The Trident G-Loop: A Unified Cognitive Architecture for Adaptive, Near-Critical Intelligence

Abstract

- One loop, eight phases, operating inside a Ψ -band (near-critical regime) by regulating two interacting axes: a Cognitive Resilience axis (difficulty set-point F^* and precision-weighted gap $\Delta \hat{F}_t = \kappa \cdot (\mathcal{E}_t F^*)$) and an Inference axis (precision-bias $b = \beta_d(d d^*)$ and temperature $T(\chi)$).
- Trident geometry: subcritical Autopilot shaft → near-critical branch point (E≈F*) →
 Control (compress/exploit) vs Creative (decompress/explore) prongs, coordinated by
 Salience (monitor/orient/reset).
- Two-sentence coda on the Ψ-dynamic range of G (G = r × G_f): η-driven F* ratcheting and controllable b/T/λ spread; list telemetry: Ω_Ψ (band occupancy), τ½ (recovery half-life), H_Ψ (hysteresis), μ_{F*} (set-point mobility).
- Reasoning in Trident G is realised by two cooperating WM workspaces: a relational, map-based LT-WM (FPCN-A↔hippocampus/DMN) and a rule/sequence ST-WM (FPCN-B↔DAN), with salience arbitrating the hand-off inside the Ψ-band.

1. Introduction

- 1.1 The challenge of flexible intelligence (stability ↔ flexibility).
- 1.2 The Ψ -band principle: benefits of operating between order and chaos; band (not point) via hierarchical/heterogeneous networks.
- 1.3 The **G-Loop & Trident metaphor** (Autopilot shaft, branch, two prongs, salience hilt).
- 1.4 The **Two Axes**: **Resilience** { F^* , $\Delta \hat{F}_t = \kappa(\mathcal{E}_t F^*)$ } and **Inference** { $b = \beta_d(d-d^*)$, $T(\chi)$, λ }; preview η (competence/recovery) and χ (inconsistency/volatility).
- **1.5 Evolutionary rationale.** We view human reasoning as an extension of Phase-3 mapping and Phases-4/5 execution: **abduction + counterfactuals** enable safe search in uncertain niches, while **deduction + induction** compress and transmit validated structure. Salience arbitrates these modes to keep operation near Ψ , yielding adaptive intelligence in variable environments.
- 1.6 Roadmap.

2. Theoretical Foundations & Core Commitments

- 2.1 **Policy objectives**: neutral score $\mathcal{J}(a|s)$; Active Inference uses $\mathcal{J} = -G_{\text{mathrm}}\{EFE\}$, classical decision uses $\mathcal{J} = \mathrm{mathrm}\{EV\}(a|s)$; selection via $\pi(a|s) \propto \exp(\mathcal{J}/T(\chi))$; precision control via \mathbf{b} and $\mathbf{T}(\chi)$.
 - Use CVaR_q (e.g., q=0.95) or a τ-quantile value function when tail-shape telemetry (Sec. 6) flags heavy-tail/volatility regimes.
 - Tie the switch explicitly to telemetry thresholds (ζ/J-ratio/ES from Sec. 6) so readers see the closed loop: "The risk-sensitive objective engages when ζ<ζ* or J-ratio>J* or ES q>ES*
- 2.2 **Relational core** (φ): hippocampal–prefrontal **predictive map** (SR-style), value-landscaped by **EV** or $\neg G_{\text{mathrm{EFE}}}$; learned translators to modalities.
- 2.3 **Metacognition as cross-loop consistency**: **χ_{meta}** monitors inter-loop inconsistency; brief monitor pulses to re-centre.
- 2.4 **Multi-timescale architecture**: fast/medium/slow controllers; rhythms $(\gamma/\theta/\delta)$ as dynamic weights (non-exclusive).

3. Controllers & State Variables (the metacognitive toolkit)

- 3.1 **State signals**: η (competence/recovery), χ (uncertainty/inconsistency).
- 3.2 Controllers:
- F* thermostat (Resilience axis; branch set-point).
- d, d* (dopamine tilt & neutral set-point) \rightarrow b = β _d(d d*) (Inference tilt).
- $T(\chi)$ (policy temperature), λ , λ^* (generalisation width & target), α (plasticity), κ (gate gain in $\Delta \hat{F}$), σ (reasoning budget), ν (decompression/novelty budget).
- 3.3 $\eta \rightarrow F^*$ coupling: competence-driven upward drift (auto-difficulty).

4. Core Hypotheses (with short tests)

- **H1 SOC-for-Inference**. Homeostatic plasticity drives hierarchical networks into a **Ψ-band** that maximises information capacity/dynamic range required for good policy performance; loops track \mathbf{F}^* and then choose policies by \mathcal{J} (EV or $-G_{\text{mathrm}}(EFE)$). *Test:* shift E:I toward/away from balance and track Ψ-metrics + performance/ \mathcal{J} -proxies.
- H2 Trident Branching. Near *E*≈F* and elevated χ, ΔF and salience arbitrate a bifurcation

into **Control** (compress) vs **Creative** (decompress), with monitor pulses to re-centre **b/T**. *Test:* SN-led switches into FPCN-B (Control) vs FPCN-A/DMN (Creative) with prong-specific telemetry.

- H3 Global + Per-loop Ψ-bands. Multiple G-loops operate with loop-specific Ψ_k windows whose intersection defines a global Ψ ; χ_{meta} triggers monitoring when loops disagree. *Test:* show Griffiths-like banding across scales and salience-preceded re-entry.
- H4 Ψ-Dynamic-Range of g. $g = r \times G_f$ reflects (i) Resilience range (tolerable $|\mathcal{E}-F^*|$ and η-driven μ_{F^*}) and (ii) Inference range (controllable b/T/ λ span with clean re-entry), aggregated across loops. *Test:* derive a Ψ-profile (Ω_Ψ , τ_2 , H_Ψ , μ_{F^*}) and relate to Gf/Gc; show training gains.
- **H5 Two Creative Routes.** Exploration enters via (i) boredom/under-challenge (soft D2) and (ii) error/volatility (hard D2), with distinct arousal/ACC signatures. *Test:* dissociate behavioural/physiological markers for the two routes.
- **H6 Dual WM Workspaces.** FPCN-A↔hippocampus supports long-horizon relational "map" (Creative/Plan), FPCN-B↔DAN supports rule/sequence execution (Control), with salience arbitration. *Test:* mode-specific coupling shifts across phases.

5. The Eight Phases of the G-Loop (navigating the Trident)

- 1. Sense & Move (estimate \mathcal{E}_t).
- 2. **Gap-check & Mode Branch** (compute $\Delta \hat{F}_t = \kappa \cdot (\mathcal{E}_t F^*)$; arbitrate via salience using χ , χ_{meta}).
- 3. **(De)Compress \phi** (Control: compress $\rightarrow \eta \uparrow$; Creative: decompress under $\lambda \rfloor / v \uparrow$).
- Decide/Gate (softmax over *J* with *J* = EV or -G_{\mathrm{EFE}}; T(χ) sets exploration;
 F* does not enter softmax).
- 5. **Execute** (policies expected to reduce \mathbf{x} and align $\mathcal{E} \rightarrow \mathbf{F}^*$).
- 6. **Reflect/Update** (adjust **F***, **b**, **T**; update **η**, **χ**).
- Consolidate (λ) (propagate validated structure; quarantine speculative bits).
- 8. **Reset** (restore Ψ-band rhythms; prep next cycle).

6. Telemetry, Predictions & Falsification

- **Band signatures:** avalanche scaling/dynamic range; metastability peaks near branch; rare-region effects (Griffiths-like).
- **Prong states:** SN-led switches → FPCN-B (Control) vs FPCN-A/DMN (Creative).
- Two exploration routes: boredom vs error/volatility with distinct arousal/ACC patterns.
- Map (de)compression evidence: SR-like updates; pattern separation/completion.
- Ψ -profile metrics: r, G_f, Ω_Ψ , $\tau^{1/2}$, H_ Ψ , μ_{F}^* . Falsify where moving toward near-criticality fails to improve Ψ -metrics or where SN activity does not precede re-entry.

Tail-shape telemetry.

ζ (tail index): Hill α_Hill for power-law–like tails (optionally report excess kurtosis κ_ex). Lower α_Hill ⇒ heavier tail.

J-ratio (one-big-jump index): $J=\max[0]_t|\Delta F_t|/\sum_t|\Delta F_t|J=\max_t|\Delta F_t|$ |\Delta F_t|\Delta F_t|\Delt

ES_q(\DeltaF): Expected Shortfall of Δ F at level q (e.g., q=0.95).

Control law: If $\alpha_{\text{Hill}} < \zeta^*$, or $J > J^*$, or $ES_q > ES^*$, then **raise T(\chi)** (broader sampling), **lower \lambda** (sandbox Creative), trigger a **Monitoring pulse**, and recentre **b**; relax when metrics fall below thresholds.

Prediction: Tail alarms should precede $T(\chi)\uparrow$, $\lambda\downarrow$, **Monitoring** \uparrow and reduce $ES_q(\Delta F)$ and band exits.

7. Minimal Computational Program (plus ablations)

Hybrid instantiation.

Wilson–Cowan E/I nodes (local Hopf-edge control) with Kuramoto-style phase coupling on a hierarchical-modular / empirical connectome.

Controller mapping.

 $F*F^*F*$: slow homeostasis to target partial synchrony; bbb: subnetwork gain/tilt (via d-d*d-d*d-d*-d*); $T(\chi)T(\cdot)T(\chi)$: input-noise / frequency-jitter gate; λ/α (alpha λ/α : propagation & plasticity knobs; J\mathcal{J}J: EV/-G_{EFE} or risk-sensitive (CVaR/quantile) when tail flags fire.

Readouts (additions in bold).

- Global/meso order parameter R(t)R(t)R(t); power-law exponents for (de)synchronisation;
 E:I telemetry; recovery E □→□F*\mathcal{E}\!\to\!F^*E→F* and τ1/2\tau_{1/2}τ1/2 after shocks.
- Gate & safety telemetry: $T(\chi)T(\chi)$, $\lambda \lambda$, Ψ -band exits (count/length).

Protocols & stress-tests.

- 1. **Baseline Gaussian (light-tail)**: finite-mgf noise; expect CLT regime—risk-neutral J\mathcal{J}J acceptable near mean.
- 2. **Heavy-tail / "one-big-jump"**: Pareto-like or α-stable noise + rare shocks; expect **risk-sensitive J\mathcal{J}J** to reduce ES_q, band exits, and τ1/2\tau_{1/2}τ1/2.
- Injection tests: single large outlier vs many small; verify J-ratio↑ ⇒ T(χ)↑,λ↓T(\chi)↑, \lambda↓T(χ)↑,λ↓ and faster safe re-entry.
 Prediction: Only the tail-aware agent maintains high Ψ-occupancy, lower ES_q(ΔF\Delta FΔF), fewer/shorter Ψ exits, and shorter τ1/2\tau_{1/2}τ1/2 under heavy tails.

Ablations.

- (i) **No** $F*F^*F*$ thermostat \rightarrow over/under-challenge; unstable R(t)R(t)R(t); slow $E \longrightarrow F*\mathbb{F}*$ mathcal{E}\!\to\!F^*E \to F*.
- (ii) **No** $\chi \Box \rightarrow \Box T \cdot T \cdot T$ gate \rightarrow brittle exploration/exploitation; variance spikes; excess Ψ exits.
- (iii) **No \eta\eta\eta** gate (monitoring pulse) \rightarrow poor regime re-entry; longer $\tau 1/2 \tan_{1/2} \tau 1/2$.
- (iv) No risk-sensitive J\mathcal{J}J (force EV/-G_{EFE}) \rightarrow catastrophic failure modes in heavy-tailed environments: ES_q(Δ F\Delta F Δ F) \uparrow , J-ratio events propagate, Ψ -occupancy falls, despite intact F*F^*F* and $\chi \square \rightarrow \square T \cdot \mathbb{T}$.

Falsification criteria.

If enabling tail-aware J\mathcal{J}J and tail telemetry **does not** (vs ablation iv) lower ES_q, shorten $\tau 1/2 \tan_{1/2} \tau 1/2$, and reduce Ψ exits in the heavy-tail condition—claim is weakened.

8. Reasoning, Working Memory & Constraints

- Deduction/Induction = Control; Abduction = Creative; Counterfactuals at Decide/Act;
 Analogy bridges Creative→Control.
- **Constraint satisfaction:** feasibility gating/propagation (hard/soft/chance constraints) to guard Creative proposals and tighten Control propagation.
- Dual WM: long-term WM (FPCN-A↔hippocampus/DMN) vs short-term WM (FPCN-B↔DAN); salience hand-off. (Note Both LT-WM (map) and ST-WM (rule/sequence) can operate in either creative (D2-biased) or control (D1-biased) mode; D1:D2 sets processing style, not locus—salience arbitrates the hand-off.)
- On this view, reasoning is the control law for staying inside the Ψ-band: Creative (abduction/analogy + counterfactuals) expands the hypothesis/policy space when χ is high; Control (deduction/induction + constraints) compresses and propagates validated structure for skillful action."

9. Neuromodulatory & Rhythmic Implementation

DA (D1/D2) → d, d* → b (stability–flexibility tilt); LC-NE → T(χ) (exploit–explore gain);
 ACh → precision/learning; α/θ/γ rhythms as dynamic weights.

10. Relation to Prior Work

Active Inference, predictive coding, meta-RL, MDN/FPN accounts—what's shared vs what's new: the F* thermostat, η/χ gating, the Ψ-band + Trident branching geometry, and concrete, falsifiable telemetry.

11. Applications & Deployment Contract

 Learning/training, digital therapeutics, decision support; include a deployment table aligned to controllers (χ→T, F*, η-gate, b, λ) and standard governance artefacts (model cards, risk registers, etc.).

12. Limitations & Ethics

- What's solid vs **partly supported/speculative** (e.g., equating dynamical criticality with an EFE set-point; global neutral D1:D2; χ/η as cross-loop constructs). State tests and caveats explicitly; clinical mappings as computational phenotypes, not diagnoses.
- Supported: near-critical banding / Griffiths-like effects; E:I tuning; salience-driven switching; Gf→MD/FPN, Gc→DMN tendencies; metastability–creativity links; D1/D2 stability–flexibility trade-off; LC/NE as temperature-like.
- Promising/speculative: mapping dynamical criticality to an EFE-compatible set-regime; a global neutral D1:D2 (d*); χ,η as cross-loop constructs; dual exploration routes within one loop.

13. Conclusion

Re-state the **Trident** synthesis: Autopilot shaft → near-critical branch → prongs + salience hilt; two axes negotiating inside a **Ψ-band** to yield adaptive intelligence; concrete predictions and a compact simulation path.

Appendices

- A. Mathematical formulae (F* thermostat, b updates via d-d*, choice policy with J, λ controller; normal-form cartoon for branching).
- B. Glossary of variables (η, χ, F*, d/d*, b, T, λ, α, κ, σ, ν) and network labels (FPCN-A/B, DMN, DAN, SN).