In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
Titanic=pd.read_csv('Titanic.csv')
```

In [3]:

Titanic

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [4]:

Titanic.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000

```
max Passengerid 1,000000 3.000000 80.000000 8.000000 6.000000 512.329200 Fare
```

In [5]:

```
Titanic.dtypes
```

Out[5]:

PassengerId int64 Survived int64 Pclass int64 object Name Sex object float64 Age int64 SibSp int64 Parch Ticket object float64 Fare Cabin object Embarked object dtype: object

In [60]:

```
Titanic=Titanic.drop(['Name','Ticket','Cabin','PassengerId'],axis=1)
```

In [61]:

Titanic

Out[61]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.000000	0.526589	0.000000	2.110213	2
1	1	1	0	38.000000	0.526589	0.000000	4.280593	0
2	1	3	0	26.000000	0.000000	0.000000	2.188856	2
3	1	1	0	35.000000	0.526589	0.000000	3.990834	2
4	0	3	1	35.000000	0.000000	0.000000	2.202765	2
886	0	2	1	27.000000	0.000000	0.000000	2.639057	2
887	1	1	0	19.000000	0.000000	0.000000	3.433987	2
888	0	3	0	29.699118	0.526589	0.741276	3.196630	2
889	1	1	1	26.000000	0.000000	0.000000	3.433987	0
890	0	3	1	32.000000	0.000000	0.000000	2.169054	1

891 rows × 8 columns

In [63]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['Sex','Embarked']
for val in list1:
    Titanic[val]=le.fit_transform(Titanic[val].astype(str))
```

In [64]:

Titanic

Out[64]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22 000000	0 526589	0 000000	2 110213	2

	J	Ü			0.02000	0.000000	2.110210	-
_1	Survived 1	Pclass	Sex	Age 38.000000	SibSp 0.526589	Parch 0.000000	Fare 4.280593	Embarked
-	·	•						-
2	1	3	0	26.000000	0.000000	0.000000	2.188856	2
3	1	1	0	35.000000	0.526589	0.000000	3.990834	2
4	0	3	1	35.000000	0.000000	0.000000	2.202765	2
886	0	2	1	27.000000	0.000000	0.000000	2.639057	2
887	1	1	0	19.000000	0.000000	0.000000	3.433987	2
888	0	3	0	29.699118	0.526589	0.741276	3.196630	2
889	1	1	1	26.000000	0.000000	0.000000	3.433987	0
890	0	3	1	32.000000	0.000000	0.000000	2.169054	1

891 rows × 8 columns

In [65]:

```
Titanic.Survived.unique()
```

Out[65]:

```
array([0, 1], dtype=int64)
```

In [66]:

```
\verb|sns.heatmap(Titanic.isnull(),annot=| \textbf{True}|)|
```

Out[66]:

<matplotlib.axes._subplots.AxesSubplot at 0x208990a9c70>

In [67]:

```
Titanic.isnull().sum()
```

Out[67]:

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64

In [68]:

from sklearn.impute import.SimpleImputer

```
imp=SimpleImputer(strategy='mean')
Titanic['Age']=imp.fit_transform(Titanic['Age'].values.reshape(-1,1))
```

In [69]:

Titanic

Out[69]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.000000	0.526589	0.000000	2.110213	2
1	1	1	0	38.000000	0.526589	0.000000	4.280593	0
2	1	3	0	26.000000	0.000000	0.000000	2.188856	2
3	1	1	0	35.000000	0.526589	0.000000	3.990834	2
4	0	3	1	35.000000	0.000000	0.000000	2.202765	2
886	0	2	1	27.000000	0.000000	0.000000	2.639057	2
887	1	1	0	19.000000	0.000000	0.000000	3.433987	2
888	0	3	0	29.699118	0.526589	0.741276	3.196630	2
889	1	1	1	26.000000	0.000000	0.000000	3.433987	0
890	0	3	1	32.000000	0.000000	0.000000	2.169054	1

891 rows × 8 columns

In [70]:

```
\verb|sns.heatmap(Titanic.isnull(),annot=|| \textbf{True}||)
```

Out[70]:

<matplotlib.axes._subplots.AxesSubplot at 0x2089bde4d00>

In [71]:

```
Titanic.skew()
```

Out[71]:

Survived 0.478523 Pclass -0.630548 Sex -0.618921 0.434488 Age 1.178905 SibSp Parch 1.443387 0.394928 Fare Embarked -1.246689 dtype: float64

In [72]:

```
for col in Titanic.columns:
    if Titanic.skew().loc[col]>0.55:
        Titanic[col]=np.log1p(Titanic[col])
```

In [73]:

```
Titanic.skew()
```

Out[73]:

Survived 0.478523
Pclass -0.630548
Sex -0.618921
Age 0.434488
SibSp 1.002587
Parch 1.354107
Fare 0.394928
Embarked -1.246689
dtype: float64

In [74]:

Titanic.corr()

Out[74]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
Survived	1.000000	-0.338481	-0.543351	-0.069809	0.073601	0.132436	0.329862	-0.163517
Pclass	-0.338481	1.000000	0.131900	-0.331339	-0.025682	-0.014980	-0.661022	0.157112
Sex	-0.543351	0.131900	1.000000	0.084153	-0.189147	-0.256102	-0.263276	0.104057
Age	-0.069809	-0.331339	0.084153	1.000000	-0.199877	-0.252707	0.102485	-0.022239
SibSp	0.073601	-0.025682	-0.189147	-0.199877	1.000000	0.463057	0.393265	0.010906
Parch	0.132436	-0.014980	-0.256102	-0.252707	0.463057	1.000000	0.370655	0.014507
Fare	0.329862	-0.661022	-0.263276	0.102485	0.393265	0.370655	1.000000	-0.197567
Embarked	-0.163517	0.157112	0.104057	-0.022239	0.010906	0.014507	-0.197567	1.000000

In [75]:

```
plt.figure(figsize=(10,6))
sns.heatmap(Titanic.corr(),annot=True)
```

Out[75]:

<matplotlib.axes._subplots.AxesSubplot at 0x2089bde4b20>

In [76]:

```
col=Titanic.columns.values
ncol=5
nrow=5
```

In [77]:

```
plt.figure(figsize=(ncol,5*ncol))
for i in range(1,len(col)):
    plt.subplot(nrow,ncol,i+1)
    sns.boxplot(Titanic[col[i]],color='blue',orient='v')
    plt.tight_layout()
```


In [78]:

```
from scipy.stats import zscore
z_score=abs(zscore(Titanic))
print(Titanic.shape)
Tit=Titanic.loc[(z_score<3).all(axis=1)]
print(Tit.shape)</pre>
```

(891, 8) (866, 8)

In [79]:

Tit

Out[79]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.000000	0.423036	0.000000	2.110213	2
1	1	1	0	38.000000	0.423036	0.000000	4.280593	0
2	1	3	0	26.000000	0.000000	0.000000	2.188856	2
3	1	1	0	35.000000	0.423036	0.000000	3.990834	2
4	0	3	1	35.000000	0.000000	0.000000	2.202765	2
886	0	2	1	27.000000	0.000000	0.000000	2.639057	2
887	1	1	0	19.000000	0.000000	0.000000	3.433987	2
888	0	3	0	29.699118	0.423036	0.554618	3.196630	2
889	1	1	1	26.000000	0.000000	0.000000	3.433987	0
890	0	3	1	32.000000	0.000000	0.000000	2.169054	1

866 rows × 8 columns

In [80]:

```
Tit=pd.DataFrame(data=Tit)
```

In [81]:

```
x=Tit.iloc[:,1:-1]
```

In [82]:

X

Out[82]:

	Pclass	Sex	Age	SibSp	Parch	Fare
0	3	1	22.000000	0.423036	0.000000	2.110213
1	1	0	38.000000	0.423036	0.000000	4.280593
2	3	0	26.000000	0.000000	0.000000	2.188856
3	1	0	35.000000	0.423036	0.000000	3.990834
4	3	1	35.000000	0.000000	0.000000	2.202765

886	2	1	27.000000	0.000000	0.000000	2.639057
887	1	0	19.000000	0.000000	0.000000	3.433987
888	3	0	29.699118	0.423036	0.554618	3.196630
889	1	1	26.000000	0.000000	0.000000	3.433987
890	3	1	32.000000	0.000000	0.000000	2.169054

866 rows × 6 columns

In [83]:

```
x.shape
```

Out[83]:

(866, 6)

```
In [84]:
y=Tit.iloc[:,0]
In [85]:
Out[85]:
0
1
      1
2.
      1
4
      0
886
     0
     1
887
      0
888
889
      1
890
      0
Name: Survived, Length: 866, dtype: int64
In [86]:
y.shape
Out[86]:
(866,)
In [87]:
x train,x test,y train,y test=train test split(x,y,test size=.30,random state=45)
In [88]:
lr=LogisticRegression()
In [89]:
lr.fit(x_train,y_train)
lr.score(x train, y train)
pred=lr.predict(x_test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
0.7692307692307693
[[131 36]
 [ 24 69]]
                        recall f1-score support
             precision
                  0.85
                           0.78
                                                  167
           0
                                     0.81
                  0.66
                           0.74
                                     0.70
                                                  93
                                      0.77
                                                  260
   accuracy
                                    0.76
0.77
                         0.76
0.77
                0.75
  macro avg
                                                  260
                                                  260
                  0.78
weighted avg
In [90]:
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy score(v test.predknn))
```

```
print(confusion_matrix(y_test,predknn))
print(classification report(y test,predknn))
0.7692307692307693
[[142 25]
[ 35 58]]
            precision recall f1-score support
                0.80 0.85 0.83
0.70 0.62 0.66
          0
                                              167
                                               93
          1
                                    0.77
   accuracy
                                               2.60
                         0.74
                 0.75
                                   0.74
                                               260
  macro avq
                0.77
                          0.77
                                   0.77
                                              260
weighted avg
In [91]:
mnb=MultinomialNB()
mnb.fit(x_train,y_train)
mnb.score(x_train,y_train)
predmnb=mnb.predict(x test)
print(accuracy_score(y_test,predmnb))
print(confusion matrix(y test,predmnb))
print(classification_report(y_test,predmnb))
0.7730769230769231
[[153 14]
[ 45 48]]
            precision recall f1-score support
                         0.92
                                  0.84
          0
                 0.77
                                               167
                  0.77
                           0.52
                                    0.62
                                               93
                                            260
261
                                    0.77
   accuracy
                       0.72 0.73
0.77 0.76
                 0.77
  macro avg
                                   0.76
                 0.77
                          0.77
                                               260
weighted avg
In [92]:
svc=SVC(kernel='rbf')
svc.fit(x train,y train)
svc.score(x_train,y_train)
predsvc=svc.predict(x_test)
print(accuracy score(y test,predsvc))
print(confusion_matrix(y_test,predsvc))
print(classification_report(y_test,predsvc))
0.65
[[158 9]
[ 82 11]]
            precision recall f1-score support
          0
                  0.66
                          0.95
                                    0.78
                                               167
                          0.12
          1
                  0.55
                                    0.19
                                               93
                                    0.65
                                              260
   accuracy
                                  0.49
                       0.53
                0.60
                                               260
  macro avg
                 0.62
                                    0.57
                                               260
weighted avg
                          0.65
In [93]:
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
rf.score(x train, y train)
```

P++110 (4004+401_000+0(1_0000,P+04.1111),)

predrf=rf.predict(x_test)

print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification_report(y_test,predrf))

```
0.823076923076923
[[144 23]
[ 23 70]]
            precision recall f1-score support
                       0.86
0.75
                                  0.86
0.75
                 0.86
          0
                                               167
                 0.75
                                               93
          1
                                    0.82
                                               260
   accuracy
                       0.81
                                  0.81
                 0.81
                                               260
  macro avg
weighted avg
                 0.82
                           0.82
                                    0.82
                                               260
In [94]:
from sklearn.ensemble import AdaBoostClassifier
ad=AdaBoostClassifier()
ad.fit(x train,y train)
ad.score(x train,y train)
predad=ad.predict(x_test)
print(accuracy_score(y_test,predad))
print(confusion matrix(y test,predad))
print(classification_report(y_test,predad))
0.7884615384615384
[[137 30]
[ 25 68]]
                       recall f1-score support
             precision
                 0.85
                       0.82
                                   0.83
                                              167
          1
                0.69
                          0.73
                                   0.71
                                               93
                                    0.79
                                               260
   accuracy
                                  0.77
                       0.78
0.79
               0.77
  macro avg
                                               260
                0.79
                                               260
weighted avg
In [95]:
import joblib
joblib.dump(rf,'Titanic.pkl')
Out[95]:
['Titanic.pkl']
In [ ]:
```