CHORD: Ptolemy's table of chords calculator

Dietmar G. Schrausser

https://github.com/Schrausser/Ptolemy-s-table-of-chords

Overview

Famous table of chord lengths according to Ptolemy's *Almagest* (e.g. 1515) converted into decimal values and calculated in comparison using the sine function, see e.g. Halma (1813) or Toomer (1984).

Chord lengths l_0 are calculated according to *Ptolemy's theorem* (figure 1) as the relation between four sides and two diagonals of a cyclic quadrilateral where

$$AC \cdot BD = AB \cdot CD + BC \cdot AD$$
.

Figure1: Cyclic quadrilateral with chord length representation.

Chord lengths I_0 (figure 1) are expressed in fractional parts of sexagesimal numerals x y z. Decimal values I_1 are calculated as

$$I_1 = x + y/60 + z/60^2$$
.

Sixtieths is the average interpolation number to be added to length I_0 or I_1 each time angle increases by one minute of arc, that is n = 30 times per half angle degree α .

Lengths I_2 to given arcus α and diameter d are calculated using the sine function where

$$I_2 = d \cdot \sin(\alpha \cdot \pi/360)$$
.

This is equivalent in terms of content to distance s or radius r determination via angular expansion V with

$$r = s \cdot \tan(V/2)$$
.

In the absence of trigonometric sine functions, however, no *calculation* was made with distance parameters s, but tabularized values from previous model calculations with given d = 120 by means of the *Pythagorean theorem*

$$a^2 + b^2 = c^2$$

were used and interpolated to the corresponding angle values of expansion:

Figure2: Screenshots from CHORD Application.

Chord parameters $I_{(120)}$ can then be adapted to empirical $I_{(d)}$ proportions by transforming the model parameter with

$$I_{(d)} = I_{(120)} \cdot d/120.$$

Differences diff show the difference between (1) sixtieth and arithmetical interpolation as well as the difference between (2) the calculation types of chord lengths I_1 and I_2 , see chords.md or chords.xlsx tables.

Using this method along with methods for parallax determination, Ptolemy was able to determine e.g. Moon's distance (d = 59 Earth radii, er) and radius (r = 0.29 er, where er = 6378 km) quite accurate, see e.g. Goldstein (1967).

References

Goldstein, B. R. (1967). The Arabic Version of Ptolemy's Planetary Hypotheses. *Transactions of the American Philosophical Society, 57*(4), 3-55. https://doi.org/10.2307/1006040

Halma, N. (1813). Composition mathématique de Claude Ptolémée. Traduite pour la première fois du grec en français, sur les manuscrits originaux de la Bibliothèque Impériale de Paris, par M. Halma; et suivie des notes de M. Delambre, ... A Paris, chez Henri Grand,

libraire, Rue Saint-André-des-Arcs, N° 51. (Mathematical composition of Claude Ptolemy. Translated for the first time from Greek into French, on the Original Manuscripts of the Imperial Library of Paris...)

https://ia600202.us.archive.org/12/items/

Ptolemaeus, C. (1515). Almagestum CL. Ptolemei Pheludiensis Alexandrini astronomorum principis: Opus ingens ac nobile omnes Celorum motus continens. Felicibus astris eat in lucem: Ductu Petri Liechtenstein Coloniensis Germani. Anno Virginei Partus, 1515, Die 10. Ja. Venetiis ex officina eiusdem litteraria. (Almagestum CL. Ptolemy Pheludiens, head of the Alexandrian astronomers: A vast and noble work containing all the movements of the heavens...) https://doi.org/10.3931/e-rara-206

Toomer, G. J. (1984). *Ptolemy's Almagest*. Duckworth, London & Springer, New York. https://www.cambridge.org/core/journals/journal-of-hellenic-studies/article/