# Draft Sensor Independent Derived Data Design & Exploitation Description Document

Version 0.1

10/30/2009

# TABLE OF CONTENTS

| 1 | In  | troc | duction                                             | 1  |
|---|-----|------|-----------------------------------------------------|----|
|   | 1.1 | 5    | Scope                                               | 1  |
|   | 1.2 | C    | Capabilities & Limitations                          | 1  |
|   | 1.  | 2.1  | Future Considerations                               | 1  |
|   | 1.3 | C    | Container File Formats                              | 2  |
|   | 1.4 | 5    | Sensor Specific Product Profiles                    | 2  |
|   | 1.5 | A    | Applicable Documents                                | 2  |
| 2 | S   | IDD  | Image Pixel Array                                   | 3  |
|   | 2.1 | 5    | Supported Pixel Types                               | 3  |
|   | 2.2 | \    | Visual Pixel Grid Layout                            | 3  |
|   | 2.3 | C    | Coordinate System                                   | 4  |
|   | 2.4 | E    | ECEF Coordinate System Definition                   | 6  |
|   | 2.5 | F    | Planar Gridded Display                              | 7  |
|   | 2.6 | C    | Geodetic Coordinate System Definition               | 9  |
|   | 2.7 | C    | Geodetic Gridded Display                            | 11 |
|   | 2.8 | C    | Cylindrical Gridded Display (CGD)                   | 13 |
|   | 2.  | 8.1  | CGD inflated ellipsoid                              | 14 |
|   | 2.  | 8.2  | Local East, North, Up Coordinate system             | 15 |
|   | 2.  | 8.3  | CGD Bases computations                              | 15 |
|   | 2.  | 8.4  | Radius of Curvature in the Meridian                 | 15 |
|   | 2.  | 8.5  | Radius of Curvature in the Prime Vertical           | 15 |
|   | 2.  | 8.6  | Radius of Curvature in the Along Stripmap Direction | 15 |
| 3 | С   | oor  | dinate Transformations                              | 16 |
|   | 3.1 | F    | PGD Pixel to ECEF Coordinate Conversion             | 16 |
|   | 3.2 | E    | ECEF Coordinate to PGD Pixel Conversion             | 16 |
|   | 3.3 | C    | GGD Pixel to Geodetic Coordinate Conversion         | 17 |
|   | 3.4 | C    | Geodetic Coordinate to GGD Pixel Conversion         | 17 |
|   | 3.5 | C    | Geodetic to ECEF Coordinate Conversion              | 17 |
|   | 3.6 | Е    | ECEF Coordinate to Geodetic Coordinate Conversion   | 17 |
|   | 3.7 | C    | CGD Pixel to ECEF Coordinate Conversion             | 18 |

|   | 3.8 EC   | EF Coordinate to CGD Pixel Conversion | 18 |
|---|----------|---------------------------------------|----|
| 4 | SIDD M   | 1etadata                              | 18 |
|   | 4.1 XM   | IL Metadata Types                     | 19 |
|   | 4.1.1    | XML Schema Interpretation             | 20 |
|   | 4.1.2    | XML Types Overview                    | 21 |
|   | 4.1.3    | XML Simple Primitive Data Types       | 21 |
|   | 4.1.4    | Complex Primitive Data Types          | 23 |
|   | 4.2 XM   | IL Metadata Parameter List            | 31 |
|   | 4.2.1    | SIDD Parameters and Overview          | 32 |
|   | 4.2.2    | Product Creation                      | 34 |
|   | 4.2.3    | Display                               | 39 |
|   | 4.2.4    | GeographicAndTarget                   | 49 |
|   | 4.2.5    | Measurement                           | 53 |
|   | 4.2.6    | ExploitationFeatures                  | 58 |
|   | 4.2.7    | ProductProcessing                     | 69 |
|   | 4.2.8    | DownstreamReprocessing                | 71 |
|   | 4.2.9    | ErrorStatistics                       | 75 |
|   | 4.2.10   | Radiometric                           | 75 |
| 5 | Display  | Exploitation (TBD)                    | 76 |
| 6 | User Ex  | xploitation                           | 76 |
|   | 6.1.1    | Chipping                              | 76 |
|   | 6.1.2    | Legend Creation                       | 78 |
| 7 | Exploita | ationFeatures Calculations            | 78 |
|   | 7.1 Sla  | ant Plane Definition                  | 80 |
|   | 7.1.1    | Image Plane Defintion                 | 81 |
|   | 7.2 lm   | age Angle                             | 81 |
|   | 7.3 Inf  | ormation                              | 81 |
|   | 7.3.1    | Polarization Angle                    | 82 |
|   | 7.4 Ge   | ometry                                | 82 |
|   | 7.4.1    | Azimuth Angle                         | 82 |
|   | 7.4.2    | Slope Angle                           | 82 |

|     | 7.4.3            | Squint or Doppler Cone Angle                          | 82 |
|-----|------------------|-------------------------------------------------------|----|
|     | 7.4.4            | Grazing Angle                                         | 83 |
|     | 7.4.5            | Tilt Angle                                            | 83 |
| 7   | .5 Phe           | enomenology                                           | 83 |
|     | 7.5.1            | Shadow                                                | 84 |
|     | 7.5.2            | Layover                                               | 84 |
|     | 7.5.3            | North Direction                                       | 84 |
|     | 7.5.4            | Up Direction                                          | 85 |
|     | 7.5.5            | Multi-Path                                            | 85 |
|     | 7.5.6            | Ground Track (Image Track) Angle                      | 85 |
| 8   | Product          | Resolution                                            | 86 |
| 9   | Acronyn          | n List                                                | 87 |
|     |                  |                                                       |    |
|     |                  | LIST OF FIGURES                                       |    |
| Eia | uro 2 1 <b>C</b> | IDD Column Grid Definition                            | 1  |
| ·   |                  | IDD Row Grid Definition                               |    |
| Ū   |                  | CEF Coordinate System                                 |    |
| Ū   |                  | •                                                     |    |
| ·   |                  | GD Gridded Display  GD Example                        |    |
|     |                  |                                                       |    |
| -   |                  | Seodetic Coordinate System                            |    |
| _   |                  | eodetic Gridded Display                               |    |
| _   |                  | GD Example                                            |    |
| _   |                  | GD Image Example                                      |    |
| _   |                  | CGD Example                                           |    |
| ·   |                  | xample of Naming Convention and General Schema Layout |    |
|     |                  | rimitive Definition & Schema Layout: footprinttype    |    |
| _   |                  | rimitive Definition & Schema Layout: xyztype          |    |
| ·   |                  | rimitive Definition & Schema Layout: poly1dtype       |    |
| _   |                  | rimitive Definition & Schema Layout: poly2dtype       |    |
| Fig | ure 4-6 P        | rimitive Definition & Schema Layout: xyzpolytype      | 27 |

| Figure 4-7 Primitive Definition & Schema Layout: parametertype                      | 28 |
|-------------------------------------------------------------------------------------|----|
| Figure 4-8 Primitive Definition & Schema Layout: rangeazimuthtype                   | 28 |
| Figure 4-9 Primitive Definition & Schema Layout: lookuptabletype & lookup3tabletype | 29 |
| Figure 4-10 Primitive Definition & Schema Layout: referencepointtype                | 30 |
| Figure 4-11 Primitive Definition & Schema Layout: anglemagnitudetype                | 31 |
| Figure 4-12 Primitive Definition & Schema Layout: rowcolinttype                     | 31 |
| Figure 4-13 SIDD Schema Layout                                                      | 33 |
| Figure 4-14 ProductCreation Parameter and Complex Structures                        | 35 |
| Figure 4-15 ProcessorInformation Structure                                          | 37 |
| Figure 4-16 Classification Structure                                                | 38 |
| Figure 4-17 <i>Guidance</i> Structure                                               | 39 |
| Figure 4-18 <i>Display</i> Parameter and Complex Structures                         | 40 |
| Figure 4-19 RemapInformation Structure                                              | 44 |
| Figure 4-20 <i>ColorDisplayRemap</i> Structure                                      | 45 |
| Figure 4-21 MonochromeDisplayRemap Structure                                        | 46 |
| Figure 4-22 DRAHistogramOverrides Structure                                         | 47 |
| Figure 4-23 MonitorCompensationAppliedStructure                                     | 48 |
| Figure 4-24 GeographicAndTarget Parameter and Complex Structures                    | 49 |
| Figure 4-25 GeographicCoverage Structure                                            | 50 |
| Figure 4-26 GeographicInfo Structure                                                | 51 |
| Figure 4-27 TargetInformation Structure                                             | 52 |
| Figure 4-28 <i>Measurement</i> Structure                                            | 54 |
| Figure 4-29 <i>PlaneProjection</i> Structure                                        | 55 |
| Figure 4-30 <i>ProductPlane</i> Structure                                           | 56 |
| Figure 4-31 GeographicProjection Structure                                          | 57 |
| Figure 4-32 CylindricalProjection Structure                                         | 58 |
| Figure 4-33 AdvancedExploitation Structure                                          | 59 |
| Figure 4-34 Collection Structure                                                    | 60 |
| Figure 4-35 Information Structure                                                   | 61 |
| Figure 4-36 RadarMode Structure                                                     | 63 |
| Figure 4-37 InputROI Structure                                                      | 63 |

| Figure 4-38 Polarization Structure                   | 64 |
|------------------------------------------------------|----|
| Figure 4-39 Geometry Structure                       | 66 |
| Figure 4-40 Phenomenology Structure                  | 68 |
| Figure 4-41 Product Structure                        | 69 |
| Figure 4-42 ProcessingApplied Structure              | 70 |
| Figure 4-43 ProcessingModule Structure               | 70 |
| Figure 4-44 DownstreamReprocessing Structure         | 71 |
| Figure 4-45 GeometricChip Structure                  | 72 |
| Figure 4-46 ProcessingEvent Structure                | 74 |
| Figure 4-47 ErrorStatistics Schema Layout            | 75 |
| Figure 4-48 Radiometric Schema Layout                | 75 |
| Figure 6-1 Chipping Diagram                          | 77 |
| Figure 7-1 Three-Space Angle Definition Diagram      | 80 |
| Figure 7-2 Image Angle Diagram                       | 81 |
| Figure 7-3 Phenomenology Diagram                     | 83 |
|                                                      |    |
| LIST OF TABLES                                       |    |
| Table 1-1 SIDD Design Documentation                  | 2  |
| Table 1-2 SICD Design Documentation                  | 2  |
| Table 1-3 Other Applicable Documentation             | 3  |
| Table 2-1 Coordinate System Pixel Grid Variables     | 5  |
| Table 4-1 Unit Abbreviations                         | 20 |
| Table 4-2 Simple Primitive Data Types                | 21 |
| Table 4-3 Definition of dateTimetype Units           | 23 |
| Table 4-4 SIDD Schema Layout Paragraph Reference     | 33 |
| Table 4-5 ProductCreation Parameter Definitions      | 36 |
| Table 4-6 ProfessorInformation Parameter Definitions | 37 |
| Table 4-7 Classification Parameter Definitions       | 38 |
| Table 4-8 Guidance Parameter Definitions             | 39 |
| Table 4-9 <i>Display</i> Parameter Definitions       | 41 |
| Table 4-10 Enumeration Types for <i>Pixeltype</i>    | 41 |

| Table 4-11 Enumeration Types for MagnificationMethod        | 42 |
|-------------------------------------------------------------|----|
| Table 4-12 Enumeration Types for DecimationMethod           | 43 |
| Table 4-13 RemapInformation Parameters Definitions          | 44 |
| Table 4-14 ColorDisplayRemap Parameter Definition           | 45 |
| Table 4-15 MonochromeDisplayRemap Parameter Definitions     | 46 |
| Table 4-16 DRAHistogramOverrides Parameter Definitions      | 47 |
| Table 4-17 MonitorCompensationApplied Parameter Definitions | 48 |
| Table 4-18 GeographicAndTarget Parameter Definitions        | 49 |
| Table 4-19 GeographicCoverage Parameter Definitions         | 51 |
| Table 4-20 GeographicInfo Parameter Definitions             | 52 |
| Table 4-21 TargetInformation Parameter Definitions          | 53 |
| Table 4-22 Measurement Parameter and Definitions            | 54 |
| Table 4-23 PlaneProjection Parameter Definitions            | 56 |
| Table 4-24 ProductPlane Parameter Definition                | 56 |
| Table 4-25 GeographicProjection Parameter Definitions       | 57 |
| Table 4-26 CylindricalProjection Parameter Definitions      | 58 |
| Table 4-27 AdvancedExploitation Parameter Definitions       | 59 |
| Table 4-28 Collection Parameter Definitions                 | 60 |
| Table 4-29 Information Parameter Definitions                | 62 |
| Table 4-30 RadarMode Parameter Definitions                  | 63 |
| Table 4-31 InputROI Parameter Definitions                   | 64 |
| Table 4-32 Polarization Parameter Definitions               | 64 |
| Table 4-33 Enumeration Types for TxPolarization             | 64 |
| Table 4-34 Geometry Parameter Definitions                   | 67 |
| Table 4-35 Phenomenology Parameter Definitions              | 68 |
| Table 4-36 Product Parameter Definitions                    | 69 |
| Table 4-37 ProcessingApplied Parameter Definitions          | 70 |
| Table 4-38 ProcessingModule Parameter Definitions           | 71 |
| Table 4-39 DownstreamReprocessing Parameter Definitions     | 72 |
| Table 4-40 GeometricChip Parameter Definitions              | 73 |
| Table 4-41 ProcessingEvent Parameter Definitions            | 74 |

# SIDD Design & Exploitation Description Document Version 0.1 30 October 2009

| Table 7-1 Variables & Angles                    | 78 |
|-------------------------------------------------|----|
| Table 9-1 Coordinate System Pixel Grid Acronyms | 87 |

#### 1 Introduction

#### 1.1 Scope

The Sensor Independent Derived Data (SIDD) format is designed to store Synthetic Aperture Radar (SAR) derived image products and associated metadata that is grouped around common tasks for downstream users. This document, the SIDD Design and Exploitation Documentation (D&E), provides specifications for these common tasks which are designed to support basic exploitation, geographic measurements, exploitation, and proper visual display. Additionally, this document specifies the SIDD supported coordinate systems and product image pixel arrays.

This document covers the following:

- Image pixel array definition
- Coordinate systems
- Primitive data types
- Extensible Markup Language (XML) schema definition
- Product metadata definitions
- Coordinate mapping models
- Display guidance

# 1.2 Capabilities & Limitations

The SIDD format is intended for image products only. Future revisions of the SIDD format may be expanded to other products. SIDD products are not required to be built from SICD inputs, but if they are, they will contain the SICD input product XML metadata. The SIDD metadata is intended to, but not limited to, support the following:

- Exploitation tool display
- Geographic measurements
- Library ingest & search

#### 1.2.1 Future Considerations

The SIDD product format defined in this document will be updated in the future to potentially support the items below and other items that have not been considered.

- Annotations
- Compressed products
- Other pixel types (32-bit magnitude)
- SICD & SIDD common schema types
- New grid types

#### 1.3 Container File Formats

SIDD products can be packaged within NITF 2.1 or GeoTIFF 1.0 file containers. The SIDD File Format Description Document provides the full details on the SIDD file container formats and is referenced in Table 1-1.

# 1.4 Sensor Specific Product Profiles

Each product/system has its own specifications and requirements for metadata. In order to meet these specifications, a set of metadata parameters is selected from the available SIDD metadata parameters. These parameters are referred to as the sensor-specific product profile and are contained in SIDD profile implementation documents.

# 1.5 Applicable Documents

The SIDD product design and implementation descriptions are contained in this and several other documents. The set of additional SIDD documents is listed in Table 1-1.

| Table 1-1 SIDD Design Documentation                              |         |                       |
|------------------------------------------------------------------|---------|-----------------------|
| Title                                                            | Version | Date                  |
| Sensor Independent Derived Data File Format Description Document | 0.1     | 30-Oct-09             |
| Sensor Independent Derived Data XML schema                       | 0.1     | 4-Aug-09<br>30-Oct-09 |
| SICD Image Projections                                           | Draft   | 17-July-09            |

The SIDD product design relies, when available, on the SICD product design. The set of documents that describes the SICD product design is included in Table 1-2.

| Table 1-2 SICD Design Documentation                                        |         |           |
|----------------------------------------------------------------------------|---------|-----------|
| Title                                                                      | Version | Date      |
| Sensor Independent Complex Data Design & Exploitation Description Document | 0.3     | 17-Mar-09 |
| Sensor Independent Complex Data File Format Description Document           | 0.3     | 30-Sep-08 |
| Sensor Independent Complex Data XML schema                                 | 0.3.1   | 17-Mar-09 |

A listing of other documents referenced by the D&E document is included in Table 1-3.

| Table 1-3 Other Applicable Documentation |         |           |
|------------------------------------------|---------|-----------|
| Title                                    | Version | Date      |
| Softcopy Image Processing Standard       | 2.1     | 11-Jun-08 |

# 2 SIDD Image Pixel Array

The purpose of this section is to define the SIDD image pixel array, which is specified by the following items:

- Supported Pixel Types
- Visual Pixel Grid Layout
- Coordinate System

## 2.1 Supported Pixel Types

An image stored in the SIDD format may be represented as monochrome (8- or 16-bit), indexed color ("pseudo-color"), or 24-bit color. If the image is 8-bit monochrome or indexed color, the array will consist of byte values, each in the range of 0-255. For 16-bit data the array will contain two bytes representing integer magnitude. For 24-bit data, each pixel will have three byte values in the range of 0-255, where the first byte indicates the red value, the second byte indicates the green value, and the third byte indicates the blue value.

In an indexed color pixel array, each byte represents an index into the color palette lookup table, rather than the actual pixel value. The lookup table contains a set of 256 triplet entries representing the red, green and blue values for a pixel, respectively.

8-bit monochrome data may also have a 256-entry lookup table mapping the byte into an output space that is between 8-bits and 16-bits.

# 2.2 Visual Pixel Grid Layout

The SIDD grid is defined in terms of rows and columns. The origin is zero-based and starts in the upper left corner. Movement toward the bottom of the image is defined to be in the increasing row direction and movement toward the right of the image is defined to be in the increasing column direction as shown in Figure 2-1 and Figure 2-2.



Figure 2-1 SIDD Column Grid Definition



Figure 2-2 SIDD Row Grid Definition

# 2.3 Coordinate System

SIDD provides projection options for display of pixel amplitude data to three distinct representations: a Planar Gridded Display (PGD), Geodetic Gridded Display (GGD), and Cylindrical Gridded Display (CGD). These coordinate system layouts are intended for products which preserve the imaging geometry's layover. Furthermore, the grid layouts utilize constant sample spacing with respect to the underlying coordinate system; however, the row and column sample spacing can be unequal. The tables below provide variable definitions related to describing the PGD, GGD, and CGD coordinate systems.

| Table 2-1 Coordinate System Pixel Grid Variables |                                                                                                                                              |                                                            |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Variable<br>Definition                           | Definition                                                                                                                                   | Units                                                      |
| nRows                                            | Number of rows in SIDD product image                                                                                                         | Pixels                                                     |
| nCols                                            | Number of columns in SIDD product image                                                                                                      | Pixels                                                     |
| P <sub>PGD</sub>                                 | Vector in ECEF coordinate system. Also sometimes shown as $(X_0,Y_0,Z_0)$ . Reference point for the PGD grid type.                           | Meters                                                     |
| R <sub>PGD</sub>                                 | Unit vector defining the increasing visual row direction in the ECEF coordinate system                                                       | Unitless                                                   |
| C <sub>PGD</sub>                                 | Unit vector defining the increasing visual column direction in the ECEF coordinate system                                                    | Unitless                                                   |
| <b>Z</b> <sub>PGD</sub>                          | Unit vector in the ECEF coordinate system orthogonal to $\mathbf{R}_{\text{EGD}}$ and $\mathbf{C}_{\text{EGD}}$ , pointing out of the earth. | Unitless                                                   |
| $\Delta_{\rm r}$                                 | Row pixel sample spacing                                                                                                                     | Meters/Pixel – EGD  Meters/Pixel - CGD  Arcsec/Pixel – GGD |
| $\Delta_{ m c}$                                  | Column pixel sample spacing                                                                                                                  | Meters/Pixel – EGD  Meters/Pixel - CGD  Arcsec/Pixel – GGD |
| r <sub>o</sub>                                   | Image grid row position corresponding to the scene center point                                                                              | Pixels                                                     |
| C <sub>o</sub>                                   | Image grid column position corresponding to the scene center point                                                                           | Pixels                                                     |
| P <sub>ECEF</sub>                                | Vector defining an arbitrary position in the ECEF coordinate system                                                                          | Meters                                                     |
| r                                                | Arbitrary row position in an image                                                                                                           | Pixels                                                     |
| С                                                | Arbitrary column position in an image                                                                                                        | Pixels                                                     |
| λ                                                | Longitude                                                                                                                                    | Decimal Degrees                                            |
| φ                                                | Latitude                                                                                                                                     | Decimal Degrees                                            |
| h                                                | Height above ellipsoid                                                                                                                       | Meters                                                     |

| Table 2-1 Coordinate System Pixel Grid Variables |                                                                                                                                  |                                |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Variable<br>Definition                           | Definition                                                                                                                       | Units                          |
| P <sub>GGD</sub>                                 | Reference point in a GGD pixel grid. Also referred to as $\{\phi_0, \lambda_0, h_0\}$ .                                          | See $\lambda$ , $\phi$ , and h |
| а                                                | WGS-84 semi-major axis = 6378137 meters                                                                                          | Meters                         |
| b                                                | WGS-84 semi-minor axis = 6356752.31424518 meters                                                                                 | Meters                         |
| f                                                | WGS-84 flattening factor = 1/298.257223563                                                                                       | Unitless                       |
| e <sub>1</sub>                                   | First eccentricity = $\sqrt{\frac{a^2 - b^2}{a^2}}$                                                                              | Unitless                       |
| e <sub>2</sub>                                   | Second eccentricity = $\sqrt{\frac{a^2 - b^2}{b^2}}$                                                                             | Unitless                       |
| R <sub>c</sub>                                   | Radius of curvature = $\frac{a}{\sqrt{1 - e_1^2 \sin^2 \varphi}}$                                                                | Meters                         |
| P <sub>CGD</sub>                                 | Vector in ECEF coordinate system. Also sometimes shown as $(X_{CGD}, Y_{CGD}, Z_{CGD})$ . Reference point for the CGD grid type. | Meters                         |
| R <sub>CGD</sub>                                 | Unit vector defining the increasing visual row direction for the CGD grid type                                                   | Unitless                       |
| C <sub>CGD</sub>                                 | Unit vector defining the increasing visual column direction for the CGD grid type                                                | Unitless                       |
| S <sub>CGD</sub>                                 | Unit vector defining the along stripmap direction in the ECEF coordinate system                                                  | Unitless                       |
| $R_S$                                            | Radius used for the CGD projections                                                                                              | Meters                         |

# 2.4 ECEF Coordinate System Definition

The origin of the ECEF coordinate system is at the center of mass of the Earth. The Z axis intersects the International Earth Rotation Service (IERS) Reference Pole. The X-axis intersects the IERS Reference Meridian and the plane passing through the origin and normal to the Z-axis. The Y-axis completes a right-handed Cartesian coordinate system.. The representation of the ECEF coordinate system is shown in Figure 2-3.



Figure 2-3 ECEF Coordinate System

# 2.5 Planar Gridded Display

The Planar Gridded Display, PGD, represents a row/column image sampled in a plane with constant sample spacing in the ECEF coordinate system. It is fully defined by an ECEF reference point,  $\mathbf{P}_{PGD}$ , and a vector normal to the plane,  $\mathbf{Z}_{PGD}$ . The two in-plane vectors define movement in the increasing row direction,  $\mathbf{R}_{PGD}$ , and the increasing column direction,  $\mathbf{C}_{PGD}$ , and are orthogonal. The in-plane vector relationship to the grid layout is shown in Figure 2-4.

The row and column sample spacing,  $\Delta_r$  and  $\Delta_c$  respectively, define the relationship between PGD pixel space and physical linear measurements in meters.  $\mathbf{P}_{PGD}$  is the PGD reference point associated with the row and column,  $r_0$  and  $c_0$ .



Figure 2-4 PGD Gridded Display



Figure 2-5 PGD Example

# 2.6 Geodetic Coordinate System Definition

The geodetic coordinate system is based on latitude, longitude, and height above an ellipsoid and an ellipsoid model. The ellipsoid model used for the SIDD is the WGS-84 ellipsoid model. The equator and prime meridian define the zero values for latitude and longitude, respectively. Geodetic latitude is the angle between the equatorial plane and a line that is normal to the reference ellipsoid.



Figure 2-6 Geodetic Coordinate System

# 2.7 Geodetic Gridded Display

The Geodetic Gridded Display, GGD is a row/column image coordinate system (see Figure 2-7) and an associated set of Geodetic coordinates, which are expressed by latitude, longitude, and height (see Figure 2-8). It is fully defined by a geodetic reference point,  $P_{\text{GGD}}$ , and an ellipsoid model (WGS-84). Increasing rows represent movement in decreasing latitude, while increasing columns represent movement in increasing longitude. Each image coordinate is thus directly associated with a geodetic latitude and longitude.

The row and column sample spacing,  $\Delta_r$  and  $\Delta_c$  respectively, define the relationship between GGD pixel space and angular measurements, e.g. arc seconds. Associated with the geodetic reference point,  $\mathbf{P}_{\text{GGD}}$ , is a GGD row and column,  $r_0$  and  $c_0$ . Note that the sampling of an object within a GGD product increases with the absolute value of latitude; this causes objects to appear larger toward the poles.



Figure 2-7 Geodetic Gridded Display



Figure 2-8 GGD Example

# 2.8 Cylindrical Gridded Display (CGD)

The Cylindrical Gridded Display represents an image sampled on a cylindrical surface. This grid type is useful when the imaging mode is (dynamic) stripmap and mapping on the PGD would result in large image distortions. The cylinder's axis is parallel to the cross-stripmap direction and the cylinder's radius is designed to match an inflated WGS-84 ellipsoid. Note that this inflated ellipsoid is only used to determine the cylinder's radius, the pixels themselves do not lie along an inflated ellipsoid.

The CGD is fully defined by a CGD reference point,  $\mathbf{P}_{\text{CGD}}$ , a cylinder radius,  $\mathbf{R}_{s}$ , and the along stripmap direction,  $\mathbf{S}_{\text{CGD}}$ . If no cylinder radius is supplied, then a radius determined by an inflated ellipsoid is computed. The row and column sample spacing,  $\Delta_{r}$  and  $\Delta_{c}$  respectively, define the relationship between CGD pixel space and linear distance, e.g. meters. Unlike the PGD, where  $\mathbf{R}_{\text{PGD}}$  and  $\mathbf{C}_{\text{PGD}}$  are allowed to be in any orientation, the CGD basis vectors are constrained to one orientation;  $\mathbf{R}_{\text{CGD}}$  is aligned in the cross stripmap direction and  $\mathbf{C}_{\text{CGD}}$  is in the along stripmap direction.



Figure 2-9 CGD Image Example



Figure 2-10 CGD Example

#### 2.8.1 CGD inflated ellipsoid

The inflated ellipsoid has the same shape as the WGS-84 ellipsoid model but with a modified equatorial radius. The new equatorial radius is computed so that  $\mathbf{P}_{CGD}$  is on the inflated ellipsoid. The computation for the inflated ellipsoid equatorial radius is below:

$$a' = \sqrt{\left(X_{CGD}^2 + Y_{CGD}^2 + \frac{Z_{CGD}^2}{(1 - f)^2}\right)}$$

The modified geodetic coordinates are computed below:

$$\lambda' = \lambda$$

$$\varphi' = \tan^{-1} \frac{Z_{CGD}}{(1 - f)^2 \sqrt{X_{CGD}^2 + Y_{CGD}^2}}$$

#### 2.8.2 Local East, North, Up Coordinate system

The inflated ellipsoid necessarily changes the direction of the east, north, and up directions. These bases must be recomputed at the modified geodetic coordinates.

$$E' = [-\sin \lambda' \cos \lambda' \quad 0]$$

$$N' = [-\sin \varphi' \cos \lambda' \quad -\sin \varphi' \sin \lambda' \quad \cos \varphi']$$

$$U' = [\cos \varphi' \cos \lambda' \quad \cos \varphi' \sin \lambda' \quad \sin \varphi']$$

#### 2.8.3 CGD Bases computations

The CGD bases need to be in a plane that is tangent to the inflated ellipsoid. Given a (dynamic) stripmap direction,  $\mathbf{S}_{CGD}$ , the CGD bases are computed below:

$$\alpha = \tan^{-1} \frac{E' \cdot S_{CGD}}{N' \cdot S_{CGD}}$$

$$C_{CGD} = \cos \alpha N' + \sin \alpha E'$$

$$R_{CGD} = C_{CGD} \times U'$$

#### 2.8.4 Radius of Curvature in the Meridian

The radius of curvature in the North-South direction at a specified latitude is shown below:

$$R_N = \frac{a'(1 - e_1^2)}{(1 - e_1^2 \sin^2 \varphi')^{1.5}}$$

#### 2.8.5 Radius of Curvature in the Prime Vertical

The radius of curvature in the East-West direction at a specified latitude is shown below:

$$R_E = R_N (1 + e_2^2 \cos^2 \varphi')$$

#### 2.8.6 Radius of Curvature in the Along Stripmap Direction

The radius of curvature in the along stripmap direction is computed below, this is equivalent to the cylinder's radius:

$$\frac{1}{R_S} = \frac{\cos^2 \alpha}{R_N} + \frac{\sin^2 \alpha}{R_E}$$

Note that the radius of curvature derived above should be utilized with the CGD unless a different one is provided in the XML metadata.

#### 3 Coordinate Transformations

The image formation process generates a two-dimensional projection of the three-dimensional imaged scene. Each resolution cell is a combination of a range/range-rate projection (see *Sensor Independent Complex Data Image Projections*) and image formation algorithm dependent geometrical distortions. The goal of the SIDD grids is to remove all image formation algorithm dependent geometrical distortions; however, it is ultimately up to the end user to determine the ideal grid for exploitation. It is important to emphasize that the PGD and GGD coordinates defined in section 2 are not actual terrain surface locations. In order to determine accurate terrain surface locations, knowledge of the underlying terrain must be provided (via DTED information).

The ECEF coordinate of pixel locations can be derived using the equations outlined in Sections 3.1 to 3.6.

#### 3.1 PGD Pixel to ECEF Coordinate Conversion

The conversion of an PGD pixel coordinate,  $\{r, c\}$ , to an ECEF coordinate  $\mathbf{P}_{ECEF}$ ,  $\{x, y, z\}$ , is shown below.

$$\mathbf{P}_{ECEF} = \mathbf{P}_{PGD} + \Delta_r * (r - r_0) * \mathbf{R}_{PGD} + \Delta_c * (c - c_0) * \mathbf{C}_{PGD}$$

#### 3.2 ECEF Coordinate to PGD Pixel Conversion

The conversion of an ECEF coordinate  $\mathbf{P}_{\text{ECEF}}$ ,  $\{x, y, z\}$ , to an EGD pixel coordinate is shown below.

$$r = r_0 + \frac{(\mathbf{P}_{ECEF} - \mathbf{P}_{PGD}) \cdot \mathbf{R}_{PGD}}{\Delta_r}$$

$$c = c_0 + \frac{(\boldsymbol{P}_{ECEF} - \boldsymbol{P}_{PGD}) \cdot \boldsymbol{C}_{PGD}}{\Delta_c}$$

#### 3.3 GGD Pixel to Geodetic Coordinate Conversion

The conversion of a GGD pixel coordinate,  $\{r, c\}$ , to a geodetic coordinate is shown below. A constant height above the ellipsoid is used and is set from the reference point  $\mathbf{P}_{\text{GGD}}$ . In the equations below, the sample spacing is assumed to be in arc seconds.

$$\phi = \phi_0 - (r - r_0) \frac{\Delta_r}{3600}$$
$$\lambda = \lambda_0 + (c - c_0) \frac{\Delta_c}{3600}$$
$$h = h_0$$

#### 3.4 Geodetic Coordinate to GGD Pixel Conversion

The conversion of a geodetic coordinate to a GGD pixel is shown below. Again, a constant height above the ellipsoid is assumed, as well as sample spacing in arc seconds.

$$r = r_0 + \frac{3600(\varphi_0 - \varphi)}{\Delta_r}$$
$$c = c_0 + \frac{3600(\lambda - \lambda_0)}{\Delta_c}$$

#### 3.5 Geodetic to ECEF Coordinate Conversion

The relationship between the WGS-84 ellipsoid model and the ECEF coordinate system is shown below.

$$X = (R_c + h)\cos(\varphi)\cos(\lambda)$$

$$Y = (R_c + h)\cos(\varphi)\sin(\lambda)$$

$$Z = \left(\frac{b^2}{a^2}R_c + h\right)\sin(\varphi)$$

#### 3.6 ECEF Coordinate to Geodetic Coordinate Conversion

The relationship between the ECEF coordinate system,  $\{X, Y, Z\}$ , and the geodetic coordinate system  $\{\phi, \lambda, h\}$  is described below. The four quadrant arctangent function is used and the range is  $[0, 2\pi)$ 

$$\lambda = \tan^{-1} \left(\frac{Y}{X}\right)$$

$$D_{XY} = \sqrt{X^2 + Y^2}$$

$$\theta = \tan^{-1} \left(\frac{aZ}{bD_{XY}}\right)$$

$$\varphi = \tan^{-1} \left( \frac{Z + e_2^2 b \sin^3 \theta}{D_{XY} - e_1^2 a \cos^3 \theta} \right)$$
$$h = \frac{D_{XY}}{\cos(\varphi)} - R_C$$

#### 3.7 CGD Pixel to ECEF Coordinate Conversion

The conversion of a CGD pixel coordinate,  $\{r, c\}$ , to an ECEF coordinate  $\{x, y, z\}$ , is shown below.

$$\theta = \frac{\Delta_c * (c - c_0)}{R_S}$$

$$\mathbf{P}_{ECEF} = \mathbf{P}_{CGD} + \Delta_r * (r - r_0) * \mathbf{R}_{CGD} + R_S * \sin \theta * \mathbf{C}_{CGD} + R_S * (\cos \theta - 1) * \mathbf{U}'$$

#### 3.8 ECEF Coordinate to CGD Pixel Conversion

The conversion of an ECEF coordinate,  $P_{ECEF}$ , to a CGD pixel coordinate $\{r,c\}$  is shown below.

$$r = r_0 + \frac{(\mathbf{P}_{ECEF} - \mathbf{P}_{CGD}) \cdot \mathbf{R}_{CGD}}{\Delta_r}$$

$$c_c = (\mathbf{P}_{ECEF} - \mathbf{P}_{CGD}) \cdot \mathbf{C}_{CGD}$$

$$c_u = (\mathbf{P}_{ECEF} - \mathbf{P}_{CGD}) \cdot \mathbf{U}'$$

$$\theta = \cot^{-1} \frac{c_u + R_S}{c_c}$$

$$c = c_0 + \frac{R_S \theta}{\Lambda_c}$$

#### 4 SIDD Metadata

The purpose of this section is to define the SIDD metadata. The definition of SIDD metadata includes the items below:

- XML Primitives
- Groupings
- Complex Structures
- Metadata Parameter Definitions
- Complex and Simple Primitive Types

The metadata hierarchical structure for SIDD is XML. The foundation of the SIDD format is constructed from primitive data types, which are reusable structures that define the type of data contained within the metadata parameter and are defined in Section 4.1.2. A metadata parameter refers to a piece of information, such as sample spacing, that is required for downstream usage of a SIDD product. The parameters are further organized into complex structures. Each complex structure can contain other parameters, complex structures, or both that are linked together by common metadata. The top level complex structures within the SIDD are referred to as groupings to distinguish them from lower level complex structures. The SIDD metadata is organized into groupings centered on exploitation tasks, such as the *Display* grouping shown in Figure 4-18. An example of the naming convention and the general layout of the different types is shown in Figure 4-1.



Figure 4-1 Example of Naming Convention and General Schema Layout

# 4.1 XML Metadata Types

This section provides the following information:

- XML Schema Interpretation
- XML Primitive Type Overview
- XML Simple Primitive Type Definitions
- XML Complex Primitive Type Definitions

#### 4.1.1 XML Schema Interpretation

The purpose of the next three subsections is to provide instructions for reading the XML schema diagrams provided throughout this document.

#### 4.1.1.1 Required vs. Optional

The schema diagrams use dashed lines for optional parameters or complex structures and solid lines for required parameters or complex structures. The required and optional parameters and complex structures are enforced through both the schema and the documentation. The schema does not enforce conditional parameters and complex structures; therefore the schema diagrams don't indicate conditional parameters and complex structures. Figure 4-13 shows an example of both optional and required complex structures. An example of an optional grouping is the *ErrorStatistics* (Section 4.2.9) grouping, and an example of a required grouping is the *ProductCreation* (Section 4.2.2) grouping. Conditional parameters are only enforced through system-specific documentation (profiles). If a tag is marked as required and its parent tag is marked as optional, then the tag is only required if its parent tag is included. If a profile has a stricter requirement than the SIDD schema or documentation, products created using the profile should follow the profile's requirement.

#### 4.1.1.2 Repeatable

A repeatable type is shown with an n (n = 0, 1 ... N-1) to infinity symbol ( $\infty$ ) under the field name. An example of a repeatable type is shown in Figure 4-4 with the *poly1dtype* primitive type. In this example n starts at one and spans to infinity. The type specifies that at least one *Coef* parameter must exist and up to infinity parameters can also exist.

#### 4.1.1.3 Choice

A choice option is shown with a node. The schema choice option means that one of the set of parameters that connect to the node must exist. Only one choice option can exist for an each instance of the schema generated.

#### 4.1.1.4 Units

Units are defined under the type or parameter in the schema layout. Table 4-1 list the units and abbreviations used in this document.

| Table 4-1 Unit Abbreviations |               |  |
|------------------------------|---------------|--|
| Units                        | Abbreviations |  |
| Seconds                      | s             |  |
| Meters                       | m             |  |
| Meters per second            | m/s           |  |
| Hertz                        | Hz            |  |
| Hertz per second             | Hz/s          |  |

| Decimal degrees          | dd                 |
|--------------------------|--------------------|
| Cycles                   | сус                |
| Cycles per meter         | cyc/m              |
| Cycles per meter squared | cyc/m <sup>2</sup> |
| Radians                  | rad                |
| Radians per second       | rad/s              |
| Samples per second       | samples/s          |
| Decibel                  | dB                 |
| Degrees                  | deg                |

#### 4.1.2 XML Types Overview

The SIDD XML schema defines a set of reusable primitive types that declare XML metadata parameter types. There are two basic forms of primitive types: complex and simple. A simple primitive declares the parameter as a specific data type. The simple primitive type, like the *stringtype*, is the most basic data type. A complex primitive type is composed of multiple simple primitive types.

Simple primitives can also be restricted, which narrows the acceptable values to a range or an enumeration. An example of a restricted primitive type is *neg180to180type* which restricts, inclusively, double values from -180 to 180. The simple primitive types are defined in Section 4.1.3. For cohesiveness, the schema leverages many reusable types from the SICD XML Schema.

A complex primitive type is used for storing complex information, such as polynomials. An example of a complex primitive type is *poly1dtype* which stores an arbitrary number of coefficients and the order of the polynomial. The complex primitive types are defined in Section 4.1.4.

#### 4.1.3 XML Simple Primitive Data Types

The six simple primitive data types are defined in Table 4-2. If the attribute class is yellow, the primitive is a simple restricted primitive; otherwise it is just a simple primitive.

| Table 4-2 Simple Primitive Data Types |                      |       |  |  |
|---------------------------------------|----------------------|-------|--|--|
| Simple Primitive Data Type            | Definition           | Units |  |  |
| stringtype class                      | String of characters | N/A   |  |  |

| Table 4-2 Simple Primitive Data Types |                                                                                                          |                                                                     |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Simple Primitive Data Type            | Definition                                                                                               | Units                                                               |  |
| integertype class                     | Signed integer value with optional plus sign ("+") when positive                                         | N/A                                                                 |  |
| doubletype class                      | Double-precision floating point number.                                                                  | N/A                                                                 |  |
| neg180to180type class                 | Defines angles from -180 degrees to +180 degrees, inclusively This is a restricted doubletype.           | deg                                                                 |  |
| zeroto90type class                    | Defines angles from 0 degrees to +90 degrees, inclusively This is a restricted <i>doubletype</i> .       | deg                                                                 |  |
| dateTimetype                          | Time defined in Coordinated Universal Time (UTC). The seconds should be followed by a Z to indicate UTC. | Each Component of "YYYY-MM-DDThh:mm:ss.s+" is defined in Table 4-3. |  |

| Table 4-3 Definition of dateTimetype Units |                            |  |
|--------------------------------------------|----------------------------|--|
| Tag                                        | Definition                 |  |
| YYYY                                       | year                       |  |
| MM                                         | month                      |  |
| DD                                         | day                        |  |
| Т                                          | start of the required time |  |
| hh                                         | hour                       |  |
| mm                                         | minute                     |  |
| ss                                         | seconds                    |  |
| S+                                         | fractional seconds         |  |

#### 4.1.4 Complex Primitive Data Types

The eleven complex primitive data types are defined in the following sub-sections.

#### 4.1.4.1 footprinttype

The *footprinttype* primitive definition and schema layout is shown in Figure 4-2. It is constructed of a minimum of four vertices describing the footprint. The vertices are built using *Lat* and *Lon* parameters, which describe the latitude and longitude of each of the vertices and are measured in decimal degrees. These parameters are simple primitives of *doubletype*. The first vertex lists the upper left corner of the footprint and increasing vertices are populated from the footprint corners counter clockwise.

For example, GeographicCoverage's Footprint uses the footprinttype.

www.altova.com

Generated by XMLSpy

<ECEF>

Figure 4-2 Primitive Definition & Schema Layout: footprinttype

#### 4.1.4.2 xyztype

The *xyztype* is shown in Figure 4-3. It is a complex primitive type with the parameters X, Y, and Z. The X, Y, and Z parameters are simple primitives of *doubletype*.

For example, the *GeographicProjection's ReferencePoint* contains an *ECEF* parameter which is an *XYZtype*.

Figure 4-3 Primitive Definition & Schema Layout: xyztype

#### 4.1.4.3 poly1dtype

The *poly1dtype* is shown in Figure 4-4. It contains an expandable structure for a 1-D polynomial where the order of the polynomial, M, is defined along with a number of coefficients based on the order (up to M+1). Only non-zero entries of the polynomial need to be specified.

$$F(x) = \sum_{m=0}^{M} c_m x^m$$

For example, a polynomial named testpoly representing the equation

$$x^2 + 3$$

would be represented as:



Figure 4-4 Primitive Definition & Schema Layout: poly1dtype

#### 4.1.4.4 poly2dtype

The *poly2dtype* is shown in Figure 4-5. The parameters *order1* and *order2* specify the orders of the two-dimensional polynomial and are defined as M and N respectively. The parameters *exponent1* and *exponent2* define the exponents for a given *Coef*. The total number of possible coefficients is (M+1)\*(N+1), where only non-zero entries of the polynomial need to be specified. This complex primitive type represents an equation of the following form.

$$F(x,y) = \sum_{m=0}^{M} \sum_{n=0}^{N} c_{m,n} x^{m} y^{n}$$

For example, a polynomial named *testpoly*, representing the equation

$$x^2 \cdot y^6 + 3y^2 + 4x + 5$$

#### would be represented as



Figure 4-5 Primitive Definition & Schema Layout: poly2dtype

#### 4.1.4.5 xyzpolytype

The *xyzpolytype* is shown in Figure 4-6. It contains X, Y, and Z parameter types where each parameter in the complex structure contains a single *poly1dtype* complex primitive. For implementation details please see *poly1dtype*.



Figure 4-6 Primitive Definition & Schema Layout: xyzpolytype

#### 4.1.4.6 parametertype

The *parametertype* is shown in Figure 4-7. It is composed of a *stringtype* simple primitive with an attribute *name* which describes the contents of the field. The *parametertype* is used throughout the standard to include information which is often sensor/system specific that is not already included in the metadata.

The *ModuleParameter* in the *ProcessingApplied's ProcessingModule* is an example for populating a *parametertype* primitive type.

<ModuleParameter name="C1\_Weighting" class="xs:string">1.0</ModuleParameter>



Figure 4-7 Primitive Definition & Schema Layout: parametertype

#### 4.1.4.7 rangeazimuthtype

The *rangeazimuthtype* is shown in Figure 4-8. It is a complex structure with two *doubletype* parameters, *Range* and *Azimuth*.

The Resolution parameter within the AdvancedExploitation's Collection Information grouping is an example the rangeazimuthtype.



Figure 4-8 Primitive Definition & Schema Layout: rangeazimuthtype

#### 4.1.4.8 lookuptabletype & lookup3tabletype

The *lookuptabletype* is a complex primitive, shown in Figure 4-9, and it is used to provide a mapping of values from one input space to another. In the SIDD standard it is only used to map between integer representations (See 4.2.3). The *LUT* element is a list object which represents the look-up table. The list should be indexed using the input value and the corresponding value at that location in the output. The *Size* attribute is used to represent the length of the *LUT* list

object. This is required to be consistent with the size of the *LUT*. This is an xs:list object which delimits the values in the list using whitespace.

An example of this is the *RemapLUT* within the *MonochromeDisplayRemap*.

The *lookup3tabletype* is analogous to the *lookuptabletype* described above with the exception that each entry in the xs:list is a comma-separated triplet. An example of this is the *RemapLUT* within the *ColorDisplayRemap* used for 8-bit indexed color products.



Figure 4-9 Primitive Definition & Schema Layout: lookuptabletype & lookup3tabletype

## 4.1.4.9 referencepointtype

The *referencepointype* is shown in Figure 4-10. The *xyztype* and *rowcoldoubletype* are complex primitive types within the *referencepoint*, and are referenced in Sections 4.1.4.2 and 4.1.4.11, respectively. The *ECEF* parameter is contain in the *referencepointtype* and is an *xyztype*. The ECEF parameter metadata is an xyztype type and is populated by the xyztype instructions (Section 4.1.4.2). In addition, the *P*oint parameter is a *rowcoldoubletyple*; please refer to *rowcoldoubletype* for population instructions (Section 4.1.4.11).



Figure 4-10 Primitive Definition & Schema Layout: referencepointtype

## 4.1.4.10 anglemagnitudetype

The anglemagnitudetype is shown in Figure 4-11. It is composed of simple primitives, Angle and Magnitude, which are of neg180to180type and doubletype, respectively. The Layover parameter is an implementation example for populating the anglemagnitudetype.



Figure 4-11 Primitive Definition & Schema Layout: anglemagnitudetype

## 4.1.4.11 rowcolinttype & rowcoldoubletype

The *rowcolinttype* is shown in Figure 4-12. It is composed of *Row* and *Col* which are *integertype* simple primitives. The *rowcoldoubletype* has the same structure as Figure 4-12; however the *Row* and *Col* are *doubletypes*.

The *ChipSize* parameter is an implementation example for populating the *rowcoldoubletype*.

Figure 4-12 Primitive Definition & Schema Layout: rowcolinttype

## 4.2 XML Metadata Parameter List

The SIDD XML data is arranged to have related parameters grouped together in complex structures. Each complex structure has branches to either other complex structures or parameters. The complex structure stops branching once a parameter has been reached. The parameter is made up of primitives, which declares the data type of the parameter. In addition, the parameter contains the actual metadata associated with the image product.

The section is broken into the top level groupings displayed in Figure 4-13. The top level groupings are complex structures but will be referred to as groupings to distinguish from lower level complex structures. In each grouping section, the branching layout for each complex structure is displayed. The complex structural layouts start with the highest point in the branch and end with the lowest. The parameters' primitives and definitions are then listed in tables. In addition, a reference is provided to the reusable primitives defined in section 4.1.3 and 4.1.4.

## 4.2.1 SIDD Parameters and Overview

Figure 4-13 displays the top level groupings for the SIDD XML. The definitions for each grouping are listed in the Figure 4-13 and Table 4-4.



Figure 4-13 SIDD Schema Layout

| Table 4-4 SIDD Schema Layout Paragraph Reference |       |                                                                     |  |
|--------------------------------------------------|-------|---------------------------------------------------------------------|--|
| Grouping Section Definition                      |       |                                                                     |  |
| ProductCreation                                  | 4.2.2 | Information related to processor, classification, and product type. |  |
| Display                                          | 4.2.3 | Contains information needed to display the product in an            |  |

|                        |        | exploitation tool.                                                                                                                                               |
|------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GeographicAndTarget    | 4.2.4  | Contains generic and extensible targeting and geographic region information.                                                                                     |
| Measurement            | 4.2.5  | Contains the metadata necessary for performing measurements.                                                                                                     |
| ExploitationFeatures   | 4.2.6  | Computed metadata regarding the collection(s) and product. The grouping is also used to generate icons and legends.                                              |
| ProductProcessing      | 4.2.7  | Contains metadata related to algorithms used during product generation.                                                                                          |
| DownstreamReprocessing | 4.2.8  | Contains metadata related to the downstream processing of the product, such as modifications made by Electronic Light Table (ELT).                               |
| ErrorStatistics        | 4.2.9  | See SICD documentation (Table 1-2) for metadata definitions. Only one set of error data is included in the SIDD product that reflects the overall product.       |
| Radiometric            | 4.2.10 | See SICD documentation (Table 1-2) for metadata definitions. Only one set of radiometric data is included in the SIDD product that reflects the overall product. |

## 4.2.2 Product Creation

The *ProductCreation* contains information related to initial processing, classification, and product type. The *ProductCreation* complex structures are laid out in Figure 4-14 through Figure 4-15. The definitions are defined in Table 4-5 through Table 4-6.

## 4.2.2.1 Overview & Parameter Definition: ProductCreation



Figure 4-14 ProductCreation Parameter and Complex Structures

| Table 4-5 ProductCreation Parameter Definitions |                           |                          |                                                                                                                                                                                        |  |  |
|-------------------------------------------------|---------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                       | Туре                      | Reference                | Definition                                                                                                                                                                             |  |  |
| ProcessorInformation                            | processorinformationtype  | Table 4-6<br>Figure 4-15 | Required parameter containing basic information about the processor used to create the product.                                                                                        |  |  |
| Classification                                  | productclassificationtype | Table 4-6<br>Figure 4-16 | Required parameter containing the overall classification of the product.                                                                                                               |  |  |
| ProductName                                     | stringtype                | Table 4-2                | Required parameter containing the output product name defined by the processor.                                                                                                        |  |  |
| ProductClass                                    | stringtype                | Table 4-2                | Required parameter containing the class of product. Examples: Dynamic Image, Amplitude Change Detection, Coherent Change Detection, etc.)                                              |  |  |
| ProductType                                     | stringtype                | Table 4-2                | Optional parameter containing information on the type of sub-product. This field is only needed if there is a suite of associated products.  Examples: Frame #, Reference, Match, etc. |  |  |
| ProductCreationExtension                        | parametertype             | Table 4-2                | Optional extensible parameters used to support profile-specific needs related to product creation                                                                                      |  |  |

## 4.2.2.2 Overview and Parameter Definitions: *ProcessorInformation*



Figure 4-15 ProcessorInformation Structure

| Table 4-6 ProfessorInformation Parameter Definitions |              |                          |                                                                                                                                                        |  |
|------------------------------------------------------|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                            | Туре         | Reference                | Definition                                                                                                                                             |  |
| Application                                          | stringtype   | Table 4-2                | Required parameter that gives the name and version of the application used to create the product.                                                      |  |
| ProcessingDateTime                                   | dateTimetype | Table 4-2                | Required parameter that contains the date and time defined in Coordinated Universal Time (UTC). The seconds should be followed by a Z to indicate UTC. |  |
| Site                                                 | stringtype   | Table 4-2                | Required parameter that specifies the creation location of the product.                                                                                |  |
| Profile                                              | stringtype   | Table<br>4-2Table<br>4-2 | Optional parameter containing information about a product-specific profile applied during product processing.                                          |  |

# 4.2.2.3 Overview and Parameter Definition: Classification



Figure 4-16 Classification Structure

| Table 4-7 Classification Parameter Definitions |                            |                          |                                                                                                                      |  |  |
|------------------------------------------------|----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                      | Туре                       | Reference                | Definition                                                                                                           |  |  |
| Level                                          | stringtype                 | Table 4-2                | Required parameter containing the classification level information. Examples: Unclassified, Secret, Top Secret, etc. |  |  |
| SecurityMarking                                | stringtype                 | Table 4-2                | Optional parameter containing specialized control markings (if required).                                            |  |  |
| Guidance                                       | classificationguidancetype | Table 4-8<br>Figure 4-17 | Optional parameter containing classification guidance authority.                                                     |  |  |

## 4.2.2.4 Overview & Parameter Definitions: Guidance



Figure 4-17 Guidance Structure

|                                     | Table 4-8 Guidance Parameter Definitions |           |                                                                         |  |  |
|-------------------------------------|------------------------------------------|-----------|-------------------------------------------------------------------------|--|--|
| Parameter Type Reference Definition |                                          |           |                                                                         |  |  |
| Authority                           | stringtype                               | Table 4-2 | Required parameter containing the classification authority.             |  |  |
| Date                                | dateTimetype                             | Table 4-2 | Required parameter containing the date that the authority was provided. |  |  |

## 4.2.3 Display

The *Display* grouping contains information required for proper display of the imagery. The parameters in this block are expected to be utilized in conjunction with a NGA Softcopy Image Processing Standard (SIPS) v2.1 compliant viewer. In addition, it also describes any remaps or monitor compensations applied to the data, as well as, differentiating whether a color remap or monochrome remap was applied to the data.

# 4.2.3.1 Parameters and Complex Structures: Display



Figure 4-18 Display Parameter and Complex Structures

| Table 4-9 <i>Display</i> Parameter Definitions |                                    |                           |                                                                                                                                                                                                                                        |  |  |
|------------------------------------------------|------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                      | Туре                               | Reference                 | Definition                                                                                                                                                                                                                             |  |  |
| PixelType                                      | pixeltype                          | Table 4-10                | Required parameter defining the pixel type, based on enumeration defined in Table 4-10.                                                                                                                                                |  |  |
| RemapInformation                               | remapchoicetype                    | Figure 4-19<br>Table 4-13 | Optional parameter containing information regarding the encoding of the pixel data. Used for 8-bit pixel types.                                                                                                                        |  |  |
| MagnificationMethod                            | magnificationmetho<br>dtype        | Table 4-11                | Optional parameter specifying the recommended ELT magnification method for this data. The parameter is an enumeration defined by Table 4-11.                                                                                           |  |  |
| DecimationMethod                               | decimationmethodt<br>ype           | Table 4-12                | Optional parameter specifying the recommended ELT decimation method for this data. It should also be used as default for reduced resolution dataset generation (if applicable). The parameter is an enumeration defined by Table 4-12. |  |  |
| DRAHistogramOverr ides                         | drahistogramoverri<br>destype      | Figure 4-22<br>Table 4-16 | Optional parameter specifying the recommened ELT DRA overrides                                                                                                                                                                         |  |  |
| MonitorCompensatio nApplied                    | monitorcompensati<br>onappliedtype | Table 4-17<br>Figure 4-23 | Optional parameter describing monitor compensation that may have been applied to the product during processing.                                                                                                                        |  |  |
| DisplayExtension                               | Parametertype                      | Table 4-2                 | Optional extensible parameter used to support profile-specific needs related to product display.                                                                                                                                       |  |  |

| Table 4-10 Enumeration Types for <i>Pixeltype</i> |                                   |  |  |
|---------------------------------------------------|-----------------------------------|--|--|
| Enumeration Type                                  | Definition                        |  |  |
| MONO8I                                            | Monochrome 8-bit image            |  |  |
| MONO8LU                                           | Monochrome 8-bit image with a LUT |  |  |
| MONO16I                                           | Monochrome 16-bit image           |  |  |

| RGB8LU | RGB 8-bit image with a color LUT |
|--------|----------------------------------|
| RGB24I | RGB 24-bit color image           |

|                  | Table 4-11 Enumeration Types for MagnificationMethod                                                                                                                                                                                                           |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Enumeration Type | Definition                                                                                                                                                                                                                                                     |  |  |  |
| NEAREST_NEIGHBOR | Magnification through nearest neighbor has historically been referred to as replication. Under this technique any coordinate which falls within the pixel boundaries obtains the same values as that pixel. The magnification factor is d in both x and y. d>0 |  |  |  |
|                  | $g(x,y) = f(round(\frac{x}{d}), round(\frac{y}{d}))$                                                                                                                                                                                                           |  |  |  |
| BILINEAR         | Bilinear interpolation for a magnification factor of d in both the x and y direction is accomplished with the equations below.                                                                                                                                 |  |  |  |
|                  | $x_1 = floor\left(\frac{x}{d}\right)$                                                                                                                                                                                                                          |  |  |  |
|                  | $x_2 = ceiling\left(\frac{x}{d}\right)$                                                                                                                                                                                                                        |  |  |  |
|                  | $y_1 = floor\left(\frac{y}{d}\right)$                                                                                                                                                                                                                          |  |  |  |
|                  | $y_2 = ceiling\left(\frac{y}{d}\right)$                                                                                                                                                                                                                        |  |  |  |
|                  | $g(x,y) = \left[ \left( x_2 - \frac{x}{d} \right) \left( \frac{x}{d} - x_1 \right) \right] \left[ f(x_1, y_1) f(x_1, y_2) \right] \left[ \left( y_2 - \frac{y}{d} \right) \right] \left( \frac{y}{d} - y_1 \right) \right]$                                    |  |  |  |
| LAGRANGE         | Lagrange decimation is the standard interpolation method specified in the SIPS documentation. The Lagrange interpolation uses a 4x4 region about the pixel of interest when determining the new value. Review Section 2.3.5 of the SIPS document.              |  |  |  |

|                  | Table 4-12 Enumeration Types for <i>DecimationMethod</i>                                                                                                                                                                                                                          |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Enumeration Type | Definition                                                                                                                                                                                                                                                                        |  |  |
| NEAREST_NEIGHBOR | Decimation by a factor d in both the x and y directions by the nearest neighbor method requires that the value at the output is computed by rounding the new pixel location (x,y) to the nearest integer pixel that was in the original image. $g(x,y) = f(round(dx), round(dy))$ |  |  |
| BILINEAR         | Bilinear interpolation for a decimation factor of d in both the x and a y direction is accomplished with the equations below.                                                                                                                                                     |  |  |
|                  | $x_1 = floor(dx)$                                                                                                                                                                                                                                                                 |  |  |
|                  | $x_2 = ceiling(dx)$                                                                                                                                                                                                                                                               |  |  |
|                  | $y_1 = floor(dy)$                                                                                                                                                                                                                                                                 |  |  |
|                  | $y_2 = ceiling(dy)$                                                                                                                                                                                                                                                               |  |  |
|                  | $g(x,y) = [(x_2 - dx) (dx - x_1)] \begin{bmatrix} f(x_1, y_1) f(x_1, y_2) \\ f(x_2, y_1) f(x_2, y_2) \end{bmatrix} \begin{bmatrix} (y_2 - dy) \\ (dy - y_1) \end{bmatrix}$                                                                                                        |  |  |
| BRIGHTEST_PIXEL  | For brightest pixel decimation, the brightest pixel in the region near the new pixel is chosen. The decimation factor in x and y is d. The strategy shown is for MONO type data. The brightest pixel strategy used for RGB24I and RGB8LU is addressed in the SIPS document.       |  |  |
|                  | $g(x,y) = -\infty$                                                                                                                                                                                                                                                                |  |  |
|                  | $x_1 = floor\left(d\left(x - \frac{1}{2}\right)\right)$                                                                                                                                                                                                                           |  |  |
|                  | $x_2 = ceiling\left(d\left(x + \frac{1}{2}\right)\right)$                                                                                                                                                                                                                         |  |  |
|                  | $y_1 = floor\left(d\left(y - \frac{1}{2}\right)\right)$                                                                                                                                                                                                                           |  |  |
|                  | $y_2 = ceiling\left(d\left(y + \frac{1}{2}\right)\right)$                                                                                                                                                                                                                         |  |  |
|                  | For $(k = x_1:1:x_2)$<br>For $(m = y_1:1:y_2)$<br>g(x,y) = max(g(x,y),f(k,m))<br>End                                                                                                                                                                                              |  |  |
| LAGRANGE         | Lagrange decimation is the standard interpolation method specified in the SIPS documentation. The Lagrange interpolation uses a 4x4 region about the pixel of interest when determining the new value. Review Section 2.3.5 of the SIPS document.                                 |  |  |

## 4.2.3.2 Overview and Parameter Definitions: RemapInformation



Figure 4-19 RemapInformation Structure

| Table 4-13 RemapInformation Parameters Definitions |                                |                           |                                                                                                                                                                                                                   |  |
|----------------------------------------------------|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                          | Туре                           | Reference                 | Definition                                                                                                                                                                                                        |  |
| ColorDisplayRemap                                  | colordisplayremaptype          | Table 4-14<br>Figure 4-20 | Mutually exclusive required parameter containing information for proper color display of the data. RemapInformation will be either populated with the parameter ColorDisplayRemap or MonochromeDisplayRemap.      |  |
| MonochromeDisplayRemap                             | monochromedisplayre<br>maptype | Figure 4-21<br>Table 4-15 | Mutually exclusive required parameter containing information for proper monochrome display of the data. RemapInformation will be either populated with the parameter ColorDisplayRemap or MonochromeDisplayRemap. |  |

## 4.2.3.3 Overview and Parameter Definitions: ColorDisplayRemap

The color remap description (*ColorDisplayRemap*) contains a set of optional lookup tables for red, green, and blue. These tables are only used for 8-bit indexed color products. The look-up table maps the 8-bit index to a 24-bit multi-channel pixel space. This should operate as described in the "Product Generation Option" step of the SIPS document. 24-bit true multi-channel color products should not have any transform applied to them. The complex structure's layouts within the *Display* grouping are shown in Figure 4-20. The complex structure's parameters and primitives are defined in Table 4-14.



Figure 4-20 ColorDisplayRemap Structure

|           | Table 4-14 ColorDisplayRemap Parameter Definition |            |                                                                                           |  |  |  |
|-----------|---------------------------------------------------|------------|-------------------------------------------------------------------------------------------|--|--|--|
| Parameter | Туре                                              | Definition |                                                                                           |  |  |  |
| RemapLUT  | lookup3tabletype                                  | Figure 4-9 | Required LUT-base remap indicating the color display is done through indexed-based color. |  |  |  |

## 4.2.3.4 Overview and Parameter Definitions: MonochromeDisplayRemap

The monochrome remap description (*MonochromeDisplayRemap*) describes two major items. First, a textual and parameter definition of the remap is provided through the *RemapType* and optional *RemapParameter* fields. These fields are for information purposes only as the actual un-mapping of the data to density space is accomplished via look-up table. Second, the *RemapLUT* block provides a remap from 8-bit space to log amplitude space. This unmapping of the data from 8-bit space corresponds to the "Product Generation Option" step of the SIPS documentation. By providing this remap as a generalized look-up table, the block is allowing multiple remap definitions to be represented without need for a change in either the SIPS or the SIDD documentation. For 16-bit data, the *RemapLUT* should not be utilized.



Figure 4-21 MonochromeDisplayRemap Structure

|                | Table 4-15 MonochromeDisplayRemap Parameter Definitions |            |                                                                                                                                                                                                                                                                     |  |  |
|----------------|---------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter      | Туре                                                    | Reference  | Definition                                                                                                                                                                                                                                                          |  |  |
| RemapType      | stringtype                                              | Table 4-2  | Required parameter that contains the name of remap applied (for informational purposes only).                                                                                                                                                                       |  |  |
| RemapLUT       | lookuptabletype                                         | Figure 4-9 | Optional parameter that contains the lookup table for remap to log amplitude for display. Used during the "Product Generation Option" portion of the SIPS display chain. Should be utilized for 8-bit data.                                                         |  |  |
| RemapParameter | parametertype                                           | Table 4-2  | Optional textual remap parameter. Filled based upon remap type (for informational purposes only). For example, if the data is linlog encoded a RemapParameter could be used to describe any amplitude scaling that was performed prior to linlog encoding the data. |  |  |





Figure 4-22 DRAHistogramOverrides Structure

| Table 4-16 DRAHistogramOverrides Parameter Definitions |             |           |                                                                                                                                                                              |  |
|--------------------------------------------------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                              | Туре        | Reference | Definition                                                                                                                                                                   |  |
| ClipMin                                                | integertype | Table 4-2 | Required parameter describing the suggested override for the lower end-point of the display histogram in the ELT DRA application. Referred to as Pmin in SIPS documentation. |  |
| ClipMax                                                | integertype | Table 4-2 | Required parameter describing the suggested override for the upper end-point of the display histogram in the ELT DRA application. Referred to as Pmax in SIPS documentation. |  |

# 4.2.3.6 Overview and Parameter Definitions: MonitorCompensationApplied

The *MonitorCompensationApplied* grouping describes monitor compensation applied to the pixel data. The parameters of the monitor compensation (*Gamma* and *XMin*) are provided for reference. If such compensation is applied, it is recommended that any softcopy display chain skip DRA application. These parameters are shown in Figure 4-23.



Figure 4-23 MonitorCompensationAppliedStructure

|           | Table 4-17 MonitorCompensationApplied Parameter Definitions |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------|-------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter | Туре                                                        | Reference | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Gamma     | doubletype                                                  | Table 4-2 | The value of this parameter provides the gamma or xmin value of the nominal monitor compensation applied to the product prior to dissemination. Nominal monitor compensation is applied to some products to ensure an acceptable visual display of the products across display tools. In order to be displayed on a computer monitor, the pixel values are first converted to density (D) space and are then converted to "transmittance". The formula for density to transmittance conversion is a follows: (see equation below) where Dclip = 255, xmax = 255, and Rt = 50.01. In viewing standard detected gray-scale images, y (gamma) and xmin are normally determined by display. Optimal display of products, however, may require default display parameters be used. This field must be used to express the default display parameters. $x(D) = (x_{max} - x_{min}) \left(\frac{R_t \frac{(min(D,D_{clip})}{D_{clip}}) - 1}{R_t - 1}\right)^{\frac{1}{T}} + x_{min}$ |  |  |
| XMin      | doubletype                                                  | Table 4-2 | The value of this parameter provides the gamma or xmin value of the nominal monitor compensation applied to the product prior to dissemination. Nominal monitor compensation is applied to some products to ensure an acceptable visual display of the products across display tools. In order to be displayed on a computer monitor, the pixel values are first converted to density space and are then converted to "transmittance". The formula for density to transmittance conversion is a follows: (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

|           | Table 4-17 MonitorCompensationApplied Parameter Definitions |           |                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------|-------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter | Туре                                                        | Reference | Definition                                                                                                                                                                                                                                                                                                                     |  |  |  |
|           |                                                             |           | equation below) where Dclip = 255, xmax = 255, and Rt = 50.01. In viewing standard detected gray-scale images, y (gamma) and xmin are normally determined by display. Optimal display of products, however, may require default display parameters be used. This field must be used to express the default display parameters. |  |  |  |
|           |                                                             |           | $x(D) = (x_{max} - x_{min}) \left( \frac{R_t \left( \frac{min(D, D_{clip})}{D_{clip}} \right) - 1}{R_t - 1} \right)^{\frac{1}{r}} + x_{min}$                                                                                                                                                                                   |  |  |  |

# 4.2.4 GeographicAndTarget

The *GeographicAndTarget* grouping contains information about the targets residing in the product and the geographic coverage of the product. The structural layouts of the groupings are shown in Figure 4-24 through Figure 4-26. The grouping's parameter definitions are defined in Table 4-18 through Table 4-21.

## 4.2.4.1 Parameters and Complex Structures: GeographicAndTarget



Figure 4-24 GeographicAndTarget Parameter and Complex Structures

| Table 4-18 GeographicAndTarget Parameter Definitions |                        |                           |                                                                                 |  |  |
|------------------------------------------------------|------------------------|---------------------------|---------------------------------------------------------------------------------|--|--|
| Parameter                                            | Туре                   | Reference                 | Definition                                                                      |  |  |
| GeographicCoverage                                   | geographiccoveragetype | Table 4-19<br>Figure 4-25 | Required parameter containing information for the ground coverage of the image. |  |  |

| Table 4-18 GeographicAndTarget Parameter Definitions |                       |                           |                                                                                                                                       |  |  |
|------------------------------------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                            | Туре                  | Definition                |                                                                                                                                       |  |  |
| TargetInformation                                    | targetinformationtype | Table 4-21<br>Figure 4-27 | Optional parameter repeated multiple times for each target in the product footprint. Provides target specific geographic information. |  |  |

## 4.2.4.2 Overview and Parameter Definition: GeographicCoverage

The *GeographicCoverage* complex structure represents a hierarchical decomposition of the area contained within the product. It contains an optional *GeoregionIdentifier* for the area, a geodetic *Footprint*, and either information pertaining to the region or a decomposition of the region into subregions. Each *SubRegion* contains the same information as the *GeographicCoverage* element and may be decomposed in a similar manner. Using this subregion decomposition may be useful to relate specific security or country identifiers to particular portions of the product's ground coverage.



Figure 4-25 GeographicCoverage Structure

| Table 4-19 GeographicCoverage Parameter Definitions |                           |                           |                                                                                          |  |  |
|-----------------------------------------------------|---------------------------|---------------------------|------------------------------------------------------------------------------------------|--|--|
| Parameter                                           | Туре                      | Reference                 | Definition                                                                               |  |  |
| GeoregionIdentifier                                 | parametertype             | Figure 4-7                | Optional parameter used to identify the geo-region.                                      |  |  |
| Footprint                                           | footprinttype             | Figure 4-2                | Required parameter containing the estimated ground footprint of the product.             |  |  |
| Subregion                                           | geographiccovertype       | Figure 4-25<br>Table 4-19 | Choice required parameter used to represent hierarchical decomposition into sub-regions. |  |  |
| GeographicInfo                                      | geographicinformationtype | Figure 4-26<br>Table 4-20 | Choice required parameter specifying specifics about the geo-regions.                    |  |  |

# 4.2.4.3 Overview & Parameter Definition: GeographicInfo



Figure 4-26 GeographicInfo Structure

| Table 4-20 GeographicInfo Parameter Definitions |               |           |                                                                                                                       |  |  |
|-------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                       | Туре          | Reference | Definition                                                                                                            |  |  |
| CountryCode                                     | stringtype    | Table 4-2 | Optional parameter used for the country identifier for this geographic region.                                        |  |  |
| SecurityInfo                                    | stringtype    | Table 4-2 | Optional parameter that specifies the classification level or special handling designator for this geographic region. |  |  |
| GeographicInfoExtension                         | parametertype | Table 4-2 | Optional parameter for implementation specific geographic information.                                                |  |  |

## 4.2.4.4 *TargetInformation* Parameter and Complex Structures

The *TargetInformation* complex structure contains one or more *Identifier* elements. These are system dependent strings used to describe the target. As a *parametertype* object, each *Identifier* will contain a *name* attribute used to describe the identifier type (i.e. BE number, order of battle). These names are highly system dependent. For each target, an optional *Footprint* can be specified which represents the ground coverage of the target. The *TargetInformationExtension* parameter is available for ancillary data regarding the target.



Figure 4-27 TargetInformation Structure

| Table 4-21 TargetInformation Parameter Definitions |               |            |                                                                                                                                  |  |  |
|----------------------------------------------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                          | Туре          | Reference  | Definition                                                                                                                       |  |  |
| Identifier                                         | parametertype | Figure 4-7 | Required target identifier. Examples: names, BE numbers, etc. Use the "name" attribute to population the description identifier. |  |  |
| Footprint                                          | footprinttype | Figure 4-2 | Optional Footprint parameter specifies the ground coverage of the target                                                         |  |  |
| TargetInformationExtension                         | parametertype | Figure 4-7 | Optional generic extension. Could be used to indicate type of target, terrain, etc.                                              |  |  |

## 4.2.5 Measurement

The *Measurement* grouping encapsulates metadata that is necessary for performing image to geographic measurements. The complex structure layouts are shown in Figure 4-28 through Figure 4-31. The groupings definitions are listed in Table 4-22 through Table 4-25.

## 4.2.5.1 Overview & Parameter Definition: Measurement



Figure 4-28 Measurement Structure

| Table 4-22 Measurement Parameter and Definitions |                           |                           |                                                                                |  |  |
|--------------------------------------------------|---------------------------|---------------------------|--------------------------------------------------------------------------------|--|--|
| Parameter                                        | Туре                      | Reference                 | Definition                                                                     |  |  |
| PlaneProjection                                  | planeprojectiontype       | Table 4-23<br>Figure 4-29 | Planar representation of the pixel grid referred to as PGD in the Section 2.5. |  |  |
| GeographicProjection                             | geographicprojectiontype  | Table 4-25<br>Figure 4-31 | Geographic mapping of the pixel grid referred to as GGD in Section 2.7.        |  |  |
| CylindricalProjection                            | cylindricalprojectiontype | Figure<br>4-32            | Cylindrical mapping of the pixel grid referred to as CGD in Section 2.8.       |  |  |

| Table 4-22 Measurement Parameter and Definitions |               |               |                                                                                                                           |  |
|--------------------------------------------------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                        | Туре          | Reference     | Definition                                                                                                                |  |
|                                                  |               | Table<br>4-26 |                                                                                                                           |  |
| PixelFootprint                                   | rowcolinttype | Figure 4-12   | Gives the size of the image in terms of pixels.                                                                           |  |
| ARPPoly                                          | xyzpolytype   | Figure 4-6    | Aperture Reference Position (ARP) polynomial in ECF as a function of time t (variable 1). Time t = 0 at collection start. |  |
| TimeCOAPoly                                      | poly2dtype    | Figure 4-5    | Time at which center of the aperture for a given pixel coordinate in the product occurs .                                 |  |

# 4.2.5.2 Overview and Parameter Definition: *PlaneProjection*



Figure 4-29 PlaneProjection Structure

|                | Table 4-23 PlaneProjection Parameter Definitions |                           |                                                                                                                                                                                                                                                                   |  |
|----------------|--------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter      | Туре                                             | Reference                 | Definition                                                                                                                                                                                                                                                        |  |
| ProductPlane   | planeprojectiontype                              | Table 4-24<br>Figure 4-30 | Required parameter describing the plane definition for the product.                                                                                                                                                                                               |  |
| ReferencePoint | referencepointtype                               | Figure 4-10               | Required parameter describing the reference point of the plane. (Defined as $P_{PGD}$ in Section 2.5). The name attribute is used to describe the plane projection. The plane projection options are defined in Section 2.4 and 2.6 as $P_{EGD}$ and $P_{ECEF}$ . |  |
| SampleSpacing  | rowcoldoubletype                                 | Figure 4-12               | Required parameter defining the spacing between pixels in the row and column directions.                                                                                                                                                                          |  |

## 4.2.5.3 Overview and Parameter Definition: *ProductPlane*



Figure 4-30 ProductPlane Structure

| Table 4-24 <i>ProductPlane</i> Parameter Definition |         |            |                                                                                                                                                                                |
|-----------------------------------------------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                           | Туре    | Reference  | Definition                                                                                                                                                                     |
| RowUnitVector                                       | xyztype | Figure 4-3 | Required parameter describing the unit vector of the plane that is defined to be aligned in the increasing row direction of the product. (Defined as $R_{PGD}$ in Section 2.5) |

| ColUnitVector | xyztype | Figure 4-3 | Required parameter describing the unit vector of the plane that is defined to be aligned in the |
|---------------|---------|------------|-------------------------------------------------------------------------------------------------|
|               |         |            | increasing column direction of the product. (Defined as $C_{PGD}$ in Section 2.5)               |

## 4.2.5.4 Overview and Parameter Definition: Geographic Projection

GeographicProjection is a complex structure within the *Measurement* grouping. The complex structure layout can be seen in Figure 4-31. The parameters within the *GeographicProjection* provide a geographic mapping of the pixel grid. The definition and the primitives are listed in Table 4-25.



Figure 4-31 GeographicProjection Structure

| Table 4-25 GeographicProjection Parameter Definitions |                    |             |                                                                                                                                                                                                |
|-------------------------------------------------------|--------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                             | Туре               | Reference   | Definition                                                                                                                                                                                     |
| ReferencePoint                                        | referencepointtype | Figure 4-10 | Required parameter describing the reference point of the geographic grid usually the scene center point. The name attribute is used to describe the plane projection. (Defined in Section 2.6) |
| SampleSpacing                                         | rowcoltype         | Figure 4-12 | Required parameter describing the pixel spacing (units = arc seconds)                                                                                                                          |

## 4.2.5.5 Overview and Parameter Definition: CylindricalProjection

*CylindricalProjection* is a complex structure within the *Measurement* grouping. The complex structure layout can be seen in Figure 4-31. The parameters within the *CylindricalProjection* provide a cylindrical mapping of the pixel grid. The definition and the primitives are listed in Table 4-25.



Figure 4-32 CylindricalProjection Structure

| Table 4-26 CylindricalProjection Parameter Definitions |                    |             |                                                                                                                                                                                                  |
|--------------------------------------------------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                              | Туре               | Reference   | Definition                                                                                                                                                                                       |
| ReferencePoint                                         | referencepointtype | Figure 4-10 | Required parameter describing the reference point of the cylindrical grid usually the scene center point. The name attribute is used to describe the plane projection. (Defined in Section 2.8). |
| SampleSpacing                                          | rowcoltype         | Figure 4-12 | Required parameter describing the pixel spacing (units = meters)                                                                                                                                 |
| CurvatureRadius                                        | doubletype         | Table 4-2   | Optional parameter defining the Radius of Curvature at scene center. If not present, the radius of curvature will be derived based upon the equations provided in Section 3.                     |

## 4.2.6 ExploitationFeatures

The *ExploitationFeatures* structure contains additional metadata parameters needed for advanced exploitation tasks such as creating legends and icons. A discussion of legend/icon creation is included in Section 6.1.2.

The complex structures for the *ExploitationFeatures* grouping are shown in Figure 4-33 through Figure 4-41. The grouping definitions are defined in Table 4-27 through Table 4-36.

# 4.2.6.1 Parameters and Complex Structures: AdvancedExploitation



Figure 4-33 AdvancedExploitation Structure

|            | Table 4-27 AdvancedExploitation Parameter Definitions |                           |                                                                                                                              |  |  |  |
|------------|-------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter  | Туре                                                  | Reference                 | Definition                                                                                                                   |  |  |  |
| Collection | exploitationfeaturescollectiontype                    | Table 4-28<br>Figure 4-34 | Required metadata regarding one or more of the input collections. The attribute is used as an identifier for the collection. |  |  |  |
| Product    | exploitationfeaturesproducttype                       | Table 4-36<br>Figure 4-41 | Required metadata regarding the product.                                                                                     |  |  |  |

# 4.2.6.2 Overview and Parameter Definition: Collection

The collection parameter contains metadata from the input collections. This is different from the product parameters in that they contain metadata describing exploitation tasks which were calculated with regard to the derived product.



Figure 4-34 Collection Structure

|               | Table 4-28 Collection Parameter Definitions     |                              |                                                                                                                        |  |  |  |
|---------------|-------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter     | Туре                                            | Reference                    | Definition                                                                                                             |  |  |  |
| Information   | exploitationfeaturescollectioninformationtype   | Table 4-29<br>Figure<br>4-35 | Required parameter that contains general collection input information                                                  |  |  |  |
| Geometry      | exploitationfeaturescollectiongeometrytype      | Table 4-34<br>Figure<br>4-39 | Optional parameter provides key geometry parameters independent of the product processing.                             |  |  |  |
| Phenomenology | exploitationfeaturescollectionphenomenologytype | Table 4-35<br>Figure<br>4-40 | Optional parameter contains the different phenomenology related to both the geometry and the final product processing. |  |  |  |

## 4.2.6.3 Overview and Parameter Definition: Information



Figure 4-35 Information Structure

|                    | Table 4-29 <i>Information</i> Parameter Definitions |                           |                                                                                                                                                            |  |  |
|--------------------|-----------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter          | Туре                                                | Reference                 | Definition                                                                                                                                                 |  |  |
| SensorName         | stringtype                                          | Table 4-2                 | Required parameter used to identify the name of the sensor.                                                                                                |  |  |
| RadarMode          | radarmodetype                                       | Table 4-30<br>Figure 4-36 | Required parameter describing radar collection mode.                                                                                                       |  |  |
| CollectionDateTime | dateTimetype                                        | Table 4-2                 | Required parameter describing collection date and time defined in Coordinated Universal Time (UTC). The seconds should be followed by a Z to indicate UTC. |  |  |
| LocalDateTime      | dateTimetype                                        | Table 4-2                 | Optional parameter describing the date and time defined in local time.                                                                                     |  |  |
| CollectionDuration | doubletype                                          | Table 4-2                 | Required parameter describing the duration of the collection (units = s).                                                                                  |  |  |
| Resolution         | rangeazimuthtype                                    | Table 4-2                 | Required parameter containing the uniformly-weighted resolution (range and azimuth) processed in the slant plane.                                          |  |  |
| InputROI           | inputROItype                                        | Table 4-31<br>Figure 4-37 | Optional ROI (region of interest) parameter representing portion of input data used to make the derived product.                                           |  |  |
| Polarization       | neg180to180type                                     | Table 4-32                | Optional parameter describing the angle of receive polarization. Please refer to Section 7.3.1.                                                            |  |  |

## 4.2.6.4 Overview and Parameter Definition: RadarMode



Figure 4-36 RadarMode Structure

|           | Table 4-30 RadarMode Parameter Definitions |           |                                                                                                                                        |  |  |
|-----------|--------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter | Туре                                       | Reference | Definition                                                                                                                             |  |  |
| ModeType  | stringtype                                 | Table 4-2 | Required parameter referring to the collection type which is one of the following enumerations: SPOTLIGHT, STRIPMAP, DYNAMIC STRIPMAP. |  |  |
| ModeID    | stringtype                                 | Table 4-2 | Optional parameter used to represent system-specific mode identifiers.                                                                 |  |  |

## 4.2.6.5 Overview and Parameter Definition: InputROI

The InputROI parameter is used only when processing from SICD or the other input data has a parameter that lists the input region of interest.



Figure 4-37 InputROI Structure

|           | Table 4-31 InputROI Parameter Definitions |                  |                                                                                        |  |
|-----------|-------------------------------------------|------------------|----------------------------------------------------------------------------------------|--|
| Parameter | Туре                                      | Reference        | Definition                                                                             |  |
| Size      | rowcolinttype                             | Section 4.1.4.11 | Required parameter describing the number of rows and columns extracted from the input. |  |
| UpperLeft | rowcolinttype                             | Section 4.1.4.11 | Required parameter describing the upper-left pixel extracted from the input.           |  |

## 4.2.6.6 Overview and Parameter Definition: Polarization



Figure 4-38 Polarization Structure

| Table 4-32 <i>Polarization</i> Parameter Definitions |                      |            |                                                                             |  |
|------------------------------------------------------|----------------------|------------|-----------------------------------------------------------------------------|--|
| Parameter                                            | Туре                 | Reference  | Definition                                                                  |  |
| TxPolarization                                       | polarizationty<br>pe | Table 4-33 | Polarization transmit type                                                  |  |
| RcvPolarization                                      | neg180to180t<br>ype  | Table 4-2  | Angle from transmit to receive polarization defined at center of aperature. |  |

| Table 4-33 Enumeration Types for <i>TxPolarization</i> |                         |  |
|--------------------------------------------------------|-------------------------|--|
| Enumeration Type                                       | Definition              |  |
| V                                                      | Vertical polarization   |  |
| Н                                                      | Horizontal polarization |  |

| Table 4-33 Enumeration Types for <i>TxPolarization</i> |                                    |  |  |
|--------------------------------------------------------|------------------------------------|--|--|
| Enumeration Type Definition                            |                                    |  |  |
| RHC                                                    | Right handed circular polarization |  |  |
| LHC                                                    | Left handed circular polarization  |  |  |
| OTHER Other type polarization                          |                                    |  |  |

# 4.2.6.7 Overview and Parameter Definition: Geometry



Figure 4-39 Geometry Structure

|           | Table 4-34 Geometry Parameter Definitions |           |                                                                                                                                                                                            |  |  |
|-----------|-------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter | Parameter Type Reference                  |           | Definition                                                                                                                                                                                 |  |  |
| Azimuth   | doubletype                                | Table 4-2 | Optional parameter describing the angle clockwise from north indicating the ETP line of sight vector. Refer to Section 7.4.1 for calculations.                                             |  |  |
| Slope     | zeroto90type                              | Table 4-2 | Optional parameter describing the angle between the ETP at scene center and the range vector perpendicular to the direction of motion (velocity). Refer to Section 7.4.2 for calculations. |  |  |
| Squint    | neg180to180type                           | Table 4-2 | Optional parameter describing the angle from the platform velocity vector. Left-look is negative, right-look is positive. Refer to Section 7.4.3 for calculations.                         |  |  |
| Graze     | zeroto90type                              | Table 4-2 | Optional parameter describing the angle between the ETP and the line of sight vector. Refer to Section 7.4.4 for calculations.                                                             |  |  |
| Tilt      | neg180to180type                           | Table 4-2 | Optional parameter describing the angle between the ETP and the cross range vector. Also known as the twist angle. Refer to Section 7.4.5 for calculations.                                |  |  |

# 4.2.6.8 Overview and Parameter Definition: Phenomenology



Figure 4-40 Phenomenology Structure

|           | Table 4-35 <i>Phenomenology</i> Parameter Definitions |             |                                                                                                                                                                                                                                                                       |  |
|-----------|-------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter | Туре                                                  | Reference   | Definition                                                                                                                                                                                                                                                            |  |
| Shadow    | anglemagnitudetype                                    | Figure 4-11 | Optional parameter describing the phenomenon where vertical objects occlude radar energy. Refer to Section 7.5.1 for calculations.                                                                                                                                    |  |
| Layover   | anglemagnitudetype                                    | Figure 4-11 | Optional parameter describing the phenomenon where vertical objects appear as ground objects with the same range/range rate. Refer to Section 7.5.2 for calculations.                                                                                                 |  |
| MultiPath | neg180to180type                                       | Table 4-2   | Optional parameter that is a range dependent phenomenon which describes the energy from a single scatter returned to the radar via more than one path and results in a nominally constant direction in ground plane imagery. Refer to Section 7.5.5 for calculations. |  |

|                          | Table 4-35 Phenomenology Parameter Definitions |           |                                                                                                                           |  |
|--------------------------|------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|--|
| Parameter Type Reference |                                                |           | Definition                                                                                                                |  |
| GroundTrack              | neg180to180type                                | Table 4-2 | Optional parameter that describes the angle from increasing row direction to the ground track at the center of the image. |  |

#### 4.2.6.9 Overview and Parameter Definition: Product



Figure 4-41 Product Structure

|            | Table 4-36 Product Parameter Definitions |                  |                                                                                                                                                     |  |
|------------|------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter  | Туре                                     | Reference        | Definition                                                                                                                                          |  |
| Resolution | rowcoldoubletype                         | Section 4.1.4.11 | Required parameter describing the uniformly-weighted resolution projected into the Earth Tangent Plane (ETP). Refer to Section 8 for calculations.  |  |
| North      | neg180to180type                          | Table 4-2        | Optional parameter describing the angle from increasing row direction to north at the center of the image. Refer to Section 7.5.3 for calculations. |  |

#### 4.2.7 ProductProcessing

The *ProductProcessing* grouping contains free parameters to allow the product developer to define product and implementation-specific parameters that describe the "algorithm-specific" processing done to create the detected image product.

The complex structures for the grouping are shown in Figure 4-42 through Figure 4-45.

## 4.2.7.1 Parameters and Complex Structures: ProductProcessing



Figure 4-42 ProcessingApplied Structure

| Table 4-37 ProcessingApplied Parameter Definitions |                       |                           |                                                                                                                          |  |
|----------------------------------------------------|-----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                          | Туре                  | Reference                 | Definition                                                                                                               |  |
| ProductProcessing                                  | productprocessingtype | Figure 4-42<br>Table 4-37 | Required processing module to track the name and any parameters associated with the algorithms used to produce the SIDD. |  |

## 4.2.7.2 Overview and Parameter Definition: *ProcessingModule*



Figure 4-43 ProcessingModule Structure

| Table 4-38 ProcessingModule Parameter Definitions |                      |                           |                                                                                                                                 |  |
|---------------------------------------------------|----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                         | Туре                 | Reference                 | Definition                                                                                                                      |  |
| ModuleName                                        | parametertype        | Table 4-2                 | Required parameter containing the name of the algorithm used in processing the product.                                         |  |
| ModuleParameter                                   | parametertype        | Table 4-2                 | Optional switch parameter associated with the algorithm used in the processing the product.                                     |  |
| ProcessingModule                                  | processingmoduletype | Figure 4-43<br>Table 4-38 | Optional switch parameter that is a repeatable structure within itself to create an algorithm as a subset of another algorithm. |  |

#### 4.2.8 DownstreamReprocessing

The optional *DownstreamReprocessing* grouping contains information about processing performed on a SIDD product by an exploitation tool. This grouping should not be included in the SIDD metadata during initial product creation; it will only be included when an ELT or other tool performs post-processing on a SIDD product. When any tool performs post-processing on a SIDD product, this grouping will be used by the tool to document the post-processing that occurred.

#### 4.2.8.1 Parameter and Complex Structures: DownstreamReprocessing



Figure 4-44 DownstreamReprocessing Structure

| Table 4-39 DownstreamReprocessing Parameter Definitions |                     |                           |                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------|---------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                               | Туре                | Reference                 | Definition                                                                                                                                                                                                                                                                                             |  |
| GeometricChip                                           | geometricchiptype   | Figure 4-45<br>Table 4-40 | Contains information related to downstream chipping of the product. There is only one instance, and the instance is updated with respect to the full image parameters. For example, if an image is chipped out of a smaller chip, the new chip needs to be updated to the original full image corners. |  |
| ProcessingEvent                                         | processingeventtype | Figure 4-46<br>Table 4-41 | Contains information related to downstream processing of the product.                                                                                                                                                                                                                                  |  |

#### 4.2.8.2 Overview and Parameter Definition: GeometricChip

The chipping metadata contains the relationship between chipped product's corner coordinates, and the original, full-image corner coordinates. Since this relationship is linear, bi-linear interpolation is sufficient to determine an arbitrary chip coordinate in terms of the original full image coordinates. Chipping is typically done using an exploitation tool, and should not be done in the initial product creation.



Figure 4-45 GeometricChip Structure

| Table 4-40 GeometricChip Parameter Definitions |                  |                |                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------|------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                      | Туре             | Reference      | Definition                                                                                                                                                                                                                                                                                                                       |  |
| ChipSize                                       | rowcolinttype    | Figure<br>4-12 | Specifies the size of the chipped product in pixels.                                                                                                                                                                                                                                                                             |  |
| OriginalUpperLeftCoordinate                    | rowcoldoubletype | Figure<br>4-12 | The OriginalUpperLeftCoordinate element describes the chipped image corner that is associated with the original upper left corner of the full image. The chipped image corner corresponds to {0,0} and the original upper left full image corner corresponds to {R <sub>1</sub> ,C <sub>1</sub> } in Figure 6-1.                 |  |
| OriginalUpperRightCoordinate                   | rowcoldoubletype | Figure<br>4-12 | The OriginalUpperRightCoordinate element describes the chipped image corner that is associated with the original upper right corner of the full image. The chipped image corner corresponds to {0,cCols-1} and the original upper right full image corner corresponds to {R2,C2} in Figure 6-1.                                  |  |
| OriginalLowerLeftCoordinate                    | rowcoldoubletype | Figure<br>4-12 | The OriginalLowerLeftCoordinate element describes the chipped image corner that is associated with the original lower left corner of the full image. The chipped image corner corresponds to {cRows-1, 0} and the original lower left full image corner corresponds to {R <sub>4</sub> ,C <sub>4</sub> } in Figure 6-1.          |  |
| OriginalLowerRightCoordinate                   | rowcoldoubletype | Figure<br>4-12 | The OriginalLowerRightCoordinate element describes the chipped image corner that is associated with the original lower right corner of the full image. The chipped image corner corresponds to {cRows-1, cCols-1} and the original lower right full image corner corresponds to {R <sub>3</sub> ,C <sub>3</sub> } in Figure 6-1. |  |

## 4.2.8.3 Overview and Parameter Definition: *ProcessingEvent*

Each time an exploitation tool performs post-processingan instance of the *ProcessingEvent* complex structure is added to the *ExploitationProcessing* grouping.



Figure 4-46 ProcessingEvent Structure

| Table 4-41 ProcessingEvent Parameter Definitions |               |           |                                                                                                                                               |  |
|--------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter Type Reference                         |               | Reference | Definition                                                                                                                                    |  |
| ApplicationName                                  | stringtype    | Table 4-2 | Require parameter used to describe the application (usually referring to specific exploitation tool and version) that applied a modification. |  |
| AppliedDateTime                                  | dateTimetype  | Table 4-2 | Required parameter used to describe the date at which the processing was applied.                                                             |  |
| InterpolationMethod                              | stringtype    | Table 4-2 | Optional parameter used to describe the type of interpolation applied to the data.                                                            |  |
| Descriptor                                       | parametertype | Table 3-2 | Optional descriptor for the processing event.                                                                                                 |  |

#### 4.2.9 ErrorStatistics

The optional *ErrorStatistics* grouping will be carried forward from the SICD metadata when available. In the case where there are multiple SICD inputs, the profile (see Section 1.4) will define which should be propagated from the SICD. The top level layout for this grouping can be seen in Figure 4-47. For more details, see the SICD Design & Exploitation Description Document referenced in Table 1-2 SICD Design Documentation.



Figure 4-47 ErrorStatistics Schema Layout

#### 4.2.10 Radiometric

The optional *Radiometric* is defined in the SICD specifications. All elements maps pixel intensities to the radiometric parameter. The top level layout for this grouping can be seen in Figure 4-48. For more details, see the SICD Design & Exploitation Description Document referenced in Table 1-2 SICD Design Documentation



Figure 4-48 Radiometric Schema Layout

# 5 Display Exploitation (TBD)

The purpose of this section is to describe how the SIDD metadata should be used to ensure proper visual display of a SIDD product. This section will be expanded upon as the metadata solution is finalized in future revisions.

# 6 User Exploitation

The purpose of this section is to describe basic operations that can be done to a SIDD product. The two user exploitation activities in this section describe a procedure for chipping a SIDD product and a procedure for generating an icon using the SIDD metadata.

#### 6.1.1 Chipping

The purpose of this section is to describe the procedure for relating a chipped image to its original full product SIDD. The chipping supports three linear operations; translation, rotation, and scaling. Once a chipping operation has been done, it is necessary to continuously map the newly formed chip coordinates to the full original image coordinates; this ensures that all capabilities on the original full image product are also supported on the chip image product. To enable the correct mapping, the coordinates of the chipped image product in terms of the original full image product coordinates must be recorded, see Table 4-40. For the purposes of chipping, all pixel coordinates refer to the center of the pixel.

Figure 6-1 shows a chipped product of chip size cRows and cCols relative to the full image product. The chip has been rotated, translated and scaled. The corners are recorded in full image coordinates as  $\{R_1,C_1\}$  through  $\{R_4,C_4\}$ , the corresponding chip coordinates are listed below these values. The chip coordinate  $\{r,c\}$  can be related to the original full image chip coordinate  $\{R,C\}$  through bi-linear interpolation.

The bi-linear interpolation method is developed for the rows below, it is then listed for both the rows and columns following Figure 6-1.

The unknown value, R, is estimated from the four known corner coordinates,  $R_1$  through  $R_4$ , the matrix form of bi-linear interpolation is below. The unknown value, C, is estimated in a similar manner.

$$R = \begin{bmatrix} 1 - u & u \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ R_4 & R_3 \end{bmatrix} \begin{bmatrix} 1 - v \\ v \end{bmatrix}$$
$$u, v \in [0,1]$$

The above equation can be re-written as:

$$R = R_1 + (R_4 - R_1)u + (R_2 - R_1)v + (R_1 + R_3 - R_2 - R_4)uv$$



Figure 6-1 Chipping Diagram

The steps for computing the original full image coordinates from the chipped product are outlined below.

Step 1: Normalize the chip coordinates

$$u \equiv \frac{r}{cRows - 1}, v \equiv \frac{c}{cCols - 1}$$

Step 2: Compute original full image row coordinate bi-linear coefficients

$$\begin{aligned} A_r &= R_1 \\ B_r &= R_4 - R_1 \\ D_r &= R_2 - R_1 \\ F_r &= R_1 + R_3 - R_2 - R_4 \end{aligned}$$

Step 3: Compute original full image column coordinate bi-linear coefficients

$$A_c = C_1$$
$$B_c = C_4 - C_1$$

$$D_c = C_2 - C_1$$

$$F_c = C_1 + C_3 - C_2 - C_4$$

Step 3: Compute the full image row and column coordinate

$$R = A_r + uB_r + vD_r + uvF_r$$

$$C = A_c + uB_c + vD_c + uvF_c$$

## 6.1.2 Legend Creation

The Advanced Exploitation grouping contains metadata to support the creation of a product legend or icon by an exploitation tool or by a user. An example application of a product icon is a layover and shadow icon, which indicates the orientation of a SAR image to the user.

# 7 ExploitationFeatures Calculations

The purpose of this section is to provide definitions for the angle metadata defined in the *AdvancedExploitation* grouping. In addition to the definitions, derivations are provided for each angle defined in the grouping.

The following Table 7-1 defines the variables used in the derivations. The following figures diagram the angles and variables defined in the Table 7-1.

| Table 7-1 Variables & Angles |                                                |                   |  |  |  |
|------------------------------|------------------------------------------------|-------------------|--|--|--|
| Variables                    | Variables Definitions                          |                   |  |  |  |
| Ψ                            | Grazing Angle                                  | Degrees           |  |  |  |
| Ψ0                           | Slope Angle                                    | Degrees           |  |  |  |
| φs                           | Doppler Cone Angle                             | Degrees           |  |  |  |
| $\phi_{g}$                   | Ground Plane Squint Angle                      | Degrees           |  |  |  |
| P <sub>a</sub>               | Antenna Position in ECEF coordinates           | Meters            |  |  |  |
| $\mathbf{V_a}$               | Antenna Velocity in ECEF coordinates           | Meters per second |  |  |  |
| P <sub>o</sub>               | Scene Center Point in ECEF coordinates         | Meters            |  |  |  |
| $\mathbf{Z}_{\mathrm{g}}$    | Earth Tangent Plane Normal in ECEF coordinates | Unitless          |  |  |  |
| ^                            | Indicates a vector of unit                     | N/A               |  |  |  |

| Table 7-1 Variables & Angles |                                                        |                 |  |  |  |
|------------------------------|--------------------------------------------------------|-----------------|--|--|--|
| Variables                    | Definitions                                            | Units           |  |  |  |
|                              | magnitude                                              |                 |  |  |  |
| φ                            | Latitude at Scene Center<br>Point                      | Decimal Degrees |  |  |  |
| λ                            | Longitude at Scene Center<br>Point                     | Decimal Degrees |  |  |  |
| r                            | Unit Vector in increasing rows, in ECEF coordinates    | Unitless        |  |  |  |
| c                            | Unit Vector in increasing columns, in ECEF coordinates | Unitless        |  |  |  |
| $\theta_{\mathrm{r}}$        | CCW rotation angle of output product                   | Degrees         |  |  |  |
| $ ho_{ m r,s}$               | Slant Plane resolution in the range direction          | Meters          |  |  |  |
| $ ho_{\mathrm{c,s}}$         | Slant Plane resolution in the azimuth direction        | Meters          |  |  |  |
| $ ho_{r,g}$                  | Ground Plane resolution in the row direction           | Meters          |  |  |  |
| $\rho_{c,g}$                 | Ground Plane resolution in the column direction        | Meters          |  |  |  |



**Figure 7-1 Three-Space Angle Definition Diagram** 

## 7.1 Slant Plane Definition

To simplify the derivations, it is necessary to define the slant plane. The slant plane is a plane that contains the radar line-of-sight vector and the instantaneous velocity vector. For convenience, the normal of this plane always points away from the earth.

$$\widehat{X}_{S} = \frac{P_{a} - P_{o}}{|P_{a} - P_{o}|}$$

$$\widehat{n} = \frac{\widehat{X}_{S} \times V_{a}}{\left|\widehat{X}_{S} \times V_{a}\right|}$$

$$\widehat{Z}_{S} = sgn(P_{o} \cdot \widehat{n})\widehat{n}$$

$$\widehat{Y}_{S} = \widehat{Z}_{S} \times \widehat{X}_{S}$$

## 7.1.1 Image Plane Defintion

The image plane normal is defined below.

$$z = r \times c$$

# 7.2 Image Angle

Image angles are measured counter-clockwise (CCW) from the first column of pixels, or increasing rows. This is off the  $\bf r$  vector toward the  $\bf c$  vector. The four quadrant arc-tangent function should be used throughout these computations.



Figure 7-2 Image Angle Diagram

#### 7.3 Information

This section contains the derivations for the angles contain in the *Information* grouping.

#### 7.3.1 Polarization Angle

The polarization angle is defined from the SICD PolarizationHVAnglePoly evaluated at the center of aperture reference time.

# 7.4 Geometry

This section contains the geometry parameters independent of product processing.

# 7.4.1 Azimuth Angle

The azimuth angle indicates the radar line-of-sight vector on the earth. This is angle is measured clockwise from north.

$$\widehat{E} = \widehat{N} \times \widehat{U}$$

$$\theta_A = \tan^{-1}(\widehat{E} \cdot \widehat{X}_s, \widehat{N} \cdot \widehat{X}_s)$$

#### 7.4.2 Slope Angle

Angle between the earth tangent plane (ETP) and range vector perpendicular to the direction of motion (sometimes referred to as the broadside grazing angle).

$$\psi_0 = \cos^{-1} \widehat{\mathbf{Z}}_s \cdot \widehat{\mathbf{Z}}_g$$

#### 7.4.3 Squint or Doppler Cone Angle

The Doppler Cone Angle is the angle off the velocity vector to the radar line-of-sight vector. The angle is sometimes referred to as the slant plane squint angle.

$$\phi_s = \cos^{-1} - \widehat{X}_s \cdot \widehat{V}_a$$

The ground plane squint angle is the angle off the velocity vector to the radar line-of-sight vector measured on the earth.

$$\widehat{Z}_{p} = \frac{P_{a}}{|P_{a}|}$$

$$X'_{s} = \widehat{X}_{s} - (\widehat{X}_{s} \cdot \widehat{Z}_{p})\widehat{Z}_{p}$$

$$V'_{a} = V_{a} - (V_{a} \cdot \widehat{Z}_{p})\widehat{Z}_{p}$$

$$\phi_{g} = \cos^{-1} - \widehat{X}'_{s} \cdot \widehat{V}'_{a}$$

## 7.4.4 Grazing Angle

The Grazing angle is the angle between the ETP and the line of sight vector.

$$\psi = \sin^{-1} \widehat{X}_s \cdot \widehat{Z}_g$$

## 7.4.5 Tilt Angle

The tilt angle (also known as the twist angle) is the angle between the ETP and the cross range vector.

$$\eta = \tan^{-1} \frac{\widehat{\mathbf{Z}}_g \cdot \widehat{\mathbf{Y}}_s}{\widehat{\mathbf{Z}}_g \cdot \widehat{\mathbf{Z}}_s}$$

# 7.5 Phenomenology

This section contains the phenomenology related to both the geometry and the final product processing.



Figure 7-3 Phenomenology Diagram

#### **7.5.1** Shadow

Shadow is an area in an image which is obscured by large vertical objects. The shadow vector derivation is shown below.

$$S = \widehat{Z}_g - \frac{\widehat{X}_s}{\widehat{X}_s \cdot \widehat{Z}_g}$$

$$S' = S - \frac{S \cdot \hat{z}}{\hat{Z}_S \cdot \hat{z}} \hat{Z}_S$$

$$\theta_S = \tan^{-1}(\boldsymbol{c} \cdot \boldsymbol{S}', \boldsymbol{r} \cdot \boldsymbol{S}')$$

The shadow magnitude is then

$$S = \sqrt{S' \cdot S'}$$

## 7.5.2 Layover

Layover is the phenomenon in which vertical objects appear as ground objects with same range/range-rate. The layover vector derivation is shown below. It assumes that the range/range-rate circles are nominally linear over the length of the ambiguity.

$$L = \hat{\mathbf{z}} - \frac{\widehat{\mathbf{Z}}_s}{\widehat{\mathbf{Z}}_s \cdot \widehat{\mathbf{z}}}$$

$$\theta_L = \tan^{-1}(\boldsymbol{c} \cdot \boldsymbol{L}, \boldsymbol{r} \cdot \boldsymbol{L})$$

The layover magnitude is then

$$L = \sqrt{\boldsymbol{L} \cdot \boldsymbol{L}}$$

#### 7.5.3 North Direction

The north direction points toward the north pole and is defined at the scene center point. The computation is shown below.

$$\widehat{\mathbf{N}} = \begin{bmatrix} -\sin\varphi\cos\lambda \\ -\sin\varphi\sin\lambda \\ \cos\varphi \end{bmatrix}$$

$$N' = N - \frac{N \cdot \hat{z}}{\widehat{Z}_s \cdot \hat{z}} \widehat{Z}_s$$

$$\theta_N = \tan^{-1}(\boldsymbol{c} \cdot \boldsymbol{N}', \boldsymbol{r} \cdot \boldsymbol{N}')$$

#### 7.5.4 Up Direction

The up direction, also referred to as  $\mathbf{Z}_g$  or ETP is tangent to the WGS84 ellipsoid model at the scene center point. The computation is shown below.

$$\widehat{\mathbf{Z}}_{g} = \mathbf{U} = \begin{bmatrix} \cos \varphi \cos \lambda \\ \cos \varphi \sin \lambda \\ \sin \varphi \end{bmatrix}$$

#### 7.5.5 Multi-Path

Multi-path, or multi-bounce, is a phenomenon in which energy from a single scatter returns to the radar via more than one path. This is a range dependent phenomenon and results in a nominally constant direction in the image plane.

The multi-path vector is computed below

$$M = \widehat{X}_s - \frac{\widehat{X}_s \cdot \widehat{z}}{\widehat{Z}_s \cdot \widehat{z}} \widehat{Z}_s$$

The multi-path angle is computed in the standard fashion.

$$\theta_M = \tan^{-1}(\mathbf{c} \cdot \mathbf{M}, \mathbf{r} \cdot \mathbf{M})$$

#### 7.5.6 Ground Track (Image Track) Angle

The image track angle is the projection of the velocity vector into the image plane.

$$T = V_a - (V_a \cdot \hat{z})\hat{z}$$

$$\theta_T = \tan^{-1}(\boldsymbol{c} \cdot \boldsymbol{T}, \boldsymbol{r} \cdot \boldsymbol{T})$$

# 8 Product Resolution

Ground plane resolutions are defined in the row and column directions and can be computed from the slant plane resolutions and collection geometry.

Ground plane resolutions are defined in the row and column directions and can be computed from the slant plane resolutions and collection geometry.

$$\rho_{r,g} = \sqrt{\kappa_{r1}\rho_{r,s}^{2} + \kappa_{r2}\rho_{c,s}^{2}}$$

$$\rho_{c,g} = \sqrt{\kappa_{c1}\rho_{r,s}^{2} + \kappa_{c2}\rho_{c,s}^{2}}$$

Where

$$\begin{split} \kappa_{r1} &= \cos^2\theta_r \sec^2\psi + (\sin^2\theta_r \tan\psi \tan\eta - \sin2\theta_r \sec\psi) \tan\psi \tan\eta \\ \kappa_{r2} &= \sin^2\theta_r \sec^2\eta \\ \kappa_{c1} &= (\sin^2\theta_r \sec\psi - \sin2\theta_r \tan\psi \tan\eta) \sec\psi + \cos^2\theta_r \tan^2\psi \tan^2\eta \\ \kappa_{c2} &= \cos^2\theta_r \sec^2\eta \end{split}$$

The rotation angle is defined below:

$$\begin{aligned} \boldsymbol{X}_g &= \widehat{\boldsymbol{X}}_s - \big(\widehat{\boldsymbol{X}}_s \cdot \widehat{\boldsymbol{z}}\big)\widehat{\boldsymbol{z}} \\ \theta_r &= -\tan^{-1} \big(\boldsymbol{c} \cdot \boldsymbol{X}_g, \boldsymbol{r} \cdot \boldsymbol{X}_g\big) \end{aligned}$$

# 9 Acronym List

| Table 9-1 Coordinate System Pixel Grid Acronyms |                                              |
|-------------------------------------------------|----------------------------------------------|
| Acronym                                         | Definition                                   |
| DRA                                             | Dynamic Remap Adjustment                     |
| D&E                                             | Design and Exploitation Description Document |
| ECEF                                            | Earth Centered, Earth Fixed Coordinate       |
| EGD                                             | ECEF Gridded Display                         |
| ETP                                             | Earth Tangent Plane                          |
| GGD                                             | Geodetic Gridded Display                     |
| ROI                                             | Region of Interest                           |
| RRDS                                            | Reduced Resolution Datasets                  |
| SAR                                             | Synthetic Aperture Radar                     |
| SICD                                            | Sensor Independent Complex Data              |
| SIDD                                            | Sensor Independent Derived Data              |
| SIPS                                            | Softcopy Image Processing Standard           |
| UTC                                             | Universal Time Coordinate                    |
| XML                                             | eXtensible Markup Language                   |