rank ne

A positive band is a conjugate of a positive standard generator.

A negative band is the inverse of a positive band.

- A band presentation for $x \in B_n$ is a tuple of bands $(\alpha_1 \sigma_{j_1}^{\epsilon_1} \alpha_1^{-1}, \dots, \alpha_k \sigma_{j_k}^{\epsilon_k} \alpha_k^{-1})$ of any length such that $x = \prod \alpha_i \sigma_{j_i}^{\epsilon_i} \alpha_i^{-1}$.

• The rank rk(x) is the minimal number of bands required to write a presentation.

The rank

- A positive band is a conjugate of a positive standard generator.
- A negative band is the inverse of a positive band.
- A band presentation for $x \in B_n$ is a tuple of bands

$$(\alpha_1 \sigma_{j_1}^{\epsilon_1} \alpha_1^{-1}, ..., \alpha_k \sigma_{j_k}^{\epsilon_k} \alpha_k^{-1})$$
 of any length such that $x = \prod_{i=1}^{\kappa} \alpha_i \sigma_{j_i}^{\epsilon_i} \alpha_i^{-1}$.

• The rank rk(x) is the minimal number of bands required to write a presentation.

Quotients give lower bounds

- For a surjective homomorphism $\phi: B_n \to H$:
 - A **band** in H is a conjugate of $\phi(\sigma_i)$
 - $rk_H(x)$ is then defined similarly and $rk_H(\phi(x)) \le rk(x)$.
 - Because $\phi(x)=\prod_{i=1}^k\phi(\alpha_i)\phi(\sigma_{j_i})^{\epsilon_i}\phi(\alpha_i)^{-1}$ gives a band presentation in H.