APAN PS5400: Managing Data

Week 6: Data Quality, Data Governance

Lecturer: Shekhar Pradhan

Recap of last week

- Data Warehouses
- Schema-on-write
- Data Lakes
- Schema-on-read
- Data warehouses vs Data Lakes

This week

- Data Quality
- Data governance
- Data Policies

Data Quality

- It is commonly recognized that data is a resource as well as a product
 - Information and knowledge are higher level products
 - Many operations on data take "raw" data and create a data product
- As with any resource and product, it makes sense to talk about the quality of data
- Poor/inaccurate data can lead to major disasters
 - Discussion question: What are some actual ways in which poor data has led to bad decisions?
 - Discussion question: What are some possible ways in which poor data can lead to bad decisions?

What is Data/Information Quality

Some common definitions

- IQ is information that is fit for use by information consumers.
- IQ is the characteristic of information to consistently meet or exceed customer expectations.
- Quality information is information that conforms to specifications or requirements of its consumers, producers, administrators.
- IQ is the characteristic of information to be of high value to its users.

DQ Dimension and Definition (Pipino 2002)

Dimension	Definition
Accessibility	Extent data is available/retrievable
Appropriate Amount of Data	Data volume is appropriate for its uses
Believability	Data is credible and believed true
Completeness	No data missing and sufficient in terms of breath & scope
Concise Representation	Data has compact representation
Consistent Representation	Data has consistent format
Ease-0f-Manipulation	Data can be applied to many tasks
Free-of-Error	Data is correct & reliable

DQ Dimensions & Definitions Continued

Dimension	Definition
Interpretability	Data is in clear definitions
Objectivity	Data is unbiased, unprejudiced & impartial
Relevancy	Data is applicable for task at hand
Reputation	Data source & content is highly regarded
Security	Access to data is appropriately restricted
Timeliness	Data is up-to-date for task at hand
Understandability	Data is easily comprehended
Value-Added	Data is beneficial and provides advantage from its use

DQ/IQ Framework

DQ Category	DQ Dimension
Intrinsic DQ	Accuracy, Objectivity, Believability, Reputation
Accessibility DQ	Accessibility, Security, Ease of Operation
Contextual DQ	Relevancy, Valued-Added, Timeliness, Completeness, Amount of Data
Representational DQ	Interpretability, Ease of Understanding, Concise Representation, Consistent Representation

DQ Evaluation

Data goes through a "data life cycle". The four phases of this iterative cycle

- 1. collection, 2. organization, 3. presentation and 4. utilization
 - The cycle may be repeated as desired to promote maintenance and continuous improvement of DQ.

Each stage creates is own data quality problems.

Quality problems occurring in earlier stages may cause further quality problems in later stages.

Examples of data life cycle artifacts

Definition	Applicable Examples
Data Collection	Raw data, Surveys, Observations, Recordings.
Data Organization	Data Files, Databases, Data Repositories
Data Presentation	Web pages, Reports, Account Statements
Data Application	Research Data, Medical Diagnosis Data

Each of these artifacts are subject to their own type of DQ issues.

Data Quality Roles

There are 3 main DQ roles identified by Strong et al.

- Data Producers (aka Collectors/Creators)
- Data Custodians (IT staff)
- Data Consumers

Also a Total Data Quality Manager (TDQM) is necessary

According to Strong, Lee and Wang, the customers and not the custodians of data (such as IT departments or IT researchers or IT literature) should define and determine IQ.

- Data quality does not just happen
- We need procedures to create and maintain data quality
 - Maybe different procedures for different stages of data life cycle
- We need roles that are assigned different rights and responsibilities with data
 - In other words, a form of data governance
- We need policies that specify which procedures are to be followed by whom for each stage of the data life cycle.

Rules and Rules of Engagement

- 1. Mission and Vision
- Goals, Governance Metrics
 & Success Measures,

Funding Strategies

- 3. Data Rules and Definitions
- 4. Decision Rights
- 5. Accountabilities
- 6. Controls

People and Organizational Bodies

- 7. Data Stakeholders
- A Data Governance Office
- Data Stewards

Processes

10. Proactive, Reactive, and Ongoing Data Governance Processes

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Process Steps

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Process Steps

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Stakeholder. RACI Matrix

Process Steps

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Stakeholder. RACI Matrix

Glossary. Index. Search

Process Steps

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Stakeholder. RACI Matrix

Glossary. Index. Search

Flag. Regulations. Monitor access

Process Steps

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Stakeholder. RACI Matrix

Glossary. Index. Search

Flag. Regulations. Monitor access

Business Confidence Measure

Process Steps

Organization for Big Data Governance

Metadata

Big Data Privacy

Big Data Quality

Business Process Integration

Master Data Integration

Managing the Big Data Lifecycle

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Stakeholder. RACI Matrix

Glossary. Index. Search

Flag. Regulations. Monitor access

Business Confidence Measure

Policy to Process

COLUMBIA UNIVERSITY School of Professional Studies

Process Steps

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Organization for Big Data Governance

Stakeholder. RACI Matrix

Metadata

Glossary. Index. Search

Big Data Privacy

Flag. Regulations. Monitor access

Big Data Quality

Business Confidence Measure

Business Process Integration

Policy to Process

Master Data Integration

Quality and Consistency

Managing the Big Data Lifecycle

COLUMBIA UNIVERSITY School of Professional Studies

Process Steps

Sunil Soars. Big Data Governance: An Emerging Imperative. Oct 2012

Organization for Big Data Governance

Stakeholder. RACI Matrix

Metadata

Glossary. Index. Search

Big Data Privacy

Flag. Regulations. Monitor access

Big Data Quality

Business Confidence Measure

Business Process Integration

Policy to Process

Master Data Integration

Quality and Consistency

Managing the Big Data Lifecycle

Retention. Regulations. Usefulness. Disposal

<u>Process Steps – Short Form</u>

Step 1: Get a governor and the right people in place to govern

Step 2: Survey your situation

Step 3: Develop a data-governance strategy

Step 4: Calculate the value of your data

Step 5: Calculate the probability of risk

Step 6: Monitor the efficacy of your controls

Example

mage: Mayr's

- HIPAA Privacy Rule
- HIPAA Security Rule
- HIPAA Enforcement Rule
- HIPAA Breach Notification Rule

GDPR

The General Data Protection Regulation (GDPR) 2016/679 is a regulation in EU law on data protection and privacy for all individuals within the European Union and the European Economic Area. It also addresses the export of personal data outside the EU and EEA areas. Wikipedia

Every organization that collects information about any individuals that reside in the European Union must comply with GDPR or face large fines.

Do you think organizations require GDPR compliance policies and monitoring and enforcing mechanisms?

This week

- Data Quality
- Data governance
- Data Policies

Next week

- Interacting with data through
 - Web forms
 - Programs
 - APIs
 - Other channels (chat bots?)
- JSON objects as a data model

