1. Use Composer and Hspice to simulate the differential pair as shown at Fig.1 with Vdd=1.8V. (30%)

due date: 05/09/2022

- (a) Design a differential pair with gain $A_{DM} > 5$ and $A_{CM} < 0.04$ for both input common mode voltage = 0.6 and 1.8. (20%)
- (b) Simulate the frequency response of A_{DM} when input common mode voltage=1V, and base on the simulation parameter of .lis file to calculate dominant pole. (5%)
- (c) Simulate the frequency response of A_{CM} when input common mode voltage=1V, and identify what makes the A_{CM} deteriorate at the high frequency. (5%)

- 2. Design a 1:5 wide-swing cascade current source as shown in Fig. 2(a) with Vdd=1.8V. (40%)
 - (a) With $I_{ref} = 20uA$ ($I_{out} = 100uA$), design the W/L sizes of $M_1 \sim M_4$, and the dc bias V_b to get $R_{out} > 500k\Omega$ when $V_{out} = 250mV$. (20%)
 - (b) Use the circuit structure as shown in Fig. 2(b) as a reference to design a bias generation circuit of V_b with $I_{in} = 20uA$ ($I_{out} = 100uA$). State the M_5 's and M_6 's (Fig. 2. (b)) design strategy and show in hand calculation. And express V_{in1} , V_{in2} , and V_{out} in terms of V_{ov} and V_{th} . (20%)

- 3. Use Composer and Hspice to simulate the common source and source follower as shown in Fig. 3 with **Vdd=1.8V**. Every single one of MOS's cgtot, cstot, cdtot, and cbtot can't have more than 70fF under your design. (30%)
 - Before you start to simulate the .ac noise
 - 1. Find the title "Flicker and Thermal noise Model Parameters" in "cic018.1".
 - 2. Use the "replace all" to change value of the parameter into KF=1E-29.
 - 3. Hint: use ".noise V(vout) vin 10000"
 - (a) Design a common source with gain A1>50 and plot the output noise's spectrum as shown in Fig.3. (a). Identify the corner frequency and pole of thermal noise. (6%)
 - (b) Design a source follower with gain A2>0.7 and plot the output noise's spectrum as shown in Fig. 3. (b). Identify the corner frequency and pole of thermal noise. (6%)
 - (c) Compare between (a) and (b). Which one has higher output flicker noise? Which one has higher thermal noise's pole? Why? (6%)
 - (d) Find the output thermal noise of CS and SF. Which one is bigger? Why? (6%)
 - (e) Find the input referred thermal noise of CS and SF. Which one is bigger? Why? (6%)

- The following should be included in your report (a) schematic (b) HSPICE netlist
 - (c) waveform with cursor values (d) comments.