# Kravspecifikation for Lavfrekvensstyring af Aeroquad

10893, Rasmus Bækgaard 08830, Rasmus Berg Kloster 18. december, 2013

## Versionshistorie

| 1.0 | 05/6 -13  | RR | Første version af kravspecifikationen afleveret til Torben |
|-----|-----------|----|------------------------------------------------------------|
| 2.0 | 18/11 -13 | RR | Kravspecifikation omskrives til at passe til projektet     |

## Godkendelsesformular

| Forfatter(e):  | 10893, Rasmus Bækgaard og 08830, Rasmus Berg Kloster |
|----------------|------------------------------------------------------|
| Godkendes af:  | Torben Gregersen                                     |
| Projektnummer: | 13056                                                |
| Antal side:    | 18                                                   |
| Kunde:         | Ingeniørhøjskolen i Aarhus                           |

| Sted og dato:    |                   |
|------------------|-------------------|
| Torben Gregersen | Rasmus Bækgaard   |
|                  | Rasmus B. Kloster |

# Indhold

| 1 | Ind | edning                       | 5  |
|---|-----|------------------------------|----|
|   | 1.1 | Formål                       | 5  |
| 2 | Gen | erel beskrivelse             | 6  |
|   | 2.1 | Systembeskrivelse            | 6  |
|   |     | 2.1.1 Systemoversigt         | 6  |
|   |     | 2.1.2 Aktør-kontekst diagram | 6  |
|   |     | 2.1.3 Aktørbeskrivelser      | 6  |
|   | 2.2 | Systemets funktioner         | 7  |
|   |     | 2.2.1 Use Case diagrammer    | 7  |
| 3 | Fun | ktionelle krav - Use Cases   | 10 |
|   |     | 3.0.2 Use Case 1             | 10 |
|   |     | 3.0.3 Use Case 2             | 10 |
|   |     | 3.0.4 Use Case 3             | 12 |
|   |     | 3.0.5 Use Case 4             | 13 |
|   | 3.1 | Systemets begrænsninger      | 13 |
| 4 | Eks | terne grænseflader           | 14 |
|   | 4.1 | Brugergrænseflade            | 14 |
|   | 4.2 | Hardware-grænseflade         | 14 |
| 5 | Kra | v til ydelse                 | 15 |
| 6 | Kva | litetsfaktorer               | 16 |
| 7 | Myı | ndighedskrav                 | 17 |

Litteratur 18

## Rettelser

| Note: Skal afsnittet Referencer være her | 5  |
|------------------------------------------|----|
| Note: Kapitel 3                          | 7  |
| Note: RBK skal lave 3D-skitse            | 14 |
| Note: Vi ved ikke hvad der skal være her | 16 |

# **Indledning**

#### 1.1 Formål

Dette dokument beskriver kravspecifikationerne, for en lavfrekventstyring af en Aeroquad Cyclone drone.

Systemet består af en Aeroquad Cyclone drone, der styres via radiokommunikation. Dronen er udstyret med en lavfrekventradio, som modtager signal fra en fjernbetjening, der vælger forskellige programmer dronen skal flyve efter.

1

<sup>&</sup>lt;sup>1</sup>FiXme Note: Skal afsnittet Referencer være her

## Generel beskrivelse

Dette afsnit giver et overblik over kravene, der er stillet for udviklingen af systemet.

#### 2.1 Systembeskrivelse

Projektet vil bestå i, at få en drone til at udføre nogle specifikke programsekvenser, der styres af en bruger vha. en fjernbetjening. Dronen har indbygget en radio, der modtager signalet fra fjernbetjeningen, der derefter eksekverer det ønskede program.

Dronen er foruden dette selvstabiliserende og holder sig derfor i luften og har indbygget sensorer på sin front, der sørger for den ikke flyver ind i objekter.

#### 2.1.1 Systemoversigt

På Figur 2.1 ses det samlede system med kommunikationen mellem dronen og fjernbetjeningen. Fjernbetjeningen modtager et input fra nogle knapper, processerer dette i  $\mu$ -Controller 3 og gennem radiosenderen overføres programvalget til dronens radiomodtager. Herefter bearbejder  $\mu$ -Controller 2 signalet og klargører dette til  $\mu$ -Controller 1. Når  $\mu$ -Controller 1 skal bruge input fra fjernbetjeningen aflæses dette, samtidig med input fra sonarsensorerne.

#### 2.1.2 Aktør-kontekst diagram

På Figur 2.2 vises aktørerne der kommunikerer med systemet. Figuren indeholder to grupper, henholdsvis brugeren og hardware aktører.

#### 2.1.3 Aktørbeskrivelser

I det følgende beskrives aktøren, hvis opgave ønskes opfyldt af systemets Use Cases.

| Aktør navn | Bruger |
|------------|--------|
| Туре       | Primær |

|                         | I                                                           |
|-------------------------|-------------------------------------------------------------|
| Beskrivelse             | En bruger er en person, der starter, manøvrerer og stopper  |
|                         | dronen.                                                     |
| Antal samtidige aktører | 1                                                           |
|                         |                                                             |
| Aktør navn              | Drone                                                       |
| Туре                    | Sekundær                                                    |
| Beskrivelse             | Dronen består af AeroQuad Cyclone ARF Kit, fire sonarsenso- |
|                         | rer samt 3 FM-transceivere.                                 |
|                         |                                                             |

#### 2.2 Systemets funktioner

Antal samtidige aktører

Systemets funktioner, de funktionelle krav, er fundet og beskrevet vha. Use Case teknikken. De følgende diagrammer viser systemets funktioner udtrykt som Use Cases. Formålet med disse diagrammer er at give et overblik over funktionaliteten i det system, der skal udvikles. Hver af de på diagrammerne viste Use Cases er detaljeret specificeret i kapitel ... <sup>1</sup>.

#### 2.2.1 Use Case diagrammer

Figur 2.3 viser systemet som Use Case diagram.

1

<sup>&</sup>lt;sup>1</sup>FiXme Note: Kapitel 3



Figur 2.1: Systemoversigt



Figur 2.2: Aktørdiagram



Figur 2.3: Use Case diagram

# Funktionelle krav - Use Cases

#### 3.0.2 Use Case 1

| Use Case: 1              | [ System initialisering.                                          |
|--------------------------|-------------------------------------------------------------------|
| Mål:                     | Drone er klar til at flyve.                                       |
| Initiering:              | Use Case initieres af bruger.                                     |
| Slutbetingelser ved suc- | Propeller spinner med samme hastighed.                            |
| ces:                     |                                                                   |
| Slutbetingelser ved und- | Drone bipper ét kort bip med 2-3 sekunders mellemrum.             |
| tagelser:                |                                                                   |
| Normalforløb             | 1. Bruger kobler batteriets strømkabel til dronens strømkabel.    |
|                          | 2. Bruger venter på sekvensen af bips: ét kort, pause, tre korte, |
|                          | pause, ét langt.                                                  |
|                          | Undtagelse: Opstartssekvens.                                      |
|                          | 3. Dronens propeller begynder at spinde med samme hastighed.      |
|                          |                                                                   |
| Undtagelser              | 1. Undtagelse: Opstartssekvens.                                   |
|                          | • Drone bipper én gang hver 2-3 sekund.                           |
|                          |                                                                   |

#### 3.0.3 Use Case 2

| Use Case: 2 | []Programvalg                  |
|-------------|--------------------------------|
| Mål:        | Dronen udfører valgte program. |

| Initiering:              | Use Case initieres af bruger                                      |
|--------------------------|-------------------------------------------------------------------|
| Startbetingelser:        | Dronens batteri er ikke afladt og Use Case 1 er kørt.             |
| Slutbetingelser ved suc- | Dronen udførte valgte program.                                    |
| ces:                     |                                                                   |
| Slutbetingelser ved und- | Dronen reagerer ikke på tryk eller dronens propeller spinner ikke |
| tagelser:                | længere                                                           |
| Normalforløb 1:          | 1. Brugeren trykker på knap for let.                              |
| Let                      | 2. Dronens propeller spinner hurtigere og letter dronen.          |
|                          | Undtagelse: Drone reagerer ikke                                   |
|                          | 3. Dronen holder sig stabilt i førangivet højde.                  |
|                          |                                                                   |
| Normalforløb 2:          | 1. Bruger trykker på autoland-knap                                |
| Autoland                 | 2. Drone sænker sig langsomt mod jorden, lander og slukker pro-   |
|                          | pellerne.                                                         |
|                          | Undtagelse: Drone reagerer ikke                                   |
| Normalforløb 3:          | 1. Bruger trykker på stop-knap                                    |
| Stop                     | 2. Drone slukker for strømmen til sine motorer.                   |
| 1                        | Undtagelse: Drone reagerer ikke                                   |
| Normalforløb 4:          | 1. Bruger trykker på ned-knap                                     |
| Sænk spind-hastighed     | 2. Drone sænker motorernes rotationshastighed.                    |
| Sem spina masagnea       | Undtagelse: Drone reagerer ikke                                   |
|                          |                                                                   |
| Normalforløb 5:          | 1. Bruger trykker på op-knap                                      |
| Øg spind-hastighed       | 2. Drone forøger motorernes rotationshastighed.                   |
|                          | Undtagelse: Drone reagerer ikke                                   |
|                          |                                                                   |

| Normalforløb 6:   | 1. Bruger trykker på højre-knap    |
|-------------------|------------------------------------|
| Roter til højre   | 2. Drone drejer til højre.         |
|                   | Undtagelse: Drone reagerer ikke    |
|                   |                                    |
| Normalforløb 7:   | 1. Bruger trykker på venstre-knap  |
| Roter til venstre | 2. Drone drejer til venstre.       |
|                   | Undtagelse: Drone reagerer ikke    |
|                   |                                    |
| Normalforløb 8:   | 1. Bruger trykker på fremad-knap   |
| Flyv fremad       | 2. Drone flyver fremad.            |
|                   | Undtagelse: Drone reagerer ikke    |
|                   |                                    |
| Undtagelser       | 2. Undtagelse: Drone reagerer ikke |
|                   | • Drone forbliver på jorden.       |
|                   |                                    |

#### 3.0.4 Use Case 3

| Use Case: 3              | []Sonaradvarsel.                                         |
|--------------------------|----------------------------------------------------------|
| Mål:                     | Drone vender sig væk fra registreret udfordring.         |
| Initiering:              | Use Case initieres af drone.                             |
| Startbetingelser:        | UC 1 er kørt og dronen er i luften                       |
| Slutbetingelser ved suc- | Dronens kan ikke længere se en udfordring for tæt på.    |
| ces:                     |                                                          |
| Slutbetingelser ved und- | Dronen flyver ind i objekt.                              |
| tagelser:                |                                                          |
| Normalforløb             | 1. Drone registrer objekt inden for tilladt afstand.     |
|                          | 2. Drone stopper i luften og roterer for at undgå dette. |
|                          | Undtagelse: Drone stopper ikke                           |
|                          |                                                          |

| Undtagelser | 2. Undtagelse: Drone stopper ikke |
|-------------|-----------------------------------|
|             | Drone flyver ind i objekt.        |
|             |                                   |

#### 3.0.5 Use Case 4

| Use Case: 4              | []Maks. spin stop.                                                  |
|--------------------------|---------------------------------------------------------------------|
| Mål:                     | Dronens propeller stopper.                                          |
| Initiering:              | Use Case initieres af drone.                                        |
| Startbetingelser:        | UC 1 er kørt og dronen er i luften.                                 |
| Slutbetingelser ved suc- | Dronens er på jorden.                                               |
| ces:                     |                                                                     |
| Slutbetingelser ved und- | Ingen.                                                              |
| tagelser:                |                                                                     |
| Normalforløb             | 1. Dronen registrerer én af sine motorer flyver med for høj hastig- |
|                          | hed.                                                                |
|                          | 2. Drone slukker for sine motorer.                                  |
|                          |                                                                     |

## 3.1 Systemets begrænsninger

- Dronen flyver ikke nødvendigvis nedad ved tryk på "ned".
- Dronen flyver ikke nødvendigvis opad ved tryk på "op".

# Eksterne grænseflader

4.1 Brugergrænseflade

1.

## 4.2 Hardware-grænseflade

Måske AA-batterier?

<sup>&</sup>lt;sup>1</sup>FiXme Note: RBK skal lave 3D-skitse

# Krav til ydelse

Følgende er krav til dronen og styringen af denne:

- Drone kan flyve i minimum 10 minutter.
- Drone skal kunne 25  $\frac{cm}{s}$ .

## Kvalitetsfaktorer

 $Kvalitets faktorer\ til\ systemet^1$ 

<sup>&</sup>lt;sup>1</sup>FiXme Note: Vi ved ikke hvad der skal være her

## Myndighedskrav

Regler for flyvning med drone gælder følgende:

- Flyvningen må ikke udsætte andres liv og ejendom for fare [1, s. 1].
- Flyvning skal foregå mindst 5 km fra banerne på en offentlig flyveplads og mindst 8 km fra banerne på en militærflyvestation [1, s. 1].
- Afstanden til bymæssig bebyggelse og større offentlig vej skal være mindst 150 m [1, s. 1].
- Flyvehøjden må højst være 100 m over terræn [1, s. 2].
- Tæt bebyggede områder, (bl.a. sommerhusområder og beboede campingpladser), samt områder, hvor et større antal mennesker er samlet i fri luft, må ikke overflyves [1, s. 2].
- Særligt følsomme naturområder må ikke overflyves [1, s. 2].

# Litteratur

[1] S. Luftfartsvæsen, Bestemmelser om luftfart med ubemandede luftfartøjer, som ikke vejer over 25 kg.