CREDIT CARD FRAUD DETECTION MODEL

USING

- LOGISTIC REGRESSION
- XGBOOST
- NEURAL NETWORK

Model
Description &
Usage

Purpose: Estimate the probability of Fraudulent transaction for a customer of the bank when a credit/ debit card swiped

Uses: Can be used to block the card when the fraudulent transaction is detected

Strategy: P(.90) = block, P(0.7-0.9) = send them a message and block temp for few minutes until we get a reply, <math>P(<.70) = no action required

Agenda

1. Variables Explained

- Y variable
- X Variable
- 2. Train-Test Split
- 3. Feature Engineering
 - Transformations
 - Target Encoding
 - Aggregate Encoding Unique selling point
 - How Feature Importance changes before and after aggregate encoding

4. Models & Hyper parameter tuning

- Logistic Regression
- XGBoost
- Neural Network
- 5. K-fold validation score comparison
- 6. Rank ordering analysis

Y Variable Explained

X Variable (1296675 Observations)

Attributes	Туре	Unique Values
Trans_date_trans _num	Date – Time	Time Ranges from 01-01-2019 to 01-12-2019
Cc_num	int	
Merchant	Categorical	169
Category	Categorical	14
Gender	Categorical	2
Name	Object	
Job	Categorical	28

Attributes	Туре	Unique Values
Amt	Continuous	
City	Object	
State	Object	
Zip	Object	946
City_population	continuous	
Date_of_birth	Date	

Attributes	Туре	Unique Values
Latitude, Longitude	Float	
Merch- Lat, Long	Float	

Test – Train Split

My train and split will be based on time

Data set	Time Range
Train Set	01 – 01 -2019 to 01 – 10 -2019
Test Set	01 – 11 – 2019 to 01 – 12 - 2019

Train Data	
Non-Fraud	907671
Fraud	4178 (0.46%)

Test Data	
Non-Fraud	389003
Fraud	5121 (1.31%)

Feature Engineering

Attributes	Transformed as	
Trans_date_trans_num	Transaction hourFraud rate	
Trans_date_trans_num	Transaction weekOne hot encoding	
Category	One hot encoding	
Gender	Male = 1	
Job	High_risk, low_riskOne hot encoding	
Latitude, Longitude	Distance	
Merch- Lat, Long		

Attributes	Transformed as		
Amt	Normalised		
City	Fraud rate at the		
State	Zip code		
Zip	Target encoded – (street+city+state)		
City_population	Continuous		
Date_of_birth	Age CalculatedNormalised		
Name, cc_num	Agregate encoded- Calc avg amt, std amt		

Hour of the transaction — EDA

How my aggregation encoding helped in feature selection

Model 1 – Logistic Regression

```
lr_model = LogisticRegression(solver='saga', max_iter=500)
```

Parameters:

By default -> solver = lbfgs & max_iter = 100

Changed to Solver – 'saga & Max_iter – 500

Problem:

Convergence problem

Max iteration reached

	precision	recall	f1-score	support
0	1.00	1.00	1.00	386841
1	0.89	0.36	0.51	2162
accuracy			1.00	389003
macro avg	0.94	0.68	0.75	389003
weighted avg	1.00	1.00	1.00	389003

Performance

Model 2 – XGBoost

Initial parameters:

'objective':' binary:logistic',

<u>'max_depth'</u>: 6,

'learning_rate': 1.0,

'n_estimators': 20

Accuracy

0.897

Hyper-parameter Tuning

Parameter	Values		
n_estimators	10	50	100
Learning_rate	0.1	0.2	0.3
Max_depth	3	4	5

	# Trees		Depth	AUC Train	AUC Test	Learning rate
15	100	NaN	3	0.999045	0.99863	0.3
16	100	NaN	3	0.999814	0.99896	0.3
17	100	NaN	3	0.999976	0.999008	0.3

Feature Importance

Model 3 - Neural Network

(2 hidden layer and 1 output)

Parameter	Value
Batch size	1000
Epoch	5

epoch_loss

- / Train data
- Validation data

Hyperparameter Tuning

Parameter	Values	
Optimizer	Adam	sgd
Drop out	0.1	0.2
Units	5	6

15k

20k

Model Analysis by K-Fold Validation in test set

Model	Accuracy	Loss
XGBoost	99.97	-
Neural Network	99.58	0.018
Logistic regression	92.70	-

Model Analysis – Rank order Analysis with XGBoost prediction