SM16716

概述

SM16716 是专用 LED 装饰照明、点光源应用系统设计的驱动芯片,提供三通道恒流驱动和灰度调制输出,特别适合离散的多灰度全彩灯光系统。

特性说明

- ◆ 三通道开漏输出,最大电流达 60mA
- ◆ OUT 输出端口最大耐压 26V
- ◆ 输出采用自主 PCCM 恒流驱动技术,恒流 精度小于±5%
- ◆ 内置 LDO 稳压电路, VDD 供电范围可达 3.3—6.0V
- ◆ 采用信号自校正的双线传输协议,移位时 钟可达 30MHz
- ◆ 256 级 PWM 输出, 8 bits 灰度数据
- ◆ 封装形式: SOP16
- ◆ ESD HBM: >4KV

应用领域

- ◆ 室内 LED 装饰照明
- ◆ 建筑 LED 外观/情景照明
- ◆ 洗墙灯、窗帘屏
- ◆ 穿孔字
- ◆ 护栏管

封装图

SOP16

管脚定义

功能框图

管脚定义说明

符号	管脚名称	管脚号	说明
DIN	数据输入端口	1	显示数据输入端口
NC	空脚	2,13	悬空脚
OMODE	驱动模式设置端口	2 控制输出极性: OMODE=I (默认)模式; OMODE=0,为外挂驱动模4 串行数据的时钟输入,内置上拉5,7,11 三路驱动输出6,8,10 恒流模式下,三路输出端口的电流模式下,三路输出端口的电流	控制输出极性: OMODE=I (默认),输出为内恒流 / 恒压驱动
OWODE			模式; OMODE=0, 为外挂驱动模式。内置上拉电阻
DCLK	时钟输入端口	4	串行数据的时钟输入,内置上拉电阻
OUT1, OUT2, OUT3	驱动输出	5,7,11	三路驱动输出
FB1, FB2, FB3	反馈输入	6,8,10	恒流模式下,三路输出端口的电流设置端口
GND	芯片地	9	芯片地
DCLKO	时钟输出端口	12	串行时钟输出,经内部锁相再生和强驱动输出
VOUT	LDO 输出电压	14	LDO 输出电压
DOUT	数据输出端口	15	串行数据输出,经内部强驱动输出
VDD	芯片电源	16	5V±10%

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

注: 说明书更新版本请以公司网站公布为准

电气参数

极限参数(Ta=25℃)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5+6.0	V
输出端口耐压	Vouт	0—26	V
逻辑输入电压	V _{I1}	-0.5——VDD+0.5	V
OUT 驱动输出电流	lo _{L1}	0—60	mA
通道电流偏差	%dlouт	片内<±5%,片间<±5%	%
功率损耗	PD	600	mW
工作温度	Торт	-20+80	${\mathbb C}$
储存温度	T _{STG}	-40+150	${\mathbb C}$

电气特性 (Ta = 25℃)

参数	符号	最小	典型	最大	单位	测试条件
静态电流	IDD			0.8	mA	VOUT 端口负载电
						容 0.1uF, VDD =
						5.0V
功耗	P _{out}			350	mW	
VDD 电压	VDD	3.3	5.0	7.0	V	
VOUT 电压	Vouт	4.5	5.0	5.5	V	VDD = 6.5V
OUT 端口耐压	V _{DS,MAX}			26	٧	
高电平输入电压	VIH	0.7*VDD	_	VDD	V	
低电平输入电压	VIL	0	_	0.3*VDD	V	
DOUT/DCLKO 驱动电流	Іон	-50	-60	-70	mA	VDD = 5.0V
	loL	50	60	70	mA	
FB1~3 端口电压	V _{FB}	0.68	0.75	0.82	V	OMODE = 1
内恒流模式	Гоит	33.75		41.25	mA	FB 电阻 = 20Ω
OUT1~3 端口电流		14.55		17.78	mA	FB 电阻 = 40Ω
OUT1~3 端口漏电流	LEAKAGE_O			1	uA	VDD = 5.0V,
	UT					DIN 输入数据全 0
内部 PWM 时钟频率	fosc		1.03		MHz	VDD = 5.0V

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

注: 说明书更新版本请以公司网站公布为准

时序特性(Ta=25℃)

参数	符号	最小	典型	最大	单位	测试条件
数据时钟频率	fclk			30	MHz	
时钟高电平宽度	Тськн	30	_	_	ns	
时钟低电平宽度	Tclkl	30	_	_	ns	
数据建立时间	T _{SETUP}	10	_	_	ns	
数据保持时间	T _{HOLD}	5	_	_	ns	
级联输出信号延迟时间	T _{PD}			12	ns	CL=30pF,RL=1K
最小 PWM 开启宽度	T _{OMIN}	250			ns	I _{OUT} =30mA
驱动输出最大开启时间	T _{ON}			80	ns	I _{OUT} =20mA
驱动输出最大关闭时间	Toff			80	ns	I _{OUT} =20mA

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

注: 说明书更新版本请以公司网站公布为准

功能描述

- 1. 先移入 50Bits 的"0"作为起始帧,再移入各数据帧。起始帧和数据帧都是高位先移入。每个数据位在 DCLK 上升沿被送入;
- 2. 第1个数据帧是对应距移入端最近的 LED 灯。其格式包含: 1Bit 起始位"1"+3 组 8Bits 的灰度数据;
- 3. 所有芯片的数据送完后,加送与芯片数目对应的 DCLK 脉冲数,新数据即开始生效;加送 DCLK 脉冲时数据信号为低电平(数据信号全发"0",时钟信号按上述格式发);
- 4. 每组灰度数据均由 1Bit"1"+24Bit 灰度数据组成。
- ◆ 信号的级联

在应用中,芯片间的级联传输距离可能较长,本传输协议采用了信号自校正的双线传输协议,可消除时钟信号与数据信号的竞争冒险。另外,DOUT 和 DCLKO 输出设计了推挽式强驱动电路,经试验时钟为 2MHz 时可以驱动达 6 米的信号线,为防止信号反射,应用时需在 DOUT 和 DCLKO 端口各串接一个 50 欧姆左右的电阻再输出到下一级。

◆ 256 级线性 PWM 输出

本芯片采用了8位,256级 PWM 输出协议。

由于采用了信号自校正的双线传输协议,本芯片可支持高速的数据传输。在应用中,可用于播放动态视频,而此类应用对灰度等级的要求较高。本芯片的256级灰度,会有较好的展示效果。

如果显示源数据是低于8位的数据,可通过控制系统进行 gamma 校正调节。

此图为原始 32bits 数据,经过 gamma 校正后的数据图

经过 gamma 校正后,显示效果会更好,不会出现跳灰的问题。具体的 gamma 校正调节可联系控制系统提供商。

典型应用

◆ 内恒压驱动模式

该模式(OMODE=高电平或悬空)适用电源 VCC 不大于 12V,且每路电流不大于 40 毫安的情况,如果 VCC≤7.0V,也可以把图中的蓝色虚线框内的电路省略,直接把芯片 VDD 连接到外部电源 VCC。

电流调节电阻计算: RL = (VCC—V_{LED}—V_{OUT})/I_{LED}

这里 RL 为限流电阻,VCC 为 LED 灯的供电电压, V_{LED} 为所有 LED 灯的导通压降之和, V_{OUT} 为输出端对地的饱和压降(约 $0.4 \sim 0.8 V$), I_{LED} 为 LED 的工作电流,一般不超过 20 毫安;

SM16716 有较强的驱动能力,某些多 LED 应用场合可以采用"先串后并"的方式连接,

如右图所示,但要注意耗散功率 PD 不得超过极限值:

 $PD = I_{LED1}*V_{OUT1} + I_{LED2}*V_{OUT2} + I_{LED3}*V_{OUT3} + PIC$

PIC为IC的基本功耗,一般不超过25mW。

◆ 内置恒流模式

该模式(OMODE=高电平或悬空)适用的情况与内恒压驱动模式基本一致,只是在 FB1~3 端多了一个调节电流的 RX,这时流过 LED 的电流由 RX 决定:

图表 1 I_{LED}—R_{FB} 曲线

注意导通后 OUT 端口的对地电压 Vps 必须在 1.5~15V 之间才能保持恒流状态,即满足:

V_{LED}+15V+I_{LED}*RL≥VCC≥V_{LED}+1.5V+ I_{LED}*RL

电路参数取值还必须要注意耗散功率 PD 不得超过极限值:

 $PD=I_{LED1}*(V_{DS1}-0.75V) + I_{LED2}*(V_{DS2}-0.75V) + I_{LED3}*(V_{DS3}-0.75V) + PIC$

这里的 I_{LED1}、I_{LED3} 分别是流过各路 LED 灯的电流值,V_{DS1}、V_{DS2}、V_{DS3} 分别是各输出端口对地的电压。RL 一般取值几十欧姆,对 I_{LED} 的大小没有影响,也可以不用,但适当大小的 RL 有助于分担芯片的耗散功率 PD,提高工作稳定性。

◆ 外挂恒压模式

该模式(OMODE=接地)适用于多 LED 或灯电压较高的情况,实际上是通过 OUTX 输出电平控制外接的 NPN 三极管驱动多个 LED。

限流电阻计算: RL = (VCC-V_{LED}-V_{CE})/20mA

这里的三极管工作在饱和区, VCE 是三极管的饱和压降, 一般取 0.5~0.8V, 基极电阻 RB 可取 2K~5.1K, 其它信号连接方式与前面模式相同。

该模式常用于多路"先串再并"的接法,鉴于串联支路里任意一个 LED 断路时,会导致该支路全部 LED 都不亮,所以使用该接法应遵守如下的原则:支路串联 LED 数不宜多(一般 3~6 只),支路并联数不宜少。这样不仅缩小了烧断一只 LED 的故障影响面,而且将限流电阻化整为零,将大功率电阻变成多只小功率电阻,由集中安装变成分散安装,既利于单组散热,又便于将灯具设计的更紧凑。

◆ 外挂恒流驱动模式

该模式(OMODE=高电平或悬空)适用于单串多个 LED 且 VDD 超过 12V 的情况,其实质是保持电路的恒流驱动特性的同时,通过外接三极管提高驱动耐压能力。

流过 LED 的电流: I_{LED}=I_O*B/(1+B)

这里 I_0 为 RX 在图表 1 中对应的电流值,三极管工作在放大区,B 是三极管的放大倍数,当 B 较大时,上式可近似为:

ILED=Io(基极电阻 RB 可取 5K)

最高的 VCC 电压取决于 NPN 三极管的 VCEO, 一般在 25V 以上。

封装形式

SOP16

DIM	MILLI	METERS	INCHES			
וועו	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.2	1.27 BSC		0.050 BSC		
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
М	0°	7°	0°	7°		
Р	5.80	6.20	0.229	0.224		
R	0.25	0.50	0.010	0.019		