

PTP Flood: ataque cibernético de DoS em cliente PTP

Diego Piffaretti Anderson Santos Gabriela Dias

Instituto Militar de Engenharia (IME)

Contextualização

Uso do PTP (Precision Time Protocol)

- Indústrias de Automação e Controle
- Data Centers
- Serviços Financeiros
- Redes de Telecomunicações
- Indústria de Energia
- Televisão e Radiodifusão

Motivação

- Decreto nº 9.573/2018 do Brasil aprovou a Política Nacional de Segurança de Infraestruturas Críticas (PNSIC)
- Meta migrando seu datacenter para utilizar PTP

Presidência da República Secretaria-Geral Subchefia para Assuntos Jurídicos

DECRETO Nº 9.573, DE 22 DE NOVEMBRO DE 2018

Aprova a Política Nacional de Segurança de Infraestruturas Críticas.

PRESIDENTE DA REPÚBLICA, no uso da atribuição que lhe confere o art. 84, caput, inciso VI, alínea "a", da Constituição,

DECRETA:

Art. 1º Fica aprovada a Política Nacional de Segurança de Infraestruturas Críticas - PNSIC, nos termos do Anexo.

Art. 2º Compete ao Gabinete de Segurança Institucional da Presidência da República o acompanhamento dos assuntos pertinentes às infraestruturas críticas no âmbito da administração pública federal.

Art. 3º A administração pública federal direta, autárquica, fundacional e as empresas estatais dependentes de recursos do Tesouro Nacional para o custeio de despesas de pessoal ou para o custeio em geral considerarão, em seus planejamentos, ações que concorram para a segurança das infraestruturas críticas.

Meta

Making Our Network Clocks More Precise for the Metaverse

We're deploying Precision Time Protocol (PTP) across our data centers to sync our computer networks down to nanoseconds. PTP offers a new...

21 de nov. de 2022

M Engineering at Meta

PTP: Timing accuracy and precision for the future of computing

Meta is deploying a timing protocol, Precision Time Protocol (PTP), that will offer new levels of accuracy and precision to our networks and...

21 de nov. de 2022

Problema de pesquisa

	Ataques		Versão do PTP		
Artigo	DoS	Replay	Outros	PTP v2.0 (IEEE-2018)	PTP v2.1 (IEEE-2019)
Fotouhi [Fotouhi et al. 2023]	X	X	X		X
Berardi [Berardi et al. 2023]	X		X		X
Rezabek [Rezabek et al. 2023]		X	X		X
Alghamdi [Alghamdi and Schukat 2022]	X	X	X		X
Moradi [Moradi and Jahangir 2021]			X	X	
Alghamdi [Alghamdi and Schukat 2021]		X			X
Alghamdi [Alghamdi 2021]	X	X	X		X
Moussa [Moussa et al. 2020]			X	X	
Alghamdi [Alghamdi and Schukat 2020a]			X	X	
DeCusatis [DeCusatis et al. 2020]	X			X	
Alghamdi [Alghamdi and Schukat 2020c]	X	X	X		X
Alghamdi [Alghamdi and Schukat 2020b]		X	X		X
Alghamdi [Alghamd and Schukat 2020]		X	X		X
Itkin [Itkin and Wool 2020]			X	X	

Dados	Tempo de gravação	PPS	PPS Retransmitidos	
Alpha	1 minuto	255,1	3743,57	
Beta	3 Minutos	254,7	3336,18	

Minuto	МВ	Porcentagem	MB	Porcentagem
1	99	9,7%	70	6,8%
2	181	17,7%	134	13,1%
3	264	25,8%	184	18,0%
4	327	31,9%	230	22,5%
5	380	37,1%	295	28,8%
6	458	44,7%	353	34,5%
7	537	52,4%	418	40,8%
8	607		466	45,5%
9	654	mostra alpha	514	50,2%
10			591	57,7%
11		ge 100% de uso	6.	active bates
12	822 de	memória RAM	/(ostra beta
13	886	os 16 minutos	atinge	100% de uso
14		os to minutos	8 de m	emória RAM
15	982	95,9%		
16	1024	100%	aos	18 minutos
17	N/A	N/A	98	
18	N/A	N/A	1024	100,0%

Avaliação

Regressão linear das amostras

- Amostra alpha: y = 61.66176X + 78.125
- Amostra beta: y = 57.41176X + 12.03268

Mitigações

- Anexar um marcador à primeira mensagem originada do mestre e incrementar esse valor para cada mensagem subsequente
- Estabelecimento de uma identidade digital para os nós mestres

Considerações finais

- Análise dos resultados evidenciou que ataques de replay em um cliente PTP, mesmo com TLV habilitado, resultam em negação de serviço (PTP flood)
- O consumo de memória durante o ataque demonstrou um comportamento linear ao longo do tempo
- Identificação e prevenção desses ataques são fundamentais para garantir a integridade e disponibilidade dos sistemas de rede

Trabalhos futuros

- Outras técnicas de ataques no PTP com requisitos de segurança disponíveis implementados
- Explorar as mitigações
- Análises mais avançadas da regressão linear com novas amostras

OBRIGADO

Perguntas?

martins.diego@ime.eb.br www.comp.ime.eb.br/pos/

Patrocinadores do SBSeg 2024!

nicht egibt Google 🦓 Tempest

