Matrix Operations

Geometric Algorithms
Lecture 10

Practice Problem

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 2x_1 - x_2 \\ 4x_2 \\ 3x_1 - 3x_2 \end{bmatrix}$$

Determine if the above transformation is onto, one-to-one, both, or neither

Answer

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix} \xrightarrow{\cancel{X}} \mapsto \begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix} \xrightarrow{\cancel{X}}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 2x_1 - x_2 \\ 4x_2 \\ 3x_1 - 3x_2 \end{bmatrix}$$

Objectives

- » Define several important matrix operations
- » Motivate and define matrix multiplication and inverses

Keywords

Matrix Transpose

Inner Product

Matrix Power

Square Matrix

Matrix Inverse

Invertible Transformation

1-1 Correspondence

numpy.linalg.inv

eterminant

Invertible Matrix Theorem

Composing Linear Transformations

Shearing and Reflecting (Geometrically)

Shearing and Reflecting Matrix

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Shearing and Reflecting (Algebraically)

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$$
reflect shear

First multiply by shear matrix, then multiply by reflection matrix

Shearing and Reflecting (Algebraically)

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$$
reflect shear

First multiply by shear matrix, then multiply by reflection matrix

This gives us the same transformation

Shearing and Reflecting

$$\begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x} \end{pmatrix}$$

Fact. The composition of two linear transformation is a linear transformation

Fact. The composition of two linear transformation is a linear transformation

Verify:
$$S$$
, T
 $S(T(\vec{u}+\vec{r})) = S(T(\vec{u})+T(\vec{r})) = S(T(\vec{u}))+S(T(\vec{r}))$
 $S(T(c\vec{r})) = S(cT(\vec{r})) = cS(T(\vec{r}))$

Fact. The composition of two linear transformation is a linear transformation

Verify:

This means the composition of two matrix transformations can be represented as a single matrix

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

Matrix Multiplication

Matrix Multiplication

Shearing and Reflecting

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

General Composition (2D)

$$A\left(\begin{bmatrix}\mathbf{b}_{1} & \mathbf{b}_{2}\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}\right) = A\left(x_{1}\dot{b}_{1} + x_{2}\dot{b}_{2}\right)$$

$$= x_{1}Ab_{1} + x_{2}Ab_{2}$$

$$= \begin{bmatrix}Ab_{1} & Ab_{2}\end{bmatrix}\begin{pmatrix}x_{1}\\x_{2}\end{bmatrix}$$

Matrix Multiplication

Definition. For a $m \times n$ matrix A and a $n \times p$ matrix B with columns $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_p$ the product AB is the $m \times p$ matrix given by

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Replace each column of B with A multiplied by that column

Tracking Dimensions

This only works if the number of <u>columns</u> of the left matrix matches the number of <u>rows</u> of the right matrix

Important Note

Even if AB is defined, it may be that BA is <u>not</u> defined

Non-Example

Non-Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

These are not defined.

Example

The Key Fact (Restated)

For any matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$ and any vector $\mathbf{v} \in \mathbb{R}^k$

$$A(B\mathbf{v}) = (AB)\mathbf{v}$$

The matrix implementing the composition is the product of the two underlying matrices

Row-Column Rule

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of AB is defined above

Example

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} -1(1) + (0)(0) & -1(1) + 0(1) \\ 0 & (1) + 1(0) & 0(1) + (1)(1) \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Question

Compute
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$
 Exercise

short version: What is the entry in the 2nd row and 2nd column?

Answer

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$

Matrix Operations

What about when the right matrix is a single column?

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication

We can think of $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$ as collection of simultaneous matrix-vector multiplications

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

These should be consistent with matrix-vector interface and vector interface

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column—wise (or equivalently, element—wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column—wise (or equivalently, element—wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

This is exactly the same as vector addition, but for matrices

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise)

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise)

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

This is exactly the same as vector scaling, but for matrices

Algebraic Properties (Addition and Scaling)

$$A + B = B + A$$

$$(A + B) + C = A + (B + C)$$

$$A + 0 = A$$

$$r(A + B) = rA + rB$$

$$(r+s)A = rA + sA$$

$$r(sA) = (rs)A$$

In these properties A, B, and C are matrices of the same size and r and s are scalars (\mathbb{R})

We need to know/memorize these

Algebraic Properties (Addition and Scaling)

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$BA+CA$$

$$(B+C)A = BC+CA$$

$$r(AB) = (rA)B = A(rB)$$

$$I_m A = A = AI_n$$

In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

We need to know/memorize these

$$T_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrix Multiplication is not Commutative

Important. AB may not be the same as BA

(it may not even be defined)

Question (Conceptual)

T:R-R T:R-R

Find a pair of 2D linear transformations T_1 and T_2 such that T_1 followed by T_2 is not the same as T_2 followed by T_1

(also find a pair where they <u>are</u> the same)

One Answer: Rotation and Reflection

$$T_{1}(\vec{x}) = A_{1}\vec{x}$$

$$T_{2}(\vec{x}) = A_{2}\vec{x}$$

$$T_{1}(T_{2}(\vec{x})) = A_{1}\vec{x}$$

$$T_{2}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

$$T_{3}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

$$T_{4}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

$$T_{5}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

$$T_{7}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

$$T_{7}(T_{1}(\vec{x})) = A_{1}\vec{x}$$

More Matrix Operations

Transpose (Pictorially)

ſ	- 1		2	4	5 7	1	1	1	1245
ı						2	2	2	2
ı		2	3	4	5	3	3	3	3
ı	1	2	3	4	5	1	1	1	
ı	1	2	3	4	5	4	4	4	4
ı	_			-		5	5	5	5

Transpose (Pictorially)

Transpose

Definition. For a $m \times n$ matrix A, the **transpose of** A, written A^T , is the $n \times m$ matrix such that

$$(A^T)_{ij} = A_{ji}$$

Example.

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Algebraic Properties (Transpose)

$$(A^T)^T = A$$

$$(A+B)^T = A^T + B^T$$

$$(cA)^T = cA^T$$
 (where c is a scalar)

$$(AB)^T = B^T A^T$$

Algebraic Properties (Transpose)

$$(A^T)^T = A$$

$$(A+B)^T = A^T + B^T$$

$$(cA)^T = cA^T$$
 (where c is a scalar)

$$(AB)^T = B^T A^T$$
 Important: the order reverses!

Challenge Problem

Demonstrate that $(AB)^T = B^T A^T$ in general.

$$(AB)_{ij}^{T} = (AB)_{ji} = \sum_{k=1}^{n} A_{jk} B_{ki}$$

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

```
For a vector \mathbf{v} \in \mathbb{R}^n, what is \mathbf{v}^T?
```

It's a $1 \times n$ matrix.

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

It's a $1 \times n$ matrix.

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , is $\mathbf{u}^T\mathbf{v}$ defined?

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is

 $1 \times n$ $n \times 1$ 1×1

It's a $1 \times n$ matrix.

For two vectors \mathbf{u} and \mathbf{v} in $\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = ?$ \mathbb{R}^n , is $\mathbf{u}^T \mathbf{v}$ defined?

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is

It's a $1 \times n$ matrix.

It's a
$$1 \times n$$
 matrix. For two vectors \mathbf{u} and \mathbf{v} in $\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = ?$ \mathbb{R}^n , is $\mathbf{u}^T \mathbf{v}$ defined?

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

Definition. The **inner product** of two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

If A is an $n \times n$ matrix, then the product AA is defined

If A is an $n \times n$ matrix, then the product AA is defined

Definition. For $A \in \mathbb{R}^{n \times n}$, we write A^k for the k -fold product of A with itself

If A is an $n \times n$ matrix, then the product AA is defined

Definition. For $A \in \mathbb{R}^{n \times n}$, we write A^k for the k -fold product of A with itself

What should A^0 be? (we want $A^0A^k = A^{0+k} = A^k$)

If A is an $n \times n$ matrix, then the product AA is defined

Definition. For $A \in \mathbb{R}^{n \times n}$, we write A^k for the k -fold product of A with itself

What should A^0 be? (we want $A^0A^k = A^{0+k} = A^k$)

 $10^0 = 1$, so it stands to reason that $A^0 = I$

Matrix Powers (Computationally)

We can use numpy.linalg.matrix_power

This can be *much* faster than doing a sequence of matrix multiplications, e.g., in the case of

 $A^{16} \qquad \left(\left(\left(A^{2} \right)^{2} \right)^{2} \right)^{2}$ $A^{8} \quad A^{8}$ $A^{9} \quad A^{8}$

Why?:

1. AB is not necessarily equal to BA, even if both are defined.

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C.

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C.

3. If AB=0 (the zero matrix) it is not necessarily the case that A=0 or B=0.

Question

Cxercise:

Find two nonzero 2×2 matrices A and B such that AB = 0

Challenge. Choose A and B such that they have all nonzero entries

Answer

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

transpose

 A^{T}

transpose A^T

scaling cA

transpose

 A^{T}

scaling

cA

addition (subtraction)

$$A + B$$

$$A + B$$
 $A + (-1)B = A - B$

transpose A^T scaling cA addition (subtraction) A+B A+(-1)B=A-B multiplication (powers) AB A^k

 A^{T} transpose scaling cAaddition (subtraction) A + B A + (-1)B = A - Bmultiplication (powers) What's missing?

Matrix Inverses

The identity matrix implements the "do nothing" transformation. For any \mathbf{v} ,

$$Iv = v$$

The identity matrix implements the "do nothing" transformation. For any \mathbf{v} ,

$$Iv = v$$

It is the "1" of matrices. For any A

$$IA = AI = A$$

The identity matrix implements the "do nothing" transformation. For any \mathbf{v} ,

$$Iv = v$$

It is the "1" of matrices. For any ${\cal A}$

$$IA = AI = A$$

These may be different sizes

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$2 \times 2 \qquad 2 \times 4 \qquad 2 \times 4 \qquad 4 \times 4 \qquad 2 \times 4$$

Recall: The Identity Matrix

Recall: The Identity Matrix

Definition. The $n \times n$ **identity matrix** is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Recall: The Identity Matrix

Definition. The $n \times n$ **identity matrix** is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Example.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$2x = 10$$

2x = 10

How do we solve this equation?

2x = 10

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

$$2x = 10$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$2x = 10$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

 $\frac{1}{2}$ is the **reciprocal** or **multiplicative inverse** of 2.

$$2^{-1}(2x) = 2^{-1}(10)$$

$$2^{-1}(2x) = 2^{-1}(10)$$

How do we solve this equation?

$$2^{-1}(2x) = 2^{-1}(10)$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

$$2^{-1}(2x) = 2^{-1}(10)$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$2^{-1}(2x) = 2^{-1}(10)$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by
$$\frac{1}{2}$$
 a.k.a. 2^{-1} .

 $\frac{1}{2}$ is the **reciprocal** or **multiplicative inverse** of 2.

$$1x = 5$$

$$1x = 5$$

How do we solve this equation?

$$1x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

$$1x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$1x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

 $\frac{1}{2}$ is the **reciprocal** or **multiplicative inverse** of 2.

How do we solve this equation?

$$x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

$$x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

 $\frac{1}{2}$ is the **reciprocal** or **multiplicative inverse** of 2.

$$Ax = b$$

How do we solve this equation?

$$Ax = b$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

$$Ax = b$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

 A^{-1} is the multiplicative inverse of A

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

How do we solve this equation?

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

 A^{-1} is the multiplicative inverse of A

$$I_{\mathbf{X}} = A^{-1}\mathbf{b}$$

$$I_{\mathbf{X}} = A^{-1}\mathbf{b}$$

How do we solve this equation?

$$I_{\mathbf{X}} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

$$I_{\mathbf{X}} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

 A^{-1} is the multiplicative inverse of A

$$x = A^{-1}b$$

Wouldn't it be nice...

$$\mathbf{x} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Wouldn't it be nice...

$$\mathbf{x} = A^{-1}\mathbf{b}$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

Wouldn't it be nice...

$$x = A^{-1}b$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

 A^{-1} is the multiplicative inverse of A

Do all matrices have inverses?

Do all matrices have inverses?

No. If they did, then every linear system would have a solution

When does a matrix have an inverse?

Square Matrices

Definition. A $m \times n$ matrix A is square if m = n

i.e., it has same number of rows as columns.

They are the only kind of matrices...

» that can have a pivot in every row <u>and</u> every column

- » that can have a pivot in every row <u>and</u> every column
- ≫ whose transformations can be both 1-1 and onto

- » that can have a pivot in every row <u>and</u> every column
- ≫ whose transformations can be both 1-1 and onto
- » whose columns can have full span and be linearly independent

- » that can have a pivot in every row <u>and</u> every column
- ≫ whose transformations can be both 1-1 and onto
- » whose columns can have full span and be linearly independent
- » that can have inverses

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

A is invertible if it has an inverse. Otherwise it is singular.

Definition. For a $n \times n$ matrix A, an inverse of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

Example.
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Example: Geometric

Reflection across the x_1 -axis in \mathbb{R}^2 is it's own inverse.

Example: No inverse

```
\begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}
```

Inverses are Unique

Theorem. If B and C are inverses of A, then B=C.

Inverses are Unique

Theorem. If B and C are inverses of A, then B=C.

Verify:

If A is invertible, then we write A^{-1} for the inverse of A.

Solutions for Invertible Matrix Equations

Theorem. For a $n \times n$ matrix A, if A is invertible then

 $A\mathbf{x} = \mathbf{b}$

has a <u>unique</u> solution for any choice of b.

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

» exactly one solution for any choice of b

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

- » at least one solution for any choice of b
- » at most one solution for any choice of b

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

- » T is onto
- » T is one-to-one

where T is implemented by A

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

$$S(T(\mathbf{v})) = \mathbf{v}$$
 and $T(S(\mathbf{v})) = \mathbf{v}$

for any \mathbf{v} in \mathbb{R}^n

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

A matrix is invertible if it's possible to "undo" its transformation without "losing information"

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

A matrix is invertible if it's possible to "undo" its transformation without "losing information"

Non-Example. Projection onto the x_1 -axis

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$)

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$)

A transformation is a 1-1 correspondence if it is 1-1 and onto

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$)

A transformation is a 1-1 correspondence if it is 1-1 and onto

Invertible transformations are 1-1 correspondences

Kinds of Transformations (Pictorially)

1-1 correspondence

not covered

X

1

D

B

C

1-1 not onto

Computing Matrix Inverses

Fundamental Questions

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Answer 2: the Invertible Matrix Theorem (IMT)

In General

$$A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} = I$$

Can we solve for each \mathbf{b}_i ?:

In General

$$Ab_1 = e_1$$

$$A\mathbf{b}_1 = \mathbf{e}_1$$
 $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$

$$Ab_3 = e_3$$

If we want a matrix B such that AB=I, then the above equation must hold (in the case B has 3 columns)

In General

$$A\mathbf{b}_1 = \mathbf{e}_1$$
 $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$

$$Ab_3 = e_3$$

If we want a matrix B such that AB=I, then the above equation must hold (in the case B has 3 columns)

We need to solve 3 matrix equations.

How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A.

Solution. Solve the equation $A\mathbf{x} = \mathbf{e}_i$ for every standard basis vector \mathbf{e}_i . Put those solutions $\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_n$ into a single matrix

$$[\mathbf{S}_1 \quad \mathbf{S}_2 \quad \dots \quad \mathbf{S}_n]$$

How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A

Solution. Row reduce the matrix $[A \ I]$ to a matrix $[I \ B]$. Then B is the inverse of A

This is really the same thing. It's a simultaneous reduction

demo

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The determinant of a 2×2 matrix is the value ad - bc

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The determinant of a 2×2 matrix is the value ad-bc

The inverse is defined only if the determinant is nonzero

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The determinant of a 2×2 matrix is the value ad - bc

The inverse is defined only if the determinant is nonzero

(see the notes on linear transformations for more information about determinants)

Example

$$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$$

Example

Is the above matrix invertible?

Example

$$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$$

Is the above matrix invertible?

No. The determinant is (-6)(-7) - 14(3) = 42 - 42 = 0

Algebra of Matrix Inverses

How To: Verifying an Inverse

Question. Given an invertible matrix B and some matrix C, demonstrate that $B^{-1}=C$

Answer. Show that BC = I (or CB = I, but you don't have to do both)

This works because inverses are unique

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^T is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrices A and B, the matrix AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Question

Suppose that A is a $n \times n$ invertible matrix such that $A = A^T$ and B is a $m \times n$ matrix

Simplify the expression $A(BA^{-1})^T$ using the algebraic properties we've seen

Answer: B^T

$$A(BA^{-1})^{T}$$

$$A = A^{T}$$

Motivation

Question. How do we know if a square matrix is invertible?

Answer. Every perspective we've taken so far can help us answer this question.

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

1. A^T is invertible

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 2. Ax = b has at <u>least</u> one solution for every b
- 3. $A\mathbf{x} = \mathbf{b}$ has at <u>most</u> one solution for every \mathbf{b}
- 4. Ax = b has at <u>exactly</u> one solution for every b

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 5. A has a pivot in every column
- 6. A has a pivot in every <u>row</u>
- 7. A is row equivalent to I_n

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 8. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- 9. The columns of A are linearly independent
- 10. The columns of A span \mathbb{R}^n

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Recall: One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

T is not one-to-one

Recall: Invertible Transformations

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

$$S(T(\mathbf{v})) = \mathbf{v}$$
 and $T(S(\mathbf{v})) = \mathbf{v}$

for any \mathbf{v} in \mathbb{R}^n by A

Multiplication

by A^{-1}

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Invertible transformations are 1-1 correspondences.

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 11. The linear transformation $x \mapsto Ax$ is onto
- 12. $x \mapsto Ax$ is one-to-one
- 13. $x \mapsto Ax$ is a one-to-one correspondence
- 14. $x \mapsto Ax$ is invertible

Verify:

Taking Stock: IMT

The following are logically equivalent:

- 1. A is invertible
- $2.A^T$ is invertible
- 3. Ax = b has at least one solution for any b
- $4 \cdot Ax = b$ has at most one solution for any b
- $5 \cdot Ax = b$ has a unique solution for any b
- 6.A has n pivots (per row and per column)
- 7.A is row equivalent to I
- 8. Ax = 0 has only the trivial solution
- 9. The columns of A are linearly independent
- **10.** The columns of A span \mathbb{R}^n
- 11. The linear transformation $x \mapsto Ax$ is onto

These all express the same thing

(this is a stronger statement than we just verified)

Taking Stock: IMT

The following are logically equivalent:

- 1. A is invertible
- $2.A^T$ is invertible
- 3. Ax = b has at least one solution for any b
- $4 \cdot Ax = b$ has at most one solution for any b
- 5. Ax = b has a unique solution for any b
- 6.A has n pivots (per row and per column)
- 7.A is row equivalent to I
- 8. Ax = 0 has only the trivial solution
- 9. The columns of A are linearly independent
- **10.** The columns of A span \mathbb{R}^n
- 11. The linear transformation $x \mapsto Ax$ is onto

These all express the same thing

(this is a stronger statement than we just verified)

!! only for square matrices !!

Theorem. If A is square, then

A is 1-1 if and only if A is onto

Theorem. If A is square, then

A is 1-1 if and only if A is onto

We only need to check one of these.

Theorem. If A is square, then

A is 1-1 if and only if A is onto

We only need to check one of these.

Warning. Remember this only applies square matrices.

Theorem. If A is square, then

A is invertible \equiv Ax = 0 implies x = 0

Theorem. If A is square, then

A is invertible \equiv $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$

Invertibility is completely determined by how A behaves on 0.

Question (Conceptual)

True or **False:** If A is invertible, and B is row equivalent to A (we can transform B into A by a sequence of row operations), the B is also invertible.

Answer: True

Row reductions don't change the number of pivots.

Question

If $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ is invertible, then is $[(\mathbf{a}_1+\mathbf{a}_2-2\mathbf{a}_3)\ (\mathbf{a}_2+5\mathbf{a}_3)\ \mathbf{a}_3]$ also invertible? Justify your answer.

Answer

```
Consider [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]^T. We can get to [(\mathbf{a}_1 + \mathbf{a}_2 - 2\mathbf{a}_3) \ (\mathbf{a}_2 + 5\mathbf{a}_3) \ \mathbf{a}_3]^T by <u>row operations</u>
```

Summary

The algebra of matrices can help us simplify matrix expressions

The invertible matrix theorem connects all the perspectives we've taken so far