Performance Heterogeneity in High Performance GPUs

Akhil Guliani, Prasoon Sinha, Matthew Sinclair, Shivaram Venkatraman

Collaborators:

Zhao Zhang, Oscar Hernandez, Clayton Hughes

Previous Meetings: Setup

Power bound benchmark [3]

cuBLAS SGEMM kernel

• Input: 25k by 25k matrices

of 32bit floats

Measurements

- NVIDIA's nvprof profiler: Performance, Power, Temperature, Frequency
- Median values of 100 repetitions/run

NVIDIA V100-SXM2

- Set to max Frequency (1530 MHz)
- Set to TDP Power limit (300 W)

Study Locations

- CloudLab
 - 4 V100 SXM2 GPUs / node
 - Air cooled
 - 10's of GPUs
- TACC's Longhorn cluster
 - 4 V100 SXM2 GPUs / node
 - Air cooled + mineral cooled
 - 100's of GPUs

- SNL's Vortex cluster
 - 4 V100-SXM2 GPUs / node (Power9)
 - Water cooled
 - 100's of GPUs
- ORNL's Summit cluster
 - 6 V100-SXM2 GPUs / node
 - Water cooled
 - 10000's of GPUs

Let's define variation

Using Inter Quartile Range (IQR) based method

Captures 99.3 % of the Gaussian distribution

Last presentation (TACC)

Outliers

Last Presentation Vortex (SNL)

There is a 9% variation in kernel duration for the same workload

This variation is correlated to variation in operating frequency

Power management could be probable cause of this frequency variation

Study Locations

- CloudLab
 - 4 V100 SXM2 GPUs / node
 - Air cooled
 - 10's of GPUs
- TACC's Longhorn cluster
 - 4 V100 SXM2 GPUs / node
 - Air cooled + mineral cooled
 - 100's of GPUs

- SNL's Vortex cluster
 - 4 V100-SXM2 GPUs / node (Power9)
 - Water cooled
 - 100's of GPUs
- ORNL's Summit cluster
 - 6 V100-SXM2 GPUs / node
 - Water cooled
 - 10000's of GPUs

Summit Analysis (by row): Temperature

Takeaway: Rows a, h see more outliers ^C

Summit Analysis (by row): Frequency

Takeaway: Outliers across many rows, but outlier range is not the same in each row

Summit Analysis (by row): Power

Takeaway: Similar to TACC some machines in row a, row h are at around 250W

Summit Analysis (by row): Performance

Takeaway: Performance outliers in row d and f are most severe

Summit Analysis: Day of the week (Power)

Work In Progress

- More diverse workloads (DOE Proxy Apps, Graph Analytics, ML):
 - Compute-Intensive: HACC, LAMMPS (EAM, ReactFF)
 - Irregular: Quicksilver
 - Memory-Intensive: AMR, LULESH, ML Training, QMCPack, SNAP, STREAM, XSBench
 - Irregular: Nekbone, Graph Analytics
 - Shared Memory Bound: Finite Element, Kripke
 - Latency Bound: Pennant (lots of pointer chasing)
 - Balanced: CoMD, LAMMPS (EAM), HPGMG