Chapitre V

Etude des régimes compressibles en Fluide Parfait

→ Part 1 : Introduction

Description of compressible and inviscid flows Steady unidirectional compressible flows

→ Part 2 : From pressure waves to shock waves

Normal and oblique shock waves

Examples

Avertissement : Ce chapitre est tiré du cours de Master donné dans le cadre du « Summer Program » associant les écoles aéronautiques du GEA. Seule la première partie sera traitée.

Introduction (1)

- Compressibility phenomena are associated with large velocities or large accelerations in a gas flow.
- The development of this field of fluid mechanics is linked with the evolution of aeronautics in the middle of the 20th century.
- → In fact, it concerns a lot of applications :
 - ⇒ Pneumatic transport
 - ⇒ flows in Intake or exhaust ports of automotive engines

 \Rightarrow

Description of compressible and inviscid flows (1)

- ➤ Goals:
 - ⇒ Physical description
 - ⇒ Mathematical model
 - ⇒ Definition and properties of stagnation quantities

221

Description of compressible and inviscid flows (2)

- What are the consequences of fluid motion on the variation of the volume of an elementary fluid particle?
- → Important parameter : Mach Number M = V/a
- First estimation ($m = \rho \varepsilon$ constant mass of the fluid particle)

•
$$\left| \frac{\delta \varepsilon}{\varepsilon} \right| = \left| \frac{\delta \rho}{\rho} \right| = \frac{1}{a^2} \left| \frac{\delta p}{\rho} \right|$$

• If $\rho \approx \text{constant}$: $\delta p \approx \rho \frac{V_{\infty}^2}{2}$

Description of compressible and inviscid flows (3)

--- Regimes of compressible flows

Mach number: M=V/c (c: speed of sound)

(For air in standard conditions of temperature and pressure, M=1 corresponds to 330 m/s)

→ In some flows, for example on airfoils, both subsonic and supersonic regions can co-exist. We say that the flow regime is transsonic

223

Description of compressible and inviscid flows (4)

- → On both sides of Mach ONE!
- → SOURCE IN MOTION

- ⇒ Subsonic regime : Information arrives before the source
- ⇒ Supersonic regime : Information arrives after
 - Mach cone of angle $\alpha / \sin(\alpha) = 1/M$
- ⇒ The properties of the equations of motion are changing :
 - * Subsonic : System elliptic in space
 - * Supersonic : System hyperbolic in space

Description of compressible and inviscid flows (5)

- → On both sides of Mach ONE
- → FIXED SOURCE in a Supersonic flow

- ⇒ In a supersonic flow, the fluid particle is not "informed" that there is an obstacle !!
 - This explains why we observe very sharp transitions
 - Explains the apparition of shock waves.

225

Mathematical model for compressible and inviscid flows. (1)

- → Large Reynolds numbers
- → Non buoyant fluid, No volumetric heat transfer
- → We assume that the fluid is a perfect gaz.
 - * Equation of state : $p/\rho = rT$ where r = R/M
 - * Joule Laws : $de=c_{\nu}dT$; $dh=c_{p}dT$ c_{ν} and c_{p} supposed constant ; $\gamma=c_{p}/c_{\nu}$

Meyer relation : $r = c_p - c_v$

r is the material specific gaz constant.

ris the material specific heats constant pressure and volume

- * Entropy: $s = c_v \log(p/\rho^{\gamma})$
- * Velocity of sound : $a^2 = \frac{\partial p}{\partial \rho}\Big|_{S} = \gamma rT = \gamma \frac{p}{\rho}$
- → Tables and numerical integration must be used for more complex thermodynamics.

Mathematical model for compressible and inviscid flows. (2)

- → Mass, Momentum and energy balance are written .
- → If there are no irreversibilities and no volumetric heat flux, For a general unsteady flow :

$$\Rightarrow \frac{Ds}{Dt} = 0$$

In a compressible and inviscid flow, the entropy is constant along trajectories.

→ BEWARE : This is only true « pieces by pieces » if there are shock waves.

227

Mathematical model for compressible and inviscid flows. (3)

- → Mass, Momentum and energy balance are written .
- → If there are no irreversibilities and no volumetric heat flux

 Case of a permanent flow (which will be considered afterwards)

$$\Rightarrow \vec{V}.g\vec{r}ad(s) = 0$$

$$\vec{V}.g\vec{r}ad(h_i) = 0 \quad \text{where} \quad h_i = h + \frac{V^2}{2}$$

In a permanent compressible and inviscid flow the entropy and the stagnation enthalpy are constant along streamlines.

→ BEWARE: This is again only true « pieces by pieces » if there are shock waves.

Permanent regime: practical definitions of the stagnation quantities (1).

 \longrightarrow Practical point of view : In a tank : $h_i = c_p T_i = c_p T_0$

→ Following theoretical results, along streamlines :

*
$$h_i = h + \frac{V^2}{2}$$
 or $T_i = T + \frac{V^2}{2c_p}$ are constant quantities

- → If then the properties of the gaz are uniform in the tank :
 - $\Rightarrow h_i$ et T_i are constant EVERYWHERE.
- Note that: $h_i = \frac{a^2}{(\gamma 1)} + \frac{V^2}{2}$ and $\frac{T_i}{T} = \left(1 + \frac{(\gamma 1)}{2}M^2\right)$

Permanent regime: practical definitions of the stagnation quantities (2).

- → Following theoretical results, along streamlines :
 - * $h_i(p_i, \rho_i) = c_p T_i$ AND $s(p_i, \rho_i)$ are independent constant quantities.
 - \Rightarrow T_i ; p_i et ρ_i are constant quantities along streamlines
- → If then the properties of the gaz are uniform in the tank :
 - $\Rightarrow T_i$; p_i et ρ_i are constant EVERYWHERE.

(Not valid if there are shock waves !!)

Permanent regime: Saint Venant Relations

At a given Mach number M, the ratio between a quantity and the corresponding stagnation quantity are given by:

SAINT-VENANT RELATIONS

$$\frac{T}{T_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1} \qquad \frac{p}{p_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\gamma/(\gamma - 1)}$$

$$\frac{\rho}{\rho_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1/(\gamma - 1)} \qquad \frac{a}{a_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1/2}$$

231

→ In a permanent compressible and inviscid flow If the boundary conditions are UNIFORM, and if there are NO shock waves :

Permanent compressible and inviscid Monodimensional flow

Laval Nozzle Flow

233

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (1)

- * Quasi-monodimensional flow along the x coordinate
- * Slow variations of A(x) with dA/A << 1
- * Weak curvatures $A/R^2 \ll 1$
- * Uniform boundary conditions

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (2)

- * Continuity : $\rho.U.A = cste$
- * Momentum : $\rho.U.\frac{dU}{dx} = -\frac{dp}{dx}$
- * Enthalpy : $h_i = cste$
- * Entropy : $s = cste \Rightarrow \frac{p}{\rho^{\gamma}} = cste$

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (3)

235

- * Continuity : $\frac{d\rho}{\rho} + \frac{dU}{U} + \frac{dA}{A} = 0$
- * Momentum : $\rho.U.\frac{dU}{dx} + \frac{dp}{dx} = 0$
- * Enthalpy : $h_i = cste$
- * Entropy : $\frac{dp}{p} = \gamma \frac{d\rho}{\rho} \Rightarrow dp = a^2 d\rho$

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (4)

- * Reducing variables
- $(M^2 1)\frac{dU}{U} = \frac{dA}{A}$
- * In a SUBSONIC FLOW, When section increases, The velocity decreases (and vice versa)
- * In a SUPERSONIC FLOW, When section increases, The velocity increases (and vice versa)

237

Laval nozzle flow (5)

* If M=1, then dA=0

If an isentronic monodime

If an isentropic monodimensional flow is sonic, then we are at a minimum of the cross-section.

- * Conversely, if dA=0:
- \Rightarrow Either dU=0
- \Rightarrow Either M=1. In this case, we are at a <u>MINIMUM</u> of the section

Laval nozzle flow(6)

* With a sonic flow at the throat, we obtain for the mass flux:

$$\Rightarrow Q_m = \sqrt{\frac{\gamma}{r}} \left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \frac{p_i}{\sqrt{T_i}} A_c = \left(4.04.10^{-2}\right) \frac{A_c p_i}{\sqrt{T_i}} \qquad (\gamma = 1.4)$$

* This relation has a lot of practical applications if one wants to regulate a mass flux just by controlling the initial stagnation pressure p_i

239

Laval nozzle flow (7)

$$\underbrace{\frac{dA}{dx} < 0 \longrightarrow}_{U} \underbrace{\frac{dA}{dx} = 0}_{U} \underbrace{\frac{d$$

- * By definition, the throat conditions are defined by : $M = M_c = 1$ at $A = A_c$ (This section can be virtual!!)
- * An important theoretical link between A/A_c and the local Mach number is:

$$\Rightarrow \frac{A}{A_c} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Laval nozzle flow (11)

- * For : $p_{a3} < p_s < p_{a2}$
- Compression at the oulet by oblique shock waves
- * For : $p_s = p_{a3}$ Isentropic Supersonic flow
- * For : $p_s < p_{a3}$
- Expansion wave at the outlet reflecting on the boundary of the jet (p is a constant on this surface)

(From Chassaing 1997)

245

Synthesis of this first part

- Presentation of the mathematical model for compressible inviscid flows
- → Presentation of physical properties of monodimensional and isentropic compressible inviscid flows
- → The appearance of shock waves has been evidenced
- \longrightarrow In the next part :
 - * We explain what is a shock wave
 - * We give some examples

Sound waves, Shock waves

Sound wave : A very small perturbation of the pressure field Examples of levels acceptable for a human ear $(p_0=1 \text{ atm})$:

*
$$p'/p_0 \in [10^{-9}, 10^{-5}]$$

- * Corresponds to u'/a_0 et ρ'/ρ_0 of the same order
- → Shock wave: finite amplitude jump
 - * Irreversibility
 - * The sound wave is a limiting case for asymptotically small pressure jumps.

247

Sound waves, Shock waves - Unsteady flow in a tube.

→ Shock waves are discontinuities. Why?

Let's imagine that we increase the pressure level at a given location in a tube.

Waves at higher pressure catch up with the previous ones because they propagate faster. After a given tube length, a discontinuity is formed.

→ On the contrary, a smoothing of the pressure evolution occurs during an expansion.

* Static pressure and density jumps are only dependant on the upstream Mach number: (After a tedious work with equations!)

$$\frac{p_1}{p_0} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_0^2 - 1 \right)$$
 and $\frac{\rho_1}{\rho_0} = \frac{(\gamma + 1) M_0^2}{(\gamma - 1) M_0^2 + 2}$

* After eliminating M_0 , we obtain an important relation due to Hugoniot :

$$\frac{\rho_1}{\rho_0} = \frac{1 + \frac{\gamma + 1}{\gamma - 1} \frac{p_1}{p_0}}{\frac{\gamma + 1}{\gamma - 1} + \frac{p_1}{p_0}} \quad \text{or} \quad \left(\frac{\rho_1}{\rho_0} - 1\right) = \frac{2}{\gamma - 1} \frac{\left(\frac{p_1}{p_0} - 1\right)}{\frac{\gamma + 1}{\gamma - 1} + \frac{p_1}{p_0}}$$

255

Normal shock waves

* What means Hugoniot relation for $p_1/p_0 \approx 1$???

$$p_{1}/p_{0} = 1 + \varepsilon \implies \left(\frac{\rho_{1}}{\rho_{0}} - 1\right) \approx \frac{2}{\gamma - 1} \frac{(\varepsilon)}{\frac{\gamma + 1}{\gamma - 1} + 1} \approx \frac{1}{\gamma} \left(\frac{p_{1}}{p_{0}} - 1\right)$$

$$(\varepsilon << 1)$$

$$\Rightarrow Log\left(\frac{\rho_{1}}{\rho_{0}}\right) \approx \frac{1}{\gamma} Log\left(\frac{p_{1}}{p_{0}}\right) \text{ ou } \left(\frac{p_{1}}{\rho_{1}^{\gamma}}\right) \approx \left(\frac{p_{0}}{\rho_{0}^{\gamma}}\right)$$

- * For an asymptotically weak shock wave, we thus tend toward an isentropic evolution
- * In the general case, the evolution through the shock wave IS NOT isentropic. Irreversibility occurs.

* Second principle of thermodynamics

$$S_0 \leq S_1 \iff Log\left(\frac{p_0}{{\rho_0}^{\gamma}}\right) \leq Log\left(\frac{p_1}{{\rho_1}^{\gamma}}\right) \iff Log\left(\frac{\rho_1}{\rho_0}\right) \leq \frac{1}{\gamma}Log\left(\frac{p_1}{p_0}\right)$$

* Knowing that $p_1/p_0 \in [0,+\infty[$, we just compare the evolution of the pressure obtained by Hugoniot to an isentropic evolution.

257

Normal shock waves

* The second principle enables to distinguish « past and future »

* Thus $S_0 \le S_1 \implies p_1/p_0 \ge 1$ et $\rho_1/\rho_0 \ge 1$

* Evolution of the Mach number:

Upstream:
$$\frac{p_1}{p_0} - 1 = \frac{2\gamma}{\gamma + 1} (M_0^2 - 1) \implies M_0^2 \ge 1$$

Downstream:
$$M_1^2 - 1 = (\gamma + 1) \frac{(1 - M_0^2)}{2\gamma M_0^2 - (\gamma - 1)} \Rightarrow \underline{M_1^2 \le 1}$$

- * If a normal shock wave is found in a steady flow, then:
 - The upstream Mach number is greater than one (the flow has to be supersonic!)
 - The downstream Mach number is lower than one.

259

Normal shock waves

- The pressure and density jumps accross a normal shock wave are large.
- For example:
 - $-M_0=2$ implies $p_1/p_0=4.5$ and $\rho_1/\rho_0=2.67$
 - As a comparison, we remind that a sound wave of rms fluctuating pressure level of 2 Pa (2 10⁻⁵ bar) corresponds to 100 dB and that pain occurs at 120 dB (20 Pa rms)

- Decrease of the Mach number and increase of the static temperature.
- For example:

-
$$M_0$$
=2 implies
 T_I/T_0 = 1.69 and M_I =0.58

What about stagnation quantities ??

261

Normal shock waves

- * For steady flow : h_i (and thus T_i) remain constant across the shock.
- * After a little algebra, one finds : $S_1 S_0 = c_v(1 \gamma)Log\left(\frac{p_{i1}}{p_{i0}}\right)$

$$\Rightarrow \frac{p_{i1}}{p_{i0}} \le 1 \text{ et } \frac{\rho_{i1}}{\rho_{i0}} \le 1$$

- * The stagnation pressure decreases across the shock
- * The shock induces logically a loss due to dissipative phenomena.

Example : M_0 =2 implies p_{il}/p_{i0} = 0.72

Oblique shock waves

* By eliminating $U_{t0} = U_{t1}$ in the enthalpy equation :

- Mass : $\rho_0 U_{n0} = \rho_1 U_{n1}$

- Momentum / \vec{n} : $p_0 + \rho_0 U_{n0}^2 = p_1 + \rho_1 U_{n1}^2$

- Enthalpy : $h_0 + \frac{1}{2}U_{n0}^2 = h_1 + \frac{1}{2}U_{n1}^2$

* These are STRICTLY the same equations than the one found for normal shock waves.

* Jump relations are therefore EXACTLY THE SAME if written here as a function of $M_{n0} = U_{n0}/a_0$ (see slides 43 and 44)

* In particular, the steady oblique shock wave exists if : $M_{n0} = M_0 \sin(\varepsilon) > 1$

265

Oblique shock waves: about angles

* Mass balance + jump relation ρ_1/ρ_0

$$\Rightarrow \frac{tg(e)}{t}$$

$$\frac{tg(\sigma - \psi)}{tg(\sigma)} = \frac{2}{(\gamma + 1)M_0^2 \sin^2(\sigma)} + \frac{(\gamma - 1)}{(\gamma + 1)}$$

Shock waves : Some examples

Blunt Body Shock Waves (Source NASA)

* Free supersonic flight of an X15 model in the 50's and 60's!

Conclusions

- → Shock waves result from the progressive or rapid focusing of pressure waves.
- Shock waves are associated with large jumps in pressure, density, ... and are dissipative phenomena..
- → Normal or oblique shocks can be simply computed using tables.
- → Detached shock waves are complex. Numerical simulations are needed.
- These basic informations can be completed by the study of:
 - * Expansion and compression waves using the method of characteristics for 2D or axisymetric steady supersonic flows
 - * Monodimensional unsteady compressible flows
 - *