

Módulo 2

Avaliação Desempenho: Métricas

1. Introdução

Pretende-se com esta sessão prática que os alunos percebam quais as grandezas envolvidas na avaliação do desempenho de um processador e a forma como estas se relacionam.

2. Exercícios

1) Considere um processador com 3 classes de instruções com o CPI indicado na tabela 1:

Tipo de instrução	СРІ
Α	1
В	2
С	3

Tabela 1 – CPI por classe de instrução

Um programador tem que seleccionar o compilador a usar para uma determinada aplicação. O número de instruções de cada classe gerado por cada um dos compiladores é apresentado na tabela 2:

Nº de instruções por classe			
Compilador	Α	В	С
C1	1*10 ⁶	3*10 ⁶	4*10 ⁶
C2	5*10 ⁶	2*10 ⁶	3*10 ⁶

Tabela 2 – Nº de instruções por classe e compilador

- a) Calcule, para cada um dos compiladores o nº de instruções executadas, o CPI global e o número de clock cycles necessário para executar a aplicação. Qual o compilador que produz código mais rápido? Quantas vezes mais rápido que o outro compilador?
- b) Se a frequência de relógio deste processador é de 1 GHz, qual o tempo de execução da aplicação?
- c) Com algumas alterações da organização do processador e da tecnologia usada para o construir, uma equipa de projetistas conseguiu aumentar a frequência do relógio para 2 GHz. No entanto, o CPI de cada uma das classes de instruções aumentou, conforme ilustrado na tabela 3. Calcule o tempo de execução do código gerado por cada um dos compiladores.

Tipo de instrução	СРІ
Α	2
В	3
С	4

Tabela 3 – CPI por classe de instrução

- 2) Considere que o projeto de um processador e respetivo compilador está pronto. Compete-lhe agora decidir se este projeto deve ser implementado, ou se deve ser investido mais tempo a melhorá-lo. As opções disponíveis são:
 - i. Manter o projeto como está frequência do relógio de 1.5 GHz e com o CPI por classe de instrução e frequência de ocorrência de cada classe conforme apresentado na tabela 4. Esta opção é designada por base.
 - ii. Introduzir alterações na organização do processador frequência do relógio de 2 GHz e com o CPI por classe de instrução e frequência de ocorrência de cada classe conforme apresentado na tabela 4. Esta opção é designada por hard.

Classe	CPI _{base}	CPI _{hard}	Freq
Α	2	2	40%
В	3	2	25%
С	3	3	25%
D	5	4	10%

Tabela 4 – Dados para opção base e hard

- a) Qual o CPI médio de cada uma das máquinas?
- b) Lembrando que o MIPS nativo é dado por MIPS = #I / (Texec * 10⁶), qual o MIPS nativo de cada uma das máquinas? E o MIPS de pico (peak)?
- d) Qual o ganho em desempenho conseguido com o processador otimizado para um programa típico?
- e) A equipa responsável pelo compilador pensa conseguir desenvolver um produto mais sofisticado que reduziria o número de instruções nas proporções indicadas na tabela 5. A opção, que consiste na máquina base com o compilador otimizado, é designada por comp. Qual o CPI obtido ? Qual o ganho relativamente a base e a hard?

Classe	Freq
Α	50%
В	25%
С	20%
D	05%

Tabela 5 – Percentagem de instruções executadas com a opção comp

c) A combinação da versão *hard* e *comp* é designada por *comb*. Qual o CPI global e qual o ganho de desempenho relativamente a *base*?

3) Considere a máquina FP, que dispõe de uma unidade de vírgula flutuante e realiza estas operações em hardware. A tabela 7 indica a percentagem de ocorrência típica de cada tipo de instrução para um programa genérico e o respetivo CPI.

Instrução	% ocorrência	СРІ
Multiplicação FP	10 %	6
Divisão FP	5 %	20
Adição FP	30 %	4
Operações inteiras	55 %	2

Tabela 7 - % de ocorrência e CPI para a máquina FP

- a) Qual o CPI global para este programa genérico?
- b) Suponha que é possível reduzir para metade o CPI das divisões FP. Qual o ganho de desempenho?
- c) Se em vez de reduzir o CPI das divisões fosse possível reduzir para metade o CPI das adições FP, qual seria o ganho de desempenho? Como interpreta este resultado à luz da lei de Amdahl?
- d) Suponha uma outra máquina NFP, que não tem uma unidade de vírgula flutuante e realiza todos os cálculos usando a unidade de inteiros. Sabe-se que uma multiplicação FP requer 30 operações inteiras, uma adição FP requer 20 e uma divisão requer 50. Quantas vezes mais rápida é a máquina FP para o programa apresentado?
- e) Se ambas as máquinas tiverem uma frequência do relógio de 1 GHz qual o MIPS nativo de cada uma?