Quelques exercices sur les puissances

Exercice 1

1. Vérifier que le tableau ci-dessous est multiplicativement magique, c'est-à-dire que le produit des nombres est le même sur chaque ligne, chaque colonne et chaque diagonale.

3×7	$3^4 \times 7^2$	3
3^{2}	$3^2 \times 7$	$(3 \times 7)^2$
$7^2 \times 3^3$	1	$3^3 \times 7$

2. Compléter le tableau ci-dessous pour qu'il soit multiplicativement magique :

$3^4 \times 2^2 \times 5$		
$3^{4} \times 5^{2}$	$3^3 \times 2^2 \times 5^2$	$(3\times5)^2\times2^4$

Exercice 2

À la fin d'un calcul, une calculatrice affiche les résultats ci-dessous. Préciser la signification de chaque affichage.

1. 1,020304E-04

2. 4,546E-03

3. 8,6071E-04

4. 7,0045E-02

Exercice 3

1. Écrire $D=22^6 imes \frac{33^3}{8 imes 6^3}$ sous la forme $11^n,$ où n est un entier relatif.

2. Écrire le nombre $E = 15^3 \times \frac{3^{-2}}{5^2} \times 45^{-2}$ sous la forme $3^n \times 5^p$, avec n et p entiers relatifs.

3. (a) Écrire $G = 4^3 \times 9^{-2}$ et $H = 6^3 \times 18^{-2}$ sous la forme $2^n \times 3^p$, où n et p sont des entiers relatifs.

(b) Écrire $\frac{G}{H}$ de la même façon.

4. Écrire $I = \frac{8 \times 10^{15} \times 15 \times 10^{-6}}{20 \times \left(10^2\right)^5}$ sous forme irréductible.

Exercice 4

Soient a un réel non nul et n et m des entiers relatifs. Écrire les expressions suivantes sous la forme d'une seule puissance de a:

1. $a^n \times a^{2n}$

 $2. a^n \times a^{-2n}$

3. $a^n \times a^{3m}$

4. $\frac{a}{a^{-n}}$

Exercice 5

Soient a et b deux réels non nuls et p et q des entiers relatifs. Écrire les expressions suivantes sous la forme $a^n \times b^m$ où n et m sont des entiers relatifs :

1. $(a^{-5} \times b^{-2})^{10}$

 $2. \left(\frac{a}{b^2}\right)^{-2} \times \left(\frac{1}{a^3}\right)^5$

Exercice 6

Le noyau d'un atome est constitué de neutron(s) et de proton(s) appelés les nucléons. Autour du noyau gravite(nt) un (ou plusieurs) électron(s). La masse d'un nucléon est $1,672 \times 10^{-27}$ kg et celle d'un électron est $9,109 \times 10^{-31}$ kg.

1. Justifier qu'un électron est environ 1830 fois plus léger qu'un nucléon.

2. Un atome d'aluminium est décrit par l'écriture ²⁷/₁₃Al. Combien a-t-il de nucléons? d'électrons?

3. En déduire la masse d'un atome d'aluminium.