Unit 02 - Propositional Logic - Basics

Peter Bauer

Outline

Propositions and Propositional Variable

Compositions of Propositions

Propositional Formulas

Properties of Compositions

Propositions are done in everyday life.

- Propositions are done in everyday life.
- ► For propositions it makes sense to ask whether they are "true" or "false".

- Propositions are done in everyday life.
- For propositions it makes sense to ask whether they are "true" or "false".
- ► The answer to this question is either "true" or "false" (nothing in between).

- Propositions are done in everyday life.
- For propositions it makes sense to ask whether they are "true" or "false".
- ► The answer to this question is either "true" or "false" (nothing in between).
- Example: "The circuit is electrically conducting."

► Instead of propositions we are often talking of *propositional* variables

- Instead of propositions we are often talking of propositional variables
- Expresses that we are not interested in a specific proposition but a variable that can hold arbitrary propositions

- Instead of propositions we are often talking of propositional variables
- Expresses that we are not interested in a specific proposition but a variable that can hold arbitrary propositions
- ► Simplified we can understand propositional variables as variables that hold either the value *t* or *f*

- Instead of propositions we are often talking of propositional variables
- Expresses that we are not interested in a specific proposition but a variable that can hold arbitrary propositions
- ► Simplified we can understand propositional variables as variables that hold either the value *t* or *f*
- ► Instead of "Let A be an arbitrary proposition" we can say "Let A be a propositional variable"

Definition

A proposition is a "linguistic item" for which it makes sense to ask whether it is "true" or "false". The terms "true" and "false" are called the *truth values* of a proposition.

Definition

A proposition is a "linguistic item" for which it makes sense to ask whether it is "true" or "false". The terms "true" and "false" are called the *truth values* of a proposition.

Remark

Propositions are mainly denoted by upper case letters A, B, C, ...

Definition

A proposition is a "linguistic item" for which it makes sense to ask whether it is "true" or "false". The terms "true" and "false" are called the *truth values* of a proposition.

Remark

- Propositions are mainly denoted by upper case letters A, B, C, ...
- ▶ "true" is often abbreviated by t and "false" by f

Definition

A proposition is a "linguistic item" for which it makes sense to ask whether it is "true" or "false". The terms "true" and "false" are called the *truth values* of a proposition.

Remark

- Propositions are mainly denoted by upper case letters A, B, C, ...
- ▶ "true" is often abbreviated by t and "false" by f
- We are only interested in the structure of propositions and not in its content.

Examples

▶ *x* ≤ 3

Examples

- > x ≤ 3
- ▶ In German: Wenn Anastasia den Most holt, wird es bald etwas zu trinken geben, und das Abendessen wird beginnen, vorausgesetzt, dass Bartholomäus das Brot schon gebacken hat.

Definition

$$\begin{array}{c|c|c|c}
A & B & A \land B & A \lor B & \neg A \\
\hline
t & t & & \\
\end{array}$$

Definition

Α	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f

Definition

A	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f		'	

Definition

Α	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f

Definition

À	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f
f	t			•

Definition

A	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f
f	t	f	t	t

Definition

Ă	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f
f	t	f	t	t
f	f			

Definition

A	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f
f	t	f	t	t
f	f	f	f	t

Definition

Let A and B be two propositions. Then the truth values of the propositions $A \wedge B$ ("A and B"), $A \vee B$ ("A or B), and $\neg A$ ("not A") are given by the following truth table:

_ <i>A</i>	В	$A \wedge B$	$A \vee B$	$\neg A$
t	t	t	t	f
t	f	f	t	f
f	t	f	t	t
f	f	f	f	t

Remark

 \wedge is called *conjunction*, \vee is called *disjunction* and \neg is called *negation*.

Definition

Definition

$$\begin{array}{c|c}
A & B & A \Rightarrow B \\
\hline
t & t
\end{array}$$

Definition

Definition

A	В	$A \Rightarrow B$
t	t	t
t	f	f
f	l t '	

Definition

`A	В	$A \Rightarrow B$
t	t	t
t	f	f
f	t	t
f	f '	1

Definition

A	В	$A \Rightarrow B$
t	t	t
t	f	f
f	t	t
f	f	t

Definition

Definition

$$\begin{array}{c|c}
A & B & A \Leftrightarrow B \\
\hline
t & t
\end{array}$$

Definition

`A	В	$A \Leftrightarrow B$
t	t	t
t	f	

Definition

A	В	$A \Leftrightarrow B$
t	t	t
t	f	f
f	t '	

Definition

A	В	$A \Leftrightarrow B$
t	t	t
t	f	f
f	t	f
f	f	1

Equivalence

Definition

Let A and B be two propositions. Then the equivalence $A \Leftrightarrow B$ ("A if and only if B") is defined by the following truth table:

A	В	$A \Leftrightarrow B$
t	t	t
t	f	f
f	t	f
f	f	t

▶ The composition of two propositions is again a proposition

- ▶ The composition of two propositions is again a proposition
- ▶ The compositions are binary, i.e., they have two "operands"

- ▶ The composition of two propositions is again a proposition
- ▶ The compositions are binary, i.e., they have two "operands"
- By nesting compositions and using parentheses we can construct more complex propositions (more specific propositional formulas)

- ▶ The composition of two propositions is again a proposition
- ▶ The compositions are binary, i.e., they have two "operands"
- By nesting compositions and using parentheses we can construct more complex propositions (more specific propositional formulas)
- ▶ To reduce the number of necessary parentheses we use the precedence rules ¬ has higher precedence than ∧ higher than ∨ higher than ⇒ higher than ⇔

- The composition of two propositions is again a proposition
- The compositions are binary, i.e., they have two "operands"
- By nesting compositions and using parentheses we can construct more complex propositions (more specific propositional formulas)
- To reduce the number of necessary parentheses we use the precedence rules ¬ has higher precedence than ∧ higher than ∨ higher than ⇒ higher than ⇔
- ► The syntax of the compositions has to be considered, e.g., $\neg \land AB$ is NO proposition

Propositional Formula

Definition

Given a set of propositional variables or propositions A, B, C, \ldots If we combine these propositions by means of the compositions given above, the result of this compositions is called a *propositional* formula. If we assign true or false propositions to each of the propositional variables in a propositional formula we get a concrete proposition.

Equivalence and Implication of Propositional Formulas

Definition

Let P = P(A, B, C, ...) and Q = Q(A, B, C, ...) be propositional formulas then

1. P and Q are called equivalent ($P \equiv Q$), if P and Q have the same truth value for each possible assignment of their propositional variables

Equivalence and Implication of Propositional Formulas

Definition

Let P = P(A, B, C, ...) and Q = Q(A, B, C, ...) be propositional formulas then

- 1. P and Q are called equivalent ($P \equiv Q$), if P and Q have the same truth value for each possible assignment of their propositional variables
- 2. P implies Q ($P \vdash Q$) if for each assignment to the propositional variables holds that if P is true then also Q is true.

Equivalence and Implication of Propositional Formulas

Definition

Let P = P(A, B, C, ...) and Q = Q(A, B, C, ...) be propositional formulas then

- 1. P and Q are called equivalent ($P \equiv Q$), if P and Q have the same truth value for each possible assignment of their propositional variables
- 2. P implies Q ($P \vdash Q$) if for each assignment to the propositional variables holds that if P is true then also Q is true.

Remark

Very often we loosely interchange the symbols \equiv and \Leftrightarrow as well as \vdash and \Rightarrow

Commutativity, Associativity

Theorem

1. Commutativity

$$A \wedge B \equiv B \wedge A$$

 $A \vee B \equiv B \vee A$

Commutativity, Associativity

Theorem

1. Commutativity

$$A \wedge B \equiv B \wedge A$$

 $A \vee B \equiv B \vee A$

2. Associativity

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C \equiv A \wedge B \wedge C$$

 $A \vee (B \vee C) \equiv (A \vee B) \vee C \equiv A \vee B \vee C$

Distributivity, De-Morgan

Theorem

1. Distributivity

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

 $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

Distributivity, De-Morgan

Theorem

1. Distributivity

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

 $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

2. De-Morgan

$$\neg (A \land B) \equiv \neg A \lor \neg B$$
$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Absorption, Idempotence

Theorem

1. Absorption

$$A \wedge (A \vee B) \equiv A$$

 $A \vee (A \wedge B) \equiv A$

Absorption, Idempotence

Theorem

1. Absorption

$$A \wedge (A \vee B) \equiv A$$

 $A \vee (A \wedge B) \equiv A$

2. Idempotence

$$A \wedge A \equiv A$$

 $A \vee A \equiv A$
 $\neg(\neg A) \equiv A$

Tautology and Contradiction

Definition

A formula which is always "true", no matter which truth values are assigned to its variables is called a tautology (sign T). A formula which is always "false", no matter which truth values are assigned to its variables is called a contradiction (sign F).

Tautology and Contradiction

Definition

A formula which is always "true", no matter which truth values are assigned to its variables is called a tautology (sign T). A formula which is always "false", no matter which truth values are assigned to its variables is called a contradiction (sign F).

Example

It is easy to show that $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$ is a tautology.

Laws with Contradictions and Tautologies

Theorem

For a proposition A holds:

$$A \wedge T \equiv A, \quad A \vee T \equiv T$$

 $A \wedge F \equiv F, \quad A \vee F \equiv A$
 $A \wedge \neg A \equiv F, \quad A \vee \neg A \equiv T$