

Baseball II

Produced by Dr. Mario | UNC STOR 538

Pythagorean Theorem

- Classic Pythagorean Theorem
 - Relationship Between the Sides of a Right Triangle
 - $c^2 = a^2 + b^2$
- What is Known: More Runs = More Wins
- Relationship Between Runs and Wins?
 - Bill James' Pythagorean Method

$$WP \approx \frac{RS^2}{RS^2 + RA^2}$$

- Example: Kansas City in 2014 World Series
 - 651 Runs Scored

624 Runs Allowed

89
$$Wins \approx 162 imes \frac{651^2}{651^2 + 624^2} = 84.43$$

WP = Win %
RS = Runs Scored
RA = Runs Allowed

Pythagorean Theorem

- Optimization of Relationship
 - What is the Best Choice of α ?

$$WP = \frac{RS^{\alpha}}{RS^{\alpha} + RA^{\alpha}} + \epsilon \longrightarrow \text{Erro}$$

- Minimization of Mean Absolute Deviation (MAD)
- Optimal: $\alpha = 1.8$ (MAD=0.0199)
- Alternative Expression

$$WP = \frac{(RS/RA)^{\alpha}}{(RS/RA)^{\alpha} + 1} + \epsilon$$

- Forecasting Playoff Series Winners (2005-2016)
 - Pythagorean Method: 54.8% Accurate
 - Games Won Approach: 55% Accurate
 - Interesting Case: 2005 Nationals

WP = Win %
RS = Runs Scored
RA = Runs Allowed

Pythagorean Theorem

- Useful for Valuing Players in Trades
 - Example: Cleveland Guardians
 - Currently: RS=870 and RA=800
 - Trade Bing Crosby (100 Runs)
 - For Frank Sinatra (120 Runs)
 - Difference: +20 Runs
 - Before Trade:

$$WP \approx \frac{\left(\frac{870}{800}\right)^{1.8}}{\left(\frac{870}{800}\right)^{1.8} + 1} = 0.538$$

After Trade:

$$WP pprox rac{\left(rac{890}{800}
ight)^{1.8}}{\left(rac{890}{800}
ight)^{1.8}+1} = 0.548$$

WP = Win %
RS = Runs Scored
RA = Runs Allowed

Motivation: Mike Trout Vs. Kris Bryant

Mike Trout and Kris Bryant 2016 Statistics			
Event	Trout (2016)	Bryant (2016)	
At Bats	549	603	
Batting Average	.315	.292	
Slugging Percentage	.550	.554	
Hits	173	176	
Singles	107	99	
Doubles	32	35	
Triples	5	3	
Home Runs	29	39	
Walks + Hit by Pitcher	127	93	

Argument

- Hitting Causes Good and Bad Things
- Hits and Walks Create Scoring Opportunities
- Better Hitter = More Scoring Opportunity
- Relationship of Runs and {S,D,T,HR,BB,HBP}

Runs-Created Formula

- Bill James (1979)
- Recall: Total Bases (TB) $TB \approx S + 2D + 3T + 4HR$
- Formula:

$$RC \approx (H + BB + HBP) \times \frac{IB}{AB + BB + HBP}$$

of Base Runners

Rate Players are Advancing

H = Hit

S = Single

D = Double

T = Triple

HR = Home Run

AB = At-bat

BB = Walk

HBP = Hit-by-Pitch

- Evaluation of Runs Created Formula
 - Evaluated For Teams from 2010 to 2016
 - Off by About 21 Runs on Average
 - Average Team Scored 693 Runs in a Season
 - Error Measured as a Percentage is 3% (21/693)
- Problem: Formula Developed Off Team Statistics

Model Based On Teams

Predict on Players

Results When Applied to Players

Playa and Year	Runs Created
Bryant 2016	129.09
Trout 2016	134.02
Cabrera 2013	147.54

y = Actual Runs

 $\hat{\mathbf{y}}$ = Predicted Runs

n = Sample Size

- Runs Created Per Game
 - RC Flaw= Biased Toward Plate Appearances
 - Observation 1: 1.8% of AB are E

$$AB - H - (0.018)AB = (0.982)AB - H$$

 Observation 2: Additional Outs Caused by GIDP, SF, SAC, and CS

$$TO = (0.982)AB - H + GIDP + SF + SAC + CS$$

- Observation 3: Sometimes 27 Outs Per Game
 Average Outs Per Game = 26.83
- Observation 4: Following in Units of Game
 TO
 26.83

RC = Runs Created

AB = At-bat

E = Errors

H = Hits

TO = Total Outs

GIDP = Double-Play

SF = Sacrifice Fly

SAC = Sacrifice Bunt

CS = Caught Stealing

- Runs Created Per Game
 - Final Formula for RC/G

$$\frac{RC}{G} = \frac{RC}{\frac{TO}{26.83}}$$

Interpretation of RC/G

$$\frac{RC}{G} = \frac{Runs \ Created \ by \ Batter}{\# \ of \ Games \ Worth \ of \ Outs \ Used \ by \ Batter}$$

Results Updated

Playa and Year	RC	RC/G
Bryant 2016	129.09	8.11
Trout 2016	134.02	9.39
Cabrera 2013	147.54	10.6

RC = Runs Created

AB = At-bat

E = Errors

H = Hits

TO = Total Outs

GIDP = Double-Play

SF = Sacrifice Fly

SAC = Sacrifice Bunt

CS = Caught Stealing

America's Greatest Pastime

on What if Barry Bonds had played baseball without a bat?

America's Greatest Pastime

Final Inspiration

Well, it took me 17 years to get 3,000 hits in baseball, and I did it in one afternoon on the golf course.

- Hank Aaron