Построить SIR-модель развития эпидемии за весь период наблюдений по датасету для выбранной страны. Для этого:

- 1. Вычислить количество инфицированных I на каждый день наблюдений
- 2. Выполнить нормировку данных на 100 тыс. населения.
- 3. На основе данных построить оценку параметра у интенсивности выздоровления.
- 4. Построить оценку параметра SIR-модели β (интенсивность заражения) в предположении, что изначально все население является восприимчивым к заболеванию. Обратить внимание, что значение β может быть разным для разных временных интервалов.
- 5. Построить график зависимости среднего количества инфицированных от времени. Для сравнения на той же диаграмме построить график для реальных (нормированных) данных.

Справочно о SIR-модели.

Модель эпидемии SIR была предложена в статье Kermack W., McKendrick A. «A contribution to the mathematical theory of epidemics». Proc.R. Soc. 1927. V. A115. P. 700–721.

Данная модель основана на разделении популяции S (susceptible) — восприимчивые, I (infectious) — больные, R (recovered) — выздоровевшие (невосприимчивые), S+I+R=N — численность популяции.

Динамика переходов индивидуумов их одной группы в другую $S \to I \to R$ описывается системой дифференциальных уравнений:

$$\begin{cases} \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I \\ \frac{dS}{dt} = -\beta \frac{SI}{N} \\ \frac{dR}{dt} = \gamma I \end{cases},$$

где β — интенсивность заражения, т.е. среднее число индивидуумов, которых может заразить один больной в единицу времени, γ — интенсивность выздоровления, величина, обратная средней продолжительности заболевания.

Поскольку в датасетах представлены ежедневные наблюдения, перейдем от дифференциальных уравнений к разностным:

dt=1 день, n=t – номер дня. Тогда

$$dI=I(t+dt)-I(t)=I_{n+1}-I_n=etarac{S_nI_n}{N}-\gamma I_n$$
, аналогично для остальных уравнений.

$$\begin{cases} I_{n+1} - I_n = \beta \frac{S_n I_n}{N} - \gamma I_n \\ S_{n+1} - S_n = -\beta \frac{S_n I_n}{N} & \text{начальные условия } I_0, S_0, R_0 \\ R_{n+1} - R_n = \gamma I_n \\ \\ \text{Или} \begin{cases} I_{n+1} = I_n + \beta \frac{S_n I_n}{N} - \gamma I_n \\ S_{n+1} = S_n - \beta \frac{S_n I_n}{N} \\ R_{n+1} = R_n + \gamma I_n \end{cases}$$

$$v_n = \beta \frac{S_n I_n}{N}$$
 — расчетное число заражений за n -й день

Выполнение задания.

Загружаем данные:

Убираем столбцы, которые не понадобятся для последующих вычислений:

	1	. ,	1									
[4	df.drop(['Страна'],axis=1,inplace=True) df.drop(['Тестов'],axis=1,inplace=True) df.drop(['Тестов_за_день'],axis=1,inplace=True) df.drop(['Смертей_за_день'],axis=1,inplace=True) df											
	Дата	Заражений	Заражений_за_день	Выздоровлений	Выздоровлений_за_день	Смертей	Население_страны					
C	11.04.2020	13584	1667	1045	250	106	146880432					
1	12.04.2020	15770	2186	1291	246	130	146880432					
2	13.04.2020	18328	2558	1470	179	148	146880432					
3	14.04.2020	21102	2774	1694	224	170	146880432					
4	15.04.2020	24490	3388	1986	292	198	146880432					
9	5 15.07.2020	745197	6410	522375	10417	11753	146880432					
9	6 16.07.2020	751612	6415	530801	8426	11920	146880432					
9	7 17.07.2020	758001	6389	538467	7666	12106	146880432					
9	8 18.07.2020	764215	6214	545909	7442	12228	146880432					
9	9 19.07.2020	770311	6096	549387	3478	12323	146880432					

100 rows × 7 columns

Выч	нислим	кол	ичество и	нфициро	ванных I	и к	оличество	восприим	ичивых S
[44			-		ражений']-df[еление_странь				тей']
	Дата	Заражений	Заражений за день	Выздоровлений	Выздоровлений_за_день	Смертей	Население_страны	Инфицированные_I	Восприимчивые_5
0	11.04.2020	13584	1667	1045	250	106	146880432	12433	146866848
1	12.04.2020	15770	2186	1291	246	130	146880432	14349	146864662
2	13.04.2020	18328	2558	1470	179	148	146880432	16710	145862104
٥	14.04,2020	21102	2774	1694	224	170	146880432	19238	145859330
4	15.04.2020	24490	3388	1986	292	198	146880432	22306	146855942
100				=	1999	70	=		
95	15.07.2020	745197	6410	522375	10417	11753	146880432	211069	146135235
96	16.07.2020	751612	6415	530801	8426	11920	146880432	208891	146128820
97	17.07.2020	758001	6389	538467	7665	12106	146880432	207426	146122431
98	18.07.2020	764215	6214	545909	7442	12228	146880432	205078	146116217
99	19.07.2020	770311	6096	549387	3478	12323	146880432	208601	146110121
100	rows × 9 colu	mns							

Оценка параметра у с помощью метода наименьших квадратов

▼ Кол-во_инфицированных_I vs Выздоровлений_за_день

```
[45] # @title Кол-во_инфицированных_I vs Выздоровлений_за_день
     from matplotlib import pyplot as plt
     df.plot(kind='scatter', x='Инфицированные_I', y='Выздоровлений_за_день', s=25, alpha=.8)
     plt.gca().spines[['top', 'right',]].set_visible(False)
₹
         12000
         10000
      Выздоровлений_за_день
          8000
          6000
          4000
          2000
                                                                 200000
                                                                              250000
                          50000
                                       100000
                                                    150000
                                        Инфицированные_I
```

 r_i — наблюдаемое количество выздоровлений за i-й день, I_i - количество больных, наблюдаемое в i-й день

Тогда $r_i = \gamma I_i + \varepsilon_i$, ε_i – ошибка модели. γ необходимо выбрать таким образом, чтобы минимизировать квадрат ошибки, т.е.

$$\sum_{i=1}^{n} (r_i - \gamma I_i)^2 \to \min_{\gamma}$$

Для нахождения минимума продифференцируем целевую функцию и

приравняем к нулю (необходимое условие экстремума):

$$2\sum_{i=1}^{n} (r_i - \gamma I_i) * (-I_i) = 0$$

$$\sum_{i=1}^{n} (r_i I_i) - \gamma \sum_{i=1}^{n} I_i^2 = 0$$

$$\widehat{\gamma} = rac{\sum_{i=1}^n (r_i I_i)}{\sum_{i=1}^n {I_i}^2}$$
 – оценка для параметра γ

Вычислим оценку параметра γ .

```
[48] gam=sum(df['Выздоровлений_за_день']*df['Инфицированные_I'])/sum(df['Инфицированные_I']*df['Инфицированные_I']) print ('Параметр гамма', gam) print ('Средняя продолжительность заболевания', 1/gam)
```

Параметр гамма 0.03182500033051489 Средняя продолжительность заболевания 31.42183785120549

Теперь сделаем то же самое с помощью линейной регрессии.

```
[ ] import statsmodels.formula.api as smf
lm = smf.ols(formula='Выздоровлений_за_день ~0 + Инфицированные_I', data=df).fit()
lm.params
print(lm.summary())
```

print(lm.summary())									
	OLS Regression Results									
Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Le	OLS ast Squares 12 Nov 2024 20:24:55 100 99	R-squared (uncentered): Adj. R-squared (uncentered): F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:			0.88 0.88 731. 1.57e-4 -914.6 1831 1834				
Covariance Type:	coef	nonrobust ====== std err	 t	P> t	[0.025	0.9751				
Инфицированные_I										
						=== 294 621				

Notes:

Skew:

Kurtosis:

_

[1] R² is computed without centering (uncentered) since the model does not contain a constant.

0.0992

1.00

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.375 Prob(JB):

2.260 Cond. No.

Построим оценку параметра β .

```
[ ] lm = smf.ols(formula='Заражений_За_день ~ 0 + Расчёт', data=df).fit()
lm.params
print(lm.summary())
OLS Regression Results
```

		OL	S Regre	essio	n Results				
Dep. Variable:	Зар	ражений за де	нь R-	-squa	red (uncente	red):		0.903	
Model:		0	LS A	di. R	-squared (un	centered):		0.902	
Method:		Least Squar				,		922.0	
Date:		ue, 12 Nov 20				:		5.79e-52	
Time:		•		•	kelihood:			-922.14	
No. Observation	15.		00 A	_				1846.	
Df Residuals:		_	99 BI					1849.	
Df Model:			1					1045.	
Covariance Type	2:	nonrobu	st						
=======================================									
	coef	std err				-	-		
Расчёт	0.0386	0.001			0.000				
Omnibus:		15.6	01 D	urbin	-Watson:		0.044		
Prob(Omnibus):		0.0	00 Ja	arque	-Bera (JB):		9.614		
Skew:		0.6	08 Pi	rob(J	B):		0.00817		
Kurtosis:		2.0	90 C	ond.	No.		1.00		

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Сравним с оценкой, полученной вручную с помощью метода наименьших квадратов.

Обозначим $A_i = \frac{S_i I_i}{N}$, X_i — наблюдаемое количество заражений в день.

Тогда нам надо минимизировать суммарную квадратичную ошибку

$$\sum_{i=1}^{n} (X_i - \beta A_i)^2 \to \min_{\beta}$$

Для нахождения минимума продифференцируем целевую функцию и приравняем к нулю (необходимое условие экстремума):

$$2\sum_{i=1}^{n} (X_i - \beta A_i) * (-A_i) = 0$$

$$\sum_{i=1}^{n} (X_i A_i) - \beta \sum_{i=1}^{n} A_i^2 = 0$$

$$\widehat{eta} = rac{\sum_{i=1}^n (X_i A_i)}{\sum_{i=1}^n A_i^2}$$
— оценка для параметра eta

```
[56] beta = sum(df['Заражений_за_день']*df['Расчёт'])/sum(df['Расчёт']*df['Расчёт']) print ('Параметр бета', beta)
```

Параметр бета 0.03863430714471173

Нормируем данные и строим график:

```
[60] df['Инфицированные_нормир']=df['Инфицированные_I'] * 100000 / df['Население_страны'] df
```

Нормированные инфицированные

```
# @title Нормированные инфицированные

from matplotlib import pyplot as plt

df.plot(kind='scatter', x='Дата', y='Инфицированные_нормир', s=10, alpha=.8)

plt.gca().spines[['top', 'right',]].set_visible(False)
```

