PROJECT: PREDICTING CHRONIC KIDNEY DISEASE

3 stages of selection

- 1) Stage1 Machine Learning Domain
- 2) Stage2 Supervised Learning
- 3) Stage3 Classification

Project details

- 1) Problem statement: Predicting Chronic Kidney Disease
- 2) Basic information about dataset
 - No of rows in datasat 399
 - No of columns in dataset 28
 - Input / Independent data (27No's) 'age', 'bp', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hrmo', 'pcv', 'wc', 'rc', 'sg_b', 'sg_c', 'sg_d', 'sg_e', 'rbc_normal', 'pc_normal', 'pcc_present', 'ba present', 'htn yes', 'dm yes', 'cad yes', 'appet yes', 'pe yes', 'ane yes'
 - Output / Dependent data classification yes
- 3) Preprocessing method Label encoder to convert ordinal categorical data into numerical data
- 4) Machine learning algorithms used
 - A. Support Vector Machine
 - B. Decision Tree
 - C. Random Forest

A) Algorithm: Support Vector Machine

```
Confusion Matrix:
[[51 0]
[ 1 81]]
```

_report:	9.50	(877), 10.11	
precision	recall	f1-score	support
0.98	1.00	0.99	51
1.00	0.99	0.99	82
		0.99	133
0.99	0.99	0.99	133
0.99	0.99	0.99	133
	0.98 1.00	precision recall 0.98 1.00 1.00 0.99 0.99 0.99	precision recall f1-score 0.98

The f1_macro value for best parameter{'C': 10, 'gamma': 'auto', 'kernel': 'sigmoid'}: 0.9924946382275899

roc_auc_score= 1.0

B)Algorithm: Decision Tree

class1†1cat10	n_report: precision	recall	f1-score	support
Ø	0.93	1.00	0.96	51
1	1.00	0.95	0.97	82
accuracy			0.97	133
macro avg	0.96	0.98	0.97	133
weighted avg	0.97	0.97	0.97	133

The f1_macro value for best parameter{'criterion': 'entropy', 'max_features': 'auto', 'splitter': 'random'}: 0.9701163285572423

roc_auc_score= 0.975609756097561

C) Algorithm: Random forest

```
Confusion Matrix:
[[50 1]
[ 1 81]]
```

classification	_report:		2000 1 Port 10 (201)	***
	precision	recall	f1-score	support
0	0.98	0.98	0.98	51
1	0.99	0.99	0.99	82
accuracy			0.98	133
macro avg	0.98	0.98	0.98	133
weighted avg	0.98	0.98	0.98	133

The f1_macro value for best parameter{'criterion': 'entropy', 'max_features': 'log2', 'n 0.9849624060150376

roc_auc_score= 0.9997608799617408

5) Conclusion

a)Best Algorithm for given problem statement: Support Vector Machine

b)Type1 error < Type2 error (0<1)

c)fl macro value: 0.99

d)Roc-auc_score: 1

e)Accuracy: 0.99

Finalized Result

Support Vector Machine Algorithm can be used with following hyper tuning parameters

Parameters: C=10,

gamma: auto, kernel: sigmoid