Modelos de computación (2017-2018)

Doble Grado en Ingeniería Informática y Matemáticas Universidad de Granada

Relación de problemas II

Alberto Jesús Durán López

11 de octubre de 2017

Índice

1.	Ejercicio 17	3
2.	Ejercicio 22	3
3.	Ejercicio 23	4
4.	Ejercicio 24	4
5.	Ejercicio 25	5

1. Ejercicio 17

 Diseña un autómata finito determinista que reconozca el siguiente lenguaje:

 $L_3 = \{\mathbf{u} \in \{0,1\}^* \mid \text{el número de 1's no es múltiplo de 3 y el número de 0's es par } \}$

2. Ejercicio 22

 Dar una expresión regular para el lenguaje aceptado por el siguiente autómata:

Dicho autómata posee una expresión regular dada por:

((a+b)a*b (ba*b)* (a+
$$\epsilon$$
))*

3. Ejercicio 23

• Sea $B_n = \{a^k | \text{ k múltiplo de n}\}$. Demostrar que B_n es regular para todo n.

Sea k=nm, entonces:
$$a^k = a^{nm} = (a^n)^m = (a^n)^*$$
, por tanto es regular

4. Ejercicio 24

- Decimos que u es un prefijo de v si existe un w tal que uw=v. Decimos que u es un prefijo propio de v si además u \neq v y u \neq ϵ . Demostrar que si L es regular, también lo son los lenguajes:
 - a) $NOPREFIJO(L) = \{u \in L \mid ningún prefijo propio de u pertenece a L\}$
 - b) NOEXTENSION(L) = {u\in L \mid u \text{ no es prefijo propio de ninguna palabra de L}
 - a)Si u \in L, entonces u=vw donde v no es prefijo propio. Es decir, v \neq u y v $\neq\epsilon$ por lo que es la concatenación de dos palabras, para todo u \in L, por tanto es regular.
 - b) Como u no es prefijo propio de ninguna palabra de L, sea una palabra $v \in L$, u=v por lo que $u \in L$ y como L era regular, NOEXTENSION(L) también es regular.

5. Ejercicio 25

- Si L \subseteq A*, define la relación \equiv en A* como sigue: si u,v \in A*, entonces u \equiv v si y solo si para toda z \in A*, tenemos que (xz \in L \iff yz \in L)
 - a) Demostrar que \equiv es una relación de equivalencia
 - b) Calcular las clases de equivalencia de L= $\{a^ib^i \mid i \geq 0\}$
 - c)Calcular las clase de equivalencia de L={ $a^i b^j \mid i,j \geq 0$ }
 - d) Demostrar que L es aceptado por un autómata finito determinista si y solo si el número de clases de equivalencia es finito.
 - e) ¿Qué relación existe entre el número de clases de equivalencia y el autómata finito minimal que acepta L?
- a) Para comprobar que es una relación de equivalencia comprobamos las siguientes propiedades:
 - Reflexiva: $\mathbf{x} \sim \mathbf{x}$ $\mathbf{xz} \in \mathbf{L} \iff \mathbf{xz} \in \mathbf{L}$
 - Simétrica:

$$\begin{array}{lll} x\sim y\colon xz\in L \Longleftrightarrow yz\in L\\ y\sim x\colon y'z\in L \Longleftrightarrow x'z\in L\ , & \mathrm{Restamos:}\\ xz\ -y'z=yz\text{-}x'z\\ (x\text{-}y')z=(y\text{-}x)z\\ x\text{-}y'=y\text{-}x' \Longleftrightarrow x=y' & y & y=x' & \mathrm{Por\ tanto:}\\ x\sim y=y\sim x & \end{array}$$

Transitiva:

$$\begin{array}{l} x\sim y\colon xz\in L \Longleftrightarrow yz\in L\\ y\sim z'\colon yz\in L \Longleftrightarrow z'z\in L\\ x\sim z'\colon xz\in L \Longleftrightarrow z'z\in L \end{array} \qquad \begin{array}{l} \text{Por tanto:}\\ x\sim y+y\sim z'\\ xz+yz=yz+z'z\\ (x+y)z=(y+z')z\\ x+y=y+z'\\ x=z'\Longleftrightarrow x\sim z' \end{array}$$

b)								
	i=1	ab						
	i=2	aabb						
	i=3	aaabbb						
	i=4	aaaabbbb						

Según la relación de equivalencia, dos palabras están relacionadas si tienen el mismo sufijo $z \in A^*$, por lo que para este lenguaje, cada palabra generada para cada $i \in N$, sólo está relacionada consigo misma por lo que en total habrá n clases de equivalencia.

c)										
		j=0	j=1	j=2	j=3	j=4				
	i=1	a	ab	abb	abbb	abbbb				
	i=2	aa	aab	aabb	aabbb	aabbbb				
	i=3	aaa	aaab	aaabb	aaabbb	aaabbbb				

-Si i>0, j>0:

Para este otro lenguaje, todas las palabras con el mismo valor de j están relacionadas ya que comparten el mismo sufijo por lo que habrán un total de j clases de equivalencia.

-Si i=0 ó j=0, hay únicamente 1 clase de equivalencia.

-Si i=0 y j=0, no hay clases de equivalencia.

d)L es aceptado por un automata finito determinista si es regular. Si L es regular el numero de clases de equivalencia es finito por lo que queda demostrado que si L es aceptado por un automata finito determinista entonces el numero de clases de equivalencia es finito.

e) Cada clase de equivalencia corresponde a un estado en el AFD minimal