Functions of Random Variables

het's assume that x is a random variable on the probability space (S, F, P).

we can use this random variable x and define a function Y as follows:

$$\dot{Y} = g(X)$$
, where $g: IR \rightarrow IR$

As we see, the mapping of w is done to IR twice when we define a function of random variable.

A composite function structure is evident from the definition $Y(\omega) = g(X(\cdot))$, that is

 $Y: S \rightarrow \mathbb{R}$

However, the question is

Is Y(.) a random variable?

To assess it, Let's recall the definition:

 $\forall: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random variable if $\in: S \rightarrow \mathbb{R}$ is a random varia

Where, F is the event space of (S,F,P)

For Y=9(x) to be measurcable (that is random variable) 9(.) must satisfy the following properties

- 1. The domain of g(·) must contain the range space of *
- 2. For each $y \in IR$, the set R_y defined as $R_y = \{x \in IR; g(x) \leq y\}$ must consist of a countable union of open intervals.

must be Borel set

3. The events $\{g(x) = \pm \infty\}$ must have probability zero.

So, any function g(.) that satisfies these 3 properties is known as Baire function.

For such 9(.), we can say that

 $\forall = 9(*)$

is a valid random variable.

Interestingly,

All functions we typically encounter in engineering applications are Baire functions.

Example: $Y = g(X) = X^{r}$ >50c The transformation considers $g(x) = x^2 = y$ As any specific y is the square of x, y will always be non-negative. So, case y < 0: F(Y)=0, y < 0 [negative value] For the case y>o: Positive y $F_{Y}(Y) = P(\{Y \leqslant Y\}) = P(\{X \leqslant Y\})$ $= P(\{-\sqrt{y} \leq \times \leq +\sqrt{y}\})$ = P({-Vy < x < + Vy})

for continuous RV case zero probability event can be written continuous without the equal sign = \(\forall (\forall) - \(\forall (-\forall)\)

So, the CDF is

$$F_{Y}(y) = \left[F_{X}(y) - F_{X}(-y)\right] \cdot \frac{1}{(y)} \cdot \frac{$$

what about y = 0? y becomes zero only at one point x, that is, x = 0. Now, if the cdf is continuous at zero, then the probability that x=0 is equal to zero.

4 So, we can ignore the case > (y, ∞)

$$f_{Y}(y) = \frac{d}{dy} F_{Y}(y)$$

Examples:
$$Y = g(X) = a \times + b$$
, $a,b \in \mathbb{R}$
Find $f_{Y}(Y)$. Two cases $a > 0$ and $a < 0$
When $a > 0$: $F_{Y}(Y) = P(\{Y \le Y\}) = P(\{a \times + b \le Y\})$
 $= P(\{X \le \frac{Y-b}{a}\})$
 $= F_{X}(\frac{Y-b}{a})$
 $= f_{X}(Y) = \frac{d}{dY} F_{Y}(Y)$
 $= \frac{d}{dY} F_{X}(Y) = f_{X}(Y) = \frac{d}{dY} f_{X}(Y)$
 $= f_{X}(Y) = f_{X}(Y) = f_{X}(Y)$
When $a < 0$: $F_{Y}(Y) = P(\{X \le Y\})$
 $= P(\{a \times + b \le Y\}) = P(\{X \le \frac{Y-b}{a}\})$
As $a < 0$, it is negative, so,
 $= P(\{X > \frac{Y-b}{a}\})$ because $a < 0$, the inequality changes
 $= 1 - P(\{X \le \frac{Y-b}{a}\})$
 $= 1 - F_{X}(Y) = P(X)$

So, $f_{Y}(Y) = \frac{d}{dy} \left[1 - F_{X} \left(\frac{Y-b}{a} \right) \right]$ $\Rightarrow f_{Y}(Y) = -f_{X} \left(\frac{Y-b}{a} \right) \cdot \frac{1}{a} = -\frac{1}{a} f_{X} \left(\frac{Y-b}{a} \right)$ By combining alo, alo, we can write $f_{Y}(Y) = \frac{1}{|a|} f_{X} \left(\frac{Y-b}{a} \right)$

So,
$$f_{Y}(Y) = \frac{dF_{Y}(Y)}{dY}$$

 $\Rightarrow f_{Y}(Y) = \frac{d}{dY} \left[F_{X}(VY) - F_{X}(-VY) \right] \cdot 1_{(Y,\infty)}^{(Y)}$
 $\Rightarrow f_{Y}(Y) = f_{X}(VY) \frac{d}{dY}(VY) - f_{X}(VY) \frac{d}{dY}(VY)$
 $= f_{X}(VY) \frac{1}{2VY} - f_{X}(-VY) \frac{1}{2VY}$
 $= \frac{1}{2VY} \left[f_{X}(VY) + f_{X}(-VY) \right] \cdot 1_{(0,\infty)}^{(Y)}$

Function of mandom variables

The direct pdf method:

Suppose
$$Y = g(X)$$
, where $g: IR \rightarrow IR$ such that $g'(\cdot)$ exists. That is $y = g(x)$

It is also assumed that $\Rightarrow x = g'(y)$
 $\frac{dx}{dy} = \frac{dg'(y)}{dy}$ exists.

Then, $f_{Y}(Y) = f_{X}(g'(Y)) \cdot \left| \frac{dg'(Y)}{dy} \right|$

where, $x(Y) = g'(Y)$

Example: Given that X~ U[0,1] and let's assume that $Y = 9(x) = \sqrt{x}$. So, find $f_Y(Y)$.

hels apply direct pdf method

Here,
$$y = g(x) = \sqrt{x}$$

Here, $y = g(x) = \sqrt{x}$

The formula:
$$f_{\chi}(y) = f_{\chi}(x(y)) \frac{dx(y)}{dy}$$

Here, $y = g(x) = \sqrt{x}$

$$= f_{\chi}(g^{1}(y)) \frac{dg^{1}(y)}{dy}$$

Here,
$$y = g(x) = \sqrt{x}$$

$$\Rightarrow x = y^{2}$$

$$\Rightarrow x(y) = (x(y)) = |2y| \cdot f(x(y))$$

So,
$$\frac{dx(y)}{dy} = 2y$$
 = $2y \cdot \frac{1}{[0,1]}$

Example: Consider \times be a Gaussian Random variable with pdf $f_{\chi}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

 $N(M,6^{2})$ is the standard notation standard notation waviance 6^{2} : 1

for the Gaussian Random Variable with mean μ and variance 6."

Consider the linear transformation $Y = a \times t b$ Let's find out $f_Y(y)$ using the direct pdf method. $f_Y(y) = f_X(x(y)) \left| \frac{dx(y)}{dy} \right|$

y = ax + b $\Rightarrow x = \frac{y - b}{a}$ $\Rightarrow x(y) = \frac{y - b}{a}$ $\Rightarrow \text{con dering } x \text{ as a for of } y$

$$\frac{d\times(y)}{dy} = \frac{d}{dy}\left(\frac{y-b}{a}\right)$$

$$= \frac{1}{a}$$

$$\therefore f = f_{\frac{1}{2}}(x(y))\left|\frac{1}{a}\right|$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(y-b)^{2}}{2a^{2}}\right) \cdot \frac{1}{|a|}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{\frac{-(y-b)}{2a^{2}}\right\}$$

So,
$$F_{\chi}(x) = \frac{1}{\pi} \left[\frac{1}{4an^{1}(x/b)} + \frac{\pi}{2} \right]$$

Thus, $f_{\chi}(x) = \frac{dF_{\chi}(x)}{dx} = \frac{d}{dx} \left[\frac{1}{\pi} \left(\frac{1}{4an^{1}x/b} + \frac{\pi}{2} \right) \right]$
 $= \frac{1}{\pi} \left[\frac{1}{1+(x/b)} \cdot \frac{d}{dx} (x/b) + 0 \right]$
 $= \frac{1}{\pi} \left[\frac{1}{1+(x/b)} \cdot \frac{1}{b} \right] = \frac{1}{\pi} \left[\frac{1}{b^{\gamma} + x^{\gamma}} \right]$
 $= \frac{1}{\pi} \left[\frac{b^{\gamma}}{b^{\gamma} + x^{\gamma}} \right]$ Answer

Figurestion: Assume that x is a random variable uniformly distributed on (0,1) and let y = g(x), where $g(x) = -\lambda \ln(1-x)$

Here, $f_{\chi}(\alpha) = 1$ [0,1] and $\lambda > 0$

According to direct method: $f_{\chi}(y) = f_{\chi}(x(y)) \left| \frac{dx(y)}{dy} \right|$ So, $y=g(x)=-\lambda \ln(1-\pi)$

$$\Rightarrow -\frac{y}{\lambda} = \ln(1-x) \left| \frac{d}{dy} \times (y) = \frac{d}{dy} \left(\frac{1}{2} \right) \right|$$

$$\Rightarrow -x = e^{-\frac{1}{2}\lambda} = -\frac{e^{\frac{1}{2}\lambda}}{2}\lambda (-1)$$

$$\Rightarrow x = 1 - e^{-\eta \lambda} = e^{-\eta \lambda} \cdot \lambda$$

$$y = g(x) = -\lambda \ln(1-x)$$

$$\Rightarrow -\frac{1}{\lambda} = \ln(1-x) \quad \frac{d}{dy} \times (y) = \frac{d}{dy} (1-e^{-y/\lambda})$$

$$\Rightarrow -x = e^{-y/\lambda} = e^{-y/\lambda} = e^{-y/\lambda} \cdot \lambda \quad (-1)$$

$$\Rightarrow x = 1-e^{-y/\lambda} = e^{-y/\lambda} \cdot \lambda \quad (-1)$$

$$\Rightarrow x = 1-e^{-y/\lambda} = e^{-y/\lambda} \cdot \lambda \quad (-1)$$

$$\Rightarrow x = 1-e^{-y/\lambda} = e^{-y/\lambda} \cdot \lambda \quad (-1)$$

$$\Rightarrow x = 1-e^{-y/\lambda} = e^{-y/\lambda} \cdot \lambda \quad (-1)$$