Durée: 1H00

Tous documents papier autorisés. Appareils électroniques non autorisés.

- 1. On considère sur $\Sigma = \{a,b\}$ le langage L des mots dont la première lettre et la dernière lettre sont différentes.
 - a) Donnez une expression rationnelle pour décrire L.
 - b) Donnez une expression rationnelle pour décrire le complément de L.
 - c) Dessinez un automate non déterministe qui reconnait L.
 - d) Déterminisez l'automate précédent.
- 2. L'utilisation du lemme de l'étoile n'est pas le seul moyen de montrer la non-rationalité de certains langages. Nous allons étudier ici le *non-pumping lemma*.
 - a) Rappelez le corollaire du théorème de Myhill Nerode vu en cours.
 - b) Soit Σ un alphabet, $L \subset \Sigma^*$ un langage rationnel et w un mot de Σ^* . On rappelle que [u] dénote la classe d'équivalence du mot u suivant le langage L. Montrez qu'il existe deux entiers m et n distincts strictement positifs tels que [w^m] = [wⁿ]. Déduisez-en le théorème :

Soit $L \subset \Sigma^*$ un langage rationnel. Pour tout mot w de Σ^* , il existe deux entiers m > n > 0 tels que $\forall u \in \Sigma^*$, $w^m u \in L$ si et seulement si $w^n u \in L$.

- c) Utilisez le théorème précédent pour montrer que les langages suivants ne sont pas rationnels :
 - $L_1 = \{a^n b^n \mid n \ge 0\}$
 - $L_2 = \{uu^R w \mid u, w \in \{a,b\}^*\}$
- 3. Soit la grammaire algébrique $G = (V, \Sigma, R, S)$ avec

$$V = \{S, X\}, \Sigma = \{a, b\}, R = \{S \rightarrow XbX, X \rightarrow S \mid XaXbX \mid XbXaX \mid e\}$$

- a) Quel est langage L généré par G ? Exprimez votre réponse de manière formelle ou non. Prouvez votre réponse (rappel : il y a deux démonstrations à faire).
- b) Montrez que le langage L' = $\{a^mb^n \mid m \neq n\}$ est algébrique.
- c) Montrez que la classe des langages rationnels est stable par différence ensembliste.
- d) Déduisez de ce qui précède que L' est non rationnel.