2-21. Soln.

(a)
$$2n^2 + 1 \le 3n^2 = c * n^2$$
 where $c = 3$, thus $2n^2 + 1 = O(n^2)$.

(b)
$$\sqrt{n} \gg \log(n)$$
, thus $\sqrt{n} \neq O(\log(n))$.

(c)
$$\sqrt{n} \gg \log(n)$$
, thus $\log(n) = O(\sqrt{n})$.

(d)
$$\sqrt{n} \gg \log(n) \iff n^2(\sqrt{n}+1) \gg n^2\log(n)$$
, thus $n^2(\sqrt{n}+1) \neq O(n^2\log(n))$.

(e)
$$n^2 \gg \sqrt{n} \iff 3n^2 + \sqrt{n} \le 4n^2 = c * n^2$$
 for $c = 4$, thus $3n^2 + \sqrt{n} = O(n^2)$.

(f) Applying L'Hopital's rule,
$$\lim_{n\to\infty}\frac{\sqrt{nlog(n)}}{n}=\lim_{n\to\infty}\frac{1}{2\sqrt{n}*n}=0$$
. Thus $n\gg\sqrt{nlog(n)}\Longrightarrow\sqrt{nlog(n)}=O(n)$.

(g)
$$\lim_{n\to\infty} n^{-1/2} = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$
 and $\lim_{n\to\infty} \log n = \infty$, thus $\log(n) \neq O(n^{-1/2})$.

2-22. Soln.

(a)
$$n^2 \gg n \iff f(n) \gg g(n)$$
, thus $f(n) = \Omega(g(n))$.

(b)
$$n \gg \sqrt{n} \iff n(n-1) \gg n\sqrt{n} \iff g(n) \gg f(n)$$
, thus $f(n) = O(g(n))$.

2-23. Soln.

- (a) Yes. For example, bubblesort makes n(n-1)/2 comparisons in the worst case, but only n-1 comparisons on a sorted array. Thus it runs in $O(n^2)$ in the worst case but there exists a case for which it runs in O(n).
 - (b) Yes, because $n \le c * n^2$ for c = 1.
 - (c) Yes, it is possible that $n \ge c * n^2$ for small enough n and constants c.
 - (d) No, because $n^2 \gg n$, thus there exists no constant c for which $n \ge c * n^2$ for large enough n.
 - (e) Yes.

Let
$$f(n) = 100n^2$$
. Then $f(n) \le c * n^2$ and $f(n) = 100n^2 \ge c * n^2$ for $c = 100$, thus $100n^2 = \Theta(n^2)$.
Let $f(n) = 20n^2 - nlogn$. Then $f(n) \le c * n^2$ for $c = 20$, and $f(n) = 20n^2 - nlogn \ge c * n^2$ for $c = 19$, thus $20n^2 - nlogn = \Theta(n^2)$.

2-24. *Soln.*

(a) No.
$$3^n \gg 2^n$$
, thus $3^n \neq O(2^n)$.

(b) Yes.
$$log 3^n = nlog 3 \le n2log 2 = c * log 2^n$$
 for $c = 2$, thus $log 3^n = O(log 2^n)$.

(c) Yes.
$$3^n \gg 2^n$$
, thus $3^n = \Omega(2^n)$.

(d) Yes.
$$log3^n = nlog3 \ge n2log2 = c * log2^n$$
 for $c = 2$, thus $log3^n = \Omega(log2^n)$.

2-25. *Soln.*

(a)
$$f(n) = \sum_{i=1}^{n} \frac{1}{i} \approx ln(n) = \Theta(g(n))$$
 for $g(n) = log(n)$.

(b)
$$f(n) = \sum_{i=1}^{n} \left\lceil \frac{1}{i} \right\rceil = n = \Theta(g(n))$$
 for $g(n) = n$.

(c)
$$f(n) = \sum_{i=1}^{n} log(i) \le c_1 * nlog(n)$$
 for $c_1 = 1$. Also

$$\sum_{i=1}^{n} \log(i) \ge \sum_{i=1}^{n/2} \log(i) \tag{1}$$

$$\iff f(n) \ge \frac{n}{2} \log \frac{n}{2} \tag{2}$$

$$=\frac{n}{2}(\log(n)-\log 2)\tag{3}$$

$$\geq c_2 * nlog(n) \tag{4}$$

for $c_2 = \frac{1}{4}$. Thus g(n) = nlog n.

(d)
$$f(n) = log(n!) = log(\prod_{i=1}^{n} i) = \sum_{i=1}^{n} log(i)$$
, thus $g(n) = nlogn$ (Exercise 2-25. (c)).

2-26. Soln.
$$log_2(\sum_{i=0}^n 2^i) \ll n(log_2 n)^2 \ll n^2 log_2 n \ll \sum_{i=0}^n 2^i$$
.

2-27. Soln.
$$\sqrt{n}logn \ll 12n^{3/2} + 4n \ll n\sqrt{logn} \ll \sum_{i=1}^{n} \sqrt{i}$$
.

2-28. *Soln.*

(a)

$$f(n) = \sum_{i=1}^{n} (3i^4 + 2i^3 - 19i + 20) = 3\sum_{i=1}^{n} i^4 + 2\sum_{i=1}^{n} i^3 - 19\sum_{i=1}^{n} i + 20n$$
(5)

$$\implies f(n) \le 3n^5 + 2n^4 - 19n^2 + 20n \le c_1 * n^5 \qquad \text{for } c_1 = 4.$$
 (6)

$$\wedge f(n) \ge c_2 * n^5. \tag{7}$$

Thus $g(n) = n^5$.

(b)

$$f(n) = \sum_{i=1}^{n} (3(4^{i}) + 2(3^{i}) - i^{19} + 20) = 3\sum_{i=1}^{n} 4^{i} + 2\sum_{i=1}^{n} 3^{i} - \sum_{i=1}^{n} i^{19} + 20n$$
(8)

$$\implies f(n) \le 3 * 4^{n+1} + 2 * 3^{n+1} + 20n \le c_1 * 4^{n+1} \qquad \text{for } c_1 = 12$$
 (9)

$$\wedge f(n) \ge 3 * 4^{n+1} - n^{20} \ge c_2 * 4^{n+1}.$$
 for $c_2 = \frac{1}{12}$ (10)

Thus $g(n) = 4^{n+1}$.

(c) $f(n) = \sum_{i=1}^{n} (5^{i} + 3^{2i}) = \sum_{i=1}^{n} 5^{i} + \sum_{i=1}^{n} 9^{i} \le 5^{n+1} + 9^{n+1}$. Then $f(n) \le c_1 * 9^{n+1}$ for $c_1 = 9$. Also $f(n) \ge c_2 * 9^{n+1}$ for $c_2 = 1$. Thus $g(n) = 9^{n+1}$.

2-29. Soln. Note
$$f(n) = \sum_{i=1}^{n} 3^i = \frac{3^n - 1}{2}$$
.

(a)
$$\frac{3^n - 1}{2} \le c_1 * 3^{n-1}$$
 for $c_1 = 3$, and $\frac{2^n - 1}{2} \ge c_2 * 3^{n-1}$ for $c_2 = \frac{1}{2}$, thus $f(n) = \Theta(3^{n-1})$.

(b)
$$\frac{3^n-1}{2} \le c_1 * 3^n$$
 for $c_1 = 1$, and $\frac{3^n-1}{2} \ge c_2 * 3^n$ for $c_2 = \frac{1}{3}$, thus $f(n) = \Theta(3^n)$.

(c)
$$\frac{3^n-1}{2} \le c_1 * 3^{n+1}$$
 for $c_1 = \frac{1}{3}$, and $\frac{3^n-1}{2} \ge c_2 * 3^{n+1}$ for $c_3 = \frac{1}{9}$.

2-30. *Soln.*

- (a) $1000 * 2^n + 4^n \le c_1 * 4^n$ for $c_1 = 4$, and $1000 * 2^n + 4^n \ge c_2 * 4^n$ for $c_2 = 1$, thus $f_1(n) = \Theta(4^n)$.
- (b) $n \gg \sqrt{n} \gg n \log n \iff n + n \log n + \sqrt{n} \le c_1 * n \text{ for } c_1 = 2, \text{ and } n + n \log n + \sqrt{n} \ge c_2 * n \text{ for } c_2 = 1, \text{ thus } f_2(n) = \Theta(n).$
- (c) $(log n)^{10} \gg log n \iff 20 log n + (log n)^{10} = f_3(n) \le c_1 (log n)^{10}$ for $c_1 = 2$, and $20 log n + (log n)^{10} \ge c_2 (log n)^{10}$ for $c_2 = 1$, thus $f_3(n) = \Theta((log n)^{10})$.
 - (d) $n^{100} \gg 0.99^n \iff 0.99^n + n^{100} \le c_1 * n^{100}$ for $c_1 = 2$, and $0.99^n + n^{100} \ge c_2 * n^{100}$ for $c_2 = 1$, thus $f_4(n) = \Theta(n^{100})$.
 - **2-31.** Soln. (a) ω , (b) O, (c) o, Ω , (d) o, (e) ω , (f) Θ .