

New Prescription in light-cone gauge theories

D. K. Park

Department of Physics, KyungNam University, Masan, 631-701 Korea

Abstract

New prescription for the singularities of light-cone gauge theories is suggested. The new prescription provides Green's function which is identical with and different from that of Mandelstam-Leibbrandt prescription at $d = 4$ and $d = 2$ respectively.

The light-cone gauge(radiation gauge in light-cone coordinate), one of the latest noncovariant gauge, has been frequently used for the calculation of perturbative QCD, the quantization of the supersymmetric Yang-Mills theories, and the non-covariant formulation of string theories in spite of the lack of manifest Lorentz covariance.[1-4]

However, implementation of light-cone gauge is not entirely straightforward, at least in perturbation theory. This statement is easily described by considering the free gauge field propagator[5]

$$G_{\mu\nu}^{ab}(k) = \frac{-i\delta^{ab}}{k^2} \left[g_{\mu\nu} - \frac{n_\mu k_\nu + n_\nu k_\mu}{n \cdot k} \right]. \quad (1)$$

From Eq.(1) one can see that there are two kinds of singularities in $G_{\mu\nu}^{ab}(k)$. First singularity arises when $k^2 = 0$. This is the univeral property of massless fields. Usually this singularity is prescribed by choosing a causal prescription,

$$\frac{1}{k^2} \rightarrow \frac{1}{k^2 + i\epsilon}. \quad (2)$$

In $G_{\mu\nu}^{ab}(k)$ there is another singularity which arises when $n \cdot k = 0$. This "spurious singularity" is peculiar one in light-cone gauge.[6]

For the last decade various prescriptions have been made for the spurious singularity. If a Cauchy principal value(CPV) prescription

$$\frac{1}{k^-} \rightarrow CPV\left(\frac{1}{k^-}\right) \equiv \frac{1}{2} \left[\frac{1}{k^- + i\epsilon} + \frac{1}{k^- - i\epsilon} \right], \quad (3)$$

which plays an crucial role in other non-covariant gauges is choosed, calculation of the various Feynman diagrams produces a poorly defined integrals.[7]

A more successful prescription for the spurious singularity which is usually called by Mandelstam-Leibbrandt(ML) prescription

$$\frac{1}{k^-} \rightarrow ML\left(\frac{1}{k^-}\right) \equiv \frac{k^+}{k^+ k^- + i\epsilon} \quad (4)$$

is suggested independently by Mandelstam[8] and Leibbrandt[9]. Later it is proved in the framework of equal-time canonical quantization that ML prescription is nothing but the causal prescription[10] and the renormalizability of the gauge theories formulated in this way is also shown[11] although non-local counterterms are necessary to render off-shell Green's function finite.

Although attention is paid only for the spurious singularity for the last decade, there was a suggestion for $k^2 = 0$ singularity on two dimensional light-cone about twenty years ago.[12] The authors in Ref.[12] suggested that the propagators on the two-dimensional light-cone is different from those in conventional coordinates as follows by analyzing the massless scalar and fermion theories

$$\frac{1}{k^2 + i\epsilon} \Rightarrow \frac{1}{k^2 + i\epsilon} + \frac{i\pi}{2} \frac{\delta(k^-)}{|k^+|}. \quad (5)$$

Recently it is shown [13] that the difference of the propagator on the two-dimensional light-cone also can be interpreted as the difference of prescription like

$$\frac{1}{2k^+} ML\left(\frac{1}{k^-}\right) \Rightarrow \frac{1}{2k^+} CPV\left(\frac{1}{k^-}\right). \quad (6)$$

This means that the prescription problem arises not only in the spurious singularity but also in $k^2 = 0$ singularity in the light-cone gauge theories. In this paper, therefore, we will choose the prescriptions for $k^2 = 0$ and spurious singularities simultaneously.

In order to find the new prescription let us consider only $G_{--}^{ab}(k)$ which is the only non-vanishing component in two-dimensional theory. If one chooses ML-prescription

$$[G_{--}^{ab}(k)]_{ML} = \frac{2i\delta^{ab}k^+}{k^2 + i\epsilon} ML\left(\frac{1}{k^-}\right), \quad (7)$$

then $(-, -)$ component of d-dimensional Green's function defined as

$$D_{\mu\nu}^{ab}(x) \equiv \frac{1}{(2\pi)^d} \int d^d k G_{\mu\nu}^{ab}(k) e^{ikx} \equiv \delta^{ab} D_{\mu\nu}(x) \quad (8)$$

is

$$\begin{aligned} & [D_{--}(x)]_{ML} \\ &= \frac{\Gamma(\frac{d}{2})}{2\pi^{\frac{d}{2}}} (-x^2 + i\epsilon)^{-\frac{d}{2}} (x^+)^2 \\ &\quad \times \left[{}_2F_1\left(1, \frac{d}{2} - 1; 2; \frac{2(n \cdot x)(n^* \cdot x)}{(n \cdot n^*)x^2}\right) + \left(\frac{\mathbf{x}_T^2}{x^2}\right) {}_2F_1\left(2, \frac{d}{2}; 3; \frac{2(n \cdot x)(n^* \cdot x)}{(n \cdot n^*)x^2}\right) \right] \end{aligned} \quad (9)$$

where ${}_2F_1(a, b; c; z)$ is usual hypergeometric function. One can show that $d \rightarrow 4$ limit of Eq.(9) coincides with the result of Ref.[14] if the difference of definition of n^μ is considered. If one takes $\mathbf{x}_T \rightarrow \mathbf{0}$ limit, Eq.(9) becomes

$$\lim_{\mathbf{x}_T \rightarrow \mathbf{0}} [D_{--}(x)]_{ML} = \frac{2\Gamma(\frac{d}{2})(x^+)^2}{\pi^{\frac{d}{2}}(4-d)} (-x^2 + i\epsilon)^{-\frac{d}{2}} \quad (10)$$

whose $d \rightarrow 2$ limit is

$$[D_{--}(x)]_{ML}^{d=2} = \frac{(x^+)^2}{\pi} \frac{1}{-x^2 + i\epsilon}. \quad (11)$$

This is different from

$$[D_{--}(x)]'_{tHooft} = -\frac{i}{2} |x^+| \delta(x^-) \quad (12)$$

which was used by 't Hooft in Ref.[15] for the calculation of the mesonic mass spectrum. This difference makes the authors of Ref.[16] suggest that the two-dimensional pure Yang-Mills theory with light-cone gauge is not free theory. Their suggestion arises from the fact that calculational result of the vacuum expectation value of the lightlike Wilson-loop operator with ML-prescription at $O(g^4)$ does not exhibit abelian exponentiation. So it is

worthwhile to check whether there exists a prescription which provides a Green's function whose $d \rightarrow 2$ limit coincides with $[D_{--}(x)]'_{tHooft}$. Soon it will be shown that this will be achieved by choosing CPV-prescription for $k^2 = 0$ and spurious singularities simultaneously like

$$\begin{aligned}
& G_{--}^{ab}(k) \\
&= \frac{2i\delta^{ab}k^+}{k^2} \frac{1}{k^-} \\
&\rightarrow [G_{--}^{ab}(k)]_{NCPV} \\
&\equiv i\delta^{ab}CPV\left(\frac{1}{k^-(k^--\frac{\mathbf{k}_T^2}{2k^+})}\right) \\
&= i\delta^{ab}\frac{2k^+}{\mathbf{k}_T^2} \left[CPV\left(\frac{1}{k^--\frac{\mathbf{k}_T^2}{2k^+}}\right) - CPV\left(\frac{1}{k^-}\right) \right].
\end{aligned} \tag{13}$$

By using the formula

$$\begin{aligned}
& CPV\left(\frac{1}{k^--\frac{\mathbf{k}_T^2}{2k^+}}\right) \\
&= \frac{1}{k^--\frac{\mathbf{k}_T^2}{2k^+} + i\epsilon\epsilon(k^+)} + i\pi\epsilon(k^+)\delta(k^--\frac{\mathbf{k}_T^2}{2k^+}), \\
& CPV\left(\frac{1}{k^-}\right) \\
&= ML\left(\frac{1}{k^-}\right) + i\pi\epsilon(k^+)\delta(k^-),
\end{aligned} \tag{14}$$

$[G_{--}^{ab}(k)]_{NCPV}$ becomes

$$[G_{--}^{ab}(k)]_{NCPV} = [G_{--}^{ab}(k)]_{ML} - 2\pi\delta^{ab}\frac{|k^+|}{\mathbf{k}_T^2} \left[\delta(k^--\frac{\mathbf{k}_T^2}{2k^+}) - \delta(k^-) \right]. \tag{15}$$

From Eq.(15) $[D_{--}(x)]_{NCPV}$ is directly calculated and the final result is

$$[D_{--}(x)]_{NCPV} = [D_{--}(x)]_{ML} + \Delta D_{--}(x) \tag{16}$$

where $[D_{--}(x)]_{ML}$ is given in Eq.(9) and $\Delta D_{--}(x)$ is

$$\begin{aligned} & \Delta D_{--}(x) \\ &= -2^{2-d}\pi^{-\frac{d}{2}} \sum_{l=1}^{\infty} \frac{\Gamma(l+\frac{d}{2}-2)}{l!\Gamma(1-l)} \left(-\frac{x^+}{2}\right)^l \left(\frac{\mathbf{x}_T^2}{4}\right)^{2-\frac{d}{2}-l} (\partial_-)^{-l+1} CPV\left(\frac{1}{x^-}\right). \end{aligned} \quad (17)$$

The modification term $\Delta D_{--}(x)$ does not give a finite contribution at $d = 4$. Therefore this new prescription provides a same $D_{--}(x)$ with ML-prescription. After the calculation of other components one can show that all components of $[D_{\mu\nu}(x)]_{NCPV}$ coincide with $[D_{\mu\nu}(x)]_{ML}$ at $d = 4$.

However the situation is completely different at $d = 2$. In this case $\Delta D_{--}(x)$ gives a finite contribution when $l = 1$. By considering this finite contribution $[D_{--}(x)]_{NCPV}$ at $d = 2$ becomes

$$\begin{aligned} \lim_{d \rightarrow 2} [D_{--}(x)]_{NCPV} &= \frac{(x^+)^2}{\pi} \frac{1}{-x^2 + i\epsilon} + \frac{x^+}{2\pi} CPV\left(\frac{1}{x^-}\right) \\ &= -\frac{i}{2} |x^+| \delta(x^-), \end{aligned} \quad (18)$$

which is exactly same with $[D_{--}(x)]_{tHooft}$. Therefore this new prescription provides a same Green's function with ML-prescription at $d = 4$ and 't Hooft approach at $d = 2$. Furthermore if one follows this new prescription, one can not say that two dimensional pure Yang-Mills theory with light-cone gauge is interacting theory which is suggested in Ref.[16]. For example let us calculate the crossed diagram of lightlike Wilson-loop operator which gives a non-vanishing and vanishing contributions if one chooses a ML-prescription and 't Hooft approach respectively. After following the notation of Ref.[16] this new CPV prescription gives

$$\begin{aligned} & [W_{crossed}]_{CPV} \\ &= -\frac{1}{2}(ig)^4 \mu^{4-2d} C_F C_A (n^{*-})^4 \int_0^1 ds_1 \int_0^{s_1} ds_2 \int_1^0 dt_1 \end{aligned} \quad (19)$$

$$\begin{aligned} & \int_1^{t_1} dt_2 [D_{--}(n + n^*(t_1 - s_1))]_{NCPV} [D_{--}(n + n^*(t_2 - s_2))]_{NCPV} \\ &= [W_{crossed}]_{ML} + \Delta W_{crossed}. \end{aligned}$$

$[W_{crossed}]_{ML}$ is already calculated in Ref.[16];

$$\begin{aligned} & [W_{crossed}]_{ML} \\ &= -\left(\frac{g}{\pi\mu}\right)^4 \frac{C_F C_A}{16} \frac{\Gamma^2(\frac{d}{2}-1)}{(d-4)^2} \left[2A \frac{d-2}{d-3} + 8B \left(1 - 2 \frac{\Gamma^2(3-\frac{d}{2})}{\Gamma(5-d)} \right) \right], \end{aligned} \quad (20)$$

where

$$\begin{aligned} A &= (2\pi\mu^2 n \cdot n^* + i\epsilon)^{4-d} + (-2\pi\mu^2 n \cdot n^* + i\epsilon)^{4-d}, \\ B &= [(2\pi\mu^2 n \cdot n^* + i\epsilon)(-2\pi\mu^2 n \cdot n^* + i\epsilon)]^{2-\frac{d}{2}}, \end{aligned} \quad (21)$$

and this gives a finite contribution at $d = 2$

$$\lim_{d \rightarrow 2} [W_{crossed}]_{ML} = \frac{g^4}{48} C_F C_A (n \cdot n^*)^2. \quad (22)$$

In order to calculate $\Delta W_{crossed}$ we divide it as two parts

$$\Delta W_{crossed} = \Delta W_1 + \Delta W_2 \quad (23)$$

where

$$\begin{aligned} \Delta W_1 &= -\frac{1}{2} (ig)^4 \mu^{4-2d} C_F C_A (n^{*-})^4 \int_0^1 ds_1 \int_0^{s_1} ds_2 \int_0^1 dt_1 \int_{t_1}^1 dt_2 \\ &\quad \left[[D_{--}(n + n^*(t_1 - s_1))]_{ML} \Delta D_{--}(n + n^*(t_2 - s_2)) \right. \\ &\quad \left. + [D_{--}(n + n^*(t_2 - s_2))]_{ML} \Delta D_{--}(n + n^*(t_1 - s_1)) \right] \end{aligned} \quad (24)$$

and

$$\begin{aligned} \Delta W_2 &= -\frac{1}{2} (ig)^4 \mu^{4-2d} C_F C_A (n^{*-})^4 \int_0^1 ds_1 \int_0^{s_1} ds_2 \int_0^1 dt_1 \int_{t_1}^1 dt_2 \\ &\quad \Delta D_{--}(n + n^*(t_1 - s_1)) \Delta D_{--}(n + n^*(t_2 - s_2)). \end{aligned} \quad (25)$$

After tedious calculation one can show that ΔW_1 and ΔW_2 provide finite contribution to $[W_{crossed}]_{NCPV}$ at $d = 2$

$$\lim_{d \rightarrow 2} \Delta W_1 = -\frac{g^4}{24} C_F C_A (nn^*)^2 \quad (26)$$

$$\lim_{d \rightarrow 2} \Delta W_2 = \frac{g^4}{48} C_F C_A (nn^*)^2$$

from which the vanishing of $[W_{crossed}]_{NCPV}$ can be proved. This result is in agreement with that of 't Hooft approach and differs from that of ML-prescription. So it is worthwhile to calculate the remaining $O(g^4)$ diagrams(self-energy and vertex diagrams) to check whether the two-dimensional Yang-Mills theory with light-cone gauge is free or not by using this new prescription. This work will be reported elsewhere.

ACKNOWLEDGMENTS

This work was carried out with support from the Korean Science and Engineering Foundation.

References

- [1] I.Brink, O.Lindgren, and B.E.W.Nilsson, Nucl. Phys. **B212**, 401(1983).
- [2] M.A.Namazie, A.Salam, and J.Strathdee, Phys. Rev. **D28**, 1481(1983).
- [3] M.B.Green, and J.H.Schwarz, Nucl. Phys. **B181**, 502(1981).
- [4] M.B.Green, and J.H.Schwarz, Nucl. Phys. **B198**, 252(1982).

[5] My conventions are

$$\begin{aligned}x_{\pm} &= \frac{1}{\sqrt{2}}(x_0 \pm x_{d-1}) & \mathbf{x_T} &= (x_1, x_2, \dots, x_{d-2}) \\x_{\pm} &= x^{\mp} & n^2 = n_+ = 0 & \quad n^{*2} = n_-^* = 0\end{aligned}$$

- [6] A.Bassetto, G.Nardelli, and R.Soldati, Yang-Mills theories in algebraic non-covariant gauges(World Scientific, Singapore, 1991).
- [7] J.Kalinowski, K.Konish, and T.R.Taylor, Nucl. Phys. **B181**, 221(1981).
- [8] S.Mandelstam, Nucl. Phys. **B213**, 149(1983).
- [9] G.Leibbrandt, Phys. Rev. **D29**, 1699 (1984).
- [10] A.Bassetto, M.Dalbosco, I.Lazzizzera, and R.Soldati, Phys. Rev. **D31**, 2012(1985).
- [11] A.Bassetto, M.Dalbosco, and R.Soldati, Phys. Rev. **D36**, 3138(1 987).
- [12] C.R.Hagen and J.H.Yee, Phys. Rev. **D16**, 1206(1977).
- [13] D.K.Park, Phys.Rev.D to appear(hep-th9504079)
- [14] A.Bassetto, Phys. Rev. **D46**, 3676(1992).
- [15] G.'t Hooft, Nucl. Phys. **B75**, 461(1974).
- [16] A.Bassetto, F.De Biasio, and L.Griguolo, Phys. Rev. Lett. **72**, 3141(1994).