### DEPHASING

Dependence of the thresholds on the features of the graph:





### Ranking

| Lattice              | $\mathbf{Avg}\ d$ | $\mathbf{Avg}\ g$ | Even Threshold        | Odd Threshold         | Unified Threshold     |
|----------------------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| ete                  | 3.0               | 10.33             | $(1.135 \pm 0.002)\%$ | $(1.134 \pm 0.003)\%$ | $(1.134 \pm 0.002)\%$ |
| tfa                  | 3.33              | 8.0               | $(1.106 \pm 0.002)\%$ | $(1.105 \pm 0.002)\%$ | $(1.106 \pm 0.002)\%$ |
| mco                  | 3.33              | 8.0               | $(1.096 \pm 0.003)\%$ | $(1.098 \pm 0.003)\%$ | $(1.097 \pm 0.002)\%$ |
| ths                  | 3.0               | 10.67             | $(1.076 \pm 0.004)\%$ | $(1.078 \pm 0.004)\%$ | $(1.077 \pm 0.003)\%$ |
| unj                  | 4.0               | 6.5               | $(0.989 \pm 0.005)\%$ | $(0.989 \pm 0.005)\%$ | $(0.989 \pm 0.003)\%$ |
| $_{ m hms}$          | 4.0               | 6.0               | $(0.937 \pm 0.004)\%$ | $(0.931 \pm 0.006)\%$ | $(0.951 \pm 0.027)\%$ |
| bbr                  | 4.0               | 7.5               | $(0.92 \pm 0.005)\%$  | $(0.92 \pm 0.005)\%$  | $(0.92 \pm 0.003)\%$  |
| hst                  | 3.33              | 9.6               | $(0.912 \pm 0.002)\%$ | $(0.916 \pm 0.001)\%$ | $(0.914 \pm 0.001)\%$ |
| $\operatorname{mcf}$ | 4.0               | 6.0               | $(0.911 \pm 0.004)\%$ | $(0.91 \pm 0.004)\%$  | $(0.91 \pm 0.003)\%$  |
| pyr                  | 4.0               | 6.0               | $(0.898 \pm 0.004)\%$ | $(0.898 \pm 0.004)\%$ | $(0.898 \pm 0.003)\%$ |
| pte                  | 4.67              | 5.14              | $(0.876 \pm 0.008)\%$ | $(0.877 \pm 0.006)\%$ | $(0.877 \pm 0.005)\%$ |
| fsf                  | 5.0               | 5.0               | $(0.851 \pm 0.006)\%$ | $(0.851 \pm 0.008)\%$ | $(0.851 \pm 0.004)\%$ |
| rtw                  | 4.67              | 5.43              | $(0.835 \pm 0.003)\%$ | $(0.829 \pm 0.003)\%$ | $(0.833 \pm 0.002)\%$ |
| $\operatorname{cds}$ | 4.0               | 7.0               | $(0.822 \pm 0.023)\%$ | $(0.82 \pm 0.015)\%$  | $(0.822 \pm 0.014)\%$ |
| ttv                  | 4.29              | 4.8               | $(0.798 \pm 0.012)\%$ | $(0.795 \pm 0.012)\%$ | $(0.797 \pm 0.008)\%$ |
| vtx                  | 5.33              | 4.5               | $(0.785 \pm 0.005)\%$ | $(0.785 \pm 0.005)\%$ | $(0.785 \pm 0.003)\%$ |
| $\operatorname{sxd}$ | 6.0               | 4.33              | $(0.77 \pm 0.013)\%$  | $(0.769 \pm 0.014)\%$ | $(0.769 \pm 0.008)\%$ |
| pcu                  | 6.0               | 4.0               | $(0.755 \pm 0.007)\%$ | $(0.744 \pm 0.01)\%$  | $(0.759 \pm 0.013)\%$ |
| cbs                  | 6.0               | 4.0               | $(0.744 \pm 0.004)\%$ | $(0.742 \pm 0.004)\%$ | $(0.744 \pm 0.002)\%$ |
| $\operatorname{sda}$ | 6.0               | 4.33              | $(0.729 \pm 0.004)\%$ | $(0.728 \pm 0.004)\%$ | $(0.729 \pm 0.003)\%$ |
| $\operatorname{smt}$ | 6.0               | 4.67              | $(0.729 \pm 0.016)\%$ | $(0.73 \pm 0.014)\%$  | $(0.729 \pm 0.01)\%$  |
| swl                  | 7.0               | 3.71              | $(0.652 \pm 0.003)\%$ | $(0.655 \pm 0.002)\%$ | $(0.653 \pm 0.002)\%$ |
| vck                  | 7.0               | 3.71              | $(0.653 \pm 0.003)\%$ | $(0.653 \pm 0.003)\%$ | $(0.653 \pm 0.002)\%$ |
| lcy                  | 6.0               | 5.0               | $(0.635 \pm 0.007)\%$ | $(0.637 \pm 0.005)\%$ | $(0.636 \pm 0.004)\%$ |
| qtz-x                | 6.0               | 4.67              | $(0.606 \pm 0.006)\%$ | $(0.607 \pm 0.005)\%$ | $(0.606 \pm 0.003)\%$ |
| ftw                  | 6.0               | 4.0               | $(0.574 \pm 0.011)\%$ | $(0.575 \pm 0.01)\%$  | $(0.575 \pm 0.007)\%$ |
| $\operatorname{tph}$ | 6.86              | 4.0               | $(0.572 \pm 0.009)\%$ | $(0.575 \pm 0.004)\%$ | $(0.574 \pm 0.004)\%$ |
| $_{ m mab}$          | 6.0               | 5.33              | $(0.476 \pm 0.014)\%$ | $(0.474 \pm 0.014)\%$ | $(0.476 \pm 0.009)\%$ |
| mgc                  | 8.0               | 4.0               | $(0.388 \pm 0.018)\%$ | $(0.386 \pm 0.022)\%$ | $(0.387 \pm 0.013)\%$ |
| wst                  | 7.5               | 3.0               | $(0.295 \pm 0.015)\%$ | $(0.296 \pm 0.013)\%$ | $(0.296 \pm 0.009)\%$ |

Precision in terms of compute time:







 $\mathbf{bbr}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.92 \pm 0.005)\%$$

$$p_{odd} = (0.92 \pm 0.005)\%$$



$$p_{th} = (0.92 \pm 0.003)\%$$

 $\mathbf{cbs}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.742 \pm 0.004)\%$$



 $p_{th} = (0.744 \pm 0.002)\%$ 

 $\mathbf{cds}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.82 \pm 0.015)\%$$



 $p_{th} = (0.822 \pm 0.014)\%$ 

 $\mathbf{ete}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (1.135 \pm 0.002)\%$$

$$p_{odd} = (1.134 \pm 0.003)\%$$



 $p_{th} = (1.134 \pm 0.002)\%$ 

 $\mathbf{f}\mathbf{s}\mathbf{f}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.851 \pm 0.006)\%$$

$$p_{odd} = (0.851 \pm 0.008)\%$$



 $p_{th} = (0.851 \pm 0.004)\%$ 

 $\mathbf{ftw}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :





$$p_{th} = (0.575 \pm 0.007)\%$$

### $\mathbf{hms}$

Increase of the failure rate with error probability:



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



 $p_{odd} = (0.931 \pm 0.006)\%$ 



$$p_{th} = (0.951 \pm 0.027)\%$$

hst



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.916 \pm 0.001)\%$$



$$p_{th} = (0.914 \pm 0.001)\%$$

 $\mathbf{lcy}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.637 \pm 0.005)\%$$



 $p_{th} = (0.636 \pm 0.004)\%$ 

#### $_{\mathrm{mab}}$



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :





 $p_{th} = (0.476 \pm 0.009)\%$ 

 $\mathbf{mcf}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.911 \pm 0.004)\%$$

$$p_{odd} = (0.91 \pm 0.004)\%$$



 $p_{th} = (0.91 \pm 0.003)\%$ 

mco



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (1.098 \pm 0.003)\%$$



 $p_{th} = (1.097 \pm 0.002)\%$ 

mgc



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.386 \pm 0.022)\%$$



 $p_{th} = (0.387 \pm 0.013)\%$ 

pcu

Increase of the failure rate with error probability:



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



 $p_{odd} = (0.744 \pm 0.01)\%$ 



 $p_{th} = (0.759 \pm 0.013)\%$ 

pte



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.876 \pm 0.008)\%$$

$$p_{odd} = (0.877 \pm 0.006)\%$$



$$p_{th} = (0.877 \pm 0.005)\%$$

 $\mathbf{pyr}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.898 \pm 0.004)\%$$

$$p_{odd} = (0.898 \pm 0.004)\%$$



 $p_{th} = (0.898 \pm 0.003)\%$ 

### $\mathbf{qtz}$ - $\mathbf{x}$



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :





 $p_{th} = (0.606 \pm 0.003)\%$ 

rtw



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.829 \pm 0.003)\%$$



$$p_{th} = (0.833 \pm 0.002)\%$$

 $\mathbf{sda}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.728 \pm 0.004)\%$$



 $p_{th} = (0.729 \pm 0.003)\%$ 

 $\mathbf{smt}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.729 \pm 0.016)\%$$

$$p_{odd} = (0.73 \pm 0.014)\%$$



$$p_{th} = (0.729 \pm 0.01)\%$$

swl



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.655 \pm 0.002)\%$$



 $p_{th} = (0.653 \pm 0.002)\%$ 

 $\mathbf{sxd}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.77 \pm 0.013)\%$$

$$p_{odd} = (0.769 \pm 0.014)\%$$



 $p_{th} = (0.769 \pm 0.008)\%$ 

tfa



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (1.106 \pm 0.002)\%$$

$$p_{odd} = (1.105 \pm 0.002)\%$$



$$p_{th} = (1.106 \pm 0.002)\%$$

 $\mathbf{ths}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (1.070 \pm 0.004) /$$

$$p_{odd} = (1.078 \pm 0.004)\%$$



 $p_{th} = (1.077 \pm 0.003)\%$ 

 $\mathbf{tph}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :





 $p_{th} = (0.574 \pm 0.004)\%$ 

 $\mathbf{t}\mathbf{t}\mathbf{v}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{even} = (0.798 \pm 0.012)\%$$

$$p_{odd} = (0.795 \pm 0.012)\%$$



 $p_{th} = (0.797 \pm 0.008)\%$ 

unj



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$Peven = (0.303 \pm 0.009)$$

$$p_{odd} = (0.989 \pm 0.005)\%$$



 $p_{th} = (0.989 \pm 0.003)\%$ 

 $\mathbf{vck}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.653 \pm 0.003)\%$$



 $p_{th} = (0.653 \pm 0.002)\%$ 

 $\mathbf{vtx}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.785 \pm 0.005)\%$$



 $p_{th} = (0.785 \pm 0.003)\%$ 

 $\mathbf{wst}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :





 $p_{th} = (0.296 \pm 0.009)\%$ 

### $\mathbf{SPAM\text{-}SEQ}$

Dependence of the thresholds on the features of the graph:





### Ranking

| Lattice | $\mathbf{Avg}\ d$ | $\mathbf{Avg}\ g$ | Even Threshold        | Odd Threshold         | Unified Threshold     |
|---------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| wst     | 7.5               | 3.0               | $(0.607 \pm 0.006)\%$ | $(0.607 \pm 0.017)\%$ | $(0.607 \pm 0.005)\%$ |

Precision in terms of compute time:



 $\mathbf{wst}$ 



Fitting all points to a linear function f(x) = A + Bx, where  $x = (p - p_{th})L^{\nu}$  for some  $p_{th}$  and  $\nu$ :



$$p_{odd} = (0.607 \pm 0.017)\%$$



 $p_{th} = (0.607 \pm 0.005)\%$