Московский физико-технический институт

Лабораторная работа №4.7.2

Эффект Поккельса

выполнили студенты 006 и 007 групп ФЭФМ Штрайх Роберт Петрова Софья **Цель работы:** исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

1 Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития: его оптические свойства обладают симметрией вращения относительно выделенного направления оптической оси Z. Для волны, распространяющейся вдоль Z, показатель преломления равен n_e , а для волны, перпендикулярной оптической оси, — n_o , причем $n_o > n_e$. Волну длины $\lambda = 2\pi/k$, проходящую под углом θ к оси Z в кристалле, принято раскладывать на обыкновенную и необыкновенную. Для вектора напряженности обыкновенной волны верно: $\mathbf{E_o} \perp (\mathbf{k}, \mathbf{e_z})$, — и показатель преломления $n_1 = n_o$. Для вектора напряженности необыкновенной: $\mathbf{E_e} \in (\mathbf{k}, \mathbf{e_z})$, и показатель преломления n_2 зависит от θ по закону:

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_2^2} + \frac{\sin^2 \theta}{n_2^2}$$

Разность хода обыкновенной и необыкновенной воли при прохождении кристалла длиной l составляет:

$$\Delta = kl(n_1 - n_2) = \frac{2\pi}{\lambda} \cdot l(n_1 - n_2)$$

С учетом зависимости $n_2(\theta)$ для малых углов θ в приближении $n_o \approx n_e$:

$$\Delta = \frac{2\pi}{\lambda} \cdot l(n_o - n_e)\theta^2 \tag{1}$$

Рис. 1: Эффект Поккельса: главные направления при наложении электрического поля

Направления постоянной разности фаз задают косинусы $\cos \theta$, следовательно, интерференционная картина являет концентрические окружности.

Поместим кристалл ниобата лития в постоянное электрическое поле $E_{\text{эл}}$, направленное по оси X, перпендикулярной оптической оси Z. В плоскости (X,Y) возникают быстрая и медленная оси под углами 45° к X,Y, соответствующие показателям преломления $(n_o-\Delta n)$ и $(n_o+\Delta n)$, здесь $\Delta n=A\cdot E_{\text{эл}}, A$ – константа, зависящая от свойств материала.

Появление главных направлений ξ и η иллюстрирует рисунок 1.

2 Экспериментальная установка

Рис. 2: Схема для наблюдения интерфереционной картины

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности – результат интерферен-

ции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случае, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_o - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла. Теперь поместим кристалл в постоянное электрическое поле $E_{\rm эл}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющегося вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\rm эn}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

для параллельных поляризаций:

$$I_{\text{вых}} = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{4}$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U=E_{\text{эл}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

Рис. 3: Схема установки

На рис. 3 представлена схема всей установки (оптическая часть изображена на рис. 2). Свет лазера, проходя сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

3 Ход работы

3.1 Юстировка системы

- 1. Соберём оптическую схему согласно рис. 2. Включим лазер и установим анализатор (без кристалла в схеме) так, чтобы лазерное излучение через него не проходило (скрещенные поляризации). Лазерный луч поляризован вертикально.
- 2. Поставим кристалл и установим перед ним вплотную к кювете матовую пластинку. Расстояние от кристалла до экрана $L=75~{\rm cm}.$
- 3. Получим на экране интерференционную картину. Отклоняя кристалл с помощью юстировочного винта и поворачивая рейтер с кюветой вокруг вертикальной оси, добьемся совмещения центра коноскопической картины с положением луча на экране в отсутствие матовой пластинки. При повороте анализатора на 90° коноскопическая картина меняется на негативную.

Рис. 4: Интерференционная картина

3.2 Измерения

1. Измерим радиусы тёмных колец и построим график $r^2 = f(m)$.

\overline{m}	1	2	3	4	5	6	7	8
r, cm	2,75	3,8	4,6	5,4	6	6,5	7	7,5
r^2 , cm ²	7,56	14,44	21,16	29,16	36	42,25	49	56,25
$\sigma_{r^2}, \text{ cm}^2$	0,28	0,38	0,46	0,54	0,60	0,65	0,70	0,75

Таблица 1: Радиусы тёмных колец

$$\sigma_{r^2} = r^2 \frac{\sigma_r}{r}, \ \sigma_r = 1 \ \text{mm}$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{< r^2 m > - < r^2 > < m >}{< m^2 > - < m >^2}}$$

$$\frac{\sigma_{n_o-n_e}}{n_o-n_e} = \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + 2\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}, \ \sigma_L = \sigma_l = 1 \ \text{mm}$$

Рис. 5: Зависимость радиуса кольца от номера минимума

По углу наклона прямой определим двулучепреломление (n_o-n_e) ниобата лития, пользуясь формулой (2); $\lambda=0.63$ мкм, L=75 см, l=3 см (длина кристалла), $n_o=2.29$:

$$n_o - n_e \approx 0.089 \pm 0.012$$

2. Уберём матовую пластинку и подключим разъём блока питания на постоянное напряжение (=), установим регулятор напряжения на минимальное напряжение и включим блок питания в сеть.

Рис. 6: Лабораторная установка

Проследим, как меняется яркость пятна на экране с увеличением напряжения на кристалле.

Для скрещённых поляризаций при напряжениях $U=(2k-1)U_{\lambda/2}$ наблюдается максимум, при $U=2kU_{\lambda/2}$ – минимум, $k\in\mathbb{N}$. Для параллельных поляризаций наблюдается обратная зависимость.

В 100 делениях шкалы блока питания 1,5 кВ. Погрешность измерения напряжения 15 В.

	Скрещённые поляризации	Параллельные поляризации
$U_{\lambda/2}$, B	570	570
U_{λ} , B	1140	1140
$U_{3\lambda/2}$, B	1710	1710

Таблица 2: Напряжения, соответствующие экстремумам интенсивности, для двух видов поляризации

- 3. Подадим на кристалл напряжение $U=\frac{1}{2}U_{\lambda/2}=U_{\lambda/4}=285\pm15~\mathrm{B}.$ При вращении анализатора наблюдаем малое изменение интенсивности пятна на экране, что доказывает наличие у луча на выходе из кристалла круговой поляризации.
- 4. Установим вместо экрана фотодиод и подключим его к y-входу осциллографа. Убрав напряжение до нуля, переключим разъём с постоянного (=) на переменное напряжение (\sim). С трёхвольтового выхода блока питания подадим сигнал на вход x осциллографа. Отклонение луча осциллографа по оси x пропорционально напряжению U на кристалле, по оси y интенсивности прошедшего через анализатор сигнала $I_{\text{вых}}$.
- 5. Постепенно повышая напряжение на кристалле, получим на экране осциллографа фигуры Лиссажу, соответствующие зависимости $I_{\text{вых}}(U)$ для скрещенных и параллельных поляризаций лазера и анализатора.

Определим по фигурам Лиссажу полуволновое напряжение, измерив разность показаний между последовательными фигурами, соответствующими максимуму и минимуму сигнала на осциллограме: $\Delta U = U_{\lambda/2} \approx 570 \pm 15 \; \mathrm{B}.$

6. Получим фигуры Лиссажу для напряжений $U_{\lambda/2}, U_{\lambda}, U_{3\lambda/2}$ при скрещённых и параллельных поляризациях лазера и анализатора.

Рис. 7: Фигуры Лиссажу. Скрещённая поляризация

в) $U_{3\lambda/2}$

a) $U_{\lambda/2}$

б) U_{λ}

в) $U_{3\lambda/2}$

Рис. 8: Фигуры Лиссажу. Параллельная поляризация

4 Выводы

- 1. Была изучена интерференция рассеянного света, прошедшего кристалл ниобата лития;
- 2. Были измерены радиусы r_m интерференционных колец, определена разность показателей преломления $n_o-n_e=0.089\pm0.012$. Это значение соответствует литиевым кристаллам: $\Delta n\approx0.09$;
- 3. При подаче на кристалл постоянного напряжения $U_{\lambda/4}$ на выходе из кристалла был получен свет, поляризованный по кругу;
- 4. Был исследован эффект Поккельса: двумя способами было получено полуволновое напряжение $U_{\lambda/2} \approx 570 \pm 15$ В (по зависимости интенсивности пятна на экране и по фигурам Лиссажу); по виду фигур Лиссажу установлено, что при скрещённых поляризациях лазера и анализатора $I_{\text{вых}}$ удовлетворяет формуле (3), при параллельных (4).