14

15

16

17 18

21 22

1	What is claimed is:
2	1. An electrically programming & sensing unit for a field repairable system-on-a-
3	chip (SOC) device, said electrically programming & sensing unit comprising:
4	a diode such that a cathode of said diode is connected to a VDD power;
5	an electrically programmable element with a first end connected to an anode of said
6	diode and to a VPP power;
7	a pull-down transistor configured to conduct current from said VDD power or from
8	said VPP power to ground through said electrically programmable element when turned on;
9	a latch configured to latch a value from a second end of said electrically
10	programmable element; and
11	a multiplexor configured to receive a set of external inputs and to control the
12	operation of said pull-down transistor based on said set of external inputs.
13	

2. The electrically programming & sensing unit of claim 1, wherein said electrically programmable element has an initial state that is one of a high resistance and a low resistance and has a programmed state that is the other of said high resistance and said low resistance.

3. The electrically programming & sensing unit of claim 2, wherein a turn-on 19 resistance of said pull-down transistor is substantially at least 10 times of said low resistance 20

and is substantially at maximum 1/10th of said high resistance.

16

18

19

20 21

22

23

1	4. An electrically programmable circuit for a field repairable system-on-a-chip
2	(SOC) device, comprising:
3	a high voltage generator configured to supply a VPP power in response to a
4	program_enable signal;
5	a scan chain configured to receive address bits indicating whether a redundant row or
6	a column needs to be activated;
7	an electrically programming & sensing unit configured to receive a signal from said
8	scan chain, said program_enable signal, and a power-on-reset signal such that upon activation
9	of said program_enable signal, said electrically programming & sensing unit further
10	configured to be programmed in response to said signal from said scan chain indicating a
11	defective row or column should be fixed; and
12	a fuse-switch configured to receive an output of said electrically programming &
13	sensing unit such that said electrically programming & sensing unit is able to

The electrically programmable circuit of claim 4, further comprises a feedback
connection from an output of said electrically programming & sensing unit to said scan chain.

6. The electrically programmable circuit of claim 4, wherein said electrically programming & sensing unit comprises:

a diode such that a cathode of said diode is connected to a VDD power;

an electrically programmable element with a first end connected to an anode of said diode and to said VPP power;

activate/deactivate said fuse-switch.

	a pull-down transistor configured to conduct current from said VDD power or from					
said VPP power to ground through said electrically programmable element when turned						
	a latch configured to latch a value from a second end of said electrically					
	programmable element; and					
	a multiplexor configured to:					
	receive said program_enable signal and said signal from said scan chain; and					
	output a signal which follows said signal from said scan chain to said pull-					
	down transistor upon activation of said program_enable signal.					
	7. The electrically programmable circuit of claim 6, wherein said multiplexor is					
	further configured to:					
	receive said power-on-reset signal; and					
	output a signal which follows said power-on-reset signal to said pull-down transistor					
	upon deactivation of said program_enable signal.					
	8. The electrically programmable circuit of claim 6, wherein said electrically					
	programmable element has an initial state that is one of high resistance and low resistance					
	and has a programmed state that is the other of said high resistance and said low resistance					

9. The electrically programmable circuit of claim 8, wherein a turn-on resistance of said pull-down transistor is substantially at least 10 times of said low resistance and is substantially at maximum 1/10th of said high resistance.

1	10.	The electrically programmable circuit of claim 6, wherein said pull-down					
2	transistor is a	n NMOS transistor					
3							
4	11.	The electrically programmable circuit of claim 4, wherein said fuse-switch					
5	comprises:						
6	a fuse; and						
7	a transistor configured to conduct current through said fuse when activated.						
8							
9	12.	The electrically programmable circuit of claim 11, wherein said transistor of					
10	said fuse-swi	tch is one of NMOS, PMOS, and bipolar transistor.					
11							
12	13.	The electrically programmable circuit of claim 4, wherein said scan chain					
13	comprises a j	plurality of flip-flops.					
14							
15	14.	A field-repairable system-on-a-chip (SOC) device, comprising:					
16	at lea	st one of a plurality of redundant rows and a plurality of redundant columns,					
17	wherein each of said redundant row or said redundant column includes a plurality of fuse						
18	boxes;						
19	a plu	rality of usage indicators configured to indicate that corresponding redundant					
20	rows or corresponding redundant columns are in use;						
21	a fuse map sensing circuit configured to sense and save data of said plurality of usage						
22	indicators; and						
23	a fuse map scan chain configured to send out data sensed by said fuse map sensing						
24	circuit.						
	HP Docket No.	10008038-1					

HP Docket No. 10008038-1

1						
2	15. The field-repairable SOC device of claim 14, wherein each of said fuse boxes					
3	for said redundant rows and said redundant columns includes:					
4	a fuse-switch; and					
5	an electrically programming & sensing unit configured to control said fuse-switch.					
6						
7	16. The field-repairable SOC device of claim 14, wherein each of said usage					
8	indicators comprises a fuse.					
9						
0	17. The field-repairable SOC device of claim 14, wherein said fuse mapping					
1	circuit comprises:					
2	a latch configured to latch value of said usage indicator; and					
3	a transistor configured to cause said latch to latch the value of said usage indicato					
4						
5	18. The field-repairable SOC device of claim 14, further comprising:					
6	a high voltage generator configured to supply a VPP power in response to a					
7	program_enable signal;					
18	a scan chain configured to receive address bits indicating of word and bit lines that					
9	should be corrected; and					
20	a plurality of electrically programmable circuits, wherein each of said electrically					
21	programmable circuit comprises:					
22	an electrically programming & sensing unit configured to receive a signa					
23	from said scan chain, said program_enable signal, and a power-on-reset signal such					

that upon activation of said program_enable signal, said electrically programming &

1	sensing unit further configured to be programmed in response to said signal from said					
2	scan chain indicating a defective row or column should be fixed; and					
3	a fuse-switch configured to receive an output of said electrically programming					
4	& sensing unit such that said electrically programming & sensing unit is able to					
5	activate/deactivate said fuse-switch.					
6						
7	19. The field-repairable SOC device of claim 18, wherein said electrically					
8	programming & sensing unit comprises:					
9	a diode such that a cathode of said diode is connected to a VDD power;					
10	an electrically programmable element with a first end connected to an anode of said					
11	diode and to said VPP power;					
12	a pull-down transistor configured to conduct current from said VDD power or from					
13	said VPP power to ground through said electrically programmable element when turned on;					
14	a latch configured to latch a value from a second end of said electrically					
15	programmable element; and					
16	a multiplexor configured to:					
17	receive said program_enable signal and said signal from said scan chain; and					
18	output a signal which follows said signal from said scan chain to said pull-					
19	down transistor upon activation of said program_enable signal.					
20						
21	20. The field-repairable SOC device of claim 19, wherein said multiplexor is					
22	further configured to:					
23	receive said power-on-reset signal; and					

1	output a signal which follows said power-on-reset signal to said pull-down						
2	transistor upon deactivation of said program_enable signal.						
3							
4	21. A method to package a field-repairable system-on-a-chip (SOC) device at a						
5	factory, comprising:						
6	repairing said SOC device, using one or both of redundant rows and columns, prior to						
7	packaging said device;						
8	marking usage of all redundant rows and columns;						
9	retesting said SOC device; and						
10	packaging said SOC device in response to said SOC device completing said retesting						
11	step satisfactorily.						
12							
13	22. The method of claim 21, wherein said repairing step comprises performing						
14	laser blown repairs on said redundant rows and columns.						
15							
16	23. The method of claim 21, wherein said marking step comprises blowing usage						
17	indicators corresponding to said redundant rows and columns.						
18							
19	24. A method to field repair a field-repairable system-on-a-chip (SOC) device at a						
20	factory, comprising:						
21	performing a diagnostic test on said SOC device;						
22	identifying unused redundant rows and columns;						
23	electrically programming any of said unused redundant rows and columns; and						
24	retesting said SOC device.						

HP Docket No. 10008038-1

3

8

25.

			.,				maning any	asca
redundant rows a	and columns	during the	eleci	trically p	orogra	mming step.		
26. T	he method	of claim	24, 1	wherein	said	electrically	programming	step
shifting i	n an address	of a defect	ive n	ow or co	dumn	to a scan ch	ain: and	

associated with said address shifted in said scan chain.

applying a programming power VPP to a electrically programming and sensing unit

The method of claim 24 further comprising usage marking any usad