Biology Final Review

Phylogeny, Population Genetics and Population Growth

Refer to Study Guides

Macromolecular Self-Assembly

Lipid Bilayers

- Biological Compartments
 - Intermolecular regions
 - A membrane limited space within which molecules are free to diffuse
 - selectively permeable to membrane
- Amphipathic molecules
 - Hydrophobic + Hydrophilic regions
 - Component of biological membranes
 - Distinct, separate, regions with different solubility properties
- Plasma membrane
 - Lipids + Proteins
 - Surrounds a cell
 - Separates the internal cell and the external environment
 - Regulates passage of molecules and ions into/out of the cell
- Features of Membrane Lipids (Phospholipids)
 - Polar + non-polar region (Amphipathic)
 - Polar head groups: interacts strongly with water
 - Acyl tails: do not interact with water
 - Creates a water-free zone in the center of the bilayer
 - Hydrocarbon chain
 - Bonded with oxygen

- Phospholipids form either micelles or bilayers when suspended in water
- Molecular Self-Assembly
 - Molecules/Complexes of molecules form a particular and characteristic
 3D conformation or structure
 - Result of
 - Interaction with surrounding water molecules
 - Intermolecular interaction
 - Intramolecular interaction
 - Hydrophobic + Hydrophilic interactions between and within molecules
 - Extends from single molecules to complexes to organelles
- Hydrophobic association
 - Two stages
 - Entropy driven clumping of hydrophobic groups
 - Formation of L-vdW interactions between adjacent hydrophobic groups
 - Hydrogen bonds in adjacent water molecules are reoriented tangentially to the surface
 - Inner layers of water are highly constrained
 - Reduced entropy: more structured than "free" water; reduced hydrogen bonding potential
 - Hydrophobic groups "squeeze" the water out of the region, increasing entropy and hydrogen bonds
 - $\Delta G = \Delta H T(\Delta S_{water} + \Delta S_{phospholipids})$
- Hydrophilic interactions
 - To water; to polar molecular groups
 - Ionic interaction

Properties of the Membrane

- Which forms more readily?
 - Micelles Maximizes the area of hydrophilic interactions (large free energy change associated)
 - Intermediate end for detergents (detergent destroys bilayers and breaks into micelles)

- Bilayer (energy barrier to overcome from hydrophobic tail reentering water)
 - Driving force to form bilayers
 - Entropy
 - L-vdW interactions
 - Brownian motion
- General properties of membrane phospholipid bilayer
 - Selective permeability
 - Small, non-polar molecules move across quickly
 - Charged, large molecules cross slowly
 - Permeability vs. Hydrophobicity
 - High hydrophobicity, high permeability
 - High hydrophilicity, low permeability
 - Diffusion rates
 - Small hydrophobic molecules > Small uncharged polar molecules > Larger uncharged polar molecules > Ions
 - Osmosis
 - Solutions of different concentrations are separated by a membrane that is permeable to water but not to the solutes
 - Water moves to solution with higher solute concentration
 - Hypertonic: [in] < [out]; Isotonic: [in] = [out]; Hypotonic: [in] > [out]
 - Prevention of cell explosion
 - Maintain isotonic environment
 - Build a cell wall
 - "Secrete" water by secreting ions
 - Better membrane less permeable to water
 - Self-healing/sealing
 - Small hole \rightarrow Membrane will close it
 - Torn into fragments \rightarrow Vesicles
 - 2D fluidity
 - Weak bonds from L-vdW interactions and hydrogen bonding

- Individual molecules can move within the bilayer
- Free to diffuse within the plane of the membrane
- Hard for phospholipid leaflets to flip
 - Hydrophilic groups breaking hydrogen bonds high energy barrier
 - Hydrophobic groups prevent charged molecules from passing through
- Fluorescence recovery after photobleaching (FRAP)
- Acclimation to temperature change
 - Decreasing temperature, decreased fluidity; Increasing temperature, increased fluidity
- Fatty acid composition
 - Saturated acid: Lack double bonds, favours tight packing in membrane bilayers
 - Unsaturated acid: has double bonds, reducing the tightness of packing in membrane bilayers
 - Long hydrophobic chain: Increases L-vdW interactions; short hydrophobic chain: decreases L-vdW interactions
- Protein container
- Separate compartments

Proteins and Amino Acids

- Amino Acid Structure
 - Amino group + Carboxyl group + α -Carbon + Side chain
 - Hydrophilic and hydrophobic amino acids
- Protein Function
 - Antibodies and complement proteins: Defense destruction of foreign bacteria and viruses
 - Contractile and motor proteins Movement
 - Enzymes Catalyze chemical reactions
 - Peptide hormones Act as signals to coordinate activities of cells
 - Receptor proteins Receive signals from outside the cell and initiate response
 - Structural proteins Provide support for cells and tissues

- Transport proteins Move ions or molecule across membranes
- Proteins = Polymers of AA
 - Polypeptide bonds: consistent internal polarity (N to C)
- Structure of Proteins
 - Primary Structure: Amino acid sequence (Start with a N-terminus, end with a C-terminus)
 - Secondary Structure: Formation of hydrogen bonds between atoms of polypeptide backbone with other AA (α -helix and β -sheet)
 - Proteins typically contain regions that form both structures
 - α -helix: Each carbonyl group forms a hydrogen bond with an amide group 4 residues away
 - β -sheet: Adjacent strands can run in parallel or antiparallel
 - What determines which shape to form?
 - Different side chains
 - Side-chain interactions
 - Side-chain water interactions
 - Tertiary Structure: 3D shape of a protein
 - Stabilized by interactions of side chains with other side chains or atoms of the polypeptide backbone
 - Hydrophobic/hydrophilic/ionic association
 - Disulfide bonding (formed in endoplasmic reticulum by enzyme)
 - X-ray diffraction
 - In globular proteins
 - Hydrophilic groups located on the surface
 - Hydrophobic groups located inside
 - Quaternary Structure: Interactions of protein subunits
 - More than one subunit
 - Stabilized by all of the forces that stabilize tertiary structure
- Self-Assembly of a Protein
 - Random thermal movements of protein, of water molecules, and by the interaction of different chemical groups along with backbone of protein, with water to achieve their normal minimum energy configuration
 - Configuration is through trial & error

- Chaperone: chaperon fully synthesized proteins, ensure proper native folding
- Amino acid substitution in proteins (mutations)
 - Hydrophobicity/hydrophilicity of amino acids and the change in conformation of proteins
 - Assume substitution of an amino acid of a particular type by a different amino acid of the same class will have relatively little effect on the structure of the molecule (Hydrophobic replaces hydrophobic)
- Protein denaturation
 - Denaturation agents: heat, molecules that interfere with hydrogen bonds (urea)
 - Often irreversible
 - Can renature if careful
 - Urea is a strong hydrogen bond competitor, so it disrupts hydrogen bond forming intramolecularly
 - Renaturation
 - Place a dialysis bag (with urea) in distilled water for hydrogen bonds to reform

Membrane Proteins

- Roles
- Transporter of molecules and ions
- Enzymes (electron carriers, ATP synthase)
- Receptor and Signal transducers
- Anchors for other proteins (cytoskeleton)
- Types
- Integral membrane proteins: contain one or more membrane crossing domains (glycophorin)
 - Embedded in the membrane
 - Each membrane crossing domain contains regions of hydrophobic amino acid residues that traverses the hydrophobic core of the membrane
 - Sequences of amino acids with primarily hydrophobic side chains

- Hydrophobic side chains in hydrophobic regions + Hydrophilic side chains in hydrophilic regions
- Charged on the outer surface of the bilayer
- Peripheral membrane proteins: attached to the outside of the membrane by interaction with integral membrane proteins
- Hydropathy plots
 - Shows free energy change associated with immersion sequential groups of 3 amino acids in water (start at the N end)
 - Positive free energy change (hydrophobic)
 - Negative free energy change (hydrophilic)

Processing and Targeting of Proteins

- Proteins must be targeted to their proper destinations
 - Cytosolic proteins
 - Folded, covalent modification, cleavage
 - Proteins of the endomembrane system (ER/Golgi system)
 - Folded, disulfide bond formation, Glycosylation, cleavage
- Targeting (Signal Sequence + Receptor)
 - Signals encoded within proteins
 - Signals direct the protein to a specific organelle
 - Signals must be present for protein to leave the cytosol compartment
 - General Principle
 - Regulatory signals required for the processing or function of macromolecules are generally encoded within the macromolecules themselves
 - Options
 - No targeting signal remain in cytosol
 - N-terminal signal targeting to ER or organelles other than nucleus
 - Signal sequence cleaved off
 - Internal targeting signal targeting to nucleus
 - Signal sequence not cleaved off
 - Requirements
 - Specific signal sequence in the transported protein

- Specific protein receptor that recognizes that signal sequence
- Targeting to endomembrane system
 - Co-translational insertion into endoplasmic reticulum
 - Proteins then proceed by vesicle transport to Golgi Apparatus and then on to the plasma membrane or other destination

• Rough ER

- Ribosomes on ER translate protein destined for the ER or membrane proteins
- Translation of all proteins, regardless of destination, begins in the cytosol

• Co-translational Insertion

- Signal Recognition Particle binds to a signal sequence and halts translation
- SRP binds to the SRP receptor on the ER membrane
- SRP receptor brings the ribosome to a transmembrane channel, SRP dissociates; protein synthesis resumes, and the growing polypeptide chain is threaded through the channel
- Protein ends up in the lumen of ER for further action
- Once enter ER, no returning to cytosol
- Targeting of proteins to membranes
 - Membrane proteins are co-translationally inserted
 - Arrangement of the protein in the membrane is controlled by amino acid sequences in the protein (Start and Stop transfer signals)
 - Stop transfer sequence
 - Stops transfer of protein
 - Contain a membrane crossing domain
 - May have same sequence as internal start sequence
 - IMPORTANT: order in which these regions are encountered

Regulation of Genetic Expressions

Lac Operon - Regulation of transcription in bacteria

- Trans-acting regulatory factor (external factor that binds to a regulatory DNA sequence) + cis-acting regulatory sequence = gene (in)activity
- Regulatory Region
 - Activator binding site When protein binds transcription occurs much more frequently
 - Promoter RNA polymerase binding site
 - Repressor site When protein binds transcription is blocked
 - Positive regulation
 - Transcription only occurs when an activator protein binds to a site near the promoter and then RNA polymerase can bind to the promoter
 - Negative regulation
 - Transcription can occur when only RNA polymerase binds to the promoter
 - If repressor protein binds to the DNA and inhibits RNA polymerase binding to the promoter, no transcription occurs
- Compared to eukaryotes, prokaryotes
 - DNA is not packaged in chromosomes
 - mRNA is not processed
 - No nuclear membrane that separates transcription and translation
- Lactose catabolism in E. coli
 - Can use lactose as sole energy and carbon source
 - β -galactosidase required to break down lactose
 - Cells grown on glucose cannot break down lactose, have very little β galactosidase
 - In the absence of glucose, β -galactosidase enzyme activity **induced** by lactose (control of expression by environmental factor)
- Constitutive always being active/produced; Facultative active/produced only under specific conditions
- Lac Operon
 - *lacI*: structural gene for the repressor protein

- CRP-cAMP binding site
- Promoter
- lacO: the binding site for the lac repressor protein
 - In the absence of lactose, repressor protein translated by *lacI* binds to *lacO* and prevents transcription
 - In the presence of lactose, repressor protein is induced by lactose (allosteric regulation), unable to bind to *lacO*, promoter recruits RNA polymerase complex and transcription of **polycistronic** mRNA occurs
 - Lac repressor binding sites at each side of *lacO* sequence
 - Each site has two binding sequences in opposite orientation
 - Repressor tetramer complex has two dimers, one of which binds to each binding site
- lacZ: coding sequence for β -galactosidase
- lacY: coding sequence for galactoside permease
- General principle
 - Binding of a ligand to a protein changes the conformation of the protein
 - To get *lac* activity
 - Lactose present to remove *lac* repressor
 - Glucose absent or low to allow activation of CRP activator of Lac Operon by cAMP
- Effect of glucose on Lac Operon
 - Cells growing in presence of glucose use glucose
 - If switched to lactose, will use lactose \rightarrow induction of β -galactosidase activity
 - When both are present, glucose is preferred
 - $ullet \ \ Lactose \xrightarrow{eta-galactosidase} Galactose + Glucose$
 - Glucose inhibits β -galactosidase synthesis
 - CRP protein (binds to CRP binding site an activator) activated by cAMP
 - $\bullet \quad ATP \xrightarrow{Adenyl \; cyclase} cAMP + pyrophosphate$
 - High glucose, low adenyl cyclase activity, low cAMP production, no activation of Lac Operon transcription via activated CRP
- Summary

- Multiple switches for genetic regulating expression (positive and negative control)
- Transcription activity is regulated by DNA binding proteins
- Signals control gene expression by modulating transcription factor activity
- Transcription factor activity is regulated by ligand binding
- Affinity of enzymes for substrates can be compared to affinity of transcription factors for DNA binding sites
- Mutations can define genes and gene regulatory regions

Eukaryotic Regulatory Gene Expression

- Transcription Factor Binding
 - Gel shift analysis to determine which DNA fragments bind to a particular protein
 - Binding of protein reduces DNA mobility in an electrophoretic gel
 - Footprint analysis to determine the location of protein binding sites
 - Tight binding of a protein to DNA prevents nuclease (DNase I) from binding to the DNA and from cutting the molecule
 - \bullet Gel shift analysis for target competition experiments to assess affinity of TF / DNA binding
 - Binding of protein to DNA produces a "gel shift" a change in the position of the DNA band that can be used to estimate the relative amount of bound DNA
 - Quantitative assessment of TF binding
 - $Ligand + Protein \leftrightarrow PLcomplex$
 - $K_a = \frac{[PL]}{[P][L]}$
 - Plot fraction of protein with bound ligand vs. ligand/DNA concentration
 - K_d concentration of substrate at which 50 of the protein molecules are complexed with ligand
 - ullet $Fraction\ bound\ (\%saturation) = rac{[ligand]}{K_d + [ligand]}$
 - Lowest affinity, largest K_d
- Eukaryotes
 - Similar model to prokaryotic regulation

- Regulatory Regions
 - Promoter: Has sequence common to most genes
 - Most common sequence: TATA box
 - All eukaryotic promoters are bound by the TATAbinding protein
 - Promoter proximal element: Has sequence that is unique to this gene
 - Coordinately regulated genes often have similar sequenced PPE
 - Binding sites for regulatory transcription factors
 - Located just upstream of the promoter
- Transcriptional Regulation
 - Specific TF bind to
 - PPE
 - Enhancer regions that are at a distance from the promoter
 - All eukaryotes have enhancers
 - May locate upstream, downstream, or within the transcription unit; in introns, in untranscribed 5' or 3' sequences
 - Enhancer Increasing rate of transcription
 - Regulatory proteins bind to these are activators/coactivators
 - Silencer Decreasing rate of transcription
 - Regulatory proteins bind to these are repressors/corepressors
 - Enhancers work through DNA bending to bring the associated TFs into contact with the proteins of the basal transcription complex
- Different cell types express different genes because they have different histone modifications and contain different regulatory proteins
 - Certain proteins produced only in certain types of cells
- Coordinated control of gene expression
 - A single TF may interact with many target genes
 - Action can be positive or negative

- TF act in Boolean logic to control transcription
- A single gene can be acted upon by many TFs
- Britten and Davidson model

Making a Fly

- Preformation
 - Important for establishing axial coordinate system of the egg
 - Maternal mRNAs are placed at the poles of the oocyte by the cells of the mother's ovary, defining the anterior-posterior axis of the embryo
 - bicoid is localized at the anterior pole of the oocyte
- Events of early development in the fly
 - Cleavage
 - Egg is one big cell
 - After fertilization, nuclei divide without forming cell membranes
 - One cell, many nuclei
 - 13 rounds of DNA replication followed by nuclear division happen in one single giant cell
 - Nuclei arranged around the periphery of the cell \rightarrow Syncytial blastoderm stage
 - Cellularization
 - Cycle 14 synchronous formation of cells all around the periphery of the egg \rightarrow Cellular blastoderm stage
 - Followed by gastrulation \rightarrow internal cell mass
 - bicoid mRNAs are translated and give rise to a gradient of bcd protein (diffuses away from the source and establishes a gradient throughout the embryo)
- Loss of *bcd* protein: no anterior development; Loss of *nos* protein: no posterior development
- Morphogens
 - A substance that supplies positional information that governs the formation of a characteristic structure in a developing embryo
 - *bcd* protein: anterior morphogen; *nos* protein: posterior morphogen

- *bcd* protein gradient is formed after fertilization, mRNA is still localized
- mRNA is not free to diffuse, protein is free to diffuse
- Modeling the *bcd* gradient
 - SDD model: synthesis, diffusion, destruction
 - Protein produced by mRNA at the anterior continually
 - Diffuses outward
 - Protein has a characteristic life time in which a fixed fraction of the protein is lost
- Big Ideas
 - 1
- Gene expression in development is hierarchical
- Genes that are active early in development produce proteins that regulate activities of genes that act later
- Maternal gradients → Gap genes → Pair-rule genes → Segment polarity genes → Homeotic genes ...
- 2
- Different genes are expressed in different regions of the embryo
- Gradients are established in different regions
- These proteins are morphogens
- Different target genes are activated or repressed at **different** concentrations of TF protein
- Translation of hb inhibited by nos; Translation of cd is inhibited by bcd; Transcription of hb is activated by bcd...
- Gap genes
 - Different gap genes active in different regions based on the concentrations of *bcd*, *hb* and other TFs
 - hb boundary sharpening
 - Posterior boundary of the hb expression domain becomes progressively more sharply defined
 - Consequence of interaction of *bcd* and *hb* proteins with the *hb* promoter
 - Positive feedback: hb protein binds to hb promoter to activate hb expression
 - Organization of hb promoter region

- Multiple *hb* and *bcd* binding sites
- Binding of multiple activating TFs (increased frequency of transcription)
- Cooperative binding binding of a TF to a strong site increases probability of binding of the same TF to an adjacent weak site
- Require high concentration (low affinity), require low concentration (high affinity) for activation
- Kruppel promoter organization presence of multiple hb and bcd binding sites
 - ullet Cooperative binding from bcd and hb
 - *bcd* is an activator
 - hb is a repressor
- Gap gene expression divides the embryo into zones
 - Gap gene products are TFs that are also morphogens (shorter distance)
 - Regulate expression of segmentation genes
 - Gap genes inhibit each other
- Competitive binding
 - Same binding site is not large enough for more than one TF
 - Either A or B
 - Dependent on concentration and affinity
- Pair rule genes (regulated by gap gene products)
 - Even-skipped Expressed in odd numbered segments
 - Expressed in 7 bands each corresponding to an odd numbered segment
 - Each stripe controlled by a particular enhancer element
 - Two sets of enhancers (embryonic enhancers and other enhancers that act later after cellularization)
 - Stripe 2 (eve-2)
 - Inhibited by Gt and Kr proteins
 - Activated by *bcd* and *hb* proteins
 - Competitive binding of TFs (needs higher affinity in farther gradients)
 - Odd-skipped Expressed in even numbered segments

- Homeotic Genes (Segment polarity genes set up cues to example accurate expression of homeotic genes)
 - Specify and identity of a body part or segment during embryonic development
 - Antennapedia gene (antenna development)
 - Bithorax gene (wing development)
 - Hox gene
 - AA sequence of the DNA binding domains (homeodomains) of Hox gene products are very similar from one organism to the next
 - Fly: segments
 - Mice: spinal cords
 - Plants: buds, leaves, flowers
- Summary
 - Initial positional cues come from TF gradients
 - With passage of time domains in the embryo become defined with increasing precision
 - Results in a pattern of segments that differentiate in response to their position in the embryo based on the local pattern of gene activity
 - This pattern leads to activation of appropriate homeotic genes that form the definitive positional information system for animals.
 - Position-specific TFs

Biological Energy Transformation

Enzymes and Transport Proteins

- Enzyme
 - Accelerates the reaction by reducing activation energy
 - Change in free energy is the same
 - Fraction of molecules reacting increases if activation energy decreases, increasing the rate of reaction
 - Binds specifically to reactants
 - Catalyzes the reaction in both directions
 - Does not affect equilibrium position

- How does it work
 - Has high affinity for reactants, binds tightly to them
 - Increase local concentration of reactants by bringing them to close proximity
 - Increases probability of bond breakage and reaction
 - Products have lower affinity for enzyme
- If protein is unfolded, no enzymatic activity; only has activity when properly folded
- Enzyme-Substrate Complex
 - Non-enzymatic: $S \leftrightarrow P$
 - Enzymatic: $E + S \leftrightarrow ES \leftrightarrow EP \leftrightarrow E + P$
- Enzyme Action
 - Initiation: Reactants bind to the active site in a specific orientation
 - Transition state facilitation: Interactions between enzyme and substrate lower the $E_{activation}$ required
 - Termination: Products have lower affinity are released, enzyme unchanged
- Energy change during enzyme reactions
 - Sub reactions
 - Formation of E-S complex
 - Main reaction Catalysis (Rate-Limiting Step)
 - Release of products
- Regulation of enzyme function
 - Co-factors: Ions, co-enzymes
 - Inhibition
 - Competitive (Inhibitor and substrate compete for the same site)
 - Non-competitive inhibition or allosteric regulation
 - Consider Threonine dehydratase
 - Activated allosterically by threonine (reactant of the pathway)
 - Inhibited allosterically by isoleucine (product of the pathway)
- Measuring binding of ligands
 - K_d : half-saturation concentration

- Binding affinity of the protein for the ligand is $\frac{1}{K_d}$, affinity high, K_d is low
- Michaelis-Menten Kinetics
- Catalyzing endergonic reactions (ΔG is positive)
 - Main energy input: ATP (bonds linking the 3 phosphates has very high potential energy)
 - Hydrolysis of ATP \rightarrow energy to drive endergonic reactions
- Transport Protein
 - Simple diffusion
 - Molecules move down their concentration gradient
 - Facilitated diffusion (Passive transport)
 - Solutes interact with a transmembrane protein
 - Diffuses down its concentration gradient
 - No local application of energy is required
 - Process
 - Protein binds to substrate with moderate to high affinity
 - Configuration of protein is metastable, stochastic movement of protein exposes binding site to one side of the membrane or the other
 - Finite probability of the ligand being "spontaneously" released from the binding site
 - Ligand will flow through the protein, down the ligand concentration gradient
 - Carrier mediated facilitated diffusion rate of transport
 - Substrate concentration
 - Avidity of substrate binding
 - Max throughput of the carrier
 - Active transport
 - Change the conformation of the protein and move the solute across the membrane against its concentration gradient to a higher free energy state (hydrolysis of ATP)
 - Moves Na^+ out of the cell and K^+ into the cell, building up an electrochemical gradient across the membrane (ATPase pump)
 - Cellular electrochemical gradient

- Transmembrane voltage is 50mV
- Hydrophobic core of membrane is 3nm thick
- Voltage gradient is 167kV/cm
- Concentration difference in ions
- Electrical charge difference

•
$$\Delta G = RT \ln \Big(rac{[in]}{[out]} \Big) + ZF\Delta P$$

- Indirect active transport
 - Transport protein uses the ion electrochemical gradient from above active transport to move a different molecule across the membrane against its gradient
 - $ullet \ |\Delta G_{ion}| > |\Delta G_{molecule}|$
 - Symport driving ion and transported molecule in the same direction
 - Antiport ion and molecule in opposite direction
- Na^+ glucose transporter
 - Symport system Drives the uptake of glucose against its concentration gradient by moving down its electrochemical gradient
 - Apical epithelium of small intestine

Glycolysis and Fermentation

- Glycolysis (Sugar \rightarrow Pyruvate)
 - Energy Input and Payout phases
 - Energy input: Glucose $\xrightarrow{2ATP}$ Fructose 1,6 bisphosphate + 2ADP
 - Cleavage: F 1,6 B \rightarrow 2 Glyceraldehyde 3 phosphate
 - Energy Payout: $G3P \rightarrow pyruvate + 2ATP + NADH$
 - Net yield: 2 ATP, 2 NADH, 2 Pyruvate (per glucose)
 - Limited energy yield
 - Subject to Feedback Regulation
 - Reduction of NAD+
 - Substrate level phosphorylation of ADP
- Regulation of glycolysis

- High ATP level inhibits phosphofructokinase (feedback inhibition)
- ATP is both a substrate and a regulator
- Allosteric regulation
 - Activation: ADP, AMP
 - Inhibition: ATP
- 2 ATP binding sites on ppfk: substrate site and regulatory site

Fermentation (electron acceptor not present)

- Electrons are not accepted
 - Oxidize NADH by sticking the electrons back to them
- Two variants of the process
 - Lactate production
 - Ethanol production
- No net oxidation
- Energy released is a consequence of molecular rearrangement producing changes in internal energy
- Limited energy yield

Respiration

- Export electrons out of the cell to electron acceptors
- Use high energy electrons that are in the process of being exported to do work in the form of ADP phosphorylation; use potential energy of electrons to drive phosphorylation
- NADH also carries a lot of free energy
- Synthesis of Acetyl Co-A from pyruvate
 - Pyruvate enters the mitochondrial matrix via the transporter in the inner membrane
 - Pyruvate dehydrogenase oxidizes pyruvate, releasing CO_2 , reducing NAD+ and attaching the remaining acetyl group to CoA (an acetyl carrier)
 - Acetyl-CoA is the activated from of acetate
 - Regulation

- Negative: High ATP, Acetyl-CoA or NADH (reduce pyruvate dehydrogenase activity by phosphorylation)
- Positive: High NAD+, CoA or ADP (increase pyruvate dehydrogenase activity by dephosphorylation)
- PDK (PD kinase) phosphorylates PD, inhibited by pyruvate
- PDP (PD phosphatase) dephosphorylates PD, stimulated by PEP and AMP, inhibited by ATP, NADH and Acetyl Co-A

Citric Acid Cycle

- Occurs in mitochondrial matrix
- Cyclical reactions
- Acetate transferred from Acetyl Co-A to citric acid to start
- Eight carboxylic acids become progressively more oxidized
- Oxidation of these substrates drives reduction of electron carriers NAD and FAD
- Acetate oxidized to $2 CO_2$ molecules
- Acetate acceptor is regenerated
- 4 reactions in which reduced electron carriers are produced store released energy in electron carriers
- Pyruvate completely oxidized to CO_2
- Regulation
 - $Oxaloacetate \xrightarrow{regulated \ by \ ATP} Citrate$, feedback inhibition
 - Multiple sites of feedback inhibition from ATP and NADH
 - High ATP + NADH = inhibition; High ADP + NAD = activation
- Net yield (substrate level phosphorylation)
 - 2 ATP
- Source of initial carbon skeletons for the synthesis of many biologically important molecules via many different metabolic pathways.

Chemiosmotic Production of ATP (Oxidative Level Phosphorylation)

- Reduced electron carriers
 - Drive the formation of proton gradient
 - Phosphorylation of ADP to ATP
- Net Yield

- 28 ATP
- Energy in electron to drive ADP phosphorylation
 - Transfer electrons to final electron acceptor
 - Make electrons do as much work as possible to store energy by building up an electrochemical gradient
 - Use the gradient to drive phosphorylation of ADP
 - Active transport run in reverse
- Occurs in mitochondria, chloroplasts and in bacteria
 - Ions moving down a gradient generating ATP rather than ATP being used to drive ions against a gradient
- Early cells
 - Mechanisms to pump protons out of the cell, powered by ATP and electron transport
 - Electron-transport-powered pumps became efficient enough to run the ATP-driven pump in reverse
- Electrochemical gradient
 - During transfer, at each transfer, there is a decrease in free energy that drives transport of H^+ across the membrane
 - Electrons are eventually transferred to a terminal electron acceptor
- Electron transport complexes
 - Four multi-protein electron transport complex that comprise the respiratory electron transport chain
 - They contain both enzymes (NADH dehydrogenase and electron transporter proteins and proton pump proteins)
 - Complex I and II strips electrons from NADH and FADH₂
 - Cytochrome C moves electron to Complex IV where oxygen is reduced to form water
- Proton electrochemical gradient huge potential energy level (160mV), membrane potential $^{\sim}533\mathrm{kV/cm}$
- ATP synthase complex uses potential energy stored in the electrochemical gradient to drive the phosphorylation of ADP to make ATP
 - Reversible enzyme system
 - F_0 unit (drives rotation of the stalk) and F_1 unit (rotation of stalk changes the conformation in the knob portion)
 - 3 consecutive conformations: open, loose and tight
 - Tight conformation "crushes" ADP and Pi together to form ATP

• 3 rotations form one ATP

Evolution of Respiration

Light Reactions of Photosynthesis

Dark Reactions of Photosynthesis

Mitochondria and Chloroplasts as Bacterial Cells

Chemoautotrophs

Refer to notes for all above five topics