Lección 1

Marcos Bujosa

3 de julio de 2024

Índice

1.	Número de viajeros internacionales	1
	.1. Actividad 1 - mostrar datos	1
	.2. Actividad 2 - Gráfico de series temporales	2
	.3. Actividad 3 - Transformar logarítmicamente los datos	2
	.4. Actividad 4 - Primera diferencia de los datos en logaritmos	2
	.5. Actividad 5 - El logaritmo no es una función lineal	3
	.6. Actividad 6 - Diferencia de orden 12 (o estacional) de la primera diferencia de los datos en logaritmos	3
	.7. Actividad 5 - El orden en que se aplican los operadores diferencia y diferencia estacional es irelevante	3

1. Número de viajeros internacionales

Guión: airlinePass.inp

En esta primera práctica con Gretl reproduciremos el ejemplo visto en clase, en el que hemos aplicado distintas transformaciones a los datos hasta obtener una serie temporal que podemos asumir que podría ser una realización de un proceso estocástico estacionario. Los datos son mensuales y contienen el número de viajeros internacionales (en miles) en las líneas aéreas norteamericanas en los años 1949–1960 que aparece en manual de Box & Jenkins.

1. Objetivo

- a) Reproducir el primer ejemplo visto en clase.
- b) Mostrar datos.
- c) Transformalos
- d) Generar gráficos.
- 2. Carga de datos Archivo -->Abrir datos -->Archivo de muestra y en la pestaña Gretl seleccione bjg. o bien teclee en linea de comandos:

open bjg

1.1. Actividad 1 - mostrar datos

- 1. Visualice los datos de precios y tamaños de las casas
 - En la ventana principal de Gretl, marque con el ratón la variable: g.
 - "Pinche" sobre ella con el botón derecho del ratón.
 - \blacksquare Seleccione $mostrar\ valores\ del menú desplegable que se ha abierto al pinchar.$

o bien teclee en linea de comandos:

print -o g

- 2. Ayuda Para consultar la documentación sobre cualquier comando, puede emplear el menú desplegable *Ayuda* que aparece arriba, a la derecha de la ventana principal de Gretl.
 - Ayuda ->Guía de Instrucciones y "pinche" sobre print

o bien teclee en linea de comandos: help print

1.2. Actividad 2 - Gráfico de series temporales

- 1. Scatter plot
 - Marque la variable g (pulsando ctrl y pinchando con el botón derecho del ratón sobre ella). Elija Gráfico de series temporales

o bien teclee en linea de comandos: gnuplot g --time-series --with-lines

- 2. Guardar gráfico como icono para editarlo más tarde
 - "Pinche" con el botón derecho sobre la ventana del gráfico.
 - Seleccione Guardar a sesión como icono

o bien teclee en linea de comandos:

```
\label{lem:line-series} \mbox{ Airline-Passengers <- gnuplot g --time-series --with-lines}
```

(AirlinePassengers es el nombre con el que se guardará el icono)

En la zona inferior izquierda de la ventana principal puede ver una serie de iconos. Uno de ellos es la vista de iconos de sesión.

1.3. Actividad 3 - Transformar logarítmicamente los datos

Aunque el fichero ya contiene el logaritmo de la serie, vamos a transformar logarítmicamente los datos originales. Selecione con el ratón la variable g y luego pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.

■ Añadir ->Logaritmos de las variables seleccionadas

o bien teclee en linea de comandos:

logs g

Entre las variables aparecerá una nueva con el prefijo 1_, es decir, en este caso aparecerá la variable 1_g (que contiene exactamente la misma serie temporal que 1g).

Genere el gráfico de series temporales de esta nueva serie y guardelo como un nuevo icono (use un nombre suficientemente descriptivo para el icono, por ejemplo LogsAirlinePassengers)

1.4. Actividad 4 - Primera diferencia de los datos en logaritmos

Selecione con el ratón la variable 1_g y luego pulse en el menú desplegable Añadir que aparece arriba, en el centro de la ventana principal de Gretl.

■ Añadir ->Primeras diferencias de las variables seleccionadas

o bien teclee en linea de comandos:

 $diff l_g$

Entre las variables aparecerá una nueva con el prefijo d_, es decir, en este caso aparecerá la variable d_1_g.

Genere el gráfico de series temporales de esta nueva serie y guardelo como un nuevo icono (Use un nombre suficientemente descriptivo, por ejemplo D_LogsAirlinePassengers)

1.5. Actividad 5 - El logaritmo no es una función lineal

Aunque el operador primera diferencia es lineal, la función logaritmo no lo es. Comprobemos que no es lo mismo la primera diferencia del logaritmo (calculado en la actividad anterior) que el logaritmo de la diferencia.

- Añada la primera diferencia de g y luego el logaritmo de d_g.
- Marque con el ratón d_l_g y l_d_g y muestre sus valores; verá que son distintos (no solo eso, dado que la función logaritmo solo está definida para números positivos, en l_d_g parecen una gran cantidad de valores ausentes).

en linea de comandos:

```
diff g
logs d_g
print -o d_l_g l_d_g
```

1.6. Actividad 6 - Diferencia de orden 12 (o estacional) de la primera diferencia de los datos en logaritmos

Selecione con el ratón la variable d_1g y luego pulse en el menú desplegable $A\tilde{n}adir$ que aparece arriba, en el centro de la ventana principal de Gretl.

Añadir ->Diferencias estacionales de las variables seleccionadas

o bien teclee en linea de comandos:

```
sdiff d_l_g
```

Entre las variables aparecerá una nueva con el prefijo sd_, es decir, en este caso aparecerá la variable sd_d_l_g. Genere el gráfico de series temporales de esta nueva serie y guardelo como un nuevo icono (Use un nombre suficientemente descriptivo, por ejemplo D12_D_LogsAirlinePassengers)

Observe que en la serie obtenida ya no se observa ni tendencia ni un componente cíclico estacional.

1.7. Actividad 5 - El orden en que se aplican los operadores diferencia y diferencia estacional es irelevante

1. calcule la diferencia estacional de la serie en logaritmos 1_g y genere su gráfico

```
en linea de comandos:
```

Observe que en la serie obtenida ya no el componente cíclico estacional, pero sin embargo el promedio de cada año "deambula. alrededor del valor 0,1 en ciclos de unos 4 años

2. ahora tome una primera diferencia de la serie anterior (sd_{1g}) y compruebe las diferencias entre la serie resultante $(d_sd_1_g)$ y la obtenida en la actividad anterior $(sd_d_1_g)$.

```
en linea de comandos:
```

Es decir, el orden en que se tomen la diferencia ordinaria y la diferencia estacional es irrelevante (pero recuerde que no pasa lo mismo con la transformación logarítmica, que debe la primera transformación aplicada a los datos).

Código completo de la práctica airlinePass.inp

```
open bjg
print -o g
AirlinePassengers <- gnuplot g --time-series --with-lines
logs g</pre>
```

```
LogsAirlinePassengers <- gnuplot l_g --time-series --with-lines

diff l_g

D_LogsAirlinePassengers <- gnuplot d_l_g --time-series --with-lines

diff g

logs d_g

print -o d_l_g l_d_g

sdiff d_l_g

D12_D_LogsAirlinePassengers <- gnuplot sd_d_l_g --time-series --with-lines

sdiff l_g

D12_LogsAirlinePassengers <- gnuplot sd_l_g --time-series --with-lines

diff sd_l_g

print -o sd_d_l_g d_sd_l_g
```