INF623

2024/1

Inteligência Artificial

A24: Aprendizado supervisionado

Plano de aula

- Aprendizado supervisionado
- Espaço de classes e características
- Classificação vs. Regressão
- Espaço de hipóteses
- ▶ Funções de perda
- ▶ Generalização: subajuste vs. sobreajuste

Exemplo 1: detecção de spam

Considere o problema de identificar se um determinado email é spam ou não. Como você escreveria um algoritmo para resolver esse problema?

Agentes racionais de aprendizado supervisionado

Para resolver problemas desse tipo, um agente assume que o mundo é representado por uma distribuição desconhecida P(X,Y), e que o **objetivo é encontrar uma função** h a partir de um **conjunto de dados** D, tal que, para um novo exemplo $(x',y') \notin D$ amostrado de P, temos $h(x) \approx y'$

- ▶ 0 conjunto de dados D é composto por exemplos (x, y), onde x é um vetor de características e y é um rótulo (ou classe)
- \blacktriangleright A função $\hat{y}=h(x)$ mapeia vetores de entrada x em rótulos \hat{y} (previsão)
- Queremos encontrar a função h(x) commenor **erro** de previsão em exemplos novos $(x',y') \not\in D$

Formalização de aprendizado supervisionado

Um problema de **aprendizado supervisionado** pode ser formalmente definido por:

- ▶ Um conjunto de dados $D = \{(x_1, y_1), ..., (x_m, y_m)\} \subseteq \mathbb{R}^d \times C$, onde:
 - $\blacktriangleright x_i$ é o vetor de características do i-ésimo exemplo
 - $ightharpoonup y_i$ é o rótulo (ou classe) do i-ésimo exemplo
 - $\blacktriangleright \mathbb{R}^d$ é o espaço de características
 - $lackbox{\ } C$ é o espaço de classes

Exemplos de espaços de classes

$$D = \{(x_1, y_1), ..., (x_m, y_m)\} \subseteq \mathbb{R}^d \times C$$

Não Spam

Olá, Lucas

Seguem os dados da sua compra: VIACAO PASSARO VERDE Origem: Belo Horizonte Destino: Viçosa

Detecção de Spam

Classificação binária $C = \{0,1\}$

Reconhecimento de Dígitos Manuscritos

Classificação multi-classe $C = \{0,1,2,3,4,5,6,7,8,9\}$

Previsão de Preços de Imóveis

Regressão C = Conjunto dos Reais (R)

Exemplos de vetores de características

$$D = \{(x_1, y_1), ..., (x_m, y_m)\} \subseteq \mathbb{R}^d \times C$$

Não Spam

Olá, Lucas

Seguem os dados da sua compra: VIACAO PASSARO VERDE Origem: Belo Horizonte Destino: Viçosa

Texto (não estruturado)

 x_i : número de ocorrências da i-ésima palavra de um dicionário d ~ 100.000 - 10M

Imagem (não estruturado)

 x_i : valor do i-ésimo pixel da imagem achatada d ~ 100.000 - 10M

Dados Tabulares (Estruturados)

 x_i : valor da i-ésima coluna de uma tabela

 x_1 : tamanho, x_2 : localização, ..., x_n : número de quartos d igual ao número de colunas

Classificação vs Regressão

$$D = \{(x_1, y_1), ..., (x_m, y_m)\} \subseteq \mathbb{R}^d \times C$$

Classificação

Encontrar uma função (e.g., linear) que separa as classes da melhor forma.

Regressão

Encontrar uma função (e.g., linear) que se ajusta melhor aos dados

Espaço de hipóteses

O espaço de hipóteses H define o conjunto de funções que um algoritmo de aprendizado supervisionado pode encontrar.

Exemplos:

Senoide $h(x) = w_1 x + sin(w_0 x)$

Polinômio de grau 12

$$h(x) = \sum_{i=0}^{12} w_i x^i$$

Espaço de hipóteses

Assumindo, por exemplo, uma reta como hipótese, precisamos ajustar os parâmetros w_1 e w_0 para minimizar o erro no conjunto de dados D.

Polinômio de grau 12 $h(x) = \sum_{i=0}^{12} w_i x^i$

Função de perda

A função da perda L avalia uma hipótese $h \in H$ com o conjunto de dados $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$:

- lacktriangle Mede o quão distantes as previsões de $h(x_i)$ estão dos rótulos y_i dos exemplos (x_i,y_i) em D:
- \blacktriangleright Os valores de perda L(h) são sempre positivos;
- \blacktriangleright Quanto menor a perda L(h), melhor a hipótese h;
- \blacktriangleright Uma hipótese com perda L(h)=0 (zero) acerta o rótulo de todos os exemplos em D;
- lacktriangle Tipicamente, a função de perda L é normalizada para que o seu valor seja independente do tamanho m do conjunto de dados.

Exemplos:

- Perda Zero-um
- Perda Quadrática
- Perta Absoluta

Exemplo de função de perda: zero-um

O número de erros que uma hipótese h comete nos exemplos de D.

$$L(h) = \frac{1}{m} \sum_{i=1}^{n} \delta_{h(x_i) \neq y_i} \text{ onde } \delta_{h(x_i) \neq y_i} = \begin{cases} 1, & \text{se } h(x_i) \neq y_i \\ 0, & \text{caso contrário} \end{cases}$$

- Geralmente utilizada para avaliar hipóteses em problemas de classificação
- Não é utilizada para treinar uma hipótese, pois não é diferenciável

Exemplo de função de perda: quadrática

A soma do erro quadrático $(h(x_i) - y_i)^2$ da hipótese h nos exemplos de D.

$$L(h) = \frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

- lacktriangle Geralmente utilizada para treinar uma hipótese h em problemas de regressão
- lacktriangle Elevar o erro ao quadrado faz com que exemplos com erros mais altos tenham maior influência no ajuste dos pesos de h

Exemplo de função de perda: absoluta

A soma do erro absoluto $|h(x_i) - y_i|$ da hipótese h nos exemplos de D.

$$L(h) = \frac{1}{m} \sum_{i=1}^{m} |h(x_i) - y_i|$$

- lacktriangle Geralmente utilizada para treinar uma hipótese h em problemas de regressão
- Exemplos têm influência uniforme no ajuste dos pesos
- Adequada para lidar com ruído nos dados (outliers)

Generalização

Dado um espaço de hipóteses H e uma função de perda L, queremos encontrar a hipótese $h \in H$:

$$h = argmin_{h \in H} L(h)$$

Se encontrarmos uma hipótese $h \in H$ com baixa perda em D, como saber se ela também terá baixa perda em novos exemplos $(x', y') \notin D$?

Generalização

Considere a seguinte função "memorizadora":

$$h(x) = \begin{cases} y_i, & \text{se } \exists (x_i, y_i) \in D, \text{tal que}, x = x_i \\ 0, & \text{caso contrário} \end{cases}$$

- ▶ Perda 0 nos exemplos de D;
- ▶ Perda muito alta em exemplos novos!

Esse problema é chamado de **sobreajuste** (overfit)!

Subajuste e sobreajuste

Para resolver o problema de sobreajuste, dividimos o conjunto de dados D em três (3) subconjuntos disjuntos D_{tr} , D_{va} e D_{te} :

Hipótese h com erro alto em D_{tr} \longrightarrow Esse problema é chamado de **subajuste!**

Esse problema é chamado de **sobreajuste!**

Subajuste (classificação)

Quando a hipótese se ajusta pouco aos dados de treinamento, aprensentando baixo desempenho de previsão tanto no conjunto de treinamento quanto no de teste.

Sobreajuste (classificação)

Quando a hipótese se ajusta muito aos dados de treinamento, aprensentando alto desempenho de previsão no conjunto de treinamento, mas baixo no conjunto de teste.

Ajuste adequado (classificação)

Quando a hipótese se ajusta bem aos dados de treinamento, aprensentando alto desempenho de previsão tanto no conjunto de treinamento quanto no de teste.

Generalização

Em aprendizado supervisionado, assumimos três condições sobre o conjunto de dados D:

- 1. Os exemplos são amostrados de forma independente e identicamente distribuída (i.i.d) de P(X, Y);
- 2. A distribuição P(X, Y) é **estacionária**: não muda ao longo do tempo;
- 3. Sempre amostramos da **mesma distribuição** P(X,Y), tanto no conjunto de treinamento, quandos nos de validação e teste.

Algoritmos de aprendizado supervisionado

Para encontrar uma função h, um **algoritmo de aprendizado supervisionado** precisa assumir um pressuposto (hipótese) sobre os dados para definir um espaço de funções H restrito que possibilite a busca.

Algorítmos de aprendizado supervisionado

- k-Nearest Neighbors (KNN)
- Naive bayes
- Árvores de decisão
- Suport vector machines (SVMs)
- Regressão linear
- Regressão logística
- Redes neurais

Próxima aula

A25: Aprendizado supervisionado 2

Naive bayes, K-nearest neighbors (kNN) e avaliações de modelos

