Primitive grafice. Faţa şi spatele unui poligon convex

Mihai-Sorin Stupariu

Sem. I, 2022 - 2023

Condiții pentru poligoane

Vector normal. Fața și spatele unui poligon convex

Exemple

Codurile sursă 02_02_fata_spatele_polig.cpp, 02_03_poligoane3d_old.cpp, 02_04_poligoane3d_new.cpp.

- Codurile sursă 02_02_fata_spatele_polig.cpp, 02_03_poligoane3d_old.cpp, 02_04_poligoane3d_new.cpp.
- ► Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?

- Codurile sursă 02_02_fata_spatele_polig.cpp, 02_03_poligoane3d_old.cpp, 02_04_poligoane3d_new.cpp.
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - NU: reguli pentru aplicarea reguli pentru aplicarea funcției GL_POLYGON
 se presupune că vârfurile determină un poligon convex

- Codurile sursă 02_02_fata_spatele_polig.cpp, 02_03_poligoane3d_old.cpp, 02_04_poligoane3d_new.cpp.
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - NU: reguli pentru aplicarea reguli pentru aplicarea funcției GL_POLYGON
 se presupune că vârfurile determină un poligon convex
 - ▶ DA: faţa şi spatele unui poligon convex

Reguli pentru aplicarea opțiunii GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

1. Punctele trebuie să fie coplanare, dar nu coliniare.

Reguli pentru aplicarea opțiunii GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia poligonală să nu aibă autointersecții.

Reguli pentru aplicarea opțiunii GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia poligonală să nu aibă autointersecții.
- 3. Poligonul trebuie să fie convex.

1. Coplanaritatea

De verificat: condiția de coplanaritate

rang
$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{P_1} & x_{P_2} & x_{P_3} & \dots & x_{P_N} \\ y_{P_1} & y_{P_2} & y_{P_3} & \dots & y_{P_N} \\ z_{P_1} & z_{P_2} & z_{P_3} & \dots & z_{P_N} \end{pmatrix} = 3$$
 (1)

sau faptul că

$$\dim_{\mathbb{R}}\langle \overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \dots, \overrightarrow{P_1P_N} \rangle = 2. \tag{2}$$

Fapt: O condiție alternativă este coliniaritatea vectorilor $\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3}$, $\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4}, \ldots, \overrightarrow{P_{N-1}P_N} \times \overrightarrow{P_NP_1}, \overrightarrow{P_NP_1} \times \overrightarrow{P_1P_2}$. Altfel spus: punctele P_1, P_2, \ldots, P_N sunt coplanare dacă și numai dacă vectorii $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ $(i=1,\ldots,N,$ cu convenții modulo N) sunt coliniari.

Exemplu

Punctele $P_1 = (7,1,1), P_2 = (-3,3,9), P_3 = (1,-1,9), P_4 = (8,-4,5)$ sunt coplanare.

Exemplu

Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9), P_4 = (11, -3, 1)$ sunt coplanare.

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (32, 32, 32)$$

$$\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4} = (16, 16, 16)$$

$$\overrightarrow{P_3P_4} \times \overrightarrow{P_4P_1} = (32, 32, 32)$$

$$\overrightarrow{P_4P_1} \times \overrightarrow{P_1P_2} = (48, 48, 48)$$

2. Linie poligonală fără autointersecții

De verificat: intersecții de segmente.

Varianta 2 Se folosește reprezentarea segmentelor cu ajutorul combinațiilor afine. Segmentele [AB] și [CD] se intersectează \Leftrightarrow

$$\exists s_0, t_0 \in [0,1]$$
 a.î. $(1-t_0)A + t_0B = (1-s_0)C + s_0D$.

Această variantă poate fi aplicată și în context 3D.

3. Convexitatea poligonului - figura

Convexitatea poligonului - observație

Obs. Fie P.P. ... Pn un poligon convex. (i) Parcurgerea P, P, P, ~ vector normal Justificare:

The (i) calculature $\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3}$, april mormaliques

The (ii) calculature $\overrightarrow{P_3P_2} \times \overrightarrow{P_2P_3} = (-\overrightarrow{P_2P_3}) \times (-\overrightarrow{P_1P_2})$ $= \overrightarrow{P_2P_3} \times \overrightarrow{P_1P_2} = -\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3}$

3. Convexitatea poligonului

De verificat: convexitatea (folosind produse vectoriale).

Observație. (i) Fie $=(P_1, P_2, \dots, P_N)$ un poligon (sensul de parcurgere este important!). Poligonul \mathcal{P} este convex dacă și numai dacă pentru orice trei vârfuri consecutive P_{i-1}, P_i, P_{i+1} (modulo N) ale poligonului sensul

vectorul $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ este independent de *i*.

(ii) Vectorii menționați au toți aceeași direcție (perpendiculari pe planul poligonului), deoarece punctele sunt coplanare (vezi condiția 1).

(iii) Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\|\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}\|}$$

este independent de i.

Exemplu. Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9),$

 $P_4 = (11, -3, 1)$ determină un poligon convex.

Definiție - vector normal

Lemă. Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\parallel \overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}} \parallel}$$

este independent de i.

Definiție. Fie (P_1, P_2, \dots, P_N) un poligon convex. Se alege $i = 1, \dots, n$. Vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\|\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}\|}$$

se numește **vector normal (normală)** la planul poligonului / poligonul (P_1, P_2, \ldots, P_N) .

Modalitate de calcul (I)

1. Se aleg trei vârfuri consecutive, de exemplu P_1 , P_2 , P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1})$, $A_2 = (x_{P_2}, y_{P_2}, z_{P_2})$, respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3})$.

Modalitate de calcul (I)

- 1. Se aleg trei vârfuri consecutive, de exemplu P_1, P_2, P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1}), A_2 = (x_{P_2}, y_{P_2}, z_{P_2}),$ respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3}).$
- 2. Se scrie ecuația planului determinat de cele trei puncte sub forma

$$Ax + By + Cz + D = 0,$$

unde coeficienții A, B, C și D sunt dați de formulele

$$A = \left| \begin{array}{cc|c} y_{P_1} & z_{P_1} & 1 \\ y_{P_2} & z_{P_2} & 1 \\ y_{P_3} & z_{P_3} & 1 \end{array} \right|, \qquad B = -\left| \begin{array}{cc|c} x_{P_1} & z_{P_1} & 1 \\ x_{P_2} & z_{P_2} & 1 \\ x_{P_3} & z_{P_3} & 1 \end{array} \right| = \left| \begin{array}{cc|c} x_{P_1} & 1 & z_{P_1} \\ x_{P_2} & 1 & z_{P_2} \\ x_{P_3} & 1 & z_{P_3} \end{array} \right|,$$

$$C = \left| \begin{array}{cc} x_{P_1} & y_{P_1} & 1 \\ x_{P_2} & y_{P_2} & 1 \\ x_{P_3} & y_{P_3} & 1 \end{array} \right|, \qquad D = - \left| \begin{array}{cc} x_{P_1} & y_{P_1} & z_{P_1} \\ x_{P_2} & y_{P_2} & z_{P_2} \\ x_{P_3} & y_{P_3} & z_{P_3} \end{array} \right|,$$

fiind deduși din condiția de coliniaritate

$$\begin{vmatrix} x & y & z & 1 \\ x_{P_1} & y_{P_1} & z_{P_1} & 1 \\ x_{P_2} & y_{P_2} & z_{P_2} & 1 \\ x_{P_3} & y_{P_3} & z_{P_3} & 1 \end{vmatrix} = 0.$$

Pe scurt: se dezvoltă după linia I determinantul de mai șuș 💨 , a 🛢 , a 🛢 , s o o o

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

4 În final:

$$n = \frac{1}{\sqrt{A^2 + B^2 + C^2}}(A, B, C).$$

Conceptul de față / spate al unui poligon convex

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

• M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0;$

Conceptul de față / spate al unui poligon convex

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

- M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0$;
- M = (x, y, z) se află în spatele planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) < 0.$

Interpretare - "normala indică fața poligonului"

Presupunem că D=0, adică planul trece prin originea O=(0,0,0).

Intrepretare - sinteză

- Presupunem că D=0, deci planul trece prin origine, iar ecuația sa este $\pi(x,y,z)=Ax+By+Cz=0$.
- Considerând vectorul n = (A, B, C) care direcționează normala la plan, avem $\pi(A, B, C) > 0$, deci vectorul n indică partea din față a poligonului (planului).
- ▶ În general, un vector (x,y,z) este orientat înspre partea din față a planului dacă $\pi(x,y,z)>0$, i.e. $\langle (x,y,z),n,\rangle>0$, ceea ce înseamnă că proiecția vectorului (x,y,z) pe N este la fel orientată ca și n.
- ▶ Prin translație, aceste rezultate pot fi extinse pentru un plan arbitrar. Mai mult, presupunând că parcurgem poligonul (A₁, A₂,..., A_n) în sens trigonometric și că rotim un burghiu drept în sensul indicat de această parcurgere, acesta se va deplasa în sensul indicat de vectorul N, deci înspre fața poligonului (vezi figura).
- ► Intuitiv + concluzie: din față un poligon este văzut ca fiind parcurs în sens trigonometric, iar din spate un poligon este văzut ca fiind parcurs în sens orar.

Exemplul 1. Cod sursă 02_03_poligoane3d_old.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

Exemplul 1. Cod sursă $02_03_poligoane3d_old.cpp$ $A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$

Exemplul 1. Cod sursă 02_03_poligoane3d_old.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

Exemplul 1. Cod sursă 02_03_poligoane3d_old.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

De reținut (și de aplicat la cerința 2, L2)!

De reținut (și de aplicat la cerința 2, L2)!

Dacă în codul sursă vârfurile sunt indicate în ordinea A_1, A_3, A_2 , atunci triunghiul $A_1A_2A_3$ este "văzut din față" și se aplică regulile pentru GL_FRONT, iar dacă sunt indicate în ordinea A_1, A_2, A_3 , atunci triunghiul este "văzut din spate" și se aplică regulile pentru GL_BACK. Ordinea de parcurgere face referire la modul implicit (GL_CCW).

Linii poligonale închise cu autointersecții: interior/exterior Regula par-impar (odd-even rule)

Linii poligonale închise cu autointersecții: interior/exterior Regula indexului nenul (non-zero winding number rule)

Linii poligonale închise cu autointersecții: interior/exterior Observație

Legatura dintre cele dona reguli Obs: $(m_+ + m_-) = \text{numerul total de intersection},$ iar paritatea acestii a me da regula par/impor. · P exterior potr regula indexului => m_ = m_ => (m++m_) este par -> P exterior ptr par limpor

NU este neaporal advant

Linii poligonale închise cu autointersecții: interior/exterior Exemplu

