Weekly Report – 48

Xiufeng Liu

University of Waterloo, CA xiufeng.liu@uwaterloo.ca

1 This Week

In this week I continue to study the ESSEX data set, and complete the study report. Also, in the group meeting on Wednesday and Thursday, we outlined the route of our research. Before we make a centre data warehouse system for data analysis, we will first continue current work that is to do the benchmark study of energy data on different systems, including Matlab, PostgreSQL+Matlib, KDB+ and other column stores.

2 Next Week

I will start to investigate the technologies that could integrate the analysis results available, then consider to build a prototype of an web-based analysis platform. The analytics results from different sources could be easily "added into" the platform and visualized. This is an on-going project that will be completed progressively to the next year. For the benchmark study, we have to outline the work and take steps in soon.

3 ESSEX Data

Fig. 1 shows the database schema of the annotated ESSEX data (The tables colored by blue are the original tables, while the ones colored by purple are the annotated tables). To ease understanding, I have classified the tables into different categories.

3.1 Energy Production

The data in this table is the metering data from the solar power systems at different sites. A solar power system exploits photovoltaic (PV) technology that converts sunlight into electrical energy. [1] explains the mechanism. That is, PV technology uses solar cells made of semiconductor materials, such as silicon or germanium dosed with small amounts of impurities (typically metals or metalliods). When sunlight strikes a cell, a certain portion of its energy is absorbed with the semiconductor material, the absorbed energy knocks the electrons, and the loosen electrons flow freely under the influence of electric fields. Solar cells have inbuilt electric fields that force the freed electrons to flow in a certain direction. Metal contacts on the top and bottom of the PV cell enable the cell to generate a current in an external circuit. This current, together with the cell's voltage (which is a result of its in-built electric fields), defines the power (or wattage) that a solar cell can produce. This direct current (DC) can be used to recharge batteries, and run direct current devices, or

Fig. 1. Annotated ESSEX data

 Table 1. EnergyProduction

Field	Type	Example	Description
EPID	int(11)	1	Sorrogate key of energy production
SiteID	int(11)	1	The site of solar power system
InverterID	int(11)	1	The inverter for converting the direct current to alternate
			current
Date	timestamp	2010-04-26 15:35:49	The timestamp of metering the data. Here it reads every 5
			minutes
KWNow	float	2.593	The reading at a point of the time
KWhToday	float	20	The accumulated reading of a site of today
KWhTotal	float	2491	The accumulated reading of a site
AC	float	256	The alternative current after convertion
DC	float	325	The produced direct current of electrons
AmbientTemp	float	18	The ambient air temperature around solar panel. The effi-
			ciency of PV can be affected by its operating temperature,
			which is primarily a product of the ambient air temperature
			as well as the level of sunlight. High ambient temperature
			could lower the energy generation efficiency.
PanelTemp	float	35	The temperature of panel. The efficiency could also be af-
			fected by the panel temperature
Irradience	float	481	Measure the spectral irradiance in units of watts per meter
			squared
Wind	float	12	The wind speed on the site of measure. The wind speed could
			be corelated to the efficiency
PowerIn	float	2915.25	The power received from network
PowerOut	float	2554.88	The power exported to network
Effeciency	float	87.64	
r_prodID	int(11)	1999693	Energy production ID

can be converted via *inverters* into *alternating current* (AC), the form of electricity most commonly used in homes, offices and industry.

The table EnergyProduction contains 50 sites' data, and the data granularity is 5 minutes, 2,929,404 records in total. The measures of this table include the generated energy, i.e., KWNow, KWhToday, KWhTotal, the ambient and panel temperatures, irradience, efficiency, and wind. The dimensions include the sites of the solar power systems, the time, and the inverter of converting DC to AC. From this table we could ask some business questions from different perspectives (dimensions), and do the forecasting and correlation analysis. For example, to view the energy production for each of the inverters in time series fashion, study the impact of wind speed, panel and ambient, irradiance to the energy generation efficiency (by correlation), and do the forecasting, etc.

3.2 Feed and transform

The power can be traded in the energy market. A utility company can buy the power from the market, and sell to the customers of a region, which is called wholesale. The power is distributed through electricity distribution network from transmission systems to the customers. Typically, the distribution network includes medium-voltage power lines, substations and transformers, low-voltage distribution wiring and meters (see Fig. 2 from [2]). A distribution substation receives power from one or more transmission or sub-transmission lines at the corresponding transmission or sub-transmission voltage level, and provides the power to one or more distribution feeders that originate from the substation. Most feeders emanate radially from the substation to supply the load. Some feeding loss occurs when the power is transferred from a substation to another substation. Typically, urban and suburban distribution is done with three-phase systems to serve both residential, commercial, and industrial loads. Distribution in rural areas may be only single-phase if it is not economical to install three-phase power for relatively few and small customers [3].

The WholesaleMeterReadings table contains the wholesale data of utility companies. The metering data for each channel is read at one-hour interval per day, and each read was repeated for 30 times (a transformer has 4 isolation transformer units, Channels, which are read separately). The data in FeederMapping describes the hierarchy structure of feeders, i.e., a substation and its children. FeederLoss collects the feeding loss read at one-hour interval per day. TransformerLoads describes the load of transformers, Circuit number, Phases, angle, address, and the geography locations etc. The transformation load is collected at one-hour interval per day. But, note that in this table there are 22 columns without any values (marked by "N/A").

Table 2. WholesaleMeterReadings

Description

			Description
MeterNumber	int(11)	200700539	Meter number
ReadDate	date	2011-09-01	The reading date
Interval1	int(11)	1	The interval of reading meter, 4 channels in total
Channel	int(11)	1	Transformer channel
UOMID	int(11)	1	
Reading	int(11)	1249	The value of the reading

Fig. 2. Electricity Distribution Network

Table 3. FeederMapping

Field	Type	Example	Description
ParentFeeder	varchar(250)	23M4	Parent feeder ID
Feeder	varchar(250)	FSF1	The feeder ID
MeterType	varchar(250)	SM	Meter type

Table 4. FeederLoss

Field	<i>U</i> I	-	Description
Feeder	varchar(250)	23M3	Feeder ID
ReadDate	timestamp	2012-06-01 00:00:00	The date of read
Interval1	int(11)	1	The interval of reading. It is 1-hour interval from 0 to 23
Reading	float	-0.898	The value of reading

Table 5. TransformerLoads

Field	Type	Example	Description
TransformerID	int(11)	9327	The transformer ID
Type	date	2011-04-03	The date of read
KVA	float	0	The interval of read, 0–23
Phasing	float	2.05	The phase value of electricity
CircuitNumber	varchar(250)	N/A	
PrimaryVoltage	varchar(250)		
SecondaryVoltage			
InstallationYear	varchar(250)		
DWGNumber	varchar(250)	N/A	
Phases	varchar(250)		
Serial1	varchar(250)		
Serial2	varchar(250)	N/A	
Serial3	varchar(250)		
Enabled	varchar(250)	N/A	
Quantity	varchar(250)	N/A	
Angle	varchar(250)	N/A	
AreaTown	varchar(250)	N/A	
StreetNumber	varchar(250)		
Address	varchar(250)	N/A	
Status	varchar(250)	N/A	
Owner	varchar(250)	N/A	
Connect_Date	date	N/A	
Disconnect_Date	date	N/A	
PointX	float	N/A	
PointY	float	N/A	
geom	varchar(250)	N/A	

3.3 Smart Meter Voltage Reading

Transformers transform medium-high voltage power to low voltage before feeding to the customers. The levels of voltage around the world is different. For example, in North America the voltage value is between 100 and 127 volts, while in European countries it is between 220 and 240 volts. The voltage readings beyond this range are regarded as the exception. SmartMeterVoltage contains the voltage readings of three phases collected at 15-minute interval per day, and the exceptional readings are added to SmartMeterVoltageException for each read. This table also contains the no. of exceptions. The fact is the readings, and the dimensions are the dates, time, phases, and meters.

Table 6. SmartMeterVoltage

Field	Type	Example	Description
MeterNumber	varchar(250)	EP00001280	Meter number
ReadDate	date	2011-12-21	
ReadTime	time	00:00:15	The reading time interval in each day, 15-minute interval
Phase	int(11)	2	The power phases: 0, 1 and 2
Reading	float	240.837	The value of voltage
MeterID	int(11)	19931	

 Table 7.
 SmartMeterVoltageException

Field	Type	Example	Description
MeterNumber	varchar(250)	EP00018137	Meter number
ReadDate	date	2011-12-21	Reading date
ReadTime	time	00:00:00	The reading time
Phase	float	0	The power phases: 0, 1 and 2
Reading	float	608.075	The value of voltage
ImportID	int(11)	2346	
Reason	int(11)	2	

3.4 Smart Meter Reading

The tables in this category hold the power data consumed by customers. Meters contains the mappings of MeterID to MeterNumber. SmartMeterReadings is holding the meter reading of 1-minute interval of each meter, and the exception readings are hold in SmartMeterReadingsExceptions. The geography information of meters is in MeterXY, including the longitude and latitude on map. The fact is the meter readings, and the dimensions are date, time, and meter ID, and location.

Table 8. Meters

Field	Type	Example	Description
MeterID	int(11)	19419	Meter ID
MeterNumber	int(11)	1	Meter number

 ${\bf Table~9.~SmartMeterReadings}$

Field			Description
MeterNumber	varchar(250)	EP00010116	Meter number
ReadDate	date	2010-10-29	Reading date
ReadTime	time	00:04:00	Read time, at 1-minute interval
UOMID	int(11)	1	
Reading	float	0.74	The value of reading
MeterID	int(11)	22220	Meter ID

Table 10. SmartMeterReadingsExceptions

Field	Type	Example	Description
MeterNumber	int(11)	323	Meter number
ReadDate	timestamp	2011-03-03 00:00:00	Reading date
Interval1	int(11)	500	
Channel	int(11)	1	A smart meter typically has several channels that user can
			program for different tariff rates
UOMID	int(11)	1	
Reading	int(11)	694	The value of exceptional reading
ImportID	int(11)	2	The import ID of the meter that has exceptional reading
Reason	int(11)	N/A	The number of reason

Table 11. MetersXY

Field	Type	Example	Description
MeterID	int(11)	19420	Meter ID
PointX	int(11)	329888	Longitude
PointY	int(11)	4678339	Latitude

3.5 Interval Meter Reading

Interval Meter Readings are at 1-hour interval for each of the channels in a meter. Typically, a meter has multiple channels, each of which show a different tariff. A utility companies can set the rate of power in each channel. The readings are in IntervalMeterReadings. The exceptional readings are in IntervalMeterReadings—Exceptions. Therefore, the fact is the meter readings that could be viewed from the dimensions, reading date, time, Channels, Meter ID and locations.

Table 12. IntervalMeterMapping

Field	Type	Example	Description
${\bf Interval Meter Number}$	int(11)	814110	Interval meter number
MeterID	int(11)	19894	Meter ID

 ${\bf Table~13.~Interval Meter Readings}$

Field	Type	Example	Description
MeterNumber	int(11)	816510	Meter number
ReadDate	timestamp	2011-09-01 00:00:00	Reading date
Interval1	int(11)	1	Read interval, 1hour
Channel	int(11)	1	A channel showing a tariff where the rate can be set
UOMID	int(11)	1	
Reading	int(11)	306	Reading
ImportID	int(11)	29485	
Reason	int(11)	N/A	

 ${\bf Table~14.~Interval Meter Readings Exceptions}$

Field	Type	Example	Description
MeterNumber	int(11)	816510	Meter number
ReadDate	timestamp	2011-09-01 00:00:00	Reading date
Interval1	int(11)	1	
Channel	int(11)	1	A channel showing a tariff where the rate can be set
UOMID	int(11)	1	
Reading	int(11)	306	Reading
ImportID	int(11)	29485	
Reason	int(11)	N/A	Exceptional reason

3.6 Other Tables

Both are self-explained.

Table 15. UnitsOfMeasure

Field	Type	Example	Description
UOMID	int(11)	1	
PrimaryDescription	varchar(250)	KWH	
SecondaryDescription	varchar(250)	KW	

Table 16. AreaTowns

Field	Type	Example	Description
areatown	varchar(250)	A1-TEC	
municipality	varchar(250)	Tecumseh	
	varchar(250)		
	varchar(250)		
scale	varchar(250)	N/A	

4 Paper Reading

The purpose of the weekly paper reading keeps me update the algorithms of data analysis and forecasting in energy. Followings are the papers I read this week.

- L. Wang, L. Tanm C. Yu, and Z. Wu. "Study and Application of Non-Linear Time Series Prediction in Ground Source Heat Pump System".
 In Proc. of CECNet, pp. 3522-3525, 2012.
 - Lu et al. uses the two different algorithms, (SMOreg) Sequential Minimal Optimization for Regression [4] and M5P(model tree) [5], to do the forecasting of geothermal energy utilization of ground source heat pump system, which is the non-linear prediction. They argued that the selected two algorithms have better accuracy than the other algorithms used in linear prediction, such as Microsoft time series, AR model, Cloud Model, etc. But, the paper does not compared with any of these algorithms. Instead, they test the two selected algorithms using the real data sets, and find that M5P shows a better accuracy comparing with SMOreg.
- S. Murugesan, J. Zhang, and V. Vittal. "Finite State Markov Chain Model for Wind Generation Forecast: A Data-driven Spatiotemporal Approach". In *Proc. of ISGT*, pp. 1–8, 2012.
 - This paper uses Markov chain model to forecast the aggregate power output from a wind farm. The model considers both spatial and temporal dynamics of wind power output of turbines in the farm. The temporal dynamics of the aggregate wind power is analyzed using auto-regression, while taking into account the diurnal non-stationarity and the seasonality.
- D. Tsoumakos, and C. Mantas. "The Case for Multi-engine Data Analytics". http://www.cslab.ece.ntua.gr/~dtsouma/index_files/MEMS_mhpc2013.pdf

This is the position paper that envisions an analytics platform with Multi-Engine Management System (MEMS). The authors first study the state-of-the-art technologies for data analytics today, and the challenges. They found that due to the diversity of the analytics requirements, the data sources, and the hardware conditions, etc., users typically use different systems to do their analytics. They think it is desirable to build a unied analytics system for managing, executing and monitoring multiple, complex jobs. But, inside the system there lies multiple Management Systems that provide adaptive, cost-based and customizable resource management for diverse resources.

References

- 1. J. Toothman and S. Aldous. "How Solar Cells Work". http://science.howstuffworks.com/environmental/energy/solar-cell1.htm as of Nov 25, 2013.
- 2. http://www.iitk.ac.in/infocell/Archive/dirimg/power.jpg as of Nov 25, 2013.
- 3. R. E. Brown, "Electric Power Distribution Reliability". Marcel Dekker, Inc., 2002.
- 4. C. Li, L. Jiang. "Using Locally weighted learning to improve SMOreg for regression[R]". Hubei: PRICAI 2006,2006:375384.
- J. Yang, Y. Zhai, D. Xu, et al. "SMO Algorithm applied in time series model building and forecast". In Proc. of ICMLC, 2007:2395-2400, 2012.