Esercizio 1. Si consideri il seguente sistema

Descrivere e sintetizzare (utilizzando elementi neutri di ritardo come meccanismi di marcatura) la rete sequenziale asincrona RA in modo tale che la variabile q *commuti* ogni qual volta si presenta in ingresso al sistema lo stato $x_1x_0=11$. Sintetizzare le reti combinatorie in forma SP, e calcolarne il costo a porte e a diodi.

Soluzione

La rete RA deve essere fatta in modo tale che le sue uscite siano

- alternativamente 10, 01 quando gli ingressi sono
- 00 in tutti gli altri casi.

Il diagramma di flusso è pertanto il seguente:

che corrisponde alla seguente tabella di flusso:

x_1x_0 sr								
	00	01	11	10	<u> </u>			
S0	S0	S0	S1	S0	0-			
S1		S2	S1)	S2	10			
S2	S2	S2	S 3	S2	-0			
S3		S0	S3	S0	01			

Si osservi che la tabella di flusso di cui sopra (che è normale) è soggetta ad alee essenziali, pertanto gli elementi neutri di ritardo dovranno avere un ritardo non inferiore a $T_{\rm CN1}$.

Calcolare il ritardo degli elementi neutri ed il tempo minimo di permanenza di uno stato di ingresso.

NOTE

- 1 Si ricordi che RA è una rete sequenziale asincrona e quindi, quando riceve in ingresso $x_1x_0 = 11$, compie un passo e poi si stabilizza per tutto il tempo in cui lo stato di ingresso permane.
- 2 Non ci si preoccupi che il tutto risponda alle specifiche fin dall'arrivo del primo stato di ingesso $x_1x_0 = 11$ immediatamente successivo all'accensione.

Adottando la codifica S0=00, S1=10, S2=11, S3=01, si ottiene per la rete RC_Z l'espressione $s=y_1, r=\overline{y_1}$. Pertanto, il costo di RC_Z è nullo.

Utilizzando come meccanismo di marcatura degli elementi neutri di ritardo, si ottengono le seguenti mappe per la rete combinatoria RC_A:

y ₁ y ₀	x ₀ 00	01	11	10	y ₁ y ₀	x ₀ 00
00	0	0	1	0	00	0
01		0	0	0	01	
11	1	1	0	1	11	1
10		1	1	1	10	
,		a1				

y ₁ y ₀	x ₀ 00	01	11	10		
y ₁ y ₀ 00	0	0	0	0		
01		0	1	0		
11	1	1	1	1		
10		1	0	1		
a0						

Dalle quali si ottiene:

$$a_{1} = y_{1} \cdot \overline{x_{1}} + y_{1} \cdot \overline{x_{0}} + x_{1} \cdot x_{0} \cdot \overline{y_{0}} + y_{1} \cdot \overline{y_{0}},$$

$$a_{0} = y_{1} \cdot \overline{x_{1}} + y_{1} \cdot \overline{x_{0}} + x_{1} \cdot x_{0} \cdot y_{0} + y_{1} \cdot y_{0}.$$

In entrambi i casi, l'ultimo implicante è ridondante, ed è aggiunto per evitare alee del primo ordine..

Il costo a porte della rete RC_A è 8 (e non 10), in quanto le stesse due porte AND possono essere utilizzate contemporaneamente nella sintesi di a_1 ed

 a_0 . Analogamente, il costo a diodi è 22.

Visto che la rete è normale, il minimo tempo di permanenza di uno stato di ingresso dovrà essere $3T_{CN1}$.

Esercizio 2

Descrivere e sintetizzare la Rete Sequenziale Sincronizzata XXX che, partendo al reset con *out* a 3, si evolve all'infinito come segue come segue:

- a) Mette *out* a 0 e lo tiene per **M** periodi di clock
- b) Mette *out* a 1 e lo tiene per **M** periodi di clock
- c) Mette *out* a 2 e lo tiene per **M** periodi di clock
- d) Mette *out* a 3 e lo tiene per **M** periodi di clock

ovvero, per M=3:

Nella descrizione dichiarare:

```
reg[...:0] COUNT; parameter M=...;
```

Partendo dalla descrizione Verilog, si tracci quindi l'evoluzione di XXX per **M**=3, verificando che rispetti la temporizzazione di cui sopra (*Data la semplicità dell'Unità è ESSENZIALE che essa risponda esattamente alla temporizzazione richiesta*).

Soluzione più diluita

Soluzione ottimizzata

