Домашняя работа 2

Пасечник Даша

на 29.02.2019

Задача 1

Функция u(M) равна наибольшему числу тактов работы на входных словах длины 10, если MT M останавливается на каждом таком слове, u не определена в противном случае. Вычислима ли u(M)?

Докажем, что u(M) вычислима, т.е. построим алгоритм, который ее вычисляет.

Т.к. алфавит любой машины Тьюринга конечен, то конечно и число слов длины 10. Занумеруем их. Постоим таблицу (i, j), где i - номер входа из множества входов длины 10, j - номер МТ. Как заполнять ячейки таблицы? Запускаем МТ j на входе i: если она останавливается на входе i, то в ячейку (i, j) пишем число тактов, за которое она завершила работу.

Функцию u(M) вычисляем так: идем по строке с номером M и вычисляем значения ячеек (i, M), затем проходим по строке еще раз и ищем максимум. Элементов в строках конечное число, т.к. конечно число входов длины 10, поэтому:

- если М останавливается на всех входных словах длины 10, то максимум будет найден за конечное время,
- ullet иначе работа MT M на каком-то из слов не завершится и значение u(M) окажется неопределено.

Построили алгоритм вычисления u(M), следовательно функция вычислима.

Задача 2

Разрешим ли язык L, состоящий из всех описаний MT, у которых есть недостижимое состояние (не достигается ни при каком входе)?

Про язык L_{\emptyset} известно, что он неперечислим (см задачу 3) и неразрешим.

Тогда показать сводимость $L_\emptyset \leq_m L$ – значит доказать неразрешимость L.

Рассмотрим вспомогательную МТ $M_{\$}$ с одним состоянием, которая печатает \$ на ленту и останавливается. Кроме того рассмотрим функцию g(M), получающую на вход МТ и выдающую эквивалентную ей МТ без недостижимых состояний. Приведем алгоритм работы g:

- 1 Поместим начальное состояние в множество достижимых.
- 2 Проходим по таблице переходов (она конечна) и добавляем в множество достижимых состояний каждое такое, в которое есть переход из состояния уже находящегося в множестве достижимых.
- 3 Повторяем 2. пока множество достижимых состояний не перестанет меняться (это произойдет по крайней мере тогда, когда в множество достижимых попадут все состояния MT их конечное число, следовательно за конечное время).
- 4 Очевидно, состояния, которые не попали в множество достижимых не достигаются))) Так что удалим их.

Т.к. недостижимые состояния не влияют на работу МТ ни на каком входе, то $g(M) \in L_{\emptyset} \Leftrightarrow M \in L_{\emptyset}$. Тогда рассмотрим функцию $f(M) = g(M) \circ M_{\$}$.

Если $M \in L_{\emptyset}$, т.е. M не останавливается ни на каком входе, то g(M) - аналогично. Значит и f(M) не останавливается ни на каком входе и состояние $M_{\$}$ оказываются для нее недостижимым. Получили, что $f(M) \in L$

Если $M \notin L_{\emptyset}$, т.е. существует слово ω , на котором останавливается M, то g(M), а следовательно и f(M) так же останавливаются на нем.

Все состояния g(M) достижимы по построению, а состояние $M_{\$}$ достигается по крайней мере на слове ω . Т.е. $f(M) \notin L$.

Таким образом показали, что:

$$\left\{ \begin{array}{ll} M \in L_{\emptyset} & \Longrightarrow & f(M) \in L \\ M \not\in L_{\emptyset} & \Longrightarrow & f(M) \not\in L \end{array} \right.$$

 \hat{T} .е. $L_{\emptyset} \leq_m L$. Значит L - неразрешим.

Задача 3

Перечислим ли язык L_{\emptyset} состоящий из всех описаний MT, которые не останавливаются ни на каком входе?

Рассмотрим сначала дополнение к L_\emptyset : $L_1=L\setminus L_\emptyset$ - язык всех машин Тьюринга, которые останавливаются по крайней мере на одном входе (L - язык всех машин Тьюринга). Легко показать, что существует вычислимая функция $R(x,y): \Sigma^* \times \Sigma^* \to \{0,1\}: x \in L_1 \iff \exists y \in \Sigma^*: R(x,y) = 1. \ R(x,y)$ будет запускать МТ x на входе y и выдавать 1, если МТ x останавливается на входе y, 0 - иначе. Действительно, если $x \in L_1$, то по построению L_1 найдется y такой, что R(x,y)=1. Если $x\notin L_1$, то $x\in L_\emptyset$, а значит $\nexists y:R(x,y)=1$. Существование R(x,y)равносильно перечислимости L_1 .

Теперь покажем сводимость $L_{stop} \leqslant_m L_1$.

Т.е. нужно найти такую функцию
$$f$$
, что
$$\begin{cases} (M,\omega) \in L_{stop} \implies f((M,\omega)) \in L_1 \\ (M,\omega) \not\in L_{stop} \implies f((M,\omega)) \not\in L_1 \end{cases}$$
 Рассмотрим $f((M,\omega)) = M_w \circ M$, где M_w – вспомогательная МТ, которая считывает слово ω с ленты и переводит

головку в начало слова. Заметим, что МТ $M_{w_0}\circ M_0$ не завершает свою работу на всех словах кроме ω_0 , т.к. МТ M_{w_0} не завершает свою работу на всех словах кроме ω_0 . На слове ω_0 МТ M_{w_0} завершает свою работу и передает управление МТ M_0 . Головка при этом находится в начале слова ω_0 , т.е. M_0 начинает работу на входе ω_0 . Таким образом, если $(M_0,\omega_0)\in L_{stop}$, то $f((M_0,\omega_0))$ останавливается на входе ω_0 , т.е. $f((M,\omega))\in L_1$. Иначе, $f((M_0,\omega_0))$ не останавливается ни на каком входе, т.е. $f((M,\omega)) \notin L_1$.

Получили, что f – искомая функция, а значит $L_{stop} \leqslant_m L_1$.

Тогда из неразрешимости L_{stop} следует неразрешимость L_1 , а из неразрешимости и перечислимости L_1 по теореме Поста – неперечислимость $L \setminus L_1$, т.е. L_{\emptyset} .

Ответ: L_{\emptyset} - неперечислим.

Задача 4

Показать, что любой перечислимый язык сводится к L_{stop} .

Рассмотрим перечислимый язык A. Для него $\exists g$ – вычислимая функция, область определения которой – множество A. Тогда существует MT M_q , вычисляющая эту функцию, т.е. такая, что она останавливается на словах из A, и не останавливается иначе.

Т.к. $L_{stop} =_m L_{stop,\emptyset}$, то сводимость к $L_{stop,\emptyset}$ равносильна сводимости к L_{stop} . Покажем, что существует f(x):

```
\int x \in A \implies f(x) \in L_{stop,\emptyset}

\begin{cases}
    x \notin A \implies f(x) \notin L_{stop,\emptyset}
\end{cases}
```

m Pассмотрим вспомогательную MT: M_x , которая печатает слово x и возвращает головку в начало слова. Тогда функция $f(x) = M_x \circ M_g$ – искомая. Действительно, если $x \in A$, то $M_x \circ M_g$ остановится на пустом входе, т.к. M_x останавливается на любом входе, а M_x на входах из A. Т.е. $f(x) \in L_{stop,\emptyset}$.

Если $x \notin A$, то $M_x \circ M_g$ не остановится на пустом входе, т.к. M_g не останавливается на входе x. Т.е. $f(x) \notin L_{stop}$. Таким образом, по определению m-сводимости, любой перечислимый язык сводится к $L_{stop,\emptyset}$, т.е. и к L_{stop} .

Задача 5

Верно ли, что все непустые коперечислимые языки т-сводятся друг к другу?

Докажем o/n: пусть верно, что все непустые коперечислимые языки m-сводятся друг к другу. Конечные языки разрешимы (ссылаемся на семинар), а следовательно и перечислимы. Тогда по теореме Поста они не могут быть не коперечислимыми.

Язык L_{\emptyset} коперечеслим и неперечислим (см. задачу 3), следовательно неразрешим.

Тогда для произвольного конечного языка A и языка L_{\emptyset} выполняется, например, $A \leq_m L_{\emptyset}$. Тогда из разрешимости A следует разрешимость L_{\emptyset} . Получили противоречие.

Ответ: не верно.

Задача 6

Функция Трудолюбия Радо (busy beaver function) определяется, как максимальное количество единиц, которые может напечатать MT с п состояниями перед остановкой.

- Всюду ли эта функция определена?
- (Доп) Вычислима ли эта функция?
- а) Останавливающихся МТ с n состояниями конечное число, т.к. таблицы переходов конечны. Время их работы конечно, т.е. всегда можем найти максимум по числу напечатанных единиц среди них. Это и будет значение $\Sigma(n)$. Ответ: $\Sigma(n)$ всюду определена.
- б) Докажем, что функция трудолюбия Радо $\Sigma(n)$ невычислима. Пусть f(n) произвольная вычислимая функция. Рассмотрим функцию g(x) = max[f(2x+2), f(2x+3)] + 1. Вычислимось g следует из вычислимости f.

Тогда существует M – MT, которая вычисляет функцию g, пусть у нее k состояний. Рассмотрим также служебную MT: M^* , которая будет писать x+1 единиц на ленте (для этого нужно x+2 состояния) и останавливаться. МТ $N_x = M^* \circ M$ участвует в соревновании среди MT с x+k+2 состояниями, значит $g(x) \leq \Sigma(x+k+2)$. Тогда выполняется $f(2x+2) < \Sigma(x+k+2)$ и $f(2x+3) < \Sigma(x+k+2)$, а для $x \geq k$: $f(2x+2) < \Sigma(2x+2)$ и $f(2x+3) < \Sigma(2x+2) < \Sigma(2x+3)$.

То есть при больших n (чётных и нечётных) выполняется $f(n) < \Sigma(n)$. Получили, что $\Sigma(n)$ растёт быстрее любой всюду определённой вычислимой функции, поэтому не является вычислимой. Ответ: $\Sigma(n)$ невычислима.

Задача 7

Постройте биекции:

- $(0,1) \to (0,+\infty)$
- $[0,1] \to [0,1)$
- $[0,1] \to [0,1]^2$
- $2^{\mathbb{N}} \to [0,1]$

Решение:

• $(0,1) \to (0,+\infty)$

Зададим биективной функцией f(x) = 1/x. Если область определения - $(0, +\infty)$ (здесь функция взаимнооднозначна), то область значений: (0, 1).

• $[0,1] \to [0,1)$

Построим такую функцию: $f(1)=\frac{1}{2},\ f(\frac{1}{2})=\frac{1}{3},\$ и далее для всех чисел вида $x=1/n:\ f\left(\frac{1}{n}\right)=\frac{1}{n+1}.$ Для остальных чисел с $[0,1]:\ f(n)=n.$ Функция взаимнооднозначна, область значений - [0,1).

• $[0,1] \to [0,1]^2$

Покажем, что отрезок [0,1] равномощен множеству бесконечных последовательностей из нулей и единиц. Каждое число $x \in [0,1]$ можем записать в виде бесконечной двоичной дроби: первый знак после запятой равен 0, если x лежит в левой половине отрезка [0,1], и равен 1, если в правой. Чтобы определить следующий бит, нужно поделить выбранную половину снова пополам. Если x лежит в левой половине, то следующая цифра 0, а если в правой, то 1. И так далее: чтобы определить очередной знак, нужно поделить текущий отрезок пополам и посмотреть, в какую половину попадает x.

Однако сейчас одному числу может соответствовать 2 бесконечные двоичные последовательности. Это происходит, когда точка попадает на границу очередного отрезка. Тогда мы можем относить её как к левой, так и к правой половине. В результате, например, последовательности 0, 1001111 · · · и 0, 101000 · · · соответствуют одному и тому же числу. Чтобы сделать взаимнооднозначное соответствие исключим последовательности, в которых начиная с некоторого момента все цифры равны 1 (кроме одной: 0, 1111 . . . - соответствует 1). Таких последовательностей счётное множество, так что их добавление не меняет мощности множества. В итоге получили биекцию между отрезоком [0, 1] и множеством бесконечных последовательностей нулей и единиц.

Тогда квадрат $[0,1] \times [0,1]$ равномощен множеству упорядоченных пар таких последовательности (пара соответсвующая точке (x,y) - пара из последовательности соответстувующей x и последовательности соответствующей y).

Установим отображение между бесконечными последовательностями нулей и единиц и парами таких последовательностей: паре $(a_0, a_1, a_2, \dots, b_0, b_1, b_2, \dots)$ ставим в соответствие последовательность $a_0, b_0, a_1, b_1, a_2, b_2, \dots$ Это отображение взаимно однозначное (обратное к нему выделяет из последовательности отдельно чётные и отдельно нечётные члены).

Т.е. построили искомую биекцию.

•
$$2^{\mathbb{N}} \rightarrow [0,1]$$

Представим множество всех подмножеств множества натуральных чисел в виде бесконечных последовательностей нулей и единиц (1 – берём элемент в множество, 0 – не берём). Биекцию между множеством бесконечных последовательностей нулей и единиц и [0,1] доказали в прошлом пункте.