### Introdução à modelagem estatística

Elias Teixeira Krainski eliaskr@ufpr.br

Jul-2017, Lavras/MG 62<sup>a</sup> RBras & 17<sup>o</sup> SEAGRO

- Exemplos de motivação
- Variabilidade amostral
- 3 Ocorrência de chuva em Tokyo
- Bases e coeficientes

## Exemplos de motivação

#### Problemas e parâmetros de interesse

- o concentração de GAG na urina de crianças em função da idade
- ocorrência de chuva em cada dia do ano
- mortalidade infantil

#### Parâmetros de interesse:

- concentração de GAG para uma dada idade
- probabilidade de chuva em cada dia
- taxa de mortalidade infantil TMI

## Concentração de GAG na urina



Figura 1: Concentração de GAG na urina de uma amostra de crianças sadias com as idades de interesse

### Dias chuvosos em Tokyo



Figura 2: Choveu ou não em cada dia do ano durante dois anos.

#### Taxa de mortalidade infantil por municípios



#### Variabilidade amostral

#### **Dados observados**

- pode ou não chover em primeiro de Janeiro de dois anos diferentes mesmo que a probabidade de chuva em primeiro de Janeiro não tenha alterado
- mesmo sem alteração nas condições de saúde de um município em dois anos consecutivos, implicando TMI igual nesses anos, a proporção (observada) de óbitos em cada ano pode ser diferente
- há crianças de cinco anos com GAG menor ou maior que 10, embora todas essas crianças sejam sadias

Variabilidade nos dados mesmo o parâmetro não se alterando

### Modelagem da variabilidade amostral

• assumir distribuição probabilística: P( Dados | Parâmetros )



**Figura 3:** Binomial(2, p): Dias chuvosos em n=2 anos. Ex.: P(y=0|p=0.3)=49%, P(y=1|p=0.3)=42% e P(y=2|p=0.3)=9%.

### Visualizando GAG na escala logaritma



- relação mais próxima da linear nessa escala que na original
- permite inferir GAG aos cinco anos mesmo sem crianças com cinco anos na amostra

#### Uso de variáveis explicativas: Modelagem da média

- Podemos ter P( Dados | Variáveis explicativas, Parâmetros)
- valor esperado, ou média, para cada idade é o parâmetro de interesse
- sua relação com idade é importante e parametrizada
- logaritmo da média como função linear de idade

$$\log(\mu) = \beta_0 + \beta_1 \text{Idade}$$

onde  $\beta_0$  e  $\beta_1$  são parâmetros de interesse

- ullet e<sup> $eta_0$ </sup>: concentração esperada de GAG para Idade zero
- $\beta_1$ : velocidade de decaimento

# Ocorrência de chuva em Tokyo

#### Visualizar suavizações

- ferramenta exploratória
- há elegantes de suavização, exemplo: Locally Weighted Scatterplot Smoothing - LOWESS
- consideraremos opções mais simples a seguir

#### Proporção de dias chuvosos por mês



- proporção de dias chuvosos não muda tão abruptamente
- porém, muito da variabilidade foi suprimida.

#### Janela deslizante

- o cada dia, a média dos dados nos dias mais próximos
- que estejam a uma distância menor que k dias
- janelas deslizantes de amplitude 2 \* k ao longo do ano



### Opções iniciais de modelagem: GLM

- probabilidade de chuva em função do tempo
- forma conveniente? p ou numa escala transformada?
- modelos lineares generalizados, Generalized Linear Models GLM
- função linear para o *logito* da probabilidade

$$p_i = \frac{1}{1 + \mathrm{e}^{-\eta_i}}$$

- qual função linear de tempo, t?
- Savage: "Devemos construir modelos tão grandes quanto elefantes"
- von Neumann: "Com quatro parâmetros eu posso estimar um elefante, e com cinco eu posso fazê-lo mexer sua tromba"

#### Polinômios em t

• poliômio de ordem *m* 

$$\eta_i = \beta_0 + \beta_1 t_i + \beta_2 t_i^2 + \dots + \beta_m t_i^m$$

estimar os parâmetros  $\beta_j$ , j = 1, ..., m



- polinômios são flexíveis, mas carecem de interpretabilidade
- computacionalmente estável considerar polinômios ortogonais

#### Resultado considerando polinômios



Figura 4: Curvas de predição (+ incerteza), para diferentes graus.

#### Funções bases

- representar/subdividir o espaço da variável
- suporte compacto
  - cada função base representa uma parte
  - valores não nulos em parte da variável
  - coeficientes de regressão: ativação naquela parte



Figura 5: B-splines de primeiro e segundo grau, com 8 graus de liberdade.

### Usando B-splines de grau 2



Figura 6: Curvas de predição (e bandas de incerteza), para diferentes graus de liberdade.

#### Bases e coeficientes

### Exemplo: 20 *B-splines* de ordens 1 e 2



• O que ocorre com os coeficientes:



#### Tempo discretizado (15 dias) como fator

