П. Н. Демидович

Задания вычислительного практикума

1 Решение нелинейных алгебраических уравнений

Исследуются корни нелинейных уравнений $f_{\alpha}(x)=0, \alpha=1,2\dots 10$ в зависимости от параметра α . Порядок выполнения задания для каждого фиксированного значения α :

- 1. Используя доступные методы построить график функции $y=f_{\alpha}(x)$ (на бумаге или с помощью доступных программ-графопостроителей) и локализовать ВСЕ корни нелинейного уравнения. В результате будут получены отрезки локализации корней $[a_r^{\alpha},b_r^{\alpha}], r=1,2\dots R$, здесь R количество корней уравнения. Если корней бесконечно-много, требуется найти *три корня*, *наименьших по модулю*. В отчете представить скриншот графика функции (или несколько скриншотов, если корни не поместились на одном графике).
- 2. На каждом отрезке $[a_r^{\alpha}, b_r^{\alpha}]$ аналитически исследовать функции $f_{\alpha}(x)$: определить знаки функций в концах отрезков $f_{\alpha}(a_r^{\alpha}), f_{\alpha}(b_r^{\alpha})$; знаки первых и вторых производных $f_{\alpha}'(x), f_{\alpha}''(x)$ на отрезках локализации. На каждом из отрезков построить эквивалентные функции $\varphi_{\alpha,(r)}(x)$. Для каждого из отрезков $[a_r^{\alpha}, b_r^{\alpha}]$ вычислить константы: $M_{(r)}^{\alpha} \geqslant \max_{x \in [a_r^{\alpha}, b_r^{\alpha}]} |f_{\alpha}'(x)|, \quad 0 < m_{(r)}^{\alpha} \leqslant \min_{x \in [a_r^{\alpha}, b_r^{\alpha}]} |f_{\alpha}'(x)|, \quad 1 > q_{(r)}^{\alpha} \geqslant \max_{x \in [a_r^{\alpha}, b_r^{\alpha}]} |\varphi_{\alpha,(r)}'(x)|.$
- 3. С помощь программы на языке Си для каждого из отрезков $[a_r^{\alpha},b_r^{\alpha}]$ вычислить уточненные значения корней $\xi_r^* = x_{N+1}$ с точностью $\varepsilon = 10^{-4}$: $|\xi_r^* \xi_r| < \varepsilon$. Использовать пять методов: половинного деления, секущих, простой итерации, Эткена, Ньютона. Начальные значения $x_0^{(r)}$ следует выбирать одинаковыми для всех методов: $x_0^{(r)} = a_r^{\alpha}$ или $x_0^{(r)} = b_r^{\alpha}$.
- 4. Сравнить методы по их способности приближенно вычислить корень ξ и по скорости сходимости к корню (т. е. число итераций). В отчете представить таблицу, в которой также указать значения невязки $f_{\alpha}(\xi^*)$ и параметров $M^{\alpha}_{(r)}, m^{\alpha}_{(r)}, q^{\alpha}_{(r)}$:

Корень	Невязка	×0	Число итераций $N+1$						$m_{(r)}^{\alpha}$	$q_{(r)}^{\alpha}$
ξ_r^*	$f_{\alpha}(\xi_r^*)$		Половинное деление	Метод хорд	Простая итерация	Метод Эткена	Метод Ньютона	$M_{(r)}^{\alpha}$	m(r)	$q_{(r)}$

Номер варианта совпадает с номером студента в списке курса (в зачетной ведомости).

1	$ x(x-\alpha) = \alpha \ln x$	2	$ x^2 - \alpha = e^{\alpha x }$	3	$\left x^2 - 2\alpha/x \right = e^{1-x^2}$
4	$\sqrt{(x-\alpha/2)(x-\alpha)} = \sin x$	5	$ x - \alpha = \sin x + \sin x $	6	$x^4 \sin(x/\alpha) = 1$
7	$\alpha \sin \sqrt{1 + 2 \sin x} = x^3$	8	$(1+\sin x)\sin x = \alpha + 3x - 5$	9	$\cos e^{ \sin x } = \alpha x$

10	$\operatorname{ch}\left(\frac{1}{\alpha} + \frac{1}{1 + \cos^2 x}\right) =$ $= \alpha e^x$	11	$= \frac{\cos \frac{1}{1 + (1 - e^{- x })^2}}{\cos \frac{1}{1 + (1 - e^{- x })^2}} =$	12	$\sin \frac{1}{1 + \left(\operatorname{arctg} e^{-x^2}\right)^2} =$ $= \alpha - x$
13	$e^{-\sin^2\frac{1}{1+x^2}} = -\operatorname{tg}(x/\alpha)$	14	$\ln(1+\cos^2 x) = \alpha e^{-x}$	15	$x + e^{-\frac{1}{1+x^2}} = \alpha - 5$
16	$\ln\sqrt{1+x^2} = -\operatorname{ctg}(x/\alpha)$	17	$1 + e^{-2x^2} = \alpha^2 e^{-2x}$	18	$\alpha^2 e^{2x} = 1 + \ln^2 \sqrt{1 + x^2}$
19	$\sin^{2} \ln \sqrt{1 + (1 - e^{- x })^{2}} =$ = $-\alpha \ln x$	20	$(x^2 - 1)^2 = x^{\alpha}$	21	$\pi^2 x - x^3 + x^5 =$ $= 0.1\alpha^2 \cos x$
22	$10x - 0.5x^3 + x^5 = $ $= 0.04\alpha^3 e^{-x^2}$	23	$x + x^3 + x^7 + x^9 = 0.3\alpha \text{ th } x$	24	$5x^2 - 0.1x^3 + 0.2x^4 =$ = 0.1(\alpha + \text{th } x)
25	$\sum_{k=0}^{3} \frac{(\pi - k)^2}{k!} x^{2k+1} =$ $= 0.1\alpha^2$	26	$\sum_{k=0}^{2} (-e)^k x^{4k+1} = 0.07\alpha + 0.3x$	27	$\sum_{k=0}^{2} \frac{k-1.9929}{k-0.99929} x^{k} = $ $= x^{5} \sqrt{0.1\alpha} - \alpha \ln \alpha$
					$\sum_{k=1}^{3} \operatorname{tg}^{2} \left(\frac{k^{2}}{2} - 2.0537 \right) \times x^{k^{2}} = \sqrt[4]{0.1\alpha}$
31	$\sum_{k=1}^{4} \frac{(\pi - k)^2}{k!} x^{2k} = 1 + 0.859\alpha x$	32	$\sum_{k=0}^{2} \frac{(-2)^k}{2k+1} x^{4k+2} =$ = 1.41 + 0.1\alpha^2 x	33	$\sum_{k=0}^{2} \frac{e^k}{2k+1} x^{2(2k+1)} = 1 + 0.096\alpha^3 x$
34	$\sum_{k=1}^{4} \left(\left(\frac{k}{100} - 1 \right) x \right)^{k} =$ = -0.101\alpha	35	$\sum_{k=0}^{2} \frac{k^2 - 2.14k + 1}{k + 0.667} \times x^{3k+2} = 1 + x/\alpha$	36	$\sum_{k=0}^{2} \frac{6k - 11.9937}{k^2 - 3k10^{-3} - 0.9931} \times x^k = 1/x + x^5/\sqrt{\alpha}$

2 Решение нелинейных алгебраических систем

Исследуются пары корней системы нелинейных уравнений f(x, y) = 0, g(x, y) = 0. Порядок выполнения задания:

- 1. Построить на плоскости Oxy графики неявных функций f(x,y) = 0, g(x,y) = 0 (на бумаге или с помощью доступных программ-графопостроителей) и приближенно определить все точки пересечения графиков. В результате будут получены прямоугольники (сегменты) локализации пар корней $\xi_r \equiv (\xi_r, \eta_r) \in \Omega_r \equiv [ax_r, bx_r] \times [ay_r, by_r]$, $r = 1, 2 \dots R$, здесь R количество пар корней системы уравнений. В отчете представить скриншот всех пересечений графиков функций (или несколько скриншотов, если точки пересечений не поместились на одном графике).
- 2. На каждом сегменте Ω_r определить константы $q_r, \mu_r \colon 1 > q_r \geqslant \max_{\vec{x} \in \Omega_r} \|\mathfrak{D}_{\vec{\phi}}(\vec{x})\|,$ $\mu_r \geqslant \max_{\vec{x} \in \Omega_r} \|\mathfrak{D}_{\vec{f}}(\vec{x})\| \max_{\vec{x} \in \Omega_r} \|\mathfrak{D}_{\vec{f}}^{-1}(\vec{x})\|.$
- 3. С помощь программы на языке Си для каждого из сегментов Ω_r вычислить уточненные значения пар корней $\vec{\xi}_r^* \equiv (\xi_r^*, \eta_r^*) = (x_{N+1}, y_{N+1})$ с точностью

П. Н. Демидович 5

 $\varepsilon=10^{-4}\colon \|\vec{\xi}_r^*-\vec{\xi}_r\|<\varepsilon$. Использовать три метода: простой итерации, Зейделя, Ньютона. Начальные значения $x_0^{(r)},\,y_0^{(r)}$ следует выбирать одинаковыми для всех методов: $(x_0^{(r)},y_0^{(r)})\in\Omega_r$.

4. Сравнить методы по их способности приближенно вычислить пары корней $\bar{\xi}_r$ и по скорости сходимости к корню (т. е. по числу итераций). В отчете представить таблицу, в которой также указать значения нормы невязки $\|\vec{f}_{\alpha}(\vec{\xi}_r^*\|$ и параметров q_r , μ_r :

Пара корей $ec{\xi}_r^*$		Норма	Начальный вектор		Числ	о итераций	a	.,	
ξ_r^*	η_r^*	невязки $\ \vec{f}(\vec{\xi}_r^*)\ $	$x_0^{(r)}$	$y_0^{(r)}$	Простая итерация	Метод Зейделя	Метод Ньютона	q_r	μ_r

Номер варианта совпадает с номером студента в списке курса (в зачетной ведомости).

1	$\begin{cases} \sin(x+1) - y = 1, \\ 2x + \cos y = 2; \end{cases}$	2	$\begin{cases} x^{2/3} + y^{2/3} = 4, \\ x^2 - 2y = 0, \end{cases} (x > 0)$	3	$\begin{cases} tg(xy + 0.2) = x^2, \\ x^2 + 2y^2 = 1; \end{cases}$
4	$\begin{cases} \sqrt{x+1} - y = 0, \\ x^2 + 2y^2 = 2y; \end{cases} (x > 0)$	5	$\begin{cases} 2x + tg(xy) = 0, \\ (y^2 - 6)^2 + \ln x = 0; \end{cases}$	6	$\begin{cases} x \cos x - y = 0, \\ x^2 + y^2 - 1 = 0; \end{cases} (x > 0)$
7	$\begin{cases} y \cos y - x = 0, \\ x^2 + y^2 - 1 = 0; \end{cases} (y < 0)$	8	$\begin{cases} 2x^2 + y^2 = 1, \\ x^{2/3} - y = 0; \end{cases} (y > 0)$	9	$\begin{cases} 0.6x + 7.5y + x^2y = 0, \\ 6x + \cos y = 0; \end{cases}$
10	$\begin{cases} x^2 + 2y^2 = 1, \\ x + y^{2/3} = 0; \end{cases} (y < 0)$	11	$\begin{cases} \sin(x + 0.8) + 2y = 1, \\ \cos(y + 0.6) + 0.6x = 0; \end{cases}$	12	$\begin{cases} \sin x - y = 0, \\ x^2 + y^2 = 1; \end{cases} (x > 0)$
13	$\begin{cases} x - \cos y = 0, \\ x^2 + y^2 = 2; \end{cases} (y > 0)$	14	$\begin{cases} x^2 + y^2 = 2y, \\ e^{-x} - y = 0; \end{cases} (x < 0)$	15	$\begin{cases} x^2 + y^2 = 2x, \\ x - e^{-y} = 0; \end{cases} (y > 0)$
16	$\begin{cases} x^{2/3} + y^{2/3} = 4, \\ 2x - y^2 = 0, \end{cases} (y < 0)$	17	$\begin{cases} 2x - x^2 - y^2 + 2y = 1, \\ \sqrt{x+1} = y, & (x > 0); \end{cases}$	18	$\begin{cases} x^2 + y^2 = 2x, \\ \ln x - y = 0; \end{cases} (y > 0)$
19	$\begin{cases} 2x + x^2 + y^2 + 2y = -1, \\ \sqrt{x+1} = y+1; \end{cases}$	20	$\begin{cases} x^{2/3} + y^{2/3} = 1, \\ x^2 + y^2 = 2x, \end{cases} (y > 0)$	21	$\begin{cases} x \sin x = y, \\ x^2 + y^2 = 1, \end{cases} (x > 0)$
22	$\begin{cases} \operatorname{tg} x - \cos(1.5y) = 0, \\ 2y^2 - x^2 + 4x = 3; \end{cases}$	23	$\begin{cases} x/(1+x^2) = y, \\ x^2 + y^2 = 1, \end{cases} (x > 0)$	24	$\begin{cases} x^{2/3} + y^{2/3} = 1, \\ x^2 + y^2 = 2y, \end{cases} (x < 0)$
25	$\begin{cases} x = y \sin y, \\ x^2 + y^2 = 1, \end{cases} (y < 0)$	26	$\begin{cases} x^2 + y^2 = 2y, & (x > 0) \\ 1/2\ln(x+1) = y, \end{cases}$	27	$\begin{cases} y/(1+y^2) = x, \\ x^2 + y^2 = 1, \end{cases} (y < 0)$
28	$\begin{cases} x^2 + y^2 = 2x, \\ x = 2\ln(y+1), \end{cases} (y > 0)$	29	$\begin{cases} x^2 + y^2 = 1, \\ 2xe^{-x} = y, \end{cases} (x > 0)$	30	$\begin{cases} (x^2 + y^2)^2 = 2(x^2 - y^2) \\ x^2 + y = 1, (x > 0, y > 0) \end{cases}$
31	$\begin{cases} x = 2ye^{-y} \\ x^2 + y^2 = 1, \end{cases} (y < 0)$	32	$\begin{cases} (x^2 + y^2)^2 = 2(x^2 - y^2) \\ x + y^2 = 1, (x > 0, y < 0) \end{cases}$	33	$\begin{cases} \sin(x+y) - 1.5x = 0.1, \\ x^2 + y^2 = 1; \end{cases}$

Рекомендуемая литература

- 1. *Бахвалов Н. С., Корнев А. А., Чижонков Е. В.* Численные методы. Решения задач и упражнения. М.: Дрофа, 2009. 154 с. (Высшее образование: современный учебник). ISBN 978-5-358-03610-9.
- 2. Волков Е. А. Численные методы. 2-е изд. М.: Наука, 1987. 248 с.
- 3. *Демидович Б. П.*, *Марон И. А.* Основы вычислительной математики. 3-е изд. М.: Наука, 1966. 664 с.
- 4. *Демидович Б. П., Марон И. А., Шувалова Э. 3.* Численные методы анализа / под ред. Б. П. Демидовича. М.: Наука, 1967. 368 с.
- 5. *Дьяченко В.* Φ . Основные понятия вычислительной математики. М.: Наука, 1972. 120 с.
- 6. *Крылов В. И., Бобков В. В., Монастырный П. И.* Вычислительные методы, Т.1,2. М.: НАУКА, 1976.
- 7. *Ортега Д.*, *Пул У.* Введение в численные методы решения дифференциальных уравнений. М.: Наука, 1986. 288 с.
- 8. *Формалев В. Ф.*, *Ревизников Д. Л.* Численные методы. М.: ФИЗМАТЛИТ, 2004. 400 с.
- 9. Чижонков Е. В. Численные методы. Курс лекций. М.: мех-мат, МГУ, 2012. 154 с.