LECTURE 16: Least mean squares (LMS) estimation

- minimize (conditional) mean squared error $\mathbf{E}\left[(\Theta \widehat{\theta})^2 \mid X = x\right]$
 - solution: $\widehat{\theta} = \mathbb{E}[\Theta \mid X = x]$
 - general estimation method
- Mathematical properties
- Example

LMS estimation in the absence of observations

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
 - no observations available
 - MAP rule: amy $\hat{\theta} \in [4,10]$
 - (Conditional) expectation: $\hat{\theta} = 7$

• Criterion: Mean Squared Error (MSE): $\mathbf{E}\left[(\Theta - \hat{\theta})^2\right]$

minimize mean squared error

LMS estimation in the absence of observations

Least mean squares formulation:

minimize mean squared error (MSE),
$$\mathbf{E} [(\Theta - \hat{\theta})^2]$$
: $\hat{\theta} = \mathbf{E}[\Theta]$.

$$\mathbf{E} [O^2] - 2\mathbf{E} [\Theta] \hat{\theta} + \hat{\theta}^2 \qquad d = 0: -2\mathbf{E} [\Theta] + 2\hat{\theta} = 0$$

$$\hat{\theta} = \mathbf{E}[\Theta]$$

$$Var (O - \hat{\theta}) + (\mathbf{E} [\Theta - \hat{\theta}])^2 \qquad \text{minimize d}$$

$$Var (O) \qquad \text{when } \hat{\theta} = \mathbf{E}[\Theta]$$

• Optimal mean squared error: $\mathbf{E}\left[(\Theta - \mathbf{E}[\Theta])^2\right] = \text{var}(\Theta)$

LMS estimation of Θ based on X

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
- observation X; model $p_{X|\Theta}(x \mid \theta)$
 - observe that X = x

minimize mean squared error (MSE), $\mathbf{E}\left[(\Theta - \hat{\theta})^2\right]$: $\hat{\theta} = \mathbf{E}[\Theta]$

minimize conditional mean squared error, $\mathbf{E}\left[(\Theta - \hat{\theta})^2 \mid X = x\right]$: $\hat{\theta} = \mathbf{E}[\Theta \mid X = x]$

• LMS estimate: $\hat{\theta} = E[\Theta | X = x]$

estimator: $\widehat{\Theta} = \mathbf{E}[\Theta \mid X]$

LMS estimation of Θ based on X

• $\mathbf{E}[\Theta]$ minimizes $\mathbf{E}[(\Theta - \hat{\theta})^2]$

$$\frac{\mathcal{Z}}{\mathcal{Z}} \left[\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} (x) \right]$$

• $\mathbf{E}[\Theta | X = x]$ minimizes $\mathbf{E}[(\Theta - \hat{\theta})^2 | X = x]$

$$E\left[\left(\Theta - E\left[\Theta|x=2\right]\right)^{2} \mid x=2\right] \leq E\left[\left(\Theta - g(x)\right)^{2} \mid x=2\right] \quad \text{for all }$$

$$E\left[\left(\Theta - E\left[\Theta|x\right]\right)^{2} \mid x\right] \leq E\left[\left(\Theta - g(x)\right)^{2} \mid x\right]$$

$$E\left[\left(\Theta - E\left[\Theta|x\right]\right)^{2}\right] \leq E\left[\left(\Theta - g(x)\right)^{2}\right]$$

$$\widehat{\Theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X]$$
 minimizes $\mathbf{E}\big[(\Theta - g(X))^2\big]$, over all estimators $\widehat{\Theta} = g(X)$

LMS performance evaluation

• LMS estimate: $\hat{\theta} = \mathbf{E}[\Theta | X = x]$

estimator:
$$\widehat{\Theta} = \mathbb{E}[\Theta | X]$$

- Expected performance, once we have a measurement:

$$MSE = E[(\Theta - E[\Theta \mid X = x])^2 \mid X = x] = var(\Theta \mid X = x)$$

Expected performance of the design:

$$MSE = E[(\Theta - E[\Theta \mid X])^{2}] = E[var(\Theta \mid X)]$$

LMS estimation of Θ based on X

LMS relevant to estimation (not hypothesis testing)

- Same as MAP if the posterior is unimodal and symmetric around the mean
 - e.g., when posterior is normal (the case in "linear-normal" models)

Example

Conditional mean squared error

- same as $Var(\Theta \mid X = x)$: variance of conditional distribution of Θ

$$E[Var(0|x)] = \int_{x}^{x} (2) Var(0|x=x) dx$$

LMS estimation with multiple observations or unknowns

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
- observations $X = (X_1, X_2, \dots, X_n)$; model $p_{X|\Theta}(x \mid \theta)$
 - observe that X = x
 - new universe: condition on X = x
- LMS estimate: $\mathbf{E}[\Theta \mid X_1 = x_1, \dots, X_n = x_n]$

If Θ is a vector, apply to each component separately

$$\Theta = (\theta_1, \dots, \theta_m) \qquad \hat{\Theta}_j = E[\Theta_g \mid X_j = x_1, \dots, X_m = x_m]$$

Some challenges in LMS estimation

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta') f_{X|\Theta}(x \mid \theta') d\theta'$$

- Full correct model, $f_{X|\Theta}(x \mid \theta)$, may not be available •
- Can be hard to compute/implement/analyze

$$E[\theta_{j} \mid x=2] = \iiint \theta_{j} f_{0|x}(\theta)^{2} d\theta_{1} \cdots d\theta_{m}$$

Properties of the estimation error in LMS estimation

• Estimator:
$$\widehat{\Theta} = \mathbf{E}[\Theta \mid X]$$

• Error:
$$\widetilde{\Theta} = \widehat{\Theta} - \Theta$$

$$\mathbf{E}[\widetilde{\Theta} \,|\, X = x] = 0$$

$$\underbrace{E[\tilde{O}\hat{O}] - E[\tilde{O}]E[\hat{O}]}_{\text{COV}(\tilde{\Theta},\tilde{\Theta})=0} = \underbrace{\tilde{O}}_{\text{E}}[\tilde{O}] - \underbrace{E[\tilde{O}]E[\hat{O}]}_{\text{E}} = \underbrace{\tilde{O}}_{\text{E}}[\tilde{O}] = \underbrace{\tilde{O}}_{\text{E}}[\tilde{O}] \times = \underbrace{\tilde{O}}_{\text{E}}$$

$$var(\Theta) = var(\widehat{\Theta}) + var(\widehat{\Theta})$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.