

1 ere année; 37 eme promotion

MATHEMATIQUES EXAMEN N°1

L. BISIAUX

Documents interdits - Calculatrice interdite

Le sujet comporte 4 exercices indépendants.

La clarté de la présentation et la qualité de la rédaction entreront pour une part importante dans l'évaluation de la copie

EXERCICE 1: (4 points)

Résoudre sur]0;+ ∞ [l'équation différentielle : $xy'+2y = \frac{2}{1+x^2}$ avec la condition initiale $y(1) = \ln(2)$.

EXERCICE 2: (5 points)

Supposons dans la chute des corps que la résistance de l'air n'est pas négligeable. Si elle est proportionnelle à la vitesse , on aura R=kv où k dépend de la forme du corps. Le principe fondamental de la dynamique donne alors P-kv=ma dv

donc
$$mg - kv = m\frac{dv}{dt}$$
.

- 1) Résoudre cette équation différentielle, c'est à dire exprimer v(t) sachant qu'à l'instant t=0 la vitesse est nulle. Que se passe t-il lorsque t est grand ($t \to +\infty$). Interpréter.
- 2) Sachant que $v = \frac{dx}{dt}$, en déduire l'espace parcouru x(t) avec la condition initiale x=0 quand t=0.

EXERCICE 3: (5 points)

La forme $\omega(x,y) = (x^2y + y^2 + 2xy)dx + (x^2 + x)(x + 2y)dy$ n'est pas une différentielle totale exacte. Trouver alors une fonction $\alpha(x)$ telle que $\alpha(x)\omega(x,y)$ soit une forme exacte. Intégrer la nouvelle forme obtenue. (α est appelé facteur intégrant)

EXERCICE 4: (6 points)

Le but de l'exercice est la résolution de l'équation différentielle (E) : $x(x^2+1)y'-2y=x^3(x-1)^2e^{-x}$ où y représente une fonction de x dérivable sur $[0;+\infty[$.

- 1) a) Déterminer les réels a, b, c tels que pour tout x de $]0;+\infty[$, $\frac{2}{x(x^2+1)} = \frac{a}{x} + \frac{bx+c}{x^2+1}$.
 - b) En déduire une primitive sur $]0;+\infty[$ de la fonction $x\mapsto \frac{2}{x(x^2+1)}$.
- 2) Résoudre sur $0;+\infty$ l'équation différentielle $x(x^2+1)y'-2y=0$.
- 3) On se propose de déterminer une fonction g dérivable sur $]0;+\infty[$ telle que la fonction $h:x\mapsto \frac{x^2}{x^2+1}g(x)$ soit une solution particulière de (E).
 - a) Montrer que, pour qu'il en soit ainsi, on doit avoir $g'(x) = (x-1)^2 e^{-x}$.
 - b) Déterminer les réels α, β, γ tels que la fonction $x \mapsto (\alpha x^2 + \beta x + \gamma)e^{-x}$ soit une primitive sur $]0; +\infty[$ de g'(x).
 - c) En déduire une solution particulière de l'équation (E) puis les solutions générales de cette équation.