Monetary policy topics

Adrien Auclert

NBER Heterogeneous-Agent Macro Workshop, 2025

This session

This session

* So far: HANK with Jacobians by hand, SSJ toolkit

This session

- * So far: HANK with Jacobians by hand, SSJ toolkit
- * Now: more advanced topics on monetary policy, using the toolkit!
 - 1. Cyclical income risk
 - 2. Maturity structure
 - 3. Nominal assets
 - 4. Investment

* Recall canonical model: household takes $n_{it} = N_t$ as given and solves

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v(n_{it}) \right)$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + (1 - \tau_{t}) \frac{W_{t}}{P_{t}} n_{it} e_{it}$$

$$a_{it} \ge 0$$

* Recall canonical model: household takes $n_{it} = N_t$ as given and solves

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v(n_{it}) \right)$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + (1 - \tau_{t}) \frac{W_{t}}{P_{t}} n_{it} e_{it}$$

$$a_{it} \ge 0$$

* This is restrictive: hours n_{it} don't move uniformly across people over the cycle!

* Recall canonical model: household takes $n_{it} = N_t$ as given and solves

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v(n_{it}) \right)$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + (1 - \tau_{t}) \frac{W_{t}}{P_{t}} n_{it} e_{it}$$

$$a_{it} \ge 0$$

- * This is restrictive: hours n_{it} don't move uniformly across people over the cycle!
- * Relaxing this assumption will make a difference, but also uncover a big puzzle

* Simple way to relax is to assume that labor is rationed as a function of e_{it} per

$$n_{it} = N_t \frac{\left(e_{it}\right)^{\zeta \log N_t}}{\mathbb{E}\left[e_i^{1+\zeta \log N_t}\right]} \equiv N_t \Gamma\left(e_{it}, N_t\right)$$
 (assuming normalization $N_{ss} = 1$)

* Simple way to relax is to assume that labor is rationed as a function of e_{it} per

$$n_{it} = N_t \frac{\left(e_{it}\right)^{\zeta \log N_t}}{\mathbb{E}\left[e_i^{1+\zeta \log N_t}\right]} \equiv N_t \Gamma\left(e_{it}, N_t\right)$$
 (assuming normalization $N_{ss} = 1$)

Now the distribution of pretax income $y_{it} = \frac{W_t}{P_t} n_{it} e_{it}$ moves with the cycle

$$sd (log y_{it}) = (1 + \zeta log N_t) sd (log e_i)$$

* Simple way to relax is to assume that labor is rationed as a function of e_{it} per

$$n_{it} = N_t \frac{\left(e_{it}\right)^{\zeta \log N_t}}{\mathbb{E}\left[e_i^{1+\zeta \log N_t}\right]} \equiv N_t \Gamma\left(e_{it}, N_t\right)$$
 (assuming normalization $N_{ss} = 1$)

Now the distribution of pretax income $y_{it} = \frac{W_t}{P_t} n_{it} e_{it}$ moves with the cycle

$$sd (log y_{it}) = (1 + \zeta log N_t) sd (log e_i)$$

* $\zeta > 0$: procyclical inequality+income risk, $\zeta < 0$ countercyclical, $\zeta = 0$ acyclical

* Simple way to relax is to assume that labor is rationed as a function of e_{it} per

$$n_{it} = N_t \frac{\left(e_{it}\right)^{\zeta \log N_t}}{\mathbb{E}\left[e_i^{1+\zeta \log N_t}\right]} \equiv N_t \Gamma\left(e_{it}, N_t\right)$$
 (assuming normalization $N_{ss} = 1$)

Now the distribution of pretax income $y_{it} = \frac{W_t}{P_t} n_{it} e_{it}$ moves with the cycle

$$sd (log y_{it}) = (1 + \zeta log N_t) sd (log e_i)$$

- * $\zeta > 0$: procyclical inequality+income risk, $\zeta < 0$ countercyclical, $\zeta = 0$ acyclical
- * Matters because: 1) current shocks redistribute between different MPCs, and 2) future shocks change perceived income risk

* Household block now maps $\{r_t^p, Z_t, N_t\}$ to $\{C_t, A_t\}$

- * Household block now maps $\{r_t^p, Z_t, N_t\}$ to $\{C_t, A_t\}$
- * In equilibrium $N_t = Y_t$, so we need to solve:

$$* Y_t = \mathcal{C}_t\left(r_0^p, \{r_s\}, \{Z_s\}, \{Y_s\}\right) + G_{ss}$$

$$Z_t = \frac{Y_t - T_t}{\mu}$$

$$1 + r_0^p = (1 + r_{ss})\omega + \frac{1}{A_{ss}} \sum_{s=0}^{\infty} \left(\prod_{u=0}^{s} \frac{1}{1 + r_u} \right) \left(1 - \frac{1}{\mu} \right) (Y_t - T_t)$$

$$* T_t = T_{SS} + \frac{r_t - r_{SS}}{1 + r_t} B_{SS}$$

- * Household block now maps $\{r_t^p, Z_t, N_t\}$ to $\{C_t, A_t\}$
- * In equilibrium $N_t = Y_t$, so we need to solve:

$$Y_t = \mathcal{C}_t \left(r_0^p, \left\{ r_s \right\}, \left\{ Z_s \right\}, \left\{ Y_s \right\} \right) + G_{ss}$$
 Additional Jacobian for effect of countercyclical risk! Once we substitute everything, adds an additional term to IKC

$$Z_t = \frac{Y_t - T_t}{\mu}$$

$$1 + r_0^p = (1 + r_{ss})\omega + \frac{1}{A_{ss}} \sum_{s=0}^{\infty} \left(\prod_{u=0}^{s} \frac{1}{1 + r_u} \right) \left(1 - \frac{1}{\mu} \right) (Y_t - T_t)$$

$$* T_t = T_{SS} + \frac{r_t - r_{SS}}{1 + r_t} B_{SS}$$

SSJ implementation

* Add a "hetinput" to the household block:

```
def income_cyclical(Z, N, e_grid, zeta, pi_pdf):
   # Auclert-Rognlie 2020 incidence function for labor income, with cyclicality parameter zeta
   # in default case with zeta = 0, this is just gamma / N = 1 and irrelevant
    gamma_N = e_grid ** (zeta * np.log(N)) / np.vdot(e_grid ** (1 + zeta * np.log(N)), pi_pdf)
   # net after-tax income
    y = Z * e_grid * gamma_N
    y = y.reshape(-1, 11)
                                            # reshape to beta*e grid
    y = y.ravel()
                                             # flatten back
    return y
hh_cyclical = hh_raw.add_hetinputs([make_grids, income_cyclical])
```

Result: countercylical risk amplifies FG puzzle!

$$c_t = \boldsymbol{\delta} \cdot \mathbb{E}_t \left[c_{t+1} \right] - \frac{1}{\sigma} \cdot \operatorname{const} \cdot \left(r_t^{ante} - \bar{r} \right)$$

* Can show, in the "Zero-Liquidity" limit of the model where $A_{ss} \rightarrow 0$, that

$$c_{t} = \delta \cdot \mathbb{E}_{t} \left[c_{t+1} \right] - \frac{1}{\sigma} \cdot \operatorname{const} \cdot \left(r_{t}^{ante} - \bar{r} \right)$$

* There is dynamic discounting $\delta < 1$ iff procyclical income risk $\zeta > 0$

$$c_{t} = \delta \cdot \mathbb{E}_{t} \left[c_{t+1} \right] - \frac{1}{\sigma} \cdot \operatorname{const} \cdot \left(r_{t}^{ante} - \bar{r} \right)$$

- * There is dynamic discounting $\delta < 1$ iff procyclical income risk $\zeta > 0$
- * Dynamic amplification $\delta > 1$ iff countercyclical income risk $\zeta < 0$

$$c_t = \boldsymbol{\delta} \cdot \mathbb{E}_t \left[c_{t+1} \right] - \frac{1}{\sigma} \cdot \operatorname{const} \cdot \left(r_t^{ante} - \bar{r} \right)$$

- * There is dynamic discounting $\delta < 1$ iff procyclical income risk $\zeta > 0$
- * Dynamic amplification $\delta > 1$ iff countercyclical income risk $\zeta < 0$
- * Countercyclical income risk is thought to be more plausible:
 - * Theoretically: eg, from unemployment risk (Ravn-Sterk, Challe, Kekre...)
 - * Empirically, eg, work by Guvenen&co and Storesletten&co

$$c_t = \boldsymbol{\delta} \cdot \mathbb{E}_t \left[c_{t+1} \right] - \frac{1}{\sigma} \cdot \operatorname{const} \cdot \left(r_t^{ante} - \bar{r} \right)$$

- * There is dynamic discounting $\delta < 1$ iff procyclical income risk $\zeta > 0$
- * Dynamic amplification $\delta > 1$ iff countercyclical income risk $\zeta < 0$
- * Countercyclical income risk is thought to be more plausible:
 - * Theoretically: eg, from unemployment risk (Ravn-Sterk, Challe, Kekre...)
 - * Empirically, eg, work by Guvenen&co and Storesletten&co
- * Bilbiie's "catch-22": countercylical risk plausible at micro level, not macro!

$$y_{it} = \frac{W_t}{P_t} n_{it} e_{it} - T_{it} + Tr_{it}$$

$$Taxes Transfers$$

* In richer models, income of agents typically involves multiple components,

$$y_{it} = \frac{W_t}{P_t} n_{it} e_{it} - T_{it} + Tr_{it}$$
Taxes Transfers

* These also matter for cyclicality of income risk

$$y_{it} = \frac{W_t}{P_t} n_{it} e_{it} - T_{it} + Tr_{it}$$

$$Taxes Transfers$$

- * These also matter for cyclicality of income risk
- * For example, suppose we set taxes to keep $(1 + r_t)B_t$ constant as in our baseline, but that transfers are (nontraded) dividends from firms with sticky prices
 - * Both T_{it} and Tr_{it} fall when $r_t \downarrow$ (why?)

$$y_{it} = \frac{W_t}{P_t} n_{it} e_{it} - T_{it} + Tr_{it}$$

$$Taxes Transfers$$

- * These also matter for cyclicality of income risk
- * For example, suppose we set taxes to keep $(1 + r_t)B_t$ constant as in our baseline, but that transfers are (nontraded) dividends from firms with sticky prices
 - * Both T_{it} and Tr_{it} fall when $r_t \downarrow$ (why?)
- * Suppose that T_{it} are paid by the high e_{it} , but everyone owns equal share of firms

$$y_{it} = \frac{W_t}{P_t} n_{it} e_{it} - T_{it} + Tr_{it}$$

$$Taxes Transfers$$

- * These also matter for cyclicality of income risk
- * For example, suppose we set taxes to keep $(1 + r_t)B_t$ constant as in our baseline, but that transfers are (nontraded) dividends from firms with sticky prices
 - * Both T_{it} and Tr_{it} fall when $r_t \downarrow$ (why?)
- * Suppose that T_{it} are paid by the high e_{it} , but everyone owns equal share of firms
- * Then income risk is procyclical! This is McKay, Nakamura, Steinsson

* So far: agents trade short term assets. What if longer maturities / duration?

- * So far: agents trade short term assets. What if longer maturities / duration?
- * For tractability, assume "Calvo bonds"
 - * buy one bond today for q_t , coupon payments $1, \delta, \delta^2, \dots$

- * So far: agents trade short term assets. What if longer maturities / duration?
- * For tractability, assume "Calvo bonds"
 - * buy one bond today for q_t , coupon payments $1, \delta, \delta^2, \dots$
- * New household problem:

- * So far: agents trade short term assets. What if longer maturities / duration?
- * For tractability, assume "Calvo bonds"
 - * buy one bond today for q_t , coupon payments $1, \delta, \delta^2, \dots$
- * New household problem:

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v(N_{t}) \right)$$

$$c_{it} + q_{t} \lambda_{it} \leq (1 + \delta q_{t}) \lambda_{it-1} + Z_{t} e_{it}$$

$$\lambda_{it} \geq 0$$

- * So far: agents trade short term assets. What if longer maturities / duration?
- * For tractability, assume "Calvo bonds"
 - * buy one bond today for q_t , coupon payments $1, \delta, \delta^2, \dots$
- * New household problem:

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v\left(N_{t}\right) \right)$$

$$c_{it} + q_{t} \lambda_{it} \leq (1 + \delta q_{t}) \lambda_{it-1} + Z_{t} e_{it}$$

$$\lambda_{it} \geq 0$$
Total number of coupon

Total number of coupons owned coming into *t*

- * So far: agents trade short term assets. What if longer maturities / duration?
- * For tractability, assume "Calvo bonds"
 - * buy one bond today for q_t , coupon payments $1, \delta, \delta^2, \dots$
- * New household problem:

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v\left(N_{t}\right) \right)$$

$$c_{it} + q_{t} \lambda_{it} \leq (1 + \delta q_{t}) \lambda_{it-1} + Z_{t} e_{it}$$

$$\lambda_{it} \geq 0$$
Total number of course

Total number of coupons owned coming into *t*

* Asset pricing condition:

$$1 + r_t = \frac{1 + \delta q_{t+1}}{q_t}$$

* Redefine $a_{it} = q_t \lambda_{it}$. Using asset pricing condition, we have

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v \left(N_{t} \right) \right) \qquad r_{t+1}^{p} = r_{t}, t \ge 0$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + Z_{t} e_{it} \qquad r_{0}^{p} = \frac{1 + \delta q_{0}}{q_{ss}}$$

$$a_{it} \ge 0$$

* Redefine $a_{it} = q_t \lambda_{it}$. Using asset pricing condition, we have

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v \left(N_{t} \right) \right) \qquad r_{t+1}^{p} = r_{t}, t \ge 0$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + Z_{t} e_{it} \qquad r_{0}^{p} = \frac{1 + \delta q_{0}}{q_{ss}}$$

$$a_{it} \ge 0$$

* As in stock market example, use standard model + valuation equation for r_0^p

* Redefine $a_{it} = q_t \lambda_{it}$. Using asset pricing condition, we have

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v \left(N_{t} \right) \right) \qquad r_{t+1}^{p} = r_{t}, t \ge 0$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + Z_{t} e_{it} \qquad r_{0}^{p} = \frac{1 + \delta q_{0}}{q_{ss}}$$

$$a_{it} \ge 0$$

- * As in stock market example, use standard model + valuation equation for r_0^p
- * Lower ex-ante $r_t \to \text{higher bond price } q_0 \to \text{higher } r_0^p \text{ (capital gain)}$

* Higher $\delta \rightarrow$ more capital gains from monetary accommodation

- * Higher $\delta \to \text{more capital gains from}$ monetary accommodation
- * Since richer agents have lower MPCs, this reduces aggregate demand

- * Higher $\delta \to \text{more capital gains from}$ monetary accommodation
- * Since richer agents have lower MPCs, this reduces aggregate demand
- * Expect monetary policy to be more powerful in countries with shorter durations of assets and liabilities (eg, adjustable rate mortgages)

- * Higher $\delta \to \text{more capital gains from}$ monetary accommodation
- * Since richer agents have lower MPCs, this reduces aggregate demand
- * Expect monetary policy to be more powerful in countries with shorter durations of assets and liabilities (eg, adjustable rate mortgages)
 - * true in data too! (Calza et al)

- * So far, all assets are real. But in practice, many assets are nominal
 - * Mortgages, bonds, etc
 - * Creates very large exposures to inflation risk via nominal positions (see e.g. Doepke and Schneider)

- * So far, all assets are real. But in practice, many assets are nominal
 - * Mortgages, bonds, etc
 - * Creates very large exposures to inflation risk via nominal positions (see e.g. Doepke and Schneider)
- * Consider 1-period bonds:

- * So far, all assets are real. But in practice, many assets are nominal
 - * Mortgages, bonds, etc
 - * Creates very large exposures to inflation risk via nominal positions (see e.g. Doepke and Schneider)
- * Consider 1-period bonds:

$$\max_{c_{it}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v(N_t) \right)$$

$$P_t c_{it} + A_{it} \le (1 + i_t) A_{it-1} + P_t Z_t e_{it}$$

$$A_{it} \ge 0$$

- * So far, all assets are real. But in practice, many assets are nominal
 - * Mortgages, bonds, etc
 - * Creates very large exposures to inflation risk via nominal positions (see e.g. Doepke and Schneider)
- * Consider 1-period bonds:

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v\left(N_{t}\right) \right)$$

$$P_{t}c_{it} + A_{it} \leq (1 + i_{t})A_{it-1} + P_{t}Z_{t}e_{it}$$

$$A_{it} \geq 0$$
Can relax to have $P_{t}a$

In practice, borrowing constraints interact with inflation in complex ways! ("Tilt effect")

- * So far, all assets are real. But in practice, many assets are nominal
 - * Mortgages, bonds, etc
 - * Creates very large exposures to inflation risk via nominal positions (see e.g. Doepke and Schneider)
- * Consider 1-period bonds:

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v\left(N_{t}\right) \right)$$

$$P_{t}c_{it} + A_{it} \leq (1 + i_{t})A_{it-1} + P_{t}Z_{t}e_{it}$$

$$A_{it} \geq 0$$

$$(1 + i_{t})P$$
Can relax to have $P_{t}\underline{a}$

* Fisher equation:

$$1 + r_t = \frac{(1 + i_t)P_t}{P_{t+1}}$$

In practice, borrowing constraints interact with inflation in complex ways! ("Tilt effect")

* Now redefine A_{it}/P_t . Using Fisher equation, we have

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v \left(N_{t} \right) \right) \qquad r_{t+1}^{p} = r_{t}, t \ge 0$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + Z_{t} e_{it} \qquad r_{0}^{p} = \left(1 + r_{ss} \right) \frac{P_{ss}}{P_{0}} = \left(1 + r_{ss} \right) \frac{1 + \pi_{ss}}{1 + \pi_{0}}$$

$$a_{it} \ge 0$$

* Now redefine A_{it}/P_t . Using Fisher equation, we have

$$\max_{c_{it}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{it} \left(u(c_{it}) - v \left(N_{t} \right) \right) \qquad r_{t+1}^{p} = r_{t}, t \ge 0$$

$$c_{it} + a_{it} \le (1 + r_{t}^{p}) a_{it-1} + Z_{t} e_{it} \qquad r_{0}^{p} = \left(1 + r_{ss} \right) \frac{P_{ss}}{P_{0}} = \left(1 + r_{ss} \right) \frac{1 + \pi_{ss}}{1 + \pi_{0}}$$

$$a_{it} \ge 0$$

* Even with r_t rule, inflation now matters for aggregate demand due to nominal revaluation!

* Fisher effect: inflation redistributes towards agents with lower nominal positions

- * Fisher effect: inflation redistributes towards agents with lower nominal positions
- * Those agents have higher MPCs, this boosts demand (effect bigger with steeper P.C.)

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

* No investment so far. Let's change this! Goods market clearing:

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

* Obvious: output is affected differently now since investment responds

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

- * Obvious: output is affected differently now since investment responds
- * Not so obvious: does consumption respond differently?

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

- * Obvious: output is affected differently now since investment responds
- * Not so obvious: does consumption respond differently?
- * Not true in RANK, since there we have the Euler equation:

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

- * Obvious: output is affected differently now since investment responds
- * Not so obvious: does consumption respond differently?
- * Not true in RANK, since there we have the Euler equation:

$$C_t^{-\sigma} = \beta(1 + r_t)C_{t+1}^{-\sigma}$$

* No investment so far. Let's change this! Goods market clearing:

$$C_t + I_t = Y_t = XK_{t-1}^{\alpha} N_t^{1-\alpha}$$

- * Obvious: output is affected differently now since investment responds
- * Not so obvious: does consumption respond differently?
- * Not true in RANK, since there we have the Euler equation:

$$C_t^{-\sigma} = \beta(1 + r_t)C_{t+1}^{-\sigma}$$

* Consumption C_t only a function of r_t , independent of I_t (or anything else)

Model setup

* Now final goods firm rents capital and labor, flexible prices

$$w_t = X(1 - \alpha) K_{t-1}^{\alpha} N_t^{-\alpha}$$
 $r_t^K = X\alpha K_{t-1}^{\alpha-1} N_t^{1-\alpha}$

Model setup

* Now final goods firm rents capital and labor, flexible prices

$$w_t = X(1 - \alpha) K_{t-1}^{\alpha} N_t^{-\alpha}$$
 $r_t^K = X\alpha K_{t-1}^{\alpha-1} N_t^{1-\alpha}$

* Capital firm owns K_t and and rents it out, invests s.t. quadratic costs, dividend

$$D_{t} = r_{t}^{K} K_{t-1} - I_{t} - \frac{\Psi}{2} \left(\frac{K_{t} - K_{t-1}}{K_{t-1}} \right)^{2} K_{t-1} \qquad I_{t} = K_{t} - (1 - \delta) K_{t-1}$$

Model setup

* Now final goods firm rents capital and labor, flexible prices

$$w_t = X(1 - \alpha) K_{t-1}^{\alpha} N_t^{-\alpha}$$
 $r_t^K = X\alpha K_{t-1}^{\alpha-1} N_t^{1-\alpha}$

* Capital firm owns K_t and and rents it out, invests s.t. quadratic costs, dividend

$$D_{t} = r_{t}^{K} K_{t-1} - I_{t} - \frac{\Psi}{2} \left(\frac{K_{t} - K_{t-1}}{K_{t-1}} \right)^{2} K_{t-1} \qquad I_{t} = K_{t} - (1 - \delta) K_{t-1}$$

Why do we need adjustment costs with sticky prices? Consider the effect of a dr_t shock without them. Then:

$$\frac{dK_t}{K} = -\frac{1}{1-\alpha} \frac{1}{r+\delta} dr_t \qquad \Rightarrow \qquad \frac{dI_0}{I} = -\frac{1}{1-\alpha} \frac{1}{r+\delta} \frac{1}{\delta} dr_0$$

With $\delta = 4\%$, r = 1%, $\alpha = 0.3$, get semielasticity of investment of -715!!

Model setup continued

* Q theory equations:

$$\frac{I_t}{K_{t-1}} - \delta = \frac{1}{\Psi} (Q_t - 1)$$

$$p_t = Q_t K_t = \frac{p_{t+1} + D_{t+1}}{1 + r_t}$$

$$p_t = Q_t K_t = \frac{p_{t+1} + D_{t+1}}{1 + r_t}$$

Model setup continued

* Q theory equations:

$$\frac{I_t}{K_{t-1}} - \delta = \frac{1}{\Psi} \left(Q_t - 1 \right)$$

$$p_t = Q_t K_t = \frac{p_{t+1} + D_{t+1}}{1 + r_t}$$

- * Assume mutual funds owns 100% shares
 - * Now our connection to household block is $1 + r_0^p = \frac{p_0 + d_0}{p_{ss}}$

Model setup continued

* Q theory equations:

$$\frac{I_t}{K_{t-1}} - \delta = \frac{1}{\Psi} \left(Q_t - 1 \right)$$

$$p_t = Q_t K_t = \frac{p_{t+1} + D_{t+1}}{1 + r_t}$$

- * Assume mutual funds owns 100% shares
 - * Now our connection to household block is $1 + r_0^p = \frac{p_0 + d_0}{p_{ss}}$
- * Asset market clearing $A_t = p_t$

Effect of monetary shock: inelastic investment

Effect of monetary shock: inelastic investment

* With inelastic investment $\Psi = \infty$, $\delta = 0$, but capital $\alpha = 0$, just as in stock market case: equivalence between RA and HA (Werning result)

Effect of monetary shock: elastic investment

Effect of monetary shock: elastic investment

- * With elastic investment, consumption gets amplified!
- * Why? Aggregate demand propagation $I \rightarrow Y \rightarrow C$ (Auclert, Rognlie, Straub)

Bottom line: what does investment bring to HANK?

* Complementarity between investment and consumption:

Consumption response	No Investment	Investment
RA	Euler equation	same
HA	same (Werning)	Amplification!

Summary

Summary

* HANK substantially enriches the analysis of monetary policy

Summary

- * HANK substantially enriches the analysis of monetary policy
- * Key points:
 - * Countercyclical income risk has large amplification effects
 - * Maturity structure important due to capital gains-induced redistribution
 - * Nominal positions relevant due to inflation-induced redistribution
 - * Complementarity between investment and high MPCs