Segment Trees and their Applications

CS5016: Computational Methods and its Applications

03 May 2023 112001051 VM Sreeram

Introduction

- ❖ A segment tree is a tree data structure used for storing information about array intervals.
- * Allows querying intervals of data in an efficient manner, while still being flexible enough to allow quick modification of the data.

Structure of a Segment Tree

- * A segment tree is a binary tree where each node represents a subrange of data.
 - ➤ Each leaf node represents a single element of data
 - ➤ Each non-leaf node represents the range of data which is the union of its two children's ranges
- The segment tree is built recursively by breaking the range into two equal subranges and building left and right subtrees.
- Requires only linear amount of memory to store.

Sum segment tree for a = [1, 3, -2, 8, -7]

Querying in a Segment Tree - O(log n)

- ❖ Start at root node and traverse down the tree comparing the query range with node range at each step
- Query range = Node range : Return the pre computed value stored there
- Query range falls completely in the domain of left or right child: Recursively traverse the required subtree
- Query range falls partially in the domains of left and right children: Recursively traverse both subtrees and compute partial answers for both; combine

Sum segment tree for a = [1, 3, -2, 8, -7]

Updates in a Segment Tree - O(log n)

- **Start** from the root
- ❖ If at leaf node: update it
- If update range \cap node range $= \Phi$: do nothing
- Otherwise: Recursively update both left and right subtrees, then update the value of the node

Updating the segment tree by setting a[2]=3

Problem Solving Comparison: Linear Method vs Segment Tree Method

- \bullet A list of random integers of length 10^5 was made
- Sum queries were made for the range 0...k for various k using linear method and segment tree method
- \bullet Update queries (a += 10) were made for the range 0...k for various k using linear method and segment tree method
- ❖ The time taken for each was plotted

Problem Solving Comparison: larger range

Range length

Problem Solving Comparison: smaller range

Range length

Applications of Segment Tree

- ❖ Highly efficient in querying and updating ranges of data
- Flexibility in supporting various operations
- Some practical applications
 - Computational geometry
 - Pattern recognition and image processing
 - Geographic information systems

Summary

- Segment tree is a powerful data structure that can be used to efficiently solve many problems
- Shortcomings compared linear data structure
 - \triangleright Although O(n), it require at max 4 times memory compared to storing as array (depending on implementation)
 - ➤ Computation time for building the tree
 - > Not easily scalable
- ❖ Despite the shortcomings, segment trees remain an important tool

References

https://en.wikipedia.org/wiki/Segment_tree

https://cp-algorithms.com/data_structures/segment_tree.html

https://www.geeksforgeeks.org/applications-advantages-and-disadvantages-of-segment-tree/