4/23/24, 3:41 PM

Campus Corporate Connect
The most trusted training partner in India

Challenges VENKATA SAI SATHVIK

CCC

Welcome!
VENKATA SAI SATHVIK KUNA
SRM IST, KTR

My Assessment

← SRMIST KTR - PO 2025 CPS 03 - Day 5 AN Quiz · 15 mins

1. A graph having an edge from each vertex to every other vertex is called a
 Tightly Connected
○ Strongly Connected
○ Weakly Connected
○ Loosely Connected
2. What is the number of unlabeled simple directed graph that can be made with 1 or 2 vertices?
\bigcirc 2
4
O 5
O 7
3. Floyd Warshall Algorithm used to solve the shortest path problem has a time complexity of
○ O(V*V)

VENKATA SAI SATHVIK Challenges

○ O(E*V)
○ O(E*E)
4. All Graphs have unique representation on paper.
○ True
False
5. Assuming value of every weight to be greater than 10, in which of the following cases the shortest path of a directed weighted graph from 2 vertices u and v will never change?
○ add all values by 10
 subtract 10 from all the values
multiply all values by 10
○ in both the cases of multiplying and adding by 10
6. What is the maximum possible number of edges in a directed graph with no self loops having 8 vertices?
O 28
O 64
O 256
56
7. What is the maximum number of edges present in a simple directed graph with 7 vertices if there exists no cycles in the graph?

CCC

https://student.ccc.training/start-quiz/661d175e698de69b093a703a?publishId=66272eaa0d20c6fa3e1f5590

21

The most trusted training partner in India

Campus Corporate Connect
The most trusted training partner in

The most trusted training partner in India

O 6
O 49
8. The number of possible undirected graphs which may have self loops but no multiple edges and have n vertices is
○ 2 ^{((n*(n-1))/2)}
○ 2 ^{((n*(n+1))/2)}
○ ₂ ((n-1)*(n-1))/2)
② ((n*n)/2)
9. Given a plane graph, G having 2 connected component, having 6 vertices, 7 edges and 4 regions. What will be the number of connected components?
\bigcirc 1
2
\bigcirc 3
\bigcirc 4
10. Number of vertices with odd degrees in a graph having a eulerian walk is
\bigcirc 0
○ Can't be predicted
2

11 PM		ccc		
CCC	Campus Corpo The most trusted	rate Connect training partner in India	Challenges	VENKATA SAI SA
		 11. How many of the following statements are correct? i) All cyclic graphs are complete graphs. ii) All complete graphs are cyclic graphs. iii) All paths are bipartite. iv) All cyclic graphs are bipartite. 		
		v) There are cyclic graphs which are complete.		
		\bigcirc 1		
		2		
		O 3		
		O 4		
		12. What is the number of vertices of degree 2 in a path graph having n vertices, here n>2		
		n-2		
		\circ n		
		\bigcirc 2		
		\bigcirc 0		

13. What would the time com	plexity to check if an undirected	graph with V vertices and E eda	ges is Bipartite or not giver	its adjacency matrix?
-----------------------------	-----------------------------------	---------------------------------	-------------------------------	-----------------------

○ O(E*E)

O(V*V)

○ O(E)

○ O(V)

○ n(n-1)/2			
○ 2n			
○ n!			
⊙ 2n(n-1)/2			
15. Consider an undirected ra	d random graph of eight vertices. The probability that there is an edge between a p	pair of vertices is 1/2. What is the expected number of unorc	dered cycles of length three?
O 1/8			
○ 1			
7			
O 8			

Submit

We partner & train students primarily from premier Institutes in India

Students from 135 Institutions / Universities have benefitted from our trainings

CCC

Our Alumni work at the best companies in the world

Our 521008+ alumni have got placed in 758 companies with 1.22Crs as highest package

730+ more Companies

CONTESTS

Copyright © 2022 CCC.Training

Contact: info@ccc.training