17 ноября 2017 23 ноября 2017

Лабораторная работа № 1.4.5

Изучение физического маятника

Цель работы: исследовать зависимость периода колебаний физического маятника от его момента инерции.

В работе используется: физический маятник (однородный стальной стержень), опорная призма, математический маятник, счетчик числа колебаний линейка, секундомер.

1 Теоретическая справка

Физическим маятником называют любое твердое тело, которое под действием силы тяжести может свободно качаться вокруг неподвижной горизонатльной оси. Движение маятника описывается уравнением

$$I\frac{d^2\varphi}{dt^2} = M, (1)$$

где I — момент инерции маятника, φ — угол отклонения маятника от положения равновесия, t — время, M — момент сил, действующих на маятник. Момент инерции найдем по теореме Гюйгенса-Штейнера

$$I = \frac{ml^2}{12} + ma^2, (2)$$

где m — масса маятника. Момент сил тяжести, действующий на маятник,

$$M = -mga\sin\varphi. \tag{3}$$

Если угол φ мал, то $\sin \varphi \approx \varphi$, так что

$$M \approx -mga\varphi. \tag{4}$$

Подставляя (2) и (4) в (1) получим уравнение

$$\ddot{\varphi} + \omega \varphi = 0, \tag{5}$$

где

$$\omega^2 = \frac{ga}{a^2 + \frac{l^2}{12}}. (6)$$

Амплитуда колебаний и начальная фаза α зависит от того, как возбуждается колебания маятника, т.е. определяется начальными условиями задачи, а частота колебаний ω согласно (6) определеяется только ускорением свободного падения g и параметрами маятнкиа l и a.

Период колебаний равен

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{a^2 + \frac{l^2}{12}}{ag}}. (7)$$

Период колебаний математического маятника определяется формулой:

$$T' = 2\pi \sqrt{\frac{l'}{g}},\tag{8}$$

где l' — длина математического маятника. Поэтому величину

$$l_{\rm np} = a + \frac{l^2}{12a} \tag{9}$$

называют приведенной длинной физического маятника.

2 Ход работы

- 1. Определим диапазон амлитуд, в пределах которого период T колебаний маятника можно считать не зависящим от амплитуды.
- 2. Премещая опорную призму вдоль стержня, исследуем зависимость периода колебаний T от расстояния a между точкой опоры и центром масс. Построим график зависимости функции T^2a от a^2 .
- 3. Для одного из положений призмы подберем длину математического маятника так, чтобы в пределах точности измерений периоды колебаний обоих маятников совпали. Измерим длину математического маятника и сравним ее с приведенной длиной физического маятника, вычисленной по формуле (9).

3 Проведение измерений

1. Найдем период колебаний маятника. Будем считать время 100 колебаний.

	Период	Амплитуда	Изменение амплитуды		
Nº	T_{20}, c	A, α	$\Delta \alpha$		
1	162,07	5°	1		
2	162,25	10°	1		
3	162,35	15°	2		

Таблица 1: Период колебаний маятника за $T=100\ c$

Затухания незначительные ($\approx 13\%$)

2. Исследуем зависимость периода колебаний T от расстояния a между точкой опоры и центром масс.

$N_{\overline{0}}$	T_1,c	T_2, c	T_3, c	a, cm	$T_{\rm cp}, c$	a^2 , cm ²	T^2a
1	32,22	32,22	32,28	47	32,24	2209	122,1
2	31,84	31,94	31,97	44	31,91	1936	112,0
3	31,47	$31,\!54$	$31,\!59$	41	31,53	1681	101,9
$\mid 4 \mid$	31,12	31,09	31,22	38	31,14	1444	92,1
5	30,90	30,94	30,90	35	30,91	1225	83,6
6	30,63	30,66	30,75	32	30,68	1024	75,3
7	30,57	$30,\!59$	30,68	29	30,61	841	67,9
8	30,78	30,85	30,88	26	30,84	676	61,8
9	31,09	31,09	31,09	23	31,09	529	55,6
10	31,63	31,75	31,85	20	31,74	400	50,3
11	32,75	32,91	32,94	17	32,87	289	45,9
12	34,66	34,68	34,81	14	34,71	196	42,2
13	37,79	37,87	37,87	11	37,84	121	39,4
14	43,60	43,53	43,59	8	43,57	64	37,9

Таблица 2: Зависимость периода колебаний T от расстония a

По данным из таблицы 2 построим график зависимости функции T^2a от a^2 . График имеет вид y=ax+b. В силу уравнения (7) $a=4\pi^2/g$, а $b=4\pi^2l^2/12g$. Их можно вычислить методом наименьших квадратов:

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 0.346 \text{ c}^2 \cdot \text{M}$$
$$a = \langle T^2 a \rangle - b \langle a \rangle = 3.99 \text{ c}^2 / \text{M}$$

Найдем погрешности σ_a и σ_b

$$\sigma_b = \frac{1}{\sqrt{14}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2} = 0.06 \text{ c}^2 \cdot \text{M},$$
$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = 0.03 \text{ c}^2/\text{M}$$

Получаем, что

$$\frac{4\pi^2}{g} = 3,46 \text{ c}^2/\text{m} \quad \Rightarrow \quad g = \frac{4\pi^2}{a} = (9,89 \pm 0,08) \text{ m/c}^2,$$

$$\frac{4\pi^2 l^2}{12g} = 0,346 \text{ c}^2 \cdot \text{m} \quad \Rightarrow \quad l = \sqrt{\frac{12g}{4\pi^2}} = (1,03 \pm 0,03) \text{c}^2 \cdot \text{m}.$$

3. Для одного из положений призмы $(a=47\ {\rm cm})$ подберем длину математического маятника так, чтобы периоды обоих маятников совпали в пределах погрешности.

Экспериментальная длина : $l'_{\rm np} = (65 \pm 0.5) \; {\rm cm}.$ Теоретическая длина : $l_{\rm np} = 64.7 \; {\rm cm}$

Рис. 1: График завимости T^2a от a^2

4 Вывод

Мы изучили зависимость периода колебания физического маятника от его момента инерции. Получили достаточно точные значения g и l с помощью физического маятника.