Instituto de Ensino Superior da Grande Florianópolis – IES

Professor: Dr. Robson Lourenço Cavalcante.

Instituto de Ensino Superior da Grande Florianópolis

Lista 1: Exercícios de MATRIZES

Exercícios Propostos

- 1) Determinar tais que $\begin{pmatrix} 2x y & 8 \\ 3 & x + y \end{pmatrix} = \begin{pmatrix} 5 & 8 \\ 3 & 1 \end{pmatrix}$
- 2) Represente explicitamente cada uma das matrizes abaixo

a)
$$A = (a_{ij})_{3\times 2}$$
 tal que $a_{ij} = i + 2j$

b)
$$A = (a_{ij})_{2\times 2}^{3\times 2}$$
 tal que $a_{ij} = (-1)^{i+j}$

c)
$$A = (a_{ij})_{2\times 3}$$
 tal que $a_{ij} = \begin{cases} 1, se \ i = j \\ i+j, se \ i \neq j \end{cases}$

d)
$$A = (a_{ij})_{3\times 3}$$
 tal que $a_{ij} = \begin{cases} 0, se \ i = j \\ 2i + j, se \ i > j \\ j, se \ i < j \end{cases}$

- 3) Qual é a transposta da matriz $A = (a_{ij})_{2\times 4}$ tal que $a_{ij} = \frac{i}{i}$
- 4) Sendo a matriz $A = \left(a_{ij}\right)_{2\times 3}$ tal que $a_{ij} = \begin{cases} i, se \ i = j \\ j, se \ i \neq j \end{cases}$ obtenha A^T .
- 5) Para que valores reais x e y tem-se $\begin{pmatrix} 3x + y & 2 & 3 \\ 4 & 5x y & 6 \end{pmatrix} = \begin{pmatrix} 7 & 2 & 3 \\ 4 & 1 & 6 \end{pmatrix}$
- 6) Dada a matriz $A = \begin{pmatrix} x^2 1 & 4 \\ 9 & x^3 \end{pmatrix}$, encontre o número real x de modo que $A^T = \begin{pmatrix} 3 & 9 \\ 4 & -8 \end{pmatrix}$.
- 7) Obtenha $x, x \in R$, de modo que a matriz $A = \begin{pmatrix} x^2 5x + 6 & 0 \\ 0 & x^2 6x + 8 \end{pmatrix}$ seja igual à matriz nula de ordem 2.
- 8) Obtenha $x, x \in R$, de modo que a matriz $A = \begin{pmatrix} x^2 7x + 13 & 0 \\ x^2 3x 4 & 1 \end{pmatrix}$ seja igual à matriz identidade de ordem 2
- 9) Construa a matriz A = (aij)2x2 tal que aij = $\begin{cases} i^2, \Leftrightarrow i \neq j \\ i+j, \Leftrightarrow i=j \end{cases}$

Instituto de Ensino Superior da Grande Florianópolis – IES Professor: Dr. Robson Lourenço Cavalcante.

Disciplina: Tópicos de Matemática para Ciência da Computação

- 10) Escreva a matriz A = (aij) em cada caso:
 - a) A \acute{e} do tipo 2 x 3 e a_{ij} = $\begin{cases} 3i+j \Leftrightarrow i=j \\ i-2j \Leftrightarrow i \neq j \end{cases}$
 - b) A é quadrada de ordem 4 e $a_{ij} = \begin{cases} 2i \Leftrightarrow i < j \\ i j \Leftrightarrow i = j \\ 2j \Leftrightarrow i > j \end{cases}$
 - c) A é do tipo 4 x 2 e $a_{ij} = \begin{cases} 0 \Leftrightarrow i \neq j \\ 3 \Leftrightarrow i = j \end{cases}$
 - d) A é quadrada de ordem 3 e aij = 3i-j+2.
- 11) Determine x e y tais que

a)
$$\begin{bmatrix} 2x + y \\ 2x - y \end{bmatrix} = \begin{bmatrix} 11 \\ 9 \end{bmatrix}$$

a)
$$\begin{bmatrix} 2x + y \\ 2x - y \end{bmatrix} = \begin{bmatrix} 11 \\ 9 \end{bmatrix}$$
 b)
$$\begin{bmatrix} x^2 & y \\ x & y^2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

12) Determine o valor de $x \in R$ na matriz A para que $A = A^t$, sendo $A = \begin{bmatrix} 3 & x^2 \\ 21x & x \end{bmatrix}$

Exercícios complementares

- C1) Uma matriz A é simétrica se, e somente se, $A = A^T$. Obtenha os números reais x e y, sabendo que a matriz $A = \begin{pmatrix} 0 & 9 & 4 \\ x^2 & 3 & -3 \\ y & x & 5 \end{pmatrix}$ é simétrica.
- C2) Sob que condição, a matriz de elementos reais $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ é simétrica
- C3) Classifique cada afirmação como verdadeiro ou falso (V ou F).
 - a) Toda matriz identidade é necessariamente quadrada.
 - b) Existe uma matriz identidade que não é quadrada
 - c) Toda matriz nula é necessariamente quadrada
 - d) Existe uma matriz nula que não é quadrada
 - e) $(A^t)^t = A$, qualquer que seja a matriz A.
 - f) $A^t \neq A$, qualquer que seja a matriz A.
 - g) Se a matriz A é do tipo 2 x 3, então A^t é do tipo 3 x 2.

Instituto de Ensino Superior da Grande Florianópolis – IES

Professor: Dr. Robson Lourenço Cavalcante.

Respostas Exercícios propostos

1)
$$x = 2 e y = -1$$

2) a)
$$A = \begin{pmatrix} 3 & 5 \\ 4 & 6 \\ 5 & 7 \end{pmatrix}$$
; b) $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$; c) $A = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 1 & 5 \end{pmatrix}$; d) $A = \begin{pmatrix} 0 & 2 & 3 \\ 5 & 0 & 3 \\ 7 & 8 & 0 \end{pmatrix}$

3)
$$A^t = \begin{pmatrix} 1 & 2 \\ \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{2}{3} \\ \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

$$4) A^t = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{pmatrix}$$

5)
$$x = 1 e y = 4$$

$$7) x = 2$$

8)
$$x = 4$$

- 9) Desafio para o aluno
- 10) Desafio para o aluno
- 11) Desafio para o aluno
- 12) Desafio para o aluno

C1)
$$x = -3 e y = 4$$

$$C2) b = c$$