MMPC/MMHC Further Research

Cameron Wolff 8/3/2023

Note to the reader

I apologize for having more than one slide, if I were there in person to deliver this presentation the presentation would be slimmed down. The slides are meant to be brief, with the reader spending no more than a dozen seconds on each slide.

Absolute Difference Correlation Algorithm

1. Start with a dataset, treating each feature as an "event", and each row as an "experiment". Our goal is to figure out if "events" are related by running successive "experiments". This lets us see if changing one factor causes another to change

RAW DATA				
Α	В	С	D	E
14	8	6	2	17
1	19	2	8	12
3	11	11	13	7
2	17	16	6	16
14	13	17	9	2

Absolute Difference Correlation Algorithm

2. From experiment to experiment, keep track of if each event increases, or decreases.

OBSERVE RELATIONS				
Α	В	С	D	E
14	8	6	2	17
dec	inc	dec	inc	dec
1	19	2	8	12
inc	dec	inc	inc	dec
3	11	11	13	7
dec	inc	inc	dec	inc
2	17	16	6	16
inc	dec	inc	inc	dec
14	13	17	9	2

On a computer, you could improve this by selecting a single feature, looking at the change in that feature, and calculating the absolute difference between the change in that feature and other features. Select another feature, and repeat, like MMPC.

Absolute Difference Correlation Algorithm

3. Set a criteria, and gather results. If events change together, they are likely correlated, and therefore there is likely a causal connection. Here a correlation matrix is used to visualize these relations

CORRELATIO	ON MATRIX				
	Α	В	С	D	E
Α	NA				
В	0/4	NA			
С	3/4	1/4	NA		
D	3/4	1/4	2/4	NA	
E	1/4	3/4	2/4	0/4	NA

CORRELATI	ON RESULTS							
Criteria	+75% -> directly correlated	, 0% –> inver	sely corelated	k				
Direct	a change in A is directly con	rrelated to a	change in C ar	nd D, a change	e in B is direct	ly correlated	to a change in	Ε

Indirect a change in A is inversely correlated to a change in B, a change in D is inversely correlated to a change in E

MMPC/MMHC Findings

Alwood

NOTE: In each dataset, all correlation tests by MMPC, MMHC, and cor() function are Pearson's correlation test

QUESTION: when constructing a DAG or BN Skeleton using a correlation test, how is the directionality (inverse vs direct relation) used?

Turner

	expose	mass	resorp	form
expose	1.0000000	-0.6281854	-0.7246798	-0.4220525
mass	-0.6281854	1.0000000	0.7807571	0.5569316
resorp	-0.7246798	0.7807571	1.0000000	0.2949424
form	-0.4220525	0.5569316	0.2949424	1.0000000

GLDS NOTE: All BN Skeletons were identical to DAGs, just missing directionality

Ko (all)

NA

0.53252615

		trab resorp			trab		
	unload	dur	expose	mass	trab	stren	resorp
unload	1.00000000	-0.01665351	0.73002360	-0.40703663	-0.2648031	-0.26416620	NA
dur	-0.01665351	1.00000000	0.53252615	-0.05869164	-0.1022392	0.19173187	NA

unload_dur form 0.73002360 NA NA 0.53252615

NA

1.00000000 -0.33973707 -0.2458744 -0.06668496

-0.33973707 -0.2458744 -0.06668496 0.73002360 0.53252615 1.00000000 0.7963975 -0.40703663 -0.05869164 -0.33973707 1.00000000 0.26241598

NA

NA

NA NA

0.79639752 1.0000000 0.18725064 NA 0.26241598

NA

1.00000000 NA -0.33973707 -0.24587441 0.1872506 1.00000000 NA -0.06668496 NA NA NA NA 1

NA

NA

NA

NA

NA

NA

1.00000000

expose mass trab -0.26480309 -0.10223923 -0.24587441 -0.26416620 0.19173187 -0.06668496 stren NA NA resorp

0.73002360

NA

form

unload_dur

Ko (1wk and 2wk)

Ko 1wk DAG, remove resorp and form

Ko (4wk)

