Méthode de Monte Carlo et application aux équations différentielles partielles

Houssam El Cheairi

Février 2020

Abstract

We explore here some methods to approximate the solutions of PDE using Markov chains.

Notations

Dans ce qui suit on considère fonction une f définie sur l'espace $\mathbb{D} = [0,1]^2$ et suffisament régulière (de classe $C^2(\mathbb{D})$ ou $H^2(\mathbb{D})$). De plus, on introduit une deuxième fonction ϕ définie sur le bord $\partial \mathbb{D}$ qu'on suppose suffisament régulière aussi (se réferer au cours de **MAP 431** et/ou le cours de **MAT 432** pour plus de précisions).

Partie 1

On s'intèresse dans cette partie à l'équation de Laplace suivante:

$$\forall (x,y) \in \mathbb{D} : \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$
$$\forall (x,y) \in \partial \mathbb{D} : f(x,y) = \phi(x,y)$$

On se propose d'approximer une solution à ce problème à l'aide de la méthode de Monte Carlo (Basée sur les chaînes de Markov). On considère alors l'espace d'états $\mathbb{E} = \{0,1,...,L\}^2 = \{(i,j)|i\in\{0,...,L\},j\in\{0,...,L\}\}$ où L est un entier positif.

Choix de la marche aléatoire

On s'intéresse alors à une marche alétoire d'ensemble d'état \mathbb{E} où chaque état comunique avec ses voisins directes. Plus formellement on considère une Chaîne de Markov X_k d'ensemble d'état \mathbb{E} , de distribution initiale uniforme et dont les probabilités de transitions sont :

- Si $i \notin \{0, L\}$ et $j \notin \{0, L\}$: $\mathbb{P}(X_{k+1} = (u, v) | X_k = (i, j)) = \frac{1}{4}$ pour $(u, v) \in \{(i+1, j), (i, j+1), (i-1, j), (i, j-1)\}.$
- Si $i \in \{0, L\}$ ou $j \in \{0, L\}$: $\mathbb{P}(X_{k+1} = (i, j) | X_k = (i, j)) = 1$

Cela correspond à dire que la chaîne de Markov est stationnaire dès qu'elle atteint le "bord" $\partial \mathbb{E}$ de l'ensemble d'états.

Temps d'arrêt

On introduit alors le temps d'arrêt usuel $\tau = \inf\{n \in \mathbb{N} | X_n \in \partial \mathbb{E}\}\$

Fonction d'approximation

En s'inspirant de la méthode présenté durant le PC2 on introduit la fonction d'approximation suivante :

$$\forall (i,j) \in \mathbb{E}, u(i,j) = \mathbb{E}[\phi(X_n)\mathbf{1}_{n=\tau}|X_0 = (i,j)] = \mathbb{E}_{i,j}[\phi(X_\tau)]$$

Remarquons que le lemme 3.8 du polycopié nous assure que τ est fini presque sûrement.

Equation de u

Pour $(i, j) \notin \partial \mathbb{E}$:

$$u(i,j) = \mathbb{E}[\phi(X_{\tau})|X_{0} = (i,j)]$$

$$= \mathbb{E}_{i,j}[\phi(X_{\tau})]$$

$$= \frac{1}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})|X_{1} = (i+1,j)]$$

$$+ \frac{1}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})|X_{1} = (i-1,j)]$$

$$+ \frac{1}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})|X_{1} = (i,j+1)]$$

$$+ \frac{1}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})|X_{1} = (i,j-1)]$$

$$= \frac{1}{4}(\mathbb{E}_{i+1,j}[\phi(X_{\tau})] + \mathbb{E}_{i-1,j}[\phi(X_{\tau})] + \mathbb{E}_{i,j+1}[\phi(X_{\tau})] + \mathbb{E}_{i,j-1}[\phi(X_{\tau})])$$

$$= \frac{1}{4}(u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1))$$
(1)

Ce qui est équivalent à :

$$\bar{\Delta}u(x,y) = 0$$

où Δ est le laplacien discrétisé.

Lien avec l'equation initiale

Comme l'indique la remaque de l'exercice 2 de la PC 2, le retour à l'equation intiale se fait en posant:

$$\forall (x,y) \in \mathbb{D} : f(x,y) = u(|xL|, |yL|)$$

D'une part on a pour $(x,y) \in \partial \mathbb{D}$: $f(x,y) = \phi(x,y)$ étant donné que le temps d'arrêt est atteint dès le départ. D'autre part pour $(x,y) \notin \partial \mathbb{E}$ on a alors les equations suivantes:

$$f(x+\frac{1}{L},y)+f(x-\frac{1}{L},y)-2f(x,y)=u(\lfloor xL\rfloor+1,\lfloor yL\rfloor)+u(\lfloor xL\rfloor-1,\lfloor yL\rfloor)-2u(\lfloor xL\rfloor,\lfloor yL\rfloor)$$

$$f(x,y+\frac{1}{L})+f(x,y-\frac{1}{L})-2f(x,y)=u(\lfloor xL\rfloor,\lfloor yL\rfloor+1)+u(\lfloor xL\rfloor,\lfloor yL\rfloor-1)-2u(\lfloor xL\rfloor,\lfloor yL\rfloor)$$

En sommant et en utilisant l'equation verifié par u(i, j):

$$f(x,y) = \frac{1}{4}(f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1))$$

ou encore:

$$\bar{\Delta}f(x,y) = 0$$

Or on sait que pour une fonction suffisamment régulière g:

$$\Delta g(x,y) = L^2 \bar{\Delta}g(x,y) + O(\frac{1}{L})$$

On voit alors que pour L suffisament grand, f est une bonne approximation de la solution de l'equation de Laplace.

Simulation et résultats

On prend ici la même fonction ϕ que celle utilisée dans la Figure 1 du projet, i.e $\phi=1$ sur les bords verticaux du carré $\mathbb D$ et $\phi=0$ sur les bords horizontaux. On approxime les fonctions esperance àl'aide de la loi des grand nombre et ceux à partir de plusieurs simulation de chaînes de Markov, on obtient alors les résultats suivants:

Figure 1: L = 80, $N_{iter} = 100$

Figure 2: $L = 100, N_{iter} = 200$

Partie 2

On s'intèresse dans cette partie à l'équation suivante:

$$\forall (x,y) \in \mathbb{D} : \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) - \gamma f(x,y) = 0$$

$$\forall (x,y) \in \partial \mathbb{D} : f(x,y) = \phi(x,y)$$

On utilise le même formalisme introduit pour l'approximation de l'équation de Laplace en adaptant la marche aléatoire choisie.

Choix de la marche aléatoire

On reprend la marche aléatoire symétrique sur le réseau $\mathbb E$ et on y ajoute un 5ème état \dagger , ainsi on définit:

$$\mathbb{E}' = \{0, ..., L\}^2 \cup \{\dagger\}$$

La distribution initiale de la chaîne de Markov importe peu (prise uniformd encore une fois). Pour définir les probabilités de transition de la chaîne on introduit le paramètre $\alpha > 0$ (à fixer ultérieurement) :

- $\mathbb{P}(X_{k+1} = \dagger | X_k = \dagger) = 1$
- Si $(i, j) \in \partial \mathbb{E}$: $\mathbb{P}(X_{k+1} = (i, j) | X_k = (i, j)) = 1$
- Si $(i, j) \notin \partial \mathbb{E}$:

$$- \mathbb{P}(X_{k+1} = \dagger | X_k = (i,j)) = \alpha$$

$$- \mathbb{P}(X_{k+1} = (i+1,j) | X_k = (i,j)) = \frac{1-\alpha}{4}$$

$$- \mathbb{P}(X_{k+1} = (i-1,j) | X_k = (i,j)) = \frac{1-\alpha}{4}$$

$$- \mathbb{P}(X_{k+1} = (i,j+1) | X_k = (i,j)) = \frac{1-\alpha}{4}$$

$$- \mathbb{P}(X_{k+1} = (i,j-1) | X_k = (i,j)) = \frac{1-\alpha}{4}$$

Il s'agit donc d'une marché aléatoire qui s'arrêt une fois qu'elle ait atteint le bord du carré discrétisé mais qui peut avec probabilité α transiter vers un état absorbant universel (on parle de "mort" de la chaîne de Markov).

Temps d'arrêt

On introduit le nouveau temps d'arrêt : $T = \inf\{n \in \mathbb{N} | X_n = \dagger\}$ Encore une fois le lemme 3.8 nous assure que T est fini p.s et on garde la définition donnée de τ en Partie 1.

Fonction d'approximation

Encore une fois, en s'inspirant de la feuille de PC2 on introduit la fonction d'approximation suivante:

$$\forall (i,j) \in \{0,...,L\}^2 : u(i,j) = \mathbb{E}_{i,j}[\phi(X_\tau)\mathbf{1}_{\tau < T}]$$

$$\forall (i,j) \in \{0,...,L\}^2 : u(i,j) = \mathbb{E}_{i,j}[\phi(X_\tau)\mathbf{1}_{\tau < T}]$$

$$u(i,j) = \mathbb{E}[\phi(X_{\tau})\mathbf{1}_{\tau

$$= \mathbb{E}_{i,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$= \frac{1-\alpha}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$+ \frac{1-\alpha}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$+ \frac{1-\alpha}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$+ \frac{1-\alpha}{4}\mathbb{E}_{i,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$+ \alpha\mathbb{E}[\phi(X_{\tau})\mathbf{1}_{\tau

$$= \frac{1-\alpha}{4}(\mathbb{E}_{i+1,j}[\phi(X_{\tau})\mathbf{1}_{\tau

$$+ 0$$

$$= \frac{1-\alpha}{4}(u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1))$$
(2)$$$$$$$$$$$$$$$$

On en déduit que

$$\frac{1-\alpha}{4}\bar{\Delta}u(i,j) - \alpha u(i,j) = 0$$

D'autres part, pour $(i, j) \in \partial \mathbb{E}$:

$$u(i,j) = \phi(i,j)$$

Définissons dans ce cas la fonction f sur \mathbb{D} :

$$\forall (x,y) \in \mathbb{D} : f(x,y) = u(|xL|, |yL|)$$

Les même calculs de la Partie 1 donnent:

$$\frac{1-\alpha}{4}\bar{\Delta}f(x,y) - \alpha f(x,y) = 0$$

ou encore:

$$\bar{\Delta}f(x,y) - \frac{4\alpha}{1-\alpha}f(x,y) = 0$$

Posant alors $\alpha = \frac{\gamma}{4L^2}$, on donc pour une fonction g suffisament régulière qui vérifie l'équation au-dessus:

$$\Delta g - \gamma g = L^2 \bar{\Delta} g - \gamma g + O(\frac{1}{L}) = (\frac{\gamma}{1 - \frac{\gamma}{4L^2}} - \gamma)g + O(\frac{1}{L})$$

Or pour L >> 1: $\frac{\gamma}{1 - \frac{\gamma}{4L^2}} - \gamma = o(1)$

Ainsi, schant que g est bornée (de part les conditions de régularités. Notons aussi le fait que f est aussi bornée quand ϕ l'est) :

$$\Delta g - \gamma g = o_{L \to +\infty}(1) + O(\frac{1}{L})$$

On en déduit alors que f est empériquement une bonne approximation d'une solution de l'équation introduite en Partie 2.

Simulation et résultats

On prend ici la même fonction ϕ que celle utilisé dans la Figure 1 du projet, i.e $\phi=1$ sur les bords verticaux du carré $\mathbb D$ et $\phi=0$ sur les bords horizontaux. On approxime les fonctions d'esperances à l'aide de la loi des grands nombres et ce à partir de plusieurs simulations des chaînes de Markov, on obtient alors les résultats suivants:

Figure 3: L = 100, $N_{iter} = 100, \gamma = 5$

Figure 4: L = 80, $N_{iter} = 100, \gamma = 100$

Partie 3

On s'intèresse dans cette partie à l'équation suivante:

$$\forall (x,y) \in \mathbb{D} : \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) - 2f(x,y) + f(x,y)^2 = 0$$
$$\forall (x,y) \in \partial \mathbb{D} : f(x,y) = \phi(x,y)$$

Choix de la marche aléatoire

La marche aléatoire utilisée ici est nettement plus sophistiquée, et ce à cause du terme $f(x,y)^2$. L'idée est de considérer une chaîne de Markov vectorielle qui peut se dupliquer en 2 processus similaire et indépendants (le choix du nombre de duplication peut être adapté pour des termes $f(x,y)^k$). On introduit d'abord l'espace d'état :

$$\mathbb{V} = \bigcup_{n=0}^{\infty} \{ [(x_1, y_1), ..., (x_n, y_n)] \mid \forall i \in [|1, n|] : (x_i, y_i) \in \{0, ..., L\}^2 \}$$

Le cas n=0 correspond au vecteur vide []. D'autre part on remarque immédiatement que $\mathbb V$ est dénombrable.

On introduit aussi un processus aléatoire ξ_n à valeurs dans $\{1, 2, 3\}$ qui nous servira à suivre l'évolution de la marche aléatoire.

On considère alors une chaîne de Markov X_n à valeurs dans \mathbb{V} de distribution initiale quelconque, on notera $X_n^{(j)}$ la composante (x_j,y_j) du vecteur X_n . Soient $\alpha>0,\beta>0$ tel que $\alpha+\beta\leq 1$. Pour chacune de ces composante il existe 3 possibles transisiton:

- $\xi_n^{(j)} = 1$ (avec probabilité α): la composante en question "meurt" et disparait du vecteur X_n .
- $\xi_n^{(j)} = 2$ (avec probabilité $(1 \alpha \beta)$): la composante en question évolue sur l'espace de ses voisins sur le réseaux $\{0, ..., L\}^2$ (voir reste à sa place si elle est sur ∂E).
- $\xi_n^{(j)} = 3$ (avec probabilité β): la composante en question reste à sa place mais se duplique en deux processus indépendant de même évolution : $X_{n,1}^{(j)}, X_{n,2}^{(j)}$.

Temps d'arrêt

Notons N_n le nombre de composantes du vecteur X_n . On définies naturellement deux temps d'arrêts:

$$T = \inf\{n \in \mathbb{N} | X_n = []\} = \inf\{n \in \mathbb{N} | N_n = 0\}$$

$$\tau = \inf\{n \in \mathbb{N} | \forall i \in [|1, N_n|], X_n^{(j)} \in \partial E\}$$

A priori il n'est pas évident que T et τ soient finis p.s, pour s'en convaincre on remarquera que la variable aléatoire N_n ne décroit pas au rang suivant si et seulement si le nombre de composantes s'étant dupliqué est plus grand ou égal à ceux ayant disparu, plus formellement cela correspond à la probabilité

 $p_n = \sum_{k=0}^{N_n} \binom{N_n}{k} (1 - \alpha - \beta)^k \sum_{N_n - k \ge j \ge i \ge 0, i+j=N_n - k} \binom{N_n - k}{j} \alpha^i \beta^j$

Où le premier terme de du produit represent le nombre de branchement ayant évolué sur le réseau sans se dupliquer ou mourir. Si on arrive à borner uniformément p_n par un réel < 1 on pourra en déduire que T est fini p.s. Or on a:

$$(\alpha+\beta)^k = \sum_{N_n-k \geq j \geq i \geq 0, i+j=N_n-k} \binom{N_n-k}{j} \alpha^i \beta^j + \sum_{N_n-k \geq j > i \geq 0, i+j=N_n-k} \binom{N_n-k}{j} \alpha^j \beta^i$$

Notons alors

$$S_k = \sum_{N_n - k > j > i > 0, i+j = N_n - k} {N_n - k \choose j} \alpha^i \beta^j$$

Remarquons de plus que si l'on fait l'hypothèse $\beta \leq \alpha$:

$$\forall j > i : \alpha^j \beta^i > \alpha^i \beta^j$$

On en déduit alors sans difficultés que:

$$(\alpha + \beta)^k \ge 2S_k - \mathbf{1}_{\mathbf{N} - \mathbf{k} \equiv \mathbf{0}[\mathbf{2}]} {N_n - k \choose \frac{N_n - k}{2}} (\alpha \beta)^{\frac{N_n - k}{2}}$$

Or, dans le cas où $N_n - k \equiv 0[2]$, en notant $M = N_n - k$ on a:

$$(\alpha + \beta)^k \ge \binom{M}{\frac{M}{2} - 1} (\alpha \beta)^{\frac{M}{2}} \frac{\alpha}{\beta} + \binom{M}{\frac{M}{2} + 1} (\alpha \beta)^{\frac{M}{2}} \frac{\beta}{\alpha} + \binom{M}{\frac{M}{2}} (\alpha \beta)^{\frac{M}{2}}$$

Soit encore:

$$(\alpha + \beta)^k \ge \binom{M}{\frac{M}{2}} (1 + \frac{N_n}{N_n + 2} \frac{\alpha}{\beta} + \frac{N_n}{N_n + 2} \frac{\beta}{\alpha}) \ge_{AM-GM} \binom{M}{\frac{M}{2}} (1 + \frac{2N_n}{N_n + 2})$$

Une analyse triviale donne que

$$N_n \ge 3 \to \frac{2N_n}{N_n + 2} \ge \frac{6}{5}$$

On a donc prouvé que si $N_n \geq 3$:

$$(\alpha + \beta)^k \ge \frac{11}{5} \mathbf{1}_{\mathbf{N_n - k} \equiv \mathbf{0}[\mathbf{2}]} {N_n - k \choose \frac{N_n - k}{2}} (\alpha \beta)^{\frac{N_n - k}{2}}$$

Or, on avait prouvé:

$$(\alpha + \beta)^k \ge 2S_k - \mathbf{1}_{\mathbf{N_n - k} \equiv \mathbf{0}[\mathbf{2}]} {N_n - k \choose \frac{N_n - k}{2}} (\alpha \beta)^{\frac{N_n - k}{2}}$$

En combinant ces deux résultats, on trouve:

$$(1 + \frac{5}{11})(\alpha + \beta)^k \ge 2S_k$$

ou encore:

$$\frac{8}{11}(\alpha+\beta)^k \ge S_k$$

Finalement on a:

$$p_n = \sum_{k=0}^{N_n} \binom{N_n}{k} (1 - \alpha - \beta)^k S_k \le \sum_{k=0}^{N_n} \binom{N_n}{k} (1 - \alpha - \beta)^k \frac{8}{11} (\alpha + \beta)^k = \frac{8}{11} < 1$$

On a donc réussi à prouver que $p_n < 1$ uniformément dès que $N_n \ge 3$, on peut en fait faire le calcul exact de p_n dans le cas où $N_n \in \{0, 1, 2\}$ et se rendre compte que $p_n < 1$ dans ces deux cas aussi, ce qui permet d'affirmer que:

$$\exists \delta < 1, \forall n \in \mathbb{N} : p_n \leq \delta$$

D'où la finitude de T p.s. Une analyse similaire en esprit permet de pouver la finitude p.s de τ .

Fonction d'approximation

On définit alors notre fonction d'approximation u comme suit:

$$\forall (i,j) \in \mathbb{E} : u(i,j) = \mathbb{E}[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_0 = [(i,j)]] = \mathbb{E}_{i,j}[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}}]$$

Equation de u

Pour
$$(i, j) \in \partial \mathbb{E}$$
: $u(i, j) = \phi(i, j)$.

Pour $(i, j) \notin \partial \mathbb{E}$:

$$u(i,j) = \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} \right]$$

$$= \alpha \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [] \right]$$

$$+ \beta \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i,j), (i,j)] \right]$$

$$+ \frac{1 - \alpha - \beta}{4} \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i+1,j)] \right]$$

$$+ \frac{1 - \alpha - \beta}{4} \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i-1,j)] \right]$$

$$+ \frac{1 - \alpha - \beta}{4} \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i,j+1)] \right]$$

$$+ \mathbb{E}[\phi(X_{\tau}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = \dagger]$$

$$+ \frac{1 - \alpha - \beta}{4} \mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i,j-1)] \right]$$

Dans le cas $X_1 = [(i, j), (i, j)]$ le processus s'est dupiqué en deux branches indépendates, ainsi, X_n peut se décomposer en deux vecteurs $Y_{n,1}, Y_{n,2}$ indépendants de tailles $N_{n,1}, N_{n,2}$ tel que:

$$X_n = Y_{n,1} \hat{Y}_{n,2}$$

Où ^ désigne la concaténation de vecteurs. Dans ce cas on peut écrire (par indépendance):

$$\mathbb{E}_{i,j}[\prod_{i=1}^{N_n}\phi(X_{\tau}^{(i)})\mathbf{1}_{\tau<\mathbf{T}}|X_1=[(i,j),(i,j)]] = \mathbb{E}_{i,j}[\prod_{i=1}^{N_{n,1}}\phi(Y_{\tau,1}^{(i)})\mathbf{1}_{\tau<\mathbf{T}}]\mathbb{E}_{i,j}[\prod_{i=1}^{N_{n,2}}\phi(Y_{\tau,2}^{(i)})\mathbf{1}_{\tau<\mathbf{T}}]$$

Ou encore:

$$\mathbb{E}_{i,j} \left[\prod_{i=1}^{N_n} \phi(X_{\tau}^{(i)}) \mathbf{1}_{\tau < \mathbf{T}} | X_1 = [(i,j), (i,j)] \right] = u(i,j)^2$$

On en déduit finalement que :

$$u(i,j) = \beta u(i,j)^2 + \frac{1-\alpha-\beta}{4}(u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1))$$

Que l'on peut réearranger en:

$$\frac{1-\alpha-\beta}{4}\bar{\Delta}u(i,j) - (\beta+\alpha)u(i,j) + \beta u(i,j)^2 = 0$$

Posant alors $\alpha = \beta = \frac{1}{4L^2}$ (remarquons bien qu'on est toujours dans les conditions de validité de la preuve de finitude p.s de T et τ). On définit alors la fonction f:

$$\forall (x,y) \in \mathbb{D} : f(x,y) = u(|xL|, |yL|)$$

On a alors sans difficlutés que:

$$(1 - \frac{2}{4L^2})\bar{\Delta}f - \frac{2}{L^2}f + \frac{1}{L^2}f^2 = 0$$

i.e

$$(L^2 - \frac{1}{2})\bar{\Delta}f - 2f + f^2 = 0$$

Or en réutilisant encore une fois l'identitée asympotique (pour une fonction g assez régulière):

$$\Delta g = L^2 \bar{\Delta} g + O(\frac{1}{L})$$

On prouve (comme en Partie 1,2) qu'asymptotiquement, f est une bonne approximation d'une solution de l'équation:

$$\Delta f - 2f + f^2 = 0$$

(N.B que telle définie $f = \phi$ sur le bord).

Simulation et résultats

On prend ici la même fonction ϕ que celle utilisé dans la Figure 1 du projet, i.e $\phi=1$ sur les bords verticaux du carré $\mathbb D$ et $\phi=0$ sur les bords horizontaux. On approxime les fonctions d'esperances à l'aide de la loi des grands nombres et ce à partir de plusieurs simulations des chaînes de Markov, on obtient alors les résultats suivants:

Figure 5: L=80, $N_{iter} = 100$

Figure 6: L=100, $N_{iter} = 10$