Invarianten der Doppelmengen

Ritvij Singh

26. Mai 2022

Definition 0.1 Zu jedem Doppelmenge X = [A][B] können wir eine Funktion $c_X : \mathbb{C} \to \mathbb{Z}$ (genannt **die** charakteristische Funktion von X) durch die Regel

$$c_X(z) = \begin{cases} m & wenn \ z \ kommt \ in \ A \ m \ mal \ vor \\ -m & wenn \ z \ kommt \ in \ B \ m \ mal \ vor \\ 0 & sonst \end{cases}$$

Anmerkung 1 Wir können frei zwischen der Sichtweise der Doppelmenge und der Sichtweise der charakteristischen Funktion wechseln. Die Doppelmengen-Sichtweise ist bequemer für manuelle Berechnungen, während die Funktionssichtweise für bestimmte Beweise besser geeignet ist.

Definition 0.2 Die Kardinalität von [A][B] ist ein geordnetes Paar, das die Anzahl der Elemente in A und die Anzahl der Elemente in B besteht.

Definition 0.3 Die Augmentation eines Doppelmenge [A][B], geschrieben $\operatorname{aug}([A][B])$, ist die Differenz zwischen dem ersten Element der Kardinalität und dem zweiten Element der Kardinalität.

Beispiel 0.0.1 Das Symbol

die Kardinalität (2,3) und die Augmentation 2-3=-1.

Proposition 0.0.1 Die Augmentation ist ein Homomorphismus vom Ring der Doppelmengen zu den ganzen Zahlen.

Beweis: Durch Berechnung haben wir aug([1]]) = 1. X und Y seien Doppelmengen, und c_Z bezeichne die charakteristische Funktion eines beliebigen Symbols Z. Wir können sehen, dass

$$\operatorname{aug}(Z) = \sum_{z \in \mathbb{C}} c_Z(z)$$

für alle Z, und dass

$$c_{X \oplus Y}(z) = c_X(z) + c_Y(z)$$

Daraus erhalten wir

$$aug(X \oplus Y) = \sum_{z \in \mathbb{C}} c_{X \oplus Y}(z) = \sum_{z \in \mathbb{C}} (c_X(z) + c_Y(z))$$
$$= \sum_{z \in \mathbb{C}} c_X(z) + \sum_{z \in \mathbb{C}} c_Y(z) = \operatorname{aug}(X) + \operatorname{aug}(Y)$$

Außerdem haben wir

$$c_{X \otimes Y}(z) = \sum_{x:y=z} c_X(x) \cdot c_Y(y)$$

Daraus erhalten wir

$$\operatorname{aug}(X \otimes Y) = \sum_{z \in \mathbb{C}} \sum_{x \cdot y = z} c_X(x) \cdot c_Y(y) = \sum_{x, y \in \mathbb{C}} c_X(x) \cdot c_Y(y)$$
$$= \left(\sum_{x \in \mathbb{C}} c_X(x)\right) \left(\sum_{y \in \mathbb{C}} c_Y(y)\right) = \operatorname{aug}(X)\operatorname{aug}(Y)$$

Proposition 0.0.2 Eine multiplikative Funktion ist vollständig multiplikativ, wenn und nur wenn die Doppelmenge (bei allen Primzahlen) die Kardinalität $\leq (1,0)$ hat.

Beweis: Nehmen wir an, f sei vollständig multiplikativ. Dann haben wir $f(p^e) = f(p)^e$. Das bedeutet, dass alle Bell-Reihen geometrisch sein müssen (d.h. von der Form $1+\alpha t+\alpha^2 t^2+\alpha^3 t^3+\ldots$). Die zugehörigen formalen Potenzreihen sind dann $1/(1-\alpha t)$. Im Spezialfall $\alpha=0$ erhalten wir 1/1, was \varnothing/\varnothing entspricht. Andernfalls erhalten wir α als reziproke Wurzel, und wir erhalten das Symbol $[\alpha][]$. Daraus geht klar hervor, dass jede Wahl von α funktioniert, also kann und muss das Symbol die Form \varnothing/\varnothing oder $[\alpha][]$ haben. Dies ist eindeutig äquivalent zur Kardinalität $\leq (1,0)$.

Proposition 0.0.3 Erinnern Sie sich, dass eine speziell multiplikative Funktion eine Dirichlet-Faltung von zwei vollständig multiplikativen Funktionen ist. Eine multiplikative Funktion ist dann und nur dann speziell multiplikativ, wenn sie die Kardinalität $\leq (2,0)$ hat.

Trivial aus 0.0.2 und der Art, wie die Dirichlet-Faltung mit der Kardinalität interagiert.

Proposition 0.0.4 Erinnern Sie sich, dass eine totiente multiplikative Funktion eine Dirichlet-Faltung einer vollständig multiplikativen Funktion mit der Dirichlet-Inversen einer vollständig multiplikativen Funktion ist. Eine multiplikative Funktion ist dann und nur dann ein Totient, wenn sie die Kardinalität < (1,1) hat.

Trivial aus 0.0.2 und der Art und Weise, wie die Dirichlet-Faltung mit der Kardinalität inter-Beweis: agiert.

Definition 0.4 Die Spur eines Doppelmenge, tr(X), ist die Summe aller seiner Elemente aus der ersten Multimenge minus der Summe aller Elementen der zweiten Multimenge.

Proposition 0.0.5 tr ist ein Ringhomomorphismus von Doppelmengen nach \mathbb{C} .

Beweis: Durch Berechnung haben wir tr([1]]) = 1. X und Y seien Doppelmengen, und c_Z bezeichne die charakteristische Funktion eines beliebigen Symbols Z. Wir können sehen, dass

$$\operatorname{tr}(Z) = \sum_{z \in \mathbb{C}} z c_Z(z)$$

für alle Z, und dass

$$c_{X \oplus Y}(z) = c_X(z) + c_Y(z)$$

Daraus erhalten wir

$$tr(X \oplus Y) = \sum_{z \in \mathbb{C}} z c_{X \oplus Y}(z) = \sum_{z \in \mathbb{C}} z (c_X(z) + c_Y(z))$$
$$= \sum_{z \in \mathbb{C}} z c_X(z) + \sum_{z \in \mathbb{C}} z c_Y(z) = tr(X) + tr(Y)$$

Außerdem haben wir

$$c_{X \otimes Y}(z) = \sum_{x \cdot y = z} c_X(x) \cdot c_Y(y)$$

Daraus erhalten wir

$$tr(X \otimes Y) = \sum_{z \in \mathbb{C}} z \sum_{x \cdot y = z} c_X(x) \cdot c_Y(y) = \sum_{x, y \in \mathbb{C}} x c_X(x) \cdot y c_Y(y)$$
$$= \left(\sum_{x \in \mathbb{C}} x c_X(x)\right) \left(\sum_{y \in \mathbb{C}} y c_Y(y)\right) = tr(X)tr(Y)$$

Satz 0.1 Unter der Voraussetzung, dass f die Doppelmenge X zur Primzahl p hat, ist der k-te Koeffizient der Bell-Reihe von f zu p

$$\operatorname{tr}\left(\lambda^{k}\left(X\times[][-1]\right)\right)$$

Beweis: Wir beginnen mit der Definition von $\operatorname{tr}_t : \mathbb{C}[[t]] \to \mathbb{C}[[t]]$ als die kanonische Erweiterung von tr_t , die durch Setzen von $\operatorname{tr}_t(t) = t$ gegeben ist. Damit können wir den Satz so umformulieren, dass die gesamte Bell-Reihe gleich ?? ist

$$\operatorname{tr}_{t}\left(\lambda_{t}\left(X\otimes\left[\left[-1\right]\right)\right)\right)$$

Man beachte, dass X als eine Summe von Komponenten C_i geschrieben werden kann, wobei jede Komponente entweder die Kardinalität (1,0) oder (0,1) hat. Wir haben $X = \bigoplus_i C_i$, was uns ergibt

$$= \operatorname{tr}_t \left(\lambda_t \left(\left(\bigoplus_i C_i \right) \otimes [][-1] \right) \right)$$
$$= \operatorname{tr}_t \left(\lambda_t \left(\bigoplus \left(C_i \otimes [][-1] \right) \right) \right)$$

Da $\lambda_t(a+b) = \lambda_t(a)\lambda_t(b)$, können wir

$$= \operatorname{tr}_t \left(\prod_i \lambda_t \left(C_i \times [][-1] \right) \right)$$

und schließlich, da Spur ein Homomorphismus ist,

$$= \prod_{i} \operatorname{tr}_{t} \left(\lambda_{t} \left(C_{i} \otimes [][-1] \right) \right)$$

Wir können X = [A][B] setzen und C_i in diese aufteilen, so dass wir

$$= \prod_{a \in A} \operatorname{tr}_{t} \left(\lambda_{t} \left([a][] \otimes [][-1] \right) \right) \cdot \prod_{b \in B} \operatorname{tr}_{t} \left(\lambda_{t} \left([][b] \otimes [][-1] \right) \right)$$
$$= \prod_{a \in A} \operatorname{tr}_{t} \left(\lambda_{t} \left([][-a] \right) \right) \cdot \prod_{b \in B} \operatorname{tr}_{t} \left(\lambda_{t} \left([-b][] \right) \right)$$

Durch explizite Berechnung erhalten wir

$$= \prod_{a \in A} \operatorname{tr}_t \left(([1][] \oplus [-a][]t)^{-1} \right) \cdot \prod_{b \in B} \operatorname{tr}_t ([1][] \oplus [-b][]t)$$
$$= \prod_{a \in A} (1 - at)^{-1} \cdot \prod_{b \in B} (1 - bt)$$

Dies ist die Formel für die Bell-Reihe.

Satz 0.2 Unter der Voraussetzung, dass f die Doppelmenge X zur Primzahl p hat, ist der k-te Koeffizient der Bell-Reihe von f' zu p

 $\operatorname{tr}\left(U_{\bigcirc}^{k}\left(X\right)\right)$

 $wobei\ k > 0$

Beweis: Wir können X = [A][B] setzen. Dann wissen wir, dass die Bell-Reihe lautet

$$\prod_{b \in B} (1 - bt) \prod_{a \in A} (1 - at)^{-1}$$

Die Bell-Reihe von f' ist dann die verschobene logarithmische Ableitung der Bell-Reihe von f (beide bei einer festen Primzahl). Mit anderen Worten, die Bell-Reihe von f' ist

$$1 + \left(\log\left(\prod_{b \in B} (1 - bt) \prod_{a \in A} (1 - at)^{-1}\right)\right)' t$$

$$1 + \left(\log\left(\prod_{b \in B} (1 - bt)\right) + \log\left(\prod_{a \in A} (1 - at)^{-1}\right)\right)' t$$

$$1 + \left(\sum_{b \in B} \log (1 - bt) - \sum_{a \in A} \log (1 - at)\right)' t$$

$$1 + \sum_{b \in B} (1 - bt) t - \sum_{a \in A} (1 - at) t$$

$$1 + \sum_{b \in B} (1 - bt)' 1 - bt t - \sum_{a \in A} (1 - at)' 1 - att$$

$$1 + \sum_{b \in B} -b1 - bt t - \sum_{a \in A} -a1 - att$$

$$1 + \sum_{a \in A} a11 - att - \sum_{b \in B} b11 - btt$$

$$1 + \sum_{a \in A} \sum_{i=1}^{\infty} a^{i} t^{i} - \sum_{b \in B} \sum_{i=1}^{\infty} b^{j} t^{j}$$

Betrachtet man den Koeffizienten von t^k , wobei k > 0 ist, erhält man

$$\sum_{a \in A} a^k - \sum_{b \in B} b^k$$

Wir sehen deutlich, dass dies gleich $\operatorname{tr}(\operatorname{U}_{\bigcirc}^{k}([A][B]))$ ist

Korollar 0.2.1 Die Spur des Doppelmenge von f bei p ist der Koeffizient von t in der Bell-Reihe von f bei der Primzahl p. Außerdem ist sie auch der Koeffizient von t in der Bell-Reihe nach p der Bell-Transformation von f.

Beweis: Setzen Sie k=1 in beiden Fällen. $\lambda^1=\mathrm{U}_{\bigcirc}^1=id$.

Proposition 0.2.1 Seien f, g zwei multiplikative Funktionen, mit Doppelmengen bzw. X, Y. Dann sind die Spuren der Doppelmengen von $f \boxtimes g$ jeweils $\operatorname{tr}(X) + \operatorname{tr}(Y)$ und $\operatorname{tr}(X) \cdot \operatorname{tr}(Y)$

Beweis: Siehe ??, und dies folgt aus den Definitionen der Operationen.

Definition 0.5 Wir definieren die **Determinante** eines Doppelmenge X, geschrieben det(X), als das Produkt aller Elemente der ersten Multimenge durch alle Elemente der zweiten Multimenge.

Beispiel 0.2.1

$$\det([1,2,i][1+i,1-i]) = 1 \cdot 2 \cdot i(i+1)(i-1) = i$$

Proposition 0.2.2

1. Die Determinante bildet sowohl die additive als auch die multiplikative Einheit auf 1 ab.

$$\det([][]) = \det([1][]) = 1$$

2. Die Determinante bildet die direkte Summe auf das Produkt ab.

$$det(X \oplus Y) = det(X) \cdot det(Y)$$

3. Die Determinante bildet die unären Operationen auf Potenzoperationen ab.

$$\det(U_{\bigcirc}^{1}{}^{k}(X)) = \det(X)^{k}$$

4. Die Determinante bildet das Tensorprodukt auf das augmentierte-gewichtete Produkt ab.

$$det(X \otimes Y) = \det(X)^{\operatorname{aug}(Y)} \cdot \det(Y)^{\operatorname{aug}(X)}$$

Beweis: Punkt 1 folgt aus einer einfachen Berechnung. Für die Punkte 2, 3 und 4 seien X und Y Doppelmengen, und c_Z bezeichne die charakteristische Funktion eines beliebigen Doppelmenge Z. Wir können sehen, dass

$$\det(Z) = \prod_{z \in \mathbb{C}} z^{c_Z(z)}$$

für alle Z. Für Punkt 2 haben wir

$$c_{X \oplus Y}(z) = c_X(z) + c_Y(z)$$

was uns ergibt

$$\det(X \oplus Y) = \prod_{z \in \mathbb{C}} z^{c_X(z) + c_Y(z)} = \prod_{z \in \mathbb{C}} z^{c_X(z)} \cdot \prod_{z \in \mathbb{C}} z^{c_Y(z)} = \det(X) \cdot \det(Y)$$

Für Punkt 3 können wir sehen

$$c_{\mathcal{U}_{\bigcirc}^{k}(X)}(z) = \sum_{a^{k}=z} c_{X}(a)$$

was uns ergibt

$$\det(\mathbf{U}_{\bigcirc}^{k}(X)) = \prod_{z \in \mathbb{C}} z^{\sum_{a^{k}=z}^{k} c_{X}(a)} = \prod_{z \in \mathbb{C}} \prod_{a^{k}=z} z^{c_{X}(a)} = \prod_{\substack{z \in \mathbb{C} \\ a^{k}=z}} z^{c_{X}(a)} = \prod_{a \in \mathbb{C}} z^{c_{X}(a)}$$
$$= \prod_{a \in \mathbb{C}} a^{k^{c_{X}}(a)} = \left(\prod_{a \in \mathbb{C}} a^{c_{X}(a)}\right)^{k} = \det(X)^{k}$$

Für den letzten Schritt verwenden wir, dass

$$c_{X \otimes Y}(z) = \sum_{x \cdot y = z} c_X(x) \cdot c_Y(y)$$

was uns ergibt

$$\det(X \otimes Y) = \prod_{z \in \mathbb{C}} z^{\sum_{x \cdot y = z} c_X(x) \cdot c_Y(y)} = \prod_{z \in \mathbb{C}} \prod_{x \cdot y = z} z^{c_X(x) \cdot c_Y(y)} = \prod_{z \in \mathbb{C}} \sum_{x \cdot y = z} z^{c_X(x) \cdot c_Y(y)} = \prod_{x \cdot y \in \mathbb{C}} z^{c_X(x) \cdot c_Y(y)} \cdot \prod_{x \cdot y \in \mathbb{C}} y^{c_Y(y) \cdot c_X(x)}$$

$$= \prod_{x \in \mathbb{C}} \prod_{y \in \mathbb{C}} x^{c_X(x) \cdot c_Y(y)} \cdot \prod_{y \in \mathbb{C}} \prod_{x \in \mathbb{C}} y^{c_Y(y) \cdot c_X(x)}$$

$$= \prod_{x \in \mathbb{C}} x^{c_X(x) \cdot \sum_{y \in \mathbb{C}} c_Y(y)} \cdot \prod_{y \in \mathbb{C}} y^{c_Y(y) \cdot \sum_{x \in \mathbb{C}} c_X(x)} = \prod_{x \in \mathbb{C}} x^{c_X(x) \cdot \operatorname{aug}(Y)} \cdot \prod_{y \in \mathbb{C}} y^{c_Y(y) \cdot \operatorname{aug}(X)}$$

$$= \left(\prod_{x \in \mathbb{C}} x^{c_X(x)}\right)^{\operatorname{aug}(Y)} \cdot \left(\prod_{y \in \mathbb{C}} y^{c_Y(y)}\right)^{\operatorname{aug}(X)} = \det(X)^{\operatorname{aug}(Y)} \cdot \det(Y)^{\operatorname{aug}(X)}$$

Proposition 0.2.3 Sei f eine multiplikative Funktion und sei p eine Primzahl. Die Bell Reihe von f bei p sei $f_p(t) = 1 + A_1t + A_2t^2 + \ldots$ und die Bell Reihe von f' bei p sei $f'_p(t) = 1 + D_1t + D_2t^2 + \ldots$ Dann gilt für jedes n die folgende Beziehung:

$$n \cdot A_n - D_n = \sum_{i=1}^{n-1} A_i D_{n-i}$$

Die ersten paar Beziehungen sind hier:

$$A_1 - D_1 = 0$$

$$2A_2 - D_2 = A_1D_1$$

$$3A_3 - D_3 = A_1D_2 + A_2D_1$$

$$4A_4 - D_4 = A_1D_3 + A_2D_2 + A_3D_1$$
5

Beweis: Wir definieren O.b.d.A $A_0 = D_0 = 1$. Nach der Definition, haben wir:

$$f'_p(t) = 1 + t \cdot \frac{\mathrm{d}}{\mathrm{d}t} \log f_p(t)$$

Da $(\log f)' = f'/f$ gilt, haben wir dann:

$$f'_p(t) = 1 + t \frac{(f_p(t))'}{f_p(t)}$$

Jetzt setzen wir A_n und D_n ein und wir erhalten:

$$\sum_{i=0}^{\infty} D_i t^i = 1 + t \frac{\left(\sum_{i=0}^{\infty} A_i t^i\right)'}{\sum_{i=0}^{\infty} A_i t^i}$$

$$\sum_{i=0}^{\infty} D_i t^i = 1 + t \frac{\sum_{i=0}^{\infty} i A_i t^{i-1}}{\sum_{i=0}^{\infty} A_i t^i}$$

$$\sum_{i=0}^{\infty} D_i t^i = 1 + \frac{\sum_{i=0}^{\infty} i A_i t^i}{\sum_{i=0}^{\infty} A_i t^i}$$

$$\left(\sum_{i=0}^{\infty} D_i t^i\right) \left(\sum_{i=0}^{\infty} A_i t^i\right) = \sum_{i=0}^{\infty} A_i t^i + \sum_{i=0}^{\infty} i A_i t^i$$

$$\sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} D_j A_{i-j}\right) t^i = \sum_{i=0}^{\infty} A_i t^i + \sum_{i=0}^{\infty} i A_i t^i$$

Durch Koeffizientenvergleich erhalten wir:

$$\sum_{j=0}^{i} D_j A_{i-j} = A_i + i A_i$$

$$D_0 A_i + \sum_{j=1}^{i} D_j A_{i-j} = A_i + i A_i$$

$$\sum_{j=1}^{i} D_j A_{i-j} = i A_i$$

Proposition 0.2.4 Wir haben nach dem Satz folgende Beziehungen:

$$A_1 = D_1$$

$$A_2 = \frac{1}{2}(D_1^2 + D_2)$$

$$A_3 = \frac{1}{6}(D_1^3 + 3D_1D_2 + 2D_3)$$

$$A_4 = \frac{1}{24}(D_1^4 + 6D_1^2D_2 + 3D_2^2 + 8D_1D_3 + 6D_4)$$

$$D_1 = A_1$$

$$D_2 = 2A_2 - A_1^2$$

$$D_3 = 3A_3 - 3A_1A_2 + A_1^3$$

$$D_4 = 4A_4 - 4A_1A_3 + 4A_1^2A_2 - 2A_2^2 - A_1^4$$

Für jedes i gibt es ähnliche Polynome, die durch rekursive Anwendung der Beziehungen des vorigen Satzes erhalten werden können.