XVIII. Nemzetközi Magyar Matematika Verseny

Gyula, 2009. március 12–16.

10. osztály

1. feladat: Egy háromszög belsejében felvett tetszőleges ponton át a háromszög oldalaival párhuzamosan egyeneseket húzunk. Ezek az egyenesek a háromszög területét 6 részre osztják. A keletkezett háromszögek területeit jelöljük t_1 , t_2 és t_3 -mal és az eredeti háromszög területét pedig T-vel. Bizonyítsuk be, hogy $\sqrt{T} = \sqrt{t_1} + \sqrt{t_2} + \sqrt{t_3}$!

Oláh György (Komárom)

Megoldás: Legegyszerűbben úgy jutunk célhoz, ha felhasználjuk azt az ismert tételt, mely szerint hasonló háromszögek területeinek négyzetgyökei úgy aránylanak egymáshoz, mint a megfelelő oldalak. Jelölje a_1 , a_2 , a_3 egy kiszemelt oldalból a megfelelő egyenesekkel kimetszett szakaszok hosszát. Ekkor

$$\sqrt{t_1} : \sqrt{T} = a_1 : (a_1 + a_2 + a_3)
\sqrt{t_2} : \sqrt{T} = a_2 : (a_1 + a_2 + a_3)
\sqrt{t_3} : \sqrt{T} = a_3 : (a_1 + a_2 + a_3)$$

Összeadva:

$$\frac{\sqrt{t_1}}{\sqrt{T}} + \frac{\sqrt{t_2}}{\sqrt{T}} + \frac{\sqrt{t_3}}{\sqrt{T}} = \frac{a_1 + a_2 + a_3}{a_1 + a_2 + a_3} = 1,$$

ahonnan

$$\sqrt{t_1} + \sqrt{t_2} + \sqrt{t_3} = \sqrt{T}.$$

2. feladat: Az f függvény értelmezési tartománya a 0-tól különböző valós számok halmaza. Az értelmezési tartomány minden x elemére teljesül az $f(x)+2f(\frac{1}{x})=3x$ összefüggés. Mely x valós számokra áll fenn az f(x)=f(-x) egyenlőség?

Kántor Sándorné (Debrecen)

Megoldás: Helyettesítsünk x helyére $\frac{1}{x}$ -et! Ekkor $f(\frac{1}{x}) = 3 \cdot \frac{1}{x} - 2f(x)$. Visszahelyettesítve az eredeti egyenletbe:

$$f(x) + 2(\frac{3}{x} - 2f(x)) = 3x,$$

amiből $-3f(x) + \frac{6}{x} = 3x$, azaz

$$f(x) = \frac{2-x^2}{x}, f(-x) = \frac{x^2-2}{x}.$$

A $\frac{2-x^2}{x} = \frac{x^2-2}{x}$ egyenlet megoldásai $x = \pm \sqrt{2}$, amik valóban megoldásak, és ebben az esetben fennáll az f(x) = f(-x) egyenlőség.

3. feladat Legyen $p \geq 3$ egy adott prímszám. Oldjuk meg az egész számok halmazán az

$$x^3 + y^3 = x^2y + xy^2 + p^2009$$

egyenletet!

Bencze Mihály (Brassó)

Megoldás:

$$x^{3} + y^{3} - x^{2} - xy^{2} = p^{2009} \Leftrightarrow (x - y)^{2}(x + y) = p^{2009}$$

Ha $x-y=\pm p^k$, akkor $x+y==p^{2009-2k}$, azaz

$$\begin{cases} x = & \frac{p^{2009-2k}+p^k}{2} \\ y = & \frac{p^{2009-2k}-p^k}{2} \end{cases} \quad \text{vagy} \quad \begin{cases} x = & \frac{p^{2009-2k}-p^k}{2} \\ y = & \frac{p^{2009-2k}+p^k}{2} \end{cases} \quad k \in \{0, 1, ..., 2009\}.$$

x, y egész, mivel $p^{2009-2k}$, p^k páratlan, így $2|p^{2009-2k}$

4. feladat: Oldjuk meg a pozitív vaqlós számok halmazán a következő egyenletrendszert!

$$\begin{cases} x+y+z=9\\ \frac{1}{x}+\frac{1}{y+1}+\frac{1}{z+3}=\frac{9}{13} \end{cases}$$

Kovács Béla (Szatmárnémeti)

Megoldás:

Az első egyenlet: x + y + 1 + z + 3 = 13 alakban írható. A két egyenletet összeszorozva, a számtani és a harmonikus középarányosok közötti egyenlőtlenség alapján:

$$9 = (x+y+1+z+3)(\frac{1}{x} + \frac{1}{y+1} + \frac{1}{z+3} \ge 9.$$

Egyenlőség csak egyenlő számok esetén lehet.

Következik: $x=y+1=z+3=\frac{13}{3}$. Megoldás: $(\frac{13}{3},\frac{10}{3},\frac{4}{3})$, ami az egyetlen pozitív megoldás.

5. feladat: Jelölje H az ABC háromszög magasságpontját, O pedig a köré írt körének középpontját. $Az\ A$ csúcsból a BC egyenesre bocsájtott merőleges talppontja rajta van az AC oldal felező merőlegesén. Határozzuk meg a $\frac{CH}{BO}$ arányt!

R. Sipos Elvira (Zenta)

Megoldás:

1. eset: Tegyük fel, hogy $\gamma < 90^{\circ}$. Legyen A' az A csúcs merőleges vetülete a BC oldalra, B_1 az AC oldal felezőpontja, C_1 pedig az AB oldal felezőpontja. A feladat feltételei alapján AA'C háromszög derékszögű, miközben A' illeszkedik az ACszakasz szimmetriatengelyére, vagyis egyenlőszárú is egyben. Tehát $BCA \angle = 45^{\circ}$. Ezért a neki megfelelő középponti szög $BOA \angle = 90^{\circ}$.

Az AOB háromszög derékszögű és egyenlő szárő (AO = BO = R: a körülírt kör sugara), vagyis $BOC_1 \angle = 45^{\circ}$, azaz C_1O és BO az egyenlő szárú derékszögű háromszög befogója és átfogója, azaz $\sqrt{2}CO_1 = OB$.

2. eset: Ha $\gamma = 90^{\circ}$, akkor hasonlóan az előzőkhöz $\gamma = 135^{\circ}$, így is $BOA \angle = 90^{\circ}$, tehát $BOC_1 \angle = 90^{\circ}$ 45° , így $BO = \sqrt{2} \cdot OC_1$ fennáll akkor is.

Ha O-ból a CB oldalra merőlegest bocsájtunk és a talppontját C_2 -vel jelöljük, akkor a $C_1OC_2\triangle$ hasonló a $HCA\triangle$ -höz, a hasonlósági arány 1:2, így $CH=2OC_1$, vagyis $\frac{CH}{BO}=2\cdot\frac{C_1O}{BO}=2\cdot\frac{1}{\sqrt{2}}=\sqrt{2}$

6. feladat: Legalább hány számot kell kihúznunk az 1,2,3,...,2009 számok közül ahhoz, hogy a megmaradó számok egyike se legyen két másik, tőle különböző megmaradó szám szorzata?

Katz Sándor (Bonyhád)

Megoldás:

I.: A 2, 3, ..., 44 számokat elegendő kihúzni.

 $45 \cdot 46 = 2070$, ezért a megmaradók szorzata nem lehet a megmaradók között.

II.: 43-náől kevesebb szám nem elég. Képezzük a következő számhármast:

$$(2, 87, 2 \cdot 87), (3, 86, 3 \cdot 86), ..., (44, 45, 44 \cdot 45),$$

ahol45,46,..87a legkisebb43db egytől különböző megmaradó szám.

Ezek mind különböző számok, mert az első és második elemek növekvő, ill. csökkenő sorozatot alkoznak. A harmadik elemek is növekvő sorozatot adnak, mert 44 < 45 és ha x < y, akkor

$$(x-1)(y-1) < xy$$
$$xy - y + x - 1 < xy$$
$$x < y + 1$$

valóban igaz.

Ha csak 43-nál kevesebbet húzok ki, akkor valamelyik háőrmas együtt a megmaradók közt lest olyan 2 szám, melyek szorzata is a megmaradók közt lesz.

Tehát legalább 43 számot ki kell húzni.

 $\mathbf{Megjegyz\acute{e}s:}\ 1,2,...,43$ számokat kihúzva a $44\cdot 45=1980$ miatt 44,45,1980 is a megmaradók közt lenne.