Transient and Frequency Analysis of various Analog, Op-Amp and Mixed Signal Circuits using LTSpice & Cadence Virtuoso-Spectre

Introduction: -

The project aims to simulate, analyse and understand the behaviour of various analog circuits by utilising transient and frequency analysis on LTSpice.

Following are a few circuit simulations.

Transient analysis of series RLC circuit: -

For C = 400 uF and L = 1 uH, we get the value of R = 100 m-Ohm to be the condition for critically damped (from $R^2 = 4(L/C)$). Any value of R less than this would render the circuit to operate in an under-damped condition while the value of R greater than this would make it operate in an over-damped condition.

Attached are the circuit along with simulation parameters and the waveform.

LTSpice: -

Schematic for transient analysis

Transient analysis plot

Virtuoso: -

Schematic

Setup of parameters

Frequency Analysis of Series LRC Circuit: -

Schematic for AC analysis

I have used a similar circuit (LRC instead of RLC), performed AC analysis using decade sweep from 1Hz to 10 MegHz, and parameter sweeps to represent 3 cases for showing bode plots of over, under and critically damped cases.

Bode plots

Inverting & Non-Inverting Op-Amp:-

I have utilised the LM741 Op-Amp here. Since it is not available in the standard LTSpice library I had to download its file from the TI website and restructure the schematic making it visually easier to understand.

LTSpice:-

Created schematic for LM741

Schematic for inverting Op-Amp

Waveform for inverting Op-Amp

Virtuoso:-

For the implementation of the inverting and non-inverting op-amp, I have utilised a **VCVS** (**V**oltage **C**ontrolled **V**oltage **S**ource) as the main device for the construction of the circuit.

Following are the schematics and results for the above-mentioned circuits: -

Non-inverting amplifier (schematic)

Inverting Amplifier (schematic)

Input wave

O/p for non-inverting amp

O/p for inverting amp

Clipping: -

The following are the graphs for clipping circuits, showing both positive and negative clipping as well as only positive clipping.

Clipping when gain is excess

Positive clipping when Vcc+ is reduced

<u>Differentiator Op-Amp: -</u>

Differentiator Op-Amp Schematic

Waveform

CMOS Inverter: -

Schematic, symbol creation and choice of analyses shown for a cmos inverter.

Schematic

Symbol created for the circuit using the pins marked

I/p vs O/p plot (transient response)

Analysis set-up

CMOS NAND Gate Implementation: -

NAND Gate Schematic

Waveforms (top wave is o/p)

Analysis setup