HOCHSCHULE LUZERN

Technik & Architektur

Bericht

Technikumstrasse 21, CH-6048 Horw T +41 41 349 33 11 www.hslu.ch

Institut für Gebäudetechnik und Energie IGE Zentrum für Integrale Gebäudetechnik Andrii Zakovorotnyi Wissenschaftlicher Mitarbeiter

T direkt +41 41 349 33 42 andrii.zakovorotnyi@hslu.ch

Luzern, 3. Juli 2020 Seite 1/14

Änd	lerung	sverzeichnis			
Vers	sion	Datum	Status	Änderungen und Bemerkungen	Bearbeitet von
Nr.	1	04.06.2020	Erstellt	-	zaa
Inha		zeichnis			
1.				anwendung des Auslegungstools	
4.					
4.1.	Eing	gabe der Nutze	erprofile (A	rbeitsblatt «Profile»)	5
4.2.	Eing	gabe des Stand	dorts (Arbei	tsblatt «Schema»)	<i>6</i>
4.3.	Ein-	oder Ausscha	altung diver	ser Komponenten der Energieversorgi	ing (Arbeitsblatt «Schema»). 6
4.4.	Eing	gabe der Kenn	grössen der	Komponente der Energieversorgung	(Arbeitsblatt «Schema») 7
4.5.	Dru	cken die Taste	«Iteratione	en durchführen» (Arbeitsblatt «Scheme	a»)11
4.6.	Eing	gabe der Koste	en (Arbeitsb	olatt «Schema»)	11
4.7.				onisse (Arbeitsblatt «Schema»)	
5.				n (schematisch)	
5.1.	Bere	echnung der S	onnenpositi	on	
5.2.					
5.3.					
5.4.	Bere	echnung des H	Ieizwärmeb	edarfs des Gebäudes	
5.5.		_		hers	
5.6.				ers	
5.7.				e	
		U	1 1		

Horw, 3. Juli 2020 Seite 2 / 14

GEAS 95 – Auslegungstool Dokumentation

1. Wichtige Information vor der Anwendung des Auslegungstools

Das bestehende Auslegungstool wurde zu diesem Zeitpunkt nicht zertifiziert und weder mit den Schweizer Normen, noch mit den realen Fällen verifiziert. Das Auslegungstool soll nur für informative Zwecke und nur auf eigene Verantwortung genutzt werden. Die Hochschule Luzern übernimmt diesbezüglich keine Verantwortung für falsche oder nicht optimale Auslegung der Energieversorgung.

Horw, 3. Juli 2020 Seite 3 / 14

GEAS 95 – Auslegungstool Dokumentation

2. Ausgangslage und Ziele

Die swisspor AG arbeitet zusammen mit der Hochschule Luzern – Technik & Architektur am Innosuisse-Projekt «Hochleistung-Wärmedämmung für saisonale Warmwasserspeicher». Die zentrale Fragestellung liegt bei der Entwicklung eines integralen Dämm- und Abdichtungssystems «GEAS 95», welches an der Innenseite von neuen und bestehenden Hohlräumen (z.B. Keller eines Gebäudes) angebracht werden kann. Die Hohlräume können als kostengünstige saisonale thermische Energiespeicher (weiter bezeichnet als GEAS Speicher) verwendet werden.

Das Projekt zielt unter anderem auf:

- 1. Die Speicherung von Wärme bis 95°C. Dies ermöglicht, Hochtemperaturwärme mittels solarthermischer Anlagen oder industrieller Abwärme zu speichern;
- 2. Die Realisierung von Warmwasserspeichern mit einer maximalen Höhe von 12 m, was einem maximalen hydrostatischen Druck von 1.2 bar entspricht. Bei Warmwasserspeichern ist die Speicherhöhe für die thermische Schichtung von zentraler Bedeutung;
- 3. Die Betrachtung des GEAS Speichers als Teil der Energieversorgung. Die Wärmeflüsse sowie die angeschlossene Technik sollen wissenschaftlich untersucht, simuliert und optimiert werden.

Um die dritte Frage zu beantworten, soll ein vereinfachtes Auslegungstool für HLK-Planer entwickelt werden. Das Tool soll eine Auslegung des saisonalen GEAS Speichers sowie eine Abschätzung dessen Wirtschaftlichkeit ermöglichen. Das Tool soll auch die Anwendungsmöglichkeiten des GEAS Speichers zeigen, in welchen der GEAS Speicher möglichst maximales Sparen der CO₂-Emissionen und höchste Autarkie des Gebäudes gewährleisten kann.

Horw, 3. Juli 2020 Seite 4 / 14

GEAS 95 – Auslegungstool Dokumentation

3. Methodologie

Das Auslegungstool führt eine jährliche thermische Simulation der Energieversorgung eines Gebäudes oder industriellen Prozesses mit der stündlichen Zeitauflösung, ermöglicht eine Auslegung des GEAS Speichersystems sowie eine Abschätzung dessen Wirtschaftlichkeit und berücksichtigt folgende Energieverbraucher sowie Energieerzeuger:

- 1. Energieverbraucher:
 - Heizwärmebedarf eines Gebäudes;
 - Wärmebedarf für die Erwärmung des Brauchwarmwassers;
 - Industrieller Wärmebedarf;
 - Strombedarf eines Gebäudes;
 - Klimakältebedarf eines Gebäudes:
- 2. Energieerzeuger:
 - Photovoltaik-Anlage;
 - Solarthermie;
 - Luft-Wasser und Wasser-Wasser Wärmepumpen;
 - Industrielle Abwärme;
- 3. Speichersysteme:
 - GEAS Speicher;
 - Stromspeicher.

Die simulierten Energieversorgungskonzepte mit dem GEAS Speicher werden im Tool gemäss folgenden Kriterien bewertet:

- 1. jährliche CO₂-Emissionen;
- 2. Autarkiegrad der Wärmeenergieversorgung;
- 3. Autarkiegrad der Stromenergieversorgung;
- 4. Investitionskosten;
- 5. Amortisationszeit.

Das Auslegungstool basiert auf der Microsoft Excel Arbeitsmappe, welche folgende Arbeitsblätter enthält:

Cilliait.	
«Schema»	In diesem Arbeitsblatt werden diverse Komponenten der Energieversorgung und
	ihre Parameter eingegeben sowie die Simulationsergebnisse automatisch
	ausgewertet;

«Berechnung» In diesem Arbeitsblatt findet die Durchführung der jährlichen Simulation der Energieversorgung statt;

«Klimadaten» Eine Sammlung der Wetterdaten für die repräsentativen Standorte der Schweiz;

«Profile» Dieses Arbeitsblatt enthält nutzerdefinierte Profile;

«Hausmodell» In diesem Arbeitsblatt findet die Durchführung der thermischen

Gebäudesimulation statt;

«Speichermodell» In diesem Arbeitsblatt findet die Durchführung der thermischen Simulation des

GEAS Speichers statt;

Horw, 3. Juli 2020 Seite 5 / 14

GEAS 95 – Auslegungstool Dokumentation

4. Bedingungsanleitung

Diese Bedingungsanleitung geht davon aus, dass der Nutzer bereits Basiskenntnisse im MS Excel hat und folgende Manipulationen erledigen kann:

- 1. Auswahl verschiedener Arbeitsblätter in der Arbeitsmappe;
- 2. Eingabe der numerischen Werte in die Zelle;
- 3. Auswahl des Zellenwerts von Zellen-Liste (falls vorhanden).

Die Auslegung des GEAS Speichers und sonstiger Komponenten der Energieversorgung ist grundsätzlich ein iterativer Prozess. Die Entscheidung über die optimale Auslegung der Energieversorgung liegt beim Nutzer. Der iterative Prozess berücksichtigt eine Wiederholung folgender Schritte:

- 1. Eingabe der Nutzerprofile (Arbeitsblatt «Profile»);
- 2. Ein- oder Ausschaltung diverser Komponenten der Energieversorgung (Arbeitsblatt «Schema»);
- 3. Eingabe des Standorts (Arbeitsblatt «Schema»);
- 4. Eingabe der Kenngrössen der Komponenten der Energieversorgung (Arbeitsblatt «Schema);
- 5. Drucken der Taste «Iterationen durchführen» (Arbeitsblatt «Schema»);
- 6. Eingabe der Kosten (Arbeitsblatt «Schema»);
- 7. Analyse der Simulationsergebnisse (Arbeitsblatt «Schema»).

Jeder einzelne Punkt wird unten in separaten Kapiteln detailliert beschrieben.

4.1. Eingabe der Nutzerprofile (Arbeitsblatt «Profile»)

Im Arbeitsblatt «Profile» kann der Nutzer folgende Jahres- und Tagesprofile auf der stündlichen Basis definieren:

- 1. Spalte B Jahresprofil der geförderten Temperatursteigerung [K] für das Brauchwarmwasser oder für den Prozesswärmebedarf (insgesamt 8760 Werte);
- 2. Spalte C Jahresprofil des Massenstroms [kg/s] für das Brauchwarmwasser oder für den Prozesswärmebedarf (insgesamt 8760 Werte);
- 3. Spalte D Jahresprofil des Strombedarfs [W] des Gebäudes (8760 Werte);
- 4. Spalte E Jahresprofil des Heizwärmebedarfs [W] des Gebäudes (8760 Werte);
- 5. Spalte I Tagesprofil der Nutzung des Strombedarfs (24 Werte). Hier sollen die prozentualen stündlichen Anteile des Strombedarfs eingegeben werden. Falls ein Pufferspeicher (z.B. Stahlwassertank) vorgesehen ist, sollen die prozentualen stündlichen Anteile der Ladezeit des Pufferspeichers entsprechen. Es ist empfohlen, dass die Summe der prozentualen Anteile 100 % ist;
- 6. Spalte J Tagesprofil der Nutzung des Brauchwarmwassers (24 Werte).
- Hier sollen die prozentualen stündlichen Anteile des Brauchwarmwassers eingegeben werden. Falls ein Pufferspeicher (z.B. Stahlwassertank) vorgesehen ist, sollen die prozentualen stündlichen Anteile der Ladezeit des Pufferspeichers entsprechen.
 - Falls eine Frischwasserstation erwünscht ist, sollen die prozentualen stündlichen Anteile den aufsummierten Zapfprofilen entsprechen.
 - Es ist empfohlen, dass die Summe der prozentualen Anteile 100 % ist;
- 7. Spalte M Jahresprofil der Aussenlufttemperatur [°C] (8760 Werte);
- 8. Spalte N Jahresprofil der direkten normalen Bestrahlung [W/m²] (8760 Werte);
- 9. Spalte O Jahresprofil der diffusen normalen Bestrahlung [W/m²] (8760 Werte);
- 10. Spalte P Jahresprofil des Massenstroms [kg/s] für die erste Prozesswärmezuführung (8760 Werte);
- 11. Spalte Q Jahresprofil der Vorlauftemperatur [°C] für die erste Prozesswärmezuführung (8760 Werte):
- 12. Spalte R Jahresprofil des Massenstroms [kg/s] für die zweite Prozesswärmezuführung (8760 Werte);
- 13. Spalte S Jahresprofil der Vorlauftemperatur [°C] für die zweite Prozesswärmezuführung (8760 Werte);

Horw, 3. Juli 2020 Seite 6 / 14

GEAS 95 – Auslegungstool Dokumentation

- 14. Spalte T Jahresprofil des Massenstroms [kg/s] für die dritte Prozesswärmezuführung (8760 Werte);
- 15. Spalte U Jahresprofil der Vorlauftemperatur [°C] für die dritte Prozesswärmezuführung (8760 Werte).

4.2. Eingabe des Standorts (Arbeitsblatt «Schema»)

In der Zelle «AM26» soll der Standort eingegeben werden. Hier sind folgende Optionen vorhanden:

- Benutzerdefiniert;
- Aarau;
- Altdorf:
- Basel;
- Bern;
- Davos;
- Engelberg;
- Geneve:
- Glarus;
- Güttingen;
- Interlaken;
- La_Chaux_de_Fonds;
- La_Fretaz;
- Locarno;
- Lugano;
- Luzern;
- Rünenberg;
- Samedan;
- San Bernardino;
- Schaffhausen;
- Scuol;
- Sion;
- St_Gallen;
- Vaduz;
- Zermatt;
- Zürich.

Falls die Option «Benutzerdefiniert» ausgewählt wird, werden die Eingabedaten von Spalten «M», «N» und «O» im Arbeitsblatt «Klimadaten» für die Berechnung verwendet. Zusätzlich kann der mittlere oder starke Effekt des Klimawandels berücksichtigt werden, wenn die entsprechende Option in der Zelle «AP26» ausgewählt wird.

4.3. Ein- oder Ausschaltung diverser Komponenten der Energieversorgung (Arbeitsblatt «Schema»)

Im Energieversorgungskonzept können folgende Komponenten ein- oder ausgeschaltet werden (Arbeitsblatt «Schema»):

- > Energiequelle:
 - «PV-Anlage» (Eingabezellen: B4:D17)
 Stündliche von Ort, Position und Temperatur abhängige Berechnung der produzierten Stromleistung
 - 2. «Solarthermie» (Eingabezellen: B31:D46)

Horw, 3. Juli 2020 Seite 7 / 14

GEAS 95 – Auslegungstool Dokumentation

- Stündliche von Ort, Position und Temperatur abhängige Berechnung der produzierten Wärmeleistung
- 3. «Zuführung der Prozesswärme» (Eingabezellen: C25:E27)
 Hier können bis zu drei verschiedene Prozesswärmen mit stündlicher Zeitauflösung und zeitabhängigen Massenströmen und Temperaturen gleichzeitig berücksichtig werden
- 4. «Netz» ausbilanziert den Strombedarf mittels Netzstrom, ohne Nutzereingaben
- «LW Wärmepumpe» (Eingabezellen: S19:U20)
 Optionale Luft-Wasser Wärmepumpe, dient als Wärmequelle für die Abdeckung des Wärmebedarfs des Gebäudes
- 6. «Heizsystem» ausbilanziert den Wärmebedarf mittels Brennstoff, ohne Nutzereingaben Speichersystem:
 - «Wärmepumpe» (Eingabezellen: G20:J23)
 Optionale Wärmequelle für GEAS Speicher, welche den PV-Strom in die thermische Energie umwandelt
 - «WW Wärmepumpe» (Eingabezellen: P28:R31)
 Optionale Wasser-Wasser Wärmepumpe, erhöht das Wärmepotential für die weitere Abdeckung des Wärmebedarfs des Gebäudes
 - «GEAS Speicher» (Eingabezellen: J35:L49)
 Saisonaler thermischer Energiespeicher
 «Stromspeicher» (Eingabezellen: J8:M11)
 - 4. «Stromspeicher» (Eingabezellen: J8:M11 Saisonaler elektrischer Energiespeicher
- Energiebedarf:
 - 1. «Strombedarf des Gebäudes» (Eingabezellen: AL20:AM23)
 - «Brauchwarmwasser/Prozesswärme» (Eingabezellen: AE28:AI31)
 Der Wärmebedarf wird entweder nur für die Erwärmung des Brauchwarmwassers oder nur für die Prozesswärme berechnet.
 - 3. «Raumheizung» (Eingabezellen: AL33:AR53; AI35:AK36).

4.4. Eingabe der Kenngrössen der Komponenten der Energieversorgung (Arbeitsblatt «Schema»)

Die Kenngrössen der Energieversorgungkomponenten sind in der Tabelle 1 dargestellt.

Tabelle 1 - Komponenten der Energieversorgung

Тур	Kom- ponente	Kenngrössen	Eingabe- zellen	Mögliche Eingaben	Beschreibung
	PV-Anlage	Einsatz	D4	Ja; Nein	Ein- oder Ausschaltung der PV-Anlage in der Simulation des Energieversorgungskonzepts
		Max. Effizienz, [%]	D5	0100	Maximale Effizienz der PV-Anlage ohne Berücksichtigung des Temperaturkoeffizients
Energiequelle		Temperaturkoef., [%/K]	D6	≥ 0	Temperaturkoeffizient der PV-Anlage – Reduzierung der PV-Effizienz mit der Aussentemperaturänderung
		Horizontale Fläche, [m²]	D7	≥ 0	Fläche der horizontalen PV-Zellen
		Neigungswinkel Süd,	D9	090	Neigungswinkel der südlich-orientierten PV-Zellen: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche Süd, [m ²]	D10	≥ 0	Fläche der südlich-orientierten PV-Zellen

Horw, 3. Juli 2020 Seite 8 / 14

			ı	_	
		Neigungswinkel West, [°]	D12	090	Neigungswinkel der westlich-orientierten PV-Zellen: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche West, [m ²]	D13	≥0	Fläche der westlich-orientierten PV-Zellen
		Neigungswinkel Ost, [°]	D15	090	Neigungswinkel der östlich-orientierten PV-Zellen: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche Ost, [m ²]	D16	≥ 0	Fläche der östlich-orientierten PV-Zellen
		Einsatz	D31	Ja; Nein	Ein- oder Ausschaltung der Solarthermie in der Simulation des Energieversorgungskonzepts
		Max. Effizienz, [%]	D32	0100	Maximale Effizienz der Solarthermie ohne Berücksichtigung des Temperaturkoeffizients
		Verlustkoef. 1, [W/m²/K]	D33	≥ 0	Temperaturkoeffizient k1 der Solarthermie (siehe Kapitel 5 «Beschreibung der Berechnung»)
		Verlustkoef. 2, [W/m²/K²]	D34	≥ 0	Temperaturkoeffizient k2 der Solarthermie (siehe Kapitel 5 «Beschreibung der Berechnung»)
	Solarthermie	Horizontale Fläche, [m²]	D35	≥ 0	Fläche der horizontalen Sonnenkollektoren
		Neigungswinkel Süd,	D38	090	Neigungswinkel der südlich-orientierten Sonnenkollektoren: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche Süd, [m ²]	D39	≥ 0	Fläche der südlich-orientierten Sonnenkollektoren
		Neigungswinkel West,	D41	090	Neigungswinkel der westlich-orientierten Sonnenkollektoren: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche West, [m ²]	D42	≥ 0	Fläche der westlich-orientierten Sonnenkollektoren
		Neigungswinkel Ost, [°]	D44	090	Neigungswinkel der östlich-orientierten Sonnenkollektoren: 0° - horizontale Ausrichtung; 90° - vertikale Ausrichtung.
		Fläche Ost, [m ²]	D45	≥0	Fläche der östlich-orientierten Sonnenkollektoren
	Zuführung der Prozesswärme	Einsatz	E25	Ja; Nein	Ein- oder Ausschaltung der Zuführung der Prozesswärme in der Simulation des Energieversorgungskonzepts
		Wärmewirkungsgrad des Wärmetauschers, [%]	E26	0100	Wärmewirkungsgrad des Wärmetauschers, wo die Energie vom Prozesswärme zum GEAS Speicher zugeführt wird (siehe auch Kapitel 5 «Beschreibung der Berechnung»)
	LW Wärmepumpe	Einsatz	U19	Ja; Nein	Ein- oder Ausschaltung der Zuführung der Prozesswärme in der Simulation des Energieversorgungskonzepts
		Elektrische Leistung, [W]	U20	≥ 0	Elektrische Leistung der Luft-Wasser-Wärmepumpe für die Abdeckung des Wärmebedarfs
Spe ich	Wä	Einsatz	H20	Ja; Nein	Ein- oder Ausschaltung der Erwärmung des GEAS Speichers mit der PV-Strom

Horw, 3. Juli 2020 Seite 9 / 14

		El. Leistung	H21	≥ 0	Elektrische Leistung der Wärmepumpe
		Тур	H22	Luft-Wasser; Wasser-Wasser	Auswahl des Typs der Wärmepumpe
		Energiequelle	H23	AUL; KONST	Auswahl, ob die Wärmepumpe die Energiequelle mit der konstanten Temperatur oder die Umgebungsluft nutzt
		Wert (falls KONST ausgewählt)	J23	Zahl	Wert, welche die Temperatur der Energiequelle beschreibt
	Ð	Einsatz	R28	Ja; Nein	Ein- oder Ausschaltung der Wasser-Wasser Wärmepumpe für die Erhöhung des Wärmepotentials des GEAS-Speichers für die Abdeckung des Wärmebedarfs
	lundəu	El. Leistung	R29	≥ 0	Elektrische Leistung der Wasser-Wasser Wärmepumpe
	WW Wärmepumpe	Anwendung für Raumheizung	R30	Ja; Nein	Auswahl, ob die Wasser-Wasser Wärmepumpe den Heizwärmebedarf abdecken wird
	M	Anwendung für BWW /Prozesswärme	R31	Ja; Nein	Auswahl, ob die Wasser-Wasser Wärmepumpe den Wärmebedarf für die Erwärmung des Brauchwarmwassers abdecken wird oder Prozesswärme zuführen wird
		Einsatz	L35	Ja; Nein	Ein- oder Ausschaltung des GEAS Speichers in der Energieversorgung
		Länge, [m]	L37	≥0	Länge des GEAS Speichers
	GEAS Speicher	Breite, [m]	L38	≥ 0	Breite des GEAS Speichers
		Höhe, [m]	L39	≥ 0	Höhe des GEAS Speichers
		Max. Temperatur, [°C]	L40	0100	Maximal erlaubte Temperatur im GEAS Speicher
		U-Wert, [W/m ² /K]	L42	≥ 0	Isolierung des U-Werts
		Umgebungstemp., [°C]	L43	Zahl	Umgebungstemperatur des GEAS Speichers (Kellertemperatur oder Erdreichtemperatur)
		Anwendung für Raumheizung	L46	Ja; Nein	Auswahl, ob der GEAS Speicher den Heizwärmebedarf abdecken wird
		Anwendung für BWW	L47	Ja; Nein	Auswahl, ob der GEAS Speicher den Wärmebedarf für die Erwärmung des Brauchwarmwassers abdecken wird oder Prozesswärme zuführen wird
		Min. Temperatur, [°C]	L48	≥ 0	Minimale erlaubte Temperatur im GEAS Speicher
		Temperaturgrad., [K]	L49	>0	Maximaler erlaubter Temperaturgradient im GEAS Speicher
		Max. Volumenstrom, [L/s]	L50	>0	Maximaler erlaubter Volumenstrom durch GEAS- Speicher
	Strom- speicher	Einsatz	M8	Ja; Nein	Ein- oder Ausschaltung des Stromspeichers in der Energieversorgung
		Kapazität des Stromspeichers, [kWh]	M9	>0	Maximale Kapazität des Stromspeichers

Horw, 3. Juli 2020 Seite 10 / 14

				•	
	Strombedarf des Gebäudes	Berechnungsmethode	AM20	Nicht berücksichtigt; Tagesprofil; Jahresprofil	Mit der Eingabe «Nicht berücksichtigt» wird der Strombedarf in der Energieversorgung nicht betrachtet. Mit der Eingabe «Tagesprofil» werden die Zellen «AM21» und «AM22» sowie die Spalte «I» des Arbeitsblatts «Profile» berücksichtigt. Mit der Eingabe «Jahresprofil» wird die Spalte «D» des Arbeitsblatts «Profile» in der Berechnung berücksichtigt. Die Werte in den Zellen «AM21» und «AM22» werden nicht mitberechnet.
		Jahresstrom- verbrauch, [kWh/m²/a]	AM21	≥ 0	Jahresstromverbrauch pro Fläche
		Fläche, [m ²]	AM22	≥0	Strombezugsfläche
	Brauchwarmwasser / Prozesswärme	Berechnungsmethode	AH28	Nicht berücksichtigt; Tagesprofil; Jahresprofil	Mit der Eingabe «Nicht berücksichtigt» wird der Wärmebedarf für das Brauchwarmwasser oder Prozesswärme in der Energieversorgung nicht betrachtet. Mit der Eingabe «Tagesprofil» werden die Zellen «AH29», «AH30» und «AH31» sowie die Spalte «J» des Arbeitsblatts «Profile» berücksichtigt. Mit der Eingabe «Jahresprofil» wird die Spalte «C» des Arbeitsblatts «Profile» in der Berechnung berücksichtigt. Die Werte in den Zellen «AH29», «AH30» und werden nicht mitberechnet.
oedarf		Kaltwasser- temperatur, [°C]	AH29	Zahl	Kaltwassertemperatur (Eintrittstemperatur) BWW. Berücksichtigt, falls in der Zelle «AH28» den Wert «Tagesprofil» steht
Energiebedarf		Tagesverbrauch, [Liter pro Tag]	AH30	≥ 0	Massenstrom BWW. Berücksichtigt, falls in der Zelle «AH28» den Wert «Tagesprofil» steht. Der Massenstrom wird mit den Werten von der Spalte «J» des Arbeitsblatts «Profile».
		Warmwasser- temperatur, [°C]	AH31	Zahl	Temperatursollwert (Austrittstemperatur). Berücksichtigt, falls in der Zelle «AH28» den Wert «Tagesprofil» oder «Jahresprofil» steht
	Raumheizung	Berechnungsmethode	AM33	Nicht berücksichtigt; Jahresprofil; Einfache Berechnung; Detaillierte Berechnung	Mit der Eingabe «Nicht berücksichtigt» wird der Heizwärmebedarf in der Energieversorgung nicht betrachtet. Mit der Eingabe «Jahresprofil» werden die Zellen «AK35» und «AK36» sowie die Spalte «E» des Arbeitsblatts «Profile» berücksichtigt. Andere Eingabezellen bei dieser Komponente werden nicht berücksichtigt. Mit der Eingabe «Einfache Berechnung» werden die Zellen «AN35» und «AN36» berücksichtigt. Andere Eingabezellen bei dieser Komponente werden nicht berücksichtigt. Mit der Eingabe «Detaillierte Berechnung» werden die Zellen im Bereich von «AM39» bis «AN53» sowie von «AR35» bis «AR53» berücksichtigt. Andere Eingabezellen bei dieser Komponente werden nicht berücksichtigt.
		Vorlauftemperatur, [°C]	AK35	≥ 0	Vorlauftemperatur in das Raumheizungssystem
		Rücklauftemperatur, [°C]	AK36	≥ 0	Rücklauftemperatur vom Raumheizungssystem

Horw, 3. Juli 2020 Seite 11 / 14

GEAS 95 – Auslegungstool Dokumentation

4.5. Drucken der Taste «Iterationen durchführen» (Arbeitsblatt «Schema»)

Mit der Taste wird ein VBA-Makro ausgeführt, welches die Unterschiede der Stromspeicherkapazität und der GEAS-Temperaturen mittels Iterationen am Jahresanfang und am Jahresende reduziert. Am Ende der Durchführung des VBA-Makros sollen die Zellen «L44» und «L45» sowie die Zellen «M10» und «M11» gleich sein. Falls nicht, kann die Taste nochmals gedrückt werden.

4.6. Eingabe der Kosten (Arbeitsblatt «Schema»)

Zusätzlich werden die Investitionskosten sowie die Amortisationszeit mitberechnet. Dafür sind folgende Eingaben nötig:

- Kosten des Stromspeichers pro 1 kWh der Stromspeicherkapazität Zelle «AG55»
- Kosten des GEAS Speichers Zelle «AG56»
- Kosten der PV-Anlage pro 1 m² Zelle «AG57»
- Kosten der Solarthermie pro 1 m² Zelle «AG58»
- Kosten der Wasser-Wasser Wärmepumpe Zelle «AG59»
- Kosten der Luft-Wasser Wärmepumpe Zelle «AG60»
- Kosten Strombezug pro 1kWh Zelle «AM56»
- Preis PV-Stromabgabe pro 1 kWh Zelle «AM57»
- Kosten Brennstoff pro 1 kWh Wärmeenergie Zelle «AM58»
- CO₂-Emissionen pro 1 kWh Wärmeenergie Zelle «AM59»
- CO₂-Emissionen pro 1 kWh Wärmeenergie Zelle «AM60»

4.7. Analyse der Simulationsergebnisse (Arbeitsblatt «Schema»)

Die Beurteilung der Simulationsergebnisse wird gemäss folgenden Kennwerten:

- 1. Jährliche CO₂-Emissionen der Energieversorgung, [kg]
- 2. Elektrischer Autarkiegrad, [%]
- 3. Thermischer Autarkiegrad, [%]
- 4. Investitionskosten, [kCHF]
- 5. Amortisationszeit, [Jahre]

Horw, 3. Juli 2020 Seite 12 / 14

GEAS 95 – Auslegungstool Dokumentation

5. Beschreibung der Berechnungen (schematisch)

5.1. Berechnung der Sonnenposition

Die Sonnenposition wird mit den folgenden Kennwerten beschrieben:

Sonnendeklination

• Sonnenhöhe

Azimut der Sonne

5.2. Berechnung der PV-Anlage

Horw, 3. Juli 2020 Seite 13 / 14

GEAS 95 – Auslegungstool Dokumentation

5.3. Berechnung der Solarthermie

5.4. Berechnung des Heizwärmebedarfs des Gebäudes

5.5. Berechnung des GEAS Speichers

Horw, 3. Juli 2020 Seite 14 / 14

GEAS 95 – Auslegungstool Dokumentation

5.6. Berechnung des Stromspeichers

5.7. Berechnung der Wärmepumpe

Wärmequelle: Umgebung

Leistungszahl
$$\varepsilon = \frac{Q_{ab}}{W_k}$$