Jetson-inference environment setup

Jetson-inference environment setup

- 1. Pre-use instructions
- 2. The environment version configuration of this tutorial is shown in the figure:
- 3. Start building
 - 3.1 Download the required dependencies
 - 3.2 Download the relevant source code
 - 3.3 Download related python modules
 - 3.4 Modify the file
- 4. Install the model
- 5. Start compiling
- 6. Verify whether the installation is successful Appendix

1. Pre-use instructions

This tutorial is suitable for building a JETSON NANO image by yourself. If you directly use the YAHBOOM version of the image, you can ignore the tutorial.

2. The environment version configuration of this tutorial is shown in the figure:

```
jtop 4.2.0 - (c) 2023, Raffaello Bonghi [raffaello@rnext.it]
Website: https://rnext.it/jetson_stats
Platform
                                         Serial Number: [s|XX CLICK TO READ XX
(]Machine: aarch64
 System: Linux
                                         Model: NVIDIA Jetson Nano Developer
 Distribution: Ubuntu 18.04 Bionic Beaver 699-level Part Number: 699-13448-000
 Release: 4.9.253-tegra
                                         P-Number: p3448-0000
 Python: 3.6.9
                                         BoardIDs: p3448
                                         Module: NVIDIA Jetson Nano (4 GB ram
Libraries
                                         SoC: tegra210
 CUDA: 10.2.300
                                         CUDA Arch BIN: 5.3
 cuDNN: 8.2.1.32
                                         Codename: Pord
 TensorRT: 8.2.1.8
                                         L4T: 32.7.1
 VPI: 1.2.3
                                         Jetpack: 4.6.1
 Vulkan: 1.2.70
 OpenCV: 4.1.1 with CUDA: NO
                                         Hostname: yahboom
                                         Interfaces
                                         wlan0: 192.168.2.68
                                         docker0: 172.17.0.1
     2GPU 3CPU 4MEM 5ENG 6CTRL 7INFO Quit
                                                                (c) 2023, RB
```

If you don't want to build it completely by yourself, you can use the jetson-inference compression package we provide, transfer the compression package to JETSON NANO, decompress it, and start directly from "Install Module"

3. Start building

3.1 Download the required dependencies

```
sudo apt-get update
sudo apt-get install git cmake
```

3.2 Download the relevant source code

```
git clone https://github.com/dusty-nv/jetson-inference
cd jetson-inference
git submodule update --init ##If a network error is reported in the middle, you
need to access the Internet scientifically and run it several times, otherwise
the download will be incomplete
```

3.3 Download related python modules

Find the torch-1.8.0-cp36-cp36m-linux_aarch64.whl file from the attachments of our environment and transfer it to jetson nano

```
sudo apt-get install libpython3-dev python3-numpy
sudo apt-get install python3-scipy
sudo apt-get install python3-pandas
sudo apt-get install python3-matplotlib
sudo apt-get install python3-sklearn
pip3 install torch-1.8.0-cp36-cp36m-linux_aarch64.whl
```

3.4 Modify the file

Edit jetson-inference/CMakePrebuild.sh. Comment out ./download-models.sh (add a # comment in front) as shown in the figure)

```
echo "
echo "[
# break on errors
#set -e
# docker doesn't use sudo
if [ $BUILD_CONTAINER = "Y
                               " ]; then
        SUD0=""
else
        SUD0="sudo"
fi
# install packages
   DO apt-get update
   UDO apt-get install -y dialog
  SUDO apt-get install -y libpython3-dev python3-numpy
SUDO apt-get install -y libglew-dev glew-utils libgstreamer1.0-dev libgstrea
 libglib2.0-dev
      apt-get install -y qtbase5-dev
#$SUDO apt-get install -y libopencv-calib3d-dev libopencv-dev
 SUDO apt-get update
# download/install models and PyTorch
         ./download-models.sh $BUILD INTERACTIVE
         ./install-pytorch.sh $BUILD_INTERACTIVE
        # in container, the models are mounted and PyTorch is already install
```

4. Install the model

Method 1: You can perform the following steps

```
cd jetson-inference/tools
./download-models.sh
```

After making the selection, the model will be automatically downloaded to the file path of data/network. You need to access the Internet to download it normally

Method 2: You can find the package required by jetson-inference in the attachment provided by us for environment construction, transfer the compressed package in it to jetson-inference/data/network of jetso nano, and then decompress it Decompression command

```
for tar in *.tar.gz; do tar xvf $tar; done
```

Note:

- 1. For decompressing multiple .gz files, use this command: for gz in *.gz; do gunzip \$gz; done
- 2. To decompress multiple .tar.gz files, use the following command: for tar in *.tar.gz; do tar xvf \$tar; done

5. Start compiling

```
cd jetson-inference
mkdir build #Use the package we provide, this sentence can be omitted
cd build
cmake ../
make (or make -j4) # (in the build directory)
sudo make install # (in the build directory)
```

If an error is reported during the process, it means that the source code is not fully downloaded. Please return to step 3.2 and execute the git submodule update --init command, or download it from the browser. The method can be found on Baidu

6. Verify whether the installation is successful

```
cd jetson-inference/build/aarch64/bin

./imagenet-console ./images/bird_0.jpg output.jpg

# After waiting for a long time, the following appears (it takes a long time for the first time, but it will be very fast later)
```


Find the corresponding directory and check output.jpg as follows. The recognition result will be displayed at the top of the image.

Appendix

Other reference tutorials:

- 1. https://blog.csdn.net/aal779/article/details/122055432
- 2.<u>https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md</u>