

AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph beginning at page 10, line 4 of the substitute specification, with the following rewritten paragraph:

The light emitting device of the present invention may include a phosphor selected from the group consisting of;

an alkaline earth halogen apatite phosphor activated by Eu, or Eu and Mn [(Sr, Ca, Ba, Mg)₅(PO₄)₃(F, Cl, Br):Eu, Mn],

an alkaline earth metal aluminate phosphor [SrAl₂O₄:Eu,

Sr₄Al₁₄O₂₅:Eu,MnSr₄Al₁₄O₂₅:Eu(Mn), CaAl₂O₄:Eu(Mn), BaMg₂Al₁₆O₂₇:Eu,

BaMg₂Al₁₆O₂₇:Eu,Mn BaMg₂Al₁₆O₂₇:Eu,Mn and BaMgAl₁₀O₁₇:Eu(Mn)],

an yttrium aluminate phosphor activated by cerium,

a rare earth acid sulfide phosphor activated by Eu (La₂O₂S:Eu, Y₂O₂S:Eu and Gd₂O₂S:Eu),

an organic complex phosphor activated by Eu [(Sr, Ca, Ba, Mg)₅(PO₄)₃Cl:Eu, ZnS:Cu, Zn₂GeO₄:Mn, (Sr, Ca, Ba, Mg)Ga₂S₄:Eu, and (Sr, Ca, Ba, Mg)₂Si₅N₈:Eu(Sr, Ca, Ba, Mg)₂Si₅N:Eu]. With this, the color tone can be adjusted in detail and a white light having good color rendering properties can be obtained with a relatively simple construction.

Please replace the paragraph beginning at page 28, line 17 of the substitute specification, with the following rewritten paragraph:

In the light emitting device of the present invention, at least one phosphor selected from the group of;

an alkaline earth halogen apatite phosphor activated by Eu, or Eu and Mn((Sr, Ca, Ba, Mg)₅(PO₄)₃(F, Cl, Br):Eu, Mn),

an alkaline earth metal aluminate phosphor(SrAl₂O₄:Eu, Sr₄Al₁₄O₂₅:Eu(Mn)Mn, CaAl₂O₄:Eu(Mn), BaMg₂Al₁₆O₂₇:Eu, BaMg₂Al₁₆O₂₇:Eu,Mn, and BaMgAl₁₀O₁₇:Eu(Mn)),

nitrogen-containing CaO-Al₂O₃-SiO₂ phosphor activated by Eu and /or Cr (oxynitride phosphor glass),

M_xSi_yN_z:Eu (where M is at least one selected from Mg, Ca, Ba, Sr and Zn, z=2/3x+4/3y),

a rare earth acid sulfide phosphor activated by Eu ($\text{La}_2\text{O}_2\text{S}:\text{Eu}$, $\text{Y}_2\text{O}_2\text{S}:\text{Eu}$, and $\text{Gd}_2\text{O}_2\text{S}:\text{Eu}$),

an organic complex phosphor activated by Eu (($\text{Sr}, \text{Ca}, \text{Ba}, \text{Mg})_5(\text{PO}_4)_3\text{Cl}:\text{Eu}$, $\text{ZnS}:\text{Cu}$, $\text{Zn}_2\text{GeO}_4:\text{Mn}$, $(\text{Sr}, \text{Ca}, \text{Ba}, \text{Mg})\text{Ga}_2\text{S}_4:\text{Eu}$, and $(\text{Sr}, \text{Ca}, \text{Ba}, \text{Mg})_2\text{Si}_5\text{N}_8:\text{Eu}$) may be used together with said photo luminescent phosphor. With this, the various desired luminescent colors can be obtained easily.

Please replace the paragraph beginning at page 70, line 5 of the substitute specification, with the following rewritten paragraph:

The light emitting device is made similar to the device of Example 8 except that the color conversion layer is formed by the coating medium dispersively mixed with the phosphor of $(\text{Ca}_{0.94}, \text{Eu}_{0.05}, \text{Mn}_{0.01})_2 \text{B}_5 \text{O}_9 \text{Cl}$ and the phosphor of $(\text{Y}_{0.8}\text{Gd}_{0.2}\text{Y}_{0.08}\text{Gd}_{0.200})_3\text{Al}_5\text{O}_{12}:\text{Ce}$ which is a second phosphor capable of emitting a yellow light excited by the light emitted from the first phosphor in Example 8, thereby obtaining the color tone of the chromaticity coordinates $(x,y) = (0.325, 0.334)$. Moreover, the luminous efficiency is 25.8 lm/W at the drive condition of 20mA. Although, the light emitting device is constituted by adding the second phosphor to the light emitting device of example 8 in this example, the light emitting device of any one of examples 1-40 may include the second phosphor in the color conversion layer in the similar way.

Please replace the paragraph beginning at page 70, line 21 of the substitute specification, with the following rewritten paragraph:

The light emitting device is made similar to the device of Example 41 except that the phosphor of $(\text{Ca}_{0.64}, \text{Ba}_{0.10}, \text{Sr}_{0.20}, \text{Eu}_{0.05}\text{Eu}_{0.50}, \text{Mn}_{0.01})_2 \text{B}_5 \text{O}_9 \text{Cl}$ is used as a first phosphor in Example 41, thereby obtaining the color tone of the chromaticity coordinates $(x,y) = (0.323, 0.338)$. Moreover, the luminous efficiency is 25.7 lm/W at the drive condition of 20mA.