	-U'(x) = f(x) $O < x < 1$
	U(0) = 1
	C'(1) = 1
Vegnos la G	Pormulación debil:
- (/'(x)	$=f(x) \Longrightarrow -U'(x)V(x)=f(x)V(x)$
	$= \int_{-C'(X)} V(X) = \int_{-C(X)} V(X)$
Voter fue:	$-\int_{0}^{1} (x) V(x) dx = -U(x) V(x) \left(\frac{1}{3} + \int_{0}^{1} U(x) V(x) dx \right)$
	$= -(U(1)V(1) - U(0)V(0)) + \int_{0}^{1} U(x)V(x)$
	$= V(0) - V(1) + \int_{0}^{1} (X) V(X) dX$
	- Va) Vi) 4 Joan
	$=> V(0)-V(1) + \int U(x) V(x) dx = \int f(x) V(x) dx$
	une prilla X=ih con i=0,-;n y h= h.
	une prille X= in con continy n-n.

Luego:

$$\begin{pmatrix}
1 \\ h
\end{pmatrix}$$
 $\times E[X_{i+1}, X_i]$
 $\varphi_i(x) = \begin{cases}
-1 \\ -1
\end{pmatrix}$
 $\times E[X_i, X_{i+1}]$
 $Q_i(x) = \begin{cases}
-1 \\ -1
\end{cases}$
 $Q_$

Por lo tanto tenenos			
V(0) = V(1) = 0	$+\int_{0}^{1} (f(x)) V(x) dx = \int_{0}^{1}$	+(X)V(X)AV	
$\frac{1}{2} \int_{0}^{\infty} (x) \sqrt{i}$	$(x) dx = \int_{0}^{1} f(x) V(x)$	dx	
Luepo: $\sum_{j=1}^{n-1} C_j \int_{0}^{\varphi_j} \varphi_i$	$dx = \int_{0}^{1} f(x) Q(x) dx$		$i = 1, \cdots, N-1$
Definiendo $Q(\varphi_i, \varphi_i)$	$=\int_{0}^{1} \phi_{i}(x) \phi_{i}(x) dx$ $=\int_{0}^{1} f(x) \phi_{i}(x) dx$		
Nas gueda:			
$= \int_{\mathcal{Q}} Q(Q_1, Q_1) \cdot \cdot \cdot$	$Q(Q_1,Q_{n-1})$		126,91>
$a(q_{n-1},q_{n-1})$	$Q(\varphi_{n-1}, \varphi_{n-1})$		$\langle \mathcal{L}f, \phi_{n} \rangle$
	Xn-1		

Scanned with CamScanner