- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A. (a, a) \notin R.$
- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a, b) \in R \land (b, a) \in R) \rightarrow a = b$.
- 6. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

- 1. R es refleja ssi $I_A \subseteq R$.
- 2. R es irrefleja ssi $R \cap I_A = \emptyset$.
- 3. R es simétrica ssi $R = R^{-1}$.
- 4. R es asimétrica ssi $R \cap R^{-1} = \emptyset$.
- 5. R es antisimétrica ssi $R \cap R^{-1} \subseteq I_A$.
- 6. R es transitiva ssi $R \circ R \subseteq R$.
- 7. R es conexa ssi $R \cup R^{-1} = A \times A$.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A$. $(a, a) \in R$.
- 2. Antisimétrica: $\forall a, b \in A$. $((a, b) \in R \land (b, a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Definición

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

Conexo: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$\mathbf{u} \leq_{\mathbf{p}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$

$$\mathbf{u} \leq_{\mathsf{s}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$\mathbf{u} \leq_{\mathbf{i}} \mathbf{v}$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

1. Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

2. Conmutatividad:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

3. Idempotencia:

$$A \cup A = A$$

 $A \cap A = A$

4. Absorción:

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

5. Distributividad:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

6. De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

$$A \cup \emptyset = A$$

 $A \cap \mathcal{U} = A$

$$A \cup \mathcal{U} = \mathcal{U}$$

 $A \cap \emptyset = \emptyset$

9. Elemento inverso:

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \emptyset$$

Operadores	Precedencia
.c	1
\cap	2
U	3