# Симуляцийн аргууд хичээлийн бие даалтын ажил IIE/RA Contest Problem 3: Sally Model's SM Pizza Shop

#### Г.Махгал

МУИС – ХШУИС – Хэрэглээний Математикийн Тэнхим

¥ 2017/1/3



## Удиртгал

- ► IIE/RA Contest Problem 3: Sally Model's SM Pizza Shop бодлогыг авч үзэх болно.
- ▶ Бодлогыг програмчлалын R хэл<sup>1</sup> дээр бодсон.
- ▶ Хугацааны нэгжийг минутаар авсан.
- ▶ Энэхүү слайд болон бодлогын өгүүлбэр, холбогдох өгөгдөл, R хэл дээрх код зэргийг https://github.com/galaamn/source-code-on-statistics/tree/ master/Simulation/Example/Pizza%20Shop хаягаар интернэтэд байрлуулсан.
- Цаашид зуухны хэсгийн загварчлалыг сайжруулах шаардлагатай.



https://en.wikipedia.org/wiki/R\_(programming\_language)

## Бодлого

### Пицца хийж борлуулдаг дэлгүүр

- Өгөгдөхүүн
  - ▶ Ихдээ 3 хүн ажиллах боломжтой пицца бэлдэх ширээ
  - ▶ Гурван төрлийн сонголттой<sup>2</sup> нэг зуух
  - Хүргэлтийн ажилчид
- Бусад
  - Захиалгын эрчим
  - Захиалга дахь пиццаны тоо болон хэмжээ тус бүрийн тархалтууд<sup>3</sup>
  - Пицца бэлдэх ажлын шат дамжлагууд, тэдгээрийн үргэлжлэх хугацааны тархалт
  - Пиццаг хэрчиж савлахад зарцуулагдах хугацааны тархалт
  - Хүргэлтийн хугацааны тархалт
- Олох зүйл
  - Пицца бэлдэх ширээнд ажиллуулах хүний тоо
  - Зуухны төрөл
  - ▶ Пицца хүргэлтэнд ажиллах хүний тоо

<sup>&</sup>lt;sup>3</sup>эдгээр хувьсагчид дээр хамаарлын талаар ямар нэг зүйл дурдагдаагүй байна



<sup>&</sup>lt;sup>2</sup>оруулах хэсгийн багтаамжаараа ялгагдана

# Санамсаргүй хувьсагчийн загварчлал

### Гурвалжин тархалт<sup>4</sup>



## Урвуу хувиргалтын аргаар

```
rtriangular = function (n, a, c, b) {
  ifelse(
     (u = runif(n)) < (c-a)/(b-a),
     a + sqrt((b-a)*(c-a)*u),
     b - sqrt((b-a)*(b-c)*(1-u))
  )
}</pre>
```



# Санамсаргүй хувьсагчийн загварчлал <sub>Бусад</sub>

- ► Жигд тархалт буюу санамсаргүй тоо R програмын stats багц дахь runif() функц
- ► Тархалтуудын холимог<sup>5</sup>
   Хоёр ширхэг гурвалжин тархалтын холимог<sup>6</sup>
- ▶ Илтгэгч тархалт
   R програмын stats багц дахь rexp() функц<sup>7</sup>



<sup>&</sup>lt;sup>5</sup>composition method

<sup>&</sup>lt;sup>6</sup>хэрчиж савлах хэсэгт

<sup>&</sup>lt;sup>7</sup>захиалга хоорондын хугацааг загварчлахад ашиглагдана

# Загварчлалын үе шатууд

- 1. Захиалга орж ирэх хугацааны эгшинг загварчлах захиалгын эрчимд тохируулан захиалга хоорондын хугацааг тодорхойлно
- 2. Захиалгын зарим мэдээлэл пиццаны тоо ба хэмжээ, захиалгын төрөл (delivery эсвэл carry-out), хүргэлтийн хугацаа
- 3. Пиццаны зарим мэдээлэл пицца нэг бүрийн хэмжээ болон хийхэд зарцуулагдах хугацаа (3 үе шат нэг бүрчлэн)
- 4. Пиццаг бэлдэх ажлыг загварчлах пицца хийх ширээнд ажиллах хүний тооноос (1-ээс 3 хүртэл) хамаарна
- 5. Зуухны хэсгийг загварчлах пицца нэг бүрийн зуухны оруулах хэсэгт нэвтрэх эгшин болон зуухны гаргах хэсэгт шилжих эгшин
- 6. Хэрчиж савлах, захиалгыг гаргах хэсгийг загварчлах IIE\_SM\_3.dat файл дахь өгөгдлийг шинжилж улмаар зохих тархалтын тусламжтайгаар энэ хэсэгт зарцуулагдах хугацааг тодорхойлно
- 7. Хүргэлтийн хэсгийг загварчлах захиалгыг хүргэхэд зарцуулагдах хугацааг тодорхойлно, хүргэлтийн ажилчдын тоо хувьсах боломжтой байх шаардлагатай
- 8. Захиалгыг гүйцэтгэхэд зарцуулсан нийт хугацааг олох

#### Захиалгын тооны зарим статистик үзүүлэлтүүд

Дундаж

```
the.number.of.demands = c()
   for (i in 1:1000) {
     the.number.of.demands = c(the.number.of.demands,
       length(simulate.demands()))
   mean(the.number.of.demands)
   120.303
  энд simulate.demands() — захиалгыг загварчлах функц
Стандарт хазайлт
  sd(the.number.of.demands)
   10.86505
```



## Ашиглагдах код

```
elapsed.time = demand.type = c()
for (i in 1:1000) {
  demands = simulate.demands()
  demands = simulate.count.and.size(demands)
  pizzas = simulate.pizza.making(demands)
  pizzas = switch(the.number.of.person.at.make.table,
   pizza.making.one.person(), pizza.making.two.person(),
   pizza.making.three.person())
  oven(); cut.and.box(); delivery()
  demands$elapsed.time = demands[["delivery.time"]] -
   demands[["time"]]
  elapsed.time = c(elapsed.time, demands[["elapsed.time"]])
  demand.type = c(demand.type, demands[["type"]])
```

# Үр дүн

### Захиалгыг бүрэн гүйцэтгэх хугацааны зарим үзүүлэлт, параметрийн зарим утганд

## Ашиглагдах код

tapply(elapsed.time, demand.type, mean)
tapply(elapsed.time, demand.type, range)

| <b>†</b> 8 | <u>•</u> 9 | <b>₹</b> 010 | delivery |       |        | carry-out |       |        |
|------------|------------|--------------|----------|-------|--------|-----------|-------|--------|
|            |            |              | mean     | min   | max    | mean      | min   | max    |
| 1          | 3          | 7            | 115.02   | 16.31 | 299.16 | 108.42    | 12.59 | 289.28 |
| 2          | 3          | 7            | 39.57    | 15.97 | 112.57 | 32.06     | 12.35 | 101.92 |
| 3          | 1          | 5            | 46.95    | 15.97 | 149.52 | 23.36     | 12.40 | 74.67  |
| 3          | 1          | 6            | 37.09    | 16.16 | 113.10 | 23.56     | 12.38 | 75.37  |
| 3          | 1          | 7            | 32.82    | 15.91 | 86.42  | 23.43     | 12.37 | 71.54  |
| 3          | 3          | 7            | 31.12    | 16.37 | 79.40  | 21.47     | 12.40 | 69.97  |
| 3          | 3          | 8            | 28.96    | 16.04 | 67.95  | 21.24     | 12.38 | 63.03  |

<sup>&</sup>lt;sup>8</sup>Ширээн дэх ажилчдын тоо



<sup>&</sup>lt;sup>9</sup>Зуухны төрөл

 $<sup>^{10}</sup>$ Хүргэгчдийн тоо

```
Үр дүн
```

Захиалгыг бүрэн гүйцэтгэх хугацааны зарим үзүүлэлт, параметрийн 3, 1, 7 утганд

## Ашиглагдах код

```
tapply(elapsed.time, demand.type, quantile, probs = 0.9)
boxplot(formula = elapsed.time ~ demand.type)
```

## Үр дүн

```
47.17 # delivery
35.12 # carry-out
```







