Введение в метаматематику на троечку

Мат.клуб "Тифаретник" по С. Клини 21 декабря 2021 г.

Формальные ограничители нужны человеку всегда, Они как огнетушители, а это, бля, не ерунда.

Кровосток - Снайпер

Определение (§16, Формальные символы).

- Логические символы: \supset (влечёт), &(и), \lor (или), \neg (не), \forall (для всех), \exists (существует)
- Символы предикатов: =(равняется)
- Символы функций: +(сложить с), ·(умножить на), \(следующий за)
- Индивидуальные символы: 0(нуль)
- Переменные: a, b, c, . . .
- Скобки: (,)

Определение (§17).

- 1. 0 есть терм
- 2. Каждая переменная есть терм
- 3. Если s и t mермы, то

(a)
$$(s) + (t) - mepm$$
 (b) $(s) \cdot (t) - mepm$ (c) $(s)' - mepm$

4. Никаких других термов, кроме определённых согласно 1-3, нет.

Определение (§17).

- 1. Если s и t mермы, то (s) = (t) ϕ ормула
- 2. Если A и $B \phi$ ормулы, то

(a)
$$(A) \supset (B)$$
 — формула (c) $(A) \lor (B)$ — формула (d) $\neg (A)$ — формула

3. Если x — переменная, а A — формула, то

(a)
$$\forall x(A) - \phi$$
ормула (b) $\exists x(A) - \phi$ ормула

4. Никаких других формул, кроме определённых согласно 1-3, нет.

Определение (§18). Вхождение x в формулу A называется csnsan+nsim (или вхождением в качестве csnsan+nsim nepemen+nsim), если оно является вхождением в квантор $\forall x$ или $\exists x$ или в область действия квантора $\forall x$ или $\exists x$; в противном случае вхождение называется csnsannsimn

Определение (§18). Подстановка терма t вместо переменной x в терм или формулу A состоит в одновременной замене каждого свободного вхождения x в A на вхождение t.

Определение (§18). Будем говорить, что терм t свободен при свободных вхождениях переменной x в формулу A(x), если никакое свободное вхождение x в A(x) не входит в область действия какого-нибудь квантора $\forall y$ или $\exists y$, где y — переменная из t (т.е. входящая в t).

Постулаты формальной системы (§19)

Dramatis personae

В постулатах 1–8 A,B и C — формулы. В 9–13 x — переменная, A(x) — формула, C — формула, не содержащая свободно x, а t — терм, свободный для x в A(x).

Группа А. Постулаты исчисления предикатов

Группа А1. Постулаты исчисления высказываний

$$\widehat{\text{1a}} \ A \supset (B \supset A)$$

$$(4a)$$
 $A \& B \supset A$

$$(4b) A \& B \supset B$$

$$(5a)$$
 $A \supset A \lor B$

$$(5b)$$
 $B \supset A \lor B$

$$2 \frac{A, A \supset B}{B}$$

$$(3)$$
 $A \supset (B \supset A \& B)$

$$\textcircled{6} \ (A\supset C)\supset ((B\supset C)\supset (A\vee B\supset C))$$

$$(7) (A \supset B) \supset ((A \supset \neg B) \supset \neg A)$$

$$\widehat{(8^{\circ})} \neg \neg A \supset A$$

Группа А2. (Дополнительные) Постулаты исчисления предикатов

$$(10) \, \forall x A(x) \supset A(t)$$

$$(11) A(t) \supset \exists x A(x)$$

$$\underbrace{12} \quad \frac{A(x) \supset C}{\exists x A(x) \supset C}$$

Группа В. (Дополнительные) Постулаты арифметики

$$(13)$$
 $A(0)$ & $\forall x (A(x) \supset A(x')) \supset A(x)$

$$(14) a' = b' \supset a = b$$

$$\overbrace{15}) \neg a' = 0$$

$$(16) a = b \supset (a = c \supset b = c)$$

$$(17) a = b \supset a' = b'$$

$$\widehat{(18)} \, a + 0 = a$$

$$\boxed{19} \ a+b'=(a+b)'$$

$$\widehat{(20)} \ a \cdot 0 = 0$$

$$\widehat{(21)} \ a \cdot b' = a \cdot b + a$$

Определение (§19). Формула является *аксиомой*, если она имеет форму одну из (1a), (1b), (3)–(8), (10), (11), (13) или она есть одна из (14)–(21).

Определение (§19). Формула является *непосредственным следствием* (из) одной или двух других формул, если она имеет форму, указанную под чертой, тогда как другая (не) имеет(ют) форму(ы), указанную (не) над чертой в (2), (9) или (12).

Определение (§19). Постулаты (2), (9) и (12) мы называем *правилами вывода*. Для любого (фиксированного) выбора A и B или x, A(x) и C, подчинённого отмеченным выше условиям, формулы указанные над чертой, являются *посылкой* (*первой* и *второй посылкой* соответственно), а формула, указанная под чертой, является *заключением* применения правила вывода.

2

Формальный вывод

Определение (§20). Если дан перечень $D_1, \ldots, D_l (l \ge 0)$ формул, то непустая конечная последовательность формул называется формальным выводом из исходных формул D_1, \ldots, D_l , если каждая формула этой последовательности является или одной из формул D_1, \ldots, D_l , или аксиомой, или непосредственным следствием из предыдущих формул последовательности. Вывод называется выводом своей последней формулы E, и эта формула называется выводимой из исходных формул (обозначается $D_1, \ldots, D_l \vdash E$), а также заключением (или конечной формулой) вывода.

Определение (§20, Общие свойства ⊢).

- $\Gamma \vdash E$, если E входит в список Γ
- Если $\Gamma \vdash E$, то $\Delta, \Gamma \vdash E$ для любого перечня Δ (Любая доказуемая выводима из любых исходных)
- Если $\Gamma \vdash E$, то $\Delta \vdash E$, где Δ получается из Γ путём перестановки формул Γ или опускания любых таких формул, которые тождественны с другими остающимися
- Если $\Gamma \vdash E$, то $\Delta \vdash E$, где Δ получается из Γ опусканием любых формул Γ , которые являются доказуемыми или выводимыми из остающихся формул Γ .

Теорема 1 (§21, О дедукции). Для исчисления высказываний, если Γ , $A \vdash B$, то $\Gamma \vdash A \supset B$.

Теорема 1 (§22, полная). Для исчисления предикатов (или полной арифметической формальной системы), если $\Gamma, A \vdash B$, причём все свободные переменные остаются фиксированными для последней исходной формулы, то $\Gamma \vdash A \supset B$.

Определение (§23). Переменная "x" приписанная к символу " \vdash " в качестве верхнего индекса отличает применение правила 9 или 12 по отношению к x при построении результирующего вывода.

Теорема 2 (§23). В следующих правилах A, B и C или x, A(x), C и t подчинены тем же условиям, что и в соответствующих постулатах, а Γ или $\Gamma(x)$ есть любой список формул.

Для исчисления высказываний справедливы правила от "импликации" до "отрицания" включительно.

Для исчисления предикатов (или полной арифметической системы) справедливы все правила, при условии, что в каждом вспомогательном выводе связанные переменные остаются фиксированными для устраняемой формулы.

	Введение	Удаление
Импликация	Если $\Gamma, A \vdash B$,	$A, A \supset B \vdash B$
	то $\Gamma \vdash A \supset B$	(modus ponens)
Конъюнкция	$A,B \vdash A \& B$	$A \& B \vdash A$
		$A \& B \vdash B$
Дизъюнкция	$A \vdash A \lor B$	Если $\Gamma, A \vdash C$ и $\Gamma, B \vdash C$,
	$B \vdash A \lor B$	то $\Gamma, A \vee B \vdash C$
Отрицание	Если $\Gamma, A \vdash B$ и $\Gamma, A \vdash \neg B$,	$\neg \neg A \vdash A$
	то $\Gamma \vdash \neg A$	
Общность	$A(x) \vdash^x \forall x A(x)$	$\forall x A(x) \vdash A(t)$
Существование	$A(t) \vdash \exists x A(x)$	Если $\Gamma(x), A(x) \vdash C$,
		то $\Gamma(x), \exists x A(x) \vdash^x C$

Формулы исчисления высказываний

Определение (§25). Формальные символы нового рода: $\mathscr{A}, \mathscr{B}, \mathscr{C}, \dots$ называемые пропозициональными буквами, (потенциально) бесконечный перечень которых мы считаем имеющимся в нашем распоряжении. Новое определение "формулы":

- 1. Пропозициональная буква есть формула
- 2. Если A и $B \phi$ ормулы, то
 - (a) $(A) \supset (B) формула$ (c) $(A) \lor (B) формула$
 - (b) (A) & (B) формула (d) $\neg (A) формула$
- 3. Никаких других формул, кроме определённых согласно 1 и 2, нет.

Определение (§25). Пусть P_1, \ldots, P_m — перечень различных пропозициональных букв. (Здесь " P_1 ", ..., " P_m " — метаматематические буквы, которыми мы пользуемся как названиями для пропозициональных букв, когда не хотим ограничивать наше рассуждение употреблением конкретных пропозициональных букв.)

Пропозициональная формула A называется формулой составленной из P_1, \ldots, P_m , если никакая пропозициональная буква, отличная от P_1, \ldots, P_m не входит в A.

Определение (§25). *Подстановка* вместо пропозициональной буквы (или одновременно вместо нескольких различных пропозициональных пропозициональных букв) определяется как для переменной в §18, за исключением того, что подстановка применяется теперь ко всем вхождениям без исключений (так как нет связанных вхождений).

Теорема 3 (§25, Подстановка вместо пропозициональных букв). Пусть Γ — перечень пропозициональных формул, а E — пропозициональная формула, составленная из различных пропозициональных букв P_1, \ldots, P_m . Пусть A_1, \ldots, A_m — формулы. Пусть Γ^* и E^* получаются из Γ и E соответственно путём одновременной подстановки A_1, \ldots, A_m вместо P_1, \ldots, P_m соответственно.

Если $\Gamma \vdash E$, то $\Gamma^* \vdash E^*$ (Для случая пустой Γ : если $\vdash E$, то $\vdash E^*$)

Определение (§25). Формула называется элементарной (для исчисления высказываний), если она не имеет ни одного из видов $A \supset B$, A & B, $A \lor B$, $\neg A$, где A и B — формулы.

Теорема 4 (§25, Обращение правила подстановки для проп. переменных). При тех же условиях, что и в теореме 3. Если A_1, \ldots, A_m — элементарные формулы, то из $\Gamma^* \vdash E^*$ следует $\Gamma \vdash E$.

Теорема 4 (§25, вторая форма). Пусть Γ^* — формулы, а E^* — формула, имеющие различные элементарные компоненты A_1,\ldots,A_m . Пусть P_1,\ldots,P_m — пропозициональные буквы, не обязательно различные. Пусть Γ , E получаются из Γ^* , E^* соответственно заменой одновременно во всех вхождениях A_1,\ldots,A_m на P_1,\ldots,P_m соответственно. Тогда $\Gamma^* \vdash E^*$ влечёт $\Gamma \vdash E$.

За исключением того, что "формула" здесь понимается не в смысле пропозициональной формулы, теорема 4 содержится в теореме 3.

Определение (§26). Пусть A и B — формулы. Введём запись " $A \sim B$ " в качестве сокращения для записи $(A \supset B) \& (B \supset A)$. Символ " \sim " можно читать "эквивалентна". Он употребляется в качестве формального оператора, который, будучи помещён между двумя формулами системы, да-ёт другую формулу этой системы. При опускании скобок ему приписывается ранг более высокий, чем другим формальным операторам (§17)

A эквивалентна B в исчислении высказываний или в другой формальной система, если в этой формальной системе $\vdash A \sim B$. Здесь слово "эквивалентна" употребляется в качестве метаматематического глагола, который, будучи помещён между 2 формулами системы, даёт высказывание об этих формулах

Теорема 5 (§26). Если A, B и C — формулы, то:

- 1. ⊢ $A \supset A$ принцип тождества
- 2. $A \supset B, B \supset C \vdash A \supset C$ цепное заключение
- 3. $A\supset (B\supset C)\vdash B\supset (A\supset C)$ перестановка посылок
- 4. $A\supset (B\supset C)\vdash A\& B\supset C$ импортация
- 5. $A \& B \supset C \vdash A \supset (B \supset C)$ экспортация

Введение в импликацию

6.
$$A\supset B\vdash (B\supset C)\supset (A\supset C)$$
 — заключения

7.
$$A \supset B \vdash (C \supset A) \supset (C \supset B)$$
 — посылки

8а.
$$A\supset B\vdash A\&C\supset B\&C$$
 — конъюнктивного члена

8b.
$$A \supset B \vdash C \& A \supset C \& B$$

9а.
$$A\supset B\vdash A\lor C\supset B\lor C$$
 — дизъюнктивного члена

9b.
$$A \supset B \vdash C \lor A \supset C \lor A$$

Доказательство импликации путём

10а.
$$\neg A \vdash A \supset B$$
 — опровержения посылки

10b.
$$A \vdash \neg A \supset B$$

11.
$$B \vdash A \supset B$$
 — доказательства заключения

Контрапозиция

12.
$$A \supset B \vdash \neg B \supset \neg A$$

13.
$$A \supset \neg B \vdash B \supset \neg A$$

со снятием двойного отрицания

$$14^{\circ}$$
. $\neg A \supset B \vdash \neg B \supset A$

15°.
$$\neg A \supset \neg B \vdash B \supset A$$

По определению \sim в терминах \supset и &

16.
$$A \supset B, B \supset A \vdash A \sim B$$

17a.
$$A \sim B \vdash A \supset B$$

17b.
$$A \sim B \vdash B \supset A$$

18a.
$$A \sim B, A \vdash B$$

18b.
$$A \sim B, B \vdash A$$

19.
$$\vdash A \sim A$$
 — рефлексивность

20.
$$A \sim B \vdash B \sim A$$
 — симметричность

21.
$$A \sim B, B \sim C \vdash A \sim C$$
 — транзитивность

Дополнительные результаты, представляющие интерес в связи с интуиционистской системой

22.
$$A \supset (B \supset C), \neg \neg A, \neg \neg B \vdash \neg \neg C$$

23.
$$\neg \neg (A \supset B) \vdash \neg \neg A \supset \neg \neg B$$

24.
$$\neg \neg (A \supset B), \neg \neg (B \supset C) \vdash \neg \neg (A \supset C)$$

25.
$$\vdash \neg \neg (A \& B) \sim \neg \neg A \& \neg \neg B$$
; в частности $\vdash \neg \neg (A \sim B) \sim \neg \neg (A \supset B) \& \neg \neg (B \supset A)$

Определение (§26). Пусть A — формальное выражение. Рассмотрим другое формальное выражение C. Может случиться, что F входит в C как (связная) часть, причём это возможно более чем одним способом. Допустим, что это имеет место и что, если это осуществляется более чем одним способом, то выделено некоторое конкретное вхождение A в C. Обозначим теперь C вместе с выделенным конкретным вхождением A в C через " C_A ". В обозначении сочленения C_A есть EAF, где E и F — части (возможно, пустые), предшествующая и следующая за этой выделенной частью A. Пусть теперь B — какое-то формальное выражение. Результатом замены этой выделенной части A выражения C на B есть выражение EBF. Обозначим через C_B .

Теорема 6 (§26, Теорема о замене). Если A, B, C_A и C_B — пропозициональные формулы, связанные друг с другом, как в предыдущем определении замены, то

$$A \sim B \vdash C_A \sim C_B$$