# Anomaly Detection in Time Series

**Dmitry Sergeyev** 

Why?



# Why?



## Statistical Process Control



## Statistical Process Control

The application of SPC involves three main phases of activity:

- Understanding the process and the specification limits
- Eliminating assignable (special) sources of variation, so that the process is stable
- Monitoring the ongoing production process, assisted by the use of control charts, to detect significant changes of mean or variation.

## Window estimations

### Window estimations

- Simple moving average
- Weighted moving average
- Exponentially weighted moving average
- etc.

### Window estimations

#### Good:

- Easy to use
- Fast calculations

#### Bad:

- One-step ahead predictions
- False positives



https://grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/

Double Exponential Smoothing



## Double Exponential Smoothing

Double exponential smoothing is nothing more than exponential smoothing applied to both level and trend.

- Level expected value/slope/intercept
- Trend or Slope y<sub>t</sub> y<sub>t-1</sub>

## Double Exponential Smoothing

$$\mathcal{E}_x = \alpha y_x + (1 - \alpha)(\mathcal{E}_{x-1} + b_{x-1})$$
 level  
 $b_x = \beta(\mathcal{E}_x - \mathcal{E}_{x-1}) + (1 - \beta)b_{x-1}$  trend  
 $\hat{y}_{x+1} = \mathcal{E}_x + b_x$  forecast

- In the first equation we're using ℓ instead of ŷ and on the right side the expected value becomes the sum of level end trend.
- The second equation introduces β, the trend factor (or coefficient). As with α, some values of β work better than others depending on the series.

#### Holt-Winters

## Triple Exponential Smoothing



#### Holt-Winters

### Triple Exponential Smoothing

$$\mathcal{C}_{x} = \alpha(y_{x} - s_{x-L}) + (1 - \alpha)(\mathcal{C}_{x-1} + b_{x-1})$$
 level  

$$b_{x} = \beta(\mathcal{C}_{x} - \mathcal{C}_{x-1}) + (1 - \beta)b_{x-1}$$
 trend  

$$s_{x} = \gamma(y_{x} - \mathcal{C}_{x}) + (1 - \gamma)s_{x-L}$$
 seasonal  

$$\hat{y}_{x+m} = \mathcal{C}_{x} + mb_{x} + s_{x-L+1+(m-1)modL}$$
 forecast

- γ the smoothing factor for the seasonal component
- We can forecast any number of points into the future
- The forecast equation now consists of level, trend and the seasonal component

# Brutlag

$$\hat{y}_{max_{t}} = L_{t-1} + P_{t-1} + S_{t-T} + m \cdot d_{t-T}$$

$$\hat{\boldsymbol{y}}_{\min_{t}} \! = \! \boldsymbol{L}_{t-1} \! + \! \boldsymbol{P}_{t-1} \! + \! \boldsymbol{S}_{t-T} \! - \! \boldsymbol{m} \! \cdot \! \boldsymbol{d}_{t-T}$$

d is predicted deviation given by:

$$d_{t} = \gamma |y_{t} - \hat{y}_{t}| + (1 - \gamma) d_{t-T}$$

 $\gamma$  is the seasonal change smoothing factor  $\gamma$  is the scaling factor for Brutlags confidence bands

https://fedcsis.org/proceedings/2012/pliks/118.pdf

# Kolmogorov-Smirnov

#### Good:

- works on periodic data when its period is smaller than the window size
- outlier resistant (less sensitive to small-scale changes with larger windows)
- good for data exploration (allows top-down exploration of large-scale changes first)

#### Bad:

- produces false positives on trends and seasonal changes
- needs many (hundreds) unique values (it won't work on metrics gathered with 5 minutes interval)
- bad for alerting because of false positives

#### SARIMA

## $SARIMA(p,d,q)(P,D,Q)_{s}$

- p AR(p)
- d порядок интегрирования
- -q MA(q)
- Р порядок сезонной составляющей SAR(Р)
- D порядок интегрирования сезонной составляющей
- Q порядок сезонной составляющей SMA(Q)
- s размерность сезонности (месяц, квартал и т.д.)

#### https://habrahabr.ru/post/210530/



# Prophet



https://facebookincubator.github.io/prophet/static/prophet\_paper\_20170113.pdf <a href="https://facebookincubator.github.io/prophet/">https://facebookincubator.github.io/prophet/</a>

# Prophet



#### Good:

- Stuff is done for you
- Custom parameters
- Easy to use

#### Bad:

- Less accurate
- Doesn't work with non-daily/monthly data