Introducción a la estadística Bayesiana con aplicaciones de estimación en áreas pequeñas usando software STAN

Ignacio Alvarez-Castro Juan José Goyeneche

Instituto de Estadística, Facultad de Ciencias Económicas y Administración, UdelaR.

XV Congreso Latinoamericano de Sociedades de Estadística 9 al 13 de Octubre 2023 Santiago de Cali, Colombia

2 Probabilidad de un evento raro

Probabilidad

Es usual utilizar *probabilidades* de manera informal para medir la incertidumbre o información sobre un fenómeno de interés.

Puede hacerse de manera formal

- la probabilidad puede representar creeencias *racionales*
- hay una relación entre probabilidad e información
- regla de Bayes es un método racional para actualizar la probabilidad cuando obtenemos información nueva

Muchas formas de interpretar una probabilidad

Todas comparten las propiedades matemáticas

Métodos Bayesianos

Los procedimientos estadísticos que utilicen la probabilidad como medida de incertidumbre y la regla de Bayes para actualizarla, se denominan métodos Bayesianos.

Elegir estos métodos en un problema concreto atiende a:

- propiedades de estimadores
- descripción de datos observados
- predicciones de datos faltantes o futuros
- marco computacional para estimar, seleccionar y validar

Inferencia estadística

La inferencia estadística se ocupa de elaborar métodos para estimar características generales de un fenómeno de interés a partir de una cantidad finita de datos observados

Datos
$$y=(y_1,y_2,\ldots,y_n)$$
 observaciones del fenómeno bajo estudio Parámetros θ características relevantes

Objetivos:

- **Explicar** características relevantes de Y (estimar θ)
- Predecir el valor de observaciones futuras
- Comparar modelizaciones alternativas

Antes de realizar observaciones, tenemos incertidumbre sobre: los datos que vamos a observar y los parámetros del fenómeno de estudio.

Dos componentes básicos:

 $\begin{array}{ll} \text{Modelo para los datos} & p(y|\theta) & \text{incertidumbre sobre } y \\ \text{Previa} & p(\theta) & \text{incertidumbre sobre } \theta \end{array}$

Antes de realizar observaciones, tenemos incertidumbre sobre: los datos que vamos a observar y los parámetros del fenómeno de estudio.

Dos componentes básicos:

Modelo para los datos $p(y|\theta)$ incertidumbre sobre y Previa $p(\theta)$ incertidumbre sobre θ

Despues de observar *y*,

ya no hay incertidumbre sobre los datos observados, actualizamos la incertidumbre sobre θ mediante la regla de Bayes:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

2 Probabilidad de un evento raro

Estimación Bayesiana

Probabilidad de un evento raro

Queremos estimar la prevalencia de una enfermedad *rara* en una ciudad. Para esto se obtiene una muestra de 25 personas para evaluar si estan infectadas o no.

Datos: Total de personas infectadas en la muestra
$$y \in \{0,1,\ldots,25\}$$
 Parámetro: prevalencia en la población $\theta \in (0,1)$

Un posible modelo para los datos: $y|\theta \sim binomial(25, \theta)$ te parece apropiado?

Aproximación frecuencista

Aproximación frecuencista

El estimador por máxima verosimilitud es la proporción muestral, $\bar{y}=y/25$, y un intervalo de confianza se puede obtener como (intervalo de Wald):

$$\bar{y} \pm 1.96 \sqrt{rac{ar{y}(1-ar{y})}{25}}$$

Debido a que la enfermedad es rara, esta aproximación puede tener problemas. Por ejemplo, si observamos y=1:

```
pr <- 1/25
se <- sqrt((pr*(1-pr))/25)
c(pr, pr - 1.96*se, pr+1.96*se) |> round(3)
## [1] 0.040 -0.037 0.117
```


Aproximación Bayesiana: previa

Para hacer estadística Bayesiana precisamos una previa $p(\theta)$.

Conocemos que en estudios anteriores, en otras ciudades la prevalencia de esta enfermedad varía entre (0.05, 0.2) y en promedio es 0.10.

Proponemos una distribución que:

- verifique los datos anteriores
- sea conveniente computacionalmente

$$\theta \sim \textit{Beta}(2,20)$$

Aproximación Bayesiana: posterior

Aplicando la regla de Bayes obtenemos la posterior $p(\theta|y)$.

Aproximación Bayesiana: posterior

Aplicando la regla de Bayes obtenemos la posterior $p(\theta|y)$.

$$\theta | y \sim Beta(2 + y, 25 + 20 - y)$$

Si observamos y = 1

```
pr <- 3/47
c(pr, qbeta(.025, 3, 44), qbeta(.975, 3, 44)) |> round(3)
## [1] 0.064 0.014 0.148
```

y si observamos y = 0 ????????

2 Probabilidad de un evento raro

3 Estimación Bayesiana

Estimación Bayesiana

Un modelo estadístico Bayesiano está formado por dos componentes:

 $\begin{array}{ll} \text{Modelo para los datos} & \textit{p}(\textit{y}|\theta) \\ \text{Previa} & \textit{p}(\theta) \end{array}$

La estimación de θ consiste en hallar la distribución posterior $p(\theta|y)$

Hallar $p(\theta|y)$ mediante la regla de Bayes:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

- analíticamente, en problemas simples
- \blacksquare numéricamente: aproximando en una grilla de valores de θ
- numéricamente: mediante simulaciones

Notar que p(y) es constante respecto a θ

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} \propto p(y|\theta)p(\theta)$$

al obtener $p(\theta|y)$ podemos evitar calcular la constante p(y),

$$egin{align} p(heta|y) &= rac{p(y| heta)p(heta)}{p(y)} \ &\propto p(y| heta)p(heta) \ &\propto heta^{n_1}(1- heta)^{n-n_1} ext{ si } heta \in (0,1) \ \end{array}$$

 $heta^{n_1}(1- heta)^{n-n_1}$ es el núcleo de una distribución $Beta \Rightarrow heta|y \sim Beta(n_1+1,n-n_1+1)$

Si
$$X \sim Beta(\alpha, \beta)$$
 entonces, $p(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$ si $x \in (0,1)$ Posterior, $p(\theta|y)$:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

$$\propto p(y|\theta)p(\theta)$$

$$= {25 \choose y}\theta^y(1-\theta)^{n-y}\frac{\Gamma(2+20)}{\Gamma(2)\Gamma(20)}\theta^{2-1}(1-\theta)^{20-1}$$

$$\theta|y \sim Beta(y+2, n-y+20)$$

Bayes SIN información previa

- No conocemos nada sobre la prevalencia
- Una previa que refleje la no-información
- Uniforme en el espacio paramétrico

$$heta \sim \textit{Unif}(0,1)$$

En este caso, Unif(0,1) es también Beta(1,1), podemos suplantar en lo anterior para obtener:

$$\theta | y \sim \textit{Beta}(y+1, n-y+1)$$

Previa y posterior

Resumir la distribución posterior

Estimar el parámetro de interés, θ , significa hallar su distribución posterior, $p(\theta|y)$.

Sin embargo, es mas práctico resumir la distribución

- Estimación puntual, $\hat{\theta}$.
- Estimación por intervalos.
- Probabilidades para eventos de interés.

Resumir la distribución posterior: Estimación puntual $\hat{ heta}$

Usualmente consideramos como una estimación puntual, una medida de localización de $p(\theta|y)$.

- Esperanza posterior: $E(\theta|y)$, minimiza el error cuadrático medio.
- Mediana posterior: $(\theta|y)_{0.5}$, es robusta y simple de calcular en base a valores simulados.
- Moda posterior: $MAP = \operatorname{argmax}(p(\theta|y))$, es la versión Bayesiana de máxima verosimilitud.

Resumir la distribución posterior: Estimación puntual $\hat{ heta}$

En el ejemplo ...

Resumir la distribución posterior: Estimación puntual $\hat{ heta}$

En un contexto más general, se define como estimador de Bayes el valor que minimiza la pérdida esperada.

$$\hat{\theta}_{\textit{bayes}} = \operatorname{argmin}_{\theta} \left\{ \int L(\theta, \hat{\theta}) p(\theta|y) d\theta \right\}$$

$$L(\theta, \hat{\theta})$$

- es una función de pérdida
- determina el estimador de Bayes

