

ชื่อโครงงาน เครื่องวัดปริมาณฝนตกต่อชั่วโมง และเก็บภาพท้องฟ้าและเมฆแบบประหยัด

ผู้ดำเนินงาน

นายอมรฤทธิ์ วรวิบูลย์	630107030020
หางสาวเปรมบุรฉัตร พรจริยาหันท์	630107030035
นายวรพล เลิศล้ำ	644607030007

อาจารย์ที่ปรึกษา ผศ.ดร.สมศักดิ์ กิตติปิยกุล

โครงงานนี้เป็นส่วนหนึ่งของวิชาโครงงานวิศวกรรมคอมพิวเตอร์ สาขาวิศวกรรมคอมพิวเตอร์ วิทยาลัยนวัตกรรมด้านเทคโนโลยีและวิศวกรรมศาสตร์ มหาวิทยาลัยธุรกิจบัณฑิตย์ ปีการศึกษา 2566 ชื่อโครงงาน : เครื่องวัดปริมาณฝนตกต่อชั่วโมง และเก็บภาพท้องฟ้าและเมฆแบบประหยัด

ประเภทของโครงงาน : ฮาร์ตแวร์

ผู้ดำเนินงาน : นาย อมรฤทธิ์ วรวิบูลย์ 630107030020

: นางสาว เปรมบุรฉัตร พรจริยานันท์ 630107030035

: นาย วรพล เลิศล้ำ 644607030007

อาจารย์ที่ปรึกษาโครงงาน : ผศ.ดร.สมศักดิ์ กิตติปิยกุล

สาขาวิชา : วิศวกรรมคอมพิวเตอร์

ปีการศึกษา : 2566

บทคัดย่อ

โครงงานนี้จัดทำขึ้นเพื่อวัดปริมาณน้ำฝนและเก็บภาพท้องฟ้า เก็บรวบรวมข้อมูลโดยใช้อุปกรณ์ วัดน้ำฝนและคอนโทรลเลอร์ โดยปัญหาส่วนใหญ่มักพบเจอกับเรื่องน้ำท่วม เช่น น้ำท่วมแบบฉับพลัน น้ำป่าไหลหลาก ฝนตกหนักไม่ทราบสาเหตุ และโครงงานนี้ช่วยคาดการณ์สถานการณ์การเกิดน้ำท่วมได้ โครงงานนี้ใช้ภาษา C/C++ ในการพัฒนาส่วนของ Arduino ในส่วนของหน้าเว็บในการพัฒนาเราจะใช้ ภาษา Html CSS JavaScript Bootstrap สามารถดูปริมาณน้ำฝนแบบ real-time ได้ และสามารถดู ย้อนหลังได้

Project Name : Low-Cost Weather Station for Rainfall Measurement and Cloud Image

Collection

Kind of the project : Hardware

Author: Mr. Amonrit Warawiboon 630107030020

: Ms. Premburachat Pornjariyanun 630107030035

: Mr. Warapon Ledlum 644607030007

Project Advisor : Asst.prof. Somsak Kittipiyakul

Major : Computer Engineering

Academic year : 2023

Abstract

This project is designed to measure rainfall and capture the sky. Data was collected using rainwater measuring devices and controllers. Most of the problems are flooding, such as flash floods for unknown reasons, and this project can help predict flooding situations.

This project uses C/C to develop Arduino's section. In the development page, we use Html, CSS, JavaScript, Bootstrap, can view rainfall in real-time and can view it backwards.

บทที่ 1

บทน้ำ

1.1 ที่มาและความสำคัญ

อุทกภัยนั้นถือเป็นภัยพิบัติทางธรรมชาติอีกภัยหนึ่งที่ก่อเกิดปัญหาในหลาย ๆ ด้าน ถ้าหาก
ประชาชนไม่สามารถอพยพหรือเคลื่อนย้ายได้ทันก่อนเกิดภาวะน้ำท่วมฉับพลันก็สามารถจะก่อให้เกิด
ความสูญเสียที่ตามมาอีกมากมาย เนื่องจากด้วยภาวะดังกล่าวจะเกิดขึ้นภายในระยะเวลาสั้น ๆ และรวดเร็ว ซึ่งสาเหตุมาจากการสะสมหรือ การรวมตัวของน้ำที่มีอยู่เดิมให้เพิ่มขึ้นอย่างรวดเร็วบางครั้งอาจเกิด ร่วมกับภาวะดินโคลนถล่มจากภูเขาอีกด้วย ปัญหาอุทกภัยหรือน้ำท่วมนั้น ส่งผลกระทบต่อประเทศชาติใน หลาๆด้าน ภาวะเหล่านี้เกิดจากปัญหาที่ยากต่อการแก้ปัญหาที่ยากต่อการแก้ไข

ผู้จัดทำเล็งเห็นถึงความสำคัญ จึงได้คิดคันสิ่งประดิษฐ์ ที่วัดปริมาณน้ำฝน ขึ้นมา หากมี เหตุการณ์อะไรเกิดขึ้น ผู้ประสบอุทกภัยจะทราบเหตุการณ์การเกิดอุทกภัยก่อนล่วงหน้าแล้วอาจมีโอกาสที่ จะอพยพและได้รับผลกระทบน้อยลงจากภาวะเหตุการณ์ดังกล่าว เพื่อเป็นการช่วยบรรเทาผลกระทบที่ ตามมาหลัง ซึ่งสามารถลดความสูญเสียได้อย่างแน่นอน

1.2 วัตถุประสงค์

- 1.2.1 เพื่อสร้างเครื่องวัดปริมาณน้ำฝน และเก็บรูปภาพท้องฟ้าและก้อนเมฆแบบประหยัด
- 1.2.2 เพื่อศึกษาการวัดระดับปริมาณน้ำฝน
- 1.2.3 สามารถดูข้อมูลแบบ real-time และสามารถดูย้อนหลังได้ในเว็บไซต์

1.3 ขอบเขตของงาน

ขอบเขตของงานมี 3 ขอบเขตได้แก่ Frontend, Backend, Hardware

- 1.3.1 ขอบเขตในส่วนของ Frontend
 - 1.3.1.1 ผู้ใช้สามารถดูค่าปริมาณน้ำฝนได้แบบ real-time
 - 1.3.1.2 ผู้ใช้สามารถดูค่าปริมาณน้ำฝนย้อนหลังได้
 - 1.3.1.3 ผู้ใช้สามรถดูภาพถ่ายท้องฟ้าได้
- 1.3.2 ขอบเขตในส่วนของ Backend
 - 1.3.2.1 เก็บค่าวัดปริมาณน้ำฝน
 - 1.3.2.2 เก็บค่าวัดปริมาณน้ำฝนแบบ real-time

- 1.3.2.3 เก็บค่าวัดปริมาณน้ำฝนย้อนหลัง
- 1.3.2.4 เก็บรูปท้องฟ้า

1.3.3 ขอบเขตในส่วนของ Hardware

- 1.3.3.1 วัดปริมาณน้ำฝน
- 1.3.3.2 Sensor ตรวจจับค่าอุณหภูมิและความชื้น
- 1.3.3.3 บันทึกรูปภาพได้
- 1.3.3.4 ระบบแจ้งเตือนผ่าน LineNotify

1.4 ประโยชน์ที่ดาดว่าจะได้รับ

- 1.4.1 ได้นำความรู้ที่ได้จากการพัฒนาโครงงานนี้ มาปรับใช้กับธุรกิจได้จริง
- 1.4.2 ได้มีทักษะการทำงานร่วมกับผู้อื่นได้ดียิ่งขึ้น
- 1.4.3 ได้ฝึกทักษะการเขียนโปรแกรมที่ดีขึ้น และทำไปใช้กับงานได้ในอนาคต
- 14.4 ได้ฝึกทักษะการบริหารและจัดการเวลา ให้ได้ตรงตามแผนงานที่ตั้งไว้

1.5 การออกแบบในภาพรวม

รูปที่ 1.1 สถาปัตยกรรม Hardware ของระบบ

เมื่อน้ำฝนถึงปริมาณที่ตัว Trip กำหนดไว้ จะเกิดการผ่านของตัวแม่เหล็ก เมื่อแม่เหล็กได้รับค่ามา ว่าน้ำฝนที่ได้รับนั้นถึงปริมาณที่ตั้งไว้ จะทำการให้ตัว BME280 นั้นเก็บค่า Temp และ Humi เพื่อส่งไป เก็บที่ฐานข้อมูลและส่ง Line Notify และกล้องจะทำการบันทึกรูปภาพทุกครั้งที่เกิดการ Trip จากแม่เหล็ก และส่งรูปภาพไปที่ Line notify ค่าที่รับได้จาก Sensor ทั้งหมดจะถูกส่งไปเก็บที่ฐานข้อมูลเพื่อนำไปใช้ แสดงใน Web

1.6 อุปกรณ์และเครื่องมือและซอฟแวร์ที่ใช้ในการพัฒนาโครงงาน

1.6.1 Notebook (Asus, Acer) ใช้สำหรับจัดทำเอกสารและพัฒนาระบบ

1.6.2 โปรแกรมและเครื่องมือและอุปกรณ์ที่ใช้ในการพัฒนา

- 1.6.2.1 Visual Studio Code
- 1.6.2.2 SQL Server
- 1.6.2.3 Node-Red

รูปที่ **1.2** Node-Red

เป็นเครื่องมือการพัฒนาแบบโฟลว์สำหรับการเขียนโปรแกรมเชิงภาพ

1.6.2.4 Raspberry Pi Zero 2

รูปที่ 1.3 Raspberry Pi Zero 2

เป็นไมโครคอนโทรลเลอร์ที่มีความสามารถพิเศษ ที่ควบคุม IN-OUT ต่างๆ และยัง สามารถเชื่อมเครือข่ายอินเตอร์เน็ตไร้สาย

1.6.2.5 BME280 Environmental Sensor

รูปที่ 1.4 BME280 Environmental Sensor ตรวจวัดอุณหภูมิและความชื้น

1.6.2.6 Fish Eye Lense Raspberry Pi 5MP IR Camera

รูปที่ 1.5 Fish Eye Lense Raspberry Pi 5MP IR Camera ใช้สำหรับถ่ายภาพท้องฟ้า

1.6.2.7 NJK-5002C / Hall Proximity Switch

รูปที่ 1.4 NJK-5002C เซ็นเซอร์จับแม่เหล็ก

1.6.3 ภาษาที่ใช้ในการพัฒนา

1.6.3.1 ภาษา C/C++

1.6.3.2 ภาษา html

1.6.3.3 ภาษา CSS

1.6.3.4 ภาษา JavaScript

1.6.3.5 Bootstrap

1.8 แผนการดำเนินงาน

1.8.1 แผนการดำเนินโครงงาน ภาคเรียนที่ 1

เทอม1				
ารนำเสนอหัวข้อโครงงาน	10 days	Mon 4/9/66	Wen 13/9/66	
รับหัวข้อ	1 day	Mon 4/9/66	Mon 4/9/66	สมาชิก
สำรวจความเป็นไปได้ของหัวข้อ	1 day	Tue 5/9/66	Tue 5/9/66	สมาชิก
ออกแบบ Interface	6 days	Wen 6/9/66	Mon 11/9/66	สมาชิก
ทำรายงานบทที่ 1	1 day	Tue 12/9/66	Tue 12/9/66	สมาชิก
ทำ Presentation	1day	Wen 13/9/66	Wen 13/9/66	สมาชิก
นำเสนอหัวข้อ	1 days	Fri 15/9/66	Fri 15/9/66	สมาชิก
ัฒนาระบบ (ESP32)	106 days	Mon 18/9/66	Sun 31/12/66	
ศึกษาเครื่องมือที่ใช้ในการพัฒนา	44 days	Mon 18/9/66	Tue 31/10/66	สมาชิก
สั่งของ	44 days	Mon 18/9/66	Tue 31/10/66	สมาชิก
เขียนโปรแกรมเชื่อมกับ Arduino	62 days	Tue 31/10/66	Sun 31/12/66	วรพล
เขียนโปรแกรมอ่านค่าเซนเซอร์	62 days	Tue 31/10/66	Sun 31/12/66	วรพล
เก็บภาพท้องฟ้าใน ESP 32	62 days	Tue 31/10/66	Sun 31/12/66	วรพล
เขียน รับ-ส่ง ข้อมูลและรูปภาพ	62 days	Tue 31/10/66	Sun 31/12/66	วรพล
เฒนาระบบ (เชื่อมอปกรณ์)				
ESP32 เชื่อมกับ ที่วัดน้ำฝน	62 days	Tue 31/10/66	Sun 31/12/66	อมรฤทธิ์
อุปกรณ์เชื่อมกับ WebSite	62 days	Tue 31/10/66	Sun 31/12/66	เปมบุรฉัตร
ตรวจสอบการเชื่อมต่อระหว่างอุปกรณ์กับ Website	62 days	Tue 31/10/66	Sun 31/12/66	เปรมบุรฉัต
เดสอบระบบ แก้ไขบัค	121days	Mon 1/1/67	Sun 31/3/67	
ESP 32	121days	Mon 1/1/67	Sun 31/3/67	สมาชิก
ทดสอบระบบ ระหว่างอปกรณ์กับ Website	121davs	Mon 1/1/67	Sun 31/3/67	สมาชิก

ร**ูปที่ 1.5** ส่วนของการเริ่มโครงงาน เทอม 1

1.8.1 แผนการดำเนินโครงงาน ภาคเรียนที่ 2

เทอม2				
WebSite	121days	Mon 1/1/67	Tue 30/4/67	
(Backend)				
เก็บข้อมูลของปริมาณน้ำฝนแบบ real-time	121days	Mon 1/1/67	Tue 30/4/67	อมรฤทธิ์
เก็บข้อมูลปริมาณน้ำฝนย้อนหลัง	121days	Mon 1/1/67	Tue 30/4/67	อมรฤทธิ์
(Fontend)				
แสดงข้อมูลปริมาณน้ำฝน แบบ real-time	121days	Mon 1/1/67	Tue 30/4/67	เปรมบุรฉัตร
แสดงข้อมูลปริมาณน้ำฝนย้อนหลังอยากดูวันไหนสามารถเลือกวันมาดูได้	121days	Mon 1/1/67	Tue 30/4/67	เปรมบุรฉัตร
(Test)				
ทดลองใช้งาน	121days	Mon 1/1/67	Tue 30/4/67	สมาชิก
ค้นหาและแก้ไขข้อผิดพลาด	121days	Mon 1/1/67	Tue 30/4/67	สมาชิก
สรุปผลการทดลอง	121days	Mon 1/1/67	Tue 30/4/67	สมาชิก
นำเสนอ	0 day			

รูปที่ 1.6 ส่วนของการเริ่มโครงงาน เทอม 2

1.8 สรุป

ได้นำความรู้และอุปกรณ์ที่เรียนมานำมาใช้ในการสร้างอุปกรณ์ "เครื่องวัดปริมาณน้ำฝน" เพื่อทำ การเก็บข้อมูลของน้ำฝนและนำข้อมูลของน้ำฝนมาคาดการณ์ว่าฝนที่ตกในช่วงนี้ จะมีการโอกาศเกิดน้ำ ท่วมมากน้อยขนาดไหน เพื่อเตรียมรับมือกับการเกิดน้ำท่วมได้ทันท่วงที

บทที่ 2 ทฤษฎีบทและงานที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 ภาษา JavaScript

JavaScript เป็นภาษาโปรแกรมที่นักพัฒนาใช้ในการสร้างหน้าเว็บแบบอินเทอร์แอคทีฟ ตั้งแต่การรี เฟรซฟิดสื่อโซเชียลไปจนถึงการแสดงภาพเคลื่อนไหวและแผนที่แบบอินเทอร์แอคทีฟ ฟังก์ชันของ JavaScript สามารถปรับปรุงประสบการณ์ที่ผู้ใช้จะได้รับจากการใช้งานเว็บไซต์ และในฐานะที่เป็นภาษาในการเขียนสคริปต์ ฝั่งไคลเอ็นต์ จึงเป็นหนึ่งในเทคโนโลยีหลักของ World Wide Web ยกตัวอย่างเช่น เมื่อคุณท่องเว็บแล้วเห็น ภาพสไลด์ เมนูดร็อปดาวน์แบบคลิกให้แสดงผล หรือสื่องค์ประกอบที่เปลี่ยนแบบไดนามิกบนหน้าเว็บ นั่นคือ คุณเห็นเอฟเฟกต์ของ JavaScript

JavaScript นำไปใช้ทำอะไร แต่ก่อนเว็บเพจเป็นแบบคงที่คล้ายกับหน้าหนังสือ โดยหลักแล้วหน้าเพจ คงที่แสดงข้อมูลในเค้าโครงที่ตายตัว และไม่ได้ทำทุกอย่างที่ตอนนี้เราคาดหวังจากเว็บไซต์สมัยใหม่ JavaScript เกิดขึ้นในฐานะเทคโนโลยีฝั่งเบราว์เซอร์เพื่อทำให้เว็บแอปพลิเคชันมีความเป็นไดนามิกมากขึ้น เมื่อใช้
JavaScript เบราว์เซอร์จะสามารถตอบสนองต่อการโต้ตอบของผู้ใช้และเปลี่ยนแปลงเค้าโครงเนื้อหาบนเว็บเพจ ได้ เมื่อภาษาผ่านการพัฒนาอย่างเต็มที่ นักพัฒนา JavaScript ก็สร้างไลบรารี เฟรมเวิร์ก และแนวทางปฏิบัติใน การเขียนโปรแกรม แล้วเริ่มนำ JavaScript ไปใช้นอกเว็บเบราว์เซอร์ วันนี้ คุณสามารถใช้ JavaScript สำหรับ ทั่งการพัฒนาฝั่งไคลเอ็นด์และฝั่งเซิร์ฟเวอร์ เราให้ตัวอย่างกรณีการใช้พบที่พบบ่อยบางส่วนในหัวข้อย่อย ต่อไปนี้: แต่ก่อนเว็บเพจเป็นแบบคงที่คล้ายกับหน้าหนังสือ โดยหลักแล้วหน้าเพจคงที่แสดงข้อมูลในเค้าโครงที่ ตายตัว และไม่ได้ทำทุกอย่างที่ตอนนี้เราคาดหวังจากเว็บไซต์สมัยใหม่ JavaScript เกิดขึ้นในฐานะเทคโนโลยีฝั่ง เบราว์เซอร์เพื่อทำให้เว็บแอปพลิเคชันมีความเป็นไดนามิกมากขึ้น เมื่อใช้ JavaScript เบราว์เซอร์จะสามารถ ตอบสนองต่อการโด้ตอบของผู้ใช้และเปลี่ยนแปลงเค้าโครงเนื้อหาบนเว็บเพจได้

JavaScript ทำงานอย่างไร ภาษาโปรแกรมทั้งหมดทำงานด้วยการแปลไวยากรณ์ที่คล้ายภาษาอังกฤษ เป็นโค้ดสำหรับเครื่อง จากนั้นระบบปฏิบัติการจะเรียกใช้โค้ดนั้น JavaScript ได้รับการจัดประเภทอย่างกว้าง ๆ ว่าเป็นภาษาเขียนสคริปต์ หรือภาษาที่แปลผลแล้ว โค้ด JavaScript ได้รับการแปลผล—นั่นคือ แปลโดยตรงเป็น โค้ดภาษาสำหรับเครื่อง ด้วยกลไกล JavaScript ในขณะที่ในภาษาโปรแกรมอื่น ๆ คอมไพเลอร์จะคอมไพล์โค้ด ทั้งหมดเป็นโค้ดสำหรับเครื่องในขั้นตอนที่แยกต่างหาก ดังนั้น ภาษาเขียนสคริปต์ทั้งหมดจึงเป็นภาษาโปรแกรม แต่ไม่ใช่ว่าภาษาโปรแกรมทั้งหมดจะเป็นภาษาเขียนสคริปต์เสมอไป

2.1.2 Internet of thing

Internet of Things (IoT) [1] คือ "อินเตอร์เน็ตในทุกสิ่ง" หมายถึง การที่อุปกรณ์ต่าง ๆ สิ่ง ต่าง ๆ ได้ถูก เชื่อมโยงทุกสิ่งทุกอย่างสู่โลกอินเตอร์เน็ต ทำให้มนุษย์สามารถสั่งการควบคุมการใช้งาน อุปกรณ์ต่าง ๆ ผ่านทาง เครือข่ายอินเตอร์เน็ต เช่น การเปิด-ปิด อุปกรณ์เครื่องใช้ไฟฟ้า รถยนต์ โทรศัพท์มือถือ เครื่องมือสื่อสาร เครื่องมือทางการเกษตร อาคาร บ้านเรือน เครื่องใช้ใน ชีวิตประจำวันต่าง ๆ ผ่านเครือข่ายอินเตอร์เน็ต IoT มีชื่อ เรียกอีกอย่างว่า M2M ย่อมาจาก Machine to Machine คือเทคโนโลยีอินเตอร์เน็ตที่เชื่อมต่ออุปกรณ์กับ เครื่องมือต่าง ๆ เข้าไว้ด้วยกัน เทคโนโลยี IoT มีความจำเป็นต้องทำงานร่วมกับอุปกรณ์ประเภท RFID และ Sensors ซึ่งเปรียบเสมือนการเติม สมองให้กับอุปกรณ์ และที่ขาดไม่ได้คือการเชื่อมต่ออินเตอร์เน็ตเพื่อให้ อุปกรณ์สามารถรับส่งข้อมูลถึง กันได้บัจจุบันมีการแบ่งกลุ่ม Internet of Things ออกตามตลาดการใช้งานเป็น 2 กลุ่ม ได้แก่Industrial IoT คือ แบ่งจาก local network ที่มีหลายเทคโนโลยีที่แตกต่างกันในโครงข่าย Sensor nodes โดยตัวอุปกรณ์ IoT Device ในกลุ่มนี้จะเชื่อมต่อแบบ IP network เพื่อเข้าสู่ อินเตอร์เน็ตและ Commercial IoT คือ แบ่งจาก local communication ที่เป็น Bluetooth หรือ Ethernet (wired or wireless) โดย ตัวอุปกรณ์ IoT Device ในกลุ่มนี้จะสื่อสารภายในกลุ่ม Sensor nodes เดียวกันเท่านั้นหรือเป็นแบบ local devices เพียงอย่างเดียวอาจไม่ได้เชื่อมสู่อินเตอร์เน็ต การทำงานของ IoT [2] หากขาดส่วนใดส่วนหนึ่งไปก็จะ เกิดความบกพร่องได้ ซึ่งองค์ประกอบของ IoT ปัจจุบัน ประกอบด้วย

- 1. Smart Device อุปกรณ์ที่มีหน้าที่เฉพาะ การใช้ IoT จำเป็นต้องมีส่วนประกอบอย่าง
 Microprocessor และ Communication Device อยู่ภายในเพื่อแลกเปลี่ยนข้อมูล ข้อมูลที่ Smart Device ส่ง
 มอบไปยังระบบ ไม่เพียงแต่ข้อมูลตามหน้าที่เท่านั้น แต่ยังรวมถึงสภาพของอุปกรณ์ด้วย ผู้ใช้จึงไม่ต้องเดินทาง
 มาตรวจสอบอุปกรณ์ด้วยตัวเองเป็นประจำ
- 2. Cloud Computing หรือ Wireless Network สื่อกลางรับส่งข้อมูลจาก Smart Device ไปยังผู้ใช้ ซึ่ง มีทั้งการส่งข้อมูลผ่านระบบ Wireless ไปยังผู้ใช้และการส่งผ่าน Cloud Computer ซึ่งการส่งข้อมูลไปยัง Cloud ช่วยรองรับการใช้งาน Smart Device
- 3. จำนวนมากกว่า ระยะทางใกลกว่า รวมถึงอาจมีการติดตั้งระบบแปลงการแสดงผลข้อมูล ให้เหมาะ กับผู้ใช้ในส่วนนี้ได้
- 4. Dashboard ส่วนแสดงผลและควบคุมการทำงานในมือของผู้ใช้ อยู่ในรูปของ Device หรือ แอปพลิเคชันในคอมพิวเตอร์หรือ Smartphone ผู้ใช้จะดูข้อมูลที่ Smart Device ส่งมา ตรวจสอบสถานะของ อุปกรณ์และระบบ รวมถึงถ่ายทอดคสั่งใหม่ไปยัง Smart Device จากส่วนนี้

Node-RED เป็นเครื่องมือสำหรับนักพัฒนา โปรแกรม ในการเชื่อมต่ออุปกรณ์ฮาร์ดแวร์เข้ากับ APIs (Application Programming Interface) ซึ่งเป็นการพัฒนาโปรแกรมแบบ Flow-Based Programming ที่มีหน้า UI สำหรับนักพัฒนา ใช้งาน ผ่าน Web Browser Node-RED เป็น Flow-Based Programming ทำให้ไม่ต้อง เขียน Code ในการพัฒนาโปรแกรม เพียงเลือก Node มาวางแล้วเชื่อมต่อก็สามารถควบคุม I/O ได้ โดย Node-RED จะมี Node ให้ เลือกใช้งานอย่างหลากหลาย สามารถสร้างฟังก์ชัน JavaScript ได้โดยใช้ Text Editor ที่มี อยู่ใน Node-RED และยังสามารถบันทึก Function, Templates, Flows เพื่อไปใช้งานกับงานอื่นต่อไป Node-RED ทำงานบน Node.js เหมาะสำหรับการใช้งานกับ Raspberry Pi เนื่องจากใช้ทรัพยากร น้อย ขนาดไฟล์ไม่ ใหญ่และ Node.js ยังทำหน้าที่เป็นตัวกลางให้ Raspberry Pi สามารถติดต่อกับ Web Browser

2.1.4 BME280 Environmental Sensor

เซ็นเซอร์ขนาดเล็กที่สร้างด้วย BME280 สามารถตรวจจับอุณหภูมิ ความชื้น และความดันบรรยากาศ ของสิ่งแวดล้อมได้ รองรับทั้งอินเทอร์เฟซ I2C และ SPI และสามารถใช้กับคอนโทรลเลอร์ Raspberry Pi, Arduino, STM32 ได้ ด้วยขนาดที่กะทัดรัด การใช้พลังงานต่ำ ความแม่นยำสูง และความเสถียรสูง เซ็นเซอร์นี้ จึงเหมาะสำหรับการเกษตรอัจฉริยะ สถานีตรวจอากาศ และการใช้งานที่เกี่ยวข้องกับสิ่งแวดล้อม Specification:

- แรงดันไฟฟ้า: 3.3V/5V

- อินเทอร์เฟซการสื่อสาร: I2C/SPI

- การตรวจจับอุณหภูมิ: -40~85°C (ความละเอียด 0.01°C, ความแม่นยำ ±1°C)

- การตรวจจับความชื้น: 0 ~ 100% RH (ความละเอียด 0.008% RH, ความแม่นยำ ± 3% RH, เวลา ตอบสนอง 1 วินาที, ความล่าช้า ≤2% RH)

PIN	I2C	SPI
VCC	3.3V/5V power supply	
GND	Ground	
SDA/MOSI	I2C data	SPI data master output/slave input
SCL/SCK	I2C clock	SPI clock input
ADDR/MISO	I2C address chip selection, high level (default) address: 0x77; low level address: 0x76	SPI data master input/slave output
CS	NC	SPI chip selection, low active

2.1.5 Fish Eye Lense Raspberry Pi 5MP IR Camera

โมดูลกล้องนี้เป็นโปรแกรมเสริมที่ออกแบบเองสำหรับ Raspberry Pi อินเทอร์เฟซใช้อินเทอร์เฟซ CSI (Camera Serial Interface) เฉพาะ ซึ่งได้รับการออกแบบมาโดยเฉพาะสำหรับการเชื่อมต่อกับกล้อง บัส CSI สามารถรองรับอัตราข้อมูลที่สูงมาก และรองรับข้อมูลพิกเซลโดยเฉพาะ รถบัสคันนี้เคลื่อนที่ไปตามสายริบบิ้นที่ ยึดบอร์ดกล้องเข้ากับ Pi

ตัวเซ็นเซอร์นั้นมีความละเอียดดั้งเดิม 5 ล้านพิกเซลและมีเลนส์ปรับโฟกัสที่ปรับได้ในตัว กล้องได้รับการ สนับสนุนใน Raspbian เวอร์ชันล่าสุด ซึ่งเป็นระบบปฏิบัติการที่ Raspberry Pi ต้องการ

เซนเซอร์ตรวจจับแม่เหล็ก Hall Sensor Proximity Switch NJK-5002C เป็นเซนเซอร์ที่สามารถตรวจ ความเป็นแม่เหล็กได้ในระยะ 10mm ขนาดเซนเซอร์ OD 12mm เซนเซอร์เป็นชนิด NPN ใช้ไฟเลี้ยง 5-36VDC

Voltage	DC6-36V
Measuring Distance	10mm
Thread Diameter	12mm
Input Mode	NPN/NO