BDS/GNSS 定位导航模块

ATGM332D-5N

用户手册

杭州中科微电子有限公司

杭州市滨江区江南大道 3850 号创新大厦 10 楼

电话: 0571-28918100

传真: 0571-28918122

网站: http://www.icofchina.com

1 功能描述

1.1 概述

ATGM332D-5N 系列模块是 12.2×16mm 尺寸的高性能 BDS/GNSS 定位导航模块系列的总称。该系列模块产品都是基于中科微第四代低功耗 GNSS SOC 单芯片 AT6558,支持多种卫星导航系统,包括中国的北斗二号和北斗三号全部卫星,美国的 GPS,俄罗斯的 GLONASS,日本的 QZSS,可以同时接收以上卫星导航系统的卫星信号,并且实现联合定位、导航与授时。

ATGM332D-5N 系列模块具有高灵敏度、低功耗、低成本等优势,适用于车载导航、手持定位、可穿戴设备。

1.2 产品选购

	多	模功	能	电	源	接				特	性		
型号	GPS/QZSS	BDS	GLONASS	2.7V~3.6V	1.65V~3.6V	UARTO	UART1	Flash	TCXO	天线检测	天线过流保护	前置 SAW	外置 LNA
ATGM332D-5N-11	•			•		•	•	•	•	•	•	•	•
ATGM332D-5N-21		•		•		•	•	•	•	•	•	•	•
ATGM332D-5N-31	•	•		•		•	•	•	•	•	•	•	•
ATGM332D-5N-51	•		•	•		•	•	•	•	•	•	•	•
ATGM332D-5N-71	•	•	•	•		•	•	•	•	•	•	•	•

1.3 主要特征

- 支持北斗二号和北斗三号 1-63 号全部卫星
- 支持 BDS/GPS/QZSS/GLONASS 卫星导航系统的单系统定位,以及任意组合的多系统联合定位
- 支持 A-GNSS
- 冷启动捕获灵敏度: -148dBm
- 跟踪灵敏度: -162dBm
- 定位精度: 2.5 米 (CEP50)
- 首次定位时间: 32 秒
- 低功耗: 连续运行 25mA@3.3V
- 内置天线检测及天线短路保护功能

1.4 模块功能框图

1.5 应用领域

- 车载定位与导航
- 手机,平板电脑,手持设备
- 物联网设备
- 可穿戴设备

1.6 辅助 GNSS

ATGM332D-5N 系列模块全部支持辅助 GNSS (AGNSS) 功能。AGNSS 可以为接收机提供定位必需的辅助信息,比如电文,粗略位置和时间。无论是在强信号还是弱信号环境,这些信息可以显著的缩短首次定位时间。具体使用方式见《中科微 AGNSS 解决方案》的说明。

1.7 1PPS

ATGM332D-5N 系列模块支持精确秒脉冲输出,脉冲上升沿与 UTC 时间对齐。

1.8 输出协议

ATGM332D-5N 系列模块通过 UART 作为主要输出通道,按照 NMEA0183 的协议格式输出,具体信息请参照《CASIC 多模卫星导航接收机协议规范》。

1.9 FLASH

ATGM331C-5N 系列模块配备 Flash,可以通过在线升级功能,更新定位功能与算法。这种配置功能,可以让客户自主配置定位更新率,获得适用的低功耗;可以让客户及时更新全球多模定位的最新优化进展;可以让客户增加新的控制功能,如定位记录,规则的地理围栏,自定义的输出格式。

1.10 在线升级功能

ATGM332D-5N 系列模块支持中科微的在线升级协议。用户可在上位机中按照升级协议,与模块通信,将中科微提供的新的软件程序,升级到模块中,以获得新的软件特色。用户还可以采用远程命令方式,遥控设备启动以上升级过程,实现远程在线升级。在线升级协议,请参考《ATGM 模块在线升级协议》。

1.11 天线

ATGM332D-5N 系列模块支持有源天线与无源天线。

1.12 上位机工具

中科微提供《GNSSToolKit》软件包,用于定位输出解析与工作模式配置。 中科微提供《UBF 串口升级工具》软件包,用于基于 PC 的在线升级工具。基 于设备的在线升级程序需客户自己开发。

2 技术描述

2.1 外观尺寸 (单位: mm)

2.2 PCB layout (单位: mm)

2.3 PIN 排列图

2.4 管脚定义

引脚	by the		EHL) D	. t. An deb tot		
编号	名称	I/O	描述	电气特性		
1	NC					
2	Reserved		保留	悬空		
3	1PPS	0	秒脉冲输出			
4	Reserved		保留	悬空		
5	NC					
6	NC					
7	NC					
8	nRESET	I	模块复位输入,低电平有效	不用时悬空		
9	VCC_RF	0	输出电源	+3.3V,可给天线供电		
10	GND	I	地			
11	RF_IN	I	天线信号输入			
12	GND	I	地			
13	GND	I	地			
14	NC					
15	NC					
16	TXD1	0	辅助串口数据输出			
17	RXD1	ı	辅助串口数据输入			
18	Reserved		保留	悬空		
19	Reserved		保留	悬空		
20	TXD0	0	主串口数据输出			
21	RXD0	I	主串口数据输入			
22	VBAT	I	RTC 及 SRAM 后备电源	供电范围: 1.5~3.6V 电源以		
				保证模块热启动		
23	VCC	I	模块电源输入	供电范围: 2.7~3.6V		
24	GND	I	地			

2.5 电气参数

极限参数

参数	符号	最小值	最大值	单位
模块供电电压(VCC)	Vcc	-0.3	3.6	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	V
数字输入引脚电压	Vin	-0.3	Vcc+0.2	V
最大可承受ESD水平	VESD(HBM)		2000	V

运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	2.7	3.3	3.6	V
工作电流@3.3V	Icc		25	30	mA
备份电源	Vbat	1.5	3.0	3.6	V
备份电源(Vbat)电流	Ibat		10		uA
t스 》 기 바미	Vil			0.2*Vcc	V
输入引脚	Vih	0.7*Vcc			V
	Vol			0.4	V
ᄷᄼᆡᄀᆛᄢ	lo=-12mA			0.4	V
输出引脚 	Voh	Vcc-0.4			V
	lo=12mA	VCC-U.4			V
有源天线输出电压	VCC_RF		3.3		V
天线短路保护电流	lant short		50		mA
电源来自VCC_RF (=3.3V)	iant short		30		IIIA
有源天线检测电流	lant onen	2.5			mΛ
电源来自VCC_RF (=3.3V)	lant open	2.5			mA
Vcc峰值电流(不包括天线)	Ipeak			100	mA

2.6 技术规范

指标	技术参数
信号接收	BDS/GPS/QZSS/GLONASS
冷启动 TTFF	≤32s
热启动 TTFF	≤1s
重捕获 TTFF	≤1s
冷启动捕获灵敏度	-148dBm
热启动捕获灵敏度	-156dBm
重捕获灵敏度	-160dBm
跟踪灵敏度	-162dBm
定位精度	<2.5m (CEP50)
测速精度	<0.1m/s (1 σ)
定位更新率	1Hz (默认),最大 10Hz*
串口特性	波特率范围: 4800 bps ~115200 bps,默认 9600bps,
	8个数据位,无校验,1个停止位
协议	NMEA0183
最大高度	18000m
最大速度	515m/s
最大加速度	4g
后备电池	1.5V ~ 3.6V
电源供电	2.7V ~ 3.6V
典型功耗(双模连续运行)	25mA @3.3V
工作温度	-40 到+85 摄氏度
存储温度	-45 到+125 摄氏度
尺寸	16.0mm×12.2mm×2.4mm
重量	1.6g

^{*}具体型号及工作条件请咨询销售人员。

2.7 模块应用电路

2.7.1 有源天线应用方案

方案应用信息:

- ▶ 有源天线直接连接 RF IN
- ▶ 模块内部 RF IN 已通过电感和 VCC RF 相连进行供电
- ▶ 模块内部提供天线检测及短路保护功能
- ▶ 为了保证模块处于最佳工作状态,建议有源天线增益范围 15~30dB

2.7.2 无源天线应用方案

方案应用信息:

▶ 如果使用无源天线,建议在模块前端增加一级 LNA 保证性能。

ATGM332D-5N 模块用户手册

2.8 模块使用注意事项

为了保证 ATGM332D-5N 的最佳性能,用户在使用本模块时需要注意以下几点:

- 采用低纹波的 LDO, 电源纹波控制在 50mVpp 以内。
- 模块附近尽量避免频率高、幅度大的数字信号,在 layout 时要特别注意接地 良好。
- 天线接口尽量靠近模块的 RF 输入引脚,并注意 50 欧姆的阻抗匹配。
- 模块本身具有有源天线接入、断开、短路检测电路。在天线意外短路时,对 天线的供电进行限流(50mA),起到保护的作用。在上述3种天线端口状态发 生变化时,可以从串口输出相应的信息。信息如下:

天线短路状态: \$GPTXT,01,01,01,ANTENNA SHORT*63

天线断开状态: \$GPTXT,01,01,01,ANTENNA OPEN*25

天线正常状态: \$GPTXT,01,01,01,ANTENNA OK*35

● 模块使用无源天线时,串口输出语句均为开路。信息如下: \$GPTXT,01,01,01,ANTENNA OPEN*25

3 可靠性测试与认证

3.1 RoHS 认证

ATGM332D-5N 系列模块均符合 RoHS 认证。

4 模块传送与焊接

4.1 模块包装

ATGM332D-5N 系列模块采用真空卷带包装,具备防潮,防静电等特性,使用过程与业内主要贴片机兼容。按照每盘 1000 片进行包装。具体卷带尺寸如下:

4.2 模块传送与存储

4.2.1 防潮等级:

Moisture Sensitivity Level (MSL): 3级 MSL 请参考 IPC/JEDEC J-STD-020 标准。

4.2.2 回流焊曲线:

! 注意

调整平衡时间以保证锡膏溶化时气体的合理化处理。如果PCB板上有过多空隙,可以增加平衡时间。

考虑到产品长时间放置在焊接区(温度在**180**℃以上),为了防止元器件和底板的损伤,应尽可能缩短放置时间。

! 曲线的重要特征:

上升速度=1~4°C /sec, 25°C to150°C平均

预热温度=140°C to 150°C, 60sec~90sec

温度波动=225°C to 250°C, 大约 30sec

下降速度=2~6°C/sec, to 183°C, 大约 15sec

总时间 = 大约 300sec

4.2.3 静电防护:

ATGM332D-5N 模块系列,属静电敏感器件。经常性的静电接触会导致模块产生意外的损坏。除了按照标准的静电防护要求操作外,如下几点需尽量遵循:

- 1)除非PCB GND 已经很好的接地,否则接触模块的第一位置应该是PCB GND。
- 2) 连接天线的时候,请首先连接 GND,再连信号线。
- 3)接触 RF 部分电路时,请不要接触充电电容,请远离可产生静电的器件与设备,如介质天线,同轴电线,电烙铁等。
- 4)为避免通过射频输入端进行电荷放电,请不要接触天线介质裸露部分。 对于可能出现接触天线介质裸露的情况,需要在设计中增加防静电保护 电路。
- 5) 在焊接与射频输入端相连接的连接器,天线,请确保使用无静电焊枪。

5 模块标签与下单型号

5.1 模块标签

ATGM332D-5N的标签包含重要的产品信息,标签内容格式如下:

5.2 型号命名规则:

以 ATGM332D-5N-31 为例,解释如下:

字段	示例	解释
Product code	ATGM332D	12mmX16mm 模块系列
产品名		
Type code	5N	采用 AT6558 硬件平台的导航模块
类型名		
Hardware code	31	具有 GPS+BDS 功能的 Hardware
硬件功能名		Version=1 的硬件版本

5.3 通用订单型号一览:

通用订单型号	产品
ATGM332D-5N-11	12X16 尺寸, AT6558 芯片, 导航模块, 单 GPS 定位,
	16.369M 晶振,标准输出
ATGM332D-5N-21	12X16尺寸, AT6558 芯片, 导航模块, 单 BDS 定位,
	16.369M 晶振,标准输出
ATGM332D-5N-31	12X16 尺寸,AT6558 芯片,导航模块, GPS+BDS 定
	位,16.369M 晶振,标准输出
ATGM332D-5N-51	12X16尺寸,AT6558 芯片,导航模块,
	GPS+GLONASS 定位,16.369M 晶振,标准输出
ATGM332D-5N-71	12X16尺寸,AT6558 芯片,导航模块,
	GPS+BDS+GLONASS 定位, 16.369M 晶振, 标准输出

5.4 定制订单型号:

中科微模块对国内客户提供软件功能定制服务。具体合作方式与产品订单命名,请联系销售代表。

参考文献

- 1. 《中科微 AGNSS 解决方案》
- 2. 《CASIC 多模卫星导航接收机协议规范》
- 3. 《ATGM 模块在线升级协议》
- 4. 《AT6558 芯片数据手册》
- 5. 《GNSSToolKit 工具使用说明》
- 6. 《UBF 串口升级工具使用说明》

ATGM332D-5N 模块用户手册

版本更新历史

版本	日期	更新内容	
1.0	2015/7/01	初稿	
1.1	2015/12/1	增加产品选购说明;	
		增加订单型号说明;	
		增加同系列单 GPS 模块,单 BDS 模块的功能说明;	
		增加 Flash、在线升级协议等特性说明	
		修订有源天线应用电路图;	
		增加无源天线应用电路图;	
		其他文本完善;	
1.2	2016/7/15	文本完善	
1.3	2018/1/15	文本完善	
1.4	2018/2/08	删除授时指标	
1.5	2018/9/21	修订有源天线应用说明	
1.6	2018/11/20	文本完善	
1.7	2020/08/28	文档修正完善	