

MODÉLISATION ET APPLICATIONS

Endogénéité et estimation par variables instrumentales

Aristide E. Houndetoungan

28 Septembre 2022

M2 : Panel-IV IV - 1/34

Introduction

- Modèle linéaire-en-moyennes : $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- Hypothèse d'exogénéité des ${\bf X}$ (hypothèse H.3, chapitre 1) : $\mathbb{E}(\varepsilon_i|{\bf x}_i)=0\ \forall\ i.$
- Elle implique que $(\forall i)$:

$$0 \quad \mathbb{E}(\varepsilon_i) = \mathbb{E}_{\mathbf{x}}(\mathbb{E}(\varepsilon_i|\mathbf{x}_i)) = 0,$$

$$0 \quad \mathbb{E}(\varepsilon_i\mathbf{x}_i) = \mathbb{E}_{\mathbf{x}}(\mathbb{E}(\varepsilon_i\mathbf{x}_i|\mathbf{x}_i)) = \mathbb{E}_{\mathbf{x}}(\mathbb{E}(\varepsilon_i|\mathbf{x}_i)\mathbf{x}_i) = 0.$$

• Elle est cruciale pour montrer que $\mathbb{E}(\hat{m{eta}}_{ exttt{MCO}}) = m{eta}_0$ et $\mathrm{plim}(\hat{m{eta}}_{ exttt{MCO}}) = m{eta}_0.$

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{MCO}} &= \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{y} = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}), \\ \hat{\boldsymbol{\beta}}_{\text{MCO}} &= \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\boldsymbol{\epsilon}, \\ \hat{\boldsymbol{\beta}}_{\text{MCO}} &= \boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\boldsymbol{\epsilon}. \end{split}$$

M2 : Panel-IV IV - 2/34

Donc.

$$\begin{split} & \mathbb{E}\left(\hat{\beta}_{\text{MCO}}|\mathbf{X}\right) = \boldsymbol{\beta} + \mathbb{E}\left(\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\boldsymbol{\epsilon}|\mathbf{X}\right) = \boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\,\mathbb{E}\left(\boldsymbol{\epsilon}|\mathbf{X}\right) = \boldsymbol{\beta}, \\ & \mathbb{E}\left(\hat{\beta}_{\text{MCO}}\right) = \mathbb{E}_{\mathbf{x}}\left(\mathbb{E}\left(\hat{\boldsymbol{\beta}}_{\text{MCO}}|\mathbf{X}\right)\right) = \mathbb{E}_{\mathbf{x}}\left(\boldsymbol{\beta}\right) = \boldsymbol{\beta}. \end{split}$$

Aussi,

$$\begin{aligned} & \operatorname{plim}\left(\hat{\boldsymbol{\beta}}_{\text{MCO}}\right) = \boldsymbol{\beta} + \operatorname{plim}\left(\left(\frac{\mathbf{X}'\mathbf{X}}{n}\right)^{-1}\frac{\mathbf{X}'\boldsymbol{\epsilon}}{n}\right), \\ & \operatorname{plim}\left(\hat{\boldsymbol{\beta}}_{\text{MCO}}\right) = \boldsymbol{\beta} + \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{X}}{n}\right)^{-1}\operatorname{plim}\left(\frac{\mathbf{X}'\boldsymbol{\epsilon}}{n}\right). \end{aligned}$$

On suppose que $\operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{X}}{n}\right) = \mathbf{Q}_{\mathbf{x}\mathbf{x}}$ et par la loi des grands nombres (LGN), $\operatorname{plim}\left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{n}\right) = \mathbb{E}\left(\varepsilon_i\mathbf{x}_i\right) = 0$. Donc, $\operatorname{plim}\left(\hat{\boldsymbol{\beta}}_{\text{MCO}}\right) = \boldsymbol{\beta} + \mathbf{Q}_{\mathbf{x}\mathbf{x}}^{-1} \times 0,$ $\operatorname{plim}\left(\hat{\boldsymbol{\beta}}_{\text{MCO}}\right) = \boldsymbol{\beta}.$

M2 : Panel-IV

• Projection de y dans l'espace de x en cas d'exogénéité.

• L'estimateur des MCO est convergent.

M2 : Panel-IV IV - 4/34

• Projection de y dans l'espace de x en cas d'endogénéité.

• L'estimateur des MCO n'est pas convergent.

M2 : Panel-IV

Endogénéité

- L'hypothèse d'exogénéité entre x_i et ε_i n'est pas souvent vérifiée.
- Exemples :
- \bullet Omission de variables pertinentes : (demande d'essence, E)
 - Vrai modèle : $\log(E) = \beta_1 + \beta_2 \log(prix) + \beta_3 \log(revenu) + \varepsilon$
 - Spécification : $\log(E) = \beta_1 + \beta_2 \log(prix) + \omega$
 - Le terme d'erreur $\omega = \beta_3 \log(revenu) + \varepsilon$ peut être corrélé au prix.
- 2 Erreur de mesure ou variable proxy
 - Vrai modèle : $y = \beta_1 + \beta_2 x + \varepsilon$
 - Mais en pratique x est mesuré par $\tilde{x} = x + u$
 - Spécification : $y = \beta_1 + \beta_2 \tilde{x} + \omega$
 - Le terme d'erreur $\omega = -\beta_2 u + \varepsilon$ peut être corrélé à \tilde{x} .

IV - 6/34 M2: Panel-IV

3 Simultanéité (Offre et Demande)

$$\begin{cases} \text{Offre} \ : & Y_O = \beta_1 + \beta_2 Prix + \beta_3 Prix_intrant + \varepsilon_O, \\ \text{Demande} \ : & Y_D = \alpha_1 + \alpha_2 Prix + \alpha_3 Revenu + \varepsilon_D, \\ \text{Equilibre} \ : & Y_O = Y_D \end{cases}$$

A partir de l'équilibre,

$$Prix = (\alpha_1 - \beta_1 + \alpha_3 Revenu - \beta_3 Prix_intrant + \varepsilon_D - \varepsilon_O)/(\beta_2 - \alpha_2)$$
. Le prix est corrélé à ε_D .

- 4 Effet de traitement endogène
 - o $Revenu = \mathbf{x}'\boldsymbol{\beta} + \gamma Education + \varepsilon$ Facteurs inobservés (par l'économètre) qui expliquent le revenu et le niveau d'éducation. L'éducation est potentiellement corrélée à ε .

M2 : Panel-IV IV - 7/34

- Endogénéité : $\mathbb{E}(\varepsilon_i|\mathbf{x}_i) \neq 0$.
- Biais de l'estimateur des MCO.

$$\begin{split} &\mathbb{E}\left(\hat{\beta}_{\text{\tiny MCO}}|\mathbf{X}\right) = \boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\underbrace{\mathbb{E}\left(\boldsymbol{\varepsilon}|\mathbf{X}\right)}_{\neq \mathbf{0}},\\ &\mathbb{E}\left(\hat{\beta}_{\text{\tiny MCO}}|\mathbf{X}\right) \neq \boldsymbol{\beta} \quad \text{en général}. \end{split}$$

• Non convergence de l'estimateur des MCO.

$$\begin{split} & \operatorname{plim}\left(\hat{\beta}_{\text{\tiny MCO}}\right) = \boldsymbol{\beta} + \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{X}}{n}\right)^{-1} \operatorname{plim}\left(\frac{\mathbf{X}'\boldsymbol{\epsilon}}{n}\right). \\ & \operatorname{plim}\left(\hat{\beta}_{\text{\tiny MCO}}\right) = \boldsymbol{\beta} + \mathbf{Q}_{\mathbf{x}\mathbf{x}}^{-1}\underbrace{\mathbb{E}\left(\varepsilon_{i}\mathbf{x}_{i}\right)}_{\neq 0}, \\ & \operatorname{plim}\left(\hat{\beta}_{\text{\tiny MCO}}\right) \neq \boldsymbol{\beta} \quad \text{en général}. \end{split}$$

Application avec R : script non_convergence.mco.R

M2 : Panel-IV

Variables Instrumentales

- Modèle linéaire simple : $y = \beta_1 + \beta_2 x + \varepsilon$, avec endogénéité $\mathbb{E}(\varepsilon|x) \neq 0$.
- Instrument (ou Variable Instrumentale) pour x est une variable z ayant la propriété suivante : variations de z sont associées à des variations de x mais n'entrainent pas à une variation de y (hormis la voie indirecte via x).

- Autrement dit, z est un instrument de x dans le modèle $y=\beta_1+\beta_2x+\varepsilon,$ si :
 - **1** z n'est pas corrélé à ε ,
 - 2 z est corrélé à x.

M2 : Panel-IV IV - 9/34

• Exemple 1 : Simultanéité (Offre et Demande)

$$\begin{cases} \text{Offre} \ : & Y_O = \beta_1 + \beta_2 Prix + \beta_3 Prix_intrant + \varepsilon_O, \\ \text{Demande} : & Y_D = \alpha_1 + \alpha_2 Prix + \alpha_3 Revenu + \varepsilon_D, \\ \text{Equilibre} : & Y_O = Y_D \end{cases}$$

A partir de l'équilibre,

 $Prix = (\alpha_1 - \beta_1 + \alpha_3 Revenu - \beta_3 Prix_intrant + \varepsilon_D - \varepsilon_O)/(\beta_2 - \alpha_2)$. Le prix est une variable endogène dans l'Equation de demande. Un instrument possible du prix est le prix des intrants.

M2 : Panel-IV IV - 10/34

- Exemple 2 : Impact de l'éducation sur le salaire
- L'éducation est endogène.
- Instrument 1 : distance entre l'adresse de résidence et l'université ou le collège [voir Card, David. (1993). *Using geographic variation in college proximity to estimate the return to schooling.*].
 - Cet instrument requiert la prise en compte de régresseurs supplémentaires tels que des indicatrices de zones non métropolitaines.
- Instrument 2: Mois de naissance [voir Angrist, Joshua D., et Alan B.
 Keueger. (1991). Does compulsory school attendance affect schooling and earnings?].

Cet instrument est souvent critiqué dans la littérature [voir Bound, Jaeger, et Baker. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak.].

M2 : Panel-IV IV - 11/34

Hypothèses

Hypothèses de la méthode des MCO

- H.1. Linéarité : $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$.
- H.2. Indépendance linéaire des variables explicatives : $\operatorname{rang}(\mathbf{X}) = K$.
- H.3. Exogénéité des variables explicatives : $\mathbb{E}(\varepsilon_i|\mathbf{x}_i) = 0 \implies \varepsilon_i \perp \mathbf{x}_i$.
- H.4. Homoscédasticité et non autocorrélation des erreurs.
- H.5. Normalité des erreurs : chaque ε_i suit une distribution normale.
- H.6. $(\varepsilon_1, \mathbf{x}_1), \ldots, (\varepsilon_n, \mathbf{x}_n)$ sont i.i.d.
- Dans ce chapitre, l'hypothèse H.3. n'est pas vérifiée : $\mathbb{E}(\varepsilon_i|\mathbf{x}_i) \neq 0$.
- Existence d'un ensemble de variables additionnelles, Z
 - o exogènes par rapport à ε : $\mathbb{E}(\varepsilon|\mathbf{z}) = 0$;
 - o fortement corrélées avec X.
- La matrice ${\bf Z}$ de dimension $n \times L$ est appelée matrice des variables instrumentales.

M2 : Panel-IV IV - 12/34

Hypothèses additionnelles

- H.7. $(\varepsilon_1, \mathbf{x}_1, \mathbf{z}_1), \ldots, (\varepsilon_n, \mathbf{x}_n, \mathbf{z}_n)$ sont i.i.d.
- H.8. $\mathbb{E}(\varepsilon_i|\mathbf{z}_i)=0$ pour tout i (exogénéité de \mathbf{Z} par rapport à ε).
 - H.8. implique que $\mathbb{E}(\mathbf{z}_i \varepsilon_i) = \mathbb{E}_{\mathbf{z}} \left(\mathbb{E}(\mathbf{z}_i \varepsilon_i | \mathbf{z}_i) \right) = \mathbb{E}_{\mathbf{z}} \left(\mathbf{z}_i \mathbb{E}(\varepsilon_i | \mathbf{z}_i) \right) = 0.$
 - Par la LGN, $\operatorname{plim} \frac{\mathbf{Z}' \boldsymbol{\varepsilon}}{n} = \mathbb{E}(\mathbf{z}_i \boldsymbol{\varepsilon}_i) = \mathbf{0}.$
- H.9. plim $\frac{\mathbf{Z'Z}}{n} = \mathbf{Q_{zz}}$ est une matrice finie et définie positive.
- $\text{H.10. plim} \, \frac{\mathbf{Z}'\mathbf{X}}{n} = \mathbf{Q_{zx}} \, \, \text{est une matrice finie non nulle} \, \, L \times K \, \, \text{de rang} \, \, K.$
 - H.10. requiert que ${\bf Z}$ soit corrélé à ${\bf X}$ et que $L \geq K$. Modèle non identifié si L < K, juste identifié si L = K et sur identifié si L > K
 - Seuls des régresseurs du modèle initial ne peuvent pas constituer Z.
 - Naturellement, toutes les variables explicatives non corrélées à ε sont incluses dans Z. Ces variables sont par la suite complétées par des variables additionnelles (autres que des régresseurs) comme instruments des variables explicatives endogènes (exclues de Z).

M2 : Panel-IV IV - 13/34

Méthode des variables instrumentales (IV)

• S'utilise seulement lorsque L=K.

$$\begin{aligned} &\operatorname{plim}\left(\frac{\mathbf{Z}'\boldsymbol{\varepsilon}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{Z}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{n}\right) = \mathbf{0} \\ &\operatorname{plim}\left(\frac{\mathbf{Z}'\boldsymbol{\varepsilon}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{Z}'\mathbf{y}}{n}\right) - \operatorname{plim}\left(\frac{\mathbf{Z}'\mathbf{X}}{n}\right)\boldsymbol{\beta} = \mathbf{0} \\ &\operatorname{plim}\left(\frac{\mathbf{Z}'\mathbf{X}}{n}\right)\boldsymbol{\beta} = \operatorname{plim}\left(\frac{\mathbf{Z}'\mathbf{y}}{n}\right) \end{aligned}$$

Si L = K, alors $\mathbf{Z}'\mathbf{X}$ est une matrice carrée et $\operatorname{plim}\left(\frac{\mathbf{Z}'\mathbf{X}}{n}\right)$ est inversible. Donc,

$$\beta = \left[\text{plim} \left(\frac{\mathbf{Z}' \mathbf{X}}{n} \right) \right]^{-1} \text{plim} \left(\frac{\mathbf{Z}' \mathbf{y}}{n} \right)$$

• L'estimateur de variable instrumentale est alors (si L=K).

$$\hat{\boldsymbol{\beta}}_{\text{IV}} = (\mathbf{Z}'\mathbf{X})^{-1} \mathbf{Z}'\mathbf{y} \tag{1}$$

M2 : Panel-IV IV - 14/34

- Par construction, $\hat{\beta}_{\text{IV}}$ est convergent : $\text{plim}\left(\hat{\beta}_{\text{IV}}\right) = \beta$.
- ullet En remplaçant $\mathbf{y} = \mathbf{X}oldsymbol{eta} + \mathbf{\epsilon}$ dans l'Eq. (1), on a,

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{IV}} &= \left(\mathbf{Z}'\mathbf{X}\right)^{-1}\mathbf{Z}'\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{Z}'\mathbf{X}\right)^{-1}\mathbf{Z}'\boldsymbol{\epsilon} = \boldsymbol{\beta} + \left(\mathbf{Z}'\mathbf{X}\right)^{-1}\mathbf{Z}'\boldsymbol{\epsilon}, \\ \hat{\boldsymbol{\beta}}_{\text{IV}} &= \boldsymbol{\beta} + \left(\frac{\mathbf{Z}'\mathbf{X}}{n}\right)^{-1}\frac{\mathbf{Z}'\boldsymbol{\epsilon}}{n}. \end{split}$$

• En grand échantillon, $\frac{\mathbf{Z}'\boldsymbol{\varepsilon}}{n} \stackrel{a}{\sim} \mathcal{N}\left(\mathbf{0}, \frac{\sigma^2}{n}\mathbf{Q}_{\mathbf{z}\mathbf{z}}\right)$. Donc,

$$\hat{\boldsymbol{\beta}}_{\mathsf{IV}} \stackrel{a}{\sim} \mathcal{N}\left(\boldsymbol{\beta}, \frac{\sigma^2}{n} \mathbf{Q}_{\mathbf{z}\mathbf{x}}^{-1} \mathbf{Q}_{\mathbf{z}\mathbf{z}} \mathbf{Q}_{\mathbf{z}\mathbf{x}}^{-1}\right) \tag{2}$$

• Un estimateur convergent de σ^2 est,

$$\hat{\sigma}_{\text{IV}}^2 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}_{\text{IV}} \right)^2. \tag{3}$$

• En pratique, la variance asymptotique de $\hat{\beta}_{\text{IV}}$ est estimée par,

Est. Asy.
$$\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{\text{IV}}\right) = \hat{\sigma}_{\text{IV}}^{2}(\mathbf{Z}'\mathbf{X})^{-1}(\mathbf{Z}'\mathbf{Z})(\mathbf{X}'\mathbf{Z})^{-1}.$$
 (4)

M2 : Panel-IV IV - 15/34

Méthode des doubles moindres carrés

- Modèle : $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- Méthode plus générale $(L \ge K)$.
- Si L > K, alors $\mathbf{X}'\mathbf{Z}$ n'est plus une matrice carrée et est donc non inversible.
- Doubles moindres carrés : méthode en deux étapes.
 - Etape 1 : Projeter chaque terme du modèle dans l'espace formé par Z et on obtient.

$$\mathbf{P}_{\mathbf{z}}\mathbf{y} = \mathbf{P}_{\mathbf{z}}\mathbf{X}\boldsymbol{\beta} + \mathbf{P}_{\mathbf{z}}\boldsymbol{\varepsilon}. \tag{5}$$

où $\mathbf{P}_{\mathbf{z}} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$.

Autrement dit, on régresse \mathbf{y} et chaque \mathbf{X} sur \mathbf{Z} et on calcule la variable dépendante prédite.

• Etape 2 : Appliquer la méthode des MCO à l'Eq. (5).

$$\hat{\boldsymbol{\beta}}_{2SLS} = \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} \right]^{-1} \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{y} \right]$$

$$\hat{\boldsymbol{\beta}}_{2SLS} = \left[\mathbf{X}' \mathbf{P}_{\mathbf{z}} \mathbf{X} \right]^{-1} \left[\mathbf{X}' \mathbf{P}_{\mathbf{z}} \mathbf{y} \right]$$
(6)

M2 : Panel-IV IV - 16/34

- $\bullet \ \mathsf{Mod\`{e}le} \ \mathsf{projet\'e} : \mathbf{P_zy} = \mathbf{P_zX}\boldsymbol{\beta} + \mathbf{P_z}\boldsymbol{\epsilon}.$
- Intuition : Nouvelle variable explicative $\tilde{\mathbf{X}} = \mathbf{P_z} \mathbf{X}$ exogène par rapport au nouveau terme d'erreur $\tilde{\boldsymbol{\epsilon}} = \mathbf{P_z} \boldsymbol{\epsilon}$. En effet,

$$\begin{aligned} &\operatorname{plim}\left(\frac{\tilde{\mathbf{X}}'\tilde{\boldsymbol{\epsilon}}}{n}\right) = \operatorname{plim}\left(\frac{(\mathbf{P_z}\mathbf{X})'\mathbf{P_z}\boldsymbol{\epsilon}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{P_z'}\mathbf{P_z}\boldsymbol{\epsilon}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\epsilon}}{n}\right) \\ &\operatorname{plim}\left(\frac{\tilde{\mathbf{X}}'\tilde{\boldsymbol{\epsilon}}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\epsilon}}{n}\right), \\ &\operatorname{plim}\left(\frac{\tilde{\mathbf{X}}'\tilde{\boldsymbol{\epsilon}}}{n}\right) = \operatorname{plim}\left[\left(\frac{\mathbf{X}'\mathbf{Z}}{n}\right)\left(\frac{\mathbf{Z}'\mathbf{Z}}{n}\right)^{-1}\left(\frac{\mathbf{Z}'\boldsymbol{\epsilon}}{n}\right)\right] \\ &\operatorname{plim}\left(\frac{\tilde{\mathbf{X}}'\tilde{\boldsymbol{\epsilon}}}{n}\right) = \operatorname{plim}\left(\frac{\mathbf{X}'\mathbf{Z}}{n}\right)\operatorname{plim}\left[\left(\frac{\mathbf{Z}'\mathbf{Z}}{n}\right)^{-1}\right]\operatorname{plim}\left(\frac{\mathbf{Z}'\boldsymbol{\epsilon}}{n}\right), \\ &\operatorname{plim}\left(\frac{\tilde{\mathbf{X}}'\tilde{\boldsymbol{\epsilon}}}{n}\right) = \mathbf{0}. \end{aligned}$$

• Donc $\hat{\beta}_{2SLS}$ est convergent.

M2 : Panel-IV IV - 17/34

$$\bullet \ \hat{\boldsymbol{\beta}}_{\text{2SLS}} = \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} \right]^{-1} \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{y} \right]$$

• En remplaçant y par $X\beta + \varepsilon$, on a,

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{2SLS}} &= \boldsymbol{\beta} + \left[\mathbf{X}'\mathbf{Z} \left(\mathbf{Z}'\mathbf{Z} \right)^{-1} \mathbf{Z}'\mathbf{X} \right]^{-1} \left[\mathbf{X}'\mathbf{Z} \left(\mathbf{Z}'\mathbf{Z} \right)^{-1} \mathbf{Z}'\boldsymbol{\varepsilon} \right], \\ \hat{\boldsymbol{\beta}}_{\text{2SLS}} &= \boldsymbol{\beta} + \left[\left(\frac{\mathbf{X}'\mathbf{Z}}{n} \right) \left(\frac{\mathbf{Z}'\mathbf{Z}}{n} \right)^{-1} \left(\frac{\mathbf{Z}'\mathbf{X}}{n} \right) \right]^{-1} \left(\frac{\mathbf{X}'\mathbf{Z}}{n} \right) \left(\frac{\mathbf{Z}'\mathbf{Z}}{n} \right)^{-1} \left(\frac{\mathbf{Z}'\boldsymbol{\varepsilon}}{n} \right). \end{split}$$

• En grand échantillon, $\frac{\mathbf{Z}' \boldsymbol{\varepsilon}}{n} \stackrel{a}{\sim} \mathcal{N}\left(\mathbf{0}, \frac{\sigma^2}{n} \mathbf{Q}_{\mathbf{z}\mathbf{z}}\right)$. Donc,

$$\hat{\boldsymbol{\beta}}_{2SLS} \stackrel{a}{\sim} \mathcal{N}\left(\boldsymbol{\beta}, \frac{\sigma^2}{n} \left(\mathbf{Q}_{\mathbf{z}\mathbf{x}}' \mathbf{Q}_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{Q}_{\mathbf{z}\mathbf{x}}\right)^{-1}\right)$$
(7)

• Un estimateur convergent de σ^2 est,

$$\hat{\sigma}_{2SLS}^2 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}_{2SLS} \right)^2. \tag{8}$$

• En pratique, la variance asymptotique de $\hat{\beta}_{2SLS}$ est estimée par,

Est. Asy.
$$\mathbb{V}$$
ar $(\hat{\beta}_{2SLS}) = \hat{\sigma}_{2SLS}^2(\mathbf{X}'\mathbf{P_z}\mathbf{X})^{-1}$. (9)

M2 : Panel-IV IV - 18/34

Tests de spécification

Tests de Hausman et de Wu

- Une variable peut être considérée à tort comme endogène.
- Avec un instrument valide pour cette variable, $\hat{\beta}_{\text{IV}}$ ou $\hat{\beta}_{\text{2SLS}}$ est pourtant convergent.
- Puisque la variable n'est pas endogène, $\hat{\beta}_{MCO}$ est aussi convergent. Mieux encore, $\hat{\beta}_{MCO}$ est BLUE (variance plus petite que celles de $\hat{\beta}_{IV}$ et $\hat{\beta}_{2SLS}$).
- Important de tester si la variable est effectivement endogène (hypothèse alternative) ou non (hypothèse nulle).
- Si le test ne rejette pas l'hypothèse nulle, il est alors préférable de garder $\hat{\beta}_{\text{MCO}}$ qui est plus précis que $\hat{\beta}_{\text{IV}}$ et $\hat{\beta}_{\text{2SLS}}$.
- Deux tests couramment utilisés : test de Hausman et test de Wu.

M2 : Panel-IV IV - 19/34

 Hypothèse nulle : X est exogène ; Hypothèse alternative : X est endogène ;

• Test de Hausman

- **Intuition** : Sous l'hypothèse nulle, $\hat{\beta}_{2SLS}$ (ou $\hat{\beta}_{IV}$), ainsi que $\hat{\beta}_{MCO}$ sont convergents et devraient être très proches. Le test compare donc $\mathbf{d} = \hat{\beta}_{IV} \hat{\beta}_{MCO}$ à $\mathbf{0}$. Si \mathbf{d} est trop éloigné de $\mathbf{0}$, on rejette l'hypothèse nulle. Dans le cas contraire, on ne la rejette pas.
- Statistique du test :

$$H = \mathbf{d}' \left\{ \mathsf{Est.Asy.} \, \mathbb{V}\mathbf{ar} \left(\mathbf{d} \right) \right\}^{-1} \mathbf{d} \tag{10}$$

- Hausman montre que,

Est. Asy.
$$\mathbb{V}$$
ar $(\mathbf{d}) = \hat{\sigma}_{\text{MCO}}^{2} \left((\mathbf{X}' \mathbf{P}_{\mathbf{z}} \mathbf{X})^{-1} - (\mathbf{X}' \mathbf{X})^{-1} \right)$. (11)

M2 : Panel-IV IV - 20/34

- La statistique d'Hausman $H \sim \chi^2(K)$ si ${\bf X}$ et ${\bf Z}$ n'ont pas de variables communes, ce qui est rarement le cas (généralement le vecteur de "uns" associé à l'intercept est inclus dans ${\bf X}$ et ${\bf Z}$).
- En présence de variables communes dans X et Z, le rang de la matrice à inverser, Est.Asy. Var (d), est K* < K, où K* est le nombre de variables explicatives endogènes, et on a besoin de recourir à un inverse généralisé.
- La statistique H suit alors une $\chi^2(K^*)$ sous l'hypothèse nulle.

M2 : Panel-IV IV - 21/34

• Test de Wu

- Soit X^* les K^* variables explicatives dans X exclues de Z.
- On estime par MCO le modèle,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \hat{\mathbf{X}}^*\boldsymbol{\gamma} + \boldsymbol{\varepsilon}^*, \tag{12}$$

où \hat{X}^* est la variation dépendante prédite lorsque X^* est régressé sur Z; i.e., $\hat{X}^* = P_z X^*$.

- Tester l'endogénéité revient à tester si $\gamma=0$ (test classique de nullité de coefficients). Si on rejette l'hypothèse $\gamma=0$, alors \mathbf{X}^* est endogène.

Tests de spécification

Test de suridentification

- Méthode de IV est développée autour des conditions d'orthogonalité : $\mathbb{E}\left(\mathbf{z}_{i}\varepsilon_{i}\right)=0.$
- \bullet Contrepartie empirique est l'équation de moments $\frac{1}{n}\sum_{i=1}^n\mathbf{z}_i\varepsilon_i=0.$
- Si L = K, alors l'équation de moments est un système de K équations à K inconnues et la solution est $\hat{\beta}_{\text{IV}} = (\mathbf{Z}'\mathbf{X})^{-1} \mathbf{Z}'\mathbf{y}$.
- Lorsque L>K, le système n'a pas de solution. Mais le modèle est estimé par projection dans l'espace des Z. Rien ne garantit que la solution $\hat{\beta}_{2\text{SLS}}$ vérifie toujours l'équation de moments.
- Le test de suridentification consiste donc à vérifier si $\frac{1}{n}\sum_{i=1}^n \mathbf{z}_i \varepsilon_i = 0$ dans le cas où L > H. L'hypothèse nulle est $\frac{1}{n}\sum_{i=1}^n \mathbf{z}_i \varepsilon_i = 0$.

M2 : Panel-IV IV - 23/34

• Soit
$$\bar{\mathbf{m}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \hat{\varepsilon}_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \left(y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}_{2SLS} \right).$$

• La statistique du test est,

$$\bar{S} = \bar{\mathbf{m}}' \, \mathbb{V}\mathbf{ar} \left(\bar{\mathbf{m}}\right)^{-1} \bar{\mathbf{m}},\tag{13}$$

- Sous l'hypothèse nulle $\bar{S} \sim \chi^2(L-K)$.
- Sous l'hypothèse nulle,

$$\mathbb{V}\mathbf{ar}\left(\bar{\mathbf{m}}\right) = \frac{\hat{\sigma}^2}{n}\mathbf{Z}'\mathbf{Z}.$$

En pratique cette variance peut être remplacée par un estimateur convergent,

Est.
$$\mathbb{V}\mathbf{ar}\left(\bar{\mathbf{m}}\right) = \frac{\hat{\sigma}_{2SLS}^2}{n}\mathbf{Z}'\mathbf{Z}.$$

M2 : Panel-IV IV - 24/34

Instruments faibles

- Deux conditions d'un instrument :
 - **1** exogènes par rapport à ε : $\mathbb{E}(\varepsilon|\mathbf{z}) = 0$;
 - fortement corrélées avec X.
- Les chercheurs se sont plus focalisés sur l'exogénéité (condition 1). Une littérature de plus en plus abondante soutient qu'une plus grande attention doit être également accordée à la corrélation entre l'instrument et la variable endogène.
- L'exogénéité garantit la convergence de l'estimateur. Toutefois, lorsque la corrélation entre ${\bf Z}$ et ${\bf X}$ est faible, i.e., quand $(1/n){\bf Z}'{\bf X}\approx 0$, un certain nombre de problèmes ont été mis en lumière :
 - \circ estimateur imprécis car $\mathbb{V}\mathbf{ar}\left(\hat{eta}_{\scriptscriptstyle 2SLS}
 ight)$ est plus grande ;
 - o estimateur fortement biaisé vers celui des MCO.

M2 : Panel-IV IV - 25/34

- Tester la faiblesse/force des instruments.
- ullet Dans le cas d'une seule variable x^* endogène instrumentée par \mathbf{z}^* , on estime le modèle,

$$x_i^* = \mathbf{z}_i^{*\prime} \boldsymbol{\pi} + v_i. \tag{14}$$

Pour que l'instrument soit fort, la statistique de Fisher du modèle doit être supérieure à 10.

 Cette méthode est seulement valide dans le cas d'une seule variable explicative endogène.

- En présence de plusieurs variables explicatives endogènes, Godfrey (1999) propose une méthode alternative.
- Pour chaque variable explicative endogène, on calcule,

$$R_k^2 = \frac{\left[\left(\mathbf{X}' \mathbf{X} \right)^{-1} \right]_{kk}}{\left[\left(\mathbf{X}' \mathbf{P_z} \mathbf{X} \right)^{-1} \right]_{kk}},\tag{15}$$

où l'indice kk signifie le $k^{\text{ème}}$ élément de la diagonale de la matrice.

• R_k^2 et il s'interprète comme un R^2 usuel. Lorsqu'il est proche de 1 la $k^{\text{ème}}$ variable explicative endogène est bien instrumentée (instruments forts).

Méthode des moments généralisée (GMM)

- Conditions de moments de la population conduisent à des contreparties empiriques qui peuvent être utilisées pour estimer les paramètres.
- Exemple :
 - Conditions de moments : $\mathbb{E}(\mathbf{z}_i \varepsilon_i) = \mathbb{E}(\underbrace{\mathbf{z}_i(y_i \mathbf{x}_i'\boldsymbol{\beta})}) = 0.$
 - o Contrepartie Empirique : $\frac{1}{n}\sum_{i=1}^{n}\mathbf{z}_{i}(y_{i}-\mathbf{x}_{i}'\boldsymbol{\beta})=0$ qui implique $\hat{\boldsymbol{\beta}}_{\text{IV}}=(\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{v}$, si L=K.
- L'estimateur GMM généralise celui des MCO, IV, 2SLS et bien d'autres.
- Basé sur la contrepartie empirique de conditions de moments.
- Les conditions de moments nécessitent une fonction de moments.

M2 : Panel-IV IV - 28/34

• Fonction de moments : généralement notée $g(\mathbf{z}_i, \theta)$, une fonction de dimension $L \geq K$, où $K = \dim(\theta)$ et θ est le paramètre à estimer, qui satisfait la condition,

$$\mathbb{E}\left(\mathbf{g}(\mathbf{z}_i, \boldsymbol{\theta})\right) = \mathbf{0}.\tag{16}$$

La contrepartie empirique implique,

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{z}_{i},\boldsymbol{\theta})=\mathbf{0}.$$
(17)

• Lorsque K=L, l'Eq. (17) admet généralement une unique solution et on parle simplement de méthode des moments (MM).

Exemples de fonctions de moments

Modèle linéaire-en-moyennes avec exogénéité

- Si x est exogène, alors

$$\mathbf{g}(\mathbf{z}_i, \mathbf{\theta}) = \mathbf{g}(\mathbf{x}_i, \mathbf{\theta}) = \mathbf{x}_i(y_i - \mathbf{x}_i'\boldsymbol{\beta})$$
 (18)

satisfait les conditions de moments.

- En effet, $\mathbb{E}(\mathbf{x}_i(y_i \mathbf{x}_i'\boldsymbol{\beta})) = \mathbb{E}(\mathbf{x}_i\varepsilon_i) = 0.$
- Avec la contrepartie empirique $\frac{1}{n}\sum_{i=1}^n\mathbf{g}(\mathbf{z}_i,\boldsymbol{\theta})=\frac{1}{n}\sum_{i=1}^n\mathbf{x}_i(y_i-\mathbf{x}_i'\boldsymbol{\beta})=\mathbf{0}$, on peut montrer que l'estimateur de MM est $\hat{\boldsymbol{\beta}}_{\text{MM}}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

- L'estimateur des MCO est donc un estimateur de MM.

M2 : Panel-IV IV - 30/34

Modèle linéaire-en-moyennes avec endogénéité

 La condition d'orthogonalité des instruments peut être utilisée pour définir la fonction de moments :

$$\mathbf{g}(\mathbf{z}_i, \boldsymbol{\theta}) = \mathbf{z}_i(y_i - \mathbf{x}_i'\boldsymbol{\beta}). \tag{19}$$

- En effet, $\mathbb{E}(\mathbf{z}_i(y_i \mathbf{x}_i'\boldsymbol{\beta})) = \mathbb{E}(\mathbf{z}_i\varepsilon_i) = 0.$
- Avec la contrepartie empirique $\frac{1}{n}\sum_{i=1}^n\mathbf{g}(\mathbf{z}_i,\mathbf{\theta})=\frac{1}{n}\sum_{i=1}^n\mathbf{z}_i(y_i-\mathbf{x}_i'\boldsymbol{\beta})=\mathbf{0}$, on peut montrer que si L=K, l'estimateur de MM est $\hat{\boldsymbol{\beta}}_{\mathrm{MM}}=(\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}$.
- L'estimateur de variables instrumentales est donc un estimateur de MM.

M2 : Panel-IV IV - 31/34

Modèle non linéaire

- Modèle : $y_i = h(\mathbf{x}_i, \boldsymbol{\theta}) + \varepsilon_i$, où h est une fonction non linéaire.
- Le terme d'erreur est $\varepsilon_i = y_i h(\mathbf{x}_i, \boldsymbol{\theta})$. La condition d'orthogonalité des instruments peut être utilisée pour définir la fonction de moments.

$$\mathbf{g}(\mathbf{z}_i, \mathbf{\theta}) = \mathbf{m}_i \left(y_i - h(\mathbf{x}_i, \mathbf{\theta}) \right). \tag{20}$$

où \mathbf{m}_i peut contenir des instruments ou des variables explicatives exogènes. \mathbf{m}_i peut être aussi une fonction d'instrument et de variables explicatives exogènes.

- Il est important d'inclure suffisamment d'instruments et de variables explicatives exogènes dans \mathbf{m}_i quitte à ce que $\dim(\mathbf{m}_i) = \dim(\boldsymbol{\theta})$

M2 : Panel-IV IV - 32/34

Estimateur GMM

• Même si L=K, ce n'est pas toujours simple de trouver un θ qui satisfait la contrepartie empirique des conditions de moments (surtout dans le cas d'un modèle non linéaire). L'estimateur de méthode de moments de θ , notée θ_{MM} , est définie comme étant la valeur de θ qui minimise,

$$\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{z}_{i},\boldsymbol{\theta})\right]'\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{z}_{i},\boldsymbol{\theta})\right].$$
 (21)

• Lorsque $L \geq K$, comme dans le cas de la méthode IV, la contrepartie empirique des conditions de moments n'admet pas de solution. On a alors recourt à l'estimateur GMM, noté $\hat{\theta}_{\text{GMM}}$, en minimisant

$$\left[\sum_{i=1}^{n} \frac{1}{n} \mathbf{g}(\mathbf{z}_{i}, \boldsymbol{\theta})\right]' \mathbf{W} \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{g}(\mathbf{z}_{i}, \boldsymbol{\theta})\right], \tag{22}$$

où W est une matrice de poids de dimension $L \times L$.

M2 : Panel-IV IV - 33/34

• Dans le cas d'un modèle linéaire avec endogénéité, $\mathbf{g}(\mathbf{z}_i, \mathbf{\theta}) = \mathbf{z}_i(y_i - \mathbf{x}_i' \boldsymbol{\beta})$, Donc,

$$\hat{\boldsymbol{\theta}}_{GMM} = \left[\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X} \right]^{-1} \left[\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{y} \right], \tag{23}$$

- Si $\mathbf{W} = \left(\frac{1}{N}\mathbf{Z}'\mathbf{Z}\right)^{-1}$, alors $\hat{\boldsymbol{\theta}}_{\text{GMM}} = \hat{\boldsymbol{\theta}}_{\text{2SLS}}$.
- L'estimateur de doubles moindres carrés est aussi un estimateur GMM.
- Il est également possible de définir W pour que l'estimateur GMM soit optimale (faible variance), noté $\hat{\theta}_{\text{OGMM}}$. Dans ce cas, l'estimation se fait en deux étapes.
 - \circ Etape 1 : On calcule $\hat{oldsymbol{ heta}}_{ extsf{GMM}}$ avec $\mathbf{W}=\mathbf{I}.$
 - $\circ \ \ \mathsf{Etape} \ 2 : \mathsf{On} \ \mathsf{calcule} \ \mathsf{ensuite} \ \hat{\boldsymbol{\theta}}_{\mathsf{OGMM}} \ \mathsf{avec} \ \mathbf{W} = \frac{1}{n} \sum_{i=1}^n (y_i \mathbf{x}_i' \hat{\boldsymbol{\theta}}_{\mathsf{GMM}}) \mathbf{z}_i \mathbf{z}_i'.$
- La variance de l'estimateur OGMM est robuste à l'hetéroscédasticité.

Application avec R : script iv-gmm.R