

Meta-Learning for Adaptation of Deep Optical Flow Networks

Chaerin Min, Tae Hyun Kim, and Jongwoo Lim* Hanyang University, Republic of Korea

Introduction

Keywords: Unsupervised learning, meta-learning, instance-wise adaptation, optical flow, MAML

Problem statement

- 1. Optical flow cross-domain performance
- 2. The training largely relies on synthetic datasets.

Assumptions

Require:

Output:

We have an access to some data in the target domain, prior to the test. The deep flow network can be trained by gradient descent.

3. The methods become less practical, but this problem has not been explored in-depth.

Methodology

Meta-train Pre-trained θ_0 on the synthetic Unsupervised learning one-shots **Update** ground-truth supervision

Meta-inference

while until convergence do

meta-trained flow parameter θ^{ml}

 N_{τ} : number of tasks

Algorithm 1: Meta-train algorithm.

U(T): uniform distribution over tasks

 θ : pre-trained flow network parameter

N: adaptation number, α , β : update steps

$$\begin{array}{|c|c|c|} \textbf{for } i \leftarrow 1 \ to \ N_{\tau} \ \textbf{do} & V^t \leftarrow \\ & \text{Sample a task } (I^t, I^{t+1}, V_{gt}^t) \sim U(T) & j \leftarrow 0 \\ & \theta_i \leftarrow \theta & \textbf{while } j \\ & V^t \leftarrow f_{\theta_i}(I^t, I^{t+1}) & L_u \\ & j \leftarrow 0 & \theta^m \\ & L_un(\theta_i) = & J \leftarrow \\ & L_{data}(V^t[\theta_i]) + \lambda \cdot L_{reg}(V^t[\theta_i]) & \textbf{end} \\ & \theta_i = \theta_i - \alpha \nabla_{\theta_i} L_{un}(\theta_i) & \textbf{Return} \\ & j \leftarrow j + 1 & \textbf{1} \\ & \textbf{end} & \\ & L_{meta}(\theta) = \frac{1}{N_{\tau}} \sum_{i=1}^{N_{\tau}} \|f_{\theta_i}(I^t, I^{t+1}) - V_{gt}^t\|_1 \\ & \theta \leftarrow \theta - \beta \nabla_{\theta} L_{meta}(\theta) & 2 \end{array}$$

end

Return: $\theta^{ml} \leftarrow \theta$

Algorithm 2: Meta-inference algorithm.

Input:

 I^t, I^{t+1} : two adjacent tst input frames N: adaptation number, α : update step **Require:**

 θ^{ml} : meta-trained flow network parameter N: adaptation number, α : update step Output: adapted flow result V^t

- 1. Through the meta-train phase, the model learns a more general rule of how to adapt.
- 2. In the meta-inference time, the model promptly leverages the information that lies in the test inputs.
- Meta loss \mathcal{L}_{meta}

$$\mathcal{L}_{meta}(\theta) = \frac{1}{N_{\tau}} \sum_{i=1}^{N_{\tau}} \|f_{\theta_i}(I^t, I^{t+1}) - V_{gt}^t\|_1$$

Problem set-up

$$V^t = f_{\theta}(I^t, I^{t+1})$$

Data term and Regularization term

$$\mathcal{L}_{un}(\theta) = \mathcal{L}_{data}(V^{t}[\theta]) + \lambda \cdot L_{reg}(V^{t}[\theta])$$

Assure photometric consistency

$$\mathcal{L}_{data} = \alpha \cdot (1 - SSIM(I^{t}(p), I^{t+1}(p + V^{t}(p)))) + (1 - \alpha) \cdot ||I^{t}(p) - I^{t+1}(p + V^{t}(p))||_{1}, \qquad \mathcal{L}_{reg} = exp(-\frac{\nabla I^{t}}{\sigma}) \cdot ||\nabla V^{t}||_{1}$$

Encourage spatial coherence

$$\mathcal{L}_{reg} = exp(-\frac{\nabla I^t}{\sigma}) \cdot \|\nabla V^t\|$$

Experimental Results

Comparison to the naïve fine-tuning

Test Domain	Pre-train Data	pretrained		fine-	tuned	ours	
		θ_0	$ heta_0^*$	θ_n^{ft}	$\rightarrow \theta_n^{ft^*}$	$\overline{ heta_n^{ml}}$	$\rightarrow \theta_n^{ml^*}$
KITTI 2015	C	10.25(0.09)	9.58(0.18)	3.59(0.46)	4.31(0.47)	5.74(1.23)	3.32(0.19)
	C+T	4.65(0.03)	5.17(0.07)	2.73(0.54)	3.40(0.70)	2.81(0.65)	2.69(0.68)
Sintel final	C	4.11(0.02)	3.93(0.02)	3.84(0.02)	3.77(0.03)	3.58(0.30)	3.47(0.28)
	C+T	2.75(0.01)	2.74(0.10)	2.75(0.01)	2.74(0.10)	2.75(0.01)	2.74(0.10)

 θ_0

- (C: FlyingChairs, T: FlyingThings,
- *: Unsupervised adaptation)

Through learning to learn via meta-learning, ours is successful in adaptation to test inputs, in contrast to the naïve approaches.

Extra Advantages

Less annotated data in test domain

- 1. Dense optical flow is difficult to be annotated.
- 2. Our method allows less ground-truths while not requiring them in test-time.

Ratio of S_m	pretrained		fine-tuned		ours		Our gain
	θ_0	$ heta_0^*$	$ heta_n^{ft}$	${\theta_n^f}^t$	$ heta_n^{ml}$	${\theta^{ml}_n}^*$	over θ_n^{ft}
2.5%	4.68(0.04)	5.14(0.05)	3.79(0.23)	3.93(0.28)	3.12(0.15)	3.11(0.12)	+0.65(0.29)
5%	4.69(0.07)	5.18(0.04)	3.05(0.28)	3.05(0.33)	2.86(0.19)	2.83(0.18)	+0.22(0.11)
10%	4.65(0.03)	5.17(0.07)	2.73(0.54)	3.40(0.70)	2.81(0.65)	2.69(0.68)	+0.04(0.03)
50%	4.59(0.05)	4.95(0.05)	1.41(0.11)	1.42(0.11)	1.45(0.11)	1.45(0.11)	-0.04(0.06)
					θ_0		
	S _m 2.5% 5% 10%	S_m $\begin{array}{c} \hline S_m \\ \hline 0 \\ \hline 2.5\% \\ 5\% \\ 10\% \\ \hline \end{array} \begin{array}{c} 4.68(0.04) \\ 4.69(0.07) \\ 4.65(0.03) \\ \hline \end{array}$	S_m $\begin{array}{c} \hline B_0 \\ \hline B_0 \\ \hline B_0 \\ \hline \\ 2.5\% \\ \hline 5\% \\ \hline 4.68(0.04) \\ \hline 5\% \\ \hline 4.69(0.07) \\ \hline 5.18(0.04) \\ \hline 10\% \\ \hline 4.65(0.03) \\ \hline 5.17(0.07) \\ \hline \end{array}$	S_m θ_0 θ_0^* θ_n^{ft} θ_n^{ft} θ_0^{ft}	$S_m = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Conclusion

Contribution

➤ In this paper, the first approach to handle different motion distributions is proposed.

Conclusion

- We exploited extra information from each test input.
- We proposed the successful formulation of the unsupervised adaptation of flow networks, using meta-learning.