# **Physik Cheatsheet**

```
Physik Cheatsheet
   Hydrostatik
       Auftriebskraft
   Wärme
       Wärme aus Reibung
    Mechanik
       Kräfte
           Kräftegleichgewicht
       Drehmoment
       Reibung
           Abhang & Reibung
    Geschwindigkeit
       Beschleunigung
       Strecke
       Zeit
       2. Newtonsches Axiom
   Arbeit
       Leistung
       Wirkungsgrad
       Hubarbeit/Potentielle Energie
       Spannarbeit/Federenergie
       Beschleunigungsarbeit/Kinetische Energie
    Horizontaler Wurf
       Bezugssystem nach unten
       Bezugssystem nach oben
    Kreisbewegung
   Schwingungen
       Harmonische Schwingung
       Lineare Welle
       Feder & Pendel
    Elektrizität
       Spezifischer Widerstand
       Ohmsches Gesetz
   Acknowledgements
```

# **Hydrostatik**

```
Druck ist keine gerichtete Grösse!
```

$$p$$
: Druck  $\lceil \frac{N}{m^2} \rceil$   $ho$ : Dichte  $\lceil \frac{kg}{m^3} \rceil$   $p_0$ : Luftdruck  $\lceil \frac{N}{m^2} \rceil$   $\Delta p$ : Hydrostatischer Druck/Überdruck  $\lceil \frac{N}{m^2} \rceil$ 

$$\Delta p = 
ho_{Fl} \cdot g \cdot h \ p(h) = p_0 + \Delta p = p_0 + 
ho_{Fl} \cdot g \cdot h \$$

#### **Auftriebskraft**

 $F_A$ : Auftriebskraft [N]

V: eingetauchtes Volumen des Körpers  $[m^3]$ 

 $ho_K$ : mittlere Dichte eines Körpers [ $rac{kg}{m^3}$ ]

$$F_A = 
ho_{Fl} \cdot V \cdot g$$

Schwimmen:

$$ho_K < 
ho_{Fl} \ F_A = F_G$$

Schweben:

$$ho_K = 
ho_{Fl} \ F_A = F_G$$

Sinken:

$$ho_K > 
ho_{Fl} \ F_A < F_G$$

#### Wärme

 $\mathit{Q}$ : Wärmeenergie  $[\mathit{J}]$ 

$$\Delta Q = mc \cdot \Delta T$$

# Wärme aus Reibung

$$F_R \cdot s = mc \cdot \Delta T$$

# Mechanik

#### Kräfte

Einheit: [N]
Formelzeichen: F

$$F = m * g$$

### Kräftegleichgewicht

$$ec{F}_{res} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = 0$$

#### **Drehmoment**

Einheit: [Nm] Formelzeichen: M

 $M_r$  = Drehmoment nach rechts

 $M_l$  = Drehmoment nach links

$$egin{aligned} M_r &= M_l \ M_r &= F_1 * l_1 + F_2 * l_2 \cdots \ M_l &= F_3 * l_3 + F_4 * l_4 \cdots \end{aligned}$$

## Reibung



 $F_R$ : (maximal mögliche) Reibungskraft [N]

 $F_N$ : Normalkraft [N] (Reaktionskraft)

 $\mu$ : Reibungskoeffizient

Solange keine Kraft auf den Körper drückt, gilt  ${\cal F}_N={\cal F}_G$ 

$$\mu = rac{F_R}{F}$$
 $F_R = \mu \cdot F_N$ 

#### **Abhang & Reibung**



 $F_H$ : Hangabtriebskraft [N]

 $F_{G\perp}$ : Kraft senkrecht zur Ablage [N]

$$F_H = F_G \cdot \sin(lpha)$$
  
 $F_N = F_{G\perp} = F_G \cdot \cos(lpha)$   
 $F_R = \mu \cdot F_N$   
 $F_R = \mu \cdot F_G \cdot \cos(lpha)$ 

Wenn  $F_h = F_R$  gilt, gilt auch

$$FG \cdot \sin(\alpha) = \mu \cdot F_G \cdot \cos(\alpha)$$
$$\sin(\alpha) = \mu \cdot \cos(\alpha)$$
$$\mu = \frac{\sin(\alpha)}{\cos(\alpha)}$$
$$\mu = \tan(\alpha)$$

# Geschwindigkeit

a: Beschleunigung  $\left[\frac{m}{s^2}\right]$ 

v: Geschwindigkeit [ $\frac{m}{s}$ ]

*t*: Zeit [*s*]

s: Strecke [m]

Mit Anfangsgeschwindigkeit

 $v_0$ : Anfangsgeschwindigkeit  $[\frac{m}{s}]$ 

$$v=\sqrt{v_0^2+2as} \ v(t)=at+v_0$$

**Ohne Anfangsgeschwindigkeit** 

$$egin{aligned} v &= at \ v &= \sqrt{2as} \ v &= \sqrt{v_0^2 + 2as} \ v &= at \end{aligned}$$

# **Beschleunigung**

$$a = rac{\Delta v}{\Delta t}$$

Strecke

$$s=v\cdot t \ s=rac{1}{2}at^2 \ s(t)=s_0+v_0\cdot t+rac{1}{2}at^2$$

Zeit

$$t = \frac{s}{v}$$
 
$$t = \frac{s}{\overline{v}} = \frac{2s}{v1 + v2}$$

#### 2. Newtonsches Axiom

$$F_{Res} = ma$$

### **Arbeit**

W: Arbeit/Energie [Nm/J/Ws]

Arbeit = Kraft (in Wegrichtung) \* Strecke

$$W = F \cdot s$$

# Leistung

P: Leistung [W]

Leistung = Kraft (in Wegrichtung) \* Geschwindigkeit (\* Reibungskoeffizient) pro Zeit

$$P = rac{\Delta E}{t}$$
 $P = F \cdot v$ 
 $P = F \cdot v \cdot \mu$ 

### Wirkungsgrad

Der Wirkungsgrad stellt die Übersetzung von aufgewandter Energie zu gebrauchter Energie dar. Er ist ein Mass der Effizienz.

$$\eta = rac{E_{Nutzen}}{E_{Aufwand}}$$

## **Hubarbeit/Potentielle Energie**

$$W_H = F \cdot s = m \cdot g \cdot s = E_{pot}$$

## Spannarbeit/Federenergie



D: Federkonstante  $\left[\frac{N}{m}\right]$ 

$$F_F = D \cdot \Delta x$$
  $W_S = rac{1}{2} D \cdot \Delta x^2 = E_F$ 

# Beschleunigungsarbeit/Kinetische Energie

$$W_B = rac{1}{2} m \cdot v^2 = E_{kin}$$

## **Horizontaler Wurf**

OHNE Berücksichtigung des Luftwiderstandes.



 $t_F$ : Fallzeit [s]

$$h = rac{1}{2}g \cdot t^2 => t_F = \sqrt{rac{2h}{g}} \ x_W = v_0 \cdot t_F \ v = \sqrt{v_0^2 + v_Z^2} \ \phi = tan^{-1}(rac{v_z}{v_0})$$

## Bezugssystem nach unten

Kann *generell* angewendet werden wenn Objekte *keine* Anfangsposition haben und nach *unten* fallen



$$h(t)=rac{1}{2}gt^2 \ h(t)=v_0t+rac{1}{2}gt^2 \ v=\sqrt{2gh} \ v=\sqrt{v_0^2+2gh}$$

$$h=\overline{v}t 
onumber \ t_F=\sqrt{rac{2h}{g}}$$



# Bezugssystem nach oben

Kann *generell* angewendet werden wenn Objekte *eine* Anfangsposition haben und nach *unten* fallen.



z': Position eines Objekts nach einer bestimmten Fallzeit.

 $z^{\prime\prime}$ : Position eines Objekts nach einer bestimmten Fallzeit, das eine Startgeschwindigkeit hat.

$$z(t)' = z_0 - \frac{1}{2}gt^2$$
  
 $z(t)'' = z_0 + v_0t - \frac{1}{2}gt^2$   
 $v = \sqrt{2gh}$   
 $v = \sqrt{v_0^2 - 2gh}$ 



$$v(t) = -gt$$
$$v(t) = v_0 - gt$$

# Kreisbewegung



 $\omega$ : Winkelgeschwindigkeit/Kreisfrequenz  $[\frac{1}{s}]$ 

v: Bahngeschwindigkeit [ $\frac{m}{s}$ ]

r: Bahnradius

U: Umfang [m]

T: Periodendauer [s]

f: Frequenz der Umdrehung  $\left[\frac{1}{s}/Hz\right]$ 

$$\omega = \frac{\Delta \phi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$$

$$v = \frac{U}{T} = \frac{2\pi \cdot r}{T} = \omega \cdot r$$

$$T = \frac{1}{f} \Rightarrow f = \frac{1}{T}$$



 $a_z$ : Anzugsbeschleunigung zum Zentrum [m/s]

 $F_z$ : Anzugskraft zum Zentrum (= $F_R$ ) [N]

$$\begin{aligned} a_z &= \frac{2\pi \cdot v}{T} = \omega \cdot v = \omega^2 \cdot r = \frac{v^2}{r} \\ \phi &= \omega \cdot t \\ F_z &= m \cdot a_z \end{aligned}$$

# Schwingungen

| Welle                                           | Stehende Welle                                                         |              |
|-------------------------------------------------|------------------------------------------------------------------------|--------------|
| Wasserwelle<br>Elektromagnetische Welle (Licht) | Wasserwelle in Resonator<br>Licht in Laserresonator<br>feste Seilwelle | transversal  |
| Schallwelle                                     | Schallwelle in Resonator                                               | longitudinal |

Harmonische Schwingung ist gegeben wenn  $F=-D\cdot y$ .

# **Harmonische Schwingung**

 $\hat{y}$  /  $\hat{x}$ : Amplitude [m]

 $\it y$  /  $\it x$ : (momentane) Auslenkung [ $\it m$ ]



 $\hat{a} = \omega \cdot \hat{v} = \omega^2 \cdot \hat{y}$ 

#### **Lineare Welle**

k: Wellenzahl  $\left[\frac{1}{m}\right]$ 

v / c: Ausbreitungsgeschwindigkeit  $\left[\frac{m}{s}\right]$ 

 $\lambda$ : Wellenlänge [m]



$$egin{aligned} k &= rac{2 \cdot \pi}{\lambda} \ y &= \hat{y} \cdot sin(\omega \cdot t \pm k \cdot x) \ c &= rac{\lambda}{T} = \lambda \cdot f \end{aligned}$$

 $\label{eq:condition} \mbox{Der Operand} \ \pm \ \mbox{kann geändert werden je nachdem in welche Richtung sich die Welle im Koordinatensystem ausbreitet.} - \mbox{für rechts oder ins positive } x \mbox{ und } + \mbox{für links oder ins negative } x$ 

#### **Feder & Pendel**

m: Masse des schwingenden Körpers [kg]

D: Federkonstante  $\left[\frac{N}{m}\right]$ 

l: Pendellänge [m]

$$T=2\pi\sqrt{rac{m}{D}}$$
  $T=2\pi\sqrt{rac{l}{g}}$ 

### **Elektrizität**

 $\mathit{Q}$ : Ladung [ $\mathit{C}$  (Coulomb)]

I: Strom [A]

U: Spannung [V]

$$1C = 6.24 \cdot 10^{18} e$$
 
$$I = \frac{\Delta Q}{\Delta t}$$
 
$$U = \frac{\Delta W}{\Delta Q}$$

## **Spezifischer Widerstand**

 $\sigma$ : spezifische Leitfähigkeit []

 $\rho\!\!:$  spezifischer Widerstand [ $\Omega\cdot m$  /  $\Omega\cdot\frac{mm^2}{m}$ ]

A: Fläche Leiter [ $m^2$ ]

l: Länge Leiter [m]

$$\begin{split} I &= \sigma \cdot \frac{A}{l} \cdot \Delta U \\ \Delta U &= \frac{1}{\sigma} \cdot \frac{l}{A} \cdot I \\ \rho &= \frac{1}{\sigma} \\ R &= \rho \cdot \frac{l}{A} \end{split}$$

#### **Ohmsches Gesetz**

R: Widerstand [ $\Omega$ ]

$$U = R \cdot I \Rightarrow R = \frac{U}{I}$$

# **Acknowledgements**

Author(s): d20cay

Last updated: See <a href="changelog">changelog</a>