Econometrics Economics/ Introduction to Econometrics Problem Set 1 (Probability and Statistics Concepts)

Question 1: Expectation and Variance

Consider the equation $y = 3 - x_1 + 2x_2 + e$ with $x_1 \sim Ber(0.5)$, $x_2 \sim N(3,4)$, and $e \sim N(0,1)$. Also assume that $Corr[x_1, x_2] = 0.5$ and $e \perp (x_1, x_2)$. Let $\mathbf{x} \equiv (1, x_1, x_2)'$.

- (a) Compute E[y] and Var[y].
- (b) Compute $E[\mathbf{x}'\mathbf{x}]$, $E[\mathbf{x}\mathbf{x}']$ and $E[\mathbf{x}e]$.
- (c) Compute $E[y \mid x_1, x_2]$.

Question 2: Independence

Consider a population with 8 individuals. The following table summarizes all information about the distribution of (y, x_1, x_2) :

Individuals	y	x_1	x_2
1	6	1	1
2	6	1	1
3	3	1	1
4	4	1	0
5	5	0	1
6	3	0	0
7	3	0	0
8	0	0	0

Consider a random draw from the population.

- (a) For $k_1 \in \{0,1\}$ and $k_2 \in \{0,1\}$, compute the marginal probabilities $P[x_1 = k_1]$ and $P[x_2 = k_2]$, the joint probabilities $P[x_1 = k_1, x_2 = k_2]$, and the conditional probabilities $P[x_2 = k_2 \mid x_1 = k_1]$.
- (b) Based on the results in (a), determine whether x_1 and x_2 are independent.

(Remark: Recall that two discrete random variables x_1 and x_2 with values in \mathcal{X} are independent, if $P[x_1 = k_1, x_2 = k_2] = P[x_1 = k_1] P[x_2 = k_2]$ for each $k_1 \in \mathcal{X}$ and $k_2 \in \mathcal{X}$. Provided $P[x_1 = k_1] > 0$, this definition is equivalent to $P[x_2 = k_2 \mid x_1 = k_1] = P[x_2 = k_2]$ for each $k_1 \in \mathcal{X}$ and $k_2 \in \mathcal{X}$. Alternatively, provided $P[x_2 = k_2] > 0$, this definition is also equivalent to $P[x_1 = k_1 \mid x_2 = k_2] = P[x_1 = k_1]$ for each $k_1 \in \mathcal{X}$ and $k_2 \in \mathcal{X}$.)

(c) Compute E $[y \mid x_1 = k_1, x_2 = k_2]$. Use this to compute E [y] by using Law of Iterated Expectation.

Question 3:

The cps09mar dataset contains annual survey data on total salary earnings as well as other self-reported characteristics from 50,742 individuals across the U.S. from 2009. See cps09mar_description.pdf on OLAT for the description of variables in cps09mar. We obtain the following rounded average earnings (measured in 1000 U.S. dollars) according to self-reported gender:

	Men	Women
Education=0 (less than 1st grade)	26	20
Education=6 (5th or 6th grade)	27	20
Education=11 (11th grade, no high school diploma)	35	24

- (a) Summarize your conclusions from the numbers above.
- (b) Consider the variables age and marital status in the data. Explain why you think the gender earnings gap might also differ for these variables (no calculation needed).
- (c) Can you think of another variable for which the gender earnings gap differs strongly?
- (d) Can you think of one for which the gender earnings gap might be smaller?