

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

 Un cabezal que se apoya en el suelo puede colaborar en la transmisión de cargas al terreno.

- Un cabezal que se apoya en el suelo puede colaborar en la transmisión de cargas al terreno.
- La capacidad de carga total es igual a la suma de la capacidad de carga de la platea mas la capacidad de carga del grupo de pilotes.
- La rigidez total de la fundación también es la suma de las rigideces de los elementos.

 Como problema de interacción suelo – estructura, la reacción de los pilotes es una carga concentrada que depende del asentamiento.

El acople es determinante.

- La carga superficial produce asentamiento en los pilotes;
- La carga en los pilotes produce asentamientos en la platea;
- El asentamiento de un pilote produce asentamientos en el pilote vecino.

Se requiere un análisis acoplado del problema.

- ② Pile-Pile-Interaction
- (3) Raft-Soil-Interaction
- 4 Pile-Raft-Interaction

Platea apoyada sobre pilotes

Condiciones para su empleo:

- Todos los estratos involucrados por la fundación son competentes.
- No existe riesgo de compresión primaria de ningún estrato.
- Los asentamientos que tendría una platea convencional y una fundación con pilotes son comparables.

Métodos de diseño de plateas con pilotes

- Método de elementos finitos
- Método de interacción elástica
 - Simple y expeditivo
 - Permite cabezales con cualquier forma
 - Admite sólo cargas verticales
 - Entrega resultados razonables con poco esfuerzo computacional

Cabezal de dos pilotes flexible

 Resolver los desplazamientos de un cabezal con dos pilotes acoplando los desplazamientos entre ambos elementos (Cabezal y pilotes), determinando la carga en cada uno de los pilotes (F2) y las solicitaciones en el cabezal (M | Q)

Cabezal de dos pilotes flexible (Resultados)

Carga en pilote

700
600
400
200
100
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteracion

Esfuerzos en solera

Hipótesis

- Suelo y estructura son elástico lineales
- No hay desplazamientos relativos suelo-estructura

Modelización

 Se establecen puntos de análisis sobre platea y fuste de los pilotes

Incógnitas resueltas

- Carga en cada pilote
- Tensiones de contacto
- Asentamientos

- Los asentamientos son determinados mediante la teoría de la elasticidad.
- La distribución de tensiones en la masa del terreno se determina mediante el problema de Boussinesq.
- La interacción entre fustes de pilotes se resolvió mediante Midlin (1936).

Fig 4.2. Razón entre la carga para pilotes 1, 2 y 3 y la carga promedio del grupo de pilotes (Pi / Pm) en función de la razón ente el espaciamiento y el diámetro de pilotes (S/D).

Fig 4.3. Asentamiento normalizado de pilotes (*Iw*) en función de la razón espaciamiento y diámetro (*S/D*) de pilotes.

 $I_w = w_S \cdot E_S / Q_Z$

Fig 4.4. Asentamiento normalizado (I_w) en función de la relación de rigideces entre pilotes y suelo (E_p/E_s)

Fig. 4.5. Asentamiento relativo entre un pilote sin carga vertical exterior, cercano a otro pilote con carga vertical, sin vinculación estructural alguna entre ambos (w_{p2}/w_{pl}) , en función de la razón entre el espaciamiento y el diámetro de pilotes (S/D)

Fig. 4.6. Razón entre la carga transmitida al suelo por el cabezal y la carga total (Q_c / Q_t) , en función de razón de entre el espaciamiento y el diámetro de pilotes (S/D)

Fig. 4.7. Variación de la razón de asentamientos "base con pilotes / base aislada" (w_c/w_{pr}) , en función del módulo elástico del material "pilote / suelo" (E_p/E_s)

Fig. 4.12. Tensiones de fuste para pilotes 1, 2 y 3 en función de la profundidad (L)

Fig 4.14. Distribución de presiones de contacto en el cabezal, distribuías en el ancho B, para los cortes A-A, B-B y C-C; y promedio de presiones de contacto en la base .

Ejemplo: Cabezal de 42 pilotes Soft. ELPLA (http://geotecsoftware.com/)

- Pilotes $\phi = 0.90m \mid L = 20m \mid s = 3.5 m \mid E = 23.5 GPa$
- Platea $d = 1.5m \mid E = 34 \ GPa \mid v = 0.2 \mid \gamma = 25 \ kN/m^3$
- Terreno $\gamma_s = 18 \ kN/m^3 \ | E_s = 10 \ MPa \ | \nu = 0.3 \ | NF = 2 \ m$
- Sobrecarga q = 150 kPa

 La distribución de asentamientos no es uniforme: La deformación es mayor en el centro de la placa (Esto no se ve en un modelo estructural clásico con resortes de Winkler constantes y sin transferencia por corte).

 La distribución de asentamientos no es uniforme: La deformación es mayor en el centro de la placa (Esto no se ve en un modelo estructural clásico con resortes de Winkler constantes y sin transferencia por corte).

 La distribución de cargas entre los pilotes no es uniforme: se cargan mas los pilotes de las esquinas

 La distribución de presiones de contacto no es uniforme: se carga más el perímetro que el centro

 La distribución de presiones de contacto no es uniforme: se carga más el perímetro que el centro

