Maximum Stock Profit

DAC Template

Given a problem of size n:

- **1. Divide** the problem into *k* subproblems of size *n/k* each
- 2. Conquer by solving each subproblem independently
- **3. Combine** the *k* solutions to subproblems into a solution to the original problem

Time?
$$T(n) = k \cdot T(n/k) + d(n) + c(n)$$

Example: For MergeSort, k = 2, $d(n) \in O(1)$, $c(n) \in O(n)$.

Maximum Stock Profit Revisited

 Given a historical list of daily stock prices, when was the best time to buy and sell in order to maximize profit?

- Recall that we had a $\Theta(n^2)$ brute force algorithm that considered all feasible combinations of buying and selling times.
- Can we do better?

A Transformation

 What if, instead, you work with the sequence of daily price changes?

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Change		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7

 New goal: Find a contiguous subarray whose sum is largest.

MaxSum Subarray

Algorithm 1: For each subarray A[i..j], find the net change and keep the maximum.

```
def MSS1(A):
    best = 0
    n = len(A)
    for i in range(n):
        for j in range(i,n)
             sum = 0
             ★or k in range(i,j+1):
                 sum = sum + A[k]
                sum > best:
                 best = sum
    return best
           T(n) = \Theta(n^3)
```

Algorithm 2

```
def MSS2(A):
    best, ffrom, to = 0,0,-1
    n = len(A)
    for i in range(n):
        sum = 0
        for j in range(i,n):
             sum = sum + A[j]
             if sum > best:
                 best,ffrom,to = sum,i,j
    return best
              T(n) = \Theta(n^2)
```

Algorithm 3: DAC


```
def MSSDAC(A,low=0,high=None):
    if high==None: high = len(A)-1
    # Base case
    if low == high:
        if A[low]>0: return A[low]
        else: return 0
    # Divide
   mid = (low+high)//2
    # Conquer
   maxLeft = MSSDAC(A, low, mid)
   maxRight = MSSDAC(A, mid+1, high)
    # Combine
    maxLeft2Center = left2Center = 0
    for i in range(mid,low-1,-1):
        left2Center += A[i]
        maxLeft2Center = max(left2Center, maxLeft2Center)
   maxRight2Center = right2Center = 0
    for i in range(mid+1,high+1):
        right2Center += A[i]
        maxRight2Center = max(right2Center, maxRight2Center)
    return max(maxLeft,maxRight,maxLeft2Center+maxRight2Center)
```

$$T(n) = 2T(n/2) + n \in \Theta(n \log n)$$

END

Matrix Multiplication

Matrix Multiplication Revisited

- Given two $n \times n$ matrices A and B, find $C = A \times B$
- Recall: C is also $n \times n$ and

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Example: n = 2

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

• We already have a $\Theta(n^3)$ "brute force" algorithm (in terms of the input size $N=2n^2$, $T(N)\in\Theta(N\sqrt{N})$)

A DAC Solution

• Partition each $n \times n$ matrix into four $n/2 \times n/2$ submatrices.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21},$$

 $C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22},$
 $C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21},$
 $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}.$

Recurrence? $T(n) = 8T(n/2) + n^2$

A DAC Solution

```
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
    let C be a new n \times n matrix
    if n == 1
         c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
 7
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
 9
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
10
             T(n) = 8T(n/2) + n^2 \in \Theta(n^3)
Time?
```

$$T(n) = n^{2} + 8 \cdot T(n/2)$$

$$= n^{2} + 8[(n/2)^{2} + 8 \cdot T(n/4)] = n^{2} + 2n^{2} + 8^{2} \cdot T(n/4)$$

$$= n^{2} + 2n^{2} + 8^{2}[(n/4)^{2} + 8 \cdot T(n/8)]$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 8^{3} \cdot T(n/2^{3})$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + \dots + 2^{k-1}n^{2} + 8^{k} \cdot T(n/2^{k})$$

$$= n^{2} (1 + 2 + \dots + 2^{k-1}) + 2^{3k} \cdot T(n/2^{k})$$

$$= n^{2} (2^{k} - 1) + 2^{3k} \cdot T(n/2^{k})$$
 Stop when $n = 2^{k}$

$$= n^{2} (n - 1) + n^{3} \cdot T(1) \in \Theta(n^{3})$$

 Λ^{a} 0(~) 1

A Different DAC Solution (Strassen, 1968)

$$S_{1} = B_{12} - B_{22}, S_{6} = B_{11} + B_{22},$$

$$S_{2} = A_{11} + A_{12}, S_{7} = A_{12} - A_{22},$$

$$S_{3} = A_{21} + A_{22}, S_{8} = B_{21} + B_{22},$$

$$S_{4} = B_{21} - B_{11}, S_{9} = A_{11} - A_{21},$$

$$S_{5} = A_{11} + A_{22}, S_{10} = B_{11} + B_{12}.$$

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot B_{12} - A_{11} \cdot B_{22}, C_{11} = P_{5} + P_{4} - P_{2} + P_{6},$$

$$P_{2} = S_{2} \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}, C_{12} = P_{1} + P_{2},$$

$$P_{3} = S_{3} \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11}, C_{21} = P_{3} + P_{4},$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot B_{21} - A_{22} \cdot B_{11}, C_{22} = P_{5} + P_{1} - P_{3} - P_{7},$$

$$P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{21} - A_{22} \cdot B_{22},$$

$$P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22},$$

$$P_{7} = S_{9} \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}.$$

Strassen

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

 $C_{12} = P_1 + P_2$
 $C_{21} = P_3 + P_4$
 $C_{22} = P_5 + P_1 - P_3 - P_7$

Recurrence? $T(n) = 7T(n/2) + n^2 = n^{\log_2 7}$

- Worst case is $\Theta(n^2)$
- Best case is $\Theta(n \log n)$
- Average case is $\Theta(n \log n)$
- Constant hidden in Θ-notation is small
- Sorts in place
- Divide and conquer
 - Based on linear time partition algorithm (a clever divide)

- 1. Divide: Rearrange A[p..r] into three parts—A[p..q-1], A[q], and A[q+1..r]—such that each element of the first part is A[q] and each element of the third part is A[q].
- 2. Conquer: Recursively sort the two unsorted parts.
- 3. Combine: Not needed!

Example


```
QUICKSORT(A, p, r)

1 if p < r

2 then q \leftarrow \text{Partition}(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```


Partition

- Choose pivot x = A[r]
- Scan array once from left to right
- During partition, array consists of four parts
 - Portion already scanned A[p..j-1] is partitioned into two parts—A[p..i] and A[i+1..j-1]—of elements smaller and bigger than x, respectively

Partition

```
PARTITION (A, p, r)
1 x \leftarrow A[r]
2 \quad i \leftarrow p-1
3 for j \leftarrow p to r-1
          do if A[j] \leq x
                 then i \leftarrow i + 1
                        exchange A[i] \leftrightarrow A[j]
   exchange A[i+1] \leftrightarrow A[r]
    return i+1
```

Runs in $\Theta(n)$ time (where n = r - p + 1)

Processing the Next Element

Two cases:

a. A[j] > x

b. $A[j] \leq x$

Example

```
pivot
              not yet examined
A[j .. r-1]:
A[i+1 ... j-1]: known to be > pivot
A[p ... i]:
              known to be \leq pivot
```

```
PARTITION(A, p, r)

1 x \leftarrow A[r]

2 i \leftarrow p - 1

3 \mathbf{for} \ j \leftarrow p \ \mathbf{to} \ r - 1

4 \mathbf{do} \ \mathbf{if} \ A[j] \leq x

5 \mathbf{then} \ i \leftarrow i + 1

6 \mathbf{exchange} \ A[i] \leftrightarrow A[j]

7 \mathbf{exchange} \ A[i + 1] \leftrightarrow A[r]

8 \mathbf{return} \ i + 1
```

Recall for merge sort: Divide: O(1), Merge: O(n)

- Merge had n amount of work at each level
- Merge had log(n) levels
- Multiply the two since it has the same amount at each level giving O(n log(n))
- Try this same approach for analysis on Quick
 - Partition: O(n)
 - Combine: O(1)

- There is not the same amount of work at each level
- Cannot simply multiply number of levels by work
- The choice of partition is an important factor in how much work is necessary
- What are the best and worst cases?
 - What are their associated runtimes?

Running Time: Best Case

Best case is when we divide evenly like merge

Running Time: Worst Case

Worst case is when we partition very unevenly

Average Informal Analysis

- Always choose the pivot at random.
- Consider the (hypothetically) sorted array.

- At least half of the elements produce a 25%:75% split or better.
- ⇒ roughly every other iteration, the largest partition contains at most 3/4 of the data.
- Randomized quicksort runs in $\Theta(n \log n)$ with very high probability.

How Do You Make All Pivots Equally Likely?

```
RANDOMIZED-PARTITION (A, p, r)
    i \leftarrow \text{RANDOM}(p, r)
   exchange A[r] \leftrightarrow A[i]
    return PARTITION(A, p, r)
RANDOMIZED-QUICKSORT (A, p, r)
   if p < r
      then q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)
3
           RANDOMIZED-QUICKSORT (A, p, q - 1)
           RANDOMIZED-QUICKSORT (A, q + 1, r)
```

END

Order Statistics

Order Statistics

 Given a list A of n elements, a percentile is a value below which a given percentage of observations in A falls.

Example: the 30th percentile is the value below which 30% of the observations may be found

- The *j*th order statistic of a list of *n* elements is the *j*th smallest element of the list (i.e., element of rank *j*).
 - The p^{th} percentile corresponds to the pn/100 order statistics

```
Example: S = \{8, 40, 30, 17, 31, 4, 50, 42, 41, 27, 19\}
```

```
i = 3 \Rightarrow third smallest element is 17

i = 1 \Rightarrow smallest element (minimum) is 4

i = n \Rightarrow largest element (maximum) is 50
```

 $i = \lfloor (n + 1)/2 \rfloor$?

First-Order Statistic

```
MINIMUM(A)

1 \min \leftarrow A[1]
2 \text{for } i \leftarrow 2 \text{ to } length[A]
3 \text{do if } \min > A[i]
4 \text{then } \min \leftarrow A[i]
5 \text{return } \min
```

- Cost = number of comparisons (line 3)
- Can we do better?

ith-Order Statistic

Can partition help?

- What is the relation between i, p, and q?
- Simple recursive algorithm

$$T(n) = T(k) + \Theta(n)$$
, for some $k < n$

A Randomized Algorithm

```
RANDOMIZED-SELECT (A, p, r, i)

1 if p = r

2 then return A[p]

3 q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)

4 k \leftarrow q - p + 1

5 if i = k \triangleright the pivot value is the answer

6 then return A[q]

7 elseif i < k

8 then return RANDOMIZED-SELECT (A, p, q - 1, i)

9 else return RANDOMIZED-SELECT (A, q + 1, r, i - k)
```

- T(n) = time for randomized select with n elements
 - T(n) is a random variable
 - *E*[*T*(*n*)]?
 - Worst case?

Informal Analysis

- Choose the pivot at random.
- Consider the sorted array.

- At least half of the elements produce a 25%:75% split or better.
- In roughly every other iteration, the array reduces by at least 25%.

$$n \to \frac{3n}{4} \to \frac{9n}{16} \to \cdots \to \left(\frac{3}{4}\right)^k n$$

Formal Analysis

- T(n) is our random variable whose expected value we wish to find.
- Element z_k of rank k, chosen with probability 1/n
- Since E(T(n)) is monotonically increasing:

$$E[T(n)] \le \frac{1}{n} \sum_{k=1}^{n} E[T(\max(k-1, n-k)) + \Theta(n)]$$

$$\max(k-1, n-k) = \begin{cases} k-1 & \text{if } k > \lceil n/2 \rceil \\ n-k & \text{if } k \le \lceil n/2 \rceil \end{cases}$$

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n)$$

Claim: E[T(n)] ≤ cn

- Base case?
 - Let k satisfy $T(n) \le cn$, if $n \le d$ (will find d later)
- Inductive step

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + an$$

$$\leq \frac{2}{n} \sum_{k=|n/2|}^{n-1} ck + an$$

$$=\frac{2c}{n}\left(\sum_{k=1}^{n-1}k-\sum_{k=1}^{\lfloor n/2\rfloor-1}k\right)+an$$

$$E[T(n)] \le \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \right) + an$$

$$= \frac{2c}{n} \left(\frac{n(n-1)}{2} - \frac{\lfloor n/2 \rfloor (\lfloor n/2 \rfloor - 1)}{2} \right) + an$$

$$\le \frac{2c}{n} \left(\frac{n(n-1)}{2} - \frac{(n/2-1)(n/2-2)}{2} \right) + an$$

$$= \frac{c}{n} \left(\frac{3n^2}{4} + \frac{n}{2} - 2 \right) + an$$

$$= c \left(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n} \right) + an$$

$$\le \frac{3cn}{4} + \frac{c}{2} + an$$

$$= cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right) \le cn \text{ if } c > 4a, n \ge \frac{2c}{c - 4a}$$

END

Master Method

Solving Recurrences

Iteration/recursion trees

- Substitution (induction)
- Master theorem

Substitution

- Prove $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$
 - Will show $T(n) \le bn \log n$, $n \ge 2$ (upper bound)
 - Can assume
 - $T(n) \le 2T(n/2) + cn$
 - $T(k) \le bk \log k$, for $2 \le k < n$

Proof

$$T(n) \le 2T(n/2) + cn$$

$$\le 2\left(b\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= bn(\log n - 1) + cn$$

$$= bn\log n - (bn - cn)$$

$$< bn\log n, \text{ if } b > c$$

Lower Bound?

- Show $T(n) \ge dn \log n$
- What can you assume?
 - $T(n) \ge 2T(n/2) + an$
 - $T(k) \ge dk \log k$, for k < n

Proof

$$T(n) \ge 2T(n/2) + an$$

$$\ge 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + an$$

$$= dn(\log n - 1) + an$$

$$= dn\log n + (an - dn)$$

$$\ge dn\log n, \text{ if } a \ge d$$

Master Theorem

- Consider a DAC algorithm with running time T(n) = a T(n/b) + f(n)
- Where $a \ge 1$ and b > 1 are constants and f(n) positive; then:
 - 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
 - 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ with $\varepsilon > 0$, and f(n) satisfies the regularity condition, then $T(n) = \Theta(f(n))$

Regularity condition:

 $af(n/b) \le cf(n)$ for some c < 1 and large enough n

Master Theorem Examples

1. Matrix multiplication (Algorithm 1)

$$T(n) = 8T(n/2) + n^2 \in \Theta(n^3)$$
 Case 1

2. Matrix multiplication (Algorithm 1)

$$T(n) = 7T(n/2) + n^2 \in \Theta(n^{\log_2 7})$$
 Case 1

3. Max stock profit

$$T(n) = 2T(n/2) + n \in \Theta(n \log n)$$
 Case 2

4. Binary search

$$T(n) = T(n/2) + 1 \in \Theta(\log n)$$
 Case 2

5. A DAC algorithm with running time T(n)

$$T(n) = 2T(n/2) + n^2 \in \Theta(n^2)$$
 Case 3

END

Acknowledgements

Introduction to Algorithms, 3rd edition, by T.H. Cormen,
 C.E. Leiserson, R.L. Rivest, C. Stein; MIT Press, 2009