Create a Strong Password and Evaluate Its Strength

Objective

The goal of this task is to understand the factors that make a password strong, evaluate password security using online strength checkers, and learn best practices for password creation.

Tools Used

- Password Strength Checker: password.kaspersky.com
- Passwords Tested: Multiple examples with varying complexity

Passwords Created and Tested

Password	Composition Details	Score (Karpersky Password Checker)	Feedback / Weaknesses
ashwini123	Lowercase letters + numbers, short length (10 chars)	Weak (~20%)	Predictable, dictionary word + numbers
Ashwini@2025	Upper/lowercase, numbers, symbol, 12 chars	Medium (~55%)	Contains a name, common pattern
P@ssW0rd!	Upper/lowercase, numbers, symbol, 9 chars	Medium (~60%)	Still predictable ("password" variant)
Cyb3r\$ecure#9	Upper/lowercase, numbers, symbols, 12 chars	Strong (~80%)	Few dictionary patterns
X!7m@R%2qZ#dL	Random upper/lowercase, numbers, symbols, 13 chars	Very Strong (~95%)	No dictionary matches, high complexity

Key Observations

- Short and simple passwords (ashwini123) are **weak** and vulnerable to brute force and dictionary attacks.
- Including a mix of **uppercase**, **lowercase**, **numbers**, **and symbols** increases password strength.
- Avoiding dictionary words, personal names, or predictable patterns makes passwords harder to guess.
- Password length is critical: increasing from $8 \rightarrow 12+$ characters significantly improves resistance to brute-force attacks.
- Randomized passwords (X!7m@R%2qZ#dL) are the strongest but harder to remember.

Best Practices for Strong Passwords

- Use at least **12–16 characters**.
- Combine uppercase, lowercase, numbers, and special characters.
- Avoid personal information (name, DOB, username).
- Do not use dictionary words or common substitutions (P@ssw0rd, Qwerty123).
- Use **passphrases** (random words + symbols) for memorability, e.g., C@tRun\$In!2025.
- Consider using a password manager to store and generate complex passwords.

Common Password Attacks

- **Brute Force Attack:** Tries every possible combination; short/simple passwords are easily cracked.
- **Dictionary Attack:** Uses common words, names, and patterns; predictable passwords fail quickly.
- **Hybrid Attacks:** Combines dictionary words with number/symbol substitutions.
- Credential Stuffing: Uses previously leaked passwords on other sites.

Conclusion

The evaluation showed that password strength heavily depends on **length, complexity, and unpredictability**. The strongest tested password was X!7m@R%2qZ#dL, which scored ~95% on the strength checker.

By following best practices—using longer, randomized, and complex passwords while avoiding personal info—we can greatly reduce vulnerability to brute force and dictionary attacks, enhancing overall cybersecurity.