Example (Exponential random variable) An Exponential random variable X with parameter $\lambda > 0$ ($X \sim Exp(\lambda)$) has PDF

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

We have $E[X] = \frac{1}{\lambda}$ and $Var(X) = \frac{1}{\lambda^2}$.

Definition (Cumulative Distribution Function (CDF)) The CDF of a random variable X is $F_X(x) = \mathbb{P}(X \le x)$.

In particular, for a continuous random variable, we have

$$F_X(x) = \int_{-\infty}^{x} f_X(x) dx,$$
$$f_X(x) = \frac{dF_X(x)}{dx}.$$

Properties (Properties of CDF)

- If $y \ge x$, then $F_X(y) \ge F_X(x)$.
- $\bullet \lim_{x \to -\infty} F_X(x) = 0.$
- $\lim_{x \to \infty} F_X(x) = 1$.

Definition (Normal/Gaussian random variable) A Normal random variable X with mean μ and variance $\sigma^2 > 0$ ($X \sim \mathcal{N}(\mu, \sigma^2)$) has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.$$

We have $E[X] = \mu$ and $Var(X) = \sigma^2$.

Remark (Standard Normal) The standard Normal is $\mathcal{N}(0,1)$.

Proposition (Linearity of Gaussians) Given $X \sim \mathcal{N}(\mu, \sigma^2)$, and if $a \neq 0$, then $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Using this $Y = \frac{X - \mu}{\sigma}$ is a standard gaussian.

Conditioning on an event, and multiple continuous r.v.

Definition (Conditional PDF given an event) Given a continuous random variable X and event A with P(A) > 0, we define the conditional PDF as the function that satisfies

$$\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx.$$

Definition (Conditional PDF given $X \in A$) Given a continuous random variable X and an $A \subset \mathbb{R}$, with P(A) > 0:

$$f_{X|X\in A}(x) = \begin{cases} \frac{1}{\mathbb{P}(A)} f_X(x), & x \in A, \\ 0, & x \notin A. \end{cases}$$

Definition (Conditional expectation) Given a continuous random variable X and an event A, with P(A) > 0:

$$\mathbb{E}[X|A] = \int_{-\infty}^{\infty} f_{X|A}(x) dx.$$

Definition (Memorylessness of the exponential random variable)

When we condition an exponential random variable X on the event X > t we have memorylessness, meaning that the "remaining time" X - t given that X > t is also geometric with the same parameter i.e.,

$$\mathbb{P}(X-t>x|X>t)=\mathbb{P}(X>x).$$

Theorem (Total probability and expectation theorems) Given a partition of the space into disjoint events A_1, A_2, \ldots, A_n such that $\sum_i \mathbb{P}(A_i) = 1$ we have the following:

$$\begin{split} F_X(x) &= \mathbb{P}(A_1) F_{X|A_1}(x) + \dots + \mathbb{P}(A_n) F_{X|A_n}(x), \\ f_X(x) &= \mathbb{P}(A_1) f_{X|A_1}(x) + \dots + \mathbb{P}(A_n) f_{X|A_n}(x), \\ \mathbb{E}[X] &= \mathbb{P}(A_1) \mathbb{E}[X|A_1] + \dots + \mathbb{P}(A_n) \mathbb{E}[X|A_n]. \end{split}$$

Definition (Jointly continuous random variables) A pair (collection) of random variables is jointly continuous if there exists a joint PDF $f_{X,Y}$ that describes them, that is, for every set $B \subset \mathbb{R}^n$

$$\mathbb{P}\left((X,Y)\in B\right) = \iint_B f_{X,Y}(x,y) \mathrm{d}x\mathrm{d}y.$$

Properties (Properties of joint PDFs)

•
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
.

•
$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \left[\int_{-\infty}^{y} f_{X,Y}(u,v) dv \right] du.$$

•
$$f_{X,Y}(x) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Example (Uniform joint PDF on a set S) Let $S \subset \mathbb{R}^2$ with area s > 0, then the random variable (X, Y) is uniform over S if it has PDF

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{s}, & (x,y) \in S, \\ 0, & (x,y) \notin S. \end{cases}$$

Conditioning on a random variable, independence, Bayes' rule

Definition (Conditional PDF given another random variable)

Given jointly continuous random variables X, Y and a value y such that $f_Y(y) > 0$, we define the conditional PDF as

$$f_{X|Y}(x|y) \stackrel{\triangle}{=} \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

Additionally we define $\mathbb{P}(X \in A|Y = y) \int_A f_{X|Y}(x|y) dx$. **Proposition (Multiplication rule)** Given jointly continuous random variables X, Y, whenever possible we have

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x) = f_Y(y)f_{X|Y}(x|y).$$

Definition (Conditional expectation) Given jointly continuous random variables X, Y, and y such that $f_Y(y) > 0$, we define the conditional expected value as

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx.$$

Additionally we have

$$\mathbb{E}[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx.$$

Theorem (Total probability and total expectation theorems)

$$f_X(x) = \int_{-\infty}^{\infty} f_Y(y) f_{X|Y}(x|y) dy,$$
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy.$$

Definition (Independence) Jointly continuous random variables X, Y are independent if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all x, y.

Proposition (Expectation of product of independent r.v.) If X and Y are independent continuous random variables,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

Remark If X and Y are independent, $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)].$

Proposition (Variance of sum of independent random variables) If X and Y are independent continuous random variables,

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proposition (Bayes' rule summary)

- For X, Y discrete: $p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$.
- For X, Y continuous: $f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$.
- For X discrete, Y continuous: $p_{X|Y}(x|y) = \frac{p_X(x)f_{Y|X}(y|x)}{f_Y(y)}$.
- For X continuous, Y discrete: $f_{X|Y}(x|y) = \frac{f_X(x)p_{Y|X}(y|x)}{p_Y(y)}$

Derived distributions

Proposition (Discrete case) Given a discrete random variable X and a function g, the r.v. Y = g(X) has PMF

$$p_Y(y) = \sum_{x:g(x)=y} p_X(x).$$

Remark (Linear function of discrete random variable) If g(x) = ax + b, then $p_Y(y) = p_X\left(\frac{y-b}{a}\right)$.

Proposition (Linear function of continuous r.v.) Given a continuous random variable X and Y = aX + b, with $a \neq 0$, we have

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right).$$

Corollary (Linear function of normal r.v.) If $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b, with $a \neq 0$, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Example (General function of a continuous r.v.) If X is a continuous random variable and g is any function, to obtain the pdf of Y = g(X) we follow the two-step procedure:

- 1. Find the CDF of Y: $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(q(X) \le y)$.
- 2. Differentiate the CDF of Y to obtain the PDF: $f_Y(y) = \frac{dF_Y(y)}{dy}$.

Proposition (General formula for monotonic g) Let X be a continuous random variable and g a function that is monotonic wherever $f_X(x) > 0$. The PDF of Y = g(X) is given by

$$f_Y(y) = f_X(h(y)) \left| \frac{\mathrm{d}h}{\mathrm{d}y}(y) \right|.$$

where $h = g^{-1}$ in the interval where g is monotonic.