

Arkusz zawiera informacie prawnie chronione do momentu rozpoczęcia egzaminu

Nazwa kwalifikacji: Eksploatacja układów automatyki przemysłowej

Oznaczenie kwalifikacji: ELM.04

Numer zadania: 01 Wersja arkusza: SG

Numer PESEL zdającego*	Wypełnia zdający	Miejsce na naklejkę z numerem PESEL i z kodem ośrodka
Czas trwania egzaminu: 150 min	ut.	ELM.04-01-23.01-SG

EGZAMIN ZAWODOWY **Rok 2023** CZĘŚĆ PRAKTYCZNA

PODSTAWA PROGRAMOWA 2019

Instrukcja dla zdającego

Czas trwania egzaminu: 150 minut.

- Na pierwszej stronie arkusza egzaminacyjnego wpisz w oznaczonym miejscu swój numer PESEL i naklej naklejkę z numerem PESEL i z kodem ośrodka.
- Na KARCIE OCENY w oznaczonym miejscu przyklej naklejkę z numerem PESEL oraz wpisz: 2
 - swój numer PESEL*,
 - oznaczenie kwalifikacji,
 - numer zadania.
 - numer stanowiska.
- Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron i nie zawiera błędów. Ewentualny brak stron lub inne usterki zgłoś przez podniesienie ręki przewodniczącemu zespołu nadzorującego.
- Zapoznaj się z treścią zadania oraz stanowiskiem egzaminacyjnym. Masz na to 10 minut. Czas ten 4. nie jest wliczany do czasu trwania egzaminu.
- Czas rozpoczęcia i zakończenia pracy zapisze w widocznym miejscu przewodniczący zespołu 5. nadzorującego.
- 6. Wykonaj samodzielnie zadanie egzaminacyjne. Przestrzegaj zasad bezpieczeństwa i organizacji
- Po zakończeniu wykonania zadania pozostaw arkusz egzaminacyjny z rezultatami oraz KARTE OCENY na swoim stanowisku lub w miejscu wskazanym przez przewodniczącego zespołu nadzorujacego.
- Po uzyskaniu zgody zespołu nadzorującego możesz opuścić sale/miejsce przeprowadzania egzaminu.

Powodzenia!

Układ graficzny © CKF 2020

^{*} w przypadku braku numeru PESEL – seria i numer paszportu lub innego dokumentu potwierdzającego tożsamość

Zadanie egzaminacyjne

W przedsiębiorstwie, w którym funkcjonują różne układy regulacji przeprowadzono przegląd czujników pomiarowych i modernizację układów regulacji temperatury.

Przeanalizuj wyniki przeglądu oraz dokumentację techniczną podzespołów automatyki i na tej podstawie:

- oblicz graniczne wartości rezystancji wynikające z błędu nieliniowości dla czujników Pt100 tabela 2.,
- określ klasę badanych trzech czujników Pt100, oznaczonych numerami 1, 2, 3 i oceń ich przydatność do dalszej eksploatacji – tabela 3.,
- dorysuj na rysunku 7. trójprzewodowy układ czujnika RTD oraz połączenia między podzespołami układu regulacji temperatury wiedząc, że grzałki modułu grzewczego mają być połączone w gwiazdę,
- oblicz optymalne nastawy regulatora temperatury układu po modernizacji według reguł Zieglera-Nicholsa,
- sporządź wykaz czynności związanych z przeglądem regulatora, z podaniem częstotliwości ich wykonania – tabela 5.

WYNIKI PRZEGLĄDU ORAZ DOKUMENTACJA TECHNICZNA PODZESPOŁÓW AUTOMATYKI

1. DANE TECHNICZNE I DOKUMENTACJA PRZEGLĄDU CZUJNIKÓW RTD

Opis badanych czujników RTD

- rodzaj czujnika Pt100
- zakres temperatury podczas pomiarów 0÷200 °C
- klasy badanych czujników A lub B

Rysunek 1. Charakterystyki granicznego błędu nieliniowości δ w funkcji temperatury dla różnych klas czujników RTD.

Rysunek 2. Układ pomiarowy, przy zastosowaniu którego przeprowadzono badanie czujników RTD

Tabela 1. Protokół pomiarów rezystancji badanych czujników Pt100 wraz z wartościami rezystancji czujnika i granicznych błędów nieliniowości czujnika według PN-EN 60751

		Wed	Wy	niki pomiaı	ów		
Lp.	Temperatura T	Rezystancja czujnika R _T	nieliniowośc	ny błąd ci δ czujnika sy A i B	Wartość rezystancji R _⊤ dla czujnika o numerze		
			Klasa A	Klasa B	1	2	3
	°C	Ω	%	%	Ω		
1.	0	100,00	± 0,15	± 0,3	99,81	100,05	99,98
2.	20	107,79	± 0,19	± 0,4	107,72	107,90	107,69
3.	40	115,54	± 0,23	± 0,5	115,50	115,74	115,51
4.	60	123,24	± 0,27	± 0,6	123,22	123,44	123,29
5.	80	130,90	± 0,31	± 0,7	131,41	131,27	131,04
6.	100	138,51	± 0,35	± 0,8	139,02	138,93	138,66
7.	120	146,07	± 0,39	± 0,9	146,87	146,64	145,88
8.	140	153,58	± 0,43	± 1,0	154,86	154,29	153,03
9.	160	161,05	± 0,47	± 1,1	162,79	161,88	160,20
10.	180	168,48	± 0,51	± 1,2	170,63	169,52	167,21
11.	200	175,86	± 0,55	± 1,3	178,35	176,98	174,77

Zależności określające graniczne wartości rezystancji czujników w klasach A i B:

wartość minimalna rezystancji R_{Tmin} czujnika:

$$R_{Tmin} = R_T \cdot (1 - \delta/100) [\Omega]$$

wartość maksymalna rezystancji R_{Tmax} czujnika

$$R_{Tmax} = R_T \cdot (1 + \delta/100) [\Omega]$$

gdzie:

R_T - rezystancja czujnika [Ω] wg PN-EN 60751

δ - graniczny błąd nieliniowości czujnika [%] wg PN-EN 60751

2. INFORMACJE TECHNICZNE O PODZESPOŁACH PRZEWIDZIANYCH DO MODERNIZACJI UKŁADU REGULACJI TEMPERATURY

2.1. Regulator temperatury RE

Parametry techniczne regulatora

napięcie zasilania:	85÷270 V AC/DC
częstotliwość zasilania przy zasilaniu napięciem przemiennym:	50/60 Hz
pobór mocy:	max 6 VA przy 230 V AC
typ wejścia czujnikowego:	TC termopara (J, K, T, R, S) RTD czujnik rezystancyjny (PT100)
wyjście regulacyjne:	przekaźnik elektromagnetyczny: zestyk zwierny 5 A/250 V AC lub 30 V DC dla obciążeń rezystancyjnych lub przekaźnik półprzewodnikowy SSR: wyjście 12 V DC, 30 mA
wyjście pomocnicze:	przekaźnik elektromagnetyczny: zestyk zwierny 3 A/250 V AC lub 30 V DC dla obciążeń rezystancyjnych
zakres nastaw członów regulatora	zakres wzmocnienia K_P od 0,25 do 100 V/V czas całkowania T_I od 0 do 9999 s czas różniczkowania T_D od 0 do 9999 s
temperatura pracy:	od 0 do 50 °C
temperatura przechowywania:	od -20 do 75 °C
waga:	116 g
stopień ochrony obudowy:	IP50 od strony czołowej

Opis zacisków regulatora

- 1 podłączenie przewodu fazy zasilania L
- 2 podłączenie przewodu neutralnego N
- 3 wyjście pomocnicze typu NO
- 4 zacisk COM dla wyjścia pomocniczego
- 5 wyjście regulacyjne typu NO
- 6 zacisk do podłączenia jednego z czujników: TC+ lub RTD1
- 7 zacisk do podłączenia jednego z czujników: TC- lub RTD2
- 8 zacisk do podłączenia trójprzewodowego układu z czujnikiem RTD3
- 9 nie wykorzystywany
- 10 zacisk COM dla wyjścia regulacyjnego
- 11 zacisk wyjścia regulacyjnego do sterowania przekaźnika SSR+
- 12 zacisk wyjścia regulacyjnego do sterowania przekaźnika SSR-

Rysunek 3. Podłączenia czujników do regulatora

2.2. Przekaźnik półprzewodnikowy SSR

Parametry techniczne przekaźnika

zakres roboczego napięcia zasilania:	50÷480 V AC
częstotliwość zasilania przy zasilaniu napięciem przemiennym:	50/60 Hz
prąd znamionowy obciążenia:	3 x 25 A
pobór mocy:	max 6 VA przy 230 V AC
sygnał sterujący	3÷32 V DC, oznaczenia wejść + i -

Opis zacisków przekaźnika

R, S, T – zaciski do podłączenia faz L1, L2, L3 napięcia zasilania 3 x 400 V 50 Hz

U, V, W – zaciski do podłączenia odbiornika

+, - zaciski sterujące przekaźnika, napięcie sterowania 3÷32 V DC

Rysunek 4. Przekaźnik SSR

2.3. Wyłączniki różnicowo-prądowe RCD

Parametry techniczne wyłącznika 3-fazowego

napięcie znamionowe:	3x400 V AC
częstotliwość zasilania przy zasilaniu napięciem przemiennym:	50/60 Hz
znamionowy prąd obciążenia:	40 A
znamionowy prąd różnicowy:	30 mA
przycisk TEST	TAK

Parametry techniczne wyłącznika 1-fazowego

napięcie znamionowe:	230 V AC
częstotliwość zasilania przy zasilaniu napięciem przemiennym:	50/60 Hz
znamionowy prąd obciążenia:	25 A
znamionowy prąd różnicowy:	30 mA
przycisk TEST	TAK

Opis zacisków wyłączników

1, 3, 5 – zaciski do podłączenia faz L1, L2, L3 sieci zasilającej

7 (N) – zacisk do podłączenia przewodu N sieci zasilającej

2, 4, 6 – zaciski do podłączenia zasilanego obwodu odbiornika

8 (N) – zacisk do podłączenia przewodu N odbiornika

Rysunek 5. Wyłączniki RCD

2.4. Rezystancyjne czujniki temperatury

Parametry techniczne czujników temperatury

typ czujnika	Pt100
maksymalny zakres pracy czujnika:	-150÷850 °C -199÷999 °F
układ podłączenia czujnika:	trójprzewodowy

2.5. Moduł grzewczy

Parametry techniczne modułu

moduł zawiera:	trzy pojedyncze grzałki
możliwość kojarzenia w układzie:	gwiazdy lub trójkąta
znamionowe napięcie zasilania:	3x400 V
częstotliwość zasilania przy zasilaniu napięciem przemiennym:	50/60 Hz
znamionowa moc pojedynczej grzałki:	3 kW

Rysunek 6. Moduł grzewczy

INSTRUKCJA OGLĘDZIN I PRZEGLĄDÓW EKSPLOATACYJNYCH UKŁADU AUTOMATYKI

1. Minimum 1 raz w miesiącu.

Zakres czynności do wykonania:

- sprawdzić stan mocowania mechanicznego wszystkich podzespołów,
- sprawdzić stan izolacji przewodów pod kątem uszkodzeń i zabrudzeń,
- sprawdzić przyciskiem TEST działanie zabezpieczeń przeciwporażeniowych wyłączników różnicowo-prądowych,
- sprawdzić stan techniczny elementów sygnalizacyjnych.

Zauważone nieprawidłowości zapisać w Książce Raportów.

2. Minimum 1 raz na kwartał

Zakres przeglądu - wykonać czynności opisane w ramach przeglądu miesięcznego oraz:

- sprawdzić stan techniczny modułu grzewczego pod kątem uszkodzeń, nalotu zgorzelinowego i kurzu,
- sprawdzić stan połączeń przewodów elektrycznych modułu grzewczego,
- sprawdzić pod kątem czystości i czytelności panel frontowy regulatora,
- wykonać pomiary prądów pobieranych przez moduł grzewczy zmierzone wartości zapisać w Książce Przeglądów,
- sprawdzić nastawy regulatora i ewentualnie skorygować,
- sprawdzić czujnik temperatury pod kątem zanieczyszczeń i uszkodzeń,
- sprawdzić działanie wyłączników i blokad,
- sprawdzić działanie regulatora przeprowadzając test grzania,
- sprawdzić poprawność generowania alarmów,
- sporządzić protokół z przeglądu.

3. Minimum 1 raz na pół roku

Zakres przeglądu – wykonać czynności opisane w ramach przeglądu kwartalnego oraz:

- sprawdzić działanie zabezpieczeń nadmiarowo-prądowych zabezpieczających moduł grzewczy,
- sprawdzić drożność kanałów przepływu powietrza przez moduł grzewczy i w razie potrzeby przeprowadzić czyszczenie kanałów,
- sprawdzić czystość i stan końcówek przewodów elektrycznych,
- sporządzić protokół z przeglądu.

4. Minimum 1 raz na rok

Zakres przeglądu – wykonać czynności opisane w ramach przeglądu półrocznego oraz:

- dokonać pomiaru rezystancji izolacji modułu grzewczego zmierzone wartości zapisać w Książce Przeglądów,
- dokręcić wszystkie zaciski regulatora,
- wymienić czujnik termoelektryczny układu,
- rozkręcić i wyczyścić złącza prądowe modułu grzewczego i wymienić złącza w przypadku widocznego nadpalenia lub zaśniedzenia,
- dokonać pomiaru impedancji zwarcia w układzie sieci zasilającej,
- dokonać pomiaru rezystancji przewodu ochronnego PE na odcinku od modułu grzewczego do rozdzielnicy zasilającej,
- sporządzić protokół przeglądu rocznego.

Czas przeznaczony na wykonanie zadania wynosi 150 minut.

Ocenie podlegać będzie 5 rezultatów:

- obliczenia granicznych wartości rezystancji dla czujników Pt100 tabela 2.,
- określenie klasy badanych czujników Pt100 i ocena ich przydatności do dalszej eksploatacji tabela
 3.,
- uzupełniony schemat połączeń podzespołów układu regulacji temperatury po modernizacji rysunek 7.,
- nazwy i wartości obliczonych nastaw regulatora temperatury w układzie po modernizacji wg reguł
 Zieglera-Nicholsa,
- wykaz czynności związanych z przeglądem regulatora tabela 5.

Tabela 2. Obliczenia granicznych wartości rezystancji dla czujników Pt100 zgodnie z normą PN-EN 60751

UWAGA: Wvniki obliczeń podać z dokładnościa do 0.01 Ω

		Rezystancja	Wartości graniczne rezystancji czujników Pt100		ujników	
Lp.	Temperatura T	czujnika Pt100 wg PN-EN 60751	Klasa A		Klasa B	
Lp.		R _T	R _{Tmin}	R _{Tmax}	R _{Tmin}	R _{Tmax}
	°C	Ω	Ω	Ω	Ω	Ω
1.	0	100,00				
2.	20	107,79				
3.	40	115,54				
4.	60	123,24				
5.	80	130,90				
6.	100	138,51				
7.	120	146,07				
8.	140	153,58				
9.	160	161,05				
10.	180	168,48				
11.	200	175,86				

Tabela 3. Określenie klasy i przydatność do dalszej eksploatacji badanych czujników Pt100

	Określenie klasy badanych czujników Pt100			Ocena przydatności czujników		
Numer	Spełnia klasę	Spełnia klasę	Poza klasami	do dalszej eksploatacji		
czujnika	Α	В	AiB	sprawny	do wymiany	
	Zaznacz X w odpowiedniej kratce			Zaznacz X w odpowiedniej kratce		
1						
2						
3						

MODUŁ GRZEWCZY

Rysunek 7. Schemat połączeń podzespołów układu regulacji temperatury po modernizacji – do uzupełnienia

Ustalenie optymalnych nastaw regulatora temperatury w układzie po modernizacji według reguł Zieglera-Nicholsa

Tabela 4. Reguły Zieglera-Nicholsa

Typ regulatora	K _P	T _I	T _D
Р	$0,5K_{KR}$		
PI	0,45K _{KR}	0,83T _{KR}	
PID	0,6K _{KR}	0,5T _{KR}	0,125T _{KR}

Doprowadzono układ z regulatorem typu P do granicy stabilności, przy której w układzie występują niegasnące oscylacje. W tych warunkach odczytano nastawę regulatora jako:

 $K_{KR} = 4 \text{ V/V}$

oraz wykonano pomiaru okresu oscylacji:

 $T_{KR} = 60 \text{ s}$

Optymalne nastawy regulatora temperatury typu PID wraz z jednostkami wynoszą:

Nazwa parametru K _P
Wartość K _P =
Nazwa parametru T _I
Wartość T _I =
Nazwa parametru T _D
Wartość T _D =

Tabela 5. Wykaz czynności związanych z przeglądem regulatora

Lp.	Wykaz czynności związanych z przeglądem regulatora	Częstotliwość przeprowadzania
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		