Lecture 11

Graph mining

Golnaz Taheri, PhD
Senior Lecturer, Stockholm University

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

A graph G is defined as follows:

$$G = (V, E)$$

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

Graph terminology

Adjacent nodes: two nodes are adjacent if they are connected by an

edge

Vertex a is adjacent to c and vertex c is adjacent to a

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph terminology

Weighted graph: a graph in which each edge carries a value

Graph implementation

- Array-based implementation
 - 1D array is used to represent the vertices
 - 2D array (adjacency matrix) is used to represent the edges

What are we looking for

- Rank nodes for a particular query
 - Top k matches for "graph mining" from Google
 - Top k book recommendations for "Dan Brown" from Amazon
 - Top k websites matching "Pagerank algorithm"
 - Top k high frequency mutations in cancer.

Our model: a graph

- The underlying data is naturally a graph
 - WWW: Websites are linked with each other
 - Gene-gene interaction network.
 - Gene regulatory Network
 - Authors linked by co-authorship
 - Bipartite graph of customers and products
 - Friendship networks: who knows whom

How do search engines decide how to rank your query results?

How does Google rank the query results?

How would you do it?

Naïve ranking of query results

- Given query q
- Rank the web pages p in your database based on some similarity measure sim(p,q)

Why Link Analysis?

- First generation search engines
 - view documents as flat text files
 - could not cope with size or user needs
- Second generation search engines
 - ranking becomes critical
 - use of Web specific data: Link Analysis
 - shift from relevance to authoritativeness

Link Analysis: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - assign an authority value to every page
 - "mine" the web graph of recommendations

Link Analysis Ranking (LAR) Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node

Two Types of Algorithms

- Query dependent: rank a small subset of pages related to a specific query
 - HITS (Kleinberg 98) was proposed as query dependent

- Query independent: rank the whole Web
 - PageRank (Brin and Page 98) was proposed as query independent

Query-dependent LAR

- Given a query q, find a subset of web pages S that are related to q
- Rank the pages in S based on some ranking criterion

Properties of a good base set S

- S is relatively small
- S is rich in relevant pages
- S contains most (or many) of the strongest authorities

How to construct a good seed set 5

- Given a query q:
 - collect the t highest-ranked pages for q from a text-based search engine to form set Γ
 - $\cdot S = \Gamma$
 - add to S all the pages pointing to I
 - add to S all the pages that pages from □ point to

Root set: includes pages relevant to the query *q*

Root set: includes pages relevant to the query *q*

Root set: includes pages relevant to the query *q*

Link Filtering

- Navigational links: serve the purpose of moving within a site (or to related sites)
 - www.espn.com → www.espn.com/nba
 - www.yahoo.com -> www.yahoo.it
- Filter out navigational links
 - same domain name
 - same IP address

Hubs and Authorities [K98]

- Based on the relationship between
 - authorities (pages) for a topic and
 - hubs (pages) that link to many related authorities
- We observe that:
 - a certain natural type of equilibrium exists between hubs and authorities in the graph defined by the link structure
- We exploit this equilibrium to develop an algorithm that identifies both types of pages simultaneously

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
 - hub identity
 - authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs

HITS Algorithm

- Initialize all weights to 1
- Repeat until convergence
 - O operation : hubs collect the weight of the authorities

$$h_i = \sum_{j:i\to j} a_j$$

• *I* operation: authorities collect the weight of the hubs

$$a_i = \sum_{j:j\to i} h_j$$

Normalize weights under some norm

Strengths and weaknesses of HITS

• Strength: its ability to rank pages according to the query topic, which may be able to provide more relevant authority and hub pages

Weaknesses:

- One can easily cheat: adding out-links in one's own page
- Topic drift: many pages in the expanded set may not be on topic
- Inefficiency at query time: collecting the root set, expanding it, and performing eigenvector computation are all expensive operations.

Query-independent LAR

- Have an apriori ordering of the web pages
- Q: Set of pages that contain the keywords in the query q
- Present the pages in Q ordered according to order π

InDegree algorithm

- Rank pages according to in-degree
 - $w_i = |B(i)|$ where B(i) is the number of incoming links to node i

- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

Query-independent LAR

- In-degree is a local measure
- All links to a page are considered equal, regardless of where they come from
- Two pages with the same in-degree are considered equally important, even if one is cited by more prestigious sources than the other

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1α jump to a random page
 - with probability α follow a random outgoing link
- PageRank of page p:

$$PR(p) = \alpha \sum_{q \to p} \frac{PR(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$

• F(q): the set of outgoing links of page q

- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- **5. Green Page** 29

Convergence

- You can think of Pagerank as a random walk:
 - From each node you choose to move to a neighbouring node with some probability p
 - After you "walk" for a long time, the Pagerank of each node is the proportion of time you visited that node
- Pagerank will converge if
 - The graph has no cycles (loops where you can get stuck)
 - If you can reach any node from any node
- Both properties are enforced by the Pagerank formula

Pagerank vs InDegree

- Pagerank is better suited for directed graphs:
 - Directed graph: a graph where edges have a direction

• If the graph is not directed (e.g., it is bidirectional or direction is of no interest), then Pagerank is proportional to InDegree

- In other words:
 - In graphs where the edge direction is not indicated, PageRank and InDegree with produce the same ranking for the nodes

Huge Matrix Computation

- Computing PageRank:
 - can be done via matrix multiplication
 - matrix may have 3 billion rows and columns
- Good news:
 - matrix is sparse
 - average number of out-links is small
- Setting $\alpha = 0.85$ or more requires at most 100 iterations to convergence
- Researchers still trying to speed-up the computation

Personalized PageRank

Main idea:

- Similar to Pagerank
- The only difference is that we use a non-uniform teleportation distribution, i.e.,
 - at any time step teleport to a set of webpages
 - assign weights to the pages depending on their relevance/topics you are interested in

Research on PageRank

- Topic-sensitive PageRank
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques

New Generation of Search Engines

- 3rd generation of search engines:
 - machines collect our searches and analyze them
- For example:
 - we will tell the search engine
 - where and what we click
 - how long we stay on a page
 - how many pages we view
 - these actions are understood and learned by the search engines
 - they are used to improve the result for the next user who wants to find answers to a similar term

What is a social network?

- Facebook, LinkedIn, etc
- The network of your friends and acquaintances
- Social network is a graph G = (V, E)
 - V: set of users
 - *E*: connections among users

Measuring networks: Degree distributions

 Problem: find the probability distribution that best fits the observed data

Power-law distributions

The degree distributions of most real-life networks follow a power law

$$p(k) = Ck^{-\alpha}$$

- In other words, a quantity varies as a power of another...
- Right-skewed/Heavy-tail distribution
 - there is a non-negligible fraction of nodes that has very high degree (hubs)
 - scale-free: no characteristic scale, average is not informative
- The probability that any node is connected to k other nodes proportional to 1/ka

Power-law distributions

The degree distributions of most real-life networks follow a power law

$$p(k) = 1/k^2$$

$$P(1) = 1$$
 $P(2) = 1/4$
 $P(3) = 1/8$

$$P(4) = 1/16$$
 $P(5) = 1/25$
...
$$P(8) = 1/64$$

Power-law signature

Power-law distribution gives a line in the log-log plot

$$\log p(k) = -\alpha \log k + \log C$$

• α : power-law exponent (typically $2 \le \alpha \le 3$)

Examples

Stockholms 1 universitet

Taken from [Newman 2003]

The small-world experiment

- Milgram 1967
- Picked 296 people at random from Omaha, Nebraska, Wichita, and Kansas
- Asked them to get a letter to a stockbroker in Boston
- Rule: they could bypass the letter through friends they knew on a first-name basis
- How many steps does it take?

The small-world experiment

- 64 chains completed
 - 6.2 average chain length (thus "six degrees of separation")
- Critique
 - Several times people refused to forward the package
 - People had no knowledge of the topology of the network, hence the package may not follow the shortest path

Six Degrees of Kevin Bacon

Bacon number:

- Create a network of Hollywood actors
- Connect two actors if they co-appeared in some movie
- Bacon number: number of steps to Kevin
 Bacon
- As of Sep 2019, the highest (finite) Bacon number reported is 7
- Only approx 12% of all actors cannot be linked to Bacon

Erdős number

Measuring the small world phenomenon

- d_{ij} = shortest path between i and j
- Diameter.

$$d = \max_{i,j} d_{ij}$$

Characteristic path length:

$$\ell = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}$$

Harmonic mean:

$$\ell^{-1} = \frac{1}{n(n-1)/2} \sum_{i>i} d_{ij}^{-1}$$

What is a network model?

- Informally, a network model is a process (randomized or deterministic)
 for generating a graph
- Models of static graphs
 - input: a set of parameters Π and the size of the graph n
 - output: a graph $G(\Pi, n)$
- Models of evolving graphs
 - input: a set of parameters Π and an initial graph G_0
 - output: a graph G_t for each time t

Families of random graphs

• A deterministic model D defines a single graph for each value of n (or t)

- A randomized model R defines a probability space $\langle G_n, P \rangle$ where G_n is the set of all graphs of size n, and P a probability distribution over the set G_n (similarly for t)
 - we call this a family of random graphs R, or a random graph R

Erdös-Renyi Random Graphs

- The $G_{n,p}$ model
 - input: number of vertices n, and parameter p, $0 \le p \le 1$
 - process: for each pair (i,j), generate the edge (i,j) independently with probability p
- The $G_{n,m}$ random model:
 - process: select m edges uniformly at random

Random graphs and real life

- A beautiful and elegant theory studied exhaustively
- Random graphs had been used as idealized network models
- Unfortunately, they don't capture reality...

Barabasi-Albert model

- The BA model (undirected graph)
 - input: some initial subgraph G_0 and m: number of edges per new node
 - the process:
 - nodes arrive one at the time
 - each node connects to m other nodes selecting them with probability proportional to their degree
 - if $[d_1, ..., dt]$ is the degree sequence at time t, then node t+1 links to node i with probability

 $\frac{d_i}{\sum_i d_i}$

• Results in power-law with exponent $\alpha = 3$

Barabasi-Albert model

Bell Curve Distribution of Node Linkages

Scale-Free Network

Power Law Distribution of Node Linkages

Example: Join an online group

Models of Influence

- We saw that often decision is correlated with the number/fraction of friends
- The higher the number of friends, the higher the influence
- Graph models to capture that behavior:
 - Linear threshold model
 - Independent cascade model

Thanks!

golnaz.taheri@dsv.su.se

