University of Toronto Department of Mathematics

START: 2:10pm

DURATION: 110 mins

Term Test 1 MAT224H1S Linear Algebra II

EXAMINERS: D. Butson, V. Dimitrov, J. Im, Q. Li, Z. Qian, S. Uppal

Last Name (PRINT): Utions
Given Name(s) (PRINT): Sol
Student NUMBER:
EMAIL: @mail.utoronto.ca
Student SIGNATURE:

Instructions.

- 1. There are **54** possible marks to be earned in this exam. The examination booklet contains a total of 9 pages. It is your responsibility to ensure that *no pages are missing from your examination*. DO NOT DETACH ANY PAGES FROM YOUR EXAMINATION.
- 2. DO NOT WRITE ON THE QR CODE AT THE TOP RIGHT-HAND CORNER OF EACH PAGE OF YOUR EXAMINATION.
- 3. For the full answer questions, WRITE YOUR SOLUTIONS ON THE FRONT OF THE QUESTION PAGES THEM-SELVES. THE BACK OF EVERY PAGE WILL **NOT** BE SCANNED NOR SEEN BY THE GRADERS.
- 4. Ensure that your solutions are LEGIBLE.
- 5. No aids of any kind are permitted. CALCULATORS AND OTHER ELECTRONIC DEVICES (INCLUDING PHONES) ARE NOT PERMITTED.
- 6. Have your student card ready for inspection.
- 7. You may use the two blank pages at the end for rough work. The last two pages of the examination WILL NOT BE MARKED unless you *clearly* indicate otherwise on the question pages.
- 8. Show all of your work and justify your answers but do not include extraneous information.

- 1. Let V be the set of all 2×2 matrices with real entries of the form $A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$. Define vector addition in V as $A + B = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$ (ordinary matrix multiplication), and scalar multiplication in V as $cA = \begin{bmatrix} 1 & 0 \\ ca & 1 \end{bmatrix}$ for all $c \in \mathbb{R}$.
- (a) What is the zero vector in V? Give a brief justification for your answer. [2 marks]

The zero vector is given by $\mathbf{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Observe that for any $A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \in V$,

$$A + \mathbf{0} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} = A$$

Hence, $\mathbf{0}$ satisfies the property that $\mathbf{0} + A = A$ for all $A \in V$, and hence is the zero vector of this vector space.

(b) What is the additive inverse of $A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \in V$? Give a brief justification for your answer. [2 marks] The inverse is given by $A^{-1} = \begin{bmatrix} 1 & 0 \\ -a & 1 \end{bmatrix}$. Observe that A^{-1} satisfies the property that $A + A^{-1} = \mathbf{0}$:

$$A + A^{-1} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -a & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{0}$$

(c) Show that c(A+B)=cA+cB for all $A,B\in V$ and $c\in\mathbb{R}.$ [4 marks]

Let $c \in \mathbb{R}$ be arbitrary and pick any $A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \in V$ and $B = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$. We proceed with direct computation:

$$c(A+B) = c \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} = c \begin{bmatrix} 1 & 0 \\ a+b & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ ca+cb & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ ca & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ cb & 1 \end{bmatrix} = cA+cB$$

- 2. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be vectors in vector space V.
- (a) Define what it means for the list $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to be linearly independent. [2 marks]

If whenever we have for $a_1, \ldots, a_n \in \mathbb{R}$ that $a_1 \mathbf{x}_1 + \cdots + a_n \mathbf{x}_n = 0$, then $a_i = 0$ for all i.

(b) Define span $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$. [2 marks]

 $\operatorname{span}\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$ is the set of all all linear combinations of $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k$.

Alternatively, may write span $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} = \{a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k | a_1, \dots, a_k \in \mathbb{R}\}$

(c) Let V be a vector space and let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}_1, \mathbf{y}_2 \in V$. Suppose that both the list $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, and the list $\mathbf{y}_1, \mathbf{y}_2$ are linearly independent. Prove that if $\operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \cap \operatorname{span}\{\mathbf{y}_1, \mathbf{y}_2\} = \{\mathbf{0}\}$, then the list $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}_1, \mathbf{y}_2$ is linearly independent. [4 marks]

For the sake of contradiction, suppose that the list $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}_1, \mathbf{y}_2$ is linearly dependent. Then there exists c_1, \ldots, c_5 where not all $c_i = 0$ and $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 + c_4\mathbf{y}_1 + c_5\mathbf{y}_2 = \mathbf{0}$. Note that at least one of c_4, c_5 must be non-zero, as otherwise $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 = \mathbf{0}$ provides a non trivial linear combination of the \mathbf{x}_i which sum to $\mathbf{0}$, which is a contradiction since the \mathbf{x}_i are linearly independent. By a similar argument, at least one of c_1, c_2, c_3 must be non-zero since the \mathbf{y}_j are linearly independent set.

However, we now have that the vector $\mathbf{v} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3 = -c_4 \mathbf{y}_1 - c_5 \mathbf{y}_2$ is a non-zero vector and $\mathbf{v} \in \text{span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \cap \text{span}\{\mathbf{y}_1, \mathbf{y}_2\} = \{\mathbf{0}\}$, which is a contradiction.

3. (a) Let V be a finite dimensional vector space. Define the dimension of V. [2 marks]

The dimension of V is the number of vectors in any basis of V.

- 3. (b) A magic square is an $n \times n$ matrix with real entries in which each row, each column, and the two diagonals have the same sum; the sum is called the weight of the matrix. Let \mathbb{M}_n denote the vector space of all such matrices. (Note that the weight does not have to be the same for all matrices.)
- (i) What is the dimension of M_2 ? Explain. [4 marks]

Note that for a 2x2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to also be a magic square, we must have, in particular, a+b=a+d=a+c=a+b=c+d which means a=b=c=d. Thus, a basis for \mathbb{M}_2 is given by $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. We conclude that the dimension of \mathbb{M}_2 is 1.

(ii) What is the dimension of the subspace of \mathbb{M}_2 consisting of the set of all magic squares whose weight is 0? Explain [2 marks] Let W denote this subspace. Since $W \subset \mathbb{M}_2$ (notice that $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is in \mathbb{M}_2 but not in W), dim $W < \dim \mathbb{M}_2 = 1$, we have dim W = 0. In other words, the only matrix in this set is the zero matrix.

- 4. (a) Let U and W be subspaces of a finite dimensional vector space V.
- (i) Define what it means for V to be the direct sum of U and W. [2 marks]

V = U + W and $U \cap W = \{0\}.$

Equivalent definition: For all $\mathbf{v} \in V$, there exists unique $\mathbf{u} \in U$ and $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$.

(ii) Suppose V = U + W. Prove $V = U \oplus W$ if and only if $\dim V = \dim U + \dim W$. [4 marks]

First, suppose that $V = U \oplus W$. i.e. V = U + W and $U \cap W = \{0\}$. Then,

$$\dim V = \dim(U + W)$$

$$= \dim U + \dim W + \dim(U \cap W)$$

$$= \dim U + \dim W$$

since $\dim(U \cap W) = \dim\{\mathbf{0}\} = 0$.

Now suppose that $\dim V = \dim U + \dim W$. We need only show $U \cap W = \{0\}$ since we're given V = U + W. Since

$$\dim(U \cap W) = \dim U + \dim W - \dim(U + W)$$
$$= \dim U + \dim W - \dim V$$
$$= 0$$

we have $U \cap W = \{\mathbf{0}\}.$

4. (b) Let P be the plane span $\{(1,1,1),(1,-1,1)\}$ in \mathbb{R}^3 , and let L be the line span $\{(3,-1,3)\}$. Is $\mathbb{R}^3 = P \oplus L$? Why or why not? [2 marks]

No. Notice that $(3, -1, 3) = (1, 1, 1) + 2(1, -1, 1) \in P$ so $L \subset P$. Hence, $L \cap P \neq \{0\}$. Additionally, $L + P = P \neq \mathbb{R}^3$.

5.	(a). Defin	e what it	means for a	a function T	$\Gamma:V$	$\rightarrow W$	to be a	linear	transformation.	[2 marks]	
----	------------	-----------	-------------	--------------	------------	-----------------	---------	--------	-----------------	-----------	--

A function $T: V \to W$ is a linear transformation if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$
- (ii) $T(a\mathbf{v}) = aT(\mathbf{v})$ for all $a \in \mathbb{R}$ and $\mathbf{v} \in V$.

- 5. (b) Let V and W be vector spaces and let $T:V\to W$ be a linear transformation. For each statement below, either prove it is true or find a counter-example to show it is false.
- (i) If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is a list of linearly dependent vectors in V then $T\mathbf{x}_1, T\mathbf{x}_2, T\mathbf{x}_3$ is a linearly dependent list of vectors in W. [4 marks]

True. If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is a list of linearly dependent vectors, there there exists $c_1, c_2, c_3 \in \mathbb{R}$ where not all c_i are zero and $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 = \mathbf{0}$. But then we have $\mathbf{0} = T(\mathbf{0}) = T(c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3) = c_1T\mathbf{x}_1 + c_2T\mathbf{x}_2 + c_3T\mathbf{x}_3$ which gives a non-trivial linear combination of the $T\mathbf{x}_i$ which sum to $\mathbf{0}$.

(ii) If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is a list of linearly independent vectors in V then $T\mathbf{x}_1, T\mathbf{x}_2, T\mathbf{x}_3$ is a list of linearly independent vectors in W. [4 marks]

False. Consider the case when T is the zero transformation. Then $\{T\mathbf{x}_1, T\mathbf{x}_2, T\mathbf{x}_3\}$ contains just the zero vector, and hence cannot be linearly independent.

- 6. Determine if each statement below is True or False and *indicate your answer by circling one of the options*. No explanation is necessary. Each correct answer is worth 2 marks. Each incorrect answer will be worth 0 marks. [12 marks]
- (i) Let V be the set of all $n \times n$ matrices with real entries. Define vector addition in V as ordinary matrix addition, and scalar multiplication in V by $cA = cA^{T}$ for all $c \in \mathbb{R}$. Then V is a vector space.

(True) (False)

False. Notice that $(cd)A \neq c(dA)$ when A is not a symmetric matrix.

(ii) A list of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ in a vector space V is linearly dependent $iff \mathbf{x}_j \in \text{span}\{\mathbf{x}_1, \dots, \mathbf{x}_{j-1}, \mathbf{x}_{j+1}, \dots, \mathbf{x}_k\}$ for each $j = 1, 2, \dots, k$.

(True) (False)

False. Let $V = \mathbb{R}^2$, k = 2, $\mathbf{x}_1 = (1,0)$ and $\mathbf{x}_2 = \mathbf{0}$. Then the list $\mathbf{x}_1, \mathbf{x}_2$ is linearly dependent and $\mathbf{x}_1 \notin \text{span}\{\mathbf{x}_2\}$

(iii) If U and W are subspaces of a vector space V then $\operatorname{span}(U \cup W) = \operatorname{span} U + \operatorname{span} W$.

(True) (False)

True. Note that $\mathbf{v} \in \operatorname{span}(U \cup W) \iff \mathbf{v} = c_1\mathbf{u} + c_2\mathbf{w} \text{ for } c_1, c_2 \in \mathbb{R}, \mathbf{u} \in U \text{ and } \mathbf{w} \in W \iff \mathbf{v} \in \operatorname{span}U + \operatorname{span}W$

(iv) If W_1, W_2, U are subspaces of a vector space V and $W_1 \cap W_2 = \{\mathbf{0}\}$ then $U \cap (W_1 \oplus W_2) = (U \cap W_1) \oplus (U \cap W_2)$.

(True) (False)

False. Let $V = \mathbb{R}^2$, $U = \text{span}\{(1,1)\}$, $W_1 = \text{span}\{(1,0)\}$ and $W_2 = \text{span}\{(0,1)\}$. Then $(U \cap W_1) \oplus (U \cap W_2) = \{0\} \oplus \{0\} = \{0\}$ but $U \cap (W_1 \oplus W_2) = U \cap V = U$.

(v) The function $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ defined by $T(p(x)) = p(x) + x^2 p''(x)$ is a linear transformation.

(True) (False)

True. Let $c \in \mathbb{R}$ and $p(x), q(x) \in P_n(\mathbb{R})$. Then $T(cp(x) + q(x)) = cp(x) + q(x) + x^2(cp''(x) + q''(x)) = c(p(x) + x^2p''(x)) + (q(x) + x^2q''(x)) = cT(p(x)) + T(q(x))$.

(vi) Let V and W be vector spaces, and let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be a linearly independent list of vectors in V. Then for any $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k$ in W there exists a linear transformation $T: V \to W$ with $T\mathbf{x}_j = \mathbf{y}_j$ for each $j = 1, 2, \dots, k$.

(True) (False)

True. Extend $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to a basis for V, and define T by defining where it sends each basis vector to. For example, T could map \mathbf{x}_i to \mathbf{y}_i and each of the extended basis vectors to $\mathbf{0}$.

THIS PAGE LEF	T INTENTIONAL	LY BLANK . If an	y work on this page	e is to be graded, indic	ate this CLEARLY

THIS PAGE LEFT INTE	NTIONALLY BLA	NK. If any work or	n this page is to be p	graded, indicate this	CLEARLY