Package 'RLeafAngle'

October 12, 2022

Type Package

Title Estimates, Plots and Evaluates Leaf Angle Distribution Functions, Calculates Extinction Coefficients
Version 1.0
Date 2017-6-19
Author Wei-Min Wang <wmwang@gmail.com></wmwang@gmail.com>
Maintainer Wei-Min Wang <pre><mmwang@gmail.com></mmwang@gmail.com></pre>
Description Leaf angle distribution is described by a number of functions (e.g. ellipsoidal, Beta and rotated ellipsoidal). The parameters of leaf angle distributions functions are estimated through different empirical relationship. This package includes estimations of parameters of different leaf angle distribution function, plots and evaluates leaf angle distribution functions, calculates extinction coefficients given leaf angle distribution. Reference: Wang(2007) <doi:10.1016 j.agrformet.2006.12.003="">.</doi:10.1016>
License GPL
Imports stats
Depends
Suggests
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-06-20 06:29:21 UTC
R topics documented:
BetaDis

2 BetaDis

Index		27
	•	2526
	1	24
		24
	1	23
	F	22
	F8F	21
		21
	· · · · · · · · · · · · · · · · · · ·	20
	intervalTrig	19
	interUniform	18
	interSpherical	18
		17
	•	16
	interExtremophile	15
	1	15
	1	14
		13
	interBeta	
	F	12
		10 11
	ellipsoidalRDis	9
	ellipsoidalDis	9
	computeTrig	8
	computeSunlit	7
	computeLambdaR	6

BetaDis

Compute the Beta distribution of leaf zenith angle.

Description

Compute the Beta distribution of leaf zenith angle.

Usage

BetaDis(meu, neu)

Arguments

meu One of the parameters for Beta function.
neu One of the parameters for Beta function.

computeBeta 3

Value

The Beta distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
sDis<-BetaDis(1.616,2.188)
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis, xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

computeBeta

Compute the parameter of Beta function given leaf angle distribution mearuements.

Description

Compute the parameter of Beta function given leaf angle distribution mearuements.

Usage

```
computeBeta(LeafAngles)
```

Arguments

LeafAngles

The measurements of leaf angle distribution.

Value

The two parameters of Beta function given leaf angle distribution mearuements.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

4 computeG

Examples

```
data(Pisek)
computeBeta(Pisek[[2]])
```

computeG Compute the mean projection of unit leaf area on the plane perpendicular to beam direction, namely, G parameter.

Description

Compute the mean projection of unit leaf area on the plane perpendicular to beam direction, namely, G parameter.

Usage

```
computeG(LeafAngleZ, FractionZ, LeafAngleA, FractionA, theta, alpha)
```

Arguments

LeafAngleZ The center angles list of leaf zenith angle intervals.

FractionZ The leaf area fraction list given leaf zenith angle intervals list.

LeafAngleA The center angles list of leaf azimuth angle intervals.

FractionA The leaf area fraction list given leaf azimuth angle intervals list.

theta The zenith angle of beam direction.

alpha The azimuth angle of beam direction.

Value

The mean projection of unit leaf area on the plane perpendicular to beam direction, namely, G value.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

computeGEllip 5

Examples

```
angleZ<-c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5)
angleA<-c(10,30,50,70,90,110,130,150,170,190,210,230,250,270,290,310,330,350)
sADis<-sysAziDis()
sZDis<-sphericalDis()
for(solarZenith in 10:80)
{
   print(computeG(angleZ,sZDis,angleA,sADis,solarZenith,40))
}</pre>
```

computeGEllip

Compute the G value given lamda (the parameter of ellipsoidal function) and beam direction.

Description

Compute the G value given lamda (the parameter of ellipsoidal function) and beam direction.

Usage

```
computeGEllip(lambda, theta)
```

Arguments

1 The parameter of ellipsoidal function given leaf angle distribution mearuements.

theta The zenith angle of beam direction.

Value

The G value.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
computeGEllip(1.0, 30)
```

6 computeLambdaR

computeLambda	Compute the parameter of ellipsoidal function given leaf angle distribution mearuements.
comparecambaa	

Description

Compute the parameter of ellipsoidal function given leaf angle distribution mearuements.

Usage

```
computeLambda(LeafAngles)
```

Arguments

LeafAngles

The measurements of leaf angle distribution.

Value

The parameter of ellipsoidal function given leaf angle distribution mearuements.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
data(Pisek)
computeLambda(Pisek[[2]])
```

computeLambdaR

Compute the parameter of rotated-ellipsoidal function given leaf angle distribution mearuements.

Description

Compute the parameter of rotated-ellipsoidal function given leaf angle distribution mearuements.

```
computeLambdaR(LeafAngles)
```

computeSunlit 7

Arguments

LeafAngles The measurements of leaf angle distribution.

Value

The parameter of ellipsoidal function given leaf angle distribution mearuements.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
data(Pisek)
computeLambdaR(Pisek[[2]])
```

computeSunlit

Compute the fraction of sunlit folige given solar position, LAI and G value with the assumption of the symmetric distribution of leaf azimuth angle.

Description

Compute the fraction of sunlit folige given solar position, LAI and G value with the assumption of the symmetric distribution of leaf azimuth angle.

Usage

```
computeSunlit(Theta, G, LAI)
```

Arguments

Theta Solar zenith angle.

G The G value, namely the projection of foliage area.

LAI Leaf area index.

Value

The fraction of sunlit foliage.

8 compute Trig

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
computeSunlit(30, 0.5, 2.0)
```

computeTrig

Compute the parameter of Verhoef's leaf angle distribution given leaf angle mearuements.

Description

Compute the parameter of Verhoef's leaf angle distribution given leaf angle distribution mearuements.

Usage

```
computeTrig(LeafAngles)
```

Arguments

LeafAngles

The measurements of leaf angle distribution.

Value

The two parameters of Verhoef's leaf angle distribution.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
data(Pisek)
computeTrig(Pisek[[2]])
```

ellipsoidalDis 9

ellipsoidalDis

Compute the ellipsoidal distribution of leaf zenith angle.

Description

Compute the ellipsoidal distribution of leaf zenith angle.

Usage

```
ellipsoidalDis(lambda)
```

Arguments

lambda

The parameter of ellipsoidal function.

Value

The ellipsoidal distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
sDis<-ellipsoidalDis(1) plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis, xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

ellipsoidalRDis

Compute the rotated ellipsoidal distribution of leaf zenith angle.

Description

Compute the rotated ellipsoidal distribution of leaf zenith angle.

```
ellipsoidalRDis(lambdaR)
```

10 estBeta

Arguments

lambdaR

The parameter of rotated-ellipsoidal function.

Value

The rotated ellipsoidal distribution of leaf zenith angle.

Author(s)

```
Wei-Min Wang (wmwang AT gmail.com)
```

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
sDis<-ellipsoidalRDis(1)
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis,
xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

estBeta

Estimate the parameters of Beta distribution given leaf angle measurements.

Description

Estimate the parameters of Beta distribution given leaf angle measurements.

Usage

```
estBeta(LeafAngles)
```

Arguments

LeafAngles

The leaf angle measurements.

Value

the parameters of Beta distribution.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

extremophileDis 11

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
angleZ<-c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5)
angleA<-c(10,30,50,70,90,110,130,150,170,190,210,230,250,270,290,310,330,350)
sADis<-sysAziDis()
sZDis<-sphericalDis()
for(solarZenith in 10:80)
{
   print(computeG(angleZ,sZDis,angleA,sADis,solarZenith,40))
}</pre>
```

extremophileDis

Compute the extremophile distribution of leaf zenith angle.

Description

Compute the extremophile distribution of leaf zenith angle.

Usage

```
extremophileDis()
```

Value

The extremophile distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
sDis<-extremophileDis()
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis,
xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

12 interBeta

Falster

Leaf angle distribution measurements provided by D.S. Falster

Description

Leaf angle distribution data measured in two sites of Ku-ringgai Chase National Park, Sydney, Australia and provided by Dr. D.S. Falster of Macquarie University, Australia

Usage

```
data(Falster)
```

Format

A list with 39 arrays where one array for tree specy name and 38 array of leaf angle distribution for each specy.

Details

Leaf angle distribution measurements provided by D.S. Falster

Author(s)

```
W.-M. Wang (wmwangATgmail.com)
```

Source

Falster, D. and Westoby, M., 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol.158, 509-525.

Examples

```
data(Falster)
Falster[1]
```

interBeta

Compute the fraction leaf area given leaf angle intervals (in degree) and the parameters of Beta function.

Description

Compute the fraction leaf area given leaf angle intervals (in degree) and the parameters of Beta function.

```
interBeta(AngleLower, AngleUpper, meu, neu)
```

interEllip 13

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

meu One of the parameters for Beta function.

neu One of the parameters for Beta function.

Value

Compute the fraction leaf area of Beta function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
interBeta(40,50,1.616,2.188)
```

interEllip	Compute the fraction leaf area given leaf angle intervals (in degree)
and the parameters of ellipsoidal function.	

Description

Compute the fraction leaf area given leaf angle intervals (in degree) and the parameters of ellipsoidal function.

Usage

```
interEllip(AngleLower, AngleUpper, lambda)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

lambda The parameter of ellipsoidal function.

Value

Compute the fraction leaf area of ellipsoidal function.

14 interEllipR

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
interEllip(40,50,1.1)
```

interEllipR Compute the fraction leaf area for rotated-ellipsoidal function given leaf angle intervals (in degree) and the parameters.

Description

Compute the fraction leaf area given leaf angle intervals (in degree) and the parameters of rotatedellipsoidal function.

Usage

```
interEllipR(AngleLower, AngleUpper, lambdaR)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

The parameter of rotated-ellipsoidal function.

Value

Compute the fraction leaf area of rotated-ellipsoidal function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
interEllipR(40,50,1.1)
```

interErectophile 15

•	ute the fraction leaf area of Erectophile distribution given leaf intervals (in degree).
angle	intervals (in degree).

Description

Compute the fraction leaf area of Erectophile distribution given leaf angle intervals (in degree).

Usage

```
interErectophile(AngleLower, AngleUpper)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Erectophile function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
interErectophile(40,50)
```

 $\begin{tabular}{ll} \it Compute the fraction leaf area of Extremophile distribution given leaf angle intervals (in degree). \end{tabular}$

Description

Compute the fraction leaf area of Extremophile distribution given leaf angle intervals (in degree).

```
interExtremophile(AngleLower, AngleUpper)
```

16 interPlagiophile

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Extremophile function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

interExtremophile(40,50)

interPlagiophile

Compute the fraction leaf area of Plagiophile distribution given leaf angle intervals (in degree).

Description

Compute the fraction leaf area of Plagiophile distribution given leaf angle intervals (in degree).

Usage

```
interPlagiophile(AngleLower, AngleUpper)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Plagiophile function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

interPlanophile 17

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

interPlagiophile(40,50)

interPlanophile

Compute the fraction leaf area of Planophile distribution given leaf angle intervals (in degree).

Description

Compute the fraction leaf area of Planophile distribution given leaf angle intervals (in degree).

Usage

interPlanophile(AngleLower, AngleUpper)

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Planophile function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

interPlanophile(40,50)

18 interUniform

interSpherical	Compute the fraction leaf area of Spherical function given leaf angle intervals (in degree).

Description

Compute the fraction leaf area of Spherical function given leaf angle intervals (in degree).

Usage

```
interSpherical(AngleLower, AngleUpper)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Spherical function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
interSpherical(40,50)
```

interUniform Compute the fraction leaf area of Uniform distribution given leaf angle intervals (in degree).

Description

Compute the fraction leaf area of Uniform distribution given leaf angle intervals (in degree).

```
interUniform(AngleLower, AngleUpper)
```

intervalTrig 19

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

Value

Compute the fraction leaf area of Uniform function.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

interUniform(40,50)

intervalTrig	Compute the fraction leaf area given leaf angle intervals (in degree)
	and the parameters of Verhoef's leaf angle distribution function.

Description

Compute the fraction leaf area given leaf angle intervals (in degree) and the parameters of Verhoef's leaf angle distribution function.

Usage

```
intervalTrig(AngleLower, AngleUpper, ap, bp)
```

Arguments

AngleLower The lower limit of leaf angle intervals in degree.

AngleUpper The upper limit of leaf angle intervals in degree.

ap One of the parameters of Verhoef's leaf angle distribution function.

bp One of the parameters of Verhoef's leaf angle distribution function.

Value

Compute the fraction leaf area of Verhoef's leaf angle distribution function.

20 LADdensity

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
intervalTrig(40,50, -0.325, -0.173)
```

LADdensity

Retrieve the density of leaf area given leaf angle measurements.

Description

Retrieve the density of leaf area given leaf angle measurements.

Usage

```
LADdensity(LeafAngles)
```

Arguments

LeafAngles

The measurements of leaf angle distribution.

Value

Leaf area density given leaf angle intervals (0,10,20,30,40,50,60,70,80,90).

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
data(Falster)
LADdensity(Falster[[2]])
```

Pisek 21

Pisek

Leaf angle distribution measurements provided by Jan Pisek

Description

Leaf angle distribution data provided by Dr. Tartu Observatory, Department of Remote Sensing, Estonia

Usage

```
data(Pisek)
```

Format

A list with 55 arrays where one array for tree specy name and 54 array of leaf angle distribution for each specy.

Details

Leaf angle distribution measurements provided by Jan Pisek

Author(s)

```
W.-M. Wang (wmwangATgmail.com)
```

Source

Pisek, Jan, et al. "Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?." Agricultural & Forest Meteorology 169.3(2013):186-194.

Examples

```
data(Pisek)
Pisek[1]
```

plagiophileDis

Compute the plagiophile distribution of leaf zenith angle.

Description

Compute the plagiophile distribution of leaf zenith angle.

```
plagiophileDis()
```

22 planophileDis

Value

The plagiophile distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
sDis<-plagiophileDis()
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis,
xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

planophileDis

Compute the planophile distribution of leaf zenith angle.

Description

Compute the planophile distribution of leaf zenith angle.

Usage

```
planophileDis()
```

Value

The planophile distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

plotdensity 23

Examples

```
sDis<-planophileDis() plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis, xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

plotdensity

Plot the density of leaf area given leaf angle measurements.

Description

Plot the density of leaf area given leaf angle measurements.

Usage

```
plotdensity(LeafAngles, main = "Leaf angle distribution", type = "l",
    pch = 20)
```

Arguments

LeafAngles The measurements of leaf angle distribution.

main An overall title for the plot.

type The type of plot.

pch The symbol of plot.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
data(Pisek)
plotdensity(Pisek[[2]])
```

24 sphericalDis

selectClassic

Retrieve the density of leaf area given leaf angle measurements.

Description

Retrieve the density of leaf area given leaf angle measurements.

Usage

```
selectClassic(LeafAngles)
```

Arguments

LeafAngles

The measurements of leaf angle distribution.

Value

The classic leaf angle distribution type

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
data(Falster)
selectClassic(Falster[[2]])
```

sphericalDis

Compute the spherical distribution of leaf zenith angle.

Description

Compute the spherical distribution of leaf zenith angle.

```
sphericalDis()
```

sysAziDis 25

Value

The spherical distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

Examples

```
sDis<-sphericalDis()
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis,
xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

sysAziDis

Compute the symmetric distribution of leaf azimuth angle.

Description

Compute the symmetric distribution of leaf azimuth angle.

Usage

```
sysAziDis()
```

Value

The symmetric distribution of leaf azimuth angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
aDis<-sysAziDis()
plot(c(10,30,50,70,90,110,130,150,170,190,210,230,250,270,290,310,330,350), aDis, xlab=expression(Leaf~azimuth~angle~~(""^"o")), ylab="Leaf area freqency")
```

26 uniformDis

uniformDis

Compute the uniform distribution of leaf zenith angle.

Description

Compute the uniform distribution of leaf zenith angle.

Usage

```
uniformDis()
```

Value

The uniform distribution of leaf zenith angle.

Author(s)

Wei-Min Wang (wmwang AT gmail.com)

References

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1), 106-122.

```
sDis<-sphericalDis()
plot(c(4.5, 13.5, 22.5, 31.5, 40.5, 49.5, 58.5, 67.5, 76.5, 85.5), sDis, xlab=expression(Leaf~zenith~angle~~(""^"o")), ylab="Leaf area freqency")
```

Index

* datasets	sysAziDis, 25
Falster, 12 Pisek, 21	uniformDis, 26
BetaDis, 2	
<pre>computeBeta, 3 computeG, 4 computeGEllip, 5 computeLambda, 6 computeLambdaR, 6 computeSunlit, 7 computeTrig, 8</pre>	
ellipsoidalDis, 9 ellipsoidalRDis, 9 estBeta, 10 extremophileDis, 11	
Falster, 12	
interBeta, 12 interEllip, 13 interEllipR, 14 interErectophile, 15 interExtremophile, 15 interPlagiophile, 16 interPlanophile, 17 interSpherical, 18 interUniform, 18 intervalTrig, 19	
LADdensity, 20	
Pisek, 21 plagiophileDis, 21 planophileDis, 22 plotdensity, 23	
selectClassic, 24 sphericalDis, 24	