**LECTURE 8** 

# Visualization

Visualizing distributions and KDEs

Data Science, Spring 2024 @ Knowledge Stream

Sana Jabbar

# Visualization of Distribution

Lecture 8, Spring 2024

- Regex
  - Regex review and regex functions
- Visualization
  - Goals of visualization
  - Visualizing distributions
  - Kernel density estimation

#### Visualizations in BS (and in Data Science, so far)

You worked with many types of visualizations throughout.







Line plot

Scatter plot

Histogram

What did these achieve?

- Provide a high-level overview of a complex dataset.
- Communicated trends to viewers.

### Histograms

#### A histogram:

- Collects datapoints with similar values into a shared "bin".
- Scales the bins such that the area of each bin is equal to the percentage of datapoints it contains.



The first bin has a width of \$16410 height of  $4.77 \times 10^{-5}$ 

This means that it contains  $16410 \times (4.77 \times 10^{-5}) = 78.3\%$  of all datapoints in the dataset.

#### **Answer**

There are 1174 observations in total.

- Width of bin [110, 115): 5
- Height of bar [110, 115): 0.02
- Proportion in bin = 5 \* 0.02 = 0.1
- Number in bin = 0.1 \* 1174 = 117.4



#### **Histograms in Code**

In Matplotlib: plt.hist(x\_values, density=True)

In Seaborn: sns.histplot(data=df, x="x\_column", stat="density")





Matplotlib

Seaborn

#### **Overlaid Histograms**

To compare a quantitative variable's distribution across qualitative categories, overlay histograms on top of one another.



The **hue** parameter of Seaborn plotting functions sets the column that should be used to determine color.

```
sns.histplot(data=wb, hue="Hemisphere",
x="Gross national income...")
```

Always include a legend when color is used to encode information!

#### **Interpreting Histograms**

The **skew** of a histogram describes the direction in which its "tail" extends.

- A distribution with a long right tail is skewed right.
- A distribution with a long left tail is skewed left.

A histogram with no clear skew is called symmetric.





#### **Interpreting Histograms**

The **mode(s)** of a histogram are the peak values in the distribution.

- A distribution with one clear peak is called unimodal.
- Two peaks: bimodal.
- More peaks: multimodal.





# **Kernel Density Estimation**

Lecture 08, Spring 2024

- Regex
  - Regex review and regex functions
- Visualization
  - Goals of visualization
  - Visualizing distributions
  - Kernel density estimation

#### **Kernel Density Estimation: Intuition**

Often, we want to identify *general* trends across a distribution, rather than focus on detail. Smoothing a distribution helps generalize the structure of the data and eliminate noise.



#### A KDE curve

Idea: approximate the probability distribution that generated the data.

- Assign an "error range" to each data point in the dataset – if we were to sample the data again, we might get a different value.
- Sum up the error ranges of all data points.
- Scale the resulting distribution to integrate to 1.

#### **Kernel Density Estimation: Process**

Idea: Approximate the probability distribution that generated the data.

- Place a kernel at each data point.
- Normalize kernels so that total area = 1.
- Sum all kernels together.

A **kernel** is a function that tries to capture the randomness of our sampled data.



### Step 1 - Place a Kernel at Each Data Point

Consider a fake dataset with just five collected datapoints.

- Place a Gaussian kernel with bandwidth of alpha = 1.
- We will precisely define both the Gaussian kernel and bandwidth in a few slides.



Each line represents a datapoint in the dataset (e.g. one country's HIV rate).



Place a kernel on top of each datapoint.

# Step 2 - Normalize Kernels

In Step 3, We will be summing each of these kernels to produce a probability distribution.

- We want the result to be a valid probability distribution that has area 1.
- We have 5 different kernels, each with an area 1.
- So, we normalize by multiplying each kernel by 1/5.



Each kernel has area 1.



Each normalized kernel has density 1/5.

## Step 3 - Sum the Normalized Kernels

At each point in the distribution, add up the values of all kernels. This gives us a smooth curve with area 1 – an approximation of a probability distribution!



Sum these five normalized curves together.



The final KDE curve.

#### Result

A summary of the distribution using KDE.



Each line represents a datapoint in the dataset (e.g. one country's HIV rate).



The density at each point corresponds to the KDE calculated based on kernels placed on all data points 16

#### **Summary of KDE**

$$f_{lpha}(x) = rac{1}{n} \sum_{i=1}^{n} K_{lpha}(x, x_i)$$



A general "KDE formula" function is given above.



 $K_{\alpha}(x, x_i)$  is the **kernel** function centered on the observation i.

- Each kernel individually has area 1.
- K represents our kernel function of choice. We'll talk about the math of these functions soon.

## **Summary of KDE**

$$f_{lpha}(x) = rac{1}{n} \sum_{i=1}^{n} K_{lpha}(x, x_i)$$



A general "KDE formula" function is given above.

- $K_{\alpha}(x, x_i)$  is the **kernel** centered on the observation *i*.
  - o Each kernel individually has area 1.
  - o x represents any number on the number line. It is the input to our function.
- - $\circ$  We multiply by 1/n to normalize the kernels so that the total area of the KDE is still 1.
- Each  $x_i$  ( $x_1$ ,  $x_2$ , ...,  $x_n$ ) represents an observed data point. We sum the kernels for each datapoint to create the final KDE curve.

 $\alpha$  is the **bandwidth** or **smoothing parameter**.

#### **Kernels**

A **kernel** (for our purposes) is a valid density function, meaning:

- It must be non-negative for all inputs.
- It must integrate to 1(area under curve = 1).



The most common kernel is the **Gaussian kernel**.

- Gaussian = Normal distribution = bell curve.
- Here, x represents any input, and xi represents the ith observed value (datapoint).
- Each kernel is **centered** on our observed values (and so its distribution mean is xi).
- α is the bandwidth parameter. It controls the smoothness of our KDE. Here, it is also the standard deviation of the Gaussian.

$$K_{\alpha}(x,x_i) = \frac{1}{\sqrt{2\pi\alpha^2}} e^{-\frac{(x-x_i)^2}{2\alpha^2}}$$

Memorizing this formula is less important than knowing the shape and how the bandwidth parameter  $\alpha$  smoothes the KDE.

#### **Effect of Bandwidth on KDEs**





50

10

**Bandwidth** is analogous to the width of each bin in a histogram.

- As α increases, the KDE becomes more smooth.
- Large α KDE is simpler to understand, but gets rid of potentially important distributional information (e.g. multimodality).



#### **Other Kernels: Boxcar**

As an example of another kernel, consider the **boxcar kernel**.

- It assigns uniform density to points within a "window" of the observation, and 0 elsewhere.
- Resembles a histogram... sort of.

$$K_{\alpha}(x, x_i) = \begin{cases} \frac{1}{\alpha}, & |x - x_i| \le \frac{\alpha}{2} \\ 0, & \text{else} \end{cases}$$

 Not of any practical use in Data 100! Presented as a simple theoretical alternative.



A boxcar kernel centered on  $x_i = 4$  with  $\alpha = 2$ .





#### **LECTURE 8**

# Visualization

Content credit: <u>Acknowledgments</u>