开关型 2/3/4 节锂离子/锂聚合物充电管理芯片

1、HB6295 功能简述

1.1、特性

● 适用于 2、3、4 节锂离子/锂聚合物高效率充电器设计

- 0.5%的充电电压控制精度
- 动态功率管理
- 恒压充电电压值可通过外接电阻微调
- 智能电池检测
- 外置功率 MOSFET
- 开关频率 400KHz
- 可编程充电电流控制,最大充电电流可达 5A
- 98%最大占空比
- 高达 94%的电源转换效率
- 防反向保护电路可防止电池电流倒灌
- NTC 热敏接口监测电池温度
- LED 充电状态指示
- 输入管脚最大耐压 28V
- 工作环境温度范围: -20℃~70℃
- TSSOP24/QFN-24 封装形式

1.2、应用

- 笔记本电脑
- 掌上电脑
- 医疗电子等手持设备
- 便携式设备
- 锂离子电池组
- 移动电源

1.3、概述

HB6295 为开关型 2、3、4 节锂离子/锂聚合物电池充电管理芯片,非常适合于便携式设备的充电管理应用。HB6295 外置功率 MOSFET、高精度电压和电流调节器、预充、充电状态指示和充电截止等功能于一体,采用TSS0P24/QFN-24 封装形式。HB6295 对电池充电分为三个阶段: 预充(Pre-charge)、恒流(CC/Constant Current)、恒压(CV/Constant Voltage) 过程,恒流充电电流通过外部电阻决定,最大充电电流为 5A. HB6295 集成最大输入电流限制、短路保护,确保充电芯片安全工作. HB6295 集成 NTC 热敏电阻接口,可以采集、处理电池的温度信息,保证充电电池的安全工作.

2、HB6295 应用电路

图 2.1、HB6295 应用示意图

3、管脚定义

图 3.1.1、HB6295 管脚分布图

表 3.1.1、HB6295 管脚描述

序号	符号	I/0		. 1. 1、1100295 自 14	描述
		-, -). I. I. M. H. M. Nert-I	d.	加 处
1	CELL	Ι	充电电池节数调整	と	
2	REF42	0	参考电平		
3	ISETIN	Ι	充电电流调整,和	可用电阻分压使输入	\电压在0到4.2v之间,对充电电流进行调整
4	AGND	Ι	模拟地		
5	CS	Ι	电流检测正端输入	\	
6	BATT	Ι	电池电压检测,时	电流检测负端输入	
7	VTRIM	Ι	恒压充电电压微证	問	
8	CSAV	0	平均充电电流检测	则	
9	CCI	0	充电电流调整环路	各补偿管脚	
10	CCS	0	输入电流调整环路	各补偿管脚	
11	CCV	0	电压调整环补偿管		
12	THM	Ι	电池温度检测输力	\ 管脚	
13	SLEEP	0	输入电压低于电池	也电压,输出高阻	
14&15	STAT1	0	(STAT1)绿	(STAT2)红	描述
	STAT2	0	灭	灭	没有充电或者无电池
			灭	亮	正在充电
			亮	灭	充电完成
			灭	脉冲 1(0.5Hz)	故障状态

			灭	脉冲 2(2.0Hz)	电池温度异常
16	TIMER	0	外接电容到地,双	対充电时间进行控制	il
17	PGND	Ι	功率地		
18	DLO	0	同步整流管驱动		
19	DHI	0	高端 PMOS 管驱动		
20	DCIN-6	0	DHI 驱动低电平,	比输入电压低 6v,	对 PMOS 管栅极电压进行限制
21	CSSN	Ι	输入电流检测负率	湍输 入	
22	CSSP	Ι	输入电流检测正率		
23	DCIN	Ι	电源输入		
24	V55	0	外接稳压电容,区	内部逻辑电源	

5、HB6295 电气特性和推荐工作条件

表 5.1.1、HB6295 推荐工作条件

参数	最小值	典型值	最大值	单位	备注
电源电压	9	12	21	V	/
环境温度	-20		70	$^{\circ}$ C	/

6、HB6295 性能参数

表 6.1.1、HB6295 性能参数(Ta=25℃)

参数	符号	测试条件	最小	典型	最大	单位
输入电流	<u> </u>		·		·	·
DCIN 供电电流	Idcin				5	mA
		V _I (BAT) = 8. 4V		15		
SLEEP 模式电流	Islp	V _I (BAT)=12.6V		30		uA
		V _{I (BAT)} =16.8V		45		
电压调整		l				
输出电压	Voreg	/		4. 2		V/cell
输出电压精度			-0.5%		+0.5%	
 充电电流		l				
恒流充电电流	Ichg		200		2000	mA
检流电阻 Rsns 两端电压	Vireg	Visetin=4.2V		200		mV
预充电电流		l				
		2 节电池		6		V
预充电转快速充电阈值电压	VLOWV	3 节电池		9		
		4 节电池		12		V
预充电电流范围	IPRECHG		40		400	mA
		I	I.	I		l
充电截止电流范围	Iterm		25		250	mA
截止电流系数	ITERM/ICHG			1/8		mV
————————————— 再充电电压	1		I.	<u> </u>	1	1
再充电阈值电压	Vrch			4.1		V/cell
TIMER 输入	1		I.	<u> </u>	1	1
TIMER 系数	Ktimer			4.66		H/10nF
Ctimer 电容	CTIMER			10		nF
PWM	1		I.	<u> </u>	1	1
振荡频率				400		KHz
最大占空比	Dmax				98%	
最小占空比	Dmin		1%			
电池检测	1		I.	<u> </u>	1	1
时间错误时的电池检测电流	IDETECT			5		mA
放电电流	Idischarg			1		mA
放电时间	TDISCHARG			1		S
唤醒电流	Iwake		5			mA
唤醒时间	Twake			0. 5		S
保护	1	<u>I</u>	I	1	1	1
过压保护阈值				117		% Vored
电流限值				3. 5		A
短路电压阈值				2		V/cell
短路电流				30		mA

7、工作流程图

图 7.1、充电流程图

8、HB6295 功能描述

8.1、锂电池充电介绍

图 8.1、锂电池充电曲线示意图

锂电池充电过程主要分为三个阶段: 预充、恒流充电和恒压充电. 当电池电压过低,需要小电流对电池进行唤醒充电,恢复深度放电的电池,即电池预充电阶段. 恒流充电阶段充电电流保持恒定,同时电池电压不断上升. 当电池电压达到一定设定的恒压值时进入恒压充电阶段,此时充电电流不断下降,直到电流小到充电截至电流时停止充电,在这个过程中电压会略有上升.

8.2、预充电电流

上电后,如果电池电压低于 VLOWV 阈值电压,HB6295 启动一个预充电过程对电池充电,预充电电流为 IPRECHG. 预充电时间(tprechg)为总充电时间的 1/8. 当 TTC 接地时,总的充电时间没有限制,预充电时间 Tprechg 固定为40 分钟. 如果充电时间超过 Tprechg,电池电压仍低于 VLOWV,HB6295 停止充电并指示错误,引脚 RED 输出一个频率为0.5Hz 的脉冲. 上电复位和更换电池都将能退出错误状态.

预充电电流为恒流充电电流的 1/5.

8.3、恒流充电电流设定

电池充电的电流值 I_{CHG} , 由外部电流检测电阻 R_{SNS} 和管脚 ISETIN 的输入电压共同设定. 设置充电电流,我们首先选择 R_{SNS} , R_{SNS} 太大会降低充电效率,太小则影响检测精度,一般取 0.1Ω . 确定了 R_{SNS} 之后,可以通过下面的公式计算恒流充电电流.

$$I_{CHG} = \frac{V_{ISETIN}}{20 \times R_{SNS}}$$

如确定 R_{SNS} 为 0.1Ω ,当管脚 ISETIN 接 4.2V 参考电压时,此时恒流充电电流为 2A.

8.4、充电电压设定

电池电压低于 3.0V (双节电池低于 6V) 时进入预充电模式:

充电截至电压 4.2V/CELL;

当充电完成后,如果电池由于电流泄漏电压降到 4.1V/CELL 以下时,进入再充电周期.

8.5、充电时间限制

HB6295 内部对预充电和总充电时间进行限制,总的充电时间限制:

$$T_{CHARGE} = C_{TTC} \cdot K_{TTC}$$

其中, CTTC 为引脚 TTC 接的电容值, KTTC 为系数.

当外接 10nF 电容时,充电时间为 4.66 小时,如果要延长限制时间,则可以按比例增加 TTC 脚的外接电容. 预充电的时间为总充电时间的 1/8,如果在这个时间里面相应的充电周期没有完成,芯片进入 FAULT 状态. 管脚RED 输出脉冲指示.

8.6、充电截止电流

在恒压阶段,充电电流值减少到 ITEM 时,HB6295 内部产生 EOC 信号,充电截止.充电截止电流可通过管脚 CSAV 外接电阻设置:

$$I_{TERM} = \frac{480}{R_{SNS} \times R_{CSAV}}$$

8.7、电池检测

对于电池包可移除的应用场合,HB6295 提供一种智能检测电池包的方案.

图 8.2、电池检测流程图

充电完成后,电池电压检测脚的电压保持在再充电阈值电压 VRCH 以上.由于电池放电或者是电池移除,导致电池电压检测脚的电压低于再充电阈值电压时,HB6298A 启动电池检测过程,如图 8.2 所示.该检测过程,先使能一个周期时间为 TDETECT 的检测电流(IDETECT),并检查电池电压是否低于短路阈值电压(VSHORT).如果电池电压高于 VSHOTR,则检测到电池,启动充电过程,否则,说明电池不在,启动下一步检测过程,使能一个周期时间为 TWAKE 的唤醒电流(IWAKE),并检查电池电压是否低于再充电阈值电压.如果此时电池电压低于再充电阈值电压,则说明电池在,启动充电过程,否则,说明电池不在,则说明电池在,启动充电过程,否则,说明电池不在,再一次执行无电池检测的第一步.

图 8.3、电池检测波形

无电池检测的波形如上图所示, TDISCHARGE 为 1 秒, TWAKE 为 0.5 秒.

8.9、睡眠模式

当输入电压小于电池电压时,HB6295 进入睡眠模式. 芯片停止工作.

8.10、参考电压

HB6295 通过管脚 V55、REF42 产生两组电压,管脚 V55 的电压为 5.5V 左右,为内部低压电路提供电源; REF42 为 4.2V 参考电压,提供基准电压.

8.11、充电状态指示

(STAT1)绿	(STAT2)红	描述
灭	灭	没有充电、无电池或睡眠模式
灭	亮	正在充电
亮	灭	充电完成
灭	脉冲 1 (0.5HZ)	故障状态(预充电超时,总充电时间超时,过电压等)
灭	脉冲 2(2.0HZ)	电池温度异常

8.12、电池过温保护

通过 NTC 热敏电阻检测电池温度,NTC 阻值随着电池温度变化而变化,因此当 NTC 与正常电阻串联对 VREF参考电压进行分压,分压值会随着 NTC 阻值的变化而变化,这个电压通过管脚 TEMP 反馈到芯片内部进行控制.如下图所示,R6 的阻值等于 NTC 电阻在 52℃时阻值的20.5 倍.当电池温度高于 52℃时,RED 管脚输出一个频率为 2Hz 的脉冲指示信号.如果不需要对电池进行过温检测,则可以把 NTC 替换为阻值为 R6 的 1/2 的电阻. (不需要低温保护)

图 8.4、NTC 连接示意图

8.14、超时错误恢复

由工作流程图所示, HB6295 提供充电超时错误(包括预充电超时和总充电时间超时)的恢复机制. 总结如下:

情况 1: VBAT 电压大于再充电阈值电压并发生超时错误.

恢复机制:由于电池对负载放电、自放电或者是电池移除,使得电池检测电压降到再充电阈值电压以下.此时,HB6295 清除错误状态,并进入无电池检测过程.此外,上电复位可以清除这种超时错误状态.

情况 2: 充电电压低于再充电阈值电压并发生超时错误.

恢复机制:发生这种情况时,HB6295 使能一个

IDETECT 电流. 这个小电流可用来检测电池在不在. 只要电池电压低于再充电电压, 该电流一直保持. 如果电池电压高于再充电电压, 那么 HB6295 取消 IDETECT 电流, 并执行情况 1 的恢复机制. 就是一旦电池电压又低于再充电阈值电压时, HB6295 清除超时错误, 并进入无电池检测过程. 上电复位可以清除这种超时错误状态.

8.15、输出过电压保护

HB6295 内置过电压保护功能. 当电池电压过高时,比如说电池突然移除时产生的过电压,该功能可以保护器件本身和其他元器件. 当检测到过电压时,该功能立即关闭 PWM,并指示错误. 当电压检测电压低于再充电阈值电压时,该错误解除.

8.16、电感选择

为了保证系统稳定性,在预充电和恒电流充电阶段,系统需要保证工作在连续模式(CCM).根据电感电流 公式:

$$\Delta I = \frac{1}{L \times FS} - (\frac{V_{IN} - V_{BAT}}{V_{IN}}) \times V_{BAT}$$

其中 AI 为电感纹波、FS 为开关频率,为了保证在 预充电和恒流充电均处于 CCM 模式, AI 取预充电电流 值,即为恒流充电的 1/5, 根据输入电压要求可以计算出 电感值.

9、HB6295 封装

图 9.1、TSSOP-24 封装图示一

图 9.2、TSSOP-24 封装图示二

Cremba 1	Dimensions 1	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
D	7. 700	7. 900	0.303	0.311		
E	4. 300	4. 500	0.169	0. 177		
b	0. 190	0.300	0.007	0.012		
С	0.090	0. 200	0.004	0.008		
E1	6. 250	6. 550	0. 246	0. 258		
A		1. 200		0.047		
A2	0.800	1.000	0.031	0.039		
A1	0.050	0. 150	0.002	0.006		
e	0.65 (BSC)		0. 026 (BSC)			
L	0.500	0.700	0.020	0.028		
Н	0.25(TYP)		0.01(TYP)			
θ	1 °	7°	1 °	7°		

表 9.1、封装尺寸表