CS171: Cryptography

Lecture 14

Sanjam Garg

Cryptographic Group

- If p and q are primes such that 2q = p 1 and let $g \in Z_p^*$ be an elements of order q. Let $H = \langle g \rangle$ be the group of order q.
- Example, p = 23 and q = 11
- $Z_p^* = \{1, 2, ... 22\}$ and $a \cdot b = ab \ mod \ 23$

$\langle g \rangle$

- $Z_p^* = \{1, 2, \dots 22\}$
- $\langle 1 \rangle = \{1\}$
- $\langle 2 \rangle = \{2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 2^{11} = 1\}$
- $\langle 5 \rangle = \{5, 2, 10, 4, 20, 8, 17, 16, 11, 12, \dots 5^{22} = 1\}$
- $\langle 22 \rangle = \{22, 22^2 = 1\}$
- Pick any g such that $g^{11} = 1$.
- For example, $H = \langle 2 \rangle$ is of prime order
- For hardness use large primes.

The Discrete-Log Problem

- Let $\mathcal{G}(1^n)$ be a PPT algorithm that generates description of a cyclic group, i.e., order q (where |q| = n) and a generator g.
- Unique bit representation for each element and group operation can be performed in time polynomial in n.
- Sampling a uniform group element: Sample $x \leftarrow Z_q$ and compute g^x .

DLOG Problem

$$DLog_{A,G}(n)$$

- 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- 2. Pick uniform $h \in G$.
- 3. A is given (G, g, q, h) and it outputs x.
- 4. Output 1 if $g^x = h$ and 0 otherwise

Discrete-Log Problem is hard relative to \mathcal{G} if

 $\forall PPT A \exists negl \text{ such that:}$

$$\left| \Pr \left[DLog_{A,\mathcal{G}}(n) = 1 \right] \right| \le negl(n).$$

The Diffie-Hellman Problems

• The computational variant: given g^x and g^y compute g^{xy}

• The decisional variant: given g^x and g^y distinguish between g^{xy} and a random group element.

Computational Diffie-Hellman Problem

$$CDH_{A,G}(n)$$

- 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- 2. $a, b \leftarrow Z_a^*$.
- 3. A is given (G, g, q, g^a, g^b) and it outputs h.
- 4. Output 1 if $g^{ab} = h$ and 0 otherwise

CDH is hard relative to *9* if

 $\forall PPT A \exists negl \text{ such that:}$

$$\left| \Pr \left[CDH_{A,\mathcal{G}}(n) = 1 \right] \right| \le negl(n).$$

Decisional Diffie-Hellman Problem

$DDH_{A,G}(n)$

- 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- 2. $a, b, r \leftarrow Z_q^*$. Sample a uniform bit c.
- 3. A is given $(G, g, q, g^a, g^b, g^{ab+cr})$ and it outputs c'.
- 4. Output 1 if c = c' and 0 otherwise

DDH is hard relative to \mathcal{G} if $\forall PPT A \exists negl \text{ such that:}$ $|Pr[DDH_{A,\mathcal{G}}(n) = 1]| \leq \frac{1}{2} + \text{negl}(n).$

Public-Key Cryptography

- Public-Key Encryption
- Digital Signatures

Public-Key Encryption

Public-Key Encryption vs Private-Key Encryption

 Public-key encryption is strictly stronger than private-key encryption

- Then why even use private-key encryption?
 - Public-key encryption is roughly 2-3 orders of magnitude slower than private-key encryption

Public-Key Encryption

- A public-key encryption scheme is a triple of PPT algorithms (Gen, Enc, Dec) such that:
- 1. $Gen(1^n) \rightarrow (pk, sk)$
- 2. $Enc(pk, m) \rightarrow c$
- 3. $Dec(sk,c) \rightarrow m/\bot$
- Correctness: For all (pk, sk) output by $Gen(1^n)$, we have that \forall (legal) m, $Dec\left(sk, Enc(pk, m)\right) = m$
- Security: EAV-security, CPA-security?

EAV Security

$PubK_{A,\Pi}^{eav}(n)$

- 1. $(pk, sk) \leftarrow G(1^n)$ and give pk to A.
- 2. A outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc(pk, m_b)$
- 4. c is given to A and it outputs b'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable in the presence of an eavesdropper, or is *EAV-secure* if

∀ PPT *A* it holds that:

$$\Pr[\text{PubK}_{A,\Pi}^{\text{eav}} = 1] \leq \frac{1}{2} + \text{negl(n)}$$

EAV-security vs CPA Security

 In the public-key setting the two notions are identical.

 Since, given the public-key, encryption can be performed (without any secret values)

Hence, encryption must be randomized

What about security of multiple messages?

 CPA-security implies security for encrypting multiple messages (same as the private-key setting)

• $Enc(pk, m_1 ... m_n)$: $Enc(pk, m_1)$... $Enc(pk, m_n)$

Proof via a direct hybrid argument

CCA Security (A bigger concern in the PKE setting)

- Attacker can obtain decryptions of ciphertexts of its choice itself
- Attacker can more easily come up with illegitimate ciphertexts (cannot have a MAC on a ciphertext)
- Malleability: An attacker can given a ciphertext c encrypting a message m could obtain a ciphertext c' of a related message m' (without knowing m' itself)

CCA Security •••

Much harder in the PKE setting.

$PubK_{A,\Pi}^{CCA}(n)$

- 1. $(pk, sk) \leftarrow G(1^n)$ and give pk to A.
- 2. $A^{Dec(sk,\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 3. $b \leftarrow \{0,1\}, c^* \leftarrow Enc(pk, m_b)$
- 4. c is given to $A^{Dec(sk,\cdot)}$ and it outputs b' (query c^* not allowed)
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable in the presence of a CCA attacker, or is *CCA-secure* if

∀ PPT *A* it holds that:

$$\Pr[\text{PubK}_{A,\Pi}^{\text{cca}} = 1] \le \frac{1}{2} + \text{negl(n)}$$

Construction of PKE

ElGamal Encryption

Correctness?

- 1. $Gen(1^n) \rightarrow (pk, sk)$
 - 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
 - 2. Sample $x \leftarrow Z_q$ and set $h = g^x$
 - 3. Set pk = (G, g, q, h) and sk = x.
- 2. $Enc(pk, m \in G) \to c = (c_1, c_2)$
 - 1. Parse pk = (G, g, q, h)
 - 2. Sample $r \leftarrow Z_q$ and set $c_1 = g^r$ and $c_2 = m \cdot h^r$
- 3. $Dec(sk,c) \rightarrow m/\bot$
 - 1. Parse $c = (c_1, c_2)$
 - 2. Output $\frac{c_2}{c_1^r}$

Security based on DDH!

Encrypting long messages

- Encrypting block-by-block is inefficient
 - Ciphertext expands for each block
 - Public-key encryption is "expensive"

Anything better?

Hybrid Encryption

 \bullet Use public-key encryption to set up a shared secret-key k which is then used to encrypt the message itself

Benefits:

- The inefficiency of the public-key encryption is not the bottleneck; i.e. we get amortized efficiency as the message is large
- The ciphertext expansion over the message is small

The *functionality* of public-key encryption at the (asymptotic) *efficiency* of private-key encryption!

Hybrid Encryption: More Formally

- Let Π be a public-key scheme, and let Π' be a private-key scheme
- Define $\Pi_{h\nu}$ as follows:
 - $Gen_{hy} = Gen_{\Pi}$
 - $Enc_{hy}(pk,m)$
 - 1. Sample $k \leftarrow \{0,1\}^n$
 - 2. $c \leftarrow Enc(pk, k)$
 - 3. $c' \leftarrow Enc'_k(m)$
 - 4. Output (c, c')
 - $Dec_{hy}(sk,(c,c'))$
 - 1. Decrypt c to get k
 - 2. Use k to decrypt c and recover m.

Security of hybrid encryption

- If Π and Π' are CPA secure, then Π_{hy} is also CPA secure.
 - In fact, even if Π' is EAV secure

• If Π and Π' are CCA secure, then Π_{hy} is also CCA secure.

ElGamal Hybrid Encryption

- ullet The private key k needs to be encoded as a group element
 - Not clear how to do it!
- Alternative: Rather than encryption a specific key k, encrypt a random group element M
 - And derive the key as k = H(M)

Key Encapsulation Mechanism

- Lesson: Do not need CPA security for hybrid encryption
- Sufficient to have a key encapsulation mechanism, or KEM for short
 - Takes as input a public-key and outputs a ciphertext c and a key k encapsulated in c
 - Correctness: k can be recovered from c using sk
 - Security: k is indistinguishable from uniform given pk and c (analogues of CPA/CCA security)
- Can be used to construct PKE by combining with private-key encryption

Hybrid Encryption (PKE vs KEM)

Security

- If Π (KEM) and Π' are CPA secure, then Π_{hy} is also CPA secure.
 - In fact, even if Π' is EAV secure
- If Π (KEM) and Π' are CCA secure, then Π_{hv} is also CCA secure.

KEM based on ElGamal

- 1. $Gen(1^n) \rightarrow (pk, sk)$
 - 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
 - 2. Sample $x \leftarrow Z_q$ and set $h = g^x$
 - 3. Set pk = (G, g, q, h) and sk = x.
- 2. $Encap(pk) \rightarrow (c,k)$
 - 1. Parse pk = (G, g, q, h)
 - 2. Sample $r \leftarrow Z_q$ and set $c = g^r$ and $k = H(h^r)$
- 3. $Decap(sk,c) \rightarrow k$
 - 1. Output $k = H(c^{sk})$

KEM security based on DDH and H can extract the randomness in the input

Efficiency

For short messages: Directly use PKE

- For long messages: Use hybrid encryption
 - This is how things are done in practice

Is ElGamal Encryption CCA Secure?

- ElGamal Ciphertext $c_1 = g^r$ and $c_2 = m \cdot h^r$
- Given this ciphertext construct another ciphertext that encrypts the same message.
- Sample uniform s.
- $c_1' = c_1 \cdot g^s$ and $c_2' = c_2 \cdot h^r$

Thank You!