

## EQUIVALENT FRACTIONS



Each pair of figures show two shaded fractions. Write the fractions that are displayed and then write an equal sign = or not equal sign  $\neq$  to show the relationship between the two fractions.

















## **EQUIVALENT FRACTIONS**

Complete each equivalent fraction below.

$$\frac{40}{64} = \frac{5}{}$$

$$\frac{20}{45} = \frac{16}{}$$

$$\frac{32}{42} = \frac{14}{42}$$

$$\frac{25}{55} = \frac{10}{2}$$

$$\frac{12}{56} = \boxed{\frac{28}{28}}$$

$$\frac{18}{24} = \frac{}{40}$$

$$\frac{15}{36} = \boxed{\frac{24}{24}}$$

$$\frac{}{48} = \frac{24}{64}$$

For each pair of fractions below, determine whether they are equal = or not equal ≠. Note: you do not need to say which one is larger or smaller! Just check to see if they are equivalent.

$$\frac{8}{24}$$
  $\frac{9}{25}$ 

$$\frac{6}{32} \boxed{\frac{12}{16}}$$

$$\frac{14}{50}$$
  $\frac{21}{60}$ 

$$\frac{18}{33} \qquad \frac{30}{55}$$

$$\frac{45}{54}$$
  $\frac{10}{12}$ 

$$\frac{21}{35} \boxed{\frac{3}{5}}$$

$$\frac{15}{33}$$
  $\frac{5}{11}$ 

$$\frac{4}{48}$$
  $\frac{10}{80}$ 

$$\frac{36}{88}$$
  $\frac{10}{25}$ 

$$\frac{16}{24}$$
  $\frac{12}{18}$ 

$$\frac{8}{28} \boxed{\frac{4}{14}}$$

$$\frac{23}{29}$$
  $\frac{31}{41}$ 

$$\frac{32}{64} \qquad \frac{22}{44}$$

$$\frac{27}{81}$$
  $\frac{10}{30}$ 

$$\frac{36}{60}$$
  $\frac{24}{40}$ 

$$\frac{20}{120}$$
  $\frac{6}{40}$ 

Gus says that the fractions  $\frac{6}{9}$  and  $\frac{10}{15}$  cannot be equal to each other because he keeps doubling the numbers starting from 9 or 15 but the two numbers never match. Is Gus right or wrong? Explain.