CHEM 191

Module 1 Chemical Reactions in Aqueous Solution

Lecture 1

Stoichiometry

Brown et al Chapter 3, 4.5

Module 1 Lecture 1

Learning objectives

- Understand the concept of the mole
- Write BALANCED chemical equations

 \star Successfully carry out calculations using $n = \frac{m}{M}$ and $c = \frac{n}{V}$

Understand the concept of a Limiting Reactant

Stoichiometry "Chemical Arithmetic"

- Stoichiometry is concerned with the relative amounts of reactants and products in a chemical reaction. The word is derived from the Greek for 'element' and 'to measure'
- It allows us to weigh bulk quantities of reactants and products in chemical reactions, rather than having to weigh individual atoms and molecules.

3

Chemical equations

- A chemical equation tells us about the ratio in which the reactants in a chemical reaction react to give products.
- It is concerned with numbers
- For example, the equation

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

tells us that 1 molecule of nitrogen will react with 3 molecules of hydrogen to give 2 molecules of ammonia.

- Chemical equations MUST be balanced.
- But we want to deal with chemical reactions on a large scale, not atoms and molecules.

,

The mole

- The mole (abbreviation mol) is the SI unit of the amount of substance.
- Defined as "the amount of substance that contains the same number of specified entities as there are atoms in exactly 12 g of the carbon isotope ¹²C"
- There are 6.022×10^{23} atoms in exactly 12 g of the carbon isotope 12 C. Therefore, 1 mole of anything contains 6.022×10^{23} entities.

Lorenzo Romano Amedo Carlo Avogadro Count of Quaregna and Cerreto

5

The mole

The *International Avogadro Project* with the aid of a single crystal of highly enriched ²⁸Si, has measured the Avogadro constant more accurately than ever before.

Avogadro's constant = $6.02214078(18) \times 10^{23} \text{ mol}^{-1}$

The redefinition of the kilogram (May 2019) allows this constant to be defined exactly.

Lorenzo Romano Amedo Carlo Avogadro Count of Quaregna and Cerreto

The mole

• Mole is the chemists "dozen"

- One dozen eggs and one dozen people are 12 things which have different weights
- As chemists, we are interested in the mass of 1 mole of a particular element or compound.

7

All 1 mole of the substance, but different masses

Molar mass

- Molar mass (*M*) is the mass of 1 mole of a specified entity.
- It is defined in terms of mass (m) and amount of substance (n) as

$$M = \frac{m}{n}$$
 Eminem $m = \frac{m}{M}$

- *M* has units of g mol⁻¹ (read grams per mole). Use the units to remember the correct form of the equation it must be grams divided by moles to give the correct units.
- · Molar mass values are obtained from tables.

Example

- Diamond consists of pure carbon. The molar mass of carbon is 12.01 g mol⁻¹. What amount of C does the largest known cut diamond (109.13 g) contain?
- Use the equation

$$n = \frac{m}{M} = \frac{109.13 \text{ g}}{12.01 \text{ g mol}^{-1}} = 9.087 \text{ mol}$$

Golden Jubilee Diamond

 Note that the units will always work out if you have rearranged the equation correctly

10

Mole relationships Balanced chemical equations give mole relationships between all reactants and products. Chemical $\frac{2}{2}H_{2}(g)$ $O_2(g)$ $\frac{2}{2}$ H₂O(l) equation: 1 molecule O₂ 2 molecules H₂O 2 molecules H₂ Molecular interpretation: 2 mol H₂O $2 \text{ mol } H_2$ Mole-level $1 \text{ mol } O_2$ interpretation: Convert to grams (using molar masses) $4.0 g H_2$ 36.0 g H₂O Notice the conservation of mass ••• (4.0 g + 32.0 g = 36.0 g)

11

Example

Metallic iron reacts with oxygen gas to give iron oxide according to the following equation:

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

If 2.0 g of iron reacts with excess oxygen, what mass of iron oxide is formed?

1. First we work out how many moles of iron 2.0 g corresponds to.

$$n(\text{Fe}) = \frac{m}{M} = \frac{2.0 \text{ g}}{55.85 \text{ g mol}^{-1}} = 0.0358 \text{ mol}$$

13

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

2. The balanced chemical equation tells us that 4 moles of Fe react to give 2 moles of Fe_2O_3 (ie half as much)

So 0.0358 mol of Fe should give $\frac{0.0358 \text{ mol}}{2}$

 $= 0.0179 \text{ mol } \text{of } \text{Fe}_2\text{O}_3$

3. Finally, we can work out the mass that 0.0179 mol of Fe₂O₃ has:

$$M(Fe_2O_3) = (2 \times 55.85 \text{ g mol}^{-1}) + (3 \times 16.00 \text{ g mol}^{-1})$$

= **159.7 g mol**⁻¹

$$m = nM = 0.0179 \text{ mol} \times 159.7 \text{ g mol}^{-1}$$

= 2.859 g

Limiting reagents

- Sometimes, the reactants are not present in exact stoichiometric amounts.
- In these cases, one reactant will be a **limiting reagent**. For example

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

- 5.0 g of H₂(g) was reacted with 21.0 g of O₂(g)
- What mass of which reactant remains after the reaction is complete?

Brown (15th) pages 162-165

15

Limiting reagents

$$2H_2(g) \ + \ O_2(g) \ \rightarrow \ 2H_2O(I)$$

Need to calculate amounts of both reactants.

```
n(H_2) = 5.0 \text{ g/}2.0 \text{ g mol}^{-1} = 2.5 \text{ mol}
n(O_2) = 21.0 \text{ g/}32 \text{ g mol}^{-1} = 0.66 \text{ mol}
```

· From stoichiometry work out which gives the smallest amount of product

```
2.5 mol H<sub>2</sub> gives 2.5 mol H<sub>2</sub>O
0.66 mol O<sub>2</sub> gives 0.66 × 2 = 1.32 mol H<sub>2</sub>O
```

 So when 1.32 mol H₂O has been produced all of the O₂ has reacted and the reaction stops. H₂ is the reactant in excess

Brown (15th) pages 162-165

17

Limiting reagents

- So when 1.32 mol H₂O has been produced all of the O₂ has reacted and the reaction stops.
- When 1.32 mol H₂O has been produced 1.32 mol H₂ must have reacted.
- Therefore H_2 remaining 2.5 1.32 = 1.18 mol

```
m = M \times n = 1.18 \text{ mol} \times 2.0 \text{ g mol}^{-1}
= 2.4 g H<sub>2</sub> remaining or in excess
```

Brown (15th) pages 162-165

Solutions

 Define the composition of a solution in terms of its concentration – the amount of solute per volume of solvent

• E.g. 10.0 g glucose (M = 180.156 g mol⁻¹) dissolved in water to give final volume of 0.500 L.

$$n = \frac{m}{M} = \frac{10.0 \text{ g}}{180.156 \text{ g mol}^{-1}} = 5.55 \times 10^{-2} \text{mol}$$
$$c = \frac{n}{V} = \frac{5.55 \times 10^{-2} \text{mol}}{0.500 \text{ L}} = 1.11 \times 10^{-1} \text{mol L}^{-1}$$

19

NOTE

There are different ways to express concentration

Traditionally we use mol L⁻¹,

but the textbook uses either mol dm⁻³ (moles per cubic decimeter) or M (molarity)

These are all the same.

But we will use mol L⁻¹ in the lectures and in the labs

Also, the textbook sometimes gives volumes in cm³ instead of mL – again these are the same.

Conclusions

• You only have to know two equations to be able to do stoichiometry.

- You need to be able to balance chemical equations to do stoichiometry.
- Practice, practice, practice.....

21

* Homework *

Brown (15th)

Problems 3.45, 3.56, 3.94, 3.102, 4.27, 4.80

Answers on Blackboard