Digital to FPGA 101

Digital to FPGA 101

A tutorial for electronics enthusiasts new to FPGAs explaining how to run a Digital design on an FPGA with open source tools.

What to expect

- Will not be heavily edited (sorry)
- Requires knowledge of digital electronics and logic
 - A design in Digital you want to run in the FPGA
 - A cheap FPGA to run it on

What's covered?

- Modifying a Digital design for FPGA
 - Overriding embedded circuits with verilog
 - Using Block RAM (BRAM)
- Exporting to Verilog
- Simulating the design in Verilator
- Writing a makefile to automate building
- Compiling verilog into a bitstream
- Flashing the FPGA

Prerequisites

IceSugar

- Muse Lab
- Inexpensive
- Awesome!
- ICE40 up5k
- Aliexpress
 - China

IceBreaker

- 1 Bit Squared
- ICE40 up5k
- Buy:
 - 1 Bit Squared
 - CrowdSupply
 - Mouser

Required Tools

- make
- Open source FPGA toolchain installed:
 - By the apio package manager:
 - https://github.com/FPGAwars/apio
 - Requires working python env with pip
 - By compiling from source:
 - http://www.clifford.at/icestorm/

Installing with apio

- Windows Only:
 - o apio drivers --ftdi-enable
 - apio install gtkwave
 - Linux Subsystem for Windows?
- Also install:
 - apio install yosys
 - apio install ice40
 - apio install icesprog (IceSugar only)
 - o apio install verilator

Installing from source

- Fetch all required repos from git
- Follow directions here:
 - https://projectf.io/posts/building-ice40-fpgatoolchain/

Tool Descriptions

Make

- Automates building and compiling
- IMHO much simpler than other systems
- No nonsense
- Ancient, stable and well documented
- Not much syntax to learn (mostly copy paste)

Yosys

- "Synthesis" or "synthesizer"
- Converts Verilog into components and wires
- Optimizes and simplifies the design
- Maps components into FPGA hardware
- Emits a description for the next step

NextPNR

- Place and Route
- Plans where each component will be placed
- Determines how to wire up each component
- Assigns external connections to pins
- Verifies all the circuits meet timing constraints
- Emits a description for the next step

IcePack

- Converts the NextPNR description into a "Bit Stream"
- Emits a binary file for the next step

IceProg / IceSProg

Flashes binary bit stream to FPGA

Verilator

- Converts Verilog into C++
- This C++ is compiled into a binary
- Allows for very fast simulation of verilog designs
- Fastest open source simulator
- Can write debug traces in VCD or FST format
 - Very helpful for visualizing timing problems!
- Very helpful linter built in
 - Catches more issues than yosys does

ICE40 up5k

- Read the datasheet for more info
- Upsides:
 - 5k Logic Cells
 - 128 KB memory on-chip!!!
 - Hardware Multipliers!
- Downside: slow
 - 50 MHz if really well optimized
 - 20 MHz is more realistic
 - For beginning this is totally fine!

Block RAM

- One read port
- One write port
- Independent clocks
- Multi size options:
 - 256 16 bit words
 - 512 8 bit words
 - o and more

Sync SRAM

- 16K 16-bit words x 4
- "Single Port"
- Synchronous
- Separate:
 - Data In
 - Data Out
- Byte mask

Let's dive in!