Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [ ]:
         # Trend analysis
In [ ]:
         # 1.0ver 84% of the 576 total players are males.
         #The total revenue is 2,379.77 USD, where 1,967.64 USD is from purchases made by male p
         # with the overwhelming mjprity of playership and total purchase from male, , female pl
In [ ]:
         # 2. the players between 20-24 make up almost half of the player grou(45%) and the seco
         #the least palyer are aged over 40 years old.
In [ ]:
         #3. The most popular items sold were Final Critic , Oathbreaker, Last Hope of the Break
         # these two items above also contribute the most to the sales
In [1]:
         # Dependencies and Setup
         import pandas as pd
         # File to Load (Remember to Change These)
         file to load = "Resources/purchase data.csv"
         # Read Purchasing File and store into Pandas data frame
         purchase data = pd.read csv(file to load)
```

Player Count

• Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting

780

\$2,379.77

• Display the summary data frame

```
Uniqueitem=purchase_data["Item ID"].nunique()
    Meanprice=purchase_data["Price"].mean()
    Meanprice2=round(Meanprice,2)
    Purchase=purchase_data["Purchase ID"].count()
    Revenues=purchase_data["Price"].sum()
    Purchaseanalysis=pd.DataFrame({'Number of Unique Items': [Uniqueitem],'Average Price': pd.options.display.float_format='${:,}'.format
    Purchaseanalysis.head()
Out[3]: Number of Unique Items Average Price Number of Purchases Total Revenue
```

\$3.05

Gender Demographics

0

• Percentage and Count of Male Players

179

- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

```
        Out[4]:
        Gender
        Counts of players
        Precentage of players

        0
        Male
        484
        84.03%

        1
        Female
        81
        14.06%

        2
        Other/ND
        11
        1.91%
```

Purchasing Analysis (Gender)

 Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender

- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
In [5]:
         malepurchasec=Onlymale["Item ID"].count()
         femalepurchasec=Onlyfemale["Item ID"].count()
         otherpurchasec=Other["Item ID"].count()
         maleavgprice=Onlymale["Price"].mean()
         femaleavgprice=Onlyfemale["Price"].mean()
         otheravgpric=Other["Price"].mean()
         #maleavgprice
         #femaleavgprice
         #otheravgpric
         malepurchase=Onlymale["Price"].sum()
         femalepurchase=Onlyfemale["Price"].sum()
         otherpurchase=Other["Price"].sum()
         maleavgpurchase=Onlymale["Price"].sum()/Onlymalecount
         femaleavgpurchase=Onlyfemale["Price"].sum()/Onlyfemalecount
         otheravgpurchase=Other["Price"].sum()/Othercount
         #maleavapurchase
         #femaleavapurchase
         #otheravapurchase
         Gender_analysis=pd.DataFrame({ "Gender": ["Male", "Female", "Other/ND"], "Purchase Count
         pd.options.display.float format='${:.2f}'.format
         Gender_analysis.head()
```

ut[5]:		Gender	Purchase Count	Average Purchase Price	Total Purchase	Purchase per Person
	0	Male	652	\$3.02	\$1967.64	\$4.07
	1	Female	113	\$3.20	\$361.94	\$4.47
	2	Other/ND	15	\$3.35	\$50.19	\$4.56

Age Demographics

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [6]: bins=[0,9.9,14.9,19.9,24.9,29.9,34.9,39.9,100]
```

```
Age_Labels=["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"]
#Add a column:aGE GROUP" into the DF
purchase_data["Age Group"]=pd.cut(purchase_data["Age"], bins, labels=Age_Labels)
purchase data
#!!Slice the date into groups
Purchase agegroup=purchase data.groupby("Age Group")
# check date type after slicing the date, and this is a dataframe -> Purchase agegroup.
# Aggregate the grouped by
Totalplayers= Purchase agegroup.nunique()['SN']
Totalplayers
# aftergrouped by age the list is a series
pcplayers=Totalplayers/players*100
#state office.div(state, level='state') * 100
AgeDemographicssum_df= pd.DataFrame({"Total Players" : Totalplayers, "Percentage of Play
pd.options.display.float format='{:.2f}%'.format
AgeDemographicssum df
```

Out[6]: Total Players Percentage of Players

Age Group		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
purchasecountage=Purchase_agegroup["Purchase ID"].count()
purchasecountage
avgpurchaseage=Purchase_agegroup["Price"].mean()

pd.options.display.float_format='${:.2f}'.format
```

totalpurchaseage=Purchase_agegroup["Price"].sum()
totalpurchaseagepp=totalpurchaseage/Totalplayers
totalpurchaseagepp

Out[7]:		Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
	Age Group				
	<10	23	\$3.35	\$77.13	\$4.54
	10-14	28	\$2.96	\$82.78	\$3.76
	15-19	136	\$3.04	\$412.89	\$3.86
	20-24	365	\$3.05	\$1114.06	\$4.32
	25-29	101	\$2.90	\$293.00	\$3.81
	30-34	73	\$2.93	\$214.00	\$4.12
	35-39	41	\$3.60	\$147.67	\$4.76
	40+	13	\$2.94	\$38.24	\$3.19

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [11]: Playerdata=purchase_data.groupby("SN")
    playerpurchasecount=Playerdata['Purchase ID'].count()
    #purchase_count #*****

# Total purchase value by player:
    Playerpurchasevalue=Playerdata['Price'].sum()

# Average purchase price by player:
    Playeravgpurchaseprice=Playerpurchasevalue/playerpurchasecount

# Top spenders summary data frame:
    topspenders_df=pd.DataFrame({'Purchase Count': playerpurchasecount,'Average Purchase Pr
    topspenders_df.sort_values('Total Purchase Value', ascending=False).head()
```

Out[11]:

Out[17]:

	Purchase Count	Average Purchase Price	Total Purchase Value
SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, average item price, and total purchase value
- Create a summary data frame to hold the results
- Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
items_df=purchase_data[['Item ID', 'Item Name', 'Price']]
itemsgroup_df=items_df.groupby(['Item ID', 'Item Name'])
itempurchasecount=itemsgroup_df['Price'].count()
itempurchasetotal=itemsgroup_df['Price'].sum()
itemavgpurchase=itempurchasetotal/itempurchasecount
popularitems_df=pd.DataFrame({'Purchase Count': itempurchasecount,'Item Price': itemavg
popularitems_df.sort_values('Purchase Count', ascending=False).head()
```

0			Purchase Count	Item Price	Total Purchase Value
	em ID	Item Name			
	92	Final Critic	13	\$4.61	\$59.99
1	78	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
1	45	Fiery Glass Crusader	9	\$4.58	\$41.22
1	32	Persuasion	9	\$3.22	\$28.99
1	80	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

Most Profitable Items

- Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

In [18]:

mostvalueitems_df=popularitems_df.sort_values('Total Purchase Value', ascending=False)
mostvalueitems_df.head()

Out[18]:			Purchase Count	Item Price	Total Purchase Value
	Item ID	Item Name			
	92	Final Critic	13	\$4.61	\$59.99
	178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
	82	Nirvana	9	\$4.90	\$44.10
	145	Fiery Glass Crusader	9	\$4.58	\$41.22
	103	Singed Scalpel	8	\$4.35	\$34.80

In []: