Задача 0.1. Нека $A = \langle \Sigma, Q, I, \Delta, F \rangle$ е краен автомат с $\Delta \subseteq Q \times \Sigma \times Q$. Разглеждаме следната конструкция:

1.
$$s_D = I$$
, $Q_D^{(0)} = \{s_D\}$, $\delta_D^{(0)} = \emptyset$, $i = 0$, $Q_D^{(-1)} = \emptyset$.

- 2. докато $Q_D^{(i)} \setminus Q_D^{(i-1)} \neq \emptyset$ направи:
 - (a) $\delta_D^{(i+1)} \leftarrow \delta_D^{(i)}$.
 - (б) за всяко $P \in Q_D^{(i)} \setminus Q_D^{(i-1)}$ и всяка буква $a \in \Sigma$:

$$\begin{array}{lcl} P_{a} & = & \{q \, | \, \exists p \in P(\langle p, a, q \rangle \in \Delta)\} \\ \delta_{D}^{(i+1)} & \leftarrow & \delta_{D}^{(i+1)} \cup \{\langle P, a, P_{a} \rangle\}. \end{array}$$

- (6) $Q_D^{(i+1)} = Q_D^{(i)} \cup rng(\delta_D^{(i+1)}).$
- (г) увеличи $i \leftarrow i+1$.

3.
$$\mathcal{A}_D = \left\langle \Sigma, Q_D^{(i)}, \{s_D\}, \delta_D^{(i)}, F_D \right\rangle$$
, където $F_D = \{P \in Q_D^{(i)} \mid P \cap F \neq \emptyset\}$.

 \mathcal{A} а се докаже, че \mathcal{A}_D е краен автомат, δ_D е графика на функция и $\mathcal{L}(\mathcal{A}_D) = \mathcal{L}(\mathcal{A})$.

Задача 0.2. Нека $\Sigma = \{a,b\}$ и $n \ge 1$. Ако $L_n = \Sigma^* \circ \{a\} \circ \Sigma^{n-1}$, да се докаже, че:

- 1. има краен автомат A_n с n+1 състояния и език $\mathcal{L}(A_n)=L_n$.
- 2. всеки краен детерминиран автомат \mathcal{A} с език $\mathcal{L}(\mathcal{A}) = L_n$ има поне 2^n състояния.

Езикът L_n всъщност описва множеството от думи, за които n-тата буква от дясно наляво е a. Задачата казва, че този език е лесен за описание с недетрминиран автомат, достатъчни са n+1 състояния, но детерминираното представяне на същия език изисква поне $2^n=\frac{1}{2}2^{n+1}$ състояния. Поради това, горната граница от 2^n състояния на детерминиран автомат, еквивалентен на краен автомат с n състояния, не може да бъде съществено подобрена.

Задача 0.3. Нека $L \subseteq \Sigma^*$, а $w \in \Sigma^*$. Дефинираме езика $w^{-1}L$ така:

$$w^{-1}L = \{ z \in \Sigma^* \mid w \circ z \in L \}.$$

Да се докаже, че:

- 1. $w \in L$ точно тогава, когато $\varepsilon \in w^{-1}L$.
- 2. за всяка дума $w \in \Sigma^+$, $w^{-1}\{\varepsilon\} = \emptyset$.
- 3. $w^{-1}(L_1 \cup L_2) = w^{-1}L_1 \cup w^{-1}L_2$.
- 4. $(wu)^{-1}L = u^{-1}(w^{-1}L)$ за всеки две думи $u, w \in \Sigma^*$.
- 5. ако $a \in \Sigma$, то за всеки два езика L_1, L_2 :

$$a^{-1}(L_1 \circ L_2) = \begin{cases} (a^{-1}L_1) \circ L_2, & \text{and } \varepsilon \notin L_1 \\ (a^{-1}L_1) \circ L_2 \cup a^{-1}L_2, & \text{and } \varepsilon \in L_1. \end{cases}$$

6. aro $a \in \Sigma$, mo $a^{-1}L^* = (a^{-1}L)L^*$.

Всъщност операцията $w^{-1}L$ се опитва да замени липсата на деление. Изобщо казано, ако имаме произволна дума u, не е ясно какво означава да разделим u на w отляво, тоест уравнението $u=w\circ z$ може да няма решение. Но ако w е префикс на u това уравнение има единствено решение, което се получава от u като задраскаме префикса w.

Задача 0.4. Нека $L_0 \subseteq \Sigma^*$ е език. Да разгледаме следната процедура:

- 1. $\delta = \emptyset$, i = 0, n = 1.
- 2. Докато i < n:
 - (a) за всяка буква $a \in \Sigma$ намери $L' = a^{-1}L_i$ u :
 - ullet ако $L' = L_j$ за някое j < n, дефинирай $\delta(q_i, a) = q_j$.
 - ullet ако $L' \neq L_j$ за всяко j < n, дефинирай $L_n = L'$, $\delta(q_i, a) = q_n$ и увеличи n с 1.
 - (б) увеличи $i \ c \ 1.$

Да допуснем, че горният процес завърши и да разгледаме:

$$\mathcal{A} = \langle \Sigma, \{q_i \mid i < n\}, q_0, \delta, \{q_i \mid \varepsilon \in L_i\} \rangle.$$

Да се докаже, че:

- 1. за всяко i и $a \in \Sigma$, $\delta(q_i, a)$ се дефинира точно веднъж в рамките на процедурата.
- 2. ако процедурата завърши, А е тотален краен детерминиран автомат.
- 3. aro npoyedypama завърши, $w \in \Sigma^*$ и $q_0 \stackrel{w}{\to}_A^* q_i$, то $L_i = w^{-1}L$.
- 4. ако процедурата завърши, то $\mathcal{L}(\mathcal{A}) = L$.

Упътване 0.1. Забележете, че $Q_D^{(i)}\subseteq Q_D^{(i+1)}\subseteq \mathcal{P}(\mathcal{Q})$ и заключете, че процедурата ще завърши най-много след $2^{|\mathcal{Q}|}$ итерации.

Да кръстим с \mathcal{A}'_D резултата от конструкцията за детерминизация от лекции. Припомнете си, че състоянията на \mathcal{A}'_D са точно $Q'_D = \mathcal{P}(Q)$ и началното състояние е $s'_D = I = s_D$. С индукция по дължината на дума $\alpha \in \Sigma^*$ докажете, че за всяко $P \in Q'_D$ следните са еквивалентни:

- 1. има път от s'_D до $P \in Q'_D$ с етикет α в \mathcal{A}'_D ,
- 2. има път от s_D до $P \in Q_D$ с етикет α в \mathcal{A}_D .

Упътване 0.2. 1. Разгледайте автомат със състояния $Q_n = \{q_0, q_1, \dots, q_n\}, I_n = \{q_0\},$ $F_n = \{q_n\}$ и преходи:

$$\Delta_{n} = \left\{ \left\langle q_{0}, a, q_{0} \right\rangle, \left\langle q_{0}, b, q_{0} \right\rangle \right\}, \left\langle q_{0}, a, q_{1} \right\rangle \right\} \cup \left\{ \left\langle q_{i}, a, q_{i+1} \right\rangle, \left\langle q_{i}, b, q_{i+1} \right\rangle \mid 1 \leq i < n \right\}.$$

2. Разгледайте детерминиран краен автомат $\mathcal{A} = \langle \{a,b\},Q,s,\delta,F \rangle$ с език $\mathcal{L}(\mathcal{A}) = L_n$. Покажете, че той е тотален. Заключете, че за всяка дума $w \in \{a,b\}^n$ има единствено състояние $q_w \in Q$, за което $s \stackrel{w}{\to}_{\mathcal{A}}^* q_w$. Допуснете, че има различни думи $w', w'' \in \{a,b\}^n$, за които $q = q_{w'} = q_{w''}$. Разгледайте позиция $1 \leq i \leq n$, за която $w'_i \neq w''_i$. Обосновете, че може да смятаме, че $w'_i = a$ и $w''_i = b$. Заключете, че $w' \circ b^{n-i-1} \in L_n$, но $w'' \circ b^{n-i-1} \notin L_n$. Използвайте детерминираността на \mathcal{A} и $q_{w'} = q = q_{w''}$, за да стигнете до противоречие. Довършете.

Употване 0.3. 1. За първите четири подточки приложете дефиницията.

- 2. За конкатенацията, в случая, когато $\varepsilon \in L_1$, използвайте $L_1 = \varepsilon \cup L_1 \setminus \{\varepsilon\}$ и съответно $L_1 \circ L_2 = L_2 \cup (L_1 \setminus \{\varepsilon\}) \circ L_2$ и резултата за обединение.
- 3. За итерацията, използвайте $L^* = \{\varepsilon\} \cup L^+ \setminus \{\varepsilon\}$ и $L^+ \setminus \{\varepsilon\} = (L \setminus \{\varepsilon\}) \circ L^*$, след което приложете резултатите за конкатенация и обединение.

Упътване 0.4. 1. За всяко i, което процедурата разглежда $\delta(q_i,a)$ се дефинира за всяко a. Довършете като използвате, че i нараства с единица.

- 2. Използвайте 1.
- 3. Използвайте индукция по дължината на w, $(wa)^{-1}L = a^{-1}(w^{-1}L)$ и дефиницията на $\delta(q_i, a)$.
- 4. Използвайте, че $w \in L$ точно тогава, когато $\varepsilon \in w^{-1}L$.