

电阻、电感与电容串联的交流电路相量模型

电阻、电感与电容串联的交流电路如图 1 中所示。设电流 $i = I_m \sin \omega t$ 为参考正弦量,则电压

$$u = U_m \sin(\omega t + \varphi)$$

若用相量图表示电流与各电压的关系,将会更直观。

图 2 是串联交流电路电流与各个电压的相量图。

图 1 电阻、电感与电容串联的交流电路

图 2 电流与电压的相量图

相量图中取 \dot{I} 为参考相量,即设 \dot{I} 初相位为零,画在水平位置上。 u_R 与 \dot{i} 同相, u_L 超前 \dot{i} 90°,因此, \dot{U}_L 与 \dot{U}_C 相位差 180°。若 $U_L>U_C$,则相量 \dot{U}_R 、 \dot{U}_L 、 \dot{U}_C 相加后,就可得出总电压相量 \dot{U} ,如图 2 所示。

由相量图可见, \dot{U}_R 、 $\dot{U}_L + \dot{U}_L$ 、 \dot{U} 三个相量组成一个直角三角形,称电压三角形,如图 3 所示。由于 $\dot{U}_R = \dot{I}R$, $\dot{U}_L + \dot{U}_C = j\dot{I}(X_L - X_C)$, $\dot{U} = \dot{I}Z$,所以当电压三角形的每个直角边都除以 \dot{I} ,则 \dot{R} 、 $(X_L - X_C)$ 、|Z|之间也是一个直角三角形,称为阻抗三角形。它与电压三角形是相似形。由图 4 可见,复阻抗Z的辐角 φ ,也就是电源电压 \dot{U} 和电流 \dot{I} 的相位差角 φ 。因此利用电压三角形和阻抗三角形,计算总电压和电流的有效值以及两者之间的相位差就更简单了,即

$$U = \sqrt{U_R^2 + (U_L - U_C)^2} = I\sqrt{R^2 + (X_L - X_C)^2} = I\sqrt{R^2 + X^2} = I|Z|$$

相位差
$$\varphi = \arctan \frac{X_L - X_C}{R} = \arctan \frac{X}{R}$$

由上分析可知,当电路参数不同时,复阻抗Z的辐角 φ 即总电压 \dot{U} 和电流 \dot{I} 的相位差角有三种不同情况,且形成性质不同的电路,用相量图表示,则更为清晰 直观。

图 3 电压三角形

图 4 阻抗三角形