1. Krótki opis analizowanego zbioru danych

Zbiór danych jest wyczyszczoną wersją oryginalnego zbioru danych dotyczących grzybów do klasyfikacji binarnej dostępnego w bibliotece UCI. Zbiór danych został wyczyszczony za pomocą różnych technik, takich jak imputacja modalna, kodowanie one–hot, normalizacja Z-score i selekcja cech. Zawiera 9 kolumn:

Średnica kapelusza [Cap Diameter]

Kształt kapelusza [Cap Shape]

o Przyczepność blaszek [Gill Attachment]

o Kolor blaszek [Gill Color]

Wysokość trzonu [Stem Height]

Szerokość trzonu [Stem Width]

Kolor trzonu [Stem Color]

o Sezon [Season]

Klasa docelowa [Target Class]

- Czy jest jadalny, czy nie

0 oznacza jadalne

1 oznacza trujące.

2. Dyskretyzacjaż

2.1. Opis dyskretyzacji

Dokonując dyskretyzacji największą wagę przykładaliśmy do wyglądu histogramu i próbie dopasowania przedziałów do występujących w nim "górek", dzięki czemu mniej więcej w jednym przedziale zawierały się grupy rekordów o podobnych specyfikacjach.

3. Bayesan Search

3.1. Graf

3.2. Statystyki

Basi				

Node count:9

Avg indegree: 2.556 Max indegree: 5 Avg outcomes: 7.111 Max outcomes: 13

Object	Count	States	Param./Indep.
Nodes	9	64	172967 / 113759
Arcs	23	-	-

3.3. Strength of influence

Parent	Child	Average	Maximum	Weighted	
gill-attachment	cap-shape	0.386669	0.971219	0.386669	
gill-attachment	gill-color	0.36635	0.992707	0.36635	
gill-attachment	cap-diameter	0.314784	0.887444	0.314784	
gill-attachment	stem-width	0.313075	0.990333	0.313075	
cap-diameter	stem-width	0.311458	0.961501	0.311458	
cap-shape	gill-color	0.304114	0.890347	0.304114	
gill-color	cap-diameter	0.299112	0.909028	0.299112	
season	cap-shape	0.295582	0.827397	0.295582	
stem-height	cap-shape	0.289089	0.869497	0.289089	
stem-height	stem-width	0.244163	0.952365	0.244163	
stem-height	gill-color	0.244052	0.955913	0.244052	
season	stem-width	0.240748	0.889876	0.240748	
gill-attachment	stem-height	0.232832	0.790862	0.232832	
season	stem-height	0.182492	0.652162	0.182492	

3.5. Validation results

```
Accuracy:

blass = 0.94374 (50995/54035)

State 0 = 0.952422 (23201/24360)

State 1 = 0.936613 (27794/29675)
```

3.6. Confusion Matrix

		Predicted			
		State0	State1		
#	State0	23201	1159		
ď	State1	1881	27794		

Opracowali: Drażba Filip Strona 4 z 19

Zajączkowski Piotr

4. PC

Model PC w przypadku wybranego zbioru danych okazał się być mocno problematyczny ze względu na bardzo dużą ilość krawędzi, których nie udało się wyeliminować zmniejszając istotność i dostosowując background knowledge. Model jest bardzo duży i plik genie'go waży ponad 230Mb. Ze względu na rozmiar modelu program nie wyrabiał i nie było możliwości sprawdzenia mocy wpływu krawędzi oraz przeprowadzić diagnozy modelu (próby podjęto 3 razy i za każdym razem program odmawiał współpracy)

4.1. Graf

4.2. Statystyki

Basic statistic:			
Node count: 9			
Avg indegree: 4			
Max indegree: 8			
Avg outcomes: 7.	111		
Max outcomes: 1	3		
Object	Count	States	Param./Indep.
Nodes	9	64	24611916 / 15410303
Arcs	36	-	-

Opracowali: Drażba Filip Strona 6 z 19
Zajączkowski Piotr

4.3. Validation results

```
Accuracy:

class = 0.962173 (51991/54035)

State0 = 0.980829 (23893/24360)

State1 = 0.946858 (28098/29675)
```

4.4. Confusion Matrix

		Predicted			
		State0	State1		
+:	State0	23893	467		
ď	State1	1577	28098		

4.5. Background knowledge

W *background knowledge* założono, że żadna cecha grzyba nie ma wpływu na to jaki jest sezon, oraz że na klasę (jadalny, niejadalny) wpływ mogą mieć wszystkie cechy charakterystyczne grzyba.

5. Naive Bayes

5.1. Graf

5.2. Statystyki

Basic statistic:					
Node count: 9					
Avg indegree: 0	.8889				
Max indegree: 1	_				
Avg outcomes: 7	Avg outcomes: 7.111				
Max outcomes:	13				
Object	Count	States	Param./Indep.		
Nodes	9	64	126 / 109		
Arcs	8	-	-		

5.3. Strength of influence

P	Child	Average	Maximum	Weighted
class	stem-color	0.173314	0.173314	0.173314
class	stem-width	0.130041	0.130041	0.130041
class	gill-color	0.120197	0.120197	0.120197
class	stem-height	0.119316	0.119316	0.119316
class	cap-shape	0.113775	0.113775	0.113775
class	cap-diameter	0.112998	0.112998	0.112998
class	gill-attachment	0.0906943	0.0906943	0.0906943
class	season	0.0717646	0.0717646	0.0717646

Opracowali: Drażba Filip Strona 9 z 19

Zajączkowski Piotr

5.5. Validation results

5.6. Confusion Matrix

Opracowali: Dražba Filip Strona 10 z 19

Zajączkowski Piotr

6. TANB

6.1. Graf

6.2. Statystyki

Basic statistic:					
Node count: 9					
Avg indegree: 1	.667				
Max indegree: 2	2				
Avg outcomes: 7	7.111				
Max outcomes:	13				
Object	Count	States	Param./Indep.		
Nodes	9	64	988 / 865		
Arcs	15	-	-		

6.3. Strength of influence

Parent	Child	Average	Maximum	Weighted
stem-width	cap-diameter	0.533735	0.903611	0.533735
gill-attachment	gill-color	0.449695	0.874991	0.449695
gill-attachment	cap-shape	0.416207	0.729233	0.416207
gill-color	stem-color	0.389436	0.832181	0.389436
class	stem-color	0.355496	0.661376	0.355496
stem-width	gill-attachment	0.324906	0.677334	0.324906
class	cap-shape	0.319543	0.5699	0.319543
stem-color	stem-height	0.284614	0.973382	0.284614
class	stem-height	0.2585	0.644888	0.2585
class	gill-color	0.238409	0.380963	0.238409
class	gill-attachment	0.211315	0.302929	0.211315
class	cap-diameter	0.167273	0.315082	0.167273
gill-attachment	season	0.153682	0.310825	0.153682
class	season	0.13666	0.23816	0.13666
class	stem-width	0.130041	0.130041	0.130041

6.5. Validation results

6.6. Confusion Matrix

7. ANB

7.1. Graf

7.2. Statystyki

Basic statistic:
Node count: 9

Avg indegree: 2.778 Max indegree: 4 Avg outcomes: 7.111 Max outcomes: 13

Object	Count	States	Param./Indep.
Nodes	9	64	34956 / 29945
Arcs	25	-	-

7.3. Strength of influence

Parent	Child	Average	Maximum	Weighted	
gill-attachment	cap-shape	0.386669	0.971219	0.386669	
gill-attachment	gill-color	0.36635	0.992707	0.36635	
gill-attachment	cap-diameter	0.314784	0.887444	0.314784	
gill-attachment	stem-width	0.313075	0.990333	0.313075	
cap-diameter	stem-width	0.311458	0.961501	0.311458	
cap-shape	gill-color	0.304114	0.890347	0.304114	
gill-color	cap-diameter	0.299112	0.909028	0.299112	
season	cap-shape	0.295582	0.827397	0.295582	
stem-height	cap-shape	0.289089	0.869497	0.289089	
stem-height	stem-width	0.244163	0.952365	0.244163	
stem-height	gill-color	0.244052	0.955913	0.244052	
season	stem-width	0.240748	0.889876	0.240748	
gill-attachment	stem-height	0.232832	0.790862	0.232832	
season	stem-height	0.182492	0.652162	0.182492	

7.5. Validation results

7.6. Confusion Matrix

8. Porównanie wyników konkretnych modeli

Modele zostały porównane na podstawie wyników osiągniętych podczas walidacji metodą krzyżową (k-fold, gdzie $\mathbf{k} = \mathbf{10}$).

8.1. Tabela porównująca modele

Sieć	Dok. cał.	Dok. jad.	Dok. njad.	Jad. Pop.	Jad. Npop.	Njad. Pop.	Njad. Npop.
BS	0,94	0,95	0,94	23201	1159	27794	1881
PC	0,96	0,98	0,95	23893	467	28098	1577
NB	0,69	0,69	0,69	16765	7595	20460	9215
TANB	0,85	0,84	0,85	20579	3781	25256	4419
ANB	0,97	0,97	0,97	23558	802	28824	851

8.2. Porównanie dokładności

8.3. Porównanie predykcji

8.4. Wnioski i wyniki porównania

Nie wszystkie modele klasyfikacyjne nadają się do każdego zbioru danych. Jak wynika z analizy, modele takie jak Naive Bayes (NB) i Tree Augmented Naive Bayes (TANB) nie osiągnęły zadowalającej dokładności w klasyfikacji grzybów, w przeciwieństwie do Augmented Naive Bayes (ANB) i PC, które uzyskały znacznie lepsze wyniki.

Aby poprawnie wybrać i dostosować model do zbioru danych, konieczne jest głębokie zrozumienie dziedziny, której dane dotyczą. W przypadku klasyfikacji grzybów, wiedza na temat biologicznych cech grzybów i ich wzajemnych relacji może pomóc w lepszym modelowaniu i wyborze cech istotnych dla klasyfikacji. Przykładem może być sezonowość grzybów, która może wpływać na ich cechy, co jest uwzględnione w background knowledge dla modelu PC.

Model Naive Bayes z założeniem niezależności cech nie jest odpowiedni dla zbioru danych, w którym cechy mogą być silnie skorelowane. Wynika to z faktu, że cechy grzybów mogą mieć zależności, które NB nie jest w stanie uchwycić. Patrząc na wykresy porównujące modele na podstawie ich dokładności i predykcji można zauważyć, że modele NB oraz TANB znacząco odstają wynikami od reszty. Ich dokładność nie przekracza 90%, a w przypadku NB nawet 70%. Pozostałe sieci poradziły sobie całkiem dobrze osiągając dokładności powyżej 94%.

Najwyższą dokładność **całkowitą** osiągnął model oparty o algorytm **ANB** – **97%**Najwyższą dokładność **jadalnych** osiągnął model oparty o algorytm **PC** – **98%**Najwyższą dokładność **niejadalnych** osiągnął model oparty o algorytm **ANB** – **97%**

Opracowali: Dražba Filip Strona 19 z 19