SAMB for "graphene"

Generated on 2023-09-27 17:44 by MultiPie 1.1.15

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1g, A2g, B1g, B2g, E1g, E2g, A1u, A2u, B1u, B2u, E1u, E2u]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -M-K- Γ -K'.

symbol	position	symbol	position	symbol	position
Г К'	$ \begin{pmatrix} 0 & 0 & 0 \\ -\frac{1}{3} & -\frac{1}{3} & 0 \end{pmatrix} $	М	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	K	$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$

• Kets: dimension = 4

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket
1	(p_z,\uparrow) @A ₁	2	(p_z,\downarrow) @A ₁	3	(p_z,\uparrow) @A ₂	4	(p_z,\downarrow) @A ₂

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
$S_1 [2c: -6m2]$	A_1	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & 0 \end{array}\right)$	[1,6,7,8,9,10,14,15,16,17,23,24]
	A_2	$\left(\begin{array}{ccc} \frac{2}{3} & \frac{1}{3} & 0 \end{array}\right)$	[2,3,4,5,11,12,13,18,19,20,21,22]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [3f: mmm]	b_1	A_2	A_1	1	1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,-2,-3,6,-13,14,17,-18]
	b_2	A_2	A_1	1	1	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	$[-4,\!7,\!10,\!-11,\!15,\!-19,\!-22,\!23]$
	b_3	A_2	A_1	1	1	$\begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	$[-5,\!8,\!9,\!-12,\!16,\!-20,\!-21,\!24]$

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_{2,0}^{(E_{2g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_{2,0}^{(b, E_{2g})}]$$

No. 4
$$\hat{\mathbb{Q}}_{2,1}^{(E_{2g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_{2,1}^{(b, E_{2g})}]$$

No. 5
$$\hat{\mathbb{G}}_0^{(A_{1u})}(1,1) [M_1, B_1]$$

$$\hat{\mathbb{Z}}_5 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)]\otimes\mathbb{Y}_7[\mathbb{T}_{1,1}^{(b,E_{1u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)]\otimes\mathbb{Y}_6[\mathbb{T}_{1,0}^{(b,E_{1u})}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_1^{(A_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{6} = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{6}[\mathbb{T}_{1,0}^{(b,E_{1u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1,1}^{(b,E_{1u})}]}{2}$$

No. 7
$$\hat{\mathbb{Q}}_3^{(B_{1u})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_3^{(s,B_{1u})}]$$

No. 8
$$\hat{\mathbb{Q}}_3^{(B_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_8 = -\mathbb{X}_2[\mathbb{M}_1^{(a,A_{2g})}(1,1)] \otimes \mathbb{Y}_8[\mathbb{T}_3^{(b,B_{1u})}]$$

No. 9
$$\hat{\mathbb{Q}}_{1,0}^{(E_{1u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = -\mathbb{X}_2[\mathbb{M}_1^{(a,A_{2g})}(1,1)] \otimes \mathbb{Y}_7[\mathbb{T}_{1,1}^{(b,E_{1u})}]$$

No. 10
$$\hat{\mathbb{Q}}_{1,1}^{(E_{1u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_2[\mathbb{M}_1^{(a,A_{2g})}(1,1)] \otimes \mathbb{Y}_6[\mathbb{T}_{1,0}^{(b,E_{1u})}]$$

No. 11
$$\hat{\mathbb{G}}_{2,0}^{(E_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{11} = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{6}[\mathbb{T}_{1,0}^{(b,E_{1u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1,1}^{(b,E_{1u})}]}{2}$$

No. 12
$$\hat{\mathbb{G}}_{2,1}^{(E_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1,1}^{(b,E_{1u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_{6}[\mathbb{T}_{1,0}^{(b,E_{1u})}]}{2}$$

No. 13
$$\hat{\mathbb{G}}_{2,0}^{(E_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_8[\mathbb{T}_3^{(b,B_{1u})}]$$

No. 14
$$\hat{\mathbb{G}}_{2,1}^{(E_{2u})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{14} = -\mathbb{X}_3[\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)] \otimes \mathbb{Y}_8[\mathbb{T}_3^{(b,B_{1u})}]$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(p_z,\uparrow),(p_z,\downarrow)$	$(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1}^{(a,A_{2g})}(1,1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_3	$\mathbb{M}_{1,0}^{(a,E_{1g})}(1,1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{1,1}^{(a,E_{1g})}(1,1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
$\overline{\mathbb{Y}_1}$	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_2	$\mathbb{Q}_3^{(s,B_{1u})}$	S_1	$\left(\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ 2 & \end{array}\right)$
\mathbb{Y}_3	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & 3 \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_1	$\left(\begin{array}{ccc} \sqrt{6} & -\sqrt{6} & -\sqrt{6} \\ \hline 3 & -\sqrt{6} & -\sqrt{6} \end{array}\right)$
\mathbb{Y}_5	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$ $\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_1	$\left(0 -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right)$
\mathbb{Y}_6	$\mathbb{T}_{1,0}^{(b,E_{1u})}$	B_1	$\left(\begin{array}{ccc} 0 & \frac{\sqrt{2}i}{2} & -\frac{\sqrt{2}i}{2} \end{array}\right)$
\mathbb{Y}_7	$\mathbb{T}_{1,1}^{(b,E_{1u})}$	B_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}i}{3} & -\frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} \end{array}\right)$
\mathbb{Y}_8	$\mathbb{T}_3^{(b,B_{1u})}$	B_1	$\left(\begin{array}{ccc} \sqrt{3}i & \sqrt{3}i & \sqrt{3}i \\ \hline 3 & 3 & \end{array}\right)$

Table 8: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_{1,0}^{(E_{1u})}$	1	E_{1u}	_	0	x
3	$\mathbb{Q}_{1,1}^{(E_{1u})}$	1	E_{1u}	_	1	y

Table 8

No.	symbol	rank	irrep.	mul.	comp.	form
4	$\mathbb{Q}_{2,0}^{(E_{2g})}$	2	E_{2g}	_	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
5	$\mathbb{Q}_{2,1}^{(E_{2g})}$	2	E_{2g}	_	1	$-\sqrt{3}xy$
6	$\mathbb{Q}_3^{(B_{1u})}$	3	B_{1u}	_	_	$\frac{\sqrt{10}y(3x^2-y^2)}{4}$

Table 9: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_{2g})}$	1	A_{2g}	_	_	Z
2	$\mathbb{G}_{1,0}^{(E_{1g})}$	1	E_{1g}	_	0	-Y
3	$\mathbb{G}_{1,1}^{(E_{1g})}$	1	E_{1g}	_	1	X

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|0\},\ \{2_{001}|0\},\ \{2_{110}|0\},\ \{-1|0\}$

Table 10: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}$
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}, \{2_{110} 0\}$
$\{2_{120} 0\}$	$\{2_{120} 0\}, \{2_{210} 0\}, \{2_{1-10} 0\}$
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{6^{+}_{001} 0\}$	$\{6^{+}_{001} 0\}, \{6^{-}_{001} 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\},\ \{m_{010} 0\},\ \{m_{110} 0\}$
{m ₁₀₀ 0}	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$

Table 10

rep. SO	symmetry operations
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{m_{120} 0\}$	$\{m_{120} 0\}, \{m_{210} 0\}, \{m_{1-10} 0\}$
$\{-3^{+}_{001} 0\}$	$\{-3^{+}_{001} 0\}, \{-3^{-}_{001} 0\}$
$\{-6^{+}_{001} 0\}$	$\{-6^{+}_{001} 0\}, \{-6^{-}_{001} 0\}$

Table 11: Symmetry operations.

 No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{120} 0\}$	7	$\{2_{210} 0\}$	8	$\{2_{1-10} 0\}$	9	$\{3^{+}_{001} 0\}$	10	$\{3^{-}_{001} 0\}$
11	$\{6^{+}_{001} 0\}$	12	$\{6^{-}_{001} 0\}$	13	$\{-1 0\}$	14	$\{m_{100} 0\}$	15	$\{m_{010} 0\}$
16	$\{m_{110} 0\}$	17	$\{m_{001} 0\}$	18	$\{m_{120} 0\}$	19	$\{m_{210} 0\}$	20	$\{m_{1-10} 0\}$
 21	$\{-3^{+}_{001} 0\}$	22	$\{-3^{-}_{001} 0\}$	23	$\{-6^{+}_{001} 0\}$	24	$\{-6^{-}_{001} 0\}$		

Table 12: Character table (point-group part).

	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m ₁₀₀	m ₀₀₁	m ₁₂₀	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
E_{1g}	2	-2	0	0	-1	1	2	0	-2	0	-1	1
E_{2g}	2	2	0	0	-1	-1	2	0	2	0	-1	-1
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
B_{1u}	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1
E_{1u}	2	-2	0	0	-1	1	-2	0	2	0	1	-1
E_{2u}	2	2	0	0	-1	-1	-2	0	-2	0	1	1

Table 13: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	$A_{2g} (A_{2u})$	B_{1g} (B_{1u})	$B_{2g} (B_{2u})$	E_{1g} (E_{1u})
$E_{2g} (E_{2u})$	$A_{1u} (A_{1g})$	$A_{2u} (A_{2g})$	$B_{1u} (B_{1g})$	$B_{2u} (B_{2g})$
E_{1u} (E_{1g})	E_{2u} (E_{2g})			

Table 14: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
$\overline{A_{1g}}$	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

Table 15: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
 _	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

Table 16: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & 1 \end{pmatrix}$	2	$\left(-\sqrt{3}-1 1-\sqrt{3} 1\right)$	3	$\begin{pmatrix} 2 & 1 - \sqrt{3} & -1 \end{pmatrix}$	4	$\left(-\sqrt{3}-1 -2 -1\right)$
5	$\begin{pmatrix} -1+\sqrt{3} & 1+\sqrt{3} & -1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 + \sqrt{3} & -1 \end{pmatrix}$	7	$\begin{pmatrix} 1+\sqrt{3} & 2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & -1 \end{pmatrix}$
9	$\begin{pmatrix} 1 - \sqrt{3} & 2 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & 1 \end{pmatrix}$	11	$\begin{pmatrix} 2 & 1 + \sqrt{3} & 1 \end{pmatrix}$	12	$\begin{pmatrix} -1 + \sqrt{3} & -2 & 1 \end{pmatrix}$
13	$\left(-\sqrt{3}-1 1-\sqrt{3} -1\right)$	14	$\begin{pmatrix} -2 & -1 + \sqrt{3} & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1+\sqrt{3} & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & 1 \end{pmatrix}$
17	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & -1 \end{pmatrix}$	18	$\begin{pmatrix} 2 & 1 - \sqrt{3} & 1 \end{pmatrix}$	19	$\left(-\sqrt{3}-1 -2 1\right)$	20	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}$
21	$\left(-1+\sqrt{3} -2 -1\right)$	22	$\begin{pmatrix} 2 & 1 + \sqrt{3} & -1 \end{pmatrix}$	23	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & -1 \end{pmatrix}$	24	$\begin{pmatrix} 1-\sqrt{3} & 2 & -1 \end{pmatrix}$

Table 17: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,0}^{(E_{1u})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,1}^{(E_{1u})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{1g})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,1}^{(E_{1g})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$

Table 17

Table 17										4.0
symbol	1 ./6/2	2	3	4	5	6	7	8	9	10
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
(E ₂)	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
(E)	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{2,1}^{(E_{2g})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_3^{(B_{1u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3}^{(B_{2u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(E_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{3,1}^{(E_{2u})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_4^{(B_{1g})}$	$-\frac{\sqrt{3}}{6}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_4^{(B_{2g})}$	$ \frac{\frac{\sqrt{6}}{12}}{\frac{\sqrt{6}}{12}} $	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
-,~	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	Ü	12	12	12	Ū	12
		14	12							

Table 17

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 11										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	3	4	5	6	7	8	9	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			*								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{5,0}^{(E_{1u},1)}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{5,1}^{(E_{1u},1)}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-\frac{\sqrt{6}}{12}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{5,0}^{(E_{2u},1)}$							-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\frac{\sqrt{3}}{6}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{5,1}^{(E_{2u},1)}$		$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$		0		0	
		$-\frac{1}{4}$	0		$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_6^{(A_{2g})}$										
						$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{6,0}^{(E_{1g},1)}$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(E 1)										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{6,1}^{(E_{1g},1)}$										
						$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$-\frac{\sqrt{6}}{12}$						
	$\mathbb{Q}_7^{(A_{1u})}$										
$-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$						$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
		$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						