## 18.022 Recitation Quiz (with solutions) 3 November 2014

1. Evaluate  $\int_0^{\pi} \int_0^x \cos(x+y) \, dy \, dx$  and sketch the region of integration in  $\mathbb{R}^2$  indicated by the limits of integration.

Solution. The domain of integration is shown below.



Evaluating the integral, we find

$$\int_0^{\pi} \int_0^y \cos(x+y) \, dy \, dx = \int_0^{\pi} \left[ \sin(x+y) \right]_0^x \, dx$$
$$= \int_0^{\pi} \sin(2x) - \sin(x) \, dx$$
$$= \boxed{-2}.$$

2. Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be a continuous function, and consider the integral  $\int_0^1 \int_{-x^2}^{x^2} f(x, y) \, dy \, dx$ .

- (a) Sketch the region of integration.
- (b) Rewrite the integral with the order of integration switched.

*Solution.* (a) The region of integration is shown below.



(b) Looking at the region in part (a) to change the order of integration, we get

$$\int_0^1 \int_{-x^2}^{x^2} f(x, y) \, dy \, dx = \int_{-1}^1 \int_{\sqrt{|y|}}^1 f(x, y) \, dx \, dy.$$