Criação de clusteres MPI no ambiente AWS

Celio Henrique Nogueira Larcher Junior

Laboratório Nacional de Computação Científica

Petrópolis, 2018

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

Introdução

- Serviço AWS trás diversas opções para configuração do ambiente computacional
- Possibilidade de utilização de um ambiente computacional distribuído ou maior investimento em uma única instância
- Limitações na utilização da conta com categoria estudantil

Aplicação selecionada

- Utilizado o pacote NAS Parallel Benchmarks
- Composto por aplicações desenvolvidas para simulação computacional da dinâmica de fluidos
- Diferentes problemas e tamanhos de teste (Classes)
- Selecionado o problema LU (Lower-Upper symmetric Gauss-Seidel) na classe C
 - Versão modificada do método de Gauss-Seidel para resolução de um sistema de diferenças finitas (Naiver-Stokes 3D)
 - Tamanho da grid 102 x 102 x 102 e iterações de 250

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

MPI

- Padrão de comunicação de dados em computação paralela
- Diferentes processos executando em paralelo e se comunicando através de mensagens
- Implementação nas linguagens de programação mais populares: C/C++, Python, Java, Fortran...
- Voltado para paralelização em ambientes distribuídos

Instalação do MPI

Utilizado pacote MPICH

sudo reboot

- Instalação feita em todas as máquinas virtuais participantes do cluster
- Processo simples, utilizando-se de apenas alguns comandos:
 sudo apt-get install make gcc g++ gfortran
 ./configure
 make
 sudo make install
 echo "export LD_LIBRARY_PATH=/usr/local/lib" \\
 >> ~/.bashrc

Chaves RSA

- Necessário automatizar o acesso das máquinas virtuais entre si
- Criação e compartilhamento de uma chave RSA
- Acesso inicial às máquinas e adição das mesmas a lista de hosts conhecidos

Configuração das regras de segurança

- Inserção de todas as instâncias em um mesmo Security Group
- Liberação das portas para livre conexão entre os membros do Security Group

Configuração de um servidor NFS (Opcional)

- Instalação e configuração de um servidor NFS em uma das máquinas do cluster
- Instalação do cliente NFS nas demais máquinas
- Montagem do diretório NFS a ser compartilhado entre as máquinas

Compilação do benchmark

- Por fim, compilação do benchmark em ambiente nuvem
- Compartilhamento do executável entre as máquinas do cluster
 - Mantendo a mesma estrutura de diretório para acesso ao executável
 - Copiando o executável para o diretório NFS

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

Configuração dos experimentos

- Aplicação LU gerada para utilização em 8 processos
- Média dos tempos de 5 execuções realizadas em cada cluster
- Verificação de desempenho computacional e custo para cada possibilidade

Tabela: Configuração das instâncias utilizadas e preço por instância

	vCPU	Mem (GiB)	\$ / hora	Instâncias / cluster
t2.micro	1	1	0.0116	8
t2.medium	2	4	0.0464	4
m4.large	2	8	0.1	4
m4.xlarge	4	16	0.2	2
t2.2xlarge	8	32	0.3712	1

L Experimentação

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

Comentários

- Melhor configuração depende muito da aplicação utilizada
- Utilização de um cluster MPI, com máquinas de menor capacidade é viável
- Em geral, máquina de maior capacidade computacional será melhor escolha
- Ainda, as instâncias otimizadas para computação devem ser consideradas

- 1 AWS e aplicação utilizada
- 2 Configuração dos clusters MPI
- 3 Experimentação
- 4 Comentários
- 5 Referências

L Apêndice

Referências

Referências I

Amazon AWS Educate

https://www.awseducate.com/student/s/

MPICH

https://www.mpich.org/

NAS Parallel Benchmarks

https://www.nas.nasa.gov/publications/npb.html

Obrigado pela atenção!