<mark>มาซิมาฟ้อนรำ</mark>

1 second, 32MB

นักเรียนชั้นป.1 กับนักเรียนชั้นป.2 ชั้นละ N คน รวม 2N คน จะจัดการแสดงฟ้อนรำเป็นคู่ รวม N คู่ ในการฟ้อน รำนั้น เพื่อให้นักเรียนชั้นป.1 ทุกคนได้ออกมาแสดง โรงเรียนจะให้นักเรียนชั้นป.1 ทุกคน เลือกคู่ฟ้อนรำ 1 คนจาก นักเรียนชั้นป.2 เพื่อให้การแสดงออกมาสวยที่สุด นักเรียนป.1 จะเลือกคู่ฟ้อนรำที่ดีที่สุดของตน ดังนั้นจึงเป็นไป ได้ที่นักเรียนชั้นป. 2 บางคนจะมีคู่ฟ้อนรำมากกว่าหนึ่งคน หรือบางคนอาจจะไม่ต้องออกมาฟ้อนรำเลยก็ได้

ความสวยงามของการฟ้อนรำนั้น ขึ้นกับความสามารถส่วนบุคคล และความใกล้เคียงกันของความสูงของคู่ฟ้อนรำ กล่าวคือ สำหรับ i ที่ 1 <= i <= N, นักเรียนชั้นป.1 คนที่ i จะมีความสามารถในการฟ้อนรำเท่ากับ A_i แต้ม และมี ความสูง H_i หน่วย ในทำนองเดียวกัน สำหรับ j ที่ 1 <= j <= N, นักเรียนชั้นป.2 คนที่ j มีความสามารถในการ ฟ้อนรำเท่ากับ B_j แต้ม และมีความสูง K_j หน่วย ถ้านักเรียนชั้นป.1 คนที i จับคู่กับนักเรียนชั้นป.2 คนที่ j ความ สวยงามของการฟ้อนรำของคู่ดังกล่าวจะมีค่าเท่ากับผลรวมของความสามารถในการฟ้อนรำของนักเรียนทั้งสองลบ ด้วยผลต่างของความสูง นั่นคือ จะมีค่าเท่ากับ $A_i + B_j - |H_i - K_j|$ เป็นไปได้ที่ค่าความสวยงามจะติดลบ

เราต้องการทราบว่า สำหรับนักเรียนชั้นป.1 แต่ละคน จะสามารถเลือกคู่ฟ้อนรำให้ได้ค่าความสวยงามมากที่สุดเท่ากับ เท่าใด

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม N (1 <= N <= 100,000) จากนั้นอีก N บรรทัดจะเป็นข้อมูลของนักเรียนชั้นป. 1 กล่าวคือ บรรทัดที่ 1+i สำหรับ 1 <= i <= N ระบุจำนวนเต็มสองจำนวน H_i และ A_i ($1 <= H_i <= 100,000,000$; $1 <= A_i <= 100,000,000$) รับประกันว่าข้อมูลของนักเรียนจะเรียงลำดับตามความสูงจากน้อยไปหา มาก นั้นคือ $H_i <= H_{i+1}$ สำหรับ 1 <= i < N

อีก N บรรทัดจะระบุข้อมูลของนักเรียนชั้นป. 2 กล่าวคือ บรรทัดที่ 1+N+j สำหรับ 1 <= j <= N, จะระบุ จำนวนเต็มสองจำนวน K_j และ B_j ($1 <= K_j <= 100,000,000$; $1 <= B_j <= 100,000,000$) เช่นเดียวกับข้อมูล ของนักเรียนชั้นป. 1 รับประกันว่าข้อมูลของนักเรียนจะเรียงลำดับตามความสูงจากน้อยไปหามาก นั้นคือ $K_j <= K_{j+1}$ สำหรับ 1 <= j < N

ข้อมูลส่งออก

มีทั้งสิ้น N บรรทัด บรรทัดที่ i สำหรับ 1 <= i <= N ให้พิมพ์ความสวยงามที่มากที่สุดของคู่ฟ้อนรำที่นักเรียนป.1 คนที่ i สามารถจับคู่ได้

ตัวอย่าง

<u>Input</u>	<u>Output</u>
5	0
<mark>2 6</mark>	4
12 3	5
12 4	6
<mark>14 3</mark>	11
15 7	
10 2	
10 2	
15 3	
15 4	
16 5	

ปัญหาย่อย

<u>ปัญหาย่อย 1: (30%)</u>

• N <= 5,000

<u>ปัญหาย่อย 2: (20%)</u>

- $B_j = 1$, สำหรับทุก ๆ 1 <= j <= N
- N <= 100,000

<u>ปัญหาย่อย 3 (50%)</u>

• *N* <= 100,000