On the boundary of the ample cone of a hyperkähler manifold

Andrey Soldatenkov

UNICAMP

Geometria métrica e Topologia do Nordeste Caponga, 10–15 de março de 2025

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- ullet g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- ullet g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- \bullet g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is a Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0.$$

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = the group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + \sqrt{-1}\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is $(3, b_2(X) - 3)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is $(3, b_2(X) - 3)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is $(3, b_2(X) - 3)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X, \mathbb{Z})$. The signature of q is $(3, b_2(X) - 3)$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is $(3, b_2(X) - 3)$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is $(3, b_2(X) - 3)$.

• Complex K3-surfaces: S a compact simply connected complex surface with $K_S \simeq \mathcal{O}_S$. For example:

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{C}P^3 \mid x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

- $K3^{[n]}$ -type. Let S be a complex K3 surface. $S^{[n]}$ = the Hilbert scheme of length n subschemes of S.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_n$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety.

• Complex K3-surfaces: S a compact simply connected complex surface with $K_S \simeq \mathcal{O}_S$. For example:

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{C}P^3 \mid x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

- $K3^{[n]}$ -type. Let S be a complex K3 surface. $S^{[n]}$ = the Hilbert scheme of length n subschemes of S.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_n$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety.

• Complex K3-surfaces: S a compact simply connected complex surface with $K_S \simeq \mathcal{O}_S$. For example:

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{C}P^3 \mid x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

- $K3^{[n]}$ -type. Let S be a complex K3 surface. $S^{[n]}$ = the Hilbert scheme of length n subschemes of S.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety.

• Complex K3-surfaces: S a compact simply connected complex surface with $K_S \simeq \mathcal{O}_S$. For example:

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{C}P^3 \mid x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

- $K3^{[n]}$ -type. Let S be a complex K3 surface. $S^{[n]}$ = the Hilbert scheme of length n subschemes of S.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety.

• Complex K3-surfaces: S a compact simply connected complex surface with $K_S \simeq \mathcal{O}_S$. For example:

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{C}P^3 \mid x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

- $K3^{[n]}$ -type. Let S be a complex K3 surface. $S^{[n]}$ = the Hilbert scheme of length n subschemes of S.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety.

From now on: X is a projective hyperkähler manifold.

The Néron-Severi group:

$$\operatorname{NS}(X) = \operatorname{im}\left(\operatorname{Pic}(X) \xrightarrow{c_1} H^2(X, \mathbb{Z})\right) \subset H^{1,1}(X, \mathbb{Z})$$

The restriction of q to $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X, \mathbb{R})$ has signature

$$(1, \rho - 1)$$

where ρ is the Picard number of X.

The positive cone:

$$\mathcal{C}_X = \{ x \in \mathrm{NS}_{\mathbb{R}}(X) \mid q(x) > 0 \}^{\circ}$$

From now on: X is a projective hyperkähler manifold.

The Néron–Severi group:

$$\operatorname{NS}(X) = \operatorname{im}\left(\operatorname{Pic}(X) \stackrel{c_1}{\to} H^2(X,\mathbb{Z})\right) \subset H^{1,1}(X,\mathbb{Z})$$

The restriction of q to $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X,\mathbb{R})$ has signature

$$(1, \rho - 1)$$

where ρ is the Picard number of X.

The positive cone:

$$\mathcal{C}_X = \{ x \in \mathrm{NS}_{\mathbb{R}}(X) \mid q(x) > 0 \}^{\circ}$$

From now on: X is a projective hyperkähler manifold.

The Néron–Severi group:

$$\operatorname{NS}(X) = \operatorname{im}\left(\operatorname{Pic}(X) \stackrel{c_1}{\to} H^2(X,\mathbb{Z})\right) \subset H^{1,1}(X,\mathbb{Z})$$

The restriction of q to $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X,\mathbb{R})$ has signature

$$(1, \rho - 1)$$

where ρ is the Picard number of X.

The positive cone

$$\mathcal{C}_X = \{ x \in \mathrm{NS}_{\mathbb{R}}(X) \mid q(x) > 0 \}^{\circ}$$

From now on: X is a projective hyperkähler manifold.

The Néron–Severi group:

$$\operatorname{NS}(X) = \operatorname{im}\left(\operatorname{Pic}(X) \stackrel{c_1}{\to} H^2(X,\mathbb{Z})\right) \subset H^{1,1}(X,\mathbb{Z})$$

The restriction of q to $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X,\mathbb{R})$ has signature

$$(1, \rho - 1)$$

where ρ is the Picard number of X.

The positive cone:

$$\mathcal{C}_X = \{ x \in \mathrm{NS}_{\mathbb{R}}(X) \mid q(x) > 0 \}^{\circ}$$

From now on: X is a projective hyperkähler manifold.

The Néron–Severi group:

$$\operatorname{NS}(X) = \operatorname{im}\left(\operatorname{Pic}(X) \stackrel{c_1}{\to} H^2(X,\mathbb{Z})\right) \subset H^{1,1}(X,\mathbb{Z})$$

The restriction of q to $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X,\mathbb{R})$ has signature

$$(1, \rho - 1)$$

where ρ is the Picard number of X.

The positive cone:

$$\mathcal{C}_X = \{ x \in \mathrm{NS}_{\mathbb{R}}(X) \mid q(x) > 0 \}^{\circ}$$

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

- MBM is $\mathcal{D}iff(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- A_X is one of the chambers.

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

- MBM is $\mathcal{D}iff(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- A_X is one of the chambers.

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

- MBM is $\mathcal{D}iff(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- A_X is one of the chambers.

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

- MBM is $\mathfrak{Diff}(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- A_X is one of the chambers.

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

- MBM is $\mathfrak{Diff}(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- A_X is one of the chambers.

The ample cone

We have: $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is a hyperbolic space. What is $\mathbb{P}(\mathcal{A}_X)$?

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

- MBM is $\mathfrak{Diff}(X)$ -invariant;
- There exists a constant M > 0 such that for all $x \in MBM$ we have $-M \leq q(x) < 0$;
- Let $MBM^{1,1} = MBM \cap NS(X)$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}_X into open chambers.
- \mathcal{A}_X is one of the chambers.

Let S be a projective K3 surface.

Then q is the intersection form and

$$H^2(S,\mathbb{Z}) \simeq (-E_8)^{\oplus 2} \oplus U^{\oplus 3}$$

where U is the rank two hyperbolic lattice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

We have

$$MBM = \{x \in H^2(S, \mathbb{Z}) \mid q(x) = -2\}.$$

Theorem (Nikulin)

Let Λ be an even lattice of signature $(1, \rho - 1)$ where $\rho \leq 10$. Then there exists a projective K3 surface S with $NS(S) \simeq \Lambda$

Let S be a projective K3 surface. Then q is the intersection form and

$$H^2(S,\mathbb{Z}) \simeq (-E_8)^{\oplus 2} \oplus U^{\oplus 3},$$

where U is the rank two hyperbolic lattice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

We have

$$MBM = \{x \in H^2(S, \mathbb{Z}) \mid q(x) = -2\}.$$

Theorem (Nikulin)

Let Λ be an even lattice of signature $(1, \rho - 1)$ where $\rho \leq 10$. Then there exists a projective K3 surface S with $NS(S) \simeq \Lambda$

Let S be a projective K3 surface. Then q is the intersection form and

$$H^2(S,\mathbb{Z}) \simeq (-E_8)^{\oplus 2} \oplus U^{\oplus 3},$$

where U is the rank two hyperbolic lattice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. We have

$$MBM = \{x \in H^2(S, \mathbb{Z}) \mid q(x) = -2\}.$$

Theorem (Nikulin)

Let Λ be an even lattice of signature $(1, \rho - 1)$ where $\rho \leq 10$. Then there exists a projective K3 surface S with $NS(S) \simeq \Lambda$.

Let S be a projective K3 surface. Then q is the intersection form and

$$H^2(S,\mathbb{Z}) \simeq (-E_8)^{\oplus 2} \oplus U^{\oplus 3},$$

where U is the rank two hyperbolic lattice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. We have

$$MBM = \{x \in H^2(S, \mathbb{Z}) \mid q(x) = -2\}.$$

Theorem (Nikulin)

Let Λ be an even lattice of signature $(1, \rho - 1)$ where $\rho \leq 10$. Then there exists a projective K3 surface S with $NS(S) \simeq \Lambda$.

For example, when $\rho = 3$, we have $\mathbb{P}(\mathcal{C}_S) = \mathbb{H}^2$ and $\mathbb{P}(\mathcal{A}_S)$ may look like this:

Identify $NS_{\mathbb{R}}(X)$ with $\mathbb{R}^{1,\rho-1}$, so that

$$q(x) = x_0^2 - x_1^2 - \dots - x_{\rho-1}^2.$$

Then $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is identified with the unit ball $\mathbb{B}^{\rho-1}$ via the stereographic projection from the point $(-1,0,\ldots,0)$ and

$$\partial \mathbb{P}(\mathcal{C}_X) = \partial \mathbb{H}^{\rho-1} \simeq \mathbb{S}^{\rho-2}$$

is the sphere at infinity

Definition

The ideal boundary of the ample cone

$$\mathcal{B}_X = \overline{\mathbb{P}(\mathcal{A}_X)} \cap \partial \mathbb{P}(\mathcal{C}_X)$$

Identify $NS_{\mathbb{R}}(X)$ with $\mathbb{R}^{1,\rho-1}$, so that

$$q(x) = x_0^2 - x_1^2 - \dots - x_{\rho-1}^2.$$

Then $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is identified with the unit ball $\mathbb{B}^{\rho-1}$ via the stereographic projection from the point $(-1,0,\ldots,0)$ and

$$\partial \mathbb{P}(\mathcal{C}_X) = \partial \mathbb{H}^{\rho-1} \simeq \mathbb{S}^{\rho-2}$$

is the sphere at infinity.

Definition

The ideal boundary of the ample cone

$$\mathcal{B}_X = \overline{\mathbb{P}(\mathcal{A}_X)} \cap \partial \mathbb{P}(\mathcal{C}_X)$$

Identify $NS_{\mathbb{R}}(X)$ with $\mathbb{R}^{1,\rho-1}$, so that

$$q(x) = x_0^2 - x_1^2 - \dots - x_{\rho-1}^2.$$

Then $\mathbb{P}(\mathcal{C}_X) = \mathbb{H}^{\rho-1}$ is identified with the unit ball $\mathbb{B}^{\rho-1}$ via the stereographic projection from the point $(-1,0,\ldots,0)$ and

$$\partial \mathbb{P}(\mathcal{C}_X) = \partial \mathbb{H}^{\rho-1} \simeq \mathbb{S}^{\rho-2}$$

is the sphere at infinity.

Definition

The ideal boundary of the ample cone:

$$\mathcal{B}_X = \overline{\mathbb{P}(\mathcal{A}_X)} \cap \partial \mathbb{P}(\mathcal{C}_X)$$

The following result was classically known for K3 surfaces due to S. Kovács, and was more recently generalized to an arbitrary hyperkähler manifold by F. Denisi.

Theorem (Kovách, Denisi)

Assume that X is a projective hyperkähler manifold with Picard number $\rho > 2$. Then we have the following dichotomy.

- If \mathcal{B}_X contains an open subset of $\mathbb{S}^{\rho-2}$, then $\mathcal{B}_X = \mathbb{S}^{\rho-2}$ and $\mathcal{A}_X = \mathcal{C}_X$. This happens if and only if $\mathrm{NS}(X)$ does not contain MBM classes.
- Otherwise \mathcal{B}_X is nowhere dense in $\mathbb{S}^{\rho-2}$.

The following result was classically known for K3 surfaces due to S. Kovács, and was more recently generalized to an arbitrary hyperkähler manifold by F. Denisi.

Theorem (Kovách, Denisi)

Assume that X is a projective hyperkähler manifold with Picard number $\rho > 2$. Then we have the following dichotomy.

- If \mathcal{B}_X contains an open subset of $\mathbb{S}^{\rho-2}$, then $\mathcal{B}_X = \mathbb{S}^{\rho-2}$ and $\mathcal{A}_X = \mathcal{C}_X$. This happens if and only if NS(X) does not contain MBM classes.
- Otherwise \mathcal{B}_X is nowhere dense in $\mathbb{S}^{\rho-2}$.

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM1,1} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MRM^{1,1}} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

In general, \mathcal{B}_X is a fractal in $\mathbb{S}^{\rho-2}$.

Let $v \in MBM \cap NS(X) = MBM^{1,1}$. Then:

- $\mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a hyperbolic subspace $\mathbb{H}_v^{\rho-2} \subset \mathbb{H}^{\rho-1}$.
- $\partial \mathbb{P}(v^{\perp} \cap \mathcal{C}_X)$ is a sphere $\mathbb{S}_v^{\rho-3} \subset \mathbb{S}^{\rho-2}$.

Denote by $H_v \subset \mathbb{R}^{\rho-1}$ the hyperplane such that

$$\mathbb{S}_v^{\rho-3} = \mathbb{S}^{\rho-2} \cap H_v.$$

Let H_v^+ and H_v^- be the two open half-spaces in $\mathbb{R}^{\rho-1}$ separated by H_v , and such that $\mathcal{A}_X \subset H_v^+$.

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-.$$

We have

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

Consider the stereographic projection of $\mathbb{S}^{\rho-2}$ onto $\mathbb{R}^{\rho-2}$. Then $D_v = \mathbb{S}^{\rho-2} \cap H_v^-$ is an open disc in $\mathbb{R}^{\rho-2}$.

Under the stereographic projection:

$$\mathcal{B}_X = \mathbb{R}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} D_v$$

We have

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

Consider the stereographic projection of $\mathbb{S}^{\rho-2}$ onto $\mathbb{R}^{\rho-2}$. Then $D_v = \mathbb{S}^{\rho-2} \cap H_v^-$ is an open disc in $\mathbb{R}^{\rho-2}$.

Under the stereographic projection:

$$\mathcal{B}_X = \mathbb{R}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} D_v$$

We have

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

Consider the stereographic projection of $\mathbb{S}^{\rho-2}$ onto $\mathbb{R}^{\rho-2}$. Then $D_v = \mathbb{S}^{\rho-2} \cap H_v^-$ is an open disc in $\mathbb{R}^{\rho-2}$.

Under the stereographic projection:

$$\mathcal{B}_X = \mathbb{R}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} D_v$$

We have

$$\mathcal{B}_X = \mathbb{S}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} H_v^-$$

Consider the stereographic projection of $\mathbb{S}^{\rho-2}$ onto $\mathbb{R}^{\rho-2}$. Then $D_v = \mathbb{S}^{\rho-2} \cap H_v^-$ is an open disc in $\mathbb{R}^{\rho-2}$.

Under the stereographic projection:

$$\mathcal{B}_X = \mathbb{R}^{\rho-2} \setminus \bigcup_{v \in MBM^{1,1}} D_v.$$

For example, if $\rho = 4$, then \mathcal{B}_X may look like this:

The discs D_v in the above example look like this:

In the above example we used the lattice Λ with the intersection matrix

$$A = \begin{pmatrix} -2 & 4 & 0 & 0 \\ 4 & -2 & 2 & 0 \\ 0 & 2 & -4 & 2 \\ 0 & 0 & 2 & -4 \end{pmatrix}$$

If we start from the intersection matrix

$$A = \begin{pmatrix} -2 & 2 & 2 & 2 \\ 2 & -2 & 2 & 2 \\ 2 & 2 & -2 & 2 \\ 2 & 2 & 2 & -2 \end{pmatrix},$$

we get the Apollonian gasket.

In the above example we used the lattice Λ with the intersection matrix

$$A = \begin{pmatrix} -2 & 4 & 0 & 0 \\ 4 & -2 & 2 & 0 \\ 0 & 2 & -4 & 2 \\ 0 & 0 & 2 & -4 \end{pmatrix}$$

If we start from the intersection matrix

$$A = \begin{pmatrix} -2 & 2 & 2 & 2 \\ 2 & -2 & 2 & 2 \\ 2 & 2 & -2 & 2 \\ 2 & 2 & 2 & -2 \end{pmatrix},$$

we get the Apollonian gasket.

The Apollonian gasket as the ideal boundary

Definition

The Apollonian carpet of X is the union of all positive-dimensional real-analytic subvarieties contained in \mathcal{B}_X .

The Apollonian gasket as the ideal boundary

Definition

The Apollonian carpet of X is the union of all positive-dimensional real-analytic subvarieties contained in \mathcal{B}_X .

Theorem (Amerik, S., Verbitsky)

Let X be a projective hyperkähler manifold with $\rho \geqslant 4$, and Z a germ of a positive-dimensional irreducible real-analytic subset of \mathcal{B}_X . Then:

• There exists a sublattice $\Lambda \subset NS(X)$ of signature (1,d) for some $d \leq \rho$, such that

$$Z \subset \mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$$
,

- The Apollonian carpet of X is the union of the spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above;
- If the Apollonian carpet of X is non-empty, then its closure is equal to \mathcal{B}_X :
- For any $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above, $\operatorname{Aut}(X)$ contains a subgroup commensurable with $\operatorname{O}(\Lambda)$.

Theorem (Amerik, S., Verbitsky)

Let X be a projective hyperkähler manifold with $\rho \geqslant 4$, and Z a germ of a positive-dimensional irreducible real-analytic subset of \mathcal{B}_X . Then:

• There exists a sublattice $\Lambda \subset NS(X)$ of signature (1,d) for some $d \leq \rho$, such that

$$Z \subset \mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$$
,

- The Apollonian carpet of X is the union of the spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above;
- If the Apollonian carpet of X is non-empty, then its closure is equal to B_X;
- For any $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above, $\operatorname{Aut}(X)$ contains a subgroup commensurable with $\operatorname{O}(\Lambda)$.

Theorem (Amerik, S., Verbitsky)

Let X be a projective hyperkähler manifold with $\rho \geqslant 4$, and Z a germ of a positive-dimensional irreducible real-analytic subset of \mathcal{B}_X . Then:

• There exists a sublattice $\Lambda \subset NS(X)$ of signature (1,d) for some $d \leq \rho$, such that

$$Z \subset \mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$$
,

- The Apollonian carpet of X is the union of the spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above;
- If the Apollonian carpet of X is non-empty, then its closure is equal to B_X;
- For any $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above, $\operatorname{Aut}(X)$ contains a subgroup commensurable with $\operatorname{O}(\Lambda)$.

Theorem (Amerik, S., Verbitsky)

Let X be a projective hyperkähler manifold with $\rho \geqslant 4$, and Z a germ of a positive-dimensional irreducible real-analytic subset of \mathcal{B}_X . Then:

• There exists a sublattice $\Lambda \subset NS(X)$ of signature (1,d) for some $d \leq \rho$, such that

$$Z \subset \mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$$
,

- The Apollonian carpet of X is the union of the spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above;
- If the Apollonian carpet of X is non-empty, then its closure is equal to \mathcal{B}_X ;
- For any $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above, $\operatorname{Aut}(X)$ contains a subgroup commensurable with $\operatorname{O}(\Lambda)$.

Theorem (Amerik, S., Verbitsky)

Let X be a projective hyperkähler manifold with $\rho \geqslant 4$, and Z a germ of a positive-dimensional irreducible real-analytic subset of \mathcal{B}_X . Then:

• There exists a sublattice $\Lambda \subset NS(X)$ of signature (1,d) for some $d \leq \rho$, such that

$$Z \subset \mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$$
,

- The Apollonian carpet of X is the union of the spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above;
- If the Apollonian carpet of X is non-empty, then its closure is equal to \mathcal{B}_X :
- For any $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$ as above, $\operatorname{Aut}(X)$ contains a subgroup commensurable with $\operatorname{O}(\Lambda)$.

The boundary spheres

There are two types of boundary spheres $\mathbb{S}^d_{\Lambda} \subset \mathcal{B}_X$. The first type corresponds to the case when there exists $v \in \mathrm{MBM}^{1,1} \cap \Lambda^{\perp}$.

The boundary spheres

The second type: there is no $v \in MBM^{1,1} \cap \Lambda^{\perp}$.

Examples

Examples

Examples

Thank you!