ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN

NGUYỄN VĂN QUYẾT

BÀI TOÁN TÌM KIẾM VĂN BẢN SỬ DỤNG GIẢI THUẬT DI TRUYỀN

LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN CHUYÊN NGÀNH KHOA HỌC MÁY TÍNH

Thái Nguyên - 2009

ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN

NGUYỄN VĂN QUYẾT

BÀI TOÁN TÌM KIẾM VĂN BẢN SỬ DỤNG GIẢI THUẬT DI TRUYỀN

Chuyên nghành: Khoa học máy tính Mã số: 60.48.01

TÓM TẮT LUẬN VĂN THẠC SĨ

THÁI NGUYÊN - 2009

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

http://www.Lrc-tnu.edu.vn

Công trình được hoàn thành tại: Khoa CNTT - ĐH Thái Nguyên.

Người hướng dẫn khoa học: TS Vũ Mạnh Xuân, Chủ nhiệm Khoa Toán -
Trưởng phòng Công nghệ thông tin – Thư viện, Trường Đại học Sư phạm -
Đại học Thái Nguyên.

Pilali biệli 1	• • • • • • • • • • • • • • • • • • • •	 •
Phản biên 2:		

Luận văn sẽ được bảo vệ trước hội đồng chấm luận văn họp tại: Vào hồi giờ ngày tháng 12 năm 2009

Có thể tìm hiểu luận văn tại Trung tâm Học liệu – ĐH Thái Nguyên và Thư viện Khoa CNTT – ĐH Thái Nguyên

LÒI CẨM ƠN

Trước hết em xin gửi lời cảm ơn chân thành đến toàn thể các thầy cô giáo Viện Công nghệ Thông tin đã tận tình dạy dỗ chúng em trong suốt quá trình học tập tại khoa Công nghệ thông tin - Đại học Thái Nguyên.

Đặc biệt em xin bày tỏ lòng biết ơn sâu sắc tới thầy giáo TS Vũ Mạnh Xuân - Trưởng Khoa Toán, Trưởng Phòng Công nghệ Thông tin - Thư viện trường Đại học Sư phạm - Đại học Thái Nguyên đã quan tâm hướng dẫn và đưa ra những gợi ý, góp ý, chỉnh sửa vô cùng quý báu cho em trong quá trình làm luận văn tốt nghiệp.

Cuối cùng xin chân thành cảm ơn những người bạn đã giúp đỡ, chia sẽ với em trong suốt quá trình làm luận văn.

Thái Nguyên, Ngày 01 tháng 10 năm 2009 Học viên

Nguyễn Văn Quyết

LÒI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu của cá nhân tôi. Các số liệu, kết quả có trong luận văn là trung thực và chưa được công bố trong bất kỳ một công trình nào khác.

Thái Nguyên, ngày 10 tháng11 năm 2009

Tác giả luận văn

Nguyễn Văn Quyết

MỤC LỤC

·	Γ rang
Trang phụ bìa	
Lời cam đoan	
Mục lục	i
Danh mục các thuật ngữ	iv
Danh mục các hình vẽ, bảng biểu	V
MỞ ĐẦU:	1
1. ĐẶT VẤN ĐỀ	1
2. MỤC ĐÍCH CỦA LUẬN VĂN	2
3. NỘI DUNG CỦA LUẬN VĂN	2
4. PHƯƠNG PHÁP NGHIÊN CỨU	2
NỘI DUNG	••••
CHƯƠNG 1. MỘT SỐ KỸ THUẬT TÌM KIẾM VĂN BẢN	3
1.1. Bài toán tìm kiếm văn bản	3
1.2. Các thuật toán	4
1.2.1. Thuật toán Brute Force	4
1.2.2. Thuật toán Knuth-Morris-Pratt	5
1.2.3. Thuật toán Deterministic Finite Automaton (máy automat hữu hạn)7
1.2.4. Thuật toán Boyer-Moore	10
1.2.5. Thuật toán Karp-Rabin	15
1.2.6. Các thuật toán khác	17
CHƯƠNG 2. GIỚI THIỆU VỀ GIẢI THUẬT DI TRUYỀN	20
2.1. Tổng quan về giải thuật di truyền	20
2.1.1. Giới thiệu	20

2.1.2. Sự khác biệt của giải thuật di truyền so với các giải thuật khác	. 21
2.1.3. Tính chất quan trọng của giải thuật di truyền	. 21
2.2. Giải thuật di truyền cổ điển	. 22
2.2.1. Giới thiệu	. 22
2.2.2. Các toán tử di truyền	. 24
2.2.2.1. Toán tử chọn lọc	. 24
2.2.2.2. Toán tử lai ghép	. 25
2.2.2.3. Toán tử đột biến	. 26
2.2.3. Các bước quan trọng trong việc áp dụng giải thuật di truyền cổ điển	. 26
2.2.4. Ví dụ	. 27
CHƯƠNG 3. SỬ DỤNG GIẢI THUẬT DI TRUYỀN ĐỂ TÌM KIẾM	[
VĂN BẢN	.33
3.1. Yêu cầu đặt ra cho bài toán tìm kiếm văn bản	. 33
3.2. Xây dựng hàm tìm kiếm văn bản	. 34
3.3. Phát biểu bài toán tìm kiếm văn bản theo hướng tiếp cận di truyền	. 35
3.4. Tìm độ dài xâu con chung lớn nhất bằng quy hoạch động	. 38
3.5. Áp dụng giải thuật di truyền	. 39
3.5.1. Biểu diễn nhiễm sắc thể	. 39
3.5.2. Khởi tạo quần thể	. 40
3.5.3. Hàm mục tiêu	. 40
3.5.4. Các toán tử di truyền	
3.5.5. Các tham số	. 42
3.5.6. Chi phí thời gian	. 42

PHŲ LŲC	54
TÀI LIỆU THAM KHẢO	52
KẾT LUẬN VÀ ĐỀ NGHỊ	51
4.2. Phát triển phần mềm ứng dụng	50
4.1.2. Kết quả thử nghiệm tìm kiếm bằng giải thuật di truyền	46
4.1.1.2. Tìm kiếm tuyến tính sử dụng hàm quy hoạch động	45
4.1.1.1 Tìm kiếm tuyến tính bằng so khớp chuỗi	44
4.1.1. Kết quả thử nghiệm tìm kiếm tuyến tính	44
4.1. Các kết quả thử nghiệm	44
MÈM ỨNG DỤNG	44
CHƯƠNG 4. KẾT QUẢ THỰC NGHIỆM VÀ PHÁT TRIỂN	PHẦN

CÁC THUẬT NGỮ SỬ DỤNG TRONG LUẬN VĂN

Heredity, Genetic : Di truyền

Genetic Algorithm (GA) : Thuật giải di truyền

Individual : Cá thể

Genome : Bộ gen

Mode : Chế độ

Multi Mode : Đa chế độ

Mutation : Đột biến

Renewable Resource : Tài nguyên tái sử dụng

Nonrenewable Resource : Tài nguyên không tái sử dụng

Offstring 1 : Cá thể con trai

Offstring 2 : Cá thể con gái

One point crossover : Lai ghép một điểm

Parent 1 : Cá thể cha

Parent 2 : Cá thể mẹ

Popuplation : Quần thể

Reproduction : Sinh sån

Response surface : Bề mặt đáp ứng

Two point crossover : Lai ghép hai điểm

Uniform Crossover : Lai ghép đồng nhất

combinatorial optimization : Tối ưu tổ hợp

Crossover : Lai ghép

Fitness : Độ thích nghi, hàm thích nghi

ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN

NGUYỄN VĂN QUYẾT

BÀI TOÁN TÌM KIẾM VĂN BẢN SỬ DỤNG GIẢI THUẬT DI TRUYỀN

Chuyên ngành: Khoa học máy tính Mã số: 60.48.01

LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH

NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. VŨ MẠNH XUÂN

Thái Nguyên - 2009

MỞ ĐẦU

1. Đặt vấn đề

Ngày nay máy tính đã được sử dụng trong mọi lĩnh vực của đời sống, vì vậy kho thông tin trong máy tính tăng trưởng không ngừng và thật khó khăn cho công tác tìm kiếm (nhất là tìm kiếm trên các file văn bản). Hãng Microsoft đã hỗ trợ tìm kiếm tự động bằng công cụ Search được tích hợp sẵn trong hệ điều hành Windows, trong đó cho ta hai cách thức tìm kiếm file là: tìm theo từ khoá tên file (All or part of the file name) – đưa ra các file có tên chứa khoá tìm kiểm; và tìm theo từ khoá nội dung trong file (A word or phrase in the file) – đưa ra các file văn bản có chứa một từ hoặc cụm từ giống với từ khoá. Mặc dù Search trong Windows hỗ trợ mạnh chức năng tìm kiếm theo tên file, nhưng tìm theo nội dung trong file vẫn còn có những hạn chế nhất định, chẳng hạn: Search chỉ đưa ra các file văn bản có chứa chính xác từ khoá tìm kiếm, như vậy sẽ rất khó khăn nếu người dùng không nhớ chính xác từ khoá có trong nội dung văn bản mà chỉ nhớ gần đúng với từ khoá, hơn nữa công cụ Search không chỉ ra được cụm từ khoá tìm được nằm ở đâu trong văn bản và tần suất xuất hiện của chúng, nên nếu cần người dùng lại một lần nữa phải đi dò tìm bằng các công cụ tìm kiếm khác.

Vì lẽ đó bài toán tìm kiếm văn bản là bài toán rất thiết thực đang được nhiều người quan tâm, vấn đề cấp thiết đặt ra là giải quyết bài toán tìm kiếm văn bản sao cho hiệu quả, đáp ứng được nhu cầu của người sử dụng. Luận văn này định hướng nghiên cứu sử dụng giải thuật di truyền tìm trong file văn bản các đoạn văn bản giống hoặc gần giống với mẫu (từ khoá) cần tìm kiếm.

Với mục tiêu đó, tôi lựa chọn đề tài nghiên cứu của luận văn là "*Bài* toán tìm kiếm văn bản sử dụng giải thuật di truyền". Đây là hướng tiếp cận khá mới đối với bài toán này, hy vọng rằng kết quả đạt được sẽ có hiệu quả đáng kể so với các phương pháp tìm kiếm khác.

2. Mục đích của luận văn

Mục đích của luận văn là: nghiên cứu các phương pháp tìm kiếm văn bản và tìm cách ứng dụng giải thuật di truyền để giải quyết bài toán này, trên cơ sở đó xây dựng phần mềm ứng dụng tìm kiếm văn bản một cách hiệu quả và thiết thực.

3. Nội dung của luận văn

Đề tài tập trung vào bài toán tìm kiếm văn bản theo hướng tiếp cận sau: Tìm các vị trí trong văn bản có xuất hiện chuỗi văn bản giống hoặc gần giống với chuỗi văn bản mẫu (xuất hiện gần giống trong trường hợp văn bản tìm kiếm không chứa chuỗi văn bản mẫu). Trên cơ sở đó, nội dung của luận văn gồm bốn chương sau phần *Mở đầu*:

- Chương 1: Nghiên cứu khái quát về các kỹ thuật tìm kiếm văn bản.
- *Chương 2:* Tìm hiểu giải thuật di truyền, chú trọng đến các kỹ thuật có liên quan đến bài toán tìm kiếm.
- Chương 3: Xây dựng và phát biểu bài toán, đề xuất phương pháp sử dụng giải thuật di truyền trong tìm kiếm văn bản.
 - Chương 4: Kết quả thử nghiệm và phát triển phần mềm ứng dụng.

4. Phương pháp nghiên cứu

Nghiên cứu tài liệu, đề xuất giải pháp và lập trình thử nghiệm.

Luận văn đã bước đầu đề xuất phương pháp ứng dụng giải thuật di truyền vào giải quyết bài toán tìm kiếm văn bản, các chương trình thử nghiệm đã minh chứng hướng tiếp cận là đúng đắn và có hiệu quả. Đặc biệt chương trình đã chỉ ra được các vị trí xuất hiện đoạn văn bản giống văn bản mẫu hoặc gần giống với văn bản mẫu (trong trường hợp văn bản không chứa văn bản mẫu) cần tìm trong thời gian cho phép. Hiện nay chúng tôi đang trong quá trình phát triển phần mềm ứng dụng dựa vào các kết quả nghiên cứu này.

CHƯƠNG 1 MỘT SỐ KỸ THUẬT TÌM KIẾM VĂN BẢN

Trong phần này chúng ta sẽ quan tâm đến bài toán tìm kiếm văn bản thông dụng và các thuật toán đã có để tìm kiếm tất cả các vị trí xuất hiện của mẫu trên một văn bản. Các thuật toán này được chạy trên chương trình thử nghiệm, cài đặt sẽ dùng một hàm ra : Output để thông báo các vị trí tìm thấy mẫu.

1.1. Bài toán tìm kiếm văn bản

Dữ liệu trong máy tính được lưu trữ dưới rất nhiều dạng khác nhau, nhưng sử dụng chuỗi vẫn là một trong những cách rất phổ biến. Trên chuỗi các đơn vị dữ liệu không có ý nghĩa quan trọng bằng cách sắp xếp của chúng. Ta có thể thấy các dạng khác nhau của chuỗi như ở các file dữ liệu, trên biểu diễn của các gen, hay chính văn bản chúng ta đang đọc.

Một phép toán cơ bản trên chuỗi là đối sánh mẫu (pattern matching), bài toán yêu cầu ta tìm ra một hoặc nhiều vị trí xuất hiện của mẫu trên một văn bản. Trong đó mẫu và văn bản là các chuỗi có độ dài M và N (M \leq N), tập các ký tự được dùng gọi là bảng chữ cái Σ , có số lượng là δ .

Việc đối sánh mẫu diễn ra với nhiều lần thử trên các đoạn khác nhau của văn bản. Trong đó *cửa sổ* là một chuỗi M ký tự liên tiếp trên văn bản. Mỗi lần thử chương trình sẽ kiểm tra sự giống nhau giữa mẫu với cửa sổ hiện thời. Tùy theo kết quả kiểm tra cửa sổ sẽ được dịch đi sang phải trên văn bản cho lần thử tiếp theo.

1.2. Các thuật toán

1.21. Thuật toán Brute Force

Thuật toán Brute Force thử kiểm tra tất cả các vị trí trên văn bản từ 1 cho đến n-m+1. Sau mỗi lần thử thuật toán Brute Force dịch mẫu sang phải một ký tự cho đến khi kiểm tra hết văn bản.

Thuật toán Brute Force không cần công việc chuẩn bị cũng như các mảng phụ cho quá trình tìm kiếm. Độ phức tạp tính toán của thuật toán này là O(n*m).

```
Thủ tục cài đặt:
function IsMatch(const X: string; m: integer;
                   const Y: string; p: integer): boolean;
        var
         i: integer;
        begin
         IsMatch := false;
         Dec(p);
         for i := 1 to m do
           if X[i] \Leftrightarrow Y[p+i] then Exit;
         IsMatch := true;
        end:
        procedure BF(const X: string; m: integer;
                 const Y: string; n: integer);
        var
         i: integer;
        begin
         for i := 1 to n - m + 1 do
           if IsMatch(X, m, Y, i) then
            Output(i); { Thông báo tìm thấy mẫu tại vị trí i của văn bản }
```

end;

1.2.2. Thuật toán Knuth-Morris-Pratt

Thuật toán Knuth-Morris-Pratt là thuật toán có độ phức tạp tuyến tính đầu tiên được phát hiện ra, nó dựa trên thuật toán brute force với ý tưởng lợi dụng lại những thông tin của lần thử trước cho lần sau. Trong thuật toán brute force vì chỉ dịch cửa sổ đi một ký tự nên có đến m-1 ký tự của cửa sổ mới là những ký tự của cửa sổ vừa xét. Trong đó có thể có rất nhiều ký tự đã được so sánh giống với mẫu và bây giờ lại nằm trên cửa sổ mới nhưng được dịch đi về vị trí so sánh với mẫu. Việc xử lý những ký tự này có thể được tính toán trước rồi lưu lại kết quả. Nhờ đó lần thử sau có thể dịch đi được nhiều hơn một ký tự, và giảm số ký tự phải so sánh lại.

Xét lần thử tại vị trí j, khi đó cửa sổ đang xét bao gồm các ký tự y[j...j+m-1] giả sử sự khác biệt đầu tiên xảy ra giữa hai ký tự x[i] và y[j+i-1].

Khi đó x[1...i]=y[j...i+j-1]=u và $a=x[i]\neq y[i+j]=b$. Với trường hợp này, dịch cửa sổ phải thỏa mãn v là phần đầu của xâu x khớp với phần đuôi của xâu x trên văn bản. Hơn nữa ký tự x0 ngay sau x1 trên mẫu phải khác với ký tự x2. Trong những đoạn như x2 thoả mãn các tính chất trên ta chỉ quan tâm đến đoan có đô dài lớn nhất.

U u v b c a x Y x j i + j - 1

Dịch cửa sổ sao cho v phải khớp với u và $c \neq a$

Thuật toán Knuth-Morris-Pratt sử dụng mảng Next[i] để lưu trữ độ dài lớn nhất của xâu v trong trường hợp xâu u=x[1...i-1]. Mảng này có thể tính trước với chi phí về thời gian là O(m) (việc tính mảng Next thực chất là một bài toán qui hoạch động một chiều).

Thuật toán Knuth-Morris-Pratt có chi phí về thời gian là O(m+n) với nhiều nhất là 2n-1 lần số lần so sánh ký tự trong quá trình tìm kiếm.

Thủ tục cài đặt:

```
procedure preKMP(const X: string; m: integer;
          var Next: array of integer);
var
 i, j: integer;
begin
 i := 1;
 i := 0;
 Next[1] := 0;
 while (i \le m) do
 begin
  while (j > 0)and(X[i] <> X[j]) do j := Next[j];
  Inc(i);
  Inc(j);
       if X[i] = X[j] then Next[i] := Next[j]
  else Next[i] := j;
 end;
procedure KMP(const X: string; m: integer;
         const Y: string; n: integer);
var
 i, j: integer;
 Next: ^TIntArr; { TIntArr = array[0..maxM] of integer }
 GetMem(Next, (m + 1)*SizeOf(Integer));
 preKMP(X, m, Next^);
 i := 1;
 i := 1;
 while (i \le n) do
 begin
  {dich đi nếu không khớp}
  while (i > 0)and(X[i] \Leftrightarrow Y[j]) do i := Next^{i};
```

```
Inc(i);
Inc(j);
if i > m then
begin
   Output(j - i + 1);
   i := Next^[i];
end;
end;
FreeMem(Next, (m + 1)*SizeOf(Integer));
End:
```

1.2.3. Thuật toán Deterministic Finite Automaton (máy automat hữu hạn)

Trong thuật toán này, quá trình tìm kiếm được đưa về một quá trình biến đổi trạng thái automat. Hệ thống automat trong thuật toán DFA sẽ được xây dựng dựa trên xâu mẫu. Mỗi trạng thái (nút) của automat lúc sẽ đại diện cho số ký tự đang khớp của mẫu với văn bản. Các ký tự của văn bản sẽ làm thay đổi các trạng thái. Và khi đạt được trạng cuối cùng có nghĩa là đã tìm được một vị trí xuất hiện ở mẫu.

Thuật toán này có phần giống thuật toán Knuth-Morris-Pratt trong việc nhảy về trạng thái trước khi gặp một ký tự không khớp, nhưng thuật toán DFA có sự đánh giá chính xác hơn vì việc xác định vị trí nhảy về dựa trên ký tự không khớp của văn bản (trong khi thuật toán KMP lùi về chỉ dựa trên vị trí không khớp).

Với xâu mẫu là GCAGAGAG ta có hê automat sau

0

2

1

3

4

5

6

7

8

G

G

G

G

G

C

C

C

G

 \mathbf{C}

A

G

A

G

A

G

Với ví dụ ở hình trên ta có:

- \ast Nếu đang ở trạng thái 2 gặp ký tự A trên văn bản sẽ chuyển sang trạng thái 3
- \ast Nếu đang ở trạng thái 6 gặp ký tự C trên văn bản sẽ chuyển sang trạng thái 2
- * Trạng thái 8 là trạng thái cuối cùng, nếu đạt được trạng thái này có nghĩa là đã tìm thất một xuất hiện của mẫu trên văn bản

* Trạng thái 0 là trạng thái mặc định (các liên kết không được biểu thị đều chỉ về trạng thái này), ví dụ ở nút 5 nếu gặp bất kỳ ký tự nào khác G thì đều chuyển về trạng thái 0

Việc xây dựng hệ automat khá đơn giản khi được cài đặt trên ma trận kề. Khi đó thuật toán có thời gian xử lý là O(n) và thời gian và bộ nhớ để tạo ra hệ automat là $O(m*\delta)$ (tùy cách cài đặt)

Nhưng ta nhận thấy rằng trong DFA chỉ có nhiều nhất m cung thuận và m cung nghịch, vì vậy việc lưu trữ các cung không cần thiết phải lưu trên ma trận kề mà có thể dùng cấu trúc danh sách kề Forward Star để lưu trữ. Như vậy thời gian chuẩn bị và lượng bộ nhớ chỉ là O(m). Tuy nhiên thời gian tìm kiếm có thể tăng lên một chút so với cách lưu ma trận kề.

Cài đặt dưới đây xin được dùng cách đơn giản (ma trận kề)

```
Type
 TAut = array[0..maxM, 0..maxd] of integer;
procedure preAUT(const X: string; m: integer; var G: TAut);
 i, j, prefix, cur, c, newState: integer;
begin
 FillChar(G, SizeOf(G), 0);
 cur := 0;
 for i := 1 to m do
  prefix := G[cur, Ord(X[i])]; \{x[1..prefix] = x[i-prefix+1..i]\}
  newState := i:
  G[cur, Ord(X[i])] := newState;
  for c := 0 to maxd do {copy prefix -> newState }
   G[newState, c] := G[prefix, c];
  cur := newState;
 end;
end:
procedure AUT(const X: string; m: integer;
        const Y: string; n: integer);
var
```

```
G: ^TAut;
state, i: integer;

begin
  New(G);
preAUT(X, m, G^);
state := 0;
for i := 1 to n do
  begin
  state := G^[state, Ord(Y[i])]; {chuyển trạng thái}
  if state = m then Output(i - m + 1);
  end;
  Dispose(G);
end;
```

1.2.4. Thuật toán Boyer-Moore

Thuật toán Boyer Moore là thuật toán có tìm kiếm chuỗi rất có hiệu quả trong thực tiễn, các dạng khác nhau của thuật toán này thường được cài đặt trong các chương trình soạn thảo văn bản.

Khác với thuật toán Knuth-Morris-Pratt (KMP), thuật toán Boyer-Moore kiểm tra các ký tự của mẫu từ phải sang trái và khi phát hiện sự khác nhau đầu tiên thuật toán sẽ tiến hành dịch cửa sổ đi Trong thuật toán này có hai cách dịch của sổ:

Cách thứ 1: gần giống như cách dịch trong thuật toán KMP, dịch sao cho những phần đã so sánh trong lần trước khớp với những phần giống nó trong lần sau.

Trong lần thử tại vị trí j, khi so sánh đến ký tự i trên mẫu thì phát hiện ra sự khác nhau, lúc đó x[i+1...m]=y[i+j...j+m-1]=u và khi đó thuật toán sẽ dịch cửa sổ sao cho đoạn u=y[i+j...j+m-1] giống với một đoạn mới trên mẫu (trong các phép dịch ta chọn phép dịch nhỏ nhất)

u
b
c
a
x
y
x
u
dich

Dịch sao cho u xuất hiện lại và $c \neq a$

Nếu không có một đoạn nguyên vẹn của u xuất hiện lại trong x, ta sẽ chọn sao cho phần đôi dài nhất của u xuất hiện trở lại ở đầu mẫu.

u

u
b
a
y
x
dich
u
u

Dịch để một phần đôi của u xuất hiện lại trên x

<u>Cách thứ 2</u>: Coi ký tự đầu tiên không khóp trên văn bản là b=y[i+j-1] ta sẽ dịch sao cho có một ký tự giống b trên xâu mẫu khóp vào vị trí đó (nếu có nhiều vị trí xuất hiện b trên xâu mẫu ta chọn vị trí phải nhất).

u
b
a
y
x
dịch
u
b
x
không chứa b

Dịch để ký tự b ăn khớp với văn bản.

Nếu không có ký tự b nào xuất hiện trên mẫu ta sẽ dịch cửa sổ sao cho ký tự trái nhất của cửa sổ vào vị trí ngay sau ký tự y[i+j-1]=b để đảm bảo sự ăn khớp

u
b
a
y
x
dịch
u
x
không chứa b

Dịch khi b không xuất hiện trong x

Trong hai cách dịch thuật toán sẽ chọn cách dịch có lợi nhất.

Trong cài đặt ta dùng mảng bmGs để lưu cách dịch 1, mảng bmBc để lưu phép dịch thứ 2(ký tự không khớp). Việc tính toán mảng bmBc thực sự

không có gì nhiều để bàn. Nhưng việc tính trước mảng bmGs khá phức tạp, ta không tính trực tiếp mảng này mà tính gián tiếp thông qua mảng suff. Có suff[i]=max{k | x[i-k+1...i]=x[m-k+1...m]}

Các mảng bmGs và bmBc có thể được tính toán trước trong thời gian tỉ lệ với $O(m+\delta)$. Thời gian tìm kiếm (độ phức tạp tính toán) của thuật toán Boyer-Moore là O(m*n). Tuy nhiên với những bản chữ cái lớn thuật toán thực hiện rất nhanh. Trong trường hợp tốt chi phí thuật toán có thể xuống đến O(n/m) là chi phí thấp nhất của các thuật toán tìm kiếm hiện đại có thể đạt được.

Thủ tục cài đặt:

```
procedure preBmBc(const X: string; m: integer;
                        var bmBc: array of integer);
     var
       i: integer;
     begin
       for i := 0 to maxd - 1 do bmBc[i] := m;
       for i := 1 to m - 1 do bmBc[Ord(X[i])] := m - i;
     procedure suffixes(const X: string; m: integer;
                         var suff: array of integer);
       right, left, i: integer;
     begin
       suff[m] := m;
       left := m;
       for i := m - 1 downto 1 do
         if (i > left)and(suff[i + m - right] < i -</pre>
left) then
           suff[i] := suff[i + m - right]
         else
         begin
           if (i < left) then left := i;</pre>
           right := i;
           while (left >= 1)and(X[left] = X[left + m -
right]) do
             Dec(left);
```

```
suff[i] := right - left; {X[left...right] = X[m+left-
           right...m]}
          end;
     end;
     procedure preBmGs(const X: string; m: integer;
                         var bmGs: array of integer);
     var
       i, j: integer;
       suff: ^TIntArr;
     begin
       GetMem(suff, (m + 1) *SizeOf(Integer));
       suffixes (X, m, suff<sup>^</sup>); {Tinh mang suff}
       for i := 1 to m do bmGs[i] := m;
       \dot{} := 0;
       for i := m downto 0 do
          if (i = 0) or (suff^{[i]} = i) then
            while (j < m - i) do
            begin
              {Nêu bmGs[j] chưa có giá trị thì điển vào}
              if bmGs[j] = m then bmGs[j] := m - i;
              Inc(j);
            end;
       for i := 1 to m - 1 do bmGs[m - suff^[i]] := m -
i; {đảo lai}
       FreeMem(suff, (m + 1) *SizeOf(Integer));
     end;
     procedure BM(const X: string; m: integer;
                    const Y: string; n: integer);
     var
       i, j: integer;
       bmBc, bmGs: ^TIntArr;
     begin
       GetMem(bmBc, (m + 1) *SizeOf(Integer));
       GetMem(bmGs, (m + 1) *SizeOf(Integer));
       preBmBc(X, m, bmBc^);
       preBmGs(X, m, bmGs^);
       j := 1;
       while (j \le n - m + 1) do
       begin
          i := m;
          while (i \ge 1) and (X[i] = Y[i + j - 1]) do
Dec(i);
          if (i < 1) then
          begin
```

```
Output(j);
    j := j + bmGs^[1];
end
else {chọn cách dịch được lợi nhất}
    j := j + Max(bmGs^[i], bmBc^[Ord(Y[i + j -
1])] - m + i);
end;
FreeMem(bmBc, (m + 1)*SizeOf(Integer));
FreeMem(bmGs, (m + 1)*SizeOf(Integer));
end:
```

Thuật toán Boyer-Moore có thể đạt tới chi phí O(n/m) là nhờ có cách dịch thứ 2 "ký tự không khớp". Cách chuyển cửa sổ khi gặp "ký tự không khớp" cài đặt vừa đơn giản lại rất hiệu quả trong các bảng chữ cái lớn nên có nhiều thuật toán khác cũng đã lợi dụng các quét mẫu từ phải sang trái để sử dụng cách dịch này.

Tuy nhiên chi phí thuật toán của Boyer-Moore là O(m*n) vì cách dịch thứ nhất của thuật toán này không phân tích triệt để các thông tin của những lần thử trước, những đoạn đã so sánh rồi vẫn có thể bị so sánh lại. Có một vài thuật toán đã cải tiến cách dịch này để đưa đến chi phí tính toán của thuật toán Boyer-Moore là tuyến tính.

1.2.5. Thuật toán Karp-Rabin

Karp-Rabin bài toán tìm kiếm chuỗi không khác nhiều so với bài toán tìm kiếm chuẩn. Tại đây một hàm băm được dùng để tránh đi sự so sánh không cần thiết. Thay vì phải so sánh tất các vị trí của văn bản, ta chỉ cần so sánh những cửa sổ bao gồm những ký tự "có vẻ giống" mẫu.

Trong thuật toán này hàm băm phải thỏa mãn một số tính chất như phải dễ dàng tính được trên chuỗi, và đặc biệt công việc tính lại phải đơn giản để ít ảnh hưởng đến thời gian thực hiện của thuật toán. Và hàm băm được chọn ở đây là:

```
\label{eq:hash} \begin{split} & hash(w[i\dots i+m-1]) = h = (w[i]*dm-1 + w[i+1]*dm-2 + \dots \ w[i+m-1]*d0) \ mod \ q \end{split}
```

Việc tính lại hàm băm sau khi dịch cửa số đi một ký tự chỉ đơn gian như sau:

```
h = ((h - w[i]*dm-1)*d + w[i+m]
```

Trong bài toán này ta có thể chọn d = 2 để tiện cho việc tính toán a*2 tương đương a shl 1. Và không chỉ thế ta chọn q = MaxLongint khi đó phép mod q không cần thiết phải thực hiện vì sự tràn số trong tính toán chính là một phép mod có tốc độ rất nhanh.

Việc chuẩn bị trong thuật toán Karp-Rabin có độ phức tạp O(m). Tuy vậy thời gian tìm kiếm lại tỉ lệ với O(m*n) vì có thể có nhiều trường hợp hàm băm của chúng ta bị lừa và không phát huy tác dụng. Nhưng đó chỉ là những trường hợp đặc biệt, thời gian tính toán của thuật toán KR trong thực tế thường tỉ lệ với O(n+m). Hơn nữa thuật toán KR có thể dễ dàng mở rộng cho các mẫu, văn bản dạng 2 chiều, do đó khiến cho nó trở nên hữu ích hơn so với các thuật toán còn lại trong việc xử lý ảnh.

```
procedure KR(const X: string; m: integer;
             const Y: string; n: integer);
var
  dM, hx, hy: longint;
  i, j: integer;
begin
  {$0-}
        { Disable arithmetic overflow checking }
  dM := 1;
  for i := 1 to m - 1 do dM := dM shl 1;
  hx := 0;
  hy := 0;
  for i := 1 to m do
  begin
    hx := (hx shl 1) + Ord(X[i]);
    hy := (hy shl 1) + Ord(Y[i]);
  end;
```

```
j := 1;
while j <= n - m do
begin
    if hx = hy then
        if IsMatch(X, m, Y, j) then Output(j);
        {hàm IsMatch trong phần BruteForce}
        hy := ((hy - Ord(Y[j])*dM) shl 1) + Ord(Y[j + m]); {Rehash}
        Inc(j);
end;
if hx = hy then
    if IsMatch(X, m, Y, j) then Output(j);
end;</pre>
```

1.2.6. Các thuật toán khác

Một số thuật toán nêu trên chưa phải là tất cả các thuật toán tìm kiếm chuỗi hiện có. Nhưng chúng đã đại diện cho đa số các tư tưởng dùng để giải bài toán tìm kiếm chuỗi.

Các thuật toán so sánh mẫu lần lượt từ trái sang phải thường là các dạng cải tiến (và cải lùi) của thuật toán Knuth-Morris-Pratt và thuật toán sử dụng Automat như: Forward Dawg Matching, Apostolico-Crochemore, Not So Naive, ...

Các thuật toán so sánh mẫu từ phải sang trái đều là các dạng của thuật toán Boyer-Moore. Phải nói lại rằng thuật toán BM là thuật toán tìm kiếm rất hiệu quả trên thực tế nhưng độ phức tạp tính toán lý thuyết lại là O(m*n). Chính vì vậy những cải tiến của thuật toán này cho độ phức tạp tính toán lý thuyết tốt như: thuật toán Apostolico-Giancarlo đánh dấu lại những ký tự đã so sánh rồi để khỏi bị so sánh lặp lại, thuật toán Turbo-BM đánh giá chặt chẽ hơn các thông tin trước để có thể dịch được xa hơn và ít bị lặp, ... Còn có một số cải tiến khác của thuật toán BM không làm giảm độ phức tạp lý thuyết mà dựa trên kinh nghiệm để có tốc độ tìm kiếm nhanh hơn trong thực tế. Ngoài

ra, một số thuật toán kết hợp quá trình tìm kiếm của BM vào hệ thống Automat mong đạt kết quả tốt hơn.

Các thuật toán so sánh mẫu theo thứ tự đặc biệt

- Thuật toán Galil-Seiferas và Crochemore-Perrin chúng chia mẫu thành hai đoạn, đầu tiên kiểm tra đoạn ở bên phải rồi mới kiểm tra đoạn bên trái với chiều từ trái sang phải.
- Thuật toán Colussi và Galil-Giancarlo lại chia mẫu thành hai tập và tiến hành tìm kiếm trên mỗi tập với một chiều khác nhau.
- Thuật toán Optimal Mismatch và Maximal Shift sắp xếp thứ tự mẫu dựa vào mật độ của ký tự và khoảng dịch được.
- Thuật toán Skip Search, KMP Skip Search và Alpha Skip Search dựa sự phân bố các ký tự để quyết đinh vị trí bắt đầu của mẫu trên văn bản.

Các thuật toán so sánh mẫu theo thứ tự bất kỳ

Đó là các thuật toán có thể tiến hành so sánh mẫu với cửa sổ theo một thứ tự ngẫu nhiên. Những thuật toán này đều có cài đặt rất đơn giản và thường sử dụng chiêu ký tự không khớp của thuật toán Boyer-Moore. Có lẽ loại thuật toán này dựa trên ý tưởng càng so sánh loạn càng khó kiếm test chết. Vì dựa hoàn toàn trên vị trí được lấy ngẫu nhiên nên kết quả chỉ là mong đợi ngẫu nhiên chứ không có một cơ sở toán học nào để lấy vị trí ngẫu nhiên sao cho khả năng xuất hiện mẫu cần tìm là lớn.

Hướng nghiên cứu của luận văn là tiếp cận giải thuật di truyền để giải bài toán tìm kiếm văn bản được đề cập ở chương 3 cũng là phương pháp so sánh mẫu với cửa sổ theo một thứ tự ngẫu nhiên, nhưng vị trí ngẫu nhiên đó sẽ được hội tụ dần về vị trí xuất hiện của mẫu sau mỗi lần thực hiện, đó là

nguyên lý của giải thuật di truyền và cũng là cơ sở toán học cho vấn đề nghiên cứu.

CHƯƠNG 2 GIỚI THIỆU VỀ GIẢI THUẬT DI TRUYỀN

Phần này sẽ tìm hiểu cơ bản về giải thuật di truyền, trong đó chú trọng đến các kỹ thuật có liên quan đến bài toán tìm kiếm.

2.1. Tổng quan về giải thuật di truyền

2.1.1 Giới thiệu

Thuật giải di truyền, cũng như các thuật toán tiến hoá nói chung, hình thành dựa trên quan niệm cho rằng, quá trình tiến hoá tự nhiên là hoàn hảo nhất, hợp lý nhất, và tự nó đã mang tính tối ưu. Quan niệm này có thể được xem như là một tiên đề đúng, không chứng minh được, nhưng phù hợp với thực tế khách quan. Quá trình tiến hoá thể hiện tính tối ưu ở chỗ, thế hệ sau bao giờ cũng tốt hơn, phát triển hơn, hoàn thiện hơn thế hệ trước. Tiến hoá tự nhiên được duy trì nhờ hai quá trình cơ bản: sinh sản và chọn lọc tự nhiên. Xuyên suốt quá trình tiến hoá tự nhiên, các thế hệ mới luôn được sinh ra để bổ xung thay thế thế hệ cũ. Cá thể nào phát triển hơn, thích ứng hơn với môi trường sẽ tồn tại, cá thể nào không thích ứng với môi trường sẽ bị đào thải. Sự thay đổi môi trường là động lực thúc đẩy quá trình tiến hoá. Ngược lại, tiến hoá cũng tác động trở lại góp phần làm thay đổi môi trường.

Mục tiêu nghiên cứu của giải thuật di truyền (GA) là:

- Trừu tượng hóa và diễn đạt chính xác về các quá trình thích nghi trong hệ thống tự nhiên.
- Thiết kế những phần mềm về hệ thống nhân tạo nhằm duy trì các cơ chế quan trọng của hệ thống tự nhiên.

Những mục tiêu này đã dẫn đến những khám phá quan trọng trong hệ thống khoa học tự nhiên lẫn nhân tạo.

GA ra đời và phát triển dựa trên quá trình tiến hóa trong tự nhiên và đã được ứng dụng thành công trong nhiều lĩnh vực nhất là tối ưu hóa và máy học.

2.1.2 Sự khác biệt của giải thuật di truyền so với các giải thuật khác

GA khác với những sự tối ưu hóa thông thường và những giải thuật tìm kiếm khác bởi 4 điểm sau:

- GA làm việc với sự mã hóa một bộ các thông số, chứ không phải bản thân các thông số.
- GA tìm kiếm từ một số điểm quần thể, chứ không phải từ một điểm.
- GA sử dụng các thông tin về hàm mục tiêu chứ không phải đạo hàm (derivatives) hay những tri thức phụ khác.
- GA sử dụng các luật chuyển đổi theo xác suất, chứ không phải các luật chuyển đổi tiền định.

GA đòi hỏi một tập hợp các thông số tự nhiên của bài toán tối ưu để mã hóa thành các chuỗi có chiều dài hữu hạn, dựa trên một số hữu hạn các ký tự.

2.1.3 Tính chất quan trong của giải thuật di truyền

- 1. GA lập luận có tính chất ngẫu nhiên để tìm giải pháp tối ưu cho những vấn đề phức tạp. Tuy nhiên đây là hình thức ngẫu nhiên có hướng dẫn bởi giá trị hàm thích nghi. Chính hàm thích nghi là vật chỉ đường cho GA tìm ra lời giải tối ưu trong muôn ngàn lời giải có thể.
- 2. Vấn đề thích hợp nhất cho GA là tìm điều kiện tối ưu. Tối ưu đây không nhất thiết phải là tuyệt đối, mà có thể chỉ là tương đối trong hoàn cảnh và thời gian cho phép.
- 3. Một trong những bước quan trọng và khó khăn nhất là tìm hàm số thích nghi. Hàm số thích nghi phải có liên hệ trực tiếp đến vấn đề cần giải.
- 4. GA và mạng nơron nhân tạo đều thuộc vào nhóm khoa học trí tuệ nhân tạo, tuy nhiên GA lập luận dựa theo sự tiến hóa và xét vấn đề ở tầm mức

của gen và NST, khác với mạng noron nhân tạo dựa trên kinh nghiệm và cách giải quyết vấn đề mà bộ óc con người thường dùng.

2.2. Giải thuật di truyền cổ điển

2.2.1 Giới thiệu

Giải thuật di truyền cổ điển là các kỹ thuật tìm kiếm và tối ưu hóa các giải pháp cho vấn đề phỏng theo quá trình thích nghi tiến hóa của các quần thể sinh học dựa trên học thuyết Darwin. GA là một giải thuật, mục tiêu không nhằm đưa ra lời giải chính xác tối ưu mà là đưa ra lời giải tương đối tối ưu.

* Cấu trúc của GA

Trong GA các cá thể (hay còn gọi là các NST) được mã hóa bởi các chuỗi nhị phân, mỗi vị trí trên chuỗi nhị phân chỉ nhận một trong hai giá trị "0" hoặc "1". Một NST trong GA có dạng như sau:

```
1 0 1 1 0 0 1 0 0 1  \text{GA cổ điển được J. H Holland [9] giới thiệu để giải bài toán tối ưu:} \\ \max \left\{f\left(x\right)/x\!\in\!A\right\},
```

Trong đó A là một miền trong không gian n-chiều, f(x) > 0 với mọi $x \in A$. Cấu trúc của GA cổ điển như sau:

```
Procedure GA
{
    t=0;
    Khởi tạo P (t);
    Đánh giá P (t);
    While (not (điều kiện dừng)) do
    {
        t=t+1;
        Chon P (t) từ P (t-1)
```

```
Thay đổi P (t)
Đánh giá P (t);
}
```

Quá trình tiến hóa được diễn ra trong vòng lặp while, tại thế hệ thứ t, giải thuật duy trì một tập lời giải $P(t) = \{x^t_1, ..., x^t_n\}$. Mỗi lời giải x^t_i được đánh giá "độ thích nghi". Một tập lời giải mới được xây dựng bằng cách "chọn lọc" các cá thể có độ thích nghi cao hơn, ta được một tập lời giải trung gian. Tiếp theo, một số cá thể trong tập lời giải này được biến đổi bằng phương pháp "lai ghép và "đột biến" để tạo thành các lời giải mới cho thế hệ t+1. Sơ đồ sau minh họa hoạt động của giải thuật di truyền.

Hình 2.1: Sơ đồ tổng quan của giải thuật di truyền

2.2.2 Các toán tử di truyền

Trong thuật giải di truyền, các cá thể mới liên tục được sinh ra trong quá trình tiến hoá nhờ sự lai ghép ở thế hệ cha-mẹ. Một cá thể mới có thể mang những tính trạng của cha-mẹ (di truyền), cũng có thể mang những tính trạng hoàn toàn mới (đột biến). Di truyền và đột biến là hai cơ chế có vai trò quan trọng như nhau trong tiến trình tiến hoá, dù rằng đột biến xảy ra với xác xuất nhỏ hơn rất nhiều so với hiện tượng di truyền. Các thuật toán tiến hoá, tuy có những điểm khác biệt, nhưng đều mô phỏng ba toán tử cơ bản: **Chọn lọc**, **lai ghép**, **đột biến**.

2.2.2.1 Toán tử chọn lọc

Toán tử chọn lọc là một quá trình loại bỏ các NST kém thích nghi trong quần thể. Có các toán tử chọn lọc sau:

* Toán tử chọn lọc tỷ lệ: Được sử dụng thường xuyên nhất trong GA. Xác suất lựa chọn của mỗi cá thể tỷ lệ thuận với giá trị độ thích hợp của nó, được tính theo công thức:

 $P_i = f\left(v_i\right)/F \quad (i = 1..pop\text{-size} - k\text{ích cỡ của quần thể}) \ gọi \ là \ xác \ suất chọn cho mỗi nhiễm sắc thể <math>v_i$.

Trong đó: f (v_i) là hàm thích nghi của mỗi cá thể v_i.

F là tổng của các giá trị thích nghi của quần thể.

Việc chọn lọc cá thể nào phụ thuộc vào vị trí xác suất q_i của mỗi nhiễm sắc thể v_i được tính như sau: $q_i = \sum_{j=1}^i p_j$.

Tiến trình chọn lọc được thực hiện bằng cách quay bánh xe ru lét popsize lần; mỗi lần chọn một nhiễm sắc thể từ quần thể hiện hành vào quần thể mới theo cách sau:

- Phát sinh ngẫu nhiên một số r trong khoảng [0..1]
- Nếu r < q_i thì chọn nhiễm sắc thể đầu tiên (v_1) ; ngược lại thì chọn nhiễm sắc thể thứ i, v_i $(2 \le i \le pop-size)$ sao cho $q_{i-1} < r \le q_i$.

25

Hiển nhiên, có thể sẽ có một số nhiễm sắc thể được chon nhiều lần. Điều

này phù hợp với lý thuyết sơ đồ (Nguyễn Đình Thúc, [3]): các nhiễm sắc thể

tốt nhất có nhiều bản sao hơn, các nhiễm sắc thể trung bình không thay đổi,

các nhiễm sắc thể kém nhất thì chết đi.

* Toán tử chọn lọc cạnh tranh: Mỗi lần chọn lọc ta tiến hành chọn

ngẫu nhiên t cá thể từ quần thể hiện tại. Bản sao của cá thể tốt nhất trong t cá

thể kể trên được sao chép vào quần thể bố mẹ. Tiến hành N lần chọn như vậy

ta thu được quần thể bố mẹ. Giá trị t được gọi là kích cỡ cạnh tranh.

* Toán tử chọn lọc xếp hạng: Các cá thể của quần thể hiện tại được sắp

xếp theo thứ tự giảm dần của giá trị độ thích nghi. Cá thể tốt nhất được xếp

thứ nhất và cá thể tồi nhất xếp cuối cùng.

2.2.2.2 Toán tử lai ghép

Toán tử lai ghép là quá trình tạo NST mới trên cơ sở các NST cha- mẹ

bằng cách ghép một đoạn trên NST cha mẹ với nhau. Toán tử lai ghép được

gán với một xác suất p_c. Quá trình được mô tả như sau:

- Chọn ngẫu nhiên một cặp NST (để làm cha mẹ) trong quần thể. Giả sử,

NST cha mẹ có cùng độ dài m.

- Tạo một số ngẫu nhiên trong khoảng từ 1 đến m-1 (gọi là điểm lai

ghép). Điểm lai ghép chia NST cha me thành hai chuỗi con có đô dài m₁, m₂.

Ví du

Cha: 101101100

Me: 000011100

Thì việc trao đôi chéo các NST sau gen thứ 5 sẽ tạo ra hai con:

Con 1: **1011**11100

Con 2: 000001100

Có một số dạng toán tử lai ghép như:

* Lai ghép một điểm (One-point Crossover)

Lai ghép một điểm là loại lai ghép đơn giản nhất, được sử dụng cả trong GA mã hoá nhị phân lẫn GA mã hoá số thực. Với cặp cha mẹ X, Y là các vectơ m chiều như ký hiệu trên, toán tử lai ghép 1 điểm chọn ngẫu nhiên một vị trí k $(1 \le k \le m)$ rồi sinh ra 2 cá thể con theo công thức

$$X' = (x_1,..., x_k, y_{k+1},..., y_m)$$

$$Y' = (y_1,..., y_k, x_{k+1},..., x_m)$$

* Lai ghép đa điểm (Multi-point Crossover)

Toán tử lai ghép đa điểm được mô tả như sau:

Chọn ngẫu nhiên k điểm $j_1,...,j_k$ ($1 <= j_1 < j_2 < ... < j_k < m$), lai ghép đa điểm tạo ra cặp con (X', Y') bằng cách đánh số các đoạn $[j_t,j_{t+1}]$ từ 0 trở đi, sau đó

- x'_i lấy bằng x_i tại những đoạn có số hiệu chẵn và bằng y_i tại những đoạn có số hiệu lẻ.
- y'_i lấy bằng x_i tại những đoạn có số hiệu lẻ và bằng y_i tại những đoạn có số hiệu chẵn.

* Lai ghép đều hay lai ghép mặt nạ (Uniform Crossover)

Trong lai ghép đều, ta chọn ngẫu nhiên k vị trí $1 < i_1 < i_2 < ... < i_k < m$. Các cá thể con X', Y' được lập như sau:

$$x'_{i} = \begin{cases} x_{i} & i \in \{i_{1}, ..., i_{k}\} \\ y_{i} & i \notin \{i_{1}, ..., i_{k}\} \end{cases} \qquad y'_{i} = \begin{cases} y_{i} & i \in \{i_{1}, ..., i_{k}\} \\ x_{i} & i \notin \{i_{1}, ..., i_{k}\} \end{cases}$$
(2.1)

2.2.2.3 Toán tử đột biến

Đột biến là hiện tượng NST con mang một số đặc tính không có trong mã di truyền của cha- mẹ. Toán tử đột biến được gán xác suất p_m (nhỏ hơn nhiều so với xuất suất lai ghép p_c). Điều này được suy diễn bởi trong tự nhiên, đột biến gen thường rất ít xảy ra. Phép đột biến được mô tả như sau:

- Chọn ngẫu nhiên một NST trong quần thể.
- Tạo một số ngẫu nhiên k trong khoảng từ 1 tới m, $1 \le k \le m$.

- Thay đổi bít thứ k. Đưa nhiễm sắc thể này vào quần thể để tham gia quá trình tiến hóa ở thế hệ tiếp theo.

Ví dụ

v₁: 1011**0**1010

v₂: 1011111010

NST V1 được chọn để đột biến tại vị trí gen thứ năm, gen này hiện tại là 0, sau khi đột biến sẽ trở thành 1. Khi đó NST v_1 trở thành v_2 .

2.2.3 Các bước quan trọng trong việc áp dụng giải thuật di truyền cổ điển

Để giải quyết vấn đề bài toán bằng giải thuật di truyền, chúng ta cần thực hiện 7 bước quan trọng sau:

- **Bước 1:** Chọn mô hình cho giải pháp của vấn đề, chọn một số đặc trưng cho toàn bộ các giải pháp (quần thể) có thể có cho vấn đề.
- **Bước 2:** Chỉ định cho mỗi giải pháp (cá thể) một ký hiệu. Ký hiệu có thể là một dãy các số 0, 1 thuộc hệ nhị phân, hay dãy các số thập phân, dãy các chữ hay hỗn hợp của số và chữ. Ký hiệu đơn giản nhất và thường dùng nhất là số nhị phân.
- **Bước 3:** Tìm hàm số thích nghi cho vấn đề và tính hệ số thích nghi cho từng giải pháp (lời giải).
- **Bước 4:** Dựa trên hệ số thích nghi của các giải pháp để thực hiện sự tạo sinh (reproduction) và biến hóa các giải pháp. Các phương thức biến hóa bao gồm: lai ghép (crossover), đột biến (mutation).
- **Bước 5:** Tính các hệ số thích nghi cho các giải pháp mới và loại bỏ những giải pháp kém nhất để chỉ còn giữ lại một số nhất định của giải pháp.
- **Bước 6:** Nếu chưa tìm được giải pháp tối ưu hay tương đối khá nhất hay chưa hết kỳ hạn ấn định, trở lại bước 4 để tìm giải pháp mới.
- **Bước 7:** Tìm được giải pháp tối ưu hoặc nếu thời gian cho phép đã chấm dứt thì kết thúc giải thuật và báo cáo kết quả tìm được.

2.2.4 Ví dụ

Xét bài toán tối ưu không ràng buộc sau:

Bài toán: Cho hàm f $(x_1, x_2) = 21.5 + x_1 \sin(4\pi x_1) + x_2 \sin(4\pi x_2)$ với $-3.0 \le x_1 \le 12.1$ và $4.1 \le x_2 \le 5.8$.

Ta cần cực đại hóa hàm $f(x_1, x_2)$

Hình 2.2: Đồ thị của hàm f

Ứng dụng giải thuật di truyền

Ta sẽ lần lượt trình bày về năm thành phần chính của giải thuật di truyền để giải bài toán này.

+Biểu diễn NST

Ta sử dụng một véc tơ nhị phân làm NST để biểu diễn các giá trị thực của biến x_1 , x_2 . Chiều dài của vectơ này phụ thuộc vào độ chính xác cần có, trong ví dụ này độ chính xác cần 4 số lẻ.

- Miền của x_1 có chiều dài 15.1; điều kiện chính xác đòi hỏi đoạn [-3.0, 12.1] cần được chia thành các khoảng có kích thước bằng nhau, ít nhất là 15.1 x 10000 = 151000 khoảng bằng nhau. Mỗi đoạn ta có thể nhận một lời giải thì số lời giải có thể là 150000. Khi đó để mô tả một lời giải ta cần có một vecto có 18 bit làm phần đầu tiên của NST. $V = (b_{17} \ b_{16....}b_0)$ vì

$$2^{17} \le 151000 \le 2^{18}$$

- Miền của biến x_2 có chiều dài 1.7; điều kiện chính xác đòi hỏi đoạn [4.1, 5.8] cần được chia thành các khoảng có kích thước bằng nhau, ít nhất 1.7 x 10000 = 17000 khoảng bằng nhau. Điều này có nghĩa là cần 15 bit làm phần đầu tiên của NST. $V = (b_{32} \ b_{31.....}b_{18})$

$$2^{14} \le 151000 \le 2^{15}$$

Chiều dài toàn bộ NST lúc này là m= 18+13=33 bit. 18 bít đầu tiên mã hóa x_1 và 15 bít còn lại mã hóa x_2 .

Để chuyển một giá trị từ vectơ nhị phân sang giá trị x_1 , x_2 ta cần thực hiện 2 bước sau:

- Đổi 18 bit đầu tiên $(b_{17} b_{16....} b_0)$ từ cơ số 2 sang cơ số 10

$$(b_{17} b_{16...b_0})_2 = \left(\sum_{i=0}^{17} b_i 2^i\right)_{10} = x_1'$$

- Tìm giá trị x₁ tương ứng

 $x = -3.0 + x_1' \cdot \frac{15.1}{2^{18} - 1}$, với -3. 0 là cận dưới và 15.1 là độ dài của miền giá

trį.

- Đổi 15 bit kế tiếp $(b_{32}\ b_{31....}b_{18})$ từ cơ số 2 sang cơ số 10

$$(b_{32} b_{31....}b_{18})_2 = \left(\sum_{i=18}^{32} b_i 2^i\right)_{10} = x_2'$$

- Tìm giá trị x_1 tương ứng

 $x = -4.1 + x_2' \cdot \frac{1.7}{2^{15} - 1}$, với -3. 0 là cận dưới và 15.1 là độ dài của miền giá

trį.

Ví du

NST (0100010010110100001111110010100010) tương ứng với

$$(x_1, x_2) = (1.052426, 5.755330)$$
 vì:

$$x_1' = (010001001011010000)_2 = 70352_{10}$$

và
$$x_1 = -3.0 + 70352*15.1/2262143 = 1.052426.$$

 $x_2' = (111110010100010)_2 = 31906_{10}$
và $x_1 = 4.1 + 31906*1.7/32767 = 5.755330.$

+ Khởi tạo quần thể ban đầu

Tiến trình khởi tạo quần thể rất đơn giản: ta tạo một quần thể các NST, trong đó mỗi NST là một vectơ nhị phân 33 bít. Tất cả 33 bít của mỗi NST đều được khởi tạo ngẫu nhiên.

+ Hàm lượng giá

Hàm lượng giá eval của các vectơ nhị phân v chính là hàm f: eval (v) = f(x)

Trong đó, NST v biểu diễn giá trị thực x như đã nói ở trên, hàm lượng giá đóng vai trò môi trường, đánh giá từng lời giải theo độ thích nghi của chúng.

Ví dụ. Với 3 NST

```
v_1 = (10011010000000111111110100110111111)

v_2 = (11100010010011011100101010100011010)

v_3 = (000010000011001000001010111011101)

Tương ứng với các giá trị của từng NST là:

NST thứ nhất: (x_1, x_2) = (6.084492, 5.652242);

NST thứ hai: (x_1, x_2) = (10.348434, 4.380264);

NST thứ ba: (x_1, x_2) = (-2.516603, 4.390381);

và có độ thích nghi lần lượt là:

eval (v_1) = f(6.084492, 5.652242) = 26.019600

eval (v_2) = f(10.348434, 4.380264) = 7.580015

eval (v_3) = f(-2.516603, 4.390381) = 19.626329
```

Rõ ràng, NST v_1 là tốt nhất trong 3 NST này, vì hàm lượng đánh giá nó trả về giá trị cao nhất.

+ Các toán tử di truyền

Trong giai đoạn tiến hóa quần thể, ta có thể dùng 3 toán tử di truyền cổ điển: chọn lọc, lai ghép, đột biến

Toán tử chọn lọc: Giải mà tập NST v_i và tính các giá trị x_i tương ứng với i= 1, 2...popsize)

Tính giá trị hàm thích nghi của mỗi cá thể v_i , tổng độ thích nghi. Tính xác suất chọn lọc cho mỗi NST v_i theo công thức: $p_i = \text{eval }(v_i)$ /F với (i= 1, 2...popsize). Thực hiện chọn ngẫu nhiên popsize lần bằng phương pháp bánh xe sổ xố dựa trên xác suất của mỗi NST.

- Toán tử đột biến: Làm thay đổi gen trên NST với xác suất bằng tốc độ đột biến. Giả sử gen thứ 6 trong NST v_3 được chọn để đột biến. Và đột biến chính là thay đổi giá trị gen này từ 0 thành 1 và ngược lại, thì sau đột biến NST v_3 ' = (000011000001100100000101111011101). NST này biểu diễn giá trị:
- **Toán tử lai ghép:** Ta sẽ minh họa toán tử lai ghép một điểm trên hai $NST\ v_2\ va\ v_3.$

Giả sử điểm lai ghép được chọn (ngẫu nhiên) tại vị trí thứ 15:

 $\mathbf{v}_2 = (\mathbf{111000100100110}11100101010100011010)$

 $v_3 = (000010000011001000001010111011101) \\$

Hai con của kết quả lai là:

 $\mathbf{v_2'} = (\boldsymbol{111000100100110}000001010111011101)$

 $v_3\textbf{'}=(000010000011001\mathbf{111001010100011010})$

Ở đây, ta thấy rằng con thứ hai thích nghi hơn cả cha lẫn mẹ của nó.

- **Các tham số:** Đối với bài toán này, ta sử dụng các tham số sau: kích thước quần thể popsize=5 xác suất lai ghép p_c =0.25 (nghĩa là cá thể v trong quần thể có 25% cơ hội được chọn để thực hiện lai ghép), xác suất đột biến p_m = 0.01 (nghĩa là 1% số bít bị đột biến).

- Các kết quả thử nghiệm: Bảng 1.2 sau đây trình bày kết quả hàm mục tiêu f sau 1000 thế hệ ta thu được quần thể sau : NST tốt nhất sau 1000 thế hệ là giá trị $x_{max}=31.933120$.

Cá	NST	Giá trị f	eval (x _i)	
thể	1131	\mathbf{x}_1	\mathbf{x}_2	evai (x _i)
\mathbf{v}_1	11101111011001101111001010101111011	11.120940	5.092514	30.298543
\mathbf{v}_2	1110011001100001000101010101111000	10.588756	4.667358	26.869724
\mathbf{v}_3	1110111101110110111001010101111011	11.124647	5.092514	30.316575
\mathbf{v}_4	1110011000100001100001010101111001	10.574125	4.242410	31.933120
V_5	1110111101110110111001010101111011	11.124627	5.092514	30.316575
Max				31.933120

Bảng 2.2: Kết quả của 1000 thế hệ

CHƯƠNG 3 SỬ DỤNG GIẢI THUẬT DI TRUYỀN ĐỂ TÌM KIẾM VĂN BẢN

Trong phần này sẽ trình bày các nội dung nghiên cứu chính của luận văn, từ yêu cầu đặt ra cho bài toán tìm kiếm văn bản ta đi xây dựng hàm mục tiêu tìm kiếm. Trên cơ sở đó phát biểu bài toán dưới dạng tối ưu hàm một biến và dùng phương pháp giải thuật di truyền để giải quyết bài toán.

3.1. Yêu cầu đặt ra cho bài toán tìm kiếm văn bản

Trong chương 1, chúng ta đã quan tâm đến các thuật toán tìm tất cả các vị trí xuất hiện của mẫu trên một văn bản, các thuật toán này đều dựa theo phương pháp tìm kiếm tuyến tính (tìm tuần tự từ đầu đến cuối văn bản). Theo tư tưởng đó sẽ tìm được chính xác tất cả các vị trí xuất hiện của mẫu trong văn bản. Trong thực tế đôi khi ta không cần quan tâm đến mẫu tìm kiếm có chính xác hay không mà ta chỉ quan tâm đến nội dung liên quan đến mẫu (hoặc có chứa một phần trong mẫu). Google – công ty phần mềm nổi tiếng dựa trên ý tưởng đó đã phát triển ứng dụng tìm kiếm trên Web rất hiệu quả. Vậy vấn đề đặt ra là tìm trong văn bản S vị trí xuất hiện đoạn văn bản gần giống với văn bản mẫu Sm nhất. Yêu cầu tìm kiếm ở đây không đòi hỏi vị trí xuất hiện chính xác của xâu mẫu mà là tìm vị trí xuất hiện gần đúng của xâu mẫu, tìm kiếm có thể đạt kết quả tốt nhất khi vi trí xuất hiện đó chính là mẫu cần tìm. Với mục tiêu này, các thuật toán giới thiệu ở trên đều có thể giải quyết được bằng cách: tại một vị trí i trong văn bản, thay vì việc đi so sánh đoạn văn bản M ký tự (từ vị trí i đến vị trí i+M) đang xét với mẫu thì ta đi tìm số ký tự trùng khớp (cả về giá trị và vị trí) lớn nhất giữa hai văn bản này. Hiển nhiên trong trường hợp xuất hiện mẫu thì số ký tư trung khớp lớn nhất sẽ

bằng M. Trên cơ sở đó ta hoàn toàn có thể đưa ra các vị trí gần đúng với mẫu nhất trong trường hợp không có đoạn văn bản mẫu trong văn bản tìm kiếm.

Tìm kiếm với yêu cầu như trên có thể đáp ứng được các nhu cầu của người sử dụng để tìm kiếm văn bản. Với các thuật toán tìm kiếm tuyến tính ta chỉ cần cải tiến một chút là cũng có thể tìm được đúng với yêu cầu đặt ra. Tuy nhiên với những văn bản có số ký tự rất lớn thì tìm kiếm tuyến tính như đã nói ở trên lại không hiệu quả về mặt thời gian (với độ phức tạp là O(MN)). Đã có một số giải pháp để giải quyết vấn đề này là các thuật toán so sánh mẫu theo thứ tự bất kỳ trong chương 1. Theo đó, người ta tiến hành so sánh mẫu với cửa sổ theo một thứ thự ngẫu nhiên, nhưng sẽ khó có thể biết trước được khả năng đưa ra lời giải vì ở đây chỉ là việc so sánh với các vị trí ngẫu nhiên mà không có cơ sở toán học rõ ràng để hướng đến một vị trí xuất hiện mẫu trong văn bản.

Cũng trên cơ sở so sánh ngẫu nhiên ta đi nghiên cứu một hướng tiếp cận giải quyết bài toán theo hướng khác với các thuật toán trên, đó là *hướng tiếp cận Giải thuật di truyền* để giải quyết các yêu cầu đặt ra với bài toán tìm kiếm văn bản.

3.2. Xây dựng hàm tìm kiếm

Để xác định tiêu chí tính toán cho bài toán tìm kiếm văn bản bằng giải thuật di truyền ta sẽ xây dựng hàm tìm kiếm như sau:

Hàm tìm kiếm có tiêu chí đánh giá bằng tổng của hai đại lượng: 1) độ dài của xâu con chung dài nhất giữa đoạn văn bản đó và mẫu (đều có độ dài M ký tự), 2) độ dài trùng khớp về giá trị và vị trí của đoạn văn bản đó với mẫu. Xâu con chung dài nhất ở đây là dãy ký tự dài nhất theo thứ tự giống nhau giữa hai xâu (không nhất thiết phải liền nhau), trường hợp tốt nhất xảy ra là xâu con chung dài nhất có độ dài M (dài bằng văn bản mẫu) - tức là hai xâu so sánh là giống nhau – đó chính là vị trí xuất hiện của cả mẫu. Để tìm

xâu con chung dài nhất thuật toán hiệu quả là dùng quy hoạch động có độ phức tạp $O(M^2)$ (mục 3.4). Trong thực tế khi tìm kiếm số M thường không lớn nên hoàn toàn chấp nhận được.

Hàm tìm kiếm được xây dựng là: $\mathbf{F}(\mathbf{x}) = \mathbf{a}^*\mathbf{G}(\mathbf{x}) + \mathbf{b}^*\mathbf{H}(\mathbf{x})$ (3.1.1) Trong đó:

x là vị trí trong văn bản ($x \in [1..N]$).

G(x) là tần suất xuất hiện Sm trong đoạn S[x..x+M] của S (kể từ vị trí x cho đến vị trí x+M trong văn bản S). G(x) được tính bằng hàm Quy hoạch động tìm độ dài xâu con chung lớn nhất. H(x) là độ đo thứ tự, phản ánh thứ tự xuất hiện các ký tự trong S[x..x+m] trùng với Sm. Ta có thể viết là G(Sx,Sm) thay cho G(x).

H(x) được tính bằng cách so khớp lần lượt từng ký tự, giá trị trả về chính là số ký tự trùng khớp (cả về giá trị và vị trí) của hai văn bản Sm và S[x..x+M]. Ta có thể viết là H(Sx, Sm) thay cho H(x).

a và b là các tham số đóng vai trò trọng số của G(x) và H(x), để thuận cho việc đánh giá hàm F ta có thể quy định ràng buộc cho a và b là: a = 1 - b.

Như vậy dễ thấy G(x) và H(x) có giá trị trong khoảng [0..M], và do đó hàm F cũng có miền giá trị trong khoảng [0, M], tức là $F_{max}(x)=M$. Tuỳ thuộc vào mục tiêu của bài toán và căn cứ vào giá trị của hàm tìm kiếm F, ta có thể giải quyết được mọi yêu cầu đặt ra cho bài toán tìm văn bản.

3.3. Phát biểu bài toán tìm kiếm văn bản theo hướng tiếp cận di truyền

Dựa vào hàm tìm kiếm (3.1.1) ta phát biểu bài toán tìm kiếm văn bản dưới dạng bài toán tối ưu hàm một biến như sau:

Xét bài toán:

"Cho trước một văn bản S có độ dài N và một văn bản mẫu Sm có độ dài M ($M \le N$). Tìm các giá trị của $x \in [1..N]$ sao cho $F(x) = a*G(x) + b*H(x) \ge k$ ".

Trong đó k là giá trị ngưỡng cho trước $(0 \le k \le F_{Max}(x))$, k đóng vai trò tham số xác định độ chính xác của hàm mục tiêu.

Bài toán đặt ra là tìm các giá trị x sao cho F(x) đạt giá lớn hơn hoặc bằng ngưỡng k. Nếu tìm được các giá trị x_{max} để $F(x_{max}) = M$ thì x_{max} chính là vị trí xuất hiện chuỗi Sm cần tìm trong văn bản S. Trường hợp bài toán chỉ cho kết quả tương đối tốt thì x là các vị trí mà trong đoạn [x, x+M] có xuất hiện một phần trong xâu mẫu (gần giống với sâu mẫu). Trong trường hợp này ta có giữ lại kết quả hay không phụ thuộc vào ngưỡng k.

Để đạt được mục tiêu tìm kiếm ta đưa ra một ngưỡng tìm kiếm k và xem xét bài toán tìm đoạn văn bản trong S gần đúng với mẫu Sm, hoặc có độ dài đoạn trùng khớp lớn hơn một ngưỡng k cho trước. Thực chất trong trường hợp tìm giá trị Max thì chỉ cần hàm G(x) hoặc H(x) là đã đủ để đánh giá hàm F(x) nhận cực đại. Nhưng khi đi tìm giá trị hàm F đạt một ngưỡng k cho trước, nếu đoạn mẫu văn bản là ngắn thì việc dùng hàm H(x) lại ít có ý nghĩa, trường hợp đoạn mẫu văn bản dài thì H(x) lại đóng vai trò quan trọng vì lẽ nếu chỉ căn cứ vào G(x) để đánh giá thì giả sử trong S có đoạn văn bản M ký tự mà một nửa số ký tự đầu tiên xuất hiện trong một nửa sau của chuỗi S thì sự giống nhau là không đáng kể so với tại vị trí mà hai nửa đầu của đoạn văn bản trong S và đoạn văn bản mẫu trùng khớp với nhau.

Ví dụ: Cho xâu mẫu Sm = 'enables you to quickly search files for text' (44 ký tư)

Giả sử tại vị trí x trong văn bản S có đoạn văn bản 44 ký tự tính từ vị trí x là Sx = 'search anything from a single file to an ent' (vị trí x là ký tự s đầu tiên trong chuỗi). Khi đó giá trị hàm quy hoạch động G(Sx, Sm) = 20 lớn hơn nhiều so với sự xuất hiện trùng khớp mà ta có thể quan sát thấy (chỉ có từ search là xuất hiện tốt nhất so với mục tiêu tìm kiếm). Khi đó hàm H(Sx, Sm) sẽ khống chế vị trí trùng khớp giữa hai chuỗi, sự kết hợp của H(x) và G(x) khi

đó hàm F(x) sẽ cho ta kết quả sát với mục tiêu tìm kiếm. Tuỳ thuộc vào độ mẫu tìm kiếm mà ta có thể điều chỉnh tham số a và b sao cho kết quả tìm kiếm là tốt nhất. Ta nên để hệ số a lớn hơn b, tức là ưu tiên dùng hàm quy hoạch động để đánh giá giá trị hàm F. Lý do vì trong trường hợp mẫu Sm không lớn thì hiển nhiên theo định nghĩa hàm quy hoạch động thì G(x) đã xác định luôn cả khả năng trùng khớp của 2 đoạn văn bản, độ lớn trùng khớp này tỷ lệ thuận với hàm quy hoạch động (độ dài xâu con chung càng lớn thí xác suất các ký tự trùng khớp càng nhiều). Trường hợp tìm Max thì nên để a = 1 và b = 0 vì như đã nói ở trên, lúc này hàm G(x) có giá trị bằng M thì đương nhiên các ký tự sẽ trùng khớp cả về giá trị và vị trí, ta sẽ không phải mất thời gian để tính toán hàm H(x).

Bài toán tìm kiếm văn bản phát biểu ở trên rất phù hợp với phương pháp giải quyết bằng giải thuật di truyền vì đây là bài toán tối ưu hàm một biến và hàm mục tiêu là hàm F. Ta sẽ sử dụng ưu thế của giải thuật di truyền để giải bài toán này, chi tiết trong phần 3.5.

Phương pháp tiếp cận di truyền có thể không tìm được hết tất cả các vị trí xuất hiện mẫu trong văn bản, nhưng nó sẽ rất hữu hiệu trong việc giải quyết bài toán tìm kiếm với yêu cầu đặt ra là có xuất hiện (chính xác) hay không hoặc tìm xuất hiện gần đúng nhất. Đặc biệt khi ta phải tìm trong toàn ổ đĩa máy tính các file văn bản có chứa một nội dung nào đó, thì mục tiêu trở thành tìm thấy file có chứa nội dung gần giống với văn bản đó. Khi đó ta chỉ cần sự xuất hiện gần đúng nhất của nội dung tìm kiếm trong file và đưa ra vị trí xuất hiện đó (chứ không nhất thiết phải đưa ra tất cả các vị trí xuất hiện trong file).

3.4. Tìm độ dài xâu con chung lớn nhất bằng quy hoạch động

- Định nghĩa xâu con: Xâu s1 được gọi là con của xâu s2 nếu mọi s1[i] thuộc s1 đều xuất hiện trong s2 theo thứ tự.
- Bài toán tìm độ dài xâu con chung lớn nhất: Cho 2 xâu X,Y. Hãy tìm xâu con của X và của Y có độ dài lớn nhất.

* Công thức QHĐ:

Gọi L(i,j) là độ dài xâu con chung dài nhất của xâu X(i) gồm i kí tự phần đầu của X(X(i) = X[1..i]) và xâu Y(j) gồm j kí tự phần đầu của Y(Y(j) = Y[1..i]).

Ta có công thức quy hoạch động như sau:

$$\begin{split} &L(0,j){=}L(i,0){=}0.\\ &L(i,j)=L(i-1,j-1){+}1 \text{ n\'eu } X[i]=Y[j].\\ &L(i,j)=\max(L(i-1,j),\,L(i,j-1)) \text{ n\'eu } X[i]\neq Y[j]. \end{split}$$

* Cài đặt:

Bảng phương án là một mảng 2 chiều L[0..m, 0..n] để lưu các giá trị của hàm QHĐ L(i,j). Đoạn chương trình cài đặt công thức QHĐ trên như sau:

```
for i:=0 to m do L[i,0]:=0;

for j:=0 to n do L[0,j]:=0;

for i:=1 to m do

for j:=1 to n do

if X[i]=Y[j] then L[i,j]:=L[i - 1,j - 1]+1

else L[i,j]:=max(L[i - 1,j],L[i,j - 1]]);
```

Như vậy chi phí không gian của bài toán là O(n²), chi phí thời gian là O(n²). Có một phương pháp cài đặt tốt hơn, chỉ với chi phí không gian O(n) dựa trên nhận xét sau: để tính ô L[i,j] của bảng phương án, ta chỉ cần 3 ô L[i - 1,j-1],L[i-1,j] và L[i,j-1]. Tức là để tính dòng L[i] thì chỉ cần dòng L[i -1]. Do đó ta chỉ cần 2 mảng 1 chiều để lưu dòng vừa tính (P) và dòng

đang tính (L) mà thôi. Cách cài đặt mới như sau:

```
for j:=0 to n do P[j]:=0;
for i:=1 to m do
  begin
      L[0] := 0;
      for j:=1 to n do
        if X[i]=Y[j] then L[j]:=P[j - 1]+1
        else L[i,j]:=max(P[j], L[j -1]);
      P := L;
end;
```

Kết quả trả về độ dài xâu con chung dài nhất là P[n].

Cần lưu ý rằng với bài toán tìm kiếm văn bản là ta đi tìm xâu con chung dài nhất của hai chuỗi văn bản có cùng độ dài M (cùng độ dài với chuỗi văn bản mẫu). Khi đó nếu xâu con dài nhất có độ dài bằng M có nghĩa là hai xâu giống nhau. Độ dài của xâu con chung càng tịnh tiến đến M có nghĩa là hai xâu so sánh càng giống nhau. Trên cơ sở đó ta có thể đưa ra một vị trí xuất hiện đoạn văn bản gần giống với văn bản mẫu theo yêu cầu đặt ra cho bài toán tìm kiếm văn bản ở trên.

3.5. Áp dụng giải thuật di truyền

Với bài toán tìm kiếm văn bản được phát biểu trong mục 3.3 là:

Tìm
$$x \in [1, n] | F(x) = a*G(x) + b*H(x) \ge k;$$

Có nghĩa là tìm x trong khoảng [1, n] để hàm F(x) đạt giá trị vượt ngưỡng k cho trước, x là các giá trị nguyên tương ứng với các vị trí trong văn bản tìm kiếm có độ dài n ký tự. Hai tham số a và b là các tham số xác định độ ưu tiên đánh giá theo G(x) và H(x), giả sử ta để a + b = 1.

Hàm F có thể đạt giá trị vượt ngưỡng k tại nhiều vị trí, giá trị lớn nhất của hàm F là M. Để thuận lợi cho việc đánh giá ta định lại giá trị F := F/M. Khi đó hàm F sẽ đạt giá trị lớn nhất = 1 và F có miền giá trị $\in [0, 1]$.

Dùng giải thuật di truyền giải bài toán trên ta có hàm F là hàm mục tiêu (hàm lượng giá), x chính là các nhiễm sắc thể; các thành phần chính của giải thuật như sau:

3.5.1. Biểu diễn nhiễm sắc thể

Ta sử dụng một vectơ nhị phân v làm nhiễm sắc thể để biểu diễn các giá trị nguyên của biến x. Chiều dài của vectơ chính là số bít trong dãy bít nhị phân biểu diễn được số nguyên lớn nhất trong miền giá trị của x, tức là chiều dài vectơ nhị phân $l = log_2 n$. Như vậy vectơ nhị phân có chiều dài l sẽ biểu diễn được số nguyên bằng là 2^l . Ví dụ văn bản có chiều dài tối đa (số ký tự) là n = 4000 thì cần có 12 bit cho véc tơ nhị phân (nhiễm sắc thể):

$$2048 = 2^{11} < 4000 \le 2^{12} = 4096$$

Ánh xạ biến chuỗi nhị phân $(b_{12}b_{11}...b_0)$ thành số nguyên x trong khoảng [1..4000] được thực hiện như sau:

$$(b_{12} b_{11...b_0})_2 = \left(\sum_{i=0}^{11} b_i 2^i\right)_{10} = x$$

Ví dụ, nhiễm sắc thể $v_1 = (110001100010)$ biểu diễn số 3170 và cũng là vị trí ký tự thứ x = 3170 trong văn bản. Nhiễm sắc thể $v_2 = (000000001100)$ biểu diễn **tại** $\mathbf{x} = \mathbf{12}$.

3.5.2. Khởi tạo quần thể

Khởi tạo quần thể đơn giản như sau: Ta tạo một quần thể các nhiễm sắc thể, trong đó mỗi nhiễm sắc thể là một vectơ nhị phân 12 bit, tất cả 12 bit của mỗi nhiễm sắc thể đều được khởi tạo ngẫu nhiên.

3.5.3. Hàm mục tiêu

Hàm mục tiêu *eval* của các vectơ nhị phân v chính là hàm F:

$$eval(v) = F(x)$$

trong đó, nhiễm sắc thể v biểu diễn giá trị nguyên x như đã nói ở trên, hàm mục tiêu đóng vai trò môi trường, đánh giá từng lời giải theo độ thích nghi của chúng. F(x) được đánh giá qua hai hàm G(x) và H(x) đã trình bày trong mục 3.2 và 3.3. Ví dụ, 5 nhiễm sắc thể:

$$v_I = 110100101011'$$

$$v_2 = \text{`011110010011'}$$

$$v_3 = \text{`}011000000011\text{'}$$

$$v_4 = 111100101111$$

$$v_5 = \text{`}0000001111111'$$

tương ứng với các giá trị $x_1 = 3371$, $x_2 = 1939$, $x_3 = 1539$, $x_4 = 3887$, $x_5 = 3371$. Và có độ thích nghi tương ứng:

$$eval(v_1) = F(x_1) = 0.1364$$

$$eval(v_2) = F(x_2) = 0.0909$$

$$eval(v_3) = F(x_3) = 0.4091$$

$$eval(v_4) = F(x_4) = 0.1364$$

$$eval(v_5) = F(x_5) = 0.0909$$

Dễ thấy, nhiễm sắc thể v_3 là tốt nhất trong 5 nhiễm sắc thể này, vì hàm mục tiêu của nó trả về giá trị cao nhất.

3.5.4. Các toán tử di truyền

Trong nghiên cứu này ta sử dụng 3 phép toán di truyền cơ bản là chọn lọc, đột biến và lai; cụ thể:

- * **Toán tử chọn lọc:** Sử dụng toán tử *chọn lọc tỷ lệ*, ta thực hiện tiến trình chọn lọc bằng cách quay bánh xe ru lét pop-size lần; mỗi lần chọn một nhiễm sắc thể từ quần thể hiện hành vào quần thể mới như đã trình bày ở mục 2.2.2.1.
- * Toán tử lai ghép: Sử dụng toán tử lai ghép một điểm (One-point Crossover),

Với cặp cha mẹ X, Y là các vectơ m chiều như ký hiệu trên, toán tử lai ghép 1 điểm chọn ngẫu nhiên một vị trí k $(1 \le k \le m)$ rồi sinh ra 2 cá thể con theo công thức

$$X' = (x_1,..., x_k, y_{k+1},..., y_m)$$

 $Y' = (y_1,..., y_k, x_{k+1},..., x_m)$

Nếu cá thể con X' thích nghi tốt hơn cá thể cha mẹ X thì ta thay thế cá thể mẹ X bởi cá thể con X', tương tự Y' cũng được thay thế Y nếu Y' thích nghi tốt hơn.

- * Toán tử đột biến: Sử dụng toán tử đột biến như sau:
- Chọn ngẫu nhiên một NST trong quần thể.
- Tạo một số ngẫu nhiên k trong khoảng từ 1 tới m, $1 \le k \le m$.
- Thay đổi bít thứ k. Nếu nhiễm sắc thể này không xấu hơn nhiễm sắc thể ban đầu thì đưa nhiễm sắc thể này vào quần thể để tham gia quá trình tiến hóa ở thế hệ tiếp theo.

3.5.5. Các tham số

Đối với bài toán này, ta sử dụng các tham số sau đây: kích thước quần thể pop-size = 20, xác suất lai tạo $p_c = 0.25$, xác suất đột biến $p_m = 0.01$ (nhỏ hơn nhiều so với xác suất lai). Xác suất lai $p_c = 0.25$ nghĩa là cá thể v trong quần thể có 25% cơ hội được chọn để thực hiện phép lai; còn xác suất đột biến $p_m = 0.01$ lại là 1% 1 bít bất kỳ của 1 cá thể bất kỳ trong quần thể bị đột biến.

3.5.6. Chi phí thời gian

Thời gian tính toán (độ phức tạp) của thuật giải di truyền tìm kiếm văn bản trình bày ở trên là $O(i*Size*Sobit*M^2)$. Trong đó i là số thế hệ tiến hoá, độ lớn của i tuỳ thuộc vào từng bài toán cụ thể, thường là i có thể lớn đến hàng nghìn; Size là kích thước quần thể - số cá thể trong quần thể (thông thường chỉ đến vài chục cá thể); M là chiều dài văn bản mẫu, M^2 là thời gian thực hiện hàm quy hoạch động; Sobit là chiều dài nhiễm sắc thể (số bit của véc tơ lời giải) được tính bằng $\log_2 N$ (N là độ dài văn bản), con số này cũng chỉ lên đến vài chục bit. Sobit và Size thường rất nhỏ (coi như hằng số), do đó độ phức tạp của thuật giải chỉ là $O(i*M^2)$ cho một lần tìm kiếm, chỉ tương đương hoặc nhỏ hơn độ phức tạp O(N*M) của các thuật toán tìm kiếm tuyến tính trên các văn bản dài - số N là rất lớn. Trong nghiên cứu này ta dùng giải thuật di truyền để giải bài toán tìm kiếm văn bản sẽ đáp ứng được tốt yêu cầu về thời gian.

CHƯƠNG 4 KẾT QUẢ THỬ NGHIỆM VÀ PHÁT TRIỀN PHẦN MỀM ỨNG DỤNG

4.1. Các kết quả thử nghiệm

Các kết quả thử nghiệm thu được từ lập trình cài đặt trên pascal với file văn bản để tìm kiếm '*Readme.txt*' có chiểu dài hơn 4000 ký tự (khoảng 2^{12}), văn bản mẫu là "text search". Kết quả thu được đối với từng nội dung nghiên cứu như sau:

4.1.1. Kết quả thử nghiệm tìm kiếm tuyến tính

Dưới đây là kết quả thử nghiệm phương pháp tìm kiếm tuyến tính: phương pháp so khớp chuỗi (theo thuật toán Brute Force) và phương pháp dùng hàm quy hoạch động (thử nghiệm trên hàm ta nghiên cứu sử dụng cho giải thuật di truyền). Cài đặt thử nghiệm cho hai phương pháp tìm kiếm tuyến tính này là tìm kiếm chính xác (ngưỡng = 1), kết quả:

4.1.1.1. Tìm kiếm tuyến tính bằng so khớp chuỗi

Bảng 4.1: Kết quả thử nghiệm tìm kiếm tuyến tính bằng so khớp chuỗi.

Kết quả trên đã được kiểm nghiệm lại trong file văn bản tìm kiếm, 6 vị trí xuất hiện trong bảng 4.1 chính là tất cả các vị trí xuất hiện của mẫu 'text search' trong file 'Readme.txt'.

4.1.1.2. Tìm kiếm tuyến tính sử hàm dụng quy hoạch động

KET QUA TKTT SD QUY HOACH DONG:
----FILE TIM KIEM: c:\tp7\bin\caidat\readme.txt
CHUOI VAN BAN TIM KIEM:
\$text search\$
SO KY TU CUA FILE TIM KIEM: 4259
CAC VI TRI XUAT HIEN: 6 76 1117 1537 2734 3062
SO LAN XUAT HIEN: 6
THOI GIAN THUC HIEN (%second): 208

Bảng 4.2: Kết quả thử nghiệm tìm kiếm tuyến tính bằng hàm quy hoạch động.

So sánh kết quả trong bảng 4.1 và 4.1 ta thấy phương pháp dùng hàm quy hoạch động tìm độ dài xâu con chung dài nhất mà ta xây dựng để tiếp cận giải thuật di truyền hoàn toàn có thể thay thế được các tính toán trong thuật toán tìm kiếm tuyến tính. Thử nghiệm cho kết quả tìm kiếm tuyến tính dùng hàm quy hoạch động hoàn toàn chính xác và đảm bảo về mặt thời gian so với các thuật toán tìm kiếm tuyến tính khác. Với thử nghiệm này đã chứng minh rằng ta có thể sử dụng hàm quy hoạch động vào để tính toán trong tìm kiếm văn bản, và vấn đề nghiên cứu mà ta quan tâm đến là sử dụng hiệu quả nó trong phương pháp giải thuật di truyền. Chúng ta xem xét kết quả thực nghiệm của việc ứng dụng hàm quy hoạch động vào giải bài toán tìm kiếm văn bản bằng giải thuật di truyền trong phần 4.1.2 để thấy được kết quả của nghiên cứu và sự thành công của đề tài.

4.1.2. Kết quả thử nghiệm tìm kiếm bằng giải thuật di truyền

Dưới đây là các kết quả thực nghiệm sau khi chạy chương trình cài đặt bằng giải thuật di truyền với bài toán tìm kiếm trên. Mỗi lần lặp ta cho tiến hoá 100 thế hệ.

Các tham số: Kích thước quần thể Pop-size = 20; Xác suất lai tạo Pc = 0.25; xác suất đột biến Pm = 0.01.

* Kết quả quần thể khởi tạo và quần thể cuối cùng (thế hệ thứ 100) của 20 lần lặp:

			Cá thể tốt nhấ	t		
Lần Test	Thế hệ	Thứ tự cá thể trong Quần thể	Giá trị hàm mục tiêu	Vị trí trong văn bản	Thời gian thực hiện	Nhận xét kết quả
1	Khởi tạoCuối cùng	16 1	0.409 1	2731 2734	33	Đạt cực đại
2	Khởi tạoCuối cùng	9 1	0.273 0.682	2230 707	38	Tốt
3	Khởi tạoCuối cùng	6 1	1 1	76 76	39	Đạt cực đại
4	Khởi tạoCuối cùng	9 1	0.409 0.409	1320 1320	33	Không đổi
5	Khởi tạoCuối cùng	10 1	0.273 0.381	2202 784	38	Bình thường
6	Khởi tạoCuối cùng	15 1	0.409	1539 1537	39	Đạt cực đại
7	Khởi tạoCuối cùng	6 1	0.273 0.364	1653 359	33	Bình thường
8	Khởi tạoCuối cùng	6 1	0.409 1	3064 76	34	Đạt cực đại
9	Khởi tạoCuối cùng	7 1	0.318 1	80 6	38	Đạt cực đại
10	- Khởi tạo - Cuối cùng	3 2	0.318 0.500	834 1096	33	Tương đối
11	Khởi tạoCuối cùng	16 2	0.409 0.500	1535 259	33	Tương đối
12	- Khởi tạo - Cuối cùng	8	0.138 1	666 6	39	Đạt cực đại
13	Khởi tạoCuối cùng	8 1	0.364 0.636	953 905	38	Tốt

14	- Khởi tạo	7	0.227	1881	32	Tương
14	- Cuối cùng	1	0.500	838	32	đối
15	- Khởi tạo	8	0.455	1114	43	Đạt cực
13	 Cuối cùng 	2	1	1117	43	đại
16	- Khởi tạo	1	0.364	770	38	Tương
10	- Cuối cùng	1	0.455	1505	36	đối
17	- Khởi tạo	7	0.318	1329	33	Bình
1 /	- Cuối cùng	1	0.363	905	33	thường
18	- Khởi tạo	1	0.455	3063	39	Đạt cực
10	 Cuối cùng 	1	1	3062	39	đại
19	- Khởi tạo	14	0.273	288	38	Đạt cực
19	 Cuối cùng 	1	1	6	36	đại
20	- Khởi tạo	5	0.227	218	32	Bình
20	- Cuối cùng	2	0.364	2681	34	thường

Bảng 4.3: Tóm tắt kết quả sau 20 lần lặp.

Nhận xét:

Trong kết quả thực nghiệm của tìm kiếm chính xác theo phương pháp tuyến tính dùng hàm quy hoạch động tìm được 6 vị trí là 6, 76, 1117, 1537, 2734 và 3062 với tổng thời gian thực hiện là 208 (% giây). Với giải thuật di truyền thì sau 20 lần lặp cũng cho ta kết quả là tất cả các vị trí xuất hiện mẫu trong văn bản với thời gian của mỗi lần thực hiện là rất nhỏ (khoảng 30 - 40 % giây). Quan sát bảng trên ta thấy có 9 lần đạt cực đại với sự xuất hiện cả 6 vị trí (tìm được tối đa các vị trí xuất hiện mẫu), trong đó vị trí thứ 6 xuất hiện 3 lần, vị trí thứ 76 xuất hiện 2 lần, bốn vị trí khác mỗi vị trí xuất hiện một lần. Như vậy ta hoàn toàn có thể dùng thuật giải di truyền để tìm kiếm chính xác tất cả các vị trí của mẫu trong văn bản. Trong trường hợp không có đoạn văn bản nào trùng với mẫu thì thuật toán sẽ phát huy được hiệu quả là đưa ra các vị trí tốt nhất (các đoạn văn bản gần giống với văn bản mẫu) trong thời gian cho phép.

Ta quan sát các kết quả đạt được khi ta giảm dần ngưỡng tìm kiếm từ 1 → 0.9 → 0.8 qua 3 lần thử nghiệm:

^{*} Kết quả của 10 lần xuất hiện vượt ngưỡng (với ngưỡng = 1):

Lần lặp	Lần vượt	Số thế hệ	Giá trị	Vị trí xuất hiện	Thời gian thực
thứ	ngưỡng thứ	vượt ngưỡng	hàm F	trong văn bản	hiện (% giây)
3	1	98	1	1117	97
4	2	92	1	76	27
5	3	89	1	76	38
6	4	1	1	1537	22
7	5	71	1	76	22
8	6	100	1	3026	28
10	7	93	1	76	77
14	8	88	1	1117	22
15	9	80	1	1117	71
18	10	85	1	1117	44

Bảng 4.4: Kết quả của 10 lần xuất hiện vượt giá trị ngưỡng = 1.

Khi lấy ngưỡng cực đại thì kết quả cho ra các vị trí chính xác xuất hiện mẫu. Chương trình mất 18 lần lặp để đưa ra 10 lần vượt ngưỡng.

Lần lặp thứ	Lần vượt ngưỡng thứ	Số thế hệ vượt ngưỡng	Giá trị hàm F	Vị trí xuất hiện trong văn bản	Thời gian thực hiện (% giây)
1	1	85	0.909	5, 7 6	116
2	2	54	0.909	1536 1537	99
4	3	13	0.909	3061, 77 76	93
5	4	100	1	6, 76, 1117	82
6	5	30	0.909	75, 77 76, 1117	98
7	6	65	0.909	1116,1118 1117	72
8	7	99	0.909	77 76	77
10	8	87	1	6	77
11	9	93	0.909	75 76	88
12	10	91	1	6	99

Bảng 4.5: Kết quả của 10 lần xuất hiện vượt giá trị ngưỡng = 0.9.

Với ngưỡng = 0.9 thì số lần lặp là 12 đã giảm đáng kể so với ngưỡng = 1 (số lần chạy là 18). Các vị trí đưa ra tại giá trị hàm F là 0.909 và 1. Với giá trị 0.909 thì vị trí đưa ra chỉ lệch 1 ký tự so với vị chí xuất hiện và mục tiêu đưa ra vị trí gần đúng mẫu đã có hiệu quả.

* Kết quả của 10 lần xuất hiện vượt ngưỡng (với ngưỡng = 0.8):

Lần lặp	Lần vượt	Số thế hệ	Giá trị	Vị trí xuất hiện	Thời gian thực	
thứ	ngưỡng thứ	vượt ngưỡng	hàm F	trong văn bản	hiện (% giây)	
			0.181	8		
1	1	100	0.909	7, 5	132	
			1	6		
2	2	00	0.909	2733, 2735	92	
2	2	88	1	2734	83	
3	3	95	0.909	3061, 3063	71	
3	3	93	1	3062	/1	
			0.181	8		
4	4	89	0.909	7	77	
			1	6		
			0.181	8, 78		
5	5	78	0.909	77, 75	88	
			1	76		
6	6	100	0.181	1539	83	
0	0	100	1	1537	03	
7	7	4	0.909	1118	85	
8	7	95	0.909	2735	88	
8	/	93	1	2734	00	
9	8	100	0.181	1539	77	
9	8	100	1	1537	77	
10	9	0 01		1536	87	
10	9	81	1	1537	0/	

Bảng 4.6: Kết quả của 10 lần xuất hiện vượt giá trị ngưỡng = 0.8.

Dễ thấy khi ngưỡng giảm thì sự xuất hiện gần đúng sẽ tăng lên, với ngưỡng = 0.8 ta chỉ mất 10 lần lặp cho ra 10 lần xuất hiện vượt ngưỡng (lần lặp nào cũng tìm được vị trí gần giống với mẫu) và tìm được tất cả các vị trí gần với mẫu trong 10 lần lặp. Với khả năng phát hiện tất cả các vị trí gần

đúng với mẫu một cách dễ dàng trong thời gian ngắn, nghiên cứu đã thành công với mục tiêu đặt ra ban đầu, và có thể phát triển ứng dụng tìm kiếm đạt hiệu quả cao.

4.2. Phát triển phần mềm ứng dụng

Phần mềm ứng dụng được xây dựng trên môi trường Windows và đang trong giai đoạn phát triển. Phần mềm phát triển thành công có thể sử dụng tốt với khả năng: Cho phép tìm kiếm tất cả các file văn bản trong máy tính có chứa một từ, một cụm từ hay một đoạn văn bản; hoặc chứa nội dung gần giống với nội dung văn bản cần tìm. Các kiểu file văn bản có thể tìm kiếm là các tệp tin định dạng .txt, .doc, .xls, .ppt và một số tệp tin văn bản khác trên môi trường Windows. Ngoài ra chương trình còn có các tham số lựa chọn khác thuận tiện theo mục đích người sử dụng, chẳng hạn như: tham số kích thước quần thể, số thế hệ tiến hoá, lựa chọn độ chính xác (ngưỡng) với từ khoá tìm kiếm, số vị trí xuất hiện.. sẽ đáp ứng được phần lớn nhu cầu sử dụng một cách thiết thực và hiệu quả.

KÉT LUẬN VÀ KIẾN NGHỊ

* Đánh giá kết quả nghiên cứu:

Tóm lại, luận văn đã giải quyết được những vấn đề sau đây:

- Luận văn đã bước đầu đề xuất phương pháp ứng dụng giải thuật di truyền vào giải quyết bài toán tìm kiếm văn bản.
- Tìm hiểu và cài đặt được các thuật toán tìm kiếm văn bản theo cách tuyến tính, qua đó làm cơ sở để so sánh với các kết quả nghiên cứu của đề tài.
- Xây dựng được các hàm tính toán cho bài toán và phát biểu bài toán tìm kiếm văn bản để có thể áp dụng giải thuật di truyền.
- Các chương trình và kết quả thử nghiệm đã minh chứng hướng tiếp cận giải thuật di truyền giải quyết bài toán tìm kiếm văn bản là đúng đắn và có hiệu quả. Đặc biệt chương trình cài đặt đã chỉ ra được các vị trí xuất hiện đoạn văn bản giống văn bản mẫu hoặc gần giống với văn bản mẫu (trong trường hợp văn bản không chứa văn bản mẫu) trong thời gian cho phép.

* Kiến nghị hướng phát triển

- Hiện nay chúng tôi đang trong quá trình phát triển phần mềm ứng dụng dựa vào các kết quả nghiên cứu này. Do thời gian hạn chế và công việc bận rộn nên phần mềm chưa phát triển được đáng kể. Chúng tôi sẽ phát triển hoàn thiện trong thời gian sớm nhất để có thể đưa vào ứng dụng thử nghiệm.
- Sau khi phát triển thành công phần mềm ứng dụng, hướng nghiên cứu tiếp theo của chúng tôi là tìm hiểu ứng dụng giải thuật di truyền cho nhiều dạng bài toán tìm kiếm, chẳng hạn bài toán tìm kiếm trên các file dữ liệu có cấu trúc đặc biệt.

Đề tài không thể tránh khỏi những khiếm khuyết, rất mong được sự tham gia góp ý của quý thầy cô và các bạn.

Tôi xin chân thành cảm ơn!

TÀI LIỆU THAM KHẢO

- Để hoàn thành được đề tài này tôi đã tham khảo các tài liệu sau:
- [1] Hoàng Kiếm, Lê Hoàng Thái, Giải thuật di truyền, cách giải tự nhiên các bài toán trên máy tính, NXB GD, 2000.
- [2] Nguyễn Hoàng Phương, Nadipuram R.Prasad, Lê Linh Phong, *Nhập môn trí tuệ tính toán*, NXB KH&KT, 2002.
- [3] Nguyễn Đình Thúc, Lập trình tiến hoá, NXB GD, 2001.
- [4] Đỗ Xuân Lôi, *Cấu trúc dữ liệu và giải thuật*, Nhà xuất bản Khoa học và Kỹ thuật, 1998.
- [5] Goldberg, D.E., Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA. 1989.
- [6] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Program. Springer Verlag, 1992.
- [7] Unlrich Bodenhofer, *Genetic Algorithms : Theory and Applications*, Lecture Notes, 2003/2004.
- [8] Zbigniew Michalewichz and Marc Choenauer, *Evolutionary Algorithms* for Constrained Parameter Optimization Problems, Evolutionary Computation Vol 4, No 1, 1996.
- [9] (15) Holland, J.H. 1992. Adaptation In Natural And Artificial Systems. First Massachusetts Institute of Technology Press.
- [10] (30) Shaffer, 1999 < URL: http://cheml.nrlnavy.mil/~shaffer/prctga.html>
- [11] (14) Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Press.

- [12] (35) Zbigniew Michalewicz. 1999. Genetic Algorithms + Data Structures = Evolution Program. Springer-Verlag Berlin Press.
- [13] Davis, L. 1991. Handbook of Genetic Algorithms, Van Nostrand Reinhold Press.
- [14] Syswerda G., 1989. Uniform crossover in genetic algorithms. Proceedings of the international conference, 2-9, Philips Laboratories Editor.
- [15] Scott Robert Ladd. 1996. Genetic Algorithms in C++. M & T Book Press.
- [16] Matthew Wall. 1996. GAlib: A C++ Library of Genetic Algorithm Components. MIT Press.
- [17] Matthew Wall. Ph. D. Dissertation, Ann Arbor Massachusetts Institute of Technology Press.
- [18] Davis, L. 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold Press.

PHŲ LŲC

Phụ lục 1: Kết quả quần thể khởi tạo và quần thể cuối cùng

Xem kết quả chi tiết của 5 test (1, 5, 10, 15, 20) trong bảng 4.3.

Test 1:

TCSt 1.	~			Trậm myy'r o
KHỞI TẠO	Cá thể	Vị trí H	làm mục tiêu	KÊT THÚC
110001100010	1	3170	0.1364	101010101110
001110010011	2	915	0.1818	101010101110
100111011100	3	2524	0.1364	101010101110
010011011010	4	1242	0.2727	101010101110
111000111111	5	3647	0.0909	101010101110
000101111000	6	376	0.1818	101110101110
101000001101	7	2573	0.2273	101010101110
00000001100	8	12	0.2273	101010101110
100001110010	9	2162	0.1364	101010101110
101000111011	10	2619	0.1364	101010101110
000111010011	11	467	0.1364	101010101110
100010001001	12	2185	0.0909	101010101110
100000000010	13	2050	0.1364	101010101110
000011010000	14	208	0.2273	101010101110
111000100101	15	3621	0.0000	101010101110
101010101011	16	2731	0.4091	101010101110
111011010101	17	3797	0.1818	101010101110
001010111101	18	701	0.1818	101010101110
111110001010	19	3978	0.0909	101010101110
111110111101	20	4029	0.1364	101010101110

- KHOI TAO: Gia tri tot nhat = 0.409 ca the thu 16 tai vi tri 2731 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 2734 trong van ban
- Thời gian thực hiện (%second): 33

Test 5:

KHỞI TẠO	Cá thể	Vị trí H	làm mục tiêu	KẾT THÚC
101110010110	1	2966	0.0455	001100010000
110010111110	2	3262	0.0000	001100010000
000010001101	3	141	0.1818	001100010000
011010000010	4	1666	0.1818	001100011000
111111111011	5	4091	0.1818	001100010100
100001110101	6	2165	0.1364	001100010100
101101101000	7	2920	0.1364	011100010000

011011011000	8	1752	0.0909	101100110000
001100000000	9	768	0.2273	001100010000
100010011010	10	2202	0.2727	001100010000
100011111010	11	2298	0.2273	001100010000
101010011001	12	2713	0.1364	001100010000
111010001011	13	3723	0.1364	001100010000
100101101111	14	2415	0.1818	001100000000
010101101101	15	1389	0.0000	001100010000
111001110111	16	3703	0.2273	001100010000
001111101010	17	1002	0.0000	001100011000
001111101001	18	1001	0.0000	001100010000
001110010000	19	912	0.2727	001100010000
000010010110	20	150	0.1818	001100010000

- KHOI TẠO: Gia tri tot nhat = 0.273 ca the thu 10 tai vi tri 2202 trong van ban
- \dot{KET} THÚC: Gia tri tot nhat = 0.318 ca the thu 1 tai vi tri 784 trong van ban
- Thời gian thực hiện (%second): 38

Test 10:

KHỞI TẠO	Cá thể	Vị trí	Hàm mục tiêu	KẾT THÚC
110010100100	1	3236	0.0455	010001001001
101001111000	2	2680	0.2273	010001001000
001101000010	3	834	0.3182	010001001000
100001111010	4	2170	0.1818	010001001001
110111110000	5	3568	0.0000	010001001000
111110011000	6	3992	0.1364	010001001000
110001010010	7	3154	0.0000	010001001000
100111100100	8	2532	0.1818	010001001000
011101001000	9	1864	0.2273	010001001000
000011000111	10	199	0.1818	010001001000
011110000011	11	1923	0.1818	010001001000
001000100110	12	550	0.2727	010001001000
000100111111	13	319	0.0455	010001001000
110010100000	14	3232	0.0455	010001001001
011001010101	15	1621	0.1364	010001001001
011001010011	16	1619	0.1364	010001001000
010001100001	17	1121	0.3182	010001001000
101111101111	18	3055		010001001000
101101010011	19	2899	0.0455	010001001000
101001001101	20	2637	0.1364	010001001000

- KHOI TAO: Gia tri tot nhat = 0.318 ca the thu 3 tai vi tri 834 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.500 ca the thu 2 tai vi tri 1096 trong van ban
- Thời gian thực hiện (%second): 33

Test 15:

1 CSt 13.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
001110111001	1	953	0.3636	000001111111
010011101110	2	1262	0.2727	010001011101
001100000111	3	775	0.1364	010001011101
101100001011	4	2827	0.2273	010001011101
110100010110	5	3350	0.0000	010001011110
011010101011	6	1707	0.1818	010001111101
001001111111	7	639	0.1818	010001011100
010001011010	8	1114	0.4545	010001011101
011001111011	9	1659	0.2727	010001011101
100011111011	10	2299	0.1818	010001111101
110001100011	11	3171	0.0909	010001011110
100011100101	12	2277	0.1818	010001011101
110110000001	13	3457	0.1818	011001011101
001000011101	14	541	0.1818	010001011101
000101100000	15	352	0.0909	010001011101
101111110000	16	3056	0.2273	010001010101
010100010101	17	1301	0.2727	010001011101
110001101001	18	3177	0.0455	010001011110
100111110000	19	2544	0.1364	010001011101
000000100100	20	36	0.2727	010001011101

- KHOI TAO: Gia tri tot nhat = 0.455 ca the thu 8 tai vi tri 1114 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 2 tai vi tri 1117 trong van ban
- Thời gian thực hiện (%second): 43

Test 20:

1 CBC 20.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KÉT THÚC
110111101111	1	3567	0.0000	101101111001
011111111100	2	2044	0.1364	101001111001
011111011110	3	2014	0.0455	101001111001
011101001100	4	1868	0.1818	101001111001
000011011010	5	218	0.2273	101001111001
100100110111	6	2359	0.2273	101101111001
110110001100	7	3468	0.0000	101001111001
001010111000	8	696	0.1818	101001111001
101000111011	9	2619	0.1364	101001111001
100101101011	10	2411	0.1818	101001111001
101000011010	11	2586	0.1818	111001111001
110100110001	12	3377	0.1364	101001111001
000101110100	13	372	0.2273	101001111001
011000011100	14	1564	0.1364	101001111001
010010011110	15	1182	0.1364	101001111001
001010001011	16	651	0.1818	101001111001

010011100000	17	1248	0.2273	101001111001
100110011011	18	2459	0.1364	101001111001
011101000100	19	1860	0.1818	101001111001
000100001110	20	270	0.0909	101001111001

- KHOI TAO: Gia tri tot nhat = 0.227 ca the thu 5 tai vi tri 218 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.364 ca the thu 2 tai vi tri 2681 trong van ban
- Thời gian thực hiện (%second): 32

Phụ lục 2: Kết quả chi tiết xuất hiện vượt ngưỡng (với ngưỡng = 0.8)

Xem kết quả chi tiết của 5 lần xuất hiện vượt ngưỡng (với ngưỡng = 0.8) trong bảng 4.6.

The	Не Мах	c Ca	The	ViTri(trong van ban)
KΊ	0.636	5 18		10
1	0.818	1	8	
2	0.818	9	8	
3	0.818	3	8	
4	0.818	6	8	
5	0.818	1	8	
6	0.909	12	7	
7	0.909	4	7	
8	0.909	1	7	
9	0.909	1	7	
10	0.909	1	7	
11	0.909	2	7	
12	0.909	1	7	
13	0.909	1	7	
14	0.909	1	7	
15	0.909	2	7	
16	0.909	1	7	
17	0.909	1	7	
18	0.909	1	7	
19	1.000	13	6	
20	1.000	13	6	
21	1.000	17	6)
22	1.000	7	6	
23	0.909	1	7	
24	0.909	1	7	
25	1.000	2	6	
26	1.000	5	6	
27	0.909	1	5	
28	0.909	1	5	
29	0.909	1	7	
30	0.909	1	7	
31	0.909	1	7	
32	0.909	1	7	
33	0.909	1	7	
34	0.909	1	7	
35	0.909	2	5	
36	0.909	1	7	
37	0.909	1	5	

38	0.909	1	7
39	0.909	1	7
40	0.909	1	7
41	1.000	16	6
42	1.000	10	6
43	1.000	16	6
44	1.000	3	6
45	1.000	4	6
46	1.000	1	6
47	1.000	14	6
48	1.000	6	6
49	1.000	7	6
50	1.000	1	6
51	1.000	6	6
52	1.000	2	6
53	1.000	2	6
54	1.000	1	6
55	1.000	1	6
56	1.000	3	6
57	1.000	1	6
58	1.000	1	6
59	1.000	1	6
60	1.000	1	6
61	1.000	1	6
62	1.000	3	6
63	1.000	4	6
64	1.000	1	6
65	1.000	1	6
66	1.000	1	6
67	1.000	1	6
68	1.000	1	6
69	1.000	1	6
70	1.000	1	6
71	1.000	3	6
72	1.000	1	6
73	1.000	2	6
74	1.000	5	6
75	1.000	1	6
76	1.000	2	6
77	1.000	1	6
78	1.000	2	6
79	1.000	2	6
80	1.000	3	6
_		-	-

```
81
     1.000
             2
                    6
82
     1.000
                    6
             1
83
     1.000
             1
                    6
84
     1.000
             1
                    6
     1.000
85
             1
                    6
86
     1.000
             1
                    6
87
     1.000
             1
                    6
88
     1.000
                    6
             1
89
     1.000
             1
                    6
             2
90
     1.000
                    6
91
     1.000
             1
                    6
92
     1.000
             1
                    6
             2
93
     1.000
                    6
94
     1.000
             1
                    6
95
     1.000
             2
                    6
             2
96
     1.000
                    6
97
     1.000
             1
                    6
98
     1.000
             1
                    6
99
     1.000
             1
                    6
100
     1.000
              1
                     6
Lan lap thu: 1
```

Dat vuot nguong 100 the he

Lan dat vuot nguong thu 1

Thoi gian thuc hien (% second): 132

TheHe Max CaThe ViTri(trong van ban) KT 0.727 20 0.909 0.909 0.909 0.909 0.909 0.909 0.909 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

29	1.000	1	2734
30	1.000	1	2734
31	1.000	3	2734
32	1.000	1	2734
33	1.000	1	2734
34	1.000	2	2734
35	1.000	1	2734
36	1.000	1	2734
37	1.000	1	2734
38	1.000	1	2734
39	1.000	1	2734
40	1.000	1	2734
41	1.000	1	2734
42	1.000	1	2734
43	1.000	1	2734
44	1.000	1	2734
45	1.000	1	2734
46	1.000	1	2734
47	1.000	1	2734
48	1.000	3	2734
49	1.000	1	2734
50	1.000	1	2734
51	1.000	1	2734
52	1.000	1	2734
53	1.000	1	2734
54	1.000	2	2734
55	1.000	1	2734
56	1.000	1	2734
57	1.000	1	2734
58	1.000	1	2734
59	1.000	1	2734
60	1.000	4	2734
61	1.000	3	2734
62	1.000	2	2734
63	1.000	1	2734
64	1.000	1	2734
65	1.000	1	2734
66	1.000	1	2734
67	1.000	2	2734
68	1.000	1	2734
69	1.000	2	2734
70	1.000	1	2734
71	1.000	4	2734

```
2
72
     1.000
                 2734
73
     1.000
             2
                 2734
74
     1.000
             1
                 2734
     1.000
75
             1
                 2734
76
     1.000
             2
                 2734
77
     1.000
             1
                 2734
78
     1.000
             1
                 2734
79
     1.000
             2
                 2734
80
     1.000
             1
                 2734
             2
81
     1.000
                 2734
82
     1.000
             1
                 2734
83
             1
     1.000
                 2734
     1.000
             2
84
                 2734
85
     1.000
             1
                 2734
86
     1.000
             1
                 2734
87
     1.000
                 2734
             1
88
     1.000
             1
                 2734
89
     1.000
             1
                 2734
90
     1.000
             1
                 2734
91
     1.000
             1
                 2734
92
     1.000
             1
                 2734
93
     1.000
             1
                 2734
94
     1.000
             1
                 2734
95
     1.000
             7
                 2734
96
     1.000
             1
                 2734
97
     1.000
             2
                 2734
98
     1.000
             1
                 2734
99
     1.000
             1
                 2734
100
     1.000
             1
                  2734
Lan lap thu: 2
Dat vuot nguong 88 the he
```

TheHe Max CaThe ViTri(trong van ban)

KT 0.455 19 0.909 12 0.909 0.909 0.909 0.909 0.909 0.909

Lan dat vuot nguong thu 2

Thoi gian thuc hien (% second): 83

13	0.909	1	3061
14	0.909	1	3061
15	0.909	2	3061
16	0.909	1	3061
17	0.909	1	3061
18	0.909	1	3061
19	0.909	1	3061
20	0.909	1	3061
21	0.909	1	3061
22	0.909	1	3061
23	0.909	1	3061
24	0.909	1	3061
25	0.909	1	3061
26	0.909	1	3061
27	0.909	1	3061
28	0.909	2	3061
29	0.909	1	3061
30	0.909	1	3063
31	0.909	1	3061
32	0.909	1	3061
33	0.909	1	3061
34	0.909	1	3061
35	0.909	1	3063
36	0.909	1	3061
37	0.909	1	3061
38	0.909	1	3061
39	0.909	1	3061
40	0.909	2	3061
41	0.909	1	3061
42	0.909	2	3061
43	0.909	1	3061
44	0.909	1	3061
45	0.909	1	3063
46	0.909	1	3063
47	0.909	1	3061
48	0.909	1	3061
49	0.909	1	3061
50	0.909	1	3061
51	0.909	1	3061
52	0.909	1	3061
53	0.909	1	3061
54	0.909	1	3061
55	0.909	1	3061
	0.707	1	5001

56	0.909	1	3061
57	0.909	1	3061
58	0.909	2	3063
59	0.909	1	3061
60	0.909	1	3061
61	0.909	1	3061
62	0.909	1	3063
63	0.909	1	3061
64	0.909	1	3061
65	0.909	1	3061
66	0.909	1	3061
67	0.909	1	3061
68	0.909	1	3063
69	1.000	5	3062
70	1.000	6	3062
71	1.000	8	3062
72	1.000	10	3062
73	1.000	13	3062
74	0.909	1	3061
75	0.909	1	3061
76	0.909	1	3061
77	1.000	2	3062
78	1.000	10	3062
79	0.909	1	3063
80	0.909	1	3061
81	0.909	1	3061
82	0.909	1	3061
83	0.909	2	3061
84	0.909	1	3061
85	0.909	1	3061
86	0.909	1	3061
87	0.909	3	3061
88	0.909	2	3061
89	0.909	3	3061
90	0.909	1	3061
91	0.909	1	3061
92	0.909	2	3061
93	0.909	1	3061
94	0.909	1	3061
95	0.909	1	3061
96	0.909	1	3061
97	0.909	1	3061
98	0.909	1	3061

99 0.909 1 3061 100 0.909 1 3061 Lan lap thu: 3 Dat vuot nguong 95 the he Lan dat vuot nguong thu 3 Thoi gian thuc hien (%second): 71

TheHe Max CaThe ViTri(trong van ban) KT 0.455 0.818 19 0.818 10 0.818 0.818 0.909 18 0.909 0.909 0.909 0.909 0.909 0.909 1.000

46	1.000	1	6
47	1.000	1	6
48	1.000	1	6
49	1.000	1	6
50	1.000	1	6
51	1.000	1	6
52	1.000	1	6
53	1.000	1	6
54	1.000	1	6
55	1.000	1	6
56	1.000	1	6
57	1.000	1	6
58	1.000	1	6
59	1.000	1	6
60	1.000	3	6
61	1.000	1	6
62	1.000	1	6
63	1.000	1	6
64	1.000	1	6
65	1.000	1	6
66	1.000	1	6
67	1.000	1	6
68	1.000	2	6
69	1.000	2	6
70	1.000	1	6
71	1.000	1	6
72	1.000	1	6
73	1.000	1	6
74	1.000	2	6
75	1.000	1	6
76	1.000	1	6
77	1.000	1	6
78	1.000	1	6
79	1.000	2	6
80	1.000	1	6
81	1.000	1	6
82	1.000	1	6
83	1.000	2	6
84	1.000	1	6
85	1.000	2	6
86	1.000	1	6
87	1.000	1	6
88	1.000	4	6

```
89
     1.000
             4
                   6
90
     1.000
             1
                   6
91
     1.000
             3
                   6
     1.000
92
             4
                   6
93
     1.000
                   6
             1
94
     1.000
             1
                   6
95
     1.000
             2
                   6
96
     1.000
             1
                    6
97
     1.000
             3
                   6
98
     1.000
             1
                   6
99
     1.000
             1
                   6
100
     1.000
             2
                    6
```

Lan lap thu: 4

Dat vuot nguong 89 the he

Lan dat vuot nguong thu 4

Thoi gian thuc hien (% second): 77

TheHe Max CaThe ViTri(trong van ban)

47	0.818	3	8
48	0.818	2	8
49	0.818	1	8
50	0.818	2	8
51	0.818	1	8
52	0.818	1	8
53	0.818	1	8
54	0.818	1	8
55	0.818	1	8
56	0.818	1	8
57	0.818	1	8
58	0.818	1	8
59	0.818	1	8
60	1.000	20	76
61	1.000	5	76
62	1.000	4	76
63	1.000	13	76
64	1.000	1	76
65	1.000	12	76
66	1.000	3	76
67	1.000	10	76
68	1.000	5	76
69	1.000	2	76
70	1.000	10	76
71	1.000	5	76
72	0.909	9	77
73	0.909	17	77
74	0.818	1	8
75	0.818	1	8
76	0.818	2	78
77	0.818	2	78
78	0.818	1	8
79	0.818	2	8
80	0.818	1	8
81	0.818	1	8
82	0.818	1	8
83	1.000	11	76
84	1.000	3	76
85	1.000	2	76
86	1.000	5	76
87	1.000	12	76
88	1.000	1	76
89	1.000	2	76

Lan lap thu: 5

Dat vuot nguong 78 the he Lan dat vuot nguong thu 5

Thoi gian thuc hien (% second): 88

Kết quả tìm kiếm tuần tự trên file văn bản Readme.txt có chiểu dài hơn 4000 ký tự (khoảng 2^{12}), văn bản mẫu là "text search":

KET QUA:
----FILE TIM KIEM: c:\tp7\bin\caidat\readme.txt
CHUOI VAN BAN TIM KIEM:
\$text search\$
SO KY TU CUA FILE TIM KIEM: 4259
CAC VI TRI XUAT HIEN:
6 76 1117 1537 2734 3062
SO LAN XUAT HIEN: 6
THOI GIAN THUC HIEN (%second): 187

Dưới đây là các kết quả thực nghiệm sau các lần chạy chương trình cài đặt bằng giải thuật di truyền với bài toán tìm kiếm trên. Mỗi lần chạy ta cho tiến hoá 100 thế hệ.

- Các tham số:
- Kích thước quần thể Pop-size = 20;
- Xác suất lai tạo Pc=0.25;
- Xác suất đột biến Pm=0.01.

Kết quả của 20 lần chạy với quần thể khởi tạo và quần thể cuối cùng (thế hệ thứ 100) như sau:

BẢNG SỐ LIỆU MỘT SỐ LẦN CHẠY THỬ

Test 1:

KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
110001100010	1	3170	0.1364	101010101110
001110010011	2	915	0.1818	101010101110
100111011100	3	2524	0.1364	101010101110
010011011010	4	1242	0.2727	101010101110
111000111111	5	3647	0.0909	101010101110
000101111000	6	376	0.1818	101110101110
101000001101	7	2573	0.2273	101010101110
00000001100	8	12	0.2273	101010101110
100001110010	9	2162	0.1364	101010101110
101000111011	10	2619	0.1364	101010101110
000111010011	11	467	0.1364	101010101110
100010001001	12	2185	0.0909	101010101110
100000000010	13	2050	0.1364	101010101110
000011010000	14	208	0.2273	101010101110
111000100101	15	3621	0.0000	101010101110

101010101011	16	2731	0.4091	101010101110
111011010101	17	3797	0.1818	101010101110
001010111101	18	701	0.1818	1010101011110
111110001010	19	3978	0.0909	101010101110
111110111101	20	4029	0.1364	101010101110

- KHOI TAO: Gia tri tot nhat = 0.409 ca the thu 16 tai vi tri 2731 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 2734 trong van ban
- Thời gian thực hiện (%second): 33

Test 2:

1 CSt 21	~			
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KÊT THÚC
100110011001	1	2457	0.1818	001011000011
011000011100	2	1564	0.1364	001011000011
001010011101	3	669	0.1364	001011000011
111001110100	4	3700	0.0909	001011000011
110010010001	5	3217	0.0000	001011000011
110100000010	6	3330	0.0909	001011000011
001101110001	7	881	0.1818	001011000011
100011001110	8	2254	0.1818	001011000011
100010110110	9	2230	0.2727	001011100011
111001000011	10	3651	0.1818	001011000011
110111011001	11	3545	0.0000	001011000011
101100101000	12	2856	0.2273	001011000011
111011001100	13	3788	0.2273	001011000011
101110100011	14	2979	0.0000	001011000011
011100011110	15	1822	0.1364	101011000011
001111000011	16	963	0.2273	001011000011
010010111100	17	1212	0.2727	001011000011
111111001111	18	4047	0.1364	001011000011
100100110111	19	2359	0.2273	001011000011
011111111110	20	2046	0.1364	001011000011

- KHOI TẠO: Gia tri tot nhat = 0.273 ca the thu 9 tai vi tri 2230 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.682 ca the thu 1 tai vi tri 707 trong van ban
- Thời gian thực hiện (%second): 38

Test 3:

10000.	9			
KHOI TAO	Cá thể	Vị trí H	làm mục tiêu	KÊT THÚC
110100110100	1	3380	0.0455	000001001100
010111110011	2	1523	0.1364	000001001100
010100101001	3	1321	0.2273	000001001100
110001101010	4	3178	0.0455	000001001100
110011100101	5	3301	0.0909	000001001100
000001001100	6	76	1.0000	000001001100
000000101110	7	46	0.1364	000001001100
100111100010	8	2530	0.1818	000001001100
111111001111	9	4047	0.1364	000001001100
000101010001	10	337	0.1818	010001001100
100011110010	11	2290	0.1364	000001001100
110110101111	12	3503	0.0000	000001001100
000101111010	13	378	0.2727	000001001100
011001011111	14	1631	0.1364	000001001100
101011010011	15	2771	0.2273	000001001100
000101100111	16	359	0.3636	000001001100
100001010110	17	2134	0.1364	000001001101
001010011101	18	669	0.1364	000001001110
101111010000	19	3024	0.0000	000001001100
001101011000	20	856	0.2273	000001001100

- KHOI TẠO: Gia tri tot nhat = 1.000 ca the thu 6 tai vi tri 76 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 76 trong van ban
- Thời gian thực hiện (%second): 39

Test 4:

1681	7.				
KHŐ	I TẠO	Cá thể	Vị trí H	àm mục tiêu	KÊT THÚC
101	000011011	1	2587	0.1818	010100101000
101	010001001	2	2697	0.2273	010100100000
101	111011101	3	3037	0.0000	010100101000
010	011101001	4	1257	0.1364	010100101000
010	101101111	5	1391	0.0000	010100101001
000	110011100	6	412	0.0909	010100101000
010	010110101	7	1205	0.2273	010100101000
1 1 1	101100010	8	3938	0.1364	010000101000
010	100101000	9	1320	0.4091	010100101000
001	000100110	10	550	0.2727	010100101000
100	110110110	11	2486	0.0909	010100101000
001	010000101	12	645	0.0909	010100101000
1 1 1	100010100	13	3860	0.1364	010100101000
100	011110010	14	2290	0.1364	010100101000
000	110011000	15	408	0.1818	010100101000
010	100001101	16	1293	0.0909	010100101000
1 1 1	101110111	17	3959	0.2273	010100101000
100	111011110	18	2526	0.2273	010000101000
000	001000001	19	65	0.1818	010100101000
010	$0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1$	20	1251	0.1364	010000101000

- KHOI TAO: Gia tri tot nhat = 0.409 ca the thu 9 tai vi tri 1320 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.409 ca the thu 1 tai vi tri 1320 trong van ban
- Thời gian thực hiện (%second): 33 **Test 5:**

<u>1681 3.</u>				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
101110010110	1	2966	0.0455	001100010000
110010111110	2	3262	0.0000	001100010000
000010001101	3	141	0.1818	001100010000
011010000010	4	1666	0.1818	001100011000
111111111011	5	4091	0.1818	001100010100
100001110101	6	2165	0.1364	001100010100
101101101000	7	2920	0.1364	011100010000
011011011000	8	1752	0.0909	101100110000
001100000000	9	768	0.2273	001100010000
100010011010	10	2202	0.2727	001100010000
100011111010	11	2298	0.2273	001100010000
101010011001	12	2713	0.1364	001100010000

111010001011	13	3723	0.1364	001100010000
100101101111	14	2415	0.1818	001100000000
010101101101	15	1389	0.0000	001100010000
111001110111	16	3703	0.2273	001100010000
001111101010	17	1002	0.0000	001100011000
001111101001	18	1001	0.0000	001100010000
001110010000	19	912	0.2727	001100010000
000010010110	20	150	0.1818	001100010000

- KHOI TAO: Gia tri tot nhat = 0.273 ca the thu 10 tai vi tri 2202 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.318 ca the thu 1 tai vi tri 784 trong van ban
- Thời gian thực hiện (%second): 38

Test 6:

Test 0.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
100101100011	1	2403	0.1364	011000000001
000110100111	2	423	0.2727	010000000001
100011011100	3	2268	0.2273	011000000001
110110011101	4	3485	0.0000	011000000001
10111111100	5	3068	0.2273	011000000001
011001110001	6	1649	0.1364	011000000001
010110011000	7	1432	0.0000	011000000011
001000010110	8	534	0.1364	0110000000000
111011100111	9	3815	0.0909	011000000001
100100010100	10	2324	0.1364	011000000001
011110100010	11	1954	0.1364	011000000001
100000101010	12	2090	0.2273	011000000001
110100101011	13	3371	0.1364	011000000001
011110010011	14	1939	0.0909	011000000001
011000000011	15	1539	0.4091	011000000001
111100101111	16	3887	0.1364	011000000001
000000111111	17	63	0.0909	011000000001
011010110101	18	1717	0.2273	011000000001
110110101011	19	3499	0.0000	011000000001
100000111111	20	2111	0.1364	011000000001

- KHỞI TẠO: Gia tri tot nhat = 0.409 ca the thu 15 tai vi tri 1539 trong van ban
- \dot{KET} THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 1537 trong van ban
- Thời gian thực hiện (%second): 39

Test 7:

KHỞI TẠO (Cá thể	Vị trí H	Hàm mục tiêu	KẾT THÚC
111101100111	1	3943	0.2273	000101100111
010011010101	2	1237	0.2273	000101100111

110010011111	3	3231	0.0000	000101100111
	_			
000011100001	4	225	0.2273	000101100111
001000010010	5	530	0.1364	000101100111
011001110101	6	1653	0.2727	000101100111
101000001111	7	2575	0.1818	000101100111
000001101010	8	106	0.2273	000101100111
011110100011	9	1955	0.1818	001101100111
010111110000	10	1520	0.1364	000101100111
000101111001	11	377	0.2273	000101100111
011011100011	12	1763	0.2273	000101100111
001101100101	13	869	0.2273	000101100111
101101001010	14	2890	0.1818	000101100111
000110100010	15	418	0.1364	000101100111
001011100101	16	741	0.2273	000101100111
010111110011	17	1523	0.1364	000101100111
110001111101	18	3197	0.0000	000101100111
000001110110	19	118	0.1364	100101100111
110010010110	20	3222	0.0000	000101100111

- KHOI TAO: Gia tri tot nhat = 0.273 ca the thu 6 tai vi tri 1653 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.364 ca the thu 1 tai vi tri 359 trong van ban
- Thời gian thực hiện (%second): 33

Test 8:

1est o.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
111001001100	1	3660	0.2727	000001001100
111010011101	2	3741	0.1818	001001001100
110111110010	3	3570	0.0000	000001001100
111111010111	4	4055	0.1818	000001001100
010001001010	5	1098	0.1818	000001001100
101111111000	6	3064	0.4091	000001001100
011111001111	7	1999	0.1818	000001001100
110111110000	8	3568	0.0000	000001001100
101111000000	9	3008	0.0000	000001001100
100111000011	10	2499	0.1818	000001001110
011111100011	11	2019	0.1364	000001001100
101000111110	12	2622	0.1364	000001001100
010101111110	13	1406	0.0000	000001001100
010000110100	14	1076	0.2727	000001001100
000010110110	15	182	0.1364	000001001100
110010110110	16	3254	0.0000	000001001100
100100100100	17	2340	0.0909	000001001100

001101001101	18	845	0.1818	000001001100
010010101000	19	1192	0.1364	000001001100
110111001100	20	3532	0.1818	000001001100

- KHOI TAO: Gia tri tot nhat = 0.409 ca the thu 6 tai vi tri 3064 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 76 trong van ban
- Thời gian thực hiện (%second): 34

Test 9:

KHỞI TẠO	Cá thể -	Vi trí I	Hàm mục tiêu	ı KÉT THÚC
000001111011	1	123	0.2273	00000000110
100001010010	2	2130	0.1364	00000000110
011010011001	3	1689	0.1364	00000000110
111110001010	4	3978	0.0909	00000000110
000101100001	5	353	0.1364	00000000110
001001001101	6	589	0.1818	00000000110
000001010000	7	80	0.3182	00000000110
111100101111	8	3887	0.1364	00000000110
000101000011	9	323	0.1818	00000000110
111001010010	10	3666	0.1818	00000000110
1000000000000	11	2048	0.2727	00000000110
000011001111	12	207	0.1818	00000000110
110000110100	13	3124	0.0000	00000000110
000011011001	14	217	0.1818	00000000110
010010011010	15	1178	0.1364	00000000110
001111001011	16	971	0.0000	001000000110
111000001000	17	3592	0.0000	00000010110
100110011100	18	2460	0.0909	00000000110
011111000011	19	1987	0.1364	00000000110
001010001101	20	653	0.2273	00000000110

- KHOI TAO: Gia tri tot nhat = 0.318 ca the thu 7 tai vi tri 80 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 6 trong van ban
- Thời gian thực hiện (%second): 38

Test 10:

KHỞI TẠO	Cá thể	Vị trí H	Iàm mục tiêu	KẾT THÚC
110010100100	1	3236	0.0455	010001001001
101001111000	2	2680	0.2273	010001001000
001101000010	3	834	0.3182	010001001000
100001111010	4	2170	0.1818	010001001001
110111110000	5	3568	0.0000	010001001000
111110011000	6	3992	0.1364	010001001000
110001010010	7	3154	0.0000	010001001000

100111100100	8	2532	0.1818	010001001000
011101001000	9	1864	0.2273	010001001000
000011000111	10	199	0.1818	010001001000
011110000011	11	1923	0.1818	010001001000
001000100110	12	550	0.2727	010001001000
000100111111	13	319	0.0455	010001001000
110010100000	14	3232	0.0455	010001001001
011001010101	15	1621	0.1364	010001001001
011001010011	16	1619	0.1364	010001001000
010001100001	17	1121	0.3182	010001001000
101111101111	18	3055	0.1818	010001001000
101101010011	19	2899	0.0455	010001001000
101001001101	20	2637	0.1364	010001001000

- KHOI TAO: Gia tri tot nhat = 0.318 ca the thu 3 tai vi tri 834 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.500 ca the thu 2 tai vi tri 1096 trong van ban
- Thời gian thực hiện (%second): 33

Test 11:

<u>rest 11:</u>				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
001101001111	1	847	0.1818	000100001011
000100001111	2	271	0.0909	000100000011
101011100111	3	2791	0.1364	000100000011
111010110011	4	3763	0.1818	000100000011
011100110001	5	1841	0.1364	000100000011
101101010101	6	2901	0.0455	000100000011
011011001010	7	1738	0.0909	000100000011
001000011101	8	541	0.1818	000110000011
101100011001	9	2841	0.2273	000100000011
010101011011	10	1371	0.1818	000100000011
111111011110	11	4062	0.3182	000100000111
111011111101	12	3837	0.1818	000100000011
110000101001	13	3113	0.0000	000100000011
011110000000	14	1920	0.1364	000100000011
011010000011	15	1667	0.1818	000100000011
010111111111	16	1535	0.4091	000100000011
011001010111	17	1623	0.1364	000100000011
010110011100	18	1436	0.0000	000100010011
000001100110	19	102	0.2273	000100000011
001000011011	20	539	0.1364	000100000011

- KHOI TẠO: Gia tri tot nhat = 0.409 ca the thu 16 tai vi tri 1535 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.500 ca the thu 2 tai vi tri 259 trong van ban

- Thời gian thực hiện (%second): 33

Test 12:

ZUČLTAO	0/113	77' / / TT	٧.٧	zér ruío
KHỞI TẠO	Cá thể	Vị tri H	àm mục tiêu	KÊT THÚC
10111111111	1	3071	0.0909	00000000110
011111101010	2	2026	0.1364	000000000110
000011001111	3	207	0.1818	000000000110
100000011110	4	2078	0.1364	000000000110
010110100001	5	1441	0.0000	000000000110
101111100101	6	3045	0.0000	000000000100
111100001011	7	3851	0.0909	000000000110
001010011010	8	666	0.3182	000000000110
011011100100	9	1764	0.2273	000000000110
111011001000	10	3784	0.1818	000001000110
011101100011	11	1891	0.1364	000000000110
010101101101	12	1389	0.0000	000000000110
111101111110	13	3966	0.1364	000000000110
101110010001	14	2961	0.0909	000000000110
100010110101	15	2229	0.1818	000000000110
010101110111	16	1399	0.0000	000000000110
000000001011	17	11	0.3182	000000000110
000001011110	18	94	0.2273	000000000110
100011110010	19	2290	0.1364	000100000110
100111110101	20	2549	0.1364	00000000110

- KHOI TAO: Gia tri tot nhat = 0.318 ca the thu 8 tai vi tri 666 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 6 trong van ban
- Thời gian thực hiện (%second): 39

Test 13:

1 CSt 13.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
100111111110	1	2558	0.1364	001110001001
011100000010	2	1794	0.0455	001110001101
101100111010	3	2874	0.2273	001110001001
111111100000	4	4064	0.1818	001110001001
000100111011	5	315	0.1818	001110001001
110010011101	6	3229	0.0000	001110001001
111001111000	7	3704	0.2273	001110001001
001110111001	8	953	0.3636	001110001001
011001000000	9	1600	0.1818	011110001001
101101011101	10	2909	0.0909	001110001001
101001100000	11	2656	0.0909	001110001001
110010011001	12	3225	0.0000	011110001001

000111100011	13	483	0.1818	001110001001
101011101010	14	2794	0.1818	001110001001
010010100010	15	1186	0.0455	001110101001
010001000100	16	1092	0.2273	001110001001
100001010001	17	2129	0.1364	001110001001
011100010010	18	1810	0.2273	001110001001
100100101000	19	2344	0.0909	001110001101
011011100001	20	1761	0.2727	001110001001

- KHOI TAO: Gia tri tot nhat = 0.364 ca the thu 8 tai vi tri 953 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.636 ca the thu 1 tai vi tri 905 trong van ban
- Thời gian thực hiện (%second): 38

Test 14:

103117.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KÊT THÚC
010100001110	1	1294	0.1364	001101000110
011111100110	2	2022	0.1818	001101000110
01000000110	3	1030	0.0000	001101100110
110010110010	4	3250	0.0455	001101000110
110000100011	5	3107	0.0000	001101000110
011101000010	6	1858	0.1818	001101000100
011101011001	7	1881	0.2273	001101000110
010001100110	8	1126	0.1364	001101001110
010000001111	9	1039	0.0000	001101000110
111110011010	10	3994	0.1364	001101000110
010011111010	11	1274	0.1818	001101000110
101000100111	12	2599	0.1818	001101000110
000011110001	13	241	0.1364	001101000110
100111100110	14	2534	0.1818	001101000110
101001101011	15	2667	0.0909	001101000110
000000001111	16	15	0.0909	001101000111
100111011011	17	2523	0.2273	001101000110
110110111101	18	3517	0.0000	001100000110
100111111111	19	2559	0.1364	001101000110
010010101001	20	1193	0.1818	001101000110

- KHOI TAO: Gia tri tot nhat = 0.227 ca the thu 7 tai vi tri 1881 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.500 ca the thu 1 tai vi tri 838 trong van ban
- Thời gian thực hiện (%second): 32

Test 15:

KHỞI TẠO (Cá thể	Vị trí H	Iàm mục tiêu	KẾT THÚC
001110111001	1	953	0.3636	000001111111
010011101110	2	1262	0.2727	010001011101

001100000111	3	775	0.1364	010001011101
101100001011	4	2827	0.2273	010001011101
110100010110	5	3350	0.0000	010001011110
011010101011	6	1707	0.1818	010001111101
001001111111	7	639	0.1818	010001011100
010001011010	8	1114	0.4545	010001011101
011001111011	9	1659	0.2727	010001011101
100011111011	10	2299	0.1818	010001111101
110001100011	11	3171	0.0909	010001011110
100011100101	12	2277	0.1818	010001011101
110110000001	13	3457	0.1818	011001011101
001000011101	14	541	0.1818	010001011101
000101100000	15	352	0.0909	010001011101
101111110000	16	3056	0.2273	010001010101
010100010101	17	1301	0.2727	010001011101
110001101001	18	3177	0.0455	010001011110
100111110000	19	2544	0.1364	010001011101
000000100100	20	36	0.2727	010001011101

⁻ KHOI TAO: Gia tri tot nhat = 0.455 ca the thu 8 tai vi tri 1114 trong van ban

⁻ KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 2 tai vi tri 1117 trong van ban

⁻ Thời gian thực hiện (%second): 43

Test 16:

1 est 10.				
KHỞI TẠO	Cá thể	Vị trí H	Iàm mục tiêu	KẾT THÚC
011011101010	1	1770	0.3636	010111100001
110000111011	2	3131	0.0000	010111100001
000100001101	3	269	0.1364	010111100001
111101111101	4	3965	0.1818	010111100001
101000001111	5	2575	0.1818	010001100001
110010101000	6	3240	0.0909	010111100001
101011110100	7	2804	0.1364	010111110001
101110111000	8	3000	0.0000	010111100001
110000110110	9	3126	0.0000	010011100001
011101111110	10	1918	0.1818	010111100001
111010010011	11	3731	0.2273	010111100001
011001011001	12	1625	0.1364	010111100001
010001110010	13	1138	0.0909	010111100001
010111100011	14	1507	0.3182	010111100001
100111111000	15	2552	0.1364	010011100001
010101000101	16	1349	0.1818	010111100001
101100101000	17	2856	0.2273	010111100001
011010100011	18	1699	0.1364	000111100001
010010011101	19	1181	0.1364	010111100001
001110010101	20	917	0.2273	010111100000

- KHOI TAO: Gia tri tot nhat = 0.364 ca the thu 1 tai vi tri 1770 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.455 ca the thu 1 tai vi tri 1505 trong van ban
- Thời gian thực hiện (%second): 38

Test 17:

1656 17.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
101001100100	1	2660	0.1818	001110001001
100100111101	2	2365	0.2727	001110001001
111100011110	3	3870	0.0909	001110001001
110111111001	4	3577	0.0000	001110001001
011011110011	5	1779	0.0909	001100001001
110110001111	6	3471	0.0000	001110001001
010100110001	7	1329	0.3182	001110001001
110010000110	8	3206	0.0000	001110001001
111011011011	9	3803	0.2727	001110001001
001101101001	10	873	0.1818	001110001001
010101100011	11	1379	0.0909	101110001001
001100001110	12	782	0.2727	001110001001

011100111110	13	1854	0.1364	001110001001
101101000001	14	2881	0.0909	001110001001
100011011101	15	2269	0.2273	001110001001
111010101101	16	3757	0.2273	001110001001
110011100111	17	3303	0.0909	001110001001
111001011110	18	3678	0.1364	001110001001
10000000011	19	2051	0.1364	001110001001
110101101100	20	3436	0.0909	001110001001

- KHOI TAO: Gia tri tot nhat = 0.318 ca the thu 7 tai vi tri 1329 trong van ban
- KÉT THÚC: Gia tri tot nhat = 0.636 ca the thu 1 tai vi tri 905 trong van ban
- Thời gian thực hiện (%second): 33

Test 18:

1656 10.				, ,
KHỞI TẠO	Cá thể	Vị trí H	làm mục tiêu	KÊT THÚC
101111110111	1	3063	0.4545	101111110110
011001010010	2	1618	0.1364	101111110111
011011101000	3	1768	0.3182	101111110110
001111101100	4	1004	0.0000	101111110110
001011101001	5	745	0.1364	101111110110
100000111110	6	2110	0.1364	101111110110
110111101001	7	3561	0.0000	101101100110
101000000010	8	2562	0.1364	101111110110
011111011011	9	2011	0.0455	101111110110
000111000101	10	453	0.2273	101111110110
000001010110	11	86	0.1818	101111110110
010011101110	12	1262	0.2727	101111110110
001010001101	13	653	0.2273	101111110110
100111100101	14	2533	0.1364	101111110110
000110101111	15	431	0.2273	101111110100
010011001010	16	1226	0.2273	101111110110
111001001111	17	3663	0.1818	100111110110
100001101010	18	2154	0.1818	101111110110
111001110110	19	3702	0.1818	101111110110
100010101101	20	2221	0.1364	101110110110

- KHOI TAO: Gia tri tot nhat = 0.455 ca the thu 1 tai vi tri 3063 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 3062 trong van ban
- Thời gian thực hiện (%second): 39

Test 19:

KHỞI TẠO (Cá thể	Vị trí H	àm mục tiêu	KẾT THÚC
11011111111	1	3583	0.0000	000000000110
101010010101	2	2709	0.1818	000000000110

101111010011	3	3027	0.0000	000000000110
111010000101	4	3717	0.1364	000000000110
110100011111	5	3359	0.0455	000000000110
100000101100	6	2092	0.1364	000000000110
000110100100	7	420	0.1364	000000000110
111010111010	8	3770	0.1818	000000000110
010101010010	9	1362	0.1364	000000000110
010000110110	10	1078	0.1364	000000000110
000110010101	11	405	0.2273	000000000110
100010101101	12	2221	0.1364	000000000110
111111111011	13	4091	0.1818	001000000110
000100100000	14	288	0.2727	000000000110
101100100100	15	2852	0.1364	000000000110
001110010001	16	913	0.1364	000000000110
100000000101	17	2053	0.2727	000000000110
101111011010	18	3034	0.0000	000000000110
101010001111	19	2703	0.1818	000000000110
000011110000	20	240	0.0455	000000000110

- KHOI TAO: Gia tri tot nhat = 0.273 ca the thu 14 tai vi tri 288 trong van ban
- KÉT THÚC: Gia tri tot nhat = 1.000 ca the thu 1 tai vi tri 6 trong van ban
- Thời gian thực hiện (%second): 38

Test 20:

1 CSt 20.				
KHỞI TẠO	Cá thể	Vị trí H	àm mục tiêu	KÉT THÚC
110111101111	1	3567	0.0000	101101111001
011111111100	2	2044	0.1364	101001111001
011111011110	3	2014	0.0455	101001111001
011101001100	4	1868	0.1818	101001111001
000011011010	5	218	0.2273	101001111001
100100110111	6	2359	0.2273	101101111001
110110001100	7	3468	0.0000	101001111001
001010111000	8	696	0.1818	101001111001
101000111011	9	2619	0.1364	101001111001
100101101011	10	2411	0.1818	101001111001
101000011010	11	2586	0.1818	111001111001
110100110001	12	3377	0.1364	101001111001
000101110100	13	372	0.2273	101001111001
011000011100	14	1564	0.1364	101001111001
010010011110	15	1182	0.1364	101001111001
001010001011	16	651	0.1818	101001111001
010011100000	17	1248	0.2273	101001111001

100110011011	18	2459	0.1364	101001111001
011101000100	19	1860	0.1818	101001111001
000100001110	20	270	0.0909	101001111001

- KHOI TAO: Gia tri tot nhat = 0.227 ca the thu 5 tai vi tri 218 trong van ban
- $K\hat{E}T$ THÚC: Gia tri tot nhat = 0.364 ca the thu 2 tai vi tri 2681 trong van ban
- Thời gian thực hiện (%second): 32

F1 Help F2 Save F3 Open Alt+F9 Compile F9 Make Alt+F10 Local menu

Thu nghiem di truyen 1

Nhap gia tri Nguong (0=<Nguong<=1): 1

So lan dat cuc dai (Vuot nguong): 10

So The he tien hoa: 100↓

```
TheHe Max CaThe ViTri(trong van ban)
 KT 0.455 9
                3743
TheHe Max CaThe ViTri(trong van ban)
KT 0.818 14
                 826
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 4
                767
 3
   1.000 1
              1117
   1.000
 4
          5
              1117
   1.000 2
 5
              1117
 6
   1.000 1
              1117
 7
   1.000 1
              1117
 8
   1.000 1
              1117
 9
   1.000
              1117
10 1.000
          1
               1117
11 1.000
          2
               1117
12
   1.000
               1117
          1
13 1.000
               1117
          1
14 1.000
               1117
          1
15
   1.000
               1117
    1.000
               1117
16
           1
               1117
17
   1.000
          3
18 1.000
          1
               1117
19
    1.000
           1
               1117
20 1.000
               1117
          1
21
               1117
    1.000
               1117
22
    1.000
           1
23
    1.000
          2
               1117
24
    1.000
          2
               1117
25
    1.000
               1117
26
    1.000
           1
               1117
27
    1.000
          1
               1117
28
               1117
    1.000
          1
29
    1.000
           1
               1117
               1117
30 1.000
          5
31
   1.000
          2
               1117
32
    1.000
           1
               1117
33
    1.000
           1
               1117
34
    1.000
          1
               1117
```

35 1.000

36	1.000	1	1117
37	1.000	2	1117
38	1.000	1	1117
39	1.000	1	1117
40	1.000	1	1117
41	1.000	3	1117
42	1.000	1	1117
43	1.000	1	1117
44	1.000	1	1117
45	1.000	1	1117
46	1.000	1	1117
47	1.000	1	1117
48	1.000	2	1117
49	1.000	2	1117
50	1.000	2	1117
51	1.000	1	1117
52	1.000	2	1117
53	1.000	4	1117
54	1.000	1	1117
55	1.000	1	1117
56	1.000	9	1117
57	1.000	1	1117
58	1.000	1	1117
59	1.000	1	1117
60	1.000	1	1117
61	1.000	2	1117
62	1.000	2	1117
63	1.000	2	1117
64	1.000	1	1117
65	1.000	1	1117
66	1.000	2	1117
67	1.000	3	1117
68	1.000	1	1117
69	1.000	1	1117
70	1.000	1	1117
71	1.000	1	1117
72	1.000	1	1117
73	1.000	1	1117
74	1.000	1	1117
75	1.000	1	1117
76	1.000	1	1117
77	1.000	1	1117
78	1.000	1	1117
79	1.000	1	1117

```
1.000
80
         2
              1117
81
   1.000
          1
               1117
82 1.000
          1
               1117
   1.000
               1117
83
84 1.000
          1
              1117
85
   1.000
          3
              1117
              1117
86
   1.000
          1
87
    1.000
          2
              1117
88 1.000
              1117
          1
89
   1.000
          1
              1117
90
   1.000
          1
              1117
              1117
91
   1.000
          3
92 1.000
              1117
          1
93
   1.000
          1
              1117
94 1.000
          1
              1117
95 1.000
          1
              1117
96 1.000
              1117
97 1.000
          1
              1117
               1117
98 1.000
          1
99 1.000
          1
               1117
100 1.000 1
               1117
```

Lan lap thu: 3

Dat vuot nguong 98 the he

Lan dat vuot nguong thu 1

Thoi gian thuc hien (% second): 976

TheHe Max CaThe ViTri(trong van ban)

KT	0.727	2	79
8	1.000	6	76
9	1.000	11	76
10	1.000	7	76
11	1.000	7	76
12	1.000	5	76
14	1.000	4	76
15	1.000	2	76
16	1.000	3	76
17	1.000	9	76
18	1.000	1	76
19	1.000	7	76
20	1.000	10	76
21	1.000	1	76
22	1.000	2	76
23	1.000	1	76
24	1.000	2	76
25	1.000	2	76

26	1.000	10	76
27	1.000	9	76
28	1.000	2	76
29	1.000	6	76
30	1.000	5	76
31	1.000	4	76
32	1.000	3	76
33	1.000	2	76
34	1.000	2	76
35	1.000	1	76
36	1.000	1	76
37	1.000	2	76
38	1.000	2	76
39	1.000	1	76
40	1.000	2	76
41	1.000	1	76
42	1.000	1	76
43	1.000	1	76
44	1.000	1	76
45	1.000	1	76
46	1.000	1	76
47	1.000	1	76
48	1.000	6	76
49	1.000	2	76
50	1.000	2	76
51	1.000	1	76
52	1.000	1	76
53	1.000	1	76
54	1.000	2	76
55	1.000	1	76
56	1.000	1	76
57	1.000	2	76
58	1.000	1	76
59	1.000	1	76
60	1.000	1	76
61	1.000	1	76
62	1.000	1	76
63	1.000	1	76
64	1.000	2	76
65	1.000	1	76
66	1.000	2	76
67	1.000	1	76
68	1.000	1	76
69	1.000	2	76

```
1.000
                 76
70
           1
71
     1.000
            2
                 76
72
    1.000
           1
                 76
73
     1.000
                 76
74
    1.000
            1
                 76
75
    1.000
           1
                 76
76
    1.000
                 76
77
     1.000
            2
                 76
78
            5
                 76
    1.000
79
    1.000
            3
                 76
80
    1.000
            3
                 76
81
     1.000
            1
                 76
82
            3
                 76
    1.000
83
    1.000
                 76
84 1.000
                 76
            1
85
    1.000
            4
                 76
86
    1.000
                 76
87
     1.000
                 76
            1
88
    1.000
                 76
89
    1.000
                 76
90
    1.000
                 76
            1
91
     1.000
                 76
            1
                 76
92 1.000
           1
93
    1.000
                 76
            1
94 1.000
                 76
            1
95 1.000
                 76
96 1.000
           1
                 76
97 1.000
            1
                 76
98 1.000
           1
                 76
99
     1.000
           1
                 76
100 1.000 2
                  76
Lan lap thu: 4
Dat vuot nguong 92 the he
Lan dat vuot nguong thu 2
Thoi gian thuc hien (% second): 237
TheHe Max CaThe ViTri(trong van ban)
KT 0.455
           3
                 1719
12
    1.000 19
                  76
13 1.000
                 76
    1.000
                 76
14
           7
15
    1.000
            5
                 76
```

 1.000

1.000

1.000

19	1.000	4	76
20	1.000	1	76
21	1.000	1	76
22	1.000	1	76
23	1.000	2	76
24	1.000	3	76
25	1.000	1	76
26	1.000	2	76
27	1.000	2	76
28	1.000	1	76
29	1.000	1	76
30	1.000	1	76
31	1.000	1	76
32	1.000	1	76
33	1.000	1	76
34	1.000	1	76
35	1.000	1	76
36	1.000	1	76
37	1.000	2	76
38	1.000	1	76
39	1.000	1	76
40	1.000	1	76
41	1.000	1	76
42	1.000	1	76
43	1.000	1	76
44	1.000	1	76
45	1.000	1	76
46	1.000	1	76
47	1.000	1	76
48	1.000	1	76
49	1.000	1	76
50	1.000	1	76
51	1.000	1	76
52	1.000	1	76
53	1.000	1	76
54	1.000	1	76
55	1.000	1	76
56	1.000	1	76
57	1.000	1	76
58	1.000	1	76
59	1.000	1	76
60	1.000	1	76
61	1.000	1	76
62	1.000	1	76

```
76
63
     1.000
            3
64
     1.000
            2
                  76
65
     1.000
            4
                  76
66
     1.000
            1
                  76
67
     1.000
            1
                  76
68
     1.000
            1
                  76
69
     1.000
                  76
70
     1.000
            1
                  76
71
                  76
     1.000
            3
72
     1.000
            1
                  76
73
     1.000
            1
                  76
74
     1.000
            1
                  76
75
                  76
     1.000
            1
76
     1.000
            1
                  76
77
     1.000
                  76
            1
78
     1.000
            1
                  76
79
     1.000
                  76
80
     1.000
                  76
            1
81
     1.000
            3
                  76
82
     1.000
                  76
83
                  76
     1.000
            1
84
     1.000
                  76
            1
                  76
85
     1.000
            1
86
     1.000
                  76
            1
87
     1.000
                  76
88
                  76
     1.000
89
     1.000
            1
                  76
90
     1.000
            1
                  76
91
     1.000
            1
                  76
92
     1.000
            1
                  76
93
     1.000
                  76
94
     1.000
            1
                  76
95 1.000
            1
                  76
96
    1.000
                  76
            1
97
                  76
     1.000
            4
98 1.000
            1
                  76
99
     1.000
                  76
100 1.000 1
                   76
Lan lap thu: 5
Dat vuot nguong 89 the he
Lan dat vuot nguong thu 3
Thoi gian thuc hien (% second): 38
```

TheHe Max CaThe ViTri(trong van ban)

KT 0.545 19

100 1.000 9 1537

Lan lap thu: 6

Dat vuot nguong 1 the he

Lan dat vuot nguong thu 4

Thoi gian thuc hien (% second): 22

TheHe Max CaThe ViTri(trong van ban)

1.000

1.000

```
76
67
     1.000
            1
68
     1.000
            2
                  76
69
     1.000
            1
                  76
70
     1.000
                  76
71
     1.000
            1
                  76
72
     1.000
            1
                  76
73
     1.000
                  76
74
     1.000
            1
                  76
75
                  76
     1.000
            1
76
     1.000
            1
                  76
77
     1.000
            1
                  76
78
     1.000
            2
                  76
79
     1.000
                  76
            1
80
    1.000
            1
                  76
81
     1.000
            2
                  76
82
    1.000
            1
                  76
83
     1.000
            2
                  76
84
     1.000
            2
                  76
85
     1.000
            1
                  76
86
     1.000
            1
                  76
87
                  76
     1.000
            1
88
     1.000
                  76
            1
                  76
89
     1.000
            2
90
     1.000
                  76
            1
91
     1.000
            2
                  76
92
    1.000
                  76
            4
93
     1.000
            1
                  76
94
    1.000
            2
                  76
95
            2
    1.000
                  76
                  76
96 1.000
97
     1.000
            1
                  76
98
     1.000
            1
                  76
99
     1.000
            1
                  76
100 1.000 1
                  76
Lan lap thu: 7
Dat vuot nguong 71 the he
Lan dat vuot nguong thu 5
Thoi gian thuc hien (% second): 22
TheHe Max CaThe ViTri(trong van ban)
KT 0.636 8
                 3058
 1
    1.000 11
                 3062
 2
    1.000 1
                3062
```

1.000 1

1.000

5	1.000	3	3062
6	1.000	1	3062
7	1.000	2	3062
8	1.000	1	3062
9	1.000	1	3062
10	1.000	2	3062
11	1.000	2	3062
12	1.000	3	3062
13	1.000	1	3062
14	1.000	2	3062
15	1.000	1	3062
16	1.000	1	3062
17	1.000	2	3062
18	1.000	2	3062
19	1.000	2	3062
20	1.000	1	3062
21	1.000	2	3062
22	1.000	1	3062
23	1.000	1	3062
24	1.000	1	3062
25	1.000	1	3062
26	1.000	1	3062
27	1.000	1	3062
28	1.000	1	3062
29	1.000	2	3062
30	1.000	1	3062
31	1.000	1	3062
32	1.000	1	3062
33	1.000	1	3062
34	1.000	1	3062
35	1.000	1	3062
36	1.000	1	3062
37	1.000	1	3062
38	1.000	1	3062
39	1.000	1	3062
40	1.000	1	3062
41	1.000	1	3062
42	1.000	1	3062
43	1.000	3	3062
44	1.000	1	3062
44	1.000	2	3062
45	1.000	1	
46 47			3062
	1.000	1	3062
48	1.000	2	3062

49	1.000	1	3062
50	1.000	1	3062
51	1.000	1	3062
52	1.000	1	3062
53	1.000	1	3062
54	1.000	1	3062
55	1.000	2	3062
56	1.000	1	3062
57	1.000	1	3062
58	1.000	1	3062
59	1.000	1	3062
60	1.000	1	3062
61	1.000	1	3062
62	1.000	1	3062
63	1.000	1	3062
64	1.000	1	3062
65	1.000	1	3062
66	1.000	1	3062
67	1.000	2	3062
68	1.000	1	3062
69	1.000	1	3062
70	1.000	1	3062
71	1.000	1	3062
72	1.000	2	3062
73	1.000	1	3062
74	1.000	1	3062
75	1.000	1	3062
76	1.000	1	3062
77	1.000	2	3062
78	1.000	2	3062
79	1.000	6	3062
80	1.000	4	3062
81	1.000	3	3062
82	1.000	3	3062
83	1.000	1	3062
84	1.000	3	3062
85	1.000	1	3062
86	1.000	2	3062
87	1.000	3	3062
88	1.000	1	3062
89	1.000	1	3062
90	1.000	1	3062
91	1.000	4	3062
92	1.000	1	3062

```
3062
93
    1.000
           3
94
    1.000
            2
                3062
95 1.000
                3062
            1
                3062
96 1.000
97 1.000
            1
                3062
98 1.000
            1
                3062
99 1.000
           1
                3062
100 1.000 1
                 3062
Lan lap thu: 8
Dat vuot nguong 100 the he
Lan dat vuot nguong thu 6
Thoi gian thuc hien (% second): 28
TheHe Max CaThe ViTri(trong van ban)
KT 0.455
            6
                  359
TheHe Max CaThe ViTri(trong van ban)
KT 0.727 18
                   79
 7
    1.000 5
                 76
 8
    1.000 4
                 76
 9
    1.000
           5
                 76
10
    1.000
           5
                 76
    1.000
                  76
11
           17
13
    1.000
            8
                 76
                 76
14
    1.000
15
    1.000
                 76
            4
    1.000
                 76
16
            1
                 76
17
     1.000
18
    1.000
            8
                 76
19
     1.000
            4
                 76
20
    1.000
            5
                 76
21
     1.000
            3
                 76
22
            2
     1.000
                 76
23
     1.000
            1
                 76
24
    1.000
            1
                 76
25
                 76
    1.000
            1
                 76
26
     1.000
            1
27
     1.000
            1
                 76
28
    1.000
            2
                 76
29
     1.000
            1
                 76
30
    1.000
            2
                 76
31
    1.000
                 76
            1
32
     1.000
            1
                 76
33
     1.000
            2
                 76
```

1.000

1.000

36	1.000	1	76
37	1.000	1	76
38	1.000	2	76
39	1.000	1	76
40	1.000	1	76
41	1.000	1	76
42	1.000	2	76
43	1.000	1	76
44	1.000	1	76
45	1.000	2	76
46	1.000	9	76
47	1.000	5	76
48	1.000	15	76
49	1.000	12	76
50	1.000	4	76
51	1.000	6	76
52	1.000	12	76
53	1.000	6	76
54	1.000	8	76
55	1.000	5	76
56	1.000	1	76
57	1.000	2	76
58	1.000	1	76
59	1.000	2	76
60	1.000	1	76
61	1.000	2	76
62	1.000	1	76
63	1.000	1	76
64	1.000	1	76
65	1.000	1	76
66	1.000	1	76
67	1.000	2	76
68	1.000	1	76
69	1.000	1	76
70	1.000	1	76
71	1.000	1	76
72	1.000	1	76
73	1.000	2	76
74	1.000	1	76
75	1.000	1	76
76	1.000	1	76
77	1.000	3	76
78	1.000	1	76
79	1.000	1	76

```
80
    1.000
           1
                 76
81
    1.000
           1
                 76
82 1.000
                 76
           1
83
    1.000
                 76
84 1.000
           1
                 76
85
    1.000
           3
                 76
    1.000
                 76
86
87
    1.000
           1
                 76
88 1.000
                 76
           1
89
    1.000
                 76
           1
90
    1.000
           1
                 76
91
    1.000
           2
                 76
                 76
92 1.000
           1
93
    1.000
           1
                 76
94 1.000
           2
                 76
95 1.000
                 76
           1
96 1.000
                 76
97 1.000
                 76
           1
98 1.000
           1
                 76
99 1.000
                 76
100 1.000
           1
                 76
Lan lap thu: 10
Dat vuot nguong 93 the he
Lan dat vuot nguong thu 7
Thoi gian thuc hien (% second): 77
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 5
                3067
TheHe Max CaThe ViTri(trong van ban)
KT 0.818 7
                  8
 7
   1.000 12
                 76
 8
   1.000 3
                76
 9
   1.000 10
                 76
10 1.000 11
                 76
   1.000 17
                 76
11
12
    1.000 2
                 76
13 1.000 9
                 76
TheHe Max CaThe ViTri(trong van ban)
KT 0.455 11
                 2367
TheHe Max CaThe ViTri(trong van ban)
KT 0.455
           7
                1243
13 1.000 19
                1117
14
    1.000
          7
                1117
    1.000 12
15
                1117
    1.000
                1117
16
           1
```

17	1.000	2	1117
18	1.000	1	1117
19	1.000	3	1117
20	1.000	2	1117
21	1.000	1	1117
22	1.000	1	1117
23	1.000	2	1117
24	1.000	1	1117
25	1.000	1	1117
26	1.000	1	1117
27	1.000	3	1117
28	1.000	2	1117
29	1.000	1	1117
30	1.000	1	1117
31	1.000	1	1117
32	1.000	2	1117
33	1.000	2	1117
34	1.000	1	1117
35	1.000	1	1117
36	1.000	1	1117
37	1.000	1	1117
38	1.000	2	1117
39	1.000	2	1117
40	1.000	1	1117
41	1.000	1	1117
42	1.000	1	1117
43	1.000	1	1117
44	1.000	1	1117
45	1.000	1	1117
46	1.000	1	1117
47	1.000	1	1117
48	1.000	1	1117
49	1.000	2	1117
50	1.000	1	1117
51	1.000	1	1117
52	1.000	1	1117
53	1.000	1	1117
54	1.000	1	1117
55	1.000	2	1117
56	1.000	1	1117
57	1.000	1	1117
58	1.000	1	1117
59	1.000	1	1117
60	1.000	1	1117

```
1.000
61
            1
                 1117
62
     1.000
            2
                 1117
63
     1.000
            1
                 1117
64
     1.000
                 1117
65
     1.000
            1
                 1117
66
     1.000
            1
                 1117
67
     1.000
                 1117
            1
68
     1.000
            1
                 1117
                 1117
69
     1.000
            1
70
     1.000
            1
                 1117
71
     1.000
            1
                 1117
72
     1.000
            1
                 1117
73
     1.000
                 1117
74
     1.000
            1
                 1117
75
     1.000
            1
                 1117
76
     1.000
            1
                 1117
77
     1.000
                 1117
78
     1.000
            2
                 1117
79
     1.000
            1
                 1117
80
     1.000
            1
                 1117
81
     1.000
                 1117
            1
82
     1.000
            1
                 1117
83
     1.000
            1
                 1117
84
     1.000
                 1117
            1
85
     1.000
                 1117
            1
                 1117
86
     1.000
            1
87
     1.000
            1
                 1117
88
     1.000
            2
                 1117
89
     1.000
            1
                 1117
90
     1.000
            1
                 1117
91
            2
     1.000
                 1117
92
     1.000
            1
                 1117
93
     1.000
            1
                 1117
94
     1.000
            1
                 1117
            2
                 1117
95
     1.000
96
    1.000
            1
                 1117
97
     1.000
            3
                 1117
98
     1.000
            1
                 1117
99
     1.000
            1
                 1117
     1.000 1
100
                  1117
Lan lap thu: 14
Dat vuot nguong 88 the he
```

Thoi gian thuc hien (% second): 22

Lan dat vuot nguong thu 8

TheHe Max CaThe ViTri(trong van ban) KT1.000 11 1.000 2 1.000

1.000

```
43
    1.000
           6
                 1117
44
     1.000
            2
                 1117
45
     1.000
            1
                 1117
46
     1.000
            1
                 1117
47
     1.000
            3
                 1117
48
     1.000
            2
                 1117
49
     1.000
                 1117
            1
50
     1.000
            3
                 1117
59
     1.000
            9
                 1117
72
     1.000
           15
                 1117
73
     1.000
           15
                 1117
74
     1.000
            7
                 1117
75
           15
     1.000
                 1117
76
     1.000
            7
                 1117
77
     1.000
            2
                 1117
78
     1.000
            4
                 1117
79
     1.000
                 1117
80
     1.000
            1
                 1117
81
     1.000
            6
                 1117
82
     1.000
                 1117
            1
83
     1.000
            1
                 1117
84
     1.000
                 1117
            1
85
     1.000
            1
                 1117
86
     1.000
            1
                 1117
87
     1.000
                 1117
            4
88
     1.000
                 1117
89
     1.000
            4
                 1117
90
     1.000
            3
                 1117
91
     1.000
            1
                 1117
92
     1.000
                 1117
93
     1.000
            1
                 1117
94
     1.000
            1
                 1117
95
    1.000
            1
                 1117
96
    1.000
            1
                 1117
97
     1.000
            1
                 1117
98 1.000
            1
                 1117
99
     1.000
            1
                 1117
100 1.000 2
                 1117
Lan lap thu: 15
Dat vuot nguong 80 the he
Lan dat vuot nguong thu 9
Thoi gian thuc hien (% second): 71
```

TheHe Max CaThe ViTri(trong van ban)

KT 0.636 19

```
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 17
                 1532
TheHe Max CaThe ViTri(trong van ban)
KT 0.455 20
                 1069
16
    1.000 16
                1117
17 1.000
           6
                1117
18
    1.000
                1117
           1
19
    1.000
                1117
                1117
20 1.000
           3
21
    1.000
           1
                1117
22
    1.000
           3
                1117
23
    1.000
           3
                1117
24
    1.000
           1
                1117
25
    1.000
                1117
    1.000
           2
                1117
26
27
    1.000
           2
                1117
28
    1.000
                1117
29
    1.000
           2
                1117
           2
30
    1.000
                1117
31
    1.000
                1117
32
                1117
    1.000
           1
                1117
33
    1.000
           1
34
    1.000
                1117
35
    1.000
           3
                1117
    1.000
           2
                1117
36
37
                1117
    1.000
38
    1.000
                1117
39
    1.000
           1
                1117
40
    1.000
           1
                1117
41
    1.000
           1
                1117
42
    1.000
                1117
43
    1.000
           1
                1117
44
    1.000
                1117
45
                1117
    1.000
           1
                1117
46
    1.000
           1
47
    1.000
           1
                1117
48
    1.000
                1117
           1
49
    1.000
           1
                1117
50
    1.000
                1117
51
    1.000
                1117
           1
52
    1.000
           1
                1117
53
    1.000
           1
                1117
                1117
54
    1.000
           1
```

1.000

56 1.000 2 1117 57 1.000 1 1117 58 1.000 1 1117 59 1.000 1 1117 60 1.000 1 1117 61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.				
57 1.000 1 1117 58 1.000 1 1117 59 1.000 1 1117 60 1.000 1 1117 61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 81 1.000 1 1117 82 1.	56	1.000	2	1117
58 1.000 1 1117 59 1.000 1 1117 60 1.000 1 1117 61 1.000 1 1117 61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.				
59 1.000 1 1117 60 1.000 1 1117 61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 84 1.			1	
60 1.000 1 1117 61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.				
61 1.000 1 1117 62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 84 1.000 1 1117 85 1.				
62 1.000 1 1117 63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 87 1.				
63 1.000 1 1117 64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 88 1.				
64 1.000 1 1117 65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 78 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.				
65 1.000 1 1117 66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 89 1.			1	
66 1.000 1 1117 67 1.000 1 1117 68 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 78 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 88 1.000 1 1117 91 1.			1	
67 1.000 1 1117 68 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 78 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 91 1.000 1 1117 92 1.				
68 1.000 1 1117 69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 80 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 91 1.000 1 1117 92 1.			1	
69 1.000 1 1117 70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 78 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.				
70 1.000 1 1117 71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 78 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 94 1.				
71 1.000 1 1117 72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 1 1117 94 1.000 1 1117 95 1.				
72 1.000 1 1117 73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 2 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.				
73 1.000 1 1117 74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.				
74 1.000 1 1117 75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.			1	
75 1.000 1 1117 76 1.000 1 1117 77 1.000 1 1117 78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.				
76 1.000 1 1117 77 1.000 1 1117 78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117				
77 1.000 1 1117 78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117 98 1.000 1 1117				
78 1.000 2 1117 79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117 98 1.000 1 1117			1	
79 1.000 1 1117 80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117			2	
80 1.000 1 1117 81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117		1.000		
81 1.000 1 1117 82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117			1	1117
82 1.000 1 1117 83 1.000 1 1117 84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117			1	1117
84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117		1.000	1	
84 1.000 1 1117 85 1.000 1 1117 86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117			1	
86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117			1	1117
86 1.000 1 1117 87 1.000 1 1117 88 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	85	1.000	1	1117
88 1.000 1 1117 89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	86		1	
89 1.000 1 1117 90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	87	1.000	1	1117
90 1.000 1 1117 91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	88	1.000	1	1117
91 1.000 1 1117 92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	89	1.000	1	1117
92 1.000 2 1117 93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	90	1.000	1	1117
93 1.000 1 1117 94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	91	1.000	1	1117
94 1.000 1 1117 95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	92	1.000	2	1117
95 1.000 1 1117 96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	93	1.000	1	1117
96 1.000 1 1117 97 1.000 2 1117 98 1.000 1 1117	94	1.000	1	1117
97 1.000 2 1117 98 1.000 1 1117	95	1.000	1	1117
98 1.000 1 1117	96	1.000	1	1117
	97	1.000	2	
99 1.000 2 1117	98	1.000	1	1117
	99	1.000	2	1117

100 1.000 1 1117

Lan lap thu: 18

Dat vuot nguong 85 the he Lan dat vuot nguong thu 10

Thoi gian thuc hien (% second): 44

Nhap gia tri Nguong (0=<Nguong<=1): 0.9

So lan dat cuc dai (Vuot nguong): 10

So The he tien hoa: 100↓

```
TheHe Max CaThe ViTri(trong van ban)
```

```
KT 0.727 6
                514
  1.000 16
               6
10 1.000 5
               6
               5
11 0.909
         1
               5
12 0.909
         1
                5
13 0.909 15
14 0.909
          3
               5
               5
15 0.909
         7
               5
16 0.909
         7
               5
17 0.909
         8
               5
18 0.909
         2
19 0.909
               7
         9
               5
20 0.909
         7
               5
21 0.909
         6
               5
22 0.909
         8
27 0.909 19
                5
28 0.909
         8
               5
29 0.909 18
                5
30 0.909 13
                5
31 0.909
         7
               5
32 0.909 10
                5
33 0.909
         20
                5
                5
34 0.909 14
35 1.000 5
               6
36 0.909
               5
         5
                5
37 0.909 13
               5
38 0.909
         1
39 0.909 6
               5
```

5

40 0.909 6

41	0.909	8	5
42	0.909	8 7	5
43	0.909	1	7
44	0.909	2	5 5 7 5 5 6
45	0.909	2 3 17	5
	1.000	3	6
47	1.000	17	6
46 47 48	1.000	10	6
49	0.909	3	7
53	0.909	13	5
53 54	0.909	13 9 15	5
55	0.909	15	5
56	0.909	2 20	5
56 57	0.909	20	5
58	0.909	5	5
59	0.909	4	5
60	0.909	5 4 1	5
59 60 61	0.909	1	5
	0.909	4	6 6 7 5 5 5 5 5 5 5 5 5 5 5
63	1.000	15	6
62 63 64 65 66 67	1.000	4 15 9	
65	1.000	1	6
66	1.000	3	6
67	0.909	1	5
68	0.909	1	6 6 6 5 5
69	1.000	14 3 19 7 9 3	6
70	1.000	3	6
71	1.000	19	6
72	1.000	7	6
73	1.000	9	6
74	1.000	3	6 6 6
68 69 70 71 72 73 74 75	1.000	1	6
76	1.000	6	6
77	1.000	1	6
78	1.000	2	6
79	1.000	2	6
80	1.000	2	6
81	1.000	1	6
82	1.000	1	6
83	1.000	1	6
84	1.000	5	6
85	1.000	9	6
86	1.000	1	6
87	1.000	7	6

```
88
    1.000
           1
                  6
89
     1.000
            6
                  6
90
     1.000
            6
                  6
91
     1.000
                  6
92
     1.000
            6
                  6
93
     1.000
            6
                  6
94
     1.000
            2
                  6
95
     1.000
            2
                  6
96 1.000
            8
                  6
97 1.000
            7
                  6
98
    1.000
            4
                  6
99
     1.000
            3
                  6
                   6
100 1.000 14
Lan lap thu: 1
```

1.000

Dat vuot nguong 85 the he

Lan dat vuot nguong thu 1

Thoi gian thuc hien (% second): 116

TheHe Max CaThe ViTri(trong van ban)

```
KT
   0.545 6
                1542
20
    0.909
          4
                1536
21
    0.909
           5
               1536
23
    0.909
           4
               1536
24 0.909
           2
               1536
25
   0.909
           4
               1536
26
   0.909
           2
                1536
27
    0.909
               1536
           4
54
    1.000
          15
                1537
55
    1.000
           9
                1537
56
    1.000
           1
               1537
57
    1.000
           1
                1537
58
    1.000
           8
               1537
59
    1.000
           5
               1537
60
    1.000
           1
               1537
           2
               1537
61
    1.000
           2
62
    1.000
                1537
63
    1.000
           1
               1537
64
    1.000
           2
               1537
65
    1.000
           1
                1537
    1.000
           2
               1537
66
    1.000
               1537
67
           1
68
    1.000
           1
               1537
69
    1.000
           1
                1537
70
    1.000
                1537
           1
```

```
72 1.000
           1
                1537
73
     1.000
            1
                1537
74
     1.000
            1
                1537
75
    1.000
                1537
76
    1.000
            1
                1537
77
     1.000
           1
                1537
78
    1.000
            2
                1537
79
    1.000
            2
                1537
80
     1.000
                1537
81
     1.000
                1537
           1
82
     1.000
            1
                1537
83
     1.000
            1
                1537
84
     1.000
            1
                1537
85
     1.000
            1
                1537
                1537
86
     1.000
            1
87
           2
                1537
     1.000
88
    1.000
                1537
89
     1.000
                1537
            1
90
    1.000
            2
                1537
91
     1.000
           1
                1537
92
                1537
    1.000
            1
93
     1.000
                1537
           1
94
    1.000
           1
                1537
95 1.000
                1537
            1
96 1.000
                1537
            1
97 1.000
                1537
           1
98 1.000
           1
                1537
99
     1.000
           1
                1537
100 1.000 1
                 1537
Lan lap thu: 2
Dat vuot nguong 54 the he
Lan dat vuot nguong thu 2
Thoi gian thuc hien (% second): 99
TheHe Max CaThe ViTri(trong van ban)
KT 0.727 13
                  1120
TheHe Max CaThe ViTri(trong van ban)
KT 0.818 19
                   8
   0.909 4
                3061
 5
89
    1.000 12
                  76
90 1.000 10
                  76
91
    1.000
           3
                 76
92
    1.000
           1
                 76
     1.000
            2
                 76
93
94
     1.000
           3
                 76
```

```
95 1.000 9
              76
96 1.000 11
               76
97 1.000 2
              76
98 1.000 14
               76
99 1.000 7
              76
100 0.909 12
               77
```

Lan lap thu: 4

Dat vuot nguong 13 the he

Lan dat vuot nguong thu 3

Thoi gian thuc hien (% second): 93 TheHe Max CaThe ViTri(trong van ban)

Thel	He Max	C	CaThe	ViTri(trong v	an
KT	1.000	17	7 ^	76	
1	1.000	9	76		
2	1.000	9	76		
3	1.000	3	76		
4	1.000	1	76		
5	1.000	2	76		
6	1.000	1	76		
7	1.000	3	76		
8	1.000	1	76		
9	1.000	1	76		
10	1.000	1	76	5	
11	1.000	1	76	5	
12	1.000	2	76	5	
13	1.000	1	76	5	
14	1.000	2	76		
15	1.000	1	76		
16	1.000	1	76		
17	1.000	2	76		
18	1.000	1	76		
19	1.000	2	76		
20	1.000	1	76		
21	1.000	1	76		
22	1.000	2	76		
23	1.000	1	76		
24	1.000	2	76		
25	1.000	1	76		
26	1.000	5	76		
27	1.000	3	76		
28	1.000	1	76		
29	1.000	1	76		
30	1.000	1	76		
31	1.000	2	76		
32	1.000	3	6		

33	1.000	1	6
34	1.000	1	76
35	1.000	5	76
36	1.000	1	76
37	1.000	2	76
38	1.000	4	76
39	1.000	1	76
40	1.000	1	76
41	1.000	2	76
42	1.000	1	76
43	1.000	1	76
44	1.000	2	76
45	1.000	1	76
46	1.000	1	76
47	1.000	1	76
48	1.000	1	76
49	1.000	1	76
50	1.000	1	76
51	1.000	1	76
52	1.000	1	76
53	1.000	1	76
54	1.000	1	76
55	1.000	3	76
56	1.000	1	76
57	1.000	1	76
58	1.000	1	76
59	1.000	1	76
60	1.000	2	76
61	1.000	1	76
62	1.000	1	76
63	1.000	1	76
64	1.000	1	76
65	1.000	1	76
66	1.000	1	76
67	1.000	1	76
68	1.000	1	76
69	1.000	2	76
70	1.000	2	76
71	1.000	1	76
72	1.000	1	76
73	1.000	2	76
74	1.000	10	76
75	1.000	4	76
76	1.000	3	76

```
1.000
                 76
77
           5
78
     1.000
            1
                 76
79
     1.000
            2
                 76
80
     1.000
                 76
81
     1.000
            2
                 76
82
     1.000
            2
                 76
83
     1.000
            1
                1117
84
    1.000
            1
                1117
                 76
85
     1.000
            1
86
    1.000
            1
                 76
87
     1.000
            1
                 76
88
     1.000
            1
                 76
89
                 76
    1.000
            1
90
    1.000
            3
                 76
91
     1.000
            2
                 76
92
    1.000
            2
                 76
93
     1.000
                 76
94
     1.000
                 76
            1
95
    1.000
            2
                 76
96 1.000
            2
                 76
97
    1.000
            2
                 76
98 1.000
                 76
99 1.000
                 76
           1
100 1.000 1
                  76
Lan lap thu: 5
Dat vuot nguong 100 the he
Lan dat vuot nguong thu 4
Thoi gian thuc hien (% second): 82
TheHe Max CaThe ViTri(trong van ban)
KT 0.455
            8
                 1769
71
    0.909 15
                  77
72 0.909 11
                  77
73 0.909
           8
                 77
                  77
74 0.909 14
75
    0.909
                 77
           4
76 0.909
            2
                 77
77
    0.909
            3
                 77
                 77
78 0.909
            1
79 0.909
            1
                 77
                 77
80 0.909
```

0.909

0.909

1.000

0.909

```
77
85
    0.909
           1
86
    0.909
            3
                  77
87
    0.909
            3
                 77
                 77
88
    0.909
            1
89
    0.909
            3
                 77
90
    0.909
            1
                 77
91
    0.909
            2
                 77
92
    0.909
            2
                 75
                 77
93
    0.909
           1
94
    1.000
           20
                 1117
95
    1.000
           11
                 1117
96 0.909
            1
                 77
97 0.909
                 77
            1
98 1.000
            8
                  76
99
     1.000
            7
                  76
100 1.000 4
                  76
Lan lap thu: 6
Dat vuot nguong 30 the he
```

Lan dat vuot nguong thu 5

Thoi gian thuc hien (% second): 98

TheHe Max CaThe ViTri(trong van ban)

```
KT
   0.455 3
                1335
10
   0.909 12
                1116
19
   0.909 19
                1118
24 0.909 13
                1118
25
   0.909
          8
               1118
26
    0.909
          7
               1118
27
    0.909
          6
               1118
42 0.909 19
               1118
43
    1.000
          11
                1117
44
   0.909
          11
                1118
45
    0.909
          7
               1118
46
   0.909
          6
               1118
47
    0.909
           2
               1118
48
    0.909
           3
               1118
49
    0.909
          7
               1118
50
    0.909
          2
               1118
51
    0.909
           2
               1118
52
    0.909
               1118
          1
    1.000
               1117
53
           5
54
    1.000
          9
               1117
55
    1.000
           3
               1117
          7
               1117
56
    1.000
```

1.000 15

50	1 000	0	1117
58 59	1.000 1.000	9 16	1117 1117
60	1.000	19	1117
61	0.909	19	1117
62	0.909	1	1116
63	0.909	1	1118
64	0.909	1	1118
65	0.909	2	1118
66	0.909	2	1118
67	0.909	2	1118
68	0.909	1	1118
69	0.909	2	1116
70	0.909	1	1118
71	0.909	1	1116
72	0.909	1	1118
73	0.909	1	1118
74	1.000	7	1117
75	0.909	2	1118
76	0.909	1	1118
77	0.909	1	1118
78	0.909	2	1118
79	0.909	2	1118
80	0.909	1	1118
81	1.000	3	1117
82	1.000	1	1117
83	0.909	1	1118
84	0.909	1	1118
85	0.909	3	1118
86	0.909	1	1118
87	0.909	1	1118
88	0.909	1	1118
89	0.909	1	1118
90	0.909	1	1118
91	0.909	1	1118
92	0.909	1	1118
93	0.909	1	1118
94	0.909	1	1118
95	0.909	2	1118
96	0.909	1	1118
97	0.909	1	1118
98	0.909	1	1118
99	0.909	1	1118
100	0.909		1116
Lan	lap thu:	/	

Dat vuot nguong 65 the he Lan dat vuot nguong thu 6 Thoi gian thuc hien (% second): 72

	не мах	K Ca	iine viiri(
KT	0.455	13	3657
2	0.909	11	77
3	0.909	9	77
4	0.909	5	77
5	0.909	1	77
6	1.000	2	76
7	1.000	18	76
8	1.000	8	76
9	1.000	10	76
10	1.000	10	76
11	0.909	2	77
12	0.909	1	77
13	0.909	3	77
14	1.000	11	76
15	1.000	16	76
16	1.000	1	76
17	1.000	12	76
18	1.000	11	76
19	1.000	8	76
20	1.000	5	76
21	1.000	6	76
22	1.000	3	76
23	1.000	4	76
24	1.000	4	76
25	1.000	1	76
26	1.000	1	76
27	1.000	5	76
28	1.000	1	76
29	1.000	4	76
30	1.000	2	76
31	1.000	1	76
32	1.000	2	76
33	1.000	2	76
34	1.000	4	76
35	1.000	1	76
36	1.000	2	76
37	1.000	2	76
38	1.000	4	76
39	1.000	3	76
40	1.000	1	76

41	1.000	1	76
42	1.000	1	76
43	1.000	1	76
44	1.000	6	76
45	1.000	1	76
46	1.000	2	76
47	1.000	3	76
48	1.000	1	76
49	1.000	2	76
50	1.000	1	76
51	1.000	1	76
52	1.000	1	76
53	1.000	1	76
54	1.000	1	76
55	1.000	1	76
56	1.000	1	76
57	1.000	1	76
58	1.000	1	76
59	1.000	1	76
60	1.000	2	76
61	1.000	1	76
62	1.000	1	76
63	1.000	1	76
64	1.000	1	76
65	1.000	1	76
66	1.000	1	76
67	1.000	1	76
68	1.000	1	76
69	1.000	1	76
70	1.000	1	76
71	1.000	1	76
72	1.000	2	76
73	1.000	3	76
74	1.000	1	76
75	1.000	1	76
76	1.000	2	76
77	1.000	1	76
78	1.000	1	76
79	1.000	1	76
80	1.000	1	76
81	1.000	1	76
82	1.000	1	76
83	1.000	2	76
84	1.000	1	76

```
76
85
    1.000
           2
86
     1.000
            1
                 76
87
     1.000
                 76
            1
88
    1.000
            1
                 76
89
    1.000
            2
                 76
90
    1.000
            1
                 76
91
     1.000
                 76
            1
92
    1.000
            2
                 76
93
                 76
    1.000
            1
94
    1.000
            2
                 76
95
    1.000
            1
                 76
96 1.000
            1
                 76
97 1.000
                 76
            1
98 1.000
            1
                 76
99
     1.000
           2
                 76
100 1.000 1
                  76
Lan lap thu: 8
Dat vuot nguong 99 the he
Lan dat vuot nguong thu 7
Thoi gian thuc hien (% second): 77
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 6
                 1504
TheHe Max CaThe ViTri(trong van ban)
KT
    0.545 4
                 795
14
    1.000 14
                  6
15 1.000 16
                  6
16
    1.000
            4
                  6
17
    1.000
            1
                  6
18
    1.000
            1
                  6
                  6
19
     1.000
            2
20
            2
    1.000
                  6
21
     1.000
            2
                  6
22
    1.000
            1
                  6
23
            2
                  6
    1.000
24
                  6
     1.000
            3
25
    1.000
           1
                  6
26
     1.000
                  6
            1
27
     1.000
            1
                  6
28
    1.000
                  6
            1
29
    1.000
                  6
            1
30
    1.000
            1
                  6
31
     1.000
            1
                  6
```

1.000

1.000

34	1.000	1	6
35	1.000	1	6
36	1.000	1	6
37	1.000	1	6
38	1.000	1	6
39	1.000	1	6
40	1.000	1	6
41	1.000	1	6
42	1.000	1	6
43	1.000	1	6
44	1.000	1	6
45	1.000	2	6
46	1.000	1	6
47	1.000	1	6
48	1.000	2	6
49	1.000	1	6
50	1.000	1	6
51	1.000	2	6
52	1.000	1	6
53	1.000	2	6
54	1.000	1	6
55	1.000	1	6
56	1.000	1	6
57	1.000	1	6
58	1.000	5	6
59	1.000	8	6
60	1.000	2	6
61	1.000	2	6
62	1.000	1	6
63	1.000	1	6
64	1.000	14	6
65	1.000	3	6
66	1.000	4	6
67	1.000	5 7	6
68	1.000	7	6
69	1.000	1	6
70	1.000	2	6
71	1.000	1	6
72	1.000	2	6
73	1.000	2	6
74	1.000	1	6
75	1.000	2	6
76	1.000	1	6
77	1.000	3	6

```
78
   1.000
          1
                 6
79
    1.000
           1
                 6
   1.000
                 6
80
           1
   1.000
                 6
81
82 1.000
           1
                 6
83
    1.000
           2
                 6
84
    1.000
                 6
85
    1.000
           1
                 6
                 6
86 1.000
87
    1.000
          1
                 6
88
    1.000
           1
                 6
89 1.000
           1
                 6
                 6
90 1.000
           1
91
   1.000
           1
                 6
92 1.000
           1
                 6
93 1.000
           1
                 6
94 1.000
                 6
95 1.000
           1
                 6
96 1.000
           1
                 6
97 1.000
           1
                 6
98 1.000
           2
                 6
99
    1.000
           2
                 6
100 1.000 2
                 6
```

Lan lap thu: 10

Dat vuot nguong 87 the he

Lan dat vuot nguong thu 8

Thoi gian thuc hien (% second): 77

KT	0.727	7	79
8	0.909	8	75
9	0.909	11	75
10	0.909	5	75
11	0.909	4	75
12	0.909	5	75
13	0.909	9	75
14	0.909	1	75
15	0.909	1	75
16	0.909	2	75
17	0.909	1	75
18	0.909	1	75
19	0.909	1	75
20	0.909	1	75
21	0.909	2	75
22	0.909	2	75

23	0.909	1	75
24	0.909	1	75
25	0.909	2	75
26	0.909	1	75
27	0.909	1	75
28	0.909	1	75
29	0.909	1	75
30	0.909	2	75
31	0.909	1	75
32	0.909	2	75
33	0.909	1	75
34	0.909	3	75
35	0.909	1	75
36	0.909	3	75
37	0.909	2	75
38	0.909	2	75
39	0.909	2	75
40	0.909	1	75
41	0.909	1	77
42	0.909	2	75
43	0.909	1	75
44	1.000	8	76
45	1.000	9	76
46	1.000	17	76
47	1.000	3	76
48	1.000	1	76
49	1.000	14	76
50	1.000	4	76
51	1.000	2	76
52	1.000	2	76
53	1.000	1	76
54	1.000	7	76
55	1.000	2	76
56	1.000	14	76
57	1.000	3	76
58	1.000	6	76
59	1.000	17	76
60	1.000	1	76
61	1.000	3	76
62	1.000	5	76
63	1.000	8	76
64	1.000	2	76
65	1.000	9	76
66	1.000	10	76

```
1.000
                  76
67
           3
68
     1.000 14
                  76
69
     1.000
            6
                  76
70
     1.000
            9
                  76
71
     1.000
            5
                  76
72
     1.000
            1
                  76
73
     1.000
                  76
            1
74
     1.000
            1
                  76
75
                  76
     1.000
76
    1.000
            1
                  76
77
     1.000
            1
                  76
78
     1.000
            1
                  76
79
     1.000
                  76
            1
80
    1.000
            1
                  76
81
     1.000
                  76
            1
82
    1.000
            1
                  76
83
     1.000
                  76
84
     1.000
                  76
            1
85
     1.000
            1
                  76
86
    1.000
            1
                  76
87
            2
                  76
     1.000
88
    1.000
                  76
            1
                  76
89
     1.000
            1
90
    1.000
                  76
            1
91
     1.000
                  76
            1
92
    1.000
                  76
93
    1.000
                  76
94 1.000
            1
                  76
95
    1.000
            1
                  76
96 1.000
            1
                  76
97
     1.000
            1
                  76
98
     1.000
                  76
99
     1.000
           1
                  76
100 1.000 1
                  76
Lan lap thu: 11
Dat vuot nguong 93 the he
Lan dat vuot nguong thu 9
Thoi gian thuc hien (% second): 88
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 4
                  130
10
    1.000
           1
                  6
11
     1.000
            2
                  6
```

1.000

1.000

14	1.000	1	6
15	1.000	1	6
16	1.000	2	6
17	1.000	7	6
18	1.000	1	6
19	1.000	1	6
20	1.000	2	6
21	1.000	2	6
22	1.000	1	6
23	1.000	1	6
24	1.000	3	6
25	1.000	1	6
26	1.000	1	6
27	1.000	1	6
28	1.000	1	6
29	1.000	2	6
30	1.000	1	6
31	1.000	2	6
32	1.000	1	6
33	1.000	1	6
34	1.000	1	6
35	1.000	1	6
36	1.000	1	6
37	1.000	1	6
38	1.000	1	6
39	1.000	1	6
40	1.000	1	6
41	1.000	1	6
42	1.000	2	6
43	1.000	1	6
44	1.000	2	6
45	1.000	1	6
46	1.000	1	6
47	1.000	1	6
48	1.000	1	6
49	1.000	1	6
50	1.000	1	6
51	1.000	1	6
52	1.000	1	6
53	1.000	1	6
54	1.000	1	6
55	1.000	2	6
56	1.000	1	6
57	1.000	1	6

58	1.000	1	6		
59	1.000	1	6		
60	1.000	1	6		
61	1.000	1	6		
62	1.000	1	6		
63	1.000	2	6		
64	1.000	1	6		
65	1.000	1	6		
66	1.000	1	6		
67	1.000	1	6		
68	1.000	2	6		
69	1.000	1	6		
70	1.000	1	6		
71	1.000	2	6		
72	1.000	1	6		
73	1.000	4	6		
74	1.000	1	6		
75	1.000	1	6		
76	1.000	1	6		
77	1.000	1	6		
78	1.000	1	6		
79	1.000	1	6		
80	1.000	1	6		
81	1.000	1	6		
82	1.000	1	6		
83	1.000	2	6		
84	1.000	1	6		
85	1.000	1	6		
86	1.000	1	6		
87	1.000	2	6		
88	1.000	1	6		
89	1.000	1	6		
90	1.000	1	6		
91	1.000	1	6		
92	1.000	5	6		
93	1.000	1	6		
94	1.000	8	6		
95	1.000	3	6		
96	1.000	4	6		
97	1.000	3	6		
98	1.000	1	6		
99	1.000	1	6		
100	1.000	1	6		
Lan lap thu: 12					

Dat vuot nguong 91 the he Lan dat vuot nguong thu 10 Thoi gian thuc hien (% second): 99 _____

```
Nguong 0.8
TheHe Max CaThe ViTri(trong van ban)
 KT 0.636 18
                   10
 1
    0.818
          1
                 8
    0.818
                 8
 2
           9
 3
   0.818
           3
                 8
   0.818
                 8
 4
           6
 5
   0.818
          1
                 8
 6
   0.909 12
                 7
 7
                 7
   0.909
           4
                 7
 8
   0.909
           1
 9
   0.909
           1
                 7
10 0.909
           1
                 7
11 0.909
           2
                 7
12 0.909
                 7
13 0.909
                 7
           1
                 7
14 0.909
           1
15 0.909
                 7
                 7
16 0.909
           1
                 7
17 0.909
           1
18 0.909
                 7
           1
19
   1.000
           13
                  6
20 1.000
           13
                  6
21
    1.000
           17
                  6
22
    1.000
           7
                 6
23
    0.909
           1
                 7
24
    0.909
                 7
           1
25
    1.000
                 6
           5
26
    1.000
                 6
                 5
27
    0.909
           1
28 0.909
                 5
                 7
29 0.909
                 7
30 0.909
31 0.909
           1
                 7
                 7
32 0.909
           1
                 7
33 0.909
34 0.909
           1
                 7
                 5
35 0.909
36 0.909
           1
                 7
37
    0.909
           1
                 5
38
    0.909
                 7
                 7
39
    0.909
```

40	0.909	1	7
41	1.000	16	6
42	1.000	10	6
43	1.000	16	6
44	1.000	3	6
45	1.000	4	6
46	1.000	1	6
47	1.000	14	6
48	1.000	6	6
49	1.000	7	6
50	1.000	1	6
51	1.000	6	6
52	1.000	2	6
53	1.000	2	6
54	1.000	1	6
55	1.000	1	6
56	1.000	3	6
57	1.000	1	6
58	1.000	1	6
59	1.000	1	6
60	1.000	1	6
61	1.000	1	6
62	1.000	3	6
63	1.000	4	6
64	1.000	1	6
65	1.000	1	6
66	1.000	1	6
67	1.000	1	6
68	1.000	1	6
69	1.000	1	6
70	1.000	1	6
71	1.000	3	6
72	1.000	1	6
73	1.000	2	6
74	1.000	5	6
75	1.000	1	6
76	1.000	2	6
77	1.000	1	6
78	1.000	2	6
79	1.000	2 2	6
80	1.000	3	6
81	1.000	2	6
82	1.000	1	6
83	1.000	1	6

```
84
    1.000
            1
                   6
85
     1.000
            1
                   6
     1.000
            1
                   6
86
87
     1.000
            1
                   6
88
     1.000
            1
                   6
89
     1.000
            1
                   6
90
     1.000
                   6
91
     1.000
            1
                   6
92
     1.000
            1
                   6
93
     1.000
            2
                   6
94
     1.000
            1
                   6
95
     1.000
            2
                   6
            2
                   6
96 1.000
97
    1.000
            1
                   6
98
     1.000
            1
                   6
99
     1.000
            1
                   6
100 1.000
                   6
Lan lap thu: 1
Dat vuot nguong 100 the he
```

Lan dat vuot nguong thu 1

Thoi gian thuc hien (% second): 132

```
KT
    0.727 20
                 2731
13
    0.909
           7
               2735
14
    0.909
           3
               2735
15 0.909
           5
               2733
16
    0.909
           1
               2735
17
   0.909 17
                2733
18 0.909
           1
               2735
               2733
19
    0.909
           7
20
    1.000
           3
               2734
21
    1.000
          14
                2734
22
    1.000
           1
               2734
23
           5
               2734
    1.000
24
               2734
    1.000
25
    1.000
           1
               2734
26
    1.000
           4
               2734
27
    1.000
           3
               2734
28
    1.000
               2734
           1
29
    1.000
               2734
           1
30
    1.000
               2734
           1
31
    1.000
           3
               2734
32
               2734
    1.000
           1
33
    1.000
               2734
           1
```

34	1.000	2	2734
35	1.000	1	2734
36	1.000	1	2734
37	1.000	1	2734
38	1.000	1	2734
39	1.000	1	2734
40	1.000	1	2734
41	1.000	1	2734
42	1.000	1	2734
43	1.000	1	2734
44	1.000	1	2734
45	1.000	1	2734
46	1.000	1	2734
47	1.000	1	2734
48	1.000	3	2734
49	1.000	1	2734
50	1.000	1	2734
51	1.000	1	2734
52	1.000	1	2734
53	1.000	1	2734
54	1.000	2	2734
55	1.000	1	2734
56	1.000	1	2734
57	1.000	1	2734
58	1.000	1	2734
59	1.000	1	2734
60	1.000	4	2734
61	1.000	3	2734
62	1.000	2	2734
63	1.000	1	2734
64	1.000	1	2734
65	1.000	1	2734
66	1.000	1	2734
67	1.000	2	2734
68	1.000	1	2734
69	1.000	2	2734
70	1.000	1	2734
71	1.000	4	2734
72	1.000	2	2734
73	1.000	2	2734
74	1.000	1	2734
75	1.000	1	2734
76	1.000	2	2734
77	1.000	1	2734

```
78
    1.000
           1
                2734
79
     1.000
            2
                2734
80
     1.000
            1
                2734
81
     1.000
                2734
82
     1.000
            1
                2734
83
     1.000
            1
                2734
84
     1.000
                2734
85
     1.000
            1
                2734
                2734
     1.000
86
            1
87
     1.000
                2734
            1
88
     1.000
            1
                2734
89
     1.000
            1
                2734
                2734
90
     1.000
            1
91
     1.000
            1
                2734
92
     1.000
                2734
            1
93
    1.000
                2734
            1
94
     1.000
                2734
95
     1.000
            7
                2734
96 1.000
            1
                2734
97
     1.000
            2
                2734
98
                2734
    1.000
            1
                2734
99
     1.000
           1
100 1.000 1
                 2734
Lan lap thu: 2
Dat vuot nguong 88 the he
Lan dat vuot nguong thu 2
Thoi gian thuc hien (% second): 83
TheHe Max CaThe ViTri(trong van ban)
KT 0.455 19
                  1657
 6
   0.909 12
                3061
 7
    0.909
                3061
           3
 8
    0.909
           1
                3061
 9
   0.909
           1
                3061
   0.909
                3061
10
           1
                3061
11
    0.909
            1
12 0.909
            2
                3061
13
    0.909
                3061
            1
14 0.909
                3061
            1
15 0.909
                3061
16 0.909
                3061
            1
17
    0.909
                3061
            1
18
    0.909
            1
                 3061
```

0.909

0.909

21	0.909	1	3061
22	0.909	1	3061
23	0.909	1	3061
24	0.909	1	3061
25	0.909	1	3061
26	0.909	1	3061
27	0.909	1	3061
28	0.909	2	3061
29	0.909	1	3061
30	0.909	1	3063
31	0.909	1	3061
32	0.909	1	3061
33	0.909	1	3061
34	0.909	1	3061
35	0.909	1	3063
36	0.909	1	3061
37	0.909	1	3061
38	0.909	1	3061
39	0.909	1	3061
40	0.909	2	3061
41	0.909	1	3061
42	0.909	2	3061
43	0.909	1	3061
44	0.909	1	3061
45	0.909	1	3063
46	0.909	1	3063
47	0.909	1	3061
48	0.909	1	3061
49	0.909	1	3061
50	0.909	1	3061
51	0.909	1	3061
52	0.909	1	3061
53	0.909	1	3061
54	0.909	1	3061
55	0.909	1	3061
56	0.909	1	3061
57	0.909	1	3061
58	0.909	2	3063
59	0.909	1	3061
60	0.909	1	3061
61	0.909	1	3061
62	0.909	1	3063
63	0.909	1	3061
64	0.909	1	3061
U 4	0.707	1	2001

```
65
    0.909
           1
                3061
66
    0.909
           1
                3061
67
    0.909
                3061
           1
                3063
68
    0.909
           1
69
    1.000
           5
                3062
70
    1.000
           6
                3062
71
    1.000
           8
                3062
72
    1.000
           10
                3062
73
    1.000
           13
                3062
74 0.909
                3061
           1
75
    0.909
           1
                3061
76
    0.909
           1
                3061
           2
                3062
77
    1.000
78
    1.000
           10
                3062
79 0.909
                3063
           1
80
   0.909
                3061
           1
81
    0.909
                3061
82
    0.909
                3061
           1
83 0.909
           2
                3061
84 0.909
                3061
85
    0.909
                3061
           1
86 0.909
                3061
           1
87 0.909
           3
                3061
88
   0.909
                3061
           2
89 0.909
           3
                3061
90 0.909
                3061
           1
91
    0.909
           1
                3061
92 0.909
           2
                3061
93 0.909
           1
                3061
94 0.909
                3061
95 0.909
                3061
           1
96 0.909
                3061
           1
97 0.909
           1
                3061
98 0.909
                3061
           1
99
    0.909
                3061
           1
100 0.909
           1
                3061
Lan lap thu: 3
```

Dat vuot nguong 95 the he

Lan dat vuot nguong thu 3

Thoi gian thuc hien (% second): 71

TheHe Max CaThe ViTri(trong van ban)

KT 0.455 8 0.818 19 0.818 10

14	0.818	9	8
15	0.818	1	8
16	0.909	18	7
17	0.909	1	7
18	0.909	5	7
19	0.909	4	7
20	0.909	1	7
21	0.909	13	7
22	0.909	2	7
23	1.000	2	6
24	1.000	12	6
25	1.000	2	6
26	1.000	1	6
27	1.000	4	6
28	1.000	1	6
29	1.000	2	6
30	1.000	11	6
31	1.000	1	6
32	1.000	3	6
33	1.000	1	6
34	1.000	1	6
35	1.000	2	6
36	1.000	1	6
37	1.000	1	6
38	1.000	3	6
39	1.000	1	6
40	1.000	1	6
41	1.000	1	6
42	1.000	1	6
43	1.000	1	6
44	1.000	1	6
45	1.000	1	6
46	1.000	1	6
47	1.000	1	6
48	1.000	1	6
49	1.000	1	6
50	1.000	1	6
51	1.000	1	6
52	1.000	1	6
53	1.000	1	6
54	1.000	1	6
55	1.000	1	6
56	1.000	1	6
57	1.000	1	6

58	1.000	1	6	
59	1.000	1	6	
60	1.000	3	6	
61	1.000	1	6	
62	1.000	1	6	
63	1.000	1	6	
64	1.000	1	6	
65	1.000	1	6	
66	1.000	1	6	
67	1.000	1	6	
68	1.000	2	6	
69	1.000	2	6	
70	1.000	1	6	
71	1.000	1	6	
72	1.000	1	6	
73	1.000	1	6	
74	1.000	2	6	
75	1.000	1	6	
76	1.000	1	6	
77	1.000	1	6	
78	1.000	1	6	
79	1.000	2	6	
80	1.000	1	6	
81	1.000	1	6	
82	1.000	1	6	
83	1.000	2	6	
84	1.000	1	6	
85	1.000	2	6	
86	1.000	1	6	
87	1.000	1	6	
88	1.000	4	6	
89	1.000	4	6	
90	1.000	1	6	
91	1.000	3	6	
92	1.000	4	6	
93	1.000	1	6	
94	1.000	1	6	
95	1.000	2	6	
96	1.000	1	6	
97	1.000	3	6	
98	1.000	1	6	
99	1.000	1	6	
100	1.000	2	6	
Lan lap thu: 4				

Dat vuot nguong 89 the he Lan dat vuot nguong thu 4 Thoi gian thuc hien (% second): 77 TheHe Max CaThe ViTri(trong van ban)

Thel	te Max	Ca	The	ViTri(trong	van
KT	0.455	17	2	86	
23	0.818	13	8	3	
24	0.818	4	8		
25	0.818	3	8		
26	0.818	1	8		
27	0.818	2	8		
28	0.818	1	8		
29	0.818	1	8		
30	0.818	1	8		
31	0.818	1	8		
32	0.818	1	8		
33	0.818	1	8		
34	0.818	1	8		
35	0.818	2	8		
36	0.818	1	8		
37	0.818	3	8		
38	0.909	13	7		
39	0.818	2	8		
40	0.818	1	8		
41	0.818	1	8		
42	0.818	1	8		
43	0.818	1	8		
44	0.818	1	8		
45	0.818	4	8		
46	0.818	1	8		
47	0.818	3	8		
48	0.818	2	8		
49 50	0.818	1	8		
50 51	0.818	2	8		
51 52	0.818 0.818	1	8 8		
	0.818	1	8		
53 54	0.818	1	8		
55	0.818	1	8		
56	0.818	1	8		
57	0.818	1	8		
58	0.818	1	8		
59	0.818	1	8		
60	1.000	20	7		
	1.000			-	

61 1.000 5 76

```
62
   1.000 4
                76
63
    1.000 13
                 76
64
    1.000
           1
                76
65
    1.000 12
                 76
66
    1.000
           3
                76
67
    1.000 10
                 76
    1.000
           5
                76
68
69
    1.000
           2
                76
70
   1.000
          10
                 76
71
    1.000
           5
                76
72
    0.909
           9
                77
73
    0.909 17
                 77
74
    0.818
                 8
           1
75
    0.818
           1
                 8
76 0.818
           2
                78
77
    0.818
           2
                78
78 0.818
                 8
79 0.818
                 8
                 8
80 0.818
           1
81
    0.818
           1
                 8
                 8
82 0.818
           1
83
   1.000
          11
                 76
84
    1.000
           3
                76
85
    1.000
           2
                76
    1.000
          5
                76
86
87
    1.000 12
                 76
88
   1.000
           1
                76
89
    1.000
           2
                76
           4
90
   1.000
                76
91
    1.000
                76
92
                 76
   1.000
          10
93 0.818
           1
                 8
94 0.818
           1
                 8
                 8
95 0.818
           2
                 8
           2
96 0.818
97 0.818
                 8
98 0.818
                 8
           1
99
    0.818
                 8
           1
100 0.818
                  8
```

Lan lap thu: 5

Dat vuot nguong 78 the he

Lan dat vuot nguong thu 5

Thoi gian thuc hien (% second): 88

KT	0.818	11	1539
1	0.818	1	1539
2	0.818	1	1539
3	0.818	1	1539
4	0.818	1	1539
5	0.818	1	1539
6	0.818	1	1539
7	0.818	1	1539
8	1.000	1	1537
9	1.000	5	1537
10	1.000	6	1537
11	1.000	2	1537
12	1.000	13	1537
13	1.000	1	1537
14	1.000	8	1537
15	1.000	9	1537
16	1.000	5	1537
17	1.000	3	1537
18	1.000	9	1537
19	1.000	2	1537
20	1.000	2	1537
21	1.000	2	1537
22	1.000	2	1537
23	1.000	1	1537
24	1.000	1	1537
25	1.000	2	1537
26	1.000	1	1537
27	1.000	1	1537
28	1.000	1	1537
29	1.000	1	1537
30	1.000	1	1537
31	1.000	1	1537
32	1.000	1	1537
33	1.000	1	1537
34	1.000	1	1537
35	1.000	1	1537
36	1.000	1	1537
37	1.000	3	1537
38	1.000	1	1537
39	1.000	1	1537
40	1.000	9	1537
41	1.000	6	1537
42	1.000	2	1537
43	1.000	1	1537

44	1.000	6	1537
45	1.000	2	1537
46	1.000	2	1537
47	1.000	2	1537
48	1.000	2	1537
49	1.000	1	1537
50	1.000	2	1537
51	1.000	3	1537
52	1.000	2	1537
53	1.000	3	1537
54	1.000	1	1537
55	1.000	1	1537
56	1.000	1	1537
57	1.000	1	1537
58	1.000	1	1537
59	1.000	3	1537
60	1.000	3	1537
61	1.000	1	1537
62	1.000	1	1537
63	1.000	1	1537
64	1.000	1	1537
65	1.000	1	1537
66	1.000	2	1537
67	1.000	1	1537
68	1.000	4	1537
69	1.000	2	1537
70	1.000	1	1537
71	1.000	1	1537
72	1.000	2	1537
73	1.000	1	1537
74	1.000	2	1537
75	1.000	1	1537
76	1.000	1	1537
77	1.000	1	1537
78	1.000	1	1537
79	1.000	1	1537
80	1.000	1	1537
81	1.000	1	1537
82	1.000	1	1537
83	1.000	1	1537
84	1.000	2	1537
85	1.000	1	1537
86	1.000	4	1537
87	1.000	1	1537

```
88
   1.000
          2
                1537
89 1.000
           1
                1537
90
   1.000
           2
                1537
91
    1.000
                1537
92
    1.000
           4
                1537
93
    1.000
           1
                1537
94
    1.000
                1537
           1
95
    1.000
           9
                1537
96 1.000
           3
                1537
97 1.000
           1
                1537
98 1.000
           1
                1537
99
     1.000
           1
                1537
100 1.000 5
                1537
Lan lap thu: 6
Dat vuot nguong 100 the he
Lan dat vuot nguong thu 6
Thoi gian thuc hien (% second): 83
TheHe Max CaThe ViTri(trong van ban)
KT 0.455 8
                1759
10 0.909 19
                1118
11 0.909 18
                1118
12 0.909 17
                1118
13 0.909 3
                1118
TheHe Max CaThe ViTri(trong van ban)
KT 0.727 16
                 2731
   0.909 17
                2735
 6
 7
   0.909 10
                2735
 8
   0.909
           3
               2735
 9
   0.909 1
               2735
10 0.909
               2735
11
   0.909
               2735
           1
12 0.909
                2735
           1
13 0.909
           5
                2735
14 0.909
                2735
           1
                2734
15 1.000
           9
16 1.000
           6
                2734
17
    1.000
                2734
           1
18
    1.000
           1
                2734
19
           2
                2734
    1.000
                2734
20
    1.000
           3
21
     1.000
           2
                2734
22
    1.000
           3
                2734
23
                2734
     1.000
           1
24
     1.000 12
                2734
```

25	1.000	12	2734
26	1.000	13	2734
27	0.909	1	2735
28	0.909	1	2735
29	1.000	17	2734
30	0.909	1	2735
31	0.909	1	2735
32	0.909	1	2735
33	0.909	1	2733
34	0.909	2	2735
35	1.000	1	2734
36	1.000	20	
37		20 4	2734 2734
	1.000	1	
38	1.000		2734
39	1.000	3	2734
40	1.000	2	2734
41	1.000	1	2734
42	1.000	1	2734
43	1.000	1	2734
44	1.000	1	2734
45	1.000	1	2734
46	1.000	1	2734
47	1.000	1	2734
48	1.000	1	2734
49	1.000	1	2734
50	1.000	2	2734
51	1.000	1	2734
52	1.000	1	2734
53	1.000	1	2734
54	1.000	1	2734
55	1.000	2	2734
56	1.000	1	2734
57	1.000	2	2734
58	1.000	1	2734
59	1.000	1	2734
60	1.000	1	2734
61	1.000	1	2734
62	1.000	1	2734
63	1.000	1	2734
64	1.000	1	2734
65	1.000	1	2734
66	1.000	1	2734
67	1.000	2	2734
68	1.000	1	2734

```
69
     1.000
            1
                2734
70
     1.000
            1
                2734
71
     1.000
            1
                2734
72
     1.000
                2734
73
     1.000
            1
                2734
74
     1.000
            1
                2734
75
     1.000
                2734
76
     1.000
            1
                2734
77
                2734
     1.000
            1
78
     1.000
            1
                2734
79
     1.000
            1
                2734
80
     1.000
            1
                2734
                2734
81
     1.000
82
     1.000
            1
                2734
83
                2734
     1.000
            1
84
                2734
     1.000
            1
85
     1.000
                2734
86
            2
                2734
     1.000
87
     1.000
            3
                2734
88
     1.000
            1
                2734
89
            7
                2734
     1.000
                2734
90
     1.000
            9
91
     1.000
            6
                2734
92
                2734
     1.000
            8
93
     1.000
            2
                2734
94
            3
                2734
     1.000
95
     1.000
            1
                2734
96
    1.000
            3
                2734
97
    1.000
           10
                 2734
           5
                 2734
98
     1.000
99
     1.000
            3
                2734
100 1.000 15
                  2734
Lan lap thu: 8
Dat vuot nguong 95 the he
Lan dat vuot nguong thu 7
Thoi gian thuc hien (% second): 88
TheHe Max CaThe ViTri(trong van ban)
KT 0.636 18
                   513
    0.818 1
                1539
 1
 2
    0.818 10
                1539
 3
    0.818 6
                1539
 4
    1.000
           3
                1537
 5
    1.000
           4
                1537
```

1.000

7	1.000	1	1537
8	1.000	5	1537
9	1.000	14	1537
10	1.000	18	1537
11	1.000	9	1537
12	1.000	1	1537
13	1.000	1	1537
14	1.000	6	1537
15	1.000	3	1537
16	1.000	1	1537
17	1.000	9	1537
18	1.000	3	1537
19	1.000	5	1537
20	1.000	2	1537
21	1.000	1	1537
22	1.000	2	1537
23	1.000	2	1537
24	1.000	1	1537
25	1.000	1	1537
26	1.000	2	1537
27	1.000	1	1537
28	1.000	1	1537
29	1.000	1	1537
30	1.000	1	1537
31	1.000	1	1537
32	1.000	1	1537
33	1.000	1	1537
34	1.000	1	1537
35	1.000	2	1537
36	1.000	1	1537
37	1.000	1	1537
38	1.000	1	1537
39	1.000	1	1537
40	1.000	1	1537
41	1.000	1	1537
42	1.000	2	1537
43	1.000	2	1537
44	1.000	1	1537
45	1.000	3	1537
46	1.000	1	1537
47	1.000	1	1537
48	1.000	2	1537
49	1.000	1	1537
50	1.000	1	1537

51	1.000	1	1537
52	1.000	3	1537
53	1.000	1	1537
54	1.000	1	1537
55	1.000	1	1537
56	1.000	3	1537
57	1.000	1	1537
58	1.000	1	1537
59	1.000	1	1537
60	1.000	1	1537
61	1.000	1	1537
62	1.000	1	1537
63	1.000	1	1537
64	1.000	1	1537
65	1.000	1	1537
66	1.000	3	1537
67	1.000	1	1537
68	1.000	1	1537
69	1.000	2	1537
70	1.000	1	1537
71	1.000	1	1537
72	1.000	1	1537
73	1.000	1	1537
74 75	1.000	1 1	1537
75 76	1.000		1537
76 77	1.000	1	1537
77	1.000	1	1537
78	1.000	2	1537
79	1.000	1	1537
80	1.000	2	1537
81	1.000	1	1537
82	1.000	1	1537
83	1.000	1	1537
84	1.000	1	1537
85	1.000	1	1537
86	1.000	1	1537
87	1.000	1	1537
88	1.000	1	1537
89	1.000	1	1537
90	1.000	3	1537
91	1.000	1	1537
92	1.000	2	1537
93	1.000	1	1537
94	1.000	2	1537

```
95 1.000 1 1537
```

96 1.000 1 1537

97 1.000 1 1537

98 1.000 1 1537

99 1.000 1 1537

100 1.000 1 1537

Lan lap thu: 9

Dat vuot nguong 100 the he

Lan dat vuot nguong thu 8

Thoi gian thuc hien (% second): 77

TheHe Max CaThe ViTri(trong van ban)

KT 0.727 8 1540

7 0.909 2 1536

8 0.909 15 1536

16 0.909 2 1536

17 0.909 5 1536

18 0.909 2 1536

19 0.909 17 1536

21 0.909 3 1536

22 0.909 5 1536

23 0.909 9 1536

24 0.909 18 1538

25 0.909 18 1538

26 0.909 4 1538

27 0.909 14 1536

33 1.000 13 1537

34 1.000 9 1537

35 1.000 12 1537

36 1.000 19 1537

37 1.000 9 1537

38 1.000 2 1537

39 1.000 16 1537

40 1.000 4 1537

41 1.000 1 1537

42 1.000 2 1537

43 1.000 1 1537

44 1.000 5 1537

45 1.000 5 1537

46 1.000 3 1537

47 1.000 5 1537

48 1.000 20 1537

49 1.000 16 1537

50 1.000 10 1537

51 1.000 9 1537

52	1.000	4	1537
53	1.000	5	1537
54	1.000	5	1537
55	1.000	1	1537
56	1.000	3	1537
57	1.000	5	1537
58	1.000	1	1537
59	1.000	1	1537
60	1.000	1	1537
61	1.000	3	1537
62	1.000	1	1537
63	1.000	1	1537
64	1.000	3	1537
65	1.000	2	1537
66	1.000	1	1537
67	1.000	1	1537
68	1.000	1	1537
69	1.000	1	1537
70	1.000	1	1537
71	1.000	1	1537
72	1.000	1	1537
73	1.000	1	1537
74	1.000	1	1537
7 4 75	1.000	3	1537
76	1.000	4	1537
77	1.000	3	1537
78	1.000	2	1537
79	1.000	1	1537
80	1.000	2	1537
		1	1537
81	1.000	4	
82	1.000		1537
83	1.000	1	1537
84	1.000	1	1537
85	1.000	3	1537
86	1.000	1	1537
87	1.000	4	1537
88	1.000	1	1537
89	1.000	4	1537
90	1.000	5	1537
91	1.000	3	1537
92	1.000	1	1537
93	1.000	1	1537
94	1.000	1	1537
95	1.000	2	1537

```
96 1.000 6
               1537
97 1.000
           1
                1537
98 1.000
           1
                1537
99 1.000
           1
                1537
100 1.000 2
                1537
Lan lap thu: 10
Dat vuot nguong 81 the he
Lan dat vuot nguong thu 9
Thoi gian thuc hien (% second): 87
TheHe Max CaThe ViTri(trong van ban)
KT 0.636 16
                 161
TheHe Max CaThe ViTri(trong van ban)
KT 0.545 13
                 258
 6
   0.909 16
               1116
 7
   0.909
           2
               1116
 8
    0.909
           2
               1116
 9
   0.909
               1116
10 0.909
           1
               1116
11 0.909
           1
               1116
12 0.909
               1116
           1
13 0.909
               1116
           1
    0.909
               1116
14
           1
15 0.909
               1116
   0.909
16
           1
               1116
17
    0.909
               1116
           1
18 0.909
               1116
19
    0.909
           1
               1116
20 0.909
           1
               1116
21
   0.909
           2
               1116
22
    0.909
           1
                1116
23
    1.000
          18
                1117
24
    1.000
           7
                1117
25
    1.000
           2
                1117
26
    1.000
          14
                1117
27
    1.000 13
                1117
28 0.909
           1
               1116
29
    0.909
               1116
           1
30 0.909
           1
                1116
31
   0.909
               1116
           1
32
    0.909
               1116
33 0.909
           1
               1116
34 0.909
           2
                1116
35
                1116
    0.909
           2
```

36 0.909

37	0.909	1	1116
38	0.909	1	1116
39	0.909	2	1116
40	0.909	1	1116
41	0.909	1	1116
42	0.909	1	1116
43	0.909	1	1116
44	0.909	1	1116
45	1.000	14	1117
46	0.909	1	1116
47	0.909	1	1118
48	0.909	1	1116
49	0.909	2	1116
50	0.909	1	1116
51	0.909	1	1116
52	0.909	2	1116
53	0.909	4	1116
54	1.000	15	1117
55	1.000	12	1117
56	1.000	1	1117
57	1.000	5	1117
58	1.000	5	1117
59	1.000	15	1117
60	1.000	4	1117
61	1.000	2	1117
62	1.000	10	1117
63	1.000	19	1117
64	1.000	4	1117
65	1.000	3	1117
66	1.000	1	1117
67	1.000	9	1117
68	1.000	3	1117
69	1.000	1	1117
70	1.000	2	1117
71	1.000	2 7	1117
72	1.000	7	1117
73	1.000	1	1117
74	1.000	2	1117
75	1.000	3	1117
76	1.000	5	1117
77	1.000	1	1117
78	1.000	2	1117
79	1.000	1	1117
80	1.000	1	1117

- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 96 1.000 1.000 98 1.000 1.000 4 100 1.000 1
- Lan lap thu: 12

Dat vuot nguong 95 the he

Lan dat vuot nguong thu 10

Thoi gian thuc hien (% second): 88