Probability distribution

Crash course

- We can use standard probability distributions to define these relations
- If a variable y follows a normal distribution:
 - $P(y) = P(y | \mu, \sigma) = Normal(y | \mu, \sigma)$
 - Where μ and σ are parameters
 - μ : is the mean, a location parameter
 - σ : sigma is the standard deviation, a scale parameter

Simplest probabilistic model

Fit parameters to a set of measurements

- Measure a set of y_i values:
- Find the "best fitting" normal distribution by choosing μ and σ such that the N(μ , σ) distribution approximates the histogram of the y_i values

$$y_i \sim N(\mu, \sigma)$$

