Exercise 1 (Exercise 1). Prove that the tensor product of two Hadamard matrices is a Hadamard matrix.

Answer

Suppose H, K are two Hadamard matrices. We have $HH^{\mathsf{T}} = mI$ and $KK^{\mathsf{T}} = nI$ and we must show that $(H \otimes K)(H \otimes K)^{\mathsf{T}} = mnI$ where the last identity matrix has size $(mn) \times (mn)$.

The product enjoys two properties which are essential for our purpose:

- \diamond Transposition distributes over the product: $(A \otimes B)^{\mathsf{T}} = A^{\mathsf{T}} \otimes B^{\mathsf{T}}$.
- \diamond The mixed-product property: If A, B, C, D are matrices, then

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

With this in hand we see that

$$(H \otimes K)(H \otimes K)^{\mathsf{T}} = HH^{\mathsf{T}} \otimes KK^{\mathsf{T}} = mnI_m \otimes I_n = mnI_{mn}$$

and thus $H \otimes K$ is Hadamard as desired.

Lemma 1. *Transposition is distributive with respect to the product.*

Proof

Assume *A* has size $k \times \ell$, then

$$(A \otimes B)^{\mathsf{T}} = \begin{pmatrix} a_{11}B & \dots & a_{1\ell}B \\ \vdots & \ddots & \vdots \\ a_{k1}B & \dots & a_{k\ell}B \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} a_{11}B^{\mathsf{T}} & \dots & a_{k1}B^{\mathsf{T}} \\ \vdots & \ddots & \vdots \\ a_{1\ell}B^{\mathsf{T}} & \dots & a_{k\ell}B^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{k1} \\ \vdots & \ddots & \vdots \\ a_{1\ell} & \dots & a_{k\ell} \end{pmatrix} \otimes B^{\mathsf{T}}.$$

And we may recognize A^T as the last matrix. So the transposition property holds.

Lemma 2. The mixed product property holds.

Proof

Assume *A* has size $k \times \ell$ and *C* has size $\ell \times m$, then

$$(A \otimes B)(C \otimes D) = \begin{pmatrix} a_{11}B & \dots & a_{1\ell}B \\ \vdots & \ddots & \vdots \\ a_{k1}B & \dots & a_{k\ell}B \end{pmatrix} \begin{pmatrix} c_{11}D & \dots & c_{1m}D \\ \vdots & \ddots & \vdots \\ c_{\ell 1}D & \dots & c_{\ell m}D \end{pmatrix}$$

and multiplying this two matrices we obtain entries of the form

$$\left(\sum_{r=1}^{\ell} a_{ir} c_{rj}\right) BD = (AC)_{ij} BD.$$

Thus we have

$$(A \otimes B)(C \otimes D) = \begin{pmatrix} (AC)_{11}BD & \dots & (AC)_{1m}BD \\ \vdots & \ddots & \vdots \\ (AC)_{k1}BD & \dots & (AC)_{km}BD \end{pmatrix} = (AC) \otimes (BD).$$

Exercise 2 (Exercise 2). Prove that there's only one 2 - (7, 3, 1) design up to isomorphism.

Answer

We know that the Fano plane is an example of a 2-(7,3,1) design. Given another 2-(7,3,1) design, (X,\mathcal{B}) , we will find an isomorphism between the Fano plane and our design.

First note that this is a square design. Take 2 blocks B, B', then it must happen that $|B \cap B'| = 1$.

- ♦ The intersection can't be larger than 1 because every pair of points is contained in precisely 1 block, not more than 1.
- If two blocks are disjoint then we name their elements

$$B = \{1, 2, 3\}, \text{ and } B' = \{4, 5, 6\}$$

which leaves 7 out of the mix.

Take two elements from B and B', without losing generality there's one block which contains them $\{1,4,x\}$. The element x can't come from B as 1 is already paired with 2 and 3 there. It can't also come from B' because there will be two blocks which contain two common elements. It must happen that the new block is $\{1,4,7\}$. In the same fashion we can construct blocks 2,5,7 and 3,6,7.

However we've reached an impasse, because we must somehow pair 1 and 5 in a block. We can't add an element from B as 1,5,x will intersect B in two elements. In the same fashion, if $y \in B'$, then $|\{1,5,y\} \cap B'| = 2$. Finally we can't have $\{1,5,7\}$ because 1,7 and 5,7 will be repeated in two blocks.

This means that we can't form more than 5 blocks given our constraint. But this contradicts Fisher's inequality as we must have at least as many blocks as vertices and b = 5 < v = 7 in this 2-design.

Our assumption that there are two disjoint blocks is false, so it must occur that any two blocks intersect in exactly 1 vertex. Immediately this tells us that b=v and r=k which means that:

- ♦ There are 7 blocks.
- ⋄ Every point is contained in exactly 3 blocks.

Consider the block $B = \{1, 2, 3\}$ and then the following graph:

We will build the remaining blocks as follows, take the remaining elements $\{4, 5, 6, 7\}$ and consider the pairs of elements in the set $\{45, 46, 47, 56, 57, 67\}$. By matching disjoint pairs we form the graph on top.

The edges may be named by any arbitrary choice^a of our elements in B. The blocks will be an edge and one of the vertex endpoints. We get the blocks

$$B, \{1,4,7\}, \{1,5,6\}, \{2,4,6\}, \{2,5,7\}, \{3,4,5\}, \text{ and } \{3,6,7\}.$$

This is a square 2 - (7, 3, 1) design and we may associate the lines of the Fano plane in the obvious way to the blocks of our design while vertices are also mapped to vertices.

Exercise 3 (Exercise 4). The **complementary design** to a design $\mathcal{D} = (X, \mathcal{B})$ is the pair $\mathcal{D}^c = (X, \mathcal{B}^c)$ where $\mathcal{B}^c = \{X \setminus B : B \in B\}$. Show that if \mathcal{D} is a $1 - (v, k, \lambda)$ design then \mathcal{D}^c is a $1 - (v, v - k, v\lambda/k - \lambda)$ design.

^aThis means that we could also consider the blocks $\{1,4,5\}$ and $\{1,6,7\}$ for example.

Answer

We know that in \mathbb{D}^c we have v vertices. Any block is of the form $X \setminus B$ with B having size k, so all the blocks in \mathbb{D}^c have size v - k as desired.

It remains to show that every point is in exactly $\frac{v\lambda}{k} - \lambda$ blocks. Now, let us manipulate this quantity:

Recall r is the number of blocks containing a point, in this case as we have a 1-design, we have that $r = \lambda$, so

$$\frac{v\lambda}{k} = \frac{vr}{k} = \frac{bk}{k} = b$$
, the number of blocks.

So we must show that every point is in b-r blocks, but now this is immediate because any point already on r blocks, is not inside the remaining b-r blocks. But that is what it means to be inside a block in the complementary design. We conclude that \mathfrak{D}^c is indeed a 1-(v,v-k,b-r) design.

Exercise 4 (Exercise 6). Prove that the edge-complement of a strongly regular graph is strongly regular, and find the new parameters in terms of the previous.

Answer

Suppose G is strongly regular with parameters (n, k, λ, μ) . Pick a vertex v and look at its neighbors, there are k of them. Out of the remaining n-1 vertices, v is not connected to n-1-k of them.

Now pick another vertex w, if they are not connected then they share μ common neighbors. From the remaining n-2 vertices, u,v are only connected to their neighborhoods. Removing all the vertices in the neighborhoods doubly counts the intersection, and we know that intersection has size μ . So in total, v,w are not connected to

$$(n-2)-2k+\mu$$
 vertices together.

In a same fashion if they were connected, the number of shared neighbors is λ so together they wouldn't be connected to $(n-2)-2k+\lambda$ vertices.

We conclude that if G is strongly regular with parameters (n, k, λ, μ) , then G^c has parameters

$$(n, (n-1) - k, (n-2) - 2k + \mu, (n-2) - 2k + \lambda).$$