ENROO英锐恩

EnMcu15 系列编程器

操作手册

[Version 2018.6]

目 录

1. ENMCU15 系列简介	3
1.1. 烧录器简介	3
1.2. 功能介绍	
1.3 硬件介绍	3
1.4 烧录软件安装	4
1.5 烧录用 IO 定义及接线方式	5
1.6.MCU 放置方向	6
2 联机烧录操作	7
2.1 联机烧录步骤	7
2.2 ROLLING CODE 设置	15
2.3 烧录限制功能	
2.4 测频和校频功能	17
3. 脱机烧录操作	18
3.1. 下载烧录程序	19
3.2. 芯片脱机烧录	
3.3. 读取 CHECKSUM 功能	21
4.固件更新	
5.烧录器同烧录机台连接	23
5.1 烧录接口	
5.2 烧录时序	25
版本记录:	错误!未定义书签。

1. EnMcu15 系列简介

1.1. 烧录器简介

EnMcu15 系列烧写器为配合半自动机械烧录而开发。可在研发、批量生产 MCU 应用产品时烧录程序使用。

1.2. 功能介绍

- ◆芯片联机和脱机烧录操作;
- ◆芯片滚码烧录 (Rolling code) 操作;
- ◆芯片程序校验读取操作;
- ◆芯片频率测试、校准操作;

1.3 硬件介绍

序号	描述	功能
1	1602 液晶	信息显示
2	指示灯	烧录状态指示,绿色 OK 红色 NG
3	模式按键	读取 CS 和烧录功能选择
4	烧录按键	执行烧录
5	通讯接口	同烧录机台通讯接口
6	烧录座	带烧录芯片放置区
7	烧录 PIN 脚	烧录扩展 PIN 脚,同烧录座 PIN 对 PIN
8	烧录引脚跳线	烧录引脚跳线选择
9	烧录电压选择	3V、5V 烧录电压选择
10	复位按键	烧录器复位按键
11	电源接口	烧录器外接电源接口 7.5V 或 9V
12	USB 接口	下载程序或供电

标准 TYPEAB型USB 线缆和9V1A(或7.5V1A)直流电源(DC 插头极性为里+外-)

图 1.烧录器正面

图 2.烧录器顶面

1.4 烧录软件安装

EnMcu15 系列 在 PC 端软件为免安装版,直接解压缩 EnMcu15 系列.rar 到 PC 的任何地方即可。例如,解压缩 EnMcu15 系列.rar 到 C 盘根目录,在 C 盘的根目录会解压出 EnMcu15 系列的文件夹,在这个文件夹里有 EnMcu15 系列.exe 这个可执行文件,这个文件就是

EnMcu15 系列的 PC 执行文件,文件执行时,尽量用以管理员方式运行,在右击菜单中选中就可以。

图 3.烧录软件

用 USB 电缆连接 EnMcu15 系列主板和电脑,第一次连接时电脑会自动安装 EnMcu15 系列 USB 驱动,弹出安装界面如下,不要关闭此窗口,稍等片刻驱动即安装完成。

图 4.驱动的自动安装

1.5 烧录用 IO 定义及接线方式

烧录器烧录用 IO 定义如图 5,双排排针右侧排针分别对应 VDD、DATA、CLK、GND、FOSC。

- VDD 带负载能力有限,所以不能驱动过多负载。
- CLK, DATA 为高速信号,对电容、电感敏感,注意电路中的电容及电感,如果芯片贴上板后,再烧录,这方面要注意或是与我司工程人员确认为准。
- FOSC 为 IC 时钟频率检测 IO, IC 时钟频率检测异常将导致烧录失败。

● 图 5.EN8F152 的跳线方式

V2 版本烧录器可以通过跳线帽调整兼容大部分芯片。各芯片与跳帽对照表如下:

型号	VCC	DATA	CLK	GND	FOSC
EN8F152	3	1	2	2	4
EN8F152A	3	3	2	2	4
EN8F154S8	3	2	1	2	4
EN8F154S14	3	6	3	2	1
EN8F154S16	2	7	4	3	2
EN8F154S18	4	4	2	1	3
EN8F154S20	4	4	2	1	3
EN8F156S16	1	5	3	4	2

表 2.各芯片同烧录器连接

EN8F156S14 烧录用 IO 与 EN8F156S16 相对兼容,需向下移一 IO 与 EN8F156S16 兼容。 EN8F156S8 烧录用 IO 与 EN8F156S16 相对兼容,需向下移四个 IO 与 EN8F156S16 兼容。 EN8F158、EN8F157 目前无法兼容,需跳线处理。跳线长度不宜过长,以免产生导致烧录失败。

1.6.MCU 放置方向

芯片放置方向<mark>和</mark>如下图所示或参考 PCB 上丝印。

图 6.芯片放置方向

2 联机烧录操作

2.1 联机烧录步骤

◆ 开启 EnMcu15 系列软件操作界面

图 7. EnMcu15 系列软件开启画面

◆ 界面信息说明

1	载入芯片烧录程序按钮
2	PassNum 设置
3	烧录模式显示
4	功能按钮选择
5	测试频率和校准频率选择
6	程序信息显示区(程序名和 CheckSum)
7	烧录器固件版本号
8	烧录信息提示框

◆点击界面的"Device/Load"按钮,弹出所要烧录器件的选择窗(图 8),选择需要烧录的器件型号,然后点击 OK 确定。在随后弹出窗口选择需要下载的程序。

图 8.选择芯片型号

◆ Flash 文件装载完成后软件弹出界面如下,如果你的项目需要预先写入 EEPROM 文件,则点击弹出界面的 OK 按钮,在弹出窗口载入 EEPROM 文件。

图 9.加载 EEPROM 文件

装载好了 Flash 文件和 EEPROM 文件的软件 Information 界面如下图(如果无没有加载 EEPROM 文件则无 EEPROM 信息显示),而且功能按钮会凸出用于响应操作。至此,烧录文件已 经装载到了 EnMcu15 系列烧录器,掉电不会丢失,除非装载新的烧录文件,装载新的烧录文件会自动覆盖旧的烧录文件。

图 10.烧录代码下载到烧录器

装载好了 Flash 文件和 EEPROM 文件的 ENWriter 液晶屏界面如下,

液晶屏的第一行轮流显示 key.hex 和 DataEE.BIN。 key.hex 是所装载的程序区文件,DataEE.BIN 是所装载的 EEPROM 文件。

液晶第二行的左起的十六进制数 d6fbff 表示当前烧录MCU 的UserCFG 控制字,液晶第二行右下角的十六进制数 4953 表示的是MCUFlash 文件加User CFG 控制字的校验和,这个校验和与 ENWriter 的 PC 端软件界面 FLASH 文件的 CheckSUM 相等,如下图红框处。

◆ 待烧录芯片正确放入夹具后点击 "Auto Program" 按钮, 烧录器便会依次执行 "擦除"、"程序烧录"、"烧录校验"动作, 信息提示如下图 11:

图 11.执行自动烧录功能

◆点击"Erase"按钮,则仅对芯片进行擦除操作(擦除可选择 Flash 和 EEPROM),如图 12 所示:

图 12.执行"擦除"功能

◆点击"Blank Check"按钮,则仅对芯片进行空白检查,如图 13 所示:

图 13.执行"空白检测"功能

◆点击"Program"按钮,则只对芯片执行烧录动作,如下图所示:

图 14.烧录 Flash 和 EEPROM 完成

◆点击"烧录校验"按钮,则检查烧录到芯片中的代码是否正确,(如果烧录程序使能了 CPB,则无法校验),校验正确如下图 15 所示,校验错误如图 16 所示:

图 15.烧录校验成功

图 16.烧录校验失败

◆点击"Read"按钮,会将芯片中的信息读出(如果芯片有加密则只能读出 EEPROM 资料),并显示在信息框中,如下图所示。

图 16 读取芯片成功信息

点击界面的 Flash in IC 标签页,我们会看读出的 MCU Flash 文件数据软件界面分别如下:

图 17.读出的 Flash 信息

在本标签页点击鼠标右键会弹出保存读出的 MCU FLASH 数据文件到电脑的磁盘,如下图:

图 18.MCU Flash 信息保存

点击 SAVE,保存读出的 MCU flash 文件到你的电脑磁盘。同样,可以观察读出的 MCU EEPROM 区数据 EEPROM in IC 标签页。也可以保存读出的 MCU EEPROM 区数据文件到电脑的磁盘。

2.2 Rolling Code 设置

ENMCU15 系列 Writer 提供了烧录 Rolling Code 的功能,Rolling Code 放在 EEPROM 区,如果你的产品需要 Rolling Code,点击 Rolling Code 按钮,界面弹出窗如下,进行 Rolling Code 设置,我们举例设置 Rolling Code 在 EEPROM 区的起始地址为 0xfe,Rolling Code 占用一个字节,Rolling Code 的起始值为 0x01,Rolling Code 的增量为 1,结束值为 0xff,当 Rolling Code 增加到结束值后将无法再脱机烧录 Rolling code,需由上位机重新设定。Rolling Code 设置时勾选 Disable End Value 时会在滚码烧录到最大值时重新从初始值开始滚动烧录。

图 18Rolling code 设置

设置好后点击 OK 确定。我们会看到界面的 Auto Program Mode 的提示消息会多出"+R_Code",表示 Rolling code 设置成功。如下图红框处所示:

图 19.Rolling Code 设置成功提示

当 Rolling code 达到最大值,再进行烧录 Rolling code 操作,烧录器将报错并如下图 所示,此时需由上位机重新设定 Rolling code 后,才能再进行烧录 Rolling code 操作。

图 20. Rolling Code 烧录达到最大值烧录器提示信息

2.3 烧录限制功能

EnMcu15 系列提供了烧录限制功能,点击 Pass Count 区域的 Seting 按钮设置 Pass Count 的初始值和最大值如下图,当 MAX Value(最大值)等于零时,不限制烧录数量,MAX 显示为 Disable。

每烧录成功一颗 IC,通过数加一,达到最大设定值后,烧录器不再相应任何

烧录命令,此时需上位机更新 Pass Count 后方可继续烧录。

图 21. Pass Count 设置信息

2.4 测频和校频功能

ENMCU15 系列 Writer 提供了 MCU 内部高速 RC 振荡器的频率测试校准功能,如果你需要测试和校准 MCU 内部高速 RC 振荡器的频率,按需要点击 Calibration frequency(校准频率)和 Test frequency(检测频率)的复选框选中频率校准和测试功能。 选中频率校准功能后界面的 Auto Program Mode 的提示消息增加 "CAL_Code"表示频率校准功能设置成功,如下图红框内所示:

PS:该功能存在较高风险性,使用该功能前请咨询。如不需要测频和校频功能烧录时不需要连接 FOSC。

图 22. 频率校准功能提示

3. 脱机烧录操作

3.1. 下载烧录程序

- ◆将烧录器通过 USB 连接到电脑。
- ◆开启烧录软件联机下载程序文件和 EEPROM 文件到烧录器并记下其 Checksum 值,详细操作请参考 2.1 相关信息;断开烧录器同电脑连接重新上电烧录器会自动复位并进入脱机模式,观察其液晶滚动信息中的 CheckSum 值(图 23)同下载程序的 CheckSum 值是否相同(图 24)。

图 23.烧录器 CheckSum 信息

图 24.上位机显示的 CS 信息

◆ 烧录代码下载完毕。

3.2. 芯片脱机烧录

- ◆烧录程序或 EEPROM 文件到烧录器后,根据表 2 选择合适的跳线,正确放置芯片便可进行脱机烧录等操作。
 - ◆EnMcu15 系列 上电后,会循环显示以下信息
 - ①芯片型号(图 25)。
 - ②UID 显示滚码,显示下一次滚码值,(图 26)如果不开滚码功能则无此显示项。
 - ③程序名称和烧录模式(图 27)。
 - ④FLA ID EE ID 校验码显示同加载程序的校验码(图 28)。
 - ⑤PASS NUM 烧录成功的数量(图 29)。

图 25.芯片型号显示

图 26.UID 滚码显示

图 27.程序名和烧录模式

图 28.FLA ID 和 EE ID

图 29.PASS NUM

- ◆烧录器上电烧录模式和上位机下载时选择选择的模式一致,按烧录按钮便可进行烧录操作,烧录成功绿灯亮,屏幕显示烧录成功信息,如果烧录失败,屏幕会显示错误信息同时红灯亮,蜂鸣器报警。
- ◆EnMcu15 系列 支持 Rolling Code 烧录,只要在下载烧录代码到烧录器时启动 Rolling Code 功能,并设定好 Rolling Code Value 等相关参数即可,详细操作见 2.2 章节。每烧录完一颗芯片烧录器都会显示下次操作所烧录 Rolling Code 信息。如果烧录失败, Rolling Code 的值会保持不变,烧录成功后, Rolling Code 的值会在下次烧录时进行更改。
- ◆EnMcu15 系列支持最大烧录数量的设置,只要在下载烧录代码到烧录器时启动烧录限制功能,详细操作见 2.3 章节。每烧录完一颗芯片烧录器都会显示当前烧录 Pass Count 信息。如果烧录失败,Pass Count 的值会保持不变,烧录成功后,Pass Count 的值自动加 1, Pass Count 达到最大设置数量时,烧录器不再响应任何脱机烧录命令,显示器显示如下,此时需连接上位机更新 Pass Count 后方可继续脱机烧录。

图 30.烧录数量越界提示

3.3. 读取 CheckSum 功能

为了方便检查烧录程序是否正确,我们下位机提供了读取芯片 CheckSum 的功能,正确放置芯片选择按照烧录器说明选择对应的跳线,下位机短按 KEY_MODE 按钮,此时液晶屏会显示该芯片的 CheckSum(图 31)。

图 31.烧录器显示 CS

4.固件更新

烧写器支持在线更新。当厂家发布新的软件版本后,在使用烧写器前可对用当前版本软件对烧写器进行固件更新,更新办法如下:

用 USB 连接烧录器点击下图红圈内所示图标,上位机将强制更新对应版本的下位机程序。

图 32.固件更新按钮

在弹出的页面点击确定

图 33. 确定更新固件

此时下位机显示 Boot loading...,此时不要断开 USB,不要关掉上位机软件。升级成功后,EnMcu15系列自动复位进入正常工作模式,上位机界面如下图所示,如升级失败,可重复上述过程进行升级。

图 34.固件更新成功

5.烧录器同烧录机台连接

5.1 烧录接口

5.脱机连接半自动烧录机台

ENWriter 连接半自动烧录机台的接口如下图所示:

V1.1 版本:

V2.0 版本:

Mini_V1 与 V2 线序一致:

注意: V2.0 版本线序与 V1.1 版本不同,尤其注意 FAIL 信号及地线。

- Program 是編對強信号线,低电平有效,在每次烧录前,烧录机台只读取EnMcu15系列_Writer 的Busy 信号,如果Busy 信号是高电平,说明EnMcu15系列_Writer空闲,可以发烧录命令,烧录机台给出一个低脉冲信号 EnMcu15系列 Writer就开始编程。
- Busy 是EnMcu15系列_Writer 忙信号,低电平有效,表示 EnMcu15系列_Writer正在忙于操作,需要等待 Busy 信号变高电平后才能发送 Program 信号。
- OK 信号是EnMcu15系列_Writer的烧录OK 信号,低电平有效,如果烧录正确,OK 信号为低电平。
- Fail 信号EnMcu15系列_Writer 的烧录失败信号,低电平有效,如果烧录失败,Fail 信号为低电平。
- 所有逻辑信号为 3.3V 电平IO 输入输出,带负载能力有限,如使用强负载请外接带负载电路。

烧录器与烧录机台连接时需要以下信号: VCC, GND, Program, OK, NG, BUSY 六个信号。烧录器已经把这六个信号引出到烧录通讯接口上(图 34 红框内)。

PS:同机台连接时电源需选择下端 3.3V, 上面 VDD 为烧录电源接口不能连接烧录机台。

图 34.烧录器通讯接口

5.2 烧录时序

◆Program 是编程控制信号线,低电平有效,在每次烧录前,烧录机台只读取 EnMcu15 系列 的 Busy 信号,如果 Busy 信号是高电平,说明 EnMcu15 系列空闲,可以发烧录命令,烧录机台给出一个低脉冲信号 EnMcu15 系列就开始编程。

Busy 是 EnMcu15 系列忙信号,低电平有效,表示 EnMcu15 系列正在忙于操作,需要等待 Busy 信号变高电平后才能发送 Program 信号。

- ◆OK 信号是 EnMcu15 系列的烧录 OK 信号,低电平有效,如果烧录正确,OK 信号为低电平。
- ◆Fail 信号 EnMcu15 的烧录失败信号,低电平有效,如果烧录失败,Fail 信号为低电平。
- ◆所有逻辑信号为 3.3V 电平 IO 输入输出,带负载能力有限,如使用强负载请外接带负载电路。

一个完整的自动烧录成功信号时序图如下:

一个完整的自动烧录失败信号时序图如下:

烧录用 IO 定义及接线方式 V1.1

:

烧录器烧录用 IO 定义如下图,五颗跳帽的中间针分别对应 VSS、VDD、CLK、DAT, CLKO。

- VDD 带负载能力有限,不能驱动过多负载。
- CLK, DAT 为高速信号,对电容、电感敏感,注意链路中的电容及电感。
- CLKO(ATESTO)为IC 时钟频率检测 IO,IC 时钟频率检测异常将导致烧录失败。

以下是芯片脚位图

г	
	PA4/CLKO
	VDD
	VDD
	PA1/C1IN-/ICSPDAT
	PA1/C1IN-/ICSPDAT

PC3 I	18 PC4/C2OUT
PC2	17 PC5
PC1/C2IN- 3	16 PC6
PC0/C2IN+ 4	15 T PC7
VSS	
VOO 111 3	14 100
PA5/MCLRB	13 PA6/OSC2/CLKO
PA4/ATEST0 7	12 PA7/OSC1/CLKI
PA3/ATEST1 8	11 PA1/C1IN-/ICSPDAT
PA2/T0CKI/INT/C1OUT 9	10 PA0/C1IN+/ICSPCLK
DC2	20 T PC4/C2OUT
PC3 1	
PC2	19 PC5
PC1/C2IN- 3	18 PC6
PC0/C2IN+	17 PC7
VSS	16 U VDD
NC 📙 6	15 III NC
PA5/MCLRB 7	14 PA6/OSC2/CLKO
PA4/ATEST0	13 PA7/OSC1/CLKI
PA3/ATEST1 9	12 PA1/C1IN-/ICSPDAT
PA2/T0CKI/INT/C1OUT 10	11 PA0/C1IN+/ICSPCLK
VDD I 1 O	o TI Vee
VDD ☐ 1 Û	8 VSS
PA6/OSC2/T1G/CLKO	7 PA0/AN0/C1IN+/ISCPCLK
EN0E456D0	
PC3/P1C/PWM4 3	6 PA1/AN1/C1IN-/ISCPDAT
PC2/AN6/P1D/PWM5 4	5 PC4/C2OUT/P1B/PWM3
VDD 1	14 VSS
PA7/OSC1/CLKI/T1CKI 2 2 ENGELEGIA	13 PA0/AN0/CIN+/ICSPCLK
PA6/OSC2/CLKO/T1G III 2	12 PA1/AN1/C1IN-/ISCPDAT
PA4/ATESTO/V _{REGP} T 1	11 PA2/AN2/C10LIT/T0CKI
PC3/P1C/PWM4 5	10 PA3/AN3/ATEST1
· ———	I
PC2/AN6/P1D/PWM5 6	9 PC0/AN4/C2IN+/P1F/V _{REF/}
PC2/AN6/P1D/PWM5	9 PC0/AN4/C2IN+/P1F/V _{REF} / 8 PC1/AN5/C2IN-/P1E/INT

VDD 1 16 Vss PA7/OSC1/CLKI/T1CKI 2 15 PA0/AN0/CIN+/ICSPCLK PA6/OSC2/CLKO/T1G 3 14 PA1/AN1/C1IN-/ISCPDAT PA5/MCLRB 4 EN8F156S16 13 PA2/AN2/C1OUT/T0CKI PC3/P1C/PWM4 5 12 PA3/AN3/ATEST1 PC2/AN6/P1D/PWM5 6 11 PC0/AN4/C2IN+/P1F/VREF PA4/ATEST0/VREGP 7 10 PC1/AN5/C2IN-/P1E/INT PC5/CCP1/P1A/VREGN 8 9 PC4/C2OUT/P1B/PWM3
VDD
PB3/P1E/PWM5N/PPG 1 16 PA6/T1G/CLKO/OSC2/OPA0N PC1/C0IN-/INT/ANO 2 15 PA7/CLKI/T1CKI/AN3/OPA0O/OSC1/DA+ PC0/C0IN+/C1IN-/T0CKI/ANO 3 14 PC5/CCP1/PWM3N/AN2/CMP5N/DA- PA2/C2IN-/P1D 4 EN8F158S16 13 PC2/PWM3N/AN2/CMP5P/DA- PA4/AT0/DC-/C2IN+/AN6 5 12 PC2/PWM3P/CMP5P/DB+ PA5/DC+/C1IN-/P1C/AN5 6 11 PA3/AT1/PWM4P/VREF/CMP4N PC4/P1F/PWM5P/AN1/IOFF 7 10 PA0/ICSPCLK/CMP4P/OPA0O VSS 8 9 VDD
VSS 1 20 VDD PB2/P1B/C4OUT/RREF 2 19 PB1/C3IN-/PCK/PWM6P PB3/P1A/CSOUT/VFB 3 18 PB0/C3IN-/AN4/PWM6N PA0/ICSPCLK/CMP4P/OPA00 4 17 PC4/P1F/PWM5P/AN1/IOFF PA3/AT1/PWM4P/VREF/CMP4N 5 16 PA5/DC+/C1IN-/P1C/AN5 PA1/ICSPDAT/MCLRB/PWM4N/DB- 6 15 PA4/AT0/DC-/C2IN+/AN6 PC2/PWM3P/CMP5P/DB+ 7 14 PA2/C2IN-/P1D PC5/CCP1/PWM3N/AN2/CMP5N/DA- 8 13 PC0/C0IN+/C1IN-/T0CKI/AN0 PA7/CLKI/T1CKI/AN3/OPA0O/OSC1/DA+ 9 12 PC1/C0IN-/INT/AN0 PA6/T1G/CLKO/OSC2/OPA0N 10 11 PC3/P1E/PWM5N/PPG
PC3/P1E/PWM5N/PPG 1 20 PA6/T1G/CLKO/OSC2/OPA0N PC1/C0IN-/INT/AN0 2 19 PA7/CLKI/T1CKI/AN3/OPA0O/OSC1/DA+ PC0/C0IN+/C1IN-/T0CKI/AN0 3 18 PC5/CCP1/PWM3N/AN2/CMPSN/DA- PA2/C2IN-/P1D 4 17 PC2/PWM3P/CMPSP/DB+ PA4/AT0/DC-/C2IN+/AN6 5 EN8F158TS20-B 16 PA1/ICSPDAT/MCLRB/PWM4N/DB- PA5/DC+/C1IN-/P1C/AN5 6 15 PA3/AT1/PWM4P/VREF/CMP4N PC4/P1F/PWMSP/AN1/IOFF 7 14 PA0/ICSPCLK/CMP4P/OPA0O VSS 8 13 VDD PB0/C3IN-/AN4/PWM6N 9 12 PB3/P1A/CSOUT/VFB PB1/C3IN-/PCK/PWM6P 10 11 PB2/P1B/C4OUT/RREF

_				_
PA0/ICSPCLK/PWM3	1		28	PA1/ISCPDAT/PWM3N
PB4 🗔	2		27	PA2/INT/T0CKI/PWM4
PB3 🗔	3		26	PA3/ATEST1/PWM4N/C0IN-/SDA
PB2 🗔	4		25	PA4/ATEST0/REMO/C0IN+/SCL
PB1 □	5		24	PA5/MCLRB
PB0 □	6	EN8F157S28	23	PA6/OSC2/CLKO/T1G/C0OUT
PC0/KP0 🗀	7		22	PA7/OSC1/CLKI/T1CKI
PC1/KP1 🗔	8	EN8F157SS28	21	□ PB5
PC2/KP2 🗔	9		20	□ PB6
PC3/KP3 🗔	10		19	PB7
PC4/KP4 🗔	11		18	DD0
PC5/KP5 🗀	12		17	□ PD1
PC6/KP6 🗀	13		16	□ VDD
PC7/KP7 🗔	14		15	□ vss

ENROO英锐恩

微控制器芯片专案定制与智能控制产品开发设计 以及整体解决方案研发和销售!

全球销售及服务网点联系信息:

深圳市英锐恩科技有限公司

ENROO-TECH (SHENZHEN) CO.,LTD

中国·深圳市龙岗区环城南路坂田国际中心 C2 栋 8 楼 815

Enroo-Tech Technologies CO., Limited

香港新界葵涌工业街 24-28 号威信物流中心 13 楼 A 室

联系电话: 86-755-82543411,83167411,83283911

联系传真: 86-755-82543511

全国热线: 4007-888-234

联系邮件: enroo@enroo.com

公司网站: http://www.enroo.com

企业官网二维码

企业公众号二维码

