Ma première lA jouant à un jeu vidéo PROJ104 Rapport de projet

Henri Besancenot Axel Daboust Clement Gilli Iliass Khoutaibi

Guided by Pascal Blanchi

2024

Table des matières

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

Introduction

Introduction

Introduction

Dans le cadre de ce projet, nous avons eu l'opportunité de travailler dans le domaine de l'IA appliqué aux jeux vidéos. L'objectif était d'entraîner des IA à jouer à des jeux, en commençant par des jeux simples comme le Cartpole, puis complexifier progressivement les jeux en passant par des jeux Atari et finalement arriver jusqu'à des jeux comme Mario Bros et Doom où les environnements sont très complexes.

Formalisation du problème

Petite remarque...

L'ensemble des démonstration et des lemmes fournis dans cette présentation se retrouveront dans le compte rendu mis-projet. On admet provisoirement les résultats.

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

Théorèmes fondamentaux

Théorème (Algorithme Q-learning)

 $Q_{k+1}(s_t,a) = Q_k(s_t,a) + \alpha[r(s_t,a) + \beta max_{a'}Q_k(s_{t+1},a') - Q_k(s_t,a)]\mathbb{1}_{(S_t=s_t,A_t=a)}$ où s_{t+1} correspond à l'état du système après l'action a.

Théorèmes fondamentaux

Théorème (Algorithme Q-learning)

$$\begin{aligned} Q_{k+1}(s_t,a) &= Q_k(s_t,a) + \alpha [r(s_t,a) + \beta max_{a'}Q_k(s_{t+1},a') - Q_k(s_t,a)] \mathbb{1}_{(S_t = s_t, A_t = a)} \\ \text{où } s_{t+1} \text{ correspond à l'état du système après l'action } a. \end{aligned}$$

Théorème (Équation de Bellman)

$$Q_\pi(s,a) = r(s,a) + \beta \textstyle \sum_{s',a'} Q_\pi(s',a').\pi(a'|s').p(s'|s,a)$$

Théorèmes fondamentaux

Théorème (Algorithme Q-learning)

 $\begin{aligned} Q_{k+1}(s_t,a) &= Q_k(s_t,a) + \alpha[r(s_t,a) + \beta max_{a'}Q_k(s_{t+1},a') - Q_k(s_t,a)]\mathbb{1}_{(S_t = s_t,A_t = a)} \\ \text{où } s_{t+1} \text{ correspond à l'état du système après l'action } a. \end{aligned}$

Théorème (Équation de Bellman)

$$Q_\pi(s,a) = r(s,a) + \beta \textstyle \sum_{s',a'} Q_\pi(s',a').\pi(a'|s').p(s'|s,a)$$

Théorème (Équation de Bellman*)

$$Q^{\star}(s,a) = r(s,a) + \beta \sum_{s'} max_{a'} Q^{\star}(s',a').p(s'|s,a)$$

Q-Learning

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

11 / 49

L'algorithme

Voici une implémentation *primaire* de l'algoritme **Q-learning** que le PROJ104 team a conçu afin de résoudre les environnements simples, notamment Cartpole et Mountain Car.

Algorithme/pseudo-code

Algorithm Q-Learning simple

- 1: Initialiser l'environnement, les variables d'environnement et le nombre d'épisode M
- 2: for i allant de 1 à M do
- 3: Initialiser l'état s
- 4: while l'agent n'a pas perdu do
- 5: Executer l'action a qui vérifie $a_t = argmax_aQ(s_t, a)$
- 6: Récupération des dans s_{t+1} observations et du la récompense
- 7: Actualisation des variables d'environnement
- 8: Actualisation de la matrice en appliquant Bellman
- 9: Actualisation de s_t avec s_{t+1}
- 10: end while
- 11: end for

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

14 / 49

Résultats

En implémentant cet algorithme, nous avons très rapidement eu des résultats corrects. Par exemple, pour le jeu du pendule, il arrive à se stabiliser en haut directement et y reste sans jamais perdre. Il faut noter que l'algorithme converge très rapidement vers une solution optimale.

Résultats

En implémentant cet algorithme, nous avons très rapidement eu des résultats corrects. Par exemple, pour le jeu du pendule, il arrive à se stabiliser en haut directement et y reste sans jamais perdre. Il faut noter que l'algorithme converge très rapidement vers une solution optimale.

Figure – Pendulum

et pour Cartpole?

De même pour CartPole, l'agent continue d'accumuler progressivement des rewards jusqu'à atteindre **1000 points** en moyenne!

et pour Cartpole?

De même pour CartPole, l'agent continue d'accumuler progressivement des rewards jusqu'à atteindre **1000 points** en moyenne!

Figure – Means de Cartpole

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

Limites du Q-Learning

Le Q-learning nous a donc permis d'entraîner notre IA sur tous ces environnements assez simples. Plusieurs problèmes se posent si on passe à des environnements plus complexes :

Limites du Q-Learning

Le Q-learning nous a donc permis d'entraîner notre IA sur tous ces environnements assez simples. Plusieurs problèmes se posent si on passe à des environnements plus complexes :

 l'algorithme repose sur la manipulation d'une matrice de taille proportionnelle au nombre d'actions possible ainsi que de la taille de l'environnement.

Limites du Q-learning

Limites du Q-Learning

Le Q-learning nous a donc permis d'entraîner notre IA sur tous ces environnements assez simples. Plusieurs problèmes se posent si on passe à des environnements plus complexes :

- l'algorithme repose sur la manipulation d'une matrice de taille proportionnelle au nombre d'actions possible ainsi que de la taille de l'environnement.
- l'algorithme du Q-learning ne nous permet pas de traiter des environnements de type RGB comme Pong et Breakout puisque une action prise à chaque itération est liée à un analyse d'une image.

Action space très large

On voit que dans l'exemple de donkey kong, Action space est égal à 18, ce qui est trop pour l'algoritheme précédent!

Figure – Action space de Donkey Kong

Observation = Image

Action Space	Discrete(4)
Observation Space	Box(0, 255, (210, 160, 3), uint8)
Import	gymnasium.make("ALE/Breakout-v5")

Figure - Breakout observation space

```
Action Space
Observation
                Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38],
Space
                [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4.), float32)
import
                gymnasium.make("CartPole-v1")
```

Figure - Cartpole observation space

Deep Q-Learning

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

TELECOM Paris

,

23 / 49

Deep Q-Legrning

Heureusement, le domaine de l'intelligence artificielle a connu plusieurs développements ces dernières années notamment en 2015 avec la publication de recherches scientifiques importantes comme : **Playing Atari with Deep Reinforcement Learning** où ils s'intéressent à la méthode du **Deep O-learning**.

From Q-learning to Deep Q-learning

Comme nous l'avons dit plus tôt, nous voulons à présent nous attaquer à des environnements plus complexes.

From Q-learning to Deep Q-learning

Comme nous l'avons dit plus tôt, nous voulons à présent nous attaquer à des environnements plus complexes.

On va remplacer cette matrice Q par un réseau de neurones renvoyant "virtuellement" les coefficients d'une matrice selon un environnement donné.

Deep Q-Learning sans images

Algorithm Deep Q-Learning

- 1: Initialiser un replay Memory D de capacite N
- 2: Initialiser un reseau de Neuronne Q
- 3: **for** i allant de 1 à M **do**
- 4: Initialiser l'état $s_1 = x_1$
- 5: **while** l'agent n'a pas perdu **do**
- 6: avec une perobabilite ϵ choisir une action random a
- 7: $\operatorname{sinon} a = \max_{a'} Q(s, a')$
- 8: Executer l'action a et observer la reward r et la nouvelle image \tilde{x}
- 9: Actualiser $\tilde{s} = s, a, \tilde{x}$
- 10: Enregistrer (s, a, r, \tilde{s}) dans D
- 11: Prendre aleatoirement des transition $(\phi, a, r, \hat{\phi})$ de D
- 12:

$$y = R(s, a) + \gamma \cdot max_{a'}Q(\tilde{s}, \tilde{a})$$

13: Performer la descente du gradient à $(y - Q(\phi, a_j))^2$

14: end while

Application- Lunar Lander

Voici la reward de Lunar Lander

Figure – Rewards de Lunar Lander

Peut-On appliquer l'algorithm précédent à des environnements avec des images?

Oui...

MAIS

MAIS

Si on traite directement les images \dots

MAIS

Si on traite directement les images ... L'analyse sera très **lourde** et **complexe** pour nos réseaux de neurones

MAIS

Si on traite directement les images ...

L'analyse sera très **lourde** et **complexe** pour nos réseaux de neurones Il faut passer par un étape intermédiaire de simplification d'image :

MAIS

Si on traite directement les images ...

L'analyse sera très **lourde** et **complexe** pour nos réseaux de neurones Il faut passer par un étape intermédiaire de simplification d'image :

Le Preprocessing

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

Étapes du Preprocessing

Après de recherches extensives, nous avons trouvé quatre étapes importantes du preprocessing à suivre afin d'accélérer la convergence de notre Q matrice :

Étapes du Preprocessing

Après de recherches extensives, nous avons trouvé quatre étapes importantes du preprocessing à suivre afin d'accélérer la convergence de notre Q matrice :

• Grayscaling

Étapes du Preprocessing

Après de recherches extensives, nous avons trouvé quatre étapes importantes du preprocessing à suivre afin d'accélérer la convergence de notre Q matrice :

- Grayscaling
- Resizing

Étapes du Preprocessing

Après de recherches extensives, nous avons trouvé quatre étapes importantes du preprocessing à suivre afin d'accélérer la convergence de notre Q matrice :

- Grayscaling
- 2 Resizing
- **3** Frame-Skipping

Étapes du Preprocessing

Après de recherches extensives, nous avons trouvé quatre étapes importantes du preprocessing à suivre afin d'accélérer la convergence de notre Q matrice :

- Grayscaling
- 2 Resizing
- **3** Frame-Skipping
- 4 Frame-Stacking

Grayscaling

L'image reçue devient grise.

Figure – Grayscaled Pong

Resizing

On modifie la taille de notre matrice image, on change la taille souvent à **84x84**, une valeur convenable qu'on a trouvé expérimentalement après plusieurs essaies.

(a) Mario sans resize

(b) Mario avec du resize

Frame-Skipping

pour une valeur n qui représente le Frame-skipping, il s'agit de répéter une action n fois, afin d'explorer le maximum de possibilité et de nouveaux espaces d'observation.

Figure – Frame-skipping pour n = 4

Frame-Stacking

pour la même valeur n du Frame-SKipping, on stack les n-dernieres frames pour obternir un tensor de taille **[nx84x84]**. Le Frame-Stacking permet à l'agent d'analyser n actions et n espaces d'observation à chaque itération au lieu d'une seule action et un seul espace d'observation.

(a) Breakout sans preprocessing

(b) Breakout avec du preprocessing

Optimizing Convergence

Pour optimiser la convergence, nous nous sommes à nouveau appuyés sur le papier de 2015 qui se limite seulement à l'assignation de la fonction de récompense R dans le cas où un épisode est terminé. L'équation de Bellman devient :

Optimizing Convergence

Pour optimiser la convergence, nous nous sommes à nouveau appuyés sur le papier de 2015 qui se limite seulement à l'assignation de la fonction de récompense R dans le cas où un épisode est terminé. L'équation de Bellman devient :

Théorème (Équation de Bellman)

$$Q(s, a) = R(s, a) + \gamma \cdot (1 - terminated) \cdot max_{a'}Q'(s', a')$$

Algorithme/pseudo-code

Algorithm Deep Q-Learning

- 1: Initialiser un replay Memory D de capacite N
- 2: Initialiser un reseau de Neuronne Q
- 3: for i allant de 1 à M do
- 4: Initialiser l'état s_1 = x_1 et l'état preprocessed ϕ = $\phi(s_1)$
- 5: **while** l'agent n'a pas perdu **do**
- 6: avec une perobabilite ϵ choisir une action random a
- 7: $sinon a = max_{a'}O(s, a')$
- 8: Executer l'action a et observer la reward r et la nouvelle image \tilde{x}
- 9: Actualiser $\tilde{s} = s, a, \tilde{x}$ et prerocess $\tilde{\phi} = \phi(\tilde{s})$
- 10: Enregistrer $(\phi, a, r, \tilde{\phi})$ dans D
- 11: Prendre aleatoirement des transition $(\phi, a, r, \hat{\tilde{\phi}})$ de D

12:
$$y = \left\{ \begin{array}{ll} R(s,a) & \text{si est terminale} \\ R(s,a) + \gamma \cdot \cdot max_{a'} Q(\tilde{s},\tilde{a}) & \text{sinon} \end{array} \right.$$

13: Aplliquer la descente du gradient à $(y - Q(\phi, a_j))^2$ 14: **end while**

Amélioration de la convergence

Peut-on amélirer encore la vitesse de convergene de notre Matrice

Amélioration de la convergence

Peut-on amélirer encore la vitesse de convergene de notre Matrice
Oui! En utilisant deux réseaux de neuronnes!

Amélioration de la convergence

Peut-on amélirer encore la vitesse de convergene de notre Matrice

notre Matrice
Oui! En utilisant deux réseaux de neuronnes!
C'est ce qu'on appelle le Double Deep Q-Learning

Plan

- Introduction
- 2 Formalisation du problème
 - Théorèmes fondamentaux
- 3 Q-Learning
 - L'algorithme
 - Résultat
 - Limites du Q-Learning
- Oeep Q-Learning
 - From Q-Learning to Deep Q-Learning
 - Preprocessing
 - Double Deep Q-Learning

Double Deep Q-Learning

Deep Q-Legrning

Une variante a été utilisée ici, qui est d'utiliser un deuxième réseau de neurones lors de l'apprentissage.

Deep Q-Legrning

Une variante a été utilisée ici, qui est d'utiliser un deuxième réseau de neurones lors de l'apprentissage.

Sa principale motivation est un critère de stabilité et de convergence. Dans l'équation de Bellman.

Deep Q-Leqrning

Une variante a été utilisée ici, qui est d'utiliser un deuxième réseau de neurones lors de l'apprentissage.

Sa principale motivation est un critère de stabilité et de convergence. Dans l'équation de Bellman.

Un deuxième réseau, souvent appelé "target", servira à la recherche de la valeur maximale accessible depuis le nouvel état.

Double Deep Q-learning

Deep Q-Legrning

Une variante a été utilisée ici, qui est d'utiliser un deuxième réseau de neurones lors de l'apprentissage.

Sa principale motivation est un critère de stabilité et de convergence. Dans l'équation de Bellman.

Un deuxième réseau, souvent appelé "target", servira à la recherche de la valeur maximale accessible depuis le nouvel état.

Il sera d'ailleurs actualisé avec les poids du réseau principal au bout d'un certain nombre d'épisodes d'entraînement.

• Posons s_t un état de notre environnement à l'instant t, Q_{eval} notre réseau princial, r_t la reward et a_t l'action.

- Posons s_t un état de notre environnement à l'instant t, Q_{eval} notre réseau princial, r_t la reward et a_t l'action.
- Posons s_{t+1} le nouvel état de notre environnement à l'instant t+1 et Q_{target} notre réseau target.

• On évalue $Q_{eval}(s_t, a_t)$ et on applique **L'équation de** Bellman à Q_{target}

- On évalue $Q_{eval}(s_t, a_t)$ et on applique **L'équation de** Bellman à Q_{target}
- Ensuite on aplliquer la descente du gradient à $(Q_{eval}(s_t, a_t) Q_{target})^2$

- On évalue $Q_{eval}(s_t, a_t)$ et on applique **L'équation de** Bellman à Q_{target}
- Ensuite on aplliquer la descente du gradient à $(Q_{eval}(s_t, a_t) Q_{target})^2$
- ullet Enfin, après N-épisodes, on met a jour les poids de Q_{target} avec ceux de Q_{eval}

Application: Car Racing

Voici les résultats de l'entraînement de l'environnement : **Car-racing** avec le double Deep Q-Learning avec une vidéo d'exécution.

Figure – Rewards de Car-racing

Application: Pong/Breakout

Voici les résultats de l'entrainement des environnements : **Pong** et **Breakout** avec des vidéos : **Breakout** et **Pong**

Figure – Rewards de Pong

et pour Mario/Doom?

On a quelques problèmes avec Mario et Doom et cela est du une autre fois au nombre importants d'actions des environnements. Voici quelques vidéos d'execution apres des entrianements.

Future Work

Conclusion and Future Work

Finalement, avec cette approche de Deep Q-learning, nous visons à étendre nos recherches et applications à des jeux encore plus complexes (Mario/Doom...), en améliorant constamment nos algorithmes pour gérer des environnements dynamiques et imprévisibles.

Conclusion and Future Work

Finalement, avec cette approche de Deep Q-learning, nous visons à étendre nos recherches et applications à des jeux encore plus complexes (Mario/Doom...), en améliorant constamment nos algorithmes pour gérer des environnements dynamiques et imprévisibles.

Notre prochaine étape consiste à explorer des techniques plus avancées de renforcement profond :

DDPG ou le Deep Deterministic Policy Gradient

Conclusion and Future Work

Finalement, avec cette approche de Deep Q-learning, nous visons à étendre nos recherches et applications à des jeux encore plus complexes (Mario/Doom...), en améliorant constamment nos algorithmes pour gérer des environnements dynamiques et imprévisibles.

Notre prochaine étape consiste à explorer des techniques plus avancées de renforcement profond :

- DDPG ou le Deep Deterministic Policy Gradient
- PPO ou le Proximal Policy Optimization

The End

Annexe

Lien vers le Gitlab du Team Proj104 : ia-jeu

