COMP9020 18s1

Foundations of Computer Science

Week 6 Problem Set Equivalence Relations, Orderings

[Show with no answers] [Show with all answers]

1. (Equivalence relations)

Prove or disprove that $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ is an equivalence relation if

- a. \mathcal{R} is defined by $a\mathcal{R}b$ iff a+b is divisible by 3;
- b. \mathcal{R} is defined by $a\mathcal{R}b$ iff a+2b is divisible by 3.

[show answer]

2. (Modular arithmetic)

Prove that if $m, n \in \mathbb{Z}$ and $m = n \pmod{p}$ then $m^2 = n^2 \pmod{p}$.

[show answer]

3. (Partial orders)

Consider the relation $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}$ defined by $(a,b) \in \mathcal{R}$ iff either $a \leq b-0.5$ or a=b.

Show that R is a partial order, but not a total order.

[show answer]

4. (Lattices)

Let binary relation \mathcal{R} on $\{1, \dots, 20\}$ be defined by $a\mathcal{R}b$ iff either a = b or a - b > 10.

- a. Show that \mathcal{R} is a partial order.
- b. Is $\langle \{1, \dots, 20\}, \mathcal{R} \rangle$ a lattice?

[show answer]

5. Challenge Exercise

Using the set $\{1, \dots, 10\}$ with the natural total order, define $A = \{1, \dots, 10\} \times \{1, \dots, 10\}$ and consider these two orderings over A:

- a. product \sqsubseteq_P
- b. lexicographic \sqsubseteq_L

Find the maximal length of a chain $a_1 \sqsubseteq a_2 \sqsubseteq \ldots \sqsubseteq a_n$ (such that $a_i \neq a_{i+1}$) for each of the two orderings.

[show answer]