Node Classification in Citation Graph Dataset

Applied Machine Learning Project 20201181 Jihwan Oh 2023.06.08

Contents

- 1. Introduction / Graph Data
- 2. Model
- 3. Implementation Process
- 4. Result
- 5. Conclusion

- Our objective: Node classification in citation graph dataset.

What is **graph data**?

- Our objective: Node classification in citation graph dataset.

What is **graph data**? + What is **citation graph data**?

- We will use two citation graph data: Citeseer dataset and Cora dataset.
- Citeseer/Cora dataset: Nodes mean scientific publications and edges mean citation relationships.

Citeseer Dataset:

```
citeseer = CitationGraphDataset('citeseer')

NumNodes: 3327
NumEdges: 9228
NumFeats: 3703
NumClasses: 6
NumTrainingSamples: 120
NumValidationSamples: 500
NumTestSamples: 1000
```

Cora Dataset:

- Our objective: Node classification in citation graph dataset.

What is **graph data**?

Why GNN (Graph Neural Network)?

- Our objective: Node classification in citation graph dataset.

What is **graph data**?

Why GNN (Graph Neural Network)?

We will use state-of-art GNN: **GrpahCL**It is introduced by 'Graph Contrastive Learning with Augmentations' (2020 NIPS)

Graph Contrastive Learning with Augmentations

Yuning You^{1*}, Tianlong Chen^{2*}, Yongduo Sui³, Ting Chen⁴, Zhangyang Wang², Yang Shen¹

Texas A&M University, ²University of Texas at Austin,

³University of Science and Technology of China, ⁴Google Research, Brain Team

{yuning.you,yshen}@tamu.edu, {tianlong.chen,atlaswang}@utexas.edu

syd2019@mail.ustc.edu.cn, iamtingchen@google.com

- 1. We will study the model **GraphCL** in paper briefly.
- 2. Then, implement the model in real world citation graph data.
- 3. Lastly, we check the **classification accuracy** of our model.

2. Model: GraphCL

Method: Data Augmentation for Graph & Graph Contrastive Learning

Data augmentation	Туре	Underlying Prior
Node dropping	Nodes, edges	Vertex missing does not alter semantics.
Edge perturbation	Edges	Semantic robustness against connectivity variations.
Attribute masking	Nodes	Semantic robustness against losing partial attributes.
Subgraph	Nodes, edges	Local structure can hint the full semantics.

Figure 1: A framework of graph contrastive learning. Two graph augmentations $q_i(\cdot|\mathcal{G})$ and $q_j(\cdot|\mathcal{G})$ are sampled from an augmentation pool \mathcal{T} and applied to input graph \mathcal{G} . A shared GNN-based encoder $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize the agreement between representations z_i and z_j via a contrastive loss.

$$\ell_n = -\log \frac{\exp(\sin(\boldsymbol{z}_{n,i}, \boldsymbol{z}_{n,j})/\tau)}{\sum_{n'=1}^{N} \sum_{n'\neq n}^{N} \exp(\sin(\boldsymbol{z}_{n,i}, \boldsymbol{z}_{n',j})/\tau)},$$
(3)

Adopt Softmax regression for evaluation

- We can't check the performance of our unsupervised model in real labeled data.
- We should adopt simple **softmax regression**.
 - Inputs are final representation vectors (\mathbf{z}_i) of our unsupervised model.
 - They contain the information of each node.
 - We can check our unsupervised model performance through simple supervised learning

GraphCL (Unsupervised)

Softmax regression (Supervised)

3. Implementation Process

Data augmentation	Type	Underlying Prior
Node dropping	Nodes, edges	Vertex missing does not alter semantics.
Edge perturbation	Edges	Semantic robustness against connectivity variations.
Attribute masking	Nodes	Semantic robustness against losing partial attributes.
Subgraph	Nodes, edges	Local structure can hint the full semantics.

- 1. Node drop: Dropping node randomly.
 - → Node # changed randomly
 - → Feature matrix and Adjacency matrix are changed both
- 2. **Edge perturbation**: Adding or Dropping edge randomly.
 - → Adjacency matrix is changed
- 3. **Attribute masking**: Dropping feature randomly.
 - → Feature matrix is changed
- 4. **Subgraph**: Sampling the subgraph from original data.
 - → Node # changed strategically.
 - → Feature matrix and Adjacency matrix are changed both

Adjacency matrix:

Edge perturbation

Drop Node

```
def aug_drop_node(input_fea, input_adj, drop_percent=0.2):
    input_adj = torch.tensor(input_adj.todense().tolist())
    input_fea = input_fea.squeeze(0)

    node_num = input_fea.shape[0]
    drop_num = int(node_num * drop_percent)  # number of drop nodes
    all_node_list = [i for i in range(node_num)]

    drop_node_list = sorted(random.sample(all_node_list, drop_num))

    aug_input_fea = delete_row_col(input_fea, drop_node_list, only_row=True)
    aug_input_adj = delete_row_col(input_adj, drop_node_list)

    aug_input_fea = aug_input_fea.unsqueeze(0)
    aug_input_adj = sp.csr_matrix(np.matrix(aug_input_adj))

    return aug_input_fea, aug_input_adj
```

```
def aug_random_edge(input_adj, drop_percent=0.2):
   percent = drop percent / 2
   row_idx, col_idx = input_adj.nonzero()
   index list = []
   for i in range(len(row idx)):
       index list.append((row idx[i], col idx[i]))
   single index list = []
   for i in list(index_list):
       single index list.append(i)
       index list.remove((i[1], i[0]))
   edge_num = int(len(row_idx) / 2)
                                         # 9228 / 2
   add drop num = int(edge num * percent / 2)
   aug_adj = copy.deepcopy(input_adj.todense().tolist())
   edge idx = [i for i in range(edge num)]
   drop idx = random.sample(edge idx, add drop num)
   for i in drop idx:
       aug adj[single index list[i][0]][single index list[i][1]] = 0
       aug_adj[single_index_list[i][1]][single_index_list[i][0]] = 0
   above finish drop edges
   node num = input adj.shape[0]
   l = [(i, j) for i in range(node num) for j in range(i)]
   add_list = random.sample(1, add_drop_num)
   for i in add list:
       aug_adj[i[0]][i[1]] = 1
       aug_adj[i[1]][i[0]] = 1
   aug adj = np.matrix(aug adj)
   aug_adj = sp.csr_matrix(aug_adj)
   return aug adj
```

Attribute masking

```
def aug_random_mask(input_feature, drop_percent=0.2):
    node_num = input_feature.shape[1]
    mask_num = int(node_num * drop_percent)
    node_idx = [i for i in range(node_num)]
    mask_idx = random.sample(node_idx, mask_num)
    aug_feature = copy.deepcopy(input_feature)
    zeros = torch.zeros_like(aug_feature[0][0])
    for j in mask_idx:
        aug_feature[0][j] = zeros
    return aug_feature
```

def delete_row_col(input_matrix, drop_list, only_row=False): remain_list = [i for i in range(input_matrix.shape[0]) if i not in drop_list] out = input_matrix[remain_list, :] if only_row: return out out = out[:, remain_list] return out

Subgraph

```
def aug subgraph(input fea, input adj, drop percent=0.2):
   input adj = torch.tensor(input adj.todense().tolist())
   input fea = input fea.squeeze(0)
   node_num = input_fea.shape[0]
   all node list = [i for i in range(node num)]
   s_node_num = int(node_num * (1 - drop_percent))
   center node id = random.randint(0, node num - 1)
   sub node id list = [center node id]
   all neighbor list = []
   for i in range(s node num - 1):
       all neighbor list += torch.nonzero(input adj[sub node id list[i]], as tuple=False).squeeze(1).tolist()
       all neighbor list = list(set(all neighbor list))
       new neighbor list = [n for n in all neighbor list if not n in sub node id list]
       if len(new neighbor list) != 0:
           new_node = random.sample(new_neighbor_list, 1)[0]
           sub node id list.append(new node)
       else:
           break
   drop node list = sorted([i for i in all node list if not i in sub node id list])
   aug_input_fea = delete_row_col(input_fea, drop_node_list, only_row=True)
   aug input adj = delete row col(input adj, drop node list)
   aug input fea = aug input fea.unsqueeze(0)
   aug input adj = sp.csr matrix(np.matrix(aug input adj))
   return aug input fea, aug input adj
```

Modified Subgraph: (Adopt PageRank)


```
#subgraph 수정
def aug subgraph(input fea, input adj, drop percent=0.2):
   matrix D array = input adj.todense()
   matrix_D_array = np.nan_to_num(matrix_D_array)
   # L 에 대한 eigenvalue, eigenvector 계산
   eigen_value , eigen_vector = np.linalg.eig( matrix_D_array )
   # eigen value 내림차순 정렬
   order = np.absolute(eigen_value).argsort()[::-1]
   # 정렬 순서에 따라 재정렬
   eigen value = eigen value[order]
   eigen vector = eigen vector[:,order]
   # 첫번째 eigen value 에 대한 eigenvector 추출 및 비중확인
   r = eigen_vector[:,0] # 0번째 열
   value = 100*np.real(r/np.sum(r)) ## np.real : 복소수 인수의 실수부를 반환
   print(value) #pagerank
   input_adj = torch.tensor(input_adj.todense().tolist())
   input fea = input fea.squeeze(0)
   node num = input fea.shape[0]
   all_node_list = [i for i in range(node_num)]
   s node num = int(node num * (1 - drop percent))
   center node id = value.tolist().index(max(value)) ### 수정됨
   #center node id = random.randint(0, node num - 1) ### 오리지널
   sub node_id_list = [center_node_id]
   all_neighbor_list = []
   for i in range(s node num - 1):
       all_neighbor_list += torch.nonzero(input_adj[sub_node_id_list[i]], as_tuple=False).squeeze(1).tolist()
       all neighbor list = list(set(all neighbor list))
       new neighbor_list = [n for n in all_neighbor_list if not n in sub_node_id_list]
       if len(new neighbor list) != 0:
           new_node = random.sample(new_neighbor_list, 1)[0]
           sub_node_id_list.append(new node)
       else:
           break
```

4. Implementation Result

1. Citeseer Dataset

GraphCL (Unsupervised Loss – based on DGI)

0.723

0.723

20

epoch

0.723

20

epoch

Average accuracy = 0.727

20

epoch

0.723

10

20

epoch

2. Cora Dataset

GraphCL (Unsupervised Loss – based on DGI)

Citeseer dataset: Modified Subgraph

Random center node: (Original Model)

PageRank max center node:

PageRank min center node:

Cora dataset: Modified Subgraph

Random center node: (Original Model)

PageRank max center node:

PageRank min center node:

5. Conclusion

Conclusion

- 1. We simply identified the GraphCL unsupervised version.
- 2. We implementation the GraphCL model with 4 augment functions.
- 3. We classified node feature in citation dataset using GraphCL successfully.
- 4. We modify the subgraph function with PageRank algorithm.
- 5. PageRank algorithm seems to work quite well but needs experimentation with a larger dataset.

Thank you