

Ayudantía 12 Estructuras Algebraicas

Profesor: Pedro Montero Ayudante: Sebastián Fuentes

13 de junio de 2023

Problema 1. Sea \mathbb{K} un cuerpo y V, W \mathbb{K} -espacios vectoriales. Construya una aplicación lineal inyectiva

$$\Phi: V^* \otimes_{\mathbb{K}} W \longrightarrow \operatorname{Hom}(V, W)$$

Determine cuándo esta aplicación es un isomorfismo.

Problema 2. El objetivo de este problema es estudiar cómo interactúa el producto tensorial de módulos con el producto y suma directa. Consideremos entonces A un anillo y M un A-módulo y $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ una colección arbitraria de A-módulos.

1. Demuestre que la suma directa conmuta con el producto tensorial, ie,

$$M \otimes_A \left(\bigoplus_{\lambda \in \Lambda} N_{\lambda} \right) \cong \bigoplus_{\lambda \in \Lambda} \left(M \otimes_A N_i \right)$$

2. Considere $M=\mathbb{Z}, N_i=\mathbb{Z}/2^i\mathbb{Z}$ con $i\in\mathbb{N}^{\geq 1}$ y muestre que en este caso el producto tensorial y el producto directo no conmutan.

Problema 3. El objetivo de este problema es comprender un caso en que el producto tensorial es 0, y encontrar condiciones bajo las cuales esto no sucede. El siguiente punto da un ejemplo de esta situación.

1. Sea A un anillo y $\mathbb{K} = \operatorname{Fr}(A)$ su cuerpo de fracciones. Muestre que $(\mathbb{K}/A) \otimes_A (\mathbb{K}/A) = 0$.

La meta a continuación es probar el siguiente criterio: si A es un anillo local y sean M, N A-módulos finitamente generados. Demuestre que si $M \otimes_A N = 0$ entonces M = 0 o bien N = 0. Para ello siga los siguientes pasos.

- 2. Sea \mathfrak{m} el ideal maximal de A. Utilice la exactitud del producto tensorial para demostrar que existe un morfismo sobreyectivo $M \otimes_A N \twoheadrightarrow (M/\mathfrak{m}M) \otimes_A (N/\mathfrak{m}N)$ y deduzca que $(M/\mathfrak{m}M) \otimes_A (N/\mathfrak{m}N) = 0$.
- 3. Denote por $\mathbb{K} = A/\mathfrak{m}$ el cuerpo residual de A. Use la propiedad universal del producto tensorial para concluir que $(M/\mathfrak{m}M) \otimes_{\mathbb{K}} (N/\mathfrak{m}N) = 0.$
- 4. Concluya empleando el Lema de Nakayama.

Problema 4. El objetivo de este problame es introducir el álgebra tensorial de un A-módulo y probar propiedades básicas. Sea A-anillo y M un A-módulo. Para cada $k \in \mathbb{N}^{\geq 1}$ definimos la k-ésima potencia tensorial de M como $\mathcal{T}^k(M) := M \otimes M \otimes \cdots \otimes M$ donde hay k factores. Definimos el álgebra tensorial de M como:

$$\mathcal{T}(M) := \bigoplus_{k=0}^{\infty} \mathcal{T}^k(M)$$

donde por convención definimos $\mathcal{T}^0(M) := A$.

- 1. Muestre que $\mathcal{T}(M)$ es una A-álgebra tal que $\mathcal{T}^i(M)\mathcal{T}^j(M) \subset \mathcal{T}^{i+j}(M)$.
- 2. (Propiedad Universal) Demuestre que para toda A-álgebra B y todo morfismo de A-módulos $\varphi: M \to B$, existe un único morfismo de A-álgebras $\Phi: \mathcal{T}(M) \to B$ tal que $\Phi|_M = \varphi$.
- 3. (Functorialidad) Sea $\varphi: M \to N$ morfismo de A-módulos. Pruebe que existe un único morfismo de A-álgebras $\mathcal{T}(\varphi)$ tal que el siguiente diagrama es conmutativo:

MAT214 UTFSM

$$M \xrightarrow{\varphi} N$$

$$\downarrow i_{M} \qquad \downarrow i_{N}$$

$$\mathcal{T}(M) \xrightarrow{\mathcal{T}(\varphi)} \mathcal{T}(N)$$

y más aún, si $\psi: N \to P$ es otro morfismo de A-módulos entonces $\mathcal{T}(\psi \circ \varphi) = \mathcal{T}(\psi) \circ \mathcal{T}(\varphi)$.