Project-1(BRC)

Aastha Guragain

2025-01-24

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

```
#Setting the working directory
setwd("~/Desktop/seurat-learning")
#Loading the necessary Libraries
library(harmony)
## Loading required package: Rcpp
library(ggplot2)
library(Seurat)
## Loading required package: SeuratObject
## Loading required package: sp
## 'SeuratObject' was built under R 4.4.0 but the current version is
## 4.4.2; it is recomended that you reinstall 'SeuratObject' as the ABI
## for R may have changed
## 'SeuratObject' was built with package 'Matrix' 1.7.0 but the current
## version is 1.7.2; it is recomended that you reinstall 'SeuratObject' as
## the ABI for 'Matrix' may have changed
##
## Attaching package: 'SeuratObject'
## The following objects are masked from 'package:base':
##
##
       intersect, t
library(SeuratObject)
library(patchwork)
```

brc_file <- readRDS("breast_carcinoma.rds")</pre>

Reading file

```
#Extracting metadata
metadata.brc <- brc_file@meta.data</pre>
```

```
#Calculating Mitochondrial percentage and adding it to metadata if not given
brc_file$mpercent <- PercentageFeatureSet(brc_file, pattern = "^MT")
metadata.brc$mpercent <- brc_file$mpercent
View(metadata.brc)
```

```
# If nCount_RNA and n_Feature RNA not given
#Extracting count matrix
count_matrix <- brc_file@assays$RNA@counts

#creating seurat object from count mmatrix
seurat_obj_cnt <- CreateSeuratObject(count_matrix)
new_seu_metadata <- seurat_obj_cnt@meta.data

#setting the variable
n_feature <- new_seu_metadata$nFeature_RNA
n_count <- new_seu_metadata$nCount_RNA</pre>
```

```
#Incorporating ncount and nfeature information into raw suerat file expecting it do not
have these features
brc_file$n_feature <- n_feature
brc_file$n_count <- n_count
brc_file$new_mito_percent <- PercentageFeatureSet(brc_file, pattern = "^MT-")

#Incorporating into metadata
metadata.brc$n_feature <- n_feature
metadata.brc$n_count <- n_count
metadata.brc$n_ew_mito_percent <- PercentageFeatureSet(brc_file, pattern = "^MT-")</pre>
```

```
#Upstream Analysis#-----
# Visualize QC metrics as a violin plot
VlnPlot(brc_file, features = c("nCount_RNA", "nFeature_RNA", "percent_mito"), ncol = 3)
```


FeatureScatter(brc_file, feature1 = "nFeature_RNA", feature2 = "nCount_RNA") + geom_smoo
th(method = "lm")

$geom_smooth()$ using formula = $y \sim x'$

subset_brc <- subset(brc_file, subset = nFeature_RNA <4000 & nFeature_RNA > 700 & nCount
_RNA < 20000 & nCount_RNA >500 & percent_mito <10)
View(subset_brc@meta.data)</pre>

```
plot1 = VlnPlot(subset_brc, features = c("nCount_RNA", "nFeature_RNA", "percent_mito"),
ncol = 3)

plot2 = FeatureScatter(subset_brc, feature1 = "nFeature_RNA", feature2 = "nCount_RNA") +
geom_smooth(method = "lm")
plot1
```


plot2

$geom_smooth()$ using formula = $y \sim x'$


```
#Normalization
subset_brc <- NormalizeData(subset_brc)
```

```
#Finding variable features
subset_brc <- FindVariableFeatures(subset_brc, selection.method = "vst", nfeatures = 200
0)</pre>
```

```
#Calculating the top10 variable genes
top10 <- head(VariableFeatures(subset_brc), 10)
top10</pre>
```

```
## [1] "ENSG00000107317" "ENSG00000170323" "ENSG000000118785" "ENSG000000125144"
## [5] "ENSG00000275385" "ENSG00000102970" "ENSG000000205358" "ENSG00000100453"
## [9] "ENSG00000133048" "ENSG00000160307"
```

```
# Identify variable features
subset_brc <- FindVariableFeatures(subset_brc)</pre>
```

```
# Get top 10 variable features
top10 <- head(VariableFeatures(subset_brc), 10)</pre>
```

```
# Plot variable features without label and with label
plot1 <- VariableFeaturePlot(subset_brc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)</pre>
```

When using repel, set xnudge and ynudge to 0 for optimal results

```
# Display the plot
plot <- plot1 + plot2
plot</pre>
```

Warning in scale_x_log10(): log-10 transformation introduced infinite values.
log-10 transformation introduced infinite values.


```
#Scaling the data
all.genes <- rownames(subset_brc)

View(all.genes)

subset_brc <- ScaleData(subset_brc, features = all.genes)</pre>
```

Centering and scaling data matrix

#Perform linear dimensional reduction (PCA)
subset_brc <- RunPCA(subset_brc, features = VariableFeatures(object = subset_brc))</pre>

PC 1

Positive: ENSG00000100453, ENSG00000132465, ENSG000000239961, ENSG00000145287, ENSG00 000135916, ENSG00000169583, ENSG00000106537, ENSG00000263961, ENSG00000235162, ENSG00000 170476

ENSG00000103056, ENSG00000198178, ENSG00000137265, ENSG00000184709, ENSG000001716
11, ENSG00000099958, ENSG00000227507, ENSG00000070031, ENSG00000186810, ENSG00000167483
ENSG00000185291, ENSG00000119866, ENSG00000105426, ENSG00000166963, ENSG000001636
87, ENSG00000076604, ENSG00000125869, ENSG00000204323, ENSG00000269404, ENSG00000161970
Negative: ENSG00000173372, ENSG00000173369, ENSG00000159189, ENSG00000087086, ENSG00
000100979, ENSG00000129226, ENSG00000164733, ENSG00000166927, ENSG00000002933, ENSG00000
135821

ENSG00000105223, ENSG00000153071, ENSG000000250722, ENSG00000129538, ENSG000001302 03, ENSG00000197746, ENSG00000106565, ENSG00000170458, ENSG00000010327, ENSG00000117984 ## ENSG00000165457, ENSG00000135404, ENSG00000143878, ENSG00000177575, ENSG000001100 79, ENSG00000165029, ENSG00000155659, ENSG00000130208, ENSG00000177606, ENSG00000260314 ## PC 2

Positive: ENSG00000250722, ENSG00000124491, ENSG00000153071, ENSG00000165457, ENSG00 000100979, ENSG00000100453, ENSG00000010327, ENSG00000090659, ENSG00000239961, ENSG00000 178573

ENSG00000138449, ENSG00000133800, ENSG00000103056, ENSG00000260314, ENSG000001695
83, ENSG00000132465, ENSG00000135916, ENSG00000171611, ENSG00000184709, ENSG00000099958
ENSG00000170476, ENSG00000263961, ENSG00000070031, ENSG00000198178, ENSG000001674
83, ENSG00000166963, ENSG00000235162, ENSG00000196628, ENSG00000198467, ENSG00000100600
Negative: ENSG00000090382, ENSG00000197747, ENSG00000166920, ENSG00000026025, ENSG00
000100079, ENSG00000085265, ENSG00000197956, ENSG00000130592, ENSG00000169442, ENSG00000
143546

ENSG00000140105, ENSG00000135046, ENSG00000102265, ENSG00000140379, ENSG0000000009
38, ENSG00000173391, ENSG00000196924, ENSG00000123689, ENSG00000182718, ENSG00000128383
ENSG00000115414, ENSG00000165140, ENSG00000204287, ENSG00000104951, ENSG000001808
17, ENSG00000117228, ENSG00000038427, ENSG00000216490, ENSG000000217555, ENSG00000010278
PC 3

Positive: ENSG00000196735, ENSG00000198502, ENSG00000179344, ENSG00000196126, ENSG00 000042493, ENSG00000204287, ENSG00000231389, ENSG00000130203, ENSG00000117450, ENSG00000 223865

ENSG00000204525, ENSG00000206503, ENSG00000186818, ENSG00000132386, ENSG000000102
78, ENSG00000104951, ENSG00000130208, ENSG00000176046, ENSG00000136235, ENSG00000102575
ENSG00000138755, ENSG00000108679, ENSG00000115414, ENSG00000149131, ENSG000001098
61, ENSG00000117984, ENSG00000026751, ENSG00000109971, ENSG00000271503, ENSG0000008517
Negative: ENSG00000163220, ENSG00000038427, ENSG00000143546, ENSG00000125810, ENSG00
000137801, ENSG00000085265, ENSG00000163221, ENSG00000102265, ENSG00000245532, ENSG00000
113070

ENSG00000124882, ENSG00000059804, ENSG000000186407, ENSG00000018280, ENSG000001425
41, ENSG00000178726, ENSG00000196154, ENSG00000124491, ENSG00000112715, ENSG0000008988
ENSG00000172216, ENSG00000126759, ENSG00000182774, ENSG00000166441, ENSG000001474
54, ENSG00000125538, ENSG00000059728, ENSG00000183019, ENSG00000133800, ENSG00000224397
PC_ 4

Positive: ENSG00000160932, ENSG00000119917, ENSG000000163220, ENSG00000168899, ENSG00 000117228, ENSG00000115415, ENSG00000243466, ENSG00000157601, ENSG00000126709, ENSG00000 121858

ENSG00000272398, ENSG00000149131, ENSG00000089127, ENSG00000185745, ENSG000001977
46, ENSG00000239951, ENSG00000241351, ENSG00000241755, ENSG00000206503, ENSG00000211659
ENSG00000134575, ENSG00000142089, ENSG00000154451, ENSG000000211653, ENSG000000254

ENSG00000178381, ENSG00000188229, ENSG00000087074, ENSG00000162772, ENSG000001416
82, ENSG00000096384, ENSG00000144381, ENSG00000099860, ENSG00000086061, ENSG00000136826
ENSG00000115541, ENSG00000197989, ENSG00000090104, ENSG00000120129, ENSG000001694
29, ENSG00000275302, ENSG00000276070, ENSG00000170345, ENSG00000067082, ENSG00000276085
PC 5

Positive: ENSG00000148773, ENSG00000176890, ENSG00000131747, ENSG000000171848, ENSG00 000175063, ENSG00000100162, ENSG00000088325, ENSG00000117724, ENSG00000089685, ENSG00000 137804

ENSG00000167900, ENSG00000075218, ENSG00000100526, ENSG00000145386, ENSG000001703
12, ENSG00000066279, ENSG00000117632, ENSG00000123219, ENSG00000127564, ENSG00000122952
ENSG00000092853, ENSG00000072571, ENSG00000146670, ENSG000000228716, ENSG000001116
65, ENSG00000138180, ENSG00000276043, ENSG00000117399, ENSG00000173207, ENSG00000178999
Negative: ENSG00000100906, ENSG00000291237, ENSG00000118503, ENSG00000144802, ENSG00
000137331, ENSG00000197766, ENSG00000119508, ENSG00000171174, ENSG00000125538, ENSG00000
081041

ENSG00000120129, ENSG00000128383, ENSG00000087074, ENSG00000162772, ENSG000001121
49, ENSG00000085265, ENSG00000090339, ENSG00000245532, ENSG00000130844, ENSG00000140379
ENSG00000116741, ENSG00000162711, ENSG00000158050, ENSG00000186818, ENSG000001855
07, ENSG00000124762, ENSG00000107372, ENSG000000255112, ENSG000000169508, ENSG00000173451

VizDimLoadings(subset_brc, dims = 1:5, reduction = "pca")

DimPlot(subset_brc, reduction = "pca") + NoLegend()

DimHeatmap(subset_brc, dim = 1, cells =500, balanced = TRUE)

PC_1

#Determining Pcs
ElbowPlot(subset_brc)

Project-1(BRC)


```
subset_brc <- FindNeighbors(subset_brc, dims = 1:15) #dims = dimension,</pre>
```

Computing nearest neighbor graph

Computing SNN

subset_brc <- FindClusters(subset_brc, resolution = 0.5)</pre>

```
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
Wumber of nodes: 7488
## Number of edges: 245221
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9060
## Number of communities: 16
## Elapsed time: 0 seconds
```

```
DimPlot(subset_brc, reduction = "pca")
```


subset_brc <- RunUMAP(subset_brc, dims = 1:15, reduction = "pca")</pre>

Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric

To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'cor relation'

This message will be shown once per session

20:52:31 UMAP embedding parameters a = 0.9922 b = 1.112

20:52:31 Read 7488 rows and found 15 numeric columns

20:52:31 Using Annoy for neighbor search, n_neighbors = 30

20:52:31 Building Annoy index with metric = cosine, n_trees = 50

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|

DimPlot(subset_brc, reduction = "umap", group.by = "seurat_clusters")

disease <- DimPlot(subset_brc, reduction = "umap", group.by = "disease" , label = "TRU
E")</pre>

batch <- DimPlot(subset_brc, reduction = "umap", group.by = "batch_run", label = "TRUE")
batch</pre>

cell_type<- DimPlot(subset_brc, reduction = "umap", group.by = "cell_type")
cell_type</pre>


```
#Batch effect removal using harmony
subset_brc <- RunHarmony(
  object = subset_brc,
  group.by.vars = "batch_run",
  dims.use = 1:15 # Use the same dimensions you selected in FindNeighbors
)</pre>
```

Transposing data matrix

Initializing state using k-means centroids initialization

Harmony 1/10

Harmony 2/10

Harmony 3/10

Harmony 4/10

Harmony 5/10

3/3/25, 8:59 PM

Project-1(BRC) ## Harmony 6/10 ## Harmony 7/10 ## Harmony converged after 7 iterations # Re- running clustering using harmony subset brc <- subset brc %>% RunUMAP(reduction = 'harmony',dims = 1:15) %>% FindNeighbors(reduction = 'harmony', dims = 1:15) %>% FindClusters(resolution = 0.5) ## 20:52:43 UMAP embedding parameters a = 0.9922 b = 1.112 ## 20:52:43 Read 7488 rows and found 15 numeric columns ## 20:52:43 Using Annoy for neighbor search, n neighbors = 30 ## 20:52:43 Building Annoy index with metric = cosine, n trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----| ## **************** ## 20:52:44 Writing NN index file to temp file /var/folders/rq/8sjqg4hj3k99cfwf49v9_dlc0 000gn/T//Rtmp1kA5m1/file7e6b79686d8 ## 20:52:44 Searching Annoy index using 1 thread, search_k = 3000 ## 20:52:45 Annoy recall = 100% ## 20:52:45 Commencing smooth kNN distance calibration using 1 thread with target n_neig hbors = 30## 20:52:46 Initializing from normalized Laplacian + noise (using RSpectra) ## 20:52:46 Commencing optimization for 500 epochs, with 311638 positive edges ## 20:52:51 Optimization finished

Computing nearest neighbor graph

Computing SNN

```
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 7488
## Number of edges: 267661
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8731
## Number of communities: 13
## Elapsed time: 0 seconds
```

```
disease_after_harmony <- DimPlot(subset_brc, reduction = "umap", group.by = "disease" ,
label = "TRUE")
batch_after_harmony <- DimPlot(subset_brc, reduction = "umap", group.by = "batch_run", l
abel = "TRUE")
disease | disease_after_harmony</pre>
```


batch | batch_after_harmony

