete cds.
ACCESSION AF002985
NID g2580585
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 995)
AUTHORS Jacobs, K.A., Collins-Racie, L.A., Colbert, M., Duckett, M.,
Golden-Fleet, M., Kelleher, K., Kriz, R., LaVallie, E.R.,
Merberg, D., Spaulding, V., Stover, J., Williamson, M.J. and McCoy, J.M.
TITLE A genetic selection for isolating cDNAs encoding secreted
proteins
JOURNAL Gene 198 (1-2), 289-296 (1997)
MEDLINE 98036061
REFERENCE 2 (bases 1 to 995)
AUTHORS Jacobs, K.A., Collins-Racie, L.A., Colbert, M., Duckett, M.,
Golden-Fleet, M., Kelleher, K., Kriz, R., LaVallie, E.R.,
Merberg, D., Spaulding, V., Stover, J., Williamson, M.J. and McCoy, J.M.
TITLE Direct Submission
JOURNAL Submitted (07-MAY-1997) Genetics Institute, 87 Cambridge Park
Drive, Cambridge, MA 02140, USA
FEATURES Location/Qualifiers
source 1..995
/organism="Homo sapiens"
/db_xref="taxon:9606"
/cell_type="PHA and PMA activated human peripheral
blood mononuclear cells"
gene 1..995
/gene="H174"
CDS 88..372
/gene="H174"
/codon_start=1
/product="putative alpha chemokine"

/db_xref="PID:g2580586"

/translation="MSVKGMAIALAVILCATVQGFPMPFKRGRCCLCIGPGVKAVKVAD
IEKASIMYPSNNCDKIEVIITLKENKGQRCLNPKSQARLIKKVERKNF"
BASE COUNT 382 a 170 c 194 g 249 t
ORIGIN

```

1. gaattcggcc aaagaggcct acttccaaga agagcagcaa agctgaagta gcagcaacag
61. caccaggcgc aacagcaaaa aacaaacatg agtgtgaagg gcatggctat agccttgct
121. gtgtatgtt gtgtacagt tggtcaaggc ttccccatgt tcaaaagagg acgctgtct
181. tgcatacgcc ctgggtaaa agcagtggaaa gtggcagata ttgagaaagc ctccataatg
241. tacccaagta acaactgtga caaatatggaa gtgattatta ccctgaaaga aaataaaagga
301. caacgatgcc taaatccca atcgaagcaa gcaaggctta taatcaaaa agttgaaaga
361. aagaattttt aaaaatatca aaacatatga agtcctggaa aagggcatct gaaaaaccta
421. gaacaagttt aactgtgact actgaaatga caagaattct acagttagaa actgagacct
481. ttctatgtt ttgtacttt caacttttgc acagttatgt gaaggatgaa aggtgggtga
541. aaggaccaaa aacagaaata cagtttctt cgaatgtga caatcagaat tccactgccc
601. aaaggagtcc aacaattaaa tggatttcta ggaaaagcta ccttaagaaa ggctgggtac
661. catcgaggt tacaaagtgc ttacggttc ttacttggt tattatacat tcatgcatt
721. ctaggttaga gaaccttcta gatttgatgc ttacaactat tctgttgtga ctatgagaac
781. atttctgtct cttaggtta tctgtcttgc ttgatctta tctatcttata ctatctgtgg
841. ttacagtggaa gacattgaca ttatcttgc agtcaagccc ttataagtca aaagcaccta
901. tttgtgtctaa agcatttcttca aaacatttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
961. aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
//
```

LOCUS AF030514 1371 bp mRNA PRI 17-JUN-1998
DEFINITION Homo sapiens interferon stimulated T-cell alpha chemoattractant precursor, mRNA, complete cds.
ACCESSION AF030514
NID g3219692
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1371)
AUTHORS Cole,K.E., Strick,C.A., Paradis,T.J., Ogborne,K.T.,
Loetscher,M., Gladue,R.P., Lin,W., Boyd,J.G., Moser,B., Wood,D.E.,
Sahagan,B.G. and Neote,K.
TITLE Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3
J. Exp. Med. 187 (12), 2009-2021 (1998)
JOURNAL 98290735
MEDLINE
REFERENCE 2 (bases 1 to 1371)
AUTHORS Cole,K.E., Strick,C.A. and Sahagan,B.G.
TITLE Direct Submission
JOURNAL Submitted (20-OCT-1997) Molecular Sciences, Pfizer, Inc.,
Eastern Point Road, Groton, CT 06340, USA
FEATURES Location/Qualifiers
source 1..1371
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="4"
/cell_type="astrocytes"
sig_peptide 70..132
70..354
/note="chemokine; I-TAC"
/codon_start=1
/product="interferon stimulated T-cell alpha chemoattractant precursor"
/CDS /db_xref="PID:g3219693"
mat_peptide 133..351
/evidence=not_experimental

/translation="MSVKGMAIALAVILCATVQGFPMPFKRGRCCLCIGPGVKAVKVAD
IEKASIMYPSNNCDKIEVIITLKENKGQRCLNPKSQARLIKKVERKNF"
mat_peptide 133..351
/evidence=not_experimental

/product="interferon stimulated T-cell alpha chemoattractant"

BASE COUNT 487 a 228 c 244 g 411 t 1 others

ORIGIN

```

1 ctccttccaa gaagagcagc aaagctgaag tagcagcaac agcaccagca gcaacagcaa
61 aaaacaaaca tgagtgtgaa gggcatggct atagcttgg ctgtatatt gtgtgcata
121 gtttttcaag gctccccat gttcaaaaga ggacgtgtc tttgcataagg ccctggggta
181 aaagcagtga aagtggcaga tattgagaaa gccttcataa tgtacccaag taacaactgt
241 gacaaaatag aagtgttat taccctgaaa gaaaataaag gacaacgtat cctaaatccc
301 aaatcgaaagc aagaacaggct tacatatcaa aagtggaaa gaaagaattt taaaaatcc
361 caaaacatata gaaatccttgg aaaagggcat ctgaaaacc tagaacaagt ttactgtga
421 ctactgaaat gacaagaatt ctacagttagg aaactgagac tttctatgg ttttgtact
481 ttcaactttt gtacagttat gtgaaggatg aaaggtgggt gaaaggacca aaaacagaaa
541 tacagtttc ctgaatgtat gacaatcaga atttcactgc ccaaaggagt ccagcaatta
601 aatggatttc tagggaaagc tacattttaga aaggctgggtt accatcgagg ttatcaaaat
661 gcttcacgt tcttacttgc ttttgcataatc attcatgtat ttcttaggtca gagaaccttc
721 tagatttgat gcttacaact attctgttgc gactatgaga acatttctgt ctctagaagt
781 tatctgtcg tattgtatctt tatgtatatac ttttgcataatc gtttacagtgt gagacattgaa
841 cattattact ggatgtcaagc ctttataatg caaaagcatac ttttgcataatc aaagcatttcc
901 tcaaacattt ttttgcataatc atacacatgtt ctttcccaaa atatcatgtat gcacatcaat
961 atgttagggaa acatttcttgc gcatcatttgc gtttgcataatc attttgcataatc attaaatgtt
1021 atttcataaaa tgtaatgtatgc aaaaaattat acgtatggg atactggcaaa cagtgcacat
1081 atttcataac caaattgtatgc gcaccggctt taatttgcataatc ttttgcataatc ttttgcataatc
1141 gagatgtttt gaagcaatggatgttgc gtttgcataatc ttttgcataatc ttttgcataatc
1201 gtataaatgtatgc tagcaatatac ttggacacatgttgcataatc aatgtttttt gtcttacaaa
1261 gaaaatgtt gaaaataag caaatgtatgc ctttgcataatc acttttgcataatc ttttgcataatc
1321 tgtcttgcataatc aatctaatac aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa a
//
```

LOCUS AF030514 1371 bp mRNA PRI 17-JUN-1998

DEFINITION Homo sapiens interferon stimulated T-cell alpha chemoattractant precursor, mRNA, complete cds.

ACCESSION AF030514

NID 93219692

KEYWORDS

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 1371)

AUTHORS Cole,K.E., Strick,C.A., Paradis,T.J., Ogborne,K.T., Loetscher,M., Gladue,R.P., Lin,W., Boyd,J.G., Moser,B., Wood,D.E., Sahagan,B.G.

TITLE Interferon-inducible T cell alpha chemoattractant (I-TAC); a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3

JOURNAL J. Exp. Med. 187 (12), 2009-2021 (1998)

MEDLINE 98290735

REFERENCE 2 (bases 1 to 1371)

AUTHORS Cole,K.E., Strick,C.A. and Sahagan,B.G.

TITLE Direct Submission

JOURNAL Submitted (20-OCT-1997) Molecular Sciences, Pfizer, Inc., Eastern

FEATURES Point Road, Groton, CT 06340, USA

source Location/Qualifiers

1..1371

/organism="Homo sapiens"

/db_xref="taxon:9606"

/chromosome="4"

/cell_type="astrocytes"

sig_peptide 70..132

CDS 70..354

/note="chemokine; I-TAC"

/codon_start=1

/product="interferon stimulated T-cell alpha chemoattractant precursor"

/db_xref="PID:93219693"

/translation="MSVKGMAIALAVILCATVVOQGPFMFKRGRCCLCIGPGVKAVKVAD
 IEKASIMYPSNNCDKIEVIITLKENKGQRCLNPKSQARLIKKVERKNF"
 mat_peptide 133..351
 /evidence=not_experimental
 /product="interferon stimulated T-cell alpha
 chemoattractant"

BASE COUNT	487	a	228	c	244	g	411	t	1	others
------------	-----	---	-----	---	-----	---	-----	---	---	--------

ORIGIN

```

 1 ctcctccaa gaagaggcgc aaagctgaag tagcagcaac agcaccagca gcaacagcaa
 61 aaaacaaaca tgagtgtgaa gggcatggct atagccttgg ctgtatatt gtgtgctaca
 121 gttgtcaag gctccccat gtccaaaaga ggacgctgtc tttcatagg ccctggggta
 181 aaagcagtga aagtggcaga tattgaaaaa gcctccataa tgacccaaag taacaactgt
 241 gaaaaatag aagtattat tacccatggaa gaaaaataag gacaacgatg cctaaatccc
 301 aaatcgaagc aagcaaggct tataatcaaa aaagtgaaa gaaagaattt taaaaaatat
 361 caaaacatat gaagtccctgg aaaagggcat ctgaaaaacc tagacaagt ttaactgtga
 421 ctactgaaat gacaagaatt ctacagttagg aaactgagac tttctatgg ttttgtact
 481 ttcaactttt gtacagttat gtgaaggatg aaagggtgg gaaaggacca aaaacagaaa
 541 tacagtcttc ctgaatgaat gacaatcaga attccactgc ccaaggagt ccagcaatata
 601 aatggatttc tagggaaagc taccttaaga aaggctggg accatcgag tttacaaagt
 661 gcttcacgt tctacttgt ttttattatc attcatgcattt ttctaggcta gagaaccttc
 721 tagattgtat gcttacaactt attctgtgtt gactatgaga acatctgtt ctctagaagt
 781 tatctgtctg tattgtatctt tattgtatataatctatgtt gtttacagt gagacattga
 841 cattattact ggagtcaagc ccttataatg caaaagcatac tttttttttt ttatgtcgta
 901 tccaaacattt ttcatgcaaa atacacaytt ctttccccaat atatcatgtt gacatcaat
 961 atgttagggaa acattttttt gcatcattt gtttgggtaa accaaatttcc attaaatgtt
 1021 attcataaaa tttttttttt gtttgggtaa accaaatttcc attaaatgtt
 1081 atttcataac caaataggca gacccggctt taattttttttt tttttttttt tttttttttt
 1141 gagatgtttt gaagcaatta ggtatgtt gtttactgtt tttttttttt tttttttttt
 1201 gtataatgtt tagcaatatac ttggacacat ttggaaataca aaatgtttttt gtctaccaaa
 1261 gaaaaatgtt gaaaaataag caaatgtata ccttagaattc actttttttttt tttttttttt
 1321 tgtctcttag aaaaatatacat aatctaataca aaaaaaaaaaaaaaaa aaaaaaaaaaaa a
  //
```

LOCUS AF030514 1371 bp mRNA PRI 17-JUN-1998
 DEFINITION Homo sapiens interferon stimulated T-cell alpha chemoattractant precursor, mRNA, complete cds.
 ACCESSION AF030514
 NID g3219692
 KEYWORDS
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; Eutheria;
 Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1371)
 AUTHORS Cole,K.E., Strick,C.A., Paradis,T.J., Ogborne,K.T.,
 Loetscher,M., Gladue,R.P., Lin,W., Boyd,J.G., Moser,B., Wood,D.E.,
 Sahagan,B.G.
 and Neote,K.
 TITLE Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3
 JOURNAL J. Exp. Med. 187 (12), 2009-2021 (1998)
 MEDLINE 98290735
 REFERENCE 2 (bases 1 to 1371)
 AUTHORS Cole,K.E., Strick,C.A. and Sahagan,B.G.
 TITLE Direct Submission
 JOURNAL Submitted (20-OCT-1997) Molecular Sciences, Pfizer, Inc.,
 Eastern
 FEATURES Point Road, Groton, CT 06340, USA
 source Location/Qualifiers
 1..1371
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="4"
 /cell_type="astrocytes"
 sig_peptide 70..132
 CDS 70..354
 /note="chemokine; I-TAC"
 /codon_start=1


```

sig_peptide      67..129
                  /note="pot. signal peptide (aa-21 to -1)"
CDS              67..363
                  /note="early response precursor polypeptide (aa-21 to
77) "
                  /codon_start=1
                  /db_xref="PID:g33918"
                  /db_xref="SWISS-PROT:P02778"

/translation="MNQTAILICLIFLTLSGIQGVPLSRTVRCTCISISNQPVNPRS

LEKLEIIIPASQFCPRVEIIATMKKGKEKRCCLNPESKAIKNLLKAVSKEMSKRSP"
mat_peptide     130..360
                  /note="mature early response polypeptide (aa 1-77)"
old_sequence    1138..1141
                  /note="ugaa was uga in [1]"
old_sequence    1146..1148
                  /note="caa was ca in [1]"
misc_feature    1155..1160
                  /note="pot. polyA signal"
polyA_site      1172
                  /note="polyA site"

BASE COUNT      384 a   231 c   208 g   349 t
ORIGIN

1 gagacattcc tcaattgtt agacatattc tgaggctaca gcagaggaac ctccagtctc
 61 agcaccatga atcaaactgc gattctgatt tgctgccta tctttctgac tctaagtggc
121 attcaaggag tacccctctc tagaaccgtt cgctgtacct gcatacgcat tagtaatcaa
181 cctgttaatc caaggtcttt agaaaaactt gaaattattc ctgcaagcca attttgtcca
241 cgtgttgaga tcattgtcac aatgaaaaag aagggtgaga agagatgtct gaatccagaa
301 tcgaaggccca tcaagaattt actgaaagcgtt tagcaagg aaatgtctaa aagatctcc
361 taaaacccaga ggggagcaaa atcgatcgat tgcttccaaag gatggaccac acagaggctg
421 cctctcccat cacttccctt catggagtt atgtcaagcc ataaatgttc ttatgttgc
481 gttacactaa aaggtgacca atgtatggca ccaaattcgc tgctactact cctgttaggaa
541 ggtaatgtt catccatcata agcttattcga taatatttcgtt accctggcac tataatgtaa
601 gctctactga ggttatgtt tcttagtggta tgttctgacc ctgtttccaaat tattttccctc
661 acctttccca tcttccaagg gtactaaggaa atctttctgc tttgggggtt atcagaattc
721 tcagaatctc aaataactaa aaggtatgca atcaaattctg ctttttaaag aatgtcttt
781 acttcatggta ctcccactgc catcctccca agggggcccaa attttttccatggactt
841 catacaattc caaacacata caggaaggat gaaatattctg aaaaatgtatg ttaatgtt
901 cttatattaaat gaaaatgtt acaaaatgtt agtcttagat gtatattttt cctatattgt
961 tttcagtgtt catgaaataa catgtatattt aatgtatgtt atcaatgtt aacaggaaaa
1021 tttttaaaat acagatgtt atatgtctgtt catgttacat aagataaaatg tgctgaatgg
1081 ttttcaataa aaaatgtt acttcctgtt aaatattaaag aagactatc taaaatgttga
1141 aagatcaaaaa ggttaataaa gtaattataaa ct

//


LOCUS      SYNRPF4A      225 bp      DNA      SYN      15-JUN-1989
DEFINITION Human recombinant platelet factor 4 (PF4) gene, complete cds.
ACCESSION M20901
NID        g209285
KEYWORDS  platelet factor; platelet factor 4.
SOURCE    Synthetic oligonucleotide DNA, clone pIN-III-ompA-2.
ORGANISM  artificial sequence
REFERENCE 1 (bases 1 to 225)
AUTHORS  Barone, A.D., Ghrayeb, J., Hammerling, U., Zucker, M.B. and
          Thorbecke, G.J.
TITLE     The expression in Escherichia coli of recombinant human
          platelet
          factor 4, a protein with immunoregulatory activity
JOURNAL   J. Biol. Chem. 263, 8710-8715 (1988)
MEDLINE   88243725
FEATURES  Location/Qualifiers
source     1..225
          /organism="artificial sequence"
          /db_xref="taxon:29278"
CDS       <1..>225
          /note="recombinant platelet factor 4"
          /codon_start=2

```

```

/transl_table=11
/db_xref="PID:g209286"



LOCUS HUMGRO 1050 bp mRNA PRI 11-JUN-1993  

DEFINITION Human gro (growth regulated) gene.  

ACCESSION J03561  

NID g183622  

KEYWORDS gro gene; tumor cell.  

SOURCE Human bladder tumor cell (T24) cDNA to mRNA.  

ORGANISM Homo sapiens  

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  

Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.  

REFERENCE 1 (bases 1 to 1050)  

AUTHORS Anisowicz,A., Bardwell,L. and Sager,R.  

TITLE Constitutive overexpression of a growth-regulated gene in  

transformed Chinese hamster and human cells  

JOURNAL Proc. Natl. Acad. Sci. U.S.A. 84, 7188-7192 (1987)  

MEDLINE 88041072  

COMMENT Draft entry and computer-readable sequence kindly submitted by  

R.Sager (20-NOV-1987).  

FEATURES Location/Qualifiers  

source 1..1050  

/organism="Homo sapiens"  

/db_xref="taxon:9606"  

sig_peptide 54..140  

/note="signal peptide (put.); putative"  

CDS 54..377  

/note="gro protein"  

/codon_start=1  

/db_xref="PID:g306806"



LOCUS HUMGROB5 1110 bp mRNA PRI 07-MAR-1995  

DEFINITION Human cytokine (GRO-beta) mRNA, complete cds.


```

ACCESSION M36820
 NID g183628
 KEYWORDS cytokine.
 SOURCE Human lymphocyte, cDNA to mRNA, clone GRO-beta.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 1110)
 REFERENCE Haskill,S., Peace,A., Morris,J., Sporn,S.A., Anisowicz,A.,
 AUTHORS Lee,S.W., Smith,T., Martin,G., Ralph,P. and Sager,R.
 TITLE Identification of three related human GRO genes encoding
 cytokine
 functions
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (19), 7732-7736 (1990)
 MEDLINE 91017578
 COMMENT Draft entry and computer-readable sequence for [Proc. Natl.
 Acad.
 Sci. U.S.A. (1990) In press] kindly submitted
 by S.Haskill, 20-JUL-1990.
 FEATURES source Location/Qualifiers
 1..1110
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="GRO-beta"
 /tissue_type="monocyte and lymphocyte"
 gene 75..398
 /gene="GRO-beta"
 CDS 75..398
 /gene="GRO-beta"
 /codon_start=1
 /product="cytokine gro-beta"
 /db_xref="PID:g183629"

 /translation="MARATLSAAPSNPRLLRVALLLLLVAASRRAAGAPLATELRCQ
 CLQLTLQGIHLKNIQSVKVKSPGPCHCAQTEVIATLNGQKACLNPPSPMVKKIIEKMLK
 NGKSN"
 BASE COUNT 300 a 247 c 247 g 316 t
 ORIGIN
 1 gacagagcccc gggccacgga gctccgtgcc agctctcctc ctgcacagc cgctcgaaacc
 61 gcctgtcgag cccatggcc cgcgcacgc ttcggccgc cccagcaat ccccgctcc
 121 tgcgggtggc gctgtcgctc tgctccctgg tggccggccg cccgcgcgc
 181 ccctggccac tgaactgcgc tgccatgtgc tgccacccct gcagggaatt caccctaaaga
 241 acatccaaag tggtaagggt aagtcccccg gaccccactg cgcaccaacc gaagtcatag
 301 ccacatccaa gaaatggcag aaacgttgc tcaaccccgcc atgcggccatg gttaaagaaaa
 361 tcatcgaaaa gatgtcgaaa aatggcaaat ccaactgacc agaaggaaagg aggaagctta
 421 ttggtggtctg ttctgtcagg aggccctgc ttacagaaac agaaaggaggaa agagacac
 481 agctgcagag gccacctggc ttgcgcctaa tggttttag catactttag aagaatcttc
 541 tattttatata ttattttatt tattttttttt ttttagaaata ttctatgtta atattttatag
 601 tggaaataaa ggttatgatt gaatctactt gcacactctc ccattatattt tattttttat
 661 tttaggtcaa acccaaggta gttaacatcc gattcatatt taattttaaat agagaagggtt
 721 tgcagatatt ctctgtcat ttgttaatat ttcttcgtga tgacatataca catgtcagcc
 781 actgtatag aggtcgagga atccaagaaa atggccagta agatcaatgt gacggcagg
 841 aaatgtatgt gtgtctattt tgtaactgtta aagatgaatg tcagttgtta ttatttgaaa
 901 tgatttcaca gtgtgtggtc aacatttctc atgttgaaact tttaagaact aaaatgttct
 961 aaatatccct tggcattttt tgctttctt gtaagatgt gccttggta atgtttaattt
 1021 tgcagtgttt ccctctgtgt tagagcagag aggtttcgat attttatgt gttttcacaa
 1081 agaacaggaa aataaaatataat
 //
 LOCUS HUMGROG5 1064 bp mRNA PRI 07-MAR-1995
 DEFINITION Human cytokine (GRO-gamma) mRNA, complete cds.
 ACCESSION M36821
 NID g183632
 KEYWORDS cytokine.
 SOURCE Human lymphocyte, cDNA to mRNA, clone GRO-gamma.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 1064)
 REFERENCE Haskill,S., Peace,A., Morris,J., Sporn,S.A., Anisowicz,A..

TITLE Lee,S.W., Smith,T., Martin,G., Ralph,P. and Sager,R.
 cytokine Identification of three related human GRO genes encoding
 functions
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (19), 7732-7736 (1990)
 MEDLINE 91017578
 COMMENT Draft entry and computer-readable sequence for [Proc. Natl.
 Acad.
 Sci. U.S.A. (1990) In press] kindly submitted
 by S.Haskill, 20-JUL-1990.
 FEATURES Location/Qualifiers
 source 1..1064
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="GRO-gamma"
 /tissue_type="lymphocyte and monocyte"
 gene 78..398
 /gene="GRO-gamma"
 CDS 78..398
 /gene="GRO-gamma"
 /codon_start=1
 /product="cytokine GRO-gamma"
 /db_xref="PID:g183633"

 /translation="MAHATLSAAPSNPRLLRVALLLVLVGSRRAGASVVTELRCQC
 LQTLQGIHLKNIQSVNVRSPGPCHCAQTEVIATLKNGKKACLNPMSPMVQKIIIEKILNK
 GSTN"
 BASE COUNT 281 a 237 c 239 g 305 t 2 others
 ORIGIN
 1 cacagccggg tcgcaggcac ctccccngcc agctctcccg cattctgcac agcttcccg
 61 cgcgtctgtc gagccccatg gcccacgcca cgctctccgc cggcccccagc aatccccggc
 121 tcctgcgggt ggcgctgtc ctctgtccc ttgtggcag cccgcgcga gcaggagcgt
 181 ccgtgtcac tgaactgcgc tgccagtgtc tgcaagact gcaggaaatt cacctcaaga
 241 acatccaaag tgtaatgtta aggtcccccg gaccccaactg cgcggaaacc gaagtcatag
 301 ccacactcaa gaatggaaag aaagcttttc tcaaccccg atccccatg gtccagaaaa
 361 tcatcgaaaa gatactgaac aaggggagca ccaactgaca ggagagaatg aagaagctta
 421 tcagcgtatc attgacactt cctgcagggg ggtccctgccttaccagag ctgaaaatga
 481 aaaagagaac agcagtttc tagggacagc tggaaaggga cttaatgtgt ttgactattt
 541 cttacgggg ttctacttat ttatgttattt atttttttttt ggttattttt taatatttt
 601 catgtgtta tttaaagatg tgagtgttt tcataaaca tagctcagtc ctgattttt
 661 aattgaaata tgatgggaaa taaatgtgtc attaaactaa tatttagtgg gagaccataa
 721 tgtgtcagcc accttgatata atgacagggg ggggaactgg agggtnnnnnn gattgaaatg
 781 caagcaatta gtggatcaact gtttagggaa gggaaatgtat gtacacatct attttttata
 841 cttttttttt taaaagaaa tgtagttt tattttttca aattatctca cattatgtt agggcataat
 901 tcaacatttt tatgctgaag ttcccttag acatttatg tcttgcttggt agggcataat
 961 gccttgttta atgtccatc tgacgcgtt ctcttccct tgaaaaagag aattttatcat
 1021 tactgttaca ttgtacaaa tgacatgata ataaaagttt tatg
 //

LOCUS HUMCTAP3 673 bp mRNA PRI 06-MAR-1995
 DEFINITION Human connective tissue activation peptide III mRNA, complete
 cds.
 ACCESSION M54995 M38441
 NID g181175
 KEYWORDS connective tissue activating peptide-III; platelet basic
 protein;
 SOURCE Human platelet, cDNA to mRNA, clone lambda-c{1,2}.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 673)
 AUTHORS Wenger,R.H., Wicki,A.N., Walz,A., Kieffer,N. and Clemetson,K.J.
 TITLE Cloning of cDNA coding for connective tissue activating peptide
 III
 from a human platelet-derived lambda gt11 expression library
 JOURNAL Blood 73 (6), 1498-1503 (1989)
 MEDLINE 89229374
 FEATURES Location/Qualifiers
 source 1..673

```

        /organism="Homo sapiens"
        /db_xref="taxon:9606"
        /tissue_type="platelet"
        /clone="lambda-c1"
        /cell_type="platelet"
        /tissue_type="blood"
        /tissue_lib="lambda-gt11"
        /map="4p13-q21"
gene      67..453
        /gene="PPBP"
sig_peptide 67..168
        /gene="PPBP"
        /note="G00-127-391"
CDS       67..453
        /gene="PPBP"
        /codon_start=1
        /db_xref="GDB:G00-127-391"
        /product="connective tissue activating peptide III"
        /db_xref="PID:g181176"



Locus HUMENA78A 2177 bp DNA PRI 31-JAN-1996  

  Definition Homo sapiens neutrophil-activating peptide 78 (ENA-78) gene,  

  complete cds.  

  Accession L37036 Z46254  

  NID g607030  

  Keywords ENA-78 gene; homologue; neutrophil-activating factor;  

  neutrophil-activating peptide 78.  

  Source Homo sapiens DNA.  

  Organism Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  

  Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.  

  Reference 1 (bases 1 to 2177)  

  Authors Walz,A., Burgener,R., Car,B., Baggio, M., Kunkel,S.L. and  

  Strieter,R.M.  

  Title Structure and neutrophil-activating properties of a novel  

  inflammatory peptide (ENA-78) with homology to interleukin 8  

  Journal J. Exp. Med. 174 (6), 1355-1362 (1991)  

  MEDLINE 92078844  

  Reference 2 (bases 1 to 2177)  

  Authors Walz,A.


```


721 cctccaatct tcgctcctcc aatctccgct cctccaccca gttcaggaac ccgcgcaccgc
 781 tcgcagcgct ctcttgcaca ctatgagcct cctgtccagc cgccgcggcc gtgtccccgg
 841 tccttcgagc tccttgcgc cgctgttggt gctgctgctg ctgctgacgc agccaggccc
 901 catgcgcaggc ggtgagagcg catggcgcgc gggacgcact cgcactcggg cacagagggt
 961 catcccaagcc tctgcggggc cgctgcgttc cagggaactc tcccaagcaac ctgcctata
 1021 aagggtgtct ctctttcttc cccagctgt cctgccctg ctgtgttgag agagctgcgt
 1081 tgcgttgtt tacagaccac gcaaggagt catcccaaaa tgatcagtaa tctgcaagtg
 1141 ttgcgcattag gcccacagt ctcacagggt gaagtgtgt aagttctgtg ctgctgtgc
 1201 cgctgtgacc ttgcaagag agaaatcccg cagccctgggt cttaaccctt ggtatctcat
 1261 gagtttatct ctctttctt ctcctcagag ctcctcgtaa gaacgggaag gaaattttgtc
 1321 ttgatccaga agcccccattt ctaaagaaaa tcatccagaa aattttggac gggtaacttgc
 1381 cactttgtatc ttgtgtttt ctaaatctga tctagggaga ccataagactt cacaagggtct
 1441 ttatctctgt tacattttaa gtaacactt tcatgtttt aattaaaagg ttgttgaatt
 1501 gggaaagttt ttctggattt tcttggggaa atataccat ttcatatgtt attacttgag
 1561 caattacaca cagctgttca ctaagtattt tttttgtt accattgtt ttatttgatt
 1621 ttgttattct ctctttttac caaacatcat aaacgcgttag ttttgcacaa ggtggagtag
 1681 aaaggagtgt gaaaaatgtt taaactaata taacattttt ctcaacagtg gaaacaagga
 1741 aaactgatta agagaaatgtt gcacccatgg aaaagtttcc cagtttccag cagagaagtt
 1801 ttctggagggt ctctgaaacc agggaaagaca agaaggaaag attttttgtt ttgttggat
 1861 ttgtttttc cagtagttt cttttttccg ggattcctca ctttgcacaa gttttttttt
 1921 acctatgtttt gccccttaag ctttcagctc agctaattgaa gtgttttagca tagtacctct
 1981 gctattttgtt ttatattttat ctgctatgtt attgaagttt tgcaatttga ctatagtgt
 2041 agccaggaat cactggctgt taatcttca aagtgtttt aattttttttt gactattata
 2101 ttccaagaa atattctta agatattaaac tgagaaggct gtggatttaa tgtggaaatg
 2161 atgtttcata agaattc
 //

LOCUS HSGCP2 254 bp **RNA** **PRI** 04-MAR-1997
DEFINITION H.sapiens mRNA for granulocyte chemotactic protein.
ACCESSION Y08770
NID g1769436
KEYWORDS cell surface receptor; CXC chemokine; GCP-2 gene; granulocyte chemotactic protein.
SOURCE
ORGANISM Homo sapiens
Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
AUTHORS Froyen,G., Proost,P., Ronsse,I., Mitera,T., Haelens,A., Wuyts,A.,
TITLE Opdenakker,G., Van Damme,J. and Billiau,A.
of Cloning, bacterial expression and biological characterization
and recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2
JOURNAL epithelial cell-derived neutrophil activating peptide-78 mRNAs
MEDLINE Eur. J. Biochem. 243 (3), 762-769 (1997)
REFERENCE 97210779
AUTHORS 2 (bases 1 to 254)
Froyen,G.F.V.
TITLE Direct Submission
JOURNAL Submitted (10-OCT-1996) G.F.V. Froyen, Rega Institute,
University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, BELGIUM
FEATURES
source Location/Qualifiers
1..254
/organism="Homo sapiens"
/db_xref="taxon:9606"
/haplotype="diploid"
/tissue_type="embryonic"
/rearranged
/cell_type="fibroblast"
/cell_line="E6SM (embryonic strain - skin and muscle)"
gene 1..254
/gene="GCP-2"
exon <1..131
/gene="GCP-2"
/number=2
CDS <1..234
/gene="GCP-2"

```

/codon_start=1
/product="granulocyte chemotactic protein"
/db_xref="PID:e283124"
/db_xref="PID:g1769437"



LOCUS D63789 5669 bp DNA PRI 27-DEC-1996  

DEFINITION Human DNA for SCM-1beta precursor, complete cds.  

ACCESSION D63789  

NID g1754608  

KEYWORDS SCM-1beta; SCM-1beta precursor.  

SOURCE Homo sapiens placenta DNA, clone:hg44.  

ORGANISM Homo sapiens  

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;  

Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;  

Hominidae; Homo.  

REFERENCE  

AUTHORS Yoshida,T., Imai,T., Kakizaki,M., Nishimura,M. and Yoshie,O.  

TITLE Molecular cloning of a novel C or gamma type chemokine, SCM-1  

JOURNAL FEBS Lett. 360 (2), 155-159 (1995)  

MEDLINE 95180438  

REFERENCE  

AUTHORS Yoshida,T., Imai,T., Takagi,S., Nishimura,M., Ishikawa,I.,  

Yaoi,T.  

and Yoshie,O.  

TITLE Structure and expression of two highly related genes encoding  

SCM-1/human lymphotactin  

JOURNAL FEBS Lett. 395 (1), 82-88 (1996)  

MEDLINE 97002294  

REFERENCE  

AUTHORS Yoshida,T.  

JOURNAL Unpublished (1995)  

REFERENCE  

AUTHORS Yoshida,T.  

TITLE Direct Submission  

JOURNAL Submitted (07-AUG-1995) to the DDBJ/EMBL/GenBank databases.  

Tetsuya Yoshida, Shionogi Institute for Medical Science; 2-5-1,  

Mishima, Settsu, Osaka 566, Japan (E-  

mail:teyoshid@fl.lab.shionogi.co.jp,  

Tel:06-382-2612, Fax:06-382-2598)  

FEATURES  

source Location/Qualifiers  

1..5669  

/organism="Homo sapiens"  

/db_xref="taxon:9606"  

/chromosome="1"  

/clone="hg44"  

/map="1q23"  

/tissue_type="placenta"  

TATA_signal 2154..2158  

exon 2197..2278


```

```

/number=1
prim_transcript 2197..5349
gene            2218..5230
/CDS
/gene="SCM-1beta"
join(2218..2278,4075..4189,5062..5230)
/gene="SCM-1beta"
/codon_start=1
/product="SCM-1beta precursor"
/db_xref="PID:d1010504"
/db_xref="PID:g1754609"



```

2461 gggagaattt gattagtatc tgggctcta cttttctaa ttggtaatt tcaggtaaat
 2521 tccttaacca ctcagggcct gtgcatttt atgtataaac tgaatagaat aagagacatg
 2581 atcacctg agtaaggata aataaatatt atggttt taataacatc agattccct
 2641 acaagcata atttttgtat taatgttagc tatggatag aggtgtatgat tataaatgca
 2701 ttgttagtt ttgcccatc aatatatagt ttgataaattt atcaaaatct tagaggttc
 2761 agttacaata tgcccattc ccagaggatg tatgttctgg agcaaataa tggtttcaat
 2821 acaaaaacctg tgtaaggcg acagtagtgc ttgctgtgga ctggatgtcc cagtcgtcc
 2881 ttccatcccc ttgtataatgc aataaggac ccccatttt ggacgcaggaa caggcagaaa
 2941 gataaccaggc ttgtatgggtt ccacaccatc tgaatcaact accagctgag acttcttgg
 3001 ttccagcaag gtgggtatga tgtaacccct tgctcaaaga aacaggtatttccatgtgg
 3061 gacaacccct ttgcttagcag ctttcttc aacagtcctc gcttcttc
 3121 ttgttgttc tctgttgc acattgttgat cagcttaatgt ggctgatgtatgggg
 3181 gtctaaggct tggtgtactt ggttatgtc agaaaggatc tttagctgtatagggat
 3241 agctcttgc agctggaaacc agatatacgcc gggccatcc acaaaagcgt ggaggctct
 3301 ttgggctgg atgtctgtc caatgcctgc ctaagaaaac tcttaggcctt ttttcacac
 3361 agcggttca tcactttttt aacccctgc ttcctcacga cggcaggac tggccaccc
 3421 tctttccctt ggcccttctt cttttcagca tcttaggcag ctgacagaga gggaaatttg
 3481 accattaaaa aaggggaaaca cttttatcca ctcagtcataa agatgttcc cttccctcac
 3541 tgaatgtgc ctggcttaga gtacttcgc cgcattactc tgcatttcata cttatggat
 3601 tgtaacatgt tgcaactatattt gaaatgatct tttctgtttt cctgtctgc gcctggctcc
 3661 tctcatgagaa gatataatgc tggaaaacag ggataatgtc tgcattataa aaacatgtgg
 3721 gacacaacag gcaccatgtt ataaatgtat gatgtgtt cactggggca tttgctagcc
 3781 gtcccaatgt tctaaatgtt aataataca aagacgggtt aacatcttgc tttttctct
 3841 cagcatgaaa ttccgttggaa aattctgtt attaggtttt taaatgtc aatatttac
 3901 taagaatctg tgacgggcaaa gagattcggg atgcctatca gtccctctt ccccaaaaa
 3961 gcaaaatggcc ttatatttc acaacattt cagatgtttaa acacagacga ttgttctgt
 4021 gatctgggtt atggctttt ttttattttt ctgtttttt ttttcttc tcaagggtgttag
 4081 ggagtgttgc ctacatcttggggccatgtc tgccttcac taccgcgaa ctgcaggat
 4141 gcagaatcaa gacctacacc atcacggaaag gtccttgc agcgtatgt tgagtctgcc
 4201 tcctcagaag ttgggctggg tgggtaccta gaggtataga aataacttct atagaatgc
 4261 tgccatcttc aggaaaatgtt ggtcagcata gaggaaaccc tcaacttaac caaaaaccc
 4321 tttagtttc ctatcaacc atgttttttgc tgcggccaaac cgaatagcga ttattgcaga
 4381 aattgggtctg ccaaagaaaatgtt aatagaatgtc ttcctcttgc tgcgtttagtgc
 4441 ttgaatactg tgacatgtc tgagatctgg gtttagagat ggctggctca tgcagggtt
 4501 tccctgcagaag cctcaactggaa gttggggat cttaggtttt agttaggcag agtcccatac
 4561 ttatcatgtt gcatatttca aagaaaatgtt gtcacatgc aacctacatg gtcccttct
 4621 tctaccggaaat tcttatttttca aagaaaatgtt gtcacatgc aacctacatg
 4681 tctaaagaaat gaaaatgtaa aatcacctt ttttttttttataaataatgttgc
 4741 tttgaaaagg aagaggatattt aatataatgtt aactatgttgc cttcaatgttgc
 4801 caacatgttgg tgacatgttgg gggaaaatgtt ggcctgttgc ttttttttttgc
 4861 gatacttttgc cggatattt ttccttttgc ttttttttttgc
 4921 ttatgtatct catggctctg aagactatt ttttgcatttttgc
 4981 catgtctgccc ctgtatcttgc ttttttttttgc
 5041 ttttttttttgc ttttttttttgc
 5101 acaaggccacg tgggtggatc acgtggatc gggatggatc
 5161 taacatgttgc cggatattt ttccttttgc ttttttttttgc
 5221 gactggcttag tagtctctgg caccctgtcc gtctccagcc
 5281 cacccttcatg gactggatatttgc
 5341 ttttttttttgc ttttttttttgc
 5401 ttatgtatcttgc ttttttttttgc
 5461 ttttttttttgc ttttttttttgc
 5521 ttctggcttag ttttttttttgc
 5581 aatggtttttgc ttttttttttgc
 5641 ttttttttttgc ttttttttttgc

//

LOCUS D63790 5660 bp DNA PRI 27-DEC-1996
 DEFINITION Human DNA for SCM-1alpha precursor, complete cds.
 ACCESSION D63790
 NID g1754610
 KEYWORDS SCM-1alpha precursor; SCM-1 alpha.
 SOURCE Homo sapiens placenta DNA, clone:hg40.
 ORGANISM Homo sapiens
 Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo.
 REFERENCE 1 (sites)
 AUTHORS Yoshida,T., Imai,T., Kakizaki,M., Nishimura,M. and Yoshie,O.
 TITLE Molecular cloning of a novel C or gamma type chemokine, SCM-1
 JOURNAL FEBS Lett. 360 (2), 155-159 (1995)

MEDLINE 95180438
 REFERENCE 2 (sites)
 AUTHORS Yoshida,T., Imai,T., Takagi,S., Nishimura,M., Ishikawa,I.,
 Yaoi,T.
 and Yoshie,O.
 TITLE Structure and expression of two highly related genes encoding
 SCM-1/human lymphotactin
 JOURNAL FEBS Lett. 395 (1), 82-88 (1996)
 MEDLINE 97002294
 REFERENCE 3 (bases 1 to 5660)
 AUTHORS Yoshida,T.
 JOURNAL Unpublished (1995)
 REFERENCE 4 (bases 1 to 5660)
 AUTHORS Yoshida,T.
 TITLE Direct Submission
 JOURNAL Submitted (07-AUG-1995) to the DDBJ/EMBL/GenBank databases.
 Tetsuya Yoshida, Shionogi Institute for Medical Science; 2-5-1,
 Mishima, Settsu, Osaka 566, Japan (E-
 mail:teyoshid@f1.lab.shionogi.co.jp,
 Tel:06-382-2612, Fax:06-382-2598)
 FEATURES Location/Qualifiers
 source 1..5660
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="1"
 /clone="hg40"
 /map="1q23"
 /tissue_type="placenta"
 TATA_signal 640..644
 exon 683..764
 /number=1
 prim_transcript 683..5340
 CDS join(704..764,4064..4178,5053..5221)
 /codon_start=1
 /product="SCM-1alpha precursor"
 /db_xref="PID:d1010505"
 /db_xref="PID:g1754611"

 /translation="MRLLILALLGICSLTAYIVEVGVGSEVSDKRTCVSLTTQRLPVSR
 IKTYTITEGLSLRAVIFITKRLGLKVCADPQATWVRDVRSMDRKSNTNNMIQTKPTGT
 QQSTNTAVTLTG"
 intron 765..4063
 /number=1
 exon 4064..4178
 /number=2
 mat_peptide join(4066..4178,5053..5218)
 /note="SCM-1alpha mature peptide"
 intron 4179..5052
 /number=2
 exon 5053..5340
 /number=3
 BASE COUNT 1623 a 1139 c 1175 g 1723 t
 ORIGIN
 1 aagcttctat aaatgtgtat gttaagttgt aataaagcaa acacatgcat gtagacatgc
 61 ttaaacagt atttaattgt ttcttggtt cctggggaga tggggtaag aaaggggggt
 121 gacttgaatg aagggtgggg agaaaaatga gaaccaagaa agcaaaggat cgagaagctc
 181 agtgtggcag cagctctt cccctcctga gagagtcaaa ggttggcatc agggactcat
 241 gatccatgtt tgtgaaagcc tcatttcaca ctggatgtca catggatgtgg gatggAACAC
 301 agtgaccacc ccacccatc ttctttacag ctccctgtt gggccatggc agtgaacacc
 361 ttcaggccatg tctacggccg aatatctaa ttccaggctgg tggcaggaga caaacacaacc
 421 acgttttctt ttatgcattc atttggtttta attgacacat taaccacaga caaagggtt
 481 aaggccacaa ggcgttaggt tagtatgaac agggaaaagg gactttttt ttttttttta
 541 agaaaaataa aagcatcagt atttgcacaa ctccatgtt ccctcacccc accctcgaaag
 601 ccccccttcac ccacccatc tgactgacc actggggggca taaaaggggt cctccaaagag
 661 cccgatctc actctccctt cacatgttccatc cggggccatggc gggccatggc ttccatc
 721 gggcccttcac ggcgttaggt tagtatgaac agggaaaagg gactttttt ttttttttta
 781 tctgtggat aaagaacagg gaggcaaggc aggtgggcac acattttggg ttgtactc
 841 gttatgcattc gactaatctg cttttccatc gggggccatc aacttccat gtcgaagaaa

901 ggaatgatga ttttactgt agagggctc gttaaattcc aaaacaggaa gaatttgatt
 961 agtatactggg ctccatctt tcctaattgg gtaatttcg gtaaattcc taaccactca
 1021 gggccgtgc ttatattatgt ataactgaat agtataacag acttgatcac ctgagattaa
 1081 gattaataa attattatgt ttatattata acatcagatt tccttacaag cagaatttt
 1141 ttgatataatg ttatctatgg attagaggtg atgattataa atgcattttgt aggttttgc
 1201 catatataat atatgttatg aaattatcaa aatcttagag agttcgtta cgatgtgggg
 1261 atgcaccatt ggatgtatg tctggatgaa atcaatgtt tcaatacaaaa actaagcccc
 1321 aaatgactgg aagtccaaac ctcatgtcc agaaaatcaa tattacccctc aagtacgtgg
 1381 gggacttgtg tagtaatgcc atgactatata ctattatgaa gaaattttctt gttttgtaa
 1441 gagaacatata aataataact actatccaaat agatcagcac ctatatacaca gttcaataaaa
 1501 cctcaagac acatccaggta aaggatcgaa tataccggc ctttacccgtg gcattcagta
 1561 ggtatttctt aaggattgtat ttttctatg actggagggtg aatctgtcgat ttatattgt
 1621 ttctatgtgg taggttattt acttagacta tgatattata acttaataat gggtccccaa
 1681 ggggtccat gaataaagggt ggctaaatgtt ggaatgtccctt gaaattatgg ataaaacaaa
 1741 aaaatatactga tggaaacaaaaa gatgttgggactt actacatgg gccatgtt gctacctggc
 1801 tggcattttg ctgagacaat gggcatatcca ttttgggggg actcagatct gaggtagggg
 1861 aaggagctct ataagtcaca ctggtgetta gettettaca tacaatataat agggaaaacg
 1921 gtctctgtt tgactcaattt ttgcacccctg agtgaagggtg atatttaaa aaataacaca
 1981 gacactcaaa cattgtgc acataaggaaa aggtttttgtt gtttcaagca taacaggatt
 2041 ccctgatgtt taggatccat tcctgatcat tcacagaga gaaatattgtt ttcttaataa
 2101 tgagagaaac agagaaaaaaa cccagatttt tccttcttca ttggctacag aaacaattca
 2161 ccactaaaaaa taatattggca aaggtagagg atagcaatgt gcagactggc attgagatg
 2221 aagaatatgtt gaagaaaaaggc acacaatggaa cacttcttgc ttatccctt gctttaaaaa
 2281 atgccttctg atattagcaat cactacagac caatgttgc cattatcgtt gtttactt
 2341 gatgtttttt agtgcctat ttccctgggaa agcaaaagacc agtgcctaca gctaaggaga
 2401 aaatcagcac ttggaaactt ggatttagatt tcacccaaacc cttaaacagta ttaattctt
 2461 caagtattt ttccatgc aatgtttttt tgatttcttca cacttaatag ttaattctt
 2521 ttggccattt actatgggg atgcattat aagggtgc ttccctttt atatatctt
 2581 ccttttacca ttatattat ttttggggat tttttttt ttttattttt atatattttt
 2641 acagtgtaca ttttaccccg ttttagtggca agttctctg ctttgcattt ttccagcttg
 2701 gcattgttag ccacagattt tggactcggg acattgcaga ttcctatcata tccgtcattt
 2761 taattttgtcc tgatagctt caccatgtt gccaaatgtt ctttgcattt ctggtaact
 2821 tgggtgttaggg ccacatgtt gcttccctgtt gactggatgtt cccagtttgc ctttcttacc
 2881 ctttgataat gcattaaaggg accccccattt ttaggacaca ggacagacag aaagtttacc
 2941 agcttgcattt ggtccacacc atgtcaataa ccagctgagc ctttcttctt tccagcaagg
 3001 tgggtgtatgtt gtttacccctt gctcaaaagaa cagggtgattt ctttgcattt acaacccctt
 3061 tggtagcggc ttatattttca gcttggggca acatgtcttgc ttatccctt tgcattttgtt
 3121 ctggtcagta ctggggatc agtcaatgtt gcttgcattt gcttgcattt tctaaggctt
 3181 ggggtgtactt gtttacccctt gatatacgcc gggccattt ttaggacaca ggacagacag
 3241 gctggaaacca gatatacgcc gcccatttca ctttgcattt tttttttt tttttttt
 3301 tggccatgttcc aatgtcttca taagaaaactt ctttgcattt tttttttt tttttttt
 3361 cacttttca gcttgcattt ctttgcattt ctttgcattt tttttttt tttttttt
 3421 ggcattttt ctttgcattt ctttgcattt ctttgcattt tttttttt tttttttt
 3481 aaggagaaaca ctttgcattt gtttgcattt agcatgttcc ctttgcattt tttttttt
 3541 ctttgcatttca gtttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 3601 gcaatatttgc aatgtatgtt ttttgcatttca ctttgcatttca ctttgcatttca
 3661 gatgtgttca atggaaaacag gatgtatgtt ttttgcatttca ctttgcatttca
 3721 caccattgtt taaatgtatgtt aatgtgttca ctttgcatttca ctttgcatttca
 3781 ctaatgttca atatacagac agacgggatc acatgttca ctttgcatttca ctttgcatttca
 3841 ttttgcatttca attttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 3901 gacgggcaag agatttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 3961 taaatttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4021 ttgtttttt ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4081 tcagatgttca gggccatgtt gggccatgtt ctttgcatttca ctttgcatttca
 4141 accttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4201 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4261 gggaaaatgtt gtttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4321 ttatgttca ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4381 caaagaaaga atagaatgtt ctttgcatttca ctttgcatttca ctttgcatttca
 4441 gcaatgttca gggccatgtt ctttgcatttca ctttgcatttca ctttgcatttca
 4501 ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4561 gcccatttttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4621 ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4681 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4741 gggaaaatgtt gtttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4801 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4861 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4921 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 4981 ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 5041 ttttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca ctttgcatttca
 5101 atgggtgaga gacgtggca gggccatgtt ctttgcatttca ctttgcatttca

5161 ccagaccaag ccaacaggaa cccagcaatc gaccaataca gctgtgactc tgactggcta
 5221 gtagtctcg gcaccctgtc cgctccagc cagccagtc atttcaactt acacgctcat
 5281 ggactgagtt tataactcacc ttatgtaaa gcaactgcatg aataaaattt ttcctttgt
 5341 ttttacttt taaaatgttt ctgttacat ttatatgttc taattaataa attattatt
 5401 attaagaata gttccctagt ctattcatta tatttagga aaggtagtgtt atcattgttg
 5461 ttgatttct gacctgtac ctctttgtg tggtaaccat aatggaaagat attctggcta
 5521 gtgtctatca gaggtgaaag ctatataaat ctcttttaga gtccagctt taatggtt
 5581 ttacacatca gtcacaaatc acagctgtga caatggcaac aatttgatgttcaac
 5641 ttgtcttat aatagaattc
 //

LOCUS HSU91835 1635 bp mRNA **PRI** 21-MAR-1997
DEFINITION Human CX3C chemokine precursor, mRNA, alternatively spliced,
 complete cds.
ACCESSION U91835
NID g1899258
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1635)
AUTHORS Bazan,J.F., Bacon,K.B., Hardiman,G., Wang,W., Soo,K., Rossi,D.,
 Greaves,D.R., Zlotnik,A. and Schall,T.J.
TITLE A new class of membrane-bound chemokine with a CX3C motif
JOURNAL Nature 385 (6617), 640-644 (1997)
MEDLINE 97177111
REFERENCE 2 (bases 1 to 1635)
AUTHORS Bazan,J.F., Bacon,K.B., Hardiman,G., Wang,W., Rossi,D.,
 Greaves,D.R., Zlotnik,A. and Schall,T.J.
TITLE Direct Submission
JOURNAL Submitted (03-MAR-1997) Molecular Biology, DNAX Research
Institute, Institute,
 901 California Ave., Palo Alto, CA 94304-1104, USA
FEATURES
source Location/Qualifiers
 1..1635
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
CDS 80..1273
 /note="membrane-tethered chemokine module"
 /codon_start=1
 /product="CX3C chemokine precursor"
 /db_xref="PID:g1899259"

/translation="MAPISLSWLLRLATFCHLTULLAGQHHGVTKCNITCSKMTSKIP
VALLIHYQQNQASC GKRAIILETRQHRLFCADPK EQWVKDAMQHLD RQAAALTRNGGT
FEKQIGEVKPRTPAAGGMDESVVLEPEATGESSLEPTPSSQEQR ALGT SPELPTG
VTGSSGTRLPPTPKAQDGGPGVGTELFRVPPVSTAATWQSSAPHQPGPSLWA EAKTSEA
PSTQDPSTQASTASSPAPEENAPSEGQRVWGQGQSPRPENS LEREEMGPVPAHTDAFQ
DWGP GSMAHVSVVPVSSEGPSR PVASGLTPKAEEPIHATMDPQRLGV LITPV PDA
QAATRRQAVGLLAFLGLLFCLGVAMFTYQSLQGC PRKMAGE MAEGLRYIPRSCGSNSY
VLVPV"
sig_peptide 80..151
mat_peptide 152..1270
 /product="CX3C chemokine"
misc_feature 152..379
 /note="encodes chemokine module"
misc_feature 380..1102
 /note="encodes glycosylation stalk"
misc_feature 1103..1159
 /note="encodes transmembrane helix"
misc_feature 1160..1270
 /note="encodes intracellular domain"
3'UTR 1274..1635
 /note="alternatively spliced; long transcript can be"

found

in GenBank Accession Number U84487
 BASE COUNT 338 a 544 c 464 g 289 t
 ORIGIN

```

  1 ggcacgaggg cactgagtc tgccgcctgg ctctagccgc ctgcctggcc cccgccccggaa
  61 ctcttgccca ccctcagcca tggctccat atctctgtcg tggctgtcc gcttggccac
  121 cttctgccat ctgactgtcc tgctggctgg acagcacccac ggtgtacga aatgcaacat
  181 cacgtgcagc aagatgacat caaatgatacc tgtagctttg ctatccact atcaacagaa
  241 ccaggcatca tgccgcaaac gcgcataatcat ctggagacg agacagcaca ggctgttctg
  301 tgccgcacccg aaggagcaat gggtaaaggc cgcgcgtcgc catctggacc gccaggctgc
  361 tgccctaact cgaaatggcg gcacccatcgaa gaagcagatc ggcgagggtga agcccaggac
  421 cacccttgcc gcccggggaa tggacgagtc tggctgtcc gggcccaag ccacaggcga
  481 aaggcatgac ctgagccga ctccattttcc ccaggaagca gagggggccc tggggaccc
  541 cccagagtc cgcgcggcgt gactgttgc ctgcggacc aggtcccccc cgacgcacaa
  601 ggctcaggat ggaggccctg tgccgcacggaa gctttccga gtgcctcccg tctccactgc
  661 cggccacgtgg cagagtctg ctcccccacca acctggggcc accctctggg ctgaggcaaa
  721 gacctcttag gccccgtcca cccaggaccc ctccacccag gcctccactg ctgcctccccc
  781 agccccagag gagaatgtcc cgtctgaagg ccagcgtgt tgggtcagg gacagagccc
  841 caggccagag aacttctgg agccccggggaa gatgggtcc gtgcgcggc acacggatgc
  901 ctccaggac tggggccctg gcagcatggc ccacgtcttgc tggtccctg tctcccteaga
  961 agggacccccc agcaggaggc cagtggcttc aggaggcttgc acccttaagg ctgaggaacc
  1021 catccatggc accatggacc cccagaggct gggcgtcttgc atactctg tccctgacgc
  1081 ccaggctggc accccggggc aggccgggttgc gctgtggcc ttccctggcc tccctttctg
  1141 cctgggggtg cccatgttca cttaccagag ctccaggcgt tgccttcgaa agatggcagg
  1201 agagatggcg gaggcccttc gctacatccc cccggaggcttgc ggttagtaatt catatgtct
  1261 ggtgcccgtg tgaactctc tggcctgtgt ctatgtttt gattcagaca gtcgcctggg
  1321 atccctcatac ctcataccca ccccccacca agggcgtggc ctgagctggg atgattggag
  1381 gggggaggttgc ggatccatcca gttgcacaag ctccaaatc ccaggcatcc cccaggaggc
  1441 cagcccttgac cttccatccac ctccaggcgttgc cttccaggcgttgc ggcctcccaa ctcaccccaag
  1501 ccccaaaact ctcctctgtc gctggctggt tagagttcc ttttgcgc atcccaagccc
  1561 caatgaacaa ttatatttta aatgcccagc cccttctgaa aaaaaaaaaaaaaaaa
  1621 aaaaaaaaaaaaaaaa
  //
```

LOCUS HSU84487 3310 bp mRNA PRI 15-MAR-1997
 DEFINITION Human CX3C chemokine precursor, mRNA, alternatively spliced,
 complete cds.
 ACCESSION U84487
 NID g1888522
 KEYWORDS
 SOURCE
 ORGANISM human.
 Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 3310)
 REFERENCE Bazan,J.F., Bacon,K.B., Hardiman,G., Wang,W., Soo,K., Rossi,D.,
 AUTHORS Greaves,D.R., Zlotnik,A. and Schall,T.J.
 TITLE A new class of membrane-bound chemokine with a CX3C motif
 JOURNAL Nature 385 (6617), 640-644 (1997)
 MEDLINE 97177111
 REFERENCE 2 (bases 1 to 3310)
 AUTHORS Bazan,J.F., Bacon,K.B., Hardiman,G., Wang,W., Rossi,D.,
 Greaves,D.R., Zlotnik,A. and Schall,T.J.
 TITLE Direct Submission
 JOURNAL Submitted (07-JAN-1997) Molecular Biology, DNAX Research
 Institute,
 FEATURES 901 California Ave., Palo Alto, CA 94304-1104, USA
 source Location/Qualifiers
 1..3310
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 CDS 80..1273
 /note="membrane-tethered chemokine module"
 /codon_start=1
 /product="CX3C chemokine precursor"
 /db_xref="PID:g1888523"

/translation="MAPISLSWLLATFCHLTVLLAGQHHGVTKCNITCSKMTSKIP
 VALLIHYQQNQASC GKRAIILETRQHRLFCADPK EQWVKDAMQHLD RQAA ALTRNGGT

FEKQIGEVKPRTPAAGGMDESVVLPEATGESSLEPTPSSQEAQRALGTSPELPTG
 VTGSSGTRLPPTPKAQDGGPVGTELFRVPPVSTAATWQSSAPHQPGPSLWAEAKTSEA
 PSTQDPSTQASTASSPAPEENAPSEGQRVWGQQSPRPENSLEREEMGPVPAHTDAFQ
 DWGPGSMAHVSVVPVSSEGTPSREPVASGSWTPKAEEPIHATMDPQRLGVЛИTPVPA
 QAATRRQAVGLLAFLGLLFCLGVMFTYQSLQGCPRKMAGEMAEGLRYIPRSCGSNSY
 VLVPV"
 sig_peptide 80..151
 mat_peptide 152..1270
 /product="CX3C chemokine"
 misc_feature 152..379
 /note="encodes chemokine module"
 misc_feature 380..1102
 /note="encodes glycosylation stalk"
 misc_feature 1103..1159
 /note="encodes transmembrane helix"
 misc_feature 1160..1270
 /note="encodes intracellular domain"
 3'UTR 1274..3310
 /note="alternatively spliced; short transcript"
deposited as GenBank Accession Number U91835*
BASE COUNT 659 a 1051 c 916 g 682 t 2 others
ORIGIN
 1 ggccacgaggg cactgagctc tgccgcctgg ctctagccgc ctgcctggcc cccgccccggaa
 61 ctcttggccca ccctcagcca tggctccgat atctctgtcg tggctgctcc gcttggccac
 121 cttctgcccatt ctgactgtcc tgctggctgg acagcacccac ggtgtgacga aatgcaacat
 181 cacgtgcagc aagatgacat caaagatacc tttagcttttg ctcatccact atcaacagaaa
 241 ccaggcatca tggcccaaac ggcgcacatc ctggagacg agacagcaca ggctgttctg
 301 tgccgaccgg aaggagacaat ggttcaggg cgcgcgtacg catctggacc cggcaggctgc
 361 tgccctaact cgaaatggcg gcacccctcgaa gaagcagatc ggcgcagggtga agccccaggac
 421 caccctgtcc gccccgggaa tggacgagtc tgggttctg gagccccaa ggcacaggcga
 481 aaggcagtgc ctggagccga ctcccttctt ccaggaaagca cagaggggccc tggggaccc
 541 cccagactg ccgcacggcg tgactggttc ctgcaggacc aggttttttttccgg
 601 ggcttcaggat ggaggggctg tgggcacggg gttttttccgg gtgcctcccg tctccactgc
 661 cggccacgtgg cagagttctg ctcccccacca acctggggcc accctctggg ctgaggcaaa
 721 gacctctgag gccccgtcca cccaggacc ccacccacccag gcctccactg cgtccctcccc
 781 agcccccaag gagaatgtcc ctgttgcagg ccagcgtgtg tggggtcagg
 841 caggcccaag aactctctgg agccgggaggaa gatggggccc gtggccagcgc
 901 cttccaggac tggggggctg gcagcatggc ccacgttctt gtgttccctg tctccactc
 961 agggaccccc agcaggggagc cagttggcttcc aggcagctgg acccctaagg ctgaggaacc
 1021 catccatgcc accatggacc cccagaggctt gggcgttctt atcaactctg tccctgacgc
 1081 ccaggctgcc accccggaggc agggcgttgg gctgtggcc ttcttggcc
 1141 cctgggggttgc ggcattttca cttccaggagc cttccaggcc tggccctcgaa
 1201 agagatggcg gaggggcttc gctacatccc ccggagctgt ggttagtaatt
 1261 ggtccccctg tgaactccctc tggccctgtt ctatgttggt gattcagaca
 1321 atcccttcattt ctcataccca ccccccacca agggcctggc ctgagctggg atatgggag
 1381 gggggagggtt ggatccttcca ggttcacaaat ctccaaaggcc caaggcatcc
 1441 cagccttgac cattttccac ctccaggaga cagagggggtt ggcttcccaa
 1501 ccccaaaact ctccctgtct gctggctggg tagaggttcc ctttgacgc
 1561 caatgaacaa ttatattat aatgcccagc cccttctgac ccatgctgc
 1621 tacagttctc ccatttcaca catggcatac aggccaggcc ctctggccac
 1681 ctgattgtt ctcttggcc tggcgtcaggat gccagtcacc ceggcacccat
 1741 ctccccccagc cccatccctc gtacagagcc caccggggcc ctggtgacat
 1801 gcatgaggct agtgtgggtt ttcttggca ctgtttccag tgaggctctg
 1861 ggsattgtt gaaaggggaga taagggttac tggtactttt cctcttggt
 1921 ctgagttgtt aggttgggtt ctgatccctat ttccacccat aagccaccaa
 1981 tctgtaaaag gaaaaggaaa ggttaaggaaat acctgtcccc ctgacaaacat
 2041 gaggcccttc tctccaggccc ctggatgcac cttccacatc ctttaccagca
 2101 gacagtccctt gccaatggac taacttgcatt ttggacccctg agggccagg
 2161 ggagtgtaggat gatagcacaat accctggccctt gttggccccc aaatggaaat
 2221 gagaccatcc ctgaaaggccc cggccaggat tagtcactgtt gacagccccgg
 2281 cccatccccccg ctaaaggaaa gggagggttcc cagacacatc tccaaagaagc
 2341 ctccaggaggc agccacattt ctgatccctt ttccagagact ccttgaggca
 2401 aagacccttgg tggtcccaacc ccacacacgc cagattttt ccttgaggctg
 2461 ccacccctctt cacttgcattt aaacactgtt ctctggccctt caagccctt
 2521 ttgtccccccat cggcagacagg accaggggat ttccatgtt tttccatgtt
 2581 tggttctgaa agggacgtt cccggggaaagg gggctqqqac atggaaagg
 qaaatgttqa

```

2641 ggcataaaagt caggggttcc cttttttggc tgctgaaggc tcgagcatgc ctggatgggg
2701 ctgcaccggc tggctggcc cctcagggtc cctggggca gtcacatct cccttgatt
2761 gtccccgacc cttcccgatc acctgagggg cctttatgg gctgggttct acccagggtc
2821 taggaacact cttcacaga tgggtgctg gaggaaaggaa acccagctct ggtccataga
2881 gagcaaaacg ctgtgtgcc ctgcccaccc tggcctctgc actccctgc tgggtgtggc
2941 gcagcatatt caggaagctc aggggccctgg cttaggtggg gtcactctgg cagctcagag
3001 agggtgggag tgggtccaaat gcaacttgtt ctggcttcc cagggctggg gaggccttca
3061 ggggtgggac accctgtat gggggccctgc ctctttgtt aggaagccgc tggggccagt
3121 tggccccctt tccatggact ttgttagttt ctccaagcag gacatggaca aggatgatct
3181 aggaagactt tggaaagagt aggaagactt tggaaagactt ttccaaaccc tcatcaccaa
3241 cgtctgtgcc attttgtatt ttactaataa aatttaaaag tcttgtgaaa aaaaaaaaaaa
3301 aaaaaaaaaaa
//
```

LOCUS HSU91746 1430 bp mRNA **PRI** 12-MAR-1998
DEFINITION Homo sapiens IL-10-inducible chemokine (HCC-4) mRNA, complete
cds.
ACCESSION U91746
NID g2581780
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1430)
AUTHORS Hedrick,J.A., Helms,A., Gorman,D. and Zlotnik,A.
TITLE Identification of a novel human CC chemokine upregulated by IL-
10
JOURNAL Blood (1998) In press
REFERENCE 2 (bases 1 to 1430)
AUTHORS Hedrick,J.A., Helms,A., Gorman,D. and Zlotnik,A.
TITLE Direct Submission
JOURNAL Submitted (02-MAR-1997) Immunology, DNAX Research Institute,
901 California Ave, Palo Alto, CA 94304, USA
FEATURES Location/Qualifiers
source 1..1430
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="17"
gene 1..1430
/gene="HCC-4"
CDS 1..363
/gene="HCC-4"
/note="CC or beta chemokine family member"
/codon_start=1
/product="IL-10-inducible chemokine"
/db_xref="PID:g2581781"

/translation="MKVSEAAALSLLVLILIIITSASRSQPKVPEWVNTPSTCCLKYEK

VLPRRLVVGYRKALNCHLPAlIFVTKRNREVCTNPNDWVQEYIKDPNLPLPTRNLS
TVKIITAKNGQPQLLNSQ"

BASE COUNT 401 a 351 c 293 g 385 t
ORIGIN

```

1 atgaagggtct ccgaggctgc cctgtctctc cttgtcctca tccttatcat tacttcggct
61 tctcgaccc agccaaaagt tcctgagtgg gtgaacaccc catccacctg ctgcctgaag
121 tattatgaga aagtgttgcc aaggagacta gtggggat acagaaaggc cctcaactgt
181 cacctgccag caatcatctt cgtcaccaag aggaaccgag aagtctgcac caaccccaat
241 gacgactggg tccaaagacta catcaaggat cccaaacctac ctttgcgtcc taccaggaac
301 ttgtccacgg ttaaaattat tacagcaaaat aatggtcaac cccagctctt caactcccg
361 ttagtacccag gcttttagtgg aagcccttgc ttacagaaga gagggtaaa cctatgaaaa
421 cagggaaagc cttttaggc tggaaacttgc cagtcacatt gagagaagca gaacaaatgtat
481 caaaataaaag gagaagtatt tcaaatattt tctcaatctt aggaggaaat accaaagtta
541 agggacgtgg gcaaggatgc gctttttat tttttatattt atattttat ttttttgaga
601 taggtcttac tctgtcaccc aggctggat gcaatgggtt gatctggct cacttgatct
661 tggctcaactg taacctccac ctcccaaggct caagtgtatcc tcccaacccca gcctcccgag
721 tagctggac tacaggcttgc cgccaccaca cctggctaat ttttgtatcc ttggtagaga
781 cgggatttca ccatgttgcc caggctggat tcaaaactcggt gtgccccaaagc aatccacctg
841 cctcagccctt ccaaaagtgc tgggattaca ggcgtgagcc accacatccg gccagtgac
901 tcttaataca cagaaaaata tatttcacat ctttctccctg ctctctttca atttctact

```

961 tcacaccagt acacaagcca ttctaaatac ttagccagtt tccagccttc cagatgatct
1021 ttgccctctg ggtcttgacc cattaagagc cccatagaac tcttgatttt tcctgtccat
1081 ctttatggat ttttctggat ctatattttc ttcaatttattt ctttcattttt ataatgcAAC
1141 ttttcatacg aaagtccgga tgggaatattt cacattaatc attttgcag agactttgt
1201 agatcccttc atatttgtc ttccctcaggg tggcagggtt acagagatg cctgatttgg
1261 aaaaaaaaaa aaagagagag agagagaaga agaagaagaa gagacacaaa ttcttacctc
1321 ccatgttaag ctttgcagga cagggaaaga aagggtatga gacacggcta ggggtaaact
1381 cttagtccaa aacccaagca tgcaataaat aaaactccct tatttgacaa
//

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/26291

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/84, 85.1, 184.1, 186.1, 188.1, 278.1; 514/2, 8, 12, 44; 530/300, 324

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,141, 867 A (IVANOFF et al.) 25 August 1992, see entire document.	22-32, 45-55
A	ENG et al. The Stimulatory Effects of Interleukin (IL)-12 On Hematopoiesis Are Antagonized by IL-12-induced Interferon γ In Vivo. J. Exp. Med. May 1995, Vol.181, pages 1893-1898, see entire document.	1-21, 33-44
A	ORANGE et al. Mechanism of Interleukin 12-mediated Toxicities during Experimental Viral Infections: Role of Tumor Necrosis Factor and Glucocorticoids. J. Exp. Med. March 1995, Vol.181, pages 901-914, see entire document.	1-21, 33-44

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	*X*	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	*Y*	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*Z*	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
25 MARCH 1999

Date of mailing of the international search report
15 APR 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
PREMA MERTZ
Telephone No. (703) 308-0196
[Signature]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/26291

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WU et al. Receptor-mediated in Vitro Gene Transformation by a Soluble DNA Carrier System. The Journal of Biological Chemistry. 05 April 1987, Vol.252, No. 10, pages 4429-4432, see entire document.	22-32, 45-55

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/26291

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US98/26291**A. CLASSIFICATION OF SUBJECT MATTER:**

IPC (6):

C07K 14/47, 14/52; C12N 15/12, 15/19, 15/63; A61K 38/16, 38/19, 48/00

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

424/84, 85.1, 184.1, 186.1, 188.1, 278.1; 514/2, 8, 12, 44; 530/300, 324

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, CAN ONLINE, MEDLINE, CAPLUS

search terms: chemokine, vaccination, immunogenic, antigen, HIV, efficacy, macrophage-derived chemokine, stromal cell-derived factor, monocyte chemotactic protein, composition, administration

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1.

Group I, claims 1-21, 33-44, drawn to a method to enhance the efficacy of a vaccine in a subject comprising administering an antigen and one or more chemokines and a composition thereto.

Group II, claims 22-32, 45-55, drawn to a method to enhance the efficacy of a vaccine in a subject comprising administering nucleic acid sequences encoding one or more antigens and nucleic acid sequences encoding one or more chemokines.

The inventions listed as Groups I-II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Pursuant to 37 C.F.R. § 1.475 (d), the ISA/US considers that where multiple products and processes are claimed, the main invention shall consist of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly, the main invention (Group I) comprises the first-recited product and method, a method to enhance the efficacy of a vaccine in a subject comprising administering an antigen and one or more chemokines and a composition thereto. Further pursuant to 37

C.F.R. § 1.475 (d), the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

