

Thermochemistry

Dr Guohong Tian g.tian@surrey.ac.uk

The First Law of thermodynamics

For a closed (control mass) system

$$_{1}Q_{2}$$
 -

Heat added to system in going from state1 to state 2

$$_{1}W_{2} =$$

Work done by system on surroundings in going from state 1 to state 2

$$\Delta E_{1-2}$$

Change in total system energy in going from state 1 to state 2

For an open system (control volume)

$$q_{cv} - w_{cv} = (h_0 - h_i) + \frac{1}{2} (v_0^2 - v_i^2) + g(z_0 - z_i)$$

The First Law of thermodynamics

Consider chemical reaction

Exothermic reaction: Heat flows out of the system to the surroundings during the reaction

Endothermic reaction: Heat flows into the system from the surroundings during the reaction

Reactant and product mixture

Consider combustion of a hydrocarbon with air

$$C_x H_y + a(O_2 + 3.76N_2) \rightarrow xCO_2 + \left(\frac{y}{2}\right) H_2O + 3.76aN_2$$

To balance the chemical reaction

$$a = x + y/4$$

We define stoichiometric air/fuel ratio

$$(A/F)_{stoic} = \left(\frac{m_{air}}{m_{fuel}}\right)_{stoic} = \frac{4.76a}{1} \frac{M_{air}}{M_{fuel}}$$

	$\Delta \ h_R$	$\Delta~h_R$	(O/F) _{stoic}	$T_{ m ad,eq}$
	(kJ/kg _{fuel})	(kJ/kg_{mix})	(kg/kg)	(K)
CH ₄ +air	-55,528	-3,066	17.11	2226
H_2+O_2	-142,919	-15,880	8.0	3079
C(s)+air	-32,794	-2,645	11.4	2301

Equivalence ratio

$$\Phi = \frac{(A/F)_{stoic}}{(A/F)} = \frac{(F/A)}{(F/A)_{stoic}}$$

 Φ >1, fuel rich mixture

 Φ <1, fuel lean mixture

 Φ =1, stoichiometric mixture

Percent excess air

$$\% excess = \frac{(1-\Phi)}{\Phi} \cdot 100\%$$

Example 1

A small, low-emission, stationary gas turbine engine operates at full load (3950 kW) at an equivalence ratio of 0.286 (lean) with an air flowrate of 15.9 kg/s. The equivalent composition of the fuel (natural gas) is $C_{1.16}H_{4.32}$. Determine the fuel mass flowrate and the operating air/fuel ratio for the engine.

Known:
$$\Phi=0.286, M_{air}=28.85\ kg/kmol, \dot{m}_{air}=15.9\ kg/s$$
 Calculate: $\dot{m}_{fuel}, A/F$
$$M_{fuel}=1.16(12.01)+4.32\ (1.008)=18.286\ kg/kmol$$

$$(A/F)_{stoic}=4.76a\frac{M_{air}}{M_{fuel}}$$

$$a=x+\frac{y}{4}=1.16+\frac{4.32}{4}=2.24$$

$$(A/F)_{stoic}=\frac{4.76(2.24)28.85}{18.286}=16.82$$

$$(A/F)=\frac{(A/F)_{stoic}}{\Phi}=\frac{16.82}{0.286}=58.8$$

$$\dot{m}_{fuel}=\frac{\dot{m}_{air}}{A/F}=\frac{15.9}{58.8}=0.270\ kg/s$$

Comments: at full load, there is excessive air in a gas turbine engine.

Example 2

A natural gas-fired industrial boiler operates with an oxygen concentration of 3 mole percent in the flue gases. Determine the operating air/fuel ratio and the equivalence ratio. Treat the nature gas as methane.

Solution

Known $x_{O_2} = 0.03$, $M_{fuel} = 16.04 \ kg/kmol$, $M_{air} = 28.85 \ kg/kmol$

Calculate: (A/F) and Φ

First assume complete combustion and obtain A/F. complete combustion means all carbon atoms form carbon dioxide and hydrogen atoms form water.

$$CH_4+a(O_2+3.76N_2)\rightarrow CO_2+2H_2O+bO_2+3.76aN_2$$

From mass conservation,

The definition of mole fraction

$$x_{O_2} = \frac{N_{O_2}}{N_{mix}} = \frac{b}{1 + 2 + b + 3.76a} = \frac{a - 2}{1 + 4.76a}.$$

As $x_{O_2} = 0.03$

$$0.03 = \frac{a-2}{1+4.76a}$$

Therefore a=2.368

$$(A/F) = 4.76a \frac{M_{air}}{M_{fuel}} = 4.76 \frac{(2.368)28.85}{16.04} = 20.3$$

We also need to calculate $(A/F)_{stoic}$ to calculate equivalence ratio.

At stoichiometric condition, a=2

$$(A/F)_{stoic} = 4.76 \frac{(2)28.85}{16.04} = 17.1$$

Therefore

$$\Phi = \frac{(A/F)_{stoic}}{(A/F)} = \frac{17.1}{20.3} = 0.84$$

Energy from combustion

Microscopic view of energy

Depending on the level of investigation, the microscopic view of energy

including

Sensible energy (temperature)

Latent energy (phase change)

- Chemical energy (bond breaking/generation)
- Nuclear energy (sub-atomic level)

During combustion process, chemical bonds may break and form new bonds. It is necessary to define a **Standard reference state (25°C, 1atm)**

Consider methane combustion (exothermic)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Or oxygen and nitrogen generate nitric oxide (NO) reaction (endothermic) $N_2 + O_2 \rightarrow 2NO$

The Standard Reference State is defined as Temperature

$$T_{ref} = 25^{\circ} \text{C} \equiv 298.15 \, K$$

Pressure

$$p_{ref} = p^0 = 1 \ atm = 101.325 \ kPa$$

Consistent with Chemkin and NASA

Standardised enthalpy is the sum of an enthalpy that takes into account the energy associated with chemical bonds, the **enthalpy of formation**, h_f , and the enthalpy that associated with temperature, the **sensible enthalpy change**, Δh_s

$$\overline{h}_{i}(T) =$$

$$\overline{h}_{f,i}^{\,0}(T_{ref})$$

 $\Delta \overline{h}_{s,i}(T)$

Standardised enthalpy at temperature *T*

Enthalpy of formation at standard reference state (T_{ref}, p^0)

Sensible enthalpy change in going from T_{ref} to T

Enthalpy of formation

For the elements in their **naturally occurring state** at the reference state temperature and pressure, enthalpies of formation are zero. For instance

$$(\overline{h}_{f,O_2}^0)_{298} = 0$$

Net change in enthalpy associated with breaking the chemical bonds of the standard-state elements and forming new bonds to create the compound of interest. For example, 498,390 kJ/kmol energy is request to break the bond of O2 and generate two O atoms, therefore

$$(\overline{h}_{f,O}^{\,0}) = 249,195kJ/kmol_{O}$$

Enthalpy of formation

Graphic interpretation of standardised enthalpy, enthalpy of formation and sensible enthalpy

A fundamental parameter related to a reference state Independent of reaction path

Note: negative enthalpy of formation means energy is released-exothermic, positive means energy is requested (absorbed) - endothermic.

Sunday, 16 December 2018 18

The enthalpy of formation is only decided by the reactants and products, independent of the process (i.e. one step reaction or multi-step reaction have the same enthalpy of formation)

$$R \xrightarrow{\Delta H_2} X \xrightarrow{\Delta H_3} Y \xrightarrow{\Delta H_4} P$$

$$\Delta H_1$$

$$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$$

If reaction is reversible, ΔH is also reversible

$$N_2(g) + O_2(g) \rightarrow 2NO(g) \quad \Delta H = 180 \, kJ$$

$$2NO(g) \rightarrow N_2(g) + O_2(g) \quad \Delta H = -180 \, kJ$$

If reaction is multiplied, ΔH is too

$$6NO(g) \rightarrow 3 N_{2(g)} + 3 O_{2(g)} \Delta H = -540 kJ$$

Example

A gas stream at 1 atm contains a mixture of CO, CO_2 and N_2 in which the CO mole fraction is 0.10 and the CO_2 mole fraction is 0.20. the gas-stream temperature is 1200 K. Determine the standardised enthalpy of the mixture on both a mole basis (kJ/kmol) and a mass basis (kJ/kg).

Sunday, 16 December 2018 23

Table A.1 (kJ/kmol) :	1 Carbon ma = -110,541	nonoxide (CO), MW = 28	3.010, enthalp	y of formation @) 298 K	Table A. (kJ/kmol)	.2 Carbon dia) = -393,546	oxide (CO ₂), MW = 44.	.011, enthalpy	of formation @ :	298 K
<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$(\bar{h}^o(T) - \bar{h}^o_f(298))$ (kJ/kmol)	$\bar{h}_f^o(T)$ (kJ/kmol)	§°(T) (kJ/kmol-K)	$\bar{g}_f^o(T)$ (kJ/kmol)	<i>T</i> (K)	ē _p (kJ/kmol−K)	$(\tilde{h}^{\rho}(T) - \tilde{h}^{\rho}_{f}(298))$ (kJ/kmol)	$\bar{h}_f^o(T)$ (kJ/kmol)	š°(I) (kJ/kmol-K)	$\bar{g}_f^*(T)$ (kJ/kmol)
200	28.687	-2,835	-111,308	186.018	-128,532	200	32.387	-3,423	-393,483	199.876	-394,126
298	29.072	-2,000	-110,541	197.548	-137,163	298	37.198	0	-393,546	213.736	-394,428
300	29.078	54	-110,530	197.728	-137,328	300	37.280	69	-393,547	213.966	-394,433
400	29.433	2,979	-110,121	206.141	-146,332	400	41.276	4,003	-393,617	225.257	-394,718
500	29.857	5,943	-110,017	212.752	-155,403	500	44.569	8,301	-393,712	234.833	-394,983
600	30.407	8,955	-110,156	218.242	-164,470	600	47.313	12,899	-393,844	243.209	-395,226
700	31.089	12,029	-110,477	222.979	-173,499	700	49.617	17,749	-394,013	250.680	-395,443
800	31.860	15,176	-110,924	227.180	-182,473	800	51.550	22,810	-394,213	257.436	-395,635
900	32.629	18,401	-111,450	230.978	-191,386	900	53.136	28,047	-394,433	263.603	-395,799
1,000	33.255	21,697	-112,022	234.450	-200,238	1,000	54.360	33,425	-394,659	269.268	-395,939
1,100	33.725	25,046	-112,619	237.642	-209,030	1,100		38,911	-394,875	274.495	-396,056
1,200	34.148	28,440	-113,240	240.595	-217,768	1,200	56.205	44,488	-395,083	279.348	-396,155
1,300	34.530	31,874	-113,881	243.344	-226,453	1,300	56.984	50,149	-395,287	283.878	-396,236
1,400	34.872	35,345	-114,543	245.915	-235,087	1,400	57.677	55,882	-395,488	288.127	-396,301
1,500	35.178	38,847	-115,225	248.332	-243,674	1,500		61,681	-395,691	292.128	-396,352
1,600	35.451	42,379	-115,925	250.611	-252,214	1,600		67,538	-395,897	295.908	-396,389
1,700	35.694	45,937	-116,644	252.768	-260,711	1,700		73,446	-396,110	299.489	-396,414
1,800	35.910	49,517	-117,380	254.814	-269,164	1,800		79,399	-396,332	302.892	-396,425
1,900	36.101	53,118	-118,132	256.761	-277,576	1,900		85,392	-396,564	306.132	-396,424
2,000	36.271	56,737	-118,902	258.617	-285,948	2,000		91,420	-396,808	309.223	-396,410
2,100	36.421	60,371	-119,687	260.391	-294,281	2,100	60.717	97,477	-397,065	312.179	-396,384
2,200	36.553	64,020	-120,488	262.088	-302,576	2,200	60.966	103,562	-397,338	315.009	-396,346
2,300	36.670	67,682	-121,305	263.715	-310,835	2,300	61.185	109,670	-397,626	317.724	-396,294
2,400	36.774	71,354	-122,137	265.278	-319,057	2,400	61.378	115,798	-397,931	320.333	-396,230
2,500	36.867	75,036	-122,984	266.781	-327,245	2,500	61.548	121,944	-398,253	322.842	-396,152
2,600	36.950	78,727	-123,847	268.229	-335,399	2,600	61.701	128,107	-398,594	325.259	-396,061
2,700	37.025	82,426	-124,724	269.625	-343,519	2,700	61.839	134,284	-398,952	327.590	-395,957
2,800	37.093	86,132	-125,616	270.973	-351,606	2,800	61.965	140,474	-399,329	329.841	-395,840
2,900	37.155	89,844	-126,523	272.275	-359,661	2,900	62.083	146,677	-399,725	332.018	-395,708
3,000	37.213	93,562	-127,446	273.536	-367,684	3,000	62.194	152,891	-400,140	334.124	-395,562
3,100	37.268	97,287	-128,383	274.757	-375,677	3,100		159,116	-400,573	336.165	-395,403
3,200	37.321	101,016	-129,335	275.941	-383,639	3,200		165,351	-401,025	338.145	-395,229
3,300	37.372	104,751	-130,303	277.090	-391,571	3,300		171,597	-401,495	340.067	-395,041
3,400	37.422	108,490	-131,285	278.207	-399,474	3,400		177,853	-401,983	341.935	-394,838
3,500	37.471	112,235	-132,283	279.292	-407,347	3,500		184,120	-402,489	343.751	-394,620
3,600	37.521	115,985	-133,295	280.349	-415,192	3,600		190,397	-403,013	345.519	-394,388
3,700	37.570	119,739	-134,323	281.377	-423,008	3,700		196,685	-403,553	347.242	-394,141
3,800	37.619	123,499	-134,323 -135,366	282.380	-430,796	3,800		202,983	-404,110	348.922	-393,879
3,900	37.667	127,263	-136,424	283.358	-438,557	3,900		209,293	-404,684	350.561	-393,602
4,000	37.716	131,032	-137,497	284.312	-446,291	4,000		215,613	-405,273	353.161	-393,311
4,100	37.764	134,806	-138,585	285.244	-453,997	4,100		221,945	-405,878	353.725	-393,004
4,200	37.810	138,585	-139,687	286.154	-461,677	4,200		228,287	-406,499	355.253	-392,683
4,300	37.855	142,368	-140,804	287.045	-469,330	4,300		234,640	-407,135	356.748	-392,346
4,400	37.897	146,156	-141,935	287.915	-476,957	4,400		241,002	-407,785	358.210	-391,995
4,500	37.936	149,948	-143,079	288.768	-484,558	4,500		247,373	-408,451	359.642	-391,629
4,500	37.936 37.970	153,743	-144,236	289.602	-492,134	4,600		253,752	-409,132	361.044	-391,247
4,700	37.998	157,541	-145,407	290.419	-499,684	4,700		260,138	-409,828	362.417	-390,851
4,700	31.330	137,371	-145,407	470.717	-422,000						

 $\textbf{Table A.7} \qquad \text{Nitrogen $\{N_2\}$, $MW = 28.013$, enthalpy of formation @ 298 K $\langle kJ/kmol \rangle = 0 }$

T(K)	ē _p (kJ/kmol-K)	$(\bar{h}^o(T) - \bar{h}^o_f(298))$ (kJ/kmol)	$\bar{k}_f^c(T)$ (kJ/kmol)	§ °(T) (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	28.793	-2,841	0	179.959	0
298	29.071	0	0	191.511	0
300	29.075	54	0	191.691	0
400	29.319	2,973	0	200.088	0
500	29.636	5,920	ő	206,662	0
	30.086	8,905	ŏ	212.103	0
600 700	30.684	11,942	o	216.784	0
800	31.394	15,046	ő	220.927	0
900	32.131	18,222	ő	224.667	0
1,000	32.762	21,468	ŏ	228.087	0
1,100	33.258	24,770	ő	231.233	0
1,200	33.707	28,118	ō	234.146	0
1,300	34.113	31,510	ō	236.861	0
1,400	34.477	34,939	ŏ	239.402	0
1,500	34.805	38,404	ő	241.792	0
	35.099	41,899	0	244.048	0
1,600	35.361	45,423	ŏ	246.184	0
1,700	35.595	48,971	ő	248.212	0
1,800	35.803	52,541	ő	250.142	0
1,900	35.988	56,130	ő	251.983	0
2,000	36.152	59,738	0	253.743	0
2,100	36.298	63,360	ő	255.429	0
2,200	36.428	66,997	ŏ	257.045	0
2,300	36.543	70,645	ő	258.598	0
2,400	36.645	74,305	ő	260.092	0
2,500	36.737	77,974	ő	261.531	0
2,600		81,652	ő	262,919	0
2,700	36.820 36.895	85,338	o	264.259	ō
2,800	36.964	89,031	o	265.555	0
2,900	37.028	92,730	o o	266.810	0
3,000	37.028	96,436	0	268.025	0
3,100 3,200	37.144	100,148	ő	269.203	0
3,300	37.198	103,865	ő	270.347	0
3,400	37.251	107,587	0	271.458	0
-	37.302	111,315	Ö	272.539	0
3,500 3,600	37.352	115,048	0	273.590	0
3,700	37.402	118,786	ő	274.614	0
3,800	37.452	122,528	ŏ	275.612	0
3,900	37.501	126,276	ő	276.586	0
4,000	37.549	130,028	0	277.536	0
4,100	37.597	133,786	ő	278.464	0
4,200	37.643	137,548	ŏ	279.370	0
4,300	37.688	141,314	ő	280.257	0
4,400	37.730	145,085	ő	281.123	0
4,500	37.768	148,860	ŏ	281.972	0
4,600	37.803	152,639	0	282.802	0
4,700	37.832	156,420	0	283.616	0
4,700	37.034	100,780	~		

Table A.6 Water (H_2O), MW = 18.016, enthalpy of formation @ 298 K (kJ/kmol) = -241,845, enthalpy of vaporization (kJ/kmol) = 44,010

T(K)	\bar{c}_p (kJ/kmol-K)	$(\bar{h}^o(T) - \bar{h}^o_f(298))$ (kJ/kmol)	$\bar{h}_f^o(T)$ (kJ/kmol)	š°(T) (kJ/kmol-K)	$\bar{g}_f^o(T)$ (kJ/kmol)	
200	32.255	-3,227	-240,838	175.602	-232,775	
298	33.448	0	-241,845	188.715	-228,608	
300	33.468	62	-241,865	188.922	-228,526	
400	34,437	3,458	-242,858	198.686	-223,929	
500	35.337	6,947	-243,822	206.467	-219,085	
600	36.288	10,528	-244,753	212.992	-214,049	
700	37.364	14,209	-245,638	218.665	-208,86	
800	38.587	18,005	-246,461	223.733	-203,550	
900	39.930	21,930	-247,209	228.354	-198,14	
1,000	41.315	25,993	-247,879	232.633	-192,652	
1,100	42.638	30,191	-248,475	236.634	-187,100	
1,200	43.874	34,518	-249,005	240.397	-181,49	
1,300	45.027	38,963	-249,477	243.955	-175,852	
1,400	46.102	43,520	-249,895	247.332	-170,173	
1,500	47.103	48,181	-250,267	250.547	-164,464	
1,600	48.035	52,939	-250,597	253.617	-158,73	
1,700	48.901	57,786	-250,890	256.556	-152,98	
1,800	49.705	62,717	-251,151	259.374	-147,21	
1,900	50.451	67,725	-251,384	262.081	-141,43	
2,000	51.143	72,805	-251,594	264.687	-135,64	
2,100	51.784	77,952	-251,783	267.198	-129,84	
2,200	52.378	83,160	-251,955	269.621	-124,03	
2,300	52.927	88,426	-252,113	271.961	-118,21	
2,400	53:435	93,744	-252,261	274.225	-112,38	
2,500	53.905	99,112	-252,399	276.416	-106,55	
2,600	54.340	104,524	-252,532	278.539	-100,71	
2,700	54.742	109,979	-252,659	280.597	-94,87	
2,800	55.115	115,472	-252,785	282.595	-89,03	
2,900	55.459	121,001	-252,909	284.535	-83,18	
3,000	55.779	126,563	-253,034	286.420	-77,32	
	56.076	132,156	-253,161	288.254	-71,46	
3,100	56.353	137,777	-253,290	290.039	-65,60	
3,200	56.610	143,426	-253,423	291.777	-59.73	
3,300	56.851	149,099	-253,561	293.471	-53,86	
	57.076	154,795	-253,704	295.122	-47,99	
3,500	57.288	160,514	-253,852	296.733	-42,11	
3,600	57.488	166,252	-254,007	298.305	-36,22	
3,700	57.676	172,011	-254,169	299.841	-30,33	
3,800			-254,338	301.341	-24,44	
3,900	57.856 58.026	177,787 183,582	-254,515	302.808	-18,54	
4,000	58.190	189,392	-254,699	304.243	-12,64	
4,100	58.346	195,219	-254,892	305.647	-6,74	
4,200		201,061	-255,093	307.022	-83	
4,300	58.496		-255,303	308.368	5,08	
4,400	58.641	206,918		309.688	11,00	
4,500	58.781	212,790	-255,522	310.981	16,93	
4,600	58.916	218,674	-255,751	312.250	22,86	
4,700	59.047	224,573	-255,990	312,230	22,00	

$$\begin{split} x_{N_2} &= 1 - x_{CO_2} - x_{CO} = 0.7 \\ \overline{h}_{mix} &= \sum x_i \overline{h}_i = x_{CO} \Big[\overline{h}_{f,CO}^0 + \left(\overline{h}(T) - \overline{h}_{f,298}^0 \right)_{CO} \Big] \\ &+ x_{CO_2} \Big[\overline{h}_{f,CO_2}^0 + \left(\overline{h}(T) - \overline{h}_{f,298}^0 \right)_{CO_2} \Big] \\ &+ x_{N_2} \Big[\overline{h}_{f,N_2}^0 + \left(\overline{h}(T) - \overline{h}_{f,298}^0 \right)_{N_2} \Big] \end{split}$$

Substitute values from Appendix A

$$h_{\text{mix}}$$
=0.1[-110,540+28,440]
+0.2[-393,546+44,488]
+0.7[0+28,118]
=-58,339.1kJ/kmol_{mix}

To find h_{mix} , we need to determine the molecular weight of the mixture:

 $M_{\text{mix}} = \sum x_i M_i = 0.1(28.01) + 0.20(44.01) + 0.7(28.013) = 31.212$ Then,

$$h_{mix} = \frac{\overline{h}_{mix}}{M_{mix}} = \frac{-55,339.1(kJ/kmol)}{31.212(kg/kmol)} = -1869.12 \, kJ/kg_{mix}$$

$$Y_{CO} = 0.10 \frac{28.01}{31.212} = 0.0897$$

$$Y_{CO_2} = 0.20 \frac{44.01}{31.212} = 0.2820$$

$$Y_{N_2} = 0.70 \frac{28.013}{31.212} = 0.6282$$

Check: 0.0897+0.2820+0.6282=1

For a steady state combustor, the complete combustion means

Based on the First Law, we have

$$q_{cv} = h_0 - h_i = h_{prod} - h_{reac}$$

With a complete reaction, at a certain state, the enthalpy difference between the products and reactants is called the **enthalpy of reaction**, h_R

During combustion process, we call it **enthalpy of combustion**, h_c (kJ/kg or kJ/kmol)

$$\Delta h_R \equiv q_{cv} = h_{prod} - h_{reac}$$

Or

$$\Delta H_R = H_{prod} - H_{reac}$$

The enthalpy of reaction (enthalpy of combustion) is negative because the enthalpy of the products is less than the enthalpy of the reaction is exothermic

Enthalpy of combustion

Enthalpy of combustion

A microscopic view

When exiting chemical bonds are broken and new bonds are formed, usually a large amount of sensible heat is released, i.e. combustion process

Enthalpy of reaction

Enthalpy of reaction by unit mass of fuel

$$\Delta h_R \left(\frac{kJ}{kg_{fuel}} \right) = \Delta H_R / M_{Fuel}$$

$$\Delta h_R \left(\frac{kJ}{kg_{CH_A}} \right) = \left(-\frac{801,405}{16.043} \right) = -50,016$$

Enthalpy of reaction by unit mass of mixture

$$\Delta h_R(\frac{kJ}{kg_{mix}}) = \Delta h_R(\frac{kJ}{kg_{fuel}}) \frac{m_{fuel}}{m_{mix}}$$
 reaction is related to temperature

Where

$$\frac{m_{fuel}}{m_{mix}} = \frac{m_{fuel}}{m_{air} + m_{fuel}} = \frac{1}{(A/F) + 1}$$

For methane (stoichiometric A/F ratio 17.11)

$$\Delta h(\frac{kJ}{kg_{mix}}) = \frac{-50,016}{17.11+1} = -2761.8$$

NOTE: Enthalpy of

Heat of combustion, Δh_c (a.k.a. the **heating value**), is numerically equal to the enthalpy of reaction but with opposite sign (positive).

Upper or Higher heating value: H₂0 is condensed to a liquid

Lower heating value: H₂0 is condensed to a gas/vapour

HHV = LHV + Latent Heat of Vaporization (25°C)

A. Determine the upper and lower heating values at 298 K of gaseous n-decane, $C_{10}H_{22}$, per kilomole of fuel and per kilogram of fuel. The molecular weight of n-decane is 142.284 kg/kmol.

B. If the enthalpy of vaporisation of n-decane is $359 \, kJ/kg_{fuel}$, what are the upper and lower heating values of liquid n-decane?

Sunday, 16 December 2018 35

Fuel properties

Table B.1 Selected properties of hydrocarbon fuels: enthalpy of formation,° Gibbs function of formation,° entropy,° and higher and lower heating values all at 298.15 K and 1 atm; boiling points^b and latent heat of vaporization° at 1 atm; constant-pressure adiabatic flame temperature at 1 atm;^d liquid density°

Formula	Fuel	MW (kg/kmol)	$ar{h}_f^o$ (kJ/kmol)	\tilde{g}_f'' (kJ/kmol)	ÿ° (kJ/kmol-K)	HHV [†] (kJ/kg)	LHV [†] (kJ/kg)	Boiling pt. (°C)	h _{fg} (kJ/kg)	T _{ad} (K)	ρ _{liq} * (kg/m³)
CH ₄	Methane	16.043	-74,831	~50,794	186.188	55,528	50,016	-164	509	2,226	300
C_2H_2 C_2H_4 C_2H_6	Acetylene Ethene Ethane	26.038 28.054 30.069	226,748 52,283 -84,667	209,200 68,124 -32,886	200.819 219.827 229.492	49,923 50,313 51,901	48,225 47,161 47,489	-84 -103.7 -88.6	 488	2,539 2,369 2,259	 370
C_3H_6	Propene	42.080	20,414	62,718	266.939	48,936	45,784	-47.4	437	2,334	514
C_3H_8	Propane	44.096	-103,847	-23,489	269.910	50,368	46,357	-42.1	425	2,267	500
C ₄ H ₈	1-Butene	56.107	1,172	72,036	307.440	48,471	45,319	-63	391	2,322	595
C ₄ H ₁₀	n-Butane	58.123	-124,733	-15,707	310.034	49,546	45,742	-0.5	386	2,270	579
C ₅ H ₁₀	1-Pentene	70.134	-20,920	78,605	347.607	48,152	45,000	30	358	2,314	641
C ₅ H ₁₂	n-Pentane	72.150	-146,440	-8,201	348.402	49,032	45,355	36.1	358	2,272	626
C ₆ H ₆	Benzene	78.113	82,927	129,658	269.199	42,277	40,579	80.1	393	2,342	879
C ₆ H ₁₂	1-Hexene	84.161	-41,673	87,027	385.974	47,955	44,803	63.4	335	2,308	673
C ₆ H ₁₄	n-Hexane	86.177	-167,193	209	386.811	48,696	45,105	69	335	2,273	659
C ₇ H ₁₄ C ₇ H ₁₆	1-Heptene n-Heptane	98.188 100.203	-62,132 $-187,820$	95,563 8,745	424.383 425.262	47,817 48,456	44,665 44,926	93.6 98.4	316	2,305 2,274	 684
C_8H_{16} C_8H_{18}	1-Octene n-Octane	112.214 114.230	-82,927 $-208,447$	104,140 17,322	462.792 463.671	47,712 48,275	44,560 44,791	121.3 125.7	300	2,302 2,275	- 703
C ₉ H ₁₈	1-Nonene	126.241	-103,512	112,717	501.243	47,631	44,478	150.8		2,300	-
C ₉ H ₂₀	n-Nonane	128.257	-229,032	25,857	502.080	48,134	44,686		295	2,276	718
$C_{10}H_{20}$ $C_{10}H_{22}$	1-Decene n-Decane	140.268 142.284	-124,139 -249,659	121,294 34,434	539.652 540.531	47,565 48,020	44,413 44,602	170.6 174.1	277	2,298 2,277	730
C ₁₁ H ₂₂	1-Undecene	154.295	-144,766	129,830	578.061	47,512	44,360	195.9		2,296	
C ₁₁ H ₂₄	n-Undecane	156.311	-270,286	43,012	578.940	47,926	44,532		265	2,277	740

A. For 1 mole of $C_{10}H_{22}$, the combustion equation can be written as

$$C_{10}H_{22}(g) + 15.5(O_2 + 3.76N_2) \rightarrow 10CO_2 + 11H_2O(l \text{ or } g) + 15.5(3.76)N_2$$

For either the upper or lower heating value

$$\Delta H_C = -\Delta H_R = H_{reac} - H_{prod}$$

The **sensible** enthalpies for all species are zero at 298 K (reference state), the enthalpies of formation of O_2 and N_2 are also zero at 298 K.

Recognising that

$$H_{reac} = \sum_{reac} N_i \overline{h}_i$$
 and $H_{prod} = \sum_{prod} N_i \overline{h}_i$

We have

$$\Delta H_{C,H_2O(l)} = HHV = (1)\overline{h}_{f,C_{10}H_{22}}^0 - [10\overline{h}_{f,CO_2}^0 + 11\overline{h}_{f,H_2O(l)}^0]$$

Continue...

Enthalpy of formation for liquid water from enthalpy of formation for gaseous water and enthalpy of vaporisation (values from table)

$$\overline{h}_{f,H_2O(l)}^{\,0} = \overline{h}_{f,H_2O(g)}^{\,0} - \overline{h}_{fg} = -241,847 - 44,010 = -285,857 kJ/kmol$$

Therefore, we obtain the HHV:

$$\Delta H_{C,H_2O(l)} = (1)(-249,659 \frac{kJ}{kmol})$$

$$-\left[10\left(-393,546 \frac{kJ}{kmol}\right) + 11\left(-285,857 \frac{kJ}{kmol}\right)\right]$$

$$= 6,830,096kJ$$

And
$$\Delta \bar{h}_C = \frac{\Delta H_C}{N_{C_{10}H_{22}}} = \frac{6,830,096kJ}{1kmol} = 6,830,096kJ / kmol_{C_{10}H_{22}}$$

Or
$$\Delta h_c = \frac{\Delta \overline{h_c}}{M_{C_{10}H_{22}}} = \frac{6,830,096 \, kJ/kmol}{142.284 \, kg/kmol} = 48,003 \, kJ/kg_{C_{10}H_{22}}$$

Continue...

For lower heating value, we use $\bar{h}_{f,H_2O(g)}^0 = -241,847kJ/kmol$ in place of

$$\overline{h}_{f,H_2O(l)}^0 = -285,857kJ/kmol$$

$$\Delta \overline{h}_C = 6,345,986kJ/kmol_{C_{10}H_{22}}$$

$$\Delta h_C = 44,601 kJ/kg_{C_{10}H_{22}}$$

B. For liquid
$$C_{10}H_{22}$$

$$H_{reac} = (1)(\overline{h}_{f,C_{10}H_{22}(g)}^{0} - \overline{h}_{fg}),$$

$$\Delta h_C$$
 (liquid fuel)= Δh_C (gaseous fuel) – h_{fg}

$$\Delta h_C$$
 (higher) = 48,003 – 359
= 47,644kJ/kg_{C₁₀H₂₂}

$$\Delta h_C$$
 (lower) = 44,601-359
= 44,242kJ/kg_{C₁₀H₂₂}

Adiabatic Flame Temperatures

We define two adiabatic flame temperatures: one for constant-pressure combustion and one for constant-volume.

Based on the First Law, for constant pressure adiabatic combustion temperature

$$H_{reac}(T_i,P)=H_{prod}(T_{ad},P)$$
 why heat constant, why not make on internal charge

Or

$$h_{reac}(T_i, P) = h_{prod}(T_{ad}, P)$$

Typical flame temperatures are several thousand Kelvins.

Adiabatic Flame Temperatures

Example

Estimate the constant pressure adiabatic flame temperature for the combustion of a stoichiometric CH₄-air mixture. The pressure is 1 atm and the initial temperature is 298 K.

Assume complete combustion, i.e. the product mixture consists of only CO_2 , H_2O , and N_2 . and the product mixture enthalpy is estimated using constant specific heat evaluated at 1200 K(\approx 0.5 (T_i + T_{ad})), where T_{ad} is guessed to be about 2100 K)

difference of Hc and Hr	Species Hp	Enthalpy of Formation @298K h ⁰ _{f,i} (kJ/kmol)	Specific Heat @1200K c _{P,i} (kJ/kmol-K)
	CH_4	-74,831	
	CO_2	-393,546	56.21
	H_2O	-241,845	43.87
	N_2	0	33.71
	O_2	0	

Mixture composition:

$$CH_4+2(O_2+3.76N_2) \rightarrow 1CO_2+2H_2O+7.52N_2$$

 $N_{CO_2} = 1$, $N_{H_2O} = 2$, $N_{N_2} = 7.52$

First Law:
$$H_{react} = \sum_{react} N_i \overline{h}_i = H_{prod} = \sum_{prod} N_i \overline{h}_i$$

$$H_{react} = (1)(-74,831) + 2(0) + 7.52(0) = -74,831 \text{kJ}$$

$$H_{prod} = \sum_{prod} N_i [\overline{h}_{f,i}^0 + \overline{c}_{p,i} (T_{ad} - 298)]$$

$$= (1)[-393,546 + 56.21(T_{ad} - 298)]$$

$$+ (2)[-241,845 + 43.87(T_{ad} - 298)]$$

$$+ (7.52)[0 + 33.71(T_{ad} - 298)]$$

Equating H_{react} to H_{prod} and solving for T_{ad} yields

$$T_{ad} = 2318 K$$

By the First Law

$$U_{reac}(T_{init}, p_{init}) = U_{prod}(T_{ad}, p_f)$$

Where U is the internal energy. Or in another form (as U+pV=H)

$$H_{reac} - H_{prod} - V(p_{init} - p_f) = 0$$

For an ideal gas

$$p_{init}V = \sum_{reac} n_i R_0 T_{init} = n_{reac} R_0 T_{init}$$

$$p_f V = \sum_{prod} n_i R_0 T_{ad} = n_{prod} R_0 T_{ad}$$

Thus

$$H_{reac} - H_{prod} - R_0 (n_{reac} T_{init} - n_{prod} T_{ad}) = 0$$

For specific values

For reactants

$$\frac{m_{mix}}{n_{reac}} \equiv M_{reac}$$

For products

$$\frac{m_{mix}}{n_{prod}} \equiv M_{prod}$$

Thus we obtain (as mass is conserved)

$$h_{reac} - h_{prod} - R_0 \left(\frac{T_{init}}{M_{reac}} - \frac{T_{ad}}{M_{prod}} \right) = 0$$

Example

Estimate the constant volume adiabatic flame temperature for the combustion of a stoichiometric CH₄-air mixture. The pressure is 1 atm and the initial temperature is 298 K.

Note: the estimated temperature would be higher than the last example (constant pressure, why?) but we use the same specific heat.

We have:
$$H_{reac} - H_{prod} - R_0 (n_{reac} T_{init} - n_{prod} T_{ad}) = 0$$

Or

$$\sum_{reac} n_i \bar{h}_i - \sum_{prod} n_i \bar{h}_i - R_0 (n_{reac} T_{init} - n_{prod} T_{ad}) = 0$$

From the table
$$\begin{split} H_{reac} &= (1)(-74,831) + 2(0) + 7.52(0) = -74,831 \text{kJ} \\ H_{prod} &= (1)[-393,546 + 56.21(T_{ad} - 298)] \\ &+ (2)[-241,845 + 43.87(T_{ad} - 298)] \\ &+ (7.52)[0 + 33.71(T_{ad} - 298)] \\ &= -877,236 + 397.5(T_{ad} - 298) \text{kJ} \end{split}$$

Continue..

And
$$R_0(n_{reac}T_{init} - n_{prod}T_{ad}) = 8.315 \times 10.52 \times (298 - T_{ad})$$

Note: $n_{reac} = n_{prod} = 10.52 \ kmol$ is not always true

Rearrange to find T_{ad}

$$T_{ad} = 2889 K$$

Note: T_{ad} for constant volume is higher than T_{ad} for constant pressure. What does this suggest physically?

Chemical equilibrium

- fully Combustion (reaction) process in an ideal way that reactants react and form ideal products
- In real combustion process, the major species dissociate and produce a host of minor species.
- Example:
 - hydrocarbon complete combustion ideally produces CO₂,H₂O,O₂, and N₂ (with excessive of air)
 - Dissociation yields H₂, OH, CO, H, O, N, NO, and possibly others.
- Question: how to decide the product species at a given temperature and pressure
- The calculation subject to the constraint of element/mass conservation (C, H, O, and N atom numbers will not change)

Consider the reaction of N_2 and H_2 .

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

Chemical equilibrium

- Chemical equilibrium (final state of a reaction) is governed by both the First and the Second Law of thermodynamics
- Consider the following combustion reaction

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

• At very high temperature, CO₂ will dissociate. Assume the products are CO₂, CO and O₂, we have

$$\left[CO + \frac{1}{2}O_{2} \right]_{\text{cold}} \rightarrow \left[(1 - \alpha)CO_{2} + \alpha CO + \frac{\alpha}{2}O_{2} \right]_{\text{hot products}}$$

where α is the function of CO_2 dissociated. When $\alpha=0$, maximum amount of heat released and system achieves highest T and p; when $\alpha=1$, no heat released and everything (T, p, ...) remains unchanged.

The entropy of the product mixture can be calculated by summing the product species entropies

$$S_{mix}(T_f, p) = \sum_{i=1}^{3} n_i \bar{s}_i (T_f, p_i) = (1 - \alpha) \bar{s}_{CO_2} + \alpha \bar{s}_{CO} + \frac{\alpha}{2} \bar{s}_{O_2}$$

Where n_i is the mole number of species i.

The individual species entropies are obtained from:

$$\bar{s}_i = \bar{s}_i^0 (T_{ref}) + \int_{T_{ref}}^{T_f} \bar{c}_{p,i} \frac{dT}{T} - R_0 \ln \frac{p_i}{p^0}$$

Note: ideal gas behaviour is assumed.

Chemical equilibrium

In the figure, for the reaction chosen, $CO + \frac{1}{2}O_2 \rightarrow CO_2$, the maximum entropy occurred near $1 - \alpha = 0.5$

For the choice of conditions (constant U, V, m, no heat or work transfer) the Second Law requires that the entropy change internal to the system.

$$dS \geq 0$$

The composition of the system will spontaneously shift toward the maximum entropy point from either side, as dS is positive.

Formally, the condition for equilibrium can be written

$$(dS)_{U,V,m}=\mathbf{0}$$

 $(dS)_{U,V,m}=\mathbf{0}$ To summarise, for an isolated system with fixed internal energy, volume and mass, with Second Law (entropy), First Law (U_{reac}=U_{prod}) and state equations, the equilibrium T, p and composition can be defined.

Gibbs Free Energy

The previous conclusion is useful in illustrating the chemical equilibrium, the use of isolated (fixed energy) system of fixed mass and volume is not very useful for many real problems.

Gibbs Free Energy, G, replaces the entropy G = H-TS

$$G \equiv H - TS = U + pV - TS$$

The Second Law can be expressed as

$$(dG)_{T,p,m}\leq 0$$

This is to say in a spontaneous process, towards its minimum value

dG = 0 Equilibrium

dG < 0 Spontaneous

dG > 0 Non spontaneous

Gibbs function

Chemical reaction

Endothermic: ΔH is positive

Exothermic: ΔH is negative (spontaneous)

But not just ΔH

Consider the following spontaneous process, ΔS plays a role

In equilibrium,

$$(dG)_{T,\,p,m}=0$$

For a mixture of ideal gases, the Gibbs function of the *ith* species is

$$\bar{g}_{i,T} = \bar{g}^0_{i,T} + R_0 T ln(\frac{p_i}{p^0})$$

Where $\bar{g}^0_{i,T}$ is the Gibbs function of the pure species at the standard-state pressure p^0 (1 atm) and p_i is the partial pressure.

In dealing with reacting systems, a **Gibbs function of formation**, $\bar{g}_{f,i}^0$ is:

$$\bar{g}_{f,i}^{0}(T) \equiv \bar{g}_{i}^{0}(T) - \sum_{j \text{ elements}} \nu_{j}' \bar{g}_{j}^{0}(T)$$

Where v_j' are the stoichiometric coefficients of the elements required to form one mole of the compound of interest. e.g. $v_{O_2}' = \frac{1}{2}$, $v_C' = 1$ for a mole of CO from O_2 and C.

Gibbs function of formation of the naturally occurring elements are assigned values of zero.

59

Assume ideal gases

$$G_{mix} = \sum n_i \bar{g}_{i,T} = \sum n_i \left[\bar{g}^0_{i,T} + R_0 T ln \left(\frac{p_i}{p^0} \right) \right]$$

Where n_i is the number of moles of the ith species $\Rightarrow d l \Rightarrow$ For fixed temperature and pressure, the <u>equilibrium condition</u> becomes

$$dG_{mix} = 0 \quad or \quad \sum dn_i \left[\bar{g^0}_{i,T} + R_0 T ln \left(\frac{p_i}{p^0} \right) \right] + \sum n_i d \left[\bar{g^0}_{i,T} + R_0 T ln \left(\frac{p_i}{p^0} \right) \right] = 0$$

Because all changes in the partial pressures must sum to zero as the total pressure is constant, therefore $\sum dp_i = 0$, and $d(\ln p_i) = dp_i/p_i$ Thus

$$dG_{mix} = \sum dn_i \left[\bar{g}^0_{i,T} + R_0 T ln \left(\frac{p_i}{p^0} \right) \right] = 0$$

Gibbs function for mixture

For a general system, where

$$aA + bB + \cdots \Leftrightarrow eE + fF + \cdots$$

The change in the number of moles of each species is proportional to it stoichiometric coefficient

$$dn_A = -\kappa a$$
 $dn_B = -\kappa b$
...
 $dn_E = +\kappa e$
 $dn_F = +\kappa f$
...

Substituting into previous equation, and cancelling the constant κ

$$-a\left[\bar{g}^{0}_{A,T} + R_{0}Tln\left(\frac{p_{A}}{p^{0}}\right)\right] - b\left[\bar{g}^{0}_{B,T} + R_{0}Tln\left(\frac{p_{B}}{p^{0}}\right)\right] - \cdots$$

$$+e\left[\bar{g}^{0}_{E,T} + R_{0}Tln\left(\frac{p_{E}}{p^{0}}\right)\right] + f\left[\bar{g}^{0}_{F,T} + R_{0}Tln\left(\frac{p_{F}}{p^{0}}\right)\right] + \cdots = 0$$

Rearrange and group the log terms

$$-\left(e\bar{g}^{0}_{E,T} + f\bar{g}^{0}_{F,T} + \dots - a\bar{g}^{0}_{A,T} - b\bar{g}^{0}_{B,T} - \dots\right)$$

$$= R_{0} T \ln \frac{\left(\frac{p_{E}}{p_{0}}\right)^{e} \left(\frac{p_{F}}{p_{0}}\right)^{f} etc}{\left(\frac{p_{A}}{p_{0}}\right)^{a} \left(\frac{p_{B}}{p_{0}}\right)^{b} etc} \qquad \text{Th} kp$$

We define standard-state Gibbs function change ΔG_T^0

$$\Delta G_{T}^{0} = \left(e \bar{g}_{E,T}^{0} + f \bar{g}_{F,T}^{0} + \dots - a \bar{g}_{A,T}^{0} - b \bar{g}_{B,T}^{0} - \dots \right) \text{ or }$$

$$\Delta G_{T}^{0} = \left(e \bar{g}_{f,E}^{0} + f \bar{g}_{f,F}^{0} + \dots - a \bar{g}_{f,A}^{0} - b \bar{g}_{f,B}^{0} - \dots \right)_{T}$$

And we also define the **equilibrium constant** K_p as

$$K_{p} = \frac{\left(\frac{p_{E}}{p_{0}}\right)^{e} \left(\frac{p_{F}}{p_{0}}\right)^{f} etc}{\left(\frac{p_{A}}{p_{0}}\right)^{a} \left(\frac{p_{B}}{p_{0}}\right)^{b} etc} \qquad k_{p} = \frac{\left(\frac{p_{E}}{p_{0}}\right)^{e} \left(\frac{p_{F}}{p_{0}}\right)^{f} etc}{\left(\frac{p_{A}}{p_{0}}\right)^{a} \left(\frac{p_{B}}{p_{0}}\right)^{b} etc}$$

Continue...

So we have

$$\Delta G_T^0 = -R_0 T \ln K_p$$

Or

$$K_p = e^{-\Delta G_T^0/R_0 T}$$

From the relation of K_p and ΔG_T^0 , we obtain a quantitative indication of whether a reaction favours products or reactants.

 $\Delta G_T^0 > 0$, $\ln K_p < 0$, reactants are favoured (no reaction)

 $\Delta G_T^0 < 0$, $\ln K_p > 0$, products are favoured (reaction)

$$\Delta G_T^0 = \Delta H^0 - T\Delta S^0$$

$$K_p = e^{-\Delta H^0/R_0 T} \cdot e^{\Delta S^0/R_0}$$

$$= e^{\frac{\Delta S^0}{R_0}} \cdot e^{\frac{\Delta S^0}{R_0}}$$

For K_p greater than 1, enthalpy change should be negative, i.e. exothermic and system energy becomes lower; also positive change in entropy, indicating greater molecular chaos.

Example

Consider the dissociation of CO₂ as a function of temperature and pressure

$$CO_2 \Leftrightarrow CO + 0.5O_2$$

Find the composition of the mixture, i.e. the mole fractions of CO_2 , CO_3 , and O_2 , that results from subjecting originally pure CO_2 to various temperatures, (T=1500, 2000, 2500 and 3000 K) and pressures (p=0.1, 1, 10 and 100 atm).

Solution

To find the three unknown mole fractions, we need 3 equations

Equation 1: equilibrium expression

ibrium expression
$$k_p = e^{-\Delta G_T^0/R_0 T}$$
 (1)

Equation 2: element conservation

$$\frac{No.of\ carbon\ atoms}{No.of\ oxygen\ atoms} = \frac{1}{2} = \frac{\chi_{CO} + \chi_{CO_2}}{2\chi_{O_2} + 2\chi_{CO_2} + \chi_{CO}} \tag{2}$$

Equation 3: mole fraction sum to unity:

$$\chi_{CO_2} + \chi_{CO} + \chi_{O_2} = 1 \tag{3}$$

Solution continue

First we have Motice
$$\bar{g}^{\circ}$$
 13 different from \bar{f}° (Product -Reactions)
$$\Delta G_{T}^{0} = \left(e\bar{g}^{0}_{f,E} + f\bar{g}^{0}_{f,F} + \dots - a\bar{g}^{0}_{f,A} - b\bar{g}^{0}_{f,B} - \dots\right)_{T}$$

$$= \left[\left(\frac{1}{2}\right)\bar{g}^{0}_{f,O_{2}} + (1)\bar{g}^{0}_{f,CO} - (1)\bar{g}^{0}_{f,CO_{2}}\right]_{T=2500}$$

$$= \left(\frac{1}{2}\right)0 + (1)(-327,245) - (-396,152)$$

$$= 68,907 \, kJ/kmol$$

From the definition of K_p

$$K_p = \frac{(p_{CO}/p^0)^1 (p_{O_2}/p^0)^{0.5}}{(p_{CO_2}/p^0)^1}$$

By recognising $p_i = \chi_i p$

$$K_p = \frac{(p_{CO}/p^0)^1 (p_{O_2}/p^0)^{0.5}}{(p_{CO_2}/p^0)^1} = \frac{\chi_{CO}\chi_{O_2}^{0.5}}{\chi_{CO_2}} \left(\frac{p}{p^0}\right)^{0.5}$$

Then we have

$$\frac{\chi_{CO}\chi_{O_2}^{0.5}}{\chi_{CO_2}} \left(\frac{p}{p^0}\right)^{0.5} = \exp\left[\frac{-\Delta G_T^0}{R_0 T}\right] = 0.03635 \tag{1}$$

Solution continue

We have 3 equations to solve 3 variables, requires iteration

	P=0.1 atm	P=1 atm	P=10 atm	P = 100 atm
	T =	= 1500 K, $\Delta G_T^o = 1.5$	5268 - 10 ⁸ J/kmol	
χεο	$7.755 \cdot 10^{-4}$	$3.601 \cdot 10^{-4}$	$1.672 \cdot 10^{-4}$	$7.76 \cdot 10^{-5}$
XCO₂	0.9988	0.9994	0.9997	0.9999
(O ₂	$3.877 \cdot 10^{-4}$	$1.801 \cdot 10^{-4}$	$8.357 \cdot 10^{-5}$	$3.88 \cdot 10^{-5}$
	T =	2000 K, $\Delta G_T^o = 1.1$	0462 · 10 ⁸ J/kmol	
χсο	0.0315	0.0149	$6.96 \cdot 10^{-3}$	$3,243 \cdot 10^{-3}$
(CO₂	0.9527	0.9777	0.9895	0.9951
(O ₂	0.0158	0.0074	$3.48 \cdot 10^{-3}$	$1.622 \cdot 10^{-3}$
	T =	= 2500 K, $\Delta G_T^o = 6.3$	8907 · 10 ⁷ J/kmol	
XCO .	0.2260	0.1210	0.0602	0.0289
XCO₂	0.6610	0.8185	0.9096	0.9566
(O ₂	0.1130	0.0605	0.0301	0.0145
	T =	= 3000 K, $\Delta G_T^o = 2.5$	7878 · 10 ⁷ J/kmol	
χco	0.5038	0.3581	0.2144	0.1138
XCO ₂	0.2443	0.4629	0.6783	0.8293
XO_2	0.2519	0.1790	0.1072	0.0569

Results

- At fixed temperature, increasing pressure suppresses the dissociation
- Increasing temperature at fixed pressure promotes the dissociation
- Any system initially in a start of equilibrium when subject to a change will shift in composition in such a way to minimise the change (principle of Le Châtelier)
 - Increasing pressure, shift to CO₂ side
 - Increasing temperature, shift to CO+O₂ side (endothermic reaction)

Equilibrium products of combustion

Full equilibrium

Combine the **First Law**, the **complex chemical equilibrium** and **element conservation**,

Obtain:

the adiabatic flame temperature and detailed composition of the products of combustion

Example:

Propane (C_3H_8) –air combustion at 1 atm, major products include CO_2 , CO, H_2O , H_2 , H, OH, O_2 , O, NO, N_2 , and N

Lean combustion products: H₂O, CO₂, O₂ and N₂

Rich combustion products: H₂O, CO₂, CO,H₂, and N₂

Propane combustion major products

- Maximum flame temperature 2278.4 K occurred at slightly rich (Φ =1.05), do does the water mole fraction (Φ =1.15)
 - A consequence of both the heat of combustion and heat capacity of the products declining beyond Φ=1

Propane combustion minor products

Minor products O, H, OH and NO, all below 4000 ppm. CO is a minor product at lean combustion, O_2 is a minor product at rich combustion.

Note:

- The level of the hydroxyl radical OH is more than an order of magnitude greater than the O atom.
- N atom is several orders of magnitude less than O atom.
- The lack of dissociation of the N2 molecule is a result of the strong triple covalent bond.
- NO concentrations are flat and peak in lean region, falling rapidly in rich region. In most combustion system, NO concentration is below equilibrium (chemical kinetics).

Summary

- Stoichiometric reaction
- Enthalpy of formation
- Enthalpy of reaction and enthalpy of combustion, lower/higher heating values
- Adiabatic flame temperatures (constant pressure and constant volume)
- Chemical equilibrium
- Gibbs free energy and Gibbs function
- Gibbs function of formation and standard-state Gibbs function change