The *n*-queens problem

Given an $n \times n$ chessboard, place n queens on the board so that no two queens can attack each other (no two are in the same row, column or diagonal).

Solve the n-queens problem using a depth-first search and **backtracking**.

Partial solutions will be generated systematically and "stored" in a **search tree**. (A tree data structure is not actually created, but the recursive algorithm can be traced by viewing it as a search tree.) The order of inspecting various partial solutions is determined by depth first search.

- root = board with no queens
- place queens successively in each column of the board (beginning in the left column), working top to bottom
- when you place a queen in a new column, that arrangement is a child of the previous in the search tree
- arrangements at level i of the search tree will contain i queens, placed within the first i columns
- when you run out of possible placements for another queen, backtrack to the parent and adjust the queen in the preceding column by moving it down one row

rn queens(k, n)

- Assumption: queens in columns 1 to k-1 are properly placed (non-attacking)
- an attempt is made to place a queen in column k, checking that the queen in the previous columns are not in the same row or diagonal
- recursively call rn_queens (k+1, n) to place a queen in the next column

contains the row number (the index) of the queen in column i

Example: row[1] = 1, row[2] = 3 corresponds to the following arrangement

NOTE: As with other algorithms in this class, indexing is from 1, not 0.

```
n queens(n){
  rn queens(1, n)
}
rn queens(k, n)
  for j = 1 to n // try putting the kth queen in each
                      // of rows 1 .. n
   row[k] = j
    if (position ok(k, n, row))
       if (k == n)
                   // all n queens placed => all done!!!
       {
          for i = 1 to n
             print (row[i] + " ")
          println()
       }
       else
         rn queens (k+1, n) // not done => place the next queen
    }
}
position ok(k, n, row)
{ // check that none of the previous k-1 queens are attacking
  // (no queen is in the same row or same diagonal)
}
```

```
position_ok(k, n, row)
{
  for i = 1 to k-1
    if (row[k] == row[i] || abs(row[k]-row[i]) == (k-i))
      return false
  return true
}
```

(The absolute value thing for checking the diagonal is pretty sneaky.)

NOTE: This implementation continues to process and outputs ALL possible solutions.

Analyze the running time (worst case)

How much time as a function of n? depending on implementation of position_ok if position ok uses a scan for i = 1 to k-1

upper bound:

each recursive call tries a new placement and calls on position_ok just focusing on rows (and ignoring diagonals)

column 1: for EACH of the n possible placements

column 2: for EACH of the n-1 possible placements

column 3: for EACH of the n-2 possible placements

etc.

column n: 1 possible placement

```
=> time for position_ok * (n * n-1 * n-2 * ... * 2)
= O(n * n!) (Or maybe O(1 * n!) if you're slick about position ok)
```

OR

Analyze the running time using a recurrence. T(n) is the amount of time to place all n queens.

Worst case: T(n) = n * T(n-1), T(1) = 1

Solve this recurrence using the Iteration Method

```
T(n) = n * T(n-1)
= n * (n-1) * T(n-2)
= n * (n-1) * (n-2) * T(n-3)
etc.
= n * (n-1) * (n-2) * ... * 2 * 1 = n!
```