

NewCode Modbus Communication Module

User Manual

NC-MK1-Modbus Version 1A-01 (NE_NC-MK1-Modbus_MAN_01_14_A-01)

13 January 2014

Content

	Page
1. ABSTRACT	4
2. SPECIFICATIONS	5
2.1 Technical Specifications of NC-MK1-Modbus	5
2.2 Functions supported	6
2.2.1 Read Coils	6
2.2.2 Read Discrete Input Register	6
2.2.3 Read Holding Registers	7
2.2.4 Read Input Registers	
2.3 Listen mode only	
2.2.5 Function Flag Table 1	
2.2.6 Function Flag Table 2	
2.2.7 Function Flag Table 3	
3. DEFINITIONS AND TERMINOLOGY	29
4. OPERATING INSTRUCTIONS	30
4.1 Getting Started	30
4.1.1 Setting Up The NC-MK1-Modbus	30
4.2 Monitoring Diagnostic On Front-End	
4.3 DB 9 Connection	
4.4 Synchronizing The RTC	
5. DIAGRAMS	
5.1 Block Diagram of NC-MK1-Modbus	

Revision History			
Date Revision Description			
13 Jan 2014	1A-01	-Draft submitted for review.	
		-Draft released to CD.	
16 Jan 2014	1B-01	-Corrected logic maps.	
		-Added change of RTC global.	

1. ABSTRACT

The NC-MK1-Modbus (NewCode Modbus) acts as a translator between the Modbus SCADA and the NewCode. It is advisable to read the NewCode user manual, as some of the topics will require knowledge on the NewCode. It is also advisable to have knowledge on Modbus. Modbus specification document can be found on the web from http://www.modbus.org/.

The communication protocol between the NC-MK1-Modbus and SCADA is Modbus-RTU. Communication protocol between the NC-MK1-Modbus and the NewCode is a NewElec proprietary protocol. Enabling the PLC to communicate with the NewCode via Modbus.

2. SPECIFICATIONS

2.1 Technical Specifications of NC-MK1-Modbus

	Mounting Positions	Mounted inside of NewCode.
Conoral Data	Allowed Ambient	Operation : 0 °C to +60 °C
General Data	Temperature	·
	Humidity	● < 87%
	Power Supply	• +5Vdc
NC-MK1-	Consumption	● 20 mA
Modbus	Communication Mediums	Modbus
		• I2C
	Protocol	Modbus-RTU
	Baud Rate	• 2400 bit/s
		● 4800 bit/s
		• 9600 bit/s
		● 19200 bit/s
		● 38400 bit/s
Modbus		● 57600 bit/s
Wiedbae	Cable Length @ Baud Rate	• 1200 m @ 2400 bit/s to 38400
		bit/s
		• 1000 m @57.6Kbit/s
	Termination Resistor	• 150 Ohm (0.5W).
	(Termination resistors must	
	be connected at the	
	beginning and end of bus)	0 1:11 E :W D: 1 (1 ED)
	Туре	Light Emitting Diode (LED)
	LED Indications	SCADA Communication
		Red = No communication.
		Green = Receiving.
Indication		Address Of Module
Lights		○ Green Flash = 1
		○ Red Flash = 10
		○ Orange Flash = 100
		Red Solid = I2C Error
		Orange Solid = Modbus Error

2.2 Functions supported

Following Modbus functions are supported:

Function		Function Name	
Hex	Dec	Tunction Name	
0x01	01	Read Coils. (See Chapter 2.2.1)	
0x02	02	Read Discrete Inputs. (See Chapter 2.2.2)	
0x03	03	Read Holding Registers. (See Chapter 2.2.3) (Address 0x4000)	
0x04	04	Read Input Registers. (See Chapter 2.2.4) (Address 0x3000)	
0x06	06	Write Single Register. (See Chapter 2.2.3) (Address 0x4000)	
0x10	16	Write Multiple Registers. (See Chapter 2.2.3) (Address 0x4000)	
0x11	17	Report Slave ID.	

2.2.1 Read Coils

Following values can be read from the coil register:

Address	Bit Position	Name	Read Only
	0	Relay 1 Status	Yes
	1	Relay 2 Status	Yes
	2	Relay 3 Status	Yes
0	3	Relay 4 Status	Yes
0	4	External Relay 5 Status	Yes
	5	External Relay 6 Status	Yes
	6	External Relay 7 Status	Yes
	7	External Relay 8 Status	Yes

2.2.2 Read Discrete Input Register

Following values can be read from the discrete input register:

Input Position	Name	Read Only
0	Field Input 1	Yes
1	Field Input 2	Yes
2	Field Input 3	Yes

Page 7 / 31

3	Field Input 4	Yes
4	Field Input 5	Yes
5	Field Input 6	Yes
6	Field Input 7	Yes
7	Reserved	Yes
8	External Field Input 8	Yes
9	External Field Input 9	Yes
10	External Field Input 10	Yes
11	External Field Input 11	Yes
12	External Field Input 12	Yes
13	External Field Input 13	Yes
14	External Field Input 14	Yes
15	External Field Input 15	Yes
16 ~ 23	Analogue 1 Input	Yes
24 ~ 31	Analogue 2 Input	Yes

2.2.3 Read Holding Registers

Following values can be read from the holding register:

Addr	Bit Position	Name	Read Only
0	0 ~ 15	PLC Inputs (Bits from SCADA to NC Relay)	No
1	0 ~ 7	Analogue Out Channel 1 (SCADA to NC Relay)	No
ı	8 ~ 15	Analogue Out Channel 2 (SCADA to NC Relay)	No
2	0 ~ 15	Setting Password.	No
3	0 ~ 7	Maximum Load 1 (4 ~ 100 %)	No *
3	8 ~ 15	Maximum Load 0 (4 ~ 100 %)	No *
4	0 ~ 7	Thermal Class Curve 1 (3 ~ 40 Sec)	No *
4	8 ~ 15	Thermal Class Curve 0 (3 ~ 40 Sec)	No *
5	0 ~ 15	CT Primary Ratio (1 ~ 1000)	No *
6	0 ~ 7	Modal Setting 0 = NC1 1 = NC 5 2 = NC 25 3 = NC 50 4 = NC 100 5 = NC 300	No *
	8 ~ 15	CT Secondary Ratio (1 ~ 9)	No *
7	0 ~ 7	Voltage Symmetry Trip Level. (60 ~ 100 %)	No *

Page 8 / 31

Addr	Bit	Name	Read
	Position	Line Veltage Calenting	Only
		Line Voltage Selection	
		0 = 110 V	
		1 = 380 V	
		2 = 400 V	
		3 = 525 V	
	8 ~ 15	4 = 550 V	No *
		5 = 680 V	
		6 = 950 V	
		7 = 1100 V	
		8 = 3k3 V / 110 V	
		9 = 6k6 V / 110 V	
		10 = 11kV / 110 V	A
8	0 ~ 7	Voltage Low Trip Level (0 ~ 15 %)	No *
	8 ~ 15	Voltage High Trip Level (0 ~ 15 %)	No *
9	0 ~ 7	Unbalance Trip Time (1 ~ 10 Sec)	No *
	8 ~ 15	Unbalance Trip Level (0 ~ 50 %)	No *
10	0 ~ 7	Minimum Load Startup Delay Time (0 ~ 200 Sec)	No *
10	8 ~ 15	Minimum Load Trip Time (1 ~ 10 Sec)	No *
	0 ~ 7	Minimum Load Current Trip Level (10 ~ 100 %)	No *
		Minimum Load Reset Time	
		0 = Manual	
		1 = 10 Seconds	
		2 = 5 Minutes	
11		3 = 10 Minutes	
11	8 ~ 15	4 = 20 Minutes	No *
		5 = 30 Minutes	
		6 = 45 Minutes	
		7 = 1 Hour	
		8 = 3 Hours	
		9 = 6 Hours	
		Earth Leakage Trip Type	
12	0 ~ 7	0 = Instantaneous Time	No *
12		1 = Inverse Definite Minimum Time	
	8 ~ 15	Minimum Load Power Factor Trip Level (10 ~ 100 %)	No *
13	0 ~ 15	Earth Leakage Trip Level (30 ~ 999 mA)	No *
1.1	0 15	Earth Leakage Trip Time (100 ~ 1000 ms, 50ms	No.*
14	0 ~ 15	increment)	No *
15	0 ~ 15	Running Stall Trip Level (110 ~ 300 %)	No *
16	0 ~ 15	Running Stall Trip Time (100 ~ 2000 ms)	No *
	0 ~ 7	Thermal Capacity Reset Level (0 ~ 99 %)	No *
17	8 ~ 15	Running Stall Hold-Off Time (0 ~ 200 Sec)	No *
40	0 ~ 7	Number Of Consecutive Starts (1 ~ 3)	No *
18	8 ~ 15	Starts Per Hour (1 ~ 60)	No *
19	0	Control Byte B = Single Phase Enabled	No *

Addr	Bit Position	Name	Read Only
	1	Control Byte B = Running Stall Enabled	No *
		Control Byte B = Minimum Load Trip Type	
	2	0 = Load Trip Level	No *
		1 = Power Factor Trip Level	
	3	Control Byte B = Earth Leakage Enabled	No *
	4	Control Byte B = Vacuum Fail Enabled	No *
	5	Control Byte B = Isolation Lockout Enabled	No *
	6	Control Byte B = Frequency Trip Enabled	No *
	7	Control Byte B = Thermal Auto Calculate Reset Enabled	No *
	8	Control Byte A = Minimum Load Enabled	No *
	9	Control Byte A = Under Voltage Enabled	No *
	10	Control Byte A = Over Voltage Enabled	No *
	11	Control Byte A = Voltage Symmetry Enabled	No *
	12	Control Byte A = Fail Safe Selected	No *
	13	Control Byte A = Unbalance Enabled	No *
	14	Control Byte A = Phase Rotation Enabled	No *
	15	Control Byte A = Short Circuit Enabled	No *
	0	Control Byte D = RTD 1 Enabled	No *
	1	Control Byte D = RTD 2 Enabled	No *
	2	Control Byte D = RTD 3 Enabled	No *
	3	Control Byte D = RTD 4 Enabled	No *
	4	Control Byte D = Analogue In 1 Enabled	No *
	5	Control Byte D = Analogue In 2 Enabled	No *
	6	Control Byte D = Analogue Out 1 Enabled	No *
20	7	Control Byte D = Analogue Out 2 Enabled	No *
20	8	Control Byte C = Starts Per Hour Enabled	No *
	9	Control Byte C = Voltage Phase Rotation RWB	No *
	10	Control Byte C = Vectorial Stall Enabled	No *
	11	Control Byte C = Auto Thermal Reset Enabled	No *
	12	Control Byte C = Relay 1 Not Main Trip	No *
	13	Control Byte C = External I/O Module Connected	No *
	14	Control Byte C = FLED Connected	No *
	15	Control Byte C = Reserved	No *
21	0 ~ 1	RTD Type 1 0 = PT 100 1 = PT 1000 2 = PTC 3 = NTC	
	2~3	RTD Type 2 0 = PT 100 1 = PT 1000 2 = PTC 3 = NTC	No *

Addr	Bit Position	Name	Read Only
	4~5	RTD Type 3 0 = PT 100 1 = PT 1000 2 = PTC 3 = NTC	No *
	6 ~ 7	RTD Type 4 0 = PT 100 1 = PT 1000 2 = PTC 3 = NTC	No *
	8 ~ 15	Starter Type 0 = Protection Relay 1 = Direct On line 2 = Reversal Direct On Line 3 = Star – Delta 4 = Reversal Star – Delta 5 = Dahlander 6 = Reversal Dahlander 7 = Pole Changing 8 = Reversal Pole Changing 9 = Soft Starter 10 = Reversal Soft Starter 11 = Oil Circuit Breaker Direct Online	No *
22	0 ~ 15	Field Input 1 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
23	0 ~ 15	Field Input 2 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
24	0 ~ 15	Field Input 3 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
25	0 ~ 15	Field Input 4 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
26	0 ~ 15	Field Input 5 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
27	0 ~ 15	Field Input 6 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
28	0 ~ 15	Field Input 7 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
29	0 ~ 15	Field Input 8 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
30	0 ~ 15	Field Input 9 Delay (0 ~ 2000 ms, 50 ms incremental)	No *
31	0 ~ 15	Field Input 10 Delay (0 ~ 2000 ms,50 ms incremental)	No *
32	0 ~ 15	Field Input 11 Delay (0 ~ 2000 ms,50 ms incremental)	No *
33	0 ~ 15	Field Input 12 Delay (0 ~ 2000 ms,50 ms incremental)	No *
34	0 ~ 15	Field Input 13 Delay (0 ~ 2000 ms,50 ms incremental)	No *
35	0 ~ 15	Field Input 14 Delay (0 ~ 2000 ms,50 ms incremental)	No *
36	0 ~ 15	Field Input 15 Delay (0 ~ 2000 ms,50 ms incremental)	No *
37	0 ~ 7	RTD 1 High Alarm Level	No *
J.	8 ~ 15	RTD 1 High Trip Level	No *
38	0 ~ 7	RTD 1 Lo Alarm Level	No *
	8 ~ 15	RTD 1 Lo Trip Level	No *
39	0 ~ 7	RTD 2 High Alarm Level	No *
3	8 ~ 15	RTD 2 High Trip Level	No *

Page 11 / 31

Addr	Bit Position	Name	Read Only
	0 ~ 7	RTD 2 Lo Alarm Level	No *
40	8 ~ 15	RTD 2 Lo Trip Level	No *
4.4	0 ~ 7	RTD 3 High Alarm Level	No *
41	8 ~ 15	RTD 3 High Trip Level	No *
40	0 ~ 7	RTD 3 Lo Alarm Level	No *
42	8 ~ 15	RTD 3 Lo Trip Level	No *
40	0 ~ 7	RTD 4 High Alarm Level	No *
43	8 ~ 15	RTD 4 High Trip Level	No *
4.4	0 ~ 7	RTD 4 Lo Alarm Level	No *
44	8 ~ 15	RTD 4 Lo Trip Level	No *
45	0 ~ 7	Analogue In 1 High Trip Level	No *
45	8 ~ 15	Analogue In 1 High Alarm Level	No *
46	0 ~ 7	Analogue In 1 Lo Trip Level	No *
40	8 ~ 15	Analogue In 1 Lo Alarm Level	No *
47	0 ~ 7	Analogue In 2 High Trip Level	No *
47	8 ~ 15	Analogue In 2 High Alarm Level	No *
48	0 ~ 7	Analogue In 2 Lo Trip Level	No *
40	8 ~ 15	Analogue In 2 Lo Alarm Level	No *
49	0 ~ 7	Analogue Out 1 High Trip Level	No *
49	8 ~ 15	Analogue Out 1 High Alarm Level	No *
50	0 ~ 7	Analogue Out 1 Lo Trip Level	No *
30	8 ~ 15	Analogue Out 1 Lo Alarm Level	No *
51	0 ~ 7	Analogue Out 2 High Trip Level	No *
JI	8 ~ 15	Analogue Out 2 High Alarm Level	No *
52	0 ~ 7	Analogue Out 2 Lo Trip Level	No *
52	8 ~ 15	Analogue Out 2 Lo Alarm Level	No *
53	0 ~ 7	Logic Function 1 Input A Pointer	No *
	8 ~ 15	Logic Function 1 Mask	No *
54	0 ~ 7	Logic Function 1 Input C Pointer	No *
U-T	8 ~ 15	Logic Function 1 Input B Pointer	No *
55	0 ~ 7	Logic Function 2 Input A Pointer	No *
	8 ~ 15	Logic Function 2 Mask	No *
56	0 ~ 7	Logic Function 2 Input C Pointer	No *
	8 ~ 15	Logic Function 2 Input B Pointer	No *
57	0 ~ 7	Logic Function 3 Input A Pointer	No *
	8 ~ 15	Logic Function 3 Mask	No *
58	0 ~ 7	Logic Function 3 Input C Pointer	No *
	8 ~ 15	Logic Function 3 Input B Pointer	No *
59	0 ~ 7	Logic Function 4 Input A Pointer	No *
	8 ~ 15	Logic Function 4 Mask	No *
60	0 ~ 7	Logic Function 4 Input C Pointer	No *
	8 ~ 15	Logic Function 4 Input B Pointer	No *
61	0 ~ 7	Logic Function 5 Input A Pointer	No *

 $Page\ 12\ /\ 31$

Addr	Bit Position	Name	Read Only
	8 ~ 15	Logic Function 5 Mask	No *
	0 ~ 7	Logic Function 5 Input C Pointer	No *
62	8 ~ 15	Logic Function 5 Input B Pointer	No *
00	0 ~ 7	Logic Function 6 Input A Pointer	No *
63	8 ~ 15	Logic Function 6 Mask	No *
C 4	0 ~ 7	Logic Function 6 Input C Pointer	No *
64	8 ~ 15	Logic Function 6 Input B Pointer	No *
65	0 ~ 15	Timer A timeout (1 ~ 3000 Sec)	No *
CC	0 ~ 7	Timer A Reset Input Pointer	No *
66	8 ~ 15	Timer A Start Input Pointer	No *
67	0 ~ 15	Timer B timeout (1 ~ 3000 Sec)	No *
68	0 ~ 7	Timer B Reset Input Pointer	No *
00	8 ~ 15	Timer B Start Input Pointer	No *
69	0 ~ 7	Counter A Count Up Input Pointer	No *
69	8 ~ 15	Counter A Count Limit	No *
70	0 ~ 7	Counter A Reset Input Pointer	No *
70	8 ~ 15	Counter A Count Down Input Pointer	No *
74	0 ~ 7	Counter B Count Up Input Pointer	No *
71	8 ~ 15	Counter B Count Limit	No *
70	0 ~ 7	Counter B Reset Input Pointer	No *
72	8 ~ 15	Counter B Count Down Input Pointer	No *
70	0 ~ 7	Pulse Generator Input Pointer	No *
73	8 ~ 15	Status Reporter Input Pointer	No *
7.1	0 ~ 7	Latch A Reset Input Pointer	No *
74	8 ~ 15	Latch A Set Input Pointer	No *
75	0 ~ 7	Latch B Reset Input Pointer	No *
75	8 ~ 15	Latch B Set Input Pointer	No *
76	0 ~ 7	Pulse Generator Duty Cycle (1 ~ 99 %)	No *
70	8 ~ 15	Pulse Generator Period (1 ~ 240 min)	No *
77	0 ~ 7	RTC Start Time Minutes	No *
77	8 ~ 15	RTC Start Time Hours	No *
78	0 ~ 7	RTC Stop Time Minutes	No *
10	8 ~ 15	RTC Stop Time Hours	No *
79	0 ~ 7	Relay 2 Input Pointer	No *
19	8 ~ 15	Relay 1 Input Pointer	No *
90	0 ~ 7	Relay 4 Input Pointer	No *
80	8 ~ 15	Relay 3 Input Pointer	No *
81	0 ~ 7	External Relay 6 Input Pointer	No *
01	8 ~ 15	External Relay 5 Input Pointer	No *
82	0 ~ 7	External Relay 8 Input Pointer	No *
02	8 ~ 15	External Relay 7 Input Pointer	No *
83	0 ~ 7	Thermal Capacity Warning Level	No *
83	8 ~ 15	External Reset Input Pointer	No *

Page 13 / 31

Addr	Bit Position	Name	Read Only
84	0 ~ 7	Starter Input Select msb Input Pointer	No *
04	8 ~ 15	Starter Input Select Isb Input Pointer	No *
85	0 ~ 7	Starter Local - Start Slow Forward Input Pointer	No *
00	8 ~ 15	Starter Local - Start Fast Forward Input Pointer	No *
86	0 ~ 7	Starter Local - Start Slow Reversal Input Pointer	No *
00	8 ~ 15	Starter Local - Start Fast Reversal Input Pointer	No *
87	0 ~ 7	Starter Local - Start Stop Input Pointer	No *
01	8 ~ 15	Starter Local - Start Interlock Input Pointer	No *
88	0 ~ 7	Starter Remote - Start Slow Forward Input Pointer	No *
00	8 ~ 15	Starter Remote - Start Fast Forward Input Pointer	No *
89	0 ~ 7	Starter Remote - Start Slow Reversal Input Pointer	No *
09	8 ~ 15	Starter Remote - Start Fast Reversal Input Pointer	No *
90	0 ~ 7	Starter Remote - Start Stop Input Pointer	No *
90	8 ~ 15	Starter Remote - Start Interlock Input Pointer	No *
91	0 ~ 7	Starter Auto - Start Slow Forward Input Pointer	No *
91	8 ~ 15	Starter Auto - Start Fast Forward Input Pointer	No *
92	0 ~ 7	Starter Auto - Start Slow Reversal Input Pointer	No *
92	8 ~ 15	Starter Auto - Start Fast Reversal Input Pointer	No *
93	0 ~ 7	Starter Auto - Start Stop Input Pointer	No *
9	8 ~ 15	Starter Auto - Start Interlock Input Pointer	No *
94	0 ~ 7	Execution Timer (0 ~ 10 Sec)	No *
5	8 ~ 15	Feedback Input Pointer	No *
95	0 ~ 15	Pre Start Warning Timer (0 ~ 999 Sec)	No *
96	0 ~ 15	Feedback Timer (0 ~ 2000 ms, 50 ms Incremental)	No *
97	0 ~ 15	Backspin Timer (0 ~ 999 Sec)	No *
98	0 ~ 15	DC Break Timer (0 ~ 2000ms, 50 ms Incremental)	No *
99	0 ~ 15	Restart Timer (0 ~ 600 Sec)	No *
100	0 ~ 15	Star Max Timer (1 ~ 50 Sec)	No *
101	0 ~ 15	Transition Timer (0 ~ 2000ms, 50 ms Incremental)	No *
102	0 ~ 15	Unauthorized Current Timer (0 ~ 2000ms, 50 ms Incremental)	No *
102	0 ~ 7	RTC Month	No *
103	8 ~ 15	RTC Year	No *
104	0 ~ 7	Reserved	No *
104	8 ~ 15	RTC Day	No *
105	0 ~ 7	RTC Minutes	No *
105	8 ~ 15	RTC Hours	No *

^{*} Password needs to be unlocked with writing 0x5AA5 hexadecimal to register 2.

2.2.4 Read Input Registers

Following values can be read from the input register:

Addr	Bit Position	Name	Read Only
0	0 ~ 7	Hart Beat	Yes
0	8 ~ 15	Thermal Capacity Remaining	Yes
1	0 ~ 15	Load Red Phase	Yes
2	0 ~ 15	Load White Phase	Yes
3	0 ~ 15	Load Blue Phase	Yes
4	0 ~ 15	Phase Voltage Red Phase	Yes
5	0 ~ 15	Phase Voltage White Phase	Yes
6	0 ~ 15	Phase Voltage Blue Phase	Yes
7	0 ~ 15	Load Sum	Yes
8	0 ~ 15	Line Voltage	Yes
9	0 ~ 15	Earth Leakage Level	Yes
10	0 ~ 7	Voltage Symmetry Level	Yes
10	8 ~ 15	Current Unbalance Level	Yes
44	0 ~ 7	Frequency Level	Yes
11	8 ~ 15	Power Factor Level	Yes
12	0 ~ 15	Insulation Level	Yes
40	0 ~ 7	Thermal Curve Selected	Yes
13	8 ~ 15	Maximum Load Current Selected	Yes
4.4	0 ~ 7	RTD 2 Level	Yes
14	8 ~ 15	RTD 1 Level	Yes
15	0 ~ 7	RTD 4 Level	Yes
10	8 ~ 15	RTD 3 Level	Yes
16	0 ~ 7	Analogue Channel 2 In	Yes
10	8 ~ 15	Analogue Channel 1 In	Yes
17	0 ~ 7	Analogue Channel 2 Out	Yes
17	8 ~ 15	Analogue Channel 1 Out	Yes
	0	Alarm Flags A – Voltage Present	Yes
	1	Alarm Flags A – Over Voltage	Yes
	2	Alarm Flags A – Under Voltage	Yes
	3	Alarm Flags A – Voltage Symmetry	Yes
	4	Alarm Flags A – Insulation Lockout	Yes
	5	Alarm Flags A – Low Frequency	Yes
	6	Alarm Flags A – High Frequency	Yes
18	7	Alarm Flags A – Earth Fault	Yes
10	8	Alarm Flags A – In Service	Yes
	9	Alarm Flags A – Earth Leakage	Yes
	10	Alarm Flags A – Over Current	Yes
	11	Alarm Flags A – Running Stall	Yes
	12	Alarm Flags A – Unbalance	Yes
	13	Alarm Flags A – Single Phase	Yes
	14	Alarm Flags A – Minimum Load	Yes
	15	Alarm Flags A – Short Circuit	Yes

Page 15 / 31

Addr	Bit Position	Name	Read Only
	0	Alarm Flags B – RTD 1 Hi	Yes
	1	Alarm Flags B – RTD 1 Lo	Yes
	2	Alarm Flags B – RTD 2 Hi	Yes
	3	Alarm Flags B – RTD 2 Lo	Yes
	4	Alarm Flags B – RTD 3 Hi	Yes
19	5	Alarm Flags B – RTD 3 Lo	Yes
	6	Alarm Flags B – RTD 4 Hi	Yes
	7	Alarm Flags B – RTD 4 Lo	Yes
	8	Alarm Flags B – Vectorial Stall	Yes
	9	Alarm Flags B – Frozen Contact	Yes
	10 ~ 15	Alarm Flags B – Reserved	Yes
	0 ~ 7	Alarm Flags C – Reserved	Yes
	8	Alarm Flags C – Analogue In 1 Hi	Yes
	9	Alarm Flags C – Analogue In 1 Lo	Yes
	10	Alarm Flags C – Analogue In 2 Hi	Yes
20	11	Alarm Flags C – Analogue In 2 Lo	Yes
	12	Alarm Flags C – Analogue Out 1 Hi	Yes
	13	Alarm Flags C – Analogue Out 1 Lo	Yes
	14	Alarm Flags C – Analogue Out 2 Hi	Yes
	15	Alarm Flags C – Analogue Out 2 Lo	Yes
21	0 ~ 15	Reserved	Yes
	0	Trip Flags A – Over Voltage	Yes
	1	Trip Flags A – Under Voltage	Yes
	2	Trip Flags A – Voltage Symmetry	Yes
	3	Trip Flags A – Insulation Lockout	Yes
	4	Trip Flags A – Low Frequency	Yes
	5	Trip Flags A – High Frequency	Yes
	6	Trip Flags A – Earth Fault	Yes
22	7	Trip Flags A – Starts Per Hour	Yes
22	8	Trip Flags A – Over Current	Yes
	9	Trip Flags A – Running Stall	Yes
	10	Trip Flags A – Unbalance	Yes
	11	Trip Flags A – Single Phase	Yes
	12	Trip Flags A – Minimum Load	Yes
	13	Trip Flags A – Short Circuit	Yes
	14	Trip Flags A – Phase Rotation	Yes
	15	Trip Flags A – Earth Leakage	Yes
23	0	Trip Flags B – RTD 1 Hi	Yes
	1	Trip Flags B – RTD 1 Lo	Yes
	2	Trip Flags B – RTD 2 Hi	Yes
	3	Trip Flags B – RTD 2 Lo	Yes
	4	Trip Flags B – RTD 3 Hi	Yes
	5	Trip Flags B – RTD 3 Lo	Yes

Page 16 / 31

Addr	Bit Position	Name	Read Only
	6	Trip Flags B – RTD 4 Hi	Yes
	7	Trip Flags B – RTD 4 Lo	Yes
	8	Trip Flags B – System Failure	Yes
	9	Trip Flags B – Vectorial Stall	Yes
	10	Trip Flags B – Frozen Contact	Yes
	11	Trip Flags B – Execution Fault	Yes
	12	Trip Flags B – Feedback Fault	Yes
	13	Trip Flags B – Unauthorized Current	Yes
	14 ~ 15	Trip Flags B – Reserved	Yes
	0 ~ 7	Reserved	Yes
	8	Trip Flags C – Analogue In 1 Hi	Yes
	9	Trip Flags C – Analogue In 1 Lo	Yes
	10	Trip Flags C – Analogue In 2 Hi	Yes
24	11	Trip Flags C – Analogue In 2 Lo	Yes
	12	Trip Flags C – Analogue Out 1 Hi	Yes
	13	Trip Flags C – Analogue Out 1 Lo	Yes
	14	Trip Flags C – Analogue Out 2 Hi	Yes
	15	Trip Flags C – Analogue Out 2 Lo	Yes
25	0 ~ 15	Reserved	Yes
	0	Warning Flags A – Analogue In 1 Hi	Yes
	1	Warning Flags A – Analogue In 1 Lo	Yes
	2	Warning Flags A – Analogue In 2 Hi	Yes
	3	Warning Flags A – Analogue In 2 Lo	Yes
	4	Warning Flags A – Analogue Out 1 Hi	Yes
	5	Warning Flags A – Analogue Out 1 Lo	Yes
	6	Warning Flags A – Analogue Out 2 Hi	Yes
20	7	Warning Flags A – Analogue Out 2 Lo	Yes
26	8	Warning Flags A – RTD 1 Hi	Yes
	9	Warning Flags A – RTD 1 Lo	Yes
	10	Warning Flags A – RTD 2 Hi	Yes
	11	Warning Flags A – RTD 2 Lo	Yes
	12	Warning Flags A – RTD 3 Hi	Yes
	13	Warning Flags A – RTD 3 Lo	Yes
	14	Warning Flags A – RTD 4 Hi	Yes
	15	Warning Flags A – RTD 4 Lo	Yes
27	0 ~ 15	Reserved	Yes
28	0	Logic Flags A – Timer A Output	Yes
	1	Logic Flags A – Timer B Output	Yes
	2	Logic Flags A – Real Time Clock Output	Yes
	3	Logic Flags A – Relay 1 Output	Yes
	4	Logic Flags A – Relay 2 Output	Yes
	5	Logic Flags A – Relay 3 Output	Yes
	6	Logic Flags A – Relay 4 Output	Yes

Page 17 / 31

Addr	Bit Position	Name	Read Only
	7	Logic Flags A – Counter A Output	Yes
	8	Logic Flags A – Logic Function 1 Output	Yes
	9	Logic Flags A – Logic Function 2 Output	Yes
	10	Logic Flags A – Logic Function 3 Output	Yes
	11	Logic Flags A – Logic Function 4 Output	Yes
	12	Logic Flags A – Logic Function 5 Output	Yes
	13	Logic Flags A – Logic Function 6 Output	Yes
	14	Logic Flags A – Simulation Active	Yes
	15	Logic Flags A – Counter B Output	Yes
	0	Logic Flags B – Starter Output 1	Yes
	1	Logic Flags B – Starter Output 2	Yes
	2	Logic Flags B – Starter Output 3	Yes
	3	Logic Flags B – Starter Output 4	Yes
	4	Logic Flags B – Starter Output 5	Yes
	5	Logic Flags B – Reserved	Yes
	6	Logic Flags B – Local Selection Bit Isb.	Yes
20	7	Logic Flags B – Local Selection Bit msb	Yes
29	8	Logic Flags B – Field Input 1	Yes
	9	Logic Flags B – Field Input 2	Yes
	10	Logic Flags B – Field Input 3	Yes
	11	Logic Flags B – Field Input 4	Yes
	12	Logic Flags B – Field Input 5	Yes
	13	Logic Flags B – Field Input 6	Yes
	14	Logic Flags B – Field Input 7	Yes
	15	Logic Flags B – Reserved	Yes
	0	Logic Flags C – PLC Input Bit 8	Yes
	1	Logic Flags C – PLC Input Bit 9	Yes
	2	Logic Flags C – PLC Input Bit 10	Yes
	3	Logic Flags C – PLC Input Bit 11	Yes
	4	Logic Flags C – PLC Input Bit 12	Yes
	5	Logic Flags C – PLC Input Bit 13	Yes
	6	Logic Flags C – PLC Input Bit 14	Yes
30	7	Logic Flags C – PLC Input Bit 15	Yes
30	8	Logic Flags C – PLC Input Bit 0	Yes
	9	Logic Flags C – PLC Input Bit 1	Yes
	10	Logic Flags C – PLC Input Bit 2	Yes
	11	Logic Flags C – PLC Input Bit 3	Yes
	12	Logic Flags C – PLC Input Bit 4	Yes
	13	Logic Flags C – PLC Input Bit 5	Yes
	14	Logic Flags C – PLC Input Bit 6	Yes
	15	Logic Flags C – PLC Input Bit 7	Yes
31	0	Logic Flags D – Pre Start Warning Signal	Yes
	1	Logic Flags D – DC Break Active	Yes

Page 18 / 31

Addr	Bit Position	Name	Read Only
	2	Logic Flags D – Transition Active	Yes
	3	Logic Flags D – Backspin Active	Yes
	4	Logic Flags D – Reserved	Yes
	5	Logic Flags D – Latch Output B	Yes
	6	Logic Flags D – Reserved	Yes
	7	Logic Flags D – TC Warning Level	Yes
	8	Logic Flags D – Timer A Pulse Output	Yes
	9	Logic Flags D – Timer B Pulse Output	Yes
	10	Logic Flags D – Status Reporter Output	Yes
	11	Logic Flags D – Latch Output A	Yes
	12	Logic Flags D – Relay 5	Yes
	13	Logic Flags D – Relay 6	Yes
	14	Logic Flags D – Relay 7	Yes
	15	Logic Flags D – Relay 8	Yes
	0 ~ 7	Reserved	Yes
	8	Logic Flags E – Field Input 8	Yes
	9	Logic Flags E – Field Input 9	Yes
	10	Logic Flags E – Field Input 10	Yes
32	11	Logic Flags E – Field Input 11	Yes
	12	Logic Flags E – Field Input 12	Yes
	13	Logic Flags E – Field Input 13	Yes
	14	Logic Flags E – Field Input 14	Yes
	15	Logic Flags E – Field Input 15	Yes
33	0 ~ 15	Reserved	Yes
	0 ~ 7	Counter B	Yes
34	8 ~ 15	Counter A	Yes
35	0 ~ 15	Reserved	Yes
36	0 ~ 15	Start Up Counter	Yes
37	0 ~ 15	Trip Counter	Yes
38	0 ~ 15	Motor Running Hour Counter	Yes
39	0 ~ 15	Load Running Hour Counter	Yes
40	0 ~ 15	Relay On Hour Counter	Yes
41	0 ~ 15	Active Power Used	Yes
42	0 ~ 15	Reactive Power Used	Yes
40	0 ~ 7	Start Up Date - Month	Yes
43	8 ~ 15	Start Up Date – Year	Yes
4.4	0 ~ 7	Reserved	Yes
44	8 ~ 15	Start Up Date – Day	Yes
45	0 ~ 7	Start Up Date – Minutes	Yes
45	8 ~ 15	Start Up Date – Hours	Yes
10	0 ~ 7	Real Time Clock – Month	Yes
46	8 ~ 15	Real Time Clock – Year	Yes
47	0 ~ 7	Reserved	Yes

Page 19 / 31

Addr	Bit Position	Name	Read Only
	8 ~ 15	Real Time Clock – Day	Yes
48	0 ~ 7	Real Time Clock – Minutes	Yes
40	8 ~ 15	Real Time Clock – Hours	Yes

2.3 Listen mode only

Writing to address 0 will allow the NewCode Modbus unit to listen to the message but not to reply to the message. This allows the Modbus master to write to the same register across all the Modbus slaves.

2.2.5 Function Flag Table 1

It is signals that can be routed to the inputs of the logic functions, timers, counters, status reporter, latch, starter control and relays.

Name
Constant Zero
Constant One
In Service Flag
Voltage Present Flag
Over Current Alarm Flag
Short Circuit Alarm Flag
Running Stall Alarm Flag
Unbalance Alarm Flag
Single Phase Alarm Flag
Earth Fault Alarm Flag
Earth Leakage Alarm Flag
Minimum Load Alarm Flag
Over Voltage Alarm Flag
Under Voltage Alarm Flag
Voltage Symmetric Alarm Flag
High Frequency Alarm Flag
Low Frequency Alarm Flag
Isolation Lockout Alarm Flag
Frozen Contact Alarm Flag
Over Current Trip Flag
Short Circuit Trip Flag
Running Stall Trip Flag
Unbalance Trip Flag
Single Phase Trip Flag
Earth Fault Trip Flag
Earth Leakage Trip Flag
Minimum Load Trip Flag
Over Voltage Trip Flag
Under Voltage Trip Flag
Voltage Symmetric Trip Flag
High Frequency Trip Flag
Low Frequency Trip Flag

Value	Name
32	Insulation Lockout Trip Flag
33	Phase Rotation Trip Flag
34	Starts Per Hour Trip Flag
35	Frozen Contact Trip Flag
36	Trip Flag
37	Timer A Output
38	Inverted Timer A Output
39	Timer A Pulsed Output
40	Inverted Timer A Pulsed Output
41	Timer B Output
42	Inverted Timer B Output
43	Timer B Pulsed Output
44	Inverted Timer B Pulsed Output
45	RTC Output
46	Inverted RTC Output
47	Counter A Output
48	Inverted Counter A Output
49	Counter B Output
50	Inverted Counter B Output
51	Logical Function 1 Output
52	Inverted Logical Function 1 Output
53	Logical Function 2 Output
54	Inverted Logical Function 2 Output
55	Logical Function 3 Output
56	Inverted Logical Function 3 Output
57	Logical Function 4 Output
58	Inverted Logical Function 4 Output
59	Logical Function 5 Output
60	Inverted Logical Function 5 Output
61	Logical Function 6 Output
62	Inverted Logical Function 6 Output
63	Field Input 1
64	Field Input 2
65	Field Input 3
66	Field Input 4
67	Field Input 5
68	Field Input 6

Page 23 / 31

Value	Name	
69	Field Input 7	
70	Field Input 8	
71	Field Input 9	
72	Field Input 10	
73	Field Input 11	
74	Field Input 12	
75	Field Input 13	
76	Field Input 14	
77	Field Input 15	
78	PLC Input Bit 1	
79	PLC Input Bit 2	
80	PLC Input Bit 3	
81	PLC Input Bit 4	
82	PLC Input Bit 5	
83	PLC Input Bit 6	
84	PLC Input Bit 7	
85	PLC Input Bit 8	
86	PLC Input Bit 9	
87	PLC Input Bit 10	
88	PLC Input Bit 11	
89	PLC Input Bit 12	
90	PLC Input Bit 13	
91	PLC Input Bit 14	
92	PLC Input Bit 15	
93	PLC Input Bit 16	
94	Restart Flag	
95	Status Reporter Output	
96	Latch A Output	
97	Latch B Output	
98	Pulse Generator Output	
99	TC Warning Alarm	
100	Execution Trip flag	
101	Feedback trip flag	
102	Unauthorized current trip flag	
103	System failure trip flag	
104	RTD 1 high warning flag	
105	RTD 1 high alarm flag	

Page 24 / 31

Value	Name
106	RTD 1 high trip flag
107	RTD 1 low warning flag
108	RTD 1 low alarm flag
109	RTD 1 low trip flag
110	RTD 2 high warning flag
111	RTD 2 high alarm flag
112	RTD 2 high trip flag
113	RTD 2 low warning flag
114	RTD 2 low alarm flag
115	RTD 2 low trip flag
116	RTD 3 high warning flag
117	RTD 3 high alarm flag
118	RTD 3 high trip flag
119	RTD 3 low warning flag
120	RTD 3 low alarm flag
121	RTD 3 low trip flag
122	RTD 4 high warning flag
123	RTD 4 high alarm flag
124	RTD 4 high trip flag
125	RTD 4 low warning flag
126	RTD 4 low alarm flag
127	RTD 4 low trip flag
128	Analogue In 1 high warning flag
129	Analogue In 1 high alarm flag
130	Analogue In 1 high trip flag
131	Analogue In 1 low warning flag
132	Analogue In 1 low alarm flag
133	Analogue In 1 low trip flag
134	Analogue In 2 high warning flag
135	Analogue In 2 high alarm flag
136	Analogue In 2 high trip flag
137	Analogue In 2 low warning flag
138	Analogue In 2 low alarm flag
139	Analogue In 2 low trip flag
140	Analogue Out 1 high warning flag
141	Analogue Out 1 high alarm flag
142	Analogue Out 1 high trip flag

Page 25 / 31

Value	Name
143	Analogue Out 1 low warning flag
144	Analogue Out 1 low alarm flag
145	Analogue Out 1 low trip flag
146	Analogue Out 2 high warning flag
147	Analogue Out 2 high alarm flag
148	Analogue Out 2 high trip flag
149	Analogue Out 2 low warning flag
150	Analogue Out 2 low alarm flag
151	Analogue Out 2 low trip flag
180	Starter Output 1
181	Starter Output 2
182	Starter Output 3
183	Starter Output 4
184	Starter Output 5
185	Pre Warning Flag
186	DC Break Flag
187	Transition Flag
188	Back Spin Flag

2.2.6 Function Flag Table 2

It is signals that can be routed to the inputs of the local and remote selection.

Value	Name
0	Constant Zero
1	Constant One
2	Field Input 1
3	Field Input 2
4	Field Input 3
5	Field Input 4
6	Field Input 5
7	Field Input 6
8	Field Input 7
9	Field Input 8
10	Field Input 9
11	Field Input 10
12	Field Input 11

Page 26 / 31

Value	Name
13	Field Input 12
14	Field Input 13
15	Field Input 14
16	Field Input 15
17	PLC Input Bit 1
18	PLC Input Bit 2
19	PLC Input Bit 3
20	PLC Input Bit 4
21	PLC Input Bit 5
22	PLC Input Bit 6
23	PLC Input Bit 7
24	PLC Input Bit 8
25	PLC Input Bit 9
26	PLC Input Bit 10
27	PLC Input Bit 11
28	PLC Input Bit 12
29	PLC Input Bit 13
30	PLC Input Bit 14
31	PLC Input Bit 15
32	PLC Input Bit 16

2.2.7 Function Flag Table 3

It is signals that can be routed to the inputs of the starter logic starts, stops and interlock.

Value	Name
0	Constant Zero
1	Constant One
2	In Service Flag
3	Timer A Output
4	Inverted Timer A Output
5	Timer A Pulsed Output
6	Inverted Timer A Pulsed Output
7	Timer B Output
8	Inverted Timer B Output
9	Timer B Pulsed Output
10	Inverted Timer B Pulsed Output
11	RTC Output
12	Inverted RTC Output
13	Counter A Output
14	Inverted Counter A Output
15	Counter B Output
16	Inverted Counter B Output
17	Logical Function 1 Output
18	Inverted Logical Function 1 Output
19	Logical Function 2 Output
20	Inverted Logical Function 2 Output
21	Logical Function 3 Output
22	Inverted Logical Function 3 Output
23	Logical Function 4 Output
24	Inverted Logical Function 4 Output
25	Logical Function 5 Output
26	Inverted Logical Function 5 Output
27	Logical Function 6 Output
28	Inverted Logical Function 6 Output
29	Field Input 1
30	Field Input 2
31	Field Input 3

Page 28 / 31

Value	Name
32	Field Input 4
33	Field Input 5
34	Field Input 6
35	Field Input 7
36	Field Input 8
37	Field Input 9
38	Field Input 10
39	Field Input 11
40	Field Input 12
41	Field Input 13
42	Field Input 14
43	Field Input 15
44	PLC Input Bit 1
45	PLC Input Bit 2
46	PLC Input Bit 3
47	PLC Input Bit 4
48	PLC Input Bit 5
49	PLC Input Bit 6
50	PLC Input Bit 7
51	PLC Input Bit 8
52	PLC Input Bit 9
53	PLC Input Bit 10
54	PLC Input Bit 11
55	PLC Input Bit 12
56	PLC Input Bit 13
57	PLC Input Bit 14
58	PLC Input Bit 15
59	PLC Input Bit 16

3. DEFINITIONS AND TERMINOLOGY

EEPROM	Electrical Erasable Programmable Read Only Memory (non volatile)
Flash memory	Similar to EEPROM (only block write - non volatile)
GSD	Generic station description file.
In service	When the current rise above 10% of full load current it is assumed that the motor is running.
Intrinsic safe	It is a protection technique for safe operation of electronic equipment in explosive atmospheres. The concept was developed for safe operation of process control instrumentation in hazardous areas. The theory behind intrinsic safety is to ensure that the available electrical and thermal energy in the system is always low enough that ignition of the hazardous atmosphere cannot occur.
LED	Light emitting diode (It is used as visual indicators)
Motor protection relay	It is an intelligent (computerized) unit monitoring an electric motor's current and voltage supply. In case of overloading, phase lost etc. the power supply of the motor will be interrupted by the protection relay to prevent damage to the motor.
PLC	Programmable Logic Controller.

4. OPERATING INSTRUCTIONS

4.1 Getting Started

Rev 1B-01 - 21 January 2014

4.1.1 Setting Up The NC-MK1-Modbus

Following must be done via the NewCode front-end:

- Connect the NewCode front-end to the relay.
- Select the communication device as modbus.
- Set the address of the relay.
- Select the correct baudrate.
- Select the time out period to reset PLC inputs.
 - 0 seconds will lock the PLC bits after a communication failure.
 - 1 to 255 seconds will change the PLC bits back to zeros.
- Transmit settings to relay.

4.2 Monitoring Diagnostic On Front-End

The front-end will shows the following diagnostics under the "Statistics" tab:

- 1. Modbus module present.
- 2. Cyclic Time Time intervals that a valid message is received.
- 3. Longest Cycle Time Longest Rx interval.
- 4. Listen Mode Is listen mode active.
- 5. Message Counter Amount of messages received.
- 6. CRC counter Amount of messages with a CRC problem.
- 7. Revision Firmware revision of the Modbus module.

4.3 DB 9 Connection

On the DB9 pins Pin 2 must be connected to A and Pin 9 to B.

4.4 Synchronizing The RTC

Following steps can be taken to synchronize the RTC of the modbus slave units:

- Through out the process write to address 0 to talk to all the slaves.
- Unlock the holding registers by writing 0x5AA5 to holding register address 2.
- Then write the new RTC time to holding register address 103 to 105.

5. DIAGRAMS

5.1 Block Diagram of NC-MK1-Modbus

--00000--

