## Clase No.2: Propiedades de los fluidos

Sistemas de unidades, cifras significativas y transformación de unidades

Luis Alejandro Morales https://lamhydro.github.io

Departamento de Ingeniería Civil y Agrícola Facultad de Ingeniería Universidad Nacional de Colombia - Sede Bogotá

February 9, 2023



#### Table of Contents

Sistemas de unidades

2 Transformación de unidades

3 Dimensiones homogeneas



### Sistemas de unidades



# Unidades primarias

| Primary dimension        | SI unit       | BG unit      | Conversion factor                    |  |  |
|--------------------------|---------------|--------------|--------------------------------------|--|--|
| Mass {M}                 | Kilogram (kg) | Slug         | 1 slug = 14.5939 kg                  |  |  |
| Length $\{L\}$           | Meter (m)     | Foot (ft)    | 1  ft = 0.3048  m                    |  |  |
| Time $\{T\}$             | Second (s)    | Second (s)   | 1  s = 1  s                          |  |  |
| Temperature $\{\Theta\}$ | Kelvin (K)    | Rankine (°R) | $1 \text{ K} = 1.8^{\circ} \text{R}$ |  |  |



### Unidades secundarias

| Secondary dimension                      | SI unit             | BG unit                        | Conversion factor                                                                            |
|------------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------|
| Area $\{L^2\}$                           | $m^2$               | ft <sup>2</sup>                | $1 \text{ m}^2 = 10.764 \text{ ft}^2$                                                        |
| Volume $\{L^3\}$                         | $m^3$               | $ft^3$                         | $1 \text{ m}^3 = 35.315 \text{ ft}^3$                                                        |
| Velocity {LT <sup>-1</sup> }             | m/s                 | ft/s                           | 1  ft/s = 0.3048  m/s                                                                        |
| Acceleration $\{LT^{-2}\}$               | m/s <sup>2</sup>    | ft/s <sup>2</sup>              | $1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2$                                                    |
| Pressure or stress $\{ML^{-1}T^{-2}\}$   | $Pa = N/m^2$        | lbf/ft <sup>2</sup>            | $1 \text{ lbf/ft}^2 = 47.88 \text{ Pa}$                                                      |
| Angular velocity $\{T^{-1}\}$            | s <sup>-1</sup>     | $s^{-1}$                       | $1 \text{ s}^{-1} = 1 \text{ s}^{-1}$                                                        |
| Energy, heat, work $\{ML^2T^{-2}\}$      | $J=N\cdotm$         | ft · lbf                       | $1 \text{ ft} \cdot 1 \text{bf} = 1.3558 \text{ J}$                                          |
| Power $\{ML^2T^{-3}\}$                   | W = J/s             | ft · lbf/s                     | $1 \text{ ft} \cdot 1 \text{bf/s} = 1.3558 \text{ W}$                                        |
| Density $\{ML^{-3}\}$                    | kg/m <sup>3</sup>   | slugs/ft <sup>3</sup>          | $1 \text{ slug/ft}^3 = 515.4 \text{ kg/m}^3$                                                 |
| Viscosity $\{ML^{-1}T^{-1}\}$            | kg/(m · s)          | slugs/(ft · s)                 | $1 \text{ slug/(ft} \cdot \text{s}) = 47.88 \text{ kg/(m} \cdot$                             |
| Specific heat $\{L^2T^{-2}\Theta^{-1}\}$ | $m^2/(s^2 \cdot K)$ | $ft^2/(s^2 \cdot {}^{\circ}R)$ | $1 \text{ m}^2/(\text{s}^2 \cdot \text{K}) = 5.980 \text{ ft}^2/(\text{s}^2 \cdot \text{K})$ |



## Transformación de unidades



#### Transformación de unidades

TABLA 1.1 Sistemas de unidades utilizados en hidráulica

|                                 |                                 |                       |              | Sistema de unidade       | es      |                                                                                                                                                             |
|---------------------------------|---------------------------------|-----------------------|--------------|--------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable                        | Dimensiones                     | SI                    | Inglés       | cgs                      | Técnico | Equivalencias                                                                                                                                               |
| Masa                            | M                               | kg                    | Slug         | gr                       | UTM     | 1m = 3.28 pies                                                                                                                                              |
| Longitud                        | L                               | m                     | pie          | cm                       | m       | 1pie=0.305 m<br>— 1pulg=2.54 cn                                                                                                                             |
| Tiempo                          | T                               | s                     | s            | s                        | . s     | 1pie=12 Pulg<br>1km=1000m                                                                                                                                   |
| Temperatura                     | T°                              | K°                    | R°           | C°                       | C°      |                                                                                                                                                             |
| Fuerza F                        | MLT <sup>-2</sup>               | $N = (kg*m)/s^2$      | lb .         | Dina                     | kg      | 1 litro=1000cm<br>1 lgalón=3.785                                                                                                                            |
| Presión P                       | ML-1 T-2                        | Pa = N/m <sup>2</sup> | lb/pie²      | Dina/cm²                 | kg/m²   | litros                                                                                                                                                      |
| Densidad ρ                      | ML <sup>-3</sup>                | kg/m³                 | Slug/pie³    | gr/cm³                   | UTM/m³  | 1kg=2.2 lb<br>1kg=9.8 N                                                                                                                                     |
| Peso específico γ               | FL <sup>-3</sup>                | N/m³                  | Lb/ pie³     | Dina/m³                  | kg/m³   | 1N = 0.2247 lb                                                                                                                                              |
| Viscosidad dinámica µ           | ML-1T-1                         | kg/(m*s)              | Slug/(pie*s) | Poise=gr/(cm*s)          |         | MPa=106Pa                                                                                                                                                   |
| Viscosidad cinemática v         | L2T-1                           | m²/s                  | pie²/s       | Stoke=cm <sup>2</sup> /s | m²/s    | 1bar=10 <sup>5</sup> Pa<br>1mbar=0.001ba<br>=100Pa                                                                                                          |
| Energía H                       | ML <sup>2</sup> T <sup>-2</sup> | J = N.m =Joule        | Lb.pie       | Dina.cm=1 ergio          | Kg.m    |                                                                                                                                                             |
| Potencia P <sub>T</sub>         | ML <sup>2</sup> T <sup>-3</sup> | Watt = J/s = W        | (pie*lb)/s   | ergio/s                  | Kg.m/s  | 1 psi= 1 lb/pulg                                                                                                                                            |
| Calor específico C <sub>a</sub> | L'T-"T-1                        | m²/(s*K°)             | pie²/(s*R°)  |                          |         | 1hp =550<br>lb*pie/s<br>1kw =10 <sup>3</sup> N.m/s<br>1cv =75 kg.m/s<br>1centi-<br>stoke=10 <sup>-2</sup> stokes<br>1centi-<br>poise=10 <sup>-2</sup> poise |

 $m=metro,\,cm=centímetro,\,km=kilómetro,\,pulg=pulgada\,,\,s=segundo,\,^{\circ}K=Kelvin,\,^{\circ}R=Rankin,\,^{\circ}C=grado\,\,Celsius,\,^{\circ}F=grado\,\,Fahrenheit.\,hp=caballo\,\,de\,\,fuerza,\,kw=kilovatio,\,cv=caballo\,\,de\,\,vapor.$ 

CIONAL COLOMBIA

#### Transformación de unidades

El SI esta basado en relaciones decimales entre unidades. Los prefijos usados para expresar los multiples de varios unidades estan en la Tabla ??. Estos prefijos son estandards para todas las unidades.

| Multiplo         | Prefijo      |  |  |
|------------------|--------------|--|--|
| 10 <sup>24</sup> | yotta, Y     |  |  |
| $10^{21}$        | zetta, Z     |  |  |
| $10^{18}$        | exa, E       |  |  |
| $10^{15}$        | peta, P      |  |  |
| $10^{12}$        | tera, T      |  |  |
| $10^{9}$         | giga, G      |  |  |
| $10^{6}$         | mega, M      |  |  |
| $10^{3}$         | kilo, k      |  |  |
| $10^{2}$         | hecto, h     |  |  |
| $10^{1}$         | deka, da     |  |  |
| $10^{-1}$        | deci, d      |  |  |
| $10^{-2}$        | centi, c     |  |  |
| $10^{-3}$        | mili, m      |  |  |
| $10^{-6}$        | micro, $\mu$ |  |  |
| $10^{-9}$        | nano, n      |  |  |
| $10^{-12}$       | pico, p      |  |  |
| $10^{-15}$       | femto, f     |  |  |
| $10^{-18}$       | atto, a      |  |  |
| $10^{-21}$       | zepto, z     |  |  |
| $10^{-24}$       | yocto, y     |  |  |



# Dimensiones homogeneas



## Dimensiones homogeneas

En ingenieria y ciencias, todas las ecuaciones deben ser dimensionalmente homogeneas, esto quiere decir que las cantidades que se suman o restan en la equacion tienen las mismas dimensiones. Por ejemplo, en la ecuación de Bernoulli para flujo incompresible:

$$p + \frac{1}{2}\rho V^2 + \rho gZ = constante$$

todos los terminos de la ecuación tienen dimensiones de presión  $[ML^{-1}T^{-2}].$ 

