

Lecture 2 – ISA

(ECE M116C- CS M151B) Computer Architecture Systems

Nader Sehatbakhsh

Department of Electrical and Computer Engineering University of California, Los Angeles

Is this it?

- NO

- New Techniques:
 - More Moore
 - More than Moore
 - Beyond CMOS
- → We will talk about these in W10.

Instruction Set Architecture (ISA)

Running an Application

Challenge: How to maintain compatibility?

Challenge: How to maintain compatibility?

SW

*Image was taken from daria.fandom,com

Let's make this *contract*:

We (SW and Sys. SW)

promise to always give you a

program with *only a set of*known instructions, and you

(HW) promise to be able to

execute those!

*Image was taken from Shutterstock.com

ISA

- The contract between software and hardware. Typically described by giving all the programmer-visible state (registers + memory) plus the semantics of the instructions that operate on that state.
- IBM 360 was the first line of machines to separate ISA from implementation (aka. *microarchitecture*).
- Many implementations possible for a given ISA
 - AMD, Intel, VIA processors run the AMD64 ISA
 - many cellphones use the ARM ISA with implementations from many different companies including Apple, Qualcomm, Samsung, Huawei, etc.
- We use RISC-V as standard ISA in class (www.riscv.org)

Design Methodology

- ISA often designed with particular microarchitectural style in mind, e.g.,
 - \circ Accumulator \rightarrow hardwired, unpipelined
 - \circ CISC \rightarrow microcoded
 - \circ RISC \rightarrow hardwired, pipelined
 - VLIW → fixed-latency in-order parallel pipelines
 - \circ JVM \rightarrow software interpretation
- But can be implemented with any microarchitectural style
 - Intel Ivy Bridge: hardwired pipelined CISC (x86) machine (with some microcode support)
 - Spike: Software-interpreted RISC-V machine
 - ARM Jazelle: A hardware JVM processor
 - → Our Focus: RISC-V (RISC) hardwired, pipelined machine

What is RISC-V?

What is RISC-V?

• An open-source "RISC"-based ISA (royalty-free).

Developed in the 2010s at Berkeley.

- Mostly maintained by the open-source community.
- Different extensions and models. We will focus on the 32-bit "base" mode (i.e., "RV321").

"RISC"

- "Reduced Instruction Set Computers"
- Alternative: "CISC"

"RISC"

- "Reduced Instruction Set Computers"
- Alternative: "CISC"
- Difference:
 - Instruction size: fixed vs. variable
 - Simple (one-by-one) operation vs. packed operation
 - Complexity

"RISC"

- "Reduced Instruction Set Computers"
- Alternative: "CISC"

Read more here:

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

- O Simple (on—by-one) operation vs. packed operation
- Complexity

Widely-Used ISAs

- All "RISC" except x86 (Intel's ISA)
- Most popular RISC ISAs:
 - MIPS, ARM, PowerPC, and RISC-V

How computers run instructions?

Stored Program Computer (von Neumann)

 Computer hardware is a machine that reads instructions one-by-one and executes them sequentially. It continues this until the program finishes.

→ We will break this down in the next few lectures.

Stored Program Computer (von Neumann)

- Memory holds both program and data
 - Instructions and data in a linear memory array
 - Instructions can be modified as data
- Sequential instruction processing
 - 1. Program Counter (PC) identifies current instruction.
 - 2. Fetch instruction from memory.
 - 3. Update state (e.g. PC and memory) as a function of current state according to instruction.
 - 4. Repeat.

How to build an ISA?

- Transition from HLL to assembly
- No discussion (yet) on how
 - a. to generate machine code?
 - b. to upload this to hardware?
 - c. does hardware run this?

How to build an ISA?

- Transition from HLL to assembly
- No discussion (yet) on how
 - a. to generate machine code?
 - b. to upload this to hardware?
 - c. does hardware run this?

How instructions look like?

COMMAND OPERANDS

In 32-bit RISC-V, each instruction is fixed-size and is 32-bit.

How instructions look like?

COMMAND OPERANDS

In 32-bit RISC-V, each instruction is fixed-size and is 32-bit.

Possible Types of Operands

1. Registers

2. Immediate

3. Memory

What is a register?

• A small storage unit **inside** the processor to quickly access data.

What is a register?

- A small storage unit **inside** the processor to quickly access data.
 - Faster than memory but much smaller (smaller is faster!)
 - Can be seen by Software*!
 - This is something that we will clarify later.
 - Typically between 16 and 64 registers in modern ISAs.

Register Width and Size

Larger width means easier data transfer but more power.

 More registers means less access to the main memory but requires more area and more power.

Register Width and Size

Larger width means easier data transfer but more power.

 More registers means less access to the main memory but requires more area and more power.

→ Low-end processors use smaller registers. High-Performance processors use wider and more registers.

RISC-V Registers

32 registers, 32-bit each (called word).

(32 registers, 64-bit each \rightarrow called double-word).

This is called RV32.

This is called RV64.

RISC-V Registers

• 32 registers, 32-bit each (called word).

(32 registers, 64-bit each \rightarrow called double-word).

- Each register shown as *xi*.
- *x0* is hardwired to zero.
- Registers are stored in a data structure called Register File (this is a hardware unit that will be discussed later).

This is called RV32.

This is called RV64.

RISC-V Registers

32 registers, 32-bit each (called word).
 (32 registers, 64-bit each → called double-word).

This is called RV32.

This is called RV64.

- All 32 registers store values in integers.
- For more high-end processors, there is a separate set of registers for floating point operations.

Possible Types of Operands

1. Registers

2. Immediate

3. Memory

Immediate

Constant numbers to be used in an instruction.

• Example:

Immediate

Constant numbers to be used in an instruction.

• Example:

- Registers are 32-bit but immediates may not. (why?)
 - → What should we do then?

Immediate

• Constant numbers to be used in an instruction.

• Sign-Extension??

Immediate: Sign-Extension and Padding

- Many operations in RISC-V are signed. So proper sign-extension is needed when necessary.
- For LSBs, padding zeros is sufficient (why?)
- (Today is a good time to review 2's complement...).

Possible Types of Operands

1. Registers

2. Immediates

3. Memory

Possible Types of Operands

- 1. Registers
- 2. Immediates

- 3. Memory
 - Values are stored in a memory and could be accessed.
 - Memory should be byte-addressable (More about memory later ...)

- Format and addressing
 - Load and store

- Format and addressing
 - Base and offset (base displacement addressing)

- Format and addressing
 - o Byte-addressability vs. 32-bit data (little endian)

- Format and addressing
 - Alignment

MSB

byte-3	byte-2	byte-1	byte-0	LSE
byte-7	byte-6	byte-5	byte-4	

- Load and Store Variants
 - o LW, LB, LH
 - o LBU, LHU
 - SW, SB, SH (what about the sign?)

Possible Types of Operands

1. Registers

2. Immediates

3. Memory

How many operands?

• At most two (for RISC-V). Sometime one, sometimes none.

- Why?
 - Most efficient → Tradeoff between size, complexity, and efficiency

How instructions look like?

COMMAND OPERANDS

In 32-bit RISC-V, each instruction is fixed-size and is 32-bit.

Instruction Types

Arithmetic/ALU

Memory

Control-Flow

Arithmetic/ALU Instruction

- Do an arithmetic operation on
 - two registers or
 - one register and an immediate

and save the result in another register.

Arithmetic/ALU Instruction

- Source and Destination registers
- Example:

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] \times_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] \times_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (reg[rs1]) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (reg[rs2]) ? 1 : 0$
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	reg[rd] <= reg[rs1] $*_u$ constant
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \le reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] <= (reg[rs1] \leq_u reg[rs2]) ? 1 : 0
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_s constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \le reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (reg[rs2]) ? 1 : 0$
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] *_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_s constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (reg[rs2]) ? 1 : 0$
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \gg_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	reg[rd] <= (reg[rs1] $<_u$ constant) ? 1 : 0
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	reg[rd] <= reg[rs1] $*_u$ constant
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \le reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] *_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \le reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \le reg[rs1] >_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	reg[rd] <= reg[rs1] u reg[rs2]
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] *_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow s constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow_u constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] « constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] *_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] *_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] « reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow reg[rs2]) ? 1 : 0$
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (reg[rs2]) ? 1 : 0$
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	$reg[rd] \leftarrow reg[rs1] *_u reg[rs2]$
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] \times_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

What is the final value in x3?

```
addi x1, x0, 3
addi x2, x0, 5
add x3, x2, x1
sra x3, x3, x1
```


Write this in RISC-V Assembly

• Sum of Y= $\{1,6,8,9\}$, left-shifted 2 bits and subtracted from its 2-bits right-shifted. (X0 = 0)

$$Y = SUM\{1, 6, 8, 9\}$$
 $Z = Y << 2 - Y >> 2$

Instruction Types

Arithmetic/ALU

Memory

Control-Flow

Instruction Types

Arithmetic/ALU

Memory

Control-Flow

Memory-Type Instructions

- Load and Store
- Addressing modes:
 - Base (register) + Offset (immediate)
 - (Two other)
- Data Size and format
 - Word, half-word, byte
 - Signed and unsigned

Memory-Type Instructions

1	The state of the s		4 15 5 55 9 55 5 5
LB	<pre>lb rd, offset(rs1)</pre>	Load Byte	reg[rd] <= signExtend(mem[addr])
LH	<pre>lh rd, offset(rs1)</pre>	Load Half Word	reg[rd] <= signExtend(mem[addr + 1: addr])
LW	lw rd, offset(rs1)	Load Word	reg[rd] <= mem[addr + 3: addr]
LBU	lbu rd, offset(rs1)	Load Byte (Unsigned)	reg[rd] <= zeroExtend(mem[addr])
LHU	lhu rd, offset(rs1)	Load Half Word (Unsigned)	reg[rd] <= zeroExtend(mem[addr + 1: addr])
SB	<pre>sb rs2, offset(rs1)</pre>	Store Byte	mem[addr] <= reg[rs2][7:0]
SH	sh rs2, offset(rs1)	Store Half Word	mem[addr + 1: addr] <= reg[rs2][15:0]
SW	sw rs2, offset(rs1)	Store Word	<pre>mem[addr + 3: addr] <= reg[rs2]</pre>
4 75 75 7		A SECTION OF SECTION S	

Instruction Types

Arithmetic/ALU

Memory

Control-Flow

What is control-flow

Program counter and PC register

• Next PC?

- Why we need it?
 - Conditions
 - Function calls and returns
 - 0 ...
- Example

Jump Instruction

Need a destination address (i.e., where to jump?)

→ PC-relative addressing

JUMP vs. Branch

Jump always change the PC!

Branch changes the PC only if the condition is TRUE!

JUMP and Link

• Why do we need linking?

• What if we don't need to link?

JAL	jal rd, label	Jump and Link	reg[rd] <= pc + 4
			pc <= label
JALR	<pre>jalr rd, offset(rs1)</pre>	Jump and Link Register	reg[rd] <= pc + 4
		17	<pre>pc <= {(reg[rs1] + offset)[31:1], 1'b0}</pre>
BEQ	beq rs1, rs2, label	Branch if =	pc <= (reg[rs1] == reg[rs2]) ? label
			: pc + 4
BNE	bne rs1, rs2, label	Branch if ≠	pc <= (reg[rs1] != reg[rs2]) ? label
	100 100 100 100 100 100 100 100 100 100		: pc + 4
BLT	blt rs1, rs2, label	Branch if < (Signed)	$pc \le (reg[rs1] \le reg[rs2])$? label
	Company March Mark Development Company		: pc + 4
BGE	bge rs1, rs2, label	Branch if \geq (Signed)	$pc \le (reg[rs1] >=_s reg[rs2])$? label
	The second secon	500 000 000 000 000 000 000 000 000 000	: pc + 4
BLTU	bltu rs1, rs2, label	Branch if < (Unsigned)	$pc \le (reg[rs1] \le reg[rs2])$? label
			: pc + 4
BGEU	bgeu rs1, rs2, label	Branch if \geq (Unsigned)	$pc \le (reg[rs1] >=_u reg[rs2])$? label
		_ ,	: pc + 4

For JAL and branch instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU), the immediate encodes the target address as an offset from the current pc (i.e., pc + imm = label).

PC-relative vs. Register addressing

JAL	jal rd, label	Jump and Link	reg[rd] <= pc + 4 pc <= label
JALR	jalr rd, offset(rs1)	Jump and Link Register	reg[rd] <= pc + 4 pc <= {(reg[rs1] + offset)[31:1], 1'b0}
BEQ	beq rs1, rs2, label	Branch if =	pc <= (reg[rs1] == reg[rs2]) ? label : pc + 4
BNE	bne rs1, rs2, label	Branch if ≠	pc <= (reg[rs1] != reg[rs2]) ? label : pc + 4
BLT	blt rs1, rs2, label	Branch if < (Signed)	$pc \leftarrow (reg[rs1] \leftarrow reg[rs2])$? label : $pc + 4$
BGE	bge rs1, rs2, label	Branch if \geq (Signed)	$pc \le (reg[rs1] \ge s reg[rs2])$? label : $pc + 4$
BLTU	bltu rs1, rs2, label	Branch if < (Unsigned)	$pc \le (reg[rs1] \le reg[rs2])$? label : $pc + 4$
BGEU	bgeu rs1, rs2, label	Branch if \geq (Unsigned)	$pc \le (reg[rs1] >=_u reg[rs2])$? label : $pc + 4$

For JAL and branch instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU), the immediate encodes the target address as an offset from the current pc (i.e., pc + imm = label).

JAL	jal rd, label	Jump and Link	reg[rd] <= pc + 4 pc <= label
JALR	jalr rd, offset(rs1)	Jump and Link Register	reg[rd] <= pc + 4 pc <= {(reg[rs1] + offset)[31:1], 1'b0}
BEQ	beq rs1, rs2, label	Branch if =	pc <= (reg[rs1] == reg[rs2]) ? label : pc + 4
BNE	bne rs1, rs2, label	Branch if ≠	pc <= (reg[rs1] != reg[rs2]) ? label : pc + 4
BLT	blt rs1, rs2, label	Branch if < (Signed)	pc <= (reg[rs1] \leq_s reg[rs2]) ? label : pc + 4
BGE	bge rs1, rs2, label	Branch if \geq (Signed)	$pc \le (reg[rs1] \ge s reg[rs2])$? label $pc + 4$
BLTU	bltu rs1, rs2, label	Branch if < (Unsigned)	$pc \le (reg[rs1] \le reg[rs2])$? label : $pc + 4$
BGEU	bgeu rs1, rs2, label	Branch if \geq (Unsigned)	$pc \le (reg[rs1] >=_u reg[rs2])$? label : $pc + 4$

For JAL and branch instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU), the immediate encodes the target address as an offset from the current pc (i.e., pc + imm = label).

Control-Flow

JAL	jal rd, label	Jump and Link	reg[rd] <= pc + 4
JALR	jalr rd, offset(rs1)	Jump and Link Register	pc <= label reg[rd] <= pc + 4
			pc <= {(reg[rs1] + offset)[31:1], 1'b0}
BEQ	beq rs1, rs2, label	Branch if =	pc <= (reg[rs1] == reg[rs2]) ? label : pc + 4
BNE	bne rs1, rs2, label	Branch if ≠	pc <= (reg[rs1] != reg[rs2]) ? label : pc + 4
BLT	blt rs1, rs2, label	Branch if < (Signed)	pc <= (reg[rs1] \leq_s reg[rs2]) ? label : pc + 4
BGE	bge rs1, rs2, label	Branch if \geq (Signed)	$pc \le (reg[rs1] \ge s reg[rs2])$? label : $pc + 4$
BLTU	bltu rs1, rs2, label	Branch if < (Unsigned)	$pc \le (reg[rs1] \le reg[rs2])$? label : $pc + 4$
BGEU	bgeu rs1, rs2, label	Branch if \geq (Unsigned)	$pc \le (reg[rs1] >=_u reg[rs2])$? label : $pc + 4$

For JAL and branch instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU), the immediate encodes the target address as an offset from the current pc (i.e., pc + imm = label).

Pseudo Instructions

 Instructions that are not in the ISA but can be easily converted to one or two.

• Example: (load immediate)

li rd, constant

Pseudo Instructions

 Instructions that are not in the ISA but can be easily converted to one or two.

• Example:

```
li rd, constant

→ addi rd, x0, constant
```


Pseudo Instructions

Pseudoinstruction	Description	Execution
li rd, constant	Load Immediate	reg[rd] <= constant
mv rd, rs1	Move	reg[rd] <= reg[rs1] + 0
not rd, rs1	Logical Not	reg[rd] <= reg[rs1] ^ -1
neg rd, rs1	Arithmetic Negation	reg[rd] <= 0 - reg[rs1]
j label	Jump	pc <= label
jal label	Jump and Link (with ra)	reg[ra] <= pc + 4
call label	53 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pc <= label
jr rs	Jump Register	pc <= reg[rs1] & ~1
jalr rs	Jump and Link Register (with ra)	reg[ra] <= pc + 4
	Section of the sectio	pc <= reg[rs1] & ~1
ret	Return from Subroutine	pc <= reg[ra]
bgt rs1, rs2, label	Branch > (Signed)	pc <= (reg[rs1] > _s reg[rs2]) ? label : pc + 4
ble rs1, rs2, label	$Branch \leq (Signed)$	$pc \le (reg[rs1] \le reg[rs2])$? label : $pc + 4$
bgtu rs1, rs2, label	Branch > (Unsigned)	$pc \le (reg[rs1] >_s reg[rs2])$? label : $pc + 4$
bleu rs1, rs2, label	$Branch \leq (Unsigned)$	$pc \le (reg[rs1] \le reg[rs2])$? label : $pc + 4$
beqz rs1, label	Branch = 0	pc <= (reg[rs1] == 0) ? label : pc + 4
bnez rs1, label	Branch $\neq 0$	pc <= (reg[rs1] != 0) ? label : pc + 4
bltz rs1, label	Branch < 0 (Signed)	pc <= (reg[rs1] < ₈ 0) ? label : pc + 4
bgez rs1, label	Branch ≥ 0 (Signed)	$pc \le (reg[rs1] \ge 0)$? label : $pc + 4$
bgtz rs1, label	Branch > 0 (Signed)	$pc \le (reg[rs1] >_s 0)$? label : $pc + 4$
blez rs1, label	Branch ≤ 0 (Signed)	pc <= (reg[rs1] <= 0) ? label : pc + 4

RET and CALL

How do these instructions work?

Input: x10=5 and x11=3Output: x10=? x11=?

```
Label 1:
  LI x20, 0

Label 2:
  ADD x20, x20, x10

  ADDI x11, x11, -1

  BGT x11, x0, label 2

  MV x10, x20

  RET
```


Calling Convention

 When starting a new mechanism, a set of rules have to be followed to guarantee correctness.

Calling Convention

Major rules:

- The callee promises to leave some registers unchanged for the caller. If needs to be modified, the callee saves these on the stack first and recovers in the end.
- \circ On the call, the return has to be saved on the stack.
- Before returning, the frame pointer has to be recovered.

Stack and Calling Convention

Caller

- Puts arguments on the stack
- Invokes callee by using call instruction

Callee

- Saves reserved registers for caller
- Saves old based pointer
- Makes room for local variables and executes the code
- Puts return value into register
- Restores stack frame and key registers
- Returns

Calling Convention

Registers	Symbolic names	Description	Saver
x0	zero	Hardwired zero	-
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
x3	gp	Global pointer	32_87
x4	tp	Thread pointer	
x5-x7	t0-t2	Temporary registers	Caller
x8-x9	s0-s1	Saved registers	Callee
x10-x11	a0-a1	Function arguments and return values	Caller
x12-x17	a2-a7	Function arguments	Caller
x18-x27	s2-s11	Saved registers	Callee
x28-x31	t3-t6	Temporary registers	Caller

Data Size

C type	Description	Bytes in RV32
char	Character value/byte	1
short	Short integer	2
int	Integer	4
long	Long integer	4
long long	Long long integer	8
void*	Pointer	4
float	Single-precision float	4
double	Double-precision float	8
long double	Extended-precision float	16

We have our assembly code, now what?

So how does hardware understand these instructions?

• Machine don't understand assembly, so computers use a specific tool called *assembler* to generate machine code (ones and zeroes).

• To generate the machine code, the assembler uses a table.

Learn More

- Checkout these resources:
 - o https://6004.mit.edu/web/ static/test/resources/references/6004 isa reference.pdf
 - https://inst.eecs.berkeley.edu/~cs | 52/sp2 | /greencard.pdf
 - https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf

Things we didn't (and won't) cover

- RV64 or RV16
- Other extensions of RV32 (e.g., M, A)
- Floating point instructions and registers
- Privilege and system instructions
- Instructions beyond what were shown in this lecture.

Things we might cover

• CISC and microcode

VLIW

• ...

Participation

- (first time) Create an account here:
 - Link: https://gavel-for-nader.web.app/login
 - or Scan the QR code.

• Use this password:

Summary

End of Presentation

Acknowledgement

- This course is partly inspired by the following courses created by my colleagues:
 - CSI52, Krste Asanovic (UCB)
 - 18-447, James C. Hoe (CMU)
 - CSE141, Steven Swanson (UCSD)
 - CIS 501, Joe Devietti (Upenn)
 - CS4290, Tom Conte (Goergia Tech)
 - 252-0028-00L, Onur Mutlu (ETH)

