Exercice 1. Coefficients calorimétriques et équation adiabatique d'un gaz parfait.

Une mole de gaz reçoit, au cours d'une transformation élémentaire réversible, une quantité de chaleur δQ qui peut s'exprimer de trois façons différentes, suivant le choix des variables (pression p, volume V et température T) :

$$\delta Q = C_V dT + \ell dV$$

$$\delta Q = C_p dT + h dP$$

$$\delta Q = \lambda dP + \mu dV$$

- 1- Exprimer les coefficients calorimétriques I, h, μ et λ en fonction des capacités calorifiques molaires cp et cv et des dérivées partielles $(\frac{\partial T}{\partial v})_p$ et $(\frac{\partial T}{\partial v})_v$
- 2- Calculer, dans le cas d'un gaz parfait, l, h, λ et μ en fonction des paramètres p et V et du rapport $\gamma = \frac{c_p}{c_n}$.
- 3- En déduire la relation entre p et v, au cours d'une transformation adiabatique réversible du gaz. (γ est indépendant de la température).

Exercice 2. Détente isotherme d'un gaz parfait

1 m³ d'air supposé gaz parfait, à la pression $p_1 = 10$ bars, subit une détente, à température constante ; la pression finale $p_2 = 1$ bar.

- 1- Tracer cette transformation dans le diagramme de Clapeyron
- 2- Déterminer le travail échangé par le gaz avec le milieu extérieur, au cours de cette détente.
- 3- Déterminer la quantité de chaleur échangée par le gaz avec le milieu extérieur, au cours de cette détente.

On rappelle que 1bar = 10^5 N/m^2

Exercice 3. Compression adiabatique d'un gaz parfait

Un récipient, fermé par un piston mobile, renferme 2 g d'hélium (gaz parfait, monoatomique) dans les conditions (p_1, v_1) . On opère une compression adiabatique, de façon réversible, qui amène le gaz dans les conditions (p_2, v_2) . On donne p_1 = 1bar, v_1 = 10l, p_2 =3 bars

Déterminer :

- a- Le volume final v₂.
- b- Le travail reçu par le gaz.
- c- La variation d'énergie interne du gaz.
- d- En déduire l'élévation de température du gaz, sans calculer la température initiale T_1

Exercice 4: Etude du cycle

L'état initial d'une mole de gaz parfait est caractérisé par $p_0 = 2$ bars, $v_0 = 14$ litres. On fait subir successivement à ce gaz :

- une détente isobare, qui double son volume,
- une compression isotherme, qui le ramène à son volume initial,
- un refroidissement isochore, qui le ramène à l'état initial (p_0, v_0) .
- 1- A quelle température s'effectue la compression isotherme ?
- 2- En déduire la pression maximale atteinte.
- 3- Représenter le cycle de transformation dans le diagramme (p, v)
- 4- Calculer le travail et la quantité de chaleur échangés par le système au cours du cycle.