









## **Quantum Registers**

Dominique Unruh

University of Tartu, Estonia



#### **Overview**

Why quantum registers make me sad

How I got happy again



#### A tiny quantum program



apply H on Y; apply CNOT on Z,X;

$$(I_{1} \otimes U_{\alpha}) \cdot U_{\alpha} \cdot ((I_{1} \otimes U_{\sigma}) \otimes I_{1}) \cdot (U_{\alpha} \otimes I_{1}) \cdot ((U_{\sigma} \otimes I_{1}) \otimes I_{1}) \cdot ((CNOT \otimes I_{1}) \otimes I_{1}) \cdot ((U_{\sigma} \otimes I_{1}) \otimes I_{1}) \cdot ((I_{1} \otimes U_{\sigma}) \otimes I_{1}) \cdot U_{\alpha}^{\dagger} \cdot (I_{1} \otimes U_{\alpha}^{\dagger})$$

- $U_{\sigma}|x,y\rangle = |y,x\rangle$
- $\mathcal{H} \otimes (\mathcal{K} \otimes \mathcal{L}) \neq (\mathcal{H} \otimes \mathcal{K}) \otimes \mathcal{L}$
- $U_{\alpha}|(x,y),z\rangle = |x,(y,z)\rangle$



#### A tiny quantum program



•  $\mathcal{H} \otimes (\mathcal{K} \otimes \mathcal{L}) \neq (\mathcal{H} \otimes \mathcal{K}) \otimes \mathcal{L}$ 

•  $U_{\alpha}|(x,y),z\rangle = |x,(y,z)\rangle$ 



### More "easy" things

#### In pseudo-code, informal explanations:

- "we apply U to X in the diagonal basis"
  - $\rightarrow$  "X in the diagonal basis" treated as register
- "let  $X_i$  be the *i*-th qubit of X"
  - $\rightarrow$  "i-th qubit" is treated as a (sub-)register
- "initialize X, Y with an EPR pair"
  - $\rightarrow X, Y$  is treated like a register (composition)
- "measuring position disturbs momentum"
  - → position & momentum are "registers"



#### Semantics of quantum registers?

#### **Existing approaches:**

- Lists of qubits / dimension counting
- Swaps / associators
- Tensor product of family of spaces

Limited andlor complicated



#### Semantics of quantum registers?!?

## Our results

#### Want:



Also for classical registers!

[Image: Wikipedia, Mr. Smiley Face, Otakuma, 0xF8E8]

#### **Classical registers**

- Register with domain A in a memory M
- Getter + setter
- Or: updater  $(A \Rightarrow A) \Rightarrow (M \Rightarrow M)$

#### **Register F:**

- Function F from  $A \xrightarrow{part} A$  to  $M \xrightarrow{part} M$
- Some properties:

$$-F(f) \circ F(g) = F(f \circ g)$$

– etc.

#### What is a quantum register?

- Register on  $\mathcal{H}_A$  in a memory  $\mathcal{H}_M$
- Given unitary/projector/... U on  $\mathcal{H}_A$ , register must explain "U on  $\mathcal{H}_M$ "

#### **Register F:**

- Function F from  $\mathcal{H}_A \overset{lin}{\to} \mathcal{H}_A$  to  $\mathcal{H}_M \overset{lin}{\to} \mathcal{H}_M$
- Linear
- Multiplicative (F(ab) = F(a)F(b))
- †-preserving  $(F(a^{\dagger}) = F(a)^{\dagger})$



#### **Properties of registers**

- Pairing: For "compatible" registers X, Y,
   pair (X; Y) well-defined
- Chaining: Register X inside register Y.
   E.g., i-th qubit of Y.
- Basis trafo: Register X, basis-transformed via unitary U

#### + combinations



#### **Pairing**

- **Def**: F, G compatible iff F(a)G(b) = G(b)F(a)
- Then exists unique  $H(a \otimes b) = F(a) \otimes G(b)$
- We call this the pair (F; G) := H



#### Tiny program, revisited



#### Register category

#### General axioms:

- (i) The objects (a.k.a. update monoids) A, B, ... of L are monoids. (Which monoids are objects depends on the specific register category.)
- (ii) The pre-registers are functions  $\mathbf{A} \to \mathbf{B}$ . (Which functions are pre-registers depends on the specific register category.) They satisfy the axioms for categories, i.e., they are closed under composition (if F, G are pre-registers,  $F \circ G$  is a pre-register) and the identity is a pre-register.
- (iii) For any  $a \in \mathbf{A}$ , the functions  $x \mapsto a \cdot x$  and  $x \mapsto x \cdot a$  are pre-registers  $\mathbf{A} \to \mathbf{A}$ .
- $\mathcal{L}$  has a tensor product  $\otimes$  such that:
  - (iv) For all  $\mathbf{A}, \mathbf{B}, \overline{\mathbf{A} \otimes \mathbf{B}}$  is an object of  $\mathcal{L}$ , and for  $a \in \mathbf{A}, b \in \mathbf{B}, a \otimes b \in \mathbf{A} \otimes \mathbf{B}$ .
  - (v) For pre-registers  $F, G : \mathbf{A} \otimes \mathbf{B} \to \mathbf{C}$ , if  $\forall a, b : F(a \otimes b) = G(a \otimes b)$ , then F = G.
  - (vi) The tensor product is distributive with respect to the monoid multiplication  $\cdot$ , i.e.,  $(a \otimes b) \cdot (c \otimes d) = (a \cdot c) \otimes (b \cdot d)$ .

#### Registers:

- (vii) Registers are pre-registers. (Which pre-registers are also registers depends on the specific register category.)
- (viii) Registers satisfy the axioms for morphisms in categories, i.e., they are closed under composition (if F, G are registers,  $F \circ G$  is a register) and the identity is a register.
- (ix) Registers are monoid homomorphisms.  $(F(1) = 1 \text{ and } F(a \cdot b) = F(a) \cdot F(b).)$
- (x)  $x \mapsto x \otimes 1$  and  $x \mapsto 1 \otimes x$  are registers.
- (xi) If registers  $F : \mathbf{A} \to \mathbf{C}$  and  $G : \mathbf{B} \to \mathbf{C}$  have commuting ranges (i.e., F(a), G(b) commute for all a, b), there exists a register  $(F; G) : \mathbf{A} \otimes \mathbf{B} \to \mathbf{C}$  such that  $\forall a \ b. \ (F; G)(a \otimes b) = F(a) \cdot G(b)$ .



#### **Our contribution**

- Definition of "register category"
- Instantiated quantum/classical
- Infinite-dimensional case
- Isabelle/HOL formalization
- Teleportation example

#### **Teleporting Isabelle**

```
locale teleport_locale = qhoare "TYPE('mem::finite)" +
  fixes X :: "bit update ⇒ 'mem::finite update"
  and Φ :: "(bit*bit) update ⇒ 'mem update"
  and A :: "'atype::finite update ⇒ 'mem update"
  and B :: "'btype::finite update ⇒ 'mem update"
  assumes compat[compatible]: "mutually compatible (X,Φ,A,B)"
begin
```

# Declaring the program

```
definition "teleport a b = [ apply CNOT (X;\Phi1), apply hadamard X, ifthen \Phi1 a, ifthen X b, apply (if a=1 then pauliX else idOp) \Phi2, apply (if b=1 then pauliZ else idOp) \Phi2 ]"
```



#### Postdoc/phd at University of Tartu:

- Quantum logic/programs?
- Thm proving?
- Q info-theo/crypto?

http://tinyurl.com/postdoc-vqc



