

Вычислительная математика

Малышева Татьяна Алексеевна, доцент, к.т.н.

Численные методы решения нелинейных уравнений

Постановка задачи. Дано нелинейное уравнение вида **f(x)= 0,** где **f(x)** — заданная алгебраическая или трансцендентная (включает в себя тригонометрические или экспоненциальные функции) функция.

$$\mathbf{f}(\mathbf{x}) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 (имеет *n*-корней)

 $f(x) = sinx + 0,1x^2$ (имеет бесконечное множество решений)

Решить уравнение — это найти такое $x^* \in R$: $\mathbf{f}(x^*)=0$. Значение x^* называют *корнем уравнения*.

Методы делятся на:

- **точные** (позволяют найти решение непосредственно с помощью формул)
- итерационные (приближенные)

Этапы приближенного решения нелинейных уравнений

- Отделение (локализация) корней, т.е. определение интервала [a,b], на котором содержится только один корень уравнения **f(x)=0**. Такой интервал называется интервалом изоляции корня
- Уточнение корней до заданной точности

Способы отделения корней

- графический
- табличный
- аналитический

Графическое отделение корней

Табличное отделение корней

Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее поведения при $x \to \pm \infty$ и нахождении участков возрастания и убывания функции.

Табличный способ — это построение таблицы табулирования функции.

О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

утихщий.					
X	f(x)				
-3	-29,280				
-2,5	-13,818				
-2	-3,330				
-1,5	2,933				
-1	5,720				
-0,5	5,783				
0	3,870				
0,5	0,733				
1	-2,880				
1,5	-6,218				
2	-8,530				
2,5	-9,068				
3	-7,080				
3,5	-1,818				
4	7,470				
4,5	21,533				
5	41,120				

Теоремы существования корней

Необходимое условие существования корня уравнения на отрезке [a,b]:

Теорема 1. Если непрерывная функция **f(x)** на концах отрезка [a; b] принимает значения разных знаков, т.е. $f(a) \cdot f(b) < 0$, то на этом отрезке содержится хотя бы один корень уравнения.

■ Достаточное условие единственности корня на отрезке [a,b]:

Теорема 2. Если непрерывная функция f(x) на отрезке [a; b] принимает на концах отрезка значения разных знаков, а производная f'(x) сохраняет знак внутри отрезка, то внутри отрезка существует единственный корень уравнения f(x) = 0.

Методы уточнения приближенных значений действительных корней

- метод половинного деления (метод дихотомии);
- метод хорд
- метод Ньютона (метод касательных) ;
- модифицированный метод Ньютона (метод секущих);
- метод простых итераций ;
- и др.

Основные требования и показатели численных методов

- ♥ сходимость;
- эффективность (скорость сходимости);

Алгоритм считается <u>устойчивым</u>, если он обеспечивает нахождение существующего и единственного решения при различных исходных данных (малые погрешности в исходной величине приводят к малым погрешностям в результате расчетов)

Алгоритм сходится, если итерационная последовательность приближений x_1 , $x_2,...,x_n\to x^*$, $n\to \infty$, $\lim_{n\to \infty} x_n=x^*$

Скорость сходимости (эффективность) — обозначает количество итераций, затраченных алгоритмом для достижения приемлемой точности решения задачи. Чем выше скорость, тем меньше итераций необходимо выполнить.

Различают линейную, сверхлинейную, квадратичную скорость:

$$|x^n - x^*| \le \alpha |x^{n-1} - x^*|^{\beta}$$
, $\alpha \in (0,1)$, $\beta = 1$ – линейная, $1 < \beta < 2$ – сверхлинейная, $\beta = 2$ – квадратичная.

Метод половинного деления

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$. Другую половину отрезка $[a_0, b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1 = (a_1 + b_1)/2$. и т.д.

Рабочая формула метода:
$$x_i = \frac{a_i + b_i}{2}$$

Критерий окончания итерационного процесса: $|b_n - a_n| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Визуализация метода половинного деления

Блок-схема метода половинного деления

Достоинства и недостатки метода ПД

Достоинства:

- прост и надежен.
- обладает абсолютной сходимостью (близость получаемого численного решения задачи к истинному решению.)
- устойчив к ошибкам округления.

Рекомендация: применять когда требуется высокая надежность счета, а скорость несущественна.

Недостатки:

- если интервал содержит несколько корней, то неизвестно к какому относится вычислительный процесс.
- медленный метод: имеет линейную сходимость.

Оценка числа итераций

$$|a_1-b_1|=rac{|a_0-b_0|}{2}$$
 , $|a_2-b_2|=rac{|a_1-b_1|}{2}=rac{|a_0-b_0|}{2^2}$ $|a_k-b_k|=|a_0-b_0|\cdot 2^{-k}$ $|a_0-b_0|\cdot 2^{-k}\leq arepsilon$ $k\geq \log_2rac{|a_0-b_0|}{arepsilon}$ стижения точности $arepsilon=10^{-3}$, при $|a_0-b_0|=1$

Для достижения точности $\varepsilon = 10^{-3}$, при $|a_0 - b_0| = 1$ $k = 9.966 \approx 10$

Пример 1. Метод половинного деления

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$

$$n = 7$$

$$x^* \approx \frac{|a_7 + b_7|}{2}$$
 1,79297

№ итерации	a	b	х	F(a)	F(b)	F(x)	a-b
0	-2,00000	-1,00000	-1,50000	-2,00000	4,00000	2,12500	1
1	-2,00000	-1,50000	-1,75000	-2,00000	2,12500	0,39063	0,5
2	-2,00000	-1,75000	-1,87500	-2,00000	0,39063	-0,71680	0,25
3	-1,87500	-1,75000	-1,81250	-0,71680	0,39063	-0,14185	0,125
4	-1,81250	-1,75000	-1,78125	-0,14185	0,39063	0,12961	0,0625
5	-1,81250	-1,78125	-1,79688	-0,14185	0,12961	-0,00480	0,03125
6	-1,79688	-1,78125	-1,78906	-0,00480	0,12961	0,06273	0,015625
7	-1,79688	-1,78906	-1,79297	-0,00480	0,06273	0,02905	0,0078125

Метод хорд

Идея метода: функция y=f(x) на отрезке [a, b] заменяется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки A(a, f(a)) и B(b, f(b)):

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}$$

Точка пересечения хорды с осью абсцисс (y=0):

$$x = a - \frac{b - a}{f(b) - f(a)}f(a)$$

Вычисляем x_0 , $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0,x_0]$ либо $[b_0,x_0]$.

Рабочая формула метода:

$$x_0 = b \to x_i = b - \frac{(a-b)}{f(a)-f(b)}f(b)$$
 $x_0 = a \to x_i = a - \frac{(b-a)}{f(b)-f(a)}f(a)$

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|f(x_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = x_n$

Метод хорд

Идея метода: функция *y=f(x)* на отрезке [a, b] зам<mark>е</mark>няется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки A(a, f(a)) и B(b, f(b)):

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}$$

Точка пересечения хорды с осью абсцисс (y=0): $x = a - \frac{b-a}{f(b)-f(a)}f(a)$

<u>1 шаг:</u> Вычисляем x_0 :

$$x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$$

<u>2 шаг:</u> Вычисляем $f(x_0)$.

<u>3 шаг:</u> В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$.

<u>4 шаг:</u> Вычисляем x_1 и т.д (повторяем 1-3 шаги).

Рабочая формула метода:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Критерий окончания итерационного процесса: $|x_i - x_{i-1}| \le \varepsilon$ или $|f(x_i)| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Визуализация метода хорд

Условия сходимости метода хорд

Достаточное условие сходимости метода:

- функция y = f(x) определена и непрерывна на отрезке [a; b];
- f(a):f(b) < 0 (на концах отрезка [a;b] функция имеет разные знаки);
- производные f'(x) и f''(x) сохраняют знак на отрезке [a;b];

Выбор начального приближения $x_0 \in [a; b]$

Метод обеспечивает быструю cxodumocmь, если выполняется условие: $f(x) \cdot f''(x) > 0$ (тот конец интервала, для которого знаки функции и второй производной совпадают)

$$f(a) \cdot f''(a) > 0 \rightarrow x_0 = a$$

$$f(b) \cdot f''(b) > 0 \rightarrow x_0 = b$$

Метод хорд

Семейство хорд может строиться:

а) при фиксированном левом конце $xop\partial$, тогда $x_0=b$ (рис. 1a)

Рабочая формула метода:

$$x_{i+1} = x_i \frac{a - x_i}{f(a) - f(x_i)} f(x_i)$$

б) при фиксированном правом конце $xop\partial$, тогда x_0 =а (рис. 16)

Рабочая формула метода:

$$x_{i+1} = x_i \frac{b - x_i}{f(b) - f(x_i)} f(x_i)$$

В этом случае НЕ надо определять на каждой итерации новые значения а, b

Рис. 1а

Рис. 1б

Достоинства и недостатки метода хорд

Достоинства:

• Простота реализации

Недостатки:

- Скорость сходимости линейная. Порядок сходимости метода хорд выше, чем у метода половинного деления.
- Выбор начального приближения.

Пример 2. Метод хорд

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$

$$f'(x) = 3x^2 - 1 \quad f''(x) = 6x$$

$$f(-2) < 0 \quad f(-1) > 0$$

$$f''(-2) < 0 \to x_0 = -2$$

n = 3

$$x^* \approx 1,79611$$

№ итерации	a	b	х	F(a)	F(b)	F(x)	$ x_{n+1}-x_n $
0	-2,00000	-1,00000	-1.66667	-2,00000	4,00000	1.03704	-
1	-2,00000	-1.66667	-1.78049	-2,00000	1.03704	0.13610	0.11382
2	-2,00000	-1.78049	-1.79447	-2,00000	0.13610	0.01603	0.01399
3	-2,00000	-1.79447	-1.79611	-0,71680	0.01603	0.00186	0.00163

Метод Ньютона (касательных)

Идея метода: функция y=f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня $x^*=x_n$ принимается точка пересечения касательной с осью абсцисс.

$$x_{1} = x_{0} - h_{0}$$

$$h_{0} = \frac{f(x_{0})}{\tan \alpha} = \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n-x_{n-1}|\leq arepsilon$$
 или $|rac{f(x_n)}{f'(x_n)}|\leq arepsilon$ или $|f(x_n)|\leq arepsilon$

Приближенное значение корня: $x^* = x_n$

Условия сходимости метода Ньютона

Достаточное условие сходимости метода Ньютона:

Метод Ньютона применяется в том случае, если выполняются условия:

- функция y = f(x) определена и непрерывна на отрезке [a; b];
- $f(a) \cdot f(b) < 0$ (на концах отрезка [a;b] функция имеет разные знаки);
- производные f'(x) и f''(x) сохраняют знак на отрезке [a;b];
- производная f'(x)≠0

Выбор начального приближения $x_0 \in [a; b]$:

Метод обеспечивает быструю сходимость, если выполняется условие:

$$f(x_0) \cdot f''(x_0) > 0$$

(тот конец интервала, для которого знаки функции и второй производной совпадают)

Достоинства и недостатки метода Ньютона

Достоинства:

• квадратичная сходимость.

Недостатки:

- необходимость вычисления производной на каждой итерации.
- выбор начального приближения.

Пример 3. Метод Ньютона

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$

$$f'(x) = 3x^{2} - 1 \quad f''(x) = 6x$$

$$f(-2) < 0 \quad f(-1) > 0$$

$$f''(-2) < 0 \rightarrow x_{0} = -2$$

$$n = 2 x^* \approx 1,79632$$

№ итерации	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	$ x_{n+1}-x_n $
0	-2,00000	-2,00000	11.00000	-1.81818	-
1	-1.81818	-0.19234	8.91736	-1.79661	0.02157
2	-1.79661	-0.00253	8.68345	-1.79632	0.00029

Метод секущих

Упростим метод Ньютона, заменив f'(x) разностным приближением:

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 ...$

Метод секущих является <u>двухшаговым</u>, т.е. новое приближение x_{i+1} определяется двумя предыдущими итерациями x_i и x_{i-1} .

Выбор x_0 определяется как и в методе Ньютона, x_1 - выбирается рядом с начальным самостоятельно.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|f(x_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = x_n$

Визуализация метода секущих

Достоинства и недостатки метода секущих

Достоинства:

Меньший объем вычислений по сравнению с методом Ньютона, т.к. не требуется вычислять производную.

Недостатки:

Порядок сходимости метода секущих ниже, чем у метода касательных и равен золотому сечению ≈1,618 (сверхлинейная).

Пример 4. Метод секущих

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$

$$x_0 = -2$$
 $x_1 = -1.5$

$$n = 2 x^* \approx 1,79612$$

№ итерации	x_{i-1}	x_i	x_{i+1}	$f(x_{i+1})$	$ x_{i+1}-x_i $
0	-2,00000	-1.50000	-1.75758	2.12500	0.25758
1	-1.50000	-1.75758	-1.80464	0.32830	0.04706
2	-1.75758	-1.80464	-1.79612	07258	0.00852

Уравнение f(x) = 0 приведем к эквивалентному виду

$$x = \varphi(x)$$

Выбор начального приближения: $x_0 \in [a, b]$

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой.

Теорема. Если на отрезке локализации [a,b] функция $\varphi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in [a,b]$ итерационная последовательность $\{x_n\}$ метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия)

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0,5$) $|x_n - x_{n-1}| < \frac{1-q}{q} \varepsilon$ (при $0,5 < q < 1$)

Геометрический смысл метода простой итерации

При итерационном процессе получается ломаная линия $M_0N_1M_1N_2M_2$ где абсциссы M_n - последовательные приближения x_n к решению x^* Последовательность итераций на рисунке сходится к точному значению корня: предел последовательности $\{(x^k)\}$ существует и совпадает с корнем.

Геометрический смысл метода простой итерации

Последовательность $\{(x^k)\}$ может расходиться. Это не значит, что уравнение не имеет корня. Просто, последовательность к нему не сходится.

Достоинства и недостатки метода простой итерации

Достоинства:

Простота

Недостатки:

Недостатком этого метода является его сходимость в малой окрестности корня и вытекающая отсюда необходимость выбора начального приближения к корню из этой малой окрестности. В противном случае итерационный процесс расходится или сходится к другому корню этого уравнения.

Если $|\varphi'(x)| \approx 1$, то сходимость может быть очень медленной.

Способы преобразования уравнения:

$$x^3 - x + 4 = 0$$

<u>1 способ</u>:

Преобразуем уравнение к виду $x = \varphi(x)$

$$\varphi(x) = x^3 + 4 = 0$$

$$\varphi'(x) = 3x^2 \quad \varphi'(-2) = 12 > 1$$

 $\varphi'(-1) = 3 > 1$ Условие сходимости НЕ выполняется

2 способ:

$$\varphi(x) = \sqrt[3]{x-4}$$

$$\varphi'(x) = 1/3(x-4)^{-2/3} |\varphi'(-2)| < 1 |\varphi'(-1)| < 1$$

Условие сходимости выполняется

Способы преобразования уравнения:

$$x^3 - x + 4 = 0$$

3 способ:

Если непосредственное преобразование уравнения к виду $x=\varphi(x)$ не позволяет получить уравнение, для которого выполняются условия сходимости метода, применяем более общий прием введения параметра λ

- 1. преобразуем уравнение f(x)=0 к равносильному (при $\lambda \neq 0$) $\lambda f(x)=0$
- 2. прибавим x в обеих частях: $x = x + \lambda f(x)$

3.
$$\varphi(x) = x + \lambda f(x)$$
, $\varphi'(x) = 1 + \lambda f'(x)$

4. высокая скорость сходимости обеспечивается при $q = \max_{[a,b]} |\varphi'(x)| \approx 0$.

Тогда
$$\lambda = -\frac{1}{\max\limits_{[a,b]} f'(x)}$$
 $\varphi(x) = x^3 + 4 = 0$
$$f'(x) = 3x^2 - 1 \qquad f'(-2) = 11 \qquad f'(-1) = 2 \qquad \lambda = -\frac{1}{\max\limits_{[a,b]} f'(x)} = -\frac{1}{11}$$
 $x = x + \lambda f(x) \rightarrow x = x + \lambda (x^3 - x + 4) = \frac{12}{11}x - \frac{1}{11}x^3 - \frac{4}{11}$

$$x = \frac{12}{11}x - \frac{1}{11}x^3 - \frac{4}{11}$$

$$x_0 = -2$$

$$x_1 = \varphi(x_0) = \frac{12}{11}x_0 - \frac{1}{11}x_0^3 - \frac{4}{11} \approx 1.8182$$

$$x_2 = \varphi(x_1) = \frac{12}{11}x_1 - \frac{1}{11}x_1^3 - \frac{4}{11} \approx 1.8007$$

№ итерации	x_i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1}-x_i $
0	-2,0000	-1.8182	-1.8007	-0.19234	0.1818
1	-1.8182	-1.8007	-1.7972	-0.03808	0.0175
2	-1.8007	-1.7972	-1.7965	-0.00793	0.0035