Contents

Homotopy theo	11	
Knot Theory	13	
4-manifolds	15	
Bibliography	17	

Introduction

Homotopy theory

CW-complexes

Definition o.o.1. A map $f: X \to Y$ is called a *weak homotopy equivalence* if it induces isomorphisms

$$\pi_n(X, x_0) \to \pi_n(Y, f(x_0))$$

for all $n \ge 0$ and all choices of basepoints x_0 in X.

Theorem o.o.2 (Whitehead's Theorem). *A weak homotopy equivalence between CW-complexes is a homotopy equivalence.*

Proposition o.o.3 (Geometric interpretation of *n*-connectedness). *If* (X, A) *is an n-connected CW-pair, then there exists a CW-pair* $(Z, A) \sim_{\operatorname{rel} A} (X, A)$ *such that all cells of* $Z \setminus A$ *have dimension greater than n.*

Homology

Definition o.o.4 (Acyclic). A space X is called *acyclic* if $\widetilde{H}_i(X) = 0$ for all i, i.e. if its reduced homology vanishes.

Example o.o.5. Removing a point from a homology sphere yields an acyclic space. This example for the Poincare homology sphere is described in TODO Insert proof.

Knot Theory

Definitions

Definition o.o.6. If *K* is an oriented knot, then

- the *reverse* \overline{K} is K with the opposite orientation
- the *obverse rK* is the reflection of *K* in a plane
- the *inverse* $r\overline{K}$ is the concordance inverse of K.

Proposition o.o.7. For $K \subset \mathbb{S}^3$ we have that $K \# r \overline{K}$ is slice, even ribbon.

Alexander polynomial

Definition o.o.8. *L* oriented link with Seifert matrix *A*, then the first homology of the infinite cyclic covering of the link complement, $H_1(X_\infty; \mathbb{Z})$, has square presentation matrix $tA - A^T$.

The Alexander polynomial of L is given by

$$\Delta_L(t) \doteq \det(tA - A^T)$$

where \doteq means "up to a multiplication with a unit $\{\pm t^{\pm n}\}$ of the Laurent ring $\mathbb{Z}[t, t^{-1}]$ ".

Remark o.o.9. $\mathbb{Z}[t^{\pm 1}]$ is **not** a PID.

Invariants

Definition o.o.10. The tunnel number t(K) of a knot $K \subset \mathbb{S}^3$ is the minimal number of arcs that must be added to the knot (forming a graph with three edges at a vertex) so that its complement in \mathbb{S}^3 is a handlebody. The same definition is valid for links.

The boundary will be a minimal Heegaard splitting of the knot complement (The knot complement is a manifold with boundary, so what is the definition of a Heegard splitting in that case?).

Remark 0.0.11. Every link has a tunnel number, this can be seen by adding a "vertical" tunnel at every crossing in a link diagram. This

shows that the tunnel number of a knot is always less than or equal to the crossing number, $t(K) \le c(K)$.

Example o.o.12. • *The unknot is the only knot with tunnel number o. (Why?)*

- The trefoil knot has tunnel number 1.
- The figure eight knot has tunnel number 1.

Open questions

Open question 1. *Is the crossing number of a satellite knot bigger than that of its companion?*

4-manifolds

TODO

Bibliography

Index

acyclic, 5 Alexander polynomial, 7

homotopy equivalence weak, 5

knot

inverse, 7 obverse, 7 reverse, 7