Natural Language Processing Applications

Course Introduction

- Course Introduction
- Course Evaluation
- Course Outline
- References

NLPA - Course Introduction

COURSE INTRODUCTION

Course Information

- Course name: Natural Language Processing Applications
- Credits: 4
 - Lecture: 45 hrs
 - □ Lab: 30 hrs
 - □ Self-study: 90 hrs
- Knowledge block: Elective Computer Science
- Prerequisite: Introduction to Natural Language Processing

NLPA - Course Introduction

COURSE OBJECTIVES

Course Objectives

- Understand the basic applications of Natural Language Processing (NLP)
- Develop skills in describing, analyzing and modeling a real-world NLP application
- Know the methods/measures used to evaluate NLP applications
- Build some basic NLP applications

NLPA - Course Introduction

COURSE EVALUATION

Course Evaluation

- Lecture:
 - Assignments:
 - Quizzes: 5%
 - Homework: 5%
 - □ Projects:
 - Project1 (Seminar): 30%
 - Project2 (Application): 40%
- □ Lab:
 - Weekly lab work: 20%

NLPA - Course Introduction

COURSE OUTLINE

Lecture 1. Introduction

- Introduction to NLP Applications
- Development status of NLP Applications
- Examples of real NLP applications

Lecture 2. Language Models

- Introducing Small/Large Language Models
- Capabilities of LLMs
- Major LLM Examples
- □ How LLMs Work
- Applications in Real Life
- Limitations
- Challenges

Lecture 2. Language Models

- Introducing Small/Large Language Models
 - Definition of Large Language Models (LLMs)
 - Brief history and evolution (e.g., GPT, BERT, T5)
 - Importance of LLMs in AI and everyday applications

Lecture 2. Language Models

Capabilities of LLMs

Lecture 2. Language Models

Major LLM Examples

Prompting and Tuning LLMs

Zero-Shot Learning

Prompt gives LLM context and framing for task, with no examples.

Few-Shot Learning

Prompts with examples

Prompt Engineering

Crafting successful prompts

How LLMs Work

Pre-training

Trained using large collections of text to predict the next word in a sequence

Fine-Tuning

Large set of **human-labeled data** (input/outputs rated for quality) used to train LLM

Adjustment of LLM's parameters to approximate training data

Reinforcement Learning with Human Feedback

Large set of **human-labeled data** used to train mini model ("labeler")

LLM generates many outputs

Labeler rates outputs

Large dataset of output and labeler's ratings used to train LLM

Lecture 2. Language Models

Applications in Real Life

Lecture 2. Language Models

Applications in Real Life

THIS DIAGRAM REPRESENTS THE ARCHITECTURE OF TODAY'S LLM APPLICATION. THE DIFFERENT COMPONENTS CAN BE ROUGHLY GROUPED INTO THREE CATEGORIES: USER INPUT, INPUT ENRICHMENT TOOLS AND PROMPT CONSTRUCTION, AND EFFICIENT AND RESPONSIBLE AI TOOLING.

LLMOps

Lecture 2. Language Models

Future Trends

- Combining LLMs with Knowledge Graphs
- LLMs in multimodal applications (text, images, videos)
- Open-source and lightweight models for broader accessibility
- Advances in reinforcement learning with human feedback (RLHF)
- Improved interpretability and control

Lecture 3. Text Classification

- Introduction
- Common Applications
- Future Trends

Lecture 3. Text Classification

Introduction

Lecture 3. Text Classification

Common Applications

Real-world Applications of Intent Classification

Customer Support

Information Retrieval

Chatbots & Virtual Assistants

Lecture 3. Text Classification

Common Applications

Lecture 3. Text Classification

Common Applications

Lecture 4. Text Similarity

Lecture 5. Text Summarization

Lecture 6. Machine Translation

Lecture 7. Question-Answering

Lecture 8. Robustness in NLP

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Lecture 8. Robustness in NLP

Article: Nikola Tesla

Paragraph: "In January 1880, two of Tesla's uncles put together enough money to help him leave Gospić for Prague where he was to study. Unfortunately, he arrived too late to enroll at Charles-Ferdinand University; he never studied Greek, a required subject; and he was illiterate in Czech, another required subject. Tesla did, however, attend lectures at the university, although, as an auditor, he did not receive grades for the courses." Question: "What city did Tesla move to in 1880?"

Answer: Prague

Model Predicts: Prague

Randomly initialize d words: spring attention income getting reached Greedily change one word spring attention income other reached Repeat many times Adversary Adds: tesla move move other george Model Predicts: george

Lecture 9. Hardware accelerated

Lecture 9. Building NLP Applications

- Sample Applications
- Notes in Building NLP Applications

NLPA - Course Introduction REFERENCES

Tài liệu tham khảo

- Vietnamese:
 - Dinh Điền, Xử Lý Ngôn Ngữ Tự Nhiên, 2006, NXB ĐHQG.
- English:
 - □ Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999.
 - Dan Jurafsky and James H. Martin, Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Third Edition draft, 2020.
 - Kevyn Collins-Thompson, Computational Assessment of Text Readability, 2014.
 - Jiapeng Wang and Yihong Dong, Measurement of Text Similarity: A Survey, Information