01204211 Discrete Mathematics Lecture 9c: Linear Independence and Bases

Jittat Fakcharoenphol

November 3, 2024

Review: Linear combinations

Definition

For any scalars

$$\alpha_1, \alpha_2, \ldots, \alpha_m$$

and vectors

$$\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_m,$$

we say that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \cdots + \alpha_m \boldsymbol{u}_m$$

is a linear combination of u_1, \ldots, u_m .

Review: Span

Definition

A set of all linear combination of vectors u_1, u_2, \dots, u_m is called the **span** of that set of vectors.

It is denoted by $\mathrm{Span}\{u_1,u_2,\ldots,u_m\}$.

Previous Lemmas

Lemma 1

Consider vectors u_1, u_2, \dots, u_n . If v_1, v_2, \dots, v_k are generators for V, and for each i,

$$v_i \in \operatorname{Span} \{u_1, u_2, \dots, u_n\},\$$

we have that $V \subseteq \text{Span } \{u_1, u_2, \dots, u_n\}$.

Lemma 2

Consider vectors u_1, u_2, \ldots, u_n . If $v \in \mathrm{Span}\ \{u_1, u_2, \ldots, u_n\}$, then

$$\operatorname{Span} \left\{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n, \boldsymbol{v} \right\} = \operatorname{Span} \left\{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n \right\}$$

ther exist $\alpha_1, \alpha_2, ..., \alpha_n$, β such that

Also since VE Span (u1, ..., un), therexist Y1, V2, ..., Yn S.t. $V = Y_1 u_1 + Y_2 u_2 + \cdots + Y_n u_n ... - Q$

$$= (\alpha_1 + \beta r_1) \frac{u_1}{u_1} + (\alpha_2 + \beta r_2) \frac{u_2 + \cdots + (\alpha_n + \beta r_n) \frac{u_n}{u_n}}{=} w \in \mathbb{R}$$

Lemma 2

Consider vectors u_1, u_2, \ldots, u_n . If $v \in \mathrm{Span}\ \{u_1, u_2, \ldots, u_n\}$, then

$$\mathrm{Span} \ \{\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n,\boldsymbol{v}\} = \mathrm{Span} \ \{\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n\}$$

Lemma 3

Consider vectors u_1,u_2,\ldots,u_n . If $u_n\in \mathrm{Span}\ \{u_1,u_2,\ldots,u_{n-1}\}$, then

Span
$$\{u_1, u_2, ..., u_{n-1}\}$$
 = Span $\{u_1, u_2, ..., u_n\}$

Proof of Lemma 2.

Since v can be written as a linear combination of other vectors, there exist $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$\boldsymbol{v} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n.$$

Consider any vector $\boldsymbol{w} \in \operatorname{Span} \left\{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n, \boldsymbol{v} \right\}$; thus, we can write

$$\boldsymbol{w} = \beta_0 \boldsymbol{v} + \beta_1 \boldsymbol{u}_1 + \beta_2 \boldsymbol{u}_2 + \dots + \beta_n \boldsymbol{u}_n.$$

Plugging in v, we get that

$$\mathbf{w} = \beta_0 (\alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n) + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_k \mathbf{u}_k$$

= $(\beta_0 \alpha_1 + \beta_1) \mathbf{u}_1 + (\beta_0 \alpha_2 + \beta_2) \mathbf{u}_2 + \dots + (\beta_0 \alpha_n + \beta_n) \mathbf{u}_n$,

implying that $w \in \text{Span } \{u_1, u_2, \dots, u_n\}.$

Linearly independence

Definition Vectors u_1, u_2, \ldots, u_n are linearly independent if no vector u_i can be written as a linear combination of other vectors. Can you write

Linearly independence
$$U_1, U_2, \dots, U_{n-1}, U_n$$

$$O = U_n = U_n = 0$$

$$Q_1, U_2, \dots, U_{n-1}, U_n$$

$$Q_1, U_2, \dots, U_{n-1}, U_n$$

Definition

Vectors u_1, u_2, \dots, u_n are linearly independent if no vector u_i can be written as a linear combination of other vectors.

(Another) Definition

 \rightarrow Vectors u_1, u_2, \dots, u_n are linearly independent if the only solution of equation

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n = \boldsymbol{0}$$

is

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$$

Examples in \mathbb{R}^2

Span $\{u,r\} = \mathbb{R}^2$ $\# w \in \mathbb{R}^2$, s.t. $w \notin Span \{u,v\}$

Examples in \mathbb{R}^3

Examples in GF(2)

Examples in linear systems

Lemma 4

If $A = \{u_1, u_2, \dots, u_n\}$ be a set of <u>linearly independent vectors</u>, then any $B \subseteq A$ is also a set of linearly independent vectors.

Proof.

We prove by contradiction. Assume that B is **not** linearly independent. Without loss of generality, assume that $B = \{u_1, u_2, \dots, u_k\}$ where $k \le n$.

Lemma 4

If $A = \{u_1, u_2, \dots, u_n\}$ be a set of linearly independent vectors, then any $B \subseteq A$ is also a set of linearly independent vectors.

Proof.

We prove by contradiction. Assume that B is **not** linearly independent. Without loss of generality, assume that $B = \{u_1, u_2, \dots, u_k\}$ where $k \leq n$. This means that there exists $\alpha_1, \alpha_2, \dots, \alpha_k$ such that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k = \boldsymbol{0},$$

and some α_i 's is nonzero.

Lemma 4

If $A = \{u_1, u_2, \dots, u_n\}$ be a set of linearly independent vectors, then any $B \subseteq A$ is also a set of linearly independent vectors.

Proof.

We prove by contradiction. Assume that B is **not** linearly independent. Without loss of generality, assume that $B = \{u_1, u_2, \dots, u_k\}$ where $k \leq n$. This means that there exists $\alpha_1, \alpha_2, \dots, \alpha_k$ such that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k = \boldsymbol{0},$$

and some α_i 's is nonzero. If we let $\alpha_{k+1}=\alpha_{k+2}=\cdots=\alpha_n=0$, we have that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n = \boldsymbol{0},$$

with some α_i 's being nonzero as well.

Lemma 4

If $A = \{u_1, u_2, \dots, u_n\}$ be a set of linearly independent vectors, then any $B \subseteq A$ is also a set of linearly independent vectors.

Proof.

We prove by contradiction. Assume that B is **not** linearly independent. Without loss of generality, assume that $B = \{u_1, u_2, \dots, u_k\}$ where $k \leq n$. This means that there exists $\alpha_1, \alpha_2, \dots, \alpha_k$ such that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k = \boldsymbol{0},$$

and some α_i 's is nonzero. If we let $\alpha_{k+1}=\alpha_{k+2}=\cdots=\alpha_n=0$, we have that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n = \boldsymbol{0},$$

with some α_i 's being nonzero as well. This implies that vectors in A are not linearly indepedent; leading to a contradiction.

Bases

Definition

A set of vectors $\{oldsymbol{u}_1,oldsymbol{u}_2,\dots,oldsymbol{u}_k\}$ is a basis for vector space ${\mathcal V}$ if

- $ightharpoonup \operatorname{Span} \left\{ oldsymbol{u}_1, oldsymbol{u}_2, \ldots, oldsymbol{u}_k
 ight\} = \oldsymbol{\mathcal{V}}$ and
- $lackbox{\textbf{\lorenthinger}} oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_k$ are linearly independent.

Examples 1: \mathbb{R}^2 and \mathbb{R}^3

Examples 2

Lemma 5 (Unique representation)

Let u_1, u_2, \ldots, u_k be a basis for vector space \mathcal{V} . For any $v \in \mathcal{V}$, there is a unique way to write v as a linear combination of u_1, \ldots, u_k .

We prove by contradiction.

We prove by contradiction. Assume that there exists a vector $v \in \mathcal{V}$ with more than one ways to be written as linear combinations of the basis. Thus, there exist

$$\alpha_1, \alpha_2, \ldots, \alpha_k,$$

and

$$\beta_1, \beta_2, \ldots, \beta_k,$$

that are not equal (i.e., there exists i where $\alpha_i \neq \beta_i$) such that $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$ and $\mathbf{v} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \cdots + \beta_k \mathbf{u}_k$.

We prove by contradiction. Assume that there exists a vector $v \in \mathcal{V}$ with more than one ways to be written as linear combinations of the basis. Thus, there exist

$$\alpha_1, \alpha_2, \ldots, \alpha_k,$$

and

$$\beta_1, \beta_2, \ldots, \beta_k,$$

that are not equal (i.e., there exists i where $\alpha_i \neq \beta_i$) such that $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$ and $\mathbf{v} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \cdots + \beta_k \mathbf{u}_k$. This implies that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k = \boldsymbol{v} = \beta_1 \boldsymbol{u}_1 + \beta \boldsymbol{u}_2 + \dots + \beta_k \boldsymbol{u}_k,$$

and

$$(\alpha_1 - \beta_1)\boldsymbol{u}_1 + (\alpha_2 - \beta_2)\boldsymbol{u}_2 + \dots + (\alpha_k - \beta_k)\boldsymbol{u}_k = 0.$$

We prove by contradiction. Assume that there exists a vector $v \in \mathcal{V}$ with more than one ways to be written as linear combinations of the basis. Thus, there exist

$$\alpha_1, \alpha_2, \ldots, \alpha_k,$$

and

$$\beta_1, \beta_2, \ldots, \beta_k,$$

that are not equal (i.e., there exists i where $\alpha_i \neq \beta_i$) such that $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$ and $\mathbf{v} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \cdots + \beta_k \mathbf{u}_k$. This implies that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k = \boldsymbol{v} = \beta_1 \boldsymbol{u}_1 + \beta \boldsymbol{u}_2 + \dots + \beta_k \boldsymbol{u}_k,$$

and

$$(\alpha_1 - \beta_1)\boldsymbol{u}_1 + (\alpha_2 - \beta_2)\boldsymbol{u}_2 + \dots + (\alpha_k - \beta_k)\boldsymbol{u}_k = 0.$$

Since $\alpha_i \neq \beta_i$, we have that at least one of the coefficients is non-zero, implying that u_1, \ldots, u_k are not linearly independent. This contradicts the assumption that u_1, \ldots, u_k form a basis.