Trabajo Práctico Nº 3: Estructuras Algebraicas

- 1) Dados los pares formados por un conjunto numérico y una operación ordinaria, determinar la estructura algebraica de cada par, justificando las respuestas.
- a) (N,+)
- b) (N,\cdot)
- c) (N,-)
- d) (Z,+)
- e) (Z,\cdot)
- f) (Z, \div)
- **2)** Dado el siguiente conjunto A, determinar la estructura algebraica del par (A, +) y (A, \cdot) .
- a) $A = \left\{ x / x = \frac{1}{2}k; k \in \mathbb{Z} \right\}$
- b) $A = \{x/x = 3^k; k \in N_0\}$ c) $A = \{x/x = 2k+1; k \in Z\}$
- 3) Determinar en cada caso si el par (G, +) es grupo abeliano, donde:
 - a) $G_1 = \{ x / x = 3 k, k \in N \}$; + es la adición.
 - b) $G_2 = \{ x / x = 2^k, k \in Z \}$; + es el producto ordinario.
 - c) $G_3 = \{ 1; -1 \};$
- + es la adición.
- d) $G_4 = \{ 1; -1 \};$
- + es el producto ordinario.
- 4) Determinar si (Z, +) es grupo abeliano.
- a) Para la operación + definida mediante: a + b = 2ab
- b) Para la operación + definida mediante: a + b = a + b + 3.
- **5)** El grupo de los cuatro elementos de Klein consiste en un conjunto $A = \{a, b, c, d\}$ con la ley de composición + definida por la tabla:

+	а	b	С	d
а	а	b	C	d
b	b	а	d	С
С	С	d	а	b
d	d	С	b	а

Asumiendo que (A, +) es asociativo:

- i) Verificar que (A,+) es grupo.
- ii) Si $H = \{a, b\}$. ¿Es (H, +) es subgrupo de (A, +)? Justificar.
- iii) Si $B = \{a, b, c\}$. ¿Es (B, +) es subgrupo de (A, +)? Justificar.
- 6) Dado el conjunto $B = \{1; 3; 5; 15\}$. Determinar la estructura algebraica de (B,+) donde se define + mediante:
- a) $a+b=mcm(a,b) \quad \forall a,b \in B$
- b) $a+b=mcd(a,b) \quad \forall a,b \in B$
- **7)** Verificar que $(Z, +, \cdot)$ es un anillo conmutativo con unidad.
- **8)** Comprobar que $(K^{nxn}, +, \cdot)$ es un anillo con unidad.

9) Sea K = { 0, 1 } y las operaciones + y • definidos en K, según las siguientes tablas:

_	+	0	1
	0	0	1
	1	1	0

•	0	1
0	0	0
1	0	1

Probar que estas operaciones definen sobre K una estructura de cuerpo.

- **10)** Analice la estructura algebraica de los pares: (R, +) y (R, •) donde: + es la adición y es el producto.
- 11) Analice la estructura algebraica (R, +, •) donde: + es la adición y es el producto.