Genome assembly strategies

Arturo Vera Ponce de Leon November 2021

arturo.vera.ponce.de.leon@nmbu.no

Genome assembly

Genome assembly

Reads (fastq)

Summarizing

Briefings in Bioinformatics, 2016, 1–18

Genome *de-novo* assembly or reference mapping

Genome Assembly

Work flow to classic genome assembly strategies

Figure 2. General steps in a genome assembly workflow. Input and output data are indicated for each step.

Software used in this lecture

fastQC NanoPlot

TrimGalore

SPADES Unicycler

BUSCO

Steps of the Assembly (recap):

- 1. Find all **overlaps** between reads
- 2. Build a **graph** (read connections)
- 3. Simplify the graph
- 4. Find a sensible path in the graph to generate a **consensus**

Assembly - expectation

Genome copies

Reads

Reconstructed genome

Picture adapted from: Commins, et al. (2009) Biological Procedures Online

Assembly - Reality

Genome copies

Especially true for short reads, such as those from Ilumina sequencing (150 - 300 bp)

Reads

Contigs

Picture adapted from: Commins, et al. (2009) Biological Procedures Online

Strategies to genome assembly

Algorithms

- Greedy
- Overlap-layoutconsensus (OLC)
- 3. De Bruijn Graph

Steeps to genome assembly using De-Bruijn graph

The basic strategy for de novo assembly for short NGS reads comprises three steps: (i) contig assembly, (ii) scaffolding and (iii) gap filling.

Seven Bridges of Königsberg

The K-mers: divide and conquer

- It breaks reads into successive k-mers and the graph maps the k-mers
- Each k-mer is a node and edges are drawn between each k-mer in a read.
- Repeat sequences create a fork in the graph; alternative sequences create a bubble.
- The k-mer size can only be determined by "trial and error".
- A small value of K will create a complex graph but a large value of K may miss small overlaps. A good starting point would be a k-mer size that is 2/3 the size of the read
- Good for short reads or small genomes. With long reads and/or large genomes, may require lots of RAM (e.g., ~0.5 TB for human)

K-mers

k-mers are subsequences of length k

For sequence ATCG; **k**=1 is A - T - C - G **k**=2 is AT - TC - CG

Assemblers (and other bioinformatic tools) are often based on k-mers

k-mers for GTAGAGCTGT

k	<i>k</i> -mers
1	G, T, A, G, A, G, C, T, G, T
2	GT, TA, AG, GA, AG, GC, CT, TG, GT
3	GTA, TAG, AGA, GAG, AGC, GCT, CTG, TGT
4	GTAG, TAGA, AGAG, GAGC, AGCT, GCTG, CTGT
5	GTAGA, TAGAG, AGAGC, GAGCT, AGCTG, GCTGT
6	GTAGAG, TAGAGC, AGAGCT, GAGCTG, AGCTGT
7	GTAGAGC, TAGAGCT, AGAGCTG, GAGCTGT
8	GTAGAGCT, TAGAGCTG, AGAGCTGT
9	GTAGAGCTG, TAGAGCTGT
10	GTAGAGCTGT

The K-mers: divide and conquer

De Bruijn graphs – **simplified**

Sequence/read 1

Sequence/read 2

AAAGGCGTTGAG

AAAG AAGG AGGC GGCG GCGT CGTT

TGAG

TTGA TGAG

GAGG AGGT GGTT

TTGAGGTT

Let's choose a k-mer of 4 K=4

De Bruijn graphs – simplified

De Bruijn graphs – simplified

Sequence/read (a)

Sequence/read (b)

AAAGGCGTTGAG

TTGAGGTT

TTGAG

TGAG

AAAGG

AAGGC

AGGC

AGGC

GGCGT

CGTT

Overlap

Assemblers usually use **k-mer values** > 31

AAAGGCGTTGAGGTT

TGAG

Contig

Evaluating the assembly

- Genome assembly results:
- contig size and number of contigs produced
- scaffold size and number
- N50 and N90
- Coverage
- GC Content
- Genome annotation
- repeats analysis and annotation
- protein-coding gene annotation (including gene structure prediction and gene function annotation)
- non-coding RNA gene annotation (including annotation of microRNA, tRNA, rRNA, and other ncRNA)
- transposon and tandem repeats annotation
- Comparative genomics and evolution (chromosome structure, conserved gene families)

Assembly evaluation

Evaluating the assembly

Genome assembly results:

- contig size and number of contigs produced
- N50 and N90

Post – assembly quality check:

- Coverage
- GC Content
- Genome annotation (including annotation of microRNA, tRNA, rRNA, and other ncRNA)

Basic stats

N50 the length of the shortest contig such that the sum of contigs of equal length or longer is at least 50% of the total length of all contigs.

N90 = the length of the shortest contig such that the sum of contigs of equal length or longer is at least 90% of the total length of all contigs.

