MBA em Ciência de Dados

Aprendizado Dinâmico

Avaliação Final

Aluno: Benicio Ramos Magalhães

Material Produzido por Cibele Russo Cemeai - ICMC/USP São Carlos

Para esta avaliação, você deve entregar três arquivos:

- um arquivo de dados em .csv com a base resultante das análises
- um relatório em .ipynb com suas análises comentadas
- um arquivo .pdf gerado a partir do .ipynb

Os dados de casos confirmados e mortes diárias por COVID-19 nos Estados Unidos estão disponíveis no arquivo covid19USA.csv.

In [174]:

```
#bibliotecas
import six
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import rcParams
from keras.layers import LSTM
from keras.layers import Dense
from pmdarima import auto arima
from keras.models import Sequential
sys.modules['sklearn.externals.six'] = six
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.stattools import adfuller
import warnings; warnings.simplefilter('ignore')
from statsmodels.tsa.api import ExponentialSmoothing
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal decompose
from keras.preprocessing.sequence import TimeseriesGenerator
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from sklearn.metrics import mean squared error, mean absolute error
```

Exercício 1

Você deve fazer a leitura dos dados, estabelecer um índice por datas, verificar se os dados estão corretos e realizar algum procedimento necessário caso haja dados faltantes.

In [2]:

```
#leitura dos dados estabelecendo um índice por datas
data = pd.read_csv('.\covid19USA.csv',index_col='date',parse_dates=True)
data.head()
```

Out[2]:

	confirmed	deaths
date		
2020-01-01	0	0
2020-01-02	0	0
2020-01-03	0	0
2020-01-04	0	0
2020-01-05	0	0

In [3]:

```
#verificando se os dados estão corretos
#checando intervalos de datas e tamanho do da base:
print('
                       Verificação de dados
print('
print('
print('|Fim:-----|',data.index.max(),'--|')
print('|Tipo de dado do índice:-----|',data.index.dtype,'-----|')
print('|Tamanho da base original:-----|',len(data),'------|')
print('|Tamanho esperado para o intervalo:-|',len(pd.date_range(start=data.index.min(),
end=data.index.max(), freq='D')),'-----')
#verifcando se temos dados faltantes:
print('|Dados Faltantes em confirmed:-----|',len(data[data['confirmed'].isnull()]),'--
.
-----|')
print('|Dados Faltantes em deaths:-----|',len(data[data['deaths'].isnull()]),'-----
print('|
#printando os dados:
rcParams['figure.figsize'] = 16, 6
data[data['confirmed']>0].plot();
```


Conforme observamos na base de dados, não verificamos necessidade de aplicar alg um procedimento para dados faltantes.

Exercício 2

Proponha uma decomposição dos dados de mortes em tendência e sazonalidade. Obtenha os gráficos de autocorrelação e autocorrelação parcial. Comente brevemente os resultados.

In [4]:

```
#decomposição dos dados de mortes em tendência e sazonalidade:
decomposicao = seasonal_decompose(data[data['deaths']>0]['deaths'],model='multiplicativ
e', period=7)
fig = decomposicao.plot()
```


In [5]:

```
#testando a estacionariedade com Dickey-Fuller
result = adfuller(data['deaths'], autolag='AIC')
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
print('Critical Values:')
for key, value in result[4].items():
    print('\t%s: %.3f' % (key, value))
```

ADF Statistic: -2.389673

Análise de tendência:

É possível observar uma tendência crescente no período de abril. A curva seg ue depois com uma tendência decrescente até meados de junho. No final de junho, temos um pequeno período de elevação, seguido logo de queda. Depois desse perío do a tendência fica muito menos evidente, praticamente sugerindo uma estacionari dade, porém, como os testes de Dickey-Fuller realizados anteriormente com p-valo r maior que 0.05, rejeitamos a hipótese de estacionariedade na série.

Análise de sazonalidade:

Podemos observar ciclos semanais que provavelmente são explicadas pela siste mática de notificações, onde os dados ficam acumulados para cálculo no ínicio da semana e são sumarizados e apresentados mais para o meio da semana. Com relação ao tipo de sazonalidade, o gráfico apresenta algumas variações ao longo da séri e temporal, principalmente nos períodos de tendência crescente, portanto, consid eramos mais adequada representarmos a sazonalidade como sendo do tipo multiplica tiva.

In [6]:

```
#gráficos de autocorrelação e autocorrelação parcial
fig = plot_acf(data['deaths'],title='Autocorrelação: Deaths',lags=50)
fig = plot_pacf(data['deaths'],title='Autocorrelação Parcial: Deaths',lags=50)
```


Análise de autocorrelação:

Podemos observar que a correlação entre a série original até a série com atr aso lag=16 são bastante significativas pois encontram-se maiores que o intervalo de confiança (área azul), portanto, precisamos levá-las em consideração durante a modelagem. Notamos também que há presença de sazonalidade nos dados, apresent ando vales e picos em ciclos de 7 dias.

Análise de autocorrelação parcial:

Podemos verificar que a partir do lag=3 a correlação cai bastante, apresenta ndo valores por volta 0.4. Mesmo as correlações não sendo tão altas, elas ainda são importantes para o modelo, pois apresentam-se fora do intervalo de confiança.

Exercício 3

Divida a base em treino e teste, com 21 observações na base de teste. Você deverá apresentar em distintas colunas na mesma base de dados que será entregue:

- Os dados originais de casos confirmados e mortes.
- As previsões de Holt e Holt Winters para a variável mortes.
- As previsões obtidas pelo melhor modelo SARIMA, com ordens selecionadas segundo critério preestabelecido para a variável mortes. Identifique as compone ntes desse melhor modelo (por exemplo, "o modelo tem uma componente autorregress iva não sazonal de ordem.., uma componente de médias móveis não-sazonal de orde m.., etc).
- As previsões obtidas por um modelo de redes dinâmicas para a variável mo rtes.

In [7]:

```
#definindo uma semente (42! - the answer to everything)
np.random.seed(42)

#dividindo a base em treino e teste:
train = data.iloc[:226]
test = data.iloc[226:]

print('Base de treino:',len(train),'observações.')
print('Base de teste:',len(test),'observações.')
```

Base de treino: 226 observações. Base de teste: 21 observações.

In [8]:

```
#métodos de suavização holt e holt-winters para a variável mortes:

#treinamento e predição pelo método de Holt
adjustH = ExponentialSmoothing(train['deaths'],trend='add').fit()
predictH = adjustH.forecast(21).rename('Previsão Holt')
predictH.index = data.index[226:]

#treinamento e predição pelo método de Holt-Winters
adjustHW = ExponentialSmoothing(train['deaths'],trend='add',seasonal='add',seasonal_periods=7).fit()
predictHW = adjustHW.forecast(21).rename('Previsão Holt-Winters')
predictHW.index = data.index[226:]
```

In [9]:

	confirmed	deaths	holt	holt-winters
date				
2020-01-01	0	0	8.383989	8.177887
2020-01-02	0	0	10.737133	10.468893
2020-01-03	0	0	12.356743	12.166760
2020-01-04	0	0	13.471327	13.371696
2020-01-05	0	0	14.238206	14.261848

In [10]:

```
#imprimindo dados com a predição realizada pelo método de holt e holt-winters
test['holt'] = predictH
test['holt-winters'] = predictHW
print(test.head())
train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo pelo método d
e Holt e Holt-Winters')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
predictH.plot(legend=True,label='Previsão Holt')
fig = predictHW.plot(legend=True,label='Previsão Holt-Winters')
```

	confirmed	deaths	holt	holt-winters
date				
2020-08-14	51094	1083	1120.581342	1425.505533
2020-08-15	64838	1336	1125.546155	1178.708462
2020-08-16	48085	1035	1130.510968	980.247421
2020-08-17	42104	571	1135.475780	585.397064
2020-08-18	35056	445	1140.440593	726.522397

In [11]:

```
Fit ARIMA: order=(0, 1, 0) seasonal order=(1, 0, 1, 7); AIC=3418.337, BIC=
3432.001, Fit time=0.141 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(0, 0, 0, 7); AIC=3418.463, BIC=
3425.295, Fit time=0.016 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 0, 0, 7); AIC=3353.998, BIC=
3367.663, Fit time=0.228 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 0, 1, 7); AIC=3349.966, BIC=
3363.630, Fit time=0.325 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 1, 7); AIC=3306.510, BIC=
3323.591, Fit time=0.739 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 0, 7); AIC=3340.881, BIC=
3354.546, Fit time=0.270 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 2, 7); AIC=3304.675, BIC=
3325.171, Fit time=1.201 seconds
Fit ARIMA: order=(1, 1, 1) seasonal_order=(1, 0, 2, 7); AIC=3300.207, BIC=
3324.120, Fit time=1.329 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 0, 2, 7); AIC=3306.376, BIC=
3326.873, Fit time=1.147 seconds
Fit ARIMA: order=(1, 1, 2) seasonal_order=(1, 0, 2, 7); AIC=3302.720, BIC=
3330.049, Fit time=1.885 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(1, 0, 2, 7); AIC=3390.498, BIC=
3407.578, Fit time=0.908 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 2, 7); AIC=3298.943, BIC=
3329.688, Fit time=1.871 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(0, 0, 2, 7); AIC=3326.583, BIC=
3353.911, Fit time=1.625 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(2, 0, 2, 7); AIC=3301.074, BIC=
3335.235, Fit time=1.989 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3298.872, BIC=
3326.201, Fit time=1.255 seconds
Fit ARIMA: order=(2, 1, 2) seasonal order=(0, 0, 0, 7); AIC=3349.425, BIC=
3369.922, Fit time=0.529 seconds
Fit ARIMA: order=(1, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3302.089, BIC=
3326.002, Fit time=1.165 seconds
Fit ARIMA: order=(3, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3294.834, BIC=
3325.579, Fit time=1.233 seconds
Fit ARIMA: order=(3, 1, 1) seasonal_order=(1, 0, 1, 7); AIC=3305.105, BIC=
3332.434, Fit time=1.142 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(1, 0, 1, 7); AIC=3292.338, BIC=
3326.499, Fit time=1.304 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(0, 0, 1, 7); AIC=3289.039, BIC=
3319.784, Fit time=1.177 seconds
Fit ARIMA: order=(3, 1, 3) seasonal order=(0, 0, 0, 7); AIC=3286.250, BIC=
3313.578, Fit time=0.735 seconds
Fit ARIMA: order=(2, 1, 3) seasonal_order=(0, 0, 0, 7); AIC=3307.214, BIC=
3331.127, Fit time=0.703 seconds
Fit ARIMA: order=(4, 1, 3) seasonal_order=(0, 0, 0, 7); AIC=3294.471, BIC=
3325.216, Fit time=0.894 seconds
Fit ARIMA: order=(3, 1, 2) seasonal order=(0, 0, 0, 7); AIC=3291.182, BIC=
3315.094, Fit time=0.829 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(1, 0, 0, 7); AIC=3284.239, BIC=
3314.984, Fit time=1.172 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(2, 0, 1, 7); AIC=3293.654, BIC=
3331.231, Fit time=2.519 seconds
Fit ARIMA: order=(2, 1, 3) seasonal order=(1, 0, 0, 7); AIC=3313.276, BIC=
3340.605, Fit time=1.099 seconds
Fit ARIMA: order=(4, 1, 3) seasonal_order=(1, 0, 0, 7); AIC=3296.055, BIC=
3330.216, Fit time=1.246 seconds
Fit ARIMA: order=(3, 1, 2) seasonal_order=(1, 0, 0, 7); AIC=3292.260, BIC=
3319.589, Fit time=1.128 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 0, 7); AIC=3328.512, BIC=
```

HQIC 3296.648

3352.425, Fit time=0.791 seconds

Fit ARIMA: order=(3, 1, 3) seasonal_order=(2, 0, 0, 7); AIC=3289.464, BIC=

3323.625, Fit time=2.043 seconds Total fit time: 34.661 seconds

Out[11]:

SARIMAX Results

Sample:

Dep. Variable:	у	No. Observations:	226
Model:	SARIMAX(3, 1, 3)x(1, 0, [], 7)	Log Likelihood	-1633.119
Date:	Sun, 13 Sep 2020	AIC	3284.239
Time:	20:52:02	BIC	3314.984

- 226

0

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]		
intercept	-5.6011	14.299	-0.392	0.695	-33.626	22.424		
ar.L1	0.8173	0.071	11.520	0.000	0.678	0.956		
ar.L2	-0.4568	0.089	-5.133 0.000 -0.63	133 0.000 -0.	-0.631	-0.282		
ar.L3	-0.4185	0.064	-6.533	0.000	-0.544 -1.716	-0.293		
ma.L1	-1.5598	0.080	-19.531	0.000		-1.403		
ma.L2	1.2980	0.113	11.448	0.000	1.076	1.520		
ma.L3	-0.3483	0.074	-4.689			-0.203		
ar.S.L7	-0.0497	0.056	-0.881			0.061		
sigma2	1.318e+05	5703.856	23.108	0.000	1.21e+05	1.43e+05		

Ljung-Box (Q): 51.68 Jarque-Bera (JB): 6750.13

 Prob(Q):
 0.10
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 464.93
 Skew:
 2.99

Prob(H) (two-sided): 0.00 Kurtosis: 29.16

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Descrição do modelo selecionado: SARIMAX(3, 1, 3)x(1, 0, 0, 7)

- Componente não sazonal autorregressiva de ordem 3
- Componente não sazonal integrado de ordem 1
- Componente não sazonal de médias móveis de ordem 3
- Componente sazonal autorregressiva de primeira ordem com período 7
- Sem componente sazonal integrada
- Sem componente sazonal de média móvel

In [12]:

```
#treinamento utilizando o modelo SARIMA identificado pelo stepwise
adjustSARIMA = SARIMAX(train['deaths'],order=(3,1,3),seasonal_order=(1,0,0,7)).fit()
adjustSARIMA.summary()
```

Out[12]:

SARIMAX Results

Dep. Variable:	deaths	No. Observations:	226
Model:	SARIMAX(3, 1, 3)x(1, 0, [], 7)	Log Likelihood	-1631.614
Date:	Sun, 13 Sep 2020	AIC	3279.228
Time:	20:52:04	BIC	3306.557
Sample:	01-01-2020	HQIC	3290.258
	09 12 2020		

- 08-13-2020

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]						
ar.L1	0.8179	0.063	13.040	0.000	0.695	0.941						
ar.L2	-0.4578	0.079			-5.788 0.000 -0.613		-5.788 0.000 -0.613		-5.788 0.000 -0.61	-5.788 0.00		-0.303
ar.L3	-0.4142	0.056			-0.524	-0.305						
ma.L1	-1.5655	0.071	-22.156	0.000	-1.704	-1.427						
ma.L2	1.2993	0.102	12.737	0.000	1.099	1.499						
ma.L3	-0.3508	0.066	-5.313 0.000 -0.4	313 0.000 -0.480		-5.313 0.000 -0.480 -1.126 0.260 -0.138		3 0.000 -0.480 -0	-0.221			
ar.S.L7	-0.0502	0.045 -1.12	-1.126 0.260 -		0.045 -1.126 0.260			0.037				
sigma2	1.151e+05	3894.620	29.560	0.000	1.07e+05	1.23e+05						

 Ljung-Box (Q):
 51.51
 Jarque-Bera (JB):
 6746.95

 Prob(Q):
 0.10
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 54463.55
 Skew:
 3.00

Prob(H) (two-sided): 0.00 Kurtosis: 29.15

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [13]:

In [14]:

```
#imprimindo dados com a predição realizada pelo SARIMA
train['sarima'] = adjustSARIMA.fittedvalues
test['sarima'] = predict_SARIMA
print(predict_SARIMA.head())
train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo SARIMA(3, 1, 3)x(1, 0, 0, 7)')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
fig = predict_SARIMA.plot(legend=True,label='Previsão SARIMA(3, 1, 3)x(1, 0, 0, 7)')
```

```
date
2020-08-14 1493.331715
2020-08-15 1300.243922
2020-08-16 883.135011
2020-08-17 654.833988
2020-08-18 732.306818
```

Name: Previsões SARIMA(3, 1, 3)x(1, 0, 0, 7), dtype: float64

In [15]:

```
# padronizando os dados para aplicar modelo de redes dinâmicas
scaler = MinMaxScaler().fit(train['deaths'].values.reshape(-1,1))
scaled_train = scaler.transform(train['deaths'].values.reshape(-1,1))

print('
print('|Intervalo de dados de treino: |',scaled_train.min(),' - ',scaled_train.max(),'
|')
print('|Intervalo de dados de teste: |',scaled_test.min(),' - ',scaled_test.max(),'|'
)
print('|Intervalo de dados de teste: |',scaled_test.min(),' - ',scaled_test.max(),'|'
)
fig = plt.hist(scaled_train)
```


In [16]:

```
#definindo o gerador
generator = TimeseriesGenerator(scaled_train, scaled_train, length=7, batch_size=1) #lo
te de tamanho 7 devido a sazonalidade

print('Tamanho das amostras de treino:',len(scaled_train))
print('Tamanho do gerador dividido por lotes:',len(generator))

X,y = generator[0] #aparência do primeiro lote

print()
print('Dados do primeiro lote:',X.flatten())
print('Predição do primeiro lote:',y.flatten())
Tamanho das amostras de treino: 226
```

Tamanho do gerador dividido por lotes: 219

Dados do primeiro lote: [0. 0. 0. 0. 0. 0. 0.]

Predição do primeiro lote: [0.]

In [17]:

```
#modelo de redes dinâmicas LSTM (Long Short-Term Memory)
model = Sequential()
model.add(LSTM(100, activation='relu',input_shape=(7,1))) #camada LSTM com 100 neurônio
s
model.add(Dense(1)) #camada de saída com 1 output
model.compile(optimizer='adam',loss='mse') #função de perda de erro quadrático médio
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100)	40800
dense (Dense)	(None, 1)	101

Total params: 40,901 Trainable params: 40,901 Non-trainable params: 0

In [18]:

#ajustando o modelo
model.fit_generator(generator, epochs=100) #com 100 interações

WARNING:tensorflow:From <ipython-input-18-9d44b54d59eb>:2: Model.fit_gener ator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.

Instructions for updating:

Please use Model.fit, which supports generators.

Epoch 1/100

Epoch 2/100

Epoch 3/100

Epoch 4/100

219/219 [============] - 1s 3ms/step - loss: 0.0079

Epoch 5/100

219/219 [============] - 1s 4ms/step - loss: 0.0085

Epoch 6/100

219/219 [===============] - 1s 3ms/step - loss: 0.0075

Epoch 7/100

219/219 [============] - 1s 3ms/step - loss: 0.0075

Epoch 8/100

219/219 [============] - 1s 4ms/step - loss: 0.0077

Epoch 9/100

219/219 [============] - 1s 3ms/step - loss: 0.0074

Epoch 10/100

219/219 [==============] - 1s 3ms/step - loss: 0.0074

Epoch 11/100

219/219 [============] - 1s 3ms/step - loss: 0.0076

Epoch 12/100

219/219 [==============] - 1s 3ms/step - loss: 0.0076

Epoch 13/100

219/219 [============] - 1s 3ms/step - loss: 0.0073

Epoch 14/100

219/219 [=============] - 1s 3ms/step - loss: 0.0072

Epoch 15/100

Epoch 16/100

219/219 [==============] - 1s 3ms/step - loss: 0.0071

Epoch 17/100

219/219 [============] - 1s 3ms/step - loss: 0.0071

Epoch 18/100

Epoch 19/100

219/219 [===========] - 1s 3ms/step - loss: 0.0070

Epoch 20/100

219/219 [===========] - 1s 3ms/step - loss: 0.0067

Epoch 21/100

Epoch 22/100

Epoch 23/100

219/219 [============] - 1s 3ms/step - loss: 0.0066

Epoch 24/100

Epoch 25/100

219/219 [=============] - 1s 3ms/step - loss: 0.0066

Epoch 26/100

219/219 [============= - 1s 3ms/step - loss: 0.0064

Epoch 27/100

219/219 [============] - 1s 3ms/step - loss: 0.0065

Epoch 28/100

219/219 [============] - 1s 3ms/step - loss: 0.0065

file:///C:/Users/Beni/MBA-USP-DS/06.Dinamico-DS/AvaliacaoFinal/Avaliacao Aprendizado Dinamico - Final.html

Enach 20/100						
Epoch 29/100 219/219 [====================================	_	1 c	3mc/stan	_	1000	0 0066
Epoch 30/100		13	эшэ/ эсср		1033.	0.0000
219/219 [==========================	_	1s	3ms/step	_	loss:	0.0066
Epoch 31/100			, ,			
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0063
Epoch 32/100						
219/219 [=========]	-	1s	3ms/step	-	loss:	0.0062
Epoch 33/100		_	2 / .		-	0 0054
219/219 [====================================	-	15	3ms/step	-	loss:	0.0061
Epoch 34/100 219/219 [====================================	_	1 c	/mc/stan	_	1000	a aasa
Epoch 35/100		13	-1 11137 3 ССР		1033.	0.0000
219/219 [====================================	-	1s	4ms/step	-	loss:	0.0062
Epoch 36/100			-			
219/219 [==========]	-	1s	4ms/step	-	loss:	0.0059
Epoch 37/100		_	- , ,		-	
219/219 [==========] Epoch 38/100	-	15	5ms/step	-	loss:	0.0060
219/219 [====================================	_	1 c	5ms/sten	_	1055.	0 0060
Epoch 39/100			эшэ, эсср		1033.	0.0000
219/219 [====================================	-	1s	5ms/step	-	loss:	0.0057
Epoch 40/100						
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0062
Epoch 41/100 219/219 [====================================		1.	Ame/ston		1000	0 0057
Epoch 42/100	-	15	4IIIS/Step	-	1055.	0.0057
219/219 [===========]	_	1s	4ms/step	_	loss:	0.0058
Epoch 43/100			, ,			
219/219 [==========]	-	1s	4ms/step	-	loss:	0.0054
Epoch 44/100		_			_	
219/219 [====================================	-	1s	4ms/step	-	loss:	0.0055
Epoch 45/100 219/219 [====================================	_	1 c	Ams/sten	_	1055.	0 0058
Epoch 46/100		13	-11137 3 сср		1033.	0.0050
219/219 [====================================	-	1s	4ms/step	-	loss:	0.0055
Epoch 47/100						
219/219 [====================================	-	1s	4ms/step	-	loss:	0.0056
Epoch 48/100 219/219 [====================================		1.	1mc/ston		1000.	0 0057
Epoch 49/100	-	15	4IIIS/Step	-	1055.	0.0057
219/219 [===========================	_	1s	4ms/step	_	loss:	0.0056
Epoch 50/100			, ,			
219/219 [==========]	-	1s	3ms/step	-	loss:	0.0056
Epoch 51/100		_			-	
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0051
Epoch 52/100 219/219 [====================================	_	1 c	3ms/sten	_	1055.	0 0056
Epoch 53/100		13	эшэ, эсср		1033.	0.0050
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0054
Epoch 54/100						
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0056
Epoch 55/100		1.	1mc/ston		10001	0 0052
219/219 [==========] Epoch 56/100	-	15	4ms/scep	-	1055:	0.0053
219/219 [===========================	_	1s	3ms/sten	_	loss:	0.0054
Epoch 57/100			-			
219/219 [====================================	-	1s	3ms/step	-	loss:	0.0055
Epoch 58/100		_	2		,	0 00=1
219/219 [====================================	-	1s	3ms/step	-	Toss:	0.0050
Epoch 59/100						

```
219/219 [============= ] - 1s 3ms/step - loss: 0.0050
Epoch 60/100
219/219 [============ ] - 1s 3ms/step - loss: 0.0053
Epoch 61/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0052
Epoch 62/100
Epoch 63/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0047
Epoch 64/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0051
Epoch 65/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0052
Epoch 66/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0051
Epoch 67/100
219/219 [============ ] - 1s 3ms/step - loss: 0.0049
Epoch 68/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0050
Epoch 69/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0053
Epoch 70/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0048
Epoch 71/100
219/219 [================ ] - 1s 3ms/step - loss: 0.0050
Epoch 72/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0049
Epoch 73/100
219/219 [============ ] - 1s 3ms/step - loss: 0.0048
Epoch 74/100
Epoch 75/100
219/219 [============ ] - 1s 3ms/step - loss: 0.0046
Epoch 76/100
219/219 [============ ] - 1s 3ms/step - loss: 0.0050
Epoch 77/100
219/219 [=========== ] - 1s 4ms/step - loss: 0.0046
Epoch 78/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0046
Epoch 79/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0047
Epoch 80/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0044
Epoch 81/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0045
Epoch 82/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0048
Epoch 83/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0045
Epoch 84/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0046
Epoch 85/100
step - loss: 0.0044
Epoch 86/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0047
Epoch 87/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0041
Epoch 88/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0042
Epoch 89/100
```

```
Epoch 90/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0039
Epoch 91/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0039
Epoch 92/100
219/219 [=============== ] - 1s 3ms/step - loss: 0.0039
Epoch 93/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0042
Epoch 94/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0037
Epoch 95/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0034
Epoch 96/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0036
Epoch 97/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0034
Epoch 98/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0037
Epoch 99/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0035
Epoch 100/100
219/219 [============= ] - 1s 3ms/step - loss: 0.0037
```

Out[18]:

<tensorflow.python.keras.callbacks.History at 0x21cd84c64c8>

In [19]:

```
#salvando o modelo gerado
model.save('modelo_rnn_lstm.h5')
model.history.keys()
```

Out[19]:

dict_keys(['loss'])

In [20]:

```
#plotando um gráfico de perda, resultante das iterações do ajuste do modelo
loss_per_epoch = model.history.history['loss']
fig = plt.plot(range(len(loss_per_epoch)),loss_per_epoch)
```


In [21]:

```
#realizando a previsão com os dados de teste
test_predictions = []
first_batch = scaled_train[-7:]
current_batch = first_batch.reshape((1,7,1))

for i in range(len(test)):
    current_prediction = model.predict(current_batch)[0]
    test_predictions.append(current_prediction)
    current_batch = np.append(current_batch[:,1:,:],[[current_prediction]],axis=1)
```

In [22]:

```
#voltando a padronização dos dados para treino e para as predições dos testes
train_model = scaler.inverse_transform(scaled_train)
true_predictions = scaler.inverse_transform(test_predictions)
```

In [23]:

```
#imprimindo dados com a predição realizada pelas redes dinâmicas Lstm
train['lstm'] = train_model #copiando a mesma base de treino na previsão LSTM para evit
ar deixar tudo vazio.
test['lstm'] = true_predictions
print(test['lstm'].head())
train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo de Redes Neur
ais Long Short-Term Memory')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
fig = test['lstm'].plot(legend=True,label='Previsão Long Short-Term Memory')
```

```
date
2020-08-14 1429.379177
2020-08-15 1261.947414
2020-08-16 889.416251
2020-08-17 535.796268
2020-08-18 469.557900
Name: lstm, dtype: float64
```


In [24]:

```
#printando os resultados em um arquivo csv
data_csv = pd.concat([train, test])
data_csv.to_csv('Benicio-avaliacao-ad-resultados-analises.csv')
```

Exercício 4

Utilize o erro quadrático médio e erro absoluto médio para comparar as previsões obtidas com as observações da base de teste.

In [29]:

```
#utilizando erro auadrático médio e erro absoluto médio para comparação
#comparação entre modelos usando MSE
print('
print('
                        Avalição MSE
print(' |
                                                        ('|
print(' | HOLT:
                                               '%.2f' % mean squared error(test['deaths'
],test['holt']),'|')
print(' | HOLT-WINTERS:
                                           ','%.2f' % mean squared error(test['deaths'
],test['holt-winters']),' |')
print(' | SARIMA(3, 1, 3)x(1, 0, 0, 7):
                                           ','%.2f' % mean_squared_error(test['deaths'
],test['sarima']),' |')
print(' | LSTM:
                                           ','%.2f' % mean squared error(test['deaths'
],test['lstm']),' |')
print('
print()
print()
#comparação entre modelos usando MAE
print('
print('
                        Avalição MAE
print('
print(' | HOLT:
                                           |','%.2f' % mean_absolute_error(test['deaths'
],test['holt']),'
print(' | HOLT-WINTERS:
                                           ','%.2f' % mean_absolute_error(test['deaths'
],test['holt-winters']),'
print(' | SARIMA(3, 1, 3)x(1, 0, 0, 7):
                                           |','%.2f' % mean absolute error(test['deaths'
],test['sarima']),'
print(' | LSTM:
                     | ' )
                                           ','%.2f' % mean absolute error(test['deaths'
],test['lstm']),'
print('
```

Avalição MSE	
HOLT:	164390.59
HOLT-WINTERS:	56520.76
SARIMA(3, 1, 3)x(1, 0, 0, 7):	61597.01
LSTM:	37317.54

Avalição MAE	
HOLT:	294.60
HOLT-WINTERS:	196.27
SARIMA(3, 1, 3) $x(1, 0, 0, 7)$:	211.41
LSTM:	151.82

Temos as seguintes definições para MSE e MAE:

MSE (Mean Square Error):

$$MSE = rac{1}{N}\sum_{i=1}^{N}{(y_i - \hat{y_i})^2}$$

MAE (Mean Absolute Error):

$$MAE = rac{1}{N} \sum_{i=1}^N |y_i - \hat{y_i}|$$

onde

 y_i = valor real da variável dependente

 $\hat{y_i}$ = valor previsto

N = tamanho da amostra

Essas medidas são bem diretas, sendo basicamente uma somatória da diferença entre o valor real e o valor previsto. Isso mostra o quanto nossos resultados previstos divergem do valor real. Um MSE mais alto significa que os valores estão muito dispersos, portanto, quanto menor o valor desta métrica, melhor, refletindo assim em um bom ajuste do modelo. Um ponto de atenção que devemos ter é que valores muito pequenos para MSE podem indicar um overfitting dos dados.

Neste caso, para avaliarmos o melhor modelo, estamos comparando os valores obtidos e dando preferência para a avaliação onde tivemos o menor valor, tanto no MSE quanto no MAE. Assim, o modelo com a melhor previsão foi de **RNN Long Short-Term Memory**.

Exercício 5

Considere o método que produziu a melhor previsão para os dados de teste e faça a previsão para mais 14 dias (além das observações da base de dados). Essa previsão pode ser apresentada com um gráfico nos arquivos .ipynb e .pdf.

In [171]:

```
# padronizando os dados para aplicar modelo de redes dinâmicas
scaler = MinMaxScaler().fit(data['deaths'].values.reshape(-1,1))
scaled_data = scaler.transform(data['deaths'].values.reshape(-1,1))
#definindo o gerador
generator = TimeseriesGenerator(scaled_data, scaled_data, length=7, batch_size=1) #lote
de tamanho 7 devido a sazonalidade
#modelo de redes dinâmicas LSTM (Long Short-Term Memory)
model = Sequential()
model.add(LSTM(100, activation='relu',input_shape=(7,1))) #camada LSTM com 100 neurônio
model.add(Dense(1)) #camada de saída com 1 output
model.compile(optimizer='adam',loss='mse') #função de perda de erro quadrático médio
#ajustando o modelo
model.fit generator(generator, epochs=100) #com 100 interações
#realizando a previsão com os dados de teste
test_predictions = []
first_batch = scaled_train[-7:]
current_batch = first_batch.reshape((1,7,1))
for i in range(14): #próximos 14 dias
    current prediction = model.predict(current batch)[0]
    test_predictions.append(current_prediction)
    current_batch = np.append(current_batch[:,1:,:],[[current_prediction]],axis=1)
#voltando a padronização dos dados para treino e para as predições dos testes
data_model = scaler.inverse_transform(scaled_data)
data_true_predictions = scaler.inverse_transform(test_predictions)
```

Epoch 1/100 240/240 [====================================	ı _	1 c	3ms/stan	_	1055.	0 0097
Epoch 2/100		13	эшэ, эсср		1033.	0.0057
240/240 [====================================	-	1s	3ms/step	_	loss:	0.0079
Epoch 3/100						
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0084
Epoch 4/100	ı	1 -	1 / a th a		1	0.0000
240/240 [========= Epoch 5/100	-	15	4ms/step	-	1055:	0.0080
240/240 [====================================	۱ -	1s	4ms/step	_	loss:	0.0084
Epoch 6/100	•		-,			
240/240 [====================================	-	1 s	3ms/step	-	loss:	0.0080
Epoch 7/100		_			-	
240/240 [========= Epoch 8/100	-	15	3ms/step	-	loss:	0.00/4
240/240 [====================================	۱ -	15	3ms/sten	_	loss:	0.0073
Epoch 9/100	ı		ээ, эсер		1033.	0.0075
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0073
Epoch 10/100					_	
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0075
Epoch 11/100 240/240 [====================================	۱ _	1 c	3ms/sten	_	1055.	0 0069
Epoch 12/100		13	эшэ, эсср		1033.	0.0003
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0069
Epoch 13/100						
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0066
Epoch 14/100 240/240 [====================================	ı _	1 c	3mc/stan	_	1000	0 0068
Epoch 15/100	-	13	Jilis/ scep	_	1033.	0.0008
240/240 [====================================	-	1s	3ms/step	_	loss:	0.0068
Epoch 16/100						
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0063
Epoch 17/100 240/240 [====================================	ı _	1 c	1mc/stan	_	1000	0 0065
Epoch 18/100	-	13	41113/3CEP	_	1033.	0.0003
240/240 [====================================	-	1s	3ms/step	_	loss:	0.0067
Epoch 19/100						
240/240 [====================================	-	1s	5ms/step	-	loss:	0.0066
Epoch 20/100 240/240 [====================================	ı _	1 c	1mc/stan	_	1000	0 0063
Epoch 21/100		13	-1 11137 3 ССР		1033.	0.0003
240/240 [====================================	-	1s	4ms/step	-	loss:	0.0064
Epoch 22/100						
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0058
Epoch 23/100 240/240 [====================================	ı _	1 c	3ms/stan	_	1055.	0 0058
Epoch 24/100	-	13	Jilis/ scep		1033.	0.0038
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0062
Epoch 25/100						
240/240 [====================================	-	1s	3ms/step	-	loss:	0.0058
Epoch 26/100 240/240 [====================================	ı _	1 c	2mc/ston		1055.	0 0050
Epoch 27/100	-	13	Jilis/ scep		1033.	0.0055
240/240 [============	-	1s	3ms/step	-	loss:	0.0056
Epoch 28/100						
240/240 [====================================	-	1 s	3ms/step	-	loss:	0.0057
Epoch 29/100 240/240 [====================================	l	1.	3mc/c+00	_	locci	0 0056
Epoch 30/100	ı -	Τ2	steb/ عرااد	-	TO22.	0.0050
240/240 [==============	-	1 s	3ms/step	_	loss:	0.0055
Epoch 31/100			•			

240/240 [====================================	.0060
Epoch 32/100	
240/240 [====================================	.005/
240/240 [====================================	. 0056
Epoch 34/100	.0050
240/240 [====================================	.0055
Epoch 35/100	
240/240 [====================================	.0056
Epoch 36/100 240/240 [====================================	0055
Epoch 37/100	.0055
240/240 [====================================	.0054
Epoch 38/100	
240/240 [====================================	.0052
Epoch 39/100	0054
240/240 [====================================	.0054
240/240 [====================================	.0052
Epoch 41/100	
240/240 [====================================	.0049
Epoch 42/100	
240/240 [====================================	.0053
240/240 [====================================	0050
Epoch 44/100	.0050
240/240 [====================================	.0050
Epoch 45/100	
240/240 [====================================	.0050
Epoch 46/100 240/240 [====================================	0051
Epoch 47/100	.0031
240/240 [====================================	.0048
Epoch 48/100	
240/240 [====================================	.0048
Epoch 49/100 240/240 [====================================	0010
Epoch 50/100	.0045
240/240 [====================================	.0048
Epoch 51/100	
240/240 [====================================	.0050
Epoch 52/100 240/240 [====================================	0040
Epoch 53/100	.0043
240/240 [====================================	.0048
Epoch 54/100	
240/240 [====================================	.0047
Epoch 55/100	0016
240/240 [====================================	.0046
240/240 [====================================	.0046
Epoch 57/100	
240/240 [====================================	.0044
Epoch 58/100 240/240 [====================================	0015
Epoch 59/100	.0045
240/240 [====================================	.0045
Epoch 60/100	
240/240 [====================================	.0046
Epoch 61/100	0045
240/240 [====================================	.0045

Frach (2	/100						
Epoch 62,	/ 100 [==========]	_	1ς	3ms/sten	_	loss	0 0043
Epoch 63	=			ээ, эсер		1033.	0.00.15
240/240	[=========]	-	1 s	3ms/step	-	loss:	0.0047
Epoch 64,							
	[=======]	-	1s	3ms/step	-	loss:	0.0045
Epoch 65,	/100 [=========]		1.	2ms /s+on		10551	0 0042
Epoch 66,	=	-	12	siis/step	-	1055:	0.0042
	[==========]	_	1s	3ms/step	_	loss:	0.0042
Epoch 67							
	[=========]	-	1s	3ms/step	-	loss:	0.0043
Epoch 68,			_	2 / 1		-	0 0040
Epoch 69,	[=========] /100	-	IS	3ms/step	-	1055:	0.0042
	, 100 [==========]	_	1s	3ms/step	_	loss:	0.0043
Epoch 70,	=			т, т т т			
	[=========]	-	1s	3ms/step	-	loss:	0.0039
Epoch 71,						_	
	[=========]	-	1s	3ms/step	-	loss:	0.0044
Epoch 72,	/ 100 [==========]	_	1 c	3ms/sten	_	1055.	0 0043
Epoch 73,	=		13	эшэ, эсср		1033.	0.0043
	[========]	-	1s	3ms/step	-	loss:	0.0041
Epoch 74,							
	[===========]	-	1s	3ms/step	-	loss:	0.0039
Epoch 75,	/ 100 [==========]	_	1 c	3mc/stan	_	1055.	0 00/1
Epoch 76,	=		13	эшэ, эсср		1033.	0.0041
	[=========]	-	1s	3ms/step	-	loss:	0.0041
Epoch 77,							
	[========]	-	1s	3ms/step	-	loss:	0.0038
Epoch 78,	/100 [=========]		1.	2ms /s+on		10551	0 0026
Epoch 79,		_	12	ollis/step	-	1055.	0.0030
	,	_	1s	3ms/step	_	loss:	0.0042
Epoch 80				·			
	[=======]	-	1s	3ms/step	-	loss:	0.0037
Epoch 81,			1.	2ms/s+on		10001	0 0040
Epoch 82,	[==========] /100	-	15	3ms/scep	-	1055:	0.0040
	[==========]	_	1s	3ms/step	_	loss:	0.0038
Epoch 83	/100						
	[=======]	-	1 s	3ms/step	-	loss:	0.0039
Epoch 84,			1 -	2		1	0 0035
Epoch 85,	[==========] /100	-	15	3ms/step	-	1055:	0.0035
•	, 100 [==========]	_	1s	3ms/step	_	loss:	0.0034
Epoch 86	=						
	[=========]	-	1s	3ms/step	-	loss:	0.0035
Epoch 87,			_	2 / 1		-	0 0000
240/240 Epoch 88/	[=========] /100	-	15	3ms/step	-	loss:	0.0033
	, 100 [==========]	_	1s	3ms/step	_	loss:	0.0041
Epoch 89	/100						
	[==========]	-	1s	3ms/step	-	loss:	0.0040
Epoch 90,			,	2 / :		1.	0.0000
240/240 Epoch 91,	[=========] /100	-	15	3ms/step	-	TOSS:	0.0030
•	/ 100 [==========]	_	1s	3ms/sten	_	loss:	0.0036
Epoch 92,	=			-, - cop		- ·	

```
240/240 [================ ] - 1s 3ms/step - loss: 0.0038
Epoch 93/100
240/240 [============ ] - 1s 3ms/step - loss: 0.0034
Epoch 94/100
240/240 [=========== ] - 1s 3ms/step - loss: 0.0030
Epoch 95/100
240/240 [============ ] - 1s 3ms/step - loss: 0.0034
Epoch 96/100
240/240 [============= ] - 1s 3ms/step - loss: 0.0031
Epoch 97/100
240/240 [============= ] - 1s 3ms/step - loss: 0.0034
Epoch 98/100
240/240 [============= ] - 1s 3ms/step - loss: 0.0032
Epoch 99/100
240/240 [============= ] - 1s 3ms/step - loss: 0.0037
Epoch 100/100
240/240 [============ ] - 1s 3ms/step - loss: 0.0032
```

In [172]:

```
#armazenando os dados e indexando
data_forecast = pd.DataFrame(data_true_predictions,columns=['deaths'])
data_forecast.index = pd.date_range(start='2020-09-04',end='2020-09-17')
```

In [173]:

```
#imprimindo dados com a predição realizada pelas redes dinâmicas lstm - 14 dias
print(data_forecast['deaths'])
data['deaths'].plot(legend=True,label='Base de dados',title='Predição do modelo de Rede
s Neurais Long Short-Term Memory')
fig = data_forecast['deaths'].plot(legend=True, label='Previsão Long Short-Term Memory p
ara os próximos 14 dias')
```

```
2020-09-04
              1246.683060
2020-09-05
              1219.439445
2020-09-06
               983.194205
2020-09-07
               441.793830
2020-09-08
               395.007989
2020-09-09
               918.416087
2020-09-10
              1091.325285
2020-09-11
              1156.796830
2020-09-12
              1108.891027
2020-09-13
               951.661154
2020-09-14
               585.273389
2020-09-15
               470.535292
2020-09-16
               802.235070
              1107.128270
2020-09-17
```

Freq: D, Name: deaths, dtype: float64

