TP de traitement d'image "TP1"

POLISANO Kévin | ROUOT Jéremy | SABATIER Victor

22 février 2012

1 Remarques sur l'architecture de l'archive et l'exécution du script

L'archive comprend:

- un répertoire source **src** contenant les sources du programme
- un répertoire bin bin contenant les binaires générés
- un Makefile dont les cibles sont :
 - gen pour générer le script
 - realclean : pour effacer les répertoires crées par make gen
- les quatres images étudiées

Le script génère pour chaque image un répertoire portant le nom de l'image, chacun de ces répertoires contient

- un fichier **résultats.txt** contenant des informations : évolution du contraste, niveau de gris et de max avant et après transformation.
- l'image image.pgm
- l'image après égalisation egalisation.pgmm
- l'image après égalisation aléatoire egalisation_alea.pgm
- l'image après linéarisation linearisation.pgm
- l'image après filtrage rétinien rétinien.pgm
- l'histogramme avant et après égalisation res_histos_egal_cum.png
- l'histogramme avant et après égalisation aléatoire res_histos_egal_alea.png
- l'histogramme avant et après linéarisation res_histos_apres_lin.pgm
- l'histogramme avant et après filtrage rétinien res_histos_filt_ret.pgm

2 Comparaison quantitative des résultats

L'ensemble des résulats suivants a été fait avec N=2.

image	aquitain.pgm	couchersoleil.pgm	muscle.pgm	pont.pgm
taille	256 x 256	300 x 400	256x256	300x400
niveau gris min,max avant	10, 40	0,255	$44,\!249$	3,236
contraste avant	0.340909	0.460098	0.525824	0.353279

Après linéarisation

image	image aquitain.pgm couchersoleil.pgm		muscle.pgm	pont.pgm	
niveau gris min,max après	0,255	0,255	0,255	0,255	
contraste après	0.649821	0.460098	0.774303	0.376987	
Amélioration du contraste	47%	0%	32%	6%	

Après égalisation cumulée

image	aquitain.pgm	couchersoleil.pgm	muscle.pgm	pont.pgm
niveau gris min,max après	0,255	0,255	0,255	0,255
contraste après	0.789051	0.50347	0.728130	0.424712
amélioration du contraste	56%	21%	27%	16%

Après égalisation aléatoire

image	aquitain.pgm	couchersoleil.pgm	m muscle.pgm	pont.pgm
niveau gris min,max après	0,255	0,255	0,255	0,255
contraste après	0.773334	0.433148	0.728590	0.353279
amélioration du constraste	57%	-6%	27%	-18%

Après filtrage rétinien

image	aquitain.pgm	couchersoleil.pgm	muscle.pgm	pont.pgm]
niveau gris min,max après	11, 138	0,255	44,250	5,245	$ _{\mathrm{Av}}$
contraste après	0.333574	0.409252	0.374088	0.299186	AV
amélioration du contraste	-2%	-12%	-40%	-18%	

Avec ces

tableaux, nous pouvons faire les constatations suivantes :

- Le filtrage rétinien n'améliore dans aucun cas le contraste
- Les autres méthodes améliore le contraste, sauf pour l'image couchersoleil.pgm qui a déjà un contraste maximal

En terme de différence de contraste, aucune méthode ne semble réellement être la meilleure.

3 Évolution du contraste en fonction de la taille de la fenêtre

Dans cette section, on fixe l'algorithme utilisé (ici égalisation aléatoire de l'histogramme et on fait varier N)

N	5	10	15	20	25	50
$\operatorname{aquitaine}$	0.24; 0.66; 63%	0.34;0.80;57%	0.40;0.89;55%	0.43; 0.93; 53%	0.45; 0.94; 52%	0.51;0.96;47%
couchersoleil	0.33;0.42;21%	0.46;0.51;9%	0.55; 0.57; 3%	0.63; 0.90; 31%	0.70;0.67;-4%	0.92;0.85;-8%
muscle	0.37;0.61;39%	0.53; 0.77; 31%	0.59;0.86;30%	0.63; 0.90; 31%	0.64;0.94;31%	0.66; 0.97; 32%
pont	0.25;0.41;39%	0.35; 0.50; 29%	0.44;0.57;22%	0.52;0.64;18%	0.59; 0.69; 15%	0.86; 0.94; 8%

On remarque qu'il y a donc une diminution du contraste relatif lorsque N augmente. Ceci est d'ailleurs indépendant de l'image utilisée.

Le constraste local dépend de N. Si on augmente la taille de N alors le maximum augmente et le minimum diminue.

On peut réécrire le constraste : $C=1-\frac{2*min}{max+min}$ qui à max fixé est une fonction décroissante de min. On a donc une tendance globale à la diminution du contraste lorsque N augmente.

4 Comparaison qualitative des résultats

Pour aquitain c'est le rehaussement de contraste avec égalisation cumulée qui est le mieux visuellement.

Même chose pour couchersoleil

filtrage rétinien est mieux pour pont

c'est linéarisation qui est le mieux pour muscle

Dans tous les cas, egalisation_alea a des grains. Ce grain peut s'expliquer par l'algorithme, on égalise l'histogramme c'est à dire que l'on introduit artificiellement des niveaux de gris qui n'étaient pas présent dans l'image. Par exemple pour l'image pont on avait pas de niveau de gris > 236 sur l'image de base, l'égalisation aléatoire a permis de fournir une image ayant la même quantité de niveau gris supérieur à 236 que ceux qui étaient vraiment présent au départ. On dénature en quelque sorte l'image.

Ce qui n'est pas le cas par exemple du filtrage linaire où on étire mais on garde la même répartition relative des niveaux de gris. L'algorithme n'a pas un bon rendu visuel.

De même, pour le filtrage cumulé, on garde la même répartition relative des niveaux de gris dans l'histogramme. On a des trous dans l'histogramme cumulé car on prends uniquement des valeurs entières.

Pour le filtrage rétinien, on a pas traité les bords ce qui produit un rendu bizarre sur les coins. Mais de façon général on remarque que les détails sont mieux visibles sur l'image ceci peut s'expliquer par le fait que : Pour le filtrage rétinien, on traite un pixel par rapport à ce qu'il y a autour alors que les autres on traite les pixels indépendemment.

5 rendu des images

On met ici en example les rendus des différents algortihmes sur l'image pont.png. De gauche à droite et de haut en bas il s'agit de :

- linéarisation
- égalisation cumulée
- égalisation cumulée aléatoire
- rétinien

