MCDB 1150-003 FINAL 2015	NAME:	

Directions: You must take the final. There are a total of 25 two-part questions. Each question is worth a maximum of 6 points, for 150 points total on the final.

YOU HAVE THE OPTION OF TAKING one, two, or all three "I know it now" (IKIN™) tests. **Each is worth 25 points** and consists of 5 questions, each worth 5 points each.

If you want to take these tests you must check here or we will not grade it!

ı	am	ta	Ŀir	2	
	alli	ιa	NII	ıu	

- □ IKIN exam 1 (for midterm 1)
- □ IKIN exam 2 (for midterm 2)
- □ IKIN exam 3 (for midterm 3)

FINAL COURSE GRADES:

midterm 1 exam _____ + IKIN1 ____ = ___ (max 100)

midterm 2 exam _____ + IKIN2 ____ = ___ (max 100)

midterm 3 exam ____ + IKIN3 ___ = ___ (max 100)

midterm 4 + final exam _____ (max 150)

extra credit _____ (5 points)

NB ____ + beSocratic ____ (max 50 points)

____ percent

500 total possible points

total

_____ letter grade

GOOD LUCK!

 1. You have isolated and characterized a new organism, a type of fern; its ger times the size of the human genome. This means that each of its somatic cells □ A. has 20 times as many genes as a human somatic cell □ B. has 20 times as many different proteins as a human somatic cell 	
C. has 20 times as much DNA as a human somatic cell	□ no idea
☐ D. the answer would depend on how the genome is organized	
Explain why genome size is not a good measure of an organism's genetic compl	exity.
2. You compare two related species whose common ancestor lived approxima years ago; one is an obligate parasite of a single kangaroo species while the other and is found in a wide range of environments. You would be justified in concluding A. the obligate parasite had a smaller genome and few genes	er is free living
☐ B. both organisms have similar numbers of genes	□ no idea
☐ C. the free living species would have a smaller genome and fewer genes Explain the logic of your answer.	
3. PICK THE WRONG ANSWER: Consider the movement of a transposon from o	one place in
the genome to another. Its movement could lead to a mutation in a host gene by.	•
☐ A. disrupting the coding region of the gene in which it inserts	□ no idea
☐ B. disrupting the regulatory region of the gene in which it inserts	
C. inactivating the enzymes required for transposon movement	
Explain why the wrong choice is wrong	

4. Scientists estimate that, in humans, less than less that 10% of genomic DNA encodes genes (both regulatory and transcribed regions). To be completely certain that a particular		
region of DNA is not part of a gene, you would need to		
□ A. examine whether it contains an open-reading frame	□ no idea	
$\hfill \square$ B. determine whether there are variations of the sequence within the human	population	
C. determine the effects of mutations in that region on the phenotype of the	organisms	
Explain the logic of your choice.		
5. A region of the genome that contains four genes is duplicated and moves in position within the genome. These genes are now	nto a new	
☐ A. orthologs of the original genes		
B. paralogs of the original genes		
☐ C. alleles of the original	□ no idea	
Explain why the two wrong answers are wrong or irrelevant.		
Explain my me me meng anemere are meng er meletam		
6 After a gane has been duplicated		
6. After a gene has been duplicated □ A. one gene will inevitably be inactivated by mutation		
☐ B. the two genes are subject to the same selective pressures	□ no idea	
C. one gene can evolve independently and assume distinct functions	- no idea	
Explain the logic of your choice.		
Explain the logic of your choice.		

 7. The ability to import DNA into a cell and use it as genetic material, as opposed to the basis of A. mutation B. vertical inheritance 	food, is
	idea
□ C. horizontal gene transfer □ no Explain how this would look in an evolutionary context. Feel free to use a phylogeny to explain your answer.	
8. PICK THE WRONG ANSWER: Consider the process by a bacterial virus imports DNA into its head. Given what you know this is likely A. to be a spontaneous, thermodynamically favorable process B. to be a thermodynamically unfavorable process requiring coupling to an process such as ATP hydrolysis C. to involve specific proteins, encoded by the virus on idea Explain why the wrong answer is wrong.	
9. A bacterial virus (a bacteriophage) can move DNA from one cell to another. The of DNA such a virus can move is limited by the space within its capsid (head). We might predict that if a particular virus has lots of non-viral DNA in its head it would A. not be able to replicate when it infects another cell B. be able to replicate perfectly well when if infects another cell C. produce fewer viruses when it infects another cell Explain the logic of your answer	

virus has a chance to viral (phage) infection by a bacterium is that it will kill itse virus has a chance to reproduce. This also "kills" the virus. This type of behavior example of A. natural selection	
☐ B. social selection ☐ C. sexual selection Explain the evolutionary benefit of this type of behavior	□ no idea
11. In Griffith's studies, bacteria with the rough (R) non-virulent phenotype were	e transformed
into bacteria with the smooth (S) virulent phenotype. What is going on? A. horizontal gene transfer of a wild type gene B. evolution of a new wild type gene	
☐ C. a change in gene expression with the R type cells Explain the logic of your answer.	□ no idea
12. In contrast to mitosis, during meiosis new alleles can be generated when□ A. DNA is replicated	
 □ B. a cross-over event over occurs between genes □ C. a cross-over event occurs within a gene Explain why the wrong answers fail to generate a new allele. 	□ no idea

13. In contrast to mutations that occur in somatic cells, mutations that occur the germ line	in the cells of
☐ A. can be passed to the next generation of organisms	
☐ B. are efficiently repaired	
☐ C. do not influence the phenotype of the organism	□ no idea
Explain the logic of your answer.	
14. Particularly in small populations, the processes of meiosis and gamete	fusion can
influence the frequency of alleles in the next generation because	
☐ A. all alleles are passed from one generation to the next	□ no idea
☐ B. which alleles are passed on is random, beneficial alleles can be lost	
☐ C. these processes do not influence allele frequencies, only natural select	ion does that
Explain the logic of your answer.	
15. Based on genomic sequence data, you discover a gene present in barna	
that is over 90% identical in encoded polypeptide sequence. These two genes	-
 A. be the result of random genetic drift B. reflect common ancestry and evolutionary conservation 	□ no idea
☐ C. unrelated, with similarities due to analogous functions	
☐ D. the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of mutations occurred independently in the ancestors of the same set of the sam	he two species
Explain the logic of your answer.	

 16. Consider the lac operon, its expression is regulated both positively and negatively. Its positive regulation (by CAP) insures that □ no idea □ A. the operon is off when energy is abundant □ B. the operon turns on when lactose is present □ C. the operon is off if lactose is absent 	permease permease permease lactose β-galactosidase allolactone inactive repressor lact O3 A O1 O2
Explain the logic of your answer.	allolactone + repressor CAP CAP CAMP
 17. Negative regulation of the operon by the lactos □ A. the operon is off when energy is abundant □ B. the operon turns on when lactose is present □ C. the operon is off if lactose is absent 	se repressor insures that
Explain the logic of your answer.	
 18. The regulation of the activity of both the lac repeated example of □ A. post-translational modification □ B. proteolytic processing □ C. regulation of protein half-life 	pressor and the CAP proteins is an
D. allosteric regulation Explain the logic of your answer.	□ no idea

lactose

 19. A mutation occurs that disrupts the ability of lac repressor to lac operon, the mutant cells would □ A. always express the lac operon □ B. never express the lac operon □ C. express the lac operon whenever there were low energy leading to the lactory of the lact	
☐ D. lead to the death of the cell when lactose was present Explain the logic of your answer.	□ no idea
Explain the logic of your answer.	
 20. When starving, cells of the cellular slime mold <i>Dictyostelium</i> aggregate to form a multicellular slug that can differentiates into stalk cells that die and spore cells that can reproduce. How might a mutation that creates a social cheater influence cellular behavior? A. Cheater cells would not form the stalk. B. Cheater cells would divide more frequently. C. Cheater cells would not form spores. no idea Explain the logic of your choice. 	
	mutations can avoid solf-
21. PICK THE WRONG ANSWER: If individuals with "cheater" sacrifice and insure their survival and enhance their reproductive sthat social processes can be maintained evolutionarily?	
 □ A. Good behavior is its own reward. □ B. A certain level of social interactions may be essential to rep □ C. Populations may be competing with one another and social outcome (that who wins) of this competition. 	
D. Enhanced social interaction is a common outcome of rando	om mutation and natural
selection Explain why the wrong choice is wrong.	

24. As a general rule you would predict the greater the concentration of a spec	ific
transcription factor is present in a cell, the	
$\hfill\Box$ the more noisy the target genes it regulates would be	□ no idea
the less noisy the target genes it regulates would be	
the noisiness of gene expression is not influenced by the concentration of reg	gulatory
factors	
Explain the logic of your answer.	