数学笔记

Your Name

2023年8月2日

1 引言

lemma 1. Given f(x) is convex and L-smooth then

$$f(y) - f(x) \le \nabla f(y)^{T} (y - x) - \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|_{2}^{2}$$
(1)

proof. Because of the convexity of f(x),

$$f(z) \ge f(y) + \nabla f(y)^T (z - y) \iff f(y) - f(z) \le \nabla f(y)^T (y - z) \tag{2}$$

Because f is L smooth:

$$f(z) \le f(x) + \nabla f(x)^{T} (z - x) + \frac{L}{2} \|z - x\|_{2}^{2} \iff$$

$$f(z) - f(x) \le \nabla f(x)^{T} (z - x) + \frac{L}{2} \|z - x\|_{2}^{2}$$
(3)

Using (2) and (3) we have:

$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x) \le \nabla f(y)^{T} (y - z) + \nabla f(x)^{T} (z - x) + \frac{L}{2} ||z - x||_{2}^{2}$$
(4) let $z = x - \frac{1}{L} (\nabla f(x) - \nabla f(y))$:

$$f(y) - f(x) \le \nabla f(y)^{T} (y - x) - \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_{2}^{2}$$
(5)

lemma 2. Suppose F_k is L-smooth with global minimum at \mathbf{w}_k^* , then for any \mathbf{w}_k in the domain of F_k , we have that

$$l = \|\nabla F_k(\boldsymbol{w}_k)\|_2^2 \le 2L(F_k(\boldsymbol{w}_k) - F_k(\boldsymbol{w}_k^*))$$
(6)

proof. Let
$$y = \mathbf{w}_k^*$$
 and $x = \mathbf{w}_k$ in (1), and $\nabla f(\mathbf{w}_k^*) = 0$

2 重要定理

这里列举一些重要的定理,并附上其证明。

2.1 勾股定理

勾股定理给出了直角三角形的边之间的关系。它可以用以下公式表示:

$$a^2 + b^2 = c^2 (7)$$

其中,a 和 b 是直角三角形的两条直角边的长度,c 是斜边的长度。

证明: (略)

2.2 欧拉公式

欧拉公式是数学中一条重要的公式,连接了五个基本数学常数: e (自然对数的底)、 π (圆周率)、i (虚数单位)、1 (单位元)和无穷远处的 0。它可以表示为:

$$e^{i\pi} + 1 = 0 \tag{8}$$

证明:(略)

3 结论

在这篇笔记中,我们总结了一些重要的数学定理和公式。