

FNK4421

20V Dual P-Channel MOSFET

General Description

The FNK4421 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. This device is ideal for load switch and battery protection applications.

Product Summary

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-20	V	
Gate-Source Voltage		V _{GS}	±12	V	
Continuous Drain	T _A =25℃	1	-7		
Current	T _A =70℃	'D	-5	A	
Pulsed Drain Current ^c		I _{DM}	-50		
Avalanche Current ^C		I _{AS} , I _{AR}	33	A	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	54	mJ	
	T _A =25℃	Ь	2	W	
Power Dissipation ^B	T _A =70℃	P _D	1.3	¬	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	48	62.5	€\M			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	74	90	€\M			
Maximum Junction-to-Lead Steady-State		$R_{\theta JL}$	32	40	C/M			

www.FNK-TECH.com Page 1 of 5

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=-250\mu A,\ V_{GS}=0V$	-20			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V			-1	μΑ			
		T _J =55℃			-5				
I_{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm 12V$			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-0.4		-1.0	V			
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-40			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5V I_D =-7A		17	25	mΩ			
		V_{GS} =-2.5 V , I_D =-6 A		27	35	m()			
	Static Dialii-Source On-Resistance					mΩ			
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-7A		27		S			
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.7	-1	V			
Is	Maximum Body-Diode Continuous Curr			-2.5	Α				
DYNAMIC	PARAMETERS			•					
C _{iss}	Input Capacitance			2060	2600	pF			
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		370		pF			
C _{rss}	Reverse Transfer Capacitance	1		295		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	1.2	2.4	3.6	Ω			
SWITCHII	NG PARAMETERS	-	•		-				
Q_g	Total Gate Charge			30	39	nC			
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-9A		4.6		nC			
Q_{gd}	Gate Drain Charge	1		10		nC			
t _{D(on)}	Turn-On DelayTime			11		ns			
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-15V, R _L =1.67 <u></u>	2,	9.4		ns			
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		24		ns			
t _f	Turn-Off Fall Time			12		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-9A, dI/dt=100A/μs		30	40	ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-9A, dI/dt=100A/μs		22		nC			

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

www.FNK-TECH.com Page 2 of 5

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$ °C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{\text{J(MAX)}}$ =150°C. The SOA curve provides a single pulse ratin g.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature
(Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

Figure 6: Body-Diode Characteristics (Note E)

www.FNK-TECH.com Page 3 of 5

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

www.FNK-TECH.com Page 4 of 5

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

www.FNK-TECH.com Page 5 of 5