Да разгледаме задачата на Коши

$$y' = x^2 + y^2$$
$$y(0) = 0.$$

Функцията $f(x,y)=x^2+y^2$ е полином и цялата равнина \mathbb{R}^2 е област на единственост за уравнението, защото $f\in C^\infty(\mathbb{R}^2)$. От теоремата за съществуване и единственост следва, че задачата има единствено непродължимо решение $\varphi(x)$. Въпреки че изглежда просто, известно е, че уравнението не се решава в квадратури. Все пак, можем да установим свойства на $\varphi(x)$. Директно от вида на уравнението се вижда, че решението е монотонно растящо, тъй като $y'\geq 0$. При това, има хоризонтална допирателна само в точката (0,0). Нещо повече, можем да установим, че функцията $\varphi(x)$ е нечетна, т.е. $\varphi(x)=-\varphi(-x)$. За целта, да положим $\psi(x)=-\varphi(-x)$. Като използваме, че $\varphi(x)$ удовлетворява уравнението, намираме

$$\psi'(x) = \varphi'(-x) = x^2 + (\varphi(-x))^2 = x^2 + (\psi(x))^2.$$

Същевременно, от началното условие имаме $\psi(0) = -\varphi(0) = 0$. Излиза, че $\psi(x)$ също е решение на поставената задача на Коши. От друга страна знаем, че тя има единствено решение и следователно $\psi(x) \equiv \varphi(x)$. Геометричният смисъл на това свойство е, че графиката на функцията е централно симетрична относно началото на координатната система – точката (0,0).

Накрая ще покажем, че решението не е дефинирано върху цялата реална права, а има вертикална асимптота. Ще приложим принципа за сравняване. От локалното съществуване на решението следва, че то ще е дефинирано поне за малки положителни стойности на аргумента. Можем да вземем такова число $\varepsilon_1 \in (0,1)$, че $\varphi(\varepsilon_1) = y_1$ (при това $y_1 > 0$, защото $\varphi(x)$ е растяща). Разбира се, $\varphi(x)$ е решение и на задачата на Коши

$$y' = x^2 + y^2$$
$$y(\varepsilon_1) = y_1.$$

Както вече споменахме, тази задача не може да се реши в квадратури. Вместо това да използваме, че $f(x,y)=x^2+y^2>\varepsilon_1^2+y^2$ за $x>\varepsilon_1$ и да разгледаме друга задача на Коши

$$y' = \varepsilon_1^2 + y^2$$
$$y(\varepsilon_1) = y_1.$$

Тук вече уравнението е с разделящи се променливи и можем да го интегрираме. Непродължимото решение на задачата е функцията

$$\psi(x) = \frac{1}{\varepsilon_1} \operatorname{tg} \left(\frac{x}{\varepsilon_1} + \operatorname{arctg}(\varepsilon_1 y_1) - 1 \right)$$

с дефиниционен интервал (x_1, x_2) , където

$$x_1 = \varepsilon_1 \left[1 - \frac{\pi}{2} - \operatorname{arctg}(\varepsilon_1 y_1) \right], \ x_2 = \varepsilon_1 \left[1 + \frac{\pi}{2} - \operatorname{arctg}(\varepsilon_1 y_1) \right].$$

От принципа за сравняване следва, че $\varphi(x)>\psi(x)$ за $x>\varepsilon_1$. Директно се установява, че $\lim_{x\to x_2}\psi(x)=+\infty$, така че и $\varphi(x)$ не може да е дефинирана за $x=x_2$. Следователно функцията $\varphi(x)$ има вертикална асимптота, т.е. $\lim_{x\to x_3}\psi(x)=+\infty$ за някакво $x_3\leq x_2$.

