LØST OPPGAVE 14.317

14.317

En bil kjører med den konstante farten 15 m/s gjennom en kurve *PQ*. Kurven er en del av en sirkel (se figur).

- a) Hvor lang tid bruker bilen fra P til Q?
- b) Finn gjennomsnittsakselerasjonen fra *P* til *Q* under bevegelsen. (Husk også retningen.)
- c) Hva blir svaret i b hvis bilen har dobbelt så stor fart?
- d) Hva blir svaret i b hvis farten er 15 m/s og radien endres til 75 m?

Løsning:

a) Siden (bane)farten til bilen er konstant kan vi bruke likningen $\Delta s = v\Delta t$. Veien Δs er 65/360 deler av omkretsen til sirkelbanen. Vi får

$$\Delta t = \frac{\Delta s}{v}$$

$$= \frac{\frac{65}{360} 2\pi r}{v} = \frac{\frac{65}{360} \cdot 2\pi \cdot 150 \text{ m}}{15 \text{ m/s}} = 11,34 \text{ s} = 11 \text{ s}$$

b) Vi bruker definisjonen av gjennomsnittsakselrasjon

$$\overline{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t}$$

Vi tegner figur der startfarten ved P, \vec{v}_1 , og sluttfarten ved Q, \vec{v}_2 , er tegnet inn:

Vi har parallellforskjøvet vektoren \vec{v}_2 slik at den får samme begynnelsespunkt som vektoren \vec{v}_1 . Av figuren ser vi at vinkelen mellom \vec{v}_1 og \vec{v}_2 er $\alpha = 65^\circ$. Siden vektorene \vec{v}_1 og \vec{v}_2 er like lange, er trekanten som utspennes av de to vektorene og fartsendringen $\Delta \vec{v}$ likebeinet. Vinkelen β på figuren er da gitt ved

$$\alpha + 2\beta = 180^{\circ}$$

som gir

$$\beta = 90^{\circ} - \frac{\alpha}{2} = 90^{\circ} - \frac{65^{\circ}}{2} = 57,5^{\circ}$$

Vinkelen mellom \vec{v}_1 og $\Delta \vec{v}$ er da

$$\angle(\Delta \vec{v}, v_1) = 180^{\circ} - \beta = 180^{\circ} - 57, 5^{\circ} = 122, 5^{\circ}$$

Vi finner lengden av $\Delta \vec{v}$ ved hjelp av cosinussetningen:

$$(\Delta v)^2 = v_1^2 + v_2^2 - 2v_1v_2\cos\alpha$$

Dette gir idet $v_1 = v_2 = v = 15 \text{ m/s}$:

$$\Delta v = \sqrt{v_1^2 + v_2^2 - 2v_1v_2\cos\alpha}$$

$$= v\sqrt{1^2 + 1^2 - 2\cos\alpha}$$

$$= 15 \text{ m/s} \cdot \sqrt{1 + 1 - 2\cos65^\circ} = 16,11 \text{ m/s}$$

Akselerasjonens absoluttverdi blir da:

$$\overline{a} = \frac{\Delta v}{\Delta t}$$

$$= \frac{16,11 \text{ m/s}}{11,34 \text{ s}} = 1,420 \text{ m/s}^2 = \underline{1,4 \text{ m/s}^2}$$

Siden akselerasjonen $\overline{\vec{a}}$ har samme retning som $\Delta \vec{v}$, er retningen til $\overline{\vec{a}}$ gitt ved

$$\angle(\bar{a}, v_1) = 122,5^{\circ}$$

c) Dersom farten til bilen er dobbelt så stor, blir fartsendringen $\Delta \vec{v}$ dobbelt så stor, og tida Δt blir halvparten så stor. Dermed blir akselerasjonen fire ganger så stor som i b. Vi får

$$\overline{a} = 4 \cdot 1,420 \text{ m/s}^2 = 5,7 \text{ m/s}^2$$

d) Dersom farten til bilen er den samme som i b, mens radien er halvparten, blir fartsendringen $\Delta \vec{v}$ den samme, og tida Δt blir halvparten så stor. Dermed blir akselerasjonen dobbelt så stor som i b. Vi får

$$\overline{a} = 2 \cdot 1,420 \text{ m/s}^2 = 2,8 \text{ m/s}^2$$