COMS 311: Homework 2 Due: Feb 23, 11:59pm Total Points: 50

Late submission policy. Any assignment submission that is late by not more than two business days from the deadline will be accepted with 20% penalty for each business day. That is, if a homework is due on Friday at 11:59 PM, then a Monday submission gets 20% penalty and a Tuesday submission gets another 20% penalty. After Tuesday no late submissions are accepted.

Submission format. Homework solutions will have to be typed. You can use word, La-TeX, or any other type-setting tool to type your solution. Your submission file should be in pdf format. Do **NOT** submit a photocopy of handwritten homework except for diagrams that can be hand-drawn and scanned. We reserve the right **NOT** to grade homework that does not follow the formatting requirements. Name your submission file: <Your-net-id>-311-hw2.pdf. For instance, if your netid is asterix, then your submission file will be named asterix-311-hw2.pdf. Each student must hand in their own assignment. If you discussed the homework or solutions with others, a list of collaborators must be included with each submission. Each of the collaborators has to write the solutions in their own words (copies are not allowed).

General Requirements

- When proofs are required, do your best to make them both clear and rigorous. Even when proofs are not required, you should justify your answers and explain your work.
- When asked to present a construction, you should show the correctness of the construction.

Some Useful (in)equalities

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$2^{\log_2 n} = n$$
, $a^{\log_b n} = n^{\log_b a}$, $n^{n/2} \le n! \le n^n$, $\log x^a = a \log x$

•
$$\log(a \times b) = \log a + \log b$$
, $\log(a/b) = \log a - \log b$

•
$$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$$

•
$$1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 2(1 - \frac{1}{2^{n+1}})$$

•
$$1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$$

1. (10 pts) Using a table size of 11, and a hash function h(x) = 3x + 2 for positive integers, draw the resulting hash table array when the integers

$$1, 17, 10, 15, 14, 43, 4, 21, 23, 24, 19, 41, 42, 9, 44$$

are added to an empty hash table in this order. Note that for this hash function, x is stored in the table at index h(x) % n, where n is the table size.

- (a) Using a chaining hash table that is not enlarged when elements are added.
- (b) Using a chaining hash table that is doubled in size when the table reaches a load factor of $\alpha > 0.75$.

An example drawing of a hash table of table size 5 with 3 elements is shown below.

x	h(x)	h(x)%11	h(x)%22
1	5	5	5
17	53	9	9
10	32	10	10
15	47	3	3
14	44	0	0
43	131	10	21
4	14	3	14
21	65	10	21
23	71	5	5
24	74	8	8
19	59	4	15
41	125	4	15
42	128	7	18
9	29	7	7
44	134	2	2

2. (10 pts) Consider the following recurrence relation:

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 7 \cdot T(\frac{n}{2}) + 1 & \text{if } n > 1 \end{cases}$$

- (a) Use the Master theorem to show that $T(n) \in \Theta(n^{\log_2(7)})$.
- (b) Use induction to prove that $T(n) = \frac{1}{6}(7n^{\log_2(7)} 1)$.
- (a) $T(n) = 7 \cdot T(\frac{n}{2}) + 1$ with a = 7, b = 2, and f(n) = 1 as in the Master Theorem. Since $f(n) \in O(n^{\log_2 7 \varepsilon})$ for $\varepsilon = 1$, $T(n) \in \Theta(n^{\log_2 7})$.
- (b) We prove $T(n) = \frac{1}{6}(7n^{\log_2 7} 1)$ is the solution to the recurrence above by induction.

Base case:
$$T(1) = \frac{1}{6}(7n^{\log_2 7} - 1) = \frac{1}{6}(7 - 1) = \frac{1}{6}(6) = 1.$$

Induction Step: Assume $T(K) = \frac{1}{6}(7K^{\log_2 7} - 1)$ for K < n where K and n are powers of 2. We show the result for T(n):

$$\begin{split} T(n) &= 7 \cdot T(\frac{n}{2}) + 1 \\ &= 7(\frac{1}{6}(7\left[\frac{n}{2}\right]^{\log_2 7} - 1)) + 1 \quad \text{By Induction Hypothesis} \\ &= \frac{7}{6}(7\left[\frac{n}{2}\right]^{\log_2 7} - 1) + 1 \\ &= \frac{7}{6}(7\left[\frac{n^{\log_2 7}}{2^{\log_2 7}}\right] - 1) + 1 \\ &= \frac{7}{6}(\frac{7}{7}n^{\log_2 7} - 1) + 1 \\ &= \frac{7}{6}(n^{\log_2 7} - 1) + 1 \\ &= \frac{7}{6}n^{\log_2 7} - \frac{7}{6} + \frac{6}{6} \\ &= \frac{7}{6}n^{\log_2 7} - \frac{1}{6} \\ &= \frac{1}{6}(7n^{\log_2 7} - 1) \end{split}$$

3. (10 pts) Without using the Master Theorem, give the asymptotic upper bounds on the following recurrence relations. Note that methods found in chapter 4 of the text

may be useful.

(a)
$$T(n) = \begin{cases} 1 & \text{if } n < 2\\ 4 \cdot T(\frac{n}{2}) + n & \text{if } n \ge 2 \end{cases}$$

(b)
$$T(n) = \begin{cases} 1 & \text{if } n < 2\\ 2 \cdot T(\frac{n}{2}) + n \log n & \text{if } n \ge 2 \end{cases}$$

(c)
$$T(n) = \begin{cases} 1 & \text{if } n < 3 \\ T(\frac{n}{3}) + n & \text{if } n \ge 3 \end{cases}$$

(d)
$$T(n) = \begin{cases} 1 & \text{if } n < 3\\ 9 \cdot T(\frac{n}{3}) + n^{2.5} & \text{if } n \ge 3 \end{cases}$$

(e)
$$T(n) = \begin{cases} 1 & \text{if } n < 3 \\ T(n-2) + n^2 & \text{if } n \ge 3 \end{cases}$$

	Level	Problem Size	# Nodes	Work / Node	Level Total
	1	$\frac{n}{2^0}$	$4^0 = 1$	n	n
(a)	2	$\frac{n}{2^1}$	4^1	$rac{n}{2^1}$	2^1n
	i	$\frac{n}{2^{i-1}}$	4^{i-1}	$rac{n}{2^{i-1}}$	$2^{i-1}n$

Assuming at level l when problem size = 1, then

$$\frac{n}{2^{l-1}} = 1 \Rightarrow l = \log_2(n) + 1$$

So for all i from 1 to $\log_2(n)$, the work done at level i is $2^{i-1}n$. At level $\log_2(n)+1$, the work done at each node is 1, and there are $4^{\log_2(n)+1-1}=n^2$ nodes, so total work at level $\log_2(n)+1$ is n^2 .

$$\begin{aligned} \text{Total cost} &= \left[\sum_{i=1}^{\log_2(n)} 2^{i-1} n \right] + n^2 \\ &= \frac{n}{2} \left[\sum_{i=1}^{\log_2(n)} 2^i \right] + n^2 \\ &= \frac{n}{2} \left[\frac{2^{\log_2(n)+1} - 1}{2 - 1} - 1 \right] + n^2 \\ &= \frac{n}{2} \left[2n - 1 \right] + n^2 \\ &= 2n^2 - \frac{n}{2} \\ &\in O(n^2) \end{aligned}$$

	Level	Problem Size	# Nodes	Work / Node	Level Total
	1	$\frac{n}{2^0}$	$2^0 = 1$	$n\log(n)$	$n \log n$
(b)	2	$rac{n}{2^1}$	2^1	$\frac{n}{2^1}\log(\frac{n}{2^1})$	$n\log(\frac{n}{2^1})$
	i	$\frac{n}{2^{i-1}}$	2^{i-1}	$\frac{n}{2^{i-1}}\log(\frac{n}{2^{i-1}})$	$n\log(\frac{n}{2^{i-1}})$

Assuming at level l when problem size = 1, then

$$\frac{n}{2^{l-1}} = 1 \Rightarrow l = \log_2(n) + 1$$

So for all i from 1 to $\log_2(n)$, the work done at level i is $n\log_2(\frac{n}{2^{i-1}})$. At level $\log_2(n)+1$, the work done at each node is 1, and there are $2^{\log_2(n)+1-1}=n$ nodes, so total work at level $\log_2(n)+1$ is n.

$$\begin{aligned} \text{Total cost} &= \left[\sum_{i=1}^{\log_2(n)} n \log_2(\frac{n}{2^{i-1}}) \right] + n \\ &= \left[\sum_{i=1}^{\log_2(n)} n (\log_2(n) - \log_2(2^{i-1})) \right] + n \\ &= \left[\sum_{i=1}^{\log_2(n)} n \log_2(n) \right] - \left[\sum_{i=1}^{\log_2(n)} n (i-1) \right] + n \\ &= n \log^2(n) - n \left[\sum_{i=1}^{\log_2(n)} i - \sum_{i=1}^{\log_2(n)} 1 \right] + n \\ &= n \log^2(n) - n \left[\frac{\log_2(n) (\log_2(n) + 1)}{2} - \log_2(n) \right] + n \\ &= n \log^2(n) - \frac{n \log^2(n)}{2} - \frac{n \log_2(n)}{2} + n \log_2(n) + n \\ &= \frac{n \log^2(n)}{2} + \frac{n \log_2(n)}{2} + n \\ &\in O(n \log^2(n)) \end{aligned}$$

	Level	Problem Size	# Nodes	Work / Node	Level Total
	1	$\frac{n}{30}$	1	n	n
(c)	2	$\frac{n}{3^1}$	1	$\frac{n}{3^1}$	$\frac{n}{3^1}$
	i	$\frac{n}{3^{i-1}}$	1	$\frac{n}{3^{i-1}}$	$\frac{n}{3^{i-1}}$

Assuming at level l when problem size = 3, then

$$\frac{n}{3^{l-1}} = 3 \Rightarrow l = \log_3(n)$$

So for all i from 1 to $\log_3(n)$, the work done at level i is $\frac{n}{3^{i-1}}$. At level $\log_3(n) + 1$, the work done at each node is 1, and there is 1 node, so total work at level $\log_3(n) + 1$ is 1.

$$Total cost = \left[\sum_{i=1}^{\log_3(n)} \frac{n}{3^{i-1}}\right] + 1$$

$$= n \cdot \left[\sum_{i=1}^{\log_3(n)} \frac{1}{3^{i-1}}\right] + 1$$

$$= n \cdot \left[\frac{-3+3n}{2n}\right] + 1 \quad [Geometric Series]$$

$$= \frac{3}{2}n - \frac{1}{2}$$

$$\in O(n)$$

	Level	Problem Size	# Nodes	Work / Node	Level Total
	1	$\frac{n}{30}$	$9^0 = 1$	$n^{2.5}$	$n^{2.5}$
(1)	2	$\frac{n}{3^1}$	9^{1}	$\left(\frac{n}{3^1}\right)^{2.5}$	$\frac{n^{2.5}}{\sqrt{3}^1}$
(d)	3	$\frac{n}{3^2}$	9^{2}	$\left(\frac{n}{3^2}\right)^{2.5}$	$\frac{n^{2.5}}{\sqrt{3}^2}$
	i	$\frac{n}{3^{i-1}}$	9^{i-1}	$\left(\frac{n}{3^{i-1}}\right)^{2.5}$	$\frac{n^{2.5}}{\sqrt{3}^{i-1}}$

Assuming at level l when problem size = 3, then

$$\frac{n}{3^{l-1}} = 3 \Rightarrow l = \log_3(n)$$

So for all i from 1 to $\log_3(n)$, the work done at level i is $\frac{n^{2.5}}{\sqrt{3^{i-1}}}$. At level $\log_3(n) + 1$, the work done at each node is 1, and there is $9^{\log_3(n)+1-1} = n^2$ nodes, so total work at level $\log_3(n) + 1$ is n^2 .

$$\begin{aligned} \text{Total cost} &= \left[\sum_{i=1}^{\log_3(n)} \frac{n^{2.5}}{\sqrt{3}^{i-1}} \right] + n^2 \\ &= n^{2.5} \left[\sum_{i=1}^{\log_3(n)} \frac{1}{\sqrt{3}^{i-1}} \right] + n^2 \\ &= n^{2.5} \left[-\frac{\sqrt{3}}{2} n^{-\frac{1}{2}} + \frac{\sqrt{3}}{2} - \frac{3}{2} n^{-\frac{1}{2}} + \frac{3}{2} \right] + n^2 \\ &= -\frac{\sqrt{3}}{2} n^2 + \frac{\sqrt{3}}{2} n^{2.5} - \frac{3}{2} n^2 + \frac{3}{2} n^{2.5} + n^2 \\ &\in O(n^{2.5}) \end{aligned}$$

- (e) This recurrence relation decreases n by 2 until it reaches 1 or 2. Thus, the recurrence is bounded by $\frac{n}{2} + 1$ in depth. Each recurrence costs n^2 work, so we guess that a bound is n^3 , and hence $T(n) \in \Theta(n^3)$. This is easily checked by a routine induction.
- 4. (10 pts) If possible, use the Master theorem to give bounds on the following recurrence relations.

(a)
$$T(n) = \begin{cases} 1 & \text{if } n < 2\\ 4 \cdot T(\frac{n}{2}) + n & \text{if } n \ge 2 \end{cases}$$

(b)
$$T(n) = \begin{cases} 1 & \text{if } n < 2\\ 2 \cdot T(\frac{n}{2}) + n \log n & \text{if } n \ge 2 \end{cases}$$

(c)
$$T(n) = \begin{cases} 1 & \text{if } n < 3\\ 3 \cdot T(\frac{n}{3}) + n & \text{if } n \ge 3 \end{cases}$$

(d)
$$T(n) = \begin{cases} 1 & \text{if } n < 2\\ 2 \cdot T(\frac{n}{4}) + \sqrt{n} & \text{if } n \ge 2 \end{cases}$$

- (a) $n^{\log_b a} = n^{\log_2 4} = n^2$ and $f(n) = n \in O(n^{2-\varepsilon})$ for $\varepsilon = 0.5$, so $T(n) \in \Theta(n^2)$. (case 1)
- (b) $n^{\log_b a} = n^{\log_2 2} = n$ and $f(n) = n \log^1 n$. Since $f(n) = \Theta(n^{\log_b a} \log^k n)$ for k = 1, case 2 of Master Theorem applies. Therefore, $T(n) = \Theta(n \log^2 n)$.
- (c) $n^{\log_b a} = n^{\log_3 3} = n$ with f(n) = n. This is not case 1 since $f(n) \notin O(n^{1-\varepsilon})$ for $\varepsilon > 0$. For case 2, $f(n) = n = n^{\log_b a}$, so $T(n) \in \Theta(n \log n)$.

- (d) $n^{\log_b a} = n^{\log_4 2} = n^{\frac{1}{2}}$ with $f(n) = n^{\frac{1}{2}}$. $f(n) \notin O(n^{\frac{1}{2} \varepsilon})$, so not case 1. $f(n) \in \Theta(n^{\frac{1}{2}})$, so case 2 applies. Thus, $T(n) \in \Theta(\sqrt{n} \log n)$.
- 5. (10 pts) The algorithm below computes nothing useful. It takes as a parameter an array A of integers. Note that A.length returns the length of the array, and A.sub(s, l) returns a new array (with elements copied) of length l with values copied from A starting at index s.

Algorithm 1 Wacky(A)

```
1: if A.length == 1 then
2: A[0] += 1;
3: else
4: int m = \lfloor A.length/2 \rfloor;
5: Wacky (A.sub(0, m));
6: Wacky (A.sub(m, m));
7: Wacky (A.sub(0, 1));
```

- (a) Write a recurrence relation that gives the running time of Wacky.
- (b) Use the Master theorem to give a bound on the running time in terms of n.
- (a) We assume the following cost for each line of code:
 - Line 1 takes 1 step.
 - Line 2 takes 1 step.
 - Line 4 takes 1 step.
 - Line 5: call is 1 step + recursion.
 - Line 6: call is 1 step + recursion.
 - Line 7: call is 1 step + recursion, is terminal case = 2 steps (3 steps total)

Thus, a recurrence relation for the running time is bounded by:

$$T(n) = \begin{cases} 2 & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + c & \text{otherwise} \end{cases}$$

where c is some constant.

(b) $n^{\log_2 2} = n$ with f(n) = c where c is a constant, so case 1 applies (with $\varepsilon = 1$) and $T(n) = \Theta(n)$.