Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» — Системное и прикладное программное обеспечение

Отчёт По лабораторной работе №6 «Обмен данных с ВУ по прерыванию»

По дисциплине «Основы профессиональной деятельности» Вариант: 3998

Выполнил: Ясаков Артем Андреевич

Группа: Р3113

Преподаватель: Ермаков Михаил Константинович

Санкт-Петербург 2025 г.

Оглавление

Задание	3
Выполнение	
Назначение программы	
Расположение в памяти БЭВМ данных программы	
Область представления	
Область допустимых значений	
Методика проверки программы	
Вывод	

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Введите номер варианта 3998

EI IRET

- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом 03A₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-3X-7 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового маскирования, оставив 4-х младших разряда содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Выполнение

Реализация задания на ассемблере БЭВМ:

ORG 0x000; Инициализация векторов прерывания V0: WORD \$default, 0x180 V1: WORD \$default, 0x180 V2: WORD \$int2, 0x180 V3: WORD \$int3, 0x180 V4: WORD \$default, 0x180 V5: WORD \$default, 0x180 V6: WORD \$default, 0x180 V7: WORD \$default, 0x180 ORG 0x010 int3: DI LD X **NOP ASL** ADD X **NEG SUB #7** OUT 0x6

```
int2:
  DI
  LD X
  AND #0x000F
   ST X
  NOP
   CLA
   IN 0x4
  AND #0x000F
  OR X
   ST X
  NOP
  ΕI
   IRET
ORG 0x03A
X: WORD?
MAX: WORD 0x0028; правая граница ОД3 = 40
MIN: WORD 0xFFD4; левая граница OД3 = -44
default: IRET
start:
  DI
   CLA
  OUT 0x1
   OUT 0x3
   OUT 0xB
   OUT 0xE
   OUT 0x12
   OUT 0x16
   OUT 0x1A
   OUT 0x1E
  LD #0xB
  OUT 0x7
  LD #0xA
   OUT 0x5
  EI
PROG:
  DI
  LD X
  SUB #0x3
   CALL CHECK
   ST X
  NOP
  JUMP PROG
CHECK:
   CMP MAX
   BGE MAXLD
   CMP MIN
```

BLT MAXLD JUMP return MAXLD: LD MAX

return: RET

Назначение программы

По команде готовности ВУ-3 вычисляет результат функции F(X)=-3X-7 и выводит результат на ВУ-3

По команде готовности ВУ-2 выполняется операция побитового маскирования, оставив 4-х младших разряда содержимого РД данного ВУ и X, результат записать в X

Расположение в памяти БЭВМ данных программы

0х000 - 0х00F — векторы прерываний

0х010 - 0х018 — обработка прерываний от ВУ-3

0x019 - 0x01F — обработка прерываний от ВУ-2

0х03А - 0х03С — данные программы (переменные)

0x03D - IRET для остальных векторов

0x03E - 0x04C - программа для заполнения MR

0x04D - 0x054 — основная программа

0х055 - 0х059 - подпрограмма для проверки ОДЗ

0x05A - подпрограмма для загрузки максимального по ОДЗ числа

0x05B - подпрограмма для возвращения из функции загрузки максимального числа по ОДЗ

Область представления

X, MIN, MAX — знаковые 16-разрядные целые числа Регистры данных КВУ - Знаковые 8-ми разрядные числа

Область допустимых значений

 $-128 \le -3x - 7 \le 127$

 $-121 \le -3x \le 134$

 $-44 \le x \le 40$

 $-44_{10} = FFD4_{16}$

 $40_{10} = 0028_{16}$

Методика проверки программы

Проверка обработки прерываний:

BV-3

- 1. Заменить NOP на HLT в блоке int3
- 2. Загрузить текст программы в БЭВМ
- 3. Ввести в ячейку 0х03А(X) произвольное число
- 4. Записать в IP 0х3D
- 5. Установить готовность ВУ-3
- 6. Запустить программу в режиме РАБОТА
- 7. Дождаться останова
- 8. Записать текущее значение X из АС
- 9. Рассчитать ожидаемый результат
- 10. Нажать ПРОДОЛЖИТЬ
- 11. Записать значение DR ВУ-3

D	T 7	٠,	1
В	У	-	う

Входнь	Входные данные По		После операции		Ожидаемый результат	
FFFE ₁₆	-2 ₁₀	FFFF ₁₆	-1 ₁₀	FFFF ₁₆	-1 ₁₀	
000A ₁₆	10 ₁₀	FFDB ₁₆	-37 ₁₀	FFDB ₁₆	-37 ₁₀	
000516	5 ₁₀	FFEA ₁₆	-22 ₁₀	FFEA ₁₆	-22 ₁₀	

ВУ-2

- 1. Заменить NOP на HLT в блоке int2
- 2. Загрузить текст программы в БЭВМ
- 3. Ввести в ВУ-2 число, записать его
- 4. Рассчитать ожидаемый результат
- 5. Установить готовность ВУ-2
- 6. Запустить программу в режиме РАБОТА
- 7. Дождаться останова
- 8. Записать текущее значение X из АС
- 9. Рассчитать ожидаемый результат
- 10. Нажать ПРОДОЛЖИТЬ
- 11. Записать значение DR ВУ-2

Пусть на ВУ-2 вводим 9 (0000 1001)

ВУ-2

Входные данные		После операции		Ожидаемый результат	
FFF9 ₁₆	-7 ₁₀	0009 ₁₆	9 ₁₀	0009 ₁₆	9 ₁₀
0006 ₁₆	610	000F ₁₆	15 ₁₀	000F ₁₆	15 ₁₀
0001 ₁₆	1 ₁₀	000916	9 ₁₀	000916	910

Проверка основной программы:

- 1. Заменить NOP на HLT в блоке PROG
- 2. Загрузить текст программы в БЭВМ
- 3. Записать в ячейку 0x03A(X) число, превышающее ОДЗ, если вычесть из него 3
- 4. Записать в IP 0x03D
- 5. Запустить программу в режиме РАБОТА
- 6. Записать в таблицу значения до и после уменьшения
- 7. Убедится, что значение переменной X равняется 43 при выходе за пределы ОДЗ
- 8. Повторить п.2-6 с другим числом, превышающим ОДЗ
- 9. Записать в ячейку 0x03A(X) число, не превышающее ОДЗ, если вычесть из него 3
- 10. Повторить п.3-5

Проверка основной программы

Входные данные		После операции		Ожидаемый результат	
002C ₁₆	44 ₁₀	0028 ₁₆	40 ₁₀	0028 ₁₆	4010
FFD4 ₁₆	-44 ₁₀	0028 ₁₆	4010	0028 ₁₆	4010
000516	5 ₁₀	000216	2 ₁₀	000216	2 ₁₀

Вывод

В ходе выполнения данной лабораторной работы я познакомился с ВУ в БЭВМ. Научился с ними работать, выводить значения, а также писать код на ассемблере.