

LECTURE-06

RELATIONS

AND

FUNCTIONS

Question Practice, # Introduction to Functions, # Different Types of Functions.

Relation R in the set A of human beings in a town at a particular time given by

- R = {(x, y) : x and y work at the same place}
- R = {(x, y) : x and y live in the same locality}
- $R = \{(x, y) : x \text{ is exactly 7 cm taller than y}\}$
- $R = \{(x, y) : x \text{ is wife of } y\}$
- (e) R = {(x, y) : x is father of y}

[NCERT]

$$R = \left\{ \begin{pmatrix} x, y \end{pmatrix} \begin{pmatrix} x, h \end{pmatrix} \end{pmatrix} \begin{pmatrix} x, h \end{pmatrix} \end{pmatrix} \begin{pmatrix} x, h \end{pmatrix}$$

Wrung

Fransitive / (check nhi kr payenge)

(Notes mein Teacher ki boli gyi her baat april language mein likke)

If R₁ and R₂ are two non-empty relations in a set A. Which of the following is

wrong statement

not true?

If R₁ and R₂ are transitive, then R₁ U R₂ is transitive

If R_1 and R_2 are transitive, then $R_1 \cap R_2$ is transitive

Try to Hunk, R, MR2 = T

If R₁ and R₂ are symmetric, then R₁ \cup R₂ is symmetric

If R_1 and R_2 are reflexive, then $R_1 \cap R_2$ is reflexive

#H.W.

Ly True
$$SR_1 = \{(3,2)\}$$
 $CR_2 = \{(2,3)\}$

$$R_{1} \cap R_{2} = \left\{ (1,2)(2,3) \right\}$$
Transitive

$$non-Transitive$$

$$\widetilde{T}$$
 $\sim R_1 = \left\{ (1,2)(2,3)(1,3)(2,2) \right\}$
 \widetilde{T}
 $\sim R_2 = \left\{ (1,2)(2,3)(1,3)(1,1) \right\}$

NOTE:

If R₁ & R₂ are two Transitive Relations on any set then:

1. $R_1 \cup R_2$ may or may not be Transitive.

2. $R_1 \cap R_2$ is always Transitive.

Consider the following relation : R = {(x, y) | x, y are real numbers and \underline{x} = wy for some rational number w}; S = $\left\{ \left(\frac{m}{n}, \frac{p}{q} \right) | m, n, p \text{ and q are integers such that n,} \right\}$ [AIEEE-2010]

Wrong

R is an equivalence relation but S is not an equivalence relation.

Neither R nor S is an equivalence relation.

S is an equivalence relation but R is not an equivalence relation.

R and S both are equivalence relations.

$$S = \left\{ \left(\frac{4}{1}, \frac{12}{3} \right) \right\}$$

Correct Solution;

$$R = \left\{ (x,y) : x = wy \right\}$$

$$S = \left\{ (0,0) (1,1) (n^{2},n^{2}) \dots (\pi,\pi) \dots \right\}$$

$$Symmetric \Rightarrow \left\{ (0,1) (1,0) \right\}$$

$$\left(\text{Equiv.} \right) \times$$

NUMBER OF RELATIONS

$$# If n(A) = p then:$$

$$\# \mathcal{M}(\mathsf{A} \times \mathsf{A}) = \mathsf{b}_{\mathsf{s}}$$

- (i) Total Number of relations on set A = 2
- (ii) Number of Identity Relations = 1.
- (iii) Number of Reflexive Relations =
- (iv) Number of Symmetric Relations =

(Is formula mein {} }

blu count huse h)

(v) For Transitive Relations:

If $n(A) = 1 \Rightarrow Number of Transitive relations = 2$

If $n(A) = 2 \Rightarrow Number of Transitive relations = 13$

If $n(A) = 3 \Rightarrow Number of Transitive relations = 171$

If $n(A) = 4 \Rightarrow$ Number of Transitive relations = 3994

Koi puduga nahi

(vi) For Equivalence Relations:

If $n(A) = 1 \Rightarrow Number of equivalence relation = 1$

If $n(A) = 2 \Rightarrow$ Number of equivalence relation = $\sqrt{2}$

If $n(A) = 3 \Rightarrow$ Number of equivalence relation = 5

If $n(A) = 4 \Rightarrow$ Number of equivalence relation = 15

Ex.

If n(A) = 3 and

l = number of Identity relations on set - A

m = number of reflexive relations on set - A

n = number of non-empty symmetric relations on set A

p = number of transitive relations on set A

Then value of (l+m)-(n+p) is (1+64)-(63+171)=2-171=-169.

H.W

$$L = 1$$
. # F

$$\# m = 2^{p^2-p} = 2^{q-3} = 2^6 = 64$$

$$\eta = (2^{\frac{p(p+1)}{2}}) - 1 = 2^{6} - 1 = 63$$

COMPOSITE RELATION

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{1} = \left\{ (1,3)(2,3)(1,2) \right\}$$

$$R_{2} = \left\{ (2,2)(3,3)(3,1)(2,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3)(3,1)(2,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3)(3,1)(2,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3)(1,2) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{2} = \left\{ (2,2)(3,3) \right\}$$

$$\frac{\mathcal{E}_{\times}}{=} \quad R_{$$

PW

Consider three sets $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 4, 5, 6\}$, $C = \{4, 5, 6, 7, 8, 9\}$ and R_1 is defined from A to B such that $R_1 = \{(x, y), 2x = y, x \in A, y \in B\}$. Similarly R_2 is defined from B to C such that $R_2 = \{(x, y) : (x \text{ divides } y', x \in B \text{ and } y \in C\}$, then:

(i) $R_2 o R_1$ (ii) $R_1^{-1} o R_2^{-1}$

ANTI-SYMMETRIC: (not in JEE)**

Definition: If
$$(a,b) \in R$$
 and $(b,a) \in R$ only if $a=b$

Agar (a,b) relation (R) mein ho to (b,a) nhi hona chaliye, but (a,a) allowed hai.

Example: Check following Relation on set $A = \{1,2,3\}$ for Anti-Symm

(i)
$$R_1 = \{ (1,2)(1,3)(2,3) \} \longrightarrow A.S., \hat{S}$$

(ii)
$$R_2 = \{(1,2), (3,3), (1,1)\} \longrightarrow A.S., \hat{S}$$

(iii)
$$R_3 = \{(2,3), (3,2)\} \longrightarrow A.S., S$$

(iv)
$$R_4 = \{(1)(2,2)\} \longrightarrow 4.5., S$$

(v)
$$R_5 = \{(1,2)(2,3)(3,3)(2,1)\} \longrightarrow A.S., \tilde{S}$$

FUNCTIONS

Functions (Mapping) is a relation defined from set A to set B ($f: A \rightarrow B$) such that all elements of set A related to only single (one / unique) element in set B.

£x: Which of the following arrow diagram represents a Function?

VERTICAL LINE TEST

In given graph:

Draw all possible lines parallel to Y-axis.

If any line cuts the graph at two or more than two points then it is NOT A FUNCTION.

for graphs

Ex: Which of the following is a function?

(a)
$$\{(x, y): y^2 = x, x, y \in R\}$$

$$\{(x, y) : y = |x|, x, y \in R\}$$

(c)
$$\{(x, y) : x^2 + y^2 = 1, x, y \in R\}$$

(d)
$$\{(x, y): x^2 - y^2 = 1, x, y \in R\}$$

(e)
$$\{(x, y) \in \mathbb{R}^2, |x| + |y| = 1\}$$

M

DOMAIN, RANGE & CO-DOMAIN

- # If function f' is defined from set A to set B (f: A > B) then:
 - (i) Domain of f = complete set A.
 - (ii) Range of f = elements of set B related to elements of set A.
 - (iii) Co-domain of f = complete set -B

$$\xi_{X_{\frac{3}{2}}} = \left(\begin{array}{c} + \\ + \\ \end{array} \right) = \left(\begin{array}{c} \\ \end{array} \right)$$

$$f: [-1, 3] \rightarrow [5, 1]$$

number of integers in domain = 5

maximum no. of integers in Range = 6

Ex: f'defined on Real no. set

$$f: R \to R$$

$$f: (-\infty, \infty) \to (-\infty, \infty)$$

Note:

Domain \equiv Set of pre-image | values of x | input | X-axis covered by graph

Range

■ Set of functional image | values of y | output | Y-axis covered by graph

FIRST TEST 01 MAY 2022 (SUNDAY)

SYLLABUS:

(nAll about Relations)
OR
(All till Relations)

keep doing hard work & keep smiling

THANKYOU

to all FUTURE IITIANS

