Algorithmes de flots

Quentin Fortier

October 11, 2021

On va voir plusieurs façon de trouver un chemin de s à t:

On va voir plusieurs façon de trouver un chemin de s à t:

- Parcours en profondeur
- Parcours en largeur
- Plus court chemin (Dijkstra, Bellman-Ford)
- Plus large chemin

Exercice

Écrire une fonction Python ford_fulkerson telle que ford_fulkerson(G, s, t, path) renvoie la valeur maximum d'un flot, où :

- G est un graphe orienté avec une capacité sur les arcs.
- path est une fonction qui à un graphe résiduel associe un chemin de s à t

Exercice

Écrire une fonction Python ford_fulkerson telle que ford_fulkerson(G, s, t, path) renvoie la valeur maximum d'un flot, où :

- G est un graphe orienté avec une capacité sur les arcs.
- path est une fonction qui à un graphe résiduel associe un chemin de s à t

Exercice

Implémenter le parcours en profondeur et l'utiliser avec ford_fulkerson.

Quelle est la complexité de Ford-Fulkerson avec recherche des chemins par parcours en profondeur ? $O(|\overrightarrow{E}| \times |f^*|)$

La complexité $\mathrm{O}(|\overrightarrow{E}| \times |f^*|)$ est atteinte pour ce genre de graphe :

La complexité $O(|\vec{E}| \times |f^*|)$ est atteinte pour ce genre de graphe :

Exercice

Implémenter le parcours en profondeur et l'utiliser avec ford_fulkerson.

Quelle est la complexité de Ford-Fulkerson avec recherche des chemins par parcours en profondeur ? $O(|\overrightarrow{E}| \times |f^*|)$