Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 10: Routh-Hurwitz Stability Criterion

Overview

In this Lecture, you will learn:

The Routh-Hurwitz Stability Criterion:

- Determine whether a system is stable.
- An easy way to make sure feedback isn't destabilizing
- Construct the Routh Table

We know that for a system with Transfer function

$$\hat{G}(s) = \frac{n(s)}{d(s)}$$

Input-Output Stability implies that

- all roots of d(s) are in the Left Half-Plane
 - All have negative real part.

Question: How do we determine if all roots of d(s) have negative real part?

Example:

$$\hat{G}(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

Another Variation

Determining stability is not that hard (Matlab).

Now suppose we add feedback:

Controller: Static Gain: $\hat{K}(s) = k$

Closed Loop Transfer Function:

$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s)$$

4 / 28

Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$

We know that increasing the gain reduces steady-state error.

But how high can we go?

What is the maximum value of k for which we have stability?

M. Peet Lecture 10: Control Systems

Suppose we are given a polynomial denominator

$$d(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_0$$

Fact: $\frac{n(s)}{d(s)}$ is unstable if any roots of d(s) have negative real part.

Question: How to determine if any roots of a(s) have negative real part **Simple Case** All Real Roots.

• Suppose all the roots of d(s) had negative real parts.

$$d(s) = (s - p_1)(s - p_2) \cdots (s - p_n)$$

Observe what happens as we expand out the roots:

$$d(s) = (s - p_1)(s - p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$$

$$= (s^2 - (p_1 + p_2)s + p_1p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$$

$$= (s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_1p_3)s - p_1p_2p_3)(s - p_4) \cdots (s - p_n)$$

$$= \cdots$$

$$= s^n - (p_1 + p_2 + \cdots + p_n)s^{n-1} + (p_1p_2 + p_1p_3 + \cdots)s^{n-2}$$

$$- (p_1p_2p_3 + p_1p_2p_4 + \cdots)s^{n-3} + \cdots + (-1)^n p_1p_2 \cdots p_n$$

M. Peet Lecture 10: Control Systems 5 / 28

So if we write

$$d(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_0$$

we get

$$a_{n-1} = -(p_1 + p_2 + \dots + p_n)$$

 $a_{n-2} = (p_1 p_2 + \dots)$
 $a_{n-3} = -(p_1 p_2 p_3 + \dots)$

Critical Point: If d(s) is stable, all the p_i are negative.

- $a_{n-1} = -(p_1 + p_2 + \dots + p_n) > 0$
- $a_{n-2} = (p_1 p_2 + \cdots) > 0$
- $a_{n-3} = -(p_1p_2p_3 + \cdots) > 0$

Conclusion: All the coefficients of d(s) are positive!!!

- Also true if the p_i are complex
 - Harder to show.
- If any coefficient is negative, d(s) is unstable.
- **Note!** If all a_i are positive, that proves nothing.

Example: Suspension Problem

Controller: Static Gain: $\hat{K}(s) = k$

Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$

Examine the denominator:

$$d(s) = s4 + 2s3 + (3+k)s2 + (1+k)s + (1+k)$$

All coefficients are positive for all positive k > 0

Conclusion: We don't know anything new.

M. Peet

Example: Another Example

Consider the very simple transfer function

$$\hat{G}(s) = \frac{1}{s^3 + s^2 + s + 2}$$

The coefficients of

$$d(s) = s^3 + s^2 + s + 2$$

are all positive.

However, the roots of d(s) are at

- $p_1 = -1.35$
 - Stable
- $p_{2.3} = .177 \pm 1.2i$
 - ▶ Positive Real Part Unstable

Introduced in 1874

- Generalizes the previous method
- Introduces additional combinations of coefficients
- Based on Sturm's theorem.

Central is the idea of the "Routh Table"

Step 1: Write the polynomial as

$$d(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Step 2

Write the coefficients in 2 rows

- First row starts with a_n
- Second row starts with a_{n-1}
- Other coefficients alternate between rows
- Both rows should be same length
 - Continue until no coefficients are left
 - Add zero as last coefficient if necessary

TABLE 6.1 Initial layout for Routh table

ti.			
s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^3 s^2			
s^1			
s^0			

Step 3

Complete the third row.

- Call the new entries b_1, \dots, b_k
 - ▶ The third row will be the same length as the first two

$$b_1 = -\frac{\det \begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} \qquad b_2 = -\frac{\det \begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} \qquad b_3 = -\frac{\det \begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3}$$

- The denominator is the first entry from the previous row.
- The numerator is the determinant of the entries from the previous two rows:
 - ▶ The first column
 - ▶ The next column following the coefficient

$$b_k = -\frac{\det \begin{vmatrix} a_n & a_{n-2k} \\ a_{n-1} & a_{n-2k-1} \end{vmatrix}}{a_{n-1}}$$

▶ If a coefficient doesn't exist, substitute 0.

Step 4

TABLE 6.2 Completed Routh table

Treat each following row in the same way as the third row

ullet There should be n+1 rows total, including the first row.

12 / 28

Step 4

Now examine the first column

TABLE 6.3 Completed Routh table for Example 6.1

INDEE 0.5	Completed Routh tubic for	Example of	
s^3	1	31	0
s^2	JØ 1	1 030 103	0
s^1	$\frac{-\begin{vmatrix} 1 & 31 \\ 1 & 103 \end{vmatrix}}{1} = -72$	$\frac{-\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}}{1} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$
s^0	$\frac{-\begin{vmatrix} 1 & 103 \\ -72 & 0 \end{vmatrix}}{-72} = 103$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$

Theorem 1.

The number of sign changes in the first column of the Routh table equals the number of roots of the polynomial in the Closed Right Half-Plane (CRHP).

Note: Any row can be multiplied by any positive constant without changing the result.

M. Peet

Numerical Example

Suppose we have a stable transfer function

$$\hat{G}(s) = \frac{1}{(s+2)(s+3)(s+5)}$$

To improve performance, we close the loop with a gain of 1000

Controller: $\hat{K}(s) = 1000$

The Closed-Loop Transfer Function is

$$\frac{1000}{s^3 + 10s^2 + 31s + 1030}$$

Question: Have we destabilized the system?

M. Peet Lecture 10: Control Systems 14 / 28

Numerical Example

TABLE 6.3 Completed Routh table for Example 6.1

	35/	-	
s^3	1	31	0
s^2	10 1	1 030 103	0
s^1	$\frac{-\begin{vmatrix} 1 & 31 \\ 1 & 103 \end{vmatrix}}{1} = -72$	$\frac{-\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}}{1} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$
s^0	$\frac{-\begin{vmatrix} 1 & 103 \\ -72 & 0 \end{vmatrix}}{-72} = 103$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$

- We divide the second row by 10
- There are **two** sign changes: $1 \rightarrow -72$ and $-72 \rightarrow 103$
 - Two poles in the CRHP.

Feedback is **Destabilizing!**

Recall the suspension Problem with feedback:

Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$

Question: Can feedback destabilize the suspension system?

• Is it stable for any k > 0???

Lets start the Routh Table:

We need to find the b_i .

Start by calculating the coefficients in the first row:

$$b_1 = -\frac{\det \begin{vmatrix} 1 & 3+k \\ 2 & 1+k \end{vmatrix}}{2} = \frac{1}{2}(5+k)$$

and

$$b_2 = -\frac{\det \begin{vmatrix} 1 & 1+k \\ 2 & 0 \end{vmatrix}}{2} = 1+k$$

which gives

s^4	1	3+k	1+k
s^3	2	1+k	0
s^2	$\frac{1}{2}(5+k)$	1+k	0
s	$ \begin{array}{c c} 1 \\ 2 \\ \frac{1}{2}(5+k) \\ c_1 \end{array} $	0	0

So far, so good.

Now calculate the next row.

The coefficients for the next row are

$$c_1 = -\frac{\det \begin{vmatrix} 2 & 1+k \\ \frac{1}{2}(5+k) & 1+k \end{vmatrix}}{\frac{1}{2}(5+k)}$$
$$= \frac{k^2 + 2k + 1}{5+k}$$

and $c_2 = 0$.

s^4	1	3+k	1+k
s^4 s^3 s^2	2	1+k	0
s^2	$\begin{bmatrix} \frac{1}{2}(5+k) \\ \frac{k^2+2k+1}{5+k} \end{bmatrix}$	1+k	0
s 1	$\frac{k^2+2k+1}{5+k}$	0	0
1	d_1	0	0

Again, the first column is all positive for any k>0

• Now calculate the final row.

There is only one non-zero coefficient in the last row.

$$d_1 = -\frac{\det \left| \frac{\frac{1}{2}(5+k)}{\frac{k^2+2k+1}{5+k}} \frac{1+k}{0} \right|}{\frac{k^2+2k+1}{5+k}} = k+1$$

$$s^4 \begin{vmatrix} 1 & 3+k & 1+k \\ s^3 & 2 & 1+k & 0 \\ s^2 & \frac{1}{2}(5+k) & 1+k & 0 \\ s & \frac{k^2+2k+1}{5+k} & 0 & 0 \\ 1 & 1+k & 0 & 0 \end{vmatrix}$$

Conclusion: No matter what k > 0 is, the first column is always positive.

- No sign changes for any k.
- Stable for any k.
- We'll find out why later on.

Feedback **CANNOT** destabilize the suspension system.

M. Peet Lecture 10: Control Systems 19 / 28

Stability of Quadratics

What about a simple second-order system?

$$\frac{1}{s^2 + bs + c}$$

We know the poles are at

$$p_{1,2} = -b \pm \sqrt{b^2 - 4c}$$

Calculate

$$-\frac{\det \begin{vmatrix} 1 & c \\ b & 0 \end{vmatrix}}{b} = -\frac{-bc}{b} = \epsilon$$

The Routh table is

Thus a quadratic is stable if and only if both coefficients are positive.

Stability of 3rd order systems

Now consider a third order system:

$$\frac{1}{s^3 + as^2 + bs + c}$$

$$-\frac{\det \begin{vmatrix} 1 & b \\ a & c \end{vmatrix}}{a} = -\frac{c - ab}{a} = b - \frac{c}{a}$$

$$-\frac{\det \begin{vmatrix} a & c \\ b - \frac{c}{a} & 0 \end{vmatrix}}{b - \frac{c}{a}} = c$$

The Routh table is

s^3	1	b	0
s^2	a	c	0
s	$b-\frac{c}{a}$	0	0
1	c	0	0

So for 3rd order, stability is equivalent to:

- *a* > 0
- *c* > 0
- $b > \frac{c}{a}$

Numerical Example, Revisited

Now lets look at the previous example to determine the maximum gain: We have the stable transfer function

$$\hat{G}(s) = \frac{1}{(s+2)(s+3)(s+5)}$$

We close the loop with a gain of size k

Controller: $\hat{K}(s) = k$

The Closed-Loop Transfer Function is

$$\frac{k}{s^3 + 10s^2 + 31s + 30 + k}$$

But this is a third order system!

M. Peet Lecture 10: Control Systems 2:

Numerical Example, Revisited

For the third-order system,

$$\frac{k}{s^3 + 10s^2 + 31s + 30 + k}$$

we require

- a > 0, which means 10 > 0
- c > 0, which means 30 + k > 0
- $b > \frac{c}{a}$

The last requirement implies $31>\frac{k+30}{10}$ or

$$k < 310 - 30 = 280$$

So our gain is limited to k < 280

Consider the transfer function

$$\hat{G}(s) = \frac{1}{s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10}$$

The Routh Table begins:

The next entry in the table will be

$$-\frac{\det \begin{vmatrix} 2 & 4 \\ 0 & 6 \end{vmatrix}}{0} = \frac{-12}{0}$$

Which is problematic.

Note: If there is a zero in the first column, the system is only marginally stable

• Small changes in the coefficients lead to instability.

M. Peet Lecture 10: Control Systems 24 / 28

The solution is to use ϵ instead of 0 in the first column.

s^5	1	2	11
s^4	2	4	10
s^3	ϵ	6	0

Now the next entry in the table will be

$$-\frac{\det \begin{vmatrix} 2 & 4 \\ \epsilon & 6 \end{vmatrix}}{\epsilon} = \frac{-(12 - 4\epsilon)}{\epsilon}$$

Because ϵ is infinitely small, we let $12-4\epsilon=12$. Assume $\epsilon>0$

- We have at least one sign change
- At least one unstable pole.

We can keep calculating if necessary.

1	2	11
2	4	10
0	6	0
ϵ	6	0
$\frac{4\epsilon - 12}{\epsilon}$	$\frac{10\epsilon}{\epsilon}$	0
$\frac{-12}{\epsilon}$	10	0
	0	0
6	0	0
10	0	0
	$ \begin{vmatrix} 2 \\ 0 \\ \frac{\epsilon}{4\epsilon - 12} \\ \frac{-12}{\epsilon} \\ \frac{10\epsilon^2 + 72}{12} \\ 6 \end{vmatrix} $	$ \begin{vmatrix} 2 & 4 \\ 0 & 6 \\ \epsilon & 6 \\ \frac{4\epsilon - 12}{\epsilon} & \frac{10\epsilon}{\epsilon} \\ \frac{-12}{\epsilon} & 10 \\ \frac{10\epsilon^2 + 72}{12} & 0 \\ 6 & 0 \end{vmatrix} $

So there are two sign changes

• Two unstable poles

Consider the transfer function

$$\hat{G}(s) = \frac{1}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$

The Routh Table begins:

The next entry in the table will be

$$-\frac{\det \begin{vmatrix} 7 & 42 \\ 0 & 0 \end{vmatrix}}{0} = \frac{0}{0}$$

Which is even more problematic - the whole row is zero.

We won't cover this case.

• However, it can be done - see book.

M. Peet

Summary

What have we learned today?

The Routh-Hurwitz Stability Criterion:

- Determine whether a system is stable.
- An easy way to make sure feedback isn't destabilizing
- Construct the Routh Table

Next Lecture: PID Control