Solution

Section 6.3 – Trigonometric Functions

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-2, 3) is on the terminal side of θ .

Solution

$$r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$$

$$\sin\theta = \frac{y}{r} = \frac{3}{\sqrt{13}}$$

$$\sin \theta = \frac{y}{r} = \frac{3}{\sqrt{13}} \qquad \cos \theta = \frac{x}{r} = -\frac{2}{\sqrt{13}} \qquad \tan \theta = \frac{y}{x} = -\frac{3}{2}$$

$$\tan \theta = \frac{y}{x} = -\frac{3}{2}$$

$$\sec\theta = \frac{1}{\cos\theta} = \frac{r}{x} = -\frac{\sqrt{13}}{2}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x} = -\frac{\sqrt{13}}{2} \qquad \csc \theta = \frac{1}{\sin \theta} = \frac{r}{y} = \frac{\sqrt{13}}{3} \qquad \cot \theta = \frac{x}{y} = -\frac{2}{3}$$

$$\cot\theta = \frac{x}{y} = -\frac{2}{3}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-3, -4) is on the terminal side of θ .

Solution

$$3, 4 \rightarrow 5$$

$$\sin\theta = -\frac{4}{5}$$

$$\cos\theta = -\frac{3}{5}$$

$$\sin \theta = -\frac{4}{5} \qquad \qquad \cos \theta = -\frac{3}{5} \qquad \qquad \tan \theta = \frac{-4}{-3} = \frac{4}{3}$$

$$\csc\theta = -\frac{5}{4}$$

$$\csc \theta = -\frac{5}{4} \qquad \qquad \sec \theta = -\frac{5}{3} \qquad \qquad \cot \theta = \frac{3}{4}$$

$$\cot\theta = \frac{3}{4}$$

Exercise

Find the six trigonometry functions of θ in standard position with terminal side through the point (-3, 0).

$$r = \sqrt{(-3)^2 + 0^2} = \underline{3}$$
 $r = \sqrt{x^2 + y^2}$

$$r = \sqrt{x^2 + y^2}$$

$$\sin\theta = \frac{0}{3} = 0$$

$$\cos\theta = \frac{-3}{3} = -1$$

$$\sin \theta = \frac{0}{3} = 0 \qquad \qquad \cos \theta = \frac{-3}{3} = -1 \qquad \qquad \tan \theta = \frac{0}{-3} = 0$$

$$\csc\theta = \frac{1}{0} \to \infty$$

$$\csc \theta = \frac{1}{0} \to \infty$$
 $\sec \theta = \frac{1}{-1} = -1$ $\cot \theta = \frac{1}{0} = \infty$

$$\cot\theta = \frac{1}{0} = \infty$$

Find the six trigonometry functions of θ if θ is in the standard position and the point (12, -5) is on the terminal side of θ .

Solution

$$r = \sqrt{x^2 + y^2} = \sqrt{12^2 + (-5)^2} = \underline{13}$$

$$\sin \theta = -\frac{5}{13} \qquad \qquad \cos \theta = \frac{12}{13} \qquad \qquad \tan \theta = -\frac{5}{12}$$

$$\cos\theta = \frac{12}{13}$$

$$\tan \theta = -\frac{5}{12}$$

$$\csc \theta = -\frac{13}{5} \qquad \sec \theta = \frac{13}{12}$$

$$\sec \theta = \frac{13}{12}$$

$$\cot \theta = -\frac{12}{5}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (5, -12) is on the terminal side of θ .

Solution

$$5 \quad 12 \rightarrow 13$$

$$\sin \theta = -\frac{12}{13} \qquad \qquad \cos \theta = \frac{5}{13} \qquad \qquad \tan \theta = -\frac{12}{5}$$

$$\cos\theta = \frac{5}{13}$$

$$\tan \theta = -\frac{12}{5}$$

$$\csc\theta = -\frac{13}{12}$$

$$\sec \theta = \frac{13}{5}$$

$$\csc \theta = -\frac{13}{12} \qquad \qquad \sec \theta = \frac{13}{5} \qquad \qquad \cot \theta = -\frac{5}{12}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (9, -12) is on the terminal side of θ .

$$(9, -12) = 3(3, -4) \implies 3 + 4 \implies 5$$

$$\sin\theta = -\frac{4}{5}$$

$$\cos\theta = \frac{3}{5}$$

$$\sin \theta = -\frac{4}{5} \qquad \qquad \cos \theta = \frac{3}{5} \qquad \qquad \tan \theta = -\frac{4}{3}$$

$$\csc\theta = -\frac{5}{4}$$

$$\csc \theta = -\frac{5}{4} \qquad \qquad \sec \theta = \frac{5}{3}$$

$$\cot\theta = -\frac{3}{4}$$

Find the six trigonometry functions of θ if θ is in the standard position and the point (16, -12) is on the terminal side of θ .

Solution

$$(16, -12) = 4(4, -3) \implies 4 \quad 3 \rightarrow 5$$

$$\sin \theta = -\frac{3}{5} \qquad \qquad \cos \theta = \frac{4}{5} \qquad \qquad \tan \theta = -\frac{3}{4}$$

$$\cos\theta = \frac{4}{5}$$

$$\tan \theta = -\frac{3}{4}$$

$$\csc \theta = -\frac{5}{3} \qquad \qquad \sec \theta = \frac{5}{4} \qquad \qquad \cot \theta = -\frac{4}{3}$$

$$\sec \theta = \frac{5}{4}$$

$$\cot \theta = -\frac{4}{3}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (15, -8) is on the terminal side of θ .

Solution

$$15 \quad 8 \quad \rightarrow \quad 17$$

$$\sin \theta = -\frac{8}{17} \qquad \qquad \cos \theta = \frac{15}{17} \qquad \qquad \tan \theta = -\frac{8}{15}$$

$$\cos\theta = \frac{15}{17}$$

$$\tan \theta = -\frac{8}{15}$$

$$\csc\theta = -\frac{17}{8}$$

$$\sec \theta = \frac{17}{15}$$

$$\cot \theta = -\frac{15}{8}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-6, 8) is on the terminal side of θ .

$$(-6, 8) = 2(-3, 4) \Rightarrow 3 \quad 4 \rightarrow 5$$

$$\sin\theta = \frac{4}{5}$$

$$\sin\theta = \frac{4}{5} \qquad \qquad \cos\theta = -\frac{3}{5}$$

$$\tan \theta = -\frac{4}{3}$$

$$\csc\theta = \frac{5}{4}$$

$$\csc \theta = \frac{5}{4} \qquad \qquad \cot \theta = -\frac{3}{4}$$

$$\cot \theta = -\frac{3}{4}$$

Find the six trigonometry functions of θ if θ is in the standard position and the point (-15, 8) is on the terminal side of θ .

Solution

$$15 \quad 8 \quad \rightarrow \quad 17$$

$$\sin \theta = \frac{8}{17}$$

$$\cos \theta = -\frac{15}{17} \qquad \tan \theta = -\frac{8}{15}$$

$$\tan \theta = -\frac{8}{15}$$

$$\csc\theta = \frac{17}{8}$$

$$\sec \theta = -\frac{17}{15} \qquad \cot \theta = -\frac{15}{8}$$

$$\cot \theta = -\frac{15}{8}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-7, 24) is on the terminal side of θ .

Solution

$$7 \quad 24 \quad \rightarrow \quad 25$$

$$\sin\theta = \frac{24}{25}$$

$$\cos\theta = -\frac{7}{25} \qquad \tan\theta = -\frac{24}{7}$$

$$\tan \theta = -\frac{24}{7}$$

$$\csc\theta = \frac{25}{24}$$

$$\sec \theta = -\frac{25}{7}$$

$$\csc \theta = \frac{25}{24} \qquad \qquad \sec \theta = -\frac{25}{7} \qquad \qquad \cot \theta = -\frac{7}{24}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (10, -24) is on the terminal side of θ .

$$(10, -24) = 2(5, -12) \implies 5 \quad 12 \implies 13$$

$$\sin\theta = -\frac{12}{13}$$

$$\cos\theta = \frac{5}{13}$$

$$\sin \theta = -\frac{12}{13} \qquad \qquad \cos \theta = \frac{5}{13} \qquad \qquad \tan \theta = -\frac{12}{5}$$

$$\csc\theta = -\frac{13}{12}$$

$$\sec\theta = \frac{13}{5}$$

$$\csc \theta = -\frac{13}{12} \qquad \qquad \sec \theta = \frac{13}{5} \qquad \qquad \cot \theta = -\frac{5}{12}$$

Find the six trigonometry functions of θ if θ is in the standard position and the point (7, 24) is on the terminal side of θ .

Solution

$$7 \quad 24 \quad \rightarrow \quad 25$$

$$\sin\theta = \frac{24}{25}$$

$$\sin \theta = \frac{24}{25} \qquad \qquad \cos \theta = \frac{7}{25} \qquad \qquad \tan \theta = \frac{24}{7}$$

$$\tan\theta = \frac{24}{7}$$

$$\csc\theta = \frac{25}{24}$$

$$\csc \theta = \frac{25}{24} \qquad \qquad \sec \theta = \frac{25}{7}$$

$$\cot \theta = \frac{7}{24}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-7, -24) is on the terminal side of θ .

Solution

$$7 \quad 24 \quad \rightarrow \quad 25$$

$$\sin \theta = -\frac{24}{25} \qquad \qquad \cos \theta = -\frac{7}{25} \qquad \qquad \tan \theta = \frac{24}{7}$$

$$\cos\theta = -\frac{7}{25}$$

$$\tan\theta = \frac{24}{7}$$

$$\csc \theta = -\frac{25}{24} \qquad \qquad \sec \theta = -\frac{25}{7} \qquad \qquad \cot \theta = \frac{7}{24}$$

$$\sec\theta = -\frac{25}{7}$$

$$\cot \theta = \frac{7}{24}$$

Exercise

Find the six trigonometry functions of θ if θ is in the standard position and the point (-24, -7) is on the terminal side of θ .

$$24 \quad 7 \quad \rightarrow \quad 25$$

$$\sin\theta = -\frac{7}{25}$$

$$\sin \theta = -\frac{7}{25} \qquad \qquad \cos \theta = -\frac{24}{25} \qquad \qquad \tan \theta = \frac{7}{24}$$

$$\tan\theta = \frac{7}{24}$$

$$\csc\theta = -\frac{25}{7}$$

$$\csc \theta = -\frac{25}{7} \qquad \qquad \sec \theta = -\frac{25}{24} \qquad \qquad \cot \theta = \frac{24}{7}$$

$$\cot \theta = \frac{24}{7}$$

Find the six trigonometry functions of θ if θ is in the standard position and the point (24, -10) is on the terminal side of θ .

Solution

$$(24, -10) = 2(12, -5) \implies 12 \quad 5 \rightarrow 13$$

$$\sin \theta = -\frac{5}{13} \qquad \qquad \cos \theta = \frac{12}{13} \qquad \qquad \tan \theta = -\frac{5}{12}$$

$$\cos\theta = \frac{12}{13}$$

$$\tan \theta = -\frac{5}{12}$$

$$\csc \theta = -\frac{13}{5} \qquad \qquad \sec \theta = \frac{13}{12} \qquad \qquad \cot \theta = -\frac{12}{5}$$

$$\sec \theta = \frac{13}{12}$$

$$\cot \theta = -\frac{12}{5}$$

Exercise

Find the values of the six trigonometric functions for an angle of 90°.

Solution

$$\sin 90^{\circ} = 1$$

$$\tan 90^{\circ} = \infty$$

$$\csc 90^{\circ} = 1$$

$$\cos 90^{\circ} = 0$$

$$\cot 90^{\circ} = 0$$

$$\sec 90^{\circ} = \infty$$

Exercise

Indicate the two quadrants θ could terminate in if $\cos \theta = \frac{1}{2}$

Solution

$$\cos\theta = \frac{1}{2}$$

$$\cos \theta = \frac{1}{2}$$
 $\rightarrow \mathbf{Q} I \& \mathbf{Q} I V$

Exercise

Indicate the two quadrants θ could terminate in if $\csc \theta = -2.45$

$$\csc \theta = -2.45$$
$$= \frac{1}{1.00}$$

$$= \frac{1}{\sin \theta} \longrightarrow \mathbf{Q} \text{III \& } \mathbf{Q} \text{IV}$$

Find the remaining trigonometric function of θ if $\sin \theta = \frac{12}{13}$ and θ terminates in \mathbf{Q} I

<u>Solution</u>

$$5 \quad 12 \quad \rightarrow \quad 13$$

$$\sin \theta = \frac{12}{13}$$

$$\sin \theta = \frac{12}{13} \qquad \qquad \cos \theta = \frac{5}{13} \qquad \qquad \tan \theta = \frac{12}{5}$$

$$\tan \theta = \frac{12}{5}$$

$$\csc \theta = \frac{13}{12} \qquad \qquad \sec \theta = \frac{13}{5} \qquad \qquad \cot \theta = \frac{5}{12}$$

$$\sec \theta = \frac{13}{5}$$

$$\cot \theta = \frac{5}{12}$$

Exercise

Find the remaining trigonometric function of θ if $\cot \theta = -2$ and θ terminates in $\mathbf{Q}II$.

Solution

$$\cot \theta = -2 = \frac{x}{v} \quad (\theta \in QII)$$

$$x = -2, y = 1$$

$$r = \sqrt{(-2)^2 + (1)^2}$$

$$r = \sqrt{x^2 + y^2}$$

$$=\sqrt{5}$$

$$\sin \theta = \frac{1}{\sqrt{5}}$$

$$\sin \theta = \frac{1}{\sqrt{5}} \qquad \qquad \cos \theta = -\frac{2}{\sqrt{5}} \qquad \qquad \tan \theta = -\frac{1}{2}$$

$$\tan \theta = -\frac{1}{2}$$

$$\csc\theta = \sqrt{5}$$

$$\sec\theta = -\frac{\sqrt{5}}{2}$$

Exercise

Find the remaining trigonometric function of θ if $\tan \theta = \frac{3}{4}$ and θ terminates in QIII.

$$\tan \theta = \frac{3}{4} = \frac{y}{r} \quad (\theta \in QIII)$$

$$\frac{x = -4, \ y = -3}{4 \quad 3 \quad \rightarrow \quad 5}$$

$$\sin \theta = -\frac{3}{5} \qquad \qquad \cos \theta = -\frac{4}{5}$$

$$\cos \theta = -\frac{2}{3}$$

$$\csc \theta = -\frac{5}{3} \qquad \qquad \sec \theta = -\frac{5}{4}$$

$$\sec \theta = -\frac{5}{4}$$

$$\cot \theta = \frac{4}{3}$$

Find the remaining trigonometric function of θ if $\cos \theta = \frac{24}{25}$ and θ terminates in QIV.

<u>Solution</u>

$$24 \quad 7 \quad \rightarrow \quad 25$$

$$\cos \theta = \frac{24}{25} \quad \theta \in QIV \quad \Rightarrow y = -7$$

$$\sin \theta = -\frac{7}{25} \qquad \qquad \cos \theta = \frac{24}{25} \qquad \qquad \tan \theta = -\frac{7}{24}$$

$$\cos\theta = \frac{24}{25}$$

$$\tan\theta = -\frac{7}{24}$$

$$\csc \theta = -\frac{25}{7} \qquad \qquad \sec \theta = \frac{25}{24} \qquad \qquad \cot \theta = -\frac{24}{7}$$

$$\sec \theta = \frac{25}{24}$$

$$\cot \theta = -\frac{24}{7}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = \frac{\sqrt{3}}{2}$ and θ is terminates in \mathbf{Q} IV.

Solution

$$\cos \theta = \frac{\sqrt{3}}{2} = \frac{x}{r}$$
 $\Rightarrow x = \sqrt{3}, r = 2$

Since θ is $\mathbf{Q}IV$

$$y = -\sqrt{2^2 - \sqrt{3}^2}$$

$$=-\sqrt{4-3}$$

$$=-1$$

$$\sqrt{3}$$
 1 \rightarrow 2

$$\sin\theta = -\frac{1}{2}$$

$$\cos\theta = \frac{\sqrt{3}}{2}$$

$$\cos \theta = \frac{\sqrt{3}}{2} \qquad \tan \theta = -\frac{1}{\sqrt{3}}$$

$$\csc\theta = -2$$

$$\sec \theta = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$\cot \theta = -\sqrt{3}$$

$$\cot \theta = -\sqrt{3}$$

Exercise

Find the remaining trigonometric functions of θ if $\tan \theta = -\frac{1}{2}$ and $\cos \theta > 0$.

$$\tan \theta = \frac{\sin \theta}{\cos \theta} < 0 \quad \& \quad \cos \theta > 0$$

$$\sin \theta < 0 \implies \theta \text{ in } QIV$$

$$\Rightarrow$$
 $y = 1$, $x = 2$

$$r = \sqrt{1^2 + 2^2}$$

$$=\sqrt{5}$$

$$2 -1 \rightarrow \sqrt{5}$$

$$\sin \theta = -\frac{1}{\sqrt{5}} \qquad \cos \theta = \frac{2}{\sqrt{5}}$$

$$\cos \theta = \frac{2}{\sqrt{5}}$$

$$\tan\theta = -\frac{1}{2}$$

$$\csc \theta = -\frac{\sqrt{5}}{5} \qquad \sec \theta = \frac{\sqrt{5}}{2}$$

$$\sec \theta = \frac{\sqrt{5}}{2}$$

$$\cot \theta = -2$$

Find the remaining trigonometric functions of θ if $\cos \theta = \frac{3}{5}$ & $\theta \in QI$

Solution

$$3 \quad 4 \quad \rightarrow \quad 5$$

$$\sin\theta = \frac{4}{5}$$

$$\sin \theta = \frac{4}{5} \qquad \qquad \cos \theta = \frac{3}{5} \qquad \qquad \tan \theta = \frac{4}{3}$$

$$\tan \theta = \frac{4}{3}$$

$$\csc\theta = \frac{5}{4}$$

$$\sec \theta = \frac{5}{3}$$

$$\cot \theta = \frac{3}{4}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{4}{5}$ & $\theta \in QII$

$$\theta \in QII$$
 & $\sin \theta > 0$

$$-4 \quad 3 \quad \rightarrow \quad 5$$

$$\sin\theta = \frac{3}{5}$$

$$\sin \theta = \frac{3}{5} \qquad \qquad \cos \theta = -\frac{4}{5} \qquad \qquad \tan \theta = -\frac{3}{4}$$

$$\tan \theta = -\frac{3}{4}$$

$$\csc\theta = \frac{5}{3}$$

$$\sec\theta = -\frac{5}{4}$$

$$\csc \theta = \frac{5}{3} \qquad \qquad \sec \theta = -\frac{5}{4} \qquad \qquad \cot \theta = -\frac{4}{3}$$

Find the remaining trigonometric functions of θ if $\sin \theta = -\frac{3}{5}$ & $\theta \in QIII$

Solution

$$\theta \in QIII$$
 & $\cos \theta < 0$

$$-4$$
 -3 \rightarrow 5

$$\sin \theta = -\frac{3}{5} \qquad \qquad \cos \theta = -\frac{4}{5} \qquad \qquad \tan \theta = \frac{3}{4}$$

$$\cos\theta = -\frac{4}{5}$$

$$\tan \theta = \frac{3}{4}$$

$$\csc \theta = -\frac{5}{3} \qquad \qquad \sec \theta = -\frac{5}{4} \qquad \qquad \cot \theta = \frac{4}{3}$$

$$\sec \theta = -\frac{5}{4}$$

$$\cot \theta = \frac{4}{3}$$

Exercise

Find the remaining trigonometric functions of θ if $\sin \theta = -\frac{3}{5}$ & $\theta \in QIV$

Solution

$$\theta \in QIV$$
 & $\cos \theta > 0$

$$4 \quad -3 \quad \rightarrow \quad 5$$

$$\sin \theta = -\frac{3}{5} \qquad \qquad \cos \theta = \frac{4}{5} \qquad \qquad \tan \theta = -\frac{3}{4}$$

$$\cos\theta = \frac{4}{5}$$

$$\tan \theta = -\frac{3}{4}$$

$$\csc\theta = -\frac{5}{3}$$

$$\sec \theta = \frac{5}{4}$$

$$\csc \theta = -\frac{5}{3} \qquad \sec \theta = \frac{5}{4} \qquad \cot \theta = -\frac{4}{3}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{12}{13}$ & $\theta \in QIII$

$$\theta \in QIII$$
 & $\sin \theta < 0$

$$-12$$
 -5 \rightarrow 13

$$\sin \theta = -\frac{5}{13} \qquad \qquad \cos \theta = -\frac{12}{13} \qquad \qquad \tan \theta = \frac{5}{12}$$

$$\cos\theta = -\frac{12}{13}$$

$$\tan\theta = \frac{5}{12}$$

$$\csc\theta = -\frac{13}{5}$$

$$\csc \theta = -\frac{13}{5} \qquad \qquad \cot \theta = \frac{12}{5}$$

$$\cot \theta = \frac{12}{5}$$

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{5}{13}$ & $\theta \in QII$

Solution

$$\theta \in QII$$
 & $\sin \theta > 0$

$$-5$$
 12 \rightarrow 13

$$\sin\theta = \frac{12}{13}$$

$$\sin \theta = \frac{12}{13} \qquad \qquad \cos \theta = -\frac{5}{13} \qquad \qquad \tan \theta = -\frac{12}{5}$$

$$\tan \theta = -\frac{12}{5}$$

$$\csc\theta = \frac{13}{12}$$

$$\csc \theta = \frac{13}{12} \qquad \qquad \sec \theta = -\frac{13}{5} \qquad \qquad \cot \theta = -\frac{5}{12}$$

$$\cot \theta = -\frac{5}{12}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = \frac{12}{13}$ & $\theta \in QIV$

Solution

$$\theta \in QIV$$
 & $\sin \theta < 0$

$$12 -5 \rightarrow 13$$

$$\sin \theta = -\frac{5}{13} \qquad \qquad \cos \theta = \frac{12}{13} \qquad \qquad \tan \theta = -\frac{5}{12}$$

$$\cos\theta = \frac{12}{13}$$

$$\tan \theta = -\frac{5}{12}$$

$$\csc\theta = -\frac{13}{5}$$

$$\sec \theta = \frac{13}{12}$$

$$\csc \theta = -\frac{13}{5} \qquad \qquad \sec \theta = \frac{13}{12} \qquad \qquad \cot \theta = -\frac{12}{5}$$

Exercise

Find the remaining trigonometric functions of θ if $\sin \theta = -\frac{8}{17}$ & $\theta \in QIII$

$$\theta \in QIII$$
 & $\cos \theta < 0$

$$-15$$
 -8 \rightarrow 17

$$\sin\theta = -\frac{8}{17}$$

$$\sin \theta = -\frac{8}{17} \qquad \qquad \cos \theta = -\frac{15}{17} \qquad \qquad \tan \theta = \frac{8}{15}$$

$$\tan \theta = \frac{8}{15}$$

$$\csc \theta = -\frac{17}{8} \qquad \qquad \sec \theta = -\frac{17}{15} \qquad \qquad \cot \theta = \frac{15}{8}$$

$$\sec \theta = -\frac{17}{15}$$

$$\cot \theta = \frac{13}{8}$$

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{15}{17}$ & $\theta \in QII$

Solution

$$\theta \in QII$$
 & $\sin \theta > 0$

$$-15$$
 8 \rightarrow 17

$$\sin\theta = \frac{8}{17}$$

$$\sin \theta = \frac{8}{17} \qquad \qquad \cos \theta = -\frac{15}{17} \qquad \qquad \tan \theta = -\frac{8}{15}$$

$$\tan \theta = -\frac{8}{15}$$

$$\csc\theta = \frac{17}{8}$$

$$\csc \theta = \frac{17}{8} \qquad \qquad \sec \theta = -\frac{17}{15} \qquad \qquad \cot \theta = -\frac{15}{8}$$

$$\cot \theta = -\frac{15}{8}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{8}{17}$ & $\theta \in QII$

Solution

$$\theta \in QII$$
 & $\sin \theta > 0$

$$-8$$
 15 \rightarrow 17

$$\sin\theta = \frac{15}{17}$$

$$\sin \theta = \frac{15}{17} \qquad \qquad \cos \theta = -\frac{8}{17} \qquad \qquad \tan \theta = -\frac{15}{8}$$

$$\tan \theta = -\frac{15}{8}$$

$$\csc\theta = \frac{17}{15}$$

$$\sec \theta = -\frac{17}{8}$$

$$\csc \theta = \frac{17}{15} \qquad \qquad \sec \theta = -\frac{17}{8} \qquad \qquad \cot \theta = -\frac{8}{15}$$

Exercise

Find the remaining trigonometric functions of θ if $\cos \theta = -\frac{7}{25}$ & $\theta \in QII$

$$\theta \in QII$$
 & $\sin \theta > 0$

$$-7$$
 24 \rightarrow 25

$$\sin\theta = \frac{24}{25}$$

$$\cos\theta = -\frac{7}{25}$$

$$\sin \theta = \frac{24}{25} \qquad \qquad \cos \theta = -\frac{7}{25} \qquad \qquad \tan \theta = -\frac{24}{7}$$

$$\csc\theta = \frac{25}{24}$$

$$\csc \theta = \frac{25}{24} \qquad \qquad \sec \theta = -\frac{25}{7} \qquad \qquad \cot \theta = -\frac{7}{24}$$

$$\cot \theta = -\frac{7}{24}$$

Find the remaining trigonometric functions of θ if $\sin \theta = -\frac{7}{25}$ & $\theta \in QIII$

Solution

$$\theta \in QIII$$
 & $\cos \theta < 0$

$$-24$$
 -7 \rightarrow 25

$$\sin\theta = -\frac{7}{25}$$

$$\sin \theta = -\frac{7}{25} \qquad \qquad \cos \theta = -\frac{24}{25} \qquad \qquad \tan \theta = \frac{7}{24}$$

$$\tan \theta = \frac{7}{24}$$

$$\csc \theta = -\frac{25}{7} \qquad \qquad \sec \theta = -\frac{25}{24} \qquad \qquad \cot \theta = \frac{24}{7}$$

$$\sec\theta = -\frac{25}{24}$$

$$\cot \theta = \frac{24}{7}$$

Exercise

Find the remaining trigonometric functions of θ if $\sin \theta = -\frac{24}{25}$ & $\theta \in QIV$

Solution

$$\theta \in QIV$$
 & $\cos \theta > 0$

$$7 -24 \rightarrow 25$$

$$\sin \theta = -\frac{24}{25} \qquad \qquad \cos \theta = \frac{7}{25} \qquad \qquad \tan \theta = -\frac{24}{7}$$

$$\cos\theta = \frac{7}{25}$$

$$\tan \theta = -\frac{24}{7}$$

$$\csc\theta = -\frac{25}{24}$$

$$\sec\theta = \frac{25}{7}$$

$$\csc \theta = -\frac{25}{24} \qquad \qquad \sec \theta = \frac{25}{7} \qquad \qquad \cot \theta = -\frac{7}{24}$$

Exercise

If $\sin \theta = -\frac{5}{13}$, and θ is **Q**III, find $\cos \theta$ and $\tan \theta$.

$$\sin \theta = -\frac{5}{13} = \frac{y}{r} \rightarrow y = -5, \ r = 13$$

$$\Rightarrow x = \pm \sqrt{13^2 - 5^2} = \pm 12$$
 Since θ is Q III $\Rightarrow x = -12$ $x = \pm \sqrt{r^2 - y^2}$

$$x = \pm \sqrt{r^2 - y^2}$$

$$\cos\theta = -\frac{12}{13}$$

$$\tan \theta = \frac{5}{12}$$

If $\cos \theta = \frac{3}{5}$, and θ is \mathbf{Q} IV, find $\sin \theta$ and $\tan \theta$.

Solution

$$\cos \theta = \frac{3}{5} = \frac{x}{r} \quad (\theta \in QIV) \quad \Rightarrow \boxed{x=3} \qquad y = \underline{-4}$$

$$\sin \theta = -\frac{4}{5}$$
, $\tan \theta = -\frac{4}{3}$

Exercise

Use the reciprocal identities if $\cos \theta = \frac{\sqrt{3}}{2}$ find $\sec \theta$

Solution

$$\sec \theta = \frac{1}{\cos \theta}$$
$$= \frac{2}{\sqrt{3}}$$
$$= \frac{2\sqrt{3}}{\sqrt{3}}$$

Exercise

Find $\cos \theta$, given that $\sec \theta = \frac{5}{3}$

Solution

$$\cos \theta = \frac{1}{\sec \theta}$$
$$= \frac{1}{\frac{5}{3}}$$
$$= \frac{3}{5}$$

Exercise

Find $\sin \theta$, given that $\csc \theta = -\frac{\sqrt{12}}{2}$

$$\sin \theta = \frac{1}{\csc \theta}$$
$$= -\frac{2}{\sqrt{12}} \frac{\sqrt{12}}{\sqrt{12}}$$

$$=-\frac{2\sqrt{12}}{12}$$
$$=-\frac{\sqrt{12}}{6}$$

Use a ratio identity to find $\tan \theta$ if $\sin \theta = \frac{3}{5}$ and $\cos \theta = -\frac{4}{5}$

Solution

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}}$$
$$= -\frac{3}{4}$$

Exercise

If $\cos \theta = -\frac{1}{2}$ and θ terminates in **Q**II, find $\sin \theta$

Solution

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

$$= \sqrt{1 - \frac{1}{4}}$$

$$= \sqrt{\frac{3}{4}}$$

$$= \frac{\sqrt{3}}{2}$$

Exercise

If $\sin \theta = \frac{3}{5}$ and θ terminated in $\mathbf{Q}II$, find $\cos \theta$ and $\tan \theta$.

$$\cos \theta = -\frac{4}{5}$$

$$\tan \theta = -\frac{3}{4}$$
(3, 4 \rightarrow 5)

Find $\tan \theta$ if $\sin \theta = \frac{1}{3}$ and θ terminates in QI

Solution

$$\cos \theta = \sqrt{1 - \sin^2 \theta}$$

$$= \sqrt{1 - \frac{1}{9}}$$

$$= \sqrt{\frac{8}{9}}$$

$$= \frac{2\sqrt{2}}{3}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$$

$$= \frac{1}{2\sqrt{2}}$$

$$= \frac{\sqrt{2}}{4}$$

Exercise

Find the remaining trigonometric ratios of θ , if $\sec \theta = -3$ and $\theta \in QIII$

$$\sec \theta = \frac{1}{\cos \theta} = -3$$

$$\cos \theta = -\frac{1}{3}$$

$$\sin \theta = -\sqrt{1 - \cos^2 \theta}$$

$$= -\sqrt{1 - \frac{1}{9}}$$

$$= -\sqrt{\frac{8}{9}}$$

$$= -\frac{2\sqrt{2}}{3}$$

$$\tan \theta = 2\sqrt{2}$$

$$\cot \theta = \frac{1}{2\sqrt{2}}$$

Using the calculator and rounding your answer to the nearest hundredth, find the remaining trigonometric ratios of θ if $\csc \theta = -2.45$ and $\theta \in QIII$

Solution

 $\sec \theta = \frac{1}{-0.91}$

=-1.1

$$\sin \theta = \frac{1}{-2.45}$$

$$= -\frac{100}{245}$$

$$= -\frac{20}{49}$$

$$= -0.41$$

$$\cos \theta = -\sqrt{1 - \sin^2 \theta}$$

$$= -\sqrt{1 - .41^2}$$

$$= -0.91$$

$$\tan \theta = \frac{-0.41}{-0.91}$$

$$= \frac{41}{91}$$

$$= 0.45$$

$$\cot \theta = \frac{1}{0.45}$$

$$= \frac{100}{45}$$

$$= \frac{20}{9}$$

Write $\frac{\sec \theta}{\csc \theta}$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.

Solution

$$\frac{\sec \theta}{\csc \theta} = \frac{\frac{1}{\cos \theta}}{\frac{1}{\sin \theta}}$$
$$= \frac{1}{\cos \theta} \frac{\sin \theta}{1}$$
$$= \frac{\sin \theta}{\cos \theta}$$

Exercise

Write $\cot \theta - \csc \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.

Solution

$$\cot \theta - \csc \theta = \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}$$
$$= \frac{\cos \theta - 1}{\sin \theta}$$

Exercise

Write $\frac{\sin \theta}{\cos \theta} + \frac{1}{\sin \theta}$ in terms of $\sin \theta$ and/or $\cos \theta$, and then simplify if possible.

Solution

$$\frac{\sin\theta}{\cos\theta} + \frac{1}{\sin\theta} = \frac{\sin^2\theta + \cos\theta}{\cos\theta\sin\theta}$$

Exercise

Write $\sin \theta \cot \theta + \cos \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.

$$\sin\theta \cot\theta + \cos\theta = \sin\theta \frac{\cos\theta}{\sin\theta} + \cos\theta$$
$$= \cos\theta + \cos\theta$$
$$= 2\cos\theta$$

Multiply
$$(1-\cos\theta)(1+\cos\theta)$$

Solution

$$(1 - \cos \theta)(1 + \cos \theta) = 1 - \cos^2 \theta$$
$$= \sin^2 \theta$$

Exercise

Multiply
$$(\sin \theta + 2)(\sin \theta - 5)$$

Solution

$$(\sin\theta + 2)(\sin\theta - 5) = \sin^2\theta - 3\sin\theta - 10$$

Exercise

Simplify the expression $\sqrt{25-x^2}$ as much as possible after substituting $5\sin\theta$ for x.

Solution

$$\sqrt{25 - x^2} = \sqrt{25 - (5\sin\theta)^2}$$

$$= \sqrt{25 - 25\sin^2\theta}$$

$$= \sqrt{25(1 - \sin^2\theta)}$$

$$= \sqrt{25}\sqrt{\cos^2\theta}$$

$$= 5\cos\theta$$

Exercise

Simplify the expression $\sqrt{4x^2 + 16}$ as much as possible after substituting $2 \tan \theta$ for x

$$\sqrt{4x^2 + 16} = \sqrt{4(2\tan\theta)^2 + 16}$$

$$= \sqrt{16\tan^2\theta + 16}$$

$$= \sqrt{16(\tan^2\theta + 1)}$$

$$= 4\sqrt{\tan^2\theta + 1}$$

$$= 4\sqrt{\sec^2 \theta}$$
$$= 4\sec \theta$$

Simplify by using the table. $5\sin^2 30^\circ$

Solution

$$5\sin^2 30^\circ = 5\left(\frac{1}{2}\right)^2$$
$$= \frac{5}{4}$$

Exercise

Simplify by using the table. $\sin^2 60^\circ + \cos^2 60^\circ$

Solution

$$\sin^2 60^\circ + \cos^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2$$
$$= \frac{3}{4} + \frac{1}{4}$$
$$= 1$$

Exercise

Simplify by using the table. $(\tan 45^{\circ} + \tan 60^{\circ})^2$

Solution

$$(\tan 45^{\circ} + \tan 60^{\circ})^{2} = (1 + \sqrt{3})^{2}$$
$$= 1 + 3 + 2\sqrt{3}$$
$$= 4 + 2\sqrt{3}$$

Exercise

Find the exact value of csc 300°

$$\hat{\theta} = 360^{\circ} - 300^{\circ} = 60^{\circ} \quad \rightarrow 300^{\circ} \in QIV$$

$$\csc 300^{\circ} = -\frac{1}{\sin 60^{\circ}}$$
$$= -\frac{1}{\frac{\sqrt{3}}{2}}$$
$$= -\frac{2}{\sqrt{3}}$$

Find θ if $\sin \theta = -\frac{1}{2}$ and θ terminates in **Q**III with $0^{\circ} \le \theta \le 360^{\circ}$.

Solution

$$\hat{\theta} = \sin^{-1} \frac{1}{2} = 30^{\circ}$$

$$\theta \in \mathbf{Q} \text{III}$$

$$\Rightarrow \theta = 180^{\circ} + 30^{\circ}$$

$$= 210^{\circ} \mid$$

Exercise

Find θ to the nearest degree if $\sec \theta = 3.8637$ and θ terminates in QIV with $0^{\circ} \le \theta \le 360^{\circ}$.

$$\sec \theta = 3.8637 = \frac{1}{\cos \theta}$$

$$\cos \theta = \frac{1}{3.8637}$$

$$\hat{\theta} = \cos^{-1} \frac{1}{3.8637}$$

$$= 75^{\circ} \rfloor$$

$$\theta \in \text{QIV}$$

$$\Rightarrow \theta = 360^{\circ} - 75^{\circ}$$

$$= 285^{\circ} \rfloor$$

Find the exact value of cos 225°

Solution

$$\hat{\theta} = 225^{\circ} - 180^{\circ} = 45^{\circ}$$

$$\rightarrow 225^{\circ} \in QIII$$

$$\cos 225^{\circ} = -\cos 45^{\circ}$$

$$= -\frac{\sqrt{2}}{2}$$

Exercise

Find the exact value of tan 315°

Solution

$$\hat{\theta} = 360^{\circ} - 315^{\circ} = 45^{\circ} \qquad \rightarrow 315^{\circ} \in QIV$$

$$\tan 315^{\circ} = -\tan 45^{\circ}$$

$$= -1$$

Exercise

Find the exact value of cos 420°

Solution

$$\hat{\theta} = 420^{\circ} - 360^{\circ} = 60^{\circ} \longrightarrow 420^{\circ} \in QI$$

$$\cos 420^{\circ} = \cos 60^{\circ}$$

$$= \frac{1}{2}$$

Exercise

Find the exact value of cot 480°

$$\hat{\theta} = 480^{\circ} - 360^{\circ} = 120^{\circ}$$
 $\hat{\theta} = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\rightarrow 480^{\circ} \in QII$
 $\cot 480^{\circ} = -\frac{\cos 60^{\circ}}{\sin 60^{\circ}}$

$$= -\frac{1/2}{\sqrt{3}/2}$$
$$= -\frac{1}{\sqrt{3}}$$

Use the calculator to find the value of csc166.7°

Solution

$$\csc 166.7^{\circ} = \frac{1}{\sin 166.7^{\circ}}$$

$$\approx 4.3469$$

Exercise

Use the calculator to find the value of sec 590.9°

Solution

$$\sec 590.9^{\circ} = \frac{1}{\cos 590.9^{\circ}}$$

$$\approx -1.5856$$

Exercise

Use the calculator to find the value of tan 195° 10'

Solution

$$\tan(195^{\circ} 10') = \tan(195^{\circ} + \frac{10}{60})$$

= $\tan 195.1667^{\circ}$
 ≈ 0.271

Exercise

Use the calculator to find θ to the nearest degree if $\sin \theta = -0.3090$ with $\theta \in \text{QIV}$ with $0^{\circ} \le \theta \le 360^{\circ}$

$$\hat{\theta} = \sin^{-1}(0.3090)$$
 Since $\theta \in \text{QIV}$

$$\underset{\approx}{\approx} 18.0^{\circ} \mid$$

$$\theta = 180^{\circ} + 40.0^{\circ}$$

$$= 220.0^{\circ} \mid$$

Use the calculator to find θ to the nearest degree if $\cos \theta = -0.7660$ with $\theta \in \mathbf{Q}III$ with $0^{\circ} \le \theta \le 360^{\circ}$

Solution

$$\hat{\theta} = \cos^{-1}(0.7660)$$
 Since $\theta \in \mathbf{Q}III$

$$\approx 40.0^{\circ}$$

$$\theta = 180^{\circ} + 40.0^{\circ}$$

$$= 220.0^{\circ}$$

Exercise

Use the calculator to find θ to the nearest degree if $\sec \theta = -3.4159$ with $\theta \in \mathbf{Q}II$ with $0^{\circ} \le \theta \le 360^{\circ}$

Solution

$$\sec \theta = -3.4159$$

$$\cos \theta = -\frac{1}{3.4159}$$

$$\hat{\theta} = \cos^{-1} \left(\frac{1}{3.4159} \right) \qquad \text{Since } \theta \in \mathbf{Q} \text{II}$$

$$\approx 73.0^{\circ} \mid$$

$$\theta \approx 180^{\circ} - 73.0^{\circ}$$

$$= 107.0^{\circ} \mid$$

Exercise

Find θ to the nearest tenth of a degree if $\tan \theta = -0.8541$ and θ terminates in $\mathbf{Q}IV$ with $0^{\circ} \le \theta \le 360^{\circ}$.

$$\hat{\theta} = \tan^{-1} 0.8541 \qquad \theta \in \mathbf{Q}IV$$

$$\approx 40.5^{\circ} \rfloor$$

$$\Rightarrow \theta = 360^{\circ} - 40.5^{\circ}$$

$$\approx 319.5^{\circ} \rfloor$$

Use the calculator to find θ to the nearest degree if $\sin \theta = 0.49368329$ with $\theta \in \mathbf{Q}II$ with $0^{\circ} \le \theta < 360^{\circ}$

$$\hat{\theta} = \sin^{-1} 0.49368329 \qquad \theta \in \mathbf{Q}II$$

$$= 29.6^{\circ} \rfloor$$

$$\Rightarrow \theta = 180^{\circ} - 29.6^{\circ}$$

$$= 150.4^{\circ} \rfloor$$