

N.A., TIPS 18 : Suppl 1, 1987, 77-84

Ca²⁺ channels

Nomenclature	L	N	P	Q	T
Current	I _L	I _N	I _P	I _Q	I _R
Conductance*	25 pS	12-20 pS	9,14,19 pS	-	8 pS
Agonist ligands	(-)-(s)-BayK8644 [†] SZ(+)-(s)-791 [†]	-	-	-	-
Blockers	nifedipine diltiazem verapamil	ω-conotoxin GVIA (IC ₅₀ ~1 nM) ω-conotoxin MVIIIC [‡] ω-agatoxin IIIA [§]	ω-agatoxin IVA (IC ₅₀ ~1 nM) ω-conotoxin MVIIIC [‡] ω-agatoxin IIIA [§]	ω-agatoxin IVA (IC ₅₀ ~90 nM) ω-conotoxin MVIIIC [‡]	Ni ²⁺ [§] octanol [§] flunarizine [§]
Regulation	high-voltage activated slow inactivation [¶] PKA-modulated	high-voltage activated moderate rate of inactivation [¶]	moderate-voltage activated non-inactivating	high-voltage activated	low-voltage activated fast inactivation
Structural information*	α1s, α2-δ, β, γ α1C, α2-δ, β α1D, α2-δ, β	α1B, α2-δ, β	α1A? + accessory subunits	α1A? + accessory subunits	unknown

*conductance measured with ~100 mM Ba²⁺ as charge carrier

[†]enhance the probability of mode-2 (long duration) openings of the channel; particularly effective at negative voltages

[‡]unselective block

[§]both compounds can also block N channels^{2,3}; ω-agatoxin IIIA can additionally block L channels^{4,5}

[¶]rate of inactivation may be greatly accelerated by [Ca]_i

^{||}N channels show transitions between inactivating and non-inactivating states

*predominant distribution of α-subunits: α1s, skeletal muscle; α1C, cardiac and smooth muscle, brain; α1D, endocrine, kidney, brain: assignment of the α1A subunit to the kinetically and pharmacologically defined P and Q channel types is uncertain

Comment: An R-type channel which is resistant to all established organic and peptide Ca²⁺ channel ligands has been proposed⁶. I_R is reported to be blocked by low concentrations of Ni²⁺ (IC₅₀ ~50 μM).

contd ...

Ca²⁺ channels (contd)

Structural information: Ca²⁺ channels form hetero-oligomeric complexes. The $\alpha 1$ subunit is pore-forming and provides the extracellular binding site(s) for agonists and antagonists. The $\alpha 1$ subunit belongs to a heterogeneous family. Six α -subunits have been cloned ($\alpha 1S$, $\alpha 1A$, $\alpha 1B$, $\alpha 1C$, $\alpha 1D$ and $\alpha 1E$) of 1610–2424 amino acid length. Each subunit has four homologous repeats (I–IV), each having six transmembrane domains (TMs). Gating is thought to be associated with the membrane spanning S4 segment which contains highly conserved positive charges. All α -subunit genes give rise to alternatively spliced products. Multiple isoforms of the β -subunit exist ($\beta 1$, $\beta 2$, $\beta 3$ and $\beta 4$) as polyptides of 477–632 amino acids. There are three alternatively spliced forms of $\beta 1$ ($\beta 1a$, $\beta 1b$ and $\beta 1c$). The β -subunits lack potential N-linked glycosylation sites, suggesting that they do not transverse the membrane. $\alpha 2$ - and δ -subunits exist as two disulphide linked polyptides, the $\alpha 2$ - and δ -subunits probably possess two and one transmembrane domains, respectively. The γ -subunit, which appears to be confined to skeletal muscle, consists of 222 amino acids and has four TMs.

References: 1. Randall, A. and Tsien, R. W. (1995) *J. Neurophysiol.* 15, 2995–3012; 2. Hillyard, D. R. et al. (1992) *Neuron* 9, 69–77; 3. Grantham, C. J. et al. (1994) *Neuropharmacol.* 33, 255–258; 4. Mintz, I. M. et al. (1991) *Proc. Natl. Acad. Sci. U. S. A.* 88, 6628–6631; 5. Mintz, I. M. (1994) *J. Neurosci.* 14, 2844–2853; 6. Zhang, J.-F. et al. (1993) *Neuropharmacol.* 32, 1075–1088

Reviews

- Adelman, J. P. (1995) Proteins that interact with the pore-forming subunits of voltage-gated ion channels *Curr. Opin. Neurobiol.* 5, 286–295
- Catterall, W. A. (1995) Structure and function of voltage-gated ion channels *Annu. Rev. Biochem.* 64, 493–531
- Dunlap, K. et al. (1995) Excitable Ca²⁺ channels in mammalian central neurons *Trends Neurosci.* 18, 89–98
- Edwards, G. and Weston, A. H. (1997) in *Molecular Biology of the Neuron* (Davis, W. and Morris, B., eds), pp. 145–176, BIOS Scientific Publishers
- Hofmann, F. et al. (1994) Molecular basis for Ca²⁺ channel diversity *Annu. Rev. Neurosci.* 17, 399–418
- Reuter, H. (1996) Diversity and function of presynaptic calcium channels in the brain *Curr. Opin. Neurobiol.* 6, 331–337
- Varadi, G. et al. (1995) Molecular determinants of Ca²⁺ channel function and drug action *Trends Pharmacol. Sci.* 16, 43–49

Chemical names

- SZ(+)-(s)-202-791: isopropyl 4-(2,3-benzodiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3-pyridinecarboxylate
- (-)-9-BaK8644: (-)-9-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate

K⁺ channels (voltage-sensitive)

Nomenclature	K _A	K _V	K _{Vr}	K _{V(s)}	K _{SR}
Other names	A-channel		delayed rectifier	slow delayed rectifier	sarcoplasmic reticulum channel
Current	I _{K(A)}	I _{Kv}	rapid delayed rectifier		
Conductance	<1–20 pS				
Openers	–	I _{KvH}		I _{KvH}	I _{K(SR)}
Blockers	4-AP quinidine tetrahydroaminoacridine mast-cell degranulating peptide phenylcyclidine dendrotoxins*	4-AP dendrotoxins† phenylcyclidine phalloidin 9-aminoacridine margatoxin imperator toxin charybdotoxin	dofetilide sotalol UK66914 E4031 quinidine tedisamil	LY97241	decamethonium hexamethonium Cs ⁺
Regulation	rapid activation and inactivation	delayed activation slow inactivation	rapid activation and inactivation	very slow activation and inactivation	strong voltage sensitivity low K ⁺ /Na ⁺ selectivity
Structural information	tetramer of α-subunits (each 6TM); intracellular β-subunits which may confer rapid inactivation have been identified	tetramer of α-subunits (each 6TM)	tetramer of α-subunits (each 6TM); probably products of the human ether-a-go-go-related gene (HERG) ¹	unknown	unknown

*there are a variety of dendrotoxins; selectivity at different channels can be determined at different concentrations

K ⁺ channels (Ca ²⁺ -sensitive)			
Nomenclature	BK _{Ca}	IK _{Ca}	SK _{Ca}
Other names	high conductance Ca ²⁺ -sensitive K ⁺ channel	intermediate conductance Ca ²⁺ -sensitive K ⁺ channel	small conductance Ca ²⁺ -sensitive K ⁺ channel
Current	I _{BK(Ca)}	I _{IK(Ca)}	I _{SK(Ca)}
Conductance	100–250 pS	18–50 pS	6–14 pS
Openers	NS004 NS1619 DHS-1		
Blockers	iberiotoxin (+)-tubocurarine charybdotoxin noxiustoxin penitrem-A TEA	cetiedil trifluoroperazine haloperidol	apamin leurotoxin 1 (+)-tubocurarine
Regulation	voltage-sensitive	voltage-sensitive	little or no voltage-sensitivity
Structural information		tetramer of α-subunits (each 6TM); additional membrane-spanning β-subunits which may modify voltage-sensitivity have been identified	tetramer of α-subunits (each 6TM); voltage-sensor (S4) region is poorly charged

K⁺ channels (receptor-coupled)

Nomenclature	K _M	K _{ACh}
Other names	muscarinic-inactivated	atrial muscarinic-activated
Current	I _{KM}	I _{K(ACh)}
Conductance	5–18 pS	7–50 pS
Openers	somatostatin β-adrenoceptor agonists (receptor-coupled)	
Blockers	Ba ²⁺ bradykinin (receptor-coupled)	Ba ²⁺ Cs ⁺ 4-AP TEA quinine
Regulation	time-dependent and voltage-sensitive slow activation non-inactivating non-rectifying	voltage-sensitive inwardly rectifying
Structural information	unknown	probably a tetramer of the products of the genes KIR3.1 and KIR3.4

contd —

K_v channels (cont'd)

Nomenclature	K _{IR}	K _{ATP}	K _{Na}	K _{V01}
Other names	inward rectifier			
Current	I _{KIR}	ATP-sensitive	Na ⁺ -activated	cell-volume sensitive
Conductance	5-30 pS	I _{K(ATP)}	I _{K(Na)}	
Openers		5-90 pS	170-210 pS	16-40 pS
Blockers	LY97241 gaboon viper venom Sr ²⁺ Ba ²⁺ Cs ⁺	glibenclamide tolbutamide phenotolamine ciclazindol lidocaine	Mg ²⁺ Ba ²⁺	quinidine lidocaine cetiedil
Regulation			ATP-inhibited nucleotide diphosphate-facilitated inwardly rectifying pH-sensitive	voltage-insensitive volume
Structural information		tetramer of α-subunits (each 2TM)	tetramer of α-subunits (each 2TM); ATP and (?) opener sensitivity associated with the β-subunits (sulphonylurea receptor)	activated by increased cell volume

cont'd

K⁺ channels (contd)

Reference: 1. Sanguinetti, M. C. et al. (1995) *Cell* 81, 299-307

Reviews

- Chandy, K. G. and Gutman, G. A. (1995) in *Handbook of Receptors and Channels; Ligand and Voltage-gated Ion Channels* (North, R.A., ed.), pp. 1-71, CRC Press
- Dolly, J. O. and Parcej, D. A. (1996) Molecular properties of voltage-gated K⁺ channels *J. Bioenerg. Biomembr.* 28, 231-253
- Doupnik, C. A. et al. (1995) The inward rectifier potassium channel family *Curr. Opin. Neurobiol.* 5, 268-277
- Edwards, G. and Weston, A. H. (1996) Recent advances in the pharmacology and therapeutic potential of potassium channel openers *Exp. Opin. Invest. Drugs* 5, 1453-1464
- Edwards, G. and Weston, A. H. (1997) in *Molecular Biology of the Neuron* (Davis, W. and Morris, B., eds), pp. 145-176, BIOS Scientific Publishers
- Millet, C. (1995) The charybdotoxin family of K⁺ channel-blocking peptides *Neuron* 15, 5-10
- Pongs, O. (1995) Regulation of the activity of voltage-gated potassium channels by β-subunits *Semin. Neurosci.* 7, 137-146

Chemical names

- 4-AP: 4-aminopyridine
- DHS-1: dehydrosoyasaponin-1
- E4031: 1-(2-(6-methyl-2-pyridyl)ethyl)-4-(4-methylsulphonyl)arrinobenzoylpiperidine
- LY97241: N-ethyl-N-heptyl-4-nitrobenzenbutanamine ethanedioic acid
- NS104: 1-(2-hydroxy-5-chlorophenyl)-5-trifluoromethyl-2-benzimidazolone
- NS1619: 1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoro-methyl-2(3H)benzimidazolone
- TEA: tetraethylammonium
- UK66914: (N-(1-(1-hydroxy-2-[4-pyridiny])-1-piperazinyl)ethyl)phenyl)methanesulphonamide

Na⁺ channels

Nomenclature*	I	II†	III	μ 1	H1	PN3‡
Conductance	-	20 pS	16 pS	-	-	-
Openers	-	-	-	-	-	-
Blockers	tetrodotoxin saxitoxin	tetrodotoxin saxitoxin	tetrodotoxin saxitoxin	tetrodotoxin μ -conotoxins GIII A, GIII B, GIII C	tetrodotoxin (high concentrations)†† saxitoxin (high concentrations)	tetrodotoxin (high concentrations)†† resistant††
Regulation§	-	$V_{50} \sim -41$ mV $V_h \sim -64$ mV	$V_{50} \sim -10$ mV $V_h \sim -40$ mV	$V_h \sim -67$ mV	-	$V_h \sim -30$ mV
Structural information¶	2009 aa	2005 aa	1951 aa	1840 aa	2018 aa	1957 ⁴ /1956 ⁵ aa

*there is no official recommendation regarding the classification of sodium channels. Functional sodium channels that have been identified in the rat or mouse are listed

†a sequence variant, termed IIA, with similar or identical properties results from alternative splicing

‡V_{1/2} voltage required for half-maximal activation; V_h voltage required for full-maximal inactivation

§a single α -subunit is sufficient to encode a functional channel; the number of amino acids comprising each α -subunit is given. Although some brain sodium channels are associated with β 1- and β 2-subunits *in vivo*; it is uncertain whether all three brain types (i.e. I, II and III) associate with accessory proteins. The skeletal muscle μ 1-subunit probably associates with a β 1-subunit. The human homologues of the rat I μ ¹, μ 1² and H1 μ ³ channels have been cloned and functionally expressed

¶block occurs only with micromolar concentrations of TTX. H1 is generally classed as TTX resistant

¶TTX resistant ($IC_{50} \sim 60$ μ M)⁷, has properties similar to a population of TTX resistant Na channels endogenous to rat small dorsal root ganglion neurones⁸

Comments: The channels listed are predominantly expressed in: brain (I, II and III); adult skeletal muscle (μ 1); heart and denervated skeletal muscle (H1), and dorsal root and trigeminal ganglion neurones (PN3). In addition to the channels listed, novel partial cDNA clones have been isolated for channels termed rat 6 (neurones and glia)⁷, PN1 (dorsal root ganglia – predicted TTX sensitive; unpublished), Na-G (glia)⁸ and hNa_v2.3 (heart)⁹.

References: 1. Ahmed, C. M. I. et al. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 8220–8224; 2. George, A. L., Jr et al. (1992) *Ann. Neurol.* 31, 131–137; 3. Gallens, M. E. et al. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 554–558; 4. Akopian, A. N. et al. (1996) *Nature* 379, 257–262; 5. Sangameswaran, L. et al. (1996) *J. Biol. Chem.* 271, 5953–5956; 6. Elliott, A. A. and Elliott, J. R. (1993) *J. Physiol.* 463, 39–56; 7. Schaller, K. L. et al. (1995) *J. Neurosci.* 15, 3231–3242; 8. Gautron, S. et al. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 7272–7276; 9. Felipe, A. et al. (1994) *J. Biol. Chem.* 269, 30125–30131

Reviews

- Catterall, W. A. (1995) Structure and function of voltage-gated ion channels. *Annu. Rev. Biochem.* 64, 493–531
- Goldin, A. L. (1995) in *Handbook of Receptors and Channels: Ligand and Voltage-gated Ion Channels* (North, R. A., ed.), pp. 73–111, CRC Press
- Keynes, R. D. (1994) Bimodal gating of the Na⁺ channel. *Trends Neurosci.* 17, 58–61