Each of five students—Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.

Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal. (B) [...]

Chain-of-Thought Prompting (imperative specification)

Specification

We know each student visits one of the cities with at least one of the other four students. We know there are five students and three cities. So there must be three a students visiting the one city and two other students visiting another city.

Let's consider option (A).

Assume someone visits Montreal, but Lori does not visit Montreal.

: We know Lori visits Montreal or else Toronto. So Lori wisits Toronto.

Assume Sharon visits Toronto with Lori.

We know Sharon visits a different city than Paul. So `A Paul has to visit Montreal.

Hubert and Regina can visit Montreal with Paul with no conflicts. So Lori does not necessarily visit Montreal. This statement is False.

> The LLM parses the question, plans the reasoning, and executes it all in the CoT (shown by dashed arrows)

Satisfiability-Aided LM (ours; declarative specification)

```
Specification
```

```
students = [Hubert, Lori, Paul, Regina, Sharon]
  cities = [Montreal, Toronto, Vancouver]
  visits = Function(students, cities)
  # Sharon visits a different city than Paul
1 visits(Sharon) != visits(Paul)
```

Lori visits Montreal or else Toronto

2 Or(visits(Lori) == Montreal, visits(Lori) == Toronto)

Each student visits one of the cities with at least one other student 3 ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))

. # (A)

Q solve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal))

The LLM *only* parses the question to a problem specification in this step

A SAT solver generates and executes a proof plan using automated theorem proving

Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is. Together they have caught 339 Pokemon. Alex has caught 5 more than Stan, and Stan has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon has Stan caught?

CoT

LLM (Parse + Plan + Execute)

Let X be the number of Pokemon Stan has caught. Alex has caught 5 more than Stan, so Alex has caught X + 5.

Stan has caught 13 less than 4 times as many as Adelwolfe has caught, so Stan has caught 4X - 13. Together they have caught 339 Pokemon, so X + 5 + 4X - 13 = 339.

Combining like terms produces 5X + 5 = 339. Subtracting 5 from both sides produces 5X = 334. Dividing both sides by 5 produces X = \$66.80, so Stan has caught 66 Pokemon.

The answer is 66.

ProgramLM

LLM (Parse + Plan)

total pokemon = 339 alex pokemon = 5stan pokemon = 4 adelwolfe pokemon = 13 stan pokemon = (total pokemon alex_pokemon - adelwolfe_pokemon * stan_pokemon) / (1 - stan_pokemon) result = stan pokemon

Interpreter (Execute)

result = -94

SatLM

LLM (Parse)

```
total pokemon = 339
stan pokemon = Variable()
alex pokemon = stan pokemon + 5
stan pokemon = adelwolfe pokemon * 4 - 13
total pokemon = alex pokemon + stan pokemon +
adelwolfe pokemon
result = stan pokemon
solve(result)
```


Solver (Plan + Execute)

Q: Sara and Joe have a combined height of 120 inches. Joe is 6 inches more than double Sara's height. How tall is Joe?

SAT Solution

```
sara_height = Variable()
joe_height = Variable()
total_height = 120
joe_height = 2 * sara_height + 6
total_height = sara_height + joe_height
solve(joe_height)
```

CoT Solver

```
# We know total_height = sara_height + joe_height, and joe_height = 2 *
sara_height + 6.
# So total_height = sara_height + 2 * sara_height + 6 = 3 * sara_height + 6
# Therefore, sara_height = (total_height - 6) / 3 = (120 - 6) / 3 = 114 / 3 = 38
# joe_height = 2 * sara_height + 6 = 2 * 38 + 6 = 76 + 6 = 82
# The answer is 82
```

No Solver

The answer is 82

Q: Farmer Brown has 60 animals on his farm, all either chickens or cows. He has twice as many chickens as cows. How many legs do the animals have, all together?

SAT Solution

```
animals_total = 60
animals_chickens = Variable()
animals_cows = Variable()
animals_chickens = animals_cows * 2
animals_total = animals_chickens + animals_cows
legs_chickens = animals_chickens * 2
legs_cows = animals_cows * 4
legs_total = legs_chickens + legs_cows
```

Input

The llama is named Peddi. The pelikan has a card that is red in color, and is named Beauty.

Rule2: If the pelikan has a name whose first letter is the same as the first letter of the llama's name, then the pelikan creates a castle for the gadwall.

Rule3: The pelikan will create a castle for the gadwall if it (the pelikan) has a card with a primary color.

. . .

SAT Solution

```
Implies(has_same_first_letter_name(pelikan, llama), create_castle(pelikan, gadwall)) # Rule2
Implies(has_card_with_primary_color(pelikan), create_castle(pelikan, gadwall)) # Rule3
# The first letter of Peddi is P. The first letter of Beauty is B. So the pelikan does not have the same first letter name as the llama.
has_same_first_letter_name(pelikan, llama) == False
# The pelikan has a card that is red in color. red is a primary color.
has_card_with_primary_color(pelikan) == True
...
```

Each of five students—Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.

SAT Solver

Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal.

.

CoT Prompting using Imperative Specification (Nye et al., 2022; Wei et al., 2022)

Specification

We know <u>each student visits one of the cities with at</u>
<u>least one of the other four students.</u> We know <u>there are</u>
<u>five students and three cities.</u> So <u>there must be three</u>
<u>students visiting the one city and two other students</u>
<u>visiting another city.</u>

Let's consider option (A).

Assume someone visits Montreal, but Lori does not visit Montreal.

We know Lori visits Montreal or else Toronto. So Lori visits Toronto.

Assume Sharon visits Toronto with Lori.

✓ We know <u>Sharon visits a different city than Paul</u>. So✓ Paul has to visit Montreal.

Hubert and Regina can visit Montreal with Paul with no conflicts. So Lori does not necessarily visit Montreal. This statement is False.

LLMs generate a proof plan implicitly encoded in the CoT (showed by dashed arrows)

Satisfiability-Aided LM using Declarative Specification (Ours)

```
Specification
students = [Hubert, Lori, Paul, Regina, Sharon]
cities = [Montreal, Toronto, Vancouver]
visits = Function(students, cities)

1 # Sharon visits a different city than Paul
visits(Sharon) != visits(Paul)

2 # Lori visits Montreal or else Toronto
Or(visits(Lori) == Montreal, visits(Lori) == Toronto)

3 # Each student visits one of the cities with at least one other student
ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))
.....
# (A)

1 solve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal))
```

SAT solver generate a proof plan using automated theorem proving techniques

Each of five students—Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver—for the month of March, according to the following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.

Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal.

.

CoT Prompting using Imperative Specification (Nye et al., 2022; Wei et al., 2022)

Specification

Let's first analyze the conditions.

We know each student visits one of the cities with at least one of the other four students. So each city is visited by at least two students.

We know there are five students and three cities. So there must be three students visiting the one city and two other students visiting another city.

Let's consider option (A).

Assume someone visits Montreal, but Lori does not visit Montreal.

We know Lori visits Montreal or else Toronto. So Lori visits Toronto.

Assume Sharon visits Toronto with Lori.

We know Sharon visits a different city than Paul. So Paul has to visit Montreal.

Hubert and Regina can visit Montreal with Paul with no conflicts. So Lori does not necessarily visit Montreal. This statement is False.

Satisfiability-Aided LM using Declarative Specification (Ours)

Specification

```
students = [Hubert, Lori, Paul, Regina, Sharon]
cities = [Montreal, Toronto, Vancouver]
visits = Function(students, cities)
# Sharon visits a different city than Paul
visits(Sharon) != visits(Paul)
.....
# Lori visits Montreal or else Toronto
Or(visits(Lori) == Montreal, visits(Lori) == Toronto)
.....
# Each student visits one of the cities with at least one other student
ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))
.....
# (A)
solve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal))
```


SAT Solver False

Q: Sara and Joe have a combined height of 120 inches. Joe is 6 inches more than double Sara's height. How tall is Joe?

SAT Solution

```
sara_height = Variable()
joe_height = Variable()
total_height = 120
joe_height = 2 * sara_height + 6
total_height = sara_height + joe_height
solve(joe_height)
```

CoT Solver

```
# We know total_height = sara_height + joe_height, and joe_height = 2 * sara_height + 6. # So total_height = sara_height + 2 * sara_height + 6 = 3 * sara_height + 6 # Therefore, sara_height = (total_height - 6) / 3 = (120 - 6) / 3 = 114 / 3 = 38 # joe_height = 2 * sara_height + 6 = <math>2 * 38 + 6 = 76 + 6 = 82 # The answer is 82
```

No Solver

The answer is 82

Program-Aided LM using Imperative Prompting (Chen et al., 2022; Gao et al., 2023; Lyu et al., 2023)

Input

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Model Output

Satisfiability-Aided LM using Declarative Prompting (Ours)

Input

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Model Output

AR-LSAT (Zhong et al., 2021)

Input

Each of five students—H, L, P, R, and S—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the following conditions: S visits a different city than P. Each student visits one of the cities with at least one other students

.

Question: Which one of the following must be true?

(A) If any of the students visits Montreal, L visits Montreal.

.

Solution

```
# Each of five students—H, L, P, R, and S—will visit exactly one of three
cities—Montreal, Toronto, or Vancouver
students = [H, L, P, R, S]
cities = [Montreal, Toronto, Vancouver]
visits = Function(students, cities)
# S visits a different city than P
visits(S) != visits(P)
# Each student visits one of the cities with at least one other student
ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))
.....
# (A)
Implies(Exists([s:students], visits(s) == Montreal), visits(L) == Montreal)
```

PROOFWRITER (Tafjord et al., 2021)

Input

If someone is big then they do not chase the dog.

All round people are not kind.

The rabbit is kind.

The rabbit does not visit the bald eagle.

.

Question: The statement "The bald eagle visits the dog" is True or False?

Solution

```
# If someone is big then they do not chase the dog.
ForAll([x], Implies(big(x), Not(chase(x, dog))))
# All round people are not kind.
ForAll([x], Implies(round(x), Not(kind(x))))
# The rabbit is kind.
kind(rabbit)
# The rabbit does not visit the bald eagle.
Not(visit(rabbit, bald_eagle))
.....
# Question: The bald eagle visits the dog
solve(visit(bald_eagle, dog))
```

Program-Aided LLMs using Imperative Prompting (Chen et al., 2022; Gao et al., 2023; Lyu et al., 2023)

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Satisfiability-Aided LLMs using Declarative Prompting (Ours)

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Prompt

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Q: Jeff bought 6 pairs of shoes and 4 jerseys for \$560. Jerseys cost 1/4 price of one pair of shoes. Find the shoe's price total price.

Q: Three times as many children as adults attend a concert on Saturday. An adult ticket costs \$7 and a child's ticket costs \$3. The theater collected a total of \$6,000. How many people bought tickets?

Train
Example

Missing You is a South Korean television series starring Park Yoo-chun and Yoo Seung-ho. Yoo Seung-ho (born 17
August 1993) is a South Korean actor. Park Yoo-chun (born 23 July 1990) is a South Korean actor.
Q: Which Missing You actor was born August 17 1993?

A: First, Missing You stars Yoo Seung-ho. Second, Yoo Seung-ho is born 17 August 1993. The answer is Yoo Seung-ho.

Crestfallen is a track on The Smashing Pumpkins' album, Adore. The single's artwork is by Yelena Yemchuk. Johnny McDaid is a Croatian professional photographer. Yelena Yemchuk is a Ukrainian professional photographer.
Q: Crestfallen's artwork is done by a photographer of which nationality?

Output

A: First, Crestfallen's artwork is done by Yelena Yemchuk. Second, <u>Yelena Yemchuk is a Croatian</u> professional photographer. The answer is <u>Croatian</u>.

Calibrator

The prediction is **incorrect.** The explanation is **not factual** with respect to the context.