Planche TD 1

Exercice 1 (Seconde inégalité triangulaire) Soit (X, d) un espace métrique, montrer que pour tous $x, y, z \in X$, $|d(x, y) - d(y, z)| \le d(x, z)$.

Exercice 2 (Distance induite) Soit $X = ([0,1] \times \{0\}) \cup (\{0\} \times [0,1])$ munit de la distance induite par la norme infinie de \mathbb{R}^2 . Dessiner les boules de centre (1,0).

Exercice 3 (Fonctions sous-additives et distance) Soit (X, d) un espace métrique

- 1. Soit ϕ une fonction croissante de \mathbb{R}^+ dans \mathbb{R}^+ telle que $\phi(0) = 0$, ϕ est injective sur un voisinage de 0 et $\phi(s+t) \leq \phi(s) + \phi(t)$ pour tous s,t. Montrer que $D = \phi \circ d$ est une métrique sur X.
- 2. Montrer que D(x,y) = min(1,d(x,y)) est une distance sur X et que les topologies associées à d et D sont les mêmes.

Exercice 4 (Distance sur l'ensemble des suites) Soit $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. Pour un espace métrique (X,d), on définit son diamètre par $Diam(X) = \sup\{d(x,y), x,y \in X\}$.

- 1. Montrer que $\delta(x,y) = Arctan(|x-y|)$ est une distance sur \mathbb{R} . Quel est le diamètre de \mathbb{R} pour cette distance?
- 2. Pour deux suites $x = (x_0, \dots, x_n, \dots)$ et $y = (y_0, \dots, y_n, \dots)$ réelles, on pose

$$D(x,y) = \sum_{i=0}^{\infty} \frac{\delta(x_i, y_i)}{2^i}$$

- (a) Montrer que D est bien définie et que c'est une distance sur $\mathbb{R}^{\mathbb{N}}$.
- (b) Quel est le diamètre de $\mathbb{R}^{\mathbb{N}}$ pour D?

Exercice 5 (Distance ultramétrique) Une distance d sur X est dite ultramétrique si elle vérifie

$$(UM): d(x,y) \le max(d(x,z),d(y,z))$$

pour tous $x, y, z \in X$.

- 1. Montrer que l'inégalité (UM) implique l'inégalité triangulaire.
- 2. (a) Montrer que dans un espace ultramétrique, tous les triangles sont isocèles.
 - (b) Montrer que dans un espace ultramétrique, tout point d'une boule est centre de cette boule.
 - (c) Montrer que dans un espace ultramétrique, toute boule est à la fois ouverte et fermée.
 - (d) Montrer que dans un espace ultramétrique, deux boules sont soit disjointes, soit l'une est incluse dans l'autre.

Exercice 6 (Distance ultramétrique, exemple, pour aller plus loin) Soit p un nombre premier, pour $n \in \mathbb{Z}$, on définit $\nu_p(n)$ comme l'exposant de p dans la décomposition en facteurs premier de n, puis pour $\alpha = n/m \in \mathbb{Q}$, $\nu_p(\alpha) = \nu_p(n) - \nu_p(m)$. Enfin, pour $\alpha, \beta \in \mathbb{Q}$, on pose $d(\alpha, \beta) = p^{-\nu_p(\alpha-\beta)}$. Montrer que d est une distance ultramétrique sur \mathbb{Q}

1