Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning

Konstanty Subbotko

Koło Naukowe Uczenia Maszynowego UW 3 listopada 2021

Paper

Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning

Zeyuan Allen-Zhu zeyuan@csail.mit.edu Microsoft Research Redmond Yuanzhi Li yuanzhil@andrew.cmu.edu Carnegie Mellon University

Setup

- Experiments on CIFAR-10/CIFAR-100
- ResNet

Mystery 1: Ensemble

 F_1 , F_2 , ..., F_{10} - identical networks with **different initializations** trained **independently**

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
(F ₁ + F ₂ + + F ₁₀) / 10 (trained as average)	81.83%
(F ₁ + F ₂ + + F ₁₀) / 10 (ensemble)	84.87%

Mystery 1: Ensemble

 F_1 , F_2 , ..., F_{10} - identical networks with **different initializations** trained **independently**

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
(F ₁ + F ₂ + + F ₁₀) / 10 (trained as average)	81.83%
(F ₁ + F ₂ + + F ₁₀) / 10 (ensemble)	84.87%

Same models, same dataset but they give better accuracy combined

Using 10 models during inference is quite expensive!

Solution: train a single network S to emulate ensemble $T = (F_1 + F_2 + ... + F_{10}) / 10$

Using 10 models during inference is quite expensive!

Solution: train a single network S to emulate ensemble $T = (F_1 + F_2 + ... + F_{10}) / 10$

$$L(x, y) = t * L_{class}(S(x), y) + (1 - t) * H(S(x), T(x))$$

where H - cross-entropy loss function

Using 10 models during inference is quite expensive!

Solution: train a single network S to emulate ensemble $T = (F_1 + F_2 + ... + F_{10}) / 10$

$$L(x, y) = t * L_{class}(S(x), y) + (1 - t) * H(S(x), T(x))$$

where H - cross-entropy loss function

This way S learns distribution of classes from T (known as knowledge distillation)

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
$(F_1 + F_2 + + F_{10}) / 10$ (ensemble)	84.87%
S (distilled from ensemble)	83.81%

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
(F ₁ + F ₂ + + F ₁₀) / 10 (ensemble)	84.87%
S (distilled from ensemble)	83.81%

S has the same architecture as F_1 , F_2 , ..., F_{10} but gives better test accuracy

Mystery 3: Self-distillation

We can also distill from model of the same architecture

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
(F ₁ + F ₂ + + F ₁₀) / 10 (ensemble)	84.87%
S (distilled from ensemble)	83.81%
S_1 (distilled from e.g. F_1)	83.56%

Mystery 3: Self-distillation

We can also distill from model of the same architecture

Model	Test accuracy
F ₁ , F ₂ ,, F ₁₀	81.51 +/- 0.16%
(F ₁ + F ₂ + + F ₁₀) / 10 (ensemble)	84.87%
S (distilled from ensemble)	83.81%
S_1 (distilled from e.g. F_1)	83.56%

Multi-view data

Claim: ensemble works when data has a multi-view structure (data that can be classified using multiple different views)

Example from CIFAR-10

ResNet-34 learns three features (views) of a car: (1) front wheel (2) front window (3) side window

ResNet-34 learns three features (views) of a horse: (1) tail (2) legs (3) head

Heatmaps of F_1 , ..., F_{10} and their ensemble

Example

Binary classification: dog vs cat

Four "features": v1, v2, v3, v4 (tail, ear etc.)

Dog features: v1, v2

Cat features: v3, v4

When the label is "dog":

- both v1 and v2 appear in 80%
- only v1 appears in 10%
- only v2 appears in 10%

of the data

Example

Binary classification: dog vs cat

Four "features": v1, v2, v3, v4 (tail, ear etc.)

Dog features: v1, v2

Cat features: v3, v4

When the label is "dog":

- both v1 and v2 appear in 80%
- only v1 appears in 10%
- only v2 appears in 10%

of the data

Then 80% of the data is multi-view data.

Example

Binary classification: dog vs cat

Four "features": v1, v2, v3, v4 (tail, ear etc.)

Dog features: v1, v2

Cat features: v3, v4

When the label is "dog":

- both v1 and v2 appear in 80%
- only v1 appears in 10%
- only v2 appears in 10%

of the data

Then 80% of the data is multi-view data. The remaining 20% is single-view data.

Ensemble explanation

Intuition: each model learns subset of the features sufficient to classify the input and ensemble collects all of them

Ensemble explanation

Intuition: each model learns subset of the features sufficient to classify the input and ensemble collects all of them

Training of a single model goes as follows:

- 1. Quickly learn a *subset* of these features depending on the randomness
- 2. Memorize the small number of remaining data that cannot be classified correctly using these features

(It's be proved under simplifying assumptions)

Data: (X, y) where $X = (x_1, x_2, ..., x_p)$ (here P = 16)

Data: (X, y) where $X = (x_1, x_2, ..., x_P)$ (here P = 16) E.g. 4 features: ear, paw, wood, grass We sample C_D disjoint patches per feature

Data: (X, y) where $X = (x_1, x_2, ..., x_p)$ (here P = 16) E.g. 4 features: ear, paw, wood, grass We sample C_p disjoint patches per feature

For feature v and (sampled) patch p:

$$x_p = z_p v + \sum_{v' \in \mathcal{V}} \alpha_{p,v'} v' + \xi_p$$

Data: (X, y) where $X = (x_1, x_2, ..., x_p)$ (here P = 16) E.g. 4 features: ear, paw, wood, grass We sample C_p disjoint patches per feature

For feature v and (sampled) patch p:

$$x_p = z_p v + \sum_{\substack{v' \in \mathcal{V} \\ \text{feature} \\ \text{coefficient}}} \alpha_{p,v'} v' + \xi_p$$
feature Gaussian noise noise

Data: (X, y) where $X = (x_1, x_2, ..., x_p)$ (here P = 16) E.g. 4 features: ear, paw, wood, grass We sample C_p disjoint patches per feature

For feature *v* and (sampled) patch *p*:

$$x_p = z_p v + \sum_{\substack{v' \in \mathcal{V} \\ \text{feature} \\ \text{coefficient}}} \alpha_{p,v'} v' + \xi_p$$
feature feature Gaussian noise

multi-view data: Σz_p is large when v == ear/paw

single-view data: Σz_n is large for

only one of ear/paw

Proofs overview

The proofs in the paper are +/- 40 pages long

Proofs overview

The proofs in the paper are +/- 40 pages long

TLDR:

Assumptions:

- multi-view data distribution
- two-layer CNN with smoothed ReLU
- cross entropy loss function
- random gaussian initialization
- two fixed features per class
- ..

Proofs overview

Under these assumptions:

- Single model has bad test accuracy (0.49c < E < 0.51c)
- Ensemble provably improves test accuracy (E < 0.01c)
- Ensemble can be efficiently distilled into a single model (E < 0.01c)
- Self-distillation also improves test accuracy (E < 0.26c)

where **E** denotes the classification error and **c** is a fixed constant

Experiment: ensemble over KD

		CIEAE	R10 test accuracy					
	single model ensemble 10 runs of ensemble over (over 10) (over 10) knowledge distill knowledge dist							
ResNet-28-2	95.22±0.14%	96.33%	95.89±0.07%	96.21%				
ResNet-34	93.65±0.19%	94.97%	94.37±0.13%	94.88%				
ResNet-34-2	95.45±0.14%	96.55%	96.00±0.12%	96.42%				
ResNet-16-10	96.08±0.16%	96.80%	96.73±0.07%	96.76%				
ResNet-22-10	96.44±0.09%	97.12%	97.01±0.09%	97.09%				
ResNet-28-10	96.70 <u>±</u> <i>0.21%</i>	97.20%	97.06±0.08%	97.24%				

Experiment: ensemble over KD

	CIFAR10 test accuracy							
	single model ensemble 10 runs of ensemble or							
	(over 10)	(over 10)	knowledge distill	knowledge distill				
ResNet-28-2	95.22±0.14%	96.33%	95.89±0.07%	96.21%				
ResNet-34	93.65±0.19%	94.97%	94.37 <u>±</u> 0.13%	94.88%				
ResNet-34-2	95.45±0.14%	96.55%	96.00±0.12%	96.42%				
ResNet-16-10	96.08 <u>±</u> 0.16%	96.80%	96.73 <u>±</u> 0.07%	96.76%				
ResNet-22-10	96.44 <u>±</u> 0.09%	97.12%	97.01 <u>±</u> 0.09%	97.09%				
ResNet-28-10	96.70±0.21%	97.20%	97.06 <u>±</u> 0.08%	97.24%				

KD models have learned most of the of features from ensemble so they have less variety

Experiment: dropping channels

CIFAR100	# input channels		original	split to 2	split to 4	split to 8
ResNet-28 (a)	16		70.44±0.29%	68.77±0.25%	66.70±0.66%	-
ResNet-28 (b)	32		70.49±0.29%	67.62±0.89%	63.28±0.50%	
ResNet-28-2 (a)	32	single	76.09±0.23%	74.50±0.68%	72.47±1.78%	70.84±1.32%
ResNet-28-2 (b)	64	model	76.12±0.23%	74.88±0.22%	72.81±0.29%	69.21±0.49%
ResNet-28-4 (a)	64	test	79.10±0.18%	78.57±0.29%	77.94±0.43%	76.88±0.35%
ResNet-28-4 (b)	128	accuracy	78.53±0.16%	77.72±0.20%	76.62±0.29%	74.93±0.40%
ResNet-28-10 (a)	160		81.23±0.23%	81.03±0.17%	80.53±0.09%	80.12±0.26%
ResNet-28-10 (b)	320		80.76±0.27%	80.41±0.24%	80.09±0.16%	79.02±0.22%
ResNet-28 (a)	16		75.52%	74.07%	73.63%	-
ResNet-28 (b)	32		74.47%	73.58%	72.17%	-
ResNet-28-2 (a)	32	ensemble	80.33%	79.73%	79.58%	78.75%
ResNet-28-2 (b)	64	model	79.63%	80.18%	79.17%	78.20%
ResNet-28-4 (a)	64	test	82.64%	82.81%	82.56%	82.24%
ResNet-28-4 (b)	128	accuracy	81.84%	82.06%	81.89%	81.74%
ResNet-28-10 (a)	160		84.05%	84.08%	83.65%	83.51%
ResNet-28-10 (b)	320		83.10%	83.40%	83.81%	83.53%

- Take some intermediate layer of ResNet
- Remove all but 1/n channels
- Train a new network starting from this layer

Experiment: dropping channels

CIFAR100	# input channels		original	split to 2	split to 4	split to 8
ResNet-28 (a)	16		70.44±0.29%	68.77±0.25%	66.70±0.66%	1 7 .
ResNet-28 (b)	32		70.49±0.29%	67.62±0.89%	63.28±0.50%	-
ResNet-28-2 (a)	32	single	76.09±0.23%	74.50±0.68%	72.47±1.78%	70.84±1.32%
ResNet-28-2 (b)	64	model	76.12±0.23%	74.88±0.22%	72.81±0.29%	69.21±0.49%
ResNet-28-4 (a)	64	test	79.10±0.18%	78.57±0.29%	77.94±0.43%	76.88±0.35%
ResNet-28-4 (b)	128	accuracy	78.53±0.16%	77.72±0.20%	76.62±0.29%	74.93±0.40%
ResNet-28-10 (a)	160		81.23±0.23%	81.03±0.17%	80.53±0.09%	80.12±0.26%
ResNet-28-10 (b)	320		80.76±0.27%	80.41±0.24%	80.09±0.16%	79.02±0.22%
ResNet-28 (a)	16		75.52%	74.07%	73.63%	-
ResNet-28 (b)	32		74.47%	73.58%	72.17%	-
ResNet-28-2 (a)	32	ensemble	80.33%	79.73%	79.58%	78.75%
ResNet-28-2 (b)	64	model	79.63%	80.18%	79.17%	78.20%
ResNet-28-4 (a)	64	test	82.64%	82.81%	82.56%	82.24%
ResNet-28-4 (b)	128	accuracy	81.84%	82.06%	81.89%	81.74%
ResNet-28-10 (a)	160		84.05%	84.08%	83.65%	83.51%
ResNet-28-10 (b)	320		83.10%	83.40%	83.81%	83.53%

- Take some intermediate layer of ResNet
- Remove all but 1/n channels
- Train a new network starting from this layer
- Different channels are learning different features that can be used to classify the input

Experiment: dropping channels

CIFAR100	# input channels		original	split to 2	split to 4	split to 8
ResNet-28 (a)	16		70.44±0.29%	68.77±0.25%	66.70±0.66%	1.5
ResNet-28 (b)	32		70.49±0.29%	67.62±0.89%	63.28±0.50%	-
ResNet-28-2 (a)	32	single	76.09±0.23%	74.50±0.68%	72.47±1.78%	70.84±1.32%
ResNet-28-2 (b)	64	model	76.12±0.23%	74.88±0.22%	72.81±0.29%	69.21±0.49%
ResNet-28-4 (a)	64	test	79.10±0.18%	78.57±0.29%	77.94±0.43%	76.88±0.35%
ResNet-28-4 (b)	128	accuracy	78.53±0.16%	77.72±0.20%	76.62±0.29%	74.93±0.40%
ResNet-28-10 (a)	160		81.23±0.23%	81.03±0.17%	80.53±0.09%	80.12±0.26%
ResNet-28-10 (b)	320		80.76±0.27%	80.41±0.24%	80.09±0.16%	79.02±0.22%
ResNet-28 (a)	16		75.52%	74.07%	73.63%	-
ResNet-28 (b)	32		74.47%	73.58%	72.17%	-
ResNet-28-2 (a)	32	ensemble	80.33%	79.73%	79.58%	78.75%
ResNet-28-2 (b)	64	model	79.63%	80.18%	79.17%	78.20%
ResNet-28-4 (a)	64	test	82.64%	82.81%	82.56%	82.24%
ResNet-28-4 (b)	128	accuracy	81.84%	82.06%	81.89%	81.74%
ResNet-28-10 (a)	160		84.05%	84.08%	83.65%	83.51%
ResNet-28-10 (b)	320		83.10%	83.40%	83.81%	83.53%

- Take some intermediate layer of ResNet
- Remove all but 1/n channels
- Train a new network starting from this layer
- Different channels are learning different features that can be used to classify the input
- Ensemble can collect all of multiple views even when some models have missing views

Knowledge distillation & self-distillation

Using multi-view approach we can explain remaining "mysteries":

Knowledge distillation = forcing individual model to learn every feature

Knowledge distillation & self-distillation

Using multi-view approach we can explain remaining "mysteries":

Knowledge distillation = forcing individual model to learn every feature

Self-distillation = combining knowledge distillation and ensemble

Bibliography

- [2012.09816] Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning (arxiv.org)
- Three mysteries in deep learning: Ensemble, knowledge distillation, and self-distillation Microsoft Research