Fachhochschule Dortmund Fachbereich Informatik Prof. Dr. S. Kuhnt, Prof. Dr. J. Jakob

Klausur zum Modul 42073

Aufgabe 1: Deskriptive Statistik und Konfidenzintervalle (6+7+2) Punkte

Ein Pendler fährt mit einem Fernbus des Anbieters BusA oft von Oxford nach London. Er hat an zehn zufällig ausgewählten Tagen die tatsächliche Fahrtzeit festgehalten:

	1	2	3	4	5	6	7	9	9	10
Tag	+	-	-	OF	00	05	05	92	95	92
Tag Fahrzeit in Minuten	98	98	98	95	92	90	30	***	350	

- (a) Geben Sie die empirische Verteilungsfunktion $F_n(x)$ der Fahrtzeiten an und zeichnen Sie die Funktion.
- (b) Bestimmen Sie ein zweiseitiges 95%-Konfidenzintervall für die unbekannte mittlere Fahrtzeit in Minuten des Anbieters BusA.
- (c) Für den konkurrierenden Anbieter BusB wurde ebenfalls eine Stichprobe von $n_B=10$ Busfahrten von Oxford nach London erhoben. Dies lieferte $\bar{x}_B=93$ als arithmetisches Mittel und [80.818, 105.182] als 95%-Konfidenzintervall. Welchen Fernbusanbieter würden Sie nach dieser Datenanalyse wählen?

Hinweis: $t_{10,0.95} = 1.812$, $t_{9,0.975} = 2.262$, $z_{0.9} = 1.282$, $z_{0.95} = 1.645$

Aufgabe 2: Wahrscheinlichkeitsrechnung und Kombinatorik (9 + 2 + 4 Punkte)

(a) Gegeben seien die Wahrscheinlichkeiten

$$P(A) = 0.4, P(\overline{B}) = 0.65, P(A \cup B) = 0.7$$

Zeichnen Sie für jedes der Ereignisse

$$B$$
, $A \cap B$ und $\overline{A \cup \overline{B}}$

die zugehörige Fläche in ein Venn-Diagramm

Berechnen Sie dann für jedes der drei Ereignisse dessen Wahrscheinlichkeit.

- (b) Es gelte P(C) = 0.4 und $P(C \cup D) = 0.6$. Welchen Wert muss P(D) annehmen, damit C und D disjunkt sind?
- (c) Wie viele verschiedene "Wörter" mit 3 Buchstaben lassen sich aus den 6 Buchstaben a, b, c, d, e und f bilden, wenn jeder Buchstabe nur einmal verwendet werden darf? Die gebildeten "Wörter" müssen nicht unbedingt einen Sinn ergeben.

(9+6 Punkte)

Aufgabe 3: Zufallsvariablen

(a) Betrachten Sie die Funktion f(x) mit $a \in \mathbb{R}$:

x	0	1	2	4		
f(x)	0.2	0.2	a	a/2		

Für alle anderen Werte von x gilt f(x) = 0.

- (i) Geben Sie den Träger Ω von X an. Wie muss a gewählt werden, damit f(x) eine Wahrscheinlichkeitsdichte ist? Machen Sie alle weiteren Schritte mit der von Ihnen bestimmten Zahl a.
- (ii) Berechnen Sie Erwartungswert und Varianz von X.
 Geben Sie zudem P(X < 2) an.
- (b) Bei einem Kartenspiel erhalten Sie 10 der insgesamt 32 Karten. Es wird gezählt wie viele der insgesamt 4 Asse Sie erhalten. Betrachten Sie die Zufallsvariable X = "Anzahl an Assen". Welcher Verteilung folgt diese Zufallsvariable? Mit welcher Wahrscheinlichkeit erhalten Sie
 - (i) alle 4 Asse.
- (ii) kein Ass.
- (iii) mindestens 1 Ass.

Aufgabe 4: Hypothesentests

(10 + 5 Punkte)

(a) Die serienmäßige Herstellung eines bestimmten elektronischen Bauelements erfolgt nach Angaben des Produzenten mit einem Ausschussanteil von höchstens 2 %. Ein Kunde hat den Verdacht, dass der Ausschussanteil seiner Lieferung höher ist. Er entnimmt eine Stichprobe von n=625 Bauelementen, von denen insgesamt 16 defekt sind. Kann anhand dieser Stichprobe zum Signifikanzniveau 5 % die Aussage des Produzenten widerlegt werden? Führen Sie einen geeigneten statistischen Test durch. Geben Sie alle Bausteine des Tests explizit an.

Hinweis: $z_{0.95} = 1.645$, $z_{0.975} = 1.96$, $t_{15,0.95} = 1.753$, $t_{15,0.975} = 2.131$

(b) Gegeben ist folgender R-Output:

One Sample t-test

data: x

t = 0.99644, df = 16, p-value = 0.3339

alternative hypothesis: true mean is not equal to 20

- (i) Was für ein Test wurde durchgeführt? Welche Voraussetzung muss erfüllt sein, damit ein entsprechender Test durchgeführt werden darf?
- (ii) Geben Sie Null- und Alternativhypothese an.
- (iii) Welchen Umfang hatte die Stichprobe? Wie lautet der Wert der Teststatistik?
- (iv) Kann die Nullhypothese zu einem Signifikanzniveau von $\alpha=0.05$ abgelehnt werden? Begründen Sie Ihre Antwort anhand des gegebenen Outputs.