PANDAS

DATA ANALYSIS ASSIGNMENT #1 ANALYZING EMPLOYEE ATTRITION

[Link: Pandas Documentation] (https://pandas.pydata.org/docs/)

Files needed for this assignment:

Employee_Attrition.csv

```
In [2]: # set up notebook to display multiple output in one cell
    from IPython.core.interactiveshell import InteractiveShell
    InteractiveShell.ast_node_interactivity = "all"
    print('The notebook is set up to display multiple output in one cell.')
    The notebook is set up to display multiple output in one cell.
In [3]: import pandas as pd
import numpy as np
```

Note: Throughout this assignment, add cells as needed.

Task #1: Reading the Dataset 1. Read in the [**Employee_Attrition.csv**] (https://drive.google.com/file/d/1E-XLIZdyUYGf-cCvjx6KaNNICX1ATsVo/view?usp=share_link)

dataset and store the results in a DataFrame.

2. Repeat Step #1, but this time set one of the columns as the index.

In [4]: employee = pd.read_csv('Employee_Attrition.csv',sep=';',index_col='EmployeeNumber',skip:
 employee

Out[4]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	1	41	Yes	Travel_Rarely	1102	Sales	1	
	2	49	No	Travel_Frequently	279	Research & Development	8	
	4	37	Yes	Travel_Rarely	1373	Research & Development	2	
	5	33	No	Travel_Frequently	1392	Research & Development	3	
	7	27	No	Travel_Rarely	591	Research & Development	2	
	•••							
	2061	36	No	Travel_Frequently	884	Research & Development	23	
	2062	39	No	Travel_Rarely	613	Research & Development	6	
	2064	27	No	Travel_Rarely	155	Research & Development	4	
	2065	49	No	Travel_Frequently	1023	Sales	2	
	2068	34	No	Travel_Rarely	628	Research & Development	8	

1470 rows × 34 columns

Task #2: Use DataFrame Attributes to Inspect the Anatomy of the DataFrame 1.

•

Write code to access the DataFrame's index (i.e., to access the row labels).

- 2. Write code to access the DataFrame's column names/columns (column index).
- 3. Write code to determine the data type of each variable in your DataFrame.
- 4. Write code to access the DataFrame's data (i.e., just the data without the index or column names).
- 5. Write code to determine the shape (i.e., the dimensions) of the DataFrame.

```
employee.columns
In [6]:
        Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
Out[6]:
                'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
                'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
                'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
                'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'Over18',
                'OverTime', 'PercentSalaryHike', 'PerformanceRating',
                \verb|'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', \\
                'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
                'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                'YearsWithCurrManager'],
               dtype='object')
         employee.dtypes
In [7]:
        Age
                                       int64
Out[7]:
        Attrition
                                      object
        BusinessTravel
                                      object
        DailyRate
                                       int64
        Department
                                      object
        DistanceFromHome
                                       int64
        Education
                                       int64
        EducationField
                                      object
        EmployeeCount
                                       int64
         EnvironmentSatisfaction
                                       int64
        Gender
                                      object
        HourlyRate
                                       int64
        JobInvolvement
                                       int64
        JobLevel
                                       int64
        JobRole
                                      object
        JobSatisfaction
                                       int64
        MaritalStatus
                                      object
        MonthlyIncome
                                       int64
        MonthlyRate
                                       int64
        NumCompaniesWorked
                                       int64
        Over18
                                      object
        OverTime
                                      object
        PercentSalaryHike
                                       int64
        PerformanceRating
                                       int64
        RelationshipSatisfaction
                                       int64
        StandardHours
                                       int64
        StockOptionLevel
                                       int64
                                       int64
        TotalWorkingYears
        TrainingTimesLastYear
                                       int64
        WorkLifeBalance
                                       int64
        YearsAtCompany
                                       int64
        YearsInCurrentRole
                                       int64
        YearsSinceLastPromotion
                                       int64
        YearsWithCurrManager
                                       int64
        dtype: object
```

Task #3: Use DataFrame Methods to Inspect Your Data 1. Write code to access the first 5 rows of the data.

- 2. Write code to access the first 8 rows of the data.
- 3. Write code to access the last 5 rows of the data.
- 4. Write code to asccess the last 7 rows of the data.
- 5. Write code to get detailed information about your DataFrame.

In [10]: employee.head()

Out[10]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	1	41	Yes	Travel_Rarely	1102	Sales	1	
	2	49	No	Travel_Frequently	279	Research & Development	8	
	4	37	Yes	Travel_Rarely	1373	Research & Development	2	
	5	33	No	Travel_Frequently	1392	Research & Development	3	
	7	27	No	Travel_Rarely	591	Research & Development	2	

5 rows × 34 columns

```
In [11]: employee.head(8)
```

Out[11]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	1	41	Yes	Travel_Rarely	1102	Sales	1	
	2	49	No	Travel_Frequently	279	Research & Development	8	
	4	37	Yes	Travel_Rarely	1373	Research & Development	2	
	5	33	No	Travel_Frequently	1392	Research & Development	3	
	7	27	No	Travel_Rarely	591	Research & Development	2	
	8	32	No	Travel_Frequently	1005	Research & Development	2	
	10	59	No	Travel_Rarely	1324	Research & Development	3	
	11	30	No	Travel_Rarely	1358	Research & Development	24	

8 rows × 34 columns

	6 10W5 × 34 COIUII	1115						
4								•
In [12]:	employee.tail()							
Out[12]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	2061	36	No	Travel_Frequently	884	Research & Development	23	
	2062	39	No	Travel_Rarely	613	Research & Development	6	
	2064	27	No	Travel_Rarely	155	Research & Development	4	
	2065	49	No	Travel_Frequently	1023	Sales	2	
	2068	34	No	Travel_Rarely	628	Research & Development	8	
	5 rows × 34 colun	nns						
4								•
In [13]:	employee.tail(7)						

Out[13]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	2057	31	No	Non-Travel	325	Research & Development	5	
	2060	26	No	Travel_Rarely	1167	Sales	5	
	2061	36	No	Travel_Frequently	884	Research & Development	23	
	2062	39	No	Travel_Rarely	613	Research & Development	6	
	2064	27	No	Travel_Rarely	155	Research & Development	4	
	2065	49	No	Travel_Frequently	1023	Sales	2	
	2068	34	No	Travel_Rarely	628	Research & Development	8	

7 rows × 34 columns

In [14]: employee.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1470 entries, 1 to 2068
Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EnvironmentSatisfaction	1470 non-null	int64
10	Gender	1470 non-null	object
11	HourlyRate	1470 non-null	int64
12	JobInvolvement	1470 non-null	int64
13	JobLevel	1470 non-null	int64
14	JobRole	1470 non-null	object
15	JobSatisfaction	1470 non-null	int64
16	MaritalStatus	1470 non-null	object
17	MonthlyIncome	1470 non-null	int64
18	MonthlyRate	1470 non-null	int64
19	NumCompaniesWorked	1470 non-null	int64
20	Over18	1470 non-null	object
21	OverTime	1470 non-null	object
22	PercentSalaryHike	1470 non-null	int64
23	PerformanceRating	1470 non-null	int64
24	RelationshipSatisfaction	1470 non-null	int64
25	StandardHours	1470 non-null	int64
26	StockOptionLevel	1470 non-null	int64
27	TotalWorkingYears	1470 non-null	int64
28	TrainingTimesLastYear	1470 non-null	int64
29	WorkLifeBalance	1470 non-null	int64
30	YearsAtCompany	1470 non-null	int64
31	YearsInCurrentRole	1470 non-null	int64
32	YearsSinceLastPromotion	1470 non-null	int64
33	YearsWithCurrManager	1470 non-null	int64
d+vn	ac: in+64(2E) abiac+(0)		

dtypes: int64(25), object(9)
memory usage: 402.0+ KB

Task #4: Calculate Summary Statistics for the DataFrame's Columns 1. Write code to compute summary statistics for the numeric variables.

- 2. Write code to compute summary statistics for just the Age column.
- 3. Repeat Step #1, but also include the 10th and 90th percentiles in the summary statistics that you compute.
- 4. Write code to compute summary statistics for the string variables.
- 5. Write code to compute summary statistics for just the MaritalStatus column.
- 6. Pick out 3 numeric variables that you think will be important in analyzing employee attrition and compute summary statistics for just those numeric variables.

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EnvironmentSatisfact
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.0000
mean	36.923810	802.485714	9.192517	2.912925	1.0	2.721
std	9.135373	403.509100	8.106864	1.024165	0.0	1.093(
min	18.000000	102.000000	1.000000	1.000000	1.0	1.0000
25%	30.000000	465.000000	2.000000	2.000000	1.0	2.0000
50%	36.000000	802.000000	7.000000	3.000000	1.0	3.0000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	4.0000
max	60.000000	1499.000000	29.000000	5.000000	1.0	4.0000

8 rows × 25 columns

Out[15]:

```
In [16]:
          employee.Age.describe()
                   1470.000000
          count
Out[16]:
          mean
                     36.923810
          std
                      9.135373
                     18.000000
          min
          25%
                     30.000000
          50%
                     36.000000
          75%
                     43.000000
          max
                     60.000000
          Name: Age, dtype: float64
          employee.Age.describe(percentiles=[.1, .25,.50,.75, .9])
In [17]:
          count
                   1470.000000
Out[17]:
          mean
                     36.923810
          std
                      9.135373
                     18.000000
          min
          10%
                     26.000000
          25%
                     30.000000
          50%
                     36.000000
          75%
                     43.000000
          90%
                     50.000000
                     60.000000
          max
          Name: Age, dtype: float64
```

In [18]: employee.describe(include=[object])

Out[18]:		Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	Over1
	count	1470	1470	1470	1470	1470	1470	1470	14
	unique	2	3	3	6	2	9	3	
	top	No	Travel_Rarely	Research & Development	Life Sciences	Male	Sales Executive	Married	
	freq	1233	1043	961	606	882	326	673	147

Task #5: Answer Simple Questions about the Dataset

The HR director asks you to answer a few descripive questions about employees, you use this dataset to answer them: - How many employees are there by department in the dataset? - What is the overall attrition rate? - What is the average hourly rate and average yearly income? - What is the average number of years at the company? - Who are the 5 employees with the most number of years at the company? - How satisfied are employees overall?

Question 1: How many employees are there by department in the dataset?

Question 2: What is the overall attrition rate?

```
In [20]: employee['Attrition'].value_counts(normalize=True)['Yes']*100
Out[20]: 16.122448979591837
```

Question 3: What is the average hourly rate and average yearly income?

```
In [21]:    print(f"Average Hourly Rate(Mean): {employee.HourlyRate.mean()}\n")
    print(f"Average Hourly Rate(Median): {employee.HourlyRate.median()}\n")
    print(f"Average Yearly Income(Mean): {employee.MonthlyIncome.sum() * 12 / len(employee.Income(f"Average Yearly Income(Median): {employee.MonthlyIncome.median() * 12}\n")
    Average Hourly Rate(Mean): 65.89115646258503
    Average Hourly Rate(Median): 66.0
    Average Yearly Income(Mean): 78035.17551020408
    Average Yearly Income(Median): 59028.0
```

Question 4: What is the average number of years at the company?

```
In [22]: employee.YearsAtCompany.mean()
Out[22]: 7.0081632653061225
```

Question 5: Who are the 5 employees with the most number of years at the company?

```
In [23]: employee.YearsAtCompany.sort_values(ascending=False).head()
         EmployeeNumber
Out[23]:
         165
                  40
         131
                  37
         1578
                  36
         374
                  36
         776
                  34
         Name: YearsAtCompany, dtype: int64
         employee.YearsAtCompany.sort_values(ascending=False).value_counts()
In [24]:
                196
Out[24]:
         1
                171
         3
                128
         2
                127
         10
                120
         4
                110
         7
                 90
         9
                 82
         8
                 80
         6
                 76
                 44
         0
         11
                 32
         20
                 27
         13
                 24
         15
                 20
         14
                 18
         22
                 15
         12
                 14
         21
                 14
         18
                 13
         16
                 12
         19
                 11
         17
                  9
         24
                  6
          33
                  5
         25
                  4
         26
                  4
         31
                  3
         32
                  3
          36
                  2
          27
                  2
          29
                  2
         23
                  2
         30
                  1
          34
                  1
         37
                  1
         Name: YearsAtCompany, dtype: int64
```

Question 6: How satisfied are employees overall?

```
459
Out[25]:
              442
         1
              289
              280
         2
         Name: JobSatisfaction, dtype: int64
In [26]:
         JobSatisfaction cat = {
             1: 'Low',
             2: 'Medium',
             3: 'High',
             4: 'Very High'
         employee.JobSatisfaction = employee.JobSatisfaction.map(JobSatisfaction_cat)
         100 * employee.JobSatisfaction.value counts(normalize=True)
In [27]:
         Very High
                      31.224490
Out[27]:
         High
                      30.068027
                      19.659864
         Low
         Medium
                      19.047619
         Name: JobSatisfaction, dtype: float64
         employee.JobSatisfaction.value counts().plot(kind = 'bar')
In [28]:
         <AxesSubplot:>
Out[28]:
```


Task #6: Answer Additional Questions about the Dataset

After taking a look at your answers the HR director, asks you more questions: - Give me the list of the employees with Low level of JobSatisfaction - Give me the list of the employees with Low level of both JobSatisfaction and PerformanceRating - Compare the employees with Low and Very High JobSatisfaction across the following variables: Age, Department, - DistanceFromHome, HourlyRate, MonthlyIncome and YearsAtCompany.

Question 7: Give me the list of the employees with Low level of JobSatisfaction

```
employee.loc[employee.JobSatisfaction == 'Low'].index
In [29]:
         Int64Index([ 10,
                               20,
                                     27,
                                           31,
                                                 33,
                                                        38,
                                                              51,
                                                                    52,
                                                                           54,
                                                                                 68,
Out[29]:
                      1975, 1980, 1998, 2021, 2023, 2038, 2054, 2055, 2057, 2062],
                     dtype='int64', name='EmployeeNumber', length=289)
         employee[employee.JobSatisfaction == 'Low'].JobSatisfaction
In [30]:
         EmployeeNumber
Out[30]:
                  Low
          20
                  Low
          27
                  Low
          31
                  Low
          33
                  Low
                 . . .
          2038
                  Low
          2054
                  Low
          2055
                  Low
          2057
                  Low
          2062
                  Low
         Name: JobSatisfaction, Length: 289, dtype: object
```

Question 8: Give me the list of the employees with Low level of both JobSatisfaction and JobInvolment

```
In [31]: employee.JobInvolvement.value counts()
              868
Out[31]:
              375
              144
         1
               83
         Name: JobInvolvement, dtype: int64
         employee.JobInvolvement = employee.JobInvolvement.map(JobSatisfaction cat)
In [32]:
         employee.loc[(employee.JobSatisfaction == 'Low') & (employee.JobInvolvement == 'Low')].
In [33]:
         Int64Index([33, 235, 454, 615, 1019, 1037, 1237, 1460, 1478, 1544, 1611, 1622,
Out[33]:
                     1905, 1956],
                    dtype='int64', name='EmployeeNumber')
```

Question 9: Compare the employees with Low and Very High JobSatisfaction across the following variables: Age, Department, DistanceFromHome, HourlyRate, MonthlyIncome and YearsAtCompany.

```
In [38]: subset_of_interest = employee.loc[(employee.JobSatisfaction == 'Low') | (employee.JobSatisfaction == 'Low') | (employee.JobSatisfact
```

Out[41]: Very High 459 Low 289

Name: JobSatisfaction, dtype: int64

In [42]: grouped = subset_of_interest.groupby('JobSatisfaction')

In [50]: grouped.groups

Out[50]: {'Low': [10, 20, 27, 31, 33, 38, 51, 52, 54, 68, 70, 74, 75, 81, 86, 88, 100, 101, 113, 124, 133, 134, 145, 153, 170, 190, 197, 199, 200, 235, 239, 240, 241, 244, 250, 267, 27 4, 282, 288, 297, 299, 303, 328, 334, 339, 340, 347, 351, 362, 369, 374, 382, 390, 396, 412, 424, 425, 429, 451, 454, 474, 486, 510, 515, 517, 522, 524, 530, 532, 534, 536, 53 8, 549, 567, 573, 590, 605, 615, 625, 630, 648, 650, 662, 664, 667, 682, 684, 702, 705, 725, 728, 729, 732, 733, 742, 758, 764, 771, 775, 776, ...], 'Very High': [1, 8, 18, 2 2, 23, 24, 30, 36, 39, 40, 42, 45, 49, 53, 57, 62, 63, 72, 73, 76, 78, 79, 97, 98, 104, 106, 107, 112, 116, 117, 118, 120, 137, 139, 140, 143, 144, 148, 152, 154, 155, 158, 16 5, 169, 174, 179, 184, 192, 195, 198, 207, 215, 217, 221, 223, 228, 230, 242, 243, 245, 246, 262, 264, 273, 275, 281, 283, 286, 287, 291, 298, 302, 306, 309, 311, 312, 315, 31 6, 319, 323, 325, 327, 333, 335, 336, 338, 346, 349, 353, 361, 367, 372, 373, 377, 378, 380, 388, 389, 391, 393, ...]}

In [52]: grouped.get_group('Low').head()

Out[52]: Age Attrition BusinessTravel DailyRate Department DistanceFromHome Educa **EmployeeNumber** Research & 3 10 59 No Travel_Rarely 1324 Development Research & 29 1389 21 20 No Travel_Rarely Development 27 36 Yes Travel_Rarely 1218 Sales 9 Research & 699 31 34 Yes Travel_Rarely 6 Development Research & 33 32 Yes Travel_Frequently 16 1125 Development

5 rows × 34 columns

In [54]: grouped.get group('Very High').head()

Out[54]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educa
	EmployeeNumber							
	1	41	Yes	Travel_Rarely	1102	Sales	1	
	8	32	No	Travel_Frequently	1005	Research & Development	2	
	18	34	No	Travel_Rarely	1346	Research & Development	19	
	22	22	No	Non-Travel	1123	Research & Development	16	
	23	53	No	Travel_Rarely	1219	Sales	2	

5 rows × 34 columns

Age

```
grouped['Age'].mean()
In [56]:
          {\tt JobSatisfaction}
Out[56]:
                        36.916955
                        36.795207
          Very High
          Name: Age, dtype: float64
In [58]:
          grouped['Age'].describe().unstack()
                 {\tt JobSatisfaction}
Out[58]:
          count
                 Low
                                      289.000000
                 Very High
                                      459.000000
                                       36.916955
          mean
                 Low
                 Very High
                                       36.795207
          std
                 Low
                                        9.245496
                 Very High
                                        9.125609
          min
                                       19.000000
                 Low
                 Very High
                                       18.000000
          25%
                 Low
                                       30.000000
                 Very High
                                       30.000000
          50%
                 Low
                                       36.000000
                 Very High
                                       35.000000
          75%
                                       42.000000
                 Low
                 Very High
                                       43.000000
          max
                 Low
                                       60.000000
                                       60.000000
                 Very High
```

Department

dtype: float64

```
In [59]: grouped['Department'].describe()
```

ut[59]:		count	unique	top	freq					
	JobSatisfaction	200	2	Research & Development	102					
	Low Very High	289 459		Research & Development	192 295					
	very riigii	433	3	Research & Development	293					
	DistanceF	romH	lome							
In []:										
	HourlyRat	e								
In []:										
	MonthlyIncome									
In []:										
	YearsAtCo	mpai	ny							
In []:										
	Task #7: C	reate a) DataFr	rame to Compare the	Means	Across All Numerical Variables				
	Comparing the means across all numerical variables									
	how these gro	ups con	npare ac	·	_	e the HR director a better picture of eate a DataFrame that contains the				
In []:										

Task #8: Create Some Additional Questions That You Could Ask About the Dataset

In []:

Final Note:

Issues to keep in mind about this dataset:

- There are many variables that are detected as numerical but are actually categorical (like Education).
- Since this is a simulated dataset, it is hard to find interesting patterns.

In []: