LDA final project

Kaitlin Maciejewski, Morgan de Ferrante, Bingnan Li, Volha Tryputsen

Contents

Exploratory
Smoking vs. Age, Sex
(1): Smoking \sim age, sex
Is there a relationship between age and smoking status?
Does this relationship differ by sex?
(2) number of cigarettes \sim age, sex
Is there a relationship between the number of cigarettes smoked per day and age?
All
Smokers only
Does this relationship differ by sex?
All
Smokers only
Smoking vs. health outcomes
(1) The relationship between current smoking status and systolic blood pressure
smoking ~ sysbp
smoking \sim sysbp, sex
(2) The relationship between current smoking status and diastolic blood pressure
smoking \sim diabp
smoking \sim diabp, sex
(3) The relationship between current smoking status and serum total cholesterol
smoking \sim totchol
$smoking \sim totchol, \ sex \ [!!!] \ \dots $
Cor plot
Missingness
Summary
Models
(1) Is there a relationship between age and smoking status? Does this relationship differ by sex? .
(2) Is there a relationship between the number of cigarettes smoked per day and age? Does this relationship differ by sex?
(3) Totchol and cursmoke
(4) Sysbp and cursmoke
(5) Diabp and cursmoke
(-)

${\bf Exploratory}$

Smoking vs. Age, Sex

(1): Smoking \sim age, sex

Is there a relationship between age and smoking status?

ANS: Yes, the proportion of smokers decreases with the age.

```
smoke_v_age = data %>%
select(cursmoke, age) %>%
ggplot(aes(x = age, y = cursmoke)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Does this relationship differ by sex?

ANS: There is a higher proportion of smoker among men compared to women as both age ,but there is no interaction between age and sex.

```
smoke_age_sex = data %>%
  select(cursmoke, age, sex) %>%
  ggplot(aes(x = age, y = cursmoke, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

(2) number of cigarettes ~ age, sex

Is there a relationship between the number of cigarettes smoked per day and age?

ANS: Yes, number of sigarets smoked per day stays constant for 30-50 years old and decreases with age after 50 years old.

All

```
n_c_age_all = data %>%
  select(cigpday, age) %>%
  ggplot(aes(x = age, y = cigpday)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

Smokers only

```
n_c_age_smoke = data %>%
  select(cigpday, age) %>%
  filter(cigpday > 0) %>%
  ggplot(aes(x = age, y = cigpday)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

Does this relationship differ by sex?

ANS: There is sex effect (men smoke higer number of sigarets per day than women across age), but there is no sex and age interaction.

All

```
n_c_age_s_all = data %>%
select(cigpday, age, sex) %>%
ggplot(aes(x = age, y = cigpday, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Smokers only

```
n_c_age_s_smoke = data %>%
  select(cigpday, age, sex) %>%
  filter(cigpday > 0) %>%
  ggplot(aes(x = age, y = cigpday, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

Smoking vs. health outcomes

(1) The relationship between current smoking status and systolic blood pressure.

```
smoking ~ sysbp
```

ANS: Proportion of smokers decreases with increase of systolic blood presure

```
smoke_sbp = data %>%
  select(cursmoke, sysbp) %>%
  ggplot(aes(x = sysbp, y = cursmoke)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

ANS: slightly higher sysbp for non-smokers

```
smoke_sysbp_status = data %>%
select(cursmoke, sysbp) %>%
mutate(cursmoke = factor(cursmoke)) %>%
ggplot(aes(y = sysbp, x = cursmoke)) +
geom_boxplot(outlier.colour = "white") +
theme_bw()
```

smoking ~ sysbp, sex

ANS: Proportion of smokers decreases with increase of systolic blood presure; the proportion is higher for men (sex effect).

```
smoke_sysbp_sex = data %>%
  select(cursmoke, sysbp, sex) %>%
  ggplot(aes(x = sysbp, y = cursmoke, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

ANS: no differences in sysbp between male and female smokers and non-smokers

(2) The relationship between current smoking status and diastolic blood pressure.

```
smoking ~ diabp
```

ANS: Proportion of smokers decreases with increase of diastolic blood presure for BP=100 ad then proportion increases again (latter could be due to not enough data)

```
smoke_dbp = data %>%
  select(cursmoke, diabp) %>%
  ggplot(aes(x = diabp, y = cursmoke)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

ANS: no difference

```
smoke_dbp_box = data %>%
select(cursmoke, diabp) %>%
mutate(cursmoke = factor(cursmoke)) %>%
ggplot(aes(y = diabp, x = cursmoke)) +
geom_boxplot(outlier.colour = "white") +
theme_bw()
```

smoking ~ diabp, sex

ANS: Proportion of smokers decreases with increase of diastolic blood presure; the proprtions are higher for men (sex effect).

```
smoke_dbp_s = data %>%
  select(cursmoke, diabp, sex) %>%
  ggplot(aes(x = diabp, y = cursmoke, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

ANS: no difference

(3) The relationship between current smoking status and serum total cholesterol.

smoking ~ totchol

ANS: Proportion of smokers slightly decreases with increase of total cholesterol values

```
smoke_tc = data %>%
select(cursmoke, totchol) %>%
ggplot(aes(x = totchol, y = cursmoke)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no difference

```
smoke_tc_bp = data %>%
  select(cursmoke, totchol) %>%
  mutate(cursmoke = factor(cursmoke)) %>%
  ggplot(aes(y = totchol, x = cursmoke)) +
  geom_boxplot(outlier.colour = "white") +
  theme_bw()
```

smoking ~ totchol, sex [!!!]

ANS: Proportion of smokers has nonlinera relationship with total cholesterol for women; proprtions increases with increase in total cholesterol for men (sex by totchol interaction effect).

```
smoke_tc_sex = data %>%
select(cursmoke, totchol, sex) %>%
ggplot(aes(x = totchol, y = cursmoke, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no difference

```
smoke_age_sex
smoke_sysbp_sex
smoke_tc_sex
```

- ## Warning: Removed 409 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 409 rows containing missing values (geom_point).

Cor plot

Missingness

```
prop <- round(colSums(is.na(data))/dim(data)[1], 3)
knitr::kable(sort(prop, decreasing = TRUE)[1:9], col.names = "Proportion of NAs")</pre>
```

	Proportion of NAs
hdlc	0.740
ldlc	0.740
glucose	0.124
bpmeds	0.051
totchol	0.035
educ	0.025
cigpday	0.007
bmi	0.004
heartrte	0.001

```
prob.data <- data %>%
  group_by(period) %>%
  summarise(sysbp_prob = sum(sysbp, na.rm = TRUE)/n())
prob.data
```

```
## # A tibble: 3 x 2
## period sysbp_prob
```

```
<int>
                  <dbl>
## 1
                   133.
          1
## 2
          2
                   137.
## 3
          3
                   140.
table(data$period)
##
##
      1
## 4434 3930 3263
```

Summary

```
table(data$cursmoke, data$period)
##
##
          1
               2
     0 2253 2203 2142
##
     1 2181 1727 1121
data1 <- filter(data,period == "1")</pre>
summary(data1$age)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
           42.00
                    49.00 49.93
                                    57.00
                                             70.00
     32.00
table(data1$sex)
##
##
      1
## 1944 2490
data2 <- filter(data1,cursmoke == "yes")</pre>
summary(data1$cigpday)
     Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
                                                      NA's
##
     0.000
           0.000
                    0.000
                             8.966 20.000 70.000
                                                        32
summary(data2$cigpday)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
summary(data1$totchol)
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
                                                      NA's
       107
               206
                       234
                               237
                                       264
                                               696
                                                        52
##
summary(data1$diabp)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
     48.00
           75.00
##
                     82.00
                             83.08
                                     90.00 142.50
summary(data1$sysbp)
      Min. 1st Qu. Median
                            Mean 3rd Qu.
                                              Max.
      83.5 117.5 129.0 132.9 144.0
##
                                             295.0
```

Models

```
library(lme4)
library(dplyr)
```

(1) Is there a relationship between age and smoking status? Does this relationship differ by sex?

```
my.data <- read.csv("../final_data/frmgham2.csv")</pre>
library(gee)
model.q1 <- gee(CURSMOKE ~ AGE + as.factor(SEX) + as.factor(educ)</pre>
                 + BMI + DIABETES + HEARTRTE + PREVCHD + PREVSTRK
                 + PREVHYP + TIMEDTH,
                 id = RANDID,
                 data = my.data,
                 family=binomial,
                 corstr = "unstructured")
##
        (Intercept)
                                 AGE as.factor(SEX)2 as.factor(educ)2
##
       5.2810549757
                       -0.0570318456
                                        -0.7246241605
                                                           0.0503157656
## as.factor(educ)3 as.factor(educ)4
                                                   BMI
                                                               DIABETES
      -0.2263406725
                     -0.2104931713
                                        -0.0940121564
##
                                                          -0.1114780579
##
           HEARTRTE
                             PREVCHD
                                              PREVSTRK
                                                                PREVHYP
##
       0.0173911758 -0.0569530253
                                        -0.2633153119
                                                          -0.2252617826
##
            TIMEDTH
      -0.0001021991
```

knitr::kable(summary(model.q1)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	5.149	0.278	18.543
AGE	-0.051	0.002	-21.106
as.factor(SEX)2	-0.716	0.060	-11.892
as.factor(educ)2	0.083	0.071	1.168
as.factor(educ)3	-0.182	0.086	-2.116
as.factor(educ)4	-0.212	0.097	-2.185
BMI	-0.084	0.007	-12.152
DIABETES	-0.060	0.102	-0.595
HEARTRTE	0.009	0.001	6.031
PREVCHD	-0.259	0.090	-2.872
PREVSTRK	-0.189	0.176	-1.073
PREVHYP	-0.049	0.041	-1.187
TIMEDTH	0.000	0.000	-6.341

```
model.q1[["working.correlation"]]
```

```
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7563191 0.5136670
## [2,] 0.7563191 1.0000000 0.5713635
## [3,] 0.5136670 0.5713635 1.0000000
```

```
QIC(model.q1)
       QIC
## 13931.71
model.q1 <- gee(CURSMOKE ~ AGE + as.factor(SEX) + as.factor(educ)</pre>
                 + BMI + DIABETES + HEARTRTE + PREVCHD + PREVSTRK
                 + PREVHYP + TIMEDTH,
                 id = RANDID,
                 data = my.data,
                 family=binomial,
                 corstr = "exchangeable")
##
        (Intercept)
                                 AGE as.factor(SEX)2 as.factor(educ)2
##
       5.2810549757
                      -0.0570318456
                                       -0.7246241605
                                                          0.0503157656
## as.factor(educ)3 as.factor(educ)4
                                                  BMI
                                                              DIABETES
      -0.2263406725
                     -0.2104931713
                                       -0.0940121564 -0.1114780579
##
                             PREVCHD
                                             PREVSTRK
##
           HEARTRTE
                                                               PREVHYP
##
       0.0173911758
                    -0.0569530253
                                        -0.2633153119
                                                         -0.2252617826
##
            TIMEDTH
      -0.0001021991
knitr::kable(summary(model.q1)$coefficients[,c(1,4,5)], digits = 3)
```

	Estimate	Robust S.E.	Robust z
(Intercept)	5.185	0.278	18.645
AGE	-0.051	0.002	-21.542
as.factor(SEX)2	-0.741	0.061	-12.229
as.factor(educ)2	0.077	0.071	1.073
as.factor(educ)3	-0.178	0.087	-2.061
as.factor(educ)4	-0.214	0.097	-2.195
BMI	-0.084	0.007	-12.123
DIABETES	-0.103	0.100	-1.023
HEARTRTE	0.009	0.001	6.023
PREVCHD	-0.276	0.088	-3.156
PREVSTRK	-0.166	0.176	-0.943
PREVHYP	-0.054	0.041	-1.318
TIMEDTH	0.000	0.000	-6.247

```
model.q1[["working.correlation"]]

## [,1] [,2] [,3]
## [1,] 1.0000000 0.7094644 0.7094644
## [2,] 0.7094644 1.0000000 0.7094644
## [3,] 0.7094644 0.7094644 1.0000000

QIC(model.q1)

## QIC
## 13931.65
```

(2) Is there a relationship between the number of cigarettes smoked per day and age? Does this relationship differ by sex?

If we think cig per day as count data, it follows poisson distribution. Then we can fit GEE model as well:

```
##
        (Intercept)
                                AGE as.factor(SEX)2 as.factor(educ)2
                                                         5.765596e-02
       4.914149e+00
                                       -7.680017e-01
##
                      -3.395990e-02
  as.factor(educ)3 as.factor(educ)4
                                                 BMI
                                                             DIABETES
      -1.227240e-01 -8.833837e-02
                                       -4.493994e-02
                                                        -1.608903e-01
##
##
          HEARTRTE
                            PREVCHD
                                            PREVSTRK
                                                              PREVHYP
                      -9.883049e-02
                                       -1.115583e-01
##
      1.281640e-02
                                                        -1.079832e-01
##
            TIMEDTH
##
      -5.152275e-05
```

knitr::kable(summary(model.q2_1)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	4.523	0.170	26.626
AGE	-0.024	0.001	-15.826
as.factor(SEX)2	-0.795	0.039	-20.223
as.factor(educ)2	0.096	0.044	2.172
as.factor(educ)3	-0.072	0.057	-1.245
as.factor(educ)4	-0.067	0.063	-1.059
BMI	-0.039	0.005	-8.032
DIABETES	-0.110	0.072	-1.536
HEARTRTE	0.007	0.001	8.453
PREVCHD	-0.241	0.066	-3.635
PREVSTRK	-0.130	0.110	-1.181
PREVHYP	-0.017	0.028	-0.587
TIMEDTH	0.000	0.000	-5.505

```
model.q2_1[["working.correlation"]]

## [,1] [,2] [,3]

## [1,] 1.0000000 0.7425318 0.5006078

## [2,] 0.7425318 1.0000000 0.6615306

## [3,] 0.5006078 0.6615306 1.0000000

QIC(model.q2_1)

## QIC
## -236402.4
```

```
model.q2_1 <- gee(CIGPDAY ~ AGE + as.factor(SEX) + as.factor(educ)</pre>
                 + BMI + DIABETES + HEARTRTE + PREVCHD + PREVSTRK
                 + PREVHYP + TIMEDTH,
                  data = my.data,
                  id = RANDID,
                  family=poisson,
                  corstr = "exchangeable")
                                 AGE as.factor(SEX)2 as.factor(educ)2
##
        (Intercept)
##
       4.914149e+00
                       -3.395990e-02
                                        -7.680017e-01
                                                          5.765596e-02
## as.factor(educ)3 as.factor(educ)4
                                                  BMI
                                                              DIABETES
##
     -1.227240e-01 -8.833837e-02
                                        -4.493994e-02
                                                         -1.608903e-01
                                             PREVSTRK
                                                               PREVHYP
##
           HEARTRTE
                             PREVCHD
                     -9.883049e-02
##
      1.281640e-02
                                        -1.115583e-01
                                                         -1.079832e-01
##
            TIMEDTH
##
      -5.152275e-05
```

knitr::kable(summary(model.q2_1)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	4.403	0.171	25.730
AGE	-0.021	0.001	-14.173
as.factor(SEX)2	-0.833	0.039	-21.366
as.factor(educ)2	0.098	0.044	2.243
as.factor(educ)3	-0.070	0.057	-1.230
as.factor(educ)4	-0.063	0.063	-1.011
BMI	-0.039	0.005	-8.108
DIABETES	-0.121	0.070	-1.734
HEARTRTE	0.007	0.001	8.366
PREVCHD	-0.268	0.066	-4.041
PREVSTRK	-0.144	0.106	-1.356
PREVHYP	-0.020	0.028	-0.709
TIMEDTH	0.000	0.000	-4.943

```
model.q2_1[["working.correlation"]]

## [,1] [,2] [,3]

## [1,] 1.0000000 0.7347634 0.7347634

## [2,] 0.7347634 1.0000000 0.7347634

## [3,] 0.7347634 0.7347634 1.0000000

QIC(model.q2_1)

## QIC

## -236402.8

Using mixed effect model using cig per day instead of smoking status:
```

```
data = my.data)
summary(model.saturated)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## CIGPDAY ~ as.factor(SEX) + AGE + BPMEDS + as.factor(educ) + TOTCHOL +
##
      BMI + GLUCOSE + DIABETES + HEARTRTE + PREVAP + PREVCHD +
##
      PREVMI + PREVSTRK + STROKE + PREVHYP + (1 | RANDID)
##
     Data: my.data
##
## REML criterion at convergence: 67692.5
##
## Scaled residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -4.4444 -0.3150 -0.1078 0.2067 6.2548
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
## RANDID
                                 9.787
             (Intercept) 95.78
## Residual
                        35.77
                                 5.981
## Number of obs: 9310, groups: RANDID, 4213
## Fixed effects:
                    Estimate Std. Error t value
## (Intercept)
                   23.237579 1.393589 16.675
## as.factor(SEX)2 -7.062484 0.339110 -20.827
## AGE
                   -0.178024 0.013735 -12.962
## BPMEDS
                    0.147068 0.340662
                                         0.432
## as.factor(educ)2 0.602137
                               0.400578
                                          1.503
## as.factor(educ)3 -0.984441 0.482907 -2.039
## as.factor(educ)4 -1.015103 0.548951 -1.849
## TOTCHOL
                    0.011407 0.002557
                                         4.461
## BMI
                   -0.313257 0.035227 -8.893
## GLUCOSE
                   -0.010167 0.004203 -2.419
## DIABETES
                               0.570383 -0.446
                   -0.254321
## HEARTRTE
                    0.070622 0.008232
                                         8.579
## PREVAP
                   -3.058426 0.985947 -3.102
## PREVCHD
                    0.948740 1.050262
                                         0.903
## PREVMI
                   -2.594434 0.894896 -2.899
## PREVSTRK
                   -1.029740
                               0.917968 -1.122
## STROKE
                    0.943808
                               0.586941
                                         1.608
## PREVHYP
                   -0.205972
                               0.240530 -0.856
#using variables that selected
model.mixed2 <- lmer(CIGPDAY~ AGE + as.factor(SEX) + SYSBP</pre>
                     + DIABP + TOTCHOL + as.factor(educ)
                     + (1|RANDID),
                     data = my.data,
                     na.action = "na.omit")
summary(model.mixed2)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## CIGPDAY ~ AGE + as.factor(SEX) + SYSBP + DIABP + TOTCHOL + as.factor(educ) +
```

```
##
      (1 | RANDID)
##
     Data: my.data
##
## REML criterion at convergence: 78607.2
##
## Scaled residuals:
               10 Median
                              30
                                    Max
## -4.6343 -0.3025 -0.1015 0.1642 6.6280
##
## Random effects:
  Groups
            Name
                       Variance Std.Dev.
## RANDID
            (Intercept) 97.30
                                9.864
## Residual
                       36.52
                                6.043
                                RANDID, 4306
## Number of obs: 10868, groups:
##
## Fixed effects:
##
                   Estimate Std. Error t value
## (Intercept)
                  21.750845
                              1.049612 20.723
                  -0.199583
                              0.012148 -16.429
## AGE
## as.factor(SEX)2
                  -6.448164
                              0.332812 -19.375
## SYSBP
                  -0.001364
                              0.006670 -0.205
## DIABP
                  -0.018833
                              0.011514 -1.636
## TOTCHOL
                                        5.039
                   0.011959
                              0.002373
## as.factor(educ)2 1.055542
                              0.392720
                                        2.688
## as.factor(educ)3 -0.625323
                              0.474072 - 1.319
## as.factor(educ)4 -0.827192
                              0.539360 -1.534
##
## Correlation of Fixed Effects:
##
              (Intr) AGE
                           a.(SEX SYSBP DIABP TOTCHO as.()2 as.()3
## AGE
              -0.490
## as.fc(SEX)2 -0.144 0.019
## SYSBP
              0.023 -0.460 -0.064
## DIABP
              -0.452 0.314 0.076 -0.679
## TOTCHOL
              -0.368 -0.095 -0.094 0.047 -0.154
## as.fctr(d)2 -0.225 0.110 -0.055
                                  0.008 0.001
## as.fctr(d)3 -0.161 0.051 -0.092 0.028 -0.004 -0.007
                                                      0.351
```

(3) Totchol and cursmoke

2.3672102

162.1032803

12.3710689

0.7814908

0.6268036

```
## diabetes heartrte prevhyp
## -5.8194286 0.1891382 5.2800067
```

knitr::kable(summary(totchol_fit)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	149.257	5.279	28.274
cursmoke	3.430	1.009	3.399
age	0.648	0.053	12.309
factor(sex)2	13.474	1.219	11.050
bmi	1.404	0.144	9.748
diabetes	-6.628	2.638	-2.513
heartrte	0.117	0.032	3.626
prevhyp	3.451	0.903	3.820

```
knitr::kable(round(2 * pnorm(abs(coef(summary(totchol_fit))[,5]), lower.tail = FALSE), 3))
```

	X
(Intercept)	0.000
cursmoke	0.001
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.012
heartrte	0.000
prevhyp	0.000

```
QIC(totchol_fit)
```

knitr::kable(summary(totchol_fit2)\$coefficients[,c(1,4,5)], digits = 3)

```
##
        QIC
## 84588.89
totchol_fit2 <- gee(totchol ~ cursmoke + age + factor(sex) + bmi +</pre>
                     diabetes + heartrte + prevhyp ,
                   id = randid,
                   family = "gaussian",
                   corstr = "exchangeable",
                   na.action = "na.omit")
##
    (Intercept)
                    cursmoke
                                       age factor(sex)2
                                                                  bmi
    162.1032803
                   2.3672102
                                 0.6268036
                                             12.3710689
                                                            0.7814908
##
##
       diabetes
                    heartrte
                                   prevhyp
     -5.8194286
                   0.1891382
                                 5.2800067
```

	Estimate	Robust S.E.	Robust z
(Intercept)	157.548	5.162	30.518
cursmoke	3.824	1.035	3.696
age	0.402	0.051	7.824
factor(sex)2	13.291	1.222	10.874
bmi	1.656	0.143	11.578

	Estimate	Robust S.E.	Robust z
diabetes	-7.648	2.322	-3.293
heartrte	0.118	0.033	3.607
prevhyp	2.423	0.894	2.710

```
knitr::kable(round(2 * pnorm(abs(coef(summary(totchol_fit2))[,5]), lower.tail = FALSE), 3))
```

	X
(Intercept)	0.000
cursmoke	0.000
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.001
heartrte	0.000
prevhyp	0.007

QIC(totchol_fit2)

```
## QIC
## 84588.27
```

(4) Sysbp and cursmoke

```
sysbp_fit <- gee(sysbp ~ cursmoke + age + factor(sex) + bmi +</pre>
                   diabetes + heartrte + prevchd + prevstrk + death,
                 id = randid,
                 family = "gaussian",
                 corstr = "unstructured",
                 na.action = "na.omit")
##
    (Intercept)
                                       age factor(sex)2
                    cursmoke
                                                                 bmi
##
     40.1191453
                  -1.1246140
                                0.7236371
                                              2.9078810
                                                           1.3070103
##
       diabetes
                    heartrte
                                   prevchd
                                               prevstrk
                                                               death
                                2.4405511
##
      4.8530466
                   0.2464253
                                              8.6116353
                                                           7.0492511
```

knitr::kable(summary(sysbp_fit)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	42.702	2.163	19.740
cursmoke	-0.702	0.433	-1.619
age	0.741	0.022	33.618
factor(sex)2	3.272	0.542	6.042
bmi	1.373	0.062	22.301
diabetes	3.664	1.127	3.250
heartrte	0.175	0.016	11.231
prevchd	1.670	0.876	1.906
prevstrk	4.894	2.004	2.443
death	7.650	0.639	11.967

```
knitr::kable(round(2 * pnorm(abs(coef(summary(sysbp_fit))[,5]), lower.tail = FALSE), 3))
```

	X
(Intercept)	0.000
cursmoke	0.105
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.001
heartrte	0.000
prevchd	0.057
prevstrk	0.015
death	0.000

```
QIC(sysbp_fit)
```

##

diabetes

4.8530466

heartrte

0.2464253

```
QIC
## 68837.26
sysbp_fit2 <- gee(sysbp ~ cursmoke + age + factor(sex) + bmi +</pre>
                   diabetes + heartrte + prevchd + prevstrk + death,
                 id = randid,
                 family = "gaussian",
                 corstr = "exchangeable",
                 na.action = "na.omit")
                                      age factor(sex)2
##
    (Intercept)
                   cursmoke
                                                                bmi
##
     40.1191453
                 -1.1246140
                                0.7236371
                                             2.9078810
                                                          1.3070103
```

prevstrk

8.6116353

death

7.0492511

knitr::kable(summary(sysbp_fit2)\$coefficients[,c(1,4,5)], digits = 3)

prevchd

2.4405511

	Estimate	Robust S.E.	Robust z
(Intercept)	43.000	2.176	19.758
cursmoke	-0.772	0.431	-1.789
age	0.741	0.021	34.477
factor(sex)2	3.321	0.545	6.093
bmi	1.370	0.063	21.783
diabetes	3.173	1.114	2.848
heartrte	0.172	0.016	10.967
prevchd	1.553	0.862	1.800
prevstrk	4.201	2.094	2.006
death	7.794	0.644	12.109

knitr::kable(round(2 * pnorm(abs(coef(summary(sysbp_fit2))[,5]), lower.tail = FALSE), 3))

	X
(Intercept)	0.000
$\operatorname{cursmoke}$	0.074
age	0.000

	х
factor(sex)2	0.000
bmi	0.000
diabetes	0.004
heartrte	0.000
prevchd	0.072
prevstrk	0.045
death	0.000

```
QIC(sysbp_fit2)

## QIC
## 68837.55
```

(5) Diabp and cursmoke

```
diabp_fit <- gee(diabp ~ cursmoke + factor(sex) + factor(educ) + bmi +</pre>
                   diabetes + heartrte + prevstrk +death,
                 id = randid,
                 family = "gaussian",
                 corstr = "unstructured",
                 na.action = "na.omit")
##
     (Intercept)
                      cursmoke factor(sex)2 factor(educ)2 factor(educ)3
      47.3480563
                                  -0.8594048
                                                  0.7880155
##
                    -1.0968017
                                                                0.6921165
## factor(educ)4
                           bmi
                                     diabetes
                                                   heartrte
                                                                 prevstrk
##
       0.5395935
                     0.9078065
                                  -1.6162433
                                                  0.1550842
                                                                4.3067909
##
           death
##
       2.8662538
knitr::kable(summary(diabp_fit)$coefficients[,c(1,4,5)], digits = 3)
```

	Estimate	Robust S.E.	Robust z
(Intercept)	48.560	1.142	42.511
cursmoke	-0.607	0.243	-2.501
factor(sex)2	-0.591	0.295	-1.999
factor(educ)2	0.864	0.344	2.513
factor(educ)3	0.769	0.400	1.924
factor(educ)4	0.470	0.450	1.043
bmi	0.971	0.035	28.015
diabetes	-1.731	0.598	-2.895
heartrte	0.112	0.009	12.846
prevstrk	1.842	1.207	1.526
death	3.219	0.336	9.582

```
knitr::kable(round(2 * pnorm(abs(coef(summary(diabp_fit))[,5]), lower.tail = FALSE), 3))
```

	X
(Intercept)	0.000
cursmoke	0.012

	X
factor(sex)2	0.046
factor(educ)2	0.012
factor(educ)3	0.054
factor(educ)4	0.297
bmi	0.000
diabetes	0.004
heartrte	0.000
prevstrk	0.127
death	0.000

```
QIC(diabp_fit)
##
       QIC
## 53507.67
diabp_fit2 <- gee(diabp ~ cursmoke + factor(sex) + factor(educ) + bmi +</pre>
                  diabetes + heartrte + prevstrk +death,
                id = randid,
                family = "gaussian",
                corstr = "exchangeable",
                na.action = "na.omit")
##
     (Intercept)
                    cursmoke factor(sex)2 factor(educ)2 factor(educ)3
##
      47.3480563
                   -1.0968017 -0.8594048 0.7880155
                                                             0.6921165
## factor(educ)4
                          bmi
                                  diabetes
                                                heartrte
                                                              prevstrk
```

0.1550842

4.3067909

knitr::kable(summary(diabp_fit2)\$coefficients[,c(1,4,5)], digits = 3)

-1.6162433

0.9078065

0.5395935

2.8662538

death

##

##

	Estimate	Robust S.E.	Robust z
(Intercept)	48.526	1.156	41.980
cursmoke	-0.525	0.242	-2.166
factor(sex)2	-0.518	0.298	-1.738
factor(educ)2	0.857	0.346	2.476
factor(educ)3	0.776	0.403	1.927
factor(educ)4	0.531	0.453	1.171
bmi	0.991	0.035	28.079
diabetes	-2.072	0.582	-3.564
heartrte	0.106	0.009	12.102
prevstrk	1.049	1.215	0.863
death	3.317	0.338	9.800

knitr::kable(round(2 * pnorm(abs(coef(summary(diabp_fit2))[,5]), lower.tail = FALSE), 3))

	Х
(Intercept)	0.000
cursmoke	0.030
factor(sex)2	0.082
factor(educ)2	0.013

	X
factor(educ)3	0.054
factor(educ)4	0.241
bmi	0.000
diabetes	0.000
heartrte	0.000
prevstrk	0.388
death	0.000

QIC(diabp_fit2)

QIC ## 53508