

Cross-domain Slot Filling with Distinct Slot Entity and Type Prediction

Shudong Liu, Peijie Huang*, Zhanbiao Zhu, Hualin Zhang and Jianying Tan South China Agricultural University

Reporter: Shudong Liu

The Report Outline

NLPCC 2021

Research Background

Motivations

5.

Methods

Experiments

Conclusion and Prospect

Task-oriented Dialogue System

- In-car dialog systems
- Shopping guide robot system

NLPCC 2021

Spoken Language Understanding

- **Intent Detection**: sentence classification
- **Slot Filling**: sequence labeling

Sentence	What	is	the	weather	in	Qingdao	this	year		
SLOT	O	O	O	О	O	B-city	B-timerange	I-timerange		
INTENT	Get Weather									

Cross-domain Slot Filling

- Recent approaches are expensive and time-consuming due to the difficulties in collecting high-quality labeled training data with different domains
- Cross-domain adaptation copes with the data scarcity problem in low-resource target domains

NLPCC 2021

Cross-domain Slot Filling

Domain	${f slots}$						
Domain	cross-domain shared	domain-specific					
AddToPlaylist	artist, playlist, music_item	playlist_owner, entity_name					
BookRestaurant	country, state, timeRange, sort, spatial_relation, city	party_size_number, poi, restaurant_type, facility, party_size_description, served_dish, cuisine, restaurant_name					
GetWeather	country, state, timeRange, city, spatial_relation	spacurrent_location, condition_description condition_temperature, geographic_poi					
PlayMusic	sort, artist, playlist, music_item	year, album, genre, track, service					
RateBook	object_type, object_name	object_part_of_series_type, rating_value, object_select, best_rating, rating_unit					
SearchCreativeWork	object_type, object_name	-					
FindScreeningEvent	timeRange, object_type, spatial_relation	object_location_type, movie_type, movie_name, location_name					

NLPCC 2021

Research Background

Motivations

- 3. Methods

- - Experiments

 - Conclusion and Prospect

NLPCC 2021

Challenges

- Unseen slot labels
- Zero-shot learning
- Differences between domains

fferences between

Slot Description

- Label description
- Make labels have semantic information
- Example:

Simple

Slot artist

artist

DescriptionComplexa person who is engaged in artisticDescriptioncreation or has artistic achievements

Related Works

One-stage Model

Two-stage Model

NLPCC 2021

- Related Works
- One-stage Model: conducts slot filling(3-classification) individually for each slot type based on slot descriptions
 - Two-stage Model: use the shared representation to identify whether the tokens are slot entities or not (3-classification), and then predict their specific slot types based on slot descriptions
- Our pipeline Model: Use distinct representation for two sub-tasks

 ${\bf Fig.\,1.}$ Cross-domain slot filling frameworks.

Remaining challenges

- The information captured in cross-domain learning in slot entity identification and slot type alignment is different. The slot entity identification is to detect the entity boundary while the slot type alignment is to predict slot labels by contexts. The performance of these two-stage models drops in both tasks since affecting each other.
- Such approaches treat each source domain corpus equally. However, in cross-domain learning, different source domains have different contributions to the target domain, and some of them may even cause negative transfer problems.
- For example, given target domain "GetWeather", the model can get more improvements from "BookRestaurant" domain because of the location-related shared slots, but fewer improvements from the "PlayMusic" domain with no related shared slots at all.

Methods

NLPCC 2021

- Research Background
- **Motivations**

Methods

Conclusion and Prospect

Methods

NLPCC 2021

- Proposing a pipeline approach for cross-domain slot filling with distinct contextual representations for slot entities and slot types.
- Introducing a simple yet effective instance weighting scheme for better capturing slot entities and alleviating the negative transfer problem.
- Experiments in the zero-shot/few-shot settings on SNIPS and SMP-ECDT datasets show that our approach outperforms the state-of-the-art models. Ablation study and quantitative analysis also prove the effectiveness of the proposed model.

Methods

NILPCC 2021

time range

Boundary markers

Domain similarity score

 $score(sd, td) = \frac{|Slot_{shared}|}{|Slot_{sd}|} \cdot \frac{|Slot_{shared}|}{|Slot_{td}|}$

 $weight(sd, td) = f_w(score) = \alpha + \beta \cdot score(sd, td)$ $LR(sd,td) = \epsilon \cdot weight(sd,td)$

$$||lot_{td}||$$

movie name

Weighted learning rate

Weights for learning rate

NLPCC 2021

- Research Background
- **Motivations**
- 3. Methods

- **Experiments**

- - Conclusion and Prospect

- SNIPS Dataset: Public spoken language understanding dataset that contains 39 slot types across 7 domains
- SMP-ECDT Dataset: Public benchmark corpus os SMP-ECDT provided by iFLYTEK Coporation

Table 2. Detailed statistics of SMP-ECDT dataset.

Datasets	Domain	Slots							
		Cross-domain shared	Domain-specific						
	cookbook	keyword	dishName, utensil, ingredient						
	epg	datetime_time, datetime_date, category, name, code, area	tvchannel						
	map	startLoc_poi, endLoc_poi, startLoc_city, endLoc_city, endLoc_province, endLoc_area, location_city, location_province, type, startLoc_area	location_area, location_poi						
	message	name, content, category, teleOperator	receiver, headNum						
	poetry	keyword, author, name	queryField, dynasty						
	train	startDate_date, category, startLoc_city, endLoc_city, startLoc_area, endLoc_area, startLoc_province, endLoc_province, startLoc_poi, startDate_time	_						
	video	name, category, timeDescr, area, popularity, artist	tag, scoreDescr						

Main Results

• There are Average-F1 improvements in 2 datasets on zero-shot/few-shot setting compared with all the baselines.

Table 4. Slot F1-scores on SMP-ECDT for different target domains under zero/few-shot learning settings. * indicates the significant improvement over all baselines (p < 0.05)

Training Setting	Zero-s	shot				Few-shot on 5 samples				
$\textbf{Domain} \!\!\downarrow \textbf{Model} \!\!\to$	CT	Coach	CZSL	PCD	PCD-Iw	CT	Coach	CZSL	PCD	PCD-Iw
cookbook	1.35	16.95	15.00	16.54	22.27*	3.47	38.07	43.18	48.62*	42.31
epg	9.50	18.84	20.54	25.41*	24.59	13.95	31.37	29.54	39.92	39.93*
map	16.75	22.15	23.42	22.95	26.66*	18.39	35.71	32.02	28.33	28.40
message	11.19	29.87	25.23	26.59	29.89*	30.86	33.87	34.86	31.79	36.63*
poetry	19.03	43.19	43.66	43.41	43.81	21.96	50.48	53.67	45.74	65.52*
train	84.58	85.71	85.09	83.96	84.05	84.95	85.16	85.14	86.65*	86.31
video	19.41	26.39	32.13	36.68*	32.53	22.14	30.56	30.82	34.42	35.07*
Average F1	23.21	34.73	35.01	36.50	37.69*	26.94	43.60	43.92	45.07	47.73*

Results on Slot Entity Identification

• Significant improvement especially with instance weighting scheme

Table 6. BIO F1-scores on SMP-ECDT for different target domains under zero/few-shot learning settings.

Training setting	Few-shot on 5 samples							
$Domain \downarrow Model \rightarrow$	Coach	CZSL	PCD	PCD-Iw	Coach	CZSL	PCD	PCD-Iw
cookbook	65.84	70.50	73.24	74.35	71.74	71.11	74.71	74.31
epg	29.72	34.89	41.46	42.70	38.61	35.28	49.19	49.28
map	53.15	57.00	55.95	57.32	56.21	52.63	54.50	56.25
message	38.35	33.50	36.17	44.58	39.16	40.73	42.06	46.47
poetry	51.15	53.08	51.41	52.05	53.50	54.68	52.69	74.86
train	92.13	89.70	91.04	89.20	91.26	89.65	93.00	$\boldsymbol{93.57}$
video	32.39	41.58	42.23	$\boldsymbol{42.51}$	35.12	36.79	40.91	44.15
Average F1	51.82	54.32	55.93	57.52	55.09	54.41	58.15	62.70

Results on Seen and Unseen Slots

• Improvement on both seen and unseen slots

Table 7. Average F1-scores on SNIPS and SMP-ECDT for seen and unseen slots across all target domains.

Dataset	SNIPS				SMP-ECDT				
Setting	0 sample		50 samples		0 samp	le	5 samples		
	unseen	seen	unseen seen u		unseen	seen	unseen seen		
CT	27.10	44.18	62.05	69.64	11.85	30.95	18.29	34.64	
Coach	34.09	51.93	76.49	80.16	18.98	44.15	31.45	44.78	
CZSL	34.57	52.69	77.15	80.09	17.05	46.74	32.74	43.41	
$\operatorname{CZSL-Adv}$	36.35	55.43	78.48	79.36	_	_	_	_	
PCD	35.79	55.63	78.84	80.75	20.73	48.70	29.84	46.29	
PCD-Iw	36.98	56.96	80.61	81.66	21.12	49.08	39.76	49.17	

Conclusions

NLPCC 2021

- Research Background
- **Motivations**
- 3. Methods

- Experiments
- **Conclusion and Prospect**

Conclusions

- Proposing a pipeline approach for cross-domain slot filling with distinct contextual representations for slot entities and slot types.
- Introducing a simple yet effective instance weighting scheme for better capturing slot entities and alleviating the negative transfer problem.
- Experiments in the zero-shot/few-shot settings on SNIPS and SMP-ECDT datasets show that our approach outperforms the state-of-the-art models. Ablation study and quantitative analysis also prove the effectiveness of the proposed model.

NLPCC 2021

Thank You!

E-mail: sudan@foxmail.com (Shudong Liu) pjhuang@scau.edu.cn (Peijie Huang)

pjhuang@scau.edu.cn (Peijie Hi Wechat: sudanl1999

