. CSL 356 Ang 2 From Markovis megnality, the probability that the #iterations exceed 2.n $\leq \frac{1}{2}$ (use k=2) Acternately The pool that we full in conseentive n'iterations $\leq \left(1-\frac{1}{n}\right)^{\gamma} \leq \frac{\frac{1}{e}}{e^{\frac{1}{2}}} \leq \frac{1}{2}$ $(1+x \le e^x \text{ for any } x)$ =) with 50% like hood, we will succeed within O(n) iterations 1.c. about O(n2) comparisons $\frac{\chi_{1}}{\chi_{1}}/\frac{\chi_{2}}{\chi_{2}}/\frac{\chi_{n}}{\chi_{n}}-\frac{\chi_{n}}{\chi_{n}}-\frac{\chi_{n}}{\chi_{n}}$

volue of K (in this cas in) Revise the

 $\overset{\sim}{\chi}, \overset{\sim}{\chi}, \overset{\sim}{\chi},$ Define the elements w. 4
ranks $E\left[\frac{n}{4}, \frac{3n}{4}\right]$ as "good elements. Since Mey can used to prune at least A clements for the next round. Observation: If we pick a "good" splitter every time, then there are almost loggen iterations => Total # comparisons $\gamma_1 + \frac{3n}{4} + \left(\frac{3}{4}\right)^{1} + n + \cdots$ 5 0(n) Prob of picking a good element is $\frac{2}{2}$ = $\frac{1}{2}$ => Let y represent the # trials before we much a report thread

Let
$$Y_i$$
 represent the #trials in reasonable level i

In 1" level three are neternals

 2^{n}
in $(3)^i, n$

Overall the # companions can be bounded by $\sum_{i=1}^{n} (3)^{i-1}, n$
 $\sum_{i=1}^{n} (3)^{i-1}, n$

Companions

Total # companion = T
 $E[T] = E[X] = X_i$
Linearity property of Extention.

For any $x.v. X_i, X_i, not$ necessity in dependent $E[X_i + X_i] = E[X_i] + E[X_i]$

-> They are independent of input distribution, 1.6. worst case imput . The averaging is done wer random choices made inside the algorithm (not controlled by anyone - defends on the random no, generates) To make the selection also deterministic, we would like t pick a "good" clement with certainity. n/5 calems Claim: The "median of medians" is a