

Sabendo que a medida do Arco \overline{AB} é o dobro da medida do ângulo inscrito x, temos $\overline{AB}=2x$.

Dado o ângulo $D\hat{A}B=66^{\circ}15'$, sendo ele um ângulo de segmento, temos que ele será igual a medida do arco \overline{AB} , dividida por 2:

$$D\widehat{A}B=\frac{\overline{AB}}{2}$$

Substituindo os valores:

$$66^{\circ}15' = \frac{2x}{2}$$

$$66^{\circ}15' = \frac{2x}{3}$$

$$x = 66^{\circ}15'$$

 $R: (E) 66^{\circ}15'$

2)

Temos que o ângulo \widehat{a} é um ângulo inscrito na circunferência maior. Sendo assim, terá medida igual à metade do arco \overline{EF} que possui medida de 40° :

$$\hat{a} = \frac{\overline{EF}}{2}$$

$$\hat{a} = \frac{40^{\circ}}{2}$$

$$\hat{a} = 20^{\circ}$$

Nesse mesmo desenho, temos que esse ângulo â é também o ângulo excêntrico exterior da circunferência menor. Portanto:

$$\widehat{a} = \frac{\overline{CD} - \overline{AB}}{2}$$

Podemos, com isso, descobrir a medida do arco \overline{CD} , substituindo os valores:

$$\frac{\overline{CD} - \overline{AB}}{2} = 20^{\circ}$$

$$\frac{\overline{CD} - 40^{\circ}}{2} = 20^{\circ}$$

$$\overline{CD} - 40^{\circ} = 20^{\circ} \cdot 2$$

$$\overline{CD} = 40^{\circ} + 40^{\circ}$$

$$\overline{CD} = 80^{\circ}$$
R: (E) 80°

Temos que o ângulo \hat{x} divide o mesmo arco \overline{CD} com o ângulo de 35°, portanto, terá e mesma medida, valendo também 35° (ambos são ângulos inscritos na circunferência e dividem o mesmo arco).

$$\widehat{x} = 35^{\circ}$$

Sabendo que a soma dos ângulos internos do triângulo Δ ACE é igual a 180°, podemos descobrir a medida do ângulo \hat{a} :

$$\hat{a} + 50^{\circ} + \hat{x} = 180^{\circ}$$
$$\hat{a} + 50^{\circ} + 35^{\circ} = 180^{\circ}$$
$$\hat{a} = 180^{\circ} - 50^{\circ} - 35^{\circ}$$
$$\hat{a} = 95^{\circ}$$

 $R: (A) 95^{\circ}$

4)
a

Sabendo que os ângulos $\hat{\alpha}$ e $\hat{\beta}$ são ângulos internos e que a soma de seus respectivos arcos dão uma volta completa na circunferência, temos a seguinte conclusão:

$$2 \cdot \alpha + 2 \cdot \beta = 360^{\circ}$$

Afinal, para os ângulos internos, o valor de seus respectivos arcos é o dobro da suas próprias medidas.

Com isso, podemos descobrir o valor da suas somas em graus:

$$2\alpha + 2\beta = 360^{\circ}$$

$$\frac{2\alpha + 2\beta}{2} = \frac{360^{\circ}}{2}$$

$$\alpha + \beta = 180^{\circ}$$

Por fim, devemos converter a medida em graus, para radianos:

$$2\pi \, rad = 360^{\circ}$$

$$\pi \, rad = 180^{\circ}$$

$$R:(C)\pi$$

Percebemos que os segmentos \overline{CA} e \overline{CB} são raios da Circunferência Central, e portanto, são congruentes, formando um triângulo isóceles ΔACB . Sabendo disso, temos que o ângulo CBA terá valor y, e que o ângulo CBA terá valor y, e que o ângulo CBA terá valor dos dois ângulos não adjacentes:

$$\hat{A}$$
ngulo externo $\hat{C} = y + y = 2y$

Podemos notar também que, o ângulo externo \hat{C} e o ângulo \hat{x} são ângulos que dividem o mesmo arco \overline{EF} .

Sendo \hat{C} um \tilde{a} ngulo interno da circunferência, seu arco \overline{EF} valer \hat{a} o dobro:

$$\overline{EF} = 4y$$

Sendo \hat{x} um ângulo central, sua medida será a mesma do arco formado, portanto:

$$\hat{x} = \overline{EF}$$

$$x = 4y$$

$$\frac{x}{4} = y$$

$$R: y = \frac{x}{4}$$

Temos que o ângulo \hat{E} poderá ter valor definido de acordo com os outros ângulos internos do seu respectivo triângulo:

$$\hat{E} + 45^{\circ} + 60^{\circ} = 180^{\circ}$$
$$\hat{E} = 180^{\circ} - 45^{\circ} - 60^{\circ}$$
$$\hat{E} = 75^{\circ}$$

O arco \overline{AC} terá como medida, o dobro do ângulo \hat{E} inscrito:

$$\overline{AC} = 2 \cdot 75^{\circ}$$

$$\overline{AC} = 150^{\circ}$$

Percebemos que o ângulo inscrito \hat{x} também terá \overline{AC} como arco, portanto:

$$x=\frac{150^{\circ}}{2}=75^{\circ}$$

Sendo o arco $\overline{AC} = 150^{\circ}$, o arco \overline{CA} é a parte da circunferência que completa 360° :

$$\overline{CA} = 360^{\circ} - \overline{AC}$$

$$\overline{CA} = 360^{\circ} - 150^{\circ}$$

$$\overline{CA} = 210^{\circ}$$

Dado que \overline{CA} é o arco do ângulo inscrito \hat{y} , temos:

$$y = \frac{\overline{CA}}{2} = \frac{210^{\circ}}{2} = 105^{\circ}$$

$$R: x = 75^{\circ} e y = 105^{\circ}$$