Chapitre 2 : fenêtrage, algorithme de Sutherland et Hodgman

1 Présentation et analyse

1.1 Exemples

FIGURE 1 – Sommets ordonnés du Clipping et clipping window

Figure 2 – Clipping correct et incorrect

FIGURE 3 – Clipping bords fenêtre

FIGURE 4 - Clipping et remplissage

On pose:

 \bullet Ligne polygonale d'entrée : PL à N1 sommets

 $P_1,...,P_{N1}$: sommets de PL

 $[P_1P_2],...,[P_{N1}P_1]$: segments de PL

- \bullet Ligne polygonale de sortie (découpé) : PS, initialement vide, de N2 sommets
- \bullet Polygone fenêtre (window) convexe : PW à N3 sommets
- \bullet Fenêtrage de PL avec les bords ordonnés de la fenêtre :

bord 1:

Construction de PS : enregistrement des intersections et des points visibles Découpage de $PL,\,PL\longleftarrow PS$

. . .

bord N3

Construction d'un nouveau PS : enregistrement des intersections et des points visibles Découpage de $PL,\,PL\longleftarrow PS$

1.2 Positionnement segment-fenêtre

On suppose que la position du point S a été traitée dans l'itération précédente, recherchons la position de P_j .

Quatre cas possibles sont à analyser :

FIGURE 5 – Positionnement segment-fenêtre

Remarques:

- \bullet En ce qui concerne P_1 , il suffit de vérifier sa visibilité par rapport à la fenêtre :
 - 1) S'il est visible, il est ajouté dans ${\cal PS}$
 - 2) Sinon, on le stocke juste comme point départ
- Le côté final $[P_{N1}P_1]$ doit subir un traitement spécial consistant à stocker P_1 dans F avant le test, puis à considérer comme segment final $P_{N1}F$ pour effectuer le dernier test.

2 Actions de l'algorithme

Il y a deux actions à étudier avant l'écriture de l'algorithme complet :

- 1) Détermination de la visibilité d'un point
- 2) Détermination de l'intersection d'un segment du polygone avec un bord de la fenêtre

Cours 4A DJV

2.1 Visibilité d'un point

FIGURE 6 – Positionnement d'un point par rapport à un segment orienté

Deux méthodes sont possibles :

• On pose \overrightarrow{n} normale intérieure et \overrightarrow{m} normale extérieure de $[F_iF_{i+1}]$ Le produit scalaire des vecteurs donne :

Si
$$\overrightarrow{n} \cdot \overrightarrow{F_i P_k} > 0$$
, P_k à droite
Si $\overrightarrow{n} \cdot \overrightarrow{F_i P_j} < 0$, P_j à gauche
Si $\overrightarrow{n} \cdot \overrightarrow{F_i P_l} = 0$, P_l sur le segment

• On détermine l'orientation des triangles :

1)
$$|\overrightarrow{F_iP_k}\overrightarrow{F_iF_{i+1}}| > 0$$
, avec $|\overrightarrow{F_iP_k}(x,y)|$ et $|\overrightarrow{F_iF_{i+1}}(x',y')|$
 $\iff xy' - yx' > 0$
 $\iff F_iP_kF_{i+1} \text{ orient\'e positivement}$
 $\iff P_k \text{ à droite}$
2) $|\overrightarrow{F_iP_j}\overrightarrow{F_iF_{i+1}}| < 0$, avec $|\overrightarrow{F_iP_j}(x'',y'')|$ et $|\overrightarrow{F_iF_{i+1}}(x',y')|$
 $\iff x''y' - y''x' < 0$
 $\iff F_iP_jF_{i+1} \text{ orient\'e n\'egativement}$
 $\iff P_j \text{ à gauche}$

Un segment est :

- visible si ses deux extrémités sont visibles
- invisible si ses deux extrémités sont invisibles
- partiellement visible si l'une des extrémités est visible et l'autre invisible. On calcule alors le point d'intersection.

2.2 Intersection de deux droites paramétriques dans le plan

On s'intéresse à l'intersection de deux droites paramétriques du plan (P_1P_2) et (P_3P_4) .

On pose $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, $P_3(x_3, y_3)$ et $P_4(x_4, y_4)$. On a :

 $(P_1P_2): P(t) = P_1 + (P_2 - P_1)t, t \in \mathbb{R} \text{ et } (P_3P_4): Q(s) = P_3 + (P_4 - P_3)s, s \in \mathbb{R}.$

Au point d'intersection, on a P(t) = Q(s).

Soient
$$t, s \in [0, 1]$$
, $P(t) = Q(s)$
 $\iff P_1 + (P_2 - P_1)t = P_3 + (P_4 - P_3)s$
 $\iff (P_2 - P_1)t + (P_3 - P_4)s = P_3 - P_1$
 $\iff \underbrace{\begin{pmatrix} x_2 - x_1 & x_3 - x_4 \\ y_2 - y_1 & y_3 - y_4 \end{pmatrix}}_{\Lambda} \underbrace{\begin{pmatrix} t \\ s \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} x_3 - x_1 \\ y_3 - y_1 \end{pmatrix}}_{b}$
 $\iff X = \Lambda^{-1}b$, si Λ est inversible, c'est à dire : $|\Lambda| \neq 0$

Remarques:

- . $|\Lambda|=0$ signifie que les deux droites sont parallèles ou confondues
- . Si $t, s \in [0, 1]$, les segments $[P_1P_2]$ et $[P_3P_4]$ sont sécants
- . Si $t \notin [0,1]$ ou $s \notin [0,1]$, l'intersection est sur le prolongement d'au moins un des segments

3 Algorithme de Sutherland-Hodgman

Notation : S point courant du polygone, P_i les autres points du polygone, F_i les points de la fenêtre.

On se munit de trois fonctions:

- 1. $\mathbf{coupe}(S, P_j, F_i, F_{i+1})$: retournant un booléen suivant l'intersection possible entre le côté $[SP_j]$ du polygone et le bord prolongé (une droite) (F_iF_{i+1}) de la fenêtre
- 2. **intersection** (S, P_j, F_i, F_{i+1}) : retournant le point d'intersection $[SP_j] \cap (F_i F_{i+1})$
- 3. $visible(S, F_i, F_{i+1})$: retournant un booléen si S est visible par rapport à (F_iF_{i+1})

Algorithme de Sutherland-Hodgman

/* Découpage d'un polygone d'entrée $PL=\{P_1,...,P_{N1}\}$ par une fenêtre polygonale convexe $PW=\{F_1,...,F_{N3}\}$ */

 \mathbf{PF} :

PL: liste de N1 sommets (Entrée)

PW: liste de N3 sommets, avec $F_1 = F_{N3}$ (Entrée)

VI:

i, j: entiers

 $\mathrm{N2}$: entier /* nombre de points de la liste PS */

S, F, I: points

PS: liste de points du polygone de sortie (PL découpé) */

```
Début
```

Fin

```
/* Pour chaque point de la window PW */
Pour i variant de 1 à (N3-1) Faire
        N2 \leftarrow 0
        PS \longleftarrow \text{vide}
         /* Pour chaque point du polygone PL */
        Pour j variant de 1 à N1 Faire
                 Si (j=1) Alors
                          F \longleftarrow P_j /* Sauver le 1<sup>er</sup> = dernier sommet */
                 Sinon
                          \mathbf{Si} \ \mathrm{coupe}(S, P_j, F_i, F_{i+1}) \ \mathbf{Alors}
                                  I \leftarrow \operatorname{intersection}(S, P_j, F_i, F_{i+1})
                                  Charger(I, PS)
                                  N2++
                          FinSi
                 FinSi
                 S \longleftarrow P_j
                 Si visible(S, F_i, F_{i+1}) Alors
                          Charger(S, PS)
                          N2++
                 FinSi
        FinPour
        Si (N2 > 0) Alors
                 /* Traitement du dernier côté de PL */
                 Si coupe(S, F, F_i, F_{i+1}) Alors
                          I \leftarrow intersection(S, F, F_i, F_{i+1})
                          Charger(I, PS)
                          N2++
                 FinSi
                 /* Découpage pour chacun des sous polygones */
                 PL \longleftarrow PS
                 N1 \longleftarrow\!\! N2
        FinSi
FinPour
```