

PRÉ-RELATÓRIO DE ELETRÔNICA 1

Laboratório 2 - Retificadores de Meia Onda

Franciellen Thurler Freire Allemão Sergio Pedro Rodrigues Oliveira Victor Hugo Queiroz

29 outubro 2023

SUMÁRIO

1	OB	JETIV	0	1
2	PR	EPAR.	ATÓRIO	2
	2.1		cador de meia onda sem capacitor na saída	2
				2
		2.1.2	Cálculo da tensão média $(V_{M\acute{e}d})$ na saída	4
		2.1.3	Cálculo da potência média $(P_{M\acute{e}d})$ que a resistência da saída deverá dissipar nos casos	4
		2.1.4	A tensão de pico inversa (PIV) suportada pelo diodo 1N4148 (indicada pelo fabricante)	4
	2.2	Retific	cador de meia onda com capacitor na saída	5
		2.2.1	Pesquisa da tensão de pico-a-pico da ondulação (Ripple)	5
		2.2.2	Cálculo do valor númerico da ondulação de pico-a-pico, nos casos $R_L=4.7k\Omega$ e	
			$R_L=47k\Omega$ e comparação com os valores simulados no $LTSpice$	5
		2.2.3	Simulações do LTSpice	6
3	BIE	BLIOG	RAFIA	8

LISTA DE FIGURAS

1	Circuito com resistor (R_L) de $47K$	2
2	Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de $47K$	2
3	Circuito com resistor (R_L) de 4.7 K	3
4	Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de $4.7K.$	3
5	Circuito retificador de meia onda com $R_L=4.7K$ e com capacitor de saída	6
6	Simulação no LTSpice das tensões de entrada e saída do retificador de meia onda com	
	$R_L = 4.7K$ e com capacitor de saída	6
7	Circuito retificador de meia onda com $R_L=47K$ e com capacitor de saída	7
8	Simulação no $LTSpice$ das tensões de entrada e saída do retificador de meia onda com $R_L=47K$	
	e com capacitor de saída.	7

LISTA DE TABELAS

1	Valor da potência média para cada resistência.	4
2	Valores da tensão de ondulação encontradas pela simulação no LTSpice	ļ
3	Comparando valores teóricos de Vrpp com valores encontados na simulação do LTSpice para o	
	Vrpp	ŀ

1 OBJETIVO

Familiarizar-se com as aplicações básicas dos diodos de junção. Especificamente implementar e obter resultados experimentais do retificador de meia onda com e sem capacitor de saída.

2 PREPARATÓRIO

2.1 Retificador de meia onda sem capacitor na saída

- 2.1.1 Tensões de entrada e saída simulações.
 - $R_L = 47K\Omega$

Figure 1: Circuito com resistor (R_L) de 47K.

Figure 2: Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de 47K.

• $R_L = 4.7K\Omega$

Figure 3: Circuito com resistor (R_L) de 4.7K.

Figure 4: Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de 4.7K.

2.1.2 Cálculo da tensão média $(V_{M\acute{e}d})$ na saída

$$V_{M\acute{e}d} = (V_M - V_K) \cdot (0,318) \tag{1}$$

$$V_{M\acute{e}d} = (21, 21 - 0, 70) \cdot (0, 318) \tag{2}$$

$$V_{M\acute{e}d} = 6,52V \tag{3}$$

2.1.3 Cálculo da potência média $(P_{M\acute{e}d})$ que a resistência da saída deverá dissipar nos casos

- 1. $R_L = 4.7k\Omega$
- 2. $R_L = 47k\Omega$
- Fórmula da potência média:

$$P_{M\acute{e}d} = \frac{(V_m - V_k)^2}{2 \cdot R} \tag{4}$$

Para os cálculos foi usado $V_k \approx 0.7V$.

Logo,

Table 1: Valor da potência média para cada resistência.

Resistências(K Ohm)	Potência média (mW)	
4.7	44.70	
47.0	4.47	

2.1.4 A tensão de pico inversa (PIV) suportada pelo diodo 1N4148 (indicada pelo fabricante)

A tensão de pico inversa do diodo (PIV ou PRV - Peak Reverse Voltage) é de grande importância nos projetos de retificação. Esta é a tensão máxima nominal do diodo que não deve ser ultrapassada na região de polarização reversa.

Segundo o fabricante (Anexo 1) a tensão de pico inversa (PIV ou PRV) do diodo 1N4148 é de 100V.

2.2 Retificador de meia onda com capacitor na saída

2.2.1 Pesquisa da tensão de pico-a-pico da ondulação (Ripple)

- Pesquisar como aproximar e calcular o valor de tensão pico-a-pico da ondulação (Ripple), em função de três variáveis:
 - Tensão de pico de entrada (V_m) ;
 - Resistência de saída (R_L) ;
 - Capacitor de saída (C_L) .
- Foi encontrado a equação 5, que satisfaz a pesquisa proposta:

$$V_{rpp} = \frac{V_m}{f \cdot C_L \cdot R_L} \tag{5}$$

2.2.2 Cálculo do valor númerico da ondulação de pico-a-pico, nos casos $R_L=4.7k\Omega$ e $R_L=47k\Omega$ e comparação com os valores simulados no LTSpice

Para resolver a equação 5, foi necessário calcular a tensão de pico (equação 6) e usar os dados fornecidos pelo experimento.

A tabela 2 apresenta os valores da tensão de ondulação máxima e mínima, obtidos através da simulação. Os resultados da aplicação da equação 5 estão apresentados na tabela 3.

$$V_m = V_{rms} \cdot \sqrt{2} \tag{6}$$

$$V_m = 21.21V \tag{7}$$

Dados fornecidos pelo experimento:

 $f = 60H_Z;$

 $C_L = 4.7 \mu F$.

Table 2: Valores da tensão de ondulação encontradas pela simulação no LTSpice.

Resistências (k Ohm)	Tensão mínima (V)	Tensão máxima (V)	
4.7	11.05	20.53	
47.0	19.24	20.60	

Table 3: Comparando valores teóricos de Vrpp com valores encontados na simulação do LTSpice para o Vrpp.

Resistências (k Ohm)	Vrpp Teórico (V)	Vrpp Simulado (V)	
4.7	16.0	9.48	
47.0	1.6	1.36	

2.2.3 Simulações do LTSpice

• $R_L = 4.7K\Omega$

Figure 5: Circuito retificador de meia onda com ${\cal R}_L=4.7K$ e com capacitor de saída.

Figure 6: Simulação no LTSpice das tensões de entrada e saída do retificador de meia onda com $R_L=4.7K$ e com capacitor de saída.

• $R_L = 47K\Omega$

Figure 7: Circuito retificador de meia onda com ${\cal R}_L=47K$ e com capacitor de saída.

Figure 8: Simulação no LTSpice das tensões de entrada e saída do retificador de meia onda com $R_L = 47K$ e com capacitor de saída.

3 BIBLIOGRAFIA