Activité 3.7 – Utilisation de la radioactivité en médecine

Objectifs:

- Comprendre la notion de dose absorbée.
- Comprendre la notion de dose équivalente.
- Connaître quelques utilisation médicale diagnostique et curative.

Contexte : La radioactivité est utilisée tous les jours en médecine pour diagnostiquer ou pour soigner des maladies.

→ Quelles sont les doses radioactives utilisées pour diagnostiquer ou guérir des maladies ?

Document 1 – Dose absorbée et dose équivalente

La dose absorbée D se mesure en Gray noté Gy

$$D = \frac{\text{Énergie reçue pendant la désintégration (J)}}{\text{masse du corps recevant l'énergie (kg)}}$$

La dose absorbée mesure l'irradiation brute reçue, mais certaines particules sont plus dangereuses que d'autres à cause de leur masse. C'est pour ça qu'on introduit la dose équivalente H.

La dose équivalente H se mesure en sievert noté Sv

$$H = w_R \times D$$

où w_R est un facteur de pondération. w_R vaut 1 pour les radioactivités β^- , β^+ et γ . w_R vaut 20 pour la radioactivité α .

Document 3 - Réglementation française

En France, une dose efficace annuelle H est préconisé pour le grand public, en plus de la radio-activité naturelle et médicale.

Grand public	Personne travaillant avec des sources radioactives
$1\mathrm{mSv/an}$	$20\mathrm{mSv/an}$

Document 4 - Utilisation des radioéléments en médecine

Radioélément	Cible	Dose	Demi-vie	Application
Technétium : γ	Peu Spécifique	1 à 10 mSv	6 h	- Scintigraphie
Gallium : γ	Colon, poumons	$30 \mathrm{mSv}$	78 h	
Fluor : β^+ et γ	Détection des cellules cancéreuses. Neurologie.	7 mSv	110 min	PET par détection des rayon γ de haute énergie
Samarium β^-	Os, poumon, prostate, sein	2 Sv/séance	1,9 jours	Radiothérapie métabolique
Yttrium β^-	Foie		2,7 jours	metabonque

1 — On considère qu'une source radioactive est inoffensive demi-vie pour chaque radioélément utilisé.	
2 — Pourquoi utilise-t-on des éléments avec de courtes demi-	vie en médecine?
3 — Est-ce que les examens utilisant des radioéléments sont	dangereux ?
4 — Comparer les doses reçues lors d'un examen diagnostiqu	
5 — Chercher comment le personnel médical se protège des r	radiations.