Лабораторная работа №1 «Алгоритм Евклида»

<u>Задание.</u> Вычислить HOД(a, b) при помощи: 1) алгоритма Евклида с делением с остатком; 2) бинарного алгоритма Евклида; 3) расширенного алгоритма Евклида. Сравнить количество итераций. Написать программу, реализующую расширенный алгоритм Евклида.

Вариант 1. $a = 451, b = 3977.$	Вариант 16. $a = 9559, b = 3509$.
Вариант 2. $a = 3102, b = 4277.$	Вариант 17. $a = 4067, b = 1127$.
Вариант 3. $a = 901, b = 4717.$	Вариант 18. $a = 8099, b = 2275$.
Вариант 4. $a = 1463, b = 6391.$	Вариант 19. $a = 7553, b = 1411.$
Вариант 5. $a = 3289, b = 11297.$	Вариант 20. $a = 8633, b = 1157.$
Вариант 6. $a = 1711, b = 4189.$	Вариант 21. $a = 2291, b = 7663$.
Вариант 7. $a = 1891, b = 4087.$	Вариант 22. $a = 2201, b = 6461$.
Вариант 8. $a = 1739, b = 2867.$	Вариант 23. $a = 3367, b = 8099.$
Вариант 9. $a = 2911, b = 4189.$	Вариант 24. $a = 2120, b = 4399.$
Вариант 10. $a = 3713, b = 4187.$	Вариант 25. $a = 2679, b = 4503$.
Вариант 11. $a = 4399$, $b = 3403$.	Вариант 26. $a = 3233, b = 1769$.
Вариант 12. $a = 5251, b = 4183$.	Вариант 27. $a = 3953$, $b = 1541$.
Вариант 13. $a = 5551, b = 3367.$	Вариант 28. $a = 4740, b = 3871.$
Вариант 14. $a = 6499$, $b = 5335$.	Вариант 29. $a = 4970$, $b = 1917$.
Вариант 15. $a = 7171, b = 3131.$	Вариант 30. $a = 4970, b = 923.$

Лабораторная работа №2 «Сравнение первой степени»

Задание. Решить сравнение первой степени при помощи функции Эйлера. Написать программу, реализующую решение сравнения первой степени.

Вариант 1. $15x \equiv 21 (mod\ 18)$. Вариант 3. $18x \equiv 12 (mod\ 30)$.

Вариант 2. $12x \equiv 16 \pmod{28}$. Вариант 4. $7x \equiv 15 \pmod{25}$.

Вариант 5. $75x \equiv 54 \pmod{21}$.	Вариант 18. $64x \equiv 51 \pmod{13}$.
Вариант 6. $37x \equiv 16 \pmod{11}$.	<u>Вариант 19.</u> $15x \equiv 21 (mod 6)$.
Вариант 7. $39x \equiv 5 \pmod{11}$.	Вариант 20. $57x \equiv 15 \pmod{48}$.
Вариант 8. $20x \equiv 35 (mod \ 45)$.	Вариант 21. $64x \equiv 5 \pmod{13}$.
Вариант 9. $183x \equiv 93 \pmod{111}$.	Вариант 22. $139x \equiv 7 \pmod{8}$.
Вариант 10. $19x \equiv 4 \pmod{25}$.	Вариант 23. $14x \equiv 9 \pmod{37}$.
Вариант 11. $11x \equiv 15 \pmod{24}$.	Вариант 24. $32x \equiv 13 \pmod{15}$.
Вариант 12. $39x \equiv 19 \pmod{53}$.	Вариант 25. $42x \equiv 105 (mod\ 245)$.
Вариант 13. $45x \equiv 21 \pmod{132}$.	Вариант 26. $29x \equiv 35 \pmod{123}$.
Вариант 14. $12x \equiv 15 (mod \ 35)$.	Вариант 27. $21x \equiv 15 \pmod{111}$.
Вариант 15. $21x \equiv 10 \pmod{25}$.	Вариант 28. $15x \equiv 120 \pmod{85}$.
Вариант 16. $15x \equiv 7 \pmod{16}$.	Вариант 29. $8x \equiv 15 \pmod{29}$.
Вариант 17. $8x \equiv 17 (mod \ 23)$.	Вариант 30. $8x \equiv 17 (mod \ 31)$.

Лабораторная работа №3 «Символ Лежандра»

<u>Задание.</u> Найти символ Лежандра $\left(\frac{n}{p}\right)$. Написать программу, реализующую поиск символа Лежандра.

Для заданий лабораторной работы N — номер варианта, который указывается преподавателем. Значения n, p находятся по следующим правилам:

$$n = \begin{cases} 30N + 7, \text{если } N < 10 \\ 15N - 11, \text{если } N > 10 \end{cases}$$

$$p = \begin{cases} 937, \text{если } N \equiv 0 (mod \ 5) \\ 941, \text{если } N \equiv 1 (mod \ 5) \\ 947, \text{если } N \equiv 2 (mod \ 5) \\ 953, \text{если } N \equiv 3 (mod \ 5) \\ 967, \text{если } N \equiv 4 (mod \ 5) \end{cases}$$

Лабораторная работа №4 «Квадратичное сравнение»

<u>Задание.</u> Решить квадратичное сравнение по простому модулю. Написать программу, реализующую решение квадратичных сравнений.

	1	
Вариант 1.	Вариант 11.	<u>Вариант 21.</u>
a) $x^2 \equiv 34 \pmod{37}$	a) $x^2 \equiv 27 \pmod{37}$	$a) x^2 \equiv 14 \pmod{31}$
$6) x^2 \equiv 13 \pmod{23}$	$6) x^2 \equiv 18 \pmod{31}$	$6) x^2 \equiv 43 \pmod{53}$
Вариант 2.	Вариант 12.	Вариант 22.
$a) x^2 \equiv 24 \pmod{53}$	$\frac{\text{Бариант 12.}}{\text{a) } x^2 \equiv 33 \pmod{37}$	
		a) $x^2 \equiv 8 \pmod{73}$
$6) x^2 \equiv 19 \pmod{31}$	$6) x^2 \equiv 5 \pmod{19}$	$6) x^2 \equiv 10 (mod \ 31)$
Вариант 3.	Вариант 13.	Вариант 23.
$\overline{a) x^2 \equiv 10 \pmod{41}$	$\overline{a) x^2 \equiv 2 \pmod{31}$	$\overline{a) x^2 \equiv 22 \pmod{29}}$
$6) x^2 \equiv 3 \pmod{23}$	$6) x^2 \equiv 28 \pmod{29}$	$6) x^2 \equiv 8 \pmod{31}$
0) x = 3(mou 23)	0) x = 20(mon 2)	0/x = 0 (mou 31)
Вариант 4.	Вариант 14.	Вариант 24.
a) $x^2 \equiv 23 \pmod{29}$	$a) x^2 \equiv 50 \pmod{73}$	$a) x^2 \equiv 18 \pmod{73}$
$6) x^2 \equiv 6 \pmod{43}$	$6) x^2 \equiv 19 \pmod{31}$	$6) x^2 \equiv 13 \pmod{43}$
	-, = ->(= = = = = = = = = = = = = = = = = = = =
Вариант 5.	Вариант 15.	Вариант 25.
$\overline{a) x^2 \equiv 18 \pmod{23}}$	$\overline{a) x^2 \equiv 19 \pmod{101}}$	$\overline{a) x^2 \equiv 6 \pmod{43}}$
$6) x^2 \equiv 7 \pmod{29}$	$6) x^2 \equiv 7 \pmod{31}$	$6) x^2 \equiv 20 \pmod{29}$
	- / (mod 51)	
Вариант 6.	Вариант 16.	Вариант 26.
$\overline{a) x^2 \equiv 48 \pmod{73}}$	$\overline{a) x^2 \equiv 54 \pmod{73}$	$\overline{a) x^2 \equiv 24 \pmod{73}$
$6) x^2 \equiv 12 \pmod{23}$	$6) x^2 \equiv 17 \pmod{59}$	$6) x^2 \equiv 21 \pmod{79}$
0)x = 12(mod 23)	0) x = 17 (mod 33)	= 21(mou + 3)
Вариант 7.	Вариант 17.	Вариант 27.
$\overline{\mathbf{a}) \ x^2 \equiv 2 \pmod{73}$	$\overline{\mathbf{a}) x^2 \equiv 28 \pmod{31}$	$\overline{a) x^2 \equiv 21 \pmod{43}$
$6) x^2 \equiv 21 \pmod{43}$	$6) x^2 \equiv 60 \pmod{61}$	$6) x^2 \equiv 5 \pmod{29}$
0) x = 21(11.00 +3)	0, 2 = 00(11.00.01)	5, x = 5(11.00 2)
Вариант 8.	Вариант 18.	Вариант 28.
$\overline{a) x^2 \equiv 3 \pmod{61}$	$\overline{a) x^2 \equiv 5 \pmod{41}}$	$\overline{a) x^2 \equiv 61 \pmod{73}$
$6) x^2 \equiv 8 \pmod{23}$	$6) x^2 \equiv 3 \pmod{83}$	$6) x^2 \equiv 21 \pmod{43}$
	- 5 (mod 05)	
Вариант 9.	Вариант 19.	Вариант 29.
$\overline{a) x^2 \equiv 32 \pmod{73}$	$\frac{1}{a) x^2 \equiv 20 \pmod{31}$	$\overline{a) x^2 \equiv 15 \pmod{17}$
$6) x^2 \equiv 6 \pmod{23}$	$6) x^2 \equiv 26 \pmod{37}$	$6) x^2 \equiv 38 \pmod{43}$
0) 2 = 0(11104 25)	20(11000 31)	- 50 (mon 15)
Вариант 10.	Вариант 20.	Вариант 30.
$a) x^2 \equiv 15 \pmod{53}$	$a) x^2 \equiv 40 \pmod{41}$	$a) x^2 \equiv 14 \pmod{43}$
$6) x^2 \equiv 5 \pmod{31}$	$6) x^2 \equiv 19 \pmod{67}$	$6) x^2 \equiv 47 \pmod{53}$

Лабораторная работа №5 «Система сравнений первой степени»

Задание. Решить систему сравнений первой степени. Написать программу, реализующую решение системы сравнений первой степени.

Вариант 1.	Вариант 2.
$\begin{cases} x \equiv 10 \pmod{21} \\ x \equiv 6 \pmod{15} \\ x \equiv 19 \pmod{24} \end{cases}$	$\begin{cases} x \equiv 7 \pmod{15} \\ x \equiv 23 \pmod{35} \\ x \equiv 13 \pmod{20} \end{cases}$
Вариант 3. $\begin{cases} 3x \equiv 5 \pmod{7} \\ 2x \equiv 3 \pmod{5} \\ 3x \equiv 3 \pmod{9} \end{cases}$	Вариант 4. $\begin{cases} x \equiv 2 \pmod{12} \\ x \equiv 12 \pmod{15} \\ x \equiv 3 \pmod{33} \end{cases}$
Вариант 5. $(x = 22)$ (mod 40)	Вариант 6. $(x = 6)$ (mod 15)
$\begin{cases} x = 32 (mod 40) \\ x = 23 (mod 72) \end{cases}$	x = 0 (mod 15) x = 18 (mod 21)
$\begin{cases} x \equiv 32 \pmod{40} \\ x \equiv 23 \pmod{72} \\ x \equiv 13 \pmod{24} \end{cases}$	$\begin{cases} x \equiv 6 \pmod{15} \\ x \equiv 18 \pmod{21} \\ x \equiv 3 \pmod{12} \end{cases}$
Вариант 7.	Вариант 8.
$\begin{cases} x \equiv 13 \pmod{14} \\ x \equiv 6 \pmod{35} \\ x \equiv 26 \pmod{45} \end{cases}$	$\begin{cases} x \equiv 19 \pmod{56} \\ x \equiv 3 \pmod{24} \\ x \equiv 7 \pmod{20} \end{cases}$
$x \equiv 26 \pmod{45}$	$\begin{cases} x \equiv 3 \pmod{21} \\ x \equiv 7 \pmod{20} \end{cases}$
Вариант 9.	Вариант 10.
$\begin{cases} x \equiv 19 \pmod{22} \\ x \equiv 8 \pmod{33} \\ x \equiv 14 \pmod{21} \end{cases}$	$\begin{cases} 4x \equiv 9 \pmod{7} \\ 2x \equiv 15 \pmod{9} \\ 5x \equiv 12 \pmod{13} \end{cases}$
$\begin{cases} x \equiv 6 \pmod{38} \\ x \equiv 14 \pmod{21} \end{cases}$	$5x \equiv 12 \pmod{3}$
Вариант 11.	Вариант 12.
$\int 3x \equiv 2 \pmod{13}$ $5x = 11 \pmod{16}$	$3x \equiv 5 \pmod{13}$ $2x = 17 \pmod{21}$
$\begin{cases} 3x \equiv 2 \pmod{13} \\ 5x \equiv 11 \pmod{16} \\ 5x \equiv 2 \pmod{9} \end{cases}$	$\begin{cases} 3x \equiv 5 \pmod{13} \\ 2x \equiv 17 \pmod{21} \\ 5x \equiv 31 \pmod{32} \end{cases}$
Вариант 13.	Вариант 14.
$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$	$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 2 \pmod{7} \\ x \equiv -2 \pmod{11} \end{cases}$
$\begin{cases} x = 3(mod 3) \\ x \equiv 2(mod 7) \end{cases}$	$x \equiv 2(mod 1)$ $x \equiv -2(mod 11)$

Вариант 15.	Вариант 16.
$\begin{cases} 3x \equiv 5 \pmod{14} \\ 5x \equiv 1 \pmod{9} \\ 7x \equiv 2 \pmod{25} \end{cases}$	$(7x \equiv 4 \pmod{15})$
$\begin{cases} 5x \equiv 1 \pmod{9} \end{cases}$	$\begin{cases} 7x \equiv 4 \pmod{15} \\ 3x \equiv 23 \pmod{28} \\ 5x \equiv 8 \pmod{11} \end{cases}$
$7x \equiv 2 \pmod{25}$	$5x \equiv 8 \pmod{11}$
Вариант 17.	Вариант 18.
$(2x \equiv 5 \pmod{21})$	$(3x \equiv 5 \pmod{12})$
$\begin{cases} 5x \equiv 22 \pmod{31} \end{cases}$	$7x \equiv 3 \pmod{25}$
$\begin{cases} 2x \equiv 5 \pmod{21} \\ 5x \equiv 22 \pmod{31} \\ 4x \equiv 5 \pmod{29} \end{cases}$	$\begin{cases} 3x \equiv 5 \pmod{12} \\ 7x \equiv 3 \pmod{25} \\ 3x \equiv 2 \pmod{17} \end{cases}$
Вариант 19.	Вариант 20.
	_
$\begin{cases} x \equiv 9 \pmod{13} \end{cases}$	$\begin{cases} x \equiv 9 \pmod{16} \end{cases}$
$\begin{cases} x \equiv 8 \pmod{15} \\ x \equiv 9 \pmod{13} \\ x \equiv 5 \pmod{14} \end{cases}$	$\begin{cases} x \equiv 10 \pmod{11} \\ x \equiv 9 \pmod{16} \\ x \equiv 5 \pmod{7} \end{cases}$
(x = 0)(mou + 1)	(x = s(moa r))
Вариант 21.	Вариант 22.
$\begin{cases} x = 7 \pmod{10} \end{cases}$	$\begin{cases} x = 5 \pmod{7} \end{cases}$
$\begin{cases} x \equiv 5 \pmod{3} \\ x \equiv 7 \pmod{10} \\ x \equiv 2 \pmod{7} \end{cases}$	$\begin{cases} x \equiv 14 \pmod{19} \\ x \equiv 5 \pmod{7} \\ x \equiv 9 \pmod{10} \end{cases}$
(x = 2(mou r))	$(x = 3(mou \cdot 10))$
T	
Вариант 23.	Вариант 24.
$\frac{\text{Вариант 23.}}{(x \equiv 8 (mod 13))}$	$\frac{\text{Вариант 24.}}{(x \equiv 5 \pmod{9})}$
	_
	_
Вариант 23. $\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$	Вариант 24. $\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$
	_
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ Вариант 25.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ Вариант 26.
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ Вариант 25.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ Вариант 26.
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ Вариант 25.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ Вариант 26.
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ Вариант 27.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ Вариант 27.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ Вариант 27.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ Вариант 27.	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{\begin{cases} 2x \equiv 9 \pmod{15} \\ 5x \equiv 4 \pmod{7} \\ 7x \equiv 3 \pmod{9} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ $\begin{cases} 3x \equiv 8 \pmod{20} \\ 5x \equiv 8 \pmod{9} \\ 4x \equiv 1 \pmod{21} \end{cases}$ $\begin{cases} 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 1 \pmod{12} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{\begin{cases} 2x \equiv 9 \pmod{15} \\ 5x \equiv 4 \pmod{7} \\ 7x \equiv 3 \pmod{9} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ $\begin{cases} 3x \equiv 8 \pmod{20} \\ 5x \equiv 8 \pmod{9} \\ 4x \equiv 1 \pmod{21} \end{cases}$ $\begin{cases} 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 1 \pmod{12} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{\begin{cases} 2x \equiv 9 \pmod{15} \\ 5x \equiv 4 \pmod{7} \\ 7x \equiv 3 \pmod{9} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ $\begin{cases} 3x \equiv 8 \pmod{20} \\ 5x \equiv 8 \pmod{9} \\ 4x \equiv 1 \pmod{21} \end{cases}$ $\begin{cases} 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 10 \pmod{12} \\ 3x \equiv 1 \pmod{12} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{\begin{cases} 2x \equiv 9 \pmod{15} \\ 5x \equiv 4 \pmod{7} \\ 7x \equiv 3 \pmod{9} \end{cases}}$
$\begin{cases} x \equiv 8 \pmod{13} \\ x \equiv 9 \pmod{17} \\ x \equiv 5 \pmod{11} \end{cases}$ $\begin{cases} x \equiv 12 \pmod{13} \\ x \equiv 10 \pmod{13} \\ x \equiv 10 \pmod{11} \\ x \equiv 5 \pmod{12} \end{cases}$ $\begin{cases} 3x \equiv 8 \pmod{20} \\ 5x \equiv 8 \pmod{9} \\ 4x \equiv 1 \pmod{21} \end{cases}$	$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$ $\frac{\text{Вариант 26.}}{\begin{cases} 5x \equiv 2 \pmod{12} \\ 7x \equiv 2 \pmod{8} \\ 3x \equiv 1 \pmod{5} \end{cases}}$ $\frac{\text{Вариант 28.}}{\begin{cases} 2x \equiv 9 \pmod{15} \\ 5x \equiv 4 \pmod{7} \\ 7x \equiv 3 \pmod{9} \end{cases}}$

Лабораторная работа № 6 «Непрерывные дроби»

Задание.

- а) Представить число в виде непрерывной дроби.
- б) Найти рациональное число, которое обращается в данную непрерывную дробь (двумя способами).
- в) Решить сравнение первой степени с помощью непрерывных дробей.

Написать программу, реализующую решение сравнения первой степени с помощью непрерывных дробей.

	a)	б)	в)
Вариант 1.	$\frac{105}{38}$	[0; 1, 2, 3, 4, 5]	$57x \equiv 15 \pmod{48}.$
Вариант 2.	245 83	[0; 2, 5, 14, 14]	$64x \equiv 5 \pmod{13}.$
Вариант 3.	235	[0; 2, 5, 1, 1, 2, 16]	$139x \equiv 7 \pmod{8}.$
Вариант 4.	69 46 19	[-1; 1, 2, 22, 1, 4, 2]	$14x \equiv 9 (mod \ 37).$
Вариант 5.	$\frac{375}{824}$	[0; 1, 9, 1, 3, 23]	$32x \equiv 13 (mod \ 15).$
Вариант 6.	990 577	[2; 1, 3, 4, 1, 2]	$42x \equiv 105 (mod\ 245).$
Вариант 7.	875	[0; 3, 1, 2, 7]	$29x \equiv 35 (mod\ 123).$
Вариант 8.	576 - 55 - 117	[2; 1, 1, 6, 8]	$21x \equiv 15 (mod \ 111).$
Вариант 9.	$-\frac{117}{117}$ $\frac{71}{41}$	[-1; 1, 2, 5, 6]	$15x \equiv 120 (mod \ 85).$
Вариант 10.	187	[0; 1, 4, 3, 2]	$8x \equiv 15 (mod \ 29).$
Вариант 11.	$\frac{-\frac{64}{64}}{\frac{30}{37}}$	[-3; 2, 1, 3, 1, 4]	$8x \equiv 17 (mod \ 31).$
Вариант 12.	$\frac{37}{127}$	[-2; 1, 3, 4, 5, 2]	$15x \equiv 21 (mod \ 18).$
Вариант 13.	52 24 35	[0; 4, 3, 2, 1, 5, 6]	$12x \equiv 16 (mod\ 28).$
Вариант 14.	1,23	[-1; 5, 4, 3, 3]	$18x \equiv 12 (mod \ 30).$
Вариант 15.	$-\frac{71}{41}$	[-2; 1, 3, 1, 4, 2]	$7x \equiv 15 (mod\ 25).$
Вариант 16.	$\frac{157}{225}$	[2; 1, 3, 4, 2]	$75x \equiv 54 (mod\ 21).$

Вариант 17.	$\frac{999}{2195}$	[2; 1, 19, 1, 3]	$37x \equiv 16 (mod \ 11).$
Вариант 18.	0,459	[3; 2, 2, 6, 2]	$39x \equiv 5 (mod \ 11).$
Вариант 19.	$-\frac{251}{764}$	[2; 2, 2, 1, 2]	$20x \equiv 35 \pmod{45}.$
Вариант 20.	0,907	[0; 2, 5, 14, 14]	$183x \equiv 93 (mod\ 111).$
Вариант 21.	163 59	[1; 1, 2, 1, 1, 13, 6]	$19x \equiv 4 (mod \ 25).$
Вариант 22.	59 22 81	[1; 1, 1, 12, 1, 1, 2, 4]	$11x \equiv 15 \pmod{24}.$
Вариант 23.	$\frac{269}{106}$	[-1; 1, 1, 7, 1, 6]	$39x \equiv 19 (mod 53).$
Вариант 24.	31	[1; 1, 2, 1, 2, 1, 2]	$45x \equiv 21 (mod\ 132).$
Вариант 25.	- 99 43 53 177	[-2; 1, 30, 2]	$12x \equiv 15 \pmod{35}.$
Вариант 26.		[0; 1, 4, 3, 2]	$21x \equiv 10 (mod\ 25).$
Вариант 27.	$ \begin{array}{r} 67 \\ -241 \\ -195 \end{array} $	[2; 2, 3, 1, 5]	$15x \equiv 7 (mod \ 16).$
Вариант 28.	$\frac{352}{1513}$	[0; 1, 2, 5, 2]	$8x \equiv 17 (mod \ 23).$
Вариант 29.	$-\frac{182}{225}$	[1; 4, 2, 1, 7]	$64x \equiv 51 (mod \ 13).$
Вариант 30.	$-\frac{64}{53}$	[-2; 3, 1, 2, 1, 2]	$15x \equiv 21 (mod \ 6).$