Naučno izračunavanje — Belekške

Andrija Urošević

Rešavanje problema matematičkim metodama

Modelovanje

- Relevantne veličine, njihovo kvantitativno izražavanje i odnos između njih: matematički model M.
- Pitanje na koje želimo dobiti odgovor: matematički problem P.

Rešavanje

- Primena metode koja može rešiti problem P.
- Dobijamo rešenje S.

• Interpretacija

— Rešenje S u modelu M, interpretirano u terminima polaznog problema.

Modelovanje problema

- Poteškoće pri modelovanju
 - Potrebno je procizno uočiti relevantne vrednosti i odnose između njih, treba opisati odgovarajućim formalnim matematičkim jezikom.
 - Kako modelujemo problem direktno utiče na to koji metod rešavanja možemo da primenimo.
- Matematički model
 - Apstrakcija polaznog problema, kako se fokusiramo samo na relevantna svojstva problema.
 - Skup promenljivih predstavlja relevantne vrednosti.
 - Skup formula predstavlja relevantne odnose između tih vrednosti.

• Formulacija

- Matematička teorija koja ima pogodna svojstva (diferencijabilnost, konveksnost,...) se preporučuje pri formulisanju modela. Razlog tome je šira primena metoda za rešavanje tog problema.
- Pojednostavljenje modela
 - Model uprostimo sve dok je greška rešenja prihvatljiva.
 - Neke tehnike:
 - * Zamena beskonačkih procesa konačnim
 - * Zamena opštih matrica specifičnim matricama: blok dijagonalne, dijagonalne, trougaone,...

- * Zamena proizvoljnih funkcija jednostavnijim funkcijama: polinimima, konveksnim funkcijama....
- * Zamena nelinearnih problema linearnim problemima.
- * Zamena diferencijalnih jednačina algebarskim jednačinam.
- * Zamena beskonačno dimenzionih prostora konačno dimenzionim prostorima.
- Da bi tehnike pojednostavljenja bile relevantne potrebno je da:
 - * alternativni problem možemo lakše rešiti, a čije rešenje nije drastično drugačije od polaznog;
 - * transformacija tekućeg problema u lakši probl
me dozvoljava izračunavanje rešenja tekućeg problema pomoću rešenja lakšeg problema.
- Upozorenja:
 - Model ne oslikava precizno stvarnost
 - Model može biti dobar u nekim aspektima, a loš u drugim.
 - Podešavanje podataka dovodi do prilagođavanju modelu, u praksi ne daje dobre rezultate.
 - Ne treba se držati modela koji ne rade.

Rešavanje problema

- Obično sam metod rešavanja dolazi na osnovu dobro izabranog modela problema.
- U nekim slučajevima sam model nema metodu koja može da se primeni.

Interpretacija rešenja

- Kada dobijemo rešenje modela, primenjujemo inverzne transofrmacije pojednostavljivanja nad tim rešenjem.
- Transformisano rešenje razmatramo u terminima veza stvarnih fenomena i promenljivih u modelu.
 - Treba voditi računa o jedinicama.

Aproksimacija i greške u izračunavanju

- Greške pre samog naučnog izračunavanja:
 - Modelovanje: Apstrakcija i pojednostavljenje dovode do greške
 - Empirijska merenja: Uključuju dozu neprekidnosti zbog nesavršenosti mernih instrumenata
 - Prethodna izračunavanja: Ulazni podaci mogu biti rezultat nekog prethodnog izračunavanja, pa se greška tako akumulira.
- Prethodni problemi nisu otkljivi, sledeća dva jesu:
 - Diskretizacija i odsecanje: Povećanjem granularnosti smanjujemo grešku. Beskonačne procese koje zamenjujemo konačnim možemo kontrolisati njihov broj koraka.
 - Zaokruživanje: Broj decimala koje se koriste za zapis realnih brojeva.

- Dve grupe grešaka: (1) Greške podataka; (2) Greške izračunavanja.
- Procena greške. Za pravu i približnu vrednost x i x' definišemo greške:
 - Apsolutna greška: E(x, x') = |x x'|.
 - Relativna greška: $R(x, x') = \frac{|x-x'|}{|x|}$

Stabilnost, uslovljenost i regularizacija

- Algoritam je *nestabilan* ukoliko se njegova greška akumilira tokom njegovog izvršavanja, u suprotom algoritam je *stabilan*.
- *Poništavanje* je slučaj kada je relativna greška mala usled oduzimanja realnih vrednosti koje nose grešku.
- Problem je *loše uslovljen* ako za malo različite podatke na ulozu daje drastično različita rešenja.
- Neka su α ulazi podaci, i $x(\alpha)$ rešenja problema P. Tada uslovljenost problem P definišemo kao

$$Cond(P) = \frac{R(x(\alpha), x(\alpha'))}{R(\alpha, \alpha')} = \frac{|x(\alpha) - x(\alpha')|/|x(\alpha)|}{|\alpha - \alpha'|/|\alpha|}.$$

- Uslovljenost funkcije f:

$$Cond(f) = \frac{|f(x) - f(x + \Delta x)|/|f(x)|}{|\Delta x|/|x|} \approx |xf'(x)/f(x)|$$

- Uslovljenost matrice A:

$$Cond(A) = |A^{-1}||A|$$

- Uslovljenost sistema Ax = b:

$$\begin{split} Cond(P) &= \frac{|A^{-1}b - A^{-1}(b + \Delta b)|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|}{|\Delta b|} \frac{|Ax|}{|x|} \end{split}$$

- .
- Lošu uslovljenost rešavamo regularizacijom.
 - Zamenjujemo problem koji je loše uslovljen bliskim problemom koji je dobro uslovljen.
 - Razlika između ta dva problema treba da bude podesiva nekim parametrom, tj. kada parametar teži nuli problemi su jednaki.

Aproksimacija funkcija

- Aproksimacija funkcije f je funkcija g koja je funkciji f bliska u nekom unapred definisanom smislu.

- Aproksimacija funkcija se vrši iz različitih razloga:
 - pojednostavljanje evaluacije funkcije;
 - zamenom funkcije nekom funkcijom sa boljim matematičkim osobi-
 - ne znamo simboličku reprezentaciju funkcije već samo njene vrednosti u nekim tačkama.
- Postoje razni kriterijumi za aproksimaciju:
 - $-\|f-g\|_2^2 = \int_a^b (f(x)-g(x))^2 dx$; (kriterijum je površina izmedju dve
 - $-\|f-g\|_2^2 = \sum_{i=1}^n (f(x_i) g(x_i))^2$; (ukupno odstupanje u svim tačkama u kojima je vrednost funkcije poznata)
 - $-\|f-g\|_{\infty} = \sup_{x \in [a,b]} |f(x)-g(x)|$. (samo najveće odstupanje je

Primeri problema aproksimacije funkcija

- Problem linearne aproksimacije:
- Aproksimacija: $g(x,\alpha) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Kriterijum: $\min_{\alpha} \sum_{i=1}^N (g(x_i,\alpha) f(x_i))^2$. Problem rekonstrukcije zamućene slike operatorom A:
 - $-x = A^{-1}y$ ne daje dobro rešenje, kako je A loše uslovljena matrica.
 - Regularizacija obezbeđuje da se susedni pokseli ne razlikuju mnogo:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

- \bullet Problem konstrukcije slike od N slika različitih delova iste scene.
 - Moramo uračunati razlike među delovima slika: To su rotacija kamere za ugao θ , translacija kamere za vektor (u, v) i skaliranje za vrednost s. Jedna takva veza može biti data matricom transformacije (a = $s\cos\theta, b = s\sin\theta \text{ i } s = \sqrt{a^2 + b^2}$):

$$G = \begin{pmatrix} a & -b & u \\ b & a & v \\ 0 & 0 & 1 \end{pmatrix},$$

- Potrebno je još odrediti i upariti detalje na slikama (postoji algoritam). Neka je skup lokacija detalja $\{x_{ij}|j=1,\ldots,M\}$, i za svake dve slike i i j dat F(i,j) skup indeksa detalja koji su uspešno upareni.
- Konačan optimizacioni problem postaje (G_i matrica transformacije sa parametrima (a_i, b_i, u_i, v_i) :

$$\min_{\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k \in F(i, j)} \|G_i x_{ik} - G_j x_{jk}\|^2$$

- Određivanje koordinata GPS uređaja:
 - -(u, v, w) koordinate GPS uređaja koje treba izračunati;
 - $-(p_i,q_i,r_i)$ koordinate i-tog satelita;

 - ρ_i udaljenost *i*-tog satelita od GPS uređaja. Za svaki satelit treba da važi: $\sqrt{(u-p_i)^2+(v-q_i)^2+(w-r_i)^2}=$
 - Problem se svodi na:

$$\min_{u,v,w} \sum_{i=1}^{n} (\sqrt{(u-p_i)^2 + (v-q_i)^2 + (w-r_i)^2} - \rho_i)^2.$$

Aproksimacija u Hilbertovim prostorima

- Vektorski prstor koji je kompletan u odnosu na metriku indukovanu skalarnim proizvodom $d(x,y) = ||x-y|| = \sqrt{(x-y)\cdot(x-y)}$ se naziva Hilbertovim prostorom.
 - $-\mathbb{R}^n$ je Hilbertov prostor
 - $\mathcal{L}_{2}[a,b]$ prostor funkcija koje su integrabile sa kvadratom na intervalu [a,b] je Hilbertov prostor.
- Sistem vektor $\{e_i|i\in\mathbb{N}\}$ je ortonormiran ako

$$e_i \cdot e_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad i, j \in \mathbb{N}.$$

• Neka je $\{e_i|i\in\mathbb{N}\}$ ortonormiran sistem vektora Hilbertovog prostora \mathcal{H} . Koeficijenti $x \cdot e_i$ nazivaju se Furijeovi koeficijenti vektora $x \in \mathcal{H}$, a red $\sum_{i=1}^{\infty} (x \cdot e_i) e_i$ se naziva Furijevo red vektora $x \in \mathcal{H}$.

Teorema 1 Za ortonormirani sistem $\{e_i|i\in\mathbb{N}\}$ u Hilbertovom prostoru \mathcal{H} , sledeća tvrđenja su ekvivalentna:

- Za svako $x \in \mathcal{H}$ i svako $\varepsilon > 0$, postoje skalari $\lambda_1, \lambda_2, \dots, \lambda_n$, takvi da važi $||x - \sum_{i=1}^{n} \lambda_i e_i|| < \varepsilon.$
- Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i) e_i = x$ (pri čemu se podrazumeva konvergencija u smislu metrike prostora \mathcal{H})
 • Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i)^2 = \|x\|^2$ (Parselova jednakost)
- Ako je vektor $x \in \mathcal{H}$ takav da je $x \cdot e_i = 0$ za svako $i \in \mathbb{N}$, onda važi x = 0.

Teorema 2 Neka je f element Hilbertovog postora \mathcal{H} i neka je \mathcal{H}' njegov potprostor čiju bazu čine elementi $\{g_1, g_2, \dots, g_n\}$. Postoji element najbolje aproksimacije $g^* = \sum_{i=1}^n c_i^* g_i \in \mathcal{H}'$, takav da važi

$$\left\| f - \sum_{i=1}^{n} c_i^* g_i \right\| = \inf_{c_1, \dots, c_n} \left\| f - \sum_{i=1}^{n} c_i g_i \right\|.$$

Dodatno, važi da je $(f-g^*)\cdot x=0$ za sve $x\in \mathcal{H}'$ akko je g^* element najbolje aproksimacije za f iz \mathcal{H}' .

- Element najbolje aproksimacije za f je njegova ortogonalna projekcija na prostor $\mathcal{H}'!!!$
- Keoficijenti najblje aproskimacije se mogu odrediti iz sistema:

$$\sum_{i=1}^{n} c_i(g_i \cdot g_j) = f \cdot g_j, \quad j = 1, \dots, n$$

• Ako je baza $\{g1, \ldots, g_n\}$ ortogonalna, svi skalarni proizvodi $g_i \cdot g_j$ su jednaki nuli ako $i \neq j$, tako da u tom slučaju nije potrebno rešavati sistem jednačina već je dovoljno izračunati skalarne proizvode i izraziti koeficijente c_i iz dobijenih jednakosti u kojima učestvoje po jedan keoficijent c_i .

Srednjekvadratna aproksimacija

- Neka je $\mathcal{L}_2[a,b]$ Hilbertov prostor funkcija integrabilnih sa kvaratom na intervalu [a,b], u kome je norma definisana integralom $||f||^2 = \int_a^b f^2(x)dx$ onda se element najbolje aproksimacije naziva elementom najbolje srednjekvadratne aproksimacije.
- Ako je funkcija f definisana na konačnom skupu tačaka $\{x_0, \ldots, x_m\}$ integral zamenjujemo sumom, tj. $||f||^2 = \sum_{i=1}^m f^2(x_i)$.
- Metoda koja rešava srednjekvadratnu aproksimaciju na konačnom skupu tačaka naziva se metoda najmanjih kvadrata (engl. least squares method).
- Sistem koji se rešava uzima sledeći oblik:

$$\sum_{i=1}^{n} c_i \sum_{k=1}^{m} g_i(x_k) g_j(x_k) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$\sum_{k=1}^{m} g_j(x_k) \left(\sum_{i=1}^{n} c_i g_i(x_k) \right) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$A^T A x = A^T b$$

$$x = (A^T A)^{-1} A^T b$$

• Prethodna jednačina predstavlja rešenje problema

$$\min_{x} ||Ax - b||^2.$$

• Drugi način izvođenja rešenja:

$$||Ax - b||^2 = (Ax - b)^T (Ax - b)$$

$$= ((Ax)^T - b^T)(Ax - b)$$

$$= (x^T A^T - b^T)(Ax - b)$$

$$= b^T b - x^T A^T b - (b^T Ax)^{T^T} + x^T A^T Ax$$

$$= b^T b - x^T A^T b - (x^T A^T b)^T + x^T A^T Ax$$

$$= b^T b - 2x^T A^T b + x^T A^T Ax$$

• Izjednačavanjem gradijenta po x sa nulom dobijamo:

$$2A^T A x - 2A^T b = 0.$$

- Matrica $(A^TA)^{-1}A^T$ je Mur-Penrouzov pseudoinverz matrice A.
- Metod srednjekvadratne aproksimacije se često koristi za rešavanje problema linearne regresije.

Teorema 3 (Gaus-Markov) Ukoliko važi $E(\varepsilon) = 0$ i $cov(\varepsilon) = \sigma^2$, za konstantno $\sigma^2 > 0$, onda za ocenu $\hat{w} = (X^T X)^{-1} X^T y$ važi

$$E(\hat{w}) = w, cov(\hat{w}) = \sigma^2 (X^T X)^{-1}.$$

Takođe, za svaku nepristrasnu linearnu ocenu \tilde{w} parametra w važi

$$\sum_{i=1}^{n} (w_i - \hat{w}_i)^2 \le \sum_{i=1}^{n} (w_i - \tilde{w}_i)$$

• Ukoliko je matrica A^TA loše uslovljena (kolone ili vrste matrice A su visoko korelisane), tada se koristi regularizacija i rešava se problem (Tihonovljeva regularizacija ili grebena regularizacija):

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|^2$$

• Slično kao u prethodnom slučaju:

$$\|Ax - b\|^2 + \lambda \|x\|^2 = (Ax - b)^T (Ax - b) + \lambda x^T x = b^T b - 2x^T A^T b + x^T A^T A x + \lambda x^T x.$$

- Računanjem gradijenta po x i izjednačavanjem sa nulom dobijamo:

$$A^{T}Ax - A^{T}b + \lambda x = 0$$
$$x = (A^{T}A + \lambda I)^{-1}A^{T}b$$

• Uklanjanje šuma iz signala:

$$\min_{x} ||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$$

- Uvodimo matricu *D*:

$$\begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{pmatrix}$$

- Dati problem postaje:

$$\min ||Ix - y||^2 + ||\sqrt{\lambda}Dx - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} I \\ \sqrt{\lambda}D \end{pmatrix} x - \begin{pmatrix} y \\ 0 \end{pmatrix} \right\|^{2}$$

- Odgovarajuce rešenje:

$$x = (I + \lambda D^T D)^{-1} y$$

• Rekonstrukcija zamućene slike:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

– Uvodimo matricu D_h i D_v :

$$\begin{pmatrix} I & -I & 0 & \dots & 0 & 0 & 0 \\ 0 & I & -I & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & I & -I & 0 \\ 0 & 0 & 0 & \dots & 0 & I & -I \end{pmatrix} \quad \begin{pmatrix} D & 0 & \dots & 0 \\ 0 & D & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & D \end{pmatrix}$$

– Problem možemo zapisati kao:

$$\min_{x} ||Ax - y||^2 + ||\sqrt{\lambda}D_v x - 0||^2 + ||\sqrt{\lambda}D_h x - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} A \\ \sqrt{\lambda} D_v \\ \sqrt{\lambda} D_h \end{pmatrix} x - \begin{pmatrix} y \\ 0 \\ 0 \end{pmatrix} \right\|^2$$

Odgovarajuće rešenje:

$$x = (A^T A + \lambda D_v^T D_v + \lambda D_h^T D_h)^{-1} A^T y$$

Furijeova transformacija

Osnovni koncept obrade signala

Talasići

Numerička linearna algebra

Primeri problema numeričke linearne algebre

Dekompozicija matrica

Sopstveni vektori matrica

Retki sistemi linearnih jednačina

Inkrementalni pristup rešavaju problema linearne algebre

Matematička optimizacija

Primeri praktičnih problema neprekidne matematičke optimizacije

Neprekidna optimizacija

Diskretna optimizacija