Visualization (Vis)

Storytelling with Interactive Data Visualizations

Lecture 6

–
Rules of Thumb

Develop the Story: Visual Encoding – Rules of Thumb

- Visual Encoding and Charts
- Rules of Thumb
- Interactivity and Storytelling
- Annotation, Colour and Composition

Visualization

Rules of Thumb

1.

The 7 Rules of Thumb

Rules of Thumb (by T. Munzner)

- No unjustified 3D
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first,
 zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Unjustified 3D all too common!

Convictions in London for class A drug supply.

No unjustified 3D

- Power of the plane
- Disparity of depth
- Occlusion hides information
- Perspective distortion dangers
- Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Source: http://viz.wtf/post/137826497077/eye-popping-3d-triangles and http://viz.wtf/post/139002022202/designer-drugs-ht-ducqn

Power of the Plane (vs. Depth)

- High-ranked spatial position channels:
 - **Planar** spatial position
 - Not depth!

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Source: T. Munzner, Visualization Analysis and Design

Disparity of Depth

- We don't really live in 3D: we see in 2.05D
 - Acquire more info on image plane quickly from eye movements
 - Acquire more info for depth slower, from head/body motion

Thousands of points up/down and left/right

We can only see the outside shell of the world

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - · Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Steven's Psychophysical Power Law: S= I^N

Source: T. Munzner, Visualization Analysis and Design after Colin Ware, Visual Thinking for Information Design

Occlusion Hides Information

- Occlusion: some objects are hidden behind others, indicating relative distance.
 - Motion Parallax: As we move, occlusion relationships change, helping us understand relative distances.
- Costs of Occlusion
 - Hidden Information: Important data might be hidden behind other objects
 - Time Cost: Discovering occluded details via navigation takes time
 - Using spatial position for nonspatial data can make occlusion very problematic
 - Unpredictable shapes require memory to synthesize a 3D understanding.
 - Understanding complex structures can be time-consuming and difficult.
- Design Considerations:
 - Interactive Navigation: Critical for complex scenes (increases time cost)
- → Need to weigh Benefits of 3D vs. inherent Costs

- No unjustified 3D
 - · Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - · Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Source: T. Munzner, Visualization Analysis and Design after Distortion Viewing Techniques for 3D Data. Carpendale et al. InfoVis1996

Perspective distortion loses information

- Perspective Distortion: Distant objects appear smaller and change their planar position on the image plane
 - Interferes with all size channel encodings
 - Power of the plane (and size channel) is lost!

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Source: T. Munzner, Visualization Analysis and Design after Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96

© M. Breunig, TH Rosenheim Rules of Thumb

Example: 3D bar graphs

- 3D bars: hard to justify!
 - Perspective distortion
 - Occlusion
 - → Faceting into 2D almost always better choice

Source: T. Munzner, Visualization Analysis and Design after http://perceptualedge.com/files/GraphDesignIQ.html

Tilted text isn't legible

Text Legibility: far worse when tilted from image plane

- No unjustified 3D
 - · Power of the plane
 - · Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Source: T. Munzner, Visualization Analysis and Design after Visualizing the World-Wide Web with the Navigational View Builder. Mukherjea and Foley. Computer Networks and ISDN Systems, 1995

Example: Justified 3D

- Benefits outweigh costs when task is shape perception for 3D spatial data
 - Interactive navigation supports synthesis across many viewpoints

© M. Breunig, TH Rosenheim 12 Rules of Thumb

Example: Unjustified 3D – Time Series Data (1)

Extruded curves: detailed comparisons impossible

Source: Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99

Example: Unjustified 3D - Time Series Data (2) - Transform Data

- Derived data: cluster hierarchy
- Juxtapose multiple views: calendar, superimposed 2D curves

Source: Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99

No unjustified 3D - Summary

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now scepticism
 - be especially careful with 3D for point clouds or networks

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

No unjustified 2D

- 2D Layouts vs. 1D Lists
 - 2D Layouts: Often used for representing network data
 - 1D Lists: Show data linearly, typically maximizing information density
- Strengths of 1D Lists
 - 1. Maximal Information Density
 - Example: Text labels can be shown in minimal space
 - 2D layouts like node-link diagrams need more space
 - 2. Effective for Lookup Tasks
 - Example: Alphabetical lists allow quick lookup of known labels
 - Finding a label in a 2D node-link layout can be cumbersome
- Considerations for Choosing Layout
 - Lookup Tasks: Linear lists more efficient
 - Benefits outweigh costs when topological structure/context important for task

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Eyes beat memory

- Principle: external cognition vs. internal memory
 - Easy to compare by moving eyes between side-by-side views
 - Harder to compare visible item to memory of what you saw
- Implications for animation
 - Great for choreographed storytelling
 - Great for transitions between two states
 - Poor for many states with changes everywhere: consider small multiples instead

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - · Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

animation small multiples show time with time show time with space

Source: T. Munzner, Visualization Analysis and Design

Resolution beats immersion

- Immersion typically not helpful for abstract data
 - Do not need sense of presence or stereoscopic 3D
 - Desktop also better for workflow integration
- Resolution much more important: pixels are the scarcest resource
 - First wave: virtual reality for abstract data difficult to justify
 - Second wave: AR/MR (augmented/mixed reality) has more promise

- No unjustified 3D
 - · Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - · Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

- When to Use Immersion
 - 3D Spatial Data: May justify immersion if the sense of presence outweighs the drawbacks
 - Nonspatial Data: Rarely necessary

Overview first, zoom and filter, details on demand

- Ben Shneiderman's Mantra
 - Overview First: Start with a broad awareness of the entire information
 - Zoom and Filter: Navigate and reduce data to focus on specific areas
 - Details on Demand: Access detailed information as needed
- Challenges with Large Datasets
 - Pixel Limitation: reducing mark size to a single pixel may not suffice
 - → Reduce number of marks by aggregating data items

- No unjustified 3D
 - · Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

- Types of Overviews
 - Static Overview: A less detailed summary view
 - Dynamic Overview: Changes over time with user interaction, supporting zoom and filter actions
 - Embedded Overview and Detail: Combining both in a single view for continuous context
- Examples
 - Geometric Zooming: Zooming out to show all items smaller
 - Semantic Zooming/Dynamic Aggregation: Qualitatively different representations at different zoom levels
 - Detail Views: More detailed views popping up in response to user selection or alongside the overview

Responsiveness is required

- Visual feedback: three rough categories
 - 0.1 seconds: perceptual processing
 - subsecond response for mouseover highlighting ballistic motion
 - 1 second: immediate response
 - fast response after mouseclick, button press
 - 10 seconds: brief tasks
 - bounded response after dialog
- Scalability considerations
 - Highlight selection without complete redraw of view
 - Show hourglass for multi-second operations (check for cancel/undo)
 - Show progress bar for long operations (process in background thread)
 - Rendering speed when item count is large (guaranteed frame rate)

- No unjustified 3D
 - · Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Function first, form next

- Dangerous to start with aesthetics
 - Usually impossible to add function retroactively
- Start with focus on functionality
 - Possible to improve aesthetics later on, as refinement
- If no expertise in-house, find good graphic designer to work with
 - Aesthetics do matter! another level of function

- No unjustified 3D
 - Power of the plane
 - · Disparity of depth
 - Occlusion hides information
 - · Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

Exercise 1

Key Insights

Scandinavian World Heritage Sites - Part 1

Your Turn!

Exercise 2

Key Insights

Scandinavian World Heritage Sites – Part 2

Key Takeaways – The 7 Rules of Thumb

- No unjustified 3D
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

