1. Dado el conjunto $A=\{1,2,3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

$$i(1) = 1 + (i(1)) = 1 + (i(1)$$

2. Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

$$\begin{array}{lll} i) \ 3 \in A & & iv) \ \{\{3\}\} \subseteq A & & vii) \ \{\{1,2\}\} \subseteq A & & x) \ \emptyset \subseteq A \\ ii) \ \{3\} \subseteq A & & v) \ \{1,2\} \in A & & viii) \ \{\{1,2\},3\} \subseteq A & & xi) \ A \in A \\ iii) \ \{3\} \in A & & vi) \ \{1,2\} \subseteq A & & ix) \ \emptyset \in A & & xii) \ A \subseteq A. \end{array}$$

Cuál es el cardinal de A?

3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos:

$$\begin{array}{l} \text{i) } A=\{1,2,3\},\ B=\{5,4,3,2,1\}\\ \text{ii) } A=\{1,2,3\}, B=\{1,2,\{3\},-3\}\\ \text{iii) } A=\{x\in\mathbb{R}:\ 2< x<3\}, B=\{x\in\mathbb{R}:\ x^2<3\}\\ \text{iv) } A=\{\emptyset\},\ B=\emptyset. \end{array}$$

- **4.** Dados $A = \{1, 3, 5, 7, 8, 11\}$ y $B = \{-1, 3, -5, 7, -8, 11\}$, hallar $A \cap B$, $A \cup B$, B A.
- **5.** Dados los subconjuntos $A=\{1,-2,7,3\},\ B=\{1,\{3\},10\}\ \text{y}\ C=\{-2,\{1,2,3\},3\}$ del conjunto referencial $V=\{1,\{3\},-2,7,10,\{1,2,3\},3\},$ hallar

$$i) A \cap (B \triangle C)$$
 $ii) (A \cap B) \triangle (A \cap C)$ $iii) A^c \cap B^c \cap C^c$.

- **6.** Dados subconjuntos A,B,C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos.
- 7. Hallar el conjunto $\mathcal{P}(A)$ de partes de A en los casos

$$\begin{array}{ll} i)\,A = \{1\} & iii)\,A = \{1,\{1,2\}\} & v)\,A = \{1,a,\{-1\}\} \\ ii)\,A = \{a,b\} & iv)\,A = \{a,b,c\} & vi)\,A = \emptyset \end{array}$$

8. Sean A y B conjuntos. Probar que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \Leftrightarrow A \subseteq B$.

 $9. \, \mathrm{Sean} \, p, \, q$ proposiciones Verdaderas o Falsas. Comparar las tablas de verdad de

$$p \Rightarrow q, \qquad \sim q \Rightarrow \sim p, \qquad \sim p \vee q, \qquad \sim (p \wedge \sim q)$$

(Cuando para probar $p \Rightarrow q$ se prueba en su lugar $\sim q \Rightarrow \sim p$ se dice que es una demostración por contrarrecíproco, mientras que cuando se prueba en su lugar que $p \land \sim q$ es falso, lleva a una contradicción, se dice que es una demostración por el absurdo).

- 10. Supongamos que las siguientes dos afirmaciones son verdaderas:
 - No todos los estudiantes de matemática de la facultad son argentinos.
 - Todos los que toman mate que no son argentinos, no son estudiantes de matemática de la facultad.

Decidir si esto implica:

- No todos los estudiantes de matemática de la facultad toman mate.
- 11. Decidir si son verdaderas o falsas las siguientes proposiciones:

- ii) Negar las proposiciones anteriores, y en cada caso verficar que la proposición negada tiene el valor de verdad opuesto al de la original.
- iii) En cada uno de los casos siguientes, decidir si las dos proposiciones tienen el mismo valor de verdad. Dar un contraejemplo cuando no es el caso.

$$\begin{array}{lll} (a) \, \exists \, x \exists \, y, \, p(x,y) \, \, \mathbf{y} \, \exists \, y \exists \, x, \, p(x,y) \\ (b) \, \forall \, x \forall \, y, \, p(x,y) \, \, \mathbf{y} \, \forall \, y \forall \, x, \, p(x,y) \end{array} \qquad \qquad \begin{array}{lll} (c) \, \exists \, x \forall \, y, \, p(x,y) \, \, \mathbf{y} \, \forall \, y \exists \, x, \, p(x,y) \\ (d) \, \forall \, x, \, p(x) \, \, \mathbf{y} \, \sim \, \exists \, x, \, \sim \, p(x) \end{array}$$

- **12.** Sean $A = \{1, 2, 3\}, B = \{1, 3, 5, 7\}$. Hallar $A \times A, A \times B, (A \cap B) \times (A \cup B)$.
- 13. Sean A, B y C conjuntos. Demostrar que:

$$i) (A \cup B) \times C = (A \times C) \cup (B \times C)$$

$$ii) (A \cap B) \times C = (A \times C) \cap (B \times C)$$

$$iii) (A \cap B) \times C = (A \times C) \cap (B \times C)$$