Rotated Word Vector Representations and their Interpretability

Sungjoon Park, Jin Yeong Bak, Alice Oh {sungjoon.park, jy.bak}@kaist.ac.kr, alice.oh@kaist.edu

Introduction

Applying the matrix rotation algorithms from psychometric analysis to word vector representations to improve the interpretability

Benefits of interpretable word vectors

- Understanding semantic / syntactic compositionality of words
- Increasing efficiency of storage

Induce Sparsity

Reducing complexity of higher-level models

Factor Rotation

Crawford-Ferguson Rotation Family

- To compute $\Lambda = AT$, satisfying: T'T = I or diag $(T^{-1}T^{-1}) = I$ (rotated) (original)
- Minimize: $f(\lambda) = (1 \kappa)$ (Column complexity) (Row complexity)

Parsimax

m-1/p+m-2

 Algorithm: Gradient Projection (Jennrich, 2001) source: https://github.com/SungjoonPark/factor_rotation (TensorFlow)

Experimental Settings

[.02 .52 .43 -.04 .81]

[.21 .32 .63 -.04 .31] [.47 .12 .42 .34 .04] [.54 .32 .63 -.04 .54]

Rotate Dimensions

Rotated Representations

Factor Parsimony

- 5.3M articles

Wikipedia

- 1,676M tokens
- 83M sentences
- Word2Vec, Glove
 - 306,491 words

• 300 dimensions

- Word Vectors
- For each kappa (4)
- For each Embedding (2)
- For each constraint (2)

Rotated Word Vectors

Expressive Performance

NLP tasks Rotated word vectors show comparable performance to that of the SOV and the original.

Performance	Word	Analg.	Analg.		•••••		NP
	Simil.	(sem)	(syn)	Sent.	Ques.	Topics	Brackt.
Original	0.374	0.668	0.652	0.741	0.920	0.960	0.812
SOV	0.390	0.640	0.594	0.751	0.910	0.955	0.836
SOV (non-neg)	0.384	0.566	0.480	0.761	0.918	0.960	0.829
Quartimax (orthogonal)	0.374	0.668	0.652	0.744	0.922	0.956	0.822
Varimax (orthogonal)	0.374	0.668	0.652	0.744	0.922	0.956	0.822
Parsimax (orthogonal)	0.374	0.668	0.652	0.744	0.922	0.956	0.819
FacParsim (orthogonal)	0.374	0.668	0.652	0.744	0.922	0.956	0.822
Quartimax (oblique)	0.422	0.673	0.624	0.755	0.932	0.955	0.820
Varimax (oblique)	0.422	0.673	0.624	0.755	0.932	0.955	0.820
Parsimax (oblique)	0.421	0.671	0.623	0.752	0.932	0.956	0.826
FacParsim (oblique)	0.417	0.660	0.620	0.751	0.928	0.952	0.820

Interpretability

Word Intrusion

Results

SG	Glove	
1.258	1.095	
1.089	1.050	
1.081	1.074	
1.479	1.248	
1.477	1.289	
1.596	1.261	
1.300	1.102	
1.385	1.225	
1.398	1.222	
1.386	1.174	
1.145	1.081	
	1.258 1.089 1.081 1.479 1.477 1.596 1.300 1.385 1.385 1.386	

Measure: Overall Distance Ratio

Qualitative Examples

- Skip-Gram
- householder, asked, indicted, there, ethnic
- score, two, best, three, four
- mining, footballer, population, laps, settled
- density, census, fourier, editor, photos
- money, toured, season, announced, banned

Rotated Skip-Gram

- twitter, facebook, youtube, myspace, internet
- receptors, receptor, neurons, apoptosis, neuronal
- pennsylvania, ohio, maryland, philadelphia, illinois
- paintings, portraits, painting, drawings, painter
- that, which, when, where, but

Understanding Rotated Vectors

Effect of kappa

Effect of # of dimensions

Conclusion

- Observed increased interpretability in both directions and the positive relation between absolute value of the dimension and interpretability.
- Rotation algorithm can be applied to any kind of word embeddings.
- The vectors can be used to
- Understand what the word vectors are comprised of.
- Remove irrelevant dimensions for a specific task of interest.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2016R1A2B4016048)