\bigcirc

APPROVAL SIGNATURE		
	0	•

SPECIFICATION

FOR

TOSHIBA TFT-LCD MODULE

LTM12C278E

SPECIFICATION No. :	
	NR-LTM12C278E-13

DATE OF ISSUE: 1999-12-13

(DATE OF EXPIRY: 2002-12-22)

H. Kimura
Senior Manager
Liquid Crystal Display
Quality Assurance Dept.
Liquid Crystal Display Div.

<Engineering Department to contact as per SPECIFICATION>
Liquid Crystal Display Device Marketing & Engineering Dept.
Liquid Crystal Display Div.
Display Devices & Components Company
TOSHIBA Corporation

8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8522, JAPAN

Sheet 1

TOSHIBA

Specification No.

Revision History

Date	Sheet (New)	Item	Old	New	Reason
			The state of the s		
٠					
,					
					<u> </u>

TOBHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION Date:1999-12-13

Date:

New No.NR-LTM12C278E-13

Old No.

Specification No

Sheet 2

Caution and Handling Precaution

For your end user's safety, it is strongly advised that the items with"*"should be included in the instruction manual of the system which may be issued by your organization.

For Safety Warning

- (1) Toshiba's Standard LCD modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.
 - Since they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision System and Air traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.
- (2) DISCONNECT POWER SUPPLY before handling LCD module.
 - DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's (hereinafter called "FL") connector or cable in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.
- (3) Make sure to insert the module FL connector to the inverter connector in correct position.
 - Do not insert in irregular position.
 - If incorrect, this may cause smoke or burn of electrical parts by high voltage of FL circuit.
 - If there is a possibility that the connector has been inserted incorrectly, please re-insert the connector only after you confirm the module and FL power is completely off.
 - DO NOT USE the mating FL connector which Toshiba does not specify.
 - Otherwise, Toshiba shall not be liable for any damages caused by the connector.

Caution

- (1) DO NOT DISASSEMBLE OR MODIFY the module.
 - Sensitive parts inside LCD module may be damaged, and dusts or scratches may mar the displays.
 - Toshiba does not warrant the modules, if customer disassembled or modified them.
- *(2) DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT PERMIT this material to contact the skin, if LCD panel is broken and liquid crystal material spills out.
 - In the event of inadvertent contact, immediately rinse the mouth or eyes with adequate water. If this material should inadvertently contact the skin or clothing, wash immediately with alcohol and then rinse thoroughly with water.
- *(3) BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.
 - (4) DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, ambient temperature, etc., otherwise LCD module may be damaged.
 - (5) Suitable protection circuit should be applied for each system design.
 - DO NOT MODIFY the fuse used in the module. It may cause overheat and/or burning if dusts or metal particles are on the PCBs in the LCD module.

TOBHIBA CORPORATION

Date:1999-12-12

LIQUID CRYSTAL DISPLAY DIVISION

Specification No.

Sheet 3

(6) Be sure that power supply output from the system should be limited to smaller values than listed shown below. (For example Quick Arcing Fuse with listed ratings can be used.) It is because this LCD module explained in this specification has a current limiter, with such function at power input line(s). But it may be some possibility of overheat and/or burning of LCD module and its peripheral devices before current limiter of the module when open-short test of the module is performed by using power supply higher than following

recommended value. Built-in Fuse Rating Recommended Fuse Rating

Power supply	output current of power supply	(in case of using fuse for current limiter)	(for reference)	
$V_{ extsf{DD}}$	4.0 A	1.0 A	1.0 A	

(7) Always comply with all applicable environmental regulations, when disposing of LCD.

For Designing the System

- (1) LCD module should be assembled to the system by using all mounting holes specified in this specification and with the specified screws.
- (2) Power supply lines should be designed as follows.
 - Power supplies should always be turned on before the input signals are supplied to LCD module, and the input signals should be disconnected before power supplies are turned off.
 - If the sequence does not satisfy specified conditions, it may cause miss-operation of the panel.
 - Refer to "2.4.2 Sequence of Power Supplies and Signals" for the detailed specification.
- (3) DO NOT GIVE high voltage to "Low Voltage" side of the FL.
 - For example, DO NOT USE a floating inverter which gives high voltage to "Low Voltage" side. That's because it has a possibility to burn or smoke around the FL.
- (4) Make sure to connect correctly high-voltage wire and low-voltage wire between FL tube and inverter unit.
- (5) Input FL starting voltage(V_{SFL}) should not be less than one second.
 - If it were less than one second, it may cause unstable operation of FL.
 - Please adjust inverter circuit parameters, such as capacitor, resistor, to assure the display quality is maintained.
 - There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency).
- (6) In case of severe environmental condition like outdoor usage, a proper transparent protective cover(lens) over LCD module is recommended to apply in order to prevent scratches, and invasion of dust, water, etc., from the system's window onto LCD module.
 - Ultra-violet ray cut filter is recommended to apply onto LCD module for outdoor operation. Strong ultra-violet ray may cause damage the panel.
- (7) Design the system not to display same pattern for a long time in order to prevent image sticking on the panel. Note that incorrect sequence of power supplies and input signals may cause the sticking on the panel, too.

Date:1999-12-13

Specification No.

Sheet 4

For Installation in Assembly

- (1) The C-MOS LSIs used in LCD module are very sensitive to ESD (Electro-static Discharge).
 - Ambient humidity of working area is recommended to be higher than 50%(RH).
 - Person handling LCD modules should be grounded with wrist band. Tools like soldering iron and screw driver, and working benches should be grounded.
 - The grounding should be done through a resistor of 0.5-1M Ω in order to prevent spark of ESD.
- (2) When remove protection film from LCD panel, peer off the film slowly (more than three seconds) from the edge of the panel, using a soft-pointed tweezers covered by teflon or adherent tape.
- (3) Reduce dust level in working area. Especially the level of metal particle should be decreased.
 - Use finger stalls or soft and dust-free gloves in order to keep clean appearance of LCD module when handled for incoming inspection and assembly.
- *(4) When LCD panel becomes dirty, wipe off the panel surface softly with absorbent cotton or another soft cloth.
 - If necessary, breathe upon the panel surface and then wipe off immediately and softly again.
 - If the dirt can not be wiped off, absorbent cotton wetted a little with normal-hexane or petroleum benzine can be used for wiping the panel.
 - Be careful not to spill this solvent into the inside of LCD module. Driver ICs and PCB area used inside LCD module may be damaged by the solvent.
- AVOID THE CONDENSATION OF WATER
 - Wipe off a spot or spots of water of mist and chemicals of mist on LCD panel softly with absorbent cotton or another cloth as soon as possible if happened, otherwise discoloration or stain may be caused. If water invade into LCD module, it may cause LCD module damages.
- Do not expose LCD module to the gas (which is not normally contained in the atmosphere), it may cause mis-operation or defects.
- DO NOT APPLY MECHANICAL FORCES.
 - Do not bend or twist LCD module even momentary when LCD module is installed an enclosure of the system. Bending or twisting LCD module may cause its damages.
 - Make sure to design the enclosure that bending/twisting forces are not applied to LCD module when it is installed in the system.
 - Refrain from strong mechanical shock like dropping from the working bench or knocking against hard object.
 - These may cause glass of the panel crack, damage of FL or other mis-operation.
- Refrain from excessive force like pushing the surface of LCD panel. This may cause damage of the panel or electrical *(8) parts on PCB.
- Do not put heavy object such as tools, books, etc., and do not pile up LCD modules.
 - Be careful not to touch surface of the polarizer laminated to the panel with any hard and sharp object. The polarizer is so soft that it can easily scratched, even the protect film covers it.
- (10) When inserting or disconnecting the connectors to LCD module, be sure not to apply force against PCB, nor connecting cables, otherwise internal connection of PCB and TAB drivers may be damaged.
 - Do not fasten screws while putting cables like those for interface or FL between LCD module and the enclosure.
 - Make sure to insert the module FL connector to the inverter connector in correct position.
 - If incorrect, this may cause smoke or burn of electrical parts by high voltage of FL circuit.

TOBHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION Date: 1999-12-13

Date:

Specification No.

Sheet 5

- (11) Be careful not to pull the FL cables of the backlight in order to avoid mechanical damage in FL lamp and soldering area.

 Be careful not to pull or not to hurt the FPC (Flexible Printed Circuit) cables.
- Be careful not to pull or not to nurr the PPC (Plexible Printed Should always be turned off in assembling process.

 (12) Power supplies should always be turned off in assembling process.

 Do not connect or disconnect the power cables and connectors with power applied to LCD module. This may cause
- damage of module circuit.

 The signal should be applied after power are turned on. And the signal should be removed before power supplies are turned off. (Refer to "For Designing The System"(2).)

For Transportation and Storage

- (1) Do not store LCD module in high temperature, especially in high humidity for a long time (approximately more than one month)
 - It is recommended to store LCD module where the temperature is in the range of 0 to 35 °C and the relative humidity is lower than 70%.
- (2) Store LCD module without exposure to direct sunlight or fluorescent lamps in order to prevent the module from strong ultra violet ray.
- *(3) Avoid condensation of water on LCD module, otherwise it may cause mis-operation or defects. Keep away LCD module from such ambient.
 - (4) In case of transportation of storage after opening the original packing. LCD module are recommended to be repacked into the original packaging with the same method, especially with same kind of desiccant.

Date:1999-12-13

Global LCD Panel Exchange Center

Specification No.

Sheet 6

- CONTENTS -

	· · Sheet	1
Revision History		2
Caution and Handling Precaution		7
1. Scope		7
2. Product Specifications		
2.1 General Specifications		
2.2 Absolute Maximum Ratings		
2.3 Mechanical Specifications		
2.3.1 Weight		
2.3.2 Dimensional Outline		
2.4 Electrical Specifications		
2.4.1 Circuit Diagram		
2.4.2 Sequence of Power Supplies and Signals		
2.4.3 Timing Chart		
2.4.4 Timing Specifications		
2.4.5 Interface Connector		
2.4.6 Colors Combination Table		18
3. Recommended Operating Conditions		19
Electrical Characteristics	•	
4.1 Test Conditions		
4.2 Specifications	3 8 9	20
5. Optical Characteristics	1 5 7 7	
5.1 Test Conditions		
5.2 Optical Specifications		21
6. Quality		- 1
6.1 Inspection AQL		
6.2 Test Conditions	•	
6.3 Dimensional Outline		
6.4 Appearance Test		
6.4.1 Test Conditions		
6.4.2 Specifications		,
6.5 Display Quality		
6.5.1 Test Conditions		
6.5.2 Specifications		
6.6 Reliability Test		
6.6.1 Test Conditions		
6.6.2 Specifications		
6.7 Labels		26
7. Lifetime		26
7.1 Module		
7.2 Lamp		
7.2.1 Test Conditions		
7.2.2 Specifications		0.7
8. Packaging	• • •	27
8.1 Carton		
9. Warranty		28
10. Regulation		28
11. Measuring Method		28
11.1 Measuring Systems		
11.2 Measuring Oystonio		
HI'S MEGGRILLIG MOTITOGO		

Date:1999-12-13

New No.NR-LTM12C278E-13 Old No.

TOSHIBA CORPORATION

Specification

Sheet 7

1. Scope

This specification is applicable to Toshiba's 31cm diagonal size TFT-LCD module "LTM12C278E" designed for Personal Computer.

2. Product Specifications

2.1 General Specifications

Item	Specifications
Display Mode	TN color(64 gray scales, 262,144 colors)
	Transmissive type, Normally white
Viewing Direction	6 o'clock (in direction of maximum contrast)
Driving Method	TFT active matrix
Input Signals	LVDS interface
	CLK+,CLK-
	IN0+,IN0-
	IN1+,IN1-
	IN2+,IN2-
Active Area	246.0 (W) × 184.5 (H) (mm)
Viewing Area	249.0 (W) × 187.5 (H) (mm)
Number of Pixels	$800 (W) \times 600 (H) ^{1)}$
Pixel Pitch	$0.3075 \ (W) \times 0.3075 \ (H) \ (mm)^{1}$
Pixel Arrangement	RGB vertical stripes 1)
Surface Treatment	Anti-glare and hard coat 3H on LCD surface
Backlight	Single cold-cathode fluorescent lamp for sidelighting
Dimensional Outline	275.3 (W) \times 199.5 (H) \times 7.5max. (D) (mm)

Note 1)

TOSHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION Date:1999-12-13 Date:

Specification No.

Sheet 8

2.2 Absolute Maximum Ratings 1)

	Symbol	Min.	Max.	Unit	Checked Terminal 1/
<u>Item</u>	V _{DD}	-0.3	+4.0	V	V _{DD} - GND
Supply Voltage		-0.3	V _{DD} +0.3	V	LVDS interface
Input Voltage of Signals	V _{IN}	-0.5	2.0	kV(rms)	V _{FLH} - V _{FLL}
FL Driving Voltage	$V_{\rm FL}$	-			VELM PILL
FL Driving Frequency	f_{FL}	00	100	kHz	
Operating Ambient Temperature 2)	T_{OP}	0	50	°C	
Operating Ambient Humidity 2)	H _{OP}	10	90	%(RH)	
Storage Temperature 2)	$T_{\rm STG}$	-20	+60	°C	
Storage Humidity 2)	H _{STG}	10	90	%(RH)	100
Operating Temperature for Panel 3)	-	0	+60	°C	

- Note 1) Do not exceed the maximum rating values under the worst probable conditions taking into account the supply voltage variation, input voltage variation, variation in part constants, and ambient temperature and so on. Otherwise the module may be damaged.
 - 2) Wet bulb temperature should be 39°C Max, and no condensation of water. See figure below.
 - 3) The surface temperature caused by self heat radiation of cell itself is specified on this item.
 - 4) Refer to 2.4.5

2.3 Mechanical Specifications

2.3.1 Weight

490g ± 20g

TOSHIBA CORPORATION Date: 1999-12-13

Specification No.

Sheet 9

2.3.2 Dimensional Outline (front figure)

Unit: mm Standard Tolerance: ±0.5

Date:1999-12-13

②

TOSHIBA

Specification No.

Sheet 10

(back figure)

Unit: mm

Standard Tolerance: ±0.5

TOSHIBA CORPORATION

Date:1999-12-13

Specification No.

Sheet 11

2.4 Electrical Specifications

2.4.1 Circuit Diagram

2.4.2 Sequence of Power Supplies and Signals

Date:1999-12-13 TOSHIBA CORPORATION Date:

Global LCD Panel Exchange Center

Specification No.

Sheet 12

2.4.3 Timing Chart

IUSHIBA

Specification No.

Sheet 13

2.4.4 Timing Specifications 1) 2) 3) 4) 5) 6) 7)

Item	Symbol	Min.	T			
Frame Period 1) 4)	t1		Тур.	Max.	Unit	Remarks
	''	604 × <i>t</i> 3	628 × t3	677 × t3		, tomand
Vertical Display Time 1)	t2	-	16.67	_	ms	
Horizontal Scanning	<u> </u>	600 × t3	600 × t3	600 × t3		
Time 1)4)	t3	844 × tc	1056 × tc	1064 × tc		
Horizontal Display Time 1)	f d	26.3	26.4	_	μѕ	
Clock Period 4)	<i>t</i> 4	800 × <i>t</i> c	800 × tc	800 × tc	HO	
2.00KT,0710G	tc	24.0	25.0		no	
			25.0		ns	

Note 1) Refer to "2.4.3 Timing Chart" and LVDS (SN75LVDS86) specifications by TEXAS INSTRUMENTS.

Note 2) If ENAB is fixed to "H" or "L" level for certain period while NCLK is supplied, the panel displays black with some flicker.

Note 3) If NCLK is fixed to "H" or "L" level for certain period while ENAB is supplied, the panel may be damaged.

Note 4) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above timing specifications and recommended operating

Note5) Do not make t1, t2 and t3 fluctuate.

If t1, t2 and t3 are fluctuate, the panel displays black.

Note6) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.

Note7) NCLK count of each Horizontal Scanning Time should be always the same.

V-Blanking period should be "n" X "Horizontal Scanning Time". (n: integer)

Frame period should be always the same.

TOSHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION

Date:1999-12-13 Date:

New No.NR-LTM12C278E-13 Old No.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Specification No.

2.4.5 Interface Connector

CN1 INPUT SIGNAL (53779-2010/ JAPAN MOLEX CO., LTD.)

[Mating Connector : 51146-2000(housing) / 50641-8041(Contact Pin)]

rikasting Co	nnector : 51146-20	00(110
	Symbol	Function POWER SUPPLY:+3.3V
Terminal No.	V _{DD}	POWER SUPPLY :+3.3V
	$V_{\rm DD}$	POWER 3011 1.
2	GND	
3	GND	Transmission data of pixels 0 (negative : -)
<u>4</u> 5	INO-	Transmission data of pixels 0 (negative : +) Transmission data of pixels 0 (negative : +)
<u>5</u>	IN0+	Transmission data
7	GND	Transmission data of pixels 1 (negative : -)
8	IN1-	Transmission data of pixels 1 (negative : +) Transmission data of pixels 1 (negative : +)
9	IN1+	Transmission day
10	GND	Transmission data of pixels 2 (negative : -)
11	IN2-	Transmission data of pixels 2 (negative : +) Transmission data of pixels 2 (negative : +)
12	IN2+	
13	GND	Sampling clock (negative : -)
14	CLK-	Sampling clock (positive : +)
15	CLK+	Sampling
16	GND	Non Connection (OPEN)
17	NC ¹⁾	Non Connection (OPEN)
18	NC ¹⁾	Non comission
19	GND	
20	GND_	

CN2 CCFL POWER SOURCE (BHR-03VS-1/JAPAN SOLDERLESS TERMINAL MFG CO., LTD.) [Mating Connector : SM02(8.0)B-BHS/ JAPAN SOLDERLESS TERMINAL MFG CO.,LTD.]

[Mating Connector : Sivil)2(0.0)0 511
T Ingl No Symbol	Function (HIGH VOLTAGE)
Terminal No. Symbol	CCFL POWER SUPPLY (HIGH VOLTAGE)
1 <u>*FIH</u>	Our action (OPEN)
2 NC	CCFL POWER SUPPLY (LOW VOLTAGE)
3 V _{FLL}	1 Ooi C 1 9

Note 1) Please connect NC pin to nothing. Don't connect it to grand nor to other signal input. Please connect GND to ground. Don't use it as no-connect nor connection with high impedance.

Note 2) 262,144 colors are displayed by the combinations of 18 bits data. (See next page)

Specification No.

Sheet 15

RECOMMENDED TRANSMITTER (SN75LVDS84/85) TO LTM12C278E INTERFACE ASSIGNMENT

Case1: 6Bit TRANSMITTER

Input Terminal No.			Input Signal	Output Signal Symbol		ce(CN1)
,			aphics controller output signal)	O jiii a ci	Terminal	Symbol
Symbol	SN75LVDS84/85	Symbol	Function Date (LSP)			
TINO	44	R0	Red Pixels Display Data (LSB)			
TIN1	45	R1	Red Pixels Display Data	TOUT0-	No.5 No.6	INO-
TIN2	47	R2	Red Pixels Display Data	TOUT0+		IN0+
TIN3	48	R3	Red Pixels Display Data	,00,0		ļ
TIN4	1	R4	Red Pixels Display Data			
TIN5	3	R5	Red Pixels Display Data (MSB)			
TIN6	4	G0	Green Pixels Display Data (LSB)		<u> </u>	
TIN7	6	G1	Green Pixels Display Data			Ì
TIN8	7	G2	Green Pixels Display Data	TOUT	TOUT1- No.8 TOUT1+ No.9	IN1-
TIN9	9	G3	Green Pixels Display Data			IN1+
TIN10	10	G4	Green Pixels Display Data	100117		
TIN10	12	G5	Green Pixels Display Data (MSB)			1
TIN12	13	B0	Blue Pixels Display Data (LSB)]		
TIN13	15	B1	Blue Pixels Display Data			
TIN14	16	B2	Blue Pixels Display Data	_		
TIN15	18	B3	Blue Pixels Display Data		No.11	IN2-
TIN16	19	B4	Blue Pixels Display Data	TOUT2-	No.11	IN2+
TIN17	20	B5	Blue Pixels Display Data (MSB)	TOUT2+	140.12	1142
	22	NC	Non Connection (open)			
TIN18	23	NC	Non Connection (open)	_]	1	
TIN19	25	ENAB	Compound Synchronization Signal			011/
TIN20	26	NCLK	Data Sampling Clock	TCLK OUT-	No.14	CLK -
CLK IN	20	THOUSEN.		TCLK OUT+	No.15	CLK+

Date:1999-12-13

Date:

New No.NR-LTM12C278E-13 Old No.

TOSHIBA CORPORATION

Specification No.

Sheet 16

RECOMMENDED TRANSMITTER (SN75LVDS83) TO LTM12C278E INTERFACE ASSIGNMENT

Case2: 8Bit TRANSMITTER

Innut T	erminal No.		Input Signal	Output Signal	To LTM1	e(CN1)
mpas .			(Graphics controller output organization		Terminal	Symbol
Symbol	SN75LVDS83	Symbol	Function	Symbol		
TINO	51	R0	Red Pixels Display Data (LSB)			
TIN1	52	R1	Red Pixels Display Data	тоито-	No.5 No.6	INO-
TIN2	54	R2	Red Pixels Display Data	TOUT0+		INO+
TIN3	55	- R3	Red Pixels Display Data			
TIN4	56	R4	Red Pixels Display Data			
TIN6	3	R5	Red Pixels Display Data (MSB)			
TIN7	4	G0	Green Pixels Display Data(LSB)			
TIN8	6	G1	Green Pixels Display Data		1	
TIN9	7	G2	Green Pixels Display Data	TOUT1-		IN1- IN1+
TIN12	11	G3	Green Pixels Display Data	TOUT1+		
TIN13	12	G4	Green Pixels Display Data			
TIN14	14	G5	Green Pixels Display Data(MSB)			
TIN15	15	B0	Blue Pixels Display Data (LSB)		1	
TIN18	19	B1	Blue Pixels Display Data		No.11 No.12	IN2-
TIN19	20	B2	Blue Pixels Display Data			
TIN20	22	B3	Blue Pixels Display Data	TOUT2-		
TIN21	23	B4	Blue Pixels Display Data	TOUT2+		IN2+
TIN22	24	B5	Blue Pixels Display Data (MSB)			· · · · ·
TIN24	27	NC	Non Connection (open)			
TIN25	28	NC	Non Connection (open)			
TIN26	30	ENAB	Compound Synchronization Signal			
TIN27	50	· NC	Non Connection (open)		1	
TIN5	2	NC	Non Connection (open)	TOLIT?		_
TIN10	8	NC	Non Connection (open)	TOUT3- TOUT3+	_	Į.
TIN11	10	NC	Non Connection (open)	10013*		ĺ
TIN16	16	NC	Non Connection (open)			
TIN17	18	NC	Non Connection (open)			1
TIN23	25	NC	Non Connection (open)		1 1 44	CLK IN-
CLK IN		NCLK	Data Sampling Clock	TCLK OUT-	No.14 No.15	CLK IN+

TOBHIBA CORPORATION

Date:1999-12-13

Date:

New No.NR-LTM12C278E-13

Old No.

Specification No.

Sheet 17

2.4.6 Colors Combination Table

			•							_									<u></u>	Canus	aleLevel
	Display	R5 F	₹4 F	R3 R	2 R	1 RC)	G5 (34 0	33 (32 G	:1 0	30			,		81 E		Gray Su	aleLevel
	Black	L	L			L I	,	L	L	L	L	L	L	L	L	L	L	L	L		
	Blue	L	L			L I	-	L	L	L	L	L	L	Н	Н	Н	Н	H	Н		
-	Green	L	L	L			,	Н	H	Н	Н	Н	Н	L	L_	L	L	_L_	L		
Basic	Light Blue	L	L	L			_	Н	Н	Н	Н	H	Н	Н	H	H	H	Н	H		_
Color	Red	Н Н	H	H		н і	-1	L	L	L	L	L	L	L	L	L	L	L	L		
00101	Purple	H	H	H	Н	H I	1	L	L	L	L	L	L	Н	Н	Н	H	H	H L		
	Yellow	Н	H	Н	Н	H	Н	Н	Н	Н	Н	H	Н	L	L	<u>L</u>	L	L			
	White	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	<u>H</u>	<u>H</u>	<u>H</u>	H		L O
	Black	L	L	L	L	L	L	L	L	L	L	L	L	Ŀ	L	L	L	<u>r</u>	L		L 1
	DIACK	L	L	L	L		Н	L	L	L	L	L	L	L	Ŀ	L	L	L	Ŀ		L 2
Gray	Dark	L	L	L	L	Н	L	L	L	L	L_	L	L	L	L	L	L	L	L		
Scale of	↑ ↑	-								;						:					L3 L60
Red				:						;						:					
Neu	Light								L	L	L	L	L	L	L	L	L	L	L		L61
	Ligiti	H	H	H	H		H	$\frac{1}{\Gamma}$		<u>L</u>	L	L		L	L	L	L	L	L		L62
		Н	Н	Н	Н		L	L	L L	L	_ <u>_</u> _	L	L	L	L	L	L	L	L	Red	L63
-	Red	H	Н	Н	H		H	L	L L	L		L	L	L	L	L	L	L	L		L O
	Black	L	L	L_	L_	L	L	L	L	L	L L	L	H	L	L		L	L	L		L 1
		L	L	L	_ <u>L</u> _	L	Ţ.	L		L L	L	<u>H</u>	L	L	L	L	L	L	L		L 2
Gray	Dark	L	L	L	L	<u>L</u>	L	L		<u></u>		11		 			:				L3
Scale of	1 1			:						,							:				L60
Green	↓ ↓			:										↓					<u> </u>		L61
	Light	L	L	L	L	L	L	Н	H	Н	<u>H</u>	_L	Н	L	L	L	<u>L</u>	L	L L		L62
l ja		L	L	L	L	L	L	Н	Н	H	H	Н	L	L	_ <u>L</u>	<u>L</u>	<u>_</u>	$-\frac{L}{L}$	L	Green	
101	Green	L	L	L	L	L	L	H	Н	Н	H	H	Н	L	L	L	L		L	Green	L 0
	Black	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Li	L,	<u>ь</u> Н		L 1
		L	L	L	L	L	L	L	L	L	L	L	L	L	<u>_</u>	<u> </u>	L	L	H L	 	L 2
Gray	Dark	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н		 	L3
Scale of	1			:							:						:				ьз L60
Blue	↓ ↓			:	;						:			ĺ			:				
	Light	L	L	L	L	L	L	L	L	Ĺ	L	L	L	H	Н	Н	Н	L	Н		L61
1		L	L	L	L	L	- E	L	L	L	L	L	L		Н	Н	Н	Н	L		L62
1 3.0	Blue	L		L	L	L	L	L	L	L		L			Н	Н	Н	Н	Н	Blue	L63
	Black	L	L	L	L	L	L	$\frac{1}{L}$	L	L		L	L	L	L	L	L	L	L		L O
C	DIACK	L L	L	L	<u>_</u>	<u></u>	H	L	L	L			Н	L	I	I	I	L	Н		L 1
Gray Scale of	Dark	L	L	L	L	<u>н</u>	L	L		 L		Н		L	I	I	L	Н	L		L 2
White &	Daik ↑				:			1 -			;						:				L3
Black					:						:						:				L60
Didok	Light		,					 		7.1	11	L	——— H	Н	Н	Н	Н	L	Н	 	L61
	Ligit	Н	Н	H	H	<u>L</u>	H	H			~~~	<u></u> Н				-					L62
1	1.	Н	H	Н	H	Н	L	Н				<u>н</u>							<u> </u>	White	
T 56 x	Mhito	. H	H	н	Н	H	Н	l H	Н	n	n	n		. 1 . 17							

Note1 L: Low level voltage, H: High level voltage

TOSHIBA CORPORATION

Date: 1999-12-13 Date: - -

Sheet 18

TOSHIBA

Global LCD Panel Exchange Center

Specification No.

3. Recommended Operating Conditions 1) 2) 3) 11)

Recommended of					Unit	Remarks
	Symbol	Min.	Тур.	Max.	Offic	
item		3.0	3.3	3.6	V	
Supply Voltage 4)	V_{DD}	0.1		0.6	V	
Differential input Voltage */*/*/	$ V_{\rm ID} $			2.4- V _{ID} /2		
Common-mode Input voltage 2) 4) 6)	V _{IC}	$ V_{1D} /2$		V _{DD} =0.8		
			5.0	6.0	mA(rms)	VD-(-rence)
FL Input Current 7) 8) 9)	IFL	2.0	700	750	V(rms)	I _{FL} =2.5mA(rms)(Reference)
FL Driving Voltage 7)	V_{FL}	650	45	60	kHz	
FL Driving Frequency 7)	f _{EL}	40	45	1600	V(rms)	0°C
FI Starting Voltage 7) 10)	V _{SFL}	1250		1000	1	
TEL SIBIRITO VOICES						

Note 1) The module should be always operated within these ranges. The "Typ," shows the recommendable value.

- 2) Recommended LVDS transmitter: SN75LVDS84/85, SN75LVDS83 (made by TEXAS INSTRUMENTS) LVDS receiver included in this module is SN75LVDS86 (made by TEXAS INSTRUMENTS). Refer to LVDS specifications.
- 3) This TFT-LCD module conforms to LVDS standard TIA/EIA-644.
- 4) Checked Pin Terminal: V_{DD}, GND (0V)
- 5) Checked Pin Terminal : IN0-~CLK+, GND (0V)
- 6) Symbol: |VID |, VIC

Please refer to IC for LVDS (SN75LVDS86) specification for $|V_{
m ID}|$ and $V_{
m IC}$

- 7) Checked Pin Terminal: $V_{\rm FLH}$ - $V_{\rm FLL}$
- 8) If FL input current ($I_{\rm FL}$) is higher than 6.0mArms, then FL lifetime becomes shorter.
- 9) Measuring Method of IFL.
- 10) Input FL starting voltage ($V_{
 m SFL}$) should not be less than one

If it were less than one second, it may cause unstable operation of FL.

11) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above recommended operating conditions and timing specifications shown in 2.4.4.

Date:1999-12-13

Specification No. Sheet 19

4. Electrical Characteristics

4.1 Test Conditions

Ambient Temperature : T_a

Ambient Humidity : Ha

65±20%(RH)

25±5°C

Supply Voltage

: V_{DD} 3.3V

Input Signal

: Refer typical value in "2.4.4 Timing Specifications".

FL Input Current

: $I_{FL} = 2.5 \text{mA} (\text{rms})$

FL Driving Frequency : $f_{FL} = 44 \text{kHz}$

FL Inverter

: HIU-742A

4.2 Specifications

item - y	mbol Min.	Typ. ¹⁾ Ma	ax. Unit 500 mA	Remark V _{DD} Terminal Current
Current Consumption		f II	-	

Note 1) The Typical value of IDD is measured in the following pattern.

- 1. White
- 2. Yellow
- 3. Purple
- 4. Red
- 5. Light Blue
- 6. Green
- 7. Blue
- 8. Black

1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---

Specification No.

5. Optical Characteristics

5.1 Test Conditions

It is same as 4.1

The measuring method is shown in 11.

5.2 Optical Specifications 1)

5.2 Optical S	,pcom	-			Specifica	tions		Unit	Remark
		Symbol	Conditions		Min.	Тур	Max.		+
em			100 -10	$\phi = 180^{\circ}$	10				-
/iewing Angle		θ	CR>=10	φ= 0°	20			- 0	
				$\phi = 90^{\circ}$	30			0	
		ļ		$\phi = -90^{\circ}$	100				
- A Retio		CR	θ =0°, ϕ =0)°	100	+	50	ms	1
Contrast Ratio Response Time		ton	$\theta = 0^{\circ}, \phi = 0^{\circ}$	0°	_	-	50	cd/r	
Responde		t _{OFF}	θ=0°, φ=0°	Grav Scale	130	160	-	Curt	
Luminance		L	1 evel=L63 (White)	55			%	0
Luminance Uni	formity	LUNF	$\theta = 0^{\circ}, \phi = 0^{\circ}$	Gray Scale	55				
Luminance on			Level=L63 Gray Scale	(White)	0.52				
Chromaticity	Red	XB	Gray Scale $\theta = 0^{\circ}, \phi$:	=0°	0.29				
	Green	<i>y</i> _R	Ditto		0.27		프니네네다었다		
	Green	Х _G			0.48				
	Blue	X _B	Ditto		0.09			2	-
		<u>У</u> в	Ditto	<u></u>	0.27	0.3			
	White	<i>y</i> _w			0.29	0.3	5 0.4	17	

Note 1): Refer to "11. Measuring Method".

Specification No. Sheet 21

6.Quality

6.1 Inspection AQL

Total of Major Defects: AQL 0.65 % Total of Minor Defects : AQL 1.5 % Sampling Method: ANSI/ ASQC Z1.4

6.2 Test Conditions

1) Ambient Temperature

: 25±5°C

2) Ambient Humidity

: 65±20%(RH)

3) Illumination

: Approximately 500 lx under the fluorescent lamp

4) Viewing Distance

: Approximately 0.3m by the eyes of the inspector from the module

5) Inspection Angle

: $\theta = 0^{\circ}$, $\phi = 0^{\circ}$

6.3 Dimensional Outline

The products shall conform to the dimensions specified in 2.3.2.

Definition of Major and Minor defects are as follows.

ltem	Description Description	Class Major
Important Dimension	Dimensional outline, Dimensional between the mounting holes(hinge)	Minor
Others	Dimensions specified in this specifications	<u> </u>

Date:1999-12-13

Specification No.

Sheet 22

6.4 Appearance Test

6.4.1 Test Conditions

1) Condition : Non-operating, operating (Pattern : L63 white raster) Same as 6.2

6.4.2 Specifications

Item		Δ					
PCB Appearance	Pattern peeling spanning of	Description Pattern peeling snapping, electrically short					
	Repair portion on BCR is	lectrically short		Class Major			
Soldering	Repair portion on PCB is no	t covered by ep	poxy resign	Minor			
Bezel, Frame,	Cold solder joint, lead move	when pulled		Major			
onnectors	Distinct stain, rust or scratch	ו					
lack and White				Minor			
pots/Lines ¹⁾²⁾				Minor			
•	Line Width(mm)	Length(m	m) Assertit	IVIII IOI			
	<i>W</i> ≦0.05	<i>L</i> ≦3	- I TOOPIGOIC COUNT				
	0.05< <i>W</i> ≦0.07		neglect				
	0.07 <w≦0.10< td=""><td>-</td><td>n≦8</td><td></td></w≦0.10<>	-	n≦8				
	0.10 <w< td=""><td>1</td><td>n≦2</td><td></td></w<>	1	n≦2				
	0.10< 10						
	A						
	Average diameter	(mm)	Acceptable count/side				
		D≥0.2 neglect					
	0.2 <d≦0.3< td=""><td></td><td><i>n</i>≦5</td><td></td></d≦0.3<>		<i>n</i> ≦5				
	0.3< <i>D</i> ≦0.5		n≦2				
	0.5 <d< td=""><td></td><td></td></d<>						
			0				

Note 1) Inspection area should be within active area.

Note 2) Dusts which are bigger not less than 0.10mm (0.1 < W) shall be judged by "Average Diameter".

Average Diameter D = (a+b)/2 (mm)

TOSHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION

Date:1999-12-13 Date:

Global LCD Panel Exchange Center

TOSHIBA

Specification

Sheet 23

6.5 Display Quality

6.5.1 Test Conditions

1) Inspection Area : Within active area

2) Driving Condition: Same as test conditions shown in 4.1 and 6.2

3) Test Pattern : White display pattern (gray scale level L63) and black display pattern (gray scale level L0)

6.5.2 Specifications 4)

Item	Description / Specifications		Class
Function	No display, Malfunction		Major
Display Quality 1)	Missing line		Major
	Missing Sub-Pixels		Major
	1) Bright defects ^{2) 3) 4)}	:10pcs. max.	
	2) Dark defects ^{2) 4)}	: 10pcs max.	
	3) Total defects	: 15pcs max.	
	4) Total number of sub-pixel brig	ght defect within	
	10mm in diameter	:4pcs max.	
er de la companya de La companya de la co	5) Bright defect conjunction (2sub-pixels)	:2sets max.	
	Dark defect conjunction (2sub-pixels)	:2sets max.	
	Inconspicuous flicker, crosstalk, I	-	
Black and White Spots/lines	Inconspicuous defects : neglect		-
Backlight	Missing (Non-operating)		Major

Note 1) Defects of both color filter and black matrix are counted as bright or dark defects. Inspection area should be within the active area.

Note 2) Bright defect means a bright spot(sub-pixel) on the display pattern of gray scale L0. Dark defect means a dark spot(sub-pixel) on the display pattern of gray scale L63.

Note 3) Bright defect which can not be found by using 5%ND-Filter shall not be counted as a defect.

Note 4) Testing is conducted only on RED, GREEN, BLUE, WHITE of gray scale L63, and BLACK of gray scale L0.

RED **GREEN BLUE** WHITE L63 L63 L63 L63

TOBHIBA CORPORATION LIQUID CRYSTAL DISPLAY DIVISION Date:1999-12-13

Date:

New No.NR-LTM12C278E-13

Old No.

Specification

Sheet 24

6.6 Reliability Test

6.6.1 Test Conditions

- 1) The module should be driven and inspected under normal test conditions.
- 2) The module should not have condensation of water (moisture) on the module.
- 3) The module should be inspected after two or more hours storage in normal conditions (15 35°C,45 65%(RH)).
- 4) A module shall be used only for one test.

6.6.2 Specifications

The module shall have no failure in the following reliability test items.

		Result
Test Item	Test Conditions	3p/3p OK
High Temperature Operation 1)	50°C 192 h	3p/3p OK
High Temperature Storage 2)	60°C 192 h	3p/3p OK
High Temperature and	50°C 80% 192 h	
High Humidity operation 1)		3p/3p OK
Low Temperature Operation 1)	0°C 192 h	3p/3p OK
Low Temperature Storage 2)	-20°C 192 h	3p/3p OK
Temperature Shock 2)	-20°C ⇔ 60°C	O <i>p</i> , o <i>p</i>
lemperature Shock	0.5h 0.5h	
	50 cycles	0.10= OK
2)	10 - 200 - 10Hz sweep/cycle,	3p/3p OK
Mechanical Vibration 2)	1,5×9.8m/s² constant,	
	X.Y.Z each direction, 0.5h each	- 10 016
2)	50×9.8m/s², 20ms,	3p/3p OK
Mechanical Shock	±X, ±Y, ±Z each direction,	
7.5c	one time each	

Note 1) Operating

Note 2) Non-Operating

Definitions of failure for judgment shall be as follows:

- 1) Function of the module should be maintained.
- 2) Current consumption should be smaller than the specified value.
- 3) Appearance and display quality should not have distinguished degradation.
- 4) Luminance should be larger than 50% of the minimum value specified in 5.2.

New No.NR-LTM12C278E-13 Date:1999-12-13 Old No.

TOSHIBA CORPORATION

Date:

Specification No.

Sheet 25

6.7 Labels

(1) Product Label

•There are two type of label according to country of origin.

(2) Caution Labels

(3) Label Locations

① : Product Label

②: High Voltage

③ : Disposal of CCFL

TOSHIBA CORPORATION
LIQUID CRYSTAL DISPLAY DIVISION

Date:1999-12-13

Date: -

Sheet 26

TOSHIBA

No. Specification

7. Lifetime

7.1 Module (except lamp)

MTTF (Mean Time To Failure): 50,000 h

(This value is not assurance time but inference value by following conditions.)

Conditions : Ambient temperature : 25±5°C (No wind)

: 65%(RH) Ambient humidity

7.2 Lamp

7.2.1 Test Conditions

Ambient temperature

: 25±5°C (No wind)

Lamp current

: 6.0mA(rms)

Lighting condition

: continuous lighting

Driving frequency

: 44kHz

7.2.2 Specifications

MTBF: 10,000 h

Definitions of failure for judgment shall be as follows.

- 1) LCD luminance becomes half of the minimum value specified in 5.2.
- 2) Lamp doesn't light normally.

New No.NR-LTM12C278E-13 Date:1999-12-13

Specification No.

Sheet 27

8. Packaging

- 8.1 Carton (internal package)
 - (1) Packaging Form
 Corrugated cardboard box

(2) Packaging Method 1)2)

Note 1): Total weight: (Approx.) 12 kg

Note 2): Acceptable number of carton piling: 12 sets
Acceptable number of palette piling: 4 sets

(3) Packaging Material

Number	Quantity	Description
1	20p	Static electricity
		Protective sack
2	6p	Silica gel(50g×6p)
3	1set	Holder
④	1p	Static electric
		Protective square bag
(3)	1p	Corrugated card box
6	-	Plastics adhesive tape

TOBHIBA CORPORATION

THE REAL PROPERTY OF THE PARTY OF THE PARTY

Date:1999-12-13

Data