Hamiltonian Monte Carlo

Dr. Jarad Niemi

Iowa State University

September 4, 2017

Parameter augmentation

Suppose we are interested in sampling from a posterior distribution for $\theta \in \mathbb{R}^d$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
.

Now augment θ with moment variable $\omega \sim N_d(0,D)$ independent of $\theta|y$ such that

$$p(\theta|y) = \int p(\theta|\omega, y)p(\omega)d\omega = \int p(\theta|y)p(\omega)d\omega$$

To compare with Neal (2010), we have $q = \theta$, $p = \omega$,

$$U(\theta) = -\log[p(y|\theta)p(\theta)] = -\log p(\theta|y) - \log p(\theta),$$

and

$$K(\omega) = -\log p(\omega).$$

Hamiltonian Monte Carlo algorithm

Set tuning parameters

- L: the number of steps
- e: stepsize
- $D = \{d_i\}$: covariance matrix for ω

Let $\theta^{(i)}$ be the current value of the parameter θ . The leap-frog Hamiltonian Monte Carlo algorithm is

- 1. Sample $\omega \sim N_d(0, D)$.
- 2. Simulate Hamiltonian dynamics on location $\theta^{(i)}$ and momentum ω via the leapfrog method (or any reversible method that preserves volume). Call these updated values θ^* and $-\omega^*$.
- 3. Set $\theta^{(i+1)} = \theta^*$ with probability $\min\{1, \rho(\theta^{(i)}, \theta^*)\}$ where

$$\rho(\theta^{(i)}, \theta^*) = \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})} = \frac{p(y|\theta^*)p(\theta^*)}{p(y|\theta^{(i)})p(\theta^{(i)})} \frac{N_d(\omega^*; 0, D)}{N_d(\omega^{(i)}; 0, D)}$$

otherwise set $\theta^{(i+1)} = \theta^{(i)}$.

Leap-frog simulation of Hamiltonian dynamics

Given a current location $\theta(0)$ and momentum $\omega(0)$ at time 0, the leap-frog method can be used to approximate simulating Hamiltonian dynamics up to time Le using a series of L steps each of time e.

The algorithm is

- 1. For $\ell = 1, ..., L$,
 - a. For $i=1,\ldots,d$, $\omega_i\left(\left[\ell-\frac{1}{2}\right]e\right)=\omega_i(\left[\ell-1\right]e)-\frac{e}{2}\frac{\partial U}{\partial \theta_i}(\theta(\left[\ell-1\right]e))$
 - b. For $i=1,\ldots,d$, $\theta_i(\ell e)=\theta_i([\ell-1]e)+e^{\frac{\omega_i\left(\left[\ell-\frac{1}{2}\right]e\right)}{d}}$
 - c. For $i=1,\ldots,d$, $\omega_i(\ell e)=\omega_i\left(\left[\ell-\frac{1}{2}\right]e\right)-\frac{e}{2}\frac{\partial\dot{U}}{\partial\theta_i}(\theta(\ell e))$

where θ_i and ω_i are the i^{th} element of the location and momentum, respectively.

Leap-frog simulator

```
leap_frog = function(U, grad_U, e, L, theta, omega) {
  omega = omega - e/2 * grad_U(theta)

  for (1 in 1:L) {
    theta = theta + e * omega
    if (1<L) omega = omega - e * grad_U(theta)
  }
  omega = omega - e/2 * grad_U(theta)
  return(list(theta=theta,omega=omega))
}</pre>
```

Leap-frog simulator

Reversibility

A reversible simulation means that

- if you simulate from (θ, ω) to (θ', ω') for some step size e and number of steps L then
- if you simulate from (θ', ω') for some step size e and number of steps L, you will end up at (θ, ω) .

If we use q to denote our simulation "density", then reversibility means

$$q(\theta', \omega' | \theta, \omega) = q(\theta, \omega | \theta', \omega')$$

and thus in the Metropolis-Hastings calculation, the proposal is symmetric. In order to ensure reversibility of our proposal, we need to negate momentum after we complete the leap-frog simulation, but so long as $p(\omega) = p(-\omega)$ this will not affect our acceptance probability.

Leap-frog simulator

Volume preserving results in perfect acceptance

Recall that we accept with probability $\min\{1, \rho(\theta^{(i)}, \theta^*)\}$ where

$$\rho(\theta^{(i)}, \theta^*) = \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})}$$

Volume is preserved if

$$p(\theta^{(i)}|y)p(\omega^{(i)}) = p(\theta^*|y)p(\omega^*) \implies \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})} = 1$$

This will only be the case if the simulation is perfect! But we have discretization error. The acceptance probability accounts for this error.

```
HMC_neal = function(U, grad_U, epsilon, L, current_q) {
 q = current_q
 p = rnorm(length(q),0,1)
 current_p = p
 p = p-epsilon*grad_U(q)/2
 for (i in 1:L) {
   q = q+epsilon*p
   if (i!=L) p = p -epsilon * grad_U(q)
 p = p-epsilon * grad_U(q)/2
 p = -p
 current_U = U(current_q)
 current_K = sum(current_p^2)/2
 proposed_U = U(q)
 proposed_K = sum(p^2)/2
 if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))</pre>
   return(q)
 else {
   return(current_q)
```

```
theta = HMC(1e4, function(x) -x^2/2, function(x) -x, list(e=1,L=1), list(theta=0))
hist(theta, freq=F, 100)
curve(dnorm, add=TRUE, col='red', lwd=2)
```


Tuning parameters

There are three tuning parameters:

- e: step size
- L: number of steps
- D: covariance matrix for momentum

Let $\Sigma = V(\theta|y)$, then an optimal normal distribution for ω is $N(0, \Sigma^{-1})$. Typically, we do not know Σ , but we can estimate it using posterior samples. We can update this estimate throughout burn-in (or warm-up).

Effect of

```
n_reps = 1e4
d = expand.grid(e=10^seq(-3,0,by=1), L=10^seq(0,2))
r = ddply(d, .(e,L), function(xx) {
    data.frame(
    iteration = 1:n_reps,
        theta = HMC(n_reps, function(x) -x^2/2, function(x) -x, list(e=xx$e,L=xx$L), list(theta=0)))
})
```


0 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000

Random-walk vs HMC

https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Summary

Hamiltonian Monte Carlo (HMC) is a Metropolis-Hastings method using parameter augmentation and a sophisticated proposal distribution based on Hamiltonian dynamics such that

- the acceptance probability can be kept near 1
- while still efficiently exploring the posterior.

HMC still requires us to set tuning parameters

- e: step size
- L: number of steps
- D: covariance matrix for momentum

and can only be run in models with continuous parameters in \mathbb{R}^d (or transformed to \mathbb{R}^d).