Matt Warner

Question 1

R(A, B, C, D, E, F, G, H)

Functional Dependencies:

- \blacktriangleright A \rightarrow D, E
- ightharpoonup C ightharpoonup G
- \blacktriangleright A, C \rightarrow H, F

Part 1: is this relation in $_1NF$?

Yes, This relation is in ${}_{1}NF$. There are no repeating groups here.

Part 2: is this relation in $_2NF$?

Since we have yet to establish a primary key, we can't determine if our relation is in ${}_{2}NF$. Our only real candidate key here is $\{\underline{A}, \underline{C}, \underline{B}\}$. So we make that our primary key.

Now that we have our primary key, we can clearly see that we our relation is not in ${}_{2}NF$ since two subsets of our primary key (\underline{A} and \underline{C}) are determinates of non-prime attributes.

$$A \to D$$
, E (violates ${}_2NF$). $C \to G$ (violates ${}_2NF$).

By performing decomposition, we can move to ${}_{2}NF$. We need to perform decomposition on all functional dependencies that violate ${}_{2}NF$. There are three cases that violates ${}_{2}NF$, so after decomposition we will be left with four relations instead of one.

Schema in $_2NF$:

- $\rightarrow R_1(\underline{A}, \underline{B}, \underline{C},)$
- $\rightarrow R_2(\underline{A}, D, E)$
- \rightarrow R₃(C, G)
- $\rightarrow R_4(\underline{A}, \underline{C}, H, F)$

Part 3: is this relation in $_3NF$?

Yes, we are already in $_3NF$

Question 2

Property(id, county, lotNum, lotArea, price, taxRate, (dataPaid, amount))

Functional Dependencies:

- \triangleright id \rightarrow county, lotNum, lotArea, price, taxRate
- \blacktriangleright lotArea \rightarrow price
- \triangleright county \rightarrow taxRate
- \triangleright id, dataPaid \rightarrow amount

Part 1: is this relation in $_1NF$?

No, there are repeating groups here, so we are not in $_1NF$. To fix this, we need to select a primary key that makes every value atomic.

Making the primary key $\{\underline{id}, \underline{dataPaid}\}$ brings us to ${}_{1}NF$. Our new schema and table now look like this.

Property(id, county, lotNum, lotArea, price, taxRate, dataPaid, amount).

id	county	lotNum	lotArea	price	taxRate	datePaid	amount.
001	Will	59	G5	\$3500	1%	02-05-2012	\$1200
001	Will	59	G5	\$3500	1%	02-20-2012	\$2300

Part 2: is this relation in ${}_{2}NF$?

No, this relation is not in ${}_{2}NF$. The current state of our relation does not have full dependency. Looking at our functional dependencies, we see that a subset of our primary key is the determinent of some non-prime attributes. This violates the rules of ${}_{2}NF$.

 $id \rightarrow county$, lotNum, lotArea, price, taxRate. (violates $_2NF$).

To fix this, we should use decomposition, which splits our relation into two tables:

Property(id, county, lotNum, lotArea, price, taxRate)

id county lotNum lotArea price taxR	$\overline{ m ate}$
-------------------------------------	---------------------

Payments(id, datePaid, amount)

$\operatorname{\underline{id}}$	$\underline{\mathrm{datePaid}}$	amount

Part 3: is this relation in $_3NF$?

No, We are not in ${}_{3}NF$ because there are some transitive dependencies in our list of functional dependencies. county functionally determining taxRate, and lotArea functionally determining price are both transitive dependencies, which violates ${}_{3}NF$.

```
lotArea \rightarrow price (violates _3NF)
county \rightarrow taxRate (violates _3NF)
```

To fix this, we need to perform decomposition on all cases that violate $_3NF$. That leaves us with:

Property(id, lotNum).

Payments (id, datePaid, amount)

LandInfo(lotArea, price)

TaxInfo(county, taxRate)

Question 3

Pharmacy(patient_id, patient_name, address, (Rx_num, trademark_name, generic_name, (fill-date, num_refills_left), num_refills))

Functional Dependencies:

- ➤ patient_id → patient_name, address
- ➤ patient_id, Rx_num → trademark_name, generic_name
- ightharpoonup Rx_num \rightarrow num_refills
- ➤ Rx_num, filldate → num_refills_left

Part 1: is this relation in ${}_{1}NF$?

No, This relation is not in ${}_{1}NF$. There are many repeating groups here, so not all values are atomic. We can move to ${}_{1}NF$ by selecting a primary key that makes all values atomic.

The only real candidate key here is {patient_id, Rx_num, filldate}. Since it is the only candidate, we will make it the primary key.

Our new schema is:

Pharmacy(<u>patient_id</u>, patient_name, address, <u>Rx_num</u>, trademark_name, generic_name, <u>filldate</u>, num_refills_left, num_refills)

Part 2: is this relation in $_2NF$?

This relation is not in ${}_{2}NF$ since we have subsets of the primary key that are able to functionally determine non-prime attributes.

patient_id \rightarrow patient_name, address (violates $_2NF$)
patient_id, Rx_num \rightarrow trademark_name, generic_name (violates $_2NF$)
Rx_num, \rightarrow num_refills (violates $_2NF$)
Rx_num, filldate \rightarrow num_refills_left (violates $_2NF$)

After decomposition, we have:

Schema in $_2NF$:

- → *Pharmacy*(patient_id, <u>Rx_num</u>, <u>fill_date</u>)
- → *Patient*(patient_id, patient_name, address)
- → *Prescriptions*(patient_id, <u>Rx_num</u>, trademark_name, generic_name)
- \rightarrow *TotalRefills*(<u>Rx_num</u>, num_refills)
- → RemainingRefills(Rx_num, filldate, num_refills_left)

Part 3: is this relation in $_3NF$?

Yes, we are already in $_3NF$.

Question 4

Company(EmpID, EmpName, EmpAddr, (ProjID, ProjName, MgrID, MgrName, HoursWorked)

Functional Dependencies:

- ightharpoonup EmpName, EmpAddr
- ightharpoonup Proj
Name, MgrID, MgrName
- ightharpoonup EmpID, ProjID ightharpoonup HoursWorked
- \blacktriangleright MgrID \rightarrow MgrName

Part 1: is this relation in $_1NF$?

This relation is not in ${}_{1}NF$ since there are repeating groups present. We need a primary key that is able to functionally determine all other attributes. The primary key we should go with in this case is: {EmpID, ProjID}.

This primary key gives us the schema:

Company (EmpID, EmpName, EmpAddr, ProjID, ProjName, MgrID, MgrName, HoursWorked)

Part 2: is this relation in $_2NF$?

This relation is not in ${}_{2}NF$ since some subsets of the primary key can functionally determine non-prime attributes.

 $\text{EmpID} \rightarrow \text{EmpName}, \text{EmpAddr (violates } 2NF)$

 $ProjID \rightarrow ProjName$, MgrID, MgrName (violates $_2NF$)

We can fix this by performing decomposition on every case that violates $_2NF$. This leaves us with the following schema:

- ➤ Company(EmpID, ProjID, HoursWorked)
- ➤ *Employee*(EmpID, EmpName, EmpAddr)
- ➤ *Project*(ProjID, ProjName, MgrID, MgrName)

Part 3: is this relation in $_3NF$?

No, This relation is not in ${}_{3}NF$ since we have a non-prime attribue (MgrID), that can functionally determine another non-prime attribute (MgrName). To move into ${}_{3}NF$, we need to perform more decomposition. We need to remove MgrID and MgrName from the **Project** relation, and move it into a new relation. That leaves us with:

- ➤ Company(EmpID, ProjID, HoursWorked)
- ➤ *Employees*(EmpID, EmpName, EmpAddr)
- ➤ *Projects*(ProjID, ProjName)
- ➤ *Managers*(MgrID, MgrName)

Question 5

StockExchange(Company, Symbol, HQ, Date, ClosePrice)

Functional Dependencies:

- \triangleright Symbol, Date \rightarrow Company, HQ, ClosePrice
- \triangleright Symbol \rightarrow Company, HQ
- ightharpoonup Symbol ightharpoonup HQ

Part 1: is this relation in $_1NF$?

There are no repeating groups present, so this relation is in $_{1}NF$.

However, to move on any further, we need a primary key so we should establish one. Our only candidate key here is {Symbol, Date}. We will make this our primary key. Our new schema is:

 $StockExchange(Company,\,Symbol,\,HQ,\,\underline{Date},\,closePrice)$

Part 2: is this relation in $_2NF$?

This relation is not in ${}_{2}NF$ since a subset of the primary key is a determinent of non-key attributes.

Symbol \rightarrow Company, HQ (violates $_2NF$)

Symbol \rightarrow HQ (violates $_2NF$)

After performing the decomposition steps for every violation of $_2NF$ (two in this case), we are left with three relations:

 $StockExchange(Symbol, \underline{Date}, closePrice)$

StockCompany(Symbol, Company, HQ)

StockLocation(Symbol, HQ)

Part 3: is this relation in $_3NF$?

Yes, this relation is in $_3NF$