

9 - Database design for (web) applications

ASE230 – Server-Side Programming Nicholas Caporusso

NKW Objectives

- Capture key information from processes and formalize it
- Write database specifications

NKW Agenda

- 1. Business rules
- 2. Data abstraction
- 3. Data models
- 4. From business rules to data models
- 5. The Entity-Relationship model

Business rules

NKU Business rules: what

 Brief, precise, and unambiguous descriptions of a policies, procedures, or principles within a specific organization

Apply to any organization that stores and uses data to generate information

 Description of operations that help to create and enforce actions within that organization's environment

NOW 4 types of business rules

Definitions

 specific words, phrases, terms and language used to express the rule (usually captured in a glossary)

Facts

• the starting points for applying the business rule. For example, it's a fact that a customer can apply for a loan, request a bank statement, or withdraw money. You can define facts as relationships, attributes, and structures.

Constraints

 limitations imposed upon the rule. For example, you need to have 10k in your account to apply for a loan. That's a constraint placed upon the customer.

Derivations

how knowledge may be changed into other knowledge, possibly in different forms.

NKU Business rules: how

- Must be rendered in writing
- Must be kept up to date
- Sometimes are external to the organization
- Must be easy to understand and widely disseminated
- Describe characteristics of the data as viewed by the company

NKW Business rules: why

- Standardize company's view of data
- Constitute a communications tool between users and designers
- Allow designer to understand the nature, role, and scope of data
- Allow designer to understand business processes
- Allow designer to develop appropriate relationship participation rules and constraints
- Promote creation of an accurate data model

NO Business rules: example

 A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enroll in a particular course and take modules towards the completion that course. Each module is taught by a lecturer from the appropriate department, each lecturer tutors a group of students

NKW Business rules: example

• A university consists of a number of **departments**. Each department offers several **courses**. A number of **modules** make up each course. **Students** enroll in a particular course and take modules towards the completion that course. Each module is taught by a **lecturer** from the appropriate department, each lecturer tutors a group of students

NKW Business rules: example

A university consists of a number of departments. Each department offers
several courses. A number of modules make up each course. Students enroll
in a particular course and take modules towards the completion that course.
Each module is taught by a lecturer from the appropriate department, each
lecturer tutors a group of students

Data abstraction

NKW What is data abstraction?

- Way of classifying data models
- Many processes begin at high level of abstraction and proceed to an ever-increasing level of detail
- Designing a usable database follows the same basic process
- American National Standards Institute (ANSI) Standards Planning and Requirements Committee (SPARC)
- Defined a framework for data modeling based on degrees of data abstraction (1970s)
 - External
 - Conceptual
 - Internal

- End users' view of the data environment
- Requires that the modeler subdivide set of requirements and constraints into functional modules that can be examined within the framework of their external models

NO Advantages of the external model

- Easy to identify specific data required to support each business unit's operations
- Facilitates designer's job by providing feedback about the model's adequacy
- Creation of external models helps to ensure security constraints in the database design
- Simplifies application program development

NO The conceptual model

- Represents global view of the entire database
- Representation of data as viewed by the entire organization
- Basis for identification and high-level description of main data objects, avoiding details
- Most widely used conceptual model is the entity relationship (ER) model

NKU Advantages of the conceptual model

- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - does not depend on the DBMS software used to implement the model
 - does not depend on the hardware used in the implementation of the model
 - changes in either hardware or DBMS software have no effect on the database design at the conceptual level

NKW The internal model

- Representation of the database as "seen" by the DBMS
- Maps the conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model

NKW The physical model

- Operates at lowest level of abstraction, describing the way data are saved on storage media such as disks or tapes
- Software and hardware dependent
- Requires that database designers have a detailed knowledge of the hardware and software used to implement database design

NW Models

MODEL	DEGREE OF ABSTRACTION	FOCUS	INDEPENDENT OF
External	High	End-user views	Hardware and software
Conceptual	†	Global view of data (independent of database model)	Hardware and software
Internal	+	Specific database model	Hardware
Physical	Low	Storage and access methods	Neither hardware nor software

Data models

NKU The Evolution of Data Models

- Hierarchical model
 - Depicts a set of one-to-many (1:M) relationships between a parent and its children segments
- Network data model
 - Uses sets to represent 1:M relationships between record types
- Relational model
 - Current database implementation standard
 - ER model is a popular graphical tool for data modeling that complements the relational model
- Entity relationship
- Object oriented (OO)

NKW The Relational Model

- Developed by Codd (IBM) in 1970
- Considered ingenious but impractical in 1970
- Conceptually simple
- Computers lacked power to implement the relational model
- Today, microcomputers can run sophisticated relational database software

NKU The Relational Model

Relational Database Management System (RDBMS)

 Performs same basic functions provided by hierarchical and network DBMS systems, in addition to a host of other functions

Most important advantage of the RDBMS is its ability to hide the complexities
of the relational model from the user

NKW Elements of the Relational model

- Relational diagram
 - Representation of relational database's entities, attributes within those entities, and relationships between those entities
- Relational Table
 - Stores a collection of related entities: resembles a file
- Relational table is purely logical structure
 - How data are physically stored in the database is of no concern to the user or the designer
 - This property became the source of a real database revolution

NKU The Object Oriented Model (1/3)

- Modeled both data and their relationships in a single structure known as an object
- Object-oriented data model (OODM) is the basis for the object-oriented database management system (OODBMS)
- OODM is said to be a semantic data model

NKU The Object Oriented Model (2/3)

- Object described by its factual content
 - Similar to an entity in the relational model
- Includes information about relationships between facts within object, and relationships with other objects
 - Unlike relational model's entity
- Subsequent OODM development allowed an object to also contain all operations
- Object becomes basic building block for autonomous structures

NKU The Object Oriented Model (3/3)

- Object is an abstraction of a real-world entity
- Attributes describe the properties of an object
- Objects that share similar characteristics are grouped in classes
- Classes are organized in a class hierarchy
- Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of classes above it

NKU Extended Relational Data Model (ERDM)

- Semantic data model developed in response to increasing complexity of applications
- DBMS based on the ERDM often described as an object/relational database management system (O/RDBMS)
- Primarily geared to business applications

NKU Database Models and the Internet

- Internet drastically changed role and scope of database market
- OODM and ERDM-O/RDM have taken a backseat to development of databases that interface with Internet
- Dominance of Web has resulted in growing need to manage unstructured information

NKU Differences between ER model and OO model

From business rules to data models

NKW Requirements collection and analysis

- Database designers interview prospective database users to understand and document data requirements
- Result: data requirements
- Functional requirements of the application

NO Generating entities

- Generally, nouns translate into entities
- Verbs translate into relationships among entities
- Relationships are bi-directional

NKW Conceptual design

- Conceptual schema
- Description of data requirements
- Includes detailed descriptions of the entity types, relationships, and constraints
- Transformed from high-level data model into implementation data model

NO Logical and physical design

- Logical design or data model mapping
 - Result is a database schema in implementation data model of DBMS
- Physical design phase
 - Internal storage structures, file organizations, indexes, access paths, and physical design parameters for the database files specified

The Entity Relationship Model

NKW What is a data model

- A data model is a (relatively) simple abstraction of a complex real-world data environment
- Basic data modeling components are:
 - Entity anything about which data are to be collected and stored
 - Attribute a characteristic of an entity
 - Relationship describes an association among entities
 - One-to-many (1:M) relationship
 - Many-to-many (M:N or M:M) relationship
 - One-to-one (1:1) relationship
 - Constraint a restriction placed on the data

NO The Importance of Data Models

 Relatively simple representations, usually graphical, of complex real-world data structures

 Facilitate interaction among the designer, the applications programmer, and the end user

End-users have different views and needs for data

Data model organizes data for various users

NKW Entity Relationship Diagram

- Widely accepted and adapted graphical tool for conceptual data modeling
- Introduced by Chen in 1976
- Graphical representation of entities and their relationships in a database structure
 - Entity set is collection of like entities
 - Connectivity labels types of relationships
 - Diamond connected to related entities through a relationship line
- Entity-Relationship (ER) model: popular high-level conceptual data model
- ER diagrams: diagrammatic notation associated with the ER model

Department

Course

Module

Lecturer

Student

Entity Relationship Modelling

• Each department offers several courses

Entity Relationship Modelling

Courses consist of a number of modules

Lecturer

Student

Entity Relationship Modelling

• Students enroll in a particular course

Entity Relationship Modelling

Students take modules

Entity Relationship Modelling

Lecturer

• Each module is taught by a lecturer

Entity Relationship Modelling

A lecturer works in a department

Entity Relationship Modelling

Each lecturer tutors a group of students

Entity Relationship Modelling

Entity Relationship Modelling

NOW An other example

COMPANY

- Employees, departments, and projects
- Company is organized into departments
- Department controls a number of projects
- Employee: store each employee's name, Social Security number, address, salary, sex (gender), and birth date
- Keep track of the dependents of each employee

NKW Entities and attributes

Entity

Thing in real world with independent existence

Attributes

- Particular properties that describe entity
- Types of attributes:
- Composite versus simple (atomic) attributes
- Single-valued versus multivalued attributes
- Stored versus derived attributes
- NULL values
- Complex attributes

NKW Entities, attributes, values

- Entities
 - Collection (or set) of entities that have the same attributes
- Key or uniqueness constraint
 - Attributes whose values are distinct for each individual entity in entity set
 - Key attribute: Uniqueness property must hold for every entity set of the entity type
- Value sets (or domain of values)
 - Specifies set of values that may be assigned to that attribute for each individual entity

NO Entities and attributes (example)

NKU Entities or attributes?

- Sometimes it is hard to tell if something should be an entity or an attribute
 - They both represent objects or facts about the world
 - They are both often represented by nouns in descriptions
- General guidelines
 - Entities can have attributes but attributes have no smaller parts
 - Entities can have relationships between them, but an attribute belongs to a single entity

NKW Relationships and cardinality

- Relationship
 - When an attribute of one entity type refers to another entity type
 - Represent references as relationships not attributes
- Relationship type R among n entity types E_1 , E_2 , ..., E_n
 - Defines a set of associations among entities from these entity types
- Relationship instances r_i
 - Each r_i associates n individual entities (e_1 , $e_2, ..., e_n$
 - Each entity e_i in r_i is a member of entity set

- Cardinality ratio for a binary relationship
 - Specifies maximum number of relationship instances that entity can participate in
- Participation constraint
 - Specifies whether existence of entity depends on its being related to another entity
 - Types: total and partial

NKW Relationships

- Attributes of 1:1 or 1:N relationship types can be migrated to one entity type
- For a 1:N relationship type
 - Relationship attribute can be migrated only to entity type on N-side of relationship
- For M:N relationship types
 - Some attributes may be determined by combination of participating entities
 - Must be specified as relationship attributes

NKU UML modeling

Wrap-up

- Design a database based on the following business rules
 - The university gym has many users who visit the gym at a given date and time and use the gym for some time
 - The gym offers different routines each involving specific types of equipment; users can train with a pre-defined routine, or they can define their own routine; both consist of exercises that use equipment
 - For each exercises, users track the time or number of repetitions, and the difficulty level (or kilograms)

NKW Agenda

- 1. Database modeling in practice
- 2. Normalization

Database modeling in practice

NKU Use case: an event website

- We are going to use an event website as a case for
 - 1. Defining the business rules
 - 2. Realizing the conceptual model
 - Designing the Entity-Relationship model
 - 4. Defining the internal model of the database

Home page

Events page

Tickets page

Checkout page

Conceptual modeling

NKU An event website: business rules

Attendees participate to events managed by organizers

NO An event website: conceptual model

Attendees participate to events managed by organizers

NKU An event website: conceptual model

- One attendee can participate to many events
- One event has many attendees

- One organizer can manage many events
- One event is managed by one organizer

NKW Adding attributes

NKW Adding attributes

NKU An event website: business rules

Attendees order tickets of events managed by organizers

NKU A more accurate model

NKU An event website: business rules

- Attendees order tickets of events managed by organizers
- Events offer promo codes which can be used by users

NKW The definitive model

Internal modeling

NKW Relational databases: terminology (1/2)

- Table: a named set of data that is organized into data types (or columns) and data values (or rows). A table has a specific number of columns, but can have any number of rows.
- Column: a named collection of data elements of the same data type. A database column is analogous to an array variable in a programming language.
- Row: a set of related data fields that share the same data type structure. A row consists of a field that corresponds to each column in a table. Rows are also known as database records. A database row can be thought of as a multi-dimensional array of values.

NKW Relational databases: terminology (2/2)

 Database: A database is a named collection of tables that have a similar purpose.

 Field: A single database element that contains a data value. It is the intersection of a column and a row.

Schema: Refers to the database structure of how data is organized.

NKW How to design the internal model

- Convert names into tables (using plurals and removing spaces)
 - e.g., organizer becomes "organizers", ticket types becomes "ticket_types"

- Convert attributes into columns (removing spaces)
 - name, profile picture, description, website, e-mail, phone

- Define the data type for each column
 - e.g., price: decimal number, name: string

NKW An example

organizers

name

profile_picture

description

Website

email

phone

NO Define a primary key

A primary key is used as unique identifier to a database row (record)

- Characteristics:
 - Unique values (past, present, future?)
 - Value does not change
 - Only one primary key per table

NKW One to one relations

- One table is related to many (one or more) other tables
 - One to one relationships are rare
 - If there are no motivations for keeping it (e.g., performance), consider eliminating one to one relationships by combining the columns into the same table

Database structure

NO One to many relations

• One table is related to many (one or more) other tables

Entity Relationship Diagram

Database structure

NKW Many to many relations

• Two (or more) tables are related to two (or more) other tables

Entity Relationship Diagram

Database structure

NKW Foreign key

• Establishes a relationship to a key in a different table

NKW Normalization

 Defined: The breaking apart of data into logical relationships to reduce duplication of data.

- Why Normalize?
 - Reduce duplication
 - Conserve storage space
 - Reduce maintenance

NKU 1st normal form

Purpose: Reducing redundant data across a horizontal row

- Rules:
 - No multiple columns containing the same data
 - Column can contain only one value
 - The primary key must uniquely define the row

NKU 1st normal form: example

Before After

Employee	Age	Department
Melvin	32	Marketing, Sales
Edward	45	Quality Assurance
Alex	36	Human Resource

Employee	Age	Department
Melvin	32	Marketing
Melvin	32	Sales
Edward	45	Quality Assurance
Alex	36	Human Resource

NKU 1st normal form: example

Before After

Employee	Age	Department
Melvin	32	Marketing, Sales
Edward	45	Quality Assurance
Alex	36	Human Resource

Employee	Age	Department
Melvin	32	Marketing
Melvin	32	Sales
Edward	45	Quality Assurance
Alex	36	Human Resource

NKW 2nd normal form

Purpose: Reducing redundant data in vertical columns

- Rules:
 - Tables must be in First Normal Form
 - Place columns that repeat values across multiple rows into a separate table
 - Place columns that aren't dependent on the primary key into a separate table
 - all attributes within the entity should depend solely on the unique identifier of the entity

NEW 2nd normal form: an example

Before

productID	product	Brand
1	Monitor	Apple
2	Monitor	Samsung
3	Scanner	HP
4	Head phone	JBL

After

NEW 2nd normal form: an example

Before

productID	product	Brand
1	Monitor	Apple
2	Monitor	Samsung
3	Scanner	HP
4	Head phone	JBL

After

Products Category table:

productID	product
1	Monitor
2	Scanner
3	Head phone

Brand table:

brandID	brand
1	Apple
2	Samsung
3	HP
4	JBL

Products Brand table:

pbID	productID	brandID
1	1	1
2	1	2
3	2	3
4	3	4

NKW 3rd normal form

 Purpose: Reduce data that is not dependant on the primary key, but is dependant on other data in the table

 Note: The Third Normal Form process may not be necessary if First and Second Normal Form process has been performed. (refinement of 1NF and 2NF)

NKU 3rd normal form: an example

Before

student_ID | student_name | city | zip

After

student_ID | student_name | zip

zip city

NKW More normalization forms

- Third Normal Form (3NF)
 - The entity should be considered already in 2NF and no column entry should be dependent on any other entry (value) other than the key for the table.
 - If such an entity exists, move it outside into a new table.
 - 3NF is achieved are considered as the database is normalized.
- Boyce-Codd Normal Form (BCNF)
 - 3NF and all tables in the database should be only one primary key.
- Fourth Normal Form (4NF)
 - Tables cannot have multi-valued dependencies on a Primary Key.
- Fifth Normal Form (5NF)
 - Composite key shouldn't have any cyclic dependencies.

NOTE normalized tables: an example

NKU Normalization extremes

- Avoid Extremes
 - Each data column in a separate table
 - Queries would be very large
 - Additional processing time required
 - All columns in one table
 - Data is repeated between rows
 - Requires additional storage
 - Updates on multiple rows required