INDIAN INSTITUTE OF TECHNOLOGY PATNA

GROUP:03

SESSION:2024-2025

STEEL STRUCTURE PROJECT REPORT

FINK TRUSS

Page 1 of 30

Course: CE320 – Steel Structures

Department: Civil Engineering

PROJECT TITLE: FINK TRUSS ANALYSIS

GROUP:03

Group Members

Name	Roll Number
Khushboo	2201CE26
Khushboo	2201CE25
Ratan Priya	2201CE51
Sakshi Priya	2201CE55
Kumar Anurag	2201CE27
Harsh Srivastav	2201CE19
Aditya Anand	2201CE05
Priyanshu Aryan	2201CE47

TABLE OF CONTENTS

- 1. Objective
- 2. 2D & 3D View
- 3. Wind Load Calculations
- 4. Detailed Analysis

Bottom Chord

Top Chord

Diagonal Chord

Beam

Purlin

Column

5.Table Forces in Critical Members

OBJECTIVE

Designing an industrial building roof truss with the following features:

- Proposed location of the industrial building to be designed for 50 years of life **Silchar.**
- Dimension of industrial shed 60 m × 20 m
- Ceiling Height 10 m (floor to roof truss bottom)
- Spacing of columns 15 m (centre to centre)
- Spacing of trusses not more than 5 m
- Rise of the roof truss approx 4 m
- Truss type Fink Truss
- Roof span 20 m
- Yield strength of steel members = 250 MPa
- Wind speed 55 m/s (Silchar falls in terrain category 1)
- Wind Pressure 2.81 kN/m²

Load cases:

- Dead load 1.2 kN/m²
- Live load 1 kN/m²

- 2D & 3D View
- 2D View of Fink Truss Geometry

IS: 875(Part 3): Wind Loads on Buildings and Structures - Proposed Draft & Commentary

WIND LOAD CALCULATION

5.3 –Design Wind Speed (v_z) = v_b k1 k2 k3 k4,

Where,

Basic wind speed, v_b =55m/s

Vz = design wind speed at any height z in m/s,

k1 = 1, probability factor (risk coefficient) (5.3.1) (Mean Probable design life of structure in years, 50 years)

k2 = 1.082, terrain roughness and height factor, **Terrain category = 1** (5.3.2)

k3 = 1 topography factor (5.3.3)

k4 = 1.15 importance factor for the cyclonic region (5.3.4).

$$v_z = 1 \times 1.082 \times 1 \times 1.15 \times 55 = 68.4365 \text{m/s}$$

5.4 - Design Wind Pressure

$$P_z$$
= 0.6 v_z ² = 0.6×(68.4365)²
=2.81013KN/m²

where

 P_z = wind pressure in N/m2 at height z, and

 $v_z\,$ = design wind speed in m/s at height z.

The design wind pressure pd can be obtained as,

$${\pmb P}_d$$
 = Kd. Ka. Kc. P_z = 0.9×0.9×1×2.81013 = **2.276KN/m**² where

Kd = 0.9 Wind directionality factor

Ka =0.9 Area averaging factor

Kc = 1 Combination factor (6.2.3.13)

Wind force (F):

$$F = (C_{Pe} - C_{Pi}) \times Ae \times P_d \alpha = 21.80^{\circ}$$

h/w≤0.5

FOR C_{Pe} ;

For 0°		For 90°	
EF	GH	EF	GH
-0.328	-0.4	-0.7	-0.6

$For C_{Pi}$:

For 0°	
EF	GH
±0.764	±0.5

So,
$$(C_{Pe}-C_{Pi})$$
: -

For 0°	
EF	GH
-1.092	-0.9

Perpendicular Distance between two purlin = 2.6925m*Cos(21.80°)= 2.4999 m

 $F_{\!\scriptscriptstyle W}$ = Force in the windward direction per unit length

=
$$-1.092 \times 2.4999 \times 2.276$$
 = -6.2133 KN/m(governing)

 F_{w} = Force in the Leeward direction per unit length

=
$$-0.9 \times 2.4999 \times 2.276$$
 = 5.1208 KN/m

ANALYSIS

For Truss Member

Bottom chord (Member 1)

Maximum Axial Tension Load = 36.862 kN ,Load Combination = 1.5(DL+LL)

• Top chord (Member 2)

Maximum Axial Compression Load = -9.414 kN ,Load Combination = 1.5(DL+LL)

• Diagonal Chord (Member 3)

Maximum Axial Tension Load = 5.267 kN ,Load Combination = 1.5(DL+LL)

For Beams(Member 4)

Maximum Bending Moment: 10.6422 KNm

Maximum Shear Force: 11.936 KN

Load Combination: 1.5(DL+WL)

Page 19 of 30

For Purlin(Member 5)

Maximum Shear Force:24.198KN

Maximum Bending Moment: 20.5422 KNm

For Column(Member 6)

Maximum Axial Compression Load: -567.97 KN

Load Combination:1.5(DL+LL)

Table Forces in Critical Members

Member No.	Member	Load Type	Maximum Load	Load Case
1	Top Chord	Axial Force	-9.414 kN	1.5 (DL+LL)
			5.13 kN	1.5 (DL+WL)
			6.816 kN	1.2 (DL+LL+WL)
2	Bottom Chord	Axial Force	36.862 kN	1.5 (DL+LL)
			-14.367 kN	1.5 (DL+WL)
			0.268 kN	1.2 (DL+LL+WL)
3	Diagonal Chord	Axial Force	5.267 kN	1.5 (DL+LL)
			0.907 kN	1.5 (DL+WL)
			1.726 kN	1.2 (DL+LL+WL)
4	Beam	Shear Force	-2.079 kN	1.5 (DL+LL)
			11.936 kN	1.5 (DL+WL)
			9.218 kN	1.2 (DL+LL+WL)
		Bending Moment	-3.487 kN-m	1.5 (DL+LL)
			10.6422 kN-m	1.5 (DL+WL)
			7.6884 kN-m	1.2 (DL+LL+WL)
5	Purlin	Shear Force	-1.676 kN	1.5 (DL+LL)
			24.198 kN	1.5 (DL+WL)
			19.178 kN	1.2 (DL+LL+WL)
		Bending Moment	-2.3304 kN-m	1.5 (DL+LL)
			20.5422 kN-m	1.5 (DL+WL)
			15.9823 kN-m	1.2 (DL+LL+WL)
6	Column	Axial Force	-567.972 kN	1.5 (DL+LL)
			217.879 kN	1.5 (DL+WL)
			-15.554 kN	1.2 (DL+LL+WL)