

ECEN 758 Data Mining and Analysis: Lecture 3, Data and Attributes II

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 will be released this Wednesday (08/28)
 - Due Friday (11:59 PM), 09/06
- Please reach out if you need assistance
 - Responsive to email between 8 AM and 8 PM (Weekdays)
 - Office hours: MW 4 5 PM, WEB 212E; T 4 5 PM (virtual, Section 700 priority)
- Additional resources
 - https://dataminingbook.info/resources/
 - Josh Stamer's <u>StatQuest</u>

Last Lecture

- Numerical attributes
 - Analysis, Statistical Measures, Normalization

Today

- Data and attributes
 - Numerical
 - Normal distribution
 - Categorical
- Reading: ZM Chapters 2 and 3

Review of Last Lecture

Data Representations

- Numeric measurements, observations, settings, counts, time intervals, etc. (binary, integer, fixedpoint, floating point)
- Text (characters, words, strings, documents)
- Signals (continuous numeric values)
- Time Series (sequence of discrete-time data points often from sensors, communication signals)
- Image and Video (pixel data, series of image data, voxel data, point-clouds)

Data Types We Will Use

- Data used in Data Mining is generally of two types: Numeric Data and Categorical Data
- Numeric quantitative, measurable; values are numbers. e.g. 0, 42, 3.1415, 1.602x10^-19
- Categorical qualitative, recognizable; values are restricted to the possible values in a category and can be represented by a text value or a number.
 e.g., Tuesday, Medium Rare, Hawaii

Numerical Attributes

- Univariate
- Bivariate
- Multivariate
- Measures of central tendency
 - Mean, Median, Mode
- Measures of dispersion
 - Range, Interquartile Range, Variance, Standard Deviation
- Normalization

Univariate Normal Distribution

Univariate Normal Distribution

- > Two parameters, mean (μ) and variance (σ^2)
- Probability density decreases exponentially as a function of the distance from mean
- \triangleright Maximum value when $x = \mu$

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Multivariate Normal Distribution

Multivariate Normal Distribution

- Parameters: mean vector (μ) and covariance matrix (Σ)
- > |Σ| determinant of covariance matrix
- Numerator in exponential referred to as Mahalanobis distance
- "Standard multivariate normal distribution"
 - Zero mean vector and identity covariance

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(\sqrt{2\pi})^d \sqrt{|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2}\right\}$$

Geometry of Multivariate Normal

- Mean vector translates center of distribution
- Covariance matrix scales and rotates
- Can use
 Eigendecomposition to
 express covariance matrix

mu[1] is changing!

Eigenvectors and Eigenvalues

- Take a vector and apply linear transformation
- Identify vector(s) whose direction will not be changed after transformation
- Only magnitude will be scaled up or down

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

- Matrix multiplication has same effect as scaler
- Matrix (A) is composed of eigenvectors
- Scaler values are called eigenvalues (λ)
- Eigendecomposition equation sets determinant of A minus λ*I equal to 0
 - "Area" = 0 (2D case)

$$Av = \lambda v$$
$$(A - \lambda I)v = 0$$
$$det(A - \lambda I) = 0$$

Eigendecomposition

- Covariance matrix is positive semidefinite
- Diagonal matrix, Λ, is used to record eigenvalues
- Eigenvectors with "orthonormal" column vectors

$$\mathbf{U} = \begin{pmatrix} | & | & & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_d \\ | & | & & | \end{pmatrix} \quad \mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{pmatrix}$$

Normalized
$$\mathbf{u}_i^T \mathbf{u}_i = 1$$
 for all i

Orthogonal $\mathbf{u}_i^T \mathbf{u}_j = 0$ for all $i \neq j$

$$\Sigma = \mathbf{U} \Lambda \mathbf{U}^T$$

Iris Sepal Length and Sepal Width

- X₁: Sepal Length
- X₂: Sepal Width
- U: Eigenvectors
- Λ: Eigenvalues

$$\hat{\boldsymbol{\mu}} = \begin{pmatrix} 5.843 \\ 3.054 \end{pmatrix} \qquad \qquad \hat{\boldsymbol{\Sigma}} = \boldsymbol{U} \wedge \boldsymbol{U}^{T} \\ \boldsymbol{\upsilon} = \begin{pmatrix} -0.997 & -0.078 \\ 0.078 & -0.997 \end{pmatrix} \\ \hat{\boldsymbol{\Sigma}} = \begin{pmatrix} 0.681 & -0.039 \\ -0.039 & 0.187 \end{pmatrix} \qquad \boldsymbol{\Lambda} = \begin{pmatrix} 0.684 & 0 \\ 0 & 0.184 \end{pmatrix}$$

Categorical Data

Types of Categorical Data

- Ordinal values have an underlying, natural order. E.g., Monday, February, C-, 3rd-gear, Medium Rare, above average.
- Nominal there is no underlying order in values. E.g., snake, brown, Fiat 500

Image from: QuestionPro

Univariate Analysis

Univariate Categorical Data

- Focused on single attribute (e.g., feature)
- Data represented as matrix, D
- Each row is a sample and column is an attribute
- > X is a random variable
- Domain of X is comprised of m symbolic values

Bernoulli Variable

Special case when m=2

$$X(v) = \begin{cases} 1 & \text{if } v = a_1 \\ 0 & \text{if } v = a_2 \end{cases}$$

$$dom(X) = \{0,1\}$$

Bernoulli Distribution Graph

Bernoulli Variable: PMF

$P(X = x) = f(x) = p^{x}(1-p)^{1-x}$

Bernoulli Distribution Graph

Bernoulli Variable: Mean and Variance

Expected value

$$\mu = E[X] = 1 \cdot p + 0 \cdot (1-p) = p$$

Variance

$$\sigma^2 = var(X) = p(1-p)$$

Bernoulli Distribution Graph

Binomial Distribution

- Multiple trials
- PMF

$$f(N = n_1 | n, p) = \binom{n}{n_1} p^{n_1} (1-p)^{n-n_1}$$

 N is the sum of n independent Bernoulli random variables

Binomial Distribution

Mean

$$\mu_N = E[N] = E\left[\sum_{i=1}^n x_i\right] = \sum_{i=1}^n E[x_i] = \sum_{i=1}^n p = np$$

Variance

$$\sigma_N^2 = var(N) = \sum_{i=1}^n var(x_i) = \sum_{i=1}^n p(1-p) = np(1-p)$$

Multivariate Analysis

Multivariate Bernoulli Variable

- Generalize beyond m = 2
- Assume only one of the symbolic values at any one time

$$\boldsymbol{X}(v) = \boldsymbol{e}_i$$
 if $v = a_i$

$$P(X = e_i) = f(e_i) = p_i = \prod_{j=1}^{m} p_j^{e_{ij}}$$

$$\sum_{i=1}^{m} p_i = 1.$$

Multivariate Bernoulli Variable: Mean

$$\mu = E[\mathbf{X}] = \sum_{i=1}^{m} \mathbf{e}_i f(\mathbf{e}_i) = \sum_{i=1}^{m} \mathbf{e}_i p_i = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} p_1 + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} p_m = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{pmatrix} = \mathbf{p}$$

Mean

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i = \sum_{i=1}^{m} \frac{n_i}{n} \boldsymbol{e}_i = \begin{pmatrix} n_1/n \\ n_2/n \\ \vdots \\ n_i/n \end{pmatrix} = \begin{pmatrix} \hat{p}_1 \\ \hat{p}_2 \\ \vdots \\ \hat{p}_i \end{pmatrix} = \hat{\boldsymbol{p}}$$

Sample mean

Iris Sepal Length

Bins	Domain	Counts
[4.3, 5.2]	Very Short (a_1)	$n_1 = 45$
(5.2, 6.1]	Short (a_2)	$n_2 = 50$
(6.1, 7.0]	Long (a_3)	$n_3 = 43$
(7.0, 7.9]	Very Long (a_4)	$n_4 = 12$

We model sepal length as a multivariate Bernoulli variable X

$$X(v) = egin{cases} oldsymbol{e}_1 = (1,0,0,0) & ext{if } v = a_1 \ oldsymbol{e}_2 = (0,1,0,0) & ext{if } v = a_2 \ oldsymbol{e}_3 = (0,0,1,0) & ext{if } v = a_3 \ oldsymbol{e}_4 = (0,0,0,1) & ext{if } v = a_4 \end{cases}$$

For example, the symbolic point $x_1 = Short = a_2$ is represented as the vector $(0,1,0,0)^T = e_2.$

Probability Mass Function

The total sample size is n = 150; the estimates \hat{p}_i are:

$$\hat{p}_1 = 45/150 = 0.3$$
 $\hat{p}_2 = 50/150 = 0.333$
 $\hat{p}_3 = 43/150 = 0.287$

 $\hat{p}_4 = 12/150 = 0.08$

Multivariate Bernoulli Variable: Covariance

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{12} & \sigma_2^2 & \dots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \dots & \sigma_m^2 \end{pmatrix} = \begin{pmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_m \\ -p_1p_2 & p_2(1-p_2) & \dots & -p_2p_m \\ \vdots & \vdots & \ddots & \vdots \\ -p_1p_m & -p_2p_m & \dots & p_m(1-p_m) \end{pmatrix}$$

$$\Sigma = diag(\mathbf{p}) - \mathbf{p} \cdot \mathbf{p}^T$$
 where $\mu = \mathbf{p} = (p_1, \cdots, p_m)^T$

Transformed Dataset

Can encode and center data

	X
<i>X</i> ₁	Short
<i>X</i> ₂	Short
<i>X</i> 3	Long
<i>X</i> 4	Short
<i>X</i> 5	Long

	A_1	A ₂
<i>x</i> ₁	0	1
X 2	0	1
X 3	1	0
X 4	0	1
X 5	1	0

	Z_1	Z_2
Z 1	-0.4	0.4
Z 2	-0.4	0.4
Z 3	0.6	-0.6
Z 4	-0.4	0.4
Z 5	0.6	-0.6

X is the multivariate Bernoulli variable

$$oldsymbol{X}(v) = egin{cases} oldsymbol{e}_1 = (1,0)^T & ext{if } v = ext{Long}(a_1) \ oldsymbol{e}_2 = (0,1)^T & ext{if } v = ext{Short}(a_2) \end{cases}$$

The sample mean and covariance matrix are

$$\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{p}} = (2/5, 3/5)^T = (0.4, 0.6)^T$$
 $\hat{\boldsymbol{\Sigma}} = diag(\hat{\boldsymbol{p}}) - \hat{\boldsymbol{p}}\hat{\boldsymbol{p}}^T = \begin{pmatrix} 0.24 & -0.24 \\ -0.24 & 0.24 \end{pmatrix}$

Multinomial Distribution

PMF

$$f(\mathbf{N}=(n_1,n_2,\ldots,n_m)\mid \mathbf{p})=\begin{pmatrix}n\\n_1n_2\ldots n_m\end{pmatrix}\prod_{i=1}^m p_i^{n_i}$$

Mean

$$\mu_{N} = E[N] = nE[X] = n \cdot \mu = n \cdot p = \begin{pmatrix} np_{1} \\ \vdots \\ np_{m} \end{pmatrix}$$

Covariance

$$\Sigma_{N} = n \cdot (diag(\mathbf{p}) - \mathbf{p}\mathbf{p}^{T})$$

Bivariate Analysis

Bivariate Analysis

- Consider two categorical attributes, X₁ and X₂
- Can model as joint distribution

$$\boldsymbol{X}\left((v_1,v_2)^T\right) = \begin{pmatrix} \boldsymbol{X}_1(v_1) \\ \boldsymbol{X}_2(v_2) \end{pmatrix} = \begin{pmatrix} \boldsymbol{e}_{1i} \\ \boldsymbol{e}_{2j} \end{pmatrix}$$

$$P_{12} = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m_2} \\ p_{21} & p_{22} & \dots & p_{2m_2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m_11} & p_{m_12} & \dots & p_{m_1m_2} \end{pmatrix}$$

Bivariate Example

 X_1 :sepal length

Bins	Domain	Counts
[4.3, 5.2]	Very Short (a_1)	$n_1 = 45$
(5.2, 6.1]	Short (a_2)	$n_2 = 50$
(6.1,7.0]	Long (a_3)	$n_3 = 43$
(7.0, 7.9]	Very Long (a_4)	$n_4 = 12$

 X_2 :sepal width

Bins	Domain	Counts
[2.0, 2.8]	Short (a_1)	47
(2.8, 3.6]	Medium (a_2)	88
(3.6, 4.4]	Long (a_3)	15

Observed Counts (n_{ij})

		X_2		
		Short (\boldsymbol{e}_{21})	Medium (\boldsymbol{e}_{22})	Long (\boldsymbol{e}_{23})
	Very Short $(oldsymbol{e}_{11})$	7	33	5
\ \ \	Short (e_{12})	24	18	8
^ 1	Long (e ₁₃)	13	30	0
	Very Long (e_{14})	3	7	2

Bivariate PMF

Contingency Analysis

- Observed counts for each attribute and symbolic values
- Multinomial distribution

$$\mathbf{N}_{12} = n \cdot \widehat{\mathbf{P}}_{12} = \begin{pmatrix} n_{11} & n_{12} & \cdots & n_{1m_2} \\ n_{21} & n_{22} & \cdots & n_{2m_2} \\ \vdots & \vdots & \ddots & \vdots \\ n_{m_11} & n_{m_12} & \cdots & n_{m_1m_2} \end{pmatrix}$$

Contingency Table Example

1)	Sepal width (X_2)				
(X_1)		Short	Medium	Long	
		a ₂₁	a ₂₂	a ₂₃	Row Counts
length	Very Short (a_{11})	7	33	5	$n_1^1 = 45$
] e.	Short (a_{12})	24	18	8	$n_2^1 = 50$
12	Long (a_{13})	13	30	0	$n_3^1 = 43$
Sepal	Very Long (a_{14})	3	7	2	$n_4^1 = 12$
ß	Column Counts	$n_1^2 = 47$	$n_2^2 = 88$	$n_3^2 = 15$	n = 150

Independence Test

Chi-Squared Test

- Assume two attributes are independent
- Chi-squared quantifies difference between observed and expected counts

$$\hat{p}_{ij} = \hat{p}_i^1 \cdot \hat{p}_j^2$$

$$e_{ij} = n \cdot \hat{p}_{ij} = n \cdot \hat{p}_i^1 \cdot \hat{p}_j^2 = n \cdot \frac{n_i^1}{n} \cdot \frac{n_j^2}{n} = \frac{n_i^1 n_j^2}{n}$$

$$\chi^2 = \sum_{i=1}^{m_1} \sum_{j=1}^{m_2} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

Chi-squared Density Function

- Sampling distribution for statistic follows density function
- q is degrees of freedom

Image from: JMP

Chi-Squared Test Example

	Expected Counts	X_2		
		Short (a_{21})	Medium (a_{22})	Short (a_{23})
	Very Short (a ₁₁)	14.1	26.4	4.5
X_1	Short (a_{12})	15.67	29.33	5.0
^1	Long (a_{13})	13.47	25.23	4.3
	Very Long (a_{14})	3.76	7.04	1.2

Observed Counts	X_2		
	Short (a_{21})	Medium (a_{22})	Long (a_{23})
Very Short (a ₁₁)	7	33	5
Short (a_{12})	24	18	8
Long (a_{13})	13	30	0
Very Long (a_{14})	3	7	2

The chi-squared statistic value is $\chi^2 = 21.8$.

The number of degrees of freedom are

$$q = (m_1 - 1) \cdot (m_2 - 1) = 3 \cdot 2 = 6$$

Chi-Squared Distribution

- p-value is probability of obtaining value at least as extreme as observed value
- Null hypothesis: independent
- Rejected if p-value less than alpha (e.g., 0.01)
- p-value of 21.8 = 0.0013

Distance and Angle Measures

Distance and Angle

- Can compute distance or angle between data points
- Rely on matching/mismatching of values across attributes
- s is number of matches
- Compute number of mismatches as d - s

$$m{x}_i = egin{pmatrix} m{e}_{1i_1} \ dots \ m{e}_{d\ i_d} \end{pmatrix} \qquad m{x}_j = egin{pmatrix} m{e}_{1j_1} \ dots \ m{e}_{d\ j_d} \end{pmatrix}$$

$$s = \boldsymbol{x}_i^T \boldsymbol{x}_j = \sum_{k=1}^d (\boldsymbol{e}_{ki_k})^T \boldsymbol{e}_{kj_k}$$

Common Distance Measures

The Euclidean distance between x_i and x_i is given as

$$\delta(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|\boldsymbol{x}_i - \boldsymbol{x}_j\| = \sqrt{\boldsymbol{x}_i^T \boldsymbol{x}_i - 2\boldsymbol{x}_i \boldsymbol{x}_j + \boldsymbol{x}_j^T \boldsymbol{x}_j} = \sqrt{2(d-s)}$$

The Hamming distance is given as

$$\delta_H(\mathbf{x}_i,\mathbf{x}_j) = d - s$$

Cosine Similarity: The cosine of the angle is given as

$$\cos \theta = \frac{\mathbf{x}_i^T \mathbf{x}_j}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|} = \frac{s}{d}$$

The Jaccard Coeff icient is given as

$$J(\boldsymbol{x}_i,\boldsymbol{x}_j) = \frac{s}{2(d-s)+s} = \frac{s}{2d-s}$$

Discretization

- Converts numeric attributes into categorical attributes
- K is number of intervals
- Equal-width intervals partitions data evenly
- Equal-frequency intervals partitions data into equal number of data points

Equal-width:

$$w = \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

Equal-frequency:

$$\hat{F}^{-1}(q) = \min\{x \mid P(X \le x) \ge q\}$$

Equal-Frequency Discretization: Sepal Length

Quartile values:

$$\hat{F}^-1(0.25) = 5.1$$

$$\hat{F}^-1(0.5) = 5.8$$

$$\hat{F}^-1(0.75) = 6.4$$

Range: [4.3, 7.9]

Bin	Width	Count
[4.3, 5.1]	0.8	$n_1 = 41$
(5.1, 5.8]	0.7	$n_2 = 39$
(5.8, 6.4]	0.6	$n_3 = 35$
(6.4, 7.9]	1.5	$n_4 = 35$

Next class

Dimensionality reduction

Supplemental Slides

Additional Resources

- StatQuest
 - Intuitive explanations of concepts covered in course
 - Probability Distributions
 - Normal Distribution
 - Binomial Distribution
- Eigendecomposition Explained