SI01

Logique TD1

Exercice 1

En utilisant les tables de vérités, montrer que, quelles que soient les valeurs de vérité de P et Q, on a

$$\neg P \land \neg Q \Leftrightarrow \neg (P \lor Q)$$

Compléter

Р	Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$P \lor Q$	$\neg (P \vee Q)$

Indiquer les colonnes identiques qui permettent de conclure.

Exercice 2

En utilisant les tables de vérités, montrer que, quelles que soient les valeurs de vérité de P et Q, on a

$$(P \lor Q) \land (P \lor \neg Q) \Leftrightarrow P$$

Compléter

Р	Q	$\neg P$	$\neg Q$	$P \lor Q$	$P \vee \neg Q$	$(P \vee Q) \wedge (P \vee \neg Q)$

Indiquer les colonnes identiques qui permettent de conclure.

Exercice 3 - Lois de De Morgan

En utilisant des tables de vérité, montrer que, quelles que soient les valeurs de vérité de P et Q, on a

$$\overline{P\vee Q}=\overline{P}\wedge\overline{Q}$$

De même montrer que

$$\overline{P \wedge Q} = \overline{P} \vee \overline{Q}$$

Exercice 4 - On peut retrouver tous les opérateurs à partir du nor

Pour toutes propositions A et B on définit l'opération « nor », notée \downarrow par :

$$A \downarrow B \Longleftrightarrow \overline{A \lor B}$$

Cette opération est dite *universelle* car elle permet de retrouver toutes les autres opérations.

- **1.** Montrer que $A \downarrow A \iff \overline{A}$ (on peut donc retrouver l'opération « non »).
- 2. En déduire que l'on peut retrouver l'opération « et » ainsi :

$$(A \downarrow B) \downarrow (A \downarrow B) = A \lor B$$

3. Comment à partir de A, B et \downarrow obtenir $A \land B$ (penser aux lois de De Morgan)?