Complexity of some arc-partition problems for digraphs J. Bang-Jensen, S. Bessy, D. Gonçalves, L. Picasarri-Arrieta

Journées Graphes et Algorithmes 2021

Arc(edge)-partitioning problems

Given two properties P_1 , P_2 , the (P_1, P_2) -arc-partitioning problem consists of deciding whether a digraph D = (V, A) has a partition of its arcs in two subsets A_1 and A_2 such that (V, A_i) has property P_i .

Figure: A digraph with a (strongly connected, having out-branching)-arc-partition

Arc-partitioning or edge-partitioning problems are related to fault tolerance.

Undirected case

Using Tutte-Nash-Williams theorem (1961), one can decide in **polynomial** time if G = (V, E) has k edge-disjoint spanning trees.

Directed case

It is NP-complete to decide if D = (V, A) has 2 arc-disjoint strongly connected spanning subdigraphs (Bang-Jensen & Yeo, 2004).

We fixed 15 properties we wanted to study:

- connected,
- strongly connected,
- acyclic,
- acyclic spanning,
- having an out-branching,
- having an in-branching,
- \bullet $\delta^+ \geq k$
 - ⇒ 120 arc-partitioning problems to study

•
$$\delta^- > k$$
,

- cycle factor,
- $\bullet \geq k \ arcs,$
- $\bullet \leq k \ arcs,$
- balanced,
- eulerian,
- being a cycle.

	Bipartite	Connected	Strongly Connected	A li-	Ali	Out-Branching	In Donahina		$\delta^- > k$	$\delta^+ > k$	Cycle Factor	< k arcs	> k arcs	Balanced	Fulerian	Cycle
	Bipartite	Connected	Strongly Connected	Acyclic	Acyclic span.	Out-Branching	In-Branching		0 ≥ K	0 - < K	Cycle Factor	≥ x aics	≥ K aics	Dalanceu	Luierian	Cycle
Bipartite	NPC	Poly	Poly	NPC	NPC	Poly	Poly	Bipartite	Poly	Poly	NPC	NPC	Poly	NPC	NPC	NPC
Connected	×	Poly	NPC	Poly	NPC	NPC	NPC	Connected	Poly	Poly	NPC	Poly	Poly	Poly	NPC	NPC
Strongly Connected	×	×	NPC	Poly	NPC	NPC	NPC	Strongly Connected	NPC	NPC	NPC	Poly	NPC	Poly	NPC	NPC
Acyclic	×	×	×	Poly	Poly	Poly	Poly	Acyclic	Poly	Poly	NPC	NPC	Poly	Poly	NPC	NPC
Acyclic span.	×	×	×	×	Poly	NPC	NPC	Acyclic spanning	Poly	Poly	NPC	NPC	Poly	NPC	NPC	NPC
Out-Branching	×	×	×	×	×	Poly	NPC	Out-Branching	Poly	NPC	NPC	Poly	Poly	Poly	NPC	NPC
In-branching	×	×	×	×	×	×	Poly	In-branching	NPC	Poly	NPC	Poly	Poly	Poly	NPC	NPC

	$\delta^- \ge k$	$\delta^+ \ge k$	Cycle Factor	≤ k arcs	$\geq k$ arcs	Balanced	Eulerian	Cycle
$\delta^- \ge k$	Poly	Poly	Poly	Poly	Poly	Poly	NPC	Poly
$\delta^+ \ge k$	×	Poly	Poly	Poly	Poly	Poly	NPC	Poly
Cycle Factor	×	×	Poly	Poly	Poly	Poly	NPC	NPC
≤ k arcs	×	×	×	Poly	Poly	Poly	NPC	NPC
≥ k arcs	×	×	×	×	Poly	Poly	NPC	Poly
Balanced	×	×	×	×	×	Poly	Poly	Poly
Eulerian	×	×	×	×	×	×	NPC	NPC
Cycle	×	×	×	×	×	×	×	NPC

Classification of arc-partitioning problems for digraphs

Some known results

• (connected, connected): Polynomial (Tutte-Nash-Williams' theorem, 1961). G = (V, E) has t edge-disjoint spanning trees iff for every partition $V_1, ..., V_\ell$ of V, there are at least $t(\ell-1)$ crossing edges. One can compute them in polynomial time (Kaiser's algorithmic proof, 2012).

- (connected, connected): Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (having an out-branching, having an out-branching): Polynomial (Edmonds' branching theorem, 1973).

D = (V, A) has k arc-disjoint out-branchings rooted in r if and only if, $\forall X \subseteq V \setminus \{r\}$, there are k arcs from $V \setminus X$ to X.

- (connected, connected): Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching): Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching): NP-complete (Thomassen, 1989).

Conjecture (Thomassen)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (out-branching, in-branching)-arc-partition.

- solved for digraphs with a universal vertex (Bang-Jensen, Huang, 1995),
- solved for digraphs with independence number at most 2 (Bang-Jensen, Bessy, Havet, Yeo, 2020)

- (connected, connected): Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching): Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching): NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected): NP-complete (Bang-Jensen, Yeo, 2004).

Conjecture (Bang-Jensen, Yeo)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (strongly connected, strongly connected)-arc-partition.

solved for locally semi-complete digraphs (Bang-Jensen, Huang, 2012)

- (connected, connected): Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching): Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching): NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected): NP-complete (Bang-Jensen, Yeo, 2004).
- (out-branching, connected): NP-complete (Bang-Jensen, Yeo, 2012).
- (strongly connected, connected): NP-complete (Bang-Jensen, Yeo, 2012).

An overview on arc-partitioning problems

- Trivial problems : The (P_1, P_2) -arc-partitioning problem is trivially polynomial when :
 - P_1 holds for the **arcless digraph**, bipartite, acyclic, $\leq k$ arcs, balanced
 - P_2 is upward closed, connected, strongly connected, having an out(in)-branching, $\delta^+ \geq k, \delta^- \geq k, \geq k$ arcs

A digraph D has such a partition if and only if D has property P_2 . If this is the case then $(\emptyset, A(D))$ is a partition.

- Trivial problems: polynomial, 28 problems.
- ($\geq k$ arcs, P_2): it can be solved in polynomial time when computing the minimum size of a subgraph of D having property P_2 can be solved in polynomial time. $\geq k$ arcs, $\delta^+ \geq k$, $\delta^- \geq k$, cycle, connected, having an out(in)-branching, acyclic spanning, cycle factor.

- Trivial problems: polynomial, 28 problems.
- ($\geq k$ arcs, P_2): polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs :
 - Since the hamiltonian cycle problem is known to be NP-complete on 2-regular digraphs (Bang-Jensen, Gutin, 2009), one can easily show that 16 arc-partitioning problems are NP-complete.
 - For example, a 2-regular digraph has a hamiltonian cycle if and only if it has a (connected, cycle factor)-arc partition.

- Trivial problems: polynomial, 28 problems.
- ($\geq k$ arcs, P_2): polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs : NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs :
 - Since deciding if a 2-regular digraph has two arc-disjoint hamiltonian cycles is known to be NP-complete (Bang-Jensen & Yeo, 2012), one can easily show that 12 arc-partitioning problems are NP-complete.
 - For example, a 2-regular digraph has two arc-disjoint hamiltonian cycles if and only if it has a (eulerian, connected)-arc-partition.

- Trivial problems: polynomial, 28 problems.
- ($\geq k$ arcs, P_2): polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs : NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs : NP-complete, 12 problems.
- Already known problems: 13 problems.

A polynomial-time solvable arc-partitioning problem

Theorem

a connected digraph D has an (acyclic spanning, acyclic spanning)-arc-partition iff $\delta(D) \geq 2$ and D is not the orientation of an odd cycle.

Le D be a connected digraph, then :

- if $\delta(D) < 2$ or if D is the orientation of an odd cycle, clearly D does not have such a partition,
- if *D* is the orientation of an even cycle, clearly *D* has such a partition.

We assume that $\delta(D) \geq 2$ and D is not the orientation of a cycle.

• First, note that *D* has an (acyclic,acyclic)-arc-partition.

• Since $\delta(D) \geq 2$, it is easy to see that D has an (acyclic, acyclic spanning)-arc-partition.

• Let (A_1, A_2) be such a partition which minimize the number of vertices not covered by A_1 , and assume there is a vertex v not covered by A_1 .

• each path from v must be alternating between A_1 and A_2 ,

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,

- each path from v must be alternating between A_1 and A_2 ,
- ② the vertex v belongs to every cycle in D,
- there are not two edge-disjoint cycles in D,

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,
- 3 there are not two edge-disjoint cycles in D,
- there are two different cycles in D,

- lacktriangle each path from v must be alternating between A_1 and A_2 ,
- the vertex v belongs to every cycle in D,
- \odot there are not two edge-disjoint cycles in D,
- there are two different cycles in D,
- there is a vertex x, different from v, which has degree at least 3,

- lacktriangle each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,
- \odot there are not two edge-disjoint cycles in D,
- there are two different cycles in D,
- there is a vertex x, different from v, which has degree at least 3,
- \bullet considering three maximal path from x, one can find three vertex-disjoint path from x to v,

This is a contradiction because of rule 1. This shows that A_1 must cover every vertex, and (A_1, A_2) is an (acyclic spanning, acyclic spanning)-arc-partition of D.

The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem

• The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.

- The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \ge 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^+ \ge 1$)-arc-partition.

- The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \ge 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^+ \ge 1$)-arc-partition.
- The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs, because the hamiltonian cycle problem is NP-complete on this class of graphs :

- The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \geq 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^+ \geq 1$)-arc-partition.
- The (strongly connected, $\delta^+ \geq 1$)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs.
- Every 2-arc-strong digraph with minimum out-degree at least 4 has a (strongly connected, $\delta^+ \geq 1$)-arc-partition.

Let D = (V, A) be a **2-arc-strong** digraph with minimum **out-degree at least 4**. Let $X \subseteq V$ and (A_1, A_2) be a partition of A(D[X]). (X, A_1, A_2) is **good** iff $\exists x_0 \in X$ such that :

- $D_1 = (X, A_1)$ is strongly connected,
- $\forall x \in X, x \neq x_0$, either $d_{A_2}^+(x) \geq 1$ or $|N(x) \setminus X| \geq 2$,
- $d_{A_2}^+(x_0) \ge 1$ or $|N(x_0) \setminus X| \ge 1$.

D always has such a good tuple, let (X, A_1, A_2) be such a tuple which maximize the size of X, and assume that |X| < |V|.

Let u be an out-neighbour of x_0 in X, P_1 a path from X to u in $D - \{x_0u\}$, and P_2 a path from u to X.

One can get a better tuple (X', A'_1, A'_2) where :

- $X' = X \cup V(P_1) \cup V(P_2)$
- $A'_1 = X \cup A(P_1) \cup A(P_2)$
- $\bullet \ A_2' = A(D[X']) \setminus A_1'$

Then we know that X = V and (A_1, A_2) is a (strong, $\delta^+ \geq 1$)-arc-partition of D.

	In general	2-arc-strong	3-arc-strong
$\delta^+ \geq 2$	NP-c	NP-c	×
$\delta^+ \geq 3$	NP-c	?	?
$\delta^+ \geq 4$	NP-c	Always true	Always true

Problem

Does every 2-arc-strong digraph with minimum out-degree at least 3 have a (strongly connected, $\delta^+ \geq 1$)-arc-partition ?

Open problems

Theorem

Every 2-arc-strong outerplanar multi-digraph have a (strong, strong)-arc-partition.

Problem

Does every 3-arc-strong planar digraph have a (out-branching,in-branching)-arc-partition? a (strong,strong)-arc-partition?

We know that every 2-arc-strong digraph with a universal vertex have an (out-branching, in-branching)-arc-partition.

Problem

Does every 3-arc-strong digraph with a universal vertex have a (strong, strong)-arc-partition?

Conclusion

Thanks for your attention.

