Wiskundige structuren

Opgave 1

a)

Te bewijzen:

$$-(a+b) = (-a) + (-b)$$

Bewijs. Allereerst moeten we bewijzen dat er slechts één $x \in \mathbb{Z}$ zodanig dat $y \in \mathbb{Z}$ geldt x + y = 0Neem $x + y_1 = 0$ en $x + y_2 = 0$ dan:

$$y_1 = y_1 + 0$$
 (0 is het neutrale element)
 $= y_1 + (x + y_2)$
 $= (y_1 + x) + y_2$ (\mathbb{Z} is associatief)
 $= 0 + y_2$
 $= y_2$

Dit betekent dus dat elk element een unieke inverse heeft, en dus:

$$a + (-a) + b + (-b) = 0$$

$$a + b + (-a) + (-b) = 0 \quad (\mathbb{Z} \text{ is commutatief})$$

$$(a + b) + (-a) + (-b) = 0$$

$$(a + b) + -(a + b) + (-a) + (-b) = -(a + b) \quad (-(a + b) \text{ is de inverse van } (a + b))$$

$$0 + (-a) + (-b) = -(a + b)$$

$$(-a) + (-b) = -(a + b)$$

Hieruit volgt dus dat:

$$-(a+b) = (-a) + (-b)$$

b)

Te bewijzen:

$$-0 = 0$$

Bewijs. Uit opgave a hebben we bewezen dat elke element een unieke inverse heeft, en dus:

$$-0 = -0 + 0$$
 (\mathbb{Z} heeft 0 als neutrale element)
= $0 + (-0)$ (\mathbb{Z} is commutatief)
= 0

c)

Te bewijzen:

$$(-ab) = (-a)b$$

Lemma 1. Voor alle $x \in \mathbb{Z} \exists ! y \in \mathbb{Z}$ zodanig dat x + y = 0

Lemma 2. Voor alle $x \in \mathbb{Z}$ geldt x(0) = 0

Bewijs. Laat x = y(0) dan:

$$x+x=y(0)+y(0)$$

$$x+x=y(0+0) \quad \text{(Gebruik distributie in } \mathbb{Z}\text{)}$$

$$x+x=y(0)$$

$$x+x=x$$

$$x+x+(-x)=x+(-x) \quad \text{(Voeg de inverse van } x \text{ toe)}$$

$$x+0=0 \quad \text{(0 is het neutrale element)}$$

$$x=0$$

Hieruit volgt dus dat y(0) = 0.

Bewijs. Veronderstel dat:

$$ab + (-a)b = b(a + (-a))$$
 (Gebruik distributie in \mathbb{Z})
= $b(0)$ (Vanuit Lemma 1 en Lemma 2)
= 0

Door Lemma 1 bestaat er precies één additieve inverse en dus (-ab) = (-a)b.

 \mathbf{d}

Te bewijzen:

$$(-a) \cdot (-b) = a \cdot b$$

Bewijs. Gebruik Lemma 1 zodat je kan schrijven:

$$(-a)\cdot(-b)+-(a\cdot b)=(-a)((-b)+b)$$
 (Volgens ditributiviteit van \mathbb{Z})
= $(-a)(0)$ (Gebruik Lemma 2)
= 0

Volgens Lemma 1 bestaat er slechts één inverse en dus moet $(-a) \cdot (-b) = (a \cdot b)$

Opgave 2

Bewijs. Stel dat 1=0, en neem $a\in\mathbb{Z}$ waarbij $a\neq 1$ en $a\neq 0$ dan:

$$a=a\cdot 1$$
 (Het neutrale element in vermedigvuldiging)
= $a\cdot 0$ (Vanuit Lemma 2)
= 0

Hieruit volgt dus $\forall a \in \mathbb{Z} : a = 0$, en dus $\mathbb{Z} = \{0\}$, maar volgens axioma $\mathbb{Z}9$ is \mathbb{Z} niet eindig, en dus tegenspraak.

Opgave 3

Bewijs. Vanuit Lemma 1 stellen we:

$$ac - (bc) = 0$$

$$ac + -(bc) = ac + (-b)c$$
 (Vanuit Opgave 1(c))
= $c(a + (-b))$ (distributie van \mathbb{Z})

Merk op dat $c \neq 0,$ en dan is er slechts één oplossing mogelijk:

$$(a + (-b)) = 0$$
$$a + (-b) + b = b$$
$$a + 0 = b$$
$$a = b$$

Opgave 12

MOET P(A) P(OMEGA)