Distributions

Distributions	
Discrete	
Combinatorial	Finite space, equally likely outcomes $P(A) = card(A)/n$
Bernoulli	Success probability of bent coin
	$p_0 = q = (1 - p)$ and $p_1 = p$
	$\mu = p, \sigma^2 = pq$
Binomial	Probability of n heads in k tosses
	$p_k = \binom{n}{k} p^k (1-p)^{n-k}$
	$\mu = np, \sigma^2 = npq$
Geometric	Failures before 1st success, $k \ge 0$
	$p_k = (1-p)^k p$
	$\mu = \frac{q}{p}, \sigma^2 = \frac{q}{p^2}$
Negative Binomial	
	Failures before rth success $k \ge 0$ $w_r(k; p) = {k+r-1 \choose k} q^k p^r$
	Note the negative binomial is sum of
	r independent geometric RVs.
	$\mu = \frac{rq}{p}, \sigma^2 = \frac{rq}{(p)^2}$
Poisson	p^{-1} , p^{-1} $(p)^2$ Characterization of rare events
10155011	$p_k = e^{-\lambda} \lambda^k / k!$
	$\mu = \lambda, \sigma^2 = \lambda$
Continuous	$\mu = \lambda, \sigma = \lambda$
Uniform	Agnostic about outcome on interval
	f(x) = 1/(b-a) on
	a < x < b and $0 o.w.$
	$\mu = \frac{1}{2}(a+b), \sigma^2 = \frac{1}{12}(b-a)$
Gamma	Note $\Gamma = (n-1)!$
	$g_n(t;\alpha) = \alpha \frac{(\alpha t)^{n-1}}{(n-1)!} e^{-\alpha t}$ $\mu = \frac{1}{\alpha}, \sigma^2 = \frac{1}{\alpha^2}$
	$\mu = \frac{1}{2}, \sigma^2 = \frac{1}{2}$
Chi-squared	Finite X_i , $\mathcal{N}(0,1)$: $V^2 = \sum^n X^2$
oni pquiou	$ \begin{aligned} \mu &= \frac{\pi}{\alpha}, b &= \frac{\pi}{\alpha^2} \\ \text{Finite } X_k \mathcal{N}(0,1); V^2 &= \sum_{k=1}^n X_k^2 \\ g_{n/2}(t; 1/2) &= \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} t^{\frac{n}{2} - 1} e^{-\frac{t}{2}} \end{aligned} $
	$\mu = n, \sigma^2 = 2n$
Exponential	A model for true randomness
	$f(r) = \alpha e^{-\alpha x}$ for $r > 0$
	$\mu = \frac{1}{\alpha}, \sigma^2 = \frac{1}{\alpha^2}$
Normal	The one to rule them all
	$f(x) = \frac{1}{\sqrt{(2\pi)}\sigma} e^{-(x-\mu)^2/2\sigma^2}$
D	$\sqrt{(2\pi)}\sigma$
Even function, strictly positive, dies monotonically	
Multivariate Normal Note that x and m are vectors	
$f(x) = \frac{1}{2^{\frac{n}{2}}} exp(-\frac{1}{2}(x-m)A^{-1}(x-m)^T)$	

 $f(x) = \frac{1}{2\pi^{\frac{n}{2}} \det(A)^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-m)A^{-1}(x-m)^{2})$

Negative Binomial Trick: $\binom{r+k-1}{k}q^kp^r = \binom{-r}{k}(-q)^kp^r$

Properties of Distributions

Shifting and Scaling If two densities come from same type: $\frac{1}{a}f(\frac{x-m}{a})$ then $\mu = a\mu + m$ $\sigma^2 = a^2\sigma^2$

Convolution The convolution of any pair of distributions must necessarily be a distribution

Stability of the Normal Suppose $X_1, X_2, ... X_n$ are independent and for each $k X_k$ is normal with mean μ_k and variance σ_k . Then $S_n = \sum_{k=1}^n X_k$ is normal with mean $\sum_{k=1}^n \mu_k$ and variance $\sum_{k=1}^n \sigma_k$, or in other words normal densities are stable under convolution. Also stable under non-degenerate linear transformation

Translation Invariance: Uniform

Sum of Independent Poisson RVs For independent random variables drawn from Poisson distribution is Poisson and the

mean is $\lambda_1 + \lambda_2$

Sum of Independent Binomials is also binomial.

Sum of Independent Gamma RVs Given $X_1 \sim g_{n_1}(x_1, \alpha)$ and $X_2 \sim g_{n_2}(x_2, \alpha)$ then $Z = X_1 + X_2 \sim g_{n_1+n_2}(z, \alpha)$. Note the RV's must have the same mean $\frac{1}{2}$

The marginals of a multivariate normal are normal Note: a system of variables with marginal normal densities need not have a jointly normal density, and, in fact a joint density need not even exist

Sum of Exponentials Sum of independent exponential random variables from a common exponential density $\alpha e^{-\alpha x}$ for x>0 is S_n , the sum $S_n = X_1 + X_2 + ... + X_n$ has the gamma density. Memoryless Property ONLY the exponential and geometric distributions are memoryless. The random variable X exhibits the memoryless property if $P\{X > s + t | X > s\} = P\{X > t\}$ or recast $P\{X > s + t | X > s\} = P\{X > t\}$ if and only if $P\{X > s + t\} = P\{X > s\}P\{X > t\}$

Conditional Probability

$$P(A|H) = \frac{P(A \cap H)}{P(H)}$$

$$P_H : A \to P(A|H)$$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1|A_2 \cap ... \cap A_n)$$

$$\times P(A_2|A_3 \cap ... \cap A_n) \times P(A_{n-1}|P(A_n) \times P(A_n)$$

Bayes Rule

$$P(A_k|H) = \frac{P(H|A_k)P(A_k)}{\sum_{j>1} P(H|A_j)P(A_j)}$$

Inclusion-Exclusion

Di Finneti's Theorem

Limit Laws

Weak Law of Large Numbers Strong Law of Large Numbers Central Limit Theorem

Suppose $X_1, X-2, ...$ is a sequence of independent random variable drawn from a common distribution F with mean zero and variance one. For each n, let $S_n * = (X_1 + ... + X_n)/\sqrt{n}$. Then S_n* converges in distribution to the standard normal. $P\{a < S_n* < b\} \to \Phi(b) - \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$ If $E(X_k) = \mu$

and $Var(X_k) = \sigma^2$ then we can center and scale the variables such that $S_n * = (S_n - n\mu/\sqrt{n}\sigma)$ and the theorem holds for the new properly normalize $S_n *$.

Inequalities

Convexity The chord lies above the curve $\Psi(\alpha x + (1 - \alpha)y) < \alpha \Psi(x) + 1 - \alpha)\Psi(y)$

Jensen If Ψ is convex, X is integrable, and $\Psi(x)$ is integrable then: $\Psi(E(x)) \leq E(\Psi(x))$

Another of Jensen $E(X^2) > E(X)^2$

AM-GM $x_1^{p_1} x_2^{p_2} ... x_n^{p_n} \le p_1 x_1 + p_2 x_2 + ... p_n x_n$

Specialization of AM-GM $x^{1/p}y^{1/q} \leq (1/p)x + (1/q)y$

simplifies to: $xy < (1/p)x^p + (1/q)y^p$

Holder's $|E(XY)| \le E(|XY|) \le E(|X|)^{1/p} E(|Y|)^{1/q}$

Cauchy-Schwarz If p = q = 2 in Holder's \rightarrow $|E(XY)^2| \le E(X^2)E(Y^2)$

Minkowski $p \ge 1$ then $||x+y|_p \le ||x||_p + ||y||_p$

Chebyshev $P\{|S_n - n\mu| \ge n\epsilon\} \le \frac{n\sigma^2}{n^2c^2}$

Chernoff $P\{S_n \geq tSpecification of a\}$

σ -algebras

Expectation

Variance $Var(X) = E(X^2) - E(X)^2$ Covariance Cov(X,Y) = E(XY) - E(X)E(Y)

Law of the Unconcious Statistician If X is a discrete r.v. and g is a function from $R \to R$ then, $E(g(X)) = \sum_x g(x)P(X = x)$ Independence Independent variables are uncorrelated, but uncorrelated variables are not necessarily independent. However, this is a necessary and sufficient condition if we are talking about the marginals of a normal density Additivity Expectation is additive. Variance is additive if the summands are independent.

Conditional Probability

$$\begin{split} P(A|H) &= \frac{P(A \cap H)}{P(H)} \\ P_H : A \rightarrow P(A|H) \\ P(A_1 \cap A_2 \cap \ldots \cap A_n) &= P(A_1|A_2 \cap \ldots \cap A_n) \\ \times P(A_2|A_3 \cap \ldots \cap A_n) \times P(A_{n-1}|P(A_n) \times P(A_n) \end{split}$$

Bayes Rule

$$P(A_k|H) = \frac{P(H|A_k)P(A_k)}{\sum_{j\geq 1} P(H|A_j)P(A_j)}$$

Inclusion-Exclusion

Di Finneti's Theorem

Limit Laws

Weak Law of Large Numbers Strong Law of Large Numbers Central Limit Theorem

Suppose $X_1, X-2, ...$ is a sequence of independent random variable drawn from a common distribution F with mean zero and variance one. For each n, let $S_n * = (X_1 + ... + X_n)/\sqrt{n}$. Then S_n* converges in distribution to the standard normal. $P\{a < S_n* < b\} \to \Phi(b) - \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$ If $E(X_k) = \mu$

and $Var(X_k) = \sigma^2$ then we can center and scale the variables such that $S_n * = (S_n - n\mu/\sqrt{n}\sigma)$ and the theorem holds for the new properly normalize S_n* .

Inequalities

Convexity The chord lies above the curve

 $\Psi(\alpha x + (1 - \alpha)y) \le \alpha \Psi(x) + 1 - \alpha)\Psi(y)$

Jensen If Ψ is convex, X is integrable, and $\Psi(x)$ is integrable then: $\Psi(E(x)) \leq E(\Psi(x))$

Another of Jensen $E(X^2) \geq E(X)^2$

AM-GM $x_1^{p_1} x_2^{p_2} ... x_n^{p_n} \le p_1 x_1 + p_2 x_2 + ... p_n x_n$

Specialization of AM-GM $x^{1/p}y^{1/q} \leq (1/p)x + (1/q)y$

simplifies to: $xy < (1/p)x^p + (1/q)y^p$

Holder's $|E(XY)| \le E(|XY|) \le E(|X|)^{1/p} E(|Y|)^{1/q}$

Cauchy-Schwarz If p = q = 2 in Holder's \rightarrow

 $|E(XY)^2| \le E(X^2)E(Y^2)$

Minkowski $p \ge 1$ then $||x+y|_p \le ||x||_p + ||y||_p$

Chebyshev $P\{|S_n - n\mu| \ge n\epsilon\} \le \frac{n\sigma^2}{n^2\epsilon^2}$ Chernoff $P\{S_n \ge t \le (\inf_{\lambda \ge 0} e^{-\lambda t/n} M(\lambda))^n \text{ and }$

 $P\{S_n \le t\} \le (\inf_{\lambda > 0} e^{-\lambda t/n} M(-\lambda))^n$

Where
$$M(\lambda)=E(e^{\lambda X_j})=\int_{\mathcal{R}}e^{\lambda x}dF(x)$$
 is the moment generating function
$$\begin{aligned} \mathbf{Markov}P\{X\geq a\} &\leq \frac{E(X)}{a} \\ \mathbf{Normal\ Tail\ Bound\ p\ 317\ } \frac{\phi(x)}{x}(1-\frac{1}{x^2}) < 1-\Phi(x) < \frac{\phi(x)}{x} \\ \mathbf{Normal\ Tail\ Bound\ p\ 165\ } \int_t^\infty \phi(x)dx \leq \frac{1}{2}e^{-t^2/2} \end{aligned}$$

Logarithmic Identities

$$\begin{split} y &= \log_b\left(x\right) \text{ iff } x = b^y \\ \log_b\left(\frac{x}{y}\right) &= \log_b\left(x\right) - \log_b\left(y\right) \\ \log_b\left(x\right) &= \log_b\left(c\right) \log_c\left(x\right) = \frac{\log_c\left(x\right)}{\log_c\left(b\right)} \\ \log_b\left(x^n\right) &= n \log_b\left(x\right) \\ \log_b\left(1\right) &= 0 \\ \log_b\left(b\right) &= 1 \\ \log_b\left(xy\right) &= \log_b\left(x\right) + \log_b\left(y\right) \\ \log(\infty) &\to \infty \qquad \log(0) \to -\infty \qquad \log(1) = 0 \end{split}$$

Exponential Identities

$$x^a x^b = x^{(a+b)}$$
 $(x^a)^b = x^{(ab)}$
 $x^a y^a = (xy)^a$ $x^{(a-b)} = \frac{x^a}{x^b}$

Common Infinite Series

Exponential
$$\sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z$$

$$\sum_{k=0}^{\infty} k \frac{z^k}{k!} = ze^z \text{ Mean of the Poisson}$$

$$\sum_{k=0}^{\infty} k^2 \frac{z^k}{k!} = (z+z^2)e^z \text{ Second moment of Poisson}$$

$$\sum_{k=0}^{\infty} k^3 \frac{z^k}{k!} = (z+3z^2+z^3)e^z$$

$$\sum_{k=0}^{\infty} k^4 \frac{z^k}{k!} = (z+7z^2+6z^3+z^4)e^z$$
 Binomial
$$\sum_{k=0}^{\infty} \binom{\alpha}{k} z^k = (1+z)^{\alpha}, |z| < 1$$

$$\sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k = (x+y)^n$$

Integration

$$\int x^n = \frac{1}{n+1}x^{n+1}, \quad n \neq -1$$

$$\int \frac{1}{x} = \ln|x|$$

$$\int u v = uv - \int v du$$

$$\int e^x = e^x$$

$$\int \cos x = \sin x$$