Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion & Induction, Logic, Invariants
- Probability & Combinatronics
 - Basic Counting, Binomial Coeff, Advanced Counting,
 Probability, Random Variables

RANDOM VARIABLES & EXPECTATIONS

Random Variables

Average

Random Variables

- We have studied probability distributions
- Studied events (subsets of outcomes) and their probabilities
- Events correspond to yes or no questions
- It is important to study numerical characteristics of random outcomes
- So we introduce random variables

Random Variables

- Random variable f is a variable whose value is determined by a random experiment
- We have probability distribution on the finite set *X* of *k* outcomes
- Outcomes have probabilities p_1, \ldots, p_k
- To define f we assign a number a_i to each outcome
- Then f has value a_i with probability p_i

Random Variables

- Looks familiar?
 - We have already done this!
- Outcomes of the dice throw are labeled by numbers

Random Variables

Other examples:

- Tossing a coin: heads=0, tail=1
- An age of a random person in the class
- Grade of a random person in the class
- Sum of outcomes of two dice throws

Random Variables

Average

Average

What is an average salary in a country?

- The total salary of all population divided by the number of employees
- This is the standard notion of average
- It is called arithmetic mean in mathematics

Example

Problem: Student got scores 78, 72 and 87 on three tests. What is the average score?

Have to add all scores and divide by their number

Example

Problem: Student got scores 78, 72 and 87 on three tests.

What is the average score?

- Have to add all scores and divide by their number

 Have to add all scores and divide by their number

 Have to add all scores and divide by their number

$$\frac{78+72+87}{3} = \frac{237}{3} = 79$$

- We got lucky and the answer is integer
 - but this is not guaranteed

HR Management Strategy

Problem: Suppose HR management in some company uses the following strategy: fire everyone who performs below average. What will be a result of such strategy?

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case)
- There is always someone who works below average! 7.55
 - If we fire them, the average performance will grow & & &
- New people get below average!
 - Everyone will be fired except one best employee = 95/6 95% 171/8

Average Outcome of Dice Throw

Problem: Suppose we throw a dice many times. What is the average outcome?

- Can we give a precise answer?
 - No, it is a random variable
- But we can give an approximation that is good with high probability

Average Outcome of Dice Throw

1 -1 6

- Suppose we throw a dice n times for a very large \underline{n}
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on...
- The sum of results is then approximately

$$\left(\frac{n}{6} \times 1\right) + \left(\frac{n}{6} \times 2\right) + \left(\frac{n}{6} \times 3\right) + \left(\frac{n}{6} \times 4\right) + \left(\frac{n}{6} \times 5\right) + \left(\frac{n}{6} \times 6\right)$$

$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- The average can be obtained by dividing with number of throws n
- Thus the average is approximately: $\frac{3.5n}{n} = 3.5$
- This is an expected value or expectation of a dice throw

Random Variables

Average

Expectation

Let's consider the general case

- Suppose we have a random variable *f* on the distribution with 4 outcomes
- Probabilities of outcomes are p_1 , p_2 , p_3 , p_4
- Values of f are \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4
- Let's repeat the random experiment many times

• Repeat n times, where n is large

- Repeat n times, where n is large
- What is the average value of *f* on these outcomes?

- We have *n* experiments
- Value a_i occurs about $p_i n$ times
- This is denoted by **E** f and called the **expectation** of f
- Does not depend on n
- An approximation to what we would expect as an average outcome of an experiment repeated many times

- In the general case: outcomes a_1, \ldots, a_k with probabilities p_1, \ldots, p_k
- To compute the expectation:
 - multiply $a_i \times p_i$ over all *i*
 - And add up through 1 to k
- Expectation is a <u>number!</u>
- An important characteristic of a random variable

Suppose *f*:

- obtains values a_1 , a_2 , a_3 , a_4 with probabilities p_1 , p_2 , p_3 , p_4

•
$$\mathbf{E}f = a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

Suppose *f*:

- obtains values a_1 , a_2 , a_3 , a_4 with probabilities p_1 , p_2 , p_3 , p_4
- $\mathbf{E} \mathbf{f} = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4$

Suppose *f*:

- obtains values a_1 , a_2 , a_3 , a_4 with probabilities p_1 , p_2 , p_3 , p_4
- $\mathbf{E} \mathbf{f} = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4$

Suppose *f*:

- obtains values a_1 , a_2 , a_3 , a_4 with probabilities p_1 , p_2 , p_3 , p_4
- $\mathbf{E} \mathbf{f} = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4$

Suppose *f*:

- obtains values a_1 , a_2 , a_3 , a_4 with probabilities p_1 , p_2 , p_3 , p_4
- $\mathbf{E}f = a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$

• **E** *f* is the area of the gray region

Real Life Examples

- Expectations occur everywhere in statistics and sociology
- Average age
- Life expectancy
- Average grades and evaluations

Thank you.