

# Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data

Shikai Fang, Xin Yu, Zheng Wang, Shibo Li, Robert M. Kirby, Shandian Zhe





# ➤ Regular Tensor data and decomposition: multi-dim array for high-order structural data







Interger index:

object #







# Object 2 Vector!

Low-rank factors

$$\mathbf{U}^k = \left[\mathbf{u}_1^k \dots \mathbf{u}_{d_k}^k
ight]$$

#### **➢** General case: "Continuous-index" tensor data



Each entry: (index1, index2, index3...)-> value

⇔ a multivariate functions

Real-valued index: input of function

(latitude, longitude, height, time)

### > FunBaT: Tucker-form functional decomposition



$$f(\mathbf{i}) = f(i_1, \dots i_K) \approx \text{vec}(\mathcal{W})^{\top} \left( \mathbf{U}^1(i_1) \otimes \dots \otimes \mathbf{U}^K(i_K) \right)$$

continuous-index entry  $\Leftrightarrow$  interaction of mode-wise latent functions

#### > Model of latent function: State-Space Gaussian Process (SSGP)

$$\begin{aligned} \mathbf{U}^k(i_k) &= [u_1^k(i_k), \dots, u_{r_k}^k(i_k)]^T; \ u_j^k(i_k) \sim \mathcal{GP}\left(0, \kappa(i_k, i_k')\right), j = 1 \dots r_k \\ p(\mathbf{U}^k) &= p(\mathbf{Z}^k) = p(\mathbf{Z}^k(i_k^1), \dots, \mathbf{Z}^k(i_k^{N_k})) = p(\mathbf{Z}^k) \prod_{s=1}^{N_k-1} p(\mathbf{Z}^k_{s+1} | \mathbf{Z}^k_s), \\ \text{where } p(\mathbf{Z}^k_1) &= \mathcal{N}(\mathbf{Z}^k(i_k^1) | \mathbf{0}, \tilde{\mathbf{P}}_{\infty}^k); \ p(\mathbf{Z}^k_{s+1} | \mathbf{Z}^k_s) = \mathcal{N}(\mathbf{Z}^k(i_k^{s+1}) | \tilde{\mathbf{A}}^k_s \mathbf{Z}^k(i_k^s), \tilde{\mathbf{Q}}^k_s). \end{aligned}$$

#### > Efficient and scalable Inference by:

moment-matching + message merging + Bayesian Filter/Smoother

$$\mathcal{N}(y_n \mid \operatorname{vec}(\mathcal{W})^{\top} \left( \mathbf{U}^1(i_1^n) \otimes \ldots \otimes \mathbf{U}^K(i_K^n) \right), \tau^{-1}) \approx Z_n f_n(\tau) f_n(\mathcal{W}) \prod_{k=1}^K f_n(\mathbf{Z}^k(i_k^n)),$$

$$q(\mathcal{W}) = p(\mathcal{W}) \prod_{n=1}^{N} f_n(\mathcal{W}) = \mathcal{N}(\text{vec}(\mathcal{W}) \mid \mathbf{0}, \mathbf{I}) \prod_{n=1}^{N} \mathcal{N}(\text{vec}(\mathcal{W}) \mid \boldsymbol{\mu}_n, \mathbf{S}_n).$$

$$q(\mathbf{Z}_s^k) = q(\mathbf{Z}_{s-1}^k)p(\mathbf{Z}_s^k|\mathbf{Z}_{s-1}^k)\prod_{n\in\mathcal{D}_s^k}f_n(\mathbf{Z}_s^k)$$

Time cost:  $\mathcal{O}(NKR)$ 

Linear to mode, # entry, rank

# > Synthetic Data: reconstruction of tensor surface



#### > Real-world task results & learned latent functions

BeijingAir:

(atmospheric-pressure, temperature, time)

|                                                     | RMSE                           |                   |                                |  |
|-----------------------------------------------------|--------------------------------|-------------------|--------------------------------|--|
| Datasets                                            | PM2.5                          | PM10              | SO2                            |  |
| Resolution: $428 \times 501 \times 1461$ (original) |                                |                   |                                |  |
| P-Tucker                                            | $1.256 \pm 0.084$              | $1.397 \pm 0.001$ | $0.963 \pm 0.169$              |  |
| Tucker-ALS                                          | $1.018 \pm 0.034$              | $1.012\pm0.021$   | $0.997 \pm 0.024$              |  |
| Tucker-SVI                                          | $1.891 \pm 0.231$              | $1.527\pm0.107$   | $1.613 \pm 0.091$              |  |
| Methods using                                       | g continuous inde              | xes               |                                |  |
| FTT-ALS                                             | $1.020 \pm 0.013$              | $1.001 \pm 0.013$ | $1.001 \pm 0.026$              |  |
| FTT-ANOVA                                           | $2.150 \pm 0.033$              | $2.007 \pm 0.015$ | $1.987 \pm 0.036$              |  |
| FTT-cross                                           | $0.942 \pm 0.025$              | $0.933 \pm 0.012$ | $0.844 \pm 0.026$              |  |
| RBF-SVM                                             | $0.995 \pm 0.015$              | $0.955 \pm 0.02$  | $0.794 \pm 0.026$              |  |
| BLR                                                 | $0.998 \pm 0.013$              | $0.977 \pm 0.014$ | $0.837 \pm 0.021$              |  |
| FunBaT-CP                                           | $0.296 \pm 0.018$              | $0.343 \pm 0.028$ | $\boldsymbol{0.386 \pm 0.009}$ |  |
| FunBaT                                              | $\boldsymbol{0.288 \pm 0.008}$ | $0.328 \pm 0.004$ | $\boldsymbol{0.386 \pm 0.01}$  |  |

#### US-Temperature: (latitude, longitude, time)

|            | RMSE                          |                               |                                |
|------------|-------------------------------|-------------------------------|--------------------------------|
| Mode-Rank  | R=3                           | R=5                           | R=7                            |
| P-Tucker   | $1.306\pm0.02$                | $1.223 \pm 0.022$             | $1.172 \pm 0.042$              |
| Tucker-ALS | > 10                          | > 10                          | > 10                           |
| Tucker-SVI | $1.438 \pm 0.025$             | $1.442\pm0.021$               | $1.39 \pm 0.09$                |
| FTT-ALS    | $1.613 \pm 0.0478$            | $1.610 \pm 0.052$             | $1.609 \pm 0.055$              |
| FTT-ANOVA  | $5.486 \pm 0.031$             | $4.619\pm0.054$               | $3.856 \pm 0.059$              |
| FTT-cross  | $1.415 \pm 0.0287$            | $1.312 \pm 0.023$             | $1.285 \pm 0.052$              |
| RBF-SVM    | $2.374 \pm 0.047$             | $2.374\pm0.047$               | $2.374 \pm 0.047$              |
| BLR        | $2.959 \pm 0.041$             | $2.959 \pm 0.041$             | $2.959 \pm 0.041$              |
| FunBaT-CP  | $\boldsymbol{0.805 \pm 0.06}$ | $\boldsymbol{0.548 \pm 0.03}$ | $\boldsymbol{0.551 \pm 0.048}$ |
| FunBaT     | $1.255 \pm 0.108$             | $1.182\pm0.117$               | $1.116\pm0.142$                |



