Stat 88: Probability & Mathematical Statistics in Data Science

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Lecture 40: 4/30/2021

Chapter 12

Finishing up regression

https://xkcd.com/1725/

The individual response Y_i and the average response \overline{Y}

$$\Sigma_i \sim N(0, \sigma^2)$$
 $Y_i \sim N(\beta_0 + \beta_i \chi_i, \sigma^2)$

- Y_i are normal with expectation $\beta_0 + \beta_1 x_i$ and variance σ^2
- Note that the individual responses are independent of each other.

• Let
$$\overline{Y}$$
 be the average response. $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$

- $E(\overline{Y}) = \beta_0 + \beta_1 \overline{x}$ (the expected average response is the signal at the average value of the predictor variable)
- $Var(\overline{Y}) = \frac{\sigma^2}{n}$ (only involves the error variance since the randomness in the Y_i 's comes only from the errors or noise)
- Since \overline{Y} is a linear combination of independent normally distributed random variables, it is also normal.

$$\overline{Y} \sim N(\beta_0 + \beta_1 \overline{\pi}, \underline{\sigma}^2)$$

The estimated slope \$1, which is on unobservable parameter)

- The least squares estimate of the true slope β_1 is $\hat{\beta}_1 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})(Y_i-\bar{Y})}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}$ sample for $\hat{\beta}_1 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})(Y_i-\bar{Y})}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}$ sample for $\hat{\beta}_1 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}$ sample for $\hat{\beta}_1 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}$ sample for $\hat{\beta}_1 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}{\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2}$
 - Notice that $\hat{\beta}_1$ is random (because of the Y_i).
 - Also, since Y_i is normal, and \overline{Y} is normal, so is $Y_i \overline{Y}$, therefore $\hat{\beta}_1$ is also normally distributed

$$E(\hat{\beta}_i) = \beta_i$$

- $E(Y_i \overline{Y}) = \beta_1(x_i \overline{x})$
- $E(\hat{\beta}_1) = \beta_1$, so $\hat{\beta}_1$ is an **unbiased** estimator of β_1
- $Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}$ (to be taken as fact, proof beyond the scope of this class)

- SD of the estimated slope $\hat{\beta}_1$ $SD(\hat{\beta}_1) = \frac{\sigma}{\sum_{i=1}^n (x_i \bar{x})^2}$ we know then
- Need to estimate σ_i , which we will do by using the SD of the residuals. The larger the n, the better our estimate of σ

$$\hat{\sigma} = SD(D_1, D_2, \dots, D_n) = \sqrt{\frac{1}{n} \sum_{i=1}^n (D_i - \overline{D})^2}, \quad \longleftarrow$$

- $D_i = Y_i \hat{Y}_i = Y_i \hat{\beta}_0 \hat{\beta}_1 x_i$ (The D_i are the residuals and estimate the errors) residuals
- Since we are estimating the SD from the data, we will call it the *standard* error of the estimator.
- That is, we will denote this estimated $SD(\hat{\beta}_1)$ by $SE(\hat{\beta}_1)$.

$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}$$
 estimate $\hat{\beta}$ which estimated $\hat{\beta}$ by the sample $\hat{\beta}$ of residuals $\hat{\beta}$ and $\hat{\beta}$ is $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ is $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ is $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ is $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ are siduals $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ are siduals $\hat{\beta}$ and $\hat{\beta}$ and $\hat{\beta}$ are siduals $\hat{\beta}$ and $\hat{\beta}$ are sid

Confidence intervals for β_1

•
$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
 for large n , $SE(\hat{\beta}_1) \to SD(\hat{\beta}_1)$

Therefore, for large n, the distribution of $\hat{\beta}_1$, standardized, is approximately standard normal.

$$T = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim N(0,1) \qquad \text{(avge, then Tynna)}$$

- A 95% Cl for β_1 is given by $\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$ (β_1)

 If 95% CI . does not contain 0, then can reject the β_1 : β_1 =0 (vs. β_1 +0) at 5% significance level.
- Note that if the sample size is not large enough, the distribution of T is not necessarily normal, since the assumption that $SE(\hat{\beta}_1) \approx SD(\hat{\beta}_1)$ may not hold.
- In this situation, we model the distribution of *T* using a family of bell-shaped distributions, called the *t-distributions*.

Hypothesis tests to test $\beta_1 = 0$

- $\beta_1 = 0$ is a very important question: is there any linear relationship at all?
- A 95% CI for β_1 is given by $\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$: we can use this CI. If 0 is not in this interval, then we reject the null hypothesis of the slope being 0 at the 5% significance level.
- We can set up a test: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ and use the fact that under the null hypothesis,

$$T = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} \sim N(0,1)$$

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

• Let's look at the example from the text on pulse rates after looking at the tdistribution

The t-distribution

t-den has parameter "digreedon"

Rather than a normal curve, a t-curve is used Λ For regression, "degrees of freedom" for T equals n-2. For large enough n, use the normal curve.

(When the sample size n is large, so is n-2, so we might as well use the normal curve. When the sample is size is small, using the appropriate t curve gives more accurate answers.)

$$T = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)}$$

Example (12.4.3)

slope, intercept, r, p, se slope=

$$\beta_{i}$$
 (1.142879681904831,
 β_{0} 13.182572776013345,
 γ 0.6041870881060092,
1.7861044071652305e-24, ($\beta_{i} = 0$ vs $\beta_{i} = 0$)
0.09938884436389145)

mean_active, sd_active

c) Find the SD of the residuals.

$$= 8 \mathcal{E}(\beta_1) \cdot \sqrt{\frac{2}{1-1}} (x_1 - \overline{x})^2$$

4/30/21

Quick look back

4/30/21