Departamento de Informática - UFPR

Primeira prova

Algoritmos e Teoria dos Grafos - CI065 - 2009/2

Prof. André Luiz Pires Guedes 16 de outubro de 2009

PROVA SEM CONSULTA

A interpretação faz parte da prova. Pode fazer a lápis (contanto que seja possível ler). Pode ficar com a folha de questões.

			1	2	3	4	5
		1	0	0	1	0	1
$\mathbf{Matriz}\ M$	r	2	0	0	0	0	1
	1	3	1	0	0	1	1
		4	0	0	1	0	0
		5	1	1	1	0	0
		1	2	3	4	5	
$\mathbf{Matriz}\ M_2$	1	0	1	1	0	1	
	2	1	0	0	1	0	
	3	1	0	0	1	0	
	4	0	1	1	0	1	
	5	1	0	0	1	0	

A prova tem duração de 1:30 horas.

- (15pts) 1. Seja G um grafo. Se $X \subseteq V(G)$, $E(X, \overline{X})$ é o corte que separa X de \overline{X} em G. Prove que se G é conexo, então $E(X, \overline{X}) \neq \emptyset$ para todo $X \subset V(G)$, não vazio.
- (30pts) 2. Considerando as matrizes de adjacência M_1 e M_2 acima e seus respectivos grafos G_1 e G_2 :
 - a) (15pts) G_1 , G_2 , $\overline{G_1}$ e $\overline{G_2}$ são bipartidos? Justifique.
 - b) (10pts) Quais os graus dos vértices destes quatro grafos?
 - c) (15pts) Existe algum, par dentre estes quatro grafos, formado por grafos isomorfos?

 Justifique.

- (20pts) 3. Faça uma busca em profundidade no grafo da matriz M_1 , iniciando no vértice 1, e diga o tipo de cada aresta (de árvore ou de retorno), e para cada vértice, os valores de entra, sai e pai.
- (10pts) 4. Dado um grafo G com n > 0 vértices, prove que o número de vértices de grau ímpar é par.
- (10pts) 5. Dado um grafo G com n > 1 vértices, prove que existem pelo menos dois vértices com o mesmo grau.

(15pts) **6.** Seja G conexo e $e \in E(G)$. Dizemos que e é uma ponte (ou aresta de corte) em G se G - e é desconexo. Prove que se G é euleriano então G não contém uma ponte.