Package 'CNAIM'

October 12, 2022

Type Package

Title Common Network Asset Indices Methodology (CNAIM)

Version 2.1.4

Maintainer Mohsin Vindhani <mohsin@utiligize.com>

Description Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies' assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.

URL https://www.cnaim.io/

BugReports https://github.com/Utiligize/CNAIM/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

Depends R (>= 3.5.0)

Imports plyr, dplyr, jsonlite, magrittr, r2d3, ggplot2, stringr, tibble

RoxygenNote 7.2.1

Suggests knitr, htmltools, readxl, testthat, rmarkdown, widgetframe

VignetteBuilder knitr **NeedsCompilation** no

Author Emil Larsen [aut],

Kalle Hansen [aut],

Kenneth Rosenorn [aut],

Peter Larsen [aut],

Utiligize ApS [cph],

Mohsin Vindhani [aut, cre]

Repository CRAN

Date/Publication 2022-08-31 08:40:22 UTC

R topics documented:

2

beta_1
beta_2
cof
cof_transformer_04_10kv
cof_transformer_11kv
current_health
dga_test_modifier
duty_factor_cables
duty_factor_transformer_11_20kv
duty_factor_transformer_33_66kv
environmental_cof_board_04kv
environmental_cof_cables_04_10kv
environmental_cof_cables_60_30kv
environmental_cof_ehv_cables
environmental_cof_ehv_fittings
environmental_cof_ehv_switchgear
environmental_cof_hv_switchgear_distribution
environmental_cof_hv_switchgear_primary
environmental_cof_lv_switchgear_and_other
environmental_cof_lv_ugb
environmental_cof_ohl_cond
environmental_cof_ohl_cond_50kv
environmental_cof_ohl_fittings_50kv
environmental_cof_pillar_04kv
environmental_cof_poles
environmental_cof_poles_ohl_support_50kv
environmental_cof_relay
environmental_cof_serviceline
environmental_cof_submarine_10kv
environmental_cof_submarine_30_60kv
environmental_cof_sub_cables
environmental_cof_switchgear_30_60kv
environmental_cof_switchgear_primary_10kv
environmental_cof_switchgear_secondary_10kv
environmental_cof_towers
environmental_cof_tower_ohl_support_50kv
environmental_cof_transformers
environmental_cof_transformer_30_60kv
expected_life
$e_cof_tf \ \dots \ $
ffa_test_modifier
$financial_cof_board_04kv \qquad . \qquad $
$financial_cof_cables_04_10kv \ \dots \ $
$financial_cof_cables_60_30kv $
financial_cof_ehv_cables
financial_cof_ehv_fittings

financial_cof_ehv_switchgear					
financial_cof_hv_switchgear_distribution .	 	 	 	 	45
financial_cof_hv_switchgear_primary	 	 	 	 	46
financial_cof_lv_switchgear_and_other	 	 	 	 	47
financial_cof_lv_ugb					
financial_cof_ohl_cond					
financial_cof_ohl_cond_50kv					
financial_cof_ohl_fittings_50kv					
financial_cof_pillar_04kv					
financial_cof_poles					
financial_cof_poles_ohl_support_50kv					
financial_cof_relay					
financial_cof_serviceline					
financial_cof_submarine_cables_10kv					
financial_cof_submarine_cables_30_60kv .					
financial_cof_sub_cables	 	 	 	 	56
financial_cof_switchgear_30_60kv					
$financial_cof_switchgear_primary_10kv \ . \ .$					
$financial_cof_switchgear_secondary_10kv \ .$					
financial_cof_towers					
financial_cof_tower_ohl_support_50kv	 	 	 	 	60
financial_cof_transformers					
financial_cof_transformer_30_60kv	 	 	 	 	61
f_cof_transformer_11kv					
health_score_excl_ehv_132kv_tf					
initial_health					
location_factor					
location_factor_sub					
matrix_adjusted_circles					
matrix_adjusted_intervals					
mmi					
network_cof_board_04kv					
network_cof_cables_04_10kv					
network_cof_cables_60_30kv					
network_cof_ehv_cables					
network_cof_ehv_fittings					
network_cof_ehv_pole					74
network_cof_ehv_sub_cable					75
network_cof_ehv_switchgear	 	 	 	 	76
network_cof_hv_lv_poles	 	 	 	 	77
network_cof_hv_sub_cables	 	 	 	 	78
network_cof_hv_switchgear_distribution .	 	 	 	 	79
network_cof_hv_switchgear_primary	 	 	 	 	80
network_cof_lv_switchgear_and_other					81
network_cof_lv_ugb					82
network_cof_ohl_cond					83
network_cof_ohl_cond_50kv					84
network_cof_ohl_fittings_50kv					
network_cor_om_numgs_sokv	 	 	 	 	0-1

4

network_cof_pillar_04kv	85
network_cof_poles_ohl_support_50kv	86
network_cof_relay	86
network_cof_serviceline	
network_cof_submarine_cables_10kv	
network_cof_submarine_cables_30_60kv	
network_cof_switchgear_30_60kv	
network_cof_switchgear_primary_10kv	
network_cof_switchgear_secondary_10kv	
network_cof_tower	
network_cof_tower_ohl_support_50kv	
network_cof_transformers	
network_cof_transformer_30_60kv	
n_cof_excl_ehv_132kv_tf	
oil_test_modifier	
plot_pof	
pof_132kv_cb	
pof_board_04kv	
pof_building	
pof_cables_04kv_pex	
pof_cables_10kv_oil	
•	
pof_cables_10kv_pex	
pof_cables_132kv	
pof_cables_60_30kv	
pof_cables_66_33kv	
pof_ehv_fittings	
pof_ehv_switchgear	
pof_future_board_04kv	
pof_future_building	
pof_future_cables_04kv_pex	
pof_future_cables_10kv_oil	
pof_future_cables_10kv_pex	
pof_future_cables_132kv	
pof_future_cables_60_30kv	
pof_future_cables_66_33kv	
pof_future_meter	
pof_future_ohl_cond_132_66_33kv	
pof_future_ohl_cond_50kv	
pof_future_ohl_fittings_50kv	138
pof_future_pillar_04kv	140
pof_future_poles	142
pof_future_poles_ohl_support_50kv	144
pof_future_relay	146
pof_future_rtu	148
pof_future_serviceline	150
pof_future_submarine_cables	
pof_future_submarine_cables_10kv_oil	
pof future submarine cables 10kv pex	

R topics documented:

pof_future_submarine_cables_30_60kv_oil	157
pof_future_submarine_cables_30_60kv_pex	159
pof_future_switchgear_30_60kv	161
pof_future_switchgear_primary_10kv	163
pof_future_switchgear_secondary_10kv	165
pof_future_transformer_04_10kv	167
pof_future_transformer_11_20kv	170
pof_future_transformer_132kv	172
pof_future_transformer_30_60kv	177
pof_future_transformer_33_66kv	181
pof_hv_switchgear_distribution	186
pof_hv_switchgear_primary	188
pof_lv_switchgear_and_other	
pof_lv_ugb	192
pof_meter	
pof_ohl_cond_132_66_33kv	195
pof_poles	
pof_submarine_cables	
pof_switchgear_primary_10kv	
pof_switchgear_secondary_10kV	
pof_towers	
pof_tower_ohl_support_50kv	
pof_transformer_04_10kv	
pof_transformer_11_20kv	
pof_transformer_132kv	
pof_transformer_30_60kv	
pof_transformer_33_66kv	
predict_weibull_model	
present_value_future_risk	
risk_calculation	
risk_matrix_points_plot	
risk_matrix_structure	
risk_matrix_summary_plot	
safety_cof_board_04kv	
safety_cof_cables_04_10kv	
safety_cof_cables_60_30kv	
safety_cof_ehv_cables	
safety_cof_ehv_fittings	
safety_cof_ehv_switchgear	
safety_cof_hv_switchgear_distribution	
safety_cof_hv_switchgear_primary	
safety_cof_lv_switchgear_and_other	
safety_cof_lv_ugb	
safety_cof_ohl_cond	
safety_cof_ohl_cond_50kv	
safety_cof_ohl_fittings_50kv	
safety_cof_pillar_04kv	
safety cof poles	
DUIDLE DOI DOILD	477

6 beta_1

safety_cof_poles_ohl_support_50kv	1 5
safety_cof_relay	15
safety_cof_serviceline	16
safety_cof_submarine_cables_10kv	17
safety_cof_submarine_cables_30_60kv	1 7
safety_cof_sub_cables	18
safety_cof_switchgear_30_60kv	19
safety_cof_switchgear_primary_10kv	19
safety_cof_switchgear_secondary_10kv	50
safety_cof_towers	51
safety_cof_tower_ohl_support_50kv	52
safety_cof_transformers	52
safety_cof_transformer_30_60kv	53
s_cof_swg_tf_ohl	54
train_weibull_model	55
transformer_11kv_faults	56
25	58

beta_1

Index

Initial Ageing Rate

Description

This function calculates the initial ageing rate for an electric network asset. See section 6.1.5 on page 36 in CNAIM (2021).

Usage

```
beta_1(expected_life_years)
```

Arguments

```
expected_life_years
```

Numeric. The output returned by the function expected_life().

Value

Numeric. Initial ageing rate for an electric network asset.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
beta_1(expected_life_years = 10)
```

beta_2

beta_2

Forecast Ageing Rate

Description

This function calculates the forecast Ageing Rate for an electric network asset. See section 6.1.8 on page 38 in CNAIM (2021).

Usage

```
beta_2(current_health_score, age)
```

Arguments

```
current_health_score
```

Numeric. The output returned by the function current_health().

age

Numeric. Age of the asset.

Value

Numeric. Forecast ageing rate for an electric network asset.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
beta_2(current_health_score = 1, age = 25)
```

cof

Consequences of Failure

Description

This function calculates consequences of failure (cf. section 7, page 75, CNAIM, 2021).

```
cof(financial_cof, safety_cof, environmental_cof, network_cof)
```

Value

Numeric. Consequences of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
cof_transformer_04_10kv
```

Consequences of Failure for a 0.4/10 kV transformer

Description

This function calculates consequences of failure for a 6.6/11 kV transformer (cf. section 7, page 75, CNAIM, 2021).

Usage

```
cof_transformer_04_10kv(
   kva,
   type,
   type_risk,
   location_risk,
   prox_water,
   bunded,
   no_customers,
   kva_per_customer
)
```

Arguments

kva

Numeric. The rated transformer capacity measured in kVA for a 6.6/11 kV transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).

type String. Relates to the accessibility of the transformer Options: type = c("Type

A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).

type_risk String. Risk that the asset presents to the public by its characteristics and particu-

lar situation. Options: type_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a set-

ting of "Medium".

location_risk String. Proximity to areas that may affect its likelihood of trespass or interfer-

ence. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a

setting of "Medium".

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,

2021).

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of

1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Consequences of failure for a 0.4/10 kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

cof_transformer_11kv Consequences of Failure for a 6.6/11 kV transformer

Description

This function calculates consequences of failure for a 6.6/11 kV transformer (cf. section 7, page 75, CNAIM, 2021).

Usage

```
cof_transformer_11kv(
   kva,
   type,
   type_risk,
   location_risk,
   prox_water,
   bunded,
   no_customers,
   kva_per_customer
)
```

Arguments

kva

Numeric. The rated transformer capacity measured in kVA for a 6.6/11 kV transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).

type

String. Relates to the accessibility of the transformer Options: type = c("Type A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).

type_risk

String. Risk that the asset presents to the public by its characteristics and particular situation. Options: type_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".

location_risk

String. Proximity to areas that may affect its likelihood of trespass or interference. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".

prox_water

Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).

current_health 11

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Consequences of failure for a 6.6/11 kV transformer.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

current_health

Current Health score

Description

This function calculates the current health score for a given electric network asset (cf. CNAIM, 2021. Page 23, section 4.3.2).

```
current_health(
  initial_health_score,
  health_score_factor,
  health_score_cap = "Default",
  health_score_collar = "Default",
  reliability_factor = "Default")
```

12 current_health

Arguments

```
initial_health_score
```

Numeric. The output from the function initial_health().

health_score_factor

Numeric. E.g. output from the function health_score_excl_ehv_132kv_tf().

health_score_cap

Numeric. Specifies the maximum value of current health score. The cap is used in situations where a good result from a condition inspection or measurement implies that the health score should be no more than the specified value. The cap is derived as the minimum of the observed condition cap and the measured condition cap. Measured and observed condition caps are found in lookup tables depending in the asset category, when determine the observed and measured condition factors. A setting of "Default" sets the health_score_cap to 10.

health_score_collar

Numeric. Specifies the minimum value of Current Health Score. The collar is used in situations where a poor result from a condition inspection or measurement implies that the health score should be at least the specified value. The collar is derived as the minimum of the observed condition collar and the measured condition collar. Measured and observed condition collars are found in lookup tables depending in the asset category, when determine the observed and measured condition factors. A setting of "Default" sets the health_score_collar to 0.5.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

Numeric. The Current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

dga_test_modifier 13

Description

This function calculates the DGA test modifier for 33/10kV, 66/10kV and 132kV transformers. See e.g. section 6.12 on page 65 in CNAIM (2017).

Usage

```
dga_test_modifier(
  hydrogen = "Default",
  methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  acetylene_pre = "Default")
```

Arguments

hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.

14 duty_factor_cables

acetylene_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

Value

Data table.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# DGA test modifier
dga_test_modifier(hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
```

duty_factor_cables

Duty Factor for all cables (incl. submarine cables).

Description

This function calculates the duty factor for under all types of cables depending on the maximum percentage utilisation under normal operating conditions. The duty factor is used in the deriviation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

```
duty_factor_cables(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  voltage_level = "EHV"
)
```

Value

Numeric. Duty factor for cables.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
duty_factor_cables(utilisation_pct = "Default",
operating_voltage_pct = "Default",
voltage_level = "EHV")
```

```
duty_factor_transformer_11_20kv
```

Duty Factor for 6.6/11kV and 20kV Transformers

Description

This function calculates the duty factor for 6.6/11kV and 20kV transformers depending on the maximum percentage utilisation under normal operating conditions. The duty factor is used in the derivation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

Usage

```
duty_factor_transformer_11_20kv(utilisation_pct = "Default")
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

Value

Numeric. Duty factor for 6.6/11kV or 20kV transformer.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
duty_factor_transformer_11_20kv(utilisation_pct = 95)

duty_factor_transformer_33_66kv
```

Duty Factor for 33/10kV and 66/10kV Transformers and Tapchanger

Description

This function calculates the duty factor for 33/10kV and 66/10kV transformers depending on the maximum percentage utilisation under normal operating conditions. And the tapchanger depending on the average number of daily taps. The duty factor is used in the derivation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

Usage

```
duty_factor_transformer_33_66kv(
  utilisation_pct = "Default",
  no_taps = "Default"
)
```

Arguments

```
utilisation_pct
Numeric. The max percentage of utilisation under normal operating conditions.
no_taps
Numeric. Average number of daily taps (tapchanger).
```

Value

Data table. Duty factor for the transformer and for the tapcharger

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
duty_factor_transformer_33_66kv(utilisation_pct = 95,
no_taps = 25)
```

environmental_cof_board_04kv

Environmental cost of Failure for 0.4kV Board

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 0.4kV board Outputted in DKK

Usage

```
environmental_cof_board_04kv()
```

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_board_04kv()
```

environmental_cof_cables_04_10kv

Environmental cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates environmental consequences of failure Outputted in DKK hv_asset_category = c("10kV UG Cable (0il)", "10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Usage

```
environmental_cof_cables_04_10kv(hv_asset_category, prox_water, bunded)
```

Arguments

hv_asset_category

String The type of HV asset category A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m

prox_water Numeric. Specify the proximity to a water course in meters.

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Examples

```
environmental_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

environmental_cof_cables_60_30kv

Environmental cost of Failure for 30-60 kV UG cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Oil)", "60kV UG Cable (Oil)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

```
environmental_cof_cables_60_30kv(ehv_asset_category, prox_water, bunded)
```

Arguments

ehv_asset_category

Asset category for the analysis

prox_water 1

Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,

2021).

bunded

String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
environmental_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

```
environmental_cof_ehv_cables
```

Environmental cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_ehv_cables(ehv_asset_category, prox_water, bunded)
```

Arguments

```
ehv_asset_category
```

String The type of EHV cable distribution asset category Options: ehv_asset_category = c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV

UG Cable (Oil)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").

prox_water

Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,

2021).

bunded

String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
environmental_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

```
environmental_cof_ehv_fittings
```

Environmental cost of Failure for EHV/132kV fittings

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_ehv_fittings(ehv_asset_category)
```

Arguments

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_ehv_fittings(ehv_asset_category = "33kV Fittings")
```

```
environmental_cof_ehv_switchgear
```

Environmental cost of Failure for EHV swicthgear & 132kV CB

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

```
environmental_cof_ehv_switchgear(
  ehv_asset_category,
  type_env_factor,
  prox_water,
  bunded
)
```

```
ehv_asset_category
                 String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category
                 = c( "33kV CB (Air Insulated Busbars)(ID)(GM)", "33kV CB (Air Insulated
                 Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB
                 (Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV
                 CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV
                 CB (Gas Insulated Busbars)(ID)(GM)", "66kV CB (Gas Insulated Busbars)(OD)(GM)")
type_env_factor
                 String The type environment factor of EHV asset category
                 Numeric. Specify the proximity to a water course in meters. A setting of
prox_water
                 "Default" will result in a proximity factor of 1. Thus assume the proximity
                 to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,
                 2021).
bunded
                 String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"
                 will result in a bunding factor of 1.
```

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for HV switchgear

```
environmental_cof_hv_switchgear_distribution(
  hv_asset_category,
  type_env_factor,
  prox_water,
  bunded
)
```

```
hv_asset_category
                 String The type of HV switchgear distribution asset category Options: hv_asset_category
                 = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU",
                  "6.6/11kV Switch (GM)","20kV CB (GM) Secondary", "20kV RMU", "20kV Switch
                  (GM)")
type_env_factor
                 String The type environment factor of HV asset category Options: type_env_factor
                 = c("0il", "SF6", "Niether", "Default").
prox_water
                 Numeric. Specify the proximity to a water course in meters. A setting of
                  "Default" will result in a proximity factor of 1. Thus assume the proximity
                 to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,
                 2021).
                 String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"
bunded
                 will result in a bunding factor of 1.
```

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
type_env_factor = "0il", prox_water = 95,
bunded = "Yes")
```

environmental_cof_hv_switchgear_primary

Environmental cost of Failure for HV switchgear primary

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for HV switchgear

```
environmental_cof_hv_switchgear_primary(
  hv_asset_category,
  type_env_factor,
  prox_water,
  bunded
)
```

hv_asset_category

String The type of HV asset category Options: $hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")$

type_env_factor

String The type environment factor of HV asset category Options: type_env_factor

= c("0il", "SF6", "Niether", "Default").

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,

2021).

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
type_env_factor = "0il",
prox_water = 95, bunded = "Yes")
```

environmental_cof_lv_switchgear_and_other

Environmental cost of Failure for LV swicthgear and others

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_lv_switchgear_and_other(lv_asset_category)
```

Arguments

```
lv_asset_category
```

```
String The type of LV asset category Options: lv_asset_category = c("LV Board (WM)","LV Board (X-type Network) (WM)", "LV Circuit Breaker","LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")
```

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)")
```

```
environmental_cof_lv_ugb
```

Environmental cost of Failure for LV UGB

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV UGB

Usage

```
environmental_cof_lv_ugb(lv_asset_category)
```

Arguments

Value

Numeric. Environmental consequences of failure for LV UGB

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
environmental_cof_lv_ugb(lv_asset_category = "LV UGB")
```

environmental_cof_ohl_cond

Environmental cost of Failure for Overhead line conductors

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#'

Usage

```
environmental_cof_ohl_cond(ohl_cond_asset_category)
```

Arguments

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_ohl_cond(ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor")
```

```
environmental_cof_ohl_cond_50kv
```

Environmental cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates environmental consequences of failure Outputted in DKK

```
environmental_cof_ohl_cond_50kv()
```

Examples

```
environmental_cof_ohl_cond_50kv()
```

```
environmental_cof_ohl_fittings_50kv
```

Environmental cost of Failure for 50kV Fittings

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_ohl_fittings_50kv()
```

Value

Numeric. Financial consequences of failure for 50kv fittings Outputted in DKK.

Examples

```
environmental_cof_ohl_fittings_50kv()
```

```
environmental_cof_pillar_04kv
```

Environmental cost of Failure for 0.4kv Pillar

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_pillar_04kv()
```

Value

Numeric. Financial consequences of failure for 0.4kV pillar Outputted in DKK.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_pillar_04kv()
```

```
environmental_cof_poles
```

Environmental cost of Failure for Poles

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_poles(pole_asset_category)
```

Arguments

```
pole_asset_category

String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").
```

Value

Numeric. Financial consequences of failure for Poles

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
environmental_cof_poles(pole_asset_category = "33kV Pole")
```

environmental_cof_poles_ohl_support_50kv

Environmental cost of Failure for Poles OHL Support 50kV

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for Poles OHL support 50kV Outputted in DKK.

Usage

```
environmental_cof_poles_ohl_support_50kv()
```

Examples

```
environmental_cof_poles_ohl_support_50kv()
```

environmental_cof_relay

Environmental cost of Failure for Relays

Description

This function calculates environmental consequences of failure. Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK. Financial consequences of failure for relay

Usage

```
environmental_cof_relay(type_env_factor, prox_water, bunded)
```

Arguments

type_env_factor

String The type environment factor of HV asset category Options: type_env_factor

= c("0il", "SF6", "Neither", "Default").

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity

to a water course is between 80m and 120m

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Examples

```
environmental_cof_relay(
type_env_factor = "0il",
prox_water = 95,
bunded = "Yes")
```

environmental_cof_serviceline

Environmental cost of Failure for Service Lines

Description

This function calculates environmental consequences of failure Outputted in DKK

Usage

```
environmental_cof_serviceline(prox_water, bunded)
```

Arguments

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity

to a water course is between 80m and 120m

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Examples

```
environmental_cof_serviceline(prox_water = 95, bunded = "Yes")
```

```
environmental_cof_submarine_10kv
```

Environmental cost of Failure for 10kV Submarine Cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 10kV submarine cables Outputted in DKK.

```
environmental_cof_submarine_10kv()
```

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_submarine_10kv()
```

environmental_cof_submarine_30_60kv

Environmental cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 30kV and 60kV submarine cables Outputted in DKK.

Usage

```
environmental_cof_submarine_30_60kv()
```

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_submarine_30_60kv()
```

environmental_cof_sub_cables

Environmental cost of Failure for sub cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_sub_cables(sub_cable_asset_category)
```

Arguments

```
sub_cable_asset_category

String The type of Submarine cable asset category Options: sub_cable_asset_category

= c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").
```

Value

Numeric. Financial consequences of failure for sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2017: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")
```

```
environmental_cof_switchgear_30_60kv

*Environmental cost of Failure for 30kV and 60kV Switchgear*
```

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' Outputted in DKK.

```
environmental_cof_switchgear_30_60kv(
  ehv_asset_category,
  type_env_factor,
  prox_water,
  bunded
)
```

 $\label{eq:category} & \text{String The type of EHV asset category Options: ehv_asset_category = c("30kV", "60kV").} \\ & \text{type_env_factor} \\ & \text{String The type environment factor of 30kV and 60kV switchgear Options: type_env_factor = c("0il", "SF6", "Niether", "Default").} \\ & \text{prox_water} \\ & \text{Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m} \\ \\ & \text{String The type of EHV asset category Options: ehv_asset_category = c("30kV", "60kV", "60kV").} \\ & \text{String The type of EHV asset category Options: ehv_asset_category = c("30kV", "60kV", "60kV",$

String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Value

bunded

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
environmental_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
type_env_factor = "0il",
prox_water = 95,
bunded = "Yes")
```

environmental_cof_switchgear_primary_10kv

Environmental cost of Failure for 10kV Switchgear Primary

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
environmental_cof_switchgear_primary_10kv(type_env_factor, prox_water, bunded)
```

Arguments

type_env_factor

String The type environment factor of HV asset category Options: $type_env_factor$

= c("0il", "SF6", "Niether", "Default").

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity

to a water course is between 80m and 120m

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

Value

Numeric. Financial consequences of failure for 10kV switchgear

Examples

```
environmental_cof_switchgear_primary_10kv(
type_env_factor = "Oil",
prox_water = 95, bunded = "Yes")
```

```
environmental_cof_switchgear_secondary_10kv

*Environmental cost of Failure for 10kV Switchgear Secondary*

*Invironmental cost of Failure for 10kV Switchge
```

Description

This function calculates environmental consequences of failure. Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK. Financial consequences of failure for 10 kV switchgear secondary

Usage

```
environmental_cof_switchgear_secondary_10kv(
  type_env_factor,
  prox_water,
  bunded
)
```

Arguments

```
\label{type_env_factor} type\_env\_factor \\ String\ The\ type\ environment\ factor\ of\ HV\ asset\ category\ Options:\ type\_env\_factor \\ = c("0il",\ "SF6",\ "Niether",\ "Default"). \\ \\ prox\_water & Numeric.\ Specify\ the\ proximity\ to\ a\ water\ course\ in\ meters.\ A\ setting\ of\ "Default"\ will\ result\ in\ a\ proximity\ factor\ of\ 1.\ Thus\ assume\ the\ proximity\ to\ a\ water\ course\ is\ between\ 80m\ and\ 120m \\ \\ bunded & String.\ Options:\ bunded = c("Yes",\ "No",\ "Default").\ A\ setting\ of\ "Default"\ will\ result\ in\ a\ bunding\ factor\ of\ 1. \\ \\ \end{array}
```

```
environmental_cof_switchgear_secondary_10kv(
type_env_factor = "Oil", prox_water = 95,
bunded = "Yes")
```

```
environmental_cof_towers
```

Environmental cost of Failure for towers

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_towers(tower_asset_category)
```

Arguments

Value

Numeric. Financial consequences of failure for towers

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_towers(tower_asset_category = "33kV Tower")
```

```
environmental_cof_tower_ohl_support_50kv
```

Environmental cost of Failure for Tower OHL Support 50 kV

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().

```
environmental_cof_tower_ohl_support_50kv()
```

Value

Numeric. Financial consequences of failure for tower ohl support 50 kV Outputted in DKK.

Examples

```
environmental_cof_tower_ohl_support_50kv()
```

```
environmental_cof_transformers
```

Environmental cost of Failure for Transformers

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_transformers(
  tf_asset_category,
  prox_water,
  bunded,
  size_kva_mva = NULL,
  size_conversion = NULL
)
```

Arguments

```
tf_asset_category
```

String The type of Transformer asset category Options: $tf_asset_category = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)" "132kV Transformer (GM)").$

prox_water

Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).

bunded

String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

size_kva_mva

Numeric The MVA KVA rating for the transformer

size_conversion

String The size conversion for the transformer

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 1.1, 2017: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
prox_water = 95, bunded = "Yes", size_kva_mva = 20, size_conversion = "33/20kV")
```

environmental_cof_transformer_30_60kv

Environmental cost of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates environmental consequences of failure Outputted in DKK.

Usage

```
environmental_cof_transformer_30_60kv(
   tf_asset_category,
   prox_water,
   bunded,
   size_kva_mva = NULL
)
```

Arguments

tf_asset_category

String The type of Transformer Options: $tf_asset_category = c("30kV Transformer")$

(GM)","60kV Transformer (GM)").

prox_water Numeric. Specify the proximity to a water course in meters. A setting of

"Default" will result in a proximity factor of 1. Thus assume the proximity

to a water course is between 80m and 120m

bunded String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default"

will result in a bunding factor of 1.

```
environmental_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
prox_water = 95, bunded = "Yes", size_kva_mva = 20)
```

expected_life 37

expected_life

Expected Life

Description

This function calculates the expected life of an electric network asset measured in years when it would be expected to first observe significant deterioration. The expected life is derived based on the assets normal expected life, duty factor and location factor. See section 6.1.4 on page 36 in CNAIM (2021).

Usage

```
expected_life(normal_expected_life, duty_factor, location_factor)
```

Arguments

Numeric. The output returned by the function location_factor().

Value

Numeric. Expected life.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

 $e_{cof_{t}}$

e_cof_tf

Environmental Consequences of Failure for transformers

Description

This function calculates environmental consequences of failure for all type of transformers. (cf. section 7.5, page 84, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
e_cof_tf(
  asset_type_tf,
  rated_capacity = "Default",
  prox_water = "Default",
  bunded = "Default"
)
```

Arguments

asset_type_tf String. Transformer types. Options: asset_type_tf = c("6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Transformer (GM)","66kV Transformer (GM)", "132kV Transformer (GM)"). rated_capacity Numeric. The rated capacity for a transformer. For type "6.6/11kV Transformer (GM)" and "20kV Transformer (GM)" use kVA ratings. For "20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)", "132kV Transformer (GM)" use MVA ratings. A setting of "Default" will result in a size environmental factor of 1 (cf. table 230, page 187, CNAIM, 2021). Numeric. Specify the proximity to a water course in meters. A setting of prox_water "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021). String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" bunded will result in a bunding factor of 1.

Value

Numeric. Financial cost of failure for a 10kV transformer.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

ffa_test_modifier 39

Examples

```
# Environmental consequences of failure for a 6.6/11 kV transformer
e_cof_tf(asset_type_tf = "6.6/11kV Transformer (GM)",
rated_capacity = 750, prox_water = 100, bunded = "Yes")
```

ffa_test_modifier

Oil Test Modifier

Description

This function calculates the FFA test modifier based on the levels of furfuraldehyde in the transformer oil. This function applies for 33/10kV, 66/10kV and 132kV transformers. See e.g. section 6.13 on page 71 in CNAIM (2021).

Usage

```
ffa_test_modifier(furfuraldehyde = "Default")
```

Arguments

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.

Value

Data table.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# FFA test modifier
ffa_test_modifier(furfuraldehyde = 50)
```

```
financial_cof_board_04kv
```

Financial cost of Failure for 0.4kV Board

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in (DKK).

Usage

```
financial_cof_board_04kv(
  type_financial_factor_criteria = "Asbestos clad",
  access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria

String Type Financial factor criteria for 0.4kV board (cf. section D1.2.1, page 178, CNAIM, 2021). Options: type_financial_factor_criteria = c("Non Asbestos clad", "Asbestos clad").

access_factor_criteria

String. Asses Financial factor criteria for 0.4kV board setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for 0.4kV board

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_board_04kv(
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

financial_cof_cables_04_10kv

Financial cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

```
financial_cof_cables_04_10kv(hv_asset_category)
```

Arguments

```
hv_asset_category
```

String The type of HV asset category hv_asset_category = c("10kV UG Cable (0il)", "10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Value

Numeric. Financial consequences of failure for 0.4kV and 10kV UG cables

Examples

```
financial_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)")
```

financial_cof_cables_60_30kv

Financial cost of Failure for 30-60 kV UG cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (Oil)", "60kV UG Cable (Oil)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

```
financial_cof_cables_60_30kv(ehv_asset_category)
```

Arguments

```
ehv_asset_category
```

Asset category for the analysis

Value

Numeric. Financial consequences of failure for EHV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)")
```

financial_cof_ehv_cables

Financial cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_ehv_cables(ehv_asset_category)
```

Arguments

```
ehv_asset_category
```

```
String The type of EHV cable distribution asset category Options: ehv_asset_category = c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV UG Cable (0il)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").
```

Value

Numeric. Financial consequences of failure for EHV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)")
```

```
financial_cof_ehv_fittings
```

Financial cost of Failure for EHV/132kV fittings

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_ehv_fittings(
  ehv_asset_category,
  type_financial_factor_criteria,
  access_factor_criteria
)
```

Arguments

```
ehv_asset_category

String The type of EHV asset category Options: ehv_asset_category = c("33kV Fittings", "66kV Fittings", "132kV Fittings")

type_financial_factor_criteria

String. Type Financial factor criteria for EHV fittings type_financial_factor_criteria = c("Suspension", "Tension").

access_factor_criteria

String. Asses Financial factor criteria for EHV fittings setting (cf. table 221, page 180, CNAIM, 2021). access_factor_criteria = c("Type A", "Type B").
```

Value

Numeric. Financial consequences of failure for EHV fittings

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
type_financial_factor_criteria = "Tension",
access_factor_criteria = "Type A")
```

financial_cof_ehv_switchgear

Financial cost of Failure for EHV swicthgear & 132kV CB

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_ehv_switchgear(ehv_asset_category, access_factor_criteria)
```

Arguments

```
ehv_asset_category
```

String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category = c("33kV CB (Air Insulated Busbars)(ID)(GM)","33kV CB (Air Insulated Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB (Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV CB (Gas Insulated Busbars)(OD)(GM)")

access_factor_criteria

String. Asses Financial factor criteria for EHV swicthgear & 132kV CB setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for EHV switchgear & 132kV CB

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_ehv_switchgear(ehv_asset_category = "33kV RMU", access_factor_criteria = "Type A")
```

```
financial\_cof\_hv\_switch gear\_distribution\\ Financial\ cost\ of\ Failure\ for\ HV\ switch gear\ distribution
```

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_hv_switchgear_distribution(
  hv_asset_category,
  access_factor_criteria
)
```

Arguments

```
hv_asset_category

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")

access_factor_criteria

String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
access_factor_criteria = "Type A")
```

```
financial_cof_hv_switchgear_primary

Financial cost of Failure for HV swicthgear primary
```

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_hv_switchgear_primary(hv_asset_category, access_factor_criteria)
```

Arguments

```
hv_asset_category

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")

access_factor_criteria

String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for HV switchgear primary

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
access_factor_criteria = "Type A")
```

```
{\tt financial\_cof\_lv\_switchgear\_and\_other}
```

Financial cost of Failure for LV swicthgear and others

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_lv_switchgear_and_other(
   lv_asset_category,
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

financial_cof_lv_ugb Financial cost of Failure for LV UGB

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_lv_ugb(lv_asset_category)
```

Arguments

```
lv_asset_category
```

String The type of LV asset category Option: 1v_asset_category = "LV UGB"

Value

Numeric. Financial consequences of failure for LV UGB

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_lv_ugb(lv_asset_category = "LV UGB")
```

```
financial_cof_ohl_cond
```

Financial cost of Failure for Overhead Line Conductors

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_ohl_cond(ohl_cond_asset_category, access_factor_criteria)
```

Arguments

```
ohl_cond_asset_category

String The type of Pole asset category Options: ohl_cond_asset_category = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor").

access_factor_criteria

String. Asses Financial factor criteria for Pole setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B").
```

Value

Numeric. Financial consequences of failure for Poles

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_ohl_cond(
ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
access_factor_criteria = "Type A")
```

```
financial_cof_ohl_cond_50kv
```

Financial cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

```
financial_cof_ohl_cond_50kv(access_factor_criteria)
```

Arguments

```
access_factor_criteria

String. Asses Financial factor criteria for Overhead Line Conductors. Options:

access_factor_criteria = c("Type A", "Type B").
```

Value

Numeric. Financial consequences of failure for Overhead Line Conductors

Examples

```
financial_cof_ohl_cond_50kv(
access_factor_criteria = "Type A")
```

```
{\tt financial\_cof\_ohl\_fittings\_50kv}
```

Financial cost of Failure for 50kV Fittings

Description

This function calculates financial consequences of failure. Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK

Usage

```
financial_cof_ohl_fittings_50kv(
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for EHV fittings

```
financial_cof_ohl_fittings_50kv(
type_financial_factor_criteria = "Tension",
access_factor_criteria = "Type A")
```

```
financial_cof_pillar_04kv
```

Financial cost of Failure for 0.4kV Pillar

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_pillar_04kv(
   type_financial_factor_criteria = "Asbestos clad",
   access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria

String Type Financial factor criteria for 0.4kV Pillar (cf. section D1.2.1, page 178, CNAIM, 2021). Options: type_financial_factor_criteria = c("Non Asbestos clad", "Asbestos clad").

access_factor_criteria

String. Asses Financial factor criteria for 0.4kV Pillar setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for 0.4kV Pillar

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_pillar_04kv(
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

52 financial_cof_poles

```
financial_cof_poles Financial cost of Failure for Poles
```

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_poles(
  pole_asset_category,
  type_financial_factor_criteria,
  access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for Poles

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_poles(pole_asset_category = "33kV Pole",
type_financial_factor_criteria = "Small footprint steel masts",
access_factor_criteria = "Type A")
```

```
financial_cof_poles_ohl_support_50kv

Financial cost of Failure for Poles OHL Support 50kV
```

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_poles_ohl_support_50kv(
  pole_asset_category,
  type_financial_factor_criteria,
  access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for Poles

```
financial_cof_poles_ohl_support_50kv(
type_financial_factor_criteria = "Small footprint steel masts",
access_factor_criteria = "Type A")
```

financial_cof_relay Financial cost of Failure for Relays

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_relay(access_factor_criteria)
```

Arguments

```
access_factor_criteria

String. Asses Financial factor criteria for relay setting. Options: access_factor_criteria
= c("Type A", "Type B", "Type C").
```

Examples

```
financial_cof_relay(access_factor_criteria = "Type A")
```

```
financial_cof_serviceline
```

Financial cost of Failure for Service Lines

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

```
financial_cof_serviceline()
```

Value

Numeric. Financial consequences of failure for service line

```
financial_cof_serviceline()
```

financial_cof_submarine_cables_10kv

Financial cost of Failure for 10kV Submarine Cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_submarine_cables_10kv()
```

Value

Numeric. Financial consequences of failure for 10kV submarine cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
financial_cof_submarine_cables_10kv()
```

```
financial_cof_submarine_cables_30_60kv
```

Financial cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_submarine_cables_30_60kv()
```

Value

Numeric. Financial consequences of failure for 30kV and 60kV submarine cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_submarine_cables_30_60kv()
```

```
financial_cof_sub_cables
```

Financial cost of Failure for Sub cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_sub_cables(sub_cable_asset_category)
```

Arguments

```
sub_cable_asset_category
String The type of Submarine cable asset category Options: sub_cable_asset_category
= c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").
```

Value

Numeric. Financial consequences of failure for Sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")
```

```
financial_cof_switchgear_30_60kv
```

Financial cost of Failure for 30kV and 60kV Switchgear

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_switchgear_30_60kv(ehv_asset_category, access_factor_criteria)
```

Arguments

```
ehv_asset_category 
 String The type of 30kV and 60kV switchgear Options: ehv_asset_category = c("30kV", "60kV"). 
 access_factor_criteria 
 String. Asses Financial factor criteria for 30kV and 60kV switchgear setting. 
 Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
financial_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
access_factor_criteria = "Type A")
```

```
financial_cof_switchgear_primary_10kv
```

Financial cost of Failure for 10kV Switchgear Primary

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_switchgear_primary_10kv(access_factor_criteria)
```

Arguments

```
access_factor_criteria

String. Asses Financial factor criteria for 10KV switchgear setting. Options:

access_factor_criteria = c("Type A", "Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for HV switchgear primary

Examples

```
financial_cof_switchgear_primary_10kv(access_factor_criteria = "Type A")
```

```
financial_cof_switchgear_secondary_10kv

Financial cost of Failure for 10 kV Swicthgear Secondary
```

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_switchgear_secondary_10kv(access_factor_criteria)
```

Arguments

```
access_factor_criteria

String. Asses Financial factor criteria for 10 kV Swicthgear Secondary setting.

Options: access_factor_criteria = c("Type A", "Type B", "Type C").
```

```
financial_cof_switchgear_secondary_10kv(
access_factor_criteria = "Type A")
```

financial_cof_towers 59

```
financial_cof_towers Financial cost of Failure for Towers
```

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_towers(
  tower_asset_category,
  type_financial_factor_criteria,
  access_factor_criteria
)
```

Arguments

```
tower_asset_category

String The type of tower asset category Options: tower_asset_category = c("33kV Tower", "66kV Tower", "132kV Tower").

type_financial_factor_criteria

String The type financial factor for Tower type_financial_factor_criteria = c("Suspension", "Tension", "Terminal").

access_factor_criteria

String. Asses Financial factor criteria for Tower setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B").
```

Value

Numeric. Financial consequences of failure for Poles

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_towers(tower_asset_category = "33kV Tower",
type_financial_factor_criteria = "Suspension",
access_factor_criteria = "Type A")
```

```
financial_cof_tower_ohl_support_50kv

Financial cost of Failure for Tower OHL Support 50 kV
```

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_tower_ohl_support_50kv(
  type_financial_factor_criteria,
  access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for tower ohl support 50 kV

Examples

```
financial_cof_tower_ohl_support_50kv(
type_financial_factor_criteria = "Suspension",
access_factor_criteria = "Type A")
```

```
financial_cof_transformers
```

Financial cost of Failure for Transformers

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_transformers(
   tf_asset_category,
   type_financial_factor_size = NULL,
   type_financial_factor_kva_mva = NULL,
   access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for Transformer

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
type_financial_factor_size = "33/20kV, CMR equivalent",
type_financial_factor_kva_mva = 20,
access_factor_criteria = "Type A")
```

```
financial_cof_transformer_30_60kv
```

Financial cost of Failure for 30/10 kV and 60/10 kV Transformers

Description

This function calculates financial consequences of failure Outputted in DKK.

Usage

```
financial_cof_transformer_30_60kv(
   tf_asset_category,
   type_financial_factor_kva_mva = NULL,
   access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for Transformer

Examples

```
financial_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
type_financial_factor_kva_mva = 20,
access_factor_criteria = "Type A")
```

```
f_cof_transformer_11kv
```

Financial Consequences of Failure for a 6.6/11 kV Transformer

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
f_cof_transformer_11kv(kva = "Default", type = "Default")
```

Arguments

kva	Numeric.	The rated	transformer	capacity	measured	in k\	/A for	a 6.6/11 k	:V

transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor

equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).

type String. Relates to the accessibility of the transformer Options: type = c("Type

A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access

thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).

Value

Numeric. Financial consequences of failure for a 6.6/11 kV transformer.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Financial consequences of failure for a 6.6/11 kV transformer
f_cof_transformer_11kv(kva = 700, type = "Default")
```

```
health_score_excl_ehv_132kv_tf
```

Health Score Factor for all Assets Categories excl. EHV and 132kV Transformers

Description

This function calculates the health score factor for all asset categories exclusive the assets EHV and 132kV transformers. For EHV and 132kV transformers see mmi(). The function combines observed and measured condition factors using the simplified maximum and multiple increment (MMI) technique to construct the health score factor (cf. CNAIM, 2021, page 56, table 9).

Usage

```
health_score_excl_ehv_132kv_tf(
  observed_condition_factor,
  measured_condition_factor
)
```

initial_health

Arguments

```
observed_condition_factor
Numeric.
measured_condition_factor
Numeric.
```

Value

Numeric. Health score factor.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# An asset with an observed condition factor of 1 and a measured condition
# factor of 0.33
health_score_excl_ehv_132kv_tf(observed_condition_factor = 1,
measured_condition_factor = 0.33)
```

initial_health

Initial Health

Description

Calculating the initial health score for a given asset. See section 6.1.6 on page 36 in CNAIM (2021).

Usage

```
initial_health(b1, age)
```

Arguments

b1 Numeric. The output returned by the function beta_1().

age Numeric. The crurrent age of the asset.

Value

Numeric. Initial health for an electric network asset.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Healh & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

location_factor 65

Examples

location_factor

Location Factor (Excl.Submarine Cables)

Description

This function calculates the location factor for an electric network asset based in the specific location of the asset. See section 6.4 on page 46 in CNAIM (2021). For calculating the location factor for submarine cables please see the function location_factor_sub(). Note the location factor for all other cables are always equal to 1 hence the function will return a location factor of 1 for other cables than submarine cables.

Usage

```
location_factor(
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  asset_type = "6.6/11kV Transformer (GM)",
  sub_division = NULL
)
```

Arguments

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

```
distance_from_coast_km
```

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

66 location_factor

corrosion_category_index

Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.

asset_type

String. A sting that refers to the specific asset category. For LV UGB and non-submarine cables a location factor of 1 is assigned. See See page 17, table 1 in CNAIM (2021). Options: asset_type = c("LV Poles", "LV Circuit Breaker", "LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)", "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV Poles", "20kV Poles", "6.6/11kV CB (GM) Primary", "6.6/11kV CB (GM) Secondary", "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV X-type RMU", "20kV CB (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch (GM)", "20kV RMU", "6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Pole", "66kV Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower", "33kV Fittings", "66kV OHL (Tower Line) Conductor", "66kV Tower", "66kV Fittings", "33kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "33kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)","33kV CB (Air Insulated Busbars)(ID) (GM)","33kV CB (Air Insulated Busbars)(OD) (GM)","33kV CB (Gas Insulated Busbars)(ID) (GM)","33kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Switch (GM)","33kV RMU", "66kV CB (Air Insulated Busbars)(ID) (GM)", "66kV CB (Air Insulated Busbars)(OD) (GM)","66kV CB (Gas Insulated Busbars)(ID) (GM)","66kV CB (Gas Insulated Busbars) (OD) (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)", "132kV OHL (Tower Line) Conductor", "132kV Tower", "132kV Fittings", "132kV UG Cable (Non Pressurised)", "132kV UG Cable (0il)", "132kV UG Cable (Gas)","132kV CB (Air Insulated Busbars)(ID) (GM)","132kV CB (Air Insulated Busbars)(OD) (GM)","132kV CB (Gas Insulated Busbars)(ID) (GM)","132kV CB (Gas Insulated Busbars)(OD) (GM)", "132kV Transformer (GM)")

sub_division

String. Refers to material the sub division in the asset category

Value

Numeric. Location factor

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Location factor for a 6.6/11 kV Transformer with default values
location_factor(placement = "Default", altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
asset_type = "6.6/11kV Transformer (GM)")
```

location_factor_sub 67

Description

This function calculates the location factor for submarine cables based in the specific location of the cable. See section 6.5 on page 48 in CNAIM (2021). For calculating the location factor for all other network assets please see the function location_factor().

Usage

```
location_factor_sub(
  topography = "Default",
  situation = "Default",
  wind_wave = "Default",
  intensity = "Default",
  landlocked = "no"
)
```

Arguments

topography	String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Default")				
situation	String. Descibes how the submarine cable af fixed to the sea floor. Options: sitution=c("Laid on bed", "Covered", "Buried", "Default")				
wind_wave	Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings: • wind_wave = 1: Sheltered sea loch, Wind <200 W/m2 • wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2 • wind_wave = 3: Wave <15kW/m, Wind 200-800 W/m2 • wind_wave = "Default": No data available				
intensity	String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "High", "Default").				
landlocked	String. Options: landlocked = c("yes", "no"). Default setting for landlocked = "no".				

Value

Numeric. Location factor

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

matrix_adjusted_circles

Adjust circles for matrix visualization

Description

This function manipulates the data structure before inputting into javascript D3 risk matrix visualization

Usage

```
matrix_adjusted_circles(risk_data_matrix, dots_vector, dot_radius)
```

Arguments

risk_data_matrix

Long format matrix data.

dots_vector Coordinates of the dots.

dot_radius Radius of the dots.

Value

Long format matrix data. circles for D3 matrix visualization adjusted

```
matrix_adjusted_intervals
```

Adjust banding for matrix visualization

Description

This function manipulates the data structure before inputting into javascript D3 risk matrix visualization

Usage

```
matrix_adjusted_intervals(risk_data_matrix, x_intervals, y_intervals)
```

mmi 69

Arguments

risk_data_matrix

Long format matrix data.

x_intervals An array of x spacing in percent (sum to 100) y_intervals An array of y spacing in percent (sum to 100)

Value

Long format matrix data. intervals for matrix D3 visualization adjusted

mmi

Maximum and Multiple Increment (MMI) Technique

Description

This function returns a combined factor using a maximum and multiple increment (MMI) technique (cf. CNAIM, 2021. page 54, section 6.7.2). The function can be used to derive the health score factor for EHV and 132kV transformers. For deriviation of the health score factor for all other assets see health_score_excl_ehv_132kv_tf. To derive the health score factor for EHV and 132kV transformers one needs to use mmi() to derive the health score factor for the main transformer and for the tapchanger respectively. The constants factor_divider_1, factor_divider_2 and max_no_combined_factors are all available in the lookup table 10 and 11 on page 57 and 58 in CNAIM (2021). For an in dept description see also section 6.8 on page 57 in CNAIM (2021). The mmi() can also be used in the derivation of observed and measured condition factors for all assets, using measured and observed input factors. The constants factor_divider_1, factor_divider_2 and max_no_combined_factors can be found in table 13 on page 63 (observed condition factors) and in table 15 on page 67 (measured condition factors).

Usage

```
mmi(factors, factor_divider_1, factor_divider_2, max_no_combined_factors)
```

Arguments

factors Numeric vector. Factors to me combined.

factor_divider_1

Numeric. Constant that specifies the degree to which additional "good" or "bad" factors are able further drive the combined factor.

factor_divider_2

Numeric. Constant that specifies the degree to which additional "good" or "bad" factors are able further drive the combined factor.

max_no_combined_factors

Numeric. Specifies how many factors are able to simultaneously affect the combined factor.

Value

Numeric. Combined factor.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
mmi(factors = c(1,
1.5),
factor_divider_1 = 1.5,
factor_divider_2 = 1.5,
max_no_combined_factors = 1)
```

network_cof_board_04kv

Network cost of Failure for 0.4kV Board

Description

This function calculates network cost of failure for 0.4kV board (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure Outputted in DKK is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_board_04kv(no_customers, kva_per_customer = "Default")
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
network_cof_board_04kv(no_customers = 750, kva_per_customer = 51)
```

network_cof_cables_04_10kv

Network cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates network cost of failure for 0.4kV and 10kV UG cables, outputted in DKK hv_asset_category = c("10kV UG Cable (0il)","10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Usage

```
network_cof_cables_04_10kv(hv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
hv_asset_category
String The type of HV asset category
actual_load_mva
Numeric. The actual load on the asset
secure
Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Examples

```
network\_cof\_cables\_04\_10kv(hv\_asset\_category = "10kV UG Cable (Oil)", actual\_load\_mva = 15)
```

network_cof_cables_60_30kv

Network cost of Failure for 30-60 kV UG cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

```
network_cof_cables_60_30kv(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ehv_asset_category
Asset category for the analysis
actual_load_mva
Numeric. The actual load on the asset
secure
Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
network_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)",
actual_load_mva = 15)
```

Network cost of Failure for EHV UG cabkes & 132 kV UG cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_cables(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ehv_asset_category
```

network_cof_ehv_cables

```
String The type of EHV cable distribution asset category Options: ehv_asset_category = c("33kV UG Cable (Oil)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (Oil)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV UG Cable (Oil)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").
```

```
actual_load_mva
```

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
network_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)",
actual_load_mva = 15)
```

network_cof_ehv_fittings

Network cost of Failure for EHV/132kV Fittings

Description

This function calculates network cost of failure for EHV fittings (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_fittings(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ehv_asset_category

String The type of EHV asset category Options: ehv_asset_category = c("33kV Fittings", "66kV Fittings", "132kV Fittings")

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
network_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
actual_load_mva = 15)
```

Description

network_cof_ehv_pole

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_pole(pole_asset_category, actual_load_mva, secure = T)
```

Network cost of Failure for Poles

Arguments

```
pole_asset_category

String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_ehv_pole(pole_asset_category = "33kV Pole",
actual_load_mva = 15)
```

```
network_cof_ehv_sub_cable
```

Network cost of Failure for EHV /132 kV sub cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_sub_cable(
  sub_cable_asset_category,
  actual_load_mva,
  secure = T
)
```

Arguments

```
sub_cable_asset_category

String The type of Submarine cable asset category Options: sub_cable_asset_category

= c( "EHV Sub Cable", "132kV Sub Cable").

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_ehv_sub_cable(sub_cable_asset_category = "EHV Sub Cable",
actual_load_mva = 15, secure = TRUE)
```

network_cof_ehv_switchgear

Network cost of Failure for EHV swicthgear & 132kV CB

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_switchgear(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ehv_asset_category
```

String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category = c("33kV CB (Air Insulated Busbars)(ID)(GM)","33kV CB (Air Insulated Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB (Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV CB (Gas Insulated Busbars)(OD)(GM)")

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_ehv_switchgear(ehv_asset_category = "33kV RMU",
actual_load_mva = 15)
```

```
network_cof_hv_lv_poles
```

Network cost of Failure for LV,HV,EHV Poles

Description

This function calculates network cost of failure for Poles (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_lv_poles(
  pole_asset_category,
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

```
pole_asset_category
```

String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").

no_customers

Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_hv_lv_poles(pole_asset_category = "20kV Poles",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_hv_sub_cables
```

Network cost of Failure for HV Sub cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_sub_cables(
  sub_cable_asset_category,
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

```
sub_cable_asset_category
```

String The type of Submarine cable asset category Option: sub_cable_asset_category = "HV Sub Cable".

no_customers

Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_hv_sub_cables(sub_cable_asset_category = "HV Sub Cable",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_hv_switchgear_distribution
```

Network cost of Failure for HV Switchgear distribution

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_switchgear_distribution(
  hv_asset_category,
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

```
hv_asset_category
```

String The type of HV switchgear distribution asset category Options: $hv_asset_category = c("6.6/11kV CB (GM) Secondary","6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)","20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")$

 ${\tt no_customers}$

Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_hv_switchgear_distribution(hv_asset_category = "LV Board (WM)",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_hv_switchgear_primary

Network cost of Failure for HV Switchgear Primary
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_switchgear_primary(
  hv_asset_category,
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

```
hv_asset_category
```

String The type of HV asset category Options: $hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")$

no_customers

Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_hv_switchgear_primary(hv_asset_category = "6.6/11kV CB (GM) Secondary",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_lv_switchgear_and_other

Network cost of Failure for LV swicthgear and others
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_lv_switchgear_and_other(
   lv_asset_category,
   no_customers,
   kva_per_customer = "Default"
)
```

Arguments

```
Iv_asset_category

String The type of LV asset category Options: Iv_asset_category = c("LV Board (WM)", "LV Board (X-type Network) (WM)", "LV Circuit Breaker", "LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")

no_customers

Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
no_customers = 750, kva_per_customer = 51)
```

network_cof_lv_ugb

Network cost of Failure for LV UGB

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_lv_ugb(
    lv_asset_category,
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

```
lv_asset_category
```

String The type of LV asset category Option: 1v_asset_category = "LV UGB"

no_customers

Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_lv_ugb(lv_asset_category = "LV UGB",
no_customers = 750, kva_per_customer = 51)
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ohl_cond(ohl_cond_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ohl_cond_asset_category

String The type of Pole asset category Options: ohl_cond_asset_category =

c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor",

"132kV OHL (Tower Line) Conductor").

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_ohl_cond(ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
actual_load_mva = 15)
```

```
network_cof_ohl_cond_50kv
```

Network cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates network cost of failure Outputted in DKK

Usage

```
network_cof_ohl_cond_50kv(actual_load_mva, secure = T)
```

Arguments

```
actual_load_mva
```

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

```
network_cof_ohl_cond_50kv(
actual_load_mva = 15)
```

```
network_cof_ohl_fittings_50kv
```

Network cost of Failure for 50kV Fittings

Description

This function calculates network cost of failure for 50kV fittings Network cost of failure is used in the derivation of consequences of failure. cof(). Outputted in DKK.

Usage

```
network_cof_ohl_fittings_50kv(actual_load_mva, secure = T)
```

Arguments

```
actual_load_mva
```

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

```
network_cof_ohl_fittings_50kv(
actual_load_mva = 15)
```

network_cof_pillar_04kv

Network cost of Failure for 0.4kV Pillar

Description

This function calculates network cost of failure for 0.4kV Pillar all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_pillar_04kv(no_customers, kva_per_customer = "Default")
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_pillar_04kv(no_customers = 750, kva_per_customer = 51)
```

86 network_cof_relay

```
network_cof_poles_ohl_support_50kv

Network cost of Failure for Poles OHL Support 50kV
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_poles_ohl_support_50kv(
  pole_asset_category,
  actual_load_mva,
  secure = T
)
```

Arguments

```
pole_asset_category
String The type of Pole asset category
actual_load_mva
Numeric. The actual load on the asset
secure
Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Examples

```
network_cof_poles_ohl_support_50kv(
actual_load_mva = 15)
```

network_cof_relay

Network cost of Failure for Relays

Description

This function calculates network cost of failure for Relays Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_relay(no_customers, kva_per_customer = "Default")
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Examples

```
network_cof_relay(
no_customers = 100, kva_per_customer = 40)
```

```
network_cof_serviceline
```

Network cost of Failure for Service Lines

Description

This function calculates network cost of failure for service line, outputted in DKK

Usage

```
network_cof_serviceline(actual_load_mva, secure = T)
```

Arguments

```
actual_load_mva
```

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

```
network_cof_serviceline(actual_load_mva = 0.5)
```

```
network_cof_submarine_cables_10kv
```

Network cost of Failure for 10kV Submarine Cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_submarine_cables_10kv(no_customers, kva_per_customer = "Default")
```

Arguments

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_submarine_cables_10kv(
no_customers = 250, kva_per_customer = 51)
```

network_cof_submarine_cables_30_60kv

Network cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_submarine_cables_30_60kv(
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_submarine_cables_30_60kv(
no_customers = 250, kva_per_customer = 51)
```

```
network_cof_switchgear_30_60kv

Network cost of Failure for 30kV and 60kV Switchgear
```

Description

This function calculates network cost of failure for 30kV and 60kV switchgear. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_30_60kv(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

Value

Numeric. Network cost of failure.

Examples

```
network_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
actual_load_mva = 15)
```

```
network_cof_switchgear_primary_10kv

Network cost of Failure for 10kV Switchgear Primary
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_primary_10kv(no_customers, kva_per_customer = "Default")
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1.

Value

Numeric. Network cost of failure.

Examples

```
network_cof_switchgear_primary_10kv(
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_switchgear_secondary_10kv
```

Network cost of Failure for 10kV Switchgear Secondary

Description

This function calculates network cost of failure for 10kV Switchgear Secondary Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_secondary_10kv(
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

```
network_cof_switchgear_secondary_10kv(
no_customers = 750, kva_per_customer = 51)
```

92 network_cof_tower

network_cof_tower

Network cost of Failure for Towers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_tower(tower_asset_category, actual_load_mva, secure = T)
```

Arguments

```
String The type of tower asset category Options: tower_asset_category = c("33kV Tower", "66kV Tower", "132kV Tower").

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
network_cof_tower(tower_asset_category = "33kV Tower",
actual_load_mva = 15)
```

```
network_cof_tower_ohl_support_50kv

Network cost of Failure for Tower OHL Support 50 kV
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_tower_ohl_support_50kv(actual_load_mva, secure = T)
```

Arguments

```
actual_load_mva
```

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

```
network_cof_tower_ohl_support_50kv(
actual_load_mva = 15)
```

network_cof_transformers

Network cost of Failure for Transformers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_transformers(tf_asset_category, actual_load_mva, secure = T)
```

Arguments

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

Description

This function calculates network cost of failure for Outputted in DKK.

Usage

```
network_cof_transformer_30_60kv(tf_asset_category, actual_load_mva, secure = T)
```

Arguments

```
String The type of Tower Options: tf_asset_category = c("30kV Transformer (GM)", "60kV Transformer (GM)").

actual_load_mva

Numeric. The actual load on the asset

secure

Boolean If the asset is in a secure network or not
```

Value

Numeric. Network cost of failure.

Examples

```
network\_cof\_transformer\_30\_60kv(tf\_asset\_category = "30kV Transformer (GM)", actual\_load\_mva = 15)
```

```
n_cof_excl_ehv_132kv_tf
```

Network cost of Failure for all Assets Categories excl. EHV and 132kV Transformers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
n_cof_excl_ehv_132kv_tf(
   asset_type_ncf,
   no_customers,
   kva_per_customer = "Default"
)
```

Arguments

asset_type_ncf String.asset_type_ncf = c("LV Poles", "LV Circuit Breaker", "LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)", "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV Poles", "20kV Poles", "HV Sub Cable", "6.6/11kV CB (GM) Primary", "6.6/11kV CB (GM) Secondary", "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV X-type RMU", "20kV CB (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch (GM)", "20kV RMU", "6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Pole", "66kV Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower", "33kV Fittings", "66kV OHL (Tower Line) Conductor", "66kV Tower", "66kV Fittings", "33kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "33kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)", "33kV CB (Air Insulated Busbars)(ID) (GM)", "33kV CB (Air Insulated Busbars)(OD) (GM)","33kV CB (Gas Insulated Busbars)(ID) (GM)","33kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Switch (GM)","33kV RMU", "66kV CB (Air Insulated Busbars)(ID) (GM)", "66kV CB (Air Insulated Busbars)(OD) (GM)","66kV CB (Gas Insulated Busbars)(ID) (GM)","66kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)")

96 oil_test_modifier

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Network cost of failure for a 6.6/11 kV transformer with 750 customers
# and 51 kVA per customer.
n_cof_excl_ehv_132kv_tf(asset_type_ncf = "6.6/11kV Transformer (GM)",
no_customers = 750, kva_per_customer = 51)
```

oil_test_modifier

Oil Test Modifier

Description

This function calculates the oil test modifier for 33/10kV, 66/10kV and 132kV transformers and tapchangers. See e.g. section 6.11 on page 68 in CNAIM (2021).

Usage

```
oil_test_modifier(
  moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  transformer_type_all = "20kV Transformer (GM)"
)
```

Arguments

Mumeric. Refers to the moisture level in the transformer oil. Moisture levels are measured in ppm. A setting of "Default" will result in the best possible result.

Acidity Numeric. Refers to the acidity level in the transformer oil. Acidity levels are measured in (mgKOH/g). A setting of "Default" will result in the best possible

result.

plot_pof

bd_strength

Numeric. Refers to the breakdown strength. Breakdown strength is measured in kV. A setting of "Default" will result in the best possible result.

transformer_type_all

String. A sting that refers to the specific transformer type. Options: transformer_type_all = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Transformer (GM)", "132kV Transformer (GM)"). The default setting is transformer_type = "66kV Transformer (GM)"

Value

Data table.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Oil test modifier
oil_test_modifier(moisture = 15,
acidity = 0.15,
bd_strength = 30,
transformer_type_all = "20kV Transformer (GM)")
```

plot_pof

Plot of probability of failure

Description

This function is plotting the probability of failure for an electric network asset in a percentage.

Usage

```
plot_pof(pof_function = "Default")
```

Arguments

```
pof_function
```

String. Choosing an pof function, Options: pof_function = c(pof_cables_04kv_pex, pof_cables_10kv_pex, pof_cables_10kv_oil,pof_cables_60_30kv, pof_ohl_cond_50kv, pof_submarine_cables_10kv_oil,pof_submarine_cables_10kv_pex, pof_submarine_cables_30 pof_transformer_04_10kv, pof_building,pof_serviceline, "Default").

```
# probability of failure curve
```

98 pof_132kv_cb

pof_132kv_cb

Current Probability of Failure for 132kV Switchgear

Description

This function calculates the current annual probability of failure per kilometer 132kV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_132kv_cb(
   cb_asset_category = "132kV CB (Air Insulated Busbars)(ID) (GM)",
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default"
)
```

Arguments

```
cb_asset_category
```

String The type of 132kV asset category

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

The number of operations for duty factor

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

pof_132kv_cb 99

```
observed_condition_inputs
```

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defaution See page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Current annual probability of failure for EHV Swicthgear
pof_132kv_cb(
cb_asset_category = "132kV CB (Air Insulated Busbars)(ID) (GM)",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default"),
"air_systems" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test/ Gas Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default")
```

100 pof_board_04kv

pof_board_04kv

Current Probability of Failure for 0.4kV Board

Description

This function calculates the current annual probability of failure for 0.4kV Board The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. A sting that refers to the specific asset category.

Usage

```
pof_board_04kv(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0069,
   c_value = 1.087,
   normal_expected_life = 60
)
```

Arguments

placement

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

String. Specify if the asset is located outdoor or indoor.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defaureliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

pof_building 101

k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected_life	
	Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 0.4kV board
pof_board_04kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0069,
c_value = 1.087,
normal_expected_life = 60)
```

pof_building

Current Probability of Failure for Primary Substation Building and Secondary Substation Building.

Description

This function calculates the current annual probability of failure for primary substation building and secondary substation building. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

102 pof_building

Usage

pof_building(

```
substation_type = "Secondary",
      material_type = "Wood",
      placement = "Outdoor",
      altitude_m = "Default",
      distance_from_coast_km = "Default",
      corrosion_category_index = "Default",
      temperature_reading = "Default",
      coolers_radiator = "Default",
      kiosk = "Default",
      cable_boxes = "Default",
      reliability_factor = "Default",
      k_value = "Default",
      c_{value} = 1.087,
      normal_expected_life_building = "Default"
    )
Arguments
    substation_type
                     String. A sting that refers to the specific substation type. Options: substation_type
                     = c("Primary", "Secondary"). The default setting is substation_type = "Secondary"
                     String. A sting that refers to the specific material_type. Options: material_type
    material_type
                      = c("Brick", "Steel", "Wood"). The default setting is substation_type =
                      "Wood"
    placement
                     String. Specify if the asset is located outdoor or indoor.
                     Numeric. Specify the altitude location for the asset measured in meters from sea
    altitude_m
                     level.altitude_m is used to derive the altitude factor. A setting of "Default"
                      will set the altitude factor to 1 independent of asset_type.
    distance_from_coast_km
                     Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km
                     is used to derive the distance from coast factor. A setting of "Default" will set
                     the distance from coast factor to 1 independent of asset_type.
    corrosion_category_index
                      Integer. Specify the corrosion index category, 1-5.
                      Numeric. The current age in years of the building.
    temperature_reading
                     String. Indicating the criticality. Options: temperature_reading = c("Normal",
                      "Moderately High", "Very High", "Default").
    coolers_radiator
```

kiosk

String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

String. Indicating the observed condition of the coolers/radiators. Options:

Deterioration", "Default"). in CNAIM (2021).

pof_cables_04kv_pex 103

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
pof_building(substation_type = "Secondary",
material_type = "Wood",
placement = "Outdoor",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 43,
temperature_reading = "Default",
coolers_radiator = "Default",
kiosk = "Default",
cable_boxes = "Default",
reliability_factor = "Default",
k_value = "Default",
c_value = 1.087,
normal_expected_life_building = "Default")
```

Description

This function calculates the current annual probability of failure per kilometer for a 0.4kV Pex non Pressurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_cables_04kv_pex(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0658,
   c_value = 1.087,
   normal_expected_life = 80
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: $partial_discharge = c("Low", "Medium", "High",$

"Default").

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

age Numeric. The current age in years of the cable.

k_value Numeric. k_value = 0.0658 by default.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

 $normal_expected_life$

Numeric. normal_expected_life = 80 by default.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

pof_cables_10kv_oil 105

Examples

```
# Current annual probability of failure for 0.4kV non pressurised pex cable, 50 years old
pof_cables_04kv_pex(
utilisation_pct = 80,
operating_voltage_pct = "Default",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80)
```

pof_cables_10kv_oil

Current Probability of Failure for 10kV UG Oil Non Preesurised Cables (Armed Paper Lead)

Description

This function calculates the current annual probability of failure per kilometer for a Oil non Preesurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_cables_10kv_oil(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.24,
   c_value = 1.087,
   normal_expected_life = 80
)
```

Arguments

```
utilisation_pct
```

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

pof_cables_10kv_pex

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age Numeric. The current age in years of the cable.

k_value Numeric. k_value = 0.24 by default.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 80 by default.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10kV oil cable, 50 years old
pof_cables_10kv_oil(
   utilisation_pct = 80,
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age = 50,
   k_value = 0.24,
   c_value = 1.087,
   normal_expected_life = 80)
```

pof_cables_10kv_pex

Current Probability of Failure for 10kV UG PEX Non Pressurised Cables

Description

This function calculates the current annual probability of failure per kilometer for a 10kV PEX non Pressurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

pof_cables_10kv_pex 107

Usage

```
pof_cables_10kv_pex(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0658,
   c_value = 1.087,
   normal_expected_life = 80
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High",

"Default").

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

age Numeric. The current age in years of the cable.

k_value Numeric. k_value = 0.0658 by default.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

 $normal_expected_life$

Numeric. normal_expected_life = 80 by default.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

pof_cables_132kv

Examples

```
# Current annual probability of failure for 10kV pex cable, 50 years old
pof_cables_10kv_pex(
  utilisation_pct = 80,
  operating_voltage_pct = "Default",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  reliability_factor = "Default",
  age = 50,
  k_value = 0.0658,
  c_value = 1.087,
  normal_expected_life = 80)
```

pof_cables_132kv

Current Probability of Failure for 132kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 132kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_132kv(
   cable_type = "132kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age
)
```

Arguments

cable_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("132kV UG Cable (Gas)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)"). The default setting is cable_type = "132kV UG Cable (Gas)".

pof_cables_132kv 109

sub_division

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 157, table 184 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 157, table 185 in CNAIM (2021).

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 157, table 186 in CNAIM (2021).

leakage

String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 158, table 187 (oil) and 188 (gas) in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age

Numeric. The current age in years of the cable.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Current annual probability of failure for
# "132kV UG Cable (Non Pressurised)", 50 years old
pof_cables_132kV_non <-
pof_cables_132kv(cable_type = "132kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",</pre>
```

pof_cables_60_30kv

```
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50) * 100

paste0(sprintf("Probability of failure %.4f", pof_cables_132kV_non),
" percent per annum")
```

pof_cables_60_30kv

Current Probability of Failure for 30-60kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 30-60kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_60_30kv(
   cable_type = "60kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age
)
```

Arguments

cable_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The default setting is cable_type = "60kV UG Cable (Gas)".

sub_division

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

pof_cables_60_30kv 111

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: $sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default")$. See page 153, table 168 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).

leakage

String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age

Numeric. The current age in years of the cable.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Current annual probability of failure for
# "60kV UG Cable (Non Pressurised)", 50 years old
pof_cables_60_30kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50)
```

112 pof_cables_66_33kv

pof_cables_66_33kv

Current Probability of Failure for 33-66kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 33-66kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_66_33kv(
   cable_type = "66kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age
)
```

Arguments

cable_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("33kV UG Cable (Gas)", "66kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "66kV UG Cable (0il)"). The default setting is cable_type = "66kV UG Cable (Gas)".

sub_division

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions. operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 153, table 168 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).

pof_ehv_fittings 113

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).

leakage String. Only applied for oil and gas pressurised cables. Options: leakage =

c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in

CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

age Numeric. The current age in years of the cable.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for
# "66kV UG Cable (Non Pressurised)", 50 years old
pof_cables_66_33kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50)
```

pof_ehv_fittings

Current Probability of Failure for EHV/132kV Fittings

Description

This function calculates the current annual probability of failure per kilometer EHV Fittings The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

pof_ehv_fittings

Usage

```
pof_ehv_fittings(
  ehv_asset_category = "33kV Fittings",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default"
)
```

Arguments

ehv_asset_category

String The type of EHV asset category

placement

String. Specify if the asset is located outdoor or indoor.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age

Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

pof_ehv_switchgear 115

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for EHV Swicthgear
pof_ehv_fittings(
ehv_asset_category = "33kV Fittings",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("insulator_elec_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"insulator_mech_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"conductor_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"tower_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("thermal_imaging" =
list("Condition Criteria: Thermal Imaging Result" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Result" = "Default")),
reliability_factor = "Default")
```

pof_ehv_switchgear

Current Probability of Failure for EHV Switchgear

Description

This function calculates the current annual probability of failure per kilometer EHV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_ehv_switchgear(
  ehv_asset_category = "33kV RMU",
  placement = "Default",
  number_of_operations = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
```

pof_ehv_switchgear

```
corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default"
)
```

Arguments

ehv_asset_category

String The type of EHV asset category

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

The number of operations for duty factor

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. T

Numeric. The current age in years of the conductor.

 ${\tt measured_condition_inputs}$

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for EHV Swicthgear
pof_ehv_switchgear(
ehv_asset_category = "33kV RMU",
number of operations = "Default".
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default")
```

pof_future_board_04kv Future Probability of Failure for 0.4kV Board

Description

This function calculates the future annual probability of failure per kilometer 0.4kV board. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_board_04kv(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0069,
```

```
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea

level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set

the distance from coast factor to 1 independent of asset_type.

 ${\tt corrosion_category_index}$

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

 $Named\ list\ observed_conditions_input\ conductor_samp = c("Low", "Medium/Normal", "High", "Defautions_input")$

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0069 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 0.4kV board
pof_future_board_04kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
```

pof_future_building 119

```
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0069,
c_{value} = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_building

Future Probability of Failure for Primary Substation Building and Secondary Substation Building.

Description

This function calculates the future annual probability of failure for primary substation building and secondary substation building. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_building(
  substation_type = "Secondary",
 material_type = "Wood",
 placement = "Outdoor",
  altitude_m = "Default"
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  temperature_reading = "Default",
  coolers_radiator = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  reliability_factor = "Default",
  k_value = "Default",
  c_{value} = 1.087,
  normal_expected_life_building = "Default",
  simulation\_end\_year = 100
)
```

120 pof_future_building

Arguments

substation_type

String. A sting that refers to the specific substation type. Options: substation_type = c("Primary", "Secondary"). The default setting is substation_type = "Secondary"

 ${\tt material_type} \quad String. \ A \ sting \ that \ refers \ to \ the \ specific \ material_type. \ Options: \ {\tt material_type}$

= c("Brick", "Steel", "Wood"). The default setting is substation_type =

"Wood"

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea

level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set

the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the building.

temperature_reading

String. Indicating the criticality. Options: $temperature_reading = c("Normal", temperature_reading)$

"Moderately High", "Very High", "Default").

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

Deterioration", "Default"). in CNAIM (2021).

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default")..

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

k_value Numeric. k_value = "Default" by default. This number is given in a percent-

age.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life_building

Numeric. normal_expected_life_building = "Default" by default.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future probability of failure for a Secondary substation Building
pof_future_building(substation_type = "Secondary",
material_type = "Wood",
placement = "Outdoor";
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
temperature_reading = "Default",
coolers_radiator = "Default",
kiosk = "Default",
cable_boxes = "Default",
reliability_factor = "Default",
k_value = "Default",
c_{value} = 1.087,
normal_expected_life_building = "Default",
simulation\_end\_year = 100)
```

```
pof_future_cables_04kv_pex

Future Probability of Failure for 0.4kV UG PEX Non Pressurised Cables
```

Description

This function calculates the future annual probability of failure per kilometer for a 0.4kV PEX non Pressurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_04kv_pex(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0658,
   c_value = 1.087,
   normal_expected_life = 80,
   simulation_end_year = 100
)
```

Arguments

```
utilisation_pct
                 Numeric. The max percentage of utilisation under normal operating conditions.
operating_voltage_pct
                 Numeric. The ratio in percent of operating/design voltage.
sheath_test
                 String. Only applied for non pressurised cables. Indicating the state of the
                 sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").
partial_discharge
                 String. Only applied for non pressurised cables. Indicating the level of par-
                 tial discharge. Options: partial_discharge = c("Low", "Medium", "High",
                  "Default").
                 Numeric. Only applied for non pressurised cables. The calculated fault rate
fault_hist
                 for the cable in the period per kilometer. A setting of "No historic faults
                 recorded" indicates no fault.
reliability_factor
                 Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
                 setting of "Default" sets the reliability_factor to 1. See section 6.14 on
                 page 73 in CNAIM (2021).
                 Numeric. The current age in years of the cable.
age
k_value
                 Numeric. k_value = 0.0658 by default.
                 Numeric. c_value = 1.087 by default. The default value is accordingly to the
c_value
                 CNAIM standard see page 110
normal_expected_life
                 Numeric. normal_expected_life = 80 by default.
simulation_end_year
```

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

```
# future annual probability of failure for 0.4kV cable pex, 50 years old
pof_future_cables_04kv_pex(
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100)
```

```
pof_future_cables_10kv_oil
```

Future Probability of Failure for 10kV UG Oil Non Preesurised Cables (Armed Paper Lead)

Description

This function calculates the future #' annual probability of failure per kilometer for a 10kV Oil non Preesurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_10kv_oil(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  reliability_factor = "Default",
  age,
  k_value = 0.24,
  c_value = 1.087,
  normal_expected_life = 80,
  simulation_end_year = 100
)
```

Arguments

```
utilisation_pct
```

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

```
age Numeric. The current age in years of the cable.

k_value Numeric. k_value = 0.24 by default.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life Numeric. normal_expected_life = 80 by default.

simulation_end_year
```

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for 10kV oil cable, 50 years old
pof_future_cables_10kv_oil(
  utilisation_pct = 80,
  operating_voltage_pct = 60,
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  reliability_factor = "Default",
  age = 50,
  k_value = 0.24,
  c_value = 1.087,
  normal_expected_life = 80,
  simulation_end_year = 100)
```

```
pof_future_cables_10kv_pex
```

Future Probability of Failure for 10kV UG PEX Non Pressurised Cables

Description

This function calculates the future #' annual probability of failure per kilometer for a 10kV PEX non Pressurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_10kv_pex(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  sheath_test = "Default",
  partial_discharge = "Default",
```

fault_hist = "Default",

```
reliability_factor = "Default",
      age,
      k_{value} = 0.0658,
      c_value = 1.087,
      normal_expected_life = 80,
      simulation\_end\_year = 100
    )
Arguments
    utilisation_pct
                     Numeric. The max percentage of utilisation under normal operating conditions.
    operating_voltage_pct
                     Numeric. The ratio in percent of operating/design voltage.
    sheath_test
                     String. Only applied for non pressurised cables. Indicating the state of the
                      sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").
    partial_discharge
                     String. Only applied for non pressurised cables. Indicating the level of par-
                      tial discharge. Options: partial_discharge = c("Low", "Medium", "High",
                      "Default").
    fault_hist
                     Numeric. Only applied for non pressurised cables. The calculated fault rate
                     for the cable in the period per kilometer. A setting of "No historic faults
                      recorded" indicates no fault.
    reliability_factor
                     Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
                      setting of "Default" sets the reliability_factor to 1. See section 6.14 on
                     page 73 in CNAIM (2021).
                     Numeric. The current age in years of the cable.
    age
    k_value
                     Numeric. k_value = 0.0658 by default.
    c_value
                     Numeric. c_value = 1.087 by default. The default value is accordingly to the
```

normal_expected_life

Numeric. normal_expected_life = 80 by default.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

CNAIM standard see page 110

```
# future annual probability of failure for 10kV cable pex, 50 years old
pof_future_cables_10kv_pex(
utilisation_pct = 80,
operating_voltage_pct = 60,
```

```
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100)
```

pof_future_cables_132kv

Future Probability of Failure for 132kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 132kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_132kv(
   cable_type = "132kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age,
   simulation_end_year = 100
)
```

Arguments

cable_type String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("132kV UG Cable (Gas)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)"). The default setting is cable_type = "132kV UG Cable (Gas)".

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 157, table 184 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 157, table 185 in CNAIM (2021).

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 157, table 186 in CNAIM (2021).

leakage

String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 158, table 187 (oil) and 188 (gas) in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age N

Numeric. The current age in years of the cable.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Future probability of failure for 132kV UG Cable (Non Pressurised)
pof_future_cables_132kv(cable_type = "132kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
```

```
age = 1,
simulation_end_year = 100)
```

pof_future_cables_60_30kv

Future Probability of Failure for 30-60kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 30-60kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_60_30kv(
   cable_type = "60kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age,
   simulation_end_year = 100
)
```

Arguments

cable_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The default setting is cable_type = "60kV UG Cable (Gas)".

sub_division

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

See page 153, table 168 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High",

"Default"). See page 153, table 169 in CNAIM (2021).

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).

leakage String. Only applied for oil and gas pressurised cables. Options: leakage =

> c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in

CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

Numeric. The current age in years of the cable. age

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_ asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future probability of failure for 60kV UG Cable (Non Pressurised)
pof_future_cables_60_30kv(cable_type = "60kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 1,
simulation_end_year = 100)
```

```
pof_future_cables_66_33kv
```

Future Probability of Failure for 33-66kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 33-66kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_66_33kv(
   cable_type = "66kV UG Cable (Gas)",
   sub_division = "Aluminium sheath - Aluminium conductor",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   leakage = "Default",
   reliability_factor = "Default",
   age,
   simulation_end_year = 100
)
```

Arguments

cable_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("33kV UG Cable (Gas)", "66kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "66kV UG Cable (0il)"). The default setting is cable_type = "66kV UG Cable (Gas)".

sub division

String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

sheath_test

String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 153, table 168 in CNAIM (2021).

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).

fault_hist

Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).

leakage

String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age

Numeric. The current age in years of the cable.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure per annum per kilometre for 33-66kV cables along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future probability of failure for 66kV UG Cable (Non Pressurised)
pof_future_cables_66_33kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 1,
simulation_end_year = 100)
```

pof_future_meter

pof_future_meter

Future Probability of Failure for Meters

Description

This function calculates the future annual probability of failure meters. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_meter(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.128,
   c_value = 1.087,
   normal_expected_life = 25,
   simulation_end_year = 100
)
```

page 73 in CNAIM (2021).

Arguments

placement String. Specify if the asset is located outdoor or indoor. altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type. distance_from_coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type. corrosion_category_index Integer. Specify the corrosion index category, 1-5. age Numeric. The current age in years of the conductor. measured_condition_inputs Named list observed_conditions_input observed_condition_inputs Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau reliability_factor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A

setting of "Default" sets the reliability_factor to 1. See section 6.14 on

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

```
# future annual probability of failure for meter
pof_future_meter(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_{value} = 1.087,
normal_expected_life = 25,
simulation_end_year = 100)
```

Description

This function calculates the future annual probability of failure per kilometer 33-132kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
  visual_cond = "Default",
  midspan_joints = "Default",
  reliability_factor = "Default",
  simulation_end_year = 100
)
```

Arguments

ohl_conductor

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: ohl_conductor = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor"). The default setting is ohl_conductor = "66kV OHL (Tower Line) Conductor".

sub_division

String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other")
. See page 107, table 20 in CNAIM (2021).

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM

(2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.

age Numeric. The current age in years of the conductor.

conductor_samp String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

corr_mon_survey

String. Corrosion monitoring survey. Options: $corr_mon_survey = c("Low", "Medium/Normal", "High See page 161, table 200 and 202 in CNAIM (2021).$

visual_cond String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 146, table 140 and 142 in CNAIM (2021).

midspan_joints Integer. Number of midspan joints on the conductor. A span includes all conductors in that span. See page 146, table 141 and 143 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Future annual probability of failure for 66kV OHL (Tower Line) Conductor
pof_future_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age = 10,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
```

```
visual_cond = "Default",
midspan_joints = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_future_ohl_cond_50kv

Future Probability of Failure for 50kV OHL Conductors

Description

This function calculates the future annual probability of failure per kilometer 50kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_ohl_cond_50kv(
  sub_division = "Cu",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
  visual_cond = "Default",
  midspan_joints = "Default"
  reliability_factor = "Default",
  k_value = 0.008,
  c_{value} = 1.087,
  normal_expected_life = "Default",
  simulation\_end\_year = 100
)
```

Arguments

 $sub_division$

String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other")
. See page 107, table 20 in CNAIM (2021).

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.

age Numeric. The current age in years of the conductor.

conductor_samp String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

corr_mon_survey

String. Corrosion monitoring survey. Options: corr_mon_survey = c("Low", "Medium/Normal", "High See page 161, table 200 and 202 in CNAIM (2021).

visual_cond String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 146, table 140 and 142 in CNAIM (2021).

midspan_joints Integer. Number of midspan joints on the conductor. A span includes all conductors in that span. See page 146, table 141 and 143 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

Future annual probability of failure for 50kV OHL (Tower Line) Conductor

```
pof_future_ohl_cond_50kv(
sub_division = "Cu",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
conductor_samp = "Default",
corr_mon_survey = "Default",
visual_cond = "Default",
midspan_joints = "Default",
reliability_factor = "Default",
k_{value} = 0.0080,
c_value = 1.087,
normal_expected_life = "Default",
simulation_end_year = 100)
```

```
pof_future_ohl_fittings_50kv
```

Future Probability of Failure for 50 kV Fittings

Description

This function calculates the future annual probability of failure per kilometer for a 50 kV fittings. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_ohl_fittings_50kv(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0096,
   c_value = 1.087,
   normal_expected_life = 40,
   simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed conditions input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.code

Value

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 50kV fittings
pof_future_ohl_fittings_50kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("insulator_elec_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
```

```
"insulator_mech_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"conductor_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"tower_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("thermal_imaging" =
list("Condition Criteria: Thermal Imaging Result" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.0096,
c_value = 1.087,
normal_expected_life = 40,
simulation_end_year = 100)
```

pof_future_pillar_04kv

Future Probability of Failure for 0.4kV Pillar

Description

This function calculates the future annual probability of failure per kilometer 0.4kV Pillar. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_pillar_04kv(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0046,
   c_value = 1.087,
   normal_expected_life = 60,
   simulation_end_year = 100
)
```

Arguments

placement

String. Specify if the asset is located outdoor or indoor.

altitude_m

23 ii inde

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 0.4kV Pillar
pof_future_pillar_04kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
```

pof_future_poles

```
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_value = 0.0046,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_poles

Future Probability of Failure for Poles

Description

This function calculates the future annual probability of failure per kilometer for a poles. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_poles(
   pole_asset_category = "20kV Poles",
   sub_division = "Wood",
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   pole_decay = "default",
   observed_condition_inputs,
   reliability_factor = "Default",
   simulation_end_year = 100
)
```

Arguments

```
pole_asset_category
String The type of asset category
sub_division
String. Refers to material the pole is made of.

String. Specify if the asset is located outdoor or indoor.
```

pof_future_poles 143

```
altitude_m
                  Numeric. Specify the altitude location for the asset measured in meters from
                  sea level.altitude_m is used to derive the altitude factor. See page 111, table
                  23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1
                  independent of asset_type.
distance_from_coast_km
                  Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km
                  is used to derive the distance from coast factor See page 110, table 22 in CNAIM
                  (2021). A setting of "Default" will set the distance from coast factor to 1 inde-
                  pendent of asset_type.
corrosion_category_index
                  Integer. Specify the corrosion index category, 1-5.
age
                  Numeric. The current age in years of the conductor.
pole_decay
                 Numeric Pole Decay
observed_condition_inputs
                  Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau
                  See page 161, table 199 and 201 in CNAIM (2021).
reliability_factor
                  Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
                  setting of "Default" sets the reliability_factor to 1. See section 6.14 on
                  page 73 in CNAIM (2021).
simulation_end_year
```

Value

Numeric array. Future probability of failure per annum per kilometre for poles.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Numeric. The last year of simulating probability of failure. Default is 100.

```
# Future annual probability of failure for HV Poles
pof_future_poles(
pole_asset_category = "20kV Poles",
sub_division = "Wood",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("visual_pole_cond" =
list("Condition Criteria: Pole Top Rot Present?" = "Default"),
"pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
"bird_animal_damage" =
```

```
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
pole_decay = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_future_poles_ohl_support_50kv

Future Probability of Failure for Poles OHL support 50 kV

Description

This function calculates the future annual probability of failure per kilometer for a Poles OHL support 50 kV. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_poles_ohl_support_50kv(
    sub_division = "Wood",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0285,
    c_value = 1.087,
    normal_expected_life = "Default",
    simulation_end_year = 100
)
```

Arguments

sub_division String Sub Division

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from

sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1

independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

```
corrosion_category_index
                 Integer. Specify the corrosion index category, 1-5.
                 Numeric. The current age in years of the conductor.
age
measured_condition_inputs
                 Named list observed_conditions_input
observed_condition_inputs
                 Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau
                 See page 161, table 199 and 201 in CNAIM (2021).
reliability_factor
                 Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
                  setting of "Default" sets the reliability_factor to 1. See section 6.14 on
                 page 73 in CNAIM (2021).
k_value
                 Numeric. k_value = 0.0069 by default. This number is given in a percentage.
                 The default value is accordingly to the CNAIM standard on p. 110.
                 Numeric. c_value = 1.087 by default. The default value is accordingly to the
c_value
                 CNAIM standard see page 110
normal_expected_life
                 Numeric. normal_expected_life = 60 by default. The default value is accord-
                 ingly to the CNAIM standard on page 107.
simulation_end_year
                 Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for Poles OHL support 50 kV
pof_future_poles_ohl_support_50kv(
sub_division = "Wood",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default"
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("visual_pole_cond" =
list("Condition Criteria: Pole Top Rot Present?" = "Default"),
"pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
"bird_animal_damage" =
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
measured_condition_inputs =
list("pole_decay" =
list("Condition Criteria: Degree of Decay/Deterioration" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0285,
c_value = 1.087,
```

pof_future_relay

```
normal_expected_life = "Default",
simulation_end_year = 100)
```

pof_future_relay

Future Probability of Failure for Relay

Description

This function calculates the future annual probability of failure relay. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_relay(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.128,
   c_value = 1.087,
   normal_expected_life = 30,
   simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

pof_future_relay 147

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0069 by default. This number is given in a percentage.
The default value is accordingly to the CNAIM standard on p. 110.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accord-

ingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for relay
pof_future_relay(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_value = 1.087,
normal_expected_life = 30,
simulation\_end\_year = 100)
```

pof_future_rtu

pof_future_rtu

Future Probability of Failure for RTU

Description

This function calculates the future annual probability of failure RTU. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_rtu(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.128,
   c_value = 1.087,
   normal_expected_life = 20,
   simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

Numeric. Specify the altitude location for the asset measured in meters from sea level altitude m is used to derive the altitude factor. See page 111 table

sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

pof_future_rtu 149

reliability_factor Numeric.

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021)

page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

c_value

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for RTU
pof_future_rtu(
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_{value} = 1.087,
normal_expected_life = 20,
simulation_end_year = 100)
```

pof_future_serviceline

```
pof_future_serviceline
```

Future Probability of Failure for Service Line

Description

This function calculates the future annual probability of failure per kilometer for a service line The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_serviceline(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0329,
   c_value = 1.087,
   normal_expected_life = 75,
   simulation_end_year = 100
)
```

Arguments

utilisation_pct

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age Numeric. The current age in years of the conductor.

k_value Numeric. k_value = 0.0069 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

```
normal_expected_life
```

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for service line, 50 years old
pof_future_serviceline(
  utilisation_pct = 80,
  operating_voltage_pct = 60,
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  reliability_factor = "Default",
  age = 50,
  k_value = 0.0329,
  c_value = 1.087,
  normal_expected_life = 75,
  simulation_end_year = 100)
```

pof_future_submarine_cables

Future Probability of Failure for Submarine Cables

Description

This function calculates the Future annual probability of failure per kilometer for submarine cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_submarine_cables(
   sub_cable_type = "EHV Sub Cable",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   topography = "Default",
   situation = "Default",
   wind_wave = "Default",
   intensity = "Default",
   landlocked = "no",
```

```
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age,
reliability_factor = "Default",
simulation_end_year = 100
)
```

Arguments

sub_cable_type String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: sub_cable_type = c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable"). The deafult setting is sub_cable_type = "EHV Sub Cable".

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions. operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Very High Detrimental Topography", "Default"

situation Situation of the cable

wind_wave Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings:

• wind_wave = 1: Sheltered sea loch, Wind <200 W/m2

• wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2

• wind wave = 3: Wave <15kW/m, Wind 200-800 W/m²

• wind_wave = "Default": No data available

intensity String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "High", "Default").

landlocked String. Options: landlocked = c("yes", "no"). Default setting for landlocked = "no".

sheath_test String. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 158, table 189 in CNAIM (2021).

partial_discharge

String. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 158, table 190 in CNAIM (2021).

fault_hist Numeric. The calculated fault rate for the cable per annum per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 158, table 191 in CNAIM (2021).

condition_armour

String. Indicating the external condition of the submarine cables armour. Options: condition_armour = c("Good", "Poor", "Critical", "Default")

```
age Numeric. The current age in years of the cable.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for 1 km EHV Sub Cable
pof_future_submarine_cables(
sub_cable_type = "EHV Sub Cable",
 utilisation_pct = "Default",
 operating_voltage_pct = "Default",
 topography = "Default",
 situation = "Default",
wind_wave = "Default",
 intensity = "Default",
 landlocked = "no",
 sheath_test = "Default"
 partial_discharge = "Default",
 fault_hist = "Default",
 condition_armour = "Default",
 age = 10,
 reliability_factor = "Default",
 simulation_end_year = 100)
```

```
pof_future_submarine_cables_10kv_oil
```

Future Probability of Failure for 10kV Oil Submarine Cables

Description

This function calculates the future annual probability of failure per kilometer for a 10kV Oil submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_submarine_cables_10kv_oil(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default"
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  reliability_factor = "Default",
  k_{value} = 2.0944,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation\_end\_year = 100
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String Topography
sitution String Situation
wind_wave String Wind Wave
intensity String Intensity
landlocked String Land Locked

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High",

"Default").

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

condition_armour

String Condition Armour

age Numeric. The current age in years of the cable.

```
reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0658 by default.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 80 by default.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 1 km 10kV Oil Sub Cable
pof_future_submarine_cables_10kv_oil(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_{value} = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

```
pof_future_submarine_cables_10kv_pex
```

Future Probability of Failure for 10kV Non Pressurised submarine cables

Description

This function calculates the future annual probability of failure per kilometer for a 10kV non pressurised submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_submarine_cables_10kv_pex(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default"
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  reliability_factor = "Default",
  k_{value} = 0.0202,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation\_end\_year = 100
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String Topography
sitution String Situation
wind_wave String Wind Wave
intensity String Intensity
landlocked String Land Locked

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "December 11")

"Default").

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

condition_armour

String Condition Armour

age Numeric. The current age in years of the cable.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 1 km 10kV non pressurised Sub Cable
pof_future_submarine_cables_10kv_pex(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_{value} = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

Description

This function calculates the future annual probability of failure per kilometer for a 30kV and 60kV oil submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_submarine_cables_30_60kv_oil(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default"
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  reliability_factor = "Default",
 k_{value} = 2.0944,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation\_end\_year = 100
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String Topography
sitution String Situation
wind_wave String Wind Wave
intensity String Intensity
landlocked String Land Locked

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High",

"Default").

fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

condition_armour

String Condition Armour

age Numeric. The current age in years of the cable.

```
reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0658 by default.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 80 by default.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_submarine_cables_30_60kv_oil(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_{value} = 0.0202,
c_{value} = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

```
pof_future_submarine_cables_30_60kv_pex
```

Future Probability of Failure for 30kV and 60kV Non Pressurised Submarine Cables

Description

This function calculates the future annual probability of failure per kilometer for a 30kV and 60kV Non Pressurised submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_submarine_cables_30_60kv_pex(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default"
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  reliability_factor = "Default",
 k_{value} = 0.0202,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation\_end\_year = 100
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String Topography
sitution String Situation
wind_wave String Wind Wave
intensity String Intensity
landlocked String Land Locked

sheath_test String. Only applied for non pressurised cables. Indicating the state of the

sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").

partial_discharge

String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "December 11")

"Default").

for the cable in the period per kilometer. A setting of "No historic faults

recorded" indicates no fault.

condition_armour

String Condition Armour

age Numeric. The current age in years of the cable.

```
reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0658 by default.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 80 by default.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_submarine_cables_30_60kv_pex(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_{value} = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

```
pof_future_switchgear_30_60kv
```

Future Probability of Failure for 30kV and 60kV Switchgear

Description

This function calculates the future annual probability of failure 30kV and 60kV switchgear. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_switchgear_30_60kv(
  asset_type = "30kV",
  placement = "Default",
  number_of_operations = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
 measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default",
  k_value = "Default",
  c_{value} = 1.087,
  normal_expected_life = 55,
  simulation\_end\_year = 100
)
```

Arguments

asset_type String Asset Type String Placement placement

number_of_operations

String Number of Operations

altitude_m String Altitude distance_from_coast_km

String Distance from coast

corrosion_category_index

String Corrosion Category Index

Numeric Age age measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input

reliability_factor

String Reliability Factor

k_value Numeric. k_value = 0.0077 by default. This number is given in a percentage.

The default value is accordingly to the standard "DE-10kV apb kabler CNAIM"

on p. 34.

Numeric. c_value = 1.087 by default. The default value is accordingly to the c_value

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the standard "DE-10kV apb kabler CNAIM" on p. 33.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

Numeric. Current probability of failure per annum.

Examples

```
# Future annual probability of failure for 30kV and 60kV Swicthgear
pof_future_switchgear_30_60kv(
asset_type = "30kV",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_value = "Default",
c_{value} = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

```
pof_future_switchgear_primary_10kv
```

Future Probability of Failure for 10kV Switchgear Primary

Description

This function calculates the future annual probability of failure 10kV switchgear Primary. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_switchgear_primary_10kv(
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0052,
   c_value = 1.087,
   normal_expected_life = 55,
   simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

The number of operations for duty factor

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

 $Named\ list\ observed_conditions_input\ conductor_samp = c("Low", "Medium/Normal", "High", "Defautions")$

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0052 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

```
normal_expected_life

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year
```

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 10 kV Switchgear (GM) Primary
pof_future_switchgear_primary_10kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_{value} = 0.0052,
c_value = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

```
pof_future_switchgear_secondary_10kv
```

Future Probability of Failure for 10kV Switchgear Secondary

Description

This function calculates the future annual probability of failure 10kV switchgear secondary. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_switchgear_secondary_10kv(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0067,
   c_value = 1.087,
   normal_expected_life = 55,
   simulation_end_year = 100
)
```

Arguments

placement

String. Specify if the asset is located outdoor or indoor.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age

Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

```
simulation_end_year
```

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_switchgear_secondary_10kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0067,
c_{value} = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

```
pof_future_transformer_04_10kv
```

Future Probability of Failure for 0.4/10kV Transformers

Description

This function calculates the future annual probability of failure for 0.4/10kV Transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_transformer_04_10kv(
  utilisation_pct = "Default",
  placement = "Default",
```

```
altitude_m = "Default",
 distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  partial_discharge = "Default"
  temperature_reading = "Default";
 observed_condition = "Default",
  reliability_factor = "Default",
 moisture = "Default",
 acidity = "Default",
 bd_strength = "Default".
 k_{value} = 0.0077,
 c_value = 1.087,
 normal_expected_life = 55,
  simulation\_end\_year = 100
)
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

Numeric. The current age in years. age partial_discharge

String. Indicating the

temperature_reading

String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021).

observed_condition

String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration",

moisture

acidity

k_value

c_value

bd_strength

"Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 130, table 81 in CNAIM (2021). reliability_factor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021). Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021). String Acidity Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021). Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110. Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_transformer_04_10kv(utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 20,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
k_{value} = 0.0077,
c_{value} = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

```
pof_future_transformer_11_20kv
```

Future Probability of Failure for 6.6/11kV and 20kV Transformers

Description

This function calculates the future annual probability of failure for 6.6/11kV and 20kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_transformer_11_20kv(
  hv_transformer_type = "6.6/11kV Transformer (GM)",
  utilisation_pct = "Default",
 placement = "Default",
  altitude_m = "Default"
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  partial_discharge = "Default"
  temperature_reading = "Default",
  observed_condition = "Default",
  reliability_factor = "Default",
 moisture = "Default",
  oil_acidity = "Default",
 bd_strength = "Default",
  simulation\_end\_year = 100
)
```

Arguments

hv_transformer_type

String. Refers to the high voltage transformer type the calculation is done for. Options: $hv_{transformer_type} = c("6.6/11kV Transformer_(GM)", "20kV Transformer_(GM)")$. The default setting is $hv_{transformer_type} = 6.6/11kV Transformer_(GM)$.

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years.

partial_discharge

String. Indicating the

temperature_reading

String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021).

observed_condition

String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration", "Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 130, table 81 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

moisture

Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).

oil_acidity

Oil Acidity level of partial discharge. Options for partial_discharge: partial_discharge = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 153, table 171 in CNAIM (2021).

bd_strength

Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Future probability of a 6.6/11 kV transformer
future_pof_transformer <-</pre>
pof_future_transformer_11_20kv(hv_transformer_type = "6.6/11kV Transformer (GM)",
utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 20,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
oil_acidity = "Default",
bd_strength = "Default",
simulation_end_year = 100)
```

pof_future_transformer_132kv

Future Probability of Failure for 132kV Transformers

Description

This function calculates the future annual probability of failure for 132kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_transformer_132kv(
  transformer_type = "132kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
```

```
bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default"
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default",
  simulation\_end\_year = 100
)
```

Arguments

transformer_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = $c("132kV\ Transformer\ (GM)"$

year_of_manufacture

Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

no_taps

Numeric. Average number of daily taps (tapchanger).

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age_tf Numeric. The current age in years of the transformer.

age_tc Numeric. The current age in years of the tapchanger

partial_discharge_tf

String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 176 in CNAIM (2021).

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 156, table 178 in CNAIM (2021).

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 155, table 177 in CNAIM (2021).

main_tank

String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 134, table 93 in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). See page 134, table 94 in CNAIM (2021).

bushings

String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 95 in CNAIM (2021).

kiosk

String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 96 in CNAIM (2021).

cable_boxes

String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default"). See page 135, table 97 in CNAIM (2021).

external_tap

String. Indicating the observed external condition of the tapchanger. Options:

Deterioration", "Default"). See page 136, table 99 in CNAIM (2021).

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 98 in CNAIM (2021).

internal_tap

String. Indicating the observed internal condition of the tapchanger. Options: $internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial")$

mechnism_cond

String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration",

"Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 100 in CNAIM (2021).

diverter_contacts

String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 101 in CNAIM (2021).

diverter_braids

ethylene

String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = $c("No\ deterioration", "Superficial/minor\ deterioration", "Some\ Deterioration", "Substantial\ Deterioration", "Default"). See page 136, table 102 in CNAIM (2021)$

Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).

hydrogen Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.

methane Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.

Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.

ethane Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.

Acetylene Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels

Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.

hydrogen_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

methane_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

ethylene_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

ethane_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

acetylene_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.

```
Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year
```

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Future probability of failure for a 66/10kV transformer
pof_future_transformer_132kv(transformer_type = "132kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default"
hydrogen_pre = "Default",
```

```
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_future_transformer_30_60kv

Future Probability of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates the future annual probability of failure for 30/10kV and 60/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_transformer_30_60kv(
  transformer_type = "60kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
  moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
```

```
hydrogen = "Default",
      methane = "Default",
      ethylene = "Default",
      ethane = "Default",
      acetylene = "Default"
      hydrogen_pre = "Default",
      methane_pre = "Default",
      ethylene_pre = "Default",
      ethane_pre = "Default",
      acetylene_pre = "Default",
      furfuraldehyde = "Default",
      reliability_factor = "Default",
      k_value = 0.454,
      c_{value} = 1.087,
      normal_expected_life_tf = "Default",
      normal_expected_life_tc = "Default",
      simulation\_end\_year = 100
    )
Arguments
    transformer_type
                     String. A sting that refers to the specific asset category. Options: transformer_type
                      = c("30kV Transformer (GM)", "60kV Transformer (GM)"). The default set-
                     ting is transformer_type = "60kV Transformer (GM)"
    year_of_manufacture
                      Numeric. Normal expected life depends on the year for manufacture.
    utilisation_pct
                     Numeric. The max percentage of utilisation under normal operating conditions.
                     Numeric. Average number of daily taps (tapchanger).
    no_taps
    placement
                     String. Specify if the asset is located outdoor or indoor.
                     Numeric. Specify the altitude location for the asset measured in meters from sea
    altitude m
                     level.altitude_m is used to derive the altitude factor. A setting of "Default"
                     will set the altitude factor to 1 independent of asset_type.
    distance_from_coast_km
                     Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km
                     is used to derive the distance from coast factor. A setting of "Default" will set
                     the distance from coast factor to 1 independent of asset_type.
    corrosion_category_index
                     Integer. Specify the corrosion index category, 1-5.
                     Numeric. The current age in years of the transformer.
    age_tf
                     Numeric. The current age in years of the tapchanger
    age_tc
    partial_discharge_tf
                     String. Indicating the level of partial discharge in the transformer. Options:
                     partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High
```

(Confirmed)", "Default").

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").

main_tank String. Indicating the observed condition of the main tank. Options: main_tank

= c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

 $coolers_radiator = c("Superficial/minor\ deterioration",\ "Some\ Deterioration",\ "Substant")$

Deterioration", "Default"). in CNAIM (2021).

bushings String. Indicating the observed condition of the bushings. Options: bushings =

c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default").

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor

 ${\tt deterioration", "Some \ Deterioration", "Substantial \ Deterioration", "Default")}.$

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default").

external_tap String. Indicating the observed external condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). in CNAIM (2021).

internal_tap String. Indicating the observed internal condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). in CNAIM (2021).

mechnism_cond String. Indicating the observed condition of the drive mechnism. Options:

 $\label{eq:mechnism_cond} \textbf{mechnism_cond} = \textbf{c("No deterioration", "Superficial/minor deterioration",}$

"Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM

(2021).

diverter_contacts

String. Indicating the observed condition of the selector and diverter contacts.

Options: diverter_contacts = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

in CNAIM (2021).

diverter_braids

String. Indicating the observed condition of the selector and diverter braids.

Options: diverter_braids = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in

CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204

in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table

205 in CNAIM (2021).

Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
Numeric. Previous results. A setting of "Default" will result in the best possible result.
Numeric. Previous results. A setting of "Default" will result in the best possible result.
Numeric. Previous results. A setting of "Default" will result in the best possible result.
Numeric. Previous results. A setting of "Default" will result in the best possible result.
Numeric. Previous results. A setting of "Default" will result in the best possible result.
Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.
ctor
Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
Numeric. $k_value = "0.0454"$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110
d_life_tf

Numeric. normal_expected_life_tf = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.

normal_expected_life_tc

Numeric. normal_expected_life_tc = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future probability of failure for a 60/10kV transformer
pof_future_transformer_30_60kv(transformer_type = "60kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default"
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default"
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
k_value = 0.454,
c_{value} = 1.087,
normal_expected_life_tf = "Default",
normal_expected_life_tc = "Default",
simulation_end_year = 100)
```

pof_future_transformer_33_66kv

Future Probability of Failure for 33/10kV and 66/10kV Transformers

Description

This function calculates the future annual probability of failure for 33/10kV and 66/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_future_transformer_33_66kv(
  transformer_type = "66kV Transformer (GM)",
  year_of_manufacture = 1980,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default".
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default",
  simulation\_end\_year = 100
```

)

Arguments

transformer_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("33kV Transformer(GM)", "66kV Transformer(GM)"). The default setting is transformer_type = "66kV Transformer(GM)"

year_of_manufacture

Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).

utilisation_pct

placement

Numeric. The max percentage of utilisation under normal operating conditions.

no_taps Numeric. Average number of daily taps (tapchanger).

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021)

for default environments.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table

23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1

independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age_tf Numeric. The current age in years of the transformer.

age_tc Numeric. The current age in years of the tapchanger

partial_discharge_tf

String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 154, table 173 in CNAIM (2021).

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 175 in CNAIM (2021).

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 154, table 174 in CNAIM (2021).

main_tank String. Indicating the observed condition of the main tank. Options: main_tank

= c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 131, table 83 in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

Deterioration", "Default"). See page 131, table 84 in CNAIM (2021).

bushings String. Indicating the observed condition of the bushings. Options: bushings =

c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 131, table 85 in CNAIM (2021).

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 132, table 86 in CNAIM (2021).

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default"). See page 132, table 87 in CNAIM (2021).

external_tap String. Indicating the observed external condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 133, table 88 in CNAIM (2021).

internal_tap String. Indicating the observed internal condition of the tapchanger. Options:

internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 133, table 89 in CNAIM (2021).

mechnism_cond String. Indicating the observed condition of the drive mechnism. Options:

mechnism_cond = c("No deterioration", "Superficial/minor deterioration",

"Some Deterioration", "Substantial Deterioration", "Default"). See

page 133, table 90 in CNAIM (2021).

diverter_contacts

String. Indicating the observed condition of the selector and diverter contacts.

Options: diverter_contacts = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 133, table 91 in CNAIM (2021).

diverter_braids

String. Indicating the observed condition of the selector and diverter braids.

Options: diverter_braids = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 134, table 92 in CNAIM (2021)

moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in

CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204

in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table

205 in CNAIM (2021).

hydrogen Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.
reliability_factor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
simulation_end_year	
	Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Future probability of failure for a 66/10kV transformer
pof_future_transformer_33_66kv(transformer_type = "66kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
```

```
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_hv_switchgear_distribution

Current Probability of Failure for HV Switchgear Distribution

Description

This function calculates the current annual probability of failure per kilometer HV Switchgear Distribution The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_hv_switchgear_distribution(
```

```
hv_asset_category = "6.6/11kV CB (GM) Secondary",
placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default"
)
```

hv_asset_category

String The type of LV asset category

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from

sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1

independent of asset_type.

pendent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 inde-

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for HV Swicthgear distribution
pof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default")
```

pof_hv_switchgear_primary

Current Probability of Failure for HV Switchgear Primary

Description

This function calculates the current annual probability of failure per kilometer HV Switchgear Primary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_hv_switchgear_primary(
  hv_asset_category = "6.6/11kV CB (GM) Primary",
  placement = "Default",
  number_of_operations = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
```

```
pof_hv_switchgear_primary
```

```
reliability_factor = "Default"
)
```

hv_asset_category

String The type of HV asset category

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

The number of operations for duty factor

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

 ${\tt measured_condition_inputs}$

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for HV Swicthgear Primary
pof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
placement = "Default",
```

```
number_of_operations = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
 measured_condition_inputs = list("partial_discharge" =
 list("Condition Criteria: Partial Discharge Test Results" = "Default"),
 "ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
 "oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
 "temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
 "trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
 "ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
 reliability_factor = "Default")
```

pof_lv_switchgear_and_other

Current Probability of Failure for LV switchgear and others

Description

This function calculates the current annual probability of failure for LV switchgear and others The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_lv_switchgear_and_other(
    lv_asset_category = "LV Circuit Breaker",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

Arguments

```
lv_asset_category
String The type of LV asset category
```

placement String. Specify if the asset is located outdoor or indoor. altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type. distance_from_coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type. corrosion_category_index Integer. Specify the corrosion index category, 1-5. Numeric. The current age in years of the conductor. age measured_condition_inputs Named list observed_conditions_input observed_condition_inputs Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021). reliability_factor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for LV Switchgear and other
pof_lv_switchgear_and_other(
lv_asset_category = "LV Circuit Breaker",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("operational_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default")
```

pof_lv_ugb

pof_lv_ugb

Current Probability of Failure for LV UGB

Description

This function calculates the current annual probability of failure for LV UGB The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_lv_ugb(
    lv_asset_category = "LV UGB",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

Arguments

lv_asset_category

String The type of LV asset category

placement

String. Specify if the asset is located outdoor or indoor.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset to the setting of "Default" will set the altitude factor to 1

independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

ion inputs

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

pof_meter 193

```
reliability_factor
```

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for 10kV OHL (Tower Line) Conductor
pof_lv_ugb(
lv_asset_category = "LV UGB",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default"
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("steel_cover_and_pit_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"water_moisture" = list("Condition Criteria: Observed Condition" = "Default"),
"bell_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default")
```

pof_meter

Current Probability of Failure for Meters

Description

This function calculates the current annual probability of failure meter The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

pof_meter

Usage

```
pof_meter(
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default",
  k_value = 0.128,
  c_value = 1.087,
  normal_expected_life = 25
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea

level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km

is used to derive the distance from coast factor. A setting of "Default" will set

the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

 $Named\ list\ observed_conditions_input\ conductor_samp = c("Low", "Medium/Normal", "High", "Defaultions_input\ conductor_samp = c("Low", "Medium/Normal", "High", "Medium/Normal", "High", "Medium/Normal", "High", "Medium/Normal", "Medium/Nor$

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.128 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 50 by default. The default value is accordingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for meter
pof_meter(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_{value} = 1.087,
normal_expected_life = 25)
```

```
pof_ohl_cond_132_66_33kv
```

Current Probability of Failure for 33-132kV OHL Conductors

Description

This function calculates the current annual probability of failure per kilometer 33-132kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
```

```
conductor_samp = "Default",
  corr_mon_survey = "Default",
  visual_cond = "Default",
  midspan_joints = "Default"
  reliability_factor = "Default"
)
```

ohl_conductor

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: ohl_conductor = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor"). The default setting is ohl_conductor = "66kV OHL (Tower Line) Conductor".

sub_division

String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other") . See page 107, table 20 in CNAIM (2021).

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.

age

Numeric. The current age in years of the conductor.

conductor_samp String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

corr_mon_survey

String. Corrosion monitoring survey. Options: corr_mon_survey = c("Low", "Medium/Normal", "High See page 161, table 200 and 202 in CNAIM (2021).

visual_cond

String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 146, table 140 and 142 in CNAIM (2021).

pof_poles 197

```
midspan_joints Integer. Number of midspan joints on the conductor. A span includes all conductors in that span. See page 146, table 141 and 143 in CNAIM (2021).
```

```
reliability_factor
```

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for 66kV OHL (Tower Line) Conductor
pof_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age = 10,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
  visual_cond = "Default",
  midspan_joints = "Default",
  reliability_factor = "Default")
```

pof_poles

Current Probability of Failure for Poles

Description

This function calculates the current annual probability of failure per kilometer Poles The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

pof_poles

Usage

```
pof_poles(
   pole_asset_category = "20kV Poles",
   sub_division = "Wood",
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default"
)
```

Arguments

```
pole_asset_category
```

String The type of asset category

sub_division String. Refers to material the pole is made of.

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1

independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM

(2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

 $observed_condition_inputs$

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

pof_submarine_cables 199

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for HV Poles
pof_poles(
pole_asset_category = "20kV Poles",
sub_division = "Wood",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("visual_pole_cond" =
list("Condition Criteria: Pole Top Rot Present?" = "Default"),
"pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
"bird_animal_damage" =
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
measured_condition_inputs =
list("pole_decay" =
list("Condition Criteria: Degree of Decay/Deterioration" = "Default")),
reliability_factor = "Default")
```

Description

This function calculates the current annual probability of failure per kilometer for submarine cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_submarine_cables(
   sub_cable_type = "EHV Sub Cable",
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   topography = "Default",
   situation = "Default",
   wind_wave = "Default",
   intensity = "Default",
```

200 pof_submarine_cables

```
landlocked = "no",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    condition_armour = "Default",
    age,
    reliability_factor = "Default")
```

Arguments

sub_cable_type String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: sub_cable_type = c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable"). The deafult setting is sub_cable_type = "EHV Sub Cable".

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions. operating_voltage_pct

Numeric. The ratio in percent of operating/design voltage.

topography String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Very High Detrimental Topography", "Default"

)

situation Situation of the cable

wind_wave Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings:

• wind_wave = 1: Sheltered sea loch, Wind <200 W/m2

• wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2

• wind wave = 3: Wave <15kW/m, Wind 200-800 W/m²

• wind_wave = "Default": No data available

intensity String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "Wisch", "Default")

"Moderate", "High", "Default").

landlocked String. Options: landlocked = c("yes", "no"). Default setting for landlocked

= "no".

sheath_test String. Indicating the state of the sheath. Options: sheath_test = c("Pass",

"Failed Minor", "Failed Major", "Default"). See page 158, table 189 in

CNAIM (2021).

partial_discharge

String. Indicating the level of partial discharge. Options: $partial_discharge = c("Low", "Medium", "High", "Default")$. See page 158, table 190 in CNAIM

(2021).

fault_hist Numeric. The calculated fault rate for the cable per annum per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 158,

table 191 in CNAIM (2021).

condition_armour

String. Indicating the external condition of the submarine cables armour. Options: condition_armour = c("Good", "Poor", "Critical", "Default")

```
age Numeric. The current age in years of the cable.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
```

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for 1 km EHV Sub Cable
pof_submarine_cables(
sub_cable_type = "EHV Sub Cable",
utilisation_pct = "Default",
 operating_voltage_pct = "Default",
 topography = "Default",
 situation = "Default",
 wind_wave = "Default"
 intensity = "Default",
 landlocked = "no",
 sheath_test = "Default",
 partial_discharge = "Default",
 fault_hist = "Default",
 condition_armour = "Default",
age = 10,
reliability_factor = "Default"
)
```

```
pof_switchgear_primary_10kv
```

Current Probability of Failure for 10 kV Switchgear (GM) Primary

Description

This function calculates the current annual probability of failure 10 kV Switchgear (GM) Primary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_switchgear_primary_10kv(
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.0052,
   c_value = 1.087,
   normal_expected_life = 55
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

The number of operations for duty factor

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed conditions input

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defautor

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value

Numeric. $k_value = 0.0052$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.

c_value

Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10 kV Switchgear (GM) Primary
pof_switchgear_primary_10kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_{value} = 0.0052,
c_{value} = 1.087,
normal_expected_life = 55)
```

```
pof_switchgear_secondary_10kV
```

Current Probability of Failure for 10kV Switchgear secondary

Description

This function calculates the current annual probability of failure 10kV Switchgear secondary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_switchgear_secondary_10kV(
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
```

```
corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default",
  k_value = 0.0067,
  c_value = 1.087,
  normal_expected_life = 55
)
```

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea

level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set

the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

measured_condition_inputs

Named list observed_conditions_input

observed_condition_inputs

 $Named\ list\ observed_conditions_input\ conductor_samp = c("Low", "Medium/Normal", "High", "Defaultions = conductor_samp = conductor_samp$

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0067 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10kV Swicthgear secondary
pof_switchgear_secondary_10kV(
```

pof_towers 205

```
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.0067,
c_{value} = 1.087,
normal_expected_life = 55)
```

pof_towers

Current Probability of Failure for Towers

Description

This function calculates the current annual probability of failure per kilometer EHV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_towers(
   tower_asset_category = "33kV Tower",
   foundation_type = "Foundation - Fully Encased Concrete",
   paint_type = "Paint System - Paint",
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   observed_condition_inputs_steelwork,
   observed_condition_inputs_foundation,
```

206 pof_towers

```
reliability_factor = "Default"
)
```

Arguments

tower_asset_category

String The type of Tower asset category

foundation_type

String Foundation type of the tower

paint_type String Paint type of the tower

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

Numeric Number of operations for the tower

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

observed_condition_inputs_steelwork

Named list observed_conditions_input

observed_condition_inputs_paint

Named list observed_conditions_input

observed_condition_inputs_foundation

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defause page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for Towers
tower_asset_category = "33kV Tower",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
paint_type = "Paint System - Galvanising",
foundation_type = "Foundation - Earth Grillage",
observed_condition_inputs_steelwork =
list("tower_legs" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_bracings" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_crossarms" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_peak" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_paint =
list("paintwork_cond" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_foundation =
list("foundation_cond" = list("Condition Criteria: Observed Condition" = "Default")),
reliability_factor = "Default")
```

```
pof_tower_ohl_support_50kv
```

Current Probability of Failure for Towers OHL support 50kV

Description

This function calculates the current annual probability of failure per kilometer EHV for Towers OHL support 50kV The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_tower_ohl_support_50kv(
   foundation_type = "Foundation - Fully Encased Concrete",
   paint_type = "Paint System - Paint",
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   observed_condition_inputs_steelwork,
   observed_condition_inputs_paint,
   observed_condition_inputs_foundation,
   reliability_factor = "Default",
```

```
k_value = 0.0545,
  c_value = 1.087,
  normal_expected_life = "Default"
)
```

foundation_type

String. Foundation type of the tower foundation_type = c("Foundation - Fully Encased Concrete", "Foundation - Earth Grillage")

paint_type String. Paint type of the tower foundation_type = c(Paint System - Galvanising,

Paint System - Paint)

placement String. Specify if the asset is located outdoor or indoor.

number_of_operations

Numeric Number of operations for the tower

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years of the conductor.

observed_condition_inputs_steelwork

Named list observed_conditions_input

observed_condition_inputs_paint

Named list observed_conditions_input

observed_condition_inputs_foundation

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A

setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

k_value Numeric. k_value = 0.0545 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110.

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for Towers
pof_tower_ohl_support_50kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
paint_type = "Paint System - Galvanising",
foundation_type = "Foundation - Earth Grillage",
observed_condition_inputs_steelwork =
list("tower_legs" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_bracings" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_crossarms" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_peak" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_paint =
list("paintwork_cond" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_foundation =
list("foundation_cond" = list("Condition Criteria: Observed Condition" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0545,
c_{value} = 1.087,
normal_expected_life = "Default")
```

pof_transformer_04_10kv

Current Probability of Failure for 0.4/10kV Transformers

Description

This function calculates the current annual probability of failure for 0.4/10kV Transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_transformer_04_10kv(
   utilisation_pct = "Default",
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   partial_discharge = "Default",
   temperature_reading = "Default",
   observed_condition = "Default",
   reliability_factor = "Default",
```

```
moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  k_value = 0.0077,
  c_value = 1.087,
  normal_expected_life = 55
)
```

utilisation_pct

Numeric Utilisation percentage

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Numeric. The current age in years.

partial_discharge

String. Indicating the level of partial discharge. Options for partial_discharge: partial_discharge = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").

temperature_reading

String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").

observed_condition

String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration", "Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

moisture Numeric. the amount of moisture given in (ppm)

acidity Oil Acidity

bd_strength Numeric. the amount of breakdown strength given in (kV)

k_value Numeric. k_value = 0.0077 by default. This number is given in a percentage.

The default value is accordingly to the standard "DE-10kV apb kabler CNAIM"

on p. 34.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current probability of failure for 0.4/10kV Transformers
pof_transformer_04_10kv(utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
k_{value} = 0.0077,
c_value = 1.087,
normal_expected_life = 55)
```

```
pof_transformer_11_20kv
```

Current Probability of Failure for 6.6/11kV and 20kV Transformers

Description

This function calculates the current annual probability of failure for 6.6/11kV and 20kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_transformer_11_20kv(
  hv_transformer_type = "6.6/11kV Transformer (GM)",
  utilisation_pct = "Default",
  placement = "Default",
  altitude_m = "Default",
```

```
distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  partial_discharge = "Default",
  temperature_reading = "Default",
  observed_condition = "Default",
  reliability_factor = "Default",
  moisture = "Default",
  oil_acidity = "Default",
  bd_strength = "Default"
)
```

hv_transformer_type

String. Refers to the high voltage transformer type the calculation is done for. Options: $hv_transformer_type = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)")$. The default setting is $hv_transformer_type = 6.6/11kV Transformer (GM)$.

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age Nu partial_discharge

Numeric. The current age in years.

Str

String. Indicating the

temperature_reading

String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021).

observed_condition

String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration",

pof_transformer_132kv 213

```
"Slight deterioration", "Some Deterioration", "Substantial Deterioration",
                 "Default"). See page 130, table 81 in CNAIM (2021).
reliability_factor
                 Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
                 setting of "Default" sets the reliability_factor to 1. See section 6.14 on
                 page 73 in CNAIM (2021).
moisture
                 Numeric. the amount of moisture given in (ppm) See page 162, table 203 in
                 CNAIM (2021).
                 Oil Acidity level of partial discharge. Options for partial_discharge: partial_discharge
oil_acidity
                 = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").
                 See page 153, table 171 in CNAIM (2021).
bd_strength
                 Numeric. the amount of breakdown strength given in (kV) See page 162, table
                 205 in CNAIM (2021).
```

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current probability of failure for a 6.6/11 kV transformer
pof_transformer_11_20kv(hv_transformer_type = "6.6/11kV Transformer (GM)",
utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
oil_acidity = "Default",
bd_strength = "Default")
```

Description

This function calculates the current annual probability of failure for 132kv transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_transformer_132kv(
  transformer_type = "132kV Transformer (GM)",
 year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default".
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default"
)
```

transformer_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("132kV Transformer

year_of_manufacture

Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).

utilisation_pct

placement

Numeric. The max percentage of utilisation under normal operating conditions.

no_taps Numeric. Average number of daily taps (tapchanger).

> String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021)

for default environments.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1

independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

Numeric. The current age in years of the transformer. age_tf

age_tc Numeric. The current age in years of the tapchanger

partial_discharge_tf

String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 176 in CNAIM (2021).

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 156, table 178 in CNAIM (2021).

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 155, table 177 in CNAIM (2021).

main_tank String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 134, table 93 in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

Deterioration", "Default"). See page 134, table 94 in CNAIM (2021).

bushings String. Indicating the observed condition of the bushings. Options: bushings =

c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 135, table 95 in CNAIM (2021).

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 135, table 96 in CNAIM (2021).

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default"). See page 135, table 97 in CNAIM (2021).

external_tap String. Indicating the observed external condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 136, table 98 in CNAIM (2021).

internal_tap String. Indicating the observed internal condition of the tapchanger. Options:

internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 136, table 99 in CNAIM (2021).

mechnism_cond String. Indicating the observed condition of the drive mechnism. Options:

mechnism_cond = c("No deterioration", "Superficial/minor deterioration",

"Some Deterioration", "Substantial Deterioration", "Default"). See

page 136, table 100 in CNAIM (2021).

diverter contacts

String. Indicating the observed condition of the selector and diverter contacts.

Options: diverter_contacts = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 136, table 101 in CNAIM (2021).

diverter_braids

String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 136, table 102 in CNAIM (2021)

moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in

CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204

in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table

205 in CNAIM (2021).

hydrogen Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

methane Numeric. Refers to the methane level in the transformer oil. Methane levels are

measured in ppm. A setting of "Default" will result in the best possible result.

ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.	
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.	
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.	
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO\ Common\ Network\ Asset\ Indices\ Methodology\ (CNAIM),\ Health\ \&\ Criticality\ -\ Version\ 2.1,\ 2021:\ https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Current probability of failure for a 132kV transformer
pof_transformer_132kv(transformer_type = "132kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
```

```
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default"
mechnism_cond = "Default"
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default")
```

pof_transformer_30_60kv

Current Probability of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates the current annual probability of failure for 30/10kV and 60/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_transformer_30_60kv(
    transformer_type = "60kV Transformer (GM)",
    year_of_manufacture,
    utilisation_pct = "Default",
    no_taps = "Default",
    placement = "Default",
    altitude_m = "Default",
```

```
distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
 main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default"
  external_tap = "Default"
  internal_tap = "Default",
 mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
  moisture = "Default",
  acidity = "Default"
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
 methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default",
  k_value = 0.454,
  c_{value} = 1.087,
  normal_expected_life_tf = "Default",
 normal_expected_life_tc = "Default"
)
```

Arguments

no_taps Numeric. Average number of daily taps (tapchanger).

placement String. Specify if the asset is located outdoor or indoor.

altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea

level.altitude_m is used to derive the altitude factor. A setting of "Default"

will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age_tf Numeric. The current age in years of the transformer.

age_tc Numeric. The current age in years of the tapchanger

partial_discharge_tf

String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").

main_tank

String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

Deterioration", "Default"). in CNAIM (2021).

bushings String. Indicating the observed condition of the bushings. Options: bushings =

c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default").

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default").

external_tap String. Indicating the observed external condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). in CNAIM (2021).

internal_tap String. Indicating the observed internal condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). in CNAIM (2021).

mechnism_cond

String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).

diverter_contacts

String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).

diverter_braids

String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

Mumeric. the amount of moisture given in (ppm) See page 162, table 203 in

CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204

in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table

205 in CNAIM (2021).

hydrogen Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

methane Numeric. Refers to the methane level in the transformer oil. Methane levels are

measured in ppm. A setting of "Default" will result in the best possible result.

ethylene Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are

measured in ppm. A setting of "Default" will result in the best possible result.

ethane Numeric. Refers to the ethane level in the transformer oil. Ethane levels are

measured in ppm. A setting of "Default" will result in the best possible result.

acetylene Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

hydrogen_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

methane_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

ethylene_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

ethane_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

acetylene_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde-

hyde levels are measured in ppm. A setting of "Default" will result in the best

possible result.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

value is accordingly to the CNAIM standard on page 107.

```
# Current probability of failure for a 60/10kV transformer
pof_transformer_30_60kv(transformer_type = "60kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default".
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
```

```
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
k_value = 0.454,
c_value = 1.087,
normal_expected_life_tf = "Default",
normal_expected_life_tc = "Default")
```

pof_transformer_33_66kv

Current Probability of Failure for 33/10kV and 66/10kV Transformers

Description

This function calculates the current annual probability of failure for 33/10kV and 66/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_transformer_33_66kv(
  transformer_type = "66kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
```

```
mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default"
  furfuraldehyde = "Default",
  reliability_factor = "Default"
)
```

Arguments

transformer_type

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("33kV Transformer (GM)", "66kV Transformer (GM)"). The default setting is transformer_type = "66kV Transformer (GM)"

year_of_manufacture

Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

no_taps

Numeric. Average number of daily taps (tapchanger).

placement

String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m

Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

age_tf Numeric. The current age in years of the transformer.

age_tc Numeric. The current age in years of the tapchanger

partial_discharge_tf

String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 154, table 173 in CNAIM (2021).

partial_discharge_tc

String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 175 in CNAIM (2021).

temperature_reading

String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 154, table 174 in CNAIM (2021).

main_tank String. Indicating the observed condition of the main tank. Options: main_tank

= c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 131, table 83 in CNAIM (2021).

coolers_radiator

String. Indicating the observed condition of the coolers/radiators. Options:

coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant

Deterioration", "Default"). See page 131, table 84 in CNAIM (2021).

bushings String. Indicating the observed condition of the bushings. Options: bushings =

c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 131, table 85 in CNAIM (2021).

kiosk String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default").

See page 132, table 86 in CNAIM (2021).

cable_boxes String. Indicating the observed condition of the cable boxes. Options: cable_boxes

= c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa

Deterioration", "Default"). See page 132, table 87 in CNAIM (2021).

external_tap String. Indicating the observed external condition of the tapchanger. Options:

external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 133, table 88 in CNAIM (2021).

internal_tap String. Indicating the observed internal condition of the tapchanger. Options:

internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial

Deterioration", "Default"). See page 133, table 89 in CNAIM (2021).

mechnism_cond String. Indicating the observed condition of the drive mechnism. Options:

mechnism_cond = c("No deterioration", "Superficial/minor deterioration",

"Some Deterioration", "Substantial Deterioration", "Default"). See

page 133, table 90 in CNAIM (2021).

diverter_contacts

String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor

deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 91 in CNAIM (2021).

diverter_braids

String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor

 ${\tt deterioration", "Some Deterioration", "Substantial Deterioration", "Default")}.$

See page 134, table 92 in CNAIM (2021)

moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in

CNAIM (2021).

acidity Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204

in CNAIM (2021).

bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table

205 in CNAIM (2021).

hydrogen Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

methane Numeric. Refers to the methane level in the transformer oil. Methane levels are

measured in ppm. A setting of "Default" will result in the best possible result.

ethylene Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are

measured in ppm. A setting of "Default" will result in the best possible result.

ethane Numeric. Refers to the ethane level in the transformer oil. Ethane levels are

measured in ppm. A setting of "Default" will result in the best possible result.

acetylene Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels

are measured in ppm. A setting of "Default" will result in the best possible

result.

hydrogen_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

methane_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

ethylene_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

ethane_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

acetylene_pre Numeric. Previous results. A setting of "Default" will result in the best possi-

ble result.

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde-

hyde levels are measured in ppm. A setting of "Default" will result in the best

possible result.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on

page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Current probability of failure for a 66/10kV transformer
pof_transformer_33_66kv(transformer_type = "66kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default")
```

predict_weibull_model Prediction function for Weibull model

Description

This function uses the Weibull model parameters trained by the function train_weibull_model(), together with the environmental factors for a specific transformer, and determines the probability of failure at a given age.

Usage

```
predict_weibull_model(
 environmental_factors = data.frame(utilisation_pct = "Default", placement = "Default",
  altitude_m = "Default", distance_from_coast_km = "Default", corrosion_category_index
    = "Default", partial_discharge = "Default", oil_acidity = "Default",
    temperature_reading = "Default", observed_condition = "Default"),
 weibull_model_parameters = data.frame(shapes = c(3.597272, 2.528015, 2.273607, 2.10145,
  2.048909), scales.intercept = c(100.17922, 45.54622, 73.63507, 29.99655, 31.19306),
  scales.1 = c(0.0028536801, 0.0014449054, 0.0011716558, -0.0003356626, -0.0017302242),
  scales.2 = c(-8.202209, -3.856043, -2.818854, -2.388243, -2.940468), scales.3 =
  c(-0.003023546, -0.001602048, -0.00134834, -0.00198866, -0.003149921), scales.4 =
  c(-0.040016081, -0.028129483, -0.017586604, -0.009426902, -0.02178312), scales.5 = 
    c(-1.4776137, -0.6794045,
     -0.6000869, -0.3839049, -0.4445468), scales.6 =
  c(-0.811395564, 0.015705206, -9.815935489, -0.002548827, -0.085903822), scales.7 =
    c(-4.4776511, -0.3677058, 0.4590218, -0.6364809, -0.3314029), scales.8 =
  c(-1.5861982, 0, -0.1398528, -0.1721091, 0), scales.9 = c(-0.7914404, -0.2632199,
    -1.1882148, 0, 0))
)
```

Arguments

age Numeric. Age of transformer which should be used in the prediction. environmental_factors

Data frame. Must contain the following fields: utilisation_pct: Numeric or "Default", placement: "Indoor", "Outdoor" or "Default", altitude_m: Numeric or "Default", distance_from_coast_km: Numeric or "Default", corrosion_category_index: Numeric or "Default", partial_discharge: "Low", "Medium", "High (Not Confirmed)", "High (Confirmed)" or "Default", oil_acidity: Numeric or "Default", temperature_reading: "Normal", "Moderately High", "Very High" or "Default", observed_condition: "No deterioration", "Superficial/minor deterioration", "Slight Deterioration", "Some deterioration", "Substantial deterioration" or "Default" Default value if environmental_factors is not provided: data frame with value "Default" for all fields

```
weibull_model_parameters
```

Data frame. The output returned by the function train_weibull_model(). Default value if weibull_parameters is not provided: data frame with parameters trained on data set transformer_11kv_faults.rda

Value

Numeric. Probability of failure at the given age.

Source

```
https://www.cnaim.io/docs/fault-analysis/
```

Examples

```
predict_weibull_model(age = 50)
```

```
present_value_future_risk
```

Present Value of Future Risk

Description

This function calculates the present value of future risk. See section 5.5 on page 32 in CNAIM (2021).

Usage

```
present_value_future_risk(pof, cof, r = 0.035)
```

Arguments

pof A vector of the probability of failure of the asset over years

cof The consequence of failure of the asset

r discount rate

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
present_value_future_risk(c(0.1, 0.2, 0.5), 100)
```

230 risk_calculation

risk_calculation Calculates risk and converts to matrix coordinates

Description

This function calculates risk matrix coordinates dimensions.

Usage

```
risk_calculation(
  matrix_dimensions,
  id,
  chs,
  cof,
  asset_type,
  hi_bands = NULL,
  ci_bands = NULL
)
```

Arguments

matrix_dimensions

A data frame with the dimensions of the desired risk matrix.

id An integer that identifies the asset

chs The Current Health Score (CHS) of the asset

cof The Consequence of Failure of the asset

asset_type The asset type to be calculated for class

hi_bands Specific Health Index (HI) bands for risk matrix. Default values are the same as

defined in the CNAIM v2.1 standard

ci_bands Specific Criticality Index (CI) bands for the risk matrix. Default values are the

same as defined in the CNAIM v.2.1 standard.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Calculate risk matrix coordinates for an asset
# 1. Make the risk matrix structure
matrix_structure <- risk_matrix_structure(5,4,NA)
# 2. Calculate risk matrix coordinates
risk_calculation(matrix_dimensions = matrix_structure,</pre>
```

231

```
id = 1,
chs = 4,
cof = 15000,
asset_type = "6.6/11kV Transformer (GM)")
```

```
risk_matrix_points_plot
```

Make a risk matrix with individual asset points

Description

This function makes a D3 visualization of monetary risk with each asset as a point on the grid.

Usage

```
risk_matrix_points_plot(risk_data_matrix, dots_vector, dot_radius)
```

Arguments

```
risk_data_matrix
```

Long format matrix data.

dots_vector

Coordinates of the dots.

dot_radius

Radius of the dots.

Description

This function makes a simple matrix structure that can be used as an input to the risk_matrix_points and risk_matrix_summary functions

Usage

```
risk_matrix_structure(cols, rows, value = NA)
```

Arguments

cols	Number of columns
rows	Number of rows

value Default value of each cell

```
risk_matrix_summary_plot
```

Make a risk matrix with non-linear spacing

Description

This function makes a D3 visualization of monetary risk with non-linear x and y intervals.

Usage

```
risk_matrix_summary_plot(
  risk_data_matrix,
  x_intervals = rep(20, 5),
  y_intervals = rep(25, 4)
)
```

Arguments

```
risk_data_matrix
```

Long format matrix data.

x_intervals An array of x spacing in percent (sum to 100) y_intervals An array of y spacing in percent (sum to 100)

safety_cof_board_04kv Safety cost of Failure for 0.4kV Board

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in (DKK).

Usage

```
safety_cof_board_04kv(location_risk, type_risk)
```

Arguments

```
location_risk String Type Financial factor criteria for 0.4kV board (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for 0.4kV board setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".
```

Value

Numeric. Financial consequences of failure for 0.4kV board

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_board_04kv(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_cables_04_10kv
```

Safety cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

```
safety_cof_cables_04_10kv(hv_asset_category)
```

Arguments

```
hv_asset_category String The type of HV asset category hv_asset_category = c("10kV \cup G \cup Cable (0il)","10kV \cup G \cup Cable (Non Pressurised)","0.4kV \cup G \cup Cable (Non Pressurised)".
```

Value

Numeric. Financial consequences of failure for 0.4kV and 10kV UG cables

```
safety_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)")
```

```
safety_cof_cables_60_30kv
Safety cost of Failure for 30-60 kV UG cables
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). #' ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Oil)", "60kV UG Cable (Oil)", "60kV UG Cable (Gas)".

Usage

```
safety_cof_cables_60_30kv(ehv_asset_category)
```

Arguments

```
ehv_asset_category
Asset category for analysis
```

Value

Numeric. Financial consequences of failure for 30-60 kV UG cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)")
```

safety_cof_ehv_cables Safety cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_ehv_cables(ehv_asset_category)
```

safety_cof_ehv_fittings 235

Arguments

```
ehv_asset_category
```

String The type of EHV cable distribution asset category Options: ehv_asset_category = c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV UG Cable (Oil)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").

Value

Numeric. Financial consequences of failure for EEHV UG cabkes & 132 kV UG cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)")
```

```
safety_cof_ehv_fittings
```

Safety cost of Failure for EHV/132kV Fittings

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_ehv_fittings(ehv_asset_category, location_risk, type_risk)
```

Arguments

```
ehv_asset_category
```

String The type of EHV asset category Options: ehv_asset_category = c("33kV Fittings", "66kV Fittings", "132kV Fittings")

location_risk

String Type Financial factor criteria for EHV fittings (cf. section D1.2.1, page 178, CNAIM, 2021). location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk

String. Asses Financial factor criteria for EHV fittings setting (cf. table 221, page 180, CNAIM, 2021). type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for EHV fittings

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1,
2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_
asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_ehv_switchgear

Safety cost of Failure for EHV switchgear & 132kV CB

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_ehv_switchgear(ehv_asset_category, location_risk, type_risk)
```

Arguments

```
ehv_asset_category
```

= c("33kV CB (Air Insulated Busbars)(ID)(GM)", "33kV CB (Air Insulated Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB (Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV CB (Gas Insulated Busbars)(ID)(GM)", "66kV CB (Gas Insulated Busbars)(OD)(GM)") String Type Financial factor criteria for EHV swicthgear & 132kV CB (cf. sec-

location_risk

tion D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category

type_risk

String. Asses Financial factor criteria for EHV swicthgear & 132kV CB setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for EHV swicthgear & 132kV CB

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_ehv_switchgear(ehv_asset_category = "33kV RMU",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_hv_switchgear_distribution

Safety cost of Failure for HV Switchgear Distribution
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_hv_switchgear_distribution(
  hv_asset_category,
  location_risk,
  type_risk
)
```

Arguments

```
hv_asset_category

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")

location_risk String Type Financial factor criteria for HV switchgear (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".
```

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_hv_switchgear_primary

Safety cost of Failure for HV Switchgear Primary
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_hv_switchgear_primary(hv_asset_category, location_risk, type_risk)
```

Arguments

```
hv_asset_category

String The type of HV asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")

location_risk

String Type Financial factor criteria for HV switchgear (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk

String. Asses Financial factor criteria for HV switchgear setting (cf. table 218, page 176, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".
```

Value

Numeric. Financial consequences of failure for HV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_lv_switchgear_and_other

Safety cost of Failure for LV swicthgear and others

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_lv_switchgear_and_other(lv_asset_category, location_risk, type_risk)
```

Arguments

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
location_risk = "Default",
type_risk = "Default")
```

240 safety_cof_lv_ugb

safety_cof_lv_ugb

Safety cost of Failure for LV UGB

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_lv_ugb(lv_asset_category, location_risk, type_risk)
```

Arguments

lv_asset_category

String The type of LV asset category Option: 1v_asset_category = "LV UGB"

location_risk

String Type Financial factor criteria for LV UGB (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High").

The default setting is location_risk = "Medium".

type_risk

String. Asses Financial factor criteria for LV UGB setting (cf. table 221, page 178, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High").

The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for LV UGB

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_lv_ugb(lv_asset_category = "LV UGB", location_risk = "Default", type_risk = "Default")
```

safety_cof_ohl_cond 241

safety_cof_ohl_cond

Safety cost of Failure for Overhead Line Conductors

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_ohl_cond(ohl_cond_asset_category, location_risk, type_risk)
```

Arguments

```
ohl_cond_asset_category
```

String The type of Pole asset category Options: ohl_cond_asset_category = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "133kV OHL (Tower Line) Conductor")

"132kV OHL (Tower Line) Conductor").

location_risk String Type Financial factor criteria for Overhead Line Conductors (cf. section

D1.2.1, page 178, CNAIM, 2021). location_risk = c("Low", "Medium", "High").

The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for Overhead Line Conductors setting

(cf. table 221, page 180, CNAIM, 2021). type_risk = c("Low", "Medium",

"High"). The default setting is type_risk = "Medium".

Value

Numeric. Safety consequences of failure for Overhead Line Conductors

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_ohl_cond(
ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_ohl_cond_50kv
```

Safety cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

```
safety_cof_ohl_cond_50kv(location_risk, type_risk)
```

Arguments

Value

Numeric. Safety consequences of failure for Overhead Line Conductors

Examples

```
safety_cof_ohl_cond_50kv(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_ohl_fittings_50kv
Safety cost of Failure for 50kV Fittings
```

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_ohl_fittings_50kv(location_risk, type_risk)
```

safety_cof_pillar_04kv 243

Arguments

location_risk String Type Financial factor criteria for 50kV fittings Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium". type_risk String. Asses Financial factor criteria for 50kV fittings setting Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for EHV fittings

Examples

```
safety_cof_ohl_fittings_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_pillar_04kv

Safety cost of Failure for 0.4kV Pillar

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK

Usage

```
safety_cof_pillar_04kv(location_risk, type_risk)
```

Arguments

location_risk String Type Financial factor criteria for 0.4kV Pillar (cf. section D1.2.1, page

178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High").

The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for 0.4kV Pillar setting (cf. table 221,

page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High").

The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for 0.4kV Pillar

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

244 safety_cof_poles

Examples

```
safety_cof_pillar_04kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_poles

Safety cost of Failure for Pole

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_poles(pole_asset_category, location_risk, type_risk)
```

Arguments

```
String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").

location_risk
String Type Financial factor criteria for Pole (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk
String. Asses Financial factor criteria for pole setting (cf. table 221, page 180,
```

type_risk

String. Asses Financial factor criteria for pole setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Safety consequences of failure for poles

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_poles(pole_asset_category = "33kV Pole",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_poles_ohl_support_50kv

Safety cost of Failure for Poles OHL Support 50kV
```

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_poles_ohl_support_50kv(
  pole_asset_category,
  location_risk,
  type_risk
)
```

Arguments

Value

Numeric. Safety consequences of failure for poles

Examples

```
safety_cof_poles_ohl_support_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_relay

Safety cost of Failure for Relays

Description

This function calculates safety consequences of failure. Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_relay(location_risk, type_risk)
```

Arguments

location_risk String Type Financial factor criteria for 50kV fittings Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for 50kV fittings setting Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for relay

Examples

```
safety_cof_relay(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_serviceline
```

Safety cost of Failure for Service Lines

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

```
safety_cof_serviceline()
```

Value

Numeric. Financial consequences of failure for service line

```
safety_cof_serviceline()
```

```
safety_cof_submarine_cables_10kv

Safety cost of Failure for 10kV Submarine Cables
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_submarine_cables_10kv()
```

Value

Numeric. Safety consequences of failure for Sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_submarine_cables_10kv()
```

```
safety_cof_submarine_cables_30_60kv

Safety cost of Failure for 30kV and 60kV Submarine Cables
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_submarine_cables_30_60kv()
```

Value

Numeric. Safety consequences of failure for Sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_submarine_cables_30_60kv()
```

```
safety_cof_sub_cables Safety cost of Failure for Sub cables
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_sub_cables(sub_cable_asset_category)
```

Arguments

```
sub_cable_asset_category

String The type of Submarine cable asset category Options: sub_cable_asset_category

= c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").
```

Value

Numeric. Safety consequences of failure for Sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")
```

```
safety_cof_switchgear_30_60kv

Safety cost of Failure for 30kV and 60kV Switchgear
```

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_30_60kv(ehv_asset_category, location_risk, type_risk)
```

Arguments

Value

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
safety_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_switchgear_primary_10kv

Safety cost of Failure for 10kV Switchgear Primary
```

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_primary_10kv(location_risk, type_risk)
```

Arguments

Value

Numeric. Financial consequences of failure for HV switchgear

Examples

```
safety_cof_switchgear_primary_10kv(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_switchgear_secondary_10kv

Safety cost of Failure for 10 kV Switchgear Secondary
```

Description

This function calculates safety consequences of failure. Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_secondary_10kv(location_risk, type_risk)
```

Arguments

location_risk String Type Financial factor criteria for 10kV switchgear secondary (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for 10kV switchgear secondary setting. Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for 10kV switchgear secondary

safety_cof_towers 251

Examples

```
safety_cof_switchgear_secondary_10kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_towers

Safety cost of Failure for tower

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_towers(tower_asset_category, location_risk, type_risk)
```

Arguments

Value

Numeric. Safety consequences of failure for towers

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
safety_cof_towers(tower_asset_category = "33kV Tower",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_tower_ohl_support_50kv
Safety cost of Failure for Tower OHL Support 50 kV
```

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_tower_ohl_support_50kv(location_risk, type_risk)
```

Arguments

```
location_risk String Type Financial factor criteria for tower Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for tower Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".
```

Value

Numeric. Safety consequences of failure for tower ohl support 50 kV

Examples

```
safety_cof_tower_ohl_support_50kv(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_transformers
```

Safety cost of Failure for Transformer

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_transformers(tf_asset_category, location_risk, type_risk)
```

Arguments

tf_asset_category

String The type of Transformer asset category Options: $tf_asset_category = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)" "132kV Transformer (GM)").$

location_risk String Type Financial factor criteria for Transformer (cf. section D1.2.1, page

 $178, CNAIM, 2021). \ Options: \ location_risk = \verb|c("Low", "Medium", "High")|.$

The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for Transformer setting (cf. table 221,

page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High").

The default setting is type_risk = "Medium".

Value

Numeric. Safety consequences of failure for Transformers

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_transformer_30_60kv
```

Safety cost of Failure for 30/10kv and 60/10kv Transformer

Description

This function calculates safety consequences of failure Outputted in DKK.

Usage

```
safety_cof_transformer_30_60kv(tf_asset_category, location_risk, type_risk)
```

Arguments

```
tf_asset_category
```

String The type of Transformer Options: $tf_asset_category = c("30kV Transformer (GM)","60kV Transformer (GM)")$.

254 s_cof_swg_tf_ohl

location_risk String Type Financial factor criteria for Transformer (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".

type_risk String. Asses Financial factor criteria for Transformer setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Safety consequences of failure for Transformers

Examples

```
safety_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
location_risk = "Default",
type_risk = "Default")
```

s_cof_swg_tf_ohl

Safety Consequences of Failure for Switchgears, Transformers & Overhead Lines

Description

This function calculates safety consequences of failure for switchgear, transformers and overhead lines (cf. section 7.4, page 80, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
s_cof_swg_tf_ohl(
  type_risk = "Default",
  location_risk = "Default",
  asset_type_scf
)
```

Arguments

type_risk

String. Risk that the asset presents to the public by its characteristics and particular situation. Options: $type_risk = c("Low", "Medium", "High", "Default")$ (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".

location_risk

String. Proximity to areas that may affect its likelihood of trespass or interference. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".

train_weibull_model 255

```
asset_type_scf String. Options: asset_type_scf = c("LV Poles", "LV Circuit Breaker", "LV
                Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)",
                "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV
                Poles", "20kV Poles", "6.6/11kV CB (GM) Primary", "6.6/11kV CB (GM) Secondary",
                "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV X-type RMU", "20kV CB
                (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch (GM)", "20kV RMU",
                "6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Pole", "66kV
                Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower", "33kV Fittings", "66kV
                OHL (Tower Line) Conductor", "66kV Tower", "66kV Fittings", "33kV CB (Air
                Insulated Busbars) (ID) (GM)", "33kV CB (Air Insulated Busbars) (OD) (GM)", "33kV
                CB (Gas Insulated Busbars)(ID) (GM)", "33kV CB (Gas Insulated Busbars)(OD)
                (GM)", "33kV Switch (GM)", "33kV RMU", "66kV CB (Air Insulated Busbars)(ID)
                (GM)","66kV CB (Air Insulated Busbars)(OD) (GM)","66kV CB (Gas Insulated
                Busbars)(ID) (GM)","66kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV
                Transformer (GM)", "66kV Transformer (GM)", "132kV OHL (Tower Line) Conductor", "132kV
                Tower", "132kV Fittings", "132kV CB (Air Insulated Busbars)(ID) (GM)", "132kV
                CB (Air Insulated Busbars)(OD) (GM)","132kV CB (Gas Insulated Busbars)(ID)
                (GM)","132kV CB (Gas Insulated Busbars)(OD) (GM)", "132kV Transformer
                (GM)")
```

Value

Numeric. Safety consequences of failure for switchgear, transformers and overhead lines.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

train_weibull_model

Training function for Weibull model

Description

This function uses transformer fault statistics data to train a Weibull model: Based on the environmental factors determining a transformer's expected lifetime, the set of all data points is first partitioned into five parts. Then a multilinear estimate for the expected lifetime of a transformer is trained for each part separately, and the corresponding Weibull shape and scale parameters for the five parts are estimated. The function returns the shape and scale parameters needed for the function predict_weibull_model().

Usage

```
train_weibull_model(transformer_faults_data)
```

Arguments

transformer_faults_data

Data frame. Contains past data on transformer faults, together with environmental factors. Must contain the following fields: utilisation_pct: Numeric or "Default", placement: "Indoor", "Outdoor" or "Default", altitude_m: Numeric or "Default", distance_from_coast_km: Numeric or "Default", corrosion_category_index: Numeric or "Default", partial_discharge: "Low", "Medium", "High (Not Confirmed)", "High (Confirmed)" or "Default", oil_acidity: Numeric or "Default", temperature_reading: "Normal", "Moderately High", "Very High" or "Default", observed_condition: "No deterioration", "Superficial/minor deterioration", "Slight Deterioration", "Some deterioration", "Substantial deterioration" or "Default" age: Numeric

Value

Data frame. All shape and scale parameters needed for the function predict_weibull_model().

Source

```
https://www.cnaim.io/docs/fault-analysis/
```

Examples

```
train_weibull_model(transformer_faults_data = transformer_11kv_faults)
```

transformer_11kv_faults

Failure statistics dataset for 10,000 6.6/11kV transformers

Description

A dataset containing failure statistics for 10,000 6.6/11kV transformers from the CNAIM standard, simulated over 100 years. The variables are as follows:

Usage

```
transformer_11kv_faults
```

Format

```
A data frame with 103,848 rows and 13 variables:

utilisation_pct Utilization of a transformer in %

placement Is the transformer placed indoors or outdoors?

altitude_m Altitude above sea level (m)

distance_from_coast_km Distance from salt water (km)

corrosion_category_index Corrosion zone the asset exists in

partial_discharge Condition converted from TEV %-measurement

oil_acidity Oil acidity (mg KOH/g)

temperature_reading Temperature condition band

observed_condition Observed condition band

age Age of transformer (years)

pof Probability of failure (current and future) when the transformer failed

transformer_id Id of transformer that died

dead Monte carlo result showing if the transformer has died (TRUE)
```

Source

https://www.cnaim.io/

Index

* datasets transformer_11kv_faults, 256	<pre>environmental_cof_relay, 28 environmental_cof_serviceline, 29 environmental_cof_sub_cables, 30</pre>
beta_1, 6, 64	environmental_cof_submarine_10kv, 29
beta_2, 7	environmental_cof_submarine_30_60kv,
cof, 7, 17–35, 38, 40–48, 50–60, 62, 70–86, 88–93, 95, 232, 234–245, 247–252,	<pre>environmental_cof_switchgear_30_60kv, 31</pre>
254 cof_transformer_04_10kv, 8	environmental_cof_switchgear_primary_10kv,
cof_transformer_11kv, 10	32
current_health, 7, 11	<pre>environmental_cof_switchgear_secondary_10kv,</pre>
dga_test_modifier, 13	environmental_cof_tower_ohl_support_50kv, 34
duty_factor_cables, 14	<pre>environmental_cof_towers, 34</pre>
duty_factor_transformer_11_20kv, 15, 37	<pre>environmental_cof_transformer_30_60kv,</pre>
duty_factor_transformer_33_66kv, 16	36
e_cof_tf, 38 environmental_cof_board_04kv, 17	environmental_cof_transformers, 35 expected_life, 6, 14-16, 37
<pre>environmental_cof_cables_04_10kv, 17</pre>	f_cof_transformer_11kv, 62
environmental_cof_cables_60_30kv, 18	ffa_test_modifier, 39
environmental_cof_ehv_cables, 19	financial_cof_board_04kv,40
<pre>environmental_cof_ehv_fittings, 20</pre>	financial_cof_cables_04_10kv,41
<pre>environmental_cof_ehv_switchgear, 20</pre>	financial_cof_cables_60_30kv,41
<pre>environmental_cof_hv_switchgear_distribution</pre>	financial_cof_ehv_cables,42
21	<pre>financial_cof_ehv_fittings, 43</pre>
<pre>environmental_cof_hv_switchgear_primary,</pre>	financial_cof_ehv_switchgear,44
22	<pre>financial_cof_hv_switchgear_distribution,</pre>
<pre>environmental_cof_lv_switchgear_and_other,</pre>	45 financial_cof_hv_switchgear_primary,
environmental_cof_lv_ugb, 24	46
environmental_cof_ohl_cond, 25	financial_cof_lv_switchgear_and_other,
environmental_cof_ohl_cond_50kv, 25	47
environmental_cof_ohl_fittings_50kv,	financial_cof_lv_ugb, 48
26	financial_cof_ohl_cond, 48
environmental_cof_pillar_04kv, 26	financial_cof_ohl_cond_50kv, 49
environmental_cof_poles, 27	<pre>financial_cof_ohl_fittings_50kv, 50</pre>
<pre>environmental_cof_poles_ohl_support_50kv,</pre>	financial_cof_pillar_04kv, 51
28	financial_cof_poles, 52

INDEX 259

<pre>financial_cof_poles_ohl_support_50kv,</pre>	network_cof_ohl_cond,83
53	<pre>network_cof_ohl_cond_50kv, 84</pre>
financial_cof_relay, 54	<pre>network_cof_ohl_fittings_50kv, 84</pre>
financial_cof_serviceline, 54	<pre>network_cof_pillar_04kv, 85</pre>
financial_cof_sub_cables, 56	network_cof_poles_ohl_support_50kv,86
<pre>financial_cof_submarine_cables_10kv,</pre>	<pre>network_cof_relay, 86</pre>
55	<pre>network_cof_serviceline, 87</pre>
<pre>financial_cof_submarine_cables_30_60kv,</pre>	<pre>network_cof_submarine_cables_10kv, 88</pre>
55	<pre>network_cof_submarine_cables_30_60kv,</pre>
financial_cof_switchgear_30_60kv, 57	89
financial_cof_switchgear_primary_10kv,	network_cof_switchgear_30_60kv,90
57	network_cof_switchgear_primary_10kv,
<pre>financial_cof_switchgear_secondary_10kv,</pre>	90
58	network_cof_switchgear_secondary_10kv
financial_cof_tower_ohl_support_50kv,	91
60	network_cof_tower, 92
financial_cof_towers, 59	network_cof_tower_ohl_support_50kv, 93
financial_cof_transformer_30_60kv, 61	network_cof_transformer_30_60kv, 94
financial_cof_transformers, 60	network_cof_transformers, 93
Timancial_col_transformers, 00	Hetwork_cor_trainsrormers, 75
health_score_excl_ehv_132kv_tf, 12, 63,	oil_test_modifier,96
69	
	plot_pof, 97
initial_health, <i>12</i> , 64	pof_132kv_cb, 98
	pof_board_04kv, 100
location_factor, <i>37</i> , <i>65</i> , <i>67</i>	pof_building, 101
location_factor_sub, 65, 67	<pre>pof_cables_04kv_pex, 103</pre>
	pof_cables_10kv_oil, 105
matrix_adjusted_circles, 68	pof_cables_10kv_pex, 106
<pre>matrix_adjusted_intervals, 68</pre>	pof_cables_132kv, 108
mmi, <i>63</i> , 69	pof_cables_60_30kv, 110
	pof_cables_66_33kv, 112
n_cof_excl_ehv_132kv_tf, 95	pof_ehv_fittings, 113
network_cof_board_04kv, 70	pof_ehv_switchgear, 115
network_cof_cables_04_10kv, 71	pof_future_board_04kv, 117
network_cof_cables_60_30kv, 71	pof_future_building, 119
network_cof_ehv_cables, 72	pof_future_cables_04kv_pex, 121
<pre>network_cof_ehv_fittings, 73</pre>	pof_future_cables_10kv_oil, 123
network_cof_ehv_pole, 74	pof_future_cables_10kv_pex, 124
network_cof_ehv_sub_cable, 75	pof_future_cables_132kv, 126
network_cof_ehv_switchgear, 76	pof_future_cables_60_30kv, 128
network_cof_hv_lv_poles, 77	pof_future_cables_66_33kv, 130
network_cof_hv_sub_cables, 78	pof_future_meter, 132
network_cof_hv_switchgear_distribution,	pof_future_ohl_cond_132_66_33kv, 133
79	pof_future_ohl_cond_50kv, 136
network_cof_hv_switchgear_primary, 80	pof_future_ohl_fittings_50kv, 138
	•
network_cof_lv_switchgear_and_other,	pof_future_pillar_04kv, 140
81	pof_future_poles, 142
network_cof_lv_ugb, 82	pof_future_poles_ohl_support_50kv, 144

260 INDEX

pof_future_relay, 146	safety_cof_cables_04_10kv, 233
pof_future_rtu, 148	safety_cof_cables_60_30kv, 234
pof_future_serviceline, 150	safety_cof_ehv_cables, 234
pof_future_submarine_cables, 151	safety_cof_ehv_fittings, 235
pof_future_submarine_cables_10kv_oil,	safety_cof_ehv_switchgear, 236
153	safety_cof_hv_switchgear_distribution
pof_future_submarine_cables_10kv_pex,	237
155	<pre>safety_cof_hv_switchgear_primary, 238</pre>
<pre>pof_future_submarine_cables_30_60kv_oil,</pre>	safety_cof_lv_switchgear_and_other,
157	239
<pre>pof_future_submarine_cables_30_60kv_pex,</pre>	safety_cof_lv_ugb, 240
159	safety_cof_ohl_cond, 241
pof_future_switchgear_30_60kv, 161	safety_cof_ohl_cond_50kv, 242
pof_future_switchgear_primary_10kv,	safety_cof_ohl_fittings_50kv, 242
163	safety_cof_pillar_04kv, 243
pof_future_switchgear_secondary_10kv,	safety_cof_poles, 244
165	safety_cof_poles_ohl_support_50kv, 245
pof_future_transformer_04_10kv, 167	safety_cof_relay, 245
pof_future_transformer_11_20kv, 170	safety_cof_serviceline, 246
pof_future_transformer_132kv, 172	safety_cof_sub_cables, 248
pof_future_transformer_30_60kv, 177	safety_cof_submarine_cables_10kv, 247
pof_future_transformer_33_66kv, 181	safety_cof_submarine_cables_30_60kv,
pof_hv_switchgear_distribution, 186	247
pof_hv_switchgear_primary, 188	safety_cof_switchgear_30_60kv, 249
pof_lv_switchgear_and_other, 190	safety_cof_switchgear_primary_10kv,
pof_lv_ugb, 192	249
pof_meter, 193	safety_cof_switchgear_secondary_10kv,
pof_ohl_cond_132_66_33kv, 195	250
pof_poles, 197	safety_cof_tower_ohl_support_50kv, 252
pof_submarine_cables, 199	safety_cof_towers, 251
pof_switchgear_primary_10kv, 201	safety_cof_transformer_30_60kv, 253
pof_switchgear_secondary_10kV, 203	safety_cof_transformers, 252
pof_tower_ohl_support_50kv, 207	
pof_towers, 205	train_weibull_model, 228, 229, 255
pof_transformer_04_10kv, 209	transformer_11kv_faults, 256
pof_transformer_11_20kv, 211	
pof_transformer_132kv, 213	
pof_transformer_30_60kv, 218	
pof_transformer_33_66kv, 223	
predict_weibull_model, 228, 255, 256	
present_value_future_risk, 229	
risk_calculation, 230	
risk_matrix_points_plot, 231	
risk_matrix_structure, 231	
risk_matrix_summary_plot, 232	
s_cof_swg_tf_ohl, 254	
safety_cof_board_04kv, 232	
·	