1.Import Libraries

```
In [41]: import pandas as pd
import matplotlib.pyplot as plt
```

2.Import Dataset

```
In [92]: data=pd.read_csv('Universities.csv')
data.head()
```

Out[92]:

	Univ	SAT	Top10	Accept	SFRatio	Expenses	GradRate
0	Brown	1310	89	22	13	22704	94
1	CalTech	1415	100	25	6	63575	81
2	CMU	1260	62	59	9	25026	72
3	Columbia	1310	76	24	12	31510	88
4	Cornell	1280	83	33	13	21864	90

Data Undestanding

```
In [86]: data.shape
```

Out[86]: (25, 6)

```
In [88]: data.isnull().sum()
```

```
Out[88]: SAT 0
Top10 0
Accept 0
SFRatio 0
Expenses 0
GradRate 0
dtype: int64
```

```
In [90]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	SAT	25 non-null	float64
1	Top10	25 non-null	float64
2	Accept	25 non-null	float64
3	SFRatio	25 non-null	float64
4	Expenses	25 non-null	float64
5	GradRate	25 non-null	float64
	67 . 6	4/61	

dtypes: float64(6)
memory usage: 1.3 KB

```
In [93]: data=data.drop('Univ',axis=1)
    data.head()
```

Out[93]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate
0	1310	89	22	13	22704	94
1	1415	100	25	6	63575	81
2	1260	62	59	9	25026	72
3	1310	76	24	12	31510	88
4	1280	83	33	13	21864	90

4.Normlize Function

```
In [72]: def norm_fun(i):
    x=(i-i.max())/(i.max()-i.min())
    return x
```

```
In [94]: data=norm_fun(data)
data.head()
```

Out[94]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate
0	-0.256098	-0.152778	-0.894737	-0.631579	-0.744856	-0.100000
1	0.000000	0.000000	-0.855263	-1.000000	0.000000	-0.533333
2	-0.378049	-0.527778	-0.407895	-0.842105	-0.702539	-0.833333
3	-0.256098	-0.333333	-0.868421	-0.684211	-0.584371	-0.300000
4	-0.329268	-0 236111	-0 750000	-0 631579	-0 760165	-0 233333

4.Dendogram

```
In [67]: import scipy.cluster.hierarchy as sch
```

```
In [42]: dendogram=sch.dendrogram(sch.linkage(data,method='single'))
plt.show()
```


5.Agglomerative Clustring

cluster

```
In [43]: from sklearn.cluster import AgglomerativeClustering
In [44]: hc=AgglomerativeClustering(n_clusters=4)
In [45]: hc.fit(data)
Out[45]: AgglomerativeClustering(n_clusters=4)
In [47]: cluster=hc.fit_predict(data)
```

```
Out[47]: array([3, 0, 2, 3, 3, 0, 0, 3, 0, 0, 0, 3, 3, 1, 0, 1, 0, 1, 2, 0, 2, 3, 3, 1, 0], dtype=int64)
```

In [96]: pd.DataFrame(cluster)

Out[96]:

	0
0	3
1	0
2	2
3	3
4	3

0

0

3

0

0

10 011 3

3

1

0

1

0

17 118 2

0

2

3

3

23 124 0