18.100A Assignment 5

Octavio Vega

February 28, 2023

Problem 1

Proof. We have that

$$L = \lim_{n \to \infty} \frac{|x_{n+1} - x|}{|x_n - x|} < 1.$$
 (1)

Then for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$\left| \frac{x_{n+1} - x}{x_n - x} \right| - 1 < \epsilon. \tag{2}$$

Rearranging gives

$$|x_{n+1} - x| < (1 + \epsilon)|x_n - x|.$$
 (3)

By taking ϵ to be arbitrarily small, we have, $\forall n \geq N$,

$$\stackrel{\epsilon \to 0}{\Longrightarrow} |x_{n+1} - x| < |x_n - x|. \tag{4}$$

Define $y_n := |x_n - x|$. Then $\forall n \ge N$,

$$0 \le y_{n+1} < y_n, \tag{5}$$

so $\{y_n\}_n$ is a decreasing sequence bounded below by 0. Hence,

$$\implies y_n \to 0$$
 (6)

$$\implies |x_n - x| \to 0 \tag{7}$$

$$\implies x_n \to x.$$
 (8)

Therefore, $\{x_n\}_n$ converges to x.

Problem 2

(a)

Let $x_n = \frac{(-1)^n}{n}$. Then $\forall n \in \mathbb{N}$,

$$-\frac{1}{n} \le x_n \le \frac{1}{n}.\tag{9}$$

Allowing $n \to \infty$ on all sides of the inequality gives

$$0 = \lim_{n \to \infty} \left(-\frac{1}{n} \right) \le \lim_{n \to \infty} x_n \le \lim_{n \to \infty} \left(\frac{1}{n} \right) = 0.$$
 (10)

So by the Squeeze Theorem, $\lim_{n\to\infty}x_n=0$. Finally, by the theorem from lecture 9, we conclude that $\liminf x_n=\limsup x_n=0$.