OPERADORS D'ASSIGNACIÓ

 La següent taula mostra els operadors de drecera("atajo") d'assignació i els seus equivalents

largs:

Operador	Uso	Equivalente a
+=	op1 += op2	op1 = op1 + op2
_=	op1 -= op2	op1 = op1 - op2
*=	op1 *= op2	op1 = op1 * op2
/=	op1 /= op2	op1 = op1 / op2
%=	op1 %= op2	op1 = op1 % op2
&=	op1 &= op2	op1 = op1 & op2

- Exemple:
 - int num = 5;
 - Num += 5; //num = 10, equival a num = num + 5

OPERADORS UNARIS O UNITARIS

Operador	Uso	Operación
&	opl & op2	AND
	op1 op2	OR
٨	op1 ^ op2	OR Exclusivo
~	~op2	Complemento

- Exemple: 12 & 13
- El resultat d'aquesta operació es 12. Per què?.
- La representació en binario de 12 es 1100,
- i de 13 es **1101**.
- La *funció* **AND** possa el bit de resultat a **1** si els dos bits dels operandos son 1, sinó, el bit de resultat es 0:

1101

& 1100

1100

OPERADORS UNARIS O UNITARIS

- Exemple: int $s1 = \sim 2$;
- el complement a un de 2 es assignat al enter amb signe s1
- La representació binaria dels complements a un dels decimals 0, 1 i 2 (els representem com un octet) son:

```
0 == 0000\ 0000 \sim 0 == 1111\ 1111
1 == 0000\ 0001 \sim 1 == 1111\ 1110
2 == 0000\ 0010 \sim 2 == 1111\ 1101
```

 \circ Per tant, s1 = 1111 1101

OPERADORS DE DESPLAÇAMENT DE BITS

Operador	Uso	Operación
>>	op1 >> op2	Desplaza los bits de op1 a la derecha op2 veces
<<	op1 << op2	Desplaza los bits de op1 a la izquierda op2 veces
>>>	op1 >>> op2	Desplaza los bits de op1 a la derecha op2 veces (sin signo)

- Exemple: 13 >> 1;
- La representació en binari del número 13 es 1101.
- 1101 desplazat una posició a la dreta és , 110 (6 en decimal).
- El bit més a la dreta es perd.
- Reomplim:
 - amb signe:
 - en positiu reomplim amb 0's
 - i en negatiu amb 1's.
 - Sense signe: sempre amb 0's.

OPERADORS DE DESPLAÇAMENT DE BITS

- A<<B : Desplaçament a la esquerra de A, B bits reomplim amb **ceros** per la dreta.
- A>>B : Desplaçament a la dreta de A, B bits reomplim amb el **bit de signe** per la esquerra.
- A>>>B: Desplaçament a la dreta de A, B bits reomplim amb **ceros** per la equerra.
- Exemple:
- o int num=5;
- num = num << 1; //equival a num = num * 2;
- num = num >> 1; //equival a num = num / 2;

PRECÈDENCIA DELS OPERADORS

• Primerament procedeixen els unaris, després els aritmètics, després els de bits, posteriorment els relacionals, darrere venen els booleans i per últim el operador d'assignació.

Precedencia de operadores

Descripción	Operadores
operadores posfijos	op++ op
operadores unarios	++opop +op -op ~ !
multiplicación y división	* / %
suma y resta	+ -
desplazamiento	<<>>>>>
operadores relacionales	<><==>
equivalencia	== =
operador AND	&
operador XOR	Λ
operador OR	
AND booleano	&&
OR booleano	II
condicional	?:
operadores de asignación	= += -= *= /= %= &= ^= = <<= >>>=

• Exercicis