Ayudantía 9

IIC2213 - Lógica para Ciencia de la Computación

Problema 1

1. Demuestre que la función sucesor es definible en $(\mathbb{N}, +)$.

Solución: Debemos encontrar fórmula φ tal que $\{(a_1, a_2) \in \mathbb{N}^2 \mid \langle \mathbb{N}, + \rangle \models \varphi(a_1, a_2)\} = \operatorname{suc}(\cdot, \cdot)$

Llamamos $\mathfrak{A} = \langle \mathbb{N}, + \rangle$. Luego construimos las fórmulas para resolver el problema. En primer lugar, escribimos la fórmula que define el conjunto $\{0\}$:

$$\varphi_0(x) = \forall z(z+x=z)$$

Luego, definimos los números mayores o iguales a 1:

$$\varphi_{>1}(x) = \neg \varphi_0(x)$$

Ahora podemos definir los números mayores o iguales a 2 como la suma de dos números mayores o iguales a 1:

$$\varphi_{\geq 2}(x) = \exists y \exists z (\varphi_{\geq 1}(y) \land \varphi_{\geq 1}(z) \land x = y + z)$$

Además definimos los números menores o iguales a 1:

$$\varphi_{\leq 1}(x) = \neg \varphi_{\geq 2}(x)$$

Con esto, podemos definir el conjunto que sólo tiene al 1:

$$\varphi_1(x) = \varphi_{<1}(x) \wedge \varphi_{>1}(x)$$

Y finalmente definimos la función sucesor:

$$\operatorname{suc}(x,y) = \exists z(\varphi_1(z)) \land x + z = y$$

2. Demuestre que la función exponencial e^x no es definible en $\langle \mathbb{R}, \cdot \rangle$.

Solución:

Suponga que existe fórmula φ tal que $\{(a_1, a_2) \in \mathbb{R}^2 \mid \mathfrak{A} \models \varphi(a_1, a_2)\} = e^x$. Encontramos un automorfismo de \mathfrak{A} :

$$h(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} & x \neq 0 \end{cases}$$

Corresponde a un automorfismo ya que es biyectivo y preserva la multiplicación $(h(a) \cdot h(b) = h(a \cdot b))$.

Sabemos que $\mathfrak{A} \models (1,e)$. Luego como h automorfismo de \mathfrak{A} , por teorema de isomorfismo, $\mathfrak{A} \models (h(1),h(e)) = (1,e^{-1}) \notin e^x$. Como llegamos a una contradicción, entonces la fórmula no existe.

3. Demuestre que la función + no es definible en (\mathbb{N}, \cdot) .

Solución: Suponga que existe φ tal que $\{(a_1, a_2, a_3) \in \mathbb{N}^3 \mid \mathfrak{A} \models \varphi(a_1, a_2, a_3)\} = +$. Encontramos un automorfismo de \mathfrak{A} . En primer lugar definimos la función f(p), que se define como:

$$f(p) = \begin{cases} 3 & x = 2\\ 2 & x = 3\\ x & e.o.c \end{cases}$$

Para definir el automorfismo h(x), primero realizaremos la descomposición de x en sus factores primos tal que $x = p_0^{i_0} \cdot \dots \cdot p_n^{i_n}$. Luego definimos la función h(x):

$$h(x) = f(p_0)^{i_0} \cdot \dots \cdot f(p_n)^{i_n}$$

La función h(x) es biyectiva y preserva la multiplicación, por lo tanto es un automorfismo correcto. Luego, sabemos que $\mathfrak{A} \models \varphi(2,5,7)$ y por teorema de isomorfismo, $\mathfrak{A} \models \varphi(h(2),h(5),h(7)) = (3,5,7) \notin +$. Como llegamos a una contradicción, la fórmula no existe.

Problema 2

1. Sea \mathcal{L} un vocabulario cualquiera. Demuestre usando el teorema de compacidad que no existe una \mathcal{L} -oración φ tal que para toda \mathcal{L} -estructura \mathfrak{A} se tiene que: \mathfrak{A} es finita si y sólo si $\mathfrak{A} \models \varphi$.

Solución: Suponemos que existe una fórmula φ tal que $\forall \mathfrak{A}$, \mathfrak{A} es finita ssi $\mathfrak{A} \models \varphi$. Luego definimos la familia de fórmulas $\varphi_k = \exists x_1 \dots \exists x_k (x_1 \neq \dots \neq x_k)$. La fórmula x_k define el conjunto que tiene al menos k elementos en el dominio. Luego, si llamamos $\Sigma = \{\varphi\} \cup \{\varphi_k \mid k \geq 2\}$, podemos tomar un subconjunto finito $\Sigma' \subseteq \Sigma$ y ver que es satisfacible:

- Si $\Sigma' = \{\varphi\}$, entonces una estructura que satisface a Σ' es una que tiene dominio finito.
- Si $\Sigma' = \{\varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_l}\}$, una estructura que satisface a Σ' es una que tiene un dominio con exactamente i_j elementos, donde $i_j = \max_{m \leq l} i_m$
- Si $\Sigma' = \{\varphi, \varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_l}\}$, entonces una estructura que satisface a Σ' es la misma que satisface al conjunto del inciso anterior.

Como todo subconjunto finito de Σ es satisfacible, entonces Σ es finitamente satisfacible, por lo tanto por teorema de compacidad también es satisfacible. Por lo tanto, existe \mathfrak{B} tal que $\forall \psi \in \Sigma$. ($\mathfrak{B} \models \psi$). Como $\mathfrak{B} \models \varphi$, entonces \mathfrak{B} tiene dominio finito. Pero luego, como $\mathfrak{B} \models \{\varphi_k \mid k \geq 2\}$, entonces \mathfrak{B} tiene dominio infinito. Esto nos deja con una contradicción, luego la fórmula φ no existe.

2. Decimos que un grafo G = (N, A) contiene un ciclo finito si existen nodos $a_1, \ldots, a_n \in N \ (n \ge 2)$ tal que para todo $i \in [1, n-1]$ se tiene que $(a_i, a_{i+1}) \in A$ y además $(a_n, a_1) \in A$.

Sea $\mathcal{L} = \{E(\cdot, \cdot)\}$. Demuestre que no existe una \mathcal{L} -oración φ tal que para toda \mathcal{L} -estructura \mathfrak{A} se tiene que: \mathfrak{A} contiene un ciclo finito si y sólo si $\mathfrak{A} \models \varphi$.

Solución: Suponemos que existe una fórmula φ tal que $\forall \mathfrak{A}$, \mathfrak{A} es finita ssi $\mathfrak{A} \models \varphi$. Luego definimos la familia de fórmulas $\varphi_k = \neg \exists x_1 \dots \exists x_k. \ (E(x_1, x_2) \land \dots \land E(x_{k-1}, x_k) \land E(x_k, x_1))$. Esta fórmula nos indica que la estructura no tiene un ciclo de largo k. Luego, llamamos $\Sigma = \{\varphi\} \cup \{\varphi_k \mid k \geq 1\}$ y al tomar un subconjunto finito $\Sigma' \subseteq \Sigma$ vemos que es satisfacible:

- Si $\Sigma' = \{\varphi\}$, entonces una estructura que satisface a Σ' es una que tiene un ciclo de largo finito
- Si $\Sigma' = \{\varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_l}\}$, una estructura que satisface a Σ' es una que no tiene ciclos.
- Si $\Sigma' = \{\varphi, \varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_l}\}$, entonces una estructura que satisface a Σ' es una que tiene un ciclo de largo $i_j + 1$ y no tiene ciclos de largo menor a $i_j + 1$, donde $i_j = \max_{m \leq l} i_m$.

Como todo subconjunto finito de Σ es satisfacible, entonces Σ es finitamente satisfacible, por lo tanto por teorema de compacidad es satisfacible. Luego, existe una estructura \mathfrak{B} tal que $\mathfrak{B} \models \Sigma$. Como $\mathfrak{B} \models \varphi$, entonces \mathfrak{B} tiene un ciclo de largo finito. Pero como $\mathfrak{B} \models \{\varphi_k \mid k \geq 1\}$, entonces \mathfrak{B} no tiene un ciclo de largo finito. Como llegamos a una contradicción, entonces la fórmula φ no existe.