2309 MATH101 Course Outline

Subject Code : MATH101 Subject Title : CALCULUS I Course Type : Compulsory

Level : 1 Credits : 3

Teaching Activity : Lecture 45 hours Prior Knowledge* : Elementary mathematics

 Class
 Week
 Time
 Classroom
 Date

 D2
 Tue
 09:00-11:50
 N317
 04/09/2023 - 17/12/2023

Instructor : Yang Lei Contact Number : (853)88972045

E-mail Address : <u>leiyang@must.edu.mo</u>

Office : A313

Office Hour : Monday: 09:00-12:00

Tuesday: 13:00-15:00 Wednesday: 14:30-17:30 Thursday: 10:00-12:00

COURSE DESCRIPTION

The course is an important foundation course in mathematics for all majors in IT. It provides an introduction to calculus that supports conceptual understanding, and helps student to develop skills in abstract thinking, logical reasoning, spatial imagination and self-learning mathematics. Main contents of the course include: Functions, Limits, Continuity and Calculus of One Variable.

TEXT BOOK

Required Text Book:

Thomas's Calculus, Maurice D. Weir and Joel Hass, Thomas' Calculus, 13th Edition

Reference Book:

高等数学(下册)第六版,同济大学数学系,高等教育出版社.

INTENDED LEARNING OUTCOMES

Upon successful completion of this course, students will be able to:

CO1	Explain the concepts of limits and continuous functions.
CO2	Compute derivatives of basic algebraic and transcendental functions. Compute
	instantaneous rate of changes.
CO3	Compute differentials and find linear approximation of functions. Use differentiation to
	solve basic optimization problems.
CO4	Understand the definition of definite integrals. Evaluate indefinite and definite integrals.

CO5	Understand and be familiar with the fundamental theorem of Calculus.
CO6	Apply definite integrals to find the results of problems about volumes, arc length, areas of
	surfaces and work etc.

Weekly Schedule

Week	Topic	Hours	Teaching Method
1	Functions	3	lecture
	Functions and their graphs, Trigonometric functions	_	
2	Limits and Continuity	3	lecture
	Rates of change and tangents to curves, Limit of a Function and Limit Laws		
3	Limits and Continuity	3	lecture
3	Definition of the limit, One-Sided limits, continuity,	3	lecture
	asymptotes of Graphs		
4	Differentiation	3	lecture
•	Tangents and the derivative at a point, the derivative as a		lectare
	function, differentiation rules, rate of Change		
5	Differentiation	3	lecture
	Derivatives of trigonometric functions, the chain rule, implicit		
	differentiation		
6	Differentiation	3	lecture
	Related rates, linearization and differentials		1
7	Applications of Derivatives	3	lecture
0	Extreme values of functions Review	2	1 4
8	Middle term test	3	lecture
9	Applications of Derivatives	3	lecture
9	Mean value theorem ,Monotonic functions, concavity)	icciuic
10	Applications of Derivatives	3	lecture
10	Applied optimization, Newton's method, antiderivatives		lecture
	Integration		
	Area and estimating with finite sums		
11	Integration	3	lecture
	Limits of finite sums, the definite integral, the fundamental		
	theorem		
12	Integration	3	lecture
	Indefinite Integrals and the Substitution Method, substitution		
	and area between curves		
	Applications of Definite Integrals Volumes using cross-sections		
13	Applications of Definite Integrals	3	lecture
13	Volumes using cylindrical shells, arc length, areas of surfaces)	lecture
	of revolution, work		
14	Applications of Definite Integrals	3	lecture
	Moments and centers of mass,		1000010
15	Final Review	3	lecture

ASSESSMENT APPROACH

Assessment method	%	
	weight	
1.Attendance (Class participation)	10%	
2.Assignment	10%	
3.Midterm exam	30%	
4.Final exam	50%	
Total	100 %	

Guideline for Letter Grade:

Marks	Grade
93-100	A+
88-92	A
83-87	A-
78-82	B+
72-77	В
68-71	B-
63-67	C+
58-62	С
53-57	C-
50-52	D
49	F

Notes:

Journals:

Students are assessed on the basis of continuous assessment (i.e. regular attendance in the class and in the form of individual assignments) and by two reports (a mid-term report and a final report)

ADDITIONAL READINGS

Trade and	other Publications:
Website:	