Task 4A Co-Production Analysis

Mark Laser (Co-Leader)
Thayer School of Engineering
Dartmouth College

The Role of Biomass in America's Energy Future
Public Meeting
Washington, D.C.
February 23, 2004

Objectives

- 1. Evaluate potential economic and resource efficiency/environmental benefits for several combinations of co-products
- 2. Determine the extent to which economic and environmental benefits converge
- 3. Analyze the impact of maturing technology on co-production

Consider co-production in the context of:

- Processing (this presentation)
- The field (Bruce Dale)

Potential Co-Products from Cellulosic Biomass

Gaseous Fuels, e.g.:

Hydrogen Methane

Liquid Fuels, e.g.:

Ethanol

Methanol

Fischer-Tropsch Liquids

Dimethyl Ether Pyrolysis Oils

Plant Oils/Biodiesel

Solid Fuels, e.g.:
Charcoal

Electricity

Steam

Organic Chemicals, e.g.:

Lactic Acid Succinic Acid Adhesives

Phenol

Lubricants

Biomaterials, e.g.:

Insulation Composites

Animal Feed Protein

Fertilizer

Thermochemical Conversion Platform

Bioconversion Platform

Co-Production Scenarios

SCENARIO	Biopower	Bioethanol	H ₂	TCF	Organic Chemicals	Protein
1	X		X			
2	X	X				
3	X	X	X			
4	X	X	X		X	
5	X	X				X
6	X	X			X	
7	X	X			X	X
8	X		X			X
9	X			X		
10	X	X		X		
11	X	X		X	X	
12	X			X		X

By no means comprehensive...

But, provides a broad range of product categories that have potential for enabling a large-scale transition to biomass-based energy use in the U.S.

Potential Co-Production Benefits

- Revenues from high-value co-products reduce the selling price of primary product
- •Economies of scale provided by full-size biorefinery lowers processing costs of low-volume, high-value co-products
- Process yield increases due to:
 - 1) Use of all component fractions of biomass feedstock
 - 2) Process integration synergies

which enhances both economic and environmental benefits

Potential Benefit to Primary Product Price

Potential Benefit to Co-product Price

Dedicated Plant (34 dry tons feedstock/day)

Full-Scale Biorefinery (300 MM gal EtOH/yr)

Benefits of Technology Maturation: Power Generation

Technology	Net Electric Efficiency		
	(LHV Basis)		
Rankine	33%		
Gas Turbine Combined Cycle (GTCC)	50%		
Solid Oxide Fuel Cell (SOFC)	57%		

Now consider potential thermodynamic benefit of technology maturation in the context of co-production...

"Near-Term" Technology EtOH/Rankine Power

Advanced Technology EtOH/Rankine Power

Advanced Technology EtOH/Advanced Power

Advanced Technology EtOH/Power/ Thermochemical Fuels

Conclusions and Next Steps

- To our knowledge, this is the first study that considers co-production in the context of mature technology—could lead to unforeseen, favorable results
- ➤ Process synergies between biological and thermochemical conversion have the potential to significantly increase process yields—of particular interest is the potential to efficiently coproduce ethanol and HDV fuels
- ➤ We will continue our in-progress co-production analysis—including economics—of ethanol/TCFs and examine co-production scenarios involving organic chemicals and protein