Predicting Wine Quality

Mackenzie Carey and Laura Hiatt

{macarey,lahiatt}@davidson.edu
Davidson College
Davidson, NC 28035
U.S.A.

Abstract

The abstract should be between four and seven sentences long. Introduce the problem you are studying. Describe what you did. Summarize your results — what did you discover, what is the main take-away message?) Basically, you're trying to sell your paper to the reader, so be brief and to the point. **Do not** include any citations in the abstract.

1 Introduction

Given a set of data points, regression in its simplest form attempts to determine a line of best fit which describes the relationship between an input and an output variable. However, a straight line may fail to accurately represent the data. A better representation may be through the form of a higher order polynomial, which may be found through different forms of regression. There are various approaches to determining the best mathematical representation for any data set.

In our experiment, we utilize a random search k-fold cross-validation implementation of stochastic average gradient descent to determine a relationship between 11 attributes of wine, as described in Figure 1, and a quality score. The quality value being a sensory input based on taste between one and ten as attributed by wine experts. A score of one represents a lower quality wine, while a score of ten distinguishes the highest wine samples. The 11 attributes are ones of scientific measure.

The evaluation runs two separate tests on the red and white wine selections of Portugese "Vinho Verde" wine. Previous experiments have been run on this same data set...

In the remainder of this paper,

2 Background

Stochastic gradient descent is a common algorithm in the field of machine learning and thus, there are multiple off-the-self regression solvers which utilize this approach available for use. Examples include software such as Matlab or, as used in this experiment, the scikit-learn library for Python.

The scikit-learn library provides variations of gradient

Feature
fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
pH
sulphates
alcohol

Figure 1: An example table.

descent along with simpler methods such as ordinary least squares. What these methods all have in common is that they share a cost-function. Cost-functions vary from model to model, but they all penalize errors made in predictions. The predictions are made with a hypothesis function, $h(\theta)$, specific the data under investigation. The value of any prediction can then be used in a cost function to determine the quality of the model. Only penalizing for error, the cost function is represented as

$$J(\vec{\theta}) = \frac{1}{2m} [\sum_{i=1}^{m} (y^{(i)} - h(\theta))^2]$$

The particular regression solver used in this experiment is a RandomizedSearchCV with a Ridge model. In other words, we invoke a randomized search of hyper parameters, "free variables", using a cross-validation scheme under the constraints of ridge regression. Details of these particular features will now be further discussed. subsection Cost

dkfjdkfj

Regularization

Grid-Search versus Randomized-Search Cross-Validation

Describe any background information that the reader would need to know to understand your work. You do not have to explain algorithms or ideas that we have seen in class. Rather, use this section to describe techniques that you found elsewhere in the course of your research, that you have decided to bring to bear on the problem at hand. Don't go overboard here — if what you're doing is quite detailed, it's often more helpful to give a sketch of the big ideas of the approaches that you will be using. You can then say something like "the reader is referred to X for a more in-depth description of...", and include a citation.

This section is also a good place to describe any data preprocessing or feature engineering you may have performed. If you are *only* discussing data wrangling in this section, it's recommended that you amend the title of the section to "Data Preparation" or something similar; otherwise, use subsections to better organize the flow.

Enumerating

Create bulleted lists by using the itemize command (see source code):

- Item 1
- Item 2
- Item 3

Create numbered lists by using the enumerate command (see source code):

- 1. Item 1
- 2. Item 2
 - (a) Sub-item 2a
- (b) Sub-item 2b
- 3. Item 3

Formatting Mathematics

Entire books have been written about typesetting mathematics in \LaTeX , so this guide will barely scratch the surface of what's possible. But it contains enough information to get you started, with pointers to resources where you can learn more. First, the basics: all mathematical content needs to be written in "math-mode" — this is done by enclosing the content within \$ symbols. For example, the code to produce 6x + 2 = 8 is \$6x + 2 = 8\$. Note that this is only good for inline math; if you would like some stand-alone math on a separate line, use two \$ symbols. For example, \$\$6x + 2 = 8\$\$ produces:

$$6x + 2 = 8$$

Here are various other useful mathematical symbols and notations — see the source code to see how to produce them.

- Sub- and super-scripts: e^x , a_n , e^{2x+1} , a_{n+2} , f^i_{n+1}
- Common functions: $\log x$, $\sin x$
- Greek symbols: $\epsilon, \phi, \pi, \Pi, \Phi$
- Summations: $\sum_{i=0}^{i=100} i^2$
- Products: $\prod_{i=0}^{\infty} 2^{-i}$

• Fractions: 3/2

$$\frac{x+5}{2\cdot\pi}$$

Other useful resources:

- Find the LATEX command you're looking for by drawing what you want to produce !: http://detexify.kirelabs.org/classify.html
- Ask others: http://tex.stackexchange.com/
- Every LATEX symbol ever: http://tinyurl.com/6s85po

3 Experiments

In this section, you should describe your experimental setup. What were the questions you were trying to answer? What was the experimental setup (number of trials, parameter settings, etc.)? What were you measuring? You should justify these choices when necessary. The accepted wisdom is that there should be enough detail in this section that I could reproduce your work *exactly* if I were so motivated.

4 Results

Present the results of your experiments. Simply presenting the data is insufficient! You need to analyze your results. What did you discover? What is interesting about your results? Were the results what you expected? Use appropriate visualizations. Prefer graphs and charts to tables as they are easier to read (though tables are often more compact, and can be a better choice if you're squeezed for space). Data you may wish to present include things like learning curves, the results of hyperparameter grid search, etc. — this way, you can justify any choices more rigorously.

From efron paper: cross validation overfits. There are a lot more white wine data points than red data points. It is easier to overfit with less data. This is a possible source of error.

Embedding Pictures

See the source code (results.tex) for instructions on how to insert figures (like figure 2) or plots into your document.

Creating Tables

Again, refer to results.tex to learn how to create simple tables (like table 3).

5 Conclusions

In this section, briefly summarize your paper — what problem did you start out to study, and what did you find? What is the key result / take-away message? It's also traditional to suggest one or two avenues for further work, but this is optional.

¹Thanks to Dr. Kate Thompson for pointing me to this resource. Also, this is how you create a footnote. But don't overuse them — prefer citations and use the acknowledgements section when possible. I usually only use footnotes when I want to include a pointer to a web site.

Figure 2: On the trustworthiness of LATEX. Image courtesy of xkcd.

Column 1	Column 2	Column 3
1	3.1	2.7
42	-1	1729

Figure 3: An example table.

6 Contributions

Briefly summarize the contributions of you and your partner in this section. For example: "A.T. wrote the gradient descent code and ran experiments; J.vN. ran the experiments using scikit-learn's built-in regression solver. A.T. wrote the introduction and background sections and prepared figure 2 and table 3. J.vN. wrote the experiments and results sections. Both authors proof-read the entire document." I will be looking for roughly equal contributions from both partners in both aspects of the assignment (i.e., the programming/data preprocessing/experimentation and writing).

7 Acknowledgements

This section is optional. But if there are people you'd like to thank for their help with the project — a person who contributed some insight, friends who volunteered to help out with data collection, etc. — then this is the place to thank them. Keep it short!