Фамилия: Ралдугина Группа: 301 Дата: 05.05.2020

Вводные данные

<u>Цель эксперимента</u>: Определить кинетические параметры (K_{M}, V_{m}) реакции, катализируемой лакказой из гриба *Trametes hirsuta*, из зависимости текущей концентрации субстрата/продукта от времени реакции при различных начальных концентрациях данного субстрата.

Катализируемая ферментом реакция:

 $O_2 + 4 DH \rightarrow 2 H_2O + 4 D_{ox}$

где DH – восстановленная форма донора электронов, D_{ox} – окисленная форма донора электронов.

Условия проведения эксперимента:

Фермент: лакказа из гриба Trametes hirsuta.

Субстрат, концентрацию которого варьируют: донор электронов ABTS (2,2'-азино-бис(3-этилбензтиазолин-6-сульфоната) аммониевая соль).

Условия проведения эксперимента: 20 мкл белка (лакказа С.с., молекулярная масса 63 кДа) концентрацией 0,01 мг/мл добавляли в спектрофотометрическую ячейку объемом 2,5 мл, содержащую 100 мМ Na-Ac буферный раствор рН 4,5 и донор электронов ABTS в указанных концентрациях. Температура проведения реакции 25°С, концентрация кислорода в ячейке 270 мкМ. В результате измерения и преобразования данных получали зависимость концентрации продукта (окисленной формы донора электронов) от времени протекания реакции.

Концентрация фермента в реакционной ячейке: 1.27 * 10⁻⁹ М

<u>Задания</u>

Таблица 1. Определение кинетических параметров в программе Origin в координатах Уокера-Шмидта с помощью различных методов аппроксимации.

Варьируемый субстрат	Аппроксимация	<i>S</i> ₀ , мкМ	<i>V_m</i> , мкМ/сек	<i>К_м</i> , мкМ
ABTS	Линейная	5.26	1,27128	11.82026
		20.33	1.85184	14.21007
		33.43	1.19484	10.73025
	Методом нелинейной регрессии	5.26	0.87592	7.58702
		20.33	0.96496	9.64816
		33.43	0.92204	8.1757

Почему (с Вашей точки зрения) интегральная кривая не линейна во всем диапазоне изменения аргумента?

Интегральная кривая была окрашена мной, чтобы соответствовать изменению времени и можно было бы проследить динамику ее изменения.

Изучив полученный рисунок, я заметила, что интегральная кривая в координатах Уокера-Шмидта может быть визуально разделена на три части. Эти части довольно явно видны на графике.

Точки на графиках в координатах Уокера-Шмидта окрашены в соответствии с временной точкой t.

Для дальнейшей линейной аппроксимации был выбран светло-фиолетовый участок (срединный). Во-первых при рассмотрении крайних значений мы можем внести большую ошибку в результаты. Розовый участок не был использован для аппроксимации потому что, по всей видимости, в начале реакции уходит некоторое время на связывание фермента с субстратом и на установление стационарного состояния, поэтому эти данные нельзя считать репрезентативными. В конце же реакции (голубой участок), субстрат истощается и поэтому мы можем считать количество продукта неизменным. Вполне может быть так, что на конечном участке продукт может начать ингибировать реакцию. Таким образом конечные точки тоже выпадают из рассмотрения и мы считаем, что общий паттерн реакции описывается именно светло-фиолетовым участком.

Задание 2.

Полученные значения в этом эксперименте гораздо более консистентны, чем те, которые мы получили в Практикуме 1. Тем не менее некоторые отличия все же наблюдаются. Например, все значения, полученные путем нелинейной аппроксимации, ощутимо выше, чем те, которые стали результатом линейной аппроксимации. Также эти значения в большей степени сходятся с полученными ранее (Практикум 1). Дополнительно можно заметить, что самые высокие результаты в обоих случаях получились при S_0 = 20.33. При этом при работе с координатами Уокера-Шмидта с помощью линейной аппроксимации при S_0 = 33.43 значения довольно хорошо согласуются с наблюдаемыми ранее. Но наиболее всего значения согласуются при нелинейной аппроксимации и S_0 =5.26. Из этого я могу сделать вывод, что самые достоверные результаты наблюдаются при малых значениях S_0 нелинейной аппроксимацией и при больших значениях S_0 при линейной аппроксимации .

3°. Бонусное задание.

Сравнить значения параметров (V_m и K_M), определённые двумя методами:

- из зависимости начальной скорости реакции от концентрации субстрата (практикум 1)
- из интегральной кинетической кривой (зависимости текущей концентрации субстрата/продукта от времени реакции) (практикум 2)

Какой метод определения параметров, с Вашей точки зрения, более точный?

Какой из этих методов, на Ваш взгляд, удобнее использовать при выполнении эксперимента и анализе данных?

Сравним полученные данные:

Таблица 1.

Координаты	Способ вычисления скорости	К _м , мкМ	V _m , мкМ/сек	k ₂ , сек ⁻¹
Прямые	V = tg	5.4847	0.92224	726.1733
Прямые	V = dP/dt	4.20968	1.2440	979.5276
Хейнса	V = tg	4.54221	0.86908	684.3150
Хейнса	V = dP/dt	0.62178	0.89908	707.9371
Иди-Хофсти	V = tg	6.61054	0.94752	746.0787
Иди-Хофсти	V = dP/dt	1.15638	0.89048	701.1654
Лайнуивера-Берка	V = tg	7.70716	1.00188	788.8819
Лайнуивера-Берка	V = dP/dt	9.30174	1.30652	1028.7559

Таблица 2. (выделены самые лучшие значения)

Варьируемый	Аппроксимация	<i>S</i> ₀ , мкМ	V_m , мкМ/сек	<i>К_м,</i> мкМ
субстрат				
ABTS	Линейная	5.26	1,27128	11.82026
		20.33	1.85184	14.21007
		33.43	1.19484	10.73025
	Методом нелинейной	5.26	0.87592	7.58702
	регрессии	20.33	0.96496	9.64816
		33.43	0.92204	8.1757

Значения V_m между результатами двух практикумов отличаются гораздо меньше, чем значения K_M , и в целом очень похожи. В случае K_M подход, который мы использовали в Практикуме 1 дает существенно меньшие значения.

В Практикуме 1 был сделан вывод о надежности результатов, полученных с помощью линейной аппроксимации. Также были названы предпочтительными координаты Хейнса.

В Практикуме 2 лучшими оказались результаты, полученные нелинейной аппроксимацией. Наиболее всего они согласуются с данными, рассчитанными с помощью координат Лайнуивера-Берка. Самыми репрезентативными стали данные, полученные нелинейной аппроксимацией с S_0 = 20.33 и S_0 = 33.43.

Как мне кажется, подход Практикума 2 в целом более точен и удобен. Использование метода Уолкера-Шмидта в результате дает значения с меньшим разбросом. Также вместо использования множества аппроксимаций, мы определяем нужные нам параметры по одной кривой, что, предположительно значительно уменьшает вероятность увеличения средней ошибки. Таким образом, я бы отдала предпочтение именно методу из Практикума 2.