TFT-Display Datenblatt

Modell SCF0700M48GGU04

Kurzdaten

Hersteller Data Image Diagonale 7" / 17,8cm

Format 16:9

Auflösung 1024x600

Backlight LED / 300cd/m²

Interface LVDS

Touchscreen ja

Temperatur -10...+60°C (Betrieb)

HY-LINE Computer Components Vertriebs GmbH Inselkammerstr. 10, 82008 Unterhaching bei München Tel.: +49 89 614 503 40 || Fax: +49 89 614 503 50 computer@hy-line.de || www.hy-line.de/computer

DATA IMAGE CORPORATION

TFT Module Specification

Preliminary

ITEM NO.: SCF0700M48GGU04

Table of Contents

1. COVER	& CONTENTS			1		
2. RECOR	D OF REVISION			2		
3. APPLIC	ATION	3				
4. GENER	AL SPECIFICATI	ONS		3		
5. ABSOLU	JTE MAXIMUM F	RATINGS		3		
6. ELECTF	RICAL CHARACT	ERISTICS		4		
7. INPUT S	SIGNAL CHARAC	CTERISTICS ·····		5		
8. OPTICA	L CHARACTERI	STIC		8		
9. PIN COI	NNECTIONS ·····			11		
10. BLOCK	DIAGRAM ······			13		
11. CTP GE	NERAL SPECIFI	CATIONS		14		
12. APPLIC	2. APPLICATION CIRCUIT······					
13. APPEAR	13. APPEARANCE SPECIFICATION ······ 2					
14. QUALIT	Y ASSURANCE			28		
15. LCM PRODUCT LABEL DEFINE ·····				29		
16. PRECAUTIONS IN USE LCM ······				31		
17. OUTLINE DRAWING ······				32		
18. PACKA	GE INFORMATIO)N		33		
Customer Companies	R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.		
	JACK	JOE	GARY	KEN		
Approved by	Version:	Issued Date:	Sheet Code:	Total Pages:		

33

14/MAR/12'

3

2. RECORD OF REVISION

Rev	Date	Item	Page	Comment
1	18/MAY/11'			Initial preliminary
2	08/NOV/11'	11 14 17	14 28 32	1.Modify CTP GENERAL SPECIFICATIONS 2.Modify QUALITY ASSURANCE 3.Modify OUTLINE DRAWING from Rev: 1 to 2
3	14/MAR/12'	4 6.2 10 11.1 11.2 12 17 18	3 4 13 14 14 24 32 33	1.Modify Surface treatment 2.Modify Current for Driver 3.Modify BLOCK DIAGRAM 4.Add Finger & Modify Point hitting life time 5.Delete ESD 6.Update DC-DC circuit 7.Modify OUTLINE DRAWING from REV.2 to REV.3 8.Add PACKAGE INFORMATION

3. APPLICATION

DVD player, Car TV, UMPC, POS

4. GENERAL SPECIFICATIONS

Parameter	Specifications	Unit
Screen Size	7 (diagonal)	inch
Display Format	1024(H) x (R,G,B) x 600(V)	dot
LCD Active Area	153.6(W) × 90.0(H) mm	mm
Dot Pitch	0.05(W) × 0.15(H) mm	mm
Pixel Configuration	Stripe	
Outline Dimension	179.7(W) x 107.6(H) x 5.46 (D)	mm
Surface treatment	Clear	
Back-light	LED	
Display mode	Normally white	
Weight	195(typ)	g
View Angle direction	6 o'clock	

5. ABSOLUTE MAXIMUM RATINGS

GND=0V

						U. 12 U.			
Pa	rameter	Symbol	MIN.	MAX.	Unit	Remark			
		VDD	-0.3	5.0	V				
		AVDD	6.5	13.5	V				
Power sup	ply voltage	VGH	-0.3	42.0	V	Ta=25°C			
			-20	0.3	V				
		VGH-VGL	-	40	V				
Operating	temperature	Тор	-10	60	°C	Module surface*			
Storage te	mperature	Tst	-20	70	°C	-			
Humidity	Operation		20%~90% relative humidity						
riumiuity	Non Operation		5%~90% rela	5%~90% relative humidity					

6. ELECTRICAL CHARACTERISTICS

6.1 Operating Conditions

GND=0V, fH=38.1KHz, fV=60Hz, fCLK=50.2MHz, Ta=25°C

Parameter	Symbol	MIN.	Тур.	MAX.	Unit	Remark
	VDD	3.0	3.3	3.6	V	
Power Supply voltage	AVDD	10.8	11	11.2	V	
Fower Supply voltage	VGH	19.7	20	20.3	V	
	VGL	-6.5	-6.8	-7.1	V	
Input signal voltage	VCOM	2.8	3.8	4.8	V	Note3
Differential Input High Threshold	RxVTH	-	-	100	[mV]	RxVCM=1.2V Note 2
Differential input Low Threshold	RxVTL	-100	-	-	[mV]	Note 2
Input voltage range (singled-end)	RxVIN	0		2.4	٧	
Differential input common mode voltage	RxVCM	VID /2		2.4- VID /2	V	
Differential voltage	[Vid]	0.2		0.6	V	
Differential input leakage current	RVxliz	-10		+10	uA	
"H" level logical input voltage	V _{IH}	0.7VDD		VDD	V	Note1
"L" level logical input voltage	V_{IL}	0		0.3 VDD	V	Note

Note 1: LVDS, Reset.

Note 2: LVDS Signal Waveform.

Single-end Signals

Note 3: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR;

6.2 Current Consumption

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remark
	lgн	-	0.2	1.0	mA	VGH=20V
Current for Driver	lg _L	-	0.2	1.0	mA	VGL=-6.8V
Current for Driver	Ivdd	-	50	60	mA	VDD=3.3V
	lavdd	-		0.3	mA	AVDD=11V

SCF0700M48GGU04 REV:3

6.3 Backlight Driving Consumption

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED voltage	V_L	-	9.3	10.2	V	Note 1
LED current	ΙL	-	160	170	mA	
LED life time	-	-	20000		hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 and IL =160mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 and IL =160mA. The LED lifetime could be decreased if operating IL is lager than 160mA.

7. INPUT SIGNAL CHARACTERISTICS

7.1 AC Characteristics

7.1.1 AC Electrical Characteristics

Parameter	Symbol	MIN.	Тур.	MAX.	Unit	Remark
Clock Frequency	RxFCLK	40.8	51.2	67.2	I 1//H7	Frame rate =60Hz
Input data skew margin	Trskm	500	-	-	ps	
Clock high time	TLVCH	-	4/(7*RxFCLK)	-	ns	
Clock low time	TLVCL	-	3/(7*RxFCLK)	-	ns	
Horizontal display area	TDEH	-	1024		RxFCLK	
HS period time	TDEH+TDEL	1114	1344	1400	RxFCLK	
HS Blanking	TDEL	90	320	376	RxFCLK	
Vertical display area	TDE	-	600	-	TDEH+TDEL	
VS period time	TDE+TDEB	610	635	800	TDEH+TDEL	
VS Blanking	TDEB	10	35	200	TDEH+TDEL	

7.1.2 Input Clock and Data Timing Diagram

7.2 Timing Controller Timing Chart 7.2.1 Data Input format

6bit LVDS input

8bit LVDS input

Note: Support DE timing mode only, SYNC mode not supported

8. OPTICAL CHARACTERISTIC

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
		θL		-	75		deg	
Viewing		θR	Center	-	75			Note 1,2,3
Angle		θТ	CR≥10	-	70			11016 1,2,3
		θВ		-	75			
Contrast Ratio		CR	at optimized viewing angle	5000	700			Note 2,3,4
Response time	Rise	Tr	Center	-	10	20	ms	Note 2,3,6
ixesponse unie	Fall	Tf	θ x= θ y =0°	-	10	20	ms	11016 2,3,0
Uniformity		B-uni	θ x =θ y =0°	70	-		%	Note 2,3,5
Brightness		L	θ x =θ y =0°	240	300		cd/m²	Note 2,3
Chromaticity		X _W	Center	0.26	0.31	0.36		Note 2,3,7
		y _W	θ x =θ y =0°	0.28	0.33	0.38		11016 2,3,7
Image sticking		tis	2 hours					Note 2,3,8

The following optical specifications shall be measured in a darkroom or equivalent state (ambient luminance ≤ 1 lux, and at room temperature). The operation temperature is $25^{\circ}C\pm2^{\circ}C$ and LED Backlight Current IL=160mA. The measurement method is shown in Note1.

Note 1: Definition of viewing angle range

Note 2: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is IL=160mA.

Note 3: Measured at the center area of the panel and at the viewing angle of the $\theta x = \theta y = 0^{\circ}$

Note 4: Definition of Contrast Ratio (CR):

CR = Luminance with all pixels in white state

Luminance with all pixels in Black state

Note 5: Definition of Brightness Uniformity (B-uni):

B-uni = $\frac{\text{Minimum luminance of 9 points}}{\text{Maximum luminance of 9 points}}$ (Note 5).

Note 6: Definition of Response Time:

The Response Time is set initially by defining the "Rising Time (Tr)" and the "Falling Time (Tf)" respectively. Tr and Tf are defined as following figure.

Note 7: Definition of Chromaticity:

The color coordinates (x_W, y_W) are obtained with all pixels in the viewing field at white states, respectively.

Note 8: Definition of Image sticking (tis):

Continuously display the test pattern shown in the figure below for 2 hours. Then display a completely white screen. The previous image shall not persist more than 2 sec at 25 °C

Image sticking pattern

Page: 10 /33

9. PIN CONNECTIONS

Pin No	Symbol	Description	Remark
1	VCOM	Common Voltage	
2	VDD	Power Voltage for digital circuit	
3	VDD	Power Voltage for digital circuit	
4	NC	No connection	
5	Reset	Global reset pin	
6	STBYB	Standby mode, Normally pulled high STBYB = "1", normal operation STBYB = "0", timing controller, source driver will turn off, all output are High-Z	Note 1
7	GND	Ground	
8	RXIN0-	- LVDS differential data input	
9	RXIN0+	+ LVDS differential data input	
10	GND	Ground	
11	RXIN1-	- LVDS differential data input	
12	RXIN1+	+LVDS differential data input	
13	GND	Ground	
14	RXIN2-	- LVDS differential data input	
15	RXNI2+	+LVDS differential data input	
16	GND	Ground	
17	RXCLKIN-	- LVDS differential data input	
18	RXCLKIN+	+ LVDS differential data input	
19	GND	Ground	
20	RXIN3-	- LVDS differential data input	
21	RXIN3+	+ LVDS differential data input	
22	GND	Ground	
23	NC	No connection	
24	NC	No connection	
25	GND	Ground	
26	NC	No connection	
27	DIMO	Backlight CABC controller signal output	
28	SELB	6bit/8bit mode select	
29	AVDD	Power for Analog Circuit	
30	GND	Ground	
31	LED-	LED Cathode	
32	LED-	LED Cathode	
33	L/R	Horizontal inversion	Note 3
34	U/D	Vertical inversion	Note 3
35	VGL	Gate OFF Voltage	
36	CABCEN1	CABC H/W enable	Note 2
37	CABCEN0	CABC H/W enable	Note 2
38	VGH	Gate ON Voltage	
39	LED+	LED Anode	
40	LED+	LED Anode	

Note 1: If LVDS input data is 6 bits ,SELB must be set to High; If LVDS input data is 8 bits ,SELB must be set to Low.

SCF0700M48GGU04 REV:3

Page: 11 /33

Note 2: When CABC_EN=" 00", CABC OFF.

When CABC_EN=" 01", user interface image.

When CABC_EN=" 10", still picture.

When CABC_EN=" 11", moving image.

When CABC off, don't connect DIMO, else connect it to backlight.

Note 3: When L/R=" 0", set right to left scan direction.

When L/R=" 1", set left to right scan direction.

When U/D=" $\,$ 0" $\,$, set top to bottom scan direction.

When U/D=" 1", set bottom to top scan direction.

9.1 power ON/OFF sequence:

Power on:

10. BLOCK DIAGRAM

11. CTP General specifications

11.1 CTP main feature

Item	Item Specification				
Туре	Transparent type projected capacitive touch panel				
Input mode	Human's finger				
Finger	2				
Outline Dimension	179.7(W) x 107.6(H) x 1.85 (D)	mm			
Sensor Active Area	154.6(W)(typ.) x92.4(H)(typ.)	mm			
Transparency	85%	%			
Haze	1.0%	%			
Hardness	7H (min) [by JIS K5400]	Pencil hardness			
Weight	88(typ)	g			
Report rate	Max : 122	Points/sec			
Response time	15	ms			
Point hitting life time	1,000,000 times min.	Note 1			

Note 1: Use 8 mm diameter silicon rubber/force 3N to knock on the same point twice per second (no-operating), after test function check pass.

central point

11.2 CTP Absolute Maximum Rating

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	-0.3	-	6.5	٧	
VIO	DC input voltage	-0.3	ı	VCC+0.3	٧	

11.3 CTP Electrical Characteristic

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	3.0	3.3	5.5	V	
GND	Supply voltage	-	0	-	V	
I	Active Mode	-	-	7.0	mA	At VCC=3.3V
VIH	Input H voltage		0.8VCC	-	VCC	
VIL	Input L voltage		0		0.2VCC	
	System clock frequency			20	MHz	
	CPU clock frequency			20	MHz	
ISLEEP	Sleep mode(52Hz)	-	-	2.0	mA	At VCC=3.3V
	Sleep mode(26Hz)	-	-	1.1	mA	At VCC=3.3V

SCF0700M48GGU04 REV:3

HY-LINE Computer Components / www.hy-line.de/computer

Page: 14 /33

	Sleep mode(17Hz)	-	-	0.75	mA	At VCC=3.3V
	Sleep mode(13Hz)	-	-	0.56	mA	At VCC=3.3V
	Sleep mode(10Hz)	-	-	0.42	mA	At VCC=3.3V
	Deep Sleep mode(1Hz)	-	-	46	uA	At VCC=3.3V
IFREEZE	Freeze Mode	-	-	1.9	uA	At VCC=3.3V

11.4 CTP Pin Connections

No.	Name	I/O	Description
1	VCC	Р	Power; VCC=3.3V(typ.)
2	RST		Reset
3	SCL		Clock; 100KHz
4	ATTB(INT)	0	INT; Active low when data output from touch panel
5	SDA	I/O	Serial data access
6	GND	Р	Ground
7	NC	-	Not connect
8	NC	ı	Not connect
9	NC	ı	Not connect
10	NC	-	Not connect

11.5 CTP Interface and Data Format [Slave address is 0x5C (7 bit addressing)]

Communication protocol: I²C

Clock frequency: 100Khz (400Khz Fast mode)

Note: (1) Start Condition;(2)Stop Condition;(3)Retransmit start condition

Symbol	Description	Min	Max	Unit
tscl	SCL input cycle time	12tcyc+600	-	
tsclh	SCL input H width	3tcyc+300	-	
tscll	SCL input L width	5tcyc+500	-	
tsf	SCL, SDA input fall time		300	
tsp	SCL, SDA input spike pulse rejection time		1 tcyc	
tsuf	SDA input bus-free time	5tcyc		ns
tstah	Start condition input hold time	3tcyc		
tstas	Retransmit start condition input setup time	3tcyc		
tstop	Stop condition input setup time	3tcyc		
tsdas	Data input setup time	1tcyc+40		
tSDAH	Data Input hold time	10		

The protocol for data exchange has been designed with the following considerations

- 1 Most of the data traffic is read operation to get the finger or fingers position
- 2 Read operation do need an initial write operation.
- 3 Write operations are most of the time power management and interrupt setting instructions
- 4 Interrupt pulse width setting adjustments need a write operation.

S	START
Р	STOP
R	READ
W	WRITE
Α	Acknowledge
N	No acknowledge
DATA	8-bit

From slave to Master From Master to Slave

11.6 Timing Characteristic

Write Bytes to I2C Slave:

Write packets have variable content length decided by the host. Write operation stops when host issue and I²C STOP symbol. The write packet is illustrated in below Write Operation & Write Setting Operation protocol. Following the I²C device address, the first byte of the write packet is always the destination register address, referred in Note1 MSI registers table. Subsequent data values are written at the register pointed by the address, immediately upon reception of the byte. The address counter is automatically incremented. Subsequent data bytes are treated in continuations of the writing operation.

Read Bytes from Slave

Read packets have variable content length decided by the host. It's available to do a single read operation or a sequential read operation. Therefore, the beginning register address is need to set before a read operation. And the data sent exactly follow the Note1 MSI register table afterward. And the firmware in the slave will use a memory copy of the register fro I²C slave read operation, so that it can continue updates and I²C slave is still using a consistent but old coordinates for read operation as below,

In a sequential read operation, the first data sent by the MSI device is therefore the touching register, and then the old touching, then X and Y coordinates of the 1st finger, then coordinates of the 2nd, and so on. Refer in below,

If the host does not finish the read operation when the INT line is set again, the slave firmware will delay to update coordinates registers for I²C read operation until the host finish the read operation referred to below

I²C stop condition will release data protection and allow the slave firmware update the coordinates registers for I²C read operation. So, the host has the change to give incorrect

data when it gets the coordinates data with single read operation. Because the host sends many times for I²C stop condition in each multi-fingers coordinate's position reading, it will give the slave firmware chance to update the coordinates registers for I²C read operation, the host will give a combine unrelated data combines new and old coordinates together, referred to below

120 stop condition will release data protection and allow updates.

Incorrect because it combines unrelated data

Note1: MSI Registers

Address	Name	Description	R/W
0	touching	Number of fingers touching	R
1	old touching	Previous scan number of fingers touching	R
2 (low part)	nasV	X coordinate of the first finger Only	R
3 (high part)	posX	valid if touch>0	
4 (low part)	2001	Y coordinate of the first finger Only	R
5 (high part)	posY	valid if touch>0	
6 (low part)	nosV2	X coordinate of the first finger Only	R
7 (high part)	posX2	valid if touch>1	
8 (low part)	nocV2	Y coordinate of the first finger Only	R
9 (high part)	posY2	valid if touch>1	
20	power_mode	power_mode switching register	R/W
53-54	CRC	Whole program memory checksum	R
55	specop	Special operation	R/W

11.7 Operating Mode Register

11.7.1 POWER_MODE Register

Address	Name	Description of POWER_MODE Register
7-4	IDLE_PERIOD[3-0]	Refer to ALLOW_SLEEP function description
3	-	Not used
2	ALLOW_SLEEP	Allow self demotion from active to sleep mode, provide that this flag is set. If the MSI device is in active mode and no fingers is detected for more than IDLE_PERIOD time, then it allow AUTO JUMP to sleep mode. If this flag is not set, the host must explicitly switch the device from active to sleep mode.
1-0	POWER_MODE[1-0]	Power mode setting of the MSI device: 00:Active Mode 01:Sleep Mode 10:Deep Sleep Mode 11:Freeze Mode

SCF0700M48GGU04 REV:3 Page: 18 /33

11.7.2 INT_MODE Register

Address	Name	Description	
7-4	-	Not used	
3	EN_INT	0:disable interrupt mode 1:enable interrupt mode	
2	INT_POL	INT_POL 0:the interrupt is low active(default) 1:the interrupt is high active	
1-0	00:INT assert periodically INT_MODE[1-0] 01:INT assert only when finger moving 10:INT assert only when finger touch(default)		

11.7.3 Power management

Active mode

In this mode, the slave resumes with a new scan directly after each I²C transfer (after ATTb rising edge). This is used to reach the highest refresh rate, but also has the highest current consumption. Below shows how to force the slave into Active mode.

Sleep mode

This mode is selected to decrease the current consumption during low activity phases on the sensor, which need a lower refresh rate. The MSI can automatically switch to Active mode(when finger is detected, provided that ALLOW_SLEEP bit is set in the POWER_MODE register. Also, the MSI can automatically switch from Active to Sleep mode when no finger is detected for more than IDLE_PERIOD time, provided that ALLOW_SLEEP bit is set in the POWER_MODE register. Below sequence shows how to force the slave into Sleep mode and how to force the slave into sleep mode can automatically switch, provided IDLE PERIOD=10.

Sleep mode sequence

Deep Sleep mode

This mode is selected to achieve the minimum consumption during very low activity phases on the sensor, which need a lowest refresh rate(1Hz). The MSI only can switch to Deep Sleep mode by set POWER_MODE register. Below shows how to force the slave into Deep Sleep mode.

Deep Sleep Mode Sequence

Sleep mode automatically switch sequence

Freeze mode

In this mode, the slave MCU internal clock source is stopped, and consumption is only MOS leakage. Below shows how to force the slave into Freeze mode. There is one way to wake up from freeze mode.

• INT pin change ("1 to 0" or "0 to 1")

Freeze Mode sequence

11.7.4 Transition of INT line

When INT_MODE=00 in the INT MODE register, the slave will set the INT line with INT_width pulse width after each scan in order to request the attention from the host, as shown in below

INT line pull up by slave (INT_POL=1, INT_MODE=00 in the INT mode register)

INT line pull down by slave (INT POL=0, INT MODE=00 in the INT mode register)

SCF0700M48GGU04 REV:3 Page: 20 /33

When INT_Mode=01 in the INT mode register and finger moving on the panel, the slave will set The INT line after each scan, as shown in below.

INT line pull up when finger moving (INT_POL=1, INT_MODE=01 in the INT mode register)

When fingers leaves the panel, the slave will continue to pulse INT line for each scan; but once the master has serviced this request and become now aware that there is no more finger touching, the slave will stop pulse the INT line, and will also gradually reduce the scan speed, as shown in below

INT line will stop pulse when finger leaves and master has acknowledge the situation (INT_POL=1 in the INT mode register)

When INT_Mode=10 in the INT mode register and finger touch the panel, the slave will set The INT line after each scan as shown in below.

SCF0700M48GGU04 REV:3

INT line pull up when finger touch (INT POL=1, INT MODE=10 in the INT mode register)

When fingers leaves the panel, the slave will continue keep INT line status for each scan; but once the master has serviced this request and become now aware that there is no more finger touching, the slave will release the INT line, and will also gradually reduce the scan speed, as shown in below

INT line will stop pulse when finger leaves and master has acknowledge the situation (INT POL=1 in the INT mode register)

12. APPLICATION CIRCUIT

B/L circuit

DC-DC circuit

13. Appearance Specification

13.1Inspection and Environment conditions

10.1.1 Temperature: 22±2 10.1.2 Humidity: 55±5%RH

10.1.3 Light source: Fluorescent Light

10.1.4 Inspection: Viewing distance: 35±5cm

10.1.5 Ambient Illumination:

(1) Cosmetic Inspection: 500 ~ 800 lux(2) Functional Inspection: 400 ~ 600 lux

10.1.6 Inspection View angle:

(1) Inspection under operating condition: ±5°

(2) Inspection under non-operating condition: ± 45°

13.2 Appearance inspection

Appearance inspection method: Front visual distance: 30-40CM

13.3 Judgment standard

The Judgment of the above test should be made after exposure in room temperature for two hours as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defect.

13.4 Cosmetic Specification and Inspection Items

Inspection item	Inspection standard	Description
Display function	No display function	
Contrast	Out of SPEC	
Line defect	No obvious vertical or horizontal line defect (black line or white line)	

1MAGE	Ci	onfidential Document
Dot defect	Item Acceptable Total	One Dot
	quantity quantity	Two adjacent dot
	Bright dot 2	
	Dark dot 4	
	Two adjacent dark dots 2 2	
Dot of foreign material	SPEC Acceptable	- M.
	quantity	0.1
	D>0.8mm 0	
	0.3mm D 0.8mm 5	1
	D<0.3mm Ignorable	D= (L + W) / 2
Line of foreign material	SPEC Acceptable	7 7 7
	quantity W>0.1mm L>10mm 0	}
	W>0.1mm L>10mm	
		W
	W<0.05mm Ignorable	L : Long W : Width
Image uniformity	Through ND5%, invisible at R G B ,grey and white	
Size	According to SPEC	
TP scratch	SPEC Acceptable	₩
	quantity	1 / /
	W>0.1mm L>10mm 0	! / V
	W 0.1mm L 10mm 5	L1
TP dent dot	SPEC Acceptable	
	quantity	
	D>0.5mm 0	L
	0.3 D 0.5mm 5	D= (L + W) / 2
TP glue overflow	±0.45mm	
Surface damage	X<3mm Y<3mm Z <glass< td=""><td>A STATE</td></glass<>	A STATE
		T T
Edge damage	X<3mm Y<3mm Z <glass< td=""><td></td></glass<>	
TP crack	prohibited	18/
		T

Bubble in protective film	SPEC Acceptable quantity
	D>1.0mm N=0
	0.5 <d<1.0mm n="2</td"></d<1.0mm>
	D<0.5 Ignorable
TP deviation	According to customer drawing spec
Bubble	D 0.2mm ignorable 0.2mm < D 0.5mm 2 bubbles accepted 0.5mm < D prohibited
Printing ink	Light leak is prohibited. Printing serrated: S 0.1 ignorable S 0.15 NG Break line on LOGO NG Blur printing, inverse printing, print in wrong position

13.5 Sampling plan

	Definition		
General problem	primary	AQL0.65%	Completely fail to be used due to defect.
	Secondary	AQL1.5%	Still can be used due to small defect.

14. QUALITY ASSURANCE

14.1 Test Condition

14.1.1 Temperature and Humidity(Ambient Temperature)

Temperature : 25 ± 5 °C Humidity : 65 ± 5 %

14.1.2 Operation

Unless specified otherwise, test will be conducted under function state.

14.1.3 Container

Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

14.1.4 Test Frequency

In case of related to deterioration such as shock test. It will be conducted only once.

14.1.5 Test Method

14.1.5 Test Wethou		
	Reliability Test Item & Level	Test Level
No.	Test Item	
1.	Low Temperature Storage Test	T= -20 ,120hrs after 24 hrs at room
		temperature and test.
2.	High Temperature Storage Test	T= 70 ,120hrs after 24 hrs at room
		temperature and test.
3.	Low Temperature Operation Test	T= -10 ,120hrs after 24 hrs at room
		temperature and test.
4.	High Temperature Operation Test	T= 60 ,120hrs after 24 hrs at room
		temperature and test.
5.	High Temperature and High Humidity	T= 40 , 90%RH,120hrs after 24 hrs at room
	Operation Test	temperature and test.
6.	Thermal Cycling Test (No operation)	-20 30min ~ 70 30 min ,
		100 Cycles after 24 hrs at room temperature and
	(140 operation)	test.
7.		Frequency :10 ~ 55 HZ
	Vibration Test	Amplitude :1.5 mm
	(No operation)	Sweep time: 11 mins
	,	Test Period: 6 Cycles for each direction of X, Y, Z
8.	ESD TEST	Air Discharge : ±15Kv
		Indirect Contact Discharge : ±8Kv

14.2 Judgment standard

The Judgment of the above test should be made after exposure in room temperature for two hours as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defect.

Page: 28 /33

15. LCM PRODUCT LABEL DEFINE

Product Label style:

BarCode Define:

Product Name Define:

16. PRECAUTIONS IN USE LCM

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing.

- (1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel off or bubble.
- (2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.
- (3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- (4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- (5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.

- (1). Do not tamper in any way with the tabs on the metal frame.
- (2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- (3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
- (4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting . Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- (5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- (1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- (2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3). Only properly grounded soldering irons should be used.
- (4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

Confidential Document

- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.
- (6). Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

2.3 Soldering

- (1). Solder only to the I/O terminals.
- (2). Use only soldering irons with proper grounding and no leakage.
- (3). Soldering temperature : $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$
- (4). Soldering time: 3 to 4 sec.
- (5). Use eutectic solder with resin flux fill.
- (6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

2.4 Operation

- (1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
- (2). Driving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- (5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage

If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Limited Warranty

Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.

Page: 31 /33

SCF0700M48GGU04 REV:3

17. OUTLINE DRAWING

18. PACKAGE INFORMATION

