USCD Embedded C Assignment 4

By Norman McEntire

Norman.mcentire@gmail.com

Step 1. Startup STM32CubeMX

Step 2. Access Board Selector

Step 3. Enter "B-L475E-IOT01A" Board

Step 4. Select Board Photo

Step 5. Select "Start Project"

Step 6. Select **YES** (initialize all peripherals with the default mode)

Step 7. Observe Results (Pinout View)

Step 8. Select Project Manager Tab

Step 9. Enter "Embedded-C-Assigment-4" and select TrueStudio as IDE

Step 10. Select "Generate Code"

Step 11. Select "Open Project"

Step 12. Resulting Project

- Embedded-C-Assignment-4Includes
 - - > 🗁 CMSIS
 - STM32L4xx_HAL_Driver
 - > 🕮 Inc
 - - > 🖻 main.c
 - > 🖟 stm32l4xx_hal_msp.c
 - > c stm32l4xx_it.c
 - syscalls.c
 - > **i** system_stm32l4xx.c
 - > 🕮 startup
 - Embedded-C-Assignment-4.elf.launch
 - Embedded-C-Assignment-4.ioc
 - STM32L475VG_FLASH.ld

Step 13. Crete New BSP Folder under Drivers

Step 14. Results (Notice new BSP Folder)

Step 15. Find the BSP code that is included in STM32Cube/Repository/... Download

Step 16. Drag/Drop Folder into TrueStudio BSP Folder and select Copy Files

Step 17. Results

```
✓ 

Embedded-C-Assignment-4

  > 🗊 Includes
  Drivers

✓ BSP

      ▶ B-L475E-IOT01
      CMSIS
    STM32L4xx_HAL_Driver
  → Inc
  > 🖻 main.c
    > li stm32l4xx_hal_msp.c
    > c stm32l4xx_it.c
    > 🖻 syscalls.c
    > system_stm32l4xx.c
  > 2startup
    i Embedded-C-Assignment-4.elf.launch
    i Embedded-C-Assignment-4.ioc
    STM32L475VG_FLASH.ld
```

Step 15. Confirm that BSP drivers added to project

✓ Embedded-C-Assignment-4 > 🔊 Includes ✓ D
BSP > **l** stm32l475e_iot01_accelero.c > la stm32l475e_iot01_accelero.h stm32l475e_iot01_gyro.c > li stm32l475e_iot01_gyro.h > le stm32l475e_iot01_hsensor.c > la stm32l475e_iot01_hsensor.h > stm32l475e_iot01_magneto.c > la stm32l475e_iot01_magneto.h > la stm32l475e_iot01_psensor.c > la stm32l475e_iot01_psensor.h > **l** stm32l475e iot01 qspi.c > li stm32l475e_iot01_qspi.h > le stm32l475e_iot01_tsensor.c > la stm32l475e iot01 tsensor.h > **l** stm32l475e_iot01.c > li stm32l475e_iot01.h B-L475E-IOT01_BSP_User_Manual.chm Release Notes.html > > CMSIS > > STM32L4xx HAL Driver

Step 16. Find Components directory

Step 17. Drag/Drop Components folder into TrueStudio BSP Folder and select coy files

Step 18. Results

- **∨ ા** Drivers
 - **∨** 🗁 BSP
 - > B-L475E-IOT01
 - Components
 - > E CMSIS
 - STM32L4xx_HAL_Driver
- > 🕮 Inc

Step 19. Add BSP/B-L475E-IOT01 to include path: Properties, C/C++ Build, Settings, Tool Settings, C Compiler, Directories, Include Path, Add

Step 20. In main.c, inside the "while(1)" loop, enter "BSP_" then press Ctrl+SpaceBar to observe BSP_APIs

Step 21. In main.c, add BSP related code header files

```
l *main.c ⋈ l stm32l475e iot01.c
 11
     * This software component is licensed by ST under BSD 3-Clause license,
 12
     * the "License"; You may not use this file except in compliance with the
 13
     * License. You may obtain a copy of the License at:
 14
                         opensource.org/licenses/BSD-3-Clause
 15
 16
     */
 18
 19 /* USER CODE END Header */
 20
 21 /* Includes -----*/
 22 #include "main.h"
 23
 24<sup>©</sup>/* Private includes -----*/
 25 /* USER CODE BEGIN Includes */
 27 #include "stm321475e iot01.h"
 28 #include "stm32l475e iot01 tsensor.h"
 29
 30 /* USER CODE END Includes */
 32 /* Private typedef -----*/
```

Step 22. In main.c, enter BSP related code shown below

```
/* USER CODE BEGIN WHILE */
     BSP TSENSOR Init();
      while (1)
129
130
          // Read Temperature
132
          float temp = BSP TSENSOR ReadTemp();
          printf("temp: %f", temp);
133
          // Read status of push button
136
          uint32 t button = BSP_PB_GetState(BUTTON_USER);
          printf("button: 0x%x\n", button);
         // If button off (1), then turn on LED off, else turn on
          if (button) {
              BSP LED Off(LED GREEN);
          else {
              BSP LED On (LED GREEN);
145
146
147
          HAL Delay(1000);
148
        /* USER CODE END WHILE */
149
150
151
152
        /* USER CODE BEGIN 3 */
153
     /* USER CODE END 3 */
155 }
156
```

Step 23. Properties, C/C++ Build, Settings, Tool Settings, C Compiler, Optimization, None

Step 24. Build Project

Step 25. Results of Build – Part 1

```
Reproblems 🖆 Tasks 📮 Console 🖾 🗏 Properties
CDT Build Console [Embedded-C-Assignment-4]
Generate build reports...
Print size information
                                   hex filename
   text
        data bss
                           dec
  16332 120 3200 19652
                                  4cc4 Embedded-C-Assignment-4.elf
Print size information done
Generate listing file
Output sent to: Embedded-C-Assignment-4.list
Generate listing file done
Generate build reports done
arm-atollic-eabi-objcopy.exe -O ihex Embedded-C-Assignment-4.elf Embedded-C-Assignment-4.hex
10:29:38 Build Finished (took 24s.183ms)
```

Step 26. Results of Build – Part 2

Memory Reg	gions Memory	Details				
Region	Start address	End address	Size	Free	Used	Usage (%)
■ RAM	0x20000000	0x20018000	96 KB	92.77 KB	3.23 KB	3.37%
■RAM2	0x10000000	0x10008000	32 KB	32 KB	0 B	0.00%
■ FLASH	0x0800000	0x08100000	1024 KB	1007.93 KB	16.07 KB	1.57%

Step 27. Run in Debug

Step 28. Hit Breakpoint

Step 29. Click "Step Over".

Step 30. Click "Step Over". Repeat as needed. Confirming that the LED toggles on/off when button pressed using BSP

