CS1026 - Digital Logic Design

A slow Introduction to the Quine-McCluskey Algorithm I

Shane Sheehan ¹

¹ADAPT Trinity College Dublin

January 22, 2017

Today's Overview

- 1 Introduction
- 2 Column Dominance
- 3 An example

Quine-McCluskey [Majumder et al., 2015] I

- An exact algorithm which finds a minimum-cost sum-of-products implementation of a Boolean function
- This lecture introduces the method

Quine-McCluskey [Majumder et al., 2015] II

- Why do we care???
- Systematic approach for "optimisation" of boolean function.
- $lue{}$ Saves us from the hell of N variable Karnaugh maps (for N>5)
- Can be programmed and implemented in a computer (Automation is life)

Quine-McCluskey [Majumder et al., 2015] III

Quine defined a PRIME IMPLICANT of F to be an implicant that is minimal - that is, the removal of any literal from P results in a non-implicant for F. Essential prime implicants are prime implicants that cover an output of the function that no combination of other prime implicants is able to cover.

Quine-McCluskey [Majumder et al., 2015] IV

PRIME IMPLICANT is a product term that cannot be combined with another term to eliminate a variable i.e. X.Y'.Z could be a prime implicant

Quine-McCluskey [Majumder et al., 2015] V

ESSENTIAL PRIME IMPLICATS are prime implicants that cover an output of the function that no combination of other prime implicants is able to cover

Quine-McCluskey [Majumder et al., 2015] VI

Steps of the Quine-McCluskey algorithm:

- 1 Generate Prime Implicants
- 2 Construct Prime Implicant Table
- 3 Reduce Prime Implicant Table
 - Remove Essential Prime Implicants
 - 2 Row Dominance
 - 3 Column Dominance
- 4 Solve Prime Implicant Table

Quine-McCluskey [Majumder et al., 2015] VII

In Step 1, the prime implicants of a function are generated using an iterative procedure

You can use a Karnaugh-Map

Reminder

- Any single 1 or group of 1's that can be combined together on a Karnaugh map of the function F represents an *Implicant*
- Prime Implicant denotes a product term that we cannot combine with another term to eliminate a variable

Quine-McCluskey [Majumder et al., 2015] VIII

In Step 2, a prime implicant table is constructed

- The columns of the table are the prime implicants
- The rows are min-terms of where the function is 1

Our Goal

To cover all the rows using a minimum-cost cover

Of all prime implicants

Quine-McCluskey [Majumder et al., 2015] IX

This goals needs more explanation..

 Minimum-cost means to have fewest prime implicants (i.e. AND gates) in the final solution.

However, the algorithm has been extended to consider more complex cost functions:

 E.g. Minimising the total number of gate inputs, power optimisation, and so on.

Column Dominance I

A column P_1 whose 1-entries are a superset of another column P2 is said to dominate P_2 .

 P_1 dominates P_2 .

Column Dominance II

Karnaugh map with set of prime implicants: illustrating "column dominance"

$$f(A, B, C, D) = \sum m(0, 4, 5, 11, 13, 15)$$

Column Dominance III

- illustrating "column dominance"
- There are 5 prime implicants
 - Each covers 2 ON-set min-terms
- First, we note that two implicants are essential prime implicants: A'C'D' and ACD

Column Dominance IV

- These implicants must be added to the final cover
- There are 3 remaining prime implicants
- We must pick a minimum subset of these to cover the uncovered ON-set min-terms

Column Dominance V

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)	(4,5)	(5,13)	(13,15)	(11,15)
0	Х				
4	X	Χ			
5		Χ	Χ		
11					X
13			Χ	Χ	
15				Χ	X

- The prime implicant table for the Karnaugh map
- The 5 prime implicants are listed as columns
- The 6 ON-set min-terms are listed as rows

Column Dominance VI

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)*	(4,5)	(5,13)	(13,15)	(11,15)*
0	Χ				
4	Χ	Χ			
5		X	Χ		
11					Χ
13			X	Χ	
15				Χ	Χ

■ We cross out columns A'C'D' and ACD and mark them with *

(These indicate essential implicants)

Column Dominance VII

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)*	(4,5)	(5,13)	(13,15)	(11,15)*
+	Χ				
+	Χ	Χ			
5		Χ	X		
+					Χ
13			X	Χ	
+				Χ	Χ

- Cross out each row intersected by one of these columns
 - Because that min-term is now covered
- At this point, prime implicant BC'D covers 2 remaining ON-set min-terms (5 and 13)

Column Dominance VIII

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)*	(4,5)	(5,13)	(13,15)	(11,15)*
+	Х				
+	Χ	Χ			
5		Χ	X		
+					X
13			Χ	X	
+				Χ	Χ

- However, prime implicant A'BC' covers only one of these (namely, 5)
 - As does ABD (namely, 13).

Column Dominance IX

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)*	(4,5)	(5,13)	(13,15)	(11,15)*
+	Χ				
+	Χ	Χ			
5		Χ	Χ		
+					X
13			X	X	
+				Χ	Χ

- We can use BC'D instead of either A'BC' or ABD
 - Since it covers the same min-terms
 - That is, BC'D column-dominates A'BC, and BC'D column-dominates ABD

Column Dominance X

	A'C'D'	A'BC'	BC'D	ABD	ACD
	(0,4)*	(4,5)	(5,13)	(13,15)	(11,15)*
0	Χ				
4	Χ	Χ			
5		Χ	Χ		
11					Χ
13			Χ	Χ	
15				Χ	Χ

The dominated prime implicants can be crossed out, and only column BC'D remains

Bored Yet?

We will look at Row Dominance next time (zzzzz...)

Any Problems?

- Ask!
- E-Mail: sheehas1@scss.tcd.ie

References (Homework) I

Majumder, A., Chowdhury, B., Mondai, A. J., and Jain, K. (2015).

Investigation on quine mccluskey method: A decimal manipulation based novel approach for the minimization of boolean function.

In Electronic Design, Computer Networks & Automated Verification (EDCAV), 2015 International Conference on, pages 18–22. IEEE.