Machine Learning 2024 - Sheet 3.1 Block III: Optimization

Isabel Valera

Exercise 1: Quadratic Over Linear Function

4

Consider the quadratic-over-linear function given in equation 1.

i) Show the condition for which the function is convex

$$f(x,y) = \frac{x^2}{y} \tag{1}$$

Exercise 2: Lagrange Dual Problem

- 1. Consider the optimization problem in Eq. 2 with variable $x \in \mathbb{R}$ given in equation.
 - (a) Formulate the dual problem.
 - (b) What is the optimal solution for the dual or primal problem?
 - (c) Verify that the dual formulation is a convex minimization problem.

maximize
$$x + y$$

subject to $x^2 + y^2 = 1$ (2)

Exercise 3: Inequality constraint

- i) Express the dual problem of the primal problem given in 3 with $c \neq 0$ in terms of the conjugate f^* .
- ii) Explain why the dual problem you give is convex. We do not assume f is convex.

minimize
$$c^{\top}x$$

subject to $f(x) \le 0$ (3)

Hint: The conjugate of a function $f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$

Hint: The perspective of a function g(x,t) = tf(x/t)

Exercise 4: KKT conditions

- i) Derive the KKT conditions for the problem given in problem 4 with variable $X \in \mathbf{S}^n$ (n-dimensional symmetric) and domain \mathbf{S}^n_{++} (symmetric positive-definite). $y \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ are given with $s^T y = 1$.
- ii) Verify that the optimal solution is given by equation 5.

minimize
$$\mathbf{tr}X - \log \det X$$

subject to $Xs = y$ (4)

$$X^* = I + yy^T - \frac{1}{s^T s} ss^T \tag{5}$$

Exercise 5: Estimating covariance and mean

Exercise 7.4 in Boyd's book

We consider the problem of estimating the covariance matrix Σ and the mean μ of a Gaussian probability density function as given in equation 6 based on N independent samples $x_1, x_2, ..., x_N \in \mathbb{R}^n$.

- i) We first consider the estimation problem when there are no additional constrains on Σ and μ . Let $\hat{\mu}$ and $\hat{\Sigma}$ be the sample mean and covariance as defined in equations 7. Show that the log-likelihood function given in equation 8 can be expressed as in equation 9.
- ii) Use this expression to show that if $\hat{\Sigma} \succ 0$ the ML estimates of Σ and μ are unique and given by the sample covariance and sample mean.

$$p(\boldsymbol{x} \mid \boldsymbol{\Sigma}, \boldsymbol{\mu}) = (2\pi)^{-\frac{n}{2}} \det(\boldsymbol{\Sigma})^{\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
(6)

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x}_{k}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{k=1}^{N} (\boldsymbol{x} - \hat{\boldsymbol{\mu}}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}})^{\top}$$
(7)

$$\mathcal{L}(\mathbf{\Sigma}, \boldsymbol{\mu}) = -\frac{Nn}{2}\log(2\pi) - \frac{N}{2}\log\det\mathbf{\Sigma} - \frac{1}{2}\sum_{k=1}^{N}(\boldsymbol{x}_k - \boldsymbol{\mu})^{\top}\mathbf{\Sigma}^{-1}(\boldsymbol{x}_k - \boldsymbol{\mu})$$
(8)

$$\mathcal{L}(\mathbf{\Sigma}, \boldsymbol{\mu}) = \frac{N}{2} \left(-n \log(2\pi) - \log \det \mathbf{\Sigma} - \mathbf{tr}(\mathbf{\Sigma}^{-1} \hat{\mathbf{\Sigma}}) - (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^{\top} \mathbf{\Sigma}^{-1} (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}) \right)$$
(9)

Exercise 6: Estimating mean and variance

Consider a random variable $x \in \mathbb{R}$ with density p, which is normalized, i.e. has zero mean and unit variance. Consider a random variable $y = \frac{x+b}{a}$ obtained by an affine transformation of x, where a > 0. The random variable y has mean $\frac{b}{a}$ and variance $\frac{1}{a^2}$. As a and b vary over the non-negative real numbers \mathbb{R}_+ and the real numbers \mathbb{R} , respectively, we generate a family of densities obtained from p by scaling and shifting, uniquely parametrized by mean and variance.

- i) Show that if p is log-concave, then finding the ML estimate of a and b, given samples $y_1, ..., y_n$ of y is a convex problem.
- ii) As an example, work out an analytical solution for the ML estimates of a and b, assuming p is a normalized Laplacian density $p(x) = \exp(-2|x|)$.

Hint: Apply the rule of density transformation (change of variables) to obtain p_y .

Exercise 7: Robust linear classification

Consider the robust linear classification problem given in problem 10 where we seek an affine function $f(x) = \mathbf{w}^{\top} \mathbf{x} - b$ that separates the two sets of points $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ and $\{\mathbf{y}_1, ..., \mathbf{y}_M\}$. This means that $\mathbf{w}^{\top} \mathbf{x}_i - b > 0$ for i = 1, ..., N and $\mathbf{w}^{\top} \mathbf{y}_j - b < 0$ for j = 1, ..., M.

- i) Show that the optimal value t^* is positive if and only if the two sets of points can be linearly separated.
- ii) When the two sets of points can be linearly separated, show that the inequality $||\mathbf{w}||_2 \le 1$ is tight, i.e., we have $||\mathbf{w}^*||_2 = 1$ for the optimal \mathbf{w}^* .
- iii) Using the change of variables $\tilde{\mathbf{w}} = \frac{\mathbf{w}}{t}$, $\tilde{b} = \frac{b}{t}$, prove that problem 10 is equivalent to the quadratic program given in 11.

maximize
$$t$$

subject to
$$\mathbf{w}^{\top} \mathbf{x}_i - b \ge t, \ i = 1, ..., N$$

 $\mathbf{w}^{\top} \mathbf{y}_i - b \le -t, \ i = 1, ..., M$
 $||\mathbf{w}||_2 \le 1$ (10)

minimize
$$||\tilde{\mathbf{w}}||_2$$

subject to $\tilde{\mathbf{w}}^{\top} \mathbf{x}_i - \tilde{b} \ge 1, \ i = 1, ..., N$
 $\tilde{\mathbf{w}}^{\top} \mathbf{y}_i - \tilde{b} \le -1, \ i = 1, ..., M$ (11)

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.