Algoritmi per la trasformata di Burrows-Wheeler posizionale con compressione run-length

Davide Cozzi

Relatore: Prof ssa Raffaella Rizzi Correlatore: Dr Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

26 Ottobre 2022

Outline

- 1 Introduzione e scopo della tesi
- 2 Contributo della tesi
- Risultati sperimentali
- 4 Conclusioni e sviluppi futuri

Un punto di vista per il pangenoma

II pangenoma

- studio di un insieme di genomi provenienti da diversi individui
- Studio delle varianti geniche
- unica sequenze per multiple sequenze lineari
- grafo del pangenoma
- pannello di aplotipi

Un aplotipo è l'insieme di alleli, ovvero di varianti che, a meno di mutazioni, un organismo eredita da ogni genitore.

Un punto di vista per il pangenoma

Trasformata di Burrows-Wheeler posizionale

PBWT - Durbin, Bioinformatics, 2014

Dato pannello di M aplotipi, lunghi N siti (biallelici: $\Sigma = \{0, 1\}$), si definisce PBWT del pannello una collezione di N+1 coppie di array (a_k, d_k) , $0 \le k \le N$, dove:

- \blacksquare a_k è il **prefix array** della colonna k
- \mathbf{I}_k è il **divergence array** della colonna k

Il pannello, riordinato in ogni colonna k con a_k , è detto: matrice PBWT.

Run-length encoding

Il run-length encoding consiste nel memorizzare le *run*, ovvero sequenze massimali di caratteri uguali, come coppie:

(carattere, lunghezza della run)

$$000000 \implies (0,6)$$

Trasformata di Burrows-Wheeler posizionale

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1_	0	0	1	1	0	0	1	0	0	0	1	0	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
04	0	1	0	1	0	_1	0	0	0	0	0	1	0	0	1
05	0_	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0_	1	0	1	0	1	0	0	0	0	0	0	1	0	1

 $a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$ $d_6 = [6, 0, 4, 2, 0, 0, 5, 0, 0, 0, 3, 0, 4, 0, 0, 6, 4, 0, 0, 0]$

Scopo della tesi

Complessità temporale del calcolo degli SMEM con un algoritmo naïve: $\mathcal{O}(N^2M)$

Calcolo degli SMEM con aplotipo esterno per Durbin:

- tempo: $\mathcal{O}(NM) + \text{Avg.}\mathcal{O}(N+c)$
- spazio: $\mathcal{O}(NM) \implies 13NM$ byte

Lo scopo di questa tesi è stato quello di creare una variante run-length encoded della PBWT (RLPBWT) che permettesse, in modo efficiente dal punto di vista della memoria richiesta, il calcolo degli SMEM con aplotipo esterno.

Le componenti

Componenti innovative derivate dallo studio della RLBWT in ottica PBWT

- mapping tra una colonna e la successiva nella PBWT e threshold:
 - bitvector sparsi, con rank in $\mathcal{O}\left(\log\left(\frac{M}{\rho}\right)\right)$: MAP-BV e THR-BV
 - intvector compressi, con rank in $\mathcal{O}(\log(\rho))$: MAP-INT e THR-INT
- random access:
 - bitvector, in $\mathcal{O}(1)$: RA-BV
 - SLP, in $\mathcal{O}(\log(NM))$: RA-SLP
- LCE query con SLP, in O(log(NM)): LCE
- prefix array sample: PERM
- struttura per le funzioni φ e φ^{-1} : PHI

Qualche confronto in spazio

Calcolo degli SMEM

Matching statistics per la PBWT

Dato un pannello $X = \{x_0, \dots, x_{M-1}\}$, $x_i = N$, e un aplotipo esterno/pattern z, tale che |z| = N, si definisce **matching statistic**s di z su X un array MS di coppie (row, len), $|\mathsf{MS}| = N$, tale che:

- $x_{MS[i].row}[i MS[i].len + 1, i] = z[i MS[i].len + 1, i]$, ovvero si ha che l'aplotipo query ha un match, lungo MS[i].len, terminante in colonna i, con la riga MS[i].row-esima del pannello
- z[i MS[i]].len, i] non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X

8 / 18

Calcolo degli SMEM

Matching statistics per la PBWT

Dato un pannello $X = \{x_0, \dots, x_{M-1}\}, x_i = N$, e un aplotipo esterno/pattern z, tale che |z| = N, si definisce matching statistics di z su X un array MS di coppie (row, len), |MS| = N, tale che:

- $\mathbf{x}_{\mathsf{MS}[i]\mathsf{row}}[i-\mathsf{MS}[i].\mathsf{len}+1,i] = z[i-\mathsf{MS}[i].\mathsf{len}+1,i],$ ovvero si ha che l'aplotipo query ha un match, lungo MS[i].len, terminante in colonna i, con la riga MS[i].row-esima del pannello
- z[i MS[i]].len, i] non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X

SMEM da MS

Dato un array di matching statistics MS si ha che z[i-l+1,i] presenta uno SMEM di lunghezza I con la riga MS[i].row-esima del pannello X sse: $MS[i].len = I \wedge (i = N - 1 \vee MS[i].len \geq MS[i + 1].len)$

イロト (部) (を) (を)

8 / 18

26/10/2022

Componenti e strutture dati, una panoramica

9 / 18

Matching statistics

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	\mathbf{X}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1	1	0	0	0	0	0	0	0	1	0	0	1	00
03 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	1	0	0	0	0	0	1	0	0	1	1	0	0	1	01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	0	0	0	1	0	0	1	1	0	0	1	02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	0	0	0	1	0	0	1	1	0	0	1	03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	0	0	0	0	0	1	0	1	0	1	0	04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	0	0	0	0	0	1	0	1	0	1	0	05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	0	0	0	0	0	1	0	1	0	1	0	06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0	1	0	0	0	0	0	0	1	0	1	0	1	0	07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1	0	0	1	1	1	0	0	0	0	1	0	0	1	0	08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	11
14 0 1 0 0 0 0 0 0 1 0 0 0 1 0	0 1	0	0	1	1	0	1	0	0	0	1	0	0	1	0	12
	0 1	0	0	1	1	0	1	0	0	0	1	0	0	1	0	13
	0 1	0	1	0	0	0	1	0	0	0	0	0	0	1	0	14
15 0 1 0 0 0 0 0 1 0 0 0 1 0	0 1	0	1	0	0	0	1	0	0	0	0	0	0	1	0	15
16 0 1 0 1 0 0 0 0 0 0 1 1 0	0 1	0	1	1	0	0	0	0	0	0	0	1	0	1	0	16
17 1 1 0 0 0 1 0 0 0 0 0 1 1 0	0 1	0	1	1	0	0	0	0	0	1	0	0	0	1	1	17
18 0 1 1 0 1 0 0 0 0 0 1 0 0	0 1	0	0	1	0	0	0	0	0	0	1	0	1	1	0	18
19 0 1 1 0 1 0 1 0 0 0	0 1	0	1	0	0	0	0	0	1	0	1	0	1	1	0	19
$\mathbf{z} \ [\ 0 \ \ 1 \ \ 0 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 0 \ \ 0 \ \ 1 \ \ [1] \ \ 1 \ \ 0 \ \]$	0 1	0	1	[1]	1	0	0	0	1	0	1	0	0	1	0	\mathbf{z}

k	00	01	02	03	04	05	06	07	80	09	10	11	12	13	14
row	19	19	16	15	13	13	19	19	19	19	11	11	17	17	17
len	1	2	3	4	5	6	4	5	6	7	4	5	2	3	4

Struttura per le funzioni arphi e $arphi^{-1}$

Sperimentazione e dati

Implementazione e sperimentazione

La sperimentazione, orchestrata tramite snakemake, è stata effettuata su una macchina con processore Intel Xeon E5-2640 V4 (2, 40GHz), 756GB di RAM, 768GB di swap e sistema operativo Ubuntu 20.04.4 LTS. Si sono confrontate l'implementazione in C++ della RLPBWT e l'implementazione

in C ufficiale della PBWT.

Pannelli del 1000 Genome Project con 4908 sample, avendone estratti 100 come query.

Chr	#Siti	Media run
chr22	1.055.454	14
chr20	1.739.315	11
chr18	2.171.378	11
chr16	2.596.072	12
chr1	6.196.151	11

BICHCCA

Costo in memoria delle componenti

Performance costruzione strutture dati

26 /10 /2022

Performance calcolo degli SMEM con 100 query

Performance calcolo degli SMEM per singole query

- PBWT MatchIndexed
- ♦ MAP-BV + THR-BV + RA-BV + PERM + PHI
- MAP-BV + THR-BV + RA-SLP + PERM + PHI
- MAP-BV + LCE + PERM + PHI
- ightharpoonup MAP-INT + THR-INT + RA-BV + PERM + PHI
- △ MAP-INT + THR-INT + RA-SLP + PERM + PHI
- → MAP-INT + I CF + PFRM + PHI

Considerazioni e sviluppi futuri

Alcune considerazioni

- le strutture dati e gli algoritmi proposti hanno confermato la potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obbiettivo della tesi, ovvero lo sviluppo di un algoritmo, efficiente in spazio, per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Sviluppi futuri

- ottimizzazioni per pannelli di query
- SMFM internicon RIPBWT

- RI PBWT con dati mancanti
- RI PBWT multiallelica
- calcolo K-SMFM con RI PBWT

Algoritmi per la RLPBWT

Ulteriori dettagli

Bonizzoni, Boucher, Cozzi, Gagie, Kashgouli, Köppl e Rossi:

Compressed data structures for population-scale positional Burrows–Wheeler transforms, bioRxiv (preprint), 2022

Grazie per l'attenzione

