

Grupo de Estrutura Eletrônica e Dinâmica Atomística Interdisciplinar (GEEDAI)

Hands-on: Cálculos de Estrutura Eletrônica Utilizando o Quantum Espresso em CPU/GPU

Caique Campos, Lanna Lucchetti, Bruno Ipaves

Visão Geral

- Brevíssima Revisão Teórica;
- Rodando o Quantum Espresso no Cluster Carbono/Titânio;
- Explicando o procedimento e os Inputs;
- Pós-processamento dos dados;
- Conclusão;

Equação de Schrödinger

$$H\Psi(\{r_i\},\{R_I\})=E\,\Psi(\{r_i\},\{R_I\})$$
 $H=T_{
m e}+T_{
m N}+V_{
m eN}+V_{
m ee}+V_{
m NN}$
 $H=T_{
m e}+T_{
m N}+V_{
m en}+V_{
m ee}+V_{
m NN}$
 $H=T_{
m e}+T_{
m N}+V_{
m en}+V_{
m en}+V_{
m ee}+V_{
m ee}+V_{
m en}$

Aproximação de Born-Oppenheimer

$$\Psi\Big(\{ec{r_i}\},\{ec{R_I}\}\Big)\,=\,\psi(ec{R_I})\cdot\,\psi(ec{r_i})$$

$$H_e \psi(ec{r_i}) \,=\, E \psi(ec{r_i})$$

$$H_e = -\frac{1}{2} \sum_i \nabla_i^2 + \frac{1}{2} \sum_{j \neq i} \frac{1}{|\vec{r_i} - \vec{r_j}|} - \sum_i \sum_I \frac{Z_I}{\left|\vec{r_i} - \vec{R_I}\right|}$$

M. Born and J. R. Oppenheimer, Ann. Phys. Leipizig 84, 457 (1927)

CO₂: 6+8+8 = 22 elétrons 3 coordenadas espaciais por elétrons Problema de 66 dimensões

Teoria do Funcional da Densidade (DFT)

Cada quantidade observável de um sistema quântico pode ser calculada apenas a partir da densidade do sistema.

$$n(ec{r}) = \Psi^*(ec{r_1}\,,\,ec{r_2},\,\ldots\,,\,ec{r_N})\Psi(ec{r_1}\,,\,ec{r_2},\,\ldots\,,\,ec{r_N})$$
 Dimensões 3N são reduzidas para 3

P. Hohenberg and W. Kohn, PR 136, B864 (1964)

Esquema Kohn-Sham (KS)

A densidade das partículas interagindo entre si pode ser calculada como a densidade de um sistema auxiliar de partículas não interagentes

De um problema de muitos elétrons para Muitos problemas de UM elétron

W. Kohn and L. Sham, PR 140, A1133 (1965)

Equações de Kohn-Sham (KS)

Implementações de DFT:

→ Particularidades: Bases utilizadas para os orbitais de Kohn-Sham, Funcionais e Descrição dos elétrons.

Bases Numéricas/Atômicas:

Bases Gaussianas:

Ondas Planas:

Ferramenta Computacional: Quantum Espresso

→ Conjunto de códigos computationais open-source integrados para cálculos de estrutura eletrônica em escala nanométrica, baseado na Teoria do Funcional da Densidade, ondas planas e pseudopotenciais.

- → Funcionalidades:
 - Cálculos de estado fundamental (Densidade e Estrutura eletrônica);
 - Otimização estrutural (BOMD, AIMD, NEB);
 - ◆ Teoria de Perturbação (DFT+U, Phonons);
 - Propriedades Espectroscópicas (espectro de absorção de raios-x, EELS, Estados excitados, etc);
 - Transporte quântico;

- **→** Vantagens:
 - Código aberto (gratuito!);
 - Documentação accesível;
 - Comunidade ativa;

Aplicação: Estrutura Eletrônica do Grafeno

Grafeno é um material 2D material feito de átomos de carbono com hibrização sp2:

- Excelentes propriedades mecânicas e eletrônicas;
- Alta condutividade térmica;
- → Aplicações em catálise, sensores de gases, revestimentos, etc.

→ **Física do estado sólido:** As propriedades eletrônicas de sólidos cristalinos podem ser obtidas a partir de sua menor representação - a célula unitária:

 No espaço recíproco, a célula unitária dá origem às zonas de Brillouin:

HEX path: Γ -M-K- Γ -A-L-H-A|L-M|K-H

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

- → PWSCF.x: Otimização estrutural, densidade eletrônica, autovalores de energias para os pontos no espaço recíproco (bandas);
- → BANDS.X: Extração dos autovalores de energia e respectivos e pontos do espaço recíproco;
- → PROJWFC.x: Cálculo de densidade de estados e projeção das funções de onda nos orbitais atômicos;
- → PYTHON: Pós-processamento;

Pós-processamento

PWSCF.x: Densidade eletrônica, energias para os pontos no espaço recíproco (k)

SCF

→ Input:

Informações estruturais, Parametros físicos, Parâmetros computationais.

→ Output:

Funções de onda, Densidade eletrônica, Energias e forças **NSCF**

→ Input:

Funções de onda previamente calculadas;

→ Output:

Autovalores das bandas em cada ponto (k) do espaço recíproco.

BANDS

→ Input:

Funções de onda previamente calculadas;

→ Output:

Autovalores de energia ao longo de um caminho que passa pelos pontos de alta simetria da estrutura.

BANDS.x e PROJWFC.x: Arquivos para pós-processamento e densidade de estados

BANDS

→ Input:

Funções de onda; Caminho ao longo dos pontos de alta simetria na BZ;

→ Output:

Autovalores de energia e respectivos pontos no espaço recíproco ordenados;

PROJWFC

→ Input:

Funções de onda previamente calculadas;

→ Output:

Autovalores de energia e densidade de estados (D(E)) total e projetados ao longo de orbitais;

Pós-processamento

- → Python:
- Numpy;
- Matplotlib;
- Pandas;

- → Mão na massa!
- → Todos os inputs do espresso e scripts para o cluster estão disponíveis no GitHub: https://github.com/Oliveiras96/Tutorial-espresso-2023/blob/master/README.md

Este tutorial é parte do workshop ministrado pelo <u>Grupo de Estrutura Eletrônica e Dinâmica Atomística Interdisciplinar</u> no CCC realizado na UFABC em Dezembro de 2023. O intuito é fornecer uma base para a utilização do software <u>Quantum Espresso</u> no cluster <u>Carbono</u>. O tutorial será divido em duas partes, a primeira consiste em um tutorial de como utilizar o QE para cálculos de otimização estrutural e estrutura eletrônica. Já a segunda parte é focada na utilização do cluster para a realização das simulações. Todos os inputs e scripts utilizados para realizar este tutorial podem ser encontrados neste repositório: (i) inputs do espresso para os cálculos de otimização estrutural e estrutura eletrônica podem ser encontrados em <u>structure-optimization</u> e <u>eletronic-structure-new</u>, respectivamente. (ii) Os script para submissão de jobs no cluster Carbono podem er encontrados em <u>SLURM</u>. (iii) Os scripts de pós-processamento estão em <u>post-processing</u>.

Parte 1: Cálculos de Otimização Estrutural e Estrutura Eletrônica com o Quantum Espresso

Parte 2: Utilizando o Cluster Carbono para Realização das Simulações

