MA331 Homework02

1 Simulation

Problem 1. Assume that $N \sim \mathcal{B}(n, p)$, a Binomial distribution with number of trials n and probability of success p. Set p = 0.4.

- (i) For n = 20, 30, 50, 75, 100, accurately compute $P(N \le 8.25)$ by using R function.
- (ii) For n = 20, 30, 50, 75, 100, approximate $P(N \le 8.25)$ by using Laplace theorem.
- (iii) Evaluate and scatter plot errors of all approximations from (ii), i.e., the absolute difference between the accurate computation and the Laplace approximation.
- (iv) Scatter plot of all errors of (iii). What do you perceive based on the plot.

Problem 2. Check the instruction of R commands 'density(x)' and 'plot(density(x))'. Generate a SRS X_1, \dots, X_n for the population $X \sim \mathcal{N}(2, 3^2)$ by using 'rnorm(n,2,3)', and collect the observed samples of

$$\frac{\bar{X}-2}{\sqrt{3^2/n}}, \qquad \frac{(n-1)S^2}{3^2}, \qquad \left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right),$$

respectively. Then, based on the corresponding samples, plot estimated density curves of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$, respectively, and also make the scatter plot of $\left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right)$.

- (i) For n=20, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (ii) For n = 30, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (iii) For n = 50, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (iv) For n = 75, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (v) Based on the plots of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and those of $\frac{(n-1)S^2}{3^2}$ in (i) (iv) describe your findings on probability distributions of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$, respectively.
- (vi) Based on the scatter plots of $\left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right)$ in (i) (iv) describe your findings on the statistical association between $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$.

1

2 Computation

Problem 3. Assume a SRS $(x_1, \dots, x_n) = (0.5, 0.9, -0.7, 1.5, -1, 2.5, 3.75, -1.6, 0.2, 3.15)$ from $X \sim \mathcal{N}(\mu, \sigma^2)$.

- (i) For $\mu = 1$ and $\sigma^2 = 4$, compute $a = \sum_{i=1}^n \frac{(x_i \mu)^2}{\sigma^2}$, determine the distribution of the statistic $\sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2}$, and then evaluate $P\left(\sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2} \le a\right)$.
- (ii) For $\sigma^2 = 4$, compute $b = \sum_{i=1}^n \frac{(x_i \bar{x})^2}{\sigma^2}$, determine the distribution of the statistic $\sum_{i=1}^n \frac{(X_i \bar{X})^2}{\sigma^2}$, and then evaluate $P\left(\sum_{i=1}^n \frac{(X_i \bar{X})^2}{\sigma^2} \le b\right)$.
- (iii) For $\mu = 1$, compute $c = \frac{\bar{x} \mu}{\sqrt{s^2/n}}$, determine the distribution of the statistic $\frac{\bar{X} \mu}{\sqrt{S^2/n}}$, and then evaluate $P\left(\frac{\bar{X} \mu}{\sqrt{S^2/n}} \le c\right)$.

Problem 4. Assume $X \sim \mathcal{N}(-1,9)$, $Y \sim \chi_{12}^2$, $T \sim \mathcal{T}_{10}$ and $F \sim \mathcal{F}_{8,9}$.

- (i) Calculate $P(X \in (0,1))$, $P(Y \in (3,14))$, $P(T \in (0,1))$, and $P(F \in (0,1))$.
- (ii) For $\alpha=0.05$, calculate $\alpha/2$ and $1-\alpha/2$ quantiles of $X,\,Y,\,T$ and F, respectively.

3 Verification

Problem 5. verify that (i) E[N] = np for $N \sim \mathcal{B}(n, p)$, (ii) E[T] = 0 for $T \sim \mathcal{T}_n$.