

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа РЗ2111 К работе допущен

Студент Соколов Иван Денисович Работа выполнена

Преподаватель Крылов Василий Александрович Отчёт принят

# Рабочий протокол и отчёт по лабораторной работе №3.10 "Изучение свободных затухающих электромагнитных колебаний"

#### Цель работы

Изучение основных характеристик свободных затухающих колебаний

#### Схема установки



# Исходные данные

Индуктивность L = 10 мГн ± 10%

Ёмкости  $C_1$  = 0.022 мк $\Phi \pm 10\%$ 

 $C_2 = 0.033$  мк $\Phi \pm 10\%$ 

 $C_3 = 0.047 \text{ мк}\Phi \pm 10\%$ 

 $C_4 = 0.470 \text{ мк}\Phi \pm 10\%$ 

# Таблица 1

| $R_m$ , Om | Т, мкс | 2 <i>U</i> <sub>i</sub> , B | $2U_{i+n}$ , B | n | λ     | Q      | R, Om | $L$ , м $\Gamma$ н |
|------------|--------|-----------------------------|----------------|---|-------|--------|-------|--------------------|
| 0          | 91     | 6.160                       | 3.040          | 2 | 0.353 | 12.405 | 75    | 9.795              |
| 10         | 91     | 6.000                       | 2.720          | 2 | 0.396 | 11.494 | 85    | 10.026             |
| 20         | 91     | 5.680                       | 2.400          | 2 | 0.431 | 10.881 | 95    | 10.562             |
| 30         | 91     | 5.520                       | 2.080          | 2 | 0.488 | 10.082 | 105   | 10.052             |
| 40         | 91     | 5.360                       | 1.840          | 2 | 0.535 | 9.568  | 115   | 10.048             |
| 50         | 91     | 5.280                       | 1.600          | 2 | 0.597 | 9.015  | 125   | 9.520              |
| 60         | 91     | 5.040                       | 1.440          | 2 | 0.626 | 8.796  | 135   | 10.086             |
| 70         | 91     | 4.800                       | 1.280          | 2 | 0.661 | 8.568  | 145   | 10.452             |
| 80         | 91     | 4.720                       | 2.240          | 1 | 0.745 | 8.110  | 155   | 9.390              |
| 90         | 91     | 4.480                       | 2.160          | 1 | 0.730 | 8.186  | 165   | 11.108             |
| 100        | 91     | 4.400                       | 2.000          | 1 | 0.788 | 7.919  | 175   | 10.697             |
| 200        | 91     | 3.160                       | 0.840          | 1 | 1.325 | 6.761  | 275   |                    |
| 300        | 91     | 2.240                       | 0.360          | 1 | 1.828 | 6.450  | 375   |                    |
| 400        | 91     | 1.560                       | 0.160          | 1 | 2.277 | 6.350  | 475   |                    |

Значения T получены с помощью курсора осциллографа и будут уточнены далее.

## **График зависимости** $\lambda = \lambda(R_m)$



Линейная экстраполяция даёт  $R_0 \approx 75~{\rm Om}$ . Это отражено в столбце R Таблицы 1.

В столбце L также вычислена индуктивность катушки по формуле:

$$\lambda \approx \pi R \cdot \sqrt{\frac{C}{L}} \implies L \approx C_1 (\pi R / \lambda)^2$$

Среднее значение вычисленного значения индуктивности  $\langle L \rangle = 10.158$  Относительная погрешность этого значения равна как минимум 10% из-за относительной погрешности  $C_1$ , поэтому заявленное значение попадает в диапазон.

Период колебаний в контуре при сопротивлении 0 Ом, 200 Ом, 400 Ом:

| R, Om | Т, мкс |
|-------|--------|
| 0     | 93.19  |
| 200   | 94.24  |
| 400   | 97.59  |

Относительная погрешность этих значений также не меньше 10%, поэтому они достаточно близки к измеренным с помощью курсора периодам.

### График зависимости добротности от сопротивления Q = Q(R)



Вычислим добротность для сопротивления R = 30 Ом по формуле

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} : \quad Q = 7.11$$

Добротность сильно отличается от той, что представлена в таблице. Это может быть связано с высокой накопленной погрешностью при вычислении табличного значения, т.к. оно зависит от функции с экспоненциальным поведением.

Сравним экспериментальные значения периода колебаний при  $R_m = 0$  и  $C = C_{1-4}$  с теоретическими, вычисленными по формуле

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$
(14)

| С, мкФ | $T_{ m \scriptscriptstyle 9KCN}$ , МКС | $T_{meop}$ , MKC | δΤ, % |
|--------|----------------------------------------|------------------|-------|
| 0.022  | 91.5                                   | 93.34            | 1.97  |
| 0.033  | 113                                    | 114.41           | 1.23  |
| 0.047  | 131                                    | 136.67           | 4.15  |
| 0.470  | 432                                    | 445.74           | 3.08  |

Значения совпадают с хорошей точностью.



Заметим, что формула Томсона  $T=2\pi\sqrt{LC}$  - случай формулы (14) для случая, когда R=0. Значит, ей можно пользоваться, если активное сопротивление контура пренебрежимо мало. В данном случае, так как сопротивление магазина выключено, основной вклад в подкоренное выражение действительно вносит первое слагаемое, т.е.  $\beta << \omega_0$ .