Question: Let $N(t)_{t\geq 0}$ be a Poisson process with rate 1. Consider the following statements.

(a) $pr(N(3) = 3|N(5) = 5) = {}^5C_3\left(\frac{3}{5}\right)^3\left(\frac{2}{5}\right)^2$ (b) If S_5 denotes the time of occurrence of the

(b) If S_5 denotes the time of occurrence of the 5^{th} event for the above Poisson process,then $E(S_5|N(5)=3)=7$

Which of the above statements is/are true?

- (i) only (a)
- (ii) only (b)
- (iii) Both (a) and (b)
- (iv) Neither (a) and (b)

Solution:

(a) Using the Poisson probability formula,

$$pr(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (1)

here λ is 1

$$pr(N(t) = k) = \frac{(t)^k e^{-t}}{k!}$$
 (2)

$$pr(N(3) = 3) = \frac{(3)^3 e^{-3}}{3!}$$
 (3)

$$pr(N(5) = 5) = \frac{(5)^5 e^{-5}}{5!}$$
 (4)

Conditional pmf Y given $x = x_o$, X and Y are equivalent events

$$pr(Y = y|X = x_o) = \frac{pr(Y = y, X = x_o)}{pr(X = x_o)}$$
(5)
=
$$\frac{pr(Y = y, Z = x_o - y)}{pr(X = x_o)}$$
(6)

Y and Z are independent,

$$pr(Y = y, Z = x_o - y) = pr(Y = y) pr(Z = x_o - y)$$
(7)

From conditional probability,

$$pr(N(3) = 3|N(5) = 5) = \frac{\frac{(3)^3 e^{-3}}{3!} \frac{(2)^2 e^{-2}}{2!}}{\frac{(5)^5 e^{-5}}{5!}}$$
(8)
=
$$\frac{(3)^3 (2)^2}{(5)^5} \frac{5!}{3!2!}$$
(9)
=
$${}^5C_3 \left(\frac{3}{5}\right)^3 \left(\frac{2}{5}\right)^2$$
(10)

Hence statement (a) is true.

(b) The expected value $E(S_n)$ of the time at which the n_{th} event occurs in a Poisson process with rate λ is

$$E(S_2) = \frac{n}{\lambda} \tag{11}$$

1

The conditional expectation $E(S_n|N(t) = x)$ represents the expected time at which the n^{th} event occurs given that exactly x events have occurred in the first t units of time in a Poisson process with rate λ is given by.

$$E(S_n|N(t) = x) = t + E(S_{n-x})$$
 (12)

By the law of total expectation,

$$E(S_n|N(t) = x) = E(E(S_n|N(t) = x, N(t)))$$

$$= E(E(S_x + S_{n-x}|N(t) = x, N(t) = x))$$

$$= E(E(S_x + S_{n-x}|N(t) = x))$$

$$= E(E(S_x + S_{n-x}|N(t) = x))$$

$$= E(t + E(S_{n-x}))$$
 (16)

$$= E(t) + E(E(S_{n-x}))$$
 (17)

$$= t + E(S_{n-x}) \tag{18}$$

From above result,

$$E(S_5|N(5) = 3) = 5 + E(S_2)$$
 (19)

$$= 5 + 2$$
 (20)

(15)

$$=7 \tag{21}$$

Hence statement (b) is true. Both (a) and (b) are true.