國 立 清 華 大 學

電機工程學系研究所 碩士論文

Your Thesis Tile in English

論文中文標題

研究生:<中文名>(<English Name>)

指導教授: < 中文名 > 教授 (Prof. < English Name >)

中華民國一零三年六月

An Integrated Circuit Design for Silicon-Nanowire

Student: Young-Chen Chang

Advisor: Prof. Hsin Chen

Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, 30013, R.O.C.

Abstract

中 文 摘 要

關鍵詞:

Contents

Abstract

中文摘要

1	Int	roduction	1									
	1.1	Motivation	1									
	1.2	Design Description	1									
	1.3	Contribution to Knowledge	2									
2	Lite	erature Review	3									
3	Nanowire Structure and Measurement											
	3.1	Brief Description of Nanowire Structure	4									
	3.2	Measurement	5									
		3.2.1 External Factor and Experimental Protocol	5									
4	Integrated Circuitry Design											
5	More Experiment Result											
6	Discussion and Conclusions											

List of Figures

3.1	Nanowire	Structure.																									4
-----	----------	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Introduction

1.1 Motivation

Poly-silicon nanowire(SiNW) is an interesting and promising one-dimensional nanostructures. Many research of fabrication and electrical properties have been conducted [?]. It was first introduced to the biosensor field in 2001[?] and has become a promising candidate for various features such as high surface-to-volume ratio, ultra sensitivity, label-free electrical detection and real-time measurement.

Although there has been some great advances on nanowire structure design [?], the work of systems-level engineering is still insufficient. Systems designed for specific purpose can help the device to meet pratical needs.

Such as low noise

1.2 Design Description

In our biosensing system, nanowire is trated as a MOSFET with its drain-source current (I_{ds}) biased by a pmos current source. When a measurement event happens (such as a DNA concentration variation), the transconductance of nanowire changes and induces a current variance. This variance is converted into an amplified voltage signal. In the end of the measurement, a feedback circuit pulls up/down the nanowire gate-source voltage (V_{gs}) to set I_{ds} to the initial value.

1.3 Contribution to Knowledge

Literature Review

Nanowire Structure and

Measurement

3.1 Brief Description of Nanowire Structure

The nanowire we use is made by Prof.Yang's team (National Chiao Tong University)[?]. A sectional view of the nanowire structure is given below. The fabrication process is based on the poly-silicon sidewall spacer technique. The n-Type doped poly-SiNW FET has 2 to 10 poly-silicon channels. Each channel is 80nm in width and 2µm in length. Large portion of the channel surface is exposed to environment. The exposed region, through several post-process, capture the DNA probe and serve as the sensing site for DNA molecules.[?, ?]

Figure 3.1: Nanowire Structure

3.2 Measurement

Front Gate and Back Gate

Two gates are available: front-gate (liquid gate) and back-gate. We choose front-gate as the operation gate in spite of some advantages that back-gate has. One among those advantages is the ablility to lower the 1/f noise.[?] However, this only happens in a very high gate voltage, which is not practical in the integrated circuit design. Moreover, the front-gate induces larger drain-current. In other words, it has higher transconductance. And a high transconductance leads to a stronger feedback ability in our design.

3.2.1 External Factor and Experimental Protocol

Several conditions effect nanowire performance. According to Yang's team, the nanowire using thick gate dielectric and having non-regular cross-sectional shape result in uncertainties of fabrication.

Integrated Circuitry Design

More Experiment Result

Discussion and Conclusions

Bibliography

- [1] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. *Chem. Commun.*, pages 5749–5751, 2008.
- [2] C.-H. Lin, C.-H. Hung, C.-Y. Hsiao, H.-C. Lin, F.-H. Ko, and Y.-S. Yang. Polysilicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza dna. WOS:000267162200012, 2009.
- [3] I. Zadorozhnyi, S. Pud, S. Vitusevich, and M. Petrychuk. Features of the gate coupling effect in liquid-gated si nanowire fets. In *Noise and Fluctuations* (ICNF), 2015 International Conference on, pages 1–4, June 2015.

Acknowledgement

