ALDARIO

EE540U - 2009/I - Prova 3

1. Considere uma uma onda monocromática de frequência $f=\omega/2\pi$, plana e uniforme, propagando-se num dielétrico não dissipativo com permeabilidade $\mu_d\cong\mu_0$ e índice de refração n=1.63, incidindo numa superfície plana em contacto com o ar. A onda incidente é linearmente polarizada com o campo elétrico paralelo ao plano de incidência. Com o eixo z perpendicular à interface (que coincide com o plano z=0) e apontando para o ar, e o plano z coincidente com o plano de incidência, o fasor do campo elétrico da onda incidente tem a forma

$$\mathbf{E}_i = E_0(\mathbf{a}_x \cos \theta - \mathbf{a}_z \sin \theta) \exp[-j\beta(x \sin \theta + z \cos \theta)],$$

onde E_0 é uma constante (escalar) complexa e θ representa o ângulo de incidência.

- a) Calcule o ângulo de incidência crítico θ_c acima do qual se observa refexão total. Dê a resposta em graus.
 - b) Calcule o ângulo θ_B para o qual não há onda refletida. Também em graus.
- c) Calcule as componentes x dos fasores \mathbf{E}_i , \mathbf{E}_r e \mathbf{E}_t dos campos elétricos das ondas incidente, refletida e transmitida para $\theta = \frac{2}{3}\theta_c$, imediatamente próximos à interface. Calcule também a soma dessas três componentes (simplifique ao máximo).

Arredonde os resultados numéricos para três digitos significativos. No item c a resposta final só pode conter símbolos que são considerados conhecidos, ω e E_0 , símbolos que representam constantes fundamentais $(\pi, c, \varepsilon_0, \mu_0,...)$ e valores númericos.

2. Uma onda plana monocromática propagando-se no ar com fasor campo elétrico dado por

$$\mathbf{E}_i = \mathbf{a}_y 10 \exp[-j(6x + 8z)] \text{ V/m}$$

incide numa placa plana perfeitamente condutora, considerada infinita, cuja superfície coincide com o plano z=0.

- a) Determine a frequência e o comprimento de onda da onda incidente.
- b) Determine o fasor campo magnético da onda refletida, H_r .
- c) Escreva a expressão da componente x do campo magnético total $\mathbf{H}(t) = \mathbf{H}_i(t) + \mathbf{H}_r(t)$ na região z < 0.
- d) Escreva a expressão da componente z do campo magnético total $\mathbf{H}(t) = \mathbf{H}_i(t) + \mathbf{H}_r(t)$ na região z < 0.
- 3. Uma onda monocromática plana com frequência angular ω , propagando-se no ar (meio 1), incide perpendicularmente na superfície plana de um meio levemente dissipativo (meio 2), caracterizado por sua permeabilidade $\mu \cong \mu_0$ e permissividade complexa

$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega} = \varepsilon \left(1 - j \frac{\sigma}{\omega \varepsilon}\right)$$

em que $\sigma/(\omega \varepsilon)$ << 1. Com o eixo z apontando perpendicularmente do ar para o outro meio, e

com o plano z = 0 coincidindo com a interface, o campo elétrico incidente é dado por

$$\mathbf{E}_i = \mathbf{a}_x E_0 \exp\left(-j\frac{\omega}{c}z\right)$$

- a) Obtenha a expressão *aproximada* para o coeficiente de transmissão τ levando em conta que $\sigma/(\omega \varepsilon) << 1$.
- b) Obtenha a expressão para o fasor campo elétrico no meio 2. Use as *aproximações* pertinentes ao caso $\sigma/(\omega \varepsilon) << 1$.

Estas expressões devem ser úteis: No meio 2 para $\sigma/(\omega \varepsilon) << 1$

$$\alpha = \omega \sqrt{\frac{\mu_0 \varepsilon}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} - 1 \right)^{1/2} = \frac{\sigma}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \left(1 - \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + \dots \right)$$

$$\beta = \omega \sqrt{\frac{\mu_0 \varepsilon}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} + 1 \right)^{1/2} = \omega \sqrt{\mu_0 \varepsilon} \left(1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon}\right)^2 - \dots \right)$$

$$\eta = \sqrt{\frac{\mu_0}{\varepsilon_c}} = \sqrt{\frac{\mu_0}{\varepsilon \left(1 - j\frac{\sigma}{\omega \varepsilon}\right)}} = \sqrt{\frac{\mu_0}{\varepsilon}} \left(1 + j\frac{1}{2} \left(\frac{\sigma}{\omega \varepsilon}\right) + \dots \right)$$

Observação: Assuma $\mu_{ar} = \mu_0$ e $\varepsilon_{ar} = \varepsilon_0$.