INTRO. TO COMP. ENG. CHAPTER XII-1 SINGLE CYCLE DPU **•CHAPTER XII**

CHAPTER XII

SINGLE CYCLE DATAPATH UNIT

READ SINGLE CYCLE DATAPATH FREE-DOC ON COURSE WEBPAGE

INTRO. TO COMP. ENG. CHAPTER XII-2 SINGLE CYCLE DPU

SINGLE CYCLE DPU

INTRODUCTION

•SINGLE CYCLE DPU
-INTRODUCTION

- From the previous chapter, we now have a number of datapath elements such as
 - Register file (RF)
 - Adder/subtractor unit (AU)
 - Logical unit (**LU**)
 - Shift unit (SU)
- The question now is how to take these datapath elements and form a datapath unit (DPU).
- The DPU that we will focus on in this chapter is a basic single cycle DPU using a triple bus internal architecture.

INTRO. TO COMP. ENG. CHAPTER XII-3 SINGLE CYCLE DPU

SINGLE CYCLE DPU

DATAPATH ELEMENTS

•SINGLE CYCLE DPU
-INTRODUCTION

For our examples, we will use the following 32-bit type DPU elements.

- These allow us to design a 32-bit word computer with 32 registers.
- Of course, other word sizes could be used for other designs.

INTRO. TO COMP. ENG. CHAPTER XII-4 SINGLE CYCLE DPU

SINGLE CYCLE DPU

ADD/SUBTRACT MACHINE

- •SINGLE CYCLE DPU
 -INTRODUCTION
 -DATAPATH ELEMENTS
- Below is a simple datapath with a register file and adder/subtractor.

Important:

It only takes 1 clock cycle to add/subtract and store the result.

This structure is also known as a triple bus internal DPU architecture.

INTRO. TO COMP. ENG. CHAPTER XII-5 SINGLE CYCLE DPU

SINGLE CYCLE CPU

ADD/SUBTRACT MACHINE

- •SINGLE CYCLE DPU
 -INTRODUCTION
 - -DATAPATH ELEMENTS
 - -ADD/SUBTRACT MACHINE
- This simple add/subtract machine DPU allows us to add or subtract values in our registers and store the result back into another register.
 - For instance, say that we wanted to **add** the contents of register **R1** with register **R2** and store the result back in register **R3**.

$$R3 = R1 + R2$$

- What control signals are required?
 - $\overline{a}/s = 0$ and $\overline{en} = 1$ for AU.
 - $X_{ra} = 00001$, $Y_{ra} = 00010$, $Z_{wa} = 00011$, and rwe = 1 for RF.
- These control signals are applied at the beginning of a clock cycle. The signals then propagate forming the sum at the output of the **AU**. At the end of the clock cycle, the sum (on **Z bus**) is clocked into **R3**.

INTRO. TO COMP. ENG. CHAPTER XII-6 SINGLE CYCLE DPU

SINGLE CYCLE CPU

ADD/SUBTRACT MACHINE

- •SINGLE CYCLE DPU
 - -INTRODUCTION
 - -DATAPATH ELEMENTS
 - -ADD/SUBTRACT MACHINE
- What if instead we wanted to perform the following operation.

$$R2 = R1 + R2$$

- The control signals required are
 - $\bar{a}/s = 0$ and en = 1 for AU.
 - $X_{ra} = 00001$, $Y_{ra} = 00010$, $Z_{wa} = 00010$, and rwe = 1 for RF.
- What is the result of this if the current value of R1=0x00000001 and R2=0x00000003?
 - The register R2 would be updated at the end of the clock cycle with the value 0x0000004.
- Remember, the current value of **R2** is put on the **X** or **Y** bus, and it is only at the **END** of the clock cycle that the contents of **R2** get changed.

INTRO. TO COMP. ENG. CHAPTER XII-7 SINGLE CYCLE DPU

SINGLE CYCLE DPU

BASIC SINGLE CYCLE DPU

- •SINGLE CYCLE DPU
- -INTRODUCTION
 - -DATAPATH ELEMENTS
 - -ADD/SUBTRACT MACHINE
- A more useful single cycle datapath can be as follows.

• This structure is still a **triple bus internal DPU architecture**.

INTRO. TO COMP. ENG. CHAPTER XII-8 SINGLE CYCLE DPU

SINGLE CYCLE CPU

COMPUTATION EXAMPLES

- •SINGLE CYCLE DPU
 - -DATAPATH ELEMENTS
 - -ADD/SUBTRACT MACHINE
 - -BASIC SINGLE CYCLE DPU
- How does this change the additions we were doign earlier?
 - Say we want to again perform the following addition.

$$R3 = R1 + R2$$

- The control signals we would need are
 - $\bar{a}/s = 0$ and en = 1 for AU.
 - en = 0 for LU.
 - en = 0 for SU.
 - $X_{ra} = 00001$, $Y_{ra} = 00010$, $Z_{wa} = 00011$, and rwe = 1 for RF.
- Notice that we use the same control signals as before, but now include signals to disable the LU and SU during this addition clock cycle.

INTRO. TO COMP. ENG. CHAPTER XII-9 SINGLE CYCLE DPU

SINGLE CYCLE DPU

COMPUTATION EXAMPLES

- •SINGLE CYCLE DPU
 - -ADD/SUBTRACT MACHINE
 - -BASIC SINGLE CYCLE DPU
 - -COMPUTATION EXAMPLES
- Another operation we might want to do with this DPU is perform a logical shift of the contents of R15 by a distance indicated in R6.
 - The control signals required are
 - en = 0 for AU.
 - en = 0 for LU.
 - en = 1 and ST = 00 for SU.
 - $X_{ra} = 01111$, $Y_{ra} = 00110$, $Z_{wa} = 01111$, and rwe = 1 for RF.
 - Notice that this set of control signals disables the AU and LU while enabling the SU.
 - The SU is set to do a logical shift with ST = 00.
 - The distance of the shift is according to what is in R6.
 - The result is stored back in R15 with Z_{wa} = 01111 and rwe = 1 for RF.

INTRO. TO COMP. ENG. CHAPTER XII-10 SINGLE CYCLE DPU

SINGLE CYCLE DPU

ARITHMETIC LOGIC UNIT

- **•SINGLE CYCLE DPU**
 - -ADD/SUBTRACT MACHINE
 - -BASIC SINGLE CYCLE DPU
 - -COMPUTATION EXAMPLES
- Since only one of **AU**, **SU**, or **LU** will be active at a time in this architecture, we will combine to form an **arithmetic logic unit** (ALU).

INTRO. TO COMP. ENG. CHAPTER XII-11 SINGLE CYCLE DPU

SINGLE CYCLE DPU

SINGLE CYCLE DPU W/ALU

- **•SINGLE CYCLE DPU**
 - -BASIC SINGLE CYCLE DPU
 - -COMPUTATION EXAMPLES
 - -ARITHMETIC LOGIC UNIT
- Using our ALU, the DPU can be redrawn as follows.

• This structure is still a **triple bus internal DPU architecture**.

INTRO. TO COMP. ENG. CHAPTER XII-12 SINGLE CYCLE DPU

SINGLE CYCLE DPU

IMMEDIATE REGISTER

- **•SINGLE CYCLE DPU**
 - -COMPUTATION EXAMPLES
 - -ARITHMETIC LOGIC UNIT
 - -SINGLE CYCLE DPU W/ALU
- Many designs also include some form of immediate register.

Allows for operations such as R28 = R5 + Immediate.

INTRO. TO COMP. ENG. CHAPTER XII-13 SINGLE CYCLE DPU

SINGLE CYCLE DPU

IMMEDIATE REGISTER

- •SINGLE CYCLE DPU
 - -ARITHMETIC LOGIC UNIT
 - -SINGLE CYCLE DPU W/ALU
 - -IMMEDIATE REGISTER

- The im_en line does two things:
 - When **0**, **im_en** controls
 - immediate register outputs to go to high impedence so as NOT to affect Y bus.
 - register file Y data out to output corresponding register value.
 - When 1, im_en controls
 - **immediate register** to output register value to **Y bus**.
 - register file Y data out to go to high impedence so as NOT to affect Y bus.
- The im_va lines pass a value to the immediate register.

INTRO. TO COMP. ENG. CHAPTER XII-14 SINGLE CYCLE DPU

SINGLE CYCLE DPU

INCLUDING MEMORY

•SINGLE CYCLE DPU

- -ARITHMETIC LOGIC UNIT
- -SINGLE CYCLE DPU W/ALU
- -IMMEDIATE REGISTER
- 32x32 bits is not sufficient memory for most computers.
- We can include external memory (SRAM, DRAM, etc.) as follows.

INTRO. TO COMP. ENG. CHAPTER XII-15 SINGLE CYCLE DPU

SINGLE CYCLE DPU

INCLUDING MEMORY

•SINGLE CYCLE DPU

- -SINGLE CYCLE DPU W/ALU
- -IMMEDIATE REGISTER
- -INCLUDING MEMORY

- The included has the following characteristics
 - 32 address lines
 - 32 data lines
 - a read/write line
 - a chip select or memery select line
- Two transmission gates block the bidirectional data lines for the memory.
 - Notice that if st_en is high, then we can potentially write to the memory.
 - Notice that if Id_en is high, then we can potentially read from the memory.

INTRO. TO COMP. ENG. CHAPTER XII-16 SINGLE CYCLE DPU

SINGLE CYCLE DPU

READING FROM MEMORY

- SINGLE CYCLE DPU
 - -SINGLE CYCLE DPU W/ALU
 - -IMMEDIATE REGISTER
 - -INCLUDING MEMORY
- We wish to be able to read and write from our memory.
- A sample read/load operation can be expressed as follows

$$R4 = M[R7]$$

- This operation uses the value in R7 as the address to the memory and reads the value at that address in the memory to R4.
- What control signals are required?
 - en = 0 for ALU.
 - $X_{ra} = 00111$, $Y_{ra} = XXXXXX$, $Z_{wa} = 00100$, and rwe = 1 for RF.
 - st_en = 0 and Id_en = 1
 - ~r/w = r and msel = 1

INTRO. TO COMP. ENG. CHAPTER XII-17 SINGLE CYCLE DPU

SINGLE CYCLE DPU

WRITING TO MEMORY

- •SINGLE CYCLE DPU
 - -IMMEDIATE REGISTER
 - -INCLUDING MEMORY
 - -READING FROM MEMORY
- A sample write/store operation can be expressed as follows

$$M[R5] = R9$$

- This operation uses the value in R5 as the address to the memory and write the value in R9 to that address in the memory.
- What control signals are required?
 - en = 0 for ALU.
 - $X_{ra} = 00101$, $Y_{ra} = 01001$, $Z_{wa} = XXXXX$, and rwe = 0 for RF.
 - st_en = 1 and Id_en = 0
 - ~r/w = w and msel = 1

INTRO. TO COMP. ENG. CHAPTER XII-18 SINGLE CYCLE DPU

SINGLE CYCLE DPU

MICROCODE

•SINGLE CYCLE DPU

- -INCLUDING MEMORY
- -READING FROM MEMORY
- -WRITING TO MEMORY
- Microcode in a processor are all of the control signals required to execute an operation for a clock cycle.
- We have actually looked at examples of a microcode operation when we considered various operations such as

$$R3 = R1 + R2$$

or

$$M[R5] = R9$$

 Later we will talk about macrocode which are longer operations consisting of many microcode operation over a number of clock cycles.