

Financial Management

 Definition: Managerial activity that is concerned with planning, implementing, and controlling financial resources of an organization

Financial Management

TRADITIONAL APPROACH

- •Collection of funds from financial institutions
- •Collection of funds: Shares etc.
- •Legal and Accounting relationship

MODERN APPROACH

- •Estimation: Financial requirement
- Optimum capital structure
- •Sources of finance, choices
- Utilization of funds
- Dividend policy
- Cash flow
- Ensuring compliance

Functions

- Financial functions: plan, structure, raise
- Investing functions: investment, utilization
- Dividend distribution functions
- Liquidity maintaining function: cash, inventory, receivable, working capital
- Profit earning functions: expected profit, cost control, pricing
- Controlling functions
- Other functions: ensure compliance, creation of reserve, new projects

LThe role: Chief Financial Officer

- Financial planning
- Financing
- Controlling the use of funds
- Appropriation of profit
- Manage and control treasury

Profit maximization

- Business normally aims to earn profit
 - Owner oriented, Output is more than the input
- How much?
 - Efficient use of capital
 - Consider other factors like society, environment etc.
- May have lack of definiteness:
 - Indistinct which profit?
 - Time value of money
 - Risk and uncertainty

Wealth maximization

- Maximization of Net Present Value (NPV)
- NPV: the more the better
- Negative NPV: not acceptable normally

$$NPV = \frac{A1}{(1+K)^1} + \frac{A2}{(1+K)^2} + \dots + \frac{An}{(1+K)^n} - C$$

A1, A2 ... An: cash inflows – y1, y2.....yn

K: rate of discount

C: initial capital outlay for undertaking the project

NPV and compounding

Say P is the investment and r\% is the interest rate pa:

A1 = Value at the end of Y1 = P + P x
$$r$$
% = P(1 + r)¹

A2 = Value at the end of Y2 =
$$P(1 + r)^2$$

....

An = Value at the end of $Yn = P(1 + r)^n$

Also, for given An and discounting of K, the NPV is $\frac{An}{(1+K)^n}$

Maximization: profit vs. wealth

Profit maximization	Wealth maximization
Traditional approach	More modern approach
Type of profit - not properly	Net Present Value: defined
defined	
Risk, uncertainty - ignored	Risk, uncertainty - considered
Rate of discount not required	Rate of discount required
Time value of money is not	Time value of money is
considered	considered

Benefit to cost ratio

With present value of benefits = PVB, Initial investment = I

Benefit-cost ratio: BCR =
$$\frac{PVB}{I}$$

Benefit-cost ratio: BCR = $\frac{PVB}{I}$ Net benefit-cost ratio: NBCR = $\frac{PVB - I}{I}$

$$NBCR = BCR - 1$$

When BCR	or NBCR	<u>Rule is</u>
>1	>0	May accept
=1	=0	Indifferent
<1	<0	May reject

Benefit to cost ratio example

Initial investmen	t:	₹1,00,000
Benefits:	Year 1	25,000
	Year 2	40,000
	Year 3	40,000
	Year 4	50.000

The benefit-cost ratio measures for this project are:

$$BCR = \frac{\frac{25,000}{(1.12)} + \frac{40,000}{(1.12)^2} + \frac{40,000}{(1.12)^3} + \frac{50,000}{(1.12)^4}}{1,00,000} = 1.145$$

$$NBCR = BCR - 1 = 0.145$$