НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии Дисциплина: «Архитектура вычислительных систем»

Микропроект по дисциплине «Архитектура вычислительных систем»

На тему:

«Программа вычисления корня квадратного по итерационной формуле Герона Александрийского с точностью не хуже 0,05%»

Пояснительная записка

Выполнил:

Моторкин Владимир, *студент гр. БПИ198*.

Содержание

1. Te	екст задания	2
	рименяемые расчетные методы	
	Описание переменных программы и макросов	
3. Te	естирование программы	4
3.1.	Корректные значения	4
3.2.	Некорректные значения	
ПРИЛО	ЭЖЕНИЕ 1	6
Список	к литературы	6
ПРИЛО	ЭЖЕНИЕ 2	7
Код пр	ограммы	7

1. Текст задания

Вариант 21.

Разработать программу вычисления корня квадратного по итерационной формуле Герона Александрийского с точностью не хуже 0.05% (использовать FPU).

2. Применяемые расчетные методы

2.1. Теория решения задания

В данном задании необходимо найти квадратный корень при помощи итерационной фомрулы Герона Александрийского.

Итерационная формула Герона имеет вид:

$$x_{n+1}=rac{1}{2}\,\left(x_n+rac{a}{x_n}
ight)$$
 ,

где а - фиксированное положительное число, а x_1 - любое положительное число.

Итерационная формула задаёт убывающую (начиная со 2-го элемента) последовательность, которая при любом выборе x_1 быстро сходится к искомой величине \sqrt{a} .

Данная программа вычисляет значение этой формулы до тех пор, пока её текущее значение не будет отличаться от её предыдущего значения менее чем на 0.05% (0,0005 в абсолютной величине).

В качестве случайного значения x_1 берётся число 3.

Входным параметром берётся целое положительное число.

2.2. Описание переменных программы и макросов

Строки:

- strIntro строка приветствия
- strInput пояснение для ввода числа а
- strScan строка считывания числа
- strError сообщение о неверном вводе
- strValue вывод введённого пользователем числа а
- strAnswer вывод ответа

Числа:

- leftA левая граница ввода число 0
- х значение функции в момент итерации, изначально равно 3
- а вводимое пользователем число
- delta точность расчётов, равна 0.0005
- prev значение функции в прошлой итерации
- divideby2 значение, равное 0.5

Макросы:

- Print вывод строки в консоль
- Scan считывание числа из консоли
- GetAnswer Нахождение квадратного корня числа а

3. Тестирование программы

3.1. Корректные значения

Рисунок 3. Число a = 1023.

3.2. Некорректные значения

C:\Users\NV\Desktop\123.EXE

Рисунок 5. Число а - отрицательное число.

```
■ C:\Users\NV\Desktop\123.EXE

With this program you can find the square root of a number with an accuracy of no worse than 0.05 percent, using the ite ^
rative formula of Heron of Alexandria
Input an integer number A > 0: 0
Number A must be integer, > 0 and < (2^31)-1!

■
```

Рисунок 6. Число а равно нулю.

```
■ C:\Users\NV\Desktop\123.EXE

With this program you can find the square root of a number with an accuracy of no worse than 0.05 percent, using the iterative formula of Heron of Alexandria
Input an integer number A > 0: 45.67
Number A equals 45
Square root of number A is 6.708204
```

Рисунок 7. Число а – вещественное число.

```
■ C:\Users\NV\Desktop\123.EXE

With this program you can find the square root of a number with an accuracy of no worse than 0.05 percent, using the ite A rative formula of Heron of Alexandria
Input an integer number A > 0: 4294967297
Number A equals 1
Square root of number A is 1.0000000
```

Рисунок 8. Число а превышает 2^32.

приложение 1

Список литературы

- 1. Список команд FPU. [Электронный ресурс] // URL: https://prog-cpp.ru/asm-coprocessor-command/ (дата обращения: 31.10.2020)
- 2. Краткий перечень команд ассемблера. [Электронный ресурс] // URL: https://blic.fandom.com/ru/wiki/Краткий_перечень_команд_ассемблера (дата обращения: 31.10.2020)

Код программы

```
;Motorkin Vladimir BSE198
format PE console
entry start
```

include 'win32a.inc'

section '.data' data readable writable

strIntro db 'With this program you can find the square root of a number with an accuracy of no worse than 0.05 percent, using the iterative formula of Heron of Alexandria', 10, 0

```
strInput db 'Input an integer number A > 0: ', 0
strScan db '%d',0
strError db 'Number A must be integer, > 0 and < (2^31)-1!', 10, 0
strValue db 'Number A equals %d', 10, 0
strAnswer db 'Square root of number A is %1f', 10, 0
;strD db 'Current x = \%1f'
leftA
         dd 0
        dq 3.0
X
        dd?
a
delta
         dq 0.0005
         dq?
prev
divideby2 dd 0.5
```

section '.code' code readable executable

```
macro Print [arg] {
```

```
reverse
  push arg
 common
  call [printf]
}
macro Scan [args] {
 reverse
  push args
 common
  call [scanf]
}
;All the calcilations for getting the answer
macro GetAnswer {
local valueLoop
valueLoop:
       ;debugging
       ;Print strD, dword[x], dword[x+4]
       ;previos value = x
       FLD [x]
       FSTP [prev]
       x = (x+a/x)*0.5
       FILD [a]
```

```
FDIV [x]
      FADD [x]
      FMUL [divideby2]
      FSTP [x]
      ;checking if (x-prev)<delta, then repeat calculation
      FLD [prev]
      FSUB [x]
      FABS
      FCOMP [delta]
      FSTSW ax
      sahf
      ja valueLoop
}
      ------Main-----
Error:
   Print strError
   jmp finish
start:
   FINIT
   Print strIntro
   Print strInput
   Scan strScan, a
   xor ecx, ecx
   mov ecx, [a]
   cmp ecx, [leftA]
   jle Error
   Print strValue, [a]
```

```
GetAnswer
    Print strAnswer, dword[x], dword[x+4]
finish:
    call [getch]
    push 0
    call [ExitProcess]
;-----import------
section '.idata' import data readable
  library kernel, 'kernel32.dll',\
       msvcrt, 'msvcrt.dll',\
       user32,'USER32.DLL'
include 'api\user32.inc'
include 'api\kernel32.inc'
  import kernel,\
      ExitProcess, 'ExitProcess'
include 'api\kernel32.inc'
  import msvcrt,\
      printf, 'printf',\
```

scanf, 'scanf',\

getch, '_getch'