Linearization and Transversality

D. Zack Garza

#### Review 8.2

Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

## Linearization and Transversality

Sections 8.3 and 8.4

D. Zack Garza

April 2020

Linearization and Transversality

D. Zack Garza

#### Review 8.2

Space of Perturbations of

Linearizing the Floer Equation: The Differential

Review 8.2

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4:

Linearizing the Floer Equation: The Differential of F

# Section 8.3: The Space of Perturbations of H

## Goal

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differentia of F **Goal**: Given a fixed Hamiltonian  $H \in C^{\infty}(W \times S^1; \mathbb{R})$ , perturb it (without modifying the periodic orbits) so that  $\mathcal{M}(x, y)$  are manifolds of the expected dimension.

## Goal

Linearization and Transversality

D. Zack Garza

Review 8.3

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Start by trying to construct a subspace  $\mathcal{C}^{\infty}_{\mathbb{C}}(H) \subset \mathcal{C}^{\infty}(W \times S^1; \mathbb{R})$ , the space of perturbations of H depending on a certain sequence  $\varepsilon = \{\varepsilon_k\}$ , and show it is a dense subspace.



#### Define an Absolute Value

Linearization and Transversality

D. Zack Garza

#### Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Idea: similar to how you build  $L^2(\mathbb{R})$ , define a norm  $\|\cdot\|_{\varepsilon}$  on  $C_{\varepsilon}^{\infty}(H)$  and take the subspace of finite-norm elements.

- Let  $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$  denote a perturbation of H.
- Fix  $\varepsilon = \left\{ \varepsilon_k \mid k \in \mathbb{Z}^{\geq 0} \right\} \subset \mathbb{R}^{>0}$  a sequence of real numbers, which we will choose carefully later.
- For a fixed  $\mathbf{x} \in W$ ,  $t \in \mathbb{R}$  and  $k \in \mathbb{Z}^{\geq 0}$ , define

$$|d^k h(\mathbf{x}, t)| = \max \{d^{\alpha} h(\mathbf{x}, t) \mid |\alpha| = k\},$$

the maximum over all sets of multi-indices  $\alpha$  of length k. Note: I interpret this as

$$d^{\alpha_1,\alpha_2,\cdots,\alpha_k}h=\frac{\partial^k h}{\partial x_{\alpha_1}\,\partial x_{\alpha_2}\cdots\partial x_{\alpha_k}},$$

the partial derivatives wrt the corresponding variables.

## Define a Norm

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F – Define a norm on  $C^{\infty}(W \times S^1; \mathbb{R})$ :

$$||h||_{U} = \sum_{k\geq 0} \varepsilon_k \sup_{(x,t)\in W\times S^1} |d^k h(x,t)|.$$

– Since  $W \times S^1$  is assumed compact (?), fix a finite covering  $\{B_i\}$  of  $W \times S^1$  such that

$$\bigcup_{i} B_{i}^{\circ} = W \times S^{1}.$$

Choose them in such a way we obtain charts

$$\Psi_i: B_i \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2n+1}$$
 (?).

Obtain the computable form

$$||h||_{\cdot\cdot} = \sum_{k>0} \varepsilon_k \sup_{(x,t)\in W\times S^1} \sup_{i,z\in B(0,1)} \left| d^k(h\circ \Psi_i^{-1})(z) \right|.$$

Linearization and Transversality

D. Zack Garza

Review 8.2

Space of
Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential

Section 8.4: Linearizing the Floer Equation: The Differential of F