Deep Contractive Least Squares Support Vector Machines for associative memory

Goal - Modelling auto-associative memory

We model memory with a discrete dynamical system

$$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}),$$

whose stable equilibria are the memories to store. This way, as the state evolves, it gradually converges to a memory, and thereby reconstructs it.

Proposed solution - Combining LS-SVMs¹ and C-AEs² into C-LS-SVMs

¹Least Squares SVMs ²Contractive autoencoders

optimal model

 $x^{(k+1)}$

We describe the dynamical system by the update equation

$$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = \mathbf{W}^{\mathsf{T}} \varphi(\mathbf{x}^{(k)}) + \mathbf{b}.$$

The parameters **W** and **b** result from a convex optimization problem that balances an **equilibrium objective**, and a **local stability objective**.

Results

Shallow C-LS-SVMs

A C-LS-SVM can use a wide range of feature maps $\varphi(\mathbf{x})$, either defined explicitly, such as the tanh feature map, or defined implicitly by a positive definite kernel function.

C-LS-SVMs that memorize movements

The C-LS-SVM reconstructs the memorized movement well from noisy initial conditions (\bullet) up to the end (\times).

Deep C-LS-SVMs

Deep C-LS-SVMs more accurately store the memories (•).

Generative C-LS-SVMs

The generated points precisely populate the data manifold.