Principal Component Analysis

Quiz, 5 questions

1 point **1.** Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

1 point Which of the following is a reasonable way to select the number of principal components k?

(Recall that n is the dimensionality of the input data and m is the number of input examples.)

- Choose k to be 99% of n (i.e., k=0.99*n, rounded to the nearest integer).
- Choose the value of k that minimizes the approximation error $\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\mathrm{approx}}^{(i)}||^{2}.$
- Choose k to be the smallest value so that at least 1% of the variance is retained.
- Choose k to be the smallest value so that at least 99% of the variance is retained.

1 point 3. Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

- $rac{rac{1}{m}\sum_{i=1}^{m}||m{x}^{(i)}||^2}{rac{1}{m}\sum_{i=1}^{m}||m{x}^{(i)}-m{x}_{ ext{approx}}^{(i)}||^2} \geq 0.95$
- $\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\text{approx}}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \ge 0.95$
- $rac{rac{1}{m}\sum_{i=1}^{m}||x^{(i)}\!-\!x_{ ext{approx}}^{(i)}||^2}{rac{1}{n}\sum_{i=1}^{m}||x^{(i)}||^2} \geq 0.05$
- $\frac{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} x^{(i)}_{\text{approx}}||^2}{\frac{1}{n} \sum_{i=1}^{m} ||x^{(i)}||^2} \leq 0.05$

1 point 4. Which of the following statements are true? Check all that apply.

If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.

Feature scaling is not useful for PCA, seigenvector calculation (such as using Octave's svd(Sigma) routine) takes of this automatically.	5	
Given an input $x \in \mathbb{R}^n$, PCA compres a lower-dimensional vector $z \in \mathbb{R}^k$.	ses it to	
PCA can be used only to reduce the dimensionality of data by 1 (such as 3 or 2D to 1D).	BD to 2D,	
The point Which of the following are recommended applications of PCA? Select all that apply.		
To get more features to feed into a least	arning	
Clustering: To automatically group example into coherent groups.	amples	
your input data $x^{(i)}$, which will be use supervised learning algorithm (i.e., us	Data compression: Reduce the dimension of your input data $x^{(i)}$, which will be used in a supervised learning algorithm (i.e., use PCA so that your supervised learning algorithm runs faster).	
Data visualization: Reduce data to 2D so that it can be plotted.	(or 3D)	
I, Zhaiyu Chen , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		
	Submit Quiz	

