[3]

Homework #3

Задача про количество подмножеств

Обозначим число подмножеств, не содержащих двух последовательных чисел, множества $\{1,2,3,\ldots,n\}$ как $P(\{1,2,\ldots,n\})$. Докажем, что $P(\{1,2,\ldots,n\})=F_{n+2}$. Как и предлагается в условии, сделаем это при помощи мат индукции.

База индукции. Для n=1 имеем $\{1\}$ и \emptyset , т.е. 2. Заметим, что $F_3=2$. Верно. Для n=2 имеем $\{1\},\{2\},\emptyset$, т.е. 3. Заметим, что $F_4=3$. Верно.

Ну и для уверенности проверим для n=3. Имеем $\{1\},\{2\},\{3\},\{1,3\},\emptyset$, т.е. 5. Снова заметим, что $F_5=5$. Опять верно (неожиданно, не правда ли?).

Переход. Пусть $P(\{1,2,\ldots,n\})=F_{n+2}$ и $P(\{1,2,\ldots,n+1\})=F_{n+3}$. Докажем, что $P(\{1,2,\ldots,n+2\})=F_{n+4}$. Заметим, что мы можем разбить $P(\{1,2,\ldots,n+2\})$ на 2 слагаемых: в первом мы считаем все подмножества, не содержащие двух последовательных чисел, не содержащих 1 и все подмножества её содержащих. Если подмножества содержат единицу, то они автоматически не содержут двойки по условию, а значит нужное нам число равняется $P(\{3,4,\ldots,n+2\})$. Однако это число в точности равно $P(\{1,2,\ldots,n\})$.

Если же подмножества не содержат единицу, то тогда число таких подмножеств равняется $P(\{2,3,\dots.n+2\})=P(\{1,2,\dots,n+1\})$. Таким образом имеем:

$$P(\{1,2,\ldots.n+2\}) = P(\{1,2,\ldots,n\}) + P(\{1,2,\ldots,n+1\})$$

Из предположения индукции:

$$P(\{1,2,\ldots.n+2\}) = F_{n+2} + F_{n+3} = F_{n+4}$$

Что и требовалось доказать.

Задача 8 (б, в, г, д, ж)

Тут во всех пунктах $\gamma_i \in \mathbb{C}$ — константы.

Homework #3

Пункт Б. Тут имеем характеристический полином $P(\lambda)=\lambda^2+3\lambda-10$. Его корни — это числа $\lambda_1=2,\;\lambda_2=-5$. Поэтому общее решение: $a_n=\gamma_1\cdot 2^n+\gamma_2\cdot (-5)^n$.

Пункт В. Характеристический полином $P(\lambda)=\lambda^2-4\lambda+13$. Имеет 2 корня, оба комплексные: $\lambda_1=2+3i, \lambda_2=2-3i$. Таким образом решение:

$$a_n = \gamma_1 (2+3i)^n + \gamma_2 (2-3i)^n$$

Пункт Г. Характеристический полином $P(\lambda)=\lambda^2+9$. Имеет 2 корня: $\lambda_{1,2}=\pm 3i$. Таким образом, решение:

$$a_n=3^ni^n\left(\gamma_1+\gamma_2(-1)^n
ight)$$

Пункт Д. Характеристический полином $P(\lambda)=\lambda^2+4\lambda+4=(\lambda+2)^2$. Единственный корень — это $\lambda_1=-2$. Поэтому общее решение: $a_n=(-2)^n(\gamma_1+\gamma_2n)$.

Пункт Ж. Характеристичесий полином $P(\lambda)=\lambda^3+3\lambda^2+3\lambda+1=(\lambda+1)^3$. Единственный корень — это $\lambda_1=-1$. Поэтому общее решение: $a_n=(-1)^n\left(\gamma_1+\gamma_2n+\gamma_3n^2\right)$.

Задача 9(б,в)

Пункт Б. Характеристический полином $P(\lambda)=\lambda^2-4\lambda+4=(\lambda-2)^2$. Как видим, у этого уравнения один корень — $\lambda_1=2$. Поэтому уравнение имеет вид $a_n=\gamma_1\cdot 2^n+\gamma_2 n\cdot 2^n$. Найдём γ_1,γ_2 из начальных условий. Имеем:

$$2=2\gamma_1+2\gamma_2,\ 4=4\gamma_1+8\gamma_2$$

Или же $\gamma_1+\gamma_2=1, \gamma_1+2\gamma_2=1.$ Отсюда видим, что $\gamma_1=1, \gamma_2=0.$ Поэтому наше решение имеет вид $a_n=2^n.$

Пункт В. Характеристический полином $P(\lambda)=\lambda^2+\lambda+1=0$. Заметим, что данное решение имеет два решения — $\frac{-1+\sqrt{3}i}{2}$ и $\frac{-1-\sqrt{3}i}{2}$. По другому эти 2 решения можно записать как $e^{2\pi i/3}$ и $e^{4\pi i/3}$. Пусть $\varepsilon=e^{2\pi i/3}$, тогда второй корень имеет вид ε^2 . В таком случае, решение в общем виде нашего уравнения: $a_n=\gamma_1\varepsilon^n+\gamma_2\varepsilon^{2n}$. Теперь предлагаю рассмотреть подпоследовательности a_{3k},a_{3k+1},a_{3k+2} . Имеем:

$$a_{3k} = \gamma_1 arepsilon^{3k} + \gamma_2 arepsilon^{6k} = \gamma_1 + \gamma_2$$

- · · - - - -

Homework #3

$$egin{align} a_{3k+1} &= \gamma_1 arepsilon^{3k+1} + \gamma_2 arepsilon^{6k+2} = \gamma_1 arepsilon + \gamma_2 arepsilon^2 \ a_{3k+2} &= \gamma_1 arepsilon^{3k+2} + \gamma_2 arepsilon^{6k+4} = \gamma_1 arepsilon^2 + \gamma_2 arepsilon \end{aligned}$$

Как видим, последовательность состоит из 3 элементов: $\{\gamma_1+\gamma_2,\gamma_1\varepsilon+\gamma_2\varepsilon^2,\gamma_1\varepsilon^2+\gamma_2\varepsilon\}$. Найдём коэффициенты γ_1 и γ_2 из начальных условий:

$$egin{cases} \gamma_1 arepsilon + \gamma_2 arepsilon^2 = -rac{1}{4} \ \gamma_1 arepsilon^2 + \gamma_2 arepsilon = -rac{1}{2} \end{cases}$$

Отсюда:

$$\gamma_1=rac{2arepsilon-1}{4(arepsilon-1)},\; \gamma_2=rac{arepsilon-2}{4(arepsilon-1)}$$

Отсюда имеем: $\gamma_1+\gamma_2=\frac{3(\varepsilon-1)}{4(\varepsilon-1)}=\frac{3}{4}$. Поэтому окончательно: $a_n=\{-\frac{1}{4},-\frac{1}{2},\frac{3}{4},-\frac{1}{4},\cdots\}$

Задача 15.5.

Характеристический полином имеет вид $P(\lambda)=\lambda^2-\alpha\lambda-\beta=0$. Воспользуемся тем, что $\alpha+\beta=1$. Получим, что $\alpha=1-\beta$, а значит $P(\lambda)=\lambda^2-(1-\beta)\lambda-\beta=0$. Его дискриминант равен $D=(1-\beta)^2+4\beta=\beta^2+2\beta+1=(\beta+1)^2$. Таким образом корни:

$$\lambda_{1,2}=rac{1-eta\pm(1+eta)}{2}$$

Первый корень — это $\lambda_1=-eta$, а второй — $\lambda_2=1$. Поэтому решение для $\{a_n\}_{n=1}^\infty$:

$$a_n = \gamma_1 (-eta)^n + \gamma_2 \cdot 1^n = \gamma_1 (-eta)^n + \gamma_2$$

Найдём коэффициенты γ_1, γ_2 из начальных условий:

$$egin{cases} a_0 = \gamma_1 + \gamma_2 \ a_1 = -\gamma_1 eta + \gamma_2 \end{cases}$$

Вычев из первого уравнения второе, получим $a_0-a_1=\gamma_1(1+\beta)\to\gamma_1=rac{a_0-a_1}{1+\beta}$. Второй коэффициент: $\gamma_2=a_0-\gamma_1=a_0-rac{a_0-a_1}{1+\beta}=rac{a_1+\beta a_0}{1+\beta}$. Поэтому имеем:

$$a_n = rac{a_0 - a_1}{1 + eta} (-eta)^n + rac{a_1 + eta a_0}{1 + eta}$$

Найдём $\lim_{n\to\infty}a_n$. Заметим, что по условию $lpha,eta>0,\ lpha+eta=1$. Видим, что |eta|<1. Отсюда $\lim_{n\to\infty}(-eta)^n=0$, а поэтому:

$$\lim_{n o\infty}a_n=rac{a_1+eta a_0}{1+eta}$$

Homework #3 4