2020-2021 学期半期考试试题解析

- 一、填空题(每题3分,共30分)
- 1. 函数 $y = \ln(1-x) + \arccos \frac{x+1}{2}$ 的定义域是()

- A. x < 1 B. $-3 \le x < 1$ C. $-3 < x \le 1$ D. $\{x | x \le 1\} \cup \{x | -3 \le x \le 1\}$
- 解 由 $\begin{cases} 1-x>0 \\ -1 \le \frac{x+1}{2} \le 1 \end{cases}$, 得定义域为 $-3 \le x < 1$ 。**选 B**
- 2. 对函数 f(x), 已知 f(1) = 2, f'(1) = -2, 则 $\lim_{x \to 1} f(x) = 0$

解 由
$$f(1) = 2$$
, $f'(1) = -2$, 得 $-2 = f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{f(x) - 2}{x - 1}$, 得

$$\lim_{x\to 1} (f(x)-2)=0$$
, $\#\lim_{x\to 1} f(x)=2$.

3. 函数
$$f(x) = \frac{\ln(x^2)}{x^3 - x}$$
 有() 个可去间断点()

- A. 0 B. 1
- C.2

解 函数
$$f(x) = \frac{\ln(x^2)}{x^3 - x}$$
 无意义的点 $x = 0, -1, 1$ 是间断点,又因为

$$\lim_{x\to 0} \frac{\ln(x^2)}{x(x^2-1)} = -\lim_{x\to 0} \frac{\ln(x^2)}{x} = -\lim_{x\to 0} \frac{\frac{1}{x^2}2x}{1} = \infty , \quad \text{in } x = 0 \text{ 为无穷间断点};$$

$$\lim_{\substack{x \to (-1) \\ x \neq x}} \frac{\ln(x^2)}{x(x^2 - 1)} = -\lim_{\substack{x \to (-1) \\ x \neq x}} \frac{\ln(x^2)}{x^2 - 1} = -\lim_{\substack{x \to (-1) \\ x \neq x}} \frac{\frac{1}{x^2} 2x}{2x} = 1, \text{ if } x = -1 \text{ by } x = -1 \text{ if } x$$

$$\lim_{x \to 1} \frac{\ln(x^2)}{x(x^2 - 1)} = \lim_{x \to 1} \frac{\ln(x^2)}{x^2 - 1} = \lim_{x \to 1} \frac{\frac{1}{x^2} 2x}{2x} = 1, \quad \text{in } x = -1 \text{ bolding in } x =$$

选 C

4. 设函数
$$f(x)$$
 在点 a 满足: $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^{2020}} = 2021$,则在点 a 处(

- A. 不可导 B. 可导且 f'(a) = 2021 C. 取得极小值 D. 取得极大值

解 因 $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^{2020}} = 2021 > 0$, 由函数极限性质的保号性知, 在 x=a 左右两侧附近,

$$\frac{f(x)-f(a)}{(x-a)^{2020}} > 0$$
,于是在 $x = a$ 左右两侧附近, $f(x)-f(a) > 0$,根据极值定义知, $f(a)$

为 f(x) 的一个极小值。**选 C**

5. 对函数
$$f(x)$$
,已知 $f(0) = 1$, $f'(0) = -1$,则 $\lim_{n \to \infty} n[f(\frac{1}{n}) - 1] = ($)

A. -1 B. 0 C. 1 D. ∞

解 由
$$f(0) = 1$$
, $f'(0) = -1$, 得 $-1 = f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$, 这里 Δx 是取实数值

的变量,当
$$\Delta x = \frac{1}{n}$$
 时,得 $-1 = f'(0) = \lim_{n \to \infty} n[f(\frac{1}{n}) - 1]$ 。**选 A**

6. 设函数
$$f(x) = (e^x - 1)(e^{2x} - 2)\cdots(e^{nx} - n)$$
, 其中 n 为正整数,则 $f'(0) = ($

A.
$$(-1)^n (n-1)!$$
 B. $(-1)^{n-1} (n-1)!$ **C.** $(-1)^n n!$ **D.** $(-1)^{n-1} n!$

解 根据一点的导数定义得,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{(e^x - 1)(e^{2x} - 2) \cdots (e^{nx} - n) - 0}{x - 0} = \lim_{x \to 0} \frac{x(e^{2x} - 2)(e^{3x} - 3) \cdots (e^{nx} - n)}{x}$$

$$=(-1)(-2)\cdots(1-n)=(-1)^{n-1}(n-1)!$$
 选 B

7. 设
$$f(x) = e^{2-x}$$
, 则其 n 阶导数 $f^{(n)}(x) = ($)

A.
$$e^{2-x}$$
 B. $(-1)^n e^{2-x}$ **C.** $-e^{2-x}$ **D.** $(-2)^n e^{2-x}$

解选B略

8. 设
$$y = f(x^2)$$
, 其中 $f(x)$ 函数可导,则 $\frac{dy}{dx} = ($)

A.
$$f'(x^2)$$
 B. $f'(2x)$ **C.** $2xf'(x^2)$ **D.** $x^2f'(x^2)$

解选C略

9. 函数 $f(x) = \sqrt{x}$ 按 (x-4) 的幂展开的带佩亚诺余项的 2 阶泰勒公式是(

A.
$$2 + \frac{1}{4}(x-4) - \frac{1}{32}(x-4)^2 + o((x-4)^2)$$
 B. $2 + \frac{1}{4}(x-4) - \frac{1}{32}(x-4)^2 + o((x-4)^n)$

C.
$$2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^2)$$
 D. $2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^n)$

解 函数 f(x) 在 x_0 的带皮亚诺余项的 n 阶泰勒公式为

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

由此只能选 A, C 之一,注意到
$$f'(x) = (\sqrt{x})' = \frac{1}{2}x^{\frac{-1}{2}}, f''(x) = -\frac{1}{4}x^{\frac{-3}{2}}, f''(4) = \frac{-1}{4}(4)^{\frac{-3}{2}} = \frac{-1}{32}$$

$$\frac{f''(4)}{2!} = -\frac{1}{64}$$
, 故只能**选 C**.

10.函函数
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$
 的铅直渐近线方程为()

- A. y = 0 B. y = 1 C. x = 1 D. x = -1

解 函数
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$
 无意义的点为 $x = -1,1$,又 $\lim_{x \to (-1)} \frac{x^2 - x}{x^2 - 1} = \infty$,故 $x = -1$ 为垂直渐近

线;
$$\lim_{x\to 1} \frac{x^2-x}{x^2-1} = \lim_{x\to 1} \frac{2x-1}{2x} = \frac{1}{2}$$
, 故 $x=1$ 不是垂直渐近线; **选 D**

二、填空题(每题4分,共20分)

11.极限
$$\lim_{x\to\infty} \left(\frac{x+2}{x-1}\right)^x =$$
________。

$$\mathbf{f} \mathbf{k} \lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^x = e^{\lim_{x \to \infty} x \ln \frac{x+2}{x-1}} = e^{\lim_{x \to \infty} x \ln (1 + \frac{3}{x-1})} = e^{\lim_{x \to \infty} \frac{3}{x-1}} = e^3 ;$$

12.函数
$$f(x) = \begin{cases} \frac{4}{x^2 + 1}, & x \le 1 \\ -x + k, & x > 1 \end{cases}$$
 在 $x = 1$ 处连续,则 $k =$ _______。

解 由函数
$$f(x) = \begin{cases} \frac{4}{x^2 + 1}, x \le 1, & \text{在 } x = 1 \text{ 处连续, } 得 \lim_{x \to 1^+} f(x) = f(1), & \text{即} \lim_{x \to 1^+} (-x + k) = 2, \\ -x + k, & x > 1 \end{cases}$$

得k=3。

13. 设
$$f(x)$$
 是可导函数,且 $f'(x) = \sin^2[\ln(x+1) + \frac{\pi}{4}]$, $f(0) = 3$, $f(x)$ 的反函数是 $y = \varphi(x)$,则 $\varphi'(3) =$ _______。

解 由反函数求导结论: 若 y = f(x) 的反函数为 $x = \varphi(y)$, 则 $\varphi'(y) = \frac{1}{f'(x)}$, 及已知

$$f(0) = 3$$
, $f'(x) = \sin^2[\ln(x+1) + \frac{\pi}{4}]$, $\mathcal{F}(0) = \frac{1}{f'(0)} = \frac{1}{\frac{1}{2}} = 2$;

14. 曲线 $y = x^4(12 \ln x - 7)$ 的拐点坐标是______。

解 拐点横坐标在函数定义域 x>0 内, $y'=4x^3(12\ln x-7)+x^4\frac{12}{x}=4x^3(12\ln x-7)+12x^3$, $y''=12x^2(12\ln x-7)+4x^3\frac{12}{x}+36x^2=(12x)^2\ln x$,注意到拐点横坐标处的二阶导数为 0 或不存在,因为 $y''=(12x)^2\ln x$ 在定义域 x>0 内任一点都能取值,故只可能出现拐点横坐标处的二阶导数为 0,令 $y''=(12x)^2\ln x=0$ 得拐点横坐标 x=1,代入函数表达式得拐点 纵坐标 y=-7,得拐点为 (1,-7);

三、解答题(每小题10分,共50分)

16. 求极限: (1)
$$\lim_{x\to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right]$$
;

$$\Re \lim_{x \to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right] = \lim_{x \to 0} \frac{\ln(1+x) - e^x + 1}{(e^x - 1)\ln(1+x)} = \lim_{x \to 0} \frac{\ln(1+x) - e^x + 1}{x \cdot x}$$

$$= \lim_{x \to 0} \frac{\frac{1}{1+x} - e^x}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2} - e^x}{2} = -1;$$

(2)
$$\lim_{x \to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{\sqrt{1+x} - 1}$$

$$\Re \lim_{x \to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{\sqrt{1+x} - 1} = \lim_{x \to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{\frac{1}{2}x} = 2(\lim_{x \to 0} \frac{\sin x}{x} + \lim_{x \to 0} x \sin \frac{1}{x}) = 2;$$

17. (1) 设
$$y = e^{-x} \sin x + \frac{\ln(x+1)}{(x+1)^2}$$
, 求 $dy|_{x=0}$

$$\mathbf{R} \quad y' = -e^{-x} \sin x + e^{-x} \cos x + \frac{\frac{1}{1+x} (1+x)^2 - \ln(1+x) 2(1+x)}{(1+x)^4}$$

$$=e^{-x}(\cos x - \sin x) + \frac{1+x-2\ln(1+x)}{(1+x)^3}, \text{ th } dy = \left[e^{-x}(\cos x - \sin x) + \frac{1+x-2\ln(1+x)}{(1+x)^3}\right]dx$$

得
$$dy\big|_{x=0} = \left[e^{-x}(\cos x - \sin x) + \frac{1+x-2\ln(1+x)}{(1+x)^3}\right]\big|_{x=0} dx = 2dx$$
;

(2) 设
$$y = f(x)$$
 由
$$\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln(t + \sqrt{t^2 + 1}) \end{cases}$$
 所确定,求 $\frac{d^2y}{dx^2} \Big|_{t=1}$

$$\mathbf{A}\mathbf{F} = \frac{dx}{dt} = \frac{2t}{2\sqrt{1+t^2}} = \frac{t}{\sqrt{1+t^2}} \; ;$$

$$\frac{dy}{dt} = \frac{1}{t + \sqrt{1 + t^2}} (t + \sqrt{1 + t^2})' = \frac{1}{t + \sqrt{1 + t^2}} (1 + \frac{2t}{2\sqrt{1 + t^2}}) = \frac{1}{\sqrt{1 + t^2}};$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{t}, \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{-\frac{1}{t^2}}{\frac{t}{\sqrt{1+t^2}}} = \frac{\sqrt{1+t^2}}{-t^3}; \quad \frac{d^2y}{dx^2}\Big|_{t=1} = -\sqrt{2};$$

- **18.** 设曲线 $y = x^2 + ax + b$ 和 $2y = -1 + xy^3$ 在点 (1,-1) 处相切,其中 a,b 为常数。
 - (1) 求 a,b 的值;
 - (2) 求曲线 $y = x^2 + ax + b$ 和 $2y = -1 + xy^3$ 在点 (1,-1) 处的公切线与法线方程。

解 (1) 由
$$y = x^2 + ax + b$$
 和 $2y = -1 + xy^3$ 在点 $(1,-1)$ 相切,得

$$-1=1+a+b$$
; 且公切线斜率相等, 因为 $y'=2x+a$, $2y'=y^3+x3y^2y'$ 即 $y'=\frac{y^3}{2-3xy^2}$,

由于在点(1,-1)处的公切线斜率相等,故得 $2+a=\frac{-1}{2-3}$,得a=-1,从而b=-1;

(2) 因为公切线斜率为 1,得公切线方程为 y-(-1)=1(x-1),即 y=x-2,法线方程为 y-(-1)=-1(x-1),即 y=-x。

19. 函数 $f(x) = a \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值。

(1) 求a的值; (2) 求此极值,并说明是极大值还是极小值。

解略

- 20. 设函数 f(x) 在 $[0,+\infty)$ 上可导, f(0)=0 ,且 $\lim_{x\to+\infty}f(x)=2$,证明:
 - (1) 存在a > 0, 使得f(a) = 1;
- (2) 对(1)中的a,存在 $\xi\in(0,a)$,使得 $f'(\xi)=\frac{1}{a}$ 。

证 (1) 证 由 $\lim_{x\to+\infty} f(x)=2$,故存在充分大的正数 x_0 ,使得 $f(x_0)>1.5$ 。设 F(x)=f(x)-1,

则由已知得F(x)在 $[0,x_0]$ 上连续,且 $F(0)=-1<0, F(x_0)=f(x_0)-1>0$,根据零点定理

知,存在 $a\in (0,x_0)\subset (0,+\infty)$, 使得 F(a)=0, 结论得证;

(2) 略