Matrices et applications linéaires

Similitude matricielle, rang d'une matrice

QCOP MATAL.1

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables dans $M_n(\mathbb{K})$.

- Donner la définition de « A et B sont semblables dans $M_n(\mathbb{K})$ ».
- Soit $k \in \mathbb{N}$. Montrer que A^k et B^k sont semblables dans $M_n(\mathbb{K})$.
- \aleph Soit $k \in \mathbb{N}$. Soient $a_0, \ldots, a_k \in \mathbb{K}$.

On pose
$$Q := \sum_{j=0}^k a_j X^j \in \mathbb{K}[X]$$
, et, pour

$$M \in M_n(\mathbb{K})$$
, on pose $Q(M) := \sum_{i=0}^k a_i M^i$.

Montrer que Q(A) et Q(B) sont semblables.

QCOP MATAL.2

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables dans $M_n(\mathbb{K})$.

- Donner la définition de « A et B sont semblables dans $M_n(\mathbb{K})$ ».
- **%** Montrer que

$$B = I_n \iff A = I_n.$$

Montrer que deux matrices de même rang ne sont pas nécessairement semblables.

QCOP MATAL.3

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables dans $M_n(\mathbb{K})$.

- \blacksquare Soit $k \in \mathbb{N}$. Que dire de A^k et B^k ?
- **%** Montrer que

$$\exists k_A \in \mathbb{N}^* : A^{k_A} = 0_n$$
 $B \text{ est diagonale}$ \Longrightarrow $B = 0_n$.

- **2** On se place dans le cas n = 2. On suppose que $A \neq 0_2$ et $A^2 = 0_2$.
 - (a) Soit $X \in M_{2,1}(\mathbb{K}) \setminus \operatorname{Ker}(A)$. Montrer que la famille (AX, X) est libre dans $M_{2,1}(\mathbb{K})$.
 - **(b)** En déduire que A est semblable à la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

QCOP MATAL.4

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

- Définir le rang de A.
- % On suppose que rg(A) = 1.
 - (a) Montrer qu'il existe $C \in M_{n,1}(\mathbb{K})$ et $L \in M_{1,n}(\mathbb{K})$ tels que A = CL.
 - **(b)** Montrer que $A^2 = \text{Tr}(A)A$.
 - (c) En déduire, pour $p \in \mathbb{N}$, A^p .

Représentation matricielle

QCOP MATAL.5

Soit E un espace vectoriel de dimension finie. Soit p un projecteur de E.

- $\operatorname{\mathscr{P}}$ Montrer que $E=\operatorname{Ker}(p)\oplus\operatorname{Ker}(p-\operatorname{Id}_E)$.
- **%** Déterminer une base dans laquelle la matrice de *p* est diagonale.
- **%** Montrer que Tr(p) = rg(p).

QCOP MATAL.6

- (a) Montrer que deux matrices semblables ont même trace.
 - **(b)** Comment définir la trace d'un endomorphisme?
- Soit $n \in \mathbb{N}^*$. On considère l'endomorphisme

$$D: \left| \begin{array}{ccc} \mathbb{K}_n[\mathsf{X}] & \longrightarrow & \mathbb{K}_n[\mathsf{X}] \\ P & \longmapsto & P'. \end{array} \right|$$

- (a) Écrire la matrice de D dans la base canonique de $\mathbb{K}_n[X]$.
- **(b)** Déterminer la trace de *D*.

QCOP MATAL.7

- Définir la matrice d'une application linéaire.
- \mathbf{X} Soit $n \in \mathbb{N}^*$.
 - (a) Écrire la matrice de l'endomorphisme

$$\varphi: \left| \begin{array}{ccc} \mathbb{K}_n[\mathsf{X}] & \longrightarrow & \mathbb{K}_n[\mathsf{X}] \\ P & \longmapsto & P(\mathsf{X}+1) \end{array} \right|$$

dans la base canonique de $\mathbb{K}_n[X]$.

- **(b)** Déterminer l'inverse de φ .
- (c) En déduire l'inverse de la matrice

$$M := \left(\binom{i}{j} \right)_{0 \leqslant i, j \leqslant n}.$$