Examen final 2003 - Solutionnaire

GEL10280 Communications Numériques

Problème 1 (25 points sur 100)

$$F(\omega) = \frac{\omega_0}{\omega_0 + j\omega}$$

Trouvez la réponse en fréquence $\hat{\Theta}_0(\omega)$ et l'erreur asymptotique pour

- 1. entrée échelon, $\Theta_0\left(j\omega\right)=1/j\omega$ et trouvez $\hat{\theta}_0\left(t\right)$
- 2. entrée une rampe, $\Theta_0(j\omega) = 1/(j\omega)^2$.

$$\theta_0(t)$$
 + bruit
$$\theta_0(t) - \hat{\theta}_0(t) + \text{bruit}$$
Filtre de boucle
$$\hat{\theta}_0(t)$$

$$F(\omega) = \frac{\omega_c}{a_0 + j\omega} \qquad H(\omega) = \frac{KF(\omega)}{j\omega + KF(\omega)} = \frac{K\omega_c}{(j\omega)^2 + j\alpha_0\omega + K\omega_c}$$

$$\widehat{\Phi}(\omega) = \widehat{\Phi}(\omega) \quad H(\omega) \qquad E(\omega) = \widehat{\Phi}(\omega) - \widehat{\Phi}(\omega)$$

$$= \widehat{\Phi}(\omega) - \widehat{\Phi}(\omega) \quad E(\omega)$$

$$= \widehat{\Phi}(\omega) \int [1 - H(\omega)]$$

Problème 2 (10 points sur 100)

Pour une modulation BPSK avec détection cohérente la probabilité d'erreur sans codage est

$$\rho_{u} = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right) = Q\left(\sqrt{2 \cdot 10}\right) = Q(4.47)$$

$$\approx \frac{1}{4.47\sqrt{2\pi}}e^{-20/2} = 4.05 \cdot 10^{-6}$$

La probabilité d'avoir une erreur dans un bloc de 12 bits est

$$P_m^u = 1 - (1 - p_u)^{12} = 1 - (1 - 4.05 \cdot 10^{-6})^{12} = 4.86 \cdot 10^{-5}$$

Quand nous ajoutons une codage avec taux 24/12=1/2, nous allons perdre la moitié du rapport signal à bruit, donc

$$\rho_{c} = Q\left(\sqrt{\frac{2E_{c}}{N_{0}}}\right) = Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right) = Q\left(\sqrt{10}\right) = Q(3.16)$$

$$\approx \frac{1}{3.16\sqrt{2\pi}} e^{-10/2} = 8.5 \cdot 10^{-4}$$

Le code peut corriger deux erreurs, donc sont justes les erreurs de trois bits et plus dans le bloc codé qui vont contribuer à la probabilité d'erreur.

$$P_m^c = \sum_{k=3}^{24} {24 \choose k} p_c^k (1 - p_c)^{24-k} \simeq {24 \choose 3} p_c^3 (1 - p_c)^{21}$$
$$= 2024 \cdot (8.5 \cdot 10^{-4})^3 (1 - 8.5 \cdot 10^{-4})^{21}$$
$$= 1.2 \cdot 10^{-6}$$

L'amélioration est donc

$$\frac{P_m^u}{P_m^c} = \frac{4.86 \cdot 10^{-5}}{1.2 \cdot 10^{-6}} = 39.8$$

Problème 3 (15 points sur 100)

A. (5 points) Donnez trois manières de générer une référence de phase pour un PLL.

- 1. Tonalité ou pilote
- 2. Mettre signal reçu au carré
- 3. Re-modulation ou boucle de Costas
- B. (5 points) Quels sont les calculs utilisés dans l'algorithme de Viterbi?

ACS – add, select, compare (additionner, sélectionner, comparer)

C. (5 points) Comment la modulation avec codage en treillis (TCM) est-elle capable de corriger les erreurs et être efficace en largueur de bande?

La modulation avec codage en treillis (TCM) utilise les codes correcteurs d'erreur avec un taux de codage de k/k+1 pour corriger les erreurs. L'expansion de largeur est évitée en augmentent le nombre de bits par symbole par un.

Problème 4 (25 points sur 100)

Notons que pour QPSK et 8PSK l'énergie moyenne par bit ne change pas, donc nous n'avons aucun normalisation à faire. Voici les distances Euclidiennes entrées des symboles.

Voici le treillis de l'encodeur pour tracer la distance minimale.

La distance Euclidienne entre 000 et 011 est 1.41, et entre 000 et 010 est .765, donc la distance minimale est

$$\sqrt{1.41^2 + .765^2 + 1.41^2} = \sqrt{4.586} = 2.14$$

Le gain asymptotique de codage est donc

$$G(dB) = 10\log_{10}\left(\frac{d_f^2}{d_{\min}^2}\right) = 10\log_{10}\left(\frac{d_f^2}{d_{\min}^2}\right) = 10\log_{10}\left(\frac{4.586}{2}\right) = 3.6 dB$$

En réalité il y a un trajet plus court que celui que nous venons de trouver :

La distance Euclidienne entre 000 et 100 est 2, donc la distance minimale est

$$\sqrt{0^2 + 2^2 + 0^2} = \sqrt{4} = 2$$

Le gain asymptotique de codage est donc

$$G(dB) = 10log_{10} \left(\frac{d_f^2}{d_{min}^2}\right) = 10log_{10} \left(\frac{4}{2}\right) = 3dB$$

Problème 5 (25 points sur 100)

B. La matrice de vérification de parité (parity check matrix) est

$$H = \begin{bmatrix} I_{m-k} P^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

C. Le table des syndromes est calculer comme

$$S_{e} = eH^{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

erreur	Syndrôme
0000001	110
0000010	011
0000100	101
0001000	111
0010000	001
0100000	010
1000000	100

D. la sortie (bits de message) de décodeur pour

Le syndrome est

$$rH^{T} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Donc l'erreur est [0001000] et le bon mot de code est

$$r + e = [1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0] + [0 \ 0 \ 0 \ 1 \ 0 \ 0] = [1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0]$$

Les derniers quatre bits sont les bits du message, donc

$$message = [0 \ 1 \ 1 \ 0].$$

bits de															
message	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000000		1100001 0110010	1010011	1010100	011	1100110	0101 1100110 0000111 1111000 0011001	1111000	0011001	1111111 0111100 1011001 0011010 011110 1111111	0101011	0101100	1001101	0011110	1111111
0000001	1100000	1100000 0110011	1010010	1010101	0110100	0100 1100111	0000110	11111001	0011000	0000110 1111001 0011000 1001011 0101010 0101101	0101010	0101101	1001100 0011111	0011111	1111110
0000010		1100011 0110000	1010001	1010110	0110111	1100100	0000101 1111010 0011011	1111010	0011011	1001000 0101001	0101001	0101110	1001111 0011100	0011100	1111101
00000100		1100101 0110110 1010111		1010000	0110001	1100010		0000011 1111100 0011101	0011101	1001110 0101111	0101111	0101000	1001001	0011010	1111011
0001000		1101001 0111010	1011011	1011100	0111101	1101110	0001111	1110000	1000100	1000010 0100011	0100011	0100100	1000101	0010110	1110111
004000		1110001 0100010	1000011	1000100 010	1010	1110110	0010111	1101000	0001001	1011010 0111011 0111100 1011101	0111011	0111100	1011101	0001110	110111
0100000	1000001	0010010	1110011	1110100	0010101	1000110	0100111	1011000	0111001	0111101 1101101 0001101 0001100 1101101 0111110	0001011	0001100	1101101		1011111
10000000	0100001	1110010 0010011	0010011	0010100	1110101	0100110	1000111	1000111 0111000 1011001 0001010	1011001	0001010	1101011	1101100	111110 0111101 1011101 0011110 11101011	1011110	0111111