Optical Fiber Communications

Chapter XX
Silicon Photonics

Intel Si-Photonics

Ref) OFC (Optical Fiber Communication Conference) Mar, 201

Intel Si-Photonics

```
4λ x 12.5 Gb/s CWDM link;
(1291 nm, 1311 nm 1331 nm, and 1351 nm),
```

The integrated silicon photonic transmitter

4 hybrid s lasers

1 x 4 Si modulator array optical multiplexer

The integrated receiver

an optical demultiplexer,

1 x 4 array of high speed SiGe photodetectors,

4-channel 10 Gb/s BiCMOS receiver IC.

Intel Si-Photonics

Fig.2 Eye diagrams (left) and measured BER vs. average received power (right) of the 25Gb/s signal over 410m and 820m MMF compared against the back-to-back configuration.

Exponential Growth in Supercomputing Power

- · 33% of all FLOPs are IBM
- 196 of 500 are IBM Systems
- 3 Systems in top 10 (3,5,9)
- Performance increase Factor 10 every 4 yrs
- Exascale Systems by 2020
 3 Orders increase compared to today!!!

Demands new technologies

- BW requirements must scale with System Performance, ~1B/FLOP (memory & network)
- Requires exponential increases in communication bandwidth at all levels of the system → Inter-rack, backplane, card, chip

Electrical BW Bottlenecks – Optics opportunities

 Electrical Buses become increasingly difficult at high data rates (physics):

IBM Research - Zurich IBM

Density advantage of optics

Cables

1 m cable

Connectors www 135 mm 1

144 x 10+ Gbps

PCB-Tracks

differential striplines 2 x 10 Gbps 80x17 µm tracks @ 460 µm pitch

optical waveguides 16 x 10+ Gbps 35x35 µm cores @ 62.5 µm pitch

IBM Research - Zurich

Photonics Roadmap - Optical Interconnects in Supercomputing

Optical interconnects will be applied for shorter and shorter links to fulfill bandwidth and power efficiency requirements. Integration will increase bandwidth density and reduces for a power power and shorter links to fulfill bandwidth and

2008: Roadrunner - 1 PetaFlop

Optics at the board-edge:

Performance increase Based on existing assembly concepts

Total ~48000 Fibers

2011: Blue Waters - 10 PetaFlop

How much optics will be required?

- · 10x performance increase every 4 years
- 10x performance increase costs 1.5x as much
- · 10x performance increase requires 2x more energy

	2008	2020
Performance	1 PetaFlop	1 ExaFlop
Cost	150 M\$	500 M\$
Energy consumption	2.5 MW	20 MW
Optical bandwidth	0.012 PB/s	400 PB/s
# Optical signals	48000 @ 5 Gb/s	320x10 ⁸ @ 25 Gb/s
Optics efficiency	50 mW/Gb/s	1 mW/Gb/s
Cost of optics	10\$ /Gb/s	0.025\$ /Gb/s

Optics must become

- More efficient
- Cheaper
- Simpler

Based on existing trends, not a product plan