Optimal Categorical Instrumental Variables

Thomas Wiemann University of Chicago

June 27, 2023

Introduction

Instrumental variables often result in high-variance estimators

- ▷ In practice: Researchers use multiple instruments (e.g., interactions)
- ▷ Canonical example: Angrist and Krueger (1991)

Problem when # instruments is large relative to sample size

 \triangleright Overfit in the first stage \Rightarrow TSLS biased

Motivates estimators robust to asymp. regimes with # instruments $o \infty$

- → Many IV estimators, e.g., LIML (see Bekker, 1994, ...)
- ▷ Optimal IV (e.g., Donald and Newey, 2001; Belloni et al., 2012, ...)

Trade-off in existing approaches:

- ▷ Estimator properties sensitive to regularization assumption

Example: Difficulties with Categorical IVs

Setting: 50 categorical IVs with 100 obs. per category

Figure 1: Power Curves ($\alpha = 0.05$)

Poor performance of ML with cat. variables: Angrist and Frandsen (2022)

Contribution

This paper:

- ▷ Semiparametric efficiency w/ almost many categorical IVs
- \triangleright Key assumption: \exists few *latent* categories w/ same first-stage fit

Literature:

- Many instruments: Bekker (1994); Angrist and Krueger (1995); Chamberlain and Imbens (2004); Bekker and Van der Ploeg (2005); Chao and Swanson (2005); Hausman et al. (2012); ...
- Optimal instruments: Amemiya (1974); Chamberlain (1987); Newey (1990); Donald and Newey (2001); Belloni et al. (2012); Carrasco (2012); ...
- 3. Shrinkage with categorical variables: Racine and Li (2004); Ouyang et al. (2009); Li et al. (2013); Heiler and Mareckova (2021)
- 4. Group-fixed effects: Hahn and Moon (2010); Bonhomme and Manresa (2015); Su et al. (2016); Bonhomme et al. (2022); ...

Outline

- 1. Setup
- 2. Estimation & Inference
- 3. Simulation
- 4. Application: Returns to Schooling

Outline

- 1. Setup
- 2. Estimation & Inference
- 3. Simulation
- 4. Application: Returns to Schooling

Setup

Data generating process: P_n

 P_n is defined by the law of the random vector

- $\triangleright Y \equiv \text{scalar-valued outcome}$
- $\triangleright D \equiv$ scalar-valued endogenous variable
- $\triangleright Z \equiv \text{instrument}$
- $\triangleright U \equiv \text{structural residual}$

Allow P_n to change with the sample size n

- ▷ Asymptotics that better approximate finite sample behavior
- \triangleright Importantly: Will allow $|\operatorname{supp} Z| \to \infty$ as $n \to \infty$

Subsequent assumptions characterize P_n uniformly over n

Identification

I consider linear IV under mean independence:

Assumption 1

$$\exists \tau_0 \in \mathbb{R} : Y = D\tau_0 + U, E[U|Z] = 0.$$

Assumption 1 implies

$$E[(Y - \tau_0 D)(m_0(Z) - E[m_0(Z)])] = 0, \quad w/m_0(z) \equiv E[D|Z = z]$$

Assumption 2

 $Var(m_0(Z))$ is bounded away from zero.

Assumptions 1-2 imply the moment solution:

$$\tau_0 = \frac{E[(Y - E[Y])(m_0(Z) - E[D])]}{E[(D - E[D])(m_0(Z) - E[D])]}$$

Infeasible Sample Analogue Estimator

Moment solution holds for any $f : Cov(D, f(Z)) \neq 0$

 \triangleright Why focus on $m_0(z) = E[D|Z=z]$?

Consider an i.i.d. sample $\{(Y_i, D_i, Z_i)\}_{i=1}^n$ from (Y, D, Z)

Moment solution suggests the estimator

$$\hat{\tau}_{n}^{*} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y}_{n}) (m_{0}(Z_{i}) - \bar{D}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (D_{i} - \bar{D}_{n}) (m_{0}(Z_{i}) - \bar{D}_{n})}$$

 $m_0(Z_i)$ is the "optimal" instrument (Amemiya, 1974):

 $hd \hat{ au}_n^*$ achieves efficiency bound (under homoskedasticity)

Categorical Instrumental Variables

 m_0 not (generally) known:

- ▶ Need to estimate optimal instruments

This paper focuses on *categorical* instruments Z:

- $\forall z \in \operatorname{supp} Z, \Pr(Z = z) > 0$
- \triangleright Naive estimator for $m_0(z)$ simply $\frac{1}{N_z} \sum_{i:Z_i=z} D_i$

To approximate settings with few observations per category:

- \triangleright # categories $\rightarrow \infty$ as $n \rightarrow \infty$
- $ightharpoonup \Pr(Z=z) o 0 \text{ as } n o \infty$

(Almost) Many Categorical Instruments

When
$$Pr(Z = z) = o(n^{-0.5})$$

 \triangleright TSLS estimator not \sqrt{n} normal details

When
$$Pr(Z = z) = o(n^{-1})$$

 \triangleright LIML is \sqrt{n} normal (e.g., Bekker and Van der Ploeg, 2005)

I consider the slightly less demanding setting to prove optimality:

Assumption 3

$$\forall z \in \operatorname{supp} Z, \exists \lambda_z \in (0,1] : \Pr(Z=z) n^{1-\lambda_z} \to a_z > 0.$$

Expected obs. in each category grow at arbitrary poly. rate below n

- ▷ LIML is semiparametrically efficient (Donald and Newey, 2001; Bekker and Van der Ploeg, 2005)

Optimal Instrument with Fixed Support

Assumption 4

$$\exists K_0 \in \mathbb{N} : |\operatorname{supp} E[D|Z]| = K_0.$$

Implies existence of latent categorical variable with fixed support

 \triangleright Map observed high-dim Z into unobserved low-dim $m_0(Z)$

For every $n \in \mathbb{N}$, exists partition $(\mathcal{Z}_g)_{g=1}^{K_0}$ of supp Z such that

$$\forall g \in \{1, \dots, K_0\}, \quad m_0(z') = m_0(z), \quad \forall z', z \in \mathcal{Z}_g$$

Estimation assumes K_0 is known...

- ▷ Similar to # factors
- ▶ Can be estimated under additional assumptions details
- \triangleright K_0 often corresponds to economic quantities (e.g., judge types)

... and in some applications, K_0 is known!

Example: Returns to Education

Angrist and Krueger (1991):

- ▶ Returns to schooling for male Americans born 30-40s
- ▷ IV: Quarter-of-birth × Year-of-birth × Place-of-birth
- ▶ 1530 indicator instruments in the first stage
- ▷ Key motivation for weak & many IV literature

Instrument idea:

- ▷ QOB affects schooling due to mandatory attendance laws
- \triangleright Interaction w/ YOB \times POB b/c laws change across time & space

Is a student born in a particular quarter constrained / not constrained?

- ▷ 1st best: Legislative data for all states & years
- ▷ 2nd best: Learn policies from the data with CIV
- ightharpoonup Reduction in # categories: $|\operatorname{\mathsf{supp}} Z| = 1530$ but only need $\mathcal{K}_0 = 2$

Outline

- 1. Setup
- 2. Estimation & Inference
- 3. Simulation
- 4. Application: Returns to Schooling

Categorical Instrumental Variable Estimator

Finite support assumption motivates the Categorical IV estimator (CIV):

$$\hat{\tau}_{n} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y}_{n}) (\hat{m}_{n}(Z_{i}) - \bar{D}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (\hat{m}_{n}(Z_{i}) - \bar{D}_{n})^{2}},$$

where $\hat{m}_n(Z_i)$ is an estimator for $m_0(Z_i)$ defined by

$$\hat{m}_n = \operatorname*{arg\,min}_{\substack{m:\, \text{supp}\,\, Z \to \mathcal{M} \\ |m(\text{supp}\,\, Z)| = K_0}} \sum_{i=1}^n \left(D_i - m(Z_i)\right)^2$$

 $\triangleright \mathcal{M}$: supp $E[D|Z] \subset \mathcal{M}$, and $\mathcal{M} \subset \mathbb{R}$ is compact

 \hat{m}_n implemented using K_0 -Means

▷ Adapted from Bonhomme and Manresa (2015)

Additional Assumptions

Define the CEF residual:

$$V \equiv D - E[D|Z]$$

Assumptions 5-6 place tail restrictions on first and second stage errors

Assumption 5

 $\exists L < \infty$ such that $E \left[U^4 \right] \leq L$ and $E \left[V^4 \right] \leq L$.

Assumption 6

$$\exists b_1, b_2 : \mathsf{Pr}(|V| > \nu) \leq \exp\left\{1 - \left(\frac{\nu}{b_1}\right)^{b_2}\right\}, \forall \nu > 0.$$

Additional Assumptions (Contd.)

Assumptions 7-8 ensure the optimal instrument is well-separated

Assumption 7

$$\exists c > 0: (d_z - \tilde{d}_z)^2 \geq c, \forall d_z \neq \tilde{d}_z \in \operatorname{supp} E[D|Z].$$

Assumption 8

$$\exists \xi > 0 : \Pr(E[D|Z] = d_z) > \xi, \, \forall d_z \in \text{supp } E[D|Z].$$

Assumption 9 is the standard i.i.d. sampling assumption

Assumption 9

The data is an i.i.d. sample $\{(Y_i, D_i, Z_i)\}_{i=1}^n$ from P_n .

Main Theorem

Theorem 1

Let assumptions 1-9 hold. Then, as $n \to \infty$,

$$\sqrt{n}\left(\hat{\tau}_{n}-\tau_{0}\right)/\sigma\stackrel{d}{\rightarrow}N\left(0,1\right),$$

where $\sigma = \sqrt{Var(m_0(Z)U)}/Var(m_0(Z))$. If in addition, U is homoskedastic, then $\hat{\tau}_n$ is semiparametrically efficient for estimating τ_0 .

Device: Exponential misclassification probabilities in first stage Proof sketch

The result continues to hold when σ is consistently estimated:

$$\hat{\sigma}_n \equiv \sqrt{\frac{1}{n} \sum_{i=1}^n \hat{m}_n(Z_i)^2 (Y_i - D_i \hat{\tau}_n)^2} / \left(\frac{1}{n} \sum_{i=1}^n \hat{m}_n(Z_i)^2\right)$$

Outline

- 1. Setup
- 2. Estimation & Inference
- 3. Simulation
- 4. Application: Returns to Schooling

$$Y_i = D_i \tau_0 + U_i, \qquad D_i = m_0(Z_i) + V_i$$

where

- $\triangleright Z_i$ takes values in $\{1,\ldots,50\}$ and $E[V_i|Z_i]=0$
- \triangleright Each category in the sample has equal observations n_z

Optimal instrument s.t. $K_0 = 2$ and separated by p:

Noise levels:

$$Cov(U_i, V_i | Z_i = z) = \begin{bmatrix} \sigma_U^2(z) & \frac{1}{2}\sigma_U(z)\sigma_V(z) \\ \frac{1}{2}\sigma_U(z)\sigma_V(z) & \sigma_V^2(z) \end{bmatrix}$$

where $\sigma_U(z)$ and $\sigma_V(z)$ are independent draws from $U(\frac{1}{2},\frac{3}{2})$

Power Curves ($K_0 = 2$, p = 1)

Additional Power Curves ($K_0 = 2$, p = 1)

Power Curves ($K_0 = 2$, p = 2)

Outline

- 1. Setup
- 2. Estimation & Inference
- 3. Simulation
- 4. Application: Returns to Schooling

Application: Returns to Schooling

Revisit analysis of Angrist and Krueger (1991)

- ▷ IV: Quarter-of-birth × Year-of-birth × Place-of-birth
- ▶ 1530 indicator instruments in the first stage

Two exercises:

- 1. Estimation on the full sample
- 2. Repeated estimation on random sub-samples

Estimating Returns to Schooling: Revisited

Table 1: Results on Returns to Schooling

n =		32,950	98,852	167,754	296,558	329,509
CIV $(K_0 = 2)$	Mean $\hat{\tau}_n$	0.070	0.072	0.074	0.078	0.078
	Mean $se(\hat{\tau}_n)$	0.010	0.009	0.009	0.008	0.008
	Std. Dev. $\hat{\tau}_n$	0.008	0.008	0.006	0.004	-
TSLS	Mean $\hat{\tau}_n$	0.067	0.068	0.069	0.071	0.071
	Mean $se(\hat{\tau}_n)$	0.005	0.005	0.005	0.005	0.005
	Std. Dev. $\hat{\tau}_n$	0.005	0.005	0.004	0.002	-
LIML	Mean $\hat{\tau}_n$	0.127	0.128	0.080	0.102	0.102
	Mean $se(\hat{\tau}_n)$	0.067	0.033	0.024	0.016	0.014
	Std. Dev. $\hat{\tau}_n$	1.886	0.676	0.710	0.020	-
OLS	Mean $\hat{\tau}_n$	0.067	0.067	0.067	0.067	0.067
	Mean $se(\hat{\tau}_n)$	0.001	0.001	0.001	0.000	0.000
	Std. Dev. $\hat{\tau}_n$	0.001	0.001	0.000	0.000	-

Estimating Returns to Schooling: Revisited

Table 1: Results on Returns to Schooling

n =		32,950	98,852	167,754	296,558	329,509
$CIV\;(K_0=2)$	Mean $\hat{ au}_n$	0.070	0.072	0.074	0.078	0.078
	Mean $se(\hat{\tau}_n)$	0.010	0.009	0.009	0.008	0.008
	Std. Dev. $\hat{ au}_n$	0.008	0.008	0.006	0.004	-
TSLS	Mean $\hat{ au}_n$	0.067	0.068	0.069	0.071	0.071
	Mean $se(\hat{\tau}_n)$	0.005	0.005	0.005	0.005	0.005
	Std. Dev. $\hat{\tau}_n$	0.005	0.005	0.004	0.002	-
LIML	Mean $\hat{ au}_n$	0.127	0.128	0.080	0.102	0.102
	Mean $se(\hat{\tau}_n)$	0.067	0.033	0.024	0.016	0.014
	Std. Dev. $\hat{\tau}_n$	1.886	0.676	0.710	0.020	-
OLS	Mean $\hat{ au}_n$	0.067	0.067	0.067	0.067	0.067
	Mean $se(\hat{ au}_n)$	0.001	0.001	0.001	0.000	0.000
	Std. Dev. $\hat{\tau}_n$	0.001	0.001	0.000	0.000	-

Estimating Returns to Schooling: Revisited (Contd.)

Table 2: Additional Results on Returns to Schooling

n =		32,950	98,852	167,754	296,558	329,509
CIV $(K_0 = 2)$	Mean $\hat{\tau}_n$	0.070	0.072	0.074	0.078	0.078
	Mean $se(\hat{\tau}_n)$	0.010	0.009	0.009	0.008	0.008
	Std. Dev. $\hat{\tau}_n$	0.008	0.008	0.006	0.004	-
rlasso-IV-1	Mean $\hat{\tau}_n$	0.128	0.085	0.086	0.086	0.086
	Mean $se(\hat{\tau}_n)$	0.019	0.037	0.035	0.027	0.025
	Std. Dev. $\hat{\tau}_n$	0.037	0.032	0.025	0.009	-
rlasso-IV-2	Mean $\hat{ au}_n$	0.098	0.046	-	-	-
	Mean $se(\hat{ au}_n)$	0.043	0.035	-	-	-
	Std. Dev. $\hat{ au}_n$	0.077	NA	-	-	-

Lasso-IV is sensitive to indicator specification:

- ▷ rlasso-IV-1: Implements first, second, third-order interactions
- ▷ rlasso-IV-2: Implements full non-overlapping interactions only

Conclusion

This paper:

- ▶ Propose new estimator for Categorical IVs
- ▶ Robust to few observations per category
- ▷ Based on easily interpretable regularization assumption
- ▶ Application to returns to schooling

R command is work in progress

References I

- Amemiya, T. (1974). Multivariate regression and simultaneous equation models when the dependent variables are truncated normal. *Econometrica*, pages 999–1012.
- Angrist, J. D. and Frandsen, B. (2022). Machine labor. *Journal of Labor Economics*, 40(S1):S97–S140.
- Angrist, J. D. and Krueger, A. B. (1991). Does compulsory school attendance affect schooling and earnings? *Quarterly Journal of Economics*, 106(4):979–1014.
- Angrist, J. D. and Krueger, A. B. (1995). Split-sample instrumental variables estimates of the return to schooling. *Journal of Business & Economic Statistics*, 13(2):225–235.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica*, 70(1):191–221.
- Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental variable estimators. *Econometrica: Journal of the Econometric Society*, pages 657–681.

References II

- Bekker, P. A. and Van der Ploeg, J. (2005). Instrumental variable estimation based on grouped data. *Statistica Neerlandica*, 59(3):239–267.
- Belloni, A., Chen, D., Chernozhukov, V., and Hansen, C. (2012). Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica*, 80(6):2369–2429.
- Bonhomme, S., Lamadon, T., and Manresa, E. (2022). Discretizing unobserved heterogeneity. *Econometrica*, 90(2):625–643.
- Bonhomme, S. and Manresa, E. (2015). Grouped patterns of heterogeneity in panel data. *Econometrica*, 83(3):1147–1184.
- Carrasco, M. (2012). A regularization approach to the many instruments problem. *Journal of Econometrics*, 170(2):383–398.
- Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. *Journal of Econometrics*, 34(3):305–334.
- Chamberlain, G. and Imbens, G. (2004). Random effects estimators with many instrumental variables. *Econometrica*, 72(1):295–306.

References III

- Chao, J. C. and Swanson, N. R. (2005). Consistent estimation with a large number of weak instruments. *Econometrica*, 73(5):1673–1692.
- Donald, S. G. and Newey, W. K. (2001). Choosing the number of instruments. *Econometrica*, 69(5):1161–1191.
- Hahn, J. and Moon, H. R. (2010). Panel data models with finite number of multiple equilibria. *Econometric Theory*, 26(3):863–881.
- Hausman, J. A., Newey, W. K., Woutersen, T., Chao, J. C., and Swanson, N. R. (2012). Instrumental variable estimation with heteroskedasticity and many instruments. *Quantitative Economics*, 3(2):211–255.
- Heiler, P. and Mareckova, J. (2021). Shrinkage for categorical regressors. *Journal of Econometrics*, 223(1):161–189.
- Kolesár, M. (2013). Estimation in an instrumental variables model with treatment effect heterogeneity. Working Paper.
- Li, Q., Ouyang, D., and Racine, J. S. (2013). Categorical semiparametric varying-coefficient models. *Journal of Applied Econometrics*, 28(4):551–579.

References IV

- Newey, W. K. (1990). Efficient instrumental variables estimation of nonlinear models. *Econometrica*, pages 809–837.
- Ouyang, D., Li, Q., and Racine, J. S. (2009). Nonparametric estimation of regression functions with discrete regressors. *Econometric Theory*, 25(1):1–42.
- Racine, J. and Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. *Journal of Econometrics*, 119(1):99–130.
- Su, L., Shi, Z., and Phillips, P. C. (2016). Identifying latent structures in panel data. *Econometrica*, 84(6):2215–2264.

Properties of the Naive CIV Estimator

Numerator of $\sqrt{Kn_Z}(\hat{\tau}_n - \tau_0)$ written as $O_p(1)$ -term plus

$$A_n \equiv \frac{1}{\sqrt{Kn_Z}} \sum_{k=1}^K \sum_{i=1}^{n_Z} U_{ki} (\hat{m}_n(k) - m_0(k))$$

Naive estimator uses $\hat{m}_n(k) = \frac{1}{n_Z} \sum_{i=1}^{n_Z} D_{ki}$ so that

$$A_{n} = \frac{1}{\sqrt{Kn_{Z}}} \sum_{k=1}^{K} \sum_{i=1}^{n_{Z}} U_{ki} \left(\frac{1}{n_{Z}} \sum_{i=1}^{n_{Z}} V_{ki} \right)$$
$$= \frac{\sqrt{n_{Z}}}{\sqrt{K}} \sum_{k=1}^{K} \left(\frac{1}{n_{Z}} \sum_{i=1}^{n_{Z}} U_{ki} \right) \left(\frac{1}{n_{Z}} \sum_{i=1}^{n_{Z}} V_{ki} \right)$$

In expectation, $E[A_n] \approx \sqrt{K/n_Z} Cov(U_{ki}, V_{ki})$

 \triangleright Diverges unless $K/n_Z = K^2/n \rightarrow c < \infty$

Under the LATE assumptions, we have

$$au_0 = \sum_{m=1}^K \lambda_m \mathsf{LATE}(z_m, z_{m-1})$$

where

$$LATE(z_m, z_{m-1}) = E[Y(1) - Y(0)|D(z_m) > D(z_{m-1})]$$

and

$$\lambda_{m} \equiv \frac{\left(m_{0}(z_{m}) - m_{0}(z_{m-1})\right) \left(\sum_{l=m}^{K} \left(m_{0}(z_{l}) - E[D]\right) m_{0}(z_{l})\right)}{\sum_{j=1}^{K} \left(m_{0}(z_{j}) - m_{0}(z_{j-1})\right) \left(\sum_{l=j}^{K} \left(m_{0}(z_{l}) - E[D]\right) m_{0}(z_{l})\right)}$$

Importantly: $\lambda_m \geq 0, \forall m \text{ and } \sum_{m=1}^K \lambda_m = 1$

Connection to factor model literature: Following Bai and Ng (2002)

$$I(M) = \frac{1}{Kn_Z} \sum_{k=1}^{K} \sum_{i=1}^{n_Z} \left(D_{ki} - \hat{m}^{(K)}(k) \right)^2 + M \times h(K, n_Z)$$

where $\hat{m}^{(M)}$ is the estimator w/ M support points, and h is such that

$$\triangleright \lim_{K,n_Z\to\infty} h(K,n_Z)=0$$

$$\triangleright \lim_{K,n_Z\to\infty} \min(K,n_Z)h(K,n_Z) = \infty$$

Then take

$$\hat{K} = \operatorname*{arg\,min}_{M \in \{1, \dots, K_{max}\}} I(M)$$

Known K_{max} crucial for consistency of \hat{K} and semiparametric efficiency

Optimal instrument constructed as

$$m_0(z,x) = E[D|Z = z, X = x] - E[D|X = x], \ \forall (z,x) \in \operatorname{supp} Z \times \operatorname{supp} X$$

$$K_0 = 2 \Leftrightarrow |\operatorname{supp} m_0(Z, X)| = 2$$

Suppose supp $X = \{a, b\}$. Example that conforms with $K_0 = 2$:

$$m_0(1,a) = m_0(2,a) = m_0(3,a) = 0$$
 and $m_0(4,a) = 0.2$
 $m_0(1,b) = m_0(2,b) = 0$ and $m_0(3,b) = m_0(4,b) = 0.2$

- ▷ Incremental effect of mandatory attendance law should not vary

Proof in three steps:

- 1. Show that $\forall \delta > 0 : \hat{m}_n = \tilde{m}_n + o_p(n^{-\delta})$
- 2. Show that $\hat{\tau}_n = \tilde{\tau}_n + o_p(n^{-\delta})$
- 3. Show that

$$\sqrt{n}(ilde{ au}_n- au_0)\stackrel{d}{ o} N(0,\sigma^2)$$
 where $\sigma^2=Var(m_0(Z)U)/Var(m_0(Z))^2$

Proof Sketch (Contd.)

Step 1. heavily leverages arguments of Bonhomme and Manresa (2015)

Most importantly:

Lemma 1 (Lemma B.5 in Bonhomme and Manresa (2015))

Let z_t be a strongly mixing process with zero mean, with strong mixing coefficients $\alpha[t] \leq \exp\left(-at^{d_1}\right)$, and with tail probabilities $P(|z_t|>z) \leq \exp\left(1-\left(\frac{z}{b}\right)^{d_2}\right)$, where a,b,d_1 , and d_2 are positive constants. Then, $\forall z\geq 0$, we have, $\forall \delta>0$,

$$T^{\delta}P\left(\left|\frac{1}{T}\sum_{t=1}^{T}z_{t}\right|\geq z\right)\overset{T\to\infty}{\to}0.$$
 (1)

Application:

- ▷ "Missclassification" probability vanishes exponentially
- \triangleright Can learn partition $(\mathcal{Z}_g)_{g=1}^{K_0}$ of supp Z very quickly