

Bases de Datos Heterogéneas CI6318

- Introducción al curso.
 - Conceptos Básicos.
 - Modelos de Datos
 - Modelo ER, ERE, Relacional.
 - DBMS.
 - Funcionalidades

Objetivos del Curso

- Fundamentos Lógicos de Bases de Datos:
 - Lógica de Predicados.
 - Complejidad del Problema de responder una consulta contra una BD.
- Problema de Evaluación y Optimización de Consultas:
 - Ambientes centralizados.
 - Ambientes Heterogéneos
 - Integración de Datos
 - Arquitecturas de Mediadores-Adaptadores
 - Técnicas de Reescrituras de Consultas

Evaluaciones

Exámen: 30%.

Tareas: 30% 5-tareas, c/u 6 puntos.

Proyecto: 40%

Diseño: 10%

Implementación: 20%

Resultados Experimentales: 10%

Cronograma

Semana 1:

- Introducción al curso.
- Introducción a Bases de datos- Conceptos Básicos.
- Introducción al problema de integración de datos.

Semana 2: MODELOS DE DATOS y LENGUAJES DE CONSULTAS

- Modelo Relacional, Álgebra Relacional y SQL
- Fundamentos Lógicos de las BD.
- Estrucras de Almacenamiento de Datos
- Tarea 1: Problemas sobre consultas en BD.

Semana 3: EVALUACIÓN DE CONSULTAS

- Evaluación de Consultas en Ambientes Centralizados.
 - Nested-Loop Join, Block Nested Loop Join, Index Nested Loop Join, Hash Join, etc.

Semana 4-5: TÉCNICAS DE OPTIMIZACIÓN

- Definición del proyecto.
- Optimización de Consultas en Ambientes Centralizados.
 - Optimización basada en heurísticas.
 - Modelos de Costos
- Tarea2: Optimización de Consultas basadas en heurísticas y Modelos de costos.

Cronograma

- Semana 6: TÉCNICAS DE OPTIMIZACIÓN
 - Optimización de Consultas en Ambientes Centralizados.
 - Optimización basada en costos.
 - Sistema R. Programación Dinámica.
 - Optimizadores Aleatorios.
- Semana 7:
 - Proyecto
- Semana 8: TÉCNICAS DE OPTIMIZACIÓN
 - Optimización de Consultas en Ambientes Centralizados.
 - Optimización basada en costos.
 - Sistema R. Programación Dinámica.
 - Optimizadores Aleatorios.
 - Tarea3: Optimización de Consultas en Ambientes centralizados.

Cronograma

Semana 9: INTEGRACIÓN DE DATOS

- Arquitectura de Mediadores y Adaptores (Mediators and Wrappers).
- Integración de Datos
- Tarea 4: Sistemas de Integración.

Semana 10: INTEGRACIÓN DE DATOS

- Integración de Datos (LAV)
- Tarea 4: Sistemas de Integración.

Semana 11 INTEGRACIÓN DE DATOS Y OPTIMIZACIÓN DE CONSULTAS:

- Integración de Datos (LAV)
- Optimización de Consultas en Ambientes Heterogéneos
 - Tarea 5: optimización de consultas en ambientes heterogéneaos.

Semana 12:

- Examen.
- Semana 13:
 - Exposiciones.

Referencias

- Database Management Systems,
 Ramakrishnan and Gehrke.
- Foundations of Databases
 Abiteboul, Hull, Vianu. Addison-Wesley.
- Artículos

Qué es una Base de Datos?

Universo de Discurso: porción del mundo real a ser modelado.

Bases de Datos: colección de datos relacionados.

Modelo de Datos: herramienta de especificación de bases de datos. Los datos son definidos en función de:

 Propiedades estructurales, dinámicas y de comportamiento.

Esquema Conceptual: representación de un situación haciendo uso de un modelo de datos particular.

Modelos de Datos

- Fuertemente Tipeados versus Debilmente Tipeados.
 - Relacional, ER versus Datalog
- Semánticos versus poco semánticos
 - Orientados por Objetos (UML), Ontologías, ERE versus Relacional.

Restricciones de Integridad

- Inherentes: expresiones que representan las propiedades de las estructuras ofrecidas por el modelo de datos.
- Implícitas: expresiones que representan las propiedades especificadas explicitamente a través del modelo.
- Explícitas: propiedades que no pueden ser modelados directamente a través del modelo. Se requiere de un lenguaje lógico para representar estas propiedades.

Lógica de Primer Orden-Esquema de Datos

- Un esquema de datos puede ser formalizado como un conjunto de restricciones que deben ser respetados.
- Desde el punto de vista formal, un esquema de datos corresponde a un conjunto de fórmulas de la Lógica de Primer Orden. Ese conjunto de fórmulas se denominan teoría.
- La interpretación de un esquema de datos es definida como una colección de todas las estructuras que respetan el conjunto de restricciones impuestas.
- Las interpretaciones legales de un esquema de datos son todos los modelos de la teoría de la Lógica de Primer Orden.

Esquema de Datos-Sistema Axiomático

Un esquema de datos o teoría se compone de un conjunto de axiomas y reglas de inferencia que caracterizan a un conjunto de teoremas.

Ejemplo de una axiomatización de un Esquema ERE

- Comunidad Universitaria conjunto de elementos que representan a la comunidad universitaria.
- Profesor conjunto de elementos de la comunidad universitaria que representan a los profesores.
- Estudiante conjunto de elementos de la comunidad universitaria que representan a los estudiantes.
- Empleado conjunto de elementos de la comunidad universitaria que representan a los empleados administrativos.
- Obrero conjunto de elementos de la comunidad universitaria que representan a los obreros.
- Materia conjunto de elementos que representan a las materias.
- Trimestre conjunto de elementos que representan a los trimestres.

Restricciones Inherentes

- Si A es un conjunto:
 - No existen repeticiones
 - El orden es irrelevante.
- En ERE los elementos de un conjunto se diferencian por su clave:
 - $\forall x (x \in A \text{ and clave}(B,A))$
 - \Rightarrow not (\exists x1(x1 \in A and x1 \neq x and x.B=x1.B)))

Cursar:

- es una relación que representa a la asoción entre Profesor Estudiante Materia Trimestre
- es un conjunto.
- Cursar ⊆ Profesor X Estudiante X Materia X Trimestre

Restricciones Inherentes-Axiomas

```
\forall x ( x \in ComunidadUniversitaria
```

```
⇒ not (\exists x1(x1 \in ComunidadUniversitaria and x1\neq x and x.Carnet=x1.Carnet)))
```

- $\forall x (x \in \mathbf{Profesor})$
 - \Rightarrow not (\exists x1(x1 \in **Profesor** and x1 \neq x and x.Carnet=x1.Carnet)))
- $\forall x (x \in Estudiante)$
 - \Rightarrow not ($\exists x1(x1 \in Estudiante and x1 \neq x and x.Carnet=x1.Carnet)))$
- $\forall x (x \in Empleado)$
 - \Rightarrow not ($\exists x1(x1 \in Empleado and x1 \neq x and x.Carnet=x1.Carnet)))$
- $\forall x (x \in \mathbf{Obrero})$
 - \Rightarrow not ($\exists x1(x1 \in Obrero and x1 \neq x and x.Carnet=x1.Carnet)))$

Restricciones Inherentes

- Comunidad Universitaria se especializa de forma solapada en:
 - Profesor
 - Estudiante
 - Obrero
 - Empleado
- Profesor U Estudiante U Obrero U Empleado
 - **⊆ Comunidad Universitaria**

-

Restricciones Implícitas

Cardinalidades en Cursar:

- Card(Profesor, Cursar)=(1,3)
 - $\forall x (x \in Profesor \Rightarrow 1 \le |\{(x,y,z,j)/(x,y,z,j) \in Cursar\}| \le 3)$
- Card(Estudiante, Cursar)=(3,6)
 - $\forall x (x \in Estudiante \Rightarrow 3 \le |\{(y,x,z,j)/(y,x,z,j) \in Cursar\}| \le 6)$
- Card(Materia, Cursar)=(1,100)
 - $\forall x (x \in Materia \Rightarrow 1 \le |\{(y,z,x,j)/(y,z,x,j) \in Cursar\}| \le 100)$
- Card(Trimestre, Cursar)=(1,N)
 - $\forall x (x \in Trimestre \Rightarrow 1 \le |\{(y,z,j,x)/(y,z,j,x) \in Cursar\}|)$

Restricciones Implícitas-Axiomas

```
    Cursar ⊆ Profesor X Estudiante X Materia X Trimestre
    ∀x(x∈ Profesor ⇒ 1 ≤ |{(x,y,z,j)/(x,y,z,j) ∈ Cursar}| ≤ 3)
    ∀x(x∈ Estudiante ⇒ 3 ≤ |{(y,x,z,j)/(y,x,z,j) ∈ Cursar}| ≤ 6)
    ∀x(x∈ Materia ⇒ 1 ≤ |{(y,z,x,j)/(y,z,x,j) ∈ Cursar}| ≤ 100)
    ∀x(x∈ Trimestre ⇒ 1 ≤ |{(y,z,j,x)/(y,z,j,x) ∈ Cursar}|)
    Profesor U Estudiante U Obrero U Empleado
    ⊆ Comunidad Universitaria
    |Comunidad Universitaria| =
    |Profesor | + |Estudiante| + |Materia| + |Trimestre| - (|Profesor ∪ Estudiante| + |Profesor ∪ Empleado| + |Profesor ∪ Obrero| + |Estudiante ∪ Empleado| + |Estudiante ∪ Obrero| + |Estudiante ∪ Obrero| )
```


Instancias de un Esquema de Datos-Informalmente

- Bases de Datos:
 - Consistentes.
 - No consistentes.
 - Transacciones.
- Qué significa contestar una consulta?
 - Complejidad.

Modelo Relacional

Estructura básica:

- Relación:
 - Se define sobre un conjunto de dominios D1,...,Dn.
 - Corresponde a un subconjunto sobre el producto cartesiano de D1,..,Dn
- Propiedades:
 - No existen tuplas repetidas.
 - El orden de los elementos es irrelevante.
 - Si las columnas se nombran, en orden de las columnas es irrelevante.
- Restricciones:
 - Integridad Referencial
 - Clave Primaria

Modelo Relacional-Terminología

 Sea R una relación con los atributos A1,...,An sobre los dominios D1,..., Dn, respectivamente, entonces

 $R \subseteq D1x...xDn$

- No hay tuplas repetidas.
- El orden de las tuplas es irrelevante.
- El orden de las columnas es irrelevante.

Terminología

Producto(Nombre: string, Precio: real, Categoria: enum, Fabricante: string)

Interrogando a una Base de Datos

SELECT P.Fabricante

FROM Producto P

WHERE P.Precio>1000

- SQL (Structured Query Language)
 - Basado en Álgebra y Cálculo Relacional.
- Datalog.

Modelo Relacional-Lenguajes de Interrogación

- Algebra Relacional:
 - Basado en teoría de conjuntos.
 - Cerrada.
- Cálculo Relacional
 - Basado en Lógica de Primer Orden.

Álgebra Relacional

- Álgebra cerrada:
 - El resultado de la aplicación de cualquier operador del álgebra relacional a una o más relaciones es también una relación.
- Operadores Básicos:
 - Selección
 - Proyección
 - Producto Cartesiano
 - Unión
 - Intersección
- Operadores No Básicos:
 - Join: Theta, Natural.

Por qué usar un DBMS?

Si cualquier programa puede manejar datos?

- Grandes volúmenes de datos(Giga's, Tera's)
- Los datos son estructurados
- Los datos deben persistir
- Los datos son valiosos
- Los datos deben ser accedidos eficientemente
- Los datos deben ser accedidos concurrentemente
- Los datos deben ser accedidos sólo por personas autorizadas
- •Los datos deben ser manipulados por transacciones que llevan la BD de una estado consiste a otro estado consistente.

Funcionalidad de un DBMS

- Manejo de memoria persistente
- Manejo de transacciones
- Manejo de recuperación
- Manejo de integridad
- Separación entre la visión lógica y física de los datos.
 - Lenguajes de interrogación de alto nivel.
 - Procesamiento de consultas eficiente
- Interfaces con lenguajes de programación

- Optimización: proceso mediante el cual se identifica una estregia eficiente de ejecutar una consulta.
- Evaluación: mecanismo mediante el cual una consulta es ejecutada.

Almacenamiento en dispositivos secundarios

Optimización de Consultas

Consulta en SQL

SELECT C.comprador
FROM Producto P, Compra C, Persona Q
WHERE P.Categoria="Telefono" AND
C.comprador=Q.nombre AND
C.prod=P.pnombre

Plan: Árbol de operadores del álgebra relacional donde cada operador está anotado con el algoritmo que lo implementa

Plan de Ejecución:

Idealmente: se desea conseguir el mejor. En la práctica: se evitan los peores

Planes de Ejecución

Existen muchas maneras de evaluar una consulta de SQL.

Bases de Datos en la Industria

- Las Bases de Datos Relacionales han sido usadas exitosamente.
- Oracle tiene un mercado de aprox \$200B
- Otras compañías: IBM, MS, Sybase, Informix
- Tendencias:
 - warehousing y soporte de decisiones
 - Integración de datos
 - XML y sus dialectos

Integración de Datos

- Es el problema de proveer:
 - Acceso (consultar y eventualmente actualizar)
 - uniforme (transparente a los usuarios)
 - a multiples (aún 2 es un problema!)
 - fuentes de datos (no únicamente bases de datos)
 - autónomas (no afecta la conducta de las fuentes de datos)
 - heterogéneos (diferentes modelos de datos y esquemas)
 - estructurados (al menos semi-estructurados)

Integración de Datos

Acceso transparente a múltiples fuentes de datos heterogéneas

Motivación

Integración de los datos de una organización.

World-wide-web:

- Diferentes fuentes de ventas
- Portales que integran datos desde múltiples fuentes de datos
- Integración de XML
- Ciencia y cultura:
 - Fuentes de datos con datos Biomoleculares.
 - Fuentes de datos astrofísicas: monitoreando los eventos del espacio.
 - Fuentes de datos Ambientales.
 - Culturales: acceso uniforme a las bases de datos culturales.

Aspectos a Considerar

- Arquitectura virtual vs. Arquitectura materializada.
- Acceso: a consultas o a consultas y actualizaciones.
 - Problema similar a la actualización a traves de vistas.
 - Necesidad del manejo de transacciones distribuidas.
- Esquemas mediadores:
 - Esquemas mediadores requieren integración del esquema y entonces reformalización de la consulta.
 - Sin esquemas mediadores se pierde algunas de las ventajas de la integración de datos.

Tópicos a Considerar:

Funcionalidad de los Mediadores y Wrappers.

Conflictos estructurales y conflictos semánticos.

- Correspondencia de esquemas y reformulación.
- Descripción de las fuentes de datos:
 - Modelamiento de la completitud de los datos.
 - Modelamiento de las capacidades de procesamiento de las fuentes de datos.
- Selección de Fuentes de Datos.
- Optimización de consultas.
- Ejecución de consultas.

Catálogos de un Sistema Mediator

- Mediator

 Descripción del contenido de las fuentes de datos.
- Capacidad de las fuentes de datos.
- Completitud del contenido de las fuentes de datos.
- Propiedades físicas de las fuentes de datos y de la red.
- Estadísticas sobre los datos.
- Equivalencias entre fuentes de datos.

- Consultas de los usuarios referencian a relaciones en el esquema del mediador.
- Fuentes almacenan datos en sus propios esquemas locales.
- Los descriptores de contenido definen una correspondencia entre los esquemas mediadores y locales.

Algunos Prototipos

- - Garlic (IBM)
- HERMES/WebSrcMed (U. Maryland)
- InfoMaster(Stanford)
- Information Manifold (AT & T)
- IRO-DB (Versailles)
- SIMS, ARIADNE (USC/ISI)
- The Internet Softbot/ Occam/ Razor/ Tukwila (UW)
- TSIMMIS (Stanford), XMAS (UCSD)
- WHIRL (AT &T)

Aspectos a considerar

- Definición de las fuentes en función del esquema integrado.
- Algoritmos para reesrcibir la consulta en el esquema integrado en función de las fuentes de datos.