

in linkedin.com/in/romansyasetyo/

Table of Content What will We Learn Today?

- What is NumPy
- NumPy usage
- NumPy in Python

Hands on using Google Colab

What is NumPy

What is NumPy

- Numerical Python
- NumPy is a fundamental package for scientific computing in Python
- Used for working with arrays
- Used in :
- matrix manipulation and computation
- sorting and selecting data
- basic linear algebra
- basic statistical and mathematical operations and much more!

Why use NumPy?

- In Python, lists serve the purpose of arrays, but they are slow to process.
 NumPy aims to provide an array object that is up to 50x faster than traditional Python lists
- Arrays are very frequently used in data science, where speed and resources are very important.

```
import numpy

my_list = [1,2,3,4]
print(type(my_list))
print(my_list)

<class 'list'>
[1, 2, 3, 4]

my_array = numpy.array(my_list)
print(type(my_array))
print(my_array)

<class 'numpy.ndarray'>
[1 2 3 4]
```


Numpy Usage

Source: https://data-flair.training/blogs/numpy-applications/

Source: <u>numpy.org</u>

Numpy in Python

Using NumPy & Creating Array

```
!pip install numpy
import numpy
my list = [1,2,3,4]
print(type(my_list))
print(my list)
<class 'list'>
[1, 2, 3, 4]
my_array = numpy.array(my_list)
print(type(my_array))
print(my array)
```

<class 'numpy.ndarray'>

[1 2 3 4]

Array Indexing & Reshaping

data.reshape(3,2)

1 2
3 4
5 6

Array Search & Filter

NumPy Random

Array Arithmetic

	0
+	0
-	0
	0

		/		
	0	0	0	
=	10	10	10	
_	20	20	20	
	30	30	30	
				V

			\nearrow
0	1	2	\bigcup
0	1	2	
0	1	2	
0	1	2	

Matrix Operations

$$= \begin{vmatrix} 1x10 + 2x20 + 3x30 & 1x11 + 2x21 + 3x31 \\ 4x10 + 5x20 + 6x30 & 4x11 + 5x21 + 6x31 \end{vmatrix}$$

$$= \begin{bmatrix} 10+40+90 & 11+42+93 \\ 40+100+180 & 44+105+186 \end{bmatrix} = \begin{bmatrix} 140 & 146 \\ 320 & 335 \end{bmatrix}$$

Google Colab

https://colab.research.google.com/

Thank You

