Phase-2 Submission

Student Name: Nithyashree S

Register Number: 410723104056

Institution: Dhanalakshmi College of Engineering

Department: CSE

Date of Submission: 07.05.2025

GitHub Repository Link: https://github.com/Nithyashree-S-

06/NM_NithyashreeS_DS.git

1. Problem Statement

Guarding transaction with AI-powered credit card fraud detection and prevention

Operational inefficiencies:

Manual review processes that are costly and time-consumingCredit card fraud continues to be a growing threat in the digital payments ecosystem, costing financial institutions, merchants, and consumers billions annually. Traditional rule-based fraud detection systems are increasingly inadequate against

Sophisticated fraud patterns, leading to:

► High false positives :

Legitimate transactions being declined, causing customer frustration

> False negatives:

Fraudulent transactions slipping through, resulting in financial losses

➤ Inability to adapt:

Static rules can't keep pace with evolving fraud techniques

2. Project Objectives

- ➤ Collect and preprocess transaction data to prepare a clean, balanced dataset for analysis.
- ➤ Analyze data patterns to identify key indicators and trends related to fraudulent activities.
- ➤ Develop and train machine learning models to accurately detect and classify fraudulent transactions.
- Evaluate model performance using metrics like precision, recall, F1-score, and AUC-ROC to ensure reliability.
- ➤ Design a practical fraud prevention framework for integrating the model into real-time transaction systems.

3. Flowchart of the Project Workflow

4. Data Description

- > Dataset Name: Credit card transaction data set
- > Source: Kaggle
- > Type of Data: Structured tabular data
- > Records and Features: 100001 transactions data set (categorical
 - + numerical data) and 8 features
- ightharpoonup Target Variable: Is fraud(1= Fraud, 0 = Legitimate)
- > Static or Dynamic :static data set
- ➤ Attributes Covered: TransactionID, TransactionDate, Amount, MerchantID, TransactionType, Location and IsFraud

5. Data Preprocessing

- ➤ Checked and confirmed no missing values
- ➤ Converted Date to datetime format and extracted hour-based features
- ➤ Encoded categorical variables like TransactionType and Location
- ➤ Normalized Amount using MinMaxScaler
- ➤ Handled imbalance using SMOTE to oversample fraudulent cases
- ➤ Split dataset into 80% training and 20% test sets

6. Exploratory Data Analysis (EDA)

Univariate Analysis:

- Distribution of Amount (right-skewed)
- o Count plot showing class imbalance
- ➤ Bivariate/Multivariate Analysis:
 - o Boxplots of Amount by IsFraud
 - o Bar plots of TransactionType and Location grouped by fraud
- ➤ Insights Summary:
 - Certain merchant IDs and transaction types correlate with fraud
 - o High-value transactions are more likely to be flagged as fraud

7. Feature Engineering

- > Extracted hour-of-day and weekday from Date
- Created Amount_per_hour = Amount / transaction hour
- ➤ Used one-hot encoding for categorical fields
- ➤ Removed low variance or redundant features

8. Model Building

- > Algorithms Used:
 - o Logistic Regression (Baseline)
 - o Random Forest Classifier
 - o XG Boost Classifier
 - o Isolation Forest (Anomaly Detection)

> Data Split:

- o Train-test split: 80% training, 20% testing using stratify=y
- > Metrics Evaluated:
 - o Precision, Recall, F1-Score, ROC-AUC
 - o Confusion Matrix

9. Visualization of Results & Model Insights

- > Feature Importance:
 - XG Boost and Random Forest identified V14, V10, V12, and V17 as critical predictors
- > Performance Summary:
 - *XGBoost achieved the highest F1-score and AUC.*
 - o Logistic Regression had good precision but lower recall.
 - o Random Forest balanced both.
- > Graphs & Charts:
 - o ROC Curves for all models.
 - o Confusion matrix for best-performing model.
 - Feature importance bar chart.

10. Tools and Technologies Used

- > Language: Python 3
- > Environment: Jupyter Notebook / Google Colab
- > Libraries:
 - $\circ \ \ pandas, \, numpy-Data \, Manipulation$
 - o matplotlib, seaborn, plotly Visualization
 - o scikit-learn, xgboost, imbalanced-learn ML Models

o Gradio-Model Deployment Interface

11. Team Members and Contributions

S.No	Team members	Roles
1.	Nirosha M	EDA
2.	Nithyashree S	Data cleaning
3.	Poorna Kala G	Feature Engineering
4.	Yalini Nachiyar S	Model development and Documentation and reporting