运筹学

14. 网络分析 (续)

李 力清华大学

Email: li-li@tsinghua.edu.cn

2023.12.

主要内容

最大流 最小费用最大流

例、最大输油量问题

目标: 从发点到收点的总输油量最大

约束: 1) 容量约束,各边流量不大于容量

2) 流量平衡约束,各点进出流量总和相等

容量网络

有向连通图 G = (V, E) 各边 (v_i, v_j) 有非负容量 c_{ij} ,仅有一个入次为 $\mathbf{0}$ 的点 v_s ,称为发(源)点,仅有一个出次为 $\mathbf{0}$ 的点 v_t ,称为收(汇)点,将该网络记为 G = (V, E, C),其中 $C = \{c_{ij}\}$

可行流 满足以下流量平衡约束和容量约束的 $X = \{x_{ij}\}$

$$\sum_{(v_i,v_j)\in E} x_{ij} = \sum_{(v_k,v_i)\in E} x_{ki}, \forall v_i \in V, i \neq s,t \quad (流量平衡约束)$$

$$0 \le x_{ij} \le c_{ij}, \forall (v_i, v_j) \in E$$
 (容量约束)

可行流的网络总流量 $W = \sum_{(v_s, v_j) \in E} x_{sj} = \sum_{(v_k, v_t) \in E} x_{kt}$

最大流问题

确定使网络总流量达到最大的可行流

数学规划模型

 $\max W$

s.t.
$$\sum_{(v_i, v_j) \in E} x_{ij} - \sum_{(v_j, v_i) \in E} x_{ji} = \begin{cases} W & \text{if } i = s \\ 0 & \text{if } i \notin \{s, t\} \\ -W & \text{if } i = t \end{cases}$$
$$0 \le x_{ij} \le c_{ij}, \forall (v_i, v_j) \in E$$

是一种特殊的线性规划问题,存在有效的网络优化算法

可利用有向图的关联矩阵表示流量平衡约束

最大流问题的割集

 $\{S,\overline{S}\}$ 是 G=(V,E) 的割集,且满足 $v_s \in S, v_t \in \overline{S}$

割集容量

割集 $\{S,\overline{S}\}$ 中,所有始点属于S、终点属于 \overline{S} 的边的容量和称为 $\{S,\overline{S}\}$ 的割集容量,记为 $C(S,\overline{S})$

例如

$$S = \{v_s\} \Longrightarrow C(S, \overline{S}) = 11$$

$$S = \{v_s, v_3, v_4\} \Longrightarrow C(S, \overline{S}) = 9$$

最小割 具有最小容量的割集

对于任意的可行流 $X = \{x_{ij}\}$ 和割集 $\{S, \overline{S}\}$

$$\sum_{\left(v_{i},v_{j}\right)\in E}x_{ij}-\sum_{\left(v_{j},v_{i}\right)\in E}x_{ji}=\begin{cases}W & \text{if} \quad i=s\\ 0 & \text{if} \quad i\notin\left\{s,t\right\} \ 0\leq x_{ij}\leq c_{ij}, \ \forall\left(v_{i},v_{j}\right)\in E\\ -W & \text{if} \quad i=t\end{cases}$$

$$\Rightarrow W = \sum_{v_i \in S} \left(\sum_{(v_i, v_j) \in E} x_{ij} - \sum_{(v_j, v_i) \in E} x_{ji} \right) = \sum_{v_i \in S} \left(\sum_{\substack{v_j \in S \\ (v_i, v_j) \in E}} x_{ij} - \sum_{\substack{v_j \in S \\ (v_j, v_i) \in E}} x_{ji} \right)$$

$$+ \sum_{v_i \in S} \left(\sum_{\substack{v_j \in \overline{S} \\ (v_i, v_j) \in E}} x_{ij} - \sum_{\substack{v_j \in \overline{S} \\ (v_j, v_i) \in E}} x_{ji} \right) = \sum_{v_i \in S} \left(\sum_{\substack{v_j \in \overline{S} \\ (v_i, v_j) \in E}} x_{ij} - \sum_{\substack{v_j \in \overline{S} \\ (v_i, v_j) \in E}} x_{ji} \right)$$

$$\leq \sum_{v_i \in S} \sum_{v_j \in \overline{S}} x_{ij} \leq C(S, \overline{S})$$

 $(v_i, v_j) \in E$

等于割集容量的可行流一定是最大流

可增广链

设 μ 是从 ν_s 到 ν_t 的一条链,定义 μ 的方向为从 ν_s 到 ν_t 的方向,对于 μ 上的任意边,如果其方向和 μ 相同则称其为<u>前向边</u>,否则为<u>后向边</u>,用 μ^+ 和 μ^- 分别表示前向边和后向边的集合,如果 $X = \{x_{ij}\}$ 是一个可行流,且满足

$$x_{ij} < c_{ij}$$
 $\forall (v_i, v_j) \in \mu^+$ (前向边流量可增) $0 < x_{ij}$ $\forall (v_i, v_j) \in \mu^-$ (后向边流量可减)

则称 μ 是从 ν_s 到 ν_t (关于 X)的<u>可增广链</u>

例 下图中每对数字第一个是容量,第二个是一个可行 流的流量,下面左图红线是可增广链,右图是对可 增广链的流量进行如下调整得到新的可行流:

前向边流量加1,后向边流量减1

新可行流比原可行流的总流量也加1

对可增广链流量的一般改进方法

已知条件
$$x_{ij} < c_{ij} \quad \forall (v_i, v_j) \in \mu^+$$
 $0 < x_{ii} \quad \forall (v_i, v_j) \in \mu^-$

$$\diamondsuit \quad \begin{array}{ll}
\delta_{ij} = c_{ij} - x_{ij} & \forall (v_i, v_j) \in \mu^+ \\
\delta_{ij} = x_{ij} - 0 & \forall (v_i, v_j) \in \mu^-
\end{array} \implies \delta = \min_{i,j} \delta_{ij}$$

$$\Rightarrow \hat{x}_{ij} = x_{ij} + \delta \quad \forall (v_i, v_j) \in \mu^+ \\ \hat{x}_{ij} = x_{ij} - \delta \quad \forall (v_i, v_j) \in \mu^- \\ \hat{x}_{ij} = x_{ij} - \delta \quad \forall (v_i, v_j) \in \mu^-$$

整数容量网络沿可增广链增加流量的一个推论

$$C = \{c_{ij}\}$$
 是整数
$$X = \{x_{ij}\}$$
 是整数
$$\delta = \min_{i,j} \delta_{ij}$$
 是整数
$$\delta_{ij} = c_{ij} - x_{ij} \quad \forall (v_i, v_j) \in \mu^+$$

$$\delta_{ij} = x_{ij} - 0 \quad \forall (v_i, v_j) \in \mu^-$$

$$\hat{x}_{ij} = x_{ij} + \delta \quad \forall (v_i, v_j) \in \mu^+$$

$$\hat{x}_{ij} = x_{ij} - \delta \quad \forall (v_i, v_j) \in \mu^- \implies \hat{X} = \{\hat{x}_{ij}\} \quad \text{是整数}$$

$$\hat{x}_{ij} = x_{ij}, \forall (v_i, v_j) \notin \mu$$

13

整数容量网络从整数流开始最终得到的是整数流

增广链定理:一个可行流是最大流的充要条件是:不存在关于它的可增广链

必要性显然成立,下面证明充分性

用 S 表示有可增广链达到的点集,即,对任意的 $v_k \in S$, 存在从 v_s 到 v_k 的链,满足以下条件:

如果 (v_i, v_j) 与链的方向相同,则 $0 \le x_{ij} < c_{ij}$ 如果 (v_i, v_j) 与链的方向相反,则 $0 < x_{ij} \le c_{ij}$

用 \overline{S} 表示 S 的补集,不存在可增广链 $\Rightarrow v_t \in \overline{S}$

由 S 的定义可知,对于任意的 $v_i \in S, v_j \in \overline{S}$

如果 $(v_i, v_j) \in E$, 一定有 $x_{ij} = c_{ij}$, 否则 $v_j \in S$

如果 $(v_j, v_i) \in E$, 一定有 $x_{ji} = 0$, 否则 $v_j \in S$

由以上关系可得

$$W = \sum_{v_i \in S} \left(\sum_{\substack{v_j \in \overline{S} \\ (v_i, v_j) \in E}} x_{ij} - \sum_{\substack{v_j \in \overline{S} \\ (v_j, v_i) \in E}} x_{ji} \right) = \sum_{\substack{v_i \in S \\ (v_i, v_j) \in E}} \sum_{\substack{v_j \in \overline{S} \\ (v_i, v_j) \in E}} c_{ij} = C(S, \overline{S})$$

由于任何可行流的流量 轮 都满足

$$\hat{W} \le C(S, \overline{S})$$

_所以 X 是最大流

由增广链定理的证明过程可得以下定理

最大流一最小割定理: 对于任何容量网络 G = (V, E, C),从 v_s 到 v_t 的最大流的流量等于分割 v_s 和 v_t 的最小割集的容量

理由
$$\hat{W} \leq C(S, \overline{S}) = W \leq C(S', \overline{S}')$$

其中 \hat{w} 是任意可行流的流量, (S', \bar{S}') 是任意分割 v_s 和 v_t 的割集

求解最大流问题的基本方法

产生可行流 → 寻找可增广链 → 改进可行流 寻找可增广链的基本途径

首先令 $S = \{v_s\}$, 用 \overline{S} 表示其补集

检查割集 $\{S,\overline{S}\}$,如果其中有可增广边(前向可增,后向可减),将相应边属于 \overline{S} 的点移入 S,然后对新的割集继续找可增广边,直到 $v_t \in \overline{S}$ 如果割集 $\{S,\overline{S}\}$ 不含可增广边,当前可行流已是

最大流

求最大流的标号算法(Ford-Fulkerson算法)

选定初始可行流

给vs标号

选择已标号未检查的点,对其邻点进行标号如果已标号点没有未标号邻点,标记为已检查点如果能标记到 ν_{t} ,构造可增广链,改进可行流如果所有点都已检查,停止,构造最小割

得到可增广链(红线),据此可改进当前可行流

继续标号

所有已标号点均为已检查点,停止,构造最小割

整流定理:整数容量网络存在其所有流量都是整数的最大流

理由: 从零流开始,每次按照标号算法改进后的可行流的所有流量一定还是整数

最小费用最大流问题

例、最小费用流问题

括号内第一个数字是容量,第二个是单位流量费用

目标: 从发点到收点的总的流量费用最小

约束: 1) 容量约束,各边流量不大于容量

- 2) 流量平衡约束,各点进出流量总和相等
- 3) 从发点到收点的总流量为w

最小费用流问题的一般提法

容量网络 G = (V, E, C) 的每边另外赋值非负的单位流量费用 d_{ij} , $\forall (v_i, v_j) \in E$,记为G = (V, E, C, D),给定从 v_s 到 v_t 的总流量 w ,要求一个总流量等于 w 的可行流 $X = \{x_{ii}\}$ 使得总费用

$$\sum_{(v_i,v_j)\in E} d_{ij}x_{ij}$$

达到最小,特别是,如果给定总流量等于最大流, 所求问题称为<u>最小费用最大流问题</u> 数学规划模型

$$\min \sum_{(v_i,v_i)\in E} d_{ij}x_{ij}$$

s.t.
$$\sum_{(v_i, v_j) \in E} x_{ij} - \sum_{(v_j, v_i) \in E} x_{ji} = \begin{cases} w & \text{if } i = s \\ 0 & \text{if } i \notin \{s, t\} \\ -w & \text{if } i = t \end{cases}$$
$$0 \le x_{ij} \le c_{ij}, \forall (v_i, v_j) \in E$$

列向量形式

$$\min \sum_{(v_i,v_j)\in E} d_{ij}x_{ij}$$

$$\text{s.t.} \quad \sum_{(v_i, v_j) \in E} P_{ij} x_{ij} = \vec{w}$$

$$0 \le x_{ij} \le c_{ij}, \forall (v_i, v_j) \in E$$

其中 P_{ii} 的第 v_i 行等于1,第 v_i 行等于-1,其余都等于零

或 的第1行等于 w,最后一行等于 -w,其余都等于零

例、G = (V, E, C, D)如下图

数学规划模型

min
$$D^{T}X$$

$$\begin{pmatrix}
1 & 1 & & & & & \\
-1 & & 1 & 1 & -1 & & & \\
& & -1 & & & 1 & 1 & & \\
& & & -1 & & & -1 & 1 & \\
& & & & & & -1 & & & -1
\end{pmatrix} X = \vec{w}$$
s.t.
$$0 < Y < C$$

其中 $X = (x_{s1}, x_{s2}, x_{13}, x_{1t}, x_{21}, x_{23}, x_{3t})^T$, D 和 C 为相应系数向量

最小费用最大流问题的启发式算法

网络流量 W < w , 如何满足流量要求?

已知条件: X 是最大流问题的一个可行流 (满足所有中间节点的流量平衡条件和容量约束) 例如: $x_{ii} = 0, \forall (v_i, v_i) \in E$

X 是最大流的充要条件(增广链定理): 不存在关于 X 的可增广链

可以采用的方法:

寻找关于 *X* 的可增广链,如果找不到, *X* 已 经是最大流,原问题不可行,否则增加流量

假设 μ 是从 ν_s 到 ν_t 关于 X 的可增广链,用 μ^+ 表示其前向边的集合, μ^- 表示后向边的集合,用 W 表示当前的总流量。

如果沿该增广链增加流量 σ ,由容量约束知

$$\sigma = \min \left\{ \min_{(v_i, v_j) \in \mu^+} c_{ij} - x_{ij}, \min_{(v_i, v_j) \in \mu^-} x_{ij} \right\}$$

由于增加后的总流量为 $W + \sigma$,应满足 $W + \sigma \le w$ 所以最终选用的流量增加值应该为

$$\mathcal{S} = \min\{w - W, \sigma\} = \min\left\{w - W, \min_{(v_i, v_j) \in \mu^+} c_{ij} - x_{ij}, \min_{(v_i, v_j) \in \mu^-} x_{ij}\right\}$$

沿 μ 对 X 进行调整获得新的流量 $\overline{X} = \{\overline{x}_{ij}\}$,则

$$\overline{x}_{ij} = x_{ij} + \delta , \quad \forall (v_i, v_j) \in \mu^+$$

$$\overline{x}_{ij} = x_{ij} - \delta , \quad \forall (v_i, v_j) \in \mu^-$$

$$\overline{x}_{ij} = x_{ij} , \quad \forall (v_i, v_j) \in E - \mu^+ \cup \mu^-$$

流量调整前后原目标函数的改变为

$$\sum_{(v_i,v_j)\in E} d_{ij}\overline{x}_{ij} - \sum_{(v_i,v_j)\in E} d_{ij}x_{ij} = \left(\sum_{(v_i,v_j)\in \mu^+} d_{ij} - \sum_{(v_i,v_j)\in \mu^-} d_{ij}\right)\delta$$

$$\mathcal{L} \quad d(\mu) = \sum_{(v_i, v_j) \in \mu^+} d_{ij} - \sum_{(v_i, v_j) \in \mu^-} d_{ij}$$

d(μ)是沿 μ 增加单位流量的费用, 称为 μ 的费用 直观想法:选择费用最小的可增广链增加总流量

根据前面的讨论可形成下面的最小费用流算法:

- 1) $\diamondsuit X = \{x_{ij}\}, x_{ij} = 0, \forall (v_i, v_j) \in E, W = 0$
- 2) 如果 W = w ,停止,否则求出费用 $d(\mu)$ 最小的可增广链 μ (如果没有可增广链,停止)
- 4) 用 \overline{X} 替换 X, $W+\delta$ 替换 W, 回到 2)

对前面的最小费用流算法要解决的问题

1) 理论问题

算法停止于 W = w 时所产生的 X 是否是最小 费用流问题的解?

2) 实现问题

如何方便地求出费用 $d(\mu)$ 最小的可增广链?

最小费用最大流问题的对偶算法

利用KKT定理得到最小费用流问题最优解的充要条件

原问题 min
$$\sum_{(v_i,v_j)\in E} d_{ij}x_{ij}$$
s.t.
$$\sum_{(v_i,v_j)\in E} P_{ij}x_{ij} = \vec{w}, \quad -x_{ij} \le 0, \quad x_{ij} - c_{ij} \le 0, \quad \forall \left(v_i,v_j\right) \in E$$

拉格朗日函数
$$L(X, \vec{z}, \vec{\lambda}, \vec{\mu})$$

$$= \sum_{(v_i, v_j) \in E} \left(d_{ij} + \vec{z}^T P_{ij} - \lambda_{ij} + \mu_{ij} \right) x_{ij} - \vec{z}^T \vec{w} - \sum_{(v_i, v_j) \in E} \mu_{ij} c_{ij}$$

梯度条件
$$d_{ij} + \vec{z}^T P_{ij} - \lambda_{ij} + \mu_{ij} = 0, \forall (v_i, v_j) \in E$$

互补松弛条件 $\lambda_{ij}x_{ij}=0$, $\mu_{ij}\left(c_{ij}-x_{ij}\right)=0$, $\forall\left(v_{i},v_{j}\right)\in E$

结论:可行流 $X = \{x_{ij}\}$ 是最小费用流问题最优解的充要条件是,存在 \bar{z} , $\bar{\lambda} \ge 0$ 和 $\bar{\mu} \ge 0$ 一起满足

$$d_{ij} + \vec{z}^T P_{ij} - \lambda_{ij} + \mu_{ij} = 0, \quad \forall (v_i, v_j) \in E$$

$$\lambda_{ij}x_{ij} = 0, \quad \mu_{ij}\left(c_{ij} - x_{ij}\right) = 0, \quad \forall \left(v_i, v_j\right) \in E$$

等价条件: 存在 \vec{z} 和 $\vec{\mu} \ge 0$ 一起满足

$$d_{ij} + z_i - z_j + \mu_{ij} \ge 0, \ \forall (v_i, v_j) \in E$$

消去 λ_{ij}

$$x_{ij}(d_{ij} + z_i - z_j + \mu_{ij}) = 0, \ \mu_{ij}(c_{ij} - x_{ij}) = 0, \ \forall (v_i, v_j) \in E$$

利用线性规划对偶理论得到最优解的充要条件

原问题 min
$$\sum_{(v_i,v_j)\in E} d_{ij}x_{ij}$$

s.t.
$$\sum_{(v_i,v_j)\in E} P_{ij}x_{ij} = \vec{w}, \quad x_{ij} \ge 0, \quad c_{ij} - x_{ij} \ge 0, \quad \forall (v_i,v_j) \in E$$

对偶问题
$$\max (z_t - z_s) w - \sum_{(v_i, v_j) \in E} c_{ij} \mu_{ij}$$

s.t.
$$d_{ij} + z_i - z_j + \mu_{ij} \ge 0$$
, $\mu_{ij} \ge 0$, $\forall (v_i, v_j) \in E$

其中 z_s, z_i, z_t 分别是 v_s, v_i, v_t 的等式约束的对偶变量

原对偶可行解互补松弛条件(最优解充要条件)

$$x_{ij} (d_{ij} + z_i - z_j + \mu_{ij}) = 0, \ \mu_{ij} (c_{ij} - x_{ij}) = 0, \ \forall (v_i, v_j) \in E$$

互补松弛定理: 可行流 $X = \{x_{ij}\}$ 是原问题最优解的充要条件是,存在等式约束的对偶变量 $\vec{z} = \{z_i\}$ 满足

$$\begin{cases} x_{ij} = 0 & \forall d_{ij} + z_i - z_j > 0 \\ x_{ij} = c_{ij} & \forall d_{ij} + z_i - z_j < 0 \end{cases}$$

充分性: 取 $\mu_{ij} = \max\{0, -(d_{ij} + z_i - z_j)\}$ 满足互补松弛条件

必要性:
$$d_{ij} + z_i - z_j > 0 \Rightarrow d_{ij} + z_i - z_j + \mu_{ij} > 0 \Rightarrow x_{ij} = 0$$

$$d_{ij} + z_i - z_j < 0 \Rightarrow \mu_{ij} > 0 \Rightarrow x_{ij} = c_{ij}$$

术语:记 $\sigma_{ij}(\vec{z}) = d_{ij} + z_i - z_j$,称其为边 (v_i, v_j) 的<u>简化成本</u>

利用互补松弛定理求解最小费用流问题的一种途径

首先确定一对 (X, z) 满足以下条件:

- 1) 容量约束 $0 \le x_{ij} \le c_{ij}, \forall (v_i, v_j) \in E$
- 2) 中间结点等式约束 $\sum_{(v_i,v_j)\in E} x_{ij} \sum_{(v_j,v_i)\in E} x_{ji} = 0$, $\forall i \notin \{s,t\}$
- 3) 总流量不超过给定流量 $\sum_{(v_s,v_j)\in E} x_{sj} = \hat{w} \leq w$
- **4**) 互补松弛条件 $x_{ij} = 0, \forall \sigma_{ij}(\vec{z}) > 0; x_{ij} = c_{ij}, \forall \sigma_{ij}(\vec{z}) < 0$

例如 $x_{ij} = 0$, $\forall (v_i, v_j) \in E$, $z_i = 0$, $\forall v_i \in V$ 满足以上条件 然后找可增广链,<u>在满足上述条件的前提下</u>增加总流量

 $(v_i, v_j) \in E$ 为增广边,增广前后的流量为 x_{ij} 和 x'_{ij} ,满足

增广前
$$\begin{cases} x_{ij} = 0 & \forall \sigma_{ij}(\vec{z}) > 0 \\ x_{ij} = c_{ij} & \forall \sigma_{ij}(\vec{z}) < 0 \end{cases}$$
 增广后
$$\begin{cases} x'_{ij} = 0 & \forall \sigma_{ij}(\vec{z}) > 0 \\ x'_{ij} = c_{ij} & \forall \sigma_{ij}(\vec{z}) < 0 \end{cases}$$

增广前后只能出现两种情况: 1) $x_{ij} < x'_{ij}$; 2) $x_{ij} > x'_{ij}$

第1种情况必有 $x_{ij} < c_{ij}$, $x'_{ij} > 0$, 只有 $\sigma_{ij}(\vec{z}) = 0$ 满足条件

第2种情况必有 $x_{ij} > 0$, $x'_{ij} < c_{ij}$, 只有 $\sigma_{ij}(\vec{z}) = 0$ 满足条件

结论: 当且仅当 $\sigma_{ij}(\vec{z}) = 0$ 时,其边可用做增广边

术语约定:以后把简化成本为零的可增广边称为可用边

实现前述途径要解决的关键问题:

对于任意给定的可行流 $\{x_{ij}\}$,如何调整对偶向量 \overline{z} ,确定一条由可用边组成的可增广链

解决问题的基本想法:

首先令 $S = \{v_s\}$,用 \overline{S} 表示其补集

如果割集 $\{S, \overline{S}\}$ 不含可增广边(前向可增,后向可减) 当前流已是最大流,原问题无解

如果割集 $\{S,\overline{S}\}$ 中有可增广边,调整 \overline{z} 获得可用边(若有这样的边无须调整),然后增加 S

没有可用边的割集 $\{S,\overline{S}\}$ 中所有边的情况

注意:不会有 $0 < x_{ij} < c_{ij}$ 的边,否则有可用边

保持属于S 的对偶变量不变,将属于 \overline{S} 的对偶变量加 1 即令 $z_i' = z_i$, $\forall v_i \in S$, $z_i' = z_i + 1$, $\forall v_i \in \overline{S}$,割集 $\{S, \overline{S}\}$ 中所有边的简化成本 $\sigma_{ij}(\overline{z}') = d_{ij} + z_i' - z_j'$ 的改变情况如下:

1)
$$x_{i_1j_1} = 0, \ \sigma_{i_1j_1}(\vec{z}) > 0 \implies \sigma_{i_1j_1}(\vec{z}') = \sigma_{i_1j_1}(\vec{z}) - 1 \ge 0$$

2)
$$x_{i_2j_2} = c_{i_2j_2}, \sigma_{i_2j_2}(\vec{z}) < 0 \implies \sigma_{i_2j_2}(\vec{z}') = \sigma_{i_2j_2}(\vec{z}) + 1 \le 0$$

3)
$$x_{i_3j_3} = c_{i_3j_3}, \sigma_{i_3j_3}(\vec{z}) \le 0 \implies \sigma_{i_3j_3}(\vec{z}') = \sigma_{i_3j_3}(\vec{z}) - 1 < 0$$

4)
$$x_{i_4j_4} = 0, \ \sigma_{i_4j_4}(\vec{z}) \ge 0 \implies \sigma_{i_4j_4}(\vec{z}') = \sigma_{i_4j_4}(\vec{z}) + 1 > 0$$

不在割集中的所有边的简化成本显然不变

结论:<u>以上操作可以保持</u> 互补松弛条件不变!

$$x_{ij} = 0, \forall \sigma_{ij}(\vec{z}) > 0;$$
$$x_{ij} = c_{ij}, \forall \sigma_{ij}(\vec{z}) < 0$$

注意可增广边的简化成本改变情况

1)
$$x_{i_1j_1} = 0, \ \sigma_{i_1j_1}(\vec{z}) > 0 \implies \sigma_{i_1j_1}(\vec{z}') = \sigma_{i_1j_1}(\vec{z}) - 1 \ge 0$$

2)
$$x_{i_2j_2} = c_{i_2j_2}, \sigma_{i_2j_2}(\vec{z}) < 0 \implies \sigma_{i_2j_2}(\vec{z}') = \sigma_{i_2j_2}(\vec{z}) + 1 \le 0$$

如果有
$$\sigma_{i_1j_1}(\vec{z})=1$$
, 则有 $\sigma_{i_1j_1}(\vec{z}')=0$ 如果有 $\sigma_{i_2j_2}(\vec{z})=-1$, 则有 $\sigma_{i_2j_2}(\vec{z}')=0$

出现上述任何一种情况都可得到可用边,如果上述情况都没有出现,则继续保持

1)
$$x_{i_1j_1} = 0$$
, $\sigma_{i_1j_1}(\vec{z}') > 0$ 2) $x_{i_2j_2} = c_{i_2j_2}$, $\sigma_{i_2j_2}(\vec{z}') < 0$

此时可以继续上述操作,将属于 \bar{s} 的对偶变量加 1

上述操作的次数有个上限,这就是

$$\eta = \left| \sigma_{ij}(\vec{z}) \right| = \min \left\{ \left| \sigma_{ij}(\vec{z}) \right| \right| \text{ s.t. } \left(v_i, v_j \right) \in \hat{E} \right\}$$

其中 \hat{E} 表示割集 $\{S, \overline{S}\}$ 中所有可增广边的集合,当操作进行了 η 次以后,一定得到 $\sigma_{\hat{i}\hat{j}}(\bar{z})=0$ 的可增广边 $\left(\nu_{\hat{i}},\nu_{\hat{j}}\right)$

基于以上分析,可以一次完成上述 η 次操作,即令

$$z'_{i} = z_{i} \qquad \forall v_{i} \in S$$
$$z'_{i} = z_{i} + \eta \quad \forall v_{i} \in \overline{S}$$

结论: 按以上公式得到的 \overline{z} 不仅能够保持互补松弛条件 不变,且能得到 $\sigma_{\hat{i}}(\overline{z})=0$ 的可增广边 $(v_{\hat{i}},v_{\hat{j}})$

保持互补松弛条件的增广方法总结

- 1) 令 $S = \{v_s\}$,用 \bar{S} 表示其补集
- 2) 如果割集 $\{S,\bar{S}\}$ 中没有可增广边,停止(原问题没有可行解),否则用 \hat{E} 表示其所有可增广边的集合
- 3) 由下式决定 η 和 $\left(v_{\hat{i}},v_{\hat{j}}\right)$

$$\eta = \left| \sigma_{ij}(\vec{z}) \right| = \min \left\{ \left| \sigma_{ij}(\vec{z}) \right| \right| \text{ s.t. } \left(v_i, v_j \right) \in \hat{E} \right\}$$

- **4)** 对所有 $v_i \in \overline{S}$ 用 $z_i + \eta$ 替换
- 5) 令 $v = \overline{S} \cap \{v_i, v_j\}$,用 $S \cup \{v\}$ 和 $\overline{S} \setminus \{v\}$ 分别替换S 和 \overline{S}
- 6)如果 *s* 是空集(已产生可用边组成的可增广链),停止,否则回到 2)继续迭代

例、求解右下图所示 w=11 的最小费用流问题

初值:

$$z_{i} = 0, \forall v_{i} \in V$$

$$\sigma_{ij}(\vec{z}) = d_{ij}$$

$$x_{ij} = 0, \forall (v_{i}, v_{j}) \in E$$

右图的中括号数字 为 z_i ,大括号的数 字依次为 x_{ij} , $\sigma_{ij}(\vec{z})$

令 $S = \{v_s\}$,用红点表示属于 S 的点,黑点为 \bar{S} 的点,用红虚线表示割集 $\{S,\bar{S}\}$ 的可增广边,如下图所示

可以看出,此时没有可用边

右图仅保留了对偶 变量和部分边简化 成本(边旁数字)

对所有 $v_j \in \overline{S}$, 将 z_j 换成 $z_j + \min\{4,1\}$ 可得到右边的对偶变量和简化成本,出现可用边(用红实线表示),注意

非割集边简化成本不变

用替换后的S、 \bar{z} 和 $\sigma_{ij}(\bar{z})$ 得到新图如下

此时仍然有可增广边,但没有可用边

右图为新对偶变量和部分边简化成本

对所有 $v_j \in \overline{S}$,将 z_j 换成 $z_j + \min\{3,2,3\}$ 可得到右边的对偶 变量和简化成本, 出现新的可用边

再用替换后的S、 \vec{z} 和 $\sigma_{ij}(\vec{z})$ 得到新图如下

此时仍然有可增广边,但没有可用边

右图为新对偶变量和部分边简化成本

对所有 $v_j \in \overline{S}$,将 z_j 换成 $z_j + \min\{1,6,1\}$ 可得到右边的对偶 变量和简化成本, 出现新的可用边

再用替换后的S、 \bar{z} 和 $\sigma_{ij}(\bar{z})$ 得到新图如下

此时已产生从火。到火的可用边组成的可增广链

沿简化成本等于零的可增广链增加流量,得到下图,其中可增流量为min {11,8,5,7}=5,其中11来自总流量约束

可验证,上述流量和对偶变量满足互补松弛条件

重新从 $S = \{v_s\}$ 和当前 \vec{z} 与 $\sigma_{ij}(\vec{z})$ 开始迭代,得下图

利用可用边可得 $S = \{v_s, v_2, v_3\}$

右图红虚线为可增 广边,黑虚线不是

对所有 $v_j \in \overline{S}$,将 z_j 换成 $z_j + \min\{1,2\}$ 可得到右边的对偶变量和简化成本

注意: 所有虚线上互补松弛条件保持成立!

再用替换后的S、 \bar{z} 和 $\sigma_{ij}(\bar{z})$ 得到新图如下

此时已产生一条从水到水的简化成本等于零的可增广链

沿简化成本等于零的可增广链增加流量,得到下图,其中可增流量为 $min\{11-5,10,7-5\}=2$

可验证,上述流量和对偶变量满足互补松弛条件

重新从 $S = \{v_s\}$ 和当前 \vec{z} 与 $\sigma_{ij}(\vec{z})$ 开始迭代,得下图

利用可用边可得 $S = \{v_s, v_1, v_2, v_3\}$

右图红虚线为可增 广边,黑虚线不是

对所有 $v_j \in \overline{S}$,将 z_j 换成 $z_j + \min\{1\}$ 可得到右边的对偶 变量和简化成本

。此时已产生一条从v_s到v_t的简化成本等于零的可增广链

沿简化成本等于零的可增广链增加流量,得到下图,其中可增流量为 $min\{11-7,8-5,10,4\}=3$

可验证,上述流量和对偶变量满足互补松弛条件

重新从 $S = \{v_s\}$ 和当前 \vec{z} 与 $\sigma_{ij}(\vec{z})$ 开始迭代,得下图

利用可用边可得 $S = \{v_s, v_1\}$

右图红虚线为可增 广边,黑虚线不是

对所有 $v_j \in \overline{S}$,将 z_j 换成 $z_j + \min\{|-1|, 6\}$ 可得到右边的对偶 变量和简化成本

此时已得到可增广链

沿简化成本等于零的可增广链增加流量,得到下图,其中可增流量为 $\min\{11-10,10-2,5,10-3,4-3\}$

可验证,上述流量和对偶变量满足互补松弛条件实际流量等于11,满足所有流量约束,已得到最优解

最小费用最大流问题的最短路算法

对前面可用增广链确定方法的新认识

上面右边是开始确定第三条增广链时的图,左边是由其导出的长度网络,导出规则如下:1)保留所有可增边(图中的黑色边);2)把所有可减边反向(图中的橙色边,可增可减边则增加一条反向边);3)各边长度取简约成本的绝对值

用Dijkstra算法求前面的长度网络(下面第一图)到各点的最短路,得到最后的最短路径图(用红色表示)

下面左右图分别是确定第三条增广链的开始和结束图,和右上求最短路的结果图对比,可以看出: 1)最短路就是所求可增广链; 2)对偶变量和最短路径(用ρ_i表示)满足以下关系

从前面求最短路的过程可知 <u>该结论具有一般性</u>

$$z'_i = z_i + \min\{\rho_i, \rho_t\}, \forall v_i \in V$$

和确定可用增广链方法等价的最小费用流求解算法:

- 2) 如果 $\hat{w} = w$,停止
- 3) 利用当前流量和简化成本构造长度网络
- 4) 求出从 v_s 到每个 v_i 的最短路程 ρ_i ,如果到某个 v_i 没有通路,令 $\rho_i = \infty$
- 5) 如果 $\rho_t = \infty$, 停止(没有可增广链)
- 6) 利用从 v_s 到 v_t 的最短路和所有的 ρ_i 修改原变量、对偶变量($z_i' = z_i + \min\{\rho_i, \rho_t\}$)和总流量,再用新数值替换原数值,然后回到 2)

定理: 在前述算法中,如果每步迭代开始时的对偶变量 Z 和流量 X 一起满足互补松弛条件,那么经过一步迭代后的对偶变量 Z' 和流量 X'仍然一起满足互补松弛条件

推论: 只要最小费用流问题有最优解,那么前述算法一定可以经过有限次迭代求得最优解

推论:容量和总流量均为整数的最小费用流问题存在整数最优解

直接证明定理

首先说明,以下两组条件等价

$$\begin{cases} x_{ij} = 0 & \forall \sigma_{ij}(\vec{z}) > 0 \\ x_{ij} = c_{ij} & \forall \sigma_{ij}(\vec{z}) < 0 \end{cases} \Leftrightarrow \begin{cases} \sigma_{ij}(\vec{z}) \le 0 & \forall x_{ij} > 0 \\ \sigma_{ij}(\vec{z}) \ge 0 & \forall x_{ij} < c_{ij} \end{cases}$$

理由: 当左边成立时,若右边上面不成立,则会产生 $x_{ij} > 0$ 和 $x_{ij} = 0$ 需要同时成立的矛盾,若右边 下面不成立,则会产生 $x_{ij} < c_{ij}$ 和 $x_{ij} = c_{ij}$ 需要同时成立的矛盾。同理可说明,右边成立时左边必须成立。

下面先证明 $\sigma_{ij}(\vec{z}') \leq 0$, $\forall x'_{ij} > 0$ 。分两种情形讨论:

1)
$$x_{ij} = 0$$

$$\Rightarrow x'_{ij} > x_{ij} \Rightarrow (v_i, v_j) \in \mu^+$$
 (可增广链的前向边)

$$\Rightarrow \qquad \xrightarrow{v_s} \qquad \xrightarrow{p_i} \qquad \xrightarrow{p_j} \qquad \xrightarrow{v_i} \sigma_{ij}(\vec{z}) \ge 0 \quad v_j$$

$$\Rightarrow \rho_i \leq \rho_t, \quad \rho_j \leq \rho_t, \quad \rho_j = \rho_i + \sigma_{ij}(\vec{z})$$

$$\sigma_{ij}(\vec{z}') = d_{ij} + z_i' - z_j'$$

$$= d_{ij} + z_i + \min\{\rho_i, \rho_t\} - z_j - \min\{\rho_j, \rho_t\}$$

$$= d_{ij} + z_i - z_j + (\rho_i - \rho_j)$$

$$= d_{ij} + z_i - z_j - \sigma_{ij}(\vec{z}) = 0$$

2)
$$x_{ij} > 0$$

⇒ 存在
$$\stackrel{\bullet}{\longrightarrow}$$
 ---- $\stackrel{\nu_{j}}{\longrightarrow}$ ---- $\stackrel{\bullet}{\longrightarrow}$ $\stackrel{\bullet}{\sim}$ $\stackrel{\bullet$

$$\Rightarrow \rho_i \leq \rho_j - \sigma_{ij}(\vec{z})$$

$$\Rightarrow \min \{\rho_{i}, \rho_{t}\} \leq \min \{\rho_{j} - \sigma_{ij}(\vec{z}), \rho_{t}\}$$

$$\leq \min \{\rho_{j}, \rho_{t}\} - \sigma_{ij}(\vec{z})$$

$$\sigma_{ij}(\vec{z}') = d_{ij} + z_i' - z_j'$$

$$\Rightarrow \qquad = d_{ij} + z_i - z_j + \min\{\rho_i, \rho_t\} - \min\{\rho_j, \rho_t\}$$

$$\leq d_{ij} + z_i - z_j - \sigma_{ij}(\vec{z}) = 0$$

下面再证明 $\sigma_{ij}(\vec{z}') \ge 0$, $\forall x'_{ij} < c_{ij}$ 。 同样分两种情形讨论:

$$1) \quad x_{ij} = c_{ij}$$

$$\Rightarrow x'_{ij} < x_{ij} \Rightarrow (v_i, v_j) \in \mu^-$$
 (可增广链的后向边)

$$\Rightarrow \qquad \xrightarrow{v_s} \qquad \xrightarrow{p_j} \qquad \xrightarrow{p_i} \qquad \xrightarrow{v_i} \qquad \xrightarrow{v_j} -\sigma_{ij}(\vec{z}) \ge 0 \qquad \qquad v_i$$

$$\Rightarrow \rho_i \leq \rho_t, \quad \rho_j \leq \rho_t, \quad \rho_i = \rho_j - \sigma_{ij}(\vec{z})$$

$$\sigma_{ij}(\vec{z}') = d_{ij} + z_i' - z_j'$$

$$= d_{ij} + z_i + \min\{\rho_i, \rho_t\} - z_j - \min\{\rho_j, \rho_t\}$$

$$= d_{ij} + z_i - z_j + (\rho_i - \rho_j)$$

$$= d_{ij} + z_i - z_j - \sigma_{ij}(\vec{z}) = 0$$

2)
$$x_{ij} < c_{ij}$$

⇒ 存在
$$\stackrel{\bullet}{\longrightarrow}$$
 ---- $\stackrel{\rho_i}{\longrightarrow}$ $\stackrel{\rho_j}{\longrightarrow}$ ---- $\stackrel{\bullet}{\longrightarrow}$ $\stackrel{\bullet}{v_i}$ $\sigma_{ij}(\vec{z}) \ge 0$ $\stackrel{\bullet}{v_j}$ $\stackrel{\bullet}{\smile}$ $\stackrel{\bullet}{\smile}$

$$\Rightarrow \rho_{j} \leq \rho_{i} + \sigma_{ij}(\vec{z})$$

$$\Rightarrow \min \left\{ \rho_{j}, \rho_{t} \right\} \leq \min \left\{ \rho_{i} + \sigma_{ij} \left(\vec{z} \right), \rho_{t} \right\} \\ \leq \min \left\{ \rho_{i}, \rho_{t} \right\} + \sigma_{ij} \left(\vec{z} \right)$$

$$\Rightarrow \sigma_{ij}(\vec{z}') = d_{ij} + z_i' - z_j'$$

$$\Rightarrow = d_{ij} + z_i - z_j + \min\{\rho_i, \rho_t\} - \min\{\rho_j, \rho_t\}$$

$$\geq d_{ij} + z_i - z_j - \sigma_{ij}(\vec{z}) = 0$$

最小费用最大流问题的进一步简化算法

和前面方法等价的简单方法

对长度网络中任意的从 ν_s 到 ν_t 的可增广链 μ ,分别记前向边和后向边为 μ^+ 和 μ^- ,其在长度网络的长度为

$$\begin{split} & \sum_{(v_i, v_j) \in \mu^+} \sigma_{ij} \left(\vec{z} \right) + \sum_{(v_i, v_j) \in \mu^-} \left(-\sigma_{ij} \left(\vec{z} \right) \right) \\ &= \sum_{(v_i, v_j) \in \mu^+} \left(d_{ij} + z_i - z_j \right) - \sum_{(v_i, v_j) \in \mu^-} \left(d_{ij} + z_i - z_j \right) \\ &= d \left(\mu \right) + \sum_{(v_i, v_j) \in \mu^+} \left(z_i - z_j \right) - \sum_{(v_i, v_j) \in \mu^-} \left(z_i - z_j \right) \end{split}$$

其中
$$d(\mu) = \sum_{(v_i,v_i)\in\mu^+} d_{ij} + \sum_{(v_i,v_i)\in\mu^-} (-d_{ij})$$
 称为增广链 μ 的费用

长度表达式的简化表示

利用

$$(z_{s}-z_{j})+(z_{j}-z_{k})=z_{s}-z_{k}$$

$$v_{s} \qquad v_{j} \qquad v_{k} \Leftrightarrow v_{s} \qquad v_{k}$$

$$v_{s} \qquad \mu^{+} \qquad z_{j} \qquad \mu^{-} \qquad z_{k} \qquad v_{s} \qquad v_{k}$$

$$v_{s} \qquad v_{j} \qquad v_{k} \qquad (z_{s}-z_{j})-(z_{k}-z_{j})=z_{s}-z_{k}$$

可推得
$$\sum_{(v_i,v_j)\in\mu^+} (z_j-z_i) - \sum_{(v_i,v_j)\in\mu^-} (z_j-z_i) = z_s-z_t$$

$$\underbrace{ \text{ } \quad \text{$$

结论:在构造长度网络时,用费用作为可增边的长度, 用费用的负数作为可减边的长度,由此得到费用网络, 如下图所示,再求最短路确定可用的可增广链

注意:1)由于不涉及简化成本,所以无需计算对偶变量

2)不能用Dijkstra算法求最短路

求解最小费用流的简单算法(不用计算对偶变量)

- **1**) \diamondsuit $X = \{x_{ij}\}, x_{ij} = 0, \forall (v_i, v_j) \in E, \hat{w} = 0$
- 2) 如果 $\hat{w} = w$, 停止, 否则求出费用 $d(\mu)$ 最小的可增广链 μ_{ι} (如果没有可增广链, 停止)
- $\delta = \min \left\{ w \hat{w}, \min_{(v_i, v_j) \in \mu_t^+} c_{ij} x_{ij}, \min_{(v_i, v_j) \in \mu_t^-} x_{ij} \right\}$ $x'_{ij} = x_{ij} + \delta \quad \forall (v_i, v_j) \in \mu_t^+$ $x'_{ij} = x_{ij} \delta \quad \forall (v_i, v_j) \in \mu_t^ x'_{ij} = x_{ij} \quad \forall (v_i, v_j) \in E \setminus \left(\mu_t^+ \cup \mu_t^-\right)$
- 4) 用 X' 替换 X , $\hat{w}+\delta$ 替换 \hat{w} , 回到 2)

该算法每步得到的流量和前面算法相同,故可得最优解