

US012391999B2

(12) United States Patent

McKernan

(10) Patent No.: US 12,391,999 B2

(45) **Date of Patent:** *Aug. 19, 2025

(54) METHODS AND KITS FOR CLASSIFYING CANNABINOID PRODUCTION IN CANNABIS PLANTS

(71) Applicant: MEDICINAL GENOMICS

CORPORATION, Beverly, MA (US)

(72) Inventor: Kevin McKernan, Marblehead, MA

(US)

(73) Assignee: MEDICINAL GENOMICS

CORPORATION, Beverly, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1102 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 17/346,709

(22) Filed: Jun. 14, 2021

(65) **Prior Publication Data**

US 2022/0017974 A1 Jan. 20, 2022

Related U.S. Application Data

- (62) Division of application No. 16/221,171, filed on Dec. 14, 2018, now Pat. No. 11,035,010.
- (60) Provisional application No. 62/598,967, filed on Dec. 14, 2017.
- (51) **Int. Cl.** *C12Q 1/6895* (2018.01) *C12N 9/02* (2006.01)
- (52) U.S. Cl.

CPC C12Q 1/6895 (2013.01); C12N 9/0004 (2013.01); C12Y 121/03007 (2015.07); C12Y 121/03008 (2015.07); C12Q 2600/13 (2013.01); C12Q 2600/156 (2013.01); C12Q 2600/16 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,102,784 A 4/1992 George, Jr. 6,410,278 B1 6/2002 Notomi et al. 2012/0157326 A1 6/2012 Tisi et al. 2014/0057251 A1 2/2014 McKernan 2016/0177404 A1 6/2016 McKernan

FOREIGN PATENT DOCUMENTS

EP	0497272 A1	8/1992
WO	2016/189384 A1	12/2016
WO	2016/197258 A1	12/2016
WO	2019/118912 A1	6/2019

OTHER PUBLICATIONS

Gandelman et al. (International Journal of Mol. Sciences, vol. 12, pp. 9108-9124, 2011). (Year: 2011).*

McKernan et al. (bioRviv, Plant Biology, 28654/1-28654/23, Oct. 2015) (Year: 2015).*

Focke et al. (J. of Agricultural and Food Chemistry, vol. 61, pp. 2943-2949, 2013). (Year: 2013).*

Tighe et al. (J. Biomol Tech. vol. 32, No. 3, pp. 199-205, Sep. 2021) (Year: 2021).*

Jul. 15, 2021 Examination Report issued in European Patent Application No. 18839647.7.

Allen et al. (J. Forensic Investigation, vol. 4, No. 1, pp. 1-7, Feb. 19, 2016) (Year: 2016)

Taura et al. (FEBS Letters, vol. 581, pp. 2929-2934, 2007). (Year: 2007).

Kitamura et al. (J. Nat. Med. vol. 71, pp. 86-95, Aug. 17, 2016). (Year: 2016).

Stiedl et al. (J. of Vet. Diagnostic Investigation, vol. 29, No. 2, pp. 176-180, 2017). (Year: 2017).

Barany, F., Genetic disease detection and DNA amplification using cloned thermostable ligase, Proc Natl Acad Sci USA, 88(1):189-93 (1991)

Barringer, K.J. et al., Blunt-end and single-strand ligations by *Escherichia coli* ligase: influence on an in vitro amplification scheme, Gene. 89(1):117-22 (1990).

De Meijer, E.P. et al., The inheritance of chemical phenotype in *Cannabis sativa* L, Genetics, 163(1):335-46 (2003).

Gandelman, O. et al., Loop-mediated amplification accelerated by stem primers, Int J Mol Sci, 12(12):9108-24 (2011).

Gill, P and Ghaemi, A., Nucleic acid isothermal amplification technologies: a review, Nucleosides Nucleotides Nucleic Acids, 27(3):224-43 (2008).

Guatelli, J.C. et al., Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication, Proc Natl Acad Sci USA, 87(5):1874-8 (1990).

Higuchi, R. et al., Kinetic PCR analysis: real-time monitoring of DNA amplification reactions, Biotechnology (NY), 11(9):1026-30 (1993).

Kato, Y. and Braunstein, G.D., Beta-core fragment is a major form of immunoreactive urinary chorionic gonadotropin in human pregnancy, J Clin Endocrinol Metab, 66(6):1197-201(1988).

Kitamura, M. et al., Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa, Biol Pharm Bull. 39(7):1144-9 (2016).

Kitamura, M. et al., Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay, J Nat Med, 71(1):86-95 (2017).

Kojoma, M. et al., DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in "drug-type" and "fibertype" *Cannabis sativa* L, Forensic Sci Int, 159(2-3):132-40 (2006). (Continued)

Primary Examiner — Jeanine A Goldberg (74) Attorney, Agent, or Firm — MH2 Technology Law Group, LLP

(57) ABSTRACT

The present disclosure provides methods and kits for characterizing *Cannabis* plants. Methods and kits of the present disclosure include detection/amplification of one or more enzymes involved in the production of cannabinoids, such as, for example, tetrahydrocannabinolic acid (THCA) synthase and/or cannabidiolic acid (CBDA) synthase.

20 Claims, 12 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

OTHER PUBLICATIONS

Kwoh, D.Y. et al., Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format, Proc Natl Acad Sci USA, 86(4):1173-7 (1989).

Marks, M.D. et al., Identification of candidate genes affecting ?9-tetrahydrocannabinol biosynthesis in Cannabis sativa, J Exp Bot, 60(13):3715-26 (2009).

Nagamine, K. et al., Accelerated reaction by loop-mediated isothermal amplification using loop primers, Mol Cell Probes, 16(3):223-9 (2002).

Onofri, C. et al., Sequence heterogeneity of cannabidiolic-and tetrahydrocannabinolic acid-synthase in *Cannabis sativa* L. and its relationship with chemical phenotype, Phytochemistry, 116:57-68 (2015)

Staginnus, C, et al., A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of *Cannabis sativa* L, J Forensic Sci, 59(4):919-26 (2014). Walker, G.T. et al., Strand displacement amplification—an isothermal, in vitro DNA amplification technique, Nucleic Acids Res, 20(7):1691-6 (1992).

Walker, G.T., et al., Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system, Proc Natl Acad Sci USA, 89(1):392-6 (1992).

Weiblen, G.D. et al., Gene duplication and divergence affecting drug content in Cannabis sativa, New Phytol, 208 (4):1241-50 (2015). Wittwer, C.T. et al., Real-time multiplex PCR assays, Methods, 25(4):430-42 (2001).

Wu, D.Y. and Wallace, R.B., The ligation amplification reaction (LAR)-amplification of specific DNA sequences using sequential rounds of template-dependent ligation, Genomics, 4(4):560-9 (1989). Cascini, F. et al., Analysis of THCA synthase gene expression in cannabis: a preliminary study by real-time quantitative PCR, Forensic Sci Int, 231(1-3):208-12 (2013).

International Search Report for PCT/US2018/065821 (Methods and Kits for Classifying Cannabinoid Production in Cannabis Plants, filed Dec. 14, 2018), issued by ISA/EP, 7 pages (Mar. 8, 2019). Jeangkhwoa, P. et al., Identification of *Cannabis sativa* L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe, Sci Justice, 57(2):101-106 (2017).

Allen, L.N. et al., Complex Variability within the THCA and CBDA Synthase Genes in Cannabis Species, J Forensic Investigation, p. 1, retrieved from Internet: http://www.avensonline.org/wp-content/uploads/JFI-2330-0396-04--0029. pdf the wholedocument (2016). Written Opinion for PCT/US2018/065821 (Methods and Kits for Classifying Cannabinoid Production in Cannabis Plants, filed Dec. 14, 2018), issued by ISA/EP, 8 pages (Mar. 8, 2019).

Aug. 23, 2023 Office Action issued in Canadian Patent Application No. 3,123,182.

Zhang, Y. et al. "Isothermal Amplification of Long, Discrete DNA Fragments Facilitated by Single-Stranded Binding Protein", Scientific Reports, 7(8497), pp. 1-9 (2017).

Jun. 30, 2022 Office Action issued in Canadian Patent Application No. 3,123,182.

Clinton Torres et al., "LAVA: An Open-Source Approach to Designing LAMP (Loop-Mediated Isothermal Amplification) DNA Signatures," BMC Bioinformatics, 2011 12:240, pp. 1-7.

Aug. 30, 2022 Office Action issued in European Patent Application No. $18\,839\,647.7$.

^{*} cited by examiner

FIGURE 1

Aug. 19, 2025

Image from http://www.librede.com/technologies/

IGURE 2

CBDA-/CBDA-		THCA+/THCA+		Type Ia THCA plant
CBDA-/CBDA-		THCA+/THCA-	A	THCA+/THCA-
CBDA+/CBDA-		THCA+/THCA+	Minimum Minimu	Type IIa or 1:2 CBDA:THCA plant
		THCA+/THCA-	Manamanamana	Type IIb or 1:1 CBDA/THCA plant
4 MAN		THCA+/THCA+	Manamananana	Type <u>IIb</u> or 1:1 CBDA/THCA plant
4. *** ***	Carp Co	THCA+/THCA-	Mymminimimimi	THCA+/THCA-
CBDA+/CBDA-		THCA-/THCA-	4	Type IIIa_CBDA plant (<10%)
		THCA-/THCA-	Manamanamanamanamanamanamanamanamanamana	THCA-/THCA- THCA-/THCA- Type IIIb CBDA plant (20%)
4.400		THCA-/THCA-		THCA-/THCA- Type IV CBGA plant

		FIC	SURE 3					
		20	40		60		80 :	
	2	130 F3 LAMP						
THCAS Annotation LAMP PRIMERS CATA Translation ORF/COS	AGCGACTATCGTGAT	GGGAACCATAATAAA	CTATAAAAGTC/	NTTAT GT GT AC	TTECTACCATAG	GCACCTATAT	CCACAAA	CTAG
THCAS_FIRER	100	120		140		160		180
	5,	T[GTT] deletion		1		, 00		100
THEAS_Annotation_LAMP_PRIMERS_CTAC Translation ORF/CDS	CATAGCCAATTTCTT	TTTTGTTTCCAATAT	CCAATTTTTAT	TGATGCCAAAC	:TATTCAATGTAC	AATGTACATT	TATTTTCA	ATAA
THCAS_FIBER 180		200	220		240		260	
THCAS_Annotation_LAMP_PRIMERS GGGC Translation ORF/CDS	TYCACCTAACAAAG	STGCCTAATTTTAGTT	GATTTATTTTT	TATCACATGTO	JACTATTTAATGA	CTATCAAATT	ataaaata	TTTA
THCAS_RBER	280	300		320		340		360
	\{	ŝ		i		\$	Web	en Prime
THCAS_Annotation_LAMP_PRIMERS AGT C Translation ORF/CDS	AATTTATTTGCCCC	ACTCCAATATATAAT	'ATTATAAATAG	GATAGTTCTC/	NATTCCTAATAAT	TCAAAAAATC	ATTAGGAC	TGAA
thcas_rbeb 360		380	400		420		440	
•	Onofri Forward F	nmer	· ·				•	
THCAS Annocation LAMP PRINTERS GAAA Translation ORF/CDS	AATGAATTGCTCAGG	CATTITIC CTTTT GGTT	TGTTTGCAAAA V C K	TAATATTTTTC	TITICICICATION F L S F	CATATCCAAA H Q	TTTCAATA	GCTA A
THCAS_ERER	460	480		500		A		540
	, Kitamura	F3 missing 3 3prin	ne bases Kitan	nura FIP		3		
THCAS Annoration LAMP PRIMERS AT CC Translation ORF/CDS N P	TCGAGAAACTTCC R E H F I	TAAATGCTTCTCAAA	i ACATATTECCA H P	ACAATGTAGCA N N V A	NATOCAAAACTO N P K L	GTATACACTO V Y T	AACACGAC Q H D	CAAT Q
thcas,fiber 540	8		.TT.	cc	r 600	A	620	
ŧ	ira FIP on 163163	•	1Kitamu	ra BIP	1	ura Loop	1	1
	TATGTCTATCCTGA/	TTCGACAATACAAAA	ITCTTAGATTCA				TCACTECT V T P	TCAA S
THCAS_FIBER	s	660		c 680		700		720
Kojoma Primei	\$, ///	11080/1180 P	;		100		120
THCAS_Annotation_LAMP_PRIMERS AT AA Translation_ORF/CDS N N	CTCCCATATCCAAG			GCTTGCAGATT				GGTA G
THCAS_PRER GT		.c.gc.c	c	.T				т
720	1	740 (125Leu	760		780		800	
THCAS_Annotation_LAMP_FRIMERS TIGTO Translation ORF/CDS M S Trunks cosco				ACATGCATTCO N M H S			AAACTGCG Q T A	

FIGURE 3 (CONT.)

			820				(340				86	<u> </u>				8	<u>8</u> 0				900
			٠					•					•				TH	CAS	FIT			
THCAS_Annotation_LAMP_PRIMERS	TTGAF	339	GGAGC	TACC	CTTGG	AGAA	IGTT	7A71	ATTO	GATCA	ATGA	GAAG.	AAT	GAG	ATCT	TAGT	TTTCC	TGGT	GGGT	ATTG	ccc.	TACTG
Translation ORF/CDS	ξ V . ξ									1							£ \$			¥ €		1
THCAS_REER	900				920					940				• • •	3 6	ó~~~			• • • •	980		
	: TH	CAS	3 Loop) F	ŧ					1					}					•		
	******	***	*****	****																		
THCAS Annotation LAMP PRIMERS Translation CRF/COS										AGUA1					G E		AD FO			I B		
THCAS_R8E8			1,000		• • • • •		1	ຄວດ.				1.7	40	• • •			1.0	áń11	¢.		• • •	1.080
			1,000		٠,٠	n ten a	in Talah	ozu m				1 10	-				1,0	:		. ~	ر دد	,
	333333333	355555			} ********	HCA *****	‱ /2 ₽	* *			3838333			3333333	******) b	wez ‱	36GIn
THCAS_Annotation_LAMP_PRIMERS Translation ORF/CDS																						CTTTG F
THCAS_HSEA													A					a				
***	,080				1,100)				1.12	Ü				1,14	IO				1,160		
									[A25	OD Ch	emDo	og SN	P							Slue2	65G	in
THOS_Annotation_LAMP_PRIMERS																						
Translation ORF/CDS THCAS_FISER		ł	A A	. w	K ;	K			2. B #	4 8	\$ *	. S	Ţ	ļ	F S	٧	x x	N	М	E }	H	S
***************************************			1,180				1,	200°				1,2	220				1,2	40				1,260
			ř					•					•					•				
THCAS_Annotation_LAMP_PRIMERS	TTGTC	AAG	TTATT	TAAC	AAATG	GCAA	AAT	ATTO	SCTTA	CAAGT	ATGA	CAAA	GAT	TTA	STACT	CATG	ACTCA	CTTE	ATAA	CAAA	GAA	ATTA
Translation CRF/CDS	it A				K W					K					۷ ٤		1 3			T K	N	1
THCAS_PRES	,260	r mei ne de			1,280		• • •	• • • • •		1,300)	• • • •			1.3 2	Ò€	0-0-4-0-4		.8	1,340		• • • • •
	ŧ				- 3					:					ş					•		
THCAS_Annotation_LAMP_PRIMERS Translation CRF/COS																						
THCAS_R868			1 280					300				c 1,4(.T		1,4			٠. ٢.		1.440
	(20	222	1,500	; 			٠,	,380				1,43)() (\$,**	20				1,440
	P3	33R ****		Kens ‱	Kush S	SNP	0000000	0000000	3333333	100000000000000000000000000000000000000	10333333	.000000000	888888	1868888	********	8888888		5888888	38888888	1888888	1885688	0000000000
THICAS_Annotation_LAMP_PRIMERS Translation ORF/CDF		AGC S			77666 L G					TTGCA					TTGA G I		ACCAY T !	CTTC F		9979 2	TGT	TGTAA V
THCAS_RREA																						
*	,440				1,460)				1,480)				1,50	0			,	1,520		
THCAS_Annotation_LAMP_PRIMERS																			AAGT	TAGA	CTA	TOTTA
Translation ORF/CDS	in f	N	T A	. 8	FK	К	٤	}	٤ ١	. 0	8 5	A	Ę.	К	KT	Ą	\$ \$	ł	ĸ	l D	Y	¥
THCAS_FIZER	AS		1,540		• • • • •		1,	560				1,5	80				1,6	00		• • • •	•••	1,620
			,					•					•			(Gly	4A411	٧	Į(Chen	Doç	deletion
THEAS Annotation LAMP PRIMERS	***********	CCA	ATTCC	4438	ACTAL		Sarr	6666	,,,,,	GGAAA	2277	2727	600	6001	SATOY							
Translation GRF/COS			4 F		T A												A S			7 £		
THCAS_RISES		.γ.	X	¥											8			ATG	TAT.			

FIGURE 3 (CONT.)

	1,620		1,640		1,660		1,680		1,700
THCAS_Annotation_LAMP_PRIMERS AC Translation ORF/CDS Y	GGTGGTATAA G G I	TGGAGGAGAT M E E I	TTCAGAATC S E S	AGCAATTCC	ATTCCCTCA	TCGAGCTGGAAT	AATGTATGAAC M Y E	TTTGGTACA L W Y	CTGCTTCCT T A S '
THCAS_FREE		1,720		1,740	*******	1,760		1,780	,,,,, ,,, ,,,
THCAS_Annotation_LAMP_PRIMERS GO Translation ORF/CDS W			AAAGCATAT K H I		TCGAAGTGT	TTATAATTTTAC / Y N F T			ATCCAAGAT N P R
THCAS_FIBER	1,800		1,820		1,840		1,860		1,880
THCAS_Annotation_LAMP_PRIMERS TO				AGGAAAAA	TAATCATGO			CACGTATTT	
Translation ORF/CDS 1. THCAS_FIBER	A Y L	1,900		. 6 x 1		i s p n n i1,940		1,960	# G E
THCAS_Annotation_LAMP_PRIMERS AC Translation ORF/CDS K	ATOPTTTATE	AAAATTTTAA KNFN	CAGGTTAGT	TAAGGTGA/	AACTAAAGI	TGATCCCAATAA	TTTTTTTAGAA f f R	ACGAACAAA N E Q	GTATCCCAC S P
THCAS_FIBER	1,980		2,000		2,020	· ************************************	2,040	* * * * * * * * * *	2,060
THICAS_Annotation_LAMP_PRIMERS CT Translation ORF/CDS P			ATTATOTTI		Primer R	TATCAATTAGTT	AATCATTATAC	CATACATAC	ATTTATTGT
THCAS_FIBER	* * * * * * * * ? ; ;	2,080		2,100		2,120		2,140	
					2130 B3 L	AMP			
THCAS_Autocision_LAMP_PRIMERS AT Translation ORF/CDS	TATAGTTTATC	TACTCATATI	ATGTATGCT	CCCAAGTAT	GAAAATCTA	CATTAGAACTGT	GTAGACAATCA	TACATAGCG.	ACTATCGTG
THCAS_PIBER									

FIGURE 4

FIGURE 5

w
α
\Box
$\overline{\mathcal{O}}$

Well tocation	Ŕ	33	ಬ	23	ឌ	น	ಜ	7.4	\$3	83	ဌ	93	ន	æ	83	æ	₩.	æ	Well Location	A5	98	೮	98	3£	£2.	99	25	A7	87
8	0.3	16.8	0,3	۵0 ور	0,1	13,41	0.3	13.5	0,2	0,1	0,2	0.1	0.0	0.1	0,1	0.1	0.1	0.2	88	%69′6	13.39%	11.13%	12,47%	10.07%	17.79%	12.60%	11.54%	9,14%	16,70%
æ	17,3	8.7	23.2	4.5	19,4	986	27.4	6.5	17.5	16.2	19.2	13.2	12.6	16.3	13.8	17.2	15.4	16,4	JHC IMC	6.72%	6.10%	10.02%	3.86%	6.37%	6.34%	8.18%	5.70%	3,51%	6.67%
BarCode	FR13698731	FR13697288	FR13695854	FR13695841	FR13694935	FR13694452	fR13697319	FR13694429	FR13695383	FR13698237	FR13697370	FR13695850	FR13698721	FR13695413	FR13695415	FR13697825	FR13697344	FR13697371	Bartode	FR09352163	FR09352247	FR09352367	FR09352545	FR06352527	FR06352371	FR09352486	FR08352537	FR09352134	FR09352298
Samples Mass Dispensaries	White Fire OG_21NOV2016	Medihaze CBD_21NOV2016	Northern Ughts #5 X Haze_21NOV2016	OS Kush CBD_21NOV2016	Phantom Cookles_21NCV2016	Critical Mass_21NOV2016	Super Silver Haze 21MOV2016	Canna-Tsu_21MOV2016	Grand Daddy Purple_21NOV2016	Herijuana_21MOV2016	California Oreaming_21NOV2016	Chriz 29NOV2016	Arcata Trainwreck 29NOV2016	Master Kush 29NOV2016	Harlox_2940V2016	Humicane_29NOV2016	Grape Stomper_29NOV2016	Erk Train X Deadhead OG_29NOV2016	Emerald Cup THC/CBD Samples	NOTHERNIGHTS CBD	F-CANCER	WITY STATES	CANNATONIC	GUERILLA MEDS	TRIDENT	SERRA GOLD	VITAMIN CBD	HARLEQUIN COD	Pareapletsu

Aug. 19, 2025

Hemp Samples Run on both CBDA assay and Long Range THCA assay

	Hemp Sample Map				莱	Hemp Sample Map	ple Map					
		7	65	ŧ.	ero.	9	į	100	ŝ	21	==	12
Ą	M2	MI	N3	W6	833							
89	SWS	W4	683	8	8							
c	848	MIG	11W	M12	93							
0	MIB	M14	ಭ	SS CG	SD							
t.s	33	æ	CNO	9MD							M. Nather Mary	Mary
	CWS	CWK	CMB	æ							CC = Charolette's Cherries	te's Cherres
9	CWI	<i>(</i> 00	8	500							(O∗ Cobbler	
26	COM	69	700	100				_			CIV = Cherry Wine	Vine

FIGURE 8

CBD Assay on Hemp Samples

CBD-NEG Assay on Hemp Samples

Aug. 19, 2025

THC BIP	CACACAAGCACGTATTTGGGCTTTAGTTTTCACCTTAACTAAC	SEQ ID NO: 8	Desalt	16uM
THC FIP	GACTCGCATGATTAGTTTTTCCTATCCTTATGTGTCCCAAAATCC	SEQ ID NO: 9 Desalt	Desalt	16uM
THC Loop1	TCCCTATAATTGAGATACGCCAAT	SEQ ID NO: 10	Desalt	4nM
THC-F3	ATGGGAACCATAATAAACTATAAAGTCATT	SEQ ID NO: 11	Desalt	2nM
THC_B3	TATGATTGTCTACACAGTTCTAATGTAGATTTTC	SEQ ID NO: 12	Desalt	2uM
	J.			

CBD BIP	CAATCTTAGATTCACCTCTGACACAGACATGTGAAGGAGTGAC	SEQ ID NO: 13	Desalt	16uM
CBD FIP	TGTATTGTCGAATTTAGGACAGACAATGCAACAAATCTAAAACTCGTA	SEQ ID NO: 14 Desalt	Desalt	16uM
CBD Loop1	CAATGGGTTGTTTTGAGTGT	SEQ ID NO: 15 Desalt	Desalt	4nM
CBD Loop2	ACCCCAAAACCACTTGT	SEQ ID NO: 16 Desalt	Desalt	4nM
CBD F3	CTTCTCGCAATATATTCCCAAT	SEQ ID NO: 17	Desalt	2nM
CBD B3	GCATAGAATAGTGCCTTGGAT	SEQ ID NO: 18 Desalt	Desalt	2nM

CBD BIP	CAATCTTAGATTCACCTCTGACACAAGACATGTGAAGGAGTGAC	SEQ ID NO: 13	Desalt 16uM	16uM
CBD-NEG FIP	TGTATTGTCGAATTTAGGACAGACAATGCAACAAATCTAAAACTTACA	SEQ ID NO: 19	Desalt	16uM
CBD Loop1	CAATGGGTTGTTTTGAGTGT	SEQ ID NO: 15 Desalt	Desalt	4uM
CBD Loop2	ACCCCAAAACCACTTGT	SEQ ID NO: 16 Desalt	Desalt	4nM
CBD F3	CTTCTCGCAATATATTCCCAAT	SEQ ID NO: 17 Desalt	Desalt	2uM
CBD B3	GCATAGAATAGTGCCTTGGAT	SEQ ID NO: 18 Desalt	Desalt	2nM

FIGURE 10

Accession code	87	187	366	373	399	706	749	794	1179	1229	1395	1560	Seq. ID	THC(V)A proportion
E33090	1	Å	À	G	A	Ğ	Ç	Å	A	Ģ	ų.	G	1/1	urimown
55.22.7.2.2	1	Å	À	G	A	Ġ	C	Å	A	6	Ť	ő	1/1	93.1%
73.££7.4.£		Å	Á	Ğ	A	Ĝ	C	A	Å	G	T	G	1/2	2,3,1,70
55.24.4.34.7	*	Å	A	Ğ	À	G	C	Á	Å	G	Ţ	G	1/1	89.1%
2009.27.44.2.19	Ť	Å	A	Ğ	À	C	C	A	A	G	Ť	G	1/3	11.1%
55.28.1.4.12	Ť	Ą	A	G	A	Ğ	Ç	Á	A	Ğ	Ĩ	G	1/1	85. <i>0</i> %
2010.24a.35/T	3	C	*	G	6	G	C	Á	T	Ģ	ĩ	G	3	96.2%
	T	A	Á	Ğ	A	Ġ	C	Α	À	G	T	G	1/1	
	T	A	*	C	A	G	Ç	Å	A	A	A	A	2/1	
M110	Ť	A	*	¢	Á	ថ្ង	C	Å	A	G	Ť	Ğ	2/2	36.4%
	T	A	*	C	A	Ğ	Ç	Å	A	A	Ť	G	2/3	
	T	Å	Á	Ğ	À	G	C	6	Å	A	A	Å	4	
M124	T	¢		G	G	G	C	A	Ī	Ġ	Ť	Ġ	3	86 AV
Will#	Ť	Å	A	G	A	G	A	Å	Á	G	Ť	G	1/4	38.6%
88990	Ť	Å	Á	G	À	Ğ	C	A	A	Ĝ	Ť	Ġ	1/1	00.00
M128	T	C	*	G	G	Ĝ	Ĉ	Å	1	Ġ	Ť	G	3	96.5%
		63		125		236	250	265		410				
		leu		Val		S ir	Ala	Su.		Gly				
							,							
	************	Les	<u> </u>	Leu		Gin.	Asp	88		00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	900000000000000000000000000000000000000	paccaaaaaaaaaaaaaaaaa

Onofri et al., (2015) Phytochemistry, 116:57-68, PMID: 25865737

METHODS AND KITS FOR CLASSIFYING CANNABINOID PRODUCTION IN CANNABIS PLANTS

CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 16/221,171, filed Dec. 14, 2018, which claims the benefit of priority of U.S. Provisional Application No. 10 62/598,967, filed Dec. 14, 2017, all of which is incorporated herein by reference in its entirety. The present application contains a Sequence Listing that has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. The ASCII copy, created on Jun. 14, 15 2021, is named Sequence Listing ST25.txt and is 30,081 bytes in size.

BACKGROUND

C. sativa is an annual herbaceous flowering plant that has been cultivated throughout recorded history for use as fiber, seed oil, food, medicine and recreation. Cannabinoids are secondary metabolites found in C. sativa plants that can act on cannabinoid receptors in cells that alter neurotransmitter 25 release in the brain. More than 100 cannabinoids have been isolated from C. sativa, which have varied effects on mammals to which they have been administered.

SUMMARY

The present disclosure encompasses the recognition that certain genotypes are associated with altered cannabinoid synthesis or an altered cannabinoid profile. For example, the present disclosure recognizes that certain variants (e.g., 35 wild-type and/or mutated) of tetrahydrocannabinolic acid (THCA) synthase gene sequences and/or cannabidiolic acid (CBDA) synthase gene sequences can provide insight regarding synthesis of tetrahydrocannabinol (THC) and/or cannabidiol (CBD) in a *Cannabis* plant. The present disclosure provides a classification system for *Cannabis*, which designates a *Cannabis* plant as being of a particular type based on its genotype, which includes the classifications illustrated in FIG. 2 and outlined in Table 1 below:

TABLE 1

CBDA Genotype	THCA Genotype	Classification
CBDA ⁺ /CBDA ⁻ CBDA ⁺ /CBDA ⁻ CBDA ⁺ /CBDA ⁻ CBDA ⁺ /CBDA ⁺ CBDA ⁺ /CBDA ⁺ CBDA ⁺ /CBDA ⁺ CBDA ⁺ /CBDA ⁻ CBDA ⁺ /CBDA ⁻	THCA+/THCA+ THCA+/THCA- THCA+/THCA+ THCA+/THCA- THCA+/THCA- THCA+/THCA- THCA-/THCA- THCA-/THCA- THCA-/THCA- THCA-/THCA-	Type Ia Plant Type Ib Plant Type IIa Plant Type IIb Plant Type IIb Plant Type IIc Plant Type IIC Plant Type IIIa Plant Type IIIa Plant Type IIIb Plant Type IV Plant

Such a classification system can be utilized, e.g., in the selection of a *Cannabis* plant for various purposes. For example, a Type IIIb *Cannabis* plant (CBDA+/CBDA+ and 60 THCA-/THCA-) may be useful as a therapeutic, particularly in applications in which psychoactive effects caused by THC are undesirable. The present disclosure also recognizes Type V *Cannabis* plants. In some embodiments, a Type V *Cannabis* plant is characterized by a mutation in one or both of 65 a olivetol synthase gene sequence and a divarinic acid synthase gene sequence. Olivetolic acid and divarinic acid

2

are produced by enzymes olivetol synthase and divarinic acid synthase, respectively, in the cannabinoid synthesis pathway (see, e.g., FIG. 1, panel (A)).

The present disclosure further recognizes certain limits associated with previous assays to characterize THCA synthase, e.g., an inability to detect a THCA synthase gene sequence (e.g., because assays use primers or probes are complementary to highly variant sequences), and/or a falsepositive detection (e.g., by amplification of a THCA synthase pseudogene). The present disclosure provides a method that reliably and accurately detects a THCA synthase gene sequence in a Cannabis plant. The present disclosure provides the insight that detection of a THCA synthase gene sequence (e.g., a wild-type or mutated THCA synthase gene sequence) present in a Cannabis plant can be achieved by amplification of a THCA synthase gene sequence using one or more primers with sequences complementary to sequences (e.g., promoter) upstream of the coding sequence and (e.g., terminator region, 5' UTR, etc.) 20 downstream of the coding sequence may be particularly useful for in vitro detection of a functional THCA synthase gene sequence. Moreover, the present disclosure provides methods that include detection of a wild-type THCA synthase gene sequence and a mutant version of a THCA synthase gene sequence, thereby indicating the THCA synthase genotype of the plant.

The present disclosure also provides a method that reliably and accurately detects a CBDA synthase gene sequence in a Cannabis plant. The present disclosure provides meth-30 ods that include detection of a wild-type CBDA synthase gene sequence and a mutant version of a CBDA synthase gene sequence, thereby indicating the CBDA synthase genotype of the plant. In some embodiments, detection of a wild-type CBDA synthase gene sequence in a Cannabis plant can be achieved by amplification of a CBDA synthase gene sequence using a primer that is complementary (at least in part) to a sequence of a first CBDA synthase gene sequence (e.g., CGTA at residues 330-333 in FIG. 4). In some embodiments, detection of a mutant CBDA synthase gene sequence in a Cannabis plant can be achieved by amplification of a CBDA synthase gene sequence using a primer that is complementary (at least in part) to a CBDA synthase gene sequence that includes a deletion of the first sequence (e.g., ACTTAC at residues 327-329 and 334-336 45 in FIG. 4).

In some aspects, the present disclosure relates to methods and kits for classifying cannabinoid production in a *Cannabis* plant, such as a *C. sativa* plant, a *C. indica* plant, or a *C. ruderalis* plant.

In some aspects, the present disclosure provides methods that include detection of one or more nucleic acid sequences in a sample of a Cannabis plant. In some embodiments, a method includes detecting the presence of a tetrahydrocannabinolic acid (THCA) synthase gene sequence, e.g., a THCA synthase gene sequence comprising a THCA synthase coding region (e.g., an entire THCA synthase coding region) and/or a THCA synthase gene sequence promoter. In some embodiments, a method includes detecting the presence of a mutated THCA synthase gene sequence. In some embodiments, a mutated THCA synthase gene sequence includes at least one mutation that alters the activity of a THCA synthase encoded by the mutated THCA synthase gene sequence relative to a THCA synthase encoded by a wild-type THCA synthase gene sequence. In some embodiments, a method includes detecting the presence of a wildtype cannabidiolic acid (CBDA wt) synthase gene sequence. In some embodiments, a method includes detecting the

presence of a mutated cannabidiolic acid (CBDA mut) synthase gene sequence. In some embodiments, a mutated CBDA synthase gene sequence comprises a deletion mutation

In some embodiments, a method includes detecting a 5 wild-type THCA synthase gene sequence, a mutant THCA synthase gene sequence, a wild-type CBDA synthase gene sequence, a mutant CBDA synthase gene sequence, or any combination thereof from a sample that comprises *Cannabis* nucleic acid (i.e., nucleic acid of a *Cannabis* plant). In some 10 embodiments, a method further includes detecting one, two, three, four, or more of a wild-type olivetol synthase gene sequence, a variant olivetol synthase gene sequence, a wild-type divarinic acid synthase gene sequence, a wild-type limonene 15 synthase gene sequence, and a variant limonene synthase gene sequence from a sample that comprises *Cannabis* nucleic acid.

In some embodiments, detection of one or more nucleic acid sequences in a sample of *Cannabis* plant includes 20 isothermic nucleic acid amplification. In some embodiments, isothermic nucleic acid amplification is a Loop-Mediated Isothermal Amplification (LAMP) assay. In some embodiments, a LAMP assay is a colorimetric LAMP assay.

In some embodiments, detection of a THCA synthase 25 gene sequence includes amplification of a THCA synthase gene sequence that is at least 2000 nucleotides long. In some certain embodiments, an amplified THCA synthase gene sequences is 1500-2500, 1750-2250, 2000-2200, or 2100-2200 nucleotides long. In some embodiments, an amplified 30 THCA synthase gene sequence includes at least part of the THCA synthase promoter and 5' UTR.

In some embodiments, a *Cannabis* plant is a *C. sativa* plant. In some embodiments, a *Cannabis* plant is a *C. indica* plant. In some embodiments, a *Cannabis* plant is a *C.* 35 ruderalis plant.

In some embodiments, detecting the presence of a THCA synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least two THCA synthase primers under conditions sufficient for 40 amplification of a THCA synthase gene sequence. In some certain embodiments, detecting the presence of a THCA synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with at least two primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 45 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEO ID NOs: 8-12.

In some certain embodiments, detecting the presence of a THCA synthase gene sequence is by LAMP amplification and includes contacting nucleic acid from a *Cannabis* plant 50 with four or more primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 8-12.

In some embodiments, detecting the presence of a 55 mutated THCA synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least two THCA synthase primers under conditions sufficient for amplification of a mutated THCA synthase gene sequence.

In some embodiments, detecting the presence of a wild-type cannabidiolic acid (CBDA WT) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least two CBDA synthase primers under conditions sufficient for amplification of a 65 wild-type CBDA (CBDA WT) synthase gene sequence. In some certain embodiments, detecting the presence of a

4

CBDA WT synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with at least two primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 13-18 and 27

In some embodiments, detecting the presence of a mutated cannabidiolic acid (CBDA^{mut}) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least two CBDA synthase primers under conditions sufficient for amplification of a CBDA^{mut} synthase gene sequence. In some embodiments a CBDA^{mut} synthase is a deletion (CB-DA^{del}). In some certain embodiments, detecting the presence of a CBDA^{del} synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with at least two primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 13, 15-19, and 27.

In some embodiments, detecting the presence of a THCA synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five THCA synthase primers under conditions sufficient for LAMP of a THCA synthase gene sequence. In some certain embodiments, the at least five primer sequences are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 8-12.

In some embodiments, detecting the presence of a mutated THCA synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five THCA synthase primers under conditions sufficient for LAMP of a mutated THCA synthase gene sequence.

In some embodiments, detecting the presence of a wild-type cannabidiolic acid (CBDA **T) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five CBDA synthase primers under conditions sufficient for LAMP of a CBDA **T synthase gene sequence. In some certain embodiments, detecting the presence of a CBDA **T synthase gene sequence is by LAMP amplification and includes contacting nucleic acid from a *Cannabis* plant with six primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 13-18 and 27.

In some embodiments, detecting the presence of a mutated cannabidiolic acid (CBDA^{mut}) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five CBDA synthase primers under conditions sufficient for LAMP of a CBDA^{mut} synthase gene sequence. In some embodiments a CBDA^{mut} synthase is a deletion (CBDA^{del}). In some certain embodiments, detecting the presence of a CBDA^{del} synthase gene sequence is by LAMP amplification and includes contacting nucleic acid from a *Cannabis* plant with six primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 13, 15-19, and 27.

In some embodiments, a method of the present disclosure includes a step of analyzing results from one or more detecting steps, thereby characterizing a *Cannabis* plant as a Type Ia, Type Ib, Type IIa, Type IIb, Type IIIa, Type IIIb, Type IIIb, Type IV or Type V plant.

In some aspects, the present disclosure provides methods that include contacting a sample that comprises nucleic acid from a Cannabis plant with at least two primers sufficient for amplification of a *Cannabis* enzyme gene sequence. In some embodiments, a method includes contacting a sample that 5 comprises nucleic acid from a Cannabis plant with at least two primers sufficient for amplification of a THCA synthase gene sequence under conditions sufficient for amplification of a THCA synthase gene sequence, where at least two THCA synthase primers include a forward THCA synthase primer and a reverse THCA synthase primer. In some embodiments, a forward THCA synthase primer is complementary to a sequence that is 200-1000 nucleotides upstream of a THCA synthase open reading frame in a Cannabis genome. In some embodiments, a reverse THCA synthase 15 primer is complementary to a sequence that is 50-1000 nucleotides downstream of the THCA synthase open reading frame.

In some embodiments, a method includes contacting a sample that comprises nucleic acid from the *Cannabis* plant 20 with at least two cannabidiolic acid (CBDA) synthase primers under conditions sufficient for amplification of a Bd variant of CBDA synthase (CBDA Bd) gene sequence. In some embodiments, at least one CBDA Bd synthase primer is complementary to a sequence that bridges a 4 nucleotide 25 deletion found in the CBDA Bd open reading frame.

In some embodiments, a method includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least two cannabidiolic acid (CBDA) synthase primers under conditions sufficient for amplification of a wild-type CBDA (CBDA WT) synthase gene sequence. In some embodiments, at least one CBDA WT synthase primer is complementary to a sequence that includes the 4 nucleotide deleted in the CBDA Bd synthase open reading frame.

In some embodiments, a method includes a combination 35 of steps that include contacting a sample that comprises nucleic acid from the Cannabis plant with primers under conditions sufficient for amplification of two or more of a THCA synthase gene sequence, a variant THCA synthase gene sequence, a CBDA WT , synthase gene sequence, and/or 40 a CBDA mut synthase gene sequence.

In some embodiments, a method includes amplification of THCA synthase gene sequence that is at least 2000 nucleotide long. In some certain embodiments, an amplified THCA synthase gene sequences is 1500-2500, 1750-2250, 2000-45 2200, or 2100-2200 nucleotides long. In some embodiments, an amplified THCA synthase gene sequence includes at least part of the THCA synthase promoter and 5' UTR.

In some embodiments, amplification of one or more nucleic acid sequences in a *Cannabis* genome is by isothermic nucleic acid amplification. In some embodiments, amplification includes performing a Loop-Mediated Isothermal Amplification (LAMP) assay. In some embodiments, a LAMP assay is a colorimetric assay.

In some embodiments, a *Cannabis* plant is a *C. sativa* 55 plant. In some embodiments, a *Cannabis* plant is a *C. indica* plant. In some embodiments, a *Cannabis* plant is a *C. ruderalis* plant.

In some embodiments, amplification of a THCA synthase gene sequence includes contacting a sample that comprises 60 nucleic acid from the *Cannabis* plant with at least five THCA synthase primers under conditions sufficient for LAMP of a THCA synthase gene sequence. In some certain embodiments, the at least five primer sequences are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 65 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 8-12.

6

In some embodiments, amplification of a mutated THCA synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five THCA synthase primers under conditions sufficient for LAMP of a mutated THCA synthase gene sequence.

In some embodiments, amplification of a wild-type cannabidiolic acid (CBDA ^{WT}) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five CBDA synthase primers under conditions sufficient for LAMP of a wild-type CBDA (CBDA ^{WT}) synthase gene sequence. In some certain embodiments, detecting the presence of a CBDA ^{WT} synthase gene sequence is by LAMP amplification and includes contacting nucleic acid from a *Cannabis* plant with six primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 13-18 and 27.

In some embodiments, amplification of a mutated cannabidiolic acid (CBDA^{mut}) synthase gene sequence includes contacting a sample that comprises nucleic acid from the *Cannabis* plant with at least five CBDA synthase primers under conditions sufficient for LAMP of a CBDA^{mut} synthase gene sequence. In some embodiments a CBDA^{mut} synthase is a deletion (CBDA^{del}). In some certain embodiments, detecting the presence of a CBDA^{del} synthase gene sequence is by LAMP amplification and includes contacting nucleic acid from a *Cannabis* plant with six primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to each of SEQ ID NOs: 13, 15-19, and 27.

In some aspects, the present disclosure provides kits that include primers that are complementary to sequences encoding *Cannabis* enzymes that are involved in cannabinoid synthesis. In some embodiments, a kit may be used to amplify a genomic sequence form a *C. sativa*, *C. indica*, and/or a *C. ruderalis* plant.

In some embodiments, a kit includes at least two THCA synthase primers including a forward THCA synthase primer and a reverse THCA synthase primer, wherein the forward THCA synthase primer is complementary to a sequence that is 200-1000 nucleotides upstream of a THCA synthase open reading frame in a *Cannabis* genome and the reverse THCA synthase primer is complementary to a sequence that is 50-1000 nucleotides downstream of the THCA synthase open reading frame.

In some embodiments, a forward THCA synthase primer is or comprises a sequence complementary to 20-60 nucleotides of SEQ ID NO: 6 and wherein the reverse THCA synthase primer is or comprises a sequence complementary to 20-60 nucleotides of SEQ ID NO: 7. In some embodiments, a kit includes at least five THCA synthase primers.

In some embodiments, a kit of the present disclosure may additionally or alternatively include at least two cannabidiolic acid (CBDA) synthase primers for amplification of a Bd variant of CBDA synthase (CBDA Bd) gene sequence and/or at least two cannabidiolic acid (CBDA) synthase primers for amplification of a wild-type CBDA (CBDA WT) synthase gene sequence. In some embodiments, at least one CBDA Bd synthase primer is complementary to a sequence that bridges a 4 nucleotide deletion found in the CBDA Bd open reading frame. In some embodiments, at least one CBDA WT synthase primer is complementary to a sequence that includes the 4 nucleotides deleted in the CBDA Bd synthase open reading frame.

In some certain embodiments, at least one CBDA WT synthase primer is or comprises a sequence that is at least

80% identical to SEQ ID NO: 14. In some certain embodiments, at least one CBDA Bd synthase primer is or comprises a sequence that is at least 80% identical to SEQ ID NO: 19. In some certain embodiments, at least one CBDA WT synthase primer is or comprises a sequence of SEQ ID NO: 14. In some certain embodiments, at least one CBDA Bd synthase primer is or comprises a sequence of SEQ ID NO: 19.

In some embodiments, a kit of the present disclosure may additionally or alternatively include primers for amplification of one or more of a wild-type olivetol synthase gene 10 sequence, a variant olivetol synthase gene sequence, a wild-type divarinic acid synthase gene sequence, a variant divarinic acid synthase gene sequence, a wild-type limonene synthase gene sequence, and a variant limonene synthase gene sequence from a sample that comprises *Cannabis* 15 nucleic acid.

Any of the kits of the present disclosure may additionally include reagents for a Loop-Mediated Isothermal Amplication (LAMP) assay. In some embodiments, a LAMP assay is a colorimetric LAMP assay.

These, and other aspects encompassed by the present disclosure, are described in more detail below and in the claims.

BRIEF DESCRIPTION OF THE DRAWING

The Figures described below, that together make up the Drawing, are for illustration purposes only, not for limitation.

- FIG. 1: Panels (A) and (B) provide schematic representations of portion of the cannabinoid synthesis pathway.
- FIG. 2: depicts a subtype classification system for *Cannabis* plants.
- FIG. 3: depicts an alignment of various primers sequences with the sequence of a *Cannabis* THCA synthase gene 35 sequence (SEQ ID NO: 20). Exemplary mutations in a THCA synthase gene sequence are provided along THCAS-FIBER dotted underneath the ORF/CDS sequence.
- FIG. 4: depicts a position-specific weight matrix for alignment of CBDA synthase alleles (SEQ ID NOS: 23, 24, 40 and 25) in a *Cannabis* plant.

FIG. 5: depicts isothermic (e.g., LAMP) amplification of a THCA synthase gene sequence. Panel (A) depicts an isothermic (e.g., LAMP) amplification at 65° C. of THCA synthase gene sequence with Kitamura primers ("K primers") (Kitamura et al., (2017) *Journal of natural medicines*, 71(1):86-95 and Kitamura et al., (2016) *Biological & pharmaceutical bulletin*, 39(7):1144-9, both of which are incorporated herein by reference) and Long Range primers ("LR primers") on the *Cannabis* strain Granddaddy Purple 50 ("GDP"). Additionally, an isothermic amplification with K primers of various strains of *Cannabis*: Otto, two hemp samples, Grape Stomper (RSP10516), and Erk Train X Deadhead OG (RSP10517) were also determined. Panel (B) depicts an isothermic (LAMP) amplification with LR primers at various temperatures for multiple strains of *Cannabis*.

FIG. **6**: depicts an isothermic (LAMP) amplification of THCA gene sequence at 65° C. with Long Range primers on various *Cannabis* strains.

FIG. 7: depicts isothermic (LAMP) amplification of 60 (Panel (A)) a CBDA synthase gene sequence and (Panel (B)) isothermic (LAMP) amplification of THCA gene sequence on various hemp varietals of *Cannabis*. Panel (C) includes a map of the samples run in both Panels (A) and (B).

FIG. **8**: depicts isothermic (LAMP) amplification assays 65 for CBDA^{wt} (Panel (A)) and CBDA^{del} (Panel (B)) sequences on various hemp varietals of *Cannabis*.

8

FIG. **9**: depicts exemplary primer sequences (SEQ ID NOS: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 13, 19, 15, 16, 17, and 18 in that order) useful in the context of the present disclosure.

FIG. 10: depicts a table of exemplary THCA synthase gene sequence.

CERTAIN DEFINITIONS

Associated With: The term "associated with" is used herein to describe an observed correlation between two items or events. For example, a mutation in THCA synthase may be considered to be "associated with" a particular cannabinoid synthesis profile and/or cannabinoid composition.

Cannabis: As used herein, "Cannabis" refers to any plant in the genus Cannabis. In some embodiments, "Cannabis" refers to a part of, a specific compound from, and/or any product from a Cannabis plant (e.g., C. sativa, C. indica, C. ruderalis). For example, a "Cannabis enzyme" refers to an enzyme from a Cannabis plant. Similarly, a "Cannabis genome" refers to a genome from a Cannabis plant. Cannabis includes both "marijuana" and "hemp," two forms of Cannabis that are distinguished on the basis of the relative abundances of different cannabinoids. Cannabis includes any variety of Cannabis species, cultivar of Cannabis species, or hybrid between any Cannabis species.

Chemotype: As used herein, the term "chemotype" refers to chemically distinct entity (e.g., plant) with a particular profile of metabolites. In some embodiments, a chemotype is a particular type of *Cannabis* plant with a particular profile of one or more cannabinoids. In some embodiments, plants having different chemotypes may have same or different morphological characteristics. In some embodiments, a chemotype is characterized by a highly abundant chemical produced by that entity (e.g., plant). In some certain embodiments, a chemotype may refer to a *Cannabis* plant with an abundance of one or more cannabinoids (e.g., THC or CBD). In some embodiments, abundance of one or more cannabinoids may be a relative amount (e.g., a ratio of cannabinoids, such as a THC:CBD ratio).

Coding sequence: As used herein, the term "coding sequence" refers to a sequence of a nucleic acid or its complement, or a part thereof, that (i) can be transcribed to an mRNA sequence that can be translated to produce a polypeptide or a fragment thereof, or (ii) an mRNA sequence that can be translated to produce a polypeptide or a fragment thereof. Coding sequences include exons in genomic DNA or immature primary RNA transcripts, which are joined together by the cell's biochemical machinery to provide a mature mRNA.

Gene and Gene sequence: The term "gene," as used herein, refers to a part of the genome that codes for a product (e.g., an RNA product and/or a polypeptide product). A "gene sequence" is a sequence that includes at least a portion of a gene (e.g., all or part of a gene) and/or regulatory elements associated with a gene. In some embodiments, a gene includes coding sequence; in some embodiments, a gene includes non-coding sequence. In some particular embodiments, a gene may include both coding (e.g., exonic) and non-coding (e.g., intronic) sequences. In some embodiments, a gene may include one or more regulatory elements (e.g., a promoter) that, for example, may control or impact one or more aspects of gene expression (e.g., cell-type-specific expression, inducible expression, etc.).

Mutation: As used herein, the term "mutation" refers to a change introduced into a parental sequence, including, but

not limited to, substitutions, insertions, deletions (including truncations). The consequences of a mutation include, but are not limited to, the creation of a new character, property, function, phenotype or trait not found in the protein encoded by the parental sequence, or the increase or reduction/ 5 elimination of an existing character, property, function, phenotype or trait not found in the protein encoded by the parental sequence.

Nucleic Acid: As used herein, the terms "nucleic acid," "nucleic acid molecule," "oligonucleotide," and "polynucle- 10 otide" are each used herein to refer to a polymer of at least three nucleotides. In some embodiments, a nucleic acid comprises deoxyribonucleic acid (DNA). In some embodiments comprises ribonucleic acid (RNA). In some embodiments, a nucleic acid is single stranded. In some embodi- 15 ments, a nucleic acid is double stranded. In some embodiments, a nucleic acid comprises both single and double stranded portions. Unless otherwise stated, the terms encompass nucleic acid-like structures with synthetic backbones, as well as amplification products. In some embodi- 20 ments, nucleic acids of the present disclosure are linear nucleic acids.

Plant part: As used herein, the term "plant part" refers to any part of a plant including but not limited to the embryo, shoot, root, stem, seed, stipule, leaf, petal, flower bud, 25 flower, ovule, bract, trichome, branch, petiole, internode, bark, pubescence, tiller, rhizome, frond, blade, ovule, pollen, stamen, and the like. The two main parts of plants grown in some sort of media, such as soil or vermiculite, are often referred to as the "above-ground" part, also often referred to 30 as the "shoots", and the "below-ground" part, also often referred to as the "roots." Plant part may also include certain extracts such as kief or hash which includes cannabis trichomes or glands.

refers to oligonucleotides that hybridize in a sequence specific manner to a complementary nucleic acid molecule (e.g., a nucleic acid molecule comprising a target sequence). In some embodiments, a primer will comprise a region of nucleotide sequence that hybridizes to at least 8, e.g., at least 40 10, at least 15, at least 20, at least 25, or 20 to 60 nucleotides of a target nucleic acid (i.e., will hybridize to a sequence of the target nucleic acid). In general, a primer sequence is identified as being either "complementary" (i.e., complementary to the coding or sense strand (+)), or "reverse 45 complementary" (i.e., complementary to the anti-sense strand (-)). In some embodiments, the term "primer" may refer to an oligonucleotide that acts as a point of initiation of a template-directed synthesis using methods such as PCR (polymerase chain reaction) under appropriate conditions 50 (e.g., in the presence of four different nucleotide triphosphates and a polymerization agent, such as DNA polymerase in an appropriate buffer solution containing any necessary reagents and at suitable temperature(s)). Such a template directed synthesis is also called "primer extension." For 55 example, a primer pair may be designed to amplify a region of DNA using PCR. Such a pair will include a "forward primer" and a "reverse primer" that hybridize to complementary strands of a DNA molecule and that delimit a region to be synthesized and/or amplified.

Reference: As will be understood from context, a reference sequence, sample, population, agent or individual is one that is sufficiently similar to a particular sequence, sample, population, agent or individual of interest to permit a relevant comparison (i.e., to be comparable). In some 65 embodiments, information about a reference sample is obtained simultaneously with information about a particular

10

sample. In some embodiments, information about a reference sample is historical. In some embodiments, information about a reference sample is stored for example in a computer-readable medium. In some embodiments, comparison of a particular sample of interest with a reference sample establishes identity with, similarity to, or difference of a particular sample of interest relative to a reference.

Regulatory Sequence: The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals).

Wild type: As used herein, the term "wild-type" refers to a typical or common form existing in nature; in some embodiments it is the most common form.

DETAILED DESCRIPTION OF CERTAIN **EMBODIMENTS**

The disclosure provides useful methods for characterizing certain genetic sequences of Cannabis plants. The present disclosure encompasses a recognition that amplification of a region of THCA synthase gene sequence that includes a THCA synthase gene sequence promoter and/or termination region can robustly predict the presence of a functional THCA synthase gene sequence. The present disclosure also provides a method that reliably and accurately detects a CBDA synthase gene sequence in a Cannabis plant. Methods of the present disclosure may include characterization (e.g., detection, amplification) of CDBA gene sequences, including wildtype (CDBAwt) and deletion (CDBAdel) sequences.

Cannabis Plants and Cannabinoids

Two sub-species of Cannabis plants are C. indica and C. Primer: The terms "primer," as used herein, typically 35 sativa, which are commonly distinguished based on morphology of a Cannabis plant. Generally, C. sativa plants are taller, loosely branched and have long, narrow leaves, while C. indica plants are shorter, more densely branched and have wider leaves. However, there is some doubt about the accuracy of these generalizations. Originally, classification of C. indica was made in 1785 by a French biologist named Jean-Baptiste Lamarck who observed that certain marijuana plants from India were intoxicating and could be made into hashish. In contrast, traditional hemp crops in Europe had little or no mind-altering effect. Lamark came up with the name C. indica to distinguish Indian Cannabis from European hemp, which was known at the time as C. sativa. Therefore, additionally or alternatively, Cannabis plants can be characterized by production of one or more chemical metabolites (e.g., cannabinoids). In some embodiments, a Cannabis plant is characterized as having a specified level (e.g., high/low) of one or more cannabinoids, flavonoids and/or terpenes.

> Cannabinoids are terpenophenolic secondary metabolites, produced by Cannabis plants in the sessile and stalked trichomes. Trichomes are generally abundant on the inflorescences of a Cannabis plant, present in lower number on leaves, petioles and stems, and generally absent on roots and seeds. As a consequence, roots and seeds generally do not 60 contain cannabinoids. In some embodiments, a Cannabis plant for use in a method of the present disclosure may include any plant part, such as, for example, a bloom, leaf, petiole, stem, root and/or seed.

As an annual, Cannabis plants follow a solar cycle consisting of two basic stages often referred to as vegetative, and bloom (flowering). Cannabinoid synthesis occurs predominantly in bloom (flowering) phase. In some embodi-

ments, a *Cannabis* plant for use in a method of the present disclosure is in a vegetative state. In some embodiments, a *Cannabis* plant for use in a method of the present disclosure is in a flowering state.

Cannabinoids such as, for example, delta-9-tetrahydro-cannabinol (Δ9-THC or THC), cannabidiol (CBD), cannabinol (CBN), cannabigerol (CBG), and cannabichromene (CBC) have been identified from *Cannabis* plants. In some embodiments, a cannabinoid is an aryl-substituted monoterpene. Generally, cannabinoids are lipid soluble and neutral. 10 Cannabinoids can be divided into at least ten classes: cannabigerol, cannabichromene, cannabidiol, delta-9-tetra-hydrocannabinol, delta-8-tetrahydrocannabinol, cannabitriol and miscellaneous cannabinoids.

In some embodiments, *C. indica* plants are characterized as having high THC:CBD ratios and *C. sativa* plants are characterized as having high CBD:THC ratios. However, many strains produce varying amounts of cannabinoids, which may be due to hybridization, or cross breeding. ²⁰ Accordingly, in some embodiments, a *C. sativa* plant may be rich in THC and a *C. indica* plant may have low THC.

Cannabis plants for use in accordance with the methods of the present disclosure may be, for example, a *C. sativa* plant and/or a *C. indica* plant. In some embodiments, a 25 Cannabis plant may be characterized as and/or determined to be rich in one or more cannabinoids such as a cannabigerol, cannabichromene, cannabidiol, delta-9-tetrahydrocannabinol, delta-8-tetrahydrocannabinol, cannabicyclol, cannabielsoin, cannabinol and cannabinodiol, and/or cannabitriol. In some embodiments, a Cannabis plant is determined to be or characterized as rich in THC. In some embodiments, a Cannabis plant is determined to be or characterized as rich in CBD.

In some embodiments, a *Cannabis* plant may be characterized as and/or determined to be expressing a low amount of one or more cannabinoids such as a cannabigerol, cannabichromene, cannabidiol, delta-9-tetrahydrocannabinol, delta-8-tetrahydrocannabinol, cannabicyclol, cannabielsoin, cannabinol and cannabinodiol, and/or cannabitriol. In some embodiments, a *Cannabis* plant is determined to be or characterized as low in THC. In some embodiments, a *Cannabis* plant is determined to be or characterized as low in CBD.

The present disclosure also encompasses the recognition 45 that levels of two or more cannabinoids may be related. FIG. 1 depict portions of the cannabinoid synthesis pathway. As shown in FIG. 1, Panels A and B, cannabigerolic acid is a precursor of both THCA and CBDA. THCA and CBDA each undergo non-enzymatic conversion to THC and CBD, 50 gtagacttgagaaacatgcattcgatcaaaatagatgttcatagccaaa respectively. Since both THC and CBD are synthesized from the same precursor, increased synthesis of one of these compounds may reduce synthesis of the other (e.g., by depletion of precursor). In some embodiments, the rate/ amount of THC synthesis is inversely proportional to the 55 rate/amount of CBD synthesis. Moreover, as synthesis of both THC and CBD use cannabigerolic acid, increased synthesis of either or both of these cannabinoids may reduce the amount of cannabigerolic acid. In some embodiments, the rate/amount of THC synthesis is inversely proportional 60 to the rate/amount of cannabigerolic acid. In some embodiments, the rate/amount of CBD synthesis is inversely proportional to the rate/amount of cannabigerolic acid.

Earlier studies proposed a model that the genes coding for functional THCA- and CBDA-synthase (referred to as Bt 65 and Bd, respectively) are allelic and codominant. (de Meijer et al. (2003) *Genetics*, 163(1):335-46, PMID: 12586720,

12

which is incorporated herein by reference). Variations in CBDA/THCA ratios could be directly related to a differential efficiency in transforming cannabigerolic acid by THCA- and CBDA-synthases. Id.

In some embodiments, a Cannabis plant genome includes a THCA synthase gene sequence. In some embodiments, a Cannabis plant genome includes a wild-type THCA synthase gene sequence. In some embodiments, a Cannabis plant genome is homozygous for a wild-type THCA synthase gene sequence. In some embodiments, a Cannabis plant genome is heterozygous for a wild-type THCA synthase gene sequence. In some embodiments, a Cannabis plant genome is homozygous for a variant THCA synthase gene sequence. In some embodiments, a Cannabis plant genome is heterozygous for a variant THCA synthase gene sequence. In some embodiments, a Cannabis plant genome includes a THCA synthase gene sequence that is or comprises a sequence that is 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 1, or a portion thereof.

Exemplary C. sativa THCA synthase gene sequence ATGGGAACCATAATAAACTATAAAAGTCATTATGTGTACTTGCTACCAT TTCCAATATCCAATTTTTATTGATGCCAAACTATTCAATGTACAATGTA ${\tt CATTTATTTCAATAAGGGCTTCACCTAACAAAGGTGCCTAATTTTAGT}$ TGATTTATTTTTTATCACATGTGACTATTTAATGACTATCAAATTATAA AATATTTAAGTCAATTTATTTGCCCCAACTCCAATATATAATATTATAA ATAGGATAGTTCTCAATTCCTAATAATTCAAAAAATCATTAGGACTGAA ATTTTTCTTTCTCTCATTCCATATCCAAATTTCAATAGCTAATCCTCGA GAAAACTTCCTTAAATGCTTCTCAAAACATATTCCCAACAATGTAGCAA ATCCAAAACTCGTATACACTCAACACGACCAATTGTATATGTCTATCCT GAATTCGACAATACAAAATCTTAGATTCATCTCTGATACAACCCCAAAA CCACTCGTTATTGTCACTCCTTCAAATAACTCCCATATCCAAGCAACTA TTTTATGCTCTAAGAAAGTTGGCTTGCAGATTCGAACTCGAAGCGGTGG CCATGATGCTGAGGGTATGTCCTACATATCTCAAGTCCCATTTGTTGTA $\tt CTGCGTGGGTTGAAGCCGGAGCTACCCTTGGAGAAGTTTATTATTGGAT$ ${\tt CAATGAGAAGAATGAGAATCTTAGTTTTCCTGGTGGGTATTGCCCTACT}$ GTTGGCGTAGGTGGACACTTTAGTGGAGGAGGCTATGGAGCATTGATGC GAAATTATGGCCTTGCGGCTGATAATATTATTGATGCACACTTAGTCAA TGTTGATGGAAAAGTTCTAGATCGAAAATCCATGGGAGAAGATCTGTTT TGGGCTATACGTGGTGGAGGAGAAAACTTTGGAATCATTGCAGCAT GGAAAATCAAACTGGTTGATGTCCCATCAAAGTCTACTATATTCAGTGT ${\tt TAAAAAGAACATGGAGATACATGGGCTTGTCAAGTTATTTAACAAATGG}$ ${\tt CAAAATATTGCTTACAAGTATGACAAAGATTTAGTACTCATGACTCACT}$ TCATAACAAAGAATATTACAGATAATCATGGGAAGAATAAGACTACAGT

-continued

 ${\tt ACATGGTTACTTCTTCTAATTTTTCATGGTGGAGTGGATAGTCTAGTC}$ GCAAAGAATTTAGCTGGATTGATACAACCATCTTCTACAGTGGTGTTGT AAATTTTAACACTGCTAATTTTAAAAAGGAAATTTTGCTTGATAGATCA GCTGGGAAGAAGACGGCTTTCTCAATTAAGTTAGACTATGTTAAGAAAC CAATTCCAGAAACTGCAATGGTCAAAATTTTGGAAAAATTATATGAAGA AGATGTAGGAGCTGGGGTGTTGTACCCTTACGGTGGTATAATGGAGGAG ATTTCAGAATCAGCAATTCCATTCCCTCATCGAGCTGGAATAATGTATG AACTTTGGTACACTGCTTCCTGGGAGAAGCAAGAAGATAATGAAAAGCA TATAAACTGGGTTCGAAGTGTTTATAATTTTACGACTCCTTATGTGTCC CAAAATCCAAGATTGGCGTATCTCAATTATAGGGACCTTGATTTAGGAA AAACTAATCATGCGAGTCCTAATAATTACACACAAGCACGTATTTGGGG TGAAAAGTATTTTGGTAAAAATTTTAACAGGTTAGTTAAGGTGAAAACT AAAGTTGATCCCAATAATTTTTTTAGAAACGAACAAAGTATCCCACCTC TTCCACCGCATCATCATTAATTATCTTTAAATAGATATATTTCCCTTAT CAATTAGTTAATCATTATACCATACATACATTTATTGTATATAGTTTAT CTACTCATATTATGTATGCTCCCAAGTATGAAAATCTACATTAGAACTG TGTAGACAATCATA

In some embodiments, a Cannabis plant genome includes a CBDA synthase gene sequence. In some embodiments, a Cannabis plant genome includes a wild-type CBDA synthase gene sequence. In some embodiments, a Cannabis 35 plant genome is homozygous for a wild-type CBDA synthase gene sequence. In some embodiments, a Cannabis plant genome is heterozygous for a wild-type CBDA synthase gene sequence. In some embodiments, a Cannabis plant genome is homozygous for a variant CBDA synthase 40 gene sequence. In some embodiments, a Cannabis plant genome is heterozygous for a variant CBDA synthase gene sequence. In some embodiments, a variant CBDA synthase gene sequence comprises a deletion. In some embodiments, a variant CBDA synthase gene sequence comprises a dele-45 tion of a sequence comprising CGTA (SEQ ID NO:3). In some embodiments, a Cannabis plant genome includes a CBDA synthase gene sequence that is or comprises a sequence that is 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, ₅₀ 99%, or 100% identical to SEQ ID NO: 2, or a portion thereof.

Exemplary C. sativa CBDA synthase gene sequence SEQ ID NO:
GATATATATCTCACACGGATGCACCTAACAATGATGCCTAATTTTTGTG

AATTTTTTTTTACCACATGACTTAATGATATCAAATTATGAAATATTTAG

TTAATTTATTTGCCCCTGCTCCAATATATAAAGCTATAAATAGGATAGT

TCTTAATCCATAGTAATT

 ${\tt CAAAATTCATTAGAACTAAAGAAAAATGAAGTGCTCAACATTCTCCTTT} \\ {\tt TGGTTTGCTAGAGATAATATTTTTCTTTTTCTCATTCAATATCCAAA} \\$

14

-continued

CTTCCATTGCTAATCCTCGAGAAAACTTCCTTAAATGCTTCTCGCAATA TATTCCCAATAATGCAACAAATCTAAAACTCGTATACACTCAAAACAAC CCATTGTATATGTCTGTCCTAAATTCGACAATACACAATCTTAGATTCA CCTCTGACACACCCCAAAACCACTTGTTATCGTCACTCCTTCACATGT $\tt CTCTCATATCCAAGGCACTATTCTATGCTCCAAGAAGTTGGCTTGCAG$ 10 ATTCGAACTCGAAGTGGTGGTCATGATTCTGAGGGCATGTCCTACATAT AATAGATGTTCATAGCCAAACTGCATGGGTTGAAGCCGGAGCTACCCTT $\tt GGAGAAGTTTATTATTGGGTTAATGAGAAAAATGAGAATCTTAGTTTGG$ CGGCTGGGTATTGCCCTACTGTTTGCGCAGGTGGACACTTTGGTGGAGG AGGCTATGGACCATTGATGAGAAACTATGGCCTCGCGGCTGATAATATC $^{20}\,$ attgatgcacacttagtcaacgttcatggaaaagtgctagatcgaaaat CTATGGGGGAAGATCTCTTTTGGGCTTTACGTGGTGGTGGAGCAGAAAG CTTCGGAATCATTGTAGCATGGAAAATTAGACTGGTTGCTGTCCCAAAG 25 TCTACTATGTTTAGTGTTAAAAAGATCATGGAGATACATGAGCTTGTCA AGTTAGTTAACAAATGGCAAAATATTGCTTACAAGTATGACAAAGATTT ATTACTCATGACTCACTTCATAACTAGGAACATTACAGATAATCAAGGG 30 AAGAATAAGACAGCAATACACACTTACTTCTCTTCAGTTTTCCTTGGTG ${\tt GAGTGGATAGTCTAGTCGACTTGATGAACAAGAGTTTTCCTGAGTTGGG}$ ${\tt TATTAAAAAAACGGATTGCAGACAATTGAGCTGGATTGATACTATCATC}$ TTCTATAGTGGTGTTGTAAATTACGACACTGATAATTTTAACAAGGAAA TTTTGCTTGATAGATCCGCTGGGCAGAACGGTGCTTTCAAGATTAAGTT AGACTACGTTAAGAAACCAATTCCAGAATCTGTATTTGTCCAAATTTTG CTTACGGTGGTATAATGGATGAGATTTCAGAATCAGCAATTCCATTCCC TCATCGAGCTGGAATCTTGTATGAGTTATGGTACATATGTAGTTGGGAG AAGCAAGAAGATAACGAAAAGCATCTAAACTGGATTAGAAATATTTATA ACTTCATGACTCCTTATGTGTCCAAAAATCCAAGATTGGCATATCTCAA TTATAGAGACCTTGATATAGGAATAAATGATCCCAAGAATCCAAATAAT TACACACAAGCACGTATTTGGGGTGAGAAGTATTTTGGTAAAAATTTTG ACAGGCTAGTAAAAGTGAAAACCCTGGTTGATCCCAATAACTTTTTTAG AAACGAACAAAGCATCCCACCTCTTCCACGGCATCGTCATTAATGATCT TAAATAGATCTTTTTCTCTTATTAATTAGTCCTTATAATATACATATAT TGATTATATATAAAAATAGTTTGTCCGGGTGTACTGTGTATGCGATA TATATCTCACAC

In some embodiments, a *Cannabis* plant genome includes an olivetol synthase gene sequence. In some embodiments, a *Cannabis* plant genome includes a wild-type olivetol synthase gene sequence. In some embodiments, a *Cannabis* plant genome is homozygous for a wild-type olivetol synthase gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a wild-type olivetol synthase gene sequence. In some embodiments, a *Cannabis* plant genome is homozygous for a variant olivetol synthase

gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a variant olivetol synthase gene sequence. In some embodiments, a *Cannabis* plant genome includes an olivetol synthase gene sequence that is or comprises a sequence that is 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 4, or a portion thereof.

Exemplary C. sativa olivetol synthase gene SEQ ID NO: 4 ATGAATCATCTTCGTGCTGAGGGTCCGGCCTCCGTTCTCGCCATTGGCA CCGCCAATCCGGAGAACATTTTATTACAAGATGAGTTTCCTGACTACTA CGAAAAATATGTGACAAAAGTATGATAAGGAAACGTAACTGTTTCTTAA ATGAAGAACACCTAAAGCAAAACCCAAGATTGGTGGAGCACGAGATGCA ${\tt AACTCTGGATGCACGTCAAGACATGTTGGTAGTTGAGGTTCCAAAACTT}$ GGGAAGGATGCTTGTGCAAAGGCCATCAAAGAATGGGGTCAACCCAAGT CTAAAATCACTCATTTAATCTTCACTAGCGCATCAACCACTGACATGCC CGGTGCAGACTACCATTGCGCTAAGCTTCTCGGACTGAGTCCCTCAGTG AAGCGTGTGATGATGTATCAACTAGGCTGTTATGGTGGTGGAACCGTTC TACGCATTGCCAAGGACATAGCAGAGAATAACAAAGGCGCACGAGTTCT CGCCGTGTGTTGTGACATAATGGCTTGCTTGTTTCGTGGGCCTTCAGAG TCTGACCTCGAATTACTAGTGGGACAAGCTATCTTTGGTGATGGGGCTG CTGCGGTGATTGTTGGAGCTGAACCCGATGAGTCAGTTGGGGAAAGGCC GATATTTGAGTTGGTGTCAACTGGGCAAACAATCTTACCAAACTCGGAA GGAACTATTGGGGGACATATAAGGGAAGCAGGACTGATATTTGATTTAC ATAAGGATGTGCCTATGTTGATCTCTAATAATATTGAGAAATGTTTGAT TGAGGCATTTACTCCTATTGGGATTAGTGATTGGAACTCCATATTTTGG $\tt ATTACACACCCAGGTGGGAAAGCTATTTTGGACAAAGTGGAGGAGAAGT$ TGCATCTAAAGAGTGATAAGTTTGTGGATTCACGTCATGTGCTGAGTGA GCATGGGAATATGTCTAGCTCAACTGTCTTGTTTGTTATGGATGAGTTG AGGAAGAGGTCGTTGGAGGAAGGGAAGTCTACCACTGGAGATGGATTTG AGTGGGGTGTTCTTTTTGGGTTTGGACCAGGTTTGACTGTCGAAAGAGT GGTCGTGCGTAGTGTTCCCATCAAATATTAA

In some embodiments, a *Cannabis* plant genome includes a divarinic acid synthase gene sequence. In some embodiments, a *Cannabis* plant genome includes a wild-type divarinic acid synthase gene sequence. In some embodiments, a *Cannabis* plant genome is homozygous for a wild-type divarinic acid synthase gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a wild-type divarinic acid synthase gene sequence. In some embodiments, a *Cannabis* plant genome is homozygous for a variant divarinic acid synthase gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a variant divarinic acid synthase gene sequence.

In some embodiments, a *Cannabis* plant genome includes a limonene synthase gene sequence. In some embodiments, a *Cannabis* plant genome includes a wild-type limonene synthase gene sequence. In some embodiments, a *Cannabis*

16

plant genome is homozygous for a wild-type limonene synthase gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a wild-type limonene synthase gene sequence. In some embodiments, a *Cannabis* plant genome is homozygous for a variant limonene synthase gene sequence. In some embodiments, a *Cannabis* plant genome is heterozygous for a variant limonene synthase gene sequence. In some embodiments, a *Cannabis* plant genome includes a limonene synthase gene sequence that is or comprises a sequence that is 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 5, or a portion thereof.

Exemplary C. sativa limonene synthase gene SEQ ID NO: 5 $\tt TTTGGAGTAGTATTGATAATCGTTTTACACCAAAAACTTCTATTACTTC$ TATTTCAAAACCAAAACCAAAACTAAAATCAAAATCAAACTTGAAATCG AGATCGAGATCAAGTACTTGCTACTCCATACAATGTACTGTGGTCGATA 25 ACCCTAGTTCTACGATTACTAATAATAGTGATCGAAGATCAGCCAACTA TGGACCTCCCATTTGGTCTTTTGATTTTGTTCAATCTCTTCCAATCCAA TATAAGGGTGAATCTTATACAAGTCGATTAAATAAGTTGGAGAAAGATG 30 TGAAAAGGATGCTAATTGGAGTGGAAAACTCTTTAGCCCAACTTGAACT AATTGATACAATACAAAGACTTGGAATATCTTATCGTTTTGAAAATGAA ATCATTTCTATTTTGAAAGAAAATTCACCAATAATAATGACAACCCTA 35 ATCCTAATTATGATTTATATGCTACTGCTCTCCAATTTAGGCTTCTACG CCAATATGGATTTGAAGTACCTCAAGAAATTTTCAATAATTTTAAAAAT CACAAGACAGGAGAGTTCAAGGCAAATATAAGTAATGATATTATGGGAG CATTGGGCTTATATGAAGCTTCATTCCATGGGAAAAAGGGTGAAAGTAT TTTGGAAGAAGCAAGAATTTTCACAACAAAATGTCTCAAAAAAATACAAA TTAATGTCAAGTAGTAATAATAATAATATGACATTAATATCATTATTAG TGAATCATGCTTTGGAGATGCCACTTCAATGGAGAATCACAAGATCAGA 45 AGCTAAATGGTTTATTGAAGAAATATATGAAAGAAAACAAGACATGAAT CCAACTTTACTTGAGTTTGCCAAATTGGATTTCAATATGCTGCAATCAA CATATCAAGAGGAGCTCAAAGTACTCTCTAGGTGGTGGAAGGATTCTAA 50 ACTTGGAGAGAAATTGCCTTTCGTTAGAGATAGATTGGTGGAGTGTTTC TTATGGCAAGTTGGAGTAAGATTTGAGCCACAATTCAGTTACTTTAGAA TAATGGATACAAAACTCTATGTTCTATTAACAATAATTGATGATATGCA TGACATTTATGGAACATTGGAGGAACTACAACTTTTCACTAATGCTCTT CAAAGATGGGATTTGAAAGAATTAGATAAATTACCAGATTATATGAAGA CAGCTTTCTACTTTACATACAATTTCACAAATGAATTGGCATTTGATGT ATTACAAGAACATGGTTTTGTTCACATTGAATACTTCAAGAAACTGATG GTAGAGTTGTGTAAACATCATTTGCAAGAGGCAAAATGGTTTTATAGTG

-continued GTTACCAAAGAGGCATTGGAATGTCTAAAAGACGGTCATCCTAACATAG TTCGCCATGCATCGATAATATTACGACTTGCAGATGATCTAGGAACATT GTCGGATGAACTGAAAAGAGGCGATGTTCCTAAATCAATTCAATGTTAT ATGCACGATACTGGTGCTTCTGAAGATGAAGCTCGTGAGCACATAAAAT $\tt ATTTAATAAGTGAATCATGGAAGGAGGAGATGAATAATGAAGATGGAAATAT$ TAACTCTTTTTTCTCAAATGAATTTGTTCAAGTTTGCCAAAATCTTGGT AGAGCGTCACAATTCATATACCAGTATGGCGATGGACATGCTTCTCAGA ${\tt ATAATCTATCGAAAGAGCGCGTTTTAGGGTTGATTATTACTCCTATCCC}$ CATGTAA

Classification of Cannabis

Provided herein is a recognition that certain genotypes are associated with altered cannabinoid synthesis or an altered cannabinoid profile. Genetic information can positively benefit consumers, growers, and regulators of Cannabis. There are at least several hundred compounds found in Cannabis and currently only a fraction of these compounds are analyzed. As used herein, chemotype of a Cannabis plant refers to an abundance and/or deficiency of one or more com- 25 pounds found in a Cannabis plant (e.g., cannabinoids, flavonoids and/or terpenes). In some embodiments, a chemotype is an abundance of one or more cannabinoids, flavonoids and/or terpenes. In some embodiments, a chemotype is a relative amount of two or more cannabinoids, 30 flavonoids and/or terpenes.

Chemotype determination has been limited as quantitative analytical techniques and standards do not currently exist for all Cannabis compounds. As a result, previously described chemotypes fail to capture the chemical and potential 35 medicinal complexity in a Cannabis plant. The present disclosure encompasses a recognition that genetic analysis, for example, of one, two, three, four, five or more synthetic enzymes, can serve as a proxy for unmeasured chemical complexity.

The present disclosure encompasses the recognition that genetic analysis can be used to assess the potential of a Cannabis plant to produce certain compounds, such as cannabinoids, flavonoids and/or terpenes. While a Cannabis 45 plant can be raised under conditions that result in varied expression and/or concentrations of certain compounds, the relative ratios of key chemotypic gene sequences, such as, for example, THCA synthase and CBDA synthase, are usually genetically determined. For example, there are cur- 50 rently no known agricultural methods to make a CBDdominant Cannabis strain become a THC-dominant Cannabis strain via environmental conditions. These critical chemotypes are governed by genetic alterations in their THCA synthase).

In some embodiments, methods of the present disclosure include genetic analysis of one, two, three, four, five or more enzymes involved in the production of cannabinoids, flavonoids and/or terpenes. In some embodiments, methods of 60 the present disclosure include amplification of a genomic region that encodes an enzyme involved in the production of a cannabinoid, flavonoid and/or terpene. In some embodiments, methods of the present disclosure include amplification of a plurality of genomic regions that encode enzymes 65 involved in the production of a cannabinoid, flavonoid and/or terpene. In some embodiments, methods include

18

amplification of a portion of a gene sequence that encodes an enzyme involved in the production of a cannabinoid, flavonoid and/or terpene.

Genetic prediction of cannabinoid production has been an active area of study. See, for example, Weiblen et al., (2015), The New Phytologist, PMID: 26189495; Marks et al., (2009) Journal of Experimental Botany, 60(13):3715-26, PMID: 19581347; Onofri et al., (2015) Phytochemistry, 116:57-68, PMID: 25865737; de Meijer et al. (2003) Genetics, 163(1): 335-46, PMID: 12586720; and Kojoma et al. (2006), Forensic Sci. Int., 159(2-3):132-40, PMID: 16143478, each of which is incorporated herein by reference. However, there are significant caveats and shortcomings with prior methods of genetic prediction of cannabinoid production. For example, while alleles of Bt (functional THCA synthase) and Bd (functional CBDA synthase) have been proposed as a model for generating Type I, II, III, and IV plants, the exact DNA sequences that govern these alleles remain unknown. As described in the examples herein, single molecule sequencing was performed to identify mutations in gene sequences in cannabinoid synthesis pathway enzyme(s) (e.g., THCA synthase and CBDA synthase). This sequencing revealed a more refined structure of inheritance and numerous additional subtypes that can be identified by genotyping to predict chemical inheritance. See, FIG. 2.

Kitamura describes amplification of a small region of THCA synthase to resolve hemp from drug-type (i.e., THC expressing) strains. Kitamura et al., (2017) Journal of natural medicines, 71 (1):86-95, PMID: 27535292 and Kitamura et al., (2016) Biological & pharmaceutical bulletin, 39 (7):1144-9, PMID: 27118244, each of which is incorporated herein by reference. However, the present disclosure recognizes that these studies only tested 3 cultivars and also failed to consider CBDA status. The present disclosure encompasses a recognition that an understanding CBDA status is critical for determining allelic balance of CBDA and THCA synthases, which may be important for Cannabis breeding

Cannabis genomes are about 10 fold more variable than human genomes. Moreover, a given Cannabis strain is often capable of crossing with highly divergent Cannabis strains (e.g., Cannabis strains of a different chemotype, genotype, etc.). As a result, even sibling strains cannot be not be assumed to have the same chemotype. The present disclosure provides methods and kits suitable for genetic characterization of individual Cannabis plants.

In some embodiments, a method includes detection of one or a plurality of sequences that include a gene sequence or portion thereof in a sample that comprises nucleic acid from a Cannabis plant. In some embodiments, a gene sequence encodes an enzyme involved in the synthesis of one or more

In some embodiments, a method of the present disclosure respective enzymatic synthases (e.g., CDBA synthase and 55 includes detecting the presence of a tetrahydrocannabinolic acid (THCA) synthase gene sequence or a portion thereof. The present disclosure encompasses the recognition that THCA synthase is under selective breeding pressure and has approximately a 4 fold higher polymorphism rate than a Cannabis genome in general. Moreover, a THCA synthase gene sequence can include a SNP approximately every 25 nucleotides, which complicates design of primers that anneal within the open reading frame of THCA synthase. In some embodiments, a THCA synthase gene sequence encodes a wildtype THCA synthase enzyme (i.e., functional). In some embodiments, a THCA synthase gene sequence includes a THCA synthase gene sequence pro-

moter sequence. In some embodiments, a THCA synthase gene sequence includes a THCA synthase gene sequence 5' UTR sequence.

In some embodiments, a method of the present disclosure includes amplifying a THCA synthase gene sequence or 5 portion thereof from a sample that comprises nucleic acid from a Cannabis plant. In some embodiments, amplification of a THCA synthase gene sequence includes contacting nucleic acid from a Cannabis plant with a forward THCA synthase primer that is complementary to a sequence that is 200-1000 nucleotides upstream of a THCA open reading frame. In some embodiments, a forward THCA synthase primer is complementary to a sequence that is 200 to 800 nucleotides, 200 to 600 nucleotides, 200 to 400 nucleotides upstream of a THCA open reading frame. In some certain embodiments, a forward THCA synthase primer is complementary to a sequence that is at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a portion of SEQ ID NO: 6. In some certain embodiments, a forward THCA synthase primer is at 20 to 60 nucleotides long.

AATCATTA

In some embodiments, amplification of a THCA synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with a reverse THCA synthase primer that is complementary to a sequence that is 200-1000 nucleotides downstream of a THCA open reading frame. In some embodiments, a reverse THCA synthase primer is complementary to a sequence that is 200 to 800 nucleotides, 200 to 600 nucleotides, 200 to 400 nucleotides downstream of a THCA open reading frame. In some certain embodiments, a reverse THCA synthase primer is complementary to a sequence that is at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a portion of SEQ ID NO: 7. In some certain embodiments, a reverse THCA synthase primer is about 20 to 60 nucleotides long.

Exemplary ${\it C.\ sativa}$ sequence downstream of THCA synthase open reading frame

SEQ ID NO: 7
TTATCAATTAGTTAATCATTATACCATACATACATTATTGTATATAGT
TTATCTACTCATATTATGTATGCTCCCCAAGTATGAAAATCTACATTAGA
ACTGTGTAGACAATCATACATAGCGACTATCGTG

In some embodiments, amplification of a THCA synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with two or more primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 65 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 8-12.

20

In some embodiments, a method of the present disclosure includes detecting the presence of a variant THCA synthase gene sequence in a sample that comprises nucleic acid from the *Cannabis* plant. In some embodiments, a method of the present disclosure includes amplifying a variant THCA synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant.

In some embodiments, a method of the present disclosure includes detecting the presence of a mutated THCA synthase gene sequence in a sample that comprises nucleic acid from the *Cannabis* plant. In some embodiments, a mutated THCA synthase gene sequence includes at least one mutation that alters the activity of a THCA synthase encoded by the mutated THCA synthase gene sequence relative to a THCA synthase encoded by a wild-type THCA synthase gene sequence.

In some embodiments, a method of the present disclosure includes detecting the presence of a polymorphism within a THCA synthase gene sequence in a sample that comprises nucleic acid from the Cannabis plant. In some embodiments, a polymorphism within a THCA synthase gene sequence is or comprises one or more variants as described in FIG. 3 and/or FIG. 10. FIG. 10 prevents a chart describing certain Single Nucleotide Polymorphism (SNP) variants of THCA synthase in different Cannabis plant strains (indicated by accession code). SNPs that result in an amino acid change are indicated in bold, and the type of change is with the corresponding position in the amino acid sequence is indicated in the bottom row. In the last column is provided the proportion of THC(V)A product of the total cannabinoid fraction that is accumulated in each *Cannabis* plant variant. In some embodiments, a THCA synthase gene sequence is or comprises a I63L variant, a V125L variant, a E236Q variant, a A250D variant, a E265G variant, and/or a G410E variant. In some certain embodiments, a THCA synthase gene sequence is or comprises a A411V variant.

In some embodiments, a method of the present disclosure includes detecting the presence of a wild-type cannabidiolic acid (CBDA WT) synthase gene sequence in a sample that comprises nucleic acid from the *Cannabis* plant. In some embodiments, a method of the present disclosure includes amplifying a CBDA WT synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant.

In some embodiments, a method of the present disclosure includes detecting the presence of a mutated cannabidiolic acid (CBDA^{mut}) synthase gene sequence in a sample that comprises nucleic acid from the *Cannabis* plant, wherein the mutated CBDA synthase gene sequence comprises a deletion mutation. In some embodiments, a CBDA^{del} sequence includes or comprises a deletion of CGTA (SEQ ID NO:3). In some embodiments, a method of the present disclosure includes amplifying a CBDA^{mut} synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the present disclosure includes amplifying a CBDA^{del} synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant.

In some embodiments, a method of the present disclosure includes detecting a combination of two or more genomic sequences selected from: a THCA synthase gene sequence, a variant or mutant THCA synthase gene sequence, a CBDA **T* synthase, and CBDA*** synthase gene sequence. In some embodiments, a method of the present disclosure includes amplifying two or more genomic sequences selected from: a THCA synthase gene sequence, a variant or mutant THCA synthase gene sequence, a CBDA*** synthase gene sequence, a CBDA**** synthase gene sequence, a CBDA*** synthase gene sequence, a CBD

thase, and CBDA mut synthase gene sequence, from a sample that comprises nucleic acid from a Cannabis plant.

In some embodiments, a method of the present disclosure includes detecting the presence of an olivetol synthase gene sequence in a sample that comprises nucleic acid from a 5 Cannabis plant. In some embodiments, a method of the present disclosure includes amplifying an olivetol synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a Cannabis plant. In some embodiments, a method of the present disclosure includes detecting 10 the presence of a variant olivetol synthase gene sequence in a sample that comprises nucleic acid from a Cannabis plant. In some embodiments, a method of the present disclosure includes amplifying a variant olivetol synthase gene sequence or portion thereof from a sample that comprises 15 nucleic acid from a Cannabis plant.

In some embodiments, a method of the present disclosure includes detecting the presence of a divarinic acid synthase gene sequence in a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the 20 present disclosure includes amplifying a divarinic acid synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the present disclosure includes detecting the presence of a variant divarinic acid synthase 25 gene sequence in a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the present disclosure includes amplifying a variant divarinic acid synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant. 30

In some embodiments, a method of the present disclosure includes detecting the presence of a limonene synthase gene sequence in a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the present disclosure includes amplifying a limonene synthase 35 gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant. In some embodiments, a method of the present disclosure includes detecting the presence of a variant limonene synthase gene sequence in a sample that comprises nucleic acid from a *Cannabis* 40 plant. In some embodiments, a method of the present disclosure includes amplifying a variant limonene synthase gene sequence or portion thereof from a sample that comprises nucleic acid from a *Cannabis* plant.

In some embodiments, a method of the present disclosure includes detecting a combination of two, three, four, five, six, seven, eight, or more genomic sequences selected from: a THCA synthase gene sequence, a variant or mutant THCA synthase gene sequence. In some embodiments, a method of the present disclosure includes amplifying two or more genomic sequences selected from: a THCA synthase gene sequence, a variant or mutant THCA synthase gene sequence, a variant or mutant THCA synthase gene sequence, a CBDA to mutant THCA synthase gene sequence, a clivetol synthase gene sequence, a variant olivetol synthase gene sequence, a divarinic acid synthase gene sequence, a limonene synthase gene sequence, and a variant limonene synthase gene sequence from a sample that comprises nucleic acid from the *Cannabis* plant.

Methods for Genotyping Cannabis

In vitro nucleic acid amplification technique can be used for genotyping *Cannabis* plants. In vitro nucleic acid amplification techniques can be grouped according to the temperature requirements of the procedure. For example, polymerase chain reaction (PCR) is the most popular method as a technique of amplifying nucleic acid in vitro. PCR has

22

high sensitivity based on the effect of exponential amplification. Further, since a PCR amplification product can be recovered as DNA, this method is applied widely for genetic engineering techniques such as gene sequence cloning and structural determination. In PCR, however, temperature cycling or a special temperature controller is necessary for practice; the exponential progress of the amplification reaction causes a problem in quantification. Other PCR-based amplification techniques include, for example, transcriptionbased amplification (D. Y. Kwoh, et at. 1989. Proc. Natl. Acad Sci. USA 86, 1173-1177, which is incorporated herein by reference), ligase chain reaction (LCR; D. Y. Wu, et al. 1989. Genomics 4, 560-569; K. Barringer, et al. 1990. Gene 89, 117-122; F. Barany. 1991. Proc. Natl. Acad. Sci. USA 88, 189-193, each of which are incorporated herein by reference), and restriction amplification (U.S. Pat. No. 5,102,784, which is incorporated herein by reference).

More recently, a number of isothermal nucleic acid amplification techniques have been developed. That is, these techniques do not rely on thermocycling to drive nucleic acid amplification. Isothermal amplification techniques typically utilize DNA polymerases with strand-displacement activity, thus eliminating the high temperature melt cycle that is required for PCR. This allows isothermal techniques to be faster and more energy efficient than PCR, and also allows for more simple and thus lower cost instrumentation since rapid temperature cycling is not required. For example, methods such as Strand Displacement Amplification (SDA; Walker, et at., (1992) Proc. Natl. Acad. Sci. USA 89: 392-396; Walker, et al., (1992) Nuc. Acids. Res. 20:1691-1696; U.S. Pat. No. 5,648,211 and EP 0 497 272, each of which is incorporated herein by reference); self-sustained sequence replication (3SR; J. C. Guatelli, et al., (1990) Proc. Natl. Acad. Sci. USA, 87: 1874-1878, which is incorporated herein by reference); and Qβ replicase system (Lizardi, et al., (1988) BioTechnology, 6: 1197-1202, which is incorporated herein by reference) are isothermal reactions. See also, Nucleic Acid Isothermal Amplification Technologies—A Review. Nucleosides, Nucleotides and Nucleic Acids (2008) v27(3):224-243, which is incorporated herein by reference.

In some embodiments, an in vitro nucleic acid amplification assay for use in the methods of the present disclosure is an isothermal amplification method. Isothermal amplification methods include, for example, transcription mediated amplification (TMA) or self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), signal mediated amplification of RNA technology (SMART), strand displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification of DNA (LAMP), isothermal multiple displacement amplification (IMDA), helicase-dependent amplification (SPIA), and circular helicase-dependent amplification (CHDA))

LAMP Assay

It is envisioned that LAMP amplification assays as described herein will provides a rapid and scalable means to resolve chemotypes of *Cannabis* plants. In some embodiments, an in vitro nucleic acid amplification assay for use in the methods of the present disclosure is Loop-Mediated Isothermal Amplification (LAMP). Typically, LAMP reactions use a strand-displacing DNA polymerase with four to six primers, which can result in exponential amplification of a target sequence.

In LAMP, a target sequence is amplified at a constant temperature. In some embodiments, a LAMP reaction temperature is between 37° C. and 75° C. In some embodiments,

a LAMP reaction temperature is between 50° C. and 70° C. In some embodiments, a LAMP reaction temperature is between 55° C. and 65° C. In some embodiments, a LAMP reaction temperature is between 60° C. and 65° C. In some embodiments, a LAMP reaction uses two or three primer sets, and a polymerase with high strand displacement activity in addition to a replication activity. (See Nagamine et al., (2002) Mol. Cell. Probes 16 (3): 223-9; and U.S. Pat. No. 6,410,278, each of which is incorporated herein by reference)

LAMP was originally invented and formulated as an isothermal amplification with a requirement for four primers: two loop-generating primers (FIP and BIP comprising F1, F2 and B1, B2 priming sites, correspondingly) and two "Displacement primers" (F3 and B3). In order to increase the speed of LAMP-based assays additional "Loop primers" were added in conjunction with the other primers used in LAMP, which resulted in significantly faster assays.

In some embodiments, LAMP amplification of a THCA 20 synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with four or more primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 8-12.

In some embodiments, LAMP amplification of a CBDA synthase gene sequence includes contacting nucleic acid from a *Cannabis* plant with four, five, or six, or more primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 30 98%, 99%, or 100% identical to any of SEQ ID NOs: 13-18 and 27.

In some embodiments, LAMP amplification of a CBDA mut (CBDA del) synthase gene sequence includes contacting nucleic acid from a Cannabis plant with four, five, or 35 six, or more primers that are at least 70%, 75%, 80%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NOs: 13, 15-19, and 27.

In some embodiments, a LAMP amplification assay as 40 described herein is a colorimetric LAMP assay.

Due to the specific nature of the action of these primers, the amount of DNA produced in LAMP is considerably higher than PCR based amplification. The reaction can be followed in real-time either by measuring the turbidity or by 45 fluorescence using intercalating dyes. Dye molecules intercalate or directly label the DNA, and in turn can be correlated to the number of copies initially present. Hence, LAMP can also be quantitative. Thus, LAMP provides major advantages due to its simplicity, ruggedness, and low cost, 50 and has the potential to be used as a simple screening assay in the field or at the point of care by clinicians.

Primer design for LAMP assays generally involves selection of eight separate regions of a target nucleic acid sequence (the FIP and BIP primers encompass two primer 55 binding sites each), with BIP/FIP and Loop primers having significant restrictions on their positioning respective to each other. "Loop primers" are positioned between B2 and B1 sites and F2 and F1 sites, respectively, and must be orientated in a particular direction. Further, significant care must 60 be taken in primer design to avoid primer-dimers between the six primers (which can be especially difficult as the FIP and BIP primers are generally greater than 40 nucleotides long). As a consequence, LAMP primer design is extremely challenging, especially when targeting highly polymorphic 65 markers and sequences containing complex secondary structure. At least in part because primer design for LAMP is

24 subject to numerous constraints, software is generally used to assist with LAMP primer design.

LAMP has been observed to be less sensitive than PCR to inhibitors in complex samples such as blood, likely due to use of a different DNA polymerase (typically Bst DNA polymerase rather than Taq polymerase as in PCR). LAMP is useful primarily as a diagnostic or detection technique, but is generally not useful for some molecular biology applications enabled by PCR, such as, for example, cloning.

Also, multiplexing approaches for LAMP are relatively undeveloped. The larger number of primers per target in LAMP increases the likelihood of primer-primer interactions for multiplexed target sets. The product of LAMP is a series of concatemers of the target region, giving rise to a characteristic "ladder" or banding pattern on a gel, rather than a single band as with PCR. Although this is not a problem when detecting single targets with LAMP, "traditional" (endpoint) multiplex PCR applications wherein identity of a target is confirmed by size of a band on a gel are not feasible with LAMP. Multiplexing in LAMP has been achieved by choosing a target region with a restriction site, and digesting prior to running on a gel, such that each product gives rise to a distinct size of fragment, although this approach adds complexity to the experimental design and protocol. The use of a strand-displacing DNA polymerase in LAMP also precludes the use of hydrolysis probes, e.g. TaqMan probes, which rely upon the 5'-3' exonuclease activity of Taq polymerase.

In some embodiments, a modified LAMP technique called LAMP-STEM is used in a method of the present disclosure. LAMP-STEM system utilizes "Stem primers," which are directed to the stem portion of the LAMP amplicon (or "dumbbell"). Stem primers can be used as an alternative to LAMP "Loop primers." When used in addition to loopgenerating and displacement primers, Stem primers offer similar benefits in speed and sensitivity to the Loop primers. (See Gandelman et al., Loop-Mediated Amplification Accelerated by Stem Primers. Int. J. Mol. Sci. 2011, v12:9108-9124, and US 2012/0157326, each of which is incorporated herein by reference). This beneficial effect of Stem primers is surprising as they do not bind to the single-stranded DNA loops, which define the very nature of the LAMP technology. Stem primers can be employed in either orientation, do not require either the B2/B1 or F2/F1 sites to be a specific distance apart, can be multiplexed, and allow the F1 and B1 sites to be positioned further from each other than in LAMP.

Stem primers significantly accelerate LAMP comprised of loop-generating and displacement primers only. They can be used on their own or synergistically with other Stem primers or even Loop primers. Addition of Stem primers into LAMP has a positive effect on both speed and sensitivity. In some cases they improve reproducibility at low copy number. The action of Stem primers can be rationalized via the proposed mechanism of LAMP. They anneal to transiently single-stranded regions of the amplicon and recopy the entire binding sites for the BIP/FIP primers. An additional unique feature is the extra strong intra-molecular self-priming when Stem primers delimit amplicon.

In general, positioning of Stem primers is less constrained than that of Loop primers. A rather challenging primer design involving selection of at least eight binding sites is thus simplified. Furthermore, Stem primers impose fewer limitations on the primer design in terms of stem length, orientation and distances between B1-B2 and F1-F2 sites. In contradiction to the postulated LAMP mechanism that relies on the involvement of displacement primers Stem primers can occasionally allow displacement primers not to be used

at all, though it is not clear why this is so. This has a major implication for primer design, as it allows the ability to omit one displacement primer or even both, if necessary. qPCR

In some embodiments, an in vitro nucleic acid amplification assay for use in the methods of the present disclosure is qPCR. Real-time quantitative polymerase chain reaction (qPCR) determines, the fractional cycle number (C_t) at which the well's rising fluorescence (proportional to product formation) crosses a set threshold that is several standard deviations above the baseline fluorescence (Higuchi, et al., (1993) Kinetic PGR analysis: real-time monitoring of DNA amplification reactions, *Biotechnology* (NY), 11: 1026-1030, which is incorporated by reference in its entirety). The C_t versus log (amount of input target DNA) plot is linear, 15 allowing relative quantitation of unknowns by comparison to a standard curve derived from amplifying, in the same plate, serial dilutions of a reference DNA sample.

In some embodiments, a qPCR assay is normalized, for example, a signal from a target sequence can be normalized 20 to a signal from a reference sequence. In some embodiments, a target sequence and reference sequence are measured in separate (monoplex) reactions. In some embodiments, a reaction includes a dye that fluoresces upon intercalation into any double-stranded DNA, e.g., ethidium 25 bromide or SYBR Green I, etc. In some embodiments, a target sequence and reference sequence are measured in the same reaction vessel via a multicolor multiplex qPCR. In some embodiments, a multiplex qPCR uses separate fluorescent dyes with distinct excitation/emission spectra for 30 each of the DNA sequences being quantified (Wittwer, et al., (2001) Real-time multiplex PCR assays. *Methods*, 25, 430-442, which is incorporated by reference in its entirety). Kits

In some embodiments, the present disclosure provides 35 kits comprising materials useful for amplification and detection and/or sequencing of *Cannabis* plant nucleic acid (e.g., DNA). In some embodiments, *Cannabis* plant nucleic acid sample includes detection of all or part of a THCA synthase gene sequence and/or a CBDA synthase gene sequence as 40 described herein. In some embodiments, a kit in accordance of the present disclosure is portable.

Suitable amplification reaction reagents that can be included in an inventive kit include, for example, one or more of: buffers; enzymes having polymerase activity; 45 enzyme cofactors such as magnesium or manganese; salts; nicotinamide adenide dinuclease (NAD); and deoxynucleoside triphosphates (dNTPs) such as, for example, deoxyadenosine triphosphate; deoxyguanosine triphosphate, deoxycytidine triphosphate and deoxythymidine triphosphate, 50 biotinylated dNTPs, suitable for carrying out the amplification reactions.

In some embodiments, a kit comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more primer sequences for in vitro nucleic acid amplification. Primer 55 sequences may be suitable for in vitro nucleic acid amplification with any of the methods described herein (e.g., QT-PCR, LAMP, etc.). In some embodiments, a kit of the present disclosure includes reagents suitable to perform a colorimetric LAMP assay for amplification of one or more 60 *Cannabis* gene sequences as described herein.

Depending on the procedure, a kit may further include one or more of: wash buffers and/or reagents, hybridization buffers and/or reagents, labeling buffers and/or reagents, and detection means. The buffers and/or reagents included in a 65 kit are preferably optimized for the particular amplification/ detection technique for which a kit is intended. Protocols for

26

using these buffers and reagents for performing different steps of the procedure may also be included in a kit.

In some embodiments, a kit may further include one or more reagents for preparation of nucleic acid from a plant sample. For example, a kit may further include one or more of a lysis buffer, a DNA preparation solution (e.g., a solution for extraction and/or purification of DNA). Kits may also contain reagents for the isolation of nucleic acids from biological specimen prior to amplification. Protocols for using these reagents for performing different steps of the procedure may also be included in a kit.

Furthermore, kits may be provided with an internal control as a check on the amplification procedure and to prevent occurrence of false negative test results due to failures in the amplification procedure. An optimal control sequence is selected in such a way that it will not compete with the target nucleic acid sequence in the amplification reaction (as described above).

In some embodiments, a kit may further include reagents for an amplification assay to characterize the gender of a *Cannabis* plant.

Reagents may be supplied in a solid (e.g., lyophilized) or liquid form. Kits of the present disclosure may optionally comprise different containers (e.g., vial, ampoule, test tube, flask or bottle) for each individual buffer and/or reagent. In some embodiments, each component will generally be suitable as aliquoted in its respective container or provided in a concentrated form. Other containers suitable for conducting certain steps of inventive amplification/detection assay(s) may also be provided. Individual containers of a kit are preferably maintained in close confinement for commercial sale

A kit may also comprise instructions for using the amplification reaction reagents, primer sets, primer/probe sets according to the present disclosure. Instructions for using a kit according to one or more methods of the present disclosure may comprise instructions for processing the biological sample, extracting nucleic acid molecules, and/or performing one or more amplification reactions; and/or instructions for interpreting results. In some embodiments, a kit may comprise instruction for determining, assessing and/or classifying a *Cannabis* plant used in the described methods as a Type Ia, Type Ib, Type IIa, Type IIb, Type IIIa, Type IIIb, Type IIIb, Type IIIIa, Type IIIb, Type IV or Type V plant.

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

EXEMPLIFICATION

Example 1: Genotyping Cannabis Plants

Bt and Bd alleles have been proposed as a model for generating Type I, II, III, and IV plants. While this classification system can be predictive, the exact DNA sequences that govern them remain unknown. Single molecule sequencing was performed to identify mutations in gene sequences in cannabinoid synthesis pathway(s) (e.g., THCA synthase and CBDA synthase). This sequencing revealed a more refined structure of the inheritance and revealed numerous additional subtypes that can be identified by genotyping to predict chemical inheritance. See, FIG. 2. As illustrated in FIG. 2, a *Cannabis* plant may be characterized

as a Type Ia, Type Ib, Type IIa, Type IIb, Type IIIa, Type IIIb, Type IV or Type V plant.

Example 2: Assay for Genotyping THCA Synthase

This example describes development of superior isothermal nucleic acid amplification assays for detection of THCA synthase. Specifically, a colorimetric LAMP assay for detection of THCA synthase is described. It is envisioned that such a colorimetric LAMP assay may be portable, so that 10 can it be performed at a point of grow to resolve *Cannabis* chemotypes in a rapid and scalable manner.

Challenges with genotyping a THCA synthase include, for example, (1) that there are many pseudogene sequence copies of THCA synthase and (2) that THCA synthase gene 15 sequences are highly polymorphic. For at least this reason, designing primers can be difficult and testing such primers on a few samples does not provide adequate population diversity to guarantee assay performance in the broader markets. The present disclosure addresses these deficiencies 20 with a novel Long Range (2130 bp) LAMP assay that includes a primer that anneals to a promoter region of THCA synthase and internal primers that are less prone to effects resulting from polymorphisms.

Weiblen, Stagginus and Onofri suggested primers for 25 THCA synthase detection but failed to test enough samples to find fatal polymorphisms in their detection approach (Weiblen et al., (2015), *The New Phytologist*, PMID:

28

genetic studies of THCA synthase gene sequences. THCA synthase gene sequences are under selective breeding pressure and has a 4-fold higher polymorphism rate than the rest of the genome. There is a SNP approximately every 25 nucleotides in THCA synthase gene sequences, making primer design internal to a THCA synthase gene sequence complicated. To address this, primers (e.g., F3 and B3 primers for LAMP) were designed that were external to a THCA synthase gene sequence, where there is more sequence conservation. This results in a THCA synthase gene sequence amplicon of greater than 2000 nucleotides. There was no expectation that such a reaction would work, as there were no reports of Long Range LAMP assays in the literature and the common design tools found at Primer Explorer did not allow primer design of targets this large.

Materials and Methods

LAMP assay

10 ul 2×LAMP mix (NEB Catalog #M1800S)

2 ul of primer cocktail

6 ul ddH20 (pH 6.5)

2 ul DNA (4 mm leaf biopsy boil in 100 ul ddH20, 5% Chelex)

Exemplary THCA synthase Long Range LAMP primers are provided in FIG. 9 and Table 2:

TABLE 2

THC_BIP	CACACAAGCACGTATTTGGGCTTTAGTTTTCACCTTAACTA ACCT	SEQ	ID	NO:	8
THC_FIP	GACTCGCATGATTAGTTTTTCCTATCCTTATGTGTCCCAAA ATCC	SEQ	ID	NO:	9
THC_Loop1	TCCCTATAATTGAGATACGCCAAT	SEQ	ID	NO:	10
THC-F3	ATGGGAACCATAATAAACTATAAAAGTCATT	SEQ	ID	NO:	11
THC_B3	TATGATTGTCTACACAGTTCTAATGTAGATTTTC	SEQ	1D	NO:	12

26189495; Staginnus et al., (2014) Journal of Forensic Sciences, 59(4):919-26, PMID: 24579739; and Onofri et al., (2015), supra, each of which is incorporated by reference in its entirety). While Kitamura et al. described a portable 45 LAMP assay for THCA synthase, the assay was performed using only two THCA+ cultivars and one fiber type. Consequently, Kitamura et al. did not consider the full complexity of cannabis genotypes in circulation. Moreover, the primers used in Kitamura's assay annealed to different 50 regions in a THCA synthase gene sequence. As a result, and shown herein, the present disclosure recognizes that the Kitamura primers were insufficient for detecting/amplifying a THCA synthase gene sequence in numerous common Cannabis cultivars. In fact, sequence analysis of the Kita- 55 mura primers revealed that the 5' end of the Kitamura BIP primer sits on a common I63E and I63F polymorphisms described by Onofri et al., (2015), supra, which is incorporated by reference in its entirety. As this 5' end becomes the 3' end in the second strain synthesis of a LAMP reaction, 60 presence of this polymorphism could impair or stall the LAMP reaction. A similar problem existed with other Kitamura primers, which traversed the P333R variant and the Glu265Gln variants described by Onofri, et al., (2015), supra, incorporated by reference in its entirety.

Amplification issues resulting from polymorphisms in an underlying gene sequence is a common problem with

To compare efficacy of Kitamura primers ("K primers") to exemplary Long Range primers ("LR primers"), LAMP assays were performed with these primers on various strains of Cannabis plants. Results are shown in FIG. 5, panel (A). In FIG. 5, panel (A), the text on the left side of the image indicates the strain of Cannabis plant for each row of samples that was tested by LAMP amplification. The top row included samples from Granddaddy Purple (GDP), the second row from the top included samples from Otto, the third row from the top included samples from a first hemp strain, the fourth row from the top included samples from a second hemp strain, the fifth row from the top included samples from Grape Stomper (RSP10516), and the bottom row included samples from Erk Train X Deadhead OG (RSP10517). A sample obtained from each strain was placed in the first and third columns. For each strain, a LAMP assay using the K primers was performed in the first column, and a LAMP assay using the LR primers was performed in the third column.

As shown in FIG. 5, panel (A), the two hemp strains displayed a negative result for THCA synthase using either the K primers or the LR primers. As a hemp strain would be expected to be THCA+/THCA-, this result showed that LAMP amplification using either the K primers or the LR primers was not giving a false positive result. The Otto

strain, which expresses THCA synthase, displayed a positive result using the K primers, which showed that LAMP amplification using the K primers detected the presence of a THCA synthase gene. However, the GDP strain of Cannabis plant, which also expresses THCA synthase, had a negative result when LAMP amplification was performed with K primers, while giving a positive result when LAMP amplification was performed with LR primers. This results showed that LR primers are able to successfully detect a THCA gene sequence by LAMP amplification, and do so in 10 tional

gene sequence by LAMP amplification. To determine how a Long Range LAMP assay of THCA synthase would perform at various temperatures, LAMP assays with LR primers were performed on various samples 15 over a range of temperatures (temperatures indicated on right side of FIG. 5, panel (B)). As indicated in FIG. 5, panel (B), the first two columns of samples were obtained from THCA synthase negative hemp strains. The third column included samples from a THCA synthase positive Cannabis 20 strain. The fourth column included samples from a Granddaddy purple strain. The eighth column included a negative control, and the ninth column included a positive control. Amplification of the THCA synthase gene sequence was successful for the THCA synthase positive Cannabis strain, 25 the Granddaddy Purple strain, and the positive control at each of the temperatures tested. These data showed that LAMP assays using LR primers were able to properly detect THCA synthase positive strains across a broad temperature profile.

strains for which K primers are unable to detect a THCA

The exemplary Long Range LAMP assay of THCA synthase was repeated on various different *Cannabis* strains that are known to be THCA synthase positive. See, FIG. **6**. FIG. **6**, depicts LAMP amplifications with LR primers on 28 different known THCA synthase positive strains of *Cannabis* at 65° C., for 50 minutes. Wells H6-H9 were control samples. As can be seen, all 28 THCA synthase positive samples had successful amplification with the exemplary LR primers.

Accordingly, this example demonstrates that LAMP 40 assays using long range primers (such as the exemplified LR primers) of THCA synthase gene sequences was robust and reliable. This example also demonstrates the shortcomings of LAMP amplification using the Kitamura primers for accurately detecting THCA synthase gene sequences in 45 *Cannabis* strains.

Example 3: Combined THCA Synthase/CBDA Synthase Assay

This example describes characterization of the CBDA synthase Bd allele as a four nucleotide deletion within the coding sequence of this gene. This example also describes development of amplification assays for detection of wild-type (CBDA wt) and mutant (CBDA Bd) CBDA synthase gene 55 sequences.

Kitamura simply assessed presence of a single gene sequence (THCA synthase) and its deleted pseudogene

30

sequence copies in certain hemp fiber varietals. Thus, the LAMP assay described in Kitamura (at best) only differentiated Type I or II *Cannabis* from other types (Type II-V), but failed to refine certain chemotype categories. To more rigorously stratify the numerous classes of cannabinoid production other gene sequence(s) that compete for the same cannabinoid precursor (e.g., cannabigerolic acid or CBGA) should be considered. Since both THCA synthase and CBDA synthase compete for cannabigerolic acid, the mutational spectrum of both of these gene sequences with respect to one another was examined.

To characterize CBDA synthase, single molecule sequencing of CBDA synthase in dozens of *Cannabis* cultivars was performed. This sequencing revealed a 4 nucleotide frame shifting deletion that governs the Bd allele. The Bd allele was then surveyed in more than 50 hemp and CBD lines to confirm the Bd allele and its phenotype. A consensus sequence for the region of the CBDA synthase gene sequence that includes this deletion is shown in FIG. 4.

Assays that targeted a 4 nucleotide deletion in the CBDA synthase gene sequence (4bpDel) (See, FIG. 4, residues 330-333) were designed. Various different hemp lines that were known to be THCA synthase negative were tested by both an exemplary CBDA synthase assay and an exemplary LAMP assay using LR primers for a THCA synthase gene sequence. FIG. 7 shows LAMP assays for amplification of wild-type CBDA synthase gene sequence (panel (A)) and THCA synthase gene sequence (panel (B)) on 38 different hemp strains (i.e., THCA synthase negative strains). A plate map describing the hemp strain in each well is provided at the bottom (panel (C). As shown in FIG. 7, panel (A), all samples but one (sample M2 in well A1) resulted in amplification of a wild-type CBDA synthase gene sequence. Further, as shown in FIG. 7, panel (B), LAMP assay using LR primers for a THCA synthase gene sequence consistently showed no amplification on hemp samples. These results showed that the chemotype of Cannabis strains were accurately detected by performance of a CBDA synthase assay and an LAMP amplification using LR primers for a THCA synthase gene sequence.

For the one hemp sample (A1) that failed to amplify in the exemplary CBDA synthase gene sequence assay, when this sample was repeated using a different DNA purification method, amplification of CBDA synthase gene sequence was observed. Thus, it was concluded that the result for this particular sample was a false negative that resulted from other experimental conditions.

With two assays, discernment of THCA synthase positive plants from CBDA synthase positive plants was achieved. The copy number of THCA synthase or CBDA synthase in the genome of *Cannabis* plants could not be detected, however. Copy number can be useful information for breeders looking to breed plants that produce high levels of THC or CBD. In order to assess copy number, a deletion in the CBDA synthase gene sequence was targeted.

Exemplary CBDA^{wt} synthase primers (which hybridize to a wild-type CBDA synthase gene sequence) are provided in FIG. **9** and Table 3:

TABLE 3

CBD_BIP	CAATCTTAGATTCACCTCTGACACAAGACATGTGAAGGAG TGAC	SEQ	ID	NO:	13	
CBD_FIP	TGTATTGTCGAATTTAGGACAGACAATGCAACAAATCTAA AACTCGTA	SEQ	ID	NO:	14	
CBD_Loop1	CAATGGGTTGTTTTGAGTGT	SEQ	ID	NO:	15	

TABLE 3-continued

CBD_Loop2	ACCCCAAAACCACTTGT	SEQ ID NO: 16
CBD_F3	CTTCTCGCAATATATTCCCAAT	SEQ ID NO: 17
CBD_F3_v2	ATGCTTCTCGCAATATATTCCCA	SEQ ID NO: 27
CBD_B3	GCATAGAATAGTGCCTTGGAT	SEQ ID NO: 18

Exemplary CBDA^{del} synthase primers (which hybridize to a mutant CBDA synthase gene sequence including a 4 nucleotide deletion) are provided in FIG. 9 and Table 4:

TABLE 4

CBD_BIP	CAATCTTAGATTCACCTCTGACACAAGACATGTGAAGGAG TGAC	SEQ	ID	NO:	13
CBD- NEG_FIP	${\tt TGTATTGTCGAATTTAGGACAGACAATGCAACAAATCTAA} \\ {\tt AACTTACA}$	SEQ	ID	NO:	19
CBD_Loop1	CAATGGGTTGTTTTGAGTGT	SEQ	ID	NO:	15
CBD_Loop2	ACCCCAAAACCACTTGT	SEQ	ID	NO:	16
CBD_F3	CTTCTCGCAATATATTCCCAAT	SEQ	ID	NO:	17
CBD_F3_v2	ATGCTTCTCGCAATATATTCCCA	SEQ	ID	NO:	27
CBD_B3	GCATAGAATAGTGCCTTGGAT	SEQ	ID	NO:	18

The present disclosure encompasses a recognition that detection of both wild-type and mutant CBDA gene sequences will enable genetic differentiation of strains, for example, to differentiate a CBDA⁺/CBDA⁺ genotype from a CBDA⁺/CBDA⁺ genotype.

FIG. **8** depicts results obtained from exemplary LAMP assays for amplification of CBDA wt and CBDA del (e.g., CBDA Bd) gene sequences. FIG. **8**, panel (A), depicts results obtained from LAMP assays with CBDA wt primers on 40 various hemp samples. Most of the samples resulted in amplification of a CBDA wt gene sequence. FIG. **8**, panel (B), depicts results from LAMP assays with CBDA del primers on various hemp samples. As can be seen, most of these samples did not amplify a CBDA del gene sequence.

The present disclosure encompasses a recognition that detection of both wild-type and mutant THCA gene sequences will enable genetic differentiation of strains. In order to assess THCA synthase copy number, one or more

sequence variants can be targeted. For example, primers can be used that target the *Cannabis* THCA synthase A411V variant.

Thus, combined THCA synthase/CBDA synthase assays provided herein can differentiate additional types of *Cannabis* plants. In some embodiments, methods in the context of the present disclosure can differentiate Type I, Type II, Type III, Type IV, and Type V plants. As described herein, the present disclosure further provides new sub-classification of plants we term Type Ia, Type Ib, Type IIa, Type IIb, Type IIc, Type IIIa, Type IIIb, Type IV and Type V *Cannabis* plants, see, e.g., FIG. **2** and Table 1 (above).

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of an invention described herein. The scope of an invention described is not intended to be limited to the above Description, but rather is as set forth in the following claims:

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 27

<210> SEQ ID NO 1
<211> LENGTH: 2121
<212> TYPE: DNA
<213> ORGANISM: Cannabis sativa
<400> SEQUENCE: 1

atgggaacca taataaacta taaaagtcat tatgtgtact tgctaccata ggcacctata 60
tcccacaaac tagctaccat agccaatttc ttttttgttt ccaatatcca attttattg 120
atgccaaact attcaatgta caatgtacat ttattttcaa taagggcttc acctaacaaa 180
```

-continued

ggtgcctaat	tttagttgat	ttatttttta	tcacatgtga	ctatttaatg	actatcaaat	240
tataaaatat	ttaagtcaat	ttatttgccc	caactccaat	atataatatt	ataaatagga	300
tagttctcaa	ttcctaataa	ttcaaaaaat	cattaggact	gaagaaaaat	gaattgctca	360
gcattttcct	tttggtttgt	ttgcaaaata	atatttttct	ttctctcatt	ccatatccaa	420
atttcaatag	ctaatcctcg	agaaaacttc	cttaaatgct	tctcaaaaca	tattcccaac	480
aatgtagcaa	atccaaaact	cgtatacact	caacacgacc	aattgtatat	gtctatcctg	540
aattcgacaa	tacaaaatct	tagattcatc	tctgatacaa	ccccaaaacc	actcgttatt	600
gtcactcctt	caaataactc	ccatatccaa	gcaactattt	tatgctctaa	gaaagttggc	660
ttgcagattc	gaactcgaag	cggtggccat	gatgctgagg	gtatgtccta	catatctcaa	720
gtcccatttg	ttgtagtaga	cttgagaaac	atgcattcga	tcaaaataga	tgttcatagc	780
caaactgcgt	gggttgaagc	cggagctacc	cttggagaag	tttattattg	gatcaatgag	840
aagaatgaga	atcttagttt	tcctggtggg	tattgcccta	ctgttggcgt	aggtggacac	900
tttagtggag	gaggctatgg	agcattgatg	cgaaattatg	gccttgcggc	tgataatatt	960
attgatgcac	acttagtcaa	tgttgatgga	aaagttctag	atcgaaaatc	catgggagaa	1020
gatctgtttt	gggctatacg	tggtggtgga	ggagaaaact	ttggaatcat	tgcagcatgg	1080
aaaatcaaac	tggttgatgt	cccatcaaag	tctactatat	tcagtgttaa	aaagaacatg	1140
gagatacatg	ggcttgtcaa	gttatttaac	aaatggcaaa	atattgctta	caagtatgac	1200
aaagatttag	tactcatgac	tcacttcata	acaaagaata	ttacagataa	tcatgggaag	1260
aataagacta	cagtacatgg	ttacttctct	tcaatttttc	atggtggagt	ggatagtcta	1320
gtcgacttga	tgaacaagag	ctttcctgag	ttgggtatta	aaaaaactga	ttgcaaagaa	1380
tttagctgga	ttgatacaac	catcttctac	agtggtgttg	taaattttaa	cactgctaat	1440
tttaaaaagg	aaattttgct	tgatagatca	gctgggaaga	agacggcttt	ctcaattaag	1500
ttagactatg	ttaagaaacc	aattccagaa	actgcaatgg	tcaaaatttt	ggaaaaatta	1560
tatgaagaag	atgtaggagc	tggggtgttg	tacccttacg	gtggtataat	ggaggagatt	1620
tcagaatcag	caattccatt	ccctcatcga	gctggaataa	tgtatgaact	ttggtacact	1680
gcttcctggg	agaagcaaga	agataatgaa	aagcatataa	actgggttcg	aagtgtttat	1740
aattttacga	ctccttatgt	gtcccaaaat	ccaagattgg	cgtatctcaa	ttatagggac	1800
cttgatttag	gaaaaactaa	tcatgcgagt	cctaataatt	acacacaagc	acgtatttgg	1860
ggtgaaaagt	attttggtaa	aaattttaac	aggttagtta	aggtgaaaac	taaagttgat	1920
cccaataatt	tttttagaaa	cgaacaaagt	atcccacctc	ttccaccgca	tcatcattaa	1980
ttatctttaa	atagatatat	ttcccttatc	aattagttaa	tcattatacc	atacatacat	2040
ttattgtata	tagtttatct	actcatatta	tgtatgctcc	caagtatgaa	aatctacatt	2100
agaactgtgt	agacaatcat	a				2121
<210> SEQ : <211> LENG : <212> TYPE <213> ORGAI <400> SEQUI	TH: 1941 : DNA NISM: Cannal	ois sativa				
gatatatatc	tcacacggat	gcacctaaca	atgatgccta	atttttgtga	attttttta	60
	taatgatatc	_				120
9	<u> </u>	J	9 · ·		9	

aatatataaa gctataaata ggatagttct taatccatag taattcaaaa ttcattagaa

-continued

```
ctaaagaaaa atgaagtgct caacattctc cttttggttt gtttgcaaga taatattttt
                                                                     240
ctttttctca ttcaatatcc aaacttccat tgctaatcct cgagaaaact tccttaaatg
                                                                     300
cttctcgcaa tatattccca ataatgcaac aaatctaaaa ctcgtataca ctcaaaacaa
                                                                     360
cccattgtat atgtctgtcc taaattcgac aatacacaat cttagattca cctctgacac
                                                                     420
aaccccaaaa ccacttgtta tcgtcactcc ttcacatgtc tctcatatcc aaggcactat
                                                                     480
tctatgctcc aagaaagttg gcttgcagat tcgaactcga agtggtggtc atgattctga
                                                                     540
gggcatgtcc tacatatctc aagtcccatt tgttatagta gacttgagaa acatgcgttc
                                                                     600
aatcaaaata gatgttcata gccaaactgc atgggttgaa gccggagcta cccttggaga
agtttattat tgggttaatg agaaaaatga gaatcttagt ttggcggctg ggtattgccc
tactgtttgc gcaggtggac actttggtgg aggaggctat ggaccattga tgagaaacta
tggcctcgcg gctgataata tcattgatgc acacttagtc aacgttcatg gaaaagtgct
                                                                     840
                                                                     900
agatcgaaaa tctatggggg aagatctctt ttgggcttta cgtggtggtg gagcagaaag
cttcggaatc attgtagcat ggaaaattag actggttgct gtcccaaagt ctactatgtt
                                                                     960
                                                                    1020
taqtqttaaa aaqatcatqq aqatacatqa qcttqtcaaq ttaqttaaca aatqqcaaaa
tattgcttac aagtatgaca aagatttatt actcatgact cacttcataa ctaggaacat
                                                                    1080
tacagataat caagggaaga ataagacagc aatacacact tacttctctt cagttttcct
                                                                    1140
tggtggagtg gatagtctag tcgacttgat gaacaagagt tttcctgagt tgggtattaa
                                                                    1200
                                                                    1260
aaaaacggat tgcagacaat tgagctggat tgatactatc atcttctata gtggtgttgt
                                                                    1320
aaattacgac actgataatt ttaacaagga aattttgctt gatagatccg ctgggcagaa
cggtgctttc aagattaagt tagactacgt taagaaacca attccagaat ctgtatttgt
                                                                    1380
ccaaattttg gaaaaattat atgaagaaga tataggagct gggatgtatg cgttgtaccc
                                                                    1440
ttacggtggt ataatggatg agatttcaga atcagcaatt ccattccctc atcgagctgg
                                                                    1500
aatcttgtat gagttatggt acatatgtag ttgggagaag caagaagata acgaaaagca
                                                                    1560
tctaaactgg attagaaata tttataactt catgactcct tatgtgtcca aaaatccaag
                                                                    1620
attggcatat ctcaattata gagaccttga tataggaata aatgatccca agaatccaaa
                                                                    1680
taattacaca caagcacgta tttggggtga gaagtatttt ggtaaaaatt ttgacaggct
                                                                    1740
agtaaaagtg aaaaccctgg ttgatcccaa taactttttt agaaacgaac aaagcatccc
                                                                    1800
acctetteea eggeategte attaatgate ttaaatagat ettttetet tattaattag
                                                                    1860
tccttataat atacatatat tgattatata tataaaaaata gtttgtccgg gtgtactgtg
                                                                    1920
tatgcgatat atatctcaca c
                                                                    1941
<210> SEQ ID NO 3
<211> LENGTH: 4
<212> TYPE: DNA
<213> ORGANISM: Cannabis sativa
<400> SEQUENCE: 3
cqta
                                                                       4
<210> SEQ ID NO 4
<211> LENGTH: 1158
<212> TYPE: DNA
```

<213 > ORGANISM: Cannabis sativa

<400> SEQUENCE: 4

-continued

atgaatcatc ttegtgetga gggteeggee teegtteteg ecattggeae egecaateeg	60
gagaacattt tattacaaga tgagtttcct gactactatt ttcgcgtcac caaaagtgaa	120
cacatgactc aactcaaaga aaagtttcga aaaatatgtg acaaaagtat gataaggaaa	180
cgtaactgtt tcttaaatga agaacaccta aagcaaaacc caagattggt ggagcacgag	240
atgcaaactc tggatgcacg tcaagacatg ttggtagttg aggttccaaa acttgggaag	300
gatgcttgtg caaaggccat caaagaatgg ggtcaaccca agtctaaaat cactcattta	360
atottoacta gogoatoaac cactgacatg cooggtgoag actaccattg ogotaagott	420
ctcggactga gtccctcagt gaagcgtgtg atgatgtatc aactaggctg ttatggtggt	480
ggaaccgttc tacgcattgc caaggacata gcagagaata acaaaggcgc acgagttctc	540
gccgtgtgtt gtgacataat ggcttgcttg tttcgtgggc cttcagagtc tgacctcgaa	600
ttactagtgg gacaagctat ctttggtgat ggggctgctg cggtgattgt tggagctgaa	660
cccgatgagt cagttgggga aaggccgata tttgagttgg tgtcaactgg gcaaacaatc	720
ttaccaaact cggaaggaac tattggggga catataaggg aagcaggact gatatttgat	780
ttacataagg atgtgcctat gttgatctct aataatattg agaaatgttt gattgaggca	840
tttactccta ttgggattag tgattggaac tccatatttt ggattacaca cccaggtggg	900
aaagctattt tggacaaagt ggaggagaag ttgcatctaa agagtgataa gtttgtggat	960
tcacgtcatg tgctgagtga gcatgggaat atgtctagct caactgtctt gtttgttatg	1020
gatgagttga ggaagaggtc gttggaggaa gggaagtcta ccactggaga tggatttgag	1080
tggggtgttc tttttgggtt tggaccaggt ttgactgtcg aaagagtggt cgtgcgtagt	1140
gttcccatca aatattaa	1158
<210> SEQ ID NO 5 <211> LENGTH: 1869 <212> TYPE: DNA	
<213> ORGANISM: Cannabis sativa	
<213> ORGANISM: Cannabis sativa <400> SEQUENCE: 5	
	60
<400> SEQUENCE: 5	60 120
<400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt	
<400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa	120
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa</pre>	120 180
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc</pre>	120 180 240
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag</pre>	120 180 240 300
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt</pre>	120 180 240 300 360
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata</pre>	120 180 240 300 360 420
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcatttct attttgaaag aaaaattcac caataataat</pre>	120 180 240 300 360 420
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcattct atttgaaag aaaaattcac caataataat gacaacccta atcctaatta tgatttatat gctactgctc tccaatttag gcttctacgc</pre>	120 180 240 300 360 420 480
<pre><400> SEQUENCE: 5 atgcagtgca tagcttttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcattct attttgaaag aaaaattcac caataataat gacaacccta atcctaatta tgatttatat gctactgctc tccaatttag gcttctacgc caatatggat ttgaagtacc tcaagaaatt ttcaataatt ttaaaaatca caagacagga</pre>	120 180 240 300 360 420 480 540 600
atgcagtgca tagctttca ccaattgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcatttct atttgaaag aaaaattcac caataataat gacaacccta atcctaatta tgatttatat gctactgctc tccaatttag gcttctacgc caatatggat ttgaagtacc tcaagaaatt ttcaataatt ttaaaaatca caagacagga gagttcaagg caaatataag taatgatatt atggagcat tgggcttata tgaagcttca	120 180 240 300 360 420 480 540 600 660
atgcagtgca tagctttca ccaattgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttcta tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgttcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcattct atttgaaag aaaaattcac caataataat gacaacccta atcctaatta tgattatat gctactgctc tccaatttag gcttctacgc caatatggat ttgaagtacc tcaagaaatt ttcaataatt ttaaaaatca caagacagga gagttcaagg caaatataag taatgatatt atgggagcat tgggcttata tgaagcttca ttccatggga aaaagggtga aagtattttg gaagaagcaa gaattttcac aacaaaatgt	120 180 240 300 360 420 480 540 600 660 720
atgaagtgca tagctttca ccaatttgct tcatcatcat ccctccctat ttggagtagt attgataatc gttttacacc aaaaacttct attacttca tttcaaaacc aaaaccaaaa ctaaaatcaa aatcaaactt gaaatcgaga tcgagatcaa gtacttgcta ctccatacaa tgtactgtgg tcgataaccc tagttctacg attactaata atagtgatcg aagatcagcc aactatggac ctcccatttg gtcttttgat tttgtcaat ctcttccaat ccaatataag ggtgaatctt atacaagtcg attaaataag ttggagaaag atgtgaaaag gatgctaatt ggagtggaaa actctttagc ccaacttgaa ctaattgata caatacaaag acttggaata tcttatcgtt ttgaaaatga aatcattct atttgaaag aaaaattcac caataataat gacaacccta atcctaatta tgatttatat gctactgctc tccaatttag gcttctacgc caatatggat ttgaagtacc tcaagaaatt ttcaataatt ttaaaaaatca caagacagga gagttcaagg caaatataag taatgatatt atgggagcat tgggcttata tgaagctca ttccatggga aaaaagggtga aagtatttg gaagaagcaa gaattttcac aacaaaatgt ctcaaaaaaat acaaattaat gtcaagtagt aataataata atatgacatt aatatcatta	120 180 240 300 360 420 480 540 600 660 720

gccaaattgg atttcaatat gctgcaatca acatatcaag aggagctcaa agtactctct

-continued

aggtggtgga agga	ttctaa acttggagag	aaattgcctt	tcgttagaga	tagattggtg	1020			
gagtgtttct tatg	gcaagt tggagtaaga	tttgagccac	aattcagtta	ctttagaata	1080			
atggatacaa aact	ctatgt tctattaaca	ataattgatg	atatgcatga	catttatgga	1140			
acattggagg aact	acaact tttcactaat	gctcttcaaa	gatgggattt	gaaagaatta	1200			
gataaattac caga	ttatat gaagacagct	ttctacttta	catacaattt	cacaaatgaa	1260			
ttggcatttg atgt	attaca agaacatggt	tttgttcaca	ttgaatactt	caagaaactg	1320			
atggtagagt tgtg	taaaca tcatttgcaa	gaggcaaaat	ggttttatag	tggatacaaa	1380			
ccaacattgc aaga	atatgt tgagaatgga	tggttgtctg	tgggaggaca	agttattctt	1440			
atgcatgcat attt	cgcttt tacaaatcct	gttaccaaag	aggcattgga	atgtctaaaa	1500			
gacggtcatc ctaa	catagt tegecatgea	tcgataatat	tacgacttgc	agatgatcta	1560			
ggaacattgt cgga	tgaact gaaaagaggo	gatgttccta	aatcaattca	atgttatatg	1620			
cacgatactg gtgc	ttctga agatgaagct	cgtgagcaca	taaaatattt	aataagtgaa	1680			
tcatggaagg agat	gaataa tgaagatgga	aatattaact	ctttttctc	aaatgaattt	1740			
gttcaagttt gcca	aaatct tggtagagcg	tcacaattca	tataccagta	tggcgatgga	1800			
catgcttctc agaa	taatct atcgaaagag	cgcgttttag	ggttgattat	tactcctatc	1860			
cccatgtaa					1869			
<210> SEQ ID NO <211> LENGTH: 3 <212> TYPE: DNA <213> ORGANISM:	51							
<400> SEQUENCE:	6							
catagegaet ateg	tgatgg gaaccataat	aaactataaa	agtcattatg	tgtacttgct	60			
accataggca ccta	tatece acaaactage	taccatagcc	aatttctttt	ttgtttccaa	120			
tatccaattt ttat	tgatgc caaactattc	aatgtacaat	gtacatttat	tttcaataag	180			
ggcttcacct aaca	aaggtg cctaatttta	gttgatttat	tttttatcac	atgtgactat	240			
ttaatgacta tcaa	attata aaatatttaa	gtcaatttat	ttgccccaac	tccaatatat	300			
aatattataa atag	gatagt teteaattee	taataattca	aaaaatcatt	a	351			
<210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: DNA <213> ORGANISM:	32							
<400> SEQUENCE:	7							
ttatcaatta gtta	atcatt ataccataca	tacatttatt	gtatatagtt	tatctactca	60			
tattatgtat gctc	ccaagt atgaaaatct	acattagaac	tgtgtagaca	atcatacata	120			
gcgactatcg tg					132			
<210> SEQ ID NO 8 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 8								

cacacaagca cgtatttggg ctttagtttt caccttaact aacct

45

```
<210> SEQ ID NO 9
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 9
gactogoatg attagttttt cotatootta tgtgtcccaa aatco
                                                                        45
<210> SEQ ID NO 10
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 10
tccctataat tgagatacgc caat
<210> SEQ ID NO 11
<211> LENGTH: 31
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 11
                                                                        31
atgggaacca taataaacta taaaagtcat t
<210> SEQ ID NO 12
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 12
tatgattgtc tacacagttc taatgtagat tttc
                                                                        34
<210> SEQ ID NO 13
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 13
caatcttaga ttcacctctg acacaagaca tgtgaaggag tgac
<210> SEQ ID NO 14
<211> LENGTH: 48
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 14
tgtattgtcg aatttaggac agacaatgca acaaatctaa aactcgta
                                                                        48
<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer
```

```
<400> SEQUENCE: 15
caatgggttg ttttgagtgt
                                                                       2.0
<210> SEQ ID NO 16
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 16
                                                                       17
accccaaaac cacttgt
<210> SEQ ID NO 17
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 17
cttctcgcaa tatattccca at
                                                                       22
<210> SEQ ID NO 18
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 18
gcatagaata gtgccttgga t
                                                                       2.1
<210> SEQ ID NO 19
<211> LENGTH: 48
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 19
tgtattgtcg aatttaggac agacaatgca acaaatctaa aacttaca
                                                                       48
<210> SEQ ID NO 20
<211> LENGTH: 2153
<212> TYPE: DNA
<213 > ORGANISM: Cannabis sp.
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (365)..(1993)
<400> SEQUENCE: 20
catagogact atogtgatgg gaaccataat aaactataaa agtcattatg tgtacttgct
                                                                       60
accataggca cctatatccc acaaactagc taccatagcc aatttctttt ttgtttccaa
                                                                      120
tatccaattt ttattgatgc caaactattc aatgtacaat gtacatttat tttcaataag
ggcttcacct aacaaaggtg cctaatttta gttgatttat tttttatcac atgtgactat
                                                                      240
ttaatgacta tcaaattata aaatatttaa gtcaatttat ttgccccaac tccaatatat
aatattataa ataggatagt totoaattoo taataattoa aaaaatoatt aggactgaag
                                                                      360
aaaa atg aat tgc tca gca ttt tcc ttt tgg ttt gtt tgc aaa ata ata
                                                                      409
    Met Asn Cys Ser Ala Phe Ser Phe Trp Phe Val Cys Lys Ile Ile
    1
                     5
                                         10
```

				ttc Phe											457
_				tgc Cys									_	_	505
				tac Tyr											553
				caa Gln											601
		_		gtc Val 85										_	649
				aag Lys											697
				gag Glu											745
				aga Arg											793
_				gtt Val	~	_		_				_	_		841
				aag Lys 165											889
				gta Val											937
				tat Tyr											985
	_		_	gat Asp			_		_	_			_	-	1033
Glu				gct Ala		Arg									1081
				aaa Lys 245											1129
				aaa Lys											1177
				caa Gln			-		_		-		_		1225
_	_			ttc Phe			_				_				1273
				gta Val											1321
				gtc Val											1369

-continued	
320 325 330 335	
ggt att aaa aaa act gat tgc aaa gaa ttt agc tgg att gat aca acc Gly Ile Lys Lys Thr Asp Cys Lys Glu Phe Ser Trp Ile Asp Thr Thr 340 345 350	1417
atc ttc tac agt ggt gtt gta aat ttt aac act gct aat ttt aaa aag Ile Phe Tyr Ser Gly Val Val Asn Phe Asn Thr Ala Asn Phe Lys Lys 355 360 365	1465
gaa att ttg ctt gat aga tca gct ggg aag aag acg gct ttc tca att Glu Ile Leu Leu Asp Arg Ser Ala Gly Lys Lys Thr Ala Phe Ser Ile 370 375 380	1513
aag tta gac tat gtt aag aaa cca att cca gaa act gca atg gtc aaa Lys Leu Asp Tyr Val Lys Lys Pro Ile Pro Glu Thr Ala Met Val Lys 385 390 395	1561
att ttg gaa aaa tta tat gaa gaa gat gta gga gct ggg gtg ttg tac Ile Leu Glu Lys Leu Tyr Glu Glu Asp Val Gly Ala Gly Val Leu Tyr 400 405 410 415	1609
cct tac ggt ggt ata atg gag gag att tca gaa tca gca att cca ttc Pro Tyr Gly Gly Ile Met Glu Glu Ile Ser Glu Ser Ala Ile Pro Phe 420 425 430	1657
cct cat cga gct gga ata atg tat gaa ctt tgg tac act gct tcc tgg Pro His Arg Ala Gly Ile Met Tyr Glu Leu Trp Tyr Thr Ala Ser Trp 435 440 445	1705
gag aag caa gaa gat aat gaa aag cat ata aac tgg gtt cga agt gtt Glu Lys Gln Glu Asp Asn Glu Lys His Ile Asn Trp Val Arg Ser Val 450 455	1753
tat aat ttt acg act cct tat gtg tcc caa aat cca aga ttg gcg tat Tyr Asn Phe Thr Thr Pro Tyr Val Ser Gln Asn Pro Arg Leu Ala Tyr 465 470 475	1801
ctc aat tat agg gac ctt gat tta gga aaa act aat cat gcg agt cct Leu Asn Tyr Arg Asp Leu Asp Leu Gly Lys Thr Asn His Ala Ser Pro 480 485 490 495	1849
Asn Asn Tyr Thr Gln Ala Arg Ile Trp Gly Glu Lys Tyr Phe Gly Lys 500 505 510	1897
aat ttt aac agg tta gtt aag gtg aaa act aaa gtt gat ccc aat aat Asn Phe Asn Arg Leu Val Lys Val Lys Thr Lys Val Asp Pro Asn Asn 515 520 525	1945
ttt ttt aga aac gaa caa agt atc cca cct ctt cca ccg cat cat cat Phe Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu Pro Pro His His His 530 535 540	1993
taattatett taaatagata tattteeett ateaattagt taateattat aecatacata	2053
cattlattgt atatagttta tctactcata ttatgtatgc tcccaagtat gaaaatctac	2113
attagaactg tgtagacaat catacatagc gactatcgtg	2153
<210> SEQ ID NO 21 <211> LENGTH: 543 <212> TYPE: PRT	

<213> ORGANISM: Cannabis sp.

<400> SEQUENCE: 21

Met Asn Cys Ser Ala Phe Ser Phe Trp Phe Val Cys Lys Ile Ile Phe 1 5 10 15

Asn Phe Leu Lys Cys Phe Ser Lys His Ile Pro Asn Asn Val Ala Asn 35 40

Pro Lys Leu Val Tyr Thr Gln His Asp Gln Leu Tyr Met Ser Ile Leu 50 $\,$ 60 $\,$

Asn 65	Ser	Thr	Ile	Gln	Asn 70	Leu	Arg	Phe	Ile	Ser 75	Asp	Thr	Thr	Pro	80 Lys
Pro	Leu	Val	Ile	Val 85	Thr	Pro	Ser	Asn	Asn 90	Ser	His	Ile	Gln	Ala 95	Thr
Ile	Leu	СЛа	Ser 100	Lys	Lys	Val	Gly	Leu 105	Gln	Ile	Arg	Thr	Arg 110	Ser	Gly
Gly	His	Asp 115	Ala	Glu	Gly	Met	Ser 120	Tyr	Ile	Ser	Gln	Val 125	Pro	Phe	Val
Val	Val 130	Asp	Leu	Arg	Asn	Met 135	His	Ser	Ile	Lys	Ile 140	Asp	Val	His	Ser
Gln 145	Thr	Ala	Trp	Val	Glu 150	Ala	Gly	Ala	Thr	Leu 155	Gly	Glu	Val	Tyr	Tyr 160
Trp	Ile	Asn	Glu	Lys 165	Asn	Glu	Asn	Leu	Ser 170	Phe	Pro	Gly	Gly	Tyr 175	Cys
Pro	Thr	Val	Gly 180	Val	Gly	Gly	His	Phe 185	Ser	Gly	Gly	Gly	Tyr 190	Gly	Ala
Leu	Met	Arg 195	Asn	Tyr	Gly	Leu	Ala 200	Ala	Asp	Asn	Ile	Ile 205	Asp	Ala	His
Leu	Val 210	Asn	Val	Asp	Gly	Lys 215	Val	Leu	Asp	Arg	Lys 220	Ser	Met	Gly	Glu
Asp 225	Leu	Phe	Trp	Ala	Ile 230	Arg	Gly	Gly	Gly	Gly 235	Glu	Asn	Phe	Gly	Ile 240
Ile	Ala	Ala	Trp	Lys 245	Ile	Lys	Leu	Val	Asp 250	Val	Pro	Ser	Lys	Ser 255	Thr
Ile	Phe	Ser	Val 260	ГÀЗ	ГÀЗ	Asn	Met	Glu 265	Ile	His	Gly	Leu	Val 270	ГÀз	Leu
Phe	Asn	Lys 275	Trp	Gln	Asn	Ile	Ala 280	Tyr	Lys	Tyr	Asp	Lys 285	Asp	Leu	Val
Leu	Met 290	Thr	His	Phe	Ile	Thr 295	Lys	Asn	Ile	Thr	Asp 300	Asn	His	Gly	Lys
Asn 305	Lys	Thr	Thr	Val	His 310	Gly	Tyr	Phe	Ser	Ser 315	Ile	Phe	His	Gly	Gly 320
Val	Asp	Ser	Leu	Val 325	Asp	Leu	Met	Asn	330	Ser	Phe	Pro	Glu	Leu 335	Gly
Ile	Lys	Lys	Thr 340	Asp	Caa	Lys	Glu	Phe 345	Ser	Trp	Ile	Asp	Thr 350	Thr	Ile
Phe	Tyr	Ser 355	Gly	Val	Val		Phe 360		Thr	Ala	Asn	Phe 365	Lys	Lys	Glu
Ile	Leu 370	Leu	Asp	Arg	Ser	Ala 375	Gly	Lys	Lys	Thr	Ala 380	Phe	Ser	Ile	Lys
Leu 385	Asp	Tyr	Val	ГÀа	390	Pro	Ile	Pro	Glu	Thr 395	Ala	Met	Val	ГÀа	Ile 400
Leu	Glu	Lys	Leu	Tyr 405	Glu	Glu	Asp	Val	Gly 410	Ala	Gly	Val	Leu	Tyr 415	Pro
Tyr	Gly	Gly	Ile 420	Met	Glu	Glu	Ile	Ser 425	Glu	Ser	Ala	Ile	Pro 430	Phe	Pro
His	Arg	Ala 435	Gly	Ile	Met	Tyr	Glu 440	Leu	Trp	Tyr	Thr	Ala 445	Ser	Trp	Glu
Lys	Gln 450	Glu	Asp	Asn	Glu	Lys 455	His	Ile	Asn	Trp	Val 460	Arg	Ser	Val	Tyr
Asn 465	Phe	Thr	Thr	Pro	Tyr 470	Val	Ser	Gln	Asn	Pro 475	Arg	Leu	Ala	Tyr	Leu 480

-continued

Asn Tyr Arg Asp Leu Asp Leu Gly Lys Thr Asn His Ala Ser Pro Asn 485 Asn Tyr Thr Gln Ala Arg Ile Trp Gly Glu Lys Tyr Phe Gly Lys Asn Phe Asn Arg Leu Val Lys Val Lys Thr Lys Val Asp Pro Asn Asn Phe Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu Pro Pro His His His <210> SEQ ID NO 22

<211> LENGTH: 1635

<212> TYPE: DNA

<213 > ORGANISM: Cannabis sp.

<400> SEQUENCE: 22

atgaattgct cagcattttc cttttggttt gtttgcaaaa taatatttt ctttctcca ttcaatatcc aaatttcaat agctaatcct caagaaaact tccttaaatg cttctcqqaa tatattccta acaatccagc aaatccaaaa ttcatataca ctcaacacga ccaattgtat 180 atgtctgtcc tgaattcgac aatacaaaat cttagattca cctctgatac aaccccaaaa 240 ccactegtta ttgtcactcc ttcaaatgtc tcccatatcc aggccagtat tctctgctcc 300 aagaaagttg gtttgcagat tcgaactcga agcggtggcc atgatgctga gggtttgtcc 360 tacatatete aaqteecatt tqetataqta qaettqaqaa acatqeatae qqteaaaqta 420 gatattcata gccaaactgc gtgggttgaa gccggagcta cccttggaga agtttattat 480 tggatcaatg agatgaatga gaattttagt tttcctggtg ggtattgccc tactgttggc 540 gtaggtggac actttagtgg aggaggctat ggagcattga tgcgaaatta tggccttgcg 600 gctgataata tcattgatgc acacttagtc aatgttgatg gaaaagttct agatcgaaaa 660 tccatgggag aagatctatt ttgggctata cgtggtggag gaggagaaaa ctttggaatc 720 attgcagcat ggaaaatcaa acttgttgtt gtcccatcaa aggctactat attcagtgtt 780 aaaaagaaca tggagataca tgggcttgtc aagttattta acaaatggca aaatattgct 840 tacaagtatg acaaagattt aatgctcacg actcacttca gaactaggaa tattacagat 900 aatcatggga agaataagac tacagtacat ggttacttct cttccatttt tcttggtgga 960 gtggatagtc tagttgactt gatgaacaag agctttcctg agttgggtat taaaaaaaact 1020 1080 gattgcaaag aattgagctg gattgataca accatcttct acagtggtgt tgtaaattac aacactgcta attttaaaaa ggaaattttg cttgatagat cagctgggaa gaagacggct 1140 ttctcaatta agttagacta tgttaagaaa ctaatacctg aaactgcaat ggtcaaaatt ttggaaaaat tatatgaaga agaggtagga gttgggatgt atgtgttgta cccttacggt 1320 1380 tatqaacttt qqtacactqc tacctqqqaq aaqcaaqaaq ataacqaaaa qcatataaac tgggttcgaa gtgtttataa tttcacaact ccttatgtgt cccaaaatcc aagattggcg 1440 tatctcaatt atagggacct tgatttagga aaaactaatc ctgagagtcc taataattac acacaagcac gtatttgggg tgaaaagtat tttggtaaaa attttaacag gttagttaag 1560 gtgaaaacca aagctgatcc caataatttt tttagaaacg aacaaagtat cccacctctt 1620 1635 ccaccacatc atcat

-continued <212> TYPE: DNA <213> ORGANISM: Cannabis sp. <400> SEOUENCE: 23 tatttttctt tctctcattc aatatccaaa cttcaattgc taatcctcga atgtaacaaa 96 tctaaaactt acacccaaaa caaccaattg tatatg <210> SEQ ID NO 24 <211> LENGTH: 100 <212> TYPE: DNA <213 > ORGANISM: Cannabis sp. <400> SEQUENCE: 24 tatttttctt tttctcattc aatatccaaa cttccattgc taatcctcga atgcaacaaa 100 tctaaaactc qtatacactc aaaacaaccc attqtatatq <210> SEQ ID NO 25 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (70)..(73) <223> OTHER INFORMATION: Deletion region <400> SEOUENCE: 25 tatttttttt tyteteatte aatateeaaa ettemattge taateetega atgyaacaaa 60 tctaaaactc gtatacacyc aaaacaaccm attgtatatg 100 <210> SEQ ID NO 26 <211> LENGTH: 10 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 26 gttttttgtt 10 <210> SEQ ID NO 27 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 27 23 atgetteteq caatatatte eca

What is claimed is:

- 1. A method of detecting whether a tetrahydrocannabinolic acid (THCA) synthase gene sequence is present in a Cannabis plant, comprising:
 - obtaining a sample collected from the Cannabis plant that contains nucleic acids;
 - contacting the nucleic acids with at least five primers specific for the THCA synthase gene sequence;
 - amplifying the THCA synthase gene sequence when present among the nucleic acids; and
 - detecting amplicons upon amplification of the THCA synthase gene sequence, wherein:

- the primers specific for the THCA synthase gene sequence include a primer specific for a promoter sequence of the THCA synthase gene sequence;
- amplification of the THCA synthase gene sequence indicates that the THCA synthase gene sequence is at least 2000 nucleotides long; and
- a colorimetric Loop-Mediated Isothermal Amplification (LAMP) assay is performed.
- 2. The method of claim 1, wherein the primer specific for the promoter sequence of the THCA synthase gene sequence binds to the promoter sequence at a location that is 200-1000 nucleotides upstream of a THCA synthase open reading frame.

53

- 3. The method of claim 1, wherein the THCA synthase gene sequence is between 2100-2200 nucleotides long.
- **4**. The method of claim **1**, wherein the *Cannabis* plant is a *C. sativa*, *C. indica*, or *C. ruderalis* plant.
- **5**. The method of claim **1**, wherein the *Cannabis* plant is 5 characterized as a Type Ia, Type Ib, Type IIa, Type IIb, Type IIc, Type IIIa, Type IIIb, Type IV, or Type V plant.
- **6.** The method of claim **1**, wherein the primers specific for the THCA synthase gene sequence include two primers comprising sequences that are at least 90% identical to SEQ 10 ID NO: 11 and SEQ ID NO: 12, respectively.
- 7. The method of claim 1, wherein the primers specific for the THCA synthase gene sequence include six primers comprising sequences that are at least 80% identical to each of SEO ID NOS: 8-12.
- **8**. The method of claim **1**, wherein the primers specific for the THCA synthase gene sequence include six primers comprising sequences that are at least 90% identical to each of SEQ ID NOS: 8-12.
- **9.** The method of claim **1**, wherein the primers specific for 20 the THCA synthase gene sequence include a primer comprising a sequence complementary to 20-60 nucleotides of SEQ ID NO: 6 and/or a primer comprising a sequence complementary to 20-60 nucleotides of SEQ ID NO: 7.
- 10. The method of claim 1, wherein the primers specific 25 for the THCA synthase gene sequence comprise at least one primer comprising a sequence that is at least 70% identical to any of SEQ ID NOS: 8-12.
- 11. The method of claim 1, wherein the primers specific for the THCA synthase gene sequence comprise at least one 30 primer comprising a sequence that is at least 80% identical to any of SEQ ID NOS: 8-12.
- 12. The method of claim 1, wherein the primers specific for the THCA synthase gene sequence comprise at least one primer comprising a sequence that is at least 80% identical 35 to SEQ ID NO: 11 or SEQ ID NO: 12.
- 13. The method of claim 1, wherein the primers specific for the THCA synthase gene sequence comprise at least one primer comprising a sequence that is at least 90% identical to any of SEQ ID NOS: 8-12.
- **14**. A method of detecting whether a tetrahydrocannabinolic acid (THCA) synthase gene sequence is present in a *Cannabis* plant, comprising:
 - obtaining a sample collected from the *Cannabis* plant that contains nucleic acids;
 - contacting the nucleic acids with at least five primers specific for the THCA synthase gene sequence;

56

- amplifying the THCA synthase gene sequence when present among the nucleic acids; and
- detecting amplicons upon amplification of the THCA synthase gene sequence, wherein:
- the primers specific for the THCA synthase gene sequence include a primer specific for a promoter sequence of the THCA synthase gene sequence;
- the primer specific for the promoter sequence of the THCA synthase gene sequence binds to the promoter sequence at a location that is 200-1000 nucleotides upstream of a THCA synthase open reading frame; and
- a colorimetric Loop-Mediated Isothermal Amplification (LAMP) assay is performed.
- 15. The method of claim 14, wherein the primers specific for the THCA synthase gene sequence further include a primer that binds to a sequence that is 50-1000 nucleotides downstream of the THCA synthase open reading frame.
- **16**. The method of claim **15**, wherein the THCA synthase gene sequence is at least 2000 nucleotides long.
- 17. The method of claim 15, wherein the THCA synthase gene sequence is between 2100-2200 nucleotides long.
- **18**. A method of detecting whether a tetrahydrocannabinolic acid (THCA) synthase gene sequence is present in a *Cannabis* plant, comprising:
 - obtaining a sample collected from the *Cannabis* plant that contains nucleic acids;
 - contacting the nucleic acids with at least five primers specific for the THCA synthase gene sequence;
 - amplifying the THCA synthase gene sequence when present among the nucleic acids; and
 - detecting amplicons upon amplification of the THCA synthase gene sequence, wherein:
 - the primers specific for the THCA synthase gene sequence include a primer specific for a promoter sequence of the THCA synthase gene sequence;
 - the amplicons of the THCA synthase gene sequence include at least part of the THCA synthase promoter and 5' UTR; and
 - a colorimetric Loop-Mediated Isothermal Amplification (LAMP) assay is performed.
- 19. The method of claim 18, wherein the THCA synthase gene sequence is at least 2000 nucleotides long.
- 20. The method of claim 18, wherein the THCA synthase gene sequence is between 2100-2200 nucleotides long.

* * * * *