Chương 11: Internet thế hệ mới

Dự án HEDSPI Khoa CNTT- ĐHBK Hà Nội

Giảng viên: Ngô Hồng Sơn Bộ môn Truyền thông và Mạng máy tính

- Tuần trước :
 - Security
 - Multimedia communication
- Tuần này: Next Generation Internet
 - IPv6
 - Mobile Internet Communication, Ad-hoc network
 - Optical network

IPv6

Vấn đề của IPv4

- Cạn kiệt địa chỉ IP
- Hạn chế của việc sử dụng NAT?

- Internet live
- Online game
- Image/sound communication

Sự khác nhau giữa IPv6 và IPv4

- Mơ rộng không gian địa chỉ
 - 32 bits -> 128 bits
 - 32 bits : bao nhiêu địa chỉ?????
 - 128bit: ????
 340,282,366,920,938,463,463,374,607,431,768,211,456
- Cấu trúc địa chỉ
 - Sự phân cấp
 - Khái niệm phạm vi (scope)
 - Phân lớp địa chỉ

Sự khác nhau giữa IPv6 và IPv4 (cont.)

- Tăng tốc độ
 - Khuôn dạng header đơn giản hơn
 - Ít trường hơn
 - Độ dài cố định
 - Bổ checksum
 - Không phân mảnh gói tin
- Tính năng thời gian thực và QoS
 - Flow label
 - Traffic class
- Về an toàn an ninh
 - Sử dụng IPsec như một chuẩn

Tăng tốc xử lý

- Không phân mảnh gói tin tại router trung gian
 - Giảm tải tại router
 - Minimum packet size (MTU)
 - Path MTU Discovery
- Khuôn dạng header đơn giản hơn
 - Bổ bớt các trường ít sử dụng
 - Độ dài cố định
 - Không checksum

Path MTU Discovery

- Tìm hiểu giá trị nhỏ nhất của MTU trước khi truyền
- MTU?
 - Ethernet 1500
 - IP over ATM 9180
 - PPPoE 1492

Packet size based on the smallest MTU through the route

The intermediate routers transmit data regardless MTU.

Lower processing load

IPv6 – Hướng tới một Internet hoàn hảo hơn?

- Không thiếu địa chỉ
 - Sử dụng liên kết End-to-End
- Một số tính năng cho các ứng dụng mới
 - Multicast
 - IPsec
 - Mobile IP
- Tự động cấu hình
 - Chuẩn hóa cơ chế tự động cấu hình
 - Đánh số lại số hiệu các mạng

Version (4bit)	Header length (4bit)	Type of service (TOS) (8bit)	Total length (byte unit) (16bit)			
Identification (16bit)			Flags Fragment offset (3bit) (13bit)			
Time To (8bi		Protocol (8bit)	Header checksum (16bit)			
Source address (32bit)						
	Destination address (32bit)					
(options) (not specify size) (padding)				(padding)		
Data						

11

IPv6 header format: Đơn giản hơn

Version (3bit)	Traffic Class (9bit)		Flow Label (20bit)		
Payload Length (16bit)			Next Header (8bit)	Hop Limit (8bit)	
	Source address (128bit)				
	Destination address (128bit)				
Extension Header (not specify size)					
	Data				

IPv4 header vs. IPv6 header

Trong IPv6, option headers đặt trong phần body

- •Hop-by-Hop Option Header
- Destination option header
- Routing header
- •Fragment header
- Authentication header
- Encryption header
- Destination option header (final)

IPv6 Hea	der ⁻	ГСР	Header
----------	------------------	-----	--------

Next Header	
= TCP	

IPv6 Header EXT Header TCP Header

Next Header = EXT	Next Header = TCP	
----------------------	-------------------	--

Cấu trúc địa chỉ IPv6

Cấu trúc địa chỉ Cách biểu diễn Kiểu địa chỉ Phạm vi

- 128 bit, biểu diễn bởi số hệ 16
- Phân cách ":" giữa các nhóm gồm 4 số hexa
 - 3ffe:501:100c:e320:2e0:18ff:fe98:936d
- Bỏ qua chuỗi liên tiếp các số 0
 - 3ffe:501:100c:e320:0:0:0:1 →

3ffe:501:100c:e320::1

Cấu trúc địa chỉ IPv6

- 2 phần: Network prefix và Interface ID
- Network prefix (upper n bit) (64)
- Host ID (lower "128-n" bit) (64)
 - Chuẩn EUI-64 (extended unique identifier)
 - Trong trường hợp mạng Ethernet, Host ID được suy ra từ địa chỉ MAC

Cấu trúc địa chỉ IPv6 (RFC3587) **Entire IPv6 Network User Network** Subnet 2 Subnet 1 Subnet 3 Global routing Subnet Interface prefix ID ID 64bit 64bit

Kí hiệu địa chỉ IPv6

2001:0200:0000:8002

64-bit Network prefix

0202:4755:5ea5:3085

64-bit Interface ID

• 2001:0200:0000:8002:0202:4755:5ea5:3085

→2001 : 200 : 0000 : 8002 : 202 : 4755 : 5ea5 : 3085

→2001 : 200 : : 8002 : 202 : 4755 : 5ea5 : 3085

• Độ dài phần mạng chỉ ra sau ký tự "/"

• 2001 : 200 :: 8002 : 202 : 4755 : 5ea5 : 3085/64

- Unicast Address
 - Một địa chỉ duy nhất
- Anycast Address
 - Địa chỉ bất kỳ trong một nhóm địa chỉ
- Multicast Address
 - Một nhóm các địa chỉ

- Địa chỉ toàn cục (global)
- Địa chỉ liên kết nội bộ (link-Local)
 - Effective only in the same link
 - fe80::1
- Địa chỉ vùng nội bộ (site-local)
 - Unique Local Address
 - fc00::1000:0:0:0:1

- Bước 1
 - Bước khởi đầu
 - Dùng IPv6 trong 1 số mạng
- Bước 2
 - Mơ rộng
 - Sử dụng đồng thời IPv4 và IPv6
- Bước 3
 - Kết thúc
 - IPv4 sẽ không được sử dụng nữa

Bước 1

- Bước đầu sử dụng IPv6
 - Trong 1 số thiết bị
 - Bởi 1 số ISP
 - Một số ứng dụng cơ bản (http, mail etc...)
- IPv6: Giai đoạn hiện nay
- Giải pháp
 - IPv6 over IPv4 tunneling

Bước 2

- Mở rộng
 - Triển khai các dịch vụ chỉ sử dụng IPv6
 - Trong tất cả các mạng máy tính
 - Cân bằng giữa tình trạng của IPv4 và IPv6
- Cần có công nghệ chuyển đổi
 - Gateway giữa IPv4 và IPv6

- Kết thúc
 - Chỉ 1 số ít mạng sử dụng IPv4
- Cần có "IPv4 over IPv6 tunneling"

- Công nghệ cho phép đóng gói và truyền các gói tin trong các gói tin khuôn dạng khác
 Ví dụ:
 - IPv6 over IPv4 tunneling
 - IPv4 over IPv6 tunneling
- Đóng gói
 - Thêm phần đầu của giao thức được sử dụng để truyền tin và đặt toàn bộ gói tin được đóng gói vào phần dữ liệu

IPv6 over IPv4 tunnel IPv6 header In router A, IPv4 header will be deleted and sent to the address of IPv6 packet Router A IPv4 network IPv4 header<mark>IPv6 header</mark> Router B <mark>IPv6 header</mark> IPv6 packet is handled as a payload of IPv4 packet which was sent from router B to router A

Chuyển đổi - Translator

- Chuyển dữ liệu giữa mạng IPv4 và IPv6
 - Kỹ thuật NAT (NAT-PT)
 - Gateway ứng dụng
 - TCP Relay
 - Nút trung gian cài đặt cả hai giao thức IPv4 và IPv6
 để tạo liên kết TCP

IPv6: Hiện trạng

- Hỗ trợ bởi hầu hết các HĐH
 - Windows XP, BSD system OS, Linux (Usagi-patch)
- Các ứng dụng
 - HTTP server (Apache)
 - Browser (IE, Mozilla)
 - MTA (sendmail)
 - MUA (Edmax, Sylpheed)
 - SSH
 - FTP
 - Multimedia player (Video Lan Client)

Sản phẩm phần cứng

- YAMAHA RTX1000
 - Entry router
 - Price: about 76,000 JPY
- Fujitsu FMWBR-102
 - Wireless broadband router
 - Price: about 20,000 JPY
- Allied Telesis AR410 V2
 - ISDN & broadband router
 - Price: about 45,000 JPY

http://netvolante.jp/products/rtx1000/index.html

http://www.fmworld.net/product/hard/ocr/fmwbr102/

http://www.allied-telesis.co.jp/products/list/router/ar410v2/catalog.html

Hiện trạng quá trình chuyển sang IPv6

http://www.ipv6style.jp/jp/statistics/address_by_country/index.shtml

- IPv6 là giao thức tầng mạng nhằm khắc phục các hạn chế của IPv4
 - Larger address space
 - Auto-configuration of hosts
 - Security
- Quá trình chuyển đổi
 - Tunneling
 - Translator

Truyền thông di dộng trên Internet

Tiến tới một thế giới "Không dây"

- Đặc điểm của mạng Internet thế hệ mới
 - Mobility support
 - MobileIP, MANET...
 - Wireless access
 - IEEE802.11, 802.16e, 802.20
 - Scalability
 - IPv6
- Sự thay đổi của Internet
 - Automobile : 800 million
 - Mobile phone: 1.5 billion

Mobile/ Wireless là xu hướng hiện nay.

Wireless MAN 802.16e, 802.20, iburst

Wireless LAN 802.11 a/b/g/n

Wireless PAN 802.15.1(Bluetooth), 802.15.3a(UWB), 802.15.4(Zigbee)

Sự phổ biến của các thiết bị di động

- Mobile phone sẽ trở nên phổ biên: 70% hỗ trợ Internet
- 1/10 số xe có trang bị thiết bị dẫn đường
 - Navigation Internet
 - Các dịch vụ: G-BOOK, CARWINGS, InterNAVI, etc.
- Tương lai: "Internet while moving"

Vehicle Information and Communication System

Mạng Ad-hoc

Ứng dụng tương lai của mạng máy tính?

- Thiết lập một mạng là một công việc không dễ dàng
 - Ví dụ?

- Có thể thiết lập một mạng máy tính ngay lập tức?
 - Trong trường hợp khẩn cấp
 - Các robot cứu trợ cho vùng thảm họa
 - Phòng họp/một nhóm sinh viên có laptop

Mobile Ad-hoc Network (MANET)?

- Mobile: Hình trạng mạng có thể thay đổi
 - Các nút có thể di chuyển
- Ad-hoc: Hình trạng của mạng được thiết lập tùy ý
 - Không có hạ tầng
 - Không server, Không Access Point, etc
- NETwork: Tất cả các nút đều có chức năng router

Các nút trung gian hoạt động như router

Thay đổi của Internet

- Trong mạng thế hệ mới, tất cả đều nối trực tiếp vào
 Internet
 - Mobile phone, vehicle (Automobile, airplane, bus, bicycle), sensor, robot, clock, etc...
- Các chính sách routing hiện thời sẽ không còn thích hợp
 - Hình trạng mạng thường xuyên thay đối
 - Cấp phát địa chỉ IP từ một ISP cơ sở sẽ có vấn đề

Khái niệm mới về phân cấp Internet

- Kết nối là giữa các nút lá ()
- Cây kết nối có thể thay đổi

Sự cần thiết của mạng Ad học

- Do sự phát triển của các thiết bị
 - PC, PDA, Sensor
- Sự hỗ trợ của hạ tầng truyền thông di động
- Các công nghệ không dây
- Mạng Ad hoc được sử dụng:
 - Sensor network, Cars network, road-to-vehicle network, Military network, Robot network

Các ứng dụng

- Ở các vùng thảm họa
- Mang robot
 - AIBO, SDR3X, ASIMO
- Personal area network (PAN)
- Giao thông
 - Mang Car-to-car
 - Mang Road-to-car
- Trong quân đội
 - Liên lạc giữa các thành viên, thiết bị, khí tài...
- Mạng cảm biến
 - Thu thập thông tin về môi trường...

Tóm tắt về mạng ad học

- Hỗ trợ nhiều thiết bị
 - Có khả năng tính toán và truyền thông
 - PDA, laptop, mobile phone, sensor, automobile, etc.
- Hình trạng mạng thay đổi
 - Không có router tĩnh, các nút đều tham gia vào quá trình chọn đường
- Là một dạng của khái niệm "Mạng tự trị" autonomous
 - Tự động thiết lập chọn đường
 - Tự động cấu hình địa chỉ, etc.

- Là mạng trục của Internet tương lai
 - SONET, SDH
 - WDM, DWDM
 - IP over WDM
 -

 This course materials contains charts and texts provided by Keio University, Japan