

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAI Results

RANDIT

Results

Conclusions

HIERARCHICAL ACTIVE LEARNING (HAL) APPLICATION TO MITOCHONDRIAL DISEASE PROTEIN DATASET

James Duin

University of Nebraska-Lincoln Master's Thesis

Spring 2017 jamesdduin@gmail.com

Introduction

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass. HAL Results

BANDIT Results

- Identify the source of mutations which give rise to mitochondrial disease
- Leigh Syndrome, Leber's Hereditary Optic Neuropathy
- Proteins are hierarchically labeled according to location in the mitochondria
- Coarse-grained: learning labels near the root of the tree
- Fine-grained: learning labels towards the leaf nodes
- Learn mitochondrion concept (coarse) by combining classifiers for each target compartment (fine)

Introduction Related Work

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

- Active learning: copious unlabeled data, cost associated with acquiring labels, yields best classifier for a given cost, or best classifier for minimal cost
- Previous work in text classification and and rich media indexing use hierarchies of labels to improve fine-level classification (McCallum et al. 1998, Jiang et al. 2013)
- First, investigation of active learning in a hierarchical setting, our active over-labeling approach is shown to find the best classifier for a given budget regardless of varying label acquisition cost

Introduction

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

RANDIT

Results

Conclusions

Outline:

- Machine Learning
- Active Machine Learning
- Coarse-grained vs Fine-grained Trade Off
- Active over-labeling algorithms
- Hierarchical Protein Dataset
- Application to Protein Dataset
- Experimental Results

Machine Learning

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

CONV. IVIL

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

INPUT: labeled data

OUTPUT: learned hypothesis used to predict new instances

 $h_{\theta}(x)$, for fixed θ_0 and θ_1 line coefficients

Machine Learning Cost Function

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

•

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Machine Learning Support Vector Machine (SVM)

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

....

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

And SVM constructs a line, plane or hyperplane that separates the features with the greatest margin.

Machine Learning Support Vector Machine (SVM)

HAL - Protein

James Duin

Introduction

Background

. .

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

The greater the functional margin the lower the generalization error of the classifier

Machine Learning Support Vector Machine (SVM)

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Kernel functions implicitly map inputs into high-dimensional feature spaces

Machine Learning Logistic Regression (Logit)

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

HAL Result

BANDIT Results

Conclusions

Logistic Regression (Logit) estimates the probability of a binary response, learns coefficients ${\bf w}$ of the input vector ${\bf x}$ and passes dot product through sigmoid function. (Maximum likelihood learning)

$$g(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

Active Machine Learning

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML Act. vs Pass.

HAL Results

BANDIT Results

- Unlabeled data is abundant but manually labeling is expensive, e.g. text categorization, drug discovery
- The learner queries an oracle or supervisor which labels the data at a certain cost
- Active learning solicits new instances that can maximally improve performance of the learned classifier, e.g., uncertainty sampling
- Learns the best performing classifier for the minimal amount of labeling cost, or for a given purchase budget
- Acquires labels for each level of the hierarchy at a certain cost, spends according to a purchase budget

Active over-labeling

Coarse-grained vs Fine-grained Trade Off

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Active over-labeling solicits labels at a finer level of granularity than the target concept

Hierarchical Active Learning (HAL)

HAL - Protein

James Duin

Introduction

 ${\sf Background}$

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT

Results

Conclusions

INPUT: purchase proportion p

Dynamically Adapting Purchase Proportions

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Exp. Octa

Conv. ML

Act. vs Pass.

HAL Results

.....

BANDIT Results

Hierarchical Bioinformatics Data Set

Feature Sources

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

- Mitoproteome: database of human mitochondrial proteins
- SwissProt: database of experimentally validated human proteins

Type of Properties	Features	Sources		
General sequence features	Amino acid composition, sequence length, etc.	Cui et al, PROFEAT		
Physico chemical properties	Hydrophobicity, polarity, etc.	Cui et al, PROSO, Phoebus		
Structural properties	Secondary structural content, shape, etc.	SSCP		
Domains and motifs	Signal peptide, transmembrane domains, etc.	SignalP, TMB-Hunt, NetOgly,TatP		

Hierarchical Bioinformatics Data Set Labeling Hierarchy

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

TIAL INESUI

BANDIT Results

Training and Testing Coarse-Grain and Fine-Grain Classifiers

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

TIAL Resul

BANDIT Results

Conclusions

Number of proteins in each class:

Classes	Count	Totals
Non Mito 0	19136	All: 20098
mtDNA 1	13	Coarse: 19136
nDNA 2	185	Fine: 962
nDNA 3	324	Features: 449
nDNA 4	190	
nDNA 5	11	
nDNA 6	104	
nDNA 7	59	
nDNA 8	76	

SVM and Logit Classifier Performance Conventional ML

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass. HAL Results

BANDIT Results

- Tuned parameters for SVM and Logit via an independent run of cross-validation
- Accuracy: the percentage of correctly classified results
- Precision: a measure of result relevancy
- Recall: a measure of how many truly relevant results are returned
- F-measure: the harmonic mean of precision and recall
- PR curve: plot precision and recall as classifier threshold is varied
- **ROC curve**: plot false positive rate and true positive rate as classifier threshold is varied
- AUC: area under the curve, both curves have an optimal AUC of 1.0

SVM and Logit Classifier Performance Accuracy Analysis (Logit)

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT

Results

SVM and Logit Classifier Performance F-measure Analysis (Logit)

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

TIAL IVESUIT

BANDIT Results

Active vs. Passive Curve Analysis Logit PR-AUC curves

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Iteration: a cycle of the HAL algorithm, a single round of purchasing labels

Active vs. Passive Curve Analysis Logit ROC-AUC curves

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT

Results
Conclusions

Active vs. Passive Curve Analysis SVM PR-AUC curves

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

.

BANDIT Results

Active vs. Passive Curve Analysis SVM ROC-AUC curves

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Successive iterations of HAL with fine cost of 1 and coarse cost of 1

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Successive iterations of HAL with fine cost of 4

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Successive iterations of HAL with fine cost of 8

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Expanded view Fine Cost 8 - Rnds 20 to 60

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

BANDIT Approach Results Varying Cost Analysis

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass. HAL Results

BANDIT Results

- The BANDIT approach is compared to the previous FFR curves for the following fine-grain costs
 {1.0, 1.1, 1.2, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}
- Budget held fixed at round 120.
- The metric diff is the learner's absolute difference in PR-AUC from the top learner for a given cost.
- The metric *rank* is the learners 0 indexed ranking in terms of PR-AUC for a given cost.

BANDIT Approach Results

Varying Cost Analysis - Plot

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

BANDIT Approach Results Varying Cost Analysis - Rank and Diff Metrics

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

	diff				rank			
	min	max	mean	std	min	max	mean	std
algorithm								
BANDIT	0.000	0.003	0.001	0.001	0	8	4.8	2.315
FFR[0.0]	0.000	0.011	0.007	0.004	1	11	8.8	3.429
FFR[0.1]	0.001	0.006	0.003	0.002	3	10	8.0	2.793
FFR[0.2]	0.000	0.004	0.002	0.001	0	9	6.5	3.500
FFR[0.3]	0.000	0.003	0.001	0.001	0	8	5.1	2.663
FFR[0.4]	0.000	0.004	0.002	0.001	1	8	5.6	2.200
FFR[0.5]	0.000	0.008	0.002	0.002	0	8	4.6	2.200
FFR[0.6]	0.000	0.009	0.002	0.003	1	7	4.6	1.855
FFR[0.7]	0.000	0.012	0.002	0.004	0	8	<u>3.3</u>	2.571
FFR[0.8]	0.000	0.015	0.003	0.005	1	9	4.8	3.027
FFR[0.9]	0.000	0.020	0.005	0.007	0	10	4.3	4.605
FFR[1.0]	0.000	0.038	0.009	0.013	1	11	5.6	4.630

BANDIT Approach Results

Varying Budget Analysis - Mixed Cost

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

BANDIT Approach Results BANDIT - Rnds 20 to 60

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Related Work

HAL - Protein

James Duin

Introduction Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Results agree with Mo et al.'s experiments:

- Synthetic Dataset with Gradient Boosted Regression Trees
- Reuters Corpus Volume Text Categorization Dataset with Logit
- Richmond Daily Dispatch Sequence Tagging Dataset with Conditional Random Fields

Conclusions

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Lxp. Jetu

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

- Fine outperforms Coarse in PR-AUC
- Active outperforms Passive in PR-AUC
- HAL ran with variable cost, fine proportions and budget
- BANDIT approach shown to be robust to changes in cost and budget

Future Work

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

TIAL Result

BANDIT Results

Conclusions

 Future work is to apply the active over-labeling approach to other datasets with more complex hierarchical label trees; datasets derived from Gene Ontology research could be investigated

Acknowledgements

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

• I would like to thank my advisor Dr. Stephen Scott, Yugi Mo and Dr. Douglas Downey for continued guidance. I would like to thank Dr. Juan Cui and Dr. Ashok Samal for serving on my comittee. Additionally, I would like to thank Jiang Shu and Kevin Chiang for their assistance accessing and understanding the protein dataset.

Questions jamesdduin@gmail.com

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Plots for Fine Fixed Ratio Results

Successive iterations of HAL with fine cost of 16

HAL - Protein

James Duin

Introduction

Background

Exp. Setup Conv. ML

Act. vs Pass. HAL Results

_ _ . _

BANDIT Results

Figure: The fine cost is increased to 16. The fine cost is to high to offset the decreased number of instances purchased.

Plots for Fine Fixed Ratio Results

Fine Cost 8 - Rnds to 500

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Plots for Fine Fixed Ratio Results

Successive iterations of HAL with fine cost of 2

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Evaluating Classifier Performance Confusion Matrix

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT

Results Conclusions Divide data into train and a test set. Analyze test set with the following values:

- True-Negatives (T_n) : Correctly classified negatives
- False-Negatives (F_p) : Incorrectly classified negatives
- False-Positives (F_n) : Incorrectly classified positives
- True-Positives (T_p) : Correctly classified positives

Example of a confusion matrix for a test set with 100 negatives and 50 positives:

conf (T_n/F_n)	conf (F_p/T_p)
90	10
20	30

Evaluating Classifier Performance Precision and Recall

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Precision is a measure of result relevancy:

$$P = \frac{T_p}{T_p + F_p} \tag{1}$$

Recall is a measure of how many truly relevant results are returned:

$$R = \frac{T_p}{T_p + F_n} \tag{2}$$

Evaluating Classifier Performance F-Measure

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

TITLE INCOME

BANDIT Results

Conclusions

The F-measure or F1-measure (F1) is the harmonic mean of precision and recall:

$$F1 = 2 \cdot \frac{P \cdot R}{P + R} \tag{3}$$

Evaluating Classifier Performance ROC - PR curves

HAL - Protein

James Duin

Introduction
Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Figure: Examples of PR and ROC curves with their corresponding AUC values.

Training and Testing Coarse-Grain and Fine-Grain Classifiers

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results
BANDIT

Results Conclusions

Table: Number of proteins in each partition:

Folds	All	0	1	2	3	4	5	6	7	8
1	2010	1914	1	19	32	19	1	11	6	7
2	2010	1914	1	19	32	19	1	11	6	7
3	2010	1914	1	19	32	19	1	11	5	8
4	2010	1914	1	19	32	19	1	10	6	8
5	2010	1914	1	18	33	19	1	10	6	8
6	2010	1914	1	18	33	19	1	10	6	8
7	2010	1913	2	18	33	19	1	10	6	8
8	2010	1913	2	18	33	19	1	10	6	8
9	2009	1913	2	18	32	19	2	10	6	7
10	2009	1913	1	19	32	19	1	11	6	7
Total	20098	19136	13	185	324	190	11	104	59	76

Training and Testing Coarse-Grain and Fine-Grain Classifiers

HAL - Protein

James Duin

The following variables were varied for both SVM and Logit classifiers:

Introduction
Background

Exp. Setup classi

Conv. ML

Act. vs Pass.

HAL Results

HAL Result

BANDIT Results

- Preprocessing Scaling Methods
- Preprocessing Feature Selection
- Class Weight
- SVM Kernel, Cost, and Gamma parameters
- Logit Cost, Fine class weights, Tolerance

SVM and Logit Classifier Performance Conventional ML

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Table: Logit results after parameter tuning:

Title	PR	ROC	Acc	F1	conf (tn/fn)	conf (fp/tp)
					(1503.2 / 17.8)	
fine	0.875	0.871	0.913	0.403	(1776.5 / 37.3)	(137.1 / 58.8)

Table: SVM results after parameter tuning:

	PR					conf (fp/tp)
					(1669.5 / 24.8)	
fine	0.898	0.882	0.942	0.485	(1839.0 / 41.5)	(74.6 / 54.6)

Active vs. Passive Curve Analysis Logit Accuracy

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT

Conclusions

Results

Figure: The accuracy of the classifiers stays at roughly the same rate throughout the rounds; this is due to an effective weighting scheme.

Active vs. Passive Curve Analysis Logit F-measure

HAL - Protein

James Duin

Introduction

Background

Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

Figure: Both curves show a dominance of fine over coarse and Active over Passive.

Dynamically Adapting Purchase Proportions p or p^\prime

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

Act. vs Pass.

HAL Results

HAL Results

BANDIT Results

- ullet For round n, calculate gain g in terms of observed model change
- Calculate average round reward for each arm
- Calculate $\varepsilon_n = \min\left\{1, \frac{2}{n}\right\}$
- With probability $1-\varepsilon_n$ play arm with highest current average reward for round n, otherwise explore
- ullet After playing arm, run HAL with chosen p or p'

ARM STAY	ARM SWITCH	
	$\int -g(n)/ g(n) $	if $p o p'$
r(n) = 0	$r(n) = \begin{cases} -g(n)/ g(n) \\ g(n)/ g(n) \end{cases}$	if $p' o p$
	0	if $p \to p$ or $p' \to p'$

HAL - Protein James Duin

Background
Exp. Setup
Conv. MI

Introduction

Act. vs Pass.
HAL Results

Results

- Y. Mo, S. D. Scott, and D. Downey, Learning hierarchically decomposable concepts with active over-labeling, in 2016 IEEE 16th International Conference on Data Mining (ICDM), Dec 2016, pp. 340349.
- J. Z. Juan Cui, Kevin Chiang, Prediction of nuclear and locally encoded mitochondrion. Lincoln, NE: Nebraska Gateway to Nutrigenomics 6th Annual Retreat, June 9 2014. [Online]. Available: http://cehs.unl.edu/nutrigenomics/ nebraska-gateway-nutrigenomics-6th-annual-retreat/
- T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 1997.

HAL - Protein

James Duin

Introduction
Background
Exp. Setup
Conv. MI

Act. vs Pass. HAL Results

BANDIT Results

- L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, API design for machine learning software: experiences from the scikit-learn project, in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013, pp. 108122
- D. Cotter, P. Guda, E. Fahy, and S. Subramaniam, Mitoproteome: mitochondrial protein sequence database and annotation system, Nucleic Acids Research, vol. 32, no. suppl1, p. D463, 2004. [Online]. Available: +http://dx.doi.org/10.1093/nar/gkh048

HAL - Protein

James Duin

Introduction Background

Exp. Setup

Conv. ML

Act. vs Pass. HAL Results

BANDIT

Results Conclusions

- J. Cui, L. Y. Han, H. Li, C. Y. Ung, Z. Q. Tang, C. J. Zheng, Z. W. Cao, and Y. Z. Chen, Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties, Molecular Immunology, vol. 44, no. 4, pp. 514 520, 2007. [Online]. Available:
- A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, Improving text classification by shrinkage in a hierarchy of classes, in Proceedings of the Fifteenth International Conference on Machine Learning, ser. ICML 98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 359367. [Online]. Available: http://dl.acm.org/citation.cfm?id=645527.657461

http://www.sciencedirect.com/science/article/pii/S016158900

HAL - Protein

James Duin

Introduction

Background Exp. Setup

Conv. ML

....

Act. vs Pass.

HAL Results

BANDIT Results

Conclusions

 W. Jiang and Z. W. Ras, Multi-label automatic indexing of music by cascade classifiers, Web Intelli. and Agent Sys., vol. 11, no. 2, pp. 149170, Apr. 2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=2590084.2590088

etc.