

Lecture 3 Module B/Air Quality:

Particles Size & composition Measurement Methods

Harish C. Phuleria CESE, IIT Bombay

Email: phuleria@iitb.ac.in

Recap 1

Prabir Mallik/The World Bank

Recap 3

Spatial variation:

- Local/urban
- state or national
- regional or global

Temporal variation:

- hourly
- daily
- weekday
- seasonal
- annual
- diurnal

India

Today's Learning Objectives!

To understand particle composition & size distribution

 To learn about monitoring methods and thus able to quantify pollutants' concentrations

Particles - size matters!

Particles - size matters!

http://www.particlesciences.com/news/technical-briefs/2012/glossary-of-drug-nanotechnology.html

ES 200/ 10.Aug.2017 7

Particle size distribution: Ambient aerosols

ES 200/ 10.Aug.2017 Hinds, 1999 8

Particle size distribution: Ambient aerosols

Particle size distribution: Diesel exhaust

in diesel exhaust no of particles in nucli mode **piameter**, **D**_p, **µm** most while accumulation mode has highest mass conc

https://www.dieselnet.com/tech/dpm_size.php

Class exercise!

Q. How many 0.2 μ m particles will have the same mass as that of one 10 μ m particle (assume same density)??

http://www.smokemachines.net/smoke-particle-size.shtml

Particle deposition in lungs

Husain et al., Health, 2011

Figure 1: ICRP¹ anatomical regions and airway generation model; Tracheobronchial region (generations 0-16) and pulmonary region (generations 17-23). (modified 19)

Particle deposition in lungs

Figure 2: Major mechanisms of particle deposition in the respiratory tract. ²⁰

Figure 6: Average predicted total and regional lung deposition based on ICRP ¹ deposition model for nose breathing for light exercise breathing condition. Highest deposition (ET region for 0.001 and 10 μm particles, bronchi region for 0.005 to 0.007 μm particles and alveolar region for 0.01 to 0.05 μm particles).

Husain et al., Health, 2011

Aerodynamic diameter

- Diameter of a unit density sphere (i.e., $\rho_p=1$, similar to a water droplet) with the same settling velocity as the particle in question

 Aerodynamic size characterizes particle deposition in human lungs and filtration.

ES 200/ 10.Aug.2017 Hinds, **1999** 14

Particles composition

- PM a complex mixture of particles that can be solid/ liquid or both
- vary in size composition and origin

Complex Mixture Bulk composition:

 EC, OC, Nitrate, Sulfate,
 EC, oc, Nitrate, Sulfate,
 Ammonium, dust
 Ammonium, dust

 Trace constituents:

 Heavy metals, PAHs, ...

PM₁₀ chemical composition across Indian cities

kerbside site are less polluted than the residential or industrial side

PM₁₀ sources in cities across the globe

Particle shape & size

Air quality monitoring network

How to manage air quality
... in a city, region or countrywide ???

- 1981: Air Prevention & Control of Pollution Act
- NAMP (National Air Monitoring Program): 342 stations in 127 cities/areas (http://www.cpcb.nic.in/air.php)
- Typically SO₂, NO₂, O₃, (SPM), RSPM measured
- Since Nov 2009 revisions, PM_{2.5} also added
- To monitor state of environment to enforce regulations and to evaluate success of control measures
- For use in scientific studies (e.g. in investigating environmental and/or health effects of air pollution)

Air quality in Indian citie

TOXIC AIR QUALITY IN INDIA SKIES CITIES IS FAST DETER

Moderate

Very Poor

Severe

Poor

401-500

The Hindu @7.Apr.2015

Bengaluru

310

Violations of Air Quality standards (on the basis of average levels at all stations)

City	Days with data	% of days exceeding standards	
		Apr-Jun	Jul-Nov
Mumbai	142	NA	33
Hyderabad	232	44	45
Navi Mumbai	217	57	46
Agra	211	50	of AQ
Agra Chandrapur Pune here are here are hards violadangalore	123 71	mber	n? rainfal
Pune	igherin	Apr-Ju	57
Abreare	tions	63	60
the viola	179	79	69
Sangalore	235	77	70
Varanasi	218	86	76
Chennai	233	99	71
Kanpur	220	89	81
Lucknow	232	99	83
Delhi	236	100	93

Times of India @16.Dec.2015

Monitoring networks & data sources

- **Central Pollution Control Board (CPCB)** http://www.cpcb.nic.in/air.php
- Maharashtra Pollution Control Board (MPCB) http://mpcb.gov.in/envtdata/envtair.php
- US Environmental Protection Agency (USEPA) http://www.epa.gov/gateway/science/air.html
- California Air Resources Board (CARB) http://www.arb.ca.gov/agmis2/agdselect.php
- European Environmental Agency (EEA) http://www.eea.europa.eu/themes/air/airbase/airbase

Clean Air World/ National Association of Clean Ai http://www.cleanairworld.org/

 World Health Organization (WHO) http://www.who.int/topics/air_pollution

Annual average PM₁₀ levels in 230 Asian Cities (2008)

Home work !!!

- Do you have an air quality monitoring station in your city?
 If not, in the nearest city? What is the current status of air quality there?
- In the last 5 years or decade has the air quality improved or worsened? Why?
- Please do this **by Thu, 17.08**; we will discuss in the class!

```
http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx
www.cpcb.gov.in/CAAQM/
```

Use the resources mentioned in the lecture, OR simply Google !!

Quantifying pollutants: Particle mass concentration

 $(PM_{10}/PM_{2.5})$

How do you measure the mass concentration of PM?

Particle mass measurements

- Filter substrates are collected using impactors/cyclones (for desired size) and designed flow rate (with a suction pump)
- Collected filters are conditioned in laboratory & weighed with precision microbalance