

ID1020: Mergesort

ch 2.2

Slides adapted from Algoritms 4th Edition, Sedgewick.

Two classic algorithms: mergesort och quicksort

- Key components of the IT-infrastructure of the world.
 - Scientific understanding of their properties has enabled their usage in and enabled the devellpment of many of the systems we depend on.
 - Quicksort has been selected as one of the top ten most important algorithms of the 20th century.
- Mergesort.

Quicksort.

Divide-and-Conquer algorithms

- The principle of Divide-and-Conquer (dela-och-härska) of algorithms:
 - **Divide**: partition the problem in smaller, indepenent, sub-problem. The sub-problems are of the same type as the original problem. The partitioning continues until the original problem has been partitioned into trivial (simple) sub-problems.
 - Conquer: solve the sub-problems recursively (or directly).
 - The results are merged into a solution to the original problem.
- Time complexity can normally be solved by analyzing a recurrence relation.

Mergesort

Mergesort

- Basic method.
 - Partition the array in two halves.
 - Recursively sort each half.
 - Merge the halfs.

Mergesort overview

Abstract in-place merge demo

• Target. Given two sorted sub-arrays a[lo] to a[mid] and a[mid+1] to a[hi], merge into a sorted array a[lo] to a[hi].

Abstract in-place merge demo

 Target. Given two sorted sub-arrays a[lo] to a[mid] and a[mid+1] to a[hi], merge into a sorted array a[lo] to a[hi].

Merging

- How do we combine two sorted sub-arrays into a single sorted array?
- Use an auxiliary array.

Merging: Java implementation

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid,
 int hi) {
  assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
  assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
  for (int k = lo; k \le hi; k++)
     aux[k] = a[k];
                                                              copy
  int i = lo, j = mid+1;
  for (int k = lo; k \le hi; k++)
     if (i > mid)
                                 a[k] = aux[j++];
                                                              merge
     else if (i > hi)
                      a[k] = aux[i++];
     else if (less(aux[j], aux[i])) a[k] = aux[j++];
                                   a[k] = aux[i++];
     else
  assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
```


Assertions

- Assertion. A statement to check assumptions on the algorithm.
 - Assertions helps identifying bugs in the logic (algorithm).
 - Assertions helpful to document the source code.
- Java assert statement. Throws an exception if the condition is false.

```
assert isSorted(a, lo, hi);
```

- Can be enabled or disabled (i.e. compiled or not compiled).
 - ⇒ They do not affect the performance/cost of production code.

```
% java -ea MyProgram
                     // enable assertions
% java -da MyProgram
                      // disable assertions
(default)
```

- Best effort. Use assertions to check invariants, pre-conditions and postconditions, for eg. for an API or method.
 - Assume assertions are disabled in production code. Do not use external arguments

to check assertions

Unit tests checks the external behaviour of an API or a method.

Mergesort: Java implementation

```
public class Merge {
   private static void merge(...)
   {    /* as before */    }
   private static void sort(Comparable[] a, Comparable[] aux, int lo, int
hi)
      if (hi <= lo) return;
                                                   Why should you not create
      int mid = lo + (hi - lo) / 2;
                                                   the auxiliary array here?
      sort(a, aux, lo, mid);
      sort(a, aux, mid+1, hi);
      merge(a, aux, lo, mid, hi);
   public static void sort(Comparable[] a) {
      Comparable[] aux = new Comparable[a.length];
      sort(a, aux, 0, a.length - 1);
```


Mergesort: trace

```
a[]
                         1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
                                              E
    merge(a,
    merge(a, 2, 2, 3) E
                         M G R E
   merge(a, 0, 1, 3) E
    merge(a, 4, 4, 5) E G
    merge(a, 6, 6, 7) E
   merge(a, 4, 5, 7)
 merge(a, 0, 3, 7)
    merge(a, 8, 8, 9) E
    merge(a, 10, 10, 11) E
   merge(a, 8, 9, 11) E
    merge(a, 12, 12, 13) E
    merge(a, 14, 14, 15)
   merge(a, 12, 13, 15)
 merge(a, 8, 11, 15) E E
merge(a, 0, 7, 15)
```

Trace of merge results for top-down mergesort

Mergesort

https://en.wikipedia.org/wiki/Merge_sort

Mergesort: empiric analysis

- Estimated execution times:
 - A laptop executes 10⁸ comparisons/s.
 - A super computer executes 10¹² comparisons/s.

	insertion sort (N ²)			mergesort (N log N)		
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Conclusion. Good algorithms are better than supe computers.

Mergesort: number of comparisons

- Proposition. Mergesort compares $\leq N \lg N$ to sort an array of size N.
- Proof. The number of comparisons C(N) and array accesses A(N) to sort an array of size N by mergesort satisfies the recurrence relation:

$$C(N) \le C(\lceil N/2 \rceil) + C(\lceil N/2 \rceil) + N$$
 where $N > 1$, and $C(1) = 0$.

 \uparrow

Left half

Right half

merge

 $A(N) \le A(\lceil N/2 \rceil) + A(\lceil N/2 \rceil) + 6N$ where $N > 1$, and $A(1) = 0$.

• Solve the recurrence relation when N is 2^M:

$$D(N) = 2D(N/2) + N$$
, för $N > 1$, and $D(1) = 0$.

The result can be proven valid for all N (this assumptions simplifies the analysis)

Divide-och-conquer recurrence: proof by example

- Proposition. IF D(N) satisfies D(N) = 2D(N/2) + N for N > 1, and D(1) = 0, THEN $D(N) = N \lg N$.
- Proof 1. [assuming N is 2^M]

Divide-och-conquer recurrence: proof by expansion

- Proposition. IF D(N) satisfies D(N) = 2D(N/2) + N for N > 1, and D(1) = 0, THEN $D(N) = N \lg N$.
- Proof 2. [assuming N is 2^M]

$$D(N) = 2D(N/2) + N$$
 given
$$D(N) / N = 2D(N/2) / N + 1$$
 divide both sides by N
$$= D(N/2) / (N/2) + 1$$
 algebra
$$= D(N/4) / (N/4) + 1 + 1$$
 apply to first term
$$= D(N/8) / (N/8) + 1 + 1 + 1$$
 apply to first term again
$$\cdots$$

$$= D(N/N) / (N/N) + 1 + 1 + \dots + 1$$
 stop applying, D(1) = 0
$$= \lg N$$

Divide-och-conquer recurrence: proof by induction

- Proposition. IF D(N) satisfies D(N) = 2D(N/2) + N for N > 1, and D(1) = 0, THEN $D(N) = N \lg N$.
- Proof 1. [assuming N is 2^M]
 - Base case: N = 1.
 - Induction step: $D(N) = N \lg N$.
 - Target: proove that $D(2N) = (2N) \lg (2N)$.

$$D(2N) = 2 D(N) + 2N$$
 given
 $= 2 N \lg N + 2N$ inductive hypothesis
 $= 2 N (\lg (2N) - 1) + 2N$ algebra
 $= 2 N \lg (2N)$ QED

Mergesort: number of array accesses

- Proposition. Mergesort accesses the array $\leq 6 N \lg N$ times to sort an array of size N.
- Proof. Number of array accesses A(N) satisfies the recurrence-relation:

```
A(N) \le A([N/2]) + A([N/2]) + 6N \text{ for } N > 1, \text{ and } A(1) = 0
```

• Important observation. Any algorithm with the following structure executes

```
in N log N time:
    public static void linearithmic(int N) {
        if (N == 0) {
            return;
        }
        linearithmic(N/2);
        linearithmic(N/2);
        linear amount of
        work
```

Known exceptions. FFT, m.m., ...

Mergesort analys: minneskomplexitet

- Sats. Mergesort använder extra minne proportionellt mot N.
- Bevis. The array aux[] needs to be of length N for the last merge.

- Def. An algorithm is "in-place" if it uses O(1) (often $\leq c \log N$) auxiliary memory.
- Eg. Insertion sort, selection sort, shellsort.
- Challenge 1 (not too hard). Use an aux[] array of size ~ ½ N instead of N.
- Chalenge 2 (really hard). *In-place merge*. [Kronrod 1969]

Mergesort: improvements

- Use insertion sort for small sub-arrays.
 - Mergesort (most recursive sorts) has too large overhead for very small sub-arrayer.
 - Cutoff ~ 10 elements use insertion sort.

Mergesort: improvements

- Stop if already sorted.
 - If largest element (key) in first half ≤ smallest element (key) in the second half?
 - Improves performance for partially sorted arrays.

```
ABCDEFGHIJ MNOPQRSTUV
ABCDEFGHIJ MNOPQRSTUV
```

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
   if (hi <= lo) return;
   int mid = lo + (hi - lo) / 2;
   sort (a, aux, lo, mid);
   sort (a, aux, mid+1, hi);
   if (!less(a[mid+1], a[mid])) return;
   merge(a, aux, lo, mid, hi);
}</pre>
```


Mergesort: Improvements

 Eliminate copying to the auxiliary array. Save time (but not memory) by switching the input and the auxiliary array for each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int
mid, int hi)
   int i = lo, j = mid+1;
   for (int k = lo; k <= hi; k++) {
          (i > mid) \qquad aux[k] = a[j++];
      if
      else if (j > hi) aux[k] = a[i++];
                                                          merge from a[] to aux[]
      else if (less(a[j], a[i])) aux[k] = a[j++];
      else
                                 aux[k] = a[i++];
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
   if (hi <= lo) return;
   int mid = lo + (hi - lo) / 2;
                                          assumes aux[] is initialized to a[] once,
   sort (aux, a, lo, mid);
                                                before recursive calls
   sort (aux, a, mid+1, hi);
   merge(a, aux, lo, mid, hi);
```

switch roles of aux[] och a[]

Java 6 systemsort

- Base algorithm for sorting of objects = mergesort.
 - Cutoff to insertion sort = 7 (for Strings).
 - Stop if already sorted.
 - Eliminate copying to the auxiliary array trick implemented.

Arrays.sort(a)

http://www.java2s.com/Open-Source/Java/6.0-JDK-Modules/j2me/java/util/Arrays.java.html

Bottom-up Mergesort

Bottom-up mergesort

- Basic method.
 - "Pass-through" array, merges sub-arrays of size 1.
 - Repeat (iterate) for sub-arrays of size 2, 4, 8,

```
a[i]
                                                         9 10 11 12 13 14 15
     gx = 1
     merge(a, aux, 0, 0, 1)
     merge(a, aux, 2, 2, 3)
     merge(a, aux, 4, 4, 5)
     merge(a, aux, 6, 6, 7) E M
     merge(a, aux. 8, 8,
                           9) E M
     merge(a, aux, 10, 10, 11) E M
     merge(a, aux, 12, 12, 13) ∈ M
     merge(a, aux, 14, 14, 15)
   sa = 2
   merge(a, aux, 0, 1,
   merge(a, aux, 4, 5,
                                              0
                        70
   merge(a, aux, 8, 9, 11)
   merge(a, aux, 12, 13, 15)
 sa = 4
 merge(a, aux, 0, 3, 7)
                                           0
                                             R
                                                R
                                                      A E
 merge(a, aux, 8, 11, 15)
\delta x = 0.
menge(a, aux, 0, 7, 15)
```


Bottom-up mergesort: Java implementation

```
public class MergeBU
{
   private static void merge(...)
   { /* as before */ }

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      Comparable[] aux = new Comparable[N];
      for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
   }
}</pre>
```

Conclusion. Simple non-recursive version of mergesort.

(uses less execution stack space but is ~10% slower than the recursive version due to worse cache behaviour!)

Time complexity of mergesort

Time complexity for sorting

- Cost model. Number of operations.
- Upper bound. Cost guarantee for some algorithm for X.
- Lower bound. No algorithm for X has a cost lower than the bound.
- Optimal algoritm. Algorithm with the best possible cost guarantee for X.

Lower bound ~ upper bound

- Exemple: sorting.
 - Computation model: decision tree. ← (t.ex., Java Comparable framework)
 - Cost model: # comparisions.
 - Upper bound: ~ N Ig N from mergesort.
 - Lower bound : ?
 - Optimal algorithm: ?

Decision tree (for 3 unique keys a, b, and c)

Each leaf corresponds to one (and only one) permutation, one leaf per possible permutation.

Lower bound for comparison based sorting

• Proposition. No comparson based sorting algorithm can guarantee to sort N unique keys with fewer than $lg(N!) \sim N lg N$ comparisons.

Proof.

- Assume an array of N unique key values a_1 to a_N .
- Worst case is limited by the depth (height) h of the decision tree.
- A binary tree of depth h has at most 2^h leafs.
- *N*! Different permutations ⇒ at least *N*! leafs.

Lower bound for comparison based sorting

• Proposition. No comparson based sorting algorithm can guarantee to sort N unique keys with fewer than $lg(N!) \sim N lg N$ comparisons.

Proof.

- Assume an array of N unique key values a_1 to a_N .
- Worst case is limited by the depth (height) h of the decision tree.
- A binary tree of depth h has at most 2^h leafs.
- *N*! Different permutations ⇒ at least *N*! leafs.

$$2^{h} \ge \# \text{ leafs } \ge N!$$

 $\Rightarrow h \ge \lg (N!) \sim N \lg N$
Stirling's approximation

Time complexity for comparison based sorting

- Cost model. Number of operations.
- Upper bound. Cost guarantee for some algorithm for X.
- Lower bound. No algorithm for X has a cost lower than the bound.
- Optimal algoritm. Algorithm with the best possible cost guarantee for X.

- Exemple: sorting.
 - Computation model: decision tree.
 - Cost model: # comparisions.
 - Upper bound: ~ N lg N from mergesort.
 - Lower bound : ~ N lg N.
 - Optimal algorithm = mergesort.
- Primary target for algorithm design: optimal algoritms.

note

- Sorting algorithms that are not based on comparisons may be faster (near O(1))
- Radix, tries
 - Patricia trie used for near O(1) IP route lookups in Linux
- See chapter 5 (which we do not cover in this course)

Complexity results put into context

- Compares? Mergesort is optimal with regard to comparisons.
- Space? Mergesort is not optimal in terms of memory usage (memory complexity).

Lesson. Theory helps us find better solutions.

Eg. Can one design a sorting algorithm which uses at most $\frac{1}{2}N \lg N$ comparisons?

Eg. Can one design a sorting algorithm with optimal time and memory complexity?

Complexity results put into context (cont.)

- The lower bound can be reduced if the algorithm can:
 - Exploit knowledge of how the input is ordered. Eg.: insertion sort is O(N) for partially ordered arrayer.
 - Exploit the distribution of key values.
 - Eg.: 3-way quicksort only need O(N) comparisions if the number of keys is limited. [nästa föreläsningen]
 - Representation of the keys.
 - Eg.: radix sort does not perform comparisons of keys it accesses data by character/number comparisons.

Mergesort comparators

Sort countries by gold medals

NOC \$	Gold ≑	Silver +	Bronze +	Total ≑
United States (USA)	46	29	29	104
China (CHN)§	38	28	22	88
Great Britain (GBR)*	29	17	19	65
Russia (RUS)§	24	25	32	81
South Korea (KOR)	13	8	7	28
Germany (GER)	11	19	14	44
France (FRA)	11	11	12	34
Italy (ITA)	8	9	11	28
Hungary (HUN)§	8	4	6	18
Australia (AUS)	7	16	12	35

Sort countries by the number of medals

NOC \$	Gold \$	Silver +	Bronze \$	Total ▼
United States (USA)	46	29	29	104
China (CHN)§	38	28	22	88
Russia (RUS)§	24	25	32	81
Great Britain (GBR)*	29	17	19	65
Germany (GER)	11	19	14	44
Japan (JPN)	7	14	17	38
Australia (AUS)	7	16	12	35
France (FRA)	11	11	12	34
South Korea (KOR)	13	8	7	28
Italy (ITA)	8	9	11	28

Sort a music library by artist

Sort a music library by tunes

Comparable interface: racap

• Comparable interface: sort according to the natural order of a type.

```
public class Date implements Comparable<Date> {
  private final int month, day, year;
  public Date(int m, int d, int y) {
     month = m;
     day = d;
     year = y;
  public int compareTo(Date that) {
      if (this.year < that.year ) return -1;
      if (this.year > that.year ) return +1;
                                                             natural order
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day < that.day ) return -1;
      if (this.day > that.day ) return +1;
     return 0;
```


Comparator interface

• Comparator interface: sort according to an alternative order.

Requirement. Must definie a total order.

natural order

Now is the time

pre-1994 order for digraphs ch och ll och rr

is Now the time

Spanish language

café cafetero cuarto churro nube ñoño

McKinley Mackintosh

Decouple the comparator interface from the data type

- Use with Java system sort:
 - Create a Comparator object.
 - Pass as second argument to Arrays.sort().

```
String[] a; uses natural order by a Comparator String object
...
Arrays.sort(a);
...
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
...
Arrays.sort(a, Collator.getInstance(new Locale("es")));
...
Arrays.sort(a, new BritishPhoneBookOrder());
...
```

 Conclusion. Decouple the definition of the data type from the definition of what it means to compare two objects of the same type.

Comparator interface: to use sorting libraries from the book

- To use comparators in the sorting methods implemented in the book:
 - Use Object instead of Comparable.
 - Pass a Comparator to sort() and less() and use it in less().

insertion sort using a Comparator

```
public static void sort(Object[] a, Comparator comparator)
   int N = a.length;
  for (int i = 0; i < N; i++)
      for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
         exch(a, j, j-1);
private static boolean less(Comparator c, Object v, Object w) {
  return c.compare(v, w) < 0;</pre>
private static void exch(Object[] a, int i, int j){
   Object swap = a[i]; a[i] = a[j]; a[j] = swap;
```

- To implement a comparator:
 - Define a (nested) class which implements the Comparator interface.
 - Implement the compare() method.

```
public class Student {
private final String name;
   private final int section;
  public static class ByName implements Comparator<Student>
    public int compare(Student v, Student w)
         return v.name.compareTo(w.name);
   public static class BySection implements Comparator<Student>
      public int compare(Student v, Student w)
         return v.section - w.section; }
```


- To implement a comparator:
 - Define a (nested) class which implements the Comparator interface.
 - Implement the compare() method.

Arrays.sort(a, new Student.ByName());

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Arrays.sort(a, new Student.BySection());

Furia	1	А	766-093-9873	101 Brown
Rohde	2	А	232-343-5555	343 Forbes
Andrews	3	А	664-480-0023	097 Little
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	22 Brown
Battle	4	С	874-088-1212	121 Whitman
Gazsi	4	В	766-093-9873	101 Brown

- To implement a comparator:
 - Define a (nested) class which implements the Comparator interface.
 - Implement the compare() method.

```
public class Student {
   public static final Comparator<Student> BY_NAME = new ByName();
   public static final Comparator<Student> BY_SECTION = new BySection();
   private final String name;
   private final int section;
   public static class ByName implements Comparator<Student>
    public int compare(Student v, Student w)
         return v.name.compareTo(w.name);
   public static class BySection implements Comparator<Student>
      public int compare(Student v, Student w)
         return v.section - w.section;
```

- To implement a comparator:
 - Define a (nested) class which implements the Comparator interface.
 - Implement the compare() method.
 - Give access to static Comparator objects.

Arrays.sort(a, Student.BY_NAME);

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Arrays.sort(a, Student.BY_SECTION);

Furia	1	А	766-093-9873	101 Brown
Rohde	2	А	232-343-5555	343 Forbes
Andrews	3	А	664-480-0023	097 Little
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	22 Brown
Battle	4	С	874-088-1212	121 Whitman
Gazsi	4	В	766-093-9873	101 Brown

Mergesort stability

Stability

Common application. First, sort by name; then sort by "Section".

Selection.sort(a, new Student.ByName());

Selection.sort(a, new Student.BySection());

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Furia	1	А	766-093-9873	101 Brown
Rohde	2	А	232-343-5555	343 Forbes
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Andrews	3	А	664-480-0023	097 Little
Kanaga	3	В	898-122-9643	22 Brown
Gazsi	4	В	766-093-9873	101 Brown
Battle	4	С	874-088-1212	121 Whitman

- @#%&@! Students in section 3 are no longer sorted by name.
- A stable sort maintains the relative order of elements with equal keys.

Stability

Which sorting algorithms are stable?
 We need to check the algorithm (and implementation) to undertsand if it is stable or not.

Stability: insertion sort

Proposition. Insertion sort is stable.

Prof. If two elements have equal keys, insertion sort never moves one element before the other, (it never re-orders elements with equal keys)

i	j	O	1	2	3	4
0	0	B ₁	A ₁	A_2	A_3	B ₂
1	0	A_1	B ₁	A_2	A_3	B ₂
2	1	A_1	A_2	B ₁	A_3	B ₂
3	2	A_1	A_2	A_3	B ₁	B ₂
4	4	A_1	A_2	A_3	B ₁	B ₂
		A_1	A_2	A_3	B ₁	B ₂

Stability: selection sort

Proposition. Selection sort is not stable.

```
i min 0 1 2
0 2 B<sub>1</sub> B<sub>2</sub> A
1 1 A B<sub>2</sub> B<sub>1</sub>
2 2 A B<sub>2</sub> B<sub>1</sub>
A B<sub>2</sub> B<sub>1</sub>
```

• Proof by counter example. (long) distance swapping may move an element passed another with equal keys.

Stabilitet: shellsort

• Proposition. Shellsort sort is not stable.

```
public class Shell {
    public static void sort(Comparable[] a)
        int N = a.length;
        int h = 1;
        while (h < N/3) h = 3*h + 1;
        while (h >= 1)
             for (int i = h; i < N; i++)
                 for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                     exch(a, j, j-h);
            h = h/3;
                                                                                B_1 B_2 B_3 B_4 A_1
                                                                                A<sub>1</sub> B<sub>2</sub> B<sub>3</sub> B<sub>4</sub> B<sub>1</sub>
                                                                                A<sub>1</sub> B<sub>2</sub> B<sub>3</sub> B<sub>4</sub> B<sub>1</sub>
                                                                                A_1 B_2 B_3 B_4 B_1
```

 Proof by counter example. (long) distance swapping may move an element passed another with equal keys.

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
   private static void merge(...)
     /* as before */ }
   private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
      if (hi <= lo) return;</pre>
      int mid = lo + (hi - lo) / 2;
      sort(a, aux, lo, mid);
      sort(a, aux, mid+1, hi);
      merge(a, aux, lo, mid, hi);
   public static void sort(Comparable[] a)
   {    /* as before */    }
```

Proof. It is sufficient to verify that a merge operation is stable.

Stability: mergesort

Proposition. The merge operation is stab.

```
private static void merge(...)
{
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];

    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
```

```
      0
      1
      2
      3
      4

      A1
      A2
      A3
      B
      D

      5
      6
      7
      8
      9
      10

      A4
      A5
      C
      E
      F
      G
```

- Proof. two equal keys on the same half won't change relative order;
- two equal keys on different halves won't change relative order because we take from left subarray if equal

Sort summary

	inplace?	stable?	best	average	worst	remarks
selection	•		½ N ²	½ N ²	½ N ²	N exchanges
insertion	•	•	N	1/4 N ²	½ N ²	use for small <i>N</i> or partially ordered
shell	•		N log₃ N	?	c N ^{3/2}	tight code; subquadratic
mergesort		•	½ N lg N	N lg N	N lg N	N log N guarantee; stable
?	•	•	N	N lg N	N lg N	holy sorting grail