

MLPA ASSIGNMENT - 01

1:
$$W = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $b = -4$, $\chi = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $W^{T}2 + b = 0$

[1 23] $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2$

Scalar projection > wiz x (1)	
Distance of x(1) from the plane is magnified of scalar projection	
magnifude of scarcin polycorrow	
$-1\omega^{7}\chi^{(1)} = 1\omega^{7}\chi^{(1)}$	
$Pristanu = \frac{1}{11} \frac{w^7 x^{(1)}}{11 w 11} = \frac{1}{11} \frac{w^7 x^{(1)}}{11 w 11}$	-
	Fi
Distance of Sample x (1) from plane is W 7 x (1) + b = 0	
W 7 x" + b = 0	
=> \w7x0761	
1100.	
$\alpha = \alpha $	
Sampler > x(1), x(2) x(1) Odabel = y(1), y(2) (1)	
Otabel = y	
maximize (min of 1w7 x (1) +6/) =	
- (at (1) 77 (1) +b)] = V	
> maximize (minimize (with 1)) = 1	4
4(1) (W7x11) + 6) >/	
7174-44	
$\chi_2 = -2\chi_1 + 4$	
$X = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} \chi \\ -2\chi + 4 \end{bmatrix}$	
$X = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ -2\chi + 4 \end{bmatrix}$	

Dote Page

32, - 47,+ 1=0 Riselled distance, d= 3, 2; +b , b=1 $d_{1} = \frac{3\times1+7-4}{\sqrt{(3)^{2}+(-4)^{2}}} = \frac{8}{5}$ $\frac{d}{dx} = \frac{3(-1) + (-4) \times (1 + 1)}{\sqrt{2}} > -6$ $\frac{q_3}{3} = \frac{3 \times 0 + -4 \times 4 + 1}{5} = \frac{-15}{5} = -3$ $d_4 = \frac{3 \times 2 + (-4) \times (-3)}{5} + 1 = \frac{19}{5}$ $d_{5} = 3x-2+(-4)\times(-2)+1=\frac{3}{5}$ The Smallest distance margin is

7, dz = -]

The dangest margin 74 d4 = 19

5 3) The dot product of w X she relation on plane is always zero.

Kavitha