Predict

bottom-up prediction
learning, <u>least-squares</u> and function approximation
prediction, optimization and control
hierarchical temporal memory: prediction
top-down/bottom-up blackboard architecture
web-intelligence; brains; adaptive BI
challenge problems

learning and prediction

m data points each having (i) features $x_1 ... x_{n-1} = x$ and (ii) output variable(s) $y_1 ... y_k$.

e.g. *prices* (numbers for Y); x_i can be numbers or categories for now assume k=1, i.e. just one output variable y

linear prediction:

 $f(\mathbf{x}) = E[y | \mathbf{x}]$ also minimizes*: $\varepsilon = E[error] = E[y-f(\mathbf{x})]^2 \approx \frac{1}{m} \sum_{m} (y_i - f(\mathbf{x}_i))^2$ suppose $f(\mathbf{x}) = [\mathbf{x}; 1]^T \mathbf{f} = \mathbf{x'}^T \mathbf{f}$ i.e. *linear* in **x**; so we want X **f** ≈ **y** $\Sigma_{m}(\mathbf{y}_{i} - \mathbf{x'}_{i}^{\mathsf{T}}\mathbf{f})^{2} = (\mathbf{X} \mathbf{f} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{f} - \mathbf{y})$ minimized if derivative = 0, i.e. $X^TX \mathbf{f} - X^T\mathbf{y}$.. "normal equations" once we have **f**, our "least-squares" estimate of $y \mid x$ is $f^{LS}(x) = x'^T f$

$$\begin{array}{c|ccccc}
x^T X & f & = & \\
n x n & 1 & X^T y \\
& & n x 1
\end{array}$$

some examples

Х	У
10	1.2
22	1.8
42	4.6
15	1.3

how good is the 'fit'?
$$R^2 = 1 - \frac{\sum_{i} (f^T x_i - y_i)^2}{\sum_{i} (\overline{y} - y_i)^2} = .95$$

example 2*:

[y, x] = [wine-quality, winter-rainfall, avg-temp, harvest-rainfall]

 $f^{LS}(\mathbf{x}) = 12.145 + 0.00117 \times \text{winter-rainfall} + 0.0614 \times \text{avg-}$ temperature – 0.00386 × harvest rainfall

^{*}Super-crunchers, Ian Aryes 2007: Orley Ashenfelter

beyond least-squares

```
categorical data
   logistic regression
   support-vector-machines
       complex f:
           'kernel'-parameters also learn
neural networks
   linear = least-squares
   non-linear
       like logistic etc.
   feed-forward, multi-layer
       more complex f
   feed-back
       like a belief n/w;
           "explaining-away" effect
```


learning parameters

use $\varepsilon(\mathbf{f}^i)$ - $\varepsilon(\mathbf{f}^{i-1})$ to approximate derivative control actions: works fine with numbers, i.e. x in \mathbf{R}^n minimize $|\mathbf{s} - \Xi|$

.. caveats: local minima, constraints

for categorical data:

convert to binary, i.e. $\{0,1\}^N$ "fuzzyfication": convert to \mathbf{R}^n neighborhood-search; heuristic search, genetic algorithms .. probabilistic models, i.e. deal with probabilities instead

related matters

"best" solution

w: maximize $\phi(\mathbf{w})$ control actions: $\mathbf{\theta}^i$: $\mathbf{s}^{i+1} = S(\mathbf{\theta}^i)$ minimize $|\mathbf{s} - \Xi|$

predict - decide - control

robo-soccer

predict where the ball will be; decide best path; navigate there

predict how other players will move

self-driving cars

predict the path of a pedestrian; decide path to avoid; steer car

predict traffic; decide all optimal routes to destination

energy-grid

predict energy demand; decide & control distribution

predict supply by 'green-ness'; adjust prices optimally

supply-chain

predict demand for products; decide best production plan; execute it

<u>detect</u> potential risk & <u>evaluate</u> impact; <u>re-plan</u> production; <u>execute</u> it

marketing

predict demand; decide promotion strategy by region; execute it

which learning/prediction technique?

hierarchical temporal memory

extracted from Jeff Hawkins's ISCA 2012 charts

sparse distributed representations

remember the properties of $\{0,1\}^{1000}$:

very low chance that patterns differ in less than 450 places

forced sparse pattern: e.g. 2000 bits with only 40 1s

very low chance of a random sparse pattern matching any 1^s even if we drop all but 10 random positions; another sparse pattern matching some of these 10 is most likely another instance of the same sparse 40 1^s pattern (sub-sampled differently)

similar 'scene' will give similar sparse pattern even after sub-sampling

Jeff Hawkins's ISCA 2012

sequence learning

40 active bits, 10 cells per column 10⁴⁰ ways to represent the same input in different contexts

each cell tracks the previous configuration – again sparsely; via 'synapse connections; these form and are forgotten or reinforced if predicted value occurs column per cell – predicts further ahead

Jeff Hawkins's ISCA 2012

hierarchy; linkages; applications

multiple 'regions' in a hierarchy bottom-up (feed-forward)

<u>plus</u> top-down (feed-back)

mathematically

HTM is ≈ deep belief network

applications:

Energy pricing
Energy demand
Product forecasting
Ad network return
Machine efficiency
Machine anomalies
Server loads

something missing?

"predict how other players/pedestrians will move"
"predict' the consequences of a decision": what-if?

- use these 'predictions' to re-evaluate / re-look at inputs and re-plan

missing element: symbolic reasoning, optimization etc.

can they work together: 'blackboard' architecture

knowledge Sources:
feature-learning
clustering
sequence-miners
classifiers
rule-engines
decision-engines
hierarchical
Bayesian...

examples:

- speech
- analogy

what does data have to do with intelligence?

"any fool can know ... the point is to understand."
- Albert Einstein

and ... the goal of understanding is to predict

recap and challenges

