Departamento de Estatística e Matemática Aplicada da UFC

CC0291- Estatística Não Paramétrica

Lista 10- 01/ 06/2023 Entrega; 15/06/2023

Professor: Maurício Mota

Faça um relatório.

1. Obtenha os estimadores de MV baseado em uma amostra aleatória de tamanho n, X_1, X_2, \dots, X_n de $X \sim N(\mu, \sigma^2)$.

Aplique no caso de: Verificou-se que a quantidade de cinzas contidas no carvão é uma variável aleatória X normalmente distribuída com parâmetros μ e σ^2 . Os dados estão na tabela a seguir. Uma amostra aleatória de tamanho n=250 amostras foi analisada, A notação n_x significa o número de amostras que tinham x por cento de conteúdo de cinzas. Os dados foram extraídos de E.S. Grummel and A.C. Dunningham (1930), British Standards Institution 403,17.

x	n_x	x	n_x	x	n_x	
9,25	1	9,75	0	10,25	2	
10,75	1	$11,\!25$	1	11,75	2	
$12,\!25$	5	12,75	4	13,25	7	
13,75	6	$14,\!25$	13	14,75	14	
$15,\!25$	15	15,75	13	16,25	24	
16,75	15	17,25	19	17,75	23	
$18,\!25$	22	18,75	12	19,25	12	
19,75	7	$20,\!25$	6	20,75	8	
$21,\!25$	6	21,75	4	22,25	2	
22,75	2	23,25	0	23,75	3	
$24,\!25$	0	24,75	0	25,25	1	

Apresente seus estimadores, sua estimativas e sua matriz de variâncias-covariância estimada.

2. Obtenha os estimadores de MV baseado em uma amostra aleatória de tamanho n, X_1, X_2, \dots, X_n de $X \sim Weibulla(a, b) \ a > o, \ b > 0.$

$$f(x) = ab \ x^{b-1} \ e^{-ax^b} \ I_A(x), \ A = (0, \infty).$$

Suponha que para um teste de resistência de um componente metálico 23 amostras (corpos de prova) foram avaliados resultando nos valores:

17,88	28,92	33,00	41,52	42,12	45,60	48,48	51,54	51,96	54,12	55,56	67,80
$68,\!64$	68,64	68,88	84,12	93,12	98,64	$105,\!12$	105,84	127,92	128,04	173,40	

De estudos anteriores admite-se que X, resistência do componente, apresenta aproximadamente uma distribuição de Weibull de parâmetros a e λ .

Apresente seus estimadores, sua estimativas e sua matriz de variâncias-covariância estimada.

3. Obtenha os estimadores de MV baseado em uma amostra aleatória de tamanho n, X_1, X_2, \dots, X_n de $X \sim Gama(r = a > 0, \lambda > 0)$.

$$f(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} I_A(x), \quad A = (0, \infty).$$

Ache um exemplo na Internet que se possa aplicar uma distribuição Gama e apresente seus estimadores, sua estimativas e sua matriz de variâncias-covariância estimada.

4. Bibliografia

- Introduction to Mathematical Statistics. Robert V.Hogg, Joseph W.McKean, Allen T. Caig. Sith Edition, 2005.
- 2. Probability and Statistical Inference Volume 2: Statistical Inference. J.G. Kalbfleisch, J.G. Springer.
- 3. Introduction to the Theory of Statistics. Alexander M. Mood, Franklin A. Graybill & Duane C. Boes. McGraw-Hill International Editions. Third Edition.
- 4. Minicurso: Métodos Computacionais para Inferência com Aplicações em R: Wagner Hugo Bonat; Elias Teixeira Krainski; Paulo Justiniano Ribeiro Jr; Walmes Marques Zeviani.57^a RBras,2012. Complementos online: http://www.leg.ufpr./mcie
- 5. Função fitdistr do R:Pacote MASS.