Chapter Z | Identitiability

- Given $f(2; \vec{\theta})$, where 2 is 2 nown but $\vec{\theta}$ un2 nown. We consider whether $\vec{\theta}$ can be found at all.

Def Parameter Identifiability

-Let
$$y(2) = f(2; \overline{o})$$
 denote objervations from f , where $\overline{o} \in \Gamma$ is the parameter vector.

. We say that $\widehat{\Theta}$ are identifiable if $\mathcal{L}(2;\widehat{\Theta})$ are uniquely determined by $\widehat{\Theta}$.

(ansider a Spring problem with
$$C=0$$
)
$$\Rightarrow m \frac{d^2z}{dt^2} + 2z = 0, Z(b) = z_0, \frac{dz}{dt}|_{t=0} = 0.$$

- Here,
$$\vec{O} = [M, 2] \in [T = (G, \infty) \times (O, \infty)$$

- Note: Characteristic equation gives $r = \frac{1}{2}N^{\frac{2}{2}}M$ i

- Note, it Zo is 2 noun, the rath &m = K is not unique.

. There exist identifiable + non-identifiable manifolds

$$I(0) = \{ l = art tan (2/m) | 0 < 0 < T_2 \}$$

 $NI(0) = \{ r = \sqrt{2^2 + m^2} | r = 70 \}$

Ex) SIR Model

$$\frac{dS}{dt} = n(N-S) - 72IS$$

$$\frac{dI}{dt} = 72IS - (n+r)R$$

$$\frac{dR}{dt} = rI - nR$$

Itentifiability Definitions

-there are 4 types of identifiability

- i) Structural
- in) Practical
- ill) Statistical
- in Sensitivity-based