الدورة الإستثنائية للعام 2008	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الكيمياء المدة ساعتان	

Cette épreuve est constituée de trois exercices. Elle comporte trois pages numérotées de 1 à 3. L'usage d'une calculatrice non programmable est autorisé.

Traiter les trois exercices suivants:

Premier exercice (6 points) Identification de quelques composés organiques

L'oxydation ménagée d'un alcool (A) donne un monoacide carboxylique (B) à chaîne carbonée, saturée et ouverte.

L'objectif de cet exercice est d'identifier (A) et (B) et d'étudier leur réaction d'estérification.

Donnée :

- $-M(H) = 1 \text{ g.mol}^{-1}$; $M(C) = 12 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$
- Le rendement d'estérification est de 67 % pour un mélange équimolaire d'acide carboxylique et d'alcool primaire.

1- Identification de (A) et (B)

Le pourcentage massique de l'oxygène dans l'acide (B) est 36,36 %

- 1.1-Montrer que la formule moléculaire de (B) est C₄H₈O₂. En déduire celle de (A).
- 1.2-Identifier (A) et (B), sachant que la chaîne carbonée de (A) est ramifiée.

2- Estérification de l'alcool (A)

On chauffe un mélange de 1 mol de (A) et de 2 mol de (B) en présence de quelques gouttes d'acide sulfurique concentré. Après un certain temps, un équilibre homogène s'établit de constante $K_C = 4$

- 2.1- Écrire l'équation de cette réaction. Donner le nom systématique du composé organique (C) formé.
- 2.2- Déterminer la quantité de matière de (C) formée à l'équilibre. En déduire le rendement de cette estérification.
- 2.3- Ce rendement dépasse 67 %. Expliquer, si chacune des trois propositions suivantes justifie ce fait :
- 2.3.1- chauffage du milieu réactionnel.
- 2.3.2- présence de quelques gouttes d'acide sulfurique dans le milieu réactionnel.
- 2.3.3- utilisation d'un mélange initial non équimolaire des réactifs.
- 2.4- Pour rendre totale la réaction de formation de (C), on remplace l'acide (B) par l'un des deux composés (B) et (B''). Les équations des réactions sont les suivantes :

$$A + B' \rightarrow B + C \tag{1}$$

$$A + B'' \rightarrow C + HCl$$
 (2)

Identifier(B) et (B'').

Deuxième exercice (7 points) Réaction de décomposition de N₂O₅

Le pentoxyde d'azote se décompose totalement, en phase gazeuse, sous l'action de la chaleur selon l'équation suivante : $2 N_2 O_{5 (g)} \rightarrow 4 NO_{2 (g)} + O_{2 (g)}$.

Donnée:

- Tous les gaz sont considérés parfaits.
- La constante du gaz parfait est R = 0.082 atm.L.mol⁻¹.K⁻¹.

1- Décomposition de N₂O₅ dans un récipient à volume constant

On introduit $n_0 = 1$ mol de N_2O_5 dans un récipient de volume constant V = 10 L, maintenu à une température T = 413 K.

- 1.1- Calculer, p₀, la pression initiale dans le récipient.
- 1.2- Montrer que la pression totale p qui règne dans le récipient augmente lorsque la réaction de décomposition de N₂O₅ avance.
- 1.3- Calculer la valeur maximale de p.
- 1.4- Montrer que la concentration de N₂O₅, à tout instant t, est donnée par la relation suivante :

$$[N_2O_5]_t = \frac{5p_0 - 2p}{3RT}$$
.

2- Cinétique de la réaction de décomposition de N₂O₅

Cette réaction est lente, pour étudier sa cinétique, on enferme, à température constante, dans un récipient préalablement vidé d'air et muni d'un indicateur de pression, une certaine quantité de N_2O_5 .

La mesure de la pression dans le récipient permet de calculer la concentration $[N_2O_5]_t$ à l'instant t.

Les résultats sont donnés dans le tableau suivant :

t(s)	0	200	400	600	800	1000	1200	1400	1600	1800	2000
$[N_2O_5]_t (mol.L^{-1})$	1	0,88	0,78	0,69	0,61	0,54	0,48	0,43	0,38	0,34	0,30

- 2.1- Tracer, sur un papier millimétré, la courbe $[N_2O_5]_t = f(t)$. Prendre les échelles suivantes : 1 cm pour 200 s en abscisses et 1 cm pour 0,1 mol.L⁻¹ en ordonnées.
- 2.2- Déterminer graphiquement le temps de demi-réaction.
- 2.3- Déterminer la vitesse de disparition de N₂O₅ lorsque sa concentration devient 0,80 mol.L⁻¹. En déduire la vitesse de la réaction à cet instant.

Troisième exercice (7 points) Réactions acido-basiques

Donnée:

Couple acide/base	CH ₃ NH ₃ ⁺ /CH ₃ NH ₂	NH ₄ ⁺ /NH ₃	HF/F	HCOOH/ HCOO -
pK _a	10,7	9,2	3,2	3,8

- le produit ionique de l'eau : $K_e = 1.0 \times 10^{-14}$
- le méthanoate de sodium HCOONa et le chlorure d'ammonium NH₄Cl sont deux composés ioniques très solubles dans l'eau.

Quatre béchers contiennent chacun une solution aqueuse des composés chimiques cités dans le tableau ci-après. Les solutions ont toutes la même concentration molaire C_0 .

Numéro du bécher	Composé chimique	pН
1	1 Méthanoate de sodium	
2	Chlorure d'ammonium	pH ₂
3	Méthylamine CH ₃ NH ₂	
4	Fluorure d'hydrogène HF	pH ₄

1- pH de solutions aqueuses

- 1.1- Classer, en justifiant, les pH de ces quatre solutions par ordre croissant.
- 1.2- Le pH de la solution du bécher N° 4 a une valeur de 2,65.
- 1.2.1- Écrire l'équation de la réaction entre HF et l'eau.
- 1.2.2- Montrer que la concentration molaire C_0 est égale à $1,0 \times 10^{-2}$ mol. L^{-1} .
- 1.3- On ajoute à un volume $V_0 = 10$ mL de la solution du bécher N° 3 de l'eau distillée jusqu'à avoir une solution S de volume V = 100 mL. On mesure le pH de la solution du bécher N° 3 et celui de la solution S; on trouve les résultats suivants :

Solution	bécher N° 3	S
C (mol.L ⁻¹)	1,0×10 ⁻²	1,0×10 ⁻³
рН	11,3	10,7
α	0,2	-

Où α est le coefficient de conversion de la méthylamine dans l'eau.

- 1.3.1- Écrire l'équation de la réaction entre la méthylamine et l'eau.
- 1.3.2- Nommer la verrerie la plus précise utilisée pour mesurer chacun des deux volumes V_0 et V utilisés dans la préparation de la solution S.
- 1.3.3- Déterminer la valeur de α dans la solution S (qui manque dans le tableau). Conclure.

2- Préparation d'une solution tampon

Pour préparer une solution tampon de pH = 9,0, on ajoute un volume V_1 d'une solution d'hydroxyde de sodium de concentration $C = 1,0 \times 10^{-2} \text{ mol.L}^{-1}$ à un volume $V_2 = 40 \text{ mL}$ de la solution du bécher N^o 2 (solution de chlorure d'ammonium).

- 2.1- Écrire l'équation de la réaction qui a eu lieu dans ce mélange.
- 2.2- Montrer que cette réaction est totale.
- 2.3- Déterminer V₁.