(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Dezember 2000 (21.12.2000)

PCT

(10) Internationale Veröffentlichungsnummer WO 00/77187 A3

(51) Internationale Patentklassifikation7: C12N 15/82, 15/56, A01H 5/00

(21) Internationales Aktenzeichen: PCT/DE00/01944

(22) Internationales Anmeldedatum:

13. Juni 2000 (13.06.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

299 09 998.9 12. Juni 1999 (12.06.1999) DE 200 05 992.0 4. April 2000 (04.04.2000) DE 200 07 494.6 26. April 2000 (26.04.2000) DE

(71) Anmelder und

(72) Erfinder: ROITSCH, Thomas [DE/DE]; Königswiesenweg 18, D-93051 Regensburg (DE).

(74) Anwälte: GODDAR, Heinz usw.; Boehmert & Boehmert, Franz-Joseph-Strasse 38, D-80801 München (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts: 9. August 2001

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A3

(54) Title: PROMOTER SYSTEM AND PRODUCTION AND USE OF THE SAME

(54) Bezeichnung: PROMOTORSYSTEM, DESSEN HERSTELLUNG UND VERWENDUNG

(57) Abstract: The invention relates to nucleic acids that code for promoters and which are both tapetum-specific and pollen-specific, and to their use for producing male-sterile plants.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft für Promotoren codierende Nukleinsäuren, die sowohl tapetumspezifisch als auch pollenspezifisch sind, sowie deren Verwendung zur Erzeugung männlich steriler Pflanzen.

Fig. 1

Α

Invertase-Aktivität in Tabak-Pollen

 \mathbf{C}

Die extrazellulläre Invertase NIN88 von Tabak-Pollen wird spezifisch in Antheren exprimiert

CONTROL OF THE PROPERTY OF THE

Fig. 2

WO 00/77187 PCT/DE00/01944

3/22

A

Fig. 3 (Teil 1)

BEST AVAILABLE COPY

WO 00/77187 PCT/DE00/01944

4/22

В

C

Fig. 3 (Teil 2)

BEST AVAILABLE COPY

ERSATZBLATT (REGEL 26)

Promotor-GUS (sense)

Promotor-NIN88 (antisense)

Promotor-CIN1 (antisense)

Promotor-Ntβfruc1 (antisense)

Promotor-Invertase-Inhibitor (sense)

ERSATZBLATT (REGEL 26)

Fig. 5 (Teil 1)

6/22

Promotor-DNA-Sequenz der extrazellulären Invertase NIN88 aus Tabak

1	TOTA CA ATOA	CCCCACCGGC	CAGGACGGGG	3 C T 3 T C 3 T T T T	CCCCGAATGT
1					
51	TCGTTCAACT	GCATTGTTAA		CGTGATGCAG	CCCGGTACTA
101	TCTTATCCTC	GAGTTTCATT	TGTGCAAGTA	CTCGAGGATG	GACAATTCAC
151	GGGCCACTCC	CATCGTCCAC	CATAATGCGT	CTTACATCTG	TATCTAATAT
201	TCGTAAAGTG	ATAACGAGGG	CATCATAGTG	AGGGAAAACC	AAACCGTGGT
251	TATCTGACTT	ATCGAAGATG	ATACTTTCTT	TAAGTTTCTC	GTACCGTTCA
		ACTGTTTGAG	CTTGTGGGTT		TTACGTTGTT
301	TGAGTGATTA			GTGGCGAACT	
351	GATCGAAACG	TCGTCTCCGC	CCCCGATGAT	AATGTGAATG	GTGCGAGTCG
401	GTAAGGGTGG	TTTCGGCGGT	CCCTGGTGTT	GTTCACGTCC	TCGAGAAAAG
451	TTGGTCCTTC	CTCGGTCACA	CAACAATATT	TTGAGGTGTC	CTTGATGAAG
501	CATGTCCATG	ACCTCTTGTC	TTAGGGCGAT	ACAATCCTCA	GTTTTGTGAC
551	CTCGCTCTTG		CAGAGGGCAT	CTGATTTTCT	AGTGCTTGGA
601	TCTGACCTCA	TCTTTTGTGG	CCACTTTACT	TTTGGTCCGA	GCTTCTTCAA
		ATTTCTGAGG	GTGACACACA	AAATTTGTGA	
651	TGCATAGACT				GCGGATAGTA
701	AAGAGGGCAT	ACCTCTCTCG	TTCCGGTGAG	TCCCTGTCCT	TGGCCTAGAT
751	GGGCCCTCTT	CGTAGCGGGA	GAGGGGCATG	ATGGCACTTT	TGACATATGG
801	TTGATCCATT	TCTCGGTTAG	ATCATGGAGC	TGCAAGATCT	CTCTTGGCAT
851	CATTTTGACG	ATCCTTCCTG	GTTTCGGCTT	GTACCGAGGT	CAATCGATGA
901	GTTGGCCCAT	TCAGGTCGTC	TTCGTCGGCA	CGGGCCTCAG	CACAGTAGGC
951	GTTGTGTATT	TCATCCCAAG	TGGTTGGAGG	ATATTTCATA	AGTTGGTTTA
	ACAGTTTTCT		GAGCCATTCA		ATTCTGGAAA
1001		GGTCGCCCTC		TGTTCAGCCC	
1051	GTTGCTACAA		TGATACATTC	GGTAAGGTCA	TCCTTACTCT
1101	GTTGAATCGA	GCGAGGAAGT	CCCTCAATCC	CTCTCCGAGT	GATTGTTTGA
1151	TGGCAAATAT	ATCGTTCACT	CTTGCCTCCG	CGTTTTTAGC	CCCAACATGG
1201	GCCATTATGA	ACTTGTCGGC	CATCTCTTCG	AATATTTCAA	TGGAGCGCGC
1251	GGGCAGCTGT	GAATACCAAG	TCAATGCTCC	TCCGGTAAGG	GTCTCGCCGA
1301	ACATTTTCAA		GAGACTTGTT	CTTTGGAGAG	ATCATTGCCC
		TGACATAATG			GGTCGTACCA
1351	TTTACCGCAG		ATTACATGAT	CTTCGGGGTC	
1401	TCATAAATTT	TCAGATAAGG	TGGCATCTTG	AACGTCTTGG	GTATGGCATA
1451	TGGGGCGGCT	TCATCACTGT	AGGGTTGCTC	GACTAACCGA	CCAGCGTCTC
1501	TTTTTGGAAA	TATTTTTGGG	GCACCCGGTA	TTTTATCGAC	TCTTTCTTGG
1551	TGTTCTCTCA	TTTGATCCCG	AAGCATTTTA	TTTTCGTTTT	CCATTTCTTC
1601	CATTTTCTTC	AGAATGGCCG	TGAGGGTGTC	ATTACCTGCA	TTATTAATAT
1651	TGTGAGTGAT	ACCTGTTACT	GAAGGGGGAG	GGTCGTGCTG	TTTGGTCATT
1701	GCTGGTGCAA	TGCAAGTCCT	TGCATTTTCT	CTAAATACCT	CCTGAGTGGG
1751	TTTGTTGAGG	ATGCCGGTCA	GCATATTTGT	CAGCCAAGCT	TCGAGTAGCT
1801	TCTTCACCGC	TGGTGGCGCC	TCTTCCGTTG	TGGACGTGGA	AGCTCCTTTA
1851	CCGCGGGATG	TTGCGATACT	GCTGTGAGGG	AGGGGTGATC	CACTTCGTCG
1901	GGGAGAGGTG	TTAGGCGTTA	TGCCTTCGCC	TTCTATTTCG	GAGACCTCAT
1951	TGATGGTGTT	TAAGAGGTTG	GTAGTGAGAT	TGGCCACTGC	CTTCATCCTT
2001	TCTTCTCCCT	TACCTGCCAT	GTCAGATCTG	GGTGTACAAG	GAAGTAGGAG
2051	CTTCTCTTCT	TCTTTTTTGT	GAATTGTGCC	AGTTATAGAT	CTAAAAGAAA
2031		AACTAGACTA	TCCTCACAGA		TTGTTTGACC
2101	CTAAAGTTTT			CGGCGCCAAA	
2151	AAAAAATATA	GACTTTTGAT	TAAATTAATT	AATATTGTAT	GACAAAGGAT
2201	TAAACCTAGT	TAATGATAAT	AACTTCAGAT	CTATAATCAA	TTAACAGCAA
2251	TCACGGTCAT	AGCAGCGTTG	AGAGAAGATT	AAATGTGATG	
2301	ATTTCAAGAT	CATTAATGAT	AGGGGAATAT	CAAGCAATAA	ATAACGATAA
2351	ATGGCATTAA	AGTAAATAAG	GAGAATGATT	CACCCAATAT	
2401	GGATGATTCT			GATGGGCAAA	
2451	TTGGGACCCT			GTATGGAATA	
2501	GAATCTCTTT	AGAAAGGTAG			AGAAAGTCTG
2551	CTTTTCAAAG			TTACATCCCC	
2601	ATCTCTTTTT	CTATTTATAT		TCAATCAATC	
2651	ATACACCAAG			TTTGAATATT	CTATTATAAA
2701	AACTAGCTGT	TAGCACTCGA	CCTCGGTCGY	TATTGACTAC	TCGGTTACGA
2751	GCCCTGTCAT				TACGATACTG
2801	CTTCATGTCA			TTGACCCATA	
	ACAAAATTGC	TTCCAAAGAA		TTATAGTGAA	
2851					
2901	ACTGTTATAG				TTTTTTTTTTT
2951	TTCTTTTCAT			ATGAATAGAA	
3001	AACTATATAT	CAAAGGAATG	GTGTTTTTTC	TTTALATATG	GATAL <u>LAATT</u>

Fig.	5 (Teil 2)				
3051	TGTGAATATA	GAAGATTAGA	TCAATTAACA	AAGGTTATGG	TGG <u>AGTGGTA</u>
3101	AGCAGAGGCG	GACCTATGTG	TTATAGTAAG	GGGTCACCCA	CTACTAGAAA
3151	TCCGGTAAAG	ATCGATCAAA	AAACCGACCA	ACATTGGTCG	GTAATGGCCA
3201	AAAACTGACC	AAAACGCGAT	CATTTACGTG	TGAACGGTAT	TTTTATGGTC
3251	GGAAAGGAAT	ACCGACCAAA	GTTGGTCGGA	AATTACCGAC	CAACTTTGGT
3301	CGGTCAATTA	AATTCAAAAA	AAATATTGTA	AAAAAAAACC	GACCAAAGTT
3351	GATCGGTATT	TTAATTATGT	AATAAAAAGA	TTCACTATCT	GGGAATCGAA
3401	CCGGGGTCTG	TACTATGGCA	AGATACTATT	CTACCACTAG	ACCATTGGTT
3451	CATTTTGTTT	TAAGACTGTC	TTTTATTTGA	TTTATACTCT	TTAATTATAT
3501	TTTTGCACGA	AAATAACCGA	CCAAAGTTGG	TCGATTTTAT	TAAAAAGTAA
3551	AATTACTTAC	CAAAGTTGGT	CGATTTTTTT	AAATGA TCCG	CCGAATTAAC
3601	CGACCAATTT	TGGTAGGTTT	TTTTAATATT	AATTTTTATT	TATTTTAATT
3651	GAAAAACTAA	CCAAAGTTAG	TCGGTTTCTT	GAAACATAAA	TTTCGCGGGA
3701	CTCAAAAATA	GTTTCCCGCA	TTTTTGCGCC	AAAGAAAACC	GACCAAAGTT
3751	GGTCGGTTTC	GTAAAAAAA	AAAAAATTTA	AAAAATATAT	TTTAAAAAAAC
3801	CGACCAACTT	TAGTCGGTTT	TTTGGTCGAT	TTTTTGACCG	ACCAAAGTTG
3851	GTCGGTCGAC	CTTGGTCGGT	TTTTGCCGAA	TTT <u>CTAGTAG</u>	TGACCGAACC
3901	CTGTAAGCTT	CGGGA <u>GAAAT</u>	TTTGTATATG	TATA TGTGTA	TATCCTTAAA
3951	<u>ATGA</u> TTAATT	TAAAGAACGT	GGCACCCTGA	ATACTAGAAG	CCTTTAGGGG
4001	CACTAGATGA	GCAGAATAAC	GTGTTCTCGT	CGCGTAAAAA	TACTTGGATC
4051	CGCCTATGAT	GGTAAGTACT	TCTTCGTCCT	TAATCAGAGG	TTTCGACTTC
4101	GAGCTCCAGA	TATAAACTAT	AGACTCGTCT	TTATAGCACC	TTTTAATAAG
4151	ACTATGACTT	CATCTGATTT	CTCTATAAAT	ACTCCTCAAG	CTTTCGGTTC
4201	TTCTCCATTG	TTCAGTTTCT	TTCTCCACAT	CACAGAAGTG	AAAACAAAAC
4251	<u>AAGAAGAAGA</u>	<u>AGAAGAAGAA</u>	AAATAAA GAG	TTTCTGTCAA	ATTAAGTCCA
4301	ATAGGGAAA.A	TG			

Fig. 6

Expression einer NIN88-Promotor GUS Fusion in transgenen Tabak-Pflanzen

9/22

Fig. 7

ERSATZBLATT (REGEL 26)

Fig. 8 Keimungsrate (% von lebensfähigen Pollen)

ERSATZBLATT (REGEL 26)

Keimungsrate

11/22

Fig. 9

Stärke Akkumulation (% der Pollen mit positiver Stärkefärbung)

Fig. 10

13/22

Fig. 11

ERSATZBLATT (REGEL 26)

WO 00/77187 PCT/DE00/01944

14/22

Fig. 12

ERSATZBLATT (REGEL 26)

Fig. 13

16/22

Fig. 14

Fig. 15 (Teil 1) 17/22

Genomische Sequenz von NIN88

1	ATGGAGCTGT	TTAGAAAAAG	CTCTTTTCAT	TGTGCTTTGC	CAGTTTTCAT
51		TGCTTGTTTA			
101		CGTTTTTACG			
151	ACTTCTAACT	ACAGAACTGG	TTACCATTTT	CAACCCCCCA	AGAACTGTAT
201	GAATGGTACG	TTTCTCTCCC	CTTCCACCCA	CCCCACCCC	TCTTCTGTTG
251		TATGTGTATA			
301	TCGGCATTAG	GATCCACTAA	ATTCGGCATT	GAGGGGTAAT	TAGGCGTCTA
351	ACAAAGTCAA	TTCCATAACT	AGGGCTCGAA	CCCGAGACTT	CCGATTAAAA
401	ATGAAGGAGT	ACTTAACACT	TATTCTGTAA	CATTAAACAA	TAGACATCCT
451		ACTCATTTGT			
501		TCATCTACTT			
551		TCTATGTTAT			
601		AAACAATAAT			
651		GGCGCAATTA			
701		AAATTTAGTT			
751		CTAAGAAATT			
801		TAATGAAAAT			
851		ACCTTACCCC			
901		TCCCTCCCTC			
951		CAACCTCTTA			
1001		TTGTCCGAAG			
1051		AAAACTTAAA			
1101		ATAATTGTTT			
1151		GAGTTTTAAT			
1201		TAGGCTAATG			
1251		AAATTGAAAA			
1301		GAAATATATA			
1351		ATTAGGGGAT			
1401		A ACACGTGTGA			
1451		A TAATGAGTAC			
1501		A ACCCCCTACT			
1551					TAAGTGACAT
1601					AATACAAGTG
1651					TATAATTTTG
1701					TTGAAAAACA
1751					GCATCTTCAA
1801					AAAAAAGTGA
1851					A CGGGCTCTAA
1901					AGAGAAGACA
1951	ATTTCTTTT				A TTTCAAATCA
		ERSA	ATZBLATT (R	EGEL 26)	

Fig. 15 (Teil 2)

2001	TTTTTTCAAA	TCCACTAAAA	ATATGTATCA	ATTAATATGG	GTATTATGGT
2051				GGAGTGTTCA	
2101	TAGACAAGTA	AAAGTGAATG	GAGAGAGTAA	TAAATTACAC	CTACTTTCTT
2151	GGAAATACCA	GTTGAGACAT	ACGTAGAACT	TTTGCTAATT	TTTTCTTATT
2201	TTTTCTTAAT	TATATTATAT	TTGTGTGTGA	TATGGGCAGA	AGGGGTTGGT
2251	AAGAAGGATC	TTGTCCCCAT	CAGCAACTTA	CAATATTTTA	GGGAAGACAA
2301	ATAATAATTT	TCTGCATTTC	${\tt CTAAATTTTT}$	GTAATTTCAC	TTTTCATTTG
2351	TTTATTATTT	GATTATTCAT	${\tt CAATATTAAA}$	TTATGCAGAT	TTAGTACTCA
2401	CATTCAATTG	TTTATTTACA	ATTTTTTTTA	ATTTTTTTCT	TTATGGTCTT
2451				CCAATGGTGA	
2501	TTATCTTCTT	TTTATATATA	TAATTTAATC	ACCAATTATT	CATTTATGAT
2551				CAATGTATTA	
2601				GGATCAACAA	
2651				AATCAATTGG	
2701				ACAAATATGG	
2751				CCCATTATTT	
2801					GTCCCGGCCA
2851					TAACAACCCG
2901					GTGACCCGAC
2951					GTAGGAAGTT
3001					GAATTTCATG
3051	AAATGGATC	A AGGCTGAGCA	TCCACTTCAT	TCATCTGCCA	AAACAGGAAA
3101				CTTGCAAGGT	
3151					CAAGAATAGC
3201					ATGATGCCAA
3251					TGGAAAGGAT
3301	TGAGACTTG	A CTATGGCATI	TTCTACGCGI	CTAAGTCGTI	CTACGACCCT
3351	AGTAAGGAC	C GAAGAATCGI	GTGGGGTTGG	TCTTATGAA1	TAGATGGTCT
3401	CCCCAATAA'	r gaaaacaaca	AAGGATGGGC	CTGGAATTC	GGCTATCCCG
3451	CGTAAAGTA'	T GGCTTGATT	CAGTGGTAA	A CAATTAGTT	AATGGCCTAT
3501					AGCAACAAAA
3551	GGCTGGATA	A TGGAGAAAA	ATTGAAGTT	A AAGGAATCA	AGCGTCGCAG
3601					TTTAAAATAA A
3651					r TGCCAGGCTG
3701					AGAGCCATTT
3751					G CAATTAAGGG
3801	TTCAACTGT	T CCAGGTGGG	C TTGGGCCAT	r TGGCCTTGC	A ACATTGGCTT
3851	CTCAAAACT	T AGAAGAATA	C ACACCTGTT	T TTTTCAGAG	r GTTCAAAGCT
3901	CAGAATTT				

Fig. 16 (Teil 1)

19/22

Sequenz von NIN88-Promotor fusioniert mit NIN88 in antisense

1	TCGAGCCATT	CATGTTCAGC	CCATTCTGGA	AAGTTGCTAC	AACCATTCCT
51	TCTGATACAT	TCGGTAAGGT	CATCCTTACT	CTGTTGAATC	GAGCGAGGAA
101	GTCCCTCAAT	CCCTCTCCGA	GTGATTGTTT	GATGGCAAAT	ATATCGTTCA
151	CTCTTGCCTC	CGCGTTTTTA	.GCCCCAACAT	GGGCCATTAT	GAACTTGTCG
201	GCCATCTCTT	CGAATATTTC	AATGGAGCGC	GCGGGCAGCT	GTGAATACCA
251	AGTCAATGCT	CCTCCGGTAA	GGGTCTCGCC	GAACATTTTC	AACAAGATGG
301	AGGAGACTTG	TTCTTTGGAG	AGATCATTGC	CCTTTACCGC	AGTGACATAA
351	TGATTACATG	ATCTTCGGGG	TCGGTCGTAC	CATCATAAAT	TTTCAGATAA
401	GGTGGCATCT	TGAACGTCTT	GGGTATGGCA	TATGGGGCGG	CTTCATCACT
451	GTAGGGTTGC	TCGACTAACC	GACCAGCGTC	TCTTTTTGGA	${\tt AATATTTTG}$
501	GGGCACCCGG	TATTTTATCG	ACTCTTTCTT	GGTGTTCTCT	CATTTGATCC
551	CGAAGCATTT	TATTTTCGTT	TTCCATTTCT	TCCATTTTCT	TCAGAATGGC
601	CGTGAGGGTG	TCATTACCTG	CATTATTAAT	ATTGTGAGTG	ATACCTGTTA
651	CTGAAGGGGG	AGGGTCGTGC	TGTTTGGTCA	TTGCTGGTGC	AATGCAAGTC
701	CTTGCATTTT	${\tt CTCTAAATAC}$	CTCCTGAGTG	${\tt GGTTTGTTGA}$	GGATGCCGGT
751	CAGCATATTT	GTCAGCCAAG	CTTCGAGTAG	CTTCTTCACC	GCTGGTGGCG
801	CCTCTTCCGT	TGTGGACGTG	GAAGCTCCTT	TACCGCGGGA	TGTTGCGATA
851	CTGCTGTGAG	GGAGGGGTGA	TCCACTTCGT	CGGGGAGAGG	TGTTAGGCGT
901	TATGCCTTCG	CCTTCTATTT	CGGAGACCTC	ATTGATGGTG	TTTAAGAGGT
951	TGGTAGTGAG	ATTGGCCACT	GCCTTCATCC	TTTCTTCTCC	CTTACCTGCC
1001	ATGTCAGATC	TGGGTGTACA	AGGAAGTAGG	AGCTTCTCTT	CTTCTTTTTT
1051	GTGAATTGTG	CCAGTTATAG	ATCTAAAAGA	AACTAAAGTT	TTAACTAGAC
1101	\-	GACGGCGCCA			
1151	ATTAAATTAA	TTAATATTGT	ATGACAAAGG	ATTAAACCTA	GTTAATGATA
1201		ATCTATAATC			
1251	TGAGAGAAGA	TTAAATGTGA	TGTnCATTCA	ATATTTCAAG	ATCATTAATG
1301		ATCAAGCAAT			
1351	AGGAGAATGA	TTCACCCAAT	ATTGAATGAG	GTGGATGATT	CTTCTTTTTG
1401	ACAATGATGA	ATGATGGnCA	AATACTAGAA	TGTTGGGACC	CTTCTCGGAT
1451		AAGTATGGAA			
1501		TTTTATCTAG			
1551		TATTACATCC			
	ATGGGACATT		•		
1651	ATAAAATATT				
1701		GnTATTGACT			
1751		TACATCACTT			_
1801	TGAAAGCAGA				
1851	AAAACATGGC				
	GAATTTATTT				
1951		CCATGAATAG			
2001		TCTTTAAATA			
2051	GATCAATTAA	CAAAGGTTAT	GGTGGAGTGG	TAAGCAGAGG	CGGACCTATG

Fig. 16 (Teil 2)

20/22

2101	TGTTATAGTA	AGGGGTCACC	CACTACTAGA	AATCCGGTAA	AGATCGATCA
2151	AAAAACCGAC	CAACATTGGT	CGGTAATGGC	CAAAAACTGA	CCAAAACGCG
2201	ATCATTTACG	TGTGAACGGT	ATTTTTATGG	TCGGAAAGGA	ATACCGACCA
2251	AAGTTGGTCG	GAAATTACCG	ACCAACTTTG	GTCGGTCAAT	TAAATTCAAA
2301			CCGACCAAAG		TATTAATTAT
2351			CTGGGAATCG		TGTACTATGG
2401			AGACCATTGG		TTTAAGACTG
2451	тстттатт	GATTTATACT	CTTTAATTAT	ATTTTTGCAC	GAAAATAACC
2501	GACCAAAGTT	GGTCGATTTT	ATTAAAAAGT	AAAATTACTT	ACCAAAGTTG
2551			CGCCGAATTA		TTTGGTAGGT
2601			TTTATTTTAA		AACCAAAGTT
2651	AGTCGGTTTC	TTGAAACATA	AATTTCGCGG	GACTCAAAAA	TAGTTTCCCG
2701					
2751	AAAAAAATT	TAAAAAATAT	ATTTTAAAAA	ACCGACCAAC	TTTAGTCGGT
2801	TTTTTGGTCG	ATTTTTTGAC	CGACCAAAGT	TGGTCGGTCG	ACCTTGGTCG
2851	GTTTTTGCCG	AATTTCTAGT	AGTGACCGAA	CCCTGTAAGC	TTCGGGAGAA
2901	ATTTTGTATA	TGTATATGTG	TATATCCTTA	AAATGATTAA	TTTAAAGAAC
2951	GnnGCACCCT	GAATACTAGA	AGCCTTTAGG	GGCACTAGAT	GAGCAGAATA
3001	ACGTGTTCTC	GTCGCGTAAA	AATACTTGGA	TCCGCCTATG	ATGGTAAGTA
3051	CTTCTTCGTC	CTTAATCAGA	GGTTTCGACT	TCGAGCTCCA	GATATAAACT
3101					TTCATCTGAT
3151	TTCTCTATAA	ATACTCCTCA	AGCTTTCGGT	TCTTCTCCAT	TGTTCAGTTT
3201	CTTTCTCCAC	ATCACAGAAG	TGAAAACAAA	ACAAGAAGAA	GAAGAAGAAG
3251	AAAAATAAAG	AGTTTCTGTC	AAATTAAGTC	CAATAGGGAA	AATGGAGCTG
3301	TTTGGATCCC	CGTTTTCATT	ATTGGGGAGA	CCATCTAATT	CATAAGACCA
3351	ACCCCACACG	ATTCTTCGGT	CCTTACTAGG	GTCGTAGAAC	GACTTAGACG
3401					ATCGACTGAA
3451	GTGTTATCTG	GAATATACCT	ATCTTGTTTG	GCATCATATG	TACCAATTGT
3501	GTAGTACTCA	AACGCGGCAA	CAGGAAGGCT	ATTCTTGAGA	ACGTACTTAA
3551	CATATTTTCC	GTTGTACGAT	GCATCTAAAC	CATTAGAACC	TTGCAAGGAA
3601	ACAGGAAAAA	AATCTGGGCA	TTCCCAATTI	CCTGTTTTGG	CAGATGAATG
3651	AAGTGGATGC	TCAGCCTTGA	TCCATTTCAT	GAAATTCCTA	CTTCTATACA
3701	ATATTGCCAA	CCCACCACGG	TTTCTTGAAC	TTCCTACCAC	AATTCTCCAA
3751	TGACCATCTT	TGCCCATCCA	A AGCTGTTGTC	: GGGTCACGA	ATTGGGTCTT
3801	GGTGATGCTG	ATATCCGGGA	CGATCAACGO	GTTGTTATCO	GGCTTGTTCC
3851	ATTCACGGAC	ATATGGATCO	GATAAGTTGC	CCGGGACGG	GŢAATTTTGG
3901	ACTTGGGTC#	TGTTGGCAT	TACCACTCC	A GTGTACAAA	TAATGGGCTT
3951	GTTACCAGG	AGAATAGTT	G CTGAACCAGA	A CCATGTTCC	A TATTTGTCAA
4001	ATGGTTTGG!	A TGGATAAAT	r GCAGGCTCT	A AATTAATCC	ATTGATTAAG
4051					3 TTGATCCTTT
4101	TGGATTGTA	TGGTAGAAT	A GATGATAGA	TCGAG	

Fig. 17 (Teil 1)

. 1	CATAATCAAA	TGTGTGGTCT	TATGTAGAAC	TAATATTTGG	'TAATATTAGG
51	CAAGTTGTTA	TGTGACTTAT	TTTATTCAAA	AATATAATAA	GAAGTTCAAA
101	GAGAAGAGTA	CAAGTAAGTA	AGTAAGCAGA	GACGAATCCT	GGATTTAAAG
151	GGTCTGGCTA	TATTAATGTT	TTTTAATTT	AAGCATTAGC	GATTCGCCTT
201	GCAAGTAATC	GATAGGACAA	AAGTTTTACC	TTACTAATTC	TATTGAGGCA
251	CCAAATCCCT	at gaaa aagc	ATGTAAAATA	T GAGAAGACG	AAAGAATTAA
301	ATAGGTTATA	ATTATTGTAT	AATTTATAAC	ACACTTTATG	ATAATATTAC
351	AAATAAGAAT	ATCGAATATT	TAATTAATGA	CGAACTATAA	AAGCAAAGAA
401	GGAAGGATGA	GCTTCCAAAA	ACAATCGCAA	ATGAATAAAG	ATGCCCAAAA
451	TAGAGTAACC	TAACGAAGTC	GATACTTCCA	TTCATAATCA	AATCTGTTCA
501	AAAACACTTG	ATGGGTTATT	TTTAACTTTA	AGAGATGTAT	CATATCGTCT
551	CTTATTATTC	CTTTAGGGCT	ATTCGCCGTA	GGAATAAAAT	TTATATGATC
601	AAATTTCACG	TTATATAAAT	AATGTGA AGA	AAAAACTTAT	ACTTTTCAAG
651	GTAACAAGAA	ATCATGTTTT	TTTTACGCCT	TCGTGGAGAC	TACTTCCTCG
701	TAACAAAAA	TTAACATTTT	AAGTGGCGAC	TCTAAAAACT	CGTGGCCAGT
751	ATATTAGTCG	CCATTAAACA	TTATTTTTAA	TCATGAGTTC	TTTTCTTTTT
801	TAATCTTTTT	TTAAGGTCAA	ATTTACCACT	TTATCTTATT	TATTTAAATT
851	GAAAAATCCC	AAATTTTGCA	TTATTTTTT	GAATTCCTTT	TTTTTTTACA
901	CACTCAAAAA	<u>GTCAAAA</u> CAT	TAAAAAAACG	AAATAGCAAA	TTAAATGGCA
951	AAAGACTTGT	TGTAACAAAA	AAAAAATAGT	AAAACAGACT	CATAAAAGGT
1001	AACAATAACC	AACAAATCAC	ACAAAATTGT	AGATAAATAT	TATGCAAACA
1051	AATAAAAATT	AATAATC CAA	TCCATTTATT	ATTTTTTA	AAAAAAACCT
1101	AAATTAACTC	TCCATCTTTC	AATCAAAAAC	AAACTCTACC	CATTTTTTC
1151	AC TATAAAT A	CTCTTCATAA	TTTTCATTTG	TTCTTCATTC	CCATGTTTCT
1201	TTTCTCCTTA	TCCAAAAAA	AAAAAATTAA	AAAAAATTAT	TTAGATTAAA
1251	TATCACTATC	TGTCAAAGCC	CAATCATTAA	AATAAAATAA	AAATT ATG GA
1301	TTATTCATCT	AATAAAAGTT	CTCGTTGGGC	TTTGCCAGTT	ATCTTAGTTT
1351	GCTTTTTTGT	AATTTTATTA	TCCAATAATG	TTGTTTTTGC	TTCTCATAAA

ERSATZBLATT (REGEL 26)

Fig. 17 (Teil 2)

401	GTTTTTATTC	ACTIGCAATC	TCAAAATGCC	GIAAAIGIIC	AIRCIGITO
451	TCGAACTGGT	TATCATTTTC	AGCCCGAAAA	ACATTGGATC	AATGGTATGT
501	TTATTCCTTT	TTTTCGTCTT	TTTTTTATAT	ATÁTATATAT	AATAAAACGA
.551	ACATGTTGTG	TTTAGTCTAG	ATTTAATACT	AGTGATTTTT	TTGACGCTAA
601	CAAATAATCG	AGTACTCACC	ATTTGTCAAT	AGATACATTG	ACATGTATTA
.651	GTATGATTTT	CGTCTTTTTT	CGTTGTTTCT	AATATTATTT	AATCTTCACT
701	AATTTTTTA	TTTTTCTTTG	AATGATGTCT	CTTGGTCAAA	ACATACAATA
.751	GATCCCAATG	GTAAGTTAAC	TATATTTTTG	TATATTTTTT	AAATTTATTT
801	TATTCTTATT	ATATAATATA	GGGAAAAAAG	GATAAATATA	TCCCCGAACT
851	ATTATAAATA	GTATGCACCA	GTATCCTCTG	TTATACTTTA	GAGATATTT
901	TGCCGTCAAA	AAACTAGAAC	ACATATATCC	TTTATTTATC	CCGATATCGA
951	ATCGATTGTA	CCACGAGTGA	AGGGTATAGC	TCTAGTTTTG	GACGGTAGG
2001	CACCTAAAGT	AGACGAAGA			

SEQUENZPROTOKOLL

```
<110> Roitsch, Thomas
<120> Promotorsystem, dessen Herstellung und Verwendung
<130> R30024PCT
<140>
<141>
<160> 20
<170> PatentIn Ver. 2.1
<210> 1
<211> 3294
<212> DNA
<213> Nicotiana tabacum
<400> 1
tcgagccatt catgttcagc ccattctgga aagttgctac aaccattcct tctgatacat 60
tcggtaaggt catccttact ctgttgaatc gagcgaggaa gtccctcaat ccctctccga 120
gtgattgttt gatggcaaat atatcgttca ctcttgcctc cgcgttttta gccccaacat 180
gggccattat gaacttgtcg gccatctctt cgaatatttc aatggagcgc gcgggcagct 240
qtqaatacca agtcaatgct cctccggtaa gggtctcgcc gaacattttc aacaagatgg 300
aggagacttg ttctttggag agatcattgc cctttaccgc agtgacataa tgattacatg 360
atcttcgggg tcggtcgtac catcataaat tttcagataa ggtggcatct tgaacgtctt 420
gggtatggca tatggggcgg cttcatcact gtagggttgc tcgactaacc gaccagcgtc 480
tctttttgga aatatttttg gggcacccgg tattttatcg actctttctt ggtgttctct 540
catttgatcc cgaagcattt tattttcgtt ttccatttct tccattttct tcagaatggc 600
cgtgagggtg tcattacctg cattattaat attgtgagtg atacctgtta ctgaaggggg 660
agggtcgtgc tgtttggtca ttgctggtgc aatgcaagtc cttgcatttt ctctaaatac 720
ctcctgagtg ggtttgttga ggatgccggt cagcatattt gtcagccaag cttcgagtag 780
cttcttcacc gctggtggcg cctcttccgt tgtggacgtg gaagctcctt taccgcggga 840
tqttqcqata ctgctgtgag ggaggggtga tccacttcgt cggggagagg tgttaggcgt 900
tatqccttcq ccttctattt cggagacctc attgatggtg tttaagaggt tggtagtgag 960
attgqccact gccttcatcc tttcttctcc cttacctgcc atgtcagatc tgggtgtaca 1020
aggaagtagg agettetett ettettttt gtgaattgtg ecagttatag atetaaaaga 1080
aactaaagtt ttaactagac tatcctcaca gacggcgcca aattgtttga ccaaaaaata 1140
tagacttttg attaaattaa ttaatattgt atgacaaagg attaaaccta gttaatgata 1200
ataacttcag atctataatc aattaacagc aatcacggtc atagcagcgt tgagagaaga 1260
ttaaatgtga tgtncattca atatttcaag atcattaatg ataggggaat atcaagcaat 1320
aaataacgat aaatggcatt aaagtaaata aggagaatga ttcacccaat attgaatgag 1380
gtggatgatt cttctttttg acaatgatga atgatggnca aatactagaa tgttgggacc 1440
cttctcggat ctaatgaaaa aagtatggaa tagtagataa tcgaatctct ttagaaaggt 1500
agtgattgtc ttttatctag agagaaagtc tgcttttcaa agaatatttt tatcaqagaa 1560
tattacatcc ccctctctcc ctatntcttt ttctatttat atgggacatt cctcaatcaa 1620
tcctaaaagt acatacacca agaatattca ataaaatatt tttttgaata ttctattata 1680
aaaactaget gttageacte gaceteggte gntattgaet acteggttae gageeetgte 1740
atttactaat cgacctcgat tacatcactt tctacgatac tgcttcatgt caaatcttaa 1800
tgaaagcaga ttttgaccca tacaataata tgacaaaatt gcttccaaag aaaacatggc 1860
tottatagtg agatatogtt agactgttat agaaagatot gaatttattt ataagaatag 1920
tgttttttc ttttctttc atatctaagg agtaaagcaa ccatgaatag aaaaggctta 1980
gtaactatat atcaaaggaa tggtgttttt tctttaaata tggataaaaa tttgtgaata 2040
tagaagatta gatcaattaa caaaggttat ggtggagtgg taagcagagg cggacctatg 2100
tgttatagta aggggtcacc cactactaga aatccggtaa agatcgatca aaaaaccgac 2160
caacattggt cggtaatggc caaaaactga ccaaaacgcg atcatttacg tgtgaacggt 2220
attttatgg tcggaaagga ataccgacca aagttggtcg gaaattaccg accaactttg 2280
gtcggtcaat taaattcaaa aaaaatattg taaaaaaaaa ccgaccaaag ttgatcggta 2340
ttttaattat gtaataaaaa gattcactat ctgggaatcg aaccggggtc tgtactatgg 2400
caagatacta ttctaccact agaccattgg ttcattttgt tttaagactg tcttttattt 2460
```


<210> 2 <211> 4312 <212> DNA <213> Nicotiana tabacum

<400> 2

tctagaatga cgccaccggc caggacgggg agtatgattt ccccgaatgt tcgttcaact 60 gcattgttaa aacctgttag cgtgatgcag cccggtacta tcttatcctc gagtttcatt 120 tgtgcaagta ctcgaggatg gacaattcac gggccactcc catcgtccac cataatgcgt 180 cttacatctg tatctaatat tcgtaaagtg ataacgaggg catcatagtg agggaaaacc 240 aaaccgtggt tatctgactt atcgaagatg atactttctt taagtttctc gtaccgttca 300 tgagtgatta actgtttgag cttgtgggtt gtggcgaact ttacgttgtt gatcgaaacg 360 tegteteege eecegatgat aatgtgaatg gtgegagteg gtaagggtgg ttteggeggt 420 ccctggtgtt gttcacgtcc tcgagaaaag ttggtccttc ctcggtcaca caacaatatt 480 ttgaggtgtc cttgatgaag catgtccatg acctcttgtc ttagggcgat acaatcctca 540 gttttgtgac ctcgctcttg gtggaactcg cagagggcat ctgattttct agtgcttgga 600 tctgacctca tcttttgtgg ccactttact tttggtccga gcttcttcaa tgcatagact 660 atttctgagg gtgacacaca aaatttgtga gcggatagta aagagggcat acctctctcg 720 ttccggtgag tccctgtcct tggcctagat gggccctctt cgtagcggga gaggggcatg 780 atggcacttt tgacatatgg ttgatccatt tctcggttag atcatggagc tgcaagatct 840 ctcttggcat cattttgacg atccttcctg gtttcggctt gtaccgaggt caatcgatga 900 gttggcccat tcaggtcgtc ttcgtcggca cgggcctcag cacagtaggc gttgtgtatt 960 tcatcccaag tggttggagg atatttcata agttggttta acagttttct ggtcgccctc 1020 gagocattca tgttcagocc attctggaaa gttgctacaa ccattccttc tgatacattc 1080 ggtaaggtca teettaetet gttgaatega gegaggaagt eeeteaatee eteteegagt 1140 qattqtttqa tqqcaaatat atcqttcact cttqcctccq cqtttttagc cccaacatqg 1200 gccattatga acttgtcggc catctcttcg aatatttcaa tggagcgcgc gggcagctgt 1260 gaataccaag tcaatgctcc tccggtaagg gtctcgccga acattttcaa caagatggag 1320 gagacttgtt ctttggagag atcattgccc tttaccgcag tgacataatg attacatgat 1380 cttcggggtc ggtcgtacca tcataaattt tcagataagg tggcatcttg aacgtcttgg 1440 gtatggcata tggggcggct tcatcactgt agggttgctc gactaaccga ccagcgtctc 1500 tttttggaaa tatttttggg gcacccggta ttttatcgac tctttcttgg tgttctctca 1560 tttgatcccg aagcatttta ttttcgtttt ccatttcttc cattttcttc agaatggccg 1620 tgagggtgtc attacctgca ttattaatat tgtgagtgat acctgttact gaagggggag 1680 ggtcgtgctg tttggtcatt gctggtgcaa tgcaagtcct tgcattttct ctaaatacct 1740 cctgagtggg tttgttgagg atgccggtca gcatatttgt cagccaagct tcgagtagct 1800 tetteacege tggtggegee tetteegttg tggaegtgga ageteettta eegegggatg 1860 ttgcgatact gctgtgaggg aggggtgatc cacttcgtcg gggagaggtg ttaggcgtta 1920 tgccttcgcc ttctatttcg gagacctcat tgatggtgtt taagaggttg gtagtgagat 1980 tggccactgc cttcatcctt tcttctccct tacctgccat gtcagatctg ggtgtacaag 2040 gaagtaggag ettetettet tettttttgt gaattgtgee agttatagat etaaaagaaa 2100 ctaaaqtttt aactagacta tcctcacaga cggcgccaaa ttgtttgacc aaaaaatata 2160 gacttttgat taaattaatt aatattgtat gacaaaggat taaacctagt taatgataat 2220 aacttcagat ctataatcaa ttaacagcaa tcacggtcat agcagcgttg agagaagatt 2280 aaatgtgatg tycattcaat atttcaagat cattaatgat aggggaatat caagcaataa 2340 ataacgataa atggcattaa agtaaataag gagaatgatt cacccaatat tgaatgaggt 2400 ggatgattct tctttttgac aatgatgaat gatgggcaaa tactagaatg ttgggaccct 2460

tctcqqatct aatgaaaaaa gtatggaata gtagataatc gaatctcttt agaaaggtag 2520 tqattqtctt ttatctagag agaaagtctg cttttcaaag aatattttta tcagagaata 2580 ttacatecce etetetecet atetetttt etatttatat gggacattee teaatcaate 2640 ctaaaagtac atacaccaag aatattcaat aaaatatttt tttgaatatt ctattataaa 2700 aactagctgt tagcactcga cctcggtcgy tattgactac tcggttacga gccctgtcat 2760 ttactaatcg acctcgatta catcactttc tacgatactg cttcatgtca aatcttaatg 2820 aaagcagatt ttgacccata caataatatg acaaaattgc ttccaaagaa aacatggctc 2880 ttatagtgaa atatcgttag actgttatag aaagatctga atttatttat aagaatagtg 2940 tttttttttt ttcttttcat atctaaggag taaagcaacc atgaatagaa aaggcttagt 3000 aactatatat caaaggaatg gtgttttttc tttaaatatg gataaaaatt tgtgaatata 3060 qaagattaga tcaattaaca aaggttatgg tggagtggta agcagaggcg gacctatgtg 3120 ttatagtaag gggtcaccca ctactagaaa tccggtaaag atcgatcaaa aaaccgacca 3180 acattggtcg gtaatggcca aaaactgacc aaaacgcgat catttacgtg tgaacggtat 3240 ttttatggtc ggaaaggaat accgaccaaa gttggtcgga aattaccgac caactttggt 3300 cggtcaatta aattcaaaaa aaatattgta aaaaaaaacc gaccaaagtt gatcggtatt 3360 ttaattatgt aataaaaaga ttcactatct gggaatcgaa ccggggtctg tactatggca 3420 agatactatt ctaccactag accattggtt cattttgttt taagactgtc ttttatttga 3480 tttatactct ttaattatat ttttgcacga aaataaccga ccaaagttgg tcgatttat 3540 taaaaagtaa aattacttac caaagttggt cgatttttt aaatgatccg ccgaattaac 3600 cqaccaattt tggtaggttt ttttaatatt aatttttatt tattttaatt gaaaaactaa 3660 ccaaagttag teggtttett gaaacataaa tttegeggga eteaaaaata gttteeegca 3720 tttttgcgcc aaagaaaacc gaccaaagtt ggtcggtttc gtaaaaaaaa aaaaaattta 3780 aaaaatatat tttaaaaaac cgaccaactt tagtcggttt tttggtcgat tttttgaccg 3840 accaaagttg gtcggtcgac cttggtcggt ttttgccgaa tttctagtag tgaccgaacc 3900 ctgtaagctt cgggagaaat tttgtatatg tatatgtgta tatccttaaa atgattaatt 3960 taaagaacgt ggcaccctga atactagaag cctttagggg cactagatga gcagaataac 4020 gtgttctcgt cgcgtaaaaa tacttggatc cgcctatgat ggtaagtact tcttcgtcct 4080 taatcagagg tttcgacttc gagctccaga tataaactat agactcgtct ttatagcacc 4140 ttttaataag actatgactt catctgattt ctctataaat actcctcaag ctttcggttc 4200 agaagaagaa aaataaagag tttctgtcaa attaagtcca atagggaaaa tg

```
<210> 3
<211> 2019
<212> DNA
<213> Lycopersicon esculentum cv. Moneymaker
```

<400> 3 cataatcaaa tgtgtggtct tatgtagaac taatatttgg taatattagg caagttgtta 60 tgtgacttat tttattcaaa aatataataa gaagttcaaa gagaagagta caagtaagta 120 agtaagcaga gacgaatcct ggatttaaag ggtctggcta tattaatgtt tttttaattt 180 aagcattagc gattcgcctt gcaagtaatc gataggacaa aagttttacc ttactaattc 240 tattgaggca ccaaatccct atgaaaaagc atgtaaaata tgagaagacg aaagaattaa 300 ataggttata attattgtat aatttataac acactttatg ataatattac aaataagaat 360 atcgaatatt taattaatga cgaactataa aagcaaagaa ggaaggatga gcttccaaaa 420 acaatcgcaa atgaataaag atgcccaaaa tagagtaacc taacgaagtc gatacttcca 480 ttcataatca aatctgttca aaaacacttg atgggttatt tttaacttta agagatgtat 540 catatcgtct cttattattc ctttagggct attcgccgta ggaataaaat ttatatgatc 600 aaatttcacg ttatataaat aatgtgaaga aaaaacttat acttttcaag gtaacaagaa 660 atcatgtttt ttttacgcct tcgtggagac tacttcctcg taacaaaaaa ttaacatttt 720 aagtggcgac tctaaaaact cgtggccagt atattagtcg ccattaaaca ttattttaa 780 tcatgagttc ttttctttt taatctttt ttaaggtcaa atttaccact ttatcttatt 840 tatttaaatt gaaaaatccc aaattttgca ttatttttt gaattccttt ttttttaca 900 cactcaaaaa gtcaaaacat taaaaaaacg aaatagcaaa ttaaatggca aaagacttgt 960 tgtaacaaaa aaaaaatagt aaaacagact cataaaaggt aacaataacc aacaaatcac 1020 acaaaattgt agataaatat tatgcaaaca aataaaaatt aataatccaa tccatttatt 1080 tattttttta aaaaaaacct aaattaactc tccatctttc aatcaaaaac aaactctacc 1140 catttttttc actataaata ctcttcataa ttttcatttg ttcttcattc ccatgtttct 1200 tttctcctta tccaaaaaaa aaaaaattaa aaaaaattat ttagattaaa tatcactatc 1260 tgtcaaagcc caatcattaa aataaaataa aaattatgga ttattcatct aataaaagtt 1320 ctcgttgggc tttgccagtt atcttagttt gcttttttgt aattttatta tccaataatg 1380

```
ttgtttttgc ttctcataaa gtttttattc acttgcaatc tcaaaatgcc gtaaatgttc 1440
atactqttca tcqaactggt tatcattttc agcccgaaaa acattggatc aatggtatgt 1500
ttattccttt ttttcgtctt ttttttatat atatatata aataaaacga acatgttgtg 1560
tttaqtctaq atttaatact agtgattttt ttgacgctaa caaataatcg agtactcacc 1620
atttqtcaat agatacattg acatgtatta gtatgatttt cgtctttttt cgttgtttct 1680
aatattattt aatcttcact aattttttta tttttctttg aatgatgtct cttggtcaaa 1740
acatacaata gatcccaatg gtaagttaac tatatttttg tatattttt aaatttattt 1800
tattcttatt atataatata qqqaaaaaaq qataaatata tccccqaact attataaata 1860
qtatqcacca qtatcctctq ttatacttta gagatatttt tgccgtcaaa aaactaqaac 1920
acatatatcc tttatttatc ccgatatcga atcgattgta ccacgagtga agggtataqc 1980
tctagttttg gacggtaggg cacctaaagt agacgaaga
<210> 4
<211> 27
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: Primer
<400> 4
                                                                  27
ccttcacytn ttytaycart ayaaycc
<210> 5
<211> 27
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: Primer
<400> 5
                                                                  27
cctttcrwar aargtyttdg wwgcgta
<210> 6
<211> 760
<212> DNA
<213> Nicotiana tabacum
<400> 6
ggtaccccct ttcgtagaag gttttggaag cgtagaaatt tccatagtca agtctcaatc 60
ccttccaact atcaaccgaa gtgttatctg gaatatacct gtctttttta atatcgtacg 120
taccaacagt atagtactca aacctagtaa gatccatact atttttaagt acgtacttag 180
aatcttcacc atatttatct aaaccatttg taccttgtaa tgatacaggg aaaaaatcag 240
gacattecca atttectgta ttagcagttg aatgaagtgg atgtttagee ttaatecate 300
tcataaaatc cttacttcta tacattattg ccaatcccct cttttttctc aaacttccca 360
ttataattct ccaatgacca tctttgccca tccaagctgt tgtcgggtca cgaaattggg 420
tcttgttaat gctaatatcc gggacgatta acgggttgtt atcgggcttg atccattcgc 480
gaagatatgg atcggataag ttggccggga cggcgtaatt ttggacttgg gttttattgg 540
catcaactat tocagtgtac aaaataatgg gottgttacc aggaagaact gttgctgaac 600
cagaccaagt tocatatttg toaaattgtt tggatggata aattgcaggo totaaattaa 660
tccaattgat taaatctttt gagactgaat gagcccaaac aatgttgccc catactgatc 720
cttttggatt qtattgataa aacaagtgaa ggggggatcc
                                                                 · 760
```

WO 00/77187 PCT/DE00/01944 5

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Primer

atccartttt kdbkwggttg aaartggwa

29

<210> 8

<211> 4135

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Fusion aus Promotor und codierender Sequenz in antisense-Orientierung

TCTGATACAT TCGGTAAGGT CATCCTTACT CTGTTGAATC GAGCGAGGAA

TCGAGCCATT CATGTTCAGC CCATTCTGGA AAGTTGCTAC AACCATTCCT

GTCCCTCAAT CCCTCTCCGA GTGATTGTTT GATGGCAAAT ATATCGTTCA 101 CTCTTGCCTC CGCGTTTTTA GCCCCAACAT GGGCCATTAT GAACTTGTCG 151 GCCATCTCTT CGAATATTTC AATGGAGCGC GCGGGCAGCT GTGAATACCA 201 AGTCAATGCT CCTCCGGTAA GGGTCTCGCC GAACATTTTC AACAAGATGG 251 AGGAGACTTG TTCTTTGGAG AGATCATTGC CCTTTACCGC AGTGACATAA 301 TGATTACATG ATCTTCGGGG TCGGTCGTAC CATCATAAAT TTTCAGATAA 351 GGTGGCATCT TGAACGTCTT GGGTATGGCA TATGGGGCGG CTTCATCACT 401 GTAGGGTTGC TCGACTAACC GACCAGCGTC TCTTTTTGGA AATATTTTTG 451 GGGCACCCGG TATTTTATCG ACTCTTTCTT GGTGTTCTCT CATTTGATCC 501 CGAAGCATTT TATTTTCGTT TTCCATTTCT TCCATTTTCT TCAGAATGGC 551 CGTGAGGGTG TCATTACCTG CATTATTAAT ATTGTGAGTG ATACCTGTTA 601 CTGAAGGGG AGGGTCGTGC TGTTTGGTCA TTGCTGGTGC AATGCAAGTC 651 CTTGCATTTT CTCTAAATAC CTCCTGAGTG GGTTTGTTGA GGATGCCGGT 701 CAGCATATTT GTCAGCCAAG CTTCGAGTAG CTTCTTCACC GCTGGTGGCG 751 CCTCTTCCGT TGTGGACGTG GAAGCTCCTT TACCGCGGGA TGTTGCGATA 801 CTGCTGTGAG GGAGGGGTGA TCCACTTCGT CGGGGAGAGG TGTTAGGCGT 851 TATGCCTTCG CCTTCTATTT CGGAGACCTC ATTGATGGTG TTTAAGAGGT 901 TGGTAGTGAG ATTGGCCACT GCCTTCATCC TTTCTTCTCC CTTACCTGCC 951

1001 ATGTCAGATC TGGGTGTACA AGGAAGTAGG AGCTTCTCTT CTTCTTTTTT

1051	GTGAATTGTG	CCAGTTATAG	ATCTAAAAGA	AACTAAAGTT	TTAACTAGAC
1101	TATCCTCACA	GACGGCGCCA	AATTGTTTGA	ССААААААТА	TAGACTTTTG
1151	АТТАААТТАА	TTAATATTGT	ATGACAAAGG	ATTAAACCTA	GTTAATGATA
1201	ATAACTTCAG	ATCTATAATC	AATTAACAGC	AATCACGGTC	ATAGCAGCGT
1251	TGAGAGAAGA	TTAAATGTGA	TGTnCATTCA	ATATTTCAAG	ATCATTAATG
1301	ATAGGGGAAT	ATCAAGCAAT	AAATAACGAT	AAATGGCATT	AAAGTAAATA
1351	AGGAGAATGA	TTCACCCAAT	ATTGAATGAG	GTGGATGATT	CTTCTTTTTG
1401	ACAATGATGA	ATGATGGnCA	AATACTAGAA	TGTTGGGACC	CTTCTCGGAT
1451	CTAATGAAAA	AAGTATGGAA	TAGTAGATAA	TCGAATCTCT	TTAGAAAGGT
1501	AGTGATTGTC	TTTTATCTAG	AGAGAAAGTC	TGCTTTTCAA	AGAATATTTT
1551	TATCAGAGAA	TATTACATCC	CCCTCTCTCC	CTATnTCTTT	TTCTATTTAT
1601	ATGGGACATT	CCTCAATCAA	TCCTAAAAGT	ACATACACCA	AGAATATTCA
1651	ATAAAATATT	TTTTTGAATA	TTCTATTATA	AAAACTAGCT	GTTAGCACTC
1701	GACCTCGGTC	GnTATTGACT	ACTCGGTTAC	GAGCCCTGTC	ATTTACTAAT
1751	CGACCTCGAT	TACATCACTT	TCTACGATAC	TGCTTCATGT	CAAATCTTAA
1801	TGAAAGCAGA	TTTTGACCCA	TACAATAATA	TGACAAAATT	GCTTCCAAAG
1851	AAAACATGGC	TCTTATAGTG	AAATATCGTT	AGACTGTTAT	AGAAAGATCT
1901	GAATTTATTT	ATAAGAATAG	TGTTTTTTC	TTTTCTTTTC	ATATCTAAGG
1951	AGTAAAGCAA	CCATGAATAG	AAAAGGCTTA	GTAACTATAT	ATCAAAGGAA
2001	TGGTGTTTTT	TCTTTAAATA	TGGATAAAAA	TTTGTGAATA	TAGAAGATTA
2051	GATCAATTAA	CAAAGGTTAT	GGTGGAGTGG	TAAGCAGAGG	CGGACCTATG
2101	TGTTATAGTA	AGGGGTCACC	CACTACTAGA	AATCCGGTAA	AGATCGATCA
2151	AAAAACCGAC	CAACATTGGT	CGGTAATGGC	CAAAAACTGA	CCAAAACGCG
2201	ATCATTTACG	TGTGAACGGT	ATTTTTATGG	TCGGAAAGGA	ATACCGACCA
2251	AAGTTGGTCG	GAAATTACCG	ACCAACTTTG	GTCGGTCAAT	TAAATTCAAA
2301	AAAAATATTG	TAAAAAAAAA	CCGACCAAAG	TTGATCGGTA	TTTTAATTAT
2351	GTAATAAAAA	GATTCACTAT	CTGGGAATCG	AACCGGGGTC	TGTACTATGG
2401	CAAGATACTA	TTCTACCACT	AGACCATTGG	TTCATTTTGT	TTTAAGACTG
2451	TCTTTTATTT	GATTTATACT	CTTTAATTAT	ATTTTTGCAC	GAAAATAACC
2501	GACCAAAGTT	GGTCGATTTT	ATTAAAAAGT	AAAATTACTT	ACCAAAGTTG
2551	GTCGATTTTT	TTAAATGATC	CGCCGAATTA	ACCGACCAAT	TTTGGTAGGT
2601	TTTTTTAATA	TTAATTTTTA	TTTATTTTAA	TTGAAAAACT	AACCAAAGTT

2651	AGTCGGTTTC	TTGAAACATA	AATTTCGCGG	GACTCAAAAA	TAGTTTCCCG
2701	CATTTTTGCG	CCAAAGAAAA	CCGACCAAAG	TTGGTCGGTT	TCGTAAAAAA
2751	TTAAAAAAA	TAAAAAATAT	ATTTTAAAAA	ACCGACCAAC	TTTAGTCGGT
2801	TTTTTGGTCG	ATTTTTTGAC	CGACCAAAGT	TGGTCGGTCG	ACCTTGGTCG
2851	GTTTTTGCCG	AATTTCTAGT	AGTGACCGAA	CCCTGTAAGC	TTCGGGAGAA
2901	ATTTTGTATA	TGTATATGTG	TATATCCTTA	AAATGATTAA	TTTAAAGAAC
2951	GnnGCACCCT	GAATACTAGA	AGCCTTTAGG	GGCACTAGAT	GAGCAGAATA
3001	ACGTGTTCTC	GTCGCGTAAA	AATACTTGGA	TCCGCCTATG	ATGGTAAGTA
3051	CTTCTTCGTC	CTTAATCAGA	GGTTTCGACT	TCGAGCTCCA	GATATAAACT
3101	ATAGACTCGT	CTTTATAGCA	CCTTTTAATA	AGACTATGAC	TTCATCTGAT
3151	TTCTCTATAA	ATACTCCTCA	AGCTTTCGGT	TCTTCTCCAT	TGTTCAGTTT
3201	CTTTCTCCAC	ATCACAGAAG	TGAAAACAAA	ACAAGAAGAA	GAAGAAGAAG
3251	AAAAATAAAG	AGTTTCTGTC	AAATTAAGTC	CAATAGGGAA	AATGGAGCTG
3301	TTTGGATCCC	CGTTTTCATT	ATTGGGGAGA	CCATCTAATT	CATAAGACCA
3351	ACCCCACACG	ATTCTTCGGT	CCTTACTAGG	GTCGTAGAAC	GACTTAGACG
3401	CGTAGAAAAT	GCCATAGTCA	AGTCTCAATC	CTTTCCAACC	ATCGACTGAA
3451	GTGTTATCTG	GAATATACCT	ATCTTGTTTG	GCATCATATG	TACCAATTGT
3501	GTAGTACTCA	AACGCGGCAA	CAGGAAGGCT	ATTCTTGAGA	ACGTACTTAA
3551	CATATTTTCC	GTTGTACGAT	GCATCTAAAC	CATTAGAACC	TTGCAAGGAA
3601	ACAGGAAAAA	AATCTGGGCA	TTCCCAATTT	CCTGTTTTGG	CAGATGAATG
3651	AAGTGGATGC	TCAGCCTTGA	TCCATTTCAT	GAAATTCCTA	CTTCTATACA
3701	ATATTGCCAA	CCCACCACGG	TTTCTTGAAC	TTCCTACCAC	AATTCTCCAA
3751	TGACCATCTT	TGCCCATCCA	AGCTGTTGTC	GGGTCACGAA	ATTGGGTCTT
3801	GGTGATGCTG	ATATCCGGGA	CGATCAACGG	GTTGTTATCG	GGCTTGTTCC
3851	ATTCACGGAG	ATATGGATCG	GATAAGTTGG	CCGGGACGGC	GTAATTTTGG
3901	ACTTGGGTCA	TGTTGGCATC	TACCACTCCA	GTGTACAAAA	TAATGGGCTT
3951	GTTACCAGGG	AGAATAGTTG	CTGAACCAGA	CCATGTTCCA	TATTTGTCAA
4001	ATGGTTTGGA	TGGATAAATT	GCAGGCTCTA	AATTAATCCA	ATTGATTAAG
4051	TCTTTTGAGA	CTGAATGAGC	CCAAACAATG	TTGTTCATTG	TTGATCCTTT
4101	TGGATTGTAC	TGGTAGAATA	GATGATAGAC	TCGAG	

<210><211><211><212><213>	19	
<220> <223>	Beschreibung der künstlichen Sequenz:Primer	
<400> cgagtt	g caaca tatgcagct	19
<210><211><211><212><213>	19	
<220> <223>	Beschreibung der künstlichen Sequenz: Primer	
<400> gcatat	10 Egtta actcgagct	19
<210><211><211><212><213>	24	
<220> <223>	Beschreibung der künstlichen Sequenz: Primer	
<400> cttgga	11 atccg cctatgatgg taag	24
<210><211><211><212><213>	30	
<220> <223>	Beschreibung der künstlichen Sequenz: Primer	
<400> gcgcgg	12 gatec tetaaacage tecattttee	30
<210><211><211><212><213>	30	
<220> <223>	Beschreibung der künstlichen Sequenz: Primer	
<400> ccgtct	13 togag totatoatot attotacoag	30
<210> <211>		

24

```
<212> DNA
<213> Künstliche Sequenz
<223> Beschreibung der künstlichen Sequenz: Primer
<400> 14
gttttcatta ttggggagac catc
<210> 15
<211> 3908
<212> DNA
<213> Nicotiana tabacum
<223> Genomische Sequenz der extrazellulären Invertase NIN 88
<400> 15
1 ATGGAGCTGT TTAGAAAAAG CTCTTTTCAT TGTGCTTTGC CAGTTTTCAT
      51 ATTATTGGTT TGCTTGTTTA TAATTTTATC TAACTATGTT GTGTTTGCTT
         TCAATTATGA CGTTTTTACG TGCTTCCAAT CCTCAAAAGA TGCTAATATC
         ACTTCTAACT ACAGAACTGG TTACCATTTT CAACCCCCCA AGAACTGTAT
     151
     201
          GAATGGTACG TTTCTCCCC CTTCCACCCA CCCCACCCCC TCTTCTGTTG
         TTGCTTTGA TATGTGTATA TATATATATA TATCCATTTT TTGCTCGGTA
     251
     301
         TCGGCATTAG GATCCACTAA ATTCGGCATT GAGGGGTAAT TAGGCGTCTA
         ACAAAGTCAA TTCCATAACT AGGGCTCGAA CCCGAGACTT CCGATTAAAA
     351
         ATGAAGGAGT ACTTAACACT TATTCTGTAA CATTAAACAA TAGACATCCT
     401
     451 ACTCCTCTAA ACTCATTTGT ATTTTTAAAA TATCTATTTT ACCCTCGATC
         TTATTAGCCT TCATCTACTT TTTTTTTTTT TACTTTTTTA ATATCACAAT
     501
     551 ATTTTCTTAT TCTATGTTAT GAATTTACCT ATAGTGAACA TAAAATTTAA
     601 AAAAGGTGAA AAACAATAAT CAATCATATA CTTATTGAAG TTAGAATAAT
     651 GAAACAAATG GGCGCAATTA AAATATTAGA ATAACAGATC TTATTAATAT
         CAATCAAATA AAATTTAGTT CAGTAATATA AAAAAATAAT TAAACATAGA
     701
         GGTAGATTTT CTAAGAAATT CCTAAAAGAT TATATATTTA TAACTTAGAA
     751
         AATATTTTGT TAATGAAAAT AAATATTCAA AGATATATAC AGAACAACAA
     801
         CAACAACCCG ACCTTACCCC TACCCTGGGG TAGAGAGACT GTTTCCGATA
     851
         GACCCTCGGC TCCCTCCCTC CAAGAACTCC CCACCTTGCC CTTGGGATGA
     901
     951
         CTCGAACTCA CAACCTCTTA GTTGGAAGTG GATGGTGCTT ACCACTAGAG
         CAACCCGCTC TTGTCCGAAG ATATATACAG AAACATGTAA TAAAGAATAA
    1001
    1051
         AAGAGAAAGT AAAACTTAAA TATATAGATA ATATTAATGT AACGATAAAA
         AAGAGTAACG ATAATTGTTT TTGCAAATTC ATAAAGGTAT TATTCTAGTT
    1101
         AAATTTTATT GAGTTTTAAT TATATAATTT ATCATAAGAT ATTAAAATTG
    1151
         GTAAAATACT TAGGCTAATG ATAAAATACA TCTTATATAA TATTAAAAAA
    1201
         AATAGAGGAG AAATTGAAAA TGTCAAGGGT AAAATAGAAA ATGCATATGA
    1251
         TAGGAGGAGC GAAATATATA TTATTTAGTG TTGGAAGAGT GATTTGATTT
    1301
          TTAAGATAAA ATTAGGGGAT GAAAATGATT TTTACACTTT AATAGATAGA
    1351
          TCCTACTGAA ACACGTGTGA GTTCCAAAAG CAAAAAACGA AAAAGGAACC
    1401
         AGCTCCCTAA TAATGAGTAC TTATTATACA AGTAAATACA ATTAGAGGAC
    1451
         ACTAATTGCA ACCCCCTACT TGGGAACTGT CGGCCTATTG CTTTAATTAC
    1501
          TTATACTCTC ACTCCGTTCA CTTTTACTTA TCCAATATTC TAAGTGACAT
    1551
          TTGGACATAA GAATTGTAAA ATTCCAAAAT AGGAAAAAA AATACAAGTG
    1601
         AAAATGTTAT TTGAAATTTA GAGTTACGTT TGGACATGAA TATAATTTTG
    1651
         GGTTGTTTTT AAAGTTTTGT GAGTGATTTG AGTGAAAATT TTGAAAAACA
    1701
         GTTTTTTGAA GTTTTTCAAA TTTTCGAAAA TTTTCAAAAT GCATCTTCAA
    1751
         ATGAAAATTG AAAATTTTAT GAACAAACGC TGATTTCGAA AAAAAAGTGA
    1801
          TTTTTTTGTG GAAAAAGAA AAAAATTTCT TATGTCCAAA CGGGCTCTAA
         AAATAGATTT TCACTTTTAC TTGTCACTTT TCGCATATCA AGAGAAGACA
    1901
         ATTTCTTTTT TTCTGTTATA CTCATAGTAT TAATTACTCA TTTCAAATCA
    1951
    2001
         TTTTTTCAAA TCCACTAAAA ATATGTATCA ATTAATATGG GTATTATGGT
         AAATTATGCA CTTCATTTAT TATTTCTTAA GGAGTGTTCA AAGTCCGTAG
    2051
         TAGACAAGTA AAAGTGAATG GAGAGAGTAA TAAATTACAC CTACTTTCTT
    2101
    2151 GGAAATACCA GTTGAGACAT ACGTAGAACT TTTGCTAATT TTTTCTTATT
```



```
TTTTCTTAAT TATATTATAT TTGTGTGTGA TATGGGCAGA AGGGGTTGGT
2251 AAGAAGGATC TTGTCCCCAT CAGCAACTTA CAATATTTTA GGGAAGACAA
2301 ATAATAATTT TCTGCATTTC CTAAATTTTT GTAATTTCAC TTTTCATTTG
2351 TTTATTATTT GATTATTCAT CAATATTAAA TTATGCAGAT TTAGTACTCA
2401 CATTCAATTG TTTATTTACA ATTTTTTTA ATTTTTTCT TTATGGTCTT
2451 TCTCGATGCC TTCAAACATA CAAATAGACC CCAATGGTGA GTCAGAAATT
2501 TTATCTTCTT TTTATATATA TAATTTAATC ACCAATTATT CATTTATGAT
2551 ACTGATTTT CATGTAATTA CCAACAGCAC CAATGTATTA CAATGGAGTC
     TATCATCTAT TCTACCAGTA CAATCCAAAA GGATCAACAA TGAACAACAT
2601
2651 TGTTTGGGCT CATTCAGTCT CAAAAGACTT AATCAATTGG ATTAATTTAG
2701 AGCCTGCAAT TTATCCATCC AAACCATTTG ACAAATATGG AACATGGTCT
     GGTTCAGCAA CTATTCTCCC TGGTAACAAG CCCATTATTT TGTACACTGG
2751
     AGTGGTAGAT GCCAACATGA CCCAAGTCCA AAATTACGCC GTCCCGGCCA
2801
     ACTTATCCGA TCCATATCTC CGTGAATGGA ACAAGCCCGA TAACAACCCG
2851
     TTGATCGTCC CGGATATCAG CATCACCAAG ACCCAATTTC GTGACCCGAC
2901
      AACAGCTTGG ATGGGCAAAG ATGGTCATTG GAGAATTGTG GTAGGAAGTT
2951
     CAAGAAACCG TGGTGGGTTG GCAATATTGT ATAGAAGTAG GAATTTCATG
3001
     AAATGGATCA AGGCTGAGCA TCCACTTCAT TCATCTGCCA AAACAGGAAA
3051
     TTGGGAATGC CCAGATTTTT TTCCTGTTTC CTTGCAAGGT TCTAATGGTT
3101
     TAGATGCATC GTACAACGGA AAATATGTTA AGTACGTTCT CAAGAATAGC
3151
3201 CTTCCTGTTG CCGCGTTTGA GTACTACACA ATTGGTACAT ATGATGCCAA
3251 ACAAGATAGG TATATTCCAG ATAACACTTC AGTCGATGGT TGGAAAGGAT
3301 TGAGACTTGA CTATGGCATT TTCTACGCGT CTAAGTCGTT CTACGACCCT
3351 AGTAAGGACC GAAGAATCGT GTGGGGTTGG TCTTATGAAT TAGATGGTCT
3401 CCCCAATAAT GAAAACAACA AAGGATGGGC CTGGAATTCA GGCTATCCCG
3451 CGTAAAGTAT GGCTTGATTT CAGTGGTAAA CAATTAGTTC AATGGCCTAT
3501 TGAAGAATTA AAAACTCTAA GAAAGCAAAA TGTCCGATTG AGCAACAAAA
3551 GGCTGGATAA TGGAGAAAAG ATTGAAGTTA AAGGAATCAC AGCGTCGCAG
3601 GTTTAGACTT TTTTCTAGTT TTTAATTTGC AAGCATTTTA AATAAAATTT
3651 TCTTCACAAG TTAAGGCTAA GTTGGGACAT CTATTGAAAT TGCCAGGCTG
3701 ATGTTGAAGT GACATTCTCC TTCTCTAGCT TAGACAAGGC AGAGCCATTT
3751 GATCCTAGTT GGGCTGATCT TTATGCACAA GATGTTTGTG CAATTAAGGG
3801 TTCAACTGTT CCAGGTGGGC TTGGGCCATT TGGCCTTGCA ACATTGGCTT
3851 CTCAAAACTT AGAAGAATAC ACACCTGTTT TTTTCAGAGT GTTCAAAGCT
3901 CAGAATTT
```

```
<210> 16
```

<211> 24

<212> DNA

<213> Künstliche Sequenz

<223> Beschreibung der künstlichen Sequenz: Primer

CTC CAT TGT TCA GTT TCT TTC TCC

24

<210> 17

<211> 27

<212> DNA

<213> Künstliche Sequenz

<223> Beschreibung der künstlichen Sequenz: Primer

GGT ACA TAT GAT GCC AAA CAA GAT AGG

27

<211> 27	
<212> DNA <213> Künstliche Sequenz	
(215) Runstitone bequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz: Prime	er
<400> 18	
GTG GTG GAG AGC TTT GGA GCA AAA AGG	
27	
<210> 19 <211> 24	
<211> 24 <212> DNA	
<213> Künstliche Sequenz	
<pre><220> <223> Beschreibung der künstlichen Sequenz: Prime</pre>	ar
(223) Beschiefbung der kunstriehen begaenz. Frim	
<400> 19	
GTT GCA CTT CGT TTG TCC GAA AGC	24
<210> 20	
<211> 24	
<212> DNA	-
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz: Prime	er
<pre><400> 20 GGA GTT TGA TTG ATA ACT CAG TAG</pre>	24
GUA GII IGA IIG AIA ACI CAG IAG	2