Clase 07 Pruebas no paramétricas Curso Introducción al Análisis de datos con R para la Acuicultura.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

22 July 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son las pruebas no paramétricas?.
- ► Test de Correlación no paramétrico.
- Pruebas de contraste no paramétrico.
- Prueba de asociación Chi cuadrado.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas no paramétricas.
- Realizar gráficas avanzadas con ggplot2.

MÉTODOS NO PARAMÉTRICOS

- Conjunto diverso de pruebas estadísticas.
- ► El concepto de "no paramétrico" a veces es confuso, pues los métodos no paramétricos si estiman y someten a prueban hipótesis usando parámetros, pero no los de distribución normal.
- Se aplican usualmente para variables cuantitativas que no cumplen con el supuesto de normalidad y para variables cualitativas.
- Alternativamente se conocen como métodos de distribución libre.
- El concepto matemático de permutación está subyacente a muchos métodos no paramétricos y se utiliza para someter a prueba las hipótesis.

SUPUESTOS DE LOS MÉTODOS NO PARAMÉTRICOS

- Las variables son independientes.
- Muestras independienteds tienen identica distribución.
- No tienen supuestos acerca de la distribución de la variable.
- ► La distribución muestreal se estima a veces usando permutación.

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.

CORRELACIÓN NO PARAMÉTRICA

- Se basa en calcular el ranking de las variables.
- Calculamos ranking para cada variable.

Fish size (X)	Parásitos (Y)	Ranking X	Ranking Y
942	13	4	2
101	14	1	3
313	18	2	4
800	10	3	1

- Si la correlación es +, valores ordenados.
- Si la correlación en -, valores en orden inverso.
- ▶ Si la correlación es 0, valores desordenados.

COEFICIENTE DE CORRELACIÓN DE SPEARMAN

¿Cómo se calcula?

Ranking X	Ranking Y	d	d^2
4	2	2	4
1	3	-2	4
2	4	-2	4
3	1	2	4

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = \frac{1}{n(n^2 - 1)}$$

$$rho = -0, 6$$

PRUEBA DE HIPÓTESIS DE CORRELACIÓN

Hipótesis de dos colas	Verdadera cuando
H ₀ : X e Y mutuamente independientes	$\rho = 0$
H_1 : X e Y no son mutuamente independientes	ho eq 0

PRUEBA DE CORRELACIÓN CON R

```
##
## Spearman's rank correlation rho
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.6
```

No se rechaza H_0 porque p = 0.416 es mayor a 0.05

COMPARACIÓN DE MUESTRAS INDEPENDIENTES

¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

Usualmente para variables discretas.

PRUEBA DE MANN-WHITNEY (W)

Estudio de caso: Conducta agresiva (minutos de pelea) entre tilapias cultivadas en estanque mosexo (Tratamiento: solo machos) y estanques mixtos (Control: Machos y hembras) **Link**

Tratamiento (T)	Control (C)
9	0
12	4
13	6

CÁCULO ESTADÍSTICO MANN-WHITNEY (W)

¿Cómo se calcula el estadístico W?

Como la diferencia de los ranking entre tratamiento y control

Tratamiento (T)	Control (C)	Ranking T	Ranking C
9	0	4	1
12	4	5	2
13	6	6	3
		$\sum = 15$	$\sum = 6$

$$W = 15 - 6 = 9$$

Máxima diferencia posible entre T y C.

PRUEBA DE HIPÓTESIS DE MANN-WHITNEY

Hipótesis de 2 colas

 $\mathbf{H_0}$: Tratamiento = Control $\mathbf{H_1}$: Tratamiento \neq Control

Hipótesis 1 cola

 H_0 : Tratamiento = Control H_1 : Tratamiento > Control

Hipótesis 1 cola

H₀: Tratamiento = Control **H**₁: Tratamiento < Control

PRUEBA DE MANN-WHITNEY CON R

```
# Realiza prueba de Mann-Whitney
wilcox.test(t, c, alternative = "g",
            paired = FALSE)
##
##
   Wilcoxon rank sum exact test
##
## data: t and c
## W = 9, p-value = 0.05
## alternative hypothesis: true location shift is greater
```

No se rechaza H_0 porque p = 0.05

COMPARACIÓN DE MUESTRAS PAREADAS

¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.

PRUEBA DE WILCOXON MUESTRAS PAREADAS

Estudio de caso: Gonadotrofina en trucha 7 y 14 días **post ovulación.**

¿Aumenta la gonadotrofina post ovulación?

Trucha	7 días	14 días	d	Ranking con signo
1	45	49	4	2
2	41	50	9	4
3	47	52	5	3
4	52	50	2	-1

W = suma de los ranking = 8

V = suma de casos positivos (aumenta) = 9

PRUEBA DE HIPÓTESIS DE WILCOXON

Hipótesis 2 colas

 H_0 : d = 0

 $\mathbf{H_1}$: $d \neq 0$

Hipótesis 1 cola

 H_0 : d = 0

 H_1 : d < 0

Hipótesis 1 cola

 H_0 : d = 0

 H_1 : d > 0

PRUEBA DE WILCOXON PAREADAS CON R

```
# Realiza prueba de Wilcoxon
wilcox.test(post - pre, alternative = "greater")
##
    Wilcoxon signed rank exact test
##
##
## data: post - pre
## V = 9, p-value = 0.125
## alternative hypothesis: true location is greater than 0
# no es necesario indicar muestras pareadas
# pues estamos haciendo la resta en la función.
```

COMPARACIÓN DE MÚLTIPLES MUESTRAS INDEPENDIENTES

¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: SCORE CALIDAD CAMARÓN

Score de calidad organoléptica (textura) de camarón link.

Descripción	Puntaje
Muy compacto y denso	9
Menos elástico, compacto y denso	7
No elástico, no compacto y no denso	5
Ligeramente blando	3
Suave	1

PRUEBA DE KRUSKAL - WALLIS

Textura luego de 0, 4 y 8 días de almacenamiento de camarón congelado.

0 días	4 días	8 días
9	7	6
8	7	5
9	6	5
8	8	6

Hipótesis

H₀: La distribución de los k grupos son iguales.H₁: Al menos 2 grupos son distintos.

PRUEBA DE KRUSKAL - WALLIS CON R

kruskal.test(list(d0, d4, d8))

```
##
## Kruskal-Wallis rank sum test
##
## data: list(d0, d4, d8)
## Kruskal-Wallis chi-squared = 9, df = 2, p-value = 0.011;
```

PRUEBA DE ASOCIACIÓN VARIABLES CATEGÓRICAS

¿Para que sirve?

Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y la otra es una variable predictora.

Tratamiento	Respuesta +	Respuesta -
Si	a	С
No	b	d

PRUEBA DE CHI CUADRADO

Esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula.

Hipótesis

H₀: La variable predictora y la variable respuesta son independientes (Tratamiento = control)

H₁: La variable predictora y la variable respuesta NO son independientes

Supuestos:

- Los datos provienen de una muestra aleatoria de la población de interés.
- El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea mayor 5 y que ninguna frecuencia sea menor que 1.

ESTUDIO DE CASO: SOBREVIVENCIA MANCHA BLANCA CAMARÓN

Sobrevivencia de postlarvas alimentadas con *B* glucanos y desafiadas con WSSP **Chang et al., 1999**.

Tratamiento	Sobrevivientes	Muertos
Con glucanos	20	80
Sin glucanos	5	95

CÁLCULO DE ESTADÍSTICO CHI CUADRADO

¿Cómo se calcula el estadístico Chi cuadrado?

$$X^{2} = \sum \frac{(freq.obs. - freq.esp.)^{2}}{(freq.esperada)} = \sum \frac{(O - E)^{2}}{(E)}$$

Frecuencia esperada

```
## [,1] [,2]
## [1,] 12.5 87.5
## [2,] 12.5 87.5
## X-squared
## 10.28571
```

PRUEBA DE CHI CUADRADO CON R

```
# Test de Chi-squared en R (chisq.test)
chisq.test(datos, correct = FALSE)

##
## Pearson's Chi-squared test
##
## data: datos
## X-squared = 10.286, df = 1, p-value = 0.001341
```

PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible enRstudio.cloud.
 Clase_07

RESUMEN DE LA CLASE

Revisión de conceptos de estadística no paramétrica.

- Correlación de Spearman.
- Prueba de Man-Whitney.
- Prueba de Wilcoxon.
- Prueba de Kruskal Wallis.
- Prueba de Chi-cuadrado.