Bargaining, Efficiency, and Pareto Improvements

Zi Yang Kang

Andrzej Skrzypacz

University of Toronto

Stanford University

IO Summer Brownbag

June 11, 2025

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} \mathcal{U}(0, 1)$.

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} \mathcal{U}(0, 1)$.

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

This is a war of attrition (used to study industry shakeouts, rent-seeking, and lobbying).

In the unique symmetric equilibrium, a player with value v has expected payoff $\frac{1}{2}v^2$.

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} \mathcal{U}(0, 1)$.

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

This is a war of attrition (used to study industry shakeouts, rent-seeking, and lobbying). In the unique symmetric equilibrium, a player with value v has expected payoff $\frac{1}{2}v^2$.

Bulow's puzzle: Both prefer an immediate, even split of the pie: $\frac{1}{2}v \ge \frac{1}{2}v^2 \quad \forall \ v \in [0, 1]$.

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: $v_A, v_B \stackrel{\text{iid}}{\sim} \mathcal{U}(0, 1)$.

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

This is a war of attrition (used to study industry shakeouts, rent-seeking, and lobbying). In the unique symmetric equilibrium, a player with value v has expected payoff $\frac{1}{2}v^2$.

<u>Bulow's puzzle:</u> Both prefer an immediate, even split of the pie: $\frac{1}{2}v \ge \frac{1}{2}v^2 \quad \forall \ v \in [0, 1]$. An immediate, even split of the pie is a **Pareto improvement** over the war of attrition.

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} \mathcal{U}(0, 1)$.

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

This is a war of attrition (used to study industry shakeouts, rent-seeking, and lobbying). In the unique symmetric equilibrium, a player with value v has expected payoff $\frac{1}{2}v^2$.

Bulow's puzzle: Both prefer an immediate, even split of the pie: $\frac{1}{2}v \ge \frac{1}{2}v^2 \quad \forall \ v \in [0, 1]$. An immediate, even split of the pie is a **Pareto improvement** over the war of attrition.

When are such Pareto improvements possible? What protocol maximizes ex ante surplus?

We study **Pareto-improving mechanism design** in a general setting with money:

 \sim the mechanism can offer **discounts** and/or **make-whole payments**.

We study **Pareto-improving mechanism design** in a general setting with money:

→ the mechanism can offer discounts and/or make-whole payments.

The optimal mechanism must balance between:

#1. screening (to maximize a weighted sum of consumer surplus and revenue); and

We study **Pareto-improving mechanism design** in a general setting with money:

→ the mechanism can offer discounts and/or make-whole payments.

The optimal mechanism must balance between:

- #1. screening (to maximize a weighted sum of consumer surplus and revenue); and
- **#2.** Pareto improvement constraint (mechanism must weakly improve on status quo).

We study Pareto-improving mechanism design in a general setting with money:

→ the mechanism can offer discounts and/or make-whole payments.

The optimal mechanism must balance between:

- #1. screening (to maximize a weighted sum of consumer surplus and revenue); and
- **#2.** Pareto improvement constraint (mechanism must weakly improve on status quo).

Main Results:

- #1. convexity of demand determines when strict Pareto improvements are possible; and
- #2. characterization of optimal mechanism, incl. when make-whole payments are optimal.

We study **Pareto-improving mechanism design** in a general setting with money:

→ the mechanism can offer discounts and/or make-whole payments.

The optimal mechanism must balance between:

- #1. screening (to maximize a weighted sum of consumer surplus and revenue); and
- **#2.** Pareto improvement constraint (mechanism must weakly improve on status quo).

Main Results:

- #1. convexity of demand determines when strict Pareto improvements are possible; and
- #2. characterization of optimal mechanism, incl. when make-whole payments are optimal.
- → Our results also identify optimal bargaining protocols that Pareto-improve on WoA.

Model

► There is a mass of risk-neutral consumers with unit demand for an indivisible good. Consumers differ in value, $v \in [\underline{v}, \overline{v}]$; CDF is F with density f > 0, demand is 1 - F.

- ► There is a mass of risk-neutral consumers with unit demand for an indivisible good. Consumers differ in value, $v \in [\underline{v}, \overline{v}]$; CDF is F with density f > 0, demand is 1 F.
- ▶ There is a principal with mass Q < 1 of the good; chooses a mechanism (x, t), with:
 - the allocation function $x : [\underline{v}, \overline{v}] \to [0, 1]$, denoting probability of allocation; and
 - the payment function $t: [\underline{v}, \overline{v}] \to \mathbb{R}$, denoting payment by consumer.

- ► There is a mass of risk-neutral consumers with unit demand for an indivisible good. Consumers differ in value, $v \in [\underline{v}, \overline{v}]$; CDF is F with density f > 0, demand is 1 F.
- ▶ There is a principal with mass Q < 1 of the good; chooses a mechanism (x, t), with:
 - the allocation function $x : [\underline{v}, \overline{v}] \to [0, 1]$, denoting probability of allocation; and
 - the payment function $t: [\underline{v}, \overline{v}] \to \mathbb{R}$, denoting payment by consumer.
- ► The principal's objective is a weighted sum of consumer surplus and revenue:

$$(1-\alpha) \cdot \underbrace{\int_{\underline{v}}^{\overline{v}} [vx(v) - t(v)] \ dF(v)}_{\text{consumer surplus}} + \alpha \cdot \underbrace{\int_{\underline{v}}^{\overline{v}} t(v) \ dF(v)}_{\text{revenue}}, \qquad \alpha \in [0,1].$$

Special cases: consumer surplus ($\alpha = 0$), total surplus ($\alpha = 1/2$), revenue ($\alpha = 1$).

- ► There is a mass of risk-neutral consumers with unit demand for an indivisible good. Consumers differ in value, $v \in [\underline{v}, \overline{v}]$; CDF is F with density f > 0, demand is 1 F.
- ▶ There is a principal with mass Q < 1 of the good; chooses a mechanism (x, t), with:
 - the allocation function $x: [\underline{v}, \overline{v}] \to [0, 1]$, denoting probability of allocation; and
 - the payment function $t: [\underline{v}, \overline{v}] \to \mathbb{R}$, denoting payment by consumer.
- ► The principal's objective is a weighted sum of consumer surplus and revenue:

$$(1-\alpha) \cdot \underbrace{\int_{\underline{v}}^{\overline{v}} [vx(v) - t(v)] \ dF(v)}_{\text{consumer surplus}} + \alpha \cdot \underbrace{\int_{\underline{v}}^{\overline{v}} t(v) \ dF(v)}_{\text{revenue}}, \qquad \alpha \in [0, 1].$$

Special cases: consumer surplus ($\alpha = 0$), total surplus ($\alpha = 1/2$), revenue ($\alpha = 1$).

Make-Whole Payments and Pareto Improvement

We impose two additional constraints on the principal.

#1. Make-Whole Payments

#2. Pareto Improvement

Make-Whole Payments and Pareto Improvement

We impose two additional constraints on the principal.

#1. Make-Whole Payments

Depending on the environment, make-whole payments may or may not be allowed.

When make-whole payments are not allowed, we impose the constraint:

$$t(v) \geq 0 \qquad \forall \ v \in [\underline{v}, \overline{v}].$$

#2. Pareto Improvement

Make-Whole Payments and Pareto Improvement

We impose two additional constraints on the principal.

#1. Make-Whole Payments

Depending on the environment, make-whole payments may or may not be allowed.

When make-whole payments are not allowed, we impose the constraint:

$$t(v) \geq 0 \qquad \forall \ v \in [\underline{v}, \overline{v}].$$

#2. Pareto Improvement

There is a status quo mechanism (x_0, t_0) .

The mechanism (x, t) is required to be a Pareto improvement over (x_0, t_0) :

$$vx(v) - t(v) \ge vx_0(v) - t_0(v) \qquad \forall \ v \in [\underline{v}, \overline{v}].$$

Mechanism Design

In summary, the principal maximizes a weighted sum of consumer surplus and revenue:

$$\max_{(x,t)} \left[(1-\alpha) \cdot \int_{\underline{v}}^{\overline{v}} \left[vx(v) - t(v) \right] dF(v) + \alpha \cdot \int_{\underline{v}}^{\overline{v}} t(v) dF(v) \right],$$

subject to

▶ incentive compatibility,
$$\theta \in \arg\max_{\hat{v} \in [v, \overline{v}]} [vx(\hat{v})] - t(\hat{v})] \quad \forall v \in [\underline{v}, \overline{v}]; \quad (IC)$$

▶ no make-whole payments (sometimes relaxed),
$$t(v) \ge 0$$
 $\forall v \in [\underline{v}, \overline{v}];$ (MW)

▶ individual rationality,
$$vx(v) - t(v) \ge vx_0(v) - t_0(v)$$
 $\forall v \in [\underline{v}, \overline{v}].$ (PI)

Related Work

Mechanism Design.

- Money burning: McAfee and McMillan (1992); Hartline and Roughgarden (2008); Bulow and Klemperer (2012); Condorelli (2012).
- Redistribution: Condorelli (2013); Dworczak (P) Kominers (P) Akbarpour (2021); Akbarpour (P)
 Dworczak (P) Kominers (2024).
- ~ This paper: impose Pareto improvement; show relevance of demand convexity (not log-convexity).

Related Work

Mechanism Design.

- Money burning: McAfee and McMillan (1992); Hartline and Roughgarden (2008); Bulow and Klemperer (2012); Condorelli (2012).
- Redistribution: Condorelli (2013); Dworczak (P) Kominers (P) Akbarpour (2021); Akbarpour (P)
 Dworczak (P) Kominers (2024).
- This paper: impose Pareto improvement; show relevance of demand convexity (not log-convexity).
- Mechanism Design With Pareto Improvements. Fuchs and Skrzypacz (2015); Baron, Lombardo, Ryan, Suh and Valenzuela-Stookey (2024); Dworczak and Muir (2024); Kang and Watt (2024).
 - This paper: analyze optimality of make-whole payments; provide necessary + sufficient conditions.

Related Work

Mechanism Design.

- Money burning: McAfee and McMillan (1992); Hartline and Roughgarden (2008); Bulow and Klemperer (2012); Condorelli (2012).
- Redistribution: Condorelli (2013); Dworczak (P) Kominers (P) Akbarpour (2021); Akbarpour (P)
 Dworczak (P) Kominers (2024).
- This paper: impose Pareto improvement; show relevance of demand convexity (not log-convexity).
- Mechanism Design With Pareto Improvements. Fuchs and Skrzypacz (2015); Baron, Lombardo, Ryan, Suh and Valenzuela-Stookey (2024); Dworczak and Muir (2024); Kang and Watt (2024).
 - → This paper: analyze optimality of make-whole payments; provide necessary + sufficient conditions.
- ► Application: Bargaining.
 - Generalized war of attrition: Bulow and Klemperer (1999).
 - Mechanisms and status quos as offers: Strulovici (2017); Pęski (2022, 2024).
 - → This paper: use mechanism design to analyze optimal protocol instead of solving for equilibrium.

General Results

Proof Remarks

To prove this technical result, we adapt Lagrangian approach of Amador and Bagwell (2013):

- **#1.** Guess optimal Lagrange multipliers for (C), (MW), and (PI) constraints.
- **#2.** Solve for optimal mechanism and verify that these constraints are satisfied.
- **#3.** Verify that complementary slackness conditions are satisfied.

Proof Remarks

To prove this technical result, we adapt Lagrangian approach of Amador and Bagwell (2013):

- **#1.** Guess optimal Lagrange multipliers for (C), (MW), and (PI) constraints.
- **#2.** Solve for optimal mechanism and verify that these constraints are satisfied.
- **#3.** Verify that complementary slackness conditions are satisfied.

Lagrange multiplier for (MW) gives n+s condition for optimality of make-whole payments.

 \sim For $\alpha \ge 1/2$, we derive a similar characterization without the (MW) constraint.

Proof Remarks

To prove this technical result, we adapt Lagrangian approach of Amador and Bagwell (2013):

- **#1.** Guess optimal Lagrange multipliers for (C), (MW), and (PI) constraints.
- **#2.** Solve for optimal mechanism and verify that these constraints are satisfied.
- **#3.** Verify that complementary slackness conditions are satisfied.

Lagrange multiplier for (MW) gives n + s condition for optimality of make-whole payments.

 \sim For $\alpha \ge 1/2$, we derive a similar characterization without the (MW) constraint.

Dworczak and Muir (2024) prove a related characterization with only (PI) constraints.

- → (MW) introduces possibility of free allocation; but (C) restricts free allocation.
- → (MW) and (C) interact with (PI); our characterization solves this fixed-point problem.

Money Burning ($\alpha = 0$)

Demand Curvature and Pareto Improvement

Proposition 1. If demand is concave, given any status quo, the CS-maximizing Pareto-improving mechanism sets a **price of zero** and **allocates goods uniformly at random**.

Demand Curvature and Pareto Improvement

Proposition 1. If demand is concave, given any status quo, the CS-maximizing Pareto-improving mechanism sets a **price of zero** and **allocates goods uniformly at random**.

Interpretation:

- ▶ Without Pareto improvement constraint, random allocation maximizes aggregate consumer surplus if demand is log-concave (Bulow and Klemperer, 2012).
- ▶ With Pareto improvement constraint, concavity (rather than log-concavity) matters.

Necessity of Free Allocation

Proposition 2. If $\underline{v} > 0$, given any status quo, the CS-maximizing Pareto-improving mechanism allocates a **positive mass** of goods at a price of zero.

Necessity of Free Allocation

Proposition 2. If $\underline{v} > 0$, given any status quo, the CS-maximizing Pareto-improving mechanism allocates a **positive mass** of goods at a price of zero.

Interpretation:

- ► (MW) constraint always binds: principal wishes to pay consumers to increase CS.
- ▶ Since principal cannot pay consumers, the next-best instrument is free allocation.

Necessity of Non-Competitive Allocation

Proposition 3. Given any status quo mechanism (x_0, t_0) , the CS-maximizing Pareto-improving mechanism offers certain allocation to a positive mass of consumer with values $v \notin x_0^{-1}(1)$ if and only if

$$\int_{v}^{\overline{v}} x_0(s) \, \mathrm{d}F(s) < Q.$$

Necessity of Non-Competitive Allocation

Proposition 3. Given any status quo mechanism (x_0, t_0) , the CS-maximizing Pareto-improving mechanism offers certain allocation to a positive mass of consumer with values $v \notin x_0^{-1}(1)$ if and only if

$$\int_{v}^{\overline{v}} x_0(s) \, \mathrm{d}F(s) < Q.$$

Interpretation:

- ▶ If *Q* remains same as status quo, then (C) constraint prevents competitive allocation.
- (C) constraint always binds: principal can increase CS by allocating more of the good.

Comparative Statics

We are currently working on comparative statics:

#1. Capacity expansions.

Suppose (x_0, t_0) is an optimal mechanism for quantity Q_0 .

What is the Pareto-improving mechanism when capacity expands to $Q > Q_0$?

Comparative Statics

We are currently working on comparative statics:

#1. Capacity expansions.

Suppose (x_0, t_0) is an optimal mechanism for quantity Q_0 .

What is the Pareto-improving mechanism when capacity expands to $Q > Q_0$?

#2. Shifts in demand.

Suppose (x_0, t_0) is an optimal mechanism for the demand curve $1 - F_0$.

What is the Pareto-improving mechanism when demand shifts to $1 - F \prec_{FOSD} 1 - F_0$?

Discussion

The Bulow Puzzle Revisited

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} F$, density f with support [0, 1].

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

Question. What Pareto-improving bargaining mechanism maximizes ex ante surplus?

The Bulow Puzzle Revisited

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} F$, density f with support [0, 1].

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

Question. What Pareto-improving bargaining mechanism maximizes ex ante surplus?

Unlike our analysis so far, there is aggregate uncertainty + ex post capacity constraint.

Nevertheless, our analysis can be applied to resolve the Bulow puzzle.

The Bulow Puzzle Revisited

Alice and Bob are bargaining over a perfectly divisible pie.

Both are privately informed about value for the pie: v_A , $v_B \stackrel{\text{iid}}{\sim} F$, density f with support [0, 1].

Both pay the same waiting cost per unit time, c > 0.

Both choose when to exit; the player who exits first gets nothing, the other gets the pie.

Question. What Pareto-improving bargaining mechanism maximizes ex ante surplus?

Unlike our analysis so far, there is **aggregate uncertainty** + **ex post capacity constraint**. Nevertheless, our analysis can be applied to resolve the Bulow puzzle.

Ongoing work: generalized war of attrition (N pies, N + K players); suggestions welcome!

The Bulow Puzzle Resolved

Regularity assumption: the density f is log-concave.

This is common in economics: see, e.g., An (1998) and Bagnoli and Bergstrom (2005).

(Many familiar distributions satisfy this regularity assumption.)

The Bulow Puzzle Resolved

Regularity assumption: the density *f* is log-concave.

This is common in economics: see, e.g., An (1998) and Bagnoli and Bergstrom (2005).

(Many familiar distributions satisfy this regularity assumption.)

Theorem. Under the regularity assumption:

- (i) When *F* is convex, the optimal Pareto-improving bargaining mechanism is an immediate 50–50 split between both players.
- (ii) When *F* is strictly concave, no bargaining mechanism strictly Pareto-dominates the unique symmetric equilibrium of the war of attrition.

The Bulow Puzzle Resolved

Regularity assumption: the density f is log-concave.

This is common in economics: see, e.g., An (1998) and Bagnoli and Bergstrom (2005).

(Many familiar distributions satisfy this regularity assumption.)

Theorem. Under the regularity assumption:

- (i) When *F* is convex, the optimal Pareto-improving bargaining mechanism is an immediate 50–50 split between both players.
- (ii) When *F* is strictly concave, no bargaining mechanism strictly Pareto-dominates the unique symmetric equilibrium of the war of attrition.

In this sense, Bulow's original uniform distribution example is the knife-edge case!

Concluding Remarks

Status quo allocations can restrict feasibility of institutional changes.

- ▶ In bargaining, non-Pareto-improving changes to protocol might signal weakness.
- ▶ In political economy, non-Pareto-improving changes may face holdouts from some.

This paper: mechanism design + Pareto improvement constraints.

Concluding Remarks

Status quo allocations can restrict feasibility of institutional changes.

- ▶ In bargaining, non-Pareto-improving changes to protocol might signal weakness.
- ▶ In political economy, non-Pareto-improving changes may face holdouts from some.

This paper: mechanism design + Pareto improvement constraints.

Alternative interpretation: characterization of Pareto frontier for mechanisms.

- "Pareto undominatedness" seems like a weak criterion to impose on mechanisms.
- We show that such a criterion can sometimes impose considerable structure.

References

- Акваrрour, M. (P. Dworczak (S. D. Kominers (2024): "Redistributive Allocation Mechanisms," *Journal of Political Economy*, 132, 1831–1875.
- AMADOR, M., AND K. BAGWELL (2013): "The Theory of Optimal Delegation With an Application to Tariff Caps," *Econometrica*, 81, 1541–1599.
- An, M. Y. (1998): "Logconcavity versus Logconvexity: A Complete Characterization," *Journal of Economic Theory*, 80, 350–369.
- BAGNOLI, M., AND T. BERGSTROM (2005): "Log-Concave Probability and Its Applications," *Economic Theory*, 26, 445–469.
- BARON, E. J., R. LOMBARDO, J. RYAN, J. SUH, AND Q. VALENZUELA-STOOKEY (2024): "Mechanism Reform: An Application to Child Welfare," *Working paper*.
- Bulow, J., and P. Klemperer (1999): "The Generalized War of Attrition," *American Economic Review*, 89, 175–189.

References

- ——— (2012): "Regulated Prices, Rent Seeking, and Consumer Surplus," *Journal of Political Economy*, 120, 160–186.
- Condorelli, D. (2012): "What Money Can't Buy: Efficient Mechanism Design With Costly Signals," *Games and Economic Behavior*, 75, 613–624.
- ——— (2013): "Market and Non-Market Mechanisms for the Optimal Allocation of Scarce Resources," *Games and Economic Behavior*, 82, 582–591.
- DWORCZAK, P. (r) S. D. KOMINERS (r) M. AKBARPOUR (2021): "Redistribution Through Markets," *Econometrica*, 89, 1665–1698.
- Dworczak, P., and E. V. Muir (2024): "A Mechanism-Design Approach to Property Rights," *Working paper*.
- Fuchs, W., and A. Skrzypacz (2015): "Government Interventions in a Dynamic Market with Adverse Selection," *Journal of Economic Theory*, 158, 371–406.

References

HARTLINE, J. D., AND T. ROUGHGARDEN (2008): "Optimal Mechanism Design and Money Burning," in *Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing*, 75–84.

KANG, Z. Y., AND M. WATT (2024): "Optimal In-Kind Redistribution," Working paper.

McAfee, R. P., and J. McMillan (1992): "Bidding Rings," American Economic Review, 82, 579–599.

Рęsкi, M. (2022): "Bargaining With Mechanisms," American Economic Review, 112, 2044–2082.

——— (2024): "Bargaining With Mechanisms: Two-Sided Incomplete Information," Working paper.

Strulovici, B. (2017): "Contract Negotiation and the Coase Conjecture: A Strategic Foundation for Renegotiation-Proof Contracts," *Econometrica*, 85, 585–616.