MLE

Note Title 28-Nov-20 Bernoulli(p) $f(x(p)=p^{2}(1-p)^{1-x}, xe (0,1)$ X,,,, X, ~ Bernoullip) · Like Inhool fanct. $Z(p) = f(X, |p) \cdot f(X_1|p) : : \cdot f(X_n|p) =$ (1-p) (1-x) (1-p) (1-p)S,= x,+ ... + x.

· MCE for $E_{xp}(\lambda)$, $\lambda \in (0, +\infty)$ PDF is f(x/1)=1 $\lambda e^{-\lambda x}$, x=0X1... X. ~ Exp(2) $\alpha(x) = f(x, 1x) \cdot f(x, 1x) \cdot \cdot f(x, 1x) =$ $= \lambda \cdot e^{-\lambda x_1} \cdot \lambda e^{-\lambda x_2} \cdot \lambda \cdot e^{-\lambda x_1} =$ = 27.e-7.5" P(2)=ln 2(2)=nln 2-2.5n

· Met for Wrifto, 07 $f(x|\theta) = \int_{0}^{1} \frac{1}{\theta} \int_{0}^{2} f \cos x \leq \theta$ $f(x|\theta) = \int_{0}^{1} \frac{1}{\theta} \int_{0}^{2} f \cos x \leq \theta$ X1..., X ~ Unif (0, 8], 00(0,+0) $\mathcal{Z}(\Theta) = f(x_1/\Theta) \cdot f(x_2/\Theta) \cdot \cdot \cdot f(x_n/\Theta)$ $f(x, |\theta) = \begin{cases} \frac{1}{6}, & x \in \Theta \\ 0, & x > \Theta \end{cases}$ $Z(\theta)=\begin{cases} \frac{1}{2} & \frac{1}{2}$

PDP:
$$\int (x/\mu, 6^2) = \int \frac{(x-\mu)^2}{26^2} = 0$$

$$= \int \frac{(x-\mu)^2}{26^2} = 0$$

$$=$$

$$\begin{pmatrix} (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2}, & \mu \in \mathbb{R} \\
\nabla (\mu, \theta) = -\frac{n}{2} \ln(2\pi\theta) - \frac{1}{2\theta} \frac{x}{\xi_{-1}} (x_{\kappa} - \mu)^{2} - \frac{1}{2\theta}$$

· MIF for Discr Model _ 30 $f(x/\theta) = \begin{cases} 1 & 0 \\ 5 & 0 \end{cases}$ $f(x/\theta) = \begin{cases} 1 & 0 \\ 5 & 0 \end{cases}$ $f(x/\theta) = \begin{cases} 1 & 0 \\ 5 & 0 \end{cases}$ X=O