21-127 Homework 10

Christian Broms Section J

Tuesday 10th April, 2018

Complete the following problems. Fully justify each response.

- 1. Let X be a set, and let \sim_1 and \sim_2 be two equivalence relations on X. Define a relation \sim by $x \sim y$ if and only if $x \sim_1 y \wedge x \sim_2 y$. Prove that this is an equivalence relation. Describe the equivalence classes $[x]_{\sim}$ in terms of $[x]_{\sim_1}$ and $[x]_{\sim_2}$.
- 2. Let P be a poset with element set \mathbb{N} , and order \leq , where $a \leq b$ if and only if a|b. Formally prove that this is a poset.
- 3. Let P be a poset with partial order \leq . We define an element m of P to be minimal if there does not exist any $x \in P$ with x < m.
 - (a) How is a minimal element different from a minimum element (as defined in class)?
 - (b) Give an example of a poset that has at least one minimal element, but no minimum element.
 - (c) Prove that if a poset has a minimum element, then it has only one minimal element.

(Note: This entire problem could be repeated verbatim for a maximal element as well)

4. Let X be a set, and let P be the poset whose elements are $\mathcal{P}(X)$, and $A \leq B$ if and only if $A \subseteq B$.

Let
$$\{A_1, A_2, \dots, A_n\}$$
 be elements of P . Prove that $\bigwedge_{i=1}^n A_i = \bigcap_{i=1}^n A_i$, and $\bigvee_{i=1}^n A_i = \bigcup_{i=1}^n A_i$.

- 5. Let (X, \preceq) be a lattice, and let $x, y \in X$. Prove the following:
 - (a) $x \lor y = y \lor x$
 - (b) $x \wedge y = y \wedge x$
 - (c) $x \lor (x \land y) = x$
 - (d) $x \wedge (x \vee y) = x$
- 6. Give an example of a lattice that is not distributive.