ТЕКСТОВОЕ ОПИСАНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ

ВЫПОЛНИЛИ: МАКАРОВА О. ПРИБЫТКИНА Д.

ЗАДАЧА

Описать содержание картинок связными предложениями. В качестве входных данных используется изображение, а на выходе получаем описательное предложение — распознанные предметы и объекты. В своей работе мы использовали систему Neuraltalk.

NEURALTALK

1.13 man
0.29 using
0.31 his
-0.01 laptop
-0.03 while
0.05 his
1.25 cat
-0.12 looks
-0.02 at
-0.21 screen

NeuralTalk – это приложение, работающее по принципу нейронных сетей, основанное на разработках Стендфордского Университета и Google.

NeuralTalk способно проанализировать комплексное изображение и точно определить, что на нём происходит, описав всё увиденное разговорным человеческим языком.

АРХИТЕКТУРА

Модель основана на сверточной нейронной сети, которая работает с изображением в рекуррентной нейронной сети и преобразует его в компактное представление. А уже с помощью рекуррентной нейронной сети генерируется соответствующее предложение.

ИСПОЛЬЗОВАННЫЕ НЕЙРОННЫЕ СЕТИ

Для реализации обеих стадий алгоритма используются искусственные нейронные сети. Они обучаются на подборках фотографий Flickr8K и MS-COCO, в которых почти 150000 снимков были подписаны при помощи краудсорсинговой платформы Amazon Mechanical Turk.

В обоих случаях для характеристики CNN используется VGGNet. Для генерации предложений был использован метод BeamSearch (последовательное рассмотрение наборов из beam лучших предложений).

- l. beam = 20
- 2. beam = 1 (жадный поиск)

ЭКСПЕРИМЕНТЫ

Для оценки используется наборы данных, которые состоят из изображений и предложений на английском языке, описывающие эти изображения. Наборы данных включают в себя 6000 (Flickr8k) и 82783 (MS-COCO) тренировочных файлов.

LOG PROBABILITIES

Дополнительный показатель, вводимый для проверки качества перевода с точки зрения системы. Если этот уровень низкий (например, -10), это означает, что модель путается с изображением и, скорее всего, предоставляет не очень хороший прогноз. И наоборот, более высокие цифры (такие как -7) указывают на то, что модель относительно более уверенна в исходе.

(-7.035189) a brown dog is running through a field

(-9.023607) a brown bear is standing in the grass

(-10.103282) a dog is laying on a bed

(-10.288552) a small dog is sitting on a toilet

(-11.486791) a child in a red jacket is standing in the snow

(-10.781403) a man and a child are sitting on a bench

(-11.260886) a white dog is jumping over a red and white fence

(-11.495168) a dog is standing in the grass with a frisbee

(-19.250958) a man in a black shirt and a white hat is sitting on a bench

(-11.956867) a man in a suit and tie is standing in front of a mirror

BLEU

Для оценки работы системы используется показатель, применяемый в машинном переводе для оценки качества сгенерированных предложений — BLEU (Bilingual Evaluation Understudy). Он определяет процент n-грамм (n может быть от 1 до 7), совпавших в машинном переводе и эталонном переводе предложения. Вручную обычно оценивают по 5-балльной шкале два показателя: передача смысла (Adequacy) и гладкость речи (Fluency).

BLEU SCORES

	Flickr8k	MS-COCO
B-I	0.582093	0.649
B-2	0.378414	0.464
B-3	0.189930	0.321

TEST PERPLEXITY

Flickr8k	MS-COCO
15.687797	11.555093
(vocab size 2538)	(vocab size 8791)