Формула (**) выражает полярные координаты r, φ через декартовы координаты. Заметим, что для нахождения φ , вообще говоря, необходимо использовать <u>два</u> последних равенства в (**) (подумайте почему!). В некоторых книжках из последних двух равенств делают вывод: $tg\,\varphi=\frac{y}{x}$ – это ошибка.

В решении ряда задач использование полярной системы координат оказывается гораздо эффективней, чем применение декартовой системы. Такие задачи у вас будут, например, в курсе МАТЕМАТИЧЕСКОГО АНАЛИЗА. Здесь мы на этом останавливаться не будем.

Цилиндрические и сферические координаты в пространстве

Рассмотрим в пространстве плоскость π и зададим на ней полярную систему координат. O – полюс, l – полярная ось. Пусть \bar{n} некоторый вектор перпендикулярный к плоскости π (см. рис. а, в).

Cферические координаты (\bullet) $M(r; \varphi; \theta)$ (см. рис. θ).

2.2 Уравнение линии на плоскости. Уравнение прямой на плоскости

Пусть на (аффинной) плоскости задана декартова система координат OXY и некоторая линия l.

Определение 2.6. Говорим, что уравнение F(x,y) = 0 есть уравнение линии l и пишем

$$l: F(x,y) = 0,$$
 (*)

если координаты любой точки $M(x,y) \in l$ удовлетворяют данному уравнению и обратно: любое решение этого уравнения, интерпретирующееся как точка M(x,y) на плоскости, лежит на $l \colon (\bullet) M(x,y) \in l$.

Если уравнение (*) в какой-либо системе координат можно записать в виде $l: a_{k_1t_1}x^{k_1}y^{t_1}+\ldots+a_{k_st_s}x^{k_s}y^{t_s}=0$, где k_1,\ldots,k_s , t_1,\ldots,t_s – неотрицательные целые числа, то l называют АЛГЕБРАИЧЕСКОЙ линией. Определим число $m: m=\max\{k_1+t_1,\ldots,k_s+t_s\}$. Число m называют ПОРЯДКОМ (степенью) алгебраической линии.

Например

- $\overline{(1)}$ \overline{l} : $5x^3y^2 8xy^4 + 7x^6 y + 8 = 0 \Rightarrow l$: $5x^3y^2 8x^1y^4 + 7x^6y^0 x^0y^1 + 8x^0y^0 = 0$, $m = \max\{3+2, 1+4, 6+0, 0+1, 0+0\} = 6$, т.е. l алгебраическая линия 6-го порядка.
- (2) l: $x^2 + y^2 = 1$ (школа: уравнение окружности R = 1) $\Rightarrow l$: $x^2y^0 + x^0y^2 x^0y^0 = 0$, т.е. окружность алгебраическая линия 2-го порядка.

(3) Общим видом алгебраической линии l 1-го порядка будет:

$$l: a_{10}x^1y^0 + a_{01}x^0y^1 + a_{00}x^0y^0 = 0$$

 $l: a_{10}x + a_{01}y + a_{00} = 0,$

где a_{10} и/или $a_{01} \neq 0$ (также пишем $a_{10}^2 + a_{01}^2 \neq 0$), т.к. в противном случае порядок линии l будет равен нулю или $l = \emptyset$.

Переобозначая коэффициенты это уравнение обычно записывают в виде:

$$\begin{cases}
 Ax + By + C = 0 \\
 (A^2 + B^2 \neq 0)
 \end{cases}
 \qquad (1)$$

Уравнение первой степени (1) также называют ЛИНЕЙНЫМ уравнением.

При изменении системы координат OXY o O'X'Y' координаты точки изменяются и закон изменения известен (см. стр. 35-36):

$$\begin{cases} x = c_{11}x' + c_{12}y' + x_0 \\ y = c_{21}x' + c_{22}y' + y_0 \end{cases}$$

Если линия l в OXY имела уравнение (*), то в другой системе координат уравнение изменится.

Например

$$\overline{l \colon 2x^2 - 3y} + 1 = 0 \text{ B } OXY \qquad (\star)$$

 $\overline{l\colon 2x^2-3y}+1=0$ в OXY (*) Пусть закон преобразования $OXY\to O'X'Y'$ есть

$$\left. \begin{array}{l} x = x' - 1 \\ y = 2x' + y' - 2 \end{array} \right\}$$

Тогда
$$2(x'-1)^2 - 3(2x'+y'-2) + 1 = 2(x')^2 - 10x' - 3y' + 9 \Rightarrow l: 2(x')^2 - 10x' - 3y' + 9 = 0$$
 в $O'X'Y'$ (**)

$$l: 2(x')^2 - 10x' - 3y' + 9 = 0 \text{ B } O'X'Y'$$
 (**)

Отмечаем, что оба уравнения (*) и (**) есть алгебраические уравнения одного и того же порядка.

Определение 2.7. ИНВАРИАНТОМ (от франц. Invariant – неизменяемость) называем те характеристики объекта, которые не изменяются при определённых операциях, совершаемых над этим объектом.

Утверждение 2.1. Относительно изменения системы координат инвариантами будут: понятие алгебраичности линии и её порядок.

Доказательство. (1) Утверждение имеет место для алгебраических линий 1-го (m=1)

Действительно: $Ax + By + C = A(c_{11}x' + c_{12}y' + x_0) + B(c_{21}x' + c_{22}y' + y_0) + C = (Ac_{11} + C_{12}x' + C_{12}y' + x_0) + C = (Ac_{11} + C_{12}x' + C$ $+Bc_{21})x' + (Ac_{12} + Bc_{22})y' + (Ax_0 + By_0 + C).$

И после переобозначений $A' = Ac_{11} + Bc_{21}$, $B' = Ac_{12} + Bc_{22}$, $C' = Ax_0 + By_0 + C$ имеем l: A'x' + B'y' + C' = 0,(1)'

Причём $(A')^2 + (B')^2 \neq 0$. Действительно, если A' = B' = 0, то получаем систему

$$\left. \begin{array}{l}
 Ac_{11} + Bc_{21} \\
 Ac_{12} + Bc_{22}
 \end{array} \right\}$$

Определитель системы $\begin{vmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{vmatrix} \neq 0$ т.к. матрица перехода невырожденная матрица (см.

стр. 30). Поскольку система однородная, то она будет иметь только тривиальное решение: A = B = 0, что противоречит условию $A^2 + B^2 \neq 0$.

Вывод l – алгебраическая линия 1-го порядка.

(2) Доказательство для общего случая m > 1 по своей сути аналогично предыдущему (m=1), однако формально довольно громоздкое. Приводить его здесь не будем.

Следствие 2.1. Пусть уравнение линии l в системе OXY НЕ является алгебраическим уравнением. Тогда уравнение l не будет алгебраическим ни в какой другой системе координат из чего следует, что l не алгебраическая линия.

Пример

 $\overline{(1)\;l\colon 7x^5} - 4\sqrt{x}y^2 + 15 = 0$ в системе $OXY \Rightarrow l\colon 7x^5y^0 - 4x^{\frac{1}{2}}y^2 + 15x^0y^0 = 0$. Это уравнение содержит степень $k_2=\frac{1}{2}$ не целое число $\Rightarrow l$ НЕ алгебраическая линия.

(2)
$$l: \frac{1}{x}y^7 - 3x^2y + 18y = 0$$
 в $OXY \Rightarrow l: x^{-1}y^7 - 3x^2y^1 + 18x^0y^1 = 0$. Здесь степень $k_1 = -1$ отрицательное число $\Rightarrow l$ HE алгебраическая линия.

Положение прямой на плоскости вполне определено, если задана точка $M_0 \in l$ и ненулевой

вектор $ar{a}\parallel l$. Вектор $ar{a}\;(ar{a}
eq ar{0})$ называют направляющим вектором прямой l. Рассмотрим произвольную (говорим также текущую) точку $M \in l$. Тогда $\overline{M_0M} \parallel \bar{a} \Leftrightarrow$ когда векторы пропорциональны: $\overline{M_0M}=tar{a}$. Здесь t рассматриваем как параметр и при изменении $-\infty < t < +\infty$ точка M "пробегает" всю прямую l.

Зафиксируем на плоскости некоторую систему координат ОХУ и пусть координаты точки M_0 и направляющего вектора есть: $(\bullet)M_0(x_0,y_0), \bar{a}\{p,q\}.$ Тогда из рис. следует

$$\bar{r} = \bar{r}_0 + t\bar{a}$$
 – векторное уравнение l

В векторном уравнении можно прийти к "координатной" записи. Так как $\overline{M_0M} \ = \ t \bar{a} \ = \ \{tp,tq\}, \ \bar{r} \ = \ \{x,y\}, \ \bar{r}_0 \ = \ \{x_0,y_0\},$ то $\{x,y\} = \{x_0,y_0\} + \{tp,tq\}$. Получили

$$\left. egin{array}{l} x = x_0 + tp \\ y = y_0 + tq \end{array}
ight\}$$
 — параметрическое уравнение l

Далее, из параметрического уравнения имеем $\frac{x-x_0}{p}=t$ и $\frac{y-y_0}{q}=t$ из чего следует

$$\frac{x-x_0}{p} = \frac{y-y_0}{q}$$
 – каноническое уравнение l

Замечание 2.3. По условию направляющий вектор $\bar{a} \neq \bar{0}$, т.е. pи/или $q \neq 0 \ (p^2 + q^2 \neq 0)$. Если, например, p = 0, то $q \neq 0$. Тогда каноническое уравнение прямой есть: $\frac{x-x_0}{0}=\frac{y-y_0}{q}$ (?) Как понимать "деление" на 0 в правой дроби (?) Какой смысл имеет эта запись (?). Для ответа на эти вопросы вернёмся к параметрической форме уравнения прямой:

$$\begin{cases} x = x_0 + t \cdot 0 \Rightarrow l \text{ пересекает ось } X \text{ в точке } x_0 \\ y = y_0 + tq \end{cases}$$

$$\bar{a} = \{0, q\} \Rightarrow \bar{a} = 0\bar{e}_1 + q\bar{e}_2 \Rightarrow \bar{a} \parallel \bar{e}_2.$$

Таким образом, из условия $p=0\Rightarrow l\parallel ar{e}_2$ и пересекает ось X в точке x_0 (см. рис.). Аналогично, если q=0, то $l\parallel \bar{e}_1$ и пересекает ось Y в точке y_0 .

Пусть прямая l проходит через две точки $(\bullet)M_0(x_0,y_0)$ и $(\bullet)M_1(x_1,y_1)$. Возьмём в качестве направляющего вектора \bar{a} : $\bar{a}=\overline{M_0M_1}=\{x_1-x_0,y_1-y_0\}$. В этом случае $p=x_1-x_0$ и $q=y_1-y_0$. Тогда каноническое уравнение есть:

$$rac{x-x_0}{x_1-x_0} = rac{y-y_0}{y_1-y_0}$$
 – уравнение прямой "через две точки"

Перепишем каноническое уравнение прямой в форме: $q(x-x_0)-p(y-y_0)=0 \Rightarrow qx+(-p)y+(py_0-qx_0)=0$. Определим $A=q,\ B=-p$ и $C=py_0-qx_0$. Тогда получим

$$Ax + By + C = 0$$
 – общее уравнение прямой

Так как направляющий вектор $\bar{a}=\{p,q\}\neq \bar{0},$ то $p^2+q^2\neq 0 \Rightarrow A^2+B^2\neq 0$ и в общем уравнении прямой

$$Ax + By + C = 0
(A^2 + B^2 \neq 0)$$

т.е. показали, что а́лгебраические линии 1-го порядка есть <u>прямые</u> и <u>только они</u> и тем самым дана исчерпывающая характеристика алгебраическим линиям 1-го порядка.

Подчеркнём, что в общем уравнении прямой $A=q,\,B=-p$ и т.к. $\bar{a}=\{p,q\}$ – направляющий вектор прямой, то для общего уравнения прямой направляющий вектор имеет вид: $\bar{a}=\{-B,A\}$.

Пусть в общем уравнении прямой $B \neq 0$. Тогда уравнение можно разрешить относительно y: $y = \left(-\frac{A}{B}\right)x + \left(-\frac{C}{B}\right)$ и уравнение прямой принимает вид:

y = kx + b – уравнение прямой с угловым коэффициентом

Сформулируем список полученных уравнений для прямой l:

$$Ax + By + C = 0$$
 $(A^2 + B^2 \neq 0)$ (1) Общее уравнение прямой $\bar{r} = \bar{r}_0 + t\bar{a}$ Векторное уравнение прямой $x = x_0 + tp$ $y = y_0 + tq$ (3) Параметрическое уравнение прямой $\frac{x - x_0}{p} = \frac{y - y_0}{q}$ Каноническое уравнение прямой $\frac{x - x_0}{p} = \frac{y - y_0}{q}$ (4) Уравнение прямой "через две точки" $y = kx + b$ Уравнение прямой с угловым коэффициентом $\{x - x_0 = y - y_0 = y_0$

Замечание 2.4. Общее уравнение (1) отвечает на вопрос об алгебраических линиях 1-го порядка: это прямые и только они. С этой точки зрения уравнение (1) будем считать основным уравнением. Последующие уравнения носят более "технический" характер, но они оказываются весьма эффективными в решении конкретных задач.

Замечание 2.5. Относится к "школьному" уравнению (6). Во первых, оно было получено из общего уравнения (1) в предположении $B \neq 0$. Если B = 0, то из условия $A^2 + B^2 \neq 0$ $\Rightarrow A \neq 0$ и, следовательно, направляющий вектор $\bar{a} = \{-B, A\} = \{0, A\}$ коллинеарен вектору $ar{e}_2$ $(ar{a}\parallelar{e}_2)$ или прямая l параллельна оси OY $(l\parallel OY)$. То есть не каждую прямую можно задать уравнением (6). Во вторых, угловой коэффициент k в произвольной системе координат OXY не равен тангенсу угла φ , где φ -угол наклона прямой l к оси OX. Однако, если $OXY = \{O, \bar{i}, \bar{j}\}$ есть ПРЯМОУГОЛЬНАЯ система координат (как в школе), то $k = \operatorname{tg} \varphi$.

Действительно, пусть $l \not\parallel OY$. Дополнительные построения (см. рис.) дают прямоугольный треугольник PQR. Один из катетов PQ=1 (так как длина вектора \bar{i} равна единице), а второй катет RQ есть разность значений функции y(x)=kx+b в точках y(1) и y(0): RQ = y(1) - y(0) = k + b - b = k. Следовательно, $\mathrm{tg}\varphi = \frac{RQ}{PQ} = k$.

Взаиморасположение двух прямых на плоскости

Пусть две прямые на плоскости заданы общими уравнениями

 l_1 : $A_1x + B_1y + C_1 = 0$ и направляющий вектор $\bar{a}_1 = \{-B_1, A_1\}$;

 l_2 : $A_2x + B_2y + C_2 = 0$ и направляющий вектор $\bar{a}_2 = \{-B_2, A_2\}$.

Теорема 2.1 (О взаиморасположении прямых).

- (1) Прямые совпадают: $l_1 = l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2};$ (2) Прямые параллельны: $l_1 \parallel l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$
- (3) Прямые пересекаются в одной точке $\Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2}$.

 \square оказательство. Прямые l_1 и l_2 будут совпадать или пересекаться тогда и только тогда, когда $\bar{a}_1 \parallel \bar{a}_2$. По критерию коллинеарности векторов в координатной форме это означает, что их соответствующие координаты пропорциональны:

$$\frac{-B_1}{-B_2} = \frac{A_1}{A_2} \Rightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \lambda \Leftrightarrow \begin{cases} A_1 = \lambda A_2 \\ B_1 = \lambda B_2 \end{cases}$$
 (*)

Пусть $\bar{a}_1 \parallel \bar{a}_2$ и l_1 , l_2 имеют общую точку $M_0(x_0,y_0) = l_1 \cap l_2$. Это будет означать, что $l_1=l_2$. Координаты точки M_0 должны удовлетворять системе: $\begin{cases} A_1x_0+B_1y_0+C_1=0\\ A_2x_0+B_2y_0+C_2=0 \end{cases}$ (**) Из (*) следует

$$\begin{cases} A_1 x_0 + B_1 y_0 + C_1 = 0 \\ A_2 x_0 + B_2 y_0 + C_2 = 0 \end{cases}$$
 (**)

$$\begin{cases} \lambda A_2 x_0 + \lambda B_2 y_0 + C_1 = 0 \\ A_2 x_0 + B_2 y_0 + C_2 = 0 \\ \end{vmatrix} \cdot \lambda \Rightarrow \begin{cases} \lambda A_2 x_0 + \lambda B_2 y_0 + C_1 = 0 \\ \lambda A_2 x_0 + \lambda B_2 y_0 + \lambda C_2 = 0 \end{cases}$$

Если из первого уравнения вычесть второе, то мы получим $C_1 - \lambda C_2 = 0 \Rightarrow \frac{C_1}{C_2} = \lambda$, т.е.

$$l_1 = l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$$

Если $\frac{C_1}{C} \neq \lambda$ то система (**) несовместна, т.е. не имеет решений $l_1 \cap l_2 = \varnothing$. Следовательно,

$$l_1 \parallel l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}.$$

 $l_1 \parallel l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$. Прямые l_1 и l_2 пересекаются в одной точке тогда и только тогда, когда $l_1 \not\parallel l_2$ и $l_1 \neq l_2 \Leftrightarrow$ $\bar{a}_1 \not \parallel \bar{a}_2 \Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2}$ Следствие 2.2. Из условия совпадения прямых: $l_1 = l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \lambda \neq 0$ следует, что общее уравнение прямой определено с точностью до константы: l: Ax + By + C = 0 и $l: \lambda Ax + \lambda By + \lambda C = 0 \; (\lambda \neq 0)$.

НЕПОЛНОЕ УРАВНЕНИЕ ПРЯМОЙ

Определение 2.8. Общее уравнение прямой l: Ax + By + C = 0 $(A^2 + B^2 \neq 0)$ называем НЕПОЛНЫМ если хотя бы один из коэффициентов A, B, C равен нулю.

Из-за условия $A^2 + B^2 \neq 0$ может быть пять случаев НЕПОЛНЫХ уравнений:

- (a) $A = 0, B, C \neq 0$;
- (b) $B = 0, A, C \neq 0$;
- (c) $C = 0, A, B \neq 0$;
- (d) $A, C = 0, B \neq 0$;
- (e) $B, C = 0, A \neq 0$.

Рассмотрим вопрос о взаиморасположении прямой l относительно системы координат OXY в каждом отдельном случае.

- (a) A=0 и $B, C \neq 0 \Rightarrow$ направляющий вектор $\bar{a}=\{-B,0\} \Rightarrow \bar{a} \parallel \bar{e}_1 \Rightarrow l \parallel OX$;
- (b) B=0 и $A, C \neq 0 \Rightarrow$ направляющий вектор $\bar{a}=\{0,A\} \Rightarrow \bar{a} \parallel \bar{e}_2 \Rightarrow l \parallel OY;$
- (c) C=0 и $A,B\neq 0\Rightarrow l$: $Ax+By=0\Rightarrow (\bullet)O(0,0)\in l\Rightarrow l$ проходит через начало координат;
 - (d) A, C = 0 и $B \neq 0$. Из (a) и (c) $\Rightarrow l$ совпадает с осью OX;
 - (e) B, C = 0 и $A \neq 0$. Из (b) и (c) $\Rightarrow l$ совпадает с осью OY.