Otherwise, $a \neq \pm 1$ and $(b, c, d) \neq (0, 0, 0)$, and we are seeking some $A = \theta B \in \mathfrak{su}(2)$ with $\det(B) = 1$ and $0 < \theta < \pi$, such that, by Proposition 16.7,

$$q = e^{\theta B} = \cos \theta I + \sin \theta B.$$

Let

$$B = \begin{pmatrix} iu_1 & u_2 + iu_3 \\ -u_2 + iu_3 & -iu_1 \end{pmatrix},$$

with $u = (u_1, u_2, u_3)$ a unit vector. We must have

$$a = \cos \theta, \quad e^{\theta B} - (e^{\theta B})^* = q - q^*.$$

Since $0 < \theta < \pi$, we have $\sin \theta \neq 0$, and

$$2\sin\theta \begin{pmatrix} iu_1 & u_2 + iu_3 \\ -u_2 + iu_3 & -iu_1 \end{pmatrix} = \begin{pmatrix} \alpha - \overline{\alpha} & 2\beta \\ -2\overline{\beta} & \overline{\alpha} - \alpha \end{pmatrix}.$$

Thus, we get

$$u_1 = \frac{1}{\sin \theta} b, \quad u_2 + iu_3 = \frac{1}{\sin \theta} (c + id);$$

that is,

$$\cos \theta = a \qquad (0 < \theta < \pi)$$
$$(u_1, u_2, u_3) = \frac{1}{\sin \theta} (b, c, d).$$

Since $a^2+b^2+c^2+d^2=1$ and $a=\cos\theta$, the vector $(b,c,d)/\sin\theta$ is a unit vector. Furthermore if the quaternion q is of the form $q=[\cos\theta,\sin\theta u]$ where $u=(u_1,u_2,u_3)$ is a unit vector (with $0<\theta<\pi$), then

$$A = \theta \begin{pmatrix} iu_1 & u_2 + iu_3 \\ -u_2 + iu_3 & -iu_1 \end{pmatrix}$$
 (*log)

is a logarithm of q.

Observe that not only is the exponential map $\exp : \mathfrak{su}(2) \to \mathbf{SU}(2)$ surjective, but the above proof shows that it is injective on the open ball

$$\{\theta B \in \mathfrak{su}(2) \mid \det(B) = 1, 0 \le \theta < \pi\}.$$

Also, unlike the situation where in computing the logarithm of a rotation matrix $R \in SO(3)$ we needed to treat the case where tr(R) = -1 (the angle of the rotation is π) in a special way, computing the logarithm of a quaternion (other than $\pm I$) does not require any case analysis; no special case is needed when the angle of rotation is π .