Probability and Statistics: Lecture-13

Monsoon-2020

by Pawan Kumar (IIIT, Hyderabad) on September 7, 2020

- » Table of contents1. Conditional Independence2. Random Variables
 - 3. Special Distributions

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

What are sample space and events?

1. Sample space, S: all possible infinite sequences of tosses

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1. Sample space, S: all possible infinite sequences of tosses
- 2. event E_1 : first toss is H

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1. Sample space, S: all possible infinite sequences of tosses
- 2. event E_1 : first toss is H
- 3. event E_2 : first two tosses are TH

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the nth toss.

Solution

- 1. Sample space, S: all possible infinite sequences of tosses
- 2. event E_1 : first toss is H
- 3. event E_2 : first two tosses are TH
- **4**. event E_3 : first two tosses are TT

Problem

A coin for which P(Heads) = p is tossed until two successive Tails are obtained. Find the probability that the experiment is completed on the *n*th toss.

Solution

- Sample space, S: all possible infinite sequences of tosses
- 2. event E_1 : first toss is H
- 3. event E_2 : first two tosses are TH
- 4. event \pmb{E}_3 : first two tosses are TT
- 5. event F_n : experiment completed on the *n*th toss.

» Solution to problem in previous slide...part-1 P(Fn) = P(Fn | E) | P(E) + P(Fn | E2) | P(E2) + P(Ent E3) | P(E3) | $P(F_2) = P(E_3) = (-b)^2$ - P(Fn|E) = P(Fn-1) Pn= pn-1 p + pn-2 (1-p)p

» Solution to problem in previous slide...part-2

» Solution to problem in previous slide...part-3

Properties

Properties

$$* 0 \le P(A \cap E) \le 1$$
Some divint (Arigned)

Properties

- $* 0 \leq P(A \cap E) \leq 1$
- $* P(A \mid E) = 1 P(A^c \mid E)$

Properties

- $* 0 \leq P(A \cap E) \leq 1$
- * $P(A \mid E) = 1 P(A^c \mid E)$
- $*P(A \cap B \mid E) = P(B \cap A \mid E)$

Properties

- $* 0 \leq P(A \cap E) \leq 1$
- * $P(A \mid E) = 1 P(A^c \mid E)$
- $* P(A \cap B \mid E) = P(B \cap A \mid E)$
- $* P(A \cap B \mid E) = P(B \mid E)P(A \mid B \cap E)$

Properties

$$* 0 \leq P(A \cap E) \leq 1$$

*
$$P(A \mid E) = 1 - P(A^c \mid E)$$

$$* P(A \cap B \mid E) = P(B \cap A \mid E)$$

*
$$P(A \cap B \mid E) = P(B \mid E)P(A \mid B \cap E)$$

*
$$P(A \mid B \cap E) = \frac{P(B \mid A \cap E)P(A \mid E)}{P(B \mid E)}$$

» Scratch Space for Proving Conditional Probabilities...

» Scratch Space for Proving Conditional Probabilities...

» Conditional Independence...

» Conditional Independence...

Definition of conditional independence

Two events A and B are conditionally independent given E if

$$P(A \cap B|E) = P(A \mid E)P(B \mid E)$$

» Conditional Independence...

Definition of conditional independence

Two events A and B are conditionally independent given E if

$$P(A \cap B|E) = P(A \mid E)P(B \mid E)$$

Fact on Conditional Independence

A and B independent does not mean that A and B are independent given E. That is,

$$P(A \cap B) = P(A)P(B) \Longrightarrow P(A \cap B \mid E) = P(A \mid E)P(B \mid E)$$

Quiz-1

Two events *E* and *F* are independent if

1. Knowing that F happens means that E can't happen

Quiz-1

Two events *E* and *F* are independent if

- 1. Knowing that F happens means that E can't happen
- 2. Knowing that *F* happens doesn't change probability that *E* happened.

Quiz-1

Two events *E* and *F* are independent if

- 1. Knowing that F happens means that E can't happen
- 2. Knowing that *F* happens doesn't change probability that *E* happened.

What is your answer?

Quiz-1

Two events *E* and *F* are independent if

- 1. Knowing that F happens means that E can't happen
- 2. Knowing that \emph{F} happens doesn't change probability that \emph{E} happened.

What is your answer?

» Mutually Exclusive and Independent Events...

» Mutually Exclusive and Independent Events...

Quiz

When are two events both mutually exclusive and independent?

A, B
(i) Mul. exclusin =)
$$A \cap B = \beta \Rightarrow P(A \cap B) = 0$$

(2) In dependence =) $P(A \cap B) = P(A) P(B)$
=) $P(A) P(B) = 0$
=) $P(A) = 0$ or $P(B) = 0$

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- * int i = 4;
- * float x = 10;
- * char y = 'x';

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- * int i = 4;
- * float x = 10;
- * char y = 'x';

Examples of random variable

Let X denote the outputs after we roll a die, then

$$X=3$$

means that after rolling a die, we obtain 3 as output.

Examples of typed variables in C

In some languages, such as, C/C++. we have the concept of a typed variable:

- * int i = 4;
- * float x = 10;
- * char y = 'x';

Examples of random variable

Let X denote the outputs after we roll a die, then

$$X = 3$$

Lependenby

means that after rolling a die, we obtain 3 as output.

Since the number that is going to be assigned to variable *X* is going to be random, it is called random variable.

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X: S \to \mathbb{R}.$$
 $\{1, 2, 3, 1, 6\}$

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X:S \to \mathbb{R}$$
.

* We usually denote random variables by capital letters: X, Y, \dots

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X:S \to \mathbb{R}$$
.

- * We usually denote random variables by capital letters: X, Y, \dots
- * Random variable is a function with domain S and co-domain $\mathbb R$

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X:S o\mathbb{R}.$$

- * We usually denote random variables by capital letters: X, Y, \dots
- * Random variable is a function with domain S and co-domain $\mathbb R$
- * The range of a random variable is the set of possible values of X

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X:S \to \mathbb{R}$$
.

- * We usually denote random variables by capital letters: X, Y, \dots
- st Random variable is a function with domain S and co-domain $\mathbb R$
- * The range of a random variable is the set of possible values of X

Examples of Random Variables...

Find the range of the following random variables:

st I toss a coin 10 times. Let X be the number of heads I observe

Definition of Random Variable

A random variable *X* is a function from the sample space to the real numbers.

$$X:S o \mathbb{R}$$
.

- * We usually denote random variables by capital letters: X, Y, \dots
- * Random variable is a function with domain S and co-domain $\mathbb R$
- * The range of a random variable is the set of possible values of X

Examples of Random Variables...

Find the range of the following random variables:

- * I toss a coin 10 times. Let X be the number of heads I observe
- st I toss a coin until the first tail appears. Let Y be the total number of coin tosses

Quiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let X be the number of tails. Answer the following:

Quiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let X be the number of tails. Answer the following:

* What is the value of X for the outcomes? $\frac{1}{\sqrt{1 + \frac{1}{2}}}$

Ouiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let X be the number of tails. Answer the following:

- * What is the value of *X* for the outcomes?

 - $(H,H,H) \leftarrow \bigcirc$ $(T,T,H) \leftarrow \bigcirc$

Quiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let *X* be the number of tails. Answer the following:

- * What is the value of *X* for the outcomes?
 - * (H, H, \overline{H})
 - * (*T*, *T*, *H*)

What is the event when X = 2?

Ouiz on Random Variable

Consider and Experiment: 3 coins are flipped. Let *X* be the number of tails. Answer the following:

- * What is the value of *X* for the outcomes?
 - * (*H*, *H*, *H*)
 - * (T, T, H)
- * What is the event wher X = 27
- * What is P(X = 2)?

Remarks on Random variables

* random variables are not events!

» Random Variables are Not Events!

Remarks on Random variables

- * random variables are not events!
- * when a random variable is assigned a value, then it becomes event

X = x	Set of Outcomes	P(X = k)
X = 0	$\{(T,T,T)\}$	1/8_
X = 1	$\{(H, T, T), (T, H, T), (T, T, H)\}$	3/8
X = 2	$\{(H, H, T), (H, T, H), (T, H, T)\}$	3/8
X = 3	$\{(H,H,H)\}$	1/8
$X \ge 4$	{}	0

Consider an experiment where 3 coins are flipped, and X denotes number of heads

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable *X* is called discrete random variable, if its range is countable.

Types of Random Variables...

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1-1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1–1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable *X* is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

1. discrete random variables

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1–1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable *X* is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

- 1. discrete random variables
- 2. continuous random variables

Recall: countable sets

A set *A* is countable if either it is a finite set, or it can be put in 1–1 correspondence with set of natural numbers.

Discrete Random Variables

A random variable X is called discrete random variable, if its range is countable.

Types of Random Variables...

There are three types of random variables:

- 1. discrete random variables
- 2. continuous random variables 📥
- 3. mixed random variables

0 = X = 100

Examples of random variables

1. I toss a coin 100 times. Let X be the number of heads I observe

4: 81,2,31 countable

Examples of random variables

- 1. I toss a coin 100 times. Let X be the number of heads I observe
- 2. I toss a coin until the first heads appears. Let *Y* be the total number of coin tosses

Examples of random variables

- 1. I toss a coin 100 times. Let *X* be the number of heads I observe
- 2. I toss a coin until the first heads appears. Let *Y* be the total number of coin tosses
- 3. The random variable *T* is defined as the time (in hours) from now until the next earthquake occurs in a certain city

Examples of random variables

- 1. I toss a coin 100 times. Let X be the number of heads I observe
- 2. I toss a coin until the first heads appears. Let Y be the total number of coin tosses
- 3. The random variable T is defined as the time (in hours) from now until the next earthquake occurs in a certain city
- ملال Let X be the height of students in a class (عبل

Definition of probability mass function ans some remarks...

Let *X* be a random variable with range $R_X = \{x_1, x_2, \dots, \}$, which is finite or countably infinite.

Definition of probability mass function ans some remarks...

Let X be a random variable with range $R_X = \{x_1, \underline{x_2}, \dots, \}$, which is finite or countably infinite. The function

$$P_X(x_k) = P(X = x_k), \text{ for } k = 1, 2, 3, ...$$

Definition of probability mass function ans some remarks...

Let X be a random variable with range $R_X = \{x_1, x_2, \dots, \}$, which is finite or countably infinite. The function

$$P_X(x_k) = P(X = x_k), \text{ for } k = 1, 2, 3, \dots$$

is called probability mass function (PMF) of X.

* Hence, probability mass function $P_X(x_k)$ is a shorthand for $P(X = x_k)$

Definition of probability mass function ans some remarks...

Let X be a random variable with range $R_X = \{x_1, x_2, \dots, \}$, which is finite or countably infinite. The function

$$P_X(x_k) = P(X = x_k), \text{ for } k = 1, 2, 3, \dots$$

x, y, 2

- * Hence, probability mass function $P_X(x_k)$ is a shorthand for $P(X = x_k)$
- * The subscript in $P_X(x_k)$ indicates that it is the PMF of random variable X

Definition of probability mass function ans some remarks...

Let *X* be a random variable with range $R_X = \{x_1, x_2, \dots, \}$, which is finite or countably infinite. The function

$$P_X(x_k) = P(X = x_k), \text{ for } k = 1, 2, 3, ...$$

- * Hence, probability mass function $P_X(x_k)$ is a shorthand for $P(X = x_k)$
- * The subscript in $P_X(x_k)$ indicates that it is the PMF of random variable X
- * For discrete random variable, PMF is also called probability distribution

Definition of probability mass function ans some remarks...

Let X be a random variable with range $R_X = \{x_1, x_2, \dots, \}$, which is finite or countably infinite. The function

$$P_X(x_k) = P(X = x_k)$$
, for $k = 1, 2, 3, ...$

- * Hence, probability mass function $P_X(x_k)$ is a shorthand for $P(X = x_k)$
- * The subscript in $P_X(x_k)$ indicates that it is the PMF of random variable X
- * For discrete random variable, PMF is also called probability distribution
- * The term probability distribution function is almost always reserved for cumulative distribution(to be introduced)

Examples of PMF

We toss a fair coin twice.

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

1. Find the range of random variable X, i.e., R_X

[19/29]

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

- 1. Find the range of random variable X, i.e., R_X
- 2. Find the PMF of random variable \boldsymbol{X}

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

- 1. Find the range of random variable X, i.e., R_X
- 2. Find the PMF of random variable X

Answer

* Sample space $S = \{HH, HT, TH, TT\}$. No. of heads: 0,1,2. Hence, $R_X = \{0, 1, 2\}$

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

- 1. Find the range of random variable X, i.e., R_X
- 2. Find the PMF of random variable X

Answer

- * Sample space $S = \{HH, HT, TH, TT\}$. No. of heads: 0,1,2. Hence, $R_X = \{0, 1, 2\}$
- * Since the range is finite set, thus countable, X is a discrete random variable

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

- 1. Find the range of random variable X, i.e., R_X
- 2. Find the PMF of random variable X

Answer

- st Sample space $\emph{S}=\{\emph{HH},\emph{HT},\emph{TH},\emph{TT}\}.$ No. of heads: 0,1,2. Hence, $\emph{R}_\emph{X}=\{0,1,2\}$
- st Since the range is finite set, thus countable, X is a discrete random variable
- * We now find the PMF of $X : P_X(k) = P(X = k)$ for k = 0, 1, 2

Examples of PMF

We toss a fair coin twice. Let *X* be the random variable denoting the number of heads we observe.

- 1. Find the range of random variable X, i.e., R_X
- 2. Find the PMF of random variable X

Answer

- * Sample space $S = \{HH, HT, TH, TT\}$. No. of heads: 0,1,2. Hence, $R_X = \{0\}$ 1,2 $\}$
- * Since the range is finite set, thus countable, X is a discrete random variable
- * We now find the PMF of $X: P_X(k) = P(X = k)$ for k = 0, 1, 2

$$P_X(0) = P(X = 0) = P(TT) = 1/4$$
 $P_X(1) = P(X = 1) = P(\{HT, TH\}) = 1/4 + 1/4 = 1/2$
 $P_X(2) = P(X = 2) = P(HH) = 1/4$

* Consider an experiment of rolling a six-sided die

- * Consider an experiment of rolling a six-sided die
- * The sample space or support of $\it X$ is $\{1,2,3,4,5,6\}$

- Consider an experiment of rolling a six-sided die
- * The sample space or support of X is $\{1, 2, 3, 4, 5, 6\}$
- * Here X is a discrete random variable, and PMF of X is

- Consider an experiment of rolling a six-sided die
- * The sample space or support of X is $\{1, 2, 3, 4, 5, 6\}$
- * Here X is a discrete random variable, and PMF of X is

$$P_{X}(x) = \begin{cases} 1/6, & x \in \{1, 2, 3, 4, 5, 6\} \\ 0, & \text{otherwise} \end{cases}$$

Problem on PMF

Consider an unfair coin for which P(H) = p.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

1. Is Ya discrete random variable?

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

- 1. Is Ya discrete random variable?
- 2. Find PMF of the random variable $Y \leftarrow$

Answer to the problem

We have

$$P_{Y}(1) = P(Y = 1) = P(H) = p$$
 $P_{Y}(2) = P(Y = 2) = P(TH) = (1 - p)p$
 \vdots
 $P_{Y}(k) = P(Y = k) = P(TT \cdots TH) = (1 - p)^{k-1}p$

Properties of PMF

1. $0 \le P_X(x) \le 1$ for all x

Properties of PMF

- 1. $0 \le P_X(x) \le 1$ for all x
- 2. $\sum_{\mathbf{x} \in R_{\mathbf{X}}} P_{\mathbf{X}}(\mathbf{x}) = 1$

Properties of PMF

- 1. $0 \le P_X(x) \le 1$ for all x
- 2. $\sum_{\mathbf{x} \in R_{\mathbf{x}}} P_{\mathbf{X}}(\mathbf{x}) = 1$
- 3. for any set $A \subset R_X$, $P(X \in A) = \sum_{x \in A} P_X(x)$

Problem on PMF

Consider an unfair coin for which $P(\underline{H}) = p$.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

1. Check $\sum_{y \in R_Y} P_Y(y) = 1$, here R_Y is the range of random variable Y

Problem on PMF

Consider an unfair coin for which P(H) = p. We toss the coin repeatedly until we observe a head for the first time. Let Y be the total number of times the coin was tossed.

- 1. Check $\sum_{y \in R_Y} P_Y(y) = 1$, here R_Y is the range of random variable Y
- 2. If p = 1/2, find $P(2 \le Y < 5)$

$$\frac{1}{2}\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8}\right)^{-\frac{1}{2}}$$