

Robin Petit

Année académique 2017-2018

Table des matières

Transformation de Fourier		
	Définitions	
	Formule d'inversion	
	Discussion sur la définition de la transformée	
1.4	Extension de la transformée à $L^1 \cap L^2$	8
1.5	Exemple d'application de la théorie de Fourier	10
Espaces de Hilbert		11
	Orthogonalité	
2.2	Systèmes orthonormaux	15

Chapitre 1

Transformation de Fourier

1.1 Définitions

On considère \mathbb{R}^n à n fixé en tant qu'espace de mesure $(\mathbb{R}^n, \mathcal{M}, \lambda)$ avec \mathcal{M} la famille des ensembles Lebesgue-mesurables et λ la mesure de Lebesgue sur \mathbb{R}^n .

Définition 1.1. Pour $f \in L^1(\mathbb{R}^n)$, on définit sa *transformée de Fourier* par :

$$\hat{\mathbf{f}}: \mathbb{R}^n \to \mathbb{R}: \xi \mapsto \int e^{-i\langle x, \xi \rangle} \mathbf{f}(x) \, \mathrm{d}x.$$
 (1.1)

Cette fonction est bien définie car $x\mapsto e^{-\mathrm{i}\langle x,\xi\rangle}$ est continue, et f est intégrable, donc $x\mapsto e^{-\mathrm{i}\langle x,\xi\rangle}f(x)$ est intégrable

Proposition 1.2. *Pour* $f \in L^1$, \hat{f} *est continue.*

 $\underline{\textit{D\'emonstration}}. \ \ Soient \ \xi_0 \in \mathbb{R}^n \ et \ (h_k)_{k \in \mathbb{N}} \in \mathbb{R}^{n \, \mathbb{N}} \ t.q. \ h_k \xrightarrow[k \to +\infty]{} 0.$

$$\hat{f}(\xi_0 + h_k) = \int e^{-i\langle x, \xi_0 \rangle} e^{-i\langle x, h_k \rangle} f(x) \, dx.$$

Puisque $\left|e^{-i\langle x,\xi_0\rangle}e^{-i\langle x,h_k\rangle}f(x)\right|=\left|f(x)\right|$ et $x\mapsto e^{-i\langle x,\xi_0\rangle}e^{-i\langle x,h_k\rangle}f(x)$ converge partout (en particulier presque partout), par le théorème de la convergence dominée :

$$\hat{f}(\xi_0 + h_k) \xrightarrow[k \to +\infty]{} \int e^{-i\langle x, \xi_0 \rangle} f(x) \, dx = \hat{f}(\xi_0).$$

Proposition 1.3. Pour $f \in L^1$ t.q. $\forall j \in [\![1,n]\!]: x_j f \in L^1: \hat{f} \in C^1$ et:

$$\forall j \in [1, n]: \frac{\partial \hat{f}}{\partial \xi_j} \bigg|_{\xi} = \int e^{-i\langle x, \xi \rangle} (-ix_j) f(x) \, dx. \tag{1.2}$$

 $\underline{\textit{D\'{e}monstration}}. \ \ Soit \ (h_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \ t.q. \ h_k \xrightarrow[k \to +\infty]{} 0 \text{, et prenons } \{e_j\}_{j=1}^n \ la \ base \ canonique \ de \ \mathbb{R}^n.$

$$\frac{\hat{f}(\xi+h_ke_j)-\hat{f}(\xi)}{h_k}=\int e^{-i\langle x,\xi\rangle}\underbrace{\frac{e^{-ih_kx_j}-1}{h_k}}_{\xrightarrow[k\to+\infty]{}-ix_j}dx.$$

En module:

$$\left| e^{-i\langle x,\xi\rangle} \frac{e^{-ih_kx_j} - 1}{h_k} f(x) \right| = \left| e^{-i\langle x,\xi\rangle} \right| \left| \frac{e^{-ih_kx_j} - 1}{h_k} \right| \left| f(x) \right| \leqslant C |x_j| |f(x)|,$$

qui est intégrable par hypothèse.

En effet, si $x_j = 0$, alors tout est nul et l'inégalité devient une égalité ; et si $x_j \neq 0$, alors $\frac{\left|e^{-i\,h_k\,x_j}-1\right|}{\left|x_j\,h_k\right|}$ est borné.

Dès lors, par le théorème de convergence dominée, la limite passe sous l'intégrale et on a (1.2).

Corollaire 1.4. Pour $m \in \mathbb{N}^*$, si $(1+|x|)^m f \in L^1$, alors $f \in C^m$ et on peut dériver m fois sous le signe.

Démonstration. Exercice (récurrence sur m).

Définition 1.5. On définit l'ensemble de Schwartz :

$$\mathcal{S}(\mathbb{R}^n) \coloneqq \left\{ \mathfrak{u} \in C^\infty(\mathbb{R}^n) \text{ t.q. } \forall \alpha, \beta \in \mathbb{N}^n : x^\alpha \vartheta^\beta \mathfrak{u} \text{ est born\'e dans } \mathbb{R}^n \right\}. \tag{1.3}$$

Proposition 1.6. $S(\mathbb{R}^n)$ *est un* \mathbb{R} *-espace vectoriel.*

Proposition 1.7. $C_0^{\infty}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n) \subseteq \bigcap_{1 \le p < +\infty} L^p(\mathbb{R}^n)$.

Démonstration. Pour $u \in S$ et $+\infty > p \ge 1$:

$$\int |u|^p \ dx = \int \left(\underbrace{|u| \, (1+|x|)^N}_{\text{borné pour tout } N} \right)^p (1+|x|)^{-Np} \ dx \leqslant \int (C_N)^p \underbrace{(1+|x|)^{-Np}}_{\text{intégrable pour } Np \, > \, n} \ dx.$$

Dès lors, pour N suffisamment grand (Np > n), on a $\int |u| dx \le c^{ste}$

Proposition 1.8. *Pour* $u \in S$ *et* α , $\beta \in \mathbb{N}^n$, *alors* : $x^{\alpha} \partial^{\beta} u \in S$.

Démonstration. Soient $\lambda, \mu \in \mathbb{N}^n$. Par Leibniz :

$$\mathfrak{d}^{\mu}(fg) = \sum_{\sigma \leq \mu} \binom{\mu}{\sigma} \mathfrak{d}^{\sigma} f \mathfrak{d}^{\mu - \sigma} g.$$

Donc:

$$x^{\lambda} \partial^{\mu}(x^{\alpha} \partial^{\beta} u) = \sum_{\sigma \leq \mu} {\mu \choose \sigma} x^{\lambda} \partial^{\sigma}(x^{\alpha}) \partial^{\mu - \sigma} u,$$

où $x^{\lambda} \vartheta^{\sigma}(x^{\alpha}) \leqslant c^{ste} x^{\gamma}$. On en déduit que $x^{\lambda} \vartheta^{\mu}(x^{\alpha} \vartheta^{\beta} u)$ est une somme finie de termes bornés et est donc bornée.

À défaut de définir une topologie sur $\mathcal{S}(\mathbb{R}^n)$, on définit uniquement une notion de convergence.

Définition 1.9. Soit $(u_k)_{k\in\mathbb{N}}\in\mathcal{S}^\mathbb{N}$, $u\in\mathcal{S}$, on dit que u_k converge vers u lorsque $k\to+\infty$ (noté $u_k\xrightarrow[k\to+\infty]{\mathcal{S}}u$) lorsque :

$$\forall \alpha, \beta \in \mathbb{N}^n : \sup_{x \in \mathbb{R}^n} \left| x^{\alpha} \partial^{\beta} (u - u_k) \right| \xrightarrow[k \to +\infty]{} 0. \tag{1.4}$$

Théorème 1.10. *Soit* $u \in S$. *Alors :*

1.
$$\hat{\mathbf{u}} \in \mathcal{S}$$
. De plus si $\mathbf{u}_k \xrightarrow[k \to +\infty]{\mathcal{S}} \mathbf{u}$, alors $\hat{\mathbf{u}}_k \xrightarrow[k \to +\infty]{\mathcal{S}} \hat{\mathbf{u}}$.

2.
$$\widehat{D_i u}(\xi) = \xi_i \hat{u}(\xi)$$
 (de plus $\widehat{x_i u} = D_i \hat{u}$).

Démonstration. Pour le premier point, on calcule :

$$D_\xi^\alpha \hat{u}(\xi) = \int D_\xi^\alpha (e^{-i\langle x,\xi\rangle}) u(x) \, dx = \int e^{-i\langle x,\xi\rangle} (-x)^\alpha u(x) \, dx.$$

Donc:

$$\xi^{\beta}D_{\xi}^{\alpha}\hat{u}(\xi) = \int \xi^{\beta}e^{-i\langle x,\xi\rangle}(-x)^{\alpha}u(x)\,dx = \int (-D_{x})^{\beta}(e^{-i\langle x,\xi\rangle})(-x)^{\alpha}u(x)\,dx = \int e^{-i\langle x,\xi\rangle}D_{x}^{\beta}\left((-x)^{\alpha}u(x)\right)dx.$$

Pour montrer cette dernière égalité, intégrons par partie. D'abord observons pour $\phi \in S$ et $j \in [1, n]$:

$$\int \partial_j \varphi \, dx = \int \ldots \int \left(\int \partial_j \varphi \, dx_j \right) dx_1 \ldots dx_{j-1} \, dx_{j+1} \ldots dx_n.$$

Or:

$$\int \partial_j \varphi \, dx_j = \lim_{N \to +\infty} \int_{-N}^N \partial_j \varphi(x) \, dx_j = \lim_{N \to +\infty} \left(\underbrace{\frac{\varphi(x_1, \dots, x_{j-1}, N, x_{j+1}, \dots, x_n)}{\underset{N \to +\infty}{\longrightarrow} 0}} - \underbrace{\frac{\varphi(x_1, \dots, x_{j-1}, N, x_{j+1}, \dots, x_n)}{\underset{N \to +\infty}{\longrightarrow} 0}} \right) = 0,$$

puisque $\phi \in S$.

On en déduit donc que $\int \partial_i \phi \, dx = 0$.

Dès lors, puisque $e^{-i\langle x,\xi\rangle}(-x)^{\alpha}u(x)\in \mathbb{S}$ et par récurrence :

$$\int (-D_x)^\beta (e^{-i\langle x,\xi\rangle})(-x)^\alpha u(x)\,dx = \int e^{-i\langle x,\xi\rangle} D_x^\beta \, \left((-x)^\alpha u(x)\right) dx.$$

 $\text{Montrons alors que } \forall N \in \mathbb{N}: \exists C_N \geqslant 0 \text{ t.q. } \left|D_x^\beta((-x)^\alpha u(x))\right| \leqslant C_N(1+|x|)^{-N}. \text{ Par Leibniz}:$

$$(1+|x|)^N \vartheta^\beta(x^\alpha u(x)) = (1+|x|)^N \sum_{\gamma < \beta} \binom{\beta}{\gamma} \vartheta^\gamma x^\alpha \vartheta^{\beta-\gamma} u(x)$$

est borné car $u \in S$. Dès lors :

$$\left|\xi^{\beta}D_{\xi}^{\alpha}\hat{u}(x)\right|\leqslant C_{N}\int(1+|x|)^{-N}\,dx.$$

Pour N suffisamment grand (N > n), on a $\left|\xi^\beta D_\xi^\alpha \hat{u}(x)\right|\leqslant c^{ste}.$

Dès lors, on trouve:

$$\left| \xi^{\beta} D_{\xi}^{\alpha} \hat{\mathbf{u}}(\mathbf{x}) \right| \leqslant \sup_{\mathbf{x} \in \mathbb{R}^n} (1 + |\mathbf{x}|)^{-N} \left| D_{\mathbf{x}}^{\beta} ((-\mathbf{x})^{\alpha} (\mathbf{u} - \mathbf{u}_k)) \right| \xrightarrow[k \to +\infty]{} 0.$$

On en déduit donc $\hat{\mathfrak{u}_k} \xrightarrow[k \to +\infty]{\mathbb{S}} \hat{\mathfrak{u}}$.

Pour le second point, la seconde formule découle directement du premier pour $\alpha = e_i$:

$$D_{j}\widehat{\mathfrak{u}}(\xi) = \int e^{-i\langle x,\xi\rangle}(-x_{j})\mathfrak{u}(x) dx = \widehat{x_{j}\mathfrak{u}}(\xi).$$

La première égalité se démontre par :

$$\widehat{D_j u}(\xi) = \int e^{-i\langle x, \xi \rangle} D_j u(x) \, dx = - \int D_{x,j} \left(e^{-i\langle x, \xi \rangle} \right) u(x) \, dx = \xi_j \int e^{-i\langle x, \xi \rangle} u(x) \, dx = \xi_j \hat{u}(\xi).$$

1.2 Formule d'inversion

Théorème 1.11. *Soit* $u \in S$. *Alors* :

$$u(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \hat{u}(\xi) d\xi. \tag{1.5}$$

La fonction $(y, \xi) \mapsto e^{i\langle x, \xi \rangle} e^{-i\langle y, \xi \rangle} \mathfrak{u}(y)$ n'est pas intégrable pour (y, ξ) . On ne va donc pas pouvoir appliquer Fubini.

 $\underline{\textit{D\'emonstration}}.\ \ \text{Pour}\ \chi\in\mathcal{S}\text{, } (y,\xi)\mapsto e^{-i\langle y,\xi\rangle}e^{i\langle x,\xi\rangle}\chi(\xi)\mathfrak{u}(y)\ \text{ est int\'egrable}.\ \ \text{Donc par Fubini}:$

$$\int e^{i\langle x,\xi\rangle}\chi(\xi)\hat{u}(\xi)\,d\xi = \int e^{i\langle x,\xi\rangle}\chi(\xi)\int e^{-i\langle y,\xi\rangle}u(y)\,dy\,d\xi = \int u(y)\int e^{-i\langle y-x,\xi\rangle}\chi(\xi)\,d\xi\,dy = \int u(y)\hat{\chi}(y-x)\,dy.$$

Pour $\psi \in \mathcal{S}$, $\delta > 0$ tels que $\chi(\xi) = \psi(\delta \xi)$:

$$\hat{\chi}(\xi) = \int e^{-i\langle y, \xi \rangle} \psi(\delta \xi) \, d\xi = \delta^{-n} \hat{\psi}(\xi/\delta).$$

Alors:

$$\int e^{i\langle x,\xi\rangle} \psi(\delta\xi) \hat{u}(\xi) \,d\xi = \int u(x+y) \delta^{-n} \psi(y/\delta) \,dy = \int u(x+\delta y) \hat{\psi}(y) \,dy.$$

Par le théorème de convergence dominée :

$$\int u(x + \delta y) \hat{\psi}(y) \, dy \xrightarrow[\delta \to +\infty]{} u(x) \int \hat{\psi}(y) \, dy,$$

or:

$$\int e^{i\langle x,\xi\rangle} \psi(\delta\xi) \hat{u}(\xi)\,d\xi \xrightarrow[\delta \to +\infty]{} \psi(0) \int e^{i\langle x,\xi\rangle} \hat{u}(\xi)\,d\xi.$$

Par unicité de la limite, si $\hat{\psi}$ dy $\neq 0$:

$$u(x) = \frac{\psi(0)}{\int \hat{\psi}(y) \, dy} \int e^{i\langle x,\xi\rangle} \hat{u}(\xi) \, d\xi$$

Dans le cas n=1, on prend $\psi_1: x\mapsto e^{-x^2/2}$. En intégrant $z\mapsto e^{-z^2/2}$ sur un chemin rectangulaire $[a,b,c,d]\subset \mathbb{C}$, on trouve :

$$\int_{a}^{b} e^{-x^{2}/2} dx + \int_{b}^{c} e^{-z^{2}/2} dz + \int_{c}^{d} e^{-z^{2}/2} dz + \int_{d}^{a} e^{-z^{2}/2} dz = 0$$

par Cauchy. Pour $(\mathfrak{a},\mathfrak{b}) \to (-\infty,+\infty)$, on trouve que $\int_{\mathfrak{b}}^{\mathfrak{c}} e^{-z^2/2}$ et $\int_{\mathfrak{d}}^{\mathfrak{a}} e^{-z^2/2}$ tendent vers 0. Donc à la limite :

$$\int_a^b e^{-x^2/2} dx = \int_{\Im z = \mathbf{t}} e^{-z^2/2} dz = \int e^{(x^2 - \mathbf{t}^2)/2} e^{-itx} dx.$$

Donc $\hat{\psi}(t) = \psi(t) \int \psi dx$. On en déduit :

$$\int\!\hat{\psi}(t)\,dt = \left(\int\!\psi(x)\,dx\right)^2 = \left(\int e^{-x^2/2}\right)^2 = 2\pi.$$

Dès lors $\psi(0) = 1$ et $\int \hat{\psi} dx = 2\pi$, qui donne bien la formule.

Dans le cas général n > 1, on prend $\psi(x) = e^{-|x|^2/2} = \prod_{i=1}^n \psi_i(x_i)$. Donc :

$$\hat{\psi}(\xi) = \int e^{-i\langle x,\xi\rangle} \psi(x) \, dx = \int e^{-i\langle x,\xi\rangle} \prod_{j=1}^n e^{-x_j^2/2} \, dx = \int \prod_{j=1}^n e^{-ix_j\,\xi_j} \prod_{j=1}^n e^{-x_j^2/2} \, dx = \int \prod_{j=1}^n \left(e^{-ix_j\,\xi_j} \, e^{-x_k^2/2} \right) dx.$$

Par Fubini:

$$\hat{\psi}(\xi) = \prod_{j=1}^{n} \int e^{-ix_{j}\,\xi_{j}} e^{-x_{j}^{2}/2} \, dx = \prod_{j=1}^{n} \hat{\psi}_{1}(\xi_{j}).$$

On trouve alors:

$$\int \hat{\psi}(\xi) \, d\xi = \int \prod_{j=1}^{n} \hat{\psi}_{j}(\xi_{j}) \, d\xi = \prod_{j=1}^{n} \int \hat{\psi}_{1}(\xi_{j}) \, d\xi_{j} = (2\pi)^{-n},$$

où l'avant dernière égalité s'obtient en appliquant Fubini.

Puisque
$$\hat{\psi}(0) = 1$$
, on a bien (1.5).

On définit une application *transformée de Fourier* $\mathcal{F}: \mathcal{S} \to \mathcal{S}: \mathfrak{u} \mapsto \mathcal{F}\mathfrak{u} \coloneqq \hat{\mathfrak{u}}$.

Proposition 1.12. *F est une bijection linéaire.*

Démonstration. Par la formule d'inversion, \mathcal{F} est injective : si $\mathcal{F}u = 0$, alors u = 0.

De plus, $\mathfrak F$ est surjective. Pour $f\in \mathcal S$, montrons qu'il existe $\mathfrak u\in \mathcal S$ t.q. $\mathfrak F\mathfrak u=f$. Prenons $\mathfrak u(x)=(2\pi)^{-n}\int e^{\mathrm{i}\langle x,\xi\rangle}f(\xi)\,d\xi$. Alors :

$$\mathcal{F}f(x) = \int e^{-i\langle x,\xi\rangle} f(\xi) d\xi = (2\pi)^n u(-x).$$

De plus:

$$\hat{\hat{u}}(\xi) = \int e^{-i\langle x,\xi\rangle} \hat{u}(x) \, dx = (2\pi)^n (2\pi)^{-n} \int e^{-i\langle x,\xi\rangle} \hat{u}(x) \, dx = (2\pi)^n u(-\xi),$$

donc $\hat{f} = \hat{u}$ pour tout x, et puisque \mathcal{F} est injective, $f = \hat{u}$. Donc \mathcal{F} est surjective, et donc surjective.

La linéarité est triviale :

$$\mathcal{F}(f+\lambda g)(\xi) = \int e^{-i\langle x,\xi\rangle} (f+\lambda g)(x) \, dx = \int e^{-i\langle x,\xi\rangle} f(x) \, dx + \lambda \int e^{-i\langle x,\xi\rangle} g(x) \, dx = \left(\hat{f}+\lambda \hat{g}\right)(\xi).$$

En posant $\tilde{\mathcal{F}}: \mathcal{S} \to \mathcal{S}: \mathfrak{u} \mapsto \tilde{\mathcal{F}}\mathfrak{u}$ où $\tilde{\mathcal{F}}\mathfrak{u}(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle}\mathfrak{u}(\xi)\,d\xi$. Par un raisonnement similaire à la Proposition précédente, on trouve $\tilde{\mathcal{F}}$ est une bijection linéaire. De plus $\mathcal{F}^{-1} = \tilde{\mathcal{F}}$.

De plus, puisque \mathcal{F} transforme des suites convergentes en suites convergentes sur \mathcal{S} , $\tilde{\mathcal{F}}$ fait de même.

Cela veut dire que \mathcal{F} est une homéomorphisme linéaire de \mathcal{S} dans \mathcal{S} pour la topologie non définie ici. **Proposition 1.13.** *Pour* $\mathfrak{u}, \mathfrak{v} \in \mathcal{S}$:

- 1. $\int u\hat{v} = \int \hat{u}v$;
- 2. $\int u\overline{v} = (2\pi)^{-n} \int \hat{u}\hat{\overline{v}}$. Cette égalité est appelée identité de Parseval.

<u>Démonstration</u>. Le premier point se montre par la formule de la preuve du Théorème 1.11 pour $u, \chi \in S$:

$$\int e^{i\langle x,\xi\rangle}\chi(\xi)\hat{u}(\xi)\,d\xi = \int u(x+y)\hat{\chi}(y)\,dy$$

en x = 0.

Le second point, prenons $u, w \in S$ et posons $v := (2\pi)^{-n} \overline{\hat{w}}$. Par le premier point :

$$\int \hat{\mathbf{u}} \mathbf{v} = \int \mathbf{u} \hat{\mathbf{v}} = \int \mathbf{u} (2\pi)^{-n} \hat{\hat{\mathbf{w}}}.$$

On peut voir que:

$$(2\pi)^{-n}\widehat{\widehat{w}}(\xi) = (2\pi)^{-n} \int e^{-i\langle x,\xi\rangle} \overline{\widehat{w}}(x) \, dx = (2\pi)^{-n} \overline{\int e^{i\langle x,\xi\rangle} \widehat{w}(x) \, dx} = \overline{w(\xi)}.$$

Dès lors :

$$\int \hat{\mathfrak{u}}(2\pi)^{-\mathfrak{n}}\overline{\hat{\mathfrak{w}}} = \int \mathfrak{u}\overline{\mathfrak{w}}.$$

Corollaire 1.14 (Formule de Plancherel). *Pour* $u \in S$, *on a* :

$$\int |u|^2 dx = (2\pi)^{-n} \int |\hat{u}|^2 d\xi$$
 (1.6)

1.3 Discussion sur la définition de la transformée

On peut définir la transformée de Fourier de plusieurs manières, paramétrisé par $a,b\in\mathbb{R}$:

$$\mathfrak{F}_{\mathfrak{a},\mathfrak{b}}\mathfrak{u}(\xi)=\mathfrak{a}\int e^{-\mathfrak{i}\,\mathfrak{b}\langle x,\xi\rangle}\mathfrak{u}(x)\,dx.$$

La théorie reste la même à homothétie près puisque :

$$\mathfrak{Fu}(\xi) = \frac{1}{a} \mathfrak{F}_{a,b} \mathfrak{u}(\xi/b).$$

$$(2\pi)^{-n}\int \hat{u}(\xi)\overline{\hat{\nu}}(\xi)\,d\xi = \frac{(2\pi)^{-n}b^n}{\alpha^n}\int \mathfrak{F}_{\alpha,b}u(\eta)\overline{\mathfrak{F}_{\alpha,b}\nu(\eta)}\,d\eta.$$

Donc on peut choisir a=1 et $b=2\pi$ ou encore $a=(2\pi)^{n/2}$ et b=1 afin de simplifier la formule de Parseval qui devient :

$$\int u\overline{v} = \int \mathcal{F}u\overline{\mathcal{F}v}.$$

Cependant le choix a = b = 1 permet de ne pas avoir de terme b^k lors des dérivations sous le signe intégral.

1.4 Extension de la transformée à $L^1 \cap L^2$

Proposition 1.15. *Il existe une unique application linéaire continue* $\mathbb{F}: L^2 \to L^2$ *tel que* $\mathbb{F} \Big|_{\mathfrak{S}} = \mathfrak{F}$ *et :*

$$\int u\overline{v} = (2\pi)^{-n} \int \mathbb{F}u\overline{\mathbb{F}v} \, \mathrm{d}\xi,$$

i.e. F préserve l'identité de Parseval.

 $\underline{\textit{D\'{e}monstration}}. \text{ Admettons que } C_0^\infty(\mathbb{R}^n) \text{ est dense dans } L^2(\mathbb{R}^n). \text{ Puisque } C_0^\infty(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n), \text{ on a } \mathcal{S}(\mathbb{R}^n) \text{ dense dans } L^2(\mathbb{R}^n). \text{ Par cette densit\'e, pour } u \in \mathcal{S}, \text{ il existe } (u_k)_{k \in \mathbb{N}} \in \mathcal{S}^\mathbb{N} \text{ tel que } u_k \xrightarrow[k \to +\infty]{L^2} u, \text{ et donc } (u_k) \text{ est de Cauchy pour cette norme. } (\hat{u_k})_{k \in \mathbb{N}} \text{ est \'egalement de Cauchy car :}$

$$\|\hat{\mathbf{u}}_{k} - \hat{\mathbf{u}}_{m}\| = (2\pi)^{n/2} \|\mathbf{u}_{k} - \mathbf{u}_{m}\|.$$

Par cette complétude, il existe $z \in S$ t.q. $\hat{\mathfrak{u}}_k \xrightarrow[k \to +\infty]{L^2} z$. On pose alors $\mathbb{F}\mathfrak{u} \coloneqq z$. Montrons que z ne dépend pas de la suite $(\hat{\mathfrak{u}}_k)$ choisie pour montrer que \mathbb{F} est bien définie.

 $Soit\ (\nu_k)_{k\in\mathbb{N}}\ t.q.\ \nu_k\xrightarrow[k\to+\infty]{L^2}z.\ Alors\ \nu_k-u_k\xrightarrow[k\to+\infty]{L^2}0.\ Par\ Plancherel, \\ \hat{\nu_k}-\hat{u_k}\xrightarrow[k\to+\infty]{L^2}0.\ D\grave{e}s\ lors\ \hat{\nu_k}\xrightarrow[k\to+\infty]{L^2}z.$

Montrons alors que \mathbb{F} est linéaire.

Soient $u, v \in L^2$. Soient $(u_k)_{k \in \mathbb{N}}, (v_k)_{k \in \mathbb{N}} \in \mathcal{S}^{\mathbb{N}}$ telles que $u_k \xrightarrow[k \to +\infty]{L^2} u$ et $v_k \xrightarrow[k \to +\infty]{L^2} v$. Alors $u_k + v_k \xrightarrow[k \to +\infty]{L^2} u + v$. Par linéarité de \mathcal{F} , $\hat{u_k} + \hat{v_k} = \widehat{u_k + v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F}(u + v)$.

 $\text{Donc } \hat{u_k} + \hat{v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F} u + \mathbb{F} v \text{ et } \hat{u_k} + \hat{v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F} (u+v). \text{ On en déduit } \mathbb{F} u + \mathbb{F} v = \mathbb{F} (u+v). \text{ Il est également trivial que pour } \lambda \in \mathbb{R} : \mathbb{F} (\lambda u) = \lambda \mathbb{F} u.$

Pour montrer que $\mathbb{F}\Big|_{\mathbb{S}}=\mathfrak{F}$, prenons $\mathfrak{u}\in\mathbb{S}$, et la suite $(\mathfrak{u}_k)_{k\in\mathbb{N}}$ constante $\mathfrak{u}_k=\mathfrak{u}$. Par définition de \mathbb{F} , on a $\mathbb{F}\mathfrak{u}=\hat{\mathfrak{u}}$ car $\forall k\in [\![1,n]\!]:\hat{\mathfrak{u}_k}=\hat{\mathfrak{u}}$, donc $\hat{\mathfrak{u}_k}\xrightarrow[k\to+\infty]{}\hat{\mathfrak{u}}$.

Montrons finalement que F vérifie Parseval.

Premier cas : $u \in L^2$ et $v \in S$. Il existe $S^{\mathbb{N}} \ni (u_k)_{k \in \mathbb{N}} \xrightarrow[k \to +\infty]{L^2} u$. Donc :

$$\int u\overline{v} = \int u_k \overline{v} + \int (u - u_k)\overline{v}.$$

Puisque:

$$\left| \int (\mathbf{u} - \mathbf{u}_k) \overline{\mathbf{v}} \right| \leq \underbrace{\left\| \mathbf{u} - \mathbf{u}_k \right\|_{\mathbf{L}^2}}_{\mathbf{k} \to +\infty} \| \mathbf{v} \| \xrightarrow[k \to +\infty]{} 0,$$

on sait:

$$\int u_k \overline{\nu} \xrightarrow[k \to +\infty]{} \int u \overline{\nu}.$$

Or $u_k, v \in S$. Donc pour $k \to +\infty$, par Cauchy-Schwartz et par Parseval pour \mathfrak{F} :

$$\int u \overline{v} = \int u_k \overline{v} \xrightarrow[k \to +\infty]{L^2} (2\pi)^{-n} \int \mathbb{F} u \overline{\hat{v}}.$$

Dans le cas général $u, v \in L^2$, par le premier point pour $(v_k)_{k \in \mathbb{N}}$ t.q. $v_k \xrightarrow[k \to +\infty]{} v$:

$$\int u\overline{\nu_k} = (2\pi)^{-n} \int \mathbb{F}u\overline{\hat{\nu_k}}.$$

Or $v_k \xrightarrow[k \to +\infty]{L^2} \mathbb{F}v$. Par Cauchy-Schwartz, on a :

1.
$$\int u\overline{\nu_k} \xrightarrow[k \to +\infty]{L^2} \int u\overline{\nu}$$
;

2. et
$$\int \mathbb{F}u\overline{\hat{v_k}} \xrightarrow[k \to +\infty]{L^2} \int \mathbb{F}u\overline{\mathbb{F}v}$$
.

L'identité de Parseval est donc bien vérifiée pour $\mathbb F$. Il reste à vérifier que $\mathbb F$ est continue et qu'elle est unique.

La continuité découle de Parseval:

$$\|\mathbf{u}\|_{L^{2}} = (2\pi)^{-n/2} \|\mathbb{F}\mathbf{u}\|_{L^{2}}$$
,

 $donc\ pour\ \epsilon>0,\ pour\ \delta=(2\pi)^{-n/2}\epsilon,\ on\ a\ que\ si\ \|\mathfrak{u}-\mathfrak{v}\|_{L^2}<\delta,\ alors\ \|\mathbb{F}\mathfrak{u}-\mathbb{F}\mathfrak{v}\|_{L^2}<\epsilon.$

Si il existe $\mathbb{F}_1:L^2\to L^2$ continue et linéaire telle que $\mathbb{F}_1\Big|_{\mathbb{S}}=\mathfrak{F}$, alors par densité, pour $\mathfrak{u}\in L^2$, il existe $(\mathfrak{u}_k)_{k\in\mathbb{N}}\in \mathbb{S}^\mathbb{N}$ t.q. $\mathfrak{u}_k\xrightarrow[k\to+\infty]{}\mathfrak{u}$, et donc, par continuité :

$$\underbrace{\mathbb{F}(u_k)}_{\underset{k \to +\infty}{\longleftarrow} \mathbb{F}(u)} = \underbrace{\mathbb{F}_1(u_k)}_{\underset{k \to +\infty}{\longleftarrow} \mathbb{F}_1(u)}.$$

Donc puisque deux application continues qui coïncident sur une sous-ensemble dense coïncident partout, on a bien que $\mathbb{F} = \mathbb{F}_1$.

De la même manière, $\tilde{\mathbb{F}}$ se prolonge sur L^2 en $\tilde{\mathbb{F}}$ **Proposition 1.16.** $\mathbb{F} \circ \tilde{\mathbb{F}} = \mathrm{Id}_{L^2} = \tilde{\mathbb{F}} \circ \mathbb{F}$.

<u>Démonstration</u>. Ceci vient directement de la même propriété sur \mathcal{F} et $\tilde{\mathbb{F}}$. Soit $u \in L^2$ et soit $\mathcal{S}^{\mathbb{N}} \ni (u_k)_{k \in \mathbb{N}} \xrightarrow[k \to +\infty]{L^2}$ u. On sait :

$$S \ni \tilde{\mathcal{F}}(u_k) = \tilde{\mathbb{F}}(u_k) \xrightarrow[k \to +\infty]{L^2} \tilde{\mathbb{F}}(u)$$

par continuité de $\tilde{\mathbb{F}}$. Par continuité de \mathbb{F} , on a :

$$\mathfrak{F} \circ \tilde{\mathfrak{F}}(\mathfrak{u}_k) = \mathbb{F} \circ \tilde{\mathbb{F}}(\mathfrak{u}_k) \xrightarrow[k \to +\infty]{L^2} \mathbb{F} \circ \tilde{\mathbb{F}}(\mathfrak{u}).$$

Or $\mathfrak{F} \circ \tilde{\mathfrak{F}}(\mathfrak{u}_k) = \mathfrak{u}_k \xrightarrow[k \to +\infty]{L^2} \mathfrak{u}$. Par unicité de la limite, on a $\mathbb{F} \circ \tilde{\mathbb{F}}(\mathfrak{u})$. L'autre égalité se démontre de la même manière.

À ce stade, il est légitime de se demander si les définitions que l'on a sur L^1 (la formule intégrale définie depuis \mathcal{S}) et sur L^2 (la définition de \mathbb{F}) sont compatibles, i.e. si pour $\mathfrak{u}\in L^1\cap L^2$ on a bien $\hat{\mathfrak{u}}=\mathbb{F}\mathfrak{u}$. Cette égalité tient bien (démonstration à venir).

1.5 Exemple d'application de la théorie de Fourier

Pour $\Delta = \sum_{i=1}^n \partial_i^2$ le Laplacien sur \mathbb{R}^n et $f \in \mathbb{S}$, soit la PDE suivante :

$$(1 + \sum_{j=1}^{n} D_{j}^{2})u = u - \Delta u = f,$$
(1.7)

ou plus généralement, pour des $\mathfrak{a}_{\alpha} \in \mathbb{C}$:

$$\sum_{\substack{|\alpha| \leqslant m \\ P(D) \text{ polynôme}}} \alpha_{\alpha} D^{\alpha} u = f, \tag{1.8}$$

dans le cas du Laplacien, ce polynôme est $P(\xi) = 1 + |\xi|^2$.

Sous l'hypothèse $\inf_{\xi \in \mathbb{R}^n} |P(\xi)| \ge 0$, trouvons \mathfrak{u} t.q. $P(D)\mathfrak{u} = \mathfrak{f}$.

Formellement:

$$\begin{split} \widehat{P(D)u}(\xi) &= \hat{f}(\xi) \\ P(\xi)\hat{u}(\xi) &= \hat{f}(\xi) \\ \hat{u}(\xi) &= \frac{\hat{f}(\xi)}{P(\xi)} \\ u(x) &= (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \frac{\hat{f}(\xi)}{P(\xi)} \, d\xi. \end{split}$$

Plus rigoureusement, puisque $f \in \mathcal{S}$, on sait $\hat{f} \in \mathcal{S}$. De plus, P est borné par dessous. Donc $\left|\hat{f}/P\right| \leqslant C_N(1+|\xi|)^{-N}$, et du coup la fonction sous l'intégrale $(\xi \mapsto e^{i\langle x,\xi\rangle} \frac{\hat{f}(\xi)}{P(\xi)})$ est L^1 , et cette intégrale est bien définie pour N > n.

De plus, puisque la dérivation selon x sur $\mathfrak u$ fait juste descendre du ξ de l'exponentielle, par récurrence avec le théorème de convergence dominée et par la borne supérieure ci-dessus, on trouve que $\mathfrak u\in C^\infty(\mathbb R^n)$. On peut alors vérifier que la fonction $\mathfrak u$ ainsi trouvée est bien une solution de (1.8):

$$\sum_{|\alpha|\leqslant m} \alpha_\alpha D^\alpha u = (2\pi)^{-n} \int e^{\mathrm{i}\langle x,\xi\rangle} \underbrace{\sum_{|\alpha|\leqslant m} \alpha_\alpha \xi^\alpha}_{=P(\xi)} \frac{\hat{f}(\xi)}{P(\xi)} \, d\xi = (2\pi)^{-n} \int e^{\mathrm{i}\langle x,\xi\rangle} \hat{f}(\xi) \, d\xi = f(x).$$

Chapitre 2

Espaces de Hilbert

Définition 2.1. Soit H un \mathbb{C} -espace vectoriel. Un produit scalaire (forme hermitienne définie positive) sur H est une application $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ t.q. :

- (i) à $y \in \mathbb{C}$ fixé : $x \mapsto \langle x, y \rangle$ est une application linéaire de H dans \mathbb{C} ;
- (ii) pour $x, y \in \mathbb{C} : \langle x, y \rangle = \overline{\langle y, x \rangle};$
- (iii) pour $x \in \mathbb{C}$: $\langle x, x \rangle \ge 0$ où $\langle x, x \rangle = 0 \iff x = 0$.

Sur un produit scalaire, on peut définir une norme $||x|| := \langle x, x \rangle^{1/2}$.

Proposition 2.2. $\|\cdot\|: H \to \mathbb{R}^+$ *est une norme.*

Proposition 2.3. $\|\cdot\|$ *vérifie Cauchy-Schwartz, i.e.* :

$$\forall x, y \in H : |\langle x, y \rangle| \leq ||x|| ||y||.$$

 $\underline{\textit{D\'{e}monstration}}. \ \ \text{Soit} \ \alpha \in \mathbb{C} \ t.q. \ |\alpha| = 1 \ \text{et} \ \alpha \ \langle x,y \rangle \in \mathbb{R}^+ \ (\alpha \ \langle x,y \rangle = \left| \langle x,y \rangle \right|). \ \ \text{Soit} \ r \in \mathbb{R}.$

$$0 \leqslant \langle x - r\alpha y, x - r\alpha y \rangle = \langle x, x \rangle - r\alpha \langle y, x \rangle - r\overline{\alpha} \langle x, y \rangle + r^2 \langle y, y \rangle = A - 2Br + Cr^2,$$

pour
$$A = \langle x, x \rangle \in \mathbb{R}^+$$
, $B = \alpha \langle x, y \rangle = |\langle x, y \rangle| \in \mathbb{R}^+$, $C = \langle y, y \rangle \in \mathbb{R}^+$.

Si C=0, alors B=0, et donc $\langle y,x\rangle=0$ et Cauchy-Schwartz est vérifié.

Si $C \ngeq 0$, alors pour $r = B/C : 0 \leqslant A - 2Br + Cr^2 = \frac{AC - B^2}{C}$, donc $B^2 \leqslant AC$, donc Cauchy-Schwartz est vérifié.

Proposition 2.4. $\|\cdot\|$ *vérifie l'inégalité triangulaire, i.e.* :

$$||x + y||^2 \le ||x||^2 + ||y||^2$$
.

$$\underline{D\acute{e}monstration}. \ \|x+y\|^2 = \langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle + \langle y,y\rangle \leqslant \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

On a donc $(H, \|\cdot\|)$ un e.v. normé, depuis lequel on peut alors définir une distance : $d(x, y) := \|x - y\|$. **Définition 2.5.** Si H est complet pour d, on dit que H est un espace de Hilbert.

Quelques exemples d'espaces de Hilbert :

- (0) \mathbb{C}^n pour $\langle x, y \rangle := \sum_{j=1}^n x_j \overline{y_j}$;
- (1) Pour $(\Omega, \mathcal{A}, \mu)$ un espace de mesure, $L^2(\Omega, \mathcal{A}, \mu)$ muni du produit scalaire $\langle f, g \rangle := \int f \overline{g} d\mu$;
- (2) Pour $(\mathbb{N}, \mathcal{P}(\mathbb{N}), |\cdot|)$ comme espace de mesure, on a l'équivalent dénombrable de l'exemple $(0): \int f\overline{g} = \sum_{k\geqslant 1} f_k \overline{g_k}$. On note $\ell^2(\mathbb{N}):=L^2(\mathbb{N}, \mathcal{P}(\mathbb{N}), |\cdot|)$.

Un dernière exemple bien moins trivial : les espaces de Sobolev.

Définition 2.6. Soit $s\geqslant 0$ un paramètre, on définit l'espace de Sobolev d'ordre s sur \mathbb{R}^n par :

$$\mathsf{H}^s(\mathbb{R}^n) \coloneqq \left\{ \mathfrak{u} \in \mathsf{L}^2(\mathbb{R}^n) \text{ t.q. } (2\pi)^{-n} \int \bigl| \mathbb{F}\mathfrak{u}(\xi) \bigr|^2 \, (1+|\xi|)^s \, d\xi \lesseqgtr +\infty \right\}. \tag{2.1}$$

On y définit le produit scalaire suivante pour $u, v \in H^s(\mathbb{R}^n)$:

$$\langle \mathbf{u}, \mathbf{v} \rangle_{s} := (2\pi)^{-n} \int \mathbb{F} \mathbf{u} \overline{\mathbb{F} \mathbf{v}} (1 + |\xi|)^{s} d\xi.$$
 (2.2)

Remarque. Remarquons que $u \in H^s \iff \xi \mapsto (1+|\xi|^2)^{s/2} \mathbb{F} u(\xi)$ est dans L^2 . **Proposition 2.7.** $(u,v) \mapsto \langle u,v \rangle_s$ est un produit scalaire.

<u>Démonstration</u>. À ν fixé, $u \mapsto \langle u, \nu \rangle_s$ est linéaire par linéarité de \mathbb{F} et par linéarité de l'intégrale. Soient $u, \nu \in H^s$.

$$\left\langle u,\nu\right\rangle_s=(2\pi)^{-n}\int\mathbb{F}u\overline{\mathbb{F}\nu}\underbrace{(1+|\xi|)^s}_{\in\mathbb{R}^+}d\xi=(2\pi)^{-n}\overline{\int\mathbb{F}\nu\overline{\mathbb{F}u}(1+|\xi|)^s\,d\xi}=\overline{\left\langle \nu,u\right\rangle_s}.$$

Finalement, pour $\mathfrak{u}\in H^s$:

et de plus, il est évident que $\left\langle \mathfrak{u},\mathfrak{u}\right\rangle _{s}=0\iff\mathfrak{u}=0.$

Par linéarité de Fourier, $H^s(\mathbb{R}^n)$ est un espace vectoriel, et de plus il est normé par le produit scalaire défini ci-dessus. Montrons alors que c'est un espace ce Hilbert.

Soit $(u_k)_{k\in\mathbb{N}}\in H^s$ une suite de Cauchy. $(1+|\xi|^2)^{s/2}\mathbb{F}u_k$ est de Cauchy dans L^2 , qui est complet. Donc il en existe une limite $V\in L^2$ t.q. $(1+|\xi|^2)^{s/2}\mathbb{F}u_k$ $\xrightarrow[k\to+\infty]{L^2}V$. Il existe $u\in L^2$ t.q. $(1+|\xi|^2)^{s/2}\mathbb{F}u=V$ car $(1+|\xi|^2)^{-s/2}V\in L^2$, et \mathbb{F} est une bijection sur L^2 . De plus, $u\in H^s$ car $V=(1+|\xi|^2)^{s/2}\mathbb{F}u\in L^2$. Puisque $u_k\xrightarrow[k\to+\infty]{H^s}u$, on a que H^s est complet.

Pour un contre-exemple, on a $C_0^\infty(\mathbb{R}^n)$ muni du produit scalaire $\langle f,g \rangle \coloneqq \int f\overline{g} \, dx$ n'est pas un Hilbert. En effet, pour $f \in L^2 \setminus C_0^\infty$, par densité de D_0^∞ dans L^2 , $\exists (f_k)_{k \in \mathbb{N}} \in C_0^{\infty \mathbb{N}}$ t.q. $f_k \xrightarrow[k \to +\infty]{L^2}$ f. De plus, (f_k) est de Cauchy dans C_0^∞ . Par l'absurde, si $\exists g \in C_0^\infty$ t.q. $f_k \xrightarrow[k \to +\infty]{L^2}$ g, par unicité de la limite, g = f, or $f \not\in C_0^\infty$.

À partir d'ici, H désigne un espace de Hilbert quelconque.

Définition 2.8. Soit $y \in H$. On définit :

$$\begin{cases} f_1: x \mapsto \langle x, y \rangle \\ f_2: x \mapsto \langle y, x \rangle \\ f_3: x \mapsto ||x|| \end{cases}$$

Proposition 2.9. f_i *est continue pour* i = 1, 2, 3.

<u>Démonstration</u>. 1. $|f_1(x_1) - f_1(x_2)| = |\langle x_1 - x_2, y \rangle| \le ||x_1 - x_2|| ||y|| \xrightarrow[x_1 \to x_2]{} 0$. (f₁ est même uniformément continue et Lipschitzienne).

2. Idem pour f_2 , à permutation près.

3. La continuité vient directement de $||x|| - ||z|| \le ||x - z||$.

Proposition 2.10. *Pour* $F \leq H$, $\overline{F} \leq H$.

 $\underline{\textit{D\'{e}monstration}}. \ \ Pour \ x,y \in \overline{F}, \ il \ existe \ (x_k), (y_k) \in F^{\mathbb{N}} \ t.q. \ x_k \xrightarrow[k \to +\infty]{} x \ et \ y_k \xrightarrow[k \to +\infty]{} y. \ Donc \underbrace{x_k + y_k}_{k \to +\infty}$ x + y.

De plus, pour
$$\lambda \in \mathbb{C}$$
, $\underbrace{\lambda x_k}_{k \to +\infty} \xrightarrow{k \to +\infty} \lambda x \in \overline{F}$.

Remarque. Contrairement aux e.v. de dimension finie, en dimension infinie, il est possible d'avoir un souse.v. *strict* dense (e.g. C_0^{∞} dans L^2).

Proposition 2.11. $F := \{ f \in L^2 \text{ t.q. } f = 0 \text{ sur } x_n > 0 \} \text{ est un e.v. fermé dans } L^2.$

 $\underline{\textit{D\'{e}monstration}}. \ \ \text{Soit} \ g \in \overline{F}. \ Il \ existe} \ (f_k)_{k \in \mathbb{N}} \in F^{\mathbb{N}} \ t.q. \ f_k \xrightarrow[k \to +\infty]{L^2} g. \ Pour \ k \in \mathbb{N}:$

$$\int_{x_n > 0} |g|^2 dx = \int_{x_n > 0} |g - f_k|^2 dx \le |g - f_k|_{L^2}^2 \xrightarrow[k \to +\infty]{} 0$$

 $\text{car } f_k \in F \text{ et } f_k \xrightarrow[k \to +\infty]{L^2} g. \text{ Dès lors } \textstyle \int_{x_{\mathfrak{n}}>0} \lvert g \rvert^2 \, dx = 0 \text{, i.e. } g \in F. \text{ Donc } \overline{F} = F.$

2.1 Orthogonalité

Définition 2.12. Pour $x, y \in H$, x et y sont *orthogonaux*, noté $x \perp y$ lorsque $\langle x, y \rangle = 0$.

Pour $x \in H$, on définit $x^{\perp} \coloneqq \{y \in H \text{ t.q. } \langle x,y \rangle = 0\}$, et pour $M \subset H$, on définit $M^{\perp} \coloneqq \{y \in H \text{ t.q. } \forall x \in M : A \in H \}$ $\begin{array}{l} \langle x,y\rangle=0\}=\bigcap_{x\in M}x^{\perp}.\\ \textbf{Proposition 2.13.}\ \textit{Pour}\ x\in \mathsf{H}, x^{\perp}\leqslant \mathsf{H},\textit{et}\ x^{\perp}\textit{ est ferm\'e}. \end{array}$

 $\underline{\textit{D\'emonstration}}$. À $x \in H$ fixé, on remarque que $x^{\perp} = f_2^{-1}(\{0\})$, or f_2 est continue. Donc x^{\perp} est fermé. Vérifier que x^{\perp} est un sous-e.v. est trivial.

Corollaire 2.14. *Pour* $M \leq H$, M^{\perp} *est un sous-e.v. fermé de* H.

Ce résultat découle directement du fait que M^{\perp} est une intersection d'e.v. fermés.

Définition 2.15. $E \subseteq H$ est dit *convexe* lorsque $\forall x, y \in E : \forall t \in [0, 1] : (1 - t)x + ty \in E$.

Exemple 2.1. — tout sous-e.v. de H est convexe;

- toute boule (ouverte ou fermée) dans H est convexe; pour $\Omega \subseteq \mathbb{R}^n$, $u \in L^2(\Omega)$, $E = \{ v \in L^2 \text{ t.q. } u = v \text{ sur } \Omega \}$ est convexe.

Montrons également que ce dernier ensemble est fermé dans L^2 . Soit $f \in \overline{E}$. Il existe $(f_k)_{k \in \mathbb{N}} \in E^{\mathbb{N}}$ t.q. $f_k \xrightarrow{L^2}$ f.

$$\int_{\Omega} |u-f|^2 dx = \int_{\Omega} |f_k-f| \leqslant \int_{\mathbb{R}^n} |f_k-f|^2 dx \xrightarrow[k \to +\infty]{} 0.$$

Théorème 2.16. *Soit* $E \neq \emptyset$ *convexe fermé dans* H. *Alors* $\exists !x \in E$ *t.q.* $||x|| = \min_{z \in E} ||z|| = \in_{z \in E} ||z|| = : \delta$.

Démonstration. **unicité** :soient $x, y \in E$ t.q. $||x|| = ||y|| = \delta$. Par la formule du parallélogramme :

$$||x + y||^2 = ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Par convexité de E, $(x + y)/2 \in E$, donc $||(x + y)/2|| \ge \delta$. En multipliant de part et d'autre par 1/4 au préalable, on trouve alors :

$$\|\mathbf{x} - \mathbf{y}\|^2 \le 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2) - 4\delta^2 = 0.$$

On en déduit ||x - y|| = 0, i.e. x = y.

<u>existence</u>: Soit $(y_k)_{k\in\mathbb{N}}\in E^{\mathbb{N}}$ t.q. $y_k\xrightarrow[k\to+\infty]{}\delta$ qui existe par définition de l'infimum.

$$\|y_k-y_m\|^2\leqslant 2(\underbrace{\|y_k\|^2+\|y_m\|^2}_{\rightarrow 2\delta^2})-4\delta^2.$$

 $Donc\ (y_k)\ est\ de\ Cauchy.\ Par\ complétude\ de\ H,\ \exists x_0\in H\ t.q.\ y_k\xrightarrow[k\to +\infty]{} x_0,\ et\ par\ fermeture\ de\ E,\ x_0\in E.$

De plus, par continuité de la norme,
$$\|y_k\| \xrightarrow[k \to +\infty]{} \|x_0\|$$
, et par unicité de la limite, $\|x_0\| = \delta$.

Exemple 2.2. Si $\Omega \subseteq \mathbb{R}^n$ est un ouvert, $\mathfrak{u} \in L^2(\Omega)$, $E = \{ \nu \in L^2 \text{ t.q. } \mathfrak{u} = \nu \text{ sur } \Omega \}$ est un convexe fermé, donc par ce théorème, il existe un unique $\mathfrak{u}^* \in E$ qui minimise la norme : $\mathfrak{u}^* = \mathfrak{u} \text{ sur } \Omega$ et $\mathfrak{u}^* = 0 \text{ sur } \mathbb{R}^n \setminus \Omega$. **Théorème 2.17** (Décomposition orthogonale). *Soit* $M \leq H$ *fermé. Alors* :

- 1. $\forall x \in H : \exists !(y,z) \in M \times M^{\perp} t.q. \ x = y + z;$
- 2. ces valeurs y,z sont les points les plus proches de x dans M et M^{\perp} respectivement;
- 3. Les applications $P: x \mapsto y$ et $Q: x \mapsto z$ sont linéaires ;
- 4. $||x||^2 = ||Px||^2 + ||Qx||^2$ (et donc P, Q sont continues);
- 5. P et Q sont les projections orthogonales de x sur M et M^{\perp} respectivement.

Démonstration.

nonstration.

1. unicité: si
$$x = y_1 + z_1 = y_2 + z_2$$
, pour $y_1, y_2 \in M$ et $z_1, z_2 \in M^{\perp}$, on a $\underbrace{y_1 - y_2}_{\in M} = \underbrace{z_2 - z_1}_{\in M^{\perp}}$. Or

$$M \cap M^{\perp} = \{0\}$$
. Donc $y_1 = y_2$ et $z_1 = z_2$.

<u>existence</u> :x+M est convexe (trivial par le fait que $M\leqslant H$). Montrons que x+M est fermé. Soit $u\in\overline{x+M}$. Il existe $(u_k)_{k\in\mathbb{N}}\in(x+M)^\mathbb{N}$ t.q. $u_k\xrightarrow[k\to+\infty]{}u$. $\forall k\in\mathbb{N}:x+M\ni u_k=x+y_k$. On en

déduit $y_k \xrightarrow[k \to +\infty]{u} -x$. Par fermeture de M, on a $u-x \in M$, et donc $u \in x+M$ (i.e.x+M est fermé).

Soit $z \in x + M$ l'élément qui minimise la norme. On pose $y := x - z \in M$. Montrons alors que $z \in x + M$. Soit $w \in M$; WLOG, supposons $\|w\| = 1$. Puisque $z \in x + M$, $\forall \alpha \in \mathbb{C} : z - \alpha w \in x + M$. Donc :

$$\left\|z\right\|^{2} \leqslant \left\|z - \alpha w\right\|^{2} = \left\|z\right\|^{2} - 2\Re\alpha \left\langle w, z \right\rangle + \left|\alpha\right|^{2}.$$

 $0=2\Re\alpha\left\langle w,z\right\rangle -\left|\alpha\right|^{2}.\text{ En particulier, pour }\alpha=\left\langle z,w\right\rangle :0=\left\|\left\langle z,w\right\rangle \right\|^{2},\text{ donc }\left\langle z,w\right\rangle =0.\text{ Dès lors }z\in M^{\perp}.$

2. Soit $Y \in M$. Montrons que $||x - Y|| \ge ||x - y|| = ||z||$:

$$||x - Y|| = ||y + z - Y|| = ||(y - Y) + z|| = ||y - Y|| + ||z|| \ge ||z||.$$

Idem pour $Z \in M^{\perp} : ||x - Z|| \ge ||x - z|| = y$.

3. Soient $x_1, x_2 \in H$, $\alpha_1, \alpha_2 \in \mathbb{C}$. On a $\alpha_1 x_1 = \alpha_1 P x_1 + \alpha_1 Q x_1$, et $\alpha_2 x_2 = \alpha_2 P x_2 + \alpha_2 Q x_2$. Donc:

$$P(\alpha_1x_1 + \alpha_2x_2) + Q(\alpha_1x_1 + \alpha_2x_2) = \alpha_1x_1 + \alpha_2x_2 = \alpha_1Px_1 + \alpha_1Qx_1 + \alpha_2Px_2 + \alpha_2Qx_2$$

et donc:

$$\underbrace{P(\alpha_1x_1+\alpha_2x_2)-\alpha_1Px_1-\alpha_2px_2}_{\in M}=\underbrace{\alpha_1Qx_1+\alpha_2Qx_2-Q(\alpha_1x_1+\alpha_2x_2)}_{\in M^\perp}.$$

Or $M \cap M^{\perp} = \{0\}$, donc $P(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 P x_1 - \alpha_2 p x_2$, et $\alpha_1 Q x_1 + \alpha_2 Q x_2 = Q(\alpha_1 x_1 + \alpha_2 x_2)$.

4. Par Pythagore $\|x\|^2 = \|Px\|^2 + \|Qx\|^2$. Donc $\|Px\| \le \|x\|$ et $\|Qx\| \le \|x\|$, i.e. P et Q sont Lipschitziennes, donc en particulier continues.

Corollaire 2.18. Si M \leq H, avec M \neq H, il existe y \in H t.q. y \perp M.

Démonstration. Pour
$$x \in H \setminus M$$
, $x = Px + Qx$, où $Qx \neq 0$, et $Qx \perp M$. □

Corollaire 2.19. Si M \leq H est fermé, alors M = M^{\perp}.

Démonstration. La première inclusion est triviale : si $x \in M$, alors $x \perp M^{\perp}$.

La seconde inclusion se démontre comme suit : soit $x \in M^{\perp} \subseteq H$. x = y + z où $y \in M$ et $z \in M^{\perp}$. Or $0 = \langle x, z \rangle = \langle y + z, z \rangle = \langle y, z \rangle + \|z\|^2$, et $\langle y, z \rangle = 0$ par définition d'orthogonalité. Donc |z| = 0 et z = 0, i.e. $x = y \in M$.

Lemme 2.20 (Lemme de Riesz). *Soit* L : H $\rightarrow \mathbb{C}$, *une forme linéaire continue. Alors* $\exists ! y \in H$ *t.q.* L = $\langle \cdot, y \rangle$.

<u>Démonstration</u>. <u>unicité</u>:pour $y_1, y_2 \in H$ t.q. $\forall x \in H : \langle x, y_1 \rangle = \langle x, y_2 \rangle$, on a $\langle x, y_1 - y_2 \rangle = 0$, donc $y_1 - y_2 \in H^{\perp} = \{0\}$, i.e. $y_1 = y_2$.

<u>existence</u> :si $L \equiv 0$, alors y = 0. Supposons alors que L n'est pas identiquement nulle. Ker $L \nleq H$ et est fermé par continuité de L. Dès lors, il existe $z \in H$, $z \neq 0$ t.q. $z \perp K$ er L. WLOG, supposons ||z|| = 1. Posons $y \coloneqq \overline{Lzz}$ et $u \coloneqq (Lx)z - (Lz)x$. Calculons :

$$Lu = (Lx)Lz - (Lz)Lx = 0,$$

donc $u \in \text{Ker L}$, et donc $0 = \langle u, z \rangle = (Lx) \langle z, z \rangle - (Lz) \langle x, z \rangle = Lx - (Lz) \langle x, z \rangle$. Dès lors, $Lx = (Lx) \langle x, z \rangle = \langle x, y \rangle$.

2.2 Systèmes orthonormaux

Définition 2.21. Pour V un e.v. et $S \subseteq V$, on note Vect S l'e.v. engendré par S.

 $(e_{\alpha})_{\alpha \in A} \subset V$ est appelé *orthonormal* lorsque $\forall \alpha, \beta \in A : \langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha, \beta}$.

Pour $x \in H$, on définit $\hat{x}(\alpha) := \langle x, e_{\alpha} \rangle$.

Les $\hat{x}(\alpha)$ sont les coefficients de Fourier relativement au système $(e_{\alpha})_{\alpha \in A}$.

Exemple 2.3. Sur $L^2(\mathbb{R}^n)$, les $(e_\alpha)_{\alpha\in\mathbb{Z}}$ sont les $e_\alpha:[0,2\pi)\to\mathbb{C}:t\mapsto \frac{e^{i\alpha t}}{\sqrt{2\pi}}$.

Théorème 2.22. Pour H un espace de Hilbert et $(e_{\alpha})_{\alpha \in A}$ un système orthonormal, $F \subset A$ fini, et $M_F := \text{Vect } e_{\alpha \alpha \in F}$, on a:

1. si
$$\phi:A\to\mathbb{C}$$
 est nulle sur $A\setminus F$, pour $y=\sum_{\alpha\in F}\varpi(\alpha)e_\alpha$, alors :

$$\forall \alpha \in A: \phi(\alpha) = \hat{y}(\alpha).$$

De plus,
$$\|\mathbf{y}\|^2 = \sum_{\alpha \in F} |\varphi(\alpha)|$$

$$\begin{split} & \textit{De plus}, \|y\|^2 = \sum_{\alpha \in F} \left| \phi(\alpha) \right|. \\ & 2. \; \textit{Si} \; x \in H, \, s_F(x) \coloneqq \sum_{\alpha \in F} \hat{x}(\alpha) e_\alpha \in M_F. \, \textit{Si} \; s \in M_F \setminus \{s_F(x)\}, \, \textit{alors} : \end{split}$$

$$||x - s_F(x)|| \leq ||x - s||.$$

De plus :
$$\sum_{\alpha \in F} |\hat{x}(\alpha)|^2 \leqslant ||x||^2$$
.