Systems Advanced II

Linux

NFS

Elfde-Liniestraat 24, 3500 Hasselt, www.pxl.be

Doelstellingen

- De student:
 - De student kan Netwerk-services installeren, configureren en onderhouden.
 - De student kan microservices-infrastructuur opzetten en beheren.
 - De student kan een (eigen) cloud systeem opzetten a.d.h.v. opgelegde voorwaarden.
 - De student kan een systeem beveiligen.

Licensing & open-source software

Overzicht

- Introductie
- Architectuur
- Client en Server configuration
- LAB nfs
- File Security
- LAB nfs
- LAB High Availability NFS (gluster)
- LAB Kerberos

Network File System (NFS)

- Network File System (NFS)
- Protocol voor een gedistribueerd file systeem
- 1984 door Sun Microsystems (Sun) ontwikkeld
- Client computer kan via een netwerk toegang krijgen tot remote file systemen (exports) via een local mount point.
- Internet standaard
 RFC 7530 Network File System (NFS) Version 4 Protocol (ietf.org)
- ook ingebouwd in Windows Server

NFS system

mounts

NFS Clients

NFS architecture

linux virtual file system (vfs)

- software layer in the kernel that provides the **filesystem interface** to user space programs.
- also provides an **abstraction layer** within the kernel which allows different filesystem implementations to coexist.

NFS Networking

- NFSv3
 - UDP / dynamic ports
 - sneller interessant in low-latency, super-reliable netwerken
 - makkelijker om op te zetten
- NFSv4
 - TCP/2049
 - more reliable
 - meer security features zoals Kerberos support
 - file locking support
 - complex

NFS Services

- Server
 - nfs-server (nfsd)
 - TCP based service (Version 4)
 - rpcbind
 - managen van RPC port reservations en connections (Version 3)
 - service discovery (Version 3 en Version 4)
- Client
 - rpcbind
 - managen van RPC port reservations en connections (Version 3)
- Versies
 - vaak zijn versie 3 en 4 allebei default geinstalleerd in linux distributions

NFS Server configuration

/nfs-share

192.168.20.0/24(rw,no_root_squash)

exports

- shared directory resources
- beschreven in /etc/exports:
- /export <host>(options)
 - bv./share1 server1.psdemo.local
 - /export directory die geshared wordt
 - **<host>** host of network die access hebben tot deze export
 - (options) opties voor die host/network
- exportfs commando om runtime config tabel van exported file systems te maintainen
 - /var/lib/nfs/etab runtime configuratie van de exports

NFS /etc/exports - <host>

netgroups

• [a-z]

• server[2-9].psdemo.local

NIS netgroup (network groups defined on a Network Information Server or NIS server)

NFS /etc/exports - (options)

/nfs-share 192.168.20.0/24(rw,no_root_squash)

- •/<export> <host>(options)
 - Default options
 - **ro** read only
 - **sync** reply pas wanneer writes naar disk committed zijn
 - wdelay houdt writes tegen wanneer er wschlk. nog writes gaan volgen
 - rootsquash uid 0 wordt gemapt naar anonymous user om root access to voorkomen
 - **sec=sys** security model gebruikt mapping van user ids tussen hosts (gevaarlijk!)
 - Andere options
 - rw/ro read-write vs read-only
 - **sync/async** safety vs performance
 - all_squash alle user ids worden gemapt naar anonymous users
 - no_root_squash geen enkele user wordt gemapt op anonymous user of group id
 - sec=krb5 (kerberos 5), sec=krb5i (integrity checking) of sec=krb5p (integrity, encryption)

NFS Client: mount methodes

- runtime mounting (weg na reboot)
 - mount -t nfs -o -rw server0.psdemo.local:/share1 /mnt/share1
- persistent mounting
 - /etc/fstab
 - server0.psdemo.local:/share1 /mnt/share1 nfs rw 0 0
- dynamic on-demand mounting
 - autofs
- /etc/nfsmount.conf
 - globale opties voor NFS mounts

Default NFS client options

- rw read write
- **sync** wachten op write confirmations
- **suid** gebruik setuid programma's
 - allow users to run an executable file with the file system permissions of the executable's owner or group respectively
 - causes new files and subdirectories created within a directory to inherit its group ID, rather than the primary group ID of the user who created the file (the owner ID is never affected, only the group ID)
- **dev** mount op filesysteem als block of char device
- **exec** uitvoeren van binaries toegestaan
- auto mountable met mount -a
- hard blocking waits wanneer server offline is
- sec=sys gebruik UID/GID security model
- realtime update inode access times

zie man nfs

veel gebruikte NFS client options

- ro read only
- async niet wachten op write confirmations
- nosuid gebruik setuid applicaties niet toegestaan
- noexec uitvoeren van binaries niet toegestaan
- **soft** error wanneer server offline is
- sec=krb5, krb5i, krb5p gebruik Kerberos authentication
- port gebruik specifieke poort

zie man nfs

NFS LAB

nfs-lab environment

Update bestaande environment

- cd ~/sysadv2-2223
- git pull origin main

Hostname	IP Address	Fully Qualified Domain Name (FQDN)
server0	192.168.99.100	server0.psdemo.local
server1	192.168.99.101	server1.psdemo.local
server2	192.168.99.102	server1.psdemo.local
client0	192.168.99.103	server2.psdemo.local

192.168.1.0/24

OF: clone nieuwe environment

- cd ~
- git clone https://github.com/PXLSystemsAdvancedII/sysadv2-2223.git
- cd ~/sysadv2-2223/nfs_lab
- vagrant up
- vagrant hosts list

Lab: NFS export - configure nfs server

- server0 (vagrant ssh server0)
 - sudo -i
 - installeer nfs service
 - yum -y install nfs-utils
 - systemctl status nfs-server
 - systemctl enable --now nfs-server
 - firewall config
 - systemctl enable --now firewalld
 - firewall-cmd --permanent --zone public --add-service nfs
 - firewall-cmd --reload

Lab: NFS export - maak een export

server0

- maak een export
 - mkdir /share1
 - vi /etc/exports /share1 server1.psdemo.local
- maak de export actief
 - exportfs -arv
- check runtime configuration met default options
 - cat /var/lib/nfs/etab
- maak export r/w
 - vi /etc/exports /share1 server1.psdemo.local(rw)
 - exportfs -arv
 - cat /var/lib/nfs/etab

Lab: NFS export - mount export op client

- server1
 - sudo yum -y install nfs-utils
 - runtime mount
 - sudo mount -t nfs server0.psdemo.local:/share1 /mnt/
 - mount | grep server0
 - ls /mnt/

Lab: NFS export - welke exports zijn er available op de server?

- server0
 - welke exports zijn er available op de server? rpcbind kan service discovery aanbieden.
 - sudo systemctl enable --now rpcbind
 - sudo systemctl status rpcbind
 - firewall openzetten voor rpcbind
 - firewall-cmd --permanent --zone public --add-service=rpc-bind
 - firewall-cmd --permanent --zone public --add-port=20048/udp
 - firewall-cmd --reload
- server1
 - vraag export list van server0 op
 - showmount -e server0.psdemo.local

Lab: NFS export - persistent NFS mounts

- server1
 - sudo vi /etc/fstab
 - server0.psdemo.local:/share1 /mnt nfs defaults,rw, netdev 0 0
 - server:/path/to/export /local_mountpoint nfs <options> 0 0
 - _netdev optie wacht met mounten totdat het netwerk online is
 - unmount vorige runtime mount
 - sudo umount /mnt/
 - herlees /etc/fstab config file
 - sudo mount -a
 - mount | grep server0

Lab: NFS export - autofs

- autofs
 - automount daemon
 - mount share enkel bij access
 - unmount na ingestelde tijd
 - minder bandbreedte nodig dan statische mounts
- server1
 - enable service
 - sudo yum -y install autofs
 - sudo systemctl enable --now autofs
 - configure: voeg export toe
 - sudo vi /etc/auto.misc share1 -fstype=nfs,rw server0.psdemo.local:/share1
 - sudo systemctl restart autofs
 - test
 - ls /misc/
 - ls /misc/share1
 - ls /misc/

Lab: NFS export - NFS access

- server2
 - sudo yum -y install nfs-utils
 - mount export van server0
 - sudo mount -t nfs server0.psdemo.local:/share1 /mnt/
 - access denied
- server0
 - check exports configuration
 - cat /etc/exports
 - enkel server1 heeft access
 - open access in exports configuration
 - sudo vi /etc/exports
 /share1 server?.psdemo.local(rw)
 - sudo exportfs -arv
- server2
 - mount export van server0
 - sudo mount -t nfs server0.psdemo.local:/share1 /mnt/
 - mount | grep server0

EINDE NFS LAB

NFS File Security

- default: UID/GID security model met AUTH_SYS RPC calls
- gevaarlijk: UIDs en GUID kunnen overlappen!
- Werkt goed met centralized authentication server
- root? (UID 0)
 - root_squash enabled by default

Kerberos - korte introductie

- Massachusetts Institute of Technology (MIT) 1980
- Authenticatieprotocol dat werkt op basis van tickets om resources te accessen
- Encryptie beschermt alle access keys and tickets
- Clients kunnen hun identiteit op een veilige manier aantonen en over een onveilig netwerk verbinding maken met services
- Microsoft Active Directory is gebaseerd op de Kerberos Network Authentication Service (V5)
- Key Distribution Center (KDC) (Active Directory: Domain Controller)
 - Authentication Service (AS)
 - authenticeert clients en geeft hun Ticket-Granting Tickets (TGT's)
 - Ticket-Granting Service (TGS)
 - aanvaardt authenticated clients en geeft hun tickets om resources zoals files, netwerk, ... te accessen
 - Database met gevoelige data
- Principal
 - Unieke identiteit in een Kerberos-systeem waaraan Kerberos tickets kan toewijzen voor access tot Kerberos-aware services
- keytab
 - file met pairs van Kerberos principals en encrypted keys

Kerberos Authentication

- AUTH_SYS
 - UID/GID security model
- AUTH_GSS
 - Requirements
 - Kerberos Key Distribution Center (KDC) installed
 - Host en service principals toegevoegd voor client en server
 - Key tabs toegevoegd aan client en server
 - Zowel server exports als client mounts geconfigureerd met sec=krb5:krb5i:krb5p

High Availability?

Case study: Gluster

- What is Gluster?
 - Gluster is a scalable, distributed file system that aggregates disk storage resources from multiple servers into a **single global namespace**.
- Advantages
 - Scales to several petabytes
 - Handles thousands of clients
 - POSIX compatible
 - POSIX (Portable Operating System Interface) is a set of standards that define a common API for UNIX-like operating systems to ensure software compatibility across different platforms.
 - Uses commodity hardware
 - Can use any on-disk file system that supports extended attributes
 - Accessible using industry standard protocols like NFS and SMB
 - Provides replication, quotas, geo-replication, snapshots and bitrot detection
 - Allows optimization for different workloads
 - Open Source

HA-NFS LAB

Lab: Highly Available NFS service

quorum: meer dan de helft van de nodes vormt een quorum of absolute meerderheid. De cluster is available zolang de <u>available</u> nodes quorum hebben.

Installatie en configuratie van een HA-NFS service op Oracle Linux 7 (==RHEL) met Corosync, Pacemaker, Gluster en Ganesha.

- NFS service hosted door 3 VMs: master1, master2, master3.
- Elk van de 3 VMs zal een gluster volume repliceren voor data redundancy en cluster tools gebruiken voor service redundancy.
- Components
 - **Corosync**: cluster messaging and membership service that provides reliable communication between nodes in a cluster.
 - **Pacemaker**: cluster resource manager that manages cluster resources and ensures high availability of services in a cluster environment.
 - **Ganesha**: implementation of the NFS (Network File System) protocol that provides access to shared files across a network.
 - **Gluster**: distributed file system that allows administrators to create and manage storage clusters made up of multiple servers and storage devices.

ha_nfs-lab environment

- Update bestaande environment
 - cd ~\sysadv2-2223
 - git pull origin main
- OF: clone nieuwe environment
 - cd ~
 - git clone https://github.com/PXLSystemsAdvancedII/sysadv2-2223.g it
- cd ~/sysadv2-2223/ha_nfs_lab
- vagrant up
- maak 4 terminal windows klaar, of tabs, of via split window, om makkelijk te switchen naar master1, master2, master3 en client1
- Log in op alle masters en wordt root
 - vagrant ssh master1
 - sudo -i

Hostname	IP Address	Fully Qualified Hostname
master1	192.168.99.101	master 1. vagrant. vm
master2	192.168.99.102	master 2. vagrant. vm
master3	192.168.99.103	master 3. vagrant. vm
client1	192.168.99.104	client 1. vagrant. vm
nfs	192.168.99.100	nfs.vagrant.vm

Windows Terminal split window:

Windows Terminal resize window:

Stap 1: software install

Stap 1: software installatie van alle software componenten via ge-activeerde repositories.

- Install repositories
 - sudo yum install -y oracle-gluster-release-el7
- Enable repositories
 - sudo yum-config-manager --enable ol7_addons ol7_latest ol7_optional_latest ol7_UEKR5
- Install software componenten
 - sudo yum install -y corosync glusterfs-server nfs-ganesha-gluster pacemaker pcs

Stap 2: Maak een Gluster replicated volume

2.a filesysteem preparation

Stap 2: de extra disk van elke master prepareren, een replicated Gluster volume maken en activeren.

- Maak een XFS filesysteem op /dev/sdb met een label gluster-000
 - sudo mkfs.xfs -f -i size=512 -L gluster-000 /dev/sdb
- Maak een mountpoint, voeg een fstab entry toe voor een disk met label gluster-000 en mount het file systeem
 - sudo mkdir -p /data/glusterfs/sharedvol/mybrick
 - echo 'LABEL=gluster-000 /data/glusterfs/sharedvol/mybrick xfs defaults 00' | sudo tee -a /etc/fstab
 - mount /data/glusterfs/sharedvol/mybrick

Stap 2: Maak een Gluster replicated volume

2.b gluster environment

Op alle masters:

- Enable en start Gluster service
 - sudo systemctl enable --now glusterd

Op master1:

- Maak een Gluster environment door peers toe te voegen
 - sudo gluster peer probe master2.vagrant.vm
 - sudo gluster peer probe master3.vagrant.vm

- Check op alle peers dat ze in de Gluster enviroment zitten
 - sudo gluster peer status

Stap 2: Maak een Gluster replicated volume

2.c gluster volume

Op master1:

- Maak een Gluster volume "sharedvol" dat replicated wordt over master1, master2 en master3
 - sudo gluster volume create sharedvol replica 3 master{1,2,3}:/data/glusterfs/sharedvol/mybrick/brick
- Enable het Gluster volume "sharedvol"
 - sudo gluster volume start shared

- Check gluster volume info en status
 - sudo gluster volume info
 - sudo gluster volume status

Stap 3: Configureer Ganesha

Ganesha is de NFS server die het Gluster volume deelt. In dit voorbeeld laten we elke NFS client toe om te verbinden met onze NFS share met lees/schrijf rechten.

Op alle masters:

/etc/ganesha/ganesha.conf

```
EXPORT{
   Export Id = 1;
                       # Unique identifier for elke EXPORT
   Path = "/sharedvol"; # Export path van onze NFS share
   FSAL {
       name = GLUSTER; # Backing type is Gluster
       hostname = "localhost"; # Hostname van Gluster server
       volume = "sharedvol";
                              # Naam van ons Gluster volume
   Access type = RW;
                            # Export access permissions
   Squash = No root squash;
                            # Control NFS root squashing
   Disable ACL = FALSE;
                            # Enable NFSv4 ACLs
   Pseudo = "/sharedvol";
                            # NFSv4 pseudo path for our NFS share
   Protocols = "3","4";
                            # NFS protocols supported
   Transports = "UDP", "TCP"; # Transport protocols supported
   SecType = "sys";
                            # NFS Security flavors supported
```

Stap 4: Maak een Pacemaker/Corosync cluster 4.a set authentication en enable cluster services

We gaan een Pacemaker/Corosync cluster aanmaken en starten, die bestaat uit onze drie master nodes.

Op alle masters:

- Maak een shared paswoord voor de user hacluster
 - passwd hacluster
- Enable de Corosync and Pacemaker services. Enable en start de pacemaker configuration system service. De Corosync en Pacemaker services zullen later gestart worden.
 - systemctl enable corosync
 - systemctl enable pacemaker
 - systemctl enable --now pcsd

Op master1:

- Authenticeer met alle cluster nodes via de hacluster user en het nieuwe shared paswoord van daarnet
 - pcs cluster auth master1 master2 master3 -u hacluster -p SHAREDPASSWORD

Stap 4: Maak een Pacemaker/Corosync cluster 4.b maak een Pacemaker cluster

Op master1:

- Maak de cluster "HA-NFS"
 - pcs cluster setup --name HA-NFS master1 master2 master3
- Start de cluster op alle nodes
 - pcs cluster start --all
- Enable de cluster op alle nodes (start at boot time)
 - pcs cluster enable --all
- disable STONITH
 - pcs property set stonith-enabled=false

Op alle masters:

- De pacemaker cluster werkt
 - pcs cluster status

STONITH is een acroniem voor

Shoot-The-Other-Node-In-The-Head, een recommended practice om een node die zich misdraagt onmiddellijk te isoleren (uitschakelen, afsnijden van gedeelde resources of anderszins immobiliseren), en wordt gewoonlijk geïmplementeerd met een remote power switch.

Stap 5: Maak Cluster Services

We gaan een resource groep aanmaken die de middelen bevat die nodig zijn om NFS services te hosten vanaf de virtuele hostnaam nfs.vagrant.vm (192.168.99.100).

Op master1:

- Maak een systemd-gebaseerde cluster resource aan om te verzekeren dat nfs-ganesha draait. Check elke 10s of nfs draait.
 - pcs resource create nfs_server systemd:nfs-ganesha op monitor interval=10s
- Maak een floating IP cluster resource aan dat gebruikt wordt om de NFS server aan te bieden. Check elke 10s of het adres werkt.
 - pcs resource create nfs_ip ocf:heartbeat:IPaddr2 ip=192.168.100.100 cidr_netmask=24 op monitor interval=10s
- Voeg de Ganesha service en IP resource samen in een groep om er zeker van te zijn dat ze altijd samen op dezelfde host blijven
 - pcs resource group add nfs_group nfs_server nfs_ip

- Toon de status van de pacemaker cluster en de aangeboden resources
 - pcs status

Stap 6: High-Availability Fail-over Test 6.a alles is top - no problems

Op client1:

- Mount de NFS service van onze cluster and maak een file op de cluster.
 - sudo -i
 - yum install -y nfs-utils
 - mkdir /sharedvol
 - mount -t nfs nfs.vagrant.vm:/sharedvol /sharedvol
 - df -h /sharedvol/
 - echo "All your base are belong to us" > /sharedvol/hello

Op master2 of master3:

DIT DUURT HEEL LANG DOOR VIRTUALBOX VIRTUAL NIC BUG (+1 MIN)

- pcs status
- ls /data/glusterfs/sharedvol/mybrick/brick/

Stap 6: High-Availability Fail-over Test 6.b Boom.

Op VirtualBox GUI:

• Poweroff van master2. Disaster. De Designated Controller is plots offline. De cluster resources nfs en floating ip werden door deze node geserved.

Op master2:

- Binnen de 10s merkt de cluster
 - Pacemaker
 - node master2 is offline
 - wij (master1 en master3) hebben quorum (meerderheid)
 - Designated Controller gaat naar een van de online nodes
 - Resources worden toegewezen
 - Corosync zorgt voor opstarten van resources
 - Gluster
 - node master2 is offline
 - replication en volume voorziening blijven actief
- Check fail-over status.
 - pcs status

Op client1:

Test de NFS share availability

ls -la /sharedvol/
cat /sharedvol/hello

DIT DUURT HEEL LANG DOOR VIRTUALBOX VIRTUAL NIC BUG (+1 MIN)

Op VirtualBox GUI:

Poweron van master1.

Op master1 of master2:

Check hoe de node terug online komt

pcs status

KERBEROS LAB

Lab: NFS File Security - sec=sys

- zelfde set-up als nfs lab
- server1 (as user vagrant)
 - touch /misc/share1/file1.test
 - ls -la /misc
- server0
 - sudo chown vagrant:vagrant /share1
- server1 (as user vagrant)
 - touch /misc/share1/file1.test
 - ls -la /
- geen unified authentication system!
 - mapped uids en gids worden gebruikt
 - op beide systemen
 - sudo chown vagrant:vagrant /share1

Lab: NFS File Security - Kerberos installeren

- server0
 - sudo -i
 - install ntp service
 - yum -y install chrony
 - systemctl enable --now chronyd
 - chronyc tracking
 - install kerberos service zie config files volgende slide
 - yum -y install krb5-server krb5-libs
 - vi /var/kerberos/krb5kdc/kadm5.acl
 - */admin@PSDEMO.LOCAL
 - vi /etc/krb5.conf (next slide)
 - vi /var/kerberos/krb5kdc/kdc.conf (next slide)

/etc/krb5.conf

```
[libdefaults]
   default_realm = PSDEMO.LOCAL
   dns_lookup_realm = false
   dns lookup kdc = false
   ticket lifetime = 24h
   forwardable = true
   udp preference limit = 1000000
[realms]
   PSDEMO.LOCAL = {
       kdc = server0.psdemo.local:88
        admin server = server0.psdemo.local:749
       default domain = psdemo.local
[domain_realm]
    .psdemo.local = PSDEMO.LOCAL
    psdemo.local = PSDEMO.LOCAL
[logging]
   kdc = FILE:/var/log/krb5kdc.log
   admin_server = FILE:/var/log/kadmin.log
   default = FILE:/var/log/krb5lib.log
```

/var/kerberos/krb5kdc/kdc.conf

```
default realm = PSDEMO.LOCAL
[kdcdefaults]
   v4 mode = nopreauth
    kdc ports = 0
[realms]
    PSDEMO.LOCAL = {
        kdc ports = 88
        admin keytab = /etc/kadm5.keytab
        database_name =
/var/kerberos/krb5kdc/principal
        acl file = /var/kerberos/krb5kdc/kadm5.acl
        key_stash_file = /var/kerberos/krb5kdc/stash
        max life = 10h 0m 0s
        max renewable life = 7d 0h 0m 0s
        default principal flags = +preauth
```

Lab: NFS File Security - Kerberos server set-up

- server0
 - maak de kdc database voor de gevoelige data met een paswoord
 - kdb5_util create -r PSDEMO.LOCAL -s
 - maak een admin principal en steek die in de keytab
 - kadmin.local
 - addprinc root/admin
 - ktadd -k /var/kerberos/krb5kdc/kadm5.keytab kadmin/admin
 - ktadd -k /var/kerberos/krb5kdc/kadm5.keytab kadmin/changepw
 - exit
 - start kerberos services.
 - systemctl enable --now krb5kdc.service
 - systemctl enable --now kadmin.service
 - maak een principal voor de kdc server en de nfs service en steek ze in de keytab
 - kadmin.local
 - addprinc -randkey host/server0.psdemo.local
 - addprinc -randkey nfs/server0.psdemo.local
 - ktadd host/server0.psdemo.local
 - ktadd nfs/server0.psdemo.local
 - list principals
 - exit

Lab: NFS File Security - Kerberos client set-up

• server1

- sudo yum -y install krb5-workstation
- sudo vi /etc/krb5.conf
 - zelfde config zie 2 slides terug
- principals maken voor host en nfs service, toevoegen aan lokale keytab
 - sudo kadmin -p root/admin
 - addprinc -randkey host/server1.psdemo.local
 - addprinc -randkey nfs/server1.psdemo.local
 - ktadd host/server1.psdemo.local
 - ktadd nfs/server1.psdemo.local
 - ktadd host/server0.psdemo.local

Lab: NFS File Security - NFS kerberos5 config: server

- server0
 - pas exports aan om krb5 security model te gebruiken
 - sudo vi /etc/exports/share1 server1.psdemo.local(rw,sec=krb5)
 - maak de export actief
 - sudo exportfs -arv
 - check runtime configuration met default options
 - cat /var/lib/nfs/etab

Lab: NFS File Security - NFS kerberos5 config: client

- server1
 - (re)start nfs-client
 - sudo systemctl enable --now nfs-client.target
 - runtime mount met sec=krb5
 - sudo mount -t nfs -o sec=krb5 server0.psdemo.local:/share1 /mnt/
 - mount | grep server0
 - verander /etc/fstab voor permanente change
 - sudo vi /etc/fstab
 - server0.psdemo.local:/share1 /mnt nfs defaults,rw,_netdev,sec=krb5 0 0
 - sudo umount /mnt
 - sudo mount -a
 - mount | grep server0
 - ls /mnt/

Lab: NFS File Security - NFS kerberos5 config: geef user access met ticket

- server1
 - voeg principal toe voor user vagrant
 - sudo kadmin -p root/admin
 - addprinc vagrant
 - exit
 - aan de kdc een kerberos ticket vragen
 - kinit
 - user password van daarnet
 - tickets opvragen
 - klist
 - 1s /mnt/

EINDE KERBEROS LAB

Overzicht

- Introductie
- Architectuur
- Client en Server configuration
- LAB nfs
- File Security
- LAB nfs
- LAB High Availability NFS (gluster)
- LAB Kerberos

end