CSE 575: Statistical Machine Learning

Mid-Term 1

Instructor: Prof. Hanghang Tong September 12th, 2017

First Name:						
Last Name:						
Email:						
ASU ID:						
Q	Topic	Max Score	Score			
1	MLE	20				
2	Continuous Bayes Classifier	20				
3	Discrete Bayes Classifier	20				
4	Naive Bayes Classifier	30				
5	Bayes Classier vs. Naive Bayes Classier	10				
Total:		100				

- This exam book has 11 pages, including this cover page and a blank page at the end.
- Good luck!

1 Maximum Likelihood Estimation (20 points)

Suppose we have a 1-dimensional random variable X, and its pdf f(X) (probability density function) is defined as $f(X) = \frac{1}{b-a-4}$ for $a \le X \le 6$ or $10 \le X \le b$ and f(X) = 0 otherwise, where a and b two unknown parameters.

If we draw five data points x_1 , x_2 , x_3 , x_4 and x_5 independently from this distribution, and we observe that $x_1 = 1$, $x_2 = 5$, $x_3 = 10$, $x_4 = 15$ and $x_5 = 12$.

1. [5 pts.] What is the likelihood L of observing $\{x_1, x_2, x_3, x_4, x_5\}$? (Hints: the likelihood L is function of the two parameters a and b.)

2. [10 pts.] What is the maximum likelihood estimation of a (5 points)? What is the maximum likelihood estimation of b (5 points)? Justify your answer.

3. [5 pts.] What is the likelihood of $\{x_1, x_2, x_3, x_4, x_5\}$ given your MLE estimation of a and b?

2 Continuous Bayes Classifier (20 points)

We want to build a Bayes Classifier for a binary classification task (y=1 or y=2) with a 1-dimensional input feature (x). We know the following quantities: (1) P(y=1)=0.8; (2) P(x|y=1)=0.5 for $1 \le x \le 2$, P(x|y=1)=0.25 for $2 < x \le 4$ and P(x|y=1)=0 otherwise; and (3) P(x|y=2)=0.5 for $3 \le x \le 5$ and P(x|y=2)=0 otherwise.

• [2pts]. What is the prior of the class label y = 2?

• [3pts]. What is P(y = 1|x)?

• [3pts]. What is P(y = 2|x)?

• [4pts]. For x = 3.5, what is class label your classifier will assign? What is the risk of this decision?

• [2pts]. What is the decision boundary of your Bayes classifier?

• [2pts]. What is the Bayes error of your Bayes classifier?

3 Discrete Bayes Classifier (20 points)

We want to build a Bayes Classifier for a binary classification task (y = 1 or y = 2) with one discrate feature x, where $x \in \{1, 2, 3, 4, 5, 6\}$. We know the following quantities: (1) P(y = 1) = 0.5; (2) P(x = 1|y = 1) = 0, P(x = 2|y = 1) = 0.1, P(x = 3|y = 1) = 0.5, P(x = 4|y = 1) = 0.2, P(x = 5|y = 1) = 0.1, P(x = 6|y = 1) = 0.1; and (3) P(x = 1|y = 2) = 0.1, P(x = 2|y = 2) = 0.2, P(x = 3|y = 2) = 0.2, P(x = 6|y = 2) = 0.2.

• [2pts]. What is the prior of the class label y = 2?

• [4pts]. Put all the P(x|y=1) and P(x|y=2) numbers into a 6×2 table, whose rows correspond to six different values of x (i.e., x=1,2,...,6), and two columns correspond to two different values of y (i.e., y=1 and y=2).

• [4pts]. What is P(y = 1|x = 3)? What is P(y = 2|x = 3)?

• [3pts]. What is the decision boundary of your Bayes classifier?

• [3pts]. What is the Bayes error of your Bayes classifier?

4 Naive Bayes Classifier (30 points)

Given the training data set in the following Table, we want to train a binary classifier, with (1) the last column being the class label y (i.e., y = 1 or y = 0); (2) x_1 , x_2 and x_3 being three binary features; and (3) each row being a training data point.

Data	x_1	x_2	x_3	y
1	0	0	0	1
2	0	0	1	0
3	0	1	1	0
4	0	1	1	0
5	0	0	1	1
6	1	0	1	1
7	1	0	1	0
8	1	0	1	0
9	1	1	1	1
10	1	0	1	1

1. [9 pts.] How many independent parameters are there in your Naive Bayes classifier? What are they? Justifiy your answer.

2. **[9 pts.]** What are your estimations for these parameters? (say using standard MLE).

3. **[6 pts.]** Now, given a new (test) example x=(0,1,0), what is P(y=1|x)? Which class label will the naive Bayes classier assign to this example? Justify your answer.

4. **[6 pts.]** Now, given a new (test) example x=(1,0,1), what is P(y=1|x)? Which class label will the naive Bayes classier assign to this example? Justify your answer.

5 Gaussian Bayes Classifier and Naive Gaussian Bayes Classifier (10 points)

Consider a binary classification task, where the feature vector X has d dimensions and the class label y is either 1 or 0. We consider two types of classifiers, i.e., (1) Gaussian Bayes Classifier and (2) Gaussian Naive Bayes Classifier. In Gaussian Bayes Classifier, we assume P(X|y) follows a multi-variate Gaussian distribution for each class label (y=0 and y=1). In Gaussian Naive Bayes Classifier, we assume that for each class label (y=0 and y=1), different dimensions of the feature vector X are conditionally independent with each other, each following a single variate Gaussian distribution.

1. **[5 pts.]** How many independent parameters are there in your Gaussian Bayes Classifier?

2. **[5 pts.]** How many independent parameters are there in your Naive Gaussian Bayes Classifier?

Blank Page