Denotational semantics driven homology?

Davide Barbarossa

davide.barbarossa@unibo.it https://lipn.univ-paris13.fr/~barbarossa/ Dipartimento di Informatica

Trends in Linear Logic and Applications

Haïfa, 31/07/2022

Simplicial complexes

Simplicial homology, in 1 slide!

$$\mathrm{ASC} \xrightarrow{\quad \mathcal{C} \quad} \mathrm{Chain}_{\mathbb{Z}} \xrightarrow{\quad \mathcal{H}_k \quad} \mathrm{Modules}_{\mathbb{Z}}$$

$$X \longmapsto (\mathcal{C}_k X, \partial_k^X)_{k \in \mathbb{N}} \longmapsto \mathcal{H}_k X$$

If $X \stackrel{f}{\to} Y$ in ASC , then for $\mathcal{C}f$ to be a morphism in $\mathrm{Chain}_{\mathbb{Z}}$ means that:

$$\begin{array}{c|c}
& \longrightarrow \mathcal{C}_{k+1}X & \xrightarrow{\partial_{k+1}^{X}} & \mathcal{C}_{k}X & \longrightarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow$$

In topology, morphisms in ASC are (simplicial) *functions*. But a proof is interpreted as a (simplicial) *relation*! Let us call this category RelASC.

Not clear how to lift C to a functor $RelASC \to Chain_{\mathbb{Z}}$

We can be functorial! ...but we transform the spaces

We can define a monad \mathscr{I} on ASC such that:

$$\operatorname{RelASC} \hspace{0.2cm} \cong \hspace{0.2cm} \operatorname{ASC}_{\mathscr{I}} \xrightarrow{R_{\mathscr{I}}} \operatorname{ASC} \xrightarrow{\hspace{0.2cm} \mathcal{C}} \operatorname{Chain}_{\mathbb{Z}} \xrightarrow{\hspace{0.2cm} \mathcal{H}_{k}} \operatorname{Modules}_{\mathbb{Z}}$$

$$X \longmapsto X \longmapsto \mathscr{I}X \longmapsto \mathscr{H}_k(\mathscr{I}X)$$

An example: S^1 in red and $\mathscr{I}S^1$ in grey. In this case, $\mathcal{H}_kX=\mathcal{H}_k(\mathscr{I}X)$.

And so what?

Fix a "webbed" semantics $\llbracket.\rrbracket$. Call $\llbracket A \rrbracket^{\llbracket.\rrbracket}$ the asc with vertices $|\llbracket A \rrbracket|$ and simplices the $x \subseteq \llbracket \pi \rrbracket$, for $\pi : \vdash A$.

Corollary

If A and B are "type-isomorphic", then $\mathcal{H}_k(\mathscr{I}[A]^{Rel}) = \mathcal{H}_k(\mathscr{I}[B]^{Rel})$.

- Morally, $[A]^{Rel}$ represents the *geometrical* realisation of the *space* of the proofs of A, under the relational semantcs. Study its geometry!
- Is $\mathcal{H}_k X = \mathcal{H}_k(\mathscr{I}X)$ true for any X ? If yes, that is nice. If not, give a counterexample.
- ullet Does ${\mathscr I}$ have a logical/computational/geometrical meaning ?
- What about $[A]^{Coh}$?
- Are *n*-holes related with sequentiality ? (Think of $[Gustave]^{Coh}$)

