- **24.** Write each of these statements in the form "if p, then q" in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
 - a) I will remember to send you the address only if you send me an e-mail message.
 - b) To be a citizen of this country, it is sufficient that you were born in the United States.
 - c) If you keep your textbook, it will be a useful reference in your future courses.
 - d) The Red Wings will win the Stanley Cup if their goalie plays well.
 - e) That you get the job implies that you had the best credentials.
 - **f**) The beach erodes whenever there is a storm.
 - g) It is necessary to have a valid password to log on to the server.
 - h) You will reach the summit unless you begin your climb too late.
- **25.** Write each of these propositions in the form "p if and only if q" in English.
 - a) If it is hot outside you buy an ice cream cone, and if you buy an ice cream cone it is hot outside.
 - b) For you to win the contest it is necessary and sufficient that you have the only winning ticket.
 - c) You get promoted only if you have connections, and you have connections only if you get promoted.
 - d) If you watch television your mind will decay, and conversely.
 - e) The trains run late on exactly those days when I take
- **26.** Write each of these propositions in the form "p if and only if q" in English.
 - a) For you to get an A in this course, it is necessary and sufficient that you learn how to solve discrete mathematics problems.
 - **b**) If you read the newspaper every day, you will be informed, and conversely.
 - c) It rains if it is a weekend day, and it is a weekend day
 - d) You can see the wizard only if the wizard is not in, and the wizard is not in only if you can see him.
- 27. State the converse, contrapositive, and inverse of each of these conditional statements.
 - a) If it snows today, I will ski tomorrow.
 - **b**) I come to class whenever there is going to be a quiz.
 - c) A positive integer is a prime only if it has no divisors other than 1 and itself
- 28. State the converse, contrapositive, and inverse of each of these conditional statements.
 - a) If it snows tonight, then I will stay at home.
 - **b**) I go to the beach whenever it is a sunny summer day.
 - c) When I stay up late, it is necessary that I sleep until
- 29. How many rows appear in a truth table for each of these compound propositions?
 - a) $p \rightarrow \neg p$
 - **b)** $(p \vee \neg r) \wedge (q \vee \neg s)$

- c) $q \lor p \lor \neg s \lor \neg r \lor \neg t \lor u$
- **d)** $(p \wedge r \wedge t) \leftrightarrow (q \wedge t)$
- 30. How many rows appear in a truth table for each of these compound propositions?
 - **a)** $(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$
 - **b)** $(p \vee \neg t) \wedge (p \vee \neg s)$
 - c) $(p \to r) \lor (\neg s \to \neg t) \lor (\neg u \to v)$
 - **d)** $(p \wedge r \wedge s) \vee (q \wedge t) \vee (r \wedge \neg t)$
- 31. Construct a truth table for each of these compound propositions.
 - a) $p \wedge \neg p$
- **b**) $p \vee \neg p$
- c) $(p \lor \neg q) \to q$
- **d)** $(p \lor q) \to (p \land q)$
- e) $(p \to q) \leftrightarrow (\neg q \to \neg p)$
- **f**) $(p \rightarrow q) \rightarrow (q \rightarrow p)$
- 32. Construct a truth table for each of these compound propositions.
 - a) $p \rightarrow \neg p$
- **b**) $p \leftrightarrow \neg p$
- c) $p \oplus (p \vee q)$
- **d)** $(p \land q) \rightarrow (p \lor q)$
- e) $(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
- **f**) $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
- 33. Construct a truth table for each of these compound propositions.
 - **a)** $(p \lor q) \to (p \oplus q)$
- **b)** $(p \oplus q) \rightarrow (p \land q)$
- c) $(p \lor q) \oplus (p \land q)$
- **d)** $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$
- e) $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$
- **f**) $(p \oplus q) \rightarrow (p \oplus \neg q)$
- 34. Construct a truth table for each of these compound propositions.
 - a) $p \oplus p$
- **b**) $p \oplus \neg p$
- c) $p \oplus \neg q$
- **d**) $\neg p \oplus \neg q$
- **e**) $(p \oplus q) \lor (p \oplus \neg q)$
- **f**) $(p \oplus q) \land (p \oplus \neg q)$
- 35. Construct a truth table for each of these compound propositions.
 - a) $p \rightarrow \neg q$
- **b**) $\neg p \leftrightarrow q$
- c) $(p \to q) \lor (\neg p \to q)$ d) $(p \to q) \land (\neg p \to q)$
- e) $(p \leftrightarrow q) \lor (\neg p \leftrightarrow q)$
- **f**) $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$
- 36. Construct a truth table for each of these compound propositions.
 - a) $(p \lor q) \lor r$
- **b**) $(p \vee q) \wedge r$
- c) $(p \wedge q) \vee r$
- **d)** $(p \wedge q) \wedge r$
- e) $(p \lor q) \land \neg r$
- **f**) $(p \wedge q) \vee \neg r$
- 37. Construct a truth table for each of these compound propositions.
 - **a**) $p \rightarrow (\neg q \lor r)$
 - **b**) $\neg p \rightarrow (q \rightarrow r)$
 - c) $(p \to q) \lor (\neg p \to r)$
 - **d)** $(p \rightarrow q) \land (\neg p \rightarrow r)$
 - e) $(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$
 - $\mathbf{f}) \ (\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$
- **38.** Construct a truth table for $((p \rightarrow q) \rightarrow r) \rightarrow s$.
- **39.** Construct a truth table for $(p \leftrightarrow q) \leftrightarrow (r \leftrightarrow s)$.

FIGURE 3 The circuit for $(p \lor \neg r) \land (\neg p \lor (q \lor \neg r))$.

Exercises

In Exercises 1-6, translate the given statement into propositional logic using the propositions provided.

- 1. You cannot edit a protected Wikipedia entry unless you are an administrator. Express your answer in terms of e: "You can edit a protected Wikipedia entry" and a: "You are an administrator."
- 2. You can see the movie only if you are over 18 years old or you have the permission of a parent. Express your answer in terms of m: "You can see the movie," e: "You are over 18 years old," and p: "You have the permission of a parent."
- 3. You can graduate only if you have completed the requirements of your major and you do not owe money to the university and you do not have an overdue library book. Express your answer in terms of g: "You can graduate," m: "You owe money to the university," r: "You have completed the requirements of your major," and b: "You have an overdue library book."
- 4. To use the wireless network in the airport you must pay the daily fee unless you are a subscriber to the service. Express your answer in terms of w: "You can use the wireless network in the airport," d: "You pay the daily fee," and s: "You are a subscriber to the service."
- 5. You are eligible to be President of the U.S.A. only if you are at least 35 years old, were born in the U.S.A, or at the time of your birth both of your parents were citizens, and you have lived at least 14 years in the country. Express your answer in terms of e: "You are eligible to be President of the U.S.A.," a: "You are at least 35 years old," b: "You were born in the U.S.A," p: "At the time of your birth, both of your parents where citizens," and r: "You have lived at least 14 years in the U.S.A.
- 6. You can upgrade your operating system only if you have a 32-bit processor running at 1 GHz or faster, at least 1 GB RAM, and 16 GB free hard disk space, or a 64bit processor running at 2 GHz or faster, at least 2 GB RAM, and at least 32 GB free hard disk space. Express you answer in terms of u: "You can upgrade your operating system," b_{32} : "You have a 32-bit processor," b_{64} :

"You have a 64-bit processor," g₁: "Your processor runs at 1 GHz or faster," g2: "Your processor runs at 2 GHz or faster," r_1 : "Your processor has at least 1 GB RAM," r_2 : "Your processor has at least 2 GB RAM," h_{16} : "You have at least 16 GB free hard disk space," and h_{32} : "You have at least 32 GB free hard disk space."

- 7. Express these system specifications using the propositions p "The message is scanned for viruses" and q "The message was sent from an unknown system" together with logical connectives (including negations).
 - a) "The message is scanned for viruses whenever the message was sent from an unknown system."
 - b) "The message was sent from an unknown system but it was not scanned for viruses."
 - c) "It is necessary to scan the message for viruses whenever it was sent from an unknown system."
 - d) "When a message is not sent from an unknown system it is not scanned for viruses."
- 8. Express these system specifications using the propositions p "The user enters a valid password," q "Access is granted," and r "The user has paid the subscription fee" and logical connectives (including negations).
 - a) "The user has paid the subscription fee, but does not enter a valid password."
 - **b**) "Access is granted whenever the user has paid the subscription fee and enters a valid password."
 - c) "Access is denied if the user has not paid the subscription fee."
 - "If the user has not entered a valid password but has paid the subscription fee, then access is granted."
- **9.** Are these system specifications consistent? "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, the kernel is functioning. The kernel is not functioning or the system is in interrupt mode. If the system is not in multiuser state, then it is in interrupt mode. The system is not in interrupt mode."

saw both Smith and Jones with Cooper the day of the killing and that either Smith or Jones must have killed him. Can you determine who the murderer was if

- a) one of the three men is guilty, the two innocent men are telling the truth, but the statements of the guilty man may or may not be true?
- b) innocent men do not lie?
- 33. Steve would like to determine the relative salaries of three coworkers using two facts. First, he knows that if Fred is not the highest paid of the three, then Janice is. Second, he knows that if Janice is not the lowest paid, then Maggie is paid the most. Is it possible to determine the relative salaries of Fred, Maggie, and Janice from what Steve knows? If so, who is paid the most and who the least? Explain your reasoning.
- 34. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known? Either Kevin or Heather, or both, are chatting. Either Randy or Vijay, but not both, are chatting. If Abby is chatting, so is Randy. Vijay and Kevin are either both chatting or neither is. If Heather is chatting, then so are Abby and Kevin. Explain your reasoning.
- 35. A detective has interviewed four witnesses to a crime. From the stories of the witnesses the detective has concluded that if the butler is telling the truth then so is the cook; the cook and the gardener cannot both be telling the truth; the gardener and the handyman are not both lying; and if the handyman is telling the truth then the cook is lying. For each of the four witnesses, can the detective determine whether that person is telling the truth or lying? Explain your reasoning.
- 36. Four friends have been identified as suspects for an unauthorized access into a computer system. They have made statements to the investigating authorities. Alice said "Carlos did it." John said "I did not do it." Carlos said "Diana did it." Diana said "Carlos lied when he said that I did it."
 - a) If the authorities also know that exactly one of the four suspects is telling the truth, who did it? Explain vour reasoning.
 - b) If the authorities also know that exactly one is lying, who did it? Explain your reasoning.
- 37. Suppose there are signs on the doors to two rooms. The sign on the first door reads "In this room there is a lady, and in the other one there is a tiger"; and the sign on the second door reads "In one of these rooms, there is a lady, and in one of them there is a tiger." Suppose that you know that one of these signs is true and the other is false. Behind which door is the lady?
- *38. Solve this famous logic puzzle, attributed to Albert Einstein, and known as the **zebra puzzle**. Five men with different nationalities and with different jobs live in consecutive houses on a street. These houses are painted different colors. The men have different pets and have different favorite drinks. Determine who owns a zebra and

- whose favorite drink is mineral water (which is one of the favorite drinks) given these clues: The Englishman lives in the red house. The Spaniard owns a dog. The Japanese man is a painter. The Italian drinks tea. The Norwegian lives in the first house on the left. The green house is immediately to the right of the white one. The photographer breeds snails. The diplomat lives in the yellow house. Milk is drunk in the middle house. The owner of the green house drinks coffee. The Norwegian's house is next to the blue one. The violinist drinks orange juice. The fox is in a house next to that of the physician. The horse is in a house next to that of the diplomat. [Hint: Make a table where the rows represent the men and columns represent the color of their houses, their jobs, their pets, and their favorite drinks and use logical reasoning to determine the correct entries in the table.]
- 39. Freedonia has fifty senators. Each senator is either honest or corrupt. Suppose you know that at least one of the Freedonian senators is honest and that, given any two Freedonian senators, at least one is corrupt. Based on these facts, can you determine how many Freedonian senators are honest and how many are corrupt? If so, what is the answer?

41. Find the output of each of these combinatorial circuits.

- **42.** Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $(p \land \neg r) \lor (\neg q \land r)$ from input bits p, q, and r.
- **43.** Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $((\neg p \lor \neg r) \land \neg q) \lor (\neg p \land (q \lor r))$ from input bits p, q, and r.

- c) Mei walks or takes the bus to class.
- **d**) Ibrahim is smart and hard working.
- 8. Use De Morgan's laws to find the negation of each of the following statements.
 - a) Kwame will take a job in industry or go to graduate school.
 - Yoshiko knows Java and calculus.
 - c) James is young and strong.
 - d) Rita will move to Oregon or Washington.
- 9. Show that each of these conditional statements is a tautology by using truth tables.
 - **a)** $(p \land q) \rightarrow p$
- **b)** $p \rightarrow (p \lor q)$
- c) $\neg p \rightarrow (p \rightarrow q)$ e) $\neg (p \rightarrow q) \rightarrow p$
- $\begin{array}{c}
 \mathbf{d}) \ (p \wedge q) \rightarrow (p \rightarrow q) \\
 \mathbf{f}) \ \neg (p \rightarrow q) \rightarrow \neg q
 \end{array}$

- 10. Show that each of these conditional statements is a tautology by using truth tables.

 - $\begin{array}{ll} \mathbf{a}) & [\neg p \wedge (p \vee q)] \rightarrow q \\ \mathbf{b}) & [(p \rightarrow q) \wedge (q \rightarrow r)] \rightarrow (p \rightarrow r) \\ \mathbf{c}) & [p \wedge (p \rightarrow q)] \rightarrow q \\ \mathbf{d}) & [(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow r)] \rightarrow r \end{array}$
 - 11. Show that each conditional statement in Exercise 9 is a tautology without using truth tables.
 - 12. Show that each conditional statement in Exercise 10 is a tautology without using truth tables.
 - **13.** Use truth tables to verify the absorption laws.
 - a) $p \lor (p \land q) \equiv p$
- **b)** $p \wedge (p \vee q) \equiv p$
- **14.** Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautol-
- **15.** Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautol-

Each of Exercises 16–28 asks you to show that two compound propositions are logically equivalent. To do this, either show that both sides are true, or that both sides are false, for exactly the same combinations of truth values of the propositional variables in these expressions (whichever is easier).

- **16.** Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent.
- 17. Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equiva-
- **18.** Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.
- **19.** Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.
- **20.** Show that $\neg(p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent.
- **21.** Show that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equiva-
- **22.** Show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.
- **23.** Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.
- **24.** Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- **25.** Show that $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent.
- **26.** Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.
- **27.** Show that $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are logically equivalent.
- **28.** Show that $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$ are logically equivalent.

- **29.** Show that $(p \to q) \land (q \to r) \to (p \to r)$ is a tautol-
- **30.** Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology.
 - **31.** Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.
 - **32.** Show that $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are not logically equivalent.
 - **33.** Show that $(p \to q) \to (r \to s)$ and $(p \to r) \to$ $(q \rightarrow s)$ are not logically equivalent.

The dual of a compound proposition that contains only the logical operators \vee , \wedge , and \neg is the compound proposition obtained by replacing each \vee by \wedge , each \wedge by \vee , each T by \mathbf{F} , and each \mathbf{F} by \mathbf{T} . The dual of s is denoted by s^* .

- **34.** Find the dual of each of these compound propositions.
 - a) $p \vee \neg q$
- **b)** $p \wedge (q \vee (r \wedge \mathbf{T}))$
- c) $(p \land \neg q) \lor (q \land \mathbf{F})$
- **35.** Find the dual of each of these compound propositions.
 - a) $p \wedge \neg q \wedge \neg r$
- **b)** $(p \wedge q \wedge r) \vee s$
- c) $(p \vee \mathbf{F}) \wedge (q \vee \mathbf{T})$
- **36.** When does $s^* = s$, where s is a compound proposition?
- **37.** Show that $(s^*)^* = s$ when s is a compound proposition.
- **38.** Show that the logical equivalences in Table 6, except for the double negation law, come in pairs, where each pair contains compound propositions that are duals of each other.
- **39. Why are the duals of two equivalent compound propositions also equivalent, where these compound propositions contain only the operators \land , \lor , and \neg ?
 - **40.** Find a compound proposition involving the propositional variables p, q, and r that is true when p and q are true and r is false, but is false otherwise. [Hint: Use a coniunction of each propositional variable or its negation.]
 - **41.** Find a compound proposition involving the propositional variables p, q, and r that is true when exactly two of p, q, and r are true and is false otherwise. [Hint: Form a disjunction of conjunctions. Include a conjunction for each combination of values for which the compound proposition is true. Each conjunction should include each of the three propositional variables or its negations.]
- 42. Suppose that a truth table in n propositional variables is specified. Show that a compound proposition with this truth table can be formed by taking the disjunction of conjunctions of the variables or their negations, with one conjunction included for each combination of values for which the compound proposition is true. The resulting compound proposition is said to be in disjunctive normal form.

A collection of logical operators is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only these logical opera-

43. Show that \neg , \wedge , and \vee form a functionally complete collection of logical operators. [Hint: Use the fact that every compound proposition is logically equivalent to one in disjunctive normal form, as shown in Exercise 42.]

Exercises

- **1.** Let P(x) denote the statement " $x \le 4$." What are these truth values?
 - **a)** P(0)
- **b)** P(4)
- **c**) *P*(6)
- **2.** Let P(x) be the statement "the word x contains the letter a." What are these truth values?
 - a) P(orange)
- **b)** P(lemon)
- c) P(true)
- **d)** P(false)
- **3.** Let Q(x, y) denote the statement "x is the capital of y." What are these truth values?
 - a) O(Denver, Colorado)
 - **b**) O(Detroit, Michigan)
 - c) O(Massachusetts, Boston)
 - **d)** O(New York, New York)
- **4.** State the value of x after the statement if P(x) then x := 1is executed, where P(x) is the statement "x > 1," if the value of x when this statement is reached is
 - **a)** x = 0.
- **b**) x = 1.
- c) x = 2.
- 5. Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.
 - a) $\exists x P(x)$
- **b**) $\forall x P(x)$
- c) $\exists x \neg P(x)$
- **d**) $\forall x \neg P(x)$
- **6.** Let N(x) be the statement "x has visited North Dakota," where the domain consists of the students in your school. Express each of these quantifications in English.
 - a) $\exists x N(x)$
- **b)** $\forall x N(x)$
- c) $\neg \exists x N(x)$

- **d**) $\exists x \neg N(x)$
- e) $\neg \forall x N(x)$
- f) $\forall x \neg N(x)$
- 7. Translate these statements into English, where C(x) is "xis a comedian" and F(x) is "x is funny" and the domain consists of all people.
 - a) $\forall x (C(x) \rightarrow F(x))$
- **b)** $\forall x (C(x) \land F(x))$
- c) $\exists x (C(x) \rightarrow F(x))$
- **d**) $\exists x (C(x) \land F(x))$
- **8.** Translate these statements into English, where R(x) is "x is a rabbit" and H(x) is "x hops" and the domain consists of all animals.
 - a) $\forall x (R(x) \rightarrow H(x))$
- **b)** $\forall x (R(x) \land H(x))$
- c) $\exists x (R(x) \rightarrow H(x))$
- **d**) $\exists x (R(x) \land H(x))$
- **9.** Let P(x) be the statement "x can speak Russian" and let Q(x) be the statement "x knows the computer language C++." Express each of these sentences in terms of P(x), Q(x), quantifiers, and logical connectives. The domain for quantifiers consists of all students at your school.
 - a) There is a student at your school who can speak Russian and who knows C++.
 - b) There is a student at your school who can speak Russian but who doesn't know C++.
 - c) Every student at your school either can speak Russian or knows C++.
 - d) No student at your school can speak Russian or knows C++.

- **10.** Let C(x) be the statement "x has a cat," let D(x) be the statement "x has a dog," and let F(x) be the statement "xhas a ferret." Express each of these statements in terms of C(x), D(x), F(x), quantifiers, and logical connectives. Let the domain consist of all students in your class.
 - a) A student in your class has a cat, a dog, and a ferret.
 - **b)** All students in your class have a cat, a dog, or a ferret.
 - Some student in your class has a cat and a ferret, but not a dog.
 - d) No student in your class has a cat, a dog, and a ferret.
 - e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.
- 11. Let P(x) be the statement " $x = x^2$." If the domain consists of the integers, what are these truth values?
 - **a)** P(0)
- **b)** P(1)
- c) P(2)

- **d**) P(-1)
- e) $\exists x P(x)$
- **f**) $\forall x P(x)$
- **12.** Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are these truth values?
 - **a)** Q(0)
- **b**) Q(-1)
- c) Q(1)

- **d**) $\exists x Q(x)$
- e) $\forall x Q(x)$
- \mathbf{f}) $\exists x \neg Q(x)$

- g) $\forall x \neg Q(x)$
- 13. Determine the truth value of each of these statements if the domain consists of all integers.
 - **a**) $\forall n(n+1 > n)$
- **b**) $\exists n(2n = 3n)$
- c) $\exists n(n = -n)$
- **d)** $\forall n (3n \leq 4n)$
- 14. Determine the truth value of each of these statements if the domain consists of all real numbers.
 - **a)** $\exists x (x^3 = -1)$
- **b)** $\exists x (x^4 < x^2)$
- c) $\forall x((-x)^2 = x^2)$
- **d)** $\forall x (2x > x)$
- **15.** Determine the truth value of each of these statements if the domain for all variables consists of all integers.
 - **a**) $\forall n(n^2 \ge 0)$
- **b**) $\exists n(n^2 = 2)$
- c) $\forall n(n^2 \ge n)$
- **d)** $\exists n(n^2 < 0)$
- **16.** Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - **a)** $\exists x (x^2 = 2)$
- **b**) $\exists x (x^2 = -1)$
- c) $\forall x(x^2 + 2 \ge 1)$
- **d**) $\forall x (x^2 \neq x)$
- 17. Suppose that the domain of the propositional function P(x) consists of the integers 0, 1, 2, 3, and 4. Write out each of these propositions using disjunctions, conjunctions, and negations.
 - a) $\exists x P(x)$
- **b**) $\forall x P(x)$
- c) $\exists x \neg P(x)$

- **d)** $\forall x \neg P(x)$
- e) $\neg \exists x P(x)$
- **f**) $\neg \forall x P(x)$
- **18.** Suppose that the domain of the propositional function P(x) consists of the integers -2, -1, 0, 1, and 2. Write out each of these propositions using disjunctions, conjunctions, and negations.
 - a) $\exists x P(x)$
- **b)** $\forall x P(x)$
- c) $\exists x \neg P(x)$

- **d**) $\forall x \neg P(x)$
- e) $\neg \exists x P(x)$
- **f**) $\neg \forall x P(x)$

- 32. Express each of these statements using quantifiers. Then form the negation of the statement so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that.")
 - a) All dogs have fleas.
 - **b)** There is a horse that can add.
 - c) Every koala can climb.
 - d) No monkey can speak French.
 - e) There exists a pig that can swim and catch fish.
- **33.** Express each of these statements using quantifiers. Then form the negation of the statement, so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that.")
 - a) Some old dogs can learn new tricks.
 - **b)** No rabbit knows calculus.
 - c) Every bird can fly.
 - **d**) There is no dog that can talk.
 - e) There is no one in this class who knows French and Russian.
- 34. Express the negation of these propositions using quantifiers, and then express the negation in English.
 - a) Some drivers do not obey the speed limit.
 - **b)** All Swedish movies are serious.
 - c) No one can keep a secret.
 - d) There is someone in this class who does not have a good attitude.
- **35.** Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 - **a**) $\forall x (x^2 \ge x)$
 - **b**) $\forall x (x > 0 \lor x < 0)$
 - c) $\forall x (x = 1)$
- **36.** Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.
 - a) $\forall x (x^2 \neq x)$
- **b**) $\forall x (x^2 \neq 2)$
- c) $\forall x(|x| > 0)$
- 37. Express each of these statements using predicates and quantifiers.
 - a) A passenger on an airline qualifies as an elite flyer if the passenger flies more than 25,000 miles in a year or takes more than 25 flights during that year.
 - b) A man qualifies for the marathon if his best previous time is less than 3 hours and a woman qualifies for the marathon if her best previous time is less than 3.5 hours.
 - c) A student must take at least 60 course hours, or at least 45 course hours and write a master's thesis, and receive a grade no lower than a B in all required courses, to receive a master's degree.
 - d) There is a student who has taken more than 21 credit hours in a semester and received all A's.

Exercises 38-42 deal with the translation between system specification and logical expressions involving quantifiers.

- **38.** Translate these system specifications into English where the predicate S(x, y) is "x is in state y" and where the domain for x and y consists of all systems and all possible states, respectively.
 - a) $\exists x S(x, \text{ open})$
 - **b)** $\forall x (S(x, \text{malfunctioning}) \lor S(x, \text{diagnostic}))$
 - c) $\exists x S(x, \text{ open}) \vee \exists x S(x, \text{ diagnostic})$
 - **d)** $\exists x \neg S(x, \text{available})$
 - e) $\forall x \neg S(x, \text{ working})$
- **39.** Translate these specifications into English where F(p) is "Printer p is out of service," B(p) is "Printer p is busy," L(j) is "Print job j is lost," and Q(j) is "Print job j is queued."
 - **a**) $\exists p(F(p) \land B(p)) \rightarrow \exists j L(j)$
 - **b**) $\forall p B(p) \rightarrow \exists j Q(j)$
 - c) $\exists j (Q(j) \land L(j)) \rightarrow \exists p F(p)$
 - **d)** $(\forall p B(p) \land \forall j Q(j)) \rightarrow \exists j L(j)$
- 40. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 - a) When there is less than 30 megabytes free on the hard disk, a warning message is sent to all users.
 - b) No directories in the file system can be opened and no files can be closed when system errors have been detected.
 - c) The file system cannot be backed up if there is a user currently logged on.
 - d) Video on demand can be delivered when there are at least 8 megabytes of memory available and the connection speed is at least 56 kilobits per second.
- 41. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 - a) At least one mail message, among the nonempty set of messages, can be saved if there is a disk with more than 10 kilobytes of free space.
 - **b)** Whenever there is an active alert, all queued messages are transmitted.
 - c) The diagnostic monitor tracks the status of all systems except the main console.
 - d) Each participant on the conference call whom the host of the call did not put on a special list was hilled
- 42. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 - a) Every user has access to an electronic mailbox.
 - b) The system mailbox can be accessed by everyone in the group if the file system is locked.
 - c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.
 - d) At least one router is functioning normally if the throughput is between 100 kbps and 500 kbps and the proxy server is not in diagnostic mode.

- c) The sum of the squares of two integers is greater than or equal to the square of their sum.
- The absolute value of the product of two integers is the product of their absolute values.
- 20. Express each of these statements using predicates, quantifiers, logical connectives, and mathematical operators where the domain consists of all integers.
 - a) The product of two negative integers is positive.
 - **b**) The average of two positive integers is positive.
 - c) The difference of two negative integers is not necessarily negative.
 - d) The absolute value of the sum of two integers does not exceed the sum of the absolute values of these
- 21. Use predicates, quantifiers, logical connectives, and mathematical operators to express the statement that every positive integer is the sum of the squares of four integers.
- 22. Use predicates, quantifiers, logical connectives, and mathematical operators to express the statement that there is a positive integer that is not the sum of three squares.
- 23. Express each of these mathematical statements using predicates, quantifiers, logical connectives, and mathematical operators.
 - a) The product of two negative real numbers is positive.
 - **b)** The difference of a real number and itself is zero.
 - c) Every positive real number has exactly two square
 - d) A negative real number does not have a square root that is a real number.
- 24. Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers.
 - a) $\exists x \forall y (x + y = y)$
 - **b**) $\forall x \forall y (((x \ge 0) \land (y < 0)) \rightarrow (x y > 0))$
 - **c)** $\exists x \exists y (((x \le 0) \land (y \le 0)) \land (x y > 0))$
 - **d**) $\forall x \forall y ((x \neq 0) \land (y \neq 0) \leftrightarrow (xy \neq 0))$
- 25. Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers.
 - a) $\exists x \forall y (xy = y)$
 - **b**) $\forall x \forall y (((x < 0) \land (y < 0)) \rightarrow (xy > 0))$
 - c) $\exists x \exists y ((x^2 > y) \land (x < y))$
 - **d**) $\forall x \forall y \exists z (x + y = z)$
- **26.** Let Q(x, y) be the statement "x + y = x y." If the domain for both variables consists of all integers, what are the truth values?
 - a) Q(1,1)
- **b)** Q(2,0)
- c) $\forall y Q(1, y)$
- **d**) $\exists x Q(x, 2)$
- e) $\exists x \exists y Q(x, y)$
- **f**) $\forall x \exists y Q(x, y)$
- **g**) $\exists y \forall x Q(x, y)$
- **h**) $\forall y \exists x Q(x, y)$
- i) $\forall x \forall y Q(x, y)$
- 27. Determine the truth value of each of these statements if the domain for all variables consists of all integers.
 - a) $\forall n \exists m (n^2 < m)$
- **b)** $\exists n \forall m (n < m^2)$
- c) $\forall n \exists m (n + m = 0)$
- **d)** $\exists n \forall m (nm = m)$

- $e) \ \exists n \exists m (n^2 + m^2 = 5)$ **f**) $\exists n \exists m (n^2 + m^2 = 6)$
- g) $\exists n \exists m (n + m = 4 \land n m = 1)$
- **h**) $\exists n \exists m (n+m=4 \land n-m=2)$
- i) $\forall n \forall m \exists p (p = (m+n)/2)$
- 28. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - a) $\forall x \exists y (x^2 = y)$
- **b)** $\forall x \exists y (x = y^2)$
- c) $\exists x \forall y (xy = 0)$
- **d)** $\exists x \exists y (x + y \neq y + x)$
- e) $\forall x (x \neq 0 \rightarrow \exists y (xy = 1))$
- f) $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$
- g) $\forall x \exists y (x + y = 1)$
- **h)** $\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$
- i) $\forall x \exists y (x + y = 2 \land 2x y = 1)$
- j) $\forall x \forall y \exists z (z = (x + y)/2)$
- **29.** Suppose the domain of the propositional function P(x, y)consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.
 - a) $\forall x \forall y P(x, y)$
- **b)** $\exists x \exists y P(x, y)$
- c) $\exists x \forall y P(x, y)$
- **d)** $\forall y \exists x P(x, y)$
- 30. Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).
 - **a)** $\neg \exists y \exists x P(x, y)$
- **b)** $\neg \forall x \exists y P(x, y)$
- c) $\neg \exists y (Q(y) \land \forall x \neg R(x, y))$
- **d**) $\neg \exists y (\exists x R(x, y) \lor \forall x S(x, y))$
- e) $\neg \exists y (\forall x \exists z T(x, y, z) \lor \exists x \forall z U(x, y, z))$
- 31. Express the negations of each of these statements so that all negation symbols immediately precede predicates.
 - a) $\forall x \exists y \forall z T(x, y, z)$
 - **b)** $\forall x \exists y P(x, y) \vee \forall x \exists y Q(x, y)$
 - c) $\forall x \exists y (P(x, y) \land \exists z R(x, y, z))$
 - **d)** $\forall x \exists y (P(x, y) \rightarrow Q(x, y))$
- **32.** Express the negations of each of these statements so that all negation symbols immediately precede predicates.
 - a) $\exists z \forall y \forall x T(x, y, z)$
 - **b)** $\exists x \exists y P(x, y) \land \forall x \forall y Q(x, y)$
 - c) $\exists x \exists y (Q(x, y) \leftrightarrow Q(y, x))$
 - **d)** $\forall y \exists x \exists z (T(x, y, z) \lor Q(x, y))$
- 33. Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).
 - a) $\neg \forall x \forall y P(x, y)$
- **b)** $\neg \forall y \exists x P(x, y)$
- c) $\neg \forall y \forall x (P(x, y) \lor Q(x, y))$
- **d**) $\neg (\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y))$
- e) $\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$
- **34.** Find a common domain for the variables x, y, and zfor which the statement $\forall x \forall y ((x \neq y) \rightarrow \forall z ((z = x) \lor x))$ (z = y)) is true and another domain for which it is false.
- **35.** Find a common domain for the variables x, y, z, and w for which the statement $\forall x \forall y \forall z \exists w ((w \neq x) \land$ $(w \neq y) \land (w \neq z)$) is true and another common domain for these variables for which it is false.

combines universal instantiation and modus tollens and can be expressed in the following way:

$$\forall x (P(x) \rightarrow Q(x))$$

 $\neg Q(a)$, where a is a particular element in the domain
 $\therefore \neg P(a)$

The verification of universal modus tollens is left as Exercise 25. Exercises 26–29 develop additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and determine whether it is valid. Can we conclude that the conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal. Socrates is human.

- ... Socrates is mortal.
- **2.** Find the argument form for the following argument and determine whether it is valid. Can we conclude that the conclusion is true if the premises are true?

If George does not have eight legs, then he is not a spider.

George is a spider.

- : George has eight legs.
- 3. What rule of inference is used in each of these arguments?
 - a) Alice is a mathematics major. Therefore, Alice is either a mathematics major or a computer science major.
 - b) Jerry is a mathematics major and a computer science major. Therefore, Jerry is a mathematics major.
 - c) If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
 - d) If it snows today, the university will close. The university is not closed today. Therefore, it did not snow today.
 - e) If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, if I go swimming, then I will sunburn.
- 4. What rule of inference is used in each of these arguments?
 - a) Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.
 - b) It is either hotter than 100 degrees today or the pollution is dangerous. It is less than 100 degrees outside today. Therefore, the pollution is dangerous.
 - c) Linda is an excellent swimmer. If Linda is an excellent swimmer, then she can work as a lifeguard. Therefore, Linda can work as a lifeguard.
 - d) Steve will work at a computer company this summer. Therefore, this summer Steve will work at a computer company or he will be a beach bum.

- e) If I work all night on this homework, then I can answer all the exercises. If I answer all the exercises, I will understand the material. Therefore, if I work all night on this homework, then I will understand the material.
- 5. Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."
- **6.** Use rules of inference to show that the hypotheses "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on," "If the sailing race is held, then the trophy will be awarded," and "The trophy was not awarded" imply the conclusion "It rained."
- 7. What rules of inference are used in this famous argument? "All men are mortal. Socrates is a man. Therefore, Socrates is mortal."
- 8. What rules of inference are used in this argument? "No man is an island. Manhattan is an island. Therefore, Manhattan is not a man."
- 9. For each of these collections of premises, what relevant conclusion or conclusions can be drawn? Explain the rules of inference used to obtain each conclusion from the premises.
 - a) "If I take the day off, it either rains or snows." "I took Tuesday off or I took Thursday off." "It was sunny on Tuesday." "It did not snow on Thursday."
 - b) "If I eat spicy foods, then I have strange dreams." "I have strange dreams if there is thunder while I sleep." "I did not have strange dreams."
 - c) "I am either clever or lucky." "I am not lucky." "If I am lucky, then I will win the lottery."
 - **d)** "Every computer science major has a personal computer." "Ralph does not have a personal computer." "Ann has a personal computer."
 - e) "What is good for corporations is good for the United States." "What is good for the United States is good for you." "What is good for corporations is for you to buy lots of stuff."
 - f) "All rodents gnaw their food." "Mice are rodents." "Rabbits do not gnaw their food." "Bats are not rodents."