

Objectives of This Unit

- Addressing at the Data Link Layer MAC Address
- Framing
- Wired LAN Ethernet
- Concept of virtual LANs
- Wireless LAN Wi-Fi

Layer 2 Technology

- Local Area Networks (LANs) considered Layer
 2 technology
- Dominant Technologies
 - Wired LAN: Ethernet, IEEE 802.3
 - Wireless LAN: Wi-Fi

 (also called Wireless
 Ethernet), IEEE 802.11

Standardized by the IEEE

Wired LAN – Ethernet (IEEE 802.3)

- IEEE 802.3 standards
 - Patented 1977
 - Standardized by IEEE 802.3 committee in 1983
 - Rates: 10Mbps, 100 Mbps, {1, 10, 100} Gbps options

Early diagram of Ethernet,

Cable called Ether.
Patented in 1977
Robert Metcalfe

Classical Ethernet

- Traditional Ethernet: stations are connected to "bus'/wire (hub-based Ethernet)
 - Broadcast to all stations on the bus
- Each station is assigned a unique address

Packet on the Shared Medium

Packets must be addressed to a particular device

Broadcast in Ethernet

- Signal is transmitted to all stations connected to bus
 - Traditional Ethernet operation is based on broadcast
 - Signal is transmitted to all stations connected to the wire
 - All computers on the network get the packet
 - But only intended destination opens it, others ignore

Addressing at Data Link Layer – MAC Addresses

- Address used in data link layer is: MAC address
 - Called a MAC address as it is associated with data link layer which is responsible for <u>Medium Access Control</u>
 - MAC Address is also called Ethernet address, Physical address or Extended Unique Identifier (EUI-48).
- MAC address is 48 bits in length
 - All 1's address (48 One's) is pre-defined to be the broadcast address on the LAN

MAC Address

24 bits: Organizationally Unique Identifies (OUI) assigned by the IEEE No two manufacturer have the same OUI. http://standards-oui.ieee.org/oui.txt

24 bits: assigned by the manufacturer for each network interface card (NIC)

MAC Address Representation

- Hexadecimal notation
 - Address broken up into 12 blocks, each is 4-bits (12x4=48)
 - Each 4-bit block is represented as a hexadecimal digit 0-f

Bits	Hex	Bits	Hex	Bits	Hex	Bits	Hex
0000	0	0100	4	1000	8	1100	С
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	Α	1110	E
0011	3	0111	7	1011	В	1111	F

MAC Address Representation

Example

Note: Globally unique

View address:

Windows: ipconfig

Apple: ifconfig

(check en0, en1..)

Ethernet Frame Structure

- Frame includes
 - source/destination MAC addresses (6 bytes each)
 - FCS: Frame check sequence (FCS) has the CRC bits
 - Preamble & SFD— alert receiver about packet arrival
 - frame length inform receiver about packet end

Ethernet Frame

 Preamble: Allows receiver to differentiate actual packet from noise, and synchronize with sender

10101010 10101010 10101010 10101010 10101010 10101010 10101010

- Encoded by the physical layer using Manchester encoding
- Start Frame Delimiter (SFD): Indicates start of frame
 - -10101011
- Source and Destination Addresses: contain the MAC address of source and destination

Ethernet Frame

- Data: Typically IP packet
- Frame check sequence (FCS)
 - 32 bit CRC value
 - Generator polynomial (divisor) specified as
 - CRC-32: 10000010 01100000 10001110 110110111

Ethernet Frame

- Length
 - If less than 1,518 (max allowed packet length after the SFD)
 - Receiver knows how many bytes it gets after the SFD, then takes the last 4 bytes and checks the CRC
 - If greater than or equal to 1,518
 - Indicates type of packet (often used to indicate virtual LAN frame)

Required frame size large vs small?

Medium Access Protocol in Ethernet IEEE 802.3: CSMA/CD with Exponential Backoff

- 1. Adapter receives data from network layer & creates frame
- 2. If adapter **senses** channel idle, it starts to transmit frame.
 - If it senses channel **busy**,it waits
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame!

- 4. If adapter detects another transmission while transmitting, it aborts transmission
- 5. After aborting, adapter enters exponential backoff: Waits for a random time, then sense the medium again to attempt retransmission

After the mth collision, adapter chooses a K at random from {0,1,2,...,2^m-1}.

Adapter waits K x 512 bit times and returns to **Step 2**

max m = 10

Ethernet CSMA/CD Algorithm with Exponential Backoff

- Binary Exponential Backoff
 - If a frame experiences m collisions, a node choose value k at random from the set: {0, 1, 2, 3,...2^m -1}
 - That means that as frame experience more collisions the larger the interval from which K is chosen
 - The actual time is then: K . 512 bit times (K times the time needed to send 512 bits on Ethernet)
 - This is the slot time of the classical ethernet, designed to be larger than round trip propagation delay
 - For 10Mbps Ethernet: 1 bit duration is 0.1 μsec,
 - Backoff slot = 512 bits times = $512 \times 0.1 = 51.2 \mu sec$
 - » Greater than worst case round trip delay
 - » 512 is min frame size (without preamble)

Example: CSMA/CD in Ethernet

- After the first collision (m=1), a node randomly choose k from set {0,1}
 - If it choose k=0, then it immediately senses the medium again and transmits if it is idle
 - If it chooses k=1, then it waits 512 bit times then sense the channel
- If second collision occurs (m=2) to the frame, it chooses K from the set: { 0, 1, 2, 3}
 - Since $2^{m} 1 = 3$
- If 10 collisions (m=10) happen, then device randomly choose k from set: {0,1,..1023}
- Note that The size of the set grows exponentially with collisions, hence the name exponential backoff!

Question

 What is the average number of backoff slots after M collisions?

Tophat

Q_Backoff

What is the average number of backoff slots after 2 collisions (m=2)?

Α	1
В	1.5
С	2
D	none of the above

Wired LAN – Ethernet (IEEE 802.3) Physical Layer

 Wide variety of physical media and signaling supported

Signaling: Classic Ethernet used <u>Manchester</u> signaling

Cabling: coaxial cable, later on UTP, recently fiber

Wired LAN – Ethernet (IEEE 802.3) Physical Layer

Name	Туре	Maximum Data Rate	Used by	
Category 3	UTP	10 Mbps	10BASE-T	
Category 5	UTP/STP	100 Mbps	100BASE-T	
Category 5e	UTP/STP	1 Gbps	1000BASE-T	
Category 6/6a	UTP/STP	10Gbps	10GBASE-T	
OM1 (62.5/125 μm)	Fiber	1-10 Gbps*	1000BASE-SX	
OM3 (50/125 μm)	Fiber	10-100 Gbps*	10GBASE-SR	
* Speed depends on ci	rcuit length	SR multimode fiber S: short range multimode OM: optical mode R/W type of fiber, X type of coding		

Ethernet - Hubs vs. switches

- Hubs vs. switches
 - Hubs send data out to all computers
 - Old technology, but useful for network diagnostics
- Switches try to send data to the intended destination only
 - This speeds up the network, at extremely low cost
- Topology?

Wired LAN – Ethernet (IEEE 802.3) Network Topology

- Topology: Basic geographic layout of a network
- Types
 - Logical: How the network works conceptually
 - Physical: How the network is physically installed
- Ethernet: Physical star topology
 - Hub: Logical bus topology
 - Frame received by all devices
 - Switch: Logical star topology
 - Only destination receives the frame

Ethernet Switch - Self Learning

- Switch operation
 - Switch creates switch table
 - Also called forwarding table
 - The table is initially empty
 - Switches <u>learn</u> which **MAC** address associated with which **interface** (physical **port**) by <u>reading</u> the source address in a frame

Ethernet – Switch Table

Switch-based Ethernet

Switch Forwarding Table

Switch

- When a new frame is received at the switch:
 - Saves the source MAC address and corresponding interface in table (if not there)
 - The switch reads the destination MAC address
 - Looks up destination address in the switch table
 - If found, forwards frame to the corresponding interface
 - If not found, broadcasts frame to all devices (like a hub)
- Entry of tables are updated

Switch Example

- Suppose C sends frame to D
- Switch receives frame from C
 - Add to switch table that C is on interface 1
 - Because D is not in table, switch forwards frame into interfaces 2 and 3
- Frame received by D

Switch table before C send data to D

switch	address	interface
2 3	А	1
2 3	В	1
	Ε	2
hub hub hub	G	3
B C B G B H		

Switch Example (Continued)

- Suppose D replies back with frame to C.
- Switch receives frame from D
 - Add to switch table that D is on interface 2
 - Because C is in table, switch forwards frame only to interface 1
- Frame received by C

Virtual LANs (VLANs)

- May be located on <u>different physical LAN</u> <u>segments</u>
- LAN's based on LOGICAL instead of PHYSCIAL connections
- Configured by software, not hardware
- Broadcast goes to members of the VLAN

Preamble	Dest. Address	Source Address	VLAN Tag	Туре	Body	FCS
----------	------------------	-------------------	----------	------	------	-----

Extended VLANs

IEEE 802.11: Wireless Ethernet – Wi-Fi

- Commonly called Wi-Fi
- A family of standards developed by IEEE formally called IEEE 802.11
- Uses radio frequencies to transmit signals through the air (instead of cables)
- Wi-Fi has many benefits
 - Provides network connections where cabling is impossible or undesirable
 - Allows device and user mobility

IEEE 802.11: Wireless LAN

- Components
 - Wirelesscoess points (APs)
 - AP sends periodic beacon signals
 - Wireless NICs
- Topology: Physical star
- Common frequencies
 - 2.4 GHz range
 - 5 GHz range

IEEE 802.11: Medium Access Control

- Uses CSMA/CA (CSMA with collision avoidance)
 - Collision avoidance is similar to CSMA/CD in Ethernet
 - More challenging in wireless
 - Hidden node problem

CSMA/CA - DCF

- Distributed Coordination Function (DCF)
 - Wait for a period of time (called DIFS), transmit if channel is still idle, then wait for ACK .. Similar to stop-and-wait ARQ

CSMA/CA - PCF

- Point coordination function (PCF)
 - Device wishing to transmit first sends Request to Send (RTS) to the AP, specifying the duration of the requested transmission
 - If no other device is transmitting, the AP replies with Clear to Send (CTS) specifying the duration ...
 - All devices hear the CTS and will not transmit.

IEEE 802.11 & IEEE 802.3

LLC: Logical Link Control (get Network layer data)

Key Takeaways

- Addressing and framing at Data Link Layer
 - MAC address is used in LANs
 - CRC used for error detection in Ethernet and Wi-Fi
 - Data link frame includes MAC addresses, CRC and other information (length, start of the frame...) along with data from network layer.
- Wired Ethernet (IEEE 802.3) is based on CSMA/CD with exponential backoff to minimize collisions
- Switch vs Hubs operation
- Wireless LAN Wi-Fi uses CSMA with collision avoidance (CSMA/CA)
- VLANs divides devices based on logical function instead of physical connections