

FCC Test Report

FCC Part 15.247 for FHSS systems/ **CANADA RSS-210**

FOR:

Sound ID Sound ID 300

FCC ID: U3N300 IC ID: 6975A-300

TEST REPORT #: EMC_SOUND_004_15.247

DATE: 2008-10-27

FCC listed **A2LA Accredited**

IC recognized # 3462B

© Copyright by CETECOM

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 ◆ Fax: +1 (408) 586 6299 ◆ E-mail: info@cetecomusa.com ◆ http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Date of Report: 2008-10-27 Page 2 of 77

TABLE OF CONTENTS

1	Ass	essment	4	
T	his rep	ort is reviewed by:	4	
	EMO	C & Radio	4	
T		ort is prepared by:		
2		C & Radio		
_				
	2.1	Identification of the Testing Laboratory Issuing the EMC Test Report		
	2.2	Identification of the Client	5	
	2.3	Identification of the Manufacturer	5	
3	Equ	uipment under Test (EUT)	6	
	3.1	Specification of the Equipment under Test	6	
	3.2	Identification of the Equipment Under Test (EUT)	6	
	3.3	Identification of Accessory equipment	6	
4	Sub			
5				
	5.1	MAXIMIM PEAK OUTPUT POWER	8	
		Test Result:	8	
	5.2		18	
	5.2.1	DECLUTE, CECV	10	
	5.2.3			
	5.2.4	RESULTS: 8DPSK	27	
	5.3			
	5.3.1		31	
_	5.4			
6	Med			
	6.1	MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)	47	
	6.1.1 6.1.2	LIMIT SUB CLAUSE § 15.247 (b) (1)	47 47	
	6.2	20dR RANDWIDTH	 57	
	6.2.1	LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	57	
	6.2.2	2 RESULTS:	57	
	6.3	Identification of the Equipment Under Test (EUT)		
	6.3.1	LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	67	
	6.4 6.4.1	LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)	68 68	
	0.7.1	Emili 505 Chicob § 15.217 (a) (1) (iii)	0	

Date of Report: 2008-10-27 Page 3 of 77

6.4.2	RESULTS: 79	68
6.5	TIME OF OCCUPANCY (DWELL TIME)	69
6.5.1	LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	69
6.5.2	RESULTS:	69
6.6	CONDUCTED SPURIOUS EMISSION	70
6.6.1	LIMIT SUB CLAUSE § 15.247 (d)	70
6.6.2	RESULTS: Tnom(23)°C VnomVDC	70
6.7	AC POWER LINE CONDUCTED EMISSIONS § 15.107/207	74
6.7.1	LIMITS	74
6.7.2	Test Results:	74
7 TES	T EQUIPMENT AND ANCILLARIES USED FOR TESTS	75
8 BLO	CK DIAGRAMS	76

Test Report #:

EMC_SOUND_004_15.247

Date of Report: 2008-10-27

Page 4 of 77

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS210.

Company	Description	Model #
Sound ID	Bluetooth headset with advanced noise cancellation and signal processing	Sound ID 300

This report is reviewed by:

Satya Radhakrishna

2008-10-27 EMC & Radio (EMC Project Engineer)

Date Section Name Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

This report is prepared by:

Marc Douat

2008-10-27 EMC & Radio (EMC Project Engineer)

Date Section Name Signature

Date of Report: 2008-10-27 Page 5 of 77

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Marc Douat
Date of test:	2008-5-29

2.2 Identification of the Client

APPLICANT				
Applicant (Company Name) Sound ID				
Street Address	3430 West Bayshore Rd.			
City/Zip Code	Palo Alto, CA 94303			
Country	USA			
Contact Person	Chas Pavlovic			
Telephone	650-384-3006			
Fax	650-320-8797			
e-mail cpavlovic@soundid.com				

2.3 Identification of the Manufacturer

Same as above

Test Report #:

EMC_SOUND_004_15.247

Date of Report : 2008-10-27

98-10-27 Page 6 of 77

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	Sound ID 300		
Description:	Bluetooth headset with advanced noise cancellation and signal processing		
Model No:	Sound ID 300		
Antenna Type:	Integral / 2 dBi		
Type(s) of Modulation:	GFSK, DQPSK, 8DPSK		
Frequency Band(s) of Operation:	2400~2483.5MHz		
Numbers of Channels:	79		
Equipment Classification: (CLASS)	□FIXED □VEHICULAR ■PORTABLE □MODULE		
Equipment Classification: (POWER(AC MAINS))	□230VAC (<i>GROUND</i>) □230VAC (<i>NO GROUND</i>) □12VDC ■ 3.0/3.8/4.2VD C Li battery		

3.2 Identification of the Equipment Under Test (EUT)

EUT#	TYPE	MANF.	MODEL	SERIAL #
1	EUT	Sound ID	Sound ID 300	B10
2	EUT	Sound ID	Sound ID 300	B12
3	EUT	Sound ID	Sound ID 300	BFB

3.3 Identification of Accessory equipment

None

Date of Report: 2008-10-27 Page 7 of 77

4 Subject Of Investigation

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS210. The maximization of portable equipment is conducted in accordance with ANSI C63.4.

This test report is to support a request for new equipment authorization under the FCC ID **U3N300** and IC ID **6975A-300**. All testing was performed on the product referred to in Section 3 as EUT. This test report contains full radiated and conducted testing results as per FCC15.247.

During the testing process the EUT was tested on a single channel using PRBS9 payload using DH5, 2DH5 or 3DH5 packets, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

This device does not permit Bluetooth radio operating while the internal battery is charging by the AC wall power supply; therefore no AC conducted emission requirement applies.

Test Report #:

EMC_SOUND_004_15.247

Date of Report: 2008-10-27 Page 8 of 77

5 Measurements (Radiated)

5.1 MAXIMUM PEAK OUTPUT POWER

5.1.1 Test Result:

EIRP: GFSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequenc	Frequency (MHz)		2441	2480
T _{nom} (23)°C	V _{nom} VDC	-0.16	0.83	1.94
Measurement uncertainty			±0.5dBm	

EIRP: π / 4 DQPSK

TEST CONDITIONS		MAXIMUM	PEAK OUTPUT P	OWER (dBm)
Frequenc	Frequency (MHz)		2441	2480
T _{nom} (23)°C	V _{nom} VDC	-0.45	0.32	1.13
Measurement uncertainty			±0.5dBm	

EIRP: 8DPSK

4

TEST CONDITIONS Frequency (MHz)		MAXIMUM PEAK OUTPUT POWER (dBm)		
		2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	-0.31	0.48	1.33
Measurement uncertainty			±0.5dBm	

Date of Report: 2008-10-27 Page 9 of 77

EIRP LOW CHANNEL-GFSK

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "EIRP BT low channel"

Short Description: EIRP Bluetooth channel-2402MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report : 2008-10-27 Page 10 of 77

EIRP MIDDLE CHANNEL-GFSK

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH39

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "EIRP BT mid channel"

Short Description: EIRP Bluetooth channel-2441MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report: 2008-10-27 Page 11 of 77

EIRP HIGH CHANNEL-GFSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@63°

SWEEP TABLE: "EIRP BT high channel"

Short Description: EIRP Bluetooth channel-2480MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report : 2008-10-27 Page 12 of 77

EIRP LOW CHANNEL- π / 4 DQPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 2-DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "EIRP BT low channel"

Short Description: EIRP Bluetooth channel-2402MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

MaxPeak

Date of Report: 2008-10-27 Page 13 of 77

EIRP MIDDLE CHANNEL- π / 4 DQPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 2-DH5 CH39

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "EIRP BT mid channel"

Short Description: EIRP Bluetooth channel-2441MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report : 2008-10-27 Page 14 of 77

EIRP HIGH CHANNEL- π / 4 DQPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 2-DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@63°

SWEEP TABLE: "EIRP BT high channel"

Short Description: EIRP Bluetooth channel-2480MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

MaxPeak

Date of Report : 2008-10-27 Page 15 of 77

EIRP LOW CHANNEL-8DPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 3-DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "EIRP BT low channel"

Short Description: EIRP Bluetooth channel-2402MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report : 2008-10-27 Page 16 of 77

EIRP MIDDLE CHANNEL-8DPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 3-DH5 CH39

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "EIRP BT mid channel"

Short Description: EIRP Bluetooth channel-2441MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.4 GHz 2.4 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report : 2008-10-27 Page 17 of 77

EIRP HIGH CHANNEL- 8DPSK

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 3-DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@61°

SWEEP TABLE: "EIRP BT high channel"

Short Description: EIRP Bluetooth channel-2480MHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report: 2008-10-27 Page 18 of 77

5.2 RESTRICTED BAND EDGE COMPLIANCE RADIATED §15.247/15.205

5.2.1 LIMITS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

^{*}AVG. LIMIT= 54dBuV/m

Date of Report: 2008-10-27 Page 19 of 77

5.2.2 RESULTS: GFSK (2402MHz) LOWER BAND EDGE PEAK -GFSK MODULATION

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report : 2008-10-27 Page 20 of 77

(2402MHz) LOWER BAND EDGE AVERAGE -GFSK MODULATION

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 21 of 77

(2480MHz) HIGHER BAND EDGE PEAK -GFSK MODULATION

EUT: BT Headset Customer:: Sound ID

Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@63°

SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

2.5 GHz, 2.5 GHz, May Peak, Coupled, 1 MHz, #326hor

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

Date of Report: 2008-10-27 Page 22 of 77

HIGHER BAND EDGE AVERAGE-GFSK MODULATION

EUT: BT Headset Sound ID Customer::

BT DH5 CH78 Test Mode:

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@63°

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn AF horz

Date of Report : 2008-10-27 Page 23 of 77

5.2.3 RESULTS: $\pi/4$ DQPSK (2402MHz) LOWER BAND EDGE PEAK - $\pi/4$ DQPSK MODULATION

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 2-DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Test Report #: EMC SOUND 004 15.247

Date of Report: 2008-10-27 Page 24 of 77

(2402MHz) LOWER BAND EDGE AVERAGE $-\pi/4$ DQPSK MODULATION

EUT: BT Headset Sound ID Customer:: Test Mode: BT DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 25 of 77

(2480MHz) HIGHER BAND EDGE PEAK $-\pi/4$ DQPSK MODULATION

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 2-DH5 CH79

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak 2.483551102 GHz Marker: 54.91 dBµV/m Level [dBµV/m] 120 110 100 90 80 70 60 50 40 2.48G 2.485G 2.49G 2.495G 2.5G Frequency [Hz]

Test Report #: EMC SOUND 004 15.247

Date of Report: 2008-10-27 Page 26 of 77

HIGHER BAND EDGE AVERAGE- $\pi/4$ DQPSK MODULATION

EUT: BT Headset Sound ID Customer::

BT 2-DH5 CH79 Test Mode:

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn AF horz

Date of Report: 2008-10-27 Page 27 of 77

5.2.4 RESULTS: 8DPSK (2402MHz) LOWER BAND EDGE PEAK - 8DPSK MODULATION

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 3-DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert
MaxPeak

Test Report #: EMC SOUND 004 15.247

2008-10-27 Date of Report: Page 28 of 77

(2402MHz) LOWER BAND EDGE AVERAGE -8DPSK MODULATION

EUT: BT Headset Sound ID Customer::

BT 3-DH5 CH0 Test Mode:

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 29 of 77

RESULTS (2480MHz) HIGHER BAND EDGE PEAK - 8DPSK MODULATION

EUT: BT Headset Customer:: Sound ID

Test Mode: BT 3-DH5 CH79

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@53°

SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

Date of Report: 2008-10-27 Page 30 of 77

HIGHER BAND EDGE AVERAGE-8DPSK MODULATION

EUT: BT Headset Sound ID Customer::

BT 3-DH5 CH78 Test Mode:

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery Comments: TT@41°

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn AF horz

Date of Report : 2008-10-27 Page 31 of 77

5.3 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209

5.3.1 LIMITS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested channels

^{*}AVG. LIMIT= 54dBuV/m

Date of Report: 2008-10-27 Page 32 of 77

5.3.2 RESULTS 30MHz – 1GHz Antenna: vertical

Note: Worse case representation for all channels.

EUT: BT Headset
Customer:: Sound ID

Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186 Vert

Date of Report : 2008-10-27 Page 33 of 77

30MHz – 1GHz Antenna: horizontal

Note: Worse case representation for all channels.

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH78

ANT Orientation: H EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186 Horz

Date of Report : 2008-10-27 Page 34 of 77

1-3GHz (2402MHz)

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH0

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments: marker placed on uplink

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report : 2008-10-27 Page 35 of 77

1-3GHz (2441MHz)

Note: The peaks above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH39

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments: marker placed on uplink

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Test Report #: EMC SOUND 004 15.247

Page 36 of 77 Date of Report: 2008-10-27

1-3GHz (2480MHz)

Note: The peaks above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: BT Headset Customer:: Sound ID Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

marker placed on uplink Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 37 of 77

3-18GHz (2402MHz)

Note: Peak Reading vs. Average limit

EUT: BT Headset Customer:: Sound ID Test Mode: BT DH5 CH0

ANT Orientation: V
EUT Orientation: V
Test Engineer: Sam
Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report: 2008-10-27 Page 38 of 77

3-18GHz (2441MHz)

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH39

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report: 2008-10-27 Page 39 of 77

3-18GHz (2480MHz)

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 40 of 77

18-25GHz

Note: This plot is valid for low, mid, high channels (worst-case plot)

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 CH78

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

Date of Report : 2008-10-27 Page 41 of 77

5.4 RECEIVER RADIATED EMISSIONS

§ 2.1053 / RSS-132 & 133

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

Limits

SUBCLAUSE § RSS-133

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Date of Report : 2008-10-27 Page 42 of 77

30MHz – 1GHz Antenna: vertical

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 IDLE

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186 Vert

Date of Report : 2008-10-27 Page 43 of 77

30MHz – 1GHz Antenna: horizontal

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 IDLE

ANT Orientation: H EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report : 2008-10-27 Page 44 of 77

1-3GHz

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 IDLE

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report : 2008-10-27 Page 45 of 77

3-18GHz

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 IDLE

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report: 2008-10-27 Page 46 of 77

18-25GHz

Note: Peak Reading vs. Average limit

EUT: BT Headset
Customer:: Sound ID
Test Mode: BT DH5 IDLE

ANT Orientation: V EUT Orientation: V Test Engineer: Sam Voltage: battery

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.
18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

Test Report #:

EMC_SOUND_004_15.247

Date of Report:

2008-10-27

Page 47 of 77

6 Measurements (Conducted)

6.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)

6.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	30dBm

^{*}limit is based upon antenna gain of less than or equal to 6dBi.

6.1.2 RESULTS:

Conducted Peak Power: GFSK

TEST CON	NDITIONS	Cond	lucted Peak Power	(dBm)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	4.3	4.3	3.9
Measuremen	t uncertainty		±0.5dBm	

Conducted Peak Power: π / 4 DQPSK

TEST CON	NDITIONS	Cond	lucted Peak Power	(dBm)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	4.7	4.5	3.8
Measuremen	t uncertainty		±0.5dBm	

Conducted Peak Power: 8DPSK

TEST CON	NDITIONS	Cond	ucted Peak Power	(dBm)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	4.7	4.7	3.9
Measuremen	t uncertainty		±0.5dBm	

NOTE: all conducted power measurements were done with 3MHz RBW/VBW

Date of Report : 2008-10-27 Page 48 of 77

Conducted Peak Power GFSK 2402 MHz

Date of Report: 2008-10-27 Page 49 of 77

Conducted Peak Power GFSK 2441 MHz

Date of Report : 2008-10-27 Page 50 of 77

Conducted Peak Power GFSK 2480 MHz

Date of Report : 2008-10-27 Page 51 of 77

Conducted Peak Power π / 4 DQPSK 2402 MHz

Date of Report: 2008-10-27 Page 52 of 77

Conducted Peak Power π / 4 DQPSK 2441 MHz

Date of Report: 2008-10-27 Page 53 of 77

Conducted Peak Power π / 4 DQPSK 2480 MHz

Date of Report : 2008-10-27 Page 54 of 77

Conducted Peak Power 8DPSK 2402 MHz

Date of Report : 2008-10-27 Page 55 of 77

Conducted Peak Power 8DPSK 2441 MHz

Date of Report: 2008-10-27 Page 56 of 77

Conducted Peak Power 8DPSK 2480 MHz

Test Report #:

EMC_SOUND_004_15.247

Date of Report:

2008-10-27

Page 57 of 77

6.2 20dB BANDWIDTH

6.2.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.2.2 RESULTS:

20dB Bandwidth: GFSK

TEST CON	NDITIONS	20	dB Bandwidth (k)	Hz)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	922	922	922

20dB Bandwidth: π / 4 DQPSK

TEST CON	NDITIONS	20	dB Bandwidth (k)	Hz)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	1315	1311	1309

20dB Bandwidth: 8DPSK

TEST CON	NDITIONS	20	dB Bandwidth (k)	Hz)
Frequenc	cy (MHz)	2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	1281	1262	1262

Date of Report : 2008-10-27 Page 58 of 77

20dB Bandwidth GFSK 2402MHz

Date of Report: 2008-10-27 Page 59 of 77

20dB Bandwidth GFSK 2441MHz

Date of Report : 2008-10-27 Page 60 of 77

20dB Bandwidth GFSK 2480MHz

Date of Report: 2008-10-27 Page 61 of 77

20dB Bandwidth π / 4 DQPSK 2402MHz

Date of Report : 2008-10-27 Page 62 of 77

20dB Bandwidth π / 4 DQPSK 2441MHz

Date of Report : 2008-10-27 Page 63 of 77

20dB Bandwidth π / 4 DQPSK 2480MHz

Date of Report : 2008-10-27 Page 64 of 77

20dB Bandwidth 8PSK 2402MHz

Date of Report : 2008-10-27 Page 65 of 77

20dB Bandwidth 8PSK 2441MHz

Date of Report : 2008-10-27 Page 66 of 77

20dB Bandwidth 8PSK 2480MHz

Date of Report: 2008-10-27 Page 67 of 77

6.3 CARRIER FREQUENCY SEPARATION

6.3.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

SEPARATION	
> 25 KHz or > 2/3 * 20 dB BANDWIDTH = 839kHz	

6.3.2 **RESULTS: 1.004MHz**

Date of Report : 2008-10-27 Page 68 of 77

6.4 NUMBER OF HOPPING CHANNELS

6.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)

NUMBER OF CHANNELS
> 15

6.4.2 **RESULTS: 79**

Test Report #:

EMC SOUND 004 15.247

Date of Report:

2008-10-27

6.5 TIME OF OCCUPANCY (DWELL TIME)

6.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

FREQUENCY RANGE	AVERAGE TIME OF
	OCCUPANCY PER
	31.6 SECONDS (LIMIT)
2400-2483.5	0.4 SECONDS

6.5.2 RESULTS:

T _{nom} (23)°C	V _{nom} VDC
-------------------------	----------------------

For Bluetooth devices:

The dwell time of 0.4 s within a 31.6 second period in data mode is independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Dwell time = time slot length * hop rate / number of hopping channels *31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu s * 1600 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots) Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is the same for all BT devices and therefore all BT devices satisfy FCC requirement on time of occupancy (dwell time).

Date of Report: 2008-10-27 Page 70 of 77

6.6 CONDUCTED SPURIOUS EMISSION

6.6.1 LIMIT SUB CLAUSE § 15.247 (d)

FREQUENCY RANGE	limit
30M-25GHz	-20dBc

6.6.2 RESULTS: Tnom(23)°C VnomVDC

All tests conducted in GFSK mode which has the highest output power and EIRP.

Verfict: PASS

Date of Report: 2008-10-27 Page 71 of 77

Conducted Spurious Emission 2402MHz

Date of Report: 2008-10-27 Page 72 of 77

Conducted Spurious Emission 2441 MHz

Date of Report: 2008-10-27 Page 73 of 77

Conducted Spurious Emission 2480MHz

Date of Report : 2008-10-27 Page 74 of 77

6.7 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

6.7.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-Peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 – 30	60	50			
* Decreases with logarithm of the frequency					

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

6.7.2 Test Results:

Test not conducted. EUT is battery operated device.

Date of Report : 2008-10-27 Page 75 of 77

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillar	Type	Manufacturer	Serial No.	Cal Due	Interva
	\mathbf{y}					1
01	Spectrum Analyzer	ESIB 40	Rohde &	100107	May 2009	1 year
			Schwarz			
02	Spectrum Analyzer	FSEM 30	Rohde &	100017	August	1 year
			Schwarz		2009	
03	Signal Generator	SMY02	Rohde &	836878/011	May 2009	1 year
			Schwarz			
04	Power-Meter	NRVD	Rohde &	0857.8008.02	May 2009	1 year
			Schwarz			
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	Horn Antenna (1-	SAS-	AH Systems	325	June 2009	1 year
	18GHz)	200/571				
07	Horn Antenna (18-	3160-09	EMCO	1240	June 2009	1 year
	26.5GHz)					
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-	Miteq	00616	May 2009	1 year
		00102600				
13	Power Sensor	URV5-Z2	Rohde &	DE30807	May 2009	1 year
13			Schwarz			
14	Digital Radio Comm.	CMD-55	Rohde &	847958/008	May 2009	1 year
	Tester	CMD-33	Schwarz	04/930/000		
15	Universal Radio	CMU 200	Rohde &	832221/06	May 2009	1 year
	Comm. Tester	CIVIO 200	Schwarz	032221/00		
16	LISN	ESH3-Z5	Rohde &	836679/003	May 2009	1 year
			Schwarz	030013/003		
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

Test Report #: EMC_ S

EMC_SOUND_004_15.247

Date of Report: 2008-10-27 Page 76 of 77

8 BLOCK DIAGRAMS

Conducted Testing

Test Report #:

EMC_SOUND_004_15.247

Date of Report: 200

2008-10-27

Page 77 of 77

Radiated Testing

ANECHOIC CHAMBER

