Public Economics (ECON 131) Section #8: Savings and Corporate Taxation

March 17, 2021

Contents

	Pa	age
1	Savings Taxation (Cont.)	1
	1.1 Practice problems	1
	1.1.1 Gruber, Ch. 22, Q.13 (Modified)	1
	1.1.2 Adding labor decisions (Model with 3 variables)	4
2	Business Taxation	5
	2.1 Key Concepts	5
	2.2 Business Taxation and Investment	5
	2.3 Practice Problem	6

1 Savings Taxation (Cont.)

1.1 Practice problems

1.1.1 Gruber, Ch. 22, Q.13 (Modified)

Consider again the model covered in Section 7 in which individuals live for two periods and have utility functions of the form $U(C_1, C_2) = \ln C_1 + \ln C_2$, but now we won't fix the parameters, but solve for a more general case: Individuals earn some income W in the first period and save with an interest rate r to finance consumption in the second period.

(a) Set up the individual's lifetime utility maximization problem. Solve for the optimal C_1 and C_2 . (Hint: Rewrite C_2 in terms of income, C_1 , and r.)

(b) Again, the government imposes a 20% tax on interest income. Solve for the new optimal levels of C_1 and C_2 .

1.1.2 Adding labor decisions (Model with 3 variables)

Consider again the model covered in Section 7 in which individuals live for two periods, but now we will add labor supply to the individuals decisions. So let's assume that individuals have now utility functions of the form $U(C_1, C_2, l_1) = \ln C_1 + \ln C_2 + \ln(L - l)$ and earn a wage w for each unit of l supplied in period one. They again can save for their retirement with an interest rate r.

(a) Set up the individual's lifetime utility maximization problem. Solve for the optimal C_1 , C_2 and

Page 4 of 7

2 Business Taxation

2.1 Key Concepts

- Choice of entity: Business owners can choose between forming their business as a C-corporation, or as a pass-through (S-Corporations and Partnerships).
- C-corporations and pass-throughs are taxed in different ways:

	C-Corporation	Pass-through
Tax on \$1 of business income		
Tax on \$1 distributed to the owners		
Total after-tax income to owner		

2.2 Business Taxation and Investment

- An important question is how business taxation and the existence of deductions influences investment.
- In lecture, we assume a simple functional form based on Hall & Jorgenson (1967), where a firm earns profits as a function of capital, F(K), and also faces a cost for using capital r, resulting in capital cost rK.
- Thus, the firm chooses capital to maximize F(K) rK, yielding the first order condition F'(K) = r.
- A tax will distort the investment decision if it causes the firm to choose capital K such that $F'(K) \neq r$.

Page 5 of 7

2.3 Practice Problem

(a) An entrepreneur decides to start a new business. The gross profit function is F(K) = pY - wL with $Y = L^{1/2}K^{1/2}$. Assume she'll hire just one employee and will have a fixed labor input L = 1 with w = 2. The market price is p = 2. Her cost of capital is r = .25.

Solve for her optimal investment K.

(b) Is there any pure profit?

(c) Let's say she forms the business as an S-corporation. The personal tax rate is $\tau_p = 25\%$, and no deduction is allowed for capital expenditures. Solve for her optimal investment K. Is there pure profit?

(d) Graph the two solutions (with x-axis K and y-axis rK) on the same graph.

(e) Now assume that a deduction is allowed for capital expenditures (i.e. that rK can be deducted from the firm's tax liability). What is the optimal K now?