GSOE9210 Engineering Decisions

Victor Jauregui

v.jauregui@unsw.edu.au www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Mixed strategies

- What are mixed strategies?
 - Mixture plots
- 2 Calculations with mixtures
- Mixing many strategies
 - Mixed strategies and dominance

- 1 What are mixed strategies?
 - Mixture plots
- Calculations with mixtures
- Mixing many strategies
 - Mixed strategies and dominance

Victor Jauregui

Engineering Decisions

What are mixed strategies?

Mixed strategies

River problem (continued):

- Action C is weakly dominated by B; ignore it
- Value and regret tables:

Original values: fuel saved
 Regret: extra fuel used in a state

Regret plot:

Example (Multi-decision strategies)

Suppose four packages have to be delivered urgently to C today. Each package is transported on a separate motor-boat.

 Strategy AAAB: three trips via A and one via B; One extra litre used if f (due to $1 \times \mathsf{B}$) and three if \overline{f} ($3 \times \mathsf{A}$)

Victor Jauregui Engineering Decisions

What are mixed strategies?

Mixed strategies

Average, per trip, over many trips:

Definition (Mixed strategy)

A mixed strategy (or mixture) is a strategy in which the basic strategies are distributed in proportions. A strategy in which the entire proportion is from one basic strategy is called a pure strategy.

In general:

- For basic strategies $\mathcal{A} = \{a_1, \dots, a_k\}$, mixed strategies determined by mixtures $(\mu_{a_1}, \dots, \mu_{a_k})$ of basic strategies
- Value of mixed strategy $M(\mu_{a_1}, \dots, \mu_{a_k})$ in state $s \in \mathcal{S}$ is expected value of basic strategies:

$$V(M,s) = \mu_{a_1} v(a_1, s) + \dots + \mu_{a_k} v(a_k, s)$$
$$= \sum_{a \in \mathcal{A}} \mu_a v(a, s).$$

where

$$\sum_{a\in\mathcal{A}}\mu_a=1\quad\text{and}\quad\mu_a\geqslant 0$$

 Think of mixtures as many independent decisions in a single unknown state

Victor Jauregui Engineering Decisions

What are mixed strategies?

Mixed strategies

- Mixtures of A and B lie on line segment AB
- Position of mixture M determined by mixture parameter $\mu_{\rm A}$ $(0\leqslant \mu_{\rm A}\leqslant 1)$; i.e., if $M=M(\mu_{\rm A})$ then M is $\mu_{\rm A}$ of the way from B to A; e.g., $\frac{3}{4}{\rm A}\frac{1}{4}{\rm B}=M(\frac{3}{4})$

Question: which is the miniMax Regret mixed strategy?

Mixed strategies: mixture plots

For the river problem with $\mu_A = \mu$:

$$m_1 = 4\mu + 3(1 - \mu) = 3 + \mu$$

 $m_2 = 0\mu + 1(1 - \mu) = 1 - \mu$

Exercise

Which is the *Maximin* mixed strategy?

Victor Jauregui

Engineering Decisions

What are mixed strategies?

Mixture plots

Mixed strategies: many states

Consider a problem with four states, two basic strategies, and mixtures, M, where $\mu_A = \mu$:

Maximin values for mixed strategies $M(\mu)$ lie on solid line. Maximin mixed strategy M^* given by $\mu^* = \frac{1}{2}$ which maximises Maximin values; i.e., $V_{Mm}(M^*) = \frac{1}{2}$.

- What are mixed strategies?Mixture plots
- 2 Calculations with mixtures
- Mixing many strategiesMixed strategies and dominance

Victor Jauregui Engineering Decisions

Calculations with mixtures

Mixed strategies: Maximin

- Mixtures defined by mixture parameter μ ($0 \le \mu \le 1$): $M(\mu) = (2\mu + 1, 2 2\mu)$; i.e., $m_1 = 2\mu + 1$, $m_2 = 2 2\mu$
- Point M^* corresponds to mixture $M(\frac{1}{4}) = \frac{1}{4} \mathsf{A} \frac{3}{4} \mathsf{B}$

Exercise

Derive a general expression for a mixture $M(\mu)$ of two actions A and B.

Mixed strategies: mixture plot

Consider mixtures M, where $\mu_{\mathsf{A}} = \mu$:

	$ s_1 $	s_2
Α	3	0
В	1	2
$M(\mu)$	$2\mu + 1$	$2-2\mu$

- Maximin values (V_{Mm}) for mixed strategies $M(\mu)$ lie on solid line
- ullet Maximin mixed strategy M^* maximises Maximin value
- Maximin value maximised for $\mu^* = \frac{1}{4}$; i.e., $V_{Mm}(M^*) = \frac{3}{2}$

Exercises

Verify algebraically the value of μ^* above.

Victor Jauregui Engineering Decisions

Calculations with mixtures

Mixed strategies: Maximin

- Mixtures defined by mixture parameter μ ($0 \le \mu \le 1$): $M(\mu) = (2\mu + 1, 2 2\mu)$; i.e., $m_1 = 2\mu + 1$, $m_2 = 2 2\mu$
- Point M^* corresponds to mixture $M(\frac{1}{4}) = \frac{1}{4} \mathsf{A} \frac{3}{4} \mathsf{B}$

Exercise

Derive a general expression for a mixture $M(\mu)$ of two actions A and B.

Mixed strategies: many states

Consider a problem with four states, two basic strategies, and mixtures, M, where $\mu_{A} = \mu$:

Maximin values for mixed strategies $M(\mu)$ lie on solid line. Maximin mixed strategy M^* given by $\mu^* = \frac{1}{2}$ which maximises Maximin values; i.e., $V_{Mm}(M^*) = \frac{1}{2}$.

Victor Jauregui

Engineering Decisions

Mixing many strategies

Mixed strategies

- What are mixed strategies?

 Mixture plots
- Calculations with mixtures
- Mixing many strategies
 - Mixed strategies and dominance

Mixed strategies: many basic strategies

	s_1	s_2
Α	2	3
В	4	0
C	3	3
D	5	2
Ε	3	5

- Can mix more than two strategies: e.g., $C = \mu_A A \mu_E E \mu_D D$
- Mixtures lie inside (or on boundary) of shaded region. Why?

Exercise

Which is the Maximin mixed strategy? What is its value?

Victor Jauregui

Engineering Decisions

Mixing many strategies

Mixed strategies

The River decision problem:

Exercises

- Are AC mixtures ever better than BC mixtures? AB mixtures?
 Others?
- Which mixtures are admissible (not dominated)?
- Determine the Maximin mixed strategy? What is its value?

Mixed strategies: many basic strategies

	s_1	s_2
Α	2	3
В	4	0
C	3	3
D	5	2
Ε	3	5

- Can mix more than two strategies: e.g., $C = \mu_A A \mu_E E \mu_D D$
- Mixtures lie inside (or on boundary) of shaded region. Why?

Exercise

Which is the Maximin mixed strategy? What is its value?

Victor Jauregui

Engineering Decisions

Mixing many strategies

Mixed strategies: miniMax Regret

Consider the regret for the decision problem below:

	s_1	s_2
Α	2	4
В	4	1
C	5	3
M	m_1	m_2

Note: miniMax Regret mixed action R' doesn't correspond to Maximin mixed action M.

Exercise

Determine the miniMax Regret mixed strategy. What is its value?

Mixed strategies: regret mixture plot

Consider mixtures M, where $\mu_A = \mu$:

- miniMax Regret values for mixed strategies $M(\mu)$ lie on solid line
- miniMax Regret mixed strategy M^* is mixture that minimises miniMax Regret value
- miniMax Regret value maximised for $\mu^* = \frac{1}{4}$; i.e., $V_{mMR}(M^*) = \frac{3}{4}$

Exercises

Verify algebraically the value of μ^* above.

Victor Jauregui

Engineering Decisions

Mixing many strategies

Mixed strategies and dominance

Generalised dominance

Definition (Strict dominance)

Strategy A strictly dominates B iff every outcome of A is more preferred than the corresponding outcome of B.

Definition (Weak dominance)

Strategy A weakly dominates B iff every outcome of A is no less preferred than the corresponding outcome of B, and some outcome is more preferred.

	s_1	s_2	s_3
Α	3	4	2
В	4	4	3
C	5	6	3

Exercise

Which strategies in the decision table shown are dominated?

Mixed strategies: dominance

	s_1	s_2
Α	1	3
В	4	0
-C	2	1

- No pure strategies dominated by other pure strategies
- However, C is dominated by all mixed strategies on A'B'
- C isn't admissible among mixed strategies

Victor Jauregui

Engineering Decisions

Mixing many strategies

Mixed strategies and dominance

Mixed strategies: dominance

	s_1	s_2
Α	1	3
В	4	0
C	2	1
M	$4-3\mu$	3μ

Let
$$M_{\mathsf{AB}}(\mu) = \mu \mathsf{A} + (1 - \mu) \mathsf{B}$$
; i.e.,
$$M(\mu) = (M_{s_1}(\mu), M_{s_2}(\mu))$$

$$= (4 - 3\mu, 3\mu)$$

For example,

$$M(\frac{1}{4}) = (3\frac{1}{4}, \frac{3}{4})$$

- Dominance requires: $4 3\mu \geqslant 2$; i.e., $\mu \leqslant \frac{2}{3}$
- Similarly: $3\mu \geqslant 1$; *i.e.*, $\mu \geqslant \frac{1}{3}$.
- C dominated when both conditions hold: i.e., when $\frac{1}{3} \leqslant \mu \leqslant \frac{2}{3}$

Summary: mixed strategies

- Mixed strategies as combinations of pure strategies
- Interpreting mixed strategies are multiple decisions for a single situation
- Visualising and plotting mixtures: mixture plots
- Mixtures and dominance

Victor Jauregui Engineering Decisions