Algebra II Definitions

By Shun (@shun4midx)

Definitions

2-19-25 (Week 1): Rings and Modules (Quotient)

Today's notes assume R to be commutative

Statement 1.1. Given $R \in {}_R\mathcal{M}$, and $I \subseteq R$, we say I is a left **ideal** of $R \Rightarrow \boxed{R/I}$ is a <u>left R-module</u>

Definition 1.1. Let $I \subsetneq R$ be an **ideal**

- I is **maximum** if $\forall_R M \ni J \subsetneq R$, $I \subsetneq J \Rightarrow J = R$ (It's not the "biggest", it just is not comparable to anything bigger)
- I is **prime** is $\forall x, y \in R$, we have " $xy \in I \Rightarrow x \in I$ or $y \in I$ ", i.e. " $x \notin I$, $y \notin I \Rightarrow xy \notin I$ "

Definition 1.2. Here are some special terms:

- $a \in R$ is **nilpotent** if $\exists n \in \mathbb{N}$, s.t. $a^n = 0$ (i.e. a special type of <u>zero divisor</u>)
- **Reduced** = Having **no nonzero nilpotent** elements
- $\mathcal{H}_R = \{$ nilpotent elements of R $\}$ is called the nilradical of R (because it is $\sqrt{\{0\}}$)
- MaxR = max ideals of R
- SpecR = prime ideals of R
- $\sqrt{I}:=\{a\in R\mid \underline{a^n\in I} \text{ for some } n\in \mathbb{N}\}, \text{ it is called the } \mathbf{radical} \text{ of } I$

Definition 1.3. An **ideal** Q of R is **primary** if $Q \neq R$ and " $xy \in Q, x \notin Q \Rightarrow y^n \in Q$ for some $n \in \mathbb{N}$ "

Definition 1.4. Q is **P-primary** if Q is **primary** and $\sqrt{Q} = P$