MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim 1

Stefan Kohl

Data: 26.04.2011, Ora: 14:00 - 15:30

Emri, Mbiemri:

Pergjigjuni 5 pyetje e meposhtme. Nuk i lejohet te perdore asgje pervec leter e bardhe dhe nje stilolaps. Maksimumi i pikeve te mundshme eshte 30.

1. A konvergjojne vargjet dhe seritet e meposhtme?:

1.
$$\lim_{n\to\infty}\frac{1}{n}$$

4.
$$\lim_{n\to\infty} \frac{n^6}{n!}$$

$$7. \sum_{n=1}^{\infty} \frac{1}{n}$$

10.
$$\sum_{n=1}^{\infty} \frac{3^n}{7^n}$$

1.
$$\lim_{n \to \infty} \frac{1}{n}$$
 4. $\lim_{n \to \infty} \frac{n^6}{n!}$ 7. $\sum_{n=1}^{\infty} \frac{1}{n}$ 10. $\sum_{n=1}^{\infty} \frac{3^n}{7^n}$ 2. $\lim_{n \to \infty} \frac{1}{(-1)^n}$ 5. $\lim_{n \to \infty} \frac{2^n}{n!}$ 8. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 11. $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ 3. $\lim_{n \to \infty} \frac{n^2+1}{5n}$ 6. $\lim_{n \to \infty} \frac{2^{2^n}}{n!}$ 9. $\sum_{n=1}^{\infty} \frac{1}{5^n}$ 12. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

5.
$$\lim_{n\to\infty}\frac{2^n}{n!}$$

$$8. \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

$$11. \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

3.
$$\lim_{n\to\infty} \frac{n^2+1}{5n}$$

6.
$$\lim_{n\to\infty} \frac{2^{2^n}}{n!}$$

$$9. \sum_{n=1}^{\infty} \frac{1}{5^n}$$

12.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(12 pike, nje per cdo pergjigje te sakte)

2. Gjeni derivatin f'(x) per funksionet e meposhtme:

1.
$$f(x) = 4x^3 + 6x^2$$
 3. $f(x) = \sin(x)^2$ 5. $f(x) = \frac{2x}{x^2 + 1}$

$$3. \ f(x) = \sin(x)^2$$

5.
$$f(x) = \frac{2x}{x^2+1}$$

2.
$$f(x) = (2x+1)^{17}$$
 4. $f(x) = e^{2x}$ 6. $f(x) = \frac{\sin(x)}{x^2+1}$

4.
$$f(x) = e^{2x}$$

6.
$$f(x) = \frac{\sin(x)}{x^2 + 1}$$

(6 pike, nje per cdo pergjigje te sakte)

3. Gjeni te gjithe pikat e akumulimit te bashkesise $S := \{a^2 \mid a \in \mathbb{Q}\} \subset \mathbb{R}$. (4 pike)

4. Gjeni nje $a \in \mathbb{R}$ te tille qe funksioni

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \sin(\frac{1}{x}) & \text{nese } x \neq 0, \\ a & \text{nese } x = 0 \end{cases}$$

eshte i vazhdueshem ne x=0, apo tregoni qe nje $a\in\mathbb{R}$ te tille nuk egziston. (4 pike)

5. Le te jete $S \subset \mathbb{R}$. Vertetoni apo gjeni kundershembuj:

- 1. Nese S nuk permban nje interval $[a,b] \neq \emptyset$, S eshte e fundem apo e numerueshem.
- 2. Nese S nuk eshte e ngjeshur ne asnje interval $[a,b] \neq \emptyset$, S eshte e fundem apo e numerueshem.

(4 pike)