Guides

The exercise starts with the Exercise_guides.instr file, it contains a source, straight guide and relevant monitors. It already has an instrument parameter for controlling the length of the guide. Solutions are available in solution/Exercise_solution_straight.instr and solution/Exercise_solution_elliptic.instr.

TASKS

- Task 1
 - Compare output for two different guide lengths (e.g. triple the length)
- Task 2
 - Introduce a parameter that control width of the guide (default 3 cm)
 - Compare two runs with different guide widths (e.g. half and double the width)
- OPTIONAL Task 3
 - Check how much gravity impacts the output (set G to 0 and Jupyter 2.528*G)
- OPTIONAL Task 4 (optional)
 - Exchange the last 20% of the guide with an elliptic nose.
 - See the geometry with mcdisplay (3D view)
 - Identify how the resulting beam has changed

HINTS

- Use a scan in McStas to run two simulations with different guide lengths and compare
 - Set steps to 2 and in the field for guide_length have for example 5.15
 - The display will show the evolution in intensity on the monitor
- When adding a guide_width, remember to adjust the focusing of the source
- To add the elliptic nose use Elliptic guide gravity
- mcdoc Elliptic_guide_gravity

INTERPRETATION

The geometry of the guide heavily impacts the quality of the delivered beam.

EXTRA

Investigate how the m value impacts the beam delivered by the guide.