FILTER-REGULAR SEQUENCES, ALMOST COMPLETE INTERSECTIONS AND STANLEY'S CONJECTURE

SOMAYEH BANDARI, KAMRAN DIVAANI-AAZAR AND ALI SOLEYMAN JAHAN

ABSTRACT. Let K be a field and I a monomial ideal of the polynomial ring $S = K[x_1, \ldots, x_n]$ generated by monomials u_1, u_2, \ldots, u_t . We show that S/I is pretty clean if either: 1) u_1, u_2, \ldots, u_t is a filter-regular sequence, 2) u_1, u_2, \ldots, u_t is a d-sequence; or 3) I is almost complete intersection. In particular, in each of these cases, S/I is sequentially Cohen-Macaulay and both Stanley's and h-regularity conjectures, on Stanley decompositions, hold for S/I. Also, we prove that if I is the Stanley-Reisner ideal of a locally complete intersection simplicial complex on [n], then Stanley's conjecture holds for S/I.

1. Introduction

Throughout, let K be a field and I a monomial ideal of the polynomial ring $S = K[x_1, \ldots, x_n]$. A decomposition of S/I as direct sum of K-vector spaces of the form $\mathcal{D}: S/I = \bigoplus_{i=1}^r u_i K[Z_i]$, where u_i is a monomial in S and $Z_i \subseteq \{x_1, \ldots, x_n\}$, is called a Stanley decomposition of S/I. Stanley conjectured [St] that there always exists a Stanley decomposition \mathcal{D} of S/I such that each Z_i has at least depth S/I elements. This conjecture is known as Stanley's conjecture. Recently, this conjecture was extensively examined by several authors; see e.g. [A1], [A2], [HP], [HSY], [P], [R], [S4] and [S3]. On the other hand, the present third author [S3] conjectured that there always exists a Stanley decomposition \mathcal{D} of S/I such that degree of each u_i is at most reg S/I. We refer to this conjecture as h-regularity conjecture. It is known that for square-free monomial ideals, these two conjectures are equivalent. Our main aim in this paper is to determine some classes of monomial ideals that these conjectures are true for them.

Let R be a multigraded Noetherian ring and M a finitely generated multigraded R-module. A basic fact in commutative algebra says that there exists a finite filtration

$$\mathcal{F}: 0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

of multigraded submodules of M such that there are multigraded isomorphisms $M_i/M_{i-1} \cong R/\mathfrak{p}_i(-a_i)$ for some $a_i \in \mathbb{Z}^n$ and some multigraded prime ideals \mathfrak{p}_i of R. Such a filtration of M is called a (multigraded) prime filtration. The set of prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ which define the cyclic quotients of \mathcal{F} will be denoted by Supp \mathcal{F} . It is known (and easy to see) that

$$\operatorname{Ass}_R M \subseteq \operatorname{Supp}_R \mathcal{F} \subseteq \operatorname{Supp}_R M.$$

1

²⁰¹⁰ Mathematics Subject Classification. 13F20; 05E40; 13F55.

Key words and phrases. Almost clean modules; almost complete intersection monomial ideals; clean modules; d-sequences; filter-regular sequences; locally complete intersection monomial ideals; pretty clean modules.

The research of the second and third authors are supported by grants from IPM (no. 90130212 and no. 900130062, respectively).

Let Min M denote the set of minimal prime ideals of $\operatorname{Supp}_R M$. Dress [D] called a prime filtration \mathcal{F} of M clean if $\operatorname{Supp} \mathcal{F} = \operatorname{Min} M$. Pretty clean filtrations were defined as a generalization of clean filtrations by Herzog and Popescu [HP]. A prime filtration \mathcal{F} is called pretty clean if for all i < j for which $\mathfrak{p}_i \subseteq \mathfrak{p}_j$, it follows that $\mathfrak{p}_i = \mathfrak{p}_j$. If \mathcal{F} is a pretty clean filtration of M, then $\operatorname{Supp} \mathcal{F} = \operatorname{Ass}_R M$; see [HP, Corollary 3.4]. The converse is not true in general as shown by some examples in [HP] and [S4]. The prime filtration \mathcal{F} of M is called almost clean if $\operatorname{Supp} \mathcal{F} = \operatorname{Ass}_R M$. The R-module M is called clean (resp. pretty clean or almost clean) filtration. Obviously, cleanness implies pretty cleanness and pretty cleanness implies almost cleanness. When I is square-free, one has $\operatorname{Ass}_S S/I = \operatorname{Min} S/I$, and so these three concepts coincide for R/I. In this paper, we always consider the ring S with its standard multigrading. So, an ideal J of S is multigraded if and only if J is a monomial ideal. Pretty clean modules of the form S/I have very nice properties. If S/I is pretty clean, then S/I is sequentially Cohen-Macaulay and

$$\operatorname{depth} S/I = \min \{ \dim S/\mathfrak{p} | \mathfrak{p} \in \operatorname{Ass}_S S/I \};$$

see [S1] for an easy proof. If S/I is pretty clean, then [HP, Theorm 6.5] asserts that Stanley's conjecture holds for S/I. (In fact, this conjecture is true even under the assumption of S/I simply being almost clean; see [S4, Proposition 2.2].) Also if S/I is pretty clean, then by [S3, Theorem 4.7] h-regularity conjecture holds for S/I.

This paper is organized as follows. In the second section, for a multigraded finitely generated S-module M and a multigraded Artinian submodule A of M, we show that M is pretty clean if and only if M/A is pretty clean. Let u_1, \ldots, u_r be monomials in S. If u_1, \ldots, u_r is a regular sequence on S/I, then by [R, Theorem 2.1] S/I is pretty clean if and only if $S/(I, u_1, \ldots, u_r)$ is pretty clean. We show that the same assertion is also true for cleanness and almost cleanness. Also, we prove that if u_1, \ldots, u_r is a filter-regular sequence on S/I, then S/I is pretty clean if and only if $S/(I, u_1, \ldots, u_r)$ is pretty clean. Next, we show that if u_1, \ldots, u_r forms a filter-regular sequence on S/I, then Stanley's conjecture is true for S/I if and only if it is true for $S/(I, u_1, \ldots, u_r)$. Assume that u_1, \ldots, u_r is a minimal set of generators for an ideal J of S. We prove that if either u_1, \ldots, u_r is a d-sequence, proper sequence or strong s-sequence (with respect to the reverse lexicographic order), then S/J is pretty clean.

In the third section, we prove that if the monomial ideal I is either almost complete intersection or it can be generated by less than four monomials, then S/I is pretty clean. Also, we show that if I is the Stanley-Reisner ideal of a locally complete intersection simplicial complex on [n], then S/I satisfies Stanley's conjecture. As a conclusion to our results, we can deduce that both Stanley's and h-regularity conjectures hold for S/I and S/I is sequentially Cohen-Macaulay if either:

- i) I can be generated by a filter-regular sequence of monomials,
- ii) I can be generated by a d-sequence of monomials,
- iii) I is almost complete intersection; or
- iv) I can be generated by less than four monomials.
- v) I is the Stanley-Reisner ideal of a connected simplicial complex on [n] which is locally complete intersection.

2. Filter-regular sequences and pretty cleanness

In this section, we investigate pretty cleanness in conjunction with filter-regular sequences.

Lemma 2.1. Let R be a commutative Noetherian ring, M an R-module and A an Artinian submodule of M. Then

$$\operatorname{Ass}_R M = \operatorname{Ass}_R A \cup \operatorname{Ass}_R M/A.$$

Proof. It is well-known that

$$\operatorname{Ass}_R A \subseteq \operatorname{Ass}_R M \subseteq \operatorname{Ass}_R A \cup \operatorname{Ass}_R M/A.$$

On the other hand, [BSS, Lemma 2.2] yields that

$$\operatorname{Ass}_R M/A \subseteq \operatorname{Ass}_R M \cup \operatorname{Supp}_R A.$$

But A is Artinian, and so $\operatorname{Supp}_R A = \operatorname{Ass}_R A$. This implies our desired equality.

Lemma 2.2. Let R be a multigraded Noetherian ring, M a multigraded finitely generated R-module and A a multigraded Artinian submodule of M. If M/A is pretty clean (resp. almost clean), then M is pretty clean (resp. almost clean) too.

Proof. Since A is an Artinian R-module, one has

$$\operatorname{Min} A = \operatorname{Ass}_R A = \operatorname{Supp}_R A \subseteq \operatorname{Max} R.$$

So obviously, if M/A is pretty clean, then M is pretty clean too. Also, by Lemma 2.1, almost cleanness of M/A implies almost cleanness of M.

We denote the maximal monomial ideal (x_1, \ldots, x_n) of the ring $S = K[x_1, \ldots, x_n]$ by \mathfrak{m} . For a S-module M, $H^i_{\mathfrak{m}}(M)$ denotes ith local cohomology module of M with respect to \mathfrak{m} . If M is a multigraded finitely generated S-module, then $H^i_{\mathfrak{m}}(M)$ is a multigraded Artinian S-module for all i.

Example 2.3. Lemma 2.2 is not true for the cleanness. To this end, let S = K[x, y] and $I = (x^2, xy)$. Set M := S/I and $A := H_{\mathfrak{m}}^0(M)$. Clearly $A = \langle x \rangle /I$, and so $M/A \cong S/\langle x \rangle$. It is easy to see that M/A is clean while M is not clean.

Proposition 2.4. Let M be a multigraded finitely generated S-module and A a multigraded Artinian submodule of M. Then M is pretty clean if and only if M/A is pretty clean.

Proof. In view of Lemma 2.2, it remains to show that if M is pretty clean, then M/A is pretty clean. Let

$$\mathcal{F}: 0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

be a pretty clean filtration of M. First, by induction on $t := \ell_R(H^0_{\mathfrak{m}}(M))$, we show that $M/H^0_{\mathfrak{m}}(M)$ is pretty clean. For t = 0, there is nothing to prove. Now, assume that t > 0 and the claim holds for t - 1. Then $H^0_{\mathfrak{m}}(M) \neq 0$, and so $\mathfrak{m} \in \mathrm{Ass}_S M = \mathrm{Supp} \mathcal{F}$. Since the filtration \mathcal{F} is pretty clean and $\mathrm{Ann}_R M_1 \subseteq \mathfrak{m}$, it follows that $M_1 \cong S/\mathfrak{m}$, and so $(M_1 :_M \mathfrak{m}^{\infty}) = H^0_{\mathfrak{m}}(M)$. Then, one has

$$H_{\mathfrak{m}}^{0}(\frac{M}{M_{1}}) = \frac{M_{1} :_{M} \mathfrak{m}^{\infty}}{M_{1}} = \frac{H_{\mathfrak{m}}^{0}(M)}{M_{1}},$$

and so

$$\ell_R(H_{\mathfrak{m}}^0(\frac{M}{M_1})) = \ell_R(H_{\mathfrak{m}}^0(M)) - \ell_R(M_1) = t - 1.$$

Obviously, M/M_1 is pretty clean, and so by the induction hypothesis, $\frac{M/M_1}{H_{\mathfrak{m}}^{\mathfrak{m}}(M/M_1)}$ is pretty clean. But,

$$\frac{\frac{M}{M_1}}{H_{\mathfrak{m}}^0(\frac{M}{M_1})} = \frac{\frac{M}{M_1}}{\frac{H_{\mathfrak{m}}^0(M)}{M_1}} \cong \frac{M}{H_{\mathfrak{m}}^0(M)},$$

and hence $M/H_{\mathfrak{m}}^{0}(M)$ is pretty clean.

Since A is a multigraded Artinian submodule of M, one has $A \subseteq H^0_{\mathfrak{m}}(M)$. From the first part of the proof, we conclude that $\frac{M/A}{H^0_{\mathfrak{m}}(M)/A}$ is pretty clean. But $H^0_{\mathfrak{m}}(M)/A$ is a multigraded Artinian submodule of M/A, and so Lemma 2.2 implies that M/A is pretty clean.

In what follows, we recall some needed notation and facts about monomial ideals. For each subset H of S, let $\operatorname{Mon} H$ denote the set of all monomials in H. For any monomial ideal I of S, there is a unique minimal generating set $\operatorname{G}(I)$ of I. Clearly, $\operatorname{G}(I)$ is consisting of finitely many monomials and there is no divisibility among different elements of $\operatorname{G}(I)$. Also for any non-empty subset T of $\operatorname{Mon} S$, set $\operatorname{G}(T):=\operatorname{G}(< T>)$. Clearly, $\operatorname{G}(< T>)$ is a finite subset of T. A monomial ideal of S is irreducible if and only if it is of the form $(x_{i_1}^{a_1},\ldots,x_{i_t}^{a_t})$, where $a_i\in\mathbb{N}$ for all i; see [HH, Corollary 1.3.2]. Moreover, $(x_{i_1}^{a_1},\ldots,x_{i_t}^{a_t})$ is (x_{i_1},\ldots,x_{i_t}) -primary and each monomial ideal can be written as a finite intersection of irreducible monomial ideals. Let I be a monomial ideal of S and $P:I=\bigcap_{i=1}^r Q_i$ a primary decomposition of I such that each Q_i is an irreducible monomial ideal of S. We use notion $T_i(\mathcal{P})$ for $\operatorname{G}(\operatorname{Mon}(\cap_{j=1}^{i-1}Q_j\setminus Q_i))$. Notice that

$$T_1(\mathcal{P}) = G(\operatorname{Mon}(S \setminus Q_1)) = \{1\}.$$

For proving our first theorem, we shall need the following lemma.

Lemma 2.5. [S2, Corollary 2.7] Let I be a monomial ideal of S. The following conditions are equivalent:

- a) S/I is clean (resp. pretty clean or almost clean).
- b) There exists a primary decomposition $\mathcal{P}: I = \bigcap_{j=1}^r Q_j$ of I, where each Q_j is an irreducible \mathfrak{p}_j -primary monomial ideal, such that
 - i) $\operatorname{ht} \mathfrak{p}_j \leq \operatorname{ht} \mathfrak{p}_{j+1}$ for all j and $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\} = \operatorname{Min} S/I$, (resp. $\operatorname{ht} \mathfrak{p}_j \leq \operatorname{ht} \mathfrak{p}_{j+1}$ for all j or $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\} = \operatorname{Ass}_S S/I$) and
 - ii) $T_i(\mathcal{P})$ is a singleton for all 1 < j < r.

Next, we generalize [R, Theorem 2.1].

Theorem 2.6. Let I be a monomial ideal of S and $u_1, \ldots, u_c \in \text{Mon } S$ a regular sequence on S/I. Then S/I is clean (resp. pretty clean or almost clean) if and only if $S/(I, u_1, \ldots, u_c)$ is clean (resp. pretty clean or almost clean).

Proof. By induction on c, it is enough to prove the case c = 1. Let $u \in \text{Mon } S$ be a non zero-divisor on S/I. Without loss of generality, we may and do assume that for some integer $0 \le t < n$, the only variables that divide u are x_{t+1}, \ldots, x_n . Then $u = \prod_{i=t+1}^n x_i^{a_i}$ for some natural integers a_1, \ldots, a_n and I = JS for some monomial ideal J of $S' := K[x_1, \ldots, x_t]$.

First, we show that if S/I is clean (resp. pretty clean or almost clean), then S/(I,u) is clean (resp. pretty clean or almost clean). Let $\mathcal{P}: I = \bigcap_{i=1}^r Q_i$ be a primary decomposition of I which satisfies the condition b) in Lemma 2.5. Let $1 \leq e \leq r$. Since

$$\operatorname{Ass}_S S/I = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$$

and $\operatorname{Ass}_S S/Q_e = \{\mathfrak{p}_e\}$, it turns out that u is also a non zero-divisor on S/Q_e . Hence $Q_e = q_e S$ for some irreducible monomial ideal q_e of S'. Obviously,

$$\mathcal{P}': (I, u) = \left(\bigcap_{i=t+1}^{n} (Q_1, x_i^{a_i})\right) \cap \left(\bigcap_{i=t+1}^{n} (Q_2, x_i^{a_i})\right) \cap \ldots \cap \left(\bigcap_{i=t+1}^{n} (Q_r, x_i^{a_i})\right)$$

is a primary decomposition of (I, u) and each $(Q_i, x_j^{a_j})$ is an irreducible (\mathfrak{p}_i, x_j) -primary monomial ideal. We are going to show that the condition b) in Lemma 2.5 holds for \mathcal{P}' . Clearly, $T_1(\mathcal{P}')$ is a singleton. For each $t+2 \leq i \leq n$, we have

$$G(\text{Mon}(\cap_{j=t+1}^{i-1}(Q_1, x_j^{a_j}) \setminus (Q_1, x_i^{a_i}))) = G(\text{Mon}((Q_1, \prod_{j=t+1}^{i-1} x_j^{a_j}) \setminus (Q_1, x_i^{a_i}))) = \{\prod_{j=t+1}^{i-1} x_j^{a_j}\}.$$

Let $2 \le i \le r$, $t+1 \le h \le n$ and assume that $T_i(\mathcal{P}) = \{v\}$. Since

$$((\cap_{j=1}^{i-1}\cap_{k=t+1}^{n}(Q_j,x_k^{a_k}))\cap(\cap_{l=t+1}^{h-1}(Q_i,x_l^{a_l})))\setminus(Q_i,x_h^{a_h}) = ((\cap_{j=1}^{i-1}(Q_j,\prod_{k=t+1}^{n}x_k^{a_k}))\cap(Q_i,\prod_{l=t+1}^{h-1}x_l^{a_l}))\setminus(Q_i,x_h^{a_h}),$$

one has

$$G(\operatorname{Mon}(((\cap_{j=1}^{i-1} \cap_{k=t+1}^{n} (Q_j, x_k^{a_k})) \cap (\cap_{l=t+1}^{h-1} (Q_i, x_l^{a_l}))) \setminus (Q_i, x_h^{a_h}))) = \{v \prod_{l=t+1}^{h-1} x_l^{a_l}\}.$$

So, $T_i(\mathcal{P}')$ is a singleton for all i. On the other hand, we can easily deduce that

$$\operatorname{Ass}_S \frac{S}{(I,u)} = \{ (\mathfrak{p}, x_k) | \mathfrak{p} \in \operatorname{Ass}_S \frac{S}{I} \text{ and } t + 1 \le k \le n \} \ (*),$$

$$\operatorname{Min} \frac{S}{(I,u)} = \{(\mathfrak{p}, x_k) | \mathfrak{p} \in \operatorname{Min} \frac{S}{I} \text{ and } t+1 \le k \le n \}$$
 (†)

and $\operatorname{ht}(\mathfrak{p}, x_k) = \operatorname{ht}\mathfrak{p} + 1$ (‡) for all $\mathfrak{p} \in \operatorname{Ass}_S S/I$ and all $t+1 \le k \le n$. Hence \mathcal{P}' satisfies the condition b) in Lemma 2.5.

Conversely, let S/(I, u) be clean (resp. pretty clean or almost clean). So, (I, u) has a primary decomposition \mathcal{P} which satisfies the condition b) in Lemma 2.5. From (*), we can conclude that \mathcal{P} has the form

$$\mathcal{P}: (I, u) = (Q_1, x_{j_1}^{h_{j_1}}) \cap (Q_2, x_{j_2}^{h_{j_2}}) \cap \ldots \cap (Q_s, x_{j_s}^{h_{j_s}}),$$

where for each $1 \leq i \leq s$, $Q_i = q_i S$ for some irreducible monomial ideal q_i of S', $\sqrt{Q_i} \in \mathrm{Ass}_S S/I$ and $j_i \in \{t+1,\ldots,n\}$. It follows that $I = \cap_{i=1}^s Q_i$ is a primary decomposition of I. By deleting unneeded components, we get a primary decomposition

$$\mathcal{P}': I = Q_i, \cap Q_i, \cap \ldots \cap Q_i$$

such that $i_1 < i_2 < \cdots < i_l$ and for each $1 \le j \le l$, $\bigcap_{k < j} Q_{i_k} \nsubseteq Q_{i_j}$ and $\bigcap_{k < j} Q_{i_k} = \bigcap_{m < i_j} Q_m$. We intend to show that \mathcal{P}' satisfies the condition b) in Lemma 2.5. Since

Ass_S
$$S/I = \{ \sqrt{Q_{i_1}}, \sqrt{Q_{i_2}}, \dots, \sqrt{Q_{i_l}} \}$$

in view of (*), (†) and (‡), we only need to indicate that each $T_i(\mathcal{P}')$ is a singleton. Let $1 \leq j \leq l$. Since $\bigcap_{k < j} Q_{i_k} \not\subseteq Q_{i_j}$, it follows that there exists at least a monomial v in $G(\bigcap_{k < j} Q_{i_k}) \setminus Q_{i_j}$. We claim that v is unique. If there exists a monomial $w \neq v$ in $G(\bigcap_{k < j} Q_{i_k}) \setminus Q_{i_j}$, then since $\bigcap_{k < j} Q_{i_k} = \bigcap_{m < i_j} Q_m$, it turns out that v and w are belonging to $G(\bigcap_{m < i_j} Q_m) \setminus Q_{i_j}$. Denote i_j by d. Since $v, w \in S'$, we can conclude that v and w are belonging to

$$G((Q_1, x_{j_1}^{h_{j_1}}) \cap (Q_2, x_{j_2}^{h_{j_2}}) \cap \ldots \cap (Q_{d-1}, x_{j_{d-1}}^{h_{j_{d-1}}})) \setminus (Q_d, x_{j_d}^{h_{j_d}}).$$

This contradicts the assumption that $T_d(\mathcal{P})$ is a singleton. Therefore, each $T_i(\mathcal{P}')$ is a singleton, as desired.

As an immediate consequence, we obtain the following result; see [HSY, Proposition 2.2].

Corollary 2.7. Let $u_1, \ldots, u_t \in \text{Mon } S$ be a regular sequence on S. Then $S/(u_1, \ldots, u_t)$ is clean.

Definition 2.8. Let M be a multigraded finitely generated S-module and $\mathbf{u} = u_1, \dots, u_r$ a sequence of non-unite monomials in S. We call \mathbf{u} a filter-regular sequence on M if for each $1 \le i \le r$

$$u_i \notin \bigcup_{\mathfrak{p} \in \mathrm{Ass}_S \left(\frac{M}{(u_1, \dots, u_{i-1})M}\right) - \{\mathfrak{m}\}} \mathfrak{p}.$$

Lemma 2.9. Let M be a multigraded finitely generated S-module. An element $1 \neq u \in \text{Mon } S$ is a filter-regular sequence on M if and only if it is a non zero-devisor on $M/H^0_{\mathfrak{m}}(M)$.

Proof. Since $H^0_{\mathfrak{m}}(M)$ is Artinian and $H^0_{\mathfrak{m}}(\frac{M}{H^0_{\mathfrak{m}}(M)})=0$, Lemma 2.1 yields that

$$\operatorname{Ass}_S(\frac{M}{H^0_{\mathfrak{m}}(M)}) = \operatorname{Ass}_R M - \{\mathfrak{m}\}.$$

Hence, by definition the claim is immediate.

Theorem 2.10. Let I be a monomial ideal of S and $u_1, \ldots, u_r \in \text{Mon } S$ a filter-regular sequence on S/I. Then S/I is pretty clean if and only if $S/(I, u_1, \ldots, u_r)$ is pretty clean.

Proof. By induction on r, it is enough to prove that for a monomial filter-regular sequence u on S/I, S/I is pretty clean if and only if S/(I, u) is pretty clean. For convenience, we set M := S/I. By Proposition 2.4, M is pretty clean if and only if $M/H_{\mathfrak{m}}^{0}(M)$ is pretty clean. By Lemma 2.9, u is a non zero-divisor on $M/H_{\mathfrak{m}}^{0}(M)$. Hence, in view of the isomorphism

$$\frac{\frac{M}{H_{\mathfrak{m}}^{0}(M)}}{u(\frac{M}{H_{\mathfrak{m}}^{0}(M)})} \cong \frac{M}{uM + H_{\mathfrak{m}}^{0}(M)},$$

Theorem 2.6 yields that $M/H_{\mathfrak{m}}^{0}(M)$ is pretty clean if and only if $\frac{M}{uM+H_{\mathfrak{m}}^{0}(M)}$ is pretty clean. On the other hand, as $\frac{uM+H_{\mathfrak{m}}^{0}(M)}{uM}$ is a multigraded Artinian submodule of M/uM, by Proposition 2.4 and the isomorphism

$$\frac{M}{uM + H_{\mathfrak{m}}^{0}(M)} \cong \frac{\frac{M}{uM}}{\frac{uM + H_{\mathfrak{m}}^{0}(M)}{uM}},$$

it turns out that $\frac{M}{uM+H_{\mathfrak{m}}^0(M)}$ is pretty clean if and only if M/uM is pretty clean. Therefore, M is pretty clean if and only if M/uM is pretty clean.

Corollary 2.11. Let monomials u_1, \ldots, u_r be a filter-regular sequence on S. Then $S/(u_1, \ldots, u_r)$ is pretty clean.

Lemma 2.12. Let M be a multigraded finitely generated S-module and $u_1, \ldots, u_r \in \text{Mon } S$ a filter-regular sequence on M. If $\mathfrak{m} \in \text{Ass}_S M$, then $\mathfrak{m} \in \text{Ass}_S (M/(u_1, \ldots, u_r)M)$.

Proof. By induction on r, it is enough to prove that if u is a monomial filter-regular sequence on M and $\mathfrak{m} \in \mathrm{Ass}_S M$, then $\mathfrak{m} \in \mathrm{Ass}_S M/uM$. Since $\mathfrak{m} \in \mathrm{Ass}_S M$, there exists $0 \neq x \in M$ such that $\mathfrak{m} = 0 :_S x$. Then, there exists a non-negative integer t such that $x \in u^t M \setminus u^{t+1} M$. Hence $x = u^t y$ for some $y \in M \setminus uM$. Clearly, $0 :_S y \subset S$. Let $\mathfrak{p} \subset \mathfrak{m}$ be a prime ideal of S containing $0 :_S y$. Since u is a filter-regular sequence on M and $\mathfrak{p} \neq \mathfrak{m}$, it follows that $\frac{u}{1} \in S_{\mathfrak{p}}$ is $M_{\mathfrak{p}}$ -regular. Hence

$$(0:_S x)_{\mathfrak{p}} = 0:_{S_{\mathfrak{p}}} \frac{u^t}{1} \frac{y}{1} = 0:_{S_{\mathfrak{p}}} \frac{y}{1} = (0:_S y)_{\mathfrak{p}} \subseteq \mathfrak{p}S_{\mathfrak{p}},$$

and so

$$(0:_S x) \subseteq (0:_S x)_{\mathfrak{p}} \cap S \subseteq \mathfrak{p}S_{\mathfrak{p}} \cap S = \mathfrak{p}.$$

This is a contradiction, and so \mathfrak{m} is the unique prime ideal of S containing $(0:_S y)$. So,

$$\mathfrak{m} = \sqrt{(0:_S y)} \subseteq \sqrt{(0:_S y + uM)} \subset S.$$

Therefore, $\sqrt{(0:_S y + uM)} = \mathfrak{m}$, and so $\mathfrak{m} \in \mathrm{Ass}_S M/uM$.

Theorem 2.13. Let I be a monomial ideal of S and $u_1, \ldots, u_r \in \text{Mon } S$ a filter-regular sequence on S/I. Then Stanley's conjecture holds for S/I if and only if it holds for $S/(I, u_1, \ldots, u_r)$.

Proof. By induction on r, it is enough to prove that if u is a monomial filter-regular sequence on S/I, then Stanley's conjecture holds for S/I if and only if it holds for S/(I,u). First, assume that $\mathfrak{m} \in \mathrm{Ass}_S S/I$. Then depth S/I = 0 and by Lemma 2.12, $\mathfrak{m} \in \mathrm{Ass}_S S/(I,u)$. So, depth S/(I,u) = 0. Hence the claim is immediate in this case. Now, assume that $\mathfrak{m} \notin \mathrm{Ass}_S S/I$. Then u is a non zero-divisor on S/I, and so by [R, Theorem 1.1], Stanley's conjecture holds for S/I if and only if it holds for S/(I,u).

Definition 2.14. Let R be a commutative Noetherian ring, M a finitely generated R-module and $f_1, \ldots, f_t \in R$.

- i) f_1, \ldots, f_t is called a *d-sequence* on M if f_1, \ldots, f_t is a minimal generating set of the ideal (f_1, \ldots, f_t) and $(f_1, \ldots, f_i)M :_M f_{i+1}f_k = (f_1, \ldots, f_i)M :_M f_k$ for all $0 \le i < t$ and all $k \ge i + 1$. A *d*-sequence on R is simply called a *d*-sequence.
- ii) f_1, \ldots, f_t is called a proper sequence if $f_{i+1}H_j(f_1, \ldots, f_i; R) = 0$ for all $0 \le i < t$ and all j > 0. Here $H_j(f_1, \ldots, f_i; R)$ denotes the jth Koszul homology of R with respect to f_1, \ldots, f_i .
- iii) Let $M = (g_1, \ldots, g_t)$ and $(a_{ij})_{s \times t}$ be its relation matrix. Then the symmetric algebra of M is defined by $\operatorname{Sym} M := R[y_1, \ldots, y_t]/J$, where $J = (\sum_{j=1}^t a_{1j}y_j, \ldots, \sum_{j=1}^t a_{sj}y_j)$. Let < be a monomial order on the monomials in y_1, \ldots, y_n with the property $y_1 < \cdots < y_n$. Set $I_i := (g_1, \ldots, g_{i-1}) :_S g_i$. Then $(I_1y_1, \ldots, I_ty_t) \subseteq \operatorname{in}_{<} J$. We call g_1, \ldots, g_t a s-sequence (with respect to <) if $(I_1y_1, \ldots, I_ty_t) = \operatorname{in}_{<} J$. If in addition $I_1 \subseteq \cdots \subseteq I_t$, then g_1, \ldots, g_t is called a strong s-sequence.

Definition 2.15. Let I be a (not necessarily square-free) monomial ideal of S with $G(I) = \{u_1, ..., u_m\}$. A monomial u_t is called a leaf of G(I) if u_t is the only element in G(I) or there exists a $j \neq t$ such that $\gcd(u_t, u_i) | \gcd(u_t, u_j)$ for all $i \neq t$. In this case, u_j is called a branch of u_t . We say that I is a monomial ideal of forest type if any non-empty subset of G(I) has a leaf.

[SZ, Theorem 1.5] yields that if I is a monomial ideal of forest type, then S/I is pretty clean.

Lemma 2.16. Let u_1, \ldots, u_t be a sequence of monomials with the following properties:

- i) there is no $i \neq j$ such that $u_i|u_j$; and
- ii) $gcd(u_i, u_j)|u_k$ for all $1 \le i < j < k \le t$.

Then $I = (u_1, ..., u_t)$ is of forest type, and so S/I is pretty clean.

Proof. For any non-empty subset $A = \{u_{n_1}, \ldots, u_{n_s}\}$ of $\{u_1, \ldots, u_t\}$, we may and do assume that $n_1 < n_2 < \cdots < n_s$. Then obviously the first element of A is a leaf and the last element of A is a branch for that leaf. So, I is of forest type. Then [SZ, Theorem 1.5] implies that S/I is pretty clean.

Proposition 2.17. Let I be a monomial ideal of S with $G(I) = \{u_1, \ldots, u_t\}$. If u_1, \ldots, u_t is a d-sequence, proper sequence or strong s-sequence (with respect to the reverse lexicographic order), then S/I is pretty clean.

Proof. By [HRT, Corollaries 3.3 and 3.4] any d-sequence is a strong s-sequence with respect to the reverse lexicographic order and u_1, \ldots, u_t is a proper sequence if and only if it is a strong s-sequence with respect to the reverse lexicographic order. So, by the hypothesis and [T, Theorem 3.1], there is no $i \neq j$ such that $u_i|u_j$ and $\gcd(u_i,u_j)|u_k$ for all $1 \leq i < j < k \leq t$. Hence, by Lemma 2.16, S/I is pretty clean.

Let I be a monomial ideal of S and u a monomial which is a d-sequence on S/I. The following example shows that it may happen that S/I is pretty clean, but S/(I, u) is not.

Example 2.18. Let $I = (x_1x_2, x_2x_3, x_3x_4)$ be a monomial ideal of $S = K[x_1, x_2, x_3, x_4]$. It is easy to see that S/I is pretty clean and x_4x_1 is a d-sequence on S/I. But, by [S4, Example 1.11], we know that $S/(I, x_4x_1) = S/(x_1x_2, x_2x_3, x_3x_4, x_4x_1)$ is not pretty clean.

3. Almost and locally complete intersection monomial ideals

A simplicial complex Δ on $[n] := \{1, \ldots, n\}$ is a collection of subsets of [n] with the property if $F \in \Delta$, then all subsets of F are also in Δ . Any singleton element of Δ is called a vertex. An element of Δ is called a face of Δ and the maximal faces of Δ , under inclusion, are called facets. We denote by $\mathcal{F}(\Delta)$ the set of all facets of Δ . The dimension of a face F is defined as dim F = |F| - 1, where |F| is the number of elements of F. The dimension of the simplicial complex Δ is the maximal dimension of its facets. A simplicial complex Δ is called pure if all facets of Δ have the same dimension. We denote the simplicial complex Δ with facets F_1, \ldots, F_t by $\Delta = \langle F_1, \ldots, F_t \rangle$. According to Björner and Wachs [BW], a simplicial complex Δ is said to be (non-pure) shellable if there exists an order F_1, \ldots, F_t of the facets of Δ such that for each $2 \le i \le t$, $\langle F_1, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$ is a pure (dim $F_i - 1$)-dimensional simplicial complex. If Δ is a simplicial complex on [n], then the Stanley-Reisner ideal of Δ , I_{Δ} , is the square-free monomial ideal generated by all monomials $x_{i_1} x_{i_2} \ldots x_{i_t}$ such that $\{i_1, i_2, \ldots, i_t\} \notin \Delta$. The

Stanley-Reisner ring of Δ over the field K is the K-algebra $K[\Delta] := S/I_{\Delta}$. Any square-free monomial ideal I is the Stanley-Reisner ideal of some simplicial complex Δ on [n]. If $\mathcal{F}(\Delta) = \{F_1, \ldots, F_t\}$, then $I_{\Delta} = \bigcap_{i=1}^t \mathfrak{p}_{F_i}$, where $\mathfrak{p}_{F_i} := (x_j : j \notin F_i)$; see [BH, Theorem 5.1.4].

Recall that the Alexander dual Δ^{\vee} of a simplicial complex Δ is the simplicial complex whose faces are $\{[n]\backslash F|F\notin\Delta\}$. Let I be a square-free monomial ideal of S. We denote by I^{\vee} , the square-free monomial ideal which is generated by all monomials $x_{i_1}\cdots x_{i_k}$, where (x_{i_1},\ldots,x_{i_k}) is a minimal prime ideal of I. It is easy to see that for any simplicial complex Δ , one has $I_{\Delta^{\vee}}=(I_{\Delta})^{\vee}$. A monomial ideal I of S is said to have linear quotients if there exists an order u_1,\ldots,u_m of G(I) such that for any $1\leq i\leq m$, the ideal $1\leq i\leq m$, the ideal $1\leq i\leq m$ is generated by a subset of the variables.

Lemma 3.1. Let I be a square-free monomial ideal of S. Then S/I is clean if and only if I^{\vee} has linear quotients.

Proof. Dress [D, Theorem on page 53] proved that a simplicial complex Δ is (non-pure) shellable if and only if $K[\Delta]$ is a clean ring. On the other hand, by [HHZ, Theorem 1.4], a simplicial complex Δ is (non-pure) shellable if and only if $I_{\Delta^{\vee}}$ has linear quotients. Combining these facts, yields our claim. \square

Lemma 3.2. Let I and J be two monomial ideals of S. Assume that I = uJ for some monomial u in S and ht $J \ge 2$. If S/J is pretty clean, then S/I is pretty clean too.

Proof. With the proof of [S4, Lemma 1.9], the claim is immediate.

In what follows for a monomial ideal I of S, we denote the number of elements of G(I) by $\mu(I)$.

Definition 3.3. A monomial ideal I of S is said to be almost complete intersection if $\mu(I) = \operatorname{ht} I + 1$.

Lemma 3.4. Let I be an almost complete intersection square-free monomial ideal of S. Then S/I is clean.

Proof. The claim is obvious when ht I=0. Let ht I=1. Then $I=(u_1,u_2)$ for some monomials u_1 and u_2 . We can write I as $I=u(u'_1,u'_2)$, where $u=\gcd(u_1,u_2)$ and u'_1,u'_2 are monomials forming a regular sequence on S. So in this case, the claim is immediate by Lemma 3.2 and Corollary 2.7. Now, assume that $h:=\operatorname{ht} I\geq 2$. By [KTY, Theorem 4.4] I can be written in one of the following forms, where $A_1,A_2,\ldots,B_1,B_2,\ldots$ are non-trivial square-free monomials no two of which have any common factor, and p,p' are integers with $1\leq p\leq n$ and $1\leq p'\leq n$.

- 1) $I_1 = (A_1 B_1, A_2 B_2, \dots, A_p B_p, A_{p+1}, \dots, A_h, B_1 B_2 \dots B_p).$
- 2) $I_2 = (A_1 B_1, A_2 B_2, \dots, A_{p'} B_{p'}, A_{p'+1}, \dots, A_h, A_{h+1} B_1 B_2 \dots B_{p'}).$
- 3) $I_3 = (B_1B_2, B_1B_3, B_2B_3, A_4, \dots, A_{h+1}).$
- 4) $I_4 = (A_1B_1B_2, B_1B_3, B_2B_3, A_4, \dots, A_{h+1}).$
- 5) $I_5 = (A_1B_1B_2, A_2B_1B_3, B_2B_3, A_4, \dots, A_{h+1}).$
- 6) $I_6 = (A_1B_1B_2, A_2B_1B_3, A_3B_2B_3, A_4, \dots, A_{h+1}).$

Let $I = I_1$. Since no two of $A_1, A_2, \ldots, A_p, A_{p+1}, \ldots, A_h, B_1, B_2, \ldots, B_p$ have any common factor, it turns out that A_{p+1}, \ldots, A_h is a regular sequence on $S/(A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p)$. So, in view of Theorem 2.6, we may and do assume that $I = (A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p)$. Next, we are going to show that I is of forest type. Let G be a subset of $\{A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p\}$ with at least

two elements. If $B_1B_2\cdots B_p\notin G$, then any $a\in G$ can be taken as a leaf and any $b\in G$ different from a can be taken as a branch for this leaf. If $B_1B_2\cdots B_p\in G$, then any $a\in G$ different from $B_1B_2\cdots B_p$ can be taken as a leaf and then $B_1B_2\cdots B_p$ is a branch for this leaf. So, I is of forest type. Thus, as I is square-free, [SZ, Theorem 1.5] implies that S/I is clean. By the similar argument, one can see that if $I=I_2$, then S/I is clean. Set

$$J := (C_1B_1B_2, C_2B_1B_3, C_3B_2B_3, A_4, \dots, A_{h+1}),$$

where C_i is either A_i or 1 for each i=1,2,3. Since each of I_3 , I_4 , I_5 and I_6 are the particular cases of the ideal J, we can finish the proof by showing that S/J is clean. Since by the assumption no two of $A_4, \ldots, A_{h+1}, B_1, B_2, B_3, C_1, C_2, C_3$ have any common factor, it follows that A_4, \ldots, A_{h+1} is a regular sequence on $S/(C_1B_1B_2, C_2B_1B_3, C_3B_2B_3)$. So by Theorem 2.6, we can assume that $J=(C_1B_1B_2, C_2B_1B_3, C_3B_2B_3)$. By Lemma 3.1, it is enough to prove that J^{\vee} has linear quotients. By the hypothesis, we can set $B_1=x_1\cdots x_l$, $B_2=y_1\cdots y_s$, $B_3=z_1\cdots z_t$, $C_1=u_1\cdots u_d$, $C_2=v_1\cdots v_m$ and $C_3=w_1\cdots w_e$. If $C_i=1$ for some i=1,2,3, then instead of all variables corresponding to C_i , we simply put 1. Now, we may and do assume that

$$S = K[x_1, \dots, x_l, y_1, \dots, y_s, z_1, \dots, z_t, u_1, \dots, u_d, v_1, \dots, v_m, w_1, \dots, w_e].$$

Next, as

$$J = (\prod_{h=1}^{d} \prod_{i=1}^{l} \prod_{j=1}^{s} u_h x_i y_j, \prod_{p=1}^{m} \prod_{i=1}^{l} \prod_{k=1}^{t} v_p x_i z_k, \prod_{q=1}^{e} \prod_{j=1}^{s} \prod_{k=1}^{t} w_q y_j z_k),$$

it is easy to see that

$$J = (\bigcap_{i,j} (x_i, y_j)) \cap (\bigcap_{i,k} (x_i, z_k)) \cap (\bigcap_{i,q} (x_i, w_q)) \cap (\bigcap_{j,k} (y_j, z_k)) \cap (\bigcap_{j,p} (y_j, v_p)) \cap (\bigcap_{k,h} (z_k, u_h)) \cap (\bigcap_{h,p,q} (u_h, v_p, w_q)).$$
Thus

$$G(J^{\vee}) = \{x_i y_j \mid 1 \le i \le l, \ 1 \le j \le s\} \cup \{x_i z_k \mid 1 \le i \le l, \ 1 \le k \le t\} \cup \{x_i w_q \mid 1 \le i \le l, \ 1 \le q \le e\}$$

$$\cup \{y_j z_k \mid 1 \le j \le s, \ 1 \le k \le t\} \cup \{y_j v_p \mid 1 \le j \le s, \ 1 \le p \le m\} \cup \{z_k u_h \mid 1 \le k \le t, \ 1 \le h \le d\}$$

$$\cup \{u_h v_p w_q \mid 1 \le h \le d, \ 1 \le p \le m, \ 1 \le q \le e\}.$$

Let > be the pure lexicographic ordering on Mon S with

$$x_1 > \cdots > x_l > y_1 > \cdots > y_s > z_1 > \cdots > z_t > u_1 > \cdots > u_d > v_1 > \cdots > v_m > w_1 > \cdots > w_e$$

If $C_i = 1$ for some i = 1, 2, 3, then we delete the variables corresponding to C_i in the above chain. Now, arrange elements of $G(J^{\vee}) = \{d_1, d_2, \dots, d_g\}$ such that either $\deg d_i$ is less than $\deg d_{i+1}$ or if $\deg d_i = \deg d_{i+1}$, then $d_i > d_{i+1}$. Then, it is straightforward to check that J^{\vee} has linear quotients. \square

Let $u = \prod_{i=1}^n x_i^{a_i}$ be a monomial in $S = K[x_1, \dots, x_n]$. Then

$$u^p := \prod_{i=1}^n \prod_{j=1}^{a_i} x_{i,j} \in K[x_{1,1}, \dots, x_{1,a_1}, \dots, x_{n,1}, \dots, x_{n,a_n}]$$

is called *polarization* of u. Let I be a monomial ideal of S with $G(I) = \{u_1, \ldots, u_m\}$. Then the ideal $I^p := (u_1^p, \ldots, u_m^p)$ of $T := K[x_{i,j}]$ is called *polarization* of I. [S4, Theorem 3.10] implies that S/I is pretty clean if and only if T/I^p is clean.

Theorem 3.5. Let I be an almost complete intersection monomial ideal of S. Then S/I is pretty clean.

Proof. From [F, Proposition 2.3], one has ht $I = \text{ht } I^p$. On the other hand $\mu(I) = \mu(I^p)$, and so I^p is an almost complete intersection square-free monomial ideal of T. Hence, by Lemma 3.4, the ring T/I^p is clean. Now, [S4, Theorem 3.10] implies that S/I is pretty clean, as desired.

In [C, Theorem 2.3], it is shown that if I is a monomial ideal of S with $\mu(I) \leq 3$, then Stanley's conjecture holds for S/I. The next result extends this fact.

Corollary 3.6. Let I be a monomial ideal of S. If $\mu(I) < 3$, then S/I is pretty clean.

Proof. Clearly, we may assume that I is non zero. Assume that $\mu(I) = 3$ and ht I = 1. Then I = uJ, where u is a monomial in S and J is a monomial ideal of S with $\mu(J) = 3$ and ht $J \geq 2$. By Lemma 3.2, it is enough to prove that S/J is pretty clean. If ht J = 2, then $\mu(J) = \text{ht } J + 1$, and so by Theorem 3.5, S/J is pretty clean. If ht J = 3, then J is complete intersection, and hence by Corollary 2.7, S/J is pretty clean.

Since $0 < \text{ht } I \le \mu(I)$, in all other cases, it follows that I is either complete intersection or almost complete intersection. Thus, the proof is completed by Corollary 2.7 and Theorem 3.5.

Definition 3.7. ([TY, Definition 1.1 and Lemma 1.2]) A simplicial complex Δ on [n] is said to be *locally complete intersection* if $\{\{1\}, \{2\}, \ldots, \{n\}\} \subseteq \Delta$ and $(I_{\Delta})_{\mathfrak{p}}$ is a complete intersection ideal of $S_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Proj} S/I$.

A simplicial complex Δ is said to be *connected* if for any two facets F and G of Δ , there exists a sequence of facets $F = F_0, F_1, \ldots, F_{q-1}, F_q = G$ such that $F_i \cap F_{i+1} \neq \emptyset$ for all $0 \leq i < q$. Also, a simplicial complex Δ on [n] is said to be n-pointed path (resp. n-gon) if $n \geq 2$ (resp. $n \geq 3$) and, after a suitable change of variables,

$$\mathcal{F}(\Delta) = \{ \{i, i+1\} | 1 \le i < n \}$$

(resp.

$$\mathcal{F}(\Delta) = \{\{i, i+1\} | 1 \le i < n\} \cup \{\{n, 1\}\}\}.$$

Clearly, any n-pointed path (resp. n-gon) is one-dimensional and pure.

Lemma 3.8. Let Δ be a connected simplicial complex on [n] which is locally complete intersection. Then S/I_{Δ} is clean.

Proof. If dim $\Delta = 0$, then $\Delta = \{\emptyset, \{1\}, \{2\}, \dots, \{n\}\}\$, and so Δ is shellable. Hence, the claim is obvious in this case by [D, Theorem on page 53].

If dim $\Delta = 1$, then by [TY, Proposition 1.11] Δ is either a *n*-pointed path or a *n*-gon. Obviously, in each of these cases, Δ is shellable, and so by [D, Theorem on page 53] it turns out that S/I_{Δ} is clean.

If dim $\Delta \geq 2$, then [TY, Theorem 1.5] implies that I_{Δ} is generated by a regular sequence. Thus Corollary 2.7 completes the proof in this case.

Proposition 3.9. Let $I \subset S_1 = K[x_1, \ldots, x_m]$, $J \subset S_2 = K[x_{m+1}, \ldots, x_n]$ be two monomial ideals and $S = K[x_1, \ldots, x_m, x_{m+1}, \ldots, x_n]$. Assume that depth $S_1/I > 0$ and depth $S_2/J > 0$. Then Stanley's conjecture holds for $S/(I, J, \{x_i x_j\}_{1 \le i \le m, m+1 \le j \le n})$.

Proof. For convenience, we set $Q_1 := (x_1, \ldots, x_m)$, $Q_2 := (x_{m+1}, \ldots, x_n)$ and $Q := (x_i x_j)_{1 \le i \le m, m+1 \le j \le n}$. So, $Q = Q_1 \cap Q_2$. Since $I \subseteq Q_1$ and $J \subseteq Q_2$, it follows that

$$(I, J, Q) = (I, J, Q_1) \cap (I, J, Q_2) = (J, Q_1) \cap (I, Q_2).$$

By the assumption, we have $(x_1,\ldots,x_m)\notin \mathrm{Ass}_{S_1}S_1/I$ and $(x_{m+1},\ldots,x_n)\notin \mathrm{Ass}_{S_2}S_2/J$. Hence

$$(x_1,\ldots,x_m,x_{m+1},\ldots,x_n) \notin \operatorname{Ass}_S S/(I,Q_2)$$

and

$$(x_1,\ldots,x_m,x_{m+1},\ldots,x_n) \notin \operatorname{Ass}_S S/(J,Q_1),$$

and so

$$\operatorname{depth}(\frac{S}{(J,Q_1)} \oplus \frac{S}{(I,Q_2)}) > 0 = \operatorname{depth}(\frac{S}{Q_1 + Q_2}).$$

Now, in view of the exact sequence

$$0 \to \frac{S}{(J,Q_1) \cap (I,Q_2)} \to \frac{S}{(J,Q_1)} \oplus \frac{S}{(I,Q_2)} \to \frac{S}{Q_1 + Q_2} \to 0,$$

[V, Lemma 1.3.9] implies that

$$\operatorname{depth}(\frac{S}{(I,J,Q)}) = \operatorname{depth}(\frac{S}{(J,Q_1) \cap (I,Q_2)}) = 1.$$

Now the proof is complete, because [C, Theorem 2.1] yields that for any monomial ideals L of S if depth $S/L \le 1$, then Stanley's conjecture holds for S/L.

Corollary 3.10. Let Δ_1 and Δ_2 be two non-empty disjoint simplicial complexes and $\Delta := \Delta_1 \cup \Delta_2$. Then Stanley's conjecture holds for S/I_{Δ} .

Proof. For two natural integers m < n, we may assume that Δ_1 and Δ_2 are simplicial complexes on [m] and $\{m+1,\ldots,n\}$, respectively. Then $K[\Delta_1]=K[x_1,\ldots,x_m]/I_{\Delta_1}$ and $K[\Delta_2]=K[x_{m+1},\ldots,x_n]/I_{\Delta_2}$, and so

$$K[\Delta] = K[x_1, \dots, x_m, x_{m+1}, \dots, x_n]/(I_{\Delta_1}, I_{\Delta_2}, \{x_i x_j\}_{1 \le i \le m, m+1 \le j \le n}).$$

We claim that $\operatorname{depth}(K[x_1,\ldots,x_m]/I_{\Delta_1})>0$ and $\operatorname{depth}(K[x_{m+1},\ldots,x_n]/I_{\Delta_2})>0$. Because if for example $\operatorname{depth}(K[x_1,\ldots,x_m]/I_{\Delta_1})=0$, then $I_{\Delta_1}=(x_1,\ldots,x_m)$. But, this implies that $\Delta_1=\emptyset$ which contradicts our assumption on Δ_1 . Now, the claim is immediate by Proposition 3.9.

Theorem 3.11. Let Δ be a locally complete intersection simplicial complex on [n]. Then Stanley's conjecture holds for S/I_{Δ} .

Proof. If Δ is a connected, then Lemma 3.8 yields the claim. Otherwise, by [TY, Theorem 1.15], Δ is a finitely many disjoint union of non-empty simplicial complexes. So, in this case the assertion follows by Corollary 3.10.

In [HP, Corollary 4.3] it is shown that if S/I is pretty clean, then it is sequentially Cohen-Macaulay. In [S1] this fact is reproved by a different argument and it is shown that depth of S/I is equal to the minimum of the dimension of S/\mathfrak{p} , where $\mathfrak{p} \in \mathrm{Ass}_S S/I$. This implies part a) of the following remark.

Remark 3.12. Let I be a monomial ideal of S and M a multigraded finitely generated S-module.

- a) Assume that either:
 - i) I is generated by a filter-regular sequence,
 - ii) I is generated by a d-sequence,
 - iii) I is almost complete intersection,
 - iv) $\mu(I) \leq 3$; or
 - v) I is the Stanley-Reisner ideal of a connected simplicial complex on [n] which is locally complete intersection.
 - Then both Stanley's and h-regularity conjectures hold for S/I. Also, in each of these cases S/I is sequentially Cohen-Macaulay and depth $S/I = \min\{\dim S/\mathfrak{p} | \mathfrak{p} \in \mathrm{Ass}_S S/I\}$.
- b) We know that if S/I is almost clean, then Stanley's conjecture holds for S/I. By using Corollary 3.10, we can provide an example of a monomial ideal I of S such that Stanley's conjecture holds for S/I, while it is not almost clean. To this end, let Δ_1 , Δ_2 and Δ be as in Corollary 3.10 and dim $\Delta_i > 0$, i = 1, 2. Evidently, Δ is not shellable, and so [D, Theorem on page 53] implies that S/I_{Δ} is not almost clean. On the other hand, Stanley's conjecture holds for S/I_{Δ} by Corollary 3.10.

References

- [A1] J. Apel, On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals, J. Algebraic Combin., 17(1), (2003), 57-74.
- [A2] J. Apel, On a conjecture of R. P. Stanley. I. Monomial ideals, J. Algebraic Combin., 17(1), (2003), 39-56.
- [BW] A. Björner and M. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4), (1996), 1299-1327.
- [BSS] K. Borna Lorestani, P. Sahandi and T. Sharif, A note on the associated primes of local cohomology modules, Comm. Algebra, 34(9), (2006), 3409-3412.
- [BH] W. Bruns and J. Herzog, *Cohen Macaulay rings*, Cambridge Studies in Advanced Mathematics, **39**, Cambridge University Press, Cambridge, 1993.
- [C] M. Cimpoeas, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math., 7(3), (2009), 629-634.
- [D] A. Dress, A new algebraic criterion for shellability, Beiträge Algebra Geom., 34(1), (1993), 45-55.
- [F] S. Faridi, Monomial ideals via square-free monomial ideals, Commutative algebra, 85-114, Lect. Notes Pure Appl. Math., 244, Chapman & Hall/CRC, Boca Raton, FL, (2006).
- [HH] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag, London, (2011).
- [HHZ] J. Herzog, T. Hibi and X. Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin., 25(7), (2004), 949-960.
- [HP] J. Herzog and D. Popescu, Finite filtrations of modules and shellable multicomplexes, Manuscripta Math., 121(3), (2006), 385-410.
- [HRT] J. Herzog, G. Restuccia and Z. Tang, s-Sequences and symmetric algebras, Manuscripta Math., 104(4), (2001), 479-501.
- [HSY] J. Herzog, A. Soleyman Jahan, S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin., 27(1), (2008), 113-125.
- [KTY] K. Kimura, N. Terai and K. Yoshida, Arithmatical rank of squarefree monomial ideals of small arithmetic degree, J. Algebraic Combin., 29(3), (2009), 389-404.
- [P] D. Popescu, Stanley depth of multigraded modules, J. Algebra, 321(10), (2009), 2782-2797.
- [R] A. Rauf, Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 50(98)(4),(2007), 347-354.

- [S1] A. Soleyman Jahan, Easy proofs of some well known facts via cleanness, Bull. Math. Soc. Sci. Math. Roumanie, (N.S.), 54(102)(3), (2011), 237-243.
- [S2] A. Soleyman Jahan, Prime filtrations and primary decompositions of modules, Comm. Algebra, 39(1), (2011), 116-124.
- [S3] A. Soleyman Jahan, Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality, Manuscripta Math., 130(4), (2009), 533-550.
- [S4] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations, J. Algebra, 312(2), (2007), 1011-1032.
- [SZ] A. Soleyman Jahan and X. Zheng, Monomial ideals of forest type, Comm. Algebra, to appear.
- [St] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68(2), (1982), 175-193.
- [T] Z. Tang, On certain monomial sequences, J. Algebra, 282(2), (2004), 831-842.
- [TY] N. Terai and K-I. Yoshida, Locally complete intersection Stanley-Reisner ideals, Illinois J. Math., 53(2), (2009), 413-429.
- [V] R.H. Villarreal, *Monomial Algebras*, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, 2001.
 - S. Bandari, Department of Mathematics, Az-Zahra University, Vanak, Post Code 19834, Tehran, Iran. E-mail address: somayeh.bandari@yahoo.com
- K. DIVAANI-AAZAR, DEPARTMENT OF MATHEMATICS, AZ-ZAHRA UNIVERSITY, VANAK, POST CODE 19834, TEHRAN, IRAN-AND-SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX 19395-5746, TEHRAN, IRAN.

 $E ext{-}mail\ address: kdivaani@ipm.ir}$

A. Soleyman Jahan, Department of Mathematics, Kurdistan University, P.O. Box 416, Sanandaj, Iran-and-school of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: solymanjahan@gmail.com