Система оценивания проверочной работы

Номер задания	13	14	15	16	17	Итого
Баллы	2	2	2	2	2	10

Решение и указания к оцениванию Баллы Решение. 1) Обозначим $\cos x = t$. Тогда получим уравнение $2t^2 - 3\sqrt{2}t + 2 = 0$, откуда $t = \sqrt{2}$ или $t = \frac{\sqrt{2}}{2}$. Уравнение $\cos x = \sqrt{2}$ не имеет решений, а из 0 уравнения $\cos x = \frac{\sqrt{2}}{2}$ получаем, что $x = \frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; $x = -\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$. 2) С помощью числовой окружности отберём корни, принадлежащие отрезку [-8; -4]Получим числа: $-\frac{9\pi}{4}$; $-\frac{7\pi}{4}$. Otbet: 1) $\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 2) $-\frac{9\pi}{4}$; $-\frac{7\pi}{4}$. Возможно другое решение Обоснованно получены верные ответы в обоих пунктах Дан верный ответ в пункте 1. Ход решения верный для обоих пунктов, но допущена вычислительная ошибка Решение не соответствует ни одному из критериев, перечисленных выше 0

Решение и указания к оцениванию	
Решение.	
Преобразуем левую часть неравенства. Получим:	
$\frac{\left(2x+1\right)^2}{\left(2x+1\right)\left(x-3\right)} \ge 0\;;\; \frac{2x+1}{x-3} > 0\;,\; \text{откуда}\;\; x < -\frac{1}{2}\;\; \text{или}\;\; x > 3\;.$	
Otbet: $\left(-\infty; -\frac{1}{2}\right)$, $\left(3; +\infty\right)$.	
Возможно другое решение	
Обоснованно получен верный ответ	2
Решение доведено до конца, но допущены вычислительные ошибки, с их учётом	1
дальнейшие шаги выполнены верно	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Максимальный балл

Баллы

2

Максимальный балл

Ответ и указания к оцениванию	
Ответ: 1) y	Баллы
Верно построен график функции, и дан верный ответ в пункте 2	2
Верно построен график функции, искомые значения параметра не найдены	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решение и указания к оцениванию

(16)

Решение. В треугольнике ABC проведём высоту AH. Отрезок АН является проекцией наклонной A_1H на плоскость ABC, значит, по теореме о трёх перпендикулярах $A_1H \perp BC$. Таким образом, угол A_1HA является линейным углом двугранного угла между плоскостями и A_1BC . треугольнике ABCпрямоугольном $BC = \sqrt{AB^2 + AC^2} = 10,$ $AH = \frac{AB \cdot AC}{BC} = \frac{6 \cdot 8}{10} = \frac{24}{5}.$ прямоугольного треугольника получаем, что tg $\angle A_1 H A = \frac{A_1 A}{A H} = \frac{15 \cdot 5}{24} = \frac{25}{8}$. Значит, $\angle A_1 HA = \operatorname{arctg} \frac{25}{8}$. Other: $arctg \frac{25}{g}$. Возможно другое решение Обоснованно получен верный ответ Решение в целом верное, но содержит недостатки или вычислительные ошибки Решение не соответствует ни одному из критериев, перечисленных выше 0 (17

Решение и указания к оцениванию	
Решение.	
Пусть $p = 0,1$ – вероятность успешной передачи при одной попытке,	
q = 1 - p = 0,9 — вероятность неудачи. Вероятность того, что потребуется ровно	
две попытки, равна pq , три попытки – pq^2 (два раза не получилось, на третий	
получилось), четыре — pq^3 . Получаем	
$pq + pq^{2} + pq^{3} = pq(1+q+q^{2}) = pq \cdot \frac{1-q^{3}}{1-q} = q(1-q^{3}) = 0,2439.$	
Ответ: 0,2439.	
Возможно другое решение	
Обоснованно получен верный ответ	2
Решение в целом верное, но содержит несущественные недостатки или	1
вычислительные ошибки	
Решение не соответствует ни одному из критериев, перечисленных выше	
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный первичный балл за выполнение работы — 22.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–5	6–11	12–17	18–22