

Classification and Prediction

----K-Nearest Neighbour----

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

1

Classification and Prediction

- Basic Concepts
- Issues Regarding Classification and Prediction
- Decision Tree
- Bayesian Classification
- Neural Networks
- Support Vector Machines (SVM)
- K-Nearest Neighbor
- Associative classification
- Classification Accuracy

Nearest Neighbor Classifiers

• Basic idea:

◆ If it walks like a duck, quacks like a duck, then it's probably a duck

3

Nearest Neighbor Classifiers

Requires the following:

- A set of labeled records
 - Proximity metric to compute distance/similarity between a pair of records
 - e.g., Euclidean distance
 - The value of k, the number of nearest neighbors to retrieve
 - A method for using class labels of K nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

How to Determine the class label of a Test Sample?

- Take the majority vote of class labels among the k-nearest neighbors
- Weight the vote according to distance
 - weight factor, $w = 1/d^2$

5

Choice of proximity measure matters

• For documents, cosine is better than correlation or Euclidean

vs

000000000001

011111111111

Euclidean distance = 1.4142 for both pairs, but the cosine similarity measure has different values for these pairs.

Cosine Distance

$$dist(A,B) = 1 - cos(A,B) = \frac{||A||_2 ||B||_2 - A \cdot B}{||A||_2 ||B||_2}$$
 , 距离恒大于等于0

Nearest Neighbor Classifiers

Data preprocessing is often required

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M
- Time series are often standardized to have 0 means a standard deviation of 1

7

Nearest Neighbor Classifiers

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classifiers

- Nearest neighbor classifiers are local classifiers
- They can produce decision boundaries of arbitrary shapes.

1-nn decision boundary is a Voronoi Diagram

9

Nearest Neighbor Classifiers

- How to handle missing values in training and test sets?
- Proximity computations normally require the presence of all attributes
 - Some approaches use the subset of attributes present in two instances
 - This may not produce good results since it effectively uses different proximity measures for each pair of instances
 - Thus, proximities are not comparable
 - Irrelevant attributes add noise to the proximity measure
 - Redundant attributes bias the proximity measure towards certain attributes

Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - ◆ Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)
- Condensing
 - Determine a smaller set of objects that give the same performance
- Editing
 - Remove objects to improve efficiency

