CHAPTER 6

Section 6.1 Exercises, pp. 410-416

1. The position s(t) is the location of the object relative to the origin. The displacement is the change in position between time t = a and t = b. The distance traveled between t = a and t = b is $\int_a^b |v(t)| dt$, where v(t) is the velocity at time t. 3. The displacement between t = a and t = b is $\int_{0}^{b} v(t) dt$. **5.** $Q(t) = Q(0) + \int_{0}^{t} Q'(x) dx$

7. a. [0, 1), (3, 5) **b.** -4 mi **c.** 26 mi **d.** 6 mi **e.** 6 mi on the

positive side of the initial position 9. a. 3 b. $\frac{13}{3}$ c. 3

$$\mathbf{d.} \ s(t) = \begin{cases} -\frac{t^2}{2} + 2t & \text{if } 0 \le t \le 3\\ \frac{3t^2}{2} - 10t + 18 & \text{if } 3 < t \le 4\\ -t^2 + 10t - 22 & \text{if } 4 < t \le 5 \end{cases}$$

11. a. 3 m **b.** 3 m; 0 m; 3 m; 0 m **c.** 12 m

13. a. Positive direction for $2 < t \le 3$; negative direction for 0 < t < 2 **b.** 0 m **c.** 8 m **15. a.** Positive direction for $0 \le t < 2$ and $4 < t \le 5$; negative direction for 2 < t < 4

b. 20 m **c.** 28 m **17. a.** $s(t) = 2 - \cos t$ **19. a.** $s(t) = 6t - t^2$

21. a.
$$s(t) = 9t - \frac{t^3}{3} - 2$$
 23. a. $s(t) = 2\sin \pi t$

c.
$$\frac{3}{2}$$
, $\frac{7}{2}$, $\frac{11}{2}$

d.
$$\frac{1}{2}$$
, $\frac{5}{2}$, $\frac{9}{2}$

25. **a.**
$$s(t) = 10t(48 - t^2)$$
 b. 880 mi **c.** $\frac{2720\sqrt{6}}{9} \approx 740.29$ mi

a. Velocity is a maximum for $20 \le t \le 45$; v = 0 at t = 0and t = 60 **b.** 1200 m

c. 2550 m **d.** 2100 m

29.
$$v(t) = -32t + 70$$
; $s(t) = -16t^2 + 70t + 10$

31.
$$v(t) = -9.8t + 20$$
; $s(t) = -4.9t^2 + 20t$

33.
$$v(t) = -\frac{1}{200}t^2 + 10$$
; $s(t) = -\frac{1}{600}t^3 + 10t$

35.
$$v(t) = \frac{1}{2}\sin 2t + 5$$
; $s(t) = -\frac{1}{4}\cos 2t + 5t + \frac{29}{4}$

37. a.
$$s(t) = 44t^2$$
 b. 704 ft **c.** $\sqrt{30} \approx 5.477$ s

d.
$$\frac{5\sqrt{33}}{11} \approx 2.611 \text{ s}$$
 e. Approx. 180.023 ft

b.
$$P(t) = 250 + 20t^{3/2} + 30t$$
 people **43. a.** 1897 cells; 1900 cells **b.** $N(t) = 1900 - 400e^{-0.25t}$ **45. a.** 27,250 barrels

b. 31,000 barrels **c.** 4000 barrels **47. a.**
$$\frac{10^7(1 - e^{-kt})}{k}$$

b. $\frac{10^7}{L}$ = total number of barrels of oil extracted if the nation extracts the oil indefinitely, and it has at least $\frac{10^{7}}{k}$ barrels of oil in reserve.

c.
$$k = \frac{1}{200} = 0.005$$
 d. Approx. 138.6 yr

49. a.
$$\frac{120}{\pi}$$
 + 40 \approx 78.20 m³

b.
$$Q(t) = 20\left(t + \frac{12}{\pi}\sin\left(\frac{\pi}{12}t\right)\right)$$
 c. Approx. 122.6 hr

51. a.
$$V(t) = 5 + \cos \frac{\pi t}{2}$$
 b. 15 breaths/min **c.** 2 L, 6 L

53. a. 7200 MWh or $2.592 \times 10^{13} \,\mathrm{J}$ **b.** 16,000 kg; 5,840,000 kg **c.** 450 g; 164,250 g **d.** About 1500 turbines **55. a.** \$96,875

b. \$86,875 **57. a.** \$69,583.33 **b.** \$139,583.33 **59. a.** False

b. True **c.** True **d.** True **61.**
$$\frac{2}{3}$$
 63. $\frac{25}{3}$

65. a. 15 -

b. Theo c. Sasha

d. Theo hits the 10-mi mark before Sasha; Sasha and Theo hit the 15-mi mark at the same time; Sasha hits the 20-mi mark before Theo. e. Sasha **f.** Theo

67. Approx. 11:23 A.M.

69.
$$\int_a^b f'(x) dx = f(b) - f(a) = g(b) - g(a) = \int_a^b g'(x) dx$$

Section 6.2 Exercises, pp. 420-425

1.
$$\int_{a}^{b} (f(x) - g(x)) dx + \int_{b}^{c} (g(x) - f(x)) dx$$

7.
$$\int_0^1 y \, dy + \int_1^2 (2 - y) \, dy$$

9. $\frac{9}{2}$ 11. $3\pi - 2$

9.
$$\frac{1}{2}$$
 11. 3π

13.
$$\frac{5}{2} - \frac{1}{\ln 2}$$

15.
$$2 - \sqrt{2}$$

17.
$$\frac{4}{3}$$
 19. $\frac{32}{3}$

21. 9 **23.**
$$\frac{81}{2}$$
 25. 2 **27.** $\frac{8\sqrt{2}-7}{6}$ **29.** $\frac{125}{2}$

31. a.
$$\int_0^1 (\sqrt{x} - x^3) dx$$
 b. $\int_0^1 (\sqrt[3]{y} - y^2) dy$

33. $\frac{19}{6} \approx 3.17$ km; the faster runner jogged approximately 3.17 km farther than the slower runner. **35. a.** 7 **b.** 4 **37.** 25 **39.** $\frac{81}{32}$

41.
$$\pi - 2$$
 43. $\frac{1}{2} + \ln 2$ **45.** $\frac{7}{3}$ **47.** 3 **49.** $\frac{64}{5}$ **51.** $\ln 2$

53.
$$\frac{5}{24}$$
 55. $\frac{63}{4}$ **57.** $\frac{9}{2}$ **59.** $\frac{32}{3}$ **61.** $\frac{15}{8}$ - 2 ln 2 **63.** $\frac{17}{3}$

65. a. False **b.** False **c.** True **67.**
$$\frac{4}{9}$$
 69. $\frac{n-1}{2(n+1)}$

71.
$$A_n = \frac{n-1}{n+1}$$
; $\lim_{n \to \infty} A_n = 1$; the region approximates a square

with side length of 1. 73. $k = 1 - \frac{1}{\sqrt{2}}$ 75. a. The lowest p%of households own exactly p% of the wealth for $0 \le p \le 100$.

b. The function must be one-to-one and its graph must lie below y = x because the poorest p% cannot own more than p% of the wealth. **c.** p = 1.1 is most equitable; p = 4 is least equitable.

e.
$$G(p) = \frac{p-1}{p+1}$$
 f. $0 \le G \le 1$ for $p \ge 1$ **g.** $\frac{5}{18}$

77. a.

b. $A_n(x)$ is the net area of the region between the graphs of f and g from 0 to x. **c.** $x = n^{n/(n^2-1)}$; the root decreases with n.

Section 6.3 Exercises, pp. 434-439

1. A(x) is the area of the cross section through the solid at the point x.

3. a.
$$3-x$$
 b. $\int_{0}^{2} (3-x) dx$ **5. a.** $\sqrt{\cos x}$ **b.** $\pi \cos x$

c.
$$\int_0^{\pi/2} \pi \cos x \, dx$$
 7. a. $\sqrt{x} + 1$ **b.** 1 **c.** $\pi((\sqrt{x} + 1)^2 - 1)$

d.
$$\int_0^4 \pi ((\sqrt{x} + 1)^2 - 1) dx$$
 9. a. \sqrt{x} **b.** πx **c.** $\int_0^4 \pi x dx$

11.
$$\frac{4}{3}$$
 13. 1 15. $\frac{\pi}{3}$ 17. 36π 19. $\frac{15\pi}{32}$ 21. $\frac{\pi^2}{2}$ 23. $\frac{32\pi}{3}$

25.
$$\frac{5\pi}{6}$$
 27. $\frac{2\pi}{5}$ 29. $\frac{\pi^2}{4}$ 31. $\frac{\pi^2}{2}$ 33. $\frac{\pi(\pi-2)}{8}$

35.
$$\frac{4\pi - \pi^2}{4}$$
 37. $\frac{128\pi}{5}$ 39. $\pi \ln 3$ 41. $\frac{\pi}{2}(e^4 - 1)$

43.
$$\frac{49\pi}{2}$$
 45. Volumes are equal. 47. x-axis 49. $\frac{\pi}{2}$

51.
$$\pi\sqrt{3}$$
 53. $\frac{\pi}{6}$ **55.** $2\pi(8+\pi)$ **57.** $(6\sqrt{3}-2\pi)\pi$

59. 4π **61. a.** False **b.** True **c.** True

63. Volume (S) =
$$8\pi a^{5/2}/15$$
; volume (T) = $\pi a^{5/2}/3$

65. a. $y = \sin x$

y = x + 1 y = x + 1

67. Left: 166π ; right: 309π ; midpoint: 219π **69.** a. $\frac{1}{3}V_C$ b. $\frac{2}{3}V_C$ **71.** $24\pi^2$ **73.** b. $V = \pi r^2 h$

Section 6.4 Exercises, pp. 447-451

1.
$$\int_a^b 2\pi x (f(x) - g(x)) dx$$
 3. $x; y$ **5. a.** x **b.** $2 - x^2 - x$

c.
$$\int_0^1 2\pi x (2-x^2-x) dx$$
 7. a. $2-y$ **b.** $4-(2-y)^2=4y-y^2$

c.
$$\int_0^2 2\pi (2-y)(4y-y^2) dy$$
 9. $\frac{\pi}{6}$ **11.** π **13.** 8π **15.** $\frac{32\pi}{3}$

17.
$$\pi$$
 19. $\frac{\pi}{2}$ 21. $\frac{81\pi}{2}$ 23. $\frac{2\pi}{3}$ 25. $\frac{3\pi}{10}$ 27. 90π

29.
$$2\pi e(e-1)$$
 31. π **33.** $\frac{\pi}{5}$ **35.** $\frac{4\pi}{15}$ **37.** 500π

39.
$$\frac{11\pi}{6}$$
 41. $\frac{5\pi}{6}$ **43.** $\frac{23\pi}{15}$ **45.** $\frac{52\pi}{15}$ **47.** $\frac{36\pi}{5}$

51. a.
$$4\pi \int_{-2}^{5} x \sqrt{4 - (x - 3)^2} dx$$
 b. $12\pi \int_{-2}^{2} \sqrt{4 - y^2} dy$

c.
$$24\pi^2$$
 53. $\frac{\pi}{9}$ **55.** $\frac{16\pi}{3}$ **57.** $\frac{608\pi}{3}$ **59.** $\pi (\sqrt{e} - 1)^2$

61.
$$\frac{5\pi}{6}$$
 63. a. True b. False c. True 65. 24π 67. 54π

69. a.
$$V_1 = \frac{\pi}{15} (3a^2 + 10a + 15); V_2 = \frac{\pi}{2} (a + 2)$$

b.
$$V(S_1) = V(S_2)$$
, for $a = 0$ and $a = -\frac{5}{6}$ 71. 10π

73. a.
$$27\sqrt{3}\pi r^3/8$$
 b. $54\sqrt{2}/(3+\sqrt{2})^3$ c. $500\pi/3$

Section 6.5 Exercises, pp. 455-457

1. Determine whether f has a continuous derivative on [a, b].

If so, calculate f'(x) and evaluate the integral $\int_a^b \sqrt{1 + f'(x)^2} dx$.

3.
$$\int_{-2}^{5} \sqrt{1+9x^4} dx$$
 5. $\int_{0}^{2} \sqrt{1+4e^{-4x}} dx$ 7. $4\sqrt{5}$

9.
$$8\sqrt{65}$$
 11. 168 **13.** $\frac{4}{3}$ **15.** $\frac{123}{32}$ **17.** $\frac{123}{32}$ **19.** $7\sqrt{5}$

21. a.
$$\int_{-1}^{1} \sqrt{1 + 4x^2} \, dx$$
 b. 2.96 **23.** a. $\int_{1}^{4} \sqrt{1 + \frac{1}{x^2}} \, dx$ b. 3.34

25. a.
$$\int_{3}^{4} \sqrt{\frac{4y-7}{4y-8}} \, dy$$
 b. 1.08 **27.** a. $\int_{0}^{\pi} \sqrt{1+4\sin^{2}2x} \, dx$

b. 5.27 **29. a.**
$$\int_{1}^{10} \sqrt{1 + 1/x^4} dx$$
 b. 9.15

31. Approx. 1326 m **33. a.** False **b.** True **c.** False

35. a.
$$f(x) = \pm 4x^3/3 + C$$
 b. $f(x) = \pm 3\sin 2x + C$

37.
$$y = 1 - x^2$$
 39. a. $L/2$ b. L/c

Section 6.6 Exercises, pp. 463-465

1. 15π **3.** Evaluate $\int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^2} dx$ **5. a.** $4\sqrt{2}\pi$

7.
$$156\sqrt{10}\pi$$
 9. $\frac{2912\pi}{3}$ 11. $\frac{\pi}{9}(17^{3/2}-1)$ 13. 2π

15.
$$15\sqrt{17} \pi$$
 17. $\frac{\pi}{8} (16 + e^8 - e^{-8})$ **19.** 96π

21.
$$\frac{9\pi}{125}$$
 m³ **23. a.** False **b.** False **c.** True **d.** False

25. a.
$$\int_0^{\pi/2} 2\pi (\cos x) \sqrt{1 + \sin^2 x} dx$$
 b. Approx. 7.21

27. a.
$$\int_0^{\pi/4} 2\pi (\tan x) \sqrt{1 + \sec^4 x} dx$$
 b. Approx. 3.84

29.
$$\frac{12\pi a^2}{5}$$
 31. $\frac{53\pi}{9}$ **33.** $\frac{275\pi}{32}$ **35.** $\frac{48,143\pi}{48}$ **39. a.** $\frac{6}{a}$ **b.** $\frac{3}{a}$

c.
$$\frac{3}{2a} + \frac{3a}{2\sqrt{a^2 - 1}} \sin^{-1} \left(\frac{\sqrt{a^2 - 1}}{a} \right)$$
 d. The sphere e. A sphere

41. a. c^2A **b.** A

Section 6.7 Exercises, pp. 473-477

1. 150 g 3. 25 J 5. Horizontal cross sections of water at various locations in the tank are lifted different distances. 7. $39,200 \text{ N/m}^2$

9.
$$\int_{5}^{10} 25\pi \rho g(15-y) dy$$
 11. $\int_{0}^{10} 25\pi \rho g(10-y) dy$ 13. $\pi + 2$

15. 3 **17.**
$$(2\sqrt{2}-1)/3$$
 19. 10 **21.** 9 J **23.** a. $k=150$

b. 12 J **c.** 6.75 J **d.** 9 J **25. a.** 112.5 J **b.** 12.5 J

27. a. 31.25 J **b.** 312.5 J **29. a.** 625 J **b.** 391 J **31. a.** 22,050 J **b.** 36,750 J **33.** 3675 J **35.** 1.15×10^7 J **37** $3.94 \times 10^6 \,\mathrm{J}$ **39.** a. $66,150\pi \,\mathrm{J}$ b. No **41.** a. $2.10 \times 10^8 \,\mathrm{J}$ **b.** $3.78 \times 10^8 \,\mathrm{J}$ **43. a.** $32,667 \,\mathrm{J}$ **b.** Yes **45.** $7.70 \times 10^3 \,\mathrm{J}$ **47.** $1.47 \times 10^7 \,\mathrm{N}$ **49.** $2.94 \times 10^7 \,\mathrm{N}$ **51.** 6533 N **53.** 6737.5 N **55.** $8 \times 10^5 \,\mathrm{N}$ **57. a.** True **b.** True **c.** True **d.** False **59.** a. Compared to a linear spring, F(x) = 16x, the restoring force is less for large displacements. **b.** 17.87 J **c.** 31.6 J **61.** 1,381,800 J **63.** 0.28 J **65. a.** Yes **b.** 4.296 m **67.** Left: 16,730 N; right: 14,700 N **69. a.** 8.87×10^9 J **b.** 500 $GMx/(R(x+R)) = (2 \times 10^{17})x/(R(x+R))$ J

c. GMm/R d. $v = \sqrt{2GM/R}$

Chapter 6 Review Exercises, pp. 478-482

1. a. True b. True c. True 3. a. Positive direction for $0 \le t < \frac{1}{2}$ and $2 < t \le 3$; negative direction for $\frac{1}{2} < t < 2$

b. 9 m **c.** 22.5 m **d.**
$$s(t) = 4t^3 - 15t^2 + 12t + 1$$

5.
$$s(t) = 20t - 5t^2$$
; displacement = $20t - 5t^2$;

$$D(t) = \begin{cases} 20t - 5t^2 & \text{if } 0 \le t < 2\\ 5t^2 - 20t + 40 & \text{if } 2 \le t \le 4 \end{cases}$$

$$D(t) = \begin{cases} 20t - 5t^2 & \text{if } 0 \le t < 2\\ 5t^2 - 20t + 40 & \text{if } 2 \le t \le 4 \end{cases}$$
7. a. $v(t) = -\frac{8}{\pi} \cos \frac{\pi t}{4}$; $s(t) = -\frac{32}{\pi^2} \sin \frac{\pi t}{4}$ **b.** Min value $= -\frac{32}{\pi^2}$;

max value =
$$\frac{32}{\pi^2}$$
 c. 0; 0 9. a. $R(t) = 3t^{4/3}$

b.
$$R(t) = \begin{cases} 3t^{4/3} & \text{if } 0 \le t \le 8 \\ 2t + 32 & \text{if } t > 8 \end{cases}$$
 c. $t = 59 \text{ min}$

c.
$$s(t) = 2000(1 - e^{-t/10})$$
 d. No

13. a.
$$s_{\text{Tom}}(t) = -10e^{-2t} + 10$$

 $s_{\text{Sue}}(t) = -15e^{-t} + 15$

b. $10 \ln 4 \approx 13.86 \text{ s}$

b.
$$t = 0$$
 and $t = \ln 2$ **c.** Sue **15.** $1 - \frac{\pi}{4}$ **17.** $e - 2$ **19.** $\frac{7}{3}$

21. 8 **23.** 1 **25.**
$$\frac{1}{3}$$
 27. R_1 : $\frac{7}{6}$; R_2 : $\frac{10}{3}$; R_3 : $4\sqrt{3} - \frac{10}{3}$ **29.** $\frac{11\pi}{15}$

31.
$$\frac{14\pi}{3}$$
 33. $\int_{1}^{3} 2\pi (3-x)(2\sqrt{x}-3+x) dx$ 35. $\frac{7}{3}$ 37. $\frac{31\pi}{5}$

39.
$$R_1$$
: $\sqrt{3}$; R_2 : $\frac{4\pi}{3} - \sqrt{3}$ **41.** $\frac{1}{3}$ **43.** $\frac{5}{6}$ **45.** $\frac{8}{15}$ **47.** $\frac{8\pi}{5}$

49.
$$\pi(e-1)^2$$
 51. π **53.** $\frac{512\pi}{15}$ **55.** About $y=-2$: 80π ;

about
$$x = -2$$
: 112 π **57.** $c = 5$ **59.** 1 **61.** $2\sqrt{3} - \frac{4}{3}$

63.
$$\int_{2}^{4} \sqrt{4x^2 + 8x + 5} \, dx \approx 16.127$$

65.
$$\sqrt{b^2+1} - \sqrt{2} + \ln\left(\frac{(\sqrt{b^2+1}-1)(1+\sqrt{2})}{b}\right); b \approx 2.715$$

67. a.
$$9\pi$$
 b. $\frac{9\pi}{2}$ **69. a.** $\frac{263,439\pi}{4096}$ **b.** $\frac{483}{64}$ **c.** $\frac{\pi}{8}(84 + \ln 2)$

d.
$$\frac{264,341\pi}{18,432}$$
 71. $\left(450 - \frac{450}{e}\right)$ g **73. a.** 562.5 J **b.** 56.25 J

75. a. 980 J **b.** 627.2 J **77. a.** 1,411,200 J **b.** 940,800 J **79. a.** 1,477,805 J **b.** The work required to pump out the top 3 m of water is 1,015,991 J, and the work required to pump out the bottom 3 m of water is 461,814 J. More work is required to pump out the top 3 m of water. **81.** 4,987,592 J **83.** 5716.7 N **85.** 5.2×10^7 N

CHAPTER 7

Section 7.1 Exercises, pp. 490-492

1.
$$D = (0, \infty), R = (-\infty, \infty)$$
 3. $\frac{4^x}{\ln 4} + C$

5.
$$e^{x \ln 3}$$
, $e^{\pi \ln x}$, $e^{(\sin x)(\ln x)}$ **7.** $3(\ln x + 1)$ **9.** $\frac{\cos(\ln x)}{x}$, $x > 0$

11.
$$-\frac{5}{x(\ln 2x)^6}$$
 13. $4^{2x+1}x^{4x}(1+\ln 2x)$ **15.** $(\ln 2) 2^{x^2+1}x$

17.
$$2(x+1)^{2x}\left(\frac{x}{x+1}+\ln(x+1)\right)$$

19.
$$y^{\sin y} \left(\cos y \ln y + \frac{\sin y}{y}\right)$$
 21. $-20xe^{-10x^2}$ **23.** $x^{2x}(2 \ln x + 2)$

25.
$$-(1/x)^x(1 + \ln x)$$
 27. $\left(-\frac{4}{x+4} + \ln\left(\frac{x+4}{x}\right)\right)\left(1 + \frac{4}{x}\right)^x$

29.
$$6(1 - \ln 2)$$
 31. $\frac{3}{8}$ **33.** $\frac{1}{2} \ln (4 + e^{2x}) + C$ **35.** $\frac{1}{\ln 2} - \frac{1}{\ln 3}$

37.
$$4 - \frac{4}{e^2}$$
 39. $2e^{\sqrt{x}} + C$ **41.** $\ln |e^x - e^{-x}| + C$ **43.** $\frac{99}{10 \ln 10}$

45. 3 **47.**
$$\frac{6^{x^3+8}}{3 \ln 6} + C$$
 49. $\frac{1}{6}e^{3x^2+1} + C$ **51.** $-\frac{1}{9^x \ln 9} + C$

53.
$$\frac{10^{x^3}}{3 \ln 10} + C$$
 55. $\frac{3 \cdot 3^{\ln 2} - 1}{\ln 3}$ **57.** $\frac{32}{3}$ **59.** $\frac{1}{3} \ln \frac{65}{16}$

61.
$$2e^{5+\sqrt{x}} + C$$
 63.

h	$(1 + 2h)^{1/h}$	h	$(1 + 2h)^{1/h}$
10^{-1}	6.1917	-10^{-1}	9.3132
10^{-2}	7.2446	-10^{-2}	7.5404
10^{-3}	7.3743	-10^{-3}	7.4039
10^{-4}	7.3876	-10^{-4}	7.3905
10^{-5}	7.3889	-10^{-5}	7.3892
10^{-6}	7.3890	-10^{-6}	7.3891

$$\lim_{h \to 0} (1 + 2h)^{1/h} = e^2$$