1. Let $B = \langle 1, x, x^2 \rangle$ and $C = \langle 1, 1+x, 1+x+x^2 \rangle$ be bases for \mathcal{P}_2 . Which of the following matrices changes representations with respect to B into representations with respect to C?

$$\begin{array}{cccc}
(A) & \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\end{array}$$

$$\begin{array}{cccc}
(\mathsf{B}) & \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}
\end{array}$$

(C) Neither of the above.

2. Consider the matrix

$$A = \begin{pmatrix} 3 & 1 & 4 \\ 2 & -1 & 1 \\ 0 & 0 & 4 \end{pmatrix}.$$

For which bases B and C of \mathcal{P}_2 is $A = \text{Rep}_{B,C}(\text{id})$?

(A)
$$B = \langle 3 + 2x, 1 - x, 4 + x + 4x^2 \rangle$$
, $C = \langle 1, x, x^2 \rangle$

(B)
$$B = \langle 5 + 2x, -x, 9 + 5x + 4x^2 \rangle$$
, $C = \langle 1, 1 + x, 1 + x + x^2 \rangle$

- (C) Both (A) and (B)
- (D) Neither (A) nor (B)

2. Consider the matrix

$$A = \begin{pmatrix} 3 & 1 & 4 \\ 2 & -1 & 1 \\ 0 & 0 & 4 \end{pmatrix}.$$

For which bases B and C of \mathcal{P}_2 is $A = \text{Rep}_{B,C}(\text{id})$?

(A)
$$B = \langle 3 + 2x, 1 - x, 4 + x + 4x^2 \rangle$$
, $C = \langle 1, x, x^2 \rangle$

(B)
$$B = \langle 5+2x, -x, 9+5x+4x^2 \rangle$$
, $C = \langle 1, 1+x, 1+x+x^2 \rangle$

- (C) Both (A) and (B)
- (D) Neither (A) nor (B)

Follow-up. If $C = \langle 1 + 2x, 1 - 2x, x^2 \rangle$, what must B be so that $A = \text{Rep}_{B,C}(\text{id})$?

There exists a matrix A such that

$$A \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $A \begin{pmatrix} 2 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

If a square matrix A is similar to another square matrix B, then A^2 is also similar to B^2 .

The following two matrices are similar.

$$\begin{pmatrix}
0 & 0 \\
0 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
3 & 0 \\
0 & 4
\end{pmatrix}$$

The following two matrices are similar.

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \quad \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$$