

"Well, I'll be damned if I'll defend to the death your right to say something that's statistically incorrect."

Statistical Comparison of Algorithms — Part II

Leandro L. Minku University of Birmingham, UK

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Statistical Hypothesis Tests

Statistical hypothesis: assertion or conjecture about the distribution of one or more random variables.

Statistical hypothesis test: rule or procedure to decide whether to reject a hypothesis.

Groups of Observations

You can treat the performance of your algorithm as a random variable, and perform multiple runs to get an idea of its underlying distribution.

RID'S

Performance for A1	
0.6015110151	
0.2947677998	
0.9636589224	
0.251976978	
0.3701006544	
0.9940754515	
0.4283523627	
0.1904817054	
0.7377491128	
0.5392380701	
0.4230920852	
0.7221442924	
0.8882444038	
0.3186565207	
0.5532666035	
0.8306283304	
0.4488794934	
0.6386464711	
0.703989767	
0.1133421799	
0.9693252021	
0.4042517894	
0.6884307214	
0.1627650897	
0.5280297005	
0.6990777731	
0.020703112	
0.580238106	
0.5673830342	
0.2294966863	

Performance for A2
0.0633347888
1.0930402922
0.1792341981
1.207096969
1.0606484322
0.6473818857
0.8043431063
0.658958582
1.0576089397
0.7364416374
0.1942901434
0.5849134532
0.4971571929
0.2973731101
0.9801976669
0.1366545414
0.258875354
1.3587444717
1.0901669778
0.5101653608
0.6768334243
1.3479477059
1.1339212937
1.154985441
1.0054153791
1.0128717172
0.5093192254
1.3938111293
0.790654944
1.3811101009

In statistics, each of the cells is referred to as an observation, and each column is called a group or sample, the performance metric being monitored is the response, and the algorithms are treatments.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance α = 0.05 (probability of Type I error).
- Test statistic $Z = \frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance α = 0.05 (probability of Type I error).
- Test statistic $Z = \frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance α = 0.05 (probability of Type I error).
- Test statistic $Z = \frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance α = 0.05 (probability of Type I error).
- Test statistic Z = $\frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance $\alpha = 0.05$ (probability of Type I error).
- Test statistic $Z = \frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

Critical values are the "boundary" values of the critical region.

- Formulate Hypotheses:
 - H0: $\mu 1 = \mu 2 \longrightarrow \mu 1 \mu 2 = 0$
 - H1: μ 1 \neq μ 2 \longrightarrow μ 1 μ 2 \neq 0
- Level of significance α = 0.05 (probability of Type I error).
- Test statistic $Z = \frac{M1 M2}{\sigma/\sqrt{N}}$
- Theoretical sampling distribution of the test statistic assuming H0 is true: normal distribution.

- P-value: probability of observing test statistic value at least as extreme as the value z, assuming H0, is the AUC of the region starting at z and -z.
- If p-value ≤ α, reject H0.
- Otherwise, do not reject H0

Terminology

- For two tailed test (H0: μ1 = μ2, H1: μ1 ≠ μ2):
 - Not rejecting H0: **no statistically significant difference** has been found between $\mu 1$ and $\mu 2$ at the level of significance of $\alpha = 0.05$ (p-value of ...).
 - It doesn't mean that we accept H0, it just means that we have not found enough evidence to reject it.

G.K. Kanji. 100 Statistical Tests.
Chapter "Introduction to Statistical Testing". SAGE Publications, 1993.

- Rejecting H0: **statistically significant difference** between μ 1 and μ 2 has been found at the level of significance of $\alpha = 0.05$ (p-value of ...).
 - Once we know they are significantly different, we can look at the direction of the differences to gain an insight into which of the algorithms is better.
 - μ1 is significantly larger than μ2.
 - μ1 is significantly smaller than μ2.

Choosing Statistical Tests

 Different statistical hypothesis tests use different test statistics, which make different assumptions about the population underlying the observations (and consequently about the sampling distribution of the test statistic).

Data Distr	ribution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality) Paired (related)		Wilcoxon signed-rank test	Friedman test

Tests for comparing means of the underlying distributions.

Choosing Statistical Tests

 Different statistical hypothesis tests use different test statistics, which make different assumptions about the population underlying the observations (and consequently about the sampling distribution of the test statistic).

Data Distribution		2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	(normality) Paired (related) Paired t-test		ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Tests for comparing medians of the underlying distributions.

Choosing Statistical Tests

 Different statistical hypothesis tests use different test statistics, which make different assumptions about the population underlying the observations (and consequently about the sampling distribution of the test statistic).

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Runs for Comparing Two Algorithms on a Single Problem Instance

Runs

Performance for A1	Perfo
0.6015110151	0.06
0.2947677998	1.09
0.9636589224	0.17
0.251976978	1.2
0.3701006544	1.06
0.9940754515	0.64
0.4283523627	0.80
0.1904817054	0.6
0.7377491128	1.05
0.5392380701	0.73
0.4230920852	0.19
0.7221442924	0.58
0.8882444038	0.49
0.3186565207	0.29
0.5532666035	0.98
0.8306283304	0.13
0.4488794934	0.2
0.6386464711	1.35
0.703989767	1.09
0.1133421799	0.51
0.9693252021	0.67
0.4042517894	1.34
0.6884307214	1.13
0.1627650897	1.1
0.5280297005	1.00
0.6990777731	1.01
0.020703112	0.50
0.580238106	1.39
0.5673830342	0.7
0.2294966863	1.38

Performance for
A2 0.0633347888
1.0930402922
0.1792341981
1.207096969
1.0606484322
0.6473818857
0.8043431063
0.658958582
1.0576089397
0.7364416374
0.1942901434
0.5849134532
0.4971571929
0.2973731101
0.9801976669
0.1366545414
0.258875354
1.3587444717
1.0901669778
0.5101653608
0.6768334243
1.3479477059
1.1339212937
1.154985441
1.0054153791
1.0128717172
0.5093192254
1.3938111293
0.790654944
1.3811101009

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

RIDS

Comparing Two Algorithms on a Single Problem Instance Using a Test for 2 Groups

One Comparison

Performance for A1	Performance for A2	
0.6015110151	0.0633347888	
0.2947677998	1.0930402922	
0.9636589224	0.1792341981	
0.251976978	1.207096969	
0.3701006544	1.0606484322	
0.9940754515	0.6473818857	
0.4283523627	0.8043431063	
0.1904817054	0.658958582	
0.7377491128	1.0576089397	
0.5392380701	0.7364416374	
0.4230920852	0.1942901434	
0.7221442924	0.5849134532	
0.8882444038	0.4971571929	
0.3186565207	0.2973731101	
0.5532666035	0.9801976669	
0.8306283304	0.1366545414	
0.4488794934	0.258875354	
0.6386464711	1.3587444717	
0.703989767	1.0901669778	
0.1133421799	0.5101653608	
0.9693252021	0.6768334243	
0.4042517894	1.3479477059	
0.6884307214	1.1339212937	
0.1627650897	1.154985441	
0.5280297005	1.0054153791	
0.6990777731	1.0128717172	
0.020703112	0.5093192254	
0.580238106	1.3938111293	
0.5673830342	0.790654944	
0.2294966863	1.3811101009	

- An observation in a group may be, e.g.:
 - One run of the group's EA with a given random seed.
 - One run of the group's ML algorithm with a given training / validation / testing partition.
 - One run of the group's ML algorithm with a given random seed and training / validation / testing partition.

Which Statistical Test To Use?

Choose one of the statistical tests for two groups.

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Runs for Comparing Two Algorithms on Multiple Problem Instances

C,)
\subseteq	_
_	5
Υ	_

Performance for A1 on Problem Instance 1
0.6015110151
0.2947677998
0.9636589224
0.251976978
0.3701006544
0.9940754515
0.4283523627
0.1904817054
0.7377491128
0.5392380701
0.4230920852
0.7221442924
0.8882444038
0.3186565207
0.5532666035
0.8306283304
0.4488794934
0.6386464711
0.703989767
0.1133421799
0.9693252021
0.4042517894
0.6884307214
0.1627650897
0.5280297005
0.6990777731
0.020703112
0.580238106
0.5673830342
0.0004066960

0.2294966863

Performance for
A2 on Problem
Instance 1
0.0633347888
1.0930402922
0.1792341981
1.207096969
1.0606484322
0.6473818857
0.8043431063
0.658958582
1.0576089397
0.7364416374
0.1942901434
0.5849134532
0.4971571929
0.2973731101
0.9801976669
0.1366545414
0.258875354
1.3587444717
1.0901669778
0.5101653608
0.6768334243
1.3479477059
1.1339212937
1.154985441
1.0054153791
1.0128717172
0.5093192254
1.3938111293
0.790654944

1.3811101009

Performance for A1 on Problem Instance 2 0.760460255 0.0572251119 0.5574389137 0.6322326728 0.3735014456 0.4563438955 0.189285421 0.0110451456 0.4170535561 0.7564326315 0.6220609574 0.0501721525 0.5578816063 0.9426834162 0.9013300173 0.6234262334 0.8931927863 0.3288020403 0.6895393033 0.7622498292 0.0886043736 0.0628773789 0.024849294 0.1848034125 0.5693529861 0.6075816357 0.9308488478 0.0362369791 0.6035423176

0.0712389681

Performance for A2 on Problem Instance 2 0.6551929305 0.3337481166 0.0036406675 0.178944475 0.7309588448 0.9244792748 0.4301181359 0.2721486911 0.7586322057 0.0227292371 0.4968550089 0.5922216047 0.9233305764 0.6820758707 0.0850999199 0.7930495869 0.8423898115 0.6413379584 0.7447397911 0.4499571978 0.303599728 0.1713403165 0.2187812116 0.3121568679 0.6661441082 0.7424533118 0.8053636709 0.8241804624 0.3438211307

0.5202705748

Performance for A1 on Problem Instance 3
0.5476658046
0.4137681613
0.0806697314
0.9069706099
0.1943163828
0.0127057396
0.6483924752
0.0711753396
0.6792222569
0.0306830725
0.4738853995
0.8292532503
0.9567378471
0.4673124996
0.96967731
0.1963517577
0.7760340429
0.4379052422
0.1255642571
0.6202795375
0.5320392225
0.579999126
0.827169888
0.17672092
0.8148790556
0.0247170569
0.0813859012
0.9262922227
0.7991833945
0.3406950799

Performance for A2 on Problem	
Instance 3	
0.9046872039	
0.9520324941	
0.7879171027	
0.7637043188	
0.409963062	
0.8664534697	
0.2972555845	
0.3053791677	
0.2630606971	
0.9960538673	
0.2809200487	
0.5101169699	
0.3927596693	
0.0602585103	
0.1907651876	
0.3978416505	
0.8830631927	
0.9575326536	
0.3187901091	
0.8254916123	
0.8695490318	
0.0869615532	
0.3043244402	
0.8562839972	
0.2333843976	
0.7947430999	
0.5402830557	
0.7284770885	
0.2747318668	
0.8479146701	

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Comparing Two Algorithms on Multiple Problem Instances Using Multiple Tests for 2 Groups

First Comparison

Performance for A1 on Problem Instance 1	Performance for A2 on Problem Instance 1
0.6015110151	0.0633347888
0.2947677998	1.0930402922
0.9636589224	0.1792341981
0.251976978	1.207096969
0.3701006544	1.0606484322
0.9940754515	0.6473818857
0.4283523627	0.8043431063
0.1904817054	0.658958582
0.7377491128	1.0576089397

Second Comparison

Performance for A1 on Problem Instance 2	Performance for A2 on Problem Instance 2
0.760460255	0.6551929305
0.0572251119	0.3337481166
0.5574389137	0.0036406675
0.6322326728	0.178944475
0.3735014456	0.7309588448
0.4563438955	0.9244792748
0.189285421	0.4301181359
0.0110451456	0.2721486911
0.4170535561	0.7586322057

Third Comparison

Performance for A1 on Problem Instance 3	Performance for A2 on Problem Instance 3
0.5476658046	0.9046872039
0.4137681613	0.9520324941
0.0806697314	0.7879171027
0.9069706099	0.7637043188
0.1943163828	0.409963062
0.0127057396	0.8664534697
0.6483924752	0.2972555845
0.0711753396	0.3053791677
0.6792222569	0.2630606971

- An observation in a group may be, e.g.:
 - One run of the group's EA on the group's problem instance with a given random seed.
 - One run of the group's ML algorithm on the group's dataset with a given training / validation / testing partition.
 - One run of the group's ML algorithm on the group's dataset with a given random seed and training / validation / testing partition.

Which Statistical Test To Use?

You could potentially use one of the statistical tests for two groups and perform one test for each problem instance.

Data Distr	ribution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality) Paired (related)	Paired t-test	ANOVA	
Non-parametric (no normality)	Unpaired (independent)	Wilcoxon rank-sum test = Mann–Whitney U test	Kruskal-Wallis test
	Paired (related)	Wilcoxon signed-rank test	Friedman test

Comparing Two Algorithms on Multiple Problem Instances Using Multiple Tests for 2 Groups

Advantage:

 You know in which problem instances the algorithms performed differently and in which they didn't.

Disadvantage:

- Multiple comparisons lead to higher probability of at least one Type I error.
- Requires p-values or level of significance to be corrected to avoid that (e.g., Holm-Bonferroni corrections).
 - Can in turn lead to weak tests (unlikely to detect differences).
 - Controversy in terms of how many comparisons to consider in the adjustment.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Performance for
A1 on Problem Instance 1
0.6015110151
0.2947677998
0.9636589224
0.251976978
0.3701006544
0.9940754515
0.4283523627
0.1904817054
0.7377491128
0.5392380701
0.4230920852
0.7221442924
0.8882444038
0.3186565207
0.5532666035
0.8306283304
0.4488794934
0.6386464711
0.703989767
0.1133421799
0.9693252021
0.4042517894
0.6884307214
0.1627650897
0.5280297005
0.6990777731
0.020703112
0.580238106

0.5673830342 0.2294966863

	Performance for A1	Performance for A2
Average Performance of Atlance 1 de la	0.5287501145	0.7941165821
of h	0.4587431195	0.5156587096
agrice 1	0.4847217528	0.5633566591
lerage Performance 1	0.251976978	1.207096969
de bern lus	0.3701006544	1.0606484322
Wergo, plen	0.9940754515	0.6473818857
E	0.4283523627	0.8043431063
2 00 / 2	0.1904817054	0.658958582
<u>C</u>	0.7377491128	1.0576089397
	0.5392380701	0.7364416374
	0.4230920852	0.1942901434
	0.7221442924	0.5849134532
	0.8882444038	0.4971571929

J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7 (2006) 1–30.

Performance for A1 on Problem Instance 2 0.6015110151 0.2947677998 0.9636589224 0.251976978 0.3701006544 0.9940754515 0.4283523627 0.1904817054 0.7377491128 0.5392380701 0.4230920852 0.7221442924 0.8882444038 0.3186565207 0.5532666035 0.8306283304 0.4488794934 0.6386464711 0.703989767 0.1133421799 0.9693252021 0.4042517894 0.6884307214 0.1627650897 0.5280297005 0.6990777731 0.020703112

> 0.580238106 0.5673830342 0.2294966863

Average Performance of A1 ence 2 on Problem Instance 2 on Problem

Performance for A1

0.5287501145

0.4587431195

0.4847217528

0.251976978

0.3701006544

0.9940754515

0.4283523627

0.1904817054

0.7377491128

0.5392380701

0.4230920852

0.7221442924

0.8882444038

Performance for A2

0.7941165821

0.5156587096

0.5633566591

1.207096969

1.0606484322

0.6473818857

0.8043431063

0.658958582

1.0576089397

0.7364416374

0.1942901434

0.5849134532

0.4971571929

0.2294966863

One Comparison

	Performance for A1	Performance for A2
	0.5287501145	0.7941165821
4 \	0.4587431195	0.5156587096
Ce	0.4847217528	0.5633566591
an T	0.251976978	1.207096969
stance	0.3701006544	1.0606484322
<u></u>	0.9940754515	0.6473818857
\subseteq	0.4283523627	0.8043431063
<u>©</u>	0.1904817054	0.658958582
roble	0.7377491128	1.0576089397
<u></u>	0.5392380701	0.7364416374
	0.4230920852	0.1942901434
	0.7221442924	0.5849134532
	0.8882444038	0.4971571929

- An observation in a group may be, e.g.:
 - The average of multiple runs of the group's EA on a given problem instance.
 - The multiple runs are performed by varying the EA's random seed.
 - The average of multiple runs of the group's ML algorithm on a given dataset.
 - The multiple runs are performed by varying the ML algorithm's random seed and/or training/ validation/test sample.

Which Statistical Test To Use?

You could potentially use one of the statistical tests for two paired groups, most likely Wilcoxon Signed-Rank Test.

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality) Pair	Paired (related)	Paired t-test	ANOVA
Non-parametric (no normality)	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
	Paired (related)	Wilcoxon signed-rank test	Friedman test

J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7 (2006) 1–30.

Advantages:

No issue with multiple comparisons.

Disadvantages:

- The test can still be weak if the number of problem instances (i.e., observations) is too small.
- Ignores variability across runs use only the combined (e.g., average) result for each set of runs.
- When the two algorithms are not significantly different across problem instances, it does not mean that the two algorithms perform similarly on each individual problem instance.
 - It could be that one algorithm is better for some problem instances, and worse for others. So, overall, there is no winner across problem instances.

Potential Solution to Mitigate Lack of Insights When The Algorithms Are Not Significantly Different Across Datasets: Effect Size

- Use measures of effect size for each problem instance separately.
- E.g.: non-parametric A12 effect size.
 - Represents the probability that running a given algorithm A1 yields better results than A2.
 - Big is |A12| >= 0.71
 - Medium is |A12| >= 0.64
 - Small is |A12| >= 0.56
 - Insignificant is |A12| < 0.56

	A1	A2	Effect Size
	0.5287501145	0.7941165821	0.3
	0.4587431195	0.5156587096	-0.7
$\widetilde{\mathcal{A}}$	0.4847217528	0.5633566591	-0.4
	0.251976978	1.207096969	0.8
i S	0.3701006544	1.0606484322	0.25
ınstance	0.9940754515	0.6473818857	-0.4
	0.4283523627	0.8043431063	-0.9
Œ	0.1904817054	0.658958582	0.7
$\overline{\mathbf{Q}}$	0.7377491128	1.0576089397	0.78
Problem	0.5392380701	0.7364416374	-0.3
上	0.4230920852	0.1942901434	-0.22
	0.7221442924	0.5849134532	0.12
	0.7221442924	0.5849134532	0.12

Performance for

Performance for

0.4

Effect Size

Advantages:

- Not affected by the number of runs.
- Avoid multiple comparison issue of statistical tests.
- Gives an idea of the size of the effect of the difference in performance.

Disadvantages:

- Completely ignores the number of runs.
 - Could have large effect sizes even if the experiment was based on very few runs.
 - So, it's recommended to be used together with statistical tests, following a rejection of H0.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Runs for Comparing Multiple Algorithms On a Single Problem Instance

Runs

Performance for A1	Perfo
0.6015110151	0.06
0.2947677998	1.09
0.9636589224	0.17
0.251976978	1.2
0.3701006544	1.06
0.9940754515	0.64
0.4283523627	0.80
0.1904817054	0.6
0.7377491128	1.05
0.5392380701	0.73
0.4230920852	0.19
0.7221442924	0.58
0.8882444038	0.49
0.3186565207	0.29
0.5532666035	0.98
0.8306283304	0.13
0.4488794934	0.2
0.6386464711	1.35
0.703989767	1.09
0.1133421799	0.51
0.9693252021	0.67
0.4042517894	1.34
0.6884307214	1.13
0.1627650897	1.1
0.5280297005	1.00
0.6990777731	1.01
0.020703112	0.50
0.580238106	1.39
0.5673830342	0.7
0.2294966863	1.38

erformance for	Performance for A3
0.0633347888	0.7725776185
1.0930402922	0.6037878711
0.1792341981	0.2000145838
1.207096969	0.1124429684
1.0606484322	0.0765464923
0.6473818857	0.9356262246
0.8043431063	0.893382197
0.658958582	0.3686623329
1.0576089397	0.0552056497
0.7364416374	0.6485590856
0.1942901434	0.686919529
0.5849134532	0.956750494
0.4971571929	0.8807609468
0.2973731101	0.2476675087
0.9801976669	0.3168956009
0.1366545414	0.7664107613
0.258875354	0.1607483861
1.3587444717	0.1702079105
1.0901669778	0.1151715671
0.5101653608	0.5060234619
0.6768334243	0.6248869323
1.3479477059	0.4384962961
1.1339212937	0.8133689603
1.154985441	0.0685902033
1.0054153791	0.9532216617
1.0128717172	0.7946400358
0.5093192254	0.1304510306
1.3938111293	0.3950510006
0.790654944	0.6486004062
1.3811101009	0.5494810601

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Comparing Multiple Algorithms On a Single Problem Instance Using Multiple Tests for 2 Groups

First Comparison

	<u> </u>
Performance for A1	Performance for A2
0.6015110151	0.0633347888
0.2947677998	1.0930402922
0.9636589224	0.1792341981
0.251976978	1.207096969
0.3701006544	1.0606484322
0.9940754515	0.6473818857
0.4283523627	0.8043431063
0.1904817054	0.658958582
0.7377491128	1.0576089397
0.5392380701	0.7364416374
0.4230920852	0.1942901434
0.7221442924	0.5849134532
0.8882444038	0.4971571929
0.3186565207	0.2973731101
0.5532666035	0.9801976669
0.8306283304	0.1366545414

Second Comparison

Performance for	Performance for
0.6015110151	0.7725776185
0.2947677998	0.6037878711
0.9636589224	0.2000145838
0.251976978	0.1124429684
0.3701006544	0.0765464923
0.9940754515	0.9356262246
0.4283523627	0.893382197
0.1904817054	0.3686623329
0.7377491128	0.0552056497
0.5392380701	0.6485590856
0.4230920852	0.686919529
0.7221442924	0.956750494
0.8882444038	0.8807609468
0.3186565207	0.2476675087
0.5532666035	0.3168956009
0.8306283304	0.7664107613

Third Comparison

Performance for A2	Performance for A3	
0.0633347888	0.7725776185	
1.0930402922	0.6037878711	
0.1792341981	0.2000145838	
1.207096969	0.1124429684	
1.0606484322	0.0765464923	
0.6473818857	0.9356262246	
0.8043431063	0.893382197	
0.658958582	0.3686623329	
1.0576089397	0.0552056497	
0.7364416374	0.6485590856	
0.1942901434	0.686919529	
0.5849134532	0.956750494	
0.4971571929	0.8807609468	
0.2973731101	0.2476675087	
0.9801976669	0.3168956009	
0.1366545414	0.7664107613	

. .

- An observation in a group may be, e.g.:
 - One run of the group's EA on the problem instance with a given random seed.
 - One run of the group's ML algorithm on the dataset with a given training / validation / testing partition.
 - One run of the group's ML algorithm on the dataset with a given random seed and training / validation / testing partition.

Which Statistical Test To Use?

You could potentially use one of the statistical tests for two groups and perform one test for each problem instance.

Data Distr	ribution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann–Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Comparing Multiple Algorithms On a Single Problem Instance Using Multiple Tests for 2 Groups

- Advantages and disadvantages
 - Similar to those of the pairwise comparisons of two algorithms on multiple problem instances.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Runs

Compare Multiple Algorithms On a Single Problem Instance Using a Test for N Groups

One Comparison

Performance for A1	Performance for A2	Performance for A3
0.6015110151	0.0633347888	0.7725776185
0.2947677998	1.0930402922	0.6037878711
0.9636589224	0.1792341981	0.2000145838
0.251976978	1.207096969	0.1124429684
0.3701006544	1.0606484322	0.0765464923
0.9940754515	0.6473818857	0.9356262246
0.4283523627	0.8043431063	0.893382197
0.1904817054	0.658958582	0.3686623329
0.7377491128	1.0576089397	0.0552056497
0.5392380701	0.7364416374	0.6485590856
0.4230920852	0.1942901434	0.686919529
0.7221442924	0.5849134532	0.956750494
0.8882444038	0.4971571929	0.8807609468
0.3186565207	0.2973731101	0.2476675087
0.5532666035	0.9801976669	0.3168956009
0.8306283304	0.1366545414	0.7664107613
0.4488794934	0.258875354	0.1607483861
0.6386464711	1.3587444717	0.1702079105
0.703989767	1.0901669778	0.1151715671
0.1133421799	0.5101653608	0.5060234619
0.9693252021	0.6768334243	0.6248869323
0.4042517894	1.3479477059	0.4384962961
0.6884307214	1.1339212937	0.8133689603
0.1627650897	1.154985441	0.0685902033
0.5280297005	1.0054153791	0.9532216617
0.6990777731	1.0128717172	0.7946400358
0.020703112	0.5093192254	0.1304510306
0.580238106	1.3938111293	0.3950510006
0.5673830342	0.790654944	0.6486004062
0.2294966863	1.3811101009	0.5494810601

- An observation in a group may be, e.g.:
 - One run of the group's EA on the problem instance with a given random seed.
 - One run of the group's ML algorithm on the dataset with a given training / validation / testing partition.
 - One run of the group's ML algorithm on the dataset with a given random seed and training / validation / testing partition.

Which Statistical Test To Use?

You could potentially use one of the statistical tests for N groups. Kruskal-Wallis and Friedman are non-parametric, but ANOVA enables comparison of multiple factors and their interactions.

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test OU/1)
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Compare Multiple Algorithms On a Single Problem Instance Using a Test for N Groups

Advantage:

- More powerful.
- Disadvantages:
 - Doesn't tell which pair is different.
 - Relies on post-hoc tests for determining which pair is different.
 - Post-hoc tests are weaker.

ANOVA - Analysis of Variance

- Enables to analyse the impact of multiple factors and their interactions.
- Examples of factors:
 - Algorithms.
 - Each parameter of an algorithm.
 - Datasets given as inputs to algorithms.
 - Initial condition of an algorithm (when dealing with paired data).
 - •
- Each factor can have multiple levels.
- Each factor level and each combination of factors with their levels is a group.

Example of Factors and Corresponding Groups

- parameter β with levels β1, β2, β3
- parameter α with levels α1,α2.

Performance β1,α1	Performance β2,α1	Performance β3,α1
0.2427365435	0.8207683226	0.0068735215
0.2838782503	0.6193219672	0.7603308253
0.4728852466	0.718615256	0.991473224
0.1602043263	0.6568282119	0.9653211501
0.3113725667	0.003657249	0.9002240284
0.7092353466	0.9641411756	0.9044996039
0.1243187189	0.1916947681	0.5001887854
0.9923597255	0.4643217917	0.4644260767
0.1593878649	0.7075588114	0.6043046496
0.7137943972	0.7178264102	0.3684897267
0.4405825825	0.9738042639	0.6371247198
0.0546034079	0.1643357663	0.8491521557
0.130989165	0.8930972954	0.9200755227
0.4630962713	0.7359805298	0.7894468571
0.3653479179	0.0494488408	0.4480319903
Performance	Performance	Performance
Performance β1,α2	Performance β2,α2	Performance β3,α2
β1,α2	β2,α2	β3,α2
β1,α2 0.6513221103	β2,α2 0.7155298328	β3,α2 0.5250285096
β1,α2 0.6513221103 0.4486536453	β2,α2 0.7155298328 0.4544934118	β3,α2 0.5250285096 0.2665807758
β1,α2 0.6513221103 0.4486536453 0.923068983	β2,α2 0.7155298328 0.4544934118 0.4432370842	β3,α2 0.5250285096 0.2665807758 0.0714614966
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421 0.3358277807	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673 0.1917446121	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841 0.0112761131
β1,α2 0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421 0.3358277807 0.7760143983	β2,α2 0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673 0.1917446121 0.2131797303	β3,α2 0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841 0.0112761131 0.4513054562

Performance β1	Performance β2	Performance β3
0.2427365435	0.8207683226	0.0068735215
0.2838782503	0.6193219672	0.7603308253
0.4728852466	0.718615256	0.991473224
0.1602043263	0.6568282119	0.9653211501
0.3113725667	0.003657249	0.9002240284
0.7092353466	0.9641411756	0.9044996039
0.1243187189	0.1916947681	0.5001887854
0.9923597255	0.4643217917	0.4644260767
0.1593878649	0.7075588114	0.6043046496
0.7137943972	0.7178264102	0.3684897267
0.4405825825	0.9738042639	0.6371247198
0.0546034079	0.1643357663	0.8491521557
0.130989165	0.8930972954	0.9200755227
0.4630962713	0.7359805298	0.7894468571
0.3653479179	0.0494488408	0.4480319903
0.6513221103	0.7155298328	0.5250285096
0.4486536453	0.4544934118	0.2665807758
0.923068983	0.4432370842	0.0714614966
0.2180154489	0.8604004404	0.2213692251
0.871509453	0.4888057283	0.9734517445
0.5255328568	0.120754892	0.8236567329
0.7085732815	0.5772912123	0.7173770375
0.869020659	0.8938754508	0.6566561072
0.674964929	0.0196329623	0.5775361005
0.1924289421	0.5813982673	0.0571435841
0.3358277807	0.1917446121	0.0112761131
0.7760143983	0.2131797303	0.4513054562
0.5871792892	0.9556053877	0.1188456733
0.2420052565	0.50039103	0.7654434184
0.9896802846	0.1324466465	0.6181376898

Performance a1	Performance q2
0.2427365435	0.6513221103
0.2838782503	0.4486536453
0.4728852466	0.923068983
0.1602043263	0.2180154489
0.3113725667	0.871509453
0.7092353466	0.5255328568
0.1243187189	0.7085732815
0.9923597255	0.869020659
0.1593878649	0.674964929
0.7137943972	0.1924289421
0.4405825825	0.3358277807
0.0546034079	0.7760143983
0.130989165	0.5871792892
0.4630962713	0.2420052565
0.3653479179	0.9896802846
0.8207683226	0.7155298328
0.6193219672	0.4544934118
0.718615256	0.4432370842
0.6568282119	0.8604004404
0.003657249	0.4888057283
0.9641411756	0.120754892
0.1916947681	0.5772912123
0.4643217917	0.8938754508
0.7075588114	0.0196329623
0.7178264102	0.5813982673
0.9738042639	0.1917446121
0.1643357663	0.2131797303
0.8930972954	0.9556053877
0.7359805298	0.50039103
0.0494488408	0.1324466465
0.0068735215	0.5250285096
0.7603308253	0.2665807758
0.991473224	0.0714614966
0.9653211501	0.2213692251
0.9002240284	0.9734517445
0.9044996039	0.8236567329
0.5001887854	0.7173770375
0.4644260767	0.6566561072
0.6043046496	0.5775361005
0.3684897267	0.0571435841
0.6371247198	0.0112761131
0.8491521557	0.4513054562
0.9200755227	0.1188456733
0.7894468571	0.7654434184
0.4480319903	0.6181376898
0.4400019900	0.0101070030

ANOVA - Analysis of Variance

- Assumptions:
 - Normality*.
 - Equal variances (Levene test, F-test)*.
 - Independence of observations (in each group and between groups).
 - Possibly several others, depending on the type of ANOVA.

^{*} violation to this may not be a big problem if equal no. observations are used for each group: http://vassarstats.net/textbook/ (chapter 14, part 1)

^{**}Sensitivity to violations of sphericity: Gueorguieva; Krystal (2004). "Move Over ANOVA". Arch Gen Psychiatry 61: 310–317. doi:10.1001/archpsyc.61.3.310

ANOVA for Unpaired and Paired Comparisons

unpaired

one-factor (one-way) ANOVA

column factor

group A	group B	group C
4.23	2.51	3.04
3.21	3.3	2.89
3.63	3.75	3.55
4.42	3.22	4.39
4.08	3.99	3.86
3.98	3.65	3.5
3.75	2.62	3.6
3.22	2.93	3.21

We cannot say that three groups are significantly different. (*p*=0.089)

paired two-factor (two-way) ANOVA

column factor

sample factor

initial condition	group A	group B	group C
#1	4.23	2.51	3.04
#2	3.21	3.3	2.89
#3	3.63	3.75	3.55
#4	4.42	3.22	4.39
#5	4.08	3.99	3.86
#6	3.98	3.65	3.5
#7	3.75	2.62	3.6
#8	3.22	2.93	3.21

There are significant difference somewhere among three groups. (p<0.05)

Within vs Between Subject Factors

The type of ANOVA to be used will also depend on whether factors are within- or between-subject.

Between-subjects factor in medicine:

Consider a study of the treatment of a certain disease using drugs D1 and D2.

Factor: drug. Levels: D1, D2.

Contaminated persons (subjects) in group 1 were examined after being given drug D1, whereas other contaminated persons in group 2 were examined after being given drug D2.

We had to change subjects to vary the factor level.

Within vs Between Subject Factors

The type of ANOVA to be used will also depend on whether factors are within- or between-subject.

Within-subjects factor in medicine:

Consider a study of the treatment of a certain disease using different doses of a drug (dose D1 and D2).

Factor: drug dose. Levels: D1, D2.

Each contaminated person (subject) was examined twice, once after using dose D1 and once after using dose D2.

Different levels were investigated using the same subjects.

If different subjects were paired in some way, you may have to consider the factor as within-subject!

Within vs Between Subject Factors

In computational intelligence:

- If you are testing a neural network approach and you have to vary the dataset in order to vary the level of a factor, this factor is likely to be a between-subjects factor.
- Similar for an evolutionary algorithm and problem instances.
- Most other cases would be within-subject factors (?)

ANOVA

One-way ANOVA:

- 1-factor (1-way).
- between-subjects.

Repeated measures ANOVA:

- 1-factor (1-way).
- within-subjects.
- Assumption of sphericity is important when factors have more than 2 levels*: variances of the differences between all
 possible pairs of groups are equal.
 - (Check with Mauchly test, use Greenhouse-Geisser corrections if violated).

Factorial ANOVA:

- 2- or 3-factors (2- or 3- way) (more factors are allowed, but difficult to interpret).
- allows to analyse interactions among factors.
- between-subjects.

Multi-factor (multi-way) repeated measures ANOVA:

- Similar to repeated measures, but allow multiple factors.
- If you choose GLM -> Repeated Measures in SPSS

Split-plot ANOVA:

- 2- or 3-factors (2- or 3- way) (more factors are allowed, but difficult to interpret).
- allows to analyse interactions among factors.
- both between and within-subjects are present.
- Sphericity assumption*.
- If you choose GLM -> Repeated Measures in SPSS, you can use a split-plot design.

^{*}Sensitivity to violations of sphericity: Gueorguieva; Krystal (2004). "Move Over ANOVA". Arch Gen Psychiatry 61: 310–317. doi:10.1001/archpsyc.61.3.310

ANOVA

- Be careful with the possibility of people using different terminologies.
- Before using an ANOVA, double check what is said about its robustness to assumptions and possible corrections to violations.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Runs for Comparing Multiple Algorithms On Multiple Problem Instances

A1,P1	Performance A2,P1	Performance A3,P1
· · · · · · · · · · · · · · · · · · ·		
0.2427365435	0.8207683226	0.0068735215
0.2838782503	0.6193219672	0.7603308253
0.4728852466	0.718615256	0.991473224
0.1602043263	0.6568282119	0.9653211501
0.3113725667	0.003657249	0.9002240284
0.7092353466	0.9641411756	0.9044996039
0.1243187189	0.1916947681	0.5001887854
0.9923597255	0.4643217917	0.4644260767
0.1593878649	0.7075588114	0.6043046496
0.7137943972	0.7178264102	0.3684897267
0.4405825825	0.9738042639	0.6371247198
0.0546034079	0.1643357663	0.8491521557
0.130989165	0.8930972954	0.9200755227
0.4630962713	0.7359805298	0.7894468571
0.3653479179	0.0494488408	0.4480319903
Performance	Performance	Performance
A1,P2	A2,P2	A3,P2
		,
0.6513221103 0.4486536453	0.7155298328	0.5250285096
0.923068983	0.4544934118	0.2665807758
0.2180154489	0.4432370842	0.0714614966
0.2160154469	0.8604004404	0.2213692251
0.5255328568	0.4888057283	0.9734517445
0.7085732815	0.120754892	0.8236567329
0.869020659	0.5772912123	0.7173770375
0.674964929	0.8938754508	0.6566561072
0.1924289421	0.0196329623	0.5775361005
0.3358277807	0.5813982673	0.0571435841
0.7760143983	0.1917446121	0.0112761131
0.5871792892	0.2131797303	0.4513054562
0.2420052565	0.9556053877 0.50039103	0.1188456733 0.7654434184
	0.30039103	
0.9896802846	0.1324466465	0.6181376898
0.9896802846	0.1324466465	0.6181376898
0.9896802846 Performance A1,P3	0.1324466465 Performance A2,P3	0.6181376898 Performance A3,P3
0.9896802846 Performance	0.1324466465 Performance A2,P3 0.4970160131	0.6181376898 Performance A3,P3 0.4718756455
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564
0.9896802846 Performance A1,P3 0.3416006903	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269 0.729700828	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621 0.9125746179	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632 0.0460176817
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269 0.729700828 0.7470682827	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621 0.9125746179 0.0554353041	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632 0.0460176817 0.1263241582
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269 0.729700828 0.7470682827 0.1673516291	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621 0.9125746179 0.0554353041 0.7514405253	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632 0.0460176817 0.1263241582 0.4142972319
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269 0.729700828 0.7470682827 0.1673516291 0.3971516509	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621 0.9125746179 0.0554353041 0.7514405253 0.0083224922	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632 0.0460176817 0.1263241582 0.4142972319 0.3836179054
0.9896802846 Performance A1,P3 0.3416006903 0.7381210078 0.1071763751 0.8742274034 0.7084579663 0.1219630796 0.2974400269 0.729700828 0.7470682827 0.1673516291 0.3971516509 0.8030160547	0.1324466465 Performance A2,P3 0.4970160131 0.3584098418 0.7864971575 0.1541535386 0.508243141 0.8280537131 0.3944554154 0.8581229621 0.9125746179 0.0554353041 0.7514405253	0.6181376898 Performance A3,P3 0.4718756455 0.8155352564 0.7240501319 0.9032038082 0.7062380635 0.9749030762 0.6101680766 0.0641535632 0.0460176817 0.1263241582 0.4142972319

57

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Comparing Multiple Algorithms On Multiple Problem Instances Using Multiple Tests for 2 Groups

2nd comparison

3rd comparison

ot con pancon				
A1,P1	A2,P1			
0.2427365	0.82076832			
0.2838782	0.6193219			
0.4728852	0.7186152			
0.1602043	0.6568282			
0.3113725	0.00365724			
0.7092353	0.96414117			
0.1243187	0.19169470			
0.9923597	0.46432179			
0.1593878	0.7075588			
0.7137943	0.7178264			
0.4405825	0.97380420			
0.0546034	0.16433570			
0.1309891	0.89309729			
0.4630962	0.7359805			
0.3653479	0.04944884			

na companeer				
A1,P1	A3,P1			
0.2427365	0.0068735			
0.2838782	0.7603308			
0.4728852	0.9914732			
0.1602043	0.9653211			
0.3113725	0.9002240			
0.7092353	0.9044996			
0.1243187	0.5001887			
0.9923597	0.4644260			
0.1593878	0.6043046			
0.7137943	0.3684897			
0.4405825	0.6371247			
0.0546034	0.8491521			
0.1309891	0.9200755			
0.4630962	0.7894468			
0.3653479	0.4480319			

A2,P1	A3,P1
0.82076832	0.0068735
0.61932190	0.7603308
0.7186152	0.9914732
0.6568282	0.9653211
0.00365724	0.9002240
0.96414117	0.9044996
0.19169470	0.5001887
0.46432179	0.4644260
0.7075588	0.6043046
0.7178264	0.3684897
0.97380420	0.6371247
0.16433570	0.8491521
0.89309729	0.9200755
0.73598052	0.7894468
0.04944884	0.4480319
N. I	

4th	com	parison

h+h	comparisor	١
, , , , , ,		1
Out	COLLIDATION	ı

~··			
(-`+h	$\sim \sim \sim$	NO 0 K	1000
nııı	1 11 11	11111	10.7 11
()	com	ונאכוו	ולאכו

tir companson		
A1,P2	A2,P2	
0.65132211	0.71552983	
0.44865364	0.45449341	
0.92306898	0.44323708	
0.21801544	0.86040044	
0.87150945	0.48880572	
0.52553285	0.12075489	
0.70857328	0.57729121	
0.86902065	0.89387545	
0.67496492	0.01963296	
0.19242894	0.58139826	
0.33582778	0.19174461	
0.77601439	0.21317973	
0.58717928	0.95560538	
0.24200525	0.50039103	
0.98968028	0.13244664	

A1,P2	A3,P2
0.65132211	0.52502850
0.44865364	0.26658077
0.92306898	0.07146149
0.21801544	0.22136922
0.87150948	0.97345174
0.52553288	0.82365673
0.70857328	0.71737703
0.86902068	0.65665610
0.67496492	0.57753610
0.19242894	0.05714358
0.33582778	0.01127611
0.77601438	0.45130548
0.58717928	0.11884567
0.24200528	0.76544341
0.98968028	0.61813768

	1		
	A3,P2	A2,P2	4
211	0.52502850	0.7155298	3 0.
36∠	0.26658077	0.4544934	1 0.:
398	0.07146149	0.4432370	0.0
44	0.22136922	0.8604004	4 0.:
145	0.97345174	0.4888057	2 0.
285	0.82365673	0.1207548	9 0.
328	0.71737703	0.5772912	1 0.
965	0.65665610	0.8938754	5 0.
192	0.57753610	0.0196329	6 0.
394	0.05714358	0.5813982	6 0.
78	0.01127611	0.1917446	1 0.
139	0.45130545	0.2131797	3 0.
28	0.11884567	0.9556053	0.
525	0.76544341	0.5003910	3 0.
28	0.61813768	0.1324466	4 0.

A1,P2	A3,P2
0.65132211	0.52502850
0.44865364	0.26658077
0.92306898	0.07146149
0.21801544	0.22136922
0.87150945	0.97345174
0.52553285	0.82365673
0.70857328	0.71737703
0.86902065	0.65665610
0.67496492	0.57753610
0.19242894	0.05714358
0.33582778	0.01127611
0.77601439	0.45130545
0.58717928	0.11884567
0.24200525	0.76544341
0.98968028	0.61813768

\3,P2	A2,P2	A3,P
52502850	0.71552983	0.5250
26658077	0.45449341	0.26658
07146149	0.44323708	0.0714
22136922	0.86040044	0.2213
97345174	0.48880572	0.9734
82365673	0.12075489	0.8236
71737703	0.57729121	0.7173
65665610	0.89387545	0.6566
57753610	0.01963296	0.5775
05714358	0.58139826	0.05714
01127611	0.19174461	0.01127
45130545	0.21317973	0.45130
11884567	0.95560538	0.11884
76544341	0.50039103	0.7654
61813768	0.13244664	0.61813

8th comparison th comparison

A1,P3	A2,P3	A1,P3	A3,P3
0.34160069	0.49701601	0.34160069	0.47187564
0.73812100	0.35840984	0.73812100	0.81553525
0.10717637	0.78649715	0.10717637	0.72405013
0.87422740	0.15415353	0.87422740	0.90320380
0.70845796	0.50824314	0.70845796	0.70623806
0.12196307	0.82805371	0.12196307	0.97490307
0.29744002	0.39445541	0.29744002	0.61016807
0.72970082	0.85812296	0.72970082	0.06415356
0.74706828	0.91257461	0.74706828	0.04601768
0.16735162	0.05543530	0.16735162	0.12632415
0.39715165	0.75144052	0.39715165	0.41429723
0.80301605	0.00832249	0.80301605	0.38361790
0.64702500	0.80226862	0.64702500	0.86016245
0.42098550	0.44239595	0.42098550	0.55391530
0.81145584	0.15374861	0.81145584	0.94106347

9th comparison

A2,P3	A3,P3
0.49701601	0.47187564
0.35840984	0.81553525
0.78649715	0.72405013
0.15415353	0.90320380
0.50824314	0.70623806
0.82805371	0.97490307
0.39445541	0.61016807
0.85812296	0.06415356
0.91257461	0.04601768
0.05543530	0.12632415
0.75144052	0.41429723
0.00832249	0.38361790
0.80226862	0.86016245
0.44239595	0.55391530
0.15374861	0.94106347

- An observation in a group may be, e.g.:
 - One run of the group's EA on the group's problem instance with a given random seed.
 - One run of the group's ML algorithm on the group's dataset with a given training / validation / testing partition.
 - One run of the group's ML algorithm on the group's dataset with a given random seed and training / validation / testing partition.

Which Statistical Test To Use?

You could potentially use one of the statistical tests for N groups. Kruskal-Wallis and Friedman are non-parametric, but ANOVA enables comparison of multiple factors and their interactions.

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann–Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test Nemen

Comparing Multiple Algorithms On Multiple Problem Instances Using Multiple Tests for 2 Groups

- Advantages and disadvantages similar to:
 - comparison of two algorithms over multiple problem instances based on pairwise comparisons and
 - comparison of multiple algorithms over a single problem instance based on pairwise comparisons.

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Example of Factors and Corresponding Groups

- parameter β with levels β1, β2, β3
- parameter P with levels P1,P2.

Performance β1,P1	Performance β2,P1	Performance β3,P1
0.2427365435	0.8207683226	0.0068735215
0.2838782503	0.6193219672	0.7603308253
0.4728852466	0.718615256	0.991473224
0.1602043263	0.6568282119	0.9653211501
0.3113725667	0.003657249	0.9002240284
0.7092353466	0.9641411756	0.9044996039
0.1243187189	0.1916947681	0.5001887854
0.9923597255	0.4643217917	0.4644260767
0.1593878649	0.7075588114	0.6043046496
0.7137943972	0.7178264102	0.3684897267
0.4405825825	0.9738042639	0.6371247198
0.0546034079	0.1643357663	0.8491521557
0.130989165	0.8930972954	0.9200755227
0.4630962713	0.7359805298	0.7894468571
0.3653479179	0.0494488408	0.4480319903
Performance	Performance	Performance
β1,P2	β2,P2	β3,P2
β1,P2 0.6513221103	β2,P2 0.7155298328	β3,P2 0.5250285096
• *	• •	
0.6513221103	0.7155298328	0.5250285096
0.6513221103 0.4486536453	0.7155298328 0.4544934118	0.5250285096 0.2665807758
0.6513221103 0.4486536453 0.923068983	0.7155298328 0.4544934118 0.4432370842	0.5250285096 0.2665807758 0.0714614966
0.6513221103 0.4486536453 0.923068983 0.2180154489	0.7155298328 0.4544934118 0.4432370842 0.8604004404	0.5250285096 0.2665807758 0.0714614966 0.2213692251
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421 0.3358277807	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673 0.1917446121	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841 0.0112761131
0.6513221103 0.4486536453 0.923068983 0.2180154489 0.871509453 0.5255328568 0.7085732815 0.869020659 0.674964929 0.1924289421 0.3358277807 0.7760143983	0.7155298328 0.4544934118 0.4432370842 0.8604004404 0.4888057283 0.120754892 0.5772912123 0.8938754508 0.0196329623 0.5813982673 0.1917446121 0.2131797303	0.5250285096 0.2665807758 0.0714614966 0.2213692251 0.9734517445 0.8236567329 0.7173770375 0.6566561072 0.5775361005 0.0571435841 0.0112761131 0.4513054562

Performance β1	Performance β2	Performance β3
0.2427365435	0.8207683226	0.0068735215
0.2838782503	0.6193219672	0.7603308253
0.4728852466	0.718615256	0.991473224
0.1602043263	0.6568282119	0.9653211501
0.3113725667	0.003657249	0.9002240284
0.7092353466	0.9641411756	0.9044996039
0.1243187189	0.1916947681	0.5001887854
0.9923597255	0.4643217917	0.4644260767
0.1593878649	0.7075588114	0.6043046496
0.7137943972	0.7178264102	0.3684897267
0.4405825825	0.9738042639	0.6371247198
0.0546034079	0.1643357663	0.8491521557
0.130989165	0.8930972954	0.9200755227
0.4630962713	0.7359805298	0.7894468571
0.3653479179	0.0494488408	0.4480319903
0.6513221103	0.7155298328	0.5250285096
0.4486536453	0.4544934118	0.2665807758
0.923068983	0.4432370842	0.0714614966
0.2180154489	0.8604004404	0.2213692251
0.871509453	0.4888057283	0.9734517445
0.5255328568	0.120754892	0.8236567329
0.7085732815	0.5772912123	0.7173770375
0.869020659	0.8938754508	0.6566561072
0.674964929	0.0196329623	0.5775361005
0.1924289421	0.5813982673	0.0571435841
0.3358277807	0.1917446121	0.0112761131
0.7760143983	0.2131797303	0.4513054562
0.5871792892	0.9556053877	0.1188456733
0.2420052565	0.50039103	0.7654434184
0.9896802846	0.1324466465	0.6181376898

Performance P1	Performance P2
0.2427365435	0.6513221103
0.2838782503	0.4486536453
0.4728852466	0.923068983
0.1602043263	0.2180154489
0.3113725667	0.871509453
0.7092353466	0.5255328568
0.1243187189	0.7085732815
0.9923597255	0.869020659
0.1593878649	0.674964929
0.7137943972	0.1924289421
0.4405825825	0.3358277807
	0.7760143983
0.0546034079	0.5871792892
0.130989165	0.2420052565
0.4630962713	
0.3653479179 0.8207683226	0.9896802846
	0.7155298328
0.6193219672	0.4544934118
0.718615256	0.4432370842
0.6568282119	0.8604004404
0.003657249	0.4888057283
0.9641411756	0.120754892
0.1916947681	0.5772912123
0.4643217917	0.8938754508
0.7075588114	0.0196329623
0.7178264102	0.5813982673
0.9738042639	0.1917446121
0.1643357663	0.2131797303
0.8930972954	0.9556053877
0.7359805298	0.50039103
0.0494488408	0.1324466465
0.0068735215	0.5250285096
0.7603308253	0.2665807758
0.991473224	0.0714614966
0.9653211501	0.2213692251
0.9002240284	0.9734517445
0.9044996039	0.8236567329
0.5001887854	0.7173770375
0.4644260767	0.6566561072
0.6043046496	0.5775361005
0.3684897267	0.0571435841
0.6371247198	0.0371463641
0.8491521557	0.4513054562
0.9200755227	0.4513054502
0.9200755227	0.7654434184
0.4480319903	0.6181376898

Which Statistical Test To Use?

You could potentially use one of the statistical tests for N groups. Kruskal-Wallis and Friedman are non-parametric, but ANOVA enables comparison of multiple factors and their interactions.

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Remember that the problem instance can be a between-subjects factor in ANOVA. 64

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Problem Instance

Comparing Multiple Algorithms On Multiple Problem Instances Using a Test for N Groups

One Comparison

Average Performance for A1	Average Performance for A2	Average Performance for A3	Average Performance for A4
0.6015110151	0.0633347888	0.0633347888	0.0633347888
0.2947677998	1.0930402922	1.0930402922	1.0930402922
0.9636589224	0.1792341981	0.1792341981	0.1792341981
0.251976978	1.207096969	1.207096969	1.207096969
0.3701006544	1.0606484322	1.0606484322	1.0606484322
0.9940754515	0.6473818857	0.6473818857	0.6473818857
0.4283523627	0.8043431063	0.8043431063	0.8043431063
0.1904817054	0.658958582	0.658958582	0.658958582
0.7377491128	1.0576089397	1.0576089397	1.0576089397
0.5392380701	0.7364416374	0.7364416374	0.7364416374
0.4230920852	0.1942901434	0.1942901434	0.1942901434
0.7221442924	0.5849134532	0.5849134532	0.5849134532
0.8882444038	0.4971571929	0.4971571929	0.4971571929

- An observation in a group may be, e.g.:
 - The average of multiple runs of the group's EA on a given problem instance.
 - The multiple runs are performed by varying the EA's random seed.
 - The average of multiple runs of the group's ML algorithm on a given dataset.
 - The multiple runs are performed by varying the ML algorithm's random seed and/or training/ validation/test sample.

Comparing Multiple Algorithms On Multiple Problem Instances Using a Test for N Groups

- Similar to comparison of two algorithms over multiple problem instances, we can consider each observation to be the average results of a given algorithm on a given problem instance over multiple runs.
- But also similar to comparison of multiple algorithms over a single problem instance, instead of using a statistical test for 2 groups, we use for N groups.
- Advantages and disadvantages can be derived as before.

Examples of Statistical Hypothesis Tests

You could potentially use one of the statistical tests for paired N groups, most likely Friedman.

	9 3 1		
Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA TUKON
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test Dunn
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on a single problem instance.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
 - Tests for N groups.
 - Observation corresponds to a single run.
 - Observation corresponds to the aggregation of multiple runs.
- Commands to run the statistical tests.

Software or Programming Languages With Statistical Support

- Many available:
 - R, Matlab, SPSS, etc.
- R:
 - Programming language for statistical computing.
 - Can be used to run statistical tests.

Reading Observations

- You can enter observations manually, or you can load observations from a .csv table. E.g.:
 - observations2 =
 read.csv('/Users/minkull/
 Desktop/observations-two groups.csv', header =
 TRUE, sep = ",")
- For help with a command:
 - help(command)

Group 1, Group 2 0.803680873,0.944255293 0.154602685,0.727712943 0.150708502,0.431981162 0.97511866,0.937983685 0.460232148,0.786503003 0.013223879,0.819113932 0.017511488,0.92368809 0.904174174,0.815563594 0.869770096,0.76943584 0.676352134,0.321770206 0.518232817,0.984916141 0.051641168,0.258640987 0.542664965, 0.794543475 0.497362926,0.817948571 0.486607913,0.413216708 0.218745577,0.591558823 0.843827421,0.593674664 0.264400949,0.438692375 0.256434446,0.743990941 0.079121486,0.795106819 0.285609383,0.331450863 0.379775917,0.9218094 0.59789627,0.750849697 0.08605325,0.13729544 0.2860286,0.12517536 0.277279003,0.785829481 0.728984666,0.459297733 0.381243886,0.158332721 0.114495351,0.403745207 0.71283282,0.807401962

Accessing Observations

- observations2[1,2]
- observations2[,2]
- observations2[1,]
- You can type observations2[1,2], observations2[,2] and observations2[1,] in R to see their content.

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

 observations2[1,2] —> take the observation from the first row and second column

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

- observations2[1,2] —> take the observation from the first row and second column
- observations2[,2] —>

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

- observations2[1,2] —> take the observation from the first row and second column
- observations2[,2] —> take all the observations from the second column

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

- observations2[1,2] —> take the observation from the first row and second column
- observations2[,2] —> take all the observations from the second column
- observations2[1,] —> ?

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

- observations2[1,2] —> take the observation from the first row and second column
- observations2[,2] —> take all the observations from the second column
- observations2[1,] —> take all the observations from the first row

Group 1	Group 2
0.803680873	0.944255293
0.154602685	0.727712943
0.150708502	0.431981162
0.97511866	0.937983685
0.460232148	0.786503003
0.013223879	0.819113932
0.017511488	0.92368809
0.904174174	0.815563594
0.869770096	0.76943584
0.676352134	0.321770206
0.518232817	0.984916141
0.051641168	0.258640987
0.542664965	0.794543475
0.497362926	0.817948571
0.486607913	0.413216708
0.218745577	0.591558823
0.843827421	0.593674664
0.264400949	0.438692375
0.256434446	0.743990941
0.079121486	0.795106819
0.285609383	0.331450863
0.379775917	0.9218094
0.59789627	0.750849697
0.08605325	0.13729544
0.2860286	0.12517536
0.277279003	0.785829481
0.728984666	0.459297733
0.381243886	0.158332721
0.114495351	0.403745207
0.71283282	0.807401962

Statistical Hypothesis Tests

Data Distr	ribution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality) Paired (related)	Wilcoxon signed-rank test	Friedman test	

Two-Tailed Wilcoxon Sign Rank in R

```
wilcox.test(x, y, alternative = "two.sided", paired = TRUE, conf.level = 0.95)
```

- Example:
 - H0: $\mu 1 = \mu 2$
 - H1: μ 1 \neq μ 2
 - Level of significance = 0.05

 - p-value: $0.002766 \le 0.05$
 - · Reject H0.
 - Statistically significantly difference between $\mu 1$ and $\mu 2$ has been found at the level of significance of 0.05 (p-value = 0.002766).
 - median(observations2[,1]) = 0.3805, median(observations2[,2]) = 0.7474
 - μ1 is significantly smaller than μ2

Completely Equal Pairs of Observations

```
observationnull = read.csv('/
 Users/minkull/Desktop/
 observations null.csv', header
 = TRUE, sep = ",")

    wilcox.test(observationnull[,

  1], observationnull[,
  2],alternative =
  "two.sided", paired=TRUE,
 conf.level = 0.95)
  • p-value = NA
```

```
Group 1, Group 2
1,1
2,2
3,3
4,4
5,5
6,6
7,7
8,8
9,9
10,10
11,11
12,12
13,13
14,14
15,15
16,16
17,17
18,18
19,19
20,20
21,21
22,22
23,23
24,24
25,25
26,26
27,27
28,28
29,29
30,30
```

Statistical Hypothesis Tests

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Two-Tailed Wilcoxon Rank Sum in R

```
wilcox.test(x, y, alternative = "two.sided", paired = FALSE, conf.level = 0.95)
```

- Example:
 - H0: $\mu 1 = \mu 2$
 - H1: μ 1 \neq μ 2
 - Level of significance = 0.05

 - p-value: $0.007647 \le 0.05$
 - · Reject H0.
 - Statistically significantly difference between $\mu 1$ and $\mu 2$ has been found at the level of significance of 0.05 (p-value = 0.007647).
 - median(observations2[,1]) = 0.3805, median(observations2[,2]) = 0.7474
 - μ1 is significantly smaller than μ2

Statistical Hypothesis Tests

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Unpaired (Welch) T-Test in R

```
t.test(x, y, alternative = "two.sided", paired = FALSE)
```

- Example:
 - H0: $\mu 1 = \mu 2$
 - H1: μ 1 \neq μ 2
 - Level of significance = 0.05
 - result = t.test(observations2[,1],observations2[,2],alternative =
 "two.sided",paired=FALSE)
 - p-value: $0.006003 \le 0.05$
 - · Reject H0.
 - Statistically significantly difference between $\mu 1$ and $\mu 2$ has been found at the level of significance of 0.05 (p-value = 0.006003).
 - mean(observations2[,1]) = 0.4211538, mean(observations2[,2]) = 0.6263828
 - μ1 is significantly smaller than μ2

Statistical Hypothesis Tests

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)		Wilcoxon signed-rank test	Friedman test

Paired T-Test in R

```
t.test(x, y, alternative = "two.sided", paired = TRUE)
```

- Example:
 - H0: $\mu 1 = \mu 2$
 - H1: μ 1 \neq μ 2
 - Level of significance = 0.05
 - result = t.test(observations2[,1],observations2[,2],alternative =
 "two.sided",paired=TRUE)
 - p-value: $0.00185 \le 0.05$
 - · Reject H0.
 - Statistically significantly difference between $\mu 1$ and $\mu 2$ has been found at the level of significance of 0.05 (p-value = 0.00185).
 - mean(observations2[,1]) = 0.4211538, mean(observations2[,2]) = 0.6263828
 - μ1 is significantly smaller than μ2

Statistical Hypothesis Tests

Data Distr	ibution	2 groups	N groups (N>2)
Parametric	Unpaired (independent)	Unpaired t-test	ANOVA
(normality)	Paired (related)	Paired t-test	ANOVA
Non-parametric	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
(no normality)	Paired (related)	Wilcoxon signed-rank test	Friedman test

Friedman Test for Paired Comparisons in R

- R command:
 - result = friedman.test(matrix_observationsn)
 matrix_observationsn contains a matrix of groups to be compared.
 - When reading from a .csv file, read.csv reads data into an observations "frame". E.g.:

```
observationsn <- read.csv('/Users/minkull/
Desktop/observations-n-groups.csv')</pre>
```

 To convert from a frame to a matrix, you can use the list command. E.g.:

```
matrix_observationsn =
data.matrix(observationsn)
```

Friedman Test for Paired Comparisons

Example:

- H0: all groups are equal
- H1: at least one pair of groups is different
- p-value = 8.935e-09 < 0.05 (Reject H0)

Post-Hoc Tests in R

- You need to install the following package: PMCMRPlus
 - install.packages("PMCMRplus")

- Once installed, load package:
 - library(PMCMRplus)

PMCMR Package's Nemenyi Post-Hoc Test for All Pairs

- R command:
 - result =
 frdAllPairsNemenyiTest(observationsn)
- This test already accounts for multiple comparisons. So, no further corrections are needed.
- Example:

	Group 1	Group 2
Group 2	0.16711	
Group 3	8.6E-09	0.00011

PMCMR Package's Nemenyi Post-Hoc Test Against Control Group

- R command:
 - result = frdManyOneNemenyiTest(observationsn)
- This test already accounts for multiple comparisons. So, no further corrections are needed.
- Example:

	Group 1
Group 2	0.13
Group 3	5.7E-09

Tsutils Package's Nemenyi with Plot Options in R

- install.packages("tsutils")
- library(tsutils)
- result =
 nemenyi(matrix_observationsn,conf.level=0.95,plottype='mcb ',labels=c('Group 1','Group 2','Group 3'))
- result =
 nemenyi(matrix_observationsn,conf.level=0.95,plottype='line',
 labels=c('Group 1','Group 2','Group 3'))
- Rankings assume that smaller values have smaller ranks.

Tsutils Package's Nemenyi with Plot Options in R

Friedman: 0.000 (Ha: Different) Critical distance: 0.605

Friedman: 0.000 (Ha: Different)
Critical distance: 0.605

Critical Distance Plot from Package scmamp in R

- How to install latest version: https://rdrr.io/cran/scmamp/f/README.md
- if (!require("devtools")) {
- install.packages("devtools")
- devtools::install_github("b0rxa/scmamp")
- library("scmamp")
- result = plotCD(matrix_observationsn,alpha=0.05)
- Rankings assume that larger values have smaller ranks.

Critical Distance Plot from Package scmamp in R

Nikolaos Kourentzes' Nemenyi Code for Matlab

Download Nikolaos Kourentzes code at: http://
 kourentzes.com/forecasting/wp-content/uploads/2016/08/
 anom_nem_tests_matlab.zip

Example:

- observationsn = readtable('observations-n-groups.csv','HeaderLines', 1)
- obsn = table2array(observationsn)
- labels=["Group 1","Group 2","Group 3"]
- [p, testresult, meanrank, CDa, rankmean] = nemenyi(obsn, 1,'alpha',0.05,'labels',labels,'ploton','mcb');
- [p, testresult, meanrank, CDa, rankmean] = nemenyi(obsn, 1,'alpha',0.05,'labels',labels,'ploton','line');

Nikolaos Kourentzes' Nemenyi Code for Matlab

Farshid Sepehrband's Matlab Nemenyi Code

- Download the following code for Nemenyi and useful plot style:
 - https://zenodo.org/badge/latestdoi/45722511
 - Example:
 - drawNemenyi(obsn,labels,'~/Desktop','tmp-plot')

Statistical Hypothesis Tests

Data Distribution		2 groups	N groups (N>2)
Parametric (normality)	Unpaired (independent)	Unpaired t-test	ANOVA
	Paired (related)	Paired t-test	ANOVA
Non-parametric (no normality)	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
	Paired (related)	Wilcoxon signed-rank test	Friedman test

Kruskal-Wallis Test for Unpaired Comparisons

- R command:
 - result = kruskal.test(list_observationsn)
 list_observations contains a list of groups to be compared.
 - When reading from a .csv file, read.csv reads data into an observations "frame". E.g.:

```
observations <- read.csv('/Users/minkull/
Desktop/observations-n-groups.csv')</pre>
```

 To convert from a frame to a list, you can use the list command. E.g.:

```
list_observationsn = list(observationsn[,
1],observationsn[,2],observationsn[,3])
```

Kruskal-Wallis Test for Unpaired Comparisons

Example:

- H0: all groups are equal
- H1: at least one pair of groups is different
- p-value = 1.338e-11 < 0.05 (Reject H0)

Dunn Post-Hoc Test

- R command:
 - library("PMCMRplus")
 - result = kwAllPairsDunnTest(observationsn,
 p.adjust.method = "holm")
- This test requires corrections to account for multiple comparisons (e.g., holm-bonferroni).
- Example:

	Group 1	Group 2
Group 2	0.052	
Group 3	2.0E-11	1.7E-06

Dunn Post-Hoc Test

- R command:
 - library("PMCMRplus")
 - result = kwManyOneDunnTest(observationsn,
 p.adjust.method = "holm")
- This test requires corrections to account for multiple comparisons (e.g., holm-bonferroni).
- Example:

	Group 1
Group 2	0.094
Group 3	1.3E-11

A12 Effect Size in Matlab

 Matlab implementation of A12 available at: https://github.com/ minkull/A12-Effect-Size

Example:

- observations = readtable('observations-two-groups.csv','HeaderLines', 1)
- obs = table2array(observations)
- a12(obs(:,1),obs(:,2))
 - -0.6989
- The "-" sign is here to indicate that obs(:,1) are smaller than obs(:,2).

Boxplot

Creating Boxplots in R

- boxplot(observations2[,1], observations2[,2],labels="")
- axis(1, at=c(1,2), labels=c("Group 1","Group 2"))

Statistical Hypothesis Tests

Data Distribution		2 groups	N groups (N>2)
Parametric (normality)	Unpaired (independent)	Unpaired t-test	ANOVA
	Paired (related)	Paired t-test	ANOVA
Non-parametric (no normality)	Unpaired (independent)	Wilcoxon rank-sum test = Mann-Whitney U test	Kruskal-Wallis test
	Paired (related)	Wilcoxon signed-rank test	Friedman test

Multi-Factor Repeated Measures ANOVA

- Open SPSS
- Load observations-anova-within-subject.sav
- Analyse -> General Linear Model -> Repeated Measures
- Create within-subject factors
 - B with 3 levels
 - D with 2 levels
- Select the columns corresponding to the observations of each factor.
- Click on Plot to decide which plots to create.
 - It's easier to decide which plots to create after running the test.
 - Normally, plots for significant factors and interactions are created.
- Click on options to select to print descriptive statistics and effect size.

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

				p-value	Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower– bound
В	.848	2.147	2	.342	.868	.980	.500
D	1.000	.000	0		1.000	1.000	1.000
B * D	.965	.460	2	.794	.966	1.000	.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept

Within Subjects Design: B + D + B * D

 May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Sphericity assumption is satisfied, as p-value > 0.05.

	Tests of Within-Subjects Effects								
Measure:	MEASURE_1						p-value		
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared		
В	Sphericity Assumed	.090	2	.045	.451	.641	.031		
	Greenhouse-Geisser	.090	1.736	.052	.451	.615	.031		
	Huynh-Feldt	.090	1.960	.046	.451	.637	.031		
	Lower-bound	.090	1.000	.090	.451	.513	.031		
Error(B)	Sphericity Assumed	2.798	28	.100					
	Greenhouse-Geisser	2.798	24.301	.115					
	Huynh-Feldt	2.798	27.438	.102					
	Lower-bound	2.798	14.000	.200					
D	Sphericity Assumed	.022	1	.022	.179	.679	.013		
	Greenhouse-Geisser	.022	1.000	.022	.179	.679	.013		
	Huynh-Feldt	.022	1.000	.022	.179	.679	.013		
	Lower-bound	.022	1.000	.022	.179	.679	.013		
Error(D)	Sphericity Assumed	1.700	14	.121					
	Greenhouse-Geisser	1.700	14.000	.121					
	Huynh-Feldt	1.700	14.000	.121					
	Lower-bound	1.700	14.000	.121					
B * D	Sphericity Assumed	.793	2	.396	5.955	.007	.298		
	Greenhouse-Geisser	.793	1.933	.410	5.955	.008	.298		
	Huynh-Feldt	.793	2.000	.396	5.955	.007	.298		
	Lower-bound	.793	1.000	.793	5.955	.029	.298		
Gree If sphericity was violated, we would use the p-value with Greenhouse-Geisser corrections.							th		

Interaction Between B and D Is Significant

Effect Size Eta Squared

- Percentage of the variance accounted for a factor or interaction.
- Calculated as follows:
 - Total = Sum the Type III Sum of Squares for all factors, interactions and errors.
 - Divided the Type III Sum of Squares of a given factor or interaction by Total.
- Rule of thumb:
 - Small: 0.01
 - Medium: 0.06
 - Large: 0.14

		Tests of Wi	thin-Sub	jects Effects					
Measure:	MEASURE_1	p-value							
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared		
В	Sphericity Assumed	.090	2	.045	.451	.641	.03	1	
	Greenhouse-Geisser	.090	1.736	0.50				1	
	Huynh-Feldt	.090	1.960						
	Lower-bound	.090	1.000						
Error(B)	Sphericity Assumed	2.798	28						
	Greenhouse-Geisser	2.798	24.301	Total = .0	090 + 2	.7898 +	.022 +		
	Huynh-Feldt	2.798	27.438	1.700 + .793 + 1.863 = 7.2578					
	Lower-bound	2.798	14.000						
D	Sphericity Assumed	.022	1	Eta squared = .090 / 7.2578 =				3	
	Greenhouse-Geisser	.022	1.000	0.01240					
	Huynh-Feldt	.022	1.000	0.01240				3	
	Lower-bound	.022	1.000					3	
Error(D)	Sphericity Assumed	1.700	14	121					
	Greenhouse-Geisser	1.700	14.000	Exam	nle: eta	square	d for		
	Huynh-Feldt	1.700	14.000	Example: eta squared for interaction B*D					
	Lower-bound	1.700	14.000						
B * D	Sphericity Assumed	.793	2	T	200	7000	000	8	
	Greenhouse-Geisser	.793	1.933	Total = .0				8	
	Huynh-Feldt	.793	2.000	1.700 +	.793 +	1.863 =	7.2578	8	
	Lower-bound	.793	1.000					8	
Error(B*D)	Sphericity Assumed	1.863	28	Eta squared = .793 / 7.2578 =		2578 =			
	Greenhouse-Geisser	1.863	27.059	0.1093					
	Huynh-Feldt	1.863	28.000						
	Lower-bound	1.863	14.000	.133					

Split Plot ANOVA

- Open SPSS
- Load observations-anova-split-plot.sav
 - Here, the problem instance is considered to be a between-subjects factor.
- Analyse -> General Linear Model -> Repeated Measures
- Create within-subject factors
 - B with 3 levels
 - D with 2 levels
- Select the columns corresponding to the observations of each within-subject factor.
- Select the column corresponding to the levels of the between-subjects factor.
- Click on Plot to decide which plots to create.
 - It's easier to decide which plots to create after running the test.
 - Normally, plots for significant factors and interactions are created.
- Click on options to select to print descriptive statistics and effect size.

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

					Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	p-value	Greenhouse- Geisser	Huynh-Feldt	Lower- bound
В	.974	.689	2	.708	.975	1.000	.500
D	1.000	.000	0		1.000	1.000	1.000
B * D	.924	2.054	2	.358	.929	1.000	.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

- a. Design: Intercept + Problem
 Within Subjects Design: B + D + B * D
- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Sphericity assumption is satisfied, as p-value > 0.05.

Tests of Within-Subjects Effects									
Measure: MEASURE_1 Type III Sum									
Source		Type III Sum of Squares df Mean Square		Mean Square	F	Sig.	Partial Eta Squared		
В	Sphericity Assumed	.009	2	.004	.051	.951	.002		
	Greenhouse-Geisser	.009	1.949	.004	.051	.948	.002		
	Huynh-Feldt	.009	2.000	.004	.051	.951	.002		
	Lower-bound	.009	1.000	.009	.051	.824	.002		
B * Problem	Sphericity Assumed	.150	2	.075	.865	.427	.031		
	Greenhouse-Geisser	.150	1.949	.077	.865	.424	.031		
	Huynh-Feldt	.150	2.000	.075	.865	.427	.031		
	Lower-bound	.150	1.000	.150	.865	.361	.031		
Error(B)	Sphericity Assumed	4.673	54	.087					
	Greenhouse-Geisser	4.673	52.623	.089					
	Huynh-Feldt	4.673	54.000	.087					
	Lower-bound	4.673	27.000	.173					
D	Sphericity Assumed	.018	1	.018	.185	.670	.007		
	Greenhouse-Geisser	.018	1.000	.018	.185	.670	.007		
	Huynh-Feldt	.018	1.000	.018	.185	.670	.007		
	Lower-bound	.018	1.000	.018	.185	.670	.007		
D * Problem	Sphericity Assumed	.005	1	.005	.055	.817	.002		
	Greenhouse-Geisser	.005	1.000	.005	.055	.817	.002		
	Huynh-Feldt	.005	1.000	.005	.055	.817	.002		
	Lower-bound	.005	1.000	.005	.055	.817	.002		
Error(D)	Sphericity Assumed	2.562	27	.095					
	Greenhouse-Geisser	2.562	27.000	.095					
	Huynh-Feldt	2.562	27.000	.095					
	Lower-bound	2.562	27.000	.095					
B * D	Sphericity Assumed	1.008	2	.504	8.817	.000	.246		
	Greenhouse-Geisser	1.008	1.859	.542	8.817	.001	.246		
	Huynh-Feldt	1.008	2.000	.504	8.817	.000	.246		
	Lower-bound	1.008	1.000	1.008	8.817	.006	.246		
B * D * Problem	Sphericity Assumed	.247	2	.124	2.161	.125	.074		
	Greenhouse-Geisser	.247	1.859	.133	2.161	.129	.074		
	Huynh-Feldt	.247	2.000	.124	2.161	.125	.074		
	Lower-bound	.247	1.000	.247	2.161	.153	.074		
Error(B*D)	Sphericity Assumed	3.088	54	.057					
	Greenhouse-Geisser	3.088	50.188	.062					
	Huynh-Feldt	3.088	54.000	.057					
	Lower-bound	3.088	27.000	.114					

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

l		Type III Sum				p-value	Partial Eta
	Source	of Squares	df	Mean Square	F	Sig.	Squared
	Intercept	45.145	1	45.145	541.447	.000	.953
	Problem	.052	1	.052	.629	.435	.023
	Error	2.251	27	.083			

Summary

- Recap of the general idea underlying statistical hypothesis tests.
- What to compare?
 - Two algorithms on a single problem instance.
 - Multiple algorithms on a single problem instance.
 - Two algorithms on multiple problem instances.
 - Multiple algorithms on multiple problem instances.
- How to design the comparisons?
 - Tests for 2 groups.
 - Test for N groups.
 - Groups are the algorithms.
 - Each observation can be an individual run on a given problem instance.
 - Each observations can be an aggregation of multiple runs on a given problem instance.
 - To avoid problems with test assumptions, we can use non-parametric tests.
 - But if we are interested in the interactions among multiple factors, ANOVA can be very useful.
- Commands to run the statistical tests.

Exercise 1

- Download the observations used in this presentation from:
 - www.cs.bham.ac.uk/~minkull/opensource/observations.csv
- Download this presentation from: <u>www.cs.bham.ac.uk/</u> ~minkull/publications/presentation-statistical-tests-2.pdf
- Try out all the R commands from the presentation.

Exercise 2

- Pair up with your colleagues and discuss:
 - Research questions that you are currently investigating or about to investigate.
 - Whether you need to use statistical tests to answer these questions.
 - What statistical tests you would use.
- We will wrap up with a general discussion about these.
- Download previous presentation from: <u>www.cs.bham.ac.uk/</u> <u>~minkull/publications/presentation-statistical-tests-1.pdf</u>