Due at the beginning of class on 11 March 2025

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Mal23, Sections 2.4 and 2.5].

(1) Consider the commuting square of spectra

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{g} & D
\end{array}$$

- (a) Prove that this square is a homotopy pushout if and only if the induced map of homotopy cofibers $cof(f) \rightarrow cof(g)$ is a stable equivalence.
- (b) Use this fact to prove that a commuting square of spectra is a homotopy pullback if and only if it is a homotopy pushout. You may use the fact that a sequence of spectra is a cofiber sequence if and only if it is a fiber sequence.
- (2) An *semiadditive category* is a category \mathcal{A} with a zero object 0 that admits all finite products and coproducts, such that the canonical morphism $X \coprod Y \to X \times Y$ is an isomorphism.
 - (a) Show that ho(Sp) is a semiadditive category.

An *additive functor* between semiadditive categories is a functor that preserves the zero object and preserves finite products/coproducts.

- (b) Is the Eilenberg–MacLane spectrum functor $H: \mathcal{A}b \to ho(\mathcal{S}p)$ an additive functor?
- (3) Let $k \ge 0$. Define the *shift functor* $sh_k : Sp \to Sp$ by $sh_k(X)_n = X_{k+n}$.
 - (a) Prove that there is a natural stable equivalence $\Sigma \simeq \mathrm{sh}_1$.
 - (b) Define functors sh_k for k < 0. Prove that $sh_{-1} \simeq \Omega$.

REFERENCES

[Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.