个人简介

唐亘,数据科学家

- 教育背景
 - 复旦大学数学和计算机双学士
 - 巴黎综合理工经济学硕士、ENSAE数据 科学硕士
- 项目经验
 - 出版《解构大语言模型:从线性回归到通用人工智能》、《精通数据科学》

从模型结构和数据基础角度 拆解、重构大语言模型

https://github.com/GenTang/ regression2chatgpt

视频列表

工程基础

- 最优化算法: 梯度下降法及其衍生
- 反向传播算法
- 多层感知器 (multilayer perceptron, MLP)

模型基础

- 卷积神经网络(CNN)与残差链接(Residual Connection)
- 循环神经网络 (RNN) 与自然语言处理
- 从零实现GPT-2

- 大语言模型 大语言模型监督微调 (Supervised Fine-tuning)
 - 利用强化学习进一步微调大语言模型(Reinforcement Learning)

以线性回归为例,模型的损失函数: $L(a,b)=1/n\sum_{i=1}^n(y_i-ax_i-b)^2$

以线性回归为例,模型的损失函数: $L(a,b)=1/n\sum_{i=1}^n(y_i-ax_i-b)^2$

选取一个随机的起始点 a_0 , b_0 ; 当 $\Delta L = L(a_1,b_1) - L(a_0,b_0) \approx \frac{\partial L}{\partial a} \Delta a + \frac{\partial L}{\partial b} \Delta b \longrightarrow \frac{\Delta b}{\Delta b} = \frac{a_1}{b_1} - \frac{a_0}{b_0}$ 根据泰勒展开式

以线性回归为例,模型的损失函数: $L(a,b)=1/n\sum_{i=1}^n(y_i-ax_i-b)^2$

选取一个随机的起始点 $a_0, b_0; \stackrel{\text{deg}}{=} \Delta L = L(a_1,b_1) - L(a_0,b_0) \approx \frac{\partial L}{\partial a} \Delta a + \frac{\partial L}{\partial b} \Delta b \longrightarrow \frac{\Delta a = a_1 - a_0}{\Delta b = b_1 - b_0}$ 根据泰勒展开式

不难推导出:
$$(\Delta a, \Delta b) = -\eta \left(\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}\right)$$
 $\int \Delta L \approx -\eta \left[\left(\frac{\partial L}{\partial a}\right)^2 + \left(\frac{\partial L}{\partial b}\right)^2\right] \leq 0$ 梯度: ∇L

以线性回归为例,模型的损失函数: $L(a,b)=1/n\sum_{i=1}^n(y_i-ax_i-b)^2$

选取一个随机的起始点 a_0 , b_0 ; 当 $\Delta L = L(a_1,b_1) - L(a_0,b_0) \approx \frac{\partial L}{\partial a} \Delta a + \frac{\partial L}{\partial b} \Delta b \longrightarrow \frac{\Delta a = a_1 - a_0}{\Delta b = b_1 - b_0}$ 根据泰勒展开式

不难推导出:
$$(\Delta a, \Delta b) = -\eta \left(\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}\right)$$
 $\eta > 0$ $\Delta L \approx -\eta \left[\left(\frac{\partial L}{\partial a}\right)^2 + \left(\frac{\partial L}{\partial b}\right)^2\right] \leq 0$ 梯度: ∇L

迭代算法:
$$a_{k+1}=a_k-\eta\frac{\partial L}{\partial a}$$
, $b_{k+1}=b_k-\eta\frac{\partial L}{\partial b}$

梯度下降法的局限

7、无法保证最低点

在梯度计算时,引入随机性

2、计算量太大, 需要遍历所有数据点

$$\nabla L = 1/n \sum_{i} \nabla L_{i}$$

减少计算时使用的数据量

随机梯度下降法

将数据分为m个批次(m份):
$$I_1, I_2, \cdots, I_m$$

每次只使用一个批次的数据:
$$\nabla L = 1/n \sum_i \nabla L_i \approx 1/m \sum_{j=1}^m \nabla L_{I_j}$$

迭代算法:
$$a_{k+1}=a_k-rac{\eta}{m}\sum_{j=1}^mrac{\partial L_{I_j}}{\partial a}$$
, $b_{k+1}=b_k-rac{\eta}{m}\sum_{j=1}^mrac{\partial L_{I_j}}{\partial b}$

更优化的算法

更优化的算法

PyTorch基础

PyTorch的基础数据结构是张量 (Tensor)

PyTorch基础

复杂例子

 v_1 * v_2 shape: [4, 1, 3, 2] shape: [5, 1, 2]

广播

梯度下降法 总结 优化算法的核心基础 PyTorch 重要的超参数:学习速率 局部最优陷阱 - 编程基础 运算量过大, 实际应用较少 高级封装函数 优化算法 /动量因素 梯度归一化 变种 两种结合 引入随机性,摆脱局部最优陷阱 - 优化梯度计算 随机梯度下降法