Fundamentos Teóricos da Computação

- Linguagens e Expressões Regulares -

Zenilton Kleber Gonçalves do Patrocínio Jr.

Ciência da Computação – PUC Minas Belo Horizonte, Brasil

2025

Sumário

- Conceitos Básicos
 - Alfabeto e Palavra/Sentença
 - Concatenação de Palavras
 - Subsentença
 - Operações sobre Sentenças
- Linguagens Formais
 - Conceito
 - Operações sobre Linguagens
- 3 Expressões Regulares
 - Conjuntos Regulares
 - Expressões Regulares

Alfabeto

Toda *linguagem* possui um *alfabeto* associado sendo este um conjunto finito não vazio de elementos distintos (denominados símbolos).

Palavra (ou sentença)

Uma palavra w sobre um alfabeto Σ é uma sequência finita de símbolos de Σ .

O tamanho da *palavra w* é dado pelo número de símbolos presentes na palavra e é representado por | w |.

Alfabeto

Toda *linguagem* possui um *alfabeto* associado sendo este um conjunto finito não vazio de elementos distintos (denominados símbolos).

Palavra (ou sentença)

Uma palavra w sobre um alfabeto Σ é uma sequência finita de símbolos de Σ .

O tamanho da *palavra w* é dado pelo número de símbolos presentes na palavra e é representado por | w |.

Alfabeto

Toda *linguagem* possui um *alfabeto* associado sendo este um conjunto finito não vazio de elementos distintos (denominados símbolos).

Palavra (ou sentença)

Uma palavra w sobre um alfabeto Σ é uma sequência finita de símbolos de Σ .

O tamanho da *palavra* w é dado pelo número de símbolos presentes na palavra e é representado por |w|.

Alfabeto

Toda *linguagem* possui um *alfabeto* associado sendo este um conjunto finito não vazio de elementos distintos (denominados símbolos).

Palavra (ou sentença)

Uma palavra w sobre um alfabeto Σ é uma sequência finita de símbolos de Σ .

O tamanho da *palavra* w é dado pelo número de símbolos presentes na palavra e é representado por |w|.

Alfabetos importantes

$$\Sigma = \{\ 1\ \}\ e\ \Gamma = \{\ 0,1\ \}$$

Pode-se escrever qualquer número natural com os alfabetos dados. Qual é o mais prático?

Seja *a* um símbolo qualquer. Denota-se a^n , $n\in\mathbb{N}$, uma sequência com n repetições do símbolo a.

```
Exemplos: 1^0 = \lambda

0^4 = 0000

1^301^2 = 111011...
```

Fechamento de Kleene (ou, simplesmente, fecho)

Fechamento (ou fecho) é o conjunto de todas as palavras sobre um alfabeto Σ e é representado por Σ^* .

Alfabetos importantes

$$\Sigma = \{\ 1\ \}\ e\ \Gamma = \{\ 0,1\ \}$$

Pode-se escrever qualquer número natural com os alfabetos dados. Qual é o mais prático?

Seja a um símbolo qualquer. Denota-se a^n , $n \in \mathbb{N}$, uma sequência com n repetições do símbolo a.

Exemplos:
$$1^0 = \lambda$$

 $0^4 = 0000$
 $1^301^2 = 111011...$

Fechamento de Kleene (ou, simplesmente, fecho)

Fechamento (ou fecho) é o conjunto de todas as palavras sobre um alfabeto Σ e é representado por Σ^* .

Alfabetos importantes

$$\Sigma = \{\ 1\ \}\ e\ \Gamma = \{\ 0,1\ \}$$

Pode-se escrever qualquer número natural com os alfabetos dados. Qual é o mais prático?

Seja a um símbolo qualquer. Denota-se a^n , $n \in \mathbb{N}$, uma sequência com n repetições do símbolo a.

Exemplos:
$$1^0 = \lambda$$

 $0^4 = 0000$
 $1^301^2 = 111011...$

Fechamento de Kleene (ou, simplesmente, fecho)

Fechamento (ou fecho) é o conjunto de todas as palavras sobre um alfabeto Σ e é representado por Σ^* .

Concatenação de palavras

Sejam w e v duas palavras quaisquer. Uma nova palavra wv é formada pela justaposição da primeira sentença seguida pela segunda sentença.

Exemplo: Dadas duas palavras $w = \mathbf{aba}$ e $v = \mathbf{ba}$, então a concatenação delas será $wv = \mathbf{ababa}$.

Propriedades da Concatenação de Palavras

- |wv| = |w| + |v|
- $\lambda w = w\lambda = w$, para toda sentença w
- (wv)u = w(vu) (associativa)
- wv ≠ vw (não comutativa)

Concatenação de palavras

Sejam w e v duas palavras quaisquer. Uma nova palavra wv é formada pela justaposição da primeira sentença seguida pela segunda sentença.

Exemplo: Dadas duas palavras $w = \mathbf{aba}$ e $v = \mathbf{ba}$, então a concatenação delas será $wv = \mathbf{ababa}$.

Propriedades da Concatenação de Palavras

- | wv | = | w | + | v |
- $\lambda w = w\lambda = w$, para toda sentença w
- (wv)u = w(vu) (associativa)
- wv ≠ vw (não comutativa)

Subsentença

A palavra v é uma subsentença de w se houver palavras x e y (que podem ser vazias) tal que w = xvy.

Sufixos: w = xv. v é chamado sufixo de w

Exemplo: Dada a palavra w = abacaxi, então os exemplos de sufixos de w: λ , i, xi, axi, caxi, ...

Prefixos: w = vy, v é chamada prefixo de w

Exemplo: Dada a palavra $w = \mathbf{abacaxi}$, então os exemplos de prefixos de w: λ , \mathbf{a} , \mathbf{aba} , \mathbf{abac} , . . .

Subsentença

A palavra v é uma subsentença de w se houver palavras x e y (que podem ser vazias) tal que w = xvy.

Sufixos: w = xv, v é chamado sufixo de w

Exemplo: Dada a palavra $w = \mathbf{abacaxi}$, então os exemplos de sufixos de w: λ , \mathbf{i} , \mathbf{xi} , \mathbf{axi} , \mathbf{caxi} , . . .

Prefixos: w = vy, v é chamada prefixo de w

Exemplo: Dada a palavra $w = \mathbf{abacaxi}$, então os exemplos de prefixos de w: λ , \mathbf{a} , \mathbf{aba} , \mathbf{abac} , . . .

Subsentença

A palavra v é uma subsentença de w se houver palavras x e y (que podem ser vazias) tal que w = xvy.

Sufixos: w = xv, v é chamado sufixo de w

Exemplo: Dada a palavra $w = \mathbf{abacaxi}$, então os exemplos de sufixos de w: λ , \mathbf{i} , \mathbf{xi} , \mathbf{axi} , \mathbf{caxi} , . . .

Prefixos: w = vy, v é chamada prefixo de w

Exemplo: Dada a palavra $w = \mathbf{abacaxi}$, então os exemplos de prefixos de w: λ , \mathbf{a} , \mathbf{aba} , \mathbf{abac} , . . .

Auto-Concatenação de Sentenças

Para toda palavra w e todo inteiro $i \ge 0$, a palavra w^i é definida por:

$$w^{i} = w^{i-1}w$$

Exemplo

Seja a sentença $w = \mathbf{ab}$ então $w^2 = w^1 w$.

Tem-se que
$$w^1 = w^0 w = \lambda w = w$$
.

Logo
$$w^2 = w^1 w = ww = abab$$

Auto-Concatenação de Sentenças

Para toda palavra w e todo inteiro $i \ge 0$, a palavra w^i é definida por:

$$w^{i} = w^{i-1}w$$

Exemplo

Seja a sentença $w = \mathbf{ab}$ então $w^2 = w^1 w$.

Tem-se que $w^1 = w^0 w = \lambda w = w$.

Logo $w^2 = w^1 w = ww = abab$

Auto-Concatenação de Sentenças

Para toda palavra w e todo inteiro $i \ge 0$, a palavra w^i é definida por:

$$w^{i} = w^{i-1}w$$

Exemplo

Seja a sentença $w = \mathbf{ab}$ então $w^2 = w^1 w$.

Tem-se que
$$w^1 = w^0 w = \lambda w = w$$
.

Logo
$$w^2 = w^1 w = ww = abab$$

Auto-Concatenação de Sentenças

Para toda palavra w e todo inteiro $i \ge 0$, a palavra w^i é definida por:

$$w^{i} = w^{i-1}w$$

Exemplo

Seja a sentença $w = \mathbf{ab}$ então $w^2 = w^1 w$.

Tem-se que
$$w^1 = w^0 w = \lambda w = w$$
.

Logo
$$w^2 = w^1 w = ww = abab$$

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

② $w^R = ay^R$, se $\mid w \mid > 0$, sendo w = ya para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$\mathsf{E},\,(\mathsf{i})^R=\mathsf{i}(\lambda)^R=\mathsf{i}\lambda=\mathsf{i}.$$

Daí,
$$(id)^R = d(i)^R = di$$

E, finalmente, $w^R = (ide)^R = e(id)^R = edi$

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

②
$$w^R = ay^R$$
, se $\mid w \mid > 0$, sendo $w = ya$ para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$\mathsf{E},\,(\mathsf{i})^R=\mathsf{i}(\lambda)^R=\mathsf{i}\lambda=\mathsf{i}.$$

Daí,
$$(id)^R = d(i)^R = di$$

E, finalmente,
$$w^R = (ide)^R = e(id)^R = edi$$

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

②
$$w^R = ay^R$$
, se $\mid w \mid > 0$, sendo $w = ya$ para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$E_{i}(\mathbf{i})^{R} = \mathbf{i}(\lambda)^{R} = \mathbf{i}\lambda = \mathbf{i}.$$

Daí,
$$(id)^R = d(i)^R = di$$

E, finalmente, $w^R = (ide)^R = e(id)^R = edi$

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

② $w^R = ay^R$, se $\mid w \mid > 0$, sendo w = ya para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$\mathsf{E},\,(\mathsf{i})^R=\mathsf{i}(\lambda)^R=\mathsf{i}\lambda=\mathsf{i}.$$

Daí, $(id)^R = d(i)^R = di$

E, finalmente, $w^R = (ide)^R = e(id)^R = edi$

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

② $w^R = ay^R$, se $\mid w \mid > 0$, sendo w = ya para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$\mathsf{E}, (\mathbf{i})^R = \mathbf{i}(\lambda)^R = \mathbf{i}\lambda = \mathbf{i}.$$

Daí,
$$(id)^R = d(i)^R = di$$
.

E. finalmente. $w^R = (ide)^R = e(id)^R = edi$.

Reverso de Sentenças

O reverso de uma palavra w, denotado por w^R , é definido por:

1
$$w^R = w = \lambda$$
, se $|w| = 0$

② $w^R = ay^R$, se $\mid w \mid > 0$, sendo w = ya para algum $a \in \Sigma$ e $y \in \Sigma^*$

Exemplo

Seja a sentença w = ide então $w^R = (ide)^R = e(id)^R$.

Tem-se que $(id)^R = d(i)^R$.

$$\mathsf{E}, (\mathbf{i})^R = \mathbf{i}(\lambda)^R = \mathbf{i}\lambda = \mathbf{i}.$$

Daí,
$$(id)^R = d(i)^R = di$$
.

E, finalmente, $w^R = (ide)^R = e(id)^R = edi$.

Conceito

```
Exemplos: \Sigma = \{0,1\} \Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\} L_0 = \emptyset L_1 = \{\lambda\} L_2 = \{0,1,00\} L_3 = \{w \in \Sigma^* \mid w \text{ \'e n\'umero bin\'ario m\'ultiplo de 3}\} L_4 = \{w \in \Sigma^* \mid w = 01^i, i \geq 0\}
```

Conceito

```
Exemplos: \Sigma = \{0,1\}
\Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0,1,00\}
L_3 = \{w \in \Sigma^* \mid w \text{ \'e n\'umero bin\'ario m\'ultiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Conceito

```
Exemplos: \Sigma = \{0,1\}
\Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0,1,00\}
L_3 = \{w \in \Sigma^* \mid w \text{ \'e n\'umero bin\'ario m\'ultiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Conceito

```
Exemplos: \Sigma = \{0,1\}
\Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0,1,00\}
L_3 = \{w \in \Sigma^* \mid w \text{ \'e n\'umero bin\'ario m\'ultiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Conceito

```
Exemplos: \Sigma = \{0,1\}
\Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0,1,00\}
L_3 = \{w \in \Sigma^* \mid w \text{ é número binário múltiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Conceito

```
Exemplos: \Sigma = \{0,1\}
\Sigma^* = \{\lambda,0,1,00,01,10,11,000,001,010,011,\dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0,1,00\}
L_3 = \{w \in \Sigma^* \mid w \text{ é número binário múltiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Conceito

```
Exemplos: \Sigma = \{0, 1\}
\Sigma^* = \{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \dots\}
L_0 = \emptyset
L_1 = \{\lambda\}
L_2 = \{0, 1, 00\}
L_3 = \{w \in \Sigma^* \mid w \text{ é número binário múltiplo de 3}\}
L_4 = \{w \in \Sigma^* \mid w = 01^i, i > 0\}
```

Operações próprias de conjuntos

Como linguagens são conjuntos (subconjuntos de Σ^*), podemos realizar operações da álgebra de conjuntos, isto é, \cup , \cap , -, complemento em relação a Σ^* , etc.

Exemplos:

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ ou } w \in L_2 \}$$

 $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ e } w \in L_2 \}$
 $L_1 - L_2 = \{ w \mid w \in L_1 \text{ e } w \notin L_2 \}$
 $\overline{L_1} = \{ w \mid w \in \Sigma^* \text{ e } w \notin L_1 \}$

Operações próprias de conjuntos

Exercício.

Seja $\Sigma = \{a, b, c\}$, e a linguagens:

$$L_1 = \{a^mb^nc^n \mid m \ge n \ge 0\}$$

$$L_2 = \{a^mb^nc^n \mid n \ge m \ge 0\}$$

$$L_1 \cup L_2 =$$

$$L_1 \cap L_2 =$$

Operações próprias de conjuntos

Exercício.

Seja
$$\Sigma = \{a, b, c\}$$
, e a linguagens:

$$L_1 = \{a^m b^n c^n \mid m \ge n \ge 0\}$$

$$L_2 = \{a^m b^n c^n \mid n \ge m \ge 0\}$$

$$L_1 \cup L_2 = \{a^m b^n c^n \mid m, n \ge 0\}$$

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

Operações próprias de conjuntos

Exercício.

Seja
$$\Sigma = \{a, b, c\}$$
, e a linguagens:

$$L_1 = \{a^mb^nc^n \mid m \ge n \ge 0\}$$

$$L_2 = \{a^mb^nc^n \mid n \ge m \ge 0\}$$

$$L_1 \cup L_2 = \{a^m b^n c^n \mid m, n \geq 0\}$$

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

Operações próprias de conjuntos

Exercício.

Seja $\Sigma = \{a, b, c\}$, e a linguagens:

$$L_1 = \{a^mb^nc^n \mid m \ge n \ge 0\}$$

$$L_2 = \{a^mb^nc^n \mid n \ge m \ge 0\}$$

$$L_1 \cup L_2 = \{a^m b^n c^n \mid m, n \geq 0\}$$

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

Operações próprias de linguagens

Como linguagens são conjuntos de palavras, podemos estender as operações sobre palavras (por exemplo, concatenação, reverso, etc.) para as linguagens

$$L_1L_2 = \{xy \mid x \in L_1 \text{ e } y \in L_2\}$$

$$L^R = \{w \mid w^R \in L_1\}$$

$$L^0 = \{\lambda\}$$

$$L^i = L^{i-1}L$$

$$L^* = \bigcup_{i=0}^{\infty} L^i \qquad L^+ = \bigcup_{i=1}^{\infty} L^i \qquad \text{(Fecho de Kleene)}$$

Operações próprias de linguagens

Como linguagens são conjuntos de palavras, podemos estender as operações sobre palavras (por exemplo, concatenação, reverso, etc.) para as linguagens

$$L_{1}L_{2} = \{xy \mid x \in L_{1} \text{ e } y \in L_{2}\}$$

$$L^{R} = \{w \mid w^{R} \in L_{1}\}$$

$$L^{0} = \{\lambda\}$$

$$L^{i} = L^{i-1}L$$

$$L^{*} = \bigcup_{i=1}^{\infty} L^{i} \qquad \text{(Fecho de Kleene)}$$

Operações próprias de linguagens

Como linguagens são conjuntos de palavras, podemos estender as operações sobre palavras (por exemplo, concatenação, reverso, etc.) para as linguagens

$$L_{1}L_{2} = \{xy \mid x \in L_{1} \text{ e } y \in L_{2}\}$$

$$L^{R} = \{w \mid w^{R} \in L_{1}\}$$

$$L^{0} = \{\lambda\}$$

$$L^{i} = L^{i-1}L$$

$$L^{*} = \bigcup_{k=0}^{\infty} L^{i} \qquad \text{(Fecho de Kleene}$$

Operações próprias de linguagens

Como linguagens são conjuntos de palavras, podemos estender as operações sobre palavras (por exemplo, concatenação, reverso, etc.) para as linguagens

$$\begin{array}{ll} L_1L_2 &= \{xy \mid x \in L_1 \text{ e } y \in L_2\} \\ L^R &= \{w \mid w^R \in L_1\} \\ \\ L^0 &= \{\lambda\} \\ L^i &= L^{i-1}L \\ \\ L^* = \bigcup_{i=0}^{\infty} L^i \qquad L^+ = \bigcup_{i=0}^{\infty} L^i \qquad \text{(Fecho de Kleene)} \end{array}$$

Operações próprias de linguagens

Exercício.

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

$$L_1 L_2 =$$

$$L_1 L_1 =$$

$$L_{1}^{*} =$$

$$L_{1}^{+} =$$

Operações próprias de linguagens

Exercício. (Solução)

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

```
L_1L_2 = \{ab, 1, abb, 1b, abbb, 1bb\}

L_1L_1 = \{abab, ab1, 1ab, 11\}

L_1^* = \{\lambda, ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}

L_1^+ = \{ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}
```

Operações próprias de linguagens

Exercício. (Solução)

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

```
L_1L_2 = \{ab, 1, abb, 1b, abbb, 1bb\}

L_1L_1 = \{abab, ab1, 1ab, 11\}

L_1^* = \{\lambda, ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}

L_1^+ = \{ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}
```

Operações próprias de linguagens

Exercício. (Solução)

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

```
L_1L_2 = \{ab, 1, abb, 1b, abbb, 1bb\}

L_1L_1 = \{abab, ab1, 1ab, 11\}

L_1^* = \{\lambda, ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}

L_1^+ = \{ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}
```

Operações próprias de linguagens

Exercício. (Solução)

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

```
L_1L_2 = \{ab, 1, abb, 1b, abbb, 1bb\}

L_1L_1 = \{abab, ab1, 1ab, 11\}

L_1^* = \{\lambda, ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}

L_1^+ = \{ab, 1, abab, ab1, 1ab, 11, ababab, abab1, ...\}
```

Operações próprias de linguagens

Exercício. (Solução)

Sejam as linguagens:

$$L_1 = \{ab, 1\}$$
$$L_2 = \{\lambda, b, bb\}$$

```
L_1L_2 = \{ab, 1, abb, 1b, abbb, 1bb\}

L_1L_1 = \{abab, ab1, 1ab, 11\}

L_1^* = \{\lambda, ab, 1, abab, ab1, 1ab, 11, ababab, abab1, \ldots\}

L_1^+ = \{ab, 1, abab, ab1, 1ab, 11, ababab, abab1, \ldots\}
```

Conjunto Regular

Um conjunto é **regular** se puder ser gerado a partir das operações de união, concatenação e fechamento sobre os elementos de um alfabeto.

Definição recursiva de Conjunto Regular

- **① base:** \emptyset , { λ } e {a}, $\forall a$ ∈ Σ são conjuntos regulares sobre Σ ;
- 2 passo recursivo: Sejam X e Y conjuntos regulares sobre Σ , então $X \cup Y$, XY e X^* também são conjuntos regulares sobre Σ ;
- **9 fechamento:** X é um conjunto regular sobre Σ se e somente se puder ser obtido a partir de um número finito de aplicações do passo recursivo sobre os elementos da base.

Conjunto Regular

Um conjunto é **regular** se puder ser gerado a partir das operações de união, concatenação e fechamento sobre os elementos de um alfabeto.

Definição recursiva de Conjunto Regular

- **1 base:** \emptyset , $\{\lambda\}$ e $\{a\}$, $\forall a \in \Sigma$ são conjuntos regulares sobre Σ ;
- **2 passo recursivo:** Sejam X e Y conjuntos regulares sobre Σ , então $X \cup Y$, XY e X^* também são conjuntos regulares sobre Σ ;
- **§ fechamento:** X é um conjunto regular sobre Σ se e somente se puder ser obtido a partir de um número finito de aplicações do passo recursivo sobre os elementos da base.

Conjunto Regular

Exercício.

Seja L a linguagem contendo todas as palavras sobre o alfabeto $\Sigma = \{a, b\}$ que possuem pelo menos uma ocorrência de "**bb**", isto é, um par de **b**s seguidos.

A linguagem L é regular?

Expressão Regular

Uma expressão regular representa um conjunto regular.

Definição recursiva de Expressão Regular

- **1 base:** os conjuntos regulares \emptyset , $\{\lambda\}$ e $\{a\}$, $\forall a \in \Sigma$ são representados pelas expressões regulares \emptyset , λ e a, $\forall a \in \Sigma$;
- passo recursivo: Sejam r e s duas expressões regulares que denotam os conjuntos regulares R e S, respectivamente, então:
 - $r \cup s$ é uma expressão regular que denota $R \cup S$,
 - rs é uma expressão regular que denota RS, e
 - r* é uma expressão regular que denota R*.
- **§ fechamento:** R é uma expressão regular sobre Σ se e somente se puder ser obtida a partir de um número finito de aplicações do passo recursivo sobre os elementos da base.

Expressão Regular

Uma expressão regular representa um conjunto regular.

Definição recursiva de Expressão Regular

- **1 base:** os conjuntos regulares \emptyset , $\{\lambda\}$ e $\{a\}$, $\forall a \in \Sigma$ são representados pelas expressões regulares \emptyset , λ e a, $\forall a \in \Sigma$;
- **passo recursivo:** Sejam *r* e *s* duas expressões regulares que denotam os conjuntos regulares *R* e *S*, respectivamente, então:
 - $r \cup s$ é uma expressão regular que denota $R \cup S$,
 - rs é uma expressão regular que denota RS, e
 - r* é uma expressão regular que denota R*.
- **§ fechamento:** R é uma expressão regular sobre Σ se e somente se puder ser obtida a partir de um número finito de aplicações do passo recursivo sobre os elementos da base.

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{b}	b
{ a , b }	a∪b
{ <i>ab</i> }	ab
$\{a,b\}\{a,b\} = \{aa,ab,ba,bb\}$	$(a \cup b)(a \cup b)$
$\{a\}^* = \{\lambda, a, aa, aaa, \ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	$(a \cup b)^*$

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{b}	b
{ a , b }	$a \cup b$
{ <i>ab</i> }	ab
${a,b}{a,b} = {aa,ab,ba,bb}$	$(a \cup b)(a \cup b)$
$\{a\}^* = \{\lambda, a, aa, aaa, \ldots\}$	a^*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	$(a \cup b)^*$

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{b}	b
{ a , b }	a∪b
{ <i>ab</i> }	ab
${a,b}{a,b} = {aa,ab,ba,bb}$	$(a \cup b)(a \cup b)$
$\{a\}^*=\{\lambda,a,aa,aaa,\ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	(a∪b)*

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{b}	b
{ a , b }	a∪b
{ <i>ab</i> }	ab
${a,b}{a,b} = {aa,ab,ba,bb}$	$(a \cup b)(a \cup b)$
$\{a\}^*=\{\lambda,a,aa,aaa,\ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	(a∪b)*

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{b}	b
{ a , b }	a∪b
{ <i>ab</i> }	ab
${a,b}{a,b} = {aa,ab,ba,bb}$	$(a \cup b)(a \cup b)$
$\{a\}^* = \{\lambda, a, aa, aaa, \ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	(<i>a</i> ∪ <i>b</i>)*

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{ <i>b</i> }	b
{ <i>a</i> , <i>b</i> }	a∪b
{ <i>ab</i> }	ab
$\{a,b\}\{a,b\} = \{aa,ab,ba,bb\}$	$(a \cup b)(a \cup b)$
$\{a\}^* = \{\lambda, a, aa, aaa, \ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	(<i>a</i> ∪ <i>b</i>)*

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Conjunto Regular × Expressão Regular

Conjunto Regular	Expressão Regular
{ <i>b</i> }	b
{ <i>a</i> , <i>b</i> }	a∪b
{ <i>ab</i> }	ab
$\{a,b\}\{a,b\} = \{aa,ab,ba,bb\}$	$(a \cup b)(a \cup b)$
$\{a\}^* = \{\lambda, a, aa, aaa, \ldots\}$	a*
$\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$	(a∪b)*

Parênteses desnecessários podem ser omitidos.

A ordem de prioridade das operações é:

Expressão Regular

Exercício.

Que conjuntos são representados pelas seguintes expressões:

- (a) $(a \cup b)^* a (a \cup b)^*$
- (b) $a(a \cup b)^*b$
- (c) $(a \cup b)^*bb(a \cup b)^*$
- (d) $(a \cup c)^* b(a \cup c)^* b(a \cup c)^*$
- (e) $((a \cup c)^*b(a \cup c)^*b(a \cup c)^*)^*$
- (f) $(a \cup b \cup c)(a \cup b \cup c)$
- (g) $(a \cup b \cup c)(\lambda \cup a \cup b \cup c)$

Expressão Regular

Exercícios.

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero;
 - (b) todas as palavras que possuem 3 zeros consecutivos:
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 - (e) todas as palavras que não contêm a subsentença 010;
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3;
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 - (c) todas as palavras cujo número de **b**s e **c**s seja 3.

Expressão Regular

- 1. Considerando o alfabeto $\Sigma=\{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero;

```
(0 \cup 1)*0
```

- (b) todas as palavras que possuem 3 zeros consecutivos;(0 | 11)*000(0 | 11)*
- (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
- (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
- (e) todas as palavras que não contêm a subsentença **010**

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; (0 ∪ 1)*000(0 ∪ 1)*
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;(1 ∪ 0(1 ∪ 011))*(λ ∪ 0)
 - (e) todas as palavras que não contêm a subsentença 010;(1++00*11)*(λ++00*1+00*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos;

```
(0 \cup 1)^*000(0 \cup 1)^*
```

- (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1; (0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
- (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1) (1) (1) (1) (1) (1) (1)
- (e) todas as palavras que não contêm a subsentença 010 (11100*111)*(31100*1100*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1 ∪ 0(1 ∪ 011))*(λ ∪ 0)
 - (e) todas as palavras que não contêm a subsentença 010 (11100*111)*(31100*1100*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 - (e) todas as palavras que n\u00e3o cont\u00e0m a subsenten\u00e7a 010 (1 | | 0.0*11)*(λ | | 0.0*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1) (1) (1) (1) (1) (1)
 - (e) todas as palavras que não contêm a subsentença **010** (11100*11)*(λ1100*1100*1)

Expressão Regular

Exercícios - Solução.

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)*000(0 \cup 1)*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;

```
(1 \cup 0(1 \cup 011))^*(\lambda \cup 0)
```

(e) todas as palavras que não contêm a subsentença **010**: $(1)(0.0^{+}11)*(\lambda)(0.0^{+}1.00^{+}1.00^{+}1)$

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1 ∪ 0(1 ∪ 011))*(λ ∪ 0)
 - (e) todas as palavras que não contêm a subsentença 010;(1 ∪ 00*11)*(λ ∪ 00* ∪ 00*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1 ∪ 0(1 ∪ 011))*(λ ∪ 0)
 - (e) todas as palavras que não contêm a subsentença 010;

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras que terminam com zero; $(0 \cup 1)^*0$
 - (b) todas as palavras que possuem 3 zeros consecutivos; $(0 \cup 1)^*000(0 \cup 1)^*$
 - (c) todas as palavras cujo terceiro símbolo (da esquerda para direita) é 1;(0 ∪ 1)(0 ∪ 1)1(0 ∪ 1)*
 - (d) todas as palavras nas quais todo par de zeros adjacentes é imediatamente seguido por um par de uns adjacentes;
 (1 ∪ 0(1 ∪ 011))*(λ ∪ 0)
 - (e) todas as palavras que não contêm a subsentença 010;
 (1 ∪ 00*11)*(λ ∪ 00* ∪ 00*1)

Expressão Regular

- 1. Considerando o alfabeto $\Sigma=\{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3 $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de **b**s e **c**s seja 3

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3 $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de **b**s e **c**s seja 3

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - \rightarrow Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3;

$$(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$$

- (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
- (c) todas as palavras cujo número de bs e cs seja 3. a*(b∪c)a*(b∪c)a*(b∪c)a*

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3; $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de bs e cs seja 3 a*(b∪c)a*(b∪c)a*(b∪c)a*

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3; $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;(a u b)*c(a u b)*c(a u b)*
 - (c) todas as palavras cujo número de bs e cs seja 3 a*(b∪c)a*(b∪c)a*(b∪c)a*

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3; $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de bs e cs seja 3 a*(b∪c)a*(b∪c)a*(b∪c)a*

Expressão Regular

Exercícios - Solução (cont).

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de **0**s e **1**s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3; $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de **b**s e **c**s seja 3.

 $a^*(b \cup c)a^*(b \cup c)a^*(b \cup c)a$

Expressão Regular

- 1. Considerando o alfabeto $\Sigma = \{0,1\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (f) todas as palavras que contêm o mesmo número de 0s e 1s.
 - → Impossível !!!
- 2. Considerando o alfabeto $\Sigma = \{a, b, c\}$ construa uma expressão regular para cada um dos seguintes conjuntos:
 - (a) todas as palavras cujo tamanho seja menor ou igual a 3; $(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)(\lambda \cup a \cup b \cup c)$
 - (b) todas as palavras que contêm exatamente 2 ocorrências de c;
 (a ∪ b)*c(a ∪ b)*c(a ∪ b)*
 - (c) todas as palavras cujo número de **b**s e **c**s seja 3. $a^*(b \cup c)a^*(b \cup c)a^*(b \cup c)a^*$