

Evolution of TPUs

TPU Evolution

Generation	Primary Use Case	Precision	Key Features
TPUv1-v2	Early Inference	8-bit/16-bit	Efficient matrix computation
TPUv3-v4	Training and Inference	Higher	Greater memory bandwidth
TPUv5/v5p	Training LLMs	Mixed (bfloat16, int8)	Optimized for large language models
TPUv6e (Trillium)	Large Model Training	Unknown	Cost-efficient training
TPUv7 (Ironwood)	Inference-First	Unknown	Active reasoning and generation

HBM3

Memory

Ironwood Architecture

Enhancement Integrated Interconnect

Integrated

Interconnect (ICI)

Chip Features

SparseCore

SparseCore

enhances the

performance of

recommender

The Sweet Spot of Al Acceleration

Balanced

Performance

Optimal AI acceleration

Computational

Speed and resource

Efficiency

optimization

FP8 Precision [0]

Accuracy

Precision in Al

computations

Hardware

Ironwood outperforms Trillium in key performance

metrics.

Bfloat16
Precision

El Capitan

World's fastest

supercomputer with

\~1.7 exaFLOPs.

Top AI Compute Pod Configurations

9,216-Chip Pod

Delivers 42.5

exaFLOPs of AI

compute using FP8.

256-Chip Pod

Common in Google

Cloud deployments.

Torus

efficient

Topologies

communication.

Low Latency

Enables ultra-low

latency token

prediction.

Chips are connected in

torus topologies for

synchronous largemodel inference. Seamless Scaling

High-Speed

Ironwood uses high-

speed ICI 1.2 Tbps bidirectional mesh

Synchronous

Provides seamless

scaling across pods

with Jupiter optical

switches.

Inference

Allows for

Links

links.

Which workload should Ironwood be optimized for?

LLM Inference

MoE Models

Optimizing for LLM inference allows for efficient processing of large language

Focusing on MoE models enhances routing and sparse activation, improving efficiency.

Recommender Systems

systems improves performance.

Scientific Computing

Accelerating embeddings in recommender

Optimizing for scientific computing enables faster processing of financial and DNA

2

models like PaLM and Gemini.

Al Use Cases Enabled

Competitive Comparison

3

Limited

Documentation

Open-source

Ironwood Limitations

Cloud Only

Ironwood is

Strategic Implications

specialized TPUs

for AI tasks

Cloud Stack stacks Control Managing GCP for seamless Compiler/Runtime integration Developing 3 Pathways for efficient TPU Custom execution Hardware 4 Designing

Edge

Outperforming traditional GPU