

Diese "stärksten Farben" sind die Farben din mindestens eine Komponente 0 und mindestens eine Komponente 1 haben (Farben ohne Grau/Weiß/Schwarz-Anteil).

0.0.1 Farbsechseck bzw. Farbkreis

- Die Punkte auf diesem Sechseck werden häufig durch einen Winkel $(0^{\circ} 360^{\circ})$ parametrisiert.
- Startpunkt willkürlich ($R = 0^{\circ}, Y = 60^{\circ}, ...$)
- Dieser Parameter heißt "Farbton", "Unbuntart" (engl. hue (H)).

$$\begin{split} 40^{\circ} \text{ entspricht dann } \frac{1}{3} \cdot R + \frac{2}{3} \cdot Y \left(\frac{1}{3} \cdot 0^{\circ} + \frac{2}{3} \cdot 60^{\circ} \right) \\ &= \frac{1}{3} \cdot (1,0,0) + \frac{2}{3} \cdot (1,1,0) = \left(1, \frac{2}{3}, 0 \right) \end{split}$$

Wir erhalte ein neues Farbsystem HSV

0.0.2 Andere Farbsysteme

HSV-System

hue (Farbton) $0^{\circ} \le H \le 360^{\circ}$

saturation (Sättigung) $0 \le S \le 1$

value (\approx Helligkeit) $0 \le B \le 1$

V=1 sind die Farben auf den drei Deckseiten des Würfels: mindest einer der drei Werte ist 1

$$max(r, g, b) = 1$$

Umrechnung HSV \rightarrow RGB:

$$\begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix} \text{sei die reine Farbe, die } H \text{ entspricht.}$$

$$\begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} = S \begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix} + (1 - S) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
Ergebnis
$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = V \begin{pmatrix} r' \\ g' \\ b' \end{pmatrix}$$

Umrechnung RGB \rightarrow HSV

$$V = \max(r, g, b)$$

$$\begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} = \begin{pmatrix} r \\ g \\ b \end{pmatrix} \cdot \frac{1}{V}$$

$$S = 1 - \min(r', g', b')$$

$$\begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} - (1 - S) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \frac{1}{S}$$

reine Farbe \rightarrow Umwandlung in H

$$\begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix}$$
ist tatsächlich eine reine Farben

1. Wir wissen $\max(r',g',b')=1$ z. B. r'=1

$$r'' = [1 - (1 - S)1] \cdot \frac{1}{S} = S\frac{1}{S} = 1$$

2. Nehmen wir nun an (r', g', b') = g' = 1 - S

$$g'' = [g' - (1 - S)1] \cdot \frac{1}{S} = [-1 + S + 1 - S] \frac{1}{S} = 0$$

Für V=0 setze S,H beliebig.

Für $V \neq 0$, S = 0, setze H beliebig.

Nachteil:

$$R = (1, 0, 0)$$

$$Y = (1, 1, 0)$$

$$W = (1, 1, 1)$$

habe ndenselben V-Wert.

HSL-System

hue (Farbton) $0^{\circ} \le H \le 360^{\circ}$

saturation (Sättigung) $0 \le S \le 1$

lightness (oder "luminance") $L = \frac{1}{2}$ enthält das reine Farbensechseck und den Graupunkt $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

Umrechnung $HSL \rightarrow RGB$:

$$\begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix} \text{ sei die reine Farbe, die } H \text{ entspricht.}$$

$$\begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} = S \begin{pmatrix} r'' \\ g'' \\ b'' \end{pmatrix} + (1 - S) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\text{Für } 0 \leq L \leq \frac{1}{2} : \begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} \cdot 2L$$

$$\text{Für } \frac{1}{2} \leq L \leq 1 : \begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} r' \\ g' \\ b' \end{pmatrix} \cdot (2 - 2L) + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot (2L - 1)$$

S=1Farben auf allen 6 Seitenflächen des Würfels

0.1 Subtraktive Farbmischung (z. B. beim Drucken)

3 Grundfarben

 $C = \text{cyan}, B, G \text{ wird durch$ $gelassen}, R \text{ wird absorbiert}$

M = magenta, B, R wird durchgelassen, G wird absorbiert

 $Y = \text{gelb}, R, G \text{ wird durch$ $gelassen}, B \text{ wird absorbiert}$

C+M nur Blau bleibt übrig

C + M + Y = schwarz

0.1.1 CMY-System

$$0 \leq C, M, Y \leq 1$$

$$C := 1 - r$$

$$M := 1 - g$$

$$Y := 1 - b$$

0.1.2 CMYK-System (Vierfarbdruck)

Zusätzlich K =schwarz. (Das Schwarz von K wird dunkler als von C+M+Y oder um Druckfarbe zu sparen.)

$$K' := \min(C, M, Y)$$

$$C' := C - K'$$

$$M' := M - K'$$

$$Y' := Y - K'$$

(möglichst viel Farbe durch K ersetzen)

0.2 Gängige Farbdarstellung heutzutage

- 8 Bit pro Farbkanal (r, g, b) ... 24 Bit pro Bildpunkt $\Rightarrow 2^{24} = 16$ Mio. Farben (True Color)
- 4-Kanal-Darstellung (r, g, b, α) α ist für Transparenz:
 - $\alpha=0...$ durch sichtig; Farbe wird vom Hintegrund genommen,
 - $-\ \alpha=1...$ Farbe wird von (r,g,b) bestimmt
 - 0 < α < 1... teilweise transparent
 - \rightarrow 32 bit pro Pixel