Entrenamiento 2023 Lista de problemas

Kenny J. Tinoco

ASJT - Nicaragua

1. OMCC y PAGMO

1.1. Encuentro 1

Problema 1.1. Sean reales a, b, c > 0, tales que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3$. Demostrar que se cumple

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge 3.$$

Problema 1.2. Si x + y + z = 1, con $x, y, z \in \mathbb{R}^+$. Probar que

$$xy + yz + 2zx \le \frac{1}{2}.$$

Problema 1.3. Si $a^4 + b^4 + c^4 + d^4 = 16$, con $a, b, c, d \in \mathbb{R}$ Probar que

$$a^5 + b^5 + c^5 + d^5 \le 32.$$

Problema 1.4. Para $a, b, c \in \mathbb{R}$ con $a^2 + b^2 + c^2 = 3$. Probar que

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ac} \ge \frac{3}{2}.$$

Problema 1.5. Para todo $x, y, z \in \mathbb{R}$, con $y \neq -z$, $z \neq -x$ y $x \neq -y$. Probar que

$$\frac{x^2 - z^2}{y + z} + \frac{y^2 - x^2}{z + x} + \frac{z^2 - y^2}{x + y} \ge 0.$$

Problema 1.6. Definamos la secuencia $a_0=1$ y $a_n=\prod_{i=0}^{n-1}a_i+1, n\geq 1.$ Probar que

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1} - 1} = 1.$$

Problema 1.7. Definimos la secuencia $\{x_i\}_{i\geq 1}$ por $x_1=\frac{1}{1012}$ y para $n\geq 1$

$$x_{n+1} = \frac{x_n + x_n^2}{1 + x_n + x_n^2}$$

Hallar el valor de

$$\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{1011}+1} + \frac{1}{x_{1012}}.$$

Problema 1.8. Definamos la siguiente secuencia como

$$B_1 = B_2 = 1$$

$$B_n = 2B_{n-2} + B_{n-1}, \quad n \ge 3.$$

Probar que para n impar

$$\sum_{i=1}^{n-1} B_i = B_n - 1.$$

Problema 1.9. Sea $x, y, z \in \mathbb{R}^+$, tal que xyz = 1, probar que la siguiente desigualdad se cumple

$$\frac{x^3 + y^3}{x^2 + xy + y^2} + \frac{y^3 + z^3}{y^2 + yz + z^2} + \frac{z^3 + x^3}{z^2 + zx + x^2} \ge 2.$$

Problema 1.10. Sea $a_0 = a_1 = 1$ y

$$a_{n+1} = 1 + \frac{a_1^2}{a_0} + \frac{a_2^2}{a_1} + \dots + \frac{a_n^2}{a_{n-1}}, n \ge 1.$$

Hallar a_n en función de n.

Problema 1.11. Sea P(x) un polinomio no nulo tal que (x-1)P(x+1)=(x+2)P(x) para todo real x, y $P(2)^2=P(3)$. Hallar m+n, si $P\left(\frac{7}{2}\right)=\frac{m}{n}$ donde m y n son primos relativos.

1.2. Encuentro 2

Problema 1.12. Dado a - b = 2, b - c = 4. Hallar el valor de $a^2 + b^2 + c^2 - ab - bc - ca$.

Problema 1.13. Dado que $\frac{x}{x^2 + 3x + 1} = a$, $(a \neq 0)$. Encontrar el valor de

$$\frac{x^2}{x^4 + 3x^2 + 1}.$$

Problema 1.14. Resolver

$$\sqrt[3]{x^3 + 3x^2 - 4} - x = \sqrt[3]{x^3 - 3x + 2} - 1.$$

Problema 1.15. Pruebe que si *a*, *b*, *c* son números reales positivos, entonces:

$$\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} \ge \frac{2}{a} + \frac{2}{b} - \frac{2}{c}.$$

Problema 1.16. Sean *a*, *b*, *c* números reales positivos, muestre que

$$\sum_{cuc} \frac{a}{(a+b)(a+c)} \le \frac{9}{4(a+b+c)}.$$

Problema 1.17. Sean a, b, c números reales positivos, con abc = 8, muestre que

$$\frac{a-2}{a+1} + \frac{b-2}{b+1} + \frac{c-2}{c+1} \le 0$$

Problema 1.18. Sea P(x) un polinomio de coeficientes reales no negativos. Sean x_1, x_2, \dots, x_k reales positivos tales que $x_1x_2 \dots x_k = 1$. Demostrar que

$$P(x_1) + P(x_2) + \dots + P(x_k) \ge kP(1).$$

Problema 1.19. Consideremos la secuencia de números racionales definida por

$$x_1 = \frac{4}{3}$$

$$x_{n+1} = \frac{x_n^2}{x_n^2 - x_n + 1}, n \ge 1$$

Demostrar que el numerador de la sumatoria

$$\sum_{i=1}^{n} x_i$$

reducida en su mínima expresión es un cuadrado perfecto.

1.3. Encuentro 3

Problema 1.20. Hallar el valor de

$$\frac{2^2}{2^2-1} \times \frac{3^2}{3^2-1} \times \frac{4^2}{4^2-1} \times \dots \times \frac{2023^2}{2023^2-1}.$$

Problema 1.21. Determine el valor de la suma

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{4045}{2022^2 \times 2023^2}.$$

Problema 1.22. Dado que a + b = c + d y $a^{3} + b^{3} = c^{3} + d^{3}$. Probar que

$$a^{2023} + b^{2023} = c^{2023} + d^{2023}$$

Problema 1.23. Sean a, b y c números naturales tales que

$$ab(c+ab^{2})+c^{2}(b^{2}c+a^{3}) = b^{2}c(a^{2}c+b)+a(a^{2}b+c^{3})$$

Desmostrar que al menos uno de los números a, b o c es un cuadrado perfecto.

Problema 1.24. Sean $a_1, a_2, \dots, a_{2023}$ números reales y para cada entero $1 \le n \le 2023$ sea

$$S_n = a_1 + a_2 + \dots + a_n$$

Si $a_1 = 2023$ y se cumple que $S_n = n^2 a_n$ para todo n, determina el valor de a_{2023} .

Problema 1.25. Existe un único polinomio con coeficiente reales de la forma

$$P(x) = 7x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

tal que P(1) = 1, P(2) = 2, ...,P(6) = 6. Hallar el valor de P(0).

Problema 1.26. El entero positivo n verifica

$$\frac{1}{1 \cdot \left(\sqrt{1} + \sqrt{2}\right) + \sqrt{1}} + \frac{1}{2 \cdot \left(\sqrt{2} + \sqrt{3}\right) + \sqrt{2}} + \frac{1}{n \cdot \left(\sqrt{n} + \sqrt{n+1}\right) + \sqrt{n+1}} = \frac{2022}{2023}$$

Hallar la suma de digitos de n.

Problema 1.27. Sean los reales positivos a_1, a_2, \dots, a_n tales que $a_1 \cdot a_2 \cdots a_n = 1$. Probar que

$$\frac{a_1}{1+a_1} + \frac{a_2}{(1+a_1)(1+a_2)} + \frac{a_3}{(1+a_1)(1+a_2)(1+a_3)} + \vdots + \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} \ge \frac{2^n-1}{2^n}.$$

Problema 1.28. Sea $n \ge 2$ un entero positivo y a_1, a_2, \dots, a_n números reales positivos tales que $a_1 + a_2 + \dots + a_n = 1$. Probar que la siguiente desigualdad se cumple

$$\frac{a_1}{1 + a_2 + a_3 + \dots + a_n} + \frac{a_2}{1 + a_1 + a_3 + \dots + a_n} + \vdots \\ + \frac{a_n}{1 + a_2 + a_3 + \dots + a_{n-1}} \ge \frac{n}{2n - 1}.$$

Problema 1.29. Definamos $a_k = (k^2 + 1)k!$ y $b_k = a_1 + a_2 + \cdots + a_k$. Sea

$$\frac{a_{100}}{b_{100}} = \frac{m}{m}$$

donde m y n naturales primos relativos. Hallar n-m.

Problema 1.30. Determine $a^{2} + b^{2} + c^{2} + d^{2}$ si

$$\frac{a^2}{2^2 - 1} + \frac{b^2}{2^2 - 3^2} + \frac{c^2}{2^2 - 5^2} + \frac{d^2}{2^2 - 7^2} = 1$$

$$\frac{a^2}{4^2 - 1} + \frac{b^2}{4^2 - 3^2} + \frac{c^2}{4^2 - 5^2} + \frac{d^2}{4^2 - 7^2} = 1$$

$$\frac{a^2}{6^2 - 1} + \frac{b^2}{6^2 - 3^2} + \frac{c^2}{6^2 - 5^2} + \frac{d^2}{6^2 - 7^2} = 1$$

$$\frac{a^2}{8^2 - 1} + \frac{b^2}{8^2 - 3^2} + \frac{c^2}{8^2 - 5^2} + \frac{d^2}{8^2 - 7^2} = 1$$

Problema 1.31. Probar que para todo entero positivo n, se puede encontrar una permutación del conjunto $\{1, 2, 3, \dots, n\}$ de manera que el promedio de dos enteros no aparece en medio de ellos.

Por ejemplo, si se tiene n=4, la permutación $\{1,3,2,4\}$ sirve, mientras que $\{1,4,2,3\}$ no, ya que 2 está entre 1 y 3, y $2=\frac{1+3}{2}$.

Problema 1.32. Sea a_{in} una sucesión de reales positivos que satisface

$$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$$

para todo entero positivo k. Muestra que $a_1 + a_2 + \cdots + a_n \ge n$, para todo $n \ge 2$.

Problema 1.33. Hallar todas las funciones $f : \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x^2 - y^2) = (x - y) (f(x) + f(y)) \quad \forall x, y \in \mathbb{R}.$$

Problema 1.34. Encontrar todas las funciones $f : \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x+y) + xy = f(x)f(y) \quad \forall x, y \in \mathbb{R}.$$

Problema 1.35. Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que, para cualesquiera x, y, u, v reales, se cumple

$$(f(x) + f(y)) (f(u) + f(v)) = f(xu - yv).$$

Problema 1.36. Hallar todas las funciones $f: \mathbb{N} \to \mathbb{R}$ que satisfacen que f(1) = 3, f(2) = 2 y

$$f(n+2) + \frac{1}{f(n)} = 2, \quad \forall n \in \mathbb{N}.$$

Problema 1.37. Un *triminó* es una ficha rectangular de 1×3 . ¿Es posible cubrir un tablero de ajedrez de 8×8 usando 21 *triminó*, de manera que hay exactamente una casilla 1×1 sin ser cubierta?. En caso de que la respuesta sea afirmativa, determine todas las posibles casillas que pueden quedar sin ser cubiertas.

Problema 1.38. En un tablero cuadriculado $n \times n$ se escriben números dentro de cada casilla mediante el siguiente proceso:

■ Se seleccionan números reales $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ todos distintos entre sí.

■ En la casilla de la fila i columna j se escribe el número $a_i + b_j$.

Suponiendo que los n productos de los

números en cada fila del tablero son iguales entre sí, demostrar que los n productos de los números en cada columna también son iguales entre sí.

Referencias

- [BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Desigualdades. UNAM, 2014.
- [Her20a] Josué Hernández. Guia Practica de Productos Notables. Academia Sabatina de Jóvenes Talento. Nicaragua, Agosto 2020.
- [Her20b] Josué Hernández. Sumas telescópicas II. Academia Sabatina de Jóvenes Talento. Nicaragua, Agosto 2020.
- [Ins20] Olimpiadas InsOMMnia. I Olimpiada de Álgebra. InsOMMnia, 2020.
- [NN19] Peter Nizić-Nikolac. The alternative IMOs (2001 2017). AoPs, July 2019.
- [San21] Marcos Sanchez. Clase de álgebra. Academia Sabatina de Jóvenes Talento. Nicaragua, Marzo 2021.
- [San22] Marcos Sanchez. Hoja de trabajo #1. Academia Sabatina de Jóvenes Talento. Nicaragua, Enero 2022.