

ECAL time performance with di-electron events: follow up to questions

T.N. Ebai, G. Franzoni, Y. Kubota, R. Rusack, J. Turkewitz Uni. Of Minnesota

May 8th, 2012

Follow up

- Questions received during the Apr 26th talk:
 - **Q1** How much does the crossing angle affect the relationship $\sigma(t_{coll}) = \sigma(t_{7})/c$ (slide 8)? [P. Meridiani]
 - A1 negligibly for the CMS crossing angle
 - Q2 Can the unexpected EB-coherent time oscillation (slide 9) be measured also from the EB-EE di-electrons? [M. Pieri]
 - A2 yes; measurement from EB-EE
 - Q3 The precision of (t_1-t_2) varies with the signal amplitude of the two seeds; can this be the origin of the non-Gaussian tails in the EB distribution (slide 7)? [S. Ledovskoy]
 - A3 partly; dependence of the resolution on 1) signal amplitude and on 2) different level of time stability across the ECAL supermodules, indicate that in the inclusive di-electron samples there are subsets with different expected $\sigma(t_1-t_2)$

Q1 impact of the crossing angle

- For head-on colliding bunches, analytical relationship (slide 18):
 - $\sigma(t_{coll}) = \sigma(t_{7})/c \quad (i)$
- But there's a crossing angle at CMS: 300 μrad
 - Modifies collisions' space and
- By how much does the crossing angle alter (i)?
 - Negligibly, up to 1000 μrad
- Ansewr1: expression (i) is a good approximation to estimate $\sigma(t_{coll})$ from the size of luminous region

Q2 EB-coherent oscillation

- The EB-coherent time oscillation measured from di-electrons with both 'legs' in the barrel (slide 19), can be measured also using mixed endcap-barrel candidates, under the assumption that there's no such oscillation in EE
- For EB-EE electron pairs:
 - $\sigma^2_{EBEE}(t_1 t_2) = precision^2(EB) + precision^2(EE) + \sigma^2 (coherent-EB)$
 - $(414 \text{ ps})^2 = (282 \text{ ps})^2 + (190 \text{ ps})^2 + \sigma^2 \text{(coherent-EB)}$
 - $\rightarrow \sigma^2$ (coherent-EB) = 237 ps
- Answer2: EB-coherent time oscillation measured also with EB-EE (240 ps) candidates, in agreement with EB-EB (250 ps)

Q3 precision vs amplitude

- Amplitude dependence of time resolution parameterized in <u>CRAFT paper</u> and <u>AN2010/012</u>:
 - sum in quadrature of a noise and a constant term
- Adopt that scheme and parameterize the precision on the time difference of a di-electron system with
 - $-A_{1/2} := ADC$ counts of seeds

$$A_{eff} = A_1 A_2 \sqrt{A_1^2 + A_2^2}$$
 $\sigma^2(t_2 - t_1) = \left(\frac{N\sigma_n}{A_{eff}}\right)^2 + 2C^2$

 Bin available di-electrons pairs according to A_{eff} and quantify variation in precision across the bins

Q3 precision vs amplitude

- Noise term drawn for reference according to <u>AN2010/012</u>
- Marked A-dependence in the barrell
 - Plateau is √2 X constant term
- Less dependence for endcaps (larger constant term)

Q3 precision vs amplitude

- Significant decrease in the width of the distribution core, increasing \mathbf{A}_{eff}
- Excess in the tails still partly visible

Q3 regional dependence of precision

- Tof-corrected $\sigma(t_{seed})$ varies significantly across supermodules, 310 \rightarrow 398 ps:
 - Instability specific to sub-regions occurring within each IOV of the time calibration
- Precision of dielectron time
 difference is
 affected by the
 combination of the
 electrons' position
 in EB

Q3 regional dependence of precision

- Regional variations of the precision on (t₁-t₂)
 - 239 / 303 ps when restricting to the 5 most/least stable supermodules
- Excess in the tails still visible
 - Instabilities on a smaller granularity than supermodule, e.g. at the level of token ring or 5x5?

Q3 conclusion

- Answer3 dependence of precision on:
 - signal amplitude
 - varying stability of ECAL supermodules indicates two independent sub-sets with different levels of precision in the inclusive di-electron sample

ECAL time performance with di-electron events

T.N. Ebai, G. Franzoni, Y. Kubota, R. Rusack, J. Turkewitz Uni. Of Minnesota

Acknowledgements: E. Vlassov, ITEP/CERN

ECAL DPG April 26th, 2012

Introduction and outline

- Key messages for the ECAL paper, sec. 3.4:
 - Synchronization of readout kept in 2011 stable < 2 ns to assuring no impact on amplitude reconstruction with weights
 - Monitoring and hardware+offline <u>calibration [1]</u> → not discussed today
 - Qualify width of the RECO time:
 - Relevant for time-based signal cleaning
 - reconstructed time of ele1/ele2 from Z decays → 'absolute time'
 - Qualify resolution of RECO time:
 - Relevant for <a>EXO searches <a>[2][3] (and Higgs vertex?)
 - − time difference of ele1-ele2 from Z decays
 → 'time difference'

Today:

- Extend the analysis presented at ECAL DPG of Sept 15th, 11 [4] to the whole 2011 data set and whole ECAL
- Propose 2 sets of plots for ECAL paper and address questions emerged in the first paper review

Definitions and geometry

- ECAL reco time defined to be 0 on average for collisions developing at nominal IP
- Finite size of the luminous region gives raise to:
 - difference from nominal time of flight:
 - → potential physics cases e.g. with displaced photon production (DPG Jan)
 - → Hgg vertices (talk HIG January [5] 1.5% efficiency rel. gain)
 - Smearing to be removed to estimate performance
 - the **crossing** of the bunches has a **finite duratio**n → smearing of collision time

Definitions and strategy

- Time of flight from nominal collision point to ECAL absorbed into the definition of the ECAL time calibration
 - $T_{\text{shower}} = t_{\text{coll}} + t_{\text{o.f.}}$ - $T_{\text{o.f.}} = t_{\text{o.f., nominal}} + \delta t_{\text{o.f.}}$
 - $T_{\text{shower}} = t_{\text{coll}} + (t_{\text{o.f.,nominal}} + \delta t_{\text{o.f.}})$ - $T_{\text{shower}} - t_{\text{o.f., nominal}} =: t_{\text{RECO}}$
 - $t_{RECO} = t_{coll} + \delta t_{o.f.}$
- To study performance of reconstruction, one can use two electrons originating from the same vertex and study the difference between:
 - $(t_{\text{seed}}^2 \delta t_{\text{o.f.}}^2) (t_{\text{seed}}^1 \delta t_{\text{o.f.}}^1)$

Dataset and selection

- /DoubleElectron/Run2011X-16Jan2012-v1/AOD,
 the full 2011 dataset 4.7 fb⁻¹
- Di-electron selection:
 - Electron WP85
 - $E_{T} > 10 \text{ GeV}$
 - $|m(e_1,e_2) m_z| < 20 \text{ GeV/c}^2$
- Time estimator:
 - In the paper \rightarrow this analysis, \mathbf{t}_{seed} used as estimator for \mathbf{t}_{RECO}
 - Average energy 29/67 GeV in EB/EE
 - Similar studies conducted for second-amplitude crystal and error-weighted combination of crystals in supercluster (see <u>Sept 15th</u>, <u>11 [4]</u>)

- Width, measured with σ_{eff} , ascribed to:
 - TOF variations
 - collision time
 - single crystal time error

	σ _{eff} (t _{seed}) [ps] abs time
EB	376
EE	356

TOF-corrected (t₁-t₂)

- TOF and t_{coll} removed
- → choose (t₁-t₂)/√2 as estimator of single crystal time resolution

	σ _{eff} (t _{seed}) [ps] abs time	$\sigma_{\rm eff}$ (t_1 - t_2)/V2 [ps] single precison
EB	376	190
EE	356	282

Closure test: measure $\sigma(t_{coll})$

- Width of the luminous region: 5.5 cm
- Longitudinal density of the bunches Gaussian

$$\rightarrow \sigma(t_{coll}) = \sigma(t_{z})/c = 175 \text{ ps}$$

- Measure $\sigma(t_{coll})$ using:
 - TOF-corrected $(t_1+t_2)/2$
 - take into account single measurement precision
 - $\sigma^2(t_{coll}) = \sigma^2((t_1+t_2)/2) [\sigma^2(t_1-t_2)]/4$
- and assess consistency, within the errors, of time-based measurement with the measurement from pure geometry

$\sigma(t_{coll})$ from $(t_1+t_2)/2$

- Extra time oscillation coherent in EB
 - 250 ps in quadrature
- Closure for EE
- → instrumental origin

	σ _{eff} (t _{seed}) [ps] abs time	σ _{eff} (t ₁ -t ₂)/V2 [ps] single precison	$\sigma_{\rm eff}((t_1+t_2)/2)$ [ps]	σ _{eff} (t _{1coll}) [ps]
EB	376	190	330	301
EE	356	282	264	169

$\sigma(t_{coll})$ from $(t_1+t_2)/2$ (ii)

- Could the TOF corrections be the problem?
 - Repeat exe. splitting collisions near/far to/from IP
 - |z|< 2 cm
 - z<-5 , z>5

	σ _{eff} (t _{seed}) [ps] abs time	σ _{eff} (t ₁ -t ₂)/v2 [ps] single precison	$\sigma_{\text{eff}}((t_1+t_2)/2)$ [ps]	σ _{eff} (t _{1coll}) [ps]
ЕВ	376	190	330	301
EB z<-5	390	190	325	298
EB z>5	366	189	322	296
EB z <2	390	190	335	307
EE	356	282	264	169
EB z<-5	386	289	269	175
EB z>5	381	283	258	162
EB z <2	349	283	262.	169

 $-\sigma(t_{coll})$ does not depend on vertex location

$\sigma(t_{coll})$ from $(t_1+t_2)/2$ (iii)

- Does $\sigma(t_{coll})$ depend on η in EB?
 - Repeat exe. splitting in the four module

	σ _{eff} (t _{seed}) [ps] abs time	σ _{eff} (t ₁ -t ₂)/√2 [ps] single precison	σ _{eff} ((t ₁ +t ₂)/2) [ps]	σ _{eff} (t _{1coll}) [ps]
EB	376	190	330	301
EB mod1	356	258	323	296
EB mod2	366	263	326	298
EB mod3	385	267	331	303
EB mod4	392	277	337	307
EE	356	282	264	169

- No significant η -dependence within EB
- Marked difference between mod4 and EE
 - Origin unclear
 - Evgueni suggests the possibility that the two TTCex modules may have different stabilities

Conclusions

- For the ECAL paper, sec. 3.4:
 - width of the RECO time
 - Relevant for time-based signal cleaning
 - resolution of RECO time
 - Relevant for <u>EXO searches [2][3]</u>
 (and Higgs vertex?)

	σ _{eff} (t _{seed}) [ps] abs time	$\sigma_{\rm eff}$ (t_1 - t_2)/ $\sqrt{2}$ [ps] single precison
EB	376	190
EE	356	282

- Consolidation of results: measurement of (t_{coll}) as closure test:
 - Matches expectations in EE
 - Unexpected EB-coherent oscillation 250 ps (in quadrature)

•BACK UP

$\sigma(t_{coll})$ from TOF-corr. $(t_1+t_2)/2$ (II)

- Repeat exercise splitting collisions near/far to the IP
 - |z| < 2 cm
 - z<-5 , z>5

Evgueni's suggestion about EB

- "It is difficult to say where is instability because CMS electronics was not designed to work in sub-nanosecond range."
- "But I believe the most probably the difference in TTCex modules. We have one TTCex module for barrel and one for endcap."
- "I can try to measure the variation in time between the outputs
 of that modules if it is important, but I don't think it can be
 improved, because such variations are below the maximal values
 in technical specification of modules."

- Width, measured with σ_{eff} , ascribed to:
 - TOF variations
 - collision time
 - single crystal time error

	σ _{eff} (t _{seed}) [ps] abs time
EB	376
EE	356

TOF-corrected (t₁-t₂)

- TOF and t_{coll} removed
- → choose (t₁-t₂)/√2 as estimator of single crystal time resolution

	σ _{eff} (t _{seed}) [ps] abs time	$\sigma_{\rm eff}$ (t_1 - t_2)/V2 [ps] single precison
EB	376	190
EE	356	282