Ejercicios Módulo 14

- 1. Dé un ejemplo de una TL $T: V \to W$ que sea
 - a. Uno a uno pero no sobre.
 - b. Sobreyectiva pero no uno a uno.
 - c. Uno a uno y sobreyectiva.
- 2. Demuestre que $T: M_{nm} \to M_{nm}$ definida por $T(A) = A^{T}$ es un isomorfismo.
- 3. Encuentre un isomorfismo entre D_n , matrices diagonales de orden n, y \mathbb{R}^n .
- 4. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida como $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Determine si T es un isomorfismo.
- 5. Para cada una de las siguientes transformaciones determine si es un isomorfismo a partir de la información dada.

a.
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
, $\rho_T = 4$.

b.
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
, $v_{(T)} = 2$.

c.
$$T: \mathbb{P}_2 \to \mathbb{P}_2, \ \nu_{(T)} = 1.$$

d.
$$T: \mathbb{P}_3 \to \mathbb{P}_3, \quad \rho_T = 4.$$

- 6. Sea $V = \mathbb{P}_4$ y $W = \{ p \in \mathbb{P}_5 : p(0) = 0 \}$. Demuestre que $V \cong W$.
- 7. Sea $T: \mathbb{P}_n \to \mathbb{P}_n$ tal que Tp(x) = xp'(x). Determine si T es un isomorfismo.
- 8. Demuestre que si $T: V \to W$ es un isomorfismo, entonces existe un isomorfismo $L: W \to V$ tal que $L(T(\mathbf{v})) = \mathbf{v}$. A L se le llama transformación inversa de T y se denota T^{-1} .
- 9. Demuestre que si $T : \mathbb{R}^n \to \mathbb{R}^n$ está definido por $T(\mathbf{x}) = A\mathbf{x}$ y T es un isomorfismo, entonces T^{-1} está dado por $T^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}$.

10. Sea $T : \mathbb{R}^3 \to \mathbb{R}^3$ una TL dada por $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + 4y - 6z \\ 5y - 2z \\ 9z \end{bmatrix}$.

Demuestre que T es un isomorfismo y determine T^{-1} .

11. Sea $T: M_{n \times n} \to M_{n \times n}$ la transformación lineal dada por T(A) = BA, donde B es una matriz fija de orden B. Demuestre que B es un isomorfismo si y sólo si B es una matriz invertible. En tal caso, describa B.