正态分布
$$N(\mu, \sigma^2)$$
的概率密度函数:
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (-\infty < x < + \infty)$$
 特征函数的公式定义:
$$\Phi_X(\omega) = E\left[e^{j\omega X}\right] = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx$$
 正态分布 $N(\mu, \sigma^2)$ 的特征函数求法:
$$\Phi_X(\omega) = E\left[e^{j\omega X}\right] = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot \left(\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}\right) dx$$
 合并同类项 $e^{x \otimes \overline{\mu}}$, 有
$$= \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot \left(e^{-\frac{(x-\mu)^2}{2\sigma^2}} \cdot e^{j\omega x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2} + j\omega x} dx$$
 $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2} + j\omega x} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - 2\mu x + \mu^2 - 2\sigma^2 + j\omega x\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} \left[x^2 - (\mu + \sigma^2 + j\omega)^2 - \mu^2 - \frac{1}{2\sigma^2}\right]} dx$ $e^{x \otimes \overline{\mu}} = \int_{-\infty}^$

连续型一维随机变量的**数学期望**: $E[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$,**离散型将积分换为求**和即可。数学期望具有明确的物理意义,代表"统计平均";

且注意:

E[X]是一个线性算子,并非函数,它代表了一定的运算,所以E[X]不能写成E(X) 连续型一维随机变量的**方差:**

矩函数:

连续型一维随机变量的 n 阶原点矩:

$$m_n = E[(X-0)^n] = E[X^n] \xrightarrow{\text{β_X}^n = \beta_x$} m_n = \int_{-\infty}^{+\infty} x^n \cdot f_X(x) dx$$

连续型一维随机变量的 n 阶中心矩:

$$\mu_n = E\{(X - E[X])^n\} \xrightarrow{\$(X - E[X])^n \text{ fill "X"}} \mu_n = \int_{-\infty}^{+\infty} (X - E[X])^n \cdot f_X(x) dx$$

从而不同阶数的矩函数有不同的意义:

n=1时,一阶原点矩 m_1 即为数学期望;n=2时,二阶中心矩 μ_2 即为方差;

$$n=3$$
时, $s=\frac{\mu_3}{\sigma^3}=\frac{\mu_3}{\left(\sqrt{D[X]}\right)^3}=\frac{\mu_3}{D[X]^{\frac{3}{2}}}$ 即为偏态系数,偏态系数用来描述概率密度函数的

非对称性,**当概率密度函数** $f_x(x)$ **对称时,奇阶中心矩为 0**,这个性质在实际应用中非常广泛;

$$n=4$$
时, $K=rac{\mu_4}{\sigma^4}=rac{\mu_4}{\left(\sqrt{D[X]}
ight)^4}=rac{\mu_4}{D[X]^2}$ 即为峰态系数,峰态系数用来描述概率密度函数

的尖锐或平坦程度,峰态系数的参考基准为高斯概率密度函数的峰态系数 $K_G=3$,当 $K>K_G$ 时,概率密度曲线主峰比高斯概率密度曲线尖锐; $K<K_G$ 时,概率密度曲线主峰比高斯概率密度曲线平坦。

矩函数总结:

数学期望: 一阶原点矩
$$m_1 = E[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$$

方差: 二阶中心矩
$$\mu_2 = D[X] = E\{(X - E[X])^2\} = \int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx$$

偏态系数: 三阶中心矩比例
$$s = \frac{\mu_3}{\sigma^3} = \frac{E\{(X - E[X])^3\}}{\left(\sqrt{D[X]}\right)^3} = \frac{\int_{-\infty}^{+\infty} (x - E[X])^3 \cdot f_X(x) dx}{\left(\int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx\right)^{\frac{3}{2}}}$$

峰态系数: 四阶中心距比例
$$K = \frac{\mu_4}{\sigma^4} = \frac{E\{(X - E[X])^4\}}{\left(\sqrt{D[X]}\right)^4} = \frac{\int_{-\infty}^{+\infty} (x - E[X])^4 \cdot f_X(x) dx}{\left(\int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx\right)^2}$$

为研究偏态系数和峰态系数的数学特性, 先研究高斯分布(正态分布)。

连续型一维随机变量的高斯分布(正态分布: $N(\mu, \sigma)$)的概率密度函数为:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad (-\infty < x < +\infty)$$

则其一阶原点矩

$$\begin{split} m_1 &= E[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx \xrightarrow{\text{将}e^{xixy}} \text{换变量} \rightarrow \diamondsuit \eta = \frac{x-\mu}{\sigma}, \quad \text{则有} \\ x &= \sigma \cdot \eta + \mu; \quad d\eta = \frac{1}{\sigma} dx \Rightarrow dx = \sigma \cdot d\eta, \quad \text{从而} \\ m_1 &= \int_{-\infty}^{+\infty} (\sigma \cdot \eta + \mu) \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{\eta^2}{2}} d\eta = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} (\sigma \cdot \eta + \mu) \cdot e^{\frac{-\eta^2}{2}} d\eta \\ &= \frac{1}{\sqrt{2\pi}} \left(\sigma \cdot \int_{-\infty}^{+\infty} \eta \cdot e^{\frac{-\eta^2}{2}} d\eta + \mu \cdot \int_{-\infty}^{+\infty} e^{\frac{\eta^2}{2}} d\eta \right), \quad \text{下面分别计算积分式} \\ \int_{-\infty}^{+\infty} e^{\frac{-\eta^2}{2}} d\eta = \sqrt{\left(\int_{-\infty}^{+\infty} e^{\frac{-\eta^2}{2}} d\eta \right)^2} = \sqrt{\left(\int_{-\infty}^{+\infty} e^{\frac{-\eta^2}{2}} d\tau \right) \cdot \left(\int_{-\infty}^{+\infty} e^{\frac{-\xi^2}{2}} d\xi \right)} = \sqrt{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\frac{-\xi^2}{2}} d\tau d\xi} \end{split}$$

对于二重积分的计算,常利用极坐标面积法

则 τ 、 ξ 都是 ρ 和 θ 的独立二元函数,利用偏导数得

$$\frac{\partial \tau}{\partial \rho} = \cos \theta \qquad \text{(1)} \cdot \frac{\partial \tau}{\partial \theta} = -\rho \cdot \sin \theta \qquad \text{(2)} \cdot \frac{\partial \xi}{\partial \rho} = \sin \theta \qquad \text{(3)} \cdot \frac{\partial \xi}{\partial \theta} = \rho \cdot \cos \theta \qquad \text{(4)}$$

①*④-②*③=
$$\frac{\partial \tau}{\partial \rho} \cdot \frac{\partial \xi}{\partial \theta} - \frac{\partial \tau}{\partial \theta} \cdot \frac{\partial \xi}{\partial \rho} = \rho \cdot (\cos^2 \theta + \sin^2 \theta) = \rho \neq 0$$
, 其原因在于

偏导数之间不能随意做乘除法!!!即不可进行通分运算

极坐标面积法的原始定义为:

$$\begin{cases} x = r \cdot \cos \theta \\ y = r \cdot \sin \theta \end{cases}$$
 及
$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases}$$
 从而确定 $(0 < r < +\infty, 0 \le \theta \le 2\pi)$ 用微元思想求出面积元

 $ds = r \cdot dr \cdot d\theta$,所以有: $d\tau \cdot d\xi = \rho \cdot d\rho \cdot d\theta$ (积分元的转换)

$$\int_{-\infty}^{+\infty} e^{-\frac{\eta^2}{2}} d\eta = \sqrt{\int_0^{2\pi} \left(\int_0^{+\infty} \left(e^{-\frac{\rho^2}{2}} \cdot \rho \right) d\rho \right) d\theta} \xrightarrow{\text{diff}_0^{+\infty} \left(e^{-\frac{\rho^2}{2}} \cdot \rho \right) d\rho = -e^{-\frac{\rho^2}{2}} \Big|_0^{+\infty} = 1} \xrightarrow{\int_{-\infty}^{+\infty} e^{-\frac{\eta^2}{2}} d\eta = \sqrt{2\pi}$$

$$\int_{-\infty}^{+\infty} \eta \cdot e^{-\frac{\eta^2}{2}} d\eta = 0$$

$$\text{MFM} m_1 = \frac{1}{\sqrt{2\pi}} \left(\sigma \cdot \int_{-\infty}^{+\infty} \! \eta \cdot e^{\frac{-\eta^2}{2}} d\eta + \mu \cdot \int_{-\infty}^{+\infty} \! e^{\frac{-\eta^2}{2}} d\eta \right) = \frac{1}{\sqrt{2\pi}} \left(\sigma \cdot 0 + \mu \cdot \sqrt{2\pi} \right) = \mu$$

则其二阶中心矩

$$\mu_2 = D[X] = E\{(X - E[X])^2\} = \int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx, \quad \text{由一阶中心距} \, m_1 = E[X] = \mu \text{得}$$

$$\mu_2 = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\frac{(x - \mu)^2}{2\sigma^2}} dx, \quad \text{与求高斯分布数学期望变换一样,令} \varepsilon = \frac{x - \mu}{\sigma}, \quad \text{则}$$

$$d\varepsilon = \frac{1}{\sigma} \cdot dx \Rightarrow dx = \sigma \cdot d\varepsilon, \quad \text{所以有}$$

$$\mu_2 = \int_{-\infty}^{+\infty} \left(\sigma^2 \cdot \varepsilon^2 \right) \cdot \left(\frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\frac{-\varepsilon^2}{2}} \right) \cdot \sigma \cdot d\varepsilon = \frac{\sigma^2}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} \varepsilon^2 \cdot e^{\frac{-\varepsilon^2}{2}} d\varepsilon$$

由于函数 $g(\varepsilon) = \varepsilon^2 \cdot e^{-\frac{\varepsilon^2}{2}}$ 为偶函数,根据偶函数的对称性: $g(-\varepsilon) = g(\varepsilon)$,所以有

$$\mu_2 = \frac{\sigma^2}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} \varepsilon^2 \cdot e^{\frac{-\varepsilon^2}{2}} d\varepsilon = 2 \cdot \frac{\sigma^2}{\sqrt{2\pi}} \cdot \int_0^{+\infty} \varepsilon^2 \cdot e^{\frac{-\varepsilon^2}{2}} d\varepsilon = \frac{2\sigma^2}{\sqrt{2\pi}} \cdot \int_0^{+\infty} \varepsilon^2 \cdot e^{\frac{-\varepsilon^2}{2}} d\varepsilon$$

对于积分式 $\int_0^{+\infty} \varepsilon^2 \cdot e^{-\frac{\varepsilon^2}{2}} d\varepsilon$ 的求解,推导形如 $\int_0^{+\infty} x^{2n} \cdot e^{-ax^2} dx$ 的通式即可解决

$$\int_0^{+\infty} x^{2n} \cdot e^{-ax^2} dx = \underbrace{\text{按照幂级大于指级的规则,将指级搬迁,得到}}_0^{+\infty} \underbrace{x^{2n-1}}_{-2a} \cdot d\left(e^{-ax^2}\right)$$

由分部积分法得

$$\begin{split} & \int_{0}^{+\infty} x^{2n} \cdot e^{-ax^2} dx = \int_{0}^{+\infty} \frac{x^{2n-1}}{-2a} \cdot d\left(e^{-ax^2}\right) = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \int_{0}^{+\infty} e^{-ax^2} d\left(\frac{x^{2n-1}}{-2a}\right)\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \int_{0}^{+\infty} x^{2n-2} \cdot e^{-ax^2} dx\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \int_{0}^{+\infty} \frac{x^{2n-3}}{-2a} d\left(e^{-ax^2}\right)\right] = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^2} - \int_{0}^{+\infty} e^{-ax^2} d\left(\frac{x^{2n-3}}{-2a}\right)\right]\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^2} - \frac{2n-3}{-2a} \cdot \int_{0}^{+\infty} x^{2n-4} \cdot e^{-ax^2} dx\right]\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^2} - \frac{2n-3}{-2a} \cdot \int_{0}^{+\infty} \frac{x^{2n-4}}{-2a} d\left(e^{-ax^2}\right)\right]\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^2} - \frac{2n-3}{-2a} \cdot \left[\frac{x^{2n-5}}{-2a} \cdot e^{-ax^2} - \frac{2n-5}{-2a} \cdot \int_{0}^{+\infty} x^{2n-6} \cdot e^{-ax^2} dx\right]\right]\right] \\ & = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax^2} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^2} - \frac{2n-3}{-2a} \cdot \left[\frac{x^{2n-5}}{-2a} \cdot e^{-ax^2} - \frac{2n-5}{-2a} \cdot \left[\frac{x^{2n-7}}{-2a} \cdot e^{-ax^2} - \frac{2n-7}{-2a} \cdot \int_{0}^{+\infty} x^{2n-8} \cdot e^{-ax^2} dx\right]\right]\right] \end{aligned}$$

由后面推导公式得到:

从而高斯分布 $N(\mu, \sigma^2)$ 一维随机变量的数学期望为 μ ,方差为 σ^2

$$\begin{split} &\left[\frac{x^{2n-1}}{-2a}\cdot e^{-ax^2} - \frac{2n-1}{-2a}\cdot \left[\frac{x^{2n-3}}{-2a}\cdot e^{-ax^2} - \frac{2n-3}{-2a}\cdot \left[\frac{x^{2n-5}}{-2a}\cdot e^{-ax^2} - \frac{2n-5}{-2a}\cdot \left[\frac{x^{2n-7}}{-2a}\cdot e^{-ax^2} - \frac{2n-7}{-2a}\cdot \int_0^{+\infty} x^{2n-8}\cdot e^{-ax^2}dx\right]\right]\right] \\ &= \left[\frac{x^{2n-1}}{-2a}\cdot e^{-ax} - \frac{2n-1}{-2a}\cdot \left[\frac{x^{2n-3}}{-2a}\cdot e^{-ax^2} - \frac{2n-3}{-2a}\bullet\left[\cdots\bullet\left[\frac{x^3}{-2a}\cdot e^{-ax^2} - \frac{3}{-2a}\left[\frac{x^1}{-2a}\cdot e^{-ax^2} - \frac{1}{-2a}\int_0^{+\infty} x^0\cdot e^{-ax^2}dx\right]\right]\right]\right] \\ &+ \Re \iint_0^{+\infty} x^0\cdot e^{-ax^2}dx = \int_0^{+\infty} e^{-ax^2}dx - \frac{1}{-2a}\cdot \left[\frac{x^2}{-2a}\cdot e^{-ax^2} - \frac{3}{-2a}\left[\frac{x^1}{-2a}\cdot e^{-ax^2} - \frac{1}{-2a}\int_0^{+\infty} x^0\cdot e^{-ax^2}dx\right]\right] \\ &= \int_0^{+\infty} e^{-ax^2}dx = \frac{1}{2}\cdot \int_{-\infty}^{+\infty} e^{-ax^2}dx - \frac{1}{2}\cdot \sqrt{\left(\int_{-\infty}^{+\infty} e^{-ax^2}dx\right)\cdot \left(\int_{-\infty}^{+\infty} e^{-ax^2}dx\right)} = \sqrt{\int_0^{+\infty} \int_0^{+\infty} e^{-a(r^2+\xi^2)}dx d\xi} \end{split}$$

同一阶原点矩中 极坐标面积法求解二重 积分

令
$$\tau = \rho \cdot \cos \theta$$
, $\xi = \rho \cdot \sin \theta$, 由 $(-\infty < \tau$, $\xi < +\infty$)有 $\begin{cases} 0 < \rho < +\infty \\ 0 \le \theta \le 2\pi \end{cases}$ 然后有:

$$\int_{0}^{+\infty} e^{-ax^{2}} dx = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} \left[\frac{d\left(e^{-a\rho^{2}}\right)}{-2a \cdot d\rho} \right] d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \frac{e^{-a\rho^{2}} \Big|_{0}^{+\infty}}{-2a} d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2}} \cdot \rho d\rho \right) d\theta} d\theta} = \frac{1}{2} \cdot \sqrt{\int_{0}^{2\pi} \left(\int_{0}^{+\infty} e^{-a\rho^{2$$

讨论:
$$\stackrel{\text{\tiny \perp}}{=} a > 0$$
时, $\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \sqrt{\int_0^{2\pi} \frac{e^{-a\rho^2} \Big|_0^{+\infty}}{-2a} d\theta} = \frac{1}{2} \cdot \sqrt{\int_0^{2\pi} \frac{1}{2a} d\theta} = \frac{1}{2} \cdot \sqrt{\frac{\pi}{a}}$;

当
$$a < 0$$
时, $\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \sqrt{\int_0^{2\pi} \frac{e^{-a\rho^2} \Big|_0^{+\infty}}{-2a}} d\theta = \frac{1}{2} \cdot \sqrt{\int_0^{2\pi} \frac{e^{+\infty}}{(-2a)} d\theta}$

由于函数
$$h(a) = \frac{e^{+\infty}}{(-2a)}$$
 无收敛性,因而 $a < 0$ 时, $\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \sqrt{\int_0^{2\pi} \frac{e^{-a\rho^2} \Big|_0^{+\infty}}{-2a} d\theta} = +\infty$;

当
$$a = 0$$
时,根据 $\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \int_0^{+\infty} 1 dx = +\infty$;

根据二阶中心距所求,得到
$$\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \sqrt{\frac{\pi}{a}}$$
 $(a > 0)$

所以有:

$$\int_{0}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^{2}} - \frac{2n-3}{-2a} \bullet \left[\cdots \bullet \left[\frac{x^{3}}{-2a} \cdot e^{-ax^{2}} - \frac{3}{-2a} \left[\frac{x^{1}}{-2a} \cdot e^{-ax^{2}} - \frac{1}{-2a} \int_{0}^{+\infty} x^{0} \cdot e^{-ax^{2}} dx \right] \right] \right] \right]$$

$$= \left[\frac{x^{2n-1}}{-2a} \cdot e^{-ax} - \frac{2n-1}{-2a} \cdot \left[\frac{x^{2n-3}}{-2a} \cdot e^{-ax^{2}} - \frac{2n-3}{-2a} \bullet \left[\cdots \bullet \left[\frac{x^{3}}{-2a} \cdot e^{-ax^{2}} - \frac{3}{-2a} \left[\frac{x^{1}}{-2a} \cdot e^{-ax^{2}} - \frac{1}{-2a} \sqrt{\frac{\pi}{a}} \right] \right] \right] \right] \right]$$

在上式中,a > 0,当x = 0或 $x = +\infty$ 时,带有x的函数项为零,这正是结果可以写为上式的原因因为在分部积分法中,x取值是对整个表达式而言的!!!

$$\int_{0}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \left(-\frac{2n-1}{-2a}\right) \cdot \left(-\frac{2n-3}{-2a}\right) \cdot \cdots \cdot \left(-\frac{3}{-2a}\right) \cdot \left[-\frac{1}{-2a} \cdot \left(\frac{1}{2}\sqrt{\frac{\pi}{a}}\right)\right]$$

$$= \underbrace{\frac{(2n-1) \cdot (2n-3) \cdot \cdots \cdot (3) \cdot (1)}{2a \cdot 2a \cdot \cdots \cdot 2a \cdot 2a}}_{n \uparrow} \cdot \left(\frac{1}{2} \cdot \sqrt{\frac{\pi}{a}}\right) = \underbrace{\frac{1 \times 3 \times 5 \times \cdots \times (2n-3) \times (2n-1)}{2^{n+1} \cdot a^{n}}} \cdot \sqrt{\frac{\pi}{a}} \quad (n \not\ni \mathbb{E} \stackrel{\text{E}}{=} \stackrel{\text{M}}{=} \stackrel{\text{L}}{=} \stackrel{\text{M}}{=} \stackrel{\text{L}}{=} \stackrel{\text{L}}{=}$$

当
$$n = 0$$
时, $\int_0^{+\infty} e^{-ax^2} dx = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-ax^2} dx = \frac{1}{2} \cdot \sqrt{\frac{\pi}{a}}$,满足通式,所以有

$$\int_{0}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \underbrace{\frac{(2n-1) \cdot (2n-3) \bullet \cdots \bullet (3) \cdot (1)}{2a \cdot 2a \bullet \cdots \bullet 2a \cdot 2a}}_{n \uparrow} \cdot \underbrace{\left(\frac{1}{2} \cdot \sqrt{\frac{\pi}{a}}\right)}_{n \uparrow} = \underbrace{\frac{1 \times 3 \times 5 \times \cdots \times (2n-3) \times (2n-1)}{2^{n+1} \cdot a^{n}}} \cdot \sqrt{\frac{\pi}{a}} \qquad (n \ni \# \oplus \# , \ a > 0)$$

受上述推导启发,对于以下积分式,很快能得到结果:

① $\int_{-\infty}^{+\infty} x^{2n-1} \cdot e^{-ax^2} dx = 0$ 其中,n为正整数,a > 0 (奇函数在对称区域的积分为0)

而积分式 $\int_0^{+\infty} x^1 \cdot e^{-ax^2} dx = \frac{e^{-ax^2} \Big|_0^{+\infty}}{-2a} = \frac{1}{2a}$,这个结果的依据仍然是当a > 0时,x = 0、 $x = +\infty$ 的函数项全为0

因此,有:
$$\int_0^{+\infty} x^{2n-1} \cdot e^{-ax^2} dx = \underbrace{\frac{2 \times 4 \times \dots \times (2n-4) \times (2n-2)}{2a \cdot 2a \cdot \dots \cdot 2a \cdot 2a}}_{(n-1) \uparrow} \cdot \frac{1}{2a} = \underbrace{\frac{1 \times 2 \times \dots \times (n-2) \times (n-1)}{2 \cdot a^n}}_{2 \cdot a^n}$$

$$\left\{
\int_{0}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \dots \times (2n-3) \times (2n-1)}{2^{n+1} \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} \right. \left($$
「涵盖 x 偶数次方 \)
$$\int_{0}^{+\infty} x^{2n-1} \cdot e^{-ax^{2}} dx = \frac{1 \times 2 \times \dots \times (n-2) \times (n-1)}{2 \cdot a^{n}} \right. \left($$
「涵盖 x 佛教次方 \)
$$\left\{
\int_{-\infty}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \dots \times (2n-3) \times (2n-1)}{2^{n} \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} \right. \left($$
「涵盖 x 偶数次方 \)

$$\underbrace{\left\{ \int_{-\infty}^{+\infty} x^{2n} \cdot e^{-ax^2} dx = \frac{1 \times 3 \times \dots \times (2n-3) \times (2n-1)}{2^n \cdot a^n} \cdot \sqrt{\frac{\pi}{a}} \right\}}_{\text{in}} \left(\underbrace{\text{in} \stackrel{\text{in}}{=} x^{\text{in}} x^{\text{in}}}_{\text{in}} \right)$$

$$\underbrace{\left\{ \int_{-\infty}^{+\infty} x^{2n-1} \cdot e^{-ax^2} dx = 0 \right\}}_{\text{in}} \left(\underbrace{\text{in} \stackrel{\text{in}}{=} x^{\text{in}} x^{\text{in}}}_{\text{in}} \right)$$

那么高斯分布的偏态系数s和峰态系数K:

$$s = \frac{\mu_3}{\sigma^3} = \frac{E\{(X - E[X])^3\}}{\left(\sqrt{D[X]}\right)^3} = \frac{\int_{-\infty}^{+\infty} (x - E[X])^3 \cdot f_X(x) dx}{\left(\sqrt{\int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx}\right)^3} = \frac{\int_{-\infty}^{+\infty} (x - \mu)^3 \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{(x - \mu)^2}{2\sigma^2}} dx}{\sigma^3}$$

$$s = \frac{\int_{-\infty}^{+\infty} \left(\sigma^3 \cdot \eta^3\right) \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-\eta^2}{2}} \cdot \sigma d\eta}{\sigma^3} = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} \eta^3 \cdot e^{\frac{-\eta^2}{2}} d\eta$$

根据之前 $x^{\hat{\alpha}\hat{b}\hat{\chi}\hat{\lambda}\hat{r}}$ 推导,或是奇函数在对称区间的积分为0得到:

高斯分布 $N(\mu, \sigma^2)$ 的偏态系数s=0,所以高斯分布的概率密度曲线是对称的!!

同理可快速运算: $K = \frac{\mu_4}{\sigma^4} = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} \eta^4 \cdot e^{\frac{-\eta^2}{2}} d\eta = \frac{1}{\sqrt{2\pi}} \cdot 2 \cdot \int_{0}^{+\infty} \eta^4 \cdot e^{\frac{-\eta^2}{2}} d\eta$, 则有峰态系数

$$K = \frac{1}{\sqrt{2\pi}} \cdot \left(\frac{1 \times 3 \times \dots \times (2n-3) \times (2n-1)}{2^{n+1} \cdot a^n} \cdot \sqrt{\frac{\pi}{a}} \right) \Big|_{n=2, a=\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \cdot 2 \cdot \left(\frac{3}{2} \cdot \sqrt{2\pi} \right) = 3$$

由于高斯分布的概率密度曲线的尖锐程度是非常完美的,因而作为峰态系数的参照基准

特征函数与矩函数的关系:

连续型一维随机变量X的概率密度曲线确定

则其分布律函数
$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
确定、 n 阶原点矩函数 $E[X^n] = \int_{-\infty}^{+\infty} x^n \cdot f_X(x) dx$ (共概率密度函数) $\leftarrow ----$ 特征函数 $\bullet n$ 阶导数:特征函数 $\bullet f_X(x) = E[e^{j\omega x}] = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx$ 对变量 ω 求 n 次导

$$\begin{cases} \Phi_{x^n}^{'}(\omega) = \frac{d\int_{-\infty}^{+\infty} e^{j\alpha x} \cdot f_X(x) dx}{d\omega} = \int_{-\infty}^{+\infty} (jx \cdot e^{j\alpha x}) \cdot f_X(x) dx = j \cdot \int_{-\infty}^{+\infty} (e^{j\alpha x}) \cdot [x \cdot f_X(x)] dx \\ \Leftrightarrow \omega = 0, \quad \text{则} e^{j\alpha x} = 1, \quad \text{因而有} \Phi_{x^n}^{'}(\omega)|_{\omega = 0} = j \cdot \int_{-\infty}^{+\infty} x \cdot f_X(x) dx = j \cdot E[X^1] \quad \text{得到}(-j)^1 \Phi_{x^n}^{'}(\omega) = E[X^1] \end{cases}$$

$$\begin{cases} \Phi_{x^n}^{"}(\omega) = \frac{d^2 \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx}{d\omega^2} = \int_{-\infty}^{+\infty} (j^2 x^2 \cdot e^{j\omega x}) \cdot f_X(x) dx = j^2 \cdot \int_{-\infty}^{+\infty} (e^{j\omega x}) \cdot \left[x^2 \cdot f_X(x)\right] dx \\ \Leftrightarrow \omega = 0, \quad \mathbb{M}e^{j\omega x} = 1, \quad \mathbb{E} \overline{\Pi} \Phi_{x^n}^{"}(\omega)|_{\omega=0} = j^2 \cdot \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx = j^2 \cdot E[X^2] \quad \mathcal{P}(-j)^2 \Phi_{x^n}^{"}(\omega) = E[X^2] \end{cases}$$

$$\begin{cases} \Phi_{x^n}^{"'}(\omega) = \frac{d^3 \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx}{d\omega^3} = \int_{-\infty}^{+\infty} (j^3 x^3 \cdot e^{j\omega x}) \cdot f_X(x) dx = j^3 \cdot \int_{-\infty}^{+\infty} (e^{j\omega x}) \cdot \left[x^3 \cdot f_X(x) \right] dx \\ \Leftrightarrow \omega = 0, \quad \text{则} e^{j\omega x} = 1, \quad \text{因而有} \Phi_{x^n}^{"'}(\omega)|_{\omega=0} = j^3 \cdot \int_{-\infty}^{+\infty} x^3 \cdot f_X(x) dx = j^3 \cdot E[X^3] \quad \text{待至]} (-j)^3 \Phi_{x^n}^{"'}(\omega) = E[X^3] \end{cases}$$

$$\begin{cases} \Phi_{x^n}^{(n)}(\omega) = \frac{d^n \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_{\chi}(x) dx}{d\omega^n} = \int_{-\infty}^{+\infty} (j^n x^n \cdot e^{j\omega x}) \cdot f_{\chi}(x) dx = j^n \cdot \int_{-\infty}^{+\infty} (e^{j\omega x}) \cdot \left[x^n \cdot f_{\chi}(x) \right] dx \\ \Leftrightarrow \omega = 0, \quad \mathbb{M} e^{j\omega x} = 1, \quad \mathbb{E} \left[A^n \right] = \int_{-\infty}^{+\infty} (j^n x^n \cdot e^{j\omega x}) \cdot f_{\chi}(x) dx = j^n \cdot E[X^n] \end{cases}$$

特征函数和概率密度函数的关系:

先看傅里叶变换与傅里叶反变换对

$$\begin{cases} F(\omega) = \int_{-\infty}^{+\infty} e^{-j\alpha x} \cdot f(x) dx \\ f(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{j\alpha x} \cdot F(\omega) d\omega \end{cases}$$

特征函数与傅里叶变换对"形似"

$$\begin{cases} \Phi_{X}(\omega) = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_{X}(x) dx & (\text{th} f_{X}(x) \Re \Phi_{X}(x)) \\ f_{X}(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{-j\omega x} \cdot \Phi_{X}(\omega) d\omega & (\text{th} \Phi_{X}(x) \Re f_{X}(x)) \end{cases}$$

证明: ①
$$f_X(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{-j\omega x} \cdot \Phi_X(\omega) d\omega = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{-j\omega x} \cdot \left[\int_{-\infty}^{+\infty} e^{j\omega \varepsilon} \cdot f_X(\varepsilon) d\varepsilon \right] d\omega$$

改变积分次序,先对
$$\omega$$
积分,得到: $f_X(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} f_X(\varepsilon) \cdot \left[\int_{-\infty}^{+\infty} (e^{-j\omega x} \cdot e^{j\omega \varepsilon}) \cdot d\omega \right] d\varepsilon$

$$f_X(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} f_X(\varepsilon) \cdot \left[\int_{-\infty}^{+\infty} e^{j(\varepsilon - x)\omega} d\omega \right] d\varepsilon$$
, 对比积分式 $\int_{-\infty}^{+\infty} e^{j(\varepsilon - x)\omega} d\omega$ 与傅里叶反变换

发现:
$$\int_{-\infty}^{+\infty} e^{j(\varepsilon-x)\omega} d\omega = 2\pi \cdot \left(\frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{j(\varepsilon-x)\omega} \cdot [\mathbf{l}(\omega)] d\omega\right)$$
 单位冲击函数 $\delta(t)$ 的傅里叶变换就是 $\mathbf{l}(\omega)$

所以有:
$$f_X(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} f_X(\varepsilon) \cdot \left[2\pi \cdot \left(\frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{j\omega(\varepsilon - x)} \cdot 1(\omega) d\omega \right) \right] d\varepsilon$$

$$= \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} f_X(\varepsilon) \cdot \left[2\pi \cdot \delta(\varepsilon - x) \right] d\varepsilon = \int_{-\infty}^{+\infty} f_X(\varepsilon) \cdot \delta(\varepsilon - x) d\varepsilon$$

积分变量为 ε ,参量为x,应用单位冲击抽样定理,得到:

$$f_X(x) = \frac{\text{当且仅当}\varepsilon = x \text{时,积分有值}}{f_X(x)}$$
,原式得证;

证明方法②
$$\Phi_X(\omega) = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot \left[\frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{-j\eta x} \cdot \Phi_X(\eta) d\eta \right] dx$$

改变积分次序, 先对x积分, 得到:

$$\Phi_{X}(\omega) = \int_{-\infty}^{+\infty} \Phi_{X}(\eta) \left[\frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} \left(e^{-j\eta x} \cdot e^{j\omega x} \right) \cdot 1(x) dx \right] d\eta, 与①一样,利用傅里叶反变换得到$$

$$\Phi_X(\omega) = \int_{-\infty}^{+\infty} \Phi_X(\eta) \left[\frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{jx(\omega - \eta)} \cdot 1(x) dx \right] d\eta = \int_{-\infty}^{+\infty} \Phi_X(\eta) \cdot \delta(\omega - \eta) d\eta$$

积分变量为 η ,参变量为 ω ,根据单位冲击抽样定理得到:

$$\Phi_X(\omega) = \frac{\exists L(Y) = \omega \pi \pi \pi \pi - d}{\exists X} \Phi_X(\omega)$$
,原式得证;

证明方法③:特征函数 $\Phi_X(x)$ 的定义式指出了其与概率密度函数 $f_X(x)$ 的关系,通过与傅里叶变换对公式的比较:在旋转因子 $e^{\pm j \omega x}$ 上的差距,利用函数的同质性,易得到:

再令
$$\left\{ \Phi_{X}(\omega) = F(-\omega) \right\}$$
, 那么容易得到 $\left\{ \Phi_{X}(\omega) = F(-\omega) = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f(x) dx \right\}$ I $f_{X}(x) = f(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{j\omega x} \cdot F(\omega) d\omega$ II

I式显然为特征函数的定义式,只要消去II式中的 $F(\omega)$ 即可证明原式。

对于II式,改变积分变量 $\omega = -\omega$,那么II式中积分区间将"反向",即有

$$f_X(x) = f(x) = \frac{1}{2\pi} \cdot \int_{+\infty}^{-\infty} e^{j\omega x} \cdot F(-\omega) d(-\omega) \xrightarrow{\text{ k简得到}} f_X(x) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{j\omega x} \cdot \Phi_X(\omega) d\omega, \quad 原式得证。$$

2. 求 $N(0, \sigma^2)$ 分布的随机变量的均值和方差。

①重要概念

I.可根据数学期望和方差的定义做题; II.可根据特征函数与矩函数的求导关系,数学期望与方差的运算性质做题

数学期望的性质(4条):

$$E[c] = c; \quad E[c \cdot X] = c \cdot E[X]; \quad E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] \quad E\left[\prod_{i=1}^{n} X_i\right] \xrightarrow{\text{diff} \text{ diff}} E[X_i]$$

方差性质(4条):

$$D[c] = 0; \quad D[c \cdot X] = c^2 \cdot E[X]; \quad D\left[\sum_{i=1}^n X_i\right] \xrightarrow{\text{HEM}} \sum_{i=1}^n D[X_i]; \quad P(X = a) = 1 \Leftrightarrow D[X] = 0$$

方差为二阶中心距,但方差可转化为原点矩函数的组合,即有 $D[X] = E[X^2] - E^2[X]$ 成立

证明方法①:利用数学期望的性质

$$D[X] = E\{(X - E[X])^2\} = E(X^2 - 2X \cdot E[X] + E^2[X])$$

$$= E[X^{2}] + E[-2X \cdot E[X]] + E[E^{2}[X]]$$

$$= E[X^2] - 2 \cdot E[X] \cdot E[X] + E^2[X]$$

$$= E[X^{2}] - 2 \cdot E^{2}[X] + E^{2}[X] = E[X^{2}] - E^{2}[X] \Rightarrow D[X] = E[X^{2}] - E^{2}[X]$$

证明方法②: 利用数学期望和方差的数学定义

$$D[X] = E\{(X - E[X])^2\} = \int_{-\infty}^{+\infty} (x - E[X])^2 \cdot f_X(x) dx = \int_{-\infty}^{+\infty} (x - \int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon)^2 \cdot f_X(x) dx$$

$$\overline{\text{min}} E[X^2] - E^2[X] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx - \left(\int_{-\infty}^{+\infty} x \cdot f_X(x) dx\right)^2 \qquad \text{II}$$

对比I式和II式,考虑到积分式 $\int_{-\infty}^{+\infty} x \cdot f_{x}(x) dx$ 的结果与积分变量x独立,可看做常数c

所以有:
$$D[X] = \int_{-\infty}^{+\infty} x^2 - 2x \cdot \int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon + \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon \right)^2 d\varepsilon$$

根据积分法则 $\int_{i=1}^{n} f_i(x) dx = \sum_{i=1}^{n} \int_{i} f_i(x) dx$, 得到:

$$D[X] = \int_{-\infty}^{+\infty} x^{2} \cdot f_{X}(x) dx + \int_{-\infty}^{+\infty} \left(-2x \cdot \int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon\right) \cdot f_{X}(x) dx + \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon\right)^{2} \cdot f_{X}(x) dx$$

$$= \int_{-\infty}^{+\infty} x^{2} \cdot f_{X}(x) dx + \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon\right) \cdot \left[\int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon \cdot \int_{-\infty}^{+\infty} f_{X}(x) dx - 2\int_{-\infty}^{+\infty} x \cdot f_{X}(x) dx\right]$$

$$= \int_{-\infty}^{+\infty} x^{2} \cdot f_{X}(x) dx + \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon\right) \cdot \left[\int_{-\infty}^{+\infty} \varepsilon \cdot f_{X}(\varepsilon) d\varepsilon \cdot \left(\int_{-\infty}^{+\infty} f_{X}(x) dx - 2\right)\right]$$

因为积分式 $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ (概率密度函数的物理意义), 所以得到

$$D[X] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx + \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon \right) \cdot \left[\int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon \cdot (-1) \right], \quad \text{则有}$$

$$\begin{aligned} & D[X] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx - \left(\int_{-\infty}^{+\infty} \varepsilon \cdot f_X(\varepsilon) d\varepsilon \right)^2 \\ & E[X^2] - E^2[X] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx - \left(\int_{-\infty}^{+\infty} x \cdot f_X(x) dx \right) \end{aligned}$$

根据函数的同质性,有 $D[X] = E[X^2] - E^2[X]$, 原式得证

②解题步骤

方法一: 使用特特征函数与矩函数的关系, 数学期望和方差的性质

根据一维随机变量X,若满足正态分布 $N(\mu, \sigma^2)$,则其特征函数

$$\Phi_{X}(\omega) = e^{\frac{\left(\mu + \sigma^{2} j \omega\right)^{2} - \mu^{2}}{2\sigma^{2}}} = e^{\mu \cdot j \omega} \bullet e^{-\frac{\sigma^{2} \cdot \omega^{2}}{2}}$$

那么,得到一阶、二阶及n阶原点矩矩函数分别为:

$$E[X] = (-j)^i \cdot \Phi_Y^0(\omega) = (-j)^i \cdot \frac{de^{iw\omega} \frac{d\omega^2}{d\omega}}{d\omega} = (-j)^i \cdot \left[(y - \sigma^2 \cdot \omega) e^{iw\omega \frac{\sigma^2 - \omega}{2}} \right]_{\omega = 0} = \mu$$

$$E[X^2] = (-j)^i \cdot \Phi_Y^0(\omega) = (-j)^i \cdot \frac{d(-j)^i}{d\omega} = (-j)^i \cdot \left[(y - \sigma^2 \cdot \omega) e^{iw\omega \frac{\sigma^2 - \omega}{2}} \right] = (-j)^i \cdot \left[(y - \sigma^2 \cdot \omega)^i - \sigma^2 \right] e^{iw\omega \frac{\sigma^2 - \omega}{2}} \Big|_{\omega = 0}$$
稱到 $E[X^2] = (-j)^i \cdot (-\mu^2 - \sigma^2) = \mu^2 + \sigma^2$
那么二阶中心既,即方差 $D[X] = E[X^2] - E^2[X] - (\mu^2 + \sigma^2) - (\mu)^i = \sigma^2$,这个式子表明特征函数 $\Phi_X(X)$
用来导关系得到相应原点矩函数时,直接提出常数因子(-j),其需指数为对应阶数,因而有
3阶原点矩 $E[X^2] = (-j)^i \cdot \Phi_Y^0(\omega) = (-j)^i \cdot \frac{d[\omega - \sigma^2 \cdot \omega)^i - \sigma^2]}{d\omega} = (-j)^i \cdot \left[(\omega - \sigma^2 \cdot \omega)^i - \sigma^2 \right] (\omega - \sigma^2 \cdot \omega)^i + 2 \cdot (\omega - \sigma^2 \cdot \omega) \left[(-\sigma^2 \cdot \omega)^i \right] e^{iw\omega \frac{\sigma^2 - \omega}{2}} \Big|_{\omega = 0}$

$$= (-j)^i \cdot \left[(\omega - \sigma^2 \cdot \omega)^i - \sigma^2 \right] (\omega - \sigma^2 \cdot \omega)^i + 2 \cdot (\omega - \sigma^2 \cdot \omega) \left[(-\sigma^2 \cdot \omega)^i \right] e^{iw\omega \frac{\sigma^2 - \omega}{2}} \Big|_{\omega = 0}$$

$$= (-j)^i \cdot \left[(\omega - \sigma^2 \cdot \omega)^i - 3\sigma^2 \right] (\omega - \sigma^2 \cdot \omega)^i + 2 \cdot (\omega - \sigma^2 \cdot \omega)^i - 3\sigma^2 \right] \left[(\omega -$$

$$(a+b)^{3} = (a+b)^{2} \cdot (a+b) = (a^{2} + 2ab + b^{2}) \cdot (a+b) = (a^{2} a + 2aba + b^{2} a) + (a^{2}b + 2abb + b^{2}b)$$

$$= (a^{3} + 2a^{2}b + ab^{2}) + (a^{2}b + 2ab^{2} + b^{3}) = a^{3} + (3a^{2}b + 3ab^{2}) + b^{3} = a^{3} + 3ab(a+b) + b^{3}$$

$$(a-b)^{3} = (a-b)^{2} \cdot (a-b) = (a^{2} - 2ab + b^{2}) \cdot (a-b) = (a^{2}a - 2aba + b^{2}a) - (a^{2}b - 2abb + b^{2}b)$$

$$= (a^{3} - 2a^{2}b + ab^{2}) - (a^{2}b - 2ab^{2} + b^{3}) = a^{3} - (3a^{2}b - 3ab^{2}) - b^{3} = a^{3} - 3ab(a-b) - b^{3}$$

$$\begin{cases} (a+b)^{3} = a^{3} + b^{3} + 3ab(a+b) \Rightarrow \begin{cases} (a+b)^{4} = [a^{3} + b^{3} + 3ab(a+b)] \cdot (a+b) = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4} \end{cases}$$

$$(a-b)^{3} = a^{3} - b^{3} - 3ab(a-b) \Rightarrow \begin{cases} (a+b)^{4} = [a^{3} + b^{3} + 3ab(a+b)] \cdot (a+b) = a^{4} + 4a^{3}b + 6a^{2}b^{2} - 4ab^{3} + b^{4} \end{cases}$$

$$[a^{3} + b^{3} + 3ab(a+b)] \cdot (a+b) = a^{4} + ab^{3} + 3a^{3}b + 3a^{2}b^{2} + a^{3}b + b^{4} + 3a^{2}b^{2} + 3ab^{3} = a^{4} + b^{4} + 4a^{3}b + 4b^{3}a + 6a^{2}b^{2}$$

$$\mathcal{R}_{n} = (a^{3} + b^{3} + 3ab(a+b)) \cdot (a+b) = a^{4} + ab^{3} + 3a^{3}b + 3a^{2}b^{2} + a^{3}b + b^{4} + 3a^{2}b^{2} + 3ab^{3} = a^{4} + b^{4} + 4a^{3}b + 4b^{3}a + 6a^{2}b^{2} \end{cases}$$

$$\mathcal{R}_{n} = (a^{3} + b^{3} + 3ab(a+b)) \cdot (a+b) = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$[a^{3} + b^{3} + 3ab(a+b)] \cdot (a+b) = a^{4} + ab^{3} + 3a^{3}b + 3a^{2}b^{2} + a^{3}b + b^{4} + 3a^{2}b^{2} + 3ab^{3} = a^{4} + b^{4} + 4a^{3}b + 4b^{3}a + 6a^{2}b^{2}$$

$$\mathcal{R}_{n} = (a+b)^{n} + (a+b)^{n} +$$

在求解高斯分布一维随 机变量的n阶原点矩函数时,先求其中心矩函数,应再用n次方差的因式分解

$$\mu_n = E\left\{ (X - E[X])^n \right\} = \int_{-\infty}^{+\infty} (x - \mu)^n \cdot f_X(x) dx = \int_{-\infty}^{+\infty} (x - \mu)^n \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$\Leftrightarrow \eta = \frac{x - \mu}{\sigma}, \quad \text{则有} \ \mu_n = E\left\{ (X - E[X])^n \right\} = \frac{\sigma^n}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} \eta^n \cdot e^{-\left(\frac{1}{2}\eta^2\right)} d\eta$$

对于形如 $\int_{0}^{+\infty} x^n \cdot e^{-(a)(x^2)} dx$ (n为非负整数, a > 0)的积分式,应用④直接得到:

I.如果是奇数阶中心矩, 即n为奇数时, 那么 $\mu_n = E\{(X - E[X])^n\} = 0$;

II.如果是偶数阶中心矩, 即
$$n$$
为偶数时, 那么 $\mu_n = E\{(X - E[X])^n\} = \frac{\sigma^n}{\sqrt{2\pi}} \cdot \frac{1 \times 3 \times \cdots \times (n-3) \times (n-1)}{2^{\frac{n}{2}} \cdot \left(\frac{1}{2}\right)^{\frac{n}{2}}} \cdot \sqrt{2\pi} = [1 \times 3 \times \cdots \times (n-3) \times (n-1)] \cdot \sigma^n$

$$\begin{cases} \mu_n = \begin{cases} 0 & (\mbox{\^{o}} \mbox{\^{o}} \mbox{\^{o}} \mbox{\^{o}} \\ [1 \times 3 \times \dots \times (n-3) \times (n-1)] \cdot \sigma^n \end{array} (偶 数 阶 中 心 矩) \\ E[X^n] = n E[X^{n-1}] \cdot E[X] - \frac{n \cdot (n-1)}{2} E[X^{n-2}] \cdot E^2[X] + \dots + (-1)^{k+1} \cdot \frac{n \cdot (n-1) \bullet \dots \bullet (n-k+1)}{k!} \cdot E[X^{n-k}] \cdot E^k[X] + \dots + (-1)^n \cdot n E[X] \cdot E^{n-1}[X] + (-1)^{n+1} \cdot E^n[X] + \mu_n \\ E[X^n] = n E[X^n] \cdot d^n \cdot D^n = 0 \quad \text{ for all $n \in \mathbb{N}$ and $n \in \mathbb{N$$

上述公式表明:1.先求中心矩函数,再求 原点矩函数;

2.中心矩函数与原点矩函数的递推关系,利用手工递推可逐步求解出任意阶矩函数,或是利用编程递归算法求解任意阶矩函数; 3.检验:

前10阶矩函数:

$$\mu_{1} = 0, \quad m_{1} = \mu; \mu_{2} = \sigma^{2}, \quad m_{2} = \mu^{2} + \sigma^{2}; \quad \mu_{3} = 0, \quad m_{3} = \mu^{3} + 3\mu\sigma^{2};$$

$$\mu_{4} = 3\sigma^{2}, \quad m_{4} = \mu^{4} + 6\mu^{2}\sigma^{2} + 3\sigma^{4}; \quad \mu_{5} = 0, \quad m_{5} = \mu^{5} + 10\mu^{3}\sigma^{2} + 15\mu\sigma^{4};$$

$$\mu_{6} = 15\sigma^{6}, \quad m_{6} = \mu^{6} + 15\mu^{4}\sigma^{2} + 45\mu^{2}\sigma^{4} + 15\sigma^{6};$$

$$\mu_{7} = 0, \quad m_{7} = \mu^{7} + 21\mu^{5}\sigma^{2} + 105\mu^{3}\sigma^{4} + 105\mu\sigma^{6};$$

$$\mu_{8} = 105\sigma^{8}, \quad m_{8} = \mu^{8} + 28\mu^{6}\sigma^{2} + 210\mu^{4}\sigma^{4} + 420\mu^{2}\sigma^{6} + 105\sigma^{8};$$

$$\mu_{9} = 0, \quad m_{9} = \mu^{9} + 36\mu^{7}\sigma^{2} + 378\mu^{5}\sigma^{4} + 1260\mu^{3}\sigma^{6} + 945\mu\sigma^{8};$$

$$\mu_{10} = 945\sigma^{10}, \quad m_{10} = \mu^{10} + 45\mu^{8}\sigma^{2} + 630\mu^{6}\sigma^{4} + 3150\mu^{4}\sigma^{6} + 4725\mu^{2}\sigma^{8} + 945\sigma^{10};$$

$$\begin{cases} \int_{0}^{+\infty} x^{2n} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \cdots \times (2n - 3) \times (2n - 1)}{2^{n+1} \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} & (\text{涵盖} x^{\text{两数x}/\pi}) \\ \int_{0}^{+\infty} x^{2n-1} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \cdots \times (2n - 3) \times (2n - 1)}{2 \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} & (\text{涵盖} x^{\text{两数x}/\pi}) \end{cases}$$

$$\begin{cases} \int_{-\infty}^{+\infty} x^{2n-1} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \cdots \times (2n - 3) \times (2n - 1)}{2^{n} \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} & (\text{涵盖} x^{\text{两数x}/\pi}) \\ \int_{-\infty}^{+\infty} x^{2n-1} \cdot e^{-ax^{2}} dx = \frac{1 \times 3 \times \cdots \times (2n - 3) \times (2n - 1)}{2^{n} \cdot a^{n}} \cdot \sqrt{\frac{\pi}{a}} & (\text{涵盖} x^{\text{两数x}/\pi}) \end{cases}$$

均匀分布:

均匀分布的概率密度函数
$$f_X(x) = \begin{cases} \frac{1}{b-a}, & (a \le x \le b) \\ 0, & (其他) \end{cases}$$

均匀分布的概率分布函数 $F_X(x) = \int_{-\infty}^{x} f_X(\varepsilon) d\varepsilon \int_{-\infty}^{\infty} (-\infty < x < +\infty)$

$$F_X(x) = \begin{cases} \textcircled{1} - \infty < x < a \\ \textcircled{1}, \int_{-\infty}^x 0 \, d\varepsilon = 0 \end{cases}$$

$$\textcircled{2} a \le x \le b \\ \textcircled{1}, \int_{-\infty}^a 0 \, d\varepsilon + \int_a^b f_X(\varepsilon) d\varepsilon = 0 + 1 = 1$$

$$\textcircled{3} b < x < +\infty \\ \textcircled{1}, \int_{-\infty}^a 0 \, d\varepsilon + \int_a^b \frac{1}{b-a} d\varepsilon + \int_b^{+\infty} 0 \, d\varepsilon = 0 + 1 + 0 = 1$$

均匀分布的特征函数:

$$\Phi_{X}(\omega) = E\left[e^{j\omega X}\right] = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_{X}(x)dx = \int_{-\infty}^{a} e^{j\omega x} \cdot 0dx + \int_{a}^{b} e^{j\omega x} \cdot \frac{1}{b-a}dx + \int_{b}^{+\infty} e^{j\omega x} \cdot 0dx$$

$$= 0 + \frac{1}{b-a} \cdot \frac{e^{j\omega x}}{j\omega} \Big|_{a}^{b} + 0 = \frac{1}{b-a} \cdot \frac{e^{j\omega x}}{j\omega} \Big|_{a}^{b} = \frac{e^{j\omega b} - e^{j\omega a}}{j\omega(b-a)}$$

均匀分布的矩函数:①用定义求

一阶原点矩:
$$m_1 = E[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx = \int_{-\infty}^a x \cdot 0 \, d\varepsilon + \int_a^b x \cdot \frac{1}{b-a} \, d\varepsilon + \int_b^{+\infty} x \cdot 0 \, d\varepsilon$$

$$= 0 + \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_a^b + 0 = \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_a^b = \frac{1}{b-a} \cdot \frac{(b+a) \cdot (b-a)}{2} = \frac{b+a}{2}$$

二阶原点矩:
$$m_2 = E[X^2] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx = \int_{-\infty}^a x^2 \cdot 0 \, d\varepsilon + \int_a^b x^2 \cdot \frac{1}{b-a} \, d\varepsilon + \int_b^{+\infty} x^2 \cdot 0 \, d\varepsilon$$

$$=0+\frac{1}{b-a}\cdot\frac{x^{3}}{3}\Big|_{a}^{b}+0=\frac{1}{b-a}\cdot\frac{x^{3}}{3}\Big|_{a}^{b}=\frac{1}{b-a}\cdot\frac{(b-a)\cdot(b^{2}+ba+a^{2})}{3}=\overbrace{b^{2}+ba+a^{2}}^{3}$$
① 立方和差公式
$$\left(\frac{a^{3}+b^{3}=(a+b)\cdot(a^{2}-ab+b^{2})}{a^{3}-b^{3}=(a-b)\cdot(a^{2}+ab+b^{2})}\right)$$

根据数学期望和方差的性质与关系: 二阶中心距 $\mu_2 = D[X] = E[X^2] - E^2[X]$

$$\mu_2 = D[X] = \frac{b^2 + ba + a^2}{3} - \left(\frac{b+a}{2}\right)^2 = \frac{(4b^2 + 4ba + 4a^2) - (3b^2 + 6ba + 3a^2)}{12} = \frac{(b-a)^2}{12}$$

即连续型一维均匀分布随机变量的数学期望和方差分别为:

$$\begin{cases} E[X] = \frac{b+a}{2} \\ E[X^2] = \frac{b^2 + ba + a^2}{3} \\ D[X] = \frac{(b-a)^2}{12} \end{cases}$$

$$\begin{cases} m_n = \frac{\sum_{i=0}^n b^{n-i}a^i}{n+1} \\ \mu_n = \begin{cases} \frac{(b-a)^n}{2^n(n+1)} & (n为偶数) \\ 0 & (n为奇数) \end{cases} \\ \mu_n = \frac{1}{b-a} \cdot \int_a^b \left(x - \frac{a+b}{2}\right)^n dx = \frac{1}{(n+1) \cdot (b-a)} \cdot \left(x - \frac{a+b}{2}\right)^{n+1} \Big|_a^b = \frac{1}{(n+1) \cdot (b-a)} \cdot \left[\left(\frac{b-a}{2}\right)^{n+1} - \left(\frac{a-b}{2}\right)^{n+1}\right] \\ = \begin{cases} \frac{1}{n+1} \cdot \frac{(b-a)^n}{2^n} = \frac{(b-a)^n}{2^n(n+1)} & (n为偶数) \\ 0 & (n为奇数) \end{cases}$$

三阶 限点矩:
$$m_1 = E[X^2] = \int_{-\infty}^{\infty} x^3 \cdot f_1(x) dx$$

$$m_2 = \int_{-\infty}^{\infty} x^3 \cdot 0 dx + \int_{0}^{\infty} x^3 \cdot \frac{1}{b-a} dx + \int_{0}^{\infty} x^3 \cdot 0 dx = \int_{0}^{\infty} x^3 \cdot \frac{1}{b-a} dx + \frac{b^4-a^4}{4(b-a)}$$
考虑因式分解: $b^4-a^4 = (b^2-a^2) \cdot (b^2+a^2) = (b-a) \cdot (b^2+a^2) \cdot (b^2+a^2) \cdot \frac{1}{3}$

$$m_3 = \frac{b^4+b^2a+ba^2+a^3}{4}, \quad \text{ 数得网阶 照点矩 } m_4 = \frac{b^4-a^3}{5(b-a)} = \frac{b^4+b^2a^2+ba^3+a^4}{5}$$
利用 N次方差的因式分解: $a^a-b^a = (a-b) \cdot (a^{a^a}+a^{a^2}\cdot b+a^{a^2}\cdot b+a^{a^2}\cdot b^{a^2}+a^{b^2}\cdot b^{a^2})$
利用 N次方差的因式分解: $a^a-b^a = (a-b) \cdot (a^{a^a}+a^{a^2}\cdot b+a^{a^2}\cdot b^{a^2}+a^{b^2}\cdot b^{a^2}+a^{b^2}\cdot b^{a^2})$
(科到前 照点矩 $m_4 = \frac{b^{a+1}-ab}{(n+1)\cdot (b-a)} = \frac{a^a+a^{a-1}-b+a^{a^2}-b^2+a^{a^2}\cdot b^4+\cdots+a^2\cdot b^{a^2}+a^4\cdot b^{a^2}+b^{a^2}+b^{a^2}+b^{a^2}}{(n+1)}$
(出均 分 的 知 函数 $\frac{b^2+b^2}{3} + \frac{b^2+a^2}{3} + \frac{b^2+b^2}{3} + \frac{b^2$

因而**均匀分布的偏态系数为 0, 峰态系数为 1.8**, 这与均匀分布的概率密度函数具有对称性, 无尖峰即尖峰比高斯分布概率密度函数尖峰平坦是吻合的。

结合高斯分布、均匀分布的推导,利用高斯分布万能公式可以得到如下结论: 对于任意的一维随机变量,只要给定其概率密度函数 $f_{\nu}(X)$,那么,就可以得到任意阶矩函数:

公理I
$$\begin{cases} \mu_n = \int_{-\infty}^{+\infty} (x - m_1)^n \cdot f_X(x) dx \\ m_n = \int_{-\infty}^{+\infty} x^n \cdot f_X(x) dx \end{cases}$$
公理II
$$\begin{cases} \mu_n = \sum_{k=0}^{n} (-1)^k C_n^k m_{n-k} \cdot m_1^k \\ m_n = \sum_{r=1}^{n} (-1)^{r+1} C_n^r m_{n-r} \cdot m_1^r + \mu_n \end{cases}$$

 $m_{n} = \sum_{r=1}^{n} (-1)^{r+1} C_{n}^{r} m_{n-r} \cdot m_{1}^{r} + \mu_{n}$

公理I中, 令n=0, 那么对于任意的 $f_X(X)$, 即使是未知的, 也有 $\mu_0=m_0=1$;

公理 Π 中,先以 $m_n = \sum_{i=1}^n (-1)^{r+1} C_n^r m_{n-r} \cdot m_1^r + \mu_n$ 为核心公式,递推展开代入高阶等式, Δm_n 式:

$$\begin{split} m_n &= \sum_{r=1}^{n-1} (-1)^{r+1} C_{n}^r m_{n-r} \cdot m_1 + \mu_n & (n \bowtie 1) \\ m_{n-1} &= \sum_{r=1}^{n-1} (-1)^{r+1} C_{n-1}^r m_{(n-1)-r} \cdot m_1^r + \mu_{n-1} & (n-1 \bowtie 1) \\ m_{n-2} &= \sum_{r=1}^{n-2} (-1)^{r+1} C_{n-2}^r m_{(n-2)-r} \cdot m_1^r + \mu_{n-2} & (n-2 \bowtie 1) \\ m_{n-3} &= \sum_{r=1}^{n-3} (-1)^{r+1} C_{n-3}^r m_{(n-3)-r} \cdot m_1^r + \mu_{n-3} & (n-3 \bowtie 1) \\ \vdots & & & & & & & & & & \\ m_{n-k} &= \sum_{r=1}^{n-k} (-1)^{r+1} C_{n-k}^r m_{(n-k)-r} \cdot m_1^r + \mu_{n-k} & (n-k \bowtie 1) \\ \vdots & & & & & & & & & & \\ m_3 &= \sum_{r=1}^{3} (-1)^{r+1} C_3^r m_{3-r} \cdot m_1^r + \mu_{n-k} & (3 \bowtie 1) \\ m_2 &= \sum_{r=1}^{2} (-1)^{r+1} C_2^r m_{2-r} \cdot m_1^r + \mu_2 & (2 \bowtie 1) \\ m_1 &= \sum_{r=1}^{1} (-1)^{1+1} C_1^1 m_0 \cdot m_1^r + \mu_1 & (1 \bowtie 1) \\ \end{split}$$

$$\Delta_{m-\mu} \vec{x} : \qquad m_n = \sum_{i=0}^n C_n^i \mu_{n-i} m_1^i$$

 Δ_{m-u} 式的意义在于,对于一维随机变量的任意分布的任意阶原点矩函数,都有如下函数关系成立:

 $m_n = f_{X-\Delta}(m_1, \mu_n)$, 结合公理 $\Pi = \mu_n = \sum_{k=0}^{n} (-1)^k C_n^k m_{n-k} \cdot m_1^k = 0$

$$\begin{cases} \Delta_{m-\mu} \vec{\Xi} : & m_n = \sum_{i=0}^n C_n^i \mu_{n-i} m_1^i \\ \\ \Delta_{\mu-m} \vec{\Xi} : & \mu_n = \sum_{i=0}^n C_n^i m_{n-i} m_1^i \end{cases}$$

$$\begin{split} & m_n = C_n^n \mu_0 m_1^n + C \ \mu \ m_1 + C_n^{n-2} \mu_2 m_1^{n-2} + C_n^{n-3} \mu_3 m_1^{n-3} + \dots + C_n^k \mu_{n-k} m_1^k + \dots + C_n^2 \mu_{n-2} m_1^2 + C_n^1 \mu_{n-1} m_1^1 + C_n^0 \mu_{n-0} m_1^0 \\ & \left\{ m_1 = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx \right. \\ & \left. \left. \left(\mu_n \right) = \int_{-\infty}^{+\infty} (x - m_1)^n \cdot f_X(x) dx \right. \\ & \left. \left(\mu_n \right) = E[e^{j\omega X}] = \int_{-\infty}^{+\infty} e^{j\omega x} \cdot f_X(x) dx \right. \\ & \left. \left\{ f_X(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-j\omega x} \cdot \Phi_X(\omega) d\omega \right. \\ & \left. m_1 = \int_{-\infty}^{+\infty} x \cdot \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-j\omega x} \cdot \Phi_X(\omega) d\omega dx = \frac{1}{2\pi} \cdot \frac{1}{2\pi} \right. \end{split}$$

高斯分布的矩函数推导及证明:

$$\begin{cases} \mu_n = \begin{cases} \int_{-\infty}^{+\infty} x^n \cdot e^{-\left(\frac{1}{2}\right)x^2} dx = 0 & \left(\text{rectified} \ \text{for } \ \text{support} \ \text{for } \ \text{for$$

$$\begin{split} m_3 &= C_1^1 m_2 \mu^1 - C_2^2 m_3 \mu^2 + C_3^2 m_2 \mu^1 - C_3^2 m_4 \mu^4 + C_3^2 m_6 \mu^5 + \mu_5 \\ &= C_1^1 C_1^1 (m_1 \mu^1 - C_1^2 m_2 \mu^1 + C_1^2 m_4 \mu^1 - C_2^2 m_6 \mu^4 + \mu_4) \mu^4 - C_3^2 (C_1^2 m_3 \mu^1 - C_2^2 m_6 \mu^2 + \mu_5) \mu^2 \\ &+ C_3^2 (C_1^2 m_4 \mu^1 - C_2^2 m_6 \mu^2 + \mu_2) \mu^2 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 + C_2^2 m_6 \mu^2 + \mu_5 \mu^2 \\ &+ C_3^2 (C_1^2 m_4 \mu^1 - C_2^2 m_6 \mu^2 + \mu_2) \mu^4 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 + C_2^2 m_6 \mu^2 + \mu_5 \mu^2 \\ &+ C_3^2 (C_1^2 (m_4 \mu^1 - C_2^2 m_6 \mu^2 + \mu_2) \mu^4 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 m_6 \mu^2 + \mu_5 \mu^2 \\ &+ C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 m_6 \mu^2 + \mu_2) \mu^4 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6 \mu^1 + \mu_4) \mu^4 \\ &+ C_3^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 m_6 \mu^2 + \mu_2) \mu^2 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6 \mu^1 + \mu_4) \mu^4 \\ &+ C_3^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 m_6 \mu^2 + \mu_2) \mu^2 - C_3^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6 \mu^1 + \mu_4) \mu^4 \\ &+ C_3^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 m_6 \mu^2 + \mu_2) \mu^2 - C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6) \mu^2 + \mu_4) \mu^4 \\ &+ C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 m_6 \mu^2 + \mu_2) \mu^2 - C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6) \mu^2 + \mu_4) \mu^2 \\ &+ C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 (m_6) \mu^2 + \mu_2) \mu^2 + C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6) \mu^2 + \mu_3) \mu^4 \\ &+ C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 (m_6) \mu^2 + \mu_2) \mu^2 + C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6) \mu^2 + \mu_3) \mu^4 \\ &+ C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + \mu_4) \mu^4 - C_2^2 (m_6) \mu^2 + \mu_2) \mu^2 + C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 - C_3^2 (C_1^2 (m_6 \mu^1 + \mu_4) \mu^2 + C_3^2 (m_6) \mu^2 + \mu_3) \mu^4 \\ &+ (C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + C_2^2 m_6) \mu^2 + C_2^2 (\mu_6 \mu^1 + C_3^2 m_6 \mu^2 + C_3^2 m_6 \mu^2 + C_3^2 (m_6 \mu^2 + \mu_4) \mu^4 \\ &+ (C_1^2 (C_1^2 (C_1^2 m_6 \mu^1 + C_2^2 (C_1^2 m_6 \mu^2 + C_3^2 m_6 \mu^2 + C_3^2 (C_1^2 m_6 \mu^2 + C_3^2 m_6 \mu^2$$

高斯分布一维随机变量的
$$n$$
阶矩函数万能公式:
$$\begin{cases} \mu_n = \begin{cases} 0 & \text{(奇数阶中心矩)} \\ 1 \times 3 \times 5 \times \dots \times (n-3) \times (n-1) & \text{(偶数阶中心矩)} \end{cases} \\ m_n = \begin{cases} \frac{C_n^{n-0} \cdot \mu_0 \mu^n + \frac{C_n^{n-1}}{2^{(n-1)-1}} \cdot \mu_1 \mu^{n-1} + \frac{C_n^{n-2}}{2^{(n-2)-1}} \cdot \mu_2 \mu^{n-2} + \dots + \frac{C_n^{n-k}}{2^{(n-k)-1}} \cdot \mu_k \mu^{n-k} + \dots + \frac{C_n^{n-(n-1)}}{2^{[n-(n-1)]-1}} \cdot \mu_{n-1} \mu^1 + \frac{C_n^{n-n}}{\text{Bd定系数}} \cdot \mu_n \mu^0 \\ \sum_{i=0}^n C_n^{n-i} \cdot \mu_i \mu^{n-i} \end{cases}$$

一维随机变量的函数变换:

示例研究: 已知
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{(x-\mu)^2}{2\sigma^2}} \quad (-\infty < x < +\infty) \sim N(2\mu, 2\sigma), \quad Y = 2X, \quad 求 f_Y(y)$$

上述等式两边同对y求导,得到

$$\frac{dF_{Y}(y)}{dy} = f_{Y}(y) = \frac{dF_{X}\left(\frac{y}{2}\right)}{dy} \xrightarrow{\frac{\varphi_{F_{X}}(\mu) = F_{X}\left(\frac{y}{2}\right), \ \mu = \frac{y}{2}, \ \mathbb{R}$$
 根据复合函数求导法则有: $\frac{dF_{X}\left(\frac{y}{2}\right)}{dy} = \frac{dF_{X}(\mu) d\mu}{d\mu} \xrightarrow{dy} f_{X}\left(\frac{y}{2}\right) \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{\left(\frac{y}{2} - \mu\right)^{2}}{2\sigma^{2}}}$

$$\mathbb{R} \frac{dF_{Y}(y)}{dy} = f_{Y}(y) = \frac{dF_{X}(\mu) \|dt\|}{dy} = f_{X}\left(\frac{y}{2}\right) \cdot \frac{1}{2} = \frac{1}{(2\sigma)\sqrt{2\pi}} \cdot e^{\frac{\left(\frac{y}{2} - \mu\right)^{2}}{2(2\sigma)^{2}}} \sim N(2\mu.2\sigma)$$

通过示例研究得到:

已知 $f_x(x)$, Y = g(X), 求 $f_y(y)$ 。在求解具有函数关系的随机变量问题时,紧抓概率分布函数的定义

$$F_{Y}(y) = P(Y \le y) = \int_{-\infty}^{y} f_{Y}(\lambda) d\lambda \Rightarrow P[g(X) \le y] \Rightarrow P[X \le h(y)] = F_{X}[h(y)] = \int_{-\infty}^{h(y)} f_{X}(x) dx$$

$$f_{Y}(y) = \frac{dF_{Y}(y)}{dy} = \frac{dF_{X}[h(y)]}{dy} = \frac{dF_{X}[h(y)]}{d[h(y)]} \cdot \frac{dh(y)}{dy} = f_{X}(h(y)) \cdot \frac{dh(y)}{dy} = f_{X}(h(y)) \cdot h^{(1)}(y) = f_{X}[g^{-1}(x)] \cdot [g^{-1}(x)]^{(1)}$$

对于结果 $f_{v}\left[g^{-1}(x)\right]^{\left[0\right]}\left[g^{-1}(x)\right]^{\left[0\right]}$,函数 $g^{-1}(x)$ 是v的函数,它的一阶导数的符号不明确,而概率密度函数具有非负性, 这提示着,需要考虑函数 $g^{-1}(x)$ 的单调性(根据互为反函数单调性一致原则,对于已知关系式Y = g(x)考虑到函数g(x)的单调性), $g^{-1}(x) = h(y)$,将函数h(y)分为 $h_1(y)$, $h_2(y)$ …、 $h_{n-1}(y)$, $h_n(y)$,得到:

$$f_{Y}(y) = \sum_{i=1}^{n} f_{X}[h_{i}(y)] \cdot |h_{i}^{(-1)}(y)|$$

二维随机变量(X, Y)的n+k阶原点矩、中心距定义为:

$$m_{nk} = E[X^n \cdot Y^k] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x^n \cdot y^k) \cdot f_{XY}(x, y) dxdy \quad ; \quad \mu_{nk} = E\{(X - E[X])^n \cdot (Y - E[Y])^k\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{(x - E[X])^n \cdot (y - E[Y])^k\} \cdot f_{XY}(x, y) dxdy$$

二维随机变量的重要矩函数公式:

 $\|$ 二阶联合原点矩 $m_{11} = E[X \cdot Y] = R_{xy} \to$ 相关矩 $\|$; $\|$ 二阶联合中心距 $\mu_{11} = E\{(X - E[X]) \cdot (Y - E[Y])\} = C_{xy} \to$ 协方差 $\|$

协方差和相关矩的关系: $\|C_{xy} = E\{(X - E[X]) \cdot (Y - E[Y])\} = R_{xy} - E[X] \cdot E[Y]$

相关矩和协方差反映了两个随机变量X和Y之间的关联程度,此外,协方差还反映了X、Y各自的离散程度,利用协方差与X、Y各自的

均方差进行归一化处理,得到: $\left\| \frac{C_{xy}}{\sigma_x \cdot \sigma_y} = \frac{C_{xy}}{\mu_{00} \cdot \mu_{02}} = r_{xy} \left(-1 \le r_{xy} \le 1 \right) \rightarrow$ 相关系数(也称作归一化协方差),相关系数r只反映X和Y之间的关联

程度, $\| \exists X$ 、Y的数学期望和方差均无关 $\| \exists r_{xy} = 0$ 时,X与Y不相关(并不是X与Y独立), $\exists r_{xy} = \pm 1$ 时,X与Y完全相关,其他情况X与Y相关 ig(X与Y独立的充分必要条件是: $f_{xy}(x,y)$ = $f_x(x)\cdot f_y(y)$ ⇔ 联合概率密度函数等于边缘概率密度函数之积

X与Y不相关的充分必要条件是: $r_{XY} = 0$,即 $C_{XY} = R_{XY} - E[X] \cdot E[Y] = 0 \Leftrightarrow R_{XY} = \overline{E[XY] = E[X] \cdot E[Y]}$

X与Y独立,必然能推出 $r_{xy}=0$,即如果X与Y独立,那么X与Y必定不相关

X与Y不相关,得到 $f_{XY} = 0$,进而得到 $\Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x \cdot y) \cdot f_{XY}(x, y) dx dy = \int_{-\infty}^{\infty} x \cdot f_{X}(x) dx \cdot \int_{-\infty}^{\infty} y \cdot f_{Y}(y) dy$ 不一定能推出 $f_{XY}(x, y) = f_{X}(x) \cdot f_{Y}(y)$

单个随机过程的一维分布律 $F_X(x_1, t_1) = P\{X(t_1) \le x_1\}$ 其概率密度函数 $f_X(x_1, t_1) = \frac{\partial F_X(x_1, t_1)}{\partial x_1}$

单个随机过程的二维分布律 $F_X(x_1, t_1; x_2, t_2) = P\{X(t_1) \le x_1, X(t_2) \le x_2\}$ 其概率密度函数 $f_X(x_1, t_1; x_2, t_2) = \frac{\partial^2 F_X(x_1, t_1; x_2, t_2)}{\partial x_1 \partial x_2}$

单个随机过程的n维分布律 $F_X(x_1, t_1; x_2, t_2; \bullet \bullet \bullet; x_{n-1}, t_{n-1}; x_n, t_n) = P\{X(t_1) \le x_1, X(t_2) \le x_2, \bullet \bullet \bullet, X(t_{n-1}) \le x_{n-1}, X(t_n) \le x_n\}$

其概率密度函数
$$f_X(x_1, t_1; x_2, t_2; \bullet \bullet \bullet; x_{n-1}, t_{n-1}; x_n, t_n) = \frac{\partial^n F_X(x_1, t_1; x_2, t_2; \bullet \bullet \bullet; x_{n-1}, t_{n-1}; x_n, t_n)}{\partial x_1 \partial x_2 \bullet \bullet \bullet \partial x_{n-1} \partial x_n}$$

两个随机过程的联合2n维分布律:

$$F_{XY} \left[\overbrace{ \begin{bmatrix} x_1, & t_1^x; & x_2, & t_2^x; \bullet \bullet \bullet; & x_{n-1}, & t_{n-1}^x; & x_n, & t_n^x \end{bmatrix} \begin{bmatrix} y_1, & t_1^y; & y_2, & t_2^y; \bullet \bullet \bullet; & y_{n-1}, & t_{n-1}^y; & y_n, & t_n^y \end{bmatrix}} = P \left\{ \begin{bmatrix} X_n t_n^x \end{bmatrix} \le x_n; \begin{bmatrix} Y_n t_n^y \end{bmatrix} \le y_n \right\}$$

两个随机过程的联合2n维概率密度函数:

$$\begin{split} f_{XY}\Big(\!\!\left[x_{n}t_{n}^{x}\right]\!\!\left[\!\!\left[y_{n}t_{n}^{y}\right]\!\!\right]\!\!&=\!\frac{\partial^{2n}F_{XY}\Big(\!\!\left[x_{n}t_{n}^{x}\right]\!\!\left[\!\!\left[y_{n}t_{n}^{y}\right]\!\!\right]\!\!}{\left[\partial x_{1}\partial x_{2}\bullet\bullet\bullet\partial x_{n-1}\partial x_{n}\right]\!\cdot\left[\partial y_{1}\partial y_{2}\bullet\bullet\bullet\partial y_{n-1}\partial y_{n}\right]}\,f_{XY}\Big(\!\!\left[x_{n}t_{n}^{x}\right]\!\!\left[\!\!\left[y_{n}t_{n}^{y}\right]\!\!\right]\!\!\right) &\stackrel{\text{in}}{=} f_{X}\Big(\!\!\left[x_{n}t_{n}^{x}\right]\!\!\right)\cdot f_{Y}\Big(\!\!\left[y_{n}t_{n}^{y}\right]\!\!\right) \\ &\stackrel{\text{in}}{=} \Phi^{\text{tot}} \text{ for } d \in \mathbb{R}, \quad \text{if } d \in \mathbb{R$$

单个随机过程的
$$n$$
维特征函数 Φ_X $\left(\overbrace{\omega_l, \ \omega_2, \bullet \bullet \bullet, \ \omega_{n-l}, \ \omega_n; \ t_l, \ t_2, \bullet \bullet \bullet, \ t_{n-l}, \ t_n}^{\text{简记为}[\omega_n t_n]} \right) = E \left[e^{\int_{-\infty}^{\Sigma} \omega_k X(t_k)} \right] = \underbrace{\int_{-\infty}^{\infty} e^{\int_{k-l}^{\Sigma} \omega_k X(t_k)}}_{\text{Hubstandard}} \cdot \underbrace{\int_{-\infty}^{\mu - \chi_{\text{Lick}}} \underbrace{\int_{-\infty}^{\mu -$

单个随机过程的n阶原点矩函数 $m_{\chi_n}(t) = E[X^n(t)] = \int_{-\infty}^{\infty} x^n(t) \cdot f_X(x, t) dx$ 其数学期望 $m_{\chi_1} = \int_{-\infty}^{\infty} x(t) \cdot f_X(x, t) dx$

单个随机过程的n阶中心矩函数 $\mu_{Xn}(t) = E[X(t) - m_{X1}]^n = \int_{-\infty}^{\infty} [x(t) - m_{X1}]^n \cdot f_X(x, t) dx$ 其方差 $\mu_{X2} = \int_{-\infty}^{\infty} [x(t) - m_{X1}]^2 \cdot f_X(x, t) dx$

单个随机过程的自相关函数
$$R_X(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 \cdot x_2) \cdot \overbrace{f_X(x_1, t_1; x_2, t_2)}^{\text{wf-zbz}} dx_1 dx_2$$

单个随机过程的协方差函数 $C_{XY}(t_1, t_2) = E\{[X(t_1) - m_{X1}(t_1)] \cdot [X(t_2) - m_{X1}(t_2)]\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{[x_1 - m_{X1}(t_1)] \cdot [x_2 - m_{X1}(t_2)]\} \cdot \int_{X} (x_1, t_1; x_2, t_2) dx_1 dx_2$ 单个随机过程的自相关函数和协方差函数之间的关系: $C_{xy}(t_1, t_2) = R_x(t_1, t_2) - E[X(t_1)] \cdot E[X(t_2)] = R_x(t_1, t_2) - m_{x_1}(t_1) \cdot m_{x_1}(t_2)$

单个随机过程的数学期望和方差用来描述随机过程在任意一个时刻样本的集中或离散程度; 其自相关函数用来描述随机过程在任意两个时刻间的关联程度,也就是随机过程起伏的快 慢, 自相关函数取值越大, 说明这两个时刻的相关性越大, 随机起伏越快, 自相关函数 $R_{\nu}(t_1, t_2)$ 用来描述随机起伏相对于横轴的幅度变化,具有功率的量纲。协方差函数 $C_{x}(t_{1}, t_{2})$ 用来描述随机起伏相对于数学期望的幅度变化。当且仅当随机过程任意时刻的数 学期望为 0,有 $C_X(t_1, t_2) = R_X(t_1, t_2)$,此时协方差函数和自相关函数及其概念才可以替代使用。

描述两个随机过程之间的内在联系时,用互相关函数 $R_{XY}(x, t_x; y, t_y) = E[X(t_x) \cdot Y(t_y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy) \cdot f_{XY}(x, t_x; y, t_y) dxdy$ 其中 $f_{XY}(x, t_x; y, t_y)$ 为两个随机过程的联合随机过程概率密度函数;与之对应的互协方差函数

$$C_{XY}(x, t_x; y, t_y) = E\{[X(t_x) - m_{X1}(t_x)] \cdot [Y(t_y) - m_{Y1}(t_y)]\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{[x - m_{X1}(t_x)] \cdot [y - m_{Y1}(t_y)]\} \cdot f_{XY}(x, t_x; y, t_y) dxdy$$

互协方差函数和互相关函数之间的关系: $C_{xy}(x, t_x; y, t_y) = R_{xy}(x, t_x; y, t_y) - m_{xy}(t_x) \cdot m_{yy}(t_y)$

当 $R_{XY}(x, t_x; y, t_y)$ = 0时,有 $C_{XY}(x, t_x; y, t_y)$ = $-m_{X1}(t_x) \cdot m_{Y1}(t_y)$,称随机过程X(t)与随机过程Y(t)为正交过程;当 $C_{XY}(x, t_x; y, t_y)$ = 0时,有 $R_{XY}(x, t_x; y, t_y)$ = $m_{X1}(t_x) \cdot m_{Y1}(t_y)$,称随机过程X(t)与随机过程Y(t)互不相关;

当单个随机过程X(t)与Y(t)的独立性和相关性的推导仿照一维随机变量X和Y。

严平稳过程的定义: $f_X([x_nt_n]) = f_X\left[\left[x_n\left(\frac{t_n|t_n|}{t_n+\tau}\right)\right]\right]$,即严平稳过程的n维概率密度函数与时间起点无关

严平稳过程的性质: $\begin{cases} \mathbb{P}^{\mathbf{r}} \mathbb{P$

例题结论,若Y(t) = AX(t), A为高斯变量,当且仅当X(t)是与时间t无关的常数c, Y(t)才为严平稳过程

$$\begin{cases} m_{X1}(t) = m_{X1}(\mathbb{B} - \mathbb{A}) & \text{ 联合资平稳过程的互相关函数} \\ R_{V}(t, t_{\bullet}) = R_{V}(t_{\bullet} - t_{\bullet}) = R_{V}(\tau)(\mathbb{B} + \mathbb{A}) & \text{ 用关函数} \end{cases}$$

宽平稳过程的定义 $R_X(t_1, t_2) = R_X(t_2 - t_1) = R_X(\tau)$ 即自相关函数只与时间间隔有关) $R_{XY}(\tau) = E[X(t_1)Y(t_1 + \tau)]$ $m_{YY}(t) < \infty$ (即二阶原点矩函数要有界)

平稳过程X(t)的自相关函数 $R_X(\tau)$ 为偶函数 $\to R_X(\tau) = R_X(-\tau)$

| 平稳过程X(t)的自相关函数 $R_X(\tau)$ 最大值在 $\tau = 0$ 处 $\rightarrow |R_X(\tau)| < R_X(0) \Rightarrow |C_X(\tau)| < C_X(0)$

自相关函数的性质 $\{$ 周期平稳过程X(t)的自相关函数 $R_x(\tau)$ 为与X(t)同周期T的函数 $\to R_x(\tau) = R_x(\tau + T)$

 $\chi_{\hat{\Sigma}_{\hat{k}}=\hat{b}_{\hat{\lambda}}\hat{b}_{\hat{\lambda}}}$ 非周期平稳过程X(t)的自相关函数 $R_X(\tau)$ 满足: $\sigma_X^2 = R_X(0) - m_X^2 = R_X(0) - R_X(\infty)$

相关系数 $r_X(\tau) = \frac{C_X(\tau)}{\sigma_X^2} = \frac{R_X(\tau) - m_X^2}{\sigma_X^2}$,由于自相关函数(或互相关函数)掺杂数学期望和方差的影响、协方差函数(或互协方差函数)掺杂方差的影响,相关系数为协方差归一化处理后与数学期望和方差均无关,相关系数 $r_X(\tau)$ 可以直接说明随机过程起伏的快慢,可引申为两个随机过程的关联程度。

各态历经过程:由于平稳过程需要大量的统计样本,故而提出了任何一个样本都能代表总体的各态历经过程,即各态历经过程是为了简化平稳过程的分析。

对于二阶平稳过程:

 $\overline{X(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt = E[X(t)] = m_{X1} (I式)$,则称X(t)的均值具有各态历经性;

 $\overline{X(t)\cdot X(t+\tau)} = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t)X(t+\tau)dt = E[X(t)\cdot X(t+\tau)] = R_X(\tau)$ (II式),则称X(t)的自相关函数具有各态历经性;分析随机过程是否为各态历经过程,即判断I式II式是否同时成立。

白噪声频谱最大,起伏变化最快

统计指标	一般随机过程	平稳过程	各态历经过程
统计均值	$m_X(t)$ 为时间函数	m_{X} 为常数	m _x 为常数
自相关函数	$R_X(t, t+\tau)$ 为二维函数	$R_X(\tau)$ 为一维函数	$R_X(\tau)$ 为一维函数
时间均值	$\overline{X(t)}$ 为随机变量	$\overline{X(t)}$ 为随机变量	$\overline{X(t)}$ 为常数
时间自相关函数	$\overline{X(t)X(t+\tau)}$ 为随机过程	$\overline{X(t)X(t+\tau)}$ 为随机过程	$\overline{X(t)X(t+\tau)}$ 为确定时间函数

应用条件:
$$S_X(\omega)$$
、 $R_X(\tau)$ 要绝对可积 使里叶变换对
$$\begin{cases} \mathbb{E}_{-\infty} \mathbb{E}_{X}(\omega) = S_X(-\omega) \\ \mathbb{E}_{-\infty} \mathbb{E}_{X}(\omega) = \int_{-\infty}^{+\infty} R_X(\tau) \cdot e^{-j\omega \tau} d\tau \\ \mathbb{E}_{-\infty} \mathbb{E}_{X}(\omega) = \mathbb{E}_{-\infty} \mathbb{E}_{-\infty} \mathbb{E}_{-\infty} \mathbb{E}_{X}(\omega) = \mathbb{E}_{-\infty} \mathbb{E}_{-\infty}$$

特殊情况,随机相位过程 $X(t)=a\cdot\cos\left(\omega_0t+\stackrel{[0,t]{\oplus}}{\Phi}\right)$ ⇒ 其数学期望为0,其自相关函数 $R_X(\tau)=\frac{a^2}{2}\cos(\omega_0\tau)$

求随机相位过程的功率谱密度时,引入 $\delta(\omega)$ 函数求解:

$$\begin{split} S_{X}(\omega) &= \int_{-\infty}^{+\infty} R_{X}(\tau) \cdot e^{-j\omega\tau} d\tau = \int_{-\infty}^{+\infty} \frac{a^{2}}{2} \frac{\underbrace{\text{tenst}} \Delta \Delta \Delta}{\cos(\omega_{0}\tau)} \cdot e^{-j\omega\tau} d\tau = \frac{a^{2}}{2} \int_{-\infty}^{+\infty} \frac{e^{j\omega_{0}\tau} + e^{-j\omega_{0}\tau}}{2} \cdot e^{-j\omega\tau} d\tau = \frac{a^{2}}{4} \int_{-\infty}^{+\infty} \left[e^{-j(\omega-\omega_{0})\tau} + e^{-j(\omega+\omega_{0})\tau} \right] d\tau \\ \widehat{\text{mi}} \left[e^{-j(\omega-\omega_{0})\tau} + e^{-j(\omega+\omega_{0})\tau} \right] \Leftrightarrow 2\pi\delta(\omega-\omega_{0}) + 2\pi\delta(\omega+\omega_{0}), \quad & \text{ } \exists \exists S_{X}(\omega) = \frac{\pi a^{2}}{2} \cdot \left[\delta(\omega-\omega_{0}) + \delta(\omega+\omega_{0}) \right] \end{split}$$

而
$$\left[e^{-j(\omega-\omega_0)^{\mathrm{r}}}+e^{-j(\omega+\omega_0)^{\mathrm{r}}}\right]$$
 $\Leftrightarrow 2\pi\delta(\omega-\omega_0)+2\pi\delta(\omega+\omega_0)$,得到 $S_X(\omega)=\frac{\pi a^2}{2}\cdot\left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)\right]$ 非平稳过程 $\left\{\text{随机 In Eight I$

而随机全过程
$$X(t) = \overbrace{A \cdot \cos\left(\stackrel{\text{随机量}}{\Omega} t + \stackrel{\text{随机量}}{\Phi} \right)}^{\text{随机量}}$$
,其数学期望为0,自相关函数 $R_X(t, t+\tau) = \frac{1}{2} E[A^2] E[\cos(\Omega \tau)]$

可见 $R_{X}(\tau)$ 与 Φ 无关,与A、 Ω 有关,当且仅当A、 Ω 为常量时,X(t)才为宽平稳过程。

$$R_{X}(\tau) = E[X^{*}(t)X(t+\tau)], \quad R_{XY}(\tau) = E[X^{*}(t)Y(t+\tau)], \quad R_{YX}(\tau) = E[Y^{*}(t)X(t+\tau)]$$

互谱密度
$$S_{XY}(\omega) = \int_{-\infty}^{+\infty} R_{XY}(\tau) \cdot e^{-j\omega\tau} d\tau$$
, $S_{YX}(\omega) = \int_{-\infty}^{+\infty} R_{YX}(\tau) \cdot e^{-j\omega\tau} d\tau = S_{XY}^*(\omega)$ (形如 $S_{XY}(\omega) = \frac{9}{3+j\omega} \Rightarrow S_{YX}(\omega) = \frac{9}{3-j\omega}$)

残余记忆部分:

- ①窄带高斯过程的包络服从瑞利分布,窄带高斯过程包络的平方服从指数分布
- ②窄带高斯过程的相位服从均匀分布
- ③窄带高斯过程的包络和相位在同一时刻是互相独立的随机变量
- ④窄带**随机**过程的包络 A(t) 和相位 $\Phi(t)$ 不是两个统计独立的随机过程
- ⑤窄带高斯随机过程与余弦信号之和的包络 A(t) 的概率密度函数与 θ 无关,其分布为 $\lambda = a^2$ 的莱斯分布。在信噪比很大的情况下 $\langle 10\lg(SNR_{dB})>>1\rangle$,A(t) 趋近于高斯分布;在信噪比很小的情况下 $\langle 0<10\lg(SNR_{dB})<<1\rangle$,A(t) 趋近于瑞利分布。
- ⑤窄带高斯随机过程与余弦信号之和的相位 $\Phi(t)$ 的概率密度函数与 θ 有关,在信噪比很大的情况下 $\langle 10\lg(SNR_{dB})>>1\rangle$, $\Phi(t)$ 趋近于小范围 $(\theta$ 附近) 的高斯分布;在信噪比很小的情况下 $\langle 0<10\lg(SNR_{dB})<<1\rangle$,A(t) 趋近于均匀分布。

高斯白噪声: 概率密度函数服从高斯分布,幅度服从瑞利分布,功率谱密度服从均匀分布。

白噪声定义: N(t)的数学期望为0,且有 $S_N(\omega) = \frac{N_0}{2} (-\infty < \omega < \infty)$,则称N(t)为白噪声过程。

白噪声的自相关函数 $R_{\scriptscriptstyle N}(\tau) = \frac{N_{\scriptscriptstyle 0}}{2} \cdot \delta(\tau)$,而由 $S_{\scriptscriptstyle N}(\omega) = \int_{-\infty}^{\infty} R_{\scriptscriptstyle N}(\tau) \cdot e^{-j\omega \tau} d\tau = \frac{N_{\scriptscriptstyle 0}}{2}$;

白噪声的相关系数 $r_N(\tau) = \begin{cases} 1 & \tau = 0 \\ 0 & \tau \neq 0 \end{cases}$ 说明白噪声在任意两个不同时刻都是不相关的;

低通白噪声的功率谱密度:
$$S_{N}(\omega) = \begin{cases} \frac{P_{0}\pi}{\Delta\omega} & |\omega| < \overbrace{\Delta\omega}^{\text{低通白噪声带宽, Ltm2}KH2} \\ & \Rightarrow \text{自相关函数} R_{N}(\tau) = P_{0} \cdot \frac{\sin(\Delta\omega)}{\Delta\omega} \end{cases}$$

信噪比定义为信号的功率 P_s 与噪声功率 P_n 的比值,常取 \log ,记作 $SNR_{dB}=10\log\frac{P_s}{P_n}$

对于余弦信号 $s(t) = a\cos(\omega_0 t + \varphi)$,要提高信噪比,采用: I.增加信号的幅值a; II.降低噪声的功率谱密度 $S_N(\omega)$; III.降低噪声的带宽 $\Delta\omega$

线性系统输出的统计分布特征: 功率谱宽度, *o*的取值范围大小,系统一般是要削减输入的功率谱宽度;输入为高斯过程,输出也为高斯过程;输出高斯过程的功率谱宽度要小于输入高斯过程的功率谱宽度;输出高斯过程的变化要小于输入高斯过程的变化;输出高斯过程的方差要小于输入高斯过程的方差;输入随机过程为非高斯分布时,如果输入的功率谱宽度远大于系统的功率谱宽度,那么输出接近为高斯分布;如果输入的功率谱宽度远小于系统的功率谱宽度时,输出的随机过程的概率分布接近于输入的概率分布。

平稳随机过程的输入为X(t), 因果系统下系统的输出Y(t). 其数学期望 $m_Y = E[Y(t)] = m_X \cdot \int_0^\infty h(\tau) d\tau$

其输出Y(t)的自相关函数 $R_{Y}(\tau)=R_{X}(\tau)*h(-\tau)*h(\tau)=m_{Y1}^{2}$ 且能够推出: $R_{Y}(\tau)=\overbrace{R_{XY}(\tau)*h(-\tau)=R_{YX}(\tau)*h(\tau)}^{m_{XY}}*h(-\tau)=\overbrace{R_{YX}(\tau)*h(\tau)}^{m_{XY}}*h(\tau)$ 平稳随机过程的输入X(t)和输出Y(t)之间的关系,即互相关函数 $R_{XY}=\int_{-\infty}^{+\infty}R_{X}(\tau-\lambda)\cdot h(\lambda)d\lambda=R_{X}(\tau)*h(\tau)$

平稳随机过程的输出Y(t)和输入X(t)之间的关系,即互相关函数 $R_{YX} = \int_{-\infty}^{+\infty} R_X(\tau - \lambda) \cdot h(-\lambda) d\lambda = R_X(\tau) * h(-\tau)$ 系统输入为随机过程与加性噪声,即X(t) = S(t) + N(t),类比叠加原理,得到

输入X(t)的数学期望 $E[X(t)]=m_{X_S}+m_{X_N}$,输出 $Y(t)=E[Y(t)]=(m_{X_S}+m_{X_N})$ · $\int_{-\infty}^{+\infty}h(\lambda)d\lambda=m_{Y_S}+m_{Y_N}$ 输出Y(t)的自相关函数 $R_Y(\tau)=R_{Y_S}(\tau)+R_{Y_N}(\tau)+R_{Y_NY_S}(\tau)$,输入输出的互相关函数 $R_{XY}(\tau)=R_{X_SY_S}(\tau)+R_{X_SY_N}(\tau)+R_{X_NY_S}(\tau)+R_{X_NY_N}(\tau)$

输出的功率谱密度 $S_{y}(\omega) = S_{x}(\omega) \cdot |H(\omega)|^{2}$

3dB带宽:对于低通信号有 $\Delta\omega$ =方程 $|X(\omega)|=\frac{\sqrt{2}}{2}$ 的根;对于带通信号 $\Delta\omega$ =方程 $|X(\omega)|=\frac{\sqrt{2}}{2}$ 的根的差值的绝对值。

矩形带宽:
$$\Delta \omega_r = \int_0^\infty \left| \frac{X(\omega)}{X(\omega)} \right| d\omega \Rightarrow$$
等效噪声带宽 $\Delta \omega_e = \int_0^\infty \left| \frac{H(\omega)}{H(\omega_0)} \right|^2 d\omega$,等效系统输出的平均功率 $R_\gamma(0) = \frac{N_0 \Delta \omega_e}{2\pi} \cdot |H(\omega_0)|^2$

对于低通系统, $H(\omega_0) = H(0)$, 因为低通系统 $X(\omega)$ 的最大值为 $X(\omega = 0)$

输入为白噪声
$$\begin{cases} S_{\chi}(\omega) = \frac{N_0}{2}, -\infty < \omega < \infty \\ R_{\chi}(\tau) = \frac{N_0}{2} \delta(\tau) \end{cases} \qquad \\ \tilde{R}_{\chi}(\sigma) = \frac{N_0}{2} \delta(\tau) \qquad \\ \tilde{R}_{\chi}(\sigma) = \frac{N_0}{4\pi} \int_{-\infty}^{\infty} \left| H(\omega) \right|^2 \cdot e^{j\omega \tau} d\omega \\ \tilde{R}_{\chi}(\sigma) = \frac{N_0}{4\pi} \int_{-\infty}^{\infty} \left| H(\omega) \right|^2 \cdot e^{j\omega \tau} d\omega \\ \tilde{R}_{\chi}(\sigma) = \frac{N_0}{4\pi} \int_{-\infty}^{\infty} \left| H(\omega) \right|^2 d\omega \end{cases}$$

单调谐回路 $\Delta\omega_e=1.57\Delta\omega$; 双调谐回路 $\Delta\omega_e=1.22\Delta\omega$; 输出的频域响应为高斯形状,则

有 $\Delta\omega_e=1.05\Delta\omega$; 电路级数越多,即系统函数的阶数越高, $\Delta\omega_e$ 越 $ightarrow\Delta\omega$ 。

实信号x(t)的频域复共轭对称性:

若
$$x(t) \leftrightarrow X(\omega)$$
,则有 $X(\omega) = X^*(-\omega)$, $|X(\omega)| = |X(-\omega)|$, $\arg X(\omega) = \arg X(-\omega)$

$$\hat{x}(t)=x(t)*\frac{1}{\pi}$$
即为希尔伯特变换

希尔伯特变换为信号与 $\frac{1}{\pi t}$ 的卷积,则有复解析信号 $z(t)=x(t)+j\hat{x}(t)\Leftrightarrow z(t)=x(t)+jx(t)*\frac{1}{\pi t}\leftrightarrow Z(\omega)=2X(\omega)u(\omega)$

复指数信号 $S_e(t) = u(t) \cdot e^{j\omega_0 t} \leftrightarrow$ 频谱 $S_e(\omega) = U(\omega - \omega_0)$

比较复解析信号与复指数信号的频谱差值,得到 $Z(\omega)-S_e(\omega)=\begin{cases} U^*(-\omega-\omega_0), & \omega>0 \\ -U(\omega-\omega_0), & \omega>0 \end{cases}$ 通常情况下,复指数信号可以替代复解析信号。

①希尔伯特变换是一个90°的理想移相器,
$$a(t) \leftrightarrow A(\omega) \in \left[-\frac{\Delta\omega}{2}, \frac{\Delta\omega}{2}\right]$$
, $\ddot{a}x(t) = a(t)\cos(\omega_0 t) \rightarrow \hat{x}(t) = a(t)\sin(\omega_0 t)$

若 $x(t) = a(t)\sin(\omega_0 t) \rightarrow \hat{x}(t) = -a(t)\cos(\omega_0 t);$

$$(2)v(t) = v(t)*w(t) \rightarrow \hat{v}(t) = \hat{v}(t)*w(t) = v(t)*\hat{w}(t);$$

③希尔伯特只改变信号的相位,没有改变信号的能量和功率;

窄带随机过程原式表达式: $X(t) = A(t)\cos[\omega_0 t + \Phi(t)]$

作特征数学变换:
$$A_c(t) = A(t)\cos[\Phi(t)]$$
, $A_s(t) = A(t)\sin[\Phi(t)]$, $\mathbb{P}(A(t)) = \sqrt{\left[A_c(t)\right]^2 + \left[A_s(t)\right]^2}$, $\Phi(t) = \arctan\frac{A_s(t)}{A_s(t)}$

则有 $X(t) = A_c(t)\cos(\omega_0 t) - A_s(t)\sin(\omega_0 t)$,且一般有 $m_x(t) = 0$

窄带随机低频过程4.(t)和4.(t)特点总结:

 $ig(ig)R_{A_c}(au)=R_{A_c}(au)=R_X(au)\cos(\omega_0t)+\hat{R}_X(au)\sin(\omega_0t)$,说明 $A_c(t)$ 和 $A_s(t)$ 有相同的平均功率

$$2S_{A_{c}}(\omega) = S_{A_{c}}(\omega) = \begin{cases} S_{X}(\omega - \omega_{0}) + S_{X}(\omega + \omega_{0}), & |\omega| < \frac{\Delta\omega}{2} \\ 0, & \text{if the } \end{cases}$$

③如果 $S_X(\omega)$ 的单边图形关于 ω_0 对称 $\Rightarrow R_X(\tau) = R_A(\tau) \cdot \cos(\omega_0 t)$

④ $R_{A_cA_s}(\tau) = -R_{A_cA_s}(-\tau) = -R_{A_cA_s}(\tau)$,说明 $A_c(t)$ 和 $A_s(t)$ 的互相关函数 $R_{A_cA_s}(\tau)$ 、 $R_{A_cA_s}(\tau)$ 是奇函数,

且 $R_{A_sA_s}(\tau)$ 、 $R_{A_cA_s}(\tau)$ 关于x轴对称; $R_{A_cA_s}(0) = -R_{A_sA_s}(0) = 0 \Rightarrow A_c(t)$ 和 $A_s(t)$ 在同一时刻的状态关系为正交。

⑤
$$S_{A_{c}A_{c}}(\omega) = S_{A_{c}A_{c}}(\omega) = \begin{cases} j \cdot \left[S_{X}(\omega - \omega_{0}) - S_{X}(\omega + \omega_{0})\right], & |\omega| < \frac{\Delta \omega}{2} \\ 0, &$$
其他

⑥如果 $S_X(\omega)$ 的单边图形关于 ω_0 对称 $\Rightarrow S_{A,A}(\omega) = -S_{A,A}(\omega) = 0$, $R_{A,A}(\tau) = -R_{A,A}(\tau) = 0$

 $\mathcal{D}A_{\epsilon}(t)$ 、 $A_{\epsilon}(t)$ 与K(t)为同质随机过程,即均为数学期望为0的窄带低频平稳随机过程,且 $A_{\epsilon}(t)$ 与 $A_{\epsilon}(t)$ 联合平稳