

Disaster Tweets Classifier

From Chaos to Classification: NLP for disaster detection in tweets

There was a fire at our school this morn

There was a fire at our school this morning but school this morning bu almost everyone is saf

9:41 AM · Sep 13, 2018

Hurricane in FI

Project Introduction

Goal Impact Data

Predict whether a tweet refers to a real disaster (1) or not (0).

Rapid detection of disaster-related tweets can support emergency services & crisis management. 7,613 labeled tweets (text + target).

Pipeline

Lowercasing, removing
noise

Data Cleaning & Preprocessing

- POS-tagged lemmatization
- Stopword removal

CountVectorizer (n-grams)

Feature Engineering

- TF-IDF Vectorization
 - Binary Count Vectorization for specific NB experiments

Models: Logistic Regression, Naive Bayes & CNN

Model Training & Evaluation

Evaluation: Accuracy, Precision, Recall, F1-score, Confusion matrix & Classification report

Data Analysis

Logistic Regression (Baseline)

Accuracy	Precision	Recall	F1-Score
0.80	0.80	0.79	0.79

Why Logistic Regression?

Simple, fast, interpretable baseline for text classification.

- High precision, but recall lower → missed some disaster tweets.
- Useful as a performance benchmark for other models.

Logistic Regression (balanced model)

Threshold = 0.50	precision	recall	f1-score	support
Not Disaster Disaster	0.80 0.81	0.88 0.70	0.84 0.75	874 649
accuracy macro avg weighted avg	0.80 0.80	0.79 0.80	0.80 0.79 0.80	1523 1523 1523

Goal: Improve recall to catch more disaster tweets.

- Balanced class weights.
- Cross-validation
- Adjusted threshold

Outcome:

- Recall improved slightly
- but precision dropped noticeably.

Threshold = 0.45	precision	recall	f1-score	support
Not Disaster Disaster	0.83 0.74	0.80 0.77	0.81 0.76	874 649
accuracy macro avg weighted avg	0.79 0.79	0.79 0.79	0.79 0.79 0.79	1523 1523 1523

Naive Bayes

Accuracy	Precision	Recall	F1-Score
0.80	0.80	0.78	0.79

Why Naive Bayes?

Efficient for sparse, high-dimensional text data.

Experiments:

- CountVectorizer (baseline NB)
- Tuned alpha smoothing values
- TF-IDF (regular & tuned alpha)

Key Insight:

 More balanced precision/recall than LR, but slightly lower accuracy.

Convolutional Neural Network (CNN)

Why CNN?

- Captures local word patterns automatically.
- Learns embeddings instead of relying solely on vectorizers.

Architecture Highlights:

- Tokenization → Padding → Embedding Layer
- Convolution + MaxPooling layers
- Dense + Dropout for regularization
- Sigmoid activation for binary classification

```
Tokenized Sequence (word tokens)
                                                  Vectorized Sequence (token IDs)
T
                                                     0:50
  0 : "new"
                                                     1:484
  1: "summer"
                                                     2:524
  2 : "long"
                                                     3:5276
  3 : "thin"
  4 : "body"
                                                     4:80
                                                     5:322
  5 : "bag"
                                                     6:3632
  6: "hip"
  7 : "word"
                                                     7:1390
                                                     8:5238
  8 : "skirt"
                                                     9:922
  9 : "blue"
                                                  Padded Sequence (length = 100)
Token-Index Mapping 🖘
                                                   *[#
                                                     0:50
  "new": 50
  "summer": 484
  "long": 524
                                                     2:524
                                                     3:5276
  "thin": 5276
                                                     4:80
  "body": 80
                                                     5:322
  "bag": 322
                                                     6: 3632
                                                     7:1390
   "word": 1390
                                                     8:5238
  "skirt": 5238
  "blue": 922
                                                     9:922
                                                     10:0
```

Convolutional Neural Network (CNN)

Accuracy	Precision	Recall	F1-Score
0.79	0.79	0.78	0.78

🥇 Best overall balance between precision and recall.

Outperformed LR and NB in recall while keeping precision high.

Model Comparison & Final Selection

Model	Accuracy	Precision	Recall	F1-score
3 CNN	0.79	0.79	0.78	0.78
% Logistic Regression	0.80	0.80	0.79	0.79
Naive Bayes (TF-IDF)	0.80	0.80	0.78	0.79

Final Model: CNN

- Balanced performance across precision and recall.
- Slightly lower accuracy than LR and NB, but strong in disaster detection without over-flagging.
- LR and NB, remain strong, efficient alternatives for production

Model Demo

Features:

- User Tweet input or random Tweet from test set
- Preprocessing steps
- Info page

Technical Setup:

- Saved CNN model + Tokenizer
- Same preprocessing pipeline as training

Conclusion

- Created NLP pipeline
- CNN achieved the best balanced performance.
- ✓ Streamlit app provides an interactive, transparent model demo.

Key Learnings:

- Or Preprocessing decisions improved generalization.
- ⊚ Boosting recall often lowers precision finding balance is key.
- **@**A well-documented, reproducible pipeline is essential for deployment readiness.

our sc

There

1.108 JAN. 24, 2018

school this morning but

9:41 AM · Sep 13, 2016

orida is i seen!