Prediction Challenge 1 - Deep Learning

Description

Image classification with a feed forward deep neural network, using tuning techniques to improve the accuracy.

Design your own feed forward deep neural network to classify images from the Fashion-MNIST dataset. Use the RELU activation function and the Adam optimiser. Change the other parameters of the network and hyperparameters to achieve the best accuracy.

Data

Use the Fashion-MNIST dataset that is available from the Keras API. Information about the Fashion-MNIST dataset and how to load it from the Keras API can be found via the following link.

Fashion MNIST dataset, an alternative to MNIST (keras.io)

Submission

Provide one Word or PDF document with the following:

1. Validation Accuracy Number obtained from here in your training output of your model:

2. Screen print of the Keras summary of your deep neural network i.e.

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 10)	50
dense_3 (Dense)	(None, 3)	33
Total params: 83 Trainable params: 83 Non-trainable params: 0		

3. A screen print of the model accuracy and loss plots

4. A 300 word (max) blog critically appraising your choice of model parameters and hyperparameters

Important Note: Submit your work as a zipped folder via the link provided on Moodle (Prediction Challenge 1 Submission). Your zipped folder MUST have two items namely: your code downloaded from Colab as .ipynb and your word or pdf file that contains the above screen prints plus your 300-word (maximum) that critically appraised your model. Also, the zipped folder should be named using the following format StudetName_studentID.zip

For example: AliyudaAli_123456789.zip