University of Wisconsin-Madison Department of Economics

Econ 703 Prof. R. Deneckere Fall 2004

Homework #5

- 1. Let $X = R^n$, and define the function $X \times X \rightarrow : R_+$ by $d_2(x,y) = \max_i |x_i y_i|$.
 - 1) Prove that d₂ is a metric on X
 - 2) What are the basic open sets in (X,d)?
 - 3) Prove that A is an open subset of (X,d_2) iff it is an open subset of (X,d_1) , where d_1 is the Euclidean metric on X. Thus d_1 and d_2 induce the same collection of open subsets of X.
- 2. Let X, Y and Z be metric spaces, and let $f: X \times Y \to Z$. We say that f is *continuous in each variable separately* if for each x_0 in X the function $h: Y \to Z$ defined by $h(y) = f(x_0,y)$ is continuous and if for each y_0 in Y the function $g(x) = f(x,y_0)$ is continuous. Prove that if f is continuous, then f is continuous in each variable separately. (Remark: whenever considering product spaces, we use the product metric to define their open sets)
- 3. Let $f: R \times R \to R$ be defined by:

$$f(x,y) = xy/(x^2+y^2)$$
, if (x,y) differs from $(0,0)$; and if $(x,y) = (0,0)$.

- (a) Show that f is continuous in each variable separately.
- (b) Compute the function g(x) = f(x,x).
- (c) Show that f is not continuous.
- 4. Let X be a metric space and Y be a compact metric space. Show that f is continuous if and only if the *graph of f*,

$$G(f)=\{(x, f(x)): x \in X\}$$
 is a closed subset of X x Y (using the product metric). (HINT: If $G(f)$ is closed, and V is a ball around $f(x_0)$, find a tube about x_0 x $(Y \setminus V)$ not intersecting $G(f)$).

5. A subset A of Rⁿ is *star-shaped* around the origin if $x \in A$ implies $\lambda x \in A$ for all $\lambda \in [0,1]$. Prove that a star-shaped set is connected.