DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

A Novel Approach to Enhancing Large Language Models

Presented by: Ali Hamza

HSE University
Department of Computer Science

February 3, 2025

Introduction: Evolution of LLMs

Rapid Advancements:

- Recent years have seen rapid advancements in Large Language Models (LLMs) (Anthropic, 2024; Google, 2024; OpenAI, 2024a).
- These models are progressively narrowing the gap toward Artificial General Intelligence (AGI).

Capabilities:

- LLMs demonstrate remarkable capabilities in understanding and generating human-like text.
- They are increasingly being applied to complex tasks such as reasoning, coding, and scientific analysis.

Introduction: Post-Training for Reasoning

Post-Training:

- Post-training has emerged as a critical component of the LLM training pipeline (OpenAI, 2024b).
- It enhances reasoning, aligns models with social values, and adapts them to user preferences.

Chain-of-Thought (CoT) Reasoning:

- OpenAl's o1 series introduced inference-time scaling via CoT reasoning.
- This approach has achieved significant improvements in tasks such as mathematics, coding, and scientific reasoning.

Introduction: Challenges in Reasoning

Test-Time Scaling:

- Effective test-time scaling remains an open challenge in the research community.
- Current methods struggle to generalize across diverse reasoning tasks.

Prior Approaches:

- Process-based reward models (Lightman et al., 2023; Uesato et al., 2022; Wang et al., 2023).
- Reinforcement learning (Kumar et al., 2024).
- Search algorithms like Monte Carlo Tree Search (Feng et al., 2024; Trinh et al., 2024; Xin et al., 2024).

Limitations:

 None of these methods has achieved general reasoning performance comparable to OpenAl's o1 series.

The Paper Contributions

Pure Reinforcement Learning (RL):

- The research took the first step toward improving reasoning capabilities in LLMs using pure RL, without relying on supervised data.
- The approach focuses on self-evolution through RL.

Base Model and Framework:

- The Paper use DeepSeek-V3-Base as the base model.
- Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is employed as the RL framework.

Open Source Models:

 DeepSeek-R1-Zero (No supervised fine-tuning), DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Contributions: Distillation to Smaller Models

Distillation:

- The research explored distillation from DeepSeek-R1 to smaller dense models (e.g., Qwen2.5-32B).
- Distillation outperforms the application of RL directly to smaller models.

Key Insight:

 Reasoning patterns discovered by larger base models are crucial for improving reasoning capabilities in smaller models.

Results:

- The distillated models (14B, 32B, 70B) set new records in reasoning benchmarks.
- Outperform state-of-the-art open source models like QwQ-32B-Preview (Qwen, 2024a).

Core Concepts

- Group Relative Policy Optimization (GRPO):
- Cold Start:

Group Relative Policy Optimization (GRPO)

 Motivation: Traditional RL methods require a critic model, which is computationally expensive. GRPO eliminates the need for a critic by estimating the baseline from group scores.

• Algorithm:

- For each question q, sample a group of outputs $\{o_1, o_2, \dots, o_G\}$ from the old policy $\pi_{\theta_{old}}$.
- Optimize the policy model π_{θ} by maximizing:

$$\begin{split} \mathcal{J}_{GRPO}(\theta) &= \mathbb{E}\left[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)\right] \\ \frac{1}{G} \sum_{i=1}^G \left(\min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_i \right) - \beta \mathbb{D}_{KL}(\pi_{\theta}||\pi_{ref}) \right), \\ A_i &= \frac{r_i - \operatorname{mean}(\{r_1, r_2, \dots, r_G\})}{\operatorname{std}(\{r_1, r_2, \dots, r_G\})}. \end{split}$$

Advantages:

- Reduces computational cost by eliminating the critic model.
- Encourages exploration while maintaining stability.

Cold Start: Overview

Definition:

 Cold start refers to the initial phase of training where the model is fine-tuned on a small amount of high-quality, structured data before applying reinforcement learning (RL).

• Purpose:

- Provides a stable starting point for RL.
- Ensures the model produces readable, structured outputs.

Key Benefit:

 Addresses the instability and poor readability issues observed in DeepSeek-R1-Zero.

Why Cold Start is Needed

• DeepSeek-R1-Zero Limitations:

- Poor Readability: Outputs often mix languages or lack proper formatting.
- **Instability**: Training RL directly from the base model can lead to unstable behavior.

Solution:

- Fine-tune the base model on cold-start data before RL training.
- Ensures stability and readability from the start.

Cold Start Data Collection

Methods:

- **Few-Shot Prompting**: Use examples of long Chain-of-Thought (CoT) reasoning.
- Direct Prompting: Generate detailed answers with reflection and verification.
- Refining DeepSeek-R1-Zero Outputs: Gather and refine outputs for readability.
- Human Annotation: Post-process data to ensure quality and consistency.

Output Format:

Structured format:

—special_token—¡reasoning_process¿—special_token—¡summary¿

- Reasoning Process: Detailed CoT reasoning.
- **Summary**: Concise summary of the reasoning results.

Advantages of Cold Start

Improved Readability:

- Structured outputs are reader-friendly.
- Summaries make it easier for users to understand the reasoning process.

Better Performance:

- Cold start data, designed with human priors, leads to better reasoning performance.
- Provides a strong foundation for iterative training during RL.

Cold Start in DeepSeek-R1

• Implementation:

- Thousands of cold-start examples are collected.
- Used to fine-tune the DeepSeek-V3-Base model.
- Fine-tuned model serves as the initial RL actor.

Impact:

- Ensures stability and readability from the start.
- Helps DeepSeek-R1 achieve performance on par with OpenAl-o1-1217.

Example of Cold Start Data Format

Structured Output:

—special_token—

jthinkį

To solve the equation $x^2 + 5x + 6 = 0$, we can factor it as (x + 2)(x + 3) = 0. Thus, the solutions are x = -2 and x = -3.

i/think¿

—special_token—

įsummaryį.

The solutions to the equation $x^2 + 5x + 6 = 0$ are x = -2 and x = -3. j/summary

• Key Features:

- Clear separation of reasoning process and summary.
- Ensures readability and user-friendliness.

Methodology: DeepSeek-R1-Zero

• Pure RL Approach:

- No supervised fine-tuning (SFT) used.
- RL applied directly to the base model (DeepSeek-V3-Base).

• Key Components:

- Group Relative Policy Optimization (GRPO) for RL.
- Reward modeling: Accuracy and format rewards.
- Training template: Ensures structured reasoning and answers.

DeepSeek-R1-Zero: Resluts

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces	
	pass@1	cons@64	pass@1	pass@1	pass@1	rating	
OpenAI-o1-mini	63.6	80.0	90.0	60.0	53.8	1820	
OpenAI-o1-0912	74.4	83.3	94.8	77.3	63.4	1843	
DeepSeek-R1-Zero	71.0	86.7	95.9	73.3	50.0	1444	

Comparison of DeepSeek-R1-Zero and OpenAl o1 models on reasoning-related benchmarks.

DeepSeek-R1-Zero: Results

Figure: AIME accuracy of DeepSeek-R1-Zero during training

DeepSeek-R1-Zero: "Aha moment"

Question: If a > 1, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a - \sqrt{a + x}} = x$, let's start by squaring both ...

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a-\sqrt{a+x} = x^2.$$

Rearrange to isolate the inner square root term:

$$(a - x^2)^2 = a + x \implies a^2 - 2ax^2 + (x^2)^2 = a + x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$$

• • •

Wait, wait, Wait, That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots

We started with the equation:

$$\sqrt{a-\sqrt{a+x}}=x$$

First, let's square both sides:

$$a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$$

Next, I could square both sides again, treating the equation: \cdots

...

 — An interesting "aha moment" of an intermediate version of DeepSeek-R1-Zero. The model learns to rethink using an anthropomorphic tone.

Methodology: DeepSeek-R1

Cold-Start Data:

- Thousands of long Chain-of-Thought (CoT) examples collected for fine-tuning.
- Improves readability and reasoning performance.

Multi-Stage Training:

- Initial fine-tuning with cold-start data.
- Reasoning-oriented RL to enhance reasoning capabilities.
- Rejection sampling and supervised fine-tuning (SFT) for alignment.

Final RL Stage:

 Aligns the model with human preferences for helpfulness and harmlessness.

DeepSeek-R1: Resluts

	Benchmark (Metric)	Claude-3.5- Sonnet-1022	GPT-40 0513	DeepSeek V3		OpenAI o1-1217	DeepSeek R1
	Architecture	-	-	MoE	-	-	MoE
	# Activated Params	-	-	37B	-	-	37B
	# Total Params	-	-	671B	-	-	671B
English	MMLU (Pass@1)	88.3	87.2	88.5	85.2	91.8	90.8
	MMLU-Redux (EM)	88.9	88.0	89.1	86.7	-	92.9
	MMLU-Pro (EM)	78.0	72.6	75.9	80.3	-	84.0
	DROP (3-shot F1)	88.3	83.7	91.6	83.9	90.2	92.2
	IF-Eval (Prompt Strict)	86.5	84.3	86.1	84.8	-	83.3
	GPQA Diamond (Pass@1)	65.0	49.9	59.1	60.0	75.7	71.5
	SimpleQA (Correct)	28.4	38.2	24.9	7.0	47.0	30.1
	FRAMES (Acc.)	72.5	80.5	73.3	76.9	-	82.5
	AlpacaEval2.0 (LC-winrate)	52.0	51.1	70.0	57.8	-	87.6
	ArenaHard (GPT-4-1106)	85.2	80.4	85.5	92.0	-	92.3
Code	LiveCodeBench (Pass@1-COT)	38.9	32.9	36.2	53.8	63.4	65.9
	Codeforces (Percentile)	20.3	23.6	58.7	93.4	96.6	96.3
	Codeforces (Rating)	717	759	1134	1820	2061	2029
	SWE Verified (Resolved)	50.8	38.8	42.0	41.6	48.9	49.2
	Aider-Polyglot (Acc.)	45.3	16.0	49.6	32.9	61.7	53.3
Math	AIME 2024 (Pass@1)	16.0	9.3	39.2	63.6	79.2	79.8
	MATH-500 (Pass@1)	78.3	74.6	90.2	90.0	96.4	97.3
	CNMO 2024 (Pass@1)	13.1	10.8	43.2	67.6	-	78.8
	CLUEWSC (EM)	85.4	87.9	90.9	89.9	-	92.8
	C-Eval (EM)	76.7	76.0	86.5	68.9	-	91.8
	C-SimpleQA (Correct)	55.4	58.7	68.0	40.3	-	63.7

— Comparison between DeepSeek-R1 and other representative models, and

Results Visualization

Benchmark performance of DeepSeek-R1

DeepSeek-R1: Resluts

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces
	pass@1	cons@64	pass@1	pass@1	pass@1	rating
GPT-4o-0513	9.3	13.4	74.6	49.9	32.9	759
Claude-3.5-Sonnet-1022	16.0	26.7	78.3	65.0	38.9	717
OpenAI-o1-mini	63.6	80.0	90.0	60.0	53.8	1820
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	1316
DeepSeek-R1-Distill-Qwen-1.5B	28.9	52.7	83.9	33.8	16.9	954
DeepSeek-R1-Distill-Qwen-7B	55.5	83.3	92.8	49.1	37.6	1189
DeepSeek-R1-Distill-Qwen-14B	69.7	80.0	93.9	59.1	53.1	1481
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	1691
DeepSeek-R1-Distill-Llama-8B	50.4	80.0	89.1	49.0	39.6	1205
DeepSeek-R1-Distill-Llama-70B	70.0	86.7	94.5	65.2	57.5	1633

 Comparison of DeepSeek-R1 distilled models and other comparable models on reasoning-related benchmarks.

Discussion

Distillation vs. RL:

- Distillation is more efficient than large-scale RL for smaller models.
- RL requires significant computational resources but is essential for advancing reasoning capabilities.

• Unsuccessful Attempts:

 Process Reward Models (PRMs) and Monte Carlo Tree Search (MCTS) faced challenges in scalability and reward hacking.

Conclusion and Future Work

Conclusion:

- DeepSeek-R1-Zero and DeepSeek-R1 demonstrate the potential of RL in enhancing reasoning capabilities.
- Distillation enables smaller models to achieve competitive performance.

• Future Work:

- Improve general capabilities (e.g., function calling, multi-turn tasks).
- Address language mixing and prompt sensitivity.
- Enhance performance on software engineering tasks.

Acknowledgments

- Core contributors and team members from DeepSeek-Al.
- Open-source community for supporting research and development.

Questions?

Thank you for your attention!

Demonstration

Demonstration Website:

- Explore the live demonstration of DeepSeek-R1's reasoning capabilities.
- Click here to visit the demonstration website.

Demonstration Notes:

- Detailed notes and explanations for the demonstration are available.
- Click here to access the demonstration notes.