Relational Algebra: Basic Operators for Combining Relations

Computing on Data

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Identify the basic operators that combine tables.
- Use these operators to write RA expressions.

Combination Operators

• Combining two relations R_1 and R_2 :

- Set operations
 - Union: $R_1 \cup R_2$ (addition)
 - Difference: $R_1 R_2$ (like subtraction)

- Cartesian product (multiplication)
 - $R_1 \times R_2$

Cartesian product

Set Union

Union of two relations

- Notation: $R_1 \cup R_2$
- Input: R_1 and R_2 , which have the same schema.
- Output:
 - A relation with all tuples in R_1 and R_2 (no duplicates)
 - Schema: same as R_1 and R_2

- What are all the people in the Academic World?
 - π_{name} (Students) $\cup \pi_{\text{name}}$ (Professors)

Union Examples

Q1: Find beers that are drunk or favorited by some drinkers.

 Q2: Find beer-drinker pairs where a bar is drunk or favorited by a drinker.

Set Difference

Difference of two relations

- Notation: $R_1 R_2$
- Input: R_1 and R_2 , which have the same schema.
- Output:
 - A relation with all tuples in R_1 but not in R_2
 - Schema: same as R_1 and R_2
- What students took CS411 but not CS412?
 - $\pi_{\text{name}}(\sigma_{\text{number="CS411"}}\text{Enrolls}) \pi_{\text{name}}(\sigma_{\text{number="CS412"}}\text{Enrolls})$

Difference Examples

 Q1: Find beers that are drunk by some but not favorited by any drinkers.

Cartesian Product

- Notation: $R_1 \times R_2$
- Input: $R_1(A_1, ..., A_n)$, $R_2(B_1, ..., B_m)$.

Cartesian product of two relations

• Output:

- A relation consisting of all pairs of each tuple from R_1 and each tuple from R_2
- Schema: $(A_1, ..., A_n, B_1, ..., B_m)$
 - Assume no attribute name clash. Or, use R_1 . A vs. R_2 . A to distinguish.

Cartesian Product: Example

Students S

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
2	Donald Duck	ECE	1997-02-01
3	Peter Pan	SS	1998-10-01
4	Mickey Mouse	Music	1995-04-01

Enrolls E

id	number	term	grade
1	411	Fall 2017	A+
4	411	Fall 2017	В
1	426	Fall 2017	А

S.id	name	major	birthday	E.id	number	term	grade
1	Bugs Bunny	CS	2014-11-06	1	411	Fall 2017	A+
1	Bugs Bunny	cs	2014-11-06	4	411	Fall 2017	В
1	Bugs Bunny	cs	2014-11-06	1	426	Fall 2017	А
2	Donald Duck	ECE	1997-02-01	1	411	Fall 2017	A+
2	Donald Duck	ECE	1997-02-01	4	411	Fall 2017	В
2	Donald Duck	ECE	1997-02-01	1	426	Fall 2017	А
•••	•••	•••	•••	•••	•••	•••	•••

• Is the result of this operation useful?

Cartesian product of Students and Enrolls

Cartesian Product: Useful for Collecting Data into One Table

• $SE := Students \times Enrolls =$

S.id	name	major	birthday	E.id	number	term	grade
1	Bugs Bunny	CS	2014-11-06	1	411	Fall 2017	A+
1	Bugs Bunny	CS	2014-11-06	4	411	Fall 2017	В
1	Bugs Bunny	CS	2014-11-06	1	426	Fall 2017	А
2	Donald Duck	ECE	1997-02-01	1	411	Fall 2017	A+
2	Donald Duck	ECE	1997-02-01	4	411	Fall 2017	В
2	Donald Duck	ECE	1997-02-01	1	426	Fall 2017	А
•••	•••		•••	•••	•••		

• Upon A, we can now ask:

Cartesian product of Students and Enrolls

What courses did Bugs Bunny take?

$$BB := \sigma_{\text{S.id}=\text{E.id AND name}=\text{"Bugs Bunny"}}(SE)$$

 $Answer := \pi_{\text{number}}(BB) = \{(411), (426)\}$

Overall:

 $\pi_{\text{number}} \sigma_{\text{S.id}=\text{E.student AND name}=\text{"Bugs Bunny"}}(\text{Students} \times \text{Enrolls})$

Cartesian-Product Examples

• Q1: Find "happy drinkers": those drinkers who live on the same street (address equal) as some bars.