DDOS BASICS

Yue Duan
Illinois Institute of Technology

DENIAL OF SERVICE

- Denial of Service (DoS)
 - an action that prevents or impairs the authorized use of networks, systems, or applications by exhausting resources
- Attacks may be directed against
 - network bandwidth
 - system resources (CPU, memory, disk space ...)
 - application resources
- DoS is an established and continuing threat on the Internet

DENIAL OF SERVICE

Figure 1. Cisco's analysis of DDoS total attack history and predictions.

DENIAL OF SERVICE

REAL-WORLD ATTACK

The world's largest DDoS attack took GitHub offline for fewer than 10 minutes

Jon Russell @jonrussell / 4:07 PM GMT+8 • March 2, 2018

REAL-WORLD ATTACK

- According to the <u>report</u>, attackers hijacked something called "memcaching"
 - a distributed memory system known for high-performance and demand
- Amplification factor is up to 51,000
 - o for each byte sent by the attacker, up to 51KB is sent toward the target
- Results:
 - o offline for five minutes between 17:21 to 17:26 UTC
 - o intermittent connectivity between 17:26 to 17:30 UTC

REAL-WORLD ATTACK

DENIAL-OF-SERVICE

- Basic case
 - Use simple flooding ping
 - Higher capacity link floods lower capacity link
 - Problem: Easily traceable and preventable
- Advanced case: Distributed DOS (DDOS)
 - Attacker controls multiple agents
 - agents launch attacks to the victim server

DENIAL-OF-SERVICE

ADDRESS SPOOFING

- Senders can put any source address in packets
 - Can directly attack target in a less traceable fashion
 - Can be used to send unwelcome return traffic to the spoofed address
- Routers can catch some spoofers
 - Reverse path verification
 - Egress filtering
 - control the traffic that is attempting to leave the network

ADDRESS SPOOFING

SMURF DOS ATTACK

- In a standard scenario
 - o host A pings host B ===> automatic response from B to A
- In an IP broadcast network
 - an ping request is sent to every host, prompting a response from each of the recipients
- Smurf attacks
 - perpetrators take advantage of this function to amplify their attack traffic

SMURF DOS ATTACK

- Smurf malware is used to generate a **fake Echo request** containing a **spoofed source IP** (target server).
- The request is sent to an intermediate IP broadcast network.
- The request is transmitted to all of the network hosts on the network.
- Each host sends an ICMP response to the spoofed source address.
- With enough ICMP responses forwarded, the target server is brought down.

SMURF DOS ATTACK

DDOS TAXONOMY

- victim type
- degree of automation
- agent Recruitment Strategies
- exploited Weakness
- Source Address Validity
- etc

DDOS TAXONOMY: VICTIM TYPE

- Application layer attacks (layer 7 of OSI model)
 - overload a server by sending a large number of requests requiring resource-intensive handling and processing
 - HTTP floods, slow attacks (e.g., Slowloris or RUDY) and DNS query flood attacks
- Network layer attacks (layer 3-4)
 - UDP flood, SYN flood, NTP amplification and DNS amplification attacks, and more
 - commonly measured in gigabits per second (Gbps) or packets per second (PPS)

DDOS TAXONOMY: DEGREE OF AUTOMATION

- Manual
 - attacker manually scans, breaks in, installs attack code, then directs the attack
 - Used by early DDoS attacks only
- Fully automated
 - exploit/recruitment phase and attack phase both automated
 - everything is preprogrammed in advance
 - o no need for further communication between master & agent
 - minimal exposure for attacker
 - inflexible
 - attack specification is hard coded

DDOS TAXONOMY: DEGREE OF AUTOMATION

- Full automated
 - hybrid of auto/semi-auto
 - fully programmed in advance for auto, but leave a backdoor for future modification
- Semi-Automated
 - recruitment phase automated, attacks manually initiated
 - requires communication between master & agents
 - direct communication need to know each other's IP address
 - indirect communication use some pre-existing legitimate communication channel

- Host scanning strategy
 - The goal is to choose addresses of potentially vulnerable machines to scan.
 - Random Scanning
 - high traffic volume of internetwork traffic
 - may aid detection
 - increase likelihood of duplicate scans
 - Hit List
 - splits off pieces of the list to give to newly recruited machines
 - can be very fast and efficient
 - no collisions
 - a large list will cause more traffic

- Host scanning strategy (cont.)
 - Permutation Scanning
 - if an agent sees an already infected host, it chooses a new random starting point
 - if an agent sees a certain threshold number of infected hosts, it becomes dormant
 - Signpost Scanning
 - uses communication patterns or data found on newly infected hosts to select next targets
 - any email worm that spreads using address book of infected host
 - hard to detect based on traffic patterns

- Vulnerability Scanning strategy
 - go through chosen list of host addresses and probe for vulnerabilities
 - Horizontal
 - looks for **specific** port/vulnerability against a group of IPs
 - Vertical
 - look for multiple ports/vulnerabilities on the **same host**
 - Coordinated
 - scan multiple machines on the same subnet for a set of vulnerabilities
 - Stealthy
 - any of the above, but do it slowly to avoid detection

- Attack code propagation
 - Central Server (e.g., lion worm)
 - all newly recruited agents contact a central server to get attack code
 - single point of failure
 - can be discovered and shut down
 - high load at central server may limit efficiency or enable detection
 - Back-chaining (e.g., Ramen, Morris worms)
 - attack code downloaded from machine that was used to exploit the new host
 - Autonomous (e.g., email worms)
 - attack code downloaded concurrently w/exploit

DDOS TAXONOMY: EXPLOITED WEAKNESS

- Semantic (e.g., TCP SYN)
 - exploits a specific feature or bug of a protocol or application on the victim in order to consume excessive amounts of its resources
 - can potentially be mitigated by deploying modified protocols/applications

DDOS TAXONOMY: EXPLOITED WEAKNESS

- Brute Force
 - intermediate network has more resources than victim
 - Example: control google server to attack IIT server
 - deliver higher volume of packets than victim can handle
 - overwhelm victim resources using seemingly legitimate packets
 - hard to filter without also harming legitimate traffic
 - requires higher volume of attack packets
 - modifying protocols to counter semantic attacks raises the bar for the attacker

TCP

- Transmission Control Protocol (TCP)
 - Guarantees reliable, ordered stream of traffic -Such guarantees impose overhead
 - A fair amount of state is required on both ends
- Most Internet protocols use TCP
 - o e.g., HTTP, FTP, SSH

TCP

• TCP header

TCP

• Three way handshake

SYN FLOOD

- Attacker ===> repeated SYN packets to every port on the targeted server, often using a fake IP address
- The server ===> respond to each attempt with a SYN-ACK packet from each open port.
- Attacker
 - either does not send the expected ACK
 - or—if the IP address is spoofed—never receives the SYN-ACK in the first place
- The server
 - leaves an increasingly large number of connections half-open

SYN FLOOD

DDOS TAXONOMY: SOURCE ADDRESS VALIDITY

- Address Routability
 - routable source address attacks
 - take over the IP address of another machine
 - perform a reflector attack (e.g., smurf attack) on the machine whose address was hijacked
 - non-routable source address attacks
 - can belong to a reserved set of addresses (such as 192.168.0.0/16)
 - be part of an assigned but not used address space of some network

DDOS TAXONOMY: SOURCE ADDRESS VALIDITY

- Spoofing Technique (cont.)
 - Random Spoofed Source Address
 - easiest method
 - can be prevented by ingress filtering and route-based filtering
 - Subnet Spoofed Source Address
 - spoof a random address from the address space assigned to the agent machine's subnet
 - En Route Spoofed Source Address
 - spoof the address of a machine or subnet that lies along the path from the agent machine to the victim

DDOS TAXONOMY

Figure 1: Taxonomy of DDoS Attack Mechanisms

THANK YOU! QUESTIONS?