

FCC PART 90 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT

For

Quanzhou Licheng New Puxing Communication Equipment Factory

Torch Industrial Area, Quanzhou, Fujian, China (Floor 5, Torch electronics Co LTD)

FCC ID: UBYQZPUXING02

July 17, 2006

Equipment Type: This Report Concerns: Original Report VHF Portable Two-way Radio Deny Xiong Charmi Pery **Test Engineer:** Charmi Peng Deny Xiong **Report No.:** RSZ06052903 **Test Date:** June 2, 2006-July 12, 2006 Boni Baniqued **Reviewed By: Prepared By:** Bay Area Compliance Lab Corp. (ShenZhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp. (ShenZhen). This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	3
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
§2.1046 - CONDUCTED OUTPUT POWER	3
APPLICABLE STANDARD	3
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	3
§2.1046, and §90.205 – RADIATED OUTPUT POWER	3
APPLICABLE STANDARD	3
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
§2.1047, and §90.207 - MODULATION CHARACTERISTIC	3
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	3
TEST PROCEDURE	
TEST DATA	
§2.1049, and § 90.209 – OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
\$2.1053 and \$90.210 - RADIATED SPURIOUS EMISSION	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	3
§2.1055 (d) and §90.213- FREQUENCY STABILITY	
APPLICABLE STANDARD	3
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
§90.214 - TRANSIENT FREQUENCY BEHAVIOR	3

Quanzhou Licheng New Puxing Communication Equipment FactoryFCC ID: UBYQZPUXING02APPLICABLE STANDARD3TEST EQUIPMENT LIST AND DETAILS3TEST PROCEDURE3

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Quanzhou Licheng New Puxing Communication Equipment Factory*'s product, model number: PX-777 or the "EUT" as referred to in this report is a VHF Portable Two-way Radio. The EUT is measured approximately 24.0 cm L x 6.0 cmW x 3.5 cmH, rated input voltage: DC 7.2 V battery.

* The test data gathered are from production sample, serial number: 0605034, provided by the manufacturer, we received the EUT on 2006-5-29.

Objective

This Type approval report is prepared on behalf of *Quanzhou Licheng New Puxing Communication Equipment Factory* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2,Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards:TIA603-C and ANSI 63.4-2003, American National Standard for Method of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Lab Corp. (ShenZhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179 and Industrial Canada registration test site No.: 5500A. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC ID: UBYQZPUXING02

Additionally, Bay Area Compliance Lab Corp. (ShenZhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Equipment Modifications

Bay Area Compliance Lab Corp. (ShenZhen) has not done any modification on the EUT.

Configuration of Test Setup

EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTIONOFTEST	RESULT
§1.1310 §2.1093	RF Exposure	Compliant, refer to SAR Report
§2.1046	Conducted Output Power	Compliant
\$2.1046, \$90.205	Radiated Output Power	Compliant
\$2.1047 \$90.207	Modulation Characteristic	Compliant
\$2.1049, \$90.209	Occupied Bandwidth	Compliant
\$2.1051 \$90.210	Spurious Emission at Antenna Terminal	Compliant
§ 2.1053 § 90.210	Spurious Radiated Emissions	Compliant
§ 2.1055 § 90.213	Frequency stability	Compliant
§ 90.214	Transient Frequency Behavior	Compliant

§2.1046 - CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §2.1046, and §90.205, maximum ERP is dependent upon the station's antenna HAAT and required service area.

Test Equipment List and Details

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17

^{*} Statement of Tractability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-2.

Test Result: Pass

Test Mode: Transmitting

Frequency Spacing (kHz)	Frequency (MHz)	Output Power in dBm	Output Power in W
Narrow12.5	156.6250	36.88	4.875

For Narrow 12.5kHz

Middle channel:

Puxing Two-way radio M/N:PX-777(V) RF Output power Mid ch Date: 2.JUN.2006 16:46:46

§2.1046, and §90.205 – RADIATED OUTPUT POWER

Applicable Standard

According to FCC §2.1046, and §90.205, maximum ERP is dependent upon the station's antenna HAAT and required service area.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
SUNOL SCIENCES	Horn Antenna	DRH-118	A052604	2005-7-20	2006-7-20
SUNOL SCIENCES	Broadband Antenna	JB1	A040904-1	2006-4-28	2007-4-28
SUNOL SCIENCES	Broadband Antenna	JB1	A040904-2	2006-4-28	2007-4-28
Agilent	Spectrum Analyzer	8564E	3943A01781	2005-12-08	2006-12-08
HP	Signal Generator	HP8657A	2849U00982	2006-2-28	2007-2-28
Giga-tronics	Signal Generator	1026	270801	2006-2-28	2007-2-28
A.H. System	Horn Antenna	SAS- 200/571	135	2006-4-28	2007-4-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the ERP were measured by the substitution.

Absolute level = substituted level + Antenna gain – Cable Loss

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Deny Xiong on 2006-6-23.

Test Mode: Transmitting

			Te	st						
Indica	ated	Table	Ante	nna	Subs	stituted		Antenna		FCC Part 90
Frequency MHz	Meter Reading dBuV/m	Angle Degree	Height Meter	Polar H/V	Frequency MHz		Polar H/V	Gain Correction	Cable Loss dB	Absolute Level dBm
			Т	ransm	nitting in Mic	ddle Ch	annel			
156.62	112.01	100	1.2	V	156.62	30.7	V	0	2.5	28.2
156.62	113.9	156	1.3	Η	156.62	29.5	Η	0	2.5	27.0

§2.1047, and §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

§2.1047 & §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Modulation Analyzer	8901B	3438A05208	2006-2-28	2007-2-28
NANYAN	Audio Generator	NY2201	019829	2005-12-23	2006-12-23

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-23.

Test Result: Pass

Test Mode: Transmitting

FCC ID: UBYQZPUXING02

For 12.5 kHz Channel Bandwidth:

Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0.0	0. 157	0. 201	0. 247
4.0	0. 255	0.882	1. 552
8. 0	0. 303	1. 351	1. 782
12.0	0. 368	1. 460	1. 776
16.0	0. 456	1.816	1. 771
20.0	0. 512	1.866	1. 765
24.0	0.605	1. 902	1. 792
28.0	0. 702	1.877	1. 768
32.0	0. 766	1. 918	1. 755
36.0	0.837	1. 902	1. 751

Audio Low Filter Characteristic:

Start 1 kHz

Stop 100 kHz

§2.1049, and § 90.209 – OCCUPIED BANDWIDTH

Applicable Standard

§2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626kHz but no more than 12.5kHz, at least 7.27 (f_d –2.88kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

 $50+10\log P=50+10\log (4.875)=56.88dB$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17
HP	Modulation Analyzer	8901B	3438A05208	2006-2-28	2007-2-28
NANYAN	Audio Generator	NY2201	019829	2005-12-23	2006-12-23

^{*} **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 50 KHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-9.

Test Result: Pass.

Test Mode: Transmitting

Please refer to the hereinafter plots.

Emission Designator:

For 12.5KHz Channel Spacing: 2M+2D = 2x3+2x2.5 = 11K0F3E

Emission Mask D For 12.5 KHz Channel Bandwidth:

Puxing Two-way radio M/N:PX-777V Mask emission narrow Date: 9.JUN.2006 10:58:36

Audio input (mV)	Frequency Deviation (kHz)
0	0. 182
4	1. 551
8	1.834
12	1.836
16	1.845
20	1.842
24	1.833
28	1. 827
32	1. 824
36	1.813

§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

§90.210 (12.5kHz bandwidth only)

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(4.875)=56.88dB

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-9, 2006-7-12.

Test Result: Pass

Test Mode: Transmitting

For 12.5KHz Channel bandwidth:

Huayi Two-way radio M/N:PX-777V Spurious emission at antenna terminal Mid channel (30MHz-1GHz) Date: 12.JUL.2006 15:15:44

(1GHz-2GHz)

Puxing Two-way radio M/N:PX-777V Spurious emission at antenn a terminal Mid ch (1GHz-2GHz) Date: 9.JUN.2006 11:44:22

Standby Mode:

Frequency channel	Frequency tuned (MHz)	Frequency emission (MHz)	Level dBm	Limit dBm	Margin dBm
Middle channel	156.6250	194.90	-69.62	-57	-12.62

§2.1053 and §90.210 - RADIATED SPURIOUS EMISSION

Applicable Standard

§2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
SUNOL SCIENCES	Horn Antenna	DRH-118	A052604	2005-7-20	2006-7-20
SUNOL SCIENCES	Broadband Antenna	JB1	A040904-1	2006-4-28	2007-4-28
SUNOL SCIENCES	Broadband Antenna	JB1	A040904-2	2006-4-28	2007-4-28
Agilent	Spectrum Analyzer	8564E	3943A01781	2005-12-8	2006-12-8
HP	Signal Generator	HP8657A	2849U00982	2006-2-28	2007-2-28
Giga-tronics	Signal Generator	1026	270801	2006-2-28	2007-2-28
A.H. System	Horn Antenna	SAS- 200/571	135	2006-4-28	2007-4-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Spurious attenuation limit in $dB = 50 + 10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5KHz channel bandwidth.

Test Results Summary

30-1000MHz:

Transmitting in Middle Channel: -18.02 dB at 939.76 MHz in the Vertical polarization

Above 1GHz:

Transmitting in Middle Channel: -10.09 dB at 1044.13 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-9, 2006-7-12.

Test Mode: Transmitting

30-1000 MHz:

Indica	ated	Table	Te Ante		Subs	stituted		Antenna		Absolute Level	FCC	Part 90
Frequency MHz	Meter Reading dBuV/m				Frequency MHz	Level dBm	Polar H/V		Cable Loss dB	dBm	Limit dBm	Margin
	Transmitting in Middle Channel											
939.76	36.67	305	1.4	V	939.76	-30.1	V	0	7.92	-38.02	-20	-18.02
939.76	36.17	127	1.5	Н	939.76	-30.3	Н	0	7.92	-38.22	-20	-18.22
313.24	43.83	158	1.5	Н	313.24	-41.8	Н	0	3.79	-45.59	-20	-25.59
783.13	33.83	54	1.2	Н	783.13	-39.8	Н	0	7.08	-46.88	-20	-26.88
626.50	31.83	263	1.8	Н	626.50	-46.5	Н	0	4.89	-51.39	-20	-31.39
626.50	33.0	26	1.4	V	626.50	-48.8	V	0	4.89	-53.69	-20	-33.69
469.87	30.83	168	1.5	Н	469.87	-49.6	Н	0	5.07	-54.67	-20	-34.67
783.13	33.5	248	1.0	V	783.13	-48.8	V	0	7.08	-55.88	-20	-35.88
313.24	37.33	62	1.6	V	313.24	-44.1	V	0	3.79	-47.89	-20	-37.89
469.87	37.5	138	1.5	V	469.87	-44.2	V	0	5.07	-49.27	-20	-39.27

Above 1GHz:

Indica	ated	Table	Te Ante		Subs	stituted		Antenna		Absolute Level		FCC Part 90	
Frequency MHz	Meter Reading dBuV/m				Frequency MHz	Level dBm	Polar H/V	0	Cable Loss dB	dBm	Limit dBm	Margin	
		_		_	Transmitt	ting in N	∕liddle	Channel					
1044.13	42.05	248	1.0	Ι	1044.13	-35.6	Η	5.7	0.19	-30.09	-20	-10.09	
1044.13	41.01	100	1.2	V	1044.13	-38.5	V	5.7	0.19	-32.99	-20	-12.99	
1392.13	38.4	138	1.5	V	1392.13	-45.0	V	6.5	0.33	-38.83	-20	-18.83	
1392.13	36.28	156	1.3	Η	1392.13	-46.1	Н	6.5	0.33	-39.93	-20	-19.93	
1218.07	35.91	305	1.4	Н	1218.07	-46.3	Н	6.2	0.49	-40.59	-20	-20.59	
1566.07	33.21	26	1.4	V	1566.07	-47.3	V	6.1	0.39	-41.59	-20	-21.59	
1218.07	35.25	62	1.6	V	1218.07	-49.0	V	6.2	0.49	-43.29	-20	-23.29	
1566.07	33.13	127	1.5	Н	1566.07	-49.3	Н	6.1	0.39	-43.59	-20	-23.59	

§2.1055 (d) and §90.213- FREQUENCY STABILITY

Applicable Standard

§2.1055 (d)

§90.213

For output power > 2 watts, the limit is 5.0ppm.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2006-1-2	2007-1-2
Hewlett-Packard	Frequency Counter	5342A	2317A08289	2006-1-26	2007-1-26

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a f Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-23.

Test Result: Pass

Test Mode: Transmitting

Reference Frequency: 156.625MHz, Limit: 5 ppm								
Environment Temperature	Power Supplied	Power Supplied Frequency Measure with Time Elapse						
(°C)	(Vdc)	MCF (MHz)	PPM Error					
50	7.2	156.625252	1.61					
40	7.2	156.625246	1.57					
30	7.2	156.625231	1.47					
20	7.2	156.625226	1.44					
10	7.2	156.625225	1.44					
0	7.2	156.625225	1.44					
-10	7.2	156.625224	1.43					
-20	7.2	156.625221	1.41					
-30	7.2	156.625218	1.39					

Frequency Stability Versus Input Voltage

Reference Frequency: 156.625 MHz, Limit: 5 ppm					
Power Supplied	Frequency Measure with Time Elapsed				
(Vdc)	Frequency (MHz)	PPM Error			
6.4	156.625198	1.26			

§90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

§90.214

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
TEKTRONIX	Digital Phosphor Oscilloscope	TDS 7104	B020518	2006-1-24	2007-1-24
HP	Modulation Analyzer	8901B	3438A05208	2006-2-28	2007-2-28
HP	Signal Generator	HP8657A	2849U00982	2006-2-28	2007-2-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

TIA/EIA-603 2.2.19

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-6-2.

Test Result: Pass

Test Mode: Transmitting

FCC ID: UBYQZPUXING02

For Narrowband:

Operation Frequency (MHz)	Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result	
	12.5	<5	+/-12.5 kHz		
156.625		<20	+/-6.25 kHz	Pass	
		<5	+/-12.5 kHz		

For Narrowband

Turn on

Turn off

