Lane Segmentation Week 1

主要内容

- 计算机视觉学习提速绝招
- 项目概述
- ResNet
- ResNeSt

朱利明

人工智能资深讲师,华为云AI社区达人

2002年毕业于中科院研究生院,近二十年软件和算法研发经验,主要研究领域为自动驾驶、人体姿态识别、3D计算机视觉,具有京东、华为等大厂AI资源,在人工智能课程研发和教学有丰富经验,已指导近千位同学进入计算机视觉领域。

微信: aiking2018

入行的最短时间

• 六个月-三个月

学习提速绝招

- 明确目标
- 确定最短学习路径
- 选择正确的参考书
- 必学必会

明确学习目标

- 求职
- 毕设
- 提高水平

确定最短学习路径

- AI是一个开放领域,没有明确的考试大纲
- 有所学有所不学

预备知识

- Python
- Machine Learning
- CNN and Image Classification
- Tensorflow or Pytorch
- English
- Math

你听到的

- 数学要求高(高数、线性代数、概率论)
- 要懂机器学习
- 要精通Python
- 要会Tensorflow/Pytorch
- 要会OpenCV......
- 要会C++

你看到的

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right] \\ + \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \\ + \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2} \end{split}$$

其实可以这样

- 很少的数学知识
- 很少的机器学习
- 基本的Python

选择正确的参考书

Framework

C) PyTorch

Lane Segmentation

项目设计原则

- 紧扣前沿热门领域:无人驾驶
- 既重视特定项目实战
- 又重视算法的普适性
- 关注领域最新发展

Howard Chow

Make your hand dirty

1小时前

O Alan Wang, Al-King

Rongfan Leo: 效果还挺好的

Lane Segmentation

- 骨干网络: ResNet
- 语义分割进入深度学习时代: FCN
- 简单实用: U-Net
- Google出品: Deeplab v3+

Lane Segmentation

- 项目框架实战
- 模型训练实战
- 模型部署实战
- 图像分割最新发展: 全景分割

Notes

Backbone Network

- VGG
- ResNet

VGG

VGG

ConvNet Configuration								
A	A-LRN	В	C	D	Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			

VGG-BN

```
def make_layers(cfg, batch_norm=False):
    layers = []
    in_{channels} = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in\_channels = v
    return nn.Sequential(*layers)
```

参数初始化

```
def _initialize_weights(self):
    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1)
            nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, 0, 0.01)
            nn.init.constant_(m.bias, 0)
```

ResNet

Deep Network Degradation

Notes

Residual Learning

$$\mathcal{H}(\mathbf{x})$$

$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}.$$

$$\mathcal{H}(\mathbf{x}) \mathcal{F}(\mathbf{x}) + \mathbf{x}$$
.

Residual Learning

Notes

Identity Mapping Shortcut

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

1x1 Convolution

ResNet

ResNet

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array}\right] \times 3 $		
	1×1	average pool, 1000-d fc, softmax						
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹		

Global Average Pooling

Global Average Pooling

Fully connected layer Global average pooling average flatten 245 W[245, 5] softmax softmax

1225 weights

Yay CheapsKate!

Global Average Pooling

- torch.nn.AdaptiveAvgPool2d(output_size)
- tf.keras.layers.GlobalAvgPool2D

BottleNeck

ResNet新发展

- ResNeXt
- ResNeXt-Attention
- ResNeXt WSL
- ResNeSt

ResNeXt

ResNeXt-Attention

SENet

Figure 1: A Squeeze-and-Excitation block.

ResNeXt WSL

O PyTorch

Get Started

Ecosystem

Mobile

Blog

Tutorials

Docs Resources

GitHub

Q

View on Github

Open on Google Colab

Fig. 5: Classification accuracy on val-IN-1k using ResNeXt-101 32×{4, 8 16, 32, 48}d with and without pretraining on the IG-940M-1.5k dataset.

```
import torch
model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x8d_wsl')
# or
# model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x16d_wsl')
# or
# model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x32d_wsl')
# or
#model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x48d_wsl')
model.eval()
```

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape $(3 \times H \times W)$, where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

ResNeSt

2020

ResNeSt: Split-Attention Networks

Hang Zhang, Chongruo Wu*, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola

Amazon, University of California, Davis* {hzaws,chongrwu,zhongyue,yzaws,haibilin,zhiz,ysunmzn,htong,jonasmue,manmatha,mli,smola}@amazon.com

cs.CV

Abstract. While image classification models have recently continued to advance, most downstream applications such as object detection and semantic segmentation still employ ResNet variants as the backbone net-

Notes

课程总结

- 计算机视觉学习提速绝招
- 项目概述
- ResNet
- ResNeXt

重难点

ResNet

参考资料

- 动手学深度学习
- Very deep convolutional networks for large-scale image recognition
- Deep Residual Learning for Image Recognition
- Aggregated Residual Transformations for Deep Neural Networks

ResNeSt: Split-Attention Networks

课程作业

- 使用Pytorch逐行实现ResNet-152
- 加载Pytorch官方预训练参数(ImageNet-1000)
- 实现图像识别功能

Week 2: FCN

