Probeklausur zur Vorlesung Panorama der Mathematik

Dr. Moritz Firsching

Sommersemester 2017

Donnerstag, 20.IV.2017

Muske Lösung

Aufgabe	1	2	3	4	5	6	7	8	9	Σ
Punkte	9	6	9	5	4	. 6	4	5	10	58
erreicht										

Bearbeiten Sie die Aufgaben in dem dafür freigelassenen Platz. Nutzen Sie die Rückseite, falls sie mehr Platz benötigen.

1. Wir betrachten folgende Abbildungen:

(a)

(6P)

$$f \colon \{0,1,2,3,4\} \to \{0,1,2,3,4\}$$

$$x \mapsto 4 - x$$

$$g\colon \mathbb{N} \to \mathbb{N}$$

$$x \mapsto x+1$$

Markieren Sie wahre Aussagen:

- $\swarrow f$ ist surjektiv.

- X f ist injektiv. X f ist bijektiv. C G ist surjektiv.
- $\bigotimes g$ ist injektiv.
- \bigcirc g ist bijektiv.
- (b) Geben Sie eine Abbildung $b\colon\mathbb{Z}\to\mathbb{N}$ an, die surjektiv, aber nicht injektiv ist.

(3P)

2. Eine Folge von Ziffern
$$a_n a_{n-1} \dots a_1 a_0$$
 soll als b-adische Darstellung der natürlichen Zahl

$$\sum_{k=0}^{n} a_k b^k$$

aufgefasst werden. Ordnen sie die folgenden Zahlen nach ihrem Betrag aufsteigend:

A. 1111 als 2-adische Zahl,

B. 111 als 3-adische Zahl,

C. 22 als 5-adische Zahl,

$$1+2.5 = 12$$

3. Es sei $z=a+ib\in\mathbb{C}$ eine komplexe Zahl. Wir betrachten die zu z konjugierte Zahl

$$\bar{z} := a - ib \in \mathbb{C}.$$

(a) Zeigen Sie:
$$z \cdot \bar{z} \in \mathbb{R}$$
.

(6P)

$$2.\overline{2} = (a+ib)(a-ib) = a^2 + iab - iab - (ib)^2$$

$$= a^2 + b^2 \in \mathbb{R}$$

(b) Zeigen Sie:
$$z^{-1} = \frac{1}{z \cdot \bar{z}} \bar{z}$$
.

$$2 \cdot \left(\frac{1}{2 \cdot \overline{2}} \overline{2}\right) = \frac{1}{2 \cdot \overline{2}} \cdot 2\overline{2} = 1$$

Vervollständigen Sie folgende Zuordnung:

$$z: \underline{\alpha}$$
 $\bar{z}: \underline{\beta}$
 $z \cdot \bar{z}: \underline{\beta}$
 $z^{-1}: \underline{\beta}$

4. Markieren Sie wahre Aussagen:

(5P)

 \bigstar Wenn A und Babzählbare Mengen sind, dann ist auch die Menge $A\times B$ abzählbar.

 \bigcirc Wenn A und B abzählbare Mengen sind, dann ist auch die Menge B^A , also die Menge aller Abbildungen

$$f \colon A \to B$$

von A nach B, abzählbar.

 \bigcirc Wenn Aeine abzählbare Menge ist, dann ist auch $\{0,1\}^A,$ also die Menge aller Abbildungen

$$f \colon A \to \{0,1\}$$

von A in die zweielementige Menge $\{0,1\}$, abzählbar.

 \bigcirc Wenn Aeine abzählbare Menge ist, dann ist auch die Potenzmenge $\mathcal{P}(A)$ eine abzählbare Menge.

5. Was ist die Dimension des
$$\mathbb{C}$$
-Vektorraums $M(\mathbb{C}, 2, 2)$ aller (2×2) -Matrizen mit Einträgen in \mathbb{C} ? Geben Sie eine Basis an!

$$dim(\Gamma(C,2,2)) = 4$$
 $Basis: \{(10), (01), (00), (00)\}$

6. Beweisen Sie: Für alle natürlichen Zahlen
$$n > 5$$
 gilt:

$$n^2 + 25 \ge 10n.$$

(4P)

(6P)

U

Bowers mit Induktion:

Indulting anfang n=5: n2+25=25+25250210.5=10m

Induktimischiff: n-> n+1

Wir nehman om, es gilt: 112+25 2/10n

und zuigm (n+1)2+25 ≥ 10(n+1).

Lemma Für alle 1125 gill: 2n+1210

Beneis: m25 => 2 m 2 10 => 2 m + 1 2 10

Mit den Lemma felgt:

 $(n+1)^2 + 25 = M^2 + 2n + 1 + 25 \ge 2n + 1 + 10n \ge 10 + 10n = 10(n+1)$

Indultions voramonly Lemma

$$M \ge 5 = 7 \quad (m-5) \ge 0 = 7 \quad (m-5)^2 \ge 0$$

= $7 \quad M^2 - 10n + 25 \ge 0$
= $7 \quad M^2 + 25 \ge 10n$

7. Ordnen Sie die folgenden Mathematiker chronologisch aufsteigend nach ihrem Sterbejahr. A. Alexander Grothendieck	(4P)
B. Euklid von Alexandria	
C. Georg Cantor	
D. Muhammad ibn Musa al-Chwarizmi	
E. Leonhard Euler	
3 D E C G	
8. (a) Geben Sie eine Definition von "algebraische Zahl"!	(3P)
Eine Zahl a « C heißt algebraisch, falls es ein Polynon pe alks gilt, p ≠ 0, so dass	
es ein Polynon pe ales gilt, p + 0, so dass	
p(a) = 0.	
(b) Nennen Sie eine irrationale algebraische Zahl.	(1P)
$\sqrt{2}$	
(c) Nennen Sie eine reelle Zahl, die nicht algebraisch ist.	(1P)

9. Betrachten Sie die folgende Funktion S(n) in Pseudocode:

- (a) Berechnen Sie S(0), S(1), S(2) und S(7)! (4P)
- (b) Geben Sie ein Polynom $p \in \mathbb{Q}[n]$ von Grad 2 an, so dass für alle $n \in \mathbb{N}$ die Gleichung p(n) = S(n) gilt. (4P)
- (c) Berechnen Sie S(100) und S(1000). (2P)

(a)
$$S(6) = 0$$

 $S(A) = 1 + S(6) = 1 + 0 = 1$
 $S(2) = 2 + S(A) = 2 + 1 = 3$
 $S(7) = 7 + S(6) = 7 + 6 + 5(5) = 13 + 5 + 5(4) = 19 + 44 + 5(3) = 22 + 3 + 5(2)$
 $= 25 + 3 = 28$

(6)
$$p(u) = \alpha u^2 + 6\hbar + C$$
 $0 = S(0) = p(0) = \alpha \cdot 0 + 6 \cdot 0 + C = C = 7$
 $1 = S(1) = p(1) = \alpha 1^2 + 6 \cdot 1 = \alpha + 6$
 $1 = S(2) = p(2) = \alpha 2^2 + 6 \cdot 2 = 4\alpha + 26$

$$1 = S(2) = p(2) = \alpha 2^2 + 6 \cdot 2 = 4\alpha + 26$$

$$1 = \left(\frac{1}{42}\right) \left(\frac{1}{6}\right) = \left(\frac{1}{2}\right) \qquad \left(\frac{1}{42}\right)^{-1} = \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)$$

$$1 = \left(\frac{1}{2}\right) \left(\frac{1}{42}\right) = \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)$$

$$1 = \left(\frac{1}{2}\right) \left(\frac{1}{42}\right) = \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)$$

$$1 = \left(\frac{1}{2}\right) \left(\frac{1}{42}\right) = \left(\frac{1}{2}\right)$$

$$1 = \left(\frac{1}{2}\right) \left(\frac{1}{42}\right) = \frac{1}{2}$$

$$1 = \left(\frac{1}{4}\right) = \frac{1}{4}$$

$$1 = \left(\frac{1}{4}\right) =$$