MTL103: Tut Sheet 3

1. Construct the simplex table for the basic feasible solution (3, 0) for the LPP

Max
$$x_1 + x_2$$

subject to $-x_1 + x_2 \le 2$
 $2x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 8$
 $2x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

2. Solve:

(i) Min
$$z=2 x_1 + x_2$$
 (ii) Max $z=3 x_1 + 2 x_2 + 5 x_3$
Subject to $3 x_1 + x_2 = 2$ Subject to $x_1 + 2x_2 + x_3 \le 430$
 $4 x_1 + 3x_2 \ge 6$ $3x_1 + 2x_3 \ge 460$
 $x_1 + 2x_2 \le 3$ $x_1 + 4x_2 \le 420$
 $x_1, x_2 \ge 0$ $x_1, x_2, x_3 \ge 0$

3. Use Simplex method to verify that the following problem has an unbounded solution

Max
$$z=x_1 + 2x_2$$

Subject to $-2x_1 + x_2 + x_3 \le 2$
 $-x_1 + x_2 + x_3 \le 1$
 $x_1, x_2, x_3 \ge 0$

From final tableau, construct a feasible solution for giving objective value 2000.

4. Solve the problem. Is the solution unique? If not, find the other three solutions.

Max
$$6 x_1 + 4x_2$$

Subject to $2x_1 + 3x_2 \le 30$
 $3x_1 + 2x_2 \le 24$
 $x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

- 5. Use simplex method to minimize $-3x_1 + x_2$ over the triangle with vertices (-1, 0), (2, 0) and (0, 1). Verify your answer graphically.
- 6. The following is the current simplex tableau of a LPP in the maximization form:

X_b	a_1	a_2	a_3	a_4	a_5	a_6	a ₇	
 С	1	0	0	0	а	3	2	
f	0	1	0	0	2	d	-1	
1	0	0	1	0	-1	0	g	
3	0	0	0	1	4	-1	6	
 z = 5	0	0	0	0	3	-4	1 : z _j - c _j	_

Determine the conditions on a a, c, d, f, g so that the current tableau and the updated tableau represent respectively

- (i) Non-degenerate and degenerate bfs's.
- (ii) Non-degenerate and non-degenerate bfs's.
- (iii) Degenerate and non-degenerate bfs's.
- (iv) Degenerate and degenerate bfs's.

7. Use simplex method to check the consistency of the following system

$$-6x_1 + x_2 + x_3 \le 5$$

$$-2x_1 + 2x_2 + 3x_3 \ge 3$$

$$2x_1 - 4x_3 = 1$$

$$x_1 \quad x_2, x_3 \ge 0$$

8. Use simplex to determine the solution of the system of linear equations:

$$x_1 - x_3 + 4x_4 = 3$$

 $2x_1 - x_2 = 3$
 $3x_1 - 2x_2 - x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

9. Solve the following systems of equations by two phase technique

$$5x_1 + x_2 - 3x_3 = 1$$

$$4x_1 + x_2 + 6x_3 = 9$$

$$-3x_1 + x_2 + 7x_3 = 3$$

$$x_1, x_3 \ge 0$$

$$5x_1 + 3x_2 + x_3 = 2$$

$$4x_1 - x_2 + 6x_3 = 0$$

$$9x_1 + 7x_2 + 4x_3 = 3$$

10. Use Simplex method to find the inverse of the following matrices:

(i)
$$\begin{bmatrix} 5 & 1 & 7 \\ 3 & 4 & 8 \\ 2 & 6 & 8 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 4 & 1 & 2 \\ 0 & 1 & 0 \\ 8 & 4 & 5 \end{bmatrix}$$

11. Consider the matrix B= (b₁, b₂, b₃), whose inverse is

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix}.$$

Find inverse of matrix $B^* = (b_1, b_2, a)$, where $a = (1, 1, 1)^t$.

12. Solve the following LP by simplex. Identify B and B⁻¹ at each iteration.

Max
$$3x_1 + 2x_2 + x_3$$

Subject to $2x_1 - 3x_2 + 2x_3 \le 3$
 $-x_1 + x_2 + x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

13. Show that in a given Simplex table if for certain non basic variable x_j , $z_j - c_j = 0$ and for that some $y_{ij} > 0$ then given LPP has infinitely many optimal solutions.