Variant Calling

Michael Schatz

Sept 29, 2021

Lecture 9: Computational Biomedical Research

Assignment 3: Variant Analysis & Mappability Due Oct 4 @ 11:59pm

https://github.com/schatzlab/biomedicalresearch2021

Monday's class

Registration: bit.ly/2XXhLYJ

Read Mapping

Personal Genomics

How does your genome compare to the reference?

Similarity metrics

Hamming distance

Count the number of substitutions to transform one string into another

Edit distance

 The minimum number of substitutions, insertions, or deletions to transform one string into another

Reverse Engineering Edit Distance

D(AGCACACA, ACACACTA) = ?

Imagine we already have the optimal alignment of the strings, the last column can only be 1 of 3 options:

The optimal alignment of last two columns is then 1 of 9 possibilities

The optimal alignment of the last three columns is then 1 of 27 possibilities...

Eventually spell out every possible sequence of {I,M,D}

Recursive solution

- Computation of D is a recursive process.
 - At each step, we only allow matches, substitutions, and indels
 - D(i,j) in terms of D(i',j') for i' ≤ i and j' ≤ j.

```
D(AGCACAC, ACACACTA) = min{D(AGCACACA, ACACACT) + I,

D(AGCACAC, ACACACTA) + I,

D(AGCACAC, ACACACT) + \delta(A, A)}
```


[What is the running time?]

Dynamic Programming

- We could code this as a recursive function call... ...with an exponential number of function evaluations
- There are only (n+1) x (m+1) pairs i and j
 - We are evaluating D(i,j) multiple times
- Compute D(i,j) bottom up.
 - Start with smallest (i,j) = (1,1).
 - Store the intermediate results in a table.
 - Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)

Recurrence Relation for D

Find the edit distance (minimum number of operations to convert one string into another) in O(mn) time

```
•Base conditions:
   - D(i,0) = i, for all i = 0,...,n
   -D(0,j) = j, for all j = 0,...,m
•For i > 0, j > 0:
        D(i,j) = min \{
                    D(i-1,j) + 1, // align 0 chars from S, I from T
                    D(i,j-1) + I, // align I chars from S, 0 from T
                    D(i-1,j-1) + \delta(S(i),T(j)) // align 1+1 chars
```

		A	С	A	С	A	С	Т	Α
	0	_	2	3	4	5	6	7	8
Α	I								
G	2								
С	3								
Α	4								
С	5								
Α	6								
С	7								
Α	8								

[What does the initialization mean?]

		A	С	A	С	A	С	Т	Α
	0		2	3	4	5	6	7	8
Α	ı	• 0							
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

 $D[A,A] = min\{D[A,]+1, D[,A]+1, D[,]+\delta(A,A)\}$

		A	С	A	С	A	C	Т	Α
	0		2	3	4	5	6	7	8
A	I	0	1						
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

 $D[A,AC] = min\{D[A,A]+1, D[,AC]+1, D[,A]+\delta(A,C)\}$

		A	С	A	С	Α	C	Т	Α
	0		2	3	4	5	6	7	8
A	_	0	_	2					
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

 $D[A,ACA] = min\{D[A,AC]+1, D[,ACA]+1, D[,AC]+\delta(A,A)\}$

		Α	C	Α	С	A	С	Т	Α
	<u>0</u>	<u> </u>	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	8
A	I	0	I	2	3	4	5	6	<u>7</u>
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

		A	U	4	U	A	С	Т	Α
	<u>0</u>	<u> </u>	<u>2</u>	<u> თ</u>	<u>4</u>	5	6	7	8
A		0	_	2	3	<u>4</u>	5	6	7
G	2	I		2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

		A	С	Α	С	A	С	Т	Α
	0		2	3	4	5	6	7	8
A		0		2	3	4	5	6	7
G	2	—		2	3	4	5	6	7
С	3	2	_	2	2	3	4	5	6
A	4	3	2	<u> </u>	2	2	3	4	5
С	5	4	3	2	_	2	2	3	4
A	6	5	4	3	2	<u>—</u>	2	3	3
С	7	6	5	4	3	2	_	<u>2</u>	3
A	8	7	6	5	4	3	2	2	<u>2</u>

[Can we do it any better?]

Global Alignment Schematic

- A high quality alignment will stay close to the diagonal
 - If we are only interested in high quality alignments, we can skip filling in cells that can't possibly lead to a high quality alignment
 - Find the global alignment with at most edit distance d: O(2dn)

Local vs. Global Alignment

- The Global Alignment Problem tries to find the best end-to-end alignment between the two strings
 - Only applicable for very closely related sequences

- The <u>Local Alignment Problem</u> tries to find pairs of substrings with highest similarity.
 - Especially important if one string is substantially longer than the other
 - Especially important if there is only a distant evolutionary relationship

Global vs Local Alignment Schematic

Local vs. Global Alignment (cont'd)

Global Alignment

Local Alignment—better alignment to find conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Part 2: Variant Calling

Genotyping Theory

- If there were no sequencing errors, identifying SNPs would be very easy: any time a read disagrees with the reference, it must be a variant!
- Sequencing instruments make mistakes
 - Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times

The Binomial Distribution: Adventures in Coin Flipping

P(heads) = 0.5

P(tails) = 0.5

What is the distribution of tails (alternate alleles) do we expect to see after 5 tosses (sequence reads)?

Number of "tails"

R code:

barplot(table(rbinom(30, 5, 0.5)))

30 experiments (students tossing coins)

5 tosses each

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

R code:

barplot(table(rbinom(30, 15, 0.5)))

30 experiments (students tossing coins)

15 tosses each
Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:

barplot(table(rbinom(30, 30, 0.5)))

30 experiments (students tossing coins)

30 tosses each

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:

barplot(table(rbinom(3e6, 30, 0.5)))

3M experiments (students tossing coins)
30 tosses each
Probability of Tails

So, with 30 tosses (reads), we are much more likely to see an even mix of alternate and reference alleles at a heterozygous locus in a genome

This is why at least a "30X" (30 fold sequence coverage) genome is recommended: it confers sufficient power to distinguish heterozygous alleles and from mere sequencing errors

P(3/30 het) <?> P(3/30 err)

Sequencing errors fall out as noise (most of the time)

What information is needed to decide if a variant exists?

- Depth of coverage at the locus
- Bases observed at the locus
- The base qualities of each allele
- The strand composition
- Mapping qualities
- Proper pairs?
- Expected polymorphism rate

PolyBayes: The first statistically rigorous variant detection tool.

A general approach to single-nucleotide polymorphism discovery

Gabor T. Marth¹, Ian Korf¹, Mark D. Yandell¹, Raymond T. Yeh¹, Zhijie Gu², Hamideh Zakeri², Nathan O. Stitziel¹, LaDeana Hillier¹, Pui-Yan Kwok² & Warren R. Gish¹

Its main innovation was the use of Bayes's theorem

Bayesian SNP calling

$$P(SNP|Data) = P(Data|SNP) * P(SNP)$$

 $P(Data)$

PolyBayes: The first statistically rigorous variant detection tool.

A general approach to single-nucleotide polymorphism discovery

Gabor T. Marth¹, Ian Korf¹, Mark D. Yandell¹, Raymond T. Yeh¹, Zhijie Gu², Hamideh Zakeri², Nathan O. Stitziel¹, LaDeana Hillier¹, Pui-Yan Kwok² & Warren R. Gish¹

Probability of observed base composition (should model sequencing error rate)

PolyBayes: The first statistically rigorous variant detection tool.

A general approach to single-nucleotide polymorphism discovery

Gabor T. Marth¹, Ian Korf¹, Mark D. Yandell¹, Raymond T. Yeh¹, Zhijie Gu², Hamideh Zakeri², Nathan O. Stitziel¹, LaDeana Hillier¹, Pui-Yan Kwok² & Warren R. Gish¹

This Bayesian statistical framework has been adopted by other modern SNP/INDEL callers such as FreeBayes, GATK, and samtools

A universal SNP and small-indel variant caller using deep neural networks

Poplin et al. (2018) Nature Biotechnology. doi: https://doi.org/10.1038/nbt.4235

VCF Format

VCF Format

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LF1396 chr7 117175373 . A

90

PASS AF=0.5 GT