PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

<u>CONTROLE DE PHYSIQUE(ELECTROCINETIQUE) du 12/05/2021 Niveau : 1</u> <u>Durée : 1H</u>

Exercice1:7

Le dipôle AB représenté sur la figure ci-contre est alimenté par une tension parfaite de f.e.m $e(t) = E_0 \sin(\omega t)$.

- 1) Exprimer L en fonction de R,C et $\,\omega$ pour que le dipôle AB soit équivalent à une résistance pure R_{eq} AN : $R=100\Omega$, C=100/3 . $10^{-6}F$ et $\omega=400$ rad/s
- 2) L'amplitude de la force électromotrice du générateur vaut $E_0 = 180$ V. Calculer l'amplitude de l'intensité du courant I dans la bobine.
- 3) Calculer les amplitudes des différences de potentiel U_{AD} et U_{DB}.
- 4) Calculer les amplitudes des intensités des courants I_R et I_C circulant respectivement dans la résistance et dans le condensateur.

Exercice 2:

I)

- •(0,5 pt) Ecrire l'expression de la capacité du condensateur équivalent à trois condensateurs de capacités C_1 , C_2 et C_3 reliés en série.
- •(0,5 pt) Ecrire l'expression de la capacité du condensateur équivalent à trois condensateurs de capacités C_1 , C_2 et C_3 reliés en parallèle.
- •Calculer la capacité équivalente du dipôle ci-dessous.

II)

a) En vous aidant de la représentation graphique ci-contre, exprimer le complexe l+j sous la forme exponentielle (compléter les deux cases):

$$1+j=\begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

b)
$$e(t) = 10.\cos(100\pi t)$$
 ; $R = 500 \Omega$; $C = \frac{2.10^{-5}}{\pi}$ F. (1)

Par une méthode à votre choix, déterminer $v_C(t)$.

