

AZ4052

General Description

The AZ4052 is high-speed si-gate CMOS device. The AZ4052 is dual 4-channel analog multiplexers or demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S0 and S1) and an active LOW enable input (pin \overline{E}). When pin \overline{E} =LOW, one of the four switches is selected (Low-impedance On-state) with pins S0 and S1. When pin \overline{E} =HIGH, all switches are in the high-impedance Off-state, independent of pins S0 and S1. V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1 and \overline{E}). The V_{CC} to GND ranges are 3.0V to 10V. The analog inputs/outputs (pins nY0 to nY3 and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{\text{CC}}\text{-}V_{\text{EE}}$ may not exceed 10V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (Typically Ground).

The AZ4052 is available in standard packages of SOIC-16 and DIP-16.

Features

- Wide Operation Voltage: ± 5.0 V or 10V
- Low On-resistance:
 - 55 Ω (Typ.) at V_{CC} - V_{EE} =5V
 - 40Ω (Typ.) at V_{CC} - V_{EE} =10V
- Ultra Low THD+N:

0.003% @ 10V, 0.008% @ 5.0V

- Ultra Low Crosstalk: -120dB
- Ultra Low Noise: $6.0 \mu V_{RMS}$
- Operating Temperature: -40°C to 85°C

Applications

- LCD TV/PDP TV/CRT TV
- 4:1 Multi-channel Signal Selecting

Function Table

Control Input			On Channel		
$\overline{\mathbf{E}}$	S1	S0			
L	L	L	nY0	nZ	
L	L	Н	nY1	nΖ	
L	Н	L	nY2	nΖ	
L	Н	Н	nY3	nZ	
Н	X	X	None		

Figure 1. Package Types of AZ4052

AZ4052

Pin Configuration

Figure 2. Pin Configuration of AZ4052 (Top View)

Pin Descriptions

Pin Number	Pin Name	Function	
1	2Y0	2CH signal input or output terminal 0	
2	2Y2	2CH signal input or output terminal 2	
3	2Z	2CH common signal input or output terminal	
4	2Y3	2CH signal input or output terminal 3	
5	2Y1	2CH signal input or output terminal 1	
6	Ē	Enable input (Active LOW)	
7	VEE	Negative supply voltage	
8	GND	Ground (0V)	
9	S1	Select logic input terminal 1	
10	S0	Select logic input terminal 0	
11	1Y3	1CH signal input or output terminal 3	
12	1Y0	1CH signal input or output terminal 0	
13	1Z	1CH common signal input or output terminal	
14	1Y1	1CH signal input or output terminal 1	
15	1Y2	1CH signal input or output terminal 2	
16	VCC	Positive supply voltage	

AZ4052

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ4052

Schematic Diagram (One Switch)

Figure 4. Schematic Diagram of AZ4052

AZ4052

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOIC-16	-40 to 85°C	AZ4052M-G1	AZ4052M-G1	Tube	
SOIC-16	-40 to 85°C	AZ4052MTR-G1	AZ4052M-G1	Tape & Reel	
DIP-16	-40 to 85°C	AZ4052P-G1	AZ4052P-G1	Tube	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AZ4052

Absolute Maximum Ratings (Note 1, 2)

Parameter	Symbol	Condition	Value	Unit
Power Supply Voltage	V_{CC}		-0.5 to 11.0	V
Input Diode Current	I_{IK}	V_{I} <-0.5V, V_{I} >V _{CC} +0.5V	20	mA
Switch Diode Current	I_{SK}	$V_{s} < -0.5V,$ $V_{s} > V_{CC} + 0.5V$	20	mA
Switch Current	I_S	$-0.5V < V_S < V_{CC} + 0.5V$	25	mA
V _{EE} Current	I_{EE}		20	mA
V _{CC} Current GND Current	I_{CC} I_{GND}		50	mA
Power Dissipation	P_D	T _A =-40°C to 85°C (Note 3)	500	mW
Storage Temperature Range	T_{STG}		-65 to 150	°C
Operating Junction Temperature Range	T_{J}		150	°C
Power Dissipation Per Switch	P_{S}		100	mW
ESD (Machine Model)			200	V
ESD (Human Body Model)			2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: To avoid drawing V_{CC} current out of pins nZ, when switch current flows in pins nYn, the voltage drop across the bidirectional switch must not exceed 0.4V. If the switch current flows into pins nZ, no VCC current will flow out of pins nYn. In this case there is no limit for the voltage drop across the switch, but the voltages at pins nYn and nZ may not exceed V_{CC} or V_{EE} .

Note 3: Above 70°C derate linearly with 12mW/K (DIP-16 package).

Above 70°C derate linearly with 8mW/K (SOIC-16 package)

AZ4052

Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage	V_{IN}	V _{CC} -GND	3.0		10	V
Supply voltage	V IN	V_{CC} - V_{EE}	3.0		10	v
Logic Input Voltage	$V_{\rm I}$		V_{EE}		V_{CC}	V
Switch Signal Input/ Output Voltage	V _{IS} /V _{OS}		V_{EE}		V_{CC}	V
Operating Ambient Temperature Range	T_{A}		-40		85	°C
Input Rise and Fall	4 4	V _{CC} =5.0V		6.0	400	
Time	t_r, t_f	V _{CC} =10V		6.0	250	ns

Electrical Characteristics

DC Characteristics

 V_{IS} is the input voltage at pins nYn or nZ, whichever is assigned as an input; V_{OS} is the output voltage at pins nZ or nYn, whichever is assigned as an output, voltages are referenced to GND (Ground=0V).

Parameter	Symbol	Conditions			Min	Typ	Max	Unit	
r ai ailletei	Symbol	Other	$V_{CC}(V)$	$V_{EE}(V)$	IVIIII	Тур	Max	Omt	
High-level	V		5.0		2.8			v	
Input Voltage	$V_{ m IH}$		10		6.0			V	
Low-level	**		5.0				1.5	**	
Input Voltage	$ m V_{IL}$		10				3.0	V	
Input Leakage	I_{LI}	V _I =V _{CC} or GND	5.0	0			±1.0	μА	
Current	¹ LI	VI VCC OF GIVE	10	0			±1.0	μΑ	
Analog Switch	I _S (Off)	$V_I = V_{IH}$ or V_{IL} , $ V_S = V_{CC} - V_{EE}$ (Figure 5)	5.0				±1.0	μА	
Off-state Current		Per Channel	10	0			±1.0	μΑ	
		All Channels	10	Ō			±2.0	μΑ	
Analog Switch On-state Current	I _S (On)	$V_I=V_{IH}$ or V_{IL} , $ V_S =V_{CC}-V_{EE}$ (Figure 6)	10	0			±2.0	μΑ	
Quiescent Supply	I_{CC}	$V_I = V_{CC}$ or GND, $V_{IS} = V_{EE}$ or V_{CC} ,	5.0	0		50	160	μΑ	
Current	-(($V_{OS} = V_{CC}$ or V_{EE}	10	0		100	320	μΑ	

AZ4052

Electrical Characteristics (Continued)

Resistance Ron

V_{IS} is the input voltage at pins nYn or nZ, which is assigned as an input ((note 4) see figure 7)

		Conditions							4
Parameter	Symbol	Other	V _{CC} (V)	(V)	I _S (μA)	Min	Тур	Max	Unit
On-resistance	D (Daala)	V _{IS} =V _{CC} to V _{EE} ,	5.0	0	1000		73	180	Ω
(Peak)	R _{ON} (Peak)	$V_{IS}=V_{CC}$ to V_{EE} , $V_{I}=V_{IH}$ or V_{IL}	10	0	1000		47	120	Ω
	R _{ON} (Rail)	$V_{IS}=V_{EE},$ $V_{I}=V_{IH} \text{ or } V_{IL}$	5.0	0	1000		55	130	Ω
On-resistance			10	0	1000		40	100	Ω
(Rail)		V _{IS} =V _{CC} , V _I =V _{IH} or V _{IL}	5.0	0	1000		61	150	Ω
			10	0	1000		45	110	Ω
Maximum On-resistance Difference	R _{ON}	V _{IS} =V _{CC} to V _{EE} ,	5.0	0			5		Ω
Between Any Two Channels	TON	$V_I = V_{IH}$ or V_{IL}	10	0			6		Ω

Note 4: When supply voltages (V_{CC} - V_{EE}) near 2.0V the analog switch On-resistance becomes extremely non-linear. When using a supply of 2V, it is recommended to use these devices only for transmitting digital signals.

AZ4052

Electrical Characteristics (Continued)

AC Characteristics

GND=0V, t_r = t_f =6ns, C_L =50pF

		Conditions						
Parameter	Symbol	Other	V _{CC} (V)	V _{EE} (V)	Min	Тур	Max	Unit
Propagation Delay	$t_{ m PHL}/t_{ m PLH}$	$R_L = \infty$ (Figure 24)	5.0	0		15	25	ns
V _{IS} to V _{OS}	PHL/ PLH	(Figure 24)	5.0	-5.0		12	25	ns
Turn-on Time	$t_{\mathrm{PZH}}/t_{\mathrm{PZL}}$	$R_L=1k\Omega$	5.0	0		38	81	ns
\overline{E} , Sn to V_{OS}		(Figure 25 and 26)	5.0	-5.0		26	81	ns
Turn-off Time		$R_L=1k\Omega$	5.0	0		27	63	ns
$\overline{\mathrm{E}}$, Sn to V_{OS}	t_{PHZ}/t_{PLZ}	(Figure 25 and 26)	5.0	-5.0		22	48	ns

Recommended conditions and typical values, GND=0V, T_A =25°C, C_L =50pF. V_{IS} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{OS} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

		Conditions							
Parameter	Symbol	Other	V _{IS} (p-p) (V)	V _{CC} (V)	V _{EE} (V)	Min	Тур	Max	Unit
		f=1kHz, $R_1=10k\Omega$	0.5	5.0	0		0.008		%
Sine-wave	_	(Figure 8)	1.5	10	0		0.003		%
Distortion	$ m d_{SIN}$	$f=10kHz$, $R_L=10kΩ$	0.5	5.0	0		0.008		%
		(Figure 8)	1.5	10	0		0.003		%
Switch OFF	α_{OFF}	$R_L=10k\Omega$, f=1MHz		5.0	0		-50		dB
Signal Feed-through	(Feedthrough)	(Figure 9), V _{IS} =1V _{RMS}		5.0	-5.0		-50		dB
Crosstalk Between Two		$R_L=10k\Omega$,		5.0	0		-120		dB
Channels		f=1kHz (Figure 10), V _{IS} =1V _{RMS}		5.0	-5.0		-120		dB
Crosstalk Between Two	$\alpha_{CT(S)}$	$R_L=10k\Omega$,		5.0	0		-60		dB
Switches /Multiplexers		f=1kHz (Figure 10), V _{IS} =1V _{RMS}		5.0	-5.0		-60		dB
Crosstalk Voltage Between Control and Any Switch (Peak-to-peak Value)	$V_{\text{CT(P-P)}}$	R_L =10k Ω , f =1MHz, \overline{E} or Sn, Square-wave Between V_{CC} and GND, t_r = t_f =6ns (Figure 11)		5.0	0		110		mV
Frequency	¢.	$R_L=10k\Omega$		5.0	0		70		MHz
(-3dB)	Response f_{MAX} (-3dB)	(Figure 8)		5.0	-5.0		70		MHz
Output Noise Voltage	$V_{ m NOISE}$	A-weighted		5.0	0		6.0		μV_{RMS}

AZ4052

Typical Test Circuit

Figure 5. Test Circuit for Measuring OFF-state Current

Figure 6. Test Circuit for Measuring ON-state Current

Figure 7. Test Circuit for Measuring R_{ON}

Figure 8. Test Circuit for Measuring Sine-wave Distortion and Minimum Frequency Response

AZ4052

Typical Test Circuit (Continued)

(a) Channel ON Condition

(b) Channel OFF Condition

Figure 9. Test Circuit for Measuring Switch Off Signal Feed-through

Figure 10. Test Circuits for Measuring Crosstalk Between Any Two Switches/Multiplexers

Figure 11. Test Circuit for Measuring Crosstalk Performance

Figure 12. Test Circuit for Measuring AC Between Control and Any Switch

AZ4052

Typical Performance Characteristics

Figure 13. R_{DSON} vs. Signal Output

Figure 14. R_{DSON} vs. Signal Output

Figure 15. THD+N vs. Output Voltage Amplitude

Figure 16. THD+N vs. Output Voltage Amplitude

AZ4052

Typical Performance Characteristics (Continued)

Figure 17. Frequency Response

Figure 18. Linear Range

Figure 19. Linear Range

Figure 20. Propagation Delay

AZ4052

Typical Performance Characteristics (Continued)

Figure 21. Propagation Delay

Figure 22. Crosstalk vs. Frequency

Figure 23. Crosstalk vs. Frequency

Figure 24. Waveforms Showing the Input (V_{IS}) to Output (V_{OS}) Propagation Delays

AZ4052

Typical Performance Characteristics (Continued)

Figure 25. Waveforms Showing the Turn-on and Turn-off Times ($V_M = 50$ %, $V_I = GND$ to V_{CC})

Figure 26. Input Pulse Definitions

		$\mathbf{t_r}$ and $\mathbf{t_f}$			
Amplitude	V_{M}	F _{max} Pulse Width	Other		
V _{cc}	50%	< 2ns	6ns		

AZ4052

Typical Application

Figure 27. Typical Application of AZ4052

AZ4052

Mechanical Dimensions

SOIC-16 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

AZ4052

Mechanical Dimensions (Continued)

DIP-16 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788