Computational problems

Recall public key encryption

Alice and Charlie can use the public key to encrypt messages, but only Bob can decrypt ciphertexts using the secret key

How does it work? How are the keys related to each other?

We use backdoor functions.

Examples:

- Factorization problem
- Discrete logarithm problem

RSA cryptosystem

Setup

1. Generate p, q prime numbers and compute $n = p \times q$

Setup

- 1. Generate p, q prime numbers and compute $n = p \times q$
- 2. Compute phi(n) = (p-1)(q-1)

Euler's totient function

Euler's totient function. Euler's theorem

$$Z_n = \{0, 1, 2, 3, ..., n-1\}$$

e.g.,
$$Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$Z_n^* = \{x \leftarrow Z_n \mid cmmdc(x, n) = 1\}$$
 e.g., $Z_{10}^* = \{1, 3, 7, 9\}$

e.g.,
$$Z_{10}^* = \{1, 3, 7, 9\}$$

Euler's totient function

$$phi(n) = |Z_n^*|$$

e.g., phi(10) =
$$|Z_{10}^*|$$
 = 4

Euler's theorem

For every $a \leftarrow Z_n^*$, $a^{phi(n)} = 1 \mod n$

1 ⁴	3 ⁴	74	94
1	81	2401	656 <mark>1</mark>

Key generation

- Generate p, q prime numbers and compute $n = p \times q$
- Compute phi(n) = (p-1)(q-1)
- Generate public exponent e s.t. e and phi(n) are relatively prime
- Compute private exponent d = e⁻¹ mod phi(n)

..otherwise, e is not invertible mod phi(n)

Key generation

- Generate p, q prime numbers and compute $n = p \times q$
- Compute phi(n) = (p-1)(q-1)
- Generate public exponent **e** s.t. **e** and **phi(n)** are relatively prime
- Compute private exponent d = e⁻¹ mod phi(n)

Public key: (e, n) Private key: (d, n)

Key generation

- Generate p, q prime numbers and compute $n = p \times q$
- Compute phi(n) = (p-1)(q-1)
- Generate public exponent **e** s.t. **e** and **phi(n)** are relatively prime
- Compute private exponent d = e⁻¹ mod phi(n)

Public key: (e, n) Private key: (d, n)

Encryption: $c = m^e \mod n$

Decryption: $c^d = (m^e)^d = m^{1+k*phi(n)} = m * m^{k*phi(n)} = m * (m^{phi(n)})^k = m * 1^k = m \mod n$

Ш

1 mod n ← Euler's theorem

Problem

Q: What happens if two principals use the same modulus *n*?

A: Each of them can recover the other principal's secret key

Let's solve the following exercise*:

$$PK_{Alice} = (e_A, n)$$
 $SK_{Alice} = (d_A, n)$
 $Compute$
 $PK_{Bob} = (e_B, n)$
 $SK_{Bob} = (d_B, n)$

$$p, q$$
 $n = p * q$
 $phi(n) = (p-1) * (q-1)$
 e_A, d_A
 $e_A * d_A = 1 \mod phi(n)$

$$PK_{Alice} = (e_A, n)$$

 $SK_{Alice} = (d_A, n)$

p, q
n = p * q
phi(n) = (p-1) * (q-1)

$$e_B, d_B$$

 $e_B * d_B = 1 \mod phi(n)$

$$PK_{Bob} = (e_B, n)$$

 $SK_{Bob} = (d_B, n)$

^{*}Solved exercise in the laboratory PDF document

Steps

```
Step 1:  (n, e_A, d_A) \rightarrow (p, q) \text{ i.e., factorize the modulus}
```

Step 2: compute phi(n) = (p-1)*(q-1)

Step 3: compute $d_B = e_B^{-1} \mod phi(n)$

Step 4: Bob's secret key is (d_R, n)