第3-2章 点估计 EM算法

《统计推断》第7章

感谢清华大学自动化系江瑞教授提供PPT

内容

- Motivation
- EM算法理论
- EM算法应用

Bernoulli MLE

- 在抛硬币的Bernoulli试验中,前面我们计算了其MLE就是用频率来估计。
- 如果在Bernoulli试验中有两个硬币,但不知道每次试验抛出的是哪一个,存在缺失数据。
- 这是一个典型的混合模型

$$\pi Ber(p_1) + (1 - \pi)Ber(p_2)$$

Basic Setting in EM

- X is a set of data points: observed data
- Θ is a parameter vector.
- EM is a method to find θ_{MI} where

$$\theta_{ML} = \underset{\theta \in \Omega}{\operatorname{arg max}} \ l(\Theta)$$
$$= \underset{\theta \in \Omega}{\operatorname{arg max}} \ \log P(X \mid \Theta)$$

- Calculating $P(X \mid \theta)$ directly is hard.
- Calculating $P(X, Z | \theta)$ is much simpler, where Z is "hidden" data (or "missing" data).

The Basic Setting in EM

- $\bullet \quad Y = (X, Z)$
 - Y: complete data ("augmented data")
 - X: observed data ("incomplete" data)
 - Z: hidden data ("missing" data)
- Given a fixed x, there could be many possible z's.
 - Ex: given a sentence x, there could be many state sequences in an HMM that generates x.

The Iterative Approach for MLE

 When missing data is available, it's hard to find the MLE directly

$$\theta_{ML} = \underset{\theta}{\operatorname{Argmax}} \log \left(\sum_{Z} P(X, Z | \theta) \right)$$

An alternative is to find a sequence

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(t)}, \dots,$$

s.t. $l(\theta^{(0)}) < l(\theta^{(1)}) < \dots < l(\theta^{(t)}) < \dots$

$$l(\theta) - l(\theta^{(t)}) = \log P(X|\theta) - \log P(X|\theta^{(t)})$$

$$= \log \left(\frac{\sum_{Z} P(X, Z|\theta)}{\sum_{Z} P(X, Z|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta)}{\sum_{Z'} P(X, Z'|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta)}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta^{(t)})}{P(X, Z|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta^{(t)})}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})}\right)$$

$$l(\theta) - l(\theta^{(t)}) = \log \left(\sum_{Z} \frac{P(X, Z|\theta^{(t)})}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$= \log \left(\sum_{Z} P(Z|X, \theta^{(t)}) \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$\geq \sum_{Z} P(Z|X, \theta^{(t)}) \times \log \left(\frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$= E_{P(Z|X, \theta^{(t)})} \left[\log \left(\frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right) \right]$$

$$= E_{P(Z|X, \theta^{(t)})} \left[\log P(X, Z|\theta) \right]$$

$$- E_{P(Z|X, \theta^{(t)})} \left[\log P(X, Z|\theta^{(t)}) \right]$$

Jensen's inequality

Maximizing the Lower Bound

 The Jensen's inequality gives a lower bound to maximize,

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{Argmax}} E_{P(Z|X,\theta^{(t)})} [\log P(X,Z|\theta)]$$

Q-function

$$Q(\theta|\theta^{(t)}) = E_{P(Z|X,\theta^{(t)})} \left[\log P(X,Z|\theta) \right]$$

Increasing the Likelihood

 Increasing the likelihood by maximizing the lower bound

$$l(\theta) - l(\theta^{(t)}) \ge Q(\theta|\theta^{(t)}) - Q(\theta^{(t)}|\theta^{(t)})$$
$$Q(\theta^{(t+1)}|\theta^{(t)}) > Q(\theta^{(t)}|\theta^{(t)}) \Rightarrow l(\theta^{(t+1)}) > l(\theta^{(t)})$$

Which means that a better estimation of the parameter.

Summary: EM Algorithm

Define a auxiliary function

$$Q(\theta|\theta') = \sum_{Z} P(Z|X, \theta') \log P(X, Z|\theta)$$
$$= E_{P(Z|X, \theta')} [\log P(X, Z|\theta)]$$

- EM algorithm iterates with two step
 - E-Step, compute $Q(\theta|\theta^{(t)})$
 - M-Step:

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{Argmax}} Q(\theta | \theta^{(t)})$$

Illustration of EM Algorithm

Jensen's Inequality

Convex function

$$\forall x_1, x_2 \in (a, b), \lambda \in [0, 1]$$

 $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

Jensen's Inequality

For convex function f(x)

$$E[f(X)] \ge f(E[X])$$

 For discrete random variable with two mass points

$$E[X] = p_1 x_1 + p_2 x_2$$

$$E[f(X)] = p_1 f(x_1) + p_2 f(x_2)$$

$$\geq f(p_1 x_1 + p_2 x_2) = f(E[x])$$

 It's easy to induce to random variable with more points

Jensen's Inequality Corollary

 Log(x) is a concave function, for any positive function g(x)

$$\log(E[g]) \ge E[\log(g)]$$

$$\log\left(\sum_{i} q_{j}g(j)\right) \ge \sum_{i} q_{j}\log(g(j))$$

where

$$q_j \in [0,1], \quad \sum_j q_j = 1$$

Example

- Rao (1965, pp.368-369), Genetic Linkage
 Model
- Suppose 197 animals are distributed multinomially into four categories,

$$X = (125, 18, 20, 34) = (x_1, x_2, x_3, x_4)$$

 A genetic model for the population specifies cell probabilities

$$\left(\frac{1}{2} + \frac{\theta}{4}, \frac{1}{4} - \frac{\theta}{4}, \frac{1}{4} - \frac{\theta}{4}, \frac{\theta}{4}\right)$$

Multinomial Distribution

Likelihood function

$$L(\theta) = \frac{197!}{x_1! x_2! x_3! x_4!} \left(\frac{1}{2} + \frac{\theta}{4}\right)^{x_1} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_2 + x_3} \left(\frac{\theta}{4}\right)^{x_4}$$

log-likelihood function

$$l(\theta) = \log \frac{197!}{x_1! x_2! x_3! x_4!} + x_1 \log(\frac{1}{2} + \frac{\theta}{4}) + (x_2 + x_3) \log(\frac{1}{4} - \frac{\theta}{4}) + x_4 \log(\frac{\theta}{4})$$

MLE

Take derivative, solve equation

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{1}{4} \times \frac{x_1}{\frac{1}{2} + \frac{\theta}{4}} - \frac{1}{4} \times \frac{x_2 + x_3}{\frac{1}{4} - \frac{\theta}{4}} + \frac{1}{4} \times \frac{x_4}{\frac{\theta}{4}} = 0$$

It's not easy to solve this equation!

$$\frac{x_1}{2+\theta} - \frac{x_2 + x_3}{1-\theta} + \frac{x_4}{\theta} = 0$$

Missing Data Problem

Split the first category into two group

$$x_1 = z_1 + z_2, \quad z_1, z_2 \text{ missing}$$

With Probability

$$p(z_1) = \frac{1}{2}, p(z_2) = \frac{\theta}{4}$$

Log-likelihood function of complete data

$$l(\theta) = \log \frac{197!}{z_1! z_2! x_2! x_3! x_4!} + z_1 \log(\frac{1}{2}) + (z_2 + x_4) \log(\frac{\theta}{4}) + (x_2 + x_3) \log(\frac{1}{4} - \frac{\theta}{4})$$

E Step: Multinomial

$$E\left(\log f(x,\theta)|\theta^{(k)}\right) = E\left(\log \frac{197!}{z_1!z_2!x_2!x_3!x_4!}\right) + z_1^{(k)}\log(\frac{1}{2}) + (z_2^{(k)} + x_4)\log(\frac{\theta}{4}) + (x_2 + x_3)\log(\frac{1}{4} - \frac{\theta}{4})$$

Where

$$\begin{cases} E(z_1) = 125 \frac{\frac{1}{2}}{\frac{1}{2} + \frac{\theta^{(k)}}{4}} = z_1^{(k)} \\ E(z_2) = 125 \frac{\frac{\theta^{(k)}}{4}}{\frac{1}{2} + \frac{\theta^{(k)}}{4}} = z_2^{(k)} \end{cases}$$

M Step: Multinomial

Take derivative

$$E\left(\log f(x,\theta)|\theta^{(k)}\right) = E\left(\log \frac{197!}{z_1!z_2!x_2!x_3!x_4!}\right) + z_1^{(k)}\log(\frac{1}{2}) + (z_2^{(k)} + x_4)\log(\frac{\theta}{4}) + (x_2 + x_3)\log(\frac{1}{4} - \frac{\theta}{4})$$

One can obtain

$$\theta^{(k+1)} = \frac{z_2^{(k)} + x_4}{z_2^{(k)} + x_4 + x_2 + x_3} = \frac{z_2^{(k)} + 34}{z_2^{(k)} + 18 + 20 + 34}$$

Motif Finding Problem

 Find promoter motifs associated with coregulated or functionally related genes

Probabilistic Model

- Positional weighted matrix (PWM) for motif
 - L x 4 matrix, where L is the length of the motif
 - Each position is a probability distribution (p(A), p(C), p(G), p(T))
 - Independence between different position
- Random background with distribution (p₀(A),
 p₀(C), p₀(G), p₀(T))

PWM

HEM13 CCCATT

HEM13 TTTCTG

HEM13 TCAATT

ANB1 CTCATT

ANB1 TCCATT

ANB1 CCTATT

ANB1 TCCATT

ROX1 CCAATT

	1	2	3	4	5	6
Α	0	0	0.25	0.875	0	0
С	0.5	0.75	0.5	0.125	0	0.125
G	0	0	0	0	0	0.875
T	0.5	0.25	0.25	0	1.0	0

Motif Finding

Given the missing data, it's a multinomial distribution

$$Pr(X_i, Z_{ij} = 1 | P) = \prod_{k=1}^{j-1} p_{x_{ik}, 0} \prod_{k=j}^{j+w-1} p_{x_{ik}, k-j+1} \prod_{k=j+w}^{L} p_{x_{ik}, 0}$$
 before motif motif after motif

 $X_{\scriptscriptstyle i}$ is the ${\scriptstyle i}$ th sequence

 Z_{ij} is 1 if motif starts at position j in sequence i

Log-likelihood

$$l(p) = \sum_{k=1}^{j-1} \log p_{x_{ik},0} + \sum_{k=j}^{j+W-1} \log p_{x_{ik},k-j+1} + \sum_{k=j+W}^{L} \log p_{x_{ik},0}$$

Q function

$$Q(p|p^{(t)}) = E_{P(Z|X,p^{(t)})} [\log P(X,Z|p)]$$

= $\sum_{Z} P(Z|X,p^{(t)}) \log P(X,Z|p)$

Q-function

$$Q(p|p^{(t)}) = \sum_{Z} P(Z|X, p^{(t)}) \log P(X, Z|p)$$

$$= \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=1}^{j-1} \log p_{x_{ik}, 0}$$

$$+ \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=j}^{j+W-1} \log p_{x_{ik}, k-j+1}$$

$$+ \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=j+W}^{L} \log p_{x_{ik}, 0}$$

Q-function

• For each sequence i, the missing value Z_{ij} can take value

$$Z_{i1} = 1, Z_{i2} = 1, \cdots, Z_{i,L-W+1} = 1$$

• So the coefficient of $\log P_{c,k}$ is

$$\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, c)$$

Q-function

• The coefficient of $\log P_{c,0}$ is

$$\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left(\sum_{k=1}^{m-1} \delta(X_{i,k}, c) + \sum_{k=m+W}^{L} \delta(X_{i,k}, c) \right)$$

M Step: Optimization

For multinomial distribution, the optimization is of form

$$\begin{cases} \operatorname{Max:} \sum_{k} c_k \log x_k \\ \operatorname{subject to:} \sum_{k} x_k = 1 \end{cases}$$

Estimation:
$$x_i = \frac{c_i}{\sum_k c_k}, i = 1, \dots, N.$$

M Step: Optimization

• So the estimation of $p_{c,k}$ is

$$\frac{\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, c)}{\sum_{b} \sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, b)}$$

• So the estimation of $p_{c,0}$ is

$$\frac{\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left(\sum_{k=1}^{m-1} \delta(X_{i,k}, c) + \sum_{k=m+W}^{L} \delta(X_{i,k}, c) \right)}{\sum_{b} \sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left(\sum_{k=1}^{m-1} \delta(X_{i,k}, b) + \sum_{k=m+W}^{L} \delta(X_{i,k}, b) \right)}$$

Example

 Finding motif (length 3) in following sequences

A C A G C A

A G G C A G

TCAGTC

EM Updating

• Let

$$z_{ij}(c) = Pr(Z_{ij} = 1|X_i, p^{(t)})\delta(x_{i,m+k}, c)$$

1	2	3	1	2	3	1	2	3
z11(A)	z11(C)	z11(A)	z21(A)	z21(G)	z21(G)	z31(T)	z31(C)	z31(A)
z12(C)	z12(A)	z12(G)	z22(G)	z22(G)	z22(C)	z32(C)	z32(A)	z32(G)
z13(A)	z13(G)	z13(C)	z23(G)	z23(C)	z23(A)	z33(A)	z33(G)	z33(T)
z14(G)	z14(C)	z14(A)	z24(C)	z24(A)	z24(G)	z34(G)	z34(T)	z34(C)

EM Updating

$$p_{A,1} = \frac{z_{11} + z_{13} + z_{21} + z_{33}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{C,1} = \frac{z_{12} + z_{24} + z_{32}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{G,1} = \frac{z_{14} + z_{22} + z_{23} + z_{32}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{T,1} = \frac{z_{31}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

Background

- z11: A,C,G
- z12: 2A,C
- z13:2A,C
- z14: 2A, C
- z21:A,C,G
- z22:2A,G
- z23:A,2G
- z24:A,2G
- z31:C,G,T
- z32:C,2T
- z33:2C,T
- z34:A,C,G

Background Updating

- $A z_{11} + 2z_{12} + 2z_{13} + 2z_{14} + z_{21} + 2z_{22} + z_{23} + z_{24} + z_{34}$
- c $z_{11} + z_{12} + z_{13} + z_{14} + z_{21} + z_{31} + z_{32} + 2z_{33} + z_{34}$
- G $z_{11} + z_{21} + z_{22} + 2z_{23} + 2z_{24} + z_{31} + z_{34}$
- \bullet T $z_{31} + 2z_{32} + z_{33}$

Normalization factor

$$3(z_{11} + z_{12} + z_{13} + z_{14} + z_{21} + z_{22} + z_{23} + z_{24} + z_{31} + z_{32} + z_{33} + z_{34})$$

Reference

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977).
 Maximum Likelihood from Incomplete Data via the EM Algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 39, No. 1, , pp. 1-38