Der Betriebspunkt BP liegt dort, wo sich Drosselkurve DK und Rohrleitungskennlinie RLK schneiden (Unterabschnitt 9.2.1.2).

Also
$$\dot{V}_{BP}$$
 bei $H_P = H_{ges}$ mit

 $H_{ges} = H_{stat} + H_{dyn}$ gemäß Gl. $(g-5)$. Hierbei

 $H_{stat} = \Delta H = H_{0W} - H_{UW} = 24 \text{ m}$ und

 $H_{dyn} = Y_V/g$ wobei nach Fluidmechanik [3]

 $Y_V = \sum \left(\lambda \cdot \frac{L}{D} + 5_{ges}\right) \cdot \frac{c^2}{2} = K \cdot \frac{c^2}{2} = \frac{1}{2} \cdot K \cdot \left(\frac{\dot{V}_X}{D^2 \cdot n/4}\right)^2$
 $Y_V = \frac{8}{\pi^2} \cdot K \cdot \frac{\dot{V}_X^2}{D^4}$ Damit

 $H_{dyn} = \frac{8}{\pi^2} \cdot \frac{K}{g \cdot D^4} \cdot \dot{V}_X^2 = f(\dot{V}_X^2)$ (Parabel!)

 $K = 6.27$ und $D = 0.1 \text{ m}$ eingesetzt

 $H_{dyn} = \frac{8}{\pi^2} \cdot \frac{6.27}{9.81 \cdot 0.14} \left[\frac{s^2}{m \cdot m^4}\right] \cdot \dot{V}_X^2$
 $H_{dyn} = 5181 \left[s^2/m^5\right] \cdot \dot{V}_X^2$

Wird hierbei \dot{V}_X in m^3/s eingesetzt, ergibt

 $H_{dyn} = 5181 \cdot \dot{V}_X^2$ in m

Tabellarisch ausgewertet und aufgezeichnet:

Ϋ́χ	m3/h	0	30	50	70	100	120
ν _×	m3/s	0	0,008	0,014	0,019	0,028	0,033
$H_{\mathbf{P}}$	m	34	35,5	34,5	32,5	28	24
Hayn	m	0	0,36	1,0	1,96	4,0	5,76
H _{stat}	m	-		-24-			-
Hges	m	24	24,36	25	25,96	28	29,76
yes		1 - 1	2 130		20,56	R	· · · · · · · · · · · · · · · · · · ·

Bild 1. Lösungsskizze zu Ü 37, Kennlinien.

Es ergibt sich somit: $\dot{v}_{BP} = 100 \text{ m}^3/\text{h}$

b)
$$H_{V,ges} = H_{dyn} = 4.0 \text{ m}$$

 $Y_{V,ges,BP} = g \cdot H_{V,ges,BP} = 9.81 \cdot 4 = 39.2 \text{ m}^2/\text{s}^2$
 $H_{ges,BP} = 28 \text{ m}$

c)
$$P_e = \dot{m} \cdot Y_e = \dot{m} \cdot Y/\eta_e = g \cdot \dot{V} \cdot g \cdot H_{ges}/\eta_e$$

 $P_{e,BP} = 10^3 \cdot 0.028 \cdot 9.81 \cdot 28/0.78 \left[kg/m^3 \cdot m^3/s \cdot m/s^2 \cdot m \right]$
 $P_{e,BP} = 9860.3 \text{ W} = 10 \text{ kW}$

d)
$$P_{V,RL,BP} = \dot{m} \cdot Y_{V,ges} = g \cdot \dot{V} \cdot Y_{V,ges}$$

= $10^3 \cdot 0.028 \cdot 39.2 \left[kg/m^3 \cdot m^3/s \cdot m^2/s^2 \right]$
= $1097.6 W = 1.1 kW$

$$\gamma_{RL} = \frac{P_{RL} - P_{V_{i,RL}}}{P_{RL}} = \frac{Y_{ges} - Y_{V_{i,ges}}}{Y_{ges}} \quad gemä\beta \quad Gl. (8-147)$$

$$\eta_{RL} = \frac{H_{ges} - H_{V,ges}}{H_{ges}} = 1 - H_{V,ges} / H_{ges}$$

$$7_{RL,BP} = 1 - 4/28 = 0.857 \approx 0.86$$