2023 NOIP 模拟赛

题目名称	数列	逛街	代金券	招新
题目类型	传统型	传统型	传统型	传统型
输入文件	sequence.in	shopping.in	vouchers.in	recruit.in
输出文件	sequence.out	shopping.out	vouchers.out	recruit.out
时间限制	1s	3s	3s	2s
内存限制	512MB	512MB	512MB	1024MB
捆绑测试	是	是	是	是

提交程序名

对于C++语言	sequence.cpp	shopping.cpp	vouchers.cpp	recruit.cpp
---------	--------------	--------------	--------------	-------------

编译选项

对于C++语言	-lm -O2 -std=C++14
---------	--------------------

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明, 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 原则上,每个测试点时限应为标准程序在该测试点上的运行时间的 2 倍及以上。
- 6. 每道题的时间限制、编译命令、是否开启文件输入输出等信息,在赛时均有可能变动,请各位选手以赛时通知为准。

T1 数列 (sequence)

题目描述

给定一个整数数列 a,定义 $f(a)=\max_{1\leq i< j\leq n}\{a_j-a_i\}$,保证 f(a)>0。你需要求出至少需要修改 a的多少个位置才能使 f(a) 变小。注意,你修改之后的数也必须是整数。

输入格式

第一行一个整数 n 表示数列长度,第二行 n 个整数表示数列 a。

输出格式

输出一行一个整数表示答案。

样例输入

5 50 30 40 10 20

样例输出

2

数据范围

Subtask	分值	$n \leq$
1	24	20
2	16	100
3	21	5000
4	39	10^6

对于 100% 的数据, $2 \le n \le 10^6$, $|a_i| \le 10^9$ 。

T2 逛街 (shopping)

题目描述

给定一个长度为 n 的序列 a_1, a_2, \ldots, a_n ,有 m 次操作,每次操作为如下两种形式之一:

- 1. 1 1 \mathbf{r} : 从左到右遍历区间 [l,r-1] 中的每个 i,将 a_i 赋值为 $\max(a_i,a_{i+1})$ 。
- 2. 2 1 r: 输出区间 [l,r] 中所有前缀最大值的和,即对于所有满足 $l \leq i \leq r$ 且 $\max_{l \leq j < i} \{a_j\} < a_i$ 的i,求 a_i 的和。

保证初始时 a_i 两两不同。

输入格式

第一行两个整数 n, m 表示序列长度以及操作次数。

第二行 n 个正整数 $a_{1,...,n}$ 表示给定的序列。

接下来 m 行每行三个整数表示询问。

输出格式

对于每一个2类询问输出一行表示答案。

样例1

样例输入

```
5 3
1 3 5 4 2
2 1 5
1 2 4
2 1 5
```

样例输出

```
9
6
```

样例2

样例输入

```
5 3
5 1 4 2 3
2 3 4
1 1 5
2 3 4
```

样例输出

4

数据范围

对于 7% 的数据,满足 $1 \le n, m \le 2000$ 。

对于另外 40% 的数据,满足对于所有 1 类操作,有 l=1, r=n。

对于所有数据,满足 $1 \leq n, m \leq 3 imes 10^5$, $1 \leq a_i \leq 10^9$, l < r。

T3 代金券 (vouchers)

题目描述

有n道菜品,从左到右第i道菜品的价格是 a_i 元。现在需要从左到右依次购买这些菜品。

对于一道菜品,每消费 c 元,就可以得到一张代金券,代金券的价值是 1 元。使用代金券不算在消费的钱数内。

形式化地说,设当前你拥有 A 元钱和 B 张代金券,当前菜品的价格是 P 元。在这道菜品上消费了 x 元,使用了 y 张代金券,那么要求:

1.
$$0 \le x \le A$$
, $0 \le y \le B$.

2.
$$x + y = P_{\bullet}$$

在购买菜品后,你会得到 $\left\lfloor \frac{x}{c} \right\rfloor$ 张代金券,也就是你拥有的钱数会变为 A-x,拥有的代金券张数会变为 $B-y+\left\lceil \frac{x}{c} \right\rceil$ 。

有Q次修改,每次修改给出x,y,将 a_x 修改为y。

在所有修改前和每次修改后,都需要输出,你初始时最少需要多少钱才能买下所有菜品。

输入格式

第一行三个整数 n, Q, c 含义如上。

第二行 n 个整数 a_1, a_2, \ldots, a_n 表示菜品的价格。

接下来Q行每行两个整数表示一次修改。

输出格式

Q+1 行每行一个整数表示最少的钱数。

样例1

样例输入

3 3 4

5 1 2

2 41 1

2 2

样例输出

7

9

6

5

数据范围

对于另外 10% 的数据满足 c=1。

对于所有数据,满足 $1 \leq n,Q \leq 3 imes 10^5$, $1 \leq a_i,y \leq 10^{12}$, $1 \leq c \leq 10^9$ 。

T4 招新 (recruit)

题目描述

有两个人要和n个小朋友进行游戏,每个小朋友到达的时刻是在[0,m]中等概率随机选择的一个实数。

一个人不能同时和两个小朋友进行游戏。如果一个小朋友到达的时候两个人都在进行游戏,那么这个小朋友就会不开心;否则他就会等概率随机选择一个不在进行游戏的人,并和他进行游戏。

在时刻 t 前来的小朋友,在时间段 [t, t+k) 都会进行游戏。

求没有小朋友不开心的概率。对质数 p 取模,保证答案的分母不是 p 的倍数。

输入格式

一行四个整数 n, k, m, p 含义如上。

输出格式

一行一个整数表示答案。

样例1

样例输入

2 3 4 99844353

样例输出

1

样例2

样例输入

10 3 4 1000000007

样例输出

0

样例3

样例输入

4 3 6 1000000007

样例输出

125000001

数据范围

对于 20% 的数据满足 $n \leq 3$ 。

对于另外 50% 的数据满足 $n \leq 10$ 。

对于所有数据满足 $1 \leq n \leq 50$, $1 \leq k \leq m \leq 150$, $10^8 。$

数据有梯度。