实验名称: 冰的熔解热

学生姓名: 宋奕纬 学号: 2212000 学院: 网络空间安全学院 A 组 19 号 2024 年 3 月 15 日

一、实验器材

电子天平、秒表、烧杯、纸巾、干拭布、保温桶、数字温度计、量热器、保温桶、冰、热水、 自来水等

二、实验目的

- 1、正确使用量热器,熟练使用温度计,熟悉仪器的使用方法;
- 2、掌握用混合量热法测定冰的熔化热;
- 3、进行实验安排和参量选取;
- 4、学会一种粗略修正散热的方法——抵偿法;
- 5、学习了解热平衡方程、牛顿冷却定律等相关物理理论,熟悉物理计算过程。

三、实验原理

1、引言

物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。1kg物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。

本实验用混合量热法测定冰的熔解热。其基本做法如下: 把待测系统 A 与某已知热容的系统 B 相混合,并设法使其成为一个与外界无热量交换的孤立系统。这样 A (或 B) 所放出的热量将全部为 B (或 A)所吸收,因而满足热平衡方程: $Q_{ii} = Q_{iii}$ 。

已知热容的系统在实验过程中所传递的热量 Q 是可以由其温度的改变 $\Delta heta$ 及其热容计算出来的:

$$Q = C_s \Delta \theta$$

于是、待测系统在实验过程中所传递的热量即可求得。冰的熔解热也就可以据此测定。

由上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此,整

个实验在量热器内进行,同时要求实验者本人在测量方法及实验操作等方面去设法保证。当实验过程中系统与外界的热量交换不能忽略时,就必须作一定的散热修正。

2、计算原理

(1) 质量 M、温度 θ_0^i 的冰块与质量 m、温度 θ_1 的水相混合,冰全部熔解为水后,测得平衡温度为 θ_2 。 假定量热器内筒与搅拌器的质量分别为 m_1 、 m_2 , 其比热容分别为 c_1 和 c_2 ;水及冰的比热容分别为 c 和 c_i ,则由热平衡方程可得:

$$c_i M (\theta_0 - \theta_0') + ML + cM (\theta_2 - \theta_0) = (cm + c_1 m_1 + c_2 m_2) (\theta_1 - \theta_2)$$

本实验条件下, 冰的熔点可认为是 0° C, 冰块的温度也可以认为是 0° C。于是, 冰的熔解热可由下式求出:

$$L = \frac{1}{M} (cm + c_1 m_1 + c_2 m_2) (\theta_1 - \theta_2) - c\theta_2$$

由于量热器的绝热条件并不十分完善,实际实验系统并非严格的孤立系统,所以,在做精密测量时,就需设法求出实验过程中系统与外界交换的热量,以作适当的散热修正。

(2) 本实验介绍一种粗略修正散热的所谓抵偿法。其依据是牛顿冷却定律。当系统的温度高于环境温度时,它就要散失热量。实验证明: 当温差较小时,系统的散热制冷速率与温差成正比。此即牛顿冷却定律:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = -k\left(\theta - \theta_{\mathrm{e}}\right)$$

其中, \mathbf{dq} 表示 \mathbf{dt} 时间内系统与外界交换的热量。比例系数 \mathbf{k} 为一个与系统表面积成正比并随表面辐射本领而变的常数,称为散热常数。其物理意义为: 单位温差下,单位时间的热量损失,负号的意义表示当系统温度高于环境温度时散失热量。在实验过程中,如果恰当地将系统的初温和末温分别选择在室温的两侧,即: $\theta_1 > \theta_e > \theta_2$,并且使整个实验过程中系统与外界的热量传递前后彼此抵消,则可以达到散热修正之目的。量热器中水温随时间的变化应该是一条指数下降的曲线(如图所示)

对牛顿冷却定律式求积分,即可得到由 t_1 到 t_2 (对应温度 θ_1 到 θ_2)时间内,整个系统

与外界交换的热量:

$$\begin{split} q &= -k \int_{t_1}^{t_2} \left[\theta(t) - \theta_{\rm e} \right] \mathrm{d}t &= -k \int_{t_1}^{t_{\rm e}} \left(\theta - \theta_{\rm e} \right) \mathrm{d}t + k \int_{t_{\rm e}}^{t_2} \left(\theta_{\rm e} - \theta \right) \mathrm{d}t &= -k S_{\rm A} + k S_{\rm B} \\ & \text{其中,} \quad S_{\rm A} = \int_{t_1}^{t_{\rm e}} \left(\theta - \theta_{\rm e} \right) \mathrm{d}t \quad \mathcal{D}_{\rm S} = \int_{t_{\rm e}}^{t_2} \left(\theta_{\rm e} - \theta \right) \mathrm{d}t \\ & \text{表示图中的阴影面积.由上式可见, 当S_{\rm A}} = \end{split}$$

 S_B 时,实验过程中系统与外界交换的热量为零,因此,只要适当地选择参数,使曲线与环境温度直线围成的两块面积近似相等,就可以使系统很好地近似为一个孤立系统。

由曲线可知, 欲使 $S_A \approx S_B$, 就必须使 $\theta_1 - \theta_e > \theta_e - \theta_2 > 0$ 。实验前, 应做出明确的计划, 实验中注意选取及适当调整参数 M、m、 θ_1 等, 使满足上式。但应注意到 $\theta_2 > 0$ 的条件, 否则, 冰将不能全部熔解。

四、操作步骤

- 1.打开数字温度计,测定环境温度;
- **2.**打开电子天平,测量内筒质量 m_1 ,搅拌器质量 m_2 ;
- 3.配置温水: 配置 $\frac{1}{2} \sim \frac{2}{3}$ 的温水至内筒 (温水高于室温 $10 \sim 15$ °C, 实际操作中再高出 $1 \sim 2$ °C);
- 4.测定内筒、搅拌器和水的质量 $m_1 + m_2 + m$ (可以只测 $m_1 + m$);
- 5.将内筒放入量热器, 插好温度计, 投冰前, 每隔一分钟记录一次读数, "外推法"记录投冰时刻水的初温 θ_1 , 并不断低频大幅搅拌;
- 6.投冰后,每 10~20s 记录一次温度直至温度达到最小 θ_2 (连续五次观测温度,温度不变或温度略微上升两次);
- 7.取出内筒称量 $m + m_1 + m_2 + m_i$ (可以只测 $m + m_1 + m_i$), 测定环境温度 θ_{e2} ;
- 8.拟合 θ /t 曲线, 求熔解热;
- 9.调整参数反复实验寻求最佳散热修正,减少实验误差。

五、数据记录、计算与处理

1、已知数据

$$c = 4.1868kJ \cdot kg^{-1} \cdot K^{-1}$$

$$c_1 = 0.385kJ \cdot kg^{-1} \cdot K^{-1}$$

$$c_2 = 0.370kJ \cdot kg^{-1} \cdot K^{-1}$$

2、实测数据

$$\theta_e = \frac{\theta_{e1} + \theta_{e2}}{2} = \frac{19.6 + 19.6}{2} = 19.6^{\circ}C$$

$ (\kappa g) $

测得值	108.24	12.52	290.05	181.81	319.52	29.47
N/4 1.4 HTF			_00.00		0.0.0_	

代入公式计算熔解热

$$L = \frac{1}{m_i} (cm + c_1 m_1 + c_2 m_2) (\theta_1 - \theta_2) - c\theta_2$$

= $1 \div 29.47(4.1868 \times 181.81 + 0.385x108.24 + 0.37 \times 12.52) = 320.20(J/g)$ 求偏差

$$\eta = \frac{320.24 - 334}{334} \times 100\% = -4.1916\%$$

外推法测量系统初温

1min 2min 3min 4min 5min

30.1℃ 30.1℃ 30.0℃ 30.0℃ 29.9℃

水初温为 29.9 摄氏度

时间	投冰前	0s	10s	20s	30s	40s	50s	60s	70s	80s
温度	29.9	27.5	25.8	23.8	22	20.4	19.8	19	18.4	17.7
时间	100s	110s	120s	130s	140s	150s	160s	170s	180s	190s
温度	16.8	16.4	16.2	16	15.8	15.8	15.8	15.8	15.8	15.8

可见两部分面积近似相等。

六、误差分析与思考

- 1、抵偿法无法抵偿法不能完全修正装置与外界的热量交换
- 2、开盖时装置内部冰水与外界产生热量交换
- 3、装置中存有的空气在实验过程中会吸放热
- 4、冰块没有完全擦干,或者在擦干投放的过程中又产生了部分融化

5、冰块里可能混有杂质、气泡,水不够纯净等客观因素

七、思考题

- 1、哪些因素会影响冰的质量测量的准确性?实验中应怎样注意? (考察题7)
 - (1) 水的溅出、冰块未擦干,冰块中有杂质,隔热不良、补偿法条件不满足。
 - (2) 擦干冰块、避免水的溅出、加入冰块后迅速盖上筒盖

(其他思路: 比如虽然有误差, 质量测量不够准确, 可以进行多次重复实验。)

- 2、假如冰中有①气泡②小水泡③杂质,它们对实验结果有无影响,为什么。(思考题 1)
 - (1) 气泡: 无影响, 气泡不影响冰块质量, 对熔解过程吸热的影响也不大, 可以忽略不计
 - (2) 小水泡: 若水中有小水泡, 熔解热只由冰块贡献, 即测得的冰的质量大于真实冰的质量, 使测出的结果偏小
- (3) 杂质: 杂质不进行熔解吸热,测得的冰的质量大于真实冰的质量,使测出的结果偏小 $3. L_0 = 3.341 \times 10^5 J \cdot kg^{-1}$,求 L 的定值误差。

$$\eta = \frac{|L - L_0|}{L_0} \times 100\% = \frac{|320.24 - 334|}{334} \times 100\% = 4.1916\%$$

八、原始数据与助教签字

