A LINEÁRIS ERŐTÖRVÉNY VIZSGÁLATA ÉS A RUGÓÁLLANDÓ MEGHATÁROZÁSA

Mérést végezte : Brindza Mátyás Mérés időpontja : 2020.09.11.

Jegyzőkönyv leadásának időpontja: 2020.09.17.

A mérés célja:

Igazolni szeretnénk a skaláris Hooke-törvény fennállását kis kitéresekre, azaz a rugót nyújtó erő és a rugó megnyúlása közti egyenes arányosságot. Az arányossági tényező a rugóállandó, mely a megnyúlás-nyújtóerő párok, mérési pontok ismeretében kiszámolható. Egy rugóból és egy arra kötött testből álló harmonikus oszcillátor periódusideje függ a rugóállandótól is - ha ismert tömegű testet használunk, és mérjük a periódusidőt, szintén kiszámolható a rugóállandó.

Mérőeszkzök:

- Állvány, melyen két, vertikálisan mozgatható és rögzíthető helyjelző van
- 2 különböző rugóállandójú rugó
- Fém mérőléc a rugók mellé akasztva
- 6 fémkorong, egyenként 50g tömegűek
- Kosár (50g), mely ráakasztható a rugóra, és melyen rögzíthetőek a fémkorongok
- Digitális stopperóra

A mérés rövid leírása:

A mérés kezdetekor az állványra rá volt akasztva a két rugó és a fém mérőléc, illetve rögzítve volt a két helyjelző is.

A Hooke-törvény bizonyításának menetének első lépése a rugók nyugalmi hosszának meghatározása. Ezt követően minden 50g-os korong ráakasztása után megmérhető volt a rugók aljának helyzete megnyúlás után a mozgatható helyzetjelzők segítségével - először a korongokat tartó 50g-os kosár került fel, majd erre egyesével az 50g-os korongok. A rugókra rögzítve volt egy mutató, ami referenciapontként szolgált - minden mérés során valójában a mutató helyzete lett megmérve. A helyjelzőn lévő két párhuzamos plexi lapba egy-egy vízszintes vonal volt karcolva - ez abban tud segíteni, hogy a mérést végző személy mindig ugyanabból a szögből nézze a mérőlécet, ezzel némileg csökkentve a lehetséges hibákat.

A rugóból álló oszcillátorok vizsgálatakor a rugók megnyúlása, amplitúdója nem befolyásolta a mért periódusidőt. Technikailag könnyebb pár cm-es kitérítés után mérni, mivel túl kicsi amplitúdónál nem látszik elég jól, mikor zajlott le egy periódus, túl nagy kitérítés után pedig a rugó nem csak függőleges irányban rezeg - emberi kézzel nem lehet tökéletesen függőlegesen lefelé kitéríteni a rugót, bizonyos irányban való véletlen megnyújtás nagy kitérítés után erősebben jelentkezik. A megterhelés szintén 50g-nál kezdőtt, majd 50g-os lépcsőkkel haladt felfelé 300g-ig. Minden korongkonfiguráció mellett háromszor mérésre került a rezgés periódusidejének 10-szerese, melyre rendelkezésre állt egy stopperóra.

Mérési adatok

Jelmagyarázat:

- x_0 az adott rugó végén lévő mutató kezdeti helye
- \bullet m az adott rugóra akasztott nehezékek össz-tömege
- x az egyes megnyúlások után a mutató helye
- $10T_i$ az adott rugón, adott össz-tömegű nehezék mellett az i-edik mérés során vizsgált 10 periódus időtartama

X ₀ [cm]
42.80

	m [g]	x [cm]	10 T ₁ [s]	10 T ₂ [s]	10 T ₃ [s]
	50	41.0	2.97	3.28	3.25
, <u>S</u>	100	39.3	3.57	3.72	3.47
rugó	150	37.5	4.65	4.58	4.66
-:	200	35.7	5.45	5.59	5.57
	250	34.0	6.07	6.06	6.00
	300	32.2	6.47	6.52	6.41

Az első rugón mért adatok

X ₀ [cm]
43.65

	m [g]	x [cm]	10 T ₁ [s]	10 T ₂ [s]	10 T ₃ [s]
	50	38.2	4.59	4.69	4.65
,Ö	100	32.8	6.66	6.53	6.56
rugó	150	27.3	7.91	7.94	7.87
2	200	21.9	9.16	9.06	9.03
	250	16.6	10.35	10.22	10.25
	300	11.4	11.03	11.09	11.15

A második rugón mért adatok

Hibaforrások

Nyilvánvalóan a gravitációs térben történő csekély változások is befolyásolták a méréseket, viszont elhanyagolható mértékben. Az alábbiakban említésre kerülnek a lehetséges nem elhanyagolható hibák.

A megnyúlások vizsgálatánál felmerülő lehetséges hibaforrások:

- 1. A mérőléc által mérhető legkisebb hossz0.5mm
- 2. A rugó sosem volt tökéletesen nyugalmi állapotban
- 3. Az emberi szem nem elég arra, hogy megállapítsa, tökéletesen komplanáris a két karcolt vonal és a rugón lévő mutató hegye, illetve a karcolt vonalak síkja hol metszi a mérőlécet

A periódusidők vizsgálatánál felmerülő lehetséges hibaforrások:

- 1. A stopperóra által mérhető legkisebb időtartam 0.01 másodperc
- 2. Az emberi reakcióidő nem elég arra, hogy megállapítsa, pontosan mikor kezdődik és mikor végződik egy periódus
- 3. A lista 2. pontjához kapcsolódóan, a rugó egy idő után nem csak függőleges irányban fog rezegni, ezzel megnehezítve a periódusok elejének, végének meghatározását

Kiértékelés

Statikus mérés

A Hooke-törvény bizonyításához meg kell nézni a rugót nyújtó erő és a rugó megnyúlása közti összefüggést. Az

$$F = D \cdot x$$

összefüggés fennállására vagyunk kíváncsiak. Mivel az x jelölés már foglalt, Δx lesz a megnyúlás mértéke. Az F nyújtó erő pedig az

$$F = m \cdot q$$

összefüggés alapján számolható ki, ahol $g=9.81m/s^2$. Ez a két mennyiség kiszámolható a fenti táblazatban szereplő adatok alapján. Ezekre GNUPLOT programmal egyenest lehet illeszteni, melynek meredeksége megadja a rugóállandót. Az adatok ábrázolása Python segítségével történik.

Vizsgáljuk először az első rugót.

	m [g]	x [cm]	∆x [m]	F [N]
	50	41.00	0.0180	0.4905
ĵ,	100	39.30	0.0350	0.9810
rugó	150	37.45	0.0535	1.4715
- -	200	35.70	0.0710	1.9620
	250	33.95	0.0885	2.4525
	300	32.20	0.1060	2.9430

Az első rugón fellépő megynúlás és erő

Az első rugó statikus mérési adataira illesztett egyenes

Az illesztés eredménye :

$$F = 27.7769x - 0.00541604$$

Ebből leolvasható, hogy az egyenes meredeksége 27.7769, azaz

$$D = 27.7769 \frac{N}{m}$$

A hibaszámolásnál szükség lesz még az illesztett és a mért erő különbségére. Bevezetjük az illesztett erőre az F_i jelölést, a "mért" erőre pedig az F_m jelölést, illetve ezek különbségére a ΔF jelölést.

	m [g]	F _m [N]	Fi [N]	ΔF [N]
	50	0.4905	0.5054	-0.0149
g,	100	0.9810	0.9776	0.0034
rugó	150	1.4715	1.4915	-0.0200
	200	1.9620	1.9776	-0.0156
	250	2.4525	2.4637	-0.0112
	300	2.9430	2.9498	-0.0068

Az első rugó esetén az illesztett és a mért erő, ill. ezek különbsége

Térjünk rá a második rugóra. Ugyanazok a számolások, mint az elsőnél.

	m [g]	x [cm]	Δx [m]	F [N]
	50	38.20	0.0545	0.4905
,og	100	32.80	0.1085	0.9810
rugó	150	27.30	0.1635	1.4715
2	200	21.90	0.2175	1.9620
	250	16.60	0.2705	2.4525
	300	11.35	0.3230	2.9430

A második rugón fellépő megynúlás és erő

Az illesztés eredménye :

$$F = 9.11891x - 0.0120431$$

Ebből leolvasható, hogy az egyenes meredeksége 9.11891, azaz

$$D = 9.11891 \frac{N}{m}$$

A hibaszámoláshoz szükséges adatok:

A második rugó statikus mérési adataira illesztett egyenes

	m [g]	F _m [N]	Fi [N]	ΔF [N]
	50	0.4905	0.5090	-0.0185
, Q	100	0.9810	1.0014	-0.0204
rugó	150	1.4715	1.5030	-0.0315
2	200	1.9620	1.9954	-0.0334
	250	2.4525	2.4787	-0.0262
	300	2.9430	2.9575	-0.0145

A második rugó esetén az illesztett és a mért erő, ill. ezek különbsége

Dinamikus mérés

Ennél a mérésnél a rugó oszcillátorként működik, melynek periódusideje:

$$T = 2 \cdot \pi \cdot \sqrt{\frac{\mu}{D}}$$

ahol μ a rugóra akasztott tömegek és a rugó effektív tömegének összege. Ezt az egyenletet átrendezve az

$$\eta = D \cdot \xi - m_{eff}$$

egyenletet kapjuk, ahol $\eta=m$ és $\xi=\frac{T^2}{4\cdot \pi^2}$. Mivel periódusidők mérésénél 3 adat született ugyanazon mennyiségekre, ezért ezeket kiátlagoljuk. A képletben T szerepel, ezért a 10T-kre kapott átlagot elosztjuk 10-zel. Ezekből már kigenerálhatóak a ξ értékek.

Végül hasonlóképp illesztés következik, amiből a hibaszámolás szempontjából hasznos adatok is kinyerhetőek.

Kezdjük az első rugóval.

	η [kg]	10 T ₁ [s]	10 T ₂ [s]	10 T ₃ [s]	10 T [s]	T[s]	ξ [s²]
	0.05	2.97	3.28	3.25	3.1667	0.3167	0.0025
rugó	0.10	3.57	3.72	3.47	3.5867	0.3587	0.0033
5	0.15	4.65	4.58	4.66	4.6300	0.4630	0.0054
+	0.20	5.45	5.59	5.57	5.5367	0.5537	0.0078
	0.25	6.07	6.06	6.00	6.0433	0.6043	0.0093
	0.30	6.47	6.52	6.41	6.4667	0.6467	0.0106

Az első rugó adatai változócsere után

Az első rugó dinamikus mérési adataira illesztett egyenes

Az illesztés eredménye :

$$\eta = 28.3054\xi - 0.00851331$$

Ebből leolvasható, hogy az egyenes meredeksége 28.3054, azaz

$$D = 28.3054 \frac{N}{m}$$

A későbbi hibaszámoláshoz szükséges bevezetni a $\Delta\eta$ mennyiséget, azaz a "mért" η_m és az illesztett η_i közti különbséget.

	η _m [kg]	η _ι [kg]	Δη [kg]	ξ [s²]
	0.05	0.0793	-0.0293	0.0025
rugó	0.10	0.1019	-0.0019	0.0033
	0.15	0.1614	-0.0114	0.0054
+	0.20	0.2293	-0.0293	0.0078
	0.25	0.2718	-0.0218	0.0093
	0.30	0.3086	-0.0086	0.0106

Az első rugó esetén az illesztett és a mért $\eta,$ ill. ezek különbsége

A második rugó esetén:

	η [kg]	10 T ₁ [s]	10 T ₂ [s]	10 T ₃ [s]	10 T[s]	T[s]	ξ [s²]
	0.05	4.59	4.69	4.65	4.6433	0.4643	0.0055
gó	0.10	6.66	6.53	6.56	6.5833	0.6583	0.0110
rugó	0.15	7.91	7.94	7.87	7.9067	0.7907	0.0158
2	0.20	9.16	9.06	9.03	9.0833	0.9083	0.0209
	0.25	10.35	10.22	10.25	10.2733	1.0273	0.0267
	0.30	11.03	11.09	11.15	11.0900	1.1090	0.0312

A második rugó adatai változócsere után

A második rugó dinamikus mérési adataira illesztett egyenes

Az illesztés eredménye :

$$\eta = 9.677\xi - 0.00418587$$

Ebből leolvasható, hogy az egyenes meredeksége 9.677, azaz

$$D = 9.677 \frac{N}{m}$$

A hibaszámoláshoz szükséges adatok:

	η _m [kg]	η _၊ [kg]	Δη [kg]	ξ [s²]
	0.05	0.0574	-0.0074	0.0055
rugó	0.10	0.1106	-0.0106	0.1100
2	0.15	0.1571	-0.0071	0.0158
2	0.20	0.2064	-0.0064	0.0209
	0.25	0.2626	-0.0126	0.0267
	0.30	0.3061	-0.0061	0.0312

A második rugó esetén az illesztett és a mért $\eta,$ ill. ezek különbsége

Hibaszámítás

A hibaszámításhoz a téglalap módszert használjuk, mely az alábbi módon néz ki.

Statikus mérés

	m [g]	F _m [N]	Fi [N]	ΔF [N]
	50	0.4905	0.5054	-0.0149
,og	100	0.9810	0.9776	0.0034
rugó	150	1.4715	1.4915	-0.0200
-	200	1.9620	1.9776	-0.0156
	250	2.4525	2.4637	-0.0112
	300	2.9430	2.9498	-0.0068

Az első rugó esetén az illesztett és a mért erő, ill. ezek különbsége

Az első rugón statikus esetben a téglalap módszer

A legnagyobb ΔF abszolút értéke 0.02, az első és az utolsó x közti távolság 8.8. Így a téglalapból a hiba:

 $\frac{2*0.02}{8.8} \frac{N}{m} = 0.05 \frac{N}{m}$

	m [g]	F _m [N]	Fi [N]	ΔF [N]
	50	0.4905	0.5054	-0.0149
,og	100	0.9810	0.9776	0.0034
rugó	150	1.4715	1.4915	-0.0200
	200	1.9620	1.9776	-0.0156
	250	2.4525	2.4637	-0.0112
	300	2.9430	2.9498	-0.0068

Az első rugó esetén az illesztett és a mért erő, ill. ezek különbsége

A legnagyobb ΔF abszolút értéke 0.0334, az első és az utolsó xközti távolság 26.8. Így a téglalapból a hiba:

$$\frac{2*0.0334}{26.8} \frac{N}{m} = 0.0025 \frac{N}{m}$$

Az első rugón statikus esetben a téglalap módszer

Dinamikus mérés

	η _m [kg]	η _ι [kg]	Δη [kg]	ξ [s²]
	0.05	0.0793	-0.0293	0.0025
rugó	0.10	0.1019	-0.0019	0.0033
5	0.15	0.1614	-0.0114	0.0054
+	0.20	0.2293	-0.0293	0.0078
	0.25	0.2718	-0.0218	0.0093
	0.30	0.3086	-0.0086	0.0106

Az első rugó esetén az illesztett és a mért $\eta,$ ill. ezek különbsége

Az első rugón dinamikus esetben a téglalap módszer

A legnagyobb $\Delta\eta$ abszolút értéke 0.0293, az első és az utolsó ξ közti távolság 0.0081. Így a téglalapból a hiba:

$$\frac{2*0.0293}{0.0081} \frac{N}{m} = 7.2345 \frac{N}{m}$$

	η _m [kg]	ղ _၊ [kg]	Δη [kg]	ξ [s²]
	0.05	0.0574	-0.0074	0.0055
rugó	0.10	0.1106	-0.0106	0.1100
Ę.	0.15	0.1571	-0.0071	0.0158
2	0.20	0.2064	-0.0064	0.0209
	0.25	0.2626	-0.0126	0.0267
	0.30	0.3061	-0.0061	0.0312

A másdoik rugó esetén az illesztett és a mért $\eta,$ ill. ezek különbsége

A második rugón dinamikus esetben a téglalap módszer

A legnagyobb $\Delta\eta$ abszolút értéke 0.0126, az első és az utolsó ξ közti távolság 0.0257. Így a téglalapból a hiba:

$$\frac{2 \cdot 0.126}{0.0257} \frac{N}{m} = 0.98054474708 \frac{N}{m}$$

Eredmények

	Statikus mérés		Dinam ikus mérés	
	D [N/m]	ΔD [N/m]	D [N/m]	ΔD [N/m]
1. rugó	27.77690	0.05000	28.30540	7.23450
2. rugó	9.11891	0.00250	9.96770	0.09805

Eredmények

Diszkusszió

Mindkét módszerrel valóságnak nem ellentmondó eredményt kaptunk a két rugóállandóra - az 1. rugóé nagyobb, mint a 2.-é. A skaláris Hooke-törvény fennállását (kis kitérésekre) igazoltuk statikus és dinamikus méréssel is. Szemet szúrhat, hogy a statikus mérésnél jóval kisebb hibák jelennek meg. Ez annak tudható be, hogy a stopperórával való mérés miatt jelentősen nagyobb volt az emberi hiba befolyása. Az, hogy az első rugónál nagyobb a hiba, annak tudható be, hogy nagyobb a rugóállandója, így nagyobb volt az emberi hiba mértéke is.