AERODINÁMICA Y CAPA LÍMITE

Mecánica de fluidos

Adrián Navas Montilla (anavas@unizar.es)

CONTENIDOS

- Introducción a la aerodinámica
- Capa límite

Aerodinámica

• Objetivo: Calcular las <u>fuerzas</u> y <u>momentos</u> que actúan sobre un cuerpo que se mueve con una velocidad relativa respecto a un fluido

Relative Velocities Aircraft Reference

Glenn Research Center

Relative Velocities

Ground Reference

Glenn Research Center

Wind Speed = Airspeed - Ground Speed

Airspeed = Ground Speed - Wind Speed

Aerodinámica: fuerzas y momentos

Las fuerzas y momentos que ejerce el fluido sobre el cuerpo se representan mediante la integrales:

$$\vec{F}_{fluido \to cuerpo} = -\int_{S_{cuerpo}} (-p\hat{n} + \tilde{\tau}_v \cdot \hat{n}) dS$$

$$\vec{M}_{fluido \to cuerpo} = -\int_{S_{cuerpo}} \vec{r} \times (-p\hat{n} + \tilde{\tau}_v \cdot \hat{n}) dS$$

Y las podemos obtener:

- Si conocemos el campo de velocidades y presiones, calculando las integrales (tema 1)
- Si conocemos velocidades y presiones en entrada/salida, etc., mediante un balance integral (tema 2)
- Si no conocemos nada, experimentalmente en laboratorio (tema 4)

Aerodinámica: fuerzas y momentos

En aerodinámica, las fuerzas y momentos sobre un cuerpo que vuela en dirección x reciben los nombres:

- Fuerza en -x: <u>Arrastre</u> (drag)
- Fuerza en +z: <u>Sustentación</u> (lift)
- Fuerza en +y: <u>Fuerza lateral</u> (side force)
- Momento en x: Alabeo (roll)
- Momento en y: <u>Cabeceo</u> (pitch)
- Momento en z: <u>Guiñada</u> (yaw)

Aerodinámica: fuerzas y momentos

En aerodinámica, las fuerzas y momentos sobre un cuerpo que vuela en dirección x

a.)

reciben los nombres:

• Fuerza en -x: <u>Arrastre</u> (drag)

• Fuerza en +z: <u>Sustentación</u> (lift)

• Fuerza en +y: <u>Fuerza lateral</u> (side force)

- Momento en x: <u>Alabeo</u> (roll)
- Momento en y: <u>Cabeceo</u> (pitch)
- Momento en z: <u>Guiñada</u> (yaw)

Número adimensional asociado:

$$C_D = \frac{F_D}{1/2\rho V^2 D^2}$$

Número adimensional asociado:

$$C_L = \frac{F_L}{1/2\rho V^2 D^2}$$

N – yawing moment

Resistencia aerodinámica

Resistencia de forma

Resistencia de fricción

$$\vec{F}_{fluido \to cuerpo} = -\int_{S_{cuerpo}} (-p\hat{n}) + (\tilde{\tau}_v \cdot \hat{n}) dS$$

Dos contribuciones:

• <u>Resistencia de fricción</u> (skin friction): debida a los esfuerzos viscosos

$$-\int_{S_{cuerpo}} \tilde{\boldsymbol{\tau}}_{v} \cdot \hat{\boldsymbol{n}} dS$$

$$-\int_{S_{cuerpo}} -p\widehat{\boldsymbol{n}} dS$$

Resistencia aerodinámica

Dos contribuciones:

• <u>Resistencia de fricción</u> (skin friction): debida a los esfuerzos viscosos

$$-\int_{S_{cuerpo}} -p\widehat{\boldsymbol{n}} dS$$

• R<u>esistencia de forma</u> (pressure drag): debida a los esfuerzos de presión

$$-\int_{S_{cuerno}} \tilde{\boldsymbol{\tau}}_{v} \cdot \hat{\boldsymbol{n}} dS$$

Shape and flow	Form Drag	Skin friction
	0%	100%
	~10%	~90%
	~90%	~10%
	100%	0%

Aerodinámica: coeficiente de arrastre

Shape	Reference area	Drag coefficient $C_{\mathcal{D}}$	Reynolds number Re = $\rho UD/\mu$
Solid hemisphere	$A = \frac{\pi}{4}D^2$	1.17 0.42	Re > 10 ⁴
Hollow hemisphere	$A = \frac{\pi}{4}D^2$	1.42 0.38	Re > 10 ⁴
Thin disk	$A = \frac{\pi}{4}D^2$	1.1	Re > 10 ³
→ Circular rod parallel to flow	$A = \frac{\pi}{4}D^2$	ℓ/D C _D 0.5 1.1 1.0 0.93 2.0 0.83 4.0 0.85	Re > 10 ⁵
θ D Cone	$A = \frac{\pi}{4}D^2$	θ, degrees C _D 10 0.30 30 0.55 60 0.80 90 1.15	Re > 10 ⁴
→ D Cube	$A = D^2$	1.05	Re > 10 ⁴
Cube	$A = D^2$	0.80	Re > 10 ⁴
Streamlined body	$A = \frac{\pi}{4}D^2$	0.04	Re > 10 ⁵

Shape	Reference area	Drag coefficient $C_{\cal D}$		
Parachute	Frontal area $A = \frac{\pi}{4}D^2$	1.4		
T-\(\)	Frontal area	Porosity 0 0.2 0.5		
Porous parabolic		→ 1.42 1.20 0.82		
dish	$A = \frac{\pi}{4}D^2$	← 0.95 0.90 0.80		
		Porosity = open area/total area		
Average person	Standing	$C_D A = 9 \text{ ft}^2$		
	Sitting	$C_D A = 6 \text{ ft}^2$		
	Crouching	$C_D A = 2.5 \text{ ft}^2$		
Fluttering flag	$A = \ell D$	$\begin{array}{c cccc} \ell/D & C_D \\ \hline 1 & 0.07 \\ 2 & 0.12 \\ 3 & 0.15 \\ \end{array}$		
Empire State Building	Frontal area	1.4		
Six-car passenger train	Frontal area	1.8		

Aerodinámica: coeficiente de arrastre

	1	
Bikes		
Upright commuter	$A = 5.5 \text{ ft}^2$	1.1
Racing	$A = 3.9 \text{ ft}^2$	0.88
Orafting Drafting	$A = 3.9 \text{ ft}^2$	0.50
Streamlined	$A = 5.0 \text{ ft}^2$	0.12
Tractor-trailer trucks		
Standard Fairing	Frontal area	0.96
With fairing Gap seal	Frontal area	0.76
With fairing and gap seal	Frontal area	0.70
Tree $U = 10 \text{ m/s}$ $U = 20 \text{ m/s}$ $U = 30 \text{ m/s}$	Frontal area	0.43 0.26 0.20
Dolphin	Wetted area	0.0036 at Re = 6×10^6 (flat plate has C_{Df} = 0.0031)
Large birds	Frontal area	0.40

En muchas situaciones la resistencia por fricción es dominante

Vamos a analizar el flujo alrededor de una placa plana: al aumentar el Reynolds, la zona de influencia de la placa (u < 0.99U) se reduce

Podemos separar el flujo en tres regiones distintas

Dentro de la capa límite: efectos viscosos muy importantes, gradientes elevados, vorticidad

Podemos separar el flujo en tres regiones distintas (un caso más complejo)

Estructura de la capa límite

Capa límite sobre placa plana: existe región <u>laminar</u> y <u>turbulenta</u>

Espesor de la capa límite: $\delta = y$ donde u(y) = 0.99U

x = 0

Capa límite laminar (Re $< 5 \times 10^5$): ecuaciones gobernantes

Capa límite sobre placa plana. Consideramos flujo incompresible, 2D, despreciando fuerzas másicas. Ecuaciones de Navier-Stokes dan lugar a:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right)$$
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}}\right)$$

Conservación de la masa:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Considerando que $v \ll u$ y $\frac{\partial}{\partial x} \ll \frac{\partial}{\partial y}$, podemos simplificar la ecuación del momento, obteniendo las ecuaciones que gobiernan el flujo en la capa límite:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2}$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Algunas relaciones importantes

Capa límite laminar sobre placa plana

Relación entre el espesor de la capa límite y el número de Reynolds:

$$\frac{\delta}{L} \sim \frac{1}{\sqrt{\text{Re}}}$$

Solución de las ecuaciones

El problema se compone por el sistema de ecuaciones:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2}$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Sujeto a las siguientes condiciones de contorno:

$$u = v = 0$$
 en $y = 0$
 $u = U$ en $y \to \infty$

Definimos las variables

$$\eta = y \left(\frac{U}{vx}\right)^{0.5} \quad y \quad \frac{u}{U}$$

y resolvemos numéricamente el problema.

Solución de las ecuaciones

Solución de Blasius:

Laminar Flow along a Flat Plate (the Blasius Solution)

$\eta = y(U/\nu x)^{1/2}$	$f'(\eta) = u/U$	η	$f'(\boldsymbol{\eta})$
0	0	3.6	0.9233
0.4	0.1328	4.0	0.9555
0.8	0.2647	4.4	0.9759
1.2	0.3938	4.8	0.9878
1.6	0.5168	5.0	0.9916
2.0	0.6298	5.2	0.9943
2.4	0.7290	5.6	0.9975
2.8	0.8115	6.0	0.9990
3.2	0.8761	∞	1.0000

$$\frac{\delta}{x} = \frac{5}{\sqrt{\text{Re}}}$$

Transición laminar-turbulenta de la capa límite

Ocurre a una distancia x_c

$$Re_{x_c} = \frac{Ux_c}{v} \approx 5 \times 10^5$$
$$x_c \approx \frac{5 \times 10^5 v}{U}$$

Transición laminar-turbulenta de la capa límite

Ocurre a una distancia x_c

- <u>Laminar</u>: gradientes más suaves cercanos a la pared
- <u>Turbulenta</u>: fuertes gradientes en la pared, espesor δ mayor

Motivación: pérdida aerodinámica en aeronaves (stall)

Motivación: pérdida aerodinámica en aeronaves (stall)

En <u>flujo ideal</u>, punto A y punto F tienen la misma velocidad y presión (y energía).

 $p_0 - \rho U^2$

 $p_0 - \frac{3}{2}\rho U^2$

Paradoja de d'Alembert:

Si hacemos la integral de la presión en la superficie obtenemos que la fuerza de arrastre en el cilindro es cero!

¿ocurre esto en la realidad?

 θ , degrees

180

 θ , degrees

En <u>flujo viscoso</u>, punto A y punto F **no** tienen la misma velocidad y presión (ni energía), ha habido pérdidas energéticas debido al rozamiento en la capa límite.

¿Cómo es en un perfil alar?

¿Cómo es en un perfil alar?

¿Cómo es en un perfil alar?

Aerodinámica de perfiles alares: sustentación vs ángulo ataque

El coeficiente de sustentación

$$C_L = \frac{F_L}{1/2\rho V^2 D^2}$$

aumenta al aumentar el ángulo de ataque hasta un valor $C_{L,max}$ que se da para el ángulo de pérdida, α_{max} .

Aerodinámica de perfiles alares: sustentación vs ángulo ataque

- En perfiles simétricos, la sustentación es cero para ángulo de ataque cero.
- En perfiles con curvatura, la sustentación es mayor que cero para ángulo de ataque cero.

Aerodinámica de perfiles alares: dispositivos hipersustentadores

Aerodinámica de perfiles alares: dispositivos hipersustentadores

El uso de **flaps** en borde de fuga del ala permite desplazar la curva verticalmente, es decir, <u>aumentar el coeficiente de</u> <u>sustentación</u> para un mismo ángulo de ataque

Aerodinámica de perfiles alares: dispositivos hipersustentadores

El uso de **slats** en borde de ataque del ala permite incrementar el ángulo de pérdida aerodinámica. Añaden cantidad de movimiento a la capa límite, reduciendo el gradiente adverso de presiones.

