Calculators and notes are not permitted during this exam. Show all relevant work, and present solutions clearly.

Name: _____

Question	Points	Score
1	20	
2	20	
3	14	
4	16	
5	8	
6	10	
7	12	
Total:	100	

Common Derivatives

f(x)	$\frac{d}{dx}f(x)$
x^n , with n a real number	nx^{n-1}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\cot x$	$-\csc^2 x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\csc x \cot x$
e^x	e^x
b^x	$b^x \ln b$
$\ln x $	$\frac{1}{x}$
$\log_b x $	$\frac{1}{x \ln b}$

- 1. (20 points) For each of the following limits, either compute its value or state that it does not exist. Show all work.
 - (a) $\lim_{t \to 0} \frac{e^t 1 t}{5t^2}$
 - (b) $\lim_{x \to 0^+} x^x$
 - (c) $\lim_{x \to \infty} \frac{e^{3x}}{5e^{3x} + 2e^x}$
 - (d) $\lim_{\theta \to \pi} \frac{\cos(\sin(\theta^2)) 1}{\theta}$

2. (20 points) Evaluate the following definite and indefinite integrals. Show all work.

(a)
$$\int \left(\sqrt{t} + \frac{5}{t} - \sec^2 t\right) dt$$

(b)
$$\int_{-1}^{1} (f(x) + 3g(x)) dx$$
 where $\int_{-1}^{2} f(x) dx = -5$, $\int_{1}^{2} f(x) dx = -3$ and $\int_{-1}^{1} g(x) dx = 1$

(c)
$$\int_{1}^{2} \frac{2s^2 - 4}{s^3} ds$$

(d)
$$\int_{e}^{e^2} \frac{1}{x \ln |x|} dx$$
 (Use *u*-substitution to evaluate)

- 3. (14 points) (a) Use the second derivative test to find the locations of the local extreme values of $p(x) = 2x^3 3x^2 12x + 7$, and for each of them determine if it is a local minimum or local maximum.
 - (b) Find the critical points of $g(x) = x^{2/3}(5-2x)$ on the interval $[-1, \frac{5}{2}]$ and determine the locations and values of the absolute maximum and absolute minimum.

- 4. (16 points) For this problem, we will consider the function $f(x) = \sqrt{x}$ for $x \ge 0$.
 - (a) Use the definition of the derivative and evaluate the limit to confirm that

$$f'(x) = \frac{1}{2\sqrt{x}}$$

for x>0. Do <u>not</u> use L'Hôpital's rule to evaluate the limit. Show all steps of your work.

- (b) Compute the second derivative of f. (You do not need to set up a limit, just find the derivative of f'(x) to get f''(x)).
- (c) Find the linear approximations of f at x=1 and x=25. Use these to approximate the values of $\sqrt{2}$ and $\sqrt{26}$, respectively.
- (d) Do these approximations overestimate or underestimate the exact values? Which approximation is closer to the exact value? Justify your answer. (Do not compute the exact values of $\sqrt{2}$ and $\sqrt{26}$.)

5. (8 points) Suppose that an ant is walking around the outside of an elliptic rock that is 4 inches wide and 2 inches tall. Assume the center of the rock is located at the origin, O = (0,0). Then the position of the ant in inches can be given by $(x,y) = (4\cos\theta, 2\sin\theta)$, where θ is the angle between the positive x-axis and the line from the origin to the ant. The angle of the ant changes at a constant rate of 1/3 radians per second. What is the rate of change in the distance between the ant and the center of the rock when $\theta = \pi/6$? Include units in your answer.

6. (10 points) Let $g(x) = x^2 - 5$. We have the following values of g on the interval [0, 4].

- (a) Compute the following Riemann sums for g(x) over the interval [0,4]
 - (i) The midpoint Riemann sum with n=2 subintervals.
 - (ii) The left Riemann sum with n = 4 subintervals.
- (b) Use the Fundamental Theorem of Calculus to find the value of $\int_0^4 g(x) dx$.
- (c) Without doing the computation, what could we say about the approximate value of the left Riemann sum of g(x) over [0,4] when we take n=1000 subintervals. Justify your answer.
- (d) Extra Credit (2 points): Find the right Riemann sum for an arbitrary number of subintervals n, and then evaluate the limit of the Riemann sums as n goes to ∞ . You can use the summation formula $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ to evaluate the sum. Show all steps in evaluating the limit.

7. (12 points) The number of foxes in a specific area is specified by the function P(t), where t is the number of years after recording first began. Suppose that the rate of change in the number of foxes is given by

$$P'(t) = 1000e^{-0.5t}.$$

For this problem, you can use $\int e^{-0.5t} dt = -2e^{-0.5t} + C$.

- (a) What is the change in the population of foxes in the first 2 years of recording?
- (b) What is the net change in the population over the long-term? That is, what is $\lim_{T\to\infty}(P(T)-P(0))$?
- (c) Suppose that the number of foxes at the start of recording is 1000. Solve the initial value problem and write the formula for P(t).