

Fig. 1: Engine CAD Model

Table	1.	Engine	Parame	ters
1 ame		типенне	raiaiiic	ICI 2

Parameter	KTM duke 390	
Bore x stroke (mm)	89 x 60	
Displacement (cc)	373.4	
Compression ratio	12.6:1	
Maximum power	42.91 bhp@9500 rpm	
Maximum torque	35.3 nm@7000 rpm	
Primary ratio	2.66:1	
Secondary ratio	3:1	

Table 2: Gear Reductions

Gear	Gearbox reduction
1	2.66
2	2.363
3	1.421
4	1.142
5	0.96
6	0.88

Clutch Reduction: 2.667

	x, Clutch		e Ratio action	
Crankshaft torque (24.95 Nm)	tor	ion que Nm)	to	orocket orque 02 Nm)

Fig. 2: Engine CAD Model

Table 4: Chain design specifications

Chain parameters	Values	
Designation	8B-3 R 1278 H	
Pitch	12.7 mm	
Centre-centre distance	196.04 mm	
Number of links	66	
Breaking load	20.592 kN	
FOS	30.8	

Gear parametersValuesTeeth on pinion15Teeth on sprocket51Pitch12.7 mmPitch Centre Diameter of pinion61.084 mmPitch Centre Diameter of sprocket206.299 mm

Table 3: Important gear design parameters

Fig. 3: CAD models: (a) Sprocket & (b) Chaindrive assembly

Fig. 4:CAD models: (a) Differential casing & (b) CV cup

Fig. 5: CAD models: (a) Planetary gear bush, (b) Sun gear bush, (c) Main pin & (d) Small restricting pins

Differential Casing:

The differential casing has been cumtomized in accordance with the gears, their busings, sprocket and some other influencial parameters. After taking various iterations with different materials, the material Al 7075 T6 has been selected.

• Cup of constant velocity joint:

The cup of CV joint is also customized which incorporates the rollers with spider. Thus the inner profile is developed in accordance with the it. The material so chosen for the cup is Al 7075 T6. The inside layer is in contact with the MS rollers constantly and hence a MS layer like bush is embossed to avoid wear.

Table 5: CAE results of the differential casing and the CV cup

Graphs: (a) Engine torque & power Vs engine speed

- (b) Tractive force at wheels
- (c) Vehicle speed Vs engine speed
- (d) Traction model of wheels

These graphs have been plotted in the **Optimum G** software through which the vehicle can be simuated using required input parameters. These graphs are analytically verified as well with results coming exactly the same. Hence these were also used for training the driver to improve his skills.

Table 6: Parameters for designing radiator

Calculation parameters	Values
Inlet water temperature	98 °C
Outlet water temperature	86 °C
Overall heat transfer coeff.	$42.5 \text{ W/m}^2\text{K}$
Heat rejected by core	43.25 W
Thermal conductivity of fins	25 W/mK
Effectiveness of radiator	0.8894

Fig. 6: Radiator

Table 7: Finalized parameters

Finalized parameters	Values	
Material	Aluminium	
No. of tubes	28	
Total volume	0.8815 lit	
Overall height	300 mm	
Overall length	245 mm	
Width	40 mm	

Fig. 7: Schematic diagram of cooling circuit

Fig. 9: CAD Model of air intake assembly

Table 9: Parameters for designing exhaust pipe

Exhaust pipe parameters	Values
Header pipe length	980 mm
Header pipe diameter	38 mm
Header pipe thickness	1 mm

Fig. 10: CAD model of exhaust muffler & pipe

Fig. 8: Coolant reservoir

Table 11: Computational fluid dynamis of the air flow in the components

A coolant reservoir is introduced in the cooling circuitry to recover the losses of cooling water occurring due to formation of steam while circulation. The volume of the coolant reservoir is kept to be 250 ml to compensate these losses.

Table 8: Design parameters of air intake system

Overall parameters	Values
Total volume	2.8 lit
Orientation	Rear left
Venturi convergent angle	12°
Venturi divergent angle	6°
Throat diameter (restrictor)	20 mm

Table 10: Parameters for muffler designing

Parameters of muffler	Values
Muffler length	320 mm
Muffler diameter	114 mm
No. of baffles	3
No. of perforated pipes	2
Diameter of perforated pipes	28 mm

