Analysis I Skript

Rene Brandel und Rudolf Biczok

9.11.2013

1 Grundlagen

1.1 Mengen

Angaben von Mengen durch Aufzählungen $M = \{a, b, c\}$ oder $M = \{Kirche, Dorf\}$ bekannte Mengen:

- Ø leere Menge
- $\mathbb{N} = \{1, 2, 3, \ldots\}$ natürliche Zahlen
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ ganze Zahlen
- $\mathbb{Q} = \left\{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N} \right\}$ Rationale Zahlen

Achtung: $\{\emptyset\}$ hat ein Element (nämlich die leere Menge)!

1.1.1 Syntax

- $x \in M$ x ist Element von M
- $x \notin M$ x ist nicht Element von M
- $M \subset N$ M ist Teilmenge von N d.h. für alle $x \in M$ ist auch $x \in N$ Achtung: Bei $M \subset N$ ist auch M = N möglich Immer: $\emptyset \subset M$,in jeder Menge
- $\bullet \ \ M=N:M\subset N\wedge N\subset N$
- Vereinigungsmenge: $M \cup N := \{x | x \in M \land x \in N\}$
- Disjunktion: M und N sind disjunkt wenn $M \cup N = \emptyset$
- Schnittmenge: $M \cap N := \{x | x \in M \lor x \in N\}$

• Differenz: $M \setminus N := \{x | x \in M \land x \notin N\}$

• Produktmenge:
$$M \times N := \{(x,y) | x \in M, y \in N \}$$

$$M_1 \times M_2 \times \ldots \times M_n := \left\{ \underbrace{(x_1,x_2,\ldots,x_n)}_{\text{n-Tupel}} : x_j \in M_j, j = 1,\ldots,n \right\}$$

1.1.2 Satz 1: "Naiver" Mengenbegriff nach Cantor

"Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen."

1.1.3 Potenzmenge von M

$$2^{M} = \mathcal{P}(M) := \{A | A \subset M\}$$

immer: $M \in \mathcal{P}(M), \emptyset \in \mathcal{P}(M)$
Beispiel $\mathcal{P}(\emptyset) = \{\emptyset\}$

1.1.4 Satz 2: Funktionen

Eine Funktion oder Abbildung $f: x \to y$ besteht aus einem Definitionsbereich X und einer Abbildungsvorschrift, die jedem $x \in X$ genau ein Element $y \in Y$ zuordnet. Notation y = f(x), erfordert auf $x \mapsto f(x)$

$$f: X \to Y$$

 $x \mapsto f(x)$

Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto f(x) = 2x$$

1.1.5 Satz 3: Graph

Sei
$$f: X \to Y$$
 eine Funktion $Graph(f) = G(f) = \{(x, f(x)) : x \in X\}$ $G(f) \subset X \times Y$ Zwei Funktionen $f_1: X \to Y, f_2: X \to Y$ sind gleich, wenn $G(f_1) = G(f_2)$. D.h. falls $f_1(x) = f_2(x)$ für alle $x \in X$.

1.1.6 Funktionsraum

$$Y^X = Abb(X, Y) =$$
 Menge aller Funktionen $f: X \to Y$

1.1.7 Bild

Wenn $A \subset X$:

$$f(A):=\{y\in Y: \text{ Es gibt ein } x\in A: y=f(x)\}=\{f(x): x\in A\}$$
 Bild von A (unter f)

1.1.8 Urbild

Wenn
$$B \subset Y$$

 $f^{-1}(B) := \{x \in X : f(x) \in B\}$
Urbild von B (unter f)

1.1.9 Eigenschaften von Funktionen

$$f(X)$$
 ist das Bild von f
 $f: X \to Y$ ist:

injektiv: falls aus
$$x_1, x_2 \in X$$
 und $f(x_1) = f(x_2) \implies x_1 = x_2$.

surjektiv: falls
$$f(X) = Y$$
.

bijektiv: falls surjektiv und injektiv zugleich.

1.1.10 Umkehrabbildung / Umkehrfunktion

Ist $f: X \to Y$ bijektiv, so existiert zu jedem $y \in Y$ genau ein $x \in X$ mit y = f(x). Die Inverse zu f ist die Funktion:

$$f^{-1}: Y \to X$$

$$y \mapsto \text{ Urbild von } Y \text{ unter } f$$

Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto 2x$$

$$f^{-1}(\{3\}) = \emptyset$$

$$\rightarrow \text{ ist nicht bijektiv}$$

 $P: N \to \text{gerade natürliche Zahlen}$

$$f: P(\mathbb{N}) \to P(\mathbb{N})$$
$$x \mapsto 2x$$

$$\rightarrow$$
 ist bijektiv

$$f^{-1}(y) = \frac{y}{2} \in \mathbb{N}, y = \text{gerade natürliche Zahl.}$$

1.1.11 Komposition

Sei
$$f:X\to Y, g:W\to Z$$
 mit $f(X)\subset W$ $h:=g\circ f$ (g ist verknüpft mit f) $h(x):=(g\circ f)(x):=g(f(x))$

1.1.12 Identität

$$id_M: M \to M$$

 $x \mapsto x$

Sei: $f: M \to N$ bijektiv, dann gilt:

- 1. $f^{-1}: N \to M$ existient
- 2. $f^{-1} \circ f = id_M$
- 3. $f \circ f^{-1} = id_N$

1.1.13 Restriktion und Fortsetzung

Seien $f: X \to Y$ und $g: X \to A$ Funktionen und $A \subset X$ $g = f|_A$ heißt Restriktion (oder Einschränkung) von f auf A:

$$g := f|_A : A \to Y$$
$$x \mapsto f(x)$$

 $f|_A := g$ heißt Fortsetzung von g auf X:

$$f|_A := g : X \to Y$$

 $x \mapsto g(x)$

Beispiel

$$g:[0,\infty)\to[0,\infty)$$

 $x\mapsto x^2$

$$f:(-\infty,\infty)\to [0,\infty)$$

 $x\mapsto x^2$

1.2 Induktion

Sei
$$\mathbb{N} = \{1, 2, 3, \ldots\} \ \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

1.2.1 Satz 4: Prinzip der vollständigen Induktion

Eine Teilmenge $M \subset \mathbb{N}$ erfülle:

- a) (IA: Induktionsanfang) $1 \in M$.
- **b)** (IS: Induktionsschritt/Induktionsschritt) Falls $k \in M$ ist, demnach ist auch $k+1 \in M$

dann ist $M = \mathbb{N}$.

Beispiel Aussage: Für alle $n \in \mathbb{N}$

$$A(n) = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

$$M := \{ n \in \mathbb{N} : A(n) \text{ ist wahr } \} \subset \mathbb{N}$$

Wissen: $1 \in M$, da A(1) wahr ist

Annahme:

$$k \in M \Longrightarrow A(k)$$
 ist wahr

$$A(k+1): 1+2+\ldots+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

$$\underbrace{1+2+\ldots+k}_{\frac{k(k+1)}{2}} + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

 $\implies k+1 \in M$ falls $k \in M$ ist! also we gen Satz 4: $M = \mathbb{N}!$

1.2.2 Satz 5: Beweis durch vollständige Induktion

Für alle $n \in \mathbb{N}$ seien Aussagen A(n) gegeben. Ferner sei:

- (IA) A(1) ist wahr.
- (IS) Unter der Annahme, dass für ein $k \in \mathbb{N}$ die Aussage A(k) wahr ist, ist dann auch A(k+1) wahr
- (IS) Aus A(n) wahr für n=k folgt A(n) wahr für n=k+1Dann ist A(n) wahr f+r alle $n\in\mathbb{N}$

Beweis

Setze man $M := \{n \in \mathbb{N} : A(n) \text{ wahr } \}$ $M \subset \mathbb{N}$

- 1. Wegen (IA) $1 \in M$
- 2. Wegen (IS) sei $k \in M$, also A(k) wahr, also A(k+1) wahr, also $k+1 \in M$

Wegen Satz 4 fertig!

Beispiel Summen und Produkte

Seien a_1, \ldots, a_n Zahlen **Definition:** Teilsumme

$$S_k$$
 durch $S_1 := a_1$

$$f \ddot{u} r \ k \in \mathbb{N} : S_{k+1} := S_k + a_{k+1}$$

Setze
$$a_1 + \ldots + a_n = \sum_{i=1}^n a_i := S_n$$

 \rightarrow Beispiel für eine rekursive Definition

Definition: Produkte

$$p_1 := a_1$$

$$p_{k+1} := p_k * a_{k+1}$$

$$a_1*\ldots*a_n=\prod_{j=1}^n a_j:=p_n$$

$$a^n = \underbrace{a * \dots * a}_{\text{n-mal}} := \prod_{j=1}^n a$$

Setzen:

$$\sum_{j=1}^{0} a_j := 0 \qquad \prod_{j=1}^{0} a_j := 1 \qquad a^0 = 1$$

Beispiel Geometrische Summe

Sei
$$a \neq 1, n \in \mathbb{N}_0$$

$$\Longrightarrow \sum_{j=0}^{n} a^{j} = \frac{a^{n+1} - 1}{a - 1}$$

Beweis 1: Induktion

(IA) hier n = 0

$$\sum_{i=0}^{0} a^{0} = 1 = \frac{a^{1} - 1}{a - 1}$$

(IS) Wir nehmen an, dass für $k \in \mathbb{N}$ die Formel für n = k wahr ist.

$$\sum_{j=0}^{k} a^j = \frac{a^{k+1} - 1}{a - 1}$$

IS auf n=k+1

$$\sum_{j=0}^{k+1} a^j = \sum_{j=0}^k a^j + a^{k+1}$$

Induktionsannahme

$$= \frac{a^{k+1} - 1}{a - 1} + a^{k+1} = \frac{a^{k+1} - 1 + (a - 1)a^{k+1}}{a - 1}$$
$$= \frac{a^{k+2} - 1}{a - 1}$$

Beweis 2: Ohne Induktion

$$S_n := \sum_{j=0}^n a^j$$

$$\implies a * S_n = a * \sum_{j=0}^n a^j = \sum_{j=0}^n a * a^j = \sum_{j=0}^n a^{j+1} = \sum_{j=1}^{n+1} a^j$$

$$\implies a * S_n - S_n = \sum_{j=1}^{n+1} a^j - \sum_{j=0}^{n+1} a^j = a^{n+1} - a^0 = a^{n+1} + 1$$

$$\implies (a-1)S_n = a^{n+1} + 1 \implies S_n = \frac{a^{n+1} + 1}{a-1}$$

1.2.3 Notation: Aussagen

Seien A, B, C, D mathematische Aussagen **Syntax**

- $\neg A$: nicht A
- $A \wedge B$: A und B
- $A \vee B$: A oder B
- $A \Longrightarrow B$: A impliziert B, aus A folgt B
- $A \iff$: A äquivalent zu B, A genau dann, wenn B

Beispiel

•
$$(A \Longleftrightarrow B) \Longleftrightarrow ((A \Longrightarrow B) \land (B \Longrightarrow A))$$

•
$$(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A)$$

1.2.4 Quantoren

Oft enthalten Aussagen eine freie Variable

Beispiel

• A(x): x ist eine Primzahl

• $A(n): \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$

Dann gehört eine Grundmenge U, sodass A(x) eine mathematische Aussage ist von $x \in U$ Syntax:

• ∃ es gibt

• ∀ für alle

• $\exists x \in U : A(x) : \text{es gibt ein Element } x \in U, \text{ sodass } A(x) \text{ wahr ist.}$

• $\forall x \in U : A(x) : A(x)$ ist wahr für alle x.

1.3 Wohlordnungsprinzip für №

Wir wollen beweisen $\forall n \in \mathbb{N} : A(x)$ wahr ist

Negation:

$$\neg(\forall n \in \mathbb{N} : A(x)) = \exists n \in \mathbb{N} : \neg A(x)$$
$$\neg(\exists n \in \mathbb{N} : \neg A(x)) = \forall n \in \mathbb{N} : \neg(\neg A(x)) = A(x)$$

Also: $G = \{n \in \mathbb{N} : \neg A(n)\}$ müssen zeigen, dass $G = \emptyset$

1.3.1 Satz 6

Sei $A \subset \mathbb{N}, A \neq \emptyset$, dann hat A ein kleinstes Element!

D.h. $\exists n_0 \in A \text{ mit } \forall k \in A : k \geq n_0$

1.3.2 Satz 7

 $\sqrt{2}$ ist nicht rational.

Angenommen: $\sqrt{2}$ ist rational $\Longrightarrow \exists m \in \mathbb{Z}, n \in \mathbb{N}, \sqrt{2} = \frac{m}{n}$

 $G:=\left\{n\in\mathbb{N}:\exists m\in\mathbb{Z}:\sqrt{2}=\tfrac{m}{n}\right\}\subset\mathbb{N}$

Wollen: $G = \subset$

Angenommen: $G \neq \emptyset \Longrightarrow G$ hat ein kleinstes Element (Satz 6)

 $\sqrt{2} = \frac{m}{n_0}$: dann ist $m - n_0 = (\sqrt{2} - 1)n_0 \Longrightarrow 0 < m - n_0 < n_0$ also $m - n_0 \in \mathbb{N}$

 $\implies \sqrt{2} = \frac{m}{n_0} = \frac{m(m-n_0)}{n_0(m-n_0)} = \frac{m^2 - m * n_0}{n_0(m-n_0)} = \frac{2n_0^2 - m * n_0}{n_0(m-n_0)} = \frac{2n_0 - m}{m-n_0}$ Also hat G kein kleinstes Element $\implies G = \emptyset$

1.3.3 Satz 8

 $K \in \mathbb{N}$, damit $\sqrt{k} \subset \mathbb{N}$ oder irrational

Beweis

Negation: $\sqrt{k} \notin \mathbb{N}$ und \sqrt{k} ist rational

Annahme: $\sqrt{k} \in G \backslash \mathbb{N}$

$$G:=\left\{n\in\mathbb{N}:\exists m\in\mathbb{Z}:\sqrt{k}=\tfrac{m}{n}\right\}\subset\mathbb{N}$$

Wollen: $G = \emptyset$!

Wollen:
$$G = \emptyset$$
!

Angenommen $G \neq \emptyset$. Sei n_0 kleinstes Element in G

$$\sqrt{k} = \frac{m}{n_0} = \frac{m(m-n_0)}{n_0(m-n_0)} = \frac{m^2 - m * n_0}{n_0(m-n_0)} = \frac{k * n_0^2 - m * n_0}{n_0(m-n_0)} = \frac{k * n_0 - m}{m - n_0}$$

$$\implies k > 1$$

Für Widerspruch brauchen wir:

$$0 < m - n_0 < n_0$$

$$m - n_0 = \sqrt{k} * n_0 - n_0 = (\sqrt{k} - 1)n_0 > 0, \sqrt{k} > 1$$

$$m - n_0 = (\sqrt{k} - 1)n_0 < n_0$$

D.h.
$$\sqrt{k} - 1 < 1 \Longrightarrow \sqrt{k} < 2 \Longrightarrow k < 4$$

$$k \leq 3 \Longrightarrow (Bullshit)$$

Versuchen mal
$$m-l*n_0, l \in \mathbb{N}$$
 geeignet $\sqrt{k} = \frac{m}{n_0} = \frac{m(m-l*n_0)}{n(m-l*n_0)} = \frac{k*n_0-l*n_0}{n(m-l*n_0)}, k*n_0 - l \in \mathbb{Z}$

Brauchen: $0 < m - l * n_0 < n_0 \iff 0 < (\sqrt{k} - l)n_0 < n_0$

Brauchen: $0 < \sqrt{k} - l < 1$, wähle $l \in \mathbb{Z}$, sodass $l < \sqrt{k} < l + 1$

sollte möglich sein, falls $\sqrt{k} \notin \mathbb{N}$

1.4 Körper- und Anordnungsaxiomen

0 ist eindeutig! Sei 0' auch neutrales Element der Addition

$$\implies 0 = 0' = 0$$

$$0 = 0 + 0' = 0' + 0 = 0'$$

$$0' + 0 = 0'$$

Beispiel

a + x = b hat eine eindeutige Lösung x = b + (-a) = b - a

Sei
$$a + x = b \Longrightarrow (-a) + (a + x) = (-a) + b$$

 $\Longrightarrow ((-a) + a) + x = b + (-a)$
 $\Longrightarrow 0 + x = b + (-a)$

Wenn x = b + (-a)

$$\implies a + x = a + (b + (-a)) = b + ((-a) + a)$$
$$= b + (a + (-a))$$
$$= b + 0 = b$$

In jedem Körper gilt:

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$
$$\frac{a}{c} * \frac{b}{d} = \frac{ab}{cd}$$
$$\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}$$

TODO: Handout über Körperaxiome muss hier rein!

1.4.1 Satz 13

Sei \mathbb{K} ein angeordneter Körper, $a, b, c, d, x, y \in \mathbb{K}$ Dann gilt:

- 1. $a > b \iff a b > 0$
- $2. \ a > b \land c > b \Longrightarrow a + c > b + a$
- 3. $a > 0 \land x > y \Longrightarrow ax > ay$
- $4. \ a > 0 \Longleftrightarrow -a < 0$
- 5. Vorzeichenregeln:
 - a) $x > 0; y < 0 \Longrightarrow xy < 0$
 - b) $a < 0; x > y \Longrightarrow ax < ay$

Beweis

1. Sei
$$a > b \Longrightarrow a - b = a + (-b) > b + (-b) = 0$$

Sei $a - b > 0 \stackrel{(O4)}{\Longrightarrow} a = b + (a - b) > b$

2. Sei
$$a > b, c > d \xrightarrow{\textcircled{O4}} a + c > b + d$$
 und $b + c > b + d \xrightarrow{\textcircled{O1}} a + c > b + d$

3. Sei
$$a > 0, x > y \stackrel{\text{(1.)}}{\Longrightarrow} x - y > 0 \stackrel{\text{(05)}}{\Longrightarrow} a(x - y) > 0$$

$$\implies ax - ay > 0 \implies ax > ay$$

4. Aus
$$a > 0 \stackrel{(O4)}{\Longrightarrow} (-a) = (-a) + 0 < (-a) + a = 0$$

Aus $a < 0 \stackrel{(O4)}{\Longrightarrow} (-a) + a < 0 + a = a$

5. Folgt aus (4) und (O5)

 \Longrightarrow fertig.

1.4.2 Satz 14

Sei $(\mathbb{K}, +, *)$ ein angeordneter Körper \Longrightarrow

1.
$$a \neq 0 \Longrightarrow a^2 > 0$$
 insbesondere $1 > 0$

2.
$$a > 0 \Longrightarrow \frac{1}{a} > 0$$

3.
$$a > b > 0 \Longrightarrow \frac{1}{a} < \frac{1}{b}$$
 und $\frac{a}{b} > 1$

Beweis

1.
$$a^2 = a * a$$

aus $a > 0 \xrightarrow{(O5)} a^2 = a * a > 0$
aus $a < 0 \xrightarrow{(S15(5))} a * a > 0$

2. Sei
$$a \neq 0 \Longrightarrow a * \frac{1}{a} = 1 > 0 \stackrel{(S1(5))}{\Longrightarrow} a > 0 \land \frac{1}{a} > 0$$
 oder $a < 0 \land \frac{1}{a} > 0$

3. Sei
$$a > b > 0 \Longrightarrow \frac{1}{a} > 0; \frac{1}{b} > 0; a * b > 0; a - b > 0(S13(1))$$

 $\Longrightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} = (a - b)\frac{1}{b} * \frac{1}{a} > 0$

fertig

Vorliegende Definition: Die \mathbb{R} sind ein geordneter Körper (da fehlt noch was)

1.4.3 Absolutbetrag

$$|x| = \begin{cases} x, & \text{falls } x > 0\\ 0, & \text{falls } x = 0\\ -x, & \text{falls } x < 0 \end{cases}$$

1.4.4 Signumfunktion / Vorzeichenfunktion

$$sign(x) = \begin{cases} 1, & \text{falls } x > 0 \\ 0, & \text{falls } x = 0 \\ -1, & \text{falls } x < 0 \end{cases}$$

1.4.5 Min- und Max-Funktion

$$max(x,y) = \begin{cases} x, & \text{falls } x > y \\ y, & \text{falls } y \ge x \end{cases}$$
$$min(x,y) = \begin{cases} x, & \text{falls } x < y \\ y, & \text{falls } y \le x \end{cases}$$

1.4.6 Folgerungen

1.
$$\forall x \in \mathbb{R}; x = |x|sgn(x)$$

 $|-x| = |x|; x \le |x|$

2.
$$\forall x \neq 0 : |x| > 0$$

3.
$$\forall x, y \in \mathbb{R} : |x * y| = |x| * |y|$$

 $sgn(x * y) = sgn(x) * sgn(y)$

4.
$$\forall x \in \mathbb{R}, \forall e > 0$$

hat $|x - a| < e \iff a - e < x < a + e$
insbesondere $|x| < e \iff -e < x < e$

5. TODO: Stimmt das so?
$$|x| = max(x, -x)$$

Beweis: einfach

1.4.7 Satz 15: Dreiecksungleichung

$$\forall a, b \in \mathbb{R} : |a+b| \le |a|+|b|$$
$$||a|-|b|| \le |a-b|$$

Beweis

Falls
$$a + b \ge 0 \Longrightarrow |a + b| = a + b \le |a| + b \le |a| + |b|$$

Falls
$$a + b < 0 \Longrightarrow -(a + b) > 0 \Longrightarrow |a + b| = -(a + b)$$

= $(-a) + (-b) \le |-a| + (-b) \le |-a| + |-b| = |a| + |b|$
 $|a| = |(a - b) + b| \le |a - b| + |b| \Longrightarrow |a| - |b| \le |a - b|$

Vertausche a und b

$$|b| - |a| \le |b - a| = |-(a - b)| = |a - b| = -(|a| - |b|)$$

 $\implies ||a| - |b|| = max(|a| - |b|, -(|a| - |b|) \le |a - b|$

fertig

1.4.8 Satz 16: Abstandsungleichung

 $\forall a, b, c \in \mathbb{R} : d(a, c) \le d(a, b) + d(b, c)$ Beweis

$$d(a,c) = |a - c| = |(a - b) + (b - c)| \le |a - b| + |b - c|$$
$$= d(a,b) + d(b,c)$$

fertig

1.5 Obere und untere Schranken, Supremum und Infimum

1.5.1 Obere und Untere Schranken

Sei $A \subset \mathbb{K}$, \mathbb{K} ein geordneter Körper.

A heißt nach oben beschränkt falls $\exists \alpha \in \mathbb{K}, \forall a \in A : a \leq \alpha$.

Schreiben $A \leq \alpha$. α heißt obere Schranke von A.

A heißt nach unten beschränkt falls $\exists \beta \in \mathbb{K}, \forall a \in A : \beta \leq a$

Schreiben $\beta \leq A$. β heißt untere Schranke von A

1.5.2 Maximum und Minimum

Aheißt maximales Element (oder Maximum) von A
, falls α obere Schranke für Aist und
 $\alpha \in A$

Aheißt minimales Element (oder Minimum) von A
, falls β untere Schranke für Aist und
 $\beta \in A$

Beweis Falls Maximum existiert, dann ist es eindeutig. Genauso für das Minimum.

B. H.A

 $A = \{x \in \mathbb{R}, x > 0\}, \inf(A) = 0$

A hat kein Minimum, da $0 \notin A$

 $B = \{x : x < 0\}, \sup(B) = 0$

1.5.3 Definition 18: Supremum, Infimum

$$A \subset \mathbb{R}, A \neq \emptyset$$

 $\sup(A) = \sup A := \text{kleinste obere Schranke von } A$

 $\inf(A) = \inf A := \text{kleinste obere Schranke von } A$

1.5.4 Lemma 19

Sei α eine obere Schranke für $A \neq \emptyset$. Dann gilt

$$\alpha = \sup(A) \iff \forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon} \pmod{\alpha - \epsilon} \leq a_{\epsilon}$$

Beweis

Sei $\alpha = \sup(A)$ und $\epsilon > 0 \Longrightarrow \alpha - \epsilon$ ist keine obere Schranke für A.

Also $\exists a_{\epsilon} \in A : \alpha - \epsilon < a_{e} \checkmark$

"←" Beweis durch Kontraposition.

N.B.: $(E \Longrightarrow F) \Longleftrightarrow (\neg F \Longrightarrow \neg E)$

$$\neg(\alpha = \sup(A)) = \alpha > \sup(A)$$

$$\neg(\forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon})$$

$$\exists \epsilon > 0 \ \forall a_{\epsilon} \in A : \alpha - \epsilon \ge a_{\epsilon}$$

Annahme: $\alpha > \sup(A)$

Wählen: $\epsilon := \alpha - \sup(A)$

Damit gilt: $\forall a \in A : a \leq \sup(A) = \alpha - \epsilon$

1.5.5 Definition 20: Vollständigkeitsaxiom

Die reellen Zahlen \mathbb{R} sind der angeordnete Körper in dem jede nicht leere Menge die nach oben beschränkt ist ein Supremum hat.

Oder: R ist der ordnungsvollständige Körper.

Beispiel

$$\sup(\{x \in \mathbb{R}, x < 0\}) = 0$$

 $\sup(\{x\in\mathbb{R},x^2<2\})$ hat ein Suprenum (später: das Suprenum ist $\sqrt{2})$

1.5.6 Die Menge $\bar{\mathbb{R}}$

Die Menge $\mathbb{R} := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ erweitert die Zahlengerade

Es gilt: $-\infty < x < \infty \forall x \in \mathbb{R}$

Regeln:

- $\bullet \ \infty + x := \infty$
- \bullet $-\infty + x := -\infty$
- $\infty * x := \infty, \quad x > 0$
- $\infty * x := -\infty$, x < 0
- $\frac{x}{\infty} := 0 = \frac{x}{-\infty}$
- $\infty + \infty := \infty$
- \bullet $-\infty \infty := -\infty$
- $\bullet \quad \infty * \infty := \infty$
- $\infty * (-\infty) := -\infty$

Nicht definiert:

- $\bullet \infty \infty$
- $0*\infty$

1.5.7 Intervalle

- $a \leq b \quad [a,b] := \{x \in \mathbb{R} : a \leq x \leq b\}$ abgeschlossenes Intervall
- $a \le b$ $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ rechts halboffenes Intervall
- $(-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{ x \in \mathbb{R} : x < a \}$
- $[a, \infty) := \{x \in \mathbb{R} : x \ge a\}$
- $(a, \infty) := \{x \in \mathbb{R} : x > a\}$

Beweis $\sup([a, b]) = \sup([a, b)) = b$, falls a < bWenn eine Menge A ein Maximum hat \Longrightarrow Supremum ist gleich dem Maximum

1.5.8 Supremum und Infimum der leeren Menge

Setzen:

$$\sup(\emptyset) := -\infty$$

$$\inf(\emptyset) := +\infty$$

1.6 Definition von $\mathbb N$ als Teilmenge von $\mathbb R$

1.6.1 Definition 21

Eine Menge $A \subset \mathbb{R}$ heißt induktiv falls:

- 1. $1 \in A$
- 2. Falls $k \in A$, dann ist $k + 1 \in A$

Beispiel

 $A = [1, \infty)$ ist induktiv.

 $A := \{1\} \cup [1+1,\infty)$ ist induktiv

 $\mathbb{N} :=$ kleinste induktive Teilmenge von \mathbb{R}

$$:= \bigcap_{A \text{ist induktiv}} A \qquad \qquad \text{A ist induktiv}$$

1.6.2 Satz 21: Induktionsprinzip

Ist $M \subset \mathbb{N}$, mit

- 1. $1 \in M$
- 2. Aus $k \in M$ folgt $k+1 \in M$

$$\iff M = N$$

1.6.3 Satz 22

- 1) $\forall n \in \mathbb{N} : n \ge 1$ oder $n \le 1 + 1$ und n = 1 oder $n 1 \in \mathbb{N}$
- 2) $\forall n, m \in \mathbb{N} : n + m \in \mathbb{N} \text{ und } n * m \in \mathbb{N}$
- 3) $\forall n, m \in \mathbb{N} n \ge m \implies n m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$
- 4) Sei $n \in \mathbb{N}$ Dann existiert kein $m \in \mathbb{N}$ mit n < m < n + 1
- 5) Sei $A \subset \mathbb{N} : A \neq \emptyset \implies A$ hat ein kleinstes Element

Beweis Sei $\tilde{A} = \{1\} \cup [2, \infty)$ ist induktiv $\implies \mathbb{N} \subset B \implies n = 1$ oder $n \geq 2$

- a_1) $1 \in A : klar$
- a_2) $1+1 \in A : klar$
- $\begin{array}{l} b \text{) Sei } k \in A, k \neq 1 \implies 1 \leq k-1 \in \mathbb{N} \\ \text{ folgt } 1+1 \leq (k-1)+1=k \in \mathbb{N} \\ \text{ und } (k+1)-1=k \geq 1+1 \geq 1 \implies k+1 \in A \\ \implies A \subset \mathbb{N} \text{ ist induktiv } \implies A=\mathbb{N} \implies 1) \end{array}$

 $B:=\{n\in\mathbb{N}: \text{für } m\in\mathbb{N} \text{ mit } m\leq n \implies n-m\in\mathbb{N}_0\}$

$$a$$
) $1 \in B,$ da $m \in \mathbb{N}$ und $m \leq 1 \underset{1)}{\Longrightarrow} m = 1 \implies n - m = 1 - 1 = 0$

- $\begin{array}{l} b \text{) Sei } k \in B \text{ und } m \in \mathbb{N} \text{ mit } m \leq k+1 \\ \text{ Falls } m=1 \implies (k+1)-1=k \in \mathbb{N} \implies k+1 \in B \\ \text{ Falls } 1 < m \in \mathbb{N} \implies m-1 \in \mathbb{N} \text{ (da } A=\mathbb{N}) \\ \implies \mathbb{N}_0 \ni k-(m-1)=(k+1)-m \implies k+1 \in B \\ \implies B \text{ ist induktiv } \implies B=\mathbb{N} \implies 3) \end{array}$
- 2) Gegeben: $m \in \mathbb{N} : C := \{n \in \mathbb{N} | n + m \in \mathbb{N}\}$ Zeige C ist induktiv! Für m*n analog
- 4) Aus $n, m \in \mathbb{N}$ und n < m < n+1 $\implies 0 < \underbrace{m-n}_{\in \mathbb{N} \text{ nach } 3)} < 1 \text{ (Widerspruch! zu 1))}$
- **5)** Sei $M \subset \mathbb{N}$, ohne ein kleinstes Element $\implies 1$ ist kleinste Element von $\mathbb{N} \implies 1 \notin M$

$$D := \{n \in \mathbb{N} : n < M\} = \{n \in \mathbb{N} : \forall m \in M : n < m\}$$
 Wissen:

- a) $1 \in D$
- **b)** Sei $k \in D$ d.h. $k < m \forall m \in M$ $\Longrightarrow D$ ist induktiv $\Longrightarrow D = \mathbb{N} \implies M \subset \mathbb{N} \backslash D = \mathbb{N} \backslash M = \emptyset$ (q.ed)

1.6.4 Satz 23

 \mathbb{R} ist Archimedisch angeordnet $\mathbb{N} \subset \mathbb{R}$ ist <u>nicht</u> nach oben beschränkt insbesondere $\forall a>0, b\in \mathbb{R} \exists n\in \mathbb{N}: n*a>b$ Beweis

Angenommen $\mathbb N$ ist nach oben beschränkt \Longrightarrow $a=Sup\mathbb N\in\mathbb R$ \Longrightarrow $\alpha-1$ ist keine obere Schranke für $\mathbb N$

$$\implies \exists n \in \mathbb{N}, n > \alpha - 1 \iff \underbrace{n+1}_{\in \mathbb{N}} > \alpha \text{ (Widerspruch!)}$$

Wähle
$$x = \frac{b}{a} \in \mathbb{R} \implies \exists n \in \mathbb{N} : n > x = \frac{b}{a} \underbrace{\Longrightarrow}_{a>0} n * a > b \text{ (q.ed)}$$

1.7 Ganze und rationale Zahlen

$$\mathbb{Z} := \mathbb{N}_0 \cup (-\mathbb{N}), -\mathbb{N} := \{-n, n \in \mathbb{N}\}$$

$$\mathbb{Q} := \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$

1.7.1 Satz 24

 $(\mathbb{Z}, +, *)$ ist ein kommutativer Ring mit Eins, d.h. alle Körperaxiome sind erfüllt. Aber es gibt kein inverses Element der Multiplikation. $(\mathbb{Q}, +, *)$ ist ein angeordneter Körper. **Beweis** Nachrechnen

Notation
$$\mathbb{Z}_p := \{m \in \mathbb{Z} : m \ge p\}$$

 $p \in \mathbb{Z} := p + \mathbb{N}_0$

Alle $k \mapsto k + p - 1$ bildet \mathbb{N} bijektiv auf \mathbb{Z}_p ab.

- \Rightarrow Alle Eigenschaften von $\mathbb N$ gelten auch für $\mathbb Z_p \forall p \in \mathbb Z$
- \Rightarrow Lemma 25: Jede nach unten bzw. oben beschränkte Teilmenge $\neq \emptyset$ von $\mathbb Z$ besitzt ein Minumum bzw. ein Maximum

1.7.2 Korollar 26

- 1) Seien $x, y \in \mathbb{R}, y * x > 1$ $\implies m \in \mathbb{Z}, x < m < y$
- 2) (\mathbb{Q} ist dicht in \mathbb{R}) Seien $x, y \in \mathbb{R}, x < y \implies \exists r \in \mathbb{Q} : x < r < y$

Beweis

- 1) Sei y x > 1, $A := \{m \in \mathbb{Z} : m > y\} \neq \emptyset$ \implies Sei $n_0 = min(A)$ existiert $\in \mathbb{Z}$ $\implies n_0 \in A : n_0 \ge y \text{ und } n_0 - 1 < y$ $m := n_0 - 1 \in \mathbb{Z} \text{ und } m + 1 \ge y, n < y$ $\implies m \ge y - 1 > x \implies x < m < y$
- 2) Sei $x, y \in \mathbb{R}$: $x < y \iff a : -y x > 0$ S.23 $\implies \exists n \in \mathbb{N} : n * a > 1 \iff n * x - n * y > 1$ $\implies \exists m \in \mathbb{Z} : n * x < m < n * y \iff x < \frac{m}{n} < y$

1.8 Endliche und abzählbare Mengen

1.8.1 Definition 27 (Cantor)

A, B Mengen heissen gleichmächtig (oder äquivalent) $A \sim B$, falls es eine Bijektion $f: A \to B$ gibt.

B heisst mächtiger als A, $|A| \leq |B|$, falls es eine Injektion $f: A \to B$ gibt.

Bemerkung

- 1) $A \sim B$ ist eine äquivalenzrelation, d.h. reflexiv $(A \sim A)$, symmetrisch $(A \sim B) \implies B \sim A$ und transitiv $(A \sim B, B \sim C) \implies A \sim C$
- 2) $A \leq \mathbb{R} \iff \exists \text{ Surjektion } h: B \to B$
- 3) (Cantor) Bernsten-Schröder-Theorie $|A| \leq |B|$ und $|B| \leq |A| \iff A \sim B$

1.8.2 Definition 28

Sei $n \in \mathbb{N}_0[0] := \emptyset$ und rekrusiv $[n+1] = [n] \cup [n+1]$ ($\implies ([n] := \{k \in \mathbb{N} : 1 \le k \le n\})$

Eine Menge A heisst endlich, falls $\exists n \in \mathbb{N}_0$ mit $A \sim [n]$, sage A hat n Elemente card(A) := n (Kardinalität)

 $card\emptyset = 0$ Eine Menge A ist unendlich, falls sie nicht endlich ist.

A heisst abzählbar (abzählbar unendlich), falls $A \sim \mathbb{N}$

A ist höchstens abzählbar, falls A endlich ist oder abzählbar ist, ansonsten heisst sie überabzählbar.

Bemerkung

- 1) A höchstens abzählbar $\iff \exists$ Surjektion $f: \mathbb{N} \to A$
- 2) Unendliche Mengen sind tricky $G = \{n \in \mathbb{N} : \text{n ist gerade}\} = \{2 * n : n \in \mathbb{N}\}\$ $f : \mathbb{N} \to G, n \mapsto 2n \text{ ist bijektiv, d.h. } \mathbb{N} \sim G$
- 3) Hilberts Hotel
- 4) $[0,1] \sim [0,1)$

Beweis Konstruieren $f:[0,1] \to [0,1)$ Für $x \in [0,1] \setminus (\bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\}) : f(x) = x$ $n \in \mathbb{N}: f(\frac{1}{n}) := \frac{1}{n+1}$ Rechne nach f ist bijektiv!

1.8.3 Satz 29

- 1) $A \sim [n], A \sim [m] \implies n = m$ (d.h. Kardinalität ist eindeutig)
- 2) ist $A \in B, B$ endlich $\implies A$ endlich
- 3) A, B endlich und disjunkt $\implies card(A \cup B) = (cardA + cardB)$

Beweis

- 1) \Longrightarrow $[n] \sim [m]$ durch Induktion \Longrightarrow n=mFall n=1 (CHECK!) $n \to n+1$: IA $\tilde{\phi}:[n] \to [m]$ bijektiv \Longrightarrow n=m
- 2) Sei $\phi: [n+1] \to [m+1]$ Bijektion: Durch Vertauschen von 2 Elementen kann man erreichen, dass $\phi(n+1) = m+1 \implies \phi|_{[n]}: [n] \to [n]$ bijektiv $\implies n = m \implies m+1 = m$ (WTF?) (q.ed)
- 3) Beweis der Induktion: einfach.
- 4) Sei $A \sim [n], b \sim [m] \implies B \sim m + [n] := \{k \in \mathbb{N} : n+1 \le k \ leq m + n\} \implies A \cup B \sim [n] \cup (m+[n]) = [n+m]$

Lemma 30 Jede endliche Teilmenge von \mathbb{R} hat ein Minimum und ein Maximum **Beweis** $A = \{a_1\}$ Ist $A = \{a_1, a_{n+1}\}$ und $C := min\{a_1, a_n\} \implies minA = min(C, a_{n+1})$

1.8.4 Satz 31

- 1) Ist A < B, B höchstens abzählbar $\implies A$ höchstens abzählbar
- 2) Jede unendliche Menge besitzt eine abzählbare Teilmenge
- 3) A, B abzählbar $\implies A \times B$ abzählbar insbesondere $\mathbb{N} \times \mathbb{N}$ abzählbar
- 4) Sei $\{A_k\}$ eine höchstens abzählbare Menge von Menge A_3, A_2 höchstens abzählbar $\implies \bigcap_k A_k$ ist höchstens abzählbar

Beweis

- 1) O.B.d.A $B = \mathbb{N}$, also $A \subset \mathbb{N}$ $\implies A$ hat ein kleinstes Element a_1 $\implies A\{a_1\}$ hat ein kleinnstes Element a_2 usw... ist $A_n = \emptyset \implies A$ ist endlich, ansonsten $A = \{a_1, a_2, a_3, ...\}$ Bijektion $f : \mathbb{N} \to A, n \mapsto a_n \implies A$ ist abzählbar
- 2) ist A unendlich \Longrightarrow wähle $a_1 \in A$ $a_2 \in A \setminus \{a_1\} =: A_1$ induktiv $a_{n+1} \in A_n := A_{n+1} \setminus \{a_n\}$ $\Longrightarrow \{a_1, a_2, ...\}$ abzählbar
- 3) Da $A \sim \mathbb{N}, B \sim \mathbb{N} \implies$ reicht zu zeigen $\mathbb{N} \times \mathbb{N}$ ist abzählbar, da $\mathbb{N} \times \mathbb{N}$ unendlich ist \implies zu zeigen $\mathbb{N} \times \mathbb{N}$

$$\phi(m,n) = 2^m * 3^n$$

 $\phi: \mathbb{N} \times \mathbb{N} \implies \mathbb{N} \text{ ist injektiv}$
In der Tat: Sei $\phi(m,n) = \phi(n)$

In der Tat: Sei
$$\phi(m,n) = \phi(p,q)$$

d.h.
$$2^m * 3^n = 2^p * 3^q$$

o.B.d.
A
$$p \geq m$$

$$\implies 3^n = 2^{p-m} * 3^q$$

$$\implies p = m$$

$$\implies n = q$$

5) Schreiben
$$A_k = \{a_{kn} : \underbrace{1 \leq n \leq P_k}, P_k \in \mathbb{N} \text{ oder } \underbrace{1 \leq n \in \mathbb{N}}\}$$

5) Schreiben $A_k = \{a_{kn} : \underbrace{1 \leq n \leq P_k}_{endlich}, P_k \in \mathbb{N} \text{ oder } \underbrace{1 \leq n \in \mathbb{N}}_{unendlich} \}$ Falls A_k paarweise disjunkt sind. Dann erzeugt diese Nummerierung von A_k eine Injektion.

$$a_{kn}\mapsto (kn)$$
von $A=\bigcup_{k\in I}A_k\to \mathbb{N}\times \mathbb{N}\leftarrow \mathbf{abz\ddot{a}hlbar}$

sind $A_k, k \in I$ nicht paarweise disjunkt:

$$B_1 = A_1, B_2 = A_2 \backslash A_1,$$

$$B_{n+1} = A_{n+1} \setminus \{A_1 \cup A_2 \cup \dots \cup A_n\}$$

 $\implies B_k$ sind paarweise disjunkt und höchstens abzählbar

 $\implies \bigcup_k A_k$ ist höchstens abzählbar

1.8.5 Korollar 32

G ist abzählbar

Beweis
$$\mathbb{G} = \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$
 "C" $\{(m,n), m \in \mathbb{Z}, n \in \mathbb{N}\}$

Bemerkung Es gibt eine explizite Abbildung von G mittels eines Baumes. Literatur: Neil Calkin, Herbert Will: Recounting the Rationals

1.8.6 Satz 33

A enthalte mindestens 2 Elemente $\implies A^{\mathbb{N}} = \{f : \mathbb{N} \to A\}$ überabzählbar

1.8.7 Lemma 34 (Cantor)

Sei A eine Menge \implies Es existiert <u>keine</u> surjektive Abbildung $f: A \to P(A)$

Beweis Sei $f: A \to P(A)$

d.h.
$$\forall x \in A : 2(x) \subset A$$

$$B := \{x \in A : x \notin f(x)\} \subset A$$

wäre f surjektiv

$$\implies \exists x \in A, f(x) = B$$

1. Fall:
$$x \in B = f(x) \implies x \notin f(x)$$
 (WIDERSPRUCH!)

2. Fall:
$$x \notin B = f(x) \implies x \in B = f(x)$$
 (WIDERSPRUCH!) \implies f ist nicht surjektiv!

1.8.8 Korollar 36

Sei
$$I:=[a,b]$$
, oder $(a,b)\subset\mathbb{R}$ $a< b\implies I$ ist überabzählbar **Beweis** Skalieren \implies o.B.d.A. $a=0,b=1$ zu $f\in\{0,1\}^{\mathbb{N}}$

Dezimalbruchentwicklung:

$$x_f := \sum_{n=1}^{\infty} f(n) * 10^{-n} \in [0, 1]$$

beachte: $f_1 + f_2 \implies xf_1 + xf_2$

1.9 Einfache Folgerung aus Induktion

1.9.1 Satz 37 (Bernoulli)

 $\forall x \in \mathbb{N}, x > -1 \mid (1+x)^n \geq 1 + nx$ und Ungleichung ist strikt (d.h. > gilt, falls $n \ge 2, x \ne 0$

Beweis IA $n = 0 \mid (1+x)^0 = 1 + 0x$

Im Ange. gilt:
$$(1+x)^k \ge 1 + kx$$

 $implies(1+x)^{k+1} = (1+x)^k * \underbrace{(1+x)}_{>0} \ge (1+kx)(1+x)$
 $= 1 + (k+1)x = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$

$$= 1 + (k+1)x = 1 + (k+1)x + kx^{2} \ge 1 + (k+1)x$$

1.9.2 Definition 38

$$0! = 1$$

 $n \in \mathbb{N}_0 | (n+1)! := n!(n+1)$
d.h. $n! = 1 * 2 * 3...n$)
 $0 \le k \le n | \binom{n}{k} := \frac{k!}{k!(n-k)!}$ Binomialköffizient

1.9.3 Lemma 39

$$1 \le k \le n$$

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Beweis

$$\binom{n}{k-1} + \binom{n}{k} = \frac{(k-1)!}{(k-1)!(n-k-1)!} + \frac{k!}{k!(n-k)!}$$
$$= \frac{kn! + (n-1-k)n!}{k!(n+1-k)!} = \binom{n+1}{k}$$

1.9.4 Binomischer Lehrsatz

 $\forall a, b \in \mathbb{R} \text{ oder } a, b \in \mathbb{K} \text{ (K\"{o}rper) } \forall n \in \mathbb{N}_0$

$$(a+b)^n = \sum_{l=0}^n \binom{n}{l} a^{n-l} b^l$$
$$= a^n + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + b^n$$

Beweis a = 0 klar, $a \neq 0, a + b)^n = a^n (1 + \frac{b}{a})^n$ \implies zu Zeigen:

$$(1+x)^n = \sum_{l=0}^n \binom{n}{l} x^l$$

a) n = 0

$$(1+x)^0 = 1 = \sum_{l=0}^{0} {0 \choose l} x^l$$

b) Induktionsannahme für n = k gilt:

$$(1+x)^{k+1} = \sum_{l=0}^{k} {k \choose l} x^{l} + \underbrace{\sum_{l=0}^{k} {k \choose l} x^{l+1}}_{\sum_{l=1}^{k+1} {k \choose l-1} x^{l}}$$

$$\binom{k}{0} + \sum_{l=1}^{k} \binom{k}{l} x^{l} + \sum_{l=1}^{k} \binom{k}{l-1} x^{l} + x^{k+1}$$
$$1 + \sum_{l=1}^{k} \underbrace{\binom{k}{l} + \binom{k}{l-1}}_{-\binom{k+1}{l}} x^{l} + x^{l+1}$$

2 Folgen und Konvergenz

 $(a_1, a_2...a_n)$ a_n Zahlen

2.1 Definition 1

Eine reelle Folge ist eine Funktion $f: \mathbb{N} \to \mathbb{R}, n \mapsto f(n) =: a_n$

Notation: $a_n = f(n), (a_n)_{n \in \mathbb{N}}, (a_n)_n$

Bemerkung: $(a_n)_n$ ist nicht $\{a_1, a_2, ...\}$ z.B. $a_n = 1 \implies \{a_1, a_2, ...\} = \{1\}$

2.2 Definition 2: Konvergenz:

Sei $(a_n)_n$ eine Folge reellen Zahlen $(a_n)_n$ kovergiert gegen $L \in \mathbb{R}$ Genau dann, wenn: $\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_n - L| < \epsilon$

 $\mbox{Bemerkung:} \quad (\forall \epsilon > 0 \\ \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_n - L| < \epsilon)$ $\iff (\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \ge k_{\epsilon} : |a_n - L| \le \epsilon)$ $\iff (\forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \frac{1}{l})$ $\iff (\forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \frac{1}{l})$