Théorie des possibilités

Notations:

Notations:

- L un langage propositionnel fini
- Ω l'ensemble des interprétations associées à \mathcal{L} .
- φ, Ψ, \dots des formules propositionnelles.
- ω est une interprétation.
- $\omega \models \varphi$ ou $\omega \in [\varphi]$ signifie que ω satisfait φ .

a-Distributions de possibilités:

_ Une distribution de possibilités π sur l'ensemble des interprétations Ω , est une fonction de Ω vers [0,1], La distribution des possibilités π décrit les états plus ou moins possibles du monde.

- Si $\pi(\omega)$ =0 alors l'interprétation ω est impossible
- Si $\pi(\omega)$ =1 alors l'interprétation ω est complètement possible
- Si $\pi(\omega) > \pi(\omega')$ alors l'interprétation ω est préférée à ω'

La condition de normalisation satisfait la condition suivante:

$$\exists \omega \in \Omega, \pi(\omega)=1.$$

Elle exprime qu'il existe une interprétation dans Ω complètement possible c.a.d complètement cohérente avec les croyances disponibles.

b-Degré de possibilité:

Toute distribution de possibilité π sur Ω induit une mesure de possibilité Π .

Le degré de cohérence ou la mesure de possibilité d'une formule φ est défini par:

$$\Pi(\varphi) = \max \{ \pi(\omega) : \omega = \varphi \}$$

Il évalue dans quelle mesure φ est cohérente avec les croyances disponibles exprimées par π .

$$\Pi(\phi)=1$$
 et $\Pi(\neg\phi)=1$ Ignorance totale sur ϕ
$$\Pi(\phi)=1$$
 et $\Pi(\neg\phi)=0$ ϕ est certainement vraie
$$\Pi(\phi\lor\psi)=\max(\Pi(\phi),\Pi(\psi))$$

c- Degré de nécessité:

Le degré de certitude ou de nécessité d'une formule o est défini par:

$$N(\varphi) = 1 - \Pi(\neg \varphi)$$

Il évalue dans quelle mesure ϕ peut être déduite à partir des croyances disponibles.

 $N(\phi)$ exprime à quel point il est certain que ϕ soit vraie.

$$N(\phi)=1$$
 et $N(\neg \phi)=0$ ϕ est certaine $N(\phi)=0$ et $N(\neg \phi)=0$ ignorance totale
$$N(\phi \land \psi)=\min(N(\phi),N(\psi))$$

$$N(\varphi) > 0 \implies \Pi(\varphi) = 1$$
.

Un événement est complètement possible avant qu'il soit un peu certain.

d- Le conditionnement:

Dans la théorie des possibilités, deux types de conditionnement ont été définis :

- Le conditionnement basé sur le minimum défini par:

$$\pi (\omega | \phi) = \begin{cases} 1 & \text{si } \pi(\omega) = \Pi(\phi) \text{ et } \omega \models \phi_i \\ \\ \pi(\omega) & \text{si } \pi(\omega) \leq \Pi(\phi) \text{ et } \omega \models \phi_i \\ \\ 0 & \text{sinon} \end{cases}$$

Il est assigné au meilleur modèle de φ le degré maximal de possibilités

- Le conditionnement basé sur le produit défini par :

$$\pi (\omega | \varphi) = \begin{cases} \frac{\pi(\omega)}{\Pi(\varphi)} & \text{si } \omega \models \varphi_i \\ 0 & \text{sinon} \end{cases}$$

Les éléments sont augmentés proportionnellement

Exemple:

Considérons le problème pour définir l'ère à laquelle appartient un fossile. Supposons que les géologues utilisent un test radioactif sur les fossiles afin de définir à quelle race ils appartiennent telles que race={Mammifère, poisson, oiseau} et ère ={Ceno,Méso,Paleo}. Les distributions initiales sont données par le tableau suivant :

Ere	Race	$\pi(\text{Ere} \wedge \text{Race})$
Ceno	Mammifère	0.2
Ceno	Poisson	1
Ceno	Oiseau	0
Méso	Mammifère	0.3
Méso	Poisson	0.7
Méso	Oiseau	0.7
Paléo	Mammifère	0.5
Paléo	Poisson	0.2
Paléo	Oiseau	1

Supposons que nous avons une information certaine indiquant que le fossile appartient à la classe des mammifères. La croyance est représentée par φ .

1- Calculez le degré de possibilité de $\Pi(\varphi)$ et le degré de nécessité $N(\varphi)$.

L'information certaine φ: mammifère.

1-
$$\omega_1 \models \varphi$$
; $\omega_4 \models \varphi$; $\omega_7 \models \varphi$; d'où

$$\Pi(\varphi)=\max\{\pi(\omega):\omega\models\varphi\}=\max(0.2,0.3,0.5)=0.5$$

$$N(\phi)=\min\{1-\pi(\omega):\omega \not\succeq \phi\}=\min\{1-1,1-0,1-0.7,1-0.2\}=0$$

$$\omega_2, \, \omega_3, \, \omega_5, \, \omega_6, \omega_8, \omega_9 \quad \not\models \phi$$

2- En utilisant les deux équations du conditionnement, calculez les nouvelles distributions $\pi(\text{Ere } \wedge \text{Race}|\phi)$ dans les cas où le conditionnement est basé sur le minimum et sur le produit.

	Ere	Race	π(ω)	$\pi(\omega *\phi)$	$\pi(\omega _{\min}\phi)$
ω_1	Ceno	Mammifère	0.2	0.2	0.4
ω_2	Ceno	Poisson	1	0	0
ω_3	Ceno	Oiseau	0	0	0
ω_4	Méso	Mammifère	0.3	0.3	0.6
ω_5	Méso	Poisson	0.7	0	0
ω_6	Méso	Oiseau	0.7	0	0
ω_7	Paléo	Mammifère	0.5	1	1
ω_8	Paléo	Poisson	0.2	0	0
ω ₉	Paléo	Oiseau	1	0	0