Utility Software Applications - Course Assignment

Kamil Kosiorek

10 czerwca 2018

We will explore National Emissions Inventory database and answer 6 questions about pollution in the United States over the 10-year period (1999–2008).

loading data:

```
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")</pre>
```

Question 1: Have total emissions from PM2.5 decreased in the United States from 1999 to 2008?

```
totalEmissions <- aggregate(Emissions ~ year,NEI, sum)
barplot(
   (totalEmissions$Emissions) / 1e6,
   names.arg=totalEmissions$year,
   xlab = "Year",
   ylab = "PM2.5 Emissions [ Mt ]",
   main = "Total PM2.5 Emissions in USA from 1999 to 2008"
)</pre>
```

Total PM2.5 Emissions in USA from 1999 to 2008

Answer: Total emissions from PM2.5 indeed decreased in the USA from 1999 to 2008.

Question 2: Have total emissions from PM2.5 decreased in the Baltimore City, Maryland (fips == "24510") from 1999 to 2008?

```
NEIBaltimore <- NEI[NEI$fips == "24510",]
totalBaltimore <- aggregate(Emissions ~ year, NEIBaltimore, sum)

barplot(
   (totalBaltimore$Emissions) / 1e3,
   names.arg = totalBaltimore$year,
   xlab = "Year",
   ylab = "PM2.5 Emissions [ kt ]",
   main = "Total PM2.5 Emissions in Baltimore City from 1999 to 2008"
)</pre>
```

Total PM2.5 Emissions in Baltimore City from 1999 to 2008

Answer: Total emissions from PM2.5 in Baltimore City have decreased from 1999 to 2008.

Question 3: Of the four types of sources indicated by the type (point, nonpoint, onroad, nonroad) variable, which of these four sources have seen decreases in emissions from 1999–2008 for Baltimore City?

```
library(ggplot2)

ggplot(NEIBaltimore, aes(factor(year), Emissions, fill = type)) +
  geom_bar(stat = "identity") +
  theme_bw() + guides(fill=FALSE) +
  facet_grid(.~type,scales = "free", space="free") +
  labs(x = "year", y = expression("Total PM2.5 Emission [ t ]")) +
  labs(title = expression("Emissions from PM2.5 in Baltimore City"))
```

Emissions from PM2.5 in Baltimore City

#print(plot3)

Answer: The non-road, nonpoint and on-road source types.

Question 4: Across the United States, how have emissions from coal combustion-related sources changed from 1999–2008?

Total PM2.5 coal emissions in United States

Answer: Emissions from coal combustion related sources have decreased.

Question 5: How have emissions from motor vehicle sources changed from 1999–2008 in Baltimore City?

Total PM2.5 motor vehicle emissions in Baltimore City

Answer: Emissions from motor vehicle sources in Baltimore City changed for the worse in between those years, but overall in 2008 they returned to the same size as in the 1999.

Question 6: Which city has seen greater changes over time in motor vehicle emissions?

Assumption: comparing Baltimore City (fips == "24510") and Los Angeles County, California (fips == "06037")

Total PM2.5 motor vehicle emissions in some cities of USA

Now we will compare year 1999 with 2008 in both cities:

```
aggregateEmissions <- aggregate(Emissions ~ fips + year, data = NEImotorvehicle_some, sum)
aggregate(Emissions ~ fips, data = aggregateEmissions, range)</pre>
```

```
## fips Emissions.1 Emissions.2
## 1 06037 68.4060000 81.7957985
## 2 24510 0.4772056 10.5183944
```

Answer: Los Angeles County has seen greater changes over time in motor vehicle emissions in comparison to Baltimore City.