Einführung in die Algebra

Sebastian Bechtel, Isburg Knof

15. April 2015

1 Gruppen

Definition. Eine (innere) <u>Verknüpfung</u> auf einer Menge $M \neq \emptyset$ ist eine Abbildung $M \times M \to M, (a,b) \mapsto a \cdot b.$

Definition. Eine <u>Gruppe</u> ist eine Menge $G \neq \emptyset$ zusammen mit einer Verknüpfung ·, sodass Assoziativität (A), Existenz eines neutralen Elements (N) und Existenz inverser Elemente (I) erfüllt sind. G ist <u>abelsch</u>, falls Kommutativität (K) gilt.

Beispiel 1. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind abelsche Gruppen mit + als Verknüpfung.

- 2. $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^*, \mathbb{C}^*$ mit Multiplikation sind abelsche Gruppen.
- 3. Für eine Menge M ist Sym(M) ist eine Gruppe, aber nicht abelsch.

Lemma 1. a) Das neutrale Element ist eindeutig.

b) Inverse Elemente sind eindeutig.

Beweis. a) Seien e, f neutrale Elemente, dann gilt e = ef = f.

b) Sei $a \in G$ und $b, b' \in G$ inverse Elemente. Dann gilt b' = b'e = b'(ab) = (b'a)b = eb = b.

Notation. multiplikativ: $a \cdot b$ oder ab, neutrales Element e oder 1, inverses Element von $a \in G$ ist a^{-1} .

Lemma 2. Es sei $\mathcal{G} = (G, \cdot)$ eine Menge mit assoziativer Verknüpfung, einem linksneutralen Element und linksinversen Elementen, dann ist \mathcal{G} eine Gruppe.

Beweis. Sei $a \in G$ und $b \in G$ mit ba = e. Nach (I') gibt es $c \in G$ mit cb = e. Also ab = eab = cbab = ceb = e.

Sei nun
$$a \in G$$
, es gilt $ae = a(a^{-1}a) = ea = e$.

Lemma 3. 1.
$$(a^{-1})^{-1} = a$$
, $(ab)^{-1} = b^{-1}a^{-1}$

2. $ab = ac \implies b = c \text{ für alle } a, b, c \in G.$

3. $f\ddot{u}r\ a,b\in G\ gibt\ es\ genau\ ein\ x\in G,\ sodass\ ax=b.$

Beweis. 1. $(a^{-1})^{-1} = a$ klar. Für $a, b, c \in G$: $(b^{-1}a^{-1})ab = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$ (andere Richtung analog)

2.
$$ab = ac \implies a^{-1}(ab) = a^{-1}(ac) \implies b = c$$

3. Setze
$$x=a^{-1}b$$
, dann erhält man $ax=a(a^{-1}b)=(aa^{-1})b=eb=b$

Definition. Sei $a \in G$, (G, \cdot) Gruppe. Für $n \in \mathbb{Z}$ definiere:

$$a^{0} := e, \quad a^{n} := a^{n-1}a \quad \text{ für } n \ge 1$$

 $a^{n} := (a^{-1})^{-n} \quad \text{ für } n < 0$

Lemma 4. Für $a \in G$ gilt: $a^n a^m = a^{n+m} = a^m a^n$, $(a^m)^n = a^{n \cdot m}$, $ab = ba \implies (ab)^n = a^n b^n$

Beispiel 2. 1. K Körper, dann ist $GL_n(K)$ ein Gruppe bzgl. Matrixmultiplikation.

2. $M \neq \emptyset$ Menge, (G, \cdot) Gruppe, definiere $Abb(M, G) := G^M$. Für $f, g \in Abb(M, G)$ ist $f \cdot g$ gegeben durch $(f \cdot g)(m) = f(m) \cdot g(m)$ für $m \in M$. Dann ist $(Abb(M, G), \cdot)$ eine Gruppe.

2 Untergruppen

Definition. Sei (G,\cdot) Gruppe. Eine Teilmenge $H\subset G$ heißt Untergruppe von G, falls (H,\cdot) eine Gruppe ist.

Äquivalent dazu:

- (i) Für $a, b \in H$ gilt $ab \in H$ (Abgeschlossenheit)
- (ii) $e \in H$
- (iii) für $a \in H$ ist $a^{-1} \in H$

Theorem 1. Sei (G, \cdot) Gruppe und $H \subset G$ nicht-leer. Dann gilt: H induziert Untergruppe von (G, \cdot) gdw. $ab^{-1} \in H$ für $a, b \in H$.

Beweis. "
$$\Rightarrow$$
" \checkmark

- $a = b \implies e \in H$
- $e, a \in H \implies ea^{-1} \in H \implies a^{-1} \in H$
- $a, b^{-1} \in H \implies a(b^{-1})^{-1} \in H \implies ab \in H$

Beispiel 3. (a) $\{e\}, G$ induziert Untergruppe für alle Gruppen (G, \cdot) .

(b) K Körper. $SL_n(K) = \{A \in M_n(K) : \det(A) = 1\}$ induziert Untergruppe von $GL_n(K)$, die spezielle lineare Gruppe.

Definition. Eine Untergruppe heißt echt, falls sie nicht trivial ist.

Lemma 5. Es sei $(H_j)_{j\in J}$ eine Familie von Untergruppen $H_j\subset G$. Dann ist $\bigcap_{j\in J}H_j$ eine Untergruppe von G.

Beweis. Übung

Definition. Es sei M eine Teilmenge von G. Die von M erzeugte Untergruppe ist der Durchschnitt aller Untergruppen, die M enthalten.

Notation. $\langle M \rangle = \bigcup_{M \subset H \subset G} H$, wobei H Untergruppe Bemerkung. (a) $\langle \emptyset \rangle = \{e\}$

- (b) Für $M \neq \emptyset$ gilt: $\langle M \rangle = \{ m_1^{\varepsilon_1} \cdot ... \cdot m_n^{\varepsilon_n} : m_1, ..., m_n \in M, \varepsilon_1, ..., \varepsilon_n \in \{-1, +1\}, n \geq 0 \}$
- (c) Für $M=\{g\}$ gilt: $\langle g\rangle=\{g^n:n\in\mathbb{Z}\}.$ Von g
 erzeugte zyklische Untergruppe von G.

Definition. G heißt zyklisch, falls $G = \langle g \rangle$ für ein $g \in G$ gilt.

Ist $G = \langle M \rangle$ mit M endlich, so heißt G endlich erzeugt.

Definition. (i) Die Ordnung einer Gruppe G ist ord(G) = |G|.

- (ii) Die Ordnung eines Elements $g \in G$ ist $ord(g) = ord(\langle g \rangle)$.
- (iii) Ist ord(g) endlich, dann hat g endliche Ordnung.

Notation. (n, s) bezeichnet den größten gemeinsamen Teiler.

Theorem 2. Sei G Gruppe, $g \in G$

- 1. g hat endliche Ordnung \iff alle Potenzen von g sind verschieden
- 2. g hat endliche Ordnung $\iff \exists m > 0 : g^m = e$ Dann gilt:

(a)
$$n := ord(g) = min\{m > 0 : g^m = e\}$$

(b)
$$g^m = e \iff m = nk \text{ mit } k \in \mathbb{Z}$$

(c)
$$\langle g \rangle = \{e, g^1, ..., g^{n-1}\}$$

3. $ord(g^s) = \frac{n}{(n,s)}$ für n = ord(g) endlich

Beweis. 1. Wir nehmen an: Für $i, j \in \mathbb{Z}$, oBdA j > i gilt $g^i = g^j$.

Dann gilt $g^{j-i} = g^{j}(g^{i})^{-1} = e$.

Es sei dann n die kleinste positive Zahl, die $g^n = e$ erfüllt. Sei $m \in \mathbb{Z}$ beliebig. Der Divisionsalgorithmus liefert: m = kn + r für $0 \le r < n$ und $k, r \in \mathbb{Z}$. Dann gilt: $g^m = g^{kn+r} = g^{kn}g^r = (g^n)^kg^r = eg^r = g^r$.

Daraus folgt $\langle g \rangle = \{g^m : m \in \mathbb{Z}\} = \{g^r : r = 0, ..., n-1\}$. Besonders gilt ord(g) = n

ist endlich.

Dies zeigt \Rightarrow , \Leftarrow klar, dann ist $\langle g \rangle = \{g^m : m \in \mathbb{Z}\}$ unendlich

2. Alle g^r mit $0 \le r \le n-1$ sind verschieden, da: $g^i = g^j \Rightarrow g^{j-i} = e \Rightarrow j-i = kn \text{ mit } k \in \mathbb{Z} \Rightarrow i \equiv j \pmod{n} \Rightarrow i = j \text{ falls}$ 0 < i, j < n - 1.

Dies liefert g^r mit $0 \le r \le n-1$ sind paarweise verschieden und es gilt:

ord(g) = n. $\lceil a \text{ und } c \rceil$

Aus dem Divisionsalgorithmus folgt b: $g^m = e \Leftrightarrow e = g^{kn+r} = g^r$ mit $m = g^r$ $kn + r, 0 \le r \le n \Leftrightarrow r = 0$. Also m = kn mit $k \in \mathbb{Z}$.

3. Es sei $m = ord(g^s), n = ord(g)$. Aus $(g^s)^m = e$ folgt (siehe 2), dass n ein Teiler von sm ist. Dies liefert: $\frac{n}{(s,n)}|\frac{s}{(s,n)}m$. Somit $\frac{n}{(s,n)}|m$.

Nun möchten wir noch zeigen: $m|_{\overline{(s,n)}}^n$. $(g^s)^{\frac{s}{(s,n)}} = (g^n)^{\frac{s}{(s,n)}} = e^{\frac{s}{(s,n)}} = e$. Daraus

folgt $m|\frac{n}{(s,n)}$ (wegen 2). Also gilt $m = \frac{n}{(s,n)}$.

Lemma 6. Wir können alle Untergruppen einer zyklischen Gruppe beschreiben mit G = $\langle q \rangle, H \subset G$, es sei $h \in H, h \neq e$. Dann gilt: $h = q^k$.

Beweis. Wir setzen: $m = min\{k > 0 : g^k \in H\}$.

Existiert: $G = \langle g \rangle = \langle g^{-1} \rangle, h = g^k, k < 0$, dann ersetzen wir h durch h^{-1}

Wir wollen zeigen: $\langle q^m \rangle = H$

- 1. $\langle q^m \rangle \subset H$ gilt wegen $q^m \in H$
- 2. Es sei $j \in \mathbb{Z}$ mit $g^j \in H$. Divisionsalgorithmus liefert j = lm + r mit $0 \le r < m$: $g^j \in H \Rightarrow g^r = g^{-lm}g^{lm+r} = (g^m)^{-l}g^j$. Also $g^r \in H$. Aus der Minimalität von M folgt r=0. Dies liefert $g^j=(g^m)^l\in\langle g^m\rangle$ und somit gilt: $H\subset\langle g^m\rangle$ und die zwei Untergruppen stimmen überein.

Ahnlich kann man zeigen:

Theorem 3. Alle Untergruppen einer zyklischen Gruppe sind zyklisch. Ist ord(G) = nendlich und m ein Teiler von n, so ist $H = \langle q^{\frac{n}{m}} \rangle$ die einzige Untergruppe der Ordnung

Definition. Sei H eine Untergruppe der Gruppe G. Dann kann man die folgende Äquivalenzrelation definieren:

$$(x,y) \in G^2 : x \sim_H y \Leftrightarrow x = yh \text{ für } h \in H$$

 $\lceil \ddot{A}$ quivalenzrelation wegen Gruppenaxiomen für $H \mid$

Definition. Die Äquivalenzklassen bzgl. \sim_H heißen Linksnebenklassen.

Notation. Für $a \in G, aH = ah : h \in H$

Bemerkung. Es gelten folgende Eigenschaften:

- Die Abbildung $H \to aH, h \mapsto ah$ ist eine Bijektion. Besonders gilt: |aH| = |H| für alle $a \in G$.
 - [Die Abbildung ist bijektiv, da sie umkehrbar ist: $aH\to H, b\mapsto a^{-1}b$ ist die Umkehrfunktion |
- $aH \neq bH \Rightarrow aH \cap bH = \emptyset$, d.h. sie sind disjunkt. $\lceil x \in aH \neq bH \Rightarrow x = ah_1 = bh_2$ für $h_1, h_2 \in H \Rightarrow a = bh_2h_1^{-1} \in bH \Rightarrow ah = b(h_2h_1^{-1}h) \in bH$ für alle $h \in H \Rightarrow aH \subset bH$. Ähnlich gilt $bH \subset aH$. Daraus folgt aH = bH.

Definition. $G/H = \{aH : a \in G\}$ ist die Menge der Linksnebenklassen. Der Index von H ist die Mächtigkeit von $\overline{G/H}$, d.h. $\underline{\operatorname{Index}} \ [G : H] := |G/H|$ $\underline{Bemerkung}$. $\bullet \ |G| = [G : H]|H|$

• Analog ist $a \sim_H b$ mit $a, b \in G \Leftrightarrow a = hb$ für ein $h \in H$ ("rechtsäquivalent bzgl. H") eine Äquivalenzrelation.

Rechtsnebenklassen: $Ha = \{ha : h \in \mathbb{Z}\}$ mit $a \in G$

Bijektion: Für $a \in G$ $aH \to Ha, x \mapsto a^{-1}xa$

Definition. $H \setminus G$ ist die Menge der Rechtsnebenklassen. Dann gilt: $|H \setminus G| = |G/H|$ [Bijektion: $H \setminus G \to G/H$, $\overline{Hb} \mapsto b^{-1}H$]