

The Scots College

2001
TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using a blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 8
- All necessary working should be shown in every question
- Start each question in a new booklet.

Total Marks: (84) Weighting: 35% HSC

- Attempt Questions 1 7
- All questions are of equal value

Total marks (84)

Attempt Questions 1-7

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

a. Evaluate
$$\int_{0}^{2\sqrt{3}} \frac{dx}{4+x^2}$$

2

b. Differentiate
$$\cos^3 x$$

2

2

d. Write down the equation of the vertical asymptote of
$$y = \frac{2x}{3x-1}$$

1

e. Solve for
$$x$$
: $\frac{3}{x+5} \le 1$

2

f. Evaluate
$$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{2x^3}{\sqrt{1-x^4}} dx$$
 using the substitution $u = x^4$

3

End of Question 1

1

Qu	iestion (2 (12 marks) Use a SEPARATE writing booklet.	Mark
a.	Usin from	eg all the letters, how many different arrangements can be made the word MATHEMATICS?	2
b.	Find	all values of θ in the range $0 \le \theta \le 2\pi$ for which $\sin \theta + \sqrt{3} \cos \theta = 1$	4
C.	i.	Show that the function $f(x) = 2x^2 + x - 2$ cuts the x axis between $x = 0$ and $x = 1$	1
	ii.	Use the method of halving the interval twice to find an approximation to the root of this equation.	3
	iii.	Starting with a value of $x = 0.7$ use Newton's method once to find an approximation to this root correct to 3 decimal places.	. ". 2

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

- The region R is bounded by the curve $y = \cos x$, x = 0, $x = \frac{\pi}{2}$ and the x axis. a.
 - i. Sketch R

1

Find the exact volume of the solid generated when the region R is rotated about the x – axis.

2

If α , β , γ , are the roots of the cubic polynomial equation $x^3 + 4x^2 - 6x - 8 = 0$ b. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

C.

ABCD is a cyclic quadrilateral. EF is a tangent at D. If BD bisects $\angle ABC$,

2

d. By equating coefficients, find the values of A and B in the identity i.

$$A(2\sin x + \cos x) + B(2\cos x - \sin x) = 7\sin x + 11\cos x$$

2

ii. Hence show that
$$\int_{0}^{\frac{\pi}{2}} \frac{7\sin x + 11\cos x}{2\sin x + \cos x} dx = \frac{5\pi}{2} + \ln 8$$

3

- a. P is a variable point on the parabola $x^2 = 8y$ with parameter p. The normal at P cuts the y axis at A and R is the midpoint of AP.
 - i. Show that the normal at P has equation $x + py = 4p + 2p^3$
 - ii. Show that R has coordinates $(2p, 2p^2 + 2)$
 - iii. Show that the locus of R is a parabola and show that the vertex of this parabola is the focus of the parabola $x^2 = 8y$.
- b. i. Evaluate $\int_{1}^{3} \frac{dx}{x}$
 - ii. Use Simpson's rule with 3 function values to approximate $\int_{1}^{3} \frac{dx}{x}$ 2
 - iii. Use your results to parts i and ii to obtain an approximation for e.

 Give your answer correct to 3 decimal places.

a. Prove by induction that, for all integers $n \ge 1$,

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- b. i. Find the domain over which the function $y = x^2 + 6x$ is monotonic increasing.
 - ii. Find the inverse function over this restricted domain, and sketch a graph of this inverse function clearly showing its domain and range.
 - iii Evaluate $\cos \left[\tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) \right]$
 - iv. Sketch the graph of $y = 3\sin^{-1}\left(\frac{x}{2} 1\right)$

was to be a first to be a firs

2

3

1

a. When the temperature T of a certain body is 65° C it is cooling at the rate of 1° C per minute.

Assuming Newton's law of cooling: $\frac{dT}{dt} = -k(T - S)$ where

T is the temperature of the body at time t minutes S is the temperature of the surrounding medium k is a constant

- i. Verify that $T = S + Ae^{-k}$ is a solution of the given differential equation, where A is a constant.
- ii. Determine the value of k given that S, which is constant, is 15°C.
- iii. Find T when t = 20 minutes, giving your answer to the nearest degree 2
- iv. How long will it take for the temperature of the body to fall to 35°C?
- b. The acceleration of a particle P, moving along a straight line has an acceleration given by

$$\frac{d^2x}{dt^2} = -4\left(x + \frac{16}{x^3}\right)$$

i. Given that P is initially at rest at the point x = 2 m, show that the velocity v m/s at any time is given by

 $v^2 = 4\left(\frac{16 - x^4}{x^2}\right)$

ii. Hence, or otherwise, show that when P is halfway to the origin, the speed is given by $2\sqrt{15}$ m/s

- An arrow is fired horizontally at 60ms^{-1} from the top of a 20m high wall. Taking $g = 10 \text{ ms}^{-2}$
 - i. Show, using calculus, that the horizontal and vertical components of the arrows motion are given by

$$x = 60t$$

$$y = -5t^2 + 20$$

- ii. Find the time taken for the arrow to hit the ground.
- iii. Find the distance that the point of impact will be from the base of the wall.
- iv. Find the angle with which the arrow will strike the ground.
- b. A squad of 8 is chosen at random from 3 baseball teams A, B and C with 10 players in each team.
 - i. If 5 of the squad are chosen from the A team, 2 from the B team and 1 is chosen from the C team, in how many ways can the squad be formed?
 - ii. Find the probability that Joe from the B team and Fred from the A team will be chosen.

End of paper

Standard Integrals

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax + C, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}}) + C$$

NOTE: $\ln x \equiv \log_e x$, x > 0

$$\int \frac{dx}{4+x^2} = \left[\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) \right]$$

$$=\frac{1}{2}$$
tan $\sqrt{3}$ - 0

$$d. \quad q = \frac{2\pi}{3x}$$

 $x = \frac{1}{3}$ is the equation of the vertical asymptote.

[2.]

[2]

$$x_1 = 4$$
 $x_2 = 13$
 $y_1 = 6$ $y_2 = 5$
 $y_1 = 4$ $y_2 = 5$

$$x = (-1)(4) + (4)(13)$$

$$2 = (-1)(4) + (+)(13)$$

$$4-1$$

$$\frac{\sqrt{1-x^4}}{\sqrt{1-x^4}} = \frac{\sqrt{1-x^4}}{\sqrt{1-x^4}}$$

$$\frac{\sqrt{1-x^4}}{\sqrt{1-x^4}} = \frac{\sqrt{1-x^4}}{\sqrt{1-x^4}}$$

$$\frac{1}{2} \int \frac{1}{\sqrt{1-u}} \cdot du \qquad v_1 = \left(\frac{1}{\sqrt{2}}\right)^2$$

$$\frac{4}{4} = \frac{(-1)(6) + (4)(5)}{4-1}$$

the point required is
$$(16, \frac{14}{3})$$

$$\left(16, \frac{17}{3}\right)$$

$$= \frac{1}{2} \left[-\frac{2}{3} \left(1 - U \right)^{2} \right]$$

$$= \frac{1}{2} \left(-\frac{\sqrt{3}}{4} \right) - \frac{1}{2} \left(-\frac{2}{3} \right)$$

$$\begin{bmatrix} 2 \end{bmatrix} = -\sqrt{3} + \frac{1}{3}$$

Ovestion 2

$$0. \sin\theta + \sqrt{3}\cos\theta = 1 \quad 0 \le \theta \le 2\pi$$

let
$$t = \tan \theta$$

$$\Rightarrow \frac{2t}{1+t^2} + \sqrt{3} \left(\frac{1-t^2}{1+t^2}\right) = 1$$

$$2t + \sqrt{3} - \sqrt{3} \cdot t^2 = 1 + t^2$$

$$(-\sqrt{3}-1)t^2+2t+(\sqrt{3}-1)=0$$

$$t = -2 \pm \sqrt{4 + (\sqrt{3} + 1)(\sqrt{3} - 1)}$$

$$-2(\sqrt{3} + 1)$$

$$= 1 \text{ ov } \sqrt{3-1}$$

$$t=1: tan \theta = 1 0 \le \theta \le \pi$$

$$\frac{\partial}{2} = \frac{\pi}{4}$$

$$\theta = \frac{\pi}{2}$$
 //

$$\tan \frac{\theta}{2} = \frac{\sqrt{3}-1}{-\sqrt{3}-1} \quad 0 \le \frac{\theta}{2} \le \pi$$

$$\frac{\theta}{2} = 11 \pi$$

$$\theta = 11$$

$$\vdots \quad \theta = \pi, \quad \Pi \pi$$

$$i \quad f(x) = 2x^2 + x - 2$$

$$f(0) = 2(0)^2 + 0 - 2$$

$$f(1) = 2(1)^{2} + 1 - 2$$

so
$$f(0) < 0$$
 and $f(1) > 0$

ii
$$f(0+1) = f(0.5)$$

= $2(0.5)^2 + 0.5 - 2$
= -1

. root lus between x = 0.5and x = 1

:. choose
$$x = 0.5 + 1 = 0.75$$
 ii $V = TT$

$$f(0.75) = 2(0.75)^{2} + 0.75 - 2$$
$$= -0.125$$

.. root lies between

$$x = 0.75$$
 and $x = 1$

[3]

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$f(x) = 2x^2 + x - 2$$

 $f'(x) = 4x + 1$

$$\chi_{2} = 0.7 - \frac{f(0.7)}{f'(0.7)}$$

$$= 0.7 - \left(\frac{-0.32}{3.8}\right)$$

$$= 0.784 // (3d.p's)$$

ii
$$V = \pi \int_{-\infty}^{\infty} \cos^2 x \cdot dx$$

$$= \frac{\pi}{2} \int \frac{\cos 2x + 1 \cdot dx}{\cos 2x + 1 \cdot dx}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \sin 2x + x \\ 2 & 2 \end{bmatrix}$$

$$= \frac{\pi}{2} \left(\frac{\pi}{2} \right) - \frac{\pi}{2} \left(0 \right)$$

b.
$$x^3 + 4x^2 - 6x - 8 = 0$$

let the roots be α , β , γ

$$\lambda + \beta + \gamma = -4$$

$$\lambda \beta + \lambda \gamma + \beta \gamma = -6$$

$$\lambda \beta \gamma = 8$$

1 6 .	= ZACD
P Y	alternate L's LCDF and
	LACD are equal
$= \frac{\beta \gamma + \lambda \gamma + \lambda \beta}{\lambda \beta \gamma}$: AC EF /
λβ γ	[2]
•	
= -6	<u>d.</u>
$= -\frac{3}{4} / $ [2]	A (2 sin x + cos x) + B (2 cos x - sin x)
Т ′	= 7sinx + 11cosx
В	
2	2Asiux + Acosx + 2Bcosz - Bsiux
$\frac{A}{4}$	= 7 sinx + 11 cosx
	(2A-B) sin x + (A+2B) cosx
2	= 7sinx + 11cosx
	$\Rightarrow 2A - B = 7 - 1$
The state of the s	A + 2B = 11 - 2
D	
F	from (1)
let LDBC = x	B = 2A - 7
$\angle DAC = x (L's on same arc)$	subbing into (2)
<pre>∠ ABD = oc (BD bisects ∠ABC)</pre>	A ()
LACD = x (L's on same are)	$\frac{A+2(2A-7)=11}{A}$
et ZBAC = 4	A + 4A - 14 = 11
_ ZBDC = y (Zson same arc)	SA = 25
$nd \angle BDF = x + y (\angle in alt. seg.)$	A = 5
$= \angle BAD$	2(5)-B=7
$\angle CDF = \angle BDF - \angle BDC$	$\beta = 3$
= (x+y)- y	. 1
= 2	A = 5, B = 3
	•

7 siux + 11 cosx 2 sinx + cosx ٥ 2cosz-sinz . dx 5x + 3 In (2 sinx + cosx) 5T + 3 ln 2 $+ \ln 2^3$ <u>डग</u> <u>5π</u> 2 [3]

i coords of
$$P: (2ap_1ap^2)$$

Where $a=2$
 P is $(4p_12p^2)$.

$$4 - 2p^2 = -\frac{1}{P} \left(x - 4p \right)$$

$$py - 2p^3 = -x + 4p$$

$$\therefore x + py = 4p + 2p^3$$
 is the equation of the normal at P.

ii when
$$x = 0$$
, $y = 4 + 2p^2$
 \therefore A is $(0, 4 + 2p^2)$

$$\frac{-1}{2} = \left(\frac{4p}{2}, \frac{4+2p^{2}}{2}\right)$$

$$= \left(\frac{2p}{2}, \frac{2+2p^{2}}{2}\right)$$

[2]

iŋ

Coords of R:

$$x = 2p - 1$$

 $y = 2 + 2p^2 - 2$

subbing into 2 gives

$$y = 2 + 2\left(\frac{x}{2}\right)^2$$

$$= 2 + 2 x^2$$

$$= 2 + \frac{x^2}{2}$$

 $x^2 = 2(y-2)$ is the locus of R.

This is a parabola with vertex (0,2).

now focus of $\chi^2 = 8y$ is (0,a) where a = 2ie (0,2) which is the same as the vertex of $\chi^2 = 2(y-2)$.

 $= \int_{0}^{3} \ln x$ = 2.688 (3 d.p's)
[2-] In 3 - In 1 Question 5: In 3 [1] a. Prove ... ii f(1) + 4f(2) + f(3): true for n=1, [2] Assume true for n=k iii from i and ii

Prove true for n= k+1	···	
		Ь.
HS = 1 + 1 + + 1	+ _	
1×2 2×3 k(k+1)	(k+1)(k+	$y = x^2 + 6x$
		- dy = 2n + 6
$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$		dr
(k+1)(k+2)		P
= k(k+2) + 1	·,	for monotonic increasing dy >0
(k+1)(k+2)		2x+6>0
		2x > -6
$= k^2 + 2k + 1$		2>-3
(k+1)(k+2)		the function is monotonic
(1)		increasing when x>-3
$= \frac{\left(k+1\right)^2}{\left((k+1)^2\right)^2}$. —	
(k+1)(k+2)		ii let $z = q^2 + 6q$
= $k+1$		~ 19 2
k+2		$x+9 = y^2 + 6y + 9$
		$ = (4+3)^2$ $-4+3 = \pm \sqrt{x+9}$
RHS = k+1		$\frac{4}{x+4}$
(k+1)+1		but the range will be 4>-3
le i s		
$= \frac{k+1}{k+2}$	————	$\frac{4}{15} = -3 + \sqrt{x} + 9 / / -$ 15 the inverse function
· · · · · · · · · · · · · · · · · · ·		13 the inverse function
= LHS		domain: x>-9
		rauge: 4>-3
true for n=k+1		U . ·
is since true for n=1		
then true for n=2, n=3,.		
· true for all n > 1	[37]	
120 121 211 11/1	トニノ !	

Initial conditions: t=0 , S=15, dT =-1 ,T=65 $T = S + Ae^{-kt}$ 65 = 15 + A.1∴ A = 50

dT = -k (T-s) $I = -k \left(65 - 15 \right)$

...k = 1 //-

iii T = 15 + 50e

= 49° (to nearest degree)

35 = 15 + 50 e 50 $20 = 50e^{-t/s_0}$

 $\frac{-+}{50} = \frac{\ln(0.4)}{}$

t = -50 ln (0.4)

45.8 minutes ./

 $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -4\left(x + 16x^{-3}\right)$

 $\frac{1}{2}v^2 = \left(-4x - 64x^{-3}\right) dx$

 $= -2x^2 + 32x^2 + C$

 $\frac{v^2}{1} = -4x^2 + 64 + D$

V=0 when x=2

So $v^2 = \frac{64}{x^2} - 4x^2$ $= \frac{x^2}{4\left(\frac{16}{x^2} - x^2\right)}$

 $= 4 \left(\frac{16 - x^4}{x^2} \right) / 1$

ii when P is halfway to the oxigin x=1

 $\cdot \cdot \vee = \pm 2 \times \sqrt{15}$

hence speed is 2VIS m/s.

Question 7:

$$\ddot{z} = 0$$

$$\dot{z} = \int 0 \cdot dt$$

since
$$\dot{z} = 60$$
 when $t=0$
 $C = 60$

$$\dot{z} = 60$$
 and is constant.

$$x = \int 60 \cdot dt$$

vertical motion:

$$\frac{\ddot{q} = -10}{}$$

$$..E = 0$$

$$= -5t^2 + F$$

$$5t^2 = 20$$

$$\tan \theta = \dot{y}/\dot{x}$$

$$\frac{1}{1}$$
 +au $\theta = \frac{1}{3}$