DBSP机器人动作编辑器使用指南

DBSP机器人动作编辑器使用指南

- 1. 概要
- 2. 连接DBSP开发板
- 3. 工程文件操作
 - 3.1 打开工程文件
- 4. 舵机
 - 4.1 扫描舵机列表
 - 4.2 舵机在线调试
 - 4.3 舵机零点调整
 - 4.4 舵机编号与机器人关节映射
- 5. DBSP动作设计与测试
 - 5.1 动作帧捕捉-添加Action
 - 5.2 Marco 巨集
 - 5.2.1 创建巨集
 - 5.2.2 执行Marco
 - 5.2.3 查看Marco的信息
 - 5.3 遥控手柄控制表 JoystickTable
 - 5.3.1 从DBSP拓展版获取工程
- 6. 调试经验与故障排查
 - 6.1 舵机
 - 6.2 动作调试
 - 6.3 外部电源与电流
 - 6.4 配件
- 7. Reference

1. 概要

在刚开始上手DBSP的时候,因为对DBSP了解不多,软件不够熟悉,走了一些弯路。这篇文章记录了在使用BDSP的IDE过程中的笔记还有注意事项。

2. 连接DBSP开发板

操作必须严格按照顺序操作

- 1. 打开机器人电源
- 2. 用USB线连接机器人与PC
- 3. 打开FashionStar Develop DBSP 上位机
- 4. 刷新串口, 打开串口(同时设置波特率等参数)
- 5.在 Servo Manager 工具栏处,打开工程
- 6.在 Servo Manager -> Servo 工具栏,点击扫描舵机(更新舵机状态)

3. 工程文件操作

3.1 打开工程文件

假如现在再次重新打开IDE,当前显示的是空的工程,这个时候需要从Servo Manager里面打开 Open 按钮,打开 src/dbsp/green_man.svproj 工程文件

注: 本文的配图是对旧的svproj文件的截图,与最新的动作设计有区别。

TODO 改成左侧的那个icon

上位机打开dbsp的工程截图

4. 舵机

4.1 扫描舵机列表

在 COM?-Servo Manager 里面选取 Servo 选择Scan, 扫描所有的舵机

4.2 舵机在线调试

TODO 配图 小闹钟

在 Servo 工具栏下有 保持Hold 开关,默认是关闭OFF状态,此时舵机卸力。

选择一个舵机,打开Hold模式, 然后点击闹钟样式的按钮, 开启RealtimeControl 模式(实时控制)。 此时拖动此舵机的角度滑动条, 舵机可以同步运动。

注意: 在线运行一个Marco/Action之后,舵机列表的角度信息并不会自动更新,此时需要再次点击实时控制按钮(小闹钟)

注: Action, Marco的概念在后续会提到。

4.3 舵机零点调整

当给一个机器人编辑好程序后,将程序用到另外一台机器人上面的时候,因为组装误差的原因,机器人并不能准确的执行原有的动作,此时需要进行零点调整。

视频教程:

DSBP舵机动作编辑偏差调整

调整思路:

- 1. 使用一个标准动作作为参考,此时的角度作为零点, 后续的所有的动作,都是基于这个参考动作来设计的 例如直立机器人直立时候, 关节的各个角度为0度。
 - 选用直立这个动作,是因为角度误差比较容易观测
- 2. 舵机卸力,然后手掰到想要的动作。
- 3. 舵机上力,使用软件进行角度 Angle微调(adjust), 直到达到一个完美的直立动作。
- 4. 设置舵机的Adjust 角度,让角度 Angle值为0.

4.4 舵机编号与机器人关节映射

舵机与DBSP主板的连接方式,串联顺序就决定了这个舵机的唯一标识。

Stream 流 代表DBSP舵机是接在DBSP开发板的第几个舵机接口上,编号从1-6

Order 顺序 DBSP舵机是串联的,在一个Stream上的舵机,按照离开发板的距离,直接连在开发板上的舵机编号为1,后续依次递增。

在实际使用的时候,如果不知道机器人关节与对应舵机编号,可以通过在线调整功能来试验,调整某个舵机的角度, 观察机器人上的哪个关节在动。

5. DBSP动作设计与测试

5.1 动作帧捕捉-添加Action

Action 动作指令,是Command指令中的一种类型, 它包含了各个舵机对应的目标角度,以及花多长时间运动到该目标角度。

可以在Action页面手动创建一个动作,也可以通过动作帧捕捉的技术创建一个Action,下面主要介绍如何通过动作帧捕捉添加动作帧。

首先将所有的舵机卸力,Hold开关设置为OFF状态。

手动将机器人掰到想要的位置

点击Servo工具栏下方的测量角度 Measure Angle

此时上位机会查询各个舵机的角度状态

默认会自动将这个测量值转换为Action, 点击 OK 按钮

给这个新的动作命名为蹲下,同时也可以设置中间的间隔时间。如果勾选 As The Same Interval 的话,各个舵机就会通过相同的时间旋转到目标角度。

点击 OK,保存此Action.

打开 Action 界面,可以看到我们新添加的动作。在Action界面,还可以选中某个特定的Action编辑角度 Angle 与间隔时间 Interval.

手动旋转往往不准确,此时可以通过软件对角度进行微调。

5.2 Marco 巨集

Marco 巨集 由若干个Command指令构成,指令按照时间顺序依次执行。

Command指令有很多Type 类型

- Delay 延时指令 可以设置不同的延时时间,每个延时时间会创建一个Delay指令,延时多少ms,它的ID就是多少。
- Action 动作指令
- Marco 巨集, Marco也可以由其他的Marco构成,但是只支持单层嵌套

5.2.1 创建巨集

进入 Marco 巨集界面,点击 + 号,添加一个新的Marco 蹲起

创建完成之后,选中此Marco,在右侧的Marco详情页中添加相关的指令,完整系列动作。

关键属性介绍

- Loop 该指令执行多少次,单次执行就是1
- Current Loop 当前的循环的次数,随着程序的执行,动态更新。
- Process Ratio 执行百分比,所代表的含义是执行这个Command的前百分之多少的指令,默认是完全执行 (100%)

5.2.2 执行Marco

选中特定的Marco,点击运行 Run Marco 按钮,机器人就可以执行当前的Marco。DBSP每开始执行一条指令 Command,就会给上位机发送一条反馈信号,上位机右侧展示的是当前执行到了哪个指令。

5.2.3 查看Marco的信息

如果想通过MaixPy控制DBSP执行特定的Marco就需要知道每个Marco对应ID还有Marco执行所需要的总时间。 查看ID需要直接阅读工程文件的XML格式的源文件,用文本编辑器打开(例如VSCode)。

详情见 doc/DBSP的工程源文件解析/DBSP的工程源文件解析.md

总时间,可以通过DBSP的IDE查看。创建一个空的Marco,然后再把你想要查询的Marco添加进来,在右侧的指令列表里面就可以看到这个Marco的总时长。

查的ID还有总时长之后,就需要更新 src/maixpy/robot body.py 对应动作的参数。

```
class RobotBody:
   '''控制双足机器人身体的运动'''
   # 定义常量
   # 恢复初始状态
   MARCO ID INIT POSE = 166367466
   MARCO INTERVAL INIT POSE = 300
   # 向前走
   MARCO ID GO FORWARD STEP = 1656218031
   MARCO INTERVAL GO FORWARD STEP = 3000
   # 向后退
   MARCO ID GO BACKWARD STEP = 915727867
   MARCO INTERVAL GO BACKWARD STEP = 3500
   # 向左平移
   MARCO ID SHIFT LEFT STEP = 1962515968
   MARCO_INTERVAL_SHIFT_LEFT_STEP = 1100
   # 向右平移
   MARCO ID SHIFT RIGHT STEP = 37173147
   MARCO INTERVAL SHIFT RIGHT STEP = 1100
   # 向左转
   MARCO ID TURN LEFT STEP = 1913442680
   MARCO INTERVAL TURN LEFT STEP = 2000
   # 向右转
   MARCO ID TURN RIGHT STEP = 316806338
   MARCO INTERVAL TURN RIGHT STEP = 2000
   # 头部舵机的角度 (头部舵机单独控制)
```

```
SERVO_ID_HEAD = 0x31
# 舵机总数
SERVO_NUM = 17
...略...
```

5.3 遥控手柄控制表 JoystickTable

JoystickTable 遥控手柄控制表 定义了**Joystick** 遥控手柄不同的按键与状态与Marco巨集(用Marco的ID号来表示) 之间的映射关系。

按键状态如下:

- 按键按下 ButtonPress
- 按键长按 ButtonLongPress
- 按键释放 ButtonUp

另外还可以设置当前的这个按键指令是否可以被中断,默认为interruptible抢占式中断。

也就是说,如果当前在执行某个动作,按下另外一个按钮, 马上中断原来的动作,然后执行新的动作。

注意 只有在**JoystickTable**里面编辑了映射关系的**Marco**,在上传**(upload)**的时候, **Marco**才会被保存在**DBSP**主 控板里面。在IDE中新建Marco的时候,这个Marco并没有保存在DBSP主板上,IDE是通过发送舵机角度控制指令来完成测试的。

另外,如果一个按键没有编辑好与之对应的Marco,在MaixPy订阅了DBSP的按键事件之后, 该按键也不会产生回调函数。

5.3.1 从DBSP拓展版获取工程

什么时候需要这个功能?

- 1. 如果你手里的机器人是已经调整过偏移量的,你想直接获取你手里的这个机器人特定工程文件的时候,用此功能。
- 2. 手里没有这个机器人的工程文件的时候,通过这个功能,可以获取机器人的工程文件。

打开 Control 工具, 然后导入数据。(向上箭头)

然后就可以得到/同步当前机器人内置的工程文件。

可以看到PS2上不同的按键状态对应的Marco(巨集)。

可以保存此工程文件

6. 调试经验与故障排查

6.1 舵机

舵机掉线

在IDE上,突然有舵机下线,或者调试机器人的时候,突然有几个舵机没了力气,机器人倾斜摔倒。需要检查:

• 首先检查舵机是否异常发热

- 断电,重启机器人,重新与电脑链接。
- 另外如果是因为电池没电,需要马上充电防止电池过放。
 电池过放会导致航模电池的永久损坏。

舵机限位

DBSP不能设置舵机的最大角度和最小角度,在拖动滑动条的时候需要慢慢拖动,防止舵机卡住烧坏舵机。

6.2 动作调试

调试顺序

• 先调试腿部的动作,等腿部动作调试完成,机器人可以稳定的前进了,再调试手部的动作。

或者等开发完成之后再添加上手部的动作。(左平移/右平移除外)

• 设计动作的时候,可以做两套动作,胳膊动与不动版本。因为比赛是避障赛,如果距离障碍物很近的时候,此时手臂还是保持不动比较好。

调试时间

- 不能长时间保持一个动作(例如单脚撑地), 舵机受力, 电流会升高, 舵机会发烫。也有可能会烧毁舵机。
- 不能长时间调试,调试20分钟-30分钟,让机器人断电散热。

零点设置

• 机器人的舵机初始角度,可以调整offset。让左右两边的角度同为 0 ,或者互为相反数。 这样做的好处就是调好其中一个动作Action就可以映射为另外一个Action

TODO 零点的截图

脚底板

- 可以借助脚底板与地毯的摩擦力完成旋转动作
- 脚底板互锁之后,容易烧毁胯关节的舵机,需要防止脚底板打架(互锁)
- 可以用脚底板产生一个预动作,然后胯关节快速转动,完成左右平移的作用。

6.3 外部电源与电流

如果对机器人动作调试不熟悉的话,为了避免舵机损坏,建议使用带电流显示的外接电源。监控机器人的电流可以发现动作调试的问题。

- 机器人不Hold的时候 参考电流: 0.2A
- 机器人Hold的时候 参考电流: 0.7A

电流突增

如果遇到电流突然增加的情况(例如1-2A),需要暂停调试,断电检查:

- 有无舵机发烫
- 舵机关节旋转是否流畅
- 舵机所受力矩是否过大,姿态是否需要调整

- 舵机的扭矩不够,机器人脚底舵机还有踝关节舵机受力最大,当倾角过大的时候,机器人的重量会加在舵机上,力矩就会增大,可能会超出舵机的力矩范围,此时电流会突然增大。
- 胯关节的舵机(5-1, 5-2)扭矩不够,步子迈大了之后,容易不完全回到初始位置的角度,此时电流会升高。 抬一下机器人可以解决这个问题

电池没电

当航模电池欠压的时候,DBSP会发出滴~滴~的声响,这个时候请换下航模电池进行充电。

电源开关

机器人用完需要记得关掉DBSP上面的开关,否则会导致电池过放,永久损坏。

6.4 配件

USB接口

需要注意在调试的时候需要防止机器人摔倒造成USB接口损坏,可以使用3M的USB延长线,在线调试机器人。

7. Reference

Fashionrobo 官网

资料下载页

IDE使用-视频教程