

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 180 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each **NEW** question in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 120

- Attempt questions 1-10.
- All questions are of equal value.

Examiner: D.McQuillan

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$
NOTE: $\ln x = \log_{e} x, x > 0$

Total marks – 120 Attempt Questions 1–10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet. Marks 2 (a) How many degrees, to the nearest minute, are in 1 radian? Rationalise the denominator of $\frac{2\sqrt{2}}{\sqrt{7}-\sqrt{3}}$. 2 (b) Sketch a graph of y = |2x - 3|. 2 (c) Solve the inequality $2x^2 + 7x - 15 \ge 0$. (d) 2 (e) Evaluate $\sum_{k=0}^{19} (3k-1)$. 2

2

If $\log_e 5x - \log_e 2 = 2\log_e x$ find all real values of x.

(f)

(a) Find $\frac{dy}{dx}$ for the following

(i)
$$y = \tan(x^2)$$

(ii)
$$y = 2x\sin(2x)$$

(b) (i) Find
$$\int \frac{x^2}{x^3 - 1} dx$$
.

(ii) Evaluate
$$\int_{\frac{\pi}{2}}^{\pi} \cos\left(\frac{1}{2}x\right) dx$$
 in exact form.

(c) Find the equation of the tangent to
$$y = \sin\left(x + \frac{\pi}{3}\right)$$
 at the point where $x = \pi$.

(a) The diagram shows the points A(2, 3) and B(5, 4)

(i) Show that the equation of AB is x - 3y + 7 = 0.

(ii) Find the coordinates of M, the midpoint of AB.

1

2

- (iii) Show that the equation of the perpendicular bisector of AB is 3x + y 14 = 0.
- (iv) The perpendicular bisector of AB cuts the x-axis at C. Find the coordinates of C. 1
- (v) Find the area of triangle BCO.

2

Question 3 continues on page 4

(b)

A right triangle ABC is given with $\angle A = \theta$ and |AC| = 2. CD is drawn perpendicular to AB, DE is drawn perpendicular to BC, $EF \perp AB$, and this process is continued indefinitely as in the figure. Find the total length of all the perpendiculars $|CD| + |DE| + |EF| + |FG| + \cdots$ in terms of θ .

- (a) In Lower Warkworth the local doctor, based on years of data research, estimates that the probability of an adult catching influenza was 0.1 while the probability of a child catching the dreaded influenza was 0.3. The Blott family consists of Dad, Mum and two young Blotts. Calculate the probability that:
 - (i) both adults catch influenza

1

(ii) only one child catches influenza

1

(iii) exactly one adult and one child catches influenza

2

(iv) at least one family member catches influenza.

2

(b)

(i) Find an expression for the area of the regular pentagon with side length 4 cm.

3

(ii) Find the radius of the circle to two decimal places.

2

(iii) Hence or otherwise find the area of the shaded segment to two decimal places.

(a)

In the diagram AB | FD, ADF is a right-angled triangle, C is the midpoint of AD and E is the midpoint of FD.

(i) Explain why
$$\angle CED = \angle ABC$$
.

(ii) Show that
$$\triangle CDE \equiv \triangle CAB$$
.

(iii) Show that
$$AF = 2BC$$
.

(iv) Show that
$$\angle ACB = \angle DAF$$
.

1

Question 5 continues on page 7

Question 5 (continued)

(b)

If f(x) and g(x) are the functions whose graphs are shown, let u(x) = f(x)g(x) and v(x) = f(g(x)) find the value of

(i)
$$u'(1)$$
 2

(ii)
$$v'(1)$$
 2

(c) Show that if
$$|x+3| < \frac{1}{2}$$
, then $|4x+13| < 3$.

- (a) For the curve $y = \frac{x}{x^2 + 1}$.
 - (i) Find the turning points and determine their nature.
 - (ii) Find the points of inflection.
 - (iii) Since $x^2 + 1$ is never zero the curve has no vertical asymptotes. Find the horizontal asymptotes by evaluating $\lim_{x \to \infty} \frac{x}{x^2 + 1}$.
 - (iv) Sketch the curve. 2
- (b) Tom is 60 years old and about to retire at the beginning of the year 2009. He joined a superannuation scheme at the beginning of 1969. He invested \$750 at the beginning of each year. Compound interest is paid at 9% per annum on the investment, calculate to the nearest dollar:
 - (i) The amount to which the 1969 investment will have grown by the beginning of 2009.
 - (ii) The amount to which the total investment will have grown by the beginning of 2009.

(a) If α and β are the roots of the equation $3x^2 - 12x - 9 = 0$, find the values of:

(i)
$$\frac{1}{\alpha^3 \beta^3}$$

(ii)
$$\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$$

(b) A particle moves in a straight line and the graph shows the velocity v of the particle after time t.

(i) What is happening to the particle at t_1 ?

(ii) What is happening to the particle at t_2 ?

1

1

- (iii) Sketch the graph of displacement x, as a function of t, if the particle is initially at the origin.
- 3
- (c) The locus of the point P(x, y) such that the sum of the squares of its distances from the points A(2, 4) and B(6, -8) is 118, is a circle. Find the centre and radius of the circle.

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Differentiate $10^x + 10x$.

2

(b) A particle moves in a straight line. At time *t* seconds its displacement *x* cm from a fixed point O on the straight line is given by:

$$x = t + \frac{1}{t+1}$$

(i) What is the initial displacement of the particle?

1

(ii) When is the particle at rest?

2

(iii) What is the acceleration after 5 seconds.

2

(iv) What happens to the acceleration as *t* increases? What does this tell you about the velocity as *t* becomes large.

2

(c) A petrol tank is designed by the rotation of the curve $y = \frac{1}{5}x(x-40)$ about the x axis between the planes x = 0, x = 40. If the units are in centimetres, how many litres would the tank hold?

(a) The population of a small town grows from 9000 to 11000 in 10 years.

(i) Find the annual growth rate to the nearest per cent, assuming it is proportional to the population.

2

(ii) Calculate the population of the town 25 years after the initial count.

1

(b)

2

(i) For the given figure show that $a = \frac{3b}{b-5}$.

.

(ii) Find the equation of the line through the point (3, 5) that cuts off the least area from the first quadrant.

4

(c) A ladder 2 metres long rests against a vertical wall. Let θ be the angle between top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \frac{\pi}{3}$.

Question 10 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) If $x \sin \pi x = \int_0^{x^2} f(t) dt$ find f(4).

2

(b) The graph of the function $y = \log_e(x^2)$ is shown below.

(i) Use the Trapezoidal rule with 5 function values to approximate $\int_{1}^{3} \log_{e}(x^{2}) dx$ and explain why this approximation underestimates the value of the integral.

3

(ii) Find $\int_0^{\ln 9} e^{\frac{y}{2}} dy$ and hence find the exact value of $\int_1^3 \log_e(x^2) dx$.

3

Question 10 continues on page 13.

(c)

The figure shows a function $y = ax^2$ with the property that, for every point P on the middle function $y = 2x^2$, the area A and B are equal. Find the value of a.

4

End of Paper