ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СП6ГУ)

Образовательная программа бакалавриата "Математика"

Отчет о практике

на тему

Локальная Комбинаторная Формула и класс Эйлера

Выполнил студент 2 курса бакалавриата группа 21.Б01-мкн Кукушкин Максим Алексеевич

Научный руководитель: Профессор, Панина Гаянэ Юрьевна

 ${
m Caнкт-} \Pi$ етербург 2023

Содержание

Вве	едение	3
1.	Основные определения и известные результаты	3
2.	Некоторые из решённых упражнений	4
Сп	исок литературы	7

Введение

В ходе учебной практики мною были изучены различные методы работы с триангулированными расслоениями над симплициальными комплексами и гладкими многообразиями. Были предприняты попытки в получении новых результатов в задаче о перечислении триангулированных расслоений над многогранниками, частные случаи которой изучались в работах [2, 3]. Далее приведён краткий реферат изученного материала и несколько решённых упражнений.

1. Основные определения и известные результаты

Определение 1. Векторным расслоением ранга k будем называть тройку $E \xrightarrow{\pi} B$, где E – тотальное пространство, B – база расслоения и π – непрерывное отображение:

- $\forall x \in B \colon \pi^{-1}(x)$ слой над x снабжён структурой векторного пространства размерности k
- $\forall x \in B \colon \exists U(x) \colon$ расслоение $\pi^{-1}(U) \to U$ изоморфно тривиальному

Определение 2. Два расслоения $E \xrightarrow{\pi} B, E' \xrightarrow{\pi'} B$ с общей базой *изоморфны*, если есть биекция $\varphi \colon E \to E'$:

- \bullet φ гомеоморфизм
- φ : $\pi^{-1}(x) \mapsto \pi^{-1}(x) \varphi$ действует послойно
- $\varphi|_{\pi^{-1}(x)}$ изоморфизм векторных пространств

Пример 1. $B \times \mathbb{R}^k \xrightarrow{\pi} B, (x, v) \mapsto x$ – тривиальное расслоение

Замечание. Аналогичным образом вводится понятие расслоения со слоем S^1 с тем отличием, что на каждом слое (гомеоморфном окружности) задано эффективное действие группы $S^1 = \{x \colon |x| = 1, x \in \mathbb{C}\}.$

Замечание. Всякое послойно ориентированное расслоение со слоем окружность происходит из послойно ориентированного векторного расслоения ранга два, и наоборот. В одну сторону это можно увидеть, как сужение в каждом экземпляре плоскости \mathbb{R}^2 на каноническую единичную окружность S^1 . В обратную (менее строго) – как заклеивание окружности плоскостью.

Определение 3. Сечением данного расслоения $E \xrightarrow{\pi} B$ будем называть непрерывное отображение $s \colon B \to E$ такое, что: $\forall x \in B \colon s(x) \in \pi^{-1}(x)$

Замечание. Локально, сечение – это просто график функции, ибо $s\colon U\to U\times\mathbb{R}^k, x\mapsto (x,f(x)), f\colon U\to\mathbb{R}^k$ в некоторой окрестности U(x)

Пример 2. У векторного расслоения есть выделенное нулевое сечение $s(x) \equiv 0$, задающее вложение базы в тотальное пространство.

 $\it 3ame \, uahue. \, A$ налогичным образом вводится понятие сечения расслоения со слоем $\it S^1.$

Лемма 1. Пусть $E \xrightarrow{\pi} B$ — послойно ориентированное векторное расслоение ранга 2 (над поверхностью). Тогда $\pi \cong$ тривиальному расслоению $\iff \exists$ непрерывное нигде не нулевое сечение s.

Лемма 2. Пусть $E \xrightarrow{\pi} B$ – послойно ориентированное S^1 -расслоение. Тогда $\pi \cong$ тривиальному расслоению $\iff \exists$ глобальное непрерывное сечение s.

Замечание. Для неориентированных расслоений оба утверждения неверны.

Определение 4. У послойно ориентированного расслоения ранга 2 над базой *ориентигрованная сфера с ручками* есть *Числом Эйлера*. Его можно определить так. Пусть непрерывное сечение s задано на всей базе B. У него конечное число нулей, и можно считать, что все нули трансверсальны. Посчитаем число нулей, с учётом ориентации. Это и есть число Эйлера $e \in \mathbb{Z}$

3амечание. У неориентированного расслоения тоже есть число Эйлера, но оно принадлежит $\mathbb{Z}2\mathbb{Z}$. Определение аналогично

Теорема 1. Определение класса Эйлера корректно: он не зависит от выбора сечения.

Теорема 2. Два ориентированных расслоения над базой ориентированная сфера с ручками изоморфны тогда и только тогда, когда у них совпадают числа Эйлера.

Замечание. На самом деле, число Эйлера – это представитель класса Эйлера $e \in H^2(B, \mathbb{Z})$

2. НЕКОТОРЫЕ ИЗ РЕШЁННЫХ УПРАЖНЕНИЙ

Предложение 1. Рассмотрим тривиальное расслоение $S^2 \times \mathbb{R}^2$ и профакторизуем его по отношению $(x,v) \sim (-x,-v)$. Полученное расслоение имеет ненулевой класс Эйлера, и следовательно, нетривиально.

Доказательство. Обозначим $\rho \colon S^2 \times \mathbb{R}^2 \to S^2, (x,v) \mapsto x$ — тривиальное векторное расслоение ранга 2.

Поскольку склейка $(x,v) \sim (x,-v)$ линейна, она индуцирует новое расслоение $\pi \colon S^2 \times \mathbb{R}^2/\sim \to S^2/\sim = \mathbb{RP}^2$. Заметим, что наша база – проективная плоскость – неориентированная поверхность. Значит $H^2(\mathbb{RP}^2,\mathbb{Z})=0$, а потому класс Эйлера мы будем искать в качестве элемента $H^2(\mathbb{RP}^2,\mathbb{Z}/2\mathbb{Z})\cong \mathbb{Z}/2\mathbb{Z}$.

Вспомним, что класс Эйлера можно считать как число нулей (в нашем случае, по модулю 2) произвольного непрерывного сечения $s: \mathbb{RP}^2 \to S^2 \times \mathbb{R}^2/\sim$. Представим сферу как $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ и построим сначала $\tilde{s}: S^2 \to S^2 \times \mathbb{R}^2$ как график ортогональной проекции $f: S^2 \to \mathbb{R}^2$, $f: x \mapsto pr(x)$, $f(x_1, x_2, x_3) := (x_1, x_2, 0) \sim (x_1, x_2) \in \mathbb{R}^2$. То есть $\tilde{s}(x) := (x, f(x))$.

В силу нечётности функции f отображение \tilde{s} уважает отношение эквивалентности \sim , т.е. индуцирует корректно определённое непрерывное сечение $s\colon S^2/\sim \to S^2\times \mathbb{R}^2/\sim$, $s(\overline{x}):=\tilde{s}(x)$. Нули f — в точности северный и южный полюсы сферы N=(0,0,1), S=(0,0,-1). Но после факторизации $\overline{N}=\overline{S}$, и следовательно s имеет ровно один ноль $\overline{N}=\overline{S}$. Таким образом, $e(\pi)=1$ и полученное сечение нетривиально.

Замечание. Нетрудно видеть, что данное доказательство обобщается на случай произвольной размерности. Действительно, для $S^n \times \mathbb{R}^n \to S^n$ достаточно взять

$$f(x_1,\ldots,x_n,x_{n+1}) := (x_1,\ldots,x_n,0)$$

.

Предложение 2. *Класс эйлера касательного расслоения к тору равен 0.*

Доказательство. Пускай $TM=\coprod_{x\in M}T_xM,TM\xrightarrow{\pi}M,\pi(x,v):=x,$ где $v\in T_xM$ — касательное расслоение к тору $T^2:=M.$

Как мы знаем, класс эйлера $e(TM,\pi,M) \in H^2(M,\mathbb{Z})$ послойно ориентированного касательного расслоения над ориентированной замкнутой поверхностью с ручками совпадает с её эйлеровой характеристикой, т.е. $e(TM,\pi,M)=\chi(M)=|V|-|E|+|F|=0$.

Можно, однако, увидеть это напрямую. Выбрать непрерывное сечение $s: M \to TM$ означает отметить в каждом слое $\pi^{-1}(x)$ по точке непрерывным образом. Иными словами, необходимо задать на поверхности гладкое векторное поле. Один из способов сделать это таков: расслоить тор на окружности (например, параллели) и взять в каждой точке по вектору скорости данной параллели.

Другой способ реализовать ту же идею: представить поверхность как $M = \mathbb{R}^2/\mathbb{Z}^2$. Тогда достаточно придумать векторное поле V на \mathbb{R}^2 , инвариантное относительно сдвигов. Подойдёт, в частности, произвольное постоянное поле $V(p) := (a,b) \in \mathbb{R}^2 \ \forall p \in \mathbb{R}^{\not\models}$.

Так или иначе, получаем всюду ненулевое непрерывное сечение s. Значит, наше расслоение тривиально и, следовательно, $e(\pi) = 0$.

Замечание. Попробуем подойти к этому факту с алгебраической точки зрения. Дело в том, что тор $T^2 = S^1 \times S^1 = \mathbb{R}/2\pi\mathbb{Z} \times \mathbb{R}/2\pi\mathbb{Z}$ является группой Ли (не вдаваясь в тонкости определений, это означает, что на торе, как гладком многообразии, задано действие группы, причём умножение – гладкое).

Предложение 3. Касательное расслоение к группе Ли всегда тривиально.

Доказательство. Действительно, пусть $M^n = G$ – группа Ли, $\pi \colon E \to G$. $\pi \cong G \times \mathbb{R}^n \iff$ в \forall слое можно задать базис, непрерывно зависящий от точки.

Выберем базис (e_1,\ldots,e_n) в T_1M , где 1 — единица группы G. Пускай кривые α_1,\ldots,α_n на поверхности реализуют данные касательные вектора: $e_i=[\alpha_i]$. Подействовав элементом g на все точки карты, зададим базис касательного пространства в точке $g\in M=G$ по правилу $g(e_i):=[g\cdot\alpha]$

Следствие 1. Касательное расслоение TS^3 к группе кватернионов S^3 тривиально. В частности, его класс Эйлера равен нулю.

3амечание. Как мы уже говорили, $\pi \cong B \times \mathbb{R}^n \Rightarrow e(B,E,\pi) = 0$. Обратное, к сожалению, верно далеко не всегда. Бывают такие нетривиальные расслоения, чей класс Эйлера равен нулю.

Пример 3. Рассмотрим касательное расслоение $\pi \colon TK \to K$ бутылки Клейна $K = K^2$. Нетрудно убедиться, что $H^2(K, \mathbb{Z}/2\mathbb{Z}) \ni e(K, TK, \pi) = 0$. Наивный читатель мог бы сказать: и правда, $e(\pi) = \chi(K) = 1 - 2 + 1 = 0$, – и был бы не прав (ведь наша поверхность – неориентируема!).

Поэтому давайте представим K^2 в качестве развёртки на плоскости (точнее, отождествим $K^2 = {}^{[0,1]} \times {}^{[0,1]}/{\sim}, (0,y) \sim (1,y), (x,0) \sim (1-x,1), 0 \leq x,y, \leq 1)$ и придумаем гладкое векторное поле в \mathbb{R}^2 , согласованное с данной склейкой. Положим для простоты $V(p) := (0,1) \ \forall p \in \mathbb{R}^2$ — вертикально направленное постоянное в.п. Итак, мы нашли всюду ненулевое непрерывное сечение $s \colon K \to TK$, и значит $e(\pi) = 0$.

При этом расслоение, конечно, нетривиально (ибо тривиальные расслоения – ориентируемы).

В качестве заключительного аккорда изучим одно из самых красивых и геометрически понятных S^1 -расслоений.

Пример 4. $Paccлoeнue\ Xon\phi a\ S^{2n+1} \to \mathbb{CP}^n$ (из нечётномерной сферы

$$S^{2n+1} = \{(z_1, \dots, z_n) \colon z_i \in \mathbb{C}, |z_1|^2 + \dots + |z_n|^2 = 1\}$$

в комплексное проективное пространство) устроено так: $(z_1,\ldots,z_n)\mapsto [z_1:\ldots:z_n]$. Далее для простоты и сохранения геометрической интуиции рассматривается частный случай n=1.

Теорема 3. Класс Эйлера расслоения Хопфа e = -1.

Доказательство. Введём удобные обозначения, а также напомним об основных геометрических фактах, связанных с исследуемыми объектами. Пусть $p \colon S^3 \to \mathbb{CP}^1, p(z_1, z_2) := [z_1 \colon z_2].$

$$S^3 \subseteq \mathbb{R}^4, S^3 = \{(x, y, z, t) \in \mathbb{R}^4 : x^2 + y^2 + z^2 + t^2 = 1\} = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\},$$

 $\mathbb{CP}^1=\mathbb{C}^2\setminus\{0\}/\sim$, где $\mathbb{C}^2\ni a\sim b\in\mathbb{C}^2$, если $\exists t:b=ta,pr\colon\mathbb{C}^2\to\mathbb{CP}^1,pr(z_1,z_2):=[z_1:z_2],$

 $\mathbb{CP}^1\cong\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ — одноточечная компактификация комплексной плоскости;

$$\varphi \colon \mathbb{CP}^1 \to \hat{\mathbb{C}}, \varphi([z_1:z_2]) := \begin{cases} z_1/z_2, & z_2 \neq 0 \\ \infty, & z_2 = 0 \end{cases}$$

$$\hat{\mathbb{C}}\cong S^2, \chi_N\colon S^2\setminus\{N\} o \mathbb{R}^2\cong \mathbb{C}, N\mapsto \infty$$
 – стереографическая проекция.

Поймём для начала, что $e(p) \neq 0$. Предположим противное: пусть существует глобальное непрерывное сечение $s \colon \mathbb{CP}^n \to S^{2n+1}$. В терминах отображений: $p \circ s = id_{\mathbb{CP}^n}$. Применив к соответствующей диаграмме функтор взятия когомологий, получим:

$$\mathbb{Z} \cong H^{2n}(\mathbb{CP}^n, \mathbb{Z}) \xrightarrow{p^*} H^{2n}(S^{2n+1}, \mathbb{Z}) = 0 \xrightarrow{s^*} H^{2n}(\mathbb{CP}^n, \mathbb{Z}) \cong \mathbb{Z},$$

где $s^* \circ p^* = id_{\mathbb{Z}}$. Противоречие (?!).

Займёмся построением *локальных* непрерывных сечений $s_1, s_2 \colon \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\} \to S^1$. Воспользовавшись оговорёнными выше отождествлениями, положим:

(1)
$$s_1 : S^2 \setminus \{\infty\} \cong \mathbb{C} \to S^3, s_1(z) := \frac{1}{\sqrt{1+|z|^2}}(z,1)$$

(2)
$$s_2 : S^2 \setminus \{0\} \cong \mathbb{C} \to S^3, s_2(z) := s_1(1/z) := \frac{1}{\sqrt{1+|z|^2}} (\frac{|z|}{z}, |z|)$$

Отображения s_1, s_2 непрерывны всюду, кроме своих единственных полюсов в бесконечности и нуле, действуют в единичную трёхмерную сферу и в композиции с проекцией дают тождественное отображение (т.е. бьют в слои). Таким образом, это действительно локальные сечения.

Осталось лишь посчитать индекс одного из них (например, s_2) в его разрывной точке (т.е. в $z_0=0$). В качестве контура γ , огибающего полюс $z_0=0$, естественно взять

 $\gamma=\mathbb{T}^1=\{z\in\mathbb{C}:\ |z|=1\}$ (единичную окружность в комплексной плоскости). Тогда, в сужении на контур:

$$|s_2(z)|_{\gamma} = \frac{1}{1+1}(\frac{1}{z},1) = \frac{1}{\sqrt{2}}(\frac{1}{z},1)$$

В свою очередь, $deg_0(\frac{1}{z})=-1$, а значит e(p)=-1.

Список литературы

- [1] Nikolai Mnev, On local combinatorial formulas for Chern classes of triangulated circle bundle, J Math Sci 224, 304-327 (2017)
- [2] Nikolai Mnev, Which Circle Bundles Can Be Triangulated Over $\partial \Delta^3$, J Math Sci **240**, 551-555 (2019)
- [3] Nikolai Mnev, Minimal Triangulations of Circle Bundles, Circular Permutations, and the Binary Chern Cocycle, J Math Sci 247, 696-710 (2020)