THEJASWINI J N
M.Sc [MATHEMATICS]
(COMPLETED)
JSS COLLEGE OF ARTS COMMERCE & SCIENCE,
OOTY ROAD, MYSORE.

#EXPLORATORY DATA ANALYICS

#CREATE A DATAFRAME import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/ameenmanna8824/DATASETS/main/heart_dis
df

	Unnamed: 0	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	s
0	0	63	1	3	145	233	1	0	150	0	2.3	
1	1	37	1	2	130	250	0	1	187	0	3.5	
2	2	41	0	1	130	204	0	0	172	0	1.4	
3	3	56	1	1	120	236	0	1	178	0	0.8	
4	4	57	0	0	120	354	0	1	163	1	0.6	
298	298	57	0	0	140	241	0	1	123	1	0.2	
299	299	45	1	3	110	264	0	1	132	0	1.2	
300	300	68	1	0	144	193	1	1	141	0	3.4	
301	301	57	1	0	130	131	0	1	115	1	1.2	
302	302	57	0	1	130	236	0	0	174	0	0.0	

303 rows × 15 columns

type(df)

pandas.core.frame.DataFrame

df.shape

(303, 15)

df.size

4545

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	303 non-null	int64
1	age	303 non-null	int64
2	sex	303 non-null	int64
3	ср	303 non-null	int64
4	trestbps	303 non-null	int64
5	chol	303 non-null	int64
6	fbs	303 non-null	int64
7	restecg	303 non-null	int64
8	thalach	303 non-null	int64
9	exang	303 non-null	int64
10	oldpeak	303 non-null	float64
11	slope	303 non-null	int64
12	ca	303 non-null	int64
13	thal	303 non-null	int64
14	target	303 non-null	int64

dtypes: float64(1), int64(14)

memory usage: 35.6 KB

#SLICING
#SLICE ROW INDEXES FROM 30 TO 50
df[30:51]

	Unnamed: 0	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	sl
30	30	41	0	1	105	198	0	1	168	0	0.0	
31	31	65	1	0	120	177	0	1	140	0	0.4	
32	32	44	1	1	130	219	0	0	188	0	0.0	

#SLICE ROW INDEXES FROM 30 TO 50 AND COLUMN INDEXES FROM 0 TO 2 df.iloc[30:51,0:3]

	Unnamed: 0	age	sex
30	30	41	0
31	31	65	1
32	32	44	1
33	33	54	1
34	34	51	1
35	35	46	0
36	36	54	0
37	37	54	1
38	38	65	0
39	39	65	0
40	40	51	0
41	41	48	1
42	42	45	1
43	43	53	0
44	44	39	1
45	45	52	1
46	46	44	1
47	47	47	1
48	48	53	0
49	49	53	0
50	50	51	0

df.nunique()

Unnamed: 0 303 age 41

2 sex ср 4 49 trestbps 152 chol fbs 2 3 restecg 91 thalach exang 2 oldpeak 40 slope 3 5 ca thal 4 target 2 dtype: int64

df = df.drop(columns = 'Unnamed: 0')
df

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	3	145	233	1	0	150	0	2.3	0	0
1	37	1	2	130	250	0	1	187	0	3.5	0	0
2	41	0	1	130	204	0	0	172	0	1.4	2	0
3	56	1	1	120	236	0	1	178	0	8.0	2	0
4	57	0	0	120	354	0	1	163	1	0.6	2	0
298	57	0	0	140	241	0	1	123	1	0.2	1	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2
301	57	1	0	130	131	0	1	115	1	1.2	1	1
302	57	0	1	130	236	0	0	174	0	0.0	1	1

303 rows × 14 columns

df = df.drop(columns = 'restecg')
df

	age	sex	ср	trestbps	chol	fbs	thalach	exang	oldpeak	slope	ca	thal	tar
0	63	1	3	145	233	1	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	163	1	0.6	2	0	2	

#VISUALISATION

import seaborn as sns
sns.countplot(x = 'target',data = df)

#NOW I WANT EXACT COUNT OF HOW MANY PEOPLES ARE TRAGET AND HOW MANY PEOPLE ARE NOT TARGET
df.groupby('target').size()

target

0 138

1 165

dtype: int64

df['target'].value_counts()

1 165

0 138

Name: target, dtype: int64

#THIS COUNT PLOT WILL TELL US HOW MANY MALES HOW MANY FEMALE WERE THERE ON HEART DISEASE sns.countplot(x = 'sex', data = df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6ebe8357d0>

#FIND OUT HOW MANY MALES HAVE TARGET AND NOT TARGET AND SIMULTANEOUSLY
#FIND OUT HOW MANY FEMALES HAVE TARGET ANFD NOT TARGET
import numpy as np
target_1 = np.sum((df['sex']=='1')&['target']==0)

target_1

303

df.groupby(['sex','target']).size()

```
sex target
0 0 24
1 72
1 0 114
1 93
dtype: int64
```

```
import numpy as np
young = np.sum((df['age']>=0)&(df['age']<20))
adult = np.sum((df['age']>=20)&(df['age']<40))
midage = np.sum((df['age']>=40)&(df['age']<60))
old = np.sum((df['age']>=60))
print(young)
print(young)
print(adult)
print(midage)
print(old)

0
16
197
90
```

```
\# FIND OUT THE YOUNGEST PERSON ABOARD HEART DISEASE np.min(df['age'])
```

29

```
np.max(df['age'])
```

77

#DISTRIBUTION PLOT

sns.distplot(df['age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6eb96c0710>

sns.displot(df['age'])

<seaborn.axisgrid.FacetGrid at 0x7f6eb96a3210>

df.groupby('cp').size()

cp 0 143 1 50 2 87 3 23 dtype: int64

sns.countplot(x = 'cp',data = df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6eb958b4d0>

import matplotlib.pyplot as plt
df['chol'].value_counts().plot(kind = 'bar')
plt.xticks(rotation = '90')

```
6,
(array([
           0,
                      2,
                            3,
                                 4,
                                       5,
                                                  7,
                                                              9,
                                                                  10,
                                                                        11,
                                                        8,
          13,
               14,
                     15,
                           16,
                                17,
                                      18,
                                           19,
                                                 20,
                                                       21,
                                                             22,
                                                                  23,
                                                                        24,
                                                                             25,
                                30.
                                                       34,
          26,
               27,
                     28,
                           29,
                                      31,
                                           32,
                                                 33,
                                                             35,
                                                                  36.
                                                                        37,
                                                                             38,
          39,
               40,
                     41,
                          42,
                                43,
                                      44,
                                           45,
                                                 46,
                                                       47,
                                                             48,
                                                                  49,
                                                                        50,
          52,
                     54,
                          55,
                                56,
                                      57,
                                           58,
                                                 59,
                                                             61,
               53,
                                                       60,
                                                                  62,
                                                                        63,
                                                                             64,
                                                            74,
          65,
               66,
                     67,
                           68,
                                69,
                                      70,
                                           71,
                                                 72,
                                                       73,
                                                                  75,
                                                                        76,
                                                                             77,
          78,
                     80,
                           81,
                                82,
                                      83,
                                           84,
                                                 85,
                                                       86,
                                                             87,
                                                                        89,
               79,
                                                                  88,
                           94,
                                95,
                                           97,
                                                 98,
                                                       99, 100, 101, 102, 103,
          91,
               92,
                     93,
                                      96,
         104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
        117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
        130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
        143, 144, 145, 146, 147, 148, 149, 150, 151]),
```

<a list of 152 Text major ticklabel objects>)

sns.countplot(x = `cnol', aata = at)

#CONCLUSION:

#WE HAD COMPARE THE DIFFERENT AGES OF HEART DISEASE
#THE DIFFERENCE GIVEN US TO PREDICT THE AGES OF PATIENT
#THESE ANALYSIS HELP US TO KNOW ABOUT MORE DATA
A MODEL DEPENDS ON NATURE OF THE DATA as well as the size of the data

THANK YOU

Colab paid products - Cancel contracts here