#### EXERCICE 4 (4 points )

Soit U la suite définie sur IN par :  $U_0 = 2$  et  $U_{n+1} = \frac{3U_n + 2}{U_n + 4}$  ( $n \in IN$ )

1/a- Montrer par récurrence que pour tout n de IN, U > 1.

b- Montrer que la suite U est décroissante .

2/ On pose pour tout n de IN, 
$$V_n = \frac{U_n + 2}{1 - U_n}$$

a- Montrer que V est une suite géométrique .

b- Exprimer V, puis U, en fonction de n.

c- Calculer  $\lim_{n\to\infty} V_n$  et  $\lim_{n\to\infty} U_n$ .

3/ a- Montrer que pour tout n de IN,  $U_{n+1} - 1 \le \frac{2}{5}$  ( $U_n - 1$ ).

b- En déduire que pour tout n de IN,  $U_n - 1 \le \left(\frac{2}{5}\right)^n$ .

c- Retrouver ainsi  $\lim_{n\to\infty} U_n$ .

4/ Soit n , on pose  $S_a = \sum_{k=0}^{k=n} \frac{3}{1-U_k}$ 

Exprimer  $S_n$  en fonction de n . Calculer  $\lim_{n\to+\infty} S_n$ .

### EXERCICE 5 (4 points)

. Soit f la fonction définie sur IR par :  $f(x) = \sqrt{2} \sin \left(3x - \frac{3\pi}{4}\right)$ 

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, i, j) du plan.

1/a- Montrer que le point  $I\left(\frac{\pi}{4},0\right)$  est un centre de symétrie de (C).

b- Justifier que l'on peut restreindre l'étude de f à l'intervalle  $J = \left[ -\frac{\pi}{12}, \frac{\pi}{4} \right]$ .

2/ a- Dresser le tableau de variation de la restriction de f à l'intervalle J .

b-Tracer la courbe représentative de f restreinte à  $\left[-\frac{3\pi}{4}, \frac{7\pi}{12}\right]$ .

3/ Soit h la fonction définie sur  $\left[\frac{-\pi}{3}, \frac{\pi}{3}\right]$  par : h(x) =  $\left|\sin 3x\right| + \cos 3x$ 

On désigne par  $\Gamma$  la courbe représentative de h dans le repère  $(0, \bar{i}, \bar{j})$ .

a- Etudier la parité de h.

b- Montrer que pour tout  $x \in \left[0, \frac{\pi}{3}\right]$  on a : h(x) = -f(x)

c- Tracer alors Γ.



#### LYCEE PILOTE DE SOUSSE

LE 31/05 / 2010

#### Devoir de synthèse N°3

#### MATHEMATIQUES

CLASSE: 3SC 1+4
DUREE: 3 heures

#### EXERCICE 1 (3 points)

Le tableau ci-dessous donne le montant en million de dollars des droits de retransmission télévisée des Jeux olympiques d'été de 1984 à 2008. ( les calculs seront arrondis au centième )

| Ville<br>Année            | LosAngelos<br>1984 | Séoul<br>1988 | Barcelone<br>1992 | Atlanta<br>1996 | Sydney<br>2000 | Athène<br>2004 | Pekin<br>2008 |
|---------------------------|--------------------|---------------|-------------------|-----------------|----------------|----------------|---------------|
| Rang de l'année (x,)      | 1                  | 2             | 3                 | 4               | 5              | 6              | 7             |
| Montant (y <sub>i</sub> ) | 288                | 402           | 634.5             | 684.5           | 810.5          | 936.5          | 1070          |

1/ Représenter le nuage de points de la série (X, Y) dans un plan muni d'un repère orthogonal.
( on prendra 2cm pour une unité sur l'axe des abscisses et un cm sur l'axe des ordonnées pour 50 millions de dollars).

2/ Calculer la moyenne de X et celle de Y puis placer le point moyen G du nuage.

3/ On partage le nuage en deux parties. La première partie correspond aux jeux olympiques d'été de1984 à1996 et La deuxième partie correspond aux jeux olympiques d'été de2000 à 2008.

a- Déterminer les points moyens Get G, de ces nuages.

b- Déterminer une équation cartésienne de la droite (G1G2), tracer cette droite.

4/ Déterminer alors une prévision du montant des droits de retransmission télévisée des Jeux olympiques De Londre en 2012.

#### EXERCICE 2 (4 points)

cinq boules rouges numérotées 1,1,2,2,3

Une urne contient : {quatre boules noires numérotées 1, 2,2,2

trois boules vertes numérotées 1,2,3

1/ On tire simultanément trois boules de l'urne. Calculer la probabilité des évènements suivants :

A, : " les trois boules sont de la même couleur"

B 1 : " la somme des numéros est égale à 5"

 $C_1 = A_1 \cup B_1$ 

2/ On tire successivement et avec remise trois boules de l'urne. Calculer la probabilité des évènements A,: "les trois boules sont toutes de couleur différente".

B, :" le produit des numéros est pair"

C2: " les trois boules tirées portent le même numéro"

3/ On tire successivement et sans remise quatre boules de l'urne. Calculer la probabilité des évènements A<sub>3</sub>: " obtenir une seule boule portant le numéro1"

B3: " il y'a exactement deux boules rouges parmi les boules tirées".

### EXERCICE 3 (5 points)

l'espace  $\xi$  rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$ . On considère les points A (2,1,3); B (-3,-1,7) et C (3,2,4) 1/a- Montrer que A,B et C ne sont pas alignés .

b -On désigne par P le plan (ABC). Donner une équation cartésienne du plan P.

2/ Soit la droite 
$$\Delta$$
: 
$$\begin{cases} x = -7 + 2t \\ y = -3t \quad (t \in IR) \\ z = 4 + t \end{cases}$$

a- Montrer que Δ coupe le plan P en un point H dont on précisera les coordonnées.

b- Vérifier que H est le barycentre des points pondérés (A, -2); (B, -1) et (C, 2).

c-Déterminer l'ensemble Q des points M de  $\xi$  vérifiant :  $(-2 \overline{MA} - \overline{MB} + 2\overline{MC})\overline{BC} = 0$ 

3/ Soit R le plan d'équation : 2x + y - z = 0

a- Montrer que les plans P et R sont perpendiculaires.

b- Donner une représentation paramétrique de Δ' la droite d'intersection des plans P et R.

c- Etudier la position relative des droites Δ et Δ'.

### Exercice n°5: (5pts)

Soit f la fonction définie sur  $[1, +\infty[$  par :  $f(x) = \frac{x-1}{x}\sqrt{x^2-1}$ . On désigne par  $\mathscr{E}_f$  la courbe représentative de f dans une repère orthonormé $(o, \vec{l}, \vec{j})$ .

- a) Montrer que f est continue sur [1,+∞[.
  - b) Etudier la dérivabilité de f à droite en 1 puis interpréter géométriquement le résultat obtenu.
- a) Montrer que f est dérivable sur ]1,+∞[ et que pour x ∈ ]1,+∞[ on a :

$$f'(x) = \frac{x^{3}-1}{x^{2}\sqrt{x^{2}-1}}$$

- b) Dresser le tableau de variation de f
- 3) a) Montrer que pour tout  $x \in [1, +\infty[$  on  $a : f(x) (x-1) = \frac{1-x}{x(x+\sqrt{x^2-1})}$ 
  - b) Déterminer alors l'asymptote oblique ∆ à 8f au voisinage de+∞.

  - d) Tracer &f et Δ.

Bon travail

### Exercice N°3: (4pts)

Une caisse d'assurance maladie propose à ses affiliés une maladie d'hospitalisation m.

Les employés d'une entreprise sont tous affiliés à cette caisse d'assurance et on sait que :

- Le <sup>1</sup>/<sub>3</sub> des employés choisissent la modalité m.
- Parmi les employés qui ont choisi la modalité m; 80% sont atteints d'une maladie chronique.
- Parmi les employés qui n'ont pas choisi la modalité m; 75% sont atteint d'une maladie chronique

On choisi un employé au hasard et en considère les évènements suivants :

M: « l'employé choisi la modalité m ».

C : « l'employé est atteint d'une maladie chronique »

- 1) a) Déterminer les probabilités des événements M et M
  - b) Construire un arbre décrivant cette situation.
- a) Calculer la probabilité pour que cet employé ait choisit la modalité m et soit atteint d'une maladie chronique.
  - b) Calculer la probabilité pour que cet employé n'ait pas choisi la modalité m et soit atteint d'une maladie chronique.
  - c) En déduire la probabilité de l'événement C.
  - d) Déterminer la probabilité pour que cet employé ne soit pas atteint d'une maladie chronique.

## Exercice n°4: (4pts)

Dans l'espace  $\mathcal{E}$  rapporté à un repère orthonormé direct  $(o, \vec{\imath}, \vec{\jmath}, \vec{k})$  on donne les points A(2,3,-1), B(4,0,2), C(3,2,1) et D(-4,1,1)

- a) Montrer que les points A, B et C déterminent un plan P dont on donnera une équation cartésienne.
  - b) Calculer  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  puis  $\cos \overrightarrow{BAC}$ .
  - c) Montrer que A est le projeté orthogonal de D sur P
- 2) a) Montrer que l'ensemble Q des points M de l'espace tes que :  $\overrightarrow{AM}$ .  $\overrightarrow{AB}$  +  $\overrightarrow{BM}$ .  $\overrightarrow{AC}$  = 0 est un plan dont une équation cartésienne est 3x 4y + 5z = 0.
  - b) Calculer la distance du point C au plan Q.
- a) Montrer que les plans P et Q sont sécants suivant une droite Δ dont on donnera une représentation paramétrique.
  - b) soit la droite  $\Delta'$ :  $\begin{cases} x y + z 1 = 0 \\ 2x + y z + 2 = 0 \end{cases}$  Etudier la position relative de  $\Delta$  et  $\Delta'$

### Lycée Pilote de Monastir

## Devoir de Synthèse N°3

Prof: Mahmoud Hassine & Azzaz Azzaz

Mathématiques

Classes: 34 Sc1+2

Durée: 3 heures

Date: 02/06/2010

### Exercice N°1: (3pts)

Répondre par vrai ou faux :

1) L'ensemble des solutions dans IN de l'équation :  $C_n^3 - C_n^2 = 5 + \frac{n^3 - 6n^2}{6}$  est  $S_{IN} = \{6,10\}$ 

 10 jetons numérotés de 1 à 10 sont répartis au hasard dans trois tiroirs sachant qu'un tiroir peut contenir jusqu'à 10 jetons. La probabilité de répartir les 10 jetons dans un seul tiroir est <sup>1</sup>/<sub>29</sub>.

3) Une boîte contient 5 boules blanches, 5 boules rouges et 5 boules vertes. Dans chaque couleur les boules sont numérotées de 1 à 5. On tire au hasard et simultanément 5 boules de l'urne. La probabilité de tirer une seule boule portant le numéro 1 et 4 boules vertes seulement est égale à : 9/46

Dans une classe de 3<sup>ème</sup>sciences on observé les deux caractères.

X : note obtenu en mathématiques et Y : note obtenu en sciences physiques.

| v X     | [0,4[ | [4,8[ | [8,12[ | [12,16[ | [16,20[ |
|---------|-------|-------|--------|---------|---------|
| [0,4[   | 1     | #2    | 187    |         |         |
| [4,8[   | 1     | 3     | , 2    | 1       |         |
| [8,12[  |       | 2     | 5      | 1       | 1       |
| [12,16[ |       |       | 2      | 4       | 2       |
| [16,20[ |       |       | 1      | 3       | 2       |

Le point moyen pondéré du nuage est G(11,6; 11,2)

## Exercice N°2: (4pts)

Le tableau suivant donne l'évolution du chiffre d'affaires (en milliers de dinars) d'une entreprise entre les années 2003 et 2008.

| Année                          | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
|--------------------------------|------|------|------|------|------|------|
| Rang de l'année x <sub>i</sub> | 1    | 2    | 3    | 4    | 5    | 6    |
| Chiffre d'affaire yi           | 9    | 13   | 16   | 19   | 23   | 30   |

- 1) Représenter le nuage de point associé à la série (xi, yi)
- a) Calculer les coordonnées du point moyen G et placer ce point sur le graphique.
  - b) Calculer les variances et les écarts types de X et Y.
- 3) a) On scinde le nuage de points en deux sous nuages : le premier de point moyen G<sub>1</sub> est constitué par les 3 point ayant les plus petites abscisses et le second de point moyen G<sub>2</sub> est constitué par les autres points. Déterminer les coordonnées de G<sub>1</sub> et G<sub>2</sub>.
  - b) Déterminer l'équation de la droite (G₁G₂). Vérifier que G ∈ (G₁G₂) puis tracer (G₁G₂)
- 4) En supposant que l'évolution se poursuivre de la même façon pour les années suivantes : donner une estimation du chiffre d'affaires de cette entreprise en 2018.

- b) Déterminer la probabilité d'avoir 3 boules de même couleurs ou 3 boules qui portent un numéro pair.
  - c) Déterminer la probabilité d'avoir seulement 2 boules qui portent le numéro zéro.

## Exercice3:(6points)

L'espace est muni d'un repère orthonormé  $(O, \vec{i}, \vec{j}, \vec{k})$ . Soient les points A et B de coordonnées respectives (1,3,4) et (2,2,0)

- 1) a) Montrer que BAO est un triangle rectangle.
  - b) Les points O, A, B définissent -ils un plan?
  - c) Déterminer une équation cartésienne du plan P<sub>1</sub>=(OAB)
- 2) a) Vérifier que le plan P2: x+ 3y + 4z 13 =0 est le plan médiateur de [OA]
  - b) Déterminer une équation cartésienne du plan P3 le plan médiateur de [OB]
- 3) Prouver que l'intersection de P2 et P3 est une droite A
- 4) On considère  $S(\frac{9}{2}, -\frac{5}{2}, 4)$ 
  - a) Justifier que S appartient à Δ
  - b) Déterminer le volume de tétraèdre SOAB.

Exercice4: (5points) On considère la suite définie sur IN par  $U_1 = 2$  et  $U_{n+1} = 2 + \frac{n^2}{U_n}$ 

1) a) Vérifier que pour tout 
$$n \in IN^* \frac{n^2 + 2n + 2}{n+1} = n + 1 + \frac{1}{n+1}$$

- b) Montrer par récurrence que pour tout n de  $IN^*$ ,  $n \le U_n \le n+1$
- 2) En déduire la limite de Un quand n tend vers +∞ et que la suite Un est strictement croissante
- 3) On considère la suite définie sur IN\* par  $V_n = \frac{1}{U_n n} 1$ 
  - a) Calculer V<sub>1</sub> et montrer que pour entier non nul on a ,  $V_{n+1} = \frac{1}{V_n + \frac{1}{n}}$
  - b) Montrer par récurrence que pour tout entier non nul  $1 \frac{1}{n} \le V_n \le 1$
  - c) Déterminer alors les limites  $\lim_{n\to+\infty} V_n$

# Lycée Pilote de Nabeul

Classe: 3éme Sciences

Devoir de synthèse N°3 Durée : 3 Heures Mme : Salima Maalej

Exercice1: (4points)Vrai - Faux

Répondre par Vrai - Faux à chacune des propositions. Sans justification

1/ Dans un repère orthonormé de l'espace  $(O, \vec{i}, \vec{j}, \vec{k})$ .

- a. L'ensemble d'équations :  $3 \times -2y+1=0$  est une droite de vecteur normal  $\vec{n}(3,-2)$
- b. ax + by + c = 0 avec a, b, c réels non nuls est une équation d'un plan parallèle à l'axe  $(O, \vec{k})$ .
- c. 3y + 3z = 0 est une équation d'un plan contenant  $(O, \vec{i})$
- d. Le plan x-y+z=0 est le plan médiateur de [AB] avec A(0,4,1) et B(2,2,3)

On considère la série statistique à double caractères x et y donnée par le tableau si dessous.

| x   | [0,12[ | [12,18[ | [18,24[ | [24 ,48[ |
|-----|--------|---------|---------|----------|
| - 5 | 0      | 2       | 4       | 6        |
| -4  | 0      | 2       | 1       | 3        |
| 0   | 4      | 0       | 0       | 1        |
| 1   | 6      | 3       | 5       | 0        |
| 2   | 3      | 0       | 0       | 0        |

- a) Pour déterminer le point moyen on calcul la médiane de x et de y
- b) La distribution marginale de x est 13,7,10,10
- c) La valeur moyenne de y est18.825
- d) Le point moyen est de coordonnées (-1,7 ; 18,825)

### Exercice2:(5points)

Une urne contient trois boules rouges et 4 boules noires. Toutes les boules sont indiscernables au toucher. Les trois boules rouges sont numérotées : 1, 2, 2

Les 4 boules noires sont numérotées : 0, 1, 1, 2.

1) On tire simultanément deux boules de l'urne.

Déterminer la probabilité des événements suivants :

A: avoir 2 boules rouges.

- B : avoir 2 boules de mêmes couleurs.
- 2) On tire successivement et sans remise deux boules de l'urne.
  - a) Déterminer la probabilité d'avoir 2 boules de mêmes couleurs.
  - b) Déterminer la probabilité d'avoir 2 boules de mêmes parité.
  - c) Déterminer la probabilité d'avoir au moins une boule qui porte le numéro 1.
  - d) Déterminer la probabilité d'avoir une seule boule noire et une seule qui porte le numéro 1.
- 3) Un joueur tire successivement et avec remise de 3 boules de l'urne
  - a) Déterminer la probabilité d'avoir une somme paire.