Convolutional Neural Network (CNN)

200504 이 승 한

[복습] Fully Connected Layer (전결합 계층)

[복습] Fully Connected Layer (전결합 계층)

Fully Connected Layers

What's the difference?

[Fully Connected Layer] [Convolutional Layer] 젂결합 계층 합성곱 계층 필터 가중치 (Inputs) (Filter Weights) 입력 (Inputs) 가중치 X_0 활성 함수 (Weight) W_0 (Activation Function) w_0 (Activation Function) X_1 W_1 W_2 X_2 W_3 X_3

[Input] 입력으로 들어오는게 **사진/영상**

[Weight] 가중치가 <mark>필터</mark>라는 점

[연산 방식] 단순 곱셈이 아니라 합성곱

Not so different!

(1) input

(2) Filter (= weight matrix) & (3) 합성곱

(1) FC의 수 식 적 표 현

$$W = [w_0, w_1, ..., w_{M-1}]^T$$

$$b = [b_0, b_1, ..., b_{M-1}]^T$$

$$y_0 = a(w_0^T x + b_0)$$

$$y_1 = a(w_1^T x + b_1)$$

$$\vdots$$

$$y_{M-1} = a(w_{M-1}^T x + b_{M-1})$$

$$y = a(Wx + b)$$

뉴런들이 곱해진 뒤, 모두 더해짐! (Matrix 곱 연산으로 표현)

(2) Conv의 수 식 적 표 현

$$\left[Y_{i,j} = a(W_{i,j} * X_i + b_j)\right]$$

C(in) x C(out)번의 합성곱 연산이 이루어짐!

3. Why Convolutional Layer?

[Fully Connected를 쓸 경우]

[Convolutional Layer를 쓸 경우]

Ex) input 이미지가 1024x1024 크기일 때

FC 대신 Convolutional Layer 쓰는(써야하는) 이유?

"Parameter 수의 감소!"

(1) Channel

이미지 출처: https://en.wikipedia.org/wiki/Channel_(digital_image)

(2) Feature Map

합성곱을 통해서 만들어진 출력!

합성곱 계층의 의미? 여러 채널에서 **특별한 "특징"이 나타내는 위치를 찾아내**는 역할!

C2: feature map (16x) 10x10

> S2: feature map (16x) 5x5

> > subsampling

layer 2

classifier

S1: feature map (6x) 14x14

input 32x32

(3) Stride

합성곱 계산시, 커널을 이동시키는 거리! Stride를 크게 할 수록, Feature Map의 크기는 줄어듬

(4) Padding

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

주위에 숫자(주로 0)을 둘러씌우는 것! (For 크기 보존) 합성 곱 연산시, 필터(커널)의 크기에 따라 영상의 크기가 줄어드는 문제 발생 ex) 크기가 (2N+1)인 커널 -> 상하좌우로 N개의 zero-padding!

(5) Pooling

Sampling이라고 보면 됨! (여러 화소를 하나의 화소로 축약!) 즉, "영상/사진의 크기가 줄어들고, 정보가 종합(요약)된다!"

(5) Pooling

Pooling Layer (vs Convolutional Layer)

- 1) 학습대상 parameter 없음
- 2) Pooling Layer를 통과하면 행렬의 크기 감소
- 3) Pooling Layer를 통해서 채널 수 변경 없음

(5) Pooling

why pooling? Receptive Field?

(h,w)영상 크기 작아지고, (c)채널 수 늘어나게 될 것!

같은 크기의 filter여도, Pooling에 의해 작아진 feature map에 적용되면, "원본 영상에서 차지하는 범위(=receptive field)" 넓다

(6) Flatten

평탄화! -> Vector로 만들어줌단지 쭉 피는 것을 의미! (연산 과정 X)Convolutional Layer & Fully Connected 사이를 연결해주는 역할

(7) Softmax Function

for Multi-class Classification

5. Dropout

To prevent overfitting!

Training 할 때만! (testing할 때는 X)

Ex) Dropout rate 0.3:30%의 node는 사용 X (less parameter)

Overfitting 문제가 해결되는 이유를, 직관적으로 생각해보자!

100가지의 일, 100명의 사람이 하는 경우? 20명의 사람이 하는 경우?

6. Gradient Vanishing Problem

Gradient Vanishing?

(기울기 소실 문제)

DEEP 할수록 gradient vanishing! WHY?

(Backpropagation의 수식을 생각해보자)

(input layer쪽으로 갈수록, 미분값의 곱이 많아짐!)

6. Gradient Vanishing Problem

Derivative of Sigmoid Function

$$\begin{split} \frac{\partial \ltimes_3}{\partial Z_3} &= \frac{\partial}{\partial Z_3} \left[\frac{1}{1 + e^{-Z_3}} \right] \\ &= \frac{\partial}{\partial Z_3} \left(1 + e^{-Z_3} \right)^{-1} \\ &= -(1 + e^{-Z_3})^{-2} (-e^{-Z_3}) \\ &= \frac{e^{-Z_3}}{(1 + e^{-Z_3})^2} \\ &= \frac{1}{1 + e^{-Z_3}} \cdot \frac{e^{-Z_3}}{1 + e^{-Z_3}} \\ &= \frac{1}{1 + e^{-Z_3}} \cdot \frac{(1 + e^{-Z_3}) - 1}{1 + e^{-Z_3}} \\ &= \frac{1}{1 + e^{-Z_3}} \cdot \left(\frac{1 + e^{-Z_3}}{1 + e^{-Z_3}} - \frac{1}{1 + e^{-Z_3}} \right) \\ &= \frac{1}{1 + e^{-Z_3}} \cdot \left(1 - \frac{1}{1 + e^{-Z_3}} \right) \\ &= \ltimes_3 \cdot (1 - \ltimes_3) \longrightarrow \qquad \text{Maximum : 0.25} \end{split}$$

6. Gradient Vanishing Problem

Gradient Vanishing?

How to Solve?

1) Activation Function으로 <u>Sigmoid -> ReLU</u>

- 2) 적절한 weight 초기값: Xavier Initialization, He Initialization
- 3) Batch Normalization

Internal Covariance Shift

Training 과정에서, parameter의 변화로 인해
Input data의 distribution이 달라지는 현상! -> 불안정한 training

이 문제를 해결하는 방법이 Batch Normalization! 이로써 안정적인 training을 가능하게 하고, gradient vanishing problem 해결!

Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

training data 전체에 대하여 normalize하는 것이 좋겠지만,
Mini-batch Gradient Descent방식을 사용하게 되면,
parameter의 update Mini-batch단위로 이루어지기
때문에, Mini-batch를 단위로 Batch Normalization(BN) 실시!

Internal Covariance Shift 문제를 해결하기 위해, " 층의 input의 distribution을 평균 0, 표준편차 1인 input으로 normalize"시키는 방법

Internal Covariance Shift

Batch Normalization

- < BN의 장점 >
- 1) Gradient vanishing 문제 해결!
- 2) Regularization 효과가 있음 (overfitting 방지)
 - (regularization 효과를 주는) Dropout을 제외할 수 있게 해줌
 - Dropout 경우 효과는 좋지만 학습 속도가 느려진다는 단점!
- 3) Gradient의 scale 영향을 덜 받음!

CNN의 대표 모델들에 대해 알아보자.

LeNet-5, AlexNet, VGG16, GoogLeNet, ResNet

1. LeNet-5

6채널의 28*28 feature map

- 1998. CNN의 기본구조 창립
- MNIST data 사용

2. AlexNet

- Conv, Max Pooling, Dropout 5개
- Activation function: ReLU
- Batch Stochastic Gradient Descent

3. VGG-16

4. GoogLeNet (Inception)

"Let's go Deeper and Deeper"

Inception 모듈에 대해 먼저 이해해야!

4. GoogLeNet (Inception)

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Inception module:다양한 크기의 합성곱 계층을 한 번에 계산!

1x1 convolution : for 연산량 줄이기! (bottle neck 구조라고도 함)

4. GoogLeNet (Inception)

(b) Inception module with dimension reductions

1x1 Conv를 하면, 왜 연산량이 줄어들까?

4. GoogLeNet (Inception)

역전파에서 기울기 소실이 발생하는 것을 방지하기위해 추가 분류기 존재

5. ResNet

152 Layers? How that deep?

Residual Block

5. ResNet 사이사이에 있는 Skip-Connection이 한 몫함!

Feature를 추출하기 전/후를 더함!

5. ResNet

Residual 구조

Identity Mapping

Feature map을 추출한 뒤, activation function을 하던 것이 일반적이었으나, 개선된 구조에서 는 "Pre-Activation" (activation function이 먼저 들어감!)

6. DenseNet

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

6. DenseNet

.

쉽게 말해, "이전 feature map에 누적해서 concatenate!"

6. DenseNet

Deep -> 연산량 too much! 그래서 "1x1 Conv (= Bottleneck Layer)"사용함

