

MINISTÉRIO DA EDUCAÇÃO Centro Federal de Educação Tecnológica

Técnico de Informatica
Fundamentos de Informática

Aula No 07/40 : Partes de um computador

Prof. Alberto Pena Lara

22 de março de 2024

Agenda

- Hardware
- Periféricos
- · Sockets motherboard
- Pinagem Processadores
- Memórias
- Fontes
- · Cálculo do consumo

1o Bimestre : 20 pts			
Aula	Data	Tema	
01	08/02	Acolhimento alunos	
02	15/02	Breve história dos computadores	
03	22/02	Breve história dos computadores	
04	29/02	Bases numéricas	
05	07/03	Bases numéricas	
06	15/03	Hardware: Processadores	
	18/03	Quiz Teste 1 pto	
07	22/03	Hardware: Memórias	
	29/03	Recesso	
80	05/04	Funções básicas do computador	
	05/04	Quiz :: Sistemas Numéricos 4 ptos	
09	12/04	Funções básicas do computador	
	12/04	Hardware 5 ptos	
10	19/04	Tipos de dados e suas representações	
	19/04	Quiz :: Funções de um computador 5 ptos	
11	26/04	Tipos de dados e suas representações	
	26/04	Quiz :: Tipos de dados 5 ptos	
	26/04	Participação : (5 pts : Individual)	

Revisão aula 06/40

Processadores

Processadores Intel

Figura 1: Diagramas

Nomenclatura

- K "Unlocked", processador pode ir além de sua velocidade pré-determinada via overclock;
- G Inclui placa de vídeo integrada (apenas para laptops);
- U "Ultra Low Power", ou baixo consumo de energia (apenas para laptops);
- T "Power-optimized", economiza energia, mas não tanto quanto o modelo U;
- H "High performance graphics", inclui placa de vídeo integrada um pouco melhor que o modelo G;
- Y "Extremely low power", economiza ainda mais energia do que o modelo U;

Partes de um computador

Motherboard

Onde conectar as peças

A disposição dos elementos na motherboard pode ser diferente dependendo do modelo, mas todas têm como função fazer o computador funcionar, então precisarão de um processador, memória e placa de vídeo. O espaço do processador é o mais fácil de identificar, um grande quadrado com uma trava onde será conectado o processador e o seu cooler dedicado.

Componentes de uma motherboard

A memória RAM também é fácil de ter seu slot identificado pois sempre conta com duas travas nas laterais (em visão horizontal da placa) que irão prendê-las no lugar. A entrada da placa de vídeo é uma das que mais sofreu mudanças nos últimos anos.

PCI, AGP, PCI-express

Existem motherboards com placa de vídeo plugada nas entradas PCI (Peripheral Component Interconnect). Motherboard modernas tem slot próprio AGP (Accelerated Graphics Port) ou PCI Express, uma entrada PCI de alta performance pensada especificamente para as GPUs (Graphics Processing Unit). No entanto, isso pode mudar novamente no futuro.

Identificação dos componentes

Figura 2: Gigabyte GA-H61M-S2P

Identificação dos componentes

Figura 3: ASUS B460M-Plus TUF Gamming

Partes de um computador

Gabinetes

Tamanho das motherboard

As motherboards vem em tamanhos diferentes (forms factor). Os mais comuns são: ATC (Advanced Technology Extended), mATX (micro ATX), mini-ATX, FlexATX, EATX, WATX, nano-ATX. pico-ATX.

Tipo de gabinete: furação de encaixe da placa mainboard

O tamanho da mainboard está relacionado ao tipo de gabinete.

Figura 4: Os tamanhos comercializados são o ATX e mATX

Partes de um computador

Placas de vídeo

Placas de expansão AGP e PCI

(a) Placa de vídeo encaixada num AGP slot

(b) Placa encaixada num slot PCI

Figura 5: Tipos de slots de expansão

Diferenças das placas PCI: Velocidade de barramento

PCI velocidade transferência dos dados

Pensa-se que quanto maior a velocidade da CPU, mais rápido será computador. Isso raramente é verdade. Vários fatores contribuem para a velocidade de um computador.

bandwith: velocidade de barramento

Um fator é a velocidade de transferência dos dados entre as placas e o processador. A velocidade do barramento (bandwith), descrita em MB/s MegaBytes por segundo, descreve a rapidez com que a CPU pode se comunicar com os componentes da placa-mãe, como memória, chipset ou barramento PCI ou PCIe (express), placa de vídeo.

Bus	Bandwith
PCI	266 MB/s
AGP 2x	533 MB/s
PCle x1	250 MB/s
PCIe x2	500 MB/s
PCle x4	1000 MB/s
PCIe x8	2000 MB/s
PCle x16	4000 MB/s
PCle x32	8000 MB/s

Tabela 1: Comparando slots de expansão

Velocidade de barramento: Qual é o sentido

Bus	Bandwith
PCI	266 MB/s
AGP 2x	533 MB/s
PCle x1	250 MB/s
PCle x2	500 MB/s
PCle x4	1000 MB/s
PCle x8	2000 MB/s
PCle x16	4000 MB/s
PCle x32	8000 MB/s

Tabela 2: Velocidade

Slots de expansao

Figura 6: Bandwith dos slots de expansão

Partes de um computador

Pinagem dos processadores

Tipos de encaixe do processador

Tipos de encaixe dos processadores

Existem diferentes tipos de sockets: PGA (Pin grid array), que possui fileiras regulares de orifícios ao redor de um soquete quadrado; SPGA (staggered pin grid array), uma matriz de grade de pinos escalonados e LGA (land grid array) usados com processadores AMD e Intel.

Cada processador encaixa em uma mainboard particular

O socket da mainboard deve corresponder ao tipo de encaixe do processador

Figura 7: Tipos de encaixes dos processadores

Problemas dos sockets encaixe

Problemas

Nos sockets PGA e SPGA os pinos podem entortar no momento de encaixe forçado. Na mainboard e no processador existem marcas de referência para o encaixe seguro.

(a) Pind grid array (PGA)

(b) Pins defeituosos devio ao encaixe mal feito.

Figura 8: Problemas de encaixe

Partes de um computador

Memória RAM

Tipos de memória RAM

Leia os manuais

As memórias RAM DDR devem estar alinhadas com a capacidade (frequência de transferência e pinagem) da mainboard.

Figura 9: Layout das memórias DDR

Figura 10: Moderna memória RAM DDR4

Figura 11: Recente memória RAM DDR5 16GB 4500 GH R\$3500

Partes de um computador

Fontes de Alimentação

Fontes de alimentação

Fontes de alimentação

- A fonte de alimentação fornece energia elétrica aos componentes do computador.
- É um tipo de equipamento que deve ser escolhido e manipulado com cuidado.
- Qualquer equívoco pode resultar em provimento inadequado de eletricidade ou em danos à máquina.

Tipos de fontes de alimentação

- As fontes de alimentação convertem corrente alternada AC (Alternating Current) em corrente contínua DC (Direct Current).
- Corrente DC é uma tensão apropriada para uso em aparelhos eletrônicos.
- Assim, a energia que chega nas tomadas da sua casa em 110 Volts ou 220 Volts é transformada em tensões como 5 Volts e 12 Volts.

Modelos comerciais de Fontes de alimentação

(a) Fonte padrão

(b) Fonte modular

Figura 12: Fonte de alimentação ATX (chicote de cabos) e modular

Fontes de alimentação monovolt e bivolt

(a) Fonte chaveamento do input

(b) Fonte bivolt

Figura 13: Seletor de alimentação (110V/240V)

Potencia das fontes

A especificação mais importante de uma fonte é a potência. Normalmente indicada no nome do produto, ela relata a quantidade de *poder* que é fornecida. A potência é medida em Watts (W) e serve para ter-se noção de quantos componentes podem ser alimentados.

PFC passivo

PFC (Fator de Correção de Energia) é utilizado para designar o circuito (algumas peças) que a fonte possui para quantificar o desempenho da Fonte de Alimentação. Na Fig 14, PFC de 80% siginifica que a fonte entrega 1250 W x 0.80 = 1000 W.

Figura 14: Fonte de 1250 e PFC passivo (80%)

Tipos PFC

- PFC ativo : 95% até 99% eficiência
- PFC passivo: 70% até 80% eficiência
- Sem PFC : 50% até 60% eficiência

Cálculo da potência da fonte alimentação

Coolermaster

https://www.coolermaster.com/br/pt-br/calculadora-potencia/

OuterVision Power Supply Calculator

https://outervision.com/power-supply-calculator

Power Supply Calculator

https://www.fsplifestyle.com/landing/calculator.html

Acrescente 30% ao valor calculado

Considere futuras adquisições e upgrades da sua máquina

Informações requisitadas

- Processador (AMD, Intel)
- Tipo de socket
- Família do processador
- Placa gráfica
- Número de GPUs placa gráfica
- Memória RAM
- Tipo de memoria secundaria (SATA, SSD)
- Ventoinhas instaladas

Como identificar os componentes do meu computador

DirectX

Segure a tecla Windows (que tem o logo do Windows no teclado) e pressione R para abrir o menu **Executar**. Digite **dxdiag** e pressione Enter. **A Ferramenta de Diagnóstico do DirectX** oferecerá uma versão ainda mais detalhada das configurações do PC, como processador e memória RAM.

Windows 10

Clique com o botão direito no ícone do menu **Iniciar** e escolha **Sistema**. No menu **Sobre**, que deverá abrir por padrão, é possível ver algumas informações como processador e memória RAM instalada.

Como identificar os componentes do meu compuatdor

Freewares

CPUID CPU-Z É um programa bem limitado para usuários.

GPU-Z Informações da placa de vídeo e processador gráfico.

HWINFO É um dos melhores programas gratuitos para verificar informações detalhadas dos dispositivos de hardware instalado no computador. Ele fornece informações sobre o processador, memória RAM, placa mãe, placa de vídeo, placa de rede, placa de som, disco rígido, entre outros.

Speccy Utilitário gratuito para Windows que exibe de maneira rápida e simples informações detalhadas sobre o seu computador. Pode-se identificar todas as características do hardware que está instalado na sua máquina, facilitando na hora de comprar peças para upgrade ou baixar o drive.

PC Wizard É uma ferramenta para detectar hardware, mas que também inclui mais funcionalidades e opções. Ela identifica um grande número de componentes de sistema e suporta novas tecnologias e normas.

AIDA64 Extrai informações mais completas e complexas hardwares dos computadores.

- **Belarc Advisor** Constrói um perfil detalhado do software/hardware instalados, inventário de rede, atualizações de segurança ausentes, status de antivírus, benchmarks de segurança e exibe os resultados em seu navegador da web.
- **HWMONITOR** Apesar de ser um aplicativo mais simples o HWMonitor fornece informações bem interessantes para monitorar seu sistema em tempo real.

Brand (fabricante)

Please use the following calculator to find the FSP power supply that best suits your needs:

Figura 15: Registro do fabricante da CPU

Socket

Please use the following calculator to find the FSP power supply that best suits your needs:

Figura 16: Registro do tipo socket da CPU

Placa gráfica

Figura 17: Registro do fabricante da placa gráfica

Conceitos adicionais

Figura 18: Como calcular a fonte de alimentação

Exercícios

- 1 Pesquise os componentes e tipos do seu compuador local:
 - (a) Motherboard.
 - (b) CPU.
 - (c) Memorias RAM.
 - (d) GPU pu placa gráfica
 - e) Placa de rede
 - (f) Placa de audio
- 2 Qual o potencia maxima demandada?
 - (a) Qual fonte deve comprar?
 - (b) Qual tipo de fonte?.
 - (c) Quanto custa essa fonte?
- 3 Aplicativos
 - (a) Use os links para calculo do consumo
 - (b) Procure aplicativos portables.

Notas de aula da disciplina. SIGAA , 2022.

Alberto Pena Lara

Sistemas numéricos. Esboço de livro , 2021.

Guilherme Bernardino da Cunha

Informática Básica. Universidade Federal de Santa Maria. RS. 2017.