

Machine Learning for Materials

8. Accelerated Discovery

Aron Walsh

Department of Materials

Centre for Processable Electronics

Module Contents

- 1. Introduction
- 2. Machine Learning Basics
 - 3. Materials Data
- 4. Crystal Representations
 - 5. Classical Learning
- 6. Artificial Neural Networks
- 7. Building a Model from Scratch
 - 8. Accelerated Discovery
- 9. Generative Artificial Intelligence
 - 10. Recent Advances

"A problem in artificial intelligence is one which is so complex that it cannot be solved using any normal algorithm"

Class Outline

Accelerated Discovery

- A. Automated Experiments
 - B. Bayesian Optimisation
- C. Reinforcement Learning

Accelerate Scientific Discovery

Research can be broken down into a set of tasks that can each benefit from acceleration

Accelerate Scientific Discovery

Research can be broken down into a set of tasks that can each benefit from acceleration

Accelerate Scientific Discovery

Workflow classification of published studies

Execution of physical tasks to achieve a target using autonomous or collaborative robots

Robots can be tailored for a wide range of materials synthesis and characterisation tasks

B. P. MacLeod et al, Science Advances 6, eaaz8867 (2020)

Self-driving labs (SDL) are now operating

Flexible Automation Systems

Modular hardware with computer-controlled synthesis and characterisation

Small Molecules

Materials

Applications

Flexible Automation Systems

Automation platforms designed to deliver complex research workflows (fixed platform or mobile)

Usually a mix of proprietary code, with GUI and Python API for user control

Robots can be equipped with sensors and artificial intelligence to interact with their environment

Adapting computer vision models for laboratory settings

GT = ground truth Pred = predicted

Robots can be equipped with sensors and artificial intelligence to interact with their environment

Optimisation

Algorithms to efficiently achieve a desired research objective. Considerations:

Objective function (O): Materials properties or device performance criteria, e.g. battery lifetime

Parameter selection: Variables that can be controlled, e.g. temperature, pressure, composition

Data acquisition: How the data is collected, e.g. instruments, measurements, automation

Optimisation Algorithms

Local optimisation – find the best solution in a limited region of the parameter space (x)

Gradient based: iterate in the direction of the steepest gradient ($d\mathbf{O}/d\mathbf{x}$), e.g. gradient descent

Hessian based: use information from the second derivatives $(d^2\mathbf{O}/d\mathbf{x}^2)$, e.g. quasi-Newton

Optimisation Algorithms

Global optimisation – find the best solution from across the entire parameter space

Numerical: iterative techniques to explore parameter space, e.g. downhill simplex, simulated annealing

Probabilistic: incorporate probability distributions,
e.g. Markov chain Monte Carlo, Bayesian optimisation

Class Outline

Accelerated Discovery

- A. Automated Experiments
 - **B.** Bayesian Optimisation
- C. Reinforcement Learning

Bayesian Optimisation (BO)

Use prior (measured or simulated) data to decide which <u>experiment to perform</u> next (parameters to sample)

Probabilistic (Surrogate) Model

Approximation of the true objective function $O(x) \sim f(x)$, e.g. Gaussian process, GP(x,x')

Acquisition Function

Selection of the next sample point, e.g. upper confidence bound (UCB), probability of improvement (PI), expected improvement (EI)

Bayesian Optimisation (BO)

Use prior (measured or simulated) data to decide which <u>experiment to perform</u> next (parameters to sample)

```
Probabilistic (Surrogate) Model
```

```
Gaussian process: f(x) \sim GP(\mu(x), k(x,x'))
mean Gaussian kernel function function
```

k(x,x') measures the similarity between points x and x'

- Kernel controls function smoothness and defines uncertainty
 - Unobserved point x influenced by similar prior data
 - Dissimilar points default to the mean with high uncertainty

Bayesian Optimisation (BO)

Use prior (measured or simulated) data to decide which <u>experiment to perform</u> next

Bayesian optimisation for chemistry: Y. Wu et al, Digital Disc. 3, 1086 (2024)

Exploration-Exploitation Tradeoff

Upper confidence bound selects points that maximise the predicted function value of the model

$$x_{\text{next}} = \max_{x} (\mu(x) + \beta \sigma(x))$$

What to do next

Prediction based on prior knowledge

Weighted Uncertainty

A tunable hyperparameter of UCB

```
\beta < 1 focus on exploitation \beta ~ 1 balance risk and reward \beta > 1 focus on exploration
```

Applications of BO

Application to maximise electrical conductivity of a composite (P3HT-CNT) thin-film

Applications of BO

Application to maximise electrical conductivity of a composite (P3HT-CNT) thin-film

Active Learning (AL)

BO: find inputs that maximise the objective function **AL:** find inputs that enhance model performance

Target unknown regions with the largest uncertainty

The Gaussian process is updated with new observations to yield revised function values and uncertainty

^{*} Reducible uncertainty associated with lack of information

Integrated Research Workflows

Feedback loop between optimisation model and automated experiments

Integrated Research Workflows

Feedback loop between optimisation model and automated experiments

Class Outline

Accelerated Discovery

- A. Automated Experiments
 - B. Bayesian Optimisation
- C. Reinforcement Learning

Reinforcement Learning (RL)

An agent interacts with an environment to learn decision-making strategies that achieve a specific goal

Early applications in video games (maximise score), finance (maximise profit), and robotics (perform a task)

Reinforcement Learning (RL)

Reinforcement Learning (RL)

RL Policy

Data-driven decision making that adapts over time

Probability of action a, given state s,

Expected reward for action a_t

$$\pi(a_t|s_t) = rac{\exp(Q(s_t,a_t)/ au)}{\sum_{a'\in\mathcal{A}} \exp(Q(s_t,a')/ au)}$$

Sum over all possible actions

Effective temperature for exploration/exploitation balance

This familiar equation is a softmax (Boltzmann) policy

RL of Metal-Organic Frameworks

RL of Metal-Organic Frameworks

RL of Metal-Organic Frameworks

Optimisation Strategy

	Advantages	Disadvantages
Combinatorial (Enumeration)	 Exhaustive search ensures no possibilities are missed Simple to implement and understand 	 Inefficient for high-dimensional spaces Maximises number of experiments and dataset
Bayesian Optimisation	 Efficiently exploit data Works with noisy and expensive evaluations Can use prior knowledge 	 Performance depends on surrogate model & acquisition function May struggle with high-dimensional spaces
Reinforcement Learning	 Learns optimal policies through interaction Can handle dynamic and complex environments 	 Requires large amounts of data for training High computational cost May converge slowly

Obstacles to Closed Loop Discovery

- Materials complexity: complex structures, compositions, processing sensitivity
 - Data quality and reliability: errors and inconsistencies that waste resources
 - Cost of automation: major investment required in infrastructure and training
- Adaptability: systems and workflows may be difficult to reconfigure for new problems

Class Outcomes

- 1. Assess the impact of AI on materials research and discovery
- 2. Selection of appropriate optimisation strategy for a given problem

Activity:

Closed-loop optimisation