МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ЭФФЕКТ ХОЛЛА В ПОЛУПРОВОДНИКАХ

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

1. Аннотация	3
2. Теоретические сведения	
3. Экспериментальная установка и методика измерений	
4. Проведение измерений и обработка результатов	
5. Обсуждение результатов	
5. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	

1. Аннотация

Целью данной работы являются:

- 1. Исследование зависимости ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла
- 2. Определение знака носителей заряда и проводимость материала образца

2. Теоретические сведения

Во внешнем магнитном поле B на заряды действует сила Лоренца:

$$F = q E + q u \times B$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с E. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Связь между электрическим полем E и плотностью тока j в условиях эффекта Холла уже может быть описана в заданном базисе

$$m{j} = \hat{\sigma} m{E} \equiv egin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} m{E}.$$

где $\hat{\sigma}$ — тензор проводимости.

Выразим общую связь между E и j для случая носителей одного типа. При движении носителей с постоянной средней скоростью сила Лоренца будет уравновешена трением со стороны среды

$$q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - q \frac{\mathbf{u}}{\mu} = 0$$

С учётом введённых выше обозначений этот баланс сил можно переписать как

$$E = \frac{\mathbf{j}}{\sigma_0} - \frac{1}{nq} \mathbf{j} \times \mathbf{B}$$

Полученное соотношение можно назвать обобщённым законом Ома при наличии внешнего магнитного поля. Расписывая равенство по компонентам получим, вводя тензор удельного сопротивления

$$\boldsymbol{E} = \hat{\rho}\boldsymbol{j} = \begin{pmatrix} 1 & -\mu B & 0 \\ \mu B & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{\boldsymbol{j}}{\sigma_0}$$

Рассмотрим ток, текущий вдоль пластинки.

Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp} = E_y a$, где

$$E_y = \rho_{yx} * j_x = \frac{j_x B}{nq}$$

$$U_{\perp} = \frac{B}{nqh} I = R_{x} \frac{B}{h} I ,$$

где $R_x = \frac{1}{nq}$ называют постоянной Холла. Знак постоянной Холла определяется знаком заряда носителей.

3. Экспериментальная

установка и методика

измерений

• Экспериментальная установка:

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора R_1 источник а питания электромагнита. Ток питания электромагнит а

измеряется амперметром A_1 . Разъём K_1 позволяет менять направление ток а в обмотках электромагнита. Градуировка магнит а проводится при помощи милливеберметра. Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания (1,5 В). При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 . В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Иногда контакты 3 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного ток а через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом — их разности. В этом случае ЭДС Холла Е_х может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$E_x = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля. По знаку E_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление ток а в образце и направление магнитного поля. Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al}$$

где L_{35} — расстояние между контактами 3 и 5, а — толщина образца, 1 — его ширина.

• Методика измерений:

- 1. Подготовка приборов к работе
- 2. Градуировка электромагнита
- 3. Измерение ЭДС Холла
- 4. Определение характера проводимости
- 5. Определение удельной проводимости

4. Проведение измерений

и обработка результатов

1. Градуировка электромагнита

I_M , A	Ф, мВб	$B=\Phi I(SN)$, MTA
0,20	1,5	208
0,40	2,7	375
0,60	3,9	542
0,80	5,2	722
0,90	5,7	792
1,00	6,2	861
1,10	6,6	917
1,20	7,0	972
1,40	7,5	1042
1,60	8,0	1111

Зависимость индукции магнитного поля от тока через электромагнит

2. Измерение ЭДС Холла

	I _M , A	0.2	0.4	0.6	0.8	1	1.2	1.4	1.54	
І, мА	U ₀ , мкВ		Еь, мкВ							
0.3	-26	-49	-72	-94	-117	-136	-149	-158	-162	
0.4	-39	-69	-98	-129	-156	-179	-195	-205	-210	
0.5	-47	-82	-118	-155	-191	-221	-242	-259	-267	
0.6	-56	-97	-147	-191	-233	-269	-292	-309	-317	
0.7	-63	-113	-164	-215	-265	-308	-338	-359	-370	
0.8	-72	-133	-195	-253	-310	-357	-388	-409	-420	
0.9	-79	-141	-206	-274	-337	-389	-428	-456	-473	
1 (->)	-82	-157	-232	-310	-380	-438	-478	-503	-522	
1 (<-)	-65	4	78	149	214	271	312	340	359	

Зависимость ЭДС Холла от индукции магнитного поля

I, MA	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
К, мВ/Тл	-130	-160	-211	-241	-294	-326	-377	-412
dK								

$$\frac{dK}{dI} = -0.41 \pm 0.03 B/T_{\Lambda} * A$$

K(I)

$$R_x = (61.5\pm0.4)*10^{-5} \text{ м}^3/\text{K}$$
л
$$n = \frac{1}{R_x e} = (100\pm6)*10^{20} \text{ 1/ m}^3$$

3. Вычисление проводимости

I, MA	U ₃₅ , мВ	a, mm	1, мм	L ₃₅ , MM
1	1.715	1.5	1.7	3

$$\sigma = 686 \pm 34 (O_{\rm M}*_{\rm M})^{-1}$$

$$b = \frac{\sigma}{ne} = (4.3 \pm 0.4) * 10^3$$
 cm²/(B*c)

4. Знак носителей

- Смещение электронов к 4 клемме
- Напряжение на вольтметре положительное Значит носители - элеткроны

5. Обсуждение

результатов

В начале работы была проведена градуировка электромагнита для последующего измерения зависимости напряжения Холла от магнитной индукции.

Были получены

- $R_x = 61.5 \pm 0.4 * 10^{-5} \text{ м}^3/\text{K}$ л постоянная Холла
- $n = (100 \pm 6) * 10^{20} 1/ M^3$ концентрация носителей заряда
- $\sigma = 686 \pm 34 (Om*m)^{-1}$ удельная проводимость
- $b=(4.3\pm0.4)*10^3$ см²/(B*c) подвижность носителей тока Носителями заряда оказались электроны.

Сравнивая табличное значение подвижности $b^m = 3.8*10^3 c M^2/(B*c)$ с полученным, можно сказать, что с учетом погрешностей приборов, в том числе тепловых потерь электромагнита, результат оказался удовлетворительным.