Model Documentation of the Four-Bar Linkage

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_i distance from the joint to the center of gravity of link i, where i = 1, 2, 3
- m_i mass of link i, where i = 1, 2, 3
- J_i moment of inertia of link i, where i = 1, 2, 3
- l_i length (distance between joints) of link i, where i = 1, 2, 3, 4
- g acceleration due to gravity
- p_1 angle between basis and link 1 (joint 1)
- p_2 angle between link 1 and link 2 (joint 2)
- q_1 angle between basis and link 3 (joint 4)
- u_1 external torgue applied to joint 1
- y array of angles
- \dot{y} array of angular velocities

1.2 Graphic of the Structure

Figure 1: Structure of the Four-Bar Linkage. Source: Knoll, Carsten/ private illustration

2 Model Equations

DAE Variables and Input Vector:

$$\underline{x} = (p_1 \ p_2 \ q_1 \ \dot{p}_1 \ \dot{p}_2 \ \dot{q}_1 \ \lambda_1 \ \lambda_2)^T = (x_1 \ x_2 \ x_3 \ \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \lambda_1 \ \lambda_2)^T$$

$$\underline{u} = u_1$$

Constraints:

$$l_1 \cos(x_3) + l_2 \cos(x_1 + x_3) - l_3 \cos(x_2) - l_4$$
 (1a)

$$l_1 \sin(x_3) + l_2 \sin(x_1 + x_3) - l_3 \sin(x_2)$$
 (1b)

System Equations:

$$0 = J_2\ddot{x}_1 + J_2\ddot{x}_3 + gm_2s_2\cos(x_1 + x_3) + l_1m_2\ddot{x}_3s_2\cos(x_1) + l_1m_2\dot{x}_3^2s_2\sin(x_1) + l_2\lambda_1\sin(x_1 + x_3) - l_2\lambda_2\cos(x_1 + x_3) + m_2\ddot{x}_1s_2^2 + m_2\ddot{x}_3s_2^2$$

$$0 = J_3\ddot{x}_2 + gm_3s_3\cos(x_2) - l_3\lambda_1\sin(x_2) + l_3\lambda_2\cos(x_2) + m_3\ddot{x}_2s_3^2$$

$$0 = J_1\ddot{x}_3 + J_2\ddot{x}_1 + J_2\ddot{x}_3 + gl_1m_2\cos(x_3) + gm_1s_1\cos(x_3) + gm_2s_2\cos(x_1 + x_3)$$

$$+ l_1^2m_2\ddot{x}_3 + l_1\lambda_1\sin(x_3) - l_1\lambda_2\cos(x_3) + l_1m_2\ddot{x}_1s_2\cos(x_1) - l_1m_2\dot{x}_1^2s_2\sin(x_1)$$

$$- 2l_1m_2\dot{x}_1\dot{x}_3s_2\sin(x_1) + 2l_1m_2\ddot{x}_3s_2\cos(x_1) + l_2\lambda_1\sin(x_1 + x_3) - l2\lambda_2\cos(x_1 + x_3)$$

$$+ m_1\ddot{x}_3s_1^2 + m_2\ddot{x}_1s_2^2 + m_2\ddot{x}_3s_2^2 - u_1$$

Parameters: s_1 , s_2 , s_3 , m_1 , m_2 , m_3 , J_1 , J_2 , J_3 , l_1 , l_2 , l_3 , l_4 , g_4

Outputs: y, \dot{y}

2.1 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
distance from the joint to the center of gravity of link 1	s_1	0.5	m
distance from the joint to the center of gravity of link 2	s_2	0.5	\mathbf{m}
distance from the joint to the center of gravity of link 3	s_3	0.5	\mathbf{m}
mass of link 1	m_1	1	$_{ m kg}$
mass of link 2	m_2	1	$_{ m kg}$
mass of link 3	m_3	3	$_{ m kg}$
moment of inertia of link 1	J_1	0.08333	$kg \cdot m^2$
moment of inertia of link 2	J_2	0.08333	$kg \cdot m^2$
moment of inertia of link 3	J_3	0.08333	$kg \cdot m^2$
length of link 1	l_1	0.8	\mathbf{m}
length of link 2	l_2	1.5	\mathbf{m}
length of link 3	l_3	1.5	\mathbf{m}
length of link 4	l_4	2	\mathbf{m}
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the Four-bar Linkage.

References

[1] Knoll, Carsten: Considered model: four-bar linkage (= two link manipulator + one link manipulator + rigid coupling), Jupyter Notebook published 2019.

https://github.com/TUD-RST/symbtools/blob/main/docs/demo_notebooks/modeltools/four-bar_linkage_model_and_simulation.ipynb