

ANALISIS PEUBAH GANDA

SEBARAN NORMAL GANDA

Dr. Ir. I Made Sumertajaya, M.Si

SEBARAN NORMAL GANDA

- Fungsi kepekatan normal ganda (multivariate normal) adalah generalisasi dari fungsi kepekatan univariate normal dengan p \geq 2 dimensi.
- Fungsi kepekatan dari peubah acak x yang menyebar normal dengan nilai tengah μ dan ragam σ^2 adalah :

$$f(x) = \frac{1}{\sqrt{2\Pi\sigma^2}} e^{-[(x-\mu)/\sigma]^2/2}$$

· dimana $-\infty < x < \infty$

- Plot dari fungsi di atas akan menghasilkan kurva berbentuk genta yang memiliki ciri-ciri sebagai berikut:
 - Simetrik terhadap nilai tengah (μ)
 - Mean, median, modus berada pada titik yang sama
 - $P(\mu \theta < x < \mu + \sigma) = 0.683$
 - $P(\mu 2\theta < x < \mu + 2\sigma) = 0.954$

Fungsi Kepekatan Peluang Normal Ganda

Fungsi kepekatan bersama dari p peubah acak yang menyebar normal dan saling bebas adalah :

$$f(x_1,...,x_p) = \frac{1}{(2\pi)^{p/2}\sigma_1...\sigma_p} Exp \left[-1/2 \sum_{i=1}^p \left(\frac{x_i - \mu_i}{\sigma_i} \right) \right]^2$$

- $f(x_1,...,x_p) = \frac{1}{(2\pi)^{p/2}\sigma_1...\sigma_p} Exp \left[-1/2\sum_{i=1}^p \left(\frac{x_i \mu_i}{\sigma_i} \right) \right]^2$ Bentuk [(xi \mu)/\sigma]^2 dari eksponen fungsi sebaran normal mengukur jarak kuadrat dari x_i ke μ_i dalam unit simpangan baku.
- Bentuk ini dapat digeneralisasikan untuk vektor x dari pengamatan beberapa peubah sebagai : $(\mathbf{x} - \underline{\mu})' \Sigma^{-1} (\mathbf{x} - \underline{\mu})$

 Secara umum fungsi kepekatan peluang normal bersama untuk p peubah dapat ditulis sebagai berikut :

$$f(\underline{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{\frac{1}{2}}} Exp\left[-\frac{1}{2}(\underline{x} - \underline{\mu})'\Sigma^{-1}(\underline{x} - \underline{\mu})\right]$$

- dimana $-\infty$ < xi < ∞ , i = 1,2,...p.
- Fungsi kepekatan normal berdimensi p ini dapat ditulis sebagai $N_p(\mu,\Sigma)$ yang analog dengan kasus univariate.

Countur Sebaran Normal Ganda

• Eksponen $(x - \mu)' \Sigma^{-1} (x - \mu)$ dari kepekatan normal ganda memperlihatkan persamaan ellipsoid dalam ruang peubah berdimensi p jika bentuk ini ditulis dalam sebuah persamaan terhadap sebuah nilai konstanta positif c.

$$(x - \mu)' \Sigma^{-1} (x - \mu) = c^2$$

• Dengan pusat ellips adalah μ dan absis \pm c $\sqrt{\lambda_i}$ e_i dimana,

$$\Sigma e_i = \lambda_i e_i$$
, $i = 1,2,...p$.

 Misalkan untuk normal bivariat dengan parameter berikut:

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 3 & \sqrt{2} \\ \sqrt{2} & 3 \end{pmatrix}$$

Mempunyai dua nilai eigen dari Σ

$$\lambda_1 = 3 + \sqrt{2} \qquad \lambda_2 = 3 - \sqrt{2}$$

 Dua vektor eigen (yang sudah dinormalkan yang bersesuaian dengan masing-masing nilai eigen:

$$\mathbf{e}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{e}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \qquad \mathbf{e}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

• Misalkan:
$$c^2 = \chi_2^2(0.05) = 5.9$$

$$\mathbf{e}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

• Dengan panjang:
$$\pm c\sqrt{\lambda_1} = 2.42 \times \sqrt{3 + \sqrt{2}} = 5.1$$

$$\mathbf{e}_{2} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Dengan panjang:
$$\pm c\sqrt{\lambda_1} = 2.42 \times \sqrt{3 - \sqrt{2}} = 3.05$$

Kontur bagi fungsi sebaran normal bivariat

Sifat-sifat Sebaran Normal Ganda

· Kombinasi linier dari semua komponen peubah x juga menyebar normal. Jika $\mathbf{X}_p \sim N_p$ ($\underline{\mu}$, Σ) , maka kombinasi linear :

$$\underline{\mathbf{a}'}\underline{\mathbf{X}} = a_1 X_1 + a_2 X_2 + ... + a_p X_p \text{ menyebar}$$

$$N(\underline{\mathbf{a}'} \underline{\mu}, \underline{\mathbf{a}'} \Sigma \underline{\mathbf{a}})$$

- Jika $\underline{X}_p \sim N_p$ ($\underline{\mu}$, Σ) maka semua anak gugus dari X juga menyebar normal
- Jika \underline{X}_1 dan \underline{X}_2 saling bebas, dan menyebar N_{q1} ($\underline{\mu}_1$, Σ_{11}) dan N_{q2} ($\underline{\mu}_2$, Σ_{22}) maka sebaran bersyarat [\underline{X}_1 / \underline{X}_2] adalah normal ganda :

$$N_{q1+q2} \left[\left[\frac{\mu_1}{\mu_2} \right], \left[\frac{\Sigma_{11}}{0} \frac{0}{\Sigma_{22}} \right] \right)$$

- Jika X ~ Np (μ,Σ) dengan $|\Sigma|$ > 0 maka:
 - $(x \mu)' \Sigma^{-1} (x \mu) \sim \chi_{(p)}^2$ dimana χ_p^2 menyatakan sebaran khi kuadrat dengan derajat bebas p.
 - Selang kepercayaan $(1-\alpha)100\% \rightarrow (x-\mu)'\Sigma^{-1}(x-\mu) \le \chi_{(\alpha, p)}^2$

Contoh terapan sifat-sifat sebaran normal multivariat Contoh 1:

Untuk

$$X \sim N_3(\mu, \Sigma)$$

• Tentukan sebaran dari Ax dengan: $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$

$$\mathbf{AX} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$

- Jika X menyebar $N_p(\mu, \Sigma)$.
- · Maka kombinasi linier dari X:

$$\mathbf{AX} = \begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{11}X_1 + \dots + a_{qp}X_p \end{bmatrix} \sim \mathcal{N}_q \left(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T \right)$$

· Nilai tengah kombinasi linier:

$$\mathbf{A}\boldsymbol{\mu} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} = \begin{pmatrix} \mu_1 - \mu_2 \\ \mu_2 - \mu_3 \end{pmatrix}$$

Ragam peragam kombinasi linier:

$$\mathbf{A} \sum \mathbf{A}^t = egin{pmatrix} 1 & -1 & 0 \ 0 & 1 & -1 \end{pmatrix} egin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} egin{pmatrix} 1 & 0 \ -1 & 1 \ 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{11} - 2\sigma_{12} + \sigma_{22} & \sigma_{12} + \sigma_{23} - \sigma_{22} - \sigma_{13} \\ \sigma_{12} + \sigma_{23} - \sigma_{22} - \sigma_{13} & \sigma_{22} - 2\sigma_{23} + \sigma_{33} \end{pmatrix}$$

$$\mathbf{AX} \sim N_3 \left(\mathbf{A} \mathbf{\mu}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}^T \right)$$

Contoh 2:

• Jika:
$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \Sigma)$$
 $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_2 \end{pmatrix}$ $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\boldsymbol{\Sigma} = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix}$

$$\mathbf{X} = \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right)$$

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Sigma = \begin{bmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

- Seperti apa sebaran marjinal bagi X_1 ?
- Sifat yang sama berlaku seperti pada sebaran normal bivariat, masing-masing variabel mempunyai sebaran normal univariat.

$$\mu = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \qquad \sum = \begin{bmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \qquad X_1 \sim N_1(0,7)$$

$$X_{1} \sim N_{1}(0.7)$$

Seperti apa sebaran marjinal dari

$$\mathbf{X}^{(1)} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

Ingat sifat sebaran dari variabel hasil partisi.

$$\mathbf{X}^{(1)} \sim \mathcal{N}(\mathbf{\mu}^{(1)}, \sum_{11}) \qquad \mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix} \qquad \mu^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Sigma_{11} = \begin{pmatrix} 7 & 3 \\ 3 & 4 \end{pmatrix}$$

$$\boldsymbol{\mu}^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \sum_{11} = \begin{pmatrix} 7 & 3 \\ 3 & 4 \end{pmatrix}$$

Contoh 3:

- Diberikan $X \sim N_3(\mu, \Sigma)$ $\Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- Apakah X₁ dan X₂ saling bebas?
- Dapat dilihat dari σ_{12} $\Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- Karena σ_{12} =1 \neq 0, maka X_1 dan X_2 tidak saling bebas?

- Apakah (X_1, X_2) dan X_3 saling bebas?
- · Dapat dikerjakan dengan melakukan partisi.

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ -X_3 \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ ---- & 0 & 0 \end{vmatrix} = \begin{pmatrix} \sum_{12} \left| \sum_{12} \right| \\ --- & \sum_{21} \left| \sum_{22} \right| \end{pmatrix}$$

- Kovarians dari (X_1, X_2) dan X_3 adalah vektor nol $\Sigma_{12} = \Sigma_{21}^T = 0$
- Sehingga (X_1, X_2) dan X_3 adalah saling bebas.

Contoh 4:

• Jika:
$$\mathbf{X} \sim N_3(\mathbf{\mu}, \Sigma)$$
 $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ $\mathbf{\mu} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix}$

- Seperti apa sebaran bagi X_1 , $X_2 \mid X_3=1$?
- Dari sifat sebaran normal multivariat, berdasarkan partisi:

$$\mathbf{X} = \begin{pmatrix} X_{1} \\ X_{2} \\ -- \\ X_{3} \end{pmatrix} = \begin{pmatrix} \mathbf{X}^{(1)} \\ -- \\ \mathbf{X}^{(2)} \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}^{(1)} \\ -- \\ \boldsymbol{\mu}^{(2)} \end{pmatrix} \qquad \boldsymbol{\eta} = \boldsymbol{\mu}^{(1)} + \sum_{12} \sum_{22}^{-1} (\mathbf{X}^{(2)} - \boldsymbol{\mu}^{(2)})$$

$$\sum_{11 \bullet 2} = \sum_{11} - \sum_{12} \sum_{21}^{-1} \sum_{21} \sum_{21}$$

$$\mu = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix} \qquad \mathbf{X}^{(2)} = \mathbf{1}$$

$$X^{(2)} = 1$$

$$\mu^{(1)} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \mu^{(2)} = -2$$
 $\Sigma_{11} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$
 $\Sigma_{12} = \Sigma_{21} = \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix}$
 $\Sigma_{22} = 1$

$$\eta = \mu^{(1)} + \sum_{12} \sum_{22}^{-1} (\mathbf{x}^{(2)} - \mu^{(2)})$$

$$= {1 \choose 4} + {0.4 \choose 0.2} (1) (\mathbf{x}^{(2)} - (-2)) = {1 \choose 4} + {0.8 \choose 0.4} + \mathbf{x}^{(2)} {0.4 \choose 0.2} = {1.8 \choose 4.4} + \mathbf{x}^{(2)} {0.4 \choose 0.2}$$

pada
$$\mathbf{X}^{(2)} = 1$$
 $\mathbf{\eta} = \begin{pmatrix} 1.8 \\ 4.4 \end{pmatrix} + \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 2.2 \\ 4.6 \end{pmatrix}$

$$\mu = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix} \qquad \boldsymbol{X}^{(2)} = \boldsymbol{1}$$

$$\mu^{(1)} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \mu^{(2)} = -2$$
 $\Sigma_{11} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$
 $\Sigma_{12} = \Sigma_{21} = \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix}$
 $\Sigma_{22} = 1$

$$\sum_{11\bullet 2} = \sum_{11} - \sum_{12} \sum_{22}^{-1} \sum_{21}$$

$$= \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} - \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix} (1)(0.4 & 0.2)$$

$$= \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} - \begin{pmatrix} 0.16 & 0.08 \\ 0.08 & 0.04 \end{pmatrix} = \begin{pmatrix} 0.84 & 0.42 \\ 0.42 & 0.96 \end{pmatrix}$$

Contoh 5:

• Jika:
$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \Sigma)$$
 $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_2 \end{pmatrix}$ $\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix}$

- Seperti apa sebaran bagi $(2X_1+X_2, X_1+2X_2+3X_3)$?
- Dapat dibentuk matriks **B** yang mendefinisikan kombinasi linier dari peubah-peubah tsb.

$$\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\mathbf{BX} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X \end{pmatrix} = \begin{pmatrix} 2X_1 + X_2 \\ X_1 + 2X_2 + 3X_3 \end{pmatrix} \sim N_2 \left(\mathbf{B} \boldsymbol{\mu}, \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^T \right)$$

$$\mathbf{B}\boldsymbol{\mu} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

$$\mathbf{B}\Sigma\mathbf{B}^{\mathsf{T}} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 9.5 \\ 9.5 & 20.8 \end{pmatrix}$$

BX ~
$$N_2 \begin{pmatrix} 6 \\ 3 \end{pmatrix}, \begin{pmatrix} 7 & 9.5 \\ 9.5 & 20.8 \end{pmatrix}$$

Fungsi Likelihood Normal Multivariat

$$f(x_1,...,x_p) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

$$-\infty < x_i < \infty; \quad i = 1, 2, \dots, p$$

- Untuk sampel acak (multivariat) X₁,...,X_n
- Fungsi likelihood bagi normal multivariat:

$$\mathcal{L}(\mathbf{\mu},\mathbf{\Sigma}|) = \prod_{i=1}^{n} f(\mathbf{x}_{i}|\mathbf{\mu},\mathbf{\Sigma}) = \frac{1}{(2\pi)^{\frac{1}{2}np}|\Sigma|^{\frac{1}{2}n}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mathbf{\mu})'\Sigma^{-1}(\mathbf{x}_{i}-\mathbf{\mu})\right)$$

Atau dapat digunakan fungsi In likelihood:

$$I(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{1}{2} n p \ln(2\pi) - \frac{1}{2} n \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})^{i} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})$$

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})^{i} \sum_{i=1}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) = \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{i} \sum_{i=1}^{-1} (\mathbf{x}_{i} - \overline{\mathbf{x}}) + n(\overline{\mathbf{x}} - \boldsymbol{\mu})^{i} \sum_{i=1}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu})$$

$$= tr \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})^{i} + n(\overline{\mathbf{x}} - \boldsymbol{\mu})^{i} \sum_{i=1}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu})$$

- · Penduga bagi μ dan Σ dipilih sedemikian sehingga fungsi likelihood tsb maksimum.
 - Memilih penduga μ dan Σ yang paling mungkin bagi sampel acak.
- · Diperoleh dari solusi ketika turunan parsial fungsi (ln) likelihood terhadap μ dan Σ sama dengan nol

$$I(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{1}{2} n \rho \ln(2\pi) - \frac{1}{2} n \ln|\boldsymbol{\Sigma}| - \frac{1}{2} tr \boldsymbol{\Sigma}^{-1} A - \frac{n}{2} (\overline{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu})$$
$$\frac{\partial}{\partial \boldsymbol{\mu}} I(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = n \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}) = 0 \quad \iff \hat{\boldsymbol{\mu}} = \overline{\mathbf{x}}$$

Penduga Σ diperoleh dari turunan parsial $\widehat{\Sigma} = ((n-1)/n)\mathbf{S}$.

Sebaran Penarikan Sampel Penduga Parameter

1. Vektor rata-rata sampel juga mempunyai sebaran normal p variat

$$\overline{\mathbf{X}} = \begin{pmatrix} \overline{X}_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_p \end{pmatrix} \sim N_p(\boldsymbol{\mu}, \frac{1}{n} \Sigma)$$

2. Sebaran bagi (n-1)**5** adalah Wishart dengan derajat bebas (n-1)

$$(n-1)$$
S $\sim W(\sum, n-1)$

3. Sebaran Wishart adalah sebaran bagi

$$\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T} \sim W(\Sigma, m) \qquad \mathbf{Z}_{j} \sim N_{\rho}(0, \Sigma)$$

- 4. \overline{X} dan S saling bebas
- 5. Pada sebaran Wishart, berlaku:

$$(n-1)S \sim W(\sum, n-1) \rightarrow (n-1)CSC' \sim W(C\sum C', n-1)$$

$$\mathbf{A}_1 = (n_1 - 1)\mathbf{S}_1 \sim W(\Sigma, n - 1)$$
 $\mathbf{A}_2 = (n_2 - 1)\mathbf{S}_2 \sim W(\Sigma, n - 1)$

• Dengan S_1 dan S_2 adalah dua penduga Σ yang saling bebas, maka:

$$\mathbf{A}_1 + \mathbf{A}_2 = (n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2 \sim W(\sum_1 n_1 + n_2 - 2)$$

Ketika Sampel Berukuran Besar

- Untuk sampel acak (multivariat) X₁,...,X_n
- Ketika sampel berukuran besar → (n-p) besar, maka:

$$\sqrt{n}(\overline{\mathbf{X}} - \mathbf{\mu})$$
 Mendekati sebaran $N_{p}(\mathbf{0}, \Sigma)$

dan:
$$n(\overline{X} - \mu)' S^{-1}(\overline{X} - \mu) \sim \chi_p^2$$

Eksplorasi Sebaran Normal Ganda

- · Untuk mengevaluasi apakah data yang dimiliki menyebar normal ganda dapat ditelusuri secara ekplorasi
- · Seperti halnya untuk kasus univariate penelusuran sebaran normal ganda dapat juga memanfaatkan plot quantil-quantil
 - → quantil khi-kuadrat

- 1. Hitung: $d_i^2 = (\underline{x}_i \underline{\mu})' \Sigma^{-1} (\underline{x}_{\underline{i}} \underline{\mu})$
- 2. Beri peringkat \bar{k} untuk nilai d_i^2
- 3. Carilah nilai khi-kuadrat dari nilai (k-1/2)/n dengan derajat bebas p, misal $\chi_p^2 \left(\frac{k-\frac{1}{2}}{n}\right)$
- 4. Buat plot d_i^2 dengan $\chi_p^2 \left(\frac{k \frac{1}{2}}{n} \right)$
- 5. Jika plot tersebut membentuk garis lurus maka data tersebut menyebar normal ganda p.

Contoh kasus

Obs	x1	x2	x 3	x4	d _i ²	k	p(k)	$\chi_{(4)}^{2}$
1	1.29	0.98	0.99	1.05	8.25	15	0.91	22.57
2	1.28	1.08	1.06	1.08	6.71	14	0.84	20.42
3	0.79	1.06	1.01	1.05	11.22	16	0.97	26.70
4	0.80	1.01	1.01	1.05	2.55	6	0.34	12.30
5	1.39	1.03	1.03	1.04	2.19	4	0.22	10.59
6	0.89	0.97	0.99	1.02	2.72	7	0.41	13.11
7	1.40	1.06	1.05	1.06	2.74	8	0.47	13.92
8	0.72	1.00	1.02	1.03	3.81	12	0.72	17.65
9	1.03	1.00	1.00	1.01	1.13	2	0.09	8.41
10	0.69	0.97	0.99	1.01	3.00	9	0.53	14.76
11	1.29	1.05	1.03	1.04	1.64	3	0.16	9.61
12	1.17	1.00	1.00	1.01	3.43	11	0.66	16.59
13	0.82	1.00	1.01	1.01	2.50	5	0.28	11.47
14	1.23	1.05	1.03	1.02	3.17	10	0.59	15.64
15	1.09	1.02	1.02	1.03	0.13	1	0.03	6.56
4N	1.00	1.04	1.05	1.03	4.82	13	0.78	18.89

- Korelasi antara d_i² dengan kuantil khikuadrat adalah 0.941
- Bandingkan dengan tabel, jika lebih besar dari tabel berarti normal ganda

Penanganan Masalah

- Jika data tidak normal maka dapat didekati dengan transformasi, misal transformasi Box-Cox
- Lakukan eksplorasi pengamatanpengamatan ekstrem, buat box-plot untuk data d_i² (aturan main sama seperti kasus univariate

