L1: Mechatronics Overview

with electronic controls / Bolton: "Integration of electronics, control engineering and mechanical engineering" / Bradley, et al: "An integrating theme within the design process [combining] electronic engineering, computing and mechanical engineering / Shetty & Kolk: Methodology used for the optimal design of electromechanical products / Auslander & Kempf: Application of complex decision making to the operation of physical systems / Alciatore & **Histand**: Interdisciplinary field of engineering dealing $\sum_{n=0}^{N} A_n \frac{d^n x_{out}}{dt^n} = 0$ with the design of products whose function relies on the integration of mechanical and electronic components coordinated by a control architecture; Mechatronics systems include elements such as logic, feedback, and computation that in a complex design may appear to simulate human thinking processes. / Harshama, Tomizuka & Fukuda: The synergistic integration of mechanical engineering with electronics and electrical systems with intelligent computer control in the design and manufacture of industrial products, processes, and operations

Measurement Systems

Transducer: device converting physical quantity into time varying voltage (i.e. analog signal) / Signal Processor: device to modify the analog signal / Recorder: device to display or record the signal.

. Good measurement system characterised by: 1) phase linearity (i.e. preservation of phase relationship between freq. components), 2) amplitude linearity, 3) adequate bandwidth.

Linearity: $V_{out}(t) - V_{out}(0) = \alpha [V_{in}(t) - V_{in}(0)]$ Non-linearity: Difficult to interpret output; Typically, 2nd linear response holds for limited range of input amplitude and rate respectively

Fourier Series

For the series
$$F(t) = \frac{C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)}{\sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)} \underbrace{\frac{2 \text{ different real roots of } 2^{\text{nd}} \text{ order system:}}{dt^2 + b \frac{dx}{dt} + kx = 0 \text{ or } \frac{dx^2}{dt} + 2\zeta \omega_n \frac{dx}{dt} + \omega_n^2 x = 0}_{\text{Characteristic Equation:}}$$

$$ms^2 + bs + k = 0 \text{ or } s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$$

- $A_n = \frac{2}{\pi} \int_0^T f(t) \cos(n\omega_0 t) dt$
- $B_n = \frac{2}{\pi} \int_0^T f(t) \sin(n\omega_0 t) dt$
- $C_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{A_0}{2}$
- $C_n = \sqrt{A_n^2 + B_n^2}, \phi = -\tan^{-1}\frac{B_n}{A_n^2}$

Even Fn f(-t) = f(t):

$$A_n = \frac{4}{7} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt, B_n = 0,$$

$$Odd \operatorname{En} f(-t) = -f(t):$$

 $B_n = \frac{4}{\pi} \int_0^{T/2} f(t) \sin(n\omega_0 t) dt, A_n = C_0 = 0,$ Converting to Sine-only series: Find C_0 and ϕ in:

 $C_0 \sin(\omega t + \phi) = C_0 \sin(\omega t) \cos \phi + C_0 \cos(\omega t) \sin \phi$

Complex Fourier Series (shouldn't come out)

$$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}$$
 Where $D_n = \frac{A_n-jB_n}{2} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} dt$

Bandwidth: $dB = -20 \log \frac{A_{out}}{A_{out}}$

Important to estimate spectrum of a signal when choosing a measurement system - Ideal measurement system replicates all frequency components of an input signal

L3: Dynamic System Response

General solutions for Linear System:

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$$
 RHS usually is just $B_0 X_{in}$ i.e. no time derivatives

Goal: Find the general solution $X_{out}(t) = X_{out_p} + X_{out_h}$

1. Find the general solution to the homogeneous equation

- a. Write down the characteristic equation $\sum_{n=0}^{N} A_n S^n = 0$
- i.e. $A_2s^2 + A_1s + A_0 = 0$ (Applies for $1 \le n \le 3$; difficult to solve for n > 3), then solve for roots λ : i. 1 real root: $X_{out_h} = C_1 e^{\lambda_1 t}$
- ii. 2 distinct real roots: $X_{out_h} = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$ iii. 2 repeated real roots: $X_{out_h} = (C_1 + C_2 t)e^{\lambda_0 t}$
- k-folded real roots: $X_{out_h} = (C_0 + C_1t +$ $\cdots C_{k-1}t^{k-1})e^{\lambda_0 t}$
- v. Complex conjugate roots $\lambda = \alpha \pm i\beta$: $X_{out_h} =$ $C_1 e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t$

 $V_{out} = \frac{R_X}{R_P} V_S = \frac{V_S}{L} X_{in}$

Solution $\Rightarrow X_{in} = KX_{out}$ K: Gain/sensitivity (no time delay) $\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ (in this form, τ = time constant; K = static sensitivity)

Gen. Soln. $\Rightarrow X_{out} = A + Be^{-\frac{t}{\tau}}$

Soln. to step DC input
$$\Rightarrow X_{out} = X_{\infty} + (X_0 - X_{\infty})e^{-\frac{t}{2}}$$

 $\equiv X_0 + (X_{\infty} - X_0)\left(1 - e^{-\frac{t}{2}}\right)$

where τ = time constant (e.g. RC, L/R) Assumed to reach steady state within four time constants (98% filtered out using a LPF.

$$m\frac{dx^2}{dt} + b\frac{dx}{dt} + kx = F_{ext}(t)$$
Gen. Soln. $\Rightarrow \mathbf{x}_h(t) = (\mathbf{A} + \mathbf{B}t)\mathbf{e}^{-\omega_h t}$

$$m\frac{dx^2}{dt} + b\frac{dx}{dt} + kx = 0$$
 or $\frac{dx^2}{dt} + 2\zeta\omega_n\frac{dx}{dt} + \omega_n^2x = 0$
Characteristic Equation:
 $ms^2 + bs + k = 0$ or $s^2 + 2\zeta\omega_ns + \omega_n^2 = 0$

$$s = \frac{-b \pm \sqrt{b^2 - 4mk}}{2a} \text{ or } s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Note:

Order

Natural Frequency $\omega_n = \sqrt{\frac{k}{m}}$

Damping Ratio $\zeta = \frac{b}{b_c} = \frac{1}{2\sqrt{mk}} = \frac{b}{2m\omega_n}$ measures proximity to

- $\zeta < 1$: Underdamped; Complex Conjugate Roots
- ζ = 1: Critical Damping; Repeated Real Roots
- $\zeta > 1$: Overdamped; Distinct Real Roots

 $\zeta = 0.707$ gives best amplitude linearity over largest bandwidth

Damped Frequency $\omega_d = \omega_n \sqrt{1 - \zeta^2}$

Reflects how much the output of a first-order system lags the input: function of both frequency and time-constant

Performance parameters of underdamped 2nd order system: Delay Time, Rise Time, Peak Time, Max Overshoot (% of SS),

L4: Sampling

Analog signal: continuous, generated via analog devices, not coded, original signal

Digital signal: discrete, sampled in fixed interval, coded value, sequential data array

using diff media; more accurate; system; enable data processing; sampling rate high, accuracy high

Shannon-Nyquist Theorem to retain all frequency components:

 $f_s > 2f_{max}$ f_{max} : Nyquist Frequency (i.e. max frequency component in signal) f_s : Sampling rate (not sampling frequency!) If the shape of the waveform is

desired, you should sample at a

rate approximately 10 time the

Nyquist frequency.

Aliased Frequency: $f_a = abs(f_s *$ $i - f_n$) for i = 1,2,3... f_n : frequency component; f_s : sampling frequency Aliasing does not only occur at f_s < *Use KCL (at input node), KVL and above info to find V_{out} $2f_{max}$. It always occurs and with infinite frequencies f_a . If Shannon-Nyquist is fulfilled, all aliased frequencies will not overlap with the original signal and can be

Quantization and Coding PCM (Pulse Code Modulation) to Frequency Response for $X(t) = X_0 e^{j\omega t}$: $\frac{x}{F} = \frac{k^{-1}}{\frac{\omega^2}{\omega^2} \sqrt{\omega} + 1}$ digitize an analog signal: 1) **Sampling** (incl. using LPF to remove high frequency noise) 2) Quantisation: transformation of a of discrete output states 3) Binary encoding: assigning a

continuous analogue input into a set number to each output state: number of possible states N = number of bit combinations that can be output from the converter: $N = 2^{n}$

Resolution Q =
$$\frac{V_{max} - V_{min}}{2^n}$$

Quantization Error: $\frac{Q}{2} \times 100\%$

Q = resolution; G = gain; A = amplitude of frequency component "Short-circuit current" – V=0 or overall wave amplitude

Commercially available ADCs are usually 8-bit and 12-bit

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\sin(A - B) = \sin A \cos B - \cos A \sin B$ cos(A + B) = cos A cos B - sin A sin Bcos(A - B) = cos A cos B + sin A sin B $\tan(A+B) = \frac{\tan A + \tan B}{\ln A}$ 1-tan Atan B $\tan A - \tan B$ $1 + \tan A \tan B$

Int. by Parts: $\int uv' = uv - \int vu'$

Int. by Subst.: $\int f(u(x))u'(x)dx =$ Taking Laplace transform $\int x \cos(ax) dx = \frac{1}{a^2} (\cos(ax) + ax \sin(ax)) + C$ $\int x \sin(ax)dx = \frac{1}{2} (\sin(ax) - ax \cos(ax)) + C$

L5: Analog Signal Processing

VTT: Bulky tubes enclosed a gas at low pressure through which electronics flowed. Heavy power consumption. Significant heat dissipation, Large size and heavy weight, a Requiring frequent battery replacement for portable units SST: Charge carriers move through a solid semiconductor material. Small size, portable using rechargeable battery, low Why Digital: more compact storage weight, cool running, energy saving

large dataset; use real-time control Need for analog signal processing: Signals from transducers Non-Inverting Amplifier are usually 1) Too small i.e. in mV, 2) Too noisy, 3) Contain wrong information due to design and installation, and 4) Have a DC offset due to design and instrumentation

Filtering: $\omega_0 = \frac{1}{RC} = \frac{R}{L}$ where $|H(\omega_0)| = \frac{1}{\sqrt{2}}$

- LPF: V_{out} across Capacitor in RC
- · Attenuate opposite of Amplify

$-AR_F$ AR+R+R_F

Ideal Op-Amp

- 1. "Infinite input impedance": I into op-amp $I^+ = I^- = 0$
- 2. "Infinite (Open Loop) Gain": $V^+ = V^$
 - o Rationale: Otherwise, infinite output
 - o (extra) Open Loop Gain determined solely by opamp: $V_{out} = k(V^- - V^+)$; Ideally infinite, but typically has a large value.
 - (extra) Closed Loop Gain determined solely by relative resistor values
- 3. "Zero output impedance": output voltage does not depend on output current

ose KCL (at input node), KVL and above into to find v _{out}				
Capacitors	Inductors			
$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$	$v(t) = L \frac{d[i(t)]}{dt}$			
$i(t) = C \frac{d[v(t)]}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau$			
$Z_C = \frac{1}{j\omega C}$	$Z_L = j\omega L$			
$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$	$L_{eq} = L_1 + L_2$			
$C_{eq} = C_1 + C_2$	$L_{eq} = \left(\frac{1}{L_1} + \frac{1}{L_2}\right)^{-1}$			
$W_C(t) = \frac{1}{2}Cv_C^2(t)$	$W_L(t) = \frac{1}{2} Li_L^2(t)$			
DC / Low Freq AC: Open High Freq AC: Short	DC / Low Freq AC: Short High Freq AC: Open			

Transfer Function: $G(s) = \frac{Output X(s)}{s}$, replacing s with jw

		Input Y(s)	
(1) $\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	α , β constants $s > \max(c_f, c_g)$.
((2) $f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$	$f^{(n)}(t) = d^n f/dx^n$ $(n \ge 1) \ s > c_f$.
((3) $e^{at}f(t)$	F(s-a)	a constant $s > a + c_f$
((4) $\int_{\tau=0}^{\tau=t} f(\tau)d\tau$	$\frac{1}{s}F(s)$	$s > \max(0, c_f)$
(5) $u(t-a)f(t-a)$	$e^{-as}F(s)$	Unit-step function $u(t - a)$, $s > c_f$
((6) $t^n f(t)$	$(-1)^n F^{(n)}(s)$	$F^{(n)}(s) = d^n F/ds^n$ $(n \ge 1) \ s > c_f$
	.2		1 days one on manager

• $ms^2X(s) + csX(s) + kX(s) = F(s)$

Summer

 $V_{out}(t) = -\frac{1}{RC} \int_{0}^{t} V_{in}(\tau) d\tau$

Practical Integrator

*Should choose $R_S > 10R_1$. $R_2 = -$

 $V_{out} = -RC \tfrac{dV_{in}}{}$

S is opened: $V_{out}(t - t_{sampled}) = V_{in}(t_{sampled})$

- · choose C w/ low leakage
- · used for ADC signal value must be stabilised
- · voltage-holding capacitor and voltage follower with

Comparator (specially built - not typical Op-Amp)

 $(+V_{sat} V_{in} > V_{ref})$

Instrumentation Amplifier

- . diff. amp. has too little input impedance for high output impedance
- if input signal level too low, signals include noise solved by instrumentation amplifier

Spike Diagram (Square Wave Decomposition)

Don't forget f = 0 term

Successive approx.

- · pros: high spd. and good reliability; medium accuracy compared to other ADC types; good trade-off btw. spd. and cost; capable of outputting binary number in serial
- · cons: higher resolution = slower speed (limited to 5 MSPS)

Flash ADC

- · pros: v. fast; simple operational theory; spd. only limited by gate + comparator propagation delay
- cons: expensive; prone to glitches in output; each additional bit of resolution requires twice the comparators

Sigma-Delta ADC

- · cons: slow; due to oversampling, only good for low bandwidth

- · finite word length
- · loudest sounds need room, normal sounds don't use entire range
- · problems occur at low levels where sounds are represented by 1/2 bits, high distortions
- · dithering adds low level broadband noise

	Speed (relative)	
Dual-Slope	Slow	Med
Flash	Very Fast	High
Successive Approximation	Medium Fast	Low
Sigma-Delta	Slow	Low

"Complex Trick"

mechanical system driven by generalized sinusoidal force $ilde{f}(t)\equiv F_0e^{j\omega t}$ and look for generalized sinusoidal motions $ilde{x}(t)\equiv X_0e^{j\omega t}$

$$ilde{f}(t)\equiv F_0e^{j\omega t}\Rightarrow extbf{ ext{system}}\Rightarrow ilde{x}(t)\equiv X_0e^{j\omega t}$$

Note that taking derivatives of generalized sinusoids (i.e. complex exponentials) is

by computationally straightforward, i.e.
$$\frac{d}{dt}\tilde{x}(t) = \frac{d}{dt}X_0e^{j\omega t} = X_0\frac{d}{dt}e^{j\omega t} = j\omega X_0e^{j\omega t} = j\omega \tilde{x}(t)$$

so formally $\frac{d}{dt}$ can be replace by a $j\omega$ whenever dealing with generalized sin Therefore, Newton's law for generalized sinusoids simply becomes

$$\tilde{f}(t) = j\omega m(j\omega \tilde{x}(t)) + j\omega b\tilde{x}(t) + k\tilde{x}(t)$$

which, recalling that $j^2 = -1$, becomes

$$\tilde{f}(t) = (k - m\omega^2 + j\omega b)\tilde{x}(t)$$

Recalling that $\tilde{f}(t) = F_0 e^{j\omega t}$ and $\tilde{x}(t) = X_0 e^{j\omega t}$, one gets

$$H(j\omega) = rac{1}{k-\omega^2 m+j\omega b)X_0 e^{j\omega r'}} \ H(j\omega) = rac{1}{k-\omega^2 m+j\omega b} = rac{k^{-1}}{1-rac{\omega^2}{2}+j\omega b}$$

• $\omega_0 := \sqrt{k/m}$, also known as **resonance frequency**, merasured in [rad/sec] • $Q = \sqrt{mk/b^2}$, also know as quality factor, unitless

Sensors

- sensitivity S: output variation/input variation, S = df/dx Photodiodes: Light causes back current
- · resolution: minimum change of measurand that can be reliably detected; limited by noise, bit-conversion
- accuracy: difference of measurement from true value, %FS
- repeatability: how well a system/device can reproduce an outcome in unchanged situation

Resistance Temperature Detector (RTD)

$$\frac{R}{R_0} = 1 + \alpha (T - T_0)$$

• pros: high res; no need for precision components R_0 = resistance at T_0 ; Linearity valid for limited range Based on changes of resistance w/ temp.; Wrap wire on insulating support: eliminate mechanical strain

Thermistors:
$$R = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$$
 (Note: in K)

LVDT (Linear Variable Differential Transformer): type of transformer; measures linear displacement by comparing the voltages across two coils with a stationary AC input + moving core (linearity for small range of core displacement)

Application: AM Modulation/Demodulation:

carrier freq. $\omega_0 \gg modulating freq. \omega_r$ Modulated Result $\Delta V = \sin(\omega_0 t) \sin(\omega_x t)$

unwanted - to be filtered-out Capacitive Sensor (proximity sensor)

$$C = \frac{Q}{V} = \frac{\epsilon_0 \epsilon_r}{d}$$

Plates placed parallel and sliding across each other Ideal case: infinite parallel plates Guard electrodes limit field-fringing effects

Application: Envelope Demodulator (for non-negative signals)

Hall effect sensor: V+ and V- are compared in a differential amplifier, with current known, to determine B

F = BqVApplications: 1. Proximity sensor

2. High current sensor (contactless)

Photoresistors: more light = lower resistance

Digital Encoders: converts linear/rotary motion into a sequence of digital pulses (i.e. either light-based or magnetic-based)

incremental encoder:

- minimum 2 Tx/Rx pairs spaced >1/4 periods away to encode steps + direction
- · to find location, counter resets at marker Electro-mechanical model absolute encoders:
- n Tx/Rx pairs for coding 2n sectors
- · grey code: 1-bit changes at a time; avoids spurious states

DC Motors

- · stator: external, fixed
- · rotor: internal, rotates stator and rotor fields always orthogonal -> maximum torque
- · commutation maintains unstable equilibria for constant motion

Brushless DC Motors

- 2 input terminals per coil stator: external, fixed but
- switching rotor: internal, rotates
- Hall effect sensors detect rotor position; microprocessor coordinates each coil on/off to produce desired steady torque

Armature Equation: $V = Ri + L\frac{di}{dt} + e$

- R: Resistance of wire
- L: Inductance of wire wrapped around pole
- · e: Back emf of motor
- Mechanical Equation: $J\dot{\omega} + b\omega = T_e - T_L$ J: Mechanical inertia
- · b: Friction
- T_e: Electromagnetic Torque
- T_I: Load Torque

$$T_e=K_t i$$
 and $e=K_e \omega
ightarrow \mathbf{T}_e \omega=\mathbf{e} i$
Armature Constant $\mathbf{K}_a=K_t=K_e$
At steady state, where $rac{di}{dt}=rac{d\omega}{dt}=0$, $\omega=rac{K_aV-RT_L}{k^2b^2\kappa^2}$

(all constants except T_L)

Load Lines

• $P_{max} = \frac{1}{4} T_s \omega_0$ occurs at $\frac{1}{2} T_s$ (half stall torque); independent Used to mitigate effects of wires' internal resistance: of load - do not use any intersection! Find at stall condition:

- Armature resistance: V = RI
- Armature constant: T/i

Inductive Kickback

· When switch is opened, current decrease rapidly, causing voltage across the inductor to increase rapidly.

Duty Cycle = $\frac{T_{on}}{T} \times 100\%$

Strain Gauges

$$R = \rho \frac{L}{A}$$

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{dA}{A} = \frac{d\rho}{\rho} + \frac{dL}{L} - \left(\frac{d\omega}{\omega} + \frac{dh}{h}\right)$$

$$= \left(\frac{d\rho}{\rho} \frac{1}{S} + 1 + 2v\right) * S$$

$$\frac{dR}{d\theta} = (G) * S$$

Gauge Factor $G = \frac{d\rho}{\rho} \frac{1}{s} + 1 + 2v$ accounts for changes $V = Ri + L \frac{di}{dt}$ in resistance due to changes in...

- · ...resistivity of material due to property changes
- · ...length along direction of force
- · ...length along direction perpendicular to force, using Poisson's ratio

(does not account for changes in temperature)

Wheatstone Bridge

 R_2 $\frac{1}{V_0} = \frac{1}{R_1 + R_2} - \frac{1}{R_3 + R_4}$ Balance: $R_1 R_4 = R_2 R_3$ V+ and V- arbitrarily assigned

Bridge Sensitivity: (1st Order Approximation) $\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_2}{R_2} - \frac{dR_1}{R_1} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right)$

$$V_i$$
 4 $\begin{pmatrix} R_2 & R_1 & R_3 & R_4 \end{pmatrix}$
= $\frac{1}{4}G(S_2 - S_1 ...)$ e.g. where $S_2 = S_T + S_A - S_B$
* S_T : Temp. $//S_A$: Axial Load $//S_B$: Bending Load

- **Reason for +/- signs: if R2 increases, v+ will increase;
- if R1 increases, v- will decrease

Strain from Axial Load: $S_a = \frac{F_a}{F_A}$

Strain from Pure Bending Moment + Transverse Load $S_b = -\frac{M + F_t(L - x)}{M}$

Half Bridge: sense SA; compensate for SB but not ST OR sense SB: compensate for ST and SA

Full Bridge: sense SA; compensate for ST and SB OR sense SB (max sensitivity); compensate for ST and SA

Bridge Balancing: Add additional resistors in parallel to fixed R's to re-establish balance condition.

3- / 4- Wire Bridges:

- · Bridge should be read when balanced: no current
- flowing through C, no potential drop Wires A and B are assumed to have the same

internal resistances which cancel out

System Modelling

Force ~ Torque ~ Voltage [Effort] (Angular) Speed ~ Current [Flow] (Angular) Displacement ~ Charge

(Angular) Momentum ~ Flux Linkage (Rotary) Damper ~ Resistor (Torsion) Spring ~ Capacitor

Mass ~ Moment of Inertia ~ Inductor [Inertia]

Can further break down $\omega = \dot{\theta} = s\theta$

State-Space Representation

Express DCM / model equation is a system of first derivatives, then fit into matrix form with derivatives on one side

$$\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{b}{m} & -\frac{b}{m} \end{bmatrix}}_{A} \begin{bmatrix} x \\ v \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}}_{B} f$$
$$\underbrace{\begin{bmatrix} \frac{d}{dt} x = Ax + Bf \end{bmatrix}}_{A}$$

Laplace Transform Tables

10	$f(t) = L^{-1}\{F(s)\}$	$F(s) = L\{f(t)\}\$		
	1	$\frac{1}{s}$		
	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}, (n=1,2,\cdots)$		
	$\frac{t^{n-1}e^{at}}{(n-1)!}$	$\frac{1}{\left(s-a\right)^{n}},\ (n=1,2,\cdots)$		
	$\frac{\sin \omega t}{\omega}$	$\frac{1}{s^2 + \omega^2}$		
	cos ωt	$\frac{s}{s^2 + \omega^2}$		
	$\frac{\sinh at}{a}$		$\frac{1}{s^2 - a^2}$	
	$\frac{\cosh at}{u(t-a), \text{ Unit step function}}$		$\frac{s}{s^2 - a^2}$	
			$\frac{e^{-as}}{s}$	
	$\delta(t-a)$, Unit impulse		e ^{-as}	
	function			