Crystallizing compact semisimple Lie groups

Robert Yuncken (joint work with Marco Matassa)

IECL Metz

20 November 2023

Executive summary

- Goal: "Set-theoretic" version of representation theory for semisimple Lie groups.
- ② This is well-known for compact s.s. Lie groups K: Crystal bases.
- **3** This talk is about crystalization for the *AN* group.

Crystal bases

Irred. representations of a compact semisimple Lie group

K — compact semisimple Lie group (connected, simply connected)

 $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}} \ \text{—complexification of its Lie algebra} \\ \Longrightarrow \quad \text{irred. unitary rep'ns of } \mathcal{K} \equiv \text{irred. rep'ns of } \mathfrak{g}.$

Ex. $\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{C})$, generated by

$$E_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & 1 \\ & & \ddots & 0 \end{pmatrix}, F_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & \\ & & 1 & \ddots & 0 \end{pmatrix}, H_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & -1 & & \\ & & & \ddots & 0 \end{pmatrix},$$

Irred. representations of a compact semisimple Lie group

K — compact semisimple Lie group (connected, simply connected)

 $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}}$ — complexification of its Lie algebra

 \implies irred. unitary rep'ns of $K \equiv$ irred. rep'ns of \mathfrak{g} .

Theorem

Irred. rep'ns of \mathfrak{g} are classified by highest weight $\lambda \in \mathbf{P}^+$.

Explicit structure...?

Irred. representations of a compact semisimple Lie group

- *K* compact semisimple Lie group (connected, simply connected)
- $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}}$ complexification of its Lie algebra
 - \implies irred. unitary rep'ns of $K \equiv$ irred. rep'ns of \mathfrak{g} .

Theorem

Irred. rep'ns of \mathfrak{g} are classified by highest weight $\lambda \in \mathbf{P}^+$.

Explicit structure...?

- Weyl character formula (1925): Action of Cartan subalgebra h.
- **Gelfand-Tsetlin (1950):** Explicit formulas for action of simple root vectors E_i , F_i , but for $\mathfrak{gl}_n(\mathbb{C})$ only.
- Pand-Hecht, Wong (1967), & many others: Same for o_n , then \mathfrak{sp}_n , then all classical \mathfrak{g} .
- Kashiwara, Lusztig (1990): Crystal bases (asymptotic formulas + much more)

Example: $V(2\varpi_1 + 2\varpi_2)$ for $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$

Quantized envelopping algebras (Drinfeld-Jimbo)

Ex.
$$\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{C}),$$

 $U(\mathfrak{g})$ is generated by elements E_i, F_i, H_i ,

$$E_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & 1 \\ & & \ddots & 0 \end{pmatrix}, F_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & \\ & & 1 & \ddots & 0 \end{pmatrix}, H_{i} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & & 1 & \\ & & & \ddots & 0 \end{pmatrix},$$

with the Chevalley-Serre relations:

$$\begin{aligned} &[H_{j},E_{i}] = \alpha_{i}(H_{j})E_{i} \\ &[H_{j},F_{i}] = -\alpha_{i}(H_{j})F_{i} \end{aligned} \qquad \alpha_{i}: \begin{pmatrix} a_{1} \\ \ddots \\ a_{n+1} \end{pmatrix} \mapsto a_{i} - a_{i+1} \\ &[E_{i},F_{j}] = \delta_{ij}H_{i} \\ &E_{i}^{2}E_{i\pm1} - 2E_{i}E_{i\pm1}E_{i} + E_{i\pm1}E_{i}^{2} = 0 \\ &F_{i}^{2}F_{i\pm1} - 2F_{i}F_{i\pm1}F_{i} + F_{i\pm1}F_{i}^{2} = 0 \end{aligned}$$

Quantized envelopping algebras (Drinfeld-Jimbo)

Ex.
$$g = \mathfrak{sl}(n+1,\mathbb{C}), \quad q \in \mathbb{R}_+^{\times}, \ q \neq 1$$

 $U_{\mathbf{q}}(\mathfrak{g})$ is generated by elements E_i, F_i, H_i

$$E_{i} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad F_{i} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

with the Chevalley-Serre relations:

$$\begin{aligned} &[H_{j},E_{i}]=\alpha_{i}(H_{j})E_{i}\\ &[H_{j},F_{i}]=-\alpha_{i}(H_{j})F_{i}\\ &[E_{i},F_{j}]=\delta_{ij}[H_{i}]_{q}\\ &E_{i}^{2}E_{i\pm1}-[2]_{q}E_{i}E_{i\pm1}E_{i}+E_{i\pm1}E_{i}^{2}=0\\ &F_{i}^{2}F_{i\pm1}-[2]_{q}F_{i}F_{i\pm1}F_{i}+F_{i\pm1}F_{i}^{2}=0\\ \end{aligned}$$
 where:
$$[2]_{q}=q+q^{-1},\quad [H]_{q}=\frac{q^{H}-q^{-H}}{q-q^{-1}}.$$

Rmk. Actually, one uses $K_i = q^{H_i}$ instead of H_i as generators. \blacksquare \blacksquare \bigcirc QC Robert Yuncken (IECL Metz) Crystallizing compact s.s. Lie groups 20 November 2023 8 /43

DOMINAUT TERMS IN PH(F2) & PH(F2) AS q→0

LIMIT AS 9->0

LIMIT AS 9->0

(CRYSTAL GRAPH)

Example: $\mathcal{B}(2\varpi_1 + 2\varpi_2)$

LIMIT AS 9->0

(CRYSTAL GRAPH)

Tensor product of crystals

The crystal limit $(q \rightarrow 0)$ simplifies not just the action of the generators, but also the Clebsch-Gordan coefficients, branching rules, ...

Tensor product of crystals

The crystal limit $(q \to 0)$ simplifies not just the action of the generators, but also the Clebsch-Gordan coefficients, branching rules, . . .

Theorem (Tensor product rule)

If $(\mathcal{L}, \mathcal{B})$, $(\mathcal{L}', \mathcal{B}')$ are crystal bases for V, V', then $(\mathcal{L} \otimes \mathcal{L}', \mathcal{B} \times \mathcal{B}')$ is a crystal basis for $V \otimes V'$, with action

$$\tilde{f}_i: b \otimes c \mapsto \begin{cases} (\tilde{f}_i b) \otimes c, & \text{if } \varphi_i(b) > \varepsilon_i(c) \\ b \otimes (\tilde{f}_i c), & \text{if } \varphi_i(b) \leqslant \varepsilon_i(c) \end{cases}$$

where $\varepsilon_i(b) = \max\{n \mid \tilde{e}_i^n b \neq 0\}$ and $\varphi_i(b) = \max\{n \mid \tilde{f}_i^n b \neq 0\}$.

$$\tilde{f}_i: b \otimes c \mapsto \begin{cases} (\tilde{f}_i b) \otimes c, & \text{if } \varphi_i(b) > \varepsilon_i(c) \\ b \otimes (\tilde{f}_i c), & \text{if } \varphi_i(b) \leqslant \varepsilon_i(c) \end{cases}$$

Example: Tensor product of \$\epsilon l_2\$ representations

Example: Tensor product of sl₂ representations

Example: Tensor product of sl₃ representations

Example: Tensor product of \$14 representations

"Crystallization" in analysis: Quantized algebras of functions

$$\mathcal{O}(K) = \{ \text{polynomial functions on } K \}$$

$$= \{ \langle \xi | \cdot | \eta \rangle | \xi, \eta \in V \text{ (irred. integrable } \mathfrak{g}\text{-modules)} \}$$

$$C(K) = \overline{\mathcal{O}(K)}^{\|\cdot\|} - C^*\text{-closure}$$

$$\begin{split} \mathcal{O}(K_{\pmb{q}}) &= \{ \text{polynomial functions on } K_{\pmb{q}} \} \\ &= \{ \langle \xi | \, \cdot \, | \eta \rangle \, | \, \xi, \eta \in V \text{ (irred. integrable } \mathcal{U}_{\pmb{q}}(\mathfrak{g})\text{-modules)} \} \\ \mathcal{C}(K_{\pmb{q}}) &= \overline{\mathcal{O}(K_{\pmb{q}})}^{\| \cdot \|} \quad - C^*\text{-closure} \end{split}$$

$$\begin{split} \mathcal{O}(K_{q}) &= \{ \text{polynomial functions on } K_{q} \} \\ &= \{ \langle \xi | \, \cdot \, | \eta \rangle \, | \, \xi, \eta \in V \text{ (irred. integrable } \mathcal{U}_{q}(\mathfrak{g})\text{-modules}) \} \\ \mathcal{C}(K_{q}) &= \overline{\mathcal{O}(K_{q})}^{\| \cdot \|} \quad - C^*\text{-closure} \end{split}$$

More generally, we can define $\mathcal{O}(X_q)$ and $\mathcal{C}(X_q)$ for any X = K/H with H a Poisson subgroup.

$$\begin{split} \mathcal{O}(K_{\pmb{q}}) &= \{ \text{polynomial functions on } K_{\pmb{q}} \} \\ &= \{ \langle \xi | \, \cdot \, | \eta \rangle \, | \, \xi, \eta \in V \text{ (irred. integrable } \mathcal{U}_{\pmb{q}}(\mathfrak{g})\text{-modules)} \} \\ \mathcal{C}(K_{\pmb{q}}) &= \overline{\mathcal{O}(K_{\pmb{q}})}^{\| \cdot \|} \quad - C^*\text{-closure} \end{split}$$

More generally, we can define $\mathcal{O}(X_q)$ and $\mathcal{C}(X_q)$ for any X = K/H with H a Poisson subgroup.

Remarks.

- ..., Neshveyev-Tuset (2012): The algebras $C(K_q)$ form a continuous field of C^* -algebras for $0 < q < \infty$.
- ..., Giselsson (2023): $C(K_q)$ are all isomorphic for $q \in (0, \infty) \setminus \{1\}$.
- The $\mathcal{O}(K_a)$ are not, though.

Quantized algebras of functions: q = 0 limit

Theorem (Woronowicz '87, Hong-Szymański '02, Giselsson '23)

For $X_q = \mathrm{SU}_q(2)$, $\mathbb{C}P_q^n$, $\mathrm{SU}_q(3)$, the continuous field $(C(X_q))$ extends to $q=0,\infty$.

All fibres for $q \neq 1$ are isomorphic, and they are graph C^* -algebras.

Quantized algebras of functions: q = 0 limit

Theorem (Woronowicz '87, Hong-Szymański '02, Giselsson '23)

For $X_q = \mathrm{SU}_q(2)$, $\mathbb{C}P_q^n$, $\mathrm{SU}_q(3)$, the continuous field $(C(X_q))$ extends to $q = 0, \infty$.

All fibres for $q \neq 1$ are isomorphic, and they are graph C^* -algebras.

Remarks.

- Again, the $\mathcal{O}(X_q)$ are not all isomorphic.
- $\mathcal{O}(X_0)$ is a **Leavitt path algebra** (= algebraic analog of a graph C^* -algebra).
- More precisely:
 - $C(\mathbb{C}P_a^n)$ is the AF-core of a graph C^* -algebra,
 - $C(SU_q(3))$ is a higher-rank graph C^* -algebra.
- For $SU_q(n)$, there is another approach to crystallization by Giri-Pal (2023).

Graph algebras

```
(\Lambda^0,\Lambda^1) — directed graph.
```

Write $\Lambda = \{paths in the graph\}$

Graph algebras

 (Λ^0, Λ^1) — directed graph.

Write $\Lambda = \{paths in the graph\}$

NB. It's a category with length function $\mathbf{d}: \Lambda \to \mathbb{N}$.

Graph algebras

 (Λ^0, Λ^1) — directed graph.

Write $\Lambda = \{paths in the graph\}$

NB. It's a category with length function $\mathbf{d}: \Lambda \to \mathbb{N}$.

Definition

The **Leavitt path algebra** KP*(Λ) is the universal *-algebra generated by projections p_v ($v \in \Lambda^0$) and partial isometries s_e ($e \in \Lambda^1$) satisfying:

- **2** $s_e^* s_{e'} = \delta_{ee'} p_{s(e)}$
- **3** $p_v = \sum_{r(e)=v} s_e s_e^*$

The **graph** C^* -algebra $C^*(\Lambda)$ is the enveloping C^* -algebra.

Classic examples

- $C^*(\widehat{\bullet}) \cong C(\mathbb{T})$
- $\bullet \ \ {\it C}^*(\ \bullet \longrightarrow \stackrel{\bigcirc}{\bullet}\)\cong {\it T} \qquad \qquad \hbox{(Toeplitz alg.)}$

Classic examples

- $C^*(\stackrel{\frown}{\bullet})\cong C(\mathbb{T})$
- $C^*(\bullet \longrightarrow \bullet) \cong \mathcal{T}$ (Toeplitz alg.)

Quantized function algebras $(q \neq 1)$

 $\bullet \ \ C^*(\ \stackrel{\textstyle \frown}{\bullet} \longrightarrow \stackrel{\textstyle \frown}{\bullet}\) \cong C(\mathrm{SU}_q(2))$

- $C^*($ $C^*($ Hong-Szymański

 $Y = \text{canonical } \mathbb{T}\text{-bundle over } \mathbb{C}P^n$

Classic examples

•
$$C^*(\stackrel{\frown}{\bullet}) \cong C(\mathbb{T})$$

•
$$C^*(\bullet \longrightarrow \bullet^{\setminus}) \cong \mathcal{T}$$
 (Toeplitz alg.)

Quantized function algebras $(q \neq 1)$

$$\bullet \ \ C^*(\ \stackrel{\frown}{\bullet} \longrightarrow \stackrel{\frown}{\bullet}\) \cong C(\mathrm{SU}_q(2))$$

—Woronowicz

$$\bullet \ C^*(\ \bullet) \longrightarrow \bullet) \cong C(Y_q)$$

— Hong-Szymański

 $Y = \text{canonical } \mathbb{T}\text{-bundle over } \mathbb{C}P^n$

Question: What are these graphs? What about higher rank?

Higher rank graphs

Definition (k-graph)

A k-graph is a category Λ (of paths) with a morphism $\mathbf{d}: \Lambda \to \mathbb{N}^k$ (degree or coloured length) satisfying the factorization property:

$$\mathbf{d}(e) = m + n \implies e = e_1 e_2$$
 uniquely with $\mathbf{d}(e_1) = m$, $\mathbf{d}(e_2) = n$.

Notation:

- $\Lambda^n := \mathbf{d}^{-1}(n)$ paths of coloured length $n \in \mathbb{N}^k$.
- $\Lambda^{(0,...,0)}$ is the set of **vertices**.
- $\Lambda^{(0,...,1,...,0)}$ is the set of **edges of colour** *i*.

Higher rank graph algebras

Definition

The **Kumjian-Pask algebra** KP*(Λ) of a k-graph Λ is the universal *-algebra generated by projections p_v ($v \in \Lambda^0$) and partial isometries s_e ($e \in \Lambda^{\neq 0}$) satisfying $s_{ee'} = s_e s_{e'}$ and:

- **1** p_v are mutually orthogonal projections.

The **higher rank graph** C^* -algebra $C^*(\Lambda)$ is the enveloping C^* -algebra.

Crystallized algebras of functions

Theorem (Matassa-Y.)

K — connected compact semisimple Lie group.

The continuous field of C^* -algebras $(C(K_q))_{q\in(0,\infty)}$ extends to $q=0,\infty$ with $C(K_0)\cong C(K_\infty)\cong C^*(\Lambda)$ for some explicit **higher rank graph** Λ of rank $\operatorname{rk}(K)$.

Remarks

- For $K = \mathrm{SU}(3)$, this is a result of Giselsson. He also shows $C(\mathrm{SU}_q(3)) \cong C^*(\Lambda)$ for every $q \in [0,\infty] \setminus \{1\}$. **Conjecture:** This is true in generality.
- Can replace K by the canonical torus bundle Y over a flag manifold. The algebra of functions on the flag manifold itself is the gauge-invariant subalgebra. At $q=0,\infty$, this is the AF-core.

Crystallized algebras of functions

Examples

Crystallized algebras of functions

Examples

Graph algebras from crystals

The higher rank graph of a complex semisimple group

For $\lambda \in \mathbf{P}^+$, let $\mathcal{B}(\lambda) = \text{crystal graph of } V(\lambda)$.

The higher rank graph of a complex semisimple group

For $\lambda \in \mathbf{P}^+$, let $\mathcal{B}(\lambda) = \text{crystal graph of } V(\lambda)$.

Definition

- The **Cartan component** of $\mathcal{B}(\lambda) \otimes \mathcal{B}(\mu)$ is the irreducible component of highest weight $\lambda + \mu$.
- Say $b \in \mathcal{B}(\lambda)$, $c \in \mathcal{B}(\mu)$ are **composable** if $b \otimes c \in \mathsf{Cartan}$ component.

Example: Tensor product of \$14 representations

Right ends of a simple module

Let $\lambda \in \mathbf{P}^+$.

If $\nu\leqslant\lambda$ then we have a tensor product decomposition

$$\mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(\lambda - \nu) \otimes \mathcal{B}(\nu)$$

Right ends of a simple module

Let $\lambda \in \mathbf{P}^+$.

If $\nu \leqslant \lambda$ then we have a tensor product decomposition

$$\mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(\lambda - \nu) \otimes \mathcal{B}(\nu)$$

Definition (ν -right end)

$$\mathbf{R}_{\nu}: \mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(\lambda - \nu) \otimes \mathcal{B}(\nu) \to \mathcal{B}(\nu); \quad b \hookrightarrow b' \otimes b'' \mapsto b''$$

Right ends of a simple module

Let $\lambda \in \mathbf{P}^+$.

If $\nu \leqslant \lambda$ then we have a tensor product decomposition

$$\mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(\lambda - \nu) \otimes \mathcal{B}(\nu)$$

Definition (ν -right end)

$$\mathbf{R}_{\nu}: \mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(\lambda - \nu) \otimes \mathcal{B}(\nu) \to \mathcal{B}(\nu); \quad b \hookrightarrow b' \otimes b'' \mapsto b''$$

Lemma

Let $b \in \mathcal{B}(\lambda)$, $c \in \mathcal{B}(\mu)$ with $\lambda \geqslant \rho$. Then b and c are composable iff the fundamental right ends $\mathbf{R}_{\varpi_i}(b)$ are composable with c for every i.

The higher rank graph of a complex semisimple group

Put $r = \mathbf{rk}(K)$, so that $\mathbf{P}^+ \cong \mathbb{N}^r$.

Define an r-graph Λ_K by:

• $\Lambda_K^{\lambda} := \{(v, b) \mid v \in \Lambda^0, b \in \mathcal{B}(\lambda) \text{ composable}\}.$

The higher rank graph of a complex semisimple group

Put $r = \mathbf{rk}(K)$, so that $\mathbf{P}^+ \cong \mathbb{N}^r$.

Define an r-graph Λ_K by:

• $\Lambda_K^{\lambda} := \{(v, b) \mid v \in \Lambda^0, \ b \in \mathcal{B}(\lambda) \text{ composable}\}.$

Theorem (Matassa-Y.)

 $\mathcal{O}(K_0) \cong \mathsf{KP}(\Lambda_K)$ and $C(K_0) \cong C^*(\Lambda_K)$.

$$v_0^{\lambda},\ldots,v_n^{\lambda}\in V(\lambda)$$
 —weight basis lifting $b_0^{\lambda},\ldots,b_n^{\lambda}$. $(v_0^{\lambda}=\text{highest})$ $f_{\lambda}^{0},\ldots,f_{\lambda}^{n}\in V(\lambda)^*$ —dual basis.

$$\mathbf{f}_i^{\lambda} = \langle f_{\lambda}^i | \, \cdot \, | v_0^{\lambda}
angle \qquad \mathbf{v}_i^{\lambda} = \mathcal{S}(\langle f_{\lambda}^0 | \, \cdot \, | v_i^{\lambda}
angle).$$

$$v_0^\lambda,\dots,v_n^\lambda\in V(\lambda)$$
 —weight basis lifting $b_0^\lambda,\dots,b_n^\lambda$. $\left(v_0^\lambda=\text{highest}\right)$ $f_\lambda^0,\dots,f_\lambda^n\in V(\lambda)^*$ —dual basis.

$$\mathbf{f}_{i}^{\lambda} = \langle f_{\lambda}^{i} | \cdot | v_{0}^{\lambda} \rangle \qquad \mathbf{v}_{i}^{\lambda} = S(\langle f_{\lambda}^{0} | \cdot | v_{i}^{\lambda} \rangle).$$

Theorem (Stokman '03)

 $\mathcal{O}[K_q]$ is generated as a \mathbb{C} -algebra by \mathbf{f}_i^{λ} , \mathbf{v}_i^{λ} , for all $0 < q < \infty$.

$$v_0^\lambda,\dots,v_n^\lambda\in V(\lambda)$$
 —weight basis lifting $b_0^\lambda,\dots,b_n^\lambda$. $\left(v_0^\lambda=\text{highest}\right)$ $f_\lambda^0,\dots,f_\lambda^n\in V(\lambda)^*$ —dual basis.

$$\mathbf{f}_{i}^{\lambda} = \langle f_{\lambda}^{i} | \cdot | v_{0}^{\lambda} \rangle \qquad \mathbf{v}_{i}^{\lambda} = S(\langle f_{\lambda}^{0} | \cdot | v_{i}^{\lambda} \rangle).$$

Theorem (Stokman '03)

 $\mathcal{O}[K_q]$ is generated as a \mathbb{C} -algebra by \mathbf{f}_i^{λ} , \mathbf{v}_i^{λ} , for all $0 < q < \infty$.

Definition. $\mathcal{O}_q^{\mathcal{A}_0}[K] := \mathcal{A}_0$ -algebra generated by $\mathbf{f}_i^{\lambda}, \ \mathbf{v}_i^{\lambda}$.

NB. $\mathcal{O}_q^{\mathcal{A}_0}[K] \neq \mathcal{O}_q^{\mathcal{A}_0}[G]$ studied by Kashiwara, Iglesias, which is not *-stable.

$$v_0^{\lambda},\ldots,v_n^{\lambda}\in V(\lambda)$$
 —weight basis lifting $b_0^{\lambda},\ldots,b_n^{\lambda}$. $(v_0^{\lambda}=\text{highest})$ $f_{\lambda}^{0},\ldots,f_{\lambda}^{n}\in V(\lambda)^*$ —dual basis.

$$\mathbf{f}_{i}^{\lambda} = \langle f_{\lambda}^{i} | \cdot | v_{0}^{\lambda} \rangle \qquad \mathbf{v}_{i}^{\lambda} = S(\langle f_{\lambda}^{0} | \cdot | v_{i}^{\lambda} \rangle).$$

Theorem (Stokman '03)

 $\mathcal{O}[K_q]$ is generated as a \mathbb{C} -algebra by \mathbf{f}_i^{λ} , \mathbf{v}_i^{λ} , for all $0 < q < \infty$.

Definition. $\mathcal{O}_q^{\mathcal{A}_0}[K] := \mathcal{A}_0$ -algebra generated by $\mathbf{f}_i^{\lambda}, \ \mathbf{v}_i^{\lambda}$.

NB. $\mathcal{O}_q^{\mathcal{A}_0}[K] \neq \mathcal{O}_q^{\mathcal{A}_0}[G]$ studied by Kashiwara, Iglesias, which is not *-stable.

Theorem (Matassa-Y.)

For any $a \in \mathcal{O}_q^{\mathcal{A}_0}[K]$, the operators $\pi_q(a)$ admit a norm limit as $q \to 0$, where $\pi_q : \mathcal{O}[K_q] \to \ell^2(\mathbb{N})^{\otimes k}$ is any Soibelman *-representations (corresp. to symplectic leaves).

$$\langle f_{\lambda}^i| \, \cdot \, |v_j^{\lambda}\rangle.\langle f_{\mu}^k| \, \cdot \, |v_l^{\mu}\rangle = \langle f_{\lambda}^i \otimes f_{\mu}^k| \, \cdot \, |v_j^{\lambda} \otimes v_l^{\mu}\rangle.$$

$$\langle f_{\lambda}^{i}| \cdot |v_{j}^{\lambda}\rangle \cdot \langle f_{\mu}^{k}| \cdot |v_{l}^{\mu}\rangle = \langle f_{\lambda}^{i} \otimes f_{\mu}^{k}| \cdot |v_{j}^{\lambda} \otimes v_{l}^{\mu}\rangle.$$

NB: $V(\lambda) \otimes V(\mu) \cong V(\mu) \otimes V(\lambda)$, but not via the flip map.

$$\langle f^i_\lambda|\,\cdot\,|v^\lambda_j\rangle.\langle f^k_\mu|\,\cdot\,|v^\mu_l\rangle = \langle f^i_\lambda\otimes f^k_\mu|\,\cdot\,|v^\lambda_j\otimes v^\mu_l\rangle.$$

NB: $V(\lambda) \otimes V(\mu) \cong V(\mu) \otimes V(\lambda)$, but not via the flip map.

Braiding operators

The integrable $\mathcal{U}_q(\mathfrak{g})$ -modules form a **braided category**.

Thus we have operators $\hat{R}_{VW}:V\otimes W\to W\otimes V$ satisfying the **braid** relations

tions
$$U \otimes V \otimes W \xrightarrow{\hat{R}_{UW} \otimes 1} V \otimes U \otimes W \xrightarrow{1 \otimes \hat{R}_{UW}} V \otimes W \otimes U \xrightarrow{\hat{R}_{WW} \otimes 1} W \otimes V \otimes U$$

$$1 \otimes \hat{R}_{VW} \longrightarrow U \otimes W \otimes V \xrightarrow{\hat{R}_{UW} \otimes 1} W \otimes U \otimes V \xrightarrow{1 \otimes \hat{R}_{UV}} W \otimes V \otimes U$$

$$\langle f_{\lambda}^{i}| \cdot |v_{j}^{\lambda}\rangle.\langle f_{\mu}^{k}| \cdot |v_{l}^{\mu}\rangle = \langle f_{\lambda}^{i} \otimes f_{\mu}^{k}| \cdot |v_{j}^{\lambda} \otimes v_{l}^{\mu}\rangle.$$

NB: $V(\lambda) \otimes V(\mu) \cong V(\mu) \otimes V(\lambda)$, but not via the flip map.

Lemma

The renormalized braiding ops $q^{(\lambda,\mu)}\hat{R}_{V(\lambda),V(\mu)}$ descend to crystal morphisms

$$\sigma_{\mathcal{B}(\lambda),\mathcal{B}(\mu)}: \mathcal{B}(\lambda) \otimes \mathcal{B}(\mu) \to \mathcal{B}(\mu) \otimes \mathcal{B}(\lambda)$$

which are \cong on the Cartan component and zero on other components.

Let's call this the Cartan braiding.

Example: Tensor product of \$14 representations

Corollary

The following relations hold in the crystal limit $\mathcal{O}[K_0]$:

- **2** $\mathbf{f}_{i}^{\lambda}\mathbf{v}_{j}^{\mu} = \sum_{k,l} \mathbf{v}_{k}^{\mu} \mathbf{f}_{l}^{\lambda}$, with sum over (k,l) such that. $\sigma: b_{l}^{\lambda} \otimes b_{j}^{\mu} \mapsto b_{k}^{\mu} \otimes b_{i}^{\lambda}$.

Now put:

•
$$p_v = \prod_i \mathbf{v}_{b_i} \mathbf{f}_{b_i}$$
 for $v = (b_1, \dots, b_r) \in \Lambda^0$, $\Rightarrow \mathsf{KP}(\Lambda)$ relations.

• $s_{(v,b)} = \mathbf{v}_b p_v$ for $(v,b) \in \Lambda$.

THANK YOU.