

Micron Advanced Microscopy Course

16th-20th November 2020, Virtual course

Course Structure

Monday	Tuesday	Wednesday	Thursday	Friday
16 th Nov	17 th Nov	18 th Nov	19 th Nov	20 th Nov
Principles of light microscopy	Fluorescence microscopy	Quantitative bioimaging	Super- resolution microscopy	Demos and Practicals

Course organisers

Dr Carina Mónico & Dr Nadia Halidi

www.micronoxford.com micron@bioch.ox.ac.uk

Quiz prizes sponsors

Course Programme and Schedule

Day 1: Monday 16th November 2020: Principles of Light Microscopy

Morning session: Introduction to light microscopy and microscope components Chair: Alan Wainman

Chair. Alari Wali in an			
Time	Lecture	Speaker	
09:00 – 09:05	Course announcements and logistics	Nadia Halidi	
09:05 – 09:20	Welcome to the course	Ilan Davis	
09:25 – 09:55	Introduction to light microscopy	Nadia Halidi	
10:00 – 11:00	Basic optics for microscopy, image formation	lan Dobbie	
11:00 – 11:20	Break		
11:20– 11:50	Anatomy of a microscope	Carina Mónico	
11:55 – 12:40	Brightfield techniques, Contrast enhancement	Ian Dobbie	
12:40 – 13:35	Lunch		
Afternoon sess Chair: Nadia H	ion: Microscope components alidi		
13:35 – 13:55	Demo on microscope anatomy and setting Köhler illumination	Carina Mónico	
14:00 – 15:00	Objectives, Optical Aberrations, Resolution, Point Spread Function	Chris Lagerholm	
15:00 – 15:20	Break		
15:20 – 16:20	Cameras for Imaging	Louis Keal	
16:20 – 17:00	Panel discussion, wrap-up and quiz	All speakers	

Day 2: Tuesday 17th November 2020: Fluorescence Microscopy

Morning session: Introduction to Fluorescence Microscopy and fluorescent probes Chair: Ian Dobbie

Time	Lecture	Speaker	
09:00 – 09:55	Introduction to fluorescence microscopy	Carina Mónico	
09:55 – 10:15	Break		
10:15 – 11:10	Fluorescent dyes and proteins	Mark Howarth	
11:15 – 12:00	Sample preparation – practical considerations	Lothar Schermelleh	
12:00 – 13:00	Lunch		
Afternoon sess Chair: Carina N	sion: Fluorescence imaging of cells and tissues. Mónico		
13:00 – 13:50	Confocal microscopy and optical sectioning	Alan Wainman	
13:55 – 14:40	Detectors for Imaging	Chris Power	
14:40 – 15:00	Break		
15:00 – 15:30	Two – photon microscopy	Emily Thornton	
15:35 – 16:15	Lightsheet microscopy	Matthew Stower	
16:20 – 17:00	Panel discussion, wrap-up and quiz	All speakers	

Day 3: Wednesday 18th November 2020: Quantitative bioimaging

Morning session: Quantitative imaging. Chair: Lothar Schermelleh

Time	Speaker	Lecture	
09:00 – 10:00	F-techniques: Measuring molecular motion and interactions	Chris Lagerholm	
10:05 – 10:50	Live – cell imaging	Nadia Halidi	
10:50 – 11:10	Break		
11:10 – 12:10	Biological electron microscopy: techniques and applications	Errin Johnson	
12:10 – 13:10	Lunch		
Afternoon session: Image data handling and analysis. Chair: Nadia Halidi			
13:10 – 13:55	Basic image processing, data handling and storage	David Pinto	
14:00 – 15:00	Introduction to image analysis	Ulrike Schulze	
15:00 – 15:20	Break		
15:20 – 15:50	Artificial intelligence and machine learning in microscopy	Dominic Waithe	
15:50 – 17:00	Panel discussion, wrap-up and quiz	All speakers	

Day 4: Thursday 19th November 2020: Super-resolution microscopy

Morning session: Structure Illumination and localisation microscopy Chair: Ian Dobbie

Time	Lecture	Speaker
09:00 – 10:30	Introduction to Super-resolution. Structured Illumination microscopy	Lothar Schermelleh
10:30 – 10:50	Break	
10:50– 12:05	Single-molecule imaging and localisation microscopy	Stephan Uphoff
12:05– 13:00	Lunch	
Afternoon session: Nanoscopy and Custom-built systems Chair: Carina Mónico		
13:00 – 13:45	STimulated Emission Depletion microscopy (STED)	Silvia Galiani
13:50 – 14:50	Introduction to Bespoke Microscope Design	lan Dobbie
14:50 – 15:10	Break	
15:10 – 15:35	Conclusions: overview discussion on the different microscopy techniques.	Ian Dobbie
15:40 – 16:20	Students imaging challenges	All speakers
16:20 – 17:00	Panel discussion, wrap-up and quiz	All speakers

Day 5: Friday 20th November 2020: Demos and Practicals

Morning session: Conventional imaging

Chair: Nadia Halidi

Time	System Demo	Demonstrator	
09:00 – 09:25	Widefield fluorescence imaging and deconvolution (Deltavision Elite)	lan Dobbie	
09:30 – 9:55	Spinning disk confocal (PerkinElmer UltraVIEW)	Alan Wainman	
10:00 – 10:25	Laser scanning confocal (Olympus FV3000)	Carina Mónico	
10:25 – 10:45	Break		
10:45 – 11:10	Laser scanning confocal with Airyscan detector (Zeiss LSM 980)	Frank Vogler	
11:15 – 11.40	Lightsheet microscope (LaVision)	Kristina Zec	
11.45 – 12:10	Image analysis demo on Fiji	Urlike Schulze	
12:10– 13:00	Lunch		
Afternoon sessio Chair: Dalia Gala	n: Super-resolution and custom-built systems		
13:00 – 13:25	Single-molecule imaging, STORM (Nanoimager)	Sandip Kumar	
13:30 – 13:55	STED (Leica TCS SP8)	Silvia Galiani	
14:00 – 14:25	4Pi (Bespoke)	Jingyu Wang	
14:25 – 14:45	Break		
14:45 – 15:10	Structured Illumination Microscopy (OMX – V3)	Lothar Schermelleh	
15.15 – 15:40	TIRF – SIM (Bespoke)	Kseniya Korobchevskaya/ Marco Fritzsche	
15:45 – 16:10	Deep SIM (Bespoke)	Nick Hall	

Detailed course programme

Day 1: Mon 16 Nov 2020 - Principles of Light Microscopy

Morning session: Introduction to light microscopy and microscope components (Chair: Alan Wainman)

Course and logistics announcements Nadia Halidi

1. Welcome to the course Ilan Davis

- ♦ Introduction to the course, goals, motivation
- Overview of the Micron Advance Bioimaging Unit and the Oxford Bioimaging community

2. Introduction to light microscopy Nadia Halidi

- ♦ What is microscopy?
- Bioimaging workflow: From sample preparation, imaging to data management, analysis and visualization
- ♦ What is important for good microscopy? Contrast. Resolution.
- ♦ Limitations of light microscopy

3. Basic optics for microscopy, image formation Ian Dobbie

- Nature of light
- ◆ Basic understanding of lenses, refraction and diffraction
- Constructive/ destructive interference
- Image formation

4. Anatomy of a microscope Carina Mónico

- Types of microscopes, inverted, upright, stereoscopes
- Anatomy of a microscope
- Understanding conjugate planes

5. Brightfield techniques, Contrast enhancement Ian Dobbie

- What is brightfield and when it is used
- ♦ Köhler illumination
- Overview of increased contrast in BF (Dark field, PhC, mention DIC)

Afternoon session: Microscope components (Chair: Nadia Halidi)

- 6. Demo on microscope anatomy and setting Köhler illumination Carina Mónico
 - ♦ Anatomy of an inverted, upright and stereoscopes microscope
 - ♦ Conjugate planes on a microscope
 - ♦ Setting Köhler illumination

Objectives, Optical aberrations, Resolution, Point Spread Function Christopher Lagerholm

- ♦ Objective lenses properties, Numerical Aperture, Working distance, immersion media
- Understanding of factors affecting image quality, refractive index mismatch, coverslip thickness, aberrations
- ♦ Axial and lateral resolution, PSF, Airy, Abbe, Rayleigh, Sparrow

8. Cameras for Imaging Photometrics

- ♦ Different camera technologies and how they work
- ♦ Sensitivity, Quantum efficiency, Noise, Nyquist sampling
- ♦ Compare different cameras

9. Panel discussion, wrap-up session and Quiz All speakers

- ♦ Quiz
- Guided discussion through topics of the day that need revisiting

Day 2: Tue 17 Nov 2020 - Fluorescence Microscopy

Morning session: Introduction to Fluorescence Microscopy and fluorescent probes (Chair: Ian Dobbie)

10. Introduction to fluorescence microscopy Carina Mónico

- ♦ Why Fluorescence? Contrast.
- What is fluorescence? Simplified Jablonski diagram
- ♦ Absorption and emission spectra, Stokes shift, crosstalk
- Basic principle and components of a fluorescence microscope
- ◆ Transmitted vs. Reflected light
- ♦ Fluorescent light sources
- ♦ Fluorescence filter sets: emission, excitation, dichroic, polychroic
- Micron SPEKcheck tool
- Widefield fluorescence microscopy: what it is and which samples are suited
- Capabilities of current widefield systems (timelapse, multi-point visiting, multi-area)
- Interactive session on setting filter sets
- OTF and Deconvolution

11. Fluorescent dyes and proteins Mark Howarth

- Jablonski diagram
- Key characteristics of a fluorophore: quantum yield, photostability, brightness
- Organic and inorganic fluorophores
- Antibody targeting and how to label protein with dye; direct / indirect labelling
- Site-specific protein labeling methods (SNAP-tag etc.)
- Labeling different organelles
- Different fluorescent proteins- advantages and concerns

12. Sample preparation - tips and tricks Lothar Schermelleh

- ♦ Fixed vs. Live
- ♦ Sample mounting
- ◆ Typical immunocytochemistry protocol (fixation, permeabilization, blocking, washes immunostaining, mounting)
- ◆ Troubleshooting
- ♦ Good staining controls

Afternoon session: Fluorescence imaging of cells and tissues (Chair: Carina Mónico)

13. Confocal microscopy and optical sectioning Alan Wainman

- ♦ History
- ♦ Pinhole blocks out-of-focus light
- ♦ Optical sectioning
- ♦ Point scanning confocal light path and components
- ♦ Setting offset and gain
- ♦ Bleed through and sequential scanning
- Spectral unmixing
- ♦ Spinning Disk Microscopes
- ♦ Comparison of Scanning Confocal vs. Spinning Disk vs. Widefield
- ♦ TIRF microscopy

14. Detectors for Imaging Chris Power (Zeiss)

- ♦ Different detectors and how they work (including airyscan 2 and non-descanned detectors)
- ◆ Compare different detectors; Sensitivity, Quantum efficiency, Noise,
 Nyquist sampling

15. Two-photon microscopy Emily Thornton

- ♦ 2-photon vs. 1-photon excitation
- ♦ Limits of light penetration in deep tissue: scattering, absorption
- ♦ 2-photon vs. confocal

- Instrumentation and lasers for 2 photon microscope
- ♦ Benefits of using non-descaned detectors in multi-photon microscopy
- ♦ Advantages of 2-photon microscopy and applications

16. Lightsheet microscopy Matthew Stower

- Problems of imaging deep
- ♦ Lightsheet microscopy and optics
- ♦ Sample preparation (live samples, Tissue Clearing)
- Drawbacks and Artifacts
- ◆ Light Sheet Implementations (variations of SPIM or LSFM)
- ♦ Biological application example: light-sheet imaging to study development

17. Panel discussion, wrap-up session and Quiz All speakers

- ♦ Quiz
- Guided discussion through topics of the day that need revisiting

Day 3: Wed 18 Nov 2020 - Quantitative imaging

Morning session: Quantitative imaging (Chair: Lothar Schermelleh)

18. F-techniques: Measuring molecular motion and interactions Chris Lagerholm

- ♦ Fluorescence techniques for molecular dynamics; FRAP, FLIP, FLAP, FCS. FLIM
- ♦ Techniques to measure molecular interactions such as FRET and FCCS

19. Live-cell Imaging Nadia Halidi

- Why live? Comparison of live cell imaging and fixed cell studies.
- ♦ Requirements for live imaging: sample preparation (mounting, staining, media), choice of equipment and additional components to maintain cell viability.
- Efficiency of detection: objectives, filter sets, detectors
- ♦ Photobleaching, phototoxicity & O₂ scavenging systems

20. Biological electron microscopy: Biological electron microscopy: techniques and applications Errin Johnson

- ♦ Basic principles of electron microscopy and applications to biological research
- ♦ Biological specimen preparation for EM
- ♦ Advanced EM techniques: cryo-EM, EDS x-ray microanalysis, correlative light & EM, 3D-EM

Afternoon session: Image data handling and analysis (Chair: Nadia Halidi)

21. Basic image processing, data handling, storage David Pinto

- ♦ What is a digital image?
- What makes a good image?
- Options and likely current candidates for data storage after acquisition
- ♦ Pitfalls/Advantages of many approaches including annotation, de-duplication, backup, sharing and searching for data
- ♦ OMERO approach to solving the above

♦ Figure preparation guidelines for publication

22. Introduction to image analysis Ulrike Schulze

- Design of experiments to achieve a specific measurement goal
- ♦ Quick summary of available image processing & analysis software
- ♦ Greyscale, LUT, Composites, RGB, Stacks
- ♦ Filtering images to enhance features of interest
- ♦ Image segmentation
- ♦ Deconvolution
- ♦ Co-localisation statistics
- ♦ 3D visualisation & analysis
- ♦ Automation of processing and analysis tasks

23. Artificial intelligence and machine learning in microscopy Dominic Waithe

- ♦ Overview of AI and introduction to machine learning (ML)
- ♦ ML applied to Microscopy
- ♦ Practical considerations for ML

24. Panel discussion, wrap-up session and Quiz All speakers

- **♦** Quiz
- Guided discussion through topics of the day that need revisiting

Day 4: Thu 19 Nov 2020 - Super-resolution microscopy

Morning session: Structured Illumination and localisation microscopy (Chair: Ian Dobbie)

25. Introduction to Super-resolution / Structured Illumination Microscopy Lothar Schermelleh

- ♦ Brief Need for super res and history and Overview of super resolution
- ♦ Principles of SIM
- ♦ Linear SIM methods
- ♦ Reconstruction artifacts
- ♦ Lattice SIM
- ♦ Biological applications
- ♦ Pros and cons

26. Single-molecule imaging and localisation microscopy Stephan Uphoff

- ♦ The principle of localisation microscopy: imaging individual molecules
- ♦ TIRF Microscopy
- ♦ Single-molecule imaging
- ♦ Variants of LM: PALM, FPALM, STORM, dSTORM, GSDIM
- ♦ Tips on sample preparation for Localisation microscopy
- ♦ Biological applications
- Pros and cons

Afternoon session: Nanoscopy and custom-built systems (Chair: Carina Mónico)

27. STimulated Emission Depletion microscopy (STED) Silvia Galiani

- ♦ Principles of STED, RESOLFT
- ♦ Sample preparation & dyes
- ♦ Biological applications
- ♦ Challenges of STED microscopy
- Minflux microscopy

28. Introduction to Bespoke Microscope Design Ian Dobbie

- ♦ Why build a microscope? Example DeepSIM
- ♦ Design and built considerations
- ♦ Adaptive Optics
- ♦ CryoSIM
- ♦ Maintenance and sustainability

29. Conclusions and overview discussion on different microscopy techniques Ian Dobbie

- ♦ Practical considerations to choose the right microscopy technique
- 30. Students imaging challenges All speakers
- 31. Panel discussion, wrap-up session and Quiz All speakers
 - ♦ Quiz
 - ♦ Guided discussion through topics of the day that need revisiting

Course contributors

Professor Ilan Davis

Course Director and Micron Director Department of Biochemistry Ilan.davis@bioch.ox.ac.uk

Course Organisers

Dr Carina Mónico

Course Organiser, Lecturer / Demonstrator Micron Assistant Facility Manager Department of Biochemistry carina.monico@bioch.ox.ac.uk

Dr Nadia Halidi

Course Organiser, Lecturer / Demonstrator Micron Facilities Manager Department of Biochemistry nadia.halidi@bioch.ox.ac.uk

Lecturers and Demonstrators

Dr Ian Dobbie Lecturer /Demonstrator Micron Senior Research Fellow Department of Biochemistry ian.dobbie@bioch.ox.ac.uk

> Dalia Gala Demo moderator DPhil Candidate Department of Biochemistry dalia.gala@merton.ox.ac.uk

Nick Hall Demonstrator DPhil Candidate at Micron Department of Biochemistry nicholas.hall@dtc.ox.ac.uk

Dr Errin Johnson Lecturer Electron Microscopy Facility Manager Dunn School of Pathology errin.johnson@path.ox.ac.uk

Dr Kseniya Korobchevskaya Demonstrator Microscopy Staff Scientist Kennedy Institute of Rheumatology, kseniya.korobchevskaya@kennedy.ox.ac.uk

Dr Chris Lagerholm Lecturer
Wolfson Imaging Centre Facility Manager
Weatherall Institute of Molecular Medicine
christoffer.lagerholm@imm.ox.ac.uk

Dr Marco Fritzsche Demonstrator Associate Professor in Biophysical Immunology Kennedy Institute of Rheumatology marco.fritzsche@rdm.ox.ac.uk

Dr Silvia Galiani Lecturer / demonstrator
Postdoctoral researcher and imaging specialist
Wolfson Imaging Centre
Weatherall Institute of Molecular Medicine
silvia.galiani@rdm.ox.ac.uk

Professor Mark Howarth Lecturer Professor of Protein Nanotechnology Department of Biochemistry mark.howarth@bioch.ox.ac.uk

> **Dr Louis Keal** Lecturer Field Application Specialist Teledyne Photometrics louis.keal@teledyne.com

Dr Sandip Kumar Demonstrator PostDoctoral Researcher Department of Biochemistry sandip.kumar@bioch.ox.ac.uk

Dr David Pinto Lecturer

Micron Software Research Engineer &
System Administrator
Department of Biochemistry
david.pinto@bioch.ox.ac.uk

Dr Chris Power Lecturer
Product and Applications Specialist
for LSM Systems,
ZEISS Microscopy
chris.power@zeiss.com

Dr Ulrike Schulze Lecturer / Demonstrator Image analyst at Wolfson Imaging centre Weatherall Institute of Molecular Medicine ulrike.schulze@rdm.ox.ac.uk

Dr Emily Thornton Lecturer PostDoctoral Researcher Kennedy Institute of Rheumatology emily.thornton@kennedy.ox.ac.uk

Dr Frank Vogler Demonstrator
Application Specialist
Zeiss Microscopy Customer Center Europe
frank.vogler@zeiss.com

Dr Alan Wainman Lecturer / demonstrator
PostDoctoral Researcher and
Dunn School Facility Manager
Dunn School of Pathology
alan.wainman@path.ox.ac.uk

Dr Kristina Zec Demonstrator PostDoctoral Researcher Kennedy Institute of Rheumatology kristina.zec@kennedy.ox.ac.uk Dr Lothar Schermelleh Lecturer / Demonstrator
Associate Professor & Micron
Senior Research Fellow
Department of Biochemistry
lothar.schermelleh@bioch.ox.ac.uk

Dr Matthew Stower Lecturer / demonstrator PostDoctoral Researcher Department of Physiology, Anatomy and Genetics matthew.stower@dpag.ox.ac.uk

> **Dr Stephan Uphoff** Lecturer Sir Henry Dale Research Fellow Department of Biochemistry stephan.uphoff@bioch.ox.ac.uk

Dr Jingyu Wang Demonstrator PostDoctoral Researcher Department of Engineering jingyu.wang@eng.ox.ac.uk

Dr Dominic Waithe Lecturer
UKRI Innovation Fellow
Weatherall Institute of Molecular Medicine
dominic.waithe@imm.ox.ac.uk