Note		
	1	=
	2	
	3	
	4	
		3

${\bf Sp\'{e}cifications}:$

La fonction maxGapMatrix(M) retourne le gap maximum des lignes de la matrice non vide M.

$R\'{e}ponses$ 3 (Synergistic Dungeon – 4 points)

Spécifications:

La fonction $\operatorname{dungeon}(M)$ retourne le nombre minimum de points de vie que doit avoir la princesse pour sauver le chevalier dans le donjon représenté par la matrice non vide M.

$R\'{e}ponses$ 4 (Tests - 8 points)

1. Spécifications: La fonction equal (B1, B2) vérifie si les arbres B1 et B2 sont indentiques.

2. Spécifications : La fonction isSubTree(S, B) vérifie si l'arbre S est un sous-arbre de l'arbre B.

