

ALGA — Agrupamento IV (ECT, EET, TSI)

Teste de Avaliação 2

13 de janeiro de 2014 — Duração: 1h30

40 pontos

- 1. Indique o que é pedido em cada alínea. Se precisar, pode colocar observações e cálculos auxiliares no espaço livre ao fundo desta página.
 - (a) Considere os vetores u = (1, -3, -2) e v = (-3, 9, 6) de \mathbb{R}^3 .
 - i. Os vetores u e v são linearmente independentes?

Sim Não

ii. $\langle u, v \rangle$ é um espaço vetorial real?

Sim e tem dimensão

Não

iii. O vetor k = (0, 1, 0) é combinação linear dos vetores u e v?

Sim

Não

- (b) Identifique os conjuntos definidos pelas seguintes equações.
 - i. $\frac{1}{3}x^2 y^2 2y = -1 \text{ em } \mathbb{R}^2$:

ii. $\frac{1}{3}x^2 - y^2 - 2z^2 = -1 \text{ em } \mathbb{R}^3$:

2. Considere a matriz simétrica $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ e seja $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ uma matriz diagonalizante de A.

Responda às seguintes questões, justificando devidamente as suas respostas.

- (a) Calcule os valores próprios de A.
- (b) Obtenha a matriz D diagonal tal que $P^{-1}AP = D$.
- (c) Determine a equação reduzida da seguinte superfície $x^2 + 2y^2 + z^2 + 2xz x + 2y + z = 0$.

90 pontos

70 pontos

- 3. Considere os vetores u=(1,1) e v=(1,-1) de \mathbb{R}^2 e $\phi:\mathbb{R}^2\to\mathbb{R}^3$ uma transformação linear definida por $\phi(u) = (0, 1, 2)$ e $\phi(v) = (2, -1, 0)$. Responda às seguintes questões, justificando devidamente as suas respostas.
 - (a) Determine $\phi(2,3)$.
 - (b) Determine a matriz representativa de ϕ relativamente às bases ordenadas

$$S = (u, v)$$
 e $T = ((-1, 1, 0), (0, 1, 1), (-1, 2, 0)).$

- (c) Determine $im(\phi)$ e indique a sua dimensão.
- (d) Sem determinar $ker(\phi)$, diga se ϕ é, ou não, injetiva.