

디지털논리회로 [Digital Logic Circuits]

8 강.

조합논리회로(3)

컴퓨터과학과 강지훈교수

제5장 | 조합논리회로

학습 목차 8 강

MSI를 이용한 조합논리회로(2)

- 디코더
- 멀티플렉서
- 디멀티플렉서

contents

8강. 조합논리회로(3)

5.5

MSI를 이용한 조합논리회로(2)

• 디코더

- ・부호화 된 입력을 받아서 부호화 되지 않은 출력을 내보내는 복호화기
- n비트의 2진 코드를 최대 2^n 개의 서로 다른 정보로 바꾸어 주는 조합논리회로

• 2×4 디코더

1. 블럭도

2. 진리표

입력		출력			
A	В	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

3. 내부 회로도

• 3×8 디코더

1. 블럭도

2. 진리표

	입력					출	력			
A_2	A_1	A_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

3. 내부 회로도

• 디코더의 확장

• 작은 디코더 여러 개를 결합하여 필요한 크기의 디코더 구성 2×4 디코더 2개를 이용한 3×8 디코더

입력은 3비트(A, B, C)로 구성

- $\bullet B$ 와 C는 두 디코더에 모두 연결
- •최상위 비트 4의 입력에 따라 두 디코더 중 하나만 동작
- ◆A가 O이라면
- •위쪽 디코더는 B, C에 따라 $D_0 \sim D_3$ 중 하나의 최소항 선택
- ◆A가 1이라면
- •아래쪽 디코더는 B, C에 따라 $D_4 \sim D_7$ 중 하나의 최소항 선택

• 3×8 디코더

	입력		출력							
A	В	С	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

- 디코더를 이용한 부울함수의 구현
 - 디코더는 n개의 입력변수에 대한 2^n 개의 최소항을 만듦
 - 따라서, 부울함수는 최소항의 합으로 표현되며, 디코더를 이용하면 부울함수를 구현할 수 있음
 - n개의 입력과 m개의 출력을 가진 조합논리회로는 $n \times 2^n$ 디코더와 m개의 OR 게이트로 만들 수 있음

- $F(X,Y,Z) = \Sigma m(1,3,4,7)$ 를 디코더를 이용하여 구현
 - 해당 부울함수는 3개의 입력과 8개의 최소항을 나타냄. 따라서, 3 × 8 디코더가 필요함
 - 주어진 부울함수에서 최소항은 4개(1, 3, 4, 7)이며, 이를 OR 게이트로 연결

- 디코더를 활용한 BCD-3초과 코드 변환기 구현(1)
 - 디코더와 OR 게이트로 구현할 때에는 부울함수를 최소항의 합 형태로 표현
 - 최소항의 합 형태는 진리표나 카르노 도표를 이용해서 구함

	입력 BCD 코드						·과 코.	<u> </u>
10진숫자	A	В	С	D	W	X	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

$$W(A, B, C, D) = \Sigma m(5, 6, 7, 8, 9)$$

$$X(A, B, C, D) = \Sigma m(1, 2, 3, 4, 9)$$

$$Y(A, B, C, D) = \Sigma m(0, 3, 4, 7, 8)$$

$$Z(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8)$$

• 디코더를 활용한 BCD-3초과 코드 변환기 구현(2)

• 디코더와 OR 게이트를 이용한 논리회로도 작성

■ 디코더 선택 입력변수에 대한 최소항을 모두 발생시킬 수 있는 4×16 디코더가 필요함

$$W(A, B, C, D) = \Sigma m(5, 6, 7, 8, 9)$$

$$X(A, B, C, D) = \Sigma m(1, 2, 3, 4, 9)$$

$$Y(A, B, C, D) = \Sigma m(0, 3, 4, 7, 8)$$

$$Z(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8)$$

- 멀티플렉서(Multiplexer, MUX)
 - 여러 개의 입력 신호 중에 하나를 선택하여 단일 출력으로 내보내는 조합논리회로
 - 특정 입력 신호를 선택하기 위해 선택변수 사용
 - 만일 2^n 개의 입력 신호 중에서 특정 입력을 선택하기 위해서는 n개의 선택변수가 있어야 함
 - n개의 선택변수의 조합에 따라 특정 입력 신호가 선택됨
 - 데이터 선택기(Data Selector) 라고도 하며, 약어로 MUX로 표시

• 4×1 멀티플렉서(1)

*S*₁, *S*₀ 이 1, 0 이라면

- D₂가 입력되는 AND 게이트의 두 입력은 모두 1이 되어 출력이 1이 됨
- 나머지 3개의 AND 게이트의 출력은 0이 됨
- 즉, OR 게이트로 입력되는 4개의 입력 중 D_2 가 입력된 AND 게이트의 출력만 1이 됨
- 따라서 OR 게이트의 출력은 D₂의 값이 됨

• 4×1 멀티플렉서(2)

함수표

S_1	S_0	Y
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

블럭도

• 멀티플렉서에서 디코더 기능

• 구동입력을 가진 멀티플렉서

4개의 2×1 MUX의 논리회로도

함수표

Е	S	출력	Y
0	Χ	모두	0
1	0	선택	Α
1	1	선택	В

• 구동입력을 가진 멀티플렉서

4개의 2×1 MUX 블럭도

4비트로 구성된 두 수 A, B
 중 하나를 출력하는 경우

- 멀티플렉서를 이용한 부울함수 구현
 - 멀티플렉서는 OR 게이트를 가진 디코더와 같은 기능을 수행함
 - ・ 따라서, 멀티플렉서의 선택선으로 입력변수의 최소항을 선택할 수 있으며, 입력선을 이용해 해당 최소항을 입력할 수 있음
 - n개의 선택 입력과 2^n 개의 데이터 입력을 가진 멀티플렉서를 이용하면 n+1개의 변수를 가진 부울함수를 구현할 수 있음

• 멀티플렉서를 이용한 부울함수 구현과정

- 1. 최소항의 변수를 MUX의 입력선과 선택선에 연결
 - 변수가 A, B, C,.... 순서라면, A는 입력선에 그 다음 변수인 B, C,....를 선택선의 높은 순서부터 차례대로 연결

- n개의 선택 입력과 2^n 개의 데이터 입력을 가진 멀티플렉서를 이용하면 n+1개의 변수를 가진 부울함수를 구현할 수 있음
 - → 3개의 변수를 가진 부울함수를 구현하려면,
 2개의 선택입력과
 2²개의 데이터 입력을 가진 멀티플렉서를 사용
- 2. 입력선에 연결되는 변수 A에 대한 최소항을 결정
 - 이 단계의 작업에서 I_0 , I_1 , I_2 , I_3를 결정. 이는 구현표에 의해 결정됨
- 3. 완성된 구현표에 의해 MUX에 입력단을 연결하면 부울함수를 구현할 수 있음

• $F(A, B, C) = \Sigma m(1, 2, 6, 7)$ 의 구현(1)

1. 최소항의 변수를 MUX에 할당

2. 구현표 작성 (I_0 , I_1 , I_2 , I_3 를 결정하는 단계)

3. 구현표 완성을 위해 진리표 이용	3.	구현표	완성을	위해	진리	표 0	l용
----------------------	----	-----	-----	----	----	-----	----

최소항	A	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

		_ 최:		.하
X	Y	Z		- 6
Λ	1	נו	항	표시
0	0	0	$\bar{X}\bar{Y}\bar{Z}$	m_0
0	0	1	$\bar{X}\bar{Y}Z$	m_1
0	1	0	$\bar{X}Y\bar{Z}$	m_2
0	1	1	$\bar{X}YZ$	m_3
1	0	0	$Xar{Y}ar{Z}$	m_4
1	0	1	$X\bar{Y}Z$	m_5
1	1	0	$XY\bar{Z}$	m_6
1	1	1	XYZ	m_7

A가 가장 왼쪽 변수이기 때문에 보수형과 정상형이 반반씩 존재함

• $F(A, B, C) = \Sigma m(1, 2, 6, 7)$ 의 구현(2)

4. MUX의 입력을 결정(1)

	I_0	I_1	I_2	I_3
\overline{A}	0	1	2	3
A	4	5	6	7

• 구현표에 작성된 최소항의 목록에 진리표에서 주어진 함수의 최소항을 표시한 뒤 각 열을 규칙에 따라 MUX의 입력으로 결정

※ MUX의 입력 결정 규칙

- 1. 동일한 열에 속한 두 최소항이 표시되어 있지 않다면, 해당 열의 MUX 입력은 O.
- 2. 동일한 열에 속한 두 최소항이 모두 표시되어 있다면, 해당 열의 MUX 입력은 1.
- 3. 아래쪽 최소항만 표시되어 있다면, 해당 열의 MUX 입력은 *A*
- 4. 위쪽 최소항만 표시되어 있다면, 해당 열의 MUX 입력은 \overline{A}

5. MUX의 입력을 결정(2)

	I_0	I_1	I_2	I_3
\overline{A}	0	①	2	3
Α	4	5	6	7
	0	Ā	1	Α

- $F(A, B, C) = \Sigma m(1, 2, 6, 7)$ 의 구현(3)
 - 6. 구현표를 이용하여 부울함수를 구현

	I_0	I_1	I_2	I_3
\overline{A}	0	1	2	3
Α	4	5	6	7
	0	\overline{A}	1	A

• 멀티플렉서를 이용하여 구현된 부울함수의 검증

• 선택선에 따라 출력값을 확인

최소항	A	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

BC=00: MUX의 I_0 이 선택됨. $I_0=0$ 이기 때문에 F=0, A값과 무관하게 BC=00일 때 $m_0=\bar{A}\bar{B}\bar{C}$, $m_4=\bar{A}\bar{B}\bar{C}$ 는 모두 0을 출력

BC = 01: MUX의 I_1 이 선택됨. $I_1 = \bar{A}$ 이기 때문에 $m_1 = \bar{ABC}$ 면 F = 1, $m_5 = \bar{ABC}$ 면 F = 0 을 출력

BC = 10: MUX의 I_2 이 선택됨. $I_2 = 1$ 이기 때문에 F = 10 되며, A값과 무관하게 출력이 1이므로 $m_2 = \bar{A}B\bar{C}$, $m_6 = AB\bar{C}$ 는 모두 1 출력

BC = 11: MUX의 I_3 이 선택됨. $I_3 = A$ 이기 때문에 $m_3 = \bar{A}BC$ 면 A = 0이기 때문에 F = 0 출력, $m_7 = ABC$ 면 A = 1이기 때문에 출력 F = 1

- $F(A, B, C, D) = \Sigma m(1, 3, 6, 9, 11, 12, 14, 15)$ 의 구현(1)
 - 1. 최소항의 변수를 MUX에 할당 2. 구현표 작성

		I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7
	\overline{D}	0	2	4	6	8	10	12	14
	D	1	3	5	7	9	11	13	15
_									

#LA 하		출력			
최소항	A	В	С	D	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

• $F(A, B, C, D) = \Sigma m(1, 3, 6, 9, 11, 12, 14, 15)$ 의 구현(2)

3. 구현표 완성을 위해 진리표 이용

치시하		출력			
최소항	Α	В	С	D	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

	_	I_1				-		
\overline{D}	0	2	4	6	8	10	12	<u>(4)</u>
D	1	3	5	7	9	1	13	(5)
	D	D	0	\overline{D}	D	D	\overline{D}	1

• $F(A, B, C, D) = \Sigma m(1, 3, 6, 9, 11, 12, 14, 15)$ 의 구현(3)

4. 구현표를 이용하여 부울함수를 구현

		-			•	I_5		
\overline{D}	0	2	4	6	8	10	12	<u>(4</u>)
D	1	3	5	7	9	1	13	(5)
	D	D	0	\overline{D}	D	D	\overline{D}	1

- 디멀티플렉서(demultiplexer)
 - 멀티플렉서와 반대되는 연산을 수행하는 조합논리회로
 - 데이터 분배기(data distributor)라고도 불림
 - 한 개의 입력선으로부터 정보를 받아 이를 2^n 개의 출력선 중 하나로 내보냄
 - 출력선의 제어는 n개의 선택입력 조합으로 제어됨
 - 디멀티플렉서는 약어로 DEMUX로 표시함

• 논리회로도와 블럭도

•데이터 입력 E는 두 선택신호 S_1 , S_0 에 의해 출력선을 선택함

 S_1 , S_0 가 10이라면, 출력 D_2 만 입력 E를 출력함.

즉, 동작 특성이 디코더와 유사하게 작동함 (입력 신호에 따라 1이 출력될 출력선을 결정)

• 디멀티플렉서와 디코더와의 유사관계

	입력			출	력		
Е	Α	В	D_0 D_1 D_2 D_2				
0	Χ	Χ	0	0	0	0	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	

- DEMUX와 디코더는 동일한 진리표를 가짐
- DEMUX는 E가 데이터 입력, A, B는 선택 입력
- ・디코더는 A, B가 데이터 입력, E가 구동 입력

MSI를 이용한 조합논리회로

- MSI 장치 활용의 특성
 - 회로 설계 시 MSI 장치는 논리회로의 게이트나 배선을 자동으로 최적화 해주는 마법 같은 도구는 아님
 - 반도체 설계 단계에서 최적화되어 최적화 수준과 기능이 검증되어 미리 만들어진 장치를 사용하는 것임
 - 이를 통해 직접 테스트하고 검증을 하기 위한 노력과 시간을 감소시킬 수 있음
 - MSI 장치를 활용할 때 비용적인 장점도 얻을 수 있음
 - 직접 게이트를 배치할 때의 개발비용과 MSI 소자를 구매하는 비용 사이에서 적절한 타협점을 찾아야 함

Summary

8강 | 조합논리회로(3)

MSI를 이용한 조합논리회로

- 디코더
- 멀티플렉서
- 디멀티플렉서

디지털논리회로 [Digital Logic Circuits]

순서논리회로(1)

