Installation d'entrepôts

Une entreprise s'installant en France et y créant un réseau de distribution souhaite y construire 4 entrepôts. Elle a pour l'instant retenu 14 emplacements possibles et estimé pour chacun d'entre eux le coût de la construction et de l'installation. Ces coûts, exprimés en millions d'Euros sont résumés dans la table ci-dessous.

Ville	Coût	Ville	Cout	Ville	Coût
Bordeaux	32	Clermont	12	Dijon	18
Limoges	14	Lyon	34	Marseille	28
Montelimar	22	Montpellier	27	Orleans	15
Paris	40	Poitiers	16	Reims	17
Toulouse	24	Troyes	13	1.0000000000000000000000000000000000000	

L'entreprise souhaite minimiser le coût total d'installation et le problème serait donc enfantin si elle ne souhaitait aussi que les sites choisis soient suffisament distants les uns des autres (pour bien couvrir le territoire). Elle s'interdit ainsi que dans la solution, certains sites puissent être choisis conjointement. La liste suivante récapitule ainsi tous les couples de sites qui ne peuvent pas être choisis ensemble (car trop proches).

```
(Bordeaux, Limoges), (Bordeaux, Toulouse), (Clermont, Limoges), (Clermont, Lyon), (Clermont, Poitiers), (Dijon, Lyon), (Dijon, Troyes), (Dijon, Reims), (Limoges, Poitiers), (Lyon, Montelimar), (Marseille, Montelimar), (Marseille, Montpellier), (Montpellier, Toulouse), (Orleans, Paris), (Orleans, Troyes), (Orleans, Reims), (Orleans, Poitiers), (Paris, Troyes), (Reims, Troyes).
```

- 1. Représenter les incompatibilités entre villes sous forme d'un graphe.
- 2. Modéliser mathématiquement le problème d'optimisation en utilisant des variables x_i indiquant si un entrepot est construit ou non sur le site i. Les couts sont notés c_i et les incompatibilités constituent l'ensemble I.
- 3. Quelles relaxations pouvez-vous envisager pour trouver une borne ? Au fait s'agit-il de trouver une borne inférieure ou une borne supérieure ?
- 4. Résoudre le problème de manière exacte en utilisant une méthode Branch and Bound.

1

```
Minimize
obj: 32b + 12c + 18d + 14 li + 34 ly + 28 ma + 22 mo + 27 mt + 15 o +
40 pa + 16 po + 17 r + 24 t + 13 tr
Subject To
c1: b + li <= 1
c2: b + t <= 1
c3: c + li <= 1
c4: c + ly <= 1
c5: d + ly <= 1
c6: d + tr <= 1
c7: d + r <= 1
c8: c + po <= 1
c9: li + po <= 1
c10: mo + ly <= 1
c11: ma + mo <= 1
c12: ma + mt <= 1
c13: mo + mt <= 1
c14: mt + t <= 1
c15: o + pa <= 1
c16: o + tr <= 1
c17: o + r <= 1
c18: r + tr <= 1
c19: pa + tr <= 1
c20: b+c+d+li+ly+ma+mo+mt+o+pa+po+r+t+tr = 4
C21: o + po <= 1
Bounds
0 <= b <=1
0 <= c <= 1
0 <= d <= 1
0 <= li <=1
0 \le ly \le 1
0 <= ma <= 1
0 <= mo <= 1
0 \le mt \le 1
0 <= 0 <=1
0 <= pa <= 1
0 <= po <=1
0 <= r <= 1
0 <= t <=1
```

End

0 <= tr <=1

Problem:
Rows:
Columns:
Non-zeros:
Status:
Objective:

21 14 : 54 : OPTIMAL : obj = 63.5 (MINimum)

	z	107 04	20 62	Ur Sant	. ov 185	20 m2																	l l l z
21	No.	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	ر ح	4	ω	2	\vdash	No.
C .	Column name	C21	c20	c19	c18	c17	c16	c15	c14	c13	c12	c11	c10	c9	с8	c7	c6	с5	c4	C3	c2	c1	Row name
B	St	B	SN	B	N	₿	Z	₿	B	В	В	В	В	N	N	S	S	В	В	S	В	В	St
0.5	Activity	1	4	0.5	\vdash	Н	Н	0.5	0	0.5	0		0.5	Ъ	Ъ	1	Ъ		0.5	1	0	0.5	Activity
00	Lower bound		4																				Lower bound
ן ק	Upper bound	Ц	11	Ь	L	Ъ	1	Ц	Ъ	1		Н	Ц	L	1	1	1	⊣	Ц	1	1	1	Upper bound
10	Marginal		22		-1.5		-7							-2	-4	-3.5	-0.5			-6			Marginal

13 t 14 tr	11 po 12 r	9 o 10 pa	7 mo 8 mt	5 ly 6 ma	4 li
BZ	; cs cs	₽ ®	N B	2	В
0.5	00. 555	0 . 5	0 . 5	00	0.5
00	000	00	00	00	0
יי רי	н	ע ע	μμ	μμ	ш

ω d

В

0.5

0

12 6

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
max.rel.err = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err = 0.00e+00 on column 0
 max.rel.err = 0.00e+00 on column 0
 High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

End of output

2

18

G

