Tutorial-1: Communication Circuit Design

L3 - Semiconductors and PN Junction

- **Question 3.1:** Determine whether each silicon diode in Figure below is forward-biased or reverse-biased.
- **Question 3.2:** Determine the voltage across each diode in Figure below, assuming the practical model.
- **Question 3.3:** Determine the voltage across each diode in Figure below, assuming an ideal diode.
- Question 3.4: Determine the voltage across each diode in Figure below, using the complete diode model with $r'_d=10~\Omega~and~r'_R=100~M\Omega$

Answer 3.1:

- (a) The diode is reverse-biased.
- (c) The diode is forward-biased.
- (b) The diode is forward-biased.
- (d) The diode is forward-biased.

Answer 3.2:

(a)
$$V_R = 5 \text{ V} - 8 \text{ V} = -3 \text{ V}$$

(b)
$$V_{\rm F} = 0.7 \text{ V}$$

(c)
$$V_{\rm F} = 0.7 \text{ V}$$

(d)
$$V_{\rm F} = 0.7 \text{ V}$$

Answer 3.3:

(a)
$$V_R = 5 \text{ V} - 8 \text{ V} = -3 \text{ V}$$

(b)
$$V_F = \mathbf{0} \mathbf{V}$$

(c)
$$V_{\rm F} = 0 \text{ V}$$

(d)
$$V_{\rm F} = \mathbf{0} \ \mathbf{V}$$

Answer 3.4:

Ignoring
$$r'_R$$
:

(a)
$$V_R \cong 5 \text{ V} - 8 \text{ V} = -3 \text{ V}$$

(b)
$$I_{\rm F} = \frac{100 \text{ V} - 0.7 \text{ V}}{560 \Omega + 10 \Omega} = 174 \text{ mA}$$

 $V_{\rm F} = I_{\rm F} r_d' + V_{\rm B} = (174 \text{ mA})(10 \Omega) + 0.7 \text{ V} = \textbf{2.44 V}$

(c)
$$I_{tot} = \frac{30 \text{ V}}{R_{tot}} = \frac{30 \text{ V}}{4.85 \text{ k}\Omega} = 6.19 \text{ mA}$$

 $I_F = \frac{6.19 \text{ mA}}{2} = 3.1 \text{ mA}$
 $V_F = I_F r'_d + 0.7 \text{ V} = (3.1 \text{ mA})(10 \Omega) + 0.7 \text{ V} = \mathbf{0.731 \text{ V}}$

(d) Approximately all of the current from the 20 V source is through the diode. No current from the 10 V source is through the diode. $I_{\rm F} = \frac{20~{\rm V} - 0.7~{\rm V}}{10~{\rm k}\Omega + 10~\Omega} = 1.92~{\rm mA}$

$$I_{\rm F} = \frac{20 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega + 10 \Omega} = 1.92 \text{ mA}$$

 $V_{\rm F} = (1.92 \text{ mA})(10 \Omega) + 0.7 \text{ V} = \textbf{0.719 V}$

L4 - Bipolar Junction Transistor (BJT)

Question 4.1: A certain transistor has an I_C = 25 mA and an I_B = 200 mA. Determine the β_{DC} .

Question 4.2: What is the β_{DC} of a transistor if $I_C = 20.3$ mA and $I_E = 20.5$ mA.

Question 4.3: What is the α_{DC} if $I_C = 5.35$ mA and $I_B = 50$ mA?

Question 4.4: A base current of 50 μ A is applied to the transistor in Figure below, and a voltage of 5 V is dropped across R_C . Determine the β_{DC} of the transistor.

Question 4.5: Assume that the transistor in the circuit of Figure above is replaced with one having a β_{DC} of 200. Determine I_B , I_C , I_E , and V_{CE} given that V_{CC} = 10 V and V_{BB} = 3 V.

Question 4.6: Determine each current in Figure below. What is the β_{DC} ?

Question 4.7: Find V_{CE} , V_{BE} , and V_{CB} in the circuits of Figure below.

Answer 4.1:

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{25 \text{ mA}}{200 \ \mu \text{A}} = 125$$

Answer 4.2:

$$I_{\rm B} = I_{\rm E} - I_{\rm C} = 20.5 \text{ mA} - 20.3 \text{ mA} = 0.2 \text{ mA} = 200 \ \mu\text{A}$$

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{20.3 \text{ mA}}{200 \ \mu\text{A}} = \mathbf{101.5}$$

Answer 4.3:

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 5.35 \text{ mA} + 50 \mu \text{A} = 5.40 \text{ mA}$$

 $\alpha_{\rm DC} = \frac{I_{\rm C}}{I_{\rm E}} = \frac{5.35 \text{ mA}}{5.40 \text{ mA}} = \mathbf{0.99}$

Answer 4.4:

$$I_{\rm C} = \frac{V_{R_{\rm C}}}{R_{\rm C}} = \frac{5 \text{ V}}{1.0 \text{ k}\Omega} = 5 \text{ mA}$$

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm R}} = \frac{5 \text{ mA}}{50 \mu \text{A}} = 100$$

Answer 4.5:

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{3 \text{ V} - 0.7 \text{ V}}{100 \text{ k}\Omega} = 23 \mu\text{A}$$

$$I_{\rm C} = \beta_{\rm DC}I_{\rm B} = 200(23 \mu\text{A}) = 4.6 \text{ mA}$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 4.6 \text{ mA} + 23 \mu\text{A} = 4.62 \text{ mA}$$

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C}R_{\rm C} = 10 \text{ V} - (4.6 \text{ mA})(1.0 \text{ k}\Omega) = 5.4 \text{ V}$$

Answer 4.6:

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{4 \text{ V} - 0.7 \text{ V}}{4.7 \text{ k}\Omega} = \frac{3.3 \text{ V}}{4.7 \text{ k}\Omega} = 702 \,\mu\text{A}$$

$$I_{\rm C} = \frac{V_{\rm CC} - V_{\rm CE}}{R_{\rm C}} = \frac{24 \text{ V} - 8 \text{ V}}{470 \,\Omega} = 34 \text{ mA}$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 34 \text{ mA} + 702 \,\mu\text{A} = 34.7 \text{ mA}$$

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{34 \text{ mA}}{702 \,\mu\text{A}} = 48.4$$

Answer 4.7:

$$V_{\text{BE}} = -0.7 \text{ V}$$

$$I_{\text{B}} = \frac{V_{\text{BB}} - V_{\text{BE}}}{R_{\text{B}}} = \frac{-3 \text{ V} - (-0.7 \text{ V})}{27 \text{ k}\Omega} = \frac{-2.3 \text{ V}}{27 \text{ k}\Omega} = -85.2 \mu\text{A}$$

$$I_{\text{C}} = \beta_{\text{DC}}I_{\text{B}} = 125(-85.2 \mu\text{A}) = -10.7 \text{ mA}$$

$$V_{\text{CE}} = V_{\text{CC}} - I_{\text{C}}R_{\text{C}} = -8 \text{ V} - (-10.7 \text{ mA})(390 \Omega) = -3.83 \text{ V}$$

$$V_{\text{CB}} = V_{\text{CE}} - V_{\text{BE}} = -3.83 \text{ V} - (-0.7 \text{ V}) = -3.13 \text{ V}$$

L5 - Field-Effect Transistor (FET)

Question 5.1: A JFET has a specified pinch-off voltage of 5 V. When $V_{GS} = 0$, what is V_{DS} at the point where the drain current becomes constant?

vgs not Vgsoff

- Question 5.2: A certain *n*-channel JFET is biased such that $V_{GS(off)} = -2 \text{ V}$. What is the value of $V_{GS(off)}$ if V_P is specified to be 6 V? Is the device on?
- Question 5.3: A certain JFET datasheet gives When $V_{GS(off)} = -8 \text{ V}$ and $I_{DSS} = 10 \text{ mA}$. When $V_{GS} = 0$, what is I_D for values of V_{DS} above pinch off? $V_{DD} = 15 \text{ V}$.
- **Question 5.4:** The JFET in Figure below has a $V_{GS(off)} = -4$ V. Assume that you increase the supply voltage, V_{DD} , beginning at zero until the ammeter reaches a steady value. What does the voltmeter read at this point?

- Question 5.5: For a particular JFET, $g_{m0} = 3200 \mu S$. What is g_m when VGS = -4 V given that $V_{GS(off)} = -8 \text{ V}$?
- Question 5.6: A *p*-channel JFET datasheet shows that $I_{GSS} = 5$ nA at $V_{GS} = 10$ V. Determine the input resistance.
- **Question 5.7:** For each circuit in Figure below, determine V_{DS} and V_{GS} .

Question 5.8: Using the curve in Figure below, determine the value of R_S required for a 9.5 mA drain current.

Question 5.9: Graphically determine the Q-point for the circuit in Figure (a) below using the transfer characteristic curve in Figure (b).

Question 5.10: The Q-point of a JFET is varied from $V_{DS} = 0.4 \text{ V}$ and $I_D = 0.15 \text{ mA}$ to $V_{DS} = 0.6 \text{ V}$ and $I_D = 0.45 \text{ mA}$. Determine the range of R_{DS} values.

Answer 5.1:

 $V_{\rm DS} = V_{\rm P} = {\bf 5} \; {\bf V}$ at point where $I_{\rm D}$ becomes constant.

Answer 5.2:

$$V_{\rm GS(off)} = -V_{\rm P} = -6 \text{ V}$$

The device is **on**, because $V_{\rm GS} = -2 \text{ V}$.

Answer 5.3:

By definition, $I_D = I_{DSS}$ when $V_{GS} = 0$ V for values of $V_{DS} > V_P$. Therefore, $I_D = 10$ mA.

Answer 5.4:

$$V_{\rm P} = -V_{\rm GS(off)} = -(-4 \text{ V}) = 4 \text{ V}$$

The voltmeter reads $V_{\rm DS}$. As $V_{\rm DD}$ is increased, $V_{\rm DS}$ also increases. The point at which $I_{\rm I}$ reaches a constant value is $V_{\rm DS} = V_{\rm P} = 4$ V.

Answer 5.5:

$$g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right) = 3200 \ \mu S \left(1 - \frac{-4 \text{ V}}{-8 \text{ V}} \right) = 1600 \ \mu S$$

Answer 5.6:

$$R_{\rm IN} = \frac{V_{\rm GS}}{I_{\rm GSS}} = \frac{10 \,\text{V}}{5 \,\text{nA}} = 2000 \,\text{M}\Omega$$

Answer 5.7:

$$V_{\rm S} = (5 \text{ mA})(100 \ \Omega) = 0.5 \text{ V}$$

 $V_{\rm D} = 9 \text{ V} - (5 \text{ mA})(470 \ \Omega) = 6.65 \text{ V}$
 $V_{\rm G} = 0 \text{ V}$
 $V_{\rm GS} = V_{\rm G} - V_{\rm S} = 0 \text{ V} - 0.5 \text{ V} = -0.5 \text{ V}$
 $V_{\rm DS} = 6.65 \text{ V} - 0.5 \text{ V} = 6.15 \text{ V}$

Answer 5.8:

From the graph, $V_{GS} \cong -2 \text{ V}$ at $I_D = 9.5 \text{ mA}$.

$$R_{\rm S} = \left| \frac{V_{\rm GS}}{I_{\rm D}} \right| = \left| \frac{-2 \text{ V}}{9.5 \text{ mA}} \right| = 211 \Omega$$

Answer 5.9:

For
$$I_D = 0$$
,

$$V_{\rm GS} = -I_{\rm D}R_{\rm S} = (0)(330 \ \Omega) = 0 \ {\rm V}$$

For
$$I_D = I_{DSS} = 5 \text{ mA}$$

$$V_{GS} = -I_D R_S = -(5 \text{ mA})(330 \Omega) = -1.65 \text{ V}$$

From the graph in Figure 8-69 in the textbook, the Q-point is

$$V_{\rm GS}\cong$$
 -0.95 V and $I_{\rm D}\cong$ **2.9** mA

Answer 5.10:

$$R_{\rm DS1} = \frac{0.4 \text{ V}}{0.15 \text{ mA}} = 2.67 \text{ k}\Omega$$

$$R_{\rm DS2} = \frac{0.6 \text{ V}}{0.45 \text{ mA}} = 1.33 \text{ k}\Omega$$

$$\Delta R_{\rm DS} = 2.67 \text{ k}\Omega - 1.33 \text{ k}\Omega = 1.34 \text{ k}\Omega$$