ASSIGNMENT

I The output of a digital circuit Y is given by the expression $Y = (B + \overline{C} B A)(\overline{A + c})$, where A, B and C represent inputs-& above equation using OR, AND and NOT gate.

Find its truth table. [TU 2074]

Fig: Logical circuit

Truth table:

=

П									
	A	B	c	B	c	CBA	B+CBA	A+c	V 1
	0	0	0	1	1	0	40	1	Y= (B+CBA)(A+C)
	0	0	1	1	0	0	40	0	0
	0	1	0	0	1	O	O T	1	0
	0	T	1	0	0	0	DT.	0	1
	1	0	0	1	1	1	1	0	0
	1	0	1	1	0	0	4 0		0
	1	T	0	0	1	D	OT.	0	0
	1	1	1.	0	0	0	0 1		0
Name and Address of the Owner, Second	,		*					0	0
T									

2. The output of a digital circuit Y is given by the expression: Y = (\$\overline{A}B + \overline{C}A) (B+c), where A, B and C represent inputs. Draw a circuit of above equation using OR, AND and NOT gate.

Find its truth table. [70 Model 2074]

Truth table:

	A	B	C	Ā	c	AB	CA	AB+CA	B+C	Y=(AB+CA)(B+C)
-	0	0	0	1	1	0	0	0	1	0
-	0	0	1	7	0	0	0	0	0	0
	0	T	0	1	1	1	O	. 1	0	0
	O	1	1	T	0	L	O	1	0	0
	1	0	0	0	. 1	O	1	1	1	1
	1	0	1	0	0	0	0	0	O	0
	1	1	0	0	L	0	1	1	0	0
	1	1	1	0	0	0	0	0	0	0

3. Make the appropriate truth tables to prove the following distributive law of Boolean Algebra:

A(B+C) = AB + AC [TU Microsyllabus, P. 27-1]

=> Truth table:

-	-							_
	A	B	С	AB	Ac	A (3+c)	ABTAC	
	0	0	0	0	0	0	0	*
	0	, O .	7	0	O	0.	0	
	0	1	0	0	0	0	0	
	0	T	1	0	0	0	0 .	
	1	0	0	0	. 0	0	0	
	1	0	1	0	1	1	7	
	1	1	0	. 1	O	L	1	
	1	1	1	. 1	1	1	7	

Hence, the distributive law of Boolean Algebra
i.e. A(B+c) = AB + Ac is probed:

4. Analyze the circuit shown in figure. Determine the logic function performed by the circuit by making and Justifying the appropriate truth table. [TU Microsyllabus, & 27.6, TU 2074]

For 1st entry, $V_A = 0$ and $V_B = 0$. It means that A and B are both groun ded such that both the transistors are forward biased and supply +5V passes through RB and goes to the ground such that the output is Low (0).

For 2nd entry, $V_A = 0$ and $V_B = 5$, which means that A is grounded and +5V is supplied from B. Also +5V that comes from supply through RB and +5V supplied from B creates reverse bias due to which transistor of V_B gets off and +5V goes through 'A' to the ground which gives low output (0). Similarly, for 3^{rd} entry, it is same like 2^{rd} entry but +5V goes to the ground through B.

For 4th entry, $V_A=5$ and $V_B=5$. It means that $\pm 5V$ is applied from both sides in which $\pm 5V$ supplied from P' passes through RB and makes both transistors reverse biased such that transistors get of and finally, $\pm 5V$ supplied from P' passes through Rc and gives high output (5).

Truth table:

	In	pul	Output
	VA	VB	Vout
	O	0	0
A STATE OF THE STA	0	5	0
	5	0	0
	5	5	, ; 5

Hence, the circuit performed AND logic function.

5. Find the truth toible for the circuit shown in figure below. What logic function does the circuit perform? what logic function will the circuit perform if the constant +5V input to the first two gates are changed to ground potential?

[TU Microsyllabus]

Truth table:

l go d	VA	VB	Y Y
	O	0 .	. 0
	- O V	, 5	5
5	5, ,	0	5
	5	5	. 5

.. The circuit performs OR logic function.

when the supply constant 45V is changed to ground function potential (0), then we obtain the following truth table:

	The second second				•
VA	VB	0. VA	O.VB	Υ.	
0	O	1	T	0	
0	T	(I)	T	. 0	
L	0	Τ	7	0	
1	1	Т	1	0	

From the above truth table, the circuit does not perform any particular logic function. In fact, if the constant +5V input is changed to ground potential (0), then whatever the inputs in VA and VB. The output is always 0.

6. a) Find the truth teable for the circuit of given figure. What logic function does the circuit perform?

b) what logic function will the circuit perform if the common grounded input to the first two NOR gates are changed to +5v?
[IV Microsyllabus]

=) a) Truth-table:

						1
1000	VA	VB.	0+VA	0+VB	· · Vout	. 5
. 114 *	0:	0	L	1	, O' ,	
	0	T	1	0	0	
	T	0	0	1		, 7
~	1	1(0.	0	- 1 L	
	1		1	A CONTRACTOR OF THE PARTY OF TH		

Hence, the circuit performs AND logic function.

=) 6) = 9f the common grounded input to the two NOR gates are changed to +5V, then we would obtain the following truth table:

	In	suf			Output	
	VA	Vβ	5+ VA	5+VB	Vous	
	0	0	0	0	45.	
	. 0	5	. 0	0	45.	
	5	0	6 -	0	5	
1. 4	5	. 5	·- O :,	10 O 1	5	
	——			104 400	1 1 2	

From the above truth table, the circuit does not perform any particular logic function but whatever be the inputs, the output will always be high.