Likelihood Revision Author: s1680642

Likelihood

1. Likelihood
$$L(\theta) = \prod_{i=1}^{n} f(y_i; \theta)$$

Log likelihood $l(\theta; y) = \log L(\theta) = \sum_{i=1}^{n} \log f(y_i; \theta)$
Score $U(\theta) = l'(\theta)$, MLE $U\left(\hat{\theta}\right) = 0$
Observed information $J(\theta) = -\frac{\mathrm{d}U}{\mathrm{d}\theta} = -\frac{\mathrm{d}^2 l}{\mathrm{d}\theta^2}$
Fisher's information $I(\theta) = E[J(\theta)] = -E\left[\frac{\mathrm{d}^2 l}{\mathrm{d}\theta^2}\right]$
 $E[U] = 0$, $Var(U) = E[U^2] - E[U]^2 = E[U^2] = -E[U'] = I$
 $Var\left(\hat{\theta}\right) \approx \frac{1}{I\left(\hat{\theta}\right)}$, $ESE\left(\hat{\theta}\right) = \sqrt{Var\left(\hat{\theta}\right)}$

2. When θ is a p-dimensional parameter,

 $\mathbf{U}(\theta)$ is a vector, $\mathbf{I}(\theta)$ and $\mathbf{J}(\theta)$ are matrice

Let
$$p = 2$$
, $Var(\hat{\theta}) = I^{-1}(\theta_1, \theta_2) = \begin{pmatrix} Var(\hat{\theta}_1) & cov(\hat{\theta}_1, \hat{\theta}_2) \\ cov(\hat{\theta}_1, \hat{\theta}_2) & Var(\hat{\theta}_2) \end{pmatrix}$

3. Score test:
$$\frac{U(\theta)}{\sqrt{I(\theta)}} \sim N(0,1)$$
 and $\frac{U^2(\theta)}{I(\theta)} \sim \chi_1^2$

Wald test:
$$\frac{\hat{\theta} - \theta_0}{\sqrt{I^{-1}(\theta_0)}} \sim N(0, 1)$$
 and $\frac{\left(\hat{\theta} - \theta_0\right)^2}{I^{-1}(\theta_0)} \sim \chi_1^2$

Likelihood Ratio test:
$$LR = \frac{L(\theta_0)}{L(\hat{\theta})}, -2\log(LR) = -2(l(\theta_0) - l(\hat{\theta})), 2\left(l\left(\hat{\theta}\right) - l(\theta_0)\right) \sim \chi_1^2$$
 qnorm(0.975,0,1)=1.96, qchisq(0.95,1)=3.84

4. Fisher's method of scoring $\theta_{r+1} = \theta_r + \frac{U(\theta_r)}{I(\theta_r)}$

Multiparameter case: $\theta_{r+1} = \theta_r + I^{-1}(\theta_r)U$

5. Exponential family of distributions
$$f(y;\theta) = \exp\{a(y)b(\theta) + c(\theta) + d(y)\}$$

$$E\{a(Y)\} = -\frac{c'(\theta)}{b'(\theta)}, Var\{a(Y)\} = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{\{b'(\theta)\}^3}$$

6. Generalised Linear Models

Link function
$$\mu_i = E(Y_i), g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

Link function
$$\mu_i = E(Y_i), g(\mu_i) = \mathbf{x}_i^T \beta$$

Exponential family: $f(y; \theta) = \exp\{yb(\theta) + c(\theta) + d(y)\}$

Canonical link: $g(\mu_i) = b(\theta_i)$

Deviance:
$$D = -2 \{ l(\hat{\beta}) - l(\text{maximal model}, \Omega) \}$$
, where $\hat{\mu}_i = y_i$ in model Ω

Pearson residuals:
$$r_i = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$
, where $V(\mu_i) = Var(Y_i)$