МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский

Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра дифференциальных уравнений, математического и численного анализа

Направление подготовки: «Фундаментальная информатика информационные технологии»

ОТЧЕТ

по учебной практике

Выполнил: студент группы 382006-1
А.Н. Мусин
Подпись
Проверил: к.фм.н., доц.
А.И. Эгамов
Полпись

Содержание

1.Введение	3
2.Постановка задачи	4
3.Описание алгоритмов	5
4.Описание программы	8
5.Результаты	9
6.Заключение	12
7.Список литературы	13

1.Введение.

В данном семестре мы изучаем курс численные методы. Одной из важных задач численных вычислений является задача интегрирования функции и нахождения численных значений определенного интеграла. В данной работе представлены три метода, используя которые мы можем решить поставленную задачу. С помощью функции Симпсона, метод 3/8, и с помощью пятиточия. Кроме того, в работе будет проведено сравнение данных методов по эффективности и выявлен наиболее эффективный алгоритм нахождения численных значений определенного интеграла. Так же был написан пользовательский интерфейс, позволяющий удобнее представить получившиеся результаты.

2. Постановка задачи.

Для проведения данной работы сначала необходимо описать сами методы. Далее будут приведены необходимые для исчисления формулы и алгоритмы, которые в дальнейшем станут основой программы. После реализации данных методов на языке программирования Python необходимо сравнить полученные результаты с эмпирически найденным, и выявить метод с наибольшей и наименьшей ошибкой. В конце необходимо написать пользовательский интерфейс.

3.Описание алгоритмов.

Для нахождения и дальнейшей проверки методов нахождения определенного интеграла будем использовать заранее заготовленные функции. С заранее известными первообразными, по которым будут находиться эмпирические значения интегралов.

Функция	Значение первообразной
sin x	$-\cos x$
cos x	sin x
$(\cos x)^2$	$\frac{x}{2} + \frac{\sin 2x}{4}$
x^2	$\frac{x^3}{3}$
$5x^4$	x^5
$4 * x^3$	$2 * x^4$

В данной работе используются три метода нахождения определенного интеграла. Каждый из этих методов применяется на участке Δ разбиения исходного отрезка (a,b) на n равных частей. Например:

Далее результаты, полученные с данных отрезком, суммируются и сравниваются с эмпирически найденным значением интеграла и считается процент ошибки по формуле:

$$P_{\%} = \frac{A_{imp} - A}{A_{imp}} * 100\%$$

Далее описаны сами методы численного интегрирования.

1) Метод Симпсона.

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным полиномом второй степени, то есть приближение графика функции на отрезке параболой. Используемая формула

$$\int_{a}^{b} f(x) = (a - b) \frac{f(a) + 4f(\frac{b + a}{2}) + f(b)}{6}$$

Код реализации данного метода:

```
def sympson(a,b,function):
    dots = gen_dots(a,b,2,function)
    res = dots[0]+4*dots[1]+dots[2]
    res*=(b-a)/6
    return res
```

Алгоритм:

- 1. Находятся значения функции в точках a,b,(b+a)/2.
- 2. Считается значение по формуле Симпсона.
- 3. Значение передается в функцию сумматор.

1) Метод Три-восьмых.

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным третьей степени. Используемая формула

$$\int_{a}^{b} f(x) = (b-a) \frac{f(a) + 3f(\frac{2a+b}{3}) + 3f(\frac{2b+a}{3}) + f(b)}{8}$$

Код реализации данного метода:

```
def three_eight(a,b,function):
    dots = gen_dots(a,b,3,function)
    res = dots[0]+3*dots[1]+3*dots[2]+dots[3]
    res*=(b-a)/8
    return res
```

Алгоритм:

- 1. Находятся значения функции в точках.
- 2. Считается значение по формуле.
- 3. Значение передается в функцию сумматор.

1) Метод Три-восьмых.

Используя общий вид квадратурной формулы

$$\int_{a}^{b} f(x) = (b - a) \sum_{k=0}^{s} w_{k} f_{k}(x)$$

То на равномерной сетке можем вывести формулу для подсчета интеграла приближением интегральной функции интерполяционным многочленом 4 степени.

Используя веса функции для метода Ньютона-Котеса получим формулу

$$\int_{a}^{b} f(x) = (b-a) \frac{7f(a) + 32f\left(\frac{3a+b}{4}\right) + 12f\left(\frac{2a+2b}{4}\right) + 32f\left(\frac{3b+a}{4}\right) + 7f(b)}{90}$$

Код реализации данного метода:

```
v five_dots(a,b,function):

dots = gen_dots(a,b,4,function)
res = 7*dots[0]+32*dots[1]+12*dots[2]+32*dots[3]+7*dots[4]
res*=(b-a)/90
return res
```

Алгоритм:

- 1. Находятся значения функции в точках.
- 2. Считается значение по формуле.
- 3. Значение передается в функцию сумматор.

4.Описание программы.

Для удобной работы и проведения экспериментов был создан графический интерфейс.

В нем есть возможность выбрать пределы интегрирования, исходную функцию, а также количество отрезков, на которое будет разбита область интегрирования, так как это было описано выше. Далее представлена таблица с выводом результата в которой мы можем увидеть значения, полученные каждым методом, а также процент ошибки методов в проводимом эксперименте. Например:

5.Результаты.

Мной были проведены эксперименты с заранее заданными функциями.

- Возьмем пределы интегрирования a = 0, b = 10
- Будем использовать полиномы разных степеней
- Количество отрезков, на которые будем делить подынтегральную функцию возьмем равным 1, то есть в метод будут передаваться сразу пределы интегрирования

2. Эксперимент. Функция $8 * x^3$

Таким образом, можно увидеть что метод Ньютона-Котеса степени n хорошо интегрирует полиномы степени меньшей либо равной n. При достаточном увеличении этой степени (например в эксперименте 4) мы получаем сильное отклонение по ошибке.

Далее попробуем проинтегрировать тригонометрические функции. Для этого увеличим количество отрезков, на которые будет разбиваться область интегрирования. Возьмем n=10. И пределы интегрирования a=0 b=3.14.

Таким образом получаем что значение определенного интеграла от некоторых тригонометрических хорошо вычисляется всеми методами даже при достаточно малом количестве отрезков разбиения.

6.Заключение.

Мною была разработана программа с графическим интерфейсом, реализовано три метода нахождения численных значений определенного интеграла. Также были проведены эксперименты, в результате которых были выявлены преимущества и недостатки методов Ньютона-Котеса при различных начальных условиях.

7.Список литературы.

<u>Численное интегрирование (mipt.ru)</u>

Формула Симпсона — Википедия (wikipedia.org)