Δεύτερη Πρόοδος - Αναλογικά και Ψηφιακά Ηλεκτρονικά - 2024

Διάρχεια Εξέτασης: 45 λεπτά. Επιλέξτε ΜΟΝΟ μία απάντηση. Τσεχάρετε την επιλογή, που θεωρείτε σωστή: \blacksquare . Αν χάνετε λάθος στην επιλογή, σβήστε την αν έχετε διορθωτή, διαφορετιχά τσεχάρετε χαι την σωστή σημειώνοντας χαι το γράμμα Σ πάνω ή χάτω από την επιλογή σας.

(ΧΩΡΟΣ ΓΙΑ ΣΤΟΙΧΕΙΑ ΕΞΕΤΑΖΟΜΕΝΟΥ)

An $V_{GS} < V_T$ to An $V_{GS} > V_T$, V_T An $V_{GS} > V_T$, V_T	τε: $I_D = 0,$ $DS < V_{GS} - V_T$ τ	ότε: $I_D = \mu C_{ox}$ ότε: $I_D = \mu C_{ox}$	$(W/L)(V_{GS}-V_T)$	$-V_{DS}/2)V_{DS}(1$	
Ερωτ.1 Πόσο ρεύμα διαρρέει το NMOS; $W/L=1, V_T=2V, \lambda=0, R1=100\Omega, R2=3k\Omega, Rd=10\Omega, Vd=5V.$			Ερωτ.3 Πόσο ρεύμα διέρχεται από την θέση Α; $W/L=5, V_T=2V, \lambda=0, R1=1k\Omega, R2=10k\Omega, Vd=5V.$		
Vd	R1 Rd		R1 A-	R2 \$ Vd + dc()	
☐ 59uA ☐ 1.7uA	☐ 12.7mA ☐ 81uA	4.3uA 231uA	☐ 450uA ☐ 130uA	☐ 12mA ☐ 1.7uA	☐ 4.12mA ☐ 21uA
FET που χρειάζο	είναι ο μιχρότερος ονται για να υλοπ - $A+C$ χρησιμοπο	οιήσετε την έξ-		είναι το ρεύμα πο ωμα; $W/L=1,1$ = $5V$.	
□ 6 □ 8	☐ 10 ☐ 4	12 14		v dc()	
			☐ 1mA ☐ 183mA	☐ 12uA ☐ 200uA	□ 0A □ 51uA

Ερωτ.5 Ποιά είναι η ακολουθία των διαδικών

Ερωτ.6 Ποιός είναι ο μιχρότερος αριθμός MOSFET που χρειάζονται για να υλοποιήσετε την έξοδο Y = A*B*C*D χρησιμοποιώντας CMOS Transmission Gate τεχνολογία; Κάθε διαχόπτης υλοποιείται από ζεύγος NMOS, PMOS.

<u> </u>	☐ 6	<u> </u>
<u> </u>	1 4	4

Ερωτ. 7 Στο σχήμα βλέπετε το χύχλωμα της Bridge-Η που χρησιμοποιείται χυρίως στον έλεγχο μοτέρ. Αν στο Vout συνδέσουμε ένα μοτέρ-DC τότε αν Vout=Vdc το μοτέρ γυρίζει δεξιά, αν Vout=-Vdc το μοτέρ γυρίζει αριστερά, αν Vout=0 το μοτέρ "φρενάρει" (αντιστέχεται στην περιστροφή του), αν ένας από τους δύο αχροδέχτες του Vout δεν συνδέεται με την Vdc ή την γείωση τότε το μοτέρ γυρίζει ελεύθερα χωρίς αντίσταση. Ποιά θα είναι η χατάσταση του μοτέρ, αν VG1=0, VG2=Vdc, VG3=Vdc, VG4=0;

