Week 2: Intro to DSP

Summary

- Spectrum Representation
- Harmonic Signals
- Time-varying signals
- Spectrogram
- Intro to FS

Motivation

#Synthesize Complicated Signals

- Musical Notes
- Human Speech
 - ∨ Vowels have dominant frequencies
 - ☑Application: computer generated speech
- Can all signals be generated this way?
 - Sum of sinusoids?

 Sum of sinusoids.

 Sum

Example of Time-varying Frequency

Fur Elise

Euler's Formula's Reversed

#Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

Inverse Euler's Formula

$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

Spectrum Interpretation

#Cosine = sum of 2 complex exponentials:

$$A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$$

- One has a positive frequency
- Amplitude of each is half as big

Negative Frequency

- **XIs negative frequency real?**
- #Doppler Radar provides an example
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz <---> 60 mph

 - -400Hz means away (opposite direction)

Spectrum of Sine

#Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$

$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

$$\frac{-1}{j} = j = e^{j0.5\pi}$$

 \triangle Positive freq. has phase = -0.5 π

 \triangle Negative freq. has phase = $+0.5\pi$

Graphical Spectrum

$$A\sin(7t) = \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

AMPLITUDE, PHASE & FREQUENCY are shown

#Add the spectrum components:

What is the formula for the signal x(t)?

Gather (A,ω,ϕ) information

Frequencies:

△-250 Hz

△-100 Hz

O Hz

△ 100 Hz

△ 250 Hz

****Amplitude & Phase**

 $-\pi/2$ $+\pi/3$ $-\pi/3$ $-\pi/3$ $-\pi/3$ $-\pi/3$ $-\pi/3$ $-\pi/2$ $-\pi/3$ $-\pi/2$

Note the **conjugate phase**

DC is another name for zero-freq component **DC** component always has zero phase (for real **x(t)**)

Add Spectrum Components-1

Simplify Components

$$x(t) = 10 +$$

$$7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$

$$+4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{A}{2}e^{j\varphi}e^{j\omega t} + \frac{A}{2}e^{-j\varphi}e^{-j\omega t}$$

Final Answer

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

So, we get the general form:

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

Harmonics and Frequency vs. time

- Signals with <u>HARMONIC</u> Frequencies
 - Add Sinusoids with f_k = kf₀

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t) + \varphi_k$$

- > FREQUENCY can change vs. TIME
 - Chirps: $x(t) = \cos(\alpha t^2)$
 - Introduce Spectrogram Visualization (specgram.m) (plotspec.m)

Spectrum Diagram

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

0

Complex Signals General Form

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

$$X_0 = A_0 e^{j0}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \Re \left\{ X_k e^{j2\pi f_k t} \right\}$$

$$X_k = A_k e^{j\varphi_k}$$

$$X_k = A_k e^{j\varphi_k}$$
Frequency = f_k

$$x(t) = X_0 + \sum_{k=1}^{N} \left\{ \frac{1}{2} X_k e^{j2\pi f_k t} + \frac{1}{2} X_k^* e^{-j2\pi f_k t} \right\}$$

Example of Speech

****Nearly Periodic** in Vowel Region

 \triangle Period is (Approximately) T = 0.0065 sec

Speech: BAT

Periodic Signals

- Repeat every T secs
 - Definition

$$x(t) = x(t+T)$$

Example:

$$x(t) = \cos^2(3t) \frac{T = ?}{T = \frac{2\pi}{3}} T = \frac{\pi}{3}$$

Speech can be "quasi-periodic"

Period of Complex Exponentials

$$x(t) = e^{j\omega t}$$

$$x(t+T) = x(t) ?$$

$$e^{j\omega(t+T)} = e^{j\omega t}$$

$$\Rightarrow e^{j\omega T} = 1 \Rightarrow \omega T = 2\pi k$$

$$\omega = \frac{2\pi k}{T} = (\frac{2\pi}{T})k = \omega_0 k$$

$$k = integer$$

Harmonic Signal

Periodic signal :
$$x(t) = x(t+T)$$

Periodic signal : x(t) = x(t+T)Can only have *harmonic* freqs : $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$x(t) \text{ is periodic if}$$

$$\cos(2\pi k f_0 (t+T) + \varphi_k) = \cos(2\pi k f_0 t + 2\pi k f_0 T + \varphi_k)$$

Harmonic Signal Spectrum

Therefore, we can only have: $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$X_k = A_k e^{j\varphi_k}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \frac{1}{2} X_k e^{j2\pi k f_0 t} + \sum_{k=1}^{N} \frac{1}{2} X_k^* e^{-j2\pi k f_0 t}$$

Define Fundamental

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0) t + \varphi_k$$

$$f_k = k f_0 \qquad (\omega_0 = 2\pi f_0)$$

$$f_0$$
 = fundamental frequency $f_0 = \frac{1}{T_0}$

$$T_0$$
 = fundamental Period

$$f_0 = \frac{1}{T_0}$$

Harmonic Signal (3 Freqs)

What is the fundamental frequency?

10 Hz

POP QUIZ: FUNDAMENTAL

Here's another spectrum:

What is the fundamental frequency?

$$(0.1)GCD(104,240) = (0.1)(8)=0.8 Hz$$

Find Fundamental Frequency

> Here's another spectrum:

What is the fundamental frequency?

100 Hz?

50 Hz?

Need to be able to have multiple of a fundamental for all harmonics

IRRATIONAL SPECTRUM

Harmonic Signal (3 Freqs)

Non-Harmonic Signal

Example Application

- Now, a much HARDER problem
- Given a recording of a song, have the computer write the music

- Can a machine extract frequencies?
 - Yes, if we COMPUTE the spectrum for x(t)
 - During short intervals

Time-Varying FREQUENCIES Diagram

Sheet-music notation is a time–frequency diagram.

Time is the horizontal axis

SIMPLE TEST SIGNAL

- C-major SCALE: stepped frequencies
 - Frequency is constant for each note

35

SPECTROGRAM (Short-time Fourier Transform)

- SPECTROGRAM Tool
 - MATLAB function is **spectrogram.m**
 - SP-First has plotspec.m & spectgr.m
- ANALYSIS program
 - Takes x(t) as input
 - Produces spectrum values X_k
 - Breaks x(t) into SHORT TIME SEGMENTS
 - Then uses the FFT (<u>Fast Fourier Transform</u>)

SPECTROGRAM EXAMPLE

Two **Constant** Frequencies: Beats

TIME (sec)

AM Radio Signal

Same form as BEAT Notes, but higher in freq

$$\cos(2\pi(\underline{660})t)\sin(2\pi(12)t)$$

$$\frac{1}{2} \left(e^{j2\pi(660)t} + e^{-j2\pi(660)t} \right) \frac{1}{2j} \left(e^{j2\pi(12)t} - e^{-j2\pi(12)t} \right)$$

$$\frac{1}{4j} \left(e^{j2\pi(672)t} - e^{-j2\pi(672)t} - e^{j2\pi(648)t} + e^{-j2\pi(648)t} \right)$$

$$\frac{1}{2}\cos(2\pi(672)t - \frac{\pi}{2}) + \frac{1}{2}\cos(2\pi(648)t + \frac{\pi}{2})$$

SPECTRUM of AM (Amplitude Modulation)

• **SUM** of 4 complex exponentials:

What is the fundamental frequency?

648 Hz?

24 Hz?

STEPPED FREQUENCIES

- C-major SCALE: successive sinusoids
 - Frequency is constant for each note

40

SPECTROGRAM of C-Scale

Spectrogram of a song

Overlapping Sections in Spectrograms (useful in Labs)

- 50% overlap is common
- Consider edge effects when analyzing a short sinusoid

Spectrogram of BAT (plotspec)

Time-Varying Frequency

- Frequency can change vs. time
 - Continuously, not stepped
- FREQUENCY MODULATION (FM)

$$x(t) = \cos(2\pi f_c t + v(t))$$

VOICE

- CHIRP SIGNALS
 - Linear Frequency Modulation (LFM)

Chirp

- Called Chirp Signals (LFM)
 - Quadratic phase

$$x(t) = A\cos(\alpha t^2 + 2\pi f_0 t + \varphi)$$

- Freq will change LINEARLY vs. time
 - Example of Frequency Modulation (FM)
 - Define "instantaneous frequency"

Instantaneous Frequency

Definition

$$x(t) = A\cos(\psi(t))$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt} \psi(t)$$

Derivative of the "Angle"

For Sinusoid:

$$x(t) = A\cos(2\pi f_0 t + \varphi)$$

$$\psi(t) = 2\pi f_0 t + \varphi$$

Makes sense

$$\Rightarrow \omega_i(t) = \frac{d}{dt} \psi(t) = 2\pi f_0$$

Instantaneous Frequency of Chirp

- Chirp Signals have Quadratic phase
- Freq will change LINEARLY vs. time

$$x(t) = A\cos(\alpha t^2 + \beta t + \varphi)$$

$$\Rightarrow \psi(t) = \alpha t^2 + \beta t + \varphi$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt} \psi(t) = 2\alpha t + \beta$$

Chirp Spectrogram

Chirp Waveform

1600 BW CHIRP CENTERED at 990 Hz

Other Frequency Variation vs. time

 $\triangleright \psi(t)$ can be anything:

$$x(t) = A\cos(\alpha\cos(\beta t) + \varphi)$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt} \psi(t) = -\alpha \beta \sin(\beta t)$$

- $\triangleright \psi(t)$ could be speech or music:
 - FM radio broadcast

Sine-wave Freq. mod

SINE WAYE MODULATED CHIRP

Demo of Beat Freqs if have time

Fourier Series History

- Jean-Baptiste Joseph Fourier
 - 1807 thesis (memoir)
 On the Propagation of Heat in Solid Bodies
 - Heat ?!
 - Napoleonic era

Lagrange

Jean-Baptiste Joseph Fourier

lived from 1768 to 1830

Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.

Spectrum Diagram

Recall Complex Amplitude vs. Freq

Harmonic Signal

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$x(t) = X_0 + \sum_{k=1}^{N} \frac{1}{2} X_k e^{j2\pi k f_0 t} + \sum_{k=1}^{N} \frac{1}{2} X_k^* e^{-j2\pi k f_0 t}$$

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

$$\omega_0 = \frac{2\pi k}{T_0} = (\frac{2\pi}{T_0})k = 2\pi (f_0)k$$

Fourier Series Synthesis

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$

$$a_k = \frac{1}{2} X_k = \frac{1}{2} A_k e^{j\varphi_k}, k \neq 0$$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$X_k = A_k e^{j\varphi_k}$$
COMP

COMPLEX AMPLITUDE

Harmonic Signal (3 Freqs)

a_k is the complex amplitude for kf₀

Synthesis vs. Analysis

- SYNTHESIS
 - Easy
 - Given (ω_k,A_k,φ_k) create
 x(t)
- Synthesis can be HARD
 - Synthesize Speech so that it sounds good

- ANALYSIS
 - Hard
 - Given x(t), extract (ω_k,A_k,φ_k)
 - How many?
 - Need algorithm for computer

Strategy

- ANALYSIS
 - Get representation from the signal
 - Works for <u>PERIODIC</u> Signals
- Fourier Series
 - The answer is: an INTEGRAL over one period

$$a_{k} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t)e^{-j\omega_{0}kt}dt$$

Fourier Series Integral

HOW do you determine
$$a_k$$
 from x(t)?
$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j2\pi kt/T_0} dt$$

$$T_0$$
FUNDAM
FREQ: f_0

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt$$
 (DC Component)

$$a_{-k} = a_k^*$$
 when $x(t)$ is real

Integral of exp(j*k*w0*t)

➤ INTEGRATE over ONE PERIOD

$$x(t)=1$$

$$\int_0^{T_0} e^{-j2\pi mt/T_0} dt = \frac{T_0}{-j2\pi m} e^{-j2\pi mt/T_0} \Big|_0^{T_0}$$

$$=\frac{T_0}{-j2\pi m}\left(e^{-j2\pi m}-1\right)$$

$$\int_0^{T_0} e^{-jm\omega_0 t} dt = 0$$

$$\omega_0 = \frac{2\pi}{T_0}$$

Orthogonality of exp(j*w0*k*t)

INTEGRATE over ONE PERIOD

$$\frac{1}{T_0} \int_0^{T_0} e^{j2\pi l t/T_0} e^{-j2\pi k t/T_0} dt = \begin{cases} 0 & k \neq 1 \\ 1 & k = 1 \end{cases}$$

$$\frac{1}{T_0} \int_0^{T_0} e^{j2\pi(1-k)t/T_0} dt$$

Square Wave

• Period?

Square Wave Example

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2} T_0 \\ 0 & \frac{1}{2} T_0 \le t < T_0 \end{cases}$$

for $T_0 = 0.04 \,\text{sec}$:

FS for a Square Wave

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j2\pi kt/T_0} dt \qquad (k \neq 0)$$

$$a_k = \frac{1}{.04} \int_0^{.02} 1e^{-j2\pi kt/.04} dt = \frac{1}{.04(-j\pi k/.02)} e^{-j\pi kt/.02} \Big|_0^{0}$$

$$= \frac{1}{(-2j\pi k)} \left(e^{-j\pi k} - 1 \right) = \frac{1 - (-1)^k}{j2\pi k}$$

O AD PROPERTY

DC coefficient, a₀

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j2\pi kt/T_0} dt \qquad (k=0)$$

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} (AREA)$$

$$a_0 = \frac{1}{.04} \int_0^{.02} dt = \frac{1}{.04} (.02 - 0) = \frac{1}{2}$$

Fourier Coefficients, a_k

- a_k is a function of k
 - Complex Amplitude for k-th Harmonic
 - This one doesn't depend on the period, T₀

$$a_{k} = \frac{1 - e^{-j\pi k}}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \mathsf{K} \\ 0 & k = \pm 2, \pm 4, \mathsf{K} \\ \frac{1}{2} & k = 0 \end{cases}$$

Spectrum from Fourier Series

Synthesis: 1st and 3rd Harmonics

$$y(t) = \frac{1}{2} + \frac{2}{\pi} \cos(2\pi(25)t - \frac{\pi}{2}) + \frac{2}{3\pi} \cos(2\pi(75)t - \frac{\pi}{2})$$

Synthesis: up to 7th Harmonic

Synthesis: up to 7th Harmonic

$$t) = \frac{1}{2} + \frac{2}{\pi}\cos(50\pi t - \frac{\pi}{2}) + \frac{2}{3\pi}\sin(150\pi t) + \frac{2}{5\pi}\sin(250\pi t) + \frac{2}{7\pi}\sin(350\pi t)$$

25

Fourier Synthesis

$$x_{N}(t) = \frac{1}{2} + \frac{2}{\pi} \sin(\omega_{0}t) + \frac{2}{3\pi} \sin(3\omega_{0}t) + K$$
Sum of DC, 1st and 3rd Harmonics

Sum of DC and 1st through 7th Harmonics

Sum of DC and 1st through 17th Harmonics

Sum of DC and 1st through 17th Harmonics

Sum of DC and 1st through 17th Harmonics

Gibb's Phenomenon

- Convergence at DISCONTINUITY of x(t)
 - There is always an overshoot
 - 9% for the Square Wave case

General Periodic Signals

Example

$$x(t) = \sin^3(3\pi t)$$

$$x(t) = \left(\frac{j}{8}\right)e^{j9\pi t} + \left(\frac{-3j}{8}\right)e^{j3\pi t} + \left(\frac{3j}{8}\right)e^{-j3\pi t} + \left(\frac{-j}{8}\right)e^{-j9\pi t}$$

Example

$$x(t) = \sin^3(3\pi t)$$

$$x(t) = \left(\frac{-j}{8}\right)e^{-j9\pi t} + \left(\frac{3j}{8}\right)e^{-j3\pi t} + \left(\frac{-3j}{8}\right)e^{j3\pi t} + \left(\frac{j}{8}\right)e^{j9\pi t}$$
In this case, analysis just requires picking off the coefficients.
$$a_k = \frac{5}{9}e^{j9\pi t}$$

Square Wave Signal

$$a_k = \frac{1}{T_0} \int_0^{T_0/2} (1)e^{-j\omega_0 kt} dt + \frac{1}{T_0} \int_{T_0/2}^{T_0} (-1)e^{-j\omega_0 kt} dt$$

$$a_{k} = \frac{e^{-j\omega_{0}kt}}{-j\omega_{0}kT_{0}} \Big|_{0}^{T_{0}/2} - \frac{e^{-j\omega_{0}kt}}{-j\omega_{0}kT_{0}} \Big|_{T_{0}/2}^{T_{0}} = \frac{1 - e^{-j\pi k}}{j\pi k}$$

9/9/

Summary: GENERAL FORM

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

$$X_0 = A_0 e^{j0}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \Re e \left\{ X_k e^{j2\pi f_k t} \right\}$$

$$X_k = A_k e^{j\varphi_k}$$

$$X_k = A_k e^{j\varphi_k}$$
Frequency = f_k

$$x(t) = X_0 + \sum_{k=1}^{N} \left\{ \frac{1}{2} X_k e^{j2\pi f_k t} + \frac{1}{2} X_k^* e^{-j2\pi f_k t} \right\}$$

Bandlimited Signals

- \triangleright A bandlimited signal has all its frequencies below a certain limit ω_N .
 - A square wave is not a bandlimited signal since its non-zero spectrum components go all the way up to infinity.
 - Bandlimited signals are very smooth.
 - Bandlimited signals can be sampled and then reconstructed exactly. This is the basis for all of modern communications and signal processing.

Fourier Series and other Demos