DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2009**

MSc and EEE/ISE PART IV: MEng and ACGI

Corrected Copy

ADVANCED DATA COMMUNICATIONS

Thursday, 21 May 10:00 am

Time allowed: 3:00 hours

There are FOUR questions on this paper.

Answer THREE questions.

All questions carry equal marks. The maximum mark for each subquestion is shown in brackets.

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): M.K. Gurcan

Second Marker(s): E. Gelenbe

Instructions to Candidates Useful equations

$$\sum_{k=1}^{A} (2k-1)^2 = \frac{A(2A-1)(2A+1)}{3}$$

$$\operatorname{sinc}^2(t) \stackrel{FT}{\Longleftrightarrow} \Lambda(f) = \begin{cases} f+1 & -1 \le f < 0 \\ -f+1 & 0 \le f < 1 \\ 0 & otherwise \end{cases}$$

$$\cos(2\pi f_0 t) \stackrel{FT}{\Longleftrightarrow} \frac{1}{2} \left(\delta(f-f_0) + \delta(f+f_0) \right)$$

$$X_{RC}\left(f\right) \ = \ \begin{cases} T & 0 \leq |f| \leq \frac{1-\alpha}{2T} \\ \frac{T}{2} \left\{ 1 + \cos\left(\frac{\pi T}{\alpha} \left(|f| - \frac{1-\alpha}{2T}\right)\right) \right\} & \frac{1-\alpha}{2T} \leq |f| \leq \frac{1+\alpha}{2T} \\ 0 & \text{otherwise} \end{cases}$$

$$\stackrel{FT}{\Longleftrightarrow} x\left(t\right) \ = \ \mathrm{sinc}\left(\frac{t}{T}\right) \frac{\cos\left(\frac{\pi \alpha t}{T}\right)}{1-4\frac{\alpha^2 t^2}{T^2}}$$

$$\lim_{x \to 1} \frac{\cos\left(\frac{\pi}{2}x\right)}{1 - x} = \lim_{x \to 1} \frac{\pi}{2} \sin\left(\frac{\pi}{2}x\right) = \frac{\pi}{2}$$

Questions

- 1. Answer the following sub-questions
 - (a) Consider a data transmission system using two time waveforms

$$x_0(t) = \sqrt{2}\operatorname{sinc}^2(t)\cos(8\pi t)$$

$$x_1(t) = \sqrt{2}\operatorname{sinc}^2(t)\cos(4\pi t)$$

to transmit binary data. Answer the following questions.

- i. Find the cross correlation between these waveforms. [4]
- ii. Determine the dimensionality of the system and identify the basis functions. [3]
- iii. Find the signal space vectors $\overline{x_0}$ and $\overline{x_1}$ to represent the two waveforms. [3]
- iv. Find the signal space distance between the two signals.
- (b) Sketch the impulse response of the filter matched to the transmission time waveform [3] shown in Figure 1.a.

Figure 1.a

Determine and sketch the output of the matched filter when having the waveform [7] shown in Figure 1.b at the input of the matched filter.

Figure 1.b

(c) A transmission signal lasting 10 seconds is sampled at a rate 64 MHz using 16 bits/sample. The sampled signal is transmitted over four parallel channels which use M=16, 64, 4 and 4 quadrature amplitude modulation (QAM) constellations. Assuming that the four channel system operates at the symbol rate $\frac{1}{T}=300~\mathrm{k}$ symbols/sec, find how long it takes to transmit the sampled signal over these four [3] channels.

[2]

2. Answer the following sub-questions.

(a) An eight level quadrature amplitude modulation (QAM) system is shown in Figure 2.

Figure 2

Answer the following sub-questions.

- i. Determine the average transmitted energy for the constellation given in Figure 2 [3] assuming that the signal points are equally probable.
- ii. Assign three data bits to each constellation point such that the nearest adjacent [4] (with the minimum distance d) points differ in only one bit position.
- iii. When using the transmitted signal sequence [3]

$$(1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0)$$

list the constellation points to be transmitted in sequence.

- iv. For the transmitted signal, plot the in-phase and quadrature time waveforms. [3]
- (b) When using an M-ary square QAM transmission system, show that the average energy [6] $\overline{\varepsilon}_x$ per dimension and the minimum distance d are related to each other by

$$d^2 = \frac{12}{M-1}\overline{\varepsilon}_x.$$

- (c) Either square or cross QAM will be used on an additive-white-Gaussian noise (AWGN) channel with signal-to-noise SNR=28.2 dB and symbol rate $\frac{1}{T} = 10^8$ symbols per second. Answer the following sub-questions.
 - i. Select a QAM constellation and specify a corresponding integer number of bits per symbol, b, for a modem with the highest data rate such that $10\log_{10}\left(\frac{d}{2\sigma}\right)^2=13.7$ dB, where d is the minimum distance between constellation points and σ^2 is the noise variance.
 - ii. Compute the data rate for part 2.c.i. [1]
 - iii. Repeat part 2.c.i if $10 \log_{10} \left(\frac{d}{2\sigma} \right)^2 = 16.4 \text{ dB}$. [1]
 - iv. Compute the data rate for part 2.c.iii. [1]

- 3. Answer the following sub-questions.
 - (a) A multi-tone modulation system has N=8 dimensions and operates over a total of $\overline{N}+1$ channels where $\overline{N}=\frac{N}{2}$. The transmission system has the total transmission energy $8\overline{\varepsilon}_x=\sum_{n=1}^8 \varepsilon_n$ where $\overline{\varepsilon}_x$ is the average energy per dimension and ε_n is the energy for each dimension $n=1,\cdots,8$. For each dimension $n=1,\cdots,8$ the channel SNR $g_n=\frac{|H_n|^2}{\sigma^2}$ is expressed in terms of the channel gain $|H_n|^2$ and the noise variance σ^2 . Using the Lagrange multiplier method and also the following set of linear equations

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & -1 \\ 0 & 1 & 0 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & -1 \\ 1 & 1 & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_8 \\ K \end{bmatrix} = \begin{bmatrix} -1/g_1 \\ -1/g_2 \\ \vdots \\ -1/g_8 \\ 8\bar{\varepsilon}_x \end{bmatrix}$$

describe how the water filling theorem is used to calculate the energy distribution ε_n for $n = 1, \dots, 8$ and also the water filling constant K when using

- i. the Rate Adaptive (RA) water filling method; [6]
- ii. the Margin Adaptive (MA) water filling method. [5]
- (b) The number of bits per symbol for the Pulse Amplitude Modulation (PAM) and Quadrature Amplitude Modulation (QAM) systems are $b_p = 1, 2, 3 \cdots$ and $b_q = 2, 4, 6 \cdots$ respectively for integer values of p and q. The bit granularities $\beta_p = b_{p+1} b_p$ and $\beta_q = b_{q+1} b_q$ have values $\beta_p = 1$ and $\beta_q = 2$ for the PAM and QAM systems respectively. Consider that Γ is the gap value and σ^2 is the noise variance. Also consider that the incremental energy is $e(b_p) = \varepsilon(b_p + \beta_p) \varepsilon(b_p)$ where $\varepsilon(b_p)$ is the energy required to transmit b_p bits over the PAM channel. Show that the incremental energies $e(b_p)$ and $e(b_q)$ are given by

i.
$$e(b_p) = \frac{\Gamma}{g} 2^{2b_p} \left(2^{2\beta_p} - 1\right)$$
 for the PAM system and [4]

ii.
$$e(b_q) = 2\frac{\Gamma}{q} 2^{b_q} (2^{\beta_q} - 1)$$
 for the QAM system. [3]

- (c) A multi-tone modulation system has N=8 dimensions and $\overline{N}=8$ channels where the channel gain is equal $g_n=1$ for each channel $n=1,\cdots,8$. Each channel is loaded with an identical symbol b_p bits per symbol using the PAM constellation points where $b_p=p$ for $p=1,2,3,\cdots$. The total available transmission energy is $E_T=8\overline{\varepsilon}_x$ and the gap value for the transmission system is $\Gamma=1$. Assuming that the incremental energy $e(b_i)$ is defined in 3.b.i., answer the following questions.
 - i. Show that the number of bits b_p to be carried over each channel $n=1,\dots,8$ is [4] chosen to satisfy the relationship $\sum_{i=1}^{p} e(b_i) \leq \frac{E_T}{8} < \sum_{i=1}^{p+1} e(b_i)$.
 - ii. Assume that the residual energy $E_T 8 \sum_{i=1}^p e(b_i)$ will be used to transmit data at an increased rate b_{p+1} bits per symbol over m sub-channels. The remaining (8-m) will be used to transmit data at a rate b_p . Show that the number, m, [3] of sub-channels will satisfy the relationship $m \ e(b_{p+1}) \le E_T 8 \sum_{i=1}^p e(b_i) < (m+1) \ e(b_{p+1})$.

- 4. Answer the following sub-questions.
 - (a) Design an M = 16 QAM system for transmitting data at a rate 3600 bits per second and a carrier frequency of 1800 Hz over an ideal voice band telephone line which has a band-pass frequency response characteristic spanning the frequency range 600-3000 Hz. For spectral shaping, use a raised cosine pulse shaping filter.
 - i. Sketch a block diagram of the system and explain their functional operations;
 - ii. Calculate the roll-off factor of the raised cosine filter. [3]
 - (b) Show that a pulse having the raised cosine spectrum is given by

$$X_{RC}\left(f\right) = \left\{ \begin{array}{l} T \\ \frac{T}{2} \left\{ 1 + \cos\left(\frac{\pi T}{\alpha} \left(|f| - \frac{1 - \alpha}{2T}\right)\right) \right\} \\ 0 \end{array} \right. \begin{array}{l} 0 \leq |f| \leq \frac{1 - \alpha}{2T} \\ \frac{1 - \alpha}{2T} \leq |f| \leq \frac{1 + \alpha}{2T} \\ \text{otherwise} \end{array}$$

satisfies the Nyquist criterion given by equation

$$x(nT) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

for any value of roll-off factor α , where n is an integer.

- (c) For a minimum-mean-square-error (MMSE) linear equalizer answer the following subquestions
 - i. Show that the equalizer coefficients W(D) are given by

$$W(D) = \frac{1}{|p|\left(Q(D) + \frac{1}{SNR_{MFB}}\right)}$$

where |p| is the transmission channel pulse energy, Q(D) is the normalized channel pulse response of the transmission system. The term SNR_{MFB} is the matched filter bound SNR.

ii. Show that the noise variance at the output of the MMSE linear equalizer is given [6] by

$$\sigma_{mmse}^{2} = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{\frac{N_{0}}{2}}{\left|p\right|^{2} \left(Q\left(\exp\left(-j\omega T\right)\right) + \frac{1}{SNR_{MFB}}\right)} d\omega$$

where T is the transmission symbol period.

[3]

[9]

[4]

305 (
15h 4.9	
日十の七	

	0.000				
Examinations:	APC	Session	0	00	Confidential
MODEL ANSWER and MARKING SC	R and MA	ARKING SC	SCHEME		

Question 1 Page 1 out of 15 Paper Code EE 4.04 Second Examiner Prof. E. GELENBE First Examiner Dr. M. K. GuRCAN

Question labels in left margin

Marks allocations in right margin

1.a, $x_0(t) = \sqrt{2} \sin^2(t) \cos(4\pi t)$ $\frac{t}{\sqrt{1-x}} \times x_0(t) = \frac{\sqrt{2}}{2} \int_{\mathbb{R}} (f-2) + \frac{\sqrt{2}}{2} \int_{\mathbb{R}} (f+2)$

1 0 06 f <! x, it) = 1/2 sinc? (4) cos(811t) 0>+>1-++= = (+) \(\frac{1}{2} \)

(ナナ) マニナ(ナーナ) マニー(ナナ) × 会一)

[xo(f) x, (f) df =] { [2 (1 (f-2) + 1 (f+2)] Since x,(f) real and X*(f)= x,(f) Jx0(+) x, 1+)q+= Jx0(+) x(+)q+ from Parsevalis theorem

で(かけーりナン(ナナり) As can be seen from the figure, the two signals are orthogonal.

As two dimensional are orthogonal the system is two dimensional \$(t)= xo(t) , \$(t)= x,(t) ii

((\$ -3x16+36-27+3x9-9x3)

+ (125 - 125 + 125 - 64 + 80 -100) +

Second Examiner Prof. E. GELENBE Question 1 Page 7 out of | S Question labels in left margin $\varepsilon_{o} = \int_{-\infty}^{\infty} x_{o}^{2}(t) dt = \int_{-\infty}^{\infty} (f)^{2} df = \int_{-3}^{2} (f+3)^{2} df + \int_{-2}^{3} (-1-f)^{2} df$ $= \frac{1}{2} \left[\left(-\frac{8}{3} + 12 - 18 + 9 + 27 - 27 \right) + \left(-\frac{1}{3} + 1 - 1 + \frac{8}{3} - 4 + 2 \right) \right]$ $+ \left(\frac{8}{3} - 4 + 2 - \frac{1}{3} + 1 - 1 \right) + \left(9 - 27 + 27 - \frac{8}{3} + 12 - 18 \right) \right] = \frac{2}{3}$ $=\frac{1}{2}\left\{\left(\frac{f^{3}}{3}+3f^{2}+9f\right)^{-2}+\left(\frac{f^{3}}{3}+f^{2}+f\right)^{-1}+\left(\frac{f^{3}}{3}-f^{2}+f\right)^{2}\right\}$ $+\left(\frac{f^{3}}{3}-3f^{2}+9f\right)^{2}$ = (12) {] (vec-1)] +] (vec+1)] } } = = } { [(t + 10 + 12) 9 +] (t + 6 + 4) 7 } MODEL ANSWER and MARKING SCHEME + | = 3 - 3 + 9 + | + | + 2 - 5 + 2 5 + | + | +](+ = ++ +) + + [(+ = lot+52) + Examinations: PDC Session $=\frac{1}{2}\left\{\left(-\frac{64}{3}+80-100+\frac{125}{3}-125+125\right)+\frac{1}{3}+\frac{1$ E, = \(x, (+)) \(\frac{1}{2} \x, (+) \d f + }(t-1)7++3(1-t)7+

	Examinations: PDC Session Confidential	Examinations: Abc Session Confidential
	MODEL ANSWER and MARKING SCHEME	MODEL ANSWER and MARKING SCHEME
E. Se	First Examiner Dr. M. K. G. R. C. A. Paper Code EE 4.04 Second Examiner Prof. E. GELE NSE Question 1 Page 7 out of 15	First Examiner Dr. M. K. GuRCAN Paper Code EE 4.04 Second Examiner Prof. E. GELENBE Question [L Page 4. out of 15
ō	Marks allocations in	
	$\mathcal{E}_{1} = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) = \frac{1}{2 \times 3} = \frac{2}{3}$	1-6 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
	らって (4) = (2 とうっと(せ) Cos (がも)	the above time waveform is some as itself.
	= 13 sinc (4) cos (4RE)	Response of the natched filter to the signal
	\$(4)=13 sind(4) Cos(8R4)	X(t)
	iii signal space vectors x (4)	
	X (4) 6(4) 6(4) 6(4) 2	Y(t)=-A John At
	12 - 03 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Ratucen 1 Stc2 7/11 = 4 f-1 (4-2)
	0=+p(+) & (+) + √ = 1/2	A STATE A STATE OF THE STATE OF
	$x_{1,2} = \int_{0}^{\infty} x_{1}(t) dt = \int_{0}^{\infty} \frac{x_{1}(t)}{x_{1}(t)} \frac{x_{1}(t)}{x_{1}(t)} dt = \frac{E_{1}}{2} = \sqrt{E_{1}} = \sqrt{\frac{E}{2}}$	Between 25-463-2-2 (4+4-2-2)=-2A(4-2)
	1 2 0 1 2 1 X	Between 35tc4
		74)= A (4-1-1+4-3-3)=2A(4-4)
	(1) do,1 = \ (Kg,1-x,1) + (Kg2-x,,2)	Between 45 KCS
	$= \sqrt{(\sqrt{3} - 0)^2 + (0 - \sqrt{2})^2}$	Y(+)=-A \$-2 -A ? (+-4)
	= \\ \frac{2}{3} + \frac{2}{5} = \frac{2}{13}	2
]	7:00	

Confidential	S formo	right margin	4he
Session MARKING SCHEME	Paper Code EE 4.04 Question 1 Page S	Marks allocations in right margin	= A (4-3-3) = A (4-6) 24 × 10 6 ps bol over the four charm = 2 42 × 15 6 ps = 42 × 15 6 ps
Examinations: PDC Session MODEL ANSWER and MARKING SCHEME	First Examiner Dr. M. K. G. K.CAN Second Examiner Prof. E. GELE NBE	Question labels in left margin	Setween 5 (t < 6 7(t) = A f ⁻³ 3 The response of the signal is signal is -A -A Number of bits /sym bi= t, b ₂ =6, b ₃ =2, by Data rate R=(4+6+2+2) × 300×10 Transmission time t= 1024×10 ⁶ Transmission time t= 1024×10 ⁶ Transmission time t= 1024×10 ⁶ Transmission time
	First 1 Secon	Quest	2 10 2

	12	ıargin	- / 2	
	fo mo	ı right m	es special	this . Y.
ME	Page 94	Marks allocations in right margin	1 2 2 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Am I -
JAKKING SCHE	Paper Codece 4.04		1+ 3m Em) 1	enstant K calculation = NEx+ FE = 1
MODEL ANSWER and MARKING SCHEME	First Examiner Dr. M. K. GuRCAN Second Examiner Prof. E. GELENSE	nargin) 1 (+) (5 50 Life 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	First Examiner Dr.	Question labels in left margin	3.0 D=1 N N N N N N N N N N N N N N N N N N N	X = 1 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4

Second Examiner Dr. Mr. R Second Examiner Prof. E Question labels in left margin 2-6 2-6 2-7 3-7 5-7 1-7 2-7 1-7 2-7 2-7 2-7 2-7 2	Examinations: Pbc Session MODEL ANSWER and MARKING SCHEME First Examiner Dr. M. K. G. & CAN Paper Code EE 4.04	w	$\begin{split} & \mathcal{E}_{x=2} \mathcal{E}_{x} = \frac{1}{h} \sum_{J_1 = 1}^{h} (x_1^2 + x_2^2) = \frac{1}{h} \left[f_{11} \sum_{J_1 = 1}^{h} x_1^2 + f_{11} \sum_{J_1 = 1}^{h} x_2^2 + f_{12} \sum_{J_1 = 1}^{h} x_2^2 + f_{13} \sum_{$	$E_{x} = \frac{d^{2}}{\sqrt{h}} \frac{\sqrt{h}}{2} (\sqrt{h} + 1) (\sqrt{h} - t) = \frac{t}{6} d^{2} (M - t)$ $E_{y} = \frac{1}{2} \frac{E_{y}}{2} = \frac{d^{2}}{12} (M - t)$ $SNR = 28.3 \text{ a.e.} = \int \frac{1}{12} (M - t)$ $10 \log_{10} (\frac{d}{2\sigma})^{2} = 13.7 = \int (\frac{d}{2\sigma})^{2} = 23.4\%$ $\frac{3}{5} \frac{5NR}{M - t} = \frac{d}{2\sigma} = \int \frac{d}{2\sigma} = \frac{3}{2} \frac{5NR}{M + t} = \frac{3 \times 676}{23.4\%} + 1$	$M = 87.52$ Acorest Mory ann is $M = 6$ To log $(\frac{1}{2})^2 = 16.4 \Rightarrow (\frac{1}{2})^2 = 43.65$ 15 $\log (\frac{1}{4})^2 = 16.4 \Rightarrow (\frac{1}{2})^2 = 43.65$ $M = 0.9$ (105 8 Am $+ 1$) = $\frac{32}{31} = \frac{3\times676}{43.65} \neq 1 = 35.21$ No exect $\frac{(\frac{1}{4})^2}{(\frac{1}{4})^2} + 1$ = $\frac{32}{31} = \frac{9\times67}{43.65} \neq 1 = 35.21$ No exect $\frac{(\frac{1}{4})^2}{(\frac{1}{4})^2} + 1 = \frac{31}{31} = \frac{9\times67}{43.65} \neq 1 = 35.21$
--	--	---	--	---	--

	First Examiner DC.	Question labels in left ma	1.0 fetal AU **	1+cative 1-1 set 2-3 set 3-1 compa	(-) 3¢ (-) 4¢ (-
Confidential	15	ırgin		er er	* 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Paper Code EE 4.04 Question 3.4. Page 9 out of 15	Marks allocations in right margin		91= Max 94 9 = min = 1 NEx + R 2 1 3 cach dimension	if $\mathcal{E}_{NF} \not\in \mathcal{O}$ discord \mathcal{K} and make $i=t+1$ go to 2. Else calculate all energies $\mathcal{E}_{MF} = \frac{1}{4m} J_{MF} = J_{NF} J_{MF} J_{MF} = J_{NF} J_{MF} J_{MF} = J_{NF} J_{MF} J_{MF} J_{MF} J_{MF} = J_{NF} J_{MF} J_{MF$
Examinations: Abc Session MODEL ANSWER and MARKING SCHEME	First Examiner Dr. M. K. GurchN Second Examiner Prof. E. GELENBE	Question labels in left margin	3.a. i Rate adaptive loading	(3) Calculate anoty for each almossion (5) Em = K-\frac{\Pi}{\Pi}	6 if England discort & and make i= (+1) 30 to 2 Else Calculate all energies Em= k-\frac{\Pi}{q_n}, \dm=\frac{Jm}{s_n} Calculate b_n = \frac{1}{2} \log_2 \left(1 + \frac{3m\epsilon}{p_n} \right) = \frac{1}{2} \log_2 \left(1 + \frac{3m\epsilon}{p_n} + 1 \right) b_n = \frac{1}{2} \log_2 \left(1 + \frac{3m\epsilon}{p_n} \right) = \frac{1}{2} \log_2 \left(1 + \frac{3m\epsilon}{p_n} + 1 \right) MA Looding min N\(\vec{s}\) = \(\vec{s}\) = \(\
	First	Quest	e.		<i>;</i> 3

Examinations: PDC Session Confidential MODEL ANSWER and MARKING SCHEME aminer Dr. M. K. G. UR. C. M. Paper Code EE 4.04

Examiner Prof. E. Gelense Question 3a Page | O out of | S aminer Prof. E. Gel

Iterative MA water filling

1-1 set &= N

2-1 set N*= i and order 2, largest to smallest

3-1 compute 1 (226)**

Ama = 17 (226)*

Ama = 17 (226)

Ama = 17 (226)*

Ama = 17 (226)*

Ama = 17 (226)

**Ama = 17 (226)

4.) If Em= kma- D <0 then C= c-1 and discord 3 3 to step 2.

ELse compute solution with Em= kma- D (m=1,---, N) calculate bits 3n (9n kma)

S compare Margh C Maye = NEY Maye = NEY N*

First Examiner Dr. No. K., G.48 C.41 Paper Code EE 4. Ord Second Examiner Prof. E. G. G.L. N. S. G.48 C.41 Paper Code EE 4. Ord Second Examiner Prof. E. G. G.L. N. S. G.48 C.41 Paper Code EE 4. Ord Second Examiner Prof. E. G. G.L. N. S. G.48 C.41 Paper Code EE 4. Ord Second Examiner Prof. E. G. G.L. N. S. G.48 C.41 Paper Code EE 4. Ord Second Examiner Prof. E. G. G.L. N. S.
--

Confidential

Question 36 Page 11 out of (S

First Examiner Dr. M. K. Gurcan

Question labels in left margin

8 (b) = 1 (2 p 1)

Paper Code EE 4.04

Examinations: Pbc Session
MODEL ANSWER and MARKING SCHEME

Marks allocations in right margin

 $e^{(b_p)} = \mathcal{E}(b_p + B_p) - \mathcal{E}(b_p) = \frac{\Pi}{9} (2^{b_p + 2B_p} - 2^{bp})$ = $\frac{\Pi}{2} 2^{2bp} (2^{2bp} - 1)$ $e(b_q) = \mathcal{E}(b_q + P_q) - \mathcal{E}(b_q) = \frac{2\pi}{9} (2^{b_q + \frac{2}{9}} - 2^{b_q})$ = $\frac{2\pi}{9} 2^{b_q} (2^{b_q} - 1)$

E(bq)=2 11 (2-4)

Energy allocated to each channel is E/8
Energy required to transmit by over a single
channel is P 2 (bp) = 2 e(bi), we transmit by when

energies being less than the residual energy when satisfying the relationship

 $\mathcal{E}(bp) \leqslant E_{I} \leqslant \mathcal{E}(bp4)$ Hence $\frac{2}{2} \in (b, 1) \leqslant \frac{6}{8} \leqslant \frac{p4}{c_{-1}}$ $\mathcal{R}esidual \ \text{Single}(b, 1) \leqslant \frac{6}{8} \leqslant \frac{1}{c_{-1}}$ $\mathcal{R}esidual \ \text{Single}(b, 2) \leqslant \frac{1}{8} \leqslant \frac{1}{6}$

in elbori) < ET-8 & elbori) e (bp.)

which can be written in

First E Second	الذ	
Examinations: Abc Session Confidential MODEL ANSWER and MARKING SCHEME First Examiner Dr. M. K. G. G. C. C. Ouestion Learning Prof. E. G. C.	V 0 0 11	and using L' Haspitul rule $\lim_{x \to 4} \frac{\cos(\frac{\pi}{4}x)}{1-x} = \lim_{x \to 4} \frac{\pi}{2} \sin(\frac{\pi}{4}x) = \pi$ Hence $ \times (\pi \tau) = \begin{cases} & n = 0 \\ & n \neq 0 \end{cases}$ $ \times (\pi \tau) = \begin{cases} & n \neq 0 \\ & n \neq 0 \end{cases}$ Nyquist criterion

	Examinations : ADC	Session Confidential	ial
	MODEL ANSWER and MARKING SCHEME		
First E	First Examiner Dr. M. K. G.R.CAN Second Examiner Prof. E. GELE NBE	Paper Code EE 4.04 Question 4-2 Page 1 4 out of 15	10
Questi	Question labels in left margin	Marks allocations in right margin	
اين	4.C. The error signal is E(B) = x(B) - w (B) 7(B) where x(B) is the fran	smitted signal, 700)	
	is the received signal. The error signal is orthogonal to the received signal such that $E(E(b) \gamma^*(\bar{b}^*)) = 0$	d signal such that	
	E (x(b) Y*(D*) - W(b) Y(b) Y (0) J= 0 Cross correlation R. (D) - E(x(b) Y*(N*17 = (P) O(B) Z	6 = C (9) = 0	
	Autocorrelation $R_{YY}(0) = E(\gamma(0)) \checkmark$	Ry (D) = $E(70)$ $\sqrt[4]{5^*} = [P] Q^2(D) E_X + \frac{1}{2} Q(D)$	(Q:
	Rxy(0) - w(0) Ryy(0)=0)=0 p) Q(3) Ex	
	Rence ()	1 (0) (Pl2 Q(D) \(\beta\) (Q(D) + \(\beta\) (\(\beta\) (\(\beta\) (\(\beta\)) \(\beta\) (\(\beta\) (\(\beta\)) \(\beta\)	Tunx
	((((((((((((((((((((
ارز		$R_{ec}(b) = E(E(b) E^*(D^*))$ $= E((x(0) - w(0) \gamma(0))(x'(0^*) - w'(0^*)y'(0^*))$	/(c)/
	$+ \times \times$	$+ \omega(b) R_{yy}(b) \omega^*(\bar{D}^*)$	

ě	\$1 %	margin		M + co	
	4. Ch Sourof	+=	21 1 2 2 1 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d		
SCHEME	EE Pag	Marks alloca	W - 1 3 1		
MODEL ANSWER and MARKING SCHEME		4	1 ((1 P1 & (1)) Ex 1 P1 (& (1) + 1 1 1 1 1 1 1 1 1 1	£	
SWER and	GURCAN GELENBÉ		1912 (a) 1812 (a) 2x		
IODEL AN			1 ×		
N	Pro.	left margin	Rec (0) = 8 x		
	First Examiner Second Examiner	Question labels in left margin	2		
	First E Second	Questi			