How to Elect a Leader Faster than a Tournament

Dan Alistarh, Rati Gelashvili, Adrian Vladu PODC 2015

Presenter: Lily Li

CSC 2221: Introduction to Distributed Algorithms

30 November 2017

Results New and Old

Tournament Tree

Step Complexity: O(log n)

Message Complexity: $O(n^2 \log n)$

Results New and Old

Tournament Tree

Step Complexity: O(log n)

Message Complexity: $O(n^2 \log n)$

Poison Pill

Step Complexity: O(log*n)

Message Complexity: $O(n^2)$

Results New and Old

Tournament Tree

Step Complexity: O(log n)

Message Complexity: $O(n^2 \log n)$

Poison Pill

Step Complexity: O(log*n)

Message Complexity: $O(n^2)$

Lower bound: $\Omega(n^2)$

Local Variables and Communication Primitives

Local variables of process p_i :

- S_i : records the states of all observed processes
- V_i : view stores the state vectors received from other processes

Local Variables and Communication Primitives

Local variables of process p_i :

- S_i : records the states of all observed processes
- V_i : view stores the state vectors received from other processes

High-Level Protocol **COMMUNICATE** (where p is a procedure which broadcasts a message and wait for a response):

Executes p and waits for $\left\lceil \frac{n}{2} \right\rceil + 1$ processes to respond before proceeding.

p can be broadcast (v) or collect () where

- 1. If p_i receives broadcast (v) from p_i , store $S_i[i] \leftarrow v$ and send $p_i \langle ack \rangle$.
- 2. If p_j receives collect () from p_i , send $p_i \langle S_j \rangle$.

Local Variables and Communication Primitives

Local variables of process p_i :

- S_i : records the states of all observed processes
- V_i : view stores the state vectors received from other processes

High-Level Protocol **COMMUNICATE** (where p is a procedure which broadcasts a message and wait for a response):

Executes p and waits for $\left\lceil \frac{n}{2} \right\rceil + 1$ processes to respond before proceeding.

p can be broadcast (v) or collect () where

- 1. If p_i receives broadcast (v) from p_i , store $S_i[i] \leftarrow v$ and send $p_i \langle ack \rangle$.
- 2. If p_j receives collect () from p_i , send $p_i \langle S_j \rangle$.

random(r): outputs 1 with probability r and 0 with probability 1-r.

```
Algorithm 1. Code for process p_i during one phase.

1: Initialize: S_i = [w,...,w], V_i = EMPTY

2: S_i[i] = c

3: COMMUNICATE < broadcast (S_i[i]) >

4: S_i[i] = random (1/sqrt(n))

5: COMMUNICATE < broadcast (S_i[i]) >

6: V_i = COMMUNICATE < collect() >

7: if (S_i[i] = 0 and exists k: p_k is active)

8: return 0

9: return 1
```

Claim 1. If all processes return then at least one will output 1.

- Claim 1. If all processes return then at least one will output 1.
- Claim 2. The expected number of processes which output 1 is $O(\sqrt{n})$.

- Claim 1. If all processes return then at least one will output 1.
- Claim 2. The expected number of processes which output 1 is $O(\sqrt{n})$.
- **Lemma 1.** If a process receives 1 from random at time t, then all processes which received 0 from random at any time $\geq t$ will return 0.

...to Recap

- processes commit to an action before performing the action
- the probability of surviving each round changes dynamically

...to Recap

- processes commit to an action before performing the action
- the probability of surviving each round changes dynamically

...the Result

 $O(log^*n)$ step complexity and $O(n^2)$ message complexity.

...to Recap

- processes commit to an action before performing the action
- the probability of surviving each round changes dynamically

...the Result

 $O(log^*n)$ step complexity and $O(n^2)$ message complexity.

This randomized algorithm can be used to solve the tight renaming problem in $O(log^2n)$ steps using $O(n^2)$ messages.