TALLER 1 - LÓGICA MATEMÁTICA

KEVIN VELEZ ESCARRIA

Problema 1

Mostrar que si de $\Gamma \vdash \alpha$ y de $\alpha \vdash \neg \beta$ entonces $\Gamma \vdash \beta$

Demostración:

Problema 2

Demostrar que:

a)
$$\vdash (\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta)$$

b)
$$\alpha \rightarrow \beta, \beta \rightarrow \gamma \vdash \alpha \rightarrow \gamma$$

c)
$$(\alpha \to \beta) \vdash \neg \beta \to \neg \alpha$$

d)
$$\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

e)
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$

f)
$$\vdash (\alpha \land \beta) \rightarrow \alpha$$

g)
$$\vdash (\alpha \land \beta) \rightarrow \beta$$

Demostración:

a)
$$\vdash (\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta)$$

1.
$$(\neg \neg \beta \rightarrow \neg \alpha) \vdash \alpha \rightarrow \neg \beta$$
 TD

2.
$$(\neg \neg \beta \rightarrow \neg \alpha), \alpha \vdash \neg \beta$$
 TD

3.
$$(\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta) \quad AX_3$$

4.
$$(\neg\neg\beta\rightarrow\neg\alpha)$$

5.
$$\alpha \rightarrow \neg \beta$$
 $MP(5,4)$

$$\alpha$$
 B

7.
$$\neg \beta$$
 $MP(7,6)$

b)
$$\alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$$

c) $(\alpha \to \beta) \vdash \neg \beta \to \neg \alpha$

1.
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 AX_2

2.
$$\beta \rightarrow \gamma$$

3.
$$\alpha \to (\beta \to \gamma)$$
 Prop 7.1

4.
$$(\alpha \to \beta) \to (\alpha \to \gamma)$$
 $MP(3,1)$

1.
$$\neg \neg \alpha \rightarrow \alpha$$
 Prop 7.4

2.
$$\alpha \to \beta$$

3.
$$\beta \rightarrow \neg \neg \beta$$
 Prop 7.4

4.
$$\neg \neg \alpha \rightarrow \beta$$
 b) (1,2,3)

5.
$$\neg \neg \alpha \rightarrow \neg \neg \beta$$
 b) (4,3,5)

6.
$$(\neg \neg \alpha \rightarrow \neg \neg \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha) \quad AX_3$$

7.
$$\neg \beta \rightarrow \neg \alpha$$
 $MP(5,6)$

Fecha: Octubre, 2022.

1

- d) $\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ 1. $((\beta \to \gamma) \to ((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))) \to$ $(((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))) \to ((\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))))$ AX_2 2. $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ AX_2 3. $(\beta \to \gamma) \to ((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ Prop 7.1. 4. $((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))) \to ((\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ MP(4, 1)5. $(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$ AX_1 6. $(\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ MP(5, 4)
- e) $\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$ 1. $((\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))) \to$ $(((\beta \to \gamma) \to (\alpha \to \beta)) \to ((\beta \to \gamma) \to (\alpha \to \gamma)))$ AX_2 2. $(\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ (d) 3. $((\beta \to \gamma) \to (\alpha \to \beta)) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$ MP(1,2)4. $(\alpha \to \beta) \to (((\beta \to \gamma) \to (\alpha \to \beta)) \to ((\beta \to \gamma) \to (\alpha \to \gamma)))$ Prop 7.1 5. $(4) \rightarrow (((\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta))) \rightarrow ((\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))))$ AX_2 6. $((\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \beta))) \to ((\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma)))$ MP(5,4)7. $(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \beta))$ AX_1 8. $(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$ MP(7,6)
- f) $\vdash (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ 1. $\alpha, \beta \vdash \alpha \quad TD$ 2. $\alpha \quad P$
- g) $\vdash (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \beta$ 1. $\alpha, \beta \vdash \alpha \quad TD$ 2. $\beta \quad P$

Problema 3

Demuestrar sin utilizar TD, ni RA, los ejercicios d) y e) del item anterior.

Demostración: Se hizo en el problema 2.

Problema 4

Si se escoge a $\{\neg, \lor\}$ como conjunto completo de conectivos; y como sistema deductivo:

 $AX_{1}: \neg(\alpha \lor \alpha) \lor \alpha$ $AX_{2}: \neg\alpha \lor \alpha \lor \beta$ $AX_{3}: \neg(\alpha \lor \beta) \lor \beta \lor \alpha$ $AX_{4}: \neg(\neg\alpha \lor \beta) \lor \neg(\gamma \lor \alpha) \lor \gamma \lor \beta$ $\neg\alpha \lor \beta$

 $MP: \quad \alpha \qquad \beta$

Demostrar el teorema $\vdash \neg \alpha \lor \alpha$.

Demostración:

1. $\neg(\neg(\alpha \lor \alpha) \lor \alpha) \lor \neg(\neg\alpha \lor \alpha \lor \alpha) \lor \neg\alpha \lor \alpha$ AX_4 2. $\neg(\alpha \lor \alpha) \lor \alpha$ AX_1 3. $\neg(\neg\alpha \lor \alpha \lor \alpha) \lor \neg\alpha \lor \alpha$ MP(2,1)4. $\neg\alpha \lor \alpha \lor \alpha$ AX_2 5. $\neg\alpha \lor \alpha$ MP(4,3)

Universidad del Valle

Utilizando la siguiente igualdad $p \lor q = \neg p \to q$, muestre que el sistema deductivo anterior se presenta

$$AX_1: (\alpha \lor \alpha) \to \alpha$$

$$AX_3: (\alpha \vee \beta) \to (\beta \vee \alpha)$$

$$AX_2: (\alpha \to \alpha) \lor \beta$$

$$AX_3: (\alpha \lor \beta) \to (\beta \lor \alpha)$$

$$AX_4: (\alpha \lor \beta) \to ((\gamma \lor \alpha) \to (\gamma \lor \alpha))$$

$$MP: \quad \frac{\alpha}{\alpha \to \beta}$$

Demostración:

Problema 6

Use el sistema deductivo del ejercicio anterior para demostrar el teorma

a)
$$\vdash \alpha \rightarrow \alpha$$

b)
$$\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$$

Demostración:

a)
$$\vdash \alpha \rightarrow \alpha$$

1.

Problema 7

Si se escoge $\{\neg, \rightarrow\}$ como conjunto completo de conectivos; y como sistema deductivo:

$$AX_1: (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$

$$AX_2: \quad \alpha \to (\neg \alpha \to \beta)$$

$$AX_3: \quad (\neg \alpha \to \alpha) \to \alpha$$

$$AX_3: (\neg \alpha \to \alpha) \to \alpha$$

$$MP: \underline{\alpha}$$

Demostrar el teorema $\vdash \alpha \rightarrow \alpha$

Demostración:

1.
$$(\alpha \to (\neg \alpha \to \alpha)) \to (((\neg \alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha))$$
 AX_1

2.
$$\alpha \to (\neg \alpha \to \alpha)$$
 AX_2

3.
$$((\neg \alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha)$$
 $MP(1,2)$

4.
$$(\neg \alpha \to \alpha) \to \alpha$$
 AX_3 S AX_4 AX_4 AX_4

MP(4, 3)