

Lesson 1: Line Equation

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Understand the Line Equation

METIS

Coordinates in 2 Dimensions

•
$$p_1 = (1,3)$$

Coordinates in 2 Dimensions

$$\bullet$$
 p₁ = (1,3)

•
$$p_1 = (1,3)$$

• $p_2 = (2,5)$

Coordinates in 2 Dimensions

- $p_1 = (1,3)$ $p_2 = (2,5)$

- $p_1 = (1,3)$
- $p_2 = (2,5)$

$$y = mx + b$$

$$\bullet$$
 p₁ = (1,3)

•
$$p_2 = (2,5)$$

$$y = mx + b$$
$$y = 2x + 1$$

- \bullet p₁ = (1,3)
- $p_2 = (2,5)$

$$y = mx + b$$

$$y = 2x + 1$$

$$y = 2 \cdot 1 + 1 = 3$$

$$\bullet$$
 p₁ = (1,3)

$$p_2 = (2,5)$$

$$y = mx + b$$

 $y = 2x + 1$
 $y = 2 \cdot 1 + 1 = 3$
 $y = 2 \cdot 2 + 1 = 5$

"b" a.k.a. intercept:

Point where a line crosses the y-axis

$$y = mx + b$$
$$y = 2x + 1$$

"b" a.k.a. intercept:

Point where a line crosses the y-axis

$$y = mx + b$$
$$y = 2x + 1$$

"b" a.k.a. intercept:

Point where a line crosses the y-axis

$$y = mx + b$$
$$y = 2x + 1$$

"m" a.k.a. slope:

$$y = mx + b$$
$$y = 2x + 1$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$m = \frac{(5 - 3)}{(2 - 1)} = \frac{2}{1} = 2$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$m = \frac{(5 - 3)}{(2 - 1)} = \frac{2}{1} = 2$$

$$y = 2x + 1$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$m = \frac{(1 - (-1))}{(0 - (-1))} = \frac{2}{1} = 2$$

"m" a.k.a. slope:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$m = \frac{(1 - (-1))}{(0 - (-1))} = \frac{2}{1} = 2$$

$$y = 2x + 1$$

Problem 1:

Problem 1:

Calculate the line equation for the following lines. Helper equations:

$$y = mx + b$$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

Problem 1:

Let's first extract the intercept:

$$y = mx + b = mx - 1$$

 $y = mx + b = mx + 2$
 $y = mx + b = mx + 1$

Exercise

Let's extract the slope:

$$y = mx + b = 3x - 1$$

 $y = mx + b = mx + 2$
 $y = mx + b = mx + 1$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{(2 - (-1))}{(1 - 0)} = 3$$

Exercise

Let's extract the slope:

$$y = mx + b = 3x - 1$$
$$y = mx + b = 2$$
$$y = mx + b = mx + 1$$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{(2 - 2)}{(1 - 0)} = 0$$

Exercise

Let's extract the slope:

$$y = mx + b = 3x - 1$$

 $y = mx + b = 2$
 $y = mx + b = -2x + 1$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{(-1 - 1)}{(1 - 0)} = -2$$

Parallel lines have the same slope, but different intercept.

$$y = 1x + 2$$
$$y = 1x - 2$$

Lines that cross the y-axis at the same point have the same intercept, but different slope.

$$y = 1x + 2$$
$$y = -1x + 2$$

All these lines have positive slope.

All these lines have negative slope.

These lines have a slope of 0.

These lines have a slope of infinity.

Derivatives

Derivatives

Derivative = Slope

QUESTIONS?