2018/07/23 交流計器

目的

正弦波交流の実際の波形を観察することで、交流の基礎について理解を深める。 また、基本的な素子に関して、電圧と電流の位相関係や周波数に対するインピーダンスの変化につい て理解する。

実験内容

基本的素子による電圧・電流波形のスケッチ 周波数によるインピーダンスの計算

使用器具

- 電圧電流観測機
- オシロスコープ

解説

正弦波交流電圧の基礎

交流発電機や発振器で発生する電圧の波形は、三角関数のsin関数と同じカタチをしており、これを正弦波交流と呼ぶ。

この波形からは以下のことが読み取れる

振幅: V_m , 周期:T[sec], 位相: θ [°]

一方、計器を使えば描きの値を直接測定できる。

- 交流電圧計 \rightarrow 実効値: V_{ρ} [V]
- 周波数カウンタ→周波数: f[Hz]
- オシロスコープ→時間的に変化する波形

波形とこれらの測定値との間には次に示す関係があるので、波形から計算で求めることができる。

$$V_e=rac{V_m}{\sqrt{2}}$$
[V] (正弦波の場合)

$$f=rac{1}{T}[ext{Hz}]$$

電圧と電流の関係およびインピーダンス

基本的な素子(抵抗: $R[\Omega]$, インダクタンス:L[H], キャパシタンス:C[f])に正弦波交流電圧を加えると、流れる電流もやはり制限はの形をsいている。しかし、素子の種類によって電流の様子は異なる。

位相のズレ

基本的な素子に電圧を加えて、流れる電流の様子をオシロスコープなどで観察すると、加えた電圧に 比べ、位相のズレが生じていることがわかる。位相のずれの方向は、素子の種類によって決まる。

周波数による変化

流れる電流の値は周波数の影響を受ける。

表2.2.2 周波数と電流・インピーダンスの関係

抵抗	インダクタンス	キャパシタンス	
電流の値	$I = \frac{V}{R}$	$I = \frac{V}{\omega L}$	$I = rac{V}{rac{1}{\omega C}}$
電流の位相	同じ	電圧より遅れる	電圧より進む
インピーダンス	R	ωL	$\frac{1}{\omega C}$

この電流の値を一般的な式にすると, $I=rac{V}{Z}$ となり,Zをインピーダンスと呼ぶ。

実験方法

電圧と電流の関係(抵抗,インダクタンス,キャパシタンス)

電圧電流観測機を用意し、実験書のように接続し準備する。

素子にかかる電圧Vと素子に流れる電流Iの波形をオシロスコープで観測する。

このような接続により、オシロスコープのCH.1では電圧波形を、CH.2では電流波形を同時に観測することができる。

電流を測定する端子は、実際は $5[\Omega]$ の抵抗に電流を流し、その両端の電圧を測っている。 電流値の計算には

$$I = \frac{V}{5}[A]$$

で求める。

1. 素子端子に抵抗を接続し、電圧波形と電流波形をグラフ用紙にスケッチする。 このとき波形を観察しやすい大きさにし、周波数2[kHz] (TIME/DIVを[50 μ s]にする \rightarrow 1周期おさまらないので今回は100[μ s]にした)で、電圧波形の立ち上がりが左端になるように左右位置を調整す

る。

波形から,電圧の最大値 $V_m[V]$ と電流の最大値 $I_m[A]$ および電圧に対する電流の移送時間差 $\phi_1[\mu s]$ および ϕ [$^{\circ}$]を読み取り表4.1にまとめる。

- 2. 素子をインダクタンス(コイル)に取り替え, (1)と同様な観測, スケッチ, 測定をする(周波数は変えない)
- 3. 素子をキャパシタンス(コンデンサ)に取り替え, (1)と同様な観測, スケッチ, 測定をする(周波数は変えない)

表4.1 電圧・電流の最大値および位相の測定結果

	電圧の最大値 V_m [V]	電流の最大値 I_m [mA]	移送時間差 ϕ_1 [μ s]	位相 <i>ϕ</i> [°]
抵抗	0.9	8	0	0
インダクタンス	2.9	3.4	-120	-86.4
キャパシタンス	1.9	8	120	86.4

周波数とインピーダンス

- 1. 抵抗,インダクタンス,キャパシタンスそれぞれについて,周波数を2[kHz]と4[kHz]で電圧,電流の最大値を測定し、実効値を求める。
- 2. (1)で測定したそれぞれの素子の値(R,L,C)を求める。
- 3. (1)と(2)の結果をそれぞれ表4.2.1と表4.2.2にまとめる。
- 4. 表4.2.1と表4.2.2より周波数2[kHz]と4[kHz]における各素子のインピーダンスを求め、表4.2.3のようにまとめる。

表4.2.12 kHzにおける電圧・電流の実効値および素子の値

	電圧		電流		素子の値
	最大値[V]	実効値[V]	最大値[mA]	実効値[mA]	
抵抗	0.9	0.636396103	8	5.656854249	112.5 Ω
インダクタンス	2.9	2.050609665	3.4	2.404163056	68 mH
キャパシタンス	1.9	1.343502884	8	5.656854249	335 nF

表4.2.2 4 kHzにおける電圧・電流の実効値および素子の値

	電圧		電流		素子の値
	最大値[V]	実効値[V]	最大値[mA]	実効値[mA]	
抵抗	0.95	0.671751442	8	5.656854249	118.8 Ω

	電圧		電流		素子の値
インダクタンス	3	2.121320344	2.4	1.697056275	50 mH
キャパシタンス	1.2	0.848528137	10	7.071067812	331 nF

表4.2.3 各素子のインピーダンス

	抵抗[Ω]	インダクタンス[Ω]	キャパシタンス[Ω]
2 kHz	112.5	855	238
4 kHz	118.8	1257	120

考察

- 1. 電圧と電流の位相の簡易は、素子の種類によってどのように違っているか完結に説明せよ
- 2. 周波数が2 kHzから4 kHzと2倍に増えたことによりインピーダンスと電流はどのように変化した か説明せよ。
- 3. 今回の実験から自分が理解できたことを報告せよ。

電圧と電流の位相の簡易は,素子の種類によってどのように違っているか完結に説明せよ

表4.1より

素子が抵抗の場合、位相のズレは無い。

素子がインダクタンスの場合、マイナス方向に約点ズレる。

素子がキャパシタンスの場合、プラス方向に約点ズレる。

周波数が2 kHzから4 kHzと2倍に増えたことによりインピーダンスと電流はどのように変化したか説明せよ。

表4.2.3より

素子が抵抗の場合、周波数の影響は受けていない。

素子がインダクタンスの場合、周波数が大きくなるとインピーダンスも大きくなっている。 素子がキャパシタンスの場合、周波数が大きくなるとインピーダンスは逆に小さくなっている。

今回の実験から自分が理解できたことを報告せよ。

周波数が各種インピーダンスに影響していることを観察できた。 また、素子の種類によって位相のズレが異なることも観察できた。

参考

参考文献番号	タイトル	URL	閲覧日時
-	実験書	-	-