UNIT 1 » SET THEORY, FUNCTIONS AND COUNTING PART-I SET THEORY

❖ INTRODUCTION

- ✓ The theory of set was developed by German mathematician Georg Cantor (1845 1918). He first encountered sets while working on 'problems on trigonometric series'.
- ✓ The concept of set serves as a fundamental part of the present day mathematics. Today this concept is being used in almost every branch of mathematics. Sets are used to define the concepts of relation and function. The study of geometry, sequences, probability, etc. requires knowledge of sets. In this unit, we will discuss basic definitions and operation involving sets.

SET

- ✓ A set is collection of well-defined objects.
- ✓ Each object in the set is called an element of the set.
- ✓ Elements of a set are usually denoted by lower case letter (a, b, c ...). While sets are denoted by capital letters (A, B, C ...).
- ✓ The symbol '∈ (is belongs to)' indicates the membership in a set. While the symbol '∉ (is not belongs to)' is used to indicate that an element is not in the set.
- \checkmark Example: If A = {1, 2, 3, a, b}, then we can write that a \in A, 1 \in A but 4 \notin A.

REPRESENTATION OF A SET

- ✓ Listing method (or Tabular form)
 - ➤ In listing method, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces { }. For example, the set of all natural numbers less than 6 is described in listing method as {1, 2, 3, 4, 5}.
- ✓ Property method (or Set-builder form)
 - In property method, all the elements of a set possess a single common property which is not possessed any element outside the set. For example, the set of all natural number between 4 & 9 is described in property method as

 $\{x : x \text{ is a natural number } \& 4 < x < 9\}$

SOME DEFINITIONS

- \checkmark Empty set (null set) does not contain any element and It is denoted as $\{\}$ or ϕ .
- ✓ A set which contain at least one element is called Non-empty set.
- ✓ A set which contain exactly one element is called Singleton set.
- ✓ A set which contain finite number of elements is called Finite set.
- ✓ A set which contain infinite number of elements is called Infinite set.
- ✓ Two set A and B are said to be Equal if they have exactly the same elements and we write A = B. Otherwise, the sets are said to be unequal and we write $A \neq B$.
- ✓ In any discussion in set theory, there always happens to be a set that contains all set under consideration i.e. it is a super set of each of the given sets. Such a set is called the universal set and is denoted by U.

SUBSET

✓ If every element of a set A is an element of a set B then we can say that A is a subset of B.

i. e.
$$A \subset B$$
 if $\forall a \in A \implies a \in B$

- ✓ Example: If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6, 7\}$, then $A \subset B$.
- ✓ Note: If A is a subset of B, then B is a superset of A.
- ✓ Let A be any non-empty set. Then
 - φ & A are improper subsets of A and remaining all are called proper subsets of A.
 - ➤ If set A has n elements then there are total 2ⁿ subsets of A.

***** OPERATIONS ON SETS

- ✓ Let U be a universal set and A & B are any two sets. Then
 - ➤ The Union of A & B is the set which consists of all the elements of A and all the elements of B, the common elements being taken only once. Symbolically, we write A ∪ B and usually read as 'A union B'.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

The Intersection of A & B is the set of all elements which are common to both A and B. Symbolically, we write $A \cap B$ and usually read as 'A intersection B'.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

➤ The Difference of the sets A & B in this order is the set of elements which belong to A but not to B. Symbolically, we write A − B and usually read as 'A minus B'.

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

➤ The Symmetric difference of sets A & B is the set of elements which belong to A \cup B but not to A \cap B. Symbolically, we write A \triangle B and usually read as 'A delta B'.

$$A\Delta B = \{x : x \in A \cup B \text{ and } x \notin A \cap B\}$$

The Complement of A is the set of all elements which belong to universal set U but not to A. Symbolically, we write A'.

$$A' = \{x : x \in U \text{ and } x \notin A\}$$

 \checkmark Example: Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 4, 5} & B = {4, 5, 6, 7, 8}.

Find $A \cup B$, $A \cap B$, A - B, $A \triangle B$, A', B'.

Solution:
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}, A \cap B = \{4, 5\}, A - B = \{1, 2, 3\}, A' = \{6, 7, 8, 9, 10\},$$

 $B' = \{1, 2, 3, 9, 10\}, A\Delta B = (A \cup B) - (A \cap B) = \{1, 2, 3, 6, 7, 8\}.$

❖ VENN DIAGRAM

- ✓ The relationship between sets can be represented by means of diagrams which are known
 as Venn diagrams. Venn diagrams are named after the English logician, John Venn (1834 1883).
- ✓ This diagrams consist of rectangle and closed curves usually circles. The universal set is represented by rectangle and its subsets by circles.

- ✓ The shaded area in figure (1) is $A \cap B$ and the shaded area in figure (2) is $A \cup B$.
- ✓ The shaded area in figure (3) is A B and the shaded area in figure (4) is B A.
- ✓ The shaded area in figure (5) is A \triangle B and the shaded area in figure (6) is A'.

METHOD-1: EXAMPLES ON BASIC SET THEORY

```
Η
                                                         Give another description of the following sets.
                                                         a) A = \{x : x \text{ is an integer and } 5 \le x \le 12\}
                                                         b) B = \{2, 4, 6, 8, ...\}
                                                         c) C = \{x : x \in \mathbb{N}, 4 < x^2 < 40\}
                                                         d) D = \{x : x^3 - x = 0, x \in \mathbb{Z}\}\
                                                         Answer : {5, 6, 7, 8, 9, 10, 11, 12}, {x : x is an even number & x ∈ \mathbb{N}},
                                                                                                                               {3,4,5,6},{-1,0,1}
\mathsf{C}
                                                         Give another description of the following sets.
                                                         a) A = \{x : x \in \mathbb{N}, x \text{ is a multiple of } 7 \& x \le 49\}
                                                         b) B = \{1, 8, 27, 64, 125, 216\}
                                                         c) C = \{x : x \in \mathbb{R}, \sin x = 0\}
                                                         d) D = \{x : x \text{ is a divisor of } 36, x \in \mathbb{N}\}
                                                         Answer : \{7, 14, 21, 28, 35, 42, 49\}, \{x^3 : x \in \mathbb{N} \text{ and } x \leq 6\}, \{k\pi : k \in \mathbb{Z}\}, \{x \in \mathbb{Z}\},
                                                                                                                               {1, 2, 3, 4, 6, 9, 12, 18, 36}
C
                                                         Give another description of the following sets.
                                                         a) A = \{(x, y) : x, y \in \mathbb{N}, |x - y| \text{ is even number } \& x, y \le 6\}
                                                         b) B = \{(1,1), (2,4), (3,9), (4,16), (5,25)\}
                                                         c) C = \{(x, y) : x, y \in \mathbb{N}, x \text{ divides } y \& y \le 9\}
                                                         Answer: \{(1,3), (1,5), (2,4), (2,6), (3,1), (3,5), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (4,2), (4,6), (5,1), (5,3), (5,3), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2), (5,2)
                                                                                                                                      (6,2),(6,4)\}\;,\{(x,y):y=x^2\;\&\;1\leq x\leq 5\},
                                                                                                                                \{(1,1),(1,2),(2,2),(1,3),(3,3),(1,4),(2,4),(4,4),(1,5),(5,5),
                                                                                                                                       (1,6), (2,6), (3,6), (6,6), (1,7), (7,7), (1,8), (2,8), (4,8), (8,8),
                                                                                                                                      (1,9),(3,9),(9,9)
```

Н	4	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{2, 3, 4, 5, 6, 9\}$, $B = \{1, 4, 5, 6, 7, 8\}$.
		Find $A \cup B$, $A \cap B$, $A - B$, $B - A$, $A \triangle B$, A' , B' .
		Answer: {1, 2,, 9}, {4, 5, 6}, {2, 3, 9}, {1, 7, 8}, {1, 2, 3, 7, 8, 9}, {1, 7, 8, 10},
		{2,3,9,10}
C	5	Let $A = \{4k + 1 : k \in \mathbb{Z}\}, B = \{6k - 1 : k \in \mathbb{Z}\}.$ Find $A \cap B$.
<u></u>	3	
		Answer : $A \cap B = \{12k + 5 : k \in \mathbb{Z}\}$
С	6	If $A = \{x : x \in \mathbb{R}, x^2 - 3x - 4 = 0\}$, $B = \{x : x \in \mathbb{Z}, x^2 = x\}$, then find $A \cup B$, $A \cap B$,
		$A - B$, $A\Delta B$.
		Answer : $\{-1, 0, 1, 4\}, \{\emptyset\}, \{-1, 4\}, \{-1, 0, 1, 4\}$
С	7	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 5, 6, 8\}$, $C = \{1, 4, 6, 7\}$.
		Verify (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, (b) $(A \cup B)' = A' \cap B'$,
		(c) $A - B = A \cap B'$, (d) $A\Delta B = B\Delta A$, (e) $A - C = A - (A \cap C)$.
Н	8	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 3, 5, 6\}$, $C = \{1, 2, 3\}$.
**		Verify (a) $(A - B) \cup B = A \cup B$, (b) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$,
		(c) $A - (B - C) = (A - B) \cup (A \cap C)$, (d) $A\Delta A = \phi$, (e) $A\Delta \phi = A$.
		$(C)A (D C) = (A D) \cup (A \cap C), (u) A D A = \psi, (e) A D \psi = A.$
С	9	Draw the Venn diagram for the following.
		$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{2, 3, 4, 5, 6, 9\}, B = \{1, 4, 5, 6, 7, 8\}$
Н	10	Draw the Venn diagram for the following.
		$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 3, 5, 7, 9\}, B = \{1, 5, 6, 8\}, C = \{1, 4, 6, 7\}$
Н	11	Prove the following statements using Venn diagram.
		(a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, (b) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$
С	12	Prove the following statements using Venn diagram.
		(a) $(A \cup B)' = A' \cap B'$, (b) $A - (B \cup C) = (A - B) \cap (A - C)$

❖ CARDINAL NUMBER

- ✓ The number of elements in a finite set A is called the cardinal number of set A and is denoted by n(A) or |A|.
- ✓ Example: If $A = \{1, 2, 3, 5, 8\}$, then n(A) = 5.

❖ IMPORTANT RESULTS OF CARDINAL NUMBER

- ✓ Let A, B, C are finite sets in a finite universal set U. Then
 - $ightharpoonup n(A \cup B) = n(A) + n(B) n(A \cap B)$ (The Inclusion-Exclusion Principle)

 - $ightharpoonup n(A B) = n(A) n(A \cap B)$
 - $ightharpoonup n(A\Delta B) = n(A) + n(B) 2 n(A \cap B)$
 - \rightarrow n(A') = n(U) n(A)
 - $ightharpoonup n(A' \cap B') = n(U) n(A \cup B)$
 - \triangleright n(A' \cup B') = n(U) n(A \cap B)

METHOD-2: EXAMPLES ON CARDINAL NUMBER

С	1	Let A and B be sets, such that $n(A) = 50$, $n(B) = 50$, $n(A \cup B) = 75$. Find $n(A \cap B)$. Answer: 25	
Н	2	Let A and B be sets, such that $n(A) = 12$, $n(A \cup B) = 36$, $n(A \cap B) = 8$. Find $n(B)$. Answer: 32	
С	3	Let A and B are two subsets of universal set U, such that $n(A) = 20$, $n(B) = 30$, $n(U) = 80$, $n(A \cap B) = 10$. Find $n(A' \cap B')$. Answer: 40	
С	4	Among 50 patients admitted to a hospital, 25 are diagnosed with pneumonia, 30 with bronchitis, and 10 with both pneumonia and bronchitis. Determine (a) The number of patients diagnosed with pneumonia or bronchitis (or both), (b) The number of patients not diagnosed with pneumonia or bronchitis. Answer: 45, 5	

H S A survey in 1986 asked households whether they had a VCR, a CD player or cable TV. 40 had a VCR, 60 had a CD player and 50 had cable TV. 25 owned VCR and CD player. 30 owned a CD player and had cable TV. 35 owned a VCR and had cable TV. 10 households had all three. How many households had at least one of the three?

Answer : **70**

C Among 18 students in a room, 7 study mathematics, 10 study science and 10 study computer programming. Also, 3 study mathematics and science, 4 study mathematics and computer programming, and 5 study science and computer programming. We know that 1 student studies all three subjects. How many of these students study none of the three subjects?

Answer: 2

POWER SET

- ✓ The set or family of all the subsets of a given set A is said to be the power set of A and is denoted by P(A). Symbolically, $P(A) = \{X : X \subseteq A\}$.
- ✓ It means, if $X \in P(A) \Rightarrow X \subseteq A$. Further, $\phi \in P(A) \& A \in P(A)$.
- \checkmark Example: If A = {a, b, c}, then P(A) = { ϕ , A, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}
- ✓ Note: If A has n elements, then its power set P(A) has 2^n elements.

❖ CARTESIAN PRODUCT

✓ If A and B are any two non-empty sets, then cartesian product of A & B is defined and denoted as

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

 \checkmark Example: If A = {a, b} and B = {1, 2}, then cartesian product of A and B is written as

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$

- ✓ Notes
 - \triangleright If A & B are empty sets, then A × B = φ.
 - \triangleright In general, $A \times B \neq B \times A$.

- \triangleright If A has m elements and B has n elements, then A \times B has m \times n elements.
- Two dimensional cartesian plane is set of all ordered pair resulting from the product $\mathbb{R} \times \mathbb{R}$, where \mathbb{R} is a set of all real numbers.

METHOD-3: EXAMPLES ON POWER SET AND CARTESIAN PRODUCT

Н	1	Give the power sets of $\{x, y, z\}$ and $\{1, 2, 3\}$.	
		Answer : $\{\emptyset, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, \{x,y,z\}\},$	
		$\big\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\big\}$	
С	2	Give the power sets of following.	
		a) $A = \{x : x \text{ is multiple of } 4, x \in \mathbb{N} \text{ and } x \le 16\}$	
		b) $B = \{x : x \text{ is a prime number and } x < 8\}$	
		Answer: {Ø, {4}, {8}, {12}, {16}, {4,8}, {4,12}, {4,16}, {8,12}, {8,16}, {12,16},	
		$\{4, 8, 12\}, \{8, 12, 16\}, \{12, 16, 4\}, \{16, 4, 8\}, \{4, 8, 12, 16\}\},$	
		$\{\emptyset, \{2\}, \{3\}, \{5\}, \{7\}, \{2,3\}, \{2,5\}, \{2,7\}, \{3,5\}, \{3,7\}, \{5,7\}, \{2,3,5\},$	
		$\{3,5,7\},\{5,7,2\},\{7,2,3\},\{2,3,5,7\}\}$	
Н	3	Let $A = \{a, b, c, d\}$ be a set. How many elements in $P(A)$? How many proper and	
		improper subsets of A?	
		Answer: 16, 14, 2	
Н	4	Let $A = \{a, b, c\}$ and $B = \{1, 2\}$ be two sets, then write $A \times B$.	
		Answer: $A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$	
Н	5	If $A \times A = B \times B$, then prove that $A = B$.	
С	6	Let $A = \{\alpha, \beta\}$ and $B = \{1, 2, 3\}$. Then, write $B \times B$, $A \times A$ and $(A \times B) \cap (B \times A)$.	
		Answer: {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)},	
		$\{(\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta)\}, \{\emptyset\}$	

***** BASIC SET IDENTITIES

- ✓ Properties of the operation of union
 - \rightarrow A \cup B = B \cup A (Commutative law)

- \triangleright (A \cup B) \cup C = A \cup (B \cup C) (Associative law)
- \triangleright A \cup φ = A (Identity element)
- \rightarrow A \cup A = A (Idempotent property)
- \triangleright U \cup A = U (Law of U)
- ✓ Properties of the operation of intersection
 - \triangleright A \cap B = B \cap A
 - \triangleright (A \cap B) \cap C = A \cap (B \cap C)
 - \rightarrow A \cap ϕ = ϕ
 - \triangleright A \cap A = A
 - \triangleright U \cap A = A
- ✓ Properties of the operation of difference, symmetric difference and complement
 - \triangleright A B \neq B A
 - \triangleright (A')' = A
 - \triangleright U' = φ
 - \rightarrow $\Phi' = U$
 - \triangleright A \triangle B = B \triangle A
 - \triangleright A \triangle (B \triangle C) = (A \triangle B) \triangle C
 - \triangleright A \triangle A = φ
 - \triangleright $A\Delta \varphi = A$
- ✓ Some important results
 - \rightarrow A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (Distributive law)
 - $ightharpoonup A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (Distributive law)
 - \triangleright (A \cup B) \cap A = A
 - \triangleright (A \cap B) \cup A = A
 - \triangleright (A \cup B) \cap B = B
 - \triangleright (A \cap B) \cup B = B

- ightharpoonup A \cup A' = U
- \triangleright A \cap A' = φ
- \triangleright (A \cup B)' = A' \cap B' (De Morgan's law)
- \triangleright (A \cap B)' = A' \cup B' (De Morgan's law)
- \rightarrow A (B \cup C) = (A B) \cap (A C) (De Morgan's law)
- \rightarrow A (B \cap C) = (A B) \cup (A C) (De Morgan's law)
- \triangleright A B = A \cap B'
- \triangleright B A = B \cap A'
- ✓ Some results on cartesian product
 - \rightarrow A × (B U C) = (A × B) U (A × C)
 - $ightharpoonup A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - \rightarrow A × (B C) = (A × B) (A × C)
 - ightharpoonup If A \subseteq B, then (A \times C) \subseteq (B \times C)

METHOD-4: EXAMPLES ON BASIC SET IDENTITIES

Н	1	If $A = \{1, 3, 5, 7\}$, $B = \{2, 4, 7, 8\}$, $C = \{5, 6, 8, 9\}$, then check the identities. (a) $(A \cup B) \cup C = A \cup (B \cup C)$, (b) $A\Delta B = B\Delta A$, (c) $A - C \neq C - A$
С	2	Let $A = \{1,2,3,6,7\}$, $B = \{2,3,4,8,9\}$, $C = \{3,4,5,10,11\}$, then check the identities. (a) $(A \cap B) \cap C = A \cap (B \cap C)$, (b) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$, (c) $A\Delta A = \emptyset$
Н	3	If $A=\{x: x \text{ is a divisor of } 24\}$, $B=\{x: x \text{ is a divisor of } 18\}$, $C=\{x: x \text{ is a divisor of } 6\}$, then check the identities. a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ b) $A - (B \cup C) = (A - B) \cap (A - C)$
С	4	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{2, 3, 4, 5, 6, 9\}$, $B = \{1, 4, 5, 6, 7, 8\}$, $C = \{\emptyset\}$. Then check the identities. a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ c) $(A \cap B)' = A' \cup B'$ b) $(A \cup B)' = A' \cap B'$

Н	5	State and prove De Morgan's law.
С	6	Do as directed.
		a) If $A \subset B \& C \subset D$, then prove that $(A \cup C) \subset (B \cup D)$.
		b) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
		c) Prove that $A - B = A \cap B'$.
Н	7	Do as directed.
		a) If $A \subset B \& C \subset D$, then prove that $(A \cap C) \subset (B \cap D)$.
		b) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
		c) Prove that $B - A = B \cap A'$.
Н	8	Prove the following identities using Venn diagram.
		(a) $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$, (b) $A - B = A - (A \cap B)$
С	9	Prove the following identities using Venn diagram.
		(a) $A \cap (B - C) = (A \cap B) - (A \cap C)$, (b) $(A \cap B) \cup (A - B) = A$
С	10	If $A \cap B = \emptyset$, $A \cup B = U$, then prove that $A' = B$.

PART-II FUNCTIONS

❖ INTRODUCTION

- ✓ Function deals with linking pair of elements from two sets and then introduce relation between the two elements in the pair.
- ✓ Practically in every day of our lives, we pair the members of two sets of numbers.
- ✓ Examples
 - ➤ Each hour of the day is paired with the local temperature reading by T.V. Station's weatherman.
 - A teacher often pairs each set of score with the number of students receiving that score to see more clearly how well the class has understood the lesson.
- ✓ Finally, we shall learn about special relations called functions.
- ✓ The function is a special relation from one set to another set, in which every element of first set is in relation (uniquely) with the elements of another set.

✓ The relation, from A to B, shown in figure (1) and (2) are functions. But a relation, from A to B, shown in figure (3) is not a function because 4 ∈ A is not in relation to any element of B. Also a relation, from A to B, shown in figure (4) is not a function because 2 ∈ A is in relation with two elements of B. Now, we will define a function.

***** FUNCTION

- ✓ Let A and B be two non-empty sets. Suppose that to each element of set A we assign unique element of set B, then collection of such assignments is called a function from A to B.
- ✓ Functions are ordinarily denoted by symbols. For example, let f denote a function from A to B. Then, we write f: A → B.
- ✓ The set A is called domain of the function. (i. e. $D_f = A$)
- ✓ The set B is called co-domain of the function.
- ✓ Example: Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d, e\}$, then
 - \rightarrow f = {(1,a), (2,b), (3,c)} is function from A to B.[f: A \rightarrow B, f(1) = a, f(2) = b, f(3) = c].
 - $f = \{(1,a), (2,b), (3,b)\}\$ is function from A to B. $[f : A \to B, f(1) = a, f(2) = b, f(3) = b].$
 - Arr f = {(1, a), (2, a), (3, a)} is function from A to B.[f : A \rightarrow B, f(1) = a, f(2) = a, f(3) = a].
- ✓ Notes
 - \triangleright If n(A) = m and n(B) = n, then we can create n^m different functions from A to B.
 - \triangleright Any function from \mathbb{R} to \mathbb{R} is called a real function.
- ✓ A program written in a high-level language is mapped into a machine language by a compiler. Similarly, the output from a computer is a function of its input.

RANGE OF A FUNCTION

- ✓ The set of images of all elements of a domain is called range of a given function.
- ✓ Example: Let $f: N \to N$, f(x) = 7x i.e. f(1) = 7, f(2) = 14, f(3) = 21,
 - ➤ Here, 7 is an image of 1, 14 is an image of 2, ... etc.
 - ➤ In above example range of f is

$$R_f = \{7, 14, 21, 28, ...\}$$

SOME STANDARD FUNCTIONS

- ✓ Identity function
 - Let A be a non-empty set. The function $f : A \to A$ define by $f(x) = x, \forall x \in A$ is called an identity function on A. Also, an identity function on A is denoted by I_A .

This function maps any element of A onto itself. For this function, the range is entire co-domain.

✓ Constant function

- ➤ A function whose range is a singleton set is called a constant function.
- Thus, a function $f : A \to B$, f(x) = c, $\forall x \in A$ where c is a fixed element of B, is called a constant function.

✓ Even function

- ➤ A function $f : A \to B$ is said to be an even function if f(-x) = f(x), $\forall x \in A$.
- $ightharpoonup f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is an even function.

✓ Odd function

- A function $f: A \to B$ is said to be an odd function if $f(-x) = -f(x), \forall x \in A$.
- $ightharpoonup f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is an odd function.

✓ Modulus function

A function $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x| is called a modulus function or absolute value function defined as,

$$|\mathbf{x}| = \begin{cases} \mathbf{x} ; \ \mathbf{x} \ge 0 \\ -\mathbf{x} ; \ \mathbf{x} < 0 \end{cases}$$

- \triangleright The range of this function is $\mathbb{R}^+ \cup \{0\}$.
- ✓ Peano's successor function
 - \blacktriangleright A function $f : \mathbb{N} \to \mathbb{N}$, f(n) = n + 1, $\forall n \in \mathbb{N}$ is called Peano's successor function.
 - \triangleright Obviously, f(1) = 2, f(2) = 3, f(3) = 4, then, the range of this function is $\mathbb{N} \{1\}$.
- ✓ Greatest integer function (Floor function)
 - A function $f : \mathbb{R} \to \mathbb{R}$, f(x) = [x] or [x], $\forall x \in \mathbb{R}$ is called a greatest integer function defined as,

$$[x]$$
 or $[x]$ = greatest integer not exceeding x

- \triangleright [1.2] = 1, [2] = 2, [-1.7] = -2, etc.
- \triangleright The range of this function is \mathbb{Z} .

- ✓ Least integer function (Ceiling function)
 - ➤ A function $f : \mathbb{R} \to \mathbb{R}$, f(x) = [x], $\forall x \in \mathbb{R}$ is called a ceiling function defined as,

[x] = least integer not less than x

- \triangleright [1.2] = 2, [2] = 2, [-1.7] = -1, etc.
- \triangleright The range of this function is \mathbb{Z} .

***** ALGEBRA OF REAL FUNCTIONS

- ✓ Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ are two functions with $A \cap B \neq \phi$. Then,
 - The addition of functions is defined as

$$(f+g): (A \cap B) \to \mathbb{R}, (f+g)(x) = f(x) + g(x), \forall x \in A \cap B$$

The subtraction of functions is defined as

$$(f-g): (A \cap B) \to \mathbb{R}, (f-g)(x) = f(x) - g(x), \forall x \in A \cap B$$

The multiplication of functions is defined as

$$(f \cdot g) : (A \cap B) \to \mathbb{R}, (f \cdot g)(x) = f(x) \cdot g(x), \forall x \in A \cap B$$

> The division (quotient) of functions is defined as

$$\left(\frac{f}{g}\right)\colon (A\cap B)-\{x:g(x)=0\}\to \mathbb{R}, \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \forall x\in (A\cap B)-\{x:g(x)=0\}$$

METHOD-5: BASIC EXAMPLES ON FUNCTION

Н	1	Define: Function, Range of a function.	
Н	2	Define: Identity function, Constant function, Even and Odd function, Modulus	
		function, Peano's successor function, Greatest integer function(Floor function),	
		Least integer function(Ceiling function).	

С	3	Which of the following relation is a function? If yes, determine domain and range.	
		a) {(2,1), (5,1), (8,1), (11,1), (14,1), (17,1)}	
		b) {(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)}	
		c) {(1,3), (1,5), (2,5)}	
		Answer: yes, {2, 5, 8, 11, 14, 17}, {1},	
		yes, {2, 4, 6, 8, 10, 12, 14}, {1, 2, 3, 4, 5, 6, 7}, no	
Н	4	Which of the following relation is a function? If yes, determine domain and range.	
		a) {(1,1), (3,1), (5,1), (7,1), (9,1)}	
		b) {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)}	
		c) {(2,3), (2,5), (3,5)}	
		Answer: yes, {1, 3, 5, 7, 9}, {1}, yes, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}, no	
Н	5	Let $f(x) = x^2$ and $g(x) = 2x + 1$ be the real functions, then find $(f + g)(x)$,	
		$(f-g)(x), (f \cdot g)(x), \left(\frac{f}{g}\right)(x).$	
		Answer: $x^2 + 2x + 1$, $x^2 - 2x - 1$, $x^2 \cdot (2x + 1)$, $\frac{x^2}{2x + 1}$	
С	6	Let $f(x) = \sqrt{x}$ and $g(x) = x$ be the real functions, then find $(f + g)(x)$, $(f - g)(x)$,	
		$(f \cdot g)(x), \left(\frac{f}{g}\right)(x).$	
		Answer: $\sqrt{x} + x$, $\sqrt{x} - x$, $\sqrt{x} \cdot (x)$, $\frac{\sqrt{x}}{x}$	
С	7	Find the domain and range of functions (a) $f(x) = x - 1 $, (b) $f(x) = \sqrt{9 - x^2}$.	
		Answer : \mathbb{R} , [0, ∞), [-3, 3], [0, 3]	
Н	8	Find the domain and range of functions (a) $f(x) = x - 2 $, (b) $f(x) = \sqrt{4 - x^2}$.	
		Answer : \mathbb{R} , $[0, \infty)$, $[-2, 2]$, $[0, 2]$	
	_		
С	9	Draw the graph of functions (a) $f(x) = x - 1 $, (b) $f(x) = x^2$, (c) $f(x) = \sin x$.	
Н	10	Draw the graph of functions (a) $f(x) = \log x$, (b) $f(x) = x^2 - 1$, (c) $f(x) = 3x + 1$.	
Н	11	If $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 2x + 1$, then find $f(1), f(2), f(-2), f(0)$.	
		Answer: 0, 1, 9, 1	
		Answer: 0, 1, 9, 1	

12

If $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2|x| - |-x|, then find f(3), $f\left(\frac{1}{2}\right)$, f(-3).

Answer: $3, \frac{1}{2}, 3$

INJECTIVE FUNCTION (ONE TO ONE FUNCTION)

✓ A function $f: A \to B$ is called a one to one (injective) function if distinct elements of A are mapped into distinct elements of B. In other words, f is one to one if $\forall x_1, x_2 \in A$

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$
 or $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$

- Notes
 - If a given function is not a one to one function, then it is called a many to one function.

FIGURE (1)

FIGURE (2)

- A function, shown in figure (1), is a one to one function. But a function, shown in figure (2), is not a one to one function.
- \checkmark Example: Let A = {1, 2, 3}, B = {1, 2, 3, 4, 5, 6}. Then,
 - $F: A \to B, f = \{(1, 2), (2, 4), (3, 6)\}$ is a one to one function.
 - $f: A \to B, f = \{(1, 2), (2, 2), (3, 6)\}$ is not a one to one function. [f(1) = 2 & f(2) = 2]
 - $ightharpoonup f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 3 is a one to one function.
 - $f: \mathbb{R} \to [-1, 1], f(x) = \sin x \text{ is not a one to one function. } [f(0) = 0 \& f(\pi) = 0]$

SURJECTIVE FUNCTION (ONTO FUNCTION)

- ✓ A function $f : A \to B$ is called an onto (surjective) if $R_f = B(Range \ of \ f = Co-domain \ of \ f)$.
- ✓ Notes
 - If a given function is not an onto function, then it is called an into function.

FIGURE (1)

FIGURE (2)

- A function, shown in figure (1), is an onto function. But a function, shown in figure (2), is not an onto function.
- ✓ Example: Let $A = \{1, 2, 3\}$, $B = \{1, 4, 9\}$. Then,
 - $F: A \to B, f = \{(1,1), (2,4), (3,9)\}$ is an onto function.
 - $ightharpoonup f: A \to B, f = \{(1,4), (2,9), (3,4)\}$ is not an onto function. $[R_f = \{4,9\} \neq B]$
 - $f: \mathbb{N} \to \mathbb{N}, f(n) = n + 2$ is not an onto function. $[R_f = \{3, 4, 5, 6, ...\} \neq \mathbb{N}(\text{co-domain})]$

***** BIJECTIVE FUNCTION

✓ A function is said to be bijective function if it is one to one and onto both.

COMPOSITION OF TWO FUNCTIONS

✓ Consider functions $f: A \to B$ and $g: C \to D$. Then, we may define $g \circ f: A \to D$, called the composition of f & g, as follows.

$$(g \circ f)(x) = g(f(x)), x \in A$$
, where $B \subseteq C$

- \checkmark That is, we find the image of x under f and then find the image of f(x) under g.
- ✓ Note: Similarly, we can define $f \circ g$.
- \checkmark Example: Let f, g: $\mathbb{R} \to \mathbb{R}$, f(x) = x + 2 and g(x) = x 2, then

$$(g \circ f)(x) = g(f(x)) = g(x+2) = (x+2) - 2 = x$$

$$(f \circ g)(x) = f(g(x)) = f(x-2) = (x-2) + 2 = x$$

❖ PROPERTIES OF COMPOSITION OF FUNCTIONS

- ✓ Let $f : A \to B$, then $f \circ I_A = f = I_B \circ f$.
- ✓ Let the function $f:A \to B$ and $g:B \to C$ satisfy $g \circ f = I_A \ \& \ f \circ g = I_B$ then g is unique.
- ✓ In general, $f \circ g \neq g \circ f$.
- ✓ Let the function $f : A \rightarrow B$ and $g : B \rightarrow C$, then
 - \triangleright If f and g are one to one functions, then g \circ f is also one to one function.
 - \triangleright If f and g are onto functions, then g \circ f is also onto function.
- ✓ In usual notation, $(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$.

***** INVERSE OF A FUNCTION

- ✓ Let $f : A \to B$ be a function and if there exist a function $g : B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$, then we say g is the inverse function of f and g is denoted by f^{-1} .
- ✓ Note: A function f has the inverse function g if and only if f is one to one and onto both.
- ✓ Examples
 - Let $A = \{1, 2, 3\}$, $B = \{1, 4, 9\}$ and $f : A \to B$, $f = \{(1, 1), (2, 4), (3, 9)\}$, then $f^{-1} : B \to A, f^{-1} = \{(1, 1), (4, 2), (9, 3)\}$
 - Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 2. For the inverse of f, let y = x + 2.

$$\Rightarrow$$
 x = y - 2 \Rightarrow f⁻¹(x) = x - 2

METHOD-6: EXAMPLES ON INVERSE AND COMPOSITION OF FUNCTIONS

Н	1	Define: Injective function, surjective function, inverse function, bijective function.	
Н	2	Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined	
		as $f(2) = 3$, $f(3) = 4$, $f(4) = f(5) = 5$, $g(3) = g(4) = 7$ and $g(5) = g(9) = 11$.	
		Find g ∘ f.	
		Answer : $g \circ f(x) = \{(2,7), (3,7), (4,11), (5,11)\}$	

Н	3	If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$, then show
		that $g \circ f \neq f \circ g$.
C	4	
L C	4	Let $X = \{1, 2, 3\}$ and f, g, h and s be functions from X to X as given below.
		$f = \{(1,2), (2,3), (3,1)\} \qquad g = \{(1,2), (2,1), (3,3)\}$
		$h = \{(1,1), (2,2), (3,1)\} \qquad s = \{(1,1), (2,2), (3,3)\}$
		Then find $f \circ g$, $g \circ f$, $(g \circ f)^{-1}$, $f \circ h \circ g$, $g \circ g$, $g \circ g$, $g \circ g$, $g \circ g$, and $g \circ g$.
		Answer: $\{(1,3),(2,2),(3,1)\},\{(1,1),(2,3),(3,2)\},\{(1,1),(2,3),(3,2)\}$
		$\{(1,3),(2,2),(3,2)\},\{(1,2),(2,1),(3,3)\},\{(1,2),(2,1),(3,3)\}$
		$\{(1,1),(2,2),(3,3)\},\{(1,2),(2,3),(3,1)\}$
С	5	Let $f(x) = x + 2$, $g(x) = x - 2$, $h(x) = 3x$ for $x \in \mathbb{R}$.
		Find $g \circ f$, $f \circ g$, $(f \circ g)^{-1}$, $f \circ f$, $g \circ g$, $f \circ h$, $h \circ g$, $h \circ f$, and $f \circ h \circ g$.
		Answer: $x, x, x, x + 4, x - 4, 3x + 2, 3x - 6, 3x + 6, 3x - 4$
С	6	Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2$ and $g: \mathbb{R}^+ \to \mathbb{R}^+$, $g(x) = \sqrt{x}$. Find $f \circ g$ and $g \circ f$.
		Answer : $f \circ g(x) = -x \& g \circ f(x)$ is not possible
Н	7	Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 2$ and $g : \mathbb{R} \to \mathbb{R}$, $g(x) = x + 4$. Find $f \circ g$ and $g \circ f$.
		Answer: $f \circ g(x) = x^2 + 8x + 14$ & $g \circ f(x) = x^2 + 2$
С	8	Are the following functions one to one and onto? If yes, find its inverse.
		a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax + b$
		b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 2$
		c) f: $\mathbb{R} - \left\{ -\frac{3}{2} \right\} \to \mathbb{R} - \left\{ \frac{3}{2} \right\}$, f(x) = $\frac{3x+2}{2x+3}$
		Answer: yes, $\frac{x-b}{a}$, yes, $(x+2)^{\frac{1}{3}}$, yes, $\frac{2-3x}{2x-3}$
Н	9	Are the following functions one to one and onto? If yes, find its inverse.
		a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + 3$
		b) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = x^2$
		c) $f : \mathbb{R} - \{-1\} \to \mathbb{R} - \{-1\}, f(x) = \frac{1-x}{1+x}$
		Answer: yes, $\frac{x-3}{2}$, yes, \sqrt{x} , yes, $\frac{1-x}{1+x}$

PART-III COUNTING

❖ INTRODUCTION

- ✓ Suppose you have a suitcase with a number lock. The number lock has 4 wheels each labelled with 10 digits from 0 to 9. The lock can be opened if 4 specific digits are arranged in a particular sequence with no repetition.
- ✓ Somehow, you have forgotten this specific sequence of digits. You remember only the first digit which is 7. In order to open the lock, how many sequences of 3-digits you may have to check with? To answer this question, you may, immediately, start listing all possible arrangements of 9 remaining digits taken 3 at a time.
- ✓ But, this method will be tedious, because the number of possible sequences may be large. Here, in this section, we shall learn some basic counting techniques which will enable us to answer this question without actually listing 3-digit arrangements.
- ✓ In fact, these techniques will be useful in determining the number of different ways of arranging and selecting objects without actually listing them. As a first step, we shall examine a principle which is most fundamental to the learning of counting techniques.

FUNDAMENTAL PRINCIPLES OF COUNTING

- ✓ Fundamental principle of multiplication
 - ➤ Let there are two parts A and B of a certain event. The part A can be done in m different ways. If corresponding to each way of doing the part A of the event, the part B can be done in n ways, then there are m × n ways to complete the event.
- ✓ Example: How many two digits even numbers can be formed from the digits 1, 2, 3, 4, 5 if the digits can be repeated?
 - Solution: Here, the unit's place can be filled by 2 and 4(two different ways) and the ten's place can be filled by any of the 5 digits in 5 different ways as the digits can be repeated. Therefore, by multiplication principle, the required number of two digits even numbers is $5 \times 2 = 10$.

√ Fundamental principle of addition

➤ Suppose that A and B are two disjoint events (i.e. they never occur together). Further suppose that A occur in m ways and B in n ways. Then, A and B can occur in m + n ways.

❖ PIGEONHOLE PRINCIPLE

✓ Statement: If n items are put into m containers, with n > m, then at least one container must contain more than one item.

Proof: We will give a proof by contraposition.

- Suppose that none of the m containers has more than one item. Then, total number of items would be at most m. Which contradicts with our hypothesis that there are n items and n > m (i.e. we have at least n = m + 1 items). Hence, we proved.
- ✓ This principle is also called Dirichlet's box principle or Dirichlet's drawer principle.
- \checkmark A function f from a set with n+1 elements to a set with n elements is not one to one.
- ✓ Example: In any group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.

❖ GENERALIZED PIGEONHOLE PRINCIPLE

- ✓ Statement: If N objects are placed into K boxes, then there is at least one box containing at least $\left\lceil \frac{N}{K} \right\rceil$ objects.
- ✓ Example: Given a group of 100 people, at minimum, how many people were born in the same month?

Answer:
$$\left[\frac{N}{K}\right] = \left[\frac{100}{12}\right] = [8.33] = 9$$

✓ Note: The principle just proves the existence of overlaps. It says nothing of the number of overlaps (which falls under the subject of probability distribution).

***** FACTORIAL

✓ The continued product of first n natural numbers is called 'n factorial' and is denoted by n!.

i. e.
$$n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$$

- \checkmark Example: $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$
- ✓ Notes

$$\rightarrow$$
 n! = n × (n – 1)!

$$> 0! = 1$$

PERMUTATION

- ✓ Each of the arrangements which can be made by taking some or all of a number of things is called a permutation.
- ✓ Example: Six arrangements can be made with three distinct objects a, b, c taking two at a time are

- **Each** of these arrangements is called a permutation.
- ✓ Note: It should be noted that in permutation the order of arrangement is taken into account, when the order is changed, a different permutation is obtained.
- ✓ The number of all permutations of n distinct things, taken r at a time is denoted by the symbol P(n,r).

\diamond DERIVATION OF THE FORMULA FOR P(n, r)

- Suppose that we are given 'n' distinct objects and wish to arrange 'r' of these objects in a line where $1 \le r \le n$.
- ✓ Since there are 'n' ways of choosing the 1^{st} object, after this is done 'n -1' ways of choosing the 2^{nd} object and finally n (r 1) ways of choosing the r^{th} object.
- ✓ It follows by the fundamental principle of counting that the number of different arrangements (permutations) is given by

$$P(n,r) = n (n-1) (n-2) \dots (n-r+1)$$

$$= \frac{n (n-1) (n-2) \dots (n-r+1) (n-r) (n-r-1) \dots 3.2.1}{(n-r)(n-r-1) \dots 3.2.1}$$

$$= \frac{n!}{(n-r)!}$$

✓ Notes

$$\triangleright$$
 P(n, n) = n!

$$P(n,0) = 1$$

Suppose that a set consists of 'n' objects of which n_1 are of one type, n_2 are of second type, ..., n_k are of k^{th} type. Here $n=n_1+n_2+\cdots+n_k$. Then the number of different permutations of the objects is

$$\frac{n!}{n_1! \ n_2! \dots n_k!}$$

✓ Example: A number of different permutations of the letters of the word JISSISSITTI is

$$\frac{11!}{1! \ 4! \ 4! \ 2!} = 34650$$

- ✓ If 'r' objects are to be arranged out of 'n' objects and if repetition of an object is allowed then the total number of permutations is n^r.
- ✓ Example: Different numbers of three digits can be formed from the digits 1, 2, 3, 4, 5 is

$$5^3 = 125$$

✓ The number of ways to arrange n distinct objects along a fixed circle (i.e. cannot be picked up out of the plane and turned over) is (n - 1)!.

***** GENERATING PERMUTATION

- ✓ Any set with n elements can be placed in one to one correspondence with the set {1, 2, 3, ..., n}. We can list the permutations of any set of n elements by generating the permutations of the n smallest positive integers and then replacing these integers with the corresponding elements.
- ✓ Many different algorithms have been developed to generate the n! permutations of this set. We will describe one of these that is based on the lexicographic (or dictionary) ordering of the set of permutations of {1, 2, 3, ..., n}.

❖ PROCEDURE TO OBTAIN NEXT PERMUTATION (LEXICOGRAPHIC ORDERING)

- ✓ An algorithm for generating the permutations of $\{1,2,\ldots,n\}$ can be based on a procedure that constructs the next permutation in lexicographic order following a given permutation $a_1a_2\cdots a_n$. We will show how this can be done. First, suppose that $a_{n-1} < a_n$. Interchange a_{n-1} and a_n to obtain a larger permutation. No other permutation is both larger than the original per-mutation and smaller than the permutation obtained by interchanging a_{n-1} & a_n . For instance, the next larger permutation after 234156 is 234165.
- ✓ On the other hand, if $a_{n-I} > a_n$, then a larger permutation cannot be obtained by interchanging these last two terms in the permutation. Look at the last three integers in the permutation. If $a_{n-2} < a_{n-1}$, then the last three integers in the permutation can be rearranged to obtain the next largest permutation. Put the smaller of the two integers a_{n-1}

& a_n that is greater than a_{n-2} in position n-2. Then, place the remaining integer and a_{n-2} into the last two positions in increasing order. For instance, the next larger permutation after 234165 is 234516. And so on.

✓ Example: What is the next permutation in Lexicographic order after 362541? Solution: 364125.

METHOD-7: EXAMPLES ON PERMUTATION

Н	1	Explain the pigeonhole principle.	
С	2	Evaluate ⁵ P ₂ , ⁷ P ₃ , ⁹ P ₄ .	
		Answer: 20, 210, 3024	
Н	3	Find n, if (a) ${}^{n}P_{5} = 42 \cdot {}^{n}P_{3}$, (b) $3 \cdot P(n, 4) = 5 \cdot P(n - 1, 4)$.	
		Answer: 10, 10	
С	4	Find n, if (a) ${}^{n}P_{4} = 42 \cdot {}^{n}P_{2}$, (b) $2 \cdot P(n, 2) + 50 = P(2n, 2)$.	
		Answer: 9,5	
С	5	Find r, if $5 \cdot {}^{4}P_{r} = 6 \cdot {}^{5}P_{r-1}$.	
		Answer: 3 or 8	
Н	6	Suppose repetition are not permitted.	
		a) How many three digit numbers can be formed from six digits 2, 3, 5, 6, 7, 9?	
		b) How many of these numbers are less than 400?	
		c) How many are even?	
		Answer: 120, 40, 40	
Н	7	Find the number of ways that a party of seven persons can arrange themselves	
		a) in a row of seven chairs.	
		b) around a circular table.	
		Answer : 5040, 720	
С	8	Find the number of distinct permutation that can be formed from all the letters	
		of (a) RADAR, (b) UNUSUAL.	
		Answer: 30,840	

С	9	Find the number of arrangements of the letters of the word INDEPENDENCE. In	
		how many of these arrangements,	
		a) Do the words start with P?	
		b) Do all the vowels always occur together?	
		c) Do the vowels never occur together?	
		d) Do the words begin with I and end in P?	
		Answer: 1663200, 138600, 16800, 1646400, 12600	
С	10	In a certain programming language, the variable should be length three and	
		should be made up of two letters followed by a digit or of length two made up of	
		a letter followed by a digit. How many variables can be formed? What if letters	
		are not to be repeated?	
		Answer: 7020, 6760	
Н	11	6 boys and 6 girls are to be seated in a raw, how many ways can they be seated if	
		a) All boys are to be seated together and all girls are to be seated together?	
		b) No two girls should be seated together?	
		c) Boys occupy extreme position?	
		Answer: 1036800, 6220800, 108864000	
Н	12	How many ways can the letters in the word MISSISSIPPI can be arranged? What	
		if P's are to be separated?	
		Answer : 34650, 28350	
С	13	If repetitions are not allowed, how many four digit numbers can be formed from	
		1, 2, 3, 7, 8, 5? How many of these numbers are less than 5000? How many of	
		these are even? How many of these are odd? How many of these containing 3 and	
		5?	
		Answer: 360, 180, 120, 240, 144	
Н	14	A word that reads the same when read in forward or backward is called as	
		palindrome. How many seven letter palindromes can be form English alphabets?	
		Answer : 456976	
Н	15	Generate the permutations of the integers 1, 2, 3 in lexicographic order.	
		Answer: 123, 132, 213, 231, 312, 321	

COMBINATION

- ✓ In a permutation we are interested in the order of arrangement of the objects. For example, ABC is a different permutation from BCA. In many problems, however, we are interested only in selecting or choosing objects without regard to order. Such selections are called combination.
- ✓ The total number of combination (selections) of 'r' objects selected from 'n' objects is denoted and defined by

$$C(n,r) = {n \choose r} = \frac{n!}{r!(n-r)!}$$

✓ Notes

$$\triangleright$$
 $\binom{n}{0} = \binom{n}{n} = 1$

$$> \binom{n}{1} = n$$

$$ightharpoonup \left(\begin{smallmatrix} n \\ r \end{smallmatrix} \right) = \frac{1}{r!} \cdot {}^{n}P_{r}$$

$$\qquad \qquad \binom{n}{r} = \frac{n}{r} \times \binom{n-1}{r-1}$$

- ✓ The number of r-combinations with repetition allowed (multi sets of size r) that can be selected from a set of n elements is $\binom{n+r-1}{r}$.
- ✓ Examples
 - > The number of ways in which 3 card can be chosen from 8 cards is

$$\binom{8}{3} = \frac{8!}{3!(8-3)!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

➤ A club has 10 male and 8 female members. A committee composed of 3 men and 4 women is formed. In how many ways this be done?

$$\binom{10}{3} \times \binom{8}{4} = 120 \times 70 = 8400$$

➤ Out of 6 boys and 4 girls in how many ways a committee of five members can be formed in which there are at most 2 girls are included?

$$\binom{4}{2} \times \binom{6}{3} + \binom{4}{1} \times \binom{6}{4} + \binom{4}{0} \times \binom{6}{5} = 120 + 60 + 6 = 186$$

❖ GENERATING COMBINATION

- ✓ An algorithm for generating the r-combinations of the set $\{1, 2, 3, ..., n\}$ will be given. An r-combination can be represented by a sequence containing the elements in the subset in increasing order. The r-combinations can be listed using lexicographic order on these sequences. The next combinations after $a_1 a_2 ... a_r$ can be obtained in the following way.
 - First, locate the last element a_i in a sequence such that $a_i \neq n r + i$.
 - Then, replace a_i with $a_i + 1$ and a_j with $a_i + j i + 1$, for j = i + 1, i + 2, ..., r.
 - Now, it is left to show that this produces the next larger combination in lexicographic order.
- \checkmark Example: Find the next larger 4-combination of the set $\{1, 2, 3, 4, 5, 6\}$ after $\{1, 2, 5, 6\}$. Solution: $\{1, 3, 4, 5\}$.

***** BINOMIAL COEFFICIENT

$$(a+b)^{1} = a+b = {1 \choose 0}a^{1}b^{0} + {1 \choose 1}a^{0}b^{1}$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2} = {2 \choose 0}a^{2}b^{0} + {2 \choose 1}a^{1}b^{1} + {2 \choose 2}a^{0}b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = {3 \choose 0}a^{3}b^{0} + {3 \choose 1}a^{2}b^{1} + {3 \choose 2}a^{1}b^{2} + {3 \choose 3}a^{0}b^{3}$$

 $(a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} a^0 b^n = \sum_{k=0}^n \binom{n}{k} a^{(n-k)} b^k$

✓ Above expression is called binomial theorem, where n is positive integer and expression $\binom{n}{k}$ is often called binomial coefficient.

❖ PROPERTIES OF BINOMIAL COEFFICIENT

$$\checkmark$$
 $\binom{n}{k} = \binom{n}{n-k}$

$$\checkmark \quad \left(\begin{smallmatrix} n+1 \\ k+1 \end{smallmatrix} \right) = \left(\begin{smallmatrix} n \\ k \end{smallmatrix} \right) + \left(\begin{smallmatrix} n \\ k+1 \end{smallmatrix} \right)$$

✓ If
$$\binom{n}{x} = \binom{n}{y}$$
 then either $x = y$ or $x + y = n$.

$$\checkmark \sum_{k=0}^{n} {n \choose k} = 2^n \text{ and } \sum_{k=0}^{n} (-1)^k \cdot {n \choose k} = 0$$

ARITHMETIC PROGRESSION

 $\checkmark \;\;$ Members a, b and c are said to be in arithmetic progression if

$$b = \frac{a+c}{2}$$

METHOD-8: EXAMPLES ON COMBINATION

Н	1	Show that $^{14}C_4$, $^{14}C_5$, $^{14}C_6$ are in A.P.	
С	2	Prove that (a) ${}^{n}C_{r} = {}^{n}C_{n-r}$, (b) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$	
С	3	Find the value of n if $C(n, 5) = C(n, 13)$ and hence find $C(n, 2)$. Answer: 18, 153	
Н	4	Find the value of n if $\binom{2n}{3} = 11\binom{n}{3}$ and hence find $\binom{n}{2}$. Answer: 6, 15	
С	5	Find the value of r if (a) $\binom{8}{r} = 28$, (b) $\binom{12}{r} = \binom{12}{r+2}$. Answer: 2 or 6, 5	
С	6	If $C(n-1,4)$, $C(n-1,5)$, $C(n-1,6)$ are in A.P., then find n. Answer : 15 or 8	
Н	7	Show that $C(2n, 2) = 2 \cdot C(n, 2) + n^2$.	
Н	8	In how many ways can a committee consisting of three men and two women be chosen from seven men and five women? Answer: 350	
Н	9	A bag contains 6 white, 5 red marbles. Find the number of ways four marbles can be drawn from the bag if (a) they can be any color, (b) two must be white and two red, (c) they must all be of the same color. Answer: 330, 150, 20	

С	10	Out of 12 employees, group of four trainees is to be sent for "Software testing and	
		QA" training of one month. (a) In how many ways can the four employees be	
		selected? (b) What if there are two employees who refuse to go together? (c)	
		What if there are two employees who want to go together? (d) What if there are	
		two employees who want to go together and there are two employees who refuse	
		to go together?	
		Answer: 495, 450, 255, 226	
Н	11	There are 2 white, 3 red, 4 green marbles. Three marbles are drawn. In how many	
		ways can this be done so that at least one red marble is selected?	
		Answer: 64	
Н	12	3 cards are chosen from a pack of 52 cards. In how many	
		a) ways can this be done?	
		b) ways can you select three cards so that all of them are face cards?	
		c) of the selections, all cards are of the same color?	
		d) of them all cards are of the same suit?	
		Answer: 22100, 220, 5200, 1144	
Н	13	A reception committee consisting of 6 students for the annual function of a	
		college is to be formed from 8 boys and 5 girls. In how many ways can we do it if	
		the committee is to contain (a) exactly four girls, (b) at most two girls, (c) at least	
		three girls?	
		Answer: 140, 1008, 708	

