Attendance Management System

ICS1411--- Database Systems Laboratory

A MINI PROJECT REPORT

Submitted By

Pandiarajan D (3122237001035) Rushabh S (3122237001044) Sankara Narayanan V (3122237001046)

5-Year Integrated M.Tech Computer Science and Engineering

Sri Sivasubramaniya Nadar College of Engineering (An Autonomous Institution, Affiliated to Anna University)

Kalayakkam – 603110

April 2025

PROBLEM STATEMENT:

Managing student attendance manually using paper-based registers or spreadsheets is inefficient and can lead to data loss, human errors, and manipulation. Teachers often struggle with maintaining accurate records, while administrators face difficulties in analysing student attendance patterns. Additionally, students may miss classes due to various reasons and require a transparent system for checking attendance records.

The proposed Attendance Management System will allow faculty members to record attendance digitally, students to view their attendance status, and administrators to generate reports and analyse attendance trends.

Entities Identified:

- Department
- Student
- Course
- Teacher
- Lectures
- Attendance
- On_Duty

Relationships Identified:

- Department has Students
- Department has Teachers
- Department offers Courses
- Students enroll in courses
- Teachers teach Courses
- Courses have Lectures
- Lectures are taught by Teachers
- Students attend Lectures
- Attendance has ODs

Relationships Identified:

Department has Students

Department: Total (Every department must have at least one student) Student: Partial (A student must belong to only one department)

Department has Teachers

Department: Total (Every department must have at least one teacher)

Teacher: Partial (Not every teacher belongs to a department)

Department offers Courses

Department: Total (Every department must offer at least one course)

Course: Partial (Not every course must belong to a department)

Teacher teaches Courses

Teacher: Partial (Not all teachers may teach a course)

Course: Partial (Not all courses may have assigned teachers)

Course has Lecture

Lecture: Total (Each lecture is linked to a course)

Course: Partial (Not all courses may have lectures)

Lecture taught by Teacher

Lecture: Partial (Not all courses have teachers assigned)

Teacher: Partial (A teacher may not be assigned to any course)

Student attends Lecture

Student: Partial (Not all students may attend lectures)

Lecture: Total (Every lecture must have at least one student)

Student has On_Duty

Student: Partial (Not all students may apply for on-duty)

On_Duty: Total (Every on-duty record must belong to a student)

ER Diagram:

ER to Relation Mapping:

1. Student \rightarrow Department (N:1)

- A student belongs to one department, but a department has many students.
- Foreign Key: dep_id in Student table.

Rule: The many-side (Student) gets the foreign key of the one-side (Department).

2. Course \rightarrow Department (N:1)

- A course belongs to one department, but a department can have many courses.
- Foreign Key: dep_id in Course.

Rule: The many-side (Course) gets the foreign key of the one-side (Department).

3. Department \rightarrow Teacher (1:N)

- A department can have multiple teachers, but each teacher belongs to only one department.
- Foreign Key: dep_id in Teacher.

Rule: The teacher table gets the foreign key of the department.

4. Teacher \rightarrow Teacher_Phone_No (1:N)

- phone_no is a multi valued attribute.
- A teacher can have multiple phone numbers, but each phone number belongs to one teacher.
- Foreign Key: t_id in Teacher_Phone_No.

Rule: The Teacher_Phone_No table gets the foreign key of the Teacher.

5. Lecture \rightarrow Course (N:1)

- A lecture is associated with one course, but a course can have multiple lectures.
- Foreign Key: course_id in Lecture.

Rule: The Lecture table gets the foreign key of the Course table.

6. Lecture \rightarrow Teacher (N:1)

- A lecture is conducted by one teacher, but a teacher can conduct multiple lectures.
- Foreign Key: t_id in Lecture.

Rule: The Lecture table gets the foreign key of the Teacher table.

7. Student \rightarrow Attendance (1:N)

- A student can have multiple attendance records, but each attendance record belongs to one student.
- Foreign Key: stu_id in Attendance.

Rule: The child entity (Attendance) takes the foreign key of the parent entity (Student).

8. Attendance \rightarrow Lecture (1:1)

- An attendance record is for one lecture and vice versa.
- Foreign Key: l_id in Attendance.

Rule: The Attendance table gets the foreign key of the Lecture table.

9. Course \rightarrow Teacher (M:N)

- A course is taught by many teachers, a teacher can teach many courses.
- A new entity teacher_course is created.

Rule: The Teacher_course takes the t_id and course_id and makes it the composite key.

Schema Diagram:

Functional Dependencies:

Student

Student

Stud_id → lname, fname, mint,dob, dep_id, Gender,Barcode Barcode → Stud_id, dep_id, mint,Gender, lname, fname, dob

Stud_id \rightarrow fname

Stud id → lname

Stud $id \rightarrow mint$

 $Stud_id \rightarrow dob$

 $Stud_id \to dep_id$

 $Stud_id \to Gender$

 $Stud_id \to Barcode$

So the irreducible Functional Dependencies for Student table is

 $Stud_id \to Barcode$

Barcode→ Stud_id

Department

Department

$$\begin{array}{ll} dept_id & \rightarrow dept_name, \ dept_hod_id \\ dept_hod_id & \rightarrow dept_id, \ dept_name \end{array}$$

Step 1:-

$$\begin{array}{ll} \operatorname{dept_id} \to \operatorname{dept_name} & \operatorname{dept_hod_id} \to \operatorname{dept_id} \\ \operatorname{dept_id} \to \operatorname{dept_hod_id} & \operatorname{dept_hod_id} \to \operatorname{dept_name} \end{array}$$

So the irreducible Functional Dependencies for Department table is

Dept_id
$$\rightarrow$$
 dept_hod_id
Dept_hod_id \rightarrow dep_id

Course

course_id → course_name, dept_id, Start_date, end_date course_name, dept_id → course_id, Start_date, end_date

Step 1:-

So the irreducible Functional Dependencies for Course table is

Teacher

Teacher

t_id → fname, lname, email, dep_id email → t_id, fname, lname, dep_id

Step 1:-

$$\begin{array}{lll} t_id \rightarrow fname & email \rightarrow t_id \\ t_id \rightarrow lname & email \rightarrow fname \\ t_id \rightarrow email & email \rightarrow lname \\ t_id \rightarrow dep_id & email \rightarrow dep_id \end{array}$$

So the irreducible Functional Dependencies for Teacher table is

$$t_id \rightarrow email$$

 $email \rightarrow t id$

Teacher course

Teaches

So the irreducible Functional Dependencies for Teaches table is

t id, course id \rightarrow (No additional attributes)

Teacher_phone

Teacher_phone_no

So the irreducible Functional Dependencies for Teacher_phone_no table is

t id, phone no \rightarrow (No additional attributes)

Lecture

Lecture

$\begin{array}{lll} L_id & \rightarrow course_id, t_id, start_time, end_time, L_date, latitude, longitude \\ course_id, start_time, L_date & \rightarrow L_id, t_id, end_time \\ t_id, start_time, L_date & \rightarrow L_id, course_id, end_time \\ \end{array}$

```
L id \rightarrow course id
                                      course id, start time, L date \rightarrow L id
L id \rightarrow t id
                                                                                                      t id, start time, L date \rightarrow L id
                                      course id, start time, L date \rightarrow t id
L \text{ id} \rightarrow \text{start time}
                                                                                                      t id, start time, L date \rightarrow course id
                                      course id, start time, L date \rightarrow end time
L id \rightarrow end_time
                                                                                                      L date \rightarrow end time
                                      course id, start time, L date \rightarrow latitude
L \text{ id} \rightarrow L \text{ date}
                                                                                                      t id, start time, L date \rightarrow latitude
L_id \rightarrow latitude
                                      course id, start time, L date → longitude
                                                                                                      t id, start time, L date \rightarrow longitude
L_id \rightarrow longitude
```

So the irreducible Functional Dependencies for Lecture table is

L_id
$$\rightarrow$$
 course_id
L_id \rightarrow start_time
L_id \rightarrow L_date
course_id, start_time, L_date \rightarrow L_id
t_id, start_time, L_date \rightarrow L id

Attendance

Attendance

 $stu_id, L_id \rightarrow date_recorded, time_recorded, latitude, longitude$

Step 1:-

$$\begin{array}{ll} stu_id, L_id \rightarrow date_recorded & stu_id, L_id \rightarrow latitude \\ stu_id, L_id \rightarrow time_recorded & stu_id, L_id \rightarrow longitude \\ \end{array}$$

So the irreducible Functional Dependencies for Attendance table is

$$\begin{array}{ll} stu_id, L_id \rightarrow date_recorded & stu_id, L_id \rightarrow latitude \\ stu_id, L_id \rightarrow time_recorded & stu_id, L_id \rightarrow longitude \\ \end{array}$$

Student_course

Student_Course

stu_id, course_id→ t_id

Step 1:-

stu id, course id → tid

So the irreducible Functional Dependencies for Student_Course table is

 stu_id , $course_id \rightarrow tid$

On_Duty

On_duty

 $stu_id, l_id \rightarrow reason$

Step 1:-

 $stu_id, l_id \rightarrow reason$

So the irreducible Functional Dependencies for on_duty table is

 $stu_id, \, l_id \rightarrow reason$

Database Normalization Analysis (Up to BCNF)

1. Student Relation

Original Functional Dependencies (FDs): Stud_id → lname, fname, mint, dob, dep_id, Gender, Barcode Barcode → Stud_id, dep_id, mint, Gender, lname, fname, dob

Analysis:

- Both Stud_id and Barcode are candidate keys (they can uniquely identify a tuple)
- All attributes are functionally dependent on these keys
- No partial dependencies or transitive dependencies
- The relation is already in BCNF since for every FD $X \rightarrow Y$, X is a superkey

BCNF Decomposition:

Student(Stud_id, Iname, fname, mint, dob, dep_id, Gender, Barcode) Candidate keys: {Stud_id}, {Barcode}

2. Department Relation

```
Original FDs:
```

dept_id → dept_name, dept_hod_id dept hod id → dept id, dept name

Analysis:

- Both dept_id and dept_hod_id are candidate keys
- No partial or transitive dependencies
- Already in BCNF since for every FD $X \rightarrow Y$, X is a superkey

BCNF Decomposition:

Department(dept_id, dept_name, dept_hod_id)
Candidate keys: {dept_id}, {dept_hod_id}

3. Course Relation

Original FDs:

course_id → course_name, dept_id, Start_date, end_date (course_name, dept_id) → course_id, Start_date, end_date

Analysis:

- Both course_id and (course_name, dept_id) are candidate keys
- No partial or transitive dependencies
- Already in BCNF since for every FD $X \rightarrow Y$, X is a superkey

BCNF Decomposition:

Course(course_id, course_name, dept_id, Start_date, end_date)
Candidate keys: {course_id}, {course_name, dept_id}

4. Teacher Relation

Original FDs:

 t_i d \rightarrow fname, lname, email, dep_id email \rightarrow t id, fname, lname, dep_id

Analysis:

- Both t_id and email are candidate keys
- No partial or transitive dependencies
- Already in BCNF since for every FD $X \rightarrow Y$, X is a superkey

BCNF Decomposition:

Teacher(t_id, fname, lname, email, dep_id) Candidate keys: {t_id}, {email}

5. Teaches Relation

Original FDs:

 $(t_id, course_id) \rightarrow (No additional attributes)$

Analysis:

- The only FD is the entire composite key determining no additional attributes
- Already in BCNF since the only FD has a superkey on the left side

BCNF Decomposition:

Teaches(t_id, course_id)
Candidate key: {t_id, course_id}

6. Teacher_phone_no Relation

Original FDs:

 $(t_id, phone_no) \rightarrow (No additional attributes)$

Analysis:

- The only FD is the entire composite key determining no additional attributes
- Already in BCNF since the only FD has a superkey on the left side

BCNF Decomposition:

Teacher_phone_no(t_id, phone_no)
Candidate key: {t_id, phone_no}

7. Lecture Relation

Original FDs:

 $L_{id} \rightarrow course_{id}$, t_{id} , $start_{time}$, end_time, L_{date} , latitude, longitude (course_id, start_time, L_{date}) $\rightarrow L_{id}$, t_{id} , end_time (t id, start time, L date) $\rightarrow L$ id, course id, end time

Analysis:

- L_id is a candidate key
- (course_id, start_time, L_date) is a candidate key
- (t_id, start_time, L_date) is a candidate key
- All attributes are functionally dependent on these keys
- No partial or transitive dependencies
- Already in BCNF since for every FD $X \rightarrow Y$, X is a superkey

BCNF Decomposition:

Lecture(L_id, course_id, t_id, start_time, end_time, L_date, latitude, longitude)
Candidate keys: {L_id}, {course_id, start_time, L_date}, {t_id, start_time, L_date}

8. Attendance Relation

Original FDs:

(stu id, L id) \rightarrow date recorded, time recorded, latitude, longitude

Analysis:

- The only FD is the entire composite key determining all other attributes
- Already in BCNF since the only FD has a superkey on the left side

BCNF Decomposition:

Attendance(stu_id, L_id, date_recorded, time_recorded, latitude, longitude) Candidate key: {stu_id, L_id}

9. Student_Course Relation

Original FDs:

 $(stu_id, course_id) \rightarrow t_id$

Analysis:

- The only FD is the entire composite key determining t_id
- Already in BCNF since the only FD has a superkey on the left side

BCNF Decomposition:

Student_Course(stu_id, course_id, t_id)
Candidate key: {stu_id, course_id}

10. On_duty Relation

Original FDs:

(stu id, 1 id) \rightarrow reason

Analysis:

- The only FD is the entire composite key determining reason
- Already in BCNF since the only FD has a superkey on the left side

BCNF Decomposition:

On_duty(stu_id, l_id, reason)

Candidate key: {stu_id, l_id}

Final BCNF Schema:-

- 1. Student(Stud_id, lname, fname, mint, dob, dep_id, Gender, Barcode) Candidate keys: {Stud_id}, {Barcode}
- 2. Department(dept_id, dept_name, dept_hod_id) Candidate keys: {dept_id}, {dept_hod_id}
- 3. Course(course_id, course_name, dept_id, Start_date, end_date) Candidate keys: {course_id}, {course_name, dept_id}
- 4. Teacher(t_id, fname, lname, email, dep_id) Candidate keys: {t_id}, {email}
- 5. Teaches(t_id, course_id)
 Candidate key: {t_id, course_id}
- 6. Teacher_phone_no(t_id, phone_no)
 Candidate key: {t_id, phone_no}
- 7. Lecture(L_id, course_id, t_id, start_time, end_time, L_date, latitude, longitude) Candidate keys: {L_id}, {course_id, start_time, L_date}, {t_id, start_time, L_date}
- 8. Attendance(stu_id, L_id, date_recorded, time_recorded, latitude, longitude) Candidate key: {stu_id, L_id}
- 9. Student_Course(stu_id, course_id, t_id) Candidate key: {stu_id, course_id}
- 10. On_duty(stu_id, l_id, reason) Candidate key: {stu_id, l_id}

All relations are now in BoyceCodd Normal Form (BCNF) as for every functional dependency

 $X \rightarrow Y$, X is a superkey in each relation.

Decomposed Tables :-

Student

Department

Course

Teacher

Teacher_phone_no

Teaches

Student_Course

Lecture

Attendance

On_duty

Final Schema :-

Sample Execution :-

Student Profile

First Name: arjun

Middle Initial: R

Last Name: kumar

Student ID: 2370001

Dept ID: CS001

Date of Birth: June 15, 2004, midnight

Barcode: 9876543210

← Back to Dashboard

My Attendance Overview

Course Name	Total Lectures	Lectures Taken	Lectures You Attended	Attendance %
Operating Systems	51	51	40	78.43%
Computer Networks	50	50	38	76.0%
DBMS	50	50	41	82.0%
Compiler Design	50	50	39	78.0%
Machine Learning	50	50	42	84.0%
Artificial Intelligence	50	50	41	82.0%

Back to Dashboard

Teacher Profile

Teacher ID: T003

First Name: ravi

Last Name: kumar

Email: ravi.kumar@gmail.com

Department: CS001

Phone Numbers:

9789456123

← Back to Dashboard

My Courses Course Name Course ID Total Lectures Lectures Taken Lectures Left Actions Operating Systems C002 51 10 41 Add Update Delete ← Back to Dashboard

Success! Lecture created with Lecture id L01302

Student Attendance Details

Course ID	Student Name	Student ID	Total Lectures	Lectures Attended	On-Duty Count	Attendance %
C002	arjun kumar	2370001	10	8	0	80.00%
C002	divya shree	2370002	10	8	0	80.00%
C002	karthik reddy	2370003	10	10	0	100.00%
C002	meena kumari	2370004	10	9	0	90.00%
C002	vishal raj	2370005	10	8	0	80.00%
C002	sneha patel	2370006	10	8	0	80.00%
C002	rohit sharma	2370007	10	9	0	90.00%
C002	lavanya krishna	2370008	10	8	0	80.00%
C002	naveen singh	2370009	10	9	0	90.00%
C002	isha gupta	2370010	10	9	0	90.00%

 $\leftarrow \mathsf{Back} \ \mathsf{to} \ \mathsf{Dashboard}$

Marked attendance successfully

Learning Outcomes :-

- I have got Practical Knowledge on Database Connectivity with Python by this Project.
- I have learnt to use SQL Database for developing some high level application or software applications.
- I have learnt to use SQL Queries for retrieving, inserting, Updating or deleting records in the Database using Some high level Programs (Python).

