Производная. Дифференциал функции

Задача о проведении касательной к кривой

Пусть заданная кривая является графиком непрерывной функции $y = f(x), x \in [a,b],$

и требуется провести касательную к этой кривой в точке $x_0 \in (a,b)$.

Заметим, что **касательная** — это прямая, получающаяся в пределе из хорд, проходящих через точки $(x_0, f(x_0))$ и $(x_0 + \Delta x, f(x_0 + \Delta x))$, когда $\Delta x \to 0$. Уравнение хорды (прямой, проходящей через две заданные различные точки) имеет вид:

$$\frac{x - x_0}{x_0 + \Delta x - x_0} = \frac{y - f(x_0)}{f(x_0 + \Delta x) - f(x_0)} \quad \text{или}$$

$$y = f(x_0) + \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} (x - x_0)$$

Делая предельный переход при $\Delta x \rightarrow 0$, получим угловой коэффициент касательной:

$$k = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Итак, $k = tg\alpha$, где α – угол, образованный касательной с положительным направлением оси OX .

Очевидно, что существуют непрерывные кривые, в некоторых точках которых провести касательную невозможно.

Возникает вопрос: какое условие нужно наложить на функцию f(x) в окрестности точки c, чтобы в соответствующей точке можно было провести касательную к графику этой функции.

Определение. Функция y = f(x) называется дифференцируемой в точке x_0 , если ее приращение $\Delta f = f(x_0 + \Delta x) - f(x_0)$ представимо в виде $\Delta f = A\Delta x + \beta$, причем A – константа, $\beta = o(\Delta x)$ – бесконечно малая функция, более высокого порядка малости, чем Δx , то есть $\lim_{\Delta x \to 0} \frac{\beta}{\Delta x} = 0$.

Установим значение A, для чего вычислим

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \left[A + \frac{\beta}{\Delta x} \right] = A.$$

Назовем число A **производной** функции y = f(x) в точке x_0 и обозначим ее $f'(x_0)$, в результате получаем определение производной:

Определение. Производной функции y = f(x) в точке x_0 называются предел отношения приращения функции к приращению аргумента при стремлении к нулю приращения аргумента и обозначают $f'(x_0)$, т.е.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} .$$

И, кроме того,

$$\Delta f = f'(x_0) \Delta x + o(\Delta x).$$

Как было сказано выше, второе слагаемое в выражении приращения функции — величина более высокого порядка малости, чем величина Δx , а следовательно, и чем

величина $f'(x_0)\Delta x$. Другими словами, первое слагаемое в выражении приращения функции представляет основную часть приращения функции. Называют его **дифференциалом функции** y = f(x) в точке x_0 и обозначают

$$df(x_0) = f'(x_0) \Delta x.$$

В целях единообразия и для того, чтобы подчеркнуть, что Δx — бесконечно малая величина, приращение аргумента Δx в этой формуле обозначают dx. Тогда

$$df = f'(x)dx,$$

 $df = f'(x)dx\,,$ откуда следует второе обозначение производной $f'(x) = \frac{df}{dx}\,.$

Связь между приращением функции и ее дифференциалом.

Геометрический смысл производной.

Производная функции y=f(x) в точке x_0 равна тангенсу угла наклона касательной к кривой y=f(x) в точке $(x_0,f(x_0))$.

Физический смыслом производной.

Пусть материальная точка движется вправо вдоль некоторой прямой начиная от точки 0

Путь S, проходимый точкой за время t, является функцией времени S=S(t). Это соотношение называется *законом движения* точки. Пусть в момент времени t_0 движущаяся точка находилась в положении A, а в момент времени $t_0+\Delta t-$ в положении B. За промежуток времени Δt (от t_0 до $t_0+\Delta t$) точка прошла путь $|AB|=S(t_0+\Delta t)-S(t_0)=\Delta S$. Средняя скорость движения v_{cp} за промежуток времени Δt определяется отношением пройденного

пути ко времени $v_{cp}=\frac{\Delta S}{\Delta t}$. Если движение равномерное, то средняя скорость постоянная. Если же движение неравномерное, то средней скорости уже не достаточно для характеристики быстроты движения на различных участках пути. Поэтому вводится понятие *мгновенной скорости* прямолинейного движения (или скорости в данный момент времени t) как предел средней скорости при $\Delta t \to 0$:

$$v(t_0) = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \lim_{\Delta t \to 0} \frac{S(t_0 + \Delta t) - S(t_0)}{\Delta t}$$

скорость v прямолинейного движения материальной точки в момент времени t есть производная от функции пути S(t) по времени t.

$$v(t) = S'(t)$$

Производительность труда.

Рассмотрим еще одну задачу. Обозначим через u=u(t) количество произведенной продукции за время t. Рассмотрим два момента времени: t_0 и $t_0+\Delta t$. За период времени Δt (от t_0 до $t_0+\Delta t$) будет произведено $\Delta u=u(t_0+\Delta t)-u(t_0)$ продукции. Тогда средняя производительность труда за период Δt равна $z_{cp}=\frac{\Delta u}{\Delta t}$. Производительность труда в момент t_0 можно определить как предельное значение средней производительности при $\Delta t \to 0$:

$$z = \lim_{\Delta t \to 0} z_{cp} = \lim_{\Delta t \to 0} \frac{\Delta u}{\Delta t} = \lim_{\Delta t \to 0} \frac{u(t_0 + \Delta t) - u(t_0)}{\Delta t}$$

производительность труда в момент времени t есть производная от функции произведенной продукции u(t) по времени.

$$z(t) = u'(t)$$

Уравнение касательной и нормали к кривой.

Нормалью к кривой называется прямая, проходящая через точку касания перпендикулярно касательной

Получим уравнение касательной и нормали к графику функции y = f(x). Если прямая проходит через точку $M_0(x_0,y_0)$ и имеет угловой коэффициент-k, то ее уравнение можно записать в виде:

$$y = y_0 + k(x - x_0)$$

Так как для касательной $k_{kac}=f'(x_0)$, и $y_0=f(x_0)$, то *уравнение касательной* имеет вид:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Если угловой коэффициент касательной $k_{\rm kac}={\rm tg}\alpha$, то угловой коэффициент нормали $k_i={\rm tg}\beta$. Угол β является внешним для прямоугольного треугольника AM_0B (A и B, соответственно, точки пересечения касательной и нормали с осью абсцисс). Согласно теореме геометрии, внешний угол треугольника равен сумме двух внутренних, не смежных с ним, т.е.

$$eta = lpha + \angle AM_0B = lpha + rac{\pi}{2}$$
. Тогда

$$k_i = \operatorname{tg}\beta = \operatorname{tg}\left(\frac{\pi}{2} + \alpha\right) = -\operatorname{ctg}\alpha = -\frac{1}{\operatorname{tg}\alpha} = -\frac{1}{k_{kac}}$$

Следовательно, $k_{_{\scriptscriptstyle H}} = -\frac{1}{f'(x_{_{\scriptscriptstyle 0}})}$ и *уравнение нормали* имеет вид:

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0)$$

Теорема. Дифференцируемая в точке x_0 функция непрерывна в этой точке.

Доказательство:

Дано, что функция дифференцируема в точке x_0 , то есть $\Delta f = f'(x_0)\Delta x + o(\Delta x)$. Докажем, что функция будет непрерывна в точке x_0 . Для этого вычислим предел:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \Delta f(x_0) = \lim_{\Delta x \to 0} \left(f'(x_0) \Delta x + o(\Delta x) \right) = 0.$$

Получили, что $\lim_{\Delta x \to 0} \Delta y = 0$, то есть согласно определению непрерывности функции в точке – функция f(x) непрерывна в точке x_0 .

Чтд.

Если из условия непрерывности функции следует, что приращение функции Δy бесконечно малая при $\Delta x \to 0$, то из условия дифференцируемости получается, что Δy бесконечно малая одного порядка малости с Δx .

Вычисление производной называют дифференцированием функции.

Правила дифференцирования

Пусть даны функции u = u(x) и v = v(x). Докажем следующие правила дифференцирования:

1. Производная суммы функций есть сумма производных этих функций

$$(u+v)'=u'+v'$$

Доказательство: Пусть функция $\Phi(x) = u(x) + v(x)$, тогда

$$\Delta\Phi(x) = \Phi(x + \Delta x) - \Phi(x)$$
 или

$$\Delta\Phi(x) = \underline{u(x + \Delta x)} + v(x + \Delta x) - (\underline{u(x)} + v(x)) = \Delta u + \Delta v.$$

Очевидно,

$$(u+v)' = \Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u + \Delta v}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = u' + v'$$

Чтд.

$$2. \quad (uv)' = u' v + u v'.$$

Доказательство:

Пусть
$$\Phi(x) = u(x)v(x)$$
, тогда
$$\Delta\Phi(x) = \Phi(x+\Delta x) - \Phi(x)$$
 или
$$\Delta\Phi(x) = u(x+\Delta x)\cdot v(x+\Delta x) - u(x)\cdot v(x)$$

Прибавим и вычтем из равенства выражение $u(x + \Delta x) \cdot v(x)$, тогда получим:

$$\Delta\Phi(x) = u(x + \Delta x) \cdot v(x + \Delta x) - u(x + \Delta x) \cdot v(x) + u(x + \Delta x) \cdot v(x) - u(x) \cdot v(x) =$$

$$= u(x + \Delta x) \cdot (v(x + \Delta x) - v(x)) + v(x) \cdot (u(x + \Delta x) - u(x)) =$$

$$= u(x + \Delta x) \cdot \Delta v + v(x) \cdot \Delta u$$

Очевидно,

$$(uv)' = \Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{u(x + \Delta x) \cdot \Delta v + v(x) \cdot \Delta u}{\Delta x} = \lim_{\Delta x \to 0} \left(u(x + \Delta x) \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} \right) = uv' + vu'$$

Чтд.

$$3. \quad \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

Доказательство:

Пусть
$$\Phi(x) = \frac{u(x)}{v(x)}$$
, тогда

$$\Delta\Phi(x) = \frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}$$

Приведем к общему знаменателю:

$$\Delta\Phi(x) = \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{v(x) \cdot v(x + \Delta x)}$$

Прибавим и вычтем в числителе выражение u(x)v(x), тогда получим:

$$\Delta\Phi(x) = \frac{u(x+\Delta x)v(x) - u(x)v(x) + u(x)v(x) - u(x)v(x+\Delta x)}{v(x) \cdot v(x+\Delta x)} =$$

$$= \frac{v(x)(u(x+\Delta x) - u(x)) - u(x)(v(x+\Delta x) - v(x))}{v(x) \cdot v(x+\Delta x)} =$$

$$= \frac{v(x)\Delta u - u(x)\Delta v}{v(x) \cdot v(x+\Delta x)}$$

Очевидно, что

$$\left(\frac{u}{v}\right)' = \Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{v(x)\Delta u - u(x)\Delta v}{v(x) \cdot v(x + \Delta x)\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\frac{v(x)\Delta u}{v(x) \cdot v(x + \Delta x)\Delta x} - \frac{u(x)\Delta v}{v(x) \cdot v(x + \Delta x)\Delta x}\right) =$$

$$= \lim_{\Delta x \to 0} \left(\frac{v(x)\frac{\Delta u}{\Delta x}}{v(x) \cdot v(x + \Delta x)} - \frac{u(x)\frac{\Delta v}{\Delta x}}{v(x) \cdot v(x + \Delta x)}\right) = \frac{v(x)u'(x)}{v(x) \cdot v(x)} - \frac{u(x)v'(x)}{v(x) \cdot v(x)} =$$

$$= \frac{u'v - v'u}{v^2}.$$

Чтд.

4.
$$(C \cdot u(x))' = C \cdot u'$$
, где $C = const.$

Доказательство:

Пусть
$$\Phi(x) = C \cdot u(x)$$
, тогда

$$\Delta\Phi(x) = C \cdot u(x + \Delta x) - C \cdot u(x) = C \cdot (u(x + \Delta x) - u(x)) = C \cdot \Delta u$$

Очевидно, что

$$(C \cdot u(x))' = \Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{C \cdot \Delta u}{\Delta x} = C \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = C \cdot u'.$$

Чтд.

5. Пусть функция y = f(x) дифференцируема в точке x_0 , $f(x_0) = y_0$. Пусть функция z = g(y) дифференцируема в точке y_0 . Тогда сложная функция $z = g(f(x)) = \Phi(x)$ дифференцируема в точке x_0 , причем

$$\Phi'(x_0) = g'(y_0) \cdot f'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Доказательство:

$$\Phi'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta \Phi}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta y} \cdot \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{\Delta g}{\Delta y} \cdot \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = g'(y_0) \cdot f'(x_0).$$

Чтд.