3D Estimator for Hyperbolic Location

Liu Bo

16308073

01.11, 2018

Brief Introduction Introduction Solution

Brief Introduction Introduction

Introduction

► TDOA

The idea of locating a mobile source by TDOA technology is to determine the TDOA value of multiple sets of sensors in three-dimensional space and then to find the distance difference between a mobile source and every two base stations, which make up a set of information about the location of the mobile source Hyperbolic equations, by solving these equations, we can find the coordinates of the mobile source location.

- Arbitrary and Linear Array of the sensors In a 3-D plane, the sensors will be set to the two kinds
- Solution
 Taylor-series, chan, CRLB, SI

Brief Introduction

Introduction

Solution

Taylor-seriesWe first get the Gt and the ht

$$ht = \begin{bmatrix} r_{2,1} - (r_2 - r_1) \\ r_{3,1} - (r_3 - r_1) \\ & \cdots \\ r_{M,1} - (r_M - r_1) \end{bmatrix}$$

Taylor-seriesWe first get the Gt and the ht

$$ht = \begin{bmatrix} r_{2,1} - (r_2 - r_1) \\ r_{3,1} - (r_3 - r_1) \\ & \cdots \\ r_{M,1} - (r_M - r_1) \end{bmatrix}$$

So we can get the x and y deviation

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = (G_t^T Q^{-1} G_t)^{-1} G_t^T Q^{-1} h_t$$

Chan First we get the z_a

$$z_{a} = (G_{a}^{T} \psi^{-1} G_{a})_{-1} G_{a}^{T} \psi^{-1} h$$
 (1)

Then is the z_a' :

$$z_a' = (G_a'^T \psi'^{-1} G_a')^{-1} G_a'^T \psi'^{-1} h'$$
 (2)

So we get the Zp as

$$z_p = -\sqrt{z_a'} + \left[\begin{array}{c} x_1 \\ y_1 \\ z_1 \end{array} \right]$$

when it is linear we use

$$w_{l} = (G_{l}^{T})\psi^{-1}G_{l})^{-1}G_{l}^{T}\psi^{-1}h$$
(3)

CRLB First we get the B"

$$B'' = \begin{bmatrix} (x^0 - x_1) & 0 & 0 \\ 0 & (y^0 - y_1) & 0 \\ 0 & 0 & (z^0 - z_1) \end{bmatrix}$$

So

$$\Phi = c^2 B'' G_a^{\prime T} B^{\prime - 1} G_a^{0T} B^{-1} Q^{-1} B - 1 G_a^0 B^{\prime - 1} G_a^{\prime} B'')^{-1}$$
 (4)

When the CRLB linear

$$\Phi = c^2 (T^T G_l^{0T} B^{-1} Q^{-1} B^{-1} G_l^{0T})^{-1}$$
 (5)

Four sensors situationThere is a special formula to solve it:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x_{2,1} & y_{2,1} & z_{2,1} \\ x_{3,1} & y_{3,1} & z_{3,1} \\ x_{4,1} & y_{4,1} & z_{4,1} \end{bmatrix}^{-1} \left\{ \begin{bmatrix} r_{2,1} \\ r_{3,1} \\ r_{4,1} \end{bmatrix} r_1 + \frac{1}{2} \begin{bmatrix} r_{2,1}^2 - K_2 + K_1 \\ r_{3,1}^2 - K_3 + K_1 \\ r_{4,1}^2 - K_4 + K_1 \end{bmatrix} \right\}$$

When it comes to linear

$$-2x_{i,1}(x+az)-2y_{i,1}(y+bz)-2r_{i,1}r_1=r_{i,1}^2-K_i+K_1$$

Brief Introduction Introduction Solution

Arbitrary and Linear

Table 1							
MSE	Ж =4	M =5	M=6	M =7	M=8		
SI		0.00126	0.00018				
Chan_3D	0.00799	0.01292	0.01139	0.00801	0.00783		
Taylor	0.00080	0.00051	0.00016	0.00008	0.00007		
CRLB	0.00270	0.00185	0.00137	0.00087	0.00086		

Figure: Arbitrary result

Table 2 (linear)								
MSE	M=4	M=5	M=6	M=7	M=8			
Chan_3D	0.00004	0.00124	0.00123	0.00138	0.00130			
Taylor	0.00219	0.00127	0.00121	0.00118	0.00107			
CRLB	0.11525	0.10188	0.10182	0.05794	0.04431			

Figure: Linear result

taylor

Simulation chan

4sensors

SI

CRLB threshing effect

Figure: CRLB threshing effect

Conclusion

- ▶ The linear array has a less MSE than the arbitrary.
- ► Chan perform better than Taylor and SI. And the CRLB acts as the theoretical standard.

END I

Thanks for watching!

16308073 Sun Yet-Sen University.

Reference

"A simple and efficient estimator for hyperbolic location."