

QE measurement on CHEOPS flight spare (FM1) CCD47-20-13351-10-09

Peter Verhoeve

09/04/2020 ESA-SCI-FIV-CHP-HO-0002

ESA UNCLASSIFIED - For Official Use

background

History

- Top 4 curves are as provided by Adrien Deline, email 22-10-2018
- The ESA curve is based on measured data for 13351-07-01 (EM)
 - x0.76 for UGE curve: to match max 50.6 predicted QE
- x1.08 for e2v measured values from data sheets: to reflect e2v's "QE revision" TN
- CHEOPS FM = FM2

ESA UNCLASSIFIED - For Official Use

UGE FM1 & FM2 test reports (NOT latest versions)

QE measurement on CHEOPS FLIGHT SPARE device CCD47-20-13351-10-09 (FM1)

Window transmission measurement during FM1 test

- This test was with 4x higher incident power
- Results for <500nm is the same to within 0.2%
- Results are also very similar to sept 2015 results to within 0.3%
- Largest difference with TEC normal incidence curve ~0.7%
- · Will use the red curve

13351-10-01 gain measurements from PTC and x-ray datasa

LIN -28.85 ppm/mV PTC -29.58 ppm/mV

Gain ratio Vss(8.8V)/Vss(9.5V) = 1.021

Gain used for Vss=8.8V = 0.7517 e-/adu

Gain from x-rays at Vss=9.5V = 0.7717Gain from PTC-2 at Vss=9.5V = 0.7657

Estimated uncertainty on gain $\sim 1\%$ (1 σ)

Note:

I started with Vss=9.5V, but switched to the CHEOPS in flight value of 8.8V. I don't have x-ray gain measurements for 8.8V

ESA UNCLASSIFIED - For Official Use

Spot on CCD 4mm aperture (1)

Scale: linear

Two areas for background subtraction, one target area

Contrast between image and store indicates background level

ESA UNCLASSIFIED - For Official Use

Spot on CCD 4mm aperture (2)

Scale: power

All intensities <50000 adu

ESA UNCLASSIFIED - For Official Use

Background correction

- Background includes dark current and stray light
- It is assumed that dark and stray light are uniform across the image area
- Dark signal dominates over most of the wavelength range
- the background correction is <1% over most of the wavelength range

ESA UNCLASSIFIED - For Official Use

QE results for different configurations

- Results for 8.8V and 9.5V are very similar
- Using the measured window transmission in the QE test configuration is assumed correct, but does not make a lot of difference
- Using LEDs+filters instead of monochromator gives similar results
- Corrected e2v measurements are significantly higher, especially at 700 nm:

lambda	e2v	ESA	ratio
500 nm	0.923	0.907	1.018
700 nm	0.829	0.793	1.045
900 nm	0.292	0.277	1.054

Uncertainties ESA (1σ):

CCD gain: 1%

Optical calibration: 1%
CCD measurement: 1%

Optical measurement: 1%

TOTAL: 2% (between 450-890nm, larger outside)

Uncertainties e2v:

Contributing Factor	Variation Limit	Equivalent Influence (%) 1σ Width			Notes	
Wavelength (nm)		350	500	700	900	
Repeatability of Measurement	σ	0.87	1.35	1.31	1.15	1. 3.
Temperature Uncertainty	σ	0.05	0.01	0.02	0.12	2.4
Shutter Uncertainty	+/- 2ms	0.08	0.08	0.08	0.08	8
Optical Cal Uncertainty	σ	5.87	3.07	3.07	5.87	
Amplifier Gain 6 Error	σ	1.92	1.92	1.92	1.92	5
CVC Error (excl. repeatability)	σ	1.91	1.91	1.91	1.91	7
Combined Standard Uncertainty	1σ (%)	6.53	4.31	4.30	6.57	
Expanded Uncertainty	+/-3g (%)	10.38	9.60	9.55	10.62	6

ESA UNCLASSIFIED - For Official Use

Peter

Final curves

New ESA curve (FM1, black):

- Similar to previous curve for <600nm
- Well below old curve for >600nm
- Similar to UGE curve >600nm
- Very different from UGE curve <600nm

ESA UNCLASSIFIED - For Official Use

Translating FM1 results to FM2 (= in flight)

lambda	e2v re	ratio	
	FM1=FS	FM2=FM	
	13351-10-09	13351-09-09	
350 nm		0.211	0.990
500 nm	0.923	0.909	1.015
700 nm	0.829	0.808	1.026
900 nm	0.292	0.287	1.019

- FM2 ~2% lower than FM1
- This is probably insignificant, given the e2v uncertainties on the previous slide, but w/o optical cal uncertainty)
- Recommend to use the new curve for FM2 as is, but with slightly larger uncertainty: adding an extra 2% uncertainty term to the ESA budget

results

		1sigma error	1sigma error if
wavelength[nm]	QE (FM1)	FM1	used for FM2
1060	0.015967	0.0012	0.0012
1040	0.024953	0.0015	0.0015
1020	0.041806	0.0019	0.0020
1000	0.066019	0.0021	0.0025
980	0.095081	0.0025	0.0032
960	0.1295	0.0034	0.0043
940	0.170579	0.0045	0.0057
920	0.220974	0.0058	0.0073
900	0.276746	0.0073	0.0092
880	0.346169	0.0069	0.0098
860	0.405758	0.0081	0.0115
840	0.46041	0.0092	0.0130
820	0.520438	0.0104	0.0147
800	0.56985	0.0114	0.0161
780	0.626385	0.0125	0.0177
760	0.670649	0.0134	0.0190
740	0.71617	0.0143	0.0203
720	0.752471	0.0150	0.0213
700	0.792571	0.0159	0.0224
680	0.833492	0.0167	0.0236
660	0.867807	0.0174	0.0245
640	0.893542	0.0179	0.0253
620	0.913201	0.0183	0.0258
600	0.923397	0.0185	0.0261
580	0.933805	0.0187	0.0264
560	0.93505	0.0187	0.0264
540	0.933058	0.0187	0.0264
520	0.923655	0.0185	0.0261
500	0.90551	0.0181	0.0256
480	0.877499	0.0175	0.0248
460	0.834775	0.0167	0.0236
440	0.776513	0.0205	0.0258
420	0.690584	0.0183	0.0229
400	0.560831	0.0217	0.0244
380	0.387065	0.0201	0.0216
360	0.103961	0.0075	0.0078 Slide 14

ESA UNCLASSIFIED - For Official Use 360

