Bibliografía

Problema regular no homogéneo de Sturm-Liouville

$$\begin{cases} L[u] + \mu ru = f(x), & x \in (a, b) \\ B[u, a] := a_1 u(a) + a_2 u'(a) = 0 \\ B[u, b] := b_1 u(b) + b_2 u'(b) = 0 \end{cases}$$
(1)

- **(a)** $\{\lambda_n\}_{n=1}^{\infty}$ los valores propios con funciones propias correspondientes $\{\phi_n\}_{n=1}^{\infty}$, asumidas ortonormales.
- ② Queremos determinar los coeficientes c_n de modo que

$$\phi(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$$

sea una solución.

Observación. Como cada ϕ_n satisface las condiciones en la frontera, también lo hace ϕ .

Problema no homogéneo de Sturm-Liouville

Sustituyendo el desarrollo en la ecuación y usando que $L\left[\phi_{n}
ight]=-\lambda_{n}r\phi_{n}$,

$$L[\phi] + \mu r \phi = L \left[\sum_{n=1}^{\infty} c_n \phi_n \right] + \mu r \sum_{n=1}^{\infty} c_n \phi_n = \sum_{n=1}^{\infty} c_n L[\phi_n] + \mu r \sum_{n=1}^{\infty} c_n \phi_n$$
$$= \sum_{n=1}^{\infty} c_n (-\lambda_n r \phi_n) + \mu r \sum_{n=1}^{\infty} c_n \phi_n = r \sum_{n=1}^{\infty} (\mu - \lambda_n) c_n \phi_n.$$

Desarrollamos (f/r) mediante funciones propias

$$f/r = \sum_{n=1}^{\infty} \gamma_n \phi_n, \quad \gamma_n = \int_a^b (f/r) \phi_n r dx = \int_a^b f \phi_n dx$$

Alternativa de Fredholm

Entonces

$$\sum_{n=1}^{\infty} (\mu - \lambda_n) c_n \phi_n = \sum_{n=1}^{\infty} \gamma_n \phi_n$$

Por la unicidad del desarrollo en serie

$$(\mu - \lambda_n) c_n = \gamma_n.$$

① Si $\mu \neq \lambda_n$ para cada $n = 1, 2, 3, \ldots$, la solución es

$$\phi = \sum_{n=1}^{\infty} \frac{\gamma_n}{\mu - \lambda_n} \phi_n.$$

② Si $\mu = \lambda_N$ para algún N, cuando n = N vemos que para que haya solución es necesario que

$$0 = \gamma_N = \int_a^b f(x)\phi_N(x)dx.$$

Alternativa de Fredholm

La función f debe ser ortogonal a ϕ_N . Este resultado es parte de uno más general llamado alternativa de Fredholm.

El coeficiente C_N se puede elegir arbitratriamente y la solución es

$$\phi = C_n \phi_N + \sum_{n \neq N} \frac{\gamma_n}{\mu - \lambda_n} \phi_n.$$

No hay solución única, sino una familia uniparamétrica de soluciones.

La "función" delta, motivación

Razonamiento heurístico. Supongamos una partícula moviendose sobre una recta, x(t) su posición, v(t) su velocidad y a(t) su aceleración. Entonces

$$\Delta v = v(t + \Delta t) - v(t) = \int_t^{t+\Delta t} a(s) ds.$$

La aceleración es una acción distribuida en el tiempo. Si ponemos por ejemplo

$$a(t) = \begin{cases} 2, & \text{si } t = 0, \\ 0, & \text{si } t \neq 0, \end{cases}$$

Ocurrirá que $\Delta v = 0$ de todas maneras. Una aceleración aplicada en un instante no produce cambios.

La "función" delta, motivación

No obstante es útil contar con objetos matemáticos que den cuenta de cambios grandes en un instante. Supongamos que la velocidad se incremente en 1 unidad sólo en t=0 ¿Qué propiedades debería tener tal aceleración? La llamaremos δ . Si ponemos $t=\alpha$ y $t+\Delta t=\beta$

$$\Delta v = v(b) - v(a) = \int_{\alpha}^{\beta} \delta(s) ds = \begin{cases} 1, & \text{si } 0 \in [\alpha, \beta] \\ 0, & \text{si } 0 \notin [\alpha, \beta], \end{cases}.$$

Vamos a suponer que una tal δ existe e inferiremos algunas propiedades

La "función" delta, propiedades

"Teorema"

Si $\varphi : \mathbb{R} \to \mathbb{R}$ es continua y acotada, entoces

$$\int_{-\infty}^{\infty} \varphi(t)\delta(t)dt = \varphi(0).$$

"Demostración." Sea $\varepsilon > 0$ y tomemos $\delta > 0$ tal que

$$|t| < \delta \Rightarrow |\varphi(t) - \varphi(0)| < \varepsilon.$$

Supongamos $|\varphi| \leq M$. Entonces

$$\left| \int_{-\infty}^{\infty} \varphi(t)\delta(t)dt - \varphi(0) \right| = \left| \int_{-\infty}^{\infty} \varphi(t)\delta(t)dt - \varphi(0) \int_{-\infty}^{\infty} \delta(s)ds \right|$$

$$\leq \int_{-\infty}^{\infty} |\varphi(t) - \varphi(0)| \, \delta(t)dt \leq \int_{|t| > \delta} 2M\delta(t)dt + \varepsilon \int_{|t| < \delta} \delta(t)dt \leq \varepsilon$$

Haciendo $\varepsilon \to 0$ obtenemos la conclusión

La "función" delta, propiedades

"Corolario"

Si $\varphi:\mathbb{R}\to\mathbb{R}$ es continua y acotada, entoces

$$\int_{-\infty}^{\infty} \varphi(t)\delta(x-t)dt = \varphi(x).$$

Consecuentemente

$$\varphi(t)\delta(x-t) = \varphi(x)\delta(x-t) \tag{2}$$

Otros intentos de definición de delta

Dirac:

$$\delta(t) = egin{cases} \infty, & t = 0 \ 0, & t
eq 0 \end{cases}, \quad ext{y} \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

Kirchoff:

$$\delta(t) = \lim_{n \to \infty} \frac{n}{\sqrt{\pi}} e^{-n^2 t^2}$$

Heaviside:

$$\delta(t) = rac{d H(t)}{dt}, \quad ext{donde } H(t) = egin{cases} 1, & t > 0 \ 0, & t < 0 \end{cases}$$

L. Schwartz. Para la matemática actual δ es una medida un objeto dentro del conjunto de las funciones generalizadas o distribuciones.

Función de Green definición

Definición [Función de Green]

Se llama función de Green (o función de Green de dos puntos) del problema inhomogéneo (3) a la solución G(x, s) correspondiente a un término inhomogéneo impulsivo:

$$\begin{cases} L_{\mu}[G] := L[G] + \mu rG = \delta(x - s) \\ a_1 G(a, s) + a_2 G_x(a, s) = 0, \\ b_1 G(b, s) + b_2 G_x(b, s) = 0 \end{cases}$$
(3)

Eiercicio

Si λ_n y ϕ_n son respectivamente la sucesión de autovalores de L y sus correspondientes autofunciones ortonormales, y si $\mu \neq \lambda_n$, $n=1,2,\ldots$, entonces

$$G(x,s) = \sum_{n=1}^{\infty} \frac{\phi_n(x)\phi_n(s)}{\lambda - \lambda_n}.$$

Solución del problema no homogéneo

Corolario

$$G(x, s) = G(s, x).$$

Corolario

Si λ no es autovalor de L la única solución del problema inhomogéneo (3) es, para cualquier f(x),

$$y(x) = \int_a^b G(x, s) f(s) ds,$$

Demostración. Como B[u, a] es lineal en u:

$$B[y, a] = \int_a^b B[G(x, s), a] f(s) ds = 0.$$

Lo mismo se hace con B[u, b].

Solución del problema no homogéneo

Por la linealidad del operador L_{μ} tenemos:

$$L_{\mu}[y](x) = \int_a^b L_{\mu}[G]f(s)ds = \int_a^b \delta(x-s)f(s)ds = f(x).$$

El razonamiento tiene algunos pasos que demandarían una justificación mejor

Solución del problema no homogéneo

Otro razonamiento también incompleto pero esclarecedor desde otro ángulo.

Tomamos una partición P de [a,b], $a=t_0 < t_1 < \ldots < t_n = b$ y aproximamos $f \approx f_P$ donde

$$f_P(t) = f(t_i),$$
 cuando $t \in [t_i, t_{i+1}].$

Si H es la función de Heaveside

$$egin{aligned} f_P(t) &= \sum_{i=0}^{n-1} f(t_i) (H(t-t_i) - H(t-t_{i+1})) pprox \sum_{i=0}^{n-1} f(t_i) \left. rac{dH}{ds}
ight|_{s=t-t_i} (t_{i+1}-t_i) \ &= \sum_{i=0}^{n-1} f(t_i) \delta(t-t_i) (t_{i+1}-t_i) = \sum_{i=0}^{n-1} f(t_i) L_\mu [G(t,t_i)] (t_{i+1}-t_i) \ &= L_\mu \left[\sum_{i=0}^{n-1} f(t_i) G(t,t_i) (t_{i+1}-t_i)
ight] pprox L_\mu [y] \end{aligned}$$

Ejemplo función de Green

Ejercicio

Demostrar que la función de Green de

$$y'' + \lambda y = f(x), \quad y(0) = y(\ell) = 0,$$

es

$$G_{\lambda}(x,s) = \frac{2}{\ell} \sum_{n=1}^{\infty} \frac{\sin n\omega x \sin n\omega s}{\lambda - n^2 \omega^2}, \quad \omega = \frac{\pi}{\ell}.$$

Función de Green, caracterización

Teorema

Supongamos que μ no es un valor propio del correspondiente problema homogéneo de (3). Sean y_1 e y_2 dos soluciones del problema homogéneo, tales que cada una de ellas satisface una de las dos condiciones de contorno (pero no la otra),

$$L_{\mu}[y_1] = 0$$
, $a_1y_1(a) + a_2y'_1(a) = 0$, $b_1y_1(b) + b_2y'_1(b) \neq 0$
 $L_{\mu}[y_2] = 0$, $b_1y_2(b) + b_2y'_2(b) = 0$, $a_1y_2(a) + a_2y'_2(a) \neq 0$

Función de Green, caracterización

Teorema (continación)

- y_1 e y_2 son linealmente independientes, $W(x) = W[y_1, y_2] \neq 0$.
- $oldsymbol{o}$ p(x)W(x) es constante.
- O La función de Green del problema es

$$G(x,s) = \begin{cases} \frac{y_1(x)y_2(s)}{p(s)W(s)}, & \text{para } a \le x \le s, \\ \frac{y_1(s)y_2(x)}{p(s)W(s)}, & \text{para } s \le x \le b. \end{cases}$$

• La función de Green es continua, pero su derivada tiene un salto de valor 1/p(s) en x=s:

$$G_{\lambda}(s+0,s) = G_{\lambda}(s-0,s), \quad G'_{\lambda}(s+0,s) - G'_{\lambda}(s-0,s) = \frac{1}{p(s)}.$$

- 1) y_1 e y_2 son linealmente independientes Si $y_1 = ky_2$, y_1 satisfacería ambas condiciones y esto contradice que μ no es un valor propio.
- 2) p(x)W(x) es constante

$$[pW]' = [p(y_1y_2' - y_1y_2)]' = y_1(py_2')' - y_2(py_1)'$$

= -y_1(q + \mu r)y_2 + y_2(q + \mu r)y_1 = 0.

4) G es continua. Sigue de la definición que:

$$G(s+0,s) = G_{\lambda}(s-0,s) = \frac{y_1(s)y_2(s)}{p(s)W(s)}.$$

Luego G es continua.

4) G_x tiene un salto. Para la derivada,

$$G_{x}(x,s) = \begin{cases} \frac{y_{1}'(x)y_{2}(s)}{p(s)W(s)}, & \text{para } a \leq x \leq s, \\ \frac{y_{1}(s)y_{2}'(x)}{p(s)W(s)}, & \text{para } s \leq x \leq b. \end{cases}$$

se obtiene

$$G'_{\lambda}(s+0,s) - G'_{\lambda}(s-0,s) = \frac{y_1(s)y'_2(s) - y'_1(s)y_2(s)}{p(s)W(s)} = \frac{1}{p(s)}$$

3) fórmula. Se puede escribir usando H función de Heaveside

$$G(x,s) = \frac{y_1(x)y_2(s)H(s-x) + y_1(s)y_2(x)H(x-s)}{p(s)W(s)}$$

$$G_{x}(x,s) = \frac{y'_{1}(x)y_{2}(s)H(s-x) + y_{1}(s)y'_{2}(x)H(x-s)}{p(s)W(s)}$$

Para la segunda derivada

$$\begin{split} G_{xx}(x,s) &= \frac{y_1''(x)y_2(s)H(s-x) + y_1(s)y_2''(x)H(x-s)}{p(s)W(s)} \\ &+ \frac{[y_1(s)y_2'(x) - y_1'(x)y_2(s)]\delta(x-s)}{p(s)W(s)} \\ &= \frac{y_1''(x)y_2(s)H(s-x) + y_1(s)y_2''(x)H(x-s)}{p(s)W(s)} \\ &+ \frac{y_1(x)y_2'(x) - y_1'(x)y_2(x)}{p(x)W(x)}\delta(x-s) \\ &= \frac{y_1''(x)y_2(s)H(s-x) + y_1(s)y_2''(x)H(x-s)}{p(x)W(x)} + \frac{1}{p(x)}\delta(x-s) \end{split}$$

Entonces

$$L_{\mu}[G(x,s)] = p(x)G_{xx} + p'(x)G_{x} + (q + \mu r)G$$

$$\delta(x-s) + \frac{p(x)y_{1}''(x)y_{2}(s)H(s-x) + p(x)y_{1}(s)y_{2}''(x)H(x-s)}{p(s)W(s)} + \frac{p'(x)y_{1}(x)y_{2}(s)H(s-x) + p'(x)y_{1}(s)y_{2}'(x)H(x-s)}{p(s)W(s)} + \frac{(q + \mu r)y_{1}(x)y_{2}(s)H(s-x) + (q + \mu r)y_{1}(s)y_{2}(x)H(x-s)}{p(s)W(s)} = \delta(x-s)$$

Es facil ver que se cumplen las condiciones de contorno

Ejemplo

Demostrar que cuando $\mu=0$ en el ejercicio anterior

$$G_{\lambda}(x,s) = egin{cases} rac{x(s-\ell)}{\ell}, & ext{para } 0 \leq x \leq s \ rac{s(x-\ell)}{\ell}, & ext{para } s \leq x \leq \ell \end{cases}$$

Fórmulas para π Comparando con la representación previa de G deducir

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8},$$
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} = \frac{\pi}{4}.$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} = \frac{\pi}{4}.$$