Revisão AB2

1º Série

Professor Lucas – Grupo de Estudos

Dinâmica - Leis de Newton

- 1° Lei de Newton: Inércia: Um corpo tende a permanecer em seu estado original, repouso ou em movimento, até que uma força imprimida a ele o tire de seu estado original;
- 2° Lei de Newton: Lei Fundamental: A força imprimida a um corpo é proporcional a massa deste corpo:

 Na Ação de queda livre trocamos, onde g é a aceleração gravitacional. Obtendo a força peso (P)

A unidade de Força, ou Peso, é dada em Newton [N]

Dinâmica - Leis de Newton

• 3º Lei de Newton:

Ação e Reação: Toda ação há uma reação (Normal) de mesmo módulo(valor) e direção (vertical/horizontal) mas com sentido oposto(+;-)

Revisão Vetores

- Grandeza vetorial: tem SENTIDO (+ ;); DIREÇÂO(Vertical/ Horizontal) e módulo (valor)
- Módulo de um vetor é igual:
- Decomposição de vetores:

Revisão Vetores

- Grandeza vetorial: tem SENTIDO (+ ;); DIREÇÂO(Vertical/ Horizontal) e módulo (valor)
- Módulo de um vetor é igual:
- Decomposição de vetores:

Força resultante

A soma de todas as forças, junto de seus sentidos, resultam na componente da **Força resultante**. Ou seja:

Em repouso ou equilíbrio -

Em movimento -

Força resultante

A soma de todas as forças, junto de seus sentidos, resultam na componente da **Força resultante**. Ou seja:

Força resultante

A soma de todas as forças, junto de seus sentidos, resultam na componente da **Força resultante**. Ou seja:

Elevadores

O elevador, exerce uma aceleração para cima(ao subir) ou para baixo(ao descer), e ao exercer tal aceleração temos uma força sendo exercida a pessoa dentro do elevador

Elevadores

5 - (UNIFICADO-RJ) – Dentro de um elevador, um objeto de peso 100 N está apoiado sobre uma superfície. O elevador está descendo e freando com aceleração vertical e para cima de $0, 1 \, m/s^2$. Considere a aceleração da gravidade como $10, 00 \, m/s^2$. Durante o tempo de frenagem, a força que sustenta o objeto vale, em newtons:

- a) 101 N.
- b) 99 N.
- c) 110 N.
- d) 90 N.
- e) 100 N.

Elevadores

6 - (FPS - 2017) Um homem de 70,0 kg está sobre uma balança fixa no piso de um elevador que está descendo com uma aceleração de $4,00\,m/s^2$, como ilustrado na figura. Qual o peso do homem que o mostrador da balança indica? Dê sua resposta em N e considere que a aceleração da gravidade no local é $10,00\,m/s^2$.

 $4,0 \, m/s^2$

- a) 420 N.
- b) 240 N.
- c) 280 N.
- d) 400 N.
- e) 480 N.

Decomposição de vetores

Decomposição de vetores

Força Resultante (vertical e horizontal) Vertical:

8 - (Fei) Na montagem a seguir, sabendo-se que a massa do corpo é de 20 kg, qual é a reação Normal que o plano exerce sobre o corpo?

- a) 50 N.
- b) 100 N.
- c) 150 N.
- d) 200 N.

Força Resultante (vertical e horizontal)
Vertical:

Decomposição de vetores

Força Resultante (vertical e horizontal) Vertical:

Horizontal

Plano Inclinado - Atrito

Decomposição de vetores

Força Resultante (vertical e horizontal)
Vertical:

Horizontal

Força de atrito:

Força de Atrito:

Em outras palavras, o atrito cinético é menor que o atrito estático

• Foça de tração: interação de dois objetivos por meio de uma corda

Polias:

1. Fixas: Invertem o sentido da força aplicada

- Quantidade de polias móveis
- 2. Móveis: Dividem a força peso do objeto, ocasiona a diminuição da força resultante

• Força de Atrito:

8 - (UFSM) - No sistema a seguir, o bloco A tem massa de 2 Kg e o bloco B tem massa de 8 Kg. A superfície da mesa onde B está apoiado é rugosa, e o sistema está em repouso, no limiar do seu movimento.

O coeficiente de atrito estático entre a mesa e o bloco B é

- a) 0,15
- b) 0,25
- c) 0,30
- d) 0,40
- e) 0,50

Polias:

- 1. Fixas: Invertem o sentido da força aplicada
- 2. Móveis: Dividem a força aplicada, tornando mais fácil levantar o objeto
 - 3 Em uma mudança era necessário elevar um objeto pesado de massa M = 320 Kg e não havia maquinário para isso. Um físico presente teve a ideia de fazer um arranjo de polias conforme a figura abaixo para facilitar o processo. Qual deve ser a força aplicada na ponta solta da corda para pelo menos manter o sistema em equilíbrio?

Considere $g = 10 \text{ m/s}^2$.

· Força Elástica: força de recuo, ao deformar uma mola

_____Deformação da mola

Constante da mola

Força de Empuxo

Força realizada por um liquido sobre um objeto

Totalmente submerso

· Força Elástica: força de recuo, ao deformar uma mola

Deformação da mola

Constante da mola

4 - Uma determinada mola com constante elástica k possui tamanho original L = 3 m. Ao se fixar uma de suas extremidades ao teto e um objeto de 5 Kg na extremidade solta da mola foi observado que a deformação da mola chegou a um terço de seu comprimento. Qual o valor da constante elástica k?

Boa prova e boa sorte! :D

Professor Lucas - Grupo de Estudos da melhor matéria