Sistemas Distribuídos

Rui Oliveira Departamento de Informática Universidade do Minho

Algoritmos Distribuídos

(Apontamentos baseados no livro Distributed Systems: Principles and Paradigms, A. Tanenbaum e M. Van Steen)

Programa Detalhado

- Algoritmos distribuídos
 - Sincronização de relógios
 - Exclusão mútua
 - Eleição

Exclusão mútua distribuída

Assumpções

- O sistema consiste de n processos; cada processo no seu processador.
- Cada processo tem uma zona crítica que requer exclusão mútua.

Requisitos

Se um processo se encontra a executar a sua zona crítica, então mais nenhum processo se encontra a executar a sua.

Exclusão mútua distribuída: alg centralizado

- Um processo é escolhido para coordenar o acesso à zona crítica.
- Um processo que queira executar a sua zona crítica envia um pedido ao coordenador.
- O coordenador decide que processo pode entrar na zona crítica e envia a esse processo uma resposta.
- Quando recebe a resposta do coordenador, o processo inicia a execução da sua zona crítica.
- Quando termina a execução da sua zona crítica, o processo envia uma mensagem a libertar a zona

Exclusão mútua distribuída: alg centralizado

Exclusão mútua distribuída: algoritmo descentralizado

- Quando um processo Pi pretende aceder à sua zona crítica gera uma etiqueta temporal TS e envia um pedido (Pi, Tsi) a todos os processos.
- Quando um processo recebe um pedido pode responder logo ou adiar a sua resposta.
- Quando um processo recebe respostas de todos os processos no sistema pode então executar a sua zona crítica.
- Depois de terminar a execução da sua zona crítica, o processo responde a todos os pedidos aos quais adiou a resposta.

Exclusão mútua distribuída: algoritmo descentralizado

- A decisão de Pj responder logo a um pedido (Pi, TSi) ou adiar depende de três factores:
 - Se Pj estiver na sua zona crítica, adia.
 - Se Pj não pretender aceder à sua zona crítica, responde.
 - Se Pj pretender aceder à sua zona crítica (e já enviou também um pedido) então compara a etiqueta temporal do seu pedido TSj com TSi:
 - Se TSj > TSi então responde logo (Pi pediu primeiro)
 - Senão adia a resposta.

Exclusão mútua distribuída: algoritmo descentralizado

Exclusão mútua distribuída: algoritmo descentralizado em anel

Exclusão mútua distribuída: comparação dos 3 algoritmos

Algoritmo	#Mensagens por entrada/saída	#Mínimo de mensagens para entrar	Problemas
Centralizado	3	2	Falha do Coordenador
Descentralizado	2(n-1)	2(n-1)	Falha de qualquer processo
Anel	l a Infinito	0 a n-I	Perda do Token Falha de qualquer processo

Eleição

- Determinar quando e onde um novo coordenador é necessário.
- Assuma-se que cada processo tem uma prioridade única e distinta.
- O coordenador é sempre o processo com mais alta prioridade.

Eleição: Algoritmo Bully

Algoritmo Bully

- O algoritmo é despoletado por um processo Pi que julga que o coordenador falhou.
- Pi envia uma mensagem de eleição a todos os processos com maior prioridade que Pi.
- Se num intervalo T Pi não receber qq resposta, então autoelege-se coordenador.
- Se receber alguma resposta então Pi espera durante T' por uma mensagem do novo coordenador.
- Se não receber nenhuma mensagem então reinicia o algoritmo.
- Se Pi não é o coordenador então, a qualquer momento pode receber uma mensagem...

Eleição

Algoritmo em anel

- Aplicável a sistemas organizados fisica or logicamente em anel
- Assume que os canais de comunicação são unidireccionais
- Cada processo mantem uma lista de activos que consiste nas prioridades de todos os processos activos quando este algoritmo terminar.
- Quando um processo Pi suspeita a falha do coordenador, Pi cria uma lista de activos vazia, envia uma mensagem de eleição m(i) ao seu vizinho e insere i na lista de activos.

Eleição

Algoritmo em anel

- Se Pi recebe uma mensagem de eleição m(j) responde de uma de três formas:
 - Se foi a primeira mensagem de eleição que viu, então cria uma lista de activos com i e j. Envia as mensagens de eleição m(i) e m(j) (nesta ordem) ao vizinho.
 - Se i≠j então junta j à sua lista de activos e reenvia a mensagem ao vizinho.
 - Se i=j então a sua lista de activos já contem todos os processos activos no sistema e Pi pode determinar o coordenador.