Código 1

1. Grafo de fluxo de controle

Nó 1: início Nó 2: if (a > b)

- ramo verdadeiro → Nó 3: System.out.println("a é maior que b")
- ramo falso → Nó 4: System.out.println("a não é maior que b")

Nó 5: for (int i = 0; i < 3; i++) (possui decisão: continuar loop ou sair)

- ramo verdadeiro → Nó 6: System.out.println("Iteração " + (i+1)) → volta para o Nó 5
- ramo falso \rightarrow Nó 7: fim

Exemplo visual:

2. Complexidade Ciclomática

Fórmula: V(G) = E - N + 2

$$V(G) = 8-7+2 = 3$$

Complexidade ciclomática = 3

3. Caminhos possíveis

- 1. a > b verdadeiro + loop $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ vezes
- 2. a > b falso + loop $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ vezes
- 3. Para cada caso acima, o for pode executar 0,1,2,3 vezes até terminar
- Caminho 1: if-true + for executa 3 vezes
- Caminho 2: if-false + for executa 3 vezes

Código 2

1. Grafo de fluxo de controle

- Nó 1: início
- Nó 2: if (x > y)
 - \circ verdadeiro \rightarrow Nó 3: z = x + y \rightarrow Nó 7
 - o falso \rightarrow Nó 4: else if (x < y)
 - verdadeiro \rightarrow Nó 5: for (int i = 0; i < 3; i++)
 - loop verdadeiro → Nó 6: z += i → volta ao Nó 5
 - loop falso → Nó 7
 - falso \rightarrow Nó 8: z = x*y \rightarrow Nó 7
- Nó 7: System.out.println("O valor de z é: " + z)
- Nó 9: fim

Exemplo visual:

2. Complexidade Ciclomática

Fórmula: V(G) = E - N + 2

$$V(G) = 11-9+2 = 4$$

Complexidade Ciclomática = 4

3. Caminhos possíveis

- 1. $x > y \rightarrow \text{executa } z = x + y$
- 2. $x < y \rightarrow entra$ no for $\rightarrow executa$ corpo 0,1,2,3 vezes $\rightarrow termina$
- 3. $x == y \rightarrow \text{executa } z = x^*y$