

Number Work with Factors.

A. $4 \times 25 = 100$. We can use this fact when multiplying by 25. Dividing by 4 will tell us how many hundreds we have.

E.g. 1. $24 \times 25 = 6 \text{ hundreds} = \underline{600}$. E.g. 2. $17 \times 25 = 4^{1}/_{4} \text{ hundreds} = \underline{425}$.

Use this method to calculate the following:

- 12 x 25 28 x 25 36 x 25 1). 2). 3). 16 x 25 4). 44 x 25 5). 52 x 25 7). 64 x 25 84 x 25 56 x 25 10). 76 x 25 6). 8). 9). 11). 92 x 25 12). 48 x 25 13). 96 x 25 14). 72 x 25 15). 68 x 25 17). 13 x 25 16). 21 x 25 18). 37 x 25 19). 18 x 25 20). 34 x 25 21). 45 x 25 22). 38 x 25 23). 19 x 25 24). 35 x 25 25). 47 x 25 26). 61 x 25 27). 82 x 25 28). 55 x 25 29). 78 x 25 30). 91 x 25
- B. We can use this skill when multiplying by multiples of 25.

E.g. 1. $28 \times 75 = 28 \times 25 \times 3 = 700 \times 3 = 2100$. E.g. 2. $21 \times 125 = 21 \times 25 \times 5 = 525 \times 5 = 2625$.

Use this method to calculate the following:

- 1). 40 x 75 2). 36 x 75 3). 48 x 75 52 x 75 5). 64 x 75 32 x 75 88 x 75 56 x 75 72 x 75 10). 96 x 75 6). 7). 8). 9). 11). 16 x 125 12). 28 x 125 13). 44 x 125 14). 84 x 125 15). 92 x 125 16). 24 x 175 17). 12 x 175 18). 68 x 175 19). 32 x 175 20). 76 x 175 21). 24 x 225 22). 44 x 225 23). 16 x 275 24). 12 x 325 25). 28 x 375
- C. We can find square roots of perfect squares by pairing up prime factors.

E.g. $\sqrt{144}$. Find the prime factors. $\begin{pmatrix} 2 \\ 2 \\ 72 \\ 2 \end{pmatrix}$

Now pair up the prime factors.

$$144 = 2x2 \times 2x2 \times 3x3$$
So $\sqrt{144} = \sqrt{2x2 \times 2x2 \times 3x3}$

Use this method to calculate these questions.

 $= 2 \times 2 \times 3 = 12.$

(You may know the answers to some questions, but use this method anyway).

1).	81	2).	196	3).	625	4).	484	5).	1024
6).	324	7).	784	8).	256	9).	1444	10).	441
11).	225	12).	729	13).	576	14).	676	15).	1225
16).	2116	17).	1089	18).	1936	19).	4096	20).	6561
Difficult:									
21).	3136	22).	3025	23).	5184	24).	9801	25).	8281

Does $\sqrt{49} + \sqrt{36} = \sqrt{49 + 36}$? D. Investigate for other numbers.

Now triple up the prime factors.

We can find cube roots of perfect cubes by tripling up prime factors. E.

E.g.

 $216 = 2x2x2 \times 3x3x3$

Find the prime factors.

So
$$\sqrt{216} = \sqrt{2x2x2 \times 3x3x3}$$

= $2 \times 3 = 6$.

Use this method to calculate these questions.

(You may know the answers to some questions, but use this method anyway).

1).
$$\sqrt{729}$$

2).
$$\sqrt{512}$$

3).
$$\sqrt{4096}$$

4).
$$\sqrt{10648}$$

1).
$$\sqrt[3]{729}$$
 2). $\sqrt[3]{512}$ 3). $\sqrt[3]{4096}$ 4). $\sqrt[3]{10648}$ 5). $\sqrt[3]{1728}$

6).
$$\sqrt{5832}$$

7).
$$\sqrt{2744}$$

6).
$$\sqrt{5832}$$
 7). $\sqrt{2744}$ 8). $\sqrt{17576}$ 9). $\sqrt{3375}$ 10). $\sqrt{32768}$

$$\sqrt{3375}$$

2

2

3

5

10).
$$\sqrt{32768}$$

11).
$$\sqrt{13824}$$

12).
$$\sqrt{2195}$$
2

13).
$$\sqrt{926}$$

14).
$$\sqrt{15625}$$

11).
$$\sqrt{13824}$$
 12). $\sqrt{21952}$ 13). $\sqrt{9261}$ 14). $\sqrt{15625}$ 15). $\sqrt{39304}$

420

210

105

35

7

- F. Prime factors can help find Highest Common Factors and Lowest Common Multiples.
 - Find the HCF of 480 and 420. E.g. 1. Find the prime factors.

The HCF is
$$2 \times 2 \times 3 = 12$$
.

Use this method to find the HCF of

- 1). 56 and 42
- 2). 36 and 54
- 5). 70 and 98
- 90 and 165 6).
- 9). 192 and 224 13). 210 and 330

E.g. 2.

10). 264 and 154 14). 234 and 390

Find the LCM of 8 and 12.

Find the prime factors.

- 105 and 75 3).

480

240

120

60

30

15

5

2

2

2

2

2

3

5

- 11). 196 and 252
- 126 and 72 7).
- 15). 336 and 378
- 64 and 80 4).

12

6

3 1

- 8). 105 and 189
- 12). 360 and 288 16). 560 and 315
- 2 4 2 2 2

Use this method to find the LCM of

17). 6 and 9

The LCM is

18). 20 and 8

 $2 \times 2 \times 2 \times 3 = 24$.

- 19). 6 and 15
- 20). 16 and 12

- 21). 12 and 15 25). 36 and 48
- 22). 18 and 30 26). 20 and 24
- 23). 15 and 24 27). 42 and 48
- 24). 9 and 16

- 29). 56 and 32
- 30). 48 and 88
- 31). 120 and 96
- 28). 36 and 28 32). 124 and 160