Устойчивость систем автоматического регулирования

Содержание

Понятие устойчивости

- Критерии устойчивости
 - Критерий Гурвица

Устойчивость является необходимым условием работоспособности систем автоматического регулирования.

Система называется устойчивой, если после снятия вомущения она возвращается к первоначальному установившемуся режиму. Это возвращение может присходить апериодически (1) или колебательно (2) в виде затухающих колебаний:

Условие устойчивости:

$$\lim_{t o\infty}(y(t)-y_{ ext{yct}}(t))=0$$

Система неустойчива, если после снятия возмущения выходная величина неограниченно удаляется от первоначального установившегося режима. Это удаление также может происходить монотонно (3) или в виде расходящихся колебаний (4).

Система находится на границе устойчивости, если при $t \to \infty$ в ней сохраняется постоянное отклонение y(t) от $y_{\text{уст}}(t)$ - апериодическая граница устойчивости (5), или в ней устанавливаются колебания постоянной амплитуды относительно $y_{\text{уст}}(t)$ - колебательная граница устойчивости (6)

Пусть система описывается дифференциальным уравнением вида:

$$a_0 rac{d^n y(t)}{dt^n} + a_1 rac{d^{n-1} y(t)}{dt^{n-1}} + \ldots + a_{n-1} rac{dy(t)}{dt} + a_n = x(t).$$

Изменение y(t) складывается из установившейся и переходной составляющих:

$$y(t) = y_{ ext{yct}}(t) + y_{ ext{nep}}(t)$$

Как известно, переходная составляющая $y_{\text{пер}}(t)$ является общим решением соответствующего однородного дифференциального уравнения (без правой части) и определяется корнями s_i характеристического уравнения $a_0s^n + a_1s^{n-1} + \ldots + a_{n-1}s + a_n = 0$:

$$y_{ ext{nep}}(t) = \sum\limits_{i=1}^n C_i e^{s_i t}$$

Тогда условие устойчивости можно сформулировать так:

$$\lim_{t o\infty}y_{ exttt{nep}}(t)=\lim_{t o\infty} extstyle\sum_{i=1}^nC_ie^{s_it}=0$$

Отсюда видно, что этому условию удовлетворяют только корни характеристического уравнения, имеющие отрицательную вещественную часть (поскольку в противном случае экспонента при соответсвующем корне с положительной вещественой частью будет неограниченно возрастать).

На комплексной плоскости корни с отрицательной вещественной частью изображаются слева от мнимой оси:

Следовательно, устойчивая система должна иметь в своем характеристическом уравнении только левые корни.

Если хотя бы один корень характеристического уравнения имеет положительную вещественную часть (правый корень), то система неустойчива.

Система неустойчива также и в том случае, если в характеристическом уравнении имеется два и более нулевых корней. При нулевом корне k-й кратности в $y_{\text{пер}}(t)$ присутствует сумма вида $C_0+C_1t+\ldots+C_{k-1}t^{k-1}$, которая при $t\to\infty$ также стремится к бесконечности. Например, такая ситуация будет при характеристическом уравнении $a_0s^3+a_1s^2=0$

Система находится на апериодической границе устойчивости при наличии одного нулевого корня и остальных левых корнях.

Система находится на колебательной границе устойчивости при наличии одной или нескольких пар чисто мнимых корней и остальных левых корней (частоты незатухающих колебаний определяются модулями этих мнимых корней).

Критерии устойчивости

Как видно, чтобы исследовать устойчивость системы автоматичекого регулирования, достаточно найти корни характеристического уравнения. Однако извесно, что уравнения выше 4-го порядка не решаются в радикалах (отсутствуют аналитические формулы, выражающие корни через коэффициенты уравнения). Поэтому обычно корни характеристического уравнения не находят в явном виде, а использую так называемые критерии устойчивости.

Критерий устойчивости - это правило, позволяющее без решения характеристического уравнения, т.е. без нахождения его корней, исследовать устойчивость систем. Выделяют алгебраические и частотные критерии устойчивости. Рассмотрим некоторые из них.

Критерий Гурвица

Критерий Гурвица относится к алгебраическим критериям и предполагает составление из коэффициентов характеристического уравнения и вычисления определителей Гурвица.

Главный определитель Гурвица Δ_n имеет n-й порядок, где n - порядок характеристического уравнения. По главной диагонали определителя записываются в порядке возрастания индексов коэффициенты от a_1 до a_n , где a_1 - коэффициент при производной (n-1)-го порядка:

Вверх от главной диагонали столбцы заполняются коэффициентами с последовательно возрастающими индексами, а вниз с последовательно убывабщими, причем вместо отсутствующих индексов ставятся нули. Поэтому в последнем столбце, кроме a_n , будут только нули.

Определители младшего порядка получаются как диагональные миноры опрелелителя Δ_n :

$$egin{align} \Delta_1=a_1,\Delta_2=egin{array}{c|c} a_1&a_3\ a_0&a_2 \end{bmatrix}=a_1a_2-a_0a_3,\ldots,\Delta_{n-1}=rac{\Delta_n}{a_n} \end{aligned}$$

© Артамонов Ю.Н. Лекция 13

Критерий Гурвица

Критерий Гурвица требует, чтобы все определители Гурвица были больше нуля (при условии, что $a_0 > 0$). Если хотя бы один из определителей меньше нуля, то система неустойчива.

Система находится на колебательной границе устойчивости при совместном соблюдении следующих условий:

- $\triangle_i > 0, 1 \le i \le n-2$

Апериодическая граница устойчивости требует:

- $\mathbf{0} \ a_i > 0, 0 \le i \le n-1$
- $a_n = 0$

Критерий Гурвица

Пример

Исследовать устойчивость системы с передаточной функцией $W(s)=\frac{7s+6}{2s^3+5s^2-s+1}$ Составим определитель Гурвица: $a_0=2, a_1=5, a_2=-1, a_3=1$:

$$\Delta_1 = a_1 = 5 > 0$$
 $\Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} = \begin{vmatrix} 5 & 1 \\ 2 & -1 \end{vmatrix} = -5 - 2 = -7 < 0$
 $\Delta_3 = \begin{vmatrix} a_1 & a_3 & 0 \\ a_0 & a_2 & 0 \\ 0 & a_1 & a_3 \end{vmatrix} = \begin{vmatrix} 5 & 1 & 0 \\ 2 & -1 & 0 \\ 0 & 5 & 1 \end{vmatrix} = -5 - 2 = -7 < 0$

Система неустойчива.

Пример

Исследовать устойчивость замкнутой системы с отрицательной обратной связью с передаточной функцией разомкнутой системы: $W(s) = \frac{7s+6}{2s^3+5s^2-s+1}$

$$W_{ exttt{3amk}} = rac{W(s)}{1+W(s)} = rac{rac{7s+6}{2s^3+5s^2-s+1}}{1+rac{7s+6}{2s^3+5s^2-s+1}} = rac{7s+6}{2s^3+5s^2+6s+7}$$

Составим определитель Гурвица: $a_0 = 2, a_1 = 5, a_2 = 6, a_3 = 7$:

$$\Delta_{1} = a_{1} = 5 > 0$$

$$\Delta_{2} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{vmatrix} = \begin{vmatrix} 5 & 7 \\ 2 & 6 \end{vmatrix} = 30 - 14 = 16 > 0$$

$$\Delta_{3} = \begin{vmatrix} a_{1} & a_{3} & 0 \\ a_{0} & a_{2} & 0 \\ 0 & a_{1} & a_{3} \end{vmatrix} = \begin{vmatrix} 5 & 7 & 0 \\ 2 & 6 & 0 \\ 0 & 5 & 7 \end{vmatrix}$$

Пример

```
(\%i1) d:matrix([5,7,0],[2,6,0],[0,5,7]);
                                                                                                                    \begin{pmatrix} 5 & 7 & 0 \\ 2 & 6 & 0 \\ 0 & 5 & 7 \end{pmatrix}
 (%01)
(%i2) determinant(d);
                                                                                                                             112
 (\%02)
(%i3) solve(2*s^3+5*s^2+6*s+7=0, s);
                s = -\frac{11\left(\frac{\sqrt{3}i}{2} + \frac{(-1)}{2}\right)}{36\left(\frac{\sqrt{515}}{40^{\frac{3}{2}}} - \frac{233}{216}\right)^{\frac{1}{3}}} + \left(\frac{\sqrt{515}}{43^{\frac{3}{2}}} - \frac{233}{216}\right)^{\frac{1}{3}} \left(\frac{(-1)}{2} - \frac{\sqrt{3}i}{2}\right) - \frac{5}{6},
 (%03)
                     s = \left(\frac{\sqrt{515}}{43^{\frac{3}{2}}} - \frac{233}{216}\right)^{\frac{1}{3}} \left(\frac{\sqrt{3}i}{2} + \frac{(-1)}{2}\right) - \frac{11\left(\frac{(-1)}{2} - \frac{\sqrt{3}i}{2}\right)}{36\left(\frac{\sqrt{515}}{3} - \frac{233}{216}\right)^{\frac{1}{3}}} - \frac{5}{6}, s = \left(\frac{\sqrt{515}}{43^{\frac{3}{2}}} - \frac{233}{216}\right)^{\frac{1}{3}} - \frac{11}{36\left(\frac{\sqrt{515}}{3} - \frac{233}{216}\right)^{\frac{1}{3}}} - \frac{5}{6}
(%i4) float(%);
                           [s = -1.294762078299296 \ (0.8660254037844386 \ i - 0.5) + 0.235993593476966 \ (-0.8660254037844386 \ i - 0.5) + 0.235993593476966 \ (-0.8660254037844386 \ i - 0.5)]
 (\%04)
                               -0.83333333333333334, s = 0.235993593476966 (0.8660254037844386i - 0.5)
                              -1.294762078299296 (-0.8660254037844386i - 0.5) -0.833333333333334, s = -1.892101818155663
(\%i5)
```

