

FAKULTA ELEKTROTECHNICKÁ KATEDRA TELEKOMUNIKAČNÍ TECHNIKY

B2B32DAT Datové sítě

Ing. Pavel Bezpalec, Ph.D.

Katedra telekomunikační techniky FEL ČVUT v Praze

Pavel.Bezpalec@fel.cvut.cz

Harmonogram přednášek

Týden	Datum	Náplň přednášek
1.	27. 9.	Úvod do datových sítí, základní pojmy, rozdělení datových sítí, historický vývoj.
2.	4. 10.	Internet, virtualizace, cloud, sociální sítě.
3.	11. 10.	Modely datové komunikace, formální zápis funkce komunikačního protokolu.
4.	18. 10.	Adresace v internetu – princip VLSM, přidělování, překlad.
5.	25. 10.	Aplikační protokoly – socket, web, telnet.
6.	1. 11.	Architektura systému doménových jmen.
7.	8. 11.	Přenos elektronické pošty v Internetu.
8.	15. 11.	Směrování v datových sítích. AS. Směrovací algoritmy.
9.	22. 11.	Lokální sítě. Síťové prvky v datových sítích. Virtualizace datových sítí.
10.	29. 11.	Ethernet – koncept, nasazení, využití. VoIP.
11.	6. 12.	Internet věcí.
12.	13. 12.	Počítačová bezpečnost.
13.	20. 12.	Sítě WAN (MPLS, VPN, PPP).
14.	10. 1.	Základní principy správy a řízení datových sítí

Směrování

- Proces nalezení optimální cesty v síti
- Informace obsažené v poli adresa cíle v záhlaví IP paketu
- Síťové adresy hiearchická struktura
- Třetí vrstva RM OSI
- Směrovač (router)

Směrování – obecně

Jakou použít cestu, aby pakety dorazily od **zdroje** k **cíli** ?

Směrování – obecně

- IP nespojově orientovaný protokol
- Každý IP paket obsahuje cílovou IP adresu
- Směrovače tuto adresu používají k určení dalšího kroku
 - přes jaké rozhraní paket odeslat
 - jakému směrovači ho předat
- Síťová část adresy jednoznačně identifikuje IP síť, do které má být daný paket patří
- Všechny stanice, které mají shodnou síťovou část IP adresy, jsou ve stejné síti a mohou si spolu přímo vyměňovat IP pakety
 - za pomocí protokolu ARP
- Směrovače propojují IP sítě a nepřímo i stanice v nich obsažené

- Každý směrovač se rozhoduje nezávisle
- To, že jeden směrovač zná cestu do jiné sítě neznamená, že ji znají i ostatní
- Pokud směrovač zná cestu do cílové sítě, neříká to nic o tom, jaká cesta se použije pro komunikaci v opačném směru

Směrování – obecně

- Kdy stanice využije služeb směrovače ?
 - pokud cílová stanice patří do jiné sítě
- Jak stanice pozná, že má oslovit směrovač?
 - podle IP adresy stanice, masky a cílové IP adresy

Kam směrovat

- Stanice sama
 - loopback interface (127.0.0.1)
 - test TCP/IP, ip.src == ip.dst
- Stanice ve stejné síti
 - ve stejném IP subnet
- Stanice v jiné síti
 - v jiném IP subnet

Příklad – lokální × mezisíťová komunikace

Stanice A posílá IP pakety na adresu 200.2.13.5

11001000.00000010.00001101.00000101 - 200.2.13.5 bitový AND 1111111111111111111111111111000000000 - 255.255.255.0 11001000.00000010.00001101.000000000 - 200.2.13.0

Stanice A posílá IP pakety na adresu 147.32.192.2

10010011. 00100000.11000000.00000010 - 147.32.192.2 bitový AND 11111111.1111111111111111111.00000000 - 255.255.255.0 10010011. 00100000.11000000.00000010 - 147.32.192.0

Směrovací tabulka

Výchozí brána – default route

- Směrovač nemusí (a obvykle nemá) mít ve směrovací tabulce záznamy o všech existujících sítích v Internetu
- Zná jen určitou podmnožinu sítí
- Paket, pro který neexistuje odpovídající záznam ve směrovací tabulce
 - je odeslán směrovači označeném jako výchozí brána (default route)
 - je zahozen
 - pokud ani výchozí brána není nastavena
- Existuje-li výchozí brána, nezahodí nikdy směrovač žádný paket z důvodu neexistence záznamu ve směrovací tabulce

Default Gateway

Classfull × Classless Routing

- Třídní (Classfull) směrování
 - v celé síti je použita maska daná třídou IP adresy
 - dnes se nepoužívá

- Beztřídní (Classless) směrování
 - v síti se používají různé maska
 - dnes se používá

Routing × Routed protokoly

- Routing protocol (směrovací protokol)
 - zajišťuje výměnu směrovacích informací nutných pro přeposílání směrovatelných (routed) protokolů
 - RIP,OSPF, EIGRP,...
- Routed protokoly (směrovatelný protokol)
 - přenos uživatelských dat
 - IP, IPX, Appletalk ...
 - jejich pakety jsou směrovány s využitím informací získaných od směrovacích (routing) protokolů
 - ne každý síťový protokol je automaticky i směrovatelný!

Statické směrování

Záznamy do směrovací tabulky se ukládají ručně

- ip route 192.168.1.0 255.255.255.0 172.16.3.1
- route ADD 147.32.128.0 MASK 255.255.240.0 157.1.10.2
- ip route add dst-address=0.0.0.0/0 gateway=192.168.1.42
- ip route add 147.32.0.0/16 via 192.168.33.33

Výhody:

- směrovač se chová přesně tak, jak chceme.
- nízká režie ve srovnání s dynamickými směrovacími protokoly
- není potřeba směrovacích protokolů

Nevýhody:

- nedokáže reagovat na změnu topologie
- nevhodné pro větší sítě (složitá administrace)

Dynamické směrování

- Záznamy do směrovací tabulky jsou přidávány/ubírány automaticky na základě informací od směrovacích protokolů
 - směrovač sám určí optimální trasu
 - směrovače spolu komunikují a vyměňují si informace o dostupných sítích

Výhody:

- schopnost dynamicky reagovat na změny v síti
- vhodné pro větší sítě
- loadbalancing

Nevýhody:

zvýšené nároky na CPU, RAM, šířku použitého pásma

Autonomní systém – AS

 AS je množina směrovačů (a sítí) pod jednotnou správou, s jednotnou směrovací politikou

Proč?

omezení velikosti směrovacích tabulek

AS

- je identifikován číslem AS (IANA)
- 16bitové číslo / 32bitové číslo
- globálně jedinečný identifikátor
- od 01/2009 se přidělují defaultně 32bitová čísla
 - AS 0, AS 65535, AS 23456 rezervovány
 - AS 64512 AS 65534 privátní rozsah
 - AS 23456 AS_TRAN pro kompatibilitu 16bitových a 32bitových AS

Autonomní systém

- V rámci AS se pro směrování mezi sítěmi používají "Interior Gateway" protokoly – IGP
 - RIPv1, RIPv2, RIPng
 - OSPFv2, OSPFv3
 - IGRP, EIGRP
 - IS-IS
- Směrování mezi jednotlivými AS zajišťují "Exterior Gateway" protokoly – EGP
 - BGPv4

Interní × externí směrovací protokoly

Typy AS

Multihomed AS

- AS má spojení na více jiných AS
 - zajištění připojení i v případě výpadku jednoho ze spojení
- neumožňuje tranzitní provoz
 - síťový provoz jednoho AS do jiného AS
- Stub AS (koncový)
 - AS je připojen k právě jednomu dalšímu AS
- Transit AS (tranzitní)
 - AS poskytuje spojení skrz sebe do jiných sítí.
 - ISP je vždy tranzitní AS
 - zajišťují spojení z jedné sítě do jiné

Administrativní vzdálenost

- Administrative Distance AD
 - proprietární veličina Cisco
 - "důvěryhodnost" zdroje, který záznam do směrovací tabulky umísťuje

IF (do cílové sítě ukazuje více záznamů)

THEN použij záznam s nejnižší AD

IF (cílové sítě ukazuje více záznamů se stejnou AD)

THEN použij záznam s nejnižší metrikou

Administrativní vzdálenosti

Protokol	Administrativní vzdálenost
přímo připojené rozhraní	0
statický záznam	1
souhrnná cesta EIGRP	5
EBGP	20
EIGRP (interní)	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP (externí)	170
iBGP	200
Nedosažitelná síť	255

Metrika

- Parametr pro porovnání "kvality" jednotlivých záznamů (cest)
- Převod různých kvalitativních parametrů na jedno číslo
- Každý záznam ve směrovací tabulce má metriku
- Použije se cesta s nejnižší metrikou (= nejkratší cesta)
- Kritéria pro výpočet metriky:
 - počet směrovačů na cestě
 - přenosová rychlost
 - zpoždení paketu
 - zatížení linky
 - spolehlivost

- Jednoduchá × kompozitní metrika
- Vyvažování zátěže
 - Load Balancing
 - rovnoměrný (Equal-Cost LB)
 - RIP, OSPF, IS-IS
 - nerovnoměrný (Unequal-Cost LB)
 - pouze EIGRP
 - ostatní protokoly nedokáží poznat jestli alternativní trasa neobsahuje smyčky
 - RFC 5286
 - zatím? nikde neimplementováno

$$\left(K1 \cdot bandwidth + \frac{K2 + bandwidth}{256 - load} + K3 \cdot delay\right) \cdot \left(\frac{K5}{reliability + K4}\right)$$

Dynamické směrovací protokoly

Konvergence

Konvergence

- síť je zkonvergovaná právě tehdy, když mají všechny směrovače správné a kompletní informace o celé síti
- stav, kterého chceme dosáhnout

Doba konvergence

- doba, kterou směrovače potřebují k výměně všech směrovacích informací, výpočtu nejlepších cest a aktualizaci směrovacích tabulek
- Až po zkonvergovaní je síť kompletně funkční
- Čím kratší je doba konvergence, tím lepší je protokol
 - RIP a IGRP jsou "pomalé"
 - EIGRP, OSPF a IS-IS jsou "rychlé"

IGP, EGP – dle principu činnosti

Distance Vector Routing Protocol

- typicky Bellman-Fordův algoritmus pro výpočet optimální cesty
- směrovač nemá představu o celé topologii sítě (vazba se sousedem)
- plochý design
- vhodné pro menší sítě

Link-state Routing Protocol

- využívají informace o stavu linky k vytvoření kompletní mapy sítě
- typicky Dijkstrův algoritmus pro výpočet optimální cesty
- směrovač ví, jak vypadá topologie sítě (vazba "každý s každým")
- design sítě je hierarchický

Path vector (BGP)

více v dalších předmětech B2B32STE, B2M32PST, B2B32PPS, B2M32IBE

Směrovací protokoly typu Distance Vector

- V pravidelných intervalech přeposílají kompletní obsah své směrovací tabulky všem sousedům
- Na základě obsahu těchto aktualizací si směrovač aktualizuje svou směrovací tabulku
- Zná kompletní topologii sítě pouze na základě informací od svých přímých sousedů
- Cesty jsou ohlašovány jako vektory vzdálenosti a směru
 - metrika odpovídá vzdálenosti
 - rozhraní odpovídá směru (rozhraní)

Vlastnosti protokolů typu DV

- relativně jednoduchá implementace a správa
- relativně nízké nároky na zdroje (CPU, RAM apod.)

Nevýhody

- pomalá konvergence
 - způsobená periodickými aktualizacemi
- omezená rozšiřitelnost
 - rozlehlejší síť

 více info pro update
- směrovací smyčky
 - mohou vzniknout z neaktualizovaných nekonzistentních směrovacích tabulek vlivem pomalé konvergence

Příklady

- RIPv1, RIPv2, IGRP
- (EIGRP ne, není "čistý" Distance Vector)

Směrovací protokoly typu DV

- U DV směrovacích protokolů má každý uzel informace pouze o následujícím uzlu:
 - Uzel A: k uzlu F jdi přes B
 - Uzel B: k uzlu F jdi přes D
 - Uzel D: k uzlu F jdi přes E
 - Uzel E: F je přímo připojená
- DV protokoly se v případě nekorektních informací rozhodují špatně (např. informace o přerušení spojení se šíří postupně)

 Neaktuální tabulka → špatné směrování dokud směrovací algoritmus znovu nezkonverguje

Směrovací protokoly typu Link-State

- Vytvoření topologické mapy
 - Mapa topologie = SPF strom
 - Rozdíl oproti Distance-vector protokolům
- Rychlá konvergence
 - Po obdržení LSP, okamžité odeslání LSP na všechna rozhraní (mimo zdrojové) => rychlá konvergence
 - I v případě Triggered Updates je třeba před odesláním aktualizace spustit aktualizaci směrovacích informací a aktualizovat směrovací tabulku
- Event-driven aktualizace
 - LSP obsahuje informaci pouze o sítích, u nichž došlo ke změně
- Hierarchický design
 - OSPF i IS-IS používají koncept oblastí (areas) umožňující lepší sumarizaci cest (agregaci)

- Požadavky na paměťové prostředky
 - Link-State protokoly vyžadují více paměti než Distance-vector, protože
 - používají link-state databáze a vytvářejí SPF strom
- Požadavky na zpracování
 - Link-State protokoly zatěžují CPU více než Distance-vector, protože SPF algoritmus vyžaduje více CPU pro vytvoření celé mapy topologie
- Požadavky na šířku pásma
 - Link-State protokoly potřebují menší šířku pásma než Distance-vector,ale záplava LSP více zatěžuje dostupnou šířku pásma při inicializaci (nebo nestabilitě sítě)
 - po prvotní konvergenci jsou posílány pouze při změnách

Směrovací protokoly typu Link-State

- Každý směrovač
 - vytváří vazbu (adjacency) se svými sousedy
 - generuje zprávy LSA
 - Rozesílá je všem směrovačům v síti
 - LSA (Link State Advertisement)
 - id spoje, stav spoje, cena, sousedé na daném spoji
 - udržuje databázi všech přijatých zpráv LSA
 - topologická databáze
 - databáze stavu spojů
 - popis sítě jako graf s ohodnocenými hranami
 - používá svojí vlastní databázi a algoritmus pro hledání nejkratší cesty k určení nejkratší cesty do jednotlivých cílových sítí
 - SPA (Shortest Path Algorithm) modifikovaný Dijkstrův algoritmus
- Ke konvergenci dojde, jestliže
 - každý uzel v síti má kompletní informace o topologii sítě,
 - informace o stavu spojení mezi směrovači (link-state) rozesílány všem uzlům

Směrovací protokoly typu LS

Každý uzel zná kompletní topologii sítě

 Pokud uzel vypadne, každý uzel v síti dokáže spočítat novou cestu

 Problém: Všechny uzly v síti musí mít shodný pohled na síť (topologickou databázi)

Dotazy

