1 Optimization Problems

1.1 Evolution Strategy

An evolution strategy is a technique that is primarily used for optimization problems. As the name suggests, this technique tries to find the optimal solution for a problem through the methods of evolution: Mutation and selection. Several implementations exist that differ in what they mutate and what they select. But the general process is, it generates a set of candidate solution which it analyzes on the basis of a fitness or an objective function. The proposed solutions that yield the best fitness values are then used to generate the next generation of candidate solutions. This process only ceases until a predefined criteria has been met.

1.2 The CMA-ES

One kind of evolution strategies proposes new candidate solutions by randomly sampling from a multivariate normal distributions with μ and a fixed Σ . Each generation the current mean is updated based on the best candidates from the current generation. But because the Σ is fixed and with that the search radius, one shortcoming is that when Σ is inadequately chosen, the search can be rather slow for Σ is too small or even worse, the search gets stuck in a local optimum.

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) is a special kind of an evolution strategy that overcomes this issue, since it not only updates the mean μ every generation but also the covariance matrix Σ . As is illustrated in Figure 1, this modification allows for a large search radius in the beginning and thus a fast convergence to the optimum and a smaller search radius towards the end for finetuning the found optimum.

The general procedure of the CMA-ES can be presented as follows:

- Create multivariate normal distribution $X \sim \mathcal{N}(\mu, \Sigma)$ (The initial values are usually $\mu_0 = 0$ and $\Sigma_0 = I$)
- Sample N points from X, such that $Y = (y_1, ..., y_N)$ with $y_i \in X \ \forall \ i = 1...N$
- Evaluate all samples from Y with a previously defined fitness function f, such that $F = (f(y_1), ..., f(y_N)) \ \forall \ y_i \in Y$
- From F choose the M samples with the best fitness value (i.e. the highest or the lowest) and calculate the new mean μ and the new covariance matrix Σ

This procedure is repeated until a termination criteria has been met, for example a certain amount of generations have passed or a certain threshold was surpassed.

Figure 1: Simple Autoencoder: Platzhalter