

MONASH INFORMATION TECHNOLOGY

Database Design 1: Conceptual Modelling

ANSI/SPARC architecture - proposed 1975

The Database Design Life Cycle

Requirements Definition

- Identify and analyse user views.
- A 'user view' may be a report to be produced or a particular type of transaction that should be supported.
- Corresponds to the external level of the ANSI/SPARC architecture.
- Output is a statement of specifications which describes the user views' particular requirements and constraints.

Different views of the underlying data

ER Modeling

- ER (Entity-Relationship) model developed by Peter Chen in 1976 to aid database design.
- Used for conceptual model (ERD).
- ER diagrams give a visual indication of the design.
- Basic components:
 - Entity
 - Attribute
 - Relationship

Conceptual Design

- Develop the enterprise data model.
- Corresponds to the conceptual level of the ANSI/SPARC architecture.
- Independent of all physical implementation considerations (the type of database to be used).
- Various design methodologies may be employed such as UML, ER (Entity-Relationship).
- ER consists of ENTITIES and RELATIONSHIPS between entities
 - –An ENTITY will have attributes (things we wish to record), one or more of which will identify an entity instance (called the KEY)

Conceptual Level (ER Model)

Logical Design

- Develop a data model which targets a particular database model (e.g. relational, hierarchical, network, object-oriented, noSQL).
- Independent of any implementation details which are specific to any particular vendors DBMS package.
- Normalisation technique (see week 4) is used to test the correctness of a relational logical model.

Logical Level (Logical Model - Relational)

Physical Design

- Develop a strategy for the physical implementation of the logical data model.
- Choose appropriate storage structures, indexes, file organisations and access methods which will most efficiently support the user requirements (not part of unit).
- Physical design phase is dependent on the particular DBMS environment in use.
- ANSI/SPARC internal level.

Physical Level – Starting point

```
Oracle Database 12c
                            Relational 1
                                                                 Generate
 8 CREATE TABLE customer (
                       NUMBER(7) NOT NULL,
         custno
10
         custname
                     VARCHAR2(50) NOT NULL,
11
         custaddress VARCHAR2(50) NOT NULL,
12
         custphone
                       CHAR (10)
13
    );
14
15
    COMMENT ON COLUMN customer custno IS
16
         'Customer number';
17
18
     COMMENT ON COLUMN customer.custname IS
19
         'Customer name';
20
21
    COMMENT ON COLUMN customer custaddress IS
22
         'Customer address':
23
24
    COMMENT ON COLUMN customer custphone IS
25
         'Customer phone number';
26
27
    ALTER TABLE customer ADD CONSTRAINT customer_pk PRIMARY KEY ( custno );
28
29 CREATE TABLE order_product (
30
         orderno
                         NUMBER(7) NOT NULL,
31
                         NUMBER(7) NOT NULL,
         prodno
32
        op_qtyordered NUMBER(3) NOT NULL,
33
         op lineprice
                         NUMBER(8, 2) NOT NULL
34
    ·);
35
```


ERD - Notation

Please note this diagram is incomplete

Q1. How many relationships are there in the above diagram?

What is the degree of the relationship/s (the number of entities participating in the relationship/s)?

- A. 1, unary
- B. 2, binary
- C. 1, binary
- D. 3, ternary

In general for Crows Foot notation specific cardinalities are not shown as above eg. (1,4), instead participation is depicted via min and max participation using the standard symbols (Inside symbol = min, outside symbol = max)

CONNECTIVITY one to one

one to many

many to many

Weak vs Strong Entity

- Strong entity
 - Has a key which may be defined without reference to other entities.
 - For example EMPLOYEE entity.
- Weak entity
 - Has a key which requires the existence of one or more other entities.
 - For example FAMILY entity need to include the key of employee to create a suitable key for family
- Database designer often determines whether an entity can be described as weak based on business rules
 - customer pays monthly account
 - Key: cust_no, date_paid, or
 - Key: payment_no (surrogate? not at conceptual level)

Weak vs Strong Entity

Note the Crow's Foot model shown here has been modified from the text version

Identifying vs Non-Identifying Relationship

Identifying

 Identifier of A is part of identifier of B.

- Shown with solid line
- ENROLMENT STUDENT Enrolment key includes student id, which is an identifier of student.

- Non-identifying
- Identifier of A is NOT part of identifier of B.

- Shown with broken line
- Department no (identifier of department) is not part of Employee's identifier.

Student Activity

- Using the Monash Software Case Study, identify the entities present and their key attribute/s
 - draw a box for each entity, name it and add the key attribute/s
 - For example:

Entities in the Monash Software Case Study

TRAINING		
Key	training_code	

TEAM		
Key	team_no	

EMPLOYEE		
Key	emp_no	

FAMILY_MEMBER
Key

Student Activity

 Using the Monash Software Case Study, identify the relationship(s) and participation which exist between TEAM and EMPLOYEE

	TRAINING
	Key training_code
TEAM	EMPLOYEE
Key team_no	Key emp_no
	FAMILY_MEMBER
	Key

TEAM - EMPLOYEE relationships

TRAINING

Key training_code

FAMILY_MEMBER
Key

Types of Attributes

- Simple
 - Cannot be subdivided
 - Age, sex, marital status
- Composite
 - Can be subdivided into additional attributes
 - Address into street, city, zip
- Single-valued
 - Can have only a single value
 - Person has one social security number

- Multi-valued
 - Can have many values
 - Person may have several college degrees
- Derived
 - Can be derived with algorithm
 - Age can be derived from date of birth
- Attribute classification is driven by Client requirements
 - Phone Number?

Q2. The employee details that will be recorded are: Employee number, Full name, Address, Date of birth, Tax file number and Skill(s). Examples of skills are Java, Python, UNIX, Relational db, MongoDB, etc

Choose a TRUE statement.

- A. ADDRESS is a multi-valued attribute and SKILL is a multi-valued attribute.
- B. ADDRESS is a composite attribute and SKILL is a composite attribute.
- C. ADDRESS is a composite attribute and SKILL is a multi-valued attribute.
- D. ADDRESS is a multi-valued attribute and SKILL is a composite attribute.

Multivalued Attribute

- An attribute that has a list of values.
- For example:
 - Car colour may consist of body colour, trim colour, bumper colour.
- Crow's foot notation does not support multivalued attributes.
 Values are listed as a separate attribute.

Resolving Multivalued Attributes

Student Activity

 Using the Monash Software Case Study, add attributes to your EMPLOYEE entity

Q3. The company provides several in-house training programs. The HR team needs to keep track of the details about who has done what. An employee can do several training programs. At the completion of a training, a certificate will be provided to the employee containing the training name and the completion date.

- A. The relationship between EMPLOYEE and TRAINING is ternary.
- B. The relationship between EMPLOYEE and TRAINING is 1:M.
- C. The relationship between EMPLOYEE and TRAINING is M:1.
- D. The relationship between EMPLOYEE and TRAINING is M:N.

..."the company provides several in-house training programs. The HR team needs to keep track of the details about who has done what. An employee can do several training programs.

At the completion of a training, a certificate will be provided to the employee containing the training name and the completion date."...

Incomplete model

Incomplete model

Associative (or Composite) Entity

Student Activity

 Using the Monash Software Case Study, add attributes to TRAINING EMPLOYEE

