Knowledge Embedding Based Graph Convolutional Network

WWW 2021 2021/5/18

1 Introduction

Motivation:

- 1. 传统的GCN方法主要假设在同质图上进行学习,忽略了KG中的 relation蕴含的丰富的信息。
- 2. 传统的KGE方法没有考虑graph的结构信息
- 3. 将GCN和KGE结合的方法比如VR-GCN,COMPGCN等,在学习relation embedding的时候没有考虑entity embedding对relation embedding的影响

1 Introduction

Method:

为了解决上面的问题,提出了KE-GCN(Knowledge Embedding based Graph Convolution Network)

- 结合KGE模型,基于图卷积操作同时学习entity和relation embedding。
- •引入了得分函数,认为认为GCN传播的邻居信息是得分函数对于中心节点的梯度。

2.1 重新审视GCN

GCN的原始公式
$$\mathbf{m}_v^{l+1} = \sum_{u \in \mathcal{N}(v)} \mathbf{h}_u^l$$

$$\mathbf{h}_v^{l+1} = \sigma(W^l(\mathbf{m}_v^{l+1} + \mathbf{h}_v^l))$$

对于上面的式子,引入一个得分函数f,该得分函数计算edge存在的score,对于已经存在的edge输出较大的值,对于不存在的边输出较小的值。

如果假设得分函数f为: $f(h_u, h_v) = h_u^T h_v$

那么计算的消息 h_u 能够看做f是对中心实体v的梯度,那么所有 h_u 加起来就成为下面的形式:

$$\mathbf{m}_{v}^{l+1} = \sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u}^{l} \qquad \qquad \mathbf{m}_{v}^{l+1} = \sum_{u \in \mathcal{N}(v)} \frac{\partial f(\mathbf{h}_{u}^{l}, \mathbf{h}_{v}^{l})}{\partial \mathbf{h}_{v}^{l}} = \frac{\partial (\sum_{u \in \mathcal{N}(v)} f(\mathbf{h}_{u}^{l}, \mathbf{h}_{v}^{l}))}{\partial \mathbf{h}_{v}^{l}}$$

$$\mathbf{h}_v^{l+1} = \sigma(W^l(\mathbf{m}_v^{l+1} + \mathbf{h}_v^l))$$

此时对于 $h_v + m_v$ 看做是learning rate为1,对 h_v 的梯度提升;目的是使scoring function f 的值最大。

通过修改为上面的形式,能够看到,它从新的角度说明了GCN做了什么,邻居信息是如何提供给中心节点的,是如何帮助中心节点获得更好的表示的。

2.2 KE-GCN

基于前面的分析,作者提出了新的框架KE-GCN,核心两部分,更新实体表示以及更新关系表示:

$$\mathbf{m}_{v}^{l+1} = \sum_{(u,r) \in \mathcal{N}_{\text{in}}(v)} W_{r}^{l} \frac{\partial f_{\text{in}}(\mathbf{h}_{u}^{l}, \mathbf{h}_{r}^{l}, \mathbf{h}_{v}^{l})}{\partial \mathbf{h}_{v}^{l}} \qquad \mathbf{m}_{r}^{l+1} = \sum_{(u,v) \in \mathcal{N}(r)} \frac{\partial f_{r}(\mathbf{h}_{u}^{l}, \mathbf{h}_{r}^{l}, \mathbf{h}_{v}^{l})}{\partial \mathbf{h}_{r}^{l}} \\ + \sum_{(u,r) \in \mathcal{N}_{\text{out}}(v)} W_{r}^{l} \frac{\partial f_{\text{out}}(\mathbf{h}_{v}^{l}, \mathbf{h}_{r}^{l}, \mathbf{h}_{u}^{l})}{\partial \mathbf{h}_{v}^{l}} \qquad \mathbf{h}_{r}^{l+1} = \sigma_{\text{rel}}(W_{\text{rel}}^{l}(\mathbf{m}_{r}^{l+1} + \mathbf{h}_{r}^{l})) \\ \mathbf{h}_{v}^{l+1} = \sigma_{\text{ent}}(\mathbf{m}_{v}^{l+1} + W_{0}^{l}\mathbf{h}_{v}^{l})$$

更新实体

更新关系

2.2 KE-GCN

使用图示说明

消息传递过程;

首先计算得分函数,然后分别求导得到消息

消息聚合过程;

对于实体和关系都有一个聚合函数

在实验的时候,对于KE-GCN,主要是引入不同的得分函数f,该得分函数使用不同的KGE方法,并且为了简化模型,对于in,out,self-loop都使用了相同的W和相同的得分函数f。

使用了一系列的KGE方法:

• TransE [3]: For $h_u, h_r, h_v \in \mathbb{R}^d$,

$$f(h_u, h_r, h_v) = -\|h_u + h_r - h_v\|_2^2.$$
 (16)

• DistMult [41]: For $h_u, h_r, h_v \in \mathbb{R}^d$.

$$f(\mathbf{h}_u, \mathbf{h}_r, \mathbf{h}_v) = \mathbf{h}_u^T \operatorname{diag}(\mathbf{h}_r) \mathbf{h}_v.$$
 (17)

• TransH [36]: For $h_u, h_v \in \mathbb{R}^d$, $h_r \in \mathbb{R}^{2d}$, and $h_{r1}, h_{r2} \in \mathbb{R}^d$,

$$f(\mathbf{h}_u, \mathbf{h}_r, \mathbf{h}_v) = -\|\mathbf{h}_u' + \mathbf{h}_{r2} - \mathbf{h}_v'\|_2^2, \tag{18}$$

$$\mathbf{h}_{u}' = \mathbf{h}_{u} - \mathbf{h}_{r1}^{T} \mathbf{h}_{u} \mathbf{h}_{r1}, \tag{19}$$

$$\mathbf{h}_{v}' = \mathbf{h}_{v} - \mathbf{h}_{r1}^{T} \mathbf{h}_{v} \mathbf{h}_{r1}, \tag{20}$$

$$h_r = [h_{r1}; h_{r2}],$$
 (21)

• TransD [10]: For h_u , h_v , $h_r \in \mathbb{R}^{2d}$, and h_{u1} , h_{u2} , h_{v1} , h_{v2} , h_{r1} , $h_{r2} \in \mathbb{R}^d$,

$$f(\mathbf{h}_u, \mathbf{h}_r, \mathbf{h}_v) = -\|\mathbf{h}_u' + \mathbf{h}_{r2} - \mathbf{h}_v'\|_2^2, \tag{22}$$

$$\mathbf{h}'_{u} = \mathbf{h}_{u1} + \mathbf{h}_{u2}^{T} \mathbf{h}_{u1} \mathbf{h}_{r1},$$
 (23)

$$\mathbf{h}_{v}' = \mathbf{h}_{v1} - \mathbf{h}_{v2}^{T} \mathbf{h}_{v1} \mathbf{h}_{r1},$$
 (24)

$$h_u = [h_{u1}; h_{u2}], h_v = [h_{v1}; h_{v2}], h_r = [h_{r1}; h_{r2}],$$
 (25)

where $[\cdot;\cdot]$ means concatenation of two vectors.

• RotatE [24]: For $h_u, h_r, h_v \in \mathbb{C}^d$,

$$f(h_u, h_r, h_v) = -\|h_u \circ h_r - h_v\|_2^2, \tag{26}$$

where \circ denotes element-wise product and the modulus of any element in h_r is 1, i.e. $|h_r[i]| = 1 \ \forall i \in \{1, 2, \dots, d\}$. The norm of complex vector is defined as $||\mathbf{v}||_p = \sqrt[p]{\sum |\mathbf{v}_i|^p}$.

• QuatE [47]: For $h_u, h_r, h_v \in \mathbb{H}^d$,

$$f(\mathbf{h}_u, \mathbf{h}_r, \mathbf{h}_v) = \mathbf{h}_u \otimes \mathbf{h}_r \cdot \mathbf{h}_v, \tag{27}$$

预测任务:

- 1. Knowledge Graph Alignment
- 2. Knowledge Graph Entity Classification

知识图谱对齐,主要是匹配两个不同知识图谱中的实体和关系;知识图谱实体分类,包括多分类和多标签分类

Datasets		#Entities	#Relations	#Triplets
DRD	Chinese	66,469	2,830	153,929
$\mathrm{DBP}_{\mathrm{ZH-EN}}$	English	98,125	2,317	237,674
DBP _{JA-EN}	Japanese	65,744	2,043	164,373
	English	95,680	2,096	233,319
DRD	French	66,858	1,379	192,191
DBP _{FR-EN}	English	105,889	2,209	278,590

Datasets	AM	WN	FB15K
#Entities	1,666,764	40,551	14,904
#Relations	133	18	1,341
#Triplets	5,988,321	145,966	579,654
#Labeled	1,000	31,943	13,445
#Classes	11	24	50
·			

图谱对齐实验结果:

Models	DBP _{ZH-EN}		$\mathrm{DBP}_{\mathrm{JA-EN}}$		$\mathrm{DBP}_{\mathrm{FR-EN}}$				
	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
MTransE*[7]	0.364	30.8	61.4	0.349	27.9	57.5	0.335	24.4	55.6
$IPTransE^*[49]$	0.516	40.6	73.5	0.474	36.7	69.3	0.451	33.3	68.5
JAPE*[25]	0.490	41.2	74.5	0.476	36.3	68.5	0.430	32.4	66.7
AlignE*[26]	0.581	47.2	79.2	0.563	44.8	78.9	0.599	48.1	82.4
GCN-Align*[35]	0.549	41.3	74.4	0.546	39.9	74.5	0.532	37.3	74.5
MuGCN*[6]	0.611	49.4	84.4	0.621	50.1	85.7	0.621	49.5	87.0
AliNet*[27]	0.628	53.9	82.6	0.645	54.9	83.1	0.657	55.2	85.2
R-GCN*[21]	0.564	46.3	73.4	0.571	47.1	75.4	0.570	46.9	75.8
W-GCN [22]	0.553	43.6	73.8	0.554	41.2	74.7	0.541	39.8	74.4
VR-GCN [42]	0.501	38.0	73.3	0.470	35.2	72.2	0.495	36.1	75.1
KBGAT [16]	0.582	48.0	77.3	0.582	47.6	77.7	0.593	47.4	80.9
CompGCN[30]	0.605	49.4	81.2	0.614	50.4	82.2	0.625	50.5	85.0
$CompGCN^\dagger$	0.628	52.8	81.1	0.629	52.8	81.5	0.641	52.6	85.4
KE-GCN	0.664	56.2	84.2	0.670	57.0	85.2	0.683	57.2	88.5

实体分类实验结果:

Models	AM	WN
GCN	86.2 ± 1.4	53.4 ± 0.2
R-GCN	89.3*	55.1 ± 0.6
W-GCN	$90.2 \pm 0.9^*$	54.2 ± 0.5
KBGAT	85.7 ± 1.7	53.7 ± 1.1
CompGCN	$90.6 \pm 0.2^*$	55.9 ± 0.4
KE-GCN	91.2 ± 0.2	$\textbf{57.8} \pm \textbf{0.5}$

Models	P@1	P@5	N@5
GCN	86.1 ± 0.3	69.0 ± 0.3	82.7 ± 0.2
R-GCN	91.7 ± 0.6	73.0 ± 0.4	89.5 ± 0.6
W-GCN	91.2 ± 0.6	72.8 ± 0.3	88.6 ± 0.5
KBGAT	90.5 ± 0.7	72.4 ± 0.8	87.5 ± 0.8
CompGCN	92.5 ± 0.1	74.0 ± 0.3	90.1 ± 0.2
KE-GCN	94.3 ± 0.2	74.7 ± 0.2	91.6 ± 0.2

对于KE-GCN使用不同得分函数的实验:

KE-GCN (X)	MRR	H@1	H@10
X = TransE	0.669 ± 0.002	55.9 ± 0.2	87.5 ± 0.2
X = TransH	0.673 ± 0.002	56.1 ± 0.2	87.7 ± 0.2
X = DistMult	0.640 ± 0.002	52.4 ± 0.2	84.7 ± 0.2
X = TransD	0.660 ± 0.002	54.2 ± 0.2	87.6 ± 0.1
X = RotatE	0.673 ± 0.002	56.0 ± 0.3	88.2 ± 0.2
X = QuatE	$\textbf{0.683} \pm \textbf{0.002}$	$\textbf{57.2} \pm \textbf{0.3}$	88.5 ± 0.2

在实体对齐任务上,性能越好的得分函数获得了越好的效果;

KE-GCN (X)	AM	WN	
X = TransE	91.2 ± 0.2	$\textbf{57.8} \pm \textbf{0.5}$	
X = TransH	90.5 ± 0.3	57.4 ± 0.3	
X = DistMult	89.5 ± 0.4	56.4 ± 0.1	
X = TransD	90.1 ± 0.2	57.1 ± 0.2	
X = RotatE	90.6 ± 0.4	56.6 ± 0.3	
X = QuatE	91.0 ± 0.4	56.9 ± 0.3	

但是在实体分类任务上,简单的TransE获得了最好的效果;