

ADA061399

DDC FILE COPY

STEVENS INSTITUTE
OF TECHNOLOGY

CASTLE POINT STATION
HOBOKEN, NEW JERSEY 07030

EVEL
DAVIDSON

LABORATORY

Report SIT-DL-78-9-2005

Aug 1978

41 p.

MANEUVERING PERFORMANCE OF
HIGH-SPEED SHIPS WITH EFFECT OF ROLL MOTION

by Haruzo Eda

NOV 20 1976

Final report

Prepared for
Office of Naval Research
Contract N00014-67-A-0202-0040
(DL Project 4007/143)

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

78 11 15 00
104 750 mit

R-2005

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER REPORT SIT-DL-78-2005✓	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) MANEUVERING PERFORMANCE OF HIGH-SPEED SHIPS WITH EFFECTS OF ROLL MOTION		5. TYPE OF REPORT & PERIOD COVERED FINAL
7. AUTHOR(s) H. EDA		6. PERFORMING ORG. REPORT NUMBER SIT-DL-78-2005
8. CONTRACT OR GRANT NUMBER(s) <i>Rec</i> N00014-67-A-0202-0040		
9. PERFORMING ORGANIZATION NAME AND ADDRESS DAVIDSON LABORATORY, STEVENS INSTITUTE OF TECHNOLOGY, CASTLE POINT STATION, HOBOKEN, NJ 07030		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS DAVID TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA, MD 20084		12. REPORT DATE AUGUST 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) OFFICE OF NAVAL RESEARCH 800 N. QUINCY STREET ARLINGTON, VA 22217		13. NUMBER OF PAGES viii + 10 pp. + 18 figures
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Sponsored by the Naval Sea Systems Command, General Hydromechanics Research Program--administered by the David Taylor Naval Ship Research and Development Center, Code 1505, Bethesda, MD 20084		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) SHIP MANEUVERING SHIP STEERING SHIP COURSE STABILITY SHIP ROLLING SHIP HYDRODYNAMICS		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Equations of yaw, sway, roll and rudder motions are formulated to represent realistic maneuvering behavior of high-speed ships such as destroyers. Important coupling terms between yaw, sway, roll and rudder were included on the basis of recent captive model test results of a high-speed ship. A series of computer runs was made by using the equations of yaw, sway, roll and rudder motions. Results indicate substantial coupling effects between yaw, roll, and rudder, which introduce changes in		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

R-2005

ABSTRACT (Cont'd)

maneuvering characteristics and reduce course stability in high-speed operation. These effects together with relatively small GM (which is typical for certain high-speed ships) produce large rolling motions in a seaway as frequently observed in actual operations. Results of digital simulations and captive mode tests clearly indicate the major contributing factors to such excessive rolling motions at sea.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

STEVENS INSTITUTE OF TECHNOLOGY
DAVIDSON LABORATORY
CASTLE POINT STATION
HOBOKEN, NEW JERSEY

Report SIT-DL-78-2005

August 1978

MANEUVERING PERFORMANCE OF HIGH-SPEED SHIPS WITH EFFECT OF ROLL MOTION

by H. Eda

Prepared for
OFFICE OF NAVAL RESEARCH
Contract N00014-67-A-0202-0040
(DL Project 4007/143)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

viii + 10 pp.
+ 18 figures

78 11 15 00

ABSTRACT

Equations of yaw, sway, roll and rudder motions are formulated to represent realistic maneuvering behavior of high-speed ships such as destroyers. Important coupling terms between yaw, sway, roll and rudder were included on the basis of recent captive model test results of a high-speed ship. A series of computer runs was made by using the equations of yaw, sway, roll and rudder motions. Results indicate substantial coupling effects between yaw, roll, and rudder, which introduce changes in maneuvering characteristics and reduce course stability in high-speed operation. These effects together with relatively small GM (which is typical for certain high-speed ships) produce large rolling motions in a seaway as frequently observed in actual operations. Results of digital simulations and captive model tests clearly indicate the major contributing factors to such excessive rolling motions at sea.

KEYWORDS

Ship Maneuvering
Ship Course Stability
Ship Hydrodynamics
Ship Steering
Ship Rolling

TABLE OF CONTENTS

Abstract	iv
Nomenclature	vi
INTRODUCTION	1
HULL CONFIGURATIONS	3
BASIC EQUATIONS	4
ROLL-YAW COUPLED INSTABILITY	5
PREDICTIONS OF RESPONSE TO TURNING AND Z-MANEUVERS	6
YAW-SWAY-ROLL-RUDDER COUPLED MOTIONS WITH AUTOPILOT	6
CONCLUDING REMARKS	9
ACKNOWLEDGMENTS	10
REFERENCES	10
FIGURES (1-18)	

NOMENCLATURE

- A reference area ($A = \ell H$, ℓ^2 ; or BH)
a yaw gain constant
B ship beam
b yaw-rate gain constant
c sway gain constant
d sway-rate gain constant
 D_w water depth
e subscript e indicates the value at the equilibrium condition
 F_r Froude number (U/\sqrt{gL})
g acceleration due to gravity
H ship draft
 I_z moment of inertia referred to z-axis
 ℓ ship length
m mass of ship
N hydrodynamic and aerodynamic yaw moment
 N_r derivative of hydrodynamic yaw moment with respect to yaw acceleration
 N_v derivative of hydrodynamic yaw moment with respect to sideslip velocity
n propeller revolutions per second
 N_δ derivative of hydrodynamic yaw moment with respect to rudder angle
r yaw rate
 t_r time constant of rudder in control system
U ship speed ($U = \sqrt{u^2+v^2}$)
u component of ship speed along x-axis

- v component of ship speed along y-axis
 X hydrodynamic and aerodynamic force component in x-axis direction
 X_p hydrodynamic force component along x-axis due to propeller
 $X_{\dot{U}}$ derivative of hydrodynamic force component along x-axis with respect to surge acceleration
 X_{vr} second derivative of hydrodynamic force component along x-axis direction with respect to sideslip velocity and yaw angular velocity
 X_o total resistance along x-axis
 Y hydrodynamic and aerodynamic force component along y-axis
 Y_r derivative of hydrodynamic force component along y-axis with respect to yaw rate
 Y_v derivative of hydrodynamic force component along y-axis with respect to sideslip velocity
 $Y_{\dot{v}}$ derivative of hydrodynamic force component along y-axis with respect to sideslip acceleration
 Y_{δ} derivative of hydrodynamic force component along y-axis with respect to rudder angle
 β drift angle ($-\sin^{-1} \frac{v}{U}$)
 δ rudder angle
 ψ heading angle of ship

Dimensionless Forms

Most dimensionless expressions in this paper follow SNAME nomenclature. The dimensionless form of a quantity is indicated by the prime of that quantity. Examples are shown below:

Quantity	Typical Symbol	Typical Dimensionless Form
Length	y_o	$y'_o = y_o / \ell$
Force	Y	$Y' = Y / \frac{\rho}{2} A U^2$
Moment	N	$N' = N / \frac{\rho}{2} A \ell U^2$
Mass	m	$m' = m / \frac{\rho}{2} A \ell$

Quantity	Typical Symbol	Typical Dimensionless Form
Angular velocity	r	$r' = r\ell/U$
Static force rate	γ_v	$\gamma_v' = \gamma_v / \frac{\rho}{2} AU$
Static moment rate	N_v	$N_v' = N_v / \frac{\rho}{2} A\ell U$
Rudder force rate	γ_δ	$\gamma_\delta' = \gamma_\delta / \frac{\rho}{2} AU^3$
Damping force rate	γ_r	$\gamma_r' = \gamma_r / \frac{\rho}{2} A\ell U$
Damping moment rate	N_r	$N_r' = N_r / \frac{\rho}{2} A\ell^3 U$
Inertial coefficient	$\gamma_{\dot{v}}$	$\gamma_{\dot{v}}' = \gamma_{\dot{v}} / \frac{\rho}{2} A\ell$
Inertial coefficient	$N_{\dot{v}}$	$N_{\dot{v}}' = N_{\dot{v}} / \frac{\rho}{2} A\ell^3$
Moment of inertia	I_z	$I_z' = I_z / \frac{\rho}{2} A\ell^3$
Velocity	u	$u' = u/U$
Time	t	$t' = tU/\ell$

INTRODUCTION

When a ship is proceeding at a high-speed in a seaway, serious rolling motions are frequently observed in actual ship operations and in model testing in waves^{1,2}. Anomalous behavior of rolling and steering was clearly evident, for example, in full-scale tests of a high-speed container ship during cross-Atlantic operations¹.

Certain Naval ships have the following hull form characteristics which have major impacts on ship performance in particular, maneuvering and rolling behavior:

- (1) High speeds with large ℓ/B ratio and relatively small GM.
- (2) Fore-and-aft asymmetry
(e.g., with a sonar dome at the bow, see Figure 1).³
- (3) Relatively large rudder.

This particular hull form characteristics introduces the possibilities of fairly significant yaw-sway-roll-rudder coupling effects during high-speed operations.

The major objective of this study is to examine the coupled motions of yaw, sway, roll and rudder for high-speed ships (e.g., hull forms similar to destroyers) through digital simulation studies.

Due to lack of available hydrodynamic data, no extensive digital simulation effort has been made previously, in the area of maneuvering performance with inclusion of roll motion effect which should have an important impact during high-speed operations. Recently, under other simultaneous research program at Davidson Laboratory, a high-speed ship was extensively tested in the rotating-arm facility with inclusion of roll motion effect. Test results clearly indicated fairly significant couplings between yaw-sway-roll-rudder motions. Accordingly, a mathematical model was formulated on the basis of these experimental results combined with analytical estimations, for a 500 ft long hull form which is similar to that of high-speed naval ships.

A series of computer runs were made by using equations of yaw, sway, roll and rudder motions on a digital computer.

Results indicated substantial coupling effects between yaw, sway, roll and rudder, which introduce changes in maneuvering and rolling behavior. For example, coupling terms introduce destabilizing effects on course stability and increase turning performance at high-speeds. These coupling effects together with relatively small GM produce large rolling motions in operations in seaways. Effects of yaw- sway- roll- rudder coupling on the possibility of yaw-roll instability were clearly demonstrated in simulation results.

This report has been prepared for the Office of Naval Research under Contract N00014-67-A-0202-0040. (DL Project 4007/143).

HULL CONFIGURATIONS

A high-speed hull form to be considered in this study includes the following characteristics as shown in a table below:

- (1) High length-beam ratio and relatively small GM for high-speed operation.
- (2) Fore-and-aft asymmetry, which is more pronounced for naval ships with appendages than that for commercial ships.
- (3) Relatively large rudder.

Length, ℓ_{pp} , ft	500.0
Beam at WL, B, ft	60.0
Draft, H, ft	17.0
Rudder Area Ratio, Ar/ℓ_H	1/40
Block Coefficient, C_b	0.56

The above mentioned hull-form characteristics introduces a fairly substantial hydrodynamic coupling effects between yaw-sway-roll-rudder motions.

Figure 2 shows two curves which indicate the distance of CG of the local sectional area from the longitudinal centerline at roll angle $\theta = 0$ and 15 degrees. The curves can be considered to be equivalent to camberline of the wing section.

Figure 3 shows the other example of the camberline for the hull form shown in the top of the figure.

When roll angle is not zero, the camberline is not straight line, as shown in these figures introducing hydrodynamic yaw moment and side force. This trend is pronounced by the fore-and-aft asymmetry of hull form, in particular, during high-speed operation.

Figure 4 shows, for example, captive model test results of yaw-roll coupling effect, indicating hydrodynamic yaw moment to port introduced by roll angle to starboard.

BASIC EQUATIONS FOR YAW-SWAY-ROLL-RUDDER MOTIONS

On the basis of captive model test results together with analytical estimations, an effort was made to formulate the equations of yaw-sway-roll-rudder motions to represent realistic maneuvering and rolling behavior of a high-speed ship.

Figure A-1 shows the coordinate system used to define ship motions with major symbols which follow the nomenclature used in previous papers. Longitudinal and transverse horizontal axes of the ship are represented by the x - and y - axes with origin fixed at the center of gravity. By reference to these body axes, the equations of motion of a ship in the horizontal plane can be written in the form:

$$\begin{aligned} l_z \dot{\gamma} &= N && (\text{Yaw}) \\ l_x \dot{\phi} &= K && (\text{Roll}) \\ m(\dot{v} + ur) &= Y && (\text{Sway}) \\ m(\dot{u} - vr) &= X && (\text{Surge}) \end{aligned} \quad (1)$$

where N , K , Y , and X represent total hydrodynamic terms generated by ship motions, rudder and propeller.

Figure A-1. Orientation of Coordinate Axes Fixed in Ship

Hydrodynamic forces are expressed in terms of dimensionless quantities, N' , K' , Y' , and X' based on non-dimensionalizing parameters ρ (water density), U (resultant ship velocity relative to the water), and A , i.e.,

$$N' = \frac{N}{\frac{\rho}{2} U^2 A \ell}, \quad Y' = \frac{Y}{\frac{\rho}{2} U^2 A}, \quad \text{etc.} \quad (2)$$

Hydrodynamic coefficients vary with position, attitude, rudder angle, propeller revolution, and velocity of the ship. For example, in the case of hydrodynamic yaw moment coefficient,

$$N' = N'(v', r', \delta, y'_0, \dot{v}', \dot{r}', n', u', \varphi, \dot{\varphi}', \ddot{\varphi}') \quad (3)$$

where

$$v' = \frac{v}{U}, \quad r' = \frac{r}{U}, \quad y'_0 = \frac{y_0}{\ell}, \quad n' = \frac{n}{n_e}, \quad u' = \frac{u}{u_e}, \quad \text{etc.}$$

Finally, the following polynomials were obtained for predictions of ship dynamic motions:

$$\begin{aligned}
 N' &= a_1 + a_2 v' + a_3 r' + a_4 \delta + a_5 y_o' + a_6 v'^2 r' + a_7 v' r'^2 + a_8 v'^3 + a_9 r'^3 + a_{10} \delta^3 \\
 &\quad + a_{11} y_o'^3 + a_{12} \dot{r}' + a_{13} \dot{v}' + a_{14} \dot{\varphi} + a_{15} \ddot{\varphi}' + a_{16} \ddot{\varphi} \\
 Y' &= b_1 + b_2 v' + b_3 r' + b_4 \delta + b_5 y_o' + b_6 v'^2 r' + b_7 v' r'^2 + b_8 v'^3 + b_9 r'^3 + b_{10} \delta^3 \\
 &\quad + b_{11} y_o'^3 + b_{12} \dot{r}' + b_{13} \dot{v}' + b_{14} \dot{\varphi} + b_{15} \ddot{\varphi}' + b_{16} \ddot{\varphi} \\
 X' &= c_1 + c_2 v' r' + c_3 v'^2 + c_4 \delta^2 + c_5 \dot{u}' + x_p' \\
 K' &= d_1 + d_2 v' + d_3 r' + d_4 \delta + d_5 \dot{\varphi} + d_6 \ddot{\varphi}' + d_7 \dot{\varphi}'^2 + d_8 \ddot{\varphi}' + d_9 \dot{v}' \tag{4}
 \end{aligned}$$

ROLL-YAW COUPLED INSTABILITY

Figure 5 shows roll extinction curves obtained in simulation runs on a straight course at 30 knots having GM values of 3 ft and 2 ft. This particular result was obtained in the roll equation uncoupled from yaw and sway equations. The roll response shown in the figure can be considered to be realistic on the basis of comparison with results obtained from model tests of a similar high-speed ship shown in the same figure.

When roll extinction curves were obtained in simulation runs in equations of roll-yaw-sway coupled motions, an important change in rolling and yawing behavior was taken place. Roll-yaw coupled instability was clearly indicated in test runs. Figure 6 shows time history of roll and yaw motions starting on a straight course at 30 knots with an initial roll angle of 10 degrees. The roll extinction curve is approximately the same as that shown in the previous figure at the initial portion of the run. However, subsequent roll and yaw motions are divergent, indicating roll-yaw coupled instability. When an autopilot is adequately included in these yaw-sway-roll coupled motions, stability characteristics of the ship system is improved as shown in Figure 7, where the above mentioned roll-yaw instability is eliminated.

PREDICTIONS OF RESPONSE TO TURNING AND Z-MANEUVERS

Figures 8 and 9 show response to 20° - 20° Z-maneuver having GM of 3.0 and 25.0 feet. The approach speed is 30 knots in the tests. A comparison of heading angle response is shown in Figure 8, which clearly indicates a greater overshoot angle with GM of 3.0 feet relative to that with GM of 25.0 feet. It is clearly evident in this figure that course stability characteristics are deteriorated with reduction in GM. Figure 9 shows a substantial difference in rolling behavior with GM of 3 and 25 feet. It should be noted in this figure that the largest roll angle is generated for the case of GM of 3.0 feet when the rudder angle is shifted to the other direction. This clearly indicates that the rudder angle has a counteracting effect to outward heel angle during steady turning.

Figures 10 and 11 show computer-plotted turning and rolling characteristics in deep water. The major parameter changes in computer runs were as follows:

1. Rudder Angle = 35°
2. GM = 2.0', 3.0', 25.0'

Roll angle during enter-a-turn is shown, for example, in Figure 11, which confirms very well previous full-scale observations.

Figures 10 and 11 clearly show the effect of GM on turning and rolling characteristics. Substantial changes in maneuvering characteristics (i.e., reduction in course-keeping and increase in turning performance) are clearly evident in these figures with a decrease in GM.

YAW-SWAY-ROLL-RUDDER COUPLED MOTIONS WITH AUTOPILOT

Roll-yaw coupled instability was clearly indicated in yaw-sway-roll coupled motions in the previous test runs. In actual ship operations, rudder is actively used, introducing important effects on yaw-sway-roll motions.

Let us consider the ship dynamic behavior under the following conditions:

When the ship is proceeding on a straight course, a certain external disturbance (e.g., the roll moment due to beam wind) is given stepwise to the ship. When the ship is rolled to the starboard, for example, due to beam wind from the port, an asymmetry is formed in the underwater

portion of the hull as shown in the previous figure (i.e., Figure 2). As a result, hydrodynamic yaw moment is generated to deviate the ship heading to the port. Subsequently, the rudder is activated by the autopilot to the starboard to correct heading angle deviation. This starboard rudder angle produces the roll angle further to the starboard. Under this condition, the possibility of instability exists in the ship systems.

Accordingly, simulations were carried out under the following conditions:

The 500 ft long ship was proceeding on a straight course at an approach speed of 30 knots. A stepwise roll moment (e.g., due to beam wind from the port) was given to the ship. The magnitude of the moment is equivalent to a statically generated roll angle of 5 degrees. The subsequent dynamic response of the ship was computed with inclusion of an autopilot system, which can be represented as:

$$\delta_d = a (\psi - \psi_d) + b^i \dot{\psi}$$

where δ_d = desired rudder angle

ψ_d = desired heading angle

a = yaw gain

b^i = yaw-rate gain

Figures 12 and 13 show oscillatory motions for the case where $GM = 2$ ft, yaw gain = 3, and yaw-rate gain = 0. Instability of the ship systems is clearly evident in the figure.

When GM is increased to 3 ft, the stability characteristics is improved as shown in Figures 14 and 15.

When the autopilot is refined with addition of yaw-rate gain of 0.5, further improvement in the stability characteristics is shown in Figures 16 and 17. It should be noted here that the autopilot refinement substantially improved the rolling behavior as shown in these figures.

The results mentioned in the above clearly indicate the possibility of instability due to a stepwise disturbance. During actual operations in seaways, continuous disturbances are given to the ship due to wind and waves. Accordingly, even marginal yaw-roll-rudder instability can introduce serious rolling problems in seaways.

Such difficulties have been frequently indicated in full-scale observations and model tests.^{1,2} Figure 18 shows, for example, the possibility of yaw instability obtained by J. F. Dalzell during model tests of a high-speed ship in waves.²

CONCLUDING REMARKS

The purpose of this study was to develop mathematical equations of yaw, sway, roll and rudder to represent realistic maneuvering behavior of high-speed naval ships, and subsequently to examine yawing and rolling motions during high-speed operations through a series of simulation runs.

Based on recent captive-model test results of a high-speed ship configuration, important coupling effects between yaw, sway, roll and rudder motions were included in the mathematical model. Certain terms such as yaw moment due to roll angle were not adequately considered in previous studies. It was found in this study that these terms have important impact on maneuvering and rolling behavior, introducing the possibilities of instability and serious rolling problems during high-speed operations in seaways.

The major findings obtained in this study are summarized as follows:

- (1) Roll angle introduces asymmetry of underwater portion of hull form relative to the longitudinal centerline, which generates yaw moment due to roll (i.e., N_{ϕ}). This particular term introduces a tendency to turn to port when the ship is heeled to starboard, contributing to inherent yaw instability due to roll combined together with other coupling terms such as K_v^I and K_{δ}^I (i.e., roll-moment due to sideslip and rudder angle, respectively).
- (2) When GM is relatively small (which is the case for most high-speed ships), the above-mentioned coupling terms can introduce severe rolling motions in a seaway. This was clearly indicated in substantial rolling motions during turning and Z-maneuvers.
- (3) The possibility of yaw-roll instability exists for the ship system with autopilot during high-speed operations with small GM.
- (4) Refinement in the autopilot characteristics has important effects on yawing and rolling behavior of the ship.
- (5) Serious rolling problems frequently observed during high-speed operation in waves can partly be due to inherent yaw-roll instability (or marginal stability).

ACKNOWLEDGMENTS

The author wishes to thank Mr. J. F. Dalzell and Dr. A. Strumpf for their valuable discussions during various stages of this study.

REFERENCES

1. Taggart, R., "Anomalous Behavior of Merchant Ship Steering Systems," Marine Technology, 1970.
2. Dalzell, J.F. and Chiocco, M.J., "Wave Loads in Model of the SL-7 Container Ship Running at Oblique Heading in Regular Waves," Technical Report SSC-239(SL-7-2), prepared for the Ship Structural Committee, 1973.
3. Baitis, A.E., Meyers, W.G. and Applebee, T.R., "A Non-Aviation Data Base for Naval Ships," NSRDC-SPD-738-01, 1976.
4. Eda, H., "Directional Stability and Control of Ships in Restricted Channels," TSNAME, 1971.
5. Eda, H. and Crane, C.L., Jr., "Steering Characteristics of Ships in Calm Water and Waves," TSNAME, 1965.
6. Eda, H., "Steering Control of Ships in Waves," Davidson Laboratory Report 1205, June 1967. (Presented at the International Theoretical and Applied Mechanics Symposium in London, April 1972.)
7. Eda, H., "Low-Speed Controllability of Ships in Winds," J. of Ship Research, 1968.
8. Eda, H., "Course Stability, Turning Performance, and Connect on Force of Barge Systems in Coastal Seaways," TSNAME, 1972.

R-2005

FIGURE 1. BODY PLANS OF REPRESENTATIVE NAVAL SHIPS

R-2005

ROLL ANGLE = 0 DEG

ROLL ANGLE = 15 DEG

FORWARD PERPENDICULAR

FORWARD PERPENDICULAR

FIGURE 2. LONGITUDINAL ASYMMETRY DUE TO ROLL
(DESTROYER)

R-2005

ROLL ANGLE = 0 DEG

ROLL ANGLE = 15 DEG

FIGURE 3. LONGITUDINAL ASYMMETRY DUE TO ROLL
(HIGH-SPEED CONTAINER SHIP)

FIGURE 4. YAW MOMENT COEFFICIENT DUE TO ROLL ANGLE

R-2005

ROLL RESPONSE TO INITIAL ROLL ANGLE
(6.29 FT MODEL TESTS)

FIGURE 5. ROLLING CHARACTERISTICS

R-2005

Figure 6. ROLL-YAW INSTABILITY
(WITH 10 DEG INITIAL DISTURBANCE)

Figure 7. ROLL EXTINCTION CURVE
(WITH AUTOPilot)

R-2005

FIGURE 8. Z-MANEUVER RESPONSE

R-2005

FIGURE 9. ROLL DURING Z-MANEUVER

R-2005

FIGURE 10. TURNING TRAJECTORY

Figure 11. ROLL ANGLE DUE TO TURNING

Conditions:

1. Beam Wind Moment Applied Stepwise
2. Autopilot with Yaw Gain of 3
3. Ship Speed $U=30 \text{ kt}$, $b=500 \text{ ft}$
4. $GM = 2 \text{ ft}$

FIGURE 12. ROLL-YAW-RUDDER COUPLED MOTION

R-2005

FIGURE 13. ROLL-YAW-RUDDER COUPLED MOTION

FIGURE 14. ROLL-YAW-RUDDER COUPLED MOTION

R-2005

FIGURE 15. ROLL-YAW-RUDDER COUPLED MOTION

FIGURE 16. ROLL-YAW-RUDDER COUPLED MOTION

R-2005

FIGURE 17. ROLL-YAW-RUDDER COUPLED MOTION

R-2005

FIGURE 18. TEST RECORDS OF YAW, ROLL, AND RUDDER OF A CONTAINER SHIP MODEL (6.29-ft long)
IN A BEAM SEA, INDICATING YAW INSTABILITY AND COUPLING BETWEEN YAW, ROLL AND RUDDER.

DISTRIBUTION LIST
(Contract N00014-67-A-0202-0040)

- | | |
|---|--|
| <p>40 Commander
 DAVID W. TAYLOR NAVAL SHIP
 RESEARCH & DEVELOPMENT CENTER
 Bethesda, MD 20084

 Attn: Code 1505 (1)
 Code 5214.1 (39)</p> <p>1 Officer-in-Charge
 ANNAPOLIS LABORATORY
 DAVID W. TAYLOR NAVAL SHIP
 RESEARCH & DEVELOPMENT CENTER
 Annapolis, MD 21402
 Attn: Code 522.3 (Library)</p> <p>7 Commander
 NAVAL SEA SYSTEMS COMMAND
 Washington, DC 20362
 Attn: SEA 09G32 (3)
 SEA 03512 (Peirce)
 SEA 037
 SEA 0322
 SEA 033</p> <p>12 Director
 DEFENSE DOCUMENTATION CENTER
 5010 Duke Street
 Alexandria, VA 22314</p> <p>1 OFFICE OF NAVAL RESEARCH
 800 Quincy Street
 Arlington, VA 22217
 Attn: Mr. R.D. Cooper (Code 438)</p> <p>1 OFFICE OF NAVAL RESEARCH
 Branch Office
 492 Summer Street
 Boston, MA 02210</p> <p>1 OFFICE OF NAVAL RESEARCH
 Branch Office (493)
 536 S. Clark Street
 Chicago, IL 60605</p> <p>1 Chief Scientist
 OFFICE OF NAVAL RESEARCH
 Branch Office
 1030 E. Green Street
 Pasadena, CA 91106</p> | <p>1 Resident Representative
 OFFICE OF NAVAL RESEARCH
 715 Broadway (5th Floor)
 New York, NY 10003</p> <p>1 OFFICE OF NAVAL RESEARCH
 San Francisco Area Office
 760 Market Street, Rm 447
 San Francisco, CA 94102</p> <p>1 Director
 NAVAL RESEARCH LABORATORY
 Washington, DC 20390
 Attn: Code 2027</p> <p>1 Commander
 NAVAL FACILITIES ENGINEERING
 COMMAND (CODE 032C)
 Washington, DC 20390</p> <p>1 LIBRARY OF CONGRESS
 Science & Technology Division
 Washington, DC 20540</p> <p>6 Commander
 NAVAL SHIP ENGINEERING CENTER
 Department of the Navy
 Washington, DC 20362
 Attn: SEC 6034B
 SEC 6110
 SEC 6114H
 SEC 6120
 SEC 6136
 SEC 6144G</p> <p>1 NAVAL SHIP ENGINEERING CENTER
 Norfolk Division
 Small Craft Engineering Department
 Norfolk, VA 23511
 Attn: D. Blount (6660.03)</p> <p>1 Commander (ADL)
 NAVAL AIR DEVELOPMENT CENTER
 Warminster, PA 18974</p> <p>1 Commanding Officer (L31)
 NAVAL CIVIL ENGINEERING LABORATORY
 Port Hueneme, CA 93043</p> |
|---|--|

(Contract N 00014-67-A-0202-0040)

- 1 NAVAL UNDERWATER WEAPONS RESEARCH & ENGINEERING STATION
Newport, RI 02840
Attn: Library
- 1 Commander
NAVAL OCEAN SYSTEMS CENTER
San Diego, CA 92152
Attn: Library (13111)
- 1 Library
NAVAL UNDERWATER SYSTEMS CENTER
Newport, RI 02840
- 1 Research Center Library
WATERWAYS EXPERIMENT STATION
CORP OF ENGINEERS
P.O. Box 631
Vicksburg, MS 39180
- 1 DEPT. OF TRANSPORTATION
Library TAD-491.1
400 7th Street S.W.
Washington, DC 20590
- 1 CHARLESTON NAVAL SHIPYARD
Technical Library
Naval Base
Charleston, SC 29408
- 1 NORFOLK NAVAL SHIPYARD
Technical Library
Portsmouth, VA 23709
- 1 PHILADELPHIA NAVAL SHIPYARD
Philadelphia, PA 19112
Attn: Code 240
- 1 PORTSMOUTH NAVAL SHIPYARD
Technical Library
Portsmouth, NH 03801
- 1 PUGET SOUND NAVAL SHIPYARD
Engineering Library
Bremerton, WA 98314
- 1 LONG BEACH NAVAL SHIPYARD
Technical Library (246L)
Long Beach, CA 90801
- 1 PEARL HARBOR NAVAL SHIPYARD
Code 202.32
Box 400, FPO
San Francisco, CA 96610
- 1 MARE ISLAND NAVAL SHIPYARD
Shipyard Technical Library
Code 202.3
Vallejo, CA 94592
- 1 Assistant Chief Design Engineer
for Naval Architecture (Code 250)
MARE ISLAND NAVAL SHIPYARD
Vallejo, CA 94592
- 2 U.S. NAVAL ACADEMY
Annapolis, MD 21402
Attn: Technical Library
Dr. Bruce Johnson
- 1 NAVAL POSTGRADUATE SCHOOL
Monterey, CA 93940
Attn: Library, Code 2124
- 1 Study Center
National Maritime Research Center
U.S. MERCHANT MARINE ACADEMY
Kings Point
Long Island, NY 11024
- 1 U.S. MERCHANT MARINE ACADEMY
Kings Point
Long Island, NY 11024
Attn: Academy Library
- 1 BOLT, BERANEK AND NEWMAN
50 Moulton Street
Cambridge, MA 02138
Attn: Library
- 1 BETHLEHEM STEEL CORPORATION
Center Technical Division
Sparrows Point Yard
Sparrows Point, MD 21219
- 1 BETHLEHEM STEEL CORPORATION
25 Broadway
New York, NY 10004
Attn: Library (Shipbuilding)
- 1 Mr. V. Boatwright, Jr.
Research & Development Manager
Electric Boat Division
GENERAL DYNAMICS CORPORATION
Groton, CT 06340
- 1 GIBBS AND COX, INCORPORATED
21 West Street
New York, NY 10006
Attn: Technical Information Center

(Contract N00014-67-A-0202-0040)

- 1 HYDRONAUTICS, INCORPORATED
Pindell School Road
Howard County
Laurel, MD 20810
Attn: Library
- 1 LOCKHEED MISSILES & SPACE COMPANY
P.O.Box 504
Sunnyvale, CA 94088
Attn: Mr. R.L. Waid, Dept 57-74
Bldg. 150, Facility 1
- 1 NEWPORT NEWS SHIPBUILDING AND
DRY DOCK COMPANY
4101 Washington Avenue
Newport News, VA 23607
Attn: Technical Library Dept.
- 1 NIELSEN ENGINEERING & RESEARCH, INC.
510 Clude Avenue
Mountain View, CA 94043
Attn: Mr. S. Spangler
- 1 OCEANICS, INC.
Technical Industrial Park
Plainview
Long Island, NY 11803
- 1 SOCIETY OF NAVAL ARCHITECTS AND
MARINE ENGINEERS
One World Trade Center
Suite 1369
New York, NY 10048
Attn: Technical Library
- 1 SUN SHIPBUILDING & DRY DOCK COMPANY
Chester, PA 19000
Attn: Chief Naval Architect
- 1 SPERRY SYSTEMS MANAGEMENT DIVISION
Sperry Rand Corporation
Great Neck, NY 11020
Attn: Technical Library
- 1 STANFORD RESEARCH INSTITUTE
Menlo Park, CA 94025
Attn: Library G-021
- 2 SOUTHWEST RESEARCH INSTITUTE
P.O. Drawer 28510
San Antonio, TX 78284
Attn: Applied Mechanics Review
Dr. H. Abramson
- 1 TRACOR, INCORPORATED
6500 Tracor Lane
Austin, TX 78721
- 1 Mr. Robert Taggart
9411 Lee Highway, Suite P
Fairfax, VA 22031
- 1 Ocean Engineering Department
WOODS HOLE OCEANOGRAPHIC INSTITUTE
Woods Hole, MA 02543
- 1 APPLIED PHYSICS LABORATORY
UNIVERSITY OF WASHINGTON
1013 N.E. 40th Street
Seattle, WA 98105
Attn: Technical Library
- 1 UNIVERSITY OF BRIDGEPORT
Bridgeport, CT 06602
Attn: Dr. E. Üram
- 1 CORNELL UNIVERSITY
Graduate School of Aerospace Engrg
Ithaca, NY 14850
Attn: Prof. W.R. Sears
- 4 UNIVERSITY OF CALIFORNIA
Naval Architecture Department
College of Engineering
Berkeley, CA 94720
Attn: Library
Prof. W. Webster
Prof. J. Paulling
Prof. J. Wehausen
- 3 CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, CA 91109
Attn: Aeronautics Library
Dr. T.Y. Wu
Dr. A.J. Acosta
- 1 Docs/Repts/Trans Section
Scripps Institution of Oceanography
Library
UNIVERSITY OF CALIFORNIA, San Diego
P.O. BOX 2367
La Jolla, CA 92037
- 1 COLORADO STATE UNIVERSITY
Foothills Campus
Fort Collins, CO 80521
Attn: Reading Rm, Eng Res Center

(Contract N00014-67-A-0202-0040)

- 1 FLORIDA ATLANTIC UNIVERSITY
Ocean Engineering Department
Boca Raton, FL 33432
Attn: Technical Library
- 1 UNIVERSITY OF HAWAII
Department of Ocean Engineering
2565 The Mall
Honolulu, HI 96822
Attn: Library
- 3 INSTITUTE OF HYDRAULIC RESEARCH
THE UNIVERSITY OF IOWA
Iowa City, IA 52240
Attn: Library
Dr. L. Landweber
Dr. J. Kennedy
- 1 Fritz Engr'g Laboratory Library
Department of Civil Engineering
LEHIGH UNIVERSITY
Bethlehem, PA 18015
- 3 Dept. of Ocean Engineering
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
Cambridge, MA 02139
Attn: Prof. P. Mandel
Prof. M. Abkowitz
Dr. J. Newman
- 1 Engineering Technical Reports
Room 10-500
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
Cambridge, MA 02139
- 5 St. Anthony Falls Hydraulic Lab
UNIVERSITY OF MINNESOTA
Mississippi River at 3rd Ave., S.E.
Minneapolis, MN 55414
Attn: Dr. Roger Arndt
Mr. J. Wetzel
Prof. E. Silberman
Mr. J. Killen
Dr. C. Song
- 2 College of Engineering
UNIVERSITY OF NOTRE DAME
Notre Dame, IN 46556
Attn: Engineering Library
Dr. A. Strandhagen
- 3 Department of Naval Architecture
and Marine Engineering
North Dampus
UNIVERSITY OF MICHIGAN
Ann Arbor, MI 48109
Attn: Library
Dr. T.F. Ogilvie
Prof. F. Hammitt
- 3 Davidson Laboratory
STEVENS INSTITUTE OF TECHNOLOGY
711 Hudson Street
Hoboken, NJ 07030
Attn: Library
Dr. J. Breslin
Dr. S. Tsakonas
- 2 STANFORD UNIVERSITY
Stanford, CA 94305
Attn: Engineering Library
Dr. R. Street
- 3 WEBB INSTITUTE OF NAVAL ARCHITECTURE
Crescent Beach Road
Glen Cove
Long Island, NY 11542
Attn: Library
Prof. E.V. Lewis
Prof. L.W. Ward
- 1 APPLIED RESEARCH LABORATORY
P.O. Box 30
State College, PA 16801
Attn: Dr. B. Parkin, Director
Garfield Thomas Water Tunnel
- 1 Dr. Michael E. McCormick
NAVAL SYSTEMS ENGINEERING DEPARTMENT
U.S. NAVAL ACADEMY
Annapolis, MD 21402
- 1 Dr. Douglas E. Humphreys
Code 794
NAVAL COASTAL SYSTEMS LABORATORY
Panama City, FL 32401
- 1 Library
PENNSYLVANIA STATE UNIVERSITY
Applied Research Laboratory
P.O. Box 30
State College, PA 16801