Mikpo Joholante Käytetaan suraavia kirjan merkintoja Olkoon L= teldyt tyotunnit (labor), R= vapao-aika (Relaxation), n=pa/lka (wage) ja c= hijalykkeiden kulutus (=tulot) (consumption) Nyt w. L=c (palkka x tyotumit = kulitus) ja L=100-R (aika, jota ei käytetä vapaa-ajan vettoon, mence tota tehelessa). Sijoitetaan yhtälö 2° yhtälöön 1° => saadaa budjeHirajoite; w(100-R)=C C=> c = - wR + 100 w toi wc + R = 100 17:n'kulutusyksika hointa vapaa-aj ssa mita Huna Sijo tetam ametert petuarrot: Tilame ny hyan: hnomodaan, etta palkha muttan -15R+ (40.10+60.15]=-15R+1300, jos 0 < R < 60 CN = (-10R+1000) jos 60 < R < 100 Johdon cholotus CE = -1/R + 1/00 Pissretain numa kurum

dessa järjestelmässä alemmin saavuttumtomissa olkita Va sis mahalollizesti parempor) korcja unpaa-ajam arvoilla R>60. 1. Just 4 Fally MARAW INVO - = F Q: - x m + 1 19-4< M-1-12-5 - B Q = 1.2 + 2.4 = 1. 0 + 1.9 . 0 = 2-8 = 12 2 + 8 = LOTALINA MIRRAUN LOC 1-dlo 21 --- 3 ---C+ 100 1 4 5 = 1 5 . 5 . 7 . 0 . 2-12-11-11-11-2-2 1-5-1-4/1--· 5 M 2 (S N + 4 N + 7 (=) a () S () S () a () a ()

Olloon laulutrajon hystypanetic muotea $u(x_1, x_2) = x_1 + x_2$, kauluttajan tulot m ja hyödykleideni hinnat pa ja pz.

a) Hyotyfuktio kuran tageleller substitumtte ja joten kysynta funktion vos toivoa amtavan nurhkovatka supa. Tarkis-

the thought to the the

Buelje Hirajoite: P-, X, + P2 x2 = m

(=\ P2 x2 = m - P, x, (=> x2 = \frac{m}{P2} - \frac{P4}{P3} x4

Læskettan max æ(x,1x2) s.e. x2 = P2 P2 x1 (x1,x2) eR2 x1, x2 = P2 P2 P2

Sijo tetan rajo te hyoty funktioon :

· (x, / ×2(x, 1) = u(x,) = x, + m/P2 - P2 x,

 $= (1 - \frac{r_1}{R}) \times_1 + \frac{r_1}{R}$

=) $u'(x_1) = (1 - \frac{P_1}{R}) = 0$ (=) $\frac{P_2}{P_2} = 7 = P_2$

Detivaatale et x, 1sta mippunaa O-kohtan

=> ci 1- bis tels ba sisapriste reitherina

Worker (\$\frac{m}{P_1},0) unhermo; hypolyn &>
\(\lambda\frac{m}{P_1},0) > \(\lambda(0,\frac{m}{P_1}) \infty \frac{m}{P_1} \rightarrow \frac{m}{P_1}

Vastanineti murkka (0, m) makeimo; hypolyn (>> P2 < P7. Jos pr= pz, nin budjett rajoiten patiessa u(x1, x2(x1)) $= x_1 + \frac{m}{p_2} - \frac{p_1}{p_3} x_4 = x_1 + \frac{m}{p_2} - \frac{p_1}{p_3} x_7 = \frac{m}{p_3}$ V (x1, x2) € (x1, x) € R2 : x1 P1 + x2 P2 = m3 => Kun pg=Pz, kaikki budjettirajsitleen porteet tuettavat yhta sunten hyödym. > Kuluttajun kysynta Sunktrot: x = 1 12 x =0 , km Py < Pz x, =0 ja X = 1 , km P, > P2. Kun PJ=P, kysynta ei ok yksikasittesnen (=> # kysyntagun k+rota). b) Nyl P2 < P1 => X1=0 ja X2= 15=10 c) Edeller picp, => x, =0 j x x2 = 7 = 15 Laske tom substituentique untuber summes: The lot, joilla kender Hajalle juni varaa vanhaan valin town unsilla homoilla: P2 ×2 vanha = P3 P, vanha = 1. 1,5 = 10 = m'. laskerton kysymad northe bule la

ja unesta homostla! P2' < P, >) X1 = 0 j ~ X2 = m/P1 = 10 = P2 Nyt substitutionarilantes: Ax2 = 10-10 =0 Ja AX1 = 0 -0 =0 Korka tokonarsvartutus = substituntion + tulov., koko kysymon mundos an seuranste tulorailental scenta x s' 8= x 62

3.3 (a) Alkuvarallisuus hinnoilla (p_1, p_2) : $p_1\omega_1 + p_2\omega_2$. Merkitään $m = p_1\omega_1 + p_2\omega_2$. Kuluttajan budjettirajoite $m = p_1x_1 + p_2x_2$ sekä hyötyfunktio $u(x_1, x_2) = x_1 + 10\sqrt{x_2}$.

Ratkaistaan kuluttajan optimi Lagrangen menettelyä käyttäen: Lagrangen funktio

$$L(x_1, x_2, \lambda) = x_1 + 10\sqrt{x_2} - \lambda (p_1x_1 + p_2x_2 - m),$$

joten maksimipisteessä pätee

$$\begin{array}{lll} \frac{\partial}{\partial x_1} L(x_1, x_2, \lambda) = & 1 + -\lambda p_1 & = 0, \\ \frac{\partial}{\partial x_2} L(x_1, x_2, \lambda) = & 5x_2^{-\frac{1}{2}} - \lambda p_2 & = 0, \\ \frac{\partial}{\partial \lambda} L(x_1, x_2, \lambda) = & m - p_1 x_1 - p_2 x_2 & = 0. \end{array}$$

Ylimmästä yhtälöstä saadaan $\lambda = \frac{1}{p_1}$. Sijoitetaan tämä keskimmäiseen ja ratkaistaan x_2 :

$$5x_2^{-\frac{1}{2}} = \frac{p_2}{p_1} \left| \frac{1}{5} \right| ()^{-2}$$

$$x_2 = \left(\frac{1}{5} \frac{p_2}{p_1}\right)^{-2} = 25 \frac{p_1^2}{p_2^2}.$$

Sijoitetaan tämä alimpaan yhtälöön: $m = p_1 x_1 + p_2 \cdot 25 \frac{p_1^2}{p_2^2} \Leftrightarrow x_1 = \frac{m}{p_1} - 25 \frac{p_1}{p_2}$. Täten x_1 :n kysyntä $x_1(p_1, p_2, m) = \frac{m}{p_1} - 25 \frac{p_1}{p_2}$ ja x_2 :n kysyntä $x_2(p_1, p_2, m) = 25 \frac{p_1^2}{p_2^2}$.

(b) Alkuvarallisuus $(\omega_1, \omega_2) = (60, 120)$ ja hinnat $(p_1, p_2) = (2, 1)$. Lasketaan tästä alkuvarallisuuden arvo

$$m = p_1\omega_1 + p_2\omega_2 = 2 \cdot 60 + 1 \cdot 120 = 240.$$

Kuluttaja valitsee pisteen (yleisesti $(x_1^*, x_2^*) = (x_1(p_1, p_2, m), x_2(p_1, p_2, m)))$

$$(x_1^*, x_2^*) = (x_1(2, 1, 240), x_2(2, 1, 240)) = \left(\frac{240}{2} - 25 \cdot \frac{2}{1}, 25 \cdot \frac{2^2}{1}\right) = (70, 100).$$

Hyödykkeen x_1 hinta nousee. Uudet hinnat $(p'_1, p'_2) = (3, 1)$ joten alkuvarallisuuden arvo uusissa hinnoissa on

$$m = p_1'\omega_1 + p_2'\omega_2 = 3 \cdot 60 + 1 \cdot 120 = 300.$$

Kuluttaja valitsee pisteen (yleisesti $(x'_1, x'_2) = (x_1(p'_1, p'_2, m'), x_2(p'_1, p'_2, m')))$

$$(x'_1, x'_2) = (x_1(3, 1, 300), x_2(3, 1, 300)) = \left(\frac{300}{3} - 25 \cdot \frac{3}{1}, 25 \cdot \frac{3^2}{1}\right) = (25, 225).$$

(Kokonaismuutos
$$\Delta(x_1, x_2) = (x_1', x_2') - (x_1^*, x_2^*) = (25, 225) - (70, 100) = (-45, 125).)$$

Substituutiovaikutus: Ratkaistaan se tulotaso \tilde{m} , jolla on varaa alkuperäiseen valintapisteeseen (x_1^*, x_2^*) uusien hintojen voimassa ollessa. Pätee siis $\tilde{m} = p_1'x_1^* + p_2'x_2^* = 3 \cdot 70 + 1 \cdot 100 = 310$. Ratkaistaan piste $(\tilde{x}_1, \tilde{x}_2)$, jonka kuluttaja valitsisi pelkän substituutiovaikutuksen jälkeen. Tämä saadaan ratkaistua käyttäen kysyntäfunktioita: (yleisesti $(\tilde{x}_1, \tilde{x}_2) = (x_1(p_1', p_2', \tilde{m}), x_2(p_1', p_2', \tilde{m}))$

$$(\tilde{x}_1, \tilde{x}_2) = (x_1(3, 1, 310), x_2(3, 1, 310)) = \left(\frac{310}{3} - 25 \cdot \frac{3}{1}, 25 \cdot \frac{3^2}{1}\right) = \left(\frac{85}{3}, 225\right) = \left(28\frac{1}{3}, 225\right).$$

Substituutiovaikutukset ovat
$$\Delta^s(x_1, x_2) = (\tilde{x}_1, \tilde{x}_2) - (x_1^*, x_2^*) = \left(\frac{85}{3}, 225\right) - (70, 100) = \left(-\frac{125}{3}, 125\right).$$

Tulovaikutus: Tulotaso on sama kuin ennen hinnan muutosta eli $m = p_1\omega_1 + p_2\omega_2 = 240$. Ratkaistaan piste $(\mathring{x}_1,\mathring{x}_2)$, jonka kuluttaja valitsisi pelkän substituutiovaikutuksen jälkeen. Tämä saadaan ratkaistua käyttäen kysyntäfunktioita: (yleisesti $(\mathring{x}_1,\mathring{x}_2) = (x_1(p_1',p_2',m),x_2(p_1',p_2',m))$

$$(\mathring{x}_1,\mathring{x}_2) = (x_1(3,1,240), x_2(3,1,240)) = \left(\frac{240}{3} - 25 \cdot \frac{3}{1}, 25 \cdot \frac{3^2}{1}\right) = (5,225)$$

Tulovaikutukset ovat
$$\Delta^t(x_1, x_2) = (\mathring{x}_1, \mathring{x}_2) - (\widetilde{x}_1, \widetilde{x}_2) = (5, 225) - (\frac{85}{3}, 225) = (-\frac{70}{3}, 0)$$
.

Varallisuus-tulovaikutus: $\Delta^v(x_1, x_2) = (x_1', x_2') - (\mathring{x}_1, \mathring{x}_2) = (25, 225) - (5, 225) = (20, 0)$.

(Siis
$$\Delta(x_1, x_2) = \Delta^s(x_1, x_2) + \Delta^t(x_1, x_2) + \Delta^v(x_1, x_2)$$
.)

3.4 Hyötyfunktio $u(c, l) = \alpha \ln(c) + (1 - \alpha) \ln(l)$, $\alpha \in (0, 1)$, jossa c on kulutus ja l vapaaaika.

Normalisoidaan työntekoon käytettävissä oleva aika 1 yksiköön ja kulutuksen hinta 1 (euroon).

- (a) Merkitään työntekoa n. Koska aikaa on käytettävissä 1 yksikkö, niin saadaan aikarajoite n+l=1. Budjettirajoite $n\omega=1\cdot c=c$, sillä tulojen täytyy olla yhtä suuren kuin menot.
- (b) Työntarjonta ratkeaa maksimoimalla hyötyfunktio annetuilla rajoitteilla eli l=1-n ja $c=n\omega$:

$$\max_{n} u(c, l) = \max_{n} u(n\omega, 1 - n) = \max_{n} \left\{ \alpha \ln(n\omega) + (1 - \alpha) \ln(1 - n) \right\}.$$

Funktio $u(n\omega, 1-n)$ on jatkuva ja derivoituva, kun $n \in (0,1)$. Derivaatan nollakohta on mahdollinen maksimipiste. Lasketaan $\frac{\partial}{\partial n}u(n\omega, 1-n) = \alpha\frac{\omega}{n\omega} + (1-\alpha)\frac{-1}{1-n} = 0 \Leftrightarrow \frac{\alpha}{n} = \frac{(1-\alpha)}{1-n} \Leftrightarrow \alpha(1-n) = n(1-\alpha) \Leftrightarrow n = \alpha$. (Olettaen että $n \neq 0$ ja $n \neq 1$.) Koska $\frac{\partial^2}{\partial n^2}u(n\omega, 1-n) = u''(n\omega, 1-n) = -\alpha\frac{1}{n^2} + (1-\alpha)\frac{-1}{(1-n)^2} < 0$ kaikilla $n \in (0,1)$, niin piste $n = \alpha$ maksimoi funktion $u(n\omega, 1-n)$. Työn tarjonta $n = \alpha$.

- (c) Työn tarjonta ei riipu palkasta, ainoastaan parametrista α , joten työn tarjonta ei muutu palkan muuttuessa.
- (d) Uusi budjettirajoite $n\omega + x = c$. Ratkaistaan työntarjonta $\max_{n} u(n\omega + x, 1 n) = \max_{n} \left\{ \alpha \ln(n\omega + x) + (1 \alpha) \ln(1 n) \right\}.$

Oletetaan, että x>0. Funktio $u(n\omega+x,1-n)$ on jatkuva ja derivoituva, kun $n\in[0,1)$. Derivaatan nollakohta on mahdollinen maksimipiste. Lasketaan $\frac{\partial}{\partial n}u(n\omega+x,1-n)=\alpha\frac{\omega}{n\omega+x}+(1-\alpha)\frac{-1}{1-n}=0\Leftrightarrow \frac{\alpha\omega}{n\omega+x}=\frac{(1-\alpha)}{1-n}\Leftrightarrow \alpha\omega(1-n)=(n\omega+x)(1-\alpha)\Leftrightarrow n=\alpha+(\alpha-1)\frac{x}{\omega}.$ (Olettaen että $n\neq 1$.) Koska $\frac{\partial^2}{\partial n^2}u(n\omega+x,1-n)=u''(n\omega+x,1-n)=-\alpha\omega^2\frac{1}{(n\omega+x)^2}-(1-\alpha)\frac{1}{(1-n)^2}<0$ kaikilla $n\in[0,1)$, niin piste $n=\alpha+(\alpha-1)\frac{x}{\omega}$ maksimoi funktion $u(n\omega+x,1-n)$. Työn tarjonta $n=\alpha+(\alpha-1)\frac{x}{\omega}$. Työntarjonta riippuu palkasta. Lasketaan derivaatta $\frac{\partial n}{\partial \omega}$ jotta nähdään miten: $\frac{\partial n}{\partial \omega}=-(\alpha-1)\frac{x}{\omega^2}=(1-\alpha)\frac{x}{\omega^2}>0$ kun $\alpha\in(0,1)$ ja x>0.

Palkan kasvaessa työn tarjonta KASVAA, palkan laskiessa työn tarjonta VÄHE-NEE. HUOM. tässä oli virhe, joka on korjattu 21.10.2016

- 3.5 (a)Herra P:n hyötyfunktio $u(x_1, x_2) = x_1x_2$. Herra P:n budjettirajoite ratkaistaan luennoilla olleen kaavan avulla eli $x_2 = m_2 + (1+r)(m_1 x_1)$, jossa m_1 ja m_2 ovat 1. ja 2. periodin tulot. Nyt $m_2 = 0$ ja $m_1 = m$. Saadaan $x_2 = (1+r)(m-x_1)$. (Huom! Ei voi lainata periodilla 1, sillä ei ole tuloja periodilla 2, jolla lainan voisi maksaa pois.) Tällöin $u(x_1) = x_1 \cdot (1+r)(m-x_1) = (1+r)(mx_1 x_1^2)$. Tämä on alaspäin aukeava paraabeli ja maksimoituu derivaatan nollapisteessä: $u'(x_1) = \underbrace{(1+r)}_{>0; r>-1}$
 - $2x_1) = 0 \Leftrightarrow (m 2x_1) = 0 \Leftrightarrow x_1 = \frac{m}{2}$. Perustellaan, että kyseessä on maksimi: Koska $u''(x_1) = (1+r)(-2) < 0$ aina, kun r > -1 (eli lainan korko pienempi kuin 100%!), niin kyseessä on funktion maksimipiste.

Periodin 1 kulutus $x_1 = \frac{m}{2}$ ja periodin 2 kulutus $x_2 = (1+r)(m-\frac{m}{2}) = (1+r)\frac{m}{2}$.

(b) Nyt m=50000 ja r=0.10. Joten $x_1=25000$ ja $x_2=1.10\cdot 25000=27500$.