Formalized Spectral Sequences in Homotopy Type Theory

Floris van Doorn

Carnegie Mellon University

September 21, 2017

Joint work with Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert Rijke and Mike Shulman.

Recap: Path spaces

A type A can have

- points a, b : A
- paths p, q : a = b
- $\bullet \ \ {\rm paths} \ \ {\rm between} \ \ {\rm paths} \ \ r:p=q$

:

Recap: Truncated Types

Recap: Truncation

Given A, we can form the n-truncation $||A||_n$.

 $||A||_n$ is the "best approximation" of A which is n-truncated.

Recap: The suspension

We have Higher inductive types (HITs), like the suspension ΣA .

$$\text{HIT } \Sigma A :\equiv$$

- north, south : ΣA
- $merid : A \rightarrow (north = south)$

Recap: Pointed types and maps

- Definition If $f:X\to Y$ and y:Y, the fiber of f at y is $\operatorname{fib}_f(y) \coloneqq \Sigma(x:X), \ f(x)=y.$
- Definition An element of $\Sigma(X : \mathrm{Type})$, X is called a pointed type.
- Definition If X is a pointed type, its loop space is $\Omega X :\equiv (x_0 = x_0, \operatorname{refl}_{x_0}).$
- Definition If X and Y are pointed types, a the type of pointed maps $X \to^* Y$ is defined as $\Sigma(f: X \to Y), \ f(x_0) = y_0.$

Cohomology

How do we define (co)homology?

The usual constructions are not homotopy invariant.

Cohomology

How do we define (co)homology?

The usual constructions are not homotopy invariant.

Theorem. The cohomology groups $H^n(X;G)$ are naturally equivalent to homotopy classes of maps [X,K(G,n)].

K(G,n) is the an *Eilenberg-Maclance space*, which is the (unique up to homotopy equivalence) space X with $\pi_n(X)=G$ and $\pi_k(X)=0$ for $k\neq n$.

Eilenberg-MacLane spaces are usually defined as CW-complexes.

Example. $K(\mathbb{Z},1) = \mathbb{S}^1$.

Eilenberg-MacLane spaces

We can define K(G,n) in HoTT. We first define the following higher inductive type:

$$\operatorname{HIT}\, \widetilde{K}(G,1) :\equiv$$

- $\star : \widetilde{K}(G,1)$
- pth : $G \rightarrow (\star = \star)$
- $pth-mul : \Pi(g \ h : G), \ pth(gh) = pth(g) \cdot pth(h)$

Then $K(G,1) :\equiv \|\widetilde{K}(G,1)\|_1$.

Eilenberg-MacLane spaces

We can define K(G,n) in HoTT. We first define the following higher inductive type:

$$\operatorname{HIT}\, \widetilde{K}(G,1) :\equiv$$

- $\star : \widetilde{K}(G,1)$
- pth : $G \rightarrow (\star = \star)$
- pth-mul : $\Pi(g \ h : G)$, pth $(gh) = \text{pth}(g) \cdot \text{pth}(h)$

Then $K(G,1) := \|\widetilde{K}(G,1)\|_1$.

For $n \ge 1$ we can define $K(G, n+1) :\equiv \|\Sigma K(G, n)\|_{n+1}$ (if G is abelian).

Eilenberg-MacLane spaces

We can define K(G,n) in HoTT. We first define the following higher inductive type:

$$\operatorname{HIT}\, \widetilde{K}(G,1) :\equiv$$

- $\star : \widetilde{K}(G,1)$
- pth : $G \rightarrow (\star = \star)$
- pth-mul : $\Pi(g \ h : G)$, $pth(gh) = pth(g) \cdot pth(h)$

Then $K(G,1) :\equiv \|\widetilde{K}(G,1)\|_1$.

For $n \geq 1$ we can define $K(G, n+1) :\equiv \|\Sigma K(G, n)\|_{n+1}$ (if G is abelian).

Theorem. K(G,n) is the unique n-truncated pointed type X with $\pi_n(X)=G$ and $\pi_k(X)=0$ for $k\neq n$.

A useful property: $K(G,n) = \Omega K(G,n+1)$, which gives a "multiplication" on K(G,n)

Cohomology

We can now define the reduced cohomology of a pointed type X with coefficients in an abelian group G to be

$$\widetilde{H}^n(X,G) :\equiv ||X \to^* K(G,n)||_0.$$

The unreduced cohomology can be defined similarly for any (not necessarily pointed) type X:

$$H^{n}(X,G) :\equiv ||X \to K(G,n)||_{0} = \widetilde{H}^{n}(X+1,G).$$

The group structure comes from K(G, n).

Cohomology

We can now define the reduced cohomology of a pointed type X with coefficients in an abelian group G to be

$$\widetilde{H}^n(X,G) :\equiv ||X \to^* K(G,n)||_0.$$

The unreduced cohomology can be defined similarly for any (not necessarily pointed) type X:

$$H^{n}(X,G) :\equiv ||X \to K(G,n)||_{0} = \widetilde{H}^{n}(X+1,G).$$

The group structure comes from K(G, n).

Remark. We can also define reduced homology:

$$\widetilde{H}_n(X,G) :\equiv \operatorname{colim}_k (\pi_{n+k}(X \wedge K(G,n+k))).$$

Here \wedge is the smash product.

Spectral Sequences

Definition A (cohomologically indexed) spectral sequence consists of

- A family $E_r^{p,q}$ of abelian groups (or more generally: R-modules) for $p,q:\mathbb{Z}$ and $r\geq 2$. For a fixed r this gives the r-page of the spectral sequence.
- differentials $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ with $d_r \circ d_r = 0$.
- isomorphisms $\alpha_r^{p,q}:H^{p,q}(E_r)\simeq E_{r+1}^{p,q}$ where $H^{p,q}(E_r)=\ker(d_r^{p,q})/\mathrm{im}(d_r^{p-r,q+r-1}).$

Spectral Sequences

Convergence of Spectral Sequences

The pages converge to $E^{p,q}_{\infty}$.

Convergence of Spectral Sequences

The pages converge to $E^{p,q}_{\infty}$.

We can get information about the diagonals on the infinity page.

 $E^{p,q}_{\infty}$

Convergence of Spectral Sequences

For a bigraded abelian group $C^{p,q}$ and graded abelian group \mathbb{D}^n we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $E_r^{p,q}$ such that

- The second page is $E_2^{p,q} = C^{p,q}$
- D^n is built up from $E^{p,q}_{\infty}$ for n=p+q in the following way: We have short exact sequences:

$$E_{\infty}^{0,n} \to D^n \to D^{n,1}$$

$$\vdots$$

$$E_{\infty}^{p,q} \to D^{n,p} \to D^{n,p+1}$$

$$E_{\infty}^{p+1,q-1} \to D^{n,p+1} \to D^{n,p+2}$$

$$\vdots$$

$$E_{\infty}^{n,0} \to D^{n,n} \to 0$$

Serre Spectral Sequence (special case)

Theorem. Suppose $f:X\to B$ and $b_0:B$. Let $F:\equiv \mathrm{fib}_f(b_0):\equiv \Sigma(x:X),\ f(x)=b_0$ be the fiber of f at b_0 . Suppose that B is $simply\ connected$, i.e. $\|B\|_1$ is contractible. Then

$$E_2^{p,q} = H^p(B, H^q(F,G)) \Rightarrow H^{p+q}(X,G).$$

This is the *unreduced* cohomology.

We will compute the cohomology groups of $B=K(\mathbb{Z},2)$ (which is \mathbf{CP}^{∞}).

We define the map $1 \xrightarrow{f} K(\mathbb{Z},2)$ determined by the basepoint $b_0: K(\mathbb{Z},2)$. It has fiber

$$(\Sigma(x:1), f(x) = b_0)$$

$$= (f(\star) = b_0)$$

$$= \Omega K(\mathbb{Z}, 2)$$

$$= K(\mathbb{Z}, 1)$$

$$= \mathbb{S}^1.$$

The spectral sequence for $G = \mathbb{Z}$ gives

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$E_2^{p,q}=H^p(B,H^q(\mathbb{S}^1))\Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q}=H^p(B,H^q(\mathbb{S}^1))\Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q}=H^p(B,H^q(\mathbb{S}^1))\Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^{n}(\mathbb{S}^{1}) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^{n}(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^{n}(\mathbb{S}^{1}) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^{n}(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q}=H^p(B,H^q(\mathbb{S}^1))\Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^{n}(\mathbb{S}^{1}) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^{n}(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

Spectra

For the general Serre spectral sequence, we need to generalize cohomology.

We need generalized and parametrized cohomology.

An (omega)-spectrum is a sequence of pointed types $Y: \mathbb{N} \to \operatorname{Type}^*$ such that $\Omega Y_{n+1} = Y_n$.

Example. $Y_n = K(G, n)$ is a spectrum.

A spectrum is called n-truncated if Y_k is (n+k)-truncated for all $k:\mathbb{N}$.

Now suppose X is a type and $Y:X\to \operatorname{Spectrum}$ is a family of spectra over X.

We can define $H^n(X, \lambda x. Yx) :\equiv \|\Pi(x : X), Y_n(x)\|_0$.

Serre Spectral Sequence

Theorem. (Serre Spectral Sequence) If $f:X\to B$ is any map and Y is a truncated spectrum, then

$$E_2^{p,q} = H^p(B, \lambda b. H^q(\mathsf{fib}_f(b), Y)) \Rightarrow H^{p+q}(X, Y).$$

If $Y_n=K(G,n)$ and B is simply connected and pointed, then this reduces to the previous case

$$E_2^{p,q} = H^p(B, H^q(\mathsf{fib}_f(b_0), G)) \Rightarrow H^{p+q}(X, G).$$

Atiyah-Hirzebruch Spectral Sequence

For a spectrum Y, its homotopy groups are $\pi_n(Y) := \pi_{n+k}(Y_k)$ (which is independent of k and also defined for negative n).

Special case. If X is any type and Y is a truncated spectrum, then

$$E_2^{p,q} = H^p(X, \pi_q(Y)) \Rightarrow H^{p+q}(X, Y).$$

Atiyah-Hirzebruch Spectral Sequence

For a spectrum Y, its homotopy groups are $\pi_n(Y) := \pi_{n+k}(Y_k)$ (which is independent of k and also defined for negative n).

Special case. If X is any type and Y is a truncated spectrum, then

$$E_2^{p,q} = H^p(X, \pi_q(Y)) \Rightarrow H^{p+q}(X, Y).$$

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and $Y:X\to \operatorname{Spectrum}$ is a family of truncated spectra over X, then

$$E_2^{p,q} = H^p(X, \lambda x. \pi_q(Y(x))) \Rightarrow H^{p+q}(X, \lambda x. Y(x)).$$

Atiyah-Hirzebruch Spectral Sequence

For a spectrum Y, its homotopy groups are $\pi_n(Y) := \pi_{n+k}(Y_k)$ (which is independent of k and also defined for negative n).

Special case. If X is any type and Y is a truncated spectrum, then

$$E_2^{p,q} = H^p(X, \pi_q(Y)) \Rightarrow H^{p+q}(X, Y).$$

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and $Y:X\to \operatorname{Spectrum}$ is a family of truncated spectra over X, then

$$E_2^{p,q} = H^p(X, \lambda x. \pi_q(Y(x))) \Rightarrow H^{p+q}(X, \lambda x. Y(x)).$$

The Atiyah-Hirzebruch spectral sequence is also true if we replace all cohomologies by reduced cohomologies.

HoTT in proof assistants

There are various proof assistants supporting HoTT

- Coq (UniMath and Coq-HoTT)
- Agda
- Lean
- cubicaltt
- RedPRL

The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by Leonardo de Moura at Microsoft Research.

It was "announced" in the summer of 2015.

It is open source, released under a permissive license, Apache 2.0.

We have formalized the HoTT library in a previous version of Lean, "Lean 2".

We are currently working in porting it to the newest version, "Lean 3".

The Lean Theorem Prover

Notable features:

- implements dependent type theory
- written in C++, with multi-core support
- small, trusted kernel and multiple independent type checkers
- powerful elaborator
- can use proof terms or tactics
- editors with proof-checking on the fly
- browser version runs in javascript
- use Lean as a programming language to write programs, for example tactics and automation for proofs

The HoTT library

The HoTT library (\sim 47k LOC) contains

- A good library with the basics of homotopy type theory
- A category theory library
- A large library for synthetic homotopy theory. Sample:
 - Freudenthal suspension theorem
 - Whitehead's theorem
 - Seifert-van Kampen theorem
 - $\pi_k(\mathbb{S}^n)$ for $k \leq n$ and $\pi_3(\mathbb{S}^2)$.
 - adjunction between the smash product and pointed maps.
 - the Serre spectral sequence

Contributors: vD, Jakob von Raumer, Ulrik Buchholtz, Jeremy Avigad, Egbert Rijke, Steve Awodey, Mike Shulman and others.

Formalization

- We started the formalization of the Serre spectral sequence almost 2 years ago, in November 2015.
- vD, Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert Rijke and Mike Shulman have actively worked on the formalization.
- Most time was spent on basic results like group theory, graded R-modules, and basic properties of spectra and types.
- It is not clear how long the formalization is: many results can be reused elsewhere.

Future work

- Provide a good "interface" for spectral sequences;
- Port the result to the current version of Lean;
- The cup product structure on cohomology;
- Homological Serre spectral sequence;
- Applications of the Serre spectral sequence:
 - Serre class theorem
 - Hurewicz theorem
 - computation of $\pi_{n+k}(\mathbb{S}^n)$ for $k \leq 3$.

Thank you