XLNet: Generalized Autoregressive Pretraining for Language Understanding

모두의 연구소 풀잎스쿨 NLP bootcamp 5th 박성찬 2019. 11. 30(sat)

I. Introduction: XLNet

- # A SOTA pretrained model for language understanding
- # Generalized AR pretraining model
 - Permutation language modeling objectives
 - two-stream attention mechanism
- # 여러 NLP task에서 original BERT 대비 우수한 성능
- # 논문 이외의 여러 블로그 참고
 - https://novdov.github.io/machnielearning/nlp/2019/07/13/XLN et-%EB%A6%AC%EB%B7%B0/
 - https://ratsgo.github.io/natural%20language%20processing/20 19/09/11/xlnet/
 - https://blog.pingpong.us/x/net-review/
 - https://ai-information.blogspot.com/2019/07/nl-041-xlnetgeneralized-autoregressive.html

I. Introduction: Pretraining

How it works

- Pretrain a model on unlabeled data based on language modeling
- Finetune the model or use the model for feature extraction on downstream tasks

Word2vec(Mikolov et al.), GloVe(Pennington et), Semi-supervised sequence learning(Dai & Le), ELMo(Peters, et al.), CoVe(McCann et al.), GPT(Radford et al.), BERT(Devlin et al.)

2.1 Background: Two Objectives for Pretraining

Auto-regressive (AR) language modeling

$$\log p(\mathbf{x}) = \sum_{t=1}^{T} \log p(x_t | \mathbf{x}_{< t})$$

- 양방향 context 학습 불가

(Denoising) Auto-encoding(AE)

$$\log p(\mathbf{x}^{-}|\mathbf{x}^{\wedge}) = \sum_{t=1}^{T} mask_{t} log p(x_{t}|\mathbf{x}^{\wedge})$$

- Masked token들 사이는 독립이라는 가정
- -Finetuning과정에는 mask token 없음

2.2 Objective: Permutation Language Modeling(PLM)

- # Sample a factorization order z
- # Determine the attention masks based on the order
- # Optimize a standard language modeling objective

$$\mathbb{E}_{z \sim \mathcal{Z}_{\mathrm{T}}} \left[\sum_{t=1}^{T} logp(x_{z_{t}} | \mathbf{x}_{z < t}) \right]$$

Ex.)
$$p(a, b)=p(a)p(b|a)$$

= $p(b)p(a|b)$

2.2 PLM example

- # Sentence: New York is a city
- # Factorization order: New York is a city
 p(New York is a city) =p(New)*p(York|New)*p(is|New York)*p(a|New
 York is)*p(city|New York is a)
- # Factorization order: city a is New York

 p(New York is a city) =p(city)*p(a|city)*p(is|city, a)*p(New|city a is)*p(York|city a is New)
- # Remarks on Permutation
 - Sequence order is not shuffled: 기존 sequence order는 유지하고 positional encoding만 바꾸어 transformer의 attention mask에 적용
 - * Attention masks are changed to reflect factorization order

2.2 PLM illustration

Fig1: Illustration of the permutation language modeling(PLM) objective for predicting x_3 , given the same input sequence x but with different factorization orders

2.2 PLM objectives

Not only the benefits of AR models, but capture bidirectional contexts

 \mathbb{Z}_t is set of all possible permutations of length-t index seq. [1,2,...,T] \mathcal{Z}_t is t-th element and z < t is the first t-1 elements of a permutation $z \in \mathbb{Z}_t$

$$\max_{\theta} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{\mathrm{T}}} \left[\sum_{t=1}^{T} log p_{\theta}(x_{z_{t}} | \mathbf{x}_{\mathbf{z} < t}) \right] (3)$$

For text sequence x, sample a factorization order z and decompose $p_{\theta}(x)$

Same model parameter θ is shared across all factorization orders during training, it could possibly capture the bidirectional context

2.3 Two-Stream Self-Attention for Target-Aware Representation: Reparameterization

Standard Parameterization

$$p_{\theta}(X_{z_t} = x | \mathbf{x}_{\mathbf{z} < t}) = \frac{e(x)^T h_{\theta}(x_{\mathbf{z} < t})}{\sum_{x'} e(x')^T h_{\theta}(x_{\mathbf{z} < t})}$$

h does not contain the position of the target

For input sequence $[x_1, x_2, x_3, x_4]$, its permutation $Z_T =$

[2,3,1,4]:
$$p(x_1|x_2,x_3)$$
 -> Ambiguity!

Solutions: condition the distribution on the position

$$p_{\theta}(X_{Z_t} = x | \mathbf{x}_{\mathbf{z} < t}) = \frac{e(x)^T g_{\theta}(x_{\mathbf{z} < t}, \mathbf{z}_t)}{\sum_{x'} e(x')^T g_{\theta}(x_{\mathbf{z} < t}, \mathbf{z}_t)}$$

-> But how to compute $g_{\theta}(x_{z < t}, z_t)$ effectively?

2.3 Two-Stream Self-Attention for Target-Aware Representation: Two-Stream Self-Attention

- # If predict token X_{z_t} , $g_{\theta}(x_{z < t}, z_t)$,
 - it should use the position \mathcal{Z}_t and not the context $X_{\mathcal{Z}_t} \Rightarrow g_{\theta}(x_{\mathbf{z} < t}, z_t)$, abbreviated g_{z_t}
 - $g_{z_t}^{(m)} \leftarrow Attention(Q = g_{z_t}^{(m-1)}, KV = h_{z < t}^{(m-1)}; \theta)$
 - Query representation: access the contextual information $x_{z < t}$ and position z_t but cannot see X_{z_t}
- # Otherwise,
 - \blacksquare it should encode content $X_{z_t} \Rightarrow h_{\theta}(x_{z < t})$, abbreviated h_{z_t}
 - $h_{z_t}^{(m)} \leftarrow Attention(Q = h_{z_t}^{(m-1)}, KV = h_{Z \le t}^{(m-1)}; \theta)$
 - ullet Content representation: encodes both the context and $X_{\mathcal{Z}_t}$ itself

2.3 Two-Stream Self-Attention for Target-Aware Representation: Illustration1

Figure 2: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_t} . (c): Overview of the permutation language modeling training with two-stream attention.

2.3 Two-Stream Self-Attention for Target-

2.3 Two-Stream Self-Attention for Target-Aware Representation: Partial Prediction

- Several benefits, but optimization problem due to permutations
 - Only predict the last tokens in a factorization order
 - Split z into a non-target subsequence $Z_{\leq c}$ and a target subsequence $Z_{\geq c}$ (c: cutting point)
 - $\stackrel{max}{=} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{\mathbf{T}}} [log p_{\theta}(\mathbf{x}_{z>c} | \mathbf{x}_{\mathbf{z} \leq c})] =$ $\stackrel{max}{=} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{\mathbf{T}}} [\sum_{t=c+1}^{T} log p_{\theta}(\mathbf{x}_{z_{t}} | \mathbf{x}_{\mathbf{z} < t})]$
 - $\mathbf{x}_{z>c}$ is chosen as a target because it possesses the longest context in the sequence given the current factorization order Z
 - = 3 \rightarrow 2 \rightarrow 4 \rightarrow 1 order
 - $p(x_3)p(x_2|x_3)p(x_4|x_2,x_3)p(x_1|x_3,x_2,x_4) \to p(x_4|x_2,x_3)p(x_1|x_3,x_2,x_4)$

2.4 Incorporating Ideas from Transformer-XL

Relative positional encoding scheme

- 여러 segment에 대해 recurrent모델링하는 경우 absolute positional encoding은 더이상 사용 불가
- # Segment recurrent mechanism
 - Long sentence A divides $\tilde{x} = s_{1:T}$, $x = s_{T+1:2T}$ and let $\tilde{z} = perm[1,...,T]$, z=perm[T+1,...,2T]
 - Process the first segment based on \tilde{z} then cache the obtained content representations $\tilde{h}^{(m)}$ each layer m
 - $h_{z_t}^{(m)} \leftarrow Attention(Q = h_{z_t}^{(m-1)}, \text{KV} = \left[\tilde{h}^{(m-1)}, h^{(m-1)}_{Z \le t}\right]; \theta)$

2.5 Modeling Multiple Segments

XLNet Pre-training

- 임의로 두 segment를 뽑아 하나로 concatenation하여 PLM
- 동일한 context에 속해 있는 memory는 재사용
- Bert와 유사하게 [A, SEP, B, SEP, CLS] 형태(A, B는 segment)의 입력

Relative segment encodings

- BERT: word embedding + abs segment embedding
- XLNet: relative segment embedding
 - Sequence의 위치 i, j에 대하여 어떠한 segment에서 왔는지는 생각 안하고 s vector를 사용하여 동일한 segment인지만 고려
 - ▶ Finetuning 단계에서 두 개가 넘는 segment입력을 받을 수 있음
 - Inductive bias of relative encoding의 일반화?

2.6.1 Comparing with BERT: concepts

- # Sentence: New York is a city
- # BERT objective (auto-encoding)

 $T_{BERT} = logp(New|is a city) + logp(York|is a city)$

- New와 York은 독립 사건
- # XLNet objective(auto-regressive)

 $T_{XLNet} = logp(New|is a city) + logp(York|New, is a city)$ $T_{XLNet} = logp(New|York, is a city) + logp(York|is a city)$

- New 와 York사이의 dependency 모델링
- Joint Probability를 factorization하여 bidirectional context 모델링
- 더 많은 dependency학습 가능("denser" effective training signals)

2.6.1 Comparing with BERT: formal expressions

- # Given sequence $x=[x_1, x_2, ..., x_T]$, target-context pair of interest $\mathcal{L} = \{(x, \mathcal{U})\}$
 - $\mathcal{L} = \{(x = York | \mathcal{U} = \{New\}), (x = York | \mathcal{U} = \{city\}), (x = york, \mathcal{U} = \{New, city\}), ...\}$
- # T is given target tokens, $\mathcal{N}=x\setminus T$ is non-target tokens
 - Both BERT & XLNet maximize logp(T|N)

$$\mathcal{T}_{BERT} = \sum_{x \in \mathcal{T}} logp(x|\mathcal{N}); \quad \mathcal{T}_{XLNet} = \sum_{x \in \mathcal{T}} logp(x|\mathcal{N} \cup \mathcal{T}_{< x})$$

- Both has multiple loss terms $logp(x|\mathcal{V}_x)$, \mathcal{V}_x = \mathcal{N} or $\mathcal{N} \cup \mathcal{T}_{< x}$
- # Two cases by definition
 - If $U \in \mathcal{N}$, the dependency (x, U) covered by both
 - If $U \in \mathcal{N} \cup \mathcal{T}_{< x}$ and $\mathcal{N} \cup \mathcal{T}_{< x} \neq \emptyset$, the dependency (x, U) covered only be XLNet

2.6.2 Comparing with language modeling

- # Conventional AR language modeling
 - Context: "Thom Yorke is the singer of Radiohead"
 - Question: "Who is the singer of Radiohead"
 - Answer: "Thom York"
 - AR은 뒤에 나오는 문맥과의 dependency 학습이 어려움
- # Formal expression
 - Consider a context-target pair (x, U)
 - If $U \cap T_{<x} \neq \emptyset$, where $T_{<x}$ denotes tokens prior to x in the original sentence, AR cannot able to cover the dependency
 - XLNet은 모든 dependency 학습 가능

3.1 Pretraining and Implementation

Dataset

- BookCorpus + English Wikipedia = 13GB
- Giga5=16GB
- Clue Web2012-B+Common Crawl dataset = 19GB, 78GB

Tokenization

 Using sentence piece, it sums total 32.89B subword tokens

Pretraining

- Sequence length = 512, memory length = 384
- XLNet large= 512 TPU v3 chips for 500k steps with Adam optimizer, batch size 2048, about 2.5 days

3.2-3.3 Race & SQuAD Dataset

RACE	Accuracy	Middle	High
GPT [25]	59.0	62.9	57.4
BERT [22]	72.0	76.6	70.1
BERT+OCN* [28]	73.5	78.4	71.5
BERT+DCMN* [39]	74.1	79.5	71.8
XLNet	81.75	85.45	80.21

Table 1: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task. * indicates using ensembles. "Middle" and "High" in RACE are two subsets representing middle and high school difficulty levels. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large). Our single model outperforms the best ensemble by 7.6 points in accuracy.

SQuAD1.1	\mathbf{EM}	F1	SQuAD2.0	EM	F1
Dev set result	ts without	data aug	mentation		
BERT [10]	84.1	90.9	BERT† [10]	78.98	81.77
XLNet	88.95	94.52	XLNet	86.12	88.79
Test set result Human [27]	s on lead 82.30	erboard, 91.22	with data augmentation (as of June 19, BERT+N-Gram+Self-Training [10]	2019) 85.15	87.72
ATB	86.94	92.64	SG-Net	85.23	87.93
			0.		

Table 2: A single model XLNet outperforms human and the best ensemble by 7.6 EM and 2.5 EM on SQuAD1.1. * means ensembles, † marks our runs with the official code.

3.4-3.5 Text Classification & GLUE dataset

Model	IMDB	Yelp-2	Yelp-5	DBpedia	AG	Amazon-2	Amazon-5
CNN [14]	-	2.90	32.39	0.84	6.57	3.79	36.24
DPCNN [14]	-	2.64	30.58	0.88	6.87	3.32	34.81
Mixed VAT [30, 20]	4.32	-	-	0.70	4.95	-	-
ULMFiT [13]	4.6	2.16	29.98	0.80	5.01	-	-
BERT [35]	4.51	1.89	29.32	0.64	-	2.63	34.17
XLNet	3.79	1.55	27.80	0.62	4.49	2.40	32.26

Table 3: Comparison with state-of-the-art error rates on the test sets of several text classification datasets. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large).

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single	models on de	ev							
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-
Single-task single	models on te	st							
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensem	bles on test (fi	rom leade	rboard as	of June	19, 2019)			
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
$ALICE^*$	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	$90.2/89.7^{\dagger}$	98.6^{\dagger}	90.3^{\dagger}	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4

Table 4: Results on GLUE. * indicates using ensembles, and † denotes single-task results in a multi-task row. All results are based on a 24-layer architecture with similar model sizes (aka BERT-Large). See the upper-most rows for direct comparison with BERT and the lower-most rows for comparison with state-of-the-art results on the public leaderboard.

3.6-3.7 ClueWeb09-B dataset & Ablation study

Model	NDCG@20	ERR@20
DRMM [12]	24.3	13.8
KNRM [8]	26.9	14.9
Conv [8]	28.7	18.1
BERT^\dagger	30.53	18.67
XLNet	31.10	20.28

Table 5: Comparison with state-of-the-art results on the test set of ClueWeb09-B, a document ranking task. † indicates our implementations.

#	Model	RACE	SQuAD2.0		MNLI	SST-2	
			F1	EM	m/mm		
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78	
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60	
3	XLNet-Base $(K = 7)$	66.05	81.33	78.46	85.84/85.43	92.66	
4	XLNet-Base $(K = 6)$	66.66	80.98	78.18	85.63/85.12	93.35	
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78	
6	 span-based pred 	65.95	80.61	77.91	85.49/85.02	93.12	
7	 bidirectional data 	66.34	80.65	77.87	85.31/84.99	92.66	
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89	

Table 6: Ablation study. The results of BERT on RACE are taken from [39]. We run BERT on the other datasets using the official implementation and the same hyperparameter search space as XLNet. K is a hyperparameter to control the optimization difficulty (see Section 2.3). All models are pretrained on the same data.

4. Conclusion

XLNet is a generalized AR pretraining method
Permutation language modeling
Combine the advantages of AR and AE methods
XLNet architecture
Transformer XL & two-stream attention mechanism

XLNet achieves SOTA results from various tasks