

Alumno: Sebastián Inostroza Hurtado Profesor Guía: Patricio Castillo Asignatura: Seminario de Título 1

Tercer trimestre Advance 2018 - Ingenieria en Computacion e Informatica Viña del Mar, 16 de noviembre de 2018

Fundamentación del Problema

Seminario de Título 1

- 1. Análisis de la situación actual.
- 2. Análisis de la problemática.
- 3. Objetivos.
- 4. Diagrama de alto nivel.
- 5. Arquitectura de la solución.
- 6. Solución ideal.
- 7. Alternativas de solución.
- 8. Solución propuesta.
- 9. Situación futura.

1. Análisis de la situación actual

Empresa: Clínica Bupa Reñaca, Servicio de Imagenología

Cliente: TM. Felipe Vera, Jefe de Tecnólogos Médicos felipe.vera@clinicarenaca.cl

Propósito Clínica Bupa:

Nuestro propósito es contribuir a que nuestros pacientes tengan una vida más larga, más sana y más feliz.

Visión Clínica Bupa:

Queremos seguir creciendo para contribuir al bienestar de nuestros pacientes y colaboradores, consolidando la propuesta de valor y la solidez en gestión que nos entrega un grupo internacional de salud como Bupa, sumándose a la tradición que nuestra Clínica ha tenido por 37 años en la Región de Valparaíso.

Vidas más largas, sanas y felices

1. Análisis de la situación actual

El PET (Tomografía por Emisión de Positrones)

2. Análisis de la problemática

Radiofarmaco Fluor18-FDG

- -Decaimiento Radiactivo
- -Producción en Santiago.
- -Transporte Terrestre Carretera.
- -Dosis falta o sobra.

Definición del Problema:

El número de pacientes diarios a examinar es impreciso ocupando las técnicas de trabajo actual y medidas de radioprotección.

2.1 Técnica de los cinco por qué

Problema	Porque? 1	Porque? 2	Porque? 3	Porque? 4	Porque? 5	Solución
	1- No hay certeza de la actividad del radiofármaco	1.1- No se realizan cálculos.	1.1.1- Cálculos Engorrosos	1.1.1.1- Muchas variables		Herramienta generadora de cálculos Herramienta
			mucho tiempo	Repetitivas.		generadora de cálculos
		1.2- Medir la actividad del frasco contenedor	1.2.1- El fármaco emite radiación constantemente	1.2.1.1- Para Irradiar lo menos posible al operador	1.2.1.1.1- Leyes de radio protección. 1.2.1.1.2- Es perjudicial	Evitar Exposición
Imprecisión	2-No hay certeza de	2.1-El radiofármaco	2.1.1-Producción	2.1.1.1- Alto		
en numero de	cuanta dosis llegara	viene de Santiago	solo en Santiago	costo y mant.		
pacientes diarios			2.1.2- Transporte vía terrestre	de Transporte		X
	3-Pacientes pueden ser complejos o con mórbidos importantes	3.1- Mal acceso Venoso	3.1.1-Condición del Paciente			х
		3.2- Glicemia Elevada	3.2.1-Condición del Paciente			X
		3.3-Tener Mórbidos	3.3.1-Condición del Paciente			X
	4-Exámenes pueden tener mayor duración	4.1- Patologías especificas	4.1.1- Para estudio correcto			X
		4.2- Menos dosis al paciente	4.2.1-No se dosifico la dosis	4.2.1.1- No se realizaron cálculos.		Herramienta info. en tiempo real
		4.3- complicaciones durante el examen	4.3.1- Condición del Paciente			Х

2.2 Técnica de Ishikawa

3. Objetivos

3.1 Objetivo principal

"Tener de manera rápida y sencilla los valores de Actividad radiactiva del radiofármaco en cualquier momento de la jornada, sin necesidad de irradiar de manera adicional al personal Operador (Tecnólogos Médicos)".

3.2 Objetivos específicos

- 1. Lograr que el valor calculado tenga un margen de error de no más de 5% con el Radiofármaco.
- 2. Disminuir la Dosimetría de los operadores manipuladores de dosis en un 5% a los meses de su implementación.
- 3. Aumentar un 5% el número de pacientes totales a realizar durante el primer semestre de su implementación.
- 4. Generar una visualización de la actividad radiactiva en tiempo real con una actualización de 1 minuto y una resolución menor a 1 segundo.
- 5. Generar una visualización del cálculo de la actividad del radiofármaco en un tiempo específico de la jornada, con una resolución menor a 1 segundo.
- 6. Lograr un cálculo de cantidad de ml con un margen de error de no más de 20% para cierta radiactividad requerida, Ej. se requiere una dosis de 8 mCi, según el cálculo se debe sacar del contenedor 1,5 mL para ese momento específico de la jornada.

3.2 Objetivos específicos

	Objetivo	Métrica	Unidad	Criterio de Éxito	Método		
	Especifico						
	1	Margen de Error	#####################################		Comparar medición con activimetro		
	2	Disminuir Dosimetría			Informes Dosimétricos CCHEN		
	3	Aumentar Producción	% Exámenes	> 5	Estadísticas producción Clínica Reñaca		
	4	Resolución calculo actual	Segundo < 1		Medidor de resolución de cálculos		
	5	Resolución calculo proyectado	Segundo	< 1	Medidor de resolución de cálculos		
1	6	Margen de Error	%mCi	< 20	Comparar Actividad dosificada con activimetro		

4. Diagrama de alto nivel

5. Arquitectura de la solución

6. Solución ideal

Contar con un sistema robotizado de gestionamiento de dosis, que permita manipular y dosificar la dosis de manera inteligente y permita optimizar los recursos y el tiempo para cada examen.

6.1 Alcances y Limitaciones

- La Aplicación no será capaz de tomar los datos de manera automática.
- El ingreso de datos para la aplicación es manual y depende del operador.
- La Aplicación sólo podrá ser manipulada por los Tecnólogos Médicos capacitados.
- Para este proyecto, la Aplicación será desarrollada sólo para un tipo de dispositivo y sistema operativo.
- Para este proyecto, los reportes se enviarán como archivos a una ubicación predeterminada, dado que todavía no se cuenta con una base de datos.
- Para este proyecto, no se entregará información de Gestionamiento de pacientes, sólo datos calculados.

6.2 Restricciones

- No existe actualmente un plan de financiamiento para desarrollo de aplicaciones médica en Clínica Bupa Reñaca fuera del departamento informático.
- Se deberán respetar las leyes internas de manejo de información médica dentro del recinto.
- El Grupo de Trabajo es mínimo, por lo que los tiempos de ejecución para el desarrollo de la aplicación serán elevados.
- Para la utilización la aplicación deberá pasar por el comité de Ética de Clínica Bupa Reñaca.
- El riesgo de no cumplir con los objetivos propuestos en los tiempos estipulados generará desmotivación con el cliente y stakeholders, además de hacer menos plausible la asignación de recursos.

7. Alternativas de solución

7.1 Procedimientos manuales

- 1- Los cálculos pueden realizarse de manera manual, o estimar valores para gestionar la dosis en los pacientes.
- 2- Disminuir la calidad del examen ocupando el mínimo de radiofármaco por cada paciente.

7.2 Cambios en procedimientos actuales

- 3- Aumentar el número de operadores y dejar destinado a uno que sólo se preocupe de la distribución y cálculos de dosis.
- 4- Pedir mayor cantidad de radiofármaco.
- 5- Instalar un Ciclotrón en la quinta región que realice despachos locales de radiofármaco.

7.3 Alternativas disponibles en el mercado

- 6- Software y app Calculadoras de dosis disponibles que sólo realizan un cálculo básico de radiactividad inicial y final.
- 7- Activímetro Posee software que realiza un cálculo de decaimiento que no es posible aplicar a una agenda estructurada, al igual que las calculadoras solo se pueden realizar cálculos iniciales y finales.

7. Alternativas de solución

	Soluciones	Criterios					Valoración de la	
		Costos Implementa ción	Tiempos de Implementación	Impacto Negativo Productividad	Problemas Factibilidad técnica	Impacto Negativo Calidad actual	Dificultad cobertura Problema	Solución
	N°1	3	1	1	2	1	1	9
1	N°2	3	3	2	3	1	1	13
П	N°3	1	2	3	1	3	3	13
I	N°4	1	3	3	3	2	2	14
	N°5	1	1	3	1	2	2	10
	N°6	1	2	2	2	2	1	10
	N°7	2	1	2	2	2	1	10

Alta = 1

Medio = 2

Baja = 3

8. Solución

8. Solución propuesta

- -Creación de App capaz de realizar cálculos de decaimiento radiactivo para Flúor F-18, con una interfaz amigable.
- -Herramienta será ocupada por Tecnólogos Médicos encargados de PET.
- -Tendrá una Entrada de Datos (Actividad, Hora, mL).
- Generará Salida de Datos (Actividad) en tiempo real y proyectados a cualquier momento de la jornada de trabajo.
- Generará Salida de Datos (mL) para cierta actividad requerida.
- Generará reporte de Distribución de dosis de la jornada para el dia de trabajo.

9. Situación futura

-El Desarrollo de la aplicación contará con el apoyo y seguimiento de los stakeholders.

-Comenzará con prototipos entregables, con el fin de realizar mejoras para la correcta utilización y menor resistencia al cambio al implementar la aplicación al trabajo.

-Los entregables serán en base al cumplimiento de objetivos propuestos en las reuniones de avances.

-El Cliente no ha establecido una fecha de entrega del proyecto, pero si está interesado en que la aplicación sea escalable e integre más funcionalidades, una vez completado el objetivo principal.

-El Cliente y los Stakeholders concuerdan en que la app debe ser amigable y fácil de utilizar.

9.1 Metodología de desarrollo

Metodologia Agil: SCRUM - Sprint cada 2 Semanas.

Roles

Cliente: Felipe Vera.

Product owner: Patricio Castillo.

Scrum master: Sebastián Inostroza

Equipo Scrum: Sebastián Inostroza

9.2 Plan de proyecto

Sprint cada 2 semanas.

Estimación: Hito 3 - Entrega - Mockup Básico Funcional.

9.3 Resultados esperados

9.3 Resultados esperados

Preguntas?

