LHCb summary

1 Week 1

- test data to analyse invariant mass of B mason assuming KKK decay, using known kaon mass
- looked at kaon/pion probabilities
- started analysing $B^{\pm} \to K^{\pm} \pi^+ \pi^-$ decay
 - selection: only include P(kaon) > 0.9 and P(pion) > 0.7
 - selection: also excluded all muons
 - assigned new variables for pion and kaon variables
 - selection: pion charge sums to 0
 - found invariant mass of B mason with same technique as before
- looked at two body resonance intermediate decay via neutral particle
 - want to get rid of D mason decay as it decays via c quark and we are interested in b quark
 - selected data of B mason mass $\pm 60~MeV/c^2$ from mass plot
 - three possible intermediate decays: $\pi^+\pi^-$, $K^+\pi^+$ and $K^-\pi^+$
 - computed invariant mass for all three possible cases
 - plot under condition that charges sum to zero reoccurring events form peak
 - found multiple peaks: D mason from $K\pi$ decay and two relatively slightly shifted peaks in both $K\pi$ and
 - applied D mason cut: reject all events with D mason mass $\pm 30~MeV/c^2$
 - no need to exclude muon tracks misidentified as pions excluded muons from the start
 - why do muon get easily misidentified as pions? similar mass
 - check that none of the resonance peaks have c quarks

2 Week 2

• Fitting:

- Normalized Gaussian to signal and combinatorial background
- Exponential to background
- subtracted background and combinatorial background from histogram
- separated B^+ and B^- decays by considering K charge and plotted them individually
- Gaussian integral divided by bin width gave counts in each peak
- from this we could find value CP asymmetry consistent with 0

• Dalitz plots:

- created dalitz plots for simulation data
- created dalitz plots for all data including D mason. Clearly saw this on the plot
- cut regions of $5284.37 \pm 40~MeV/c^2$ of B mason mass
- did this individually for B^{\pm}
- rough background subtraction by taking the background from the B mason mass data, just above the peak and subtracting that
- background data is from higher mass region and therefore slightly larger on the Dalitz plot hence we get negative entries on the upper edge
- floor histograms to zero

3 Week 3

• Dalitz plots:

- integrate background function under peak and the background used for subtraction and scale background used for subtraction
- variable bin size so that fluctuations of number of bins across dalitz plots for B^{\pm} are minimal could have done by optimization, but only did it by eye to save time
- calculate error in each bin first using the hdalitzass->Sumw2(); function and then the hdalitzass->GetBinError(a,b) function
- cut all errors > 0.4
- set all bins to zero which have 0 entries in either of B^{\pm} plots
- produce significance plot: asymmetry / error this shows us the most trustworthy regions
- produced asymmetry plot with error cuts

• CP violation

- best region found was $m_{K\pi}^2 < 15~GeV^2/c^4$ and 0 $GeV^2/c^4 < m_{\pi\pi}^2 < 0.6~GeV^2/c^4$
- only for that region produced three body decay histograms with errorbars both for B^{\pm}
- see a clear difference in the peak B^- decay leads to a much larger signal than B^+ decay
- Now do a plot for B^+ and B^- combined and do a fit
- now for individual plots, take a 2 sigma range around the mean and the width of the combined fit and set this as a range for the individual fits - there is no reason why width and mean should be different
- found a good fit, which represents data well and a asymmetry value consistent with the value found in the paper
- analysed region 2 : 21 $GeV^2/c^4 < m_{K\pi}^2 < 25 \ GeV^2/c^4$ and 1.2 $GeV^2/c^4 < m_{\pi\pi}^2 < 3 \ GeV^2/c^4$
- found negative asymmetry, as expected
- here we can not see and 4body background.
- had to add additional restrictions to make the fitting work. these included setting amplitude and sigma
 of the 4body gaussian to above 0

4 Week 4

- changed standard error that assumes poisson, to error including errors from fit
- Systematic errors
 - The decay $B^{\pm} \to J/\psi K^{\pm}$, $J/\psi \to \mu^{+}\mu^{-}$? serves as a control channel for $B^{\pm} \to h^{\pm}h^{+}h^{-}$ decay modes. Since it has negligible CP violation, the raw asymmetry observed in $B^{\pm} \to J/\psi K^{\pm}$ decays is entirely due to production and detection asymmetries.
 - * remove all cuts except for probK $\stackrel{.}{,}$ 0.9 and introduce cut 3050 $MeV/c^2 < m_{\pi\pi} < 3150 \ MeV/c^2$, which is the J/ψ mass
 - * we can write all asymmetries as $A_{CP} = A_{raw} A_{\Delta}$, where A_{CP} is the desired result, A_{raw} is what we measure and A_{Δ} is a correction term
 - * we can estimate this correction term for J/ψ by measuring the asymmetry and subtracting the known value from PDG, errors added in quardature
 - * this correction can be subtracted from all measurements as it represents detection/production asymmetry and the error on A_{Δ} is assigned as a type of systematic error

– Magnet UP/DOWN:

- * first created asymmetry dalitz plots for magnet up and down individually with individual backgrounds
- * then we created a dalitz plot of significance : difference between the magnet polarity data divided by errors added in quadrature
- * took all the bins and plotted a 1D histogram of the significance in each bin
- * found that this follows a Bell curve, consistent with mean 0, suggesting that this systematic error is not significant for this analysis, the statistical error is much larger
- * Analysing the significance of the asymmetry difference, for the different magnet polarities, in every bin in the Dalitz plot, it was shown that this follows a normal distribution, as expected for data under no systematic influence.

- different models:
 - * took global asymmetry data and fit 4 models to the data
 - * functions include: normalised gaussian, linear, exponential, landau
 - * got different asymmetry from each
 - * compute standard deviation from these to get systematic error
 - * repeat for every A
 - * A is still just from one model but get a systematic error from this
- Resonance state cut
 - took a region of $\rho(770) \pm 100~MeV/c^2$ and cut this from the data and the we cut everything but this region
 - our region 1 in the dalitz plot contains $\rho(770)$ and therefore we saw a corresponding effect here.
 - when removing the region the asymmetry decreased drastically also a larger error due to the fitting getting worse
 - on the contrary cutting everything but this region lead to a very large asymmetry
 - this suggests that CP asymmetry is caused by this resonance state
 - barely enough data points were available

5 Improvements

- more sophisticated background and signal fitting maybe with physical / statistical reasoning behind it; this
 would reduce systematic uncertainty
- Dalitz plot optimisation now we could have possible misidentification of certain regions
- further investigation on momentum dependence of systematic uncertainties would affect some local regions more than others if present

6 Results

Global asymmetry

$$A_{CP} = -0.004 \pm 0.013 \text{(stat)} \pm 0.007 \text{(syst)} \pm 0.007 (J/\Psi)$$

Local negative asymmetry

$$A_{CP} = -0.225 \pm 0.009(stat) \pm 0.018(syst) \pm 0.007(J/\Psi)$$

Local positive asymmetry

$$A_{CP} = 0.729 \pm 0.051 \text{(stat)} \pm 0.048 \text{(syst)} \pm 0.007 (J/\Psi)$$

$$670 < M_{\pi\pi} < 870 \,[\mathrm{MeV/c^2}]$$
:

$$A_{CP} = 0.746 \pm 0.042 \text{(stat)} \pm 0.048 \text{(syst)} \pm 0.007 (J/\Psi)$$

$$M_{\pi\pi} < 670, M_{\pi\pi} > 870 \,[\text{MeV/c}^2]$$
:

$$A_{CP} = 0.452 \pm 0.153 \text{(stat)} \pm 0.048 \text{(syst)} \pm 0.007 (J/\Psi)$$