采用事件驱动的方法,对单队列仿真前3人的排队情况分析。

顾客到达时间: 服从参数为 0.1 的指数分布,随机数采用线性同余法计算(7*x+9) mod 30,种子数为 27。

理发馆上午 8:00 开门,下午 4:00 关门。记上午 8:00 为 1、以小时为间隔,顾客到达时间可以用[1,8]之间的整数来表示(下午 4:00 下班时到达的顾客也无法接受服务)。利用参数为 0.1 的指数分布概率表达式(1)计算出顾客到达时间的概率,写进表一。

$$f(x) = \begin{cases} 0.1e^{-0.1x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
 (1)

顾客到达时间	概率	累计概率	随机数表示
1	0.09048	0.09048	0.00000-0.09048
2	0.08187	0.17235 0.09049-0.17235	
3	0.07408	07408	
4	0.06703		0.24644-0.31346
5	0.06065	0.37411 0.31347-0.37411	
6	0.05488 0.42899 0.37412-0.42899		0.37412-0.42899
7	7 0.04966 0.47865 0.4290		0.42900-0.47865
8	0.04493		0.47866-0.52358

采用线性同余法计算(7*x+9)mod 30,获得顾客到达时间的随机数序列 27、18、15、24,为符合表一的随机数表示,将它们除以 100,确定前三位顾客的到达时间如表二所示。

农一				
顾客	到达时间的随机数	到达时间		
1	0.15	2-上午 9: 00		

0.18 0.24

2

3

3-上午 10:00

3-上午 10:00

表二顾客到达时间的确定

服务完成时间:服从参数为【5,10】的均匀分布,采用平方取中法,种子数为31,(平方不足4位补足4位)。

记上午 8:00 为 1、以小时为间隔,服务完成时间可以用[2,9]之间的整数来表示,依据参数为[5,10]的均匀分布算出服务完成时间的概率,写入表三。用平方取中法算随机数时,不足 4 位的在最低位写 0,得到随机序列 31、61、72……。为符合表三的随机数表示,将它们除以 100,确定前三位顾客的服务完成时间如表四所示。

表三 服务完成时间的随机数表示

服务完成时间 概率		累计概率	随机数表示		
5	0.1667	0.1667	0.0000-0.1667		

6	0.1667	0.3334	0.1668-0.3334		
7	0.1667	0.5001	0.3335-0.5001		
8	0.1667	0.6668	0.5002-0.6668		
9	0.1667	0.8335	0.6669-0.8335		
10	0.1667	1	0.8336-1.0000		

表四 服务完成时间的确定

顾客	服务完成时间随机数	服务完成时间		
1	0.31	6-下午 1: 00		
2	0.61	8-下午 3: 00		
3	0.72	9-下午 4: 00		

画出仿真时钟推进图,给出平均到达间隔时间,平均服务时间,平均等待时间,平均队长指标。

仿真时钟推进图如下所示。

表五单人服务系统前三位顾客的仿真情况

顾客	到达时刻	开始服 务时间	等待 时间	服务时间 (持续)	服务完 成时刻	逗留时 间	服务员空闲时 间
1	2	2	0	4	6	4	1
2	3	6	3	2	8	5	0
3	3	8	5	1	9	6	0

平均到达间隔时间: (1+0)/2=0.5

平均服务时间: $(4+2+1)/3 \approx 2.333$

平均等待时间: (0+3+3)/3=2

平均队长指标: (0+0+2+2+2+1+1+0) /8=1