Exercise No. 5.2 :

Q1 Salve for x, each of the following equations:

(i)
$$\begin{vmatrix} 1 & 2+x & 3 \\ 2 & 1 & 3+x \\ 3 & 2+x & 1 \end{vmatrix} = 0$$

Ginen

$$\begin{vmatrix} 1 & 2+x & 3 \\ 2 & 1 & 3+x \\ 3 & 2+x & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 2+x & 3 \\ 0 & -3-2x & -3+x \\ 0 & 0 & 0 & 0 \end{vmatrix} = 0$$

By R2-2R1 R3-3R1

Expanding from C1

-8(-3-2x)-(-3+x)(-4-2x)=0

24+16x-(12+6x-4x-2x)=0

24+16x-12-2x+2x2 = 0

2x2 + 14x +12 = 0

x2 + 7x +6 = 0

x2+6x+x+6=0

 $0 = (3+\kappa) + i(3+\kappa) \times 0$

(x+b)(x+1) = 0

$$\frac{1-x^{2}}{(1-x^{2})(-9+3x^{2}+5)} = 0$$

$$\frac{1-x^{2}}{x^{2}} = 0$$

$$\frac{1-x^{2}}{$$

R2-R1 R3-R1 R4-R1

(iii)
$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \end{vmatrix} = 0$$

Sole Ginen

$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & x & x^{2} & x^{3} \\ 0 & z-x & z^{2}-x^{2} & z^{2}-x^{3} \\ 0 & 3-x & 3-x & 3-x \\ 0 & 4-x & 4-x & 4-x^{3} \end{vmatrix} = 0$$

Expanding from C,

$$\begin{vmatrix} 3-x & 3-x^2 & 3-x^3 \\ 3-x & 3-x^2 & 3-x^3 \end{vmatrix} = 0$$

$$\frac{(z-x)(3-x)(4-x)}{0} = 0 \quad \begin{cases} 1 & 2+x & 4+2x+x^2 \\ 0 & 1 & 5+x \\ 0 & 2 & 12+2x \end{cases} = 0 \quad \begin{cases} R_2-R_1 \\ R_3-R_1 \end{cases}$$

$$\frac{2-x}{(2-x)(3-x)(4-x)} = 0$$

$$\frac{(2-x)(3-x)(4-x)(12+2x)}{(2-x)(3-x)(4-x)(12+2x)} = 0$$

$$\Rightarrow \qquad \boxed{\chi = 2,3,4}$$

(z-x)(3-x)(4-x)

Available at www.mathcity.org

661

Soli-

(x-1)(x-2)(x-3)(x-4) = 0 (= det. of a diagonal matrix is equal to the product of diagonal elements.

$$\Rightarrow X = 1,2,3,4$$

Mail IV. org Merging Man and maths (1

Sol. Ginen

x+4a a a a a a
x+4a x a a a
x+4a a x a a
x+4a a a x a
x+4a a a a x

C1+(C1+C3+C4+C5)

	4+24 1 1 1	1		
	4+x 1 1 1 4+x 1+x 1 1 4+x 1 1+x-1 4+x 1 1 1+	= 0	c1+(c5+c3+c	<u>.</u>
	44% 1 1 144	x 1		•
(4+x)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 0 tal	kup 4+x Com	man for
(K+H)		= 0	Rz-Rj Rz-Rj Ry-Rj	
(\(\psi\) \(\psi\) \	$\begin{cases} x x x x x x x x x x $	~ C ₁	Available at www.mathcity.org	
Q2 Evalu	ate each of 1 b b b a b b	the following	determin	ants.
b	b a h		· ·	

Let Δ = b b α - - - - b [a+(n-1)d] | b a ------b

Expanding from C,

R3-E,

Rn-Ri

.

. . .

71

Cii	1-n		· · · · · · · · · · · · · · · · · · ·
	1	1-N	1
	1	1	1-N -,1 %
			1
		:	-h

S.J.

```
Ciij
```

•		
	1 0 0 0 0	73
	2 1 2 7-21	C & _ C1
= In		C3-C1
	-1	C1-C1
•	n-2 1 2	
:	N-1 1 2 m	
		C"-C1
	N 1-N 5-N5 -1	
	Expandip from R,	
·	1 2	
	2 N-5 N-1	•
= 2n	1 2 2 -1	
	22	
. 1	1. 5-W5	
1	1-N 3-N 5 -1	
***	· · · · · · · · · · · · · · · · · · ·	
	0 0 0 -1	
1	0 0	C 0
= En		C1 + Cn-1
		C2 + 2 Cn-1
'	o	
	-n) 1
-	n -n	•
	-1	Cn-2 + (n-2) Cn-1
		- N-1
	0 0	
$= \sum_{n=1}^{n-1}$	0	+ 4
₹ , n-1	, n-1	- M
= 5 x (-1)	(n)	Common from C
		n-5
		4 -1 Common
	0 0	1 0
		taking -n Comman fram C N-2 4 -1 Common fram C1, C2, Nove
•		beng
		1
		•

```
Going through each of the preceding Columns, (n-1) the Column shifted to the place of first Column; there will be n-2 changes of sign. The second last Column which now is at the (n-1) the position slifted similarly at the position of second Column, there will be n-3 changes of sign etc.

So we have

1 0 ----- 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1
```

$$\Delta = \sum_{n=1}^{\infty} n \cdot (-1) \cdot (n) \cdot 1$$

Now
$$(n-1)+\lambda = (n-1)+(n-2)+(n-3)+---+3+2+$$

$$= \frac{(n-1)(n)}{2}$$

$$= \frac{n(n-1)}{2}$$
So last eq. becomes

$$\Delta = \sum_{n} n(n-1) \cdot (n)$$

```
Q3 99 A 4 B are 3 x3 matrices such that
   det (R2B3) = 108 4 det (R3B2) = 72.
 Find dat(2A) 4 det(\overline{B}').
```

Sol. Given

$$4 det (V_1 V_3) = 108$$

By product therem
$$det(A^2)$$
 det(B³) = 108] $det(A^3)$ det(B²) = 72

(det A) (det B) = 108 ______

similary 10 by 10

$$\frac{\text{det B}}{\text{det A}} = \frac{108}{72}$$

or
$$\frac{\text{dat B}}{\text{dat A}} = \frac{3}{2}$$

 \Rightarrow detB = $\frac{1}{2}$ detA

Put
$$=$$
 $(\det A)^3 \cdot (\frac{1}{2} \det A)^2 = 72$

$$\frac{9}{4}(det A) = 72$$

$$\Rightarrow (dat A)^{5} = \frac{72x4}{9}$$

$$(det A_i)^s = 32$$

Now
$$det(2A) = \frac{3}{2} det A$$

$$\det(\overline{8}^1) = (\det 8)^1$$

$$= (\frac{3}{2} \det 8)^1$$

$$= (\frac{3}{2} \times 2)^1$$

$$= (3)^1$$

5.
$$det(\bar{g}^l) = \frac{1}{3}$$

Q4 Let A be an non matrix. Show that

(i) det $A^{m} = (det A)^{m}$ for any we integer m(ii) $9 p det A^{m} = 1$ then $det A = \pm 1$

(iii) of det Am = 0 then det A = 0

SAL

(i) We will prove

det A" = (det A)" by applying induction on m

Step D Let mai

S. det A' = (det A)

or detA = detA

Hence it is true for mx1

Sty @ Suppose it is true for m = K

State) Now we prove it for m = K+1

www.mathcity.org

```
dax(A) = dex(A.A)
                                  By product theorem
           = (det Ax) (det A)
            * (det A): (det A)
                                    using 1
: det ( R** ) = (det A)
 So it is true for m = K+1
Hemce
   det (A") = (det n) for all +ve integers m.
(ii) of det A" = 1 then det A = ±1
    Since det AM = 1
           (det A) = 1
           dat A = ±1
                            where m is an even integer
       of det A = 0 then det A = 0
  Since det AM = 0
        => (detA) = 0
        and det A = 0
 Q5 For any non bingular matrix C, show that
 (i) det(c) = (detc)
```

(ii) det(CAC) = detA

```
Soli.
```

(i) Since C is a non singular matrix, so \bar{C}' exists such that $C\bar{C}' = \bar{I}$

⇒ det(cc')= det(I)

 α det(c) det(\bar{c}') = det(I)

(by product thaten)

detc. $det(\bar{c}') = 1$ $det(\bar{c}') = \frac{1}{detc}$

 $det(\bar{c}') = (detc)'$

(ii) det (CAC) = det A

Soli- using product therem

det (CAC') = det c. det A. det c'

= detc . det c'. det A

is an element of field of so they

= det (cc). det A

By product theorem

= det I det A

= 1. det A

s. det(CAC') = detA

Mati org Merging Man and maths

QL For what value of d is the matrix
$$A = \begin{bmatrix} -d & d-1 & d+1 \\ 1 & 2 & 3 \\ 3-d & d+3 & d+7 \end{bmatrix}$$
 singular?

Soli-
Given
$$A = \begin{bmatrix} -d & d-1 & d+1 \\ 1 & 2 & 3 \\ 2-d & d+3 & d+7 \end{bmatrix}$$

Since A is bringular

So dat A = 0

$$\begin{vmatrix}
-d & d-1 & d+1 \\
1 & 2 & 3 \\
2-d & d+3 & d+7
\end{vmatrix}$$

$$\begin{vmatrix}
-d & 3d-1 & 4d+1 \\
1 & 0 & 0 \\
2-d & 3d-1 & 4d+1
\end{vmatrix}$$

$$\begin{vmatrix}
-2 & 3d-1 & 4d+1 \\
1 & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
-2 & 3d-1 & 4d+1 \\
2-d & 3d-1 & 4d+1
\end{vmatrix}$$

Expanding from
$$R_2$$

- $\begin{vmatrix} 3 & 4 & -1 \\ 3 & 4 & -1 \end{vmatrix} = 0$

$$-(3\lambda-1)(4\lambda+1)$$
 | | = 0

obviously matrix A is singular for all values of d.

$$\frac{AdsA}{dstA} \cdot A = \frac{-1}{28} \begin{bmatrix} -2 & -2 & -9 \\ 20 & -8 & 6 \\ -2 & -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 & 3 \\ 4 & 1 & 6 \\ 2 & 0 & -2 \end{bmatrix}$$

$$= \frac{-1}{28} \begin{bmatrix} -2 - 8 - 18 & 2 - 2 + 6 & -6 - 12 + 18 \\ 2 - 32 + 12 & -2 - 8 & 6 - 48 - 12 \\ -2 - 8 + 16 & 2 - 2 + 6 & -6 - 12 - 16 \end{bmatrix}$$

$$= \left[\begin{array}{cccc} o & o & i \\ & i & o \\ \end{array} \right]$$

$$\frac{A a j A}{d a t A} \quad A = I \qquad \qquad \boxed{3}$$

$$A \cdot \frac{AdjA}{datA} = \frac{AdjA}{datA} \cdot A = I$$

$$= \frac{A \cdot A}{A} = \frac{A \cdot A}{A \cdot A}$$

Math J.org
Merging Man and maths

Q.B Evaluate

Solv

Let
$$\Delta = \begin{vmatrix} 1 & 0 & -1 & 2 \\ 2 & 3 & 2 & -2 \\ 2 & 4 & 2 & 1 \\ 3 & 1 & 5 & -3 \end{vmatrix}$$

C3+C1

Expanding fan R

$$= \begin{pmatrix} 0 & -28 & 33 \\ 0 & -20 & 51 \end{pmatrix}$$

 $R_1 - 3R_3$ $R_2 - 4R_3$

Expanding from C

$$\Delta = -72$$