Título do trabalho a ser apresentado à CPG para a dissertação/tese

Rodrigo Augusto Dias Faria

TEXTO APRESENTADO
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
O EXAME DE QUALIFICAÇÃO
DO
MESTRADO EM CIÊNCIAS

Programa: Ciência da Computação Orientador: Prof. Dr. Roberto Hirata Junior

São Paulo, novembro de 2016

Resumo

SOBRENOME, A. B. C. **Título do trabalho em português**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Texto texto

Palavra-chave: palavra-chave1, palavra-chave2, palavra-chave3.

Abstract

SOBRENOME, A. B. C. **Título do trabalho em inglês**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Keywords: keyword1, keyword2, keyword3.

Sumário

Li	sta d	de Abreviaturas	ix								
Li	sta d	de Símbolos	xi								
Lista de Figuras											
Li	sta d	de Tabelas	xv								
1	Intr	rodução	1								
	1.1	Considerações Preliminares	1								
	1.2	Objetivos	1								
	1.3	Contribuições	2								
	1.4	Organização do Trabalho	2								
2	Fun	ndamentação Teórica	3								
	2.1	Modelos de Cores	3								
		2.1.1 Modelo de cores de Munsell	3								
		2.1.2 Modelo de cores CIE	4								
		2.1.3 Modelo de cores RGB	4								
		2.1.4 Modelo de cores CMYK	4								
		2.1.5 Modelo de cores da família HSI	4								
		2.1.6 Aminoácidos	4								
	2.2	Exemplo de Código-Fonte em Java	5								
	2.3	Algumas Referências	5								
3	Cor	nclusões	9								
	3.1	Considerações Finais	9								
	3.2	Sugestões para Pesquisas Futuras	9								
	3.3	Cronograma Proposto	9								
A	Seq	quências :	11								
Re	eferê	encias Bibliográficas	13								
Ín	dice	Remissivo	15								

Lista de Abreviaturas

 CFT Transformada contínua de Fourier (Continuous Fourier Transform) DFT Transformada discreta de Fourier (Discrete Fourier Transform) EIIP Potencial de interação elétron-íon (Electron-Ion Interaction Potentials) Tranformada de Fourier de tempo reduzido (Short-Time Fourier Transform) STFT

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

Lista de Tabelas

2.1	Códigos, abreviaturas e nomes dos aminoácidos	5
3.1	Cronograma proposto para execução do trabalho	9
A.1	Exemplo de tabela	12

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação. Há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Eco (2009) intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para teses de graduação na Itália, não se aplica tanto a nós.

Para a escrita de textos em Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science (Zobel, 2004) é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Wazlawick (2009) também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences (Higham, 1998) e o do criador do TEX, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing (Knuth et al., 1996).

O uso desnecessário de termos em lingua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo: Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Tufte (2001), *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

1.1 Considerações Preliminares

Considerações preliminares¹. Texto texto.

1.2 Objetivos

Texto texto.

¹Nota de rodapé (não abuse).

2 Introdução 1.4

1.3 Contribuições

As principais contribuições deste trabalho são as seguintes:

• Item 1. Texto texto.

• Item 2. Texto texto.

1.4 Organização do Trabalho

No Capítulo 2, apresentamos os conceitos ... Finalmente, no Capítulo 3 discutimos algumas conclusões obtidas neste trabalho. Analisamos as vantagens e desvantagens do método proposto ... As sequências testadas no trabalho estão disponíveis no Apêndice A.

Capítulo 2

Fundamentação Teórica

Fazer uma breve introdução aqui.

2.1 Modelos de Cores

O uso de imagens coloridas em visão computacional ou no processamento de imagens pode ser motivado por dois fatores principais. O primeiro diz respeito a característica poderosa da cor de funcionar como um descritor que, frequentemente, simplifica a identificação e extração de um objeto em uma cena. O segundo está relacionado com a capacidade dos seres humanos de discernir milhares de tonalidades e intensidades, se comparado com apenas algumas dúzias de níveis de cinza (Gonzalez e Woods, 2002).

A percepção visual da cor pelo olho humano não deve variar conforme a distribuição espectral da luz natural incidente sobre um objeto. Em outras palavras, a aparência de cor dos objetos permanece estável sob condições de iluminação diferentes. Este fenômeno é conhecido como constância de cor (Gevers et al., 2012).

Como exemplo, o gramado de um estádio de futebol permanece verde durante todo o dia, inclusive ao entardecer quando, de um ponto de vista físico, a luz solar tem um aspecto mais avermelhado.

A percepção humana das cores se dá pela ativação de células nervosas que enviam mensagens ao cérebro sobre brilho (*brightness*), matiz (*hue*) e saturação (*saturation*) que, geralmente, são as características usadas para distinguir uma cor de outra (Gonzalez e Woods, 2002).

O brilho dá a noção de intensidade cromática. Matiz representa a cor dominante percebida por um observador. Já a saturação refere-se à pureza relativa ou quantidade de luz branca aplicada ao matiz. Combinados, matiz e saturação são conhecidos como cromaticidade e, portanto, uma cor deve ser caracterizada por seu brilho e cromaticidade (Gonzalez e Woods, 2002).

As cores podem ser especificadas por modelos matemáticos em tuplas de números em um sistema de coordenadas e um subespaço dentro deste sistema onde cada cor é representada por um único ponto. Tais modelos são conhecidos como modelo de cores (Gonzalez e Woods, 2002).

As seções seguintes descrevem brevemente alguns dos principais modelos de cores, bem como seus variantes e principais áreas de aplicação.

2.1.1 Modelo de cores de Munsell

O Professor Albert H. Munsell foi pioneiro na tentativa de organizar a percepção de cor em um espaço de cores. Mais do que isso, Munsell conseguiu aliar a arte e a ciência das cores em uma única teoria (Plataniotis e Venetsanopoulos, 2000).

O princípio da igualdade de espaçamento entre os componentes do modelo é a ideia principal do modelo de cores de Munsell (Plataniotis e Venetsanopoulos, 2000). Esses componentes são matiz (hue), luminosidade (value) e saturação (chroma).

O modelo é representado por uma forma cilíndrica e pode ser visto na figura 2.1. O matiz está disposto no eixo circular que consiste de cinco cores de base e cinco secundárias, a saturação no eixo radial e a luminosidade no eixo vertical em uma escala variando de 0 a 10.

Figura 2.1: Modelo de cores de Munsell.

2.1.2 Modelo de cores CIE

Texto texto

2.1.3 Modelo de cores RGB

Texto texto

2.1.4 Modelo de cores CMYK

Texto texto

2.1.5 Modelo de cores da família HSI

Texto texto

2.1.6 Aminoácidos

Veja na Tabela 3.1... texto texto.

Texto texto

Código	Abreviatura	Nome completo			
А	Ala	Alanina			
С	Cys	Cisteína			
M	Trp	Tiptofano			
Y	Tyr	Tirosina			

Tabela 2.1: Códigos, abreviaturas e nomes dos aminoácidos.

2.2 Exemplo de Código-Fonte em Java

Texto texto.

2.3 Algumas Referências

É muito recomendável a utilização de arquivos *bibtex* para o gerenciamento de referências a trabalhos. Nesse sentido existem três plataformas gratuitas que permitem a busca de referências acadêmicas em formato bib:

- CiteULike (patrocinados por Springer): www.citeulike.org
- Coleção de bibliografia em Ciência da Computação: liinwww.ira.uka.de/bibliography
- Google acadêmico (habilitar bibtex nas preferências): scholar.google.com.br

Lamentavelmente, ainda não existe um mecanismo de verificação ou validação das informações nessas plataformas. Portanto, é fortemente sugerido validar todas as informações de tal forma que as entradas bib estejam corretas. Também, tome muito cuidado na padronização das referências bibliográficas: ou considere TODOS os nomes dos autores por extenso, ou TODOS os nomes dos autores abreviados. Evite misturas inapropriadas.

Exemplos de referências com a tag:

• @Book: (Johnson e Wichern, 1983).

```
@Book{JW82,
  author = {Richard A. Johnson and Dean W. Wichern},
  title = {Applied Multivariate Statistical Analysis},
  publisher= {Prentice-Hall},
  year = {1983}
}
```

• @Article: (Mena-Chalco et al., 2008).

• @InProceedings: (Alves et al., 2003).

• @InCollection: (Babaoglu e Marzullo, 1993).

• @Conference: (Bronevetsky et al., 2003).

• @PhdThesis: (Garcia, 2001).

```
@PhdThesis{garcia01:PhD,
  author = {Islene C. Garcia},
  title = {Visões Progressivas de Computações Distribuídas},
  school = {Instituto de Computação, Universidade de Campinas, Brasil},
  year = {2001},
  month = {Dezembro}
}
```

• @MastersThesis: (Schmidt, 2003).

```
@MastersThesis{schmidt03:MSc,
  author = {Rodrigo M. Schmidt},
  title = {Coleta de Lixo para Protocolos de \emph{Checkpointing}},
  school = {Instituto de Computação, Universidade de Campinas, Brasil},
  year = {2003},
  month = Oct
}
```

• @Techreport: (Alvisi et al., 1999).

• @Manual: (Object Management Group, 2002).

```
@Manual{CORBA:spec,
  title = {{CORBA v3.0 Specification}},
  author = {{Object Management Group}},
  month = Jul,
  year = {2002},
  note = {{OMG Document 02-06-33}}
}
```

• @Misc: (Allcock, 2003).

• @Misc: para referência a artigo online (Fowler, 2004).

```
@Misc{fowler04:designDead,
  author = {Martin Fowler},
  title = {Is Design Dead?},
  year = {2004},
  month = May,
  note = {Último acesso em 30/1/2010},
  howpublished= {\url{http://martinfowler.com/articles/designDead.html}},
}
```

• @Misc: para referência a página web (Foundation).

```
@Misc{FSF:GNU-GPL,
  author = {Free Software Foundation},
  title = {GNU general public license},
  year = {2007},
  note = {Último acesso em 30/1/2010},
  howpublished= {\url{http://www.gnu.org/copyleft/gpl.html}},
}
```

8

Código	Abreviatura	Nome completo			
A	Ala	Alanina			
С	Cys	Cisteína			
W	Trp	Tiptofano			
Y	Tyr	Tirosina			

Tabela 3.1: Cronograma proposto para execução do trabalho.

Capítulo 3

Conclusões

Texto texto

3.1 Considerações Finais

Texto texto.

3.2 Sugestões para Pesquisas Futuras

Texto texto.

Finalmente, leia o trabalho de Alon (2009) no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveriam ser discutidos com seu orientador.

3.3 Cronograma Proposto

A realização de todos os experimentos propostos, desenvolvimento das ferramentas, análise dos resultados e a elaboração da dissertação, serão realizados de acordo com o cronograma disposto na tabela 3.1. As tarefas foram divididas dentro de um período de dez meses de execução e a previsão de defesa da dissertação é junho de 2017.

¹Exemplo de referência para página Web: www.vision.ime.usp.br/~jmena/stuff/tese-exemplo

Apêndice A

Sequências

Texto texto.

Limiar	MGWT			AMI			Spectrum de Fourier			Características espectrais		
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
2	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4 5	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
17	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Tabela A.1: Exemplo de tabela.

Referências Bibliográficas

- Allcock(2003) William Allcock. GridFTP protocol specification. Global Grid Forum recommendation (GFD.20), 2003. Citado na pág. 7
- Alon(2009) Uri Alon. How To Choose a Good Scientific Problem. *Molecular Cell*, 35(6):726–728. doi: 10.1016/j.molcel.2009.09.013. Citado na pág. 9
- Alves et al. (2003) Carlos E. R. Alves, Edson N. Cáceres, Frank Dehne e Siang W. Song. A parallel wavefront algorithm for efficient biological sequence comparison. Em *ICCSA '03: The 2003 International Conference on Computational Science and its Applications*, páginas 249–258. Springer-Verlag. Citado na pág. 6
- Alvisi et al. (1999) Lorenzo Alvisi, Elmootazbellah Elnozahy, Sriram S. Rao, Syed A. Husain e Asanka Del Mel. An analysis of comunication-induced checkpointing. Relatório Técnico TR-99-01, Department of Computer Science, University of Texas at Austin, Austin, USA. Citado na pág. 6
- Babaoglu e Marzullo (1993) Ozalp Babaoglu e Keith Marzullo. Consistent global states of distributed systems: Fundamental concepts and mechanisms. Em Sape Mullender, editor, *Distributed Systems*, páginas 55–96. segunda edição. Citado na pág. 6
- Bronevetsky et al.(2003) Greg Bronevetsky, Daniel Marques, Keshav Pingali e Paul Stodghill. Automated application-level checkpointing of MPI programs. Em PPoPP '03: Proceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, páginas 84–89. Citado na pág. 6
- **Eco(2009)** Umberto Eco. *Como se Faz uma Tese*. Perspectiva, 22º edição. Tradução Gilson Cesar Cardoso de Souza. Citado na pág. 1
- Foundation() Free Software Foundation. GNU general public license. http://www.gnu.org/copyleft/gpl.html. Último acesso em 30/1/2010. Citado na pág. 7
- Fowler (2004) Martin Fowler. Is design dead? http://martinfowler.com/articles/designDead.html, Maio 2004. Último acesso em 30/1/2010. Citado na pág. 7
- Garcia(2001) Islene C. Garcia. Visões Progressivas de Computações Distribuídas. Tese de Doutorado, Instituto de Computação, Universidade de Campinas, Brasil. Citado na pág. 6
- Gevers et al. (2012) Theo Gevers, Arjan Gijsenij, Joost van de Weijer e Jan-Mark Geusebroek. Color in Computer Vision: Fundamentals and Applications. Wiley. ISBN 0470890843. Citado na pág. 3
- Gonzalez e Woods (2002) Rafael C. Gonzalez e Richard E. Woods. *Digital Image Processing*. Prentice Hall, second edição. ISBN 0201180758. Citado na pág. 3
- **Higham(1998)** Nicholas J. Higham. *Handbook of Writing for the Mathematical Sciences*. SIAM: Society for Industrial and Applied Mathematics, segunda edição. Citado na pág. 1

- Johnson e Wichern (1983) Richard A. Johnson e Dean W. Wichern. Applied Multivariate Statistical Analysis. Prentice-Hall. Citado na pág. 5
- Knuth et al. (1996) Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. Mathematical Writing. The Mathematical Association of America. Citado na pág. 1
- Mena-Chalco et al. (2008) Jesús P. Mena-Chalco, Helaine Carrer, Yossi Zana e Roberto M. Cesar-Jr. Identification of protein coding regions using the modified Gabor-wavelet transform. *IEE-E/ACM Transactions on Computational Biology and Bioinformatics*, 5:198–207. Citado na pág. 5
- Object Management Group (2002) Object Management Group. CORBA v3.0 Specification, Julho 2002. OMG Document 02-06-33. Citado na pág. 7
- Plataniotis e Venetsanopoulos (2000) Konstantinos N. Plataniotis e Anastasios N. Venetsanopoulos. Color Image Processing and Applications. Springer, first edição. ISBN 3642086268. Citado na pág. 3
- Schmidt (2003) Rodrigo M. Schmidt. Coleta de lixo para protocolos de *Checkpointing*. Dissertação de Mestrado, Instituto de Computação, Universidade de Campinas, Brasil. Citado na pág. 6
- Tufte(2001) Edward Tufte. The Visual Display of Quantitative Information. Graphics Pr, 2nd edição. Citado na pág. 1
- Wazlawick (2009) Raul S. Wazlawick. *Metodologia de Pesquisa em Ciencia da Computação*. Campus, primeira edição. Citado na pág. 1
- **Zobel(2004)** Justin Zobel. Writing for Computer Science: The art of effective communication. Springer, segunda edição. Citado na pág. 1

Índice Remissivo

```
ácido
amino, 4

cores
espaço de Munsell, 3
modelo CIE, 4
modelo RGB, 4
modelos CMYK, 4
modelos de, 3
modelos HSI, 4

genoma
projetos, 1

proposto
cronograma, 9
```