SISTEMÁTICA BIOLÓGICA

MÉTODOS DE INFERENCIA FILOGENÉTICA

Julián Aguirre-Santoro Instituto de Ciencias Naturales Universidad Nacional de Colombia

ESTRUCTURA BÁSICA DE UN ESTUDIO FILOGENÉTICO

	1 (4)	(21)	3 (32)	4 (45)	5 (52)	6 (54)	7 (56)	8	9 (59)	10 (60)	11 (61)	12 (62)	13 (40)	14 (50)	15 (51)	16 (1)	17 (2)	18 (3)	19 (24)	20 (26
Outgroup	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
Cat	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0
Hyena	0	1.	0	1:	0	0	1	0	1	0	0	0	1	1	1	1	0	0	0	0
Civet	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0
Dog	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Raccoon	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	.0	0	0
Bear	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1
Otter	1	0	0	0	1	0	0	0	0	1	0	0	1	0	1	1	1	0	0	0
Seal	1	0	1	0	1	1	0	0	0	1	1	1	0	1	1	1	1	0	1	1
Walrus	1	0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	0	1	1	1
Sea lion	1	0	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0	1	1	1

Hipótesis filogenética

I. OBJETIVO: Monofilia

Hipótesis alternativa: El orden Carnivora NO es monofilético

Carnivora

Grupo propio: Mamíferos (excepto Monotrema)

EJEMPLO CON ORDEN CARNIVORA

I. OBJETIVO: Monofilia

Hipótesis: Los Pinnipedos son monofiléticos

Grupo propio: Carnívora

EJEMPLO CON CARNIVORA

2. OBJETIVO: Relaciones filogenéticas internas

Hipótesis: Los perros están más relacionados a los osos que a los gatos

EJEMPLO CON CARNIVORA

2. OBJETIVO: Relaciones filogenéticas internas

Hipótesis: Los perros están más relacionados a los osos que a los gatos

Hominidae

3. OBJETIVO: Encontrar el origen evolutivo de linajes y caracteres (y evaluar su condición homológa)

Hipótesis: la metamorfosis en insectos se originó una sola vez y mucho después del origen del grupo

Hemimetábolos (metamorfosis incompleta)

Holometábolos (metamorfosis completa)

3. OBJETIVO: Encontrar el orígen evolutivo de linajes y caracteres (y evaluar su condición homológa)

Hipótesis: la metamorfosis en insectos se originó una sola vez y mucho después del origen del grupo

