NIKO-SEM

N- & P-Channel Enhancement Mode Field Effect Transistor

P2103NVG

Halogen-Free & Lead-Free

PRODUCT SUMMARY

	$V_{(BR)DSS}$	R _{DS(ON)}	I_D
N-Channel	30	$\mathbf{21m}\Omega$	8A
P-Channel	-30	$34m\Omega$	-6A

G : GATE D : DRAIN S : SOURCE

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C Unless Otherwise Noted)

PARAMETERS/TEST	SYMBOL	N-Channel	P-Channel	UNITS		
Drain-Source Voltage	V_{DS}	30	-30	V		
Gate-Source Voltage	V _{GS}	±20	±20	V		
Continuous Drain Current	T _A = 25 °C		8	-6		
Continuous Drain Current	T _A = 70 °C	- I _D	6	-5	Α	
Pulsed Drain Current ¹	I _{DM}	36	-27			
Avalanche Current		I _{AS}	26	-27		
Avalanche Energy	L = 0.1mH		35	38	mJ	
T _A = 25 °C		В	2		W	
Power Dissipation	T _A = 70 °C	$ P_{D}$	1.3		VV	
Junction & Storage Temperature Range		T_{j},T_{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNITS
Junction-to-Ambient	$R_{ heta JA}$		62.5	°C / W

¹Pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C, Unless Otherwise Noted)

242445752	0,415.01				UNIT		
PARAMETER SYMBOL TES		TEST CONDITIONS	TEST CONDITIONS		TYP	MAX	
	STATIC						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	N-Ch	30			
		$V_{GS} = 0V, I_D = -250 \mu A$	P-Ch	-30			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	1	1.7	2.5	V
		$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	-1	-1.6	-2.5	

NIKO-SEM

N- & P-Channel Enhancement Mode Field Effect Transistor

P2103NVG SOP-8

Halogen-Free & Lead-Free

Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20V$ $V_{DS} = 0V, V_{GS} = \pm 20V$	N-Ch P-Ch			±100 ±100	nA
		$V_{DS} = 24V, V_{GS} = 0V$ $V_{DS} = -24V, V_{GS} = 0V$	N-Ch P-Ch			1 -1	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20V$, $V_{GS} = 0V$, $T_{J} = 55$ °C $V_{DS} = -20V$, $V_{GS} = 0V$, $T_{J} = 55$ °C	N-Ch P-Ch			10 -10	μА
On-State Drain Current ¹	I _{D(ON)}	$V_{DS} = 5V, V_{GS} = 10V$ $V_{DS} = -5V, V_{GS} = -10V$	N-Ch P-Ch	36 -27			Α
Durin Organia Organia		$V_{GS} = 4.5V, I_D = 6A$ $V_{GS} = -4.5V, I_D = -5A$	N-Ch P-Ch		19 40	31 56	3
Drain-Source On-State esistance ¹	R _{DS(ON)}	$V_{GS} = 10V, I_D = 7A$ $V_{GS} = -10V, I_D = -6A$	N-Ch P-Ch		14 28	21 34	mΩ
Forward Transconductance ¹	g fs	$V_{DS} = 10V, I_{D} = 5A$ $V_{DS} = -10V, I_{D} = -5A$	N-Ch P-Ch		14 8		S

DYNAMIC								
Input Capacitance	C _{iss}		N-Ch		659			
put oupdonaoo	-155	N-Channel	P-Ch		983			
Output Capacitance	C_{oss}	$V_{GS} = 0V, V_{DS} = 10V, f = 1MHz$	N-Ch		218			
Output Capacitance	Ooss	P-Channel	P-Ch		216		pF	
Davida Transfer Octobrilland		$V_{GS} = 0V, V_{DS} = -10V, f = 1MHz$	N-Ch		138			
Reverse Transfer Capacitance	C_{rss}		P-Ch		157			
Total Gate Charge ²	0	N-Channel	N-Ch		16			
Total Gate Charge	Q_g	$V_{DS} = 0.5V_{(BR)DSS}, V_{GS} = 10V,$	P-Ch		21			
Gate-Source Charge ²		$I_D = 7A$	N-Ch		2			
Gate-Source Charge	Q_gs	P-Channel	P-Ch		3		nC	
2		$V_{DS} = 0.5V_{(BR)DSS}, V_{GS} = -10V,$	N-Ch		5			
Gate-Drain Charge ²	Q_gd	$I_D = -6A$	P-Ch		4			

NIKO-SEM

N- & P-Channel Enhancement Mode **Field Effect Transistor**

P2103NVG

Halogen-Free & Lead-Free

Turn-On Delay Time ²	+	N-Channel	N-Ch	9			
	t _{d(on)}	^{cd} (on)	P-Ch	10			
Rise Time ²		V _{DS} = 15V	N-Ch	11			
	t _r	$I_D \cong 1A$, $V_{GS} = 10V$, $R_{GEN} = 6\Omega$	P-Ch	15			
Turn-Off Delay Time ²	4	P-Channel	N-Ch	18		nS	
Turn-On Delay Time	$t_{d(off)}$		P-Ch	68		110	
Fall Times ²		$V_{DS} = -15V$,	N-Ch	20			
Fall Time ²	lf	t_f	34				
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (T $_{ m J}$ = 25 $^{\circ}$ C)							
			N-Ch		2		
Continuous Current	I _S		P-Ch		-2	Α	
1		I _F = 5A, V _{GS} = 0V	N-Ch		1		
Forward Voltage ¹	V_{SD}	I _F = -5A, V _{GS} = 0V	P-Ch		-1	V	
		$I_F = 5A$, $dI_F/dt = 100A / \mu S$	N-Ch	15.5			
Reverse Recovery Time	t _{rr}	I _F = -5A, dI _F /dt = 100A / μS	P-Ch	15.5		nS	
Reverse Recovery Charge	Q _{rr}		N-Ch	7.9			
			P-Ch	7.9		nC	

 $^{^1\}text{Pulse test}$: Pulse Width $\leq 300~\mu\text{sec},$ Duty Cycle $\leq 2\%.$ $^2\text{Independent of operating temperature}.$

P2103NVG SOP-8

Halogen-Free & Lead-Free

TYPICAL PERFORMANCE CHARACTERISTICS N-CHANNEL

TJ, Junction Temperature(°C)

On-Resistance VS Drain Current

lb, Drain-To-Source Current(A)

V_{GS}, Gate-To-Source Voltage(V)

On-Resistance VS Gate-To-Source

P2103NVG

Halogen-Free & Lead-Free

Source-Drain Diode Forward Voltage

Safe Operating Area

Single Pulse Maximum Power Dissipation

P2103NVG SOP-8

Halogen-Free & Lead-Free

TYPICAL PERFORMANCE CHARACTERISTICS P-CHANNEL

P2103NVG

1.0

1.2

10

Halogen-Free & Lead-Free

20

10

0

0.0001

0.001

0.01

0.1

NOTE:

0.01

0.1

1.Vgs= 10V 2.TA=25°C

3 Raia =62 5° C/W 4.Single Pulse