## Diagrammatic Design of Ansätze for Quantum Chemistry



Ayman El Amrani St. John's College

A thesis submitted for the Honour School of Chemistry

Part II 2024

Pour ma mère et mon père. Merci de m'avoir amené jusqu'ici.

# Acknowledgements

Thank you Thomas Cervoni for your constant motivation and support.

Thank you David Tew and Stefano Gogioso for your patient supervision.

Thank you Razin Shaikh, Boldizsár Poór, Richie Yeung and Harny Wang for always finding the time to answer my questions.

Thank you to my friends and family for supporting me during this unconvential Master's.

## Summary

A central challenge in computational quantum chemistry is the accurate simulation of fermionic systems. At the heart of these calculations lies the need to solve the Schrödinger equation to determine the many-electron wavefunction. An exact solution to this problem scales exponentially with the number of electrons. Classical computers struggle to store the increasingly large wavefunctions making this problem computationally intractable in many cases. In contrast, gate-based quantum computing presents a promising solution, offering the potential to represent electronic wavefunctions with polynomially scaling resources [1]. In other words, quantum computers are a natural tool of choice for simulating processes that are inherently quantum [2].

In the last two decades many advancements in quantum computing have been made in both hardware and software bringing us closer to being able to simulate molecular systems. Despite these advancements, we remain in the so-called Noisy Intermediate Scale Quantum (NISQ) era, characterised by challenges such as poor qubit fidelity, low qubit connectivity and limited coherence times. The NISQ era represents a transitional phase in quantum computing, where quantum devices are not yet error-corrected but are still capable of performing computations beyond the reach of classical computers. Overcoming the limitations of the NISQ era is crucial for realising the full potential of quantum computing in various fields, including quantum chemistry and materials science.

The Variational Quantum Eigensolver (VQE) algorithm is a method used to estimate the ground state energy of a molecular Hamiltonian by preparing a trial wavefunction, calculating its energy, and optimising the wavefunction parameters classically until the energy converges to the best approximation for the ground state energy [3]. It is recognised as a leading algorithm for quantum simulation on NISQ devices due to its reduced resource requirements in terms of qubit count and coherence time [4].

This thesis extends methods developed by Richie Yeung [2] for the preparation and analysis of parametrised quantum circuits, and applies them to ansätze representing fermionic wavefunctions. We are concerned with two main questions on this theme. Firstly, can we use the ZX calculus [cite] to gain insights into the structure of the unitary product ansatz in the context of variational algorithms for quantum chemistry? Secondly, in the context of NISQ devices, can we use these insights to build better ansätze with reduced circuit depth and more efficient resources?

# Contents

| 1            | Background |                             | 1 |
|--------------|------------|-----------------------------|---|
|              | 1.1        | Fermionic Simulation Scheme | 1 |
|              | 1.2        | Second Quantisation         | 3 |
| Appendices   |            |                             |   |
| Bibliography |            |                             | 7 |

## Chapter 1

## Background

In this chapter, we will discuss the methods required to simulate fermionic systems on a quantum computer. Starting with the Hamiltonian of the system, we will introduce the second quantisation, unitary coupled cluster theory and finally a variational quantum algorithm known as the Variational Quantum Eigensolver.

### 1.1 Fermionic Simulation Scheme

- hamiltonian in first quantisation
- born oppenheimer approximation
- hamiltonian in second quantisation
- anti commutation relations of creation/annhilation operators
- introduction to unitary coupled cluster theory

In order to simulate a fermionic system on a quantum computer, we must map the fermionic state to a qubit state. This is usually done using the occupation number representation [REF SECTION]. We then act on the qubit state with unitary operations that represent the fermionic operations. In order not to violate the Pauli principle, we must choose a fermion-qubit mapping that preserves the fermionic anti-commutation relations. The most common mapping, and the one used throughout this text, is known as the Jordan-Wigner transformation [REF

SECTION]. Then, by acting on the qubit state with the unitary qubit operator, we obtain the resultant qubit state, which in the occupation number representation, simply represents the fermionic wavefunction.

A successful simulation scheme is one that reproduces the action of the fermionic operator [CITE BRAVYI-KITAEV PAPER].

## 1.2 Second Quantisation

test

In second quantisation, both observables and states (by acting on the vacuum state) are represented by operators, namely the creation and annhilation operators [5]. In contrast to the standard formulation of quantum mechanics, operators in second quantisation incorporate the relevant Bose or Fermi statistics each time they act on a state, circumventing the need to keep track of symmetrised or antisymmetrised products of single-particle wavefunctions [6]. Put differently, the antisymmetry of an electronic wavefunction simply follows from the algebra of the creation and annhilation operators [5], which greatly simplifies the discussion of systems of many identical interacting fermions [6].

### Occupation Number Representation

The Fock space is a linear abstract vector space spanned by N orthonormal occupation number vectors [5], each representing a single Slater determinant. Hence, given a basis of N spin orbitals we can construct  $2^N$  single Slater determinants, each corresponding to a single occupation number vector in the full Fock space.

The occupation number vector for fermionic systems is succinctly denoted in Dirac notation as below, where the occupation number  $f_j$  is 1 if spin orbital j is occupied, and 0 if spin orbital j is unnoccupied.

$$|\psi\rangle = |f_{n-1}| f_{n-2} \dots f_1| f_0\rangle$$
 where  $f_j \in 0, 1$ 

Whilst there is a one-to-one mapping between Slater determinants with canonically ordered spin orbitals and the occupation number vectors in the Fock space, it is important to distinguish between the two since, unlike the Slater determinants, the occupation number vectors have no spatial structure and are simply vectors in an abstract vector space. [5].

$$|\psi_1\rangle = |0\dots 1\rangle = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \qquad \dots \qquad |\psi_N\rangle = |1\dots 1\rangle = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

### Creation and Annhilation Operators

Operators in second quantisation are constructed from the creation and annhilation operators  $a_j^{\dagger}$  and  $a_j$ , where the subscripts i and j denote the spin orbital.  $a_j^{\dagger}$  and  $a_j$  are one another's Hermitian adjoints, and are not self-adjoint [5].

Taking the excitation of an electron from spin orbital 0 to spin orbital 1 as an example, we can construct the following excitation operator.

$$a_1^{\dagger} a_0 |0 \dots 01\rangle = |0 \dots 10\rangle$$

Due to the fermionic exchange anti-symmetry imposed by the Pauli principle, the action of the creation and annihilation operators introduces a phase to the state that depends on the parity of the spin orbitals preceding the target spin orbital  $(-1)^{\sum_{s=0}^{j-1} f_s}$ .

$$a_{j}^{\dagger} | f_{n-1} \dots f_{j+1}, \ 0, \ f_{j-1} \dots f_{0} \rangle = (-1)^{\sum_{s=0}^{j-1} f_{s}} | f_{n-1} \dots f_{j+1}, \ 1, \ f_{j-1} \dots f_{0} \rangle$$

$$a_{j}^{\dagger} | f_{n-1} \dots f_{j+1}, \ 1, \ f_{j-1} \dots f_{0} \rangle = 0$$

$$a_{j} | f_{n-1} \dots f_{j+1}, \ 1, \ f_{j-1} \dots f_{0} \rangle = (-1)^{\sum_{s=0}^{j-1} f_{s}} | f_{n-1} \dots f_{j+1}, \ 0, \ f_{j-1} \dots f_{0} \rangle$$

$$a_{j} | f_{n-1} \dots f_{j+1}, \ 0, \ f_{j-1} \dots f_{0} \rangle = 0$$

In second quantisation, this exchange anti-symmetry requirement is accounted for by the anti-commutation relations of the creation and annihilation operators.

$$\{\hat{a}_{j}, \hat{a}_{k}\} = \hat{a}_{j}\hat{a}_{k} + \hat{a}_{k}\hat{a}_{j} = 0 \qquad \{\hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger}\} = \hat{a}_{j}^{\dagger}\hat{a}_{k}^{\dagger} + \hat{a}_{k}^{\dagger}\hat{a}_{j}^{\dagger} = 0$$
$$\{\hat{a}_{j}, \hat{a}_{k}^{\dagger}\} = \hat{a}_{j}\hat{a}_{k}^{\dagger} + \hat{a}_{k}^{\dagger}\hat{a}_{j} = \delta_{jk}\hat{1}$$

That is, the phase factor required for the second quantised representation to be consistent with the first quantised representation is automatically kept track of by the anticommutation relations of the creation and annihilation operators [5].

### Second Quantised Hamiltonian

The Hamiltonian in second quantisation is constructed from creation and annhilation operators as below.

$$\hat{H} = \sum_{ij} h_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} h_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + h_{Nu}$$

Where the one-body matrix element  $h_{ij}$  corresponds to the kinetic energy of an electron and its interaction energy with the nuclei.

$$h_{ij} = \int_{-\infty}^{\infty} \psi_{i(x_1)}^* \left( -\frac{1}{2} \nabla^2 + \hat{V}_{(x_1)} \right) \psi_{j(x_1)} d^3 x_1$$

The two-body matrix element  $h_{ijkl}$  corresponds to the repulsive interaction between electrons i and j.

$$h_{ijkl} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_{i(x_1)}^* \psi_{j(x_2)}^* \left( \frac{1}{|x_1 - x_2|} \right) \psi_{k(x_2)} \psi_{l(x_1)} \ d^3x_1 d^3x_2$$

 $h_{\rm Nu}$  is a constant corresponding to the repulsive interaction between nuclei. These matrix elements are computed classically, allowing us to compute only the inherently quantum aspects of the problem on a quantum computer.

Appendices

## Bibliography

- [1] Burton, H. G. A., Marti-Dafcik, D., Tew, D. P. & Wales, D. J. Exact electronic states with shallow quantum circuits from global optimisation. *npj Quantum Information* **9** (2023).
- [2] Yeung, R. Diagrammatic design and study of ansätze for quantum machine learning (2020). 2011.11073.
- [3] McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. *New Journal of Physics* 18, 023023 (2016).
- [4] Kirby, W. M. & Love, P. J. Variational quantum eigensolvers for sparse hamiltonians. *Phys. Rev. Lett.* 127, 110503 (2021) **127**, 110503 (2020). 2012.07171.
- [5] Helgaker, T., Jørgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (Wiley, 2000).
- [6] Fetter, A. L., Walecka, J. D. & Kadanoff, L. P. Quantum Theory of Many Particle Systems, vol. 25 (AIP Publishing, 1972).