Université catholique de Louvain Ecole polytechnique Année académique 2013-2014

Détection de cycle dans un graphe dirigé

Conventions de représentations et théorie du problème

Groupe 9

LINGI1122 - Méthodes de conception de programmes Titulaire : José Vander Meulen

Table des matières

- Contexte
- Conventions de représentation
- Théorie du problème

Contexte

Problème: étant donné un graphe dirigé, déterminer si celui-ci contient ou non un cycle.

Algorithme: supprimer tous les nœuds qui n'ont pas d'arête entrante, ainsi que les arêtes dont ces nœuds sont l'origine. En répétant cette opération, deux cas peuvent survenir:

- lacktriangledown plus de nœud disponible o pas de cycle;
- ② il ne reste que des nœuds avec au moins une arête entrante → au moins un cycle dans le graphe.

Théorie du problème I

Un **graphe dirigé**, ou orienté, est un triplet (V, E, ψ) où:

- V est un ensemble dont les éléments sont appelés sommets ou nœuds;
- E est un ensemble dont les éléments sont appelés arêtes;
- ψ est une fonction, dite fonction d'incidence, qui associe à chaque arête un couple de sommets. Ici, l'ordre au sein du couple de sommets a de l'importance, il signifie qu'un sommet est le nœud de départ de l'arête, l'autre étant le nœud d'arrivée.

Un **cycle** est un parcours fermé dont les sommets d'origine et intérieurs sont tous distincts. Un graphe qui ne contient pas de cycle est dit acyclique.