Development of hybrid finite element/neural network methods to help create digital surgical twins

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK Michel DUPREZ Vanessa LLERAS

June 14, 2024

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Current Objective : Develop hybrid | finite element | / neural network | methods.

accurate

quick + parameterized

 ϕ -**FEM**: New fictitious domain finite element method.

⇒ domain given by a level-set function [Duprez and Lozinski, 2020]

Outline

Two lines of research:

- 1. How to deal with complex geometry in PINNs?
- 2. Once we have the prediction, how can we improve it (using FEM-type methods)?

Poisson problem with Dirichlet conditions:

Find $u:\Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} -\Delta u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \Gamma \end{cases}$$
 (P)

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

How to deal with complex geometry in PINNs?

Standard PINNs

Implicit neural representation.

$$u_{\theta}(x) = u_{NN}(x)$$

with u_{NN} a neural network (e.g. a MLP).

DoFs Minimization Problem: [Raissi et al., 2019]

Considering the least-square form of (\mathcal{P}) , our discrete problem is

$$\bar{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^m} \alpha J_{in}(\theta) + \beta J_{bc}(\theta)$$

with m the number of parameters of the NN and

$$J_{in}(heta) = rac{1}{2} \int_{\Omega} (\Delta u_{ heta} + f)^2$$
 and $J_{bc}(heta) = rac{1}{2} \int_{\partial \Omega} (u_{ heta} - g)^2$

Monte-Carlo method: Discretize the cost function by random process.

Limits

Claim on PINNs: No mesh, so easy to go on complex geometry!

<u>MIN practice</u>: Not so easy! We need to find how to sample in the geometry.

Solution: Approach by levelset. [Sukumar and Srivastava, 2022]

Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC :

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

(→ Can be used for ϕ -FEM)

Natural LevelSet:

Signed Distance Function (SDF)

Problem : SDF is a \mathcal{C}^0 function

- \Rightarrow its derivatives explode
- ⇒ we need a regular levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(x)|| \\ \phi(x) = \\ \nabla \phi(x) \end{cases}$$

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How to do that? with a PINNs [Clémot and Digne, 2023] by adding a regularization term,

$$J_{ extit{reg}} = \int_{\mathcal{O}} |\Delta \phi|^2$$

loss history

Remark: PINNs non parametric - 1 geometry

Poisson On Cat

- ightharpoonup Solving (\mathcal{P}) with f=1 (non parametric) and homogeneous Dirichlet BC (g=0).
- \rightarrow Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

Remark: Poisson on Bean Appendix 3

How improve PINNs prediction?

 \wedge Considering simple geometry (i.e analytic levelset ϕ).

(and g)

Get PINNs prediction 1 Geometry + 1 Force

Correct prediction with FFM $u_{NN} \rightarrow \tilde{u} = u_{NN} + \tilde{c}$

Correct by adding : Considering u_{NN} as the prediction of our PINNs for (\mathcal{P}) , the correction problem consists in writing the solution as

$$\tilde{u} = u_{NN} + \tilde{c}$$

 $u_{NN} = g \text{ on } \Gamma$

and searching $\tilde{C}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{\mathbf{C}} = \tilde{\mathbf{f}}, & \text{in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{on } \Gamma, \end{cases}$$

with
$$\tilde{f} = f + \Delta u_{NN}$$
. (Appendix 1) (Appendix 5)

Solving (\mathcal{P}) with homogeneous Dirichlet BC (g=0).

- \rightarrow Domain (fixed): $\Omega = [-0.5\pi, 0.5\pi]^2$
- → Analytical levelset function :

$$\phi(x,y) = (x - 0.5\pi)(x + 0.5\pi)(y - 0.5\pi)(y + 0.5\pi)$$

→ Analytical solution :

$$u_{ex}(x,y) = \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2}\right)\sin(2x)\sin(2y)$$

with $\mu_1, \mu_2 \in [-0.5, 0.5]$ (parametric).

Taking $\mu_1 = 0.05$, $\mu_2 = 0.22$, the solution is given by

Theoretical results

Theorem 1: [Lecourtier et al., in progress]

We denote u the solution of (\mathcal{P}) and u_h the discrete solution of the correction problem (10) with V_h a \mathbb{P}_k Lagrange space. Thus

$$||u - u_h||_0 \le \frac{|u - u_\theta|_{\mu^{k+1}}}{|u|_{\mu^{k+1}}} \left(\frac{\gamma}{\alpha} C h^{k+1} |u|_{\mu^{k+1}}\right)$$

with α and γ respectively the coercivity and continuity constant.

Taking
$$\mu_1=0.05, \mu_2=0.22.$$
 $L^2 \text{ error on } N$

FEM P1 - Add P1 - FEM P2 - Add P2 - FEM P3 - Add P3

Remark: We note N the number of nodes in each direction of the square.

Gains using our approach

Considering a set of $n_{\it p}=50$ parameters : $\Big\{(\mu_1^{(1)},\mu_2^{(1)}),\ldots,(\mu_1^{(n_{\it p})},\mu_2^{(n_{\it p})})\Big\}.$

Solution ₽1

		Gains o	a PINN:	s					
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	15.7	48.35	33.64	5.57	134.31	377.36	269.4	43.67	
40	61.47	195.75	135.41	23.21	131.18	362.09	262.12	41.67	

Solution \mathbb{P}_2

	Gains on PINNs					Gains on FEM			
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	244.81	996.23	655.08	153.63	67.12	165.13	135.21	21.37	
40	2.056.2	8.345.4	5.504.89	1.287.16	66.52	159.73	132.05	20.38	

Solution \mathbb{P}_3

	Gains on PINNs				Gains on FEM			
\mathbf{N}	min	max	mean	std	min	max	mean	std
20	2,804.27	11,797.23	7,607.51	1,780.7	39.72	72.99	61.85	7.05
40	50,989.23	212,714.99	137,711.77	$32,\!125.57$	40.02	73	61.98	6.92

Taking $\mu_1 = 0.05, \mu_2 = 0.22$.

	ľ	N	time (s)		
Precision	FEM	Add	FEM	Add	
1e – 3	120	8	43	0.24	
1e-4	373	25	423.89	1.93	
			t _{FEM}	t _{Add}	

Question : Where is the PINNs training time ? $t_{PINNs} \approx 240 \mathrm{s}$

Time/Precision II

Taking a set of n_p parameters $\{(\mu_1^{(1)}, \mu_2^{(1)}), \dots, (\mu_1^{(n_p)}, \mu_2^{(n_p)})\}$.

The time of our approach (including the PINNs training) to solve n_p problems is

$$Tot_{Add} = t_{PINNs} + n_p t_{Add}$$

and the time of FFM is

$$Tot_{FEM} = n_p t_{FEM}$$
.

Let's suppose we want to achieve an error of 1e-3.

To solve n_p problems, our method is faster than FEM (when considering network training time) if

$$Tot_{Add} < Tot_{FEM} \Rightarrow n_p > \frac{t_{PINNs}}{t_{FEM} - t_{Add}} \approx 5.61 \Rightarrow n_p = 6$$

Remark: Considering that the times are of the same order for each parameter considered.

Conclusion

Conclusion

Current progress:

- → Levelset learning works on complex geometries Advantage: enables "exact" imposition of BC in PINNs
- → Additive approach works on simple geometries Advantage (compared with standard FEM):
 - More accurate solution (smaller error)
 - Better execution time

Perspectives:

- → Working on parametric models for Levelset learning
- → Combine the 2 axis to improve NN predictions on complex geometries Appendix 4
- \rightarrow Use ϕ -FEM (fictitious domain method) to improve NN predictions *Advantage*: The levelset learned by PINNs can be used in ϕ -FEM
- → Start considering 3D cases

Teaching at the university

- ▶ 16h of Computer Science Practical Work (Python) L2S3
- 34h of Computer Science Practical Work (C++) L3S6

Formations (Total : $\approx 65h$)

- "Charte de déontologie des métiers de la Recherche" (OBLIGATORY)
- MOOC Bordeaux "Intégrité scientifique dans les métiers de la recherche" (OBLIGATORY)
- "Enseigner et apprendre (public : mission enseignement)"
- "Gérer ses ressources bibliographiques avec Zotero"
- 3 Workshops on EDP at IRMA
- ▶ 19 Remote Sessions (≈ 40h) "Formation Introduction au Deep Leraning" (FIDLE)

Supplementary work II

Talks

- Team meeting (Mimesis) December 12, 2023 "Development of hybrid finite element/neural network methods to help create digital surgical twins"
- Retreat (Macaron/Tonus) February 6, 2024
 "Mesh-based methods and physically informed learning"
- Exama project, WP2 reunion March 26, 2024 "How to work with complex geometries in PINNs?"

Publications

Lecourtier, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac. Enhanced finite element methods using neural networks. in progress.

Coming soon...

▶ July 8 - 12, 2024 - Poster for a Workshop on Scientific Machine Learning (SciML 2024)

Thank you!

Bibliography

- Clémot and Digne. Neural skeleton: Implicit neural representation away from the surface. Computers and Graphics, 2023.
- Cotin, Duprez, Lleras, Lozinski, and Vuillemot. ϕ -fem: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer. 2021
- Duprez and Lozinski. ϕ -fem: A Finite Element Method on Domains Defined by Level-Sets. SIAM Journal on Numerical Analysis, 2020.
- Duprez, Lleras, and Lozinski. A new ϕ -fem approach for problems with natural boundary conditions, 2020.
- Duprez, Lleras, and Lozinski. ϕ -fem: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis. 2023.
- Raissi, Perdikaris, and Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 2019.
- Sukumar and Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 2022.
- **Lecourtier**, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac. Enhanced finite element methods using neural networks. in progress.

Appendix 2 : φ-FEM 000000

Appendix 1: Standard FEM

Appendix 1: General Idea

Variational Problem : Find $u \in V \mid a(u, v) = I(v), \ \forall v \in V$ with V - Hilbert space, a - bilinear form, I - linear form.

Approach Problem : Find $u_h \in V_h \mid a(u_h, v_h) = I(v_h), \ \forall v_h \in V_h$ with $\bullet u_h \in V_h$ an approximate solution of u, $\bullet V_h \subset V$, $dimV_h = N_h < \infty$, $(\forall h > 0)$

 \Rightarrow Construct a piecewise continuous functions space

$$V_h := P_{C,h}^k = \{v_h \in C^0(\bar{\Omega}), \forall K \in \mathcal{T}_h, v_{h|K} \in \mathbb{P}_k\}$$

T

$$\mathcal{T}_h = \{\mathit{K}_1, \ldots, \mathit{K}_{\mathit{N}_e}\}$$

where \mathbb{P}_k is the vector space of polynomials of total degree $\leq k$.

Finding an approximation of the PDE solution \Rightarrow solving the following linear system:

$$AU = b$$

with

$$A = (a(\varphi_i, \varphi_j))_{1 \leq i, j \leq N_h}, \quad U = (u_i)_{1 \leq i \leq N_h} \quad \text{and} \quad b = (I(\varphi_j))_{1 \leq j \leq N_h}$$

where $(\varphi_1, \ldots, \varphi_{N_h})$ is a basis of V_h .

MIMESIS

0 000 00 00

Appendix 2 : ϕ -FEM

Appendix 2: Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

where ϕ is the level-set function and Ω and Γ are given by :

The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g, the boundary conditions are respected.

Appendix 2: Fictitious domain

- \rightarrow ϕ_h : approximation of ϕ
- $ightarrow \Gamma_{\it h} = \{\phi_{\it h} = 0\}$: approximate boundary of Γ
- $\rightarrow \Omega_h$: computational mesh
- \rightarrow $\partial\Omega_h$: boundary of Ω_h ($\partial\Omega_h\neq\Gamma_h$)

Remark: nvert will denote the number of vertices in each direction

Appendix 2: Facets and Cells sets

- $ightarrow \, \mathcal{T}^{\Gamma}_{\it h}$: mesh elements cut by $\Gamma_{\it h}$
- $\rightarrow \mathcal{F}_h^{\Gamma}$: collects the interior facets of \mathcal{T}_h^{Γ} (either cut by Γ_h or belonging to a cut mesh element)

Appendix 2: Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w,v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + \boxed{G_h(w,v)},$$

$$I_h(v) = \int_{\Omega_h} f \phi_h v + \boxed{G_h^{rhs}(v)}$$

Stabilization terms

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_T} \in \mathbb{P}_k(T), \ \forall T \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Appendix 2: Stabilization terms

Independent parameter of h Jump on the interface E
$$G_h(w,v) = \left[\begin{array}{c} \sigma h \sum_{E \in \mathcal{F}_h^{\Gamma}} \int_{\mathcal{E}} \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} \Delta(\phi_h w) \Delta(\phi_h v) \right] \\ 1^{\text{st}} \text{ order term} \\ G_h^{\textit{rhs}}(v) = \left[-\sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} f \Delta(\phi_h v) \right] \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w)$$

<u>1st term</u>: ensure continuity of the solution by penalizing gradient jumps.

→ Ghost penalty [Burman, 2010]

<u>2nd term</u>: require the solution to verify the strong form on Ω_h^{Γ} .

Purpose:

- → reduce the errors created by the "fictitious" boundary
- → ensure the correct condition number of the finite element matrix
- → restore the coercivity of the bilinear scheme

Other results

Poisson on Bean Additive approach on Cat Multiplicative approach

Appendix 2 : φ-FEM 000000

Other results

Poisson on Bean

Additive approach on Cat Multiplicative approach

Appendix 3: Learn a levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How make that? with a PINNs [Clémot and Digne, 2023] by adding a term to regularize.

$$J_{
m reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

Appendix 3: Poisson 2D

- \rightarrow Solving the Poisson problem with f=1 and homogeneous Dirichlet BC.
- \rightarrow Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

Other results

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Appendix 4 : Add on Cat

Other results

Poisson on Bean Additive approach on Cat Multiplicative approach

Appendix 5: Multiplicative approach

Correct by multiplying : Considering u_{NN} as the prediction of our PINNs for (\mathcal{P}) , we define

$$u_M = u_{NN} + M$$

with M a constant chosen so that $u_M > 0$, called the enhancement constant. Thus, the correction problem consists in writing the solution as

$$\tilde{u} = u_{M} \times \boxed{\tilde{C}}_{\approx 1}$$

and searching $\widetilde{\mathbf{C}}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(u_{\scriptscriptstyle M}\tilde{c}) = f, & \text{in } \Omega, \\ \tilde{c} = 1, & \text{on } \Gamma. \end{cases}$$