

March 6, 2019

- Fluid dynamics is commonly studied in engineering.
- Typically, people consider a fluid of constant density as in the figure.
- The energy drives the turbulent wake comes from kinetic energy in the fluid.

- This type of problems can be studied experimentally or mathematically (Fluid dynamics class by Prof. Noh).
- But it is not directly applied to the atmosphere or the ocean because of the assumption of the constant density.
- Or more precisely, $\rho = \rho(P)$

There is a resemblance to the atmosphere...

the distribution of water vapor over Africa and the Atlantic Ocean

But there is a fundamental difference between them.

 Let's consider that the atmosphere and ocean is no different from the classical fluid dynamic problem.

$$\rho = \rho(P)$$

- Because of gravity, pressure increases downward.
- In a stable state, light fluid is always on top of heavy fluid.
- Also, assume that there is no obstacles to bend the fluid.
- What do you expect to see?

- Our earth is a lot more dynamic place!
- The key component is

$$\rho = \rho(P, T)$$

- Heating and cooling change the density of the fluid, making dynamical motions.
- Thermal energy can be converted to kinetic energy.

- Heating and cooling change the density of the fluid, making dynamical motions.
- Thermal energy can be converted to kinetic energy.

Another important ingredient in fluid dynamics on earth is

rotation

Dissipation

Streaks of dye falling vertically Flows of vertical columns

- Rotation does not always matter.
- Timescale of rotation: τ
- Timescale of the fluid: $\frac{L}{U}$

$$Ro = au imes rac{U}{L}$$

Ro >> 1: The fluid is faster than rotation.

Ro << 1: Rotation is faster than fluid.

$$Ro = au imes rac{U}{L}$$

$$Ro = au imes rac{U}{L}$$

 $U \sim 1 \ \mathrm{cm \ s^{-1}}$

 $L \sim 30 \text{ cm}$

 $\tau \to \infty$

 $U \sim 1 \ \mathrm{cm \ s^{-1}}$

 $L \sim 30 \text{ cm}$

 $\tau \sim 3 \text{ s}$

Atmosphere:
$$\tau \sim 1 \ \mathrm{day} \approx 10^5 \ \mathrm{s}$$

$$U \sim 10 \; {\rm m \; s^{-1}}$$

$$L \sim 5000 \text{ km}$$

Ocean:
$$\tau \sim 1 \ \mathrm{day} \approx 10^5 \ \mathrm{s}$$

$$U \sim 0.1 \; {\rm m \; s^{-1}}$$

$$L \sim 1000 \text{ km}$$

Rotation is important in determining the fluid motion on earth!

Characteristics of the Atmosphere

- Very thin
 - About 80% of the mass of the atmosphere in 10 km
 - 10 km << 6400 km
 - A constant gravity assumption
- Continuous around the globe
- Water vapor

TABLE 1.1. Some parameters of Earth.

Earth's rotation rate	Ω	$7.27 \times 10^{-5} \mathrm{s}^{-1}$
Surface gravity	8	9.81 ms ⁻²
Earth's mean radius	а	$6.37 \times 10^6 \mathrm{m}$
Surface area of Earth	$4\pi a^2$	$5.09 \times 10^{14} \mathrm{m}^2$
Area of Earth's disc	πa^2	$1.27 \times 10^{14} \mathrm{m}^2$

Characteristics of the Atmosphere

- Atmospheric water vapor is present in variable amounts.
- Important for radiative transfer (greenhouse effect)
- Another gas important for greenhouse effect is CO₂.

Physical properties of air: I. Dry air

The atmosphere obeys the perfect gas law.

$$p = \rho RT$$

Gas constant (R) for dry air:

$$R = 287 \text{ J kg}^{-1} \text{ K}^{-1}$$

 Air is compressible and we have to consider thermal expansion (to be covered later).

- The air parcel can contain both water vapor and dry air.
- Then the partial pressure of water vapor, e, is

$$e = \rho_v R_v T$$

• The partial pressure of dry air, p_d , is

$$p_d = \rho_d R_d T$$

The pressure of the mixture, p, is

$$p = p_d + e$$

In practice, water vapor amount is so small, so

$$p \approx p_d$$

- At a given temperature, T, there exists saturation vapor pressure.
- At saturation vapor pressure, e_s , the rate of evaporation is the same as the rate of condensation.

• What do you expect to see if $e > e_s$?

- e_s is a function of only temperature.
- e_s is exponentially increases with temperature.

$$e_s = Ae^{\beta T}$$

$$\begin{cases} A = 6.11 \text{ hPa,} \\ \beta = 0.067 \text{ °C}^{-1} \end{cases}$$

- The moisture content decays rapidly with height.
- Tropics tends to be more moist (wetter) than polar regions.
- Precipitation occurs when air cools.
- In last glacial maximum, the earth was drier and barrener than now.

Type of surface	Albedo (%)
Ocean	2-10
Forest	6-18
Cities	14-18
Grass	7-25
Soil	10-20
Grassland	16-20
Desert (sand)	35-45
Ice	20-70
Cloud (thin, thick stratus)	30, 60-70
Snow (old)	40-60
Snow (fresh)	75–95

Average ~ 30%

