Proving that the Boolean Algebra forms a vector space

Bernardo Meurer September 27, 2016

1 Defining the Boolean algebra

We define a Boolean algebra as a set of B elements a,b,\ldots with the following properties:

- 1. B has two binary operators \wedge or \cdot (logical AND) and \vee or + (logical OR)
- 2. Idempotence
 - $a \wedge a = a \vee a = a$
- 3. Commutative law
 - $a \wedge b = b \wedge a$
 - $a \lor b = b \lor a$
- 4. Associative law
 - $a \wedge (b \wedge c) = (a \wedge b) \wedge c$
 - $a \lor (b \lor c) = (a \lor b) \lor c$
- 5. Absorption law
 - $a \wedge (a \vee b) = a \vee (a \wedge b) = a$
- 6. Mutual distributiveness
 - $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
 - $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- 7. B contains universal bounds \emptyset (empty set) and I (universal set)
 - $\emptyset \land a = \emptyset$
 - $\emptyset \lor a = a$
 - $I \wedge a = a$
 - $I \lor a = I$
- 8. B has a unary operator $a \to a'$ such that
 - $a \wedge a' = \emptyset$
 - $a \vee a' = I$

If the truth values a, b are interpreted as integers 0, 1 our operators can be expressed with ordinary arithmetic, or by minimum/maximum functions:

- 1. $a \wedge b = a \times b = \min(a, b)$
- 2. $a \lor b = a + b (a \times b) = \max(a, b)$
- 3. $\neg a$ or $\bar{a} = 1 a$

We may also express $a \wedge b$, $a \vee b$, and $\neg a$ with a truth table

\overline{a}	b	$a \wedge b$	$a \lor b$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

a	$\neg a$
0	1
1	0

Table 1: Truth table for binary operators

Table 2: Truth table for unary operator

2 Defining a field

bar

3 Boolean algebra as a field

 ${\rm foobar}$

4 Fields as vector spaces

barfoo

5 Boolean algebra as a vector space

 ${\rm foobar}$