# Carlingford High School

# Mathematics Extension 1



Year 12 Half Yearly Assessment Task

**7014** 

Time allowed: 2 hours

Name: Class: 12MA1. (Ms Kellahan) 12MA12 (Mr White) 12MA13 (Mrs Lobejko) 12MA14 (Mr Fardouly)

#### Instructions

- Start each question in a new booklet
- Write on one side of the paper only, and not in columns
- Marks may be deducted for careless or badly arranged work
- Only calculators approved by the Board of Studies may be used
- All answers are to be completed in blue or black pen except graphs and diagrams
- No lending or borrowing

### Outcomes and Marks

| % | 04/  | SI/       | SI/      | SI/         | 'SI/     | 01/     |               |
|---|------|-----------|----------|-------------|----------|---------|---------------|
|   |      |           | _        |             |          |         |               |
|   | 8/   | 8/        |          |             |          |         |               |
|   |      |           |          |             |          |         | HET           |
|   | 51/  |           | SI/      |             |          |         |               |
|   |      |           |          |             |          |         | EH            |
|   | SI/  |           |          | <i>S</i> I/ |          |         |               |
|   |      |           |          |             |          |         | 8H            |
|   | 77/  | L/        |          |             | SI/      |         |               |
|   | ļ    |           |          |             |          |         | $\mathrm{HE}$ |
|   | 01/  |           |          |             |          | 01/     |               |
|   |      |           |          |             |          |         | HEZ           |
|   |      | ÞΙ        | 13       | 15          | II       |         |               |
|   |      | Question  | Question | Question    | Question | ¥       |               |
|   | Mark | Section B |          |             |          | Section |               |

## (Please use the attached multiple choice answer sheet)

1. 
$$|9-5x| > 1$$

A. 
$$x < \frac{8}{5}$$

B. 
$$\frac{8}{5} < x < 2$$

A. 
$$x < \frac{8}{5}$$
 B.  $\frac{8}{5} < x < 2$  C.  $x < \frac{8}{5}$  or  $x > 2$  D.  $x > 2$ 

D. 
$$x > 2$$

2. If 
$$tan \frac{2A}{3} = \sqrt{3}$$
, for  $0^{\circ} \le A \le 360^{\circ}$ ,  $A =$ 

3. 
$$\lim_{h\to\infty} \frac{3(x+h)^2 - 3x^2}{h}$$

B. 
$$3x^2$$

C. 
$$3(x+h)^2$$

4. The Cartesian equation represented by the parametric equations 
$$x = 3t$$
 and  $y = t^2 - 2$  is

A. 
$$x^2 = 9y + 18$$

A. 
$$x^2 = 9y + 18$$
 B.  $y = t^2 + 3t - 2$  C.  $y = \frac{x^2 - 2}{9}$  D.  $x^2y = 9 - 2x^2$ 

C. 
$$y = \frac{x^2 - 2}{9}$$

D. 
$$x^2y = 9 - 2x^2$$

5. If 
$$3^{2x} - 10(3^x) + 9 = 0$$
,  $x =$ 

6. The shortest distance between the lines 
$$x + y + 1 = 0$$
 and (2, -1) is

A. 
$$\frac{\sqrt{2}}{2}$$

B. 
$$\frac{2}{\sqrt{2}}$$

D. 
$$\sqrt{2}$$

7. If 
$$\alpha$$
,  $\beta$  and  $\gamma$  are the roots of  $2x^3 + 4x^2 - x + 6$ , the value of  $\alpha^2 + \beta^2 + \gamma^2 =$ 

B. 
$$\frac{11!}{2!}$$

C. 
$$\frac{11!}{2!2!}$$

D. 
$$\frac{11!}{2!2!2!}$$

9. 
$$\lim_{x\to\infty}\frac{x-1}{x+1}=$$

B. 
$$7_{P_4}$$

D. 
$$\frac{7!}{4!}$$

#### Section B

#### Question 11 (Please start a new booklet)

(a) Given this graph for the function y = f(x) [2]



Draw the graph of y = f'(x), showing any of the points A, B, C, D or E as required

(b) If 
$$y = \frac{2}{x-1}$$

(i) Show that 
$$y \times \frac{dy}{dx} + \frac{d^2y}{dx^2} = 0$$
 [2]

(ii) For what values of x is the function

(
$$\alpha$$
) decreasing? [1]

(
$$\beta$$
) concave upwards? [1]

(c) Sketch the graph of  $y = \frac{2x}{x-1}$  showing any asymptotes and labelling at least two points [2] on your graph.

(d) A curve with equation 
$$y = ax^3 - 4x + c$$
 has a turning point at  $(1, 2)$ . [2] Find the values of  $a$  and  $c$ 

(e) The strength of a rectangular beam varies as the product of the width w and the square of its depth d, that is,  $s = kwd^2$ , for some constant k



- (i) If a cylindrical log has diameter 35cm, show that  $s = kw(1225 w^2)$  [1]
- (ii) Find  $\frac{ds}{dw}$  [1]
- (iii) Find the dimensions of the strongest rectangular beam that can be cut from the log given in (i). (Leave your answers correct to the nearest mm)

### Question 12 (Please start a new booklet)

(a) (i) Evaluate 
$$\int_{-1}^{2} \frac{x^2 - 2x + 1}{5} dx$$
 [2]

(ii) Find 
$$\int \frac{5}{x^2 - 2x + 1} dx$$
 [2]

- (b) (i) Sketch the graph of  $y = \sqrt{x^2 + 1}$  [2]
  - (ii) Use two applications (4 sub-intervals) of the trapezoidal rule to find an approximation for the area enclosed by the graph of  $y = \sqrt{x^2 + 1}$  and the x-axis, between x = -1 and x = 3 (Write your answer correct to 2 decimal places)
  - (iii) Find the volume of the solid formed by revolving the enclosed region in (ii) [2] around the x-axis. (Leave your answer in terms of  $\pi$ )
- (c) The graphs of  $y = (2 x)^2$  and  $y = (2 x)^3$  intersect at (1, 4) and one other point. Find the coordinates of the second point
  - (ii) Expand and simplify  $(2-x)^3$  [1]
  - (iii) Calculate the area enclosed by the graphs of  $y = (2 x)^2$  and  $y = (2 x)^3$  [3]

## Question 13 (Please start a new booklet)

- (a) Evaluate, correct to 2 decimal places
  - (i) 2e [1]
  - (ii)  $\log_2 10$  [2]
- (b) If  $\log_a x = 10 \cdot 218$  and  $\log_a y = 2 \cdot 109$ , use the log laws to
  - (i) Evaluate  $\log_a(\frac{x}{y^2})$  [2]

If  $y = \frac{\sqrt{x}}{2}$ , find the value of a, correct to 2 decimal places (ii) [2] Differentiate, with respect to x(c) (i) [1] (ii)  $\frac{1}{\log_e x}$ [2] If  $\frac{dy}{dx} = xe^{-x^2}$ , and y = e when x = 1. Write an expression for y in terms of x (d) [2] What value does  $e^{-x^2}$  approach as x approaches  $\infty$ ? (e) (i) [1] What value does  $e^{-x^2}$  approach as x approaches  $-\infty$ ? (iii) [1] What value does  $xe^{-x^2}$  approach as x approaches  $\pm \infty$ ? (iv) [1] Question 14 (Please start a new booklet) Given  $2^k \ge k$  for any positive integer k, show that  $2^{k+1} \ge k+1$ [2] (a) Use mathematical induction to prove that (b)  $1 + x + x^2 + \dots + x^{n-1} = \frac{1-x^n}{1-x}$ , for all positive integers n [3] (i)  $9^{n+2} - 4^n = 5m$ , for any integer m, for all integers  $n, n \ge 1$ [3] (ii) For the graph of  $y = (2x + 5)^{\frac{7}{3}}$ (c) [2] (i) Find all axes intercepts

Find any stationary points, and state their nature

(ii)

(iii)

Sketch its graph

[3]

[2]

# Section A (Multiple Choice) Answer Sheet (Please detach)

| Question |   |   |   |   |
|----------|---|---|---|---|
| 1        | A | В | C | D |
| 2        | A | В | C | D |
| 3        | A | В | C | D |
| 4        | A | В | C | D |
| 5        | A | В | С | D |
| 6        | A | В | C | D |
| 7        | A | В | C | D |
| 8        | A | В | C | D |
| 9        | A | В | С | D |
| 10       | A | В | С | D |

#### STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left( x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left( x + \sqrt{x^2 + a^2} \right)$$

NOTE:  $\ln x = \log_{\rho} x$ , x > 0

# Section A (Multiple Choice) Answer Sheet (Please detach)

| Question |   |   |          | ******     |
|----------|---|---|----------|------------|
| 1        | A | В | ©        | D          |
| 2        | A | B | C        | D          |
| 3        | A | В | С        | D          |
| 4        | A | В | С        | D          |
| 5        | A | В | C        | D          |
| 6        | A | В | С        | D          |
| 7        | A | В | <b>©</b> | D          |
| 8        | A | В | C        | <b>(D)</b> |
| 9        | A | B | C        | D          |
| 10       | A | В | С        | D          |

# YEAR 12 MATHEMATICS GXTONSION HALF YORALY







(b) (i) 
$$dy = -\frac{2}{(x-1)^2}$$

$$\frac{d^2y}{dn^2} = \frac{4}{(x-1)^3}$$

$$\int \times \frac{dy}{dx} + \frac{d^{2}y}{dx^{2}} = \frac{2}{x-1} \times \frac{-2}{(x-1)^{2}} + \frac{4}{(x-1)^{3}}$$

$$= \frac{-4}{(x-1)^{3}} + \frac{4}{(x-1)^{3}}$$

$$= 0$$

$$\frac{1}{3}$$

$$\frac{1}{3} = \frac{4}{3} = \frac{4}{3}$$

$$\frac{4}{(x-1)^3}$$
 70 for  $x$  71 / (11).  $\frac{ds}{d\omega} = 1227k - 3k\omega^2$  /

(iii) Let 
$$ds = 0$$

$$dw$$

$$1225k - 3kw^{2} = 0$$

$$k(1225 - 3w^{2}) = 0$$

$$k + 0 - 3w^{2} = 1225$$

$$w^{2} = 1225$$

$$3$$

$$\frac{d^{2}s}{dw^{2}} = -6k\omega$$

$$-6 \times k \times 20.2 \times 20$$

$$\frac{1}{2} = \frac{1}{20.2 \text{ cm}}$$
when  $\omega = 20.2 \text{ cm}$ 
and  $d = \sqrt{1225 - 1225}$ 





(b) (i) 
$$dy = -\frac{2}{(x-1)^2}$$

$$\frac{d^2y}{dn^2} = \frac{4}{(x-1)^3}$$

(11) (d) Decreasing for dy 60 dz 
$$\frac{-2}{(n-1)^2}$$
 to for all x, x =1 /

/ for asymptotes / for graph, including 2 pts.

(d) when 
$$x=1, y=2$$

$$2 = a - 4 + C$$

$$- \cdot a + C = 6$$

$$dy = 3ax^{2} - 4$$

$$dy = 0 \text{ when } x=1$$

$$dx = 3a - 4 = 0$$

$$a = \frac{4}{3}$$

$$\therefore c = 6 - \frac{4}{3} = \frac{4^{2}}{3}$$

(110). Let 
$$d_3 = 0$$
 $d_0$ 
 $1225k - 3k\omega^2 = 0$ 
 $k(1225 - 3\omega^2) = 0$ 
 $k \neq 0 = 3\omega^2 = 1225$ 
 $\omega^2 = 1225$ 
 $3$ 

dis = -6 kw

dw = -6 kx 20.2 20

1. Maximum strength

when w = 20.2 cm

and d = \[ \int \frac{1225}{1225} - \int \frac{12

(a) (i) 
$$\frac{1}{5} \left[ \frac{x^3}{3} - x^2 + x \right]^2$$
  
=  $\frac{1}{5} \left[ \left( \frac{x}{3} - 4 + 2 \right) - \left( -\frac{1}{3} - 1 - 1 \right) \right]$   
=  $\frac{3}{5}$ 

(11). 
$$\int \frac{5}{(x-1)^2} dx = \int \frac{5}{(x-1)^2} dx$$

$$= \frac{5}{(x-1)^4} + C$$

$$= \frac{-5}{x-1} + C$$

(11) 
$$A = \frac{1}{2} \left[ f(-1) + 2f(0) + f(1) + f(2) + f(3) \right]$$
  
 $= \frac{1}{2} \left[ f_2 + 2 \left( 1 + f_2 + f_5 \right) + f_0 \right]$   
 $= \frac{1}{3} \left[ 3 \left( 2 + 2 + 2 \right) + f_0 \right]$   
 $= \frac{1}{3} \left[ 3 \left( 2 + 2 + 2 \right) + f_0 \right]$   
 $= \frac{1}{3} \left[ 3 \left( 2 + 2 + 2 \right) + f_0 \right]$ 

(11), 
$$\sqrt{=} \pi \int_{-1}^{3} (\pi^{2}+1) d\pi \sqrt{2}$$

$$= \pi \int_{-1}^{3} (\pi^{2}+1) d\pi \sqrt{2}$$

(11), 
$$2^3 - 3(2)\pi + 3(2)\pi^2 - n^3$$
  
=  $8 - 12\pi + 6\pi^2 - \pi^3$ 

(No marks for diagram)
$$A = \int_{1}^{2} (2-\pi)^{2} - (2-\pi)^{3} d\pi$$

$$= \int_{1}^{2} (4-4\pi+\pi^{2}) - (8-12\pi+6\pi^{2}-\pi) d\pi$$

$$= \int_{1}^{2} (4+8\pi-5\pi^{2}+\pi^{3}) d\pi$$

$$= \int_{1}^{2} (-4\pi+4\pi^{2}-5\pi^{3}+\pi^{4})^{3} d\pi$$

$$= \int_{1}^{2} (-4\pi+4\pi^{2}-5\pi^{2}+\pi^{4})^{3} d\pi$$

$$= \int_{1}^{2} (-4\pi+4\pi^{2}-5\pi^{2}+\pi^{2})^{3} d\pi$$

$$= \int_{1}^{2} (-4\pi+4\pi^{2}-5\pi^{2}+\pi^{2})^{3} d\pi$$

$$= \int_{1}^{2} (-4\pi+4\pi^{2}-5\pi^{2}+\pi^{2})^{3} d\pi$$

$$= \log x - \log y^{2}$$

$$= \log x - 2\log y$$

$$= 10.218 - 2(2.109)$$

("). 
$$x = a^{10.218}$$
,  $y = a^{2.109}$ 

$$Y = \sqrt{2}$$

$$2 = a^{5.109}$$
 $a^{2.109}$ 

$$2 = a^3$$

$$z - (\log \pi)^{-1} \times 1$$

$$(0) y = -\frac{1}{2} \int_{-2\pi}^{-2\pi} e^{-\pi^2} d\tau$$
 $y = -\frac{1}{2} e^{-\pi^2} + c$ 

when  $\pi = 1$ 

when 
$$x = 1$$
,  $y = e$ 

$$e = -\frac{1}{2}e^{-1} + C$$

$$C = e + \frac{1}{2}$$

$$y = -\frac{1}{2}e^{-x^2} + e + \frac{1}{2}e^{-x^2}$$

Quartied 12 (KELLAHAN)

(a) (i) 
$$\frac{1}{5} \left[ \frac{x^3}{3} - x^2 + x \right]^2$$

$$= \frac{1}{5} \left[ \left( \frac{x}{3} - 4 + 2 \right) - \left( -\frac{1}{3} - 1 - 1 \right) \right]$$

$$= \frac{3}{5}$$

(11). 
$$\int \frac{5}{(\pi - 1)^2} d\pi = \int \frac{5}{(\pi - 1)^2} d\pi / d\pi$$

$$= \frac{5}{(\pi - 1)^2} + C$$

$$= \frac{-5}{\pi - 1} + C / \frac{1}{\pi - 1}$$

(11), 
$$\sqrt{=} \pi \int_{-1}^{3} (x^{2}+1) dx \sqrt{2}$$

$$= \pi \left[ \frac{x^{3}}{3} + x \right]_{-1}^{3}$$

$$= \pi \left[ (9 + 3) - (-\frac{1}{3} - 1) \right]$$

$$= 40\pi \text{ with } 3$$

(c)), when 
$$n=2$$
,  
Lits = RHS = 0  
- (2,0)  
(ii),  $2^3 - 3(2^2)n + 3(2)n^2 - n^3$   
=  $8^2 - 12n + 6n^2 - n^3$ 



(No marks for diagram)
$$A = \int^{2} (2-\pi)^{2} - (2-\pi)^{3} d\pi$$

$$= \int^{2} (4-4\pi+\pi^{2}) - (8-12\pi+6\pi^{2}-\pi) d\pi$$

$$= \int^{2} (4+8\pi-5\pi^{2}+\pi^{3}) d\pi$$

$$= \left[-4\pi+4\pi^{2}-5\pi^{3}+\pi^{4}\right]^{2}$$

$$= \left[(-8+16-40+4)-(-4+4-\frac{5}{3}+\frac{1}{4})\right]^{2}$$

$$= \frac{1}{12} \sqrt{\pi^{3}+\pi^{2}}$$

QUESTION 14 (FARDOULY (a). 2 × 7, k = 2×2×7/2k 2 k+1 7, 2k and 2k7/k+1 for k7/1 (4) (i) Prove true for n=1 RHS = 1-2c = 1 i. true for n=1 Assume free for n=k, that is 1+x+x2+-+xk-1= 1-xk Hence prove true for n= k+1, that is that is 1 + x + x² + - - + x + x = 1 - x k+ or  $\frac{1-x^k}{1-x} + x^k = \frac{1-x^{k+1}}{1-x}$ LH = 1 - 2h + (1-21) 2k 1-76 = 1- 2/2 + 2/2 - 7/2+1 1-n = 1-xkH

= RHS.

i. if true for n=k, then true
for n=k+1.

(11) Prove true for n=1 Lits 2 93-4 =5×145 1. true for n=1 Assume true for n=k, that is 9k+2-4k= 5m (1) Hence prove true for n= k+1, that is, 9k+3 4k+1 = 5p (2) From (2) LIts = 9, 9k+2 - 4,4k = 9 (5m+4k) -4x 4k/ = 45m + 9 x4k-4x4k = 45m + 5×4k = 5 (9m+4k) / : if towe for n=k, then true for nz K+1 if tone ---(c). (i), x=0, y=5=42-7 /

 $y = 0, n = -\frac{\pi}{2}$ (11).  $\frac{dy}{dx} = \frac{7}{3}(2n+5)^{\frac{1}{3}}x^{\frac{1}{3}}$   $\frac{dy}{dx} = \frac{14(2n+5)^{\frac{1}{3}}}{3}$   $\frac{dy}{dx} = 0$  when  $x = -\frac{5}{2}$   $\frac{dx}{dx} = \frac{5}{2}$ 

$$\frac{d^{2}y}{dn^{2}} = \frac{56}{9} \left( 2\pi + \tau \right)^{\frac{1}{3}} \times 2$$

$$= \frac{112}{9} \left( 2\pi + \tau \right)^{\frac{1}{3}}$$

$$\frac{d^{2}y}{dn^{2}} = 0 \quad \text{when } n = -\frac{\tau}{2}$$

point of inflation when  $x = -\frac{\pi}{2}$ 

| ~          | -3   | - 1/2 | -2  | 1 |
|------------|------|-------|-----|---|
| d24<br>dx2 | -112 | 0     | 112 |   |

change of concavity i.

stationary point of inflexion at (-5,0)

(m)



I for whereight

state wint is true for no 1 1-1 Land to on 1-1 the if the for N=1 then tove for 1+7=レノチ if thus for N=12, thus the / SHZ = 71-1 = 1ta 7x + yx -1 = 7x (21-1) + 7x-1 = 547 / 1+2x-1 = 2x + 2x-1 so Hence prove true for n=k+1, 7x-1=1-7x+-+2x+x+1 Assume time for n=12, that is 1= Arm for Mal 1=2-1 = 417 (H) (i) from town (i) (H) 1 R7 JOS 1+7 R77 POWD / 37 1/47 T オてルスでメン・ X K X E . (00)

Z-=x who twood provotate : 2-=x when x=-2 5/4 = 1 (2+x2) = xb (2) / == x 'o=h 1 (24 = 2 = 4 0=x (D.(2) 16 tam ---1+2 これっちゃかナ i. if true for in=h, thun / (ah+mb) s = zhxs + msh = カ×カーカカ×ら+msh= /7h ×h-(7h+ms) b = 7h×h -2+76 × b = 417 @ 200) 1/4 ms = 2m + yh (2) ds = HA + = +AP 12 tout Hence more true for n= 12+1, 1 mg = 7h-2+7b Assume true for n=1e, that is i. Hrue for m=1 ノ シカバ×気=