

Optics

Sensors & devices

Signal processing & algorithms

COMPUTATIONAL METHODS FOR IMAGING (AND VISION)

LECTURE 2: VECTORS

PROF. JOHN MURRAY-BRUCE

COMPUTATIONAL IMAGING INTEGRATED SYSTEMS APPROACH

- System-level integration creates new imaging pipelines:
 - ▶ Efficiently encode information with hardware
 - Computational reconstruction (decoding)
- Design flexibility
- ▶ Enabling new capabilities, e.g. super-resolution, 3D, phase

DESIRED PROPERTIES OF IMAGING SYSTEMS

- Form images
 - With High Signal-to-Noise Ratio
 - High Contrast
 - Good resolution
- Cheap, Simple, and Robust
 - Microscopes (HIM ~\$1.5m, but may be easily damaged without proper care)
 - Military applications

ABSTRACTION OF COMPUTATIONAL IMAGING SYSTEMS

ABSTRACTION OF COMPUTATIONAL IMAGING SYSTEMS

Software

Find

Such that Ax = y

DESIGNING THE IMAGING SYSTEM

- Question: Where to introduce coding?
 - Illumination-side and detection-side coding
- Coding domains?
 - Spatial, temporal coding, angular, spectral, polarization and so on.

COMP. METHODS FOR IMAGING

- Focus: the tools and techniques at the intersection between physics and digital imaging system design
 - Both equally important

We will cover:

- Mathematical tools for forward and inverse problems
- Inversion and reconstruction algorithms
- Introductory optics
- Applications

KEY QUESTIONS TO BE ANSWERED IN THIS COURSE

- What is computational imaging (our abstraction)
 - Forward modeling: Linear systems abstraction, i.e. y = Ax
 - Inverse problems: Find x given y (and A)
- Analog signals to digital representations
 - Vector spaces, sampling and linear operators
- **▶** How to build *A* (forward problem)
 - ▶ Study properties of *A*
 - ▶ Is it "well-conditioned" for inversion?
- ightharpoonup How to exploit *prior* information about x

OUTLINE

- Linear algebra
 - Vector spaces
- Vectors
 - Norms
 - Inner products

LINEAR ALGEBRA (REVIEW)

- Why is linear algebra important for imaging?
 - Bridge between geometry, physics, optics, etc... and digital computation
 - Many (computational) imaging problems:
 - ▶ Derive linear algebraic expression (y = Ax), and
 - Use computer (Matlab) to solve y = Ax, for the unknown x
 - Efficient, effective & robust numerical methods and optimization techniques have made computational imaging possible

VECTORS

VECTOR SPACES

- Definition (Linear algebra) the study of vector spaces and the linear maps between them.
 - More rigorously: For all vectors \mathbf{u} , \mathbf{v} , \mathbf{w} and scalars a, b
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - u + (v + w) = (u + v) + w
 - ▶ There exists a zero vector **0**, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
 - For every **u** there exits a vector $-\mathbf{u}$, such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
 - $\mathbf{v} = \mathbf{v}$
 - $a(b\mathbf{u}) = (ab)\mathbf{u}$
 - $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

VECTORS INTUITION

Intuitively, think of a vector as this little arrow

- In computational imaging systems, we work with a range of entities that, may not look like arrows but, behave like vectors (or little arrows).
 - E.g.: Illumination/light sources, images, polynomials

VECTORSWHAT CAN WE MEASURE/ENCODE

Fundamentally, vectors have magnitude and direction

- Example: a 2D vector can be encoded as length, and an angle relative to some fixed direction
 - Polar coordinates
- What are other possibilities?

VECTORSCARTESIAN COORDINATES

 Can measure components of a vector with respect to some chosen coordinate system

René Descartes, Circa 1596

- Caution: Cannot compare coordinates in different systems
 - ▶ Should **not** compare (r, θ) to (x, y)

VECTORSADDITION

Addition: connect them end to end

- Walk along u first and then v
- Or, along v first and then u
- The order doesn't matter: Commutative.

VECTORSSCALAR MULTIPLICATION

Scaling a vector

- Multiplying a vector \mathbf{u} by a scalar a gives a new vector $a\mathbf{u}$
- Similar geometric scaling of the "arrows", give: $a(b\mathbf{u}) = (ab)\mathbf{u}$

VECTORSADDITION AND SCALING

Scaling the sum of two vectors

- Or addition of two scaled vectors
- Same result either way: Distributive!

VECTOR SPACE

For all vectors \mathbf{u} , \mathbf{v} , \mathbf{w} and scalars a, b:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- u + (v + w) = (u + v) + w
- There exists a zero vector **0**, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- For every **u** there exits a vector $-\mathbf{u}$, such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- $\mathbf{v} = \mathbf{v}$
- $a(b\mathbf{u}) = (ab)\mathbf{u}$
- $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$
- Vector space: collection of objects that satisfy these properties.

EUCLIDEAN VECTOR SPACE

- Most common example of a vector space.
 - \triangleright *n*-dimensional Euclidean space (denoted: \mathbb{R}^n)
 - ▶ E.g. $(2, -\sqrt{3}, \pi/7)$ is a point in \mathbb{R}^3
 - **QUESTION:** What about $(2, 1, 0, \pi/7, 0)$?

- Can be easily encoded on a computer
 - "Just" a list of floating-point numbers

OTHER IMPORTANT VECTORS

- Functions are a very important example of vector spaces
 - We can certainly add them
 - Or scale them
 - The other properties (of a vector space) all hold

Images

Irradiance from light sources

MEASURING VECTORS

- Question: What information do vectors encode?
 - Magnitude and direction
- ▶ How can we *measure* these quantities

NORMS

NORM OF A VECTOR

- Norm: magnitude, or length or size of a vector
 - Intuitively, captures some notion of how "large" the vector is

NORM OF A VECTOR

- Norm: magnitude, or length or size of a vector
 - Intuitively, captures some notion of how "large" the vector is

Question: Which has the larger norm?

SMALL NORM

PROPERTIES OF A NORM I

- What properties should we expect the norm (length) of a vector should satisfy?
 - Non-negativity:

▶
$$\|\mathbf{u}\| \ge 0$$

It should be zero if and only if the vector it itself the zero vector:

$$\|\mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$$

PROPERTIES OF A NORM II

• Scaling – if we scale a vector by a, its norm is also scaled by a

Triangle inequality – shortest point between any two points is a straight line

$$\|u\|+\|v\|\geq \|u+v\|$$

NORM FORMAL DEFINITION

- A norm is any *function* that maps each vector (of a vector space) to a scalar value, and satisfies the properties:
 - ▶ $\|\mathbf{u}\| \ge 0$
 - $\|\mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$
 - $||a\mathbf{u}|| = |a|||\mathbf{u}||$
 - $||u|| + ||v|| \ge ||u + v||$

EUCLIDEAN NORM IN CARTESIAN COORDINATES

- \blacktriangleright The Euclidean norm for n-dimensional vector space
 - For $\mathbf{u} \in \mathbb{R}^n$, we use the notation: $\mathbf{u} = (u_1, u_2, ..., u_n)$

$$\|\mathbf{u}\| = \|(u_1, u_2, ..., u_n)\| := \sqrt{\sum_{i=1}^{n} (u_i)^2}$$

- **Example:** Compute $\|\mathbf{u}\|$ for $\mathbf{u} = (3,4)$, and $\mathbf{u} = (3,0,0,4)$
 - We will see definitions of other norms and semi-norms
 - Can be extended to functions

MORE EXAMPLES

Find ||u|| for the following

- u = (1, 2, 3)
- u = (0, 0, 0)
- $\mathbf{u} = (0, 0, 1, 1, 2, 1)$

INNER PRODUCTS

INNER PRODUCT

Vectors have direction (orientation)

Inner product: measures how aligned (or similar) two vectors are

INNER PRODUCT

ightharpoonup We will denote the inner product between vectors \mathbf{u} , and \mathbf{v}

$$\langle u, v \rangle$$

- Properties:
 - Order should not matter: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$

INNER PRODUCT PROJECTION AND SCALING

For unit vectors $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$, i.e. vectors of length one, an inner product measures the extent of one along the direction of the other.

Scale either vector and the inner product scales accordingly:

INNER PRODUCT PROJECTION AND SCALING

- A vector should be aligned with itself
 - Inner product with itself is positive (or at least, non-negative)

$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$$

For unit length vector **u**, must have:

$$\langle \mathbf{u}, \mathbf{u} \rangle = 1$$

Question: For general vector \mathbf{u} , what must $\langle \mathbf{u}, \mathbf{u} \rangle$ be?

INNER PRODUCT FORMAL DEFINITION

- Inner product: is any function that maps any two vectors to a scalar number $\langle \mathbf{u}, \mathbf{v} \rangle$, such that the following properties hold:

 - $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$
 - $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Longleftrightarrow \mathbf{u} = 0$
 - $\langle a\mathbf{u}, \mathbf{v} \rangle = a \langle \mathbf{u}, \mathbf{v} \rangle$

INNER PRODUCT CARTESIAN COORDINATES

Inner product: for two n-vectors

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle := \sum_{i=1}^n u_i v_i$$

Examples: for the following pairs of vectors *u* and *v*, find the inner products:

$$u = (1, 2, 3), v = (1, 2, 3)$$

$$u = (1, 2, 3), v = (0, 0, 0)$$

WHAT WE COVERED TODAY

- Importance of linear algebra in computational imaging
- Vectors and Vector spaces
 - Norms
 - Inner products

Please Install Matlab for next lesson

SEE YOU NEXT TIME!

HILBERT SPACE