Musterlösungen zum Übungsblatt 3

Vorlesung Analysis 1 (Lehramtsstudiengänge) Wintersemester 2017/18

Aufgabe 7 Beweisen Sie folgende Summenformeln:

a) Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$.

b) Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} \frac{k-1}{k!} = \frac{n!-1}{n!}$.

c) Für alle
$$x \in \mathbb{R}$$
 und alle $n \in \mathbb{N}_0$ gilt: $\sum_{k=0}^{n} {x+k \choose k} = {x+n+1 \choose n}$.

Lösung: Wir beweisen alle drei Aussagen mit vollständiger Induktion. Wir erinnern nochmal an das Beweisprinzip der vollständigen Induktion:

Sei $n_0 \in \mathbb{N}_0$ fixiiert und für jedes $n \in \mathbb{N}_0$ mit $n \ge n_0$ eine Aussage A(n) gegeben. Es gelten: Induktionsanfang: $A(n_0)$ ist wahr.

Induktionsschritt: Für alle $n \in \mathbb{N}$ mit $n \ge n_0$ gilt: Ist A(n) wahr, so ist A(n+1) wahr. (d.h. die Implikation $A(n) \Longrightarrow A(n+1)$ ist wahr).

Dann ist die Aussage A(n) für alle $n \in \mathbb{N}$ mit $n \ge n_0$ wahr.

(Wir setzen im Induktionsschritt also voraus, dass für ein $n \in \mathbb{N}_0$ mit $n \ge n_0$ die Aussage A(n) gilt (Induktionsvoraussetzung) und zeigen unter Benutzung dieser Induktionsvoraussetzung, dass A(n+1) gilt.)

Zu a)
$$A(n)$$
: $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$.

Induktionsanfang: A(1) ist wahr, denn es gilt

$$\sum_{k=1}^{1} k^2 = 1^2 = 1 = \frac{1}{6} \cdot (1+1) \cdot (2 \cdot 1 + 1).$$

Induktionssschritt:

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gilt A(n).

Induktionsbehauptung: Es gilt A(n+1):

Induktionsbeweis: Es gilt:

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$\stackrel{IVor}{=} \frac{1}{6} n(n+1)(2n+1) + (n+1)^2$$

$$= (n+1) \left(\frac{1}{6} n(2n+1) + (n+1) \right)$$

$$= (n+1) \left(\frac{n(2n+1) + 6(n+1)}{6} \right)$$

$$= \frac{1}{6} (n+1)(2n^2 + 7n + 6)$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$

$$= \frac{1}{6}(n+1)(n+2)(2(n+1)+1)$$

$$= \frac{1}{6}(n+1)((n+1)+1)(2(n+1)+1)$$

Dies ist aber gerade die Aussage A(n+1), d.h. die Gültigkeit von A(n+1) ist gezeigt. \square Nach dem Prinzip der vollständigen Induktion gilt die Aussage A(n) somit für alle natürlichen Zahlen.

Zu b)
$$A(n): \sum_{k=1}^{n} \frac{k-1}{k!} = \frac{n!-1}{n!}.$$

Induktionsanfang: A(1) ist wahr, denn es gilt:

$$\sum_{k=1}^{1} \frac{k-1}{k!} = \frac{0}{1} = 0 = \frac{1!-1}{1!}.$$

Induktions sschritt:

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gilt A(n).

Induktionsbehauptung: Es gilt A(n+1):

Induktionsbeweis: Es gilt:

$$\sum_{k=1}^{n+1} \frac{k-1}{k!} = \sum_{k=1}^{n} \frac{k-1}{k!} + \frac{n}{(n+1)!}$$

$$\stackrel{IVor}{=} \frac{n!-1}{n!} + \frac{n}{(n+1)!}$$

$$= \frac{(n!-1)(n+1)+n}{(n+1)!}$$

$$= \frac{n!(n+1)-(n+1)+n}{(n+1)!}$$

$$= \frac{(n+1)!-1}{(n+1)!}.$$

Dies ist aber gerade die Aussage A(n+1), d.h. A(n+1) ist wahr. \square Nach dem Prinzip der vollständigen Induktion gilt die Aussage A(n) somit für alle natürlichen Zahlen.

Zu c)
$$A(n)$$
: Für alle $x \in \mathbb{R}$ gilt $\sum_{k=0}^{n} {x+k \choose k} = {x+n+1 \choose n}$.

Induktionsanfang: A(0) ist wahr, denn es gilt:

$$\sum_{k=0}^{0} \binom{x+k}{k} = \binom{x}{0} \stackrel{Def}{=} 1 \stackrel{Def}{=} \binom{x+1}{0}.$$

Induktionssschritt:

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}_0$ gilt A(n).

Induktionsbehauptung: Es gilt A(n+1):

Induktionsbeweis: Es gilt:

$$\sum_{k=0}^{n+1} {x+k \choose k} = \sum_{k=0}^{n} {x+k \choose k} + {x+n+1 \choose n+1}$$

$$\overset{IVor}{=} \quad \begin{pmatrix} x+n+1 \\ n \end{pmatrix} + \begin{pmatrix} x+n+1 \\ n+1 \end{pmatrix}$$

$$\overset{VL,Satz12}{=} \quad \begin{pmatrix} x+n+2 \\ n+1 \end{pmatrix}$$

Dies ist aber gerade die Aussage A(n+1), d.h. A(n+1) ist wahr. \square Nach dem Prinzip der vollständigen Induktion gilt die Aussage A(n) somit für alle $n \in \mathbb{N}_0$.

Aufgabe 8 Zeigen Sie:

- a) Für alle $n \in \mathbb{N}$ ist die Zahl $d_n := n^3 + 5n$ durch 6 teilbar.
- b) Jede natürliche Zahl $n \geq 8$ kann man in der Form $n = 3s_n + 5t_n$ mit $s_n, t_n \in \mathbb{N}_0$ darstellen.
- c) Für alle $n \in \mathbb{N}$ gilt: Sind x_1, \ldots, x_n positive reelle Zahlen mit $\prod_{k=1}^n x_k = 1$, so gilt $\sum_{k=1}^n x_k \ge n$. Die Gleichheit tritt dabei genau dann ein, wenn $x_1 = \ldots = x_n = 1$.

Lösung: Wir beweisen alle drei Aussagen wieder mit vollständiger Induktion.

Zu a) Induktionsanfang: d_1 ist durch 6 teilbar, denn $d_1 = 1 + 5 = 6$.

Induktionsschritt:

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ ist d_n durch 6 teilbar.

Induktionsbehauptung: d_{n+1} ist durch 6 teilbar.

Induktionsbeweis: Es gilt:

$$d_{n+1} = (n+1)^3 + 5(n+1)$$

$$= n^3 + 3n^2 + 3n + 1 + 5n + 5$$

$$= d_n + 3n^2 + 3n + 6$$

$$= d_n + 3n(n+1) + 6.$$

Nach Induktionsvoraussetzung ist d_n durch 6 teilbar. n(n+1) ist immer eine gerade Zahl, d.h. 3n(n+1) ist durch 6 teilbar und 6 ist ebenfalls durch 6 teilbar. Folglich ist d_{n+1} durch 6 teilbar. \square

Nach dem Prinzip der vollständigen Induktion ist deshalb d_n für jedes n durch 6 teilbar.

Zu b) Induktions an fang: $8 = 3 \cdot 1 + 5 \cdot 1$. In diesem Fall ist also $s_8 = t_8 = 1$.

Induktions schritt:

Induktionsvoraussetzung: Für ein $n \geq 8$ existieren $s_n, t_n \in \mathbb{N}_0$, so dass $n = 3s_n + 5t_n$. Induktionsbehauptung: Es existiert ein $s_{n+1} \in \mathbb{N}_0$ und ein $t_{n+1} \in \mathbb{N}_0$, so dass $n+1=3s_{n+1}+5t_{n+1}$.

Induktionsbeweis:

1. Fall: Sei $t_n \neq 0$. Dann folgt aus der Induktionsvoraussetzung

$$n+1 \stackrel{IVor}{=} 3s_n + 5t_n + 1$$

= $3(s_n+2) + 5(t_n-1).$

Also sind $s_{n+1}:=s_n+2$ und $t_{n+1}:=t_n-1$ zwei Zahlen aus \mathbb{N}_0 mit $n+1=3s_{n+1}+5t_{n+1}$. 2. Fall: $t_n=0$. Dann gilt $n=3s_n$. Da $n\geq 8$, muß $s_n\geq 3$ gelten. Wir erhalten

$$n+1 = 3s_n + 1 = 3(s_n - 3) + 9 + 1 = 3(s_n - 3) + 5 \cdot 2$$

Es gilt also $n+1=3s_{n+1}+5t_{n+1}$ mit $s_{n+1}:=s_n-3\in\mathbb{N}_0$ und $t_{n+1}=2$. \square Nach dem Prinzip der vollständigen Induktion gilt die Behauptung b) deshalb für alle $n\geq 8$.

Zu c) Die Aussage A(n) lautet:

Sind x_1, \ldots, x_n positive reelle Zahlen mit $\prod_{k=1}^n x_k = 1$, dann gilt $\sum_{k=1}^n x_k \ge n$, wobei Gleichkeit genau dann auftritt, wenn $x_1 = \ldots = x_n = 1$.

Induktionsanfang: Die Ausage A(1) ist wahr, denn für eine positive reelle Zahl x_1 mit $x_1=1$ gilt $\sum_{k=1}^1 x_k=x_1=1\geq 1$.

Induktions schritt:

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gilt A(n).

Induktionsbehauptung: A(n+1) gilt.

Induktionsbeweis: Seien x_1, \ldots, x_{n+1} positive reelle Zahlen mit $\prod_{k=1}^{n+1} x_k = 1$.

1. Fall: Sei
$$x_1 = x_2 = \ldots = x_{n+1} = 1$$
. Dann gilt $\sum_{k=1}^{n+1} x_k = n+1 \ge n+1$.

2. Fall: Sei eine der Zahlen $x_1, x_2, \ldots, x_{n+1}$ von 1 verschieden. Da $\prod_{k=1}^{n+1} x_k = 1$, muß es unter den Zahlen $x_1, x_2, \ldots, x_{n+1}$ dann eine geben, die kleiner als 1 ist, und eine, die größer als 1 ist. Ohne Beschränkung der Allgemeinheit (Umnummerieren) nehmen wir an, dass $x_n < 1$ und $x_{n+1} > 1$. Wir wenden nun die Induktionsvoraussetzung auf die positiven reellen Zahlen

$$y_1 := x_1, \ y_2 := x_2, \ \dots, \ y_{n-1} := x_{n-1}, \ y_n := x_n \cdot x_{n+1}$$

an. Da $y_1 \cdot \ldots \cdot y_n = 1$, gilt nach Induktionsvoraussetzung

$$n \le \sum_{k=1}^{n} y_k = \sum_{k=1}^{n-1} x_k + x_n \cdot x_{n+1}$$
$$= \sum_{k=1}^{n+1} x_k - x_n - x_{n+1} + x_n \cdot x_{n+1}.$$

Folglich ist

$$\sum_{k=1}^{n+1} x_k \ge n + x_n + x_{n+1} - x_n \cdot x_{n+1}. \tag{*}$$

Da $x_n < 1$ und $x_{n+1} > 1$, gilt

$$(x_n-1)(x_{n+1}-1) < 0$$
, also $x_n \cdot x_{n+1} - x_n - x_{n+1} + 1 < 0$.

Daraus folgt

$$x_n + x_{n+1} - x_n \cdot x_{n+1} > 1$$

und wir können in (*) weiter abschätzen:

$$\sum_{k=1}^{n+1} x_k \ge n + x_n + x_{n+1} - x_n \cdot x_{n+1} > n+1.$$

Dies zeigt, dass A(n+1) wahr ist. Wir haben die Abschätzung erhalten und auch gesehen, dass in dieser Abschätzung die Gleichheit nur dann stehen kann, wenn der 1. Fall eintritt, also $x_1 = x_2 = \ldots = x_{n+1} = 1$ gilt. \square .

Nach dem Prinzip der vollständigen Induktion ist die Aussage A(n) für alle $n \in \mathbb{N}$ wahr.

Aufgabe 9

- a) Beweisen Sie das folgende Induktionsschema: Sei $n_0 \in \mathbb{N}_0$. Für jedes $n \in \mathbb{N}_0$ mit $n \ge n_0$ sei eine Ausssage A(n) mit den folgenden Eigenschaften gegeben:
 - $A(n_0)$ ist wahr und
 - für alle $n \in \mathbb{N}_0$ mit $n \ge n_0$ gilt: Sind A(m) wahr für alle $n_0 \le m \le n$, dann ist A(n+1) wahr.

Dann ist A(n) für alle $n \in \mathbb{N}_0$ mit $n \ge n_0$ wahr.

b) Beweisen Sie: Es gibt genau $\binom{n-k+1}{k}$ verschiedene Möglichkeiten, k Zahlen aus der Menge $\{1, 2, \ldots, n\}$ so auszuwählen, dass darunter keine zwei benachbarten sind (wobei k hier eine natürliche Zahl zwischen 1 und n ist).

Lösung

Zu a) Wir betrachten die Aussage $B(n) := A(n_0) \wedge A(n_0 + 1) \wedge ... \wedge A(n)$. Dann gilt auf Grund der Eigenschaften von A(n):

- $B(n_0) = A(n_0)$ ist wahr.
- Für alle $n \ge n_0$: Wenn B(n) gilt, so gilt auch B(n+1), denn: B(n) ist genau dann wahr, wenn alle A(m) für $n_0 \le m \le n$ gelten (Wahrheitswert der Operation und). Dann gilt aber nach der 2. Eigenschaft der A(n), dass A(n+1) wahr ist. Folgich ist auch $B(n+1) = B(n) \land A(n+1)$ wahr.

Aus dem Prinzip der vollständigen Induktion folgt dann, dass B(n) für alle $n \in \mathbb{N}_0$, $n \ge n_0$ wahr ist, und daraus insbesondere, dass A(n) für alle $n \in \mathbb{N}_0$, $n \ge n_0$ wahr ist.

Zu b) Vereinbarung: Ist \mathcal{K} eine endliche Menge, dann bezeichnet $\sharp \mathcal{K}$ die Anzahl ihrer Elemente.

Seien k, n natürliche Zahlen mit $1 \le k \le n$ und bezeichne D_k^n die Anzahl der verschiedenen Möglichkeiten, k Zahlen aus der Menge $\{1, 2, \ldots, n\}$ so auszuwählen, dass darunter keine zwei benachbarten sind. Wir wollen zeigen, dass für alle $n \in \mathbb{N}$ die folgende Aussage A(n) gilt:

$$D_k^n = \binom{n-k+1}{k}$$
 für alle $k \in \mathbb{N}$ mit $1 \le k \le n$.

Wir benutzen dazu das unter a) bewiesene Induktionsprinzip.

Induktionsanfang: A(1) gilt, denn man hat genau eine Möglichkeit, ein Element aus der Menge $\{1\}$ auszuwählen (benachbarte Elemente kann es nicht geben), d.h. $D_1^1 = 1$. Anderseits gilt auch $\binom{1-1+1}{1} = \binom{1}{1} = 1$.

Induktionsschritt:

Induktionsvoraussetzung: Es sei $n \in \mathbb{N}$ und es gelte A(m) für alle $m \in \mathbb{N}$ mit $1 \le m \le n$, d.h. es gelte

$$D_k^m = \binom{m-k+1}{k} \ \, \forall \, m,k \in \mathbb{N} \, \, \text{mit} \, \, 1 \leq m \leq n \, \, \text{und} \, \, 1 \leq k \leq m.$$

Induktionsbehauptung: Es gilt A(n+1), d.h.

disjunkten Mengen $\mathcal{K} = \mathcal{K}_0 \dot{\cup} \mathcal{K}_1$ wobei:

$$D_k^{n+1} = \binom{n+1-k+1}{k} \quad \forall k \in \mathbb{N} \text{ mit } 1 \le k \le n+1.$$

Induktionsbeweis: Sei zunächst k=1. Dann gilt $D_1^{n+1}=n+1$ und $\binom{n+1-1+1}{1}=\binom{n+1}{1}=n+1$. Für k=1 gilt Induktionsbehauptung somit. Sei k=n+1. Dann gilt $D_{n+1}^{n+1}=0$ (denn wenn man alle Zahlen auswählt, müssen benachbarte Zahlen auftreten) und $\binom{1}{n+1}=0$ (Satz 12 der Vorlesung). D.h. die Induktionsbehauptung gilt für k=n+1. Sei nun $2 \le k \le n$. Wir bezeichnen mit $\mathcal K$ die Menge aller k-elementigen Teilmengen von $\{1,2,\ldots,n,n+1\}$, die keine benachbarten Zahlen enthalten. Dann zerfällt $\mathcal K$ in die zwei

$$\mathcal{K}_0 := \{ A \in \mathcal{K} \mid n+1 \notin A \},$$

$$\mathcal{K}_1 := \{ A \in \mathcal{K} \mid n+1 \in A \}.$$

Ist $A \in \mathcal{K}_0$, besteht A also aus k nicht benachbarten Zahlen aus der Menge $\{1, 2, \dots, n\}$ und es gilt $1 \le k \le n$. Also ist nach Induktionsvoraussetzung

$$\sharp \mathcal{K}_0 = D_k^n \stackrel{IVor}{=} \binom{n-k+1}{k}.$$

Ist $A \in \mathcal{K}_1$, so enthält A die Zahl n+1, sie kann also die benachbarte Zahl n nicht enthalten. Außer n+1 enthält A noch (k-1) nichtbenachbarte Zahlen aus der Menge $\{1,\ldots,n-1\}$ und es gilt $1 \le k-1 \le n-1$. Nach Induktionsvoraussetzung gilt somit

$$\sharp \mathcal{K}_1 = D_{k-1}^{n-1} \stackrel{IVor}{=} \binom{n - (k-1)}{k-1} = \binom{n-k+1}{k-1}.$$

Folglich gilt:

$$D_k^{n+1} = \sharp \mathcal{K} = \sharp \mathcal{K}_0 + \sharp \mathcal{K}_1 = \binom{n-k+1}{k} + \binom{n-k+1}{k-1} \stackrel{VL,Satz12}{=} \binom{(n+1)-k+1}{k}.$$

Folglich gilt die Aussage A(n+1). \square .

Nach dem Induktionsprinzip in a) gilt damit die Aussage A(n) für alle $n \in \mathbb{N}$.