

# 3内部存储器



# 提纲

| 3.1 存储器概述       | •••••• |
|-----------------|--------|
| 3.2 SRAM存储器     |        |
| 3.3 DRAM存储器     |        |
| 3.4 入读存储器和闪速存储器 |        |
| 3.5 并行存储器       |        |
| 3.6 Cache存储器    |        |



# 3.1 存储器概述



# 提纲

| 3.1.1                   | 分类        |
|-------------------------|-----------|
| 3.1.2                   | 存储器分级结构   |
| $\langle 3.1.3 \rangle$ | 主存储器的技术指标 |





### 3.1.1 分类

- 按存储介质分类: 磁表面/半导体存储器
- 按存取方式分类: 随机/顺序存取 (磁带)
- 按读写功能分类: ROM, RAM
  - ➤ RAM: 双极型/MOS
  - > ROM: MROM/PROM/EPROM/EEPROM
- 按信息的可保存性分类: 永久性和非永久性的
- 按存储器系统中的作用分类: 主/辅/缓/控





## 3.1.2 存储器分级结构

- 一、目前存储器的特点
- 速度快的存储器价格贵,容量小;
- 价格低的存储器速度慢,容量大

■ 在计算机存储器体系结构设计时,我们希望存储器系统的性能高、价格低,那么在存储器系统设计时,应当在存储器容量,速度和价格方面的因素作折中考虑,建立了分层次的存储器体系结构如下图所示。





## 3.1.2 存储器分级结构

#### ■ 二、分级结构

- 高速缓冲存储器简称cache,它是 计算机系统中的一个高速小容量 半导体存储器。
- 主存储器简称主存,是计算机系统的主要存储器,用来存放计算机运行期间的大量程序和数据。
- 外存储器简称外存,它是大容量 辅助存储器。





# 3.1.2 存储器分级结构

- 二、分级结构
- 分层存储器系统之间的连接关系







# 3.1.3 主存储器的技术指标

- 字存储单元:存放一个机器字的存储单元,相应的单元地址叫字地址。
- 字节存储单元:存放一个字节的单元,相应的地址称为字节地址。
- 存储容量: 指一个存储器中可以容纳的存储单元总数。存储容量越大, 能存储的信息就越多。
- 存取时间又称存储器访问时间:指一次读操作命令发出到 该操作完成,将数据读出到数据总线上所经历的时间。通 常写操作时间等于读操作时间,故称为存储器存取时间。
- 存储周期:指连续启动两次读操作所需间隔的最小时间。 通常,存储周期略大于存取时间,其时间单位为ns。
- 存储器带宽:单位时间里存储器所存取的信息量,通常以位/秒或字节/秒做度量单位。



# 3.2 SRAM存储器





# SRAM存储器

- 根据信息存储的机理不同可以分为两类:
  - ▶ 静态读写存储器(SRAM): 存取速度快
  - ➤ 动态读写存储器(DRAM):存储速度比SRAM慢。

■ SRAM存储器的存储位元是一个触发器,它具有两个稳定的 状态。



# 提纲

| 3.2.1 | 基本的静态存储元阵列  |
|-------|-------------|
| 3.2.2 | 基本的SRAM逻辑结构 |
|       | 存储器的读写周期    |





# 3.2.1 基本的静态存储元阵列

- 存储位元
- 三组信号线
  - > 地址线
  - > 数据线
  - > 控制线







■ SRAM芯片大多采用双译码方式,以便组织更大的存储容量。采用了二级译码:将地址分成x向、y向两部分如图所示









- 存储体 (256×128×8)
  - ➤ 通常把各个字的同一个字的同一位集成在一个芯片(32K×1)中,32K位排成256×128的矩阵。8个片子就可以构成32KB

#### ■ 地址译码器

- > 采用双译码的方式(减少选择线的数目)
- $> A_0 \sim A_7$ 为行地址译码线
- > A<sub>8</sub>~A<sub>14</sub>为列地址译码线









- 读与写的互锁逻辑
  - ▶ 控制信号中CS是片选信号, CS有效时(低电平), 门G₁、G₂均被打开。OE为读出使能信号, OE有效时(低电平), 门G2开启, 当写命令WE=1时(高电平), 门G₁关闭, 存储器进行读操作。写操作时, WE=0, 门G₁开启, 门G₂关闭。注意, 门G₁和G₂是互锁的, 一个开启时另一个必定关闭, 这样保证了读时不写, 写时不读。





# 3.2.3 存储器的读写周期



#### ■ 读周期

- ▶ 读出时间t<sub>AQ</sub>
- ▶ 读周期时间t<sub>RC</sub>

#### ■ 写周期

- > 写周期时间twc
- > 写时间t<sub>WD</sub>

### ■ 存取周期

读周期时间t<sub>RC</sub> =写周期时间t<sub>wc</sub>





## 3.2.3 存储器的读写周期

■ 下图是SRAM的写入时序图。其中R/W是读/写命令控制线 , 当R/W线为低电平时,存储器按给定地址把数据线上的 数据写入存储器。请指出图 (a)写入时序中的错误,并画出 正确的写入时序图。

