Measurable Transformations

 $T:\Omega_1\to\Omega_2$ is $\langle\mathcal{F}_1,\mathcal{F}_2\rangle$ -mble if $T^{-1}(A)\equiv\{\omega\in\Omega_1:T(\omega)\in A\}\in\mathcal{F}_1$.

 $T: \mathbb{R} \to \mathbb{R} \text{ is } \langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle \text{-mble} \iff T^{-1}(-\infty, r) = \{\omega \in \mathbb{R}: T(\omega) < r\} \in \mathbb{R} = 0$

Induced Measures & Distribution Functions

The distribution of X (denoted P_X), is the induced measure of X under P on $\mathcal{B}(\mathbb{R})$, i.e.,

 $P_X(A) = P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X \in A), A \in \mathcal{B}(\mathbb{R}).$

The cumulative distribution func (cdf) of a r.v. X is

 $F(x) = P_X((-\infty, x]) = P(X \le x), \quad x \in \mathbb{R}.$

(1) F is right continuous: if $x_n \downarrow x_0$ and $x_n \geq x$ then

 $F(x_n) = P_X((-\infty, x_n]) \downarrow P_X((-\infty, x_0]) = F(x_0)$ by mcfa.

(2) F is monotone nondecreasing: if $x \leq y \implies (-\infty, x] \subset (-\infty, y]$ then

 $F(x)=P_X((-\infty,x])\leq P_X((-\infty,y])=F(y)$ by monotonicity (3) $\lim_{x\to\infty}F(x)=1$ and $\lim_{x\to-\infty}F(x)=0$: show using argument similar to (1).

Integrals

For disjoint $A_1,A_2,\dots\in\mathcal{F}$, mble μ -int $f:\Omega\to\mathbb{R}$, by the DCT $\int_\Omega f\mathbb{I}_{\bigcup_{n=1}^\infty A_n} d\mu = \sum_{n=1}^\infty \int_{A_i} f d\mu$.

Convergence Theorems

 $\text{MCT: If } f_n : \Omega \to \overline{\mathbb{R}} \text{ is an increasing seq of nonneg mble funcs and } f_n(\omega) \uparrow f(\omega) \text{ a.e.}(\mu) \text{, then }$ $\int_{\Omega} f_n d\mu \uparrow \int_{\Omega} f d\mu. \text{ That is, } \int_{\Omega} f d\mu = \int_{\Omega} \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$

Fatou's Lemma: If $f_n:\Omega\to\overline{\mathbb{R}}$ is a sequence of nonneg funcs, then $\int_\Omega \underline{\lim} f_n\,d\mu\leq \underline{\lim} \int_\Omega f_n\,d\mu$.

DCT: Suppose (1) $g:\Omega\to\overline{\mathbb{R}}$ is a nonneg, μ -int func; (2) $|f_n|\leq g$ a.e. $(\mu)\ \forall n\geq 1$; and (3) $f_n o f$ a.e. (μ) . Then, f is μ -int and $\lim_{n o \infty} \int_{\Omega} |f_n - f| \, d\mu = 0$ and

 $\lim_{n\to\infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu$.

weaker conditions: If $\mu(\Omega)<\infty$ and $f,f_n:\Omega\to\overline{\mathbb{R}}$ are mble such that $f_n\to f$ a.e. (μ) and $\{f_n:n\geq 1\}$ is UI (see next section), then f is μ -int and $\lim_{n\to\infty}\int_\Omega f_n d\mu=\int_\Omega f d\mu$.

Scheffe's Theorem: Let $u_n(A)=\int_A f_n \, d\mu \; \forall A \in \mathcal{F}$ be finite measures with densities $f_n \geq 0$ for all $n\geq 0.$ If $\nu_n(\Omega)=\nu_0(\Omega)<\infty$ for all $n\geq 1$ and $f_n\to f$ a.e.(μ), then $\lim_{n\to\infty} \int_{\Omega} |f_n - f_0| \, d\mu = 0.$

Also, $\sup_{A \in \mathcal{F}} |\nu_n(A) - \nu_0(A)| = \frac{1}{2} \int_{\Omega} |f_n - f_0| d\mu \to 0 \text{ as } n \to \infty.$

Uniform Integrability

If $f:\Omega
ightarrow \mathbb{R}$ is $\mu ext{-int, by the DCT}$

 $\lim_{n\to\infty} \int_{|f|>n} |f| d\mu = \lim_{n\to\infty} \int_{\Omega} \mathbb{I}_{|f|>n} |f| d\mu = 0.$

A family of μ -int funcs $\{f_{\lambda}: \lambda \in \Lambda\}$ on a msp $(\Omega, \mathcal{F}, \mu)$ is uniformly integrable (UI) w.r.t. μ if $\sup_{\lambda \in \Lambda} \int_{|f_{\lambda}| > t} |f_{\lambda}| d\mu \to 0 \text{ as } t \to \infty.$

Suppose $\mathcal{A}\equiv\left\{f_{\lambda}:\lambda\in\Lambda\right\}$ is a collection of μ -int funcs on a msp (Ω,\mathcal{F},μ) . Then, (1) if Λ is a finite set, then \mathcal{A} is UI; (2) if $\exists \varepsilon > 0$ such that $\sup \left\{ \int \left| f_{\lambda} \right|^{1+\varepsilon} d\mu : \lambda \in \Lambda \right\} < \infty$, then \mathcal{A} is UI; (3) if $|f_{\lambda}| \leq f$ a.e. (μ) and $\int f d\mu < \infty$, then \mathcal{A} is UI; (4) if \mathcal{A} is UI and $\mu(\Omega) < \infty$, then $\exists M > 0$ such that $\sup \left\{ \int \left| f_{\lambda} \right| d\mu : \lambda \in \Lambda \right\} \leq M$; (5) if $\left\{ f_{\lambda} : \lambda \in \Lambda \right\}$ and $\left\{ g_{\lambda} : \lambda \in \Lambda \right\}$ are both UI, then $\{f_{\lambda} + g_{\lambda} : \lambda \in \Lambda\}$ is also UI.

Independence

 $\left\{A_i:i\in I\right\}\subset\mathcal{F} \text{ are indep if } \forall i_1,\ldots,i_n\in I \text{ distinct indices and fixed } n\in\mathbb{N},$ $P\left(\bigcap_{j=1}^{n} A_{i_j}\right) = \prod_{j=1}^{n} P\left(A_{i_j}\right)$, totalling $\sum_{k=2}^{n} {n \choose k} = 2^n - n - 1$ indep conditions.

 $\left\{\mathcal{G}_i:i\in I\right\} \text{ are indep if any possible collection }\left\{A_i:A_i\in\mathcal{G}_i,i\in I\right\} \text{ of sets are indep}.$

 $\left\{X_i:\ i\in I\right\}$ are **indep** if $\left\{\sigma\langle X_i\rangle:i\in I\right\}$ is indep, where

 $\sigma(X_i) = \left\{X_i^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\right\} = X_i^{-1}(\mathcal{B}(\mathbb{R}))$ is the σ -algebra generated by X_i . That is, $\forall i_1,\ldots,i_n\in I$ distinct indices, fixed $n\in\mathbb{N}$ and $\forall B_{i_1},\ldots,B_{i_n}\in\mathcal{B}(\mathbb{R})$,

 $P\left(X_{i_1} \in B_{i_1}, \dots, X_{i_n} \in B_{i_n}\right) = \prod_{j=1}^n P\left(X_{i_j} \in B_{i_j}\right)$. Equivalently, $P\left(X_{i_1} \leq x_1, \dots, X_{i_n} \leq x_n\right) = \prod_{j=1}^n P\left(X_{i_j} \leq x_j\right) \ \forall x_1, \dots, x_n \in \mathbb{R}.$

Independence of generated σ -algebras: If $\mathcal{G}_i \subset \mathcal{F}$ is a π -class $\forall i \in I$ and $\left\{\mathcal{G}_i : i \in I\right\}$ is indep, then $\{\sigma(\mathcal{G}_i): i \in I\}$ is indep.

Borel-Cantelli Lemmas

If $A_1,A_2,\dots\in\mathcal{F}$, then $\overline{\lim}A_n=\bigcap_{k=1}^\infty\bigcup_{n=k}^\infty A_n\in\mathcal{F}$ and $\underline{\lim} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n \in \mathcal{F}. \text{ Also, } \underline{\lim} A_n \subset \overline{\lim} A_n,$ $("A_n \text{ i.o"})^c = (\overline{\lim} A_n)^c = \underline{\lim} A_n^c = "A_n^c \text{ eventually,", and}$

 $("A_n \text{ eventually"})^c = (\underline{\lim} A_n)^c = \overline{\lim} A_n^c = "A_n^c \text{ i.o."}$ by De Morgan's laws.

Borel-Cantelli Lemma: For a psp (Ω, \mathcal{F}, P) with $A_1, A_2, \cdots \in \mathcal{F}$: (1) If $\sum_{n} P(A_n) < \infty$, then $P(\overline{\lim} A_n) = P(A_n \text{ occurs i.o.}) = 0$. (2) If $\{A_n\}$ are indep and $\sum_n P(A_n) = \infty$, then $P\left(\overline{\lim}A_n\right) = P\left(A_n \text{ occurs i.o.}\right) = 1$.

Borel 0-1 Law: If $A_1\,,\,A_2\,,\,\dots$ are indep events, then

 $P(\overline{\lim}A_n) = P(A_n \text{ occurs i.o.}) = \left\{ \begin{array}{l} 0 \iff \sum_n P(A_n) < \infty, \\ 1 \iff \sum_n P(A_n) = \infty. \end{array} \right.$

Tail Events & Kolmogorov's 0-1 Law

The tail σ -algebra of $\{X_n\}_{n\geq 1}$ is $\mathcal{T}=\bigcap_{n=1}^{\infty}\sigma\left\langle\left\{X_j:j\geq n\right\}\right\rangle$, where $\sigma\left\langle\left\{X_j:j\geq n\right\}\right\rangle=\sigma\left\langle\left\{X_j^{-1}:B\in\mathcal{B}(\mathbb{R}),j\geq n\right\}\right\rangle \text{ is the }\sigma\text{-algebra generated by }X_j,j\geq n. \text{ Any set (event) }A\in\mathcal{T}\text{ is a tail event.}$

A r.v. $T:\Omega\to\overline{\mathbb{R}}$ is a tail r.v. if T is $(\mathcal{F},\mathcal{B}(\overline{\mathbb{R}}))$ -mble, e.g., $T^{-1}(B)\in\mathcal{F}\ \forall B\in\mathcal{B}(\mathbb{R})$.

Kolmogorov's 0-1 Law: If $\{X_n\}_{n\geq 1}$ are indep and $A\in\mathcal{T}$, then $P(A)\in\{0,1\}$

Corollary: All tail r.v.'s are degenerate. That is, $T\in\mathcal{T}\implies \exists c\in\overline{\mathbb{R}}$ such that P(T=c)=1. E.g, $\overline{\lim} S_n/a_n$ and $\underline{\lim} S_n/a_n$ are degenerate if $a_n o \infty$

Convergence

 X_1,X_2,\ldots converge almost surely to X_0 on (Ω,\mathcal{F},P) if

 $P\left(\{\lim_{n\to\infty} X_n(\omega) = X_0(\omega)\}\right) = 1$

(1) $X_n \xrightarrow{\mathsf{as}} 0$.

(2) $P(|X_n| > \varepsilon \text{ i.o}) = 0, \quad \forall \varepsilon > 0,$

(3) $P(|X_n| > 1/k \text{ i.o}) = 0, \quad \forall k \in \mathbb{N}.$

 $(1') X_n \xrightarrow{as} X_0$,

(2') $\sup_{i > n} |X_i - X_0| \xrightarrow{\mathsf{p}} 0 \text{ as } n \to \infty$,

(3') $\lim_{n\to\infty} P\left(\bigcap_{i=n}^{\infty} \left[\left| X_i - X_0 \right| \le \varepsilon \right] \right) = 1, \forall \varepsilon > 0.$

 X_1,X_2,\ldots converge in probability to X_0 on (Ω,\mathcal{F},P) if $\lim_{n\to\infty}P\left(|X_n-X_0|>arepsilon
ight)=0,\quad \forall arepsilon>0.$

(1) $X_n \stackrel{\mathsf{p}}{\longrightarrow} X_0$

 $(2)\sup\nolimits_{m\geq n}(|X_m-X_n|>\varepsilon)\to 0 \text{ as } n\to\infty,\quad \forall \varepsilon>0,$

 $(3) \ \forall \left\{ n_j \right\} \ \text{of} \ \left\{ X_n \right\}, \ \exists \left\{ n_{j_k} \right\} \ \text{such that} \ X_{n_{j_k}} \xrightarrow{\text{as}} X_0.$

Continuous functions preserve convergence. If $g:\mathbb{R} o \mathbb{R}$ is continuous, then

(1) $X_n \xrightarrow{as} X_0 \implies g(X_n) \xrightarrow{as} g(X_0)$,

 $(2) \ X_n \stackrel{\mathsf{p}}{\longrightarrow} X_0 \implies g(X_n) \stackrel{\mathsf{p}}{\longrightarrow} g(X_0).$

 $X_1, X_2, \dots \in \mathcal{L}_r(\Omega, \mathcal{F}, P) \equiv \{ \text{mble } X \in \mathbb{R} : \int_{\Omega} |X|^r dP < \infty \}$ converges in \mathcal{L}_r to X_0 if $\lim_{n\to\infty} \int_{\Omega} |X_n - X_0|^r dP = 0.$

If $X\in\mathcal{L}_r$, then $t^rP(|X|>t) o 0$ as $t o \infty$, that is, $\uparrow r\implies$ faster convergence. If $\exists p \in (0, \infty)$ such that $t^p P(|X| > t) \to 0$, then $X \in \mathcal{L}_r \ \forall r \in (0, p)$. Also, $X_n \xrightarrow{\mathcal{L}_T} X_0 \implies X_n \xrightarrow{\mathcal{L}_p} X_0 \; \forall p \in (0,r).$

If $\{X_n\}_{n\geq 1}\subset \mathcal{L}_r$, then $\exists X_0\in \mathcal{L}_r$ such that

 $X_n \xrightarrow{\mathcal{L}_r} X_0 \iff \sup_{m \ge n} \mathbb{E} |X_m - X_n|^r \to 0 \text{ as } n \to \infty.$

Fixed $m(X) \in \mathbb{R}$ is a **median** if P(X > m(X)) > 1/2 and P(X < m(X)) > 1/2. Can be defined as $\inf \{x \in \mathbb{R} : P(X \le x) \ge 1/2\}$. If $P(|X| \ge c) < \varepsilon \le 1/2$ then $|m(X)| \le c$.

Levy's Inequality: If $\{X_n\}_{n\geq 1}$ are independent, then $\forall \varepsilon>0$,

(1) $P\left(\max_{1 \le j \le n} \left(S_j - m(S_j - S_n)\right) \ge \varepsilon\right) \le 2P(S_n \ge \varepsilon)$,

 $(2) P\left(\max_{1 \le j \le n} \left| S_j - m(S_j - S_n) \right| \ge \varepsilon \right) \le 2P(|S_n| \ge \varepsilon)$

Levy's Theorem: If $\{X_n\}_{n\geq 1}$ are indep, then $S_n \xrightarrow{\mathrm{as}} S \iff S_n \xrightarrow{\mathrm{p}} S$.

Khintchine-Kolmogorov Convergence Theorem: If $\{X_n\}_{n\geq 1}$ are indep with

 $\mathrm{E}(X_n)=0, \mathrm{E}(X_n^2)<\infty$ for all $n\geq 1$ and $\sum_n \mathrm{E}(X_n^2)<\infty$, then S_n converges a.s.(P) and in \mathcal{L}_2 to $S = \sum_n X_n$. Also, $\mathrm{E}(S) = 0$, $\mathrm{E}(S^2) = \sum_n E(X_n^2)$.

 $\{X_n\}$ and $\{Y_n\}$ are tail equivalent if $\sum_n P(X_n \neq Y_n) < \infty$. If $\{X_n\}$ and $\{Y_n\}$ are tail

(1) By Borel-Cantelli, $P(\overline{\lim}(X_n \neq Y_n)) = 0 \implies P(X_n = Y_n \text{ for large } n) = 1$,

(2) $S_n = \sum_{j=1}^n X_j \xrightarrow{\mathsf{as}} S \iff S'_n = \sum_{j=1}^n Y_j \xrightarrow{\mathsf{as}} S',$

(3) If $b_n \to \infty$, then $\frac{\sum_{j=1}^n X_j}{b} \xrightarrow{\text{as}} 0 \iff \frac{\sum_{j=1}^n Y_j}{b} \xrightarrow{\text{as}} 0$.

Berry-Esseen Lemma: If X_1,\ldots,X_n are indep with $\mathrm{E}(X_i)=0$ and $\mathrm{E}\left|X_i\right|^3<\infty,1\leq i\leq n$, then $\forall n \geq 4$, $\sup_{x \in \mathbb{R}} \left| P\left(\frac{S_n}{\sigma_n} \leq x\right) - \Phi(x) \right| \leq \frac{2.75}{\sigma^3} \sum_{i=1}^n \mathbf{E} \left| X_i \right|^3$, where $S_n = \sum_{i=1}^n X_i, \ \sigma_n^2 = \operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{E}(X_i^2), \text{ and } \Phi(\cdot) \text{ is the } \mathcal{N}(0,1) \text{ cdf.}$

Kolmogorov's 3-Series Theorem: If $\{X_n\}_{n\geq 1}$ are indep, define for fixed c>0,

 $\sum_n P(|X_n|>c), \quad \sum_n \mathrm{E}(X_n^{(c)}), \quad \sum_n \mathrm{Var}(X_n^{(c)}), \text{ where } X_n^{(c)}=X_n \mathbb{I}_{|X_n|\leqslant c}. \text{ Then,}$

(1) if the 3 series conv for some c>0, then $S_n\stackrel{\mathsf{as}}{\longrightarrow} S$,

(2) if $S_n \xrightarrow{as} S$, then the 3 series converge for all c > 0

Corollary: If $\{X_n\}_{n\geq 1}$ are indep with $\mathrm{E}(X_n)=0$, then $\text{(1) if } \sum_n \left[\operatorname{E}(X_n^{(c)})^2 + \operatorname{E}|X_n| \operatorname{\mathbb{I}}_{|X_n| > c} \right] < \infty \text{ for some } c > 0 \text{, then } S_n \xrightarrow{\operatorname{as}} S,$

(2) if $\sum_{n} \mathbb{E} |X_n|^{\alpha_n} < \infty$ for some $\{\alpha_n\} \subset [1, 2]$, then $S_n \stackrel{\text{as}}{\longrightarrow} S$.

Laws of Large Numbers

 $\{X_n\}_{n\geq 1}$ obeys the LLN if $\exists\, \{b_n\}\subset \mathbb{R}$ and $0< a_n\uparrow$ such that

SLLN:
$$\frac{S_n - b_n}{a_n} \xrightarrow{\text{as}} 0$$
, WLLN: $\frac{S_n - b_n}{a_n} \xrightarrow{\text{p}} 0$.

Kronecker's Lemma: If $\{a_n\}$, $\{b_n\}\subset\mathbb{R}$ such that $0< b_n\uparrow\infty$ and $\sum_{n=1}^\infty a_n/b_n$ converges, then $\frac{1}{h_n} \sum_{i=1}^n a_i \to 0$ as $n \to \infty$.

Cosaro's Mean Summability Theorem: If $\{x_n\}\subset\mathbb{R}$ such that $\lim_{n\to\infty}x_n=x<\infty$, then $\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^nx_j=x$.

Theorem: If $\{X_n\}$ indep such that $\sum_{n=1}^{\infty} \mathrm{E} |X_n|^{\alpha_n} / n^{\alpha_n} < \infty$ for $\alpha_n \in [1,2]$, then $\frac{S_n - \operatorname{E} S_n}{n} = \frac{1}{n} \sum_{i=1}^n (X_i - \operatorname{E} X_i) \xrightarrow{\operatorname{as}} 0.$

Marcinkiewicz-Zygmund SLLN: If $\{X_n\}_{n\geq 1}$ are iid and $p\in(0,2)$,

(1) if $\exists c \in \mathbb{R}$ s.t. $\frac{S_n - nc}{n^{1/p}} \stackrel{\mathsf{as}}{\longrightarrow} 0$, then $\mathbf{E} |X_1|^p < \infty$.

(2) if $E |X_1|^p < \infty$, then (2) holds with $c = E |X_1|$ if $p \in [1, 2)$ and (2) holds $\forall c \in \mathbb{R}$ if $p \in (0, 1)$.

Kolmogorov's SLLN: If $\{X_n\}$ are iid, then

$$\bar{X}_n = \frac{S_n}{n} \overset{\text{as}}{\longrightarrow} \operatorname{E} X_1 \iff \operatorname{E} |X_1| < \infty \iff \frac{S_n - n \operatorname{E} X_1}{n} \overset{\text{as}}{\longrightarrow} 0.$$

Useful Theorem: For any r.v. X and r > 0,

 $\sum_{n=1}^{\infty} P(|X| > n^{1/r}) \le E|X|^r \le \sum_{n=0}^{\infty} P(|X| > n^{1/r}).$

Etemaldi's SLLN: If $\{X_n\}_{n\geq 1}$ are *pairwise* indep and identically distributed, then $\bar{X}_n = \frac{S_n}{n} \xrightarrow{as} E X_1 \iff E |X_1| < \infty.$

General WLLN: If $\{X_n\}_{n\geq 1}$ are indep, $\sum_{i=1}^n P\left(\left|X_i\right|>n\right)\to 0$, and $\frac{1}{n^2}\sum_{j=1}^n EX_j^{(n)2} \to 0, \text{ then } \frac{S_n-a_n}{n} \stackrel{\text{p}}{\to} 0, \text{ where } a_n = \sum_{j=1}^n EX_j^{(n)} \text{ and }$ $X_i^{(n)} \equiv X_i I(|X_i| < n).$

Feller's WLLN: If $\{X_n\}$ iid with $\lim_{n\to\infty} xP(|X_1|>x)=0$, then $\frac{S_n}{x}-\operatorname{E} X_1^{(n)}\stackrel{\mathsf{p}}{\longrightarrow} 0$.

Empirical Distributions

The **empirical cdf** of X_1,\ldots,X_n is the random cdf: $F_n(x)=\frac{1}{n}\sum_{i=1}^n I(X_i\leq x), \quad x\in\mathbb{R}.$

(1) With X_i 's on (Ω, \mathcal{F}, P) , for each $\omega \in \Omega$, $F_n(x, \omega) = \frac{1}{n} \sum_{i=1}^n I(X_i(\omega) \leq x)$.

(2) $F_n(x)$ is a right-continuous, nondecreasing func of $x \in \mathbb{R}$, (3) For any $x \in \mathbb{R}$, $F_n(x)$ is a r.v., i.e., is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -mble:

 $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i^{-1}(-\infty, x])(\omega).$

Glivenko-Cantelli Theorem: If $\{X_n\}_{n\geq 1} \stackrel{\text{iid}}{\sim} F$, then $\sup_{x\in\mathbb{R}} |F_n(x)-F(x)| \stackrel{\text{as}}{\longrightarrow} 0$.

Quantile func: $\phi(u) = \inf \{x \in \mathbb{R} : F(x) > u\} \equiv F^{-1}(u), u \in (0,1)$ which implies $F(x) \ge u \iff x \ge \phi(u) \text{ and } F(\phi(u) -) \le u \le F(\phi(u)).$

Convergence in Distribution

The cdf of μ_n is $F_n(\mathbf{x}) = \mu_n((-\infty, x_1] \times \cdots \times (-\infty, x_n]), \quad \mathbf{x} \in \mathbb{R}^k$. If X_n has prob dist μ_n [i.e., $P(X_n \in A) = \mu_n(A), \ A \in \mathcal{B}(\mathbb{R}^{\hat{k}})$], then F_n is the cdf of X_n .

 $\{\mu_n\}_{n\geq 1}$ $(\{F_n\}_{n\geq 1})$ converges weakly to μ_0 (F_0) , denoted $\mu_n\Rightarrow \mu_0$ $(F_n\Rightarrow F_0)$, if $\lim_{n\to\infty} F_n(\mathbf{x}) = F_0(\mathbf{x}) \ \forall \mathbf{x} \in C(F_0), \text{ where } C(F_0) = \left\{ \mathbf{x} \in \mathbb{R}^k : F_0 \text{ is continuous at } \mathbf{x} \right\}$

 $\{X_n\}_{n\geq 1}\subset R^k \text{ converges in distribution to a r.v. } X_0 \text{ if } \mu_n\Rightarrow \mu_0 \text{, denoted by } X_n\stackrel{\mathsf{d}}{\longrightarrow} X_0$ That is, if $X_n = (X_{n,1}, \dots, X_{n,k})$ has cdf F_n , $n \geq 0$, then

$$\begin{split} & \lim_{n \to \infty} F_n(\mathbf{x}) = \lim_{n \to \infty} P(X_{n,1} \le x_1, \dots, X_{n,k} \le x_k) \\ & = P(X_{0,1} \le x_1, \dots, X_{0,k} \le x_k) = F_0(\mathbf{x}) \ \, \forall \mathbf{x} \in C(F_0). \end{split}$$

 $\text{NB:} \ (1) \ \mathbf{x} = (x_1, \dots, x_k) \in C(F_0) \iff F_0(\mathbf{x}) = P(X_{0,1} < x_1, \dots, X_{0,k} < x_k) = F_0(\mathbf{x}) = F_0($ $F_0(\mathbf{x}-)$ i.e., if also left continuous; (2) $C(F_0)^c$ is at most countable; (3)

 $X_n \xrightarrow{p} X_0 \implies X_n \xrightarrow{d} X_0$ but not the other direction, unless X_0 is degenerate.

Skorohod's Embedding Theorem: If $\{\mu_n\}_{n\geq 0}$ on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ such that $\mu_n\Rightarrow \mu_0$, then \exists random vectors $\{Y_n\}_{n\geq 0}$ on a common psp such that Y_n has distribution μ_n for all $n\geq 0$ and $Y_n\stackrel{\mathsf{as}}{\longrightarrow} Y_0$ That is, $P(Y_n \in A) = \mu_n(A), A \in \mathcal{B}(\mathbb{R}^k), n \geq 0.$

(a): Let $\{\mu_n\}_{n\geq 0}$ are p.m.'s on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ and $h:\mathbb{R}^k\to\mathbb{R}^m$ is a $\langle\mathcal{B}(\mathbb{R}^k),\mathcal{B}(\mathbb{R}^m)\rangle$ -mble func such that $\mu_0(D_h)=0$, where $D_n\in\mathcal{B}(\mathbb{R}^k)$ denotes the set of all points of discontinuities of h. If $\mu_n \Rightarrow \mu_0$, then the induced measures converge weakly: $\mu_n h^{-1} \Rightarrow \mu_0 h^{-1}$.

(b): Let $X_{n}>0\subset R^k$ and mble $h:\mathbb{R}^k\to\mathbb{R}^m$ be such that $P(X_0\in D_h)=0$, where D_h is as above. If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, then $h(X_n) \stackrel{\mathsf{d}}{\longrightarrow} h(X_0)$.

Slutsky's Theorem: If $\{X_n\}_{n>1}$, $\{Y_n\}_{n>1}$ are such that $X_n \stackrel{\mathsf{d}}{\longrightarrow} X$ and $Y_n \stackrel{\mathsf{p}}{\longrightarrow} a$ for some $a \in \mathbb{R}$, then (1) $X_n + Y_n \stackrel{\mathsf{d}}{\longrightarrow} X + a$, (2) $X_n Y_n \stackrel{\mathsf{d}}{\longrightarrow} aX$, (3) $X_n / Y_n \stackrel{\mathsf{d}}{\longrightarrow} X/a$ if $a \neq 0$.

Characterizations of Convergence in Distribution

For a p.m. μ on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, a set $A \in \mathcal{B}(\mathbb{R}^k)$ is called a μ -continuity set if $\mu(\partial A) = 0$, where $\partial A = \overline{A} \setminus \operatorname{int} A$. E.g., $\partial (-\infty, x] = (-\infty, x] \setminus (-\infty, x) = \{x\}$.

Helly-Bray Theorem: If $\{\mu_n\}_{n\geq 0}$ are p.m.'s on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, then

(1) $\mu_n \Rightarrow \mu_0 \iff \mu_n(A) \xrightarrow{} \mu_0(A) \ \forall A \in \mathcal{B}(\mathbb{R}) \ \text{with} \ \mu_0(\partial A) = 0.$ (2) $\mu_n \Rightarrow \mu_0 \iff \int f d\mu_n \to \int f d\mu_0$ for all bounded cont. func. $f : \mathbb{R} \to \mathbb{R}$.

Lemma: If $\mu_n \Rightarrow \mu_0$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $f: \mathbb{R} \to \mathbb{R}$ is a bounded, Borel-mble func with $\mu_0(D_f)$ (where $D_f \in \mathcal{B}(\mathbb{R})$ is the set of discontinuity points of f), then $\int f d\mu_n \to \int f d\mu_0$ as $n \to \infty$.

$$\begin{split} \{\mu_n\}_{n\geq 1} &\text{ on } (\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k)) \text{ is tight if } \forall \varepsilon>0, \exists M_\varepsilon>0 \text{ such that } \\ &\sup_{n\geq 1} \mu_n\left(\left\{x\in\mathbb{R}^k: \|x\|>M_\varepsilon\right\}\right)<\varepsilon. \end{split}$$

$$\begin{split} \left\{X_n\right\}_{n\geq 1} \subset \mathbb{R}^k &\text{ is tight if } \left\{\mu_n\right\}_{n\geq 1} \text{ is tight. That is, } \forall \varepsilon>0, \exists M_\varepsilon>0 \text{ such that} \\ \sup_{n\geq 1} P(\|X_n\|>M_\varepsilon) &= \sup_{n\geq 1} \mu_n\left(\left\{x\in\mathbb{R}^k: \|x\|>M_\varepsilon\right\}\right) < \varepsilon. \end{split}$$

 $\begin{array}{l} \{X_n\} \text{ is uniformly integrable if } \forall \varepsilon>0, \exists t_\varepsilon>0 \text{ such that} \\ \sup_{n\geq 1} \operatorname{E}\|X_n\|\ I(\|X_n\|>t_\varepsilon) = \sup_{n\geq 1} \int_{\left\|x\right\|>t_\varepsilon}\|x\|\ d\mu_n<\varepsilon. \end{array}$

(1) If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, then $\{X_n\}$ is tight.

(2) If
$$\{X_n\}$$
 is tight and $Y_n \stackrel{\mathsf{p}}{\longrightarrow} 0$ for X_n, Y_n on $(\Omega_n, \mathcal{F}_n, P_n)$, then $X_n Y_n \stackrel{\mathsf{p}}{\longrightarrow} 0$.

 $\textbf{Theorem}: \ \{X_n\}_{n \geq 1} \ (\{\mu_n\}_{n \geq 1}) \ \text{is tight iff for any subseq} \ X_{n_k} \ \text{of} \ X_n \ \text{there} \ \exists \ \mathsf{a} \ \text{further subseq} \ \mathsf{a} \ \mathsf{b} \$

$$X_{n_{k_j}}$$
 of X_{n_k} and a r.v. (p.m.) such that $X_{n_{k_j}} \stackrel{\mathrm{d}}{\longrightarrow} X_0$ $(\mu_{n_{k_j}} \Rightarrow \mu_0)$.

Corollary: If $\{X_n\}$ is tight and its convergent subseq converge in law to the same r.v., then $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

$$\textbf{Theorem:} \text{ If } \{X_n\} \text{ , } n \geq 1 \text{ is UI and } X_n \overset{\text{d}}{\longrightarrow} X_0 \text{, then } \mathrm{E} \left|X_0\right| < \infty \text{ and } \mathrm{E} \, X_n \to \mathrm{E} \, X_0.$$

 $\text{\textbf{Corollary:} If } X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \text{ and } \sup_{n \geq 1} \mathrm{E} \left| X_n \right|^{r+\delta} < \infty \text{ for some } r \in \mathbb{N} \text{ and } \delta > 0 \text{, then }$ ${\rm E} \left| X_0 \right|^r < \infty \text{ and } {\rm E} \left| X_n^r \right. \to {\rm E} \left| X_0^r \right. \text{ (recall that } \sup_{n > 1} {\rm E} \left| Z_n \right|^{1 + \delta} \implies \{Z_n\} \text{ is UI)}.$

Fréchet-Shohat Theorem: If $\lim_{n\to\infty} \to X_n^r = \beta_r \in \mathbb{R}$ for all integers $r \geq 1$ and if $\{\beta_r : r \geq 1\}$ are the moments of a unique r.v. X_0 , then $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

 $\begin{array}{l} \text{Moments uniquely determine distribution when Cardeman's condition is met, } \sum_{r=1}^{\infty}\beta_{2r}^{-1/(2r)}=\infty, \text{ or if the MGF } M_X(t)=\to e^{tX}<\infty \ \forall \ |t|<\varepsilon \text{ for some } \varepsilon>0. \text{ Recall:} \end{array}$ $EX^{r} = \frac{d^{r}}{dt^{r}} M_{X}(t) \bigg|_{t=0}.$

Characteristic Functions

If a + bi and c + di are complex, then their sum is (a + b) + (c + d)i, their product is (ac-bd)+(ad+bc)i, and the modulus is $|a+bi|=\sqrt{a^2+b^2}=\sqrt{(a+bi)(a-bi)}$ For any $b\in\mathbb{R},\,e^{bi}=\cos(b)+i\sin(b)$ and $\left|e^{bi}\right|=\sqrt{\cos^2(b)+\sin^2(b)}=1.$ For fixed $b\in\mathbb{R}$, $q(t) = e^{tbi} : \mathbb{R} \to \mathbb{C}$ is infinitely differentiable in t with nth derivative $(bi)^n e^{tbi}$

The cf of
$$X \in \mathbb{R}^k$$
 is $\phi_X(t) = \operatorname{E} e^{it'X} = \operatorname{E} \cos(t'X) + i \operatorname{E} \sin(t'X), \quad t \in \mathbb{R}^k$.

Note that $\phi_X(0)=1$ and $\phi_X(t)$ is uniformly continuous on \mathbb{R}^k : by the BCT, $\sup_{t\in\mathbb{R}^k}\left|\phi_X(t+h)-\phi_X(t)\right|\to 0$ as $|h|\to 0$.

Theorem: If $X \in \mathcal{L}_r$, then $\phi_X(t)$ is r-times diffble on \mathbb{R} and $\phi_Y^{(r)}(t) = \mathrm{E}(iX)^r e^{itX}, \quad t \in \mathbb{R}$.

Riemann-Lebesgue Lemma: If X has a density f w.r.t. m on \mathbb{R} , then $\phi_X(t) \to 0$ as $|t| \to \infty$.

 $\text{(1) If }X_{n} \stackrel{\mathsf{d}}{\longrightarrow} X_{0}\text{, then }\forall T>0\text{, }\sup_{\left|t\right|< T}\left|\phi_{X_{n}}\left(t\right)-\phi_{X_{0}}\left(t\right)\right| \rightarrow 0\text{ as }n\rightarrow\infty.$ (2) If $\phi_{X_n}(t) \to g(t)$ as $n \to \infty \ \forall t \in \mathbb{R}$ and $g(\cdot)$ is continuous at zero, then $g(\cdot)$ is a cf and $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, where X_0 has cf $g(\cdot)$.

Corollary: $X_n \xrightarrow{\mathsf{d}} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \text{ as } n \to \infty \quad \forall t \in \mathbb{R}$

Levy Inversion Formula in \mathbb{R}^k : Let $X\in\mathbb{R}^k$ with cf $\phi_X(t)$ for $t=(t_1,\ldots,t_k)\in\mathbb{R}^k$. Then, \forall ____, investion Formula in \mathbb{R}^{\cdots} : Let $X\in\mathbb{R}^{\kappa}$ with of $\phi_X(t)$ for $t=(t_1$ rectangle $A=(a_1,b_1]\times\cdots\times(a_k,b_k]$ with $P(X\in\partial A)=0$, $P(X\in A)=$

$$\lim_{T\to\infty}\frac{1}{(2\pi)^k}\int_{-T}^T\cdots\int_{-T}^T\prod_{j=1}^k\frac{e^{-it_ja_j}-e^{-it_jb_j}}{it_j}\phi_X(t_1,\ldots,t_k)dt_1\ldots dt_k$$

Also, if $\int_{\mathbb{T}^k} \left|\phi_X(t_1,\ldots,t_k)\right| dt_1\ldots dt_k < \infty$, then X has a bounded, continuous density $f_X(x)$ w.r.t. m on \mathbb{R}^k given by

$$f_X(x) = \frac{1}{(2\pi)^k} \int_{\mathbb{R}^k} e^{-i\sum_{j=1}^k x_j t_j} \phi_X(t_1, \dots, t_k) dt_1 \cdots dt_k, \quad x \in \mathbb{R}^k.$$

Theorem: X_1,\ldots,X_k are indep $\iff \forall t_1,\ldots,t_k \in \mathbb{R},$

 $\phi_{X_1,...,X_k}(t_1,...,t_k) \equiv \mathbb{E} e^{i\sum_{j=1}^k X_j t_j} = \prod_{i=1}^k \mathbb{E} e^{iX_j t_j} = \prod_{i=1}^k \phi_{X_i}(t_i).$

Theorem: If $\{X_n\}$, $n \geq 0 \subset \mathbb{R}^k$,

 $(1) X_n \xrightarrow{\mathsf{d}} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \ \forall t \in \mathbb{R}^k,$

(2) (Cramer-Wold device) $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff t'X_n \stackrel{\mathsf{d}}{\longrightarrow} t'X_0 \ \forall t \in \mathbb{R}^k$

Central Limit Theorems

Let $\left\{ X_{n,j}: 1 \leq j \leq r_n
ight\}_{n \geq 1}$ be an independent triangular array with

$$\mathbf{E} \, X_{n,j} = 0, \quad 0 < \mathbf{E} \, X_{n,j}^2 = \sigma_{n,j}^2 < \infty, \quad \nu_n^2 = \sum_{j=1}^{r_n} \sigma_{n,j}^2, \tag{1}$$

Lindeberg Condition: $\forall \varepsilon > 0$, $\lim_{n \to \infty} \nu_n^{-2} \sum_{j=1}^{r_n} \mathrm{E} \, X_{n,j}^2 \mathbb{I}_{|X_{n-j}| > \varepsilon \nu_n} = 0$.

Lindeberg CLT: if $\left\{X_{n,j}:1\leq j\leq r_n\right\}_{n\geq 1}$ is a triangular array satisfying (1) and the Lindeberg condition, then $\frac{S_n}{S_n} = \frac{\sum_{j=1}^{r_n} X_{n,j}}{\sum_{j=1}^{r_n} X_{n,j}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$

Corollary: if $\left\{X_{n,j}\right\}$ is a null array, i.e., $\max_{1\leq j\leq r_n}P\left(\left|X_{n,j}\right|>\varepsilon\nu_n\right)\to 0$, then the CLT holds \iff Lindeberg condition.

Lyapounov's Condition: $\exists \delta > 0$ such that $\lim_{n \to \infty} \nu_n^{-(d+\delta)} \sum_{i=1}^{r_n} \mathbb{E} \left| X_{n,i} \right|^{2+\delta} = 0$.

Lyapounov's CLT: if $\left\{X_{n,j}:1\leq j\leq r_n\right\}_{n\geq 1}$ is a triangular array satisfying (1) and the Lyapounov's condition, then $\frac{S_n}{V_n} = \frac{\sum_{j=1}^{r_n} X_{n,j}}{V_n} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$

Multivariate CLT: if $\{X_n\}_{n\geq 1}\subset \mathbb{R}^d$ is iid with $\mathrm{E}\,\|X_1\|^2<\infty$ and nonsingular $\mathrm{Var}(X_1)=\Sigma$ $(|\Sigma| \neq 0)$, then $\sqrt{n}(\bar{X}_n - EX_1) \xrightarrow{d} \mathcal{N}(0, \Sigma)$ by the Cramer-Wold device and Slutsky's theorem

Infinitely Divisible & Stable Distributions

X is infinitely divisible if $\forall n \geq 1, \exists \text{ cf } \phi_n \text{ such that } \phi_X(t) = [\phi_n(t)]^n, \ \forall t \in \mathbb{R}.$ Note $X \stackrel{\mathsf{d}}{=} X_{n,1} + \cdots + X_{n,n}$ for iid $X_{n,j}$ with cf ϕ_n

 $X \text{ is infinitely divisible} \iff \phi_X(t) = \exp\left[itb + \int_{\mathbb{R}} \left(\frac{e^{itx} - 1 - it\tau(x)}{x^2}\right) dM(x)\right] \ \forall t \in \mathbb{R},$ where $b \in \mathbb{R}$, M is a "cannonical" measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ satisfying $M(I) < \infty \ \forall$ finite intervals $I \in \mathbb{R}$ and $\forall x>0, \int_{-\infty}^{-x}|y|^{-2}\,dM(y)+\int_{x}^{\infty}y^{2}dM(y)<\infty$, and

$$\tau(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } |x| \le 1 \\ -1 & \text{if } x < -1 \end{cases}$$

Theorem: If $\left\{X_{n,j}:1\leq j\leq r_n\right\}_{n\geq 1}$ is a null triangular array, then $\exists b_n\in\mathbb{R}$ such that

 $S_n - b_n \stackrel{\mathsf{d}}{\longrightarrow} X$ where X is infinitely divisible \iff (a), (b), (c) hold:

(a) $\lim_{n\to\infty} \left[\sum_{j=1}^{r_n} \mathrm{E}\,\tau(X_{n,j})\right] - b_n = b$,

(b) $\lim_{n\to\infty} \sum_{j=1}^{r_n} \operatorname{Var} \left[\tau(X_{n,j}) \right] = M \left((-1,1) \right) + \int_{|y| \ge 1} y^{-2} dM(y),$ (c) $\forall x>0$ with $M(\{\pm x\})=0$, $\lim_{n\to\infty}\sum_{j=1}^{r_n}P(X_{n,j}>x)=\int_x^\infty y^{-2}dM(y)$, and $\lim_{n\to\infty} \sum_{j=1}^{r_n} P(X_{n,j} < -x) = \int_{-\infty}^{-x} y^{-2} dM(y).$

Weaker result: X is infinitely divisible $\iff \exists \{X_n\}_{n \geq 1} \text{ iid with } \sum_{i=1}^n X_i \stackrel{\mathsf{d}}{\longrightarrow} X.$

Nondegenerate X is **stable** if $\forall n \geq 1, \exists a_n > 0, b_n \in \mathbb{R}$ such that $\phi_X(t) = \left[\phi_X\left(\frac{t}{a_n}\right)\right]^n \exp\left[-\frac{itb_n}{a_n}\right], \ \forall t \in \mathbb{R}.$

Note $X \stackrel{\mathsf{d}}{=} [X_{n,1} + \cdots + X_{n,n} - b_n]/a_n$ for iid $X_{n,j} \sim X$, i.e., $S_n \stackrel{\mathsf{d}}{=} a_n X + b_n$, where $a_n=n^{1/\alpha}$ with $\alpha\in(0,2]$, e.g., $\alpha=1$ for Cauchy, $\alpha=2$ for normal. $\alpha<2$ \implies infinite

All stable distributions are infinitely divisible and have canonical measure $M(A)=\sigma^2\mathbb{I}_{0\in A}$ for normal distribution. For non-normals, for $0<\alpha<2$ and x>0, $M_{\alpha}\left((0,x]\right)=cpx^{2-\alpha}$ and $M_{\alpha}([-x,0)) = cqx^{2-\alpha}$ where c>0, p,q>0 with p+q=1.

Theorem: X is stable $\iff \exists \{X_n\}, \{a_n\}, \{b_n\} \text{ such that } \frac{S_n - b_n}{a_n} \stackrel{\mathsf{d}}{\longrightarrow} X.$

Conditional Expectation

The conditional expectation of Y given $\mathcal{G} \subset \mathcal{F}$ under P, denoted $\mathrm{E}(Y \mid \mathcal{G})$, is $g: \Omega \to \mathbb{R}$ satisfying (1) g is $\langle \mathcal{G}, \mathcal{B}B(\mathbb{R}) \rangle$ -mble, i.e., is a r.v.: $E(Y \mid \mathcal{G})^{-1}(B) \in \mathcal{G} \ \forall B \in \mathcal{B}(\mathbb{R})$, (2) $\forall G \in \mathcal{G}, \int_{G} g dP = \int_{G} Y dP$.

The conditional probability of $A \in \mathcal{F}$ given $\mathcal{G} \subset \mathcal{F}$, denoted $P(A \mid \mathcal{G})$, is $P(A \mid \mathcal{G}) = \mathrm{E}(\mathbb{I}_A \mid \mathcal{G})$

- If $\mathcal{G} = \{\emptyset, \Omega\}$, then $\omega \mapsto \mathrm{E}(Y)$ is \mathcal{G} -mble (since $\mathrm{E}(Y)^{-1}(B) = \emptyset$ if $\mathrm{E}(Y) \in B$ and Ω o.w.) and trivially $\int_A \mathrm{E}(Y) dP = \int_A Y dP \ \forall A \in \mathcal{G}$. Thus $\mathrm{E}(Y \mid \mathcal{G}) = \mathrm{E}(Y)$.

- If $\mathcal{G} = \mathcal{F}$, then clearly $\mathrm{E}(Y \mid \mathcal{G}) = Y$.

- If $\mathcal{F} = \{\emptyset, \Omega, B, B^{\mathcal{C}}\}$ where 0 < P(B) < 1, then

 $\mathbb{E}(Y \mid \mathcal{G})(\omega) = \left(\frac{1}{P(B)} \int_{B} Y dP\right) \mathbb{I}_{B}(\omega) + \left(\frac{1}{P(B^{C})} \int_{B^{C}} Y dP\right) \mathbb{I}_{B^{C}}(\omega).$

- Hilbert space: $H = \mathcal{L}_2(\Omega, \mathcal{F}, P)$,

- Inner product: $\langle X, Z \rangle = E(XZ) \forall X, Z \in H$,

- Orthogonality: $X, Z \in H$ are orthogonal if $\langle X, Z \rangle = 0$,

- Distance: squared distance between $X,Z\in H$ is the mse:

 $||X - Z||^2 = \langle X - Z, X - Z \rangle = E(X - Z)^2$

- Statement of the Theorem: let $H_0 \subset H$ be the subspace of all funcs of X with finite second moment. Then, (1) $\exists \hat{Y} \in H_0$ such that $\|Y - \hat{Y}\| = \min \{ \|Y - h(X)\|^2 : h(X) \in H_0 \}$, where \hat{Y} is the

conditional expectation of Y given X, (2) Let $V \in H$. Then $V = \hat{Y} \iff$ (a) $V \in H_0$ (i.e., V is $\langle \mathcal{G} = \sigma \langle X \rangle, \mathcal{B}(\mathbb{R}) \rangle$ -mble &

E $V^2 < \infty$), and (b) residual Y - V is orthogonal to any other $h(X) \in H_0$ (i.e., $E[(Y - V)h(X)] = \langle Y - V, h(X) \rangle = 0.$

Existence & a.s. Uniqueness: $\mathrm{E}(Y\mid\mathcal{G})$ satisfying (1)-(2) of the definition exists and if g and h are two versions of it, then g=h as(P). Proof: Define $\mu(A)=\int_A YdP\ \forall A\in\mathcal{G}$. Then μ is finite and $\mu\ll P$ on the restricted psp (Ω,\mathcal{G},P) since $A\in\mathcal{G}$ with $P(A)=0\implies \mu(A)=0$. By the Radon-Nikodym theorem, \exists density $g=\frac{d\mu}{dP}\geq 0$ and for all $G\in\mathcal{G}, \int_G gdP=\mu(G)=\int_G YdP$.

Example: (cble partition) Let $\mathcal{G} \subset \mathcal{F}$ is generated by countable partition $\{B_i\}_{i \geq 1}$ of disjoints sets in \mathcal{F} .

(1) for any $X \in \mathcal{L}_1(P)$, $\mathrm{E}(X \mid \mathcal{G}) = \sum_{i=1}^{\infty} \mathrm{E}_{B_i}(X) \mathbb{I}_{B_i}$ where

 $\mathbb{E}_{B_i}(X) = \int_{B_i} X dP / P(B_i) \mathbb{I}_{P(B_i) > 0}.$

(2) for any $A \in \mathcal{F}$, $P(A \mid \mathcal{G}) = \sum_{i=1}^{\infty} P(A \mid B_i) \mathbb{I}_{B_i}$ where

 $P(A \mid B_i) = P(A \cup B_i)/P(B_i)\mathbb{I}_{P(B_i) > 0}$

Proof: let $h(\omega) = \sum_{i=1}^{\infty} \mathbf{E}_{B_i}(X) \mathbb{I}_{B_i}(\omega), \ \omega \in \Omega \text{ and note } \mathcal{G} = \{ \cup_I B_i : I \subset \mathbb{N} \}.$

Example: (discrete case) Let X be a discrete r.v. with support x_1, x_2, \ldots , then for $A \in \mathcal{B}(\mathbb{R})$, $P(A \mid X) = P(A \mid \sigma(X)) = \sum_{i=1}^{\infty} P(A \mid X = x_i)^{\mathbb{I}} X = x_i$.

 $\begin{array}{l} \text{Example: (absolutely continuous case)} \ P(Y \in C \mid X) = \phi(X) = \frac{\int_C f(X,t) dt}{f_X(x)} \mathbb{I}_{f_X(x) > 0} \ \text{ by showing } \int_B \phi(X) dP = \int_{X^{-1}(A)} \phi(X) dP = \int_A \phi(x) PX^{-1}(dx) = P([Y \in C] \cap B). \end{array}$

(1) $E(E(Y \mid G)) = E(Y)$ directly from the definition since $\Omega \in G$,

(2) if Y is \mathcal{G} -mble, then $E(Y \mid \mathcal{G}) = Y$ as(P) by taking g = Y,

(3) if $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, then $\mathrm{E}(Y \mid \mathcal{G}_1) = \mathrm{E}[\mathrm{E}(Y \mid \mathcal{G}_1) \mid \mathcal{G}_2] = \mathrm{E}[\mathrm{E}(Y \mid \mathcal{G}_2) \mid \mathcal{G}_1]$ as (P),

(4) if $Y \ge 0$ w.p.1, then $E(Y \mid \mathcal{G}) \ge 0$ w.p.1,

(5) for $a,b\in\mathbb{R}$, $\mathrm{E}(aY_1+bY_2\mid\overline{\mathcal{G}})=a\,\mathrm{E}(Y_1\mid\mathcal{G})+b\,\mathrm{E}(Y_2\mid\mathcal{G})$ as (P),

(6) if $Y_1 > Y_2$ w.p.1, then $E(Y_1 \mid \mathcal{G}) > E(Y_2 \mid \mathcal{G})$ w.p.1,

(7) if U is G-mble and $E|YU| < \infty$, then $E(UY \mid G) = U E(Y \mid G)$ as(P),

(8) if $\phi:(a,b)\to\mathbb{R}$ is convex for $a,b\in\overline{\mathbb{R}}$, $P(Y\in(a,b))=1$, and $\mathrm{E}\,|\phi(Y)|<\infty$, then $E(\phi(Y) \mid \mathcal{G}) > \phi(E(Y \mid \mathcal{G})) \text{ as}(P).$

MCT for CE: If $0 \le Y_n \le Y_{n+1}$ w.p.1 $\forall n \ge 1$ and $Y_n \xrightarrow{\mathrm{as}} Y$, then $\lim_{n\to\infty} \operatorname{E}(Y_n \mid \mathcal{G}) = \operatorname{E}(Y \mid \mathcal{G}) \text{ w.p.1.}$

Fatou's Lemma for CE: If $0 \le Y_n \ \forall n \ge 1$, then $\mathbb{E}(\underline{\lim} Y_n \mid \mathcal{G}) \le \underline{\lim} \ \mathbb{E}(Y_n \mid \mathcal{G})$ w.p.1.

DCT for CE: If $Y_n \stackrel{\mathrm{as}}{\longrightarrow} Y$ and $|Y_n| \leq Z$ w.p.1 $\forall n \geq 1$ where $\to |Z| < \infty$, then $\lim_{n\to\infty} \mathrm{E}(Y_n\mid\mathcal{G}) = \mathrm{E}(Y\mid\mathcal{G})$ w.p.1.

Proposition: If C is a π -system such that $G = \sigma(C)$, Ω is a countable union of disjoint C-sets, and $\mathrm{E} \, |Y| < \infty$, then a P-integrable func g is a version of $\mathrm{E}(Y \mid \mathcal{G})$ if g is \mathcal{G} -measurable and $\textstyle \mathop{\rm E} g \mathbb{I}_G = \int_G g dP = \int_G Y dP = \mathop{\rm E} Y \mathbb{I}_G \ \forall G \in \mathcal{C}.$

Conditional Distributions

The conditional distribution of Y given $\mathcal{G}\subset\mathcal{F}$ (or the regular conditional probability of μ_Y on \mathbb{R}^d given \mathcal{G}) is a function $\mu: \Omega \times \mathcal{B}(\mathbb{R}^d) \to [0,1]$ satisfying

(1) $\forall \omega \in \Omega$, $\mu(\omega, \cdot)$ is a p.m. on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$,

(2) $\forall A \in \mathcal{B}(\mathbb{R}^d)$, $\mu(\cdot, A)$ is \mathcal{G} -mble,

(3) $\forall A \in \mathcal{B}(\mathbb{R}^d), \int_G \mu(\omega, A) dP(\omega) = P(G \cap \{Y \in A\}) \ \forall G \in \mathcal{G}$

Note: (2)-(3) $\iff \mu(\cdot, A)$ is a version of $P(Y \in A \mid \mathcal{G})$ as $\mu(\omega, A) = P(Y \in A \mid \mathcal{G})(\omega) = \mathbb{E}(\mathbb{I}_A(Y) \mid \mathcal{G})(\omega).$

Sometimes $\mu(\cdot, \cdot)$ is denoted $\mathcal{L}(Y \mid \mathcal{G})$. For X, Y we write $\mathcal{L}(Y \mid X)$ for $\mathcal{L}(Y \mid \sigma(X))$. Define $\mu \left((x,y),C \right) = \mathbb{I}_{f_{X}\left(x \right) > 0} \int_{C} f_{Y} \mid_{X = x}(t) dt = \mathbb{I}_{f_{X}\left(x \right) > 0} \int_{C} \frac{f(x,t)}{f_{Y}\left(x \right)} dt, \ C \in \mathcal{B}(\mathbb{R})$

If $\sigma(Y)$ and $\mathcal G$ are independent, then $\mathrm E(Y\mid \mathcal G=\mathrm E(Y) \text{ since (1) } \mathrm E(Y) \text{ is a constant }\Longrightarrow \mathrm E(Y) \text{ is}$

 $\int_G Y dP = \int_{\Omega} Y \mathbb{I}_G dP = \int_{\Omega} Y dP \int_{\Omega} \mathbb{I}_G dP = \mathbb{E}(Y) P(G) = \int_G \mathbb{E}(Y) dP \ \forall G \in \mathcal{G}.$

(a) $\exists \mu: \Omega \times \mathcal{B}(\mathbb{R}^d) \to [0,1]$ satisfying (1)-(3) in the def of the conditional distribution of Y given \mathcal{G} ,

(a) if $\phi:\mathbb{R}^d\to\mathbb{R}$ is Borel-mble with $\mathrm{E}\,|\phi(Y)|<\infty$ then $\forall\omega\in\Omega$, $E(\phi(Y) \mid \mathcal{G})(\omega) = \int_{\mathbb{R}^d} \phi(y)\mu(\omega, dy) \operatorname{as}(P).$

Inequalities & Miscellanea

For positive a,b,p, $(a+b)^p \leq 2^p (a^p+b^p)$

Markov's ineq: if X is a nonneg r.v. and a > 0, then P(X > a) < E(X)/a.

Hölder's ineq: If 1/p+1/q=1, then for mble $f,g,\|fg\|_1\leq \|f\|_p\,\|g\|_q$

 $\text{Jensen's ineq: } \forall r \in (0,q), \ \phi(x) = x^{q/r} \text{ is convex} \implies \left[\operatorname{E} |X|^q \right]^{1/q} \geq \left[\operatorname{E} |X|^r \right]^{1/r}.$

Bayes rule: $P(X \in A \mid Y \in B) = \frac{P(Y \in B \mid X \in A)P(X \in A)}{\sum_{x} P(Y \in B \mid X = x)P(X = x)}$