305 Lecture 48 - Two Basic Results

Brian Weatherson

August 3, 2020

• To go over two fundamental results in modal logic.

 $\boldsymbol{\cdot}$ Boxes and Diamonds, section 3.4.

These two claims are equivalent.

- 1. □*A*
- 2. ¬ ♦ ¬A

These two claims are equivalent.

- 1. □*A*
- 2. ¬ ♦ ¬A

From 1 to 2: If $\Box A$ is true at x, then A is true for all y such that xRy. That means there is no y such that xRy and A is not true. That means there is no y such that xRy and $\neg A$ is true. That means $\Diamond \neg A$ is not true at w. That means $\neg \Diamond \neg A$ is true at x.

These two claims are equivalent.

- 1. □*A*
- 2. ¬ ♦ ¬A

These two claims are equivalent.

- 1. □*A*
- 2. ¬ ♦ ¬A

From 2 to 1: If $\neg \diamondsuit \neg A$ is true at x, then $\diamondsuit \neg A$ is not true at w. So there is no world y such that xRy and $\neg A$ is true at y. So at all worlds y such that xRy, $\neg A$ is not true. So at all worlds y such that xRy, A is true. So $\Box A$ is true at x.

These two claims are also equivalent, though I will not prove this.

- 1. *♦A*
- 2. ¬ □ ¬A

Normality

This sentence is also true no matter what the model looks like, and no matter what sentence A is.

$$\Box(A \to B) \to (\Box A \to \Box B)$$

- Assume it is false at w.
- · So $\square(A \to B)$ is true at w and $(\square A \to \square B)$ is false at w.
- So $\square A$ is true at w and $\square B$ is false at w.
- So at every where y such that wRy, A must be true (since $\square A$ is true at w), and $A \to B$ must be true (since $\square (A \to B)$ is true at w).
- If A and $A \rightarrow B$ are true at y, B must be true at y as well.
- But this implies that B is true all y such that wRy, contradicting the assumption that $\Box B$ is false at w.

Normality

This principle has a very important role in the history of modal logics.

$$\Box(A \to B) \to (\Box A \to \Box B)$$

Having this be an axiom is one of two conditions on what have come to be called **normal** modal logics.

