

SPARK FOUNDATION

Predict the percentage of an student based on the no. of study hours(TASK 1)

step 1:

Import the reqiured library

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: data = pd.read_csv("data_list.csv")
```

Analyze the data

In [3]: data.head(19)

Out[3]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67

In [4]: data.describe()

Out[4]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

```
In [5]: data.shape
Out[5]: (25, 2)
In [6]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 25 entries, 0 to 24
        Data columns (total 2 columns):
             Column Non-Null Count Dtype
                     25 non-null
                                     float64
         0
             Hours
             Scores 25 non-null
         1
                                     int64
        dtypes: float64(1), int64(1)
        memory usage: 528.0 bytes
```

Plotting The Data In Various Type

```
In [7]: data.plot(x='Hours',y='Scores',style='*')
    plt.title('Hours vs Percentage')
    plt.xlabel('Hours studied')
    plt.ylabel('Percenatge Scores')
    plt.show()
```


In [8]: data.plot.pie(x='Hours',y='Scores')

Out[8]: <AxesSubplot:ylabel='Scores'>


```
In [9]: data.plot.scatter(x='Hours',y='Scores')
```

Out[9]: <AxesSubplot:xlabel='Hours', ylabel='Scores'>

Out[10]: <AxesSubplot:xlabel='Hours'>

Preparing The Data

```
In [11]: X = data.iloc[:,:-1].values
y = data.iloc[:,1].values
```

Splitting The Data

```
In [12]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s
```

Check Train DataSet

```
In [13]: from sklearn.linear_model import LinearRegression
    mo = LinearRegression()
    mo.fit(X_train, y_train)

Out[13]: LinearRegression()

In [14]: print(mo.intercept_)
    print(mo.coef_)

    2.0181600414346974
    [9.91065648]
```

Plotting The Regression Line

```
In [15]: plt.scatter(X_train, y_train)
    plt.plot(X_train,1.495142109236383 + 9.87171443*X_train, 'r' )
    plt.title("prediction")
    plt.xlabel("Hours")
    plt.ylabel("Scores")
    plt.show()
```


Making Predictions

Out[17]:

	Actual	Predicted
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

Predicting the score for the study of 9.25 hours

```
In [18]: pred_score = mo.predict([[9.25]])
print("The predictedn score is :",pred_score)
```

The predictedn score is : [93.69173249]

Evaluating the Model

```
In [19]: from sklearn import metrics
print('Mean Absolute Erorr:', metrics.mean_absolute_error(y_test, y_pred))
```

Mean Absolute Erorr: 4.183859899002975