## Markov Process: Stationary Distribution



Suppose that we run the process of **Example 2** for a very large number of steps, and wonder what the probability will be of observing an  ${\bf a}$  at the next step. Given the initial distribution and the state diagram, we can compute the probability distribution for every  $X_i$ . In the figure above,  $P_{X_i}({\bf a})$  is plotted for several values of i. The probability to observe an  ${\bf a}$  seems to stabilize. This leads us to the following definition:

## **Definition: Stationary distribution**

A stationary distribution for a time-invariant Markov chain is a distribution  $P_{X_n}$  such that  $P_{X_{n+1}}=P_{X_n}$ .

created: 2018-12-12

Information Theory | Markov Process: Stationary Distribution

If the initial distribution of a time-invariant Markov process is stationary, then the entire process is stationary as **defined previously**.

## **Proposition**

Every time-invariant finite-state Markov process has a stationary distribution.

Proof

Let  $k:=|\mathcal{X}|$  . The k imes k transition matrix R with entries  $R_{ij}=P_{X_{n+1}|X_n}(j|i)$  is a stochastic matrix, as for every row i, the sum over columns is  $\sum_{j=1}^k R_{ij} = 1$ . We are interested in finding a vector  $v \in \mathbb{R}^k_{\geq 0}$  such that  $\|v\| = 1$  and  $R^T v = v$ . This vector then represents the stationary distribution. Clearly, a possible eigenvector for R is the all-1 vector  $w=(1,\ldots,1)^T$  because Rw=w by definition of a stochastic matrix. Hence, 1 is an eigenvalue of R. As R and  $R^T$ have the same eigenvalues, 1 is also an eigenvalue of  $R^T$  ; let  $v \in \mathbb{R}^k$  be the corresponding eigenvector such that  $R^Tv=v$ . If all coordinates of v are nonnegative, one can verify that we have found a stationary distribution by renormalizing  $v/\sum_{i=1}^k v_i.$  Otherwise, let us write  $v=v^+-v^-$  with  $v^+, v^- \in \mathbb{R}^k_{\geq 0}$  , where we put all positive coordinates of v in  $v^+$  and all negative coordinates of v in  $v^-$ . Note that  $R^T v^+ - R^T v^- = R^T (v^+ - v^-) = R^T v = v = v^+ - v^-$  . As all entries of  $R^T, v^+$  and  $v^-$  are positive, equality must hold for both the positive and negative parts:  $R^T v^+ = v^+$  and  $R^T v^- = v^-$ . As either  $v^+ 
eq 0^k$  or  $v^- 
eq 0^k$  (otherwise  $v=0^k$ , which cannot be the case for an eigenvector), renormalizing that non-

Given the transition matrix R of a finite-state Markov process, one can find the stationary distribution  $\mu$  by solving the linear equation  $\mu R = \mu$  under the constraint that  $\sum_i \mu_i = 1$ .

## **Example 2: A finite-state time-invariant Markov process, continued**

The matrix representation of the process above is given by

zero vector as above yields the stationary distribution.

$$R = \begin{bmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{bmatrix}$$

. Writing out  $(\mu_a,\mu_b)R=(\mu_a,\mu_b)$  results in

$$\begin{cases} 0.7\mu_a + 0.5\mu_b = \mu_a \\ 0.3\mu_a + 0.5\mu_b = \mu_b \end{cases}$$

. These are linearly dependent equations, but together with the constraint  $\mu_a+\mu_b=1$ , they can be solved to  $(\mu_a,\mu_b)=(5/8,3/8)$ .

created: 2018-12-12

Information Theory | Markov Process: Stationary Distribution

created: 2018-12-12