A Otimização Nuvem de Partículas (particle swarm)

Estéfane G. M. de Lacerda

Departamento de Engenharia da Computação e Automação UFRN

20/06/2007

Índice

Introdução

Algoritmo Nuvem de Partículas

Interpretação Geométrica

Melhoramentos e Variantes

- Desenvolvido pelo psicólogo social James Kennedy e o engenheiro eletricista Russel Eberhart em 1995;
- Inspirado no comportamento e na dinâmica dos movimentos dos pássaros, insetos e peixes;
- Originalmente desenvolvido para problemas de otimização com variáveis contínuas;
- Desempenho similar ao dos Algoritmos Genéticos;

Estudos apontam que um bando de passáros encontra alimento por meio de esforço conjunto. Isto sugere que eles compartilham informações.

No início as partículas "voam" aleatoriamente pelo espaço de busca.

Vantagens

- Insensível a mudança de escala das variáveis;
- Implementação simples;
- Adaptável a computadores paralelos;
- Não requer cálculo de derivadas;
- Poucos parâmetros para serem definidos pelo usuário;
- Bom para encontrar o mínimo global;

Desvantagens

 Rápido para localizar a bacia de atração das boas soluções, mas lento no ajuste fino da solução (como nos algoritmos genéticos).

Notação

$$\mathbf{x}_i = \begin{bmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,n} \end{bmatrix}$$
, posição da partícula i (coordenadas)
 $\mathbf{v}_i = \begin{bmatrix} v_{i,1} \\ v_{i,2} \\ \vdots \\ v_{i,n} \end{bmatrix}$, velocidade da partícula i

 $f(\mathbf{x}_i)$, aptidão da partícula im, tamanho da população de partículas

Notação

$\overline{\mathbf{p}_i}$, , , , , , , , , , , , , , , , , , ,
	a melhor posição encontrada pela partícula i
g	gbest (global best)
	a melhor posição encontrada por
	todas as partículas
<i>C</i> ₁ , <i>C</i> ₂	parâmetros cognitivo e social
	(também chamados de taxas de aprendizado)
W	ponderação de inércia
$\overline{r_{1j}, r_{2j}}$	números aleatórios entre 0 e 1

Atualização de Posição e Velocidade

Atualização de velocidade na iteração k

$$v_{ij}^{k+1} = wv_{ij}^k + c_1r_{1j}(p_{ij}^k - x_{ij}^k) + c_2r_{2j}(g_j^k - x_{ij}^k)$$

para
$$i = 1, ..., m$$
 e $j = 1, ..., n$.

Atualização de posição na iteração k

$$\mathbf{x}_i^{k+1} = \mathbf{x}_i^k + \mathbf{v}_i^{k+1}$$

para
$$i = 1, \ldots, m$$

Componentes Cognitivo e Social

- ► (p_i^k x_i^k) é o componente cognitivo: representa a experiência individual da partícula de onde a solução está.
- (g^k x_i^k) é o componente social: representa a experiência da nuvem de onde a solução está.

Algoritmo Nuvem de Partículas

```
inicialize a nuvem de partículas
repita
    para i=1 até m
        se f(\mathbf{x}_i) < f(\mathbf{p}_i) então
            \mathbf{p}_i = \mathbf{x}_i
            se f(\mathbf{x}_i) < f(\mathbf{g}) então
                \mathbf{q} = \mathbf{x}_i
            fim se
        fim se
        para i=1 até n
            r_1 = \text{rand}(), r_2 = \text{rand}()
            V_{ij} = WV_{ij} + c_1r_1(p_i - x_{ij}) + c_2r_2(g_i - x_{ii})
        fim para
        \mathbf{X}_i = \mathbf{X}_i + \mathbf{V}_i
    fim para
até satisfazer o critério de parada
```

Alguns Detalhes de Implementação

- Limites superior e inferior.
 - ▶ $x_{ij} \in [x_{\min}, x_{\max}]$. Caso x_{ij} saia deste intervalo fazer $x_{ij} = x_{\min}$ ou $x_{ij} = x_{\max}$ (conforme o caso). Fazer também $v_{ij} = 0$;
- Velocidade máxima.
 - $-V_{max} \leq V_{ij} \leq V_{max}$.
- Em geral, não é necessário armazenar g no computador, basta armazenar o índice i tal que p_i = g.

Interpretação Geométrica

Interpretação Geométrica

Diversificação e Intensificação

Nuvem de partículas fornece um mecanismo bem balanceado entre diversificação e intensificação:

$$v_{ij}^{k+1} = \underbrace{wv_{ij}^k}_{ ext{diversificação}} + \underbrace{c_1r_{1j}(p_{ij}^k - x_{ij}^k) + c_2r_{2j}(g_j^k - x_{ij}^k)}_{ ext{intensificação}}$$

Melhoramentos e Variantes

- Redução linear da ponderação de inércia;
- Fator de constrição;
- Modelos com Vizinhanças.

Redução Linear da Ponderação de Inércia

A cada iteração *k* a ponderação é reduzida:

$$w^{k+1} = w_{\text{max}} - k \left(\frac{w_{\text{max}} - w_{\text{min}}}{k_{\text{max}}} \right)$$

onde k_{max} é o número máximo de iterações.

Shi e Eberhart (1998) relataram que

$$w_{\text{max}} = 0, 9$$
 $w_{\text{min}} = 0, 4$
 $c_1 = c_2 = 2$

deu bons resultados em uma variedade de problemas.

Fator de Constrição

- Fator de Constrição foi introduzido por Clerc e Kennedy (2002).
- Tornou-se muito popular nos algoritmos recentes de nuvem de partícula.

Fator de Constrição

Atualização de velocidade:

$$v_{ij}^{k+1} = \chi \left[v_{ij}^k + c_1 r_{1j} (p_{ij}^k - x_{ij}^k) + c_2 r_{2j} (g_j^k - x_{ij}^k) \right]$$
$$\chi = \frac{2\kappa}{|2 - \varphi - \sqrt{\varphi^2 - 4\varphi}|}$$

onde χ é o fator de constrição, $\varphi=c_1+c_2$, $\varphi>4$.

Valores usuais, $\kappa = 1, \varphi = 4, 1 \Rightarrow \chi = 0,73$. $c_1 = c_2 = 2,05$.

Modelos com Vizinhanças

- A cada partícula é atribuído uma vizinhança;
- As vizinhanças tornam mais lento a transmissão da melhor posição atráves da nuvem;
- Converge mais lentamente, mas melhora a diversificação.

Modelos com Vizinhanças

Na nuvem de partícula, a vizinhança é social, ou seja, não é baseada na proximidade geográfica.

Modelos com Vizinhanças

- I_i é o local best (lbest_i) e representa a melhor posição encontrada na vizinhança da partícula i;
- Substitua g (gbest) por I₁ (lbest₁), ou seja,

$$V_{ij}^{k+1} = WV_{ij}^k + c_1r_1(p_{ij}^k - X_{ij}^k) + c_2r_2(I_i^k - X_{ij}^k)$$

Vizinhanças Soprepostas

- A nuvem é dividida em vizinhanças soprepostas.
- Exemplo: se há 8 partículas a,b,c,d,e,f,g,h e o tamanho da vizinhança é 2 então as vizinhanças são:

$$(h,a,b) - (a,b,c) - (b,c,d) - (c,d,e)$$

 $(d,e,f) - (e,f,g) - (f,g,h) - (g,h,a)$

Vizinhanças Soprepostas

Se o tamanho da vizinhança é dois, então partículas são arranjadas na forma de um anel.

O Conceito de Vizinhança em Nuvem de Partículas

- Este conceito de vizinhança nada tem haver com a idéia de "proximidade" no espaço de busca;
- De fato, vizinhos podem estar bem distantes um do outro no espaço de busca.

Outras Topologias de Vizinhanças

