Package 'ClassExample'

March 9, 2018

Type Package		
Title Functions from Homes	work 2	
Version 0.1.0		
Author Dr. Alexandra Binde	er	
Maintainer Dr. Alexandra F	Binder <abinder@ucla.edu></abinder@ucla.edu>	
_	at it does (maybe more than one line) indenting paragraphs within the Description.	
License UCLA		
Encoding UTF-8		
LazyData true		
Imports ggplot2, dplyr		
RoxygenNote 6.0.1		
		1 2 4
movingaverage	Moving Average	_
Description We created a function that	at calculates a moving average of a specified window width across a vec	tor.
Usage		
<pre>movingaverage(x = x,</pre>	, side = "both", numbertoside = NULL)	
	1	

2 SimTtestPower

Arguments

x a vector for which you will be calculating the moving average.

side whether you want to average elements on the left, right, or both sides; should

accept the following values: "left", "right", "both".

numbertoside the number of elements to the side of your index element that you want to in-

clude in the moving average.

Details

To create this function, we only used methods that were introduced in either Lecture 1 or Lecture 2.

Value

A list consisting of

Input input vector

Output output vector of the moving average

Examples

```
inputdata<-c(0,2.457,3.878,3.663,1.90,-0.658,-2.943,-3.986,-3.349,-1.299, 1.299,3.349,3.986,2.943,0.658,-1.904,-3.663,-3.878,-2.457,0) moving average (x=inputdata,number to side=3, side="left")
```

SimTtestPower

Two-Sample Power Calculation Based on Simulation

Description

Power is the probability we reject the null hypothesis given it is false. Building on this definition, create a function that uses simulations to estimate power for a two-sample T-test.

Usage

```
SimTtestPower(Var1mean = NULL, Var2mean = NULL, Var1sd = NULL,
   Var2sd = NULL, Var1samplesize = NULL, Var2samplesize = NULL,
   nsim = 100, alphalevel = 0.05)
```

Arguments

Var1mean Variable 1 mean Var2mean Variable 2 mean

Variable 1 standard deviation
Var2sd Variable 2 standard deviation
Var1samplesize Variable 1 sample size
Var2samplesize Variable 2 sample size

nsim Number of simulations alphalevel alpha-level (default=0.05)

SimTtestPower 3

Details

First, you will need to simulate two normally distributed variables, each with a distinct sample size, mean, and standard deviation, and perform a T-test. For that single simulation, evaluate if we would reject the null hypothesis given a specific alpha-level. Now repeat this simulation many times. Power can then be estimated as the proportion of simulations for which we rejected the null hypothesis.

Value

Empirical power calculation

Examples

SimTtestPower(Var1mean=20, Var2mean=22, Var1sd=4, Var2sd=6, Var1samplesize=40, Var2samplesize=40, nsim=10000, alphalevel=0.05)

Index

 ${\tt movingaverage}, \\ 1$

SimTtestPower, 2