1° TESTE DE ÁLGEBRA LINEAR LEE, LEGI, LEIC-T, LERC 12 de outubro de 2012

Teste 101

Nome: Número: Curso:

O Teste que vai realizar tem a duração total de **45 minutos** e consiste de sete problemas. Os cinco primeiros são perguntas de escolha múltipla, pelo que deve assinalar a sua opção no primeiro quadro abaixo. As resposta erradas descontam 1/10 da cotação indicada. Os restantes problemas têm as cotações indicadas na segunda tabela abaixo.

Perg 1	2 Val	a
Perg 2	2 Val	a
Perg 3	3 Val	a
Perg 4	3 Val	d
Perg 5	3 Val	c

O quadro abaixo destina-se à correção da prova. Por favor não escreva nada.

Prob 6	4 Val	
Prob 7	3 Val	

NOTA FINAL:

Identifique a única matriz em forma reduzida de linhas.

- $\begin{array}{ccccc} (a) & & \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$
- (b) $\begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- $\text{(c)} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Assinale a sua opção no quadro da página 1!

Problema 2

Classifique o seguinte sistema de equações lineares

$$\begin{array}{rcccccccc}
x_1 & +x_2 & +x_3 & = & 7 \\
x_1 & -x_2 & +2x_3 & = & 7 \\
5x_1 & +x_2 & +x_3 & = & 11
\end{array}$$

Indique a única afirmação verdadeira.

- (a) Possível e determinado
- (b) Possível e indeterminado
- (c) Impossível

Assinale a sua opção no quadro da página 1!

Dada a seguinte matriz aumentada dum sistema de equações lineares

$$\begin{bmatrix} 1 & 2 & -3 & -9 \\ 0 & 1 & 4 & 8 \\ 0 & -2 & -8 & 17 \end{bmatrix}$$

verifique se o sistema é possível e encontre a solução geral. Caso não haja solução, escolha essa afirmação.

- (a) Não existe solução
- (b) $x_1 = -9 2x_2 + 3x_3$ $x_2 \in \mathbb{R}$ $x_3 \in \mathbb{R}$
- (c) $x_1 = -25 + 11x_3$ $x_2 = 8 - 4x_3$ $x_3 \in \mathbb{R}$

Assinale a sua opção no quadro da página 1!

Problema 4

Sejam os vetores $\mathbf{a_1} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} -3 \\ -4 \\ 1 \end{bmatrix}$, $\mathbf{a_3} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$ e $\mathbf{b} = \begin{bmatrix} -4 \\ 2 \\ 2 \end{bmatrix}$. Verifique se o vetor \mathbf{b} se pode

escrever como combinação linear dos vetores $\mathbf{a_1}$, $\mathbf{a_2}$ e $\mathbf{a_3}$, i.e verifique se existem pesos x_1 , x_2 e x_3 tais que $x_1\mathbf{a_1} + x_2\mathbf{a_2} + x_3\mathbf{a_3} = \mathbf{b}$.

3

(a)
$$x_1 = -6$$
, $x_2 = 0$, $x_3 = 1$

(b)
$$x_1 = -2, x_2 = -1, x_3 = 2$$

(c)
$$x_1 = 2$$
, $x_2 = 1$, $x_3 = -\frac{3}{2}$

(d) Não existe solução

Assinale a sua opção no quadro da página 1!

Sejam
$$A = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 5 & -1 \\ 3 & -6 & -3 \end{bmatrix}$$
 e $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Considere a equação matricial $A\mathbf{x} = \mathbf{b}$ e descreva o conjunto de todos os vetores \mathbf{b} , i.e. as condições sobre as coordenadas b_1 , b_2 , b_3 , para os quais a equação tem solução.

- (a) A equação tem solução para todos as possíveis coordenada b_1 , b_2 , b_3 .
- (b) A equação tem solução para todos os b_1 , b_2 , b_3 que pertençam ao plano $-3b_1+b_3=0$.
- (c) A equação tem solução para todos os b_1 , b_2 , b_3 que pertençam ao plano $3b_1 + 3b_2 + b_3 = 0$.
- (d) A equação tem solução para todos os b_1 , b_2 , b_3 que pertençam ao plano $-b_1 + b_2 + b_3 = 0$.

Assinale a sua opção no quadro da página 1!

Descreva o conjunto solução do seguinte "sistema" homogéneo

$$-2x_1 + 12x_2 - 6x_3 = 0,$$

que consiste apenas duma equação linear. Dê a sua resposta na forma vectorial paramétrica, escolhendo x_2 e x_3 para variáveis livres.

Apresente todos os cálculos que tiver de efectuar!

Seja \mathbf{p} uma solução para a equação matricial não-homogénea $A\mathbf{x} = \mathbf{b}$, i.e. $A\mathbf{p} = \mathbf{b}$. Seja ainda \mathbf{v}_h uma qualquer solução para a equação homogénea $A\mathbf{x} = \mathbf{0}$.

Finalmente, considere $\mathbf{u} = \mathbf{p} + \mathbf{v}_h$ e mostre que se trata também duma solução para a equação matricial não-homogénea $A\mathbf{x} = \mathbf{b}$.

 $Sugest\~ao$: use as propiedades do produto matriz-vetor.