Mécanique des Fluides 4F – TD1

Exercice 1

- a. Soit une balle de diamètre 6 cm dans l'air, et de masse 20 g. La viscosité cinématique de l'air est égale à $\nu = 1.5 \times 10^{-5} \text{ m}^2 \cdot \text{s}^{-1}$ et sa masse volumique à 1.25 kg · m⁻³.
 - 1. Pour quelle vitesse minimale le régime est-il turbulent ? Pour quelle vitesse maximale est-il laminaire ?
 - 2. Déterminer la force de traı̂née pour une vitesse de $20 \text{ m} \cdot \text{s}^{-1}$.
 - 3. Calculer la vitesse limite atteinte en chute libre (en supposant le régime turbulent). Si on prend en compte seulement 2 forces pour ce calcul, expliquer quelle force a été négligée et justifier.
- b. Soit un parachutiste (m = 120 kg), avec son parachute circulaire ouvert (diamètre 6 m) et $C_x = 1.2$.
 - 1. Déterminer sa vitesse limite.
 - 2. Chercher maintenant à quelle hauteur de chute libre correspond cette vitesse. On entend par chute libre le début de la chute d'un corps, c'est-à-dire lorsque la traînée est négligeable.

Exercice 2

Déterminer la vitesse limite de chute d'un objet de masse volumique ρ_0 et de volume V dans un fluide de masse volumique ρ . Application pour une sphère de rayon 1 cm avec $\rho_0 = 1100 \text{ kg} \cdot \text{m}^{-3}$ dans de l'air, puis de l'eau (étudier le cas du régime laminaire).

Exercice 3

Soit un avion de tourisme d'envergure 10 m, de surface portante 10 m², et de masse 1250 kg. Le coefficient de fuselage k est pris égal à 1.4, $C_x = 0.04$ et $C_z = 0.8$.

- 1. Sachat que l'hélice produit une force de 2500 N au décollage, déterminer la vitesse et l'angle au décollage. Quelle est alors la puissance du moteur ?
- 2. En vol horizontal à 3000 m (masse volumique de l'air de $0.92 \text{ kg} \cdot \text{m}^{-3}$), quelle est la force produite par l'hélice, et quelle est la puissance du moteur ?

Exercice 4

Une aile delta a une envergure de 5 m et un coefficient de fuselage k = 1.2.

1. Déterminer la surface portante de l'aile pour un allongement λ de 20.

- 2. Avec $C_x = 0.04$ et $C_z = 1.12$, déterminer sa finesse, et la distance parcourue pour un dénivelé de 500 m (vent nul).
- 3. Pour une masse totale de 120 kg, quelle est la vitesse théoriquement obtenue?

Exercice 5

Un planeur vole à une vitesse $v = 25 \text{ m} \cdot \text{s}^{-1}$ avec une finesse de f = 25. Quelle doit être la vitesse des ascendances thermiques (c'est-à-dire des courants d'air verticaux) pour que le planeur se maintienne à une altitude constante?

Exercice 6

Un planeur (300 kg, $S = 15 \text{ m}^2$) se trouve à une altitude de 1000 m, dans un air calme, sans courants horizontaux ou verticaux.

- 1. à l'aide de la polaire ci-dessous, justifier le fait que la finesse maximale soit obtenue graphiquement, en traçant la tangente à la polaire passant par l'origine.
- 2. Comment parcourir la distance la plus grande possible? Déterminer C_z , C_x , la vitesse, le temps de vol et la distance parcourue à partir de la polaire ci-dessous.
- 3. Comment obtenir la vitesse absolue minimale? Déterminer C_z , C_x , la vitesse, le temps de vol et la distance parcourue.

Figure 1: Polaire globale du planeur

Donnée : $\rho_a = 1.2 \text{ kg} \cdot \text{m}^{-3}$.

Exercice 7

Une boule de liège de masse volumique $\rho_b=200~{\rm kg\cdot m^{-3}}$ et de diamètre de $D=30~{\rm cm}$ est fixée, à l'aide d'une ficelle de masse négligeable, à un corps mort placé au fond du lit d'une rivière. La boule de liège est totalement immergée dans l'eau de masse volumique $\rho_e=1000~{\rm kg\cdot m^{-3}}$ et de viscosité cinématique $\nu_e=10^{-6}~{\rm m^2\cdot s^{-1}}$. À cause de l'entraı̂nement de la boule par le courant de la rivière, que l'on supposera de vitesse uniforme et constante ν_e , la ficelle fait un angle constant $\theta=45^\circ$ avec l'horizontale (cf. Fig. 1).

L'objectif de cet exercice est de calculer la vitesse du courant v_e correspondant à cet angle θ , sachant que v_e varie au maximum entre 1 et 6 m · s⁻¹ sur une année. Pour cela on suivra la démarche proposée ci-dessous :

- 1. Calculer le volume V_b et le maître-couple S_b de la boule de liège.
- 2. Faire le bilan des forces sur la boule de liège et donner, lorsque cela est possible, leurs composantes dans la base $(\mathbf{e}_x, \mathbf{e}_y)$ (cf. Fig. 2) en fonction de ρ_b , ρ_e , θ , v_e , V_b , S_b , de la gravité g et du coefficient de traînée C_x .
- 3. Exprimer la vitesse v_e du courant de la rivière en fonction de ρ_b , ρ_e , θ , V_b , S_b , g et C_x .
- 4. Estimer, à $\simeq 0.3~{\rm m\cdot s^{-1}}$ près, la vitesse v_e du courant de la rivière à l'aide de la Fig. 2 ci-dessous qui donne le coefficient de traînée C_x en fonction du nombre de Reynolds Re = $v_e D/\nu_e$ pour une sphère. Expliquer votre démarche.

Figure 2: Coefficient de trainée pour une sphère lisse