Experiment 2 Analysis

2

1

4 Experiment 2: Honorific Greetings

Participants. We report on data from 18 infants ($range=5.33-14.93mos, M_{\rm age}=6.10.77mos, SD_{\rm age}=2.67mos$) tested in the Canada Chica paraje of a Tseltal Maya commu-

7 nity in Tenejapa, Chiapas, in Southern Mexico.

Mothers ranged in age from 14.00 to 42.00 yrs ($M_{\rm age}=26.81$ yrs, $SD_{\rm age}=7.80$ yrs)

```
g_fin$stimulus_set <- ''</pre>
g_fin[g_fin$old_trial_name %in% c('old_woman-YOUNG MAN',
                           'OLD_WOMAN-young_man'), ]$stimulus_set <- 'A'
g_fin[g_fin$old_trial_name %in% c('young_man-OLD_WOMAN',
                           'YOUNG_MAN-old_woman'), ]$stimulus_set <- 'B'
g_fin[g_fin$old_trial_name %in% c('old_man-YOUNG_WOMAN',
                           'OLD MAN-young woman'), ]$stimulus set <- 'C'
g_fin[g_fin$old_trial_name %in% c('young_woman-OLD_MAN',
                           'YOUNG_WOMAN-old_man'), ]$stimulus_set <- 'D'
g_fin$target_stimulus <- paste(g_fin$target_noun, g_fin$stimulus_set, sep='')</pre>
g_fin$non_target_stimulus <- ''</pre>
g_fin[g_fin$target_stimulus=='young_manA',]$non_target_stimulus <- 'old_womanA'</pre>
g fin[g fin$target stimulus=='old womanA',]$non_target stimulus <- 'young manA'
g_fin[g_fin$target_stimulus=='young_manB',]$non_target_stimulus <- 'old_womanB'
g_fin[g_fin$target_stimulus=='old_womanB',]$non_target_stimulus <- 'young_manB'</pre>
g_fin[g_fin$target_stimulus=='young_womanC',]$non_target_stimulus <- 'old_manC'</pre>
g_fin[g_fin$target_stimulus=='old_manC',]$non_target_stimulus <- 'young_womanC'</pre>
g_fin[g_fin$target_stimulus=='young_womanD',]$non_target_stimulus <- 'old_manD'</pre>
g_fin[g_fin$target_stimulus=='old_manD',]$non_target_stimulus <- 'young_womanD'
g_target_df <- g_fin %>%
  filter(noun pair %in% c('old man-young woman', 'old woman-young man'),
         subject_id %in% g_subjects) %>%
  dplyr::select(subject_id,
                bebe_meses,
                age_centered,
                age_group,
                stimulus_set,
                target_stimulus,
                noun_pair,
                post1_target_prop) %>%
  mutate(merge_on_noun = target_stimulus)
g_non_target_df <- g_fin %>%
```

```
filter(noun_pair %in% c('old_man-young_woman', 'old_woman-young_man'),
                         subject_id %in% g_subjects) %>%
 dplyr::select(subject_id,
               bebe_meses,
                age_centered,
               age_group,
               noun_pair,
                stimulus_set,
               non_target_stimulus,
               post1_nontarget_prop) %>%
 mutate(merge_on_noun=non_target_stimulus)
g_target_nontarget_props_df <- merge(g_target_df, g_non_target_df,</pre>
                                     by=c('subject_id',
                                           'noun_pair',
                                           'stimulus set',
                                           'merge_on_noun',
                                           'age_centered',
                                           'bebe_meses',
                                           'age_group'), all=T) %>%
 group_by(subject_id, bebe_meses, age_centered, age_group,
          noun_pair, stimulus_set, merge_on_noun) %>%
  summarize(post1_target_prop = na.mean(post1_target_prop),
           post1_nontarget_prop = na.mean(post1_nontarget_prop))
g_diffs_df <- g_target_nontarget_props_df %>%
 dplyr::select(subject_id, bebe_meses, age_centered, age_group,
               noun_pair, stimulus_set, merge_on_noun,
               post1_target_prop,
               post1_nontarget_prop) %>%
 mutate(diff = post1_target_prop - post1_nontarget_prop) %>%
 group_by(subject_id,
          bebe_meses, age_centered, age_group,
          noun_pair, stimulus_set) %>%
  summarize(stim_pair_diff = mean(diff)) %>%
 group_by(subject_id, bebe_meses, age_centered, age_group, noun_pair) %>%
  summarize(noun_pair_diff = na.mean(stim_pair_diff)) %>%
         filter(!is.na(noun_pair))
g_diffs_df\(^as.numeric(G_SD_AGE)\)
write.csv(g diffs df,
        here('data/r_analysis_dfs', 'g_bs2012_diffs.csv')
```

Mean Difference Score Analysis.

```
set.seed(36)
g_by_item_tab <- g_diffs_df %>%
  group_by(noun_pair, subject_id, age_centered) %>%
  summarize(subj_item_mean = na.mean(noun_pair_diff)) %>%
  filter(!is.na(subj_item_mean)) %>%
  ungroup() %>%
  group_by(noun_pair) %>%
  summarize(n = n(),
            M = na.mean(subj_item_mean),
            cil=M-ci.low(subj_item_mean),
            cih = M+ci.high(subj_item_mean),
            min=min(subj_item_mean, na.rm=T),
            max=max(subj_item_mean, na.rm=T))
G_ALL_ITEM_MEAN <- mean(g_by_item_tab$M)</pre>
G_ALL_ITEM_CIL <- G_ALL_ITEM_MEAN - ci.low(g_by_item_tab$M)</pre>
G_ALL_ITEM_CIH <- G_ALL_ITEM_MEAN + ci.high(g_by_item_tab$M)</pre>
G_ALL_ITEM_MIN <- min(g_by_item_tab$M)</pre>
G_ALL_ITEM_MAX <- max(g_by_item_tab$M)</pre>
N_G_POSITIVE_ITEMS <- sum(g_by_item_tab$M > 0)
set.seed(36)
```

 $By\ Item.$

```
11 ## # A tibble: 2 x 7
12 ##
       noun_pair
                                     Μ
                                           cil
                                                 cih
                              n
                                                        min
                                                              max
       <chr>>
                          <int> <dbl>
                                         <dbl> <dbl> <dbl> <dbl> <
13 ##
## 1 old_man-young_woman
                             13 0.0848 -0.138 0.285 -0.713 0.538
## 2 old_woman-young_man
                             15 0.182 0.0648 0.305 -0.191 0.540
```

```
# Bayes factor
   ttestBF(g_by_item_tab$M)
        Non-parametric.
16
17 ## Bayes factor analysis
18 ## -----
19 ## [1] Alt., r=0.707 : 1.2 \pm 0\%
20 ##
21 ## Against denominator:
22 ## Null, mu = 0
23 ## ---
24 ## Bayes factor type: BFoneSample, JZS
   # Standard deviation
   stdev=sd(g_by_item_tab$M, na.rm=T)
   # Mean
  mean_data=na.mean(g_by_item_tab$M)
   # Effect size
   G_ITEM_D=abs(mean_data/stdev)
   g_by_item_sub_tab <- g_diffs_df %>%
     group_by(noun_pair, subject_id) %>%
     summarize(subj_item_mean = na.mean(noun_pair_diff)) %>%
     ungroup() %>%
     filter(!is.na(subj_item_mean))
   g_item_wilcox <- wilcox.test(g_by_item_sub_tab$subj_item_mean,</pre>
                                 alternative="two.sided")
   G_ITEM_P_WILCOX <- reportP(as.numeric(g_item_wilcox['p.value']))</pre>
   g_item_binom <- binom.test(2, 2, p=.5)</pre>
  G_ITEM_P_BINOM <- reportP(g_item_binom$p.value)</pre>
   set.seed(36)
   g_diffs_df$noun_pair_label <- ''</pre>
   g_diffs_df[
    g_diffs_df$noun_pair=='old_woman-young_man',]$noun_pair_label <-
```

```
'old woman -\nyoung man'
g_diffs_df[
  g diffs df$noun pair=='old man-young woman',]$noun pair label <-
  'old man -\nyoung woman'
g_plot2 <- g_diffs_df %>%
  group_by(noun_pair, noun_pair_label, subject_id) %>%
  summarize(subj_item_mean = na.mean(noun_pair_diff)) %>%
  ungroup() %>%
 filter(!is.na(subj_item_mean)) %>%
  group_by(noun_pair, noun_pair_label) %>%
 mutate(n = n(),
            item_mean = na.mean(subj_item_mean),
            min=min(subj_item_mean, na.rm=T),
            max=max(subj_item_mean, na.rm=T),
            ci.low=item_mean-ci.low(subj_item_mean),
            ci.high = item_mean+ci.high(subj_item_mean)) %>%
  ggplot(., aes(x=noun_pair_label, y=item_mean, color=noun_pair)) +
    geom_hline(yintercept=0) +
  geom_jitter(aes(y=subj_item_mean), alpha=.5) +
  geom_pointrange(aes(y=item_mean, ymin=ci.low, ymax=ci.high,
                      fill=noun_pair), shape=23, size=.5) +
  sb.density.theme +
  theme(axis.text.x = element_text(angle=60, vjust=1, hjust=1, size=10),
        legend.position = "none",
        axis.title = element_text(colour="gray30", size=11, face="bold")) +
  ylab("Increase in Target Looking") +
  xlab("Honorific-Pair") +
  ylim(-1, 1) +
  scale_discrete_manual(aesthetics=c("color", "fill"),
                        values=greeting pair fills)
```

```
set.seed(36)
g_sub_df <- g_diffs_df %>%
  filter(!is.na(noun_pair_diff)) %>%
  group_by(subject_id, bebe_meses, age_centered) %>%
  summarize(g_M = na.mean(noun_pair_diff),
            n=n())
G_N_FOR_MEAN_DIFF_ANALYSES <- nrow(g_sub_df)</pre>
g_positive_scorers_age_tab <- g_sub_df %>%
  filter(g_M>0) %>%
  ungroup() %>%
  summarize(mean=mean(bebe_meses),
            sd=sd(bebe_meses),
            ci.low=mean-ci.low(bebe_meses),
            ci.high=mean+ci.high(bebe_meses))
G_N_POSITIVE_SUBS <- sum(g_sub_df$g_M>0)
G_N_TOTAL_SUBS <- nrow(g_sub_df)</pre>
G_PS_MEAN_AGE <- g_positive_scorers_age_tab$mean</pre>
G_PS_CILO_AGE <- g_positive_scorers_age_tab$ci.low</pre>
G_PS_CIHI_AGE <- g_positive_scorers_age_tab$ci.high</pre>
G_PS_SD_AGE <- g_positive_scorers_age_tab$sd</pre>
```

```
set.seed(36)
 g_by_sub_overall_tab <- g_diffs_df %>%
  group_by(subject_id) %>%
  summarize(subj_mean = na.mean(noun_pair_diff)) %>%
  ungroup() %>%
  filter(!is.na(subj_mean)) %>%
  summarize(group_subject_mean = mean(subj_mean),
            min=min(subj_mean),
            max=max(subj_mean),
            ci.low=group_subject_mean-ci.low(subj_mean),
             ci.high = group_subject_mean+ci.high(subj_mean))
G_ALL_SUB_MEAN <- g_by_sub_overall_tab$group_subject_mean</pre>
G_ALL_SUB_CIL <- g_by_sub_overall_tab$ci.low</pre>
G_ALL_SUB_CIH <- g_by_sub_overall_tab$ci.high</pre>
G_ALL_SUB_MIN <- g_by_sub_overall_tab$min</pre>
G_ALL_SUB_MAX <- g_by_sub_overall_tab$max</pre>
```

```
g_diffs_df %>%
  filter(!is.na(noun_pair_diff)) %>%
  group_by(subject_id, bebe_meses) %>%
  summarize(subj_item_mean = na.mean(noun_pair_diff),
            n_{items} = n()) %>%
  mutate(all_pairs = n_items==2) %>%
 filter(!is.na(subj_item_mean)) %>%
ggplot(.) +
  geom_point(aes(x=bebe_meses, y=subj_item_mean),
             color=rf_color, fill=rf_fill,
             shape=24, size=2.5) +
  geom_linerange(aes(x=bebe_meses, ymin=0, ymax=subj_item_mean),
                 color=rf color) +
  geom hline(yintercept=0) +
  sb.density.theme +
  theme(
    axis.title = element_text(colour="gray30", size=11, face="bold"),
        axis.text = element_text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30")) +
  ylab("Increase in Target Looking") +
  xlab("Child Age (months)") +
  xlim(4.5, 16.0) +
  scale_x_continuous(breaks=c(4,5,6,7,8,9,10,11,12,13,14,15)) +
 ylim(-.4, .6)
```

By Subject.

```
# Bayes factor
ttestBF(g_sub_df$g_M)
```

Non-parametric.

```
^{27} ## Bayes factor analysis
```


Figure 1

```
g_subj_binom <- binom.test(G_N_POSITIVE_SUBS, G_N_FOR_MEAN_DIFF_ANALYSES, p=.5)
G_SUBJ_P_BINOM <- reportP(g_subj_binom$p.value)</pre>
```

```
set.seed(36)
g_model0 <- lmer(noun_pair_diff ~ 0 + (1|subject_id), REML = FALSE,</pre>
              g_diffs_df)
g_model1 <- lmer(noun_pair_diff ~ 1 + (1|subject_id), REML = FALSE,</pre>
                g_diffs_df)
g_b0_anova <- anova(g_model1, g_model0)</pre>
G_BO_CHISQ <- g_bO_anova$Chisq[2]
G_BO_P <- reportP(g_b0_anova$`Pr(>Chisq)`[2])
g_all_subs_intercept <- as.data.frame(</pre>
  cbind(b=fixef(g_model1),
  ci.low=confint(g_model1)[3,1],
  ci.high=confint(g_model1)[3,2])
  )
G_B0_EST <- op(g_all_subs_intercept$b)</pre>
G_BO_CIL <- op(g_all_subs_intercept$ci.low)</pre>
G_BO_CIH <- op(g_all_subs_intercept$ci.high)</pre>
G_B0_TT_DF <- op(as.numeric(unlist(summary(g_model1)['coefficients'])[3]))</pre>
G_BO_TT_STAT <- op(as.numeric(</pre>
  unlist(summary(g_model1)['coefficients'])[4])
G_BO_TT_P <- reportP(as.numeric())</pre>
  unlist(summary(g_model1)['coefficients'])[5])
  )
#noun pair not enough variance to warrant random intercept
write(texreg(g_model1),
      file=here('supplement/tables/exp_2/g_lmer0_tab.tex'))
```

MLM Intercept. 2/2 honorific-pairs showed positive mean difference scores. The mean across items was positive (range: 0.08-0.18, M=0.13 [0.08, 0.18]; p<.05, Wilcoxon test; p=0.500, binomial test; d=1.95).

38

11/15 subjects showed a positive mean difference score ($M_{\rm age} = 10.88$ [9.14, 12.58],

```
SD_{age}=3.09). The mean across subjects was positive (range: -0.36-0.54, M=0.14 [0.00, 0.28]; p=0.095, Wilcoxon test, p=0.118, binomial test, d=0.52).

A linear mixed effects model suggested that infants' positive mean performance was reliable, accounting for subject- and item-level variability (\beta_0=0.14, 95% CI: [-0.01, 0.29], t(15.23)=1.98, p=0.066, \chi^2(1)=3.53, p=0.060).
```

```
set.seed(36)
g_by_subj_age_tab <- g_diffs_df %>%
  filter(!is.na(noun_pair_diff)) %>%
  group_by(subject_id, bebe_meses, age_centered) %>%
  summarize(subj_item_mean = na.mean(noun_pair_diff),
            n_{subjects} = n(),
            min = min(noun_pair_diff, na.rm=T),
            max = max(noun_pair_diff, na.rm=T),
            ci.low = subj_item_mean-ci.low(noun_pair_diff),
            ci.high = subj_item_mean+ci.high(noun_pair_diff))
g_age_cor_test <- cor.test(g_by_subj_age_tab$bebe_meses,</pre>
                            g_by_subj_age_tab$subj_item_mean,
                            method="kendall")
G_AGE_CORR <- as.numeric(g_age_cor_test$estimate)</pre>
G_AGE_CORR_P <- g_age_cor_test$p.value
G_AGE_CORR_T <- g_age_cor_test$statistic</pre>
```

Correlation with Age. Mean scores were not significantly correlated with infants' ages in months ($\tau = 0.05$, p = 0.85).

```
g_age_lm <- lm(subj_item_mean ~ 1 + age_centered, g_by_subj_age_tab)
summary(g_age_lm)</pre>
```

```
##
  ## Call:
  ## lm(formula = subj_item_mean ~ 1 + age_centered, data = g_by_subj_age_tab)
  ## Residuals:
  ##
         Min
                   1Q Median
                                    3Q
                                           Max
  ## -0.5040 -0.1624 -0.0037 0.2242 0.4009
  ##
53
  ## Coefficients:
54
                   Estimate Std. Error t value Pr(>|t|)
  ##
```

```
## (Intercept) 0.14180 0.07403 1.92 0.078 .
## age_centered -0.00281 0.02809 -0.10 0.922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.29 on 13 degrees of freedom
## Multiple R-squared: 0.00077, Adjusted R-squared: -0.0761
## F-statistic: 0.01 on 1 and 13 DF, p-value: 0.922
```

```
write(texreg(g_age_lm),
     file=here('supplement/tables/exp_2/g_age_lm_tab.tex'))
```

```
g_supp_pre <- g_fin %>%
  select(pre_target_sum_ms, pre_nontarget_sum_ms,
         subject_id, bebe_meses, age_centered, noun_pair, path)
g_supp_pre$phase <- "pre-naming"</pre>
g_supp_pre$target_bins <- round(g_supp_pre$pre_target_sum_ms/20,0)</pre>
g_supp_pre$nontarget_bins <- round(g_supp_pre$pre_nontarget_sum_ms/20, 0)
g_supp_pre <- g_supp_pre %>%
  select(subject_id, bebe_meses, age_centered, noun_pair, phase,
         target_bins, nontarget_bins, path)
g_supp_post <- g_fin %>%
  select(post1_target_sum_ms, post1_nontarget_sum_ms,
         subject_id, bebe_meses, age_centered, noun_pair, path)
g_supp_post$phase <- "post-naming"</pre>
g_supp_post$target_bins <- round(g_supp_post$post1_target_sum_ms/20, 0)</pre>
g_supp_post$nontarget_bins <- round(g_supp_post$post1_nontarget_sum_ms/20, 0)
g_supp_post <- g_supp_post %>%
  select(subject_id, bebe_meses, age_centered, noun_pair, phase,
         target_bins, nontarget_bins, path)
g_supp_stacked_r2 <- rbind(g_supp_pre, g_supp_post)</pre>
g_supp_stacked_r2$phase <- as.factor(g_supp_stacked_r2$phase)
g_supp_stacked_r2$phase <- relevel(g_supp_stacked_r2$phase, ref="pre-naming")</pre>
g_supp_stacked_r2 %>%
  group_by(subject_id, bebe_meses, age_centered, noun_pair, phase, path) %>%
  summarize(target_bins = target_bins,
            nontarget_bins = nontarget_bins) %>%
  write.csv(., here('data/r_analysis_dfs',
                   'g_prepost_target_looking.csv')
```

Pre/Post Looking Logit Model. Get back to 126 trials

```
family=binomial, g_supp_stacked_r2,
                            control=glmerControl(optimizer="bobyga",
                            optCtrl=list(maxfun=100000)))
   g_supp_glmer <- glmer(cbind(target_bins, nontarget_bins) ~</pre>
                             phase + (1|subject_id),
                            family=binomial, g_supp_stacked_r2,
                            control=glmerControl(optimizer="bobyga",
                            optCtrl=list(maxfun=100000)))
   g_supp_glmer_tab <- as.data.frame(</pre>
     cbind("OR"=op(exp(fixef(g_supp_glmer))),
           "CIL"=op(exp(confint.merMod(g_supp_glmer))[2:3,1]),
           "CIH"=op(exp(confint.merMod(g_supp_glmer))[2:3,2])))
   G_POSTNAMING_OR <- g_supp_glmer_tab$OR[2]</pre>
   G_POSTNAMING_CIL <- g_supp_glmer_tab$CIL[2]</pre>
   G_POSTNAMING_CIH <- g_supp_glmer_tab$CIH[2]</pre>
   G_PHASE_WALD_CHISQ <- Anova(g_supp_glmer)['phase','Chisq']</pre>
   G_PHASE_WALD_P <- reportP(</pre>
     Anova(g_supp_glmer)['phase','Pr(>Chisq)'])
   g_supp_age_glmer <- glmer(cbind(target_bins, nontarget_bins) ~</pre>
                             phase + age_centered +
                               (1|subject_id),
                             family=binomial, g_supp_stacked_r2,
                            control=glmerControl(optimizer="bobyqa",
                            optCtrl=list(maxfun=100000)))
   summary(g_supp_glmer)
  ## Generalized linear mixed model fit by maximum likelihood (Laplace
        Approximation) [glmerMod]
  ##
  ## Family: binomial ( logit )
  ## Formula: cbind(target_bins, nontarget_bins) ~ phase + (1 | subject_id)
         Data: g_supp_stacked_r2
  ##
  ## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
71 ##
72 ##
           AIC
                    BIC
                           logLik deviance df.resid
73 ##
         19929
                  19939
                            -9961
                                     19923
                                                 227
  ##
75 ## Scaled residuals:
76 ##
         Min
                 1Q Median
                                3Q
                                      Max
77 ## -23.27 -5.88
                      1.18 6.75 16.68
```

```
##
   ## Random effects:
   ## Groups
                 Name
                               Variance Std.Dev.
   ## subject_id (Intercept) 0.223
   ## Number of obs: 230, groups: subject_id, 18
83
   ## Fixed effects:
84
   ##
                        Estimate Std. Error z value Pr(>|z|)
                                               1.06
   ## (Intercept)
                          0.1191
                                     0.1126
                                                         0.29
                          0.2619
                                     0.0235
                                               11.14
   ## phasepost-naming
                                                       <2e-16 ***
   ## ---
88
   ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
89
   ## Correlation of Fixed Effects:
                   (Intr)
93 ## phspst-nmng -0.107
   exp(fixef(g_supp_glmer))
            (Intercept) phasepost-naming
  ##
                    1.1
                                      1.3
   exp(confint(g_supp_glmer))
                        2.5 % 97.5 %
   ##
                         1.42
97 ## .sig01
                                 2.0
98 ## (Intercept)
                         0.89
                                 1.4
   ## phasepost-naming 1.24
   Anova(g_supp_glmer)
   ## Analysis of Deviance Table (Type II Wald chisquare tests)
100
   ##
101
   ## Response: cbind(target_bins, nontarget_bins)
102
            Chisq Df Pr(>Chisq)
103
              124 1
   ## phase
                        <2e-16 ***
104
105
   ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
   \#G_POSTNAMING_OR \leftarrow op(g_pp_age_glmer_tab\$OR[2])
   \#G_POSTNAMING_CIL \leftarrow op(g_pp_age_glmer_tab\$CIL[2])
   \#G_POSTNAMING_CIH \leftarrow op(g_pp_age_glmer_tab\$CIH[2])
```

```
\#G_PHASE\_WALD\_CHISQ \leftarrow op(Anova(g_supp_age_glmer)['phase','Chisq'])
   \#G_PHASE_WALD_P \leftarrow op(Anova(g_supp_age_glmer)['phase', 'Pr(>Chisq)'])
   g_supp_ageint_glmer <- glmer(cbind(target_bins, nontarget_bins) ~</pre>
                              phase*age_centered +
                                (1|subject_id),
                             family=binomial, g_supp_stacked_r2)
   confint.merMod(object = g_supp_ageint_glmer, method = "boot")
107 ##
                                        2.5 % 97.5 %
108 ## .sig01
                                       0.253 0.545
                                       -0.127 0.270
109 ## (Intercept)
110 ## phasepost-naming
                                       0.227 0.320
111 ## age centered
                                      -0.180 -0.025
## phasepost-naming:age_centered 0.018 0.051
   g_supp_ageint_glmer_tab <- as.data.frame(</pre>
      cbind("OR"=op(exp(fixef(g_supp_ageint_glmer))),
            "CIL"=op(exp(confint.merMod(object = g_supp_ageint_glmer,
                                          method = "boot"))[2:5,1]),
            "CIH"=op(exp(confint.merMod(object = g_supp_ageint_glmer,
                                          method = "boot"))[2:5,2])))
   g_supp_ageint_anova <- anova(g_supp_glmer, g_supp_age_glmer,</pre>
                                  g_supp_ageint_glmer)
   G_POST_AGE_INT_PHASE_OR <- g_supp_ageint_glmer_tab$OR[2]</pre>
   G_POST_AGE_INT_PHASE_CIL <- g_supp_ageint_glmer_tab$CIL[2]</pre>
   G_POST_AGE_INT_PHASE_CIH <- g_supp_ageint_glmer_tab$CIH[2]</pre>
   G_POST_AGE_INT_PHASE_WALD_CHISQ <-</pre>
      Anova(g_supp_ageint_glmer)['phase','Chisq']
   G_POST_AGE_INT_PHASE_WALD_P <-</pre>
     reportP(Anova(g_supp_ageint_glmer)['phase', 'Pr(>Chisq)'])
   G_POST_AGE_INT_OR <- g_supp_ageint_glmer_tab$OR[4]</pre>
   G_POST_AGE_INT_CIL <- g_supp_ageint_glmer_tab$CIL[4]</pre>
   G_POST_AGE_INT_CIH <- g_supp_ageint_glmer_tab$CIH[4]</pre>
   G POST AGE INT WALD CHISQ <-
      op(Anova(g_supp_ageint_glmer)['phase:age_centered','Chisq'])
   G POST AGE INT WALD P <-
     reportP(Anova(g_supp_ageint_glmer)['phase:age_centered','Pr(>Chisq)'])
   G_POST_AGE_INT_DF <- g_supp_ageint_anova$Df[2]</pre>
```

```
G_POST_AGE_INT_CHISQ <- g_supp_ageint_anova$Chisq[2]</pre>
   G_POST_AGE_INT_P <- reportP(g_supp_ageint_anova$`Pr(>Chisq)`[2])
   Anova(g_supp_ageint_glmer)
   ## Analysis of Deviance Table (Type II Wald chisquare tests)
113
   ##
   ## Response: cbind(target_bins, nontarget_bins)
115
                           Chisq Df Pr(>Chisq)
   ##
116
   ## phase
                          123.84
                                         <2e-16 ***
117
   ## age_centered
                            5.08
                                         0.0242 *
118
   ## phase:age_centered 13.82 1
                                         0.0002 ***
119
   ## ---
120
                       0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
   ## Signif. codes:
121
   write(texreg(list(g_supp_glmer, g_supp_age_glmer)),
         here('supplement/tables/exp_2', 'g_prepost_glmers_w_wo_age_tab.tex')
   write(texreg(list(g_supp_glmer, g_supp_age_glmer, g_supp_ageint_glmer)),
         here('supplement/tables/exp 2', 'g prepost 3glmers tab.tex')
         )
```

122 Results Text

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

The odds ratio for trial phase (POST-NAMING OR= 1.30, 95% CI: [1.24, 1.36]) suggests that infants' relative looking time to the competitor faces was responsive to the honorific term used by their caregivers: infants dedicated a significantly greater proportion of their looking time to the target face after hearing the honorific ($Wald\chi^2(1) = 123.99$, p < .001, Cohen d = 0.65).

As in Experiment 1, a model which additionally included infant age and its interaction with trial phase resulted in a significantly better fit ($\chi^2(1) = 4.49$, p < .05), showing a reliable effect of trial phase (OR = 1.31, 95% CI: [1.25, 1.37], Wald $\chi^2(1) = 123.84$, p < .001, Cohen d = 0.65) and interaction with age, such that older children showed a greater increase in the ratio of target:non-target looking after hearing the target word (OR = 1.03, 95% CI: [1.02, 1.05], Wald $\chi^2(1) = 13.82$, p < .001, Cohen d = 0.081).

GLMERs by Age Group. From B&S2012:

>A separate hierarchical logistic regression model was created for each group of children (6–9 mo, 10–13 mo, 14–16 mo, and 18–20 mo) for each trial type (paired-picture and scene). Phase of trial (pretarget utterance vs. posttarget utterance) was included as a fixed-effect predictor, and subject and item were included as random effects. Each model predicts (the log of) the ratio of target to distracter looking, as calculated by counting time bins.

Trial Counts Across Analyses

25 trials dropped for paired difference score analysis, or 21.74% of non-excluded trials.

```
142 ## # A tibble: 1 x 5
143 ## min max mean med mode
144 ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 8
6.39
6.5
```

140

141

146

Trial Durations

```
G_MED_TRIAL_DUR_S <- median(g_fin$trialtolookingoffset_dur_s, na.rm=T)

G_MIN_TRIAL_DUR_S <- min(g_fin[g_fin$trial_dur_s<30,]$trialtolookingoffset_dur_s)

G_MAX_TRIAL_DUR_S <- max(g_fin[g_fin$trial_dur_s<30,]$trialtolookingoffset_dur_s)
```

```
G MEAN TRIAL DUR S <- mean(
  g_fin[g_fin$trial_dur_s<30,]$trialtolookingoffset_dur_s)</pre>
G_CIL_TRIAL_DUR_S <- G_MEAN_TRIAL_DUR_S - ci.low(</pre>
  g_fin[g_fin$trial_dur_s<30,]$trialtolookingoffset_dur_s)</pre>
G_CIH_TRIAL_DUR_S <- G_MEAN_TRIAL_DUR_S + ci.high(</pre>
  g_fin[g_fin$trial_dur_s<30,]$trialtolookingoffset_dur_s)</pre>
ggplot(g_fin, aes(x=trialtolookingoffset_dur_s)) +
  geom_histogram(fill="#bae4bc") +
  sb.density.theme +
  geom_vline(xintercept=G_MED_TRIAL_DUR_S, color="red", lty=2) +
  xlim(6,22) +
  xlab("Trial Duration (s)") +
  ylab("Number of Trials") +
  theme(axis.title = element_text(colour="gray30", size=11),
        axis.text = element_text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30"),
        plot.background = element_blank() ,
        panel.grid.major = element_blank() ,
        panel.grid.minor = element_blank() ,
        panel.border = element_blank() ,
        panel.background = element_blank(),
        axis.line = element_line(color = "gray30")) +
  annotate(
    "text", label = "Median = 14s",
    x = G_MED_TRIAL_DUR_S+2, y = 16, size = 4, colour = "red")
```



```
G_MED_TRIAL_LOOKING_S <- median(</pre>
  g_fin$totaltrialtime_looking_sum_s)
G_MIN_TRIAL_LOOKING_S <-</pre>
  min(g_fin$totaltrialtime_looking_sum_s)
G_MAX_TRIAL_LOOKING_S <-</pre>
  max(g_fin$totaltrialtime_looking_sum_s)
G_MEAN_TRIAL_LOOKING_S <-</pre>
  mean(g_fin$totaltrialtime_looking_sum_s)
G_CIL_TRIAL_LOOKING_S <- G_MEAN_TRIAL_LOOKING_S -</pre>
  ci.low(g_fin$totaltrialtime_looking_sum_s)
G_CIH_TRIAL_LOOKING_S <- G_MEAN_TRIAL_LOOKING_S +</pre>
  ci.high(g_fin$totaltrialtime_looking_sum_s)
ggplot(g_fin, aes(x=totaltrialtime_looking_sum_s)) +
  geom_histogram(fill="#7bccc4") +
  sb.density.theme +
  geom_vline(xintercept=G_MED_TRIAL_LOOKING_S,
```

```
color="red", lty=2) +
xlim(2,20) +
xlab("Total Looking Time Duration (s)") +
ylab("Number of Trials") +
theme(axis.title = element_text(colour="gray30", size=11),
      axis.text = element_text(colour="gray30", size=11),
      axis.ticks = element_line(colour="gray30"),
     plot.background = element_blank(),
     panel.grid.major = element_blank(),
     panel.grid.minor = element_blank(),
     panel.border = element_blank(),
     panel.background = element blank(),
     axis.line = element_line(color = "gray30")) +
annotate(
  "text", label = "Median = 12s",
 x = G_MED_TRIAL_LOOKING_S+2.5, y = 12, size = 4, colour = "red")
```



```
G MED LOOKING PROP <- median(
  g_fin$trialtolookingoffset_prop)
G MIN LOOKING PROP <- min(
  g_fin$trialtolookingoffset_prop)
G_MAX_LOOKING_PROP <- max(</pre>
  g_fin$trialtolookingoffset_prop)
G_MEAN_LOOKING_PROP <- mean(</pre>
  g_fin$trialtolookingoffset_prop)
G_CIL_LOOKING_PROP <- G_MEAN_LOOKING_PROP -</pre>
  ci.low(g_fin$trialtolookingoffset_prop)
G_CIH_LOOKING_PROP <- G_MEAN_LOOKING_PROP +</pre>
  ci.high(g fin$trialtolookingoffset prop)
ggplot(g_fin, aes(x=trialtolookingoffset_prop)) +
  geom_histogram(fill="#7bccc4") +
  sb.density.theme +
  geom_vline(xintercept=G_MED_LOOKING_PROP, color="red", lty=2) +
 xlim(0,1) +
  xlab("Overall Looking Time Proportion") +
  ylab("Number of Trials") +
  theme(axis.title = element_text(colour="gray30", size=11),
        axis.text = element_text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30"),
        plot.background = element_blank() ,
        panel.grid.major = element_blank() ,
        panel.grid.minor = element_blank() ,
        panel.border = element blank() ,
        panel.background = element_blank(),
        axis.line = element_line(color = "gray30")) +
  annotate(
    "text", label = "Median = 0.85",
    x = G_MED_LOOKING_PROP-.12, y = 16, size = 4, colour = "red")
```



```
G_MED_PRE_DUR_S <- median(g_fin$pre_dur_ms/1000)</pre>
G_MIN_PRE_DUR_S <- min(g_fin*pre_dur_ms/1000)</pre>
G MAX PRE DUR S <- max(g fin[g fin$pre dur ms<10000,]$pre dur ms/1000)
G_MEAN_PRE_DUR_S <- mean(g_fin[g_fin$pre_dur_ms<10000,]$pre_dur_ms/1000)</pre>
ggplot(g_fin, aes(x=pre_dur_ms/1000))+
  geom_histogram(fill="#bae4bc") +
  sb.density.theme +
  geom_vline(xintercept=G_MED_PRE_DUR_S, color="red", lty=2) +
  xlim(2,6.5)+
  xlab('"Pre-Naming" Window Duration (s)') +
  ylab("Number of Trials") +
  theme(axis.title = element_text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30"),
        plot.background = element_blank() ,
        panel.grid.major = element_blank() ,
        panel.grid.minor = element_blank() ,
```

```
panel.border = element_blank() ,
    panel.background = element_blank(),
    axis.line = element_line(color = "gray30")) +
annotate(
    "text", label = "Median = 3.5s",
    x = G_MED_PRE_DUR_S+2.4, y = 25, size = 4, colour = "red")
```



```
looking_dur = post1_looking_sum_ms/1000,
         median = median(looking_dur),
         mean = mean(looking dur)) %>%
  dplyr::select("subject_id", "window", "looking_dur", "median", "mean")
G_POST_MIN_DUR <- min(g_postlookingdur_df$looking_dur)</pre>
G_POST_MAX_DUR <- max(g_postlookingdur_df$looking_dur)</pre>
G_POST_MEAN_DUR <- mean(g_postlookingdur_df$looking_dur)</pre>
G_POST_MEDIAN_DUR <- median(g_postlookingdur_df$looking_dur)</pre>
g_prepost_lookingdur_df <- rbind(g_prelookingdur_df, g_postlookingdur_df)</pre>
g_prepost_lookingdur_df$window <-</pre>
  factor(g_prepost_lookingdur_df$window, levels=c(
    "Pre-Naming" Window', "Post-Naming"/Analysis Window'), ordered=T)
g_prepost_lookingdur_label_df <- g_prepost_lookingdur_df %>%
  group_by(window) %>%
  summarize(median=median(median),
            label=paste("Median =", round(median, 2), sep=" "))
g_pp_durs <- ggplot(g_prepost_lookingdur_df, aes(x=looking_dur)) +</pre>
  geom_histogram(fill="#7bccc4") +
  sb.density.theme +
  geom_vline(aes(xintercept=median), color="red", lty=2) +
  xlim(0,5) +
  xlab("Looking Time Duration (s)") +
  ylab("Number of Trials") +
  theme(axis.title = element_text(colour="gray30", size=11),
        axis.text = element text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30"),
        plot.background = element blank(),
        strip.text.x = element_text(colour="gray30", size=11))+
  facet_wrap(~window) +
  geom_text(data=g_prepost_lookingdur_label_df,
            aes(x=median-1.2, label=label), y=45,
            color="red", size=4)
ggsave(here('supplement/plots/exp_2/pdfs', 'g_lookingdurs_prepost.pdf'),
       device='pdf', width=2.75, height=1.5, units='in', scale=2.5)
ggsave(here('supplement/plots/exp_2/pngs', 'g_lookingdurs_prepost.png'),
       device='png', width=2.75, height=1.5, units='in', scale=2.5)
```

```
g_prelookingprop_df <- g_fin %>%
mutate(window = '"Pre-Naming" Window',
```

```
looking_prop = pre_looking_sum_ms/pre_dur_ms,
         median = median(looking_prop),
         mean = mean(looking prop)) %>%
  dplyr::select("subject_id", "window", "looking_prop", "median", "mean")
G_PRE_MIN_PROP <- min(g_prelookingprop_df$looking_prop)</pre>
G_PRE_MAX_PROP <- max(g_prelookingprop_df$looking_prop)</pre>
G_PRE_MEAN_PROP <- mean(g_prelookingprop_df$looking_prop)</pre>
G_PRE_MEDIAN_PROP <- median(g_prelookingprop_df$looking_prop)</pre>
g_postlookingprop_df <- g_fin %>%
  mutate(window = '"Post-Naming"/Analysis Window',
         looking_prop = post1_looking_sum_ms/post1_dur_ms,
         median = median(looking prop),
         mean = mean(looking_prop)) %>%
  dplyr::select("subject_id", "window", "looking_prop", "median", "mean")
G_POST_MIN_PROP <- min(g_postlookingprop_df$looking_prop)</pre>
G_POST_MAX_PROP <- max(g_postlookingprop_df$looking_prop)</pre>
G_POST_MEAN_PROP <- mean(g_postlookingprop_df$looking_prop)</pre>
G POST_MEDIAN PROP <- median(g postlookingprop_df$looking_prop)
g_prepost_lookingprop_df <- rbind(g_prelookingprop_df, g_postlookingprop_df)</pre>
g_prepost_lookingprop_df$window <-</pre>
  factor(g_prepost_lookingprop_df$window, levels=c(
    '"Pre-Naming" Window','"Post-Naming"/Analysis Window'), ordered=T)
g_prepost_lookingprop_label_df <- g_prepost_lookingprop_df %>%
  group by (window) %>%
  summarize(median=median(median),
            label=paste("Median =", round(median, 2), sep=" "))
ggplot(g_prepost_lookingprop_df, aes(x=looking_prop)) +
  geom_histogram(fill="#7bccc4") +
  sb.density.theme +
  geom_vline(aes(xintercept=median), color="red", lty=2) +
  xlim(0,1) +
  ylim(0,22) +
  xlab("Looking Time Proportion") +
  ylab("Number of Trials") +
  theme(axis.title = element_text(colour="gray30", size=11),
        axis.text = element_text(colour="gray30", size=11),
        axis.ticks = element_line(colour="gray30"),
        plot.background = element blank(),
```


Trials in Experiment 2 were 14.29s [13.74, 14.84] long on average (range: 4.34-20.99s, Med=14.36s), and infants spent an average of 11.50s [10.93, 12.05] total looking at the displays (range: 3.43-18.15s, Med=11.96s, or between 0.39 and 1.00 of the total trial duration; M=0.81 [0.78, 0.83], Med=0.85).

The pre-naming window was between 2.31 and 6.12s ($M_{\text{pre}} = 3.63s$, $Med_{\text{pre}} = 3.48s$).

The children in our final sample spent similar proportions of time looking at the displays during the pre- and post-naming periods (pre-naming: 0.12-1, $M_{\text{proportion}}=0.74$, $Med_{\text{proportion}}=0.78$; post-naming: 0.38-1, $M_{\text{proportion}}=0.90$, $Med_{\text{proportion}}=0.96$).