CS 305 Lab Tutorial Lab10 Router

Dept. Computer Science and Engineering Southern University of Science and Technology

Topic

- Packet Tracer
 - CLI(Command Line Interface) on network device
- Router
 - DHCP Server
 - Gateway
 - Route-table, Route aggregation
- Practice
 - Build network on simulator
 - Configure and test the network

Packet Tracer: CLI on Network device(1)

While doing the configurations by using **GUI**(graphic user interface), and the corresponding **CLI** commands will be generated on bellowing.

Router>
Router#
Router(config)#:
Router(config-if)#:

Packet Tracer: CLI on Network device(2)

- We can make all the configurations of Router by using CLI commands.
- Three kinds of view(user, system, function): each supports different operations, and each view has different command prompt.

Router>
Router#
Router(config)#:
Router(config-if)#:

- From user view to systemview, using command "enable",
- From system view to function view, using function name or object name as command, such as "interface giga 0/0"

Packet Tracer: CLI on Network device(3)

- Frequently used commands
 - show //display the info (ip routing table, interface, mac-address table)
 - exit, end //back to upper layer, back to root layer
 - ?, Tab // help to find the rest part of command
 - no *** //to cancel the following command ***, such as: using "route rip" to config rip while using "no route rip" to cancel the setting

DHCP Server on the Router (1)

Step1. Up the interface of the Router which connect with PC.

Green icons indicate reachable

Tips:

(1) The state of interface of router is down by default, we can use "**no shutdown**" command to up the interface.

```
Ra(config-if) #no shutdown
```

(2) As soon as the interface is enabled, DHCP server is enabled by default.

DHCP Server on the Router (2)

Step2. Configure the interface's IP address and subnet mask

DHCP Server on the Router (3)

Step3. Make and configure the DHCP pool

- **3-1)** Configure the **default- router** with the IP address of the interface
- **3-2)** Configure the **network** with the same sub-net ID as default-router

DHCP Server on the Router (tips)

- Some CLI commands about DHCP configuration.
- The DHCP commands should be used in DHCP conf view.

```
Router(config) # ip dhcp pool dhcpppp12
Router(dhcp-config) # network 192.168.2.0 255.255.255.0
```

Command	Function
show ip dhcp pool	Display information about DHCP address pool
show ip interface	Display information about interface
service dhcp	Launch DHCP server
ip dhcp pool	Configure DHCP address pool
network DHCP	Configure IP and network of server
default-router	Default gateway

Practise 10.1

1. Practice on Packet Tracer about DHCP server on the Router

- Create a network with a Router and two PCs
 - tips: make the configuration of interface visible
- Configure the Router and the PCS
 - configure the interface of Router with IP address and netmask, 'up' the interface
 - configure the IP DHCP pool with name, default-gateway and subnet
 - configure the PCs as DHCP client
 - connect the Router with two PCs
- Test the DHCP service
 - test if two PCs could communicate with the Router
 - test if the two PCs could communicate with each other

Subnet

Q1. What's the subnet mask of 192.168.1.1/24?

Q2: How many sub-net in the network? what are their net-id?

Q3: Does 192.168.1.1/24 and 192.168.1.11/24 belongs to the same sub-net?

Q4: Does 192.168.2.22/24 and 192.168.1.11/24 belongs to the same sub-net?

Q5: How to make PC7 reachable from PC6?

Subnet

Q1. What's the subnet mask of 192.168.1.1/24?
A. 255.255.255.0

Q2: How many sub-net in the network? what are their net-id? A: 2

Q3: Does 192.168.1.1/24 and 192.168.1.11/24 belongs to the same sub-net?

A: Yes

Q4: Does 192.168.2.22/24 and 192.168.1.11/24 belongs to the same sub-net?

A: NO

Q5: How to make PC7 reachable from PC6?

A: using Router to forward the IP packets from one subnet to the other subnet.

Default Gateway

Q: What are the right configs to make PC7 reachable from PC6?

Route-Table: Connected Route(1)

- Command "**show ip route**" is used on router to find its route-table.
- "connected route" is generated by defalut while the IP address of interface is assigned.
- Q: What's the function of route-table?

Route-Table: Connected Route(2)

Ra#show ip route

of Science and Technology

Q1:Is fa0/1 interface of Rb reachable from PCb? Q2:Is fa0/1 interface of Ra reachable from PCb? Q3:Is fa0/0 interface of Ra reachable from PCb? Q4:Is PCb reachable from PCa? Q5:How to make them reachable?

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is directly connected, FastEthernet0/0
                                                                Rb#show ip route
     192.168.2.0/24 is directly connected, FastEthernet0/1
                                                                Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
                                                                       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
Ra#
                                                                       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
                                                                       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
                                                                       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
                                                                       * - candidate default, U - per-user static route, o - ODR
                                                                       P - periodic downloaded static route
                                                                Gateway of last resort is not set
                                                                     192.168.2.0/24 is directly connected, FastEthernet0/1
                                                                     192.168.3.0/24 is directly connected, FastEthernet0/0
                                                                Rb#
```

Route-Table: Static Route(1)

- Command "ip route x.x.x.x m.m.m.m
 i.i.i.i" is used to add static route in the
 router.
 - "x.x.x.x" is the subnet id
 - "m.m.m" is the subnet mask
 - "i.i.i" is the IP address of nexthop while forward IP packet.

Q. After add static route to Ra, is PCa reachable from PCb?

Route-Table: Static Route(2)

Is PCa reachable from PCb now?

Rb#

Route aggregation

- Why Route aggregation?
 - smaller route-table
 - faster forword
 - more stable
 - **—** ...
- How to make 4 subnets to be aggregated as 1 subnet?
 - 172.16.<mark>129</mark>.0/24
 - 172.16.<mark>130</mark>.0/24
 - 172.16.<mark>132</mark>.0/24
 - 172.16.133.0/24

Route aggregation

How to make 4 subnets to be aggregated as 1 subnet?

- 172.16.<mark>129</mark>.0/24
- 172.16.<mark>130</mark>.0/24
- 172.16.<mark>132</mark>.0/24
- 172.16.<mark>133</mark>.0/24

Step1: find the Maxim size of same continuous bit from highest bit to lowest bit among the 4

subnets IDs: **21**bits (**172.16.1000_0**)

- ① 172.16.<mark>129</mark>.0/24
 - 172.16.1000_0<mark>001</mark>.0 /24
- 2 172.16.130.0/24
 - 172.16.1000_0<mark>010</mark>.0 / 24
- **③** 172.16.132.0/24
 - 172.16.1000_0100.0 / 24
- **4** 172.16.**133**.0/24
 - 172.16.1000_0101.0 / 24

Step2: using the bits get from step1 as hig bits of address, pad it with 0s to make a new 32bits subnet ID: $(172.16.1000_0000.0)$ 172.168.128.0 / 21. Now the 4 subnets are aggregated to be 1 subnet: 172.168.128.0 / 21.

Practise 10.2(1)

Build the network:

- 1 2 switches
 - there is no configuration on switches in this practice.
- 2 3 routers
 - using PT Route which has more than two network interfaces.
 - for the middle one, connect its fast-ethernet interface with switches; conncet its serial interface with other routers.
 - configurations should include: interface, rout-table, make route-table as smaller as possible
- ③ 6 **PCs**
 - configurations include: static IP address, subnet Mask and ...

Finish the configuration, make all the PCs in the network reachable from each other.

Practise 10.2(2)

- Step1: Finish the configuration to make all the PCs are reachable from each other except PC0:
 - How many subnet are there in this network, what are their net-id?
 - what's the function of gateway in the network? show the configurations about gateway.
 - what's the function of route-table? how many types of routing items are there in the route-table?
- Step2 : Implement the route aggregation in this practice.
 - Is there any possible to make route aggregation? which subnet could be aggregated, where should the route aggregation be configured?

- Step3: configure the PC0 and R3 to make PC0 reachable in the network(option):
 - after aggregation on Step2, is it possible to make PC0 reachable from other PCs while not changing the route-table which be configured with route aggregation?

