Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

_.

Among the following, which ones are "hyperparameters"? (Check all that apply.)

$lue{}$ number of layers L in the neural n	etwork
--	--------

Correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions	activation values $a^{[l]}$			
	Un-selected is correct			
	number of iterations Correct			
	$lacksquare$ bias vectors $b^{[l]}$			
	Un-selected is correct			
	size of the hidden layers $n^{[l]}$			
	Correct			
	lacksquare learning rate $lpha$			
	Correct			
	weight matrices $W^{[l]}$			
	Un-selected is correct			
	1/1 points			
	3. Which of the following statements is true?			
	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.			
	Correct			

Quiz, 10 questions

1/1 points

4

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1],
```

 $\text{Key concepts on Deep Neural works}_{3} = \underset{\text{parameter [b] + str(i)] = np.random.randn(layers[i], 1) * 0.010/10 points (100%)}{}$

Quiz, 10 questions

Correct

1/1 points

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

\bigcirc	The number of layers L is 3. The number of hidden layers is 3.
	The number of layers \boldsymbol{L} is 4. The number of hidden layers is 4.
	The number of layers \boldsymbol{L} is 5. The number of hidden layers is 4.

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions 7.

During forward propagation, in the forward function for a layer \emph{l} you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

0	True
duri	ect as you've seen in the week 3 each activation has a different derivative. Thus, ng backpropagation you need to know which activation was used in the vard propagation to be able to compute the correct derivative.
	False
~	1/1 points
8. There	are certain functions with the following properties:
(where	ompute the function using a shallow network circuit, you will need a large network we measure size by the number of logic gates in the network), but (ii) To compute g a deep network circuit, you need only an exponentially smaller network.
0	True
Corr	ect
	False
•	1/1 points

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions $oldsymbol{\chi}_1^{(i)}$

Which of the following statements are True? (Check all that apply).

 $igwedge W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $igcup b^{[1]}$ will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $oxed{ } W^{[1]}$ will have shape (3, 4)

Un-selected is correct

 $igcup b^{[1]}$ will have shape (3, 1)

Un-selected is correct

 $oxed{ W^{[2]}}$ will have shape (3, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Key concep Quiz, 10 questions	$b^{[2]}$ will have shape (1, 1) ts on Deep Neural Networks Un-selected is correct	10/10 points (100%)
	$W^{[2]}$ will have shape (3, 1)	
	Un-selected is correct	
	$b^{[2]}$ will have shape (3, 1)	
	Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{[3]}$ will have shape (3, 1)	
	Un-selected is correct	
	$b^{[3]}$ will have shape (1, 1)	
	Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{[3]}$ will have shape (1, 3)	
	Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$	
	$b^{[3]}$ will have shape (3, 1)	
	Un-selected is correct	
•	1/1 points	
	l 0. Vhereas the previous question used a specific network, in the general case what is t	:he

dimension of W^{[l]}, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

Key concep	$W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$ ots on Deep Neural Networks has shape $(n^{[l]}, n^{[l]})$	10/10 points (100%)
	Correct True	
	$W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$	

ro ro