Bifurcation: Une parameter family of D.E. = $y'=f_{\mu}(y)$. (different $\mu \Rightarrow$ different fuly) => different & D.E.) $y'=y^2-2y+n$ y'= y'-24 M=0: y'= y-2y+1 M=1 = $y' = y^{-2}y+2$. M= 2 $y' = y^2 - 2y - 1$ $y^2 - 2y - 1 = 0 \Rightarrow (y - 1)^2 = 2 \Rightarrow y = 1 \pm \sqrt{2}$

Source. 2

Sink. 0

Note:

"
$$\mu = 0$$
": 2 equilibria,

or some, one sink.

Ishelt is different from

 $\mu = 1$: (only one node)

 $\mu = 2$ (No. equilibrian)

M=2. $y' = y^2 - 2y + 2 = (y-1)^2 + 1$. (No equilibrian).

Put the phase line together

From the above picture, the behavior of $y'=y^2-2y+\mu$ are similar when $\mu < 1$, but change when $\mu = 1$.

Call $\mu=1$ the bifurcation value of the family $y'=y^2-2y+\mu$.

To find the dotted red line: for each fixed μ , solve for $f_{\mu}(y)=0$. (i.e. equilibria of $y'=f_{\mu}(y)$).

i.e. The curve of equilibria for y'= fuly) is

 $B = \{(x,y) : f_{\mu}(y) = 0\}$

e.g. y'= y2-2y+ p.

Set $y^2 - 2y + \mu = 0$, or $\mu = 2y - y^2$. = $-(y-1)^2 + 1$.

T y(0, u <-y2)
y(0, u <-y2)
y(0, u)-y2.

eg. Harvesting: P(t) = population of fish in a power (at time t) Logistic model: $P = 2P(1-\frac{P}{100})$. P(0) = 100. If the city council decided to issue fishing license, where one can fish I fish per day. How many loceuse can they issue, so that the population won't die to zero? M= # of license issued. P= 2P (1-100)-M. Sifurcation diagram: $B = \left\{ \mu = 2p\left(t - \frac{P}{(\infty)}\right) \right\}$ When P=50 (re. M= 2(50) (1- 50) = (50) When p>50 When Noto. i.e. When 11<50. population dies to o. sink of population tends to the sink.

lo détermine if p is not a bifurcation value: Thm: If No has the property: $f'_{\mu_0}(y_0) \neq 0$ for all equilibria of $y' = f_{\mu_0}(y)$, then No is not a bifurcation value. , fully) for M, closed to Mo. Keason: Still have one equilibrium y around