

ITA OBJETIVO 3

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23}\,{\rm mol}^{-1}$ Constante de Faraday, $F = 96\,500\,{\rm C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8\,{\rm m\,s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \,\mathrm{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$
- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$
Н	1	1,01	Al	13	26,98
\mathbf{C}	6	12,01	\mathbf{S}	16	32,06
N	7	14,01	Cl	17	$35,\!45$
O	8	16,00	Br	35	79,90
Na	11	22,99	Ag	47	107,87
$_{ m Mg}$	12	24,31	\mathbf{I}	53	126,90

Questão 49. Assinale a alternativa com o número total de isômeros (constitucionais e estereoisômeros) com fórmula molecular C_4H_9N .

- **A**() 11
- **B**() 13
- **C**() 15
- **D**() 17
- **E**() 19

Questão 50. Considere as proposições.

- 1. A configuração eletrônica do sódio é [Ne] 3s1, e não [Ne] 3p1, devido à maior penetrabilidade do orbital 3s, que torna a blindagem dos elétron com número quântico principal n=2 menos efetiva.
- 2. Para elementos de um mesmo período n da tabela periódica, a energia dos orbitais ns e np diminui com o aumento do número atômico, entretanto, a energia dos orbitais ns cai mais rapidamente com o aumento do número atômico que a dos orbitais np.
- 3. Para elementos de um mesmo grupo da tabela periódica, é esperado que o número de oxidação mais comum seja maior para os elementos com maior número atômico.
- 4. O raio atômico dos lantanídios é aproximadamente igual, variando apenas em alguns picômetros entre todos os quatorze elementos.

Assinale a alternativa que relaciona as proposições corretas.

A() 1 e 2

 $f{B}(\) \ \ 1 \ e \ 4 \qquad \qquad f{C}(\) \ \ 2 \ e \ 4 \qquad \qquad f{D}(\) \ \ 1, \ 2 \ e \ 4 \qquad \qquad f{E}(\) \ \ 1, \ 2, \ 3 \ e \ 4$

Questão 51. O diagrama de fases para a mistura de água e 1,4-dioxano é apresentado a seguir.

Considere as proposições.

- 1. Água e dioxano formam um azeótropo de ponto de ebulição mínimo quando a fração molar de água é 20%.
- 2. A mistura de água e dioxano ocorre com liberação de energia.
- 3. Em 20 °C, a pressão de vapor da água é 20 Torr e a do dioxano é 30 Torr. A pressão de vapor de uma mistura equimolar de água e dioxano em 20°C é menor que 25 Torr.
- 4. Uma mistura contendo 80% de água e 20% de dioxano em base molar em 70°C é aquecida até o início da ebulição. O vapor coletado é resfriado de volta a 70 °C resultando em um líquido contendo 40% de água em base molar.

Assinale a alternativa que relaciona as proposições corretas.

A() **1**

 ${f B}(\)\ {f 4}$ ${f C}(\)\ {f 1}\ {f e}\ {f 4}$ ${f D}(\)\ {f 1}, {f 2}\ {f e}\ {f 4}$ ${f E}(\)\ {f 1}, {f 3}\ {f e}\ {f 4}$

Questão 52. A ação de uma solução alcalina de iodo sobre o raticida varfarina, $C_{19}H_{16}O_4$ resulta na formação de uma molécula de iodofórmio, CHI_3 , para cada molécula do composto reagido. A análise da varfarina pode então ser baseada na reação entre o iodofórmio e cátions prata:

$$CHI_3(aq) + 3 AgNO_3(aq) + H_2O(l) \longrightarrow 3 AgI(s) + 3 HNO_3(aq) + CO(g)$$

Uma amostra de 6,16 g de um raticida comercial contendo varfarina foi tratada com uma solução alcalina de iodo. O iodofórmio produzido foi coletado em $100\,\mathrm{mL}$ de uma solução contendo $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cátions ferro(III). A solução resultante foi tratada com $25\,\mathrm{mL}$ de nitrato de prata, $0,03\,\mathrm{mol}\,\mathrm{L}^{-1}$ e então foi titulada com $3\,\mathrm{mL}$ de tiocianato de potássio $0,05\,\mathrm{mol}\,\mathrm{L}^{-1}$.

Considere as proposições.

- 1. O iodofórmio não pode ser titulado diretamente com a prata devido à dificuldade de identificação do ponto de equivalência. Nesse caso foi empregado o método de titulação indireta por retrotitulação, sendo os cátions ferro(III) adicionados para identificar o ponto de equivalência na titulação da prata com o tiocianato.
- 2. Os íons nitrato e os cátions ferro(III) são íons espectadores das reações de titulação.
- 3. A amostra continha cerca de 10% de varfarina em massa.
- 4. Se a solução de nitrato de prata fosse adicionada diretamente à solução resultante da primeira etapa do processo, haveria interferência dos íons hidróxido e a fração mássica de varfarina calculada incorretamente seria superior ao valor correto.

Assinale a alternativa que relaciona as proposições *corretas*.

 $A(\)\ 1,\, 2\; \mathrm{e}\; 3 \qquad \qquad B(\)\ 1,\, 2\; \mathrm{e}\; 4 \qquad \qquad C(\)\ 1,\, 3\; \mathrm{e}\; 4 \qquad \qquad D(\)\ 2,\, 3\; \mathrm{e}\; 4 \qquad \qquad E(\)\ 1,\, 2,\, 3\; \mathrm{e}\; 4$

Questão 53. Aminoacetais simples são rapidamente hidrolisados em soluções de ácidos diluídos, conforme a reação:

A estabilidade do código genético depende da estabilidade do DNA. Se a hidrólise dos aminoacetais que compõe o DNA, apresentados a seguir, fosse tão simples a vida não poderia existir como é hoje.

Assinale a alternativa que apresenta a justificativa *correta* para a dificuldade de hidrólise dos grupos acetais no DNA.

- **A** () Os aminoacetais do DNA possuem átomos de nitrogênio com basicidade consideravelmente menor, já que seus pares eletrônicos não ligantes estão conjugados com o sistema aromático.
- **B**() Os aminoacetais do DNA possuem grupos hidroxila, que podem formar ligações de hidrogênio intramoleculares com o átomo de nitrogênio do grupo aminoacetal.
- C () Os aminoacetais do DNA possuem grupos hidroxila que, por efeito indutivo, reduzem a densidade eletrônica do oxigênio heteroátomo.
- ${f D}\,(\,\,\,)\,$ Os aminoacetais do DNA possuem grupos com maior impedimento especial, dificultando a interação com o ácido.
- **E**() Os aminoacetais do DNA possuem menor barreira de rotação para a ligação C-N, devido à menor interação com o oxigênio heteroátomo.

Questão 54. Uma amostra de 1,2 g de um soluto apolar foi dissolvida em 60 g de fenol. O ponto de congelamento da solução abaixou em 1,4 °C e essa tinha densidade 1,2 g cm⁻³. A constante do ponto de congelamento fenol é $k_{\rm c,fenol} = 7 \, {\rm K \, kg^{-1} \, mol^{-1}}$.

Considere as proposições.

- 1. A massa molar do soluto é cerca de $100 \,\mathrm{g} \,\mathrm{mol}^{-1}$.
- 2. Caso o soluto sofra dimerização parcial quando dissolvido em fenol, a massa molar calculada considerando que não há dimerização será maior do que sua massa molar real.
- 3. A pressão osmótica dessa solução é cerca de 5,9 atm.
- 4. A pressão osmótica dessa solução pode ser medida calculando a pressão exercida pelas moléculas do soluto sob uma membrana semipermeável.

Assinale a alternativa que relaciona as proposições *corretas*.

 $A (\) \ 1 \\ B (\) \ 3 \\ C (\) \ 1 \ e \ 3 \\ D (\) \ 1, \ 2 \ e \ 3 \\ E (\) \ 1, \ 3 \ e \ 4$

Questão 55. Considere as proposições.

- 1. A informação recebida pelos nossos olhos e posteriormente interpretada pelo cérebro é a cor complementar à faixa de fótons absorvida por uma substância colorida.
- 2. Como a clorofila é uma substância de coloração esverdeada, espera-se que ela absorva nos comprimentos de onda próximos a 500 nm. A hemoglobina, avermelhada, deve absorver em cerca de 680 nm.
- 3. Quanto maior a energia dos fótons absorvidos para que a excitação eletrônica ocorra, menor a frequência desses fótons e, consequentemente, maior o comprimento de onda da radiação absorvida.
- 4. Modificações estruturais em uma molécula, como a adição ou remoção de átomos de hidrogênio, podem alterar completamente seu perfil de absorção, podendo fazer que uma substância inicialmente rosada passe a ser incolor.

Assinale a alternativa que relaciona as proposições corretas.

A() **1**

 $\mathbf{B}(\)$ 4

 ${f C}\,(\) \ \ {f 1} \in {f 4} \qquad \qquad {f D}\,(\) \ \ {f 1}, \ {f 2} \in {f 4} \qquad \qquad {f E}\,(\) \ \ {f 1}, \ {f 3} \in {f 4}$

Questão 56. Um cilindro provido de pistão contém água até a metade do seu volume. O espaço acima da água é ocupado por ar atmosférico e possui uma entrada lateral para adição de gases.

Considere os procedimentos:

- 1. A posição do pistão é fixada e o cilindro é carregado com argônio pela entrada lateral.
- 2. O pistão é movimentado no sentido da compressão do sistema.
- 3. O pistão é liberado para se mover livremente e o sistema é carregado com mais CO₂ pela entrada lateral.
- 4. O pistão é liberado para se mover livremente e o sistema é resfriado.

Assinale a alternativa que relaciona os procedimentos que resultam no aumento da quantidade de CO₂ dissolvido.

A() **2** e **3**

 $f B(\) \ \ 2\ {
m e}\ 4 \qquad \qquad f C(\) \ \ 3\ {
m e}\ 4 \qquad \qquad f D(\) \ \ 2,\ 3\ {
m e}\ 4 \qquad \qquad f E(\) \ \ 1,\ 2,\ 3\ {
m e}\ 4$

 $\mathbf{Quest\~ao}$ 57. Uma amostra de $10\,\mathrm{cm}^3$ de um hidrocarboneto desconhecido foi misturada com $70\,\mathrm{cm}^3$ de gás oxigênio. A reação de combustão foi iniciada por uma descarga elétrica. Ao final da reação, o vapor d'água foi liquefeito e o volume dos gases de exaustão diminuiu para 65 cm³. Os gases foram passados por um leito contendo hidróxido de sódio, que absorve o CO₂ conforme a reação:

$$CO_2(g) + NaOH(s) \longrightarrow NaHCO_3(s)$$

Após a passagem pelo leito o volume de gás diminuiu para 45 cm³.

Assinale a alternativa com a fórmula molecular do hidrocarboneto.

 \mathbf{A} () CH_4

 $\mathbf{B}(\) \ \mathrm{C}_2\mathrm{H}_2$

 \mathbf{C} () $\mathbf{C}_2\mathbf{H}_6$

 \mathbf{D} () C_3H_6

 $\mathbf{E}(\) \ \mathrm{C_3H_8}$

Questão 58. oi

Questão 59. Um engenheiro projetou uma planta para separação de um efluente industrial aquoso contendo massas iguais de uma mistura de nitrato de cobre(II), nitrato de chumbo(II) e nitrato de prata, na concentração total de $60\,\mathrm{g/L}$.

O Misturador 1 recebe a entrada de efluente na vazão de $100\,\mathrm{L\,s^{-1}}$, que é misturada com $100\,\mathrm{L\,s^{-1}}$ de uma solução de sulfato de amônio $20\,\mathrm{g\,L^{-1}}$. O Misturador 2 recebe o material passante do Filtro 1, $100\,\mathrm{L\,s^{-1}}$ de uma solução aquosa de carbonato de sódio de concentração $40\,\mathrm{g\,L^{-1}}$ e pequena quantidade de uma solução de hidróxido de sódio objetivando o ajuste do pH de precipitação para, em seguida, proceder a filtração.

Considere as proposições.

- 1. A saída de sólida do filtro 2 é uma mistura heterogênea.
- 2. Olá
- 3. três
- 4. quatro

Assinale a alternativa que relaciona as proposições corretas.

 ${f A}(\)\ {f 1}$ ${f B}(\)\ {f 2}$ ${f C}(\)\ {f 1}\ {f e}\ {f 2}$ ${f D}(\)\ {f 1}\ {f e}\ {f 3}$ ${f E}(\)\ {f 1}\ {f e}\ {f 4}$

Questão 60. As três primeiras energias de ionização do átomo de alumínio são $6,0\,\mathrm{eV},\,19\,\mathrm{eV}$ e $28\,\mathrm{eV}$ e a afinidade eletrônica do átomo de bromo é $3,4\,\mathrm{eV}.$

${\rm Dados\ em\ 298K}$	Al(g)	$\mathrm{Br}(\mathrm{g})$	$\mathrm{AlBr}_3(s)$
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$	+326	+112	-530

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de alumínio em 298 K.

- $\mathbf{A}(\)\ 1,2\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{B}(\)\ 2.7\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{C}()$ 4,1 MJ mol⁻¹

- $\mathbf{D}(\)\ 5,3\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{E}(\)\ 8,4\,\mathrm{MJ\,mol}^{-1}$