

the slanting lines is in a range of +10 and -10 degrees around a preferred angle α , and the preferred angle α is equal to:

A3
cont.

$$\alpha = \arctan\left(\frac{P_r}{n \cdot P_c}\right)$$

wherein n is the number of color sections in a pixel, P_r is the pitch of the pixels in the row direction, and P_c is the pitch of the pixels in the column direction.

6. (amended) An electroluminescent color display panel as claimed in claim 1, wherein a color section comprises a layer of an organic electroluminescent material.

A3
B
C
D

8. (amended) An electroluminescent color display panel as claimed in claim 1, wherein a color section comprises a layer of a phosphor material which is excited by a plasma discharge.

A4
B
C
D

11. (amended) A method as claimed in claim 9, wherein the acute angle between the first or the second electrode strip and a slanting line is in a range of +10 and -10 degrees around a preferred angle α , and the preferred angle α is equal to:

$$\alpha = \arctan\left(\frac{P_r}{n \cdot P_c}\right)$$