# CompositionMeasure for ZeroConcentratedDivergence

### Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of the implementation of CompositionMeasure for ZeroConcentratedDivergence in mod.rs at commit f5bb719 (outdated<sup>1</sup>).

## 1 Hoare Triple

#### Precondition

### Compiler-Verified

Types matching pseudocode.

#### Caller-Verified

None

#### Pseudocode

```
class CompositionMeasure(ZeroConcentratedDivergence):
      def composability( #
          self, adaptivity: Adaptivity
      ) -> Composability:
          match adaptivity:
              case Adaptivity.FullyAdaptive:
                  return Composability. Sequential
                  return Composability.Concurrent
11
      def compose(self, d_mids: Vec[Self_Distance]) -> Self_Distance:
          d_out = 0.0
12
          for d_mid in d_mids:
              d_out = d_out.inf_add(d_mid)
14
          return d_out
```

#### Postcondition

Theorem 1.1. composability returns Ok(out) if the composition of a vector of privacy parameters d\_mids is bounded above by self.compose(d\_mids) under adaptivity adaptivity and out-composability. Otherwise returns an error.

**Definition 1.2** (Definition of ZeroConcentratedDivergence). For any two distributions Y, Y' and any non-negative d, Y, Y' are d-close under the zero-concentrated divergence measure if, for every possible choice of  $\alpha \in (1, \infty)$ ,

<sup>&</sup>lt;sup>1</sup>See new changes with git diff f5bb719..6761ced rust/src/combinators/sequential\_composition/mod.rs

$$D_{\alpha}(Y, Y') = \frac{1}{1 - \alpha} \mathbb{E}_{x \sim Y'} \left[ \ln \left( \frac{\Pr[Y = x]}{\Pr[Y' = x]} \right)^{\alpha} \right] \le d \cdot \alpha. \tag{1}$$

**Lemma 1.3.** 1.  $\mathcal{F}(\rho_1, \rho_2, \dots; \rho) = \mathbb{I}(\sum_i \rho_i \leq \rho)$  is a valid  $\rho$ -zCDP IM-filter.

2.  $\mathcal{G}(\rho_1,\ldots,\rho_k) = \sum_{i=1}^k \rho_i$  is a valid  $\rho$ -zCDP IM-privacy loss accumulator.

*Proof.* For any fixed choice of  $\alpha > 1$ , we have that  $\mathcal{F}(\rho_1, \rho_2, \dots; \rho) = \mathbb{I}(\sum_i \epsilon_i / \alpha / \leq \epsilon / \alpha)$ , by 1.2, which by Theorem 1.22[VW21] is a valid  $(\alpha, \epsilon)$ -RDP IM-filter.

Similarly, for any fixed choice of  $\alpha > 1$ , we have that  $\mathcal{G}(\rho_1, \dots, \rho_k) = \sum_i \epsilon_i / \alpha \le \epsilon / \alpha$ , by 1.2, which by Theorem 1.22[VW21] is a valid  $(\alpha, \epsilon)$ -RDP IM-privacy loss accumulator.

*Proof.* By the postcondition of InfAdd we have that  $\sum_i d_{mids_i} \leq compose(d_{mids})$ .

| Adaptivity     | Sequential       | Concurrent         |
|----------------|------------------|--------------------|
| Non-Adaptive   | Lemma 1.7[BS16]  | Corollary 1[Lyu22] |
| Adaptive       | Lemma 1.7[BS16]  | Corollary 1[Lyu22] |
| Fully-Adaptive | Remark 4.4[FZ22] | 1.3                |

This table is reflected in the implementation of composability on line 2.

# References

[BS16] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds, 2016.

[FZ22] Vitaly Feldman and Tijana Zrnic. Individual privacy accounting via a renyi filter, 2022.

[Lyu22] Xin Lyu. Composition theorems for interactive differential privacy, 2022.

[VW21] Salil Vadhan and Tianhao Wang. Concurrent composition of differential privacy, 2021.