中华人民共和国国家标准 污水综合排放标准

Integrated wastewater discharge Standard GB 8978—1996 代替 GB 8978—88

国家技术监督局 1996.10.4 发布 1998.1.1 实施

为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国海 洋环境保护法》,控制水污染,保护江河、湖泊、运河、渠道、水库和海洋等地面水以及地下水质的良 好状态,保障人体健康、维护生态平衡,促进国民经济和城乡建设的发展,特制定本标准。

1 主题内容与适用范围

1.1 主题内容

本标准按照污水排放去向,分年限规定了69种水污染物最高允许排放浓度及部分行业最高允许排水量。

1.2 适用范围

本标准适用于现有单位水污染物的排放管理,以及建设项目的环境影响评价、建设项目环境保护设施设计、竣工验收及其投产后的排放管理。

按照国家综合排放标准与国家行业排放标准不交叉执行的原则,造纸工业执行《造纸工业水污染物排放标准(GB 3544—92)》,船舶执行《船舶污染物排放标准(GB 3552—83)》,船舶工业执行《船舶工业污染物排放标准(GB 4286—84)》,海洋石油开发工业执行《海洋石油开发工业含油污水排放标准(GB 4914—85)》,纺织染整工业执行《纺织染整工业水污染物排放标准(GB 4287—92)》,肉类加工工业执行《肉类加工工业水污染物排放标准(GB 13457—92)》,合成氨工业执行《合成氨工业水污染物排放标准(GB 13458—92)》,钢铁工业执行《钢铁工业水污染物排放标准(GB 13456—92)》,航天推进剂使用执行《航天推进剂水污染物排放标准(GB 14374—93)》,兵器工业执行《兵器工业水污染物排放标准(GB 14470.1~14470.3—93)和(GB 4274~4279—84)》,磷肥工业执行《磷肥工业水污染物排放标准(GB 15581—95)》,其他水污染物排放均执行本标准。

1

1.3 本标准颁布后,新增加国家行业水污染物排放标准的行业,其适用范围执行相应的国家水污染物行业标准,不再执行本标准。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

GB 3097-82 海水水质标准

GB 3838-88 地面水环境质量标准

GB 8703-88 辐射防护规定

3 定义

- 3.1 污水: 指在生产与生活活动中排放的水的总称。
- 3.2 排水量:指在生产过程中直接用于工艺生产的水的排放量。不包括间接冷却水、厂区锅炉、电站排水。
- 3.3 一切排污单位: 指本标准适用范围所包括的一切排污单位。
- 3.4 其他排污单位:指在某一控制项目中,除所列行业外的一切排污单位。

4 技术内容

- 4.1 标准分级
- 4.1.1 排入 GB 3838III 类水域(划定的保护区和游泳区除外)和排入 GB 3097 中二类海域的污水,执行一级标准。
- 4.1.2 排入 GB 3838 中 IV 、V 类水域和排入 GB 3097 中三类海域的污水,执行二级标准。
- 4.1.3 排入设置二级污水处理厂的城镇排水系统的污水,执行三级标准。
- 4.1.4 排入未设置二级污水处理厂的城镇排水系统的污水,必须根据排水系统出水受纳水域的功能要求,分别执行 4.1.1 和 4.1.2 的规定。
- 4.1.5 GB 3838 中 I、 II 类水域和III类水域中划定的保护区和游泳区, GB 3097 中一类海域, 禁止新建排污口, 现有排污口应按水体功能要求, 实行污染物总量控制, 以保证受纳水体水质符合规定用途的水质标准。
- 4.2 标准值
- 4.2.1 本标准将排放的污染物按其性质及控制方式分为二类。
- 4.2.1.1 第一类污染物,不分行业和污水排放方式,也不分受纳水体的功能类别,一律在车间或车间

处理设施排放口采样,其最高允许排放浓度必须达到本标准要求,(采矿行业的尾矿坝出水口不得视为 车间排放口)。

- 4.2.1.2 第二类污染物,在排污单位排放口采样,其最高允许排放浓度必须达到本标准要求。
- 4.2.2 本标准按年限规定了第一类污染物和第二类污染物最高允许排放浓度及部分行业最高允许排水量,分别为:
- 4.2.2.1 1997年12月31日之前建设(包括改、扩建)的单位,水污染物的排放必须同时执行表1、表2、表3的规定。
- 4.2.2.2 1998年1月1日起建设(包括改、扩建)的单位,水污染物的排放必须同时执行表1、表4、表5的规定。
- 4.2.2.3 建设(包括改、扩建)单位的建设时间,以环境影响评价报告书(表)批准日期为准划分。
- 4.3 其他规定
- 4.3.1 同一排放口排放两种或两种以上不同类别的污水,且每种污水的排放标准又不同时,其混合污水的排放标准按附录 A 计算。
- 4.3.2 工业污水污染物的最高允许排放负荷量按附录 B 计算。
- 4.3.3 污染物最高允许年排放总量按附录 C 计算。

4.3.4 对于排放含有放射性物质的污水,除执行本标准外,还须符合 GB 8703-88 《辐射防护规定》。

表 1 第一类污染物最高允许排放浓度

单位: mg/L

序 号	污 染 物	最高允许排放浓度
1	总汞	0.05
2	烷基汞	不得检出
3	总镉	0.1
4	总铬	1.5
5	六价铬	0.5
6	总砷	0.5
7	总铅	1.0
8	总镍	1.0
9	苯并(a)芘	0.00003
10	总铍	0.005
11	总银	0.5
12	总α放射性	1 Bq/L
13	总β放射性	10 Bq/L

表 2 第二类污染物最高允许排放浓度

(1997年12月31日之前建设的单位) 单位::mg/L

 (2) 日本 (3) 日本 (4) 日本 (5) 日本 (6) 日本 (7) 日本 (8) 日本 (9) 日本 (10) 日本 (1
) —) — —) 400) 600 — —
- 400) 600) 600
400 600 600 600
600 600 —
600
300
1 000
1 000
500
) —
500
5.0
5.0
5.0
5.0
20

续表 2

序号	污染物	适用范围	一级标准	二级标准	三级标准
19	总锌	一切排污单位	2.0	5.0	5.0
20	总锰	合成脂肪酸工业	2.0	5.0	5.0
		其他排污单位	2.0	2.0	5.0
21	彩色显影剂	电影洗片	2.0	3.0	5.0
22	显影剂及氧				
	化物总量	电影洗片	3.0	6.0	6.0
23	元素磷	一切排污单位	0.1	0.3	0.3
	有机磷农药				
24	(以P计)	一切排污单位	不得检出	0.5	0.5
	* 1. 17 # #	医院 *、兽医院及医疗机构含病原体污	500 A 7	1000 / 7	5000 A 7
	粪大肠菌群	水	500 个/L	1000 个/L	5000 个/L
25	数	传染病、结核病医院污水	100 个/L	500 个/L	1000 个/L
	总余氯(采	医院*、兽医院及医疗机构含病原体污水	<0.5**	>3(接触时 间≥1h)	>2(接触 时间 1h)
26	用氯化消毒的 医院污水)	传染病、结核病医院污水	<0.5**	>6.5(接 触时间≥ 1.5h)	>5 接触时 间≥ 1.5h)

注: *指 50 个床位以上的医院

^{**}加氯消毒后须进行脱氯处理,达到本标准。

表 3 部分行业最高允许排水量

(1997年12月31日之前建设的单位)

	1		(1997 中 12 万 31)	1 ~ IN X	
序					最高允许排水量或
号		行	业类别		最低允许水重复利用率
	丰	有色金属系统	选矿		水重复利用率 75%
		其它矿山工业	采矿、选矿、选煤等		水重复利用率 90% (选煤)
	矿	脉 重选			16.0m³/t(矿石)
1		金 浮选			9.0m³/t(矿石)
		选 氰化			8.0m³/t(矿石)
	业	碳浆 碳浆			8.0m³/t(矿石)
2	焦化企	企业(煤气厂)			1.2m³/t(焦炭)
3	有色金	金属冶炼及金	属加工		水重复利用率 80%
	石油爆	东制工业(不包	1括直排水炼油厂)	A	>500 万吨,1.0m³/t(原油)
		深度分类:			250-500 万吨,1.2m³/t(原油)
		料型炼油厂			<250 万吨,1.5m³/t(原油)
		料+润滑油型		В	>500 万吨,1.5 m³/t(原油)
			!+炼油化工型炼油厂		250 —500 万吨, 2.0 m³/t(原油)
4			原油页岩油和石油添加剂		〈250 万吨, 2.0m ³ /t(原油)
	生产基	基地的炼油厂)	C	>500 万吨,2.0m³/t(原油)
					250-500 万吨, 2.5m³/t(原油)
					〈250 万吨,2.5m³/t (原油)
	合成	氯化法生产	烷基苯		200.0m³/t(烷基苯)
5	洗涤 剂工	裂解法生产	烷基苯		70.0m³/t(烷基苯)
	业	烷基苯生产	合成洗涤剂		10.0m³/t (产品)
6	合成用	 旨肪酸工业			200.0m³/t (产品)
7		上产纤维板工	业		30.0m³/t(板)
	制糖	甘蔗制糖			10.0m³/t(甘蔗)
8	工业	甜菜制糖			4.0m³/t (甜菜)
	皮	猪盐湿皮			60.0m³/t(原皮)
	革	牛干皮			100.0m³/t(原皮)
9	工 业	羊干皮			150.0m³/t(原皮)
	发		以玉米为原料		100.0m³/t(酒精)
	酵	酒精工业	以薯类为原料		80.0m³/t(酒精)
	``		以糖蜜为原料		70.0m ³ /t (酒精)
	酿	味精工业			600.0m³/t(味精)
10	造 工 业	啤酒工业(扌	非水量不包括麦芽水部分)		16.0m³/t(啤酒)
11	・				5.0m³/t (产品)
12		 [业(水洗法)		15.0m³/t (硫酸)
ь		7 00.00		t	

续表3

序	行业类别		最高允许排放水量或
号			最低允许水重复利用率
13	苎麻脱胶工业		500m³/t (原麻)或 750m³/t(精干麻)
14	化纤浆粕		本色: 150m³/t(浆)
			漂白: 240m³/t(浆)
15	粘胶纤维工业	短纤维(棉型中长纤维、毛型	300m³/t(纤维)
	(单纯纤维)	中长纤维)	
		长纤维	800m³/t(纤维)
16	铁路货车洗刷		5.0m³/辆
17	电影洗片		5m³/1 000m (35mm 的胶片)
18	石油沥青工业		冷却池的水循环利用率 95%

表 4 第二类污染物最高允许排放浓度

(1998年1月1日后建设的单位)

单位: mg/L

序号	污染物	适 用 范 围	一级标准	二级标准	三级标准
1	pН	一切排污单位	6~9	6 ~ 9	6 ~ 9
2	色度(稀释倍数)	一切排污单位	50	80	_
		采矿、选矿、选煤工业	70	300	_
		脉金选矿	70	400	
3	悬浮物(SS)	边远地区砂金选矿	70	800	·—
		城镇二级污水处理厂	20	30	·—
		其他排污单位	70	150	400
		甘蔗制糖、苎麻脱胶、湿法	20	60	600
		纤维板、染料、洗毛工业			
	五日生化需氧量	甜菜制糖、酒精、味精、皮	20	100	600
4	(BOD_5)	革、化纤浆粕工业			
		城镇二级污水处理厂	20	30	
		其他排污单位	20	30	300
		甜菜制糖、合成脂肪酸、湿	100	200	1000
		法纤维板、染料、选毛、有			
		机磷农药工业			
		味精、酒精、医药原料药、	100	300	1000
	化学需氧量	生物化工、苎麻脱胶、皮革、			
	(COD)	化纤浆粕工业			
5		石油化工工业(包括石油炼	60	120	500
		制)			
		城镇二级污水处理厂	60	120	_
		其他排污单位	100	150	500
6	石油类	一切排污单位	5	10	20
7	动植物油	一切排污单位	10	15	100

续表 4

序号	污染物	适 用 范 围	一级标准	二级标准	三级标准
8	挥发酚	一切排污单位	0.5	0.5	2.0
9	总氰化合物	一切排污单位	0.5	0.5	1.0
10	硫化物	一切排污单位	1.0	1.0	1.0
		医药原料药、染料、石油化工			
11	氨氮	工业	15	50	_
		其他排污单位	15	25	_
		黄磷工业	10	15	20
		低氟地区			
12	氟化物	(水体含氟量<0.5mg/L)	10	20	30
		其他排污单位	10	10	20
13	磷酸盐(以 P 计)	一切排污单位	0.5	1.0	_
14	甲醛	一切排污单位	1.0	2.0	5.0
15	苯胺类	一切排污单位	1.0	2.0	5.0
16	硝基苯类	一切排污单位	2.0	3.0	5.0
17	阴离子表面活性剂				
	(LAS)	一切排污单位	5.0	10	20
18	总铜	一切排污单位	0.5	1.0	2.0
19	总锌	一切排污单位	2.0	5.0	5.0
20	总锰	合成脂肪酸工业	2.0	5.0	5.0
		其他排污单位	2.0	2.0	5.0
21	彩色显影剂	电影洗片	1.0	2.0	3.0
22	显影剂及氧化物总量	电影洗片	3.0	3.0	6.0
23	元素磷	一切排污单位	0.1	0.1	0.3
	有机磷农药				
24	(以P计)	一切排污单位	不得检出	0.5	0.5
25	乐 果	一切排污单位	不得检出	1.0	2.0
26	对硫磷	一切排污单位	不得检出	1.0	2.0
27	甲基对硫磷	一切排污单位	不得检出	1.0	2.0
28	马拉硫磷	一切排污单位	不得检出	5.0	10
	五氯酚及五氯酚钠				
29	(以五氯酚计)	一切排污单位	5.0	8.0	10
	可吸附有机卤化物				
30	(AOX) (以CI计)	一切排污单位	1.0	5.0	8.0
31	三氯甲烷	一切排污单位	0.3	0.6	1.0
32	四氯化碳	一切排污单位	0.03	0.06	0.5
33	三氯乙烯	一切排污单位	0.3	0.6	1.0
34	四氯乙烯	一切排污单位	0.1	0.2	0.5
35	苯	一切排污单位	0.1	0.2	0.5
36	甲苯	一切排污单位	0.1	0.2	0.5
37	乙苯	一切排污单位	0.4	0.6	1.0
38	邻-二甲苯	一切排污单位	0.4	0.6	1.0

续表 4

序号	污染物	适用范围	一级标准	二级标准	三级标准
39	对-二甲苯	一切排污单位	0.4	0.6	1.0
40	间-二甲苯	一切排污单位	0.4	0.6	1.0
41	氯 苯	一切排污单位	0.2	0.4	1.0
42	邻二氯苯	一切排污单位	0.4	0.6	1.0
43	对二氯苯	一切排污单位	0.4	0.6	1.0
44	对硝基氯苯	一切排污单位	0.5	1.0	5.0
45	2,4-二硝基氯苯	一切排污单位	0.5	1.0	5.0
46	苯 酚	一切排污单位	0.3	0.4	1.0
47	间-甲酚	一切排污单位	0.1	0.2	0.5
48	2,4- 二氯酚	一切排污单位	0.6	0.8	1.0
49	2,4,6- 三氯酚	一切排污单位	0.6	0.8	1.0
50	邻苯二甲酸二丁脂	一切排污单位	0.2	0.4	2.0
51	邻苯二甲酸二辛脂	一切排污单位	0.3	0.6	2.0
52	丙烯腈	一切排污单位	2.0	5.0	5.0
53	总硒	一切排污单位	0.1	0.2	0.5
		医院*、兽医院及医疗机	500 个/L	1000 个/L	5000 个/L
54	粪大肠菌群数	构含病原体污水			
		传染病、结核病医院污水	100 个/L	500 个/L	1000 个/L
		医院*、兽医院及医院疗	<0.5**	>3(接触时	>2(接触时
		机构含病原体污水		间≥1h)	间≥1h)
55	总余氯(采用氯化消毒的	传染病、结核病医院污水	<0.5**	>6.5(接触	>5(接触时
	医院污水)			时间≥	间≥1.5h)
				1.5h)	
		合成脂肪酸工业	20	40	_
56	总有机碳(TOC)	苎麻脱胶工业	20	60	_
		其他排污单位	20	30	_

注: 其他排污单位: 指除在该控制项目中所列行业以外的一切排污单位。

^{*}指50个床位以上的医院。

^{**}加氯消毒后须进行脱氯处理,达到本标准。

表 5 部分行业最高允许排水量

(1998年1月1日后建设的单位)

序号	最高允许排水量或			最高允许排水量或	
11, 4		1	」 业 大 別		最低允许水重复利用率
	l —	色金属	系统选矿		水重复利用率 75%
	矿其	它矿山	L业采矿、选矿、选煤等		水重复利用率 90%(选煤)
	山	1	重选	16.0m³/t(矿石)	
1		脉金 🏻	浮选		9.0 m³/t(矿石)
	业 i	先矿 氰	就化		8.0 m ³ /t(矿石)
		瓦	炭浆		8.0 m ³ /t(矿石)
2	焦化金	企业(煤 ^左	[广]		1.2 m ³ /t(焦炭)
3	有色金	È属冶炼	及金属加工		水重复利用率 80%
				A	>500万t, 1.0m³/t(原油)
	石油爆	东制工业	(不包括直排水炼油厂)		250~500万 t,1.2 m³/t(原油)
	加工沒	深度分类	:		<250万 t,1.5 m³/t(原油)
	A. 燃	燃料型炼	油厂	В	>500万 t,1.5 m³/t(原油)
4	В. 燃	燃料十润	滑油型炼油厂		250~500万 t,2.0 m³/t(原油)
			滑油型+炼油化工型炼油厂		<250万 t, 2.0 m³/t(原油)
	(包括)	加工高台	含硫原油页岩油和石油添加剂	С	>500万 t,2.0 m³/t(原油)
	生产基	基地的 炼	油厂)		250~500万 t,2.5 m³/t(原油)
				<250万t, 2.5 m³/t(原油)	
	合成	氯化法	生产烷基苯		200.0 m³/t(烷基苯)
	洗涤	裂解法	生产烷基苯		70.0m³/t(烷基苯)
5	剂工				
	业	烷基苯	生产合成洗涤剂		10.0m ³ /t(产品)
6	合成朋	旨肪酸工	NF		200.0m³/t(产品)
7	湿法生	上产纤维	板工业		30.0m³/t(板)
	制糖	甘蔗制	糖		10.0m³/t(甘蔗)
8	工业	甜菜制	糖		4.0m³/t(甜菜)
	皮	猪盐湿	皮		60.0m³/t(原皮)
	革				
9	工	牛干皮			100.0m³/t(原皮)
	业				
		羊干皮			150.0 m³/t(原皮)
	发		以玉米为原料	100.0 m³/t(酒精)	
	酵	2世 本丰	以薯类为原料	80.0 m³/t(酒精)	
	酸	酒精 工业	以糖蜜为原料		70.0m³/t(酒精)
10	造		以附重		/U.UIII /U(肖有)
10	工	味精工	业		600.0 m³/t(味精)
	业	啤酒行	业(排水量不包括麦芽水部分)	16.0 m³/t(啤酒)	
11		l	各 盐工业		5.0 m³/t(产品)
11			и ш.т.т.		J.O III / I(/ HH)

续表 5

癸衣 3		T	
2- []		C II NO ELI	最高允许排水量或
序号		行业类别	最低允许水重复利用率
12		硫酸工业(水洗法)	15.0 m³/t(硫酸)
		苎麻脱胶工业	500 m ³ /t(原麻)
13			750 m ³ /t(精干麻)
	粘胶纤	短纤维(棉型中长纤维、毛型中	
	维工业	长纤维)	300.0 m³/t(纤维)
14	单纯纤		_
	维	长纤维	800.0 m³/t(纤维)
15	化纤浆粕	,	本色: 150 m³/t(浆);漂白: 240 m³/t(浆)
		青霉素	4700 m³/t(青霉素)
		链霉素	1450 m³/t(链霉素)
		土霉素	1300 m³/t(土霉素)
		四环素	1900 m³/t(四环素)
	制	洁霉素	9200 m³/t(洁霉素)
	药	金霉素	3000 m³/t(金霉素)
	工	庆大霉素	20400 m³/t(庆大霉素)
	业	维生素 C	1200 m³/t(维生素 C)
	医	氯霉素	2700 m³/t(氯霉素)
16	药	新诺明	2000 m³/t(新诺明)
	原	维生素 B ₁	3400 m³/t(维生素 B ₁)
	料	安乃近	180 m³/t(安乃近)
	药	非那西汀	750 m³/t(非那西汀)
		呋喃唑酮	2400 m ³ /t(呋喃唑酮)
		咖啡因	1200 m³/t (咖啡因)
	有*	乐果**	700 m³/t (产品)
	机	甲基对硫磷(水相法)**	300 m³/t(产品)
	磷	对硫磷(P2S5法)**	500 m ³ /t(产品)
17	农	对硫磷(PSCI ₃ 法)**	550 m³/t(产品)
	药	敌敌畏(敌百虫碱解法)	200 m³/t(产品)
	工	敌百虫	40 m³/t(产品)(不包括三氯乙醛生产废水)
	业	马拉硫磷	700 m³/t(产品)
		除草醚	5 m³/t(产品)
		五氯酚钠	2 m³/t(产品)
	除*	五氯酚	4 m³/t(产品)
	草	2 甲 4 氯	14 m³/t(产品)
18	剂	2,4-D	4 m³/t (产品)
	工	丁草胺	4.5 m³/t(广宁 品)
	业	绿麦隆(以 Fe 粉还原)	2 m³/t(产品)
		绿麦隆(以 Na ₂ S 还原)	3 m³/t(产品)
19	火力发电		$3.5 \text{ m}^3/(\text{MW} \cdot \text{h})$
20	铁路货车		5.0 m³/辆
			5.0 m / 泂 5 m³/1000 m (35mm 的胶片)
21	电影洗片		5 m /1000 m (55mm 时成月)

注: *产品按 100%浓度计。

**不包括 P₂S₅、PSCI₃、PCI₃ 原料生产废水。

5 监 测

5.1 采样点

采样点应按 4.2.1.1 及 4.2.1.2 第一、二类污染物排放口的规定设置,在排放口必须设置排放口标志、污水水量计量装置和污水比例采样装置。

5.2 采样频率

工业污水按生产周期确定监测频率。生产周期在8h以内的,每2h采样一次;生产周期大于8h的,每4h采样一次.其他污水采样:24h不少于2次。最高允许排放浓度按日均值计算。

5.3 排水量

以最高允许排水量或最低允许水重复利用率来控制,均以月均值计。

5.4 统计

企业的原材料使用量、产品产量等,以法定月报表或年报表为准。

5.5 测定方法

本标准采用的测定方法见表 6。

表6 测定方法

序号	项 目	测 定 方 法	方法来源
1	总汞	冷原子吸收光度法	GB 7468—87
2	烷基汞	气相色谱法	GB/T 14204—93
3	总镉	原子吸收分光光度法	GB 7475—87
4	总铬	高锰酸钾氧化-二苯碳酰二肼分光光度法	GB 7466—87
5	六价铬	二苯碳酰二肼分光光度法	GB 7467—87
6	总砷	二乙基二硫代氨基甲酸银分光光度法	GB 7485—87
7	总铅	原子吸收分光光度法	GB 7485—87
		火焰原子吸收分光光度法	GB 11912—89
8	总镍	丁二酮肟分光光度法	GB 19910—89
9	苯并(a)芘	纸层析-荧光分光光度法	GB 5750—85
		乙酰化滤纸层析荧光分光光度法	GB 11895—89
10	总铍	活性炭吸附一铬天菁S光度法	1)
11	总银	火焰原子吸收分光光度法	GB 11907—89
12	总 α	物理法	2)
13	总 β	物理法	2)
14	pH 值	玻璃电极法	GB 6920—86

续表6

序号	项目	测 定 方 法	方法来源
15	色度	稀释倍数法	GB 11903-89
16	悬浮物	重量法	GB 11901-89
		稀释与接种法	GB 7488—87
17	生化需氧量(BOD5)	重铬酸钾紫外光度法	待颁布
18	化学需氧量(COD)	重铬酸钾法	GB 11914—89
19	石油类	红外光度法	GB/T 16488-1996
20	动植物油	红外光度法	GB/T 16488-1996
21	挥发酚	蒸馏后用 4-氨基安替比林分光光度法	GB 7490—87
22	总氰化物	硝酸银滴定法	GB 7486—87
23	硫化物	亚甲基蓝分光光度法	GB/T 16489—1996
24	氨氮	蒸馏和滴定法	GB 7478—87
25	氟化物	离子选择电极法	GB 7484—87
26	磷酸盐	钼蓝比色法	1)
27	甲醛	乙酰丙酮分光光度法	GB 13197—91
28	苯胺类	N-(1-萘基)乙二胺偶氮分光光度法	GB 11889—89
29	硝基苯类	还原-偶氮比色法或分光光度法	1)
30	阴离子表面活性剂	亚甲蓝分光光度法	GB 7494—87
31	总铜	原子吸收分光光度法	GB 7475—87
		二乙基二硫化氨基甲酸钠分光光度法	GB 7474—87
32	总锌	原子吸收分光光度法	GB 7475—87
		双硫腙分光光度法	GB 7472—87
33	总锰	火焰原子吸收分光光度法	GB 11911-89
		高碘酸钾分光光度法	GB 11906—89
31	总铜	原子吸收分光光度法	GB 7475—87
		二乙基二硫化氨基甲酸钠分光光度法	GB 7474 - 87
32	总锌	原子吸收分光光度法	GB 7475—87
		双硫腙分光光度法	GB 7472—87
33	总锰	火焰原子吸收分光光度法	GB 11911-89
		高碘酸钾分光光度法	GB 11906—89
34	彩色显影剂	169 成色剂法	3)
35	显影剂及氧化物总量	碘-淀粉比色法	3)
36	元素磷	磷钼蓝比色法	3)
37	有机磷农药(以P计)	有机磷农药的测定	GB 13192—91
38	乐果	气相色谱法	GB 13192-91
39	对硫磷	气相色谱法	GB 13192-91
40	甲基对硫磷	气相色谱法	GB 13192—91
41	马拉硫磷	气相色谱法	GB 13192-91
42	五氯酚及五氯酚钠	气相色谱法	GB 8972-88
	(以五氯酚计)	藏红T分光光度法	GB 9803-88

序号	项目	测 定 方 法	方法来源
43	可吸附有机卤化物	微库仑法	
	(AOX)(以CI计)		GB/T 15959—95
44	三氯甲烷	气相色谱法	待颁布
45	四氯化碳	气相色谱法	待颁布
46	三氯乙烯	气相色谱法	待颁布
47	四氯乙烯	气相色谱法	待颁布
48	苯	气相色谱法	GB 11890— 8 9
49	甲苯	气相色谱法	GB 11890— 8 9
50	乙苯	气相色谱法	GB 11890— 8 9
51	邻-二甲苯	气相色谱法	GB 11890— 8 9
52	对-二甲苯	气相色谱法	GB 11890— 8 9
53	间-二甲苯	气相色谱法	GB 11890— 8 9
54	氯苯	气相色谱法	待颁布
55	邻二氯苯	气相色谱法	待颁布
56	对二氯苯	气相色谱法	待颁布
57	对硝基氯苯	气相色谱法	GB 13194 - 91
58	2,4-二硝基氯苯	气相色谱法	GB 13194 - 91
59	苯酚	气相色谱法	待颁布
60	间-甲酚	气相色谱法	待颁布
61	2,4-二氯酚	气相色谱法	待颁布
62	2, 4, 6-三氯酚	气相色谱法	待颁布
63	邻苯二甲酸二丁酯	气相、液相色谱法	待颁布
64	邻苯二甲酸二辛酯	气相、液相色谱法	待颁布
65	丙烯晴	气相色谱法	待颁布
66	总硒	2,3-二氨基萘荧光法	GB 11902—89
67	粪大肠菌群数	多管发酵法	1)
		N,N-二乙基-1,4-苯二胺分光光法	GB 11898—89
68	余氯量	N,N-二乙基-1,4-苯二胺滴定法	GB 11897—89
		非色散红外吸收法	待制定
69	总有机碳(TOC)	直接紫外荧光法	待制定

- 注: 暂采用下列方法, 待国家方法标准发布后, 执行国家标准。
- 1)《水和废水监测分析方法(第三版)》中国环境科学出版社,1989年。
- 2)《环境监测技术规范(放射性部分)》国家环境保护局。
- 3) 详见附录 D。

6 标准实施监督

- 6.1 本标准由县级以上人民政府环境保护行政主管部门负责监督实施。
- 6.2 省、自治区、直辖市人民政府对执行国家水污染物排放标准不能保证达到水环境功能要求时,可以制定严于国家水污染物排放标准的地方水污染物排放标准,并报国家环境保护行政主管部门备案。

附录A(标准的附录)

关于排放单位在同一个排污口排放两种或两种以上工业污水,且每种工业污水中同一污染物的排放标准又不同时,可采用如下方法计算混合排放时该污染物的最高允许排放浓度。(C_{Re})。

$$(C_{\mathbb{R}^{h}}) = rac{\sum\limits_{i=1}^{n} C_{i}Q_{i}Y_{i}}{\sum\limits_{i=1}^{n} Q_{i}Y_{i}}$$

式中: C 混合 ——混合污水某污染物最高允许排放浓度 mg/L;

- C: ——不同工业污水某污染物最高允许排放浓度 mg/L;
- Q_i ——不同工业的最高允许排水量, m^3/t (产品);

(本标准未作规定的行业,其最高允许排水量由地方环保部门与有关部门协商确定);

Y_i ——分别为某种工业产品产量(t/d,以月平均计)。

附录B (标准的附录)

工业污水污染物最高允许排放负荷计算:

$$L_{\text{fi}} = C \times Q \times 10^{-3}$$

式中: L₅——工业污水污染物最高允许排放负荷, kg/t(产品);

- C——某污染物最高允许排放浓度 mg/L;
- Q——某工业的最高允许排水量, m^3/t 产品。

附录 C (标准的附录)

某污染物最高允许年排放总量的计算:

$$L = L \times Y \times 10^{-3}$$

式中: L : 工产基层染物最高允许年排放量, t/a;

L_负 ——某污染物最高允许排放负荷, kg/t(产品);

Y——核定的产品年产量, t(产品)/a。