

FCC RADIO TEST REPORT

FCC ID:2ABF6-714198WH

Product: Drone

Trade Name: N/A

Model Name: 7141-98 WH

Serial Model: N/A

Report No.: UNIA2018101819FR-01

Prepared for

Polyconcept Trading (Shanghai) Co., Ltd.

5F, Hero Bldg., 2669 Xie Tu Road, Shanghai 200030, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name: Polyco	oncept trading (Shangha	ı) Co., ∟ıa.
--------------------------	-------------------------	--------------

Address: 5F, Hero Bldg., 2669 Xie Tu Road, Shanghai 200030, China

Manufacture's Name.....: DOWELLIN GROUP LIMITED

Product description

Product name..... Drone

Trade Mark: N/A

Model and/or type reference : 7141-98 WH

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test:

Date of Issue...... Nov. 16, 2018

Test Result...... Pass

Prepared by:

Reviewer:

Sherwin Qian/Supervisor

ahn yang/Editor

Approved & Authorized Signer:

Liuze/Manager

Table of Contents	Page
1. TEST SUMMARY	5
2 . GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 Carrier Frequency of Channels	7
2.3 Operation of EUT during testing	7
2.4DESCRIPTION OF TEST SETUP	7
2.5MEASUREMENT INSTRUMENTS LIST	8
3 . CONDUCTED EMISSIONS TEST	9
3.1 Conducted Power Line Emission Limit	9
3.2 Test Setup	9
3.3 Test Procedure	9
3.4 Test Result	9
4 RADIATED EMISSION TEST	12
4.1 Radiation Limit	12
4.2 Test Setup	12
4.3 Test Procedure	13
4.4 Test Result	13
5 BAND EDGE	25
5.1 Limits	25
5.2 Test Procedure	25
5.3 Test Result	25
6 OCCUPIED BANDWIDTH MEASUREMENT	31
6.1 Test Limit	31
6.2 Test Procedure	31
6.3 Measurement Equipment Used	31
6.4 Test Result	31
7 POWER SPECTRAL DENSITYTEST	38
7.1 Test Limit	38
7.2 Test Procedure	38
7.3 Measurement Equipment Used	38
7.4 Test Result	38
8 PEAK OUTPUT POWERTEST	45
8.1 Test Limit	45
8.2 Test Procedure	45

Page 4 of 52Report No.: UNIA2018101819FR-01

Table of Contents	Page
8.3 Measurement Equipment Used	45
8.4 Test Result	45
9 OUT OF BAND EMISSIONSTEST	46
9.1 Test Limit	46
9.2 Test Procedure	46
9.3 TestSetup	46
9.4 Test Result	46
10 ANTENNA REQUIREMENT	50
11 PHOTOGRAPH OF TEST	51
11.1 Radiated Emission	51
11.2Conducted Emission	52

1. TEST SUMMARY

1.1TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
BAND EDGE	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
POWER SPECTRAL DENSITY	COMPLIANT
PEAK OUTPUT POWER	COMPLIANT
OUT OF BAND EMISSIONS	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address :2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1GENERAL DESCRIPTION OF EUT

The state of the s
Drone
N/A
7141-98 WH
N/A
N/A
2ABF6-714198WH
Cable Antenna
1dBi
802.11b/g/n20:2412~2462 MHz
802.11b/g/n20: 11CH
CCK, OFDM, DBPSK, DAPSK
N/A
DC5V from adapter with AC 120(240)V/60Hz
M/N: P12USB050200
Input: AC 100-240V, 50/60Hz, 0.3A Max
Output: DC 5V, 2 A

2.2 Carrier Frequency of Channels

5	Channel Listfor 802.11b/g/n(20MHz)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
Chamilei	(MHz)	Chamile	(MHz)	Chamilei	(MHz)	Chamile	(MHz)	
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452	- 1		

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting modefor 802.11b/g/n(20MHz)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.4DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT duringRadiation and Above1GHz Radiation testing:

EUT

Table forauxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	XinHaiShen	P12USB050200	N/A

Page 8 of 52Report No.: UNIA2018101819FR-01

2.5MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
	[-]	EMISSIONS TEST			
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9
2	AMN	ETS	3810/2	00020199	2019.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9
N.	- 4	RADIATED I	EMISSION TEST		
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29
3	PREAMP	HP	8449B	3008A00160	2019.9.9
4	PREAMP	HP	8447D	2944A07999	2019.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2019.3.14
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2019.3.14
15	RF power divider	Anritsu	K241B	992289	2019.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.9.8
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.9.8
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2019.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2019.05.10

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBμV)						
Frequency	CLA	SS A	CLASS B				
(MHz)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user'smanual. A wooden table with a height of 0.8 meters is used and is placed onthe ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4,If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

Pass

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
- 2. All modeswere tested at Low, Middle, and High channel, only the worst result of 802.11b High Channel was reported as below:

Page 10 of 52Report No.: UNIA2018101819FR-01

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	OCT. 26, 2018	Pressure:	1030hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Line		
Test Mode: The charging port of the prototype is on the battery					

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1660	39.24	21.50	9.56	48.80	31.06	65.15	55.16	-16.35	-24.10	Pass
2P	0.2420	37.28	17.29	9.66	46.94	26.95	62.02	52.03	-15.08	-25.08	Pass
3P	0.5140	29.76	9.43	9.69	39.45	19.12	56.00	46.00	-16.55	-26.88	Pass
4P	0.7500	28.12	15.52	9.73	37.85	25.25	56.00	46.00	-18.15	-20.75	Pass
5*	5.1180	31.15	30.12	9.83	40.98	39.95	60.00	50.00	-19.02	-10.05	Pass
6P	14.1860	45.05	31.25	0.28	45.33	31.53	60.00	50.00	-14.67	-18.47	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

Page 11 of 52Report No.: UNIA2018101819FR-01

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	OCT. 26, 2018	Pressure:	1030hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral		
Test Mode: The charging port of the prototype is on the battery					

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1980	45.70	36.68	9.62	55.32	46.30	63.69	53.69	-8.37	-7.39	Pass
2P	0.3220	40.09	31.20	9.69	49.78	40.89	59.65	49.66	-9.87	-8.77	Pass
3P	0.4260	33.39	25.26	9.70	43.09	34.96	57.33	47.33	-14.24	-12.37	Pass
4P	1.5700	23.37	14.05	9.78	33.15	23.83	56.00	46.00	-22.85	-22.17	Pass
5P	12.9220	42.38	27.82	0.24	42.62	28.06	60.00	50.00	-17.38	-21.94	Pass
6P	25.4300	38.01	23.97	0.67	38.68	24.64	60.00	50.00	-21.32	-25.36	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

4 RADIATED EMISSION TEST

4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

3			
Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

Note

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

Remark:

- 1. All modes of 802.11b/g/n20/n40 were test at Low, Middle, and High channel, only the worst result of 802.11bHigh Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

Below 1GHz Test Results:

Temperature:	22°C	Relative Humidity:	48%
Test Date:	Oct. 26, 2018	Pressure:	1030hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal
Test Mode:	Transmitting mode of 802.11b246	2MHz	

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Page 15 of 52Report No.: UNIA2018101819FR-01

Temperature:	22°C	Relative Humidity:	48%
Test Date:	Oct. 26, 2018	Pressure:	1030hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical
Test Mode:	Transmitting mode of 802.11b 246	62MHz	. 17

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results:

CH Low of 802.11b Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	61.42	-3.64	57.78	74	-16.22	PK
4824	50.21	-3.64	46.57	54	-7.43	AV
7236	58.12	-0.95	57.17	74	-16.83	PK
7236	46.75	-0.95	45.80	54	-8.20	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.32	-3.64	58.68	74	-15.32	PK
4824	50.79	-3.64	47.15	54	-6.85	AV
7236	58.16	-0.95	57.21	74	-16.79	PK
7236	47.52	-0.95	46.57	54	-7.43	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

CH Middle of 802.11b Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.76	-3.51	59.25	74	-14.75	PK
4874	50.96	-3.51	47.45	54	-6.55	AV
7311	58.63	-0.82	57.81	74	-16.19	PK
7311	47.23	-0.82	46.41	54	-7.59	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.56	-3.51	59.05	74	-14.95	PK
4874	50.68	-3.51	47.17	54	-6.83	AV
7311	58.75	-0.82	57.93	74	-16.07	PK
7311	47.36	-0.82	46.54	54	-7.46	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

CH High of 802.11b Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.63	-3.43	59.2	74	-14.8	PK
4924	50.35	-3.43	46.92	54	-7.08	AV
7386	58.68	-0.75	57.93	74	-16.07	PK
7386	47.35	-0.75	46.60	54	-7.40	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.68	-3.43	59.25	74	-14.75	PK
4924	50.78	-3.43	47.35	54	-6.65	AV
7386	58.69	-0.75	57.94	74	-16.06	PK
7386	47.52	-0.75	46.77	54	-7.23	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11g Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.85	-3.64	59.21	74	-14.79	PK
4824	50.58	-3.64	46.94	54	-7.06	AV
7236	58.65	-0.95	57.70	74	-16.30	PK
7236	47.32	-0.95	46.37	54	-7.63	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.85	-3.64	59.21	74	-14.79	PK
4824	50.86	-3.64	47.22	54	-6.78	AV
7236	58.36	-0.95	57.41	74	-16.59	PK
7236	47.53	-0.95	46.58	54	-7.42	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

CH Middle of 802.11g Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.87	-3.51	58.36	74	-15.64	PK
4874	49.32	-3.51	45.81	54	-8.19	AV
7311	58.36	-0.82	57.54	74	-16.46	PK
7311	47.36	-0.82	46.54	54	-7.46	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.38	-3.51	58.87	74	-15.13	PK
4874	50.21	-3.51	46.70	54	-7.30	AV
7311	58.36	-0.82	57.54	74	-16.46	PK
7311	47.24	-0.82	46.42	54	-7.58	AV

CH High of 802.11g Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
4924	62.42	-3.43	58.99	74	-15.01	PK		
4924	50.12	-3.43	46.69	54	-7.31	AV		
7386	58.36	-0.75	57.61	74	-16.39	PK		
7386	47.36	-0.75	46.61	54	-7.39	AV		

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.25	-3.43	58.82	74	-15.18	PK
4924	51.19	-3.43	47.76	54	-6.24	AV
7386	58.65	-0.75	57.90	74	-16.10	PK
7386	47.36	-0.75	46.61	54	-7.39	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11n/H20 Mode (2412MHz)

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
62.95	-3.64	59.31	74	-14.69	PK
49.78	-3.64	46.14	54	-7.86	AV
57.69	-0.95	56.74	74	-17.26	PK
47.69	-0.95	46.74	54	-7.26	AV
	(dBµV) 62.95 49.78 57.69	(dBµV) (dB) 62.95 -3.64 49.78 -3.64 57.69 -0.95	(dBμV) (dB) (dBμV/m) 62.95 -3.64 59.31 49.78 -3.64 46.14 57.69 -0.95 56.74	Result (dBμV) (dB) (dBμV/m) (dBμV/m) 62.95 -3.64 59.31 74 49.78 -3.64 46.14 54 57.69 -0.95 56.74 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 62.95 -3.64 59.31 74 -14.69 49.78 -3.64 46.14 54 -7.86 57.69 -0.95 56.74 74 -17.26

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.85	-3.64	58.21	74	-15.79	PK
4824	50.32	-3.64	46.68	54	-7.32	AV
7236	57.19	-0.95	56.24	74	-17.76	PK
7236	47.08	-0.95	46.13	54	-7.87	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

CH Middle of 802.11n/H20 Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.78	-3.51	58.27	74	-15.73	PK
4874	50.32	-3.51	46.81	54	-7.19	AV
7311	56.64	-0.82	55.82	74	-18.18	PK
7311	47.06	-0.82	46.24	54	-7.76	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.38	-3.51	58.87	74	-15.13	PK
4874	50.21	-3.51	46.70	54	-7.30	AV
7311	57.32	-0.82	56.50	74	-17.50	PK
7311	47.28	-0.82	46.46	54	-7.54	AV
- 4						

CH High of 802.11n/H20 Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.76	-3.43	59.33	74	-14.67	PK
4924	50.28	-3.43	46.85	54	-7.15	AV
7386	57.59	-0.75	56.84	74	-17.16	PK
7386	47.6	-0.75	46.85	54	-7.15	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.86	-3.43	59.43	74	-14.57	PK
4924	50.42	-3.43	46.99	54	-7.01	AV
7386	57.85	-0.75	57.10	74	-16.90	PK
7386	47.69	-0.75	46.94	54	-7.06	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5 BAND EDGE

5.1 Limits

FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and setRBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Operation Mode:802.11b Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	57.16	-5.81	51.35	74	-22.65	PK
2310	/	-5.81	1	54	/	AV
2390	63.69	-5.84	57.85	74	-16.15	PK
2390	49.56	-5.84	43.72	54	-10.28	AV
2400	65.23	-5.84	59.39	74	-14.61	PK
2400	49.89	-5.84	44.05	54	-9.95	AV
Remark: Fac	tor = Antenna Facto	or + Cable I o	oss – Pre-amplifier	. 8		1

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
56.68	-5.81	50.87	74	-23.13	PK
/	-5.81	1	54	1	AV
65.58	-5.84	59.74	74	-14.26	PK
50.29	-5.84	44.45	54	-9.55	AV
65.84	-5.84	60.00	74	-14.00	PK
49.64	-5.84	43.80	54	-10.20	AV
	(dBµV) 56.68 / 65.58 50.29 65.84	(dBµV) (dB) 56.68 -5.81 / -5.81 65.58 -5.84 50.29 -5.84 65.84 -5.84	(dBμV) (dB) (dBμV/m) 56.68 -5.81 50.87 / -5.81 / 65.58 -5.84 59.74 50.29 -5.84 44.45 65.84 -5.84 60.00	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.68 -5.81 50.87 74 / -5.81 / 54 65.58 -5.84 59.74 74 50.29 -5.84 44.45 54 65.84 -5.84 60.00 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.68 -5.81 50.87 74 -23.13 / -5.81 / 54 / 65.58 -5.84 59.74 74 -14.26 50.29 -5.84 44.45 54 -9.55 65.84 -5.84 60.00 74 -14.00

Operation Mode:802.11b Mode TX CH High (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.81	-5.65	51.16	74	-22.84	PK
2483.5	/	-5.65	/	54	/	AV
2500	55.52	-5.72	49.80	74	-24.20	PK
2500	1	-5.72	1	54	/	AV
- 6 -	A. (12.

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	56.75	-5.65	51.10	74	-22.90	PK
2483.5	/	-5.65	/	54	/	AV
2500	55.26	-5.72	49.54	74	-24.46	PK
2500	1	-5.72	/	54	/	AV

Operation Mode:802.11g Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.87	-5.81	50.06	74	-23.94	PK
2310	/	-5.81	/	54	/	AV
2390	64.86	-5.84	59.02	74	-14.98	PK
2390	47.82	-5.84	41.98	54	-12.02	AV
2400	64.62	-5.84	58.78	74	-15.22	PK
2400	50.58	-5.84	44.74	54	-9.26	AV
			4 6 00	•		•

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
55.85	-5.81	50.04	74	-23.96	PK
/	-5.81	/	54	/	AV
65.62	-5.84	59.78	74	-14.22	PK
49.21	-5.84	43.37	54	-10.63	AV
66.35	-5.84	60.51	74	-13.49	PK
50.87	-5.84	45.03	54	-8.97	AV
	(dBµV) 55.85 / 65.62 49.21 66.35	(dBμV) (dB) 55.85 -5.81 / -5.81 65.62 -5.84 49.21 -5.84 66.35 -5.84	(dBμV) (dB) (dBμV/m) 55.85 -5.81 50.04 / -5.81 / 65.62 -5.84 59.78 49.21 -5.84 43.37 66.35 -5.84 60.51	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.85 -5.81 50.04 74 / -5.81 / 54 65.62 -5.84 59.78 74 49.21 -5.84 43.37 54 66.35 -5.84 60.51 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.85 -5.81 50.04 74 -23.96 / -5.81 / 54 / 65.62 -5.84 59.78 74 -14.22 49.21 -5.84 43.37 54 -10.63 66.35 -5.84 60.51 74 -13.49

Operation Mode:802.11g Mode TX CH High (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.23	-5.65	51.58	74	-22.42	PK
2483.5	/	-5.65	/	54	/	AV
2500	55.62	-5.72	49.90	74	-24.10	PK
2500	/	-5.72	/	54	/	AV
2500	/	-5.72	1	54	/	AV

 $\label{eq:Remark: Factor + Cable Loss - Pre-amplifier.}$ Remark: Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	56.12	-5.65	50.47	74	-23.53	PK
2483.5	/	-5.65	1	54	/	AV
2500	55.63	-5.72	49.91	74	-24.09	PK
2500	1	-5.72	1	54	/	AV

Operation Mode:802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.81	-5.81	51.00	74	-23.00	PK
2310	/	-5.81	/	54	/	AV
2390	63.96	-5.84	58.12	74	-15.88	PK
2390	48.21	-5.84	42.37	54	-11.63	AV
2400	64.25	-5.84	58.41	74	-15.59	PK
2400	50.85	-5.84	45.01	54	-8.99	AV
			4 6 00	•	- A	•

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

v ortioai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.85	-5.81	51.04	74	-22.96	PK
2310	1	-5.81	/	54	/	AV
2390	65.42	-5.84	59.58	74	-14.42	PK
2390	48.69	-5.84	42.85	54	-11.15	AV
2400	66.85	-5.84	61.01	74	-12.99	PK
2400	52.21	-5.84	46.37	54	-7.63	AV

Operation Mode:802.11n/H20 Mode TX CH High (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.62	-5.65	51.97	74	-22.03	PK
2483.5	/	-5.65	/	54	/	AV
2500	56.46	-5.72	50.74	74	-23.26	PK
2500	/	-5.72	1	54	/	AV
*	tor = Antenna Facto) oss – Pre-amplifier	177	/	AV

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.62	-5.65	51.97	74	-22.03	PK
2483.5	/	-5.65	/	54	/	AV
2500	56.23	-5.72	50.51	74	-23.49	PK
2500	1	-5.72	1	54	/	AV

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Limit

FCC Part15(15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

PASS

	TX 802.11b Mode							
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result					
2412	9.566	>=500KHz	PASS					
2437	8.584	>=500KHz	PASS					
2462	10.04	>=500KHz	PASS					

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

TX 802.11g Mode				
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result	
2412	16.42	>=500KHz	PASS	
2437	15.66	>=500KHz	PASS	
2462	16.49	>=500KHz	PASS	

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

TX 802.11n/HT20 Mode				
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result	
2412	17.63	>=500KHz	PASS	
2437	17.14	>=500KHz	PASS	
2462	17.71	>=500KHz	PASS	

CH: 2412MHz

7POWER SPECTRAL DENSITYTEST

7.1 Test Limit

FCC Part15(15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=3KHz, VBW=10KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

7.3 Measurement Equipment Used

Same as Radiated Emission Measurement

7.4 Test Result

PASS

TX 802.11b Mode			
Frequency Power Density (MHz) (dBm/3KHz)		Limit (dBm/3KHz)	Result
2412	-14.219	8	PASS
2437	-13.551	8	PASS
2462	-13.625	8	PASS

TX 802.11g Mode				
Frequency Power Density (MHz) (dBm/3KHz)		Limit (dBm/3KHz)	Result	
2412	-17.138	8	PASS	
2437	-15.848	8	PASS	
2462	-18.773	8	PASS	

TX 802.11n/HT20 Mode				
Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
2412	-17.648	8	PASS	
2437	-17.489	8	PASS	
2462	-17.920	8	PASS	

8PEAK OUTPUT POWERTEST

8.1 Test Limit

FCC Part15(15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The EUT was directly connected to the Power meter.

8.3 Measurement Equipment Used

Same asRadiated Emission Measurement

8.4 Test Result

PASS

All the test modes completed for test.

i.	-	TX 802.11b Mode	17
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	(dBm)
CH01	2412	12.63	30
CH06	2437	12.53	30
CH11	2462	12.78	30
		TX 802.11g Mode	- ci
CH01	2412	12.10	30
CH06	2437	12.06	30
CH11	2462	12.21	30
N.	17.	TX 802.11n20 Mode	-
CH01	2412	11.32	30
CH06	2437	11.45	30
CH11	2462	11.48	30

9OUT OF BAND EMISSIONSTEST

9.1 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

9.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

9.3 TestSetup

9.4 Test Result

PASS

TX 802.11b Mode CH: 2412MHz

TX 802.11g Mode CH: 2412MHz

TX 802.11n/HT20 Mode CH: 2412MHz

10 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used is a detachable antenna, using a reverse SMA connector (Provided by non-manufacturers will use the product can not work), considered a special connector accepted by the FCC to comply with rule part 15.203. Please see EUT photos for details, it comply with the standard requirement. The directional gains of antenna used for transmitting is 1dBi.

11PHOTOGRAPH OF TEST

11.1 Radiated Emission

11.2Conducted Emission The charging port of the prototype is on the battery

End of Report