

STP16NE06L/FP

N - CHANNEL ENHANCEMENT MODE SINGLE FEATURE SIZETM POWER MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	ΙD
STP16NE06L	60 V	< 0.12 Ω	16 A
STP16NE06LFP	60 V	< 0.12 Ω	11 A

- TYPICAL $R_{DS(on)} = 0.09 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- 175°C OPERATING TEMPERATURE
- HIGH dV/dt CAPABILITY
- APPLICATION ORIENTED CHARACTERIZATION

DESCRIPTION

This Power Mosfet is the latest development of SGS-THOMSON unique "Single Feature Size" process whereby a single body is implanted on a strip layout structure. The resulting transistor shows extremely high packing density for low onresistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- DC MOTOR CONTROL
- DC-DC & DC-AC CONVERTERS
- SYNCHRONOUS RECTIFICATION

TO-220 TO-220FP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	lue	Unit
		STP16NE06L	STP16NE06LFP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	6	0	V
V_{DGR}	Drain- gate Voltage (R _{GS} = 20 k Ω)	6	0	V
V _{GS}	Gate-source Voltage	±	15	V
I _D	Drain Current (continuous) at T _c = 25 °C	16	11	Α
ΙD	Drain Current (continuous) at T _c = 100 °C	10	7	Α
I _{DM} (•)	Drain Current (pulsed)	64	64	Α
P _{tot}	Total Dissipation at T _c = 25 °C	60	30	W
	Derating Factor	0.4	0.2	W/°C
V _{ISO}	Insulation Withstand Voltage (DC)	_	2000	V
dV/dt	Peak Diode Recovery voltage slope	6		V/ns
T _{stg}	Storage Temperature	-65 t	-65 to 175	
Tj	Max. Operating Junction Temperature	1	75	°C

^(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 16$ A, $di/dt \le 200$ A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$

October 1997 1/7

THERMAL DATA

			TO-220	TO-220FP	
R _{thj-case}	Thermal Resistance Junction-case	Max	2.5	5	°C/W
R _{thj-amb} R _{thc-sink} T _I	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering P	Max Typ urpose	62. 0.9 30	5	°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	16	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_i = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V)	80	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	60			٧
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125 ^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 15V			æ 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	٧
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 5V$ $I_D = 8 A$ $V_{GS} = 10V$ $I_D = 8 A$		0.090	0.12	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	16			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 8 \text{ A}$		6		S
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		800 100 50		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Time Rise Time	$V_{DD} = 30 \text{ V}$ $I_{D} = 8 \text{ A}$ $R_{G} = 4.7 \text{ W}$ $V_{GS} = 5 \text{ V}$				ns ns
$\begin{array}{c} Q_g \\ Q_{gs} \\ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 40 \text{ V}$ $I_{D} = 16 \text{ A}$ $V_{GS} = 5 \text{ V}$				nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{r(Voff)} \\ t_{f} \\ t_{c} \end{array}$	Off-voltage Rise Time Fall Time Cross-over Time	$V_{DD} = 48 \text{ V}$ $I_{D} = 16 \text{ A}$ $R_{G} = 4.7 \Omega$ $V_{GS} = 5 \text{ V}$				ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)					A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 16 A V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery	$I_{SD} = 16 \text{ A}$				ns
Qrr	Reverse Recovery	, , , ,				μC
I _{RRM}	Charge Reverse Recovery Current					А

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % (•) Pulse width limited by safe operating area

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

