Algebra

June 5, 2017

1 Introduction to Homological Algebra

1.1 Projective, Injective and Flat modules (week 14)

Def 1.

- $M \in \mathbf{Mod}_R$ is **projective** if $\mathrm{Hom}(M,\cdot)$ preserves the *right* exactness.
- $N \in \mathbf{Mod}_R$ is **injective** if $\mathrm{Hom}(\cdot, N)$ preserves the *right* exactness.
- $M \in \mathbf{Mod}_R$ is flat if $M \otimes \cdot$ preserves the *left* exactness.

Fact 1.1.1.

- $\bullet \ \ M \ \text{is projective} \iff \underbrace{\begin{array}{c} \exists \ \tilde{f} \\ \downarrow f \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ \bullet \ \ N \ \text{is injective} \iff \underbrace{\begin{array}{c} M \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ g \downarrow \\ N \end{array}}_{\sharp \ \tilde{g}}$
- free \implies projective: If $X = \{x_i \mid i \in \Lambda\}$ and $f : x_i \mapsto a_i$. Since β onto, exists b_i so that $\beta(b_i) = a_i$. we can then set $\tilde{f} : x_i \mapsto b_i$ by the universal property of free module.

$$F(X)$$

$$\downarrow^{\tilde{f}} \qquad \downarrow^{f}$$

$$M_{2} \xrightarrow{\beta} M_{3} \longrightarrow 0$$

• free \Longrightarrow flat: Let $F \cong R^{\otimes \Lambda}$ be a free module, and M_1, M_2 be two modules such that $0 \to M_1 \to M_2$. Since $R \otimes_R M \cong M$, we have

$$0 \to M_1 \to M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to R \otimes M_1 \to R \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to \bigoplus_{i \in \Lambda} R \otimes M_1 \to \bigoplus_{i \in \Lambda} R \otimes M_2 \qquad \text{exact}$$

$$\stackrel{(a)}{\Longrightarrow} 0 \to R^{\otimes \Lambda} \otimes M_1 \to R^{\otimes \Lambda} \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to F \otimes M_1 \to F \otimes M_2 \qquad \text{exact}$$

Where (a) is by the fact that $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$. Thus F flat.

• If S is a multiplication closed set in R with $1 \in S$, then

$$0 \to M \to N \to L \to 0 \implies 0 \to M_S \to N_S \to L_S \to 0.$$

We know that $M_S \cong R_S \otimes_R M$. So R_S is a flat R-module. e.g. \mathbb{Q} is a flat \mathbb{Z} -module.

For any $M \in \mathbf{Mod}_R$, a projective module N such that $N \to M \to 0$ could be easily find: Simply let N = F, a free module on the set M.

Now we shall ask for any module M, does there exist $N \in \mathbf{Mod}_R$ such that N is injective and $0 \to M \to N$?

Theorem 1 (Boer's criterion). N is injective $\iff \forall I \subset R$, and a homomorphism f, there exists a homomorphism h such that the following diagram commutes:

$$0 \longrightarrow I \longrightarrow R$$

$$f \downarrow \qquad \qquad \downarrow \\ N$$

1

Proof. " \Rightarrow ": See I as an R module, then it is immediate by the definition of injective module. " \Leftarrow : Consider the following diagram:

$$0 \longrightarrow M_1 \longrightarrow M_2$$

$$\downarrow^g$$

$$N$$

Let $S \triangleq \{(M, \rho) \mid M_1 \subseteq M \subseteq M_2 \text{ and } \rho : M \to N \text{ extends } g\} \neq \emptyset \text{ since } (M_1, g) \in S.$

By the routinely proof using Zorn's lemma, exists a maximal element $(M^*, \mu) \in S$.

We claim that $M^* = M_2$. If not, pick $a \in M_2 \setminus M^*$ and let $M' \triangleq M^* + Ra \supseteq M^*$, $I \triangleq \{r \in R \mid ra \in M^*\}$. Define $f: I \to N$ with $r \mapsto \mu(ra)$. Then we have an extension $h: R \to N$ of f.

Now, let $\mu' :: M' \to N = x + ra \mapsto \mu(x) + h(r)$. We shall prove that this map is well-defined: If $x_1 + r_1 a = x_2 + r_2 a$, then $(r_1 - r_2)a = x_2 - x_1 \in M \implies r_1 - r_2 \in I$. So $h(r_1) - h(r_2) = f(r_1 - r_2) = \mu((r_1 - r_2)a) = \mu(x_2) - \mu(x_1)$, which prove μ' is well defined, and the existence of μ' contradict the fact that (M^*, μ) is maximal.

Def 2. M is **divisible** if $\forall x \in M, r \in R \setminus \{0\}$, there exists $y \in M$ such that x = ry, i.e. $rM = M \quad \forall r \in R \setminus \{0\}$.

Prop 1.1.1.

1. Every injective module N over an integral domain is divisible.

Proof. For any x_0 and $r_0 \in R \setminus \{0\}$. Let $I = \langle r_0 \rangle \subset R$. As long as R is an integral domain, $I \cong R$ as an R-module, so the R-module homomorphism $f :: I \to N = rx_0 \mapsto rr_0$ is well-defined. Since N injective, this map extends to $h :: R \to N$. Let $y_0 \triangleq h(1)$, then $r_0y_0 = r_0h(1) = h(r_0) = x_0$. Thus N injective.

2. Every divisible module N over an PID is injective.

Proof. For any $I \subseteq R$ and a homomorphism $f :: I \to N$, if I = 0 then $h = x \mapsto 0$ is always an extension of f. So assume $\forall I \neq 0$. Since R is a PID, $I = \langle r_0 \rangle$ for some $r_0 \neq 0 \in R$.' By the fact that N divisible, exists $y_0 \in N$ such that $r_0 y_0 = x_0 \triangleq f(r_0)$.

Now we could define $h: R \to N$ by $1 \mapsto y_0$. Then $h(r_0) = r_0 h(1) = r_0 y_0 = x_0$, thus h is an extension of f and N injective.

3. If R is a PID, then any quotient N of a injective R-module M is injective.

Proof. By 2., rM = M for any $r \neq 0$, thus rN = N for any $r \neq 0$, and hence N injective. \square

Theorem 2. For any $M \in \mathbf{Mod}_R$, exists N injective and contains M.

Proof.

Case 1: $R = \mathbb{Z}$.

Let $X = \{x_i\}_{i \in \Lambda}$ be a generating set for M and F is free on X. Let f be the natural map from f to M, then $M \cong F/\ker f$.

Define $F' = \bigoplus_{i \in \lambda} \mathbb{Q}e_i \subset F$, which is obviously a divisible \mathbb{Z} -module. Then $M \subseteq F' / \ker f \triangleq M'$, where M' is injective by proposition 1.1.1.

Case 2: R arbitrary.

We can regard any M as a \mathbb{Z} -module, then there exists an injective module $N_0 \supset M$. Now, we have an R-module $N \triangleq \operatorname{Hom}_{\mathbb{Z}}(R, N_0)$ with multiplication $rf(x) \triangleq x \mapsto f(xr)$.

We claim that N is injective. For any $f:M_1 \to N$, and a homomorphism $\alpha:M_1 \to M_2$, then α could be take as a \mathbb{Z} -module homomorphism. Define $f':M_1 \to N_0$ by $x \mapsto f(x)(1)$. Since N_0 injective, exists h', a \mathbb{Z} module homomorphism from M_2 to N_0 .

Now, define

$$h: M_2 \longrightarrow N$$

$$y \longmapsto h(y): R \longrightarrow N_0$$

$$1 \longmapsto h'(y)$$

$$r \longmapsto h'(yr)$$

We check that h is well-defined.

- $h(y) \in \text{Hom}_{\mathbb{Z}}(R, N_0)$ $h(y)(r_1 + r_2) = h'(y(r_1 + r_2)) = h'(yr_1 + yr_2) = h'(yr_1) + h'(yr_2) = h(y)(r_1) + h(y)(r_1)$
- $h \in \operatorname{Hom}_R(M_2, N)$

$$h(y_1 + y_2 r_2)(r) = h'((y_1 + y_2 r_2)r) = h'(y_1 r + y_2 r_2 r)$$

= $h'(y_1 r) + h'(y_2 r_2 r)$
= $h(y)(r) + (r_2 h(y_2))(r)$

• Show diagram commute $f = h \circ \alpha$ Fix $y \in M_1$, then $\forall r \in R$:

$$(h \circ \alpha)(y)(r) = h(\alpha(y))(r) = h'(r\alpha(y))$$
$$= h'(\alpha(ry)) = f'(ry)$$
$$= f(ry)(1) = rf(y)(1)$$
$$= f(y)(r)$$

Thus N_0 injective.

Now notice that, $\operatorname{Hom}_{\mathbb{Z}}(R,-)$ is a left exact functor, so $M \hookrightarrow N_0$ implies $\operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0)$, thus $M \cong \operatorname{Hom}_R(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0) = N$.

Prop 1.1.2. TFAE

1. *M* is projective.

- 2. Every exact sequence $0 \to M_1 \to M_2 \to M \to 0$ split.
- 3. $\exists M'$ s.t. $M \oplus M' \cong F$: free.

Proof.

 $(1) \Rightarrow (2)$: Since M projective, the map λ with $\beta \circ \lambda = \text{Id}$ exists in the following diagram:

$$M_2 \xrightarrow{\exists \lambda \qquad \downarrow \text{Id}} M \longrightarrow 0$$

Then λ is a lifting, so $M_2 \cong M_1 \oplus M$ and $0 \to M_1 \to M_2 \to M \to 0$ split.

(2) \Rightarrow (3): Let F be a free module on a generating set of M, and β :: $F \to M$ be the natural map, then $0 \to \ker \beta \to F \to M \to 0$ split, so $F \cong \ker \beta \oplus M$.

(3) \Rightarrow (1): For any $M_2 \to M_3 \to 0$, since $M' \oplus M$ free and thus projective, λ' exists in the following diagram:

$$0 \longrightarrow M' \longrightarrow M' \oplus M \xrightarrow{\mu} M \longrightarrow 0$$

$$\downarrow^{\exists \lambda'} \qquad \downarrow^{f}$$

$$M_2 \xrightarrow{\beta} M_3 \longrightarrow 0$$

Define $\lambda = \lambda' \circ \mu$. Then $\beta \circ \lambda = \beta \circ \lambda' \circ \mu = f \circ \pi \circ \mu = f$.

Prop 1.1.3. TFAE

- 1. M is injective.
- 2. Each exact sequence $0 \to M \to M_2 \to M_3 \to 0$ split.

Proof. (1) \Rightarrow (2): Similar to the projective case, μ exists in the following diagram:

$$0 \longrightarrow M \xrightarrow{\alpha} M_2$$

$$\downarrow^{\operatorname{Id}}_{\kappa} \exists \mu$$

$$M$$

So $M_2 = M \oplus M_3$.

 $(2) \Rightarrow (1)$: By theorem 2, there is a module $N \subset M$ so that N is injective.

Consider $0 \longrightarrow M \xrightarrow{i} N \longrightarrow \operatorname{coker} i \longrightarrow 0$ split exact and $\mu \circ i = \operatorname{Id}_M$. Since N injective, h' exists in the following diagram:

Let $h = \mu \circ h'$, then $h \circ \alpha = \mu \circ h' \circ \alpha = \mu \circ i \circ f = f$

Prop 1.1.4. projective \implies flat.

Proof. Observe that $\bigoplus_{i \in \Lambda} M_i$ is flat if and only if M_i is flat for each i, since if $0 \to N_1 \xrightarrow{\alpha} N_2$ exact, then

$$0 \longrightarrow (\bigoplus M_i) \otimes N_1 \xrightarrow{1 \otimes \alpha} (\bigoplus M_i) \otimes N_2$$

$$\parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \bigoplus (M_i \otimes N_1) \xrightarrow{\oplus (1 \otimes \alpha)} \bigoplus (M_i \otimes N_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M_i \otimes N_1 \xrightarrow{1 \otimes \alpha} M_i \otimes N_2 \qquad \forall i \in \Lambda$$

If M is projective, then by proposition 1.1.2 $\exists M'$ such that $M \oplus M' \cong F$ is free. Since free implies flat, by above, M is flat.

1.2 Ext and Tor (week 15)

Given $M, N \in \mathbf{Mod}_R$, there are two ways to define $\mathrm{Ext}^n(M, N)$:

Def 3 (Ext functor).

- Find any projective resolution $P_{\bullet} \xrightarrow{\alpha} M \to 0$, and let $P_M : P_{\bullet} \to 0$ (called a deleted resolution). We can define $\operatorname{Ext}^n_{\operatorname{proj}}(M,N) = H^n(\operatorname{Hom}(P_M,N))$.
- Find any injective resolution $0 \xrightarrow{\alpha} N \to E^{\bullet}$, and let $E_N : 0 \to E^{\bullet}$. We can define $\operatorname{Ext}_{\operatorname{inj}}^n(M,N) = H^n(\operatorname{Hom}(M,E_N))$.

Prop 1.2.1. $\operatorname{Ext}^0_{\operatorname{proj}}(M,N) \cong \operatorname{Ext}^0_{\operatorname{inj}}(M,N) \cong \operatorname{Hom}(M,N).$

Proof.

$$\operatorname{Hom}(P_M,N): 0 \xrightarrow{\overline{d_0}} \operatorname{Hom}(P_0,N) \xrightarrow{\overline{d_1}} \operatorname{Hom}(P_1,N) \to \cdots$$
so $\operatorname{Ext}^0_{\operatorname{proj}}(M,N) = \ker \overline{d_1} / \operatorname{im} \overline{d_0} = \ker \overline{d_1} = \operatorname{im} \alpha = \operatorname{Hom}(M,N).$

Similarly, $\operatorname{Ext}_{\operatorname{inj}}^0(M, N) = \operatorname{Hom}(M, N)$.

Lemma 1.

- If M is projective, then $\operatorname{Ext}_{\operatorname{proj}}^n(M,N)=0$ for all $n>0, N\in\operatorname{\mathbf{Mod}}_R$.
- If N is injective, then $\operatorname{Ext}_{\operatorname{inj}}^n(M,N)=0$ for all $n>0, M\in\operatorname{\mathbf{Mod}}_R$.

Proof. If M is projective, then $0 \to M \xrightarrow{\mathbf{1}_M} M \to 0$ is a projective resolution of M. Its deleted resolution is then $P_M: 0 \to M \to 0$. Hence for n > 0, $\operatorname{Ext}^n_{\operatorname{proj}}(M, N) = H^n(\operatorname{Hom}(P_M, N)) = 0$.

The argument applies similarly to injective case.

Theorem 3 (Equivalence of Ext_{proj} and Ext_{inj}).

$$\operatorname{Ext}^n_{\operatorname{proj}}(M,N) \cong \operatorname{Ext}^n_{\operatorname{inj}}(M,N)$$

Proof. Let $P_{\bullet} \to M \to 0$ and $0 \to N \to E^{\bullet}$ be projective and injective resolutions, then we have $0 \to K_0 \to P_0 \to M \to 0$ and $0 \to N \to E^0 \to L^1 \to 0$ exact.

We can construct long exact sequences of homology of $\operatorname{Hom}(\cdot, E_N)$:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(M,E^0) \to \operatorname{Hom}(M,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,E^0) = 0$$
$$0 \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(P_0,E^0) \to \operatorname{Hom}(P_0,L^1) \to 0$$
$$0 \to \operatorname{Hom}(K_0,N) \to \operatorname{Hom}(K_0,E^0) \to \operatorname{Hom}(K_0,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,E^0) = 0$$

The second sequence is short because P_0 is projective (so $\text{Hom}(P_0,\cdot)$ preserves exactness).

Similarly, for $\operatorname{Hom}(P_M, \cdot)$ we have:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0,N) = 0$$
$$0 \to \operatorname{Hom}(M,E^0) \to \operatorname{Hom}(P_0,E^0) \to \operatorname{Hom}(K_0,E^0) \to 0$$
$$0 \to \operatorname{Hom}(M,L^1) \to \operatorname{Hom}(P_0,L^1) \to \operatorname{Hom}(K_0,L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M,L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0,L^1) = 0$$

Combining these sequences together, we got the following 2D diagram:

$$0 \longrightarrow \operatorname{Hom}(M,N) \longrightarrow \operatorname{Hom}(M,E^0) \stackrel{\phi}{\longrightarrow} \operatorname{Hom}(M,L^1) \longrightarrow \operatorname{Ext}^1_{\operatorname{inj}}(M,N) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Hom}(P_0,N) \longrightarrow \operatorname{Hom}(P_0,E^0) \stackrel{\sigma}{\longrightarrow} \operatorname{Hom}(P_0,L^1) \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow \operatorname{Hom}(K_0,N) \longrightarrow \operatorname{Hom}(K_0,E^0) \stackrel{\tau}{\longrightarrow} \operatorname{Hom}(K_0,L^1) \longrightarrow \operatorname{Ext}^1_{\operatorname{inj}}(K_0,N) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}^1_{\operatorname{proj}}(M,N) \qquad 0 \qquad \operatorname{Ext}^1_{\operatorname{proj}}(M,L^1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0$$

By Snake lemma, there is an exact sequence

$$(\ker \alpha \to) \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta (\to \operatorname{coker} \gamma)$$

and this reads

$$\operatorname{Hom}(M,E^0) \xrightarrow{\phi} \operatorname{Hom}(M,L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M,N) \to 0$$

Thus $\operatorname{Ext}^1_{\operatorname{proj}}(M,N) \cong \operatorname{coker} \phi \cong \operatorname{Ext}^1_{\operatorname{inj}}(M,N)$. (From now on, we don't need to distinguish proj/inj for Ext^1 !)

Since σ is onto, im $\gamma = \operatorname{im}(\gamma \circ \sigma)$. Similarly, im $\tau = \operatorname{im}(\tau \circ \beta)$.

By the commutativity of the diagram, im $\gamma = \text{im } \tau$, so

$$\operatorname{Ext}^1(K_0, N) \cong \operatorname{coker} \gamma = \operatorname{Hom}(K_0, L^1) / \operatorname{im} \gamma \cong \operatorname{coker} \tau \cong \operatorname{Ext}^1(M, L^1)$$

.

Write $K_{-1} := M, L^0 := N$, then $\operatorname{Ext}^1(K_0, L^0) = \operatorname{Ext}^1(K_{-1}, L^1)$ (*).

Similarly, from the exact sequences

$$0 \to K_j \to P_j \to K_{j-1} \to 0$$

$$0 \to L^i \to E^i \to L^{i+1} \to 0$$

, we can obtain $\operatorname{Ext}^1(K_j, L^i) \cong \operatorname{Ext}^1(K_{j-1}, L^{i+1})$ for $i, j \geq 0$.

Now, observe that

$$0 \to L^{n-1} \to E^{n-1} \xrightarrow{d_{n-1}} E^n \xrightarrow{d_n} \cdots$$

is an injective resolution of L^{n-1} , and $\operatorname{Ext}^1(M, L^{n-1}) \cong \ker \overline{d_n} / \operatorname{im} \overline{d_{n-1}} \cong \operatorname{Ext}^n_{\operatorname{inj}}(M, N)$. Similarly, for projective resolution we have $\operatorname{Ext}^1(K_{n-2}, N) \cong \operatorname{Ext}^n_{\operatorname{proj}}(M, N)$. Finally, by (\star) ,

$$\operatorname{Ext}^n_{\operatorname{inj}}(M,N) \cong \operatorname{Ext}^1(K_{-1},L^{n-1}) \cong \operatorname{Ext}^1(K_0,L^{n-2}) \cong \cdots \cong \operatorname{Ext}^1(K_{n-2},L^0) \cong \operatorname{Ext}^n_{\operatorname{proj}}(M,N)$$

.

Def 4 (Tor functor). Let $M, N \in \mathbf{Mod}_R$, and $P_{\bullet} \to M \to 0$ be a projective resolution of M, similar to the Ext case, for $n \geq 0$ we can define

$$\operatorname{Tor}_n(M,N) = H_n(P_M \otimes N)$$

.

Fact 1.2.1. By Horseshoe lemma, short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(M_1,N) \to \operatorname{Tor}_1(M_2,N) \to \operatorname{Tor}_1(M_3,N) \to M_1 \otimes N \to M_2 \otimes N \to M_3 \otimes N \to 0$$

Prop 1.2.2. If M is flat, then $\operatorname{Tor}_n(M,N)=0$ for $n>0, N\in\operatorname{\mathbf{Mod}}_R$.

Proof. Since $0 \to M \xrightarrow{\mathbf{1}_M} M \to 0$ is a flat resolution of M.

Theorem 4 (Tor for flat resolutions). Let $U_{\bullet} \to M \to 0$ be a flat resolution of M, then for $n \geq 0$,

$$\operatorname{Tor}_n(M,N) \cong H_n(U_M \otimes N)$$

.

Proof.

$$H_{\bullet}(U_M \otimes N) : \cdots \to U_2 \otimes N \xrightarrow{d_2 \otimes 1} U_1 \otimes N \xrightarrow{d_1 \otimes 1} U_0 \otimes N \to 0$$

• n = 0:

Since tensor is right exact, $U_1 \otimes N \xrightarrow{d_1 \otimes 1} U_0 \otimes N \xrightarrow{\alpha \otimes 1} M \otimes N \to 0$ is exact. Hence

$$H_0(U_M \otimes N) = (U_0 \otimes N) / \operatorname{im}(d_1 \otimes \mathbf{1}) = (U_0 \otimes N) / \ker(\alpha \otimes \mathbf{1}) \cong M \otimes N$$

Any projective resolution also has this property, so $Tor_0(M, N) = H_0(U_M \otimes N)$.

• n=1: $0 \to W_0 \to U_0 \to M \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(W_0, N) \to 0 \to \operatorname{Tor}_1(M, N) \to W_0 \otimes N \xrightarrow{i \otimes 1} U_0 \otimes N \to M \otimes N \to 0$$

where $\operatorname{Tor}_1(U_0, N) = 0$ because U_0 is flat. We can see that $\operatorname{Tor}_1(M, N) \cong \ker(i \otimes 1)$.

Since $\alpha' \otimes 1$ is onto, $W_0 \otimes N \cong (U_1 \otimes N) / \ker(\alpha' \otimes 1)$. Also, $x \in \ker(d_1 \otimes 1) \iff (d_1 \otimes 1)(x) = 0 \iff (\alpha' \otimes 1)(x) \in \ker(i \otimes 1)$, so $\ker(i \otimes 1) = (\alpha' \otimes 1)(\ker(d_1 \otimes 1)) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1)$. $(\alpha' \otimes 1) = \operatorname{considered} a$ quotient map, then $\ker(d_1 \otimes 1) = \operatorname{descends} A = \operatorname$

Finally,

$$\operatorname{Tor}_1(M,N) \cong \ker(i \otimes 1) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1) = \ker(d_1 \otimes 1) / \operatorname{im}(d_2 \otimes 1) = H_1(U_M \otimes N)$$

> 0

• $n \ge 2$: Let's see further in the previous long exact sequences:

$$\cdots \to \operatorname{Tor}_2(W_0, N) \to 0 \to \operatorname{Tor}_2(M, N) \xrightarrow{\sim} \operatorname{Tor}_1(W_0, N) \to 0 \to \operatorname{Tor}_1(M, N) \to \cdots$$

we can see that $\operatorname{Tor}_n(M,N) \cong \operatorname{Tor}_{n-1}(W_0,N)$ for $n \geq 2$.

Now,

$$\cdots U_3 \xrightarrow{d_3} U_2 \xrightarrow{d_2} U_1 \to W_0 \to 0$$

is a flat resolution of W_0 , and its homology is $H_{n-1}(U_{W_0} \otimes N) = \ker(d_n \otimes 1)/\operatorname{im}(d_{n-1} \otimes 1) = H_n(U_M \otimes N)$.

By induction, assume it's true for n-1, then

$$H_n(U_M \otimes N) = H_{n-1}(U_{W_0} \otimes N) \cong \operatorname{Tor}_{n-1}(W_0, N) \cong \operatorname{Tor}_n(M, N)$$

.

9