The University of Melbourne School of Engineering

Semester 1 2011

ENGR30001 -	Fluid	Mechanics	&	The	rmod	yna	amics
-------------	-------	-----------	---	-----	------	-----	-------

Reading time15 mins	Writing time 3 hours										
This paper has11 Pages											
Authorised materials											
☐ The following items are authorized (list here) OR											
	Students may have unrestricted access to all materials										
No materials are authorised											
Calculators											
☐ No calculators allowed											
☐ Any calculator allowed											
✓ Calculators on School of Engineering approved list only allowed											
Instructions to invigilators											
✓ Script books to be provided											
Instructions to students											
All questions are to be attempted.											
Full marks will be awarded for obtaining 100	0 marks of a potential 110 marks.										
A chart, a table and a formulae page are att	tached at the end of the exam.										
May be taken by students at the end of the	he exam □ Yes ✓ No										
Paper to be held by Baillieu library	√ Yes □ No										

ENGR30001 Fluid Mechanics & Thermodynamics

Question 1

Perform the following using the attached steam tables as required.

i) Sketch a T-v diagram for H₂0 showing the liquid, saturation and superheated regions and at least one isobar passing through each of these regions.

(2 marks)

ii) An open bucket full of hot water sits on a table. Nearby is a bucket half full of cold water. Which has the higher density? Which has the higher specific volume?

(2 marks)

Find the specific volume of water and/or steam at the following conditions using the tables provided:

iii)	p = 8 MPa, $T = 295$ °C (dry saturated)	(1 mark)
iv)	$p = 8 \text{ MPa}, T = 295 ^{\circ}\text{C} \text{ (saturated, } x = 0.8)$	(2 marks)
v)	$p = 8 \text{ MPa}, T = 410 ^{\circ}\text{C}$	(2 marks)
vi)	$p = 6 \text{ MPa}, T = 290 ^{\circ}\text{C}$	(2 marks)

Total for Question 1 = 11 marks

Question 2

i) Define gauge pressure.

(1 mark)

ii) Calculate the temperature of air at a gauge pressure of 100 kPa and density of 2000 g/m³. R = 287 J/kg K for air.

(1 mark)

consider a cylinder of air capped by a leakproof, frictionless piston. The cylinder diameter is 450 mm and the initial volume is 0.08 m³. The atmospheric pressure is 101.3kPa. The air in the cylinder is initially at 80°C and 100kPa (gauge pressure). If the temperature is raised by 30°C but the pressure remains constant, what is the work (in kJ) done on the atmosphere?

(4 marks)

iv) Consider a cylinder of liquid capped by a leakproof, frictionless piston. By cooling the cylinder, the liquid freezes. If the heat transferred from the system is 10 kJ/kg and the specific work done by the piston is 1 kJ/kg, what is the change in specific internal energy of the liquid?

(1 mark)

v) Define specific heat in words and as an equation.

(2 marks)

vi) For what kind of process or processes does the following equation hold:

$$pv^{\gamma} = \text{const}$$

(1 marks)

vii) State Boyle's Law AND Charles' Law.

(2 marks)

Total for Question 2 = 12 marks

Question 3

The figure below shows an air-standard cycle (P - v diagram)

- i) Which of the cycles does this represent (Otto, Diesel, Joule/Brayton, Rankine)? (1 mark)
- ii) List the processes in the cycle, describing the type of process (e.g., for the Otto or Diesel cycle, process 1-2 is an adiabatic compression process during which the piston is moving up and compressing the gas).

(3 marks)

iii) Prove the equation for the thermal efficiency for the above cycle is

$$\eta = \frac{W_{out}}{Q_{in}} = 1 - \frac{1}{r_v^{\gamma - 1}} \left[\frac{r_c^{\gamma} - 1}{\gamma (r_c - 1)} \right]$$

Given

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma - 1}, \quad \frac{T_3}{T_2} = \left(\frac{v_3}{v_2}\right) \quad \text{and} \quad \frac{T_4}{T_3} = \left(\frac{v_3}{v_4}\right)^{\gamma - 1}$$

and define r_v , r_c and γ .

(5 marks)

iv) If a compression ratio of 20:1 and cut-off ratio of 1.8:1 was employed, determine the efficiency of an engine using the above cycle. $\gamma = 1.4$, R = 0.287 kJ/kg K.

(1 mark)

v) Is this efficiency higher or lower than that of a Carnot cycle operating between the same maximum and minimum temperatures as this engine (state Carnot efficiency)?

(2 marks)

Total for Question 3 = 12 marks

The pipeline and pump system shown above is used to deliver water at 10°C from reservoir 1 to reservoir 2 at a volume flow rate of 70 litres/s. The first pipe on the suction side of the pump is 304.5 m long with diameter 200 mm. After the pump the pipe continues for 100 m with diameter 200 mm, followed by a sudden contraction into a 65 m long pipe of diameter 100 mm. All piping has a roughness height of 0.0002 m. Assume the reservoirs are large and open to atmosphere.

(a) Determine the Reynolds number and friction factor for both pipe diameters. (6 marks)

(b) Determine the total head losses in the system (due to frictional and minor losses). (7 marks)

minor loss	loss coefficient
inlet loss	0.5
exit loss	1
sudden contraction	$\frac{1}{2}\left(1-\left(\frac{d_{small}}{d_{large}}\right)^2\right)$

(c) How much power must be supplied by the pump.

(5 marks)

(d) Where does the lowest head in the system occur?

(1 mark)

Total for question 4 = 19 marks

Properties for water at 20°C

$$ho = 1000 \text{ kg/m}^3$$

 $\mu = 1 \times 10^{-3} \text{ N s/m}^2$
 $p_{vp} = 2333 \text{ Pa}$

A pump is used to deliver water at 20° C between two large reservoirs (from reservoir 1 to reservoir 2) through 464.74 m of pipe with internal diameter 0.4m. The free surface of reservoir 2 is located 49 m above the free surface of reservoir 1. For volume flow rates of greater than $0.5 \text{m}^3/\text{s}$, the Fanning friction factor is found to have a constant value 0.008. Both reservoirs are open to atmosphere.

- (a) Using the details given, write out an expression for the system head purely as a function of Q (for the constant f case where $Q > 0.5 \text{m}^3/\text{s}$). Ignore all minor losses. (6 marks)
- (b) You are provided the following equation from the manufacturer for the pump head as a function of volume flow rate,

$$h_p = 149 - 20Q^2$$

Determine algebraically the volume flow rate at the operating point of the system. (3 marks)

(c) The required Net Positive Suction Head $(NPSH_R)$ supplied by the pump manufacturer is 8 m. Determine whether the pump is within the permissable operating range at the operating point. The vapour pressure of water at 20° C is 2333 Pa. Assume that atmospheric pressure is 101325 Pa.

(5 marks)

(d) Estimate the roughness height for the pipe.

(2 marks)

Total for question 5 = 16 marks

The mechanical energy equation for horizontal, isothermal, ideal, compressible gas flow in a pipe of uniform cross-section is

$$\frac{P_2^2 - P_1^2}{2(RT/M)} + \left(\frac{G}{A}\right)^2 \ln\left(\frac{P_1}{P_2}\right) + \frac{2 fL}{D} \left(\frac{G}{A}\right)^2 = 0$$

where all symbols have their usual meaning.

- a) What is meant by the term "choked flow"? (2 marks)
- b) Explain the significance of the pressure P_w in the following relation:

$$\frac{4 fL}{D} = \left(\frac{P_1}{P_w}\right)^2 - \ln\left(\frac{P_1}{P_w}\right)^2 - 1$$
(2 marks)

Nitrogen gas flows isothermally at 150 °C through such a pipe having internal diameter 55 mm and length 10m. The gas pressure at the pipe entrance is 600 kPa and the pressure at the pipe exit is 400 kPa. The Fanning friction factor f = 0.005

- c) Show that the flow through the pipe is not choked (5 marks)
- d) Calculate the mass flow rate of nitrogen through the pipe (8 marks)
- e) Calculate the gas velocity at the pipe exit as a percentage of the sonic velocity (5 marks)

Gram molecular weight of nitrogen

Gas constant R

28
8.314 J mol⁻¹ K⁻¹

Total for Question 6 = 22 marks

Question 7

The liquid in a production stirred tank system in which vortexing occurs has viscosity equal to 0.005 Pa s and density equal to 900 kg m⁻³. A 1/5th scale laboratory model of the production unit is built to investigate the mixing performance. The liquid used in the laboratory model is chosen to ensure dynamic similarity on both Reynolds number and Froude number.

Calculate the kinematic viscosity required for the laboratory liquid. Give units for your numerical answer. (6 marks)

Total for Question 7 = 6 marks

An incompressible viscous Newtonian fluid is located in the space between two infinitely long parallel plates that are a distance h apart. Let x and y be the coordinates parallel and normal to the plates, respectively. The coordinate z is perpendicular to the x-y plane. The lower plate is stationary but the upper plate is moving with velocity V, thereby imparting motion to the fluid. The fluid is also being driven by an applied pressure gradient in the x-direction. The flow is steady, parallel to the plates, and planar in the x-y plane with no dependence on the coordinate z

- a) Show that the velocity v_x is a function of y only (2 marks)
- b) Show that the pressure gradient $\frac{\partial p}{\partial x}$ must be constant (5 marks)
- c) Find an expression for the velocity (v_x) profile assuming the pressure falls from a pressure P_1 to a pressure P_2 over a length L along the channel (5 marks)

Total for Question 8 = 12 marks

Total for the paper = 110 marks

Continuity and Navier-Stokes equations for incompressible homogeneous fluids in Cartesian, cylindrical, and spherical coordinates

Spherical		$\frac{1}{r^2} \frac{\partial (r^2 \nu_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\nu_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \nu_\phi}{\partial \phi} = 0$		$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right)$ $= -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_r}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi^2} - \frac{2v_\theta}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{2v_\theta \cot \theta}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial v_\theta}{\partial \phi} \right]$	7 6 5 2	$\rho\left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r} v_{\phi}}{r} + \frac{v_{\theta} v_{\phi} \cot \theta}{r}\right)$ $= -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\phi}}{\partial r}\right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta}\right)\right]$ $+ \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\phi}}{\partial \phi^{2}} - \frac{v_{\phi}}{r^{2} \sin^{2} \theta} + \frac{2}{r^{2} \sin \theta} \frac{\partial v_{r}}{\partial \phi} + \frac{2 \cos \theta}{r^{2} \sin^{2} \theta} \frac{\partial v_{\theta}}{\partial \phi}\right]$
Cylindrical	Continuity equation	$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{1}{r}\left(\frac{\partial v_\theta}{\partial \theta}\right) + \frac{\partial v_z}{\partial z} = 0$	Navier-Stokes equation	$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z}\right)$ $= -\frac{\partial p}{\partial r} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}(rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right]$	$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r v_{\theta}}{r} + v_z \frac{\partial v_{\theta}}{\partial z}\right)$ $= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_{\theta})\right) + \frac{1}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_{\theta}}{\partial z^2}\right]$	$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right]$
Cartesian		$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$		$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right)$ $= -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right)$ $= -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right)$

£	-	VЗ	9	20	25	30	\$	20	3	22	2 6	3 1	2	90	125	150	175	200	225	250	275	300	325	320	375	400	425	450	475	200	550	009	650	200	- 750 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	008					
001	1046	1044	1043	1040	1038	1036	1032	1027	1023	1017	100	1012	1006	1000	983.5	965.3	945.5	924.1	901.1	876.6	850.4	822.7	792.9	760.6	726.5	691.4	623.9	613.9	571.2	528.2	445.3	374.8	322.0	282.8	253.0	230.4					
200	1037	1036	1035	1032	1030	1029	1025	1020	1015	0101	0.01	1005	998.7	992.5	975.5	956.7	936.2	914.0	889.9	864.1	836.2	806.4	773.9	738.1	699.7	658.8	613.6	564.3	510.8	457.0	361.8	295.9	251.6	221.3	199.3	182.5					
8	1028	1028	1027	1024	1022	1021	1017	1013	1008	1003	001	996.9	990.9	984.5	967.0	947.7	926.3	903.1	877.7	850.3	820.2	787.5	751.0	710.0	664.2	612.6	551.1	479.9	403.9	338.8	253.3	206.8	178.7	159.5	145.2	134.0					
20	1024	1023	1022	1020	1018	1017	1013	1009	1004	200	770.0	993.0	986.9	980.4	962.7	943.0	921.1	897.3	871.2	842.7	811.3	776.7	737.5	692.6	640.4	578.3	497.2	401.3	315.9	257.6	195.6	163.6	143.7	129.5	118.8	110.2					
45	1022	1021	1020	1018	1016	1015	1011	1007	1001	7000	770.7	990.9	984.8	978.3	960.4	940.5	918.4	894.3	867.8	838.8	806.6	770.9	729.9	682.6	625.9	555.1	455.0	343.2	262.9	216.2	168.5	143.2	126.8	115.0	105.8	98.42					
\$	1019	1019	1018	1016	1014	1013	1009	1005	000	200	7.4.	988.9	982.8	976.2	958.2	938.1	915.7	891.3	864.3	834.7	801.6	764.7	721.8	671.4	608.5	523.8	390.6	272.1	210.5	178.1	143.2	123.6	110.5	100.7	93.04	86.80					
32	1017	1016	1016	1014	1012	1011	1007	1003	007.00	2.00	277.0	986.9	980.7	974.1	955.9	935.6	912.9	888.1	860.6	830.4	796.4	758.1	712.9	658.6	586.5	473.8	292.3	201.8	165.4	144.4	119.9	105.0	94.68	86.80	80.52	75.33					
30	1014	1014	1014	7012	1010	1009	1005	1001	700	7,000	920.0	984.8	978.5	971.9	953.5	933.0	910.1	884.9	856.9	826.0	790.9	751.0	703.0	643.5	555.4	353.3	189.3	148.5	128.3	115.2	98.37	87.44	79.48	73.28	68.24	64.03					
25	1012	1012	1011	1009	1008	1007	1003	200	2000	933.0	788.0	982.7	976.4	7.696	951.1	930.4	907.2	881.6	853.0	821.3	785.1	743 3	6918	625.0	488.7	166.3	127.0	109.0	97.92	89.86	78.61	70.79	64.87	60.13	56.21	52.89					
20	טנטו	1009	1009	1007	1006	1004	1001	200	0.000	0.177	786.4	980.5	974.2	967.4	948.7	927.7	904 2	878.2	249.0	816.5	778.9	7350	679.0	600.1	132.0	100.5	87.21	78.70	72.54	67.70	60.43	55.06	50.83	47.37	44.45	41.94	365.7	6	450.V	170.2	~
15	2002	1007	1007	1005	1004	1002	008.7	000	2.474	767.0	984.2	978.3	972.0	965.1	946.2	925.0	1 100	R74.7	244.0	811.4	772.3	7257	663.6	87.24	72.04	63.85	58.37	54.20	50.87	48.09	43.65	40.19	37.36	34.98	32.94	31.17	342.1	9	603.2	96.71	kg/m ³
10	1005	1005	1007	1003	1001	1000	9 900	220.0	7%6.4	767.5	982.1	976.1	7.696	962.8	943.7	922.2	0 808	871.1	840.6	806.1	765.2	7154	\$0.40	44.60	40.76	37.87	35.55	33.62	31.97	30.53	28.09	26.10	24.41	22.96	21.70	20.58	311.0		688.4	55.43	
68	700	505	1001	1002	1001	000	005.7	22.1	277.2	780.0	981.2	975.2	968.8	961.9	942.7	921.1	7 700	869.6	920	2000	762.2	41.27	26.54	33.39	31.04	29.15	27.57	26.22	25.03	23.98	22.17	20.66	19.38	18.26	17.28	16.41	295.0		722.4	42.51	Steam
9	1003	1002	1002	<u> </u>	999.7	0008	0070	× + 000	990.0	780.00 00.00	980.3	974.3	967.9	960.9	941.7	920.0	1 200	200	627.0	801.5	759.3	17.67	10.12	23.52	22.00	21.11	20.09	19.19	18.39	17.67	16.41	15.34	14.42	13.61	12.89	12.26	275.5		758.3	30.83	ter &
4	Ş	1002	1002	1000	998.8	2 200	0.00	y 0	989.8	984.9	979.4	973.4	6.996	0.096	940.6	918.8	1 700	7.5.0	000.0	7007	18.34	5	37.75	15.05	14.20	13.63	13.04	12.51	12.02	11.58	10.80	10.13	9.537	9.017	8.555	8.140	250.3		798.7	20.10	[Wai
7	Š	1001	3 5	9992	997.9	900	2000	1,5%	788.7	984.0	978.5	972.5	0.996	959.0	9 626	617.7	0	077.0	0.000	4.045	8.429		7.508	700.7	6003	6.617	6.357	6 139	5.900	5,696	5.331	5.012	4.731	4.481	4 256	4.054	212.4		849.9	10.05	Density of Water &
=	9	901	2001	908 7	997.4	000	2,000	1.766	988.3	983.6	978.1	972.1	965.5	958.6	030 1	917.1		1.220	4.000	4.204	4.250	2 0	3.8/0	3.700	3.241	3.263	3.141	3 038	2.923	2.825	2.649	2 494	2.356	2.233	2 123	2.023	1799		887.0	5.147	Dens
0.5	6	000	9 5	200	997.2	0.500	x x	6.000	988.2	983.4	977.9	971.8	9653	9583	038.8	916.8	200	4007	2.333	2.443	2.006	200	1.914	1.530	1.734	1,500	1561	1 505	1.455	1 407	1.320	1 246	1 176	1115	1080	1.01	5.	9	915.0	2.669	<i>;</i> .
0.1	6	879.8	277.0	006.3	997.0	0 200	975.0	256.3	988.	983.2	7.7.7	971.7	965.1	0 590	0.550	0.536		0.467	0.460	0.437	0.410	0.00	0.379	0.363	0.348	0.333	0 311	1000	0.200	0.280	0.263	0.348	0.235	0.223	0.21	0.202	00 63	0.00	958.4	0.590	
0.02		959.8 8.600	8.666	999.0	997.0		7.000	992.3	988.0	983.2	7.7.7	971.6	10%0	0 203	0.074	0.257		0.243	0.230	0.218	0.207	0.170	0.189	0.181	471.0	0.16/	0.155	0.150	0.175	0 140	0.132	0.124	0.117	5.5	2010	0.101	81 35	27.10	970.8	0.309	
0.02	;	8,566	999.8	0000	997.0		7.025	992.3	988.0	981.9	0.1269	0.1232	0 1197	77170	2001	0.1036		0.0968	0.0917	0.0871	0.0829	0.0721	0.0756	0.0725	0.0696	0.0669	0.0623	0.000	0.0279	0.0561	0.0527	90700	0.0469	0.040	0.00	0.0404	000	20.00	983.1	0.1307	
0.01		8.666	8.666	5.000	997.0	2 6	7.066	992.3	0.0673	0.0652	0.0633	0.0615	0.050	0.0270	20000	0.045	71000	0.0484	0.0458	0.0435	0.0414	0.000	0.0378	0.0362	0.0348	0.0334	0.0310	0.00	0.0300	0.0470	0.0263	97000	0.0246	0.0233	0.000	0.0202	A 5 82	47.03	6'686	0.0681	
0.001		999.8	999.9	0.00790	0.00727	77.000	0.00715	0.00692	0.00671	0.00651	0.00632	0.00634	70500	0.0050	0.00544	0.00544	710000	0.00484	0.00458	0.00435	0.00414	0.00393	0.00378	0.00362	0.00348	0.00334	0.0000	0.00310	0.00300	0.00250	0.00200	97000	0.00240	0.00233	0.00223	0.00212	007	0.70	6.666	0.00774	
a	E	6	vn :) o	9	3 6	3	\$	20	8	70	6	9 6	2 8) N	67	2	175	88	225	250	6/3	300	325	350	375	2 4	6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43	50 P	0 0	200		900	900		200		t sal	Pr	g d	

ပ္

Library Course Work Collections

Δ	ritk	n	r/s:	
$\boldsymbol{\Gamma}$	uu	ıv	I/ J.	

Melbourne School of Engineering

Title:

Fluid Mechanics and Thermodynamics, 2011 Semester 1, ENGR30001

Date:

2011

Persistent Link:

http://hdl.handle.net/11343/6844

File Description:

Fluid Mechanics and Thermodynamics, 2011 Semester 1, ENGR30001