

Report No: CCIS15110088103

FCC REPORT

(WIFI)

Applicant: Grand Electronics, INC

Address of Applicant: 11650 Brentcross Dr Tomball, TX 77377, United States

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: N10PLUS, N10p, N11plus, N11, N1-Octa

Trade mark: NeuTab

FCC ID: 2AGNKN10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Nov., 2015

Date of Test: 12 Nov., to 15 Dec., 2015

Date of report issued: 15 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	15 Dec., 2015	Original

Tested by: Steven Liu Date: 15 Dec., 2015

Test Engineer

Reviewed by: Date: 15 Dec., 2015

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4		ST SUMMARY	
5		NERAL INFORMATION	
ວ	GEN	NEKAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.	1 Conducted Emission Method	32
	6.6.2	2 Radiated Emission Method	35
	6.7	Spurious Emission	
	6.7.	1 Conducted Emission Method	52
	6.7.2	2 Radiated Emission Method	59
7	TES	ST SETUP PHOTO	67
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Grand Electronics, INC
Address of Applicant:	11650 Brentcross Dr Tomball, TX 77377, United States
Manufacturer:	GRAND ELECTRI-TECH GLOBAL TRADING LIMITED
Address of Manufacturer:	UNIT 04, 7/F, BRIGHT WAY TOWER, NO. 33 MONG KOK ROAD, KOWLOON, HK.
Factory:	Shenzhen KAY HOLINESS technology limited.
Address of Factory:	3F 2 building Dadan industrial Jihua road Bantian Linggang District ShenZhen

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	N10PLUS, N10p, N11plus, N11, N1-Octa
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
AC adapter:	Model: HT-001-050200 Input:100-240V AC, 50/60Hz Output:5V DC MAX 2000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-4000mAh
Remark:	Item No.: N10PLUS, N10p, N11plus, N11, N1-Octa were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz	lz		

Operation Frequency each of channel For 802.11n(H40)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15110088103

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.5 dBi.

6.2 Conducted Emission

0.2 Oondacted Emiss	Conducted Limbsion					
Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguera (MIII-)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), which prov 500hm/50uH coupling impedance for the measuring equipm The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling imped with 500hm termination. (Please refer to the block diagram of test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relationship of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.6 for details	3				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Passed					
	·	<u> </u>				

Measurement Data

Neutral:

Trace: 65

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition EUT

: Tablet : N10PLUS Model Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: STEVEN
Remark: Test Mode : WIFI mode

(emark									
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark	
	MHz	dBu∇	<u>dB</u>		dBu∀	dBu√	<u>dB</u>		
1	0.155	45.64	0.25	10.78	56.67	65.74	-9.07	QP	
2	0.165	29.15	0.25	10.77	40.17	55.21	-15.04	Average	
3	0.205	41.27	0.25	10.76	52.28	63.40	-11.12	QP	
2 3 4 5 6 7 8 9	0.205	26.35	0.25	10.76	37.36	53.40	-16.04	Average	
5	0.264	20.59	0.26	10.75	31.60	51.29	-19.69	Average	
6	0.280	36.17	0.26	10.74	47.17	60.81	-13.64	QP	
7	0.336	33.36	0.26	10.73	44.35	59.31	-14.96	QP	
8	0.396	35.96	0.25	10.72	46.93	57.95	-11.02	QP	
9	0.396	20.09	0.25	10.72	31.06	47.95	-16.89	Average	
10	0.459	33.50	0.28	10.75	44.53	56.71	-12.18	QP	
11	0.499	16.62	0.29	10.76	27.67	46.01	-18.34	Average	
12	0.735	15.90	0.19	10.79	26.88	46.00	-19.12	Average	

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT Tablet : N1OPLUS Model Test Mode : WIFI mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: STEVEN

Remark

NOMAL R	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∀	₫B		
1	0.155	43.75	0.27	10.78	54.80	65.74	-10.94	QP	
2	0.155	25.04	0.27	10.78	36.09	55.74	-19.65	Average	
3	0.165	24.35	0.27	10.77	35.39	55.21	-19.82	Average	
4	0.175	24.29	0.27	10.77	35.33	54.72	-19.39	Average	
1 2 3 4 5 6 7 8 9	0.180	43.63	0.28	10.77	54.68	64.50	-9.82	QP	
6	0.190	42.47	0.28	10.76	53.51	64.02	-10.51	QP	
7	0.190	24.18	0.28	10.76	35.22	54.02	-18.80	Average	
8	0.205	39.11	0.28	10.76	50.15	63.40	-13.25	QP	
9	0.211	20.05	0.28	10.76	31.09	53.18	-22.09	Average	
10	0.235	38.57	0.27	10.75	49.59	62.26	-12.67	QP	
11	0.235	19.33	0.27	10.75	30.35	52.26	-21.91	Average	
12	0.459	35.08	0.29	10.75	46.12	56.71	-10.59	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Ma	ximum Conduct	Limit(dBm)	Result		
	802.11b	2.11b 802.11g 802.11n(H20) 802.11n(H40)				Nesuit
Lowest	15.36	13.22	12.03	10.50		
Middle	15.34	13.15	12.17	10.36	30.00	Pass
Highest	15.55	13.07	11.84	10.36		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Span 40 MHz

13.15 dBm

Center 2.437 GHz

Tx Channel

Bandwidth

*RBW 1 MHz Marker 1 [T1] *VBW 3 MHz 2.67 dBm 20 dBm SWT 2.5 ms 2.440120000 GHz * Att 30 dB Offset 0.5 10 Α -10 -20 LVL 40. -50 3DB 70 AC

4 MHz/

Power

20 MHz

Lowest channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1031011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	resuit
Lowest	10.24	16.64	17.76	36.64		
Middle	10.24	16.64	17.76	36.48	>500	Pass
Highest	10.24	16.56	17.76	36.64		

Test CH		99% Occupy	Limit(kHz)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiiii(Ki iz)	Nesuit
Lowest	15.04	16.64	17.68	36.16		
Middle	15.12	16.56	17.76	36.16	N/A	N/A
Highest	15.04	16.64	17.76	36.16		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 20.NOV.2015 16:18:40

Lowest channel

Date: 20.NOV.2015 16:20:04

Middle channel

Date: 20.NOV.2015 16:22:22

Highest channel

Date: 20.NOV.2015 16:24:32

Lowest channel

Date: 20.NOV.2015 16:25:47

Middle channel

Date: 20.NOV.2015 16:28:38

Highest channel

Test mode: 802.11n(H20)

Date: 20.NOV.2015 16:30:40

Lowest channel

Date: 20.NOV.2015 16:31:57

Middle channel

Date: 20.NOV.2015 16:33:14

Highest channel

Test mode: 802.11n(H40)

Date: 20.NOV.2015 16:34:52

Lowest channel

Date: 20.NOV.2015 16:36:02

Middle channel

Date: 20.NOV.2015 16:37:16

Highest channel

99% OBW

Test mode: 802.11b

Date: 20.NOV.2015 16:41:34

Lowest channel

Date: 20.NOV.2015 16:42:12

Middle channel

Date: 20.NOV.2015 16:42:45

Highest channel

Date: 20.NOV.2015 16:43:42

Lowest channel

Date: 20.NOV.2015 16:44:13

Middle channel

Date: 20.NOV.2015 16:44:42

Highest channel

Test mode: 802.11n(H20)

Date: 20.NOV.2015 16:45:30

Lowest channel

Date: 20.NOV.2015 16:46:08

Middle channel

Date: 20.NOV.2015 16:46:57

Highest channel

Test mode: 802.11n(H40)

Date: 20.NOV.2015 16:47:33

Lowest channel

Date: 20.NOV.2015 16:48:12

Middle channel

Date: 20.NOV.2015 16:48:48

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	5.20	-0.38	-1.31	-5.16		
Middle	5.44	-0.67	-1.40	-5.06	8.00	Pass
Highest	4.99	-0.79	-1.41	-5.30		

Test plot as follows:

Date: 20.NOV.2015 16:51:20

Lowest channel

Date: 20.NOV.2015 16:52:35

Middle channel

Date: 20.NOV.2015 16:54:00

Highest channel

Date: 20.NOV.2015 16:55:06

Lowest channel

Date: 20.NOV.2015 16:55:48

Middle channel

Date: 20.NOV.2015 16:56:20

Highest channel

Test mode: 802.11n(H20)

Date: 20.NOV.2015 16:57:15

Lowest channel

Date: 20.NOV.2015 16:57:51

Middle channel

Date: 20.NOV.2015 16:58:26

Highest channel

Test mode: 802.11n(H40)

Date: 20.NOV.2015 16:59:08

Lowest channel

Date: 20.NOV.2015 16:59:47

Middle channel

Date: 20.NOV.2015 17:00:16

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 23.NOV.2015 07:57:01

Lowest channel

Date: 23.NOV.2015 08:00:59

Highest channel

802.11g

Date: 23.NOV.2015 08:04:24

Lowest channel

Date: 23.NOV.2015 08:07:08

Highest channel

802.11n(H20)

Date: 23.NOV.2015 08:10:39

Lowest channel

Date: 23.Nov.2015 08:13:30 Highest channel

802.11n(H40)

Date: 23.NOV.2015 08:16:37

Lowest channel

Date: 23.NOV.2015 08:20:47

Highest channel

6.6.2 Radiated Emission Method

	Nadiated Lillission Method									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz Measurement Distance: 3m								
	Test site:									
	Receiver setup:									
		Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Limeit		RMS	1MHz	3MHz	Average Value				
	Limit:	Frequency		Limit (dBuV/	/m @3m)	Remark				
				54.00		Average Value				
		Above 1	Peak Value e 0.8 meters above							
	Test setup:	 the ground at a 3 meter camber. The table was rotated 360 to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-rece antenna, which was mounted on the top of a variable-height tower. The antenna height is varied from one meter to four meters the ground to determine the maximum value of the field stre Both horizontal and vertical polarizations of the antenna are make the measurement. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 met meters and the rota table was turned from 0 degrees to 360 to find the maximum reading. The test-receiver system was set to Peak Detect Function a Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB low the limit specified, then testing could be stopped and the pe of the EUT would be reported. Otherwise the emissions that have 10dB margin would be re-tested one by one using peapeak or average method as specified and then reported in a sheet. 								
		Antenna Tower AE EUT Ground Reference Plane Test Receiver Controller								
	Test Instruments:	Refer to section 5.6 for details								
	Test mode:	Refer to section 5.3 for details								
	Test results:	Passed								
		-	•	•	-					

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet EUT : N1OPLUS Model Test mode : B-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: STEVEN REMARK

UT.	un :								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀			<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	18.91	27.58	6.63	0.00	53.12	74.00	-20.88	Peak
	2390.000	7.49	27.58	6.63	0.00	41.70	54.00	-12.30	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT . MIUPLUS
lest mode : B-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: STEVEN
REMARK : : N1OPLUS Model

Huni:55%

			Ant enna				Limit		D 1	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
_	MHz	dBu₹	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000	19.29	27.58	6.63	0.00	53.50	74.00	-20.50	Peak	
)	2390.000	7.90	27.58	6.63	0.00	42.11	54.00	-11.89	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Tablet Model : N10PLUS Test mode : B-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: STEVEN

Huni:55%

REMARK

		Antenna Factor					Remark	
MHz	dBu₹	$-\overline{dB}/\overline{m}$	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
2483.500 2483.500			0.00 0.00					

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Tablet EUT Model : N10PLUS Test mode : B-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: STEVEN REMARK :

ILWI /	n :									
			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
Ĺ	2483.500	20.04	27.52	6.85	0.00	54.41	74.00	-19.59	Peak	
2	2483, 500	8, 03	27, 52	6, 85	0.00	42.40	54,00	-11.60	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet EUT Model : N10PLUS Test mode : G-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: STEVEN

REMARK

	Freq		Antenna Factor						Remark
	MHz	dBu∇	dB/m	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Site Condition

EUT : Tablet Model : N1OPLUS Test mode : G-L mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: STEVEN

Huni:55%

REMARK

F	req	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
			27.58 27.58	F1505000					Peak Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet : N1OPLUS Model Test mode : G-H mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: STEVEN REMARK

n	An .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m		<u>ab</u>	dBuV/m	dBu∀/m	<u>dB</u>	
	2483.500	20.49	27.52	6.85	0.00	54.86	74.00	-19.14	Peak
	2483 500	7 27	27 52	6 85	0.00	42 24	54 00	-11 76	Amerade

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Tablet Model : N10PLUS Test mode : G-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: STEVEN REMARK :

ייייי	1000	Antenna Factor			Remark
	MHz	 	 	 dBuV/m	
	2483.500 2483.500			74.00 54.00	Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet_ Condition

EUT : N1OPLUS Model Test mode : N20-L mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: STEVEN REMARK:

Huni:55%

ыши			Antenna Factor						
-	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 +
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Tablet Model : N10PLUS Test mode : N20-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: STEVEN

REMARK

	Read	Ant enna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∀		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
2390,000	20.70	27.58	6.63	0.00	54.91	74.00	-19.09	Peak	
2390.000	7.89	27.58	6.63	0.00	42.10	54.00	-11.90	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet : N10PLUS Model Test mode : N20-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: STEVEN
REMARK

 •	Read	Antenna	Cable	Preamo		Limit	Over		
Freq		Factor							
MHz	dBu₹			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
2483.500		70 (5 (7 (0 7 (0 7 (0 7))		0.00					
2483.500	7.83	27.52	6.85	0.00	42.20	54.00	-11.80	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model : N10PLUS Test mode : N20-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: STEVEN

REMARK

 	Read	Ant enna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∀			<u>ab</u>	dBuV/m	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>		
2483, 500 2483, 500									

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Tablet EUT : N1OPLUS Model Test mode : N40-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: STEVEN

REMARK

ш.			Antenna Factor						
	MHz	dBu∇	— <u>d</u> B/m		<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000			6.63 6.63		53.11 41.94			

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT : N1OPLUS Model Test mode : N40-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C
Test Engineer: STEVEN
REMARK : Huni:55%

Freq		Antenna Factor							
MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
2390.000 2390.000				0.00 0.00				Peak Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT Model : N1OPLUS Test mode : N40-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: STEVEN
REMARK :

Huni:55%

INTERNIT	1 :									
	Free		Antenna Factor							
	rred	rever	ractor	F022	ractor	PEACT	Line	LIMIT	Kemark	
-	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B		
1	2483.500	21.50	27.52	6.85	0.00	55.87	74.00	-18.13	Peak	
2	2483.500	7.91	27.52	6.85	0.00	42.28	54.00	-11.72	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT : N10PLUS Model Test mode : N40-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: STEVEN

REMARK

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 19.NOV.2015 22:04:32

30MHz~25GHz

Middle channel

Date: 19.NOV.2015 22:05:36

30MHz~25GHz

Date: 19.NOV.2015 22:07:17

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 19.NOV.2015 22:08:34

30MHz~25GHz

Middle channel

Date: 19.NOV.2015 22:09:35

30MHz~25GHz

Highest channel

Date: 19.NOV.2015 22:10:41

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 19.NOV.2015 22:12:43

30MHz~25GHz

Middle channel

Date: 19.NOV.2015 22:20:35

30MHz~25GHz

Highest channel

Date: 19.NOV.2015 22:21:45

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 19.NOV.2015 22:22:45

30MHz~25GHz

Middle channel

Date: 19.NOV.2015 22:23:37

30MHz~25GHz

Highest channel

Date: 19.NOV.2015 23:14:12

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5					
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement [Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	RMS	1MHz	3MHz	Average Value				
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark				
	30MHz-8		40.0)	Quasi-peak Value				
	88MHz-216MHz 43.5 Quasi-p								
	216MHz-960MHz 46.0 Quasi-pe 960MHz-1GHz 54.0 Quasi-pe								
	960MHz-	1GHz		Quasi-peak Value					
	Above 1	GH ₇	54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground degrees to antenna, we tower. 3. The anten the ground Both horiz make the reach so case and to find the specified I for the emister of the EUT have 10dE	d at a 3 meters determine the was set 3 meters which was more and height is was more and height is was measurement and the rota tab maximum respected embers and width with sion level of the rota tab maximum respected to the r	r chamber. The position of the position of the position of the ters away from punted on the formal of the maximum tical polarization. The EU na was turned ading. In was set to Find the EUT in peatesting could be ported. Otherwood of the position of the ported. Otherwood of the position of the positi	e table was he highest in the interference of a varie meter to fund a value of the constant of the analysis of the enterference of the constant of the constan	radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Tablet : N1OPLUS Model Test mode : WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: STEVEN

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
=	MHz	−dBuV	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	109.796	47.80	12.25	1.04	29.46	31.63	43.50	-11.87	QP
2	128.113	57.18	9.22	1.18	29.34	38.24	43.50	-5.26	QP
3	133.151	60.07	8.67	1.21	29.31	40.64	43.50	-2.86	QP
4	146.374	61.64	8.23	1.30	29.24	41.93	43.50	-1.57	QP
5	229.293	52.77	11.62	1.53	28.65	37.27	46.00	-8.73	QP
6	245.090	54.21	12.08	1.60	28.57	39.32	46.00	-6.68	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Tablet EUT : N10PLUS Model Test mode: WIFI mode
Power Rating: AC120V/60Hz
Environment: Temp:25.5°C
Test Engineer: STEVEN
REMARK:

Huni:55%

	V. 700								
	Free		Antenna Factor					Over	
	rred	rever	ractor	LUSS	ractor	rever	LINE	LIMIT	Kemark
	MHz	dBu∜	dB/m		₫₿	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	66.499	52.63	10.02	0.76	29.75	33.66	40.00	-6.34	QP
1 2 3	81.212	55.45	8.98	0.86	29.63	35.66	40.00	-4.34	QP
3	94.098	53.20	12.67	0.93	29.55	37.25	43.50	-6.25	QP
4	103.806	58.25	12.78	0.99	29.50	42.52	43.50	-0.98	QP
5 6	139.851	59.39	8.19	1.26	29.27	39.57	43.50	-3.93	QP
6	226, 099	54, 60	11.46	1.51	28, 67	38, 90	46,00	-7.10	ΩP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4824.00	49.39	31.54	10.58	40.22	51.29	74.00	-22.71	Vertical	
4824.00	49.45	31.54	10.58	40.22	51.35	74.00	-22.65	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
100100	40.04	04.54	40.50	40.22	42.11	54.00	-11.89	Vertical	
4824.00	40.21	31.54	10.58	40.22	42.11	54.00	-11.09	verticai	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.25	31.57	10.64	40.15	49.31	74.00	-24.69	Vertical
4874.00	48.20	31.57	10.64	40.15	50.26	74.00	-23.74	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.77	31.57	10.64	40.15	41.83	54.00	-12.17	Vertical
4874.00	40.37	31.57	10.64	40.15	42.43	54.00	-11.57	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.05	31.61	10.70	40.08	50.28	74.00	-23.72	Vertical
4924.00	48.02	31.61	10.70	40.08	50.25	74.00	-23.75	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	40.12	31.61	10.70	40.08	42.35	54.00	-11.65	Vertical
4924.00	40.14	31.61	10.70	40.08	42.37	54.00	-11.63	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	47.62	31.54	10.58	40.22	49.52	74.00	-24.48	Vertical	
4824.00	48.02	31.54	10.58	40.22	49.92	74.00	-24.08	Horizontal	
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.06	31.54	10.58	40.22	40.96	54.00	-13.04	Vertical	
4824.00	40.31	31.54	10.58	40.22	42.21	54.00	-11.79	Horizontal	

Test mode: 80)2.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.83	31.57	10.64	40.15	49.89	74.00	-24.11	Vertical	
4874.00	47.58	31.57	10.64	40.15	49.64	74.00	-24.36	Horizontal	
Test mode: 80)2.11g		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.58	31.57	10.64	40.15	40.64	54.00	-13.36	Vertical	
4874.00	39.46	31.57	10.64	40.15	41.52	54.00	-12.48	Horizontal	

Test mode: 802.11g			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.26	31.61	10.70	40.08	50.49	74.00	-23.51	Vertical	
4924.00	49.19	31.61	10.70	40.08	51.42	74.00	-22.58	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	40.58	31.61	10.70	40.08	42.81	54.00	-11.19	Vertical	
4924.00	40.58	31.61	10.70	40.08	42.81	54.00	-11.19	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.61	31.54	10.58	40.22	50.51	74.00	-23.49	Vertical	
4824.00	48.01	31.54	10.58	40.22	49.91	74.00	-24.09	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.47	31.54	10.58	40.22	42.37	54.00	-11.63	Vertical	
4824.00	40.15	31.54	10.58	40.22	42.05	54.00	-11.95	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.98	31.57	10.64	40.15	49.04	74.00	-24.96	Vertical	
4874.00	47.57	31.57	10.64	40.15	49.63	74.00	-24.37	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.50	31.57	10.64	40.15	40.56	54.00	-13.44	Vertical	
4874.00	39.66	31.57	10.64	40.15	41.72	54.00	-12.28	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	47.51	31.61	10.70	40.08	49.74	74.00	-24.26	Vertical	
4924.00	47.79	31.61	10.70	40.08	50.02	74.00	-23.98	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.65	31.61	10.70	40.08	41.88	54.00	-12.12	Vertical	
4924.00	40.18	31.61	10.70	40.08	42.41	54.00	-11.59	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	47.55	31.55	10.61	40.19	49.52	74.00	-24.48	Vertical	
4844.00	47.85	31.55	10.61	40.19	49.82	74.00	-24.18	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	39.68	31.55	10.61	40.19	41.65	54.00	-12.35	Vertical	
4844.00	39.41	31.55	10.61	40.19	41.38	54.00	-12.62	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.99	31.57	10.64	40.15	49.05	74.00	-24.95	Vertical	
4874.00	47.80	31.57	10.64	40.15	49.86	74.00	-24.14	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.66	31.57	10.64	40.15	39.72	54.00	-14.28	Vertical	
4874.00	38.59	31.57	10.64	40.15	40.65	54.00	-13.35	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	46.91	31.59	10.67	40.10	49.07	74.00	-24.93	Vertical	
4904.00	47.28	31.59	10.67	40.10	49.44	74.00	-24.56	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	38.68	31.59	10.67	40.10	40.84	54.00	-13.16	Vertical	
4904.00	39.68	31.59	10.67	40.10	41.84	54.00	-12.16	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.