

《机器翻译和自然语言生成》课程介绍

黄书剑

自然语言生成问题

- 自然语言处理: 分析、理解、生成自然语言
 - -分析、理解:
 - •难点:表达自由,存在潜在歧义
 - -生成:
 - ●难点:信、达、雅

课程意义

• 理论方面

- 自然语言研究的重要环节
- -语言智能研究的前沿

• 应用方面

- 自然交互的客观要求
- 蕴含巨大价值
 - 机器翻译、自动摘要、辅助写作

• 科研训练

- 了解基本的自然语言处理和生成方法
- -尝试寻找、分析、解决问题的过程

预备知识

- 数学基础
 - -线性代数、微积分
- 机器学习基础
 - -有监督学习
- 编程实践技能
 - -C++, Python, Deep Learning
- *自然语言处理基础

课程内容体系

- 自然语言处理和生成基础
- 语言模型(侧重基本模型和大规模预训练)
- 机器翻译(侧重跨语言的等价性和转换)
- 自动摘要(侧重内容的筛选和重要性评估)
- 复述(侧重同语言的表达多样性和一致性)
- 风格迁移(侧重生成过程中的控制)
- 多模态生成(侧重跨模态信息交互)

教学方式

- •课堂讲授(24学时)
 - 讲授科学问题、主流技术、语言学分析等
- 技术研讨(8学时)
 - -针对每个问题进行专题探讨
 - •问题建模、前沿技术、解决方案、实际应用
 - 结合技术报告和研讨

• 自然语言分析和生成概述(4学时)

- 介绍课程的主要目标和思路,回顾自然语言处理 分析和生成的基本方法,包括
- -课程介绍
- 自然语言分析和结构化预测
- -语言模型
- -生成的基本方法
- -生成结果的评估

• 机器翻译(8学时)

- -介绍机器翻译的发展历史和最新研究方向和进展, 包括:
 - •传统机器翻译方法
 - •神经网络机器翻译
 - •领域自适应、低资源、无监督机器翻译
 - •非自回归机器翻译
 - •人机交互机器翻译
 - 机器翻译质量评估
- -课堂技术报告和研讨

- 自动摘要(4学时)
 - -介绍自动摘要的发展历史和最新研究进展,包括:
 - 抽取式和生成式摘要模型
 - •层次注意力机制
 - 篇章上下文建模
 - -课堂技术报告和研讨
- 复述判别和生成(4学时)
 - -介绍自动摘要的发展历史和最新研究进展,包括:
 - 句子表示方法
 - •语义一致性
 - -课堂技术报告和研讨

- 风格迁移(2学时)
 - -介绍风格迁移相关的技术和最新研究进展,包括:
 - •属性识别和解耦
 - •受控生成等
 - 课堂技术报告和研讨
- 多模态生成(2学时)
 - -介绍多模态生成的发展历史和最新研究进展,包括:
 - 跨模态的数据处理和知识表示
 - 跨模态表示一致性等
 - -课堂技术报告和研讨

教学资料

教材

- 无成书教材,以教师自制讲义为主

• 参考书籍

- 《机器翻译-基础与模型》,肖桐、朱靖波著, 电子工业出版社 (with online version)
- 《现代自然语言生成》, 黄民烈、黄斐、朱小燕著, 电子工业出版社
- 《机器翻译》,李沐 刘树杰 张冬冬 周明著,高等教育出版社
- 《统计机器翻译》, (德)Philipp Koehn著, 宗成庆, 张霄军译, 电子工业出版社
- 相关方向前沿学术论文

考核方式

- 技术研讨(60%)
 - 一对前沿问题和文献的阅读、报告和讨论
 - •现场报告和讨论
 - •综述和分析(技术报告)
 - •3人小组
- 课程项目 (40%)
 - 利用前沿技术进行某专项问题的实践
 - ●提高实践能力 (demo)
 - •在实践中尝试和探索新的解决方案(项目报告)
 - •独立完成(分组须提出申请)

ACL Student Research Workshop

- Selected papers in 2019
 [https://sites.google.com/view/acl19studentresearchworkshop/accepted-papers]
- Paraphrases as Foreign Languages in Multilingual Neural Machine Translation
- Improving Mongolian-Chinese Neural Machine Translation with Morphological Noise
- Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation
- From Bilingual to Multilingual Neural Machine Translation by Incremental Training
- Normalizing Non-canonical Turkish Texts Using Machine Translation Approaches
- English-Indonesian Neural Machine Translation for Spoken Language Domains
- Automatic Generation of Personalized Comment Based on User Profile
- Using Semantic Similarity as Reward for Reinforcement Learning in Sentence Generation
- Natural Language Generation from Abstract Semantic Representation for Brazilian Portuguese

学习材料

- Python编程
 - -cs224n: Week 3: Python Review http://web.stanford.edu/class/cs224n
- 线性代数、微积分
 - Notes from cs231nhttp://cs231n.stanford.edu/handouts/derivatives.pdf

学习材料

- 机器学习基础
 - 机器学习 周志华 2-3 章
 - -神经网络与深度学习 邱锡鹏 2-3 章 https://nndl.github.io/
 - Machine Learning Andrew Ng Week1-3
 https://www.coursera.org/learn/machine-learning

学习材料

• 神经网络

- 机器学习 周志华 6 章
- -神经网络与深度学习 邱锡鹏 4-6 章 https://nndl.github.io/
- CS224n: Natural Language Processing with Deep Learning Stanford Week 4-5 http://web.stanford.edu/class/cs224n/
- Machine Learning Andrew Ng Week 4-5
 https://www.coursera.org/learn/machine-learning

^{*}在线课程中均包含与编程相关的实践环节,可同步 使用,作为实践练习

联系我们

• 黄书剑

-huangsj@nju.edu.cn

• 朱文昊

-zhuwh@smail.nju.edu.cn

• 课程网站:

- 用于登记课程报告、讨论交流信息
- -https://cslab-cms.nju.edu.cn/
- -课程邀请码: 2BZ6O

• QQ群:

-431234713