Sinusaidal Kararlı Durum Güç Analizi

Ani Güç

$$p = vi.$$

$$v(t) = V_m \cos(\omega t + \theta_v)$$

$$i(t) = I_m \cos(\omega t + \theta_i)$$

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

Ortalama güç, ani gücün bir periyottaki ortalamasıdır.

$$P = \frac{1}{T} \int_0^T p(t) \, dt$$

$$P = \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) dt + \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) dt$$

$$\frac{1}{2}V_mI_m\cos(\theta_v-\theta_i)$$

Bir periyot boyunca bir sinusoidin integrali 0'dır.

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

$$\mathbf{V} = V_m \underline{/\theta_v} \qquad \mathbf{I} = I_m \underline{/\theta_i}$$

$$\frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}V_m I_m / \frac{\theta_v - \theta_i}{2}$$

$$= \frac{1}{2}V_m I_m [\cos(\theta_v - \theta_i) + j\sin(\theta_v - \theta_i)]$$

$$P = \frac{1}{2} \text{Re}[\mathbf{V}\mathbf{I}^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Eğer devrede sadece direnç varsa, voltaj ve akım aynı fazda olacaktır.

$$P = \frac{1}{2} V_m I_m = \frac{1}{2} I_m^2 R = \frac{1}{2} |\mathbf{I}|^2 R$$

Eğer devrede sadece kapasitör ve bobin varsa: $\theta_v - \theta_i = \pm 90^\circ$

$$P = \frac{1}{2} V_m I_m \cos 90^\circ = 0$$

Yani: resistif bir yük her zaman güç tüketir, reaktif yük 0 ortlama güç tüketir.

Soru: Verilen akım ve voltaj değerlerine göre devrenin tükettiği ani ve ortalama gücü bulunuz.

$$v(t) = 120 \cos(377t + 45^{\circ}) \text{ V}$$
 and $i(t) = 10 \cos(377t - 10^{\circ}) \text{ A}$

$$p = vi = 1200 \cos(377t + 45^{\circ}) \cos(377t - 10^{\circ})$$

$$\cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)]$$

$$p = 600 [\cos(754t + 35^{\circ}) + \cos 55^{\circ}]$$

$$p(t) = 344.2 + 600 \cos(754t + 35^{\circ}) \text{ W}$$
 ani güç
$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} 120(10) \cos[45^{\circ} - (-10^{\circ})]$$

$$= 600 \cos 55^{\circ} = 344.2 \text{ W}$$
 ortalama güç

Ödev: Verilen akım ve voltaj değerlerine göre devrenin tükettiği ani ve ortalama gücü bulunuz.

$$v(t) = 165 \cos(10t + 20^{\circ}) \text{ V}$$
 and $i(t) = 20 \sin(10t + 60^{\circ}) \text{ A}$

 $1.0606 + 1.65 \cos(20t - 10^{\circ}) \text{ kW}, 1.0606 \text{ kW}.$

Soru: Verilen empedansın tüketeceği ortalama gücü bulunuz.

$$\mathbf{Z} = 30 - j70 \,\Omega \qquad \mathbf{V} = 120 / 0^{\circ}$$

$$\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{120/0^{\circ}}{30 - j70} = \frac{120/0^{\circ}}{76.16/-66.8^{\circ}} = 1.576/66.8^{\circ} \,\text{A}$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} (120)(1.576) \cos(0 - 66.8^\circ) = 37.24 \text{ W}$$

Odev: Verilen empedansın tüketeceği ortalama gücü bulunuz.

$$\mathbf{Z} = 40 / -22^{\circ} \Omega$$

3.709 kW.

Soru: Verilen devrede kaynak tarafından sağlanan gücü ve direncin tükettiği gücü hesaplayınız.

$$\mathbf{I} = \frac{5/30^{\circ}}{4 - j2} = \frac{5/30^{\circ}}{4.472/-26.57^{\circ}} = 1.118/56.57^{\circ} \,\text{A}$$

$$P = \frac{1}{2}(5)(1.118)\cos(30^{\circ} - 56.57^{\circ}) = 2.5 \text{ W}$$

$$\mathbf{I}_R = \mathbf{I} = 1.118 / 56.57^{\circ} \,\text{A}$$
 $\mathbf{V}_R = 4\mathbf{I}_R = 4.472 / 56.57^{\circ} \,\text{V}$

$$P = \frac{1}{2} (4.472)(1.118) = 2.5 \,\text{W}$$

Ödev: Verilen devrede kaynak tarafından sağlanan gücü, bobinin ve direncin tükettiği gücü hesaplayınız.

3.84 kW, 0 W, 3.84 kW.

Soru: Verilen devrede her kaynak ve pasif devre elemanları tarafından üretilen ve tüketilen gücü hesaplayınız.

$$(j10 - j5)\mathbf{I}_2 - j10\mathbf{I}_1 + 60/30^{\circ} = 0, \quad \mathbf{I}_1 = 4 \text{ A}$$

 $j5\mathbf{I}_2 = -60/30^{\circ} + j40 \implies \mathbf{I}_2 = -12/-60^{\circ} + 8$
 $= 10.58/79.1^{\circ} \text{ A}$

$$P_5 = \frac{1}{2}(60)(10.58)\cos(30^\circ - 79.1^\circ) = 207.8 \text{ W}$$

$$\mathbf{V}_1 = 20\mathbf{I}_1 + j10(\mathbf{I}_1 - \mathbf{I}_2) = 80 + j10(4 - 2 - j10.39)$$
$$= 183.9 + j20 = 184.984 / 6.21^{\circ} \text{ V}$$

$$P_1 = -\frac{1}{2}(184.984)(4)\cos(6.21^\circ - 0) = -367.8 \text{ W}$$

$$20\mathbf{I}_{1} = 80 / 0^{\circ} \qquad \mathbf{I}_{1} = 4 / 0^{\circ} \qquad \qquad \mathbf{I}_{2} = 10.58 / 79.1^{\circ}$$

$$P_{2} = \frac{1}{2}(80)(4) = 160 \text{ W} \qquad \qquad -j5\mathbf{I}_{2} = (5 / -90^{\circ})(10.58 / 79.1^{\circ})$$

$$P_4 = \frac{1}{2}(52.9)(10.58)\cos(-90^\circ) = 0$$

$$\mathbf{I}_{1} - \mathbf{I}_{2} = 2 - j10.39 = 10.58 / -79.1^{\circ}$$

$$j10(\mathbf{I}_{1} - \mathbf{I}_{2}) = 10.58 / -79.1^{\circ} + 90^{\circ}$$

$$P_{3} = \frac{1}{2}(105.8)(10.58)\cos 90^{\circ} = 0$$

$$P_1 + P_2 + P_3 + P_4 + P_5 = -367.8 + 160 + 0 + 0 + 207.8 = 0$$

Odev: Verilen devrede her kaynak ve pasif devre elemanları tarafından üretilen ve tüketilen gücü hesaplayınız.

40-V Voltage source: -60 W; j20-V Voltage source: -40 W;

resistor: 100 W; others: 0 W.

$$\mathbf{Z}_L = R_L + jX_L = R_{\mathrm{Th}} - jX_{\mathrm{Th}} = \mathbf{Z}_{\mathrm{Th}}^*$$

Yüke aktarılan max güç:

$$P_{max} = \frac{1}{2} \frac{(|V_{Th}|/2)^2}{R_{Th}} = \frac{|V_{Th}|^2}{8R_{Th}}$$

Eğer yük sadece resistif ise:

$$R_L = |Z_{Th}|$$
 olmalıdır.

Soru: Yüke (Z_L) maksimum güç transferi yapılabilmesi için Z_L ne olmalıdır? Yapılan max güç transferi nedir?

$$\mathbf{Z}_{\text{Th}} = j5 + 4 \| (8 - j6) =$$

$$j5 + \frac{4(8 - j6)}{4 + 8 - j6} =$$

$$2.933 + j4.467 \Omega$$

$$\mathbf{V}_{\text{Th}} = \frac{8 - j6}{4 + 8 - j6} (10) =$$

$$7.454 / -10.3^{\circ} \text{ V}$$

$$\mathbf{Z}_L = \mathbf{Z}_{\text{Th}}^* = 2.933 - j4.467 \,\Omega$$

$$P_{\text{max}} = \frac{|\mathbf{V}_{\text{Th}}|^2}{8R_{\text{Th}}} = \frac{(7.454)^2}{8(2.933)} = 2.368 \text{ W}$$

Odev: Z_L 'ye maksimum güç transferi yapılabilmesi için Z_L ne olmalıdır? Yapılan max güç transferi nedir?

 $3.415 - j0.7317 \Omega$, 12.861 W.

Soru: Maksimum ortalama güç tüketimi için R_L ne olmalıdır? R_L 'ye yapılan güç transferi nedir?

$$\mathbf{Z}_{\text{Th}} = (40 - j30) \| j20 = \frac{j20(40 - j30)}{j20 + 40 - j30} = 9.412 + j22.35 \Omega$$

$$\mathbf{V}_{\text{Th}} = \frac{j20}{j20 + 40 - j30} (150 / 30^{\circ}) = 72.76 / 134^{\circ} \text{ V}$$

$$R_L = |\mathbf{Z}_{\text{Th}}| = \sqrt{9.412^2 + 22.35^2} = 24.25 \,\Omega$$

$$\mathbf{I} = \frac{\mathbf{V}_{\text{Th}}}{\mathbf{Z}_{\text{Th}} + R_L} = \frac{72.76 / 134^{\circ}}{33.66 + j22.35} = 1.8 / 100.42^{\circ} \text{ A}$$

$$P_{\text{max}} = \frac{1}{2} |\mathbf{I}|^2 R_L = \frac{1}{2} (1.8)^2 (24.25) = 39.29 \text{ W}$$

Odev: Verilen devrede direnç maksimum ortalama güç çekecek şekilde ayarlanmıştır: Direnç ve çektiği gücü bulunuz.

Bir periyodik akım veya gerilimin etkin değeri, ayni ortalama güç tüketimine neden olabilecek DC değeridir.

AC devrede direnç tarafından tüketilen ortalama güç:

$$P = \frac{1}{T} \int_{0}^{T} i^{2}R \, dt = \frac{R}{T} \int_{0}^{T} i^{2} \, dt$$

Aynı güç DC kaynaktan sağlansaydı:

$$P = I_{\text{eff}}^2 R$$

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T i^2 dt}$$

Bir periyodik akım veya gerilimin etkin değeri, ayni ortalama güç tüketimine neden olabilecek DC değeridir.

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T i^2 \, dt}$$

$$V_{\text{eff}} = \sqrt{\frac{1}{T} \int_{0}^{T} v^2 dt}$$

$$I_{\rm eff} = I_{\rm rms}, \qquad V_{\rm eff} = V_{\rm rms}$$

Herhangi bir periyodik sinya için

$$X_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T x^2 dt}$$

$$i(t) = I_m \cos \omega t$$

$$cos^2(x) = \frac{1}{2} + \frac{cos(2x)}{2}$$

$$I_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T I_m^2 \cos^2 \omega t \, dt}$$

Kolay hesaplamak için f=1 olsun

$$= \sqrt{\frac{I_m^2}{T}} \int_0^T \frac{1}{2} (1 + \cos 2\omega t) dt = \sqrt{\frac{I_m^2}{2T}} (\int_0^1 dt + \int_0^1 \cos(2\pi t) dt)$$

$$= \sqrt{\frac{I_m^2}{2T}(T + \int_0^1 \cos(2\pi t)dt)} = \frac{I_m^2}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

Bir direnç tarafından tüketilen güç:

$$P = I_{\rm rms}^2 R = \frac{V_{\rm rms}^2}{R}$$

Soru: Grafikte bir akımın dalga formu verilmiştir. Bu akımın rms değerini bulunuz. Eğer bu akım 2 Ω dirençten geçiyorsa dirençte tüketilen gücü bulunuz.

$$T = 4$$
.

$$i(t) = \begin{cases} 5t, & 0 < t < 2 \\ -10, & 2 < t < 4 \end{cases}$$

$$I_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2} dt} = \sqrt{\frac{1}{4} \left[\int_{0}^{2} (5t)^{2} dt + \int_{2}^{4} (-10)^{2} dt \right]}$$
$$= \sqrt{\frac{1}{4} \left[25 \frac{t^{3}}{3} \Big|_{0}^{2} + 100t \Big|_{2}^{4} \right]} = \sqrt{\frac{1}{4} \left(\frac{200}{3} + 200 \right)} = 8.165 \text{ A}$$

$$P = I_{\text{rms}}^2 R = (8.165)^2 (2) = 133.3 \text{ W}$$

Ödev: Grafikte bir akımın dalga formu verilmiştir. Bu akımın rms değerini bulunuz. Eğer bu akım 9 Ω dirençten geçiyorsa dirençte tüketilen gücü bulunuz.

4.318 A, 192 W.

Aşağıda yarım dalga doğrultulmuş bir sinüs sinyali verilmitir. Bu gerilim sinyalinin rms değerini bulunuz. Bu voltaj 10Ω dirence uygulanmışsa, dirençte tüketilen gücü bulunuz.

$$v(t) = \begin{cases} 10 \sin t, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \end{cases}$$

$$V_{\rm rms}^2 = \frac{1}{T} \int_0^T v^2(t) \, dt = \frac{1}{2\pi} \left[\int_0^\pi (10\sin t)^2 \, dt + \int_\pi^{2\pi} 0^2 \, dt \right]$$

$$\sin^2 t = \frac{1}{2}(1 - \cos 2t)$$

$$V_{\text{rms}}^2 = \frac{1}{2\pi} \int_0^{\pi} \frac{100}{2} (1 - \cos 2t) \, dt = \frac{50}{2\pi} \left(t - \frac{\sin 2t}{2} \right) \Big|_0^{\pi}$$
$$= \frac{50}{2\pi} \left(\pi - \frac{1}{2} \sin 2\pi - 0 \right) = 25, \qquad V_{\text{rms}} = 5 \text{ V}$$

$$P = \frac{V_{\text{rms}}^2}{R} = \frac{5^2}{10} = 2.5 \text{ W}$$

Ödev: Aşağıda tam dalga doğrultulmuş bir sinüs sinyali verilmitir. Bu gerilim sinyalinin rms değerini bulunuz. Bu voltaj 6Ω dirence uygulanmışsa, dirençte tüketilen gücü bulunuz.

7.071 V, 8.333 W.

Görünen Güç ve Güç Faktörü

$$v(t) = V_m \cos(\omega t + \theta_v)$$
 and $i(t) = I_m \cos(\omega t + \theta_i)$

$$\mathbf{V} = V_m / \underline{\theta_v}$$
 and $\mathbf{I} = I_m / \underline{\theta_i}$, $P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$

$$P = V_{\rm rms}I_{\rm rms}\cos(\theta_v - \theta_i) = S\cos(\theta_v - \theta_i)$$

$$S = V_{\rm rms} I_{\rm rms}$$

$$pf = \cos(\theta_v - \theta_i)$$

Ortalama güç iki terimin çarpımı olarak ifade edilebilir. $V_{rms}I_{rms}$ çarpımı görünen güçtir (S). $\cos(\theta_v-\theta_i)$ ise güç faktörü (power factor - pf) olarak isimlendirilir. Görünen güç voltaj ve akımın rms değerlerinin çarpımıdır ve birimi volt-amperdir (VA).

Görünen Güç ve Güç Faktörü

Gerilim ile akım arasındaki faz farkının cosinüsü güç faktörüdür. Aynı zamanda yük empedansının açısının cosinüsüdür.

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{I}_{\text{rms}}} = \frac{V_{\text{rms}}}{I_{\text{rms}}} / \theta_v - \theta_i$$

$$pf = \frac{P}{S} = \cos(\theta_v - \theta_i)$$

Saf resistif yük için $\theta_v - \theta_i = 0$, pf=1 Saf reaktif yük için $\theta_v - \theta_i = \pm 90$, pf=0 Güç faktörünün **ileride** veya **geride** olduğu ifade edilir. Akım voltajın ilerisinde ise pf ileridedir, yük kapasitiftir. Akım voltajın gerisinde ise pf geridedir, yük indüktiftir.

Görünen Güç ve Güç Faktörü

İndüktüf devre PF geride Kapasitif devre PF ileride

Lagging Power Factor

Leading Power Factor

Soru: Aşağıda verilen voltaj ve akım değerleri bir yük üzerinde görülüyorsa, görünen güç ve güç faktörünü bulunuz. Yükün hangi devre bileşenlerinden oluştuğunu ve büyüklüklerini bulunuz.

$$i(t) = 4\cos(100\pi t + 10^{\circ}) \text{ A}$$
 $v(t) = 120\cos(100\pi t - 20^{\circ}) \text{ V}$

$$S = V_{\text{rms}} I_{\text{rms}} = \frac{120}{\sqrt{2}} \frac{4}{\sqrt{2}} = 240 \text{ VA}$$

$$pf = cos(\theta_v - \theta_i) = cos(-20^\circ - 10^\circ) = 0.866$$

Akım voltajın ilerisinde olduğu için güç faktörü de ileridedir.

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{120/-20^{\circ}}{4/10^{\circ}} = 30/-30^{\circ} = 25.98 - j15 \,\Omega$$

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{120/-20^{\circ}}{4/10^{\circ}} = 30/-30^{\circ} = 25.98 - j15 \Omega$$

$$X_C = -15 = -\frac{1}{\omega C}$$
 $C = \frac{1}{15\omega} = \frac{1}{15 \times 100\pi} = 212.2 \,\mu\text{F}$

Ödev: Aşağıda verilen voltaj ve ve empedans değerleri için görünen güç ve güç faktörünü bulunuz.

$$\mathbf{Z} = 60 + j40 \,\Omega$$
 $v(t) = 160 \cos(377t + 10^{\circ}) \,\mathrm{V}.$

0.8321 lagging, $177.5/33.69^{\circ}$ VA.

Soru: Kaynak tarafından

$$\mathbf{Z} = 6 + 4 \| (-j2) = 6 + \frac{-j2 \times 4}{4 - j2} = 6.8 - j1.6 = 7 / -13.24^{\circ} \Omega$$

$$pf = cos(-13.24) = 0.9734$$
 ileride

$$\mathbf{I}_{\text{rms}} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{Z}} = \frac{30/0^{\circ}}{7/-13.24^{\circ}} = 4.286/13.24^{\circ} \,\text{A}$$

$$P = V_{\text{rms}}I_{\text{rms}} \text{ pf} = (30)(4.286)0.9734 = 125 \text{ W}$$

$$P = I_{\text{rms}}^2 R = (4.286)^2 (6.8) = 125 \text{ W}$$

Ödev: Kaynak tarafından görülen güç faktörünü bulunuz. Kaynağın sağladığı gücü hesaplayınız.

0.936 lagging, 1.062 kW. geri

Yükün tüm etkisi Karmaşık Güç ile gösterilebilir.

$$\mathbf{S} = \frac{1}{2}\mathbf{V}\mathbf{I}^* \qquad \mathbf{S} = \mathbf{V}_{\text{rms}}\mathbf{I}_{\text{rms}}^*$$

$$\mathbf{V}_{\rm rms} = \frac{\mathbf{V}}{\sqrt{2}} = V_{\rm rms} / \theta_v$$

$$I_{\rm rms} = \frac{I}{\sqrt{2}} = I_{\rm rms} / \theta_i$$

$$\mathbf{S} = V_{\text{rms}} I_{\text{rms}} / \frac{\theta_v - \theta_i}{\theta_v - \theta_i}$$

$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i) + j V_{\text{rms}} I_{\text{rms}} \sin(\theta_v - \theta_i)$$

$$\mathbf{S} = I_{\text{rms}}^2 \mathbf{Z} = \frac{V_{\text{rms}}^2}{\mathbf{Z}^*} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^*$$

$$\mathbf{S} = I_{\text{rms}}^2(R + jX) = P + jQ$$

$$P = V_{\text{rms}}I_{\text{rms}}\cos(\theta_v - \theta_i), \qquad Q = V_{\text{rms}}I_{\text{rms}}\sin(\theta_v - \theta_i)$$

Q=0: Resistif yük, güç faktörü beraber

Q < 0: Kapasitif yük, güç faktörü önde

Q>0: Indüktif yük, güç faktörü geride.

Karmaşık Güç
$$\mathbf{S} = P + jQ = \mathbf{V}_{\mathrm{rms}}(\mathbf{I}_{\mathrm{rms}})^* = \mathbf{V}_{\mathrm{rms}}\mathbf{I}_{\mathrm{rms}}/\theta_v - \theta_i$$
 Görünen Güç $S = |\mathbf{S}| = \mathbf{V}_{\mathrm{rms}}\mathbf{I}_{\mathrm{rms}} = \sqrt{P^2 + Q^2}$ VA Aktif Güç $P = \mathrm{Re}(\mathbf{S}) = S\cos(\theta_v - \theta_i)$ Watt Reaktif Güç $Q = \mathrm{Im}(\mathbf{S}) = S\sin(\theta_v - \theta_i)$ VAR Güç Faktörü $\frac{P}{S} = \cos(\theta_v - \theta_i)$

Güç Üçgeni

$$v(t) = 60 \cos(\omega t - 10^{\circ})$$
 $i(t) = 1.5 \cos(\omega t + 50^{\circ}) \text{ A}$

Soru: Bir yükün üzerindeki gerilim ve yükten geçen akım aşağıda verilmiştir.

- a) Karmaşık ve görünen gücü,
- b) Aktif ve reaktif gücü,
- c) Güç faktörünü ve yük empedansını bulunuz.

$$\mathbf{V}_{rms} = \frac{60}{\sqrt{2}} / -10^{\circ}, \qquad \mathbf{I}_{rms} = \frac{1.5}{\sqrt{2}} / +50^{\circ}$$

$$\mathbf{S} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^* = \left(\frac{60}{\sqrt{2}} \angle -10^{\circ}\right) \left(\frac{1.5}{\sqrt{2}} \angle -50^{\circ}\right) = 45 \angle -60^{\circ} \text{ VA}$$

$$S = |S| = 45 \text{ VA}$$

$$\mathbf{S} = 45 / (-60^{\circ}) = 45 [\cos(-60^{\circ}) + j \sin(-60^{\circ})] = 22.5 - j38.97$$

 $\mathbf{S} = P + jQ$ $P = 22.5 \text{ W}$ $Q = -38.97 \text{ VAR}$

 $pf = cos(-60^{\circ}) = 0.5$ Reaktif güç negatif olduğu için önde

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{60/-10^{\circ}}{1.5/+50^{\circ}} = 40/-60^{\circ} \,\Omega$$

Ödev: Bir yükteki akım ve gerilim aşağıda verilmiştir.

- a) Karmaşık ve görünen gücü,
- b) Aktif ve reaktif gücü,
- c) Güç faktörünü ve yük empedansını bulunuz.

$$V_{\rm rms} = 110 / 85^{\circ} \, V$$
 $I_{\rm rms} = 0.4 / 15^{\circ} \, A$

(a)
$$44/70^{\circ}$$
 VA, 44 VA, (b) 15.05 W, 41.35 VAR,

(c) 0.342 (geri),
$$94.06 + j258.4 \Omega$$

Soru: Bir yük, 0.856 geri güç faktörü ile 120 Vrms bir kaynaktan 12 kVA güç çekiyor. a) aktif ve reaktif gücü, b) akımın max değerini, c) yük empedansını bulunuz.

pf =
$$\cos \theta = 0.856$$
 $\theta = \cos^{-1} 0.856 = 31.13^{\circ}$ $S = 12,000 \text{ VA}$
 $P = S \cos \theta = 12,000 \times 0.856 = 10.272 \text{ kW}$
 $Q = S \sin \theta = 12,000 \times 0.517 = 6.204 \text{ kVA}$
 $\mathbf{S} = P + jQ = 10.272 + j6.204 \text{ kVA}$ $\mathbf{S} = \mathbf{V}_{rms} \mathbf{I}_{rms}^*$
 $\mathbf{I}_{rms}^* = \frac{\mathbf{S}}{\mathbf{V}_{rms}} = \frac{10,272 + j6204}{120/0^{\circ}} = 85.6 + j51.7 \text{ A} = 100/31.13^{\circ} \text{ A}$
 $\mathbf{I}_{rms} = 100/-31.13^{\circ}$ $I_m = \sqrt{2}I_{rms} = \sqrt{2}(100) = 141.4 \text{ A}$

 $\mathbf{Z} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{I}_{\text{rms}}} = \frac{120/0^{\circ}}{100/-31.13^{\circ}} = 1.2/31.13^{\circ} \,\Omega$

a) Güç faktörü b) yükteki görünen gücü c) rms voltajını bulunuz.

(a) 0.2588 leading, (b) 20.71 kVA, (c) 2.275 kV.

Soru: Verilen devrede yük bir voltaj kaynağı tarafından iletim hattından beslenmektedir. Hattın empedansı $4+j2\Omega$ ile temsil edilmektedir. Kaynak, hat ve yükün gerçek gücü ve reaktif gücünü hesaplayınız.

$$\mathbf{Z} = (4 + j2) + (15 - j10) = 19 - j8 = 20.62 / -22.83^{\circ} \Omega$$

$$I = \frac{V_s}{Z} = \frac{220/0^{\circ}}{20.62/-22.83^{\circ}} = 10.67/22.83^{\circ} \text{ A rms}$$

$$\mathbf{S}_s = \mathbf{V}_s \mathbf{I}^* = (220/0^\circ)(10.67/-22.83^\circ)$$

= $2347.4/-22.83^\circ = (2163.5 - j910.8) \text{ VA}$

$$\mathbf{V}_{\text{line}} = (4 + j2)\mathbf{I} = (4.472/26.57^{\circ})(10.67/22.83^{\circ})$$

= 47.72/49.4° V rms

$$\mathbf{S}_{\text{line}} = \mathbf{V}_{\text{line}} \mathbf{I}^* = (47.72 / 49.4^{\circ})(10.67 / -22.83^{\circ})$$

= $509.2 / 26.57^{\circ} = 455.4 + j227.7 \text{ VA}$

$$\mathbf{S}_{\text{line}} = |\mathbf{I}|^2 \mathbf{Z}_{\text{line}} = (10.67)^2 (4 + j2) = 455.4 + j227.7 \text{ VA}$$

$$\mathbf{V}_L = (15 - j10)\mathbf{I} = (18.03 / -33.7^{\circ})(10.67 / 22.83^{\circ})$$

= $192.38 / -10.87^{\circ}$ V rms

$$\mathbf{S}_L = \mathbf{V}_L \mathbf{I}^* = (192.38 / -10.87^\circ)(10.67 / -22.83^\circ)$$

= $2053 / -33.7^\circ = (1708 - j1139) \text{ VA}$

$$\mathbf{S}_{s} = \mathbf{S}_{\text{line}} + \mathbf{S}_{L}$$

Ödev: Verilen devrede 60 Ω direnç 240 W ortlama güç tüketiyor ise \mathbf{V} ve her dalın komplex gücünü hesaplayınız. (60 Ω dirençten akan akımda faz kayması olmadığını farzedin.)

Answer: $240.67/21.45^{\circ}$ V (rms); the $20-\Omega$ resistor: 656 VA; the $(30 - j10) \Omega$ impedance: 480 - j160 VA; the $(60 + j20) \Omega$ impedance: 240 + j80 VA; overall: 1376 - j80 VA.

Soru: Verilen devrede $\mathbf{Z}_1 = 60 / -30$ ve $\mathbf{Z}_2 = 40 / 45$ ise, görünen gücü, gerçek gücü, reaktif gücü ve güç faktörünü hesaplayınız.

$$I_1 = \frac{\mathbf{V}}{\mathbf{Z}_1} = \frac{120/10^{\circ}}{60/-30^{\circ}} = 2/40^{\circ} \text{ A rms}$$

$$I_2 = \frac{\mathbf{V}}{\mathbf{Z}_2} = \frac{120/10^{\circ}}{40/45^{\circ}} = 3/-35^{\circ} \text{ A rms}$$

$$\mathbf{S}_{1} = \frac{V_{\text{rms}}^{2}}{\mathbf{Z}_{1}^{*}} = \frac{(120)^{2}}{60/30^{\circ}} = 240/-30^{\circ} = 207.85 - j120 \text{ VA}$$

$$\mathbf{S}_{2} = \frac{V_{\text{rms}}^{2}}{\mathbf{Z}_{2}^{*}} = \frac{(120)^{2}}{40/-45^{\circ}} = 360/45^{\circ} = 254.6 + j254.6 \text{ VA}$$

$$\mathbf{S}_t = \mathbf{S}_1 + \mathbf{S}_2 = 462.4 + j134.6 \text{ VA}$$

$$|\mathbf{S}_t| = \sqrt{462.4^2 + 134.6^2} = 481.6 \text{ VA}.$$

$$P_t = \text{Re}(\mathbf{S}_t) = 462.4 \text{ W or } P_t = P_1 + P_2.$$

$$Q_t = \text{Im}(\mathbf{S}_t) = 134.6 \text{ VAR or } Q_t = Q_1 + Q_2.$$

$$pf = P_t/|S_t| = 462.4/481.6 = 0.96$$
 geride

Ödev: Paralel bağlı iki yük sırasıyla ileri 0.75 güc faktörü ile 2 kW ve geri 0.95 güç faktrü ile 4 kW güç geçmektedir. Kaynak tarafından sağlanılan karmaşık gücü ve iki yükün güç faktörünü hesaplayınız.

0.9972 (leading), 6 - j0.4495 kVA.

Ödev: Verilen devrede 1. Yük 8 kW ileri 0.8 güç faktörü ile çalışmaktadır. Yük 2 0.6 geri güç faktöründe 20 kVA güç çekmektedir. a) Her iki yükün güç faktörünü b) Yükleri beslemek için gerekli olan görünen gücü, \mathbf{I}_s ve iletim hattındaki kaybı c) Kaynağın frekansı 60 Hz ise güç faktörünü 1 yapmak için gerekli olan kapasitörü bulunuz. Güç faktörü 1 olduktan sonra (b)'deki hesaplamaları tekrar yapınız.

Güç faktörünün, orjinal yüke gelen akım veya voltajın değiştirilmeden arttırılmasına güç faktörü düzeltme (power factor correction) denir.

$$P = S_1 \cos \theta_1,$$

$$Q_1 = S_1 \sin \theta_1 = P \tan \theta_1$$

 $P = S_1 \cos \theta_1,$ $Q_1 = S_1 \sin \theta_1 = P \tan \theta_1$ Q_2 Eğer güç faktörünü $\cos(\theta_1)$ 'den $\cos(\theta_2)$ 'ye gerçek gücü değiştirmeden $(P = S_2 \cos(\theta_2))$ değiştirmek istersek:

$$Q_2 = P \tan \theta_2$$

Reaktif güçteki düşmeye şönt kapasitör neden olur.

$$Q_C = Q_1 - Q_2 = P(\tan \theta_1 - \tan \theta_2)$$

$$Q_C = Q_1 - Q_2 = P(\tan \theta_1 - \tan \theta_2)$$

$$\mathbf{S} = \frac{V_{\text{rms}}^2}{\mathbf{Z}^*}$$

$$Q_C = V_{\rm rms}^2 / X_C = \omega C V_{\rm rms}^2$$

$$C = \frac{Q_C}{\omega V_{\rm rms}^2} = \frac{P(\tan \theta_1 - \tan \theta_2)}{\omega V_{\rm rms}^2}$$

Soru: 4 kWpf=0.8 geri bir yük 120 Vrms 60 Hz iletim hattına bağlanmıştır.pf=0.95 yapılması için bağlanması gereken kapasitör nedir?

$$\cos \theta_1 = 0.8$$
 $\theta_1 = 36.87^{\circ}$ $S_1 = \frac{P}{\cos \theta_1} = \frac{4000}{0.8} = 5000 \text{ VA}$

$$Q_1 = S_1 \sin \theta = 5000 \sin 36.87 = 3000 \text{ VAR}$$

$$\cos \theta_2 = 0.95 \quad \Rightarrow \quad \theta_2 = 18.19^{\circ}$$

$$S_2 = \frac{P}{\cos \theta_2} = \frac{4000}{0.95} = 4210.5 \text{ VA}$$
 $Q_2 = S_2 \sin \theta_2 = 1314.4 \text{ VAR}$

$$Q_C = Q_1 - Q_2 = 3000 - 1314.4 = 1685.6 \text{ VAR}$$

$$C = \frac{Q_C}{\omega V_{\rm rms}^2} = \frac{1685.6}{2\pi \times 60 \times 120^2} = 310.5 \,\mu\text{F}$$

Ödev: Yük 110 V(rms) 60 Hz hattan besleniyorsa, pf=0.85 geri, 140 kVAR yükün güç faktörünü bir yapmak için bağlanması gereken paralel kapasitans ne olmalıdır.

30.69 mF.