Lista de Exercícios 1 - Solução

Microeletronics Circuits

(Sedra & Smith – Seventh Edition - Oxford University Press - 2015)

Chapter 4 - Diodes

Ex. 4.3

Para os circuitos mostrados na Figura P4.3, usando diodos ideais, calcule os valores das tensões e das correntes mostradas.

Fig. P4.3

<u>OBS</u>: Nestes circuitos um diodo conduz e outro está em corte. Por exemplo, no circuito (a) suponha que D_1 conduza e analise o que ocorre com D_2 e se o resultado é condizente com a hipótese adotada. Caso não seja, analise a hipótese contrária.

a) Qual diodo conduz?

Fig. P4.3a

Se D_1 conduz, e o diodo é ideal, então o potencial em $V_A = 1$ V. Se $V_A = 1$ V o diodo D_2 estará diretamente polarizado e, portanto, conduzindo, o que resulta em $V_A = 2$ V porque o diodo é ideal. De $V_A = 2$ V o diodo D_1 estará reversamente polarizado, mas isso contradiz a hipótese que ele estava conduzindo. **Logo, essa hipótese conduz a um resultado não admissível !**

Se D_2 conduz, e o diodo é ideal, então o potencial em V_A = 2 V. Se V_A = 2 V o diodo D_1 estará reversamente polarizado. Logo, essa é a hipótese correta.

No resistor:
$$I = \frac{2 - (-5)}{2k}$$

$$I = 3.5 \text{mA}$$

$$V_A = 2 \text{ V}$$

b) Qual diodo conduz ?

Fig. P4.3b

- Se D_1 conduz, e o diodo é ideal, então o potencial em $V_A = 1$ V. Se $V_A = 1$ V o diodo D_2 estará diretamente polarizado e, portanto, conduzindo, o que resulta em $V_A = 2$ V porque o diodo é ideal. O potencial em A só pode ter um valor. **Logo, essa hipótese conduz a um resultado não admissível !**
- Se D_2 conduz, e o diodo é ideal, então o potencial em $V_A = 2$ V. Se $V_A = 2$ V o diodo D_1 estará diretamente polarizado e, portanto, conduzindo, o que resulta em $V_A = 1$ V porque o diodo é ideal. O potencial em A só pode ter um valor. **Logo, essa hipótese conduz a um resultado não admissível**!
- Se D_2 não conduz e D_1 conduz o potencial em $V_A = 1$ V. Essa é a hipótese admissível!

No resistor:
$$I = \frac{5 - (1)}{2k}$$

$$V_{\Delta} = 1 \text{ V}$$

Ex. 4.23

O circuito na Figura P4.23 utiliza três diodos idênticos tendo n=1 e $I_S = 10^{-14}$ A. Calcule o valor da corrente I necessária para obter uma tensão de saída $V_o = 2V$. Se uma corrente de 1mA for drenada de terminal de saída por um carga, qual a variação na tensão de saída ?

Fig. P4.23

- a) Cálculo da corrente nos diodos
- 🔲 A tensão em cada diodo será V_o / 3 .
- Equação de Schockley:

$$I = I_{S}(e^{\frac{v}{nV_{T}}} - 1) \longrightarrow I \cong I_{S}e^{\frac{v_{D}}{V_{T}}} \longrightarrow I \cong 10^{-14}e^{\frac{2/3}{0.025}} \longrightarrow I \cong 3.81\text{mA}$$

b) Cálculo da variação de tensão

Quando
$$V_0$$
 = 2V, resulta I=3.81mA \longrightarrow 3.81= $I_S e^{\frac{2/3}{V_T}}$ (1)

Se a carga drena uma corrente de 1mA a corrente nos diodos será $I_2 = 3.81 - 1 = 2.81$ mA C

$$\longrightarrow$$
 2.81= $I_S e^{\frac{V_{D2}/3}{V_T}}$ (2)

Dividindo as equações (2) e (1) resulta:
$$\frac{2.81}{3.81} = e^{(V_{D2}-2)/3} = e^{(\Delta V)/3} \longrightarrow \Delta V = -22.8 \text{mV}$$

Ex. 4.25

Dois diodos com corrente de saturação I_{S1} e I_{S2} são conectados em paralelo conforme fig. P4.25. Determine as correntes I_{D1} e I_{D2} em cada diodo e a tensão V_{D} .

Fig. P4.25

a) Cálculo da I_{D1} e I_{D2}

$$I_{D1} \cong I_{s1} e^{\frac{V_D}{V_T}}$$

$$I_{D2} \cong I_{s2} e^{\frac{V_D}{V_T}}$$

$$I_{D1} + I_{D2} = (I_{s1} + I_{s2}) e^{\frac{V_D}{V_T}} \longrightarrow I = (I_{s1} + I_{s2}) e^{\frac{V_D}{V_T}}$$

$$I = (I_{S1} + I_{S2})e^{\frac{V_D}{V_T}} \longrightarrow I = I_{S1}e^{\frac{V_D}{V_T}} (1 + \frac{I_{S2}}{I_{S1}}) \longrightarrow I = I_{D1} (1 + \frac{I_{S2}}{I_{S1}})$$

$$I = I_{D1} = \frac{I}{1 + \frac{I_{S2}}{I_{S1}}} = I_{D1} = \frac{I_{D1}}{I_{D1} + \frac{I_{S1}}{I_{S1} + I_{S2}}}$$

$$I = (I_{S1} + I_{S2})e^{\frac{V_D}{V_T}} \longrightarrow I = I_{S2}e^{\frac{V_D}{V_T}} (1 + \frac{I_{S1}}{I_{S2}}) \longrightarrow I = I_{D1} (1 + \frac{I_{S1}}{I_{S2}})$$

$$I = I_{D1} = \frac{I}{1 + \frac{I_{S1}}{I_{S2}}} = I_{D2} = I_{\frac{I_{S2}}{I_{S1} + I_{S2}}}$$

b) Cálculo da tensão V_D

$$I = (I_{s1} + I_{s2})e^{\frac{V_D}{V_T}} \qquad \qquad \qquad V_D = \ln\left(\frac{I}{I_{s1} + I_{s2}}\right)$$

Ex. 4.27

No circuito da Fig. P4.27 o diodo D_1 tem uma área de junção 10 vezes maior que D_2 . O valor da tensão térmica é 25 mV.

- a) Determine a equação de V em função de I₂.
- b) Determine V no circuito abaixo.
- c) Qual é o valor de I_2 se V = 50mV ?

Fig. P4.27

a) Cálculo de V em função de I₂.

A corrente $I_{s1} = 10 I_{s2}$. A no diodo D_1 é dada por:

$$I_1 = 10I_s e^{\frac{V_1 - V}{nv_T}} \tag{1}$$

A corrente no diodo D₁ é dada por:

$$I = I_S e^{\frac{V_1}{nv_T}} = 0.01 - I_1$$
 \longrightarrow $I_S = (0.01 - I_1) e^{\frac{-V_1}{nv_T}}$ (2)

Substituindo (2) em (1) resulta:

$$I_1 = 10(0.01 - I_1) e^{\frac{-v_1}{nv_T}} e^{\frac{v_1 - v}{nv_T}} = 10(0.01 - I_1) \frac{-V}{nv_T}$$
 $V = -V_T ln \left(\frac{I_1}{10(\mathbf{0.01} - I_1)} \right)$

b) Cálculo de V.

Se
$$I_1 = 2mA$$
 $V = -0.025 ln \left(\frac{2}{10(8)}\right)$ $V = 92.2 mV$

c) Cálculo de I_1 se V=50mV.

$$50x10^{-3} = -V_T \ln \left(\frac{I_1}{10(10 - I_1)} \right) \longrightarrow I_1 = 10(10 - I_1)e^{-2} \longrightarrow I_1 = 5,75mA$$