Численное исследование течения в фильтре-циклоне

Выполнил студент гр. 6054/11

Богданов Д.А.

Руководитель, к.ф.-м.н., с.н.с.

Поняев С.А.

Санкт-Петербургский Государственный Политехнический Университет

21 июня 2012 г.

Содержание

- Мотивации к работе
- Схема течения в циклоне
- Цели работы
- SST модель с поправкой на кривизну
- Верификация реализованной поправки
- Решение без дисперсных включений
- Расчёт траекторий частиц
- Заключение

Мотивации к работе

- Актуальность исследуемой проблемы
- Отсутствие в OpenFOAM модели турбулентной вязкости с поправкой на кривизну линий тока
- Отсутствие солвера, использующего уравнение идеального газа в качестве уравнения состояния, и учитывающего при этом обратное влияение на поток

Рис. 1: Динамика выбросов вредных веществ

Схема течения в циклоне

- Запылённый воздух входит в циклон через тангенциальный патрубок и, приобретая вращательное движение, опускается винтообразно вниз вдоль внутренних стенок цилиндра и конуса.
- Небольшая часть этого потока, в котором сконцентрированы пылевые частицы, движется в непосредственной близости от стенок циклона и поступает через пылеотводящее отверстие в пылесборный бункер, где происходит осаждение и накопление пылевых частиц.
- В центральной зоне циклона воздушный поток, освобождённый от пыли, поднимается винтообразно вверх и удаляется через выхлопную трубу наружу.

Цели работы

- lacktriangled Реализация $k-\omega-SST$ модели турбулентности с поправкой на кривизну линий тока при помощи открытой интегрируемой платформы для численного моделирования задач механики сплошных сред OpenFOAM.
- Реализация с использованием OpenFOAM солвера, имеющего в основе модель идеального газа и учитывающего при этом обратное влияние частиц на поток.
- Численное моделирование циклона с учётом обратного влияния частиц на поток и поправки на кривизну линий тока к генерации турбулентности.

Формулировка SST-модели с поправочным коэффициентом Шура-Спалларта

Уравнение переноса k

$$\frac{\partial \rho \mathbf{k}}{\partial t} + \frac{\partial \rho U_j \mathbf{k}}{\partial x_j} = \tilde{P}_k f_{rot} - \beta^* \rho \mathbf{k} \omega + \frac{\partial}{\partial x_j} (\Gamma_k \frac{\partial \mathbf{k}}{\partial x_j}), \tag{1}$$

Уравнение переноса ω

$$\frac{\partial \rho \omega}{\partial t} + \frac{\partial U_j \omega}{\partial x_j} = \frac{\gamma}{\nu_t} P_k f_{rot} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} (\Gamma_\omega \frac{\partial \omega}{\partial x_j}) + (1 - F_1) 2\rho \sigma_{\omega_2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}, \tag{2}$$

Уравнения для поправочного коэффициента f_{rot}

$$f_{r1}(r^*, \tilde{r}) = 2r^* \left(\frac{1 + C_{r1}}{1 + r^*}\right) \left[1 - C_{r3} \arctan\left(C_{r2}\tilde{r}\right)\right] - C_{r1},$$
 (3)

$$\tilde{r} = 2\Omega_{ik}S_{kj}\frac{DS_{ij}}{Dt}\frac{1}{\Omega D^3}, \quad D^2 = \max(S^2, 0.09\omega^2), \tag{4}$$

$$S^2 = 2S_{ij}S_{ij}, \quad \Omega^2 = 2\Omega_{ij}\Omega_{ij}, \quad r^* = S/\Omega$$

 $C_{r1} = 1$, $C_{r2} = 2$, $C_{r3} = 1$, $f_{rot} = \max[\min(f_{r1}, 1.25), 0]$

Постановка задачи

Рис. 2: Геометрия канала

Высота, H=3.81cmДлина канала, L=10HВнутренний радиус, $R_i=1.91cm$ Внешний радиус, $R_o=5.72cm$ Ср. скорость на входе, $U_{in}=30.1m/s$ Температура на входе, $T_{in}=264K$

Рис. 3: Сетка расчётной области на участке поворота

15000 Cells

Методические исследования

Out Channel Bottom Out Channel Top Inlet Channel Top Inlet Channel Bottom 50 30 20 0.2 0.4

Рис. 4: Сравнение профилей V_u в сечении y=0 для $\,\,$ Рис. 5: Величина y^+ первой пристенной ячейки на разных сеток

внешней и внутренней стенках

Сравнение с экспериментами Монсона и моделированием в Fluent

Рис. 6: Профиль V_x в сечении x/H = 0 (верх)

Рис. 8: Профиль V_x в сечении x/H = -1

Рис. 7: Профиль V_x в сечении x/H=0 (низ)

Рис. 9: Профиль V_x в сечении x/H=1

Геометрия фильтра

Диаметр цилиндра, <i>D</i>	0.205m
Диаметр выходной трубы, $D_{ m e}$	0.5 <i>D</i>
Высота входного канала, а	0.5 <i>D</i>
Ширина входного канала, <i>b</i>	0.2D
Длина выходной трубы, h_e	0.75 <i>D</i>
Полная высота фильтра, H	4.0 <i>D</i>
Высота цилиндра, <i>h</i>	1.5 <i>D</i>
Диаметр нижнего сечения фильтра, В	0.36D
Диаметр пылесборника, D_d	0.75D

Рис. 10: Схема фильтра

Постановка задачи

Средняя скорость на входе, $U_{in}=5,10,15$ и 20m/s Температура воздуха на входе, $T_{in}=300K$ Тепловой поток на стенках, $q_w=0$ Давление в выходном сечении, $p_{out}=1atm$ Скорость частиц на входе, $U_{p,in}=U_{in}$ Температура частиц на входе, $T_{p,in}=T_{in}$ Диаметры частиц, $d_p=\sim 10^{-5}, 10^{-6}, 10^{-7}m$

Рис. 11: Расчётная сетка

Методические исследования

Рис. 12: Профили V_y вдоль прямой z=-0.3m, y=0 Рис. 13: Величина y^+ первой пристенной ячейки на внешней и внутренней стенках циклона

Влияние поправки на течение в циклоне

Рис. 14: Профили V_z/U_{in} вдоль прямой Z/D = -0.75, x = 0

Рис. 16: Профили V_z/U_{in} вдоль прямой Z/D = -1, x = 0

Рис. 15: Профили V_{tg}/U_{in} вдоль прямой Z/D = -0.75, x = 0

Рис. 17: Профили V_{tg}/U_{in} вдоль прямой $Z/D=-1, x=0 \quad \text{of the proof } x=0 \quad \text{of t$

Модель частиц в OpenFOAM

Уравнение движения частицы в OpenFOAM:

$$m_{\rho} \frac{d\vec{V}_{\rho}}{dt} = \frac{1}{2} \rho |\vec{V} - \vec{V}_{\rho}| (\vec{V} - \vec{V}_{\rho}) \frac{d_{\rho}^{2} \pi}{4} C_{D} + m_{\rho} \vec{g} + \vec{F}_{\nabla \rho}$$
 (5)

m_p – масса частицы

 V_p — скорость частицы

 \vec{V} – скорость жидкости

С_D – коэффициент сопротивления

 ρ — плотность жидкости

 $ec{F}_{
abla_D}$ — сила, обусловленная действием градиента давления

Рис. 18: Схема движения частиц

- Cell-to-face-to-cell tracking для траекторий частиц.
- Если необходимы более детальные траектории используются дополнительные циклы решения внутри ячеек.
- Для решения уравнения (5) используется встроенный в ОреnFOAM ODE солвер.

Развитие течения дисперсных включений во времени

Рис. 19: Распределение дисперсных включений по диаметрам частиц для $U_{in}=20m/{
m s},\,d_p\sim 10^{-6}$

Распределение частиц для разных скоростей и диаметров

Рис. 20: Распределение дисперсных включений по диаметрам частиц в момент времени $t=1\mathrm{s}$

Сравнение результатов расчётов для эффективности циклонов с экспериментами Диргоу и Лейта

Параметры течения	η , численное исследование	η , эксперимент
$U_{in} = 20m/s, d = 5 \cdot 10^{-5}m$	100%	100%
$U_{in} = 20m/s, d = 5 \cdot 10^{-6}m$	93%	90%
$U_{in} = 20m/s, d = 5 \cdot 10^{-7}m$	27%	10%
$U_{in} = 15m/s, d = 10^{-5}m$	80%	90%
$U_{in} = 10m/s, d = 10^{-5}m$	72%	85%
$U_{in} = 5m/s, d = 10^{-5}m$	75%	80%

Рис. 21: Распределение V_z для задачи с частицами и без вдоль прямой $z=\pm 1.5D, y=0$

Заключение

- В SST модель турбулентности OpenFOAM был имплементирован поправочный коэффициент Шура-Спалларта для учёта влияния кривизны линий тока на турбулентные характеристики. Сравнение результатов расчётов с экспериментальными данными Монсона показало заметное улучшение по сравнению с немодифицированной SST моделью.
- Сравнение результатов расчётов циклона, выполненных при помощи модифицированного солвера OpenFOAM и Fluent показало отличное соответствие решений друг другу. Анализ влияния дисперсных включений на основной поток позволил заключить, что этим влиянием в исследуемой задаче, по большому счёту, можно пренебречь.
- Проведено сравнение результатов расчётов с экспериментальными данными Диргоу и Лейта для степени очистки, которое показало хорошее согласие как с экспериментами, так и с теорией, которую эти эксперименты подтверждают.
- Показана эффективность циклонов для очищения газа от твёрдых частиц диаметром $\sim 10^{-6} m$. Выявлено, что при уменьшении скорости течения, эффективность рассматриваемой конфигурации циклона заметно снижается. Такая же закономерность имеет место и при уменьшении диаметра частиц.
- Выяснено, что для фильтрации частиц, диаметром меньше $\approx 10^{-7} m$, циклон непригоден так как степень очистки при этом становится меньше 30%.