année scolaire 2022-2023Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir N°3 Semestre 02 Filière Tronc Commun Scientifique Durée 2h00

Chimie 7pts/42min

Chimie 7pts/42min
Partie 1 :Transformation chimique d'un système(4pts)
On introduit un morceau d'aluminium $Al_{(S)}$ de masse $m=16,2g$ dans une solution d'acide chlorhydrique $(H_{(aq)}^+ + Cl_{(aq)}^-)$ de concentration $C=0,24mol/L$ et de volume $V=1L$. la réaction chimique mise en jeu entre le morceau d'aluminium $Al_{(S)}$ et les ions $H_{(aq)}^+$ produit les ions $Al_{(aq)}^{3+}$ et le dihydrogène gazeux $H_{2(g)}$.
1. Calculer n_1 et n_2 les quantités de matières initiales respectives de $H_{(aq)}^+$ et de $Al_{(S)}$ (0,5pts)
2. Ecrire l'équation de la réaction mise en jeu équilibrée puis tracer le tableau d'avancement associé à cette réaction
3. Déterminer X_{max} l'avancement maximal puis déduire le réactif limitant
4. En se basant sur le tableau d'avancement , donner le bilan de matière à l'état final
5. déduire $V_{f(H_2)}$ le volume finale du dihydrogène produit à l'état final
Données : La masses molaires $M(Al) = 27g/mol$ et Volume molaire $V_m = 24L.mol^{-1}$.
Partie 2 :Les Réactions Chimiques
l'équation de la réaction mise en jeu entre les ions argent $Ag^+_{(aq)}$ el le plomb $Pb_{(S)}$ de masse molaire $M(Pb)=207g/mol$ s'ecrit comme suit :
$Pb_{(s)} + 2Ag_{(aq)}^+ \to Pb_{(aq)}^{2+} + Ag_{(s)}$
• la concentration initiale des ions $Ag^+_{(aq)}$ vaut $[Ag^+_{(aq)}] + i = 0, 8mol/L$ et le volume de la solution qui est le siège de la réaction vaut $V = 1L$.
• A l'état final la concentration des ions $Ag_{(aq)}^+$ vaut $[Ag_{(aq)}^+]_f = 0, 2mol/L$.
1. Déterminer X_{max} l'avancement maximal puis déduire le réactif limitant
2. Trouver $m_i(Pb)$ la masse initiale du plomb introduit dans la solution
3. Trouver $[Pb^{2+}]_f$ la contraction des ions Pb^{2+} à l'état final

_Physique 13pts/72min _

Les deux parties sont indépendantes

Partie 2 : Montages électroniques(5pts)

Soit le circuit électrique ci-contre :

On Donne : $U_{PN} = 25V$ et $R_1 = 2.R_2 = R = 10\Omega$.

1. Déterminer R_{eq1} la résistance équivalente entre A et D	ots)
2. Déterminer R_{eq2} la résistance équivalente entre C et B	ots)
3. Déduire R_{eq} la résistance équivalente entre P et N	ots)
4. Trouver I, I_1 et I_2 (1p	ots)
5. Trouver I_2' l'intensité du courant traversant R_2 (1p	ots)
6. On remplace la branche AD par un fil conducteur trouver la nouvelle valeur de I (1p	ots)

Partie 2: Les associations de conducteurs ohmiques(8pts)

boit le montage suivante :		
	1. Représenter U_{AB} , U_{PN} , U_{PA} , U_{CA} , U_{BN} et U_{CB} et le sens des courants(1pt)	
	2. Que vaut U_{BN} ?(1pt)	
	3. Calculer la tension U_{PA} et l'intensité du courant éléctrique I, I_2 puis les deux résistances R_1 et R_2 .(2pt)	
	4. Calculer la tension U_{CB} et l'intensité du courant éléctrique I_3 , I_4 puis la résistance R_5 (2pt)	

Données : $U_{PN}=12V,\,U_{AB}=8V,\,U_{AC}=6V,\,R_3=200\Omega,\,R_4=200\Omega,\,I_1=15mA.$

