

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 8701/2

CHEMISTRY (Structured Questions)

www.studyguide.pk

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

Question Number	Mark Scheme Details	Part Mark			
1 (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[2]			
(b) (i)	 O • O • is Mg²+ regular (1) O • O • O cations surrounded by anions etc. (1) 	[2]			
(ii)	Two physical properties insulator ions unable to move high m.p./b.p. forces between doubly charged ions are strong insoluble in water				
		[2]			
(iii) (c) (i) (ii)	Furnace linings, electrical insulators, spark plugs, ceramics any two CO (1) and water vapour (1) [or from equations] CaO + $H_2O \rightarrow Ca(OH)_2$ (1)				
(11)		[3]			
	[Total:	10]			

2 (a) (i) Rate of forward reaction is equal to rate of backward or equivalent. (1) (ii)

energy

Eauncat

activation energy mentioned (1)

two Ea peaks (1)

reaction pathway

reaction pathway

(b) (i)
$$K_c = \frac{[ester][water]}{[acid][alcohol]}$$
 (1)

(ii) Since same number of terms in expression, top & bottom

or equivalent (1) [2]

[5]

(c) (i) ethanol = ethanoic acid = 0.43 (1) ethyl ethanoate = 0.57 (1) water = 1.57 (1)

(ii)
$$K_c = \frac{0.57 \times 1.57}{0.43 \times 0.43} = 4.84$$
 (1) [4]

[marked consequentially from (i)]

[Total: 11]

www.studyguide.pk

Page 2 of 3	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2001	8701	2

3 (a) red / brown liquid / vapour (1) [1]

(b) Stronger van der Waals' forces between molecules (1) since bromine is a bigger molecule / more electrons than chlorine (1)

and has more induced dipoles on its surface (1) Max (2) [2]

- (c) (i) $2P + 5Cl_2 \rightarrow 2PCl_5$ (1)
 - $PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$ (1) (ii)
 - (iii) $NaCl + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$ $OR Cl^{-}_{(aq)} + Ag^{+}_{(aq)} \rightarrow AgCl_{(s)}$ (1)

 $AgCl + 2NH_3 \rightarrow Ag(NH_3)_2^+_{(aq)} + Cl \quad OR \quad to Ag(NH_3)_2Cl$ (iv) (1) [4]

- $CH_2=CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$ (1) (d) (i)
 - (ii) Electrophilic addition (1)
 - (iii) Electron-rich double bond attracts Br₂ which is then polarised

$$CH_2$$
 intermediate $CH_2CH_2Br^+$ (1) CH_2 (1)

Final addition of Br [5]

[Total: 12]

4 (a)
$$N_2$$
 zero $\begin{cases} (1) & NO_2 \\ NH_4^+ & -3 \end{cases}$ (1) $\begin{cases} NO_2 \\ NO_3 \end{cases}$ + 3 \end{cases} (1) $\begin{cases} (1) \\ (2) \end{cases}$

- (b) (i) The triple bond (high energy) needs to be broken (1)
 - gives NH₄⁺ directly / gives soluble N to soil (1) [2] (ii)
- $6.3 \times 10^{-9} \text{ mol dm}^{-3}$ (1) (c) (i)
 - (ii) Since H⁺ is a product, and this is removed (1)
 - (iii) lime / a base / ammonia (1) [3]
- Waterlogged soils will contain very little oxygen / will discourage nitrifying (d) [1] bacteria

[2] (ii) tetrahedral, 109 or $109\frac{1}{2}^{\circ}$ (1)

[Total: max 10]

- 5 (a) (i) $CH_3(CH_2)_9CHBrCH_2Br$ (1)
 - (ii) $CH_3(CH_2)_9CHBrCH_3$ (1)
 - (iii) $CH_3(CH_2)_9CO_2H$ (1)
 - [4] (iv) CH₃(CH₂)₉CH(OH)CH₃ (1)

www.studyguide.pk

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

[Total: 9]

[Total: 8]

(as C)

