Cvičení 2 - Sdílení tepla

Elektroenergetika 3

Petr Jílek

2024

Obsah

1	♣ Zeď 🌙	2
	1.1 Fourierova-Kirchhoffova rovnice	2
	1.2 Fourieruv zákon	3
	1.3 Tepelný odpor	3
	1.4 Součinitel prostupu tepla	5
	1.5 Číselný příklad	5
	1.5.1 a	5
	1.5.2 b	6
2	□ Skládaná zeď 🍑	7
_	2.1 Tepelné schéma	7
	2.2 Číselný příklad	8
	2.2.1 a	9
		10
3	PENB	12
J		12 12
		13
		10
4	Topná sezóna	14
	4.1 Řešení	14
5	Liblová pec	15
6	🐺 Sálavá clona 🌙	17
Ü		 17
		17
7	Destička ve vesmíru 🥠	19
1	↓	19 19

1 🍣 Zeď 🌙

1.1 Fourierova-Kirchhoffova rovnice

Pro zeď o tloušťce d budeme uvažovat následující zjednodušející předpoklady:

- $\frac{\partial T}{\partial t} = 0$,
- $\vec{v} = 0$,
- $Q_v = 0$,
- $\lambda = \text{konstanta}$,
- T = T(x) teplota závislá pouze na x.

Poté Fourierova-Kirchhoffova rovnice bude mít tvar:

$$0 = \nabla \cdot \left(\lambda \cdot \vec{\nabla} T \right) = \lambda \cdot \frac{d^2 T}{dx^2}.$$

Rovnici můžeme vydělit λ ($\lambda > 0$) a získáme:

$$\frac{d^2T}{dx^2} = 0.$$

Tuto rovnici můžeme řešit dvojí integrací. První integrace bude vypadat následovně:

$$\frac{dT}{dx} = \int 0 \cdot dx = 0 + c_1 = c_1.$$

Druhá integrace bude vypadat následovně:

$$T(x) = \int c_1 \cdot dx = c_1 \cdot x + c_2.$$

Obecné řešení bude tedy:

$$T(x) = c_1 \cdot x + c_2.$$

S okrajovými podmínkami:

• $T(0) = T_1$:

$$T_1 = T(0) = c_1 \cdot 0 + c_2 = c_2 \Rightarrow c_2 = T_1.$$

• $T(d) = T_2$:

$$T_2 = T(d) = c_1 \cdot d + c_2 \Rightarrow c_1 = \frac{T_2 - c_2}{d} = \frac{T_2 - T_1}{d}.$$

Řešení je tedy:

$$T(x) = \frac{T_2 - T_1}{d} \cdot x + T_1.$$

Tuto situaci můžeme znázornit následujícím obrázkem:

1.2 Fourieruv zákon

Nyní dosadíme řešení z předchozího příkladu do Fourierova zákona, kde za gradient teploty dosadíme derivaci teploty podle osy x, čímž získáme měrný tepelný tok q_x :

$$\dot{q_x} = -\lambda \cdot \frac{dT(x)}{dx} = -\lambda \cdot \frac{d}{dx} \left(\frac{T_2 - T_1}{d} \cdot x + T_1 \right) = -\lambda \cdot \frac{T_2 - T_1}{d} = \lambda \cdot \frac{T_1 - T_2}{d} = \frac{\Delta T}{\frac{d}{\lambda}}.$$

1.3 Tepelný odpor

Dolní výraz z předchozí sekce $\frac{d}{\lambda}$ je tepelný odpor:

$$R_{\vartheta} = \frac{d}{\lambda}. \qquad (\mathbf{m}^2 \cdot \mathbf{K} \cdot \mathbf{W}^{-1}) \quad (1)$$

Měrný tepelný tok q_x můžeme tedy zapsat jako:

$$\dot{q_x} = \frac{\Delta T}{R_{\vartheta}}.$$
 (W·m⁻²) (2)

Tepelný tok \dot{Q}_x dostaneme vynásobením měrného tepelného toku plochou průřezu S:

$$\dot{Q}_x = \dot{q}_x \cdot S. \tag{W}$$

Tepelný tok \dot{Q}_x můžeme dále rozepsat:

$$\dot{Q}_x = \dot{q}_x \cdot S = \lambda \frac{T_1 - T_2}{d} \cdot S = \lambda \frac{\Delta T}{d} \cdot S = \frac{\Delta T}{\frac{d}{\lambda \cdot S}}.$$

Dolní výraz $\frac{d}{\lambda \cdot S}$ je absolutní tepelný odpor:

$$R_{\vartheta A} = \frac{d}{\lambda \cdot S} = \frac{R_{\vartheta}}{S}.$$
 (K·W⁻¹) (4)

Poznámka

Výpočet tepelného odporu je analogický jako výpočet elektrického odporu. Elektrický odpor R_e vypočteme jako:

$$R_e = \frac{l}{\sigma_e \cdot S},\tag{0}$$

kde:

l – délka vodiče (m), σ_e – měrná elektrická vodivost (S·m⁻¹), S – průřez vodiče (m²).

Analogie jsou:

- $R_{\vartheta A}$ absolutní tepelný odpor $(K \cdot W^{-1}) \to R_e$ elektrický odpor (Ω) ,
- d tloušťka stěny (m) $\rightarrow l$ délka vodiče (m),
- λ tepelná vodivost $(W \cdot m^{-1} \cdot K^{-1}) \rightarrow \sigma_e$ měrná elektrická vodivost $(S \cdot m^{-1})$,
- S plocha průřezu (m²) $\rightarrow S$ průřez vodiče (m2).

Výpočet tepelného toku je analogický s Ohmovým zákonem:

$$I = \frac{U}{R_c},\tag{A}$$

kde:

I – proud (A),

U – napětí (V),

 R_e – elektrický odpor (Ω) .

Analogie jsou:

- \dot{Q}_x tepelný tok (W) $\rightarrow I$ proud (A),
- ΔT rozdíl teplot (K) $\rightarrow U$ napětí (V),
- $R_{\vartheta A}$ absolutní tepelný odpor $(K \cdot W^{-1}) \to R_e$ elektrický odpor (Ω) .

Elektrické schéma můžeme znázornit následujícím obrázkem:

Analogicky můžeme vytvořit tepelné schéma:

1.4 Součinitel prostupu tepla

Součinitel prostupu tepla U_{ϑ} je inverzní hodnota tepelného odporu:

$$U_{\vartheta} = \frac{1}{R_{\vartheta}} = \frac{\lambda}{d}.$$
 (W·m⁻²·K⁻¹) (7)

Měrný tepelný tok q_x se poté může zapsat jako:

$$\dot{q_x} = U_{\vartheta} \cdot \Delta T.$$
 (W·m⁻²) (8)

Prostup tepla $U_{\vartheta A}$ je inverzní hodnota absolutního tepelného odporu:

$$U_{\vartheta A} = \frac{1}{R_{\vartheta A}} = \frac{\lambda \cdot S}{d} = U_{\vartheta} \cdot S. \tag{W \cdot K^{-1}} \tag{9}$$

Tepelný tok Q_x se poté může zapsat jako:

$$\dot{Q}_x = U_{\vartheta A} \cdot \Delta T. \tag{W} \tag{10}$$

1.5 Číselný příklad

Teplota na začátku zdi je $T_1 = 20$ °C, teplota na konci zdi je $T_2 = -10$ °C. Zeď má tloušťku $d_{cihla} = 45$ cm a je tvořená obyčejnou cihlou s tepelná vodivostí $\lambda_{cihla} = 0.8 \; \mathrm{W \cdot m^{-1} \cdot K^{-1}}$. Plocha průřezu zdi je $S = 20 \; \mathrm{m^2}$.

- a) Vypočítejte R_{ϑ} , $R_{\vartheta A}$, U_{ϑ} , $U_{\vartheta A}$, \dot{q}_x a \dot{Q}_x .
- b) Uvažujte polystyrénovou izolaci s tepelnou vodivostí $\lambda_{izol} = 0,04 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$. Vypočítejte tloušťku izolace d_{izol} , která zajistí stejný měrný tepelný odpor (tím také zajistí stejný měrný tepelný tok).

1.5.1 a

Tepelný odpor R_{ϑ} vypočteme jako:

$$R_{\vartheta} = \frac{d_{cihla}}{\lambda_{cihla}} = \frac{0.45 \text{ m}}{0.8 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}} = 0.5625 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}.$$

Absolutní tepelný odpor $R_{\vartheta A}$ vypočteme jako:

$$R_{\vartheta A} = \frac{R_{\vartheta}}{S} = \frac{0.5625}{20} \approx 0.028 \text{ K} \cdot \text{W}^{-1}.$$

Součinitel prostupu tepla U_{ϑ} vypočteme jako:

$$U_{\vartheta} = \frac{1}{R_{\vartheta}} = \frac{1}{0,5625} \approx 1,778 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}.$$

Prostup tepla $U_{\vartheta A}$ vypočteme jako:

$$U_{\vartheta A} = \frac{1}{R_{\vartheta A}} = \frac{1}{0,028} \approx 35,714 \text{ K} \cdot \text{W}^{-1}.$$

Měrný tepelný tok $\dot{q_x}$ vypočteme jako:

$$\dot{q_x} = \frac{\Delta T}{R_{\vartheta}} = \frac{T_1 - T_2}{R_{\vartheta}} = \frac{20 - (-10)}{0,5625} = \frac{30}{0,5625} \approx 53,33 \text{ W} \cdot \text{m}^{-2}.$$

Tepelný tok \dot{Q}_x vypočteme jako:

$$\dot{Q}_x = \dot{q}_x \cdot S = 53,33 \text{ W} \cdot \text{m}^{-2} \cdot 20 \text{ m}^2 = 1066,6 \text{ W} \approx 1 \text{ kW}.$$

1.5.2 b

Aby se měrné tepelné odpory rovnaly, musí platit:

$$R_{\vartheta,cihla} = R_{\vartheta,izol}.$$

$$\frac{d_{cihla}}{\lambda_{cihla}} = \frac{d_{izol}}{\lambda_{izol}}.$$

Tloušťku izolace d_{izol} vypočteme jako:

$$d_{izol} = \frac{d_{cihla} \cdot \lambda_{izol}}{\lambda_{cihla}} = \frac{0.45 \text{ m} \cdot 0.04 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}}{0.8 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}} = 0.0225 \text{ m} = 2.25 \text{ cm}.$$

2 - Skládaná zeď

2.1 Tepelné schéma

U skládané zdi máme několik vrstev zdi s různou tepelnou vodivostí a tloušťkou. Navíc počítáme se součinitely přestupu tepla na začátku (ze vnitř do zdi) a na konci (ze zdi ven).

Mějme tedy n vrstev zdi, kde i-tá vrstva má tepelnou vodivost λ_i a tloušťku d_i . Mějme součinitel přestupu tepla na začátku $\alpha_{\vartheta,in}$ a na konci $\alpha_{\vartheta,out}$. Potom můžeme pro tuto situaci nakreslit následující tepelné schéma:

Tepelný odpor $R_{\vartheta,in}$ vypočteme jako:

$$R_{\vartheta,in} = \frac{1}{\alpha_{\vartheta,in}}.$$

Tepelný odpor $R_{\vartheta,out}$ vypočteme jako:

$$R_{\vartheta,out} = \frac{1}{\alpha_{\vartheta,out}}.$$

Tepelný odpor $R_{\vartheta,i}$ vypočteme jako:

$$R_{\vartheta,i} = \frac{d_i}{\lambda_i}$$
.

Celkový tepelný odpor $R_{\vartheta,\Sigma}$ zdi s přechody vypočteme jako:

$$R_{\vartheta,\Sigma} = R_{\vartheta,in} + \sum_{i=1}^{n} R_{\vartheta,i} + R_{\vartheta,out}.$$

Celkový absolutní tepelný odpor $R_{\vartheta A,\Sigma}$ zdi s přechody vypočteme jako:

$$R_{\vartheta A,\Sigma} = \frac{R_{\vartheta,\Sigma}}{S}.$$

Součinitel prostupu tepla $U_{\vartheta,\Sigma}$ zdi s přechody vypočteme jako:

$$U_{\vartheta,\Sigma} = \frac{1}{R_{\vartheta,\Sigma}} = \frac{1}{R_{\vartheta,in} + \sum_{i=1}^n R_{\vartheta,i} + R_{\vartheta,out}} = \frac{1}{\frac{1}{\alpha_{\vartheta,in}} + \sum_{i=1}^n \frac{d_i}{\lambda_i} + \frac{1}{\alpha_{\vartheta,out}}} =$$

$$= \left(\frac{1}{\alpha_{\vartheta,in}} + \sum_{i=1}^{n} \frac{d_i}{\lambda_i} + \frac{1}{\alpha_{\vartheta,out}}\right)^{-1}$$

Prostup tepla $U_{\vartheta A,\Sigma}$ zdi s přechody vypočteme jako:

$$U_{\vartheta A,\Sigma} = U_{\vartheta,\Sigma} \cdot S.$$

Měrný tepelný tok $\dot{q_x}$ zdi s přechody vypočteme pomocí měrných odporů jako:

$$\dot{q_x} = \frac{\Delta T}{R_{\vartheta,\Sigma}} = \frac{T_1 - T_2}{R_{\vartheta,\Sigma}}.$$

Pomocí součinitele prostupu tepla $U_{\vartheta,\Sigma}$ můžeme vypočítat měrný tepelný tok $\dot{q_x}$ jako:

$$\dot{q}_x = U_{\vartheta,\Sigma} \cdot \Delta T = U_{\vartheta,\Sigma} \cdot (T_1 - T_2).$$

Celkový tepelný tok \dot{Q}_x zdi s přechody vypočteme jako:

$$\dot{Q}_x = \dot{q}_x \cdot S.$$

2.2 Číselný příklad

Teplota na začátku zdi je $T_1=20$ °C, teplota na konci zdi je $T_2=-10$ °C. Plocha průřezu zdi je S=20 m². Uvažujme dvouvrstvou zeď složenou z cihly a polystyrénu. Parametry cihly jsou:

- $\lambda_{cihla} = 0.8 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$,
- $d_{cihla} = 45 \text{ cm}.$

Parametry polystyrénu jsou:

- $\lambda_{izol} = 0.04 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$,
- $d_{izol} = 5 \text{ cm}$.

Uvažujte, že izolace je na konci zdi (z venčí). Zanedbejte součinitele přestupu tepla na začátku a na konci zdi.

- a) Nakreslete tepelné schéma a vypočítejte celkový tepelný odpor $R_{\vartheta,\Sigma}$, celkový absolutní tepelný odpor $R_{\vartheta A,\Sigma}$, součinitel prostupu tepla $U_{\vartheta,\Sigma}$, absolutní součinitel prostupu tepla $U_{\vartheta A,\Sigma}$, měrný tepelný tok $\dot{q_x}$ a tepelný tok $\dot{Q_x}$.
- b) Nakreslete graf závislosti teploty na ose x pro případ izolace z venčí a pro případ izolace zevnitř. Diskutujte výhody a nevýhody obou případů.

2.2.1 a

Tepelné schéma bude vypadat následovně:

Tepelný odpor cihly $R_{\vartheta,cihla}$ vypočteme jako:

$$R_{\vartheta,cihla} = \frac{d_{cihla}}{\lambda_{cihla}} = \frac{0.45 \text{ m}}{0.8 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}} = 0.5625 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}.$$

Tepelný odpor izolace $R_{\vartheta,izol}$ vypočteme jako:

$$R_{\vartheta,izol} = \frac{d_{izol}}{\lambda_{izol}} = \frac{0.05 \text{ m}}{0.04 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}} = 1,25 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}.$$

Absolutní tepelný odpor cihly $R_{\vartheta A, cihla}$ vypočteme jako:

$$R_{\vartheta A, cihla} = \frac{R_{\vartheta, cihla}}{S} = \frac{0.5625}{20} \approx 0.028 \text{ K} \cdot \text{W}^{-1}.$$

Absolutní tepelný odpor izolace $R_{\vartheta A,izol}$ vypočteme jako:

$$R_{\vartheta A, izol} = \frac{R_{\vartheta, izol}}{S} = \frac{1, 25}{20} = 0,063 \text{ K} \cdot \text{W}^{-1}.$$

Celkový tepelný odpor $R_{\vartheta,\Sigma}$ vypočteme jako:

$$R_{\vartheta,\Sigma} = R_{\vartheta,cihla} + R_{\vartheta,izol} = 0,5625 + 1,25 = 1,8125 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}.$$

Celkový absolutní tepelný odpor $R_{\vartheta A,\Sigma}$ vypočteme jako:

$$R_{\vartheta A,\Sigma} = R_{\vartheta A,cihla} + R_{\vartheta A,izol} = 0,028 + 0,063 = 0,091 \text{ K} \cdot \text{W}^{-1}.$$

Součinitel prostupu tepla $U_{\vartheta,\Sigma}$ vypočteme jako:

$$U_{\vartheta,\Sigma} = \frac{1}{R_{\vartheta,\Sigma}} = \frac{1}{1,8125} \approx 0,5517 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}.$$

Absolutní součinitel prostupu tepla $U_{\vartheta A,\Sigma}$ vypočteme jako:

$$U_{\vartheta A,\Sigma} = U_{\vartheta,\Sigma} \cdot S = 0,5517 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1} \cdot 20 \text{ m}^2 = 11,034 \text{ K} \cdot \text{W}^{-1}.$$

Měrný tepelný tok $\dot{q_x}$ vypočteme jako:

$$\dot{q_x} = \frac{\Delta T}{R_{\vartheta,\Sigma}} = \frac{T_1 - T_2}{R_{\vartheta,\Sigma}} = \frac{20 - (-10)}{1,8125} = \frac{30}{1,8125} \approx 16,55 \; \mathrm{W} \cdot \mathrm{m}^{-2}.$$

Tepelný tok $\dot{Q_x}$ vypočteme jako:

$$\dot{Q}_x = \dot{q}_x \cdot S = 16,55 \text{W} \cdot \text{m}^{-2} \cdot 20 \text{ m}^2 = 331 \text{ W} = 0,331 \text{ kW}.$$

2.2.2 b

Změnu teploty v cihle vypočteme jako:

$$\Delta T_{cihla} = \dot{q_x} \cdot R_{\vartheta, cihla} = 16,55 \text{ W} \cdot \text{m}^{-2} \cdot 0,5625 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1} = 9,31 \text{ K}.$$

Změnu teploty v izolaci vypočteme jako:

$$\Delta T_{izol} = \dot{q}_x \cdot R_{\vartheta,izol} = 16,55 \text{ W} \cdot \text{m}^{-2} \cdot 1,25 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1} = 20,69 \text{ K}.$$

Obrázek pro případ izolace z venčí bude vypadat následovně:

Výhody toho položení je, že pokud je zeď zevnitř, tak funguje jako akumulátor tepla. Je to vhodné pro dlouhodobé vytápění. Nevýhodou je, že pokud se například

jedná o chalupu, kam se jezdí pouze na víkend, tak nějákou dobu trvá, než se teplo naakumuluje a v místnoti bude teplo. Tento typ izolace se používá časteji.

Obrázek pro případ izolace zevnitř bude vypadat následovně:

Toto položení se rychleji vytopí, ale také se rychleji ochladí, jelikož izolace nefunguje jako dobrý akumulátor tepla. Pokud například zasvítí slunce, tak se místnost rychleji zahřeje. Je zde riziko kondenzace a tvoření vlhkosti a plísní.

3 PENB

Mějme dům s plochou střechou o parametrech:

- plocha střechy $S_{strecha} = 100 \text{ m}^2$,
- součinitel prostupu tepla střechy $U_{\vartheta,strecha} = 0,3 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1},$
- plocha podlahy $S_{podlaha} = 100 \text{ m}^2$,
- měrný součinitel prostupu tepla podlahy $U_{\vartheta,podlaha}=0,8~{\rm W\cdot m^{-2}\cdot K^{-1}},$
- plocha obvodových stěn $S_{zed} = 4 \cdot 10 \cdot 3 \text{ m}^2$ (4 stěny o výšce 2 metry a délce 10 metrů),
- obvodová stěna je tvořena cihlou s tepelnou vodivostí $\lambda_{cihla}=0,8~{\rm W\cdot m^{-1}\cdot K^{-1}}$ a tloušťkou $d_{cihla}=45~{\rm cm}.$

Zanedbejte součinitele přestupu tepla, ztráty tepla na oknech a dveřích. Berte v úvahu, že venkovní teplota je okolo celého domu včetně podlahy stejná.

- a) Vypočítejte průměrný měrný součinitel prostupu tepla $U_{\vartheta,avg}$ pro celý dům.
- b) Vypočítejte jak silnou izolaci d_{izol} s tepelnou vodivostí $\lambda_{izol} = 0,04~\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$ musíte použít, aby průměrný součinitel prostupu tepla $U^*_{\vartheta,avg}$ byl $0,5~\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-1}$.

3.0.1 a

Plochu obvodových stěn S_{zed} vypočteme jako:

$$S_{zed} = 4 \cdot 10 \cdot 3 = 120 \text{ m}^2.$$

Celkovou plochu S_{Σ} vypočteme jako:

$$S_{\Sigma} = S_{strecha} + S_{podlaha} + S_{zed} = 100 + 100 + 120 = 320 \text{ m}^2.$$

Součinitel prostupu tepla zdi $U_{\vartheta,cihla}$ vypočteme jako:

$$U_{\vartheta,cihla} = \frac{\lambda_{cihla}}{d_{cihla}} = \frac{0.8 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}}{0.45 \text{ m}} = 1,778 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}.$$

Průměrný součinitel prostupu tepla $U_{\vartheta,avg}$ vypočteme jako:

$$U_{\vartheta,avg} = \frac{1}{S_{\Sigma}} \cdot (U_{\vartheta,strecha} \cdot S_{strecha} + U_{\vartheta,podlaha} \cdot S_{podlaha} + U_{\vartheta,cihla} \cdot S_{zed}) =$$

$$= \frac{1}{320} \cdot (0, 3 \cdot 100 + 0, 8 \cdot 100 + 1, 778 \cdot 120) = \frac{1}{320} \cdot (30 + 80 + 213, 36) =$$

$$\frac{323, 36}{320} \approx 1,01 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}.$$

3.0.2 b

Součinitel prostupu tepla zdi s izolací $U_{\vartheta,zed}$ vypočteme jako:

$$U_{\vartheta,zed} = \left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}}\right)^{-1}$$

Průměrný součinitel prostupu tepla $U^*_{\vartheta,avg}$ vypočteme jako:

$$U_{\vartheta,avg}^* = \frac{1}{S_{\Sigma}} \cdot (U_{\vartheta,strecha} \cdot S_{strecha} + U_{\vartheta,podlaha} \cdot S_{podlaha} + U_{\vartheta,zed} \cdot S_{zed}) =$$

$$= \frac{1}{S_{\Sigma}} \cdot \left(U_{\vartheta,strecha} \cdot S_{strecha} + U_{\vartheta,podlaha} \cdot S_{podlaha} + \left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}} \right)^{-1} \cdot S_{zed} \right)$$

Nyní je třeba vyřešit rovnici pro d_{izol} :

$$U_{\vartheta,avg}^* = \frac{1}{S_{\Sigma}} \cdot (U_{\vartheta,strecha} \cdot S_{strecha} + U_{\vartheta,podlaha} \cdot S_{podlaha} + \left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}}\right)^{-1} \cdot S_{zed})$$

$$U_{\vartheta,avg}^* \cdot S_{\Sigma} = (U_{\vartheta,strecha} \cdot S_{strecha} + U_{\vartheta,podlaha} \cdot S_{podlaha} + \left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}}\right)^{-1} \cdot S_{zed})$$

$$U_{\vartheta,avg}^* \cdot S_{\Sigma} - U_{\vartheta,strecha} \cdot S_{strecha} - U_{\vartheta,podlaha} \cdot S_{podlaha} = \left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}}\right)^{-1} \cdot S_{zed}$$

$$\left(\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}}\right)^{-1} = \frac{U_{\vartheta,avg}^* \cdot S_{\Sigma} - U_{\vartheta,strecha} \cdot S_{strecha} - u_{podlaha} \cdot S_{podlaha}}{S_{zed}}$$

$$\frac{d_{izol}}{\lambda_{izol}} + \frac{d_{cihla}}{\lambda_{cihla}} = \left(\frac{U_{\vartheta,avg}^* \cdot S_{\Sigma} - U_{\vartheta,strecha} \cdot S_{strecha} - U_{\vartheta,podlaha} \cdot S_{podlaha}}{S_{zed}}\right)^{-1}$$

$$\frac{d_{izol}}{\lambda_{izol}} = \left(\frac{U_{\vartheta,avg}^* \cdot S_{\Sigma} - U_{\vartheta,strecha} \cdot S_{strecha} - U_{\vartheta,podlaha} \cdot S_{podlaha}}{S_{zed}}\right)^{-1} - \frac{d_{cihla}}{\lambda_{cihla}}$$

$$d_{izol} = \lambda_{izol} \cdot \left(\left(\frac{U_{\vartheta,avg}^* \cdot S_{\Sigma} - U_{\vartheta,strecha} \cdot S_{strecha} - U_{\vartheta,podlaha} \cdot S_{podlaha}}{S_{zed}} \right)^{-1} - \frac{d_{cihla}}{\lambda_{cihla}} \right)$$

Nyní můžeme dosadit a vypočítat:

$$d_{izol} = 0,04 \cdot \left(\left(\frac{0,5 \cdot 320 - 0,3 \cdot 100 - 0,8 \cdot 100}{120} \right)^{-1} - \frac{0,45}{0,8} \right) =$$

$$= 0,04 \cdot \left(\left(\frac{160 - 30 - 80}{120} \right)^{-1} - \frac{0,45}{0,8} \right) =$$

$$= 0,04 \cdot \left(\left(\frac{50}{120} \right)^{-1} - \frac{0,45}{0,8} \right) = 0,04 \cdot (2,4 - 0,5625) =$$

$$0,04 \cdot 1,8375 = 0,0735 \text{ m} = 7,35 \text{ cm}.$$

4 🏶 Topná sezóna 🌙🌙

Průměrná venkonví teplota v topné sezóně je $\overline{T}_{out}=5$ °C. Vnitřní teplota je $T_{in}=20$ °C. Doba topné sezóny je 200 dní. Celková plocha je $S=300~\text{m}^2$. Součinitel prostupu tepla je $U_\vartheta=0,5~\text{W}\cdot\text{m}^{-2}\cdot\text{K}^{-1}$. Jaký množství tepla projde stěnami za celou topnou sezónu?

4.1 Řešení

Celkové množství tepla, které projde stěnami za celou topnou sezónu Q vypočteme jako:

$$Q = \int_{t_1}^{t_2} \dot{Q} \cdot dt,$$

kde:

 \dot{Q} je tepelný tok (W),

 t_1 je začátek topné sezóny (h),

 t_2 je konec topné sezóny (h).

Integrál můžeme rozepsat jako:

$$Q = \int_{t_1}^{t_2} U_{\vartheta} \cdot S \cdot (T_{in} - T_{out}(t)) \cdot dt = U_{\vartheta} \cdot S \cdot \int_{t_1}^{t_2} (T_{in} - T_{out}(t)) \cdot dt =$$

$$= U_{\vartheta} \cdot S \cdot T_{in} \cdot \int_{t_1}^{t_2} dt - U_{\vartheta} \cdot S \cdot \int_{t_1}^{t_2} T_{out}(t) \cdot dt =$$

$$= U_{\vartheta} \cdot S \cdot T_{in} \cdot (t_2 - t_1) - U_{\vartheta} \cdot S \cdot \int_{t_1}^{t_2} T_{out}(t) \cdot dt.$$

Nyní uděláme odbočku, kde vyjádříme průměrnou venkovní teplotu \overline{T}_{out} jako:

$$\overline{T}_{out} = \frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} T_{out}(t) \cdot dt.$$

Vyjádříme daný integrál:

$$\int_{t_1}^{t_2} T_{out}(t) \cdot dt = \overline{T}_{out} \cdot (t_2 - t_1).$$

Dosadíme zpět do původní rovnice:

$$Q = U_{\vartheta} \cdot S \cdot T_{in} \cdot (t_2 - t_1) - U_{\vartheta} \cdot S \cdot \overline{T}_{out} \cdot (t_2 - t_1) =$$
$$= U_{\vartheta} \cdot S \cdot (T_{in} - \overline{T}_{out}) \cdot (t_2 - t_1).$$

Nyní můžeme dosadit a vypočítat:

$$Q = 0, 5 \cdot 300 \cdot (20 - 5) \cdot (200 \cdot 24 \cdot 3600 - 0) = 0, 5 \cdot 300 \cdot 15 \cdot 200 \cdot 24 \cdot 3600 =$$
$$= 38, 9 \text{ GJ}.$$

5 👑 Cihlová pec 🌙🜙

U cihlové pece je vysoký rozdíl teplot, tudíž tepelnou vodivost je třeba uvažovat jako proměnnou. Tepelnou vodivost λ můžeme zapsat jako:

$$\lambda(x) = \lambda_0 + \lambda_1 \cdot T,$$

Pro zeď o tloušťce d budeme uvažovat následující zjednodušející předpoklady:

- $\frac{\partial T}{\partial t} = 0$,
- $\vec{v} = 0$,
- $Q_v = 0$,
- $\lambda(x) = \lambda_0 + \lambda_1 \cdot T$,
- T = T(x) teplota závislá pouze na ose x.

Poté Fourierova-Kirchhoffova rovnice bude mít tvar:

$$0 = \frac{d}{dx} \left(\lambda(T) \cdot \frac{dT}{dx} \right).$$

Fourieruv zákon pro tepelný tok bude mít tvar:

$$\dot{q_x} = -\lambda(T) \cdot \frac{dT}{dx}.$$

Vynásobme rovnici mínus jedna:

$$-\dot{q_x} = \lambda(T) \cdot \frac{dT}{dx}.$$

Pokud dosadíme do Fourierova-Kirchhoffovy rovnice, dostaneme:

$$0 = \frac{d}{dx} \left(-\dot{q_x} \right).$$

Z toho vidíme, že měrný tepelný tok $\dot{q_x}$ je konstantní a nezávisí na poloze x. Můžeme tedy rozepsat Fourierův zákon jako:

$$-\dot{q_x} = (\lambda_0 + \lambda_1 \cdot T) \cdot \frac{dT}{dx}.$$

Můžeme řešit tuto diferenciální rovnici separací proměnných:

$$-\dot{q_x} \cdot dx = (\lambda_0 + \lambda_1 \cdot T) \cdot dT.$$

Nyní meze budou jak pro x, tak pro T:

•
$$x=0 \Rightarrow T=T_1$$
,

•
$$x = d \Rightarrow T = T_2$$
.

Rovnici můžeme integrovat:

$$-\int_{0}^{d} \dot{q_{x}} \cdot dx = \int_{T_{1}}^{T_{2}} (\lambda_{0} + \lambda_{1} \cdot T) \cdot dT$$

$$-\dot{q_{x}} [x]_{0}^{d} = \lambda_{0} [T]_{T_{1}}^{T_{2}} + \frac{\lambda_{1}}{2} [T^{2}]_{T_{1}}^{T_{2}}$$

$$-\dot{q_{x}} \cdot d = \lambda_{0} \cdot (T_{2} - T_{1}) + \frac{\lambda_{1}}{2} \cdot (T_{2}^{2} - T_{1}^{2})$$

$$-\dot{q_{x}} \cdot d = \lambda_{0} \cdot (T_{2} - T_{1}) + \frac{\lambda_{1}}{2} \cdot (T_{2} - T_{1}) \cdot (T_{2} + T_{1})$$

$$-\dot{q_{x}} \cdot d = (T_{2} - T_{1}) \cdot \left(\lambda_{0} + \frac{\lambda_{1}}{2} \cdot (T_{2} + T_{1})\right).$$

Nyní odvoďme střední hodnotu tepelné vodivosti $\overline{\lambda}$:

$$\begin{split} \overline{\lambda} &= \frac{1}{T_2 - T_1} \cdot \int_{T_1}^{T_2} \lambda(T) \cdot dT = \frac{1}{T_2 - T_1} \cdot \int_{T_1}^{T_2} \left(\lambda_0 + \lambda_1 \cdot T\right) \cdot dT \\ &= \frac{1}{T_2 - T_1} \cdot \left[\lambda_0 \cdot T + \frac{\lambda_1}{2} \cdot T^2\right]_{T_1}^{T_2} = \frac{1}{T_2 - T_1} \cdot \left(\lambda_0 \cdot (T_2 - T_1) + \frac{\lambda_1}{2} \cdot (T_2^2 - T_1^2)\right) = \\ &= \lambda_0 + \frac{\lambda_1}{2} \cdot (T_2 + T_1). \end{split}$$

Nyní můžeme videt, že člen v závorce u vyřešené diferenciální rovnice je roven střední hodnotě tepelné vodivosti $\overline{\lambda}$:

$$-\dot{q_x} \cdot d = (T_2 - T_1) \cdot \overline{\lambda}.$$

Nyní můžeme odvodit vztah pro měrný tepelný tok \dot{q}_x :

$$\dot{q_x} = \frac{T_1 - T_2}{d} \cdot \overline{\lambda}.$$

6 🔅 Sálavá clona 🌙

Mějme dvě desky. První deska má teplotu T_1 a druhá deska má teplotu T_2 . Obě desky mají stejnou plochu S a stejnou emisivitu ε .

- a) Jaký je sálavý výkon $P_{1\rightarrow 2}$ (W) sálání první desky na druhou desku?
- b) Dejme mezi desky sálavou clonu o stejné ploše S a emisivitě ε . Jaký je sálavý výkon $P_{1\to 2}$ (W) sálání první desky na druhou desku přes clonu a jaký je poměr tohoto výkonu k výkonu z bodu a)?

6.1 a

Sálavý výkon $P_{1\rightarrow 2}$ můžeme vypočítat pomocí:

$$P_{1\to 2} = \frac{S \cdot \sigma \left(T_1^4 - T_2^4\right)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1},$$

kde:

S je plocha desek (m^2),

 σ je Stefanova-Boltzmannova konstanta $(5,67 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1})$,

 T_1 je teplota první desky (K),

 T_2 je teplota druhé desky (K),

 ε_1 je emisivita první desky,

 ε_2 je emisivita druhé desky.

Emisivity ε_1 a ε_2 jsou stejné, tudíž:

$$P_{1\to 2} = \frac{S \cdot \sigma \left(T_1^4 - T_2^4\right)}{\frac{1}{\varepsilon} + \frac{1}{\varepsilon} - 1} = \frac{S \cdot \sigma \left(T_1^4 - T_2^4\right)}{\frac{2}{\varepsilon} - 1} = k \cdot \left(T_1^4 - T_2^4\right).$$

6.2 b

Sálavý výkon z destičky 1 na clonu:

$$P_{1\to clona} = k \cdot \left(T_1^4 - T_{clona}^4\right).$$

Sálavý výkon z clony na destičku 2:

$$P_{clona \to 2} = k \cdot \left(T_{clona}^4 - T_2^4\right).$$

Tyto výkony se musí rovnat:

$$P_{1 \to clona} = P_{clona \to 2}$$

$$k \cdot \left(T_1^4 - T_{clona}^4\right) = k \cdot \left(T_{clona}^4 - T_2^4\right)$$

$$T_1^4 - T_{clona}^4 = T_{clona}^4 - T_2^4$$

$$\begin{aligned} 2 \cdot T_{clona}^4 &= T_1^4 + T_2^4 \\ T_{clona}^4 &= \frac{T_1^4 + T_2^4}{2} \\ T_{clona} &= \sqrt[4]{\frac{T_1^4 + T_2^4}{2}}. \end{aligned}$$

Sálavý výkon z destičky 1 na destičku 2 přes clonu:

$$\begin{split} P_{1\to 2} &= k \cdot \left(T_1^4 - T_{clona}^4\right) = k \cdot \left(T_1^4 - \frac{T_1^4 + T_2^4}{2}\right) = \\ &= k \cdot \frac{2 \cdot T_1^4 - T_1^4 - T_2^4}{2} = k \cdot \frac{T_1^4 - T_2^4}{2}. \end{split}$$

Poměr tohoto výkonu k výkonu z bodu a):

$$\frac{P_{1\to 2,a}}{P_{1\to 2,b}} = \frac{k \cdot \frac{T_1^4 - T_2^4}{2}}{k \cdot (T_1^4 - T_2^4)} = \frac{1}{2}.$$

7 🔳 Destička ve vesmíru 🥒

Mějme destičku ve vesmíru, na kterou dopadá sluneční záření s následujícími parametry:

- plocha $S = 1 \text{ m}^2$,
- intenzita slunečního záření $\dot{q} = 1348 \text{ W} \cdot \text{m}^{-2}$,
- emisivita ε ,
- pohltivost A.

Destička má stejnou teplotu na obouch stranách (je nekonečně tenká). Sluneční záření má intenzitu $\dot{q}=1348~{\rm W\cdot m^{-2}}$. Stefanova-Boltzmannova konstanta je $\sigma=5,67\cdot 10^{-8}~{\rm W\cdot m^{-2}\cdot K^{-4}}$. Teplota vesmíru je $T_{space}=3~{\rm K}$.

Odvoďte vzorec pro rovnovážnou teplotu destičky T v závislosti na úhlu natočení vůči slunci α a vypočítejte teplotu pro hodnoty α : 0, 45 a 90 °.

7.0.1 Řešení

Tepelný to \dot{Q}_{dop} (W), který na destičku dopadne:

$$\dot{Q}_{dop} = \dot{q} \cdot S \cdot \cos \alpha$$

Tepelný tok, který destička příjme:

$$\dot{Q}_{in} = A \cdot \dot{Q}_{don} = A \cdot \dot{q} \cdot S \cdot \cos \alpha$$

Tepelný tok, který destička vyzařuje:

$$\dot{Q}_{out} = 2 \cdot S \cdot \varepsilon \cdot \sigma \cdot \left(T^4 - T_{space}^4 \right)$$

Budeme hledat teplotu T, při které bude tepelný tok \dot{Q}_{in} roven tepelnému toku \dot{Q}_{out} :

$$\dot{Q}_{in} = \dot{Q}_{out}$$

$$A \cdot \dot{q} \cdot S \cdot \cos \alpha = 2 \cdot S \cdot \varepsilon \cdot \sigma \cdot \left(T^4 - T_{space}^4\right)$$

Při tepelné rovnováze platí:

$$A = \varepsilon$$
.

Dostaneme:

$$\begin{split} \dot{q} \cdot \cos \alpha &= 2 \cdot \sigma \cdot \left(T^4 - T_{space}^4 \right) \\ \frac{\dot{q} \cdot \cos \alpha}{2 \cdot \sigma} &= T^4 - T_{space}^4 \\ T^4 &= \frac{\dot{q} \cdot \cos \alpha}{2 \cdot \sigma} + T_{space}^4 \end{split}$$

$$T = \sqrt[4]{\frac{\dot{q} \cdot \cos \alpha}{2 \cdot \sigma} + T_{space}^4}$$

Nyní můžeme dosadit do vzorce a získat vzorec pro teplotu T v závislosti na úhlu natočení $\alpha :$

$$T = \sqrt[4]{\frac{1348 \cdot \cos \alpha}{2 \cdot 5,67 \cdot 10^{-8}} + 3^4} = \sqrt[4]{1,189 \cdot 10^{10} \cdot \cos \alpha + 81}.$$

Nyní můžeme vypočítat teplotu pro hodnoty $\alpha{:}$ 0, 45 a 90 °. Pro $\alpha=0{:}$

$$T = \sqrt[4]{1,189 \cdot 10^{10} \cdot \cos 0^{\circ} + 81} = \sqrt[4]{1,189 \cdot 10^{10} + 81} = 330,21 \text{ K}.$$

Pro $\alpha = 45$:

$$T = \sqrt[4]{1,189 \cdot 10^{10} \cdot \cos 45^{\circ} + 81} = \sqrt[4]{1,189 \cdot 10^{10} \cdot \frac{\sqrt{2}}{2} + 81} = 302,79 \text{ K}.$$

Pro $\alpha = 90$:

$$T = \sqrt[4]{1,189 \cdot 10^{10} \cdot \cos 90^{\circ} + 81} = \sqrt[4]{1,189 \cdot 10^{10} \cdot 0 + 81} = \sqrt[4]{81} = 3 \text{ K}.$$