Financial Engineering Exam

Kasper Rosenkrands

Aalborg University

S20

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Table of Contents

- 1. Lebesgue integration theory
- 1.1 Monotone Convergence Theorem
- 1.2 Proof of Monotone Convergence Theorem
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Lebesgue integration theory Monotone Convergence Theorem

Theorem (Monotone Convergence Thereom)

If (f_n) is a monotone increasing sequence of functions in $M^+(X,m)$ which converges to f, then

$$\int f \, d\mu = \lim \int f_n \, d\mu. \tag{1.1}$$

Proof of Monotone Convergence Theorem

The strategy of the proof is to first show that

$$\lim \int f_n \, d\mu \le \int f \, d\mu, \tag{1.2}$$

then afterwards to show that also

$$\lim \int f_n \, d\mu \ge \int f \, d\mu, \tag{1.3}$$

in order to conclude that

$$\lim \int f_n \, d\mu = \int f \, d\mu \tag{1.4}$$

Lebesgue integration theory Proof of Monotone Convergence Theorem

According to Corollary 2.10

Corollary (2.10)

If (f_n) is a sequence in M(X, m) which converges to f on X, the f is in M(X, m).

the function f is measurable.

Proof of Monotone Convergence Theorem

From Lemma 4.5(1.)

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.5}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.6}$$

we have that

$$\int f_n d\mu \leq \int f_{n+1} d\mu \leq \int f d\mu, \quad \forall n \in \mathbb{N}.$$
 (1.7)

Proof of Monotone Convergence Theorem

Therefore we must also have that

$$\lim \int f_n \, d\mu \le \int f \, d\mu. \tag{1.8}$$

So this was the first step of our strategy, now we proceed to the second step.

Proof of Monotone Convergence Theorem

Let $\alpha\in\mathbb{R}$ be such that $0<\alpha<1$ and let φ be a simple measurable function such that $0\leq\varphi\leq f$. Let

$$A_n = \{x \in X : f_n(x) \ge \alpha \varphi(x)\}, \qquad (1.9)$$

such that

- 1. $A_n \in m$
- 2. $A_n \subseteq A_{n+1}$
- 3. $X = \bigcup A_n$

Proof of Monotone Convergence Theorem

According to Lemma 4.5

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.10}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.11}$$

it must be that

$$\int_{A_n} \alpha \varphi \, d\mu \le \int_{A_n} f_n \, d\mu \le \int f_n \, d\mu. \tag{1.12}$$

Proof of Monotone Convergence Theorem
Since the sequence A is monotone increasing and has union X, it follows from Lemma 4.3(2.) and Lemma 3.4(1.),

Lemma (4.3)

1. If φ and ψ are simple functions in $M^+(X, m)$ and c > 0, then

$$\int carphi\, d\mu = c\intarphi\, d\mu, \ (1.13)$$
 $\int (arphi+\psi)\, d\mu = \intarphi\, d\mu + \int\psi\, d\mu. \ (1.14)$

2. If λ is defined for E in m by

$$\lambda(E) = \int \varphi \chi_E \, d\mu, \quad (1.15)$$

then λ is a measure on m.

Lemma (3.4)

Let μ be a measure defined on a σ -algebra m.

1. If (E_n) is an increasing sequence in m, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu\left(E_n\right). \tag{1.16}$$

2. If (F_n) is a decreasing sequence in m and if $\mu(F_1) < +\infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty}F_{n}\right)=\lim\mu\left(F_{n}\right).$$

(1.17)

Proof of Monotone Convergence Theorem

that

$$\int \varphi \, d\mu = \lim \int_{A_n} \varphi \, d\mu. \tag{1.18}$$

Taking the limit as n tends to infinity in (1.12) therefore gives that

$$\alpha \int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.19}$$

Since this holds for all 0 < α < 1, by taking the limit as α tends to 1 we obtain

$$\int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.20}$$

Proof of Monotone Convergence Theorem

As φ is any simple function in M^+ such that $0 \le \varphi \le f$, we can conclude that

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu \le \lim_{\varphi} \int f_n \, d\mu, \tag{1.21}$$

which concludes the proof.

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 2.1 Minkowski's Inequality
- 2.2 Proof of Minkowski's Inequality
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

L^p spaces Minkowski's Inequality

Theorem (Minkowski's Inequality)

If f and h belong to L_p , $p \ge 1$, then f + h belongs to L_p and

$$||f + h||_{p} \le ||f||_{p} + ||h||_{p}.$$
 (2.1)

Proof of Minkowski's Inequality

- ▶ The case of p = 1 is equivalent to the triangular inequality and will not be considered here.
- ▶ We suppose p > 1.

Proof of Minkowski's Inequality

As both f and h are measurable functions, so is the sum

$$f+h, (2.2)$$

as the sum of measurable functions are also measurable.

Proof of Minkowski's Inequality

From Corollary 5.4, Theorem 5.5 and the fact that

$$|f+h|^p \le [2\sup\{|f|,|h|\}]^p \le 2^p\{|f|^p+|h|^p\},$$
 (2.3)

it follows that $f + h \in L^p$.

Corollary (5.4)

If f is measurable, g is integrable, and $|f| \le |g|$, then f is integrable, and

$$\int |f| d\mu \le \int |g| d\mu. \quad (2.4)$$

Theorem (5.5)

A constant multiple αf and a sum f+g of functions in L belongs to L and

$$\int \alpha f \, d\mu, \qquad (2.5)$$

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu. \quad (2.6)$$

Proof of Minkowski's Inequality

Using the triangular inequality we can see that

$$|f+h|^p = |f+h||f+h|^{p-1} \le |f||f+h|^{p-1} + |h||f+h|^{p-1}.$$
(2.7)

Since $f + h \in L^p$ it implies that $|f + h|^p \in L^1$.

Assuming that $\frac{1}{p} + \frac{1}{q} = 1$, it implies that

$$\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow 1 + \frac{p}{q} = p \Leftrightarrow \frac{p}{q} = p - 1 \Leftrightarrow p = (p - 1)q, (2.8)$$

and thereby that $|f + h|^{p-1} \in L^q$.

Proof of Minkowski's Inequality

We can now apply Hölder's Inequality,

Theorem (Hölder's Inequality)

Let
$$f \in L_p$$
 and $g \in L_q$ where $p > 1$ and $(1/p) + (1/q) = 1$. Then $fg \in L_1$ and $\|fg\|_1 \le \|f\|_p \|g\|_q$.

to infer that

$$\int |f||f+h|^{p-1} d\mu \le ||f||_p \left\{ \int |f+h|^{(p-1)q} d\mu \right\}^{1/q}$$

$$= ||f||_p ||f+h||_p^{p/q}.$$
(2.9)

Note that exactly the same can be said for the other term

$$\int |h||f+h|^{p-1} d\mu \le ||h||_p \left\{ \int |f+h|^{(p-1)q} d\mu \right\}^{1/q} \tag{2.11}$$

$$= \|h\|_{p} \|f + h\|_{p}^{p/q}. \tag{2.12}$$

Proof of Minkowski's Inequality

This tells us that

$$||f + h||_{p}^{p} \le ||f||_{p} ||f + h||_{p}^{p/q} + ||h||_{p} ||f + h||_{p}^{p/q}$$

$$= \{||f||_{p} + ||h||_{p}\} ||f + h||_{p}^{p/q}.$$
(2.13)

If we let $A = ||f + h||_p = 0$, then the result becomes trivial as a norm by definition is greater than or equal to zero.

Proof of Minkowski's Inequality

Suppose now that $A \neq 0$ then we can divide (2.14) by $A^{p/q}$

$$\frac{A^{p}}{A^{p/q}} \le \{\|f\|_{p} + \|h\|_{p}\} \frac{A^{p/q}}{A^{p/q}} \tag{2.15}$$

$$A^{p-p/q} \le ||f||_p + ||h||_p, \tag{2.16}$$

by noting that p - p/q = 1, we obtain

$$||f + h||_{p} \le ||f||_{p} + ||h||_{p},$$
 (2.17)

which concludes the proof.

22 / 50

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 3.1 Definition of Absolute Continuity
- 3.2 Radón-Nikodym Theorem
- 3.3 Definition of Singular Measure
- 3.4 Lebesgue Decomposition Theorem
- 3.5 Proof of Lebesgue Decomposition Theorem
- Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Definition of Absolute Continuity

Definition (Absolutely Continuous)

A measure λ on m is said to be absolutely continuous with respect to a measure μ on m if $E \in m$ and $\mu(E) = 0$ imply that $\lambda(E) = 0$. In this case we write $\lambda << \mu$.

Note that μ can send more sets to 0 than λ , but not the other way around.

Decomposition of measures Radón-Nikodym Theorem

Theorem (Radón-Nikodym Theorem)

Let λ and μ be σ -finite measures defined on m and suppose that λ is absolutely continuous with respects to μ . Then there exists a function f in $M^+(X,m)$, such that,

$$\lambda(E) = \int_{E} f d\mu, \quad E \in m. \tag{3.1}$$

Moreover, the function f is uniquely determined μ -almost everywhere.

Definition of Singular Measure

Definition (A Singular Measure)

Two measures λ, μ on m are said to be mutually singular if there are disjoint sets A, B in m, such that, $X = A \cup B$ and $\lambda(A) = \mu(B) = 0$. In this case we write $\lambda \perp \mu$.

Decomposition of measures Lebesgue Decomposition Theorem

Theorem (Lebesgue Decomposition Theorem)

Let λ and μ be sigma-finite measures defined on a sigma-algebra m. Then there exists a measure λ_1 which is singular with respect to μ and a measure λ_2 which is absolutely continuous with respect to μ such that $\lambda=\lambda_1+\lambda_2$. Moreover, the measures λ_1 and λ_2 are unique.

The Theorem is a consequence of the Radon-Nikodým Theorem.

Proof of Lebesgue Decomposition Theorem

It can be shown that a measure ν can be decomposed

$$\nu = \lambda + \mu \tag{3.2}$$

such that ν is σ -finite, $\lambda << \nu$ and $\mu << \nu$.

A consequence of the Radon-Nikodým Theorem is that

$$\exists f, g \in M^+(X, m), \tag{3.3}$$

where

$$\lambda(E) = \int_{E} f \, d\nu, \quad \mu(E) = \int_{E} g \, d\nu, \qquad \forall \, E \in m. \tag{3.4}$$

Proof of Lebesgue Decomposition Theorem

Define the following sets

$$A := \{x \in X \mid g(x) = 0\}, \quad B := \{x \in X \mid g(x) > 0\}.$$
 (3.5)

As $g \in M^+$ we have that

$$A \cup B = X, \quad A \cap B = \emptyset.$$
 (3.6)

Define now $\lambda_1, \lambda_2 : m \longrightarrow \overline{\mathbb{R}}$ by

$$\lambda_1(E) := \lambda(E \cap A), \tag{3.7}$$

$$\lambda_2(E) := \lambda(E \cap B). \tag{3.8}$$

Proof of Lebesgue Decomposition Theorem

What we now want is to prove that

- 1. $\lambda_1 \perp \mu$,
- 2. $\lambda_2 << \mu$.

We start by proving $\lambda_1 \perp \mu$. From the definition of A we get

$$\mu(A) = \int_{\text{def. of } \mu} \int_{A} g \, d\nu = 0$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(\emptyset) = 0$$

$$\lambda_{1} \perp \mu.$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(\emptyset) = 0$$

$$\lambda_{1} \perp \mu.$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(\emptyset) = 0$$

$$\lambda_{1} \perp \mu.$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(\emptyset) = 0$$

$$\lambda_{1} \perp \mu.$$

$$\lambda_{2}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{3}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{4}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{5}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{6}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{1}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{2}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{3}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{4}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{5}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{6}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{6}(B) = \lambda(B \cap A) = \lambda(B \cap A)$$

$$\lambda_{7}(B) = \lambda(B \cap A)$$

$$\lambda_{8}(B) = \lambda(B \cap A)$$

$$\lambda$$

This proves the first point.

Proof of Lebesgue Decomposition Theorem

Now we want to show that $\lambda_2 << \mu$.

If $E \in m$ such that $\mu(E) = 0$ then

$$\int_{E} g \, d\nu = 0. \tag{3.10}$$

By Corollary 4.10,

Corollary (4.10)

Suppose that f belongs to M^+ . Then f(x)=0 μ -almost everywhere on X if and only if

$$\int f \, d\mu. \tag{3.11}$$

this means that g(x) = 0 ν -almost everywhere on E.

Proof of Lebesgue Decomposition Theorem

Recall that the terminology μ -almost everywhere means that there exists a subset $N \in m$ with $\mu(N) = 0$ such that the statement holds on the complement of N. Thus we have that

$$B := \{x \in X \mid g(x) > 0\}$$

$$\exists N \text{ s.t. } \nu(N) = 0$$

$$g(x) = 0 \text{ on } E \setminus N$$

$$\Rightarrow E \cap B \subseteq N \text{ outside } N, g(x) = 0$$

$$(3.12)$$

$$\underset{\mathsf{Lemma }}{\Longrightarrow} 0 \le \nu(E \cap B) \le \nu(N) = 0 \Rightarrow \nu(E \cap B) = 0. \tag{3.13}$$

Proof of Lebesgue Decomposition Theorem

But remembering that $\lambda << \nu$ this implies that

$$\lambda(E \cap B) = 0 \implies \lambda_2(E) = 0. \tag{3.14}$$

Thus we have shown that $\lambda_2 << \mu$.

Proof of Lebesgue Decomposition Theorem

To show that $\lambda = \lambda_1 + \lambda_2$ remeber that they were constructed from the sets A and B. We have that

$$X = A \cup B$$
 and $A \cap B = \emptyset$. (3.15)

For every measurable set E we have that

$$E = (E \cap A) \cup (E \cap B)$$
 and $(E \cap A) \cap (E \cap B) = \emptyset$. (3.16)

Therefore we het that from the countable additivity of a measure that

$$\lambda(E) = \lambda(E \cap A) + \lambda(E \cap B) \tag{3.17}$$

$$= \lambda_1(E) + \lambda_2(E) \tag{3.18}$$

Decomposition of measures Proof of Lebesgue Decomposition Theorem

Because this is true for every measurable set we can say that in general

$$\lambda = \lambda_1 + \lambda_2. \tag{3.19}$$

We have now shown that there existence part of the theorem. To finish the proof we would have to also verify that the λ_1 and λ_2 , derived here, are unique.

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 4.1 Tonelli's Theorem
- 4.2 Proof of Tonelli's Theorem
- 5. Approximation by nice functions
- 6. Fourier transform

Tonelli's Theorem

Theorem (Tonelli's Theorem)

Let (X, m, μ) and (Y, n, ν) be a σ -finite measure space and let F be a nonnegative measureable function on $Z = X \times Y$ to $\overline{\mathbb{R}}$. Then the functions defined on X and Y by

$$f(x) = \int_{Y} F_{x} d\nu, \quad g(y) = \int_{X} F^{y} d\mu,$$
 (4.1)

are measureable and

$$\int_{X} f \, d\mu = \int_{Z} F \, d\pi = \int_{Y} g \, d\nu. \tag{4.2}$$

In other symbols,

$$\int_{X} \left(\int_{Y} F \, d\nu \right) \, d\mu = \int_{Z} F \, d\pi = \int_{Y} \left(\int_{X} F \, d\mu \right) \, d\nu. \tag{4.3}$$

Proof of Tonelli's Theorem

Suppose first that $F = \chi_E$ where $E \in Z$, the result is then a consequence of Lemma 10.8.

Lemma (10.8)

Let (X, m, μ) and (Y, n, ν) be σ -finite measure spaces. If $E \in Z = X \times Y$, then the functions defined by

$$f(x) = \nu(E_x)$$
$$g(y) = \mu(E^y)$$

are measurable and

$$\int_X f d\mu = \pi(E) = \int_Y g d\nu.$$

Generation of measures and product measures Proof of Tonelli's Theorem

Furthermore we have that by the linearity of the integral, that the theorem holds true for every φ positive simple function.

Now we would like to extend the result to any nonnegative measurable function.

Let $F \geq 0$, $F : Z \to \overline{\mathbb{R}}$ be measurable.

Proof of Tonelli's Theorem Lemma 2.11 thus gives that there exists (Φ_n) such that,

Lemma (2.11)

If f is a nonnegative function in M(X, m), then there exists a sequence (φ_n) in M(X, m) such that

- 1. $0 \le \varphi_n(x) \le \varphi_{n+1}$ for $x \in m$, $n \in \mathbb{N}$.
- 2. $f(x) = \lim \varphi_n(x)$ for each $x \in m$.
- 3. Each φ_n has only a finite number of real values.

Furthermore Lemma 10.6 gives that every section of Φ_n are measurable

Lemma (10.6)

- 1. If E is a measurable subset of Z, then every section of E is measurable.
- 2. If f is a measurable function on Z to \mathbb{R} , then every section of f is measurable.

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Approximation by nice functions

Table of Contents

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- Approximation by nice functions
- 6. Fourier transform

Fourier transform Proof of Tonelli's Theorem