

# Embedded Systems Kapitel 5: Pulsweitenmodulation

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Sommersemester 2020

### **Inhalt**

- Grundlagen: Pulsweitenmodulation
- ATmega2560: Konfiguration des PWM Modus
- Vorbereitung der Übung

### **Motivation**

- Wie kann Mikrocontroller analoge Information nach außen übertragen?
  - Beispiel: Wert 6 aus dem Bereich [0; 10]
- □ > 1 Pin, parallele Leitungen
  - HIGH/LOW auf den Leitungen werden als Binärzahl interpretiert.
  - Beispiel: 0110
- 1 Pin, gibt analogen Spannungswert aus
  - Beispiel: 3V aus möglichem Bereich [0; 5V] für den Wert 6
- 1 Pin, berücksichtige zeitliche Dimension
  - Beispiel: Alle 10s wird der Pin für 6s auf HIGH gesetzt
     → Pulsweitenmodulation!



3V

# Pulsweitenmodulation (PWM)

#### Definition: Pulsweitenmodulation

- Modulationsart bei der ein Signal mit konstanter Periode, aber variabler Pulsdauer, erzeugt wird.
- Information steckt im Pulsdauer.
- Pulsdauer: HIGH-Anteil innerhalb einer Periode.

### Begriffe:

- Period (dt. Periodendauer)
- Pulse width (dt. Pulsdauer)
- Duty Cycle (dt. Tastgrad)
  - Duty Cycle:  $\frac{t}{T}$
  - Oft in Prozent angegeben!



# Anwendungen der PWM (1)

#### Emulation von analoger Ausgabe

- PWM Signal kann in analoges Signal umgewandelt werden.
- RC-Baugruppe ist ein Tiefpass und filtert hochfrequente Signale.
- Annäherungsweise kommt der gewünschte analoge Wert V<sub>0</sub> heraus.





Quelle: [1], Seite 46

# Anwendungen der PWM (2)

- Übertragen analoger Messwerte
- Ansteuern von Gleichstrommotoren
  - Variation des Duty Cycles verändert Leistung / Geschwindigkeit eines Motors stufenlos.
  - https://de.wikipedia.org/wiki/Gleichstrommaschine#/media/File:Animation\_eine r\_Gleichstrommaschine\_(Variante).gif
- Allgemeine Steuerungstechnik
  - Dimmen von LEDs
  - Drehzahländerung von Lüftern
- Leistungselektronik
  - Z.B. Ansteuern von Heizelementen



### Servomotor

 Bei Servomotor wird beständig die Position oder Geschwindigkeit kontrolliert.

#### Bestandteile

- Beliebiger (Elektro)motor
- Messeinheit (z.B. Potentiometer)
- Steuerung
- Integrierte *Messeinheit* misst permanent aktuelle Position/Geschwindigkeit.
- Integrierte Steuerung hält Motor in gewünschter Position/Geschwindigkeit.
- Pulsdauer der PWM teilt Servomotor die gewünschte Position/Geschwindigkeit mit.





# Übung: Servomotor SG90



- Die Periodendauer wird nicht ausgewertet.
- Nur der Duty Cycle!
- Zu lange oder zu kurze Impulsdauern schaden dem Motor.
- "Dead bandwidth": Änderungen des Duty Cycles von 10 µs bewirken keine Positionsänderung des Servomotors.

### **Inhalt**

- Grundlagen: Pulsweitenmodulation
  - Analoger Ausgang, Impulsfolge
- ATmega2560: Konfiguration des PWM Modus
- Vorbereitung der Übung

# Wiederholung: Output Compare

- Konfiguration eines Schwellwertes im Output Compare Register
  - OCRnX: Der ATmega2560 hat für jeden Timer n drei solche Schwellwerte OCRnA, OCRnB, OCRnC.
- Bei Erreichen des Schwellwertes
  - Auslösen eines Interrupts oder
  - Ändern des Pegels an speziellem Output Compare Pins durch Hardware.
    - OCnX gehört zum Schwellwert in OCRnX.



# Erzeugung von PWM Signalen

- "Zutaten": Timer, Output Compare und Interrupts
- CMP / OCRnX:
  - Zähler läuft unverändert weiter.
  - Output Compare Match setzt PWM-Ausgang OcnX automatisch auf LOW.
- TOP:
  - Umkehrwert des Zählers
  - Gleichzeitig wird PWM-Ausgang automatisch auf HIGH gesetzt.



## Fazit: Erzeugung von PWM Signalen

- Mikrocontroller generieren PWM Signal meist durch Hardware
  - Keine Programmierung, aber Konfiguration was passieren soll.
  - Software Alternative: Digitalen Ausgangspin manuell zwischen LOW und HIGH umschalten (z.B. mittels delay()).

PWM ist somit ein Timer-Feature.

- Automatische Erzeugung des PWM Signals nur auf speziellen
   Output Compare Pins ocnx möglich.
  - Pro Timer beim Atmega2560 3 PWM Ausgänge A, B und C.
  - n ist Nummer des Timers an, X ist entweder A, B oder C.
  - Im Register OCRnX wird jeweils der Schwellwert gesetzt, der den PWM-Ausgang OCnX beinflusst (z.B. OCRnB bestimmt OCnB).

# Änderung der PWM Parameter zur Laufzeit

- Änderungen des Duty Cycles (CMP) oder der Periodendauer (TOP) können einmalig zu Artifakten führen, z.B. sehr langes HIGH oder LOW-Signal.
- □ TOP/CMP lässt sich in manchen Modi nur ändern, wenn Zähler gerade auf BOTTOM/TOP.



# Inverting und Non-Inverting Mode



#### **Non-Inverting Mode**

OCnX wird bei BOTTOM auf HIGH und bei CMP auf LOW gesetzt.

#### **Inverting Mode**

OCnX wird bei BOTTOM auf LOW und bei CMP auf HIGH gesetzt.

### **Up-Down-Counter**

#### Funktionsweise

- Zähler zählt hoch bis TOP, dann runter bis BOTTOM.
- Bei Hochzählen: Setze PWM-Ausgang bei CMP auf LOW.
- Bei Herunterzählen: Setze PWM-Ausgang bei CMP auf HIGH.

#### Unterschiede zu normalem Up-Counter

- Doppelte Periodendauer, geringere Auflösung.
- Symmetrisch: BOTTOM und TOP Z\u00e4hlerstand liegen zeitlich immer genau in der Mitte des LOW und HIGH Pegels → <a href="http://aquaticus.info/pwm-modes">http://aquaticus.info/pwm-modes</a>



# Programmierung von PWM Signalen

### Arduino Library

- o analogWrite(<pin>, <duty cycle>)
  - Erzeugt beliebiges PWM-Signal.
  - Verwendet PWM-Hardwareunterstützung des ATmega2560 Mikrocontollers. <a href="https://www.arduino.cc/en/Reference/AnalogWrite">https://www.arduino.cc/en/Reference/AnalogWrite</a>
- Servo Library
  - Unterstützt Ansteuerung von bis zu 48 Servomotoren, darunter Ansteuerungen von Servomotoren, darunter der SG90.
  - https://www.arduino.cc/en/Reference/Servo

#### AVR-Libc

- Konfiguration über (zahlreiche) Register.
- Äußerst mächtig.
- 16 verschiedene Betriebsmodi, siehe n\u00e4chste Folie.

# PWM Betriebsmodi beim ATmega2560

**Table 17-2.** Waveform Generation Mode Bit Description<sup>(1)</sup>

| Mode | WGMn3 | WGMn2<br>(CTCn) | WGMn1<br>(PWMn1) | WGMn0<br>(PWMn0) | Timer/Counter<br>Mode of Operation  | ТОР    | Update of<br>OCRnx at | TOVn Flag<br>Set on |
|------|-------|-----------------|------------------|------------------|-------------------------------------|--------|-----------------------|---------------------|
| 0    | 0     | 0               | 0                | 0                | Normal                              | 0xFFFF | Immediate             | MAX                 |
| 1    | 0     | 0               | 0                | 1                | PWM, Phase Correct, 8-bit           | 0x00FF | TOP                   | ВОТТОМ              |
| 2    | 0     | 0               | 1                | 0                | PWM, Phase Correct, 9-bit           | 0x01FF | TOP                   | BOTTOM              |
| 3    | 0     | 0               | 1                | 1                | PWM, Phase Correct, 10-bit          | 0x03FF | TOP                   | воттом              |
| 4    | 0     | 1               | 0                | 0                | СТС                                 | OCRnA  | Immediate             | MAX                 |
| 5    | 0     | 1               | 0                | 1                | Fast PWM, 8-bit                     | 0x00FF | воттом                | TOP                 |
| 6    | 0     | 1               | 1                | 0                | Fast PWM, 9-bit                     | 0x01FF | воттом                | TOP                 |
| 7    | 0     | 1               | 1                | 1                | Fast PWM, 10-bit                    | 0x03FF | ВОТТОМ                | TOP                 |
| 8    | 1     | 0               | 0                | 0                | PWM, Phase and Frequency<br>Correct | ICRn   | ВОТТОМ                | ВОТТОМ              |
| 9    | 1     | 0               | 0                | 1                | PWM,Phase and Frequency<br>Correct  | OCRnA  | ВОТТОМ                | ВОТТОМ              |
| 10   | 1     | 0               | 1                | 0                | PWM, Phase Correct                  | ICRn   | TOP                   | воттом              |
| 11   | 1     | 0               | 1                | 1                | PWM, Phase Correct                  | OCRnA  | TOP                   | воттом              |
| 12   | 1     | 1               | 0                | 0                | СТС                                 | ICRn   | Immediate             | MAX                 |
| 13   | 1     | 1               | 0                | 1                | (Reserved)                          | -      | -                     | -                   |
| 14   | 1     | 1               | 1                | 0                | Fast PWM                            | ICRn   | ВОТТОМ                | TOP                 |
| 15   | 1     | 1               | 1                | 1                | Fast PWM                            | OCRnA  | ВОТТОМ                | TOP                 |

Quelle [1, S. 145]:

- Die PWM Modi sind farbig hinterlegt.
- Grün: Up-Counter
- Blau: Up-Down Counter.
- Weiteres
   Unterscheidungs merkmal ist: Zeitpunkt
   an dem Änderungen
   des Duty Cycles
   angenommen werden.

Konfiguration über WGMn0: WGMn3 Bits in den beiden(!) Registern TCCRnA und TCCRnB

# ATmega2560: Konfiguration des PWM Moduls

#### Betriebsmodi

- Fast PWM, Phase-Correct PWM, Phase and Frequency Correct PWM
- WGMn3, WGMn2, WGMn1, WGMn0 (Datenblatt Seite 145)

#### Output Compare Pins OCnX

- 3 OCnX pins per timer: OCnA, OCnB und OCnC (Datenblatt Seite 155)
- Konfiguration notwendig, ob im *Inverting* oder *Non-Inverting* Mode.
- Bei Verwendung eines PWM Modes werden OCnX Pins je nach gewähltem Modus (Table 17-2) automatisch gesetzt.
- Wichtig: Output Compare Pins müssen als Ausgang im DDR Register konfiguriert sein.

#### Output Compare Register OCRnX

- Vergleichswert muss gesetzt werden!
- Falls OCnX Output Compare Pin verwendet wird, muss auch das entsprechende Output Compare Register OCRnX verwendet werden!

# Spielbeispiel / Live Coding

- Anforderung 1: 16-Bit Timer3 soll als Up-Down Counter arbeiten
- Anforderung 2: Schwellwert OCR3B steuert LED an.
  - Beim Hochzählen: Setze Output Compare Pin 0C3B auf 1
  - Beim Runterzählen: Setze Output Compare Pin 0C3B auf 0.



### **Inhalt**

- Grundlagen: Pulsweitenmodulation
- ATmega2560: Konfiguration des PWM Modus
- Vorbereitung der Übung

# Anforderung

- Der Servomotor SG90 muss laut Handbuch wie folgt angesteuert werden.
  - Periodendauer: 20 ms
  - Duty Cycle: 1 ms (0°), 2 ms (180°)
- Tatsächlich funktionieren aber folgende Werte für den Duty Cycle
  - Linker Vollausschlag: 544 μs (0°),
  - Rechter Vollausschlag: 2500 μs (180°)



Aus Datenblatt SG90 [6]

# Vorbereitung der Übung

Welche Register müssen mit welchen Werten gesetzt werden?



# Vorüberlegung: Periodendauer

- Auswahl des PWM Modus: Fast PWM, Inverting Mode
- Konfigurieren der PWM Periodendauer / TOP Wert
  - Systemtakt 16 MHz: Wie oft würde ein 16-Bit Timer ohne Prescaler im Zeitraum von 20 ms (50 Hz) erhöht werden?
    - 320000
  - Welcher Prescaler würde ausreichen? Wie oft würde der Timer dann innerhalb von 20 ms erhöht werden?
    - 40000
  - Der TOP-Wert soll im ICR4 Register konfiguriert sein. Welche WGMn3:0 Bits müssen gesetzt werden?
    - 1110
  - Es soll der Non-Inverting Mode konfiguriert werden → COMnX1und COMnX2 setzen (siehe Übung)
    - 10

# Vorüberlegung: Duty Cycle

- Wie muss OCR4C gesetzt werden für
  - Pulsdauer: 1.0 ms
    - · 2000
  - Pulsdauer: 1.5 ms
    - 3000
  - Pulsdauer: 2.0 ms
    - 4000
- TOP-Wert durch ICR4-Register festgelegt.

### Quellenverzeichnis

- [1] G. Gridling und B. Weiss. *Introduction to Microcontrollers*, Version 1.4, 26. Februar 2007, Kapitel 2.5, verfügbar online:

  <a href="https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf">https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf</a>
  (abgerufen am 08.03.2017)
- [2] Datenblatt ATmega2560, <a href="http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561\_datasheet.pdf">http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561\_datasheet.pdf</a>, (abgerufen am 19.03.2017)
- [3] M. Jimenez, R. Palomera und I.Couvertier. Introduction to Embedded Systems, Springer Verlag, 2014
- [4] <a href="http://www.powershow.com/view/3c9955-">http://www.powershow.com/view/3c9955-</a>
  <a href="mailto:YmRhN/SERVO\_MOTOR\_CONTROL\_powerpoint\_ppt\_presentation">YmRhN/SERVO\_MOTOR\_CONTROL\_powerpoint\_ppt\_presentation</a> (abgerufen am 18.04.2017)
- [5] <a href="http://www.errmicro.com/blog">http://www.errmicro.com/blog</a> (abgerufen am 18.04.2017)
- [6] Datenblatt SG90. <a href="http://www.micropik.com/PDF/SG90Servo.pdf">http://www.micropik.com/PDF/SG90Servo.pdf</a>