CS221 Section 7 Bayesian Networks

Spring 2018

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence

Bayesian Networks

Definition: Bayesian network

Let $X = (X_1, \dots, X_n)$ be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

-

Bayesian Networks

A Bayesian network represents a joint probability distribution.

A Bayesian network represents a joint probability distribution.

P(F=f, C=c, A=a, V=v, S=s, C=c, I=i) = p(f)p(c)p(a)p(v|a)p(s|f, c)p(h|c,a)p(i|a)

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence

$$P(F=1|V=1) = ?$$

$$P(F=1|V=1) = ?$$

1. Remove (marginalize) variables not ancestors of Q or E.

$$P(F=1|V=1) = ?$$

2. Convert Bayesian network to factor graph.

$$P(F=1|V=1) = ?$$

3. Condition on E = e. 3.1 shade nodes

$$P(F=1|V=1) = ?$$

3. Condition on E = e. 3.2 disconnect

$$P(F=1|V=1) = ?$$

4. Remove (marginalize) nodes disconnected from Q.

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)
0	0	0.70
0	1	0.30
1	0	0.20
1	1	0.80

$$P(F=f|V=1) \propto p(f) p(v=1|f)$$

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)	
0	0	0.70	
0	1	0.30	
1	0	0.20	
1	1	0.80	

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0 \end{cases}$$

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)	
0	0	0.70	
0	1	0.30	
1	0	0.20	
1	1	0.80	

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0\\ \alpha*0.80, & f=1 \end{cases}$$

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)	
0	0	0.70	
0	1	0.30	
1	0	0.20	
1	1	0.80	

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0\\ \alpha*0.80, & f=1 \end{cases}$$

$$P(F=1|V=1) = \frac{\alpha * 0.80}{\alpha * 0.80 + (1-\alpha) * 0.30}$$

$$P(F=1|S=1) = ?$$

$$P(F=1|S=1) = ?$$

1. Remove (marginalize) variables not ancestors of Q or E.

$$P(F=1|S=1) = ?$$

2. Convert Bayesian network to factor graph.

$$P(F=1|S=1) = ?$$

3. Condition on E = e. 3.1 shade nodes

$$P(F=1|S=1) = ?$$

$$P(F=1|S=1) = ?$$

4. Remove (marginalize) nodes disconnected from Q.

$$P(F=1|S=1) = ?$$

$$P(F=1|S=1) = ?$$

$$p(s=1|f)$$

$$= \sum_{c} p(c)p(s=1|f,c)$$

$$= p(c=0)p(s=1|f,c=0) + p(c=1)p(s=1|f,c=1)$$

f	p(s=1,f)	
0	?	
1	?	

5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle

f	p(f)
0	1-α
1	α

filtering).

	С	p(c)
per	the 60. aga	in. If Le Te still appears, you may
	1	β

S	f	С	p(s f,c)
0	0	0	1.00
1	0	0	0
0	1	0	0.30
1	1	0	0.70
0	0	1	0.25
1	0	1	0.75
0	1	1	0.10
1	1	1	0.90

f	p(s=1,f)
0	β*0.75
1	?

$$P(F=1|S=1) = ?$$

$$p(s=1|f)$$

$$= \sum_{c} p(c)p(s=1|f,c)$$

$$= p(c=0)p(s=1|f,c=0) + p(c=1)p(s=1|f,c=1)$$

$$= \begin{cases} (1-\beta)*0 + \beta*0.75, & f=0\\ (1-\beta)*0.70 + \beta*0.9, & f=1 \end{cases}$$

f	p(f)
0	1-α
1	α

С	p(c)
0	1-β
1	β

S	f	С	p(s f,c)
0	0	0	1.00
1	0	0	0
0	1	0	0.30
1	1	0	0.70
0	0	1	0.25
1	0	1	0.75
0	1	1	0.10
1	1	1	0.90

f	p(s=1,f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

$$\propto p(f)p(s=1|f)$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

$$P(F = f \mid S = 1)$$

$$\propto p(f)p(s=1|f)$$

$$= \begin{cases} (1-\alpha)\beta * 0.75, & f = 0 \\ \alpha((1-\beta)* 0.70 + \beta * 0.9), & f = 1 \end{cases}$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	(1-β)*0.7+β*0.9

$$P(F=1|S=1) = ?$$

$$P(F = f \mid S = 1)$$

$$\propto p(f)p(s=1|f)$$

$$= \begin{cases} (1-\alpha)\beta * 0.75, & f = 0 \\ \alpha((1-\beta)* 0.70 + \beta * 0.9), & f = 1 \end{cases}$$

$$P(F=1 | S=1) = \frac{p(f=1)p(s=1 | f=1)}{p(f=1)p(s=1 | f=1) + p(f=1)p(s=1 | f=1)}$$
$$= \frac{\alpha((1-\beta)*0.70 + \beta*0.9)}{(1-\alpha)\beta*0.75 + \alpha((1-\beta)*0.70 + \beta*0.9)},$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	(1-β)*0.7+β*0.9

Probabilistic Queries – Cookbook

Given a query P(Q|E=e)

- 1. Remove (marginalize) variables not ancestors of Q or E.
- 2. Convert Bayesian network to factor graph.
- Condition (shade nodes / disconnect) on E = e.
- 4. Remove (marginalize) nodes disconnected from Q.
- 5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle filtering).

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence

Conditional Independence

Definition: conditional independence-

- Let A, B, C be a partitioning of the variables.
- We say A and B are conditionally independent given C if conditioning on C produces a graph in which A and B are independent.
- In symbols: $A \perp \!\!\! \perp B \mid C$.

How to determine if A and B are independent, given C?

- If every undirected path from X to Y is blocked by C, then X and Y are conditional independent given C
- Paths between X and Y are blocked if:
 - X -> C -> Y
 - X <- C -> Y

Conditional Independence

 $C \perp A \mid W$? Yes $C \perp F \mid W$?

Explaining Away!

Patterns

Questions?