Lecture 2 – Part 4 Programming PLC

Set - Reset for PLC

Edge Detection for PLC

Set Output or Reset Output Instruction

- "Set Output" instruction set the signal state of a specified operand to "1"
- "Reset Output" instruction reset the signal state of a specified operand to "o"

When "SensorA" AND "SensorB" = 1, Set Output of "Tag_1 would be activated, "Tag_1" bit would be set (=1) and remains ON

When "Startb" = 1, Reset Output of "Tag_1" would be activated, "Tag_1" bit would reset (= 0)

Set-Reset Reset-Set Flip Flops

Parameters	Declaration	Data Type	Description
S or S1	Input	BOOL	Enable Setting
R or R1	Input	BOOL	Enable Resetting
<operand></operand>	InOut	BOOL	Operand that is set or reset.
Q	Output	BOOL	Signal state of the operand

- Set-Reset Flip Flop or Reset-Set Flip Flops are Functions that set or reset the specified operand
- Functions (FC) codes that do not store memory (Do Not Declare instance)
- · Note: Function Blocks (FB) stores memory in DB as an instance

Set-Reset Reset-Set Flip Flops

- "Scan operand for positive signal edge" instruction determine if there is a "o" to "1" state of specified operand (<Operand1>)
- Compares the current signal state of <Operand1> with the signal state of the previous scan, which is saved in an edge memory bit (<Operand2>)
- Instruction detects change "o" to "1", positive rising edge detected

Note:

Operand 2 (edge memory bit) shall be defined bit memory as Global Memory %M Edge memory bit address cannot be used more than once in the program Edge memory bit influence the edge evaluation

- "Scan operand for negative signal edge" instruction determine if there is a "1" to "o" state of specified operand (<Operand1>)
- Compares the current signal state of <Operand1> with the signal state of the previous scan, which is saved in an edge memory bit (<Operand2>)
- Instruction detects change "1" to "o", negative signal edge detected

```
%M1.3 <Operand 1>

"Button1"

N |

%M2.4 <Operand 2>

"Memory2"

1 scan cycle
```

Note:

Operand 2 (edge memory bit) shall be defined bit memory as Global Memory %M Edge memory bit address cannot be used more than once in the program Edge memory bit influence the edge evaluation

Positive

Signal

Edge

Click the Quiz button to edit this object

Select the correct statement about the image:

- When "SensorA" AND "SensorB" = 1, "Tag_1" will set (=1) and remain ON regardless of the state of "SensorA" AND "SensorB" till "Startb" reset (=0) "Tag_1"
- When "SensorA" AND "SensorB" = 1, "Tag_1" will set (=1) and remain ON.

 Whenever "SensorA" AND "SensorB" = 0, "Tag_1" will reset (=0) as there is no latching
- When "SensorA" AND "SensorB" AND "Startb" = 1, "Tag_1" will set (=1) and remain ON. When "Startb" = 0, it will reset (=0) "Tag_1"

%M0.2	TM0.1	70128.0
781501		
mer v		
- MAO D		90128.0
		189_1