

GBI Tutorium Nr. 32

Tutorium 3

Dominik Muth - dominik.muth@student.kit.edu | 7. November 2012

Outline/Gliederung

- Übungsblatt 2
- Wiederholung
- Formale Sprachen
 - Definition
 - Erklärung
 - Beispiele
 - Produkt / Konkatenation
 - Potenzen
 - Konkatenationsabschluss
- 4 Aufgaben
- Fragen

Aufgabe 2.3

Gegeben ist folgende Aussage:

Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

B(x, y) = y ist bester Freund von x.

M sei die Menge aller Menschen.

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x.

M sei die Menge aller Menschen.

 $\forall x \in M : \exists_1 y \in M : B(x, y) ?$

November 2012

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x.

M sei die Menge aller Menschen.

 $\forall x \in M : \exists_1 y \in M : B(x, y)!$

November 2012

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

$$B(x, y) \stackrel{\frown}{=} y$$
 ist bester Freund von x .

M sei die Menge aller Menschen.

$$\forall x \in M : \exists_1 y \in M : B(x,y)!$$

$$\forall x \in M : \exists y \in M : B(x,y)$$

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

$$B(x, y) \stackrel{\frown}{=} y$$
 ist bester Freund von x .

M sei die Menge aller Menschen.

$$\forall x \in M : \exists_1 y \in M : B(x, y)!$$

$$\forall x \in M : \exists y \in M : B(x,y) \land \forall z \in M \backslash y : \neg B(x,z)$$

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

$$B(x, y) \stackrel{\frown}{=} y$$
 ist bester Freund von x .

M sei die Menge aller Menschen.

$$\forall x \in M : \exists_1 y \in M : B(x, y)!$$

$$\forall x \in M : \exists y \in M : B(x,y) \land \forall z \in M \backslash y : \neg B(x,z)$$

- $M \cup \{\} = ?$
- $M \cap \{\} = ?$
- $\{1,2,3\} \cup \{3,4,5\} = ?$
- $\{1,2,3\} \setminus \{3,4,5\} = ?$
- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = ?$

- $M \cup \{\} = M$
- $M \cap \{\} = ?$
- $\{1,2,3\} \cup \{3,4,5\} = ?$
- $\{1,2,3\} \setminus \{3,4,5\} = ?$
- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = ?$

- $M \cup \{\} = M$
- $M \cap \{\} = \{\}$
- $\{1,2,3\} \setminus \{3,4,5\} = ?$
- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = ?$

- $M \cup \{\} = M$
- $M \cap \{\} = \{\}$
- $\{1,2,3\} \setminus \{3,4,5\} = ?$
- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = ?$

- $M \cup \{\} = M$
- $M \cap \{\} = \{\}$

- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = ?$

- $M \cup \{\} = M$
- $M \cap \{\} = \{\}$

- $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\} = \{2,b\}$

Formale Sprachen

Definition: formale Sprachen

Eine *formale* Sprache (über dem Alphabet A), ist eine Teilmenge von A^* . Diese Sprache kann leer, endlich oder unendlich groß sein.

Formal: $L \subset A^*$.

Achtung

abb = Wort

{abb} = Sprache die das Wort abb enthällt

 \Rightarrow abb \neq {abb} aber abb \in {abb}

November 2012

Erklärung

L ist also eine Menge.

L enthält alle syntaktisch korrekte Konkatenationen von Zeichen aus einem Alphabet A.

7. November 2012

Schlüsselwörter in Java

Eine formale Sprache wäre zum Beispiel die Menge der Schlüsselwörter in der Programmiersprache Java:

Größe:

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Schlüsselwörter in Java

Eine formale Sprache wäre zum Beispiel die Menge der Schlüsselwörter in der Programmiersprache Java:

```
\{\textit{int}, \textit{double}, \textit{if}, \textit{else}, \textit{for}, \textit{while}, \ldots\}
```

Größe:

Schlüsselwörter in Java

Eine formale Sprache wäre zum Beispiel die Menge der Schlüsselwörter in der Programmiersprache Java:

```
\{int, double, if, else, for, while, \ldots\}
```

Größe: endlich

Wörter ohne "ab"

Gesucht ist eine Sprache L aller Wörter über $A = \{a, b\}$, in denen nirgends das Teilwort ab vorkommt.

Formal:

Alternativ:

Größe:

Wörter ohne "ab"

Gesucht ist eine Sprache L aller Wörter über $A = \{a, b\}$, in denen nirgends das Teilwort ab vorkommt.

Formal:
$$L = \{A^* \setminus \{\omega_1 ab \omega_2 \mid \omega_1, \omega_2 \in A^*\}$$

Alternativ:

Größe:

7. November 2012

Wörter ohne "ab"

Gesucht ist eine Sprache L aller Wörter über $A = \{a, b\}$, in denen nirgends das Teilwort ab vorkommt.

Formal:
$$L = \{A^* \setminus \{\omega_1 ab \omega_2 \mid \omega_1, \omega_2 \in A^*\}$$

Alternativ:
$$L = \{\omega_1 \omega_2 \mid \omega_1 \in \{b\}^* \land \omega_2 \in \{a\}^*\}$$

Größe:

Wörter ohne "ab"

Gesucht ist eine Sprache L aller Wörter über $A = \{a, b\}$, in denen nirgends das Teilwort ab vorkommt.

Formal:
$$L = \{A^* \setminus \{\omega_1 ab \omega_2 \mid \omega_1, \omega_2 \in A^*\}$$

Alternativ:
$$L = \{\omega_1 \omega_2 \mid \omega_1 \in \{b\}^* \land \omega_2 \in \{a\}^*\}$$

Größe: unendlich

Ganze Zahlen $\mathbb Z$

- Das Alphabet ist A =
- Definition der Sprache L:
 - \Rightarrow $-22 \in L$
- \Rightarrow 22 0 $\notin L$ (aber $\in A^*$)

Ganze Zahlen $\mathbb Z$

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Definition der Sprache L:
- \Rightarrow $-22 \in L$
- \Rightarrow 22 0 $\notin L (aber \in A^*)$

Ganze Zahlen $\mathbb Z$

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Definition der Sprache L: $L = \{\omega_1 \omega_2 \mid \omega_1 \in \{\epsilon, -\} \land \omega_2 \in (A \setminus \{-\})^+$
- ⇒ -22 ∈ L
- \Rightarrow 22 0 $\notin L$ (aber $\in A^*$)

Ganze Zahlen $\mathbb Z$

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Definition der Sprache L: $L = \{\omega_1 \omega_2 \mid \omega_1 \in \{\epsilon, -\} \land \omega_2 \in (A \setminus \{-\})^+$
- ⇒ -22 ∈ L
- ightharpoonup \Rightarrow 22 0- \notin L (aber \in A^*)

Produkt / Konkatenation

Definition: Produkt

Wie bei Wörtern, lassen sich auch formale Sprachen Konkatenieren: Sei L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

$$L_1 \cdot L_2 = \{ \omega_1 \omega_2 \mid \omega_1 \in L_1 \land \omega_2 \in L_2 \}$$

Das Produkt, bzw. die Konkatenation der Sprachen L_1 und L_2 .

Beispiel: Wörter ohne "ab'

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Statt $L = \{\omega_1 \omega_2 \mid \omega_1 \in \{b\}^* \land \omega_2 \in \{a\}^*\}$ Lässt sich die Sprache schreiben als:

Produkt / Konkatenation

Definition: Produkt

Wie bei Wörtern, lassen sich auch formale Sprachen Konkatenieren:

Sei L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

$$L_1 \cdot L_2 = \{\omega_1 \omega_2 \mid \omega_1 \in L_1 \wedge \omega_2 \in L_2\}$$

Das Produkt, bzw. die Konkatenation der Sprachen L_1 und L_2 .

Beispiel: Wörter ohne "ab"

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Statt $L = \{\omega_1 \omega_2 \mid \omega_1 \in \{b\}^* \land \omega_2 \in \{a\}^*$

Lässt sich die Sprache schreiben als: $L = \{a\}^*\{b\}^*$

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$

- Sind folgende Wörter $\in L_1 \cdot L_2$?
 - ab
 - lacksquare
 - bab
 - aaaaaa

Achtung

$$L_1L_2\neq\{a^nb^n\mid n\in\mathbb{N}\}$$

da die Exponenten verschieden sein können gilt

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$

Sind folgende Wörter $\in L_1 \cdot L_2$?

- ab √
 - ϵ
- bab
- aaaaa

Achtung

Übungsblatt 2

$$L_1L_2\neq\{a^nb^n\mid n\in\mathbb{N}\}$$

da die Exponenten verschieden sein können gilt:

Aufgaben

Wiederholung

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$

- Sind folgende Wörter $\in L_1 \cdot L_2$?
 - ab √
 - \bullet ϵ $\sqrt{}$
 - bab
 - aaaaa

Achtung

$$L_1L_2\neq \{a^nb^n\mid n\in\mathbb{N}\}$$

da die Exponenten verschieden sein können gilt:

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$

Sind folgende Wörter $\in L_1 \cdot L_2$?

- ab √
- \bullet ϵ $\sqrt{}$
- bab X
- aaaaa

Achtuno

Übungsblatt 2

$$L_1L_2\neq \{a^nb^n\mid n\in\mathbb{N}\}$$

da die Exponenten verschieden sein können gilt

Wiederholung

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$

Sind folgende Wörter $\in L_1 \cdot L_2$?

- ab √
- \bullet $\epsilon \sqrt{}$
- bab X
- aaaaa √

Übungsblatt 2

$$L_1L_2\neq \{a^nb^n\mid n\in\mathbb{N}\}$$

00000000000

Wiederholung

Aufgabe 1

Gegeben seien die Sprache L_1 mit $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und L_2 mit $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$ Sind folgende Wörter $\in L_1 \cdot L_2$?

- ab √
- \bullet ϵ $\sqrt{}$
- bab X
- aaaaa

Achtung

$$L_1L_2 \neq \{a^nb^n \mid n \in \mathbb{N}\}$$

da die Exponenten verschieden sein können gilt:

$$L_1L_2 = \{a^nb^m \mid n, m \in \mathbb{N}\}$$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Potenzen

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

$$L^0 = \{\epsilon\}$$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

- $L^0 = \{\epsilon\}$
- $L^1 = L$

7. November 2012

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

- $L^0 = \{\epsilon\}$
- $L^1 = L$
- $L^2 = L \cdot L = \{ \text{thecake}, \text{theis}, \text{thea}, \text{thelie}, \dots \}$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

- $L^0 = \{\epsilon\}$
- $L^1 = L$
- $L^2 = L \cdot L = \{ \text{thecake}, \text{theis}, \text{thea}, \text{thelie}, \dots \}$
- $\Rightarrow L^{i+1} = L^i \cdot L$ (rekursive Definition)

7. November 2012

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

- $L^0 = \{\epsilon\}$
- $I^1 = I$
- $L^2 = L \cdot L = \{ \text{thecake}, \text{theis}, \text{thea}, \text{thelie}, \dots \}$
- $ightharpoonup
 ightharpoonup L^{i+1} = L^i \cdot L$ (rekursive Definition)
- In was liegt: "the cake is a lie"?

Fragen

12/19

Definition: Potenzen

Ebenso wie bei Alphabeten und Wörtern lassen sich auch bei Sprachen Potenzen bilden.

Sei L eine formale Sprache mit: $L = \{the, cake, is, a, lie\}$ Dann gilt:

- $L^0 = \{\epsilon\}$
- $L^1 = L$
- $L^2 = L \cdot L = \{ \text{thecake}, \text{theis}, \text{thea}, \text{thelie}, \dots \}$
- $ightharpoonup
 ightharpoonup L^{i+1} = L^i \cdot L$ (rekursive Definition)
- In was liegt: "the cake is a lie"?

In nichts, da das Leerzeichen: (_) gänzlich in der Sprache L fehlt.

Konkatenationsabschluss

Definition: Konkatenationsabschluss

Sei L eine formale Sprache, dann ist der Konkatenationsabschluss:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Der ϵ -freie Konkatenationsabschluss sei dann definiert durch:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

Konkatenationsabschluss

Definition: Konkatenationsabschluss

Sei L eine formale Sprache, dann ist der Konkatenationsabschluss:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Der ϵ -freie Konkatenationsabschluss sei dann definiert durch:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Konkatenationsabschluss

ϵ -freier Konkatenationsabschluss

In der Regel gilt zwar: $\epsilon \notin L^+$,

Wenn allerdings gilt: $\epsilon \in L \Rightarrow \epsilon \in L^+$

easy going

L soll alle Wörter enthalten, welche genau ein b enthalten. Gegeben sei dazu das Alphabet: $A = \{a, b\}$

7. November 2012

easy going

L soll alle Wörter enthalten, welche genau ein b enthalten. Gegeben sei dazu das Alphabet: $A = \{a, b\}$

- $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$
- $L = \{\omega_1 b \omega_2 \mid \omega_1, \omega_2 \in \{a\}^*\}$

possible to do

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}, a, b, *, \epsilon$, Komma, (,) und +:

- die Menge aller Wörter über A, die das Teilwort "ab" enthalten.
- die Menge aller Wörter über A, deren vorletztes Zeichen ein "b" ist.
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen.

possible to do

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}, a, b, *, \epsilon$, Komma, (,) und +:

- die Menge aller Wörter über A, die das Teilwort "ab" enthalten.
 - $L = \{a, b\}^* \{ab\} \{a, b\}^*$
- die Menge aller Wörter über A, deren vorletztes Zeichen ein "b" ist.
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen.

possible to do

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}, a, b, *, \epsilon, \text{Komma}, (,) \text{ und } +:$

- die Menge aller Wörter über A, die das Teilwort "ab" enthalten.
 - $L = \{a, b\}^* \{ab\} \{a, b\}^*$
- die Menge aller Wörter über A, deren vorletztes Zeichen ein "b" ist. $L = \{a, b\}^* \{b\} \{a, b\}$
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen.

possible to do

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}, a, b, *, \epsilon$, Komma, (,) und +:

- die Menge aller Wörter über A, die das Teilwort "ab" enthalten.
 - $L = \{a, b\}^* \{ab\} \{a, b\}^*$
- die Menge aller Wörter über A, deren vorletztes Zeichen ein "b" ist.
 L = {a, b}*{b}{a, b}
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen.

$$L = \{a, ba\}^* \{b, \epsilon\}$$

badass

Gegeben seien die Formalen Sprachen L_1 und L_2 :

$$L_1 = \{a^k b^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 0 \land m \mod 3 = 1\}$$

 $L_2 = \{b^k a^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 1 \land m \mod 3 = 0\}$

Drücken sie folgende Sprachen in Mengenschreibweise aus:

- $L = L_1$
- $L = L_1 \cdot L_2$
- $L = L_1 \cap L_2$

badass

Gegeben seien die Formalen Sprachen L_1 und L_2 :

$$L_1 = \{a^k b^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 0 \land m \mod 3 = 1\}$$

 $L_2 = \{b^k a^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 1 \land m \mod 3 = 0\}$

Drücken sie folgende Sprachen in Mengenschreibweise aus:

•
$$L = L_1$$

 $L = \{aa\}^*\{b\}\{bbb\}^*$

$$L = L_1 \cdot L_2$$

$$L = L_1 \cap L_2$$

badass

Gegeben seien die Formalen Sprachen L_1 und L_2 :

$$L_1 = \{a^k b^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 0 \land m \mod 3 = 1\}$$

 $L_2 = \{b^k a^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 1 \land m \mod 3 = 0\}$

Drücken sie folgende Sprachen in Mengenschreibweise aus:

• $L = L_1$ $L = \{aa\}^*\{b\}\{bbb\}^*$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 3

- $L = L_1 \cdot L_2$ $L = \{aa\}^*\{b\}\{bbb\}^*\{b\}\{bb\}^*\{aaa\}^*$
- $L = L_1 \cap L_2$

badass

Gegeben seien die Formalen Sprachen L_1 und L_2 :

$$L_1 = \{a^k b^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 0 \land m \mod 3 = 1\}$$

 $L_2 = \{b^k a^m \mid k, m \in \mathbb{N}_0 \land k \mod 2 = 1 \land m \mod 3 = 0\}$

Drücken sie folgende Sprachen in Mengenschreibweise aus:

- $L = L_1$ $L = \{aa\}^*\{b\}\{bbb\}^*$
- $L = L_1 \cdot L_2$ $L = \{aa\}^*\{b\}\{bbb\}^*\{b\}\{bb\}^*\{aaa\}^*$
- $L = L_1 \cap L_2$ $L = \{b\}\{bbbbbb\}^*$

Fragen

- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?

EOF

source: imgs.xkcd.com/comics/convincing.png