Python Al Project: House Price Prediction (Cheat Sheet)

- 1. import pandas as pd
 - Import Pandas for working with data tables.
- 2. import matplotlib.pyplot as plt
 - Import Matplotlib for graphing and plots.
- 3. from sklearn.model_selection import train_test_split
 - Tool to split data into training and testing sets.
- 4. from sklearn.linear_model import LinearRegression
 - Import linear regression model from sklearn.
- 5. df = pd.read_csv('kc_house_data.csv')
 - Load your CSV dataset into a DataFrame.
- 6. $X = df[['sqft_living']]$
 - Choose your input feature (square footage).
- 7. y = df['price']
 - Choose your target label (price).
- 8. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 - Split data into 80% training, 20% testing.
- 9. model = LinearRegression()
 - Create a linear regression model.
- 10. model.fit(X_train, y_train)
 - Train the model using the training data.
- 11. predictions = model.predict(X_test)
 - Predict prices using the test data.
- 12. plt.scatter(X_test, y_test)
 - Plot actual test values as blue dots.
- 13. plt.plot(X_test, predictions)
 - Plot predicted values as a red line.
- 14. plt.xlabel('Living Area (sqft)')
- 15. plt.ylabel('Price')
- 16. plt.title('House Price Prediction')
- 17. plt.legend()
- 18. plt.show()

- Display the final chart with labels and legend.	