Fake Bills Detection

- 1. Setting Up
 - 1.1 Introduction
 - 1.2 Loading Libraries
 - 1.3 Loading Data
 - 1.4 Data Distributiom
 - 1.5 Correlation Between the Data
- 2. Missing Values
 - 2.1 Separating Train and Test Splits
 - 2.2 Model Evaluation
 - 2.3 Validation Predictions Visualization
 - 2.4 Final Model and Predictions
 - 2.5 Creating New Columns
- 3. Modeling
 - 3.1 Logistic Regression
 - 3.2 K-Nearest Neighbors
 - 3.3 K-Means
- 4. Summary

1.1 Introduction

In this notebook we are going to predict if a bank note is true or false based on different measurements. There are five measurements:

- length, the length of the banknote in mm
- · height left, the height of the left side of the banknote in mm

- · height right, the height of the right side of the bank note in mm
- · diagonal, the diagonal of the bank note in mm
- · margin low, lower side margin in mm
- · margin up, upper side margin in mm

The last column is_genuine is the target

1.2 Loading Libraries

In [1]:

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
plt.style.use('ggplot')
```

1.3 Loading Data

In [2]:

```
df = pd.read_csv('billets.txt', sep=';')
df.head()
```

Out[2]:

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.46	103.36	103.66	3.77	2.99	113.09
2	True	172.69	104.48	103.50	4.40	2.94	113.16
3	True	171.36	103.91	103.94	3.62	3.01	113.51
4	True	171.73	104.28	103.46	4.04	3.48	112.54

```
In [3]:
```

```
df.shape
```

```
Out[3]:
```

(1500, 7)

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	is_genuine	1500 non-null	bool
1	diagonal	1500 non-null	float64
2	height_left	1500 non-null	float64
3	height_right	1500 non-null	float64
4	margin_low	1463 non-null	float64
5	margin_up	1500 non-null	float64
6	length	1500 non-null	float64
	1 7/4		

dtypes: bool(1), float64(6)
memory usage: 71.9 KB

1.4 Data Distribution

In [5]:

```
df.is_genuine.value_counts(normalize=True)
```

Out[5]:

True 0.666667 False 0.333333

Name: is_genuine, dtype: float64

In [6]:

```
sns.countplot(data=df, x='is_genuine');
```


In [7]:

```
for col in df.columns[2:]:
    fig, ax = plt.subplots(1,2,figsize=(12,4))
    sns.histplot(data=df, x=col, ax=ax[0])
    sns.histplot(data=df, x=col, hue='is_genuine', ax=ax[1], multiple='dodge')
    plt.title(f"Distribution of data for {col}")
    plt.show()
```


margin_low

margin_low

The correlation between variables is high. We can use a PCA to reduce the number of dimensions

In [9]:

```
from sklearn.model_selection import cross_validate, cross_val_predict, train_test_split

from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans

from sklearn.metrics import mean_absolute_percentage_error, r2_score, accuracy_score, co
```

2. Missing Values

2.1 Separating Train and Test Splits

```
In [34]:
```

```
train = df[df['margin_low'].notna()].copy()
test = df[df['margin_low'].isna()].copy()

y_train = train['margin_low']
X_train = train.drop(['margin_low', 'is_genuine'], axis=1)

#y_test = test['margin_low']
X_test = test.drop(['margin_low', 'is_genuine'], axis=1)
```

2.2 Model Evaluation

```
In [11]:
```

```
model = LinearRegression()

y_pred_val = cross_val_predict(model, X_train, y_train, cv=10, n_jobs=-1)

mape_val = mean_absolute_percentage_error(y_train, y_pred_val)

r2_val = r2_score(y_train, y_pred_val)

print(f'The mean absolute error for the validation data is: {mape_val:.3f}')

print(f'The r2 for the validation data is: {r2_val:.3f}')
```

The mean absolute error for the validation data is: 0.083 The r2 for the validation data is: 0.463

2.3 Visualizing Predictions

In [12]:

```
min_y_train = np.min(y_train)
min_y_pred = np.min(y_pred_val)

max_y_train = np.max(y_train)
max_y_pred = np.max(y_pred_val)

min_xy = min(min_y_train, min_y_pred)
max_xy = max(max_y_train, max_y_pred)

results=train.copy()
results['y_pred'] = y_pred_val

plt.figure(figsize=(12,6))
sns.scatterplot(data=results, x='margin_low', y='y_pred', hue='is_genuine')
sns.lineplot(x=[min_xy, max_xy], y=[min_xy, max_xy], linestyle='--', color='red');
```


At first the results don't look good, because many points are far from the identity line. However the Mean Absolute Percentage Error is only 8% and the r2 is 0.46. Our predictions are better than filling the missing values with the mean (r2 of 0)

2.4 Final Model and Prediction of Missing Values

In [13]:

```
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

test['margin_low'] = y_pred
```

```
In [14]:
```

```
df = pd.concat([train, test])
```

In [15]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1500 entries, 0 to 1438
Data columns (total 7 columns):
     Column
                   Non-Null Count Dtype
0
    is_genuine
                   1500 non-null
                                    bool
    diagonal
                   1500 non-null
                                    float64
1
 2
                                    float64
    height_left
                   1500 non-null
3
    height_right 1500 non-null
                                    float64
4
                   1500 non-null
                                    float64
    margin low
5
                                    float64
    margin_up
                   1500 non-null
                                    float64
     length
                   1500 non-null
dtypes: bool(1), float64(6)
memory usage: 83.5 KB
```

2.5 Creating New Columns

As long as we had missing values, we couldn't create columns based on margin_low

Let's try to create a few columns with a clearer distinction between genuine and fake bills

In [16]:

```
df['margin_total'] = df['margin_up'] + df['margin_low']
df['margin_diff'] = df['margin_up'] - df['margin_low']
```

In [17]:

```
sns.histplot(data=df, x='margin_total', hue='is_genuine', multiple='dodge');
```


In [18]:

```
sns.histplot(data=df, x='margin_diff', hue='is_genuine', multiple='dodge');
```


In [19]:

```
df['diff_len_marg_low'] = df['length'] - df['margin_low']
sns.histplot(data=df, x='diff_len_marg_low', hue='is_genuine', multiple='dodge');
```


3. Modeling Without Data Transform

In [20]:

```
y = df['is_genuine']
X = df.drop('is_genuine', axis=1)
```

3.1 Logistic Regression

In [21]:

```
model = LogisticRegression()

y_pred = cross_val_predict(model, X, y, cv=10, n_jobs=-1)

acc = accuracy_score(y, y_pred)

print(f'The accuracy score for Logistic Regression is: {acc:.3f}')
```

The accuracy score for Logistic Regression is: 0.990

In [22]:

```
conf_mat = confusion_matrix(y, y_pred)
sns.heatmap(conf_mat, annot=True, cbar=None, cmap='Reds', fmt='.0f')
plt.ylabel('Truth')
plt.xlabel('Prediction');
```


In [23]:

```
report = classification_report(y, y_pred)
print(report)
```

	precision	recall	f1-score	support
False	0.99	0.98	0.98	500
True	0.99	0.99	0.99	1000
accuracy			0.99	1500
macro avg	0.99	0.99	0.99	1500
weighted avg	0.99	0.99	0.99	1500

3.2 K Neighbors Classifier

In [24]:

```
from sklearn.model_selection import cross_val_score
```

In [25]:

```
neighbors = [2,3,4,5,6,7,8,9]
scores = []

for n in neighbors:
    model = KNeighborsClassifier(n_neighbors=n)
    acc = cross_val_score(model, X, y, cv=10, n_jobs=-1)
    scores.append(np.mean(acc))

plt.figure(figsize=(12,6))
sns.lineplot(x=neighbors, y=scores);
```


In [26]:

```
model = KNeighborsClassifier(n_neighbors=7)

y_pred = cross_val_predict(model, X, y, cv=10, n_jobs=-1)

acc = accuracy_score(y, y_pred)

print(f'The accuracy score for K-Neighbors Classifier is: {acc:.3f}')
```

The accuracy score for K-Neighbors Classifier is: 0.991

In [27]:

```
conf_mat = confusion_matrix(y, y_pred)
sns.heatmap(conf_mat, annot=True, cmap='Reds', cbar=None, fmt='.0f')
plt.ylabel('Thruth')
plt.xlabel('Prediction');
```


In []:

```
report = classification_report(y, y_pred)
print(report)
```

3.3 K-Means

In [28]:

```
X.drop(['margin_diff', 'margin_total', 'diff_len_marg_low'], axis=1, inplace=True)
```

In [29]:

```
kmeans = KMeans(n_clusters=2, random_state=42)
kmeans.fit(X)

results = X.copy()
results['labels'] = kmeans.labels_
results['truth'] = y
```

C:\Users\petit\anaconda3\envs\pyimagesearch\lib\site-packages\sklearn\clu
ster_kmeans.py:1332: UserWarning: KMeans is known to have a memory leak
on Windows with MKL, when there are less chunks than available threads. Y
ou can avoid it by setting the environment variable OMP_NUM_THREADS=6.
 warnings.warn(

In [30]:

```
fig, ax = plt.subplots(1,2,figsize=(12,6))
sns.scatterplot(data=results, x='length', y='margin_low', hue='labels', ax=ax[0])
sns.scatterplot(data=results, x='length', y='margin_low', hue='truth', ax=ax[1]);
```


The two plots look quite similar despite a slight imperfection in the decision boundaries. Our K-Means seem to have done a good job at splitting the real and fake bills in two groups

In [31]:

```
dic_label = {True: 1, False: 0}
results['truth'] = results['truth'].map(dic_label)
acc = accuracy_score(results['truth'], results['labels'])
print(f'The accuracy score for K-Means Clustering is : {acc:.3f}')
```

The accuracy score for K-Means Clustering is: 0.985

In [32]:

```
conf_mat = confusion_matrix(results['truth'], results['labels'])
sns.heatmap(conf_mat, annot=True, cmap='Reds', cbar=None, fmt='.0f')
plt.ylabel('Truth')
plt.xlabel('Prediction');
```


In [33]:

```
report = classification_report(results['truth'], results['labels'])
print(report)
```

	precision	recall	f1-score	support
0	0.99	0.96	0.98	500
1	0.98	1.00	0.99	1000
accuracy			0.99	1500
macro avg	0.99	0.98	0.98	1500
weighted avg	0.99	0.99	0.99	1500

4. Summary

- Using Logistic Regression and KNN we achieve a 99% accuracy
- The K-Means did nearly as well with an accuracy of 98.5%

To choose the best model, we need to decide if it is better to let a few fake bills beeing unnoticed or if it is better to have real bills labelled as fake bills.