# **Dynamic Programming**

Reinforcement Learning

2019

Sepehr Maleki

University of Lincoln School of Engineering

### Policy Evaluation

• For an arbitrary policy  $\pi$ , the state-value function is:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] .$$

- In the DP literature, this is called policy evaluation.
- The existence and uniqueness of  $v_{\pi}$  are guaranteed as long as either  $\gamma < 1$  or eventual terminations is guaranteed from all states under policy  $\pi$ .
- If the environment's dynamics are completely known, then  $v_{\pi}(s)$  describes  $|\mathcal{S}|$  linear equations in  $|\mathcal{S}|$  unknowns.

# An Iterative Approach to Policy Evaluation

- Consider a sequence of approximate value functions  $v_0, v_1, v_2, ...$ , each mapping  $S^+$  to  $\mathbb{R}$  ( $S^+$  is S plus a terminal state for an episodic problem).
- The initial approximation  $v_0$ , is chosen arbitrarily (except that the terminal state, if any, which is 0).
- The successive approximation is obtained by using the Bellman equation for  $v_{\pi}$ :

$$v_{k+1}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1})|S_t = s]$$
  
=  $\sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_k(s')]$ .

- The sequence  $\{v_k\}$  will converge to  $v_{\pi}$  as  $k \to \infty$ .
- This algorithm is called the *iterative policy evaluation*.

### Iterative Policy Evaluation Algorithm

```
Input \pi, the policy to be evaluated;
Initialise an array V(s) = 0, for all s \in \mathcal{S}^+;
Repeat
      \Lambda \leftarrow 0
      For each s \in S^+:
            v \leftarrow V(s)
            V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
            \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

### Example: Gridworld

#### Consider the $4 \times 4$ gridworld shown below:



| _  |
|----|
| 3  |
| 7  |
| 11 |
|    |
|    |

$$R = -1$$
 on all transitions

- Non-terminal states:  $S = \{1, 2, ..., 14\}.$
- Four actions possible in each state:
  - $A = \{ \text{up, down, right, left} \}.$
- Actions taking the agent off the grid leave the state unchanged.
- The episodic task is undiscounted.
- All actions are equally likely.

# Example: Gridworld

|     | v   | 'o  |     |
|-----|-----|-----|-----|
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |

|      |      | 1    |      |
|------|------|------|------|
| 0.0  | -1.0 | -1.0 | -1.0 |
| -1.0 | -1.0 | -1.0 | -1.0 |
| -1.0 | -1.0 | -1.0 | -1.0 |
| -1.0 | -1.0 | -1.0 | 0.0  |

|      | v    | 2    |      |
|------|------|------|------|
| 0.0  | -1.8 | -2.0 | -2.0 |
| -1.8 | -2.0 | -2.0 | -2.0 |
| -2.0 | -2.0 | -2.0 | -1.8 |
| -2.0 | -2.0 | -1.8 | 0.0  |

| 0.0  | -2.4 | -2.9 | -3.0 |
|------|------|------|------|
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
| -3.0 | -2.9 | -2.4 | 0.0  |

|      | V    | 4    |      |
|------|------|------|------|
| 0.0  | -3.1 | -3.8 | -4.0 |
| -3.1 | -3.7 | -3.9 | -3.8 |
| -3.8 | -3.9 | -3.7 | -3.1 |
| -4.0 | -3.8 | -3.1 | 0.0  |

|      | v:   | 10   |      |
|------|------|------|------|
| 0.0  | -6.1 | -8.4 | -9.0 |
| -6.1 | -7.7 | -8.4 | -8.4 |
| -8.4 | -8.4 | -7.7 | -6.1 |
| -9.0 | -8.4 | -6.1 | 0.0  |

|       | •     | п     |       |
|-------|-------|-------|-------|
| 0.0   | -14.0 | -20.0 | -22.0 |
| -14.0 | -18.0 | -20.0 | -20.0 |
| -20.0 | -20.0 | -18.0 | -14.0 |
| -22.0 | -20.0 | -14.0 | 0.0   |

### Policy Improvement

**Problem statement**: For some state s, we want to determine whether or not we should change the policy.

- We know how good it is to follow the current policy from s (that is  $v_{\pi}(s)$ ).
- The action-value function is given by:

$$q_{\pi}(s, a) = [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

• Let  $\pi$  and  $\pi'$  be any pair of deterministic policies. The the policy  $\pi'$  is as good as or better than  $\pi$  if for all states  $s \in \mathcal{S}$ :

$$v_{\pi'}(s) \geq v_{\pi}(s)$$
.

• In other words,  $\pi'$  is a better policy than  $\pi$  if for all states:

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$$

# **Proof For The Policy Improvement**

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}'_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})|S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2})|S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(S_{t+2})|S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3})|S_{t} = s]$$

$$\vdots$$

$$\leq \mathbb{E}'_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \dots |S_{t} = s]$$

$$= v'_{\pi}(s) .$$

### **Greedy Policy**

The greedy policy takes the action that looks best in the short term (after one step of lookahead) according to  $v_{\pi}$ .

$$\pi'(s) = \underset{a}{\operatorname{argmax}} q_{\pi}(s, a)$$

$$= \underset{a}{\operatorname{argmax}} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \underset{a}{\operatorname{argmax}} \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

The process of making a new policy that improves on an original policy, by making it greedy with respect to the value function of the original policy, is called *policy improvement*.

### Generalised Policy Iteration





• Policy Evaluation: Estimate  $v_{\pi}$ 

• **Policy Improvement**: Generate  $\pi' \geq \pi$ 

### **Policy Iteration**

• We can iteratively compute value functions and improve the policy to a better one:

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$
.

- Each policy is guaranteed to be a strict improvement over the previous one (unless already optimal).
- Because a finite MDP has only a finite number of policies, this
  process must converge to an optimal policy in a finite number of
  iterations.

(S. Maleki 2019)

### Policy Iteration Algorithm

1. Initialisation  $V(s) \in \mathbb{R}$  and  $\pi(s) \in \mathcal{A}(s)$  arbitrarily for all  $s \in \mathcal{S}$ .

Policy Evaluation Repeat

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{For each } s \in \mathcal{S}^+ \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')] \\ \Delta \leftarrow \max(\Delta,|v - V(s)|) \end{array}$$

until  $\Delta < \theta$  (a small positive number)

3. Policy Improvement  $\begin{array}{l} policy\text{-}stable \longleftarrow true \\ \text{For each } 2 \in \mathcal{S}\colon \\ a \longleftarrow \pi(s) \\ \pi(s) \longleftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] \\ \text{If } a \neq \pi(s) \text{m then } policy\text{-}stable \longleftarrow false \\ \text{If } policy\text{-}stable, \text{ then stop and return } V \text{ and } \pi; \text{ else, go to } 2. \end{array}$ 

# Example: Gridworld



|   | k =          | = 3    |    |
|---|--------------|--------|----|
|   | <del>-</del> | -      | ⋾  |
| 1 | ئہ           | ⋾      | ţ  |
| t | Ĺ,           | ₽      | 1  |
| L | -            | ,<br>- | Ĭ. |









### Asynchronous Dynamic Programming

- A major drawback to the DP methods discussed so far, is that they involve operations over the entire state set of the MDP.
- If the state set is very large, then even a single sweep can be prohibitively expensive.
- For example, it would take over a thousand years to complete a single sweep in the game of backgammon which has over 10<sup>20</sup> states.
- Asynchronous DP algorithms back up states individually, in any order using whatever values of other states happen to be available.
- To converge correctly, an asynchronous algorithm must continue to backup the values of all the states after some point.

### Example: Jack's Car Rental

- States: Two locations, maximum of 20 cars at each.
- Actions: Move up to 5 cats between locations overnight (at \$2 per car).
- Reward: \$10 for each car rented (must be available).
- Transitions: Cars returned and requested randomly:
  - Poisson distribution, n returns/requests with probability  $\frac{\lambda^n}{n!}e^{-\lambda}$ .
  - 1st location: average requests = 3, average returns = 3.
  - 2nd location: average requests = 4, average returns = 2.
- $\gamma = 0.9$ .

### In-Place Dynamic Programming

• Synchronous value iteration stores two copies of value function for all  $s \in \mathcal{S}$ :

$$v_{new}(s) \longleftarrow \max_{a \in \mathcal{A}} \left( \sum_{s',r} p(s',r|s,a)[r + \gamma v_{old}(s')] \right)$$
  
 $v_{old} \longleftarrow v_{new}$ 

• In-place value iteration only stores one copy of the value function for all  $s \in \mathcal{S}$ :

$$v(s) \longleftarrow \max_{a \in \mathcal{A}} \left( \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')] \right)$$

### In-Place Dynamic Programming



### **Prioritised Sweeping**

• Back up the state with the largest remaining Bellman error:

$$\left| \max_{a \in \mathcal{A}} \left( \sum_{s',r} p(s',r|s,a) [r + \gamma v(s')] \right) - v(s) \right|.$$

- · Update Bellman error of affected states after each backup.
- · Requires knowledge of reverse dynamics.
- Can be implemented efficiently by maintaining a priority queue.

# Efficiency of Dynamic Programming

- DP may not be practical for very large problems, but are actually quite efficient comparatively.
- The time DP methods take to find an optimal policy is polynomial in the number of states and actions.
- If n and m denote the number of states and actions, a DP method is guaranteed to find an optimal policy in polynomial time even though the total number of (deterministic) policies is  $m^n$ .