Objetivos da Física:

- identificar leis fundamentais que regem os fenômenos naturais e utilizá-las para desenvolver teorias capazes de prever resultados de experiências futuras.
- as leis fundamentais utilizadas no desenvolvimento de teorias são expressas na linguagem matemática, ferramenta que faz uma ponte entre a teoria e a experiência.

Física Clássica (antes de 1900): Mecânica Clássica, Termodinâmica, Eletromagnetismo

Física Moderna (depois de 1900): Teoria da Relatividade, Mecânica Quântica, outras ...

Além do estudo das leis fundamentais, também ocorre a aplicação dessas teorias em novos problemas:

Nanotecnologia, Informação (computação) quântica, Lasers, Etc...

Menor que 3 x 10⁸ m/s

Comparável a 3 x 10⁸ m/s

Velocidade

Menor que 10⁻⁹ metros

Massa

Física Clássica (até ~ 1900)

Física Quântica

(após ~ 1920)

Física Relativística (após ~ 1905)

Teoria Quântica de Campos (após ~ 1930)

QUANTUM TECHNOLOGY EVERY DAY

Sistema Internacional (SI): um conjunto de padrões para as quantidades fundamentais das ciências naturais

- 1) comprimento (metro, m),
- 2) massa (quilograma, kg),
- 3) tempo (segundo, <u>s</u>).
- 4) temperatura (kelvin, *K*),
- 5) corrente elétrica (ampère, A),
- 6) intensidade luminosa (candela, *cd*)
- 7) quantidade de substância (*mol*).

Para o curso de Mecânica utilizaremos:

- 1) comprimento (metro, **m**),
- 2) massa (quilograma, kg),
- 3) tempo (segundo, s)
- 4) unidades derivdas, por exemplo: força (Newton, N= kg.m/s²) energia (Joule, J=N.m=kg.m²/s²) etc...

Comprimentos aproximados para diferentes coisas:

	Metro (m)	
Distância das galáxias mais antigas	2×10^{26}	<u> </u>
Distância da galáxia de Andrômeda	2×10^{22}	
Distância da estrela mais próxima, Proxima Centauri	4×10^{16}	
Distância de Plutão	6×10^{12}	~ 40 ordens de
Raio da Terra	6×10^{6}	grandeza
Altura do Monte Everest	9×10^{3}	
Espessura desta página	1×10^{-4}	
Comprimento de um vírus típico	1×10^{-8}	
Raio do átomo de hidrogênio	5×10^{-11}	
Raio do próton	1×10^{-15}	\

Massas aproximadas para diferentes coisas:

Massa (kg)

Terra	$5,98 \times 10^{24}$
Lua	$7,36 \times 10^{22}$
Tubarão	$\sim 10^3$
Humano	$\sim 10^2$
Sapo	$\sim 10^{-1}$
Mosquito	$\sim 10^{-5}$
Bactéria	$\sim 1 \times 10^{-15}$
Átomo de hidrogênio	$1,67 \times 10^{-27}$
Elétron	$9,11 \times 10^{-31}$

Valor aproximado de alguns intervalos de tempo:

	tempo (s)
Idade do Universo	4×10^{17}
Idade da Terra	1.3×10^{17}
Idade média de um estudante na faculdade	6.3×10^{8}
Um ano	$3,2 \times 10^{7}$
Um dia	$8,6 \times 10^{4}$
Período de uma aula	$3,0 \times 10^{3}$
Intervalo de tempo entre batimentos normais do coração	8 ×10 ⁻¹
Período de ondas sonoras audíveis	$\sim 10^{-3}$
Período de ondas de rádio normais	$\sim 10^{-6}$
Período de vibração de um átomo em um sólido	$\sim 10^{-13}$
Período de ondas luminosas visíveis	$\sim 10^{-15}$
Duração de uma colisão nuclear	$\sim 10^{-22}$
Intervalo de tempo para a luz cruzar um próton	$\sim 10^{-24}$

Prefixo	Símbolo	Equivalente Decimal	Potência de Base 10
Yotta	Y	1024	100000000000000000000000000000000000000
Zetta	Z	1021	10000000000000000000000
Exa	E	1018	1000000000000000000
Peta	P	1015	1000000000000000
Tera	Т	1012	1000000000000
Giga	G	10°	1000000000
Mega	M	104	1000000
Quilo	k	10 ³	1000
Hecto	h	10 ²	100
Deca	da	10 ¹	10
Nenhum	nenhum	100	1
Deci	q	10-1	0,1
Centi	С	10-2	0,01
Mili	m	10-3	0,001
Micro	μ	10-4	0,000001
Nano	n	10-9	0,000000001
Pico	р	10-12	0,000000000001
Femto	f	10-15	0,000000000000001
Atto	a	10-18	0,0000000000000000000000000000000000000
Zepto	z	10-21	0,0000000000000000000000000000000000000
Yocto	У	10-24	0.0000000000000000000000000000000000000

Definição e uso de escalas:

8

Exemplos:

- $10^3 \text{ m} = 1 \text{ km}$
- $10^{-3} \text{ kg} = 1 \text{ g}$
- 10^{-6} s = 1 μ s
- 10^{-9} m = 1 nm
- $10^3 \, \text{nm} = 10^{-6} \, \text{m} = 1 \, \mu \text{m}$

Unidades Básicas do SI

Símbolo	Nome	Quantidade
S	segundo	tempo
m	metro	comprimento
kg	kilograma	massa
А	Ampere	Corrente elétrica
K	Kelvin	temperatura
mol	mol	Quantidade de substância
cd	candela	Intensidade Iuminosa

Constantes da Natureza

Símbolo	Nome	Quantidade
Δν _{Cs}	Linha espectral do Césio	9.192.631.770 Hz
С	Velocidade da luz	299.792.458 m/s
h	Constante de Planck	6.626.070.15 x 10 ⁻³⁴ J.s
е	Carga do elétron	1.602.176.634 x 10 ⁻¹⁹ C
k	Constante de Boltzmann	1.380.649 x 10 ⁻²³ J/K
N _A	Número de Avogadro	6.022.140.76 x 10 ²³ mol ⁻¹
K _{cd}	Luminosidade em 540 Thz	lúmen/Watt

Unidades Básicas do SI

Constantes da Natureza

Análise dimensional:

- 1) Na física, a dimensão determina a natureza (qualidade) de uma quantidade;
- 2) As dimensões de comprimento, massa e tempo são L (length), M (mass), T (time);
- 3) Utilizamos colchetes para denotar as dimensões de uma quantidade física;

- => A análise dimensional é muito útil para verificar a compatibilidade dos termos de uma equação.
- => Se a dimensão física do resultado não é compatível com a quantidade descrita, a equação contém erro(s).

Exemplos:

Distância, [d]=L

Altura, [h] = L

Área [A]=L²

Volume [V]=L³

Idade [i]=T

Hora [h]=T

Segundo [s]=T

Tonelada [t]=M

Grama [g]=M

Velocidade [v]=L/T

Aceleração [a]=L/T²

Força [F]= ML/T²

Energia [E]=ML²/T²

Densidade volumétrica de massa [d]=M/L³

Exemplo:

Suponha a aceleração de uma partícula movendo-se com velocidade uniforme v em um círculo de raio r seja proprocional a alguma potência de r (ex., r^n) e alguma potência de v (ex. v^m). Determine os valores de n e m para a forma mais simples de uma equação para aceleração.

$$a \propto r^n v^m$$

$$[a] \propto [r^n v^m]$$

$$\frac{L}{T^2} \propto L^n \left(\frac{L}{T}\right)^m \implies n+m=1$$

$$m=2$$

$$a \propto r^{-1}v^2 \implies a = k\frac{v^2}{r}$$
 onde k é uma constante adimensional.

Conversão de Unidades:

- muitas vezes, é necessário converter unidades de um sistema de medida para outro;
- ou convertê-las dentro de um mesmo sistema (por exemplo, de km para m);
- os fatores de conversão são dados do problema que geralmente encontrados em tabelas
- só é possível converter unidades dentro de uma mesma quantidade.

Por exemplo: Conversão de medidas de ângulos, de grau para radiano (e vice-versa)

- 1º (um grau) = 60' (sessenta minutos de arco)
- 1' (1 minuto de arco) = 60" (sessenta segundos de arco)

$$360^{\circ} = 2\pi \text{ rad}$$

$$\therefore 1rad = \frac{360^{\circ}}{2\pi} \approx 57.29^{\circ} \quad , \quad 1^{\circ} = \frac{2\pi rad}{360} \approx 0.017rad$$

Exemplo: a unidade astronômica (UA) é a distância média entre a Terra e o Sol, cerca de 92,9 x 10⁶ milhas. O parsec (pc) é a distância para a qual uma distância de 1 UA subentende um ângulo de exatamente 1 segundo de arco (como mostra a figura). O ano-luz é a distância que a luz, viajando no vácuo com uma velocidade de 186 mil milhas por segundo, percorre em um ano.

Expresse a distância entre a Terra e o Sol: a) em parsecs, b) em anos-luz.

distância entre Terra e Sol = d_{TS}

$$1UA = d_{TS} = \hat{\text{angulo}}(rad) \times \text{raio}$$

$$1'' = \frac{1^o}{3600} = \frac{2\pi}{360} \frac{1}{3600} rad$$

a)
$$d_{TS} = 1UA = \frac{2\pi}{360} \frac{1}{3600} \times 1pc$$

 $\approx 4.848 \times 10^{-6} pc$

Exemplo: a unidade astronômica (UA) é a distância média entre a Terra e o Sol, cerca de 92,9 x 10⁶ milhas. O parsec (pc) é a distância para a qual uma distância de 1 UA subentende um ângulo de exatamente 1 segundo de arco (como mostra a figura). O ano-luz é a distância que a luz, viajando no vácuo com uma velocidade de 186 mil milhas por segundo, percorre em um ano.

Expresse a distância entre a Terra e o Sol: a) em parsecs, b) em anos-luz.

distância entre Terra e Sol = d_{TS}

b)
$$d_{TS} \approx 92.9 \times 10^6 \ milhas$$

$$1ano - luz = 1.86 \times 10^5 \frac{milhas}{s} \times 1 \text{ ano}$$

$$\approx 1.86 \times 10^5 \ \frac{milhas}{s} \times (365 \times 24 \times 3600) \ s$$

$$\approx 5.8657 \times 10^{12} \ milhas$$

$$\therefore 1 \ milha \approx \frac{10^{-12}}{5.8657} \ ano - luz$$

$$d_{TS} = 92.9 \times 10^{6} \times \frac{10^{-12}}{5.8657} \ ano - luz$$

$$\approx 1.58 \times 10^{-5} \ anos - luz$$

Exemplo: Um cordeirinho de estimação cresce rapidamente e sua massa é proporcional ao cubo de seu comprimento. Quando o comprimento do cordeiro varia 15,8%, sua massa aumenta 17,3 kg. Encontre a massa do cordeiro no final desse processo.

Resposta:

A massa do cordeiro ("esférico") varia com o cubo de seu comprimento (L), portanto temos $m \propto L^3$ (\propto é o sinal matemático para proporcionalidade)

$$m_0 \propto L_0^3$$

Portanto, $\Delta m = m - m_0 \propto (L^3 - L_0^3)$

$$\frac{\Delta m}{m_0} = \frac{L^3 - L_0^3}{L_0^3} = \left(\frac{L}{L_0}\right)^3 - 1$$

Do enunciado,

$$\frac{\Delta L}{L_0} = \frac{L - L_0}{L_0} = 15.8\% = 0.158 \Longrightarrow \frac{L}{L_0} = 1.158 \qquad m = m_0 + \Delta m = 31.3kg + 17.3kg = 48.6kg$$

$$\frac{\Delta m}{m_0} = (1.158)^3 - 1 = 0.5528$$

$$m_0 = \frac{\Delta m}{0.5528} = \frac{17.3kg}{0.5528} \approx 31.3kg$$

Portanto, a massa final do cordeiro será

Exemplo: Despeja-se água em um recipicente que apresenta um vazamento. A massa m de água no recipiente em função do tempo t é dada por m = 5,00t^{0.8} - 3,00t + 20, para t>0, em que a massa está em gramas e o tempo em segundos. (a) Em que instante a massa de água é máxima? (b) Qual é o valor da massa nesse instante? (c) Qual a taxa de variação de massa no tempo?

Resposta:

Pelo método gráfico:

Exemplo: Despeja-se água em um recipicente que apresenta um vazamento. A massa m de água no recipiente em função do tempo t é dada por m = 5,00t^{0.8} - 3,00t + 20, para t>0, em que a massa está em gramas e o tempo em segundos. (a) Em que instante a massa de água é máxima? (b) Qual é o valor da massa nesse instante? (c) Qual a taxa de variação de massa no tempo?

Resposta:

Pelo cálculo diferencial:

$$m(t) = 5t^{0.8} - 3t + 20$$

A taxa de variação de massa no tempo é dada pela derivada temporal de m(t),

$$\frac{d}{dt}m(t) = \frac{d}{dt}\left(5t^{0.8} - 3t + 20\right) = 4t^{-0.2} - 3$$

No instante em que a massa de água é máxima devemos ter

$$\frac{d}{dt}m(t) = 0 \Longrightarrow 4t^{-0.2} - 3 = 0$$

Exemplo: Despeja-se água em um recipicente que apresenta um vazamento. A massa m de água no recipiente em função do tempo t é dada por m = 5,00t^{0.8} - 3,00t + 20, para t>0, em que a massa está em gramas e o tempo em segundos. (a) Em que instante a massa de água é máxima? (b) Qual é o valor da massa nesse instante? (c) Qual a taxa de variação de massa no tempo?

Resposta:

Resolvendo está equação para t:
$$4t^{-0.2}-3=0$$

$$t^{-0.2}=\frac{3}{4}$$

$$-0.2\ln{(t)}=\ln{\left(\frac{3}{4}\right)}=0.2877$$

$$\ln{t}=1.43841$$

$$t=e^{1.43841}=4.214s$$

$$m(t = 4.214s) = 5 * (4.214)^{0.8} - 3 * (4.214) + 20$$

 $\approx 23.16q$