

第十讲有限状态机分析 Finite State Machine Analysis

佟冬 tongdong@pku.edu.cn

微处理器研究开发中心(MPRC) 北京大学计算机学院

课程回顾: 自动售货机

□适当的抽象表示

- 列出典型的硬币输入序列:
 - 3个五分
 - 一个五分接着一个十分
 - 一个十分接着一个五分
 - 两个十分
- 画出状态图:
 - 输入: N, D, reset
 - 输出: open chute
- 假设:
 - 每个时钟周期已能投入一个5分或者一个10分
 - 如果N = D = 0 (没有硬币)状态不变

自动售货机

□使状态个数最小,即可能的复用状态

present state	inputs D N	next state	output open
0¢	0 0 0 1 1 0	0¢ 5¢ 10¢	0 0 0
5¢	$egin{array}{cccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	5¢ 10¢ 15¢	
10¢	1 0 1 1 0 0 0 1 1 0	15¢ - 10¢ 15¢ 15¢	0 0 0
15¢	1 1	15¢ - 15¢	<u>-</u> 1

symbolic state table

时序电路分析与综合总结

本章主要内容

- □冗余状态
- □完全确定状态机的化简
- □非完全确定状态机的化简
- □状态分配方法

1 冗余状态

- □消除冗余状态的重要性
 - 成本:存储元件的数目和状态的数目直接相关。
 - Binary编码: n = logN
 - One-hot编码: n = N
 - 复杂性: 电路中的状态越多,设计实现越复杂。
 - 辅助故障分析: 诊断程序一般都默认为电路中没有冗余状态。

1.1 状态等价性

- 口定义1: 完全确定的时序电路中状态 S_1 , S_2 , ..., S_j 被称为等价的,当且仅当对于任意的输入序列,将 S_1 , S_2 , ..., S_j 中的任意状态作为初始状态,电路的输出序列都是相同的。
- 口定义2:设 S_i 和 S_j 是完全确定时序电路的两个状态, S_k 和 S_i 是在输入 I_p 时 S_i 和 S_j 的下一个状态, S_i 和 S_j 是等价的当且仅当对于每一可能的 I_p 满足下列的条件:
 - 1. S_i和S_i的输出相同;
 - 2. 下一个状态S_k和S_t是等价的。

定义1和定义2等价

- □充分性:
 - 假设定义2不成立,则定义1不成立。
- □必要性
 - 假设定义1不成立,则定义2的两个条件必然有一个不成立,所以定义2不成立。
- □因此:
 - 定义1和定义2是同义的(synonymous)

等价状态的例子

Initial	Input Sequences						
State	00	01	10	11			
\boldsymbol{A}	11	10	01	00			
$\boldsymbol{\mathit{B}}$	11	10	00	01			
\boldsymbol{C}	11	10	00	01			
D	00	01	11	10			
$\boldsymbol{\mathit{E}}$	00	01	11	10			
(c)							

Initial			Inj	put Se	equen	ces		
State	000	001	010	011	100	101	110	111
\boldsymbol{A}	111	110	100	101	011	010	000	001
В	111	110	100	101	000	001	011	010
\boldsymbol{C}	111	110	100	101	000	001	011	010
D	000	001	011	010	111	110	100	101
$\boldsymbol{\mathit{E}}$	000	001	011	010	111	110	101	100

(d)

1.2 等价和等价关系

- □ 等价关系: 设R是集合S上定义的关系(Relation), R是等价的当且仅当R是自反的(reflexive)、对称的(symmetric)、传递的(transitive)。一个集合的等价关系可以将集合划分(partition)为不相交的(disjoint)等价类。
- **回** 例: let $S = \{A,B,C,D,E,F,G,H\}$ and $R = \{(A,A),(B,B),(B,H),(C,C),(D,D),(D,E),(E,E),(E,D),(F,F),(G,G),(H,H),(H,B)\}$. Then P = (A)(BH)(C)(DE)(F)(G)
- □ 定理: 时序电路的状态等价是状态集合的一个等价关系。
- □ 定理: 时序电路状态等价定义的等价类可以用来表示等价 电路中的状态。

2 完全确定电路的状态化简

- □三种方法
 - 1 观察法
 - 2 划分法
 - 3 蕴含表法

2.1 观察法

	S	ĸ					,	x			
	0	1			ĸ		0	1		J	x
\boldsymbol{A}	<i>B</i> /0	<i>C</i> /1	1	0	1	1 1	D /0	C/1		0	1
В		<i>A</i> /1	\boldsymbol{A}	B /0	<i>C</i> /1	A	<i>B</i> /0	<i>C</i> /1	\boldsymbol{A}	<i>B</i> /0	<i>C</i> /1
	<i>C</i> /0		В	<i>C</i> /0	<i>A</i> /1	B	<i>B</i> /0	A/1			
\boldsymbol{C}	D /1	<i>B</i> /0				C	D /1	B /0	В	<i>B</i> /0	A/1
D	<i>C</i> /0	A/1	$C \mid$	<i>B</i> /1	<i>B</i> /0	D D	D/0	<i>A</i> /1	\boldsymbol{C}	<i>B</i> /1	<i>B</i> /0
_	(a	a)		(1	b)			e)			(d)

	\boldsymbol{x}			
	0	1		
\boldsymbol{A}	<i>B</i> /0	<i>C</i> /1		
В	D /0	<i>A</i> /1		
\boldsymbol{C}	D /1	B /0		
D	<i>B</i> /0	<i>A</i> /1		
(e)				

观察法的原则

- □两个状态等价
 - 在相同输入和输出的前提下
 - 下一个状态是相同的
 - 下一个状态是这两个状态之一(self-loop-back)

观察法的4种模式(A和B等价)

另两种模式 (A和B等价)

●对于这两种模式, 采用观察法很难发现

状态化简例子

□序列识别010或者110(不重叠)

Input			xt State		utput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0 S1	S1 S3	S2 S4	0	0
1 00	S1 S2 S3	S3 S5 S0	S4 S6 S0	0	0
01 10	S3 S4 S5 S6	S0 S0 S0	50 S0 S0	1	0
11	S6	S0	S0	1	0

状态化简例子

Input		1	t State		utput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset 0 1 00 01 10 11	S0 S1 S2 S3 S4 S5 S6	S1 S3 S5 S0 S0 S0 S0	S2 S4 S6 S0 S0 S0 S0	0 0 0 0 1 0	0 0 0 0 0 0

(S0 S1 S2 S3 S4 S5 S6)
(S0 S1 S2 S3 S5) (S4 S6)
(S0 S3 S5) (S1 S2) (S4 S6)
(S0) (S3 S5) (S1 S2) (S4 S6)

最简化FSM

□状态最少的序列识别010或110

Input		Nex	t State	Ou	tput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1 '	S1 '	0	0
0 + 1	S1'	S3 '	S4 '	0	0
X0	S3'	S0	S0	0	0
X1	S4'	S0	S0	1	0

例子中的几个概念

- □1-等价 1-equivalent
- □2-等价 2-equivalent
- **□**...
- ■K-等价 K-equivalent
 - 两个状态SinSj 输入K个输入序列,输出序列是相同的。
- □ ∞等价 = 状态等价

2.3 划分法(Partitioning)

- □划分法是一组连续的过程。
- □每步形成的划分P_k,由一些块(block)组成,每个 块中的状态是K-等价的。
- □划分步骤
 - 第一步:将输出相同的状态分在一个块内,形成**1-**等价划分。
 - 第二步: 用下面的方法连续得到 P_k , k=2,3,4,5...; 直到 $P_{k-1}=P_k$ 。
 - 若对于每个输入,Si与Sj的次态都在同一个 P_{k-1} 的块内,则Si与Sj 放在 P_k 的同一块内

	<u>Partitio</u>	n blocks	Action
Partition P_0	(ABO	CDE)	
Output for $x = 0$	11100		Separate (ABC) and (DE)
Output for $x = 1$	000	011	Separate (ABC) and (DE)
Partition P_1	(ABC)	(DE)	
Next state for $x = 0$	CCB	DE	
Next state for $x = 1$	BEE	BA	Separate (A) and (BC)
Partition P_2	(A) (BC)	(DE)	
Next state for $x = 0$	$C \mid CB$	DE	
Next state for $x = 1$	B EE	BA	Separate (D) and (E)
Partition P_3	(A) (BC)	(D) (E)	
Next state for $x = 0$	$C \mid CB$	$D \mid E$	
Next state for $x = 1$	B EE	B A	
Partition $P_4 = P_3$	(A) (BC)	(D) (E)	

States B and C are equivalent

$$\square$$
P1 = (AD)(BE)(CF)(GH)

P2 = (AD)(BE)(CF)(G)(H)

P3 = P2

	J	x			
,	O	1	1	j	x
A	A/0	B/0	,	0	1
B	H/1	C/0	A'	A'/0	E/0
C	E/O	B/0	B	B '/1	D /1
D	C /1	D/0	lacksquare	F/0	E/0
E	C /1	E/0	D	E/0	B/0
<i>E F</i>	C/1 F/1	E/0 G/1	$- \begin{array}{c} D \\ E \end{array}$	E/0 E/1	B/0 C/0
F	F/1	G/1	- E	E/1 C/1	C/0

 \square P1 = (ADFG)(BCEH)

P2 = (AFG)(D)(BCEH)

P3 = (AF)(G)(D)(BCH)(E)

P4 = P3

	x_1x_2						
	00	01		10			
A	D/0	D/0	F/O	A/0			
B	C /1	D/0	E/1	F/O			
\boldsymbol{C}	C /1	D/0	E/1	A/0			
D	D/0	B/0	A/0	F/0			
E	C /1	F/0	E/1	A/0			
F	D/0	D/0	A/0	F/O			
G	G/0	G/0	A/0	A/0			
H	B /1	D/0	E/1	A/0			

	x_1x_2								
	00	01	11	10					
A'	C/0	C/0	A'/0	A'/0					
B	B '/1	C/0	D /1	A'/0					
C	C/0	B/0	A'/0	A'/0					
D	B /1	A'/0	D /1	A'/0					
E	E/0	E/0	A'/0	A'/0					

(b)

2.4 蕴涵表法

100 北京大海

蕴含表法

- (1)画出空的蕴涵表,蕴含表的方格表示所有可能的状态对。
- (2)检查蕴涵表的每个方块,当对应的两状态输出不相同时,在 该方块内打 "×"。
- (3)添完蕴涵表:对于每一种输入可能,将输出相同的次态对添入对应的蕴涵单元内。当蕴涵表单元的蕴涵项等于相对应的两状态或为同一个状态时:打对号"√";当单元包含的所有蕴涵对都变为"√"时,其对应两状态位等价,对应的单元可变为"√"。
- (4)处理蕴涵表,确定每个状态对的等价性。当蕴涵单元包含的 蕴涵项有一个为 "×"时,则其对应的状态对不等价,该单元 面 "×".
- (5)从蕴涵表得到等价状态对,导出等价划分:没有画 "×"的单元对应的状态对为等价对.

例1

$$\begin{array}{c|c}
A & - \\
B & (BC) \\
C & - \\
D & - \\
\end{array}$$

$$P_{K} = (A)(BC)(D)(E)$$
(f)

$x_{1}x_{2}$												
	00	01	11	10	1							
A	<i>D</i> /0	<i>D</i> /0	F/0	A/0								
B	<i>C</i> /1	<i>D</i> /0	<i>E</i> /1	F/0	В							
C	<i>C</i> /1	<i>D</i> /0	<i>E</i> /1	A/0	D	\longleftrightarrow		1				
D	<i>D</i> /0	<i>B</i> /0	A/0	F/0	C	X	AF					
E	<i>C</i> /1	F/0	E/1	A/0					1			
F	<i>D</i> /0	<i>D</i> /0	A/0	F/0	D	BD AF	X	X				
G	G/0	<i>G</i> /0	A/0	A/0			DF/	DF				
H	<i>B</i> /1	<i>D</i> /0	<i>E</i> /1	A/0	E		AF				_	
(a)			F	?	\times	\times	BD	\times				
$ \begin{array}{c c} A & (AF) \\ B & (BC)(BH) \\ C & (CH) \end{array} $			G	DG AF	\times	X	BG AF	X	DG AF			
C (CH) D - E - F -			Н	X	BC AF	ВС	X	BC DF	X	X		
		$\stackrel{F}{G}$	- -			\overline{A}	В	С	D	E	\overline{F}	\overline{G}
Note: $(BC)(BH)(CH) = (BCH)$								(b)				
$P_{K} = (AF)(BCH)(D)(E)(G)$												
(c)												
(6)												

三种方法的比较

- □观察法: 直观,功能不强。
- □划分法:功能强,可编程性强。
- □蕴含表法:功能强,可编程性强,步骤繁琐,所用时间多。

3 非完全确定状态机的化简

另一个结果

	0 X 1
A	B/- E/0
B	B/1 E/-
\mathbf{C}	F/0 C/0
D	B/1 A/1
E	D /0 C /-
\mathbf{F}	D/- C/1

(ACE)(BDF)

同步时序电路的分析与设计

4 优化的状态分配方法

□例1

Next state/output

例1的两种状态分配

分配1

	yl	y 2	y 3
A:	0	0	0
B:	0	0	1
C:	0	1	1
D:	0	1	0
E:	1	0	1
F:	1	1	0
G:	1	1	1

$$J_{1} = \overline{y}_{2}x + y_{3}x, K_{1} = \overline{y}_{3} + x$$

$$J_{2} = y_{3}, K_{2} = \overline{y}_{3}$$

$$J_{3} = \overline{y}_{2}, K_{3} = y_{2}$$

$$z = \overline{y}_{3}y_{2}\overline{y}_{1}x + \overline{y}_{3}y_{1}x$$

$$J_{1} = x\overline{y}_{3} + x\overline{y}_{2}, K_{1} = x + y_{3}$$

$$J_{2} = y_{1}\overline{y}_{3} + \overline{y}_{1}y_{3}, K_{2} = y_{3} + \overline{x}y_{1} + x\overline{y}_{1}$$

$$J_{3} = y_{2} + \overline{xy}, K_{3} = 1$$

$$z = xy_{3} + xy_{2}y_{3}$$

4.1 状态分配

□可选择的状态分配方案数目十分巨大。

$$2^{N_{\rm ff}-1} < N_s \le 2^{N_{\rm ff}}$$

□所有可能的状态分配方案数:

$$N_{SA} = \frac{2^{N_{ff}}!}{(2^{N_{ff}} - N_{S})!}$$

- □方案2将方案1的y1置取补
- □方案3将方案1的y1和y2交换

Present state	0	x 1		As	signme	ents	
A	A/0	<i>B</i> /0	States	1	2	3	
B	<i>A</i> /0	<i>C</i> /0		$\frac{y_1y_2}{00}$	$\frac{y_1y_2}{10}$	$\frac{y_1y_2}{00}$	
C	<i>C</i> /0	<i>D</i> /0	A B	01	11	10	
D	<i>C</i> /1	<i>A</i> /0	$\left egin{array}{c} C \ D \end{array} ight $	11 10	01 00	11 01	
(a)				(b)			

例2: 结论

- □通过简单的将状态变量取补或者交换状态变量, 不能化简电路。
- □可选择的状态分配方案:

$$N_{UA} = \frac{(2^{N_{ff}} - 1)!}{(2^{N_{ff}} - N_{S})! N_{ff}!}$$

状态分配策略

- □可能的策略
 - 顺序分配 状态表中出现的次序
 - 随机分配 随机的选择编码
 - one-hot 表示状态的位数和状态个数相同
 - 输出 利用输出帮助状态编码
 - 启发式 利用一系列规则进行编码
- □没有最优解

4.2 状态分配指导原则

- □问题:如何指导选择状态分配方案来降低次态生成逻辑的复杂性。
- □总体思路:选择一种状态编码方式,使在状态转换表(卡诺图)中的"1"组成尽可能大的组(质蕴含项)。

□D触发器的使用。

例3:4状态状态机的例子

分配方案1

Λ		00
A	\rightarrow	VV

$$B \rightarrow 01$$

$$C \rightarrow 11$$

$$D \rightarrow 10$$

$$Y_2 Y_1/z$$
 (a)

$$D_2 = \overline{y}_1 \overline{y}_2 + \overline{x} \overline{y}_2 + x y_1 y_2$$

$$D_1 = \overline{x} \overline{y}_2 + \overline{x} y_1 + x \overline{y}_1 y_2$$

$$z = \overline{y}_1 y_2$$

分配方案2

$$A \rightarrow 00$$

 $B \rightarrow 11$

 $C \rightarrow 01$

 $D \rightarrow 10$

 $Y_{2} Y_{1}/z$ (a)

$D_2 = x\overline{y}_1 + y_1\overline{y}_2$
$D_1 = \overline{x}\overline{y}_2 + \overline{x}y_1 + x\overline{y}_1y_2$
$z = \overline{y}_1 y_2$

分配方案3

4		α
Λ	_	()()
$\boldsymbol{\Lambda}$	_	VV

$$B \rightarrow 10$$

$$C \rightarrow 01$$

$$D \rightarrow 11$$

$$D_2 = y_1 \overline{y}_2 + x \overline{y}_2 + x y_1$$

$$D_1 = x \overline{y}_2 + \overline{x} \overline{y}_1$$

$$z = y_1 y_2$$

状态分配规则

- □规则1:对于给定的输入,具有相同次态的状态应该分配逻辑相邻的编码。
- □规则2:对于一个现态,在逻辑相邻输入下的次态, 应该分配逻辑相邻的编码

□例3:

- 规则1: A adj B; A adj C
- 规则2: A adj B; A adj C; B adj D; C adj D

状态分配卡诺图

状态分配规则

- □规则3:输出规则,在相同输入情况下,具有相同输出的状态应该分配相邻的编码。
- □规则4: 已经利用规则1、2、3确定分配相邻编码的状态对,其次态对应该分配相邻的编码。
- □规则5:找到在化简的状态表中作为次态次数最多的状态,分配"全0"的编码,然后利用规则1、2、3、4进行状态分配。尽可能的满足所有的规则。

启发式状态分配

□ 规则1

I Q Q+ O
i a c j
i b c k

$$c = i * a + i * b$$

□ 规则2

 $\begin{array}{c|cccc} I & Q & Q^+ & O \\ \hline i & a & b & j \\ k & a & c & l \end{array}$

$$b = i * a$$

 $c = k * a$

□ 输出规则

基于输出的状态编码

- □ 利用输出作为状态的编码 用输出帮助区分状态
 - 复用计算输出的函数
 - 适合同步Mealy机的设计

Inp	uts		Present State	Next State	Out	puts	
C	TL	TS			ST	Н	F
0	_	_	HG	HG	0	00	10
_	0	_	HG	HG	0	00	10
1	1	_	HG	HY	1	00	10
_	_	0	HY	HY	0	01	10
_	_	1	HY	FG	1	01	10
1	0	_	FG	FG	0	10	00
0	_	_	FG	FY	1	10	00
_	1	_	FG	FY	1	10	00
_	_	0	FY	FY	0	10	01
_	_	1	FY	HG	1	10	01

HG = ST' H1' H0' F1 F0' + ST H1 H0' F1' F0 HY = ST H1' H0' F1 F0' + ST' H1' H0 F1 F0'

FG = ST H1' H0 F1 F0' + ST' H1 H0' F1' F0'

HY = ST H1 H0' F1' F0' + ST' H1 H0' F1' F0

输出与状态——对应,不需要任何计算状态的函数

只需要5个函数(一个输出一个)而不是7个函数

总结

