

Assignment 4 Word2vec & Sentiment Analysis

- In this assignment, you will need to use word2vec models for sentiment analysis.
- Each sentence in our data has a sentiment label to represent its sentiment level.
- The sentiment level of the sentences are defined as five classes:
 - "very negative", "negative", "neutral", "positive", "very positive" which are represented by 0 to 4 in our task

- This task is separated as two subtasks:
- Word2vec: use word2vec model(Skip-gram in this task) to train your own word vectors, and visualize your word vectors.
 - The framework of word2vec model:
 - Calculate the loss function and gradients
 - **Train** your word vectors with gradient descent method.(SGD and BGD are also recommended)
 - **Visualize** your word vectors

• Sentiment analysis: use the average of all the word vectors in each sentence as its feature, train a classifier (e.g. softmax regression) with gradient descent method.

word prediction formula:

$$\hat{\boldsymbol{y}}_o = p(\boldsymbol{o} \mid \boldsymbol{c}) = \frac{\exp(\boldsymbol{u}_o^{\top} \boldsymbol{v}_c)}{\sum_{w=1}^{W} \exp(\boldsymbol{u}_w^{\top} \boldsymbol{v}_c)}$$

Softmax-CE loss function:

$$J_{softmax-CE}(\boldsymbol{o}, \boldsymbol{v}_c, \boldsymbol{U}) = CE(\boldsymbol{y}, \hat{\boldsymbol{y}})$$

negative sampling loss function:

$$J_{neg-sample}(\boldsymbol{o}, \boldsymbol{v}_c, \boldsymbol{U}) = -\log(\sigma(\boldsymbol{u}_o^{\top} \boldsymbol{v}_c)) - \sum_{k=1}^{K} \log(\sigma(-\boldsymbol{u}_k^{\top} \boldsymbol{v}_c))$$

Skip gram cost:

$$J_{\text{skip-gram}}(\text{word}_{c-m...c+m}) = \sum_{-m \le j \le m, j \ne 0} F(\boldsymbol{w}_{c+j}, \boldsymbol{v}_c)$$

- Dataset: Stanford Sentiment Treebank(SST) dataset
- 1. original_rt_snippets.txt contains 10,605 processed snippets from the original pool of Rotten Tomatoes HTML files. Please note that some snippet may contain multiple sentences.
- 2. dictionary.txt contains <u>all phrases</u> and <u>their ID</u>s, separated by a vertical line |
- 3. sentiment_labels.txt contains all phrase ids and the corresponding sentiment labels, separated by a vertical line.
- Note that you can recover the 5 classes by mapping the positivity probability using the following cut-offs:
- [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0]
- for very negative, negative, neutral, positive, very positive, respectively.
- Please note that phrase ids and sentence ids are not the same.

- 4. datasetSentences.txt contains the sentence index, followed by the sentence string separated by a tab. These are the sentences of the train/dev/test sets.
- 5. datasetSplit.txt contains the sentence index (corresponding to the index in datasetSentences.txt file) followed by the set label separated by a comma:

```
1 = train
```

$$2 = test$$

$$3 = dev$$

8,544, 2,210 and 1,101 instances for training, development and testing, respectively.

• Please note that the <u>datasetSentences.txt file has more sentences/lines than the original_rt_snippet.txt</u>.

- data_utils.py
 - This file is used to read data from our dataset.
- gradcheck.py
 - This file is used to check whether your grad is right or not.
- sgd.py
 - This file is used to run stochastic gradient descent.
- run.py
 - Train your own word vectors and visualize it.
 - This file can be edited if you want to change the hyperparameter for better performance

Provided Files(Your work)

word2vec.py

• This file is used to build your word2vec model, including calculation of your cost and gradient.

softmaxreg.py

 This file is used to train a softmax regression model, and the softmax regression part is given. Your work is to implement the feature extraction part.

sentiment.py

This file is used to complete the sentiment analysis mission.
 Your work is to find the best hyper parameter and regularization parameter.

- Generate a zip file and name it as "sid_homework-4.zip".
- It should include all python files mentioned above, a figure of the visualization of your word vectors named "word_vectors.png", a figure of the visualization of your sentiment analysis named "reg_acc.png", and a written report named "word2vec and sentiment analysis.pdf".
- Program: codes should be written in python.
- Report: the report needs to be written in English with no more than 4 pages.

- We will mark your homework based on the criteria mentioned on the "assignment4.pdf":
 - Gradient Calculating(30%)
 - Program (40%)
 - Report (30%)

- Submit your homework via E-learning system.
- Deadline: Mid-night at December 26th 2017
- If you have any questions about this homework, send email to TA or our course mailbox.

- TA in Charge
 - 顾云帆(<u>aleck16@163.com</u>)