Alvaro Delgado Zumbado

Análisis de sistemas lineales

Teniendo la siguiente función:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{s * R}{L * s^2 + R * s + \frac{1}{C}}$$

Si se conoce los valores de los componentes en el circuito:

 $L=1\mu H$

 $R=1K\Omega$

 $C=1\mu f$

Se obtiene la siguiente función de transferencia:

$$V_{out}(s) = \frac{s * R}{L * s^2 + R * s + \frac{1}{C}} * V_{in}(s)$$

$$V_{out}(s) = \frac{1000s}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * V_{in}(s)$$

Al realizar las operación se llega a que $V_C(s) = V_L(s)$

Para impulso

$$V_C(s) = \frac{0.000001s}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * 1$$

$$V_R(s) = \frac{1000s}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * 1$$

Para escalón

$$V_C(s) = \frac{0.000001s}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * \frac{1}{s}$$

$$V_C(s) = \frac{0.000001}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * 1$$

$$V_R(s) = \frac{1000}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}}$$

Para rampa

$$V_C(s) = \frac{0.000001s}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * \frac{1}{s^2}$$

$$V_C(s) = \frac{0.000001}{0.000001 * s^2 + 1000 * s + \frac{1}{0.000001}} * \frac{1}{s}$$

$$V_C(s) = \frac{0.000001}{0.000001 * s^3 + 1000 * s^2 + 1000000 * s}$$

$$V_R(s) = \frac{1000}{0.000001 * s^3 + 1000 * s^2 + 1000000}$$

