Metody probabilistyczne

2. Aksjomatyczna definicja prawdopodobieństwa

Wojciech Kotłowski

Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/

10.10.2017

- ullet Przestrzeń zdarzeń elementarnych Ω
- Zdarzenia $A\subseteq\Omega$ to podzbiory przestrzeni zdarzeń elementarnych
- Prawdopodobieństwo zdarzenia A: $P(A) = \frac{|A|}{|\Omega|}$

- ullet Przestrzeń zdarzeń elementarnych Ω
- Zdarzenia $A \subseteq \Omega$ to podzbiory przestrzeni zdarzeń elementarnych
- Prawdopodobieństwo zdarzenia A: $P(A) = \frac{|A|}{|\Omega|}$

Ograniczenia definicji klasycznej:

- Każde zdarzenie elementarne ma to samo prawdopodobieństwo $\frac{1}{|\Omega|}$
 - Rzut nieuczciwą monetą lub kostką
 - Niejednoznaczność przestrzeni zdarzeń (np. rzut 2 kośćmi)

- ullet Przestrzeń zdarzeń elementarnych Ω
- Zdarzenia $A \subseteq \Omega$ to podzbiory przestrzeni zdarzeń elementarnych
- Prawdopodobieństwo zdarzenia A: $P(A) = \frac{|A|}{|\Omega|}$

Ograniczenia definicji klasycznej:

- Każde zdarzenie elementarne ma to samo prawdopodobieństwo $\frac{1}{|\Omega|}$
 - ► Rzut nieuczciwą monetą lub kostką
 - Niejednoznaczność przestrzeni zdarzeń (np. rzut 2 kośćmi)
- Aby definicja miała sens, Ω musi być zbiorem skończonym
 - Rzucanie monetą aż do pojawienia się orła
 - Czas życia dysku twardego

- Przestrzeń zdarzeń elementarnych Ω
- Zdarzenia $A \subseteq \Omega$ to podzbiory przestrzeni zdarzeń elementarnych
- Prawdopodobieństwo zdarzenia A: $P(A) = \frac{|A|}{|\Omega|}$

Ograniczenia definicji klasycznej:

- Każde zdarzenie elementarne ma to samo prawdopodobieństwo $\frac{1}{|\Omega|}$
 - ► Rzut nieuczciwą monetą lub kostką
 - Niejednoznaczność przestrzeni zdarzeń (np. rzut 2 kośćmi)
- Aby definicja miała sens, Ω musi być zbiorem skończonym
 - ▶ Rzucanie monetą aż do pojawienia się orła
 - Czas życia dysku twardego

Potrzebna ogólniejsza definicja prawdopodobieństwa

Przestrzeń probabilistyczna

- Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- ullet Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

Przykłady:

Wynik rzutu kostką:

- ullet Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

Przykłady:

• Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$

- ullet Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła:

- Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła: $\Omega = \{1, 2, 3, \ldots\}$

- Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła: $\Omega = \{1, 2, 3, \ldots\}$
- Wartość napięcia w sieci:

- ullet Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła: $\Omega = \{1, 2, 3, \ldots\}$
- Wartość napięcia w sieci: $\Omega = \mathbb{R}$

- ullet Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła: $\Omega = \{1, 2, 3, \ldots\}$
- Wartość napięcia w sieci: $\Omega = \mathbb{R}$
- Czas życia dysku twardego:

- Zdarzenie elementarne ω : pojedynczy wynik doświadczenia losowego
- Przestrzeń probabilistyczna Ω: zbiór wszystkich możliwych wyników (zdarzeń elementarnych)
- Zbiór Ω może być nieskończony, a nawet nieprzeliczalny

- Wynik rzutu kostką: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Liczba rzutów monetą do pojawienia się orła: $\Omega = \{1, 2, 3, \ldots\}$
- Wartość napięcia w sieci: $\Omega = \mathbb{R}$
- Czas życia dysku twardego: $\Omega = [0, \infty)$

Zdarzenia to podzbiory przestrzeni zdarzeń elementarnych Ω

• Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$

- Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$
- Zdarzenie $A = \Omega$ nazywamy zdarzeniem pewnym

- Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$
- Zdarzenie $A = \Omega$ nazywamy zdarzeniem pewnym
- Zdarzenie A = ∅ nazywamy zdarzeniem niemożliwym

- Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$
- Zdarzenie $A = \Omega$ nazywamy zdarzeniem pewnym
- Zdarzenie A = ∅ nazywamy zdarzeniem niemożliwym
- Zdarzenie przeciwne do A to A'

- Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$
- Zdarzenie $A = \Omega$ nazywamy zdarzeniem pewnym
- Zdarzenie $A = \emptyset$ nazywamy zdarzeniem niemożliwym
- Zdarzenie przeciwne do A to A'
- Zdarzenia A i B są rozłączne (wykluczające się) jeśli $A \cap B = \emptyset$

- Mówimy, że zaszło zdarzenie A, jeśli wynik doświadczenia $\omega \in A$
- Zdarzenie $A = \Omega$ nazywamy zdarzeniem pewnym
- Zdarzenie $A = \emptyset$ nazywamy zdarzeniem niemożliwym
- Zdarzenie przeciwne do A to A'
- Zdarzenia A i B są rozłączne (wykluczające się) jeśli $A \cap B = \emptyset$
- Ogólniej: zdarzenia A_1,A_2,\ldots są parami rozłączne jeśli $A_i\cap A_j=\emptyset$ dla wszystkich $i\neq j$

Rodziną zdarzeń $\mathcal F$ nazywamy interesującą nas rodzinę podzbiorów Ω Czyli $\mathcal F\subseteq 2^\Omega$ (2^Ω to zbiór potęgowy, tj. zbiór wszystkich podzbiorów Ω)

Rodziną zdarzeń \mathcal{F} nazywamy interesującą nas rodzinę podzbiorów Ω Czyli $\mathcal{F}\subseteq 2^{\Omega}$ (2^{Ω} to zbiór potęgowy, tj. zbiór wszystkich podzbiorów Ω)

Jakie własności powinna co najmniej spełniać rodzina zdarzeń \mathcal{F} ?

Rodziną zdarzeń $\mathcal F$ nazywamy interesującą nas rodzinę podzbiorów Ω Czyli $\mathcal F\subseteq 2^\Omega$ (2^Ω to zbiór potęgowy, tj. zbiór wszystkich podzbiorów Ω)

Jakie własności powinna co najmniej spełniać rodzina zdarzeń \mathcal{F} ?

1. Zdarzenie pewne Ω powinno należeć do ${\mathcal F}$

Rodziną zdarzeń \mathcal{F} nazywamy interesującą nas rodzinę podzbiorów Ω Czyli $\mathcal{F} \subseteq 2^{\Omega}$ (2^{Ω} to zbiór potęgowy, tj. zbiór wszystkich podzbiorów Ω)

Jakie własności powinna co najmniej spełniać rodzina zdarzeń \mathcal{F} ?

- 1. Zdarzenie pewne Ω powinno należeć do ${\mathcal F}$
- 2. Jeśli A należy do $\mathcal F$ to również należy zdarzenie "nie zaszło A"

Rodziną zdarzeń \mathcal{F} nazywamy interesującą nas rodzinę podzbiorów Ω Czyli $\mathcal{F} \subseteq 2^{\Omega}$ (2^{Ω} to zbiór potęgowy, tj. zbiór wszystkich podzbiorów Ω)

Jakie własności powinna co najmniej spełniać rodzina zdarzeń \mathcal{F} ?

- 1. Zdarzenie pewne Ω powinno należeć do ${\mathcal F}$
- 2. Jeśli A należy do $\mathcal F$ to również należy zdarzenie "nie zaszło A"
- 3. Jeśli A i B należą do $\mathcal F$ to również należy zdarzenie "zaszło A lub B"

σ -ciało zbiorów

Rodzinę podzbiorów $\mathcal{F}\subseteq 2^{\Omega}$ nazywamy σ -ciałem (σ -algebrą), gdy:

- 1. $\Omega \in \mathcal{F}$
- 2. Jeśli $A \in \mathcal{F}$ to $A' \in \mathcal{F}$
- **3**. Jeśli $A_1, A_2, \ldots \in \mathcal{F}$ to $A_1 \cup A_2 \cup \ldots \in \mathcal{F}$

Uwaga: własność 3 zachodzi dla dowolnych przeliczalnych sum zdarzeń.

Fakt: Zdarzenie puste należy do \mathcal{F} : $\emptyset \in \mathcal{F}$

Fakt: Zdarzenie puste należy do \mathcal{F} : $\emptyset \in \mathcal{F}$

Dowód: Ponieważ $\Omega \in \mathcal{F}$, a $\Omega' = \emptyset$, to z własności 2 mamy $\emptyset \in \mathcal{F}$.

Fakt: Jeśli $A, B \in \mathcal{F}$ to również: $A \cap B \in \mathcal{F}$

Fakt: Jeśli $A, B \in \mathcal{F}$ to również: $A \cap B \in \mathcal{F}$

Dowód:

- (a) Z własności 2 zachodzi: $A' \in \mathcal{F}$ oraz $B' \in \mathcal{F}$
- (b) Z własności 3 zachodzi: $C = A' \cup B' \in \mathcal{F}$
- (c) Z własności 2 zachodzi: $C' \in \mathcal{F}$
- (d) Ale z prawa De Morgana* wynika, że $C' = A \cap B$

^{*}Prawo de Morgana: $(E \cap F)' = E' \cup F'$

Zadanie 1

Udowodnij, że jeśli $A, B \in \mathcal{F}$ to również $A \setminus B \in \mathcal{F}$

Wniosek: σ -ciało jest zamknięte ze względu na wszystkie operacje na zbiorach typu: suma, iloczyn, różnica, dopełnienie, itp.

Przykłady σ -ciał: zbiór potęgowy

Jeśli Ω jest przeliczalny, możemy wziąć $\mathcal{F}=2^\Omega$, tzn. wszystkie podzbiory przestrzeni zdarzeń elementarnych są zdarzeniami

Przykłady σ -ciał: zbiory borelowskie

Jeśli $\Omega=\mathbb{R}$ (nieprzeliczalny), nie możemy przyjąć $\mathcal{F}=2^{\Omega}$, gdyż nie da się na nim określić miary prawdopodobieństwa (zbiory niemierzalne).

Przykłady σ -ciał: zbiory borelowskie

Jeśli $\Omega=\mathbb{R}$ (nieprzeliczalny), nie możemy przyjąć $\mathcal{F}=2^{\Omega}$, gdyż nie da się na nim określić miary prawdopodobieństwa (zbiory niemierzalne).

Zakładamy, że $\mathcal F$ musi zawierać zdarzenia przynajmniej postaci: "wynik był mniejszy od a", "wynik był pomiędzy a i b" $(a,b\in\mathbb R)$, itp.

Czyli $\mathcal F$ zawiera wszystkie możliwe przedziały otwarte i zamknięte, skończone lub nie, np. [a,b), (a,b), $(-\infty,a]$, (b,∞) , itp.

Przykłady σ -ciał: zbiory borelowskie

Jeśli $\Omega=\mathbb{R}$ (nieprzeliczalny), nie możemy przyjąć $\mathcal{F}=2^{\Omega}$, gdyż nie da się na nim określić miary prawdopodobieństwa (zbiory niemierzalne).

Zakładamy, że \mathcal{F} musi zawierać zdarzenia przynajmniej postaci: "wynik był mniejszy od a", "wynik był pomiędzy a i b" $(a,b\in\mathbb{R})$, itp.

Czyli \mathcal{F} zawiera wszystkie możliwe przedziały otwarte i zamknięte, skończone lub nie, np. [a,b), (a,b), $(-\infty,a]$, (b,∞) , itp.

Z własności σ -ciała, $\mathcal F$ zawiera również przeliczalne sumy i iloczyny przedziałów (w tym pojedyncze punkty) .

Taką rodzinę zdarzeń nazywa się σ -ciałem zbiorów borelowskich. Rodzina ta zawiera wszystkie "praktyczne" podzbiory $\mathbb R$ (a nawet tak dziwne zbiory jak zbiór Cantora czy zbiór liczby wymiernych).

Biorąc iloczyny kartezjańskie podzbiorów, można tę rodzinę uogólnić na przestrzeń \mathbb{R}^2 (płaszczyznę), \mathbb{R}^3 (przestrzeń 3D), itp.

Miara prawdopodobieństwa

Aksjomaty Kołmogorowa (1933):

Prawdopodobieństwem nazywamy dowolną funkcję P o wartościach rzeczywistych zdefiniowanej na σ -ciale zdarzeń $\mathcal{F} \subseteq 2^{\Omega}$, spełniającą warunki:

- 1. Nieujemność: $P(A)\geqslant 0$ dla każdego $A\in \mathcal{F}$
- 2. Normalizacja: $P(\Omega) = 1$
- 3. Addytywność: Dla dowolnego ciągu parami rozłącznych* zdarzeń $A_1, A_2, \ldots \in \mathcal{F}$:

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

Andriej Kołmogorow (1903-1987)

Uwaga: symbol $\bigcup_{i=1}^{\infty} A_i$ oznacza sumę $A_1 \cup A_2 \cup \dots$

^{*}Przypomnijmy: $A_i \cap A_i = \emptyset$ dla wszystkich $i \neq j$

Fakt: Prawdopodobieństwo zdarzenia niemożliwego jest zerem: $P(\emptyset) = 0$

Fakt: Prawdopodobieństwo zdarzenia niemożliwego jest zerem: $P(\emptyset) = 0$

Dowód: Bierzemy $A_1 = A_2 = \ldots = \emptyset$. Wtedy $\bigcup_{i=1}^{\infty} A_i = \emptyset$.

Z własności 3 mamy $P(\emptyset) = \sum_{i=1}^{\infty} P(\emptyset)$, co jest tylko możliwe gdy $P(\emptyset) = 0$.

Fakt (skończona addytywność): Dla dowolnych rozłącznych zdarzeń A_1,\ldots,A_n mamy $P\Big(\bigcup_{i=1}^n A_i\Big)=\sum_{i=1}^n P(A_i)$

Fakt (skończona addytywność): Dla dowolnych rozłącznych zdarzeń A_1, \ldots, A_n mamy $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$

Dowód: Bierzemy nieskończony ciąg zdarzeń A_1, A_2, \ldots , w którym $A_{n+1} = A_{n+2} = \ldots = \emptyset$.

Wszystkie zdarzenia są rozłączne, bo $A_i \cap \emptyset = \emptyset$ dla i = 1, ..., n.

Dodatkowo $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^n A_i$.

Mamy więc:

$$P\Big(\bigcup_{i=1}^n A_i\Big) = P\Big(\bigcup_{i=1}^\infty A_i\Big) \stackrel{\text{(3)}}{=} \sum_{i=1}^\infty P(A_i) \stackrel{\text{(*)}}{=} \sum_{i=1}^n P(A_i),$$

gdzie w (*) skorzystaliśmy z $P(\emptyset) = 0$.

Fakt: P(A') = 1 - P(A)

Fakt:
$$P(A') = 1 - P(A)$$

Dowód: Ponieważ $A \cup A' = \Omega$, oraz A i A' są rozłączne:

$$P(\Omega) = P(A) + P(A') = 1.$$

Czyli
$$P(A) = 1 - P(A')$$
.

Fakt: Jeśli $A \subseteq B$ to $P(B \setminus A) = P(B) - P(A)$. Tym samym zachodzi też $P(B) \geqslant P(A)$.

Fakt: Jeśli $A \subseteq B$ to $P(B \setminus A) = P(B) - P(A)$. Tym samym zachodzi też $P(B) \geqslant P(A)$.

Dowód: Można zapisać B jako rozłączną sumę $B = A \cup (B \setminus A)$.

Tym samym $P(B) = P(A) + P(B \setminus A)$, z czego wynikają oba stwierdzenia.

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dowód: Dzielimy zbiory A, B i $A \cup B$ na rozłączne części:

$$A = (A \setminus B) \cup (A \cap B)$$

$$B = (B \setminus A) \cup (A \cap B)$$

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dowód: Dzielimy zbiory A, B i $A \cup B$ na rozłączne części:

$$A = (A \setminus B) \cup (A \cap B)$$

$$B = (B \setminus A) \cup (A \cap B)$$

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

Z addytywności (aksjomat 3):

$$P(A) = P(A \setminus B) + P(A \cap B)$$

$$P(B) = P(B \setminus A) + P(A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(A \cap B) \cup P(B \setminus A)$$

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dowód: Dzielimy zbiory A, B i $A \cup B$ na rozłączne części:

$$A = (A \setminus B) \cup (A \cap B)$$

$$B = (B \setminus A) \cup (A \cap B)$$

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

Z addytywności (aksjomat 3):

$$P(A) = P(A \setminus B) + P(A \cap B)$$

$$P(B) = P(B \setminus A) + P(A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(A \cap B) \cup P(B \setminus A)$$

Podstawiając pierwsze i drugie równanie do trzeciego kończymy dowód.

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Wniosek: Dla dowolnych A i B mamy:

$$P(A \cup B) \leqslant P(A) + P(B)$$

Fakt: Dla dowolnych A i B zachodzi:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Wniosek: Dla dowolnych A i B mamy:

$$P(A \cup B) \leqslant P(A) + P(B)$$

Zadanie 2

Pokaż, że dla dowolnych A_1, \ldots, A_n mamy:

$$P(A_1 \cup \ldots \cup A_n) \leq P(A_1) + \ldots + P(A_n)$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1\subset A_2\subset A_3\subset \dots$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1 \subset A_2 \subset A_3 \subset \dots$$

Fakt (o ciągłości): Jeśli
$$A_1, A_2, \ldots$$
 jest wstępujący i $A = \bigcup_{n=1}^{\infty} A_n$ to:

$$P(A) = \lim_{n \to \infty} P(A_n)$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1 \subset A_2 \subset A_3 \subset \dots$$

Fakt (o ciągłości): Jeśli
$$A_1, A_2, \ldots$$
 jest wstępujący i $A = \bigcup_{n=1}^{\infty} A_n$ to: $P(A) = \lim_{n \to \infty} P(A_n)$

Dowód: Definiujemy rozłączne zdarzenia:

$$B_1 = A_1$$
, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus A_2$, $B_4 = A_4 \setminus A_3$, ...

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1\subset A_2\subset A_3\subset \dots$$

Fakt (o ciągłości): Jeśli
$$A_1, A_2, \ldots$$
 jest wstępujący i $A = \bigcup_{n=1}^{\infty} A_n$ to: $P(A) = \lim_{n \to \infty} P(A_n)$

Dowód: Definiujemy rozłączne zdarzenia:

$$B_1 = A_1$$
, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus A_2$, $B_4 = A_4 \setminus A_3$, ...

Można zapisać A_n jako rozłączną sumę: $A_n = B_1 \cup B_2 \cup \ldots \cup B_n$

Podobnie, $A = B_1 \cup B_2 \cup \dots$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1 \subset A_2 \subset A_3 \subset \dots$$

Fakt (o ciągłości): Jeśli
$$A_1, A_2, \ldots$$
 jest wstępujący i $A = \bigcup_{n=1}^{\infty} A_n$ to: $P(A) = \lim_{n \to \infty} P(A_n)$

Dowód: Definiujemy rozłączne zdarzenia:

$$B_1 = A_1$$
, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus A_2$, $B_4 = A_4 \setminus A_3$, . . .

Można zapisać A_n jako rozłączną sumę: $A_n = B_1 \cup B_2 \cup \ldots \cup B_n$

Podobnie, $A = B_1 \cup B_2 \cup \dots$

$$P(A) \stackrel{\text{(3)}}{=} \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i)$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy wstępującym, jeśli:

$$A_1 \subset A_2 \subset A_3 \subset \dots$$

Fakt (o ciągłości): Jeśli
$$A_1, A_2, \ldots$$
 jest wstępujący i $A = \bigcup_{n=1}^{\infty} A_n$ to:

$$P(A) = \lim_{n \to \infty} P(A_n)$$

Dowód: Definiujemy rozłączne zdarzenia:

$$B_1 = A_1$$
, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus A_2$, $B_4 = A_4 \setminus A_3$, . . .

Można zapisać A_n jako rozłączną sumę: $A_n = B_1 \cup B_2 \cup \ldots \cup B_n$

Podobnie, $A = B_1 \cup B_2 \cup \dots$

$$P(A) \stackrel{\text{(3)}}{=} \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i)$$

$$\stackrel{\text{(3)}}{=} \lim_{n \to \infty} P(B_1 \cup \ldots \cup B_n) = \lim_{n \to \infty} P(A_n)$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy zstępującym, jeśli:

$$A_1 \supset A_2 \supset A_3 \supset \dots$$

Ciąg zdarzeń A_1, A_2, A_3, \ldots nazywamy zstępującym, jeśli:

$$A_1 \supset A_2 \supset A_3 \supset \dots$$

Zadanie 3

Pokaż, że jeśli A_1, A_2, \ldots jest zstępujący i $A = \bigcap_{n=1}^{\infty} A_n$ to:

$$P(A) = \lim_{n \to \infty} P(A_n)$$

$$P(A) = \frac{|A|}{|\Omega|}$$

$$P(A) = \frac{|A|}{|\Omega|}$$

Własność 1. Oczywista

$$P(A) = \frac{|A|}{|\Omega|}$$

Własność 1. Oczywista

Własność 2.
$$P(\Omega) = \frac{|\Omega|}{|\Omega|} = 1$$

$$P(A) = \frac{|A|}{|\Omega|}$$

- Własność 1. Oczywista
- Własność 2. $P(\Omega) = \frac{|\Omega|}{|\Omega|} = 1$
- Własność 3. Ponieważ Ω jest skończony, rozważamy tylko skończone ciągi. Jeśli A_1, \ldots, A_n rozłączne, to:

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|.$$

Więc:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \frac{\left|\bigcup_{i=1}^{n} A_{i}\right|}{\left|\Omega\right|} = \sum_{i=1}^{n} \frac{\left|A_{i}\right|}{\left|\Omega\right|} = \sum_{i=1}^{n} P(A_{i}).$$

Prawdopodobieństwo na przestrzeni przeliczalnej

Niech $\Omega = \{\omega_1, \omega_2, \ldots\}$ będzie zbiorem przeliczalnym i $\mathcal{F} = 2^{\Omega}$.

Każdemu ω_i przypisujemy liczbę rzeczywistą $p_i \geqslant 0$, taką, że

$$\sum_{i=1}^{\infty} p_i = 1.$$

Prawdopodobieństwo dowolnego zdarzenia $A \subseteq \Omega$ definiujemy jako sumę liczb p_i po wszystkich $\omega_i \in A$:

$$P(A) = \sum_{i:\omega_i \in A} p_i,$$

Tym samym $p_i = P(\{\omega_i\})$ jest prawdopodobieństwem zdarzenia elementarnego ω_i .

Oczywiście, zachodzi to również dla skończonego zbioru Ω .

Prawdopodobieństwo na przestrzeni przeliczalnej

Niech $\Omega = \{\omega_1, \omega_2, \ldots\}$ będzie zbiorem przeliczalnym i $\mathcal{F} = 2^{\Omega}$.

Każdemu ω_i przypisujemy liczbę rzeczywistą $p_i \geqslant 0$, taką, że

$$\sum_{i=1}^{\infty} p_i = 1.$$

Prawdopodobieństwo dowolnego zdarzenia $A \subseteq \Omega$ definiujemy jako sumę liczb p_i po wszystkich $\omega_i \in A$:

$$P(A) = \sum_{i:\omega_i \in A} p_i,$$

Tym samym $p_i = P(\{\omega_i\})$ jest prawdopodobieństwem zdarzenia elementarnego ω_i .

Oczywiście, zachodzi to również dla skończonego zbioru Ω .

Zadanie 4

Pokaż, że to prawdopodobieństwo spełnia aksjomaty Kołmogorowa

Interesuje nas wyłącznie sumaryczny wynik na obu kościach

Interesuje nas wyłącznie sumaryczny wynik na obu kościach

• Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_2, \omega_3, \dots, \omega_{12}\}$:

Interesuje nas wyłącznie sumaryczny wynik na obu kościach

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_2, \omega_3, \dots, \omega_{12}\}$:
- Prawdopodobieństwa zdarzeń elementarnych:

ω_i	p_i	ω_i	p_i	ω_i	p_i
ω_2	1/36	ω_6	5/36	ω_{10}	3/36
ω_3	$\frac{2}{36}$	ω_7	6/36	ω_{11}	$\frac{2}{36}$
ω_{4}	$\frac{3}{36}$	ω_8	5/36	ω_{12}	$\frac{1}{36}$
ω_5	4/36	ω_9	4/36		

Interesuje nas wyłącznie sumaryczny wynik na obu kościach

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_2, \omega_3, \dots, \omega_{12}\}$:
- Prawdopodobieństwa zdarzeń elementarnych:

ω_i	p_i	ω_i	p_i	ω_{i}	p_i
ω_2	1/36		5/36	ω_{10}	3/36
ω_3	$^{2}/_{36}$	ω_7	6/36	ω_{11}	$^{2}/_{36}$
ω_{4}	$\frac{3}{36}$	ω_8	5/36	ω_{12}	$^{1}/_{36}$
ω_5	4/36	ω_9	4/36		

- Prawdopodobieństwo zdarzeń:
 - "Wypadła siódemka":

$$A = \{\omega_7\}, P(A) = \frac{6}{36}$$

"Wypadła co najmniej dziesiątka":

$$A = \{\omega_{10}, \omega_{11}, \omega_{12}\}, P(A) = \frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{1}{6}$$

Przykład: rzucamy monetą aż do wyrzucenia orła

Interesuje nas wyłącznie liczba rzutów

Interesuje nas wyłącznie liczba rzutów

• Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w i-tym rzucie")

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w *i*-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i :

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w i-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i : $p_i = \frac{1}{2^i}$

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w i-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i : $p_i = \frac{1}{2^i}$
- Prawdopodobieństwo zdarzenia A "więcej niż 5 rzutów":

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w i-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i : $p_i = \frac{1}{2^i}$
- Prawdopodobieństwo zdarzenia A "więcej niż 5 rzutów":

$$A = \{\omega_6, \omega_7, \ldots\} = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}'$$

$$P(A) = 1 - \sum_{i=1}^{5} p_i = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} = \frac{1}{32}$$

Interesuje nas wyłącznie liczba rzutów

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w i-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i : $p_i = \frac{1}{2^i}$
- Prawdopodobieństwo zdarzenia A "więcej niż 5 rzutów":

$$A = \{\omega_6, \omega_7, \ldots\} = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}'$$

$$P(A) = 1 - \sum_{i=1}^{5} p_i = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} = \frac{1}{32}$$

• Prawdopodobieństwo zdarzenia B "parzysta liczba rzutów":

Interesuje nas wyłącznie liczba rzutów

- Przestrzeń zdarzeń elementarnych $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ (gdzie ω_i oznacza "orzeł wypadł w *i*-tym rzucie")
- Prawdopodobieństwo zdarzenia elementarnego ω_i : $p_i = \frac{1}{2^i}$
- Prawdopodobieństwo zdarzenia A "więcej niż 5 rzutów":

$$A = \{\omega_6, \omega_7, \ldots\} = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}'$$

$$P(A) = 1 - \sum_{i=1}^{5} p_i = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} = \frac{1}{32}$$

Prawdopodobieństwo zdarzenia B "parzysta liczba rzutów":

$$B = \{\omega_2, \omega_4, \omega_6, \ldots\}$$

$$P(B) = \sum_{i=1}^{\infty} p_{2i} = \sum_{i=1}^{\infty} \frac{1}{4^i} = \frac{1}{4} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{3}$$

Prawdopodobieństwo geometryczne

Przestrzeń zdarzeń elementarnych $\Omega \subset \mathbb{R}^n$ (\mathbb{R}^1 – prosta, \mathbb{R}^2 – płaszczyzna, \mathbb{R}^3 – przestrzeń 3D, itp.)

Rodzina zdarzeń $\mathcal{F} - \sigma$ -algebra zbiorów borelowskich na \mathbb{R}^n .

Prawdopodobieństwo zdarzenia A:

$$P(A) = \frac{|A|}{|\Omega|},$$

gdzie przez |A| oznaczamy długość (n=1), pole powierzchni (n=2), objętość (n=3), itp.

Wybieramy losowo punkt z odcinka [-1,1]. Jaka jest szansa, że punkt znajdzie się w przedziale [0.1,0.5]?

Wybieramy losowo punkt z odcinka [-1,1]. Jaka jest szansa, że punkt znajdzie się w przedziale [0.1,0.5]?

$$-1$$
 0.1 0.5 1

Odpowiedź:

$$\Omega = [-1, 1]$$
, $A = [0.1, 0.5]$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{0.4}{2} = 0.2$$

Wybieramy losowo punkt z odcinka [-1,1]. Jaka jest szansa, że punkt znajdzie się w przedziale [0.1,0.5]?

Odpowiedź:

$$\Omega = [-1, 1], A = [0.1, 0.5]$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{0.4}{2} = 0.2$$

Jakie jest prawdopodobieństwo, że trafimy w punkt zero?

$$A = \begin{bmatrix} & & & & \\ & -1 & & & \\ & & 0 & & 1 \end{bmatrix}$$

$$A = \{0\}, P(A) = \frac{0}{2} = 0$$

Jaś i Małgosia umówili na randkę. Pierwsza z osób, która przyjdzie czeka na drugą tylko 20 minut. Jaka jest szansa, że się spotkają, zakładając, że przybędą na spotkanie w losowym czasie między 10:00 a 11:00?

Jaś i Małgosia umówili na randkę. Pierwsza z osób, która przyjdzie czeka na drugą tylko 20 minut. Jaka jest szansa, że się spotkają, zakładając, że przybędą na spotkanie w losowym czasie między 10:00 a 11:00?

Oznaczmy przez $x, y \in [0,60]$ czas przybycia (w min) na spotkanie Jasia i Małgosi licząc od 10:00.

$$\Omega = [0,60] \times [0,60]$$

Jaś i Małgosia umówili na randkę. Pierwsza z osób, która przyjdzie czeka na drugą tylko 20 minut. Jaka jest szansa, że się spotkają, zakładając, że przybędą na spotkanie w losowym czasie między 10:00 a 11:00?

Oznaczmy przez $x,y\in[0,60]$ czas przybycia (w min) na spotkanie Jasia i Małgosi licząc od 10:00.

$$\Omega = [0, 60] \times [0, 60]$$

$$A = \{(x, y) \in \Omega \colon |x - y| \leqslant 20\}$$
 (kolorowy obszar)

Jaś i Małgosia umówili na randkę. Pierwsza z osób, która przyjdzie czeka na drugą tylko 20 minut. Jaka jest szansa, że się spotkają, zakładając, że przybędą na spotkanie w losowym czasie między 10:00 a 11:00?

Oznaczmy przez $x, y \in [0,60]$ czas przybycia (w min) na spotkanie Jasia i Małgosi licząc od 10:00.

$$\Omega = [0, 60] \times [0, 60]$$

$$A = \{(x, y) \in \Omega \colon |x - y| \leqslant 20\}$$
 (kolorowy obszar)

$$P(A) = 1 - P(A') = 1 - \frac{|A'|}{|\Omega|} = 1 - \frac{40 \times 40}{60 \times 60} = \frac{5}{9}.$$

$$P(A) = \frac{|A|}{|\Omega|}$$

$$P(A) = \frac{|A|}{|\Omega|}$$

Własność 1. Oczywista

$$P(A) = \frac{|A|}{|\Omega|}$$

Własność 1. Oczywista

Własność 2.
$$P(\Omega) = \frac{|\Omega|}{|\Omega|} = 1$$

$$P(A) = \frac{|A|}{|\Omega|}$$

Własność 1. Oczywista

Własność 2. $P(\Omega) = \frac{|\Omega|}{|\Omega|} = 1$

Własność 3. Jeśli A_1, A_2, \ldots – rozłączne, to:

$$|A_1 \cup A_2 \cup \dots| = |A_1| + |A_2| + \dots$$

(długości/pola/objętości rozłącznych podzbiorów sumują się) Więc:

$$P\Big(\bigcup_{i=1}^{\infty}A_i\Big) = \frac{\big|\bigcup_{i=1}^{\infty}A_i\big|}{|\Omega|} = \sum_{i=1}^{\infty}\frac{|A_i|}{|\Omega|} = \sum_{i=1}^{\infty}P(A_i).$$

Igłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

lgłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) : x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$ α – kąt (ostry) igły z krawędzią, $\alpha \in [0, \frac{\pi}{2}]$

lgłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) : x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$ α – kąt (ostry) igły z krawędzią, $\alpha \in [0, \frac{\pi}{2}]$

 $\Omega = [0, a/2] \times [0, \frac{\pi}{2}], |\Omega| = \frac{a\pi}{4}$

lgłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) : x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$ α – kąt (ostry) igły z krawędzią, $\alpha \in [0, \frac{\pi}{2}]$ $\Omega = [0, a/2] \times [0, \frac{\pi}{2}], |\Omega| = \frac{a\pi}{4}$

Igła przetnie krawędź, jeśli $x \leqslant d = \frac{\ell}{2} \sin \alpha$ (zdarzenie A)

lgłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) : x – odległość środka igły od

x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$

 α – kąt (ostry) igły z krawędzią,

 $\alpha \in [0, \frac{\pi}{2}]$

 $\Omega = [0, a/2] \times [0, \frac{\pi}{2}], \ |\Omega| = \frac{a\pi}{4}$

Igła przetnie krawędź, jeśli $x \leqslant d = \frac{\ell}{2} \sin \alpha$ (zdarzenie A)

Igłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) :

x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$

 α – kąt (ostry) igły z krawędzią, $\alpha \in [0, \frac{\pi}{2}]$

 $\Omega = [0, a/2] \times [0, \frac{\pi}{2}], |\Omega| = \frac{a\pi}{4}$

Igła przetnie krawędź, jeśli $x \le d = \frac{\ell}{2} \sin \alpha$ (zdarzenie A)

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{a\pi} \frac{\ell}{2} \underbrace{\int_{0}^{\pi/2} \sin \alpha \, d\alpha}_{=1} = \frac{2\ell}{a\pi}$$

lgłę o długości ℓ rzucono na podłogę z desek o szerokości $a \geqslant \ell$. Jaka jest szansa, że igła przetnie krawędź deski?

Zdarzenie elementarne to para (x, α) :

x – odległość środka igły od najbliższej krawędzi, $x \in [0, a/2]$

 α – kąt (ostry) igły z krawędzią,

 $\alpha \in [0, \frac{\pi}{2}]$

 $\Omega = [0, a/2] \times [0, \frac{\pi}{2}], |\Omega| = \frac{a\pi}{4}$

Igła przetnie krawędź, jeśli $x \leqslant d = \frac{\ell}{2} \sin \alpha$ (zdarzenie A)

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{a\pi} \frac{\ell}{2} \underbrace{\int_0^{\pi/2} \sin \alpha \, d\alpha}_{1} = \frac{2\ell}{a\pi}$$

Jeśli $\ell = \frac{a}{2}$, $P(A) = \frac{1}{\pi}$. Może posłużyć do eksperymentalnego wyznaczenia liczby $\pi!$

Na okręgu o promieniu 1 wybrano losowo cięciwę. Jaka jest szansa, że będzie ona dłuższa niż bok trójkąta równobocznego wpisanego w okrąg?

Na okręgu o promieniu 1 wybrano losowo cięciwę. Jaka jest szansa, że będzie ona dłuższa niż bok trójkąta równobocznego wpisanego w okrąg?

A – zdarzenie "cięciwa jest dłuższa od boku trójkąta"
 Cieciwy z A oznaczona na czerwono, spoza A na niebiesko

Rozważmy cięciwy rozpoczynające się w X.

Zdarzenia elementarne: drugi koniec cięciwy określa kąt na okręgu w $[0, 2\pi]$.

$$\Omega = [0, 2\pi)$$

Cięciwy z A odpowiadają pogrubionemu łukowi:

$$A = (\frac{2}{3}\pi, \frac{4}{3}\pi)$$

$$P(A) = \frac{\frac{2}{3}\pi}{2\pi} = \frac{1}{3}$$

To prawdopodobieństwo nie zależy od wyboru punktu X.

Na okręgu o promieniu 1 wybrano losowo cięciwę. Jaka jest szansa, że będzie ona dłuższa niż bok trójkąta równobocznego wpisanego w okrąg?

A – zdarzenie "cięciwa jest dłuższa od boku trójkąta"

Cięciwy z A oznaczona na czerwono, spoza A na niebiesko

Rozważmy cięciwy przecinające promień OX pod kątem prostym.

Zdarzenia elementarne: położenie cięciwy określa odległość od środka w [0,1].

$$\Omega = [0, 1]$$

Cięciwy z *A* odpowiadają pogrubionemu odcinkowi: $A = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$

$$P(A) = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

To prawdopodobieństwo nie zależy od wyboru promienia OX.

Na okręgu o promieniu 1 wybrano losowo cięciwę. Jaka jest szansa, że będzie ona dłuższa niż bok trójkąta równobocznego wpisanego w okrąg?

A – zdarzenie "cięciwa jest dłuższa od boku trójkąta"
 Cięciwy z A oznaczona na czerwono, spoza A na niebiesko

Każda cięciwa jest jednoznacznie zdefiniowana przez położenie jej środka.

Zdarzenia elementarne: punkty wewnątrz koła.

 $\Omega = K(O, 1)$ (koło o środku O i promieniu 1)

Cięciwy z A to punkty w szarym kole:

$$A=K(O,\tfrac{1}{2})$$

$$P(A) = \frac{\frac{1}{4}\pi}{\pi} = \frac{1}{4}$$

Na okręgu o promieniu 1 wybrano losowo cięciwę. Jaka jest szansa, że będzie ona dłuższa niż bok trójkąta równobocznego wpisanego w okrąg?

Skad ten paradoks?

W każdym przypadku użyliśmy innego modelu probabilistycznego dotyczącego innego doświadczenia losowego:

- 1. $\Omega = [0, 2\pi)$ (kąt)
- 2. $\Omega = [0,1]$ (odległość)
- 3. $\Omega = K(O,1)$ (punkt)

Interpretacja prawdopodobieństwa

Aksjomaty Kołmogorowa określają własności jakie spełnia miara prawdopodobieństwa, ale nic nie mówią skąd tą miarę wziąć?

Jaka jest interpretacja wartości prawdopodobieństwa?

Interpretacja prawdopodobieństwa

Aksjomaty Kołmogorowa określają własności jakie spełnia miara prawdopodobieństwa, ale nic nie mówią skąd tą miarę wziąć?

Jaka jest interpretacja wartości prawdopodobieństwa?

- Klasyczna (Laplace'a): wszystkie zdarzenia równo prawdopodobne 🗡
- Częstościowa: prawdopodobieństwo jako granica częstości
- Subiektywna: prawdopodobieństwa jako miara przekonań

Interpretacja częstościowa

Dotyczy powtarzalnych doświadczeń losowych.

Powtórzmy N razy doświadczenie losowe.

Dla dowolnego zdarzenia A, niech N_A oznacza liczbę doświadczeń w których A zaszło.

Prawdopodobieństwo zdarzenia A jest graniczną wartością częstości:

$$P(A) = \lim_{N \to \infty} \frac{N_A}{N}.$$

