Contextual Real-time Intelligent Typo Identifier & Corrector (CRITIC)

Final Report - 12/12

Trevor La CS Major ML Engineer

Kevin Francis CS Major ML Engineer

Nicholas Miklaucic CS Ph.D. Student ML Research Scientist

Problem Statement

If you type

"Judge Thomas Ambro, Majotity Opinion"

You probably wanted to say

"Judge Thomas Ambro, Majority Opinion"

Maybe a computer could help you out!

Motivation

- Typos can be embarrassing, but hard to catch
- You've definitely used spell checkers: phone, computer, Google Docs, Outlook, etc.

Do you want me to order a pizza for dinner and I'll pick it up on my way home?

I am GOD

...good

I am good

Project I/O

From output probabilities of what the user meant to say, correction can be modulated depending on user preferences

Technical Challenges

- Real-time—as fast as you type
- Local—keystrokes are private user data
- Consumer hardware—myriad different configurations

Related Work

 Grammarly is most similar spell checker to CRITIC but lacks offline usage and real-time corrections

 JetBrains' Al autocomplete features is not a spell checker but, like CRITIC, features context awareness and real-time feedback

Overview of Solution

"The coverage about me in the paper **gas**" → "The coverage about me in the paper **has**"

Two components that work together:

- Language Model: How likely is has as a completion given context?
- Keyboard Model: If the user meant to type has, what's the chance they typed gas? (h → g)

Combining these sources of information results in a more robust corrector.

Datasets and Metrics

- Our keyboard model was trained on an Aalto University/University of Cambridge study that collected over 136 million keystrokes: we evaluated on a subset of 2503 unique errors representing many thousands of typed words
- Each participant was prompted, so we can compare CRITIC outputs to the ground truth of what they meant to type
- Classification metrics:
 - Average probability for true word
 - Average rank of true word in corrections
 - Top-1 accuracy
- Time per word

Results

- **91.3**% top-1 accuracy
- Average rank: 1.263
- Average probability: 0.905
- 0.345 seconds/word—real-time completion for even 173 wpm

When filtering to just completions that exist in the base dictionary CRITIC uses:

- 94.1% top-1 accuracy
- Average rank: 1.263
- Average probability: 0.933

Results

Interpretation is difficult: not all errors are "reasonable" corrections

"Will you and **KB** be around this afternoon?" →

"Will you and **B** be around this afternoon?"

The model weakly prefers B, but in a real-world deployment this is not likely to be corrected either way

Depending on specific text and user, accuracy could be significantly higher

Future Improvements

While CRITIC is functional and able to make real-time typo corrections, there is room for improvement:

- Integration into operating systems/text editors
- Personal dictionaries
- User studies to refine user experience

Limitations

- Inevitably, the use of an Al Spell Checker will have more CPU cost than a built-in typo correction algorithm, such as the one we used while making this Google Slides presentation.
- The project is limited to languages Llama 3.2 supports, and can only support alphabets: e.g., Japanese is completely different
- The keyboard model is optimized for QWERTY, requiring technical adjustments for other layouts.

References

- Cambridge Study- https://userinterfaces.aalto.fi/136Mkeystrokes/
- Llama-https://huggingface.co/Solshine/Llama-3.2-1B-Q4 K M-GGUF
- Our Github Repo-https://github.com/csce585-mlsystems/critic-llm