Fredholm theory for the Dirichlet problem

Sergi Arias

Stockholm University

16 March 2018

"Harmonic Analysis and Partial Differential Equations"

Björn E. J. Dahlberg and Carlos E. Kenig

Dirichlet Problem

• $\Omega \subseteq \mathbb{R}^n$ and $f: \partial \Omega \longrightarrow \mathbb{R}$ given.

Dirichlet Problem

- $\Omega \subseteq \mathbb{R}^n$ and $f: \partial \Omega \longrightarrow \mathbb{R}$ given.
- Want to find $u:\Omega\longrightarrow\mathbb{R}$ such that

$$\left\{ \begin{array}{l} \Delta u = 0 \text{ in } \Omega, \\ u\big|_{\partial\Omega} = f. \end{array} \right.$$

Dirichlet Problem

- $\Omega \subseteq \mathbb{R}^n$ and $f: \partial \Omega \longrightarrow \mathbb{R}$ given.
- Want to find $u:\Omega\longrightarrow\mathbb{R}$ such that

$$\left\{ \begin{array}{l} \Delta u = 0 \text{ in } \Omega, \\ u\big|_{\partial\Omega} = f. \end{array} \right.$$

Laplace operator:

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_n^2}.$$

$$\Omega = \mathbb{D} = \{|z| < 1\}$$

$$\Omega = \mathbb{D} = \{|z| < 1\}$$
 $f = f(\theta) \in \mathcal{C}(S^1)$

$$\Omega = \mathbb{D} = \{|z| < 1\}$$
 $f = f(\theta) \in \mathcal{C}(S^1)$

Solution:

$$u_f(z) = \int_0^{2\pi} f(\theta) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

$$\Omega = \mathbb{D} = \{|z| < 1\} \qquad \quad f = f(\theta) \in \mathcal{C}(S^1)$$

Solution:

$$u_f(z) = \int_0^{2\pi} f(\theta) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

• $\Delta u_f(z) = \int_0^{2\pi} f(\theta) \Delta\left(\frac{1-|z|^2}{|e^{i\theta}-z|^2}\right) d\theta = 0$ for all |z| < 1.

$$\Omega = \mathbb{D} = \{|z| < 1\} \qquad \quad f = f(\theta) \in \mathcal{C}(S^1)$$

Solution:

$$u_f(z) = \int_0^{2\pi} f(\theta) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

- $\Delta u_f(z) = \int_0^{2\pi} f(\theta) \Delta\left(\frac{1-|z|^2}{|e^{i\theta}-z|^2}\right) d\theta = 0$ for all |z| < 1.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\mathbb{D}\ni z\longrightarrow e^{i\theta}}u_f(z)=f(\theta)$$

for all $0 < \theta < 2\pi$.

$$\Omega = \mathbb{D} = \{|z| < 1\} \qquad \quad f = f(\theta) \in L^p(S^1), \, 1 \leq p \leq \infty.$$

Solution:

$$u_f(z) = \int_0^{2\pi} f(\theta) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

- $\Delta u_f(z) = \int_0^{2\pi} f(\theta) \Delta\left(\frac{1-|z|^2}{|e^{i\theta}-z|^2}\right) d\theta = 0$ for all |z| < 1.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\mathbb{D}\ni z\longrightarrow e^{i\theta}}u_f(z)=f(\theta)$$

for all $0 < \theta < 2\pi$.

$$\Omega = \mathbb{D} = \{|z| < 1\} \qquad \quad f = f(\theta) \in L^p(S^1), \, 1 \leq p \leq \infty.$$

Solution:

$$u_f(z) = \int_0^{2\pi} f(\theta) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

- $\Delta u_f(z) = \int_0^{2\pi} f(\theta) \Delta\left(\frac{1-|z|^2}{|e^{i\theta}-z|^2}\right) d\theta = 0$ for all |z| < 1.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\Gamma(\theta)\ni z\longrightarrow e^{i\theta}}u_f(z)=f(\theta)$$

for all nontangential cone $\Gamma(\theta)$, for all $0 \le \theta < 2\pi$.

$$\Omega = \mathbb{H} = \{ \text{Im} z > 0 \}$$

$$\Omega = \mathbb{H} = \{ \operatorname{Im} z > 0 \}$$
 $f = f(t) \in \mathcal{C}(\mathbb{R})$

$$\Omega = \mathbb{H} = \{ \text{Im} z > 0 \}$$
 $f = f(t) \in \mathcal{C}(\mathbb{R})$

Solution:

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

where

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy.$$

$$\Omega = \mathbb{H} = \{ \text{Im} z > 0 \}$$
 $f = f(t) \in \mathcal{C}(\mathbb{R})$

Solution:

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

where

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy.$$

• $\Delta u_f(z) = \int_{\mathbb{R}} f(t) \Delta P_z(t) dt = 0$ for all Im z > 0.

$$\Omega = \mathbb{H} = \{ \text{Im} z > 0 \}$$
 $f = f(t) \in \mathcal{C}(\mathbb{R})$

Solution:

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

where

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy.$$

- $\Delta u_f(z) = \int_{\mathbb{R}} f(t) \Delta P_z(t) dt = 0$ for all Im z > 0.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\mathbb{H}\ni z\longrightarrow t} u_f(z) = f(t)$$

for all $t \in \mathbb{R}$.

$$\Omega = \mathbb{H} = \{ \operatorname{Im} z > 0 \} \qquad f = f(t) \in L^p(\mathbb{R}), \ 1 \le p < \infty$$

Solution:

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

where

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy.$$

- $\Delta u_f(z) = \int_{\mathbb{R}} f(t) \Delta P_z(t) dt = 0$ for all Im z > 0.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\mathbb{H}\ni z\longrightarrow t}u_f(z)=f(t)$$

for all $t \in \mathbb{R}$.

$$\Omega = \mathbb{H} = \{ \operatorname{Im} z > 0 \}$$
 $f = f(t) \in L^p(\mathbb{R}), 1 \le p < \infty$

Solution:

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

where

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy.$$

- $\Delta u_f(z) = \int_{\mathbb{R}} f(t) \Delta P_z(t) dt = 0$ for all Im z > 0.
- $u_f|_{\partial\Omega} = f$, i.e.,

$$\lim_{\Gamma(t)\ni z\longrightarrow t}u_f(z)=f(t)$$

for all nontangential cone $\Gamma(t)$, for all $t \in \mathbb{R}$.

Dirichlet Problem in a C^2 domain

$$\begin{cases} \Delta u = 0 \text{ in } \Omega, \\ u|_{\partial\Omega} = f. \end{cases}$$

Dirichlet Problem in a C^2 domain

$$\begin{cases} \Delta u = 0 \text{ in } \Omega, \\ u|_{\partial\Omega} = f. \end{cases}$$

• Ω is a \mathcal{C}^2 domain (the boundary is locally the graph of a \mathcal{C}^2 function).

Dirichlet Problem in a C^2 domain

$$\left\{ \begin{array}{l} \Delta u = 0 \text{ in } \Omega, \\ u\big|_{\partial\Omega} = f. \end{array} \right.$$

- Ω is a C^2 domain (the boundary is locally the graph of a C^2 function).
- $f: \partial \Omega \longrightarrow \mathbb{R}$ continuous.

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3.$$

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3. \ (\Delta r = 0)$$

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3. \ (\Delta r = 0)$$

Define $R(x, y) = r(x - y)$.

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3.$$
 ($\Delta r = 0$)
Define $R(x, y) = r(x - y)$.

Definition

$$\mathcal{D}f(X) := \int_{\partial \Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial \Omega.$$

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3.$$
 ($\Delta r = 0$)
Define $R(x, y) = r(x - y)$.

Definition

$$\mathcal{D}f(X) := \int_{\partial \Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial \Omega.$$

• $f \in \mathcal{C}(\partial\Omega)$.

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3. \ (\Delta r = 0)$$

Define $R(x, y) = r(x - y)$.

Definition

$$\mathcal{D}f(X) := \int_{\partial \Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial \Omega.$$

- $f \in \mathcal{C}(\partial\Omega)$.
- $\frac{\partial}{\partial n_Q}$ is the directional derivative along the unit outward normal for $\partial\Omega$ at Q.

Let
$$r(x) = c_n \frac{1}{|x|^{n-2}}, n \ge 3. \ (\Delta r = 0)$$

Define $R(x, y) = r(x - y)$.

Definition

$$\mathcal{D}f(X) := \int_{\partial \Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial \Omega.$$

- $f \in \mathcal{C}(\partial\Omega)$.
- $\frac{\partial}{\partial n_Q}$ is the directional derivative along the unit outward normal for $\partial\Omega$ at Q.
- $d\sigma$ is the surface measure of $\partial\Omega$.

$$\mathcal{D}f(X) := \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial\Omega.$$

$$\mathcal{D}f(X):=\int_{\partial\Omega}\frac{\partial}{\partial n_Q}R(X,Q)f(Q)\mathrm{d}\sigma(Q),\ X\notin\partial\Omega.$$

• We observe that $\Delta \mathcal{D}f(X) = 0$ for all $X \notin \partial \Omega$.

$$\Delta_X R(X,Q) = \Delta_X r(X-Q)$$

$$\mathcal{D}f(X):=\int_{\partial\Omega}\frac{\partial}{\partial n_Q}R(X,Q)f(Q)\mathrm{d}\sigma(Q),\ X\notin\partial\Omega.$$

• We observe that $\Delta \mathcal{D}f(X) = 0$ for all $X \notin \partial \Omega$.

$$\Delta_X R(X,Q) = \Delta_X r(X-Q)$$

• Behaviour of $\mathcal{D}f$ on $\partial\Omega$?

Standard computations give

$$\frac{\partial}{\partial n_Q} R(X, Q) = c_n \frac{\langle X - Q, n_Q \rangle}{|X - Q|^n}, \quad X \notin \partial \Omega, \ Q \in \partial \Omega.$$

Standard computations give

$$\frac{\partial}{\partial n_Q} R(X,Q) = c_n \frac{\langle X - Q, n_Q \rangle}{|X - Q|^n}, \quad X \notin \partial \Omega, \ Q \in \partial \Omega.$$

Define

$$K(P,Q) = c_n \frac{\langle P-Q, n_Q \rangle}{|P-Q|^n}$$

where $P, Q \in \partial \Omega$ and $P \neq Q$.

$$K(P,Q) = c_n \frac{< P-Q, n_Q>}{|P-Q|^n}$$

$$K(P,Q) = c_n \frac{\langle P - Q, n_Q \rangle}{|P - Q|^n}$$

• K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.

$$K(P,Q) = c_n \frac{< P-Q, n_Q>}{|P-Q|^n}$$

- K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.
- There exists C > 0 such that

$$|K(P,Q)| \le \frac{C}{|P-Q|^{n-2}}.$$

$$K(P,Q) = c_n \frac{\langle P - Q, n_Q \rangle}{|P - Q|^n}, \quad |K(P,Q)| \le \frac{C}{|P - Q|^{n-2}}$$

$$K(P,Q) = c_n \frac{\langle P - Q, n_Q \rangle}{|P - Q|^n}, \quad |K(P,Q)| \le \frac{C}{|P - Q|^{n-2}}$$

 $P = (x, \varphi(x))$ and $Q = (y, \varphi(y))$ for certain $x, y \in \mathbb{R}^{n-1}$, where φ is a \mathcal{C}^2 function.

$$K(P,Q) = c_n \frac{\langle P - Q, n_Q \rangle}{|P - Q|^n}, \quad |K(P,Q)| \le \frac{C}{|P - Q|^{n-2}}$$

 $P=(x,\varphi(x))$ and $Q=(y,\varphi(y))$ for certain $x,y\in\mathbb{R}^{n-1}$, where φ is a \mathcal{C}^2 function. Then

$$n_Q = \frac{(\nabla \varphi(y), -1)}{\sqrt{|\nabla \varphi(y)| + 1}}.$$

$$K(P,Q) = c_n \frac{\langle P - Q, n_Q \rangle}{|P - Q|^n}, \quad |K(P,Q)| \le \frac{C}{|P - Q|^{n-2}}$$

 $P = (x, \varphi(x))$ and $Q = (y, \varphi(y))$ for certain $x, y \in \mathbb{R}^{n-1}$, where φ is a \mathcal{C}^2 function. Then

$$n_Q = \frac{(\nabla \varphi(y), -1)}{\sqrt{|\nabla \varphi(y)| + 1}}.$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}.$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

Write

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y),$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

Write

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y),$$

$$|< P-Q, (\nabla \varphi(y), -1)>| = |< x-y, \nabla \varphi(y)> + \varphi(y)-\varphi(x)|$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

Write

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y),$$

$$| < P - Q, (\nabla \varphi(y), -1) > | = | < x - y, \nabla \varphi(y) > +\varphi(y) - \varphi(x)|$$
$$= |e(x, y)|$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

Write

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y),$$

$$\begin{split} |< P - Q, (\nabla \varphi(y), -1) > | &= |< x - y, \nabla \varphi(y) > + \varphi(y) - \varphi(x)| \\ &= |e(x, y)| \\ &\leq C|x - y|^2. \end{split}$$

$$|K(P,Q)| \le c_n \frac{|\langle P - Q, (\nabla \varphi(y), -1) \rangle|}{|P - Q|^n}$$

Write

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y),$$

$$|\langle P - Q, (\nabla \varphi(y), -1) \rangle| = |\langle x - y, \nabla \varphi(y) \rangle + \varphi(y) - \varphi(x)|$$

= $|e(x, y)|$
 $\leq C|x - y|^2$.

$$|K(P,Q)| \leq \frac{C}{|P-Q|^{n-2}}.$$

- K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.
- There exists C > 0 such that

$$|K(P,Q)| \le \frac{C}{|P-Q|^{n-2}}.$$

- K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.
- There exists C > 0 such that

$$|K(P,Q)| \leq \frac{C}{|P-Q|^{n-2}}.$$

It is a continuous kernel of order n-2.

- K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.
- There exists C > 0 such that

$$|K(P,Q)| \le \frac{C}{|P-Q|^{n-2}}.$$

It is a continuous kernel of order n-2. We can define

$$Tf(P) := \int_{\partial\Omega} K(P,Q)f(Q)d\sigma(Q),$$

where $P \in \partial \Omega$.

- K(P,Q) is continuous in $\{(P,Q) \in \partial\Omega \times \partial\Omega : P \neq Q\}$.
- There exists C > 0 such that

$$|K(P,Q)| \le \frac{C}{|P-Q|^{n-2}}.$$

It is a continuous kernel of order n-2. We can define

$$Tf(P) := \int_{\partial\Omega} K(P,Q)f(Q)d\sigma(Q),$$

where $P \in \partial \Omega$.

• $Tf \in \mathcal{C}(\partial\Omega)$.

$$\mathcal{D}f(X) := \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial\Omega$$
$$Tf(P) := \int_{\partial\Omega} K(P, Q) f(Q) d\sigma(Q), \ P \in \partial\Omega$$

$$\mathcal{D}f(X) := \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial\Omega$$
$$Tf(P) := \int_{\partial\Omega} K(P, Q) f(Q) d\sigma(Q), \ P \in \partial\Omega$$

Take $f \equiv 1$. Then

$$\mathcal{D}f(X) = \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) d\sigma(Q) = \begin{cases} 1 \text{ if } X \in \Omega, \\ 0 \text{ if } X \notin \overline{\Omega}, \end{cases}$$

$$\mathcal{D}f(X) := \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial\Omega$$
$$Tf(P) := \int_{\partial\Omega} K(P, Q) f(Q) d\sigma(Q), \ P \in \partial\Omega$$

Take $f \equiv 1$. Then

$$\mathcal{D}f(X) = \int_{\partial\Omega} \frac{\partial}{\partial n_Q} R(X, Q) d\sigma(Q) = \begin{cases} 1 & \text{if } X \in \Omega, \\ 0 & \text{if } X \notin \overline{\Omega}, \end{cases}$$

and

$$Tf(P) = \int_{\partial\Omega} K(P,Q)f(Q)d\sigma(Q) = \frac{1}{2}$$

for $P \in \partial \Omega$.

When $f \equiv 1$,

$$\lim_{\Omega\ni X\longrightarrow P}\mathcal{D}f(X)=1=Tf(P)+\frac{1}{2}$$

and

$$\lim_{\overline{\mathbb{R}^n\backslash\Omega}\ni X\longrightarrow P}\mathcal{D}f(X)=0=Tf(P)-\frac{1}{2}.$$

When $f \equiv 1$,

$$\lim_{\Omega\ni X\longrightarrow P}\mathcal{D}f(X)=1=Tf(P)+\frac{1}{2}$$

and

$$\lim_{\overline{\mathbb{R}^n\backslash\Omega}\ni X\longrightarrow P}\mathcal{D}f(X)=0=Tf(P)-\frac{1}{2}.$$

Theorem

For all $f \in \mathcal{C}(\partial\Omega)$,

$$\lim_{\Omega \ni X \longrightarrow P} \mathcal{D}f(X) = Tf(P) + \frac{1}{2}f$$

and

$$\lim_{\overline{\mathbb{R}^n \setminus \Omega} \ni X \longrightarrow P} \mathcal{D}f(X) = Tf(P) - \frac{1}{2}f.$$

- Denote \mathcal{D}_+ the restriction to $\partial\Omega$ of the extension from inside.
- Denote \mathcal{D}_{-} the restriction to $\partial\Omega$ of the extension from outside.

- Denote \mathcal{D}_+ the restriction to $\partial\Omega$ of the extension from inside.
- Denote \mathcal{D}_{-} the restriction to $\partial\Omega$ of the extension from outside.

We have seen that

$$\mathcal{D}_{+} = \frac{1}{2}I + T$$
 and $\mathcal{D}_{-} = -\frac{1}{2}I + T$.

- Denote \mathcal{D}_+ the restriction to $\partial\Omega$ of the extension from inside.
- Denote \mathcal{D}_{-} the restriction to $\partial\Omega$ of the extension from outside.

We have seen that

$$\mathcal{D}_{+} = \frac{1}{2}I + T$$
 and $\mathcal{D}_{-} = -\frac{1}{2}I + T$.

• We would like \mathcal{D}_+ to be surjective.

- Denote \mathcal{D}_+ the restriction to $\partial\Omega$ of the extension from inside.
- Denote \mathcal{D}_{-} the restriction to $\partial\Omega$ of the extension from outside.

We have seen that

$$\mathcal{D}_{+} = \frac{1}{2}I + T$$
 and $\mathcal{D}_{-} = -\frac{1}{2}I + T$.

• We would like \mathcal{D}_+ to be surjective.

Theorem

The operator $T: \mathcal{C}(\partial\Omega) \longrightarrow \mathcal{C}(\partial\Omega)$ is compact.

Definition

A linear operator $T: E \longrightarrow F$ between Banach spaces is compact if $\overline{T(B_E(0,1))}$ is compact.

Definition

A linear operator $T: E \longrightarrow F$ between Banach spaces is compact if $\overline{T(B_E(0,1))}$ is compact.

Fredholm Alternative Theorem

Let H_1 be a Hilbert space and $T: H_1 \longrightarrow H_1$ a linear, bounded and compact operator. For $\lambda \neq 0$, TFAE:

- $T \lambda I$ is surjective.
- $T^* \lambda I$ is injective.

Definition

A linear operator $T: E \longrightarrow F$ between Banach spaces is compact if $\overline{T(B_E(0,1))}$ is compact.

Fredholm Alternative Theorem

Let H_1 be a Hilbert space and $T: H_1 \longrightarrow H_1$ a linear, bounded and compact operator. For $\lambda \neq 0$, TFAE:

- $T \lambda I$ is surjective.
- $T^* \lambda I$ is injective.

$$\mathcal{D}_{+} = \frac{1}{2}I + T \quad \left(\lambda = -\frac{1}{2}\right)$$

The adjoint of T is

$$T^*f(P) = \int_{\partial\Omega} K^*(P,Q)f(Q)\mathrm{d}\sigma(Q),$$

where

$$K^*(P,Q) = K(Q,P).$$

The adjoint of T is

$$T^*f(P) = \int_{\partial\Omega} K^*(P,Q) f(Q) \mathrm{d}\sigma(Q),$$

where

$$K^*(P,Q) = K(Q,P).$$

 K^* is a continuous kernel of order n-2.

The adjoint of T is

$$T^*f(P) = \int_{\partial\Omega} K^*(P, Q)f(Q)d\sigma(Q),$$

where

$$K^*(P,Q) = K(Q,P).$$

 K^* is a continuous kernel of order n-2.

$$|K^*(P,Q)| \le \frac{C}{|P-Q|^{n-2}}.$$

The adjoint of T is

$$T^*f(P) = \int_{\partial\Omega} K^*(P, Q)f(Q)d\sigma(Q),$$

where

$$K^*(P,Q) = K(Q,P).$$

 K^* is a continuous kernel of order n-2.

$$|K^*(P,Q)| \leq \frac{C}{|P-Q|^{n-2}}.$$

• Goal: see that $T^* + \frac{1}{2}I$ is injective.

For $f \in \mathcal{C}(\partial\Omega)$, we define

$$Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = (r * f)(X),$$

with $X \notin \partial \Omega$.

For $f \in \mathcal{C}(\partial\Omega)$, we define

$$Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = (r * f)(X),$$

with $X \notin \partial \Omega$.

• $\Delta Sf(X) = 0$ for all $X \notin \partial \Omega$.

For $f \in \mathcal{C}(\partial\Omega)$, we define

$$Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = (r * f)(X),$$

with $X \notin \partial \Omega$.

- $\Delta Sf(X) = 0$ for all $X \notin \partial \Omega$.
- $Sf \in \mathcal{C}(\mathbb{R}^n)$.

$$Sf(X) = \int_{\partial\Omega} R(X,Q) f(Q) \mathrm{d}\sigma(Q), \ X \notin \partial\Omega.$$

$$Sf(X) = \int_{\partial\Omega} R(X,Q) f(Q) \mathrm{d}\sigma(Q), \ X \notin \partial\Omega.$$

The map

$$\partial\Omega \times (-\epsilon, \epsilon) \to V$$

 $(P, t) \mapsto P + tn_P$

is a diffeomorphism.

Single Layer Potential

$$Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q), \ X \notin \partial\Omega.$$

The map

$$\partial\Omega \times (-\epsilon, \epsilon) \to V$$

 $(P, t) \mapsto P + tn_P$

is a diffeomorphism. For $P\in\partial\Omega$ and $|t|<\epsilon,\,t\neq0,$ we define

$$DSf(P + tn_P) = \int_{\partial \Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

$$DSf(P + tn_P) = \int_{\partial \Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

$$DSf(P + tn_P) = \int_{\partial \Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

If $f \in \mathcal{C}$,

- $DSf \in \mathcal{C}(\overline{\Omega \cap V})$.
- $DSf \in \mathcal{C}(\overline{\mathbb{R}^n \setminus \Omega} \cap V)$.

$$DSf(P + tn_P) = \int_{\partial \Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

If $f \in \mathcal{C}$,

- $DSf \in \mathcal{C}(\overline{\Omega \cap V})$.
- $DSf \in \mathcal{C}(\overline{\mathbb{R}^n \setminus \Omega} \cap V)$.

Restriction to the boundary of the interior extension: D_+S .

$$DSf(P + tn_P) = \int_{\partial \Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

If $f \in \mathcal{C}$,

- $DSf \in \mathcal{C}(\overline{\Omega \cap V})$.
- $DSf \in \mathcal{C}(\overline{\mathbb{R}^n \setminus \Omega} \cap V)$.

Restriction to the boundary of the interior extension: D_+S . Restriction to the boundary of the exterior extension: D_-S .

$$DSf(P + tn_P) = \int_{\partial\Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

If $f \in \mathcal{C}$,

- $DSf \in \mathcal{C}(\overline{\Omega \cap V})$.
- $DSf \in \mathcal{C}(\overline{\mathbb{R}^n \setminus \Omega} \cap V)$.

Restriction to the boundary of the interior extension: D_+S . Restriction to the boundary of the exterior extension: D_-S .

Theorem

- $D_+S = -\frac{1}{2}I + T^*$.
- $D_-S = \frac{1}{2}I + T^*$.

$$DSf(P + tn_P) = \int_{\partial\Omega} \frac{\partial}{\partial n_P} R(P + tn_P, Q) f(Q) d\sigma(Q).$$

If $f \in \mathcal{C}$,

- $DSf \in \mathcal{C}(\overline{\Omega \cap V})$.
- $DSf \in \mathcal{C}(\overline{\mathbb{R}^n \setminus \Omega} \cap V)$.

Restriction to the boundary of the interior extension: D_+S . Restriction to the boundary of the exterior extension: D_-S .

Theorem

- $D_+S = -\frac{1}{2}I + T^*$.
- $D_-S = \frac{1}{2}I + T^*$.

Is $D_{-}S$ injective?

Assume $D_-Sf = 0$ for some $f \in \mathcal{C}(\partial\Omega)$.

Assume $D_-Sf = 0$ for some $f \in \mathcal{C}(\partial\Omega)$. Let $v = Sf \in \mathcal{C}(\mathbb{R}^n)$.

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} d\sigma = 0.$$

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} d\sigma = 0.$$

• v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} d\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} d\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Then $\nabla v = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$.

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} \mathrm{d}\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Then $\nabla v = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$. But

$$v(X) = Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = \mathcal{O}\left(\frac{1}{|X|^{n-2}}\right)$$

as $|X| \longrightarrow \infty$.

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} \mathrm{d}\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Then $\nabla v = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$. But

$$v(X) = Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = \mathcal{O}\left(\frac{1}{|X|^{n-2}}\right)$$

as $|X| \longrightarrow \infty$. So v = 0 in $\mathbb{R}^n \setminus \overline{\Omega}$.

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} \mathrm{d}\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Then $\nabla v = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$. But

$$v(X) = Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = \mathcal{O}\left(\frac{1}{|X|^{n-2}}\right)$$

as $|X| \longrightarrow \infty$. So v = 0 in $\mathbb{R}^n \setminus \overline{\Omega}$. By the maximum principle, Sf = v = 0 in \mathbb{R}^n

Assume $D_-Sf=0$ for some $f\in\mathcal{C}(\partial\Omega)$. Let $v=Sf\in\mathcal{C}(\mathbb{R}^n)$. By Green's formula,

$$\int_{\mathbb{R}^n \setminus \overline{\Omega}} |\nabla v|^2 = \int_{\mathbb{R}^n \setminus \overline{\Omega}} v \Delta v + \int_{\partial \Omega} v \frac{\partial v}{\partial n} \mathrm{d}\sigma = 0.$$

- v = Sf is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- $\frac{\partial v}{\partial n} = \frac{\partial}{\partial n} Sf = D_- Sf = 0.$

Then $\nabla v = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$. But

$$v(X) = Sf(X) = \int_{\partial\Omega} R(X, Q) f(Q) d\sigma(Q) = \mathcal{O}\left(\frac{1}{|X|^{n-2}}\right)$$

as $|X| \longrightarrow \infty$. So v = 0 in $\mathbb{R}^n \setminus \overline{\Omega}$. By the maximum principle, Sf = v = 0 in $\mathbb{R}^n \Rightarrow f = 0$.

At some point we wrote

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y), \tag{1}$$

where $e(x, y) = \mathcal{O}(|x - y|^2)$.

At some point we wrote

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y), \tag{1}$$

where $e(x, y) = \mathcal{O}(|x - y|^2)$.

Let Ω be a $\mathcal{C}^{1+\alpha}$ domain, $\alpha > 0$. That is, locally $\partial \Omega$ is the graph of a $\mathcal{C}^{1+\alpha}$ -function φ ,

At some point we wrote

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y), \tag{1}$$

where $e(x, y) = \mathcal{O}(|x - y|^2)$.

Let Ω be a $\mathcal{C}^{1+\alpha}$ domain, $\alpha > 0$. That is, locally $\partial \Omega$ is the graph of a $\mathcal{C}^{1+\alpha}$ -function φ , i.e., φ is \mathcal{C}^1 and

$$\left| \frac{\partial \varphi}{\partial x_i}(x) - \frac{\partial \varphi}{\partial x_i}(y) \right| \le C|x - y|^{\alpha}.$$

At some point we wrote

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y), \tag{1}$$

where $e(x, y) = \mathcal{O}(|x - y|^2)$.

Let Ω be a $\mathcal{C}^{1+\alpha}$ domain, $\alpha > 0$. That is, locally $\partial \Omega$ is the graph of a $\mathcal{C}^{1+\alpha}$ -function φ , i.e., φ is \mathcal{C}^1 and

$$\left| \frac{\partial \varphi}{\partial x_i}(x) - \frac{\partial \varphi}{\partial x_i}(y) \right| \le C|x - y|^{\alpha}.$$

Then (1) is valid and

$$e(x,y) = \mathcal{O}(|x-y|^{1+\alpha}).$$

At some point we wrote

$$\varphi(x) = \varphi(y) + \langle x - y, \nabla \varphi(y) \rangle + e(x, y), \tag{1}$$

where $e(x, y) = \mathcal{O}(|x - y|^2)$.

Let Ω be a $\mathcal{C}^{1+\alpha}$ domain, $\alpha > 0$. That is, locally $\partial \Omega$ is the graph of a $\mathcal{C}^{1+\alpha}$ -function φ , i.e., φ is \mathcal{C}^1 and

$$\left| \frac{\partial \varphi}{\partial x_i}(x) - \frac{\partial \varphi}{\partial x_i}(y) \right| \le C|x - y|^{\alpha}.$$

Then (1) is valid and

$$e(x,y) = \mathcal{O}(|x-y|^{1+\alpha}).$$

$$|K(P,Q)| \leq \frac{C}{|P-Q|^{n-(1+\alpha)}}.$$

Thank you for your attention!