Stats 225: Bayesian Analysis

More on Dirichlet Process Mixtures

Babak Shahbaba UC Irvine

Overview

- In the previous lecture, we discussed Dirichlet process mixture (DPM) models for nonparametric clustering and density estimation.
- In this lecture, we will discuss some advanced Dirichlet process models.
- We specifically discuss the applications of DPM models in genomics and diagnostics.
- We will also discuss its extensions to nonlinear predictive models and biclustering.

Genomics In Collaboration with Wes Johnson

Introduction

- Large-scale genomic studies examine thousands of genes simultaneously
- Objective is to identify a small number of genes for follow-up studies
- * We divide the set of genes into several subgroups according to their degrees of "relevance," or potential effect, in relation to the outcome of interest (e.g., disease status)
- * This could lead to a better identification of the underlying structure in our data and ultimately, genes that `matter"

Data

	Case			Control				
Subjects	1	2	3		1	2	3	
Gene 1								
Gene 2								
Gene 3	3.2	-0.7	-2.5		2.2	1.9	-2.0	
Gene 4	0.2	3.1	0.6		-3.0	-0.3	-1.3	
÷								

Multiple hypothesis testing

- Most current methods applied to high-throughput experiments are extensions of the classical hypothesis testing approach (i.e., when there is a single hypothesis).
- * For each gene, \mathcal{G}_i , where i = 1, ..., N, there is a corresponding [null] hypothesis, H_i , stating that there is no change in gene expression between two biological conditions (i.e., diseased vs. healthy).
- * The observed expression values $\{Y_{ijk}: j=1,...,n_{ik}, k=0,1\}$ are used to compute a simple test statistic T_i for gene i.
- Statistics above a certain cutoff are deemed significant, after adjustment to control the family-wise Type I error rate or false discovery rate (FDR).

FDR

- * FDR is one of the most widely used measures for coping with multiplicity.
- * Suppose we observe values for $T_1, T_2, ..., T_N$ and obtain the corresponding p-values:

$$p_j = P(T_j \ge t_j | H_j)$$

* Reject H_j if $p_j < \lambda$

 $FDR(\lambda) = E(Proportion of true H_j \mid rejected)$

FDR

❖ Instead of *p*-values, it is convenient to work with

$$z_j = \Phi^{-1}[P(T_j \ge t_j | H_j)]$$

- Under H_{j} , $z_{j} \sim N(0,1)$.
- Large-scale testing situations however permit estimation of the null distribution.
- The following mixture density is assumed for the transformed p-values:

$$f(z) = p_0 f_0(z) + (1 - p_0) f_1(z)$$

FDR

* Under this model, if all inputs were known, then the Bayesian approach based on zero/one loss for just a single hypothesis rejects H_i if

$$fdr(z_j) \equiv p_0 f_0(z_j) / f(z_j) < \lambda$$

- * Efron et.~al. (2001) use empirical Bayes approach to estimate fdr(z).
- * Their approach is referred to as *locFDR*.

Optimal discovery procedure

- * Storey (2007) proposed the *optimal discovery procedure* (ODP): minimizing *missed discovery rate* (false negative) for each fixed FDR (false positive rate)
- * Suppose $z_j \sim f(z_j; \mu_j)$, where f is some distribution indexed by an unknown parameter μ_j .
- * The ODP for testing H_j : $\mu_j \in A$ is then based on a single significance thresholding statistic,

$$S_{ODP}(z_j) = \frac{\sum_{\mu_j \notin A} f(z_j; \mu_j)}{\sum_{\mu_j \in A} f(z_j; \mu_j)}$$

♦ We reject the null hypothesis H_j if $S_{ODP}(z_j) \ge \lambda$ for some $0 \le \lambda < \infty$.

Bayesian discovery procedure

- Guindani et.~al.(2009) showed that the ODP could be interpreted as approximate Bayes rule under a semiparametric model.
- * They proposed a Bayesian discovery procedure (BDP) that improves the approximation and allows for multiple shrinkage in clusters implied by a Dirichlet process mixture model:

$$z_{i} | \mu_{i} \sim f(z_{i} | \mu_{i}), i = 1,..., N$$

$$\mu_{i} | G \sim G$$

$$G \sim \mathcal{D}(G_{0}, \gamma)$$

$$G_{0} = p_{0}h_{\{0\}}(.) + (1 - p_{0})h_{\{0\}^{c}}(.)$$

- * Here, $f(z_i \mid \mu_i)$ is typically considered to be a normal distribution, $N(z_i \mid \mu_i, \sigma^2)$.
- * The distribution $h_{\{0\}}$ is point mass at zero and $h_{\{0\}^c}$ is set to a continuous distribution such as $N(0,\sigma^2)$.

Bayesian discovery procedure

* Latent cluster membership indicators, s_i , partition the observations into clusters such that

$$s_i = s_k$$
 if $\mu_i = \mu_k$

- * The label $s_i = 1$ is reserved for the null distribution; that is, $s_i = 1$ when $\mu_i = 0$.
- Guindani et al. (2009) showed that thresholding based on the measure

$$v_i = 1 - \sum_{b=1}^{B} I(s_i^{(b)} = 1)/B$$

can be approximated by \hat{S}_{ODP} .

• We (Shahbaba and Johnson) developed an alternative model:

$$z_j | \tau_j^2 \sim N(0, \tau_j^2)$$

$$\tau_j^2 | G \sim G$$

$$G \sim \mathcal{D}(G_0, \gamma)$$

* We refer to our model as Bayesian Relevance Determination: *BRD*.

Alternatively, let y_{ijk} denote the j^{th} observed gene expression value in group k for gene i.

$$y_{ijk} \mid \alpha_i, \beta_i \sim N(\alpha_i + \beta_i x_{ijk}, \sigma_i^2)$$

* Our model for the regression coefficients is hierarchical where the first level assigns independent normal priors to the β_i s with distinct variances, namely

$$\beta_i \mid \tau_i^2 \sim N(0, \tau_i^2)$$

* We assume a Dirichlet Process prior for τ_i^2

$$\tau_i^2 \mid G \sim G$$

$$G \sim \mathcal{D}(G_0, \gamma)$$

- * We could define a relevance measure similar to that of Guindani et.~al.(2009)
- st To this end, we denote $\mathit{min}_{j}\{ au_{j}^{2}\}$ at each iteration as ϕ_{0}^{2}
- * For gene*i*, we create a binary indicator, s_i , which is set to 1 when $\tau_i^2 = \phi_0^2$, and zero otherwise
- * Similar to the measure proposed by Guindani et.~al.(2009), we can use B posterior Monte Carlo samples to calculate

$$v_i = 1 - \sum_{b=1}^{B} I(s_i^{(b)} = 1)/B$$

- Both methods use a Dirichlet process mixture of normals for modeling gene expression data
- * For BDP, the DP prior is assumed for the means of the normal distributions (all mixture components share the same variance)
- An alternative variation of BDP mixes on the means and the variances
- * We use the DP prior on the variances, τ^2 , and fix means at zero
- Our model provides a natural framework for ranking mixture components, and in turn, for ranking the genes assigned to each component with respect to their potential importance

- * This approach is related to robust Bayesian inference.
- It can be regarded as Dirichlet Process Scale Mixture of Normals (e.g., Andrews & Mallows, 1974; West 1984; Carvalho et al., 2009):

$$Y_i \sim N(0, \sigma_i^2)$$

$$\sigma_i^2 \sim g(\sigma_i^2)$$

- * When σ^2 has Inv-Gamma($\nu/2,\nu/2$) distribution, *Y* has a *t*-distribution with ν degrees of freedom.
- * The distribution of *Y* will become *Laplace* or *horseshoe* (Carvalho et al. 2010) if instead of Inv-Gamma we use exponential or half-Cauchy respectively.

Diagnostics

Akhavan, S., Holsclaw, T., Shahbaba, B., Gillen, D. (2018), A Flexible Joint Longitudinal-Survival Model for Analysis of End-Stage Renal Disease Data (2018), arXiv:1807.02239.

Recall that we used the following model for longitudinal albumin measurement:

$$Y^L = X\beta + \mathbf{W}(\mathbf{t}) + \epsilon$$

where $\mathbf{W}(\mathbf{t})$ are realizations from a Gaussian Process with mean zero and covariance function

$$C(t, t') = \kappa^2 e^{-\lambda |t - t'|^2}$$

Here, κ^2 controls the height of the oscillations and λ controls the correlation length between realizations.

Recall that larger values of κ^2 produce higher volatility around the mean function

Values of κ^2 near 0 produce nearly linear trajectories

This makes the GP model a natural choice for the scientific problem being considered as we can focus on κ^2 as the functional of interest:

$$Y_i^L \mid \theta \sim N_{J_i}(X_i\beta_i, \kappa_i^2 K(\lambda) + \sigma^2 I)$$

Note that λ is shared by all subjects.

For κ_i^2 , to ensure model flexibility we specify a prior distribution with a Dirichlet process (DP) mixture prior:

$$\pi(\kappa_i^2 \mid G) \sim G$$

$$\pi(G) \sim DP(G_0 = \Gamma^{-1}(A, B), \gamma)$$

$$\pi(\alpha) \sim \Gamma(2, 4)$$

$$\pi(A) \sim \Gamma(2, 1)$$

$$\pi(B) \sim \Gamma(1, 1)$$

The proposed model provides a flexible framework for modeling nonlinear trajectories while allowing for linear patterns for some clusters

However, it does not automatically identify a cluster of subjects for whom the longitudinal patterns are approximately linear

In a manner similar to Guindani et al (2009), we can account for this by considering a spike-and-slab prior for κ_i^2 of the form:

$$\pi(\kappa_i^2 \mid p, G) \sim pU_D + (1 - p)G_{D^c}$$

$$\pi(G_{D^c}) \sim DP(G_0^*, \gamma)$$

$$\pi(p) \sim \text{Beta}(p_a, p_b)$$

where U_D is a Uniform distribution with small support near zero (taken to be Unif(0,.1) here).

As before, G_{D^c} has a Dirichlet process prior, but this time, the support of its base distribution G_0^* is $[0.1,\infty)$ (shifted Inverse-Gamma)

This separates the support of the spike-and-slab distributions, so there is no overlap

Sampling from the posterior distribution of κ_i^2 can be achieved using "algorithm 8" in Neal (2000).

Nonlinear Regression and Classification

In Collaboration with Radford Neal

Nonlinear regression models using DPM

* We (Shahbaba and Neal, 2009) introduced a new nonlinear Bayesian model, which non-parametrically estimates the joint distribution of the response variable, *y*, and covariates, *x*, using Dirichlet process mixtures:

$$y_i, x_{i1}, \dots, x_{ip} | \theta_i \sim F(\theta_i)$$

$$\theta_i | G \sim G$$

$$G \sim \mathcal{D}(G_0, \gamma)$$

* Within each component, assume the covariates are independent, and model the dependence between *y* and *x* using a linear model.

Nonlinear regression models using DPM

❖ When both *x* and *y* are continuous, define *F* as follows:

$$x_{l} \sim N(\mu_{l}, \sigma_{l}^{2})$$

$$y \mid x, \alpha, \beta \sim N(\alpha + x\beta, \epsilon^{2})$$

• In this model, $\theta = \{\mu, \sigma, \epsilon, \alpha, \beta\}$.

Nonlinear classification models using DPM

- Now consider a classification problem with continuous covariates, $x = (x_1, ..., x_p)$, and a categorical response variable, y.
- Define F as follows:

$$x_{il} \sim N(\mu_l, \sigma_l^2)$$

$$P(y = j \mid x, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{\exp(\alpha_j + x\boldsymbol{\beta}_j)}{\sum_{j'=1}^{J} \exp(\alpha_{j'} + x\boldsymbol{\beta}_{j'})}$$

• In this model, $\theta = \{\mu, \sigma, \alpha, \beta\}$.

Nonlinear classification models using DPM

