MIDTERM TWO

MODULE 7

Probability Space

A **probability space** (Ω, Pr) consists of

- ullet a finite non-empty set Ω of **outcomes** and
- a **probability distribution** function $\Pr: \Omega \to [0,1]$ that associates with each outcome $w \in \Omega$ its **probability** $\Pr[w]$ which is a real number between 0 and 1 (inclusive), such that

$$\sum_{w \in \Omega} \Pr[w] = 1$$

Event

Let (Ω, \Pr) be a probability space. An **event** in this space is a subset $E \subseteq \Omega$. We extend the probability function from outcomes to events as follows

$$\Pr[E] = \sum_{w \in E} \Pr[w]$$

Note that

- $\Pr[E] \in [0,1]$
- $Pr[\emptyset] = 0$
- $\Pr[\{w\}] = \Pr[w]$

Uniform

A probability space (Ω, Pr) is called **uniform** if all the outcomes have the **same** probability.

Denote $n = |\Omega|$. Since the probabilities are equal and sum up to 1:

. $\Pr[w] = 1/n$ for each outcome $w \in \Omega$.

Proposition. In a uniform probability space $\Pr[E] = m/n$ where m = |E| and $n = |\Omega|$.

Proof.

$$\Pr[E] = \sum_{w \in E} \Pr[w] = \sum_{w \in E} \frac{1}{n} = m \cdot \frac{1}{n} = \frac{m}{n}$$

Random Permutation

Distinct objects a_1, \ldots, a_n . A **random permutation** of a_1, \ldots, a_n is an element of the **uniform** probability space whose outcomes are all the permutations. Each outcome has probability 1/n!.

Properties

Consider an arbitrary probability space (Ω, Pr) and arbitrary events E, A, B in this space.

Property P0.
$$Pr[E] \geq 0$$

Since it's the sum of non-negative numbers.

Property P1.
$$Pr[\Omega] = 1$$

Since it adds up the probabilities of all the outcomes in the space.

Property P2. If
$$A, B$$
 are disjoint then $Pr[A \cup B] = Pr[A] + Pr[B]$

This is called the **addition rule** and is analogous to the addition rule in counting applied to set cardinality: $A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$.

Property P3. If
$$A \subseteq B$$
 then $Pr[A] \leq Pr[B]$

This is called **monotonicity** and it has an analogous property of set cardinality: $A \subseteq B \Rightarrow |A| \leq |B|$.

If $E \subseteq \Omega$ is an event then the **complement** of E is the event $\overline{E} = \Omega \setminus E$.

Property P4.
$$Pr[\overline{E}] = 1 - Pr[E]$$

Property P5.
$$Pr[\emptyset] = 0$$

By the definition of event probability, this is a sum with **no terms**! A common convention is that such a sum is 0. However, see the next activity.

Property P6.
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

This is called (of course!) **inclusion-exclusion** for two events and is analogous to PIE for two sets.

Property P7.
$$Pr[A \cup B] \leq Pr[A] + Pr[B]$$

This is called the **union bound**, and it plays a major role in the analysis of **probabilistic algorithms**. It's quite clear that it follows immediately from **P6**.

MODULE 8				
Three Events	Proposition. For any events A, B, C in the same probability space			
	$\Pr[A \cup B \cup C] = \Pr[A] + \Pr[B] + \Pr[C]$ $-\Pr[A \cap B] - \Pr[B \cap C] - \Pr[C \cap A]$ $+ \Pr[A \cap B \cap C]$			
	The proof is in the segment entitled "Inclusion-exclusion for three events".			
	Answer (continued). We will apply this to $\Pr[D_1 \cup D_2 \cup D_3]$.			
Independent	Let (Ω, \Pr) be a probability space. Two events $A, B \subseteq \Omega$ are independent , write $A \perp B$, when $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$. Note that $A \perp B$ iff $B \perp A$ (independence is symmetric).			
Pairwise Independent	Events A_1, \ldots, A_n are called pairwise independent when for any $1 \le i < j \le n$ we have $A_i \perp A_j$.			
Mutually Independent	Events A_1, \ldots, A_n are called mutually independent when for any $\{i_1, \ldots, i_k\} \subseteq [1n]$ we have			
	$\Pr[A_{i_1} \cap \cdots \cap A_{i_k}] = \Pr[A_{i_1}] \cdots \Pr[A_{i_k}]$			
	Mutual independence implies pairwise independence but the converse is not true, as we saw in the first proposition on the previous slide.			

Properties

Consider an arbitrary probability space (Ω, \Pr) and arbitrary events E, A, B in this space.

Property Ind (i). If Pr[A] = 0 then $A \perp B$ for any B. In particular, $\emptyset \perp E$ for any E.

Proof. $A \cap B \subseteq A$ so by **P3** (monotonicity) $\Pr[A \cap B] \leq \Pr[A] = 0$. If $\Pr[A] = 0$ then $\Pr[A \cap B] = 0$. $A \perp B$ follows.

Property Ind (ii). $\Omega \perp E$ for any E.

The proof is in the segment entitled "Proofs of independence properties".

Don't confuse "independent" with "disjoint"! In fact, disjoint events are typically **not** independent of each other!

Proposition. Let A, B be disjoint events in (Ω, \Pr) . If $A \perp B$ then at least one of A, B has probability 0.

Proof. If A, B are both disjoint and independent then by **Ind (iii)** and by **P2** (addition rule) we have:

- $1 (1 \Pr[A])(1 \Pr[B]) = \Pr[A \cup B] = \Pr[A] + \Pr[B]$
- . $\Pr[A] + \Pr[B] \Pr[A] \cdot \Pr[B] = \Pr[A] + \Pr[B]$
- $. \qquad \Pr[A] \cdot \Pr[B] \ = \ 0.$

Corollary. If $E \perp \overline{E}$ then Pr[E] is 0 or 1.

Unions of Mutually Independent Events

Proposition. (generalizes Ind (iii)) Let A_1, \ldots, A_n be mutually independent events in the same probability space. Then we have

$$\Pr[A_1 \cup \cdots \cup A_n] = 1 - (1 - \Pr[A_1]) \cdots (1 - \Pr[A_n])$$

Proof. We could use induction. We present a more interesting method, for the case n = 3. We use **P4** and a De Morgan law for sets:

 $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$ together with a generalization of **Ind** (iv):

Lemma. A, B, C are mutually independent iff $\overline{A}, \overline{B}, \overline{C}$ are mutually independent.

Monty Hall	<u>Prize</u>	Contestant	Monty	Outcome	Probability	
			B 1/2	• AAB	1/18	
		A 1/3	C 1/2	• AAC	1/18	
		B 1/3	C 1	• ABC	1/9	
	. /	1/3	В 1	• ACB	1/9	
	A 1/3	1/3	C 1	• BAC	1/9	
	1/3	A B 1/3	A 1/2	• BBA	1/18	
	В	C 1/3	C 1/2	• BBC	1/18	
	1/3	4,5	A 1	BCA	1/9	
	c	A 1/3	B 1	CAB	1/9	
		B 1/3	A 1	CBA	1/9	
		1/3 C	A 1/2	CCA	1/18	
		_	B 1/2	ССВ	1/18	
Conditional Probability	$\Pr[E U] = \frac{\sum_{w}}{\sum_{w}}$	$\sum_{w \in U} \frac{\Pr[w]}{\Pr[w]} =$	$= \frac{\Pr[E \cap \Pr[U]]}{\Pr[U]}$	<u><i>U</i>]</u>	(provided	$\Pr[U] \neq 0$)
	When $Pr[U] =$	0 the condition	al probabil	ity Pr[<i>E</i>	U] is undefi	ned.
Independent and Conditional	Proposition. F following two sta	10.70	20 20	n the san	ne probabilit	ty space the
		(ii) $\Pr[B] =$		$[B] \neq 0$ a	$\operatorname{Pr}[A B]$	$=\Pr[A]$)
Chain Rule	Proposition (T		. For any	events	A, B, C in	the same
		C] = $Pr[A] \cdot 1$	Pr[<i>B</i> <i>A</i>] · 1	$\Pr[C A\cap$	<i>B</i>]	
	For any events	A_1, \ldots, A_n in t	he same p	robabilitv	space we h	ave
		$\cap A_3 \cdots \cap A_n$				escentral
	= Pr[A_1] · $\Pr[A_2 A_1]$	$-\Pr[A_3 A_1]$	$\cap A_2]\cdots$	$\Pr[A_n A_1\cap$	$[\cdots \cap A_{n-1}]$

MODULE 9				
Random Variable	A random variable on (Ω, \Pr) is a function $X : \Omega \to \mathbb{R}$.			
	Denote $Val(X) = \{x \in \mathbb{R} \mid \exists w \in \Omega \ X(w) = x\}.$ (The set of values taken by X .)			
	Like Ω , Val(X) is also a finite set.			
	Denote with x the real values that X takes and with $X = x$ the event $\{w \in \Omega \mid X(w) = x\}$. Its probability $\Pr[X = x]$ is of particular interest.			
	The distribution of the random variable X is the function $f: Val(X) \rightarrow [0,1]$ where $f(x) = Pr[X = x]$.			
Uniform Random Variable	Let v_1, \ldots, v_n be n distinct values in \mathbb{R} . Given (Ω, \Pr) , an r.v. $U: \Omega \to \mathbb{R}$ is uniform with these values when $\operatorname{Val}(U) = \{v_1, \ldots, v_n\}$ and $\Pr[U = v_i] = 1/n$ for $i = 1, \ldots, n$.			
	The corresponding distribution $ f: \{v_1,\ldots,v_n\} \to [0,1] \qquad f(v_i) = 1/n \text{for} i=1,\ldots,n $ is also called uniform .			
	The r.v. D associated with a fair die is uniform with $n=6$ and $v_i=i$ for $i=1,\ldots,6$.			

Bernoulli Random Variable	Recall Bernoulli trials. Similarly, we can define:
Variable	Given (Ω, \Pr) , an r.v. $X: \Omega \to \mathbb{R}$
	with $Val(X) = \{0,1\}$
	and $\Pr[X=1] = p$
	is called a Bernoulli random variable with parameter p .
	A Bernoulli r.v. X defines implicitly a Bernoulli trial where "success" is $X=1$ and "failure" is $X=0$.
	The corresponding distribution
	$f:\{0,1\} ightarrow [0,1]$ where $f(1)=p$ and $f(0)=1-p$
	is called a Bernoulli distribution with parameter p .
Mean	Average , or mean , value returned by a random variable. Such an average should take into account that some values may "weigh" more than others. The weights are given by the probability distribution!
	Notation $E[X]$. Two candidates, but they give the same answer:
	Proposition. For a random variable X defined on (Ω, \Pr) we have
	$E[X] \ = \ \sum_{x \in Val(X)} x \cdot \Pr[X = x] \ = \ \sum_{w \in \Omega} X(w) \cdot \Pr[w]$
	The first expression corresponds directly to a weighted average of the values taken by random variable. Recall that the weights $\Pr[X=x]$ sum up to 1. The second expression takes the average of values by outcomes they map from. Multiple outcomes may be mapped to the same value taken by the r.v.
Expectation of Bernoulli	$E[X] = 1 \cdot \Pr[X = 1] + 0 \cdot \Pr[X = 0] = 1 \cdot p + 0 \cdot (1 - p) = p.$

 $\mathsf{E}[c_1\,X_1+\cdots+c_n\,X_n] = c_1\,\mathsf{E}[X_1]+\cdots+c_n\,\mathsf{E}[X_n]$

Linearity of Expectation

Indicator Random Variable

Let A be an event in a probability space (Ω, Pr) . The **indicator** random variable of the event A, notation I_A , is defined by

$$I_A(w) = \begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \notin A \end{cases}$$

Note that I_A is a Bernoulli random variable with success probability $\Pr[I_A = 1] = \Pr[A]$.

As we have shown before, its expectation is $E[I_A] = Pr[I_A = 1] = Pr[A]$.

MODULE 10				
Expectation	If X is an r.v. its expectation , $E[X]$, also called its mean , is often denoted by $\mu = E[X]$.			
Variance	$Var[X] = E[(X - \mu)^2] (where \ \mu = E[X])$ $Var[X] = E[X^2] - \mu^2$			
Standard Deviation	$\sigma[X] = \sqrt{\operatorname{Var}[X]}$			
Variance of Bernoulli Random Variable	$Var[X] = E[X^2] - \mu^2 = p - p^2 = p(1-p)$			
Linearity of Variance	$Var[cX] = c^2Var[X]$ if $X\perp Y$ then $Var[X+Y] = Var[X] + Var[Y]$ Proposition. If r.v.'s X_1,\ldots,X_n are pairwise independent then $Var[X_1+\cdots+X_n] = Var[X_1]+\cdots+Var[X_n]$ $Var[B] = p(1-p)+\cdots+p(1-p) = np(1-p)$.			
Binomial Random Variable	An r.v. $B: \Omega \to \mathbb{R}$ is called binomial with parameters $n \in \mathbb{N}$ and $p \in [0,1]$ when $Val(B) = [0n]$ and $\forall k \in [0n]$ $Pr[B = k] = \binom{n}{k} p^k (1-p)^{n-k}$.			
Expectation for Binomial + Bernoulli	$E[B] = E[J_1] + \cdots + E[J_n].$ $E[B] = p + \cdots + p = np.$			