## Question 1

▶ 2000 elements are inserted one at a time into an initially empty binary search tree using the traditional algorithm. What is the maximum possible height of the resulting tree?

A. 1

B. 11

C. 1000

D. 1999

E. 4000

# Binary Search Trees

- Average case and worst case Big O for
  - insertion
  - deletion
  - access
- Balance is important. Unbalanced trees give worse than log N times for the basic tree operations
- Can balance be guaranteed?

- A BST with more complex algorithms to ensure balance
- Each node is labeled as Red or Black.
- Path: A unique series of links (edges) traverses from the root to each node.
  - The number of edges (links) that must be followed is the path length
- In Red Black trees paths from the root to elements with 0 or 1 child are of particular interest

#### **Colored Nodes Definition**

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes

#### **Colored Edges Definition**

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

# **Example Red-Black Tree**



The height of a red black tree that has n (internal) nodes is between  $log_2(n+1)$  and  $2log_2(n+1)$ .

Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node-degrees are between 2 and 4, height is >= h/2, and all external nodes are at the same level.



- Let h' ≥ h/2 be the height of the collapsed tree.
- Internal nodes of collapsed tree have degree between 2 and 4.
- Number of internal nodes in collapsed tree ≥ 2<sup>h</sup>'-1.
- $^{\flat}$  So, n ≥ 2<sup>h</sup>'-1
- $^{\flat}$  So, h ≤ 2 log<sub>2</sub> (n + 1)

## Example of a Red Black Tree

- The root of a Red Black tree is black
- Every other node in the tree follows these rules:
  - If a node is Red, all of its children are Black
  - The number of Black nodes must be the same in all paths from the root node to null nodes





## Question 2

Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes



Perfect?

Full?

Complete?

## Question 3

Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes

# Implications of the Rules

- If a Red node has any children, it must have two children and they must be Black. (Why?)
- If a Black node has only one child that child must be a Red leaf. (Why?)
- Due to the rules there are limits on how unbalanced a Red Black tree may become.
  - on the previous example may we hang a new node off of the leaf node that contains 0?

# Max Height Red Black Tree



# Maintaining the Red Black Properties in a Tree

- Insertions
- Must maintain rules of Red Black Tree.
- New Node always a leaf
  - can't be black or we will violate a rule
  - therefore the new leaf must be red
  - If parent is black, done (trivial case)
  - if parent red, things get interesting because a red leaf with a red parent violates a rule

#### **Bottom-Up Rebalancing for Red-Black Trees**

\* The idea for insertion in a red-black tree is to insert like in a binary search tree and then reestablish the color properties through a sequence of recoloring and rotations

#### The rules are as follows:

- 1. If other is red, color current and other black and upper red.
- 2. If current = upper->left
  - 2.1 If current->right->color is black, perform a right rotation around upper and color upper->right red.
  - 2.2 If current->right->color is red, perform a left rotation around current followed by a right rotation around upper, and color upper->right and upper->left black and upper red.
- 3. If current = upper->right
  - 3.1 If current->left->color is black, perform a left rotation around upper and color upper->left red.
  - 3.2 If current->left->color is red, perform a right rotation around current followed by a left rotation around upper, and color upper->right and upper->left black and upper red.

#### \* We have 3 cases for insertion

Case 1: Recolor (uncle is red)



Case 2:
Double Rotate: X around P then X around G.
Recolor G and X



Case 3:
Single Rotate P around G
Recolor P and G



#### **Analysis of Insertion**

- A red-black tree has O(log n) height
- Search for insertion location takes O(log n) time because we visit O(log n) nodes
- Addition to the node takes O(1) time
- Rotation or recoloring takes O(log n) time because we perform
- \* O(log n) recoloring, each taking O(1) time, and
- \* at most one rotation taking O(1) time
- Thus, an insertion in a red-black tree takes *O*(log *n*) time

- Deleting a node from a red-black tree is a bit more complicated than inserting a node.
- If the node is red?
   Not a problem no RB properties violated
- If the node is black?
   deleting it will change the black-height along some path

\* We have some cases for deletion



#### Case A:

V's sibling, S, is Red
 Rotate S around P and recolor S & P





#### Case B:

- V's sibling, S, is black and has two black children.

Recolor S to be Red









#### Case D:

- S is Black, S's right child is Black and S's left child is Red
  - i) Rotate S's left child around S
  - ii) Swap color of S and S's left child



#### **Analysis of deletion**

- A red-black tree has O(log n) height
- Search for deletion location takes O(log n) time
- The swaping and deletion is O(1).
- Each rotation or recoloring is O(1).
- Thus, the deletion in a red-black tree takes O(log n) time

#### Insertions with Red Parent - Child

Must modify tree when insertion would result in Red Parent - Child pair using color changes and rotations.



## Case 1

- Suppose sibling of parent is Black.
  - by convention null nodes are black
- In the previous tree, true if we are inserting a 3 or an 8.
  - What about inserting a 99? Same case?
- Let X be the new leaf Node, P be its Red Parent, S the Black sibling and G, P's and S's parent and X's grandparent
  - What color is G?

## Case 1 - The Picture



Relative to G, X could be an *inside* or *outside* node. Outside -> left left or right right moves Inside -> left right or right left moves

## Fixing the Problem



If X is an outside node a single rotation between P and G fixes the problem. A rotation is an exchange of roles between a parent and child node. So P becomes G's parent. Also must recolor P and G.

# Single Rotation



Apparent rule violation?

### Case 2

- What if X is an inside node relative to G?
  - a single rotation will not work
- Must perform a double rotation



### After Double Rotation



# Case 3 Sibling is Red, not Black



Any problems?

## Fixing Tree when S is Red

Must perform single rotation between parent, P and grandparent, G, and then make appropriate color changes



#### More on Insert

- Problem: What if on the previous example G's parent had been red?
- Easier to never let Case 3 ever occur!
- On the way down the tree, if we see a node X that has 2 Red children, we make X Red and its two children black.
  - if recolor the root, recolor it to black
  - the number of black nodes on paths below X remains unchanged
  - If X's parent was Red then we have introduced 2 consecutive Red nodes.(violation of rule)
  - to fix, apply rotations to the tree, same as inserting node

## Example of Inserting Sorted Numbers

12345678910



Insert 1. A leaf so red. Realize it is root so recolor to black.



make 2 red. Parent is black so done.





On way down see 2 with 2 red children. 2 Recolor 2 red and children black. Realize 2 is root so color back to black When adding 4 parent is black so done.

5's parent is red.
Parent's sibling is black (null). 5 is outside relative to grandparent (3) so rotate parent and grandparent then recolor

## Finish insert of 5



On way down see
4 with 2 red
children. Make
4 red and children
black. 4's parent is
black so no problem.

5

# Finishing insert of 6

6's parent is black so done.



7's parent is red.
Parent's sibling is black (null). 7 is 1 outside relative to grandparent (5) so rotate parent and grandparent then recolor



## Finish insert of 7



On way down see 6 with 2 red children.

Make 6 red and children black. This 1 creates a problem because 6's parent, 4, is also red. Must perform rotation.



## Still Inserting 8



# Finish inserting 8





## Finish Inserting 9







# Finish inserting 11

## Other examples









# Another Example

















