Algèbre 1 Test N° 1 AU 2016-2017 CPI 1

Durée: 2h

Questions de cours:

- a) Donner le principe de la démonstration par absurde et par contraposée.
- b) Donner la table de vérité de $A \Rightarrow B$.
- c) Donner la définition d'une Application ou Fonction de *E* vers *F*.
- d) Soit $f: E \to F$ une fonction.
 - Sous quelles conditions *f* est-elle injective ?
 - Sous quelles conditions *f* est-elle surjective ?

Exercice 1:

Montrer que:

- a) $(A \Rightarrow B) \Leftrightarrow (A \text{ ou } B)$.
- b) $(A ou (B et C)) \Leftrightarrow ((A ou B) et (A ou C)).$

Exercice 2:

- a) Soit x un irrationnel positif $(x \ge 0 \text{ et } x \notin \mathbb{Q})$. Montrer que \sqrt{x} est irrationnel.
- b) Soit n un entier, montrer que si n^2 est pair alors n est pair.
- c) Montrer que : $\forall n \in \mathbb{N}$; $U_n = 3 \times 5^{2n+1} + 2^{3n+1}$ est divisible par 17.

Exercice 3:

Soient E, F, G trois ensembles, $f: E \to F$ et $g_1, g_2: F \to G$ des fonctions.

On suppose que f est surjective et que $\,g_1\circ f=g_2\circ f$.

Montrer que $g_1 = g_2$.

Exercice 4:

Soient a, b et c trois réels tels que : $c \neq 0$ et $a^2 + bc \neq 0$.

On considère la fonction $f: \mathbb{R} \setminus \left\{\frac{a}{c}\right\} \to \mathbb{R} \setminus \left\{\frac{a}{c}\right\}$ définie par :

$$f(x) = \frac{ax + b}{cx - a}$$

- a) Montrer que f est bien définie sur $\mathbb{R}\setminus\left\{\frac{a}{c}\right\}$.
- b) Montrer que f est injective et surjective.
- c) Calculer $f \circ f$.