Teoria dei Giochi - 20 Settembre 2019

Cognome, Nome, Numero di Matricola, Email:

Non è richiesto di giustificare la risposta \equiv NGR.

Esercizio 1. (Tempo risoluzione stimato: 15 min) Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra $\{1,8,4,3\}$; il secondo giocatore può scegliere un numero tra $\{2,9,5,7\}$. Sia x il numero scelto dal primo giocatore e y il numero scelto dal secondo giocatore. Il primo giocatore vince un euro se x < y - 1 oppure se x = y + 1; analogamente, il secondo giocatore vince un euro se y < x - 1 oppure se y = x + 1. Si consideri il gioco in *strategia pura*.

1.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. **NGR**

SoluzioneRispettivamente: giocare 3 e giocare 2

1.2 Indicare tutte le strategie conservative per il primo giocatore, se ve ne sono, e tutte le strategie conservative per il secondo, se ve ne sono. **NGR**

Soluzione Per il primo giocatore 3, per il secondo giocatore tutte.

1.3 Indicare tutti gli equilibri di Nash del gioco, se ve ne sono. NGR

Soluzione (3, 2), (3, 5), (3, 7), (3, 9),

1.4 Indicare il valore del gioco, oppure spiegare perché non è possibile individuarlo.

Soluzione Valore -1

Esercizio 2 (Tempo risoluzione stimato: 15 min) In un parlamento siedono 8 deputati. Di questi, 3 provengono da una stessa regione A, 3 provengono da una stessa regione B, uno proviene da una regione C e uno proviene da una regione D. Una legge viene approvata se e solo se a suo favore votano almeno 7 deputati qualsiasi oppure a suo favore votano esattamente 6 deputati, ma in quest ultimo caso devono essere: due deputati di A, due deputati di B, il deputato di C e il deputato di D.

Se è possibile formulare il processo di approvazione di una legge come un gioco cooperativo, determinare il valore di Shapley di ciascun deputato, riportando i calcoli svolti. Se non è possibile determinarlo, spiegare perché.

Soluzione Il gioco può' essere formulato come un gioco cooperativo, perché non esistono due coalizioni disgiunte entrambe a valore 1.

Per determinare il valore di Shapley per questo gioco cooperativo conviene utilizzare la formula:

$$S_D(v) = \frac{\text{\# permutazioni } p \text{ tali che: la coalizione } A_p^D \text{ vince e la coalizione } A_p^D \setminus D \text{ perde}}{n!}$$

Prendiamo in considerazione un deputato proveniente dalla regione D. Le permutazioni in cui A_p^i vince, $A_p^i \setminus i$ perde sono sono quelle in cui: il deputato si trova in sestaa posizione e nelle prime due ci sono due deputati di A, due deputati di B e un deputato di C; il deputato si trova in settima posizione.

Quindi il valore del deputato è

$$S_D(v) = S_C(v) = \frac{\binom{3}{2} \cdot \binom{3}{2} \cdot 5! \cdot 2! + 7!}{8!}$$

Per quanto riguarda gli altri deputati il loro valore è:

$$S_A(v) = S_B(v) = \frac{1 - 2S_D(v)}{8}.$$

Esercizio 3 (Tempo risoluzione stimato: 25 min) È dato un grafo bipartito $G(X \cup Y, E)$ con vertici $X \cup Y = \{x_1, x_2, x_3, x_4, y_1, y_2, y_3\}$ e spigoli $E = \{x_1y_1, x_1y_2, x_2y_2, x_3y_3, x_4y_3\}$. Siano $e \in E$ un qualunque spigolo e $q \in X \cup Y$ un qualunque vertice: se q è un estremo di e, diciamo che e copre q e che q copre e.

Considera il gioco competitivo con 2 giocatori: il giocatore A controlla l'insieme degli spigoli E; il giocatore B, che controlla l'insieme dei vertici $X \cup Y$. Le strategie a disposizione di A sono tutti i sottoinsiemi $M \subseteq E$ di spigoli; mentre le strategie a disposizione di B sono tutti i sottoinsiemi $Q \subset X \cup Y$ con al più 3 vertici, ovvero tali che $|Q| \le 3$.

Il payoff in forma di utilità è determinato in questo modo: sia $M \subseteq E$ una strategia scelta dal primo giocatore e sia $Q \subseteq X \cup Y$, $|Q| \le 3$, una strategia scelta dal secondo giocatore. Indichiamo rispettivamente con $a \ge 0$ il numero di spigoli di M che non sono coperti da alcun vertice in Q e con $b \ge 0$ il numero di vertici di Q che non sono coperti da alcuno spigolo in M:

- (1) se a > b oppure a = b e |M| < |Q|, il payoff di $A \ge 1$;
- (2) se a < b oppure a = b e |M| > |Q| il payoff di A è -1;
- (3) se a = b e |M| = |Q| è il payoff di A è 0.

Si consideri il gioco in strategia pura.

3.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. **NGR**

Soluzione Per il primo giocatore ce ne sono due: $\{x_1y_1, x_2y_2, x_3y_3\}$ e $\{x_1y_1, x_2y_2, x_4y_3\}$. Per il secondo giocatore ce ne sono tre: $\{x_1, x_2, x_3\}$, $\{x_1, y_2, y_3\}$ e $\{y_1, y_2, y_3\}$

3.2 Indicare tutti gli equilibri di Nash del gioco, se ve ne sono. NGR

Soluzione Gli equilibri di Nash in questo caso sono tutti e soli gli incroci delle strategie debolmente dominanti, quindi sono 6.

Esercizio 4 (Tempo risoluzione stimato: 25 min) Si consideri la seguente matrice dei payoff del primo giocatore per un gioco antagonistico in forma di costo, dove *y* è un numero razionale qualsiasi (non necessariamente intero!):

$$\begin{pmatrix} G1 - G2 & D & E & F \\ A & 6 & 6 + 4y & 8 \\ B & 8 - 2y & 10 & 6 \\ C & 4 & 14 - 2y & 2 \end{pmatrix}$$

Considera innanzitutto il gioco in *strategia pura*.

4.1 Indicare quali sono, al variare di *y*, le strategie debolmente dominanti per il primo giocatore (se ve ne sono) e le strategie debolmente dominanti per il secondo (se ve ne sono). **NGR**

Per il primo giocatore C è una strategia dominante per y=2. Per il secondo giocatore E è una strategia dominante per $\frac{1}{2} \le y \le 5$.

- **4.2** Indicare quali sono, al variare di y, gli equilibri di Nash del gioco (se ve ne sono). **NGR** (A,E) per $y \in [\frac{1}{2},1]$; (B,E) per $y \in [1,2]$; (C,E) per $y \in [2,5]$.
- **4.3** Porre y = 6. Indicare quali sono, in questo caso, le strategie conservative per il primo e per il secondo giocatore (se ve ne sono). **NGR**

C per il primo giocatore che nel caso peggiore paga 4; E e F per il secondo giocatore che nel caso peggiore vince 2.

4.4 Assumere nuovamente che y = 6 e considerare il gioco in *strategia mista*. Senza effettuare calcoli e utilizzando solo le risposte precedenti, per ognuna delle affermazioni seguenti dire se essa è vera o falsa **NGR**:

- 1 Il valore del gioco in strategia mista potrebbe essere 1.
- 2 Il valore del gioco in strategia mista potrebbe essere 3.
- 3 Il valore del gioco in strategia mista potrebbe essere 4.
- 4 Il valore del gioco in strategia mista potrebbe essere 5.
- 5 Il valore del gioco in strategia mista potrebbe essere 8.

☐ VERO ■ FALSO

- VERO □ FALSO
- VERO □ FALSO
 VERO □ FALSO
- □ VERO **■** FALSO
- □ VERO FALSO

Esercizio 5 (Tempo risoluzione stimato: 15 min) Si consideri la seguente matrice dei payoff del primo giocatore per un gioco antagonistico in forma di minimizzazione:

$$\begin{pmatrix}
G1 - G2 & S1 & S2 & S3 & S4 \\
S1 & 1 & -1 & -2 & 0 \\
S2 & -9 & -8 & 0 & -9 \\
S3 & -0 & -2 & 0 & -3 \\
S4 & 9 & 5 & -9 & 0
\end{pmatrix}$$

Considera l'estensione in strategia mista del gioco e le seguenti strategie rispettivamente per G1 e G2:

$$(i): \xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4 \ (ii): \xi_1^1 = \frac{1}{3}, \xi_1^2 = \frac{2}{3}, \xi_1^3 = 0, \xi_1^4 = 0; \ (iii): \xi_1^1 = 0, \xi_1^2 = \frac{2}{3}, \xi_1^3 = 0, \xi_1^4 = \frac{1}{3}; \xi_1^3 = 0, \xi_1^4 = \frac{1}{3}; \xi_1^4 = 0, \xi_1^4$$

$$(j): \xi_2^j = \tfrac{1}{4} \ \forall j = 1, \dots, 4; \ (jj): \xi_2^1 = \tfrac{1}{3}, \ \xi_2^2 = 0, \ \xi_2^3 = \tfrac{2}{3}, \\ \xi_2^4 = 0; \ (jjj): \xi_2^1 = \xi_2^2 = \xi_2^3 = \tfrac{1}{3}, \\ \xi_2^4 = 0.$$

- **5.1**. Per ciascuna strategia, indica quanto paga, nel caso peggiore, il giocatore che la usa. **NGR Soluzione** Rispettivamente: (i) $\frac{1}{4}$; (ii) $-\frac{2}{3}$; (iii) -3; (j) $\frac{13}{2}$; (jj) 3; (jjj) $\frac{17}{3}$.
- **5.2** Qualcuna delle strategie fornite è conservativa? *Indicare le eventuali strategie conservative, oppure scrivere che non è possibile individuarne.* **NGR Soluzione** (*iii*) e (*j j*).
- **5.3** È possibile individuare qualche equilibro di Nash in strategia mista? *Indicare gli eventuali equilibri, oppure scrivere che non si può individuarne.* **NGR Soluzione** $\{(iii), (jj)\}.$
- **5.4** Qual è il valore del gioco misto? *Indicare il valore, oppure scrivere che non si può individuarlo.* **NGR**

Soluzione Il valore del gioco misto è -3.