中国科学技术大学期末试卷

2020-2021 学年第 1 学期 A卷

课程名称:代数拓扑			MA 0431101	
考试时间:2021年1月		形式: _	闭卷	
学生姓名:	学	号: _		
授课教师: 宋百林				
1. (32 分)				
(a) $H_1(S^1,\mathbb{Z})\cong$		•		
(b) $H_4(\mathbb{R}P^8,\mathbb{Z})\cong$		~		
(c) $H^1(M_g,\mathbb{Z})\cong$		°		
(d) $H_1(N_g,\mathbb{Z})\cong$		°		
(e) 作为环, $H^*(\mathbb{C}P^n,\mathbb{Z})\cong$ 。				
(f) 找两个有相同同调群但不同伦等价的空间:				
(g) M 是 n 维可定向闭流形, $H^n(M,\mathbb{Z})\cong$				
(h) M 是 n 维不可定向闭流形, $H^n(M,\mathbb{Z}_2)\cong$ 。				
2. (6分)构造从 $\mathbb{R}^n\setminus\{0\}$ 到 S^{n-1} 的强形变收缩(写出表达式)。				

3. (10分)证明:对任意n, $ilde{H}_n(X)\cong ilde{H}_{n+1}(SX)$.

4. (10分)X 和Y 为有限的CW 复形,证明: $\chi(X \times Y) = \chi(X)\chi(Y)$ 。

5. (8分) n > 0,构造一个满射 $f: S^n \to S^n$, $\deg f = 0$.

6. (10分) $f: S^n \to S^n$ 连续, 若deg f=d, 证明对任意交换群, $f^*: H^n(S^n;G) \to H^n(S^n;G)$, $f^*(a)=da$, $a\in H^n(S^n;G)$.

7. (10分)M是三维闭流形, $H_1(M,\mathbb{Z}) = \mathbb{Z}^r \oplus F$, F 是有限群。证明,若M可定向,则 $H_2(M;\mathbb{Z}) = \mathbb{Z}^r$; 若M不可定向,则 $H_2(M;\mathbb{Z}) = \mathbb{Z}^{r-1} \oplus Z_2$.

- 8. (14分) (a) 利用上积(cup product),证明:若n > m, 不存在映射 $\mathbb{R}P^n \to RP^m$ 使得 $H^1(\mathbb{R}P^m, \mathbb{Z}_2) \to H^1(\mathbb{R}P^n, \mathbb{Z}_2)$ 不平凡。与之对应的 $\mathbb{C}P^n \to \mathbb{C}P^n$ 的结果是什么样的。
 - (b)证明Borsuk-Ulam定理: 每个连续映射 $f: S^n \to \mathbb{R}^n$,存在 $x \in S^n$, f(x) = f(-x). (若任意 $f(x) \neq f(-x)$, 令 $g: S^n \to S^{n-1}$,

$$g(x) = \frac{f(x) - f(-x)}{|f(x) - f(-x)|}.$$

从而得到映射 $\mathbb{R}P^n \to RP^{n-1}$, 再利用(a)。)