Exercices d'algèbre homologique

Rayane Bait

Exercice 0.1

On utilise les notations de l'exercice. Soit

$$0 \longrightarrow \mathscr{F}' \xrightarrow{f} \mathscr{F} \xrightarrow{g} \mathscr{F}'' \tag{*}$$

une suite exacte dans Sh(X) et $U \subseteq X$ un ouvert de X. On doit montrer que

$$0 \longrightarrow \mathscr{F}'(U) \xrightarrow{f(U)} \mathscr{F}(U) \xrightarrow{g(U)} \mathscr{F}''(U)$$

est exacte dans Ab. Autrement dit que $\ker(f(U)) = 0$ et $\operatorname{im}(f(U)) = \ker(g(U))$ dans Ab.

On montre d'abord le premier point. Soit $s \in \ker(f(U))$ et $x \in X$. Par commutativité de

$$\begin{array}{ccc}
\mathscr{F}'(U) & \xrightarrow{f(U)} \mathscr{F}(U) \\
\downarrow & & \downarrow \\
0 & \longrightarrow \mathscr{F}_x & \xrightarrow{f_x} \mathscr{F}'_x
\end{array}$$

pour les flèches évidentes et par exactitude de la ligne du bas, on a $(U,s) = (V_x,0) \in \mathscr{F}_x$ pour tout $x \in U$. Quitte à remplacer V_x par $U \cap V_x$, on peut supposer $V_x \subset U$. En particulier, on obtient un recouvrement de U par des ouverts V_x tels que

$$s|_{V_x} = 0$$

pour tout $x \in U$. D'où $s = 0 \in \mathscr{F}(U)$ car \mathscr{F} est un faisceau. On a montré que f(U) est injective pour tout ouvert U de X.

On montre maintenant le second point par double inclusion, d'abord $\ker(g(U)) \subset \operatorname{im}(f(U))$: Soit $s \in \ker(g(U))$ et $x \in U$, par commutativité de

$$\begin{array}{ccc} \mathscr{F}(U) & \xrightarrow{g(U)} & \mathscr{F}''(U) \\ \downarrow & & \downarrow \\ \mathscr{F}_x & \xrightarrow{g_x} & \mathscr{F}''_x \end{array}$$

on a, $g_x((U,s)) = 0$. Maintenant par exactitude de

$$\mathscr{F}'_x \xrightarrow{f_x} \mathscr{F}_x \xrightarrow{g_x} \mathscr{F}''_x$$

il existe $(V_x, s'_x) \in \mathscr{F}'_x$ tel que $f_x((V_x, s'_x)) = (U, s)$. Quitte à prendre $V_x \cap U = V_x$ on peut supposer $V_x \subset U$. Maintenant par commutativité de

$$0 \longrightarrow \mathscr{F}'(U) \xrightarrow{f(U)} \mathscr{F}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathscr{F}'(V_x) \xrightarrow{f(V_x)} \mathscr{F}(V_x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathscr{F}'_x \xrightarrow{f_x} \mathscr{F}_x$$

on obtient $f(V_x)(s'_x) = s|_{V_x}$ pour chaque $x \in U$ et $U = \bigcup_{x \in U} V_x$. Enfin, pour tout $x, x' \in U$, par commutativité de

$$\mathcal{F}'(V_x) \longrightarrow \mathcal{F}(V_x)
\downarrow \qquad \qquad \downarrow
\mathcal{F}'(V_x \cap V_{x'}) \longrightarrow \mathcal{F}'(V_x \cap V_{x'})
\uparrow \qquad \qquad \uparrow
\mathcal{F}'(V_{x'}) \longrightarrow \mathcal{F}(V_{x'})$$

on a

$$f(V_x \cap V_{x'})(s'_x|_{V_x \cap V_{x'}}) = s|_{V_x \cap V_{x'}} = f(V_x \cap V_{x'})(s'_{x'}|_{V_x \cap V_{x'}})$$

d'où par injectivité de $f(V_x \cap V_{x'})$ on a

$$s'_x|_{V_x \cap V_{x'}} = s'_{x'}|_{V_x \cap V_{x'}}$$

comme \mathscr{F}' est un faisceau on peut relever les s'_x en un $s' \in U$. Par commutativité du carré du haut dans l'avant dernier diagramme, comme \mathscr{F} est un faisceau et $f(V_x)(s'|_{V_x}) = s|_{V_x}$ on obtient que f(U)(s') = s d'où $\ker(g(U)) \subset \operatorname{im}(f(U))$.

Soit maintenant s=f(U)(s') pour $s'\in \mathscr{F}'(U)$. Pour tout $x\in U,$ par commutativité de

et par exactitude de la ligne du bas on a

$$(V_x, 0) = q_x(f_x((U, s'))) = q_x((U, s)).$$

On obtient un recouvrement $U = \bigcup_x V_x$ de U par les V_x tel que $g(U)(s)|_{V_x} = g(V_x)(s|_{V_x}) = 0$. Comme \mathscr{F}'' est un faisceau, on obtient g(U)(s) = 0 d'où $\ker(g(U)) = \operatorname{im}(f(U))$.

Exercice 0.2

Exercice 0.3

On utilisera librement dans tout l'exercice que Sh(X) est une catégorie abélienne avec les résultats suivants du cours :

1. Le noyau d'une flèche $f \colon F \to F'$ dans Sh(X) coincide avec le faisceau défini par

$$\ker(U) := \ker(\mathscr{F}(U) \to \mathscr{F}'(U))$$

2. L'image d'une flèche $f\colon F\to F'$ dans Sh(X) coincide avec le faisceautisé du préfaisceau défini par

im:
$$U \mapsto \operatorname{im}(U) := \operatorname{im}(\mathscr{F}(U) \to \mathscr{F}'(U))$$

3. Le conoyau d'une flèche $f\colon F\to F'$ dans Sh(X) coincide avec le faisceautisé du préfaisceau défini

$$:U\mapsto (U):=(\mathscr{F}(U)\to \mathscr{F}'(U))$$

4. Le faisceau $0_{Sh(X)}$ défini par $0_{Sh(X)}(U) := 0_{Ab}$ est un objet zéro dans Sh(X).

On note $(_{-})^{\sharp}$: $PSh(X) \to Sh(X)$ le foncteur de faisceautisation. Enfin, si \mathscr{F} est un faisceau sur un espace topologique on pourra décrire une section $\bar{s}: U \to Et(\mathscr{F})$ de l'espace étalé de \mathscr{F} comme un tuple $(s_x)_{x \in U} = (\bar{s}(x))_{x \in U}$.

1)

Soit \mathscr{F} un faisceau dans Sh(X). Pour tout $x \in X$, on a $0 = 0_{F_x} \in \mathscr{F}_x$ un élément neutre car \mathscr{F}_x est un groupe abélien. En particulier, pour tout ouverts $V \subseteq U$ de X, si $s = (s_x)_{x \in V} \in C^0(\mathscr{F}(V))$ alors si on note $s' := (s'_x)_{x \in U}$ la section telle que $s'_x = s_x$ pour $x \in V$ et $s'_x = 0$ pour $x \in U - V$ on a $s'|_V = s$ d'où $C^0(\mathscr{F})$ est flasque.

Soit $\mathscr{F} \in Sh(X)$. On définit $i^0(\mathscr{F}) \colon \mathscr{F} \to C^0(\mathscr{F})$ le morphisme de faisceau défini par $i^0(\mathscr{F})(U) \colon s \mapsto (s_x)_{x \in U}$ pour tout ouvert U de X et où $s_x \in \mathscr{F}_x$ est l'image de s dans la fibre \mathscr{F}_x induite par \mathscr{F} . On montre que $i^0(\mathscr{F})$ est injectif en montrant que $\ker(i^0(\mathscr{F})) = 0_{Sh(X)}$. Soit U un ouvert sur X et $s \in \ker(i^0(\mathscr{F}))(U)$, alors $(s_x)_{x \in U} = ((V_x, 0))_{x \in U}$, en particulier $s|_{V_x} = 0$ et $\cup V_x = U$ d'où $s = 0 \in \mathscr{F}(U)$.

3)

On définit en plus $Z^0(\mathscr{F})=\mathscr{F},\,d_0^0\colon C^0(\mathscr{F})\to Z^1(\mathscr{F})$ et $d^0=i^0(\mathscr{F})\circ (d_0^0)$. On suppose maintenant défini $d_0^{i-1}\colon C^{i-1}(\mathscr{F})\to Z^i(\mathscr{F})$ et

$$d^{i-1} = i^0(Z^{i-1}) \circ (d_0^{i-1}) \colon C^{i-1}(\mathscr{F}) \to C^i(\mathscr{F})$$

pour $n \ge i \ge 1$.

4)

5)

On montre d'abord que $C^{\bullet}(\underline{\ })$ est un foncteur. Étant donné $g \circ f \colon \mathscr{F}' \to \mathscr{F} \to \mathscr{F}''$ dans Sh(X). On pose d'abord $f_0 = f$ et $g_0 = g$, on définit ensuite $Z^n(\mathscr{F}') \to Z^n(\mathscr{F})$ pour tout $n \geq 1$.

Supposons d'abord que $C^0(_{-})$ est exact et soit

$$0 \longrightarrow \mathscr{F}' \xrightarrow{f} \mathscr{F} \xrightarrow{g} \mathscr{F}'' \longrightarrow 0 \tag{*}$$

une suite exacte dans Sh(X). On montre que le morphisme de complexe induit $0 \to C^{\bullet}(\mathscr{F}') \to C^{\bullet}(\mathscr{F}) \to C^{\bullet}(\mathscr{F}') \to 0$ est exact. Il suffit de montrer qu'il l'est à chaque niveau, c'est à dire que pour tout $n \geq 0$

$$0 \to C^n(\mathscr{F}') \to C^n(\mathscr{F}) \to C^n(\mathscr{F}'') \to 0$$

est exact. En plus on a supposé que $C^0(\)$ était exact, il suffit donc de montrer que

$$0 \to Z^n(\mathscr{F}') \to Z^n(\mathscr{F}) \to Z^n(\mathscr{F}'') \to 0$$

est exact. On le montre par récurrence sur n. En posant $Z^0(\mathscr{F}) := \mathscr{F}$ on obtient le cas n=0 par l'hypothèse (*). Supposons maintenant le résultat vrai pour $0 \le i \le n-1$. On considère le diagramme

$$0 \longrightarrow C^{n-1}(\mathscr{F}') \xrightarrow{C^0(f_{n-1})} C^{n-1}(\mathscr{F}) \xrightarrow{C^0(g_{n-1})} C^{n-1}(\mathscr{F}'') \longrightarrow 0$$

$$\downarrow^{d'^{n-1}} \qquad \downarrow^{d^{n-1}} \qquad \downarrow^{d''^{n-1}}$$

$$0 \longrightarrow Z^n(\mathscr{F}') \xrightarrow{f_n} Z^n(\mathscr{F}) \xrightarrow{g_n} Z^n(\mathscr{F}'') \longrightarrow 0$$

où on note que $f_0 = f$, $g_0 = g$ et f_n est la flèche induite de $d_0^{n-1} \circ C^0(f_{n-1})$ avec $C^0(d_0^{n-1}) = d^{n-1}$ pour $n \ge 1$ par passage au quotient dans la catégorie abélienne Sh(X), de même pour d_0'' et g_n via $d_0''^{n-1} \circ C^0(g_{n-1})$.

On montre maintenant que $C^0(_): Sh(X) \to Sh(X)$ est exact. Soit $f: \mathscr{F}' \to \mathscr{F}$ dans Sh(X). La flèche $C^0(f)$ est donnée par

$$C^{0}(f)(U): (s'_{x})_{x \in U} \mapsto (f_{x}(s'_{x}))_{x \in U}$$

où $f_x \colon \mathscr{F}'_x \to \mathscr{F}_x$ est la flèche induite par f sur les fibres. Il suffit de montrer que $C^0(\ker(\mathscr{F}' \to \mathscr{F})) = \ker(C^0(\mathscr{F}') \to C^0(\mathscr{F}))$ et $C^0(\operatorname{im}(\mathscr{F}' \to \mathscr{F})) = \operatorname{im}(C^0(\mathscr{F}') \to C^0(\mathscr{F}))$. Si c'est le cas, alors comme $C^0(0_{Sh(X)}) = 0_{Sh(X)}$, car tout produit d'objets terminaux est terminal, on obtient directement pour toute suite exacte

$$0 \longrightarrow \mathscr{F}' \xrightarrow{f} \mathscr{F} \xrightarrow{g} \mathscr{F}'' \longrightarrow 0 \tag{*}$$

dans Sh(X) que

$$0 \longrightarrow C^0(\mathscr{F}') \xrightarrow[C^0(f)]{} C^0(\mathscr{F}) \xrightarrow[C^0(g)]{} C^0(\mathscr{F}'') \longrightarrow 0 \tag{*}$$

est exacte par fonctorialité de $C^0(_{-})$.

On commence par montrer que $C^0(\ker(\mathscr{F}'\to\mathscr{F}))=\ker(C^0(\mathscr{F}')\to C^0(\mathscr{F}))$. Par la description donnée en 1. on a

$$\ker(C^0(\mathscr{F}')\to C^0(\mathscr{F}))(U)=\ker(\prod_{x\in U}f_x\colon \prod_{x\in U}\mathscr{F}'_x\to \prod_{x\in U}\mathscr{F}_x)$$

et de plus $C^0(\ker(\mathscr{F}'\to\mathscr{F}))(U)=\prod_{x\in U}\ker(\mathscr{F}'\to\mathscr{F})_x$, il suffit donc de montrer que si

$$(s_x)_{x \in U} \in \ker(\prod_{x \in U} f_x : \prod_{x \in U} \mathscr{F}'_x \to \prod_{x \in U} \mathscr{F}_x)$$

alors pour tout $x \in U$ on a $s_x \in \ker(f_x)$ et inversement. Mais c'est immédiat par définition du noyau dans Ab.

On montre maintenant que $C^0(\operatorname{im}(\mathscr{F}'\to\mathscr{F})^{\sharp})=\operatorname{im}(C^0(\mathscr{F}')\to C^0(\mathscr{F}))^{\sharp}$. Par la description donnée en 2. on peut écrire

$$\operatorname{im}(C^0(\mathscr{F}') \to C^0(\mathscr{F}))(U) = \{(f_x s_x')_{x \in U} | s_x' \in \mathscr{F}_x'\}$$

et on remarque que c'est déjà un faisceau par définition des restrictions. En plus $C^0(\operatorname{im}(\mathscr{F}'\to\mathscr{F})^\sharp)=C^0(\operatorname{im}(\mathscr{F}'\to\mathscr{F}))$ car un préfaisceau et son faisceautisé ont les mêmes fibres, en particulier $C^0(\operatorname{im}(\mathscr{F}'\to\mathscr{F}))$ et $\operatorname{im}(C^0(\mathscr{F}')\to C^0(\mathscr{F}))$ ont la même description donc coincident. On en déduit de $C^0(_)$ est exact.