Assignment WW1_202122T1 due 09/28/2021 at 11:00pm HKT

1. (1 point) Suppose

$$\lim_{x \to a} g(x) = 0, \ \lim_{x \to a} h(x) = -2, \ \lim_{x \to a} f(x) = 8.$$

Find following limits if they exist. Enter DNE if the limit does not exist.

- ____1. $\lim_{x \to a} g(x) + h(x)$ ____2. $\lim_{x \to a} g(x) h(x)$ ____3. $\lim_{x \to a} g(x) \cdot f(x)$
- $\underline{\hspace{1cm}}5. \lim_{x\to a}\frac{g(x)}{f(x)}$
- $---7. \lim_{x\to a} (h(x))^2$
- $---8. \lim_{x \to a} \frac{1}{h(x)}$
- $---9. \lim_{x \to a} \frac{1}{h(x) f(x)}$

Answer(s) submitted:

(incorrect)

2. (1 point) $\lim_{x \to 3} \frac{x^2 - 2x - 3}{\sqrt{x + 1} - 2} =$

Answer(s) submitted:

(incorrect)

3. (1 point) $\lim_{x \to -\infty} \frac{2x}{14x^2 + 14x + 11} =$ Answer(s) submitted:

(incorrect)

4. (1 point) Let $f(x) = \frac{x}{|x|}$, where $x \neq 0$.

(a) Find $\lim_{x \to a} f(x)$

Ans:

(b) Find $\lim_{x \to a} f(x)$

Ans: _

(c) Does $\lim f(x)$ exist?

Ans: _

Answer(s) submitted:

(incorrect)

5. (1 point) Let f(x) be defined by

$$f(x) = \begin{cases} e^{-12/x}, & \text{if } x > 0\\ 17, & \text{if } x = 0\\ \sin(24x), & \text{if } x < 0 \end{cases}$$

- (a) Find $\lim_{x\to 0^+} f(x)$
- (b) Find $\lim_{x\to 0^-} f(x)$
- Ans:_____
- (c) Find f(0)
- Ans:_
- (d) Does $\lim_{x\to 0} f(x)$ exist?

Ans: _ Answer(s) submitted:

(incorrect)

6. (1 point) Find (without using differentiation), the limit

 $\lim_{x\to 0} \frac{\tan(5x)}{\tan(7x)}$

Ans: _

(Hint: one of the special limits may be useful!) Answer(s) submitted:

(incorrect)

				some	well-known	special	limit,
$\lim_{x\to\infty}$ $Answ$	(1+er(s))	$\left(\frac{2}{x}\right)^{3x} = $ submitte	 ed:				

(incorrect)

8. (1 point) Evaluate
$$\lim_{x \to \infty} \left(\frac{x+6}{x+7} \right)^x$$
.

Answer =

Answer(s) submitted:

(incorrect)

9. (1 point)

Evaluate the limit:

Answer(s) submitted:

(incorrect)

10. (1 point) Evaluate

$$\lim_{\theta \to 0} \frac{\sin(4\cos\theta)}{4\sec\theta}.$$

Limit =

Answer(s) submitted:

(incorrect)

11. (1 point)

Determine the limit of the sequence or show that the sequence diverges by using the appropriate Limit Laws or theorems. If the sequence diverges, enter DIV as your answer.

$$c_n = \ln\left(\frac{6n-7}{11n+4}\right)$$

 $\lim c_n =$

Answer(s) submitted:

(incorrect)

12. (1 point)

Consider the sequence

$$a_n = \frac{n\cos(n\pi)}{2n-1}$$

Write the first five terms of a_n , and find $\lim_{n\to\infty} a_n$. If the sequence diverges, enter "divergent" in the answer box for its limit.

- a) First five terms: ___
- b) $\lim_{n\to\infty} a_n = -$ Answer(s) submitted:

(incorrect)

13. (1 point)
$$\lim_{n \to \infty} \frac{\sin(4n) + (-1)^n \cos(n)}{\ln(4n)} = \underline{\hspace{1cm}}$$

Answer(s) submitted.

(incorrect)

14. (1 point)

Put the following statements in order to justify why

$$0. = \frac{\lim_{n \to \infty} (-6) + 7 \lim_{n \to \infty} \left(\frac{1}{n}\right) + 6 \lim_{n \to \infty} \left(\frac{1}{n^2}\right)}{\lim_{n \to \infty} (5) - 4 \lim_{n \to \infty} \left(\frac{1}{n}\right) + 6 \lim_{n \to \infty} \left(\frac{1}{n^2}\right)}$$
$$1. = \lim_{n \to \infty} \frac{n^2 \left(\frac{7}{n} - 6 + \frac{6}{n^2}\right)}{n^2 \left(5 - \frac{4}{n} + \frac{6}{n^2}\right)}.$$

2.
$$\lim_{n \to \infty} \frac{6 + 7n - 6n^2}{5n^2 - 4n + 6}$$

$$3. = -\frac{6}{5}$$

$$4. = \frac{-6 + 7 \cdot 0 + 6 \cdot 0}{5 - 4 \cdot 0 + 6 \cdot 0}$$

2.
$$\lim_{n \to \infty} \frac{6+7n-6n^2}{5n^2-4n+6}.$$
3.
$$= -\frac{6}{5}.$$
4.
$$= \frac{-6+7\cdot 0+6\cdot 0}{5-4\cdot 0+6\cdot 0}$$
5.
$$= \lim_{n \to \infty} \frac{\frac{7}{n}-6+\frac{6}{n^2}}{5-\frac{4}{n}+\frac{6}{n^2}}.$$

$$5. = \frac{\lim_{n \to \infty} \left(\frac{7}{n} - 6 + \frac{6}{n^2} \right)}{\lim_{n \to \infty} \left(5 - \frac{4}{n} + \frac{6}{n^2} \right)}.$$

Answer(s) submitted:

(incorrect)

15. (1 point)

Put the following statements in order to justify why $\lim_{n\to\infty}\frac{-5n}{\sqrt{3n^2+1}}=\frac{-5}{\sqrt{3}}.$

$$0. = \lim_{n \to \infty} \frac{n \cdot -5}{\sqrt{n^2} \cdot \sqrt{3 + 1/n^2}}$$

$$1. = \frac{\lim_{n \to \infty} -5}{\sqrt{\lim_{n \to \infty} (3) + \lim_{n \to \infty} (1/n^2)}}$$

$$2. = \lim_{n \to \infty} \frac{-5}{\sqrt{3 + 1/n^2}}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

3.
$$\lim_{n \to \infty} \frac{-5n}{\sqrt{3n^2 + 1}}$$
4.
$$= \frac{-5}{\sqrt{3 + 0}}$$
5.
$$= \frac{\lim_{n \to \infty} -5}{\lim_{n \to \infty} \sqrt{3 + 1/n^2}}$$
6.
$$= \frac{-5}{\sqrt{3}}$$
7.
$$= \lim_{n \to \infty} \frac{-5n}{\sqrt{n^2 (3 + 1/n^2)}}$$

Answer(s) submitted:

•

(incorrect)