Meenal Parakh

Cambridge, MA 02139 | meenalp@mit.edu | 🖸

Research Interest

I am broadly interested in robotics and perception. I am interested in solving challenging problems in mobile manipulation for home environments while focusing on the perception abilities of the robot. I aim to develop algorithms capable of handling significant variations in objects and scenes.

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

■ Master of Engineering in Artificial Intelligence

Jun'22 - Present

• Thesis Supervisor: Professor Pulkit Agrawal ■ BS in Electrical Engineering & Computer Science, and Mathematics

Aug'19 - May'22

• GPA: 4.9/5.0

Key Courses: Computational Sensorimotor Learning • Underactuated Robotics • Optimization for Machine Learning • Robotic Manipulation • Principles of Autonomy and Decision Making • Computer Vision • Inference • Statistics, Computation & Applications • Parallel Computing • Machine Learning • Algorithms • Embedded Systems

Indian Institute of Technology

Mumbai, India

■ Bachelor of Technology in Computer Science

Jul'18 - Jul'19

• GPA: 9.78/10.00 • Transferred to MIT in 2019.

Academic Responsibilities

• Teaching Assistant for Computation Structures course at MIT.

Fall 2022

Lab Assistant for Computer Systems Engineering course at MIT.

Spring 2021

• Lab Assistant for Circuits & Electronics course at MIT.

Spring 2020

Research and Internship Experience

Graduate Researcher Improbable AI Lab, Professor Pulkit Agrawal Jun'22 - Present

CSAIL MIT, Cambridge

• To improve the far-range object segmentation in real-world images, developed a novel approach for collecting labeled real-world data using a self-supervised approach.

- Currently working on incorporating the above data collection approach for the downstream robotic task of fetching objects using a mobile base robot.
- Built a PyBullet-based simulation for LoCoBot, a mobile base manipulator, implementing low-level controls for the robot arm and the base, a motion and path planner, and an RGBD-based obstacle detector.

Undergraduate Researcher

Sep'20 - May'21

Aerospace Controls Laboratory, Professor Jonathan How

MIT. Cambridge

- Used multi-threading for parallelizing the Distributed Pose Graph Optimization algorithm. Observed an improvement of approximately 25% in run-time for a synthetic dataset.
- Worked on Robust Initialization for Pose Graph problem by using chordal relaxation initialization technique with robust loss functions (M-estimators) and Truncated Least Squares.

Undergraduate Researcher

Sep'21 - May'22

Robust Robotics Group, Professor Nicholas Roy

CSAIL MIT, Cambridge

- For the toy task of throwing objects to target distances, where objects vary in different unseen properties, such as friction coefficients and air drag, implemented a method that simultaneously learns object and task parameters from a given dataset of example throws.
- Used the above approach to adjust to unseen test objects by retraining only the object-specific parameters but keeping task parameters constant.
- · Modeled the toy task of throwing objects as a multi-task learning problem, considering the different target distances of the throw as different tasks. Solved using Gaussian Processes with Deep Kernel Learning.

Embedded Software Engineering Intern

Jun'21 – Aug'21

Advanced Imaging Group, JADAK

Remote

- Tested Medley Software Development Kit, a camera library, on the Nvidia Jetson platform. Medley SDK is originally designed for Windows and controls different functions of Jadak machine vision cameras.
- Built a Python wrapper for the Medley camera library, given the low-level C++ API containing over 100 different functions.

Trajectory Optimization with Iterative Learning

Apr'22 – May'22

 $Under actuated\ Robotics$

MIT, Cambridge

- Implemented an optimization model which, given a geometric path and uncertainty bounds for task parameters (such as friction coefficients), computes a time parameterization for the geometric path.
- Implemented iterative learning approach by performing a binary search over uncertain parameters.

Solving Sokoban using Deep Q Learning

Apr'22 - May'22

Sensorimotor Learning

MIT. Cambridge

- Applied Deep Q Learning for training an agent to solve Sokoban in fixed-size grid environments. Tested the algorithm for 5x5 and 6x6 grids with 1 and 2 movable boxes each.
- Implemented Topological Experience Replay buffer to obtain faster convergence in the sparse reward game.

High Performance Sparse Pose Adjustment

Nov'20 - Dec'20

Parallel Computing and Scientific Machine Learning

MIT. Cambridge

• Implemented Sparse Pose Adjustment algorithm, which uses Levenberg-Marquardt (LM) non-linear optimizer, to solve the 2D Pose Graph Optimization problems. The implementation is multi-threaded.

Robust Parameter Estimation

Mar'21 - May'21

Optimization for Machine Learning

MIT, Cambridge

- Performed a literature survey on the various methods of robust parameter estimation, with special attention to problems of Pose Estimation, Fundamental Matrix Estimation, and Deep Neural Networks.
- Modified the original Neural Radiance Field model to use a general and adaptive loss function and trained the Neural Radiance Field network for different outlier rates.

Deformable Object Manipulation

Oct'21 - Dec'21

Robotic Manipulation

MIT, Cambridge

- Experimented with a hand-crafted policy to align a given cable of beads to the desired shape. The desired shape can be any open polygon with an appropriate length.
- Used Proximal Policy Optimization with discrete action space to obtain a policy for the same task, assuming access to key points on the beaded cable for pick action.

PSoC Image Editor

Apr'20 - May'20

Microcomputer Project Laboratory

MIT, Cambridge

• Built a platform for editing an image using Programmable System on Chip (PSoC), providing the user with features of changing brightness, blurring the image and adding a watermark and a noise removal feature for salt-pepper noise. The image is viewable on a TFT display.

MATHEMATICS PROJECTS

• Distinct n-Length Strings in Pascal's Triangle mod p

Investigated $a_n(p)$, the number of distinct strings of length n that occur consecutively in Pascal's triangle mod p, where p is prime. Found closed-form expressions for $a_2(p)$ and $a_n(2)$ and the asymptotic behavior of $a_n(p)$ using recursion relations.

How Languages Grow?

Investigated how the number of n-length words grows with n. Developed a graphing technique for words in the language. Based on graph structures, identified when languages have polynomial or exponential growth rates.

Metric Spaces and Embeddings

On the topic, wrote an article for a magazine **\(\bar{\pi} \)**, and course notes for Math majors **\(\bar{\pi} \)**.

TECHNICAL SKILLS

Languages: C/C++, Python, Julia, MATLAB

Software and Tools: ROS & Gazebo, PyBullet, Drake, Docker, Git, AutoCAD, Solidworks

EXTRA-CURRICULAR

- Designed *Mural*, an activity in which people in a community (such as a dorm) can learn about each other by exchanging anonymous notes through a public board kept in the community.
- Volunteer in tutoring Mathematics to K-12 grade students through Mastery Learning Hour.
- Completed a year-long course at the college level in Fine Arts. One of my works was shown in *Kaladarsharn*, an annual exhibition for Photography and Fine Arts, at IIT Bombay.