UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 2º Estágio

1 — Deduza a solução geral para os circuitos de primeira ordem, dada pela equação $x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}}$ (1.0)

- 2 Para os circuitos indicados nas figuras 1.1 e 1.2, determine: (RESISTORES EM OHMs)
 - a) A tensão inicial de todos os indutores, resistores e capacitores em t=0+;
 - b) A corrente inicial de todos os indutores, resistores e capacitores em $t=0^+$;
 - c) A derivada da corrente nos indutores e a derivada da tensão dos capacitores em t=0+;
 - d) A tensão final de todos os indutores, resistores e capacitores em t=0+;
 - e) A corrente final de todos os indutores, resistores e capacitores em $t=0^+$;
 - f) A expressão de $v_x(t)$ e $i_x(t)$, para t>0⁺;

Aluno(a):

g) Identifique se algum circuito apresenta resposta natural e caso haja algum, verifique se existe a possibilidade de haver energia armazenada quando o mesmo atinge o regime. Justifique sua resposta.

3 – Para o circuito indicado da figura 2 e considerando que i1(t) apresenta uma resposta superamortecida, determine a expressão da corrente ix(t) em função dos termos conhecidos do circuito

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 2º Estágio

1 — Deduza a solução geral para os circuitos de primeira ordem, dada pela equação $x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}}$ (1.0)

- 2 Para os circuitos indicados nas figuras 1.1 e 1.2, determine: (RESISTORES EM OHMs)
 - a) A tensão inicial de todos os indutores, resistores e capacitores em $t=0^+$;
 - b) A corrente inicial de todos os indutores, resistores e capacitores em $t=0^+$;
 - c) A derivada da corrente nos indutores e a derivada da tensão dos capacitores em t=0+;
 - d) A tensão final de todos os indutores, resistores e capacitores em $t=0^+$;
 - e) A corrente final de todos os indutores, resistores e capacitores em t=0+;
 - f) A expressão de $v_x(t)$ e $i_x(t)$, para t>0⁺;
 - g) Identifique se algum circuito apresenta resposta natural e caso haja algum, verifique se existe a possibilidade de haver energia armazenada quando o mesmo atinge o regime. Justifique sua resposta.

3 – Para o circuito indicado da figura 2 e considerando que i1(t) apresenta uma resposta superamortecida, determine a expressão da corrente ix(t) em função dos termos conhecidos do circuito

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 2º Estágio

1 – Deduza a solução geral para os circuitos de primeira ordem, dada pela equação $x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}}$ (1.0)

- 2 Para os circuitos indicados nas figuras 1.1 e 1.2, determine: (RESISTORES EM OHMS)
 - a) A tensão inicial de todos os indutores, resistores e capacitores em t=0+;
 - b) A corrente inicial de todos os indutores, resistores e capacitores em $t=0^+$;
 - c) A derivada da corrente nos indutores e a derivada da tensão dos capacitores em t=0⁺;
 - d) A tensão final de todos os indutores, resistores e capacitores em t=0⁺;
 - e) A corrente final de todos os indutores, resistores e capacitores em $t=0^+$;
 - f) A expressão de $v_x(t)$ e $i_x(t)$, para t>0⁺;

Aluno(a):_

g) Identifique se algum circuito apresenta resposta natural e caso haja algum, verifique se existe a possibilidade de haver energia armazenada quando o mesmo atinge o regime. Justifique sua resposta.

3 - Para o circuito indicado da figura 2 e considerando que i1(t) apresenta uma resposta superamortecida, determine a expressão da corrente ix(t) em função dos termos conhecidos do circuito

Figura 2

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA, CIRCUITOS EL ÉTRICOS I

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 2º Estágio

1 — Deduza a solução geral para os circuitos de primeira ordem, dada pela equação $x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}}$ (1.0)

- 2 Para os circuitos indicados nas figuras 1.1 e 1.2, determine: (RESISTORES EM OHMs)
 - a) A tensão inicial de todos os indutores, resistores e capacitores em t=0+;
 - b) A corrente inicial de todos os indutores, resistores e capacitores em $t=0^+$;
 - c) A derivada da corrente nos indutores e a derivada da tensão dos capacitores em t=0+;
 - d) A tensão final de todos os indutores, resistores e capacitores em $t=0^+$;
 - e) A corrente final de todos os indutores, resistores e capacitores em $t=0^+$;
 - f) A expressão de $v_x(t)$ e $i_x(t)$, para t>0⁺;
 - g) Identifique se algum circuito apresenta resposta natural e caso haja algum, verifique se existe a possibilidade de haver energia armazenada quando o mesmo atinge o regime. Justifique sua resposta.

3 – Para o circuito indicado da figura 2 e considerando que i1(t) apresenta uma resposta superamortecida, determine a expressão da corrente ix(t) em função dos termos conhecidos do circuito

