

What are Marginal Models, and Why Do We Fit Them?

Brady T. West

Overview

So far, we've discussed the use of multilevel models with **random effects** to capture dependencies in clustered/longitudinal data sets

Overview

So far, we've discussed the use of multilevel models with **random effects** to capture dependencies in clustered/longitudinal data sets

Now, we shift focus to marginal models as alternative tools for capturing within-cluster correlations

Overview

So far, we've discussed the use of multilevel models with **random effects** to capture dependencies in clustered/longitudinal data sets

Now, we shift focus to marginal models as alternative tools for capturing within-cluster correlations

Key Distinction: In marginal models, we do **not** include random effects, because we are not interested in estimating between-cluster variance in coefficients

We still model within-cluster correlations

- General class of statistical models used to model dependent data, where observations within a randomly sampled cluster may be correlated
- We are interested in the estimation of overall, population-averaged relationships between independent variables (IVs) and dependent variables (DVs), across all clusters!

- General class of statistical models used to model dependent data, where observations within a randomly sampled cluster may be correlated
- We are interested in the estimation of overall, population-averaged relationships between independent variables (IVs) and dependent variables (DVs), across all clusters!

Reminder: In marginal models, we don't allow coefficients to randomly vary across clusters (a key feature of *multilevel* models)

- General class of statistical models used to model dependent data, where observations within a randomly sampled cluster may be correlated
- We are interested in the estimation of overall, population-averaged relationships between independent variables (IVs) and dependent variables (DVs), across all clusters!

Reminder: In marginal models, we don't allow coefficients to randomly vary across clusters (a key feature of *multilevel* models)

Goal: Make inference about these overall, marginal relationships, with standard errors that reflect clustering

 Multilevel models capture dependencies by allowing coefficients to randomly vary across clusters

- Multilevel models capture dependencies by allowing coefficients to randomly vary across clusters
- Marginal models simply look at overall relationships, and make sure that standard errors reflect dependencies

Explicitly select a structure for the mean of the dependent variable, usually defined by regression coefficients and predictor variables

(same as before!)

Explicitly select a structure for the mean of the dependent variable, usually defined by regression coefficients and predictor variables

(same as before!)

Select structure that makes sense for the variances <u>and</u> <u>covariances</u> of observations coming from the same cluster that are <u>not explained</u> by the selected predictors

- Explicitly select a structure for the mean of the dependent variable, usually defined by regression coefficients and predictor variables
 - (same as before!)
- Select structure that makes sense for the variances <u>and</u> <u>covariances</u> of observations coming from the same cluster that are <u>not explained</u> by the selected predictors
- Compare the fits of models with different choices for this variance-covariance structure, and choose the best fit

Example: Continuous longitudinal measurements on a dependent variable (DV) for subjects in a clinical study (e.g. headache pain)

Example: Continuous longitudinal measurements on a dependent variable (DV) for subjects in a clinical study (e.g. headache pain)

- Errors close to each other in time have a stronger correlation than errors farther apart
- Observations have constant variance over time

Example: Continuous longitudinal measurements on a dependent variable (DV) for subjects in a clinical study (e.g. headache pain)

After accounting for the relationships of time and experimental group, unexplained "errors" in the measures of the DV within a subject might follow an **auto-regressive** covariance structure:

- Errors close to each other in time have a stronger correlation than errors farther apart
- Observations have constant variance over time

For clustered data, we might assume that the errors within a cluster follow an **exchangeable** covariance structure (constant variance and covariance)

When Can We Fit Marginal Models?

dependencies in the collected data, and we need to model those dependencies to obtain accurate inferences about relationships of interest

When Can We Fit Marginal Models?

- We have data from a longitudinal or clustered study design that introduces
- dependencies in the collected data, and we need to model those dependencies to obtain accurate inferences about relationships of interest
- We have no interest in estimating between-subject or between-cluster
- variance in the coefficients of interest

When Can We Fit Marginal Models?

Why do we Fit Marginal Models?

- These models offer some advantages over other approaches for **dependent data** (e.g., multilevel modeling):
 - Quicker computational times; faster estimation
 - Robust standard errors that reflect the specified correlation structure
 - Easier accommodation of non-normal outcomes (recall that multilevel models for non-normal outcomes can take a while to estimate!)

Why do we Fit Marginal Models?

- These models offer some advantages over other approaches for **dependent data** (e.g., multilevel modeling):
 - Quicker computational times; faster estimation
 - Robust standard errors that reflect the specified correlation structure
 - Easier accommodation of non-normal outcomes (recall that multilevel models for non-normal outcomes can take a while to estimate!)

Remember: We can no longer make inference about betweencluster variance in the coefficients of interest!

What's Next?

- We'll revisit earlier examples of multilevel modeling,
 and consider alternative marginal modeling approaches
- We'll discuss how to estimate these models, and methods for assessing model fit
- Finally, we will present examples, and you'll be able to walk through examples of fitting these models using Python!