Equivalenze proposizionali

Equivalenze proposizionali

Nel ragionamento matematico riveste un ruolo importante la possibilità di sostituire una asserzione (proposizione) con un'altra avente gli stessi valori di verità

Tautologia

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una tautologia è una proposizione composta che è sempre vera per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio: p∨¬p è una tautologia

р	٦р	р∨¬р
Т		
F		

Tautologia

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una tautologia è una proposizione composta che è sempre vera per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio: p∨¬p è una tautologia

р	٦р	р∨¬р
Т	F	Т
F	T	T

Contraddizione

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una **contraddizione** è una proposizione composta che è sempre falsa per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio: p \lambda \neg p \, \text{è una contraddizione}

р	٦р	p ∧ ¬p
T		
F		

Contraddizione

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una contraddizione è una proposizione composta che è sempre falsa per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio: p \lambda \neg p \, \text{è una contraddizione}

р	٦р	р ∧ ¬р
Т	F	F
F	Т	F

Contingenza

Una **contingenza** è una proposizione composta che non è né una tautologia né una contraddizione

Equivalenza logica

Le proposizioni p e q sono dette logicamente **equivalenti** se hanno **gli stessi valori di verità** (o equivalentemente se p ↔ q è una tautologia).

La notazione p = q denota che p e q sono logicamente equivalenti

Esempio: p →q è equivalente a ¬q → ¬p (contranominale)

р	q	٦q	¬р	$p \rightarrow q$	¬q → ¬p
Т	Т	F	F	T	Т
Т	F	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	T	Т	Т

Equivalenze logiche

- Proposizioni composte logicamente equivalenti hanno lo stesso valore di verità per tutti i possibili casi
 - E' così possibile:
 - * Sostituire l'una con l'altra
 - * Utilizzare una qualunque di esse in un ragionamento logico
 - * Ottenere nuove proposizioni
- Per verificare l'equivalenza si usa la tabella di verità

- Leggi di De Morgan
 - 1) $\neg (p \lor q) \equiv \neg p \land \neg q$
 - 2) $\neg (p \land q) \equiv \neg p \lor \neg q$

Esempio: Negare, utilizzando le leggi di De Morgan, la frase

L'estate in Messico è calda ed assolata

Soluzione:

- Leggi di De Morgan
 - 1) $\neg (p \lor q) \equiv \neg p \land \neg q$
 - 2) $\neg (p \land q) \equiv \neg p \lor \neg q$

Esempio: Negare, utilizzando le leggi di De Morgan, la frase

L'estate in Messico è calda ed assolata

Soluzione:

L'estate in Messico non è calda o non è assolata

- Leggi di De Morgan
 - 1) $\neg (p \lor q) \equiv \neg p \land \neg q$
 - 2) $\neg(p \land q) \equiv \neg p \lor \neg q$

Verifichiamo l'equivalenza attraverso la tabella di verità

р	q	٦q	٦р	¬(p ∨ q)	р ∧ чр
Т	T	F	F	F	F
Т	F	Т	F	F	F
F	T	F	Т	F	F
F	F	Т	T	Т	T

Identità

- $p \wedge T \equiv p$
- p∨F≡p

Dominazione

- $p \lor T \equiv T$
- p ∧ F ≡ F

Idempotenza

- p∨p≡p
- $p \wedge p \equiv p$

Doppia negazione

$$- \neg (\neg p) \equiv p$$

Commutativa

- $p \lor q \equiv q \lor p$
- $p \land q \equiv q \land p$

Associativa

- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$

Distributiva

- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Altre utili equivalenze

- p ∨ ¬p ≡ T
- p ∧ ¬p ≡ F
- $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$
- $p \rightarrow q \equiv (\neg p \lor q)$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Provare che valgono le precedenti equivalenze utilizzando le tavole di verità

Equivalenze logiche

Abbiamo visto che $p \land q \equiv q \land p$

NOTA In italiano questo non sempre vale:

p = Francesca prese il libro dallo scaffale

q = Francesca mise il libro nello zaino

Vale la commutatività?

Equivalenze logiche

Abbiamo visto che $(p \land q) \land r \equiv p \land (q \land r)$

Esercizio 1 valore di

Che strategia adottereste per determinare il

$$p_1 \wedge p_2 \wedge p_3 \wedge \dots \wedge p_N$$

Esercizio 2 valore di

Che strategia adottereste per determinare il

$$p_1 \vee p_2 \vee p_3 \vee \dots \vee p_N$$

 Le equivalenze possono essere usate per trasformare proposizioni o parti di esse per poter ottenere un qualche risultato.

Esempio: mostrare che

$$(p \land q) \rightarrow p$$
 è una tautologia

<u>Dim.1</u>: dobbiamo mostrare che $((p \land q) \rightarrow p) \equiv T$

$$(p \land q) \rightarrow p \equiv \neg(p \land q) \lor p$$

$$\equiv (\neg p \lor \neg q) \lor p \qquad \text{DeMorgan}$$

$$\equiv (\neg q \lor \neg p) \lor p \qquad \text{commutativa}$$

$$\equiv \neg q \lor (\neg p \lor p) \qquad \text{associativa}$$

$$\equiv \neg q \lor T$$

$$\equiv T \qquad \text{dominazione}$$

• Esempio: mostrare che

$$(p \land q) \rightarrow p$$
 è una tautologia

Dim.2: usiamo la tavola di verità

р	q	p∧q	(p ∧ q)→p
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

 mostrare che il contronominale di p → q è equivalente a p → q

$$(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$$

Dim.:

$$(\neg q \to \neg p) \equiv \neg (\neg q) \lor (\neg p)$$

$$\equiv q \lor \neg p \qquad \text{doppia negazione}$$

$$\equiv \neg p \lor q \qquad \text{commutativa}$$

$$\equiv p \to q$$

Esercizio

Mostrare che

$$\neg (p \rightarrow q) \equiv (p \land \neg q)$$

Mostrare che

l'opposto di p \rightarrow q è equivalente all'inverso di p \rightarrow q

Regole di precedenza degli operatori

- Abbiamo visto nelle espressioni composte l'uso di parentesi.
- Esse specificano l'ordine in cui gli operatori logici vanno applicati.

Esempio:

 $(p \lor q) \land (\neg r) \grave{e}$ la congiunzione di $(p \lor q) e (\neg r)$

 Per ridurre il numero di parentesi si stabilisce una convenzione sulla precedenza degli operatori.

Regole di precedenza degli operatori

operatore	precedenza
7	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Esempio:

 $(p \lor q) \land (\neg r)$ può essere scritta anche $(p \lor q) \land \neg r$

(p ∧ q) ∨ (¬r) può essere scritta senza ambiguità p ∧ q ∨ ¬r