Transformada de Coseno Discreta Aplicación a compresión de imágenes

Introducción al Procesamiento de Imágenes

Departamento de Computación - FCEyN - UBA

8 de noviembre de 2017

Idea intuitiva (continua)

▶ Expresar una función real f en la base $\{1, \cos(x), \cos(2x), \ldots\}$

En el plano discreto...

- Es un cambio de base
- La base usada se compone de cosenos discretizados a distintas frecuencias

Derivación

Aprovechando paridad

▶ El coseno es par alrededor de π : $\cos(\pi + x) = \cos(\pi - x)$

Dado x_i datos $(i=0,\dots,n-1)$, generamos una versión simétrica de 2n valores: $x_n=x_{n-1}$ $x_{n+1}=x_{n-2}$ \vdots

 $x_{2n-1} = x_0$

Aprovechando paridad

- ▶ Duplico la cantidad de puntos a 2n (ahora: $x_0, x_1, \ldots, x_{2n-1}$)
- Me ubico en intervalo $[0,2\pi]$
- ▶ Divido en intervalos de longitud π/n
- ▶ Ubico los puntos en $(t_0,x_0),(t_1,x_1),\dots,(t_{2n-1},x_{2n-1})$ donde $t_0=\frac{\pi}{2n}$ $t_1=t_0+\frac{\pi}{n}=\frac{\pi}{2n}+\frac{\pi}{n}=(1+\frac{1}{2})\frac{\pi}{n}$ \vdots $t_i=(i+\frac{1}{2})\frac{\pi}{n}$
- \blacktriangleright En puntos t_i discretizo la familia del coseno

Aprovechando paridad

▶ Utilizando estos puntos genero los vectores de mi base

$$w^{(0)} = \begin{pmatrix} \cos(0 \cdot t_0) \\ \cos(0 \cdot t_1) \\ \vdots \\ \cos(0 \cdot t_{2n-1}) \end{pmatrix}, w^{(1)} = \begin{pmatrix} \cos(1 \cdot t_0) \\ \cos(1 \cdot t_1) \\ \vdots \\ \cos(1 \cdot t_{2n-1}) \end{pmatrix}, \dots$$

$$w^{(n-1)} = \begin{pmatrix} \cos((n-1) \cdot t_0) \\ \cos((n-1) \cdot t_1) \\ \vdots \\ \cos((n-1) \cdot t_{2n-1}) \end{pmatrix}$$

Derivación (n = 8)

Derivación (n = 8)

Derivación

Propiedad

▶ El conjunto de vectores $\mathcal{W} = \{w^{(0)}, w^{(1)}, \dots, w^{(n-1)}\}$ es ortogonal.

$$w^{(k)^{t}}w^{(j)} = \sum_{i=0}^{2n-1} \cos(k \cdot t_{i}) \cos(j \cdot t_{i}) = \begin{cases} 0 & \text{si } k \neq j \\ n & \text{si } k = j \neq 0 \\ 2n & \text{si } k = j = 0 \end{cases}$$

Propiedad

▶ El conjunto de vectores $\mathcal{W} = \{w^{(0)}, w^{(1)}, \dots, w^{(n-1)}\}$ es ortogonal.

$$w^{(k)t}w^{(j)} = \sum_{i=0}^{2n-1} \cos(k \cdot t_i) \cos(j \cdot t_i) = \begin{cases} 0 & \text{si } k \neq j \\ n & \text{si } k = j \neq 0 \\ 2n & \text{si } k = j = 0 \end{cases}$$

Luego,

$$||w^{(0)}||_2 = \sqrt{w^{(0)}}^t w^{(0)} = \sqrt{2n}$$
$$||w^{(k)}||_2 = \sqrt{w^{(k)}}^t w^{(k)} = \sqrt{n}, \quad \text{si } k \neq 0$$

Derivación

Propiedad

▶ El conjunto de vectores $W = \{w^{(0)}, \dots, w^{(n-1)}\}$ es ortogonal.

$$||w^{(0)}||_2 = \sqrt{w^{(0)}}^t w^{(0)} = \sqrt{2n}$$
$$||w^{(k)}||_2 = \sqrt{w^{(k)}}^t w^{(k)} = \sqrt{n}, \quad \text{si } k \neq 0$$

Para que todos tengan la misma norma:

▶ Defino
$$v^{(k)} = C(k) \cdot w^{(k)}$$
, con $C(k) = \begin{cases} \sqrt{1/n} & \text{si } k = 0 \\ \sqrt{2/n} & \text{si } k \neq 0 \end{cases}$

$$||v^{(k)}||_2 = ||C(k) \cdot w^{(k)}||_2 = |C(k)| ||w^{(k)}||_2 = \sqrt{2}$$

DCT

Derivación

Objetivo

- ▶ Sea $\mathbf{x} = [x_0, x_1, \dots, x_{2n-1}]^t$ nuestro vector (o señal) a transformar.
- ▶ Queremos escribir a **x** como combinación lineal de los n vectores del conjunto $\mathcal{V} = \{v^{(0)}, \dots, v^{(n-1)}\}$:

$$\mathbf{x} = \sum_{k=0}^{n-1} d_k \, v^{(k)}$$

• ¿Cuánto valen las coordenadas d_k ?

Derivación

Hallando los coeficientes d_k .

▶ Consideremos un elemento $v^{(j)}$ de \mathcal{V} , con $0 \le i \le n$.

$$\mathbf{x}^{t} v^{(j)} = \left(\sum_{k=0}^{n-1} d_{k} v^{(k)}\right)^{t} v^{(j)} = \sum_{k=0}^{n-1} d_{k} \underbrace{v^{(k)}}_{\substack{0 \ (\text{si } k \neq j)}}^{t} = d_{j} v^{(j)} v^{(j)} = 2d_{j}$$

$$\Rightarrow d_{j} = \frac{1}{2} \mathbf{x}^{t} v^{(j)}$$

DCT

Hallando los coeficientes d_k

$$\Rightarrow d_j = \frac{1}{2} \mathbf{x}^t v^{(j)} = \frac{1}{2} \sum_{i=0}^{2n-1} x_i v_i^{(j)} = \frac{1}{2} [x_0 v_0^{(j)} + \dots + x_{2n-1} v_{2n-1}^{(j)}]$$

Pero recordemos que:

$$x_n = x_{n-1}, x_{n+1} = x_{n-2}, \dots, x_{2n-1} = x_0.$$

► También (coseno par):

$$v_n^{(j)} = v_{n-1}^{(j)}, v_{n+1}^{(j)} = v_{n-2}^{(j)}, \dots, v_{2n-1}^{(j)} = v_0^{(j)}.$$

$$\Rightarrow d_j = \frac{1}{2} \sum_{i=0}^{2n-1} x_i v_i^{(j)} = \frac{1}{2} \left(2 \sum_{i=0}^{n-1} x_i v_i^{(j)} \right) = \left[\sum_{i=0}^{n-1} x_i \cdot C(j) \cdot \cos(j \cdot t_i) \right]$$

Extensión a 2D

Dada una matriz $B \in \mathbb{R}^{n \times n}$, podemos extender fácilmente la transformada DCT a señales de dos dimensiones. Para ello, aplicamos la transformación primero por filas y luego por columnas.

DCT