Charformer: Fast Character Transformers via Gradient-based Subword Tokenization

Орлов Александр Солодуха Мария Княжевский Владимир

Charformer

- Трансформер с токенайзером на основе градиентов
- Пайплайн обычного токенайзера
 - 1. Нормализация
 - 2. Пре-токенизация
 - 3. Токенизация (предобученная модель)
 - 4. Постпроцессинг (токены)

Проблемы обычных токенайзеров

- Разделение на токены по частоте, без учета лексики
- Некоторые языки не имеют разделения на слова
- Проблема мультиязычных моделей разные языки имеют разное количество токенов
- Проблема с файнтюнингом распределение слов на обучении может отличаться

Charformer

- Charformer пробует решить эти проблемы
- Работает с байтами (символами)
- Разделяет слова с помощью блоков подслов-кандидатов
- Выучивает интерпретируемые подслова
- Вычислительно эффективен

Gradient-based subword tokenizer (GBST)

- 1. Текст
- 2. Байты
- 3. Эмбеддинги (фиксированный словарь размера 256)
- 4. Матрица $X \in \mathbb{R}^{L imes d}$, где L кол-во байтов, d размерность эмбеддинга

Основная идея: научить модель выполнять сегментацию данных по подсловам, выбирая по ней наиболее подходящий для всех символов блок подслов

Gradient-based subword tokenizer (GBST)

- Блок подслов
- Функция проекция F (Avg Pooling)
- Объединяем все блоки подслов
- Авторы предлагают брать s равным b
- Считаем X_b для различных b

$$X_{i:i+b} \in \mathbb{R}^{b \times d}$$

$$F: \mathbb{R}^{b \times d} \to \mathbb{R}^d$$

$$X_b = [F(X_{i:i+b}); F(X_{(i+s):(i+s)+b}); \ldots]$$

Проблемы

- 1. В таком пайплайне обучения мы рассматриваем не все возможные подслова
 - Можно уменьшить s, но это заметно увеличит объем вычислений
 - Вместо этого авторы предлагают применить 1D свертку к матрице X
- 2. Мы не учитываем порядок символов
 - При применении свертки мы бонусом получаем учет порядка в функции F

Получение представлений

• Пусть $X_{b,i}\,$ - блок длины b, в который попадает i-ый символ

Тогда введем модель, которая будет оценивать этот блок.	$F_R: \mathbb{R}^d \to \mathbb{R}$
С помощью неё можем оценивать все наши блоки.	$p_{b,i} = F_R(X_{b,i})$
Отсюда можем получить матрицу вероятностей	$P_i = \operatorname{softmax}(p_{1,i}, p_{2,i},, p_{M,i}),$ $P \in \mathbb{R}^{L \times M}$
Также добавим self-attention блок, чтобы учесть вероятности соседних подслов	$\hat{P} = \operatorname{softmax}(PP^T)P$
Наконец получаем новое представление входных данных	$\hat{X} = \sum_{b}^{M} \hat{P}_{b,i} X_{b,i}$

Усечение

• С помощью Avg Pooling получаем векторные представления блоков символов

$$F_D: \mathbb{R}^{L \times d} \to \mathbb{R}^{\frac{L}{d_s} \times d}$$

• В итоге на вход трансформеру мы будем подавать:

$$F_D(\hat{X}), \ \hat{X} = [\hat{X}_1, ..., \hat{X}_L]$$

Пример

- (a) Formation of subword blocks to be scored by F_R . Offsets and/or pre-GBST convolutions not shown.
- (b) Block scores that have been expanded back to length L. Softmax is taken over block scores at each position i to form block weights for constructing latent subword representations.

Figure 2: Illustration of subword block formation and scoring.

Пример

• Далее получившиеся на предыдущей картинке вероятности передаем по построенному пайплайну

$$P_{i} = \operatorname{softmax}(p_{1,i}, p_{2,i}, ..., p_{M,i})$$

$$\hat{P} = \operatorname{softmax}(PP^{T})P$$

$$\hat{X} = \sum_{b}^{M} \hat{P}_{b,i} X_{b,i}$$

Выход GBST

$$F_D(\hat{X})$$

Стандартные английские датасеты

Model	$ \theta $	SST-2	MNLI	QNLI	MRPC	QQP	STSB	COLA	AVG
$BERT_{Base,Subword}$	110M	92.7	84.4/-	88.4	86.7/-	-	-	1-	-
$T5_{Base,Subword}$	220M	92.7	84.2/84.6	90.5	<u>88.9</u> /92.1	91.6/88.7	88.0	53.8	84.3
Byte-level T5 _{Base}	200M	91.6	82.5/82.7	88.7	87.3/91.0	90.9/87.7	84.3	45.1	81.5
Byte-level T5+Conv _{Base}	205M	89.8	81.1/82.5	89.2	83.6/89.2	90.7/87.7	85.0	<u>47.1</u>	81.2
Byte-level T5+LASC _{Base}	205M	90.0	80.0/80.8	87.1	82.8/88.1	89.0/85.4	83.7	25.3	77.0
$CHARFORMER_{Base}$	203M	91.6	82.6/82.7	89.0	87.3/91.1	91.2/88.1	85.3	42.6	81.4
Byte-level T5 _{SBase}	133M	91.2	83.9/83.7	90.9	85.5/89.2	91.1/88.1	85.7	49.3	82.6
$CHARFORMER_{SBase}$	134M	91.5	83.7/ <u>84.4</u>	91.0	<u>87.5/91.4</u>	91.4/88.5	87.3	51.8	83.6

Классификация комментариев с Wiki

Model	Civil Comments	Wiki Comments
$T5_{Base,Subword}$	81.2 / -	91.5 / -
Byte-level T5 $_{Base}$	82.8 / 78.7	93.2 / 75.4
Byte-level T5+LASC _{Base}	82.9 / 78.2	93.0 / 75.0
$CHARFORMER_{Base}$	<u>83.0</u> / <u>78.8</u>	92.7 / 79.7
$CHARFORMER_{SBase}$	83.0 / 78.9	93.5 / 75.5

Классификация больших документов

Model	IMDb	News
$T5_{Base,Subword}$	94.2	93.5
Byte-level T5 $_{Base}$ Byte-level T5+LASC $_{Base}$ CHARFORMER $_{Base}$	91.5 91.1 91.5	93.6 93.5 <u>94.0</u>
$CHARFORMER_{SBase}$	94.4	94.1

Многоязычный перевод текстов

		In-Language Translate-Train-All					Zero-Shot		
Model	$ \theta $	TyDiQA-GoldP	XQuAD	MLQA	XNLI	PAWS-X	XNLI	PAWS-X	
mBERT $_{Base}$ (Subword) mT5 $_{Base}$ (Subword)	179M 582M	77.6/68.0 80.8/70.0	-/- 75.3/59.7	-/- 67.6/48.5	75.9	89.3	65.4 75.4	81.9 86.4	
Byte-level T5 $_{Base}$ Byte-level T5+LASC $_{Base}$ Charformer $_{Base}$	200M 205M 203M	75.6/65.4 70.6/59.7 75.9/ <u>65.6</u>	68.6/54.3 66.8/52.1 70.2/55.9	61.8/44.4 58.8/41.1 62.6/44.9	69.4 67.9 <u>71.1</u>	87.1 84.8 <u>87.2</u>	57.4 55.2 <u>57.6</u>	80.9 79.0 <u>81.6</u>	
$\begin{array}{c} CHARFORMER_{SBase} \\ CHARFORMER_{SBase,LongPT} \end{array}$	134M 134M	79.1/68.8 81.2/71.3	73.6/59.0 74.2/59.8	66.3/48.5 67.2/49.4	72.2 72.8	88.2 88.6	66.6 <u>67.8</u>	85.2 83.7	

Производительность

Модели на основе подслов

Model	Batch Size	L	d_s	$ \theta $	Speed (steps/s)	FLOPS
$mT5_{Base}$ (Subword)	1024	1024	-	582M	1.54	1.3×10^{15}
$CHARFORMER_{SBase}$	1024	2048	2	134M	1.98	4.3×10^{14}
$CHARFORMER_{SBase,LongPT}$	2048	2048	2	134M	1.01	4.3×10^{14}

Производительность

Модели на основе байтов

Model	L	d_s	$ \theta $	Speed (steps/s)	FLOPS	Peak Mem.
T5 _{Base} (Subword)	512	-	220M	9.3	1.1×10^{13}	-
Byte-level T5 _{Base}	1024	1	200M	8.2	2.9×10^{13}	3.09GB
Byte-level T5+LASC _{Base}	1024	4	205M	15	9.9×10^{12}	1.62GB
$CHARFORMER_{Base}$	1024	2	206M	11	1.6×10^{13}	1.95GB
$CHARFORMER_{Base}$	1024	3	203M	15	1.1×10^{13}	1.63GB
$CHARFORMER_{SBase}$	1024	2	134M	14	1.3×10^{13}	1.73GB
$CHARFORMER_{SBase}$	1024	3	134M	20	8.7×10^{12}	1.34GB

Спасибо за внимание!