J8. Input: - x1, x2, ..., XN E Rⁿ,

Initial liet of K eluctor representatives

Z1, Zz, ..., ZK.

Output: - Cluster assignment c1, cz, ..., CN.

(a) cluster assignment based on cluster representatives. for each x; (i=1,2,...,N), we need to find ||xi-Z1||2, ||xi-Z2||2,..., ||xi-ZK||K

For computing $||x_i - z_i||_2$, no of subtractions = n, norm $y \ge 2n$, and there are k such computations. This amounts to (3nk).

Then, we also need to find the minimum among all K, that involves k computations.

So, cluster assignment for one x; takes (3n+1) K operations, and we have N such elements. So, total computational complexity = (3n+1) KN.

Ignoring the +1 and the constant factor of 3, we can say this is O(nKN), considering the by-0 notation.

(b) update cluster representatives. For all j = 1, 2, ..., Kdo $\forall z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$

	The number of additions will be around N-K,
	The number of additions will be around N-K, but as K < N, we can say no of additions N
	Each addition requires n operations.
	Each addition requires no operations. So, computations for addition = nN (n-length vector fakes no peration)
	After that, number of divisions = K*n= kn
	So, total computational complexity for this step = $[nN+kn] = [O(n(N+k))]$
(L)	Combining step I and 2, we can say that
	complianty = nKN+ nN+ kn
	As KCCN, and considering big-0 notation,
	me can wrute,
	complexity = 0 (nKN).
	So, in 10 iterations, no of computations of [10 nKN].
	Homener, if we want a more exact and
	jugorous bound, me can calculate that
	(3n+1) KN + (N-K) n + Kn x10
	etet! no. of additions) no. of divisions
	= (3nkN+KN+ Nn)x10,