Network Basics 2

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Connected Components
- Breadth-First Search
- Depth-First Search
- Shortest Path Algorithm
 - Dijkstra's algorithm

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other;
 and
 - the subset is not part of a bigger component.

Figure 2.5: A graph with three connected components.

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other;
 and
 - the subset is not part of a bigger component.

Figure 2.5: A graph with three connected components.

UMASS

Connected Components- Cnt.

Figure 2.7: A network in which the nodes are students in a large American high school, and an edge joins two who had a romantic relationship at some point during the 18-month period in which the study was conducted [49].

Breadth- Depth-First Search

- General techniques for traversing graphs!
 - Start from a given node s (i.e. start node) and visit all nodes and edges in the graph.
- Compute the connected components of graph!
 - Use components to determine whether graph is connected!
 - How?
 - Use components to determine if there is a path btw node pairs!
 - How?

Breadth-First Search

- Start with s
- Visit all neighbors of s
 - these are called level-1 nodes
- Visit all neighbors of level-1 nodes
 - these are called level-2 nodes
- Repeat until all nodes are visited.
 - Each Node is only visited once.
- Key Point:
 - All level-k nodes should be visited before any level-(k+1) node!

• Graph G:

Example 1. BFS -Cnt.

- BFS traversal:
 - Distance to root at level-i?
 - Components?
 - Connectivity?
 - Paths?

Depth-First Search

- Starts from s
- Explores as far as possible along each branch before backtracking.
 - Visit a neighbor of s [say v₁]
 - Visit a neighbor of v₁ [say v₂]
 - · Repeat until all nodes are visited.

- Given a weighted directed graph and two nodes *s* and *t*, find the shortest path from *s* to *t*.
 - Cost of path = sum of edge weights in path

- Dijkstra's algorithm
- The Bellman-Ford algorithm
- The Floyd-Warshall algorithm
- Johnson's algorithm
- Etc.

• Shortest path from *s* to *t*?

Shortest Path Algorithms- Cnt.

- Shortest Path= s-2-3-5-t
- Cost of path = 9 + 23 + 2 + 16 = 48.

- Applications
 - Small World Phenomenon
 - Internet packet routing
 - Flight reservations
 - Driving directions

•••

Dijkstra algorithm

- Weighted Directed graph G = (N, E),
 - s: source node
 - *t*: target node
 - $l_{(u,v)}$: weight of the edge btw nodes u and v
 - d(u): shortest path distance from s to u.
 - sum of edge weights in path
- We aim to compute d(t)!

Dijkstra algorithm- Cnt.

• Initialization?

$$d(s) = 0$$

$$d(u) = ∞$$
 for all other nodes

Dijkstra algorithm- Cnt.

- To find the shortest path from *s* to *t*:
 - ⁿ Maintain a set of *explored nodes* S for which we have determined the shortest path distance from s to any $u \in S$.
 - Repeatedly expand S.

- Repeatedly expand S?
 - Repeatedly update *d(.)* for the unexplored nodes:

if
$$d(v) > d(u) + l_{(u,v)}$$

then $d(v) \leftarrow d(u) + l_{(u,v)}$

• add v with smallest d(v) to S.

Dijkstra algorithm- Cnt.

•
$$d(s) \leftarrow 0$$

- for each $v \in N \{s\}$
 - $\neg \mathbf{do} d(v) \leftarrow \infty$
- $\cdot S \leftarrow \emptyset$

- Set of explored nodes
- -Set of unexplored nodes
- $Q \leftarrow N \rightarrow Q$ is a set maintaining N S
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q}) \leftarrow$
 - **S**← **S**∪ {u} ←
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

Returns node $u \in Q$ that has minimum d(u)

Add it to explored nodes

Update d(.) for all neighbors of u: this is called **relaxation**!

•
$$d(s) \leftarrow 0$$

- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q** ≠ Ø
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {*u*}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\Box$$
 do $d(v) \leftarrow \infty$

•
$$Q \leftarrow N$$

• while
$$\mathbf{Q} \neq \emptyset$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$Q = \{s, b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ do
$$u \leftarrow$$
 Extract-Min(Q)

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S = \{s\}$$

$$Q = \{b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u,v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S = \{s\}$$

$$Q = \{b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\Box$$
 do $d(v) \leftarrow \infty$

•
$$Q \leftarrow N$$

$$ightharpoonup$$
 □ do $u \leftarrow$ Extract-Min(\mathbf{Q})

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S=\{s,c\}$$

$$\mathbf{Q}$$
={b, d, e}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {u}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

$$S=\{s,c\}$$

$$\mathbf{Q}$$
={b, d, e}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S} = \{s, c\}$$

$$\mathbf{Q} = \{b, d\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S=\{s, c, e\}$$

$$\mathbf{Q}$$
={b, d}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {*u*}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S=\{s, c, e\}$$

$$\mathbf{Q}$$
={b, d}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S}$$
={s, c, e} b

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b\}$$

$$\mathbf{Q} = \{d\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {u}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b\}$$

$$\mathbf{Q} = \{d\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S}$$
={s, c, e, b} \mathbf{Q} ={}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b, d\}$$

$$\mathbf{Q} = \{\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {u}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b, d\}$$

$$\mathbf{Q} = \{\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u,v)}$$

$$S = \{s, c, e, b, d\}$$

• Dijkstra's algorithm computes the shortest distances btw a start node and all other nodes in the graph (not only a target node)!

Assumptions:

- the graph is connected, and
- the weights are nonnegative

Dijkstra's algorithm- Analysis

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$

□ do
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$
• $\mathbf{S} \leftarrow \mathbf{S} \cup \{u\}$
• for each $v \in Ad(u)$
• do if $d(v) > d(u) + l_{(u,v)}$
□ then $d(v) \leftarrow d(u) + l_{(u,v)}$
Under times

Time = Θ ($N \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{Relaxation}}$), Handshaking Lemma!

Dijkstra's algorithm- Analysis- Cnt.

Time =
$$\Theta$$
 ($N \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{Relaxation}}$)

Q	$T_{ m EXTRACT-MIN}$ $T_{ m DECREASE-KEY}$		Total
Array	O(N)	<i>O</i> (1)	$O(N^2)$

Reading

- Ch.24 Single Source Shortest Paths [CLRS]
- What is Twitter, a social network or a news media? Kwak, H., et al. WWW 2010.
- Global connectivity and multilinguals in the Twitter network. Hale, S.A., SIGCHI'14.
- Fragile online relationship: a first look at unfollow dynamics in twitter. Kwak, H., et al. SIGCHI'11.
- Understanding the demographics of twitter users. Mislove, A., et al. AAAI'11