

EN.601.482/682 Deep Learning

It's not working! Help!

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

Training DL Models Fails Silently

- Misconfiguring code → Error message
- Bad training setup → No obvious feedback to identify problems
- → Systematic way to identify and fix bugs

Know Your Data

- Visualize examples to gain understanding of the distribution
- Is there imbalance / bias / heavy outliers? Think about quantifying this!
- Understand the challenges: Local or global problem?
- Pre-processing to remove unnecessary sources of variation?

Get Baselines

- Gain trust in training and evaluation skeleton code
- Pick the simplest model, make sure it's correct, and test the setup
- Things to test
 - Verify loss at initialization
 - Verify input to the model (pre-processing pipeline!)
 - Verify decreasing loss (during optimization and when using a model with higher capacity!)

Overfit & Regularize

- First, find a model with capacity high enough to overfit the data
 - Don't be a hero: Use models that work! ... at least in the beginning
 - Add complexity successively (not all at once!)
- Second, regularize the model to improve generalizability
 - Get more data, if necessary, via augmentation
 - Pre-training and transfer learning
 - Conventional regularization (batch norm, dropout, weight decay, early stopping)
- Finally, verify you have a proper classifier
 - Visualize filter kernels and responses of early layers
 - Consider class activation mappings and similar techniques (later lecture)

4 Training Setups

- 1. The Max Power Way
- 2. DICE DICE Baby
- 3. Randomization TO THE MAX
- 4. My test performance? It's over 9000

The Max Power Way

The wrong way, just faster

The Max Power Way

- What you should have observed
 - Accuracy is poor
 - Loss curve does not look right (you are getting NANs?)

Problem: Learning rate is too high, and optimization diverges

- Solutions
 - Either decrease learning rate (~0.01)
 - Modify the architecture (batch norm makes optimization more stable!)

DICE DICE Baby

DICE DICE Baby

Numpy

- DSC_num = 2*(A*B).sum()
- DSC_den = (A*A+B*B).sum()
- DSC = DSC_num(A,B) / DSC_den(A,B)

Pytorch

- DSC_num = 2*(A*B).sum(dim=1)
- DSC_den = (A*A+B*B).sum(dim=1)
- DSC = (DSC_num(A,B) / DSC_den(A,B)).mean()

Randomization TO THE MAX

Randomization TO THE MAX

- What you should have observed
 - Accuracy is poor
 - Loss curve does not look right
- Problem: Independent random shuffle of instances and labels
- Solution: Do not shuffle independently
- How to spot this?
 - Visualize your data and labels
 - Gain confidence in your skeleton before adding complexity!

My test performance? It's over 9000

My test performance? It's over 9000

- In the very first epoch, you achieve 100% testing accuracy...
 ... which is different from your training accuracy
- Concatenation of 8 and 0s, but then there's a 90-10 split
- It's a binary problem (0/1 type labeling): What's the expected value after init?
- Solution: Randomly shuffle instances (while keeping the label assignments)

