

Soutenance Projet OC P4 DS: Anticipez les besoins en consommation électrique des bâtiments

Candidat: David CAPELLE
Mentor: Nicolas MICHEL

Evaluateur: Rick BOURGET Formation 100% Pôle Emploi

Plan de la soutenance

- Problématique et présentation de la démarche
- Présentation du nettoyage des données, du feature engineering et de l'analyse exploratoire des données
- Présentation des pistes de modélisation testées
 - Synthèse sur les métriques
 - Synthèse sur l'analyse des performances des modèles

 Conclusion sur le choix du modèle retenu et améliorations

Problématique du projet

- Prédire la consommation d'énergie et les émissions de CO2 des bâtiments de Seattle avec du machine learning, via un apprentissage sur des modèles supervisés.
- Ne pas utiliser les données relevés de 2015/2016 car les ressources sont trop coûteuses pour la ville.
- Création de nouvelles variables pertinentes pour les prédictions.
- Testes plusieurs modèles en optimisant leurs hyper-paramètres.
- Choix du modèle final en se basant sur plusieurs hypothèses en amont dans le traitement des données.
- Analyse de l'impact du score EnergyStar sur les émissions de CO2.

Démarche pour le choix du modèle

- Itérations de la boucle suivante sur les 4 hypothèses sur le traitement des données (pistes de modélisation) :
 - Réglage des hyper-paramètres sur une sélection de modèles (GridSearchCV, CV=10).
 - Entraînement de modèles et prédictions à partir des meilleurs paramètres.
 - Comparaison des performances des modèles par rapport à la métrique de référence (RMSE)
 - Détermination du meilleur modèle suivant l'hypothèse de traitement des données
- Choix final du meilleur modèle et améliorations.

Hypothèses testées pour pré-traitement des données

- <u>Hypothèse 1</u>: modélisation simple à partir de 11 variables, standardisation des données en entrée, valeurs réelles sur variables cible.
- <u>Hypothèse 2</u>: modélisation à partir de 11 variables, standardisation des données en entrée, variables cible à l'échelle logarithmique.
- <u>Hypothèse 3</u>: modélisation à partir de 11 variables, standardisation des données en entrée, variables cible à l'échelle logarithmique, suppression des variables atypiques sur les variables cible (méthode inter-quartiles).
- <u>Hypothèse 4</u>: modélisation à partir de 29 variables (ajout variables catégorielles avec encodage OneHot), standardisation des données en entrée, variables cible à l'échelle logarithmique, suppression des variables atypiques sur les variables cibles (méthode inter-quartile).

Sélection de modèles, baseline et métriques

- Sélection de modèles pour régression linéaire :
 - Modèles linéaires: LinearRegression, ElasticNet.
 - Modèles non linéaires: SVR, Random Forest Regressor,
 Gradient Boosting Regressor, Extreme Gradient Boosting.
- Baseline: modèle LinearRegression, modèle simple, sans réglage d'hyper-paramètre.
- Métriques retenues:
 - Métrique principale (RMSE), sensible aux valeurs atypiques.
 - 2 métriques secondaires : MAPE, plus compréhensible par les utilisateurs (taux d'erreur moyen sur un jeu de données) et R² pour évaluer le over/underfiting sur les jeux de données d'apprentissage.

Présentation du jeu de données

- 2 types de données dans les dataset 2015 et 2016 :
 - Données relatives au permis d'exploitation commerciale (emplacement géographique, nombre de bâtiments et d'étages, types d'utilisation,...)
 - Relevés de consommation et d'émission 2015 et 2016 de plusieurs indices: électricité, gaz, ...
 - Score Energy Star
- Le dataset correspondant aux données 2015 compte 3340 bâtiments et 47 variables.
- Le dataset correspondant aux données 2016 compte 3376 bâtiments et 46 variables.

Constitution du jeu de données

- Concaténation des datasets 2015 et 2016.
- Suppression des doublons de bâtiments sur les 2 années.
- Suppression des valeurs redondante sur les relevés.
- Suppression de variables normalisées par rapport aux conditions météorologiques
- Suppression de variables quantitatives et qualitatives inutiles à la modélisation.

=> Taille du jeu de données : 3432 lignes, 34 variables

Proportion de NaN: 14.43 %

Feature engineering : création de nouvelles variables

- Création des variables suivantes (phase préparation données) :
 - Variable « TotalUseTypeCounts » (nombre total d'usage du bâtiment).
 - Variable « AgeOfBuilding » (age du bâtiments).
 - Variable « Distance_Harversine » à partir de la latitude/longitude.
- Création des variables suivantes (phase analyse exploratoire) :
 - Variable « AreaBuildingsMean » (surface réelle moyenne par bâtiment).
 - Variable « AreaParkingMean » (surface moyenne de parking par bâtiment).

NB : les variables à l'origine de ces nouvelles données ont été supprimées.

Nettoyage des données - Traitement valeurs manquantes

- Traitement de valeurs quantitatives :
 - Suppression des lignes NaN pour les relevés
 - Imputation de valeurs NaN pour le variables exprimées en GFA en cohérence avec le nombre d'usage des bâtiments.
 - Imputation valeur moyenne pour la variable "ENERGYSTARScore".
 - => Taille du jeu de données : (3428 lignes, 32 variables) Proportion de NaN : 10.4 %
- Traitement de valeurs qualitatives :
 - Imputation valeur 'Other' si présence de valeurs NaN pour variables « xxxPropertyUseType ».
 - Suppression des variables « Comments » et « Outliers ».
 - => Taille du jeu de données : (3262 lignes, 29 variables) Proportion de NaN : 0 %

Nettoyage des données - Traitement des outliers

- Traitement des outliers valeurs aberrantes :
 - Suppression des valeurs négatives pour la variable "PropertyGFAParking"
 - Suppression des valeurs négatives pour la variable "PropertyGFABuilding(s)".
- Traitement des outliers analyse valeurs atypiques :
 - Pour les variables à prédire
 - On décide de garder les valeurs atypiques correspondant à des campus universitaires avec des grandes surfaces et des nombreux usages des bâtiments.
 - => Taille du jeu de données : (3259 lignes, 29 variables) Proportion de NaN : 0 %

Analyse exploratoire des données Analyse univariée

Variables à prédire:

- Distribution très asymétrique pour les 2 variables
- Passage à l'échelle logarithmique pour obtenir une distribution normale.

Autres variables :

- Distribution asymétrique des données pour les surfaces
- La standardisation des données dans le pré-traitement permet d'atteindre une distribution quasi normale.

Analyse exploratoire des données Analyse univariée – Passage au log

Analyse exploratoire des données

Analyse univariée – Distribution variable « Nbre total usage bâtiment »

Analyse exploratoire des données Analyse multivariée – Matrice des corrélations

Piste de modélisation – Hypothèse 1 traitement données *Principes*

- Modélisation à partir de peu de variables en entrée (11 variables).
- Prédictions sur des variables en valeurs réelles
- Standardisation des données en entrée par StandardScaler()
- Conservation des valeurs atypiques dans les variables à prédire.
- Non prise en compte de la variable EnergyStar score
- => hypothèse 1 = modélisation simple, sans grande transformation des données.

Piste de modélisation – Hypothèse 1 Métrique RMSE – Consommation d'énergie

Piste de modélisation – Hypothèse 1 Métrique RMSE – Émissions de CO2

Piste de modélisation – Hypothèse 1 Graphe valeurs cible réelles / valeurs cible prédites

Piste de modélisation – Hypothèse 1 Interprétation des résultats et métriques secondaires

- Variable « Consommation d'énergie » :
 - Meilleur modèle dans ce cas : Random Forest Regressor (RFR).

Métriques	RMSE	MAPE	R²
Baseline : LinearRegression	10 184 082	94 %	0,61
Meilleur modèle : RFR	9 303 825	77 %	0,67

- Variable « Emissions de CO2 » :
 - Meilleur modèle dans ce cas : Extreme Gradient Boosting (XGR).

Métriques	RMSE	MAPE	R²
Baseline : LinearRegression	431	364 %	0,36
Meilleur modèle : XGR	323,73	207 %	0,64

- => Sur-apprentissage de l'ensemble des estimateurs sur le jeu de train.
- => Influence néfaste de quelques valeurs atypiques.
- => Variance du modèle retenu (RMSE relative) = 167 %(Energie) / 256 % (CO2) de la moyenne des observations (jeu de test), mauvaise qualité des prédictions.

Piste de modélisation – Hypothèse 2 traitement données *Principes*

- Point d'entrée : hypothèse 1.
- + Passage à l'échelle logarithmique des variables à prédire.
- => Résultats hypothèse 2 :
 - Résultat pire que celui de l'hypothèse 1.
 - Passage à l'échelle logarithmique de la variable cible permet de réduire le sur-apprentissage sur le jeu train
 - Mais la conversion des cette variable aux valeurs réelles dégrade la RMSE.

Piste de modélisation – Hypothèse 2 Interprétation des résultats et métriques secondaires

- Variable « Consommation d'énergie » :
 - Meilleur modèle dans ce cas : Gradient Boosting Regressor (GBR).

Métriques	RMSE	MAPE	R ²
Baseline : LinearRegression	626 533 900	90 %	0,48
Meilleur modèle : GBR	17 176 150	56 %	0,71

- Variable « Emissions de CO2 » :
 - Meilleur modèle dans ce cas : Gradient Boosting Regressor (GBR).

Métriques	RMSE	MAPE	R ²
Baseline : LinearRegression	1,395696e+26	4.906367e+20	-1,73
Meilleur modèle : GBR	380	120 %	0,59

- => Les modèles linéaires (dont la baseline) ne semblent pas être adaptés pour cette hypothèse.
- => Variance du modèle retenu (RMSE relative) = 274 % (Energie) / 301 % (CO2) de la moyenne des observations (jeu de test), très mauvaise qualité des prédictions.

Piste de modélisation – Hypothèse 3 traitement données *Principes*

- Point d'entrée : hypothèse 2.
- + Suppression des valeurs atypiques par méthode inter-quartiles sur les variables à prédire, suite passage à l'échelle logarithmique de ces variables.
- Suppression de 11 % des valeurs du jeu de données pour les 2 variables .
- => Cette piste de modélisation proposera des prédictions peu pertinentes si un jeu de données inédit contient des valeurs atypiques.

Piste de modélisation – Hypothèse 3 Métrique RMSE – Consommation d'énergie

Piste de modélisation – Hypothèse 3 Métrique RMSE – Émissions de CO2

Piste de modélisation – Hypothèse 3 Graphe valeurs cible réelles / valeurs cible prédites Energie

Piste de modélisation – Hypothèse 3 Graphe valeurs cible réelles / valeurs cible prédites Emissions CO2

Piste de modélisation – Hypothèse 3 Interprétation des résultats et métriques secondaires

- Variable « Consommation d'énergie » :
 - Meilleur modèle dans ce cas : Random Forest Regressor (RFR).

Métriques	RMSE	MAPE	R²	RMSE relative
Baseline : LinearRegression	2 896 216	61 %	0,38	N/A
Meilleur modèle : RFR	1 328 788	48 %	0,53	60 % moy obs.

- Variable « Emissions de CO2 » :
 - Meilleur modèle dans ce cas : Random Forest Regressor (RFR).

Métriques	RMSE	MAPE	R ²	RMSE relative
Baseline : LinearRegression	44,29	121 %	0,25	N/A
Meilleur modèle : RFR	36,9	101 %	0,44	87 % moy obs.

- => Amélioration sensible de la RMSE, mais la conversion aux valeurs réelles montrent des valeurs sous-estimées.
- => Variance du modèle retenu (RMSE relative) = qualité médiocre des prédictions.
- => Les valeurs atypiques représentent environ 86% (Energie) et 88 % (CO2) de la RMSE totale

Piste de modélisation – Hypothèse 4 traitement données *Principes*

- Point d'entrée : hypothèse 3.
- + Encodage OneHot sur des variables catégorielles sur les types et les utilisations des bâtiments
- Création de 18 variables supplémentaires

- => hypothèse 4 = plus grande complexité du modèle.
- => Cette hypothèse permet un amélioration de la RMSE pour la variable Energie, mais pas pour la variable Emissions de CO2.

Piste de modélisation – Hypothèse 4 Métrique RMSE – Consommation d'énergie

Piste de modélisation – Hypothèse 4 Métrique RMSE – Émissions de CO2

Piste de modélisation – Hypothèse 4 Graphe valeurs cible réelles / valeurs cible prédites

Piste de modélisation – Hypothèse 4 Interprétation des résultats et métriques secondaires

- Variable « Consommation d'énergie » :
 - Meilleur modèle dans ce cas : Gradient Boosting Regressor (GBR).

Métriques	RMSE	MAPE	R²	RMSE relative
Baseline : LinearRegression	3 775 749	61 %	0,38	N/A
Meilleur modèle : GBR	1 280 229	48 %	0,56	56 % moy obs.

- Variable « Emissions de CO2 » :
 - Meilleur modèle dans ce cas : Gradient Boosting Regressor (GBR).

Métriques	RMSE	MAPE	R²	RMSE relative
Baseline : LinearRegression	56,56	126 %	0,38	N/A
Meilleur modèle : GBR	40,28	109 %	0,51	89 % moy obs.

- => Sur-apprentissage plus faible par rapport au jeu de train.
- => L'encodage OneHot des variables catégorielles améliore nettement toutes les métriques pour la variable Energie, pas pour la variable CO2
- => Variance du modèle retenu (RMSE relative) = qualité prédiction moyenne (Energie) et médiocre (CO2).

Récapitulatif des pistes modélisation Choix du modèle – Variable Consommations d'énergie

Hypothèses	Hypothèse 1	Hypothèse 2	Hypothèse 3	Hypothèse 4	Amélioration Hyp 4 AME1	
11 variables dont 4 nouvelles	х	х	Х	Х	Х	Х
Variables réelles	Х	Х	х	х	х	х
Echelle log variables cible		X	X	X	X	X
Suppression valeurs atypique			Х	х	Х	Х
Encodage OneHot variables catégorielles (18 variables)				х	х	х
Permutation features (GBR): suppression 10 features suite hyp 4					х	
Ajout 3 variables relevés – encodage binaire						х
Resultats:	Energie	Energie	Energie	Energie	N/A	N/A
Baseline	LR	LR	LR	LR	N/A	N/A
RMSE	10 184 082	626 533 900	2 896 216	3 775 749	N/A	N/A
MAPE	0.94	0.90	0.61	0.94	N/A	N/A
R ²	0.61	0.48	0.38	0.38	N/A	N/A
Meilleur modèle	RFR	GBR	RFR	GBR	GBR	GBR
RMSE	9 303 825	17 176 150	1 328 788	1 280 229	1 486 558	1 157 556
RMSE_rel	167% val moy	274% val moy	60% val moy	56% val moy	61% val moy	53% val moy
MAPE	0.77	0.56	0.48	0.48	0.43	0.49
R2	0.67	0.71	0.53	0.56	0.58	0.59

Récapitulatif des pistes de modélisation Choix du modèle – Variable Émissions CO2

Hypothèses	Hypothèse 1	Hypothèse 2	Hypothèse 3	Hypothèse 4	Amélioration Hyp 4 AME2	Amélioration Hyp 3 REL1	Impact EnergyStar
11 variables	х	X	X	Х	X	X	х
Variables réelles	Х	X	Х	Х	X	X	Х
Echelle log variables cible		Х	х	Х	х	х	Х
Suppression valeurs atypique			Х	Х	X	X	Х
Encodage OneHot variables catégorielles				Х	Х		
Permutation features (GBR): suppression 9 features suite hyp 4					х		
Ajout 3 variables relevés – encodage binaire						Х	Х
Ajout EnegyStar							X
Resultats:	CO2	CO2	CO2	CO2	CO2	CO2	CO2
Baseline	LR	LR	LR	LR	N/A	N/A	N/A
RMSE	431	1.395696e+ 26	44.29	56.56	N/A	N/A	N/A
MAPE	3.64	4.906367e+ 20	121	126	N/A	N/A	N/A
R ²	0.36	-1.73	0.25	0.38	N/A	N/A	N/A
Meilleur modèle	XGR	GBR	RFR	GBR	GBR	RFR	RFR
RMSE	323	380	36.9	40.28	39.73	36.72	33.88
RMSE_rel	256% val moy	301% val moy	87% val moy	89% val moy	90% val moy	80% val moy	72% val moy
MAPE	2.07	1.2	1.01	1.09	1.17	0.65	0.67
R ²	0.64	0.59	0.44	0.51	0.41	0.68	0.73

Choix et amélioration du modèle final

- Suite aux différentes piste de modélisation, 2 modèles sont retenus :
 - Modèle Gradient Boosting Regressor (GBR) avec 29 variables en entrée pour la variable Consommation d'énergie (hypothèse 4)
 - Modèle Random Forest Regressor (RFR) avec 11
 variables en entrée pour la variable Emissions de CO2 (hypothèse 3) .
- Améliorations des modèles finaux :
 - Suppression de features suite permutation de l'importance des features sur modèle GBR de l'hypothèse 4 pour les variables Energie et CO2.
 - Ajout de 3 variables indiquant l'utilisation ou pas d'un type d'énergie par bâtiment pour modèle GBR de l'hypothèse 4 (Energie), pour modèle RFR de l'hypothèse 3 (CO2).

Features / Permutation importance Modèle GBR Hypothèse 4 – Variable « Consommation d'énergie »

Features / Permutation importance Modèle GBR Hypothèse 4 – Variable « Emissions CO2 »

Résultats de la suppression des features

- Suppression des features avec un score négatif ou égal à 0.
- Variable « Consommation d'énergie » :
 - Suppression de 10 variables
 - RMSE (1 486 558) dégradé par rapport au modèle GBR de l'hypothèse 4, mais R² (0,58) et MAPE (43%) améliorés.
 - => Amélioration non retenue.
- Variable « Emissions CO2 » :
 - Suppression de 9 variables
 - RMSE (39,73) un peu amélioré par rapport au modèle GBR de l'hypothèse 4, mais R² (0,41) et MAPE (117 %) dégradés.
 - => Amélioration non retenue.

Résultats ajout 3 variables relevés par encodage binaire

- Encodage binaire (0=absence, 1=présence) pour indiquer l'utilisation ou pas du type d'énergie par la bâtiment (variables « Electricity »,
 « NaturalGas », « SteamUse »).
- Variable « Consommation d'énergie » :
 - Modèle avec 32 variables
 - RMSE (1 157 556) sensiblement amélioré par rapport au modèle GBR de l'hypothèse 4, idem pour R² (0,59) et RMSE relative (53%) améliorés.
 - => Amélioration retenue, meilleur modèle pour la variable Energie.
- Variable « Emissions CO2 » :
 - Modèle avec 14 variables
 - RMSE (36,72) un peu amélioré par rapport au modèle RFR de l'hypothèse 3, R² (0,68) et MAPE (65 %) fortement améliorés.
 - => Amélioration retenue ,meilleur modèle pour la variable CO2

Impact EnergyStar score sur émissions CO2

- Ajout de la variable « EnergyStar » à partir d'un modèle basé sur Random Forest Regressor (11 variables + 3 variables sur présence type énergie), soit 15 variables.
- Imputation des valeurs manquantes par la moyenne des valeurs de l'EnergyStar.
- Toutes les métriques sont améliorées permettant de fournir un meilleur modèle:
 - RMSE = 33,38, RMSE relative = 72 %
 - MAPE = 67 % (taux moyen d'erreur sur le jeu de test).
 - R² = 0,73
- Performance médiocres sur modèles sur les prédictions avec une RMSE normalisée correspondant à à 72% de la moyenne des observations sur le jeu de test.

Conclusion sur les modèles finaux

- L'analyse des features montre l'importance des variables surface (PropertyGFATotal) et de localisation (Distance_harversine) pour développer des modèles performants.
- L'impact du score EnergyStar améliore les performances du modèle sur la variable Emissions de CO2 sur toutes les métriques.
- Qualité moyenne (RMSE relative) pour les prédictions Consommations d'énergie.
- Qualité médiocre (RMSE relative) pour les prédictions Emissions CO2.
- Difficulté pour évaluer les performances avec un volume de données trop faible, pour généraliser un modèle.

Annexes

Annexe 1 : Réglage hyper-paramètres ElasticNet

Annexe 2 : Réglage hyper-paramètres SVR

Annexe 3 : réglage hyper-paramètres RFR

Annexe 4 : réglages hyper-paramètres GBR

Annexe 5 : réglages hyper-paramètres XGBoost

Annexe 1 : Réglage hyper-paramètres ElasticNet

- Liste des valeurs des hyper-paramètres à régler :
 - 'alpha': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
 - '11_ratio': np.arange(0.0, 1.0, 0.1)
 - 'tol': [0.1, 0.01, 0.001, 0.0001]
- Signification des hyper-paramètres :
 - alpha : multiplication du terme de pénalité
 - I1 ratio : ratio entre pénalité L1 et L2
 - tol : tolérance pour l'optimisation
- ElasticNet incorpore les 2 pénalités (régularisation L2 du modèle Ridge et régularisation L2 du modèle Lasso).

Annexe 2 : Réglage hyper-paramètres SVR

- Liste des valeurs des hyper-paramètres à régler :
 - 'C': [0.001, 0.01, 0.1, 1, 10]
 - 'epsilon': [0.001, 0.01, 0.1, 1]
 - 'gamma': [1e-8, 1e-7, 1e-6, 1e-5,1e-4, 1e-3, 1e-2, 1e-1]
- Signification des hyper-paramètres :
 - C : paramètre de régularisation (importance relative du terme d'erreur et du terme de marge)
 - epsilon : largeur de la zone d'indécision
 - gamma : coefficient du noyau pour rbf et poly

Annexe 3 : Réglage hyper-paramètres RFR Random Forest Regressor

- Liste des valeurs des hyper-paramètres à régler :
 - 'bootstrap' : [True]
 - 'max_depth' : [4, 6, 8, 10]
 - 'max_features' : ['log2', 'sqrt', 'auto']
 - 'n_estimators' : [500]
- Signification des hyper-paramètres :
 - bootstrap : indique si on prend l'intégralité de données ou non
 - max_depth : profondeur maximale de l'arbre de décision
 - max_features : nombre de variables à prendre en compte pour le feature sampling.
 - n_estimators : nombre d'arbres dans la fôret.

Annexe 4 : Réglage hyper-paramètres GBR Gradient Boosting Regressor

- Liste des valeurs des hyper-paramètres à régler :
 - 'learning_rate': [0.2, 0.4, 0.7]
 - 'max_depth' : [4, 6, 8, 10]
 - 'loss' : ['ls','lad','huber']

- Signification des hyper-paramètres :
 - learning_rate: taux d'apprentissage indiquant la contribution à chaque arbre.
 - max_depth : profondeur maximale des estimateurs de régression individuels
 - loss : fonction de perte à optimiser.

Annexe 5 : Réglage hyper-paramètres XGR XGBoost

- Liste des valeurs des hyper-paramètres à régler :
 - 'n_estimators' : [100, 500, 1000, 2000]
 - 'max_depth' : [4, 6, 10]

- Signification des hyper-paramètres :
 - n_estimators : nombre d'arbres séquentiels pour corriger les arbres précédents.
 - max_depth : détermine à quelle profondeur chaque arbre est autorisé à pousser pendant n'importe quel tour de boost.