Rachel McGuigan Assignment Number 5 Discrete Event Simulation of a Queue

In this simulation assignment, a single server M/M/1 queueing system will be simulated. The inter-arrival and service times are exponentially distributed. The essential code is given in the handout on simulation. This code is given in C language.

- 1. Use any language to code the algorithm. That is you can use either C or C++ or Java or Pascal or FORTRAN.
- 2. Use the algorithm given in Jain for generating uniformly distributed random numbers between 0 and 1. It is given on pages 443 and 444. Try to use integer arithmetic if possible (that is page 443 algorithm), else try the algorithm given on page 444 (real arithmetic)
- 3. Use two different streams for arrival processes and service times. That is use two different seed for these streams. Use the seeds given in Table 26.2 on page 455.

 You need to track two random streams.
- 4. Given Ta = 200 time units, Ts = 100 time units.
 - Compute the theoretical values of X, U, L, and W. Use the formulae for the M/M/1 queue.
 - For te = 100, 1000, 10000, 100000, and 1000000 time units, simulate the queue and note the values of X, U, L, and W. Present results in a tabular form. Note that te is the simulation period.)

te	100	1000	10000	100000	1000000	
throughp ut	4.965303 48136387 8E-4	4.965303 48136387 8E-4	2.930859 13698665 2E-4	2.6E-4	2.437402 94421642 93E-4	
utilizat ion =	1	1.0	0.607390 87928349 98	0.542191 35457748 22	0.500053 67486768 38	
mean no. in system =	59079854	0.999515 59079854 87	0.607176 31787906 8	0.51584	0.499924 33002201 7	
mean residenc e time =	2013.000 00000000 02	2013.000 00000000 02	2071.666 66666666 65	1984.0	2051.053 27868852 46	
This is p:	0.5 1.0	0.5	0.607390 87928349 98	0.542191 35457748 22	2051.053 27868852 46	
This is Wq:	100.0	100.0	100.0	100.0	100.0	

- 5. Given Ta = 200 time units, te = 1000000 time units. Vary Ts. For Ts = 5, 10, 20,40,60,80,100,120,140,160,180 time units:
 - Using M/M/1 formulae compute X, U, L, and W. These results are independent of te!
 - Run simulation program and observe X, U, L, and W.

Ts	5	10	20	40	60	80
throughp ut	2.45E-4	2.45E- 004	2.45E-4	2.45E-4	2.439322 39590466 97E-4	2.438362 29231785 07E-4
utilizat ion =	0.025933 11659938 714	0.050962 44073252 426	0.101021 08899880 015	0.201138 38553135 144	0.300268 47989665 66	0.400082 28774251 8
mean no. in system =	0.024916	0.04994	0.1	0.200116	0.300153 62220460 257	0.400082 28774251 8
mean residenc e time =	101.6979 59183673 48	203.8367 34693877 56	408.1632 65306122 47	816.8	1230.479 50819672 13	1640.782 78688524 6
This is p:	0.025933 11659938 714	0.050962 44073252 426	0.101021 08899880 015	0.201138 38553135 144	0.300268 47989665 66	0.400200 39454717 665
This is Wq:	0.128205 12820512 822	0.526315 78947368 42	2.222222 22222222 2	9.999999 99999999 8	25.71428 57142857 15	53.33333 33333333 3
L	0.026623548 17859196658 55496305720 70817260891 5950328811	0.053699076 74872229130 53525535743 36734729604 7709625107	0.112373146 64733588959 57406881070 52324985379 7218474086	0.251781262 09648435315 04319180286 94539624999 7628811852	0.429119556 95851	0.667223504 1652657

Ts	100	120	140	160	180	80
throughp ut		35070904	51090573	42391793		
utilizat ion =		0.599828 41363523	1			

	38	63	26	38	56	
mean no. in system =	0.499924 33002201 7	0.599713 80169999 73	0.699400 85726725 94	640.0000 00000000 1	0.900985 55467894 97	
mean residenc e time =	2051.053 27868852 46	2461.430 32786885 26	2871.709 01639344 2	3282.954 91803278 67	3702.315 57377049 2	
This is p:	0.500053 67486768 38	0.599828 41363523 63	0.699524 70348100 26	0.799142 63689053 38	0.898682 30620406 56	
This is Wq:	100.0	179.9999 99999999 97	326.6666 66666666 63	640.0000 00000000 1	1620.000 00000000 05	
L	1.000214722 52114102195 26030125556 27825187207 9218843430	04303233	2.328060 61458292 129	3.978657 413992	8.869944 35556	

6. Present your results in a table.

• Plot U versus L, simulation and theoretical results on the same graph. Note that U is the independent variable, therefore it should be on the x-axis. There should be two curves in this graph.

U	L	U	W
0.02593311659938	0.02662354817859	0.02593311659938	0.12820512820512
7	2	7	8
0.05096244073252	0.05369907674872	0.05096244073252	0.52631578947368
4	2	4	4
0.1010210889988	0.11237314664733	0.1010210889988	2.222222222222
0.20113838553135	0.25178126209648	0.20113838553135	10
1	4	1	
0.30026847989665 7	0.42911955695851	0.30026847989665 7	25.7142857142857
0.40008228774251	0.66722350416526	0.40008228774251	53.3333333333333
0.50005267406760	0	0 50005267406760	
0.50005367486768	1.00021472252114	0.50005367486768	100
0.59982841363523	1.49892804505236	0.59982841363523	180
6	1, 0, 200 10 00 25 0	6	100
0.69952470348100 3	2.32806061458292	0.69952470348100 3	326.666666666667

• Plot U versus W, simulation and theoretical results on the same graph. Note that U is the independent variable, therefore it should be on the x-axis. There should be two curves in this graph.

Note: both of these graphs should have a label in the horizontal axis of "Utilization"


```
Code:
package rng;
import java.io.*;
import java.util.*;
import java.lang.Math;
public class assign5a {
       //Rachel McGuigan
       //Random number generator to test a simulated server FIFO queue
       //variables Assignment 5
public static double T = 0;// period of time over which the system is measured.
public static double A = 0;// number of arrivals in time T.
public static double C = 0; //number of completions in time
//public static double T = 0;//arrival rate.
public static double X = 0; //throughput rate.
public static double B = 0;//server busy time.
public static double U = 0;//server utilization.
public static double Ts = 0;// mean service time per customer.
public static double L = 0; //average number of customers in the system.
public static double W = 0; //average time of the customers spent in the system.
public static double Lq = 0; //average number of customers queued in the system.
public static double Wq = 0; //mean queueing time.
/*Arrival rate: = A=T
 Throughput rate: X = C = T
//ow balance: U = T s
//Lq = W q*/
  public void doSimulation(){
       //initialize the vars */
       double Ta = 200.0, Ts = 160, tn, tb = 0, time;
       double t1;
       double t2;
       int te = 1000000;
       double B=0, C=0.0, L, U, W, X;
       int n = 0;
       int s=0;
        int ia=1;
        int is=1;
```

```
t1 = 0; t2 = te; time = 0.0; tn = time;
 //call first event t1= getRandom, t2=getRandom
       //727633698
       double nexta= getRandom(1);
       //t1=getdist(nexta, Ta);
       double nexts= getRandom(276090261);
       //t2=getdist(nexts, Ts);
       System.out.print(t1); System.out.print(t2);
 // do this by calculate the first two seeds t1 and t2 first i
 while (time < te){
         printC(C, t1, t2, tn, tb);
       if (t1 < t2){
               // the event has arrived
               time=t1; s+= n*(time - tn);
               n++; tn=time;
               System.out.println("current s in queue: ");
               System.out.println(s);
               nexta= getRandom(nexta);
               t1= time + getdist(nexta, Ta);
               //if queue is empty time=total time->
               if(n==1)
                      tb=time:
                      nexts=getRandom(nexts);
                      t2= time + getdist(nexts,Ts); is++;}
               // the next event is completed
       else{
               time=t2;
               s += n*(time - tn);
               n--;
               tn = time;
               C++;
               //When the simulation completes, the average number in the system is
computed by dividing s by the observation period length, and the average residence time
then computed using Littleis Law.
               //print out each C here
               printC(C, t1, t2, tn, tb);
               if (n > 0) {
                      nexts=getRandom(nexts);
                      t2 = time + getdist(nexts,Ts);is++;
```

```
else{
                      t2 = te;
                      //B += time - tb;
                      B = B + time-tb;
 //end while
 X = C / time; System.out.println("throughput ="); System.out.println(X);
 U = B / time; System.out.println("utilization
=");System.out.println(B);System.out.println(time); System.out.println(U);
 L = s / time; System.out.println("mean no. in system ="); System.out.println(L);
 W = L / X; System.out.println("mean residence time ="); System.out.println(W);
 //print out: i, Ci, Interarrival time, Service time, #Ai, #Si, wi
 //print out m/m/i Queue
 System.out.println("This is p:");
 double z = calcU(Ts, Ta);
 System.out.println(z);
 System.out.println(B/time);
 System.out.println("This is Wq:");
 double o = calcWq(Ts, z);
 System.out.println(o);
 System.out.println("Wq really:");System.out.println(z/((1/Ts)*(1-z)));
 //function to generate t1 s t2 a since they both have same behavior
       //function to calculate utilization
       private static double calcU(double s, double t){
               double calc;
               calc=s/t;
               return calc;
       }
       //function for Wq or the work in the queue
       public static double calcWq(double Ts, double util){
               double mu = 1/Ts;
               return (util)/(mu*(1-util));
       }
```

```
private static double getRandom(double x) {
    //first calculate the rng
     double n = (16807*(x)) \% 2147483647;
     System.out.print("This is n:");
     System.out.print(n);
           //then make sure it is exponentially distributed
    return n;
}
private double getdist(double randprey, double expected){
    // expected values dist: 1/m sum (an) and 1/m sum(sn)
   //expected value will be equal to -Taln(x) via
   //1-e^{(-lambda*t)}
           double u;
   double operator1;
   double operator2;
   System.out.println("this is randprev minus 1:");
   System.out.println(1-randprev);
   randprev=Math.abs(1-randprev);
   operator1= Math.log(randprev);
   System.out.println("This is the operator: ");
   operator2= operator1*expected;
   System.out.print(operator1);
   //operator2= Math.abs(operator2);
   //x = -a*ln(x);
   System.out.println("This is the operator2: ");
   System.out.println(operator2);
   return operator2;
}
private void printC(double v, double time1, double time2, double tn, double tb){
    System.out.println("
                            "):
   System.out.println("i Ci Interarrival time Service time Ai Si wi");
   System.out.println(v);
   System.out.println(v);
   System.out.println(time1);
   System.out.println(time2);
   System.out.println(tb);
   System.out.println(tn);
   System.out.println(tb-tn);
}
```

}