Divergence

$$Q = \iiint_{V} f_{V}(\vec{r}) dV$$

Defi: Divergence is flux per

unit whome over a small

where DV

$$\psi = \iint \vec{D}(\vec{r}) \ d\vec{s}' \qquad \nabla \cdot \vec{D} = \lim_{\Delta V \to 0} \frac{\psi}{\Delta V} = \iint \vec{D} d\vec{s}$$
Queed and

$$\nabla \cdot \vec{D} = \lim_{\Delta V \to 0} \frac{\psi}{\Delta V} = \frac{\text{\emptyset $\bar{\partial}$ $\bar{\partial}$}}{\Delta V}$$

Gauss' Law and the Divergence Theorem

 $\nabla \cdot \vec{D} = \ell_{V}$

• We can use the point form of Gauss' law back in the integral form:

$$Q = \iiint_{V} \rho_{v}(\mathbf{r'}) dv' = \iiint_{V} \nabla \cdot \mathbf{D}(\mathbf{r'}) dv' \equiv \oint_{S} \mathbf{D}(\mathbf{r'}) \cdot d\mathbf{s'}$$

• We have indirectly developed the *divergence theorem*, which actually holds for all vectors!

The integral of the normal component of any vector field over a closed surface is equal to the integral of the divergence of this vector field through the volume enclosed by the closed surface.

Gass's law in point (differential) form.

Energy and Work

Work done to move mass from

Over a small path...

Winter 2019

Total Work Along a Contour

Total work done over a path C

$$V = -Q$$

$$\vec{F}(\vec{r}) \cdot d\vec{l}$$

What is the total work moving a charge along the contour C?

$$W = -Q \int_{P_1}^{P_2} \overrightarrow{E}(\overrightarrow{F}) d\overrightarrow{\ell}$$

W does not depard on the path taken from pl to p2, it only depends on 71 and 72 (path indep.)

Winter 2019

Potential difference between
$$P_1$$
 and $P_2 \equiv V_{12} = \frac{W}{Q} = -\int_{0}^{\infty} \vec{E}(\vec{r}) \cdot d\vec{l}$

Potential Between Two Points near a Point Charge

$$\vec{E} = \frac{\omega}{4\pi\epsilon_0 R^2} \vec{a}_R \qquad (\vec{a}_R \text{ is } \vec{a}_r \text{ in this case})$$

$$\vec{\mathcal{A}} = \vec{a}_r \text{ (rodial direction)} \cdot dr$$

$$r_2$$

$$V_{12} = - \underbrace{\frac{\omega}{4\pi\epsilon_0 R^2}}_{4\pi\epsilon_0 R^2} \vec{a}_r \cdot \vec{a}_r dr$$

$$= -\frac{Q}{4\pi c_0} \int_{r_1}^{r_2} \frac{1}{r^2} dr = -\frac{Q}{4\pi c_0} \left[\frac{1}{r_2} \right]_{r_1}^{r_2}$$
$$= \frac{Q}{4\pi c_0} \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

Potential From a Point Charge

$$= V(P_2) - V(P_1)$$

Let $r_1 \to \infty$, $V_1 \equiv 0$, and $r_2 \equiv r$:

Set
$$\Gamma_1 \rightarrow 0$$
, $V_{21} \rightarrow V(\vec{r}) = \frac{Q}{4\pi\epsilon_0} (\frac{1}{r})$

Generalization to Charge Distributions

Conservative Property of the Electrostatic Field