Лабораторная Работа №8. Модель конкуренции двух фирм.

Математическое моделирование

Исаев Б.А.

Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия

Докладчик

- Исаев Булат Абубакарович
- НПИбд-01-22
- Российский университет дружбы народов
- [1132227131@pfur.ru]

Цели и задачи

- 1. Придумайте свой пример двух конкурирующих фирм с идентичным товаром. Задайте начальные значения и известные составляющие. Постройте графики изменения объемов оборотных средств каждой фирмы. Рассмотрите два случая.
- 2. Проанализируйте полученные результаты.
- 3. Найдите стационарное состояние системы для первого случая.

Выбор варианта

PS C:\Windows\system32> 1132227131 % 70 + 1 22

Figure 1: Узнаём наш вариант по формуле ("Номер Студенческого" % "Количество вариантов" + 1)

Полученный вариант

Rangagy 22

Сахмай I. Рассмотрим так фирмы, произволяетие комположение тованы одинакового качества и находиниеся в одной пыночной импе. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть. KORKYDATTIA MOEYT KURTI, HA IDOTHRURKA DYTEM HAWRIARIN DARAMETROS CROPTO производства: осбестоимость, время щиста, но не могут прямо вмещиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 - \frac{b}{c_1} M_1^2 \\ &= \frac{dM_2}{c_1} = \frac{b}{c_1} M_2 - \frac{a}{c_1} M_2^2 \\ &= \frac{dM_2}{d\theta} = \frac{b}{c_1} M_2 - \frac{a}{c_1} M_2^2 - \frac{b}{c_1} M_2^2 \\ &= c_2 M_2 - \frac{b}{c_1} M_2 - \frac{a}{c_1} M_2^2 + \frac{b}{c_1} M_2^2 - \frac$$

Сахинії 2. Рассыотили модель тогля помина закономинастого фактого влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы формирование общественного предпочтении одного токата другому, не зависимо от их качество и пены. В этом случые взаимолействие двух фирм будет зависеть друг or serve conferencesso poshbusiness nones M.M. forset organismos Burn, a положу посмутиваемой молети пинамика изменения объемов продук финам I и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \left(\frac{b}{c_1} + 0.0013\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотрим задачу со следующими приавывыми условиями и $M^{1} = 7.1, M^{2} = 8.1,$

мараметрами:
$$r_1 = 26, r_2 = 21,$$

 $\tilde{p}_{cr} = 44, N = 77, q = 1$
 $r_1 = 26, r_2 = 21,$
 $\tilde{p}_i = 11, \tilde{p}_i = 8,7$

Замечание: Значения p_{-}, \tilde{p}_{c}, N указаны в тысячах единиц, а значения M_{c} , Very or M. M. C. Control

Ofermanena

- N число потребителей произволимого продукта.
- т = жантельность производственного никав
- P PAUDOVILLE INCHA TODADA
- \hat{n} себестоимость, продукта, то есть переменные изделжки на производство единины
- п максимальная потпебность одного человека в продукте в единицу времени
- $\theta = \frac{1}{2} 6езразмерное время$
 - 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных изделжен и с веденной новышновкой для случая 1
 - 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без

Пример задачи (Часть 1)

Модель конкуренции двух фирм.

Модель одной фирмы

Дая построения модели конкуреннии хотя бы диху фирм необходимо рассмортеть мощель одной фирмы. Вначале десмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется баланском спроса и предложения. Примем, что этот продукт занимает определенную иншу рышка и конкурентам в ней стуствуют.

Обозначим:

- N число потребителей производимого продукта.
- 5 доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт орнентирован на определенный слой населения.
- М оборотные средства предприятия
- т длительность производственного цикла

р – рыночная цена товара

- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(Sp) функция спроса, зависящая от отношения дохода S к цене p. Она вана количеству продукта, потребляемого одним потребителем в единицу въемени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cc}} \right)$$
(1)

та q — максимальная потребность одного чезовока в продукт в единицу временту D^{-1} мункция параге е ростом цены и при $p - p_{c}$ (меритнесевая стоимость продукта). Эта функция параге простору потребители отказываются от приобретении товара. Веничния $p_{c} = Sp_{c} H$, правукте $f \sim 8 p_{c}$ засигнистисти функция переж по венен Газиль образом, функция спроса в образом f от при $f \sim 10^{-1}$ мункция переж по венен Газиль образом, функция спроса в образом f от f

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cc}}\right)p - \kappa \qquad (2)$$

Пример задачи (Часть 2)

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right)$$
 (3)

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр у зависит от скорости оборота товаров на рынке. Как правило, времят торгового оборота существенно меньше времени производственного цикла т. При заданном Муравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчию.

В этом случае уравнение (3) можно заменить алгебранческим соотношением

$$-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}}\right) = 0 \qquad (4)$$

Из (4) следует, что равновесное значение цены *p* равно

$$p = p_{cr} \left(1 - \frac{M\delta}{\tau \tilde{p} Nq} \right)$$
 (5)

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \left(\frac{p_{cr}}{\tilde{p}} - 1 \right) - M^2 \left(\frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - \kappa \tag{6}$$

Уравнение (6) имеет два стационарных решения, соответствующих условню dM/dt=0:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$
(7)

где

$$a = Nq \left(1 - \frac{\tilde{p}}{p_{-}}\right) \tilde{p} \frac{\tau}{\delta}, b = \kappa Nq \frac{(\tau \tilde{p})^{2}}{p_{-}\delta^{2}}$$
 (8)

Вз. (7) сведуут, тот при больших постоянных издержамх (в случае $a^2 + db$) стационарымх сотояний вет. Это опизнет, то в тих условиях фирма ве может функционировать стабильно, то есть, тервият банкротство. Однако, вых правило, постоянные агратил мама по сравнению с перемениями (то есть, $b \leftarrow 2a^2$) и игракот роль, только в случае, когда оборотные средства малы. При $b \leftarrow a$ стационарные замечения b размительной размения b раз

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}}\right) \tilde{p}, \, \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta \left(p_{cr} - \tilde{p}\right)}$$
(9)

Первое состояние \tilde{M}_+ устоїчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так, что пои $M < \tilde{M}_-$ оболотные средства надают $(dM/dt < \theta)_-$ то есть, фирма идет к

Пример задачи (Часть 3)

банкротству. По смыслу \check{M}_{-} соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с т. Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, меньвалентно длинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр т будем считать временем шихла, с учётом сказанного.

Конкуренция двух фирм Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителесй в этой нише нет априорных предпочтений, и они приобретут тот или ниюй товар, не обращая винмания на энак фирмы.

В этом случае, на рынке устанавливается сдиная дена, которая определяется бальном сумырного предложения и спроса. Инмин словами, в рамых нашей модели конкурентная борьба ведётся только рыпочивыми методами. То есть, конкуренты могут вапать на противника путем изменения параметров своето призводетать себестимость, время цисав, по не могут прямо менивлаться в ситуацию на рынке (чаязначать» цену или влиять на потребителей какимлибе инма способом).

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{split} \frac{dM_1}{dt} &= -\frac{M_1}{\tau_1} + N_1 q \left(1 - \frac{p}{p_\sigma}\right) p - \kappa_1 \\ \frac{dM_2}{dt} &= -\frac{M_2}{\tau_2} + N_2 q \left(1 - \frac{p}{p_\sigma}\right) p - \kappa_2 \end{split} \tag{10}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N₁ и N₂ — числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный балане устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\frac{M_1}{\tau_1 \bar{p}_1} = N_1 q \left(1 - \frac{p}{p_{cr}}\right)$$

$$\frac{M_2}{\tau_2 \bar{p}_3} = N_2 q \left(1 - \frac{p}{p_{cr}}\right)$$
(11)

где \tilde{p}_1 и \tilde{p}_2 — себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

Пример задачи (Часть 4)

$$\begin{split} \frac{dM_1}{dt} &= -\frac{M_1}{\tau_1} \left(1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1 \\ \frac{dM_2}{dt} &= -\frac{M_2}{\tau_2} \left(1 - \frac{p}{\tilde{p}_2} \right) - \kappa_2 \end{split} \tag{12}$$

Уравнение для цены, по аналогии с (3),

$$\frac{dp}{dt} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq \left(1 - \frac{p}{p_{cr}} \right) \right)$$
(13)

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr} \left(1 - \frac{1}{Nq} \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} \right) \right)$$
(14)

Подставив (14) в (12) имеем:

$$\frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1$$

$$\frac{dM_2}{dt} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2$$
(15)

гле

$$a_1 = \frac{P_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{P_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{P_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{P_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{P_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$
 (16)

Исследуем систему (15) в случае, когда постоянные издержки (κ_1 , κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_2} M_2 - \frac{b}{c_2} M_1 M_2 - \frac{a_2}{c_2} M_2^2$$
(17)

Чтобы решить систему (17) необходимо знать начальные условия. Зададим начальные значения $M_0^1=2$, $M_0^2=1$ и известные параметры: $p_{cr}=20$, $\tau_1=10$, $\tau_2=16$, $\tilde{p}_1=9$, $\tilde{p}_2=7$, N=10, q=1.

Замечание: Необходимо учесть, что значения p_{σ} , $\tilde{p}_{1,2}$, N указаны в тысячах единиц (например N = 10 - означает 10 000 потенциальных потребителей), а значения M_1 , указаны в млн. единиц.

При таких условиях получаем следующие динамики изменения объемов продаж (рис.6.1)

Пример задачи (Часть 5)

Рисунок 6.1. График изменения оборотных средств фирмы 1 (синий) и фирмы 2 (зеленый). По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c}$.

(безразмерное время).

По графику видию, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели (17) этот факт отражается в коэффициенте, стоящим перед членом M_iM_j : в рассматриваемой задаче он

одинаковый в обоих уравнениях ($\frac{b}{a}$). Это было обозначено в условиях задачи.

Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (инженение себетовмости, производственного пиль, непользования вкрапта и т.п.), непользуются еще и социально-пенкологические факторы – формирования общественного переплотегиня оцион то товара другому, не зависимо от ит качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно воофициент перес Д.М., будет отпичаться.

Рассмотрим следующую молель:

Пример задачи (Часть 6)

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \left(\frac{b}{c_1} + 0,002\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split} \tag{18}$$

Начальные условия и известные параметры остаются прежними. В этом случаем получим следующее решение (рис.6.2)

Рисунок 6.2. График изменения оборотных средств фирмы 1 (синий) и фирмы 2 (зеленый). По оси ординат значения $M_{1,1}$ (оборотные средства фирмы 1 и фирмы 2),

по оси абсцисс значения
$$\theta = \frac{t}{a}$$
 (безразмерное время).

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкрогство. Динамика роста объемо оборотных средств второй фирма остается без изменения: достигнув максимального значения, остается на этом уровне.

Замечание: Стоит отметить, что рассматривается упрощенная модель, которая дает модельное решение. В реальности факторов, влияющих на динамику изменения облотных говелств плепинятий. больше.

Задача лабораторной

Лабораторная работа № 7

Задание

- Придумайте свой пример двух конкурирующих фирм с идентичным товаром. Задайте начальные значения и известные составляющие. Постройте графики изменения объемов оборотных средств каждой фирмы. Рассмотрите два случая.
- 2. Проанализируйте полученные результаты.
- 3. Найдите стационарное состояние системы для первого случая.

Figure 9: Изучаем задачу лабораторной

Код лабораторной (Scilab)

```
To be 2 (Committee of California and December 1) Market of Defect Balance in A. (Committee of California
  Bulle Figures Booker Hacropiles Once Barromora Crosses
       B [2] 및 준 석 [2] 및 등 [2] 및 보는 [2] [2] 및 대한 [2] 및
  tab Zon IX inh 2 (manylet no. IX inh Lon IX inh Line IX inh 4 (manylet no. IX inh Lon IX inh 4 (manylet no. IX inh 6 (manylet no. IX
  3 pl = 91 //cedecrosescora mozywra v demeg 1
  4 tau2 = 16; //динтельность производственного цикля фирмы 2
5 m2 m 21 //cedecrossscore morrore v denser 2
7 q = 1; //максимальная потребность одного человека в продукте в единицу времени
10 al - p cr/(taul*taul*pl*pl*V*q);
11 a2 = p cr/(tau2'tau2'p2'p2'V'g);
12 b = p cr/(taul*taul*tau2*tau2*p1*p1*p2*p2*V*g);
13 cl = (p_cr-pl)/(taul*pl)/
14 c2 = (p_cr-p2)/(tau2*p2);
1 function dx-syst(t, x)
  2 d\mathbf{x}(1) = (c1/c1)^*\mathbf{x}(1) - (a1/c1)^*\mathbf{x}(1)^*\mathbf{x}(1) - (b/c1)^*\mathbf{x}(1)^*\mathbf{x}(2);
                            dw(2) = (e2/e1) aw(2) - (a2/e1) aw(2) aw(2) - (b/e1) aw(1) aw(2) a
4 endfunction
23 50 = 01
24 к0=[2:1]; //мачальное значение объема оборотных средств к1 и к2
25 5 = 101 0.031 3012
26 y = ode(x0, t0, t, syst);
```

Figure 10: Смотрим код лабораторной, написанный на языке Scilab

График

Выполнение задачи (Часть 1)

```
The Control of Communication of Communication (Control of Control 
  Quin Figures Ropert Hacrophies Once Barromera Cresses
     2 N = 771
    4 tau1 = 261
  7 p2 = 8.14
  8 M10 - 7.12
  9 M20 = 8.1r
 12 a2 = P0 / (tau2^2 * p2^2*N*q);
 13 b = P0 / (tau1^2 * p1^2*tau2^2 * p2^2*N*g);
 14 cl = (P0 - p1) / (taul * p1);
 15 d2 = (P0 - p2) / (tau2 * p2) /
 1 function dM-system! (theta, M)
                ... dM = zeros(2,1);
                  dM(1) = M(1) - (b/a1) * M(1)*M(2) - (a1/a1)*M(1)*21
                  dM(2) = (c2/c1)*M(2) - (b/c1)*M(1)*M(2) - (a2/c1)*M(2)^2I
  5 endfunction
  1 function dM-system2(theta, M)
               dM = zeros(2,1);
                   dM(1) = M(1) = ((b/c1) + 0.0013) * M(1)*M(2) = (a1/c1)*M(1)*2j
                  dM(2) = (e2/e1)^{a}M(2) - (b/e1)^{a}M(1)^{a}M(2) - (a2/e1)^{a}M(2)^{a}2
  5 endfunction
 29 theta = linspace(0, 50, 500);
  30 MO - [M10, M20];
  31 M1 = ode (M0, 0, theta, systemi);
 32 M2 - ode (M0, 0, theta, system2);
# D | 0 0 0 0 0 0 0 0
```

Figure 12: Выполняем нашу задачу на Scilab (Часть 1)

Выполнение задачи (Часть 2)

```
The Control of Communication of Communication (Control of Control 
   Bulle Figures Ropeut Hactpolice Once Barromera Creases
       32 M2 = ode (M0, 0, theta, system2);
   35 // Pondent 1
   36 acf (1) r
 38 xlabel("Нормированное время");
 39 vlabel ("Ofoporese cpegorsa (MEH)");
   40 legend ("Фирма -1", "Фирма -2") /
   41 title ("Covyan-1");
 44 // Poster 2
 45 act (2) /
   46 plot(theta, M2(1, 1), 'r', theta, M2(2, 1), 'b');
   47 xlabel ("Нормированное время") /
   48 ylabel ("Ocoporesse openovsa (MUH)");
   49 legend ("dumma 1", "dumma 2");
 50 title ("Cnywan 2");
# D | 0 0 0 0 0 0 0 0
```

Figure 13: Выполняем нашу задачу на Scilab (Часть 2)

Графики

Figure 14: Просматриваем графики, полученные по уравнениям нашей

Вывод

Мы научились работать с моделью конкуренции 1/2 фирм