Совершенные графы. Элементарные примеры, гипотезы Бержа, теорема Ловаса (формулировка)

Совершенные графы

Определение

Кликовое число графа G (обозначение: $\omega(G)$) — это количество вершин в наибольшей клике (то есть полном подграфе) этого графа.

- ullet Очевидно, $\chi(G) \geq \omega(G)$.
- Как нам известно, большое хроматическое число в графе может быть даже в графе без треугольников, тем более без больших клик.
- ullet Однако важное место в теории графов занимают графы, для которых хроматическое и кликовое число равны. Определение Граф G называется совершенным, если для любого его индуцированного подграфа H выполняется условие $\chi(H)=\omega(H)$.
- Простейшим примером совершенных графов являются полные графы и двудольные графы.
- Отметим, что любой индуцированный подграф совершенного графа также совершенен.
- В 1963 году Берж высказал две гипотезы о том, как устроены совершенные графы.

Слабая гипотеза Бержа.

Граф G совершенен тогда и только тогда, когда граф \overline{G} совершенен.

Сильная гипотеза Бержа.

Граф G совершенен тогда и только тогда, когда ни G, ни \overline{G} не содержат нечётного цикла длины более 3 в качестве индуцированного подграфа.

Теорема Ловаса о совершенных графах.

Teopeмa (L. Lovász, 1972)

Граф G совершенен тогда и только тогда, когда для любого его индуцированного подграфа G^\prime выполняется:

$$\omega(G')\omega(\overline{G'}) = \alpha(G')\omega(G') \ge v(G').$$

Следствие 1

Граф G совершенен тогда и только тогда, когда граф \overline{G} совершенен.

Доказательство (G. Gasparian, 1996)

- Следствие 1 очевидно, так как Теорема 14 даёт критерий совершенности графа, одинаковый для графа и его дополнения.
- Приступим к доказательству теоремы.

Прямое доказательство (\Rightarrow)

Если граф совершенен, то для любого его индуцированного подграфа G' в силу его совершенности и Леммы 1 мы имеем:

$$\omega(G') = \chi(G') \geq rac{v(G')}{lpha(G')},$$

откуда умножением на lpha(G') получаем то, что нужно.

Обратное доказательство (\Leftarrow)

- Докажем обратную импликацию индукцией по v(G).
- База: v(G)=1 очевидна.
- **Переход**: Рассмотрим граф G, удовлетворяющий условию:

$$\omega(G\prime)\omega(\overline{G\prime})=\alpha(G\prime)\omega(G\prime)\geq v(G\prime).$$

- По индукционному предположению любой индуцированный подграф G совершенен.
- В частности, для любой вершины $u \in V(G)$ граф G-u совершенен.
- Пусть $\alpha = \alpha(G), \omega = \omega(G)$.
- Тогда для любой вершины $u \in V(G)$ выполняется:

$$\chi(G-u) = \omega(G-u) \le \omega. \tag{1}$$

- Предположим, что граф G не совершенен, то есть $\chi(G)>\omega(G).$
- Пусть $A_0=\{u_0,\ldots,u_{lpha-1}\}$ независимое множество в графе G.
- Ввиду условия (1) существует правильная раскраска вершин $G-u_i$ в ω цветов. Тогда $V(G-u_i)$ можно разбить на ω независимых множеств: $A_{i\omega+1},\ldots,A_{(i+1)\omega}.$
- Итого мы имеем $lpha \cdot \omega + 1$ независимых множеств: $A_0, A_1, \dots, A_{lpha \cdot \omega}.$

Утверждение

Пусть C — множество вершин клики размера ω в графе G. Тогда C пересекает все множества $A_0,\ldots,A_{\alpha\cdot\omega}$, кроме одного.

Доказательство

- Рассмотрим разбиение вершин графа G на $\omega+1$ независимых множеств $\{\{u_i\},A_{i\omega+1},\dots,A_{(i+1)\omega}\}.$
- Так как C может пересекать независимое множество лишь по одной вершине, C пересекает все эти множества, кроме одного.
- Значит, C либо пересекает все множества $A_{i\omega+1},\dots,A_{(i+1)\omega}$, либо все эти множества, кроме одного, и при этом $C\ni u_i.$
- Поскольку $|C\cap A_0|\leq 1$, то C содержит не более, чем одну из вершин $u_0,...,u_{lpha-1}.$
- • Тогда либо $|C\cap A_0|=1$ и C пересекает все множества $A_1,...,A_{\alpha\omega},$ кроме одного, либо $C\cap A_0=\emptyset$ и C пересекает все множества $A_1,...,A_{\alpha\omega}.$
- Пусть $M\in M_{lpha\cdot\omega+1}(\mathbb{R})$ матрица, заданная равенством $m_{i,j}=|A_i\cap C_j|$ (индексы пробегают значения из $[0,\dots,lpha\cdot\omega]$).
- Понятно, что $m_{i,j} \in \{0,1\}$, причём по построению $m_{i,i} = 0$.

- Тогда по утверждению $m_{i,j}=1$ при i
 eq j.
- Таким образом, матрица M имеет нули на главной диагонали и единицы на всех остальных позициях.

Утверждение

Ранг матрицы M равен $lpha \cdot \omega + 1$.

- Пусть $V(G)=\{v_1,\ldots,v_n\}$. Рассмотрим матрицу $A\in M_{lpha\cdot\omega+1,n}(\mathbb{R})$, где $a_{i,j}=1$, если $A_i
 i v_j$, и $a_{i,j}=0$ в противном случае.
- Рассмотрим матрицу $B\in M_{n,lpha\cdot\omega+1}(\mathbb{R})$, где $b_{j,\ell}=1$, если $v_j\in C_\ell$, и $b_{j,\ell}=0$ в противном случае.
- Легко видеть, что $(AB)_{s,t} = |A_s \cap C_t| = m_{s,t}.$
- Так как $\operatorname{rk}(M) \leq \min(\operatorname{rk}(A),\operatorname{rk}(B))$, мы имеем:

$$v(G) = n \ge \operatorname{rk}(A) \ge \operatorname{rk}(M) = \alpha \cdot \omega + 1,$$

что противоречит неравенству (*), а значит, и условию теоремы.