Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 7

Abgabe: Freitag, 04.06.2021, 09:15 Uhr

Aufgabe 1 (Faserprodukte).

(6 Punkte)

Sei C eine Kategorie und seien $f: B \to A$, $g: C \to A$ zwei Morphismen in C mit gemeinsamen Ziel. Ein *Faser-produkt* von B und C über A ist ein Objekt $D = B \times_A C$, zusammen mit zwei Morphismen $f': D \to C$, $g': D \to B$, so dass gf' = fg' und folgende universelle Eigenschaft erfüllt ist:

Für jedes Objekt T und Morphismen $r: T \to C$ und $s: T \to B$ mit gr = fs gibt es genau einen Morphismus $t: T \to D$, so dass r = f't und s = g't, d.h. folgendes Diagramm lässt sich eindeutig zu einem kommutativen Diagramm ergänzen:

Ein Faserprodukt ist, falls es existiert, eindeutig bis auf einen eindeutigen Isomorphismus. Zeigen Sie:

- (a) Falls D existiert und f ein Monomorphismus ist, so ist auch f' ein Monomorphismus.
- (b) In der Kategorie Set der Mengen existieren alle Faserprodukte.
- (c) Ist C = A eine abelsche Kategorie, so existieren alle Faserprodukte. *Hinweis:* Seien $p_1 : B \oplus C \to B$, $p_2 : B \oplus C \to C$ die kanonischen Projektionen. Man setze $q = fp_1 gp_2 : B \oplus C \to A$ und betrachte $(D \xrightarrow{m} B \oplus C) = \ker(q)$. Zeigen Sie, dass $(D, f' = p_2 m, g' = p_1 m)$ die universelle Eigenschaft des Faserprodukts $B \times_A C$ erfüllt.
- (d) Ist C = A eine abelsche Kategorie und f ein Epimorphismus, so ist auch f' ein Epimorphismus.

Aufgabe 2 (Adjungierte Funktoren).

(6 Punkte)

Sei $f: A \to B$ ein Ringhomomorphismus zwischen (kommutativen) Ringen (mit Eins). Jeder *B*-Modul *N* ist auch ein *A*-Modul vermöge der Skalarmultiplikation $a \cdot n := f(a) \cdot n$ für $a \in A$ und $n \in N$. Dies liefert einen Funktor $f^{\#}: B\text{-Mod} \to A\text{-Mod}$ (Einschränkung der Skalarmultiplikation). Umgekehrt werden für einen *A*-Modul M die $A\text{-Moduln} B \otimes_A M$ und $\text{Hom}_A(B,M)$ mit den Multiplikationsabbildungen

$$B \times (B \otimes_A M) \to B \otimes_A M, \qquad (b, d \otimes m) \mapsto (bd) \otimes m,$$

 $B \times \operatorname{Hom}_A(B, M) \to \operatorname{Hom}_A(B, M), \qquad (b, \phi) \mapsto [d \mapsto \phi(db)]$

in natürlicher Weise zu B-Moduln. Zeigen Sie:

- (a) Der additive Funktor $B \otimes_A : A\text{-Mod} \to B\text{-Mod}$ ist linksadjungiert und der additive Funktor $Hom_A(B,-): A\text{-Mod} \to B\text{-Mod}$ ist rechtsadjungiert zum Funktor $f^\#$.
- (b) Folgern Sie aus (a): Der Funktor $f^{\#}$ ist exakt¹, für jeden projektiven A-Modul P ist $B \otimes_A P$ ein projektiver B-Modul und für jeden injektiven A-Modul I ist $Hom_A(B,I)$ ein injektiver B-Modul.

¹Dies hätte man direkt auch einfacher zeigen können

Aufgabe 3 (Eulercharakteristik).

(6 Punkte)

Sei K ein Körper und sei $\operatorname{VR}_K^{<\infty}$ die (abelsche) Kategorie der endlich-dimensionalen K-Vektorräume mit K-linearen Abbildungen. Für einen Komplex A^{\bullet} in $\operatorname{VR}_K^{<\infty}$ definieren wir seine Euler-Charakteristik als

$$\chi(A^{\bullet}) = \sum_{i \in \mathbb{Z}} (-1)^i \dim_K H^i(A^{\bullet}),$$

falls nur endlich viele der $H^i(A^{\bullet})$ nicht verschwinden; andernfalls existiert die Euler-Charakteristik nicht. Zeigen Sie:

(a) Sei $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ eine kurze exakte Folge von Komplexen in $VR_K^{<\infty}$. Existieren zwei der drei Euler-Charakteristiken $\chi(A^{\bullet})$, $\chi(B^{\bullet})$ und $\chi(C^{\bullet})$, so existiert auch die dritte und es gilt

$$\chi(B^{\bullet}) = \chi(A^{\bullet}) + \chi(C^{\bullet}).$$

(b) Angenommen, nur endlich viele der A^i sind verschieden von 0. Dann existiert die Euler-Charakteristik von A^{\bullet} , und es gilt

$$\chi(A^{\bullet}) = \sum_{i \in \mathbb{Z}} (-1)^i \dim_K A^i.$$

Hinweis: Benutzen Sie jeweils den Rangsatz für kurze exakte Folgen (spalten Sie dazu die lange exakte Kohomologiefolge in kurze exakte Folgen auf).

Aufgabe 4 (Prägarben abelscher Gruppen).

(6 Punkte)

Sei X ein topologischer Raum und sei $\mathscr{T}(X)$ die Menge der offenen Teilmengen von X. Die Inklusionsrelation liefert eine halbgeordnete Menge $(\mathscr{T}(X),\subseteq)$ und nach Aufgabe 3 von Blatt 6 erhalten wir eine Kategorie Offen $(X):=\mathrm{Kat}(\mathscr{T}(X))$. Eine $Pr\ddot{a}garbe\ abelscher\ Gruppen\ auf\ X$ ist ein Funktor Offen $(X)^{\mathrm{op}}\to \mathrm{Ab}$.

(a) Zeigen Sie: Für $A \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ definiert

$$A: \mathtt{Offen}(X)^{\mathrm{op}} \to \mathtt{Ab}, \quad U \mapsto \mathscr{C}(U,A)$$

eine Prägarbe abelscher Gruppen auf X, wobei $\mathscr{C}(U,A)$ die abelsche Gruppe der stetigen Abbildungen von U nach A mit der punktweisen Addition ist, wobei A die Teilraumtopologie von $\mathbb C$ trägt.

Ein Morphismus von Prägarben $F,G: Offen(X)^{op} \to Ab$ ist eine natürliche Transformation $F \to G$. Zeigen Sie:

(b) Ist $\varphi \colon F \to G$ ein Morphismus von Prägarben abelscher Gruppen, so definert

$$\ker(\varphi) \colon \mathsf{Offen}(X)^{\mathsf{op}} \to \mathsf{Ab}, \quad U \mapsto \ker(\varphi(U) \colon F(U) \to G(U)),$$

eine Prägarbe abelscher Gruppen und der kanonische Morphismus $\ker(\phi) \to F$ von Prägarben ist ein Kern. Dual dazu erhält man, durch umdrehen aller Pfeile, die entsprechende Aussage für Kokerne.

(c) Die Kategorie $PSh_{Ab}(X)$ der Prägarben abelscher Gruppen auf X ist eine abelsche Kategorie.

Zusatzaufgabe 5 (Funktorkategorien).

(4 Punkte)

Eine Kategorie C heißt *klein*, falls die Klasse ob(C) eine Menge ist. Sei C eine kleine Kategorie und sei D eine beliebige Kategorie. Zeigen Sie:

(a) Die Klasse Fun(C,D) der Funktoren von C nach D bildet wieder eine Kategorie, deren Morphismen die natürlichen Transformationen zwischen Funktoren sind, die *Funktorkategorie*.

Ein Funktor $F: C \to D$ heißt *volltreu*, falls für alle Paare c, c' von Objekten aus C die induzierte Abbildung $\mathrm{Mor}_{\mathbb{C}}(c,c') \to \mathrm{Mor}_{\mathbb{D}}(F(c),F(c'))$ eine Bijektion ist. Für jedes Objekt $c \in \mathrm{ob}(\mathbb{C})$ definiert die Zuordnung $d \mapsto \mathrm{Mor}_{\mathbb{C}}(d,c)$ einen Funktor $\mathrm{Mor}_{\mathbb{C}}(-,c): \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ in die Kategorie der Mengen (Beispiel 9.10). Zeigen Sie:

(b) Die Zuordnung $c \mapsto Mor_{\mathbb{C}}(-,c)$ definiert einen volltreuen Funktor $\mathbb{C} \to Fun(\mathbb{C}^{op}, Set)$. *Hinweis:* Verwenden Sie das Yoneda-Lemma.