Определение 1. (Дифференциальное уравнение k-того порядка) на неизвестную функцию y = y(x) переменной x — это соотношение вида $F(x, y, y', y'', \dots, y^{(k)}) = 0$, в которое входит x, y и первые k производных $y', y'', \dots, y^{(k)}$ от y по x. Его решением называется всякая функция y = f(x), при подстановке которой в F вместо y получается тождественно нулевая функция от x.

Задача 1. Пусть c= const, дифференцируемые функции y=f(x), y=g(x) являются решениями уравнения y'=cy на некотором интервале и $g(x)\neq 0$ на этом интервале. Чему может быть равно отношение f(x)/g(x)?

Задача 2. Найдите все решения дифференциального уравнения y' = cy на любом интервале.

Задача 3. Найдите все функции $(0,1) \to^f \mathbb{R}$, такие что f' = -2f всюду на (0,1) и f(1/2) = 1.

Задача 4. Пусть на некотором интервале ненулевая функция y=y(x) удовлетворяет уравнению y'-cy=0, а функция z=z(x) — уравнению z'-cz=h(x), где $c={\rm const}$, а h(x) — данная функция. Выразите z/y через c и h и найдите все решения обоих уравнений.

Задача 5. Найдите все решения уравнений: **a)** y'-2y=x **6)** $y'+y=e^{2x}$ **в)** $y'+3y=\cos(2x)$

Задача 6°. Пусть l_1, l_2, \dots, l_k — это все корни многочлена $l^k + a_{k-1}l^{k-1} + \dots + a_1l + a_0$. Верно ли, что $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = \left(\frac{d}{dx} - l_1\right)\left(\frac{d}{dx} - l_2\right)\dots\left(\frac{d}{dx} - l_k\right)y$?

Задача 7. Найдите все решения уравнений: **a)** y'' = y **б)** y'' - y' = 2y **в)** y'' + y = 2y'.

Задача 8. Выделите в предыдущей задаче те решения, которые удовлетворяют условиям:

a) y(0) = 1, y'(0) = 0 **6)** y(-1) = y(1) = 1

Определение 2. (Комплекснозначные функции) Любая функция $f: \mathbb{R} \to \mathbb{C}$ однозначно записывается в виде f(x) = u(x) + iv(x), где $u, v: \mathbb{R} \to \mathbb{R}$ суть вещественнозначные функции, называемые вещественной и мнимой частями f. Положим, по определению, f' = u' + iv' и $\int f \, dx = \int u \, dx + i \int v \, dx$.

Задача 9. Найдите вещественную и мнимую части функций $z=e^{(2+3i)x}$ и $z=e^{(2-3i)x}$.

Задача 10. Докажите, что комплекснозначная функция тогда и только тогда удовлетворяет дифференциальному уравнению вида $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = 0$ с постоянными $a_{\nu} \in \mathbb{R}$, когда её вещественная и мнимая части удовлетворяют этому уравнению.

Задача 11. Найдите все комплекснозначные функции z = z(x), удовлетворяющие уравнениям (константа $l \in \mathbb{C}$ и комплекснозначная функция h(x) заданы): **a)** z' - lz = 0 **6)** z' - lz = h(x)

Задача 12. Найдите все вещественные решения дифференциального уравнения y'' = -y.

Задача 13. Найдите все вещественные решения дифференциального уравнения y'' = -2y, удовлетворяющие условиям: **a)** y(0) = 1, y'(0) = 2 **b)** y(0) = 1, $y(\pi) = 0$.

Задача 14*. Найдите все вещественные решения дифференциального уравнения $y'' + y = e^{4x}$ с y(0) = 4, y'(0) = -3.

Задача 15. (разделённые переменные) Докажите, что дифференцируемая функция y тогда и только тогда удовлетворяет дифференциальному уравнению h(y)y'=g(x) с заданными непрерывными функциями h(y), g(x), когда при некотором постоянном c она удовлетворяет обычному (не дифференциальному) уравнению H(y)=G(x)+c, в котором H и G суть какие-либо первообразные от h и g.

Задача 16. Найдите все решения дифференциальных уравнений:

a) (x+1)y' = xy 6) $y' = y \sin x$ B) yy' + x = 1

Задача 17. Найдите все решения дифференциального уравнения $y' \operatorname{ctg} x + y = 2 \operatorname{c} y(0) = -1$.

1	$\begin{vmatrix} 2 & 3 \end{vmatrix}$	4	5 a	5 6	5 B	6	7 a	7 б	7 B	8 a	8 6	9	10	11 a	11 б	12	13 a	13 б	14	15	16 a	16 б	16 B	17

Определение 1. (Постановка задачи.) На плоскости XOY заданы: прямоугольник

$$\Pi = \{ (x, y) \mid a \leqslant x \leqslant b, \ c \leqslant y \leqslant d \} ,$$

точка (x_0, y_0) , лежащая строго внутри него, и дифференциальное уравнение y' = F(x, y), правая часть которого $\Pi \to^F \mathbb{R}$ является непрерывной функцией на Π . Мы докажем, что существует ε -окрестность U_{ε} точки x_0 и дифференцируемая функция $U_{\varepsilon} \to^f [c, d]$, такие что $f'(x) = F(x, f(x)) \quad \forall x \in U_{\varepsilon}$ и $f(x_0) = y_0$.

Задача 1. Зададимся некоторой ε -окрестностью U_{ε} точки x_0 и рассмотрим следующие два множества дифференцируемых функций $U_{\varepsilon} \rightarrow^{\varphi} [c,d]$, заданных на этой окрестности:

$$\mathcal{F} \stackrel{\uparrow}{=} \{ \varphi \mid \forall x \in U_{\varepsilon} \ \varphi'(x) > F(x, \varphi(x)) \}$$

$$\mathcal{F}_{\downarrow} \stackrel{\text{def}}{=} \{ \varphi \mid \forall x \in U_{\varepsilon} \ \varphi'(x) < F(x, \varphi(x)) \}$$

Докажите, что $\exists \varepsilon$: оба множества \mathcal{F}^{\uparrow} , \mathcal{F}_{\downarrow} непусты, и справа от x_0 график любой функции из \mathcal{F}^{\uparrow} лежит выше графика любой функции из \mathcal{F}_{\downarrow} , а слева — наоборот.

Задача 2. Определим функцию f(x) справа от x как $\inf_{\varphi \in \mathcal{F}} \varphi(x)$, а слева от x как $\sup_{\varphi \in \mathcal{F}} \varphi(x)$. Докажите, что f существует, непрерывна, дифференцируема и удовлетворяет уравнению y' = F(x,y).

Определение 2. (*Обозначения*.) Пусть $C = \sup_{\Pi} |F(x,y)|$. Обозначим через D_{δ} отрезок $[x_0 - \delta, x_0 + \delta]$, где δ выбрано так, чтобы «бабочка» $B_{\delta} \stackrel{\text{def}}{=} \{ (x,y) \mid x \in D_{\delta}, |y-y_0| \leqslant C|x-x_0| \}$ лежала целиком внутри Π . Обозначим через \mathcal{M}_{δ} множество всех непрерывных функций $D_{\delta} \rightarrow^{\varphi} [c,d]$, график которых содержится в B_d .

Задача 3. Докажите, что \mathcal{M}_{δ} является полным метрическим пространством с расстоянием $\rho(\varphi,\psi) = \sup_{x \in D_{\delta}} |\varphi(x) - \psi(x)|.$

Задача 4. (лемма Асколи–Арцела) Дано некоторое множество $\mathcal F$ непрерывных функций на отрезке. Докажите, что любая ограниченная последовательность функций из $\mathcal F$ содержит поточечно сходящуюся подпоследовательность тогда и только тогда, когда все функции в $\mathcal F$ ограничены общей константой и в равной степени непрерывны (т. е. $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : |x_1 - x_2| < \delta \Rightarrow |\varphi(x_1) - \varphi(x_2)| < \varepsilon$ сразу для всех $\varphi \in \mathcal F$).

Задача 5. (ломаные Эйлера) Разобъём D_{δ} на 2n равных частей длины $h = \delta/n$ и определим непрерывную функцию $\varphi_n(x)$, полагая $\varphi(x_0) = y_0$, и далее продолжая её влево и вправо индуктивным правилом: над отрезком $[x_0 + kh, x_0 + (k+1)h]$ (где k = 0, 1, 2, ...) и над отрезком $[x_0 + (k-1)h, x_0 + kh]$ (где k = 0, -1, -2, ...) $\varphi(x)$ есть прямая с угловым коэффициентом $F(x_0 + kh, \varphi(x_0 + kh))$ (значение $\varphi(x_0 + kh)$ определено по индуктивному предположению). Докажите, что все φ_n лежат в \mathcal{M}_{δ} и из них можно выбрать подпоследовательность, имеющую поточечный предел, также лежащий в \mathcal{M}_{δ} .

Задача 6. Явно опишите последовательность ломаных Эйлера для уравнения y' = y с начальным условием y(0) = 1 и шагом h = 1/n, и честно найдите её предел при $n \to \infty$.

Задача 7. Докажите, что поточечный предел любой сходящейся последовательности ломаных Эйлера из 5 является дифференцируемой функцией, удовлетворяющий уравнению y' = F(x,y) (мы ещё вернёмся к этой задаче в следующем листке).

1	2	3	4	5	6	7

 $^{^{1}}$ предел которой не обязан принадлежать \mathcal{F}

Задача 1. Найдите все решения уравнения $y'=y^{2/3}$ и укажите два различных решения, удовлетворяющие начальному условию y(0)=0.

Определение 1. (Постановка задачи.) Всюду в этом листке константа C, прямоугольник Π , «бабочка» $B_{\delta} \subset \Pi$, отрезок $D_{\delta} \ni x_0$ и пространство \mathcal{M}_{δ} непрерывных функций на D_{δ} с графиками внутри B_{δ} будут те же самые, что и в предыдущем листке. Мы докажем, что если правая часть дифференциального уравнения y' = F(x, y) удовлетворяет дополнительному условию:

 $\exists L \in \mathbb{R}: |F(x,y_1) - F(x,y_2)| < L \cdot |y_1 - y_2| \quad \forall x \in [a,b] \& \forall y_1,y_2 \in [c,d]$ то любые два решения дифференциального уравнения y' = F(x,y), графики которых проходят через точку (x_0,y_0) совпадают над некоторой δ -окрестностью точки x_0 .

Задача 2. (приближения Пикара) Будем строить последовательные приближения $\psi_k(x) \in \mathcal{M}_\delta$ (с $k=0,1,2,\ldots$) к решению уравнения y'=F(x,y), взяв $\psi_0(x)\equiv y_0$ и подбирая в качестве ψ_{k+1} такую дифференцируюмую функцию, производная от которой равна значениям функции F на графике предыдущего приближения ψ_k , т.е. удовлетворяющую при $x\in D_\delta$ уравнению $\psi'_{k+1}(x)=F(x,\psi_k(x))$ и

такую, что $\psi_{k+1}(x_0) = y_0$. Докажите, что $\psi_{k+1}(x) = y_0 + \int_{x_0}^x F(t, \psi_k(t)) dt$ и проверьте, что все $\psi_k \in \mathcal{M}_\delta$.

Задача 3. Явно вычислите все приближения Пикара для уравнения y'=y с начальным условием y(0)=1 и честно найдите их предел.

Задача 4. Пусть функция F удовлетворяет условию (1). Докажите, что при достаточно малом δ правило $P:\psi(x)\longmapsto P\psi(x)=y_0+\int\limits_{x_0}^x F(t,\psi(t))\,dt$ определяет сжимающее отображение $\mathcal{M}_\delta\to^P\mathcal{M}_\delta$.

Задача 5. Докажите, что функция $\psi \in \mathcal{M}_{\delta}$ тогда и только тогда является решением уравнения y' = F(x,y), когда $P\psi = \psi$.

Задача 6. Докажите сформулированную в начале листка теорему единственности. Как она уживается с примером из 1?

Задача 7. Пусть отображение $\mathcal{M} \to^P \mathcal{M}$ (в произвольном метрическом пространстве) является сжимающим с константой 0 < l < 1 (т. е. $\rho(P\varphi, P\psi) \leqslant l\rho(\varphi, \psi) \; \forall \; \varphi, \psi \in \mathcal{M}$). Докажите, что расстояние от произвольной точки $\psi \in \mathcal{M}$ до неподвижной точки ψ_0 отображения P удовлетворяет неравенству $\rho(\psi, \psi_0) \leqslant \frac{\rho(\psi, P\psi)}{1-l}$.

Задача 8. Докажите, что если функция F удовлетворяет условию (1), то *вся* последовательность ломаных Эйлера из $\ref{eq:condition}$ равномерно (т. е. по метрике \mathcal{M}_{δ} , а не поточечно) сходится к решению уравнения y' = F(x,y).

Задача 9*. (теорема о непрерывной зависимости от начальных условий) Пусть функция F удовлетворяет условию (1). Докажите, что у точки (x_0, y_0) существует окрестность $\widetilde{I} \subset II$, такая что при некотором фиксированном $\delta > 0$ и произвольных $(\widetilde{x}_0, \widetilde{y}_0) \in \widetilde{I}I$ уравнение y' = F(x, y) будет обладать единственным решением y = f(x), определённым всюду на D_{δ} и удовлетворяющим начальному условию $f(\widetilde{x}_0) = \widetilde{y}_0$, и более того, сопоставление точке $(\widetilde{x}_0, \widetilde{y}_0) \in \widetilde{I}I$ такого решения будет непрерывным отображением из $\widetilde{I}I$ в пространство непрерывных функций на D_{δ} .

1	2	3	4	5	6	7	8	9