lecture 09, issues in translation: conjunction

phil1012 introductory logic

overview

this lecture

- a general strategy for determining how to translate a proposition using the connectives of PL
- issues arising with respect to the translation of conjunction

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \circ pursue a general strategy for determining how to translate a proposition using the connectives of PL
 - translate sentences which are not obviously conjunctions into PL using the connective conjunction

required reading

• section 6.2 of chapter 6

a general strategy for translation

a general strategy for translation

- at the end of section 6.1 of the textbook, there's a brief discussion of how to approach translating a proposition where we are unsure what connective is involved
- suppose, for instance you have a proposition which seems to be of the form α * β where * is some two-place connective, but you aren't sure how to translate it
- well, one thing you can to is attempt to construct a truth table for the proposition
- for example, suppose we have the proposition "I went to bed, even though I was angry"
- \bullet the proposition appears to be of the form α * β where * is some two-place connective
- but which connective is it?
- let's try to construct a truth table for the proposition

α	β	(α	* \beta)
Т	Т			
Т	F			
F	Т			

- \bullet now let's ask whether "I went to bed, even though I was angry" is true if "I went to bed" / α is false
- "I went to bed, even though I was angry" is false if "I went to bed" / α is false
- so we fill in our table:

α	β	$(\alpha * \beta)$
Т	Т	
Т	F	
F	Т	F
F	F	F

- now let's ask whether "I went to bed, even though I was angry" is true if "I was angry" / β is false
- • "I went to bed, even though I was angry" is false if "I was angry" / β is false
- so we fill in our table:

α	β	$(\alpha * \beta)$
Т	Т	
Т	F	F
F	Т	F
F	F	F

- finally, let's ask whether "I went to bed, even though I was angry" is true if both "I went to bed" / α and "I was angry" / β are true
- "I went to bed, even though I was angry" is true if both "I went to bed" / α and "I was angry" / β are true
- (remember that we are focussing on what is said, not what it implied or implicated)
- so we fill in our table:

α	β	$(\alpha * \beta)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- of course, this is just the table for conjunction, so we have discovered that the two-place connective here is conjunction
- so we would use conjunction in our translation
- ullet things do not always work out so well, however
- suppose we use the method to determine which two-place connective to use to translate "I went to bed because I was angry"
- this is true only if both propositions which make it up are true
- so we can fill out our table like this:

α	β	$(\alpha * \beta)$
Т	Т	
Т	F	F
F	Т	F

- but now let us ask whether it is true if both propositions which make it up are true
- not necessarily
- I could have been angry, and I could have gone to bed, and yet, I might not have gone to bed because I was angry
- if we can't fill in the truth table, we can conclude that the connective is not a truth-functional connective
- if we can fill in the table, then we know what connective it is
- let's look at some more examples in connection with conjunction now

issues with conjunction

issues with conjunction

- we translate 'and' as a conjunction
- but we also translate 'but' as a conjunction
- why? and are we right to do so?
- consider:
 - (1) Jane is tall but smart
 - \circ T: Jane is tall
 - \circ S: Jane is smart
- ullet (1) is false if T is false
- ullet (1) is false if S is false
- ullet (1) is false if both T and S are false
- ullet suppose: (1) is true if both T and S are true
- if so, then 'but' is equivalent to 'and'
 - \circ T: Jane is tall
 - \circ S: Jane is smart
 - \circ $(T \wedge S)$
- but this fails to capture the sense in which 'Jane is tall but smart' conveys that being tall contrasts with being smart
- ullet suppose: (1) is not necessarily true if both T and S are true
- if so, then 'but' isn't equivalent to 'and'
- instead, we might translate it as follows
 - \circ T: Jane is tall
 - \circ S: Jane is smart
 - \circ C: Being tall contrasts with being smart
 - \circ ($(T \land S) \land C$)
- but this seems to be too strong
 - o saying 'Jane is smart but tall' doesn't seem to be equivalent to saying 'Jane is tall and smart and being tall contrasts with being smart'
- solution . . .
 - \circ claim that 'but' merely conventionally implicates a contrast
 - o claim that 'but' and 'and' are truth-functionally equivalent

wrapping up

this lecture

- \bullet a general strategy for determining how to translate a proposition using the connectives of PL
- ullet issues arising with respect to the translation of conjunction

next lecture

• lecture 10, trees for PL