Adaptive Balance Framework for NB/BD Stability: A Weighted Hilbert Lemma with Reproducible Scaling (v5.0)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We present a reproducible package for the NB/BD (Nyman–Beurling/Báez-Duarte) stability study. Analytically, a weighted Hilbert-type lemma for Möbius-weighted coefficients suppresses off-diagonal interactions by $(\log N)^{-\theta}$ ($\theta>0$ in a heuristic band-sum regime). Numerically, we provide a CSV-driven pipeline that produces scaling plots and a log–log regression of the form $\log(\text{MSE})_{=\alpha+\beta\log\log N}$, reporting $\theta=-\beta$ with confidence visualization. This framework supports stability analysis only; it is *not* a proof of RH.

1 Setup and Notation

Let $v \in C_0^{\infty}(0,1)$ and a slowly-varying q(n). Define $a_n = \mu(n) v(n/N) q(n)$ and the kernel

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|} = \min\left\{\sqrt{\frac{m}{n}}, \sqrt{\frac{n}{m}}\right\}.$$

We consider the least-squares distance

$$d_N^2 = \inf_a \int_{\mathbb{R}} \left| \zeta(\frac{1}{2} + it) \sum_{n \le N} \frac{a_n}{n^{1/2 + it}} - 1 \right|^2 w(t) dt,$$

and study its numerical proxies MSE_+, MSE_-, MSE under windowing, ridge, and boundary reweighting (w_-, w_+) .

2 Weighted Hilbert Lemma (Sketch)

Lemma 1 (Weighted band-decay). With the above a_n , one has

$$\sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn} \leq C(\log N)^{-\theta} \sum_{n \leq N} a_n^2,$$

for some $\theta > 0$ depending on the smoothness of v and the low-frequency design q (heuristically).

Idea. Partition pairs (m,n) by bands $\mathcal{B}_j = \{2^{-(j+1)} < |\log(m/n)| \le 2^{-j}\}$. On each band, $K_{mn} \le e^{-c2^{-j}}$; a discrete Hilbert-type inequality gives a $(\log N)$ -factor. The Möbius factor cancels the main term per band, and smoothness provides an extra $2^{-j\delta}$. Summing j yields the logarithmic saving.

3 Reproducible Pipeline

Place experimental data in data/results.csv with schema:

N, sigma, ridge_lambda, w_minus, w_plus, mse_plus, mse_minus, mse_star, ci_low, ci_high, seed.
Run:

python scripts/make_figures.py --csv data/results.csv --outdir figures

This produces: fig_scaling_linear.png, fig_loglog_regression.png (and sensitivity plot if present). Figure 1 shows the linear scaling; Figure 2 shows the log-log fit with reported $(\alpha, \beta, \theta = -\beta, R^2)$.

Figure 1: Scaling of MSE $_{\pm}$ and MSE vs N with optional bootstrap CIs.

Figure 2: Log-log regression for $\log(\text{MSE})=\alpha+\beta\log\log N$; we report $\theta=-\beta$ and R^2 .

4 Conclusion and Scope

The ABF package formalizes a transparent workflow for NB/BD stability experiments and a weighted Hilbert mechanism. It does not prove RH; it isolates design choices and exposes their numerical consequences. Future work: refined band estimates, explicit ε - δ bounds, and functional-equation input.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Rend. Lincei 14 (2003), 5–11.
- [2] E. C. Titchmarsh (rev. D. R. Heath-Brown), The Theory of the Riemann Zeta-Function, 2nd ed., OUP, 1986.
- [3] J. B. Conrey, The Riemann Hypothesis, Notices AMS 50 (2003), 341–353.