CSE4203: Computer Graphics Lecture – 8 (Part - A) Fractal Geometry

Outline

- Fractal
- Fractal Dimension
- The Cantor Set
- Koch Snowflake
- Sierpinski Triangle
- Mandelbrot Set

Fractal

- A Fractal is a geometric shape generated using set of recursive rules
- Fractal share a self-similarity property where part of fractal resembles the whole fractal
- The property is often seen in nature, e.g clouds, plants and landscapes etc.
- We will look at methods used to generate some popular fractals in this lecture

Example of Fractals

Credit:Internet

Artificial Fractals

The Cantor Set (1/6)

- A simplest example of a fractal is a Cantor Set devised by George Cantor
- Starting with a straight line at n = 0, we remove middle third of each line at each iteration
- As n gets larger, line segments gets smaller

The Cantor Set (2/6)

•
$$n = 0$$

The Cantor Set (3/6)

•
$$n = 0$$

The Cantor Set (4/6)

The Cantor Set (5/6)

The Cantor Set (6/6)

Fractal Dimension

- The fractal dimension is a measure of the complexity of a fractal
- Let N_n be the number of new elements added at iteration n and ε be the scaling factor of the size of new elements then the fractal dimension is

$$D = -\lim_{n \to \infty} \frac{\log(N_n)}{\log(\mathcal{E}_n)}$$

• For a 2D fractal D \subseteq [1, 2] and for a 3D fractal D \subseteq [2, 3]

Dimension of Cantor Set (1/2)

Line segments is related to iterations

iterations	no. line segments	length of segment
0	1	1
1	2	$\frac{1}{3}$
2	4	$\frac{1}{9}$
3	8	$\frac{1}{27}$
:	:	:
n	2^n	3^{-n}

Dimension of Cantor Set (2/2)

Using

$$D = -\lim_{n \to \infty} \frac{\log(N_n)}{\log(\epsilon_n)}$$

then the fractal dimension of Cantor set is

$$D = -\lim_{n \to \infty} \frac{\log(2^n)}{\log \frac{1}{3^n}} = -\lim_{n \to \infty} \frac{n \log 2}{n \log \frac{1}{3}} = -\lim_{n \to \infty} \frac{\log 2}{\log 3^{-1}}$$

$$= -\lim_{n \to \infty} \frac{\log 2}{\log 3^{-1}}$$

$$= \lim_{n \to \infty} \frac{\log 2}{\log 3}$$

$$= 0.6309 \dots$$

The Koch Snowflake (1/7)

- The Koch Snowflake named after Helge von Koch is a shape with a finite area bounded by infinite circumference
- The rules for generating a Koch Snowflake start with a equilateral triangle at stage = 0
 - Divide each line into three lines of equal length
 - Place an equilateral triangle so that the base fits along the middle length
 - Remove the middle length that is base of the triangle

The Koch Snowflake (2/7)

The Koch Snowflake (3/7)

stage	no of sides	length of sides
0	3	1

The Koch Snowflake (4/7)

stage	no of sides	length of sides
1	3 x 4	1/3

The Koch Snowflake (5/7)

stage	no of sides	length of sides
2	3 x 4 x 4	1/3 ²

The Koch Snowflake (6/7)

stage	no of sides	length of sides
3	3 x 4 x 4 x 4	1/3 ³

The Koch Snowflake (7/7)

stage	no of sides	length of sides
4	3 x 4 x 4 x 4 x 4	1/34

Colorful Koch Snowflakes

Fractal Dimension of Koch Snowflake (1/2)

stage	no of sides	length of sides
0	3	1
1	3 x 4	1/3
2	3 x 4 x 4	1/3 ²
3	3 x 4 x 4 x 4	1/33
4	3 x 4 x 4 x 4 x 4	1/34
•••	•••	•••
n	3 x 4 ⁿ	1/3 ⁿ

Fractal Dimension of Koch Snowflake (2/2)

Using

$$D = -\lim_{n \to \infty} \frac{\log(N_n)}{\log(\mathcal{E}_n)}$$

then the fractal dimension of Koch Snowflake is

$$D = -\lim_{n \to \infty} \frac{\log [3(4^n)]}{\log [\frac{1}{3^n}]} = -\lim_{n \to \infty} \frac{\log(3) + n \log 4}{-n \log (3)}$$
$$= \lim_{n \to \infty} \frac{\log(3)}{n \log (3)} + \frac{n \log 4}{n \log (3)} = \frac{\log(4)}{\log(3)}$$

 $= 1.2619 \dots$

Fractal Dimension of Koch Snowflake (2/2)

Using

$$D = -\lim_{n \to \infty} \frac{\log(N_n)}{\log(\mathcal{E}_n)}$$

then the fractal dimension of Koch Snowflake is

$$D = -\lim_{n \to \infty} \frac{\log [3(4^n)]}{\log [\frac{1}{3^n}]} = -\lim_{n \to \infty} \frac{\log(3) + n \log 4}{-n \log(3)}$$

$$= \lim_{n \to \infty} \frac{\log(3)}{n \log(3)} + \frac{n \log 4}{n \log(3)} = \frac{\log(4)}{\log(3)}$$
$$= 1.2619 \dots$$

Sierpinski Triangle (1/5)

- Attributed to Waclaw Sierpinski, the Sierpinski has also been seen in the medieval mosaics
- It starts with a filled equilateral triangle at stage 0 and the rules are:
 - For each filled triangle, make an unfilled copy
 - Scale the copy by half and invert it
 - Place the copy in the center of the filled triangle

Sierpinski Triangle (2/5)

stage 0

Sierpinski Triangle (3/5)

Sierpinski Triangle (4/5)

Sierpinski Triangle (5/5)

stage 5

stage 3

Fractal Dimension of Sierpinski Triangle

$$D = \frac{\log(3)}{\log(2)}$$
 How?
= 1.585 ...

Zoom into Sierpoinski Triangle

The Mandelbrot Set

- The most famous fractal is the Mandelbrot set by Benoit Mandelbrot
- It is a very very beautiful and complex shape that is generated from a iterative scheme
- The Mandelbrot set can be generated by a simple iterative formula, called quadratic recurrence relation

The Mandelbrot Set

Complex Numbers

Complex Numbers:

- The Mandelbrot set is defined using the complex numbers
- A complex number z is defined using the number of the form:

$$z = a + bi$$

where a, b \subseteq R and $i^2 = -1$

- a is known as the real part of z and is denoted by Re(z)
- b is known as the imaginary part of z and is denoted by Im(z)

Complex Numbers

- Complex number can be plotted on a set of axes where the horizontal axes represent real part and the vertical axes represent imaginary part
- The axes are known as complex plane

Complex Numbers

• The modulus of a complex number, |a + bi|, is the distance between the complex number and the origin

$$|a+bi| = \sqrt{a^2 + b^2}$$

Complex Numbers

• The modulus of a complex number, |a + bi|, is the distance between the complex number and the origin

$$|a+bi| = \sqrt{a^2 + b^2}$$

Generating Mandelbrot Set (1/8)

• The Mandelbrot set is defined as a set of points in the complex plane for which the iterative scheme:

$$z_{n+1} = z_n^2 + c$$

remains bounded, i.e $|z_n|$ does not tends to infinity

- c is a complex number
- $z_0 = 0$ is used for starting value
- A point c is said to have escaped (therefore not the member of Mandelbrot set) if z_n is larger than some escape radius (usually 2)

Generating Mandelbrot Set (2/8)

iterative scheme:

$$z_{n+1} = z_n^2 + c$$

• Consider the iterations for c = 1 + 0i

$$z_0 = 1 + 0i$$
 $|z_0| = 1$
 $z_1 = 1^2 + 1 + 0i = 1 + 1 = 2$ $|z_1| = 2$
 $z_2 = 2^2 + 1 + 0i = 4 + 1 = 5$ $|z_2| = 5$
 $z_3 = 5^2 + 1 + 0i = 25 + 1 = 26$ $|z_3| = 26$
 $z_4 = 26^2 + 1 + 0i = 1 + 1 = 677$ $|z_4| = 677$

Therefore c = 1 + 0i is not in the Mandelbrot set

Generating Mandelbrot Set (3/8)

iterative scheme:

$$z_{n+1} = z_n^2 + c$$

• Consider the iterations for c = 0 + i

$$z_0 = 0 + i$$
 $|z_0| = 1$
 $z_1 = (0 + i)^2 + 0 + i = -1 + i$ $|z_1| = \sqrt{2}$
 $z_2 = (-1 + i)^2 + 0 + i = -i$ $|z_2| = 1$
 $z_3 = (0 - i)^2 + 0 + i = -1 + i$ $|z_3| = \sqrt{2}$
 $z_4 = (-1 + i)^2 + 0 + i = -i$ $|z_4| = 1$

• Therefore c = 0 + i is in the Mandelbrot set

Generating Mandelbrot Set (4/8)

Generating Mandelbrot Set (5/8)

Generating Mandelbrot Set (6/8)

Generating Mandelbrot Set (7/8)

Generating Mandelbrot Set (8/8)

Mandelbrot Set using Color

- Our Mandelbrot set do not plot points that aren't in the set
- We can color these points depending on the number of iterations to divergence

```
Red = z_5, Yellow = z_8, Green = z_{12}
Light Blue = z_{15}, Dark Blue = z_{25}, Black = z_{100}.
```


zoom into Mandelbrot Set

Mandelbrot Set using Color

Python code for implementing Mandelbrot Set <u>link</u>

Further Study

- https://www.youtube.com/watch?v=bEXW7V9mATU
- https://www.youtube.com/watch?v=NGMRB4O922I&ab_chan nel=Numberphile