专业班号
姓 名
注意:答案一律写在试卷纸上,注明题号。写在试题纸上的答案无效。
1. (10分) 判断正误, 每题 1分
(1) ε是字母表{a,d}上的符号串。
(2) 当一个 DFA 运行过程中消耗掉输入串 x 后,所能到达的状态是 $\delta^{}$ ($q0,x$),
其中 q0 是开始状态。
(3) 如果 n 状态 DFA 定义的语言是无穷的,,那么这个语言中某元素长度人
于n。
(4) "由 0 和 1 组成的串且串中 0 和 1 的个数相等",该语言是正则语言。
(5) 在上下文无关文法中,变元集合可以为空。
(6) 句子的句柄也是该句子的直接短语。
(7) 自上而下语法分析过程中,M 为预测分析表,表元素 M[N,c]为产生式
N->α,那么 c∈FIRST(α)。
(8) 如果语言不允许过程递归调用,那么同一个过程的活动的生命期都不会
相交。

(9) 编译器的源语言与它的目标语言可以相同。

(10) 在设计词法分析器时,实数这个词法单位采用全体一种表示比较合理。

2. (10分) 本题共10个空, 每空1分。

◆ 符号串 s 是语言 S 中的句子,那么 s·s 是语言_(1)___的句子。

◆ NFA M 的开始状态不是结束状态,那么 M 不接受符号串: _(2)_。

◆ 从声明语句 int a[2] 获得的有用信息有:维数是 1;维长是 __(3)_;

◆ 有过程声明 void f(int x, float y){...}, 现要访问 f 的活动记录中 x 单元. 那么基址是__(6)__、偏移量是__(7)__。注不含参数个数单元 ◆ 表达式 x-(b+c)*a 的逆波兰表示为 (8) , 三地址码表示为 (9) 。 程序代码存放在运行时存储空间的 (10) 区。 \diamond (5分)范围-127~+127的小整数,用十六进制表示时最多有两位。试用 3. 正则表达式定义十六进制表示的小整数。举例十六进制 9、-B、-IF、+7F 依次为十进制 9、-11、-31、+127。 4. (20分)试完成如下与文法有关的各小题:(默认最左边是开始符号) (1) 消除文法中的无用符号: $S \rightarrow Aa \mid \epsilon$, $A \rightarrow Aa$, $B \rightarrow Bc \mid d$ (2) 消除文法中的 ϵ -产生式: $S \rightarrow ABC|\epsilon$, $A \rightarrow Bb|a$, $B \rightarrow Cb|\epsilon$, $C \rightarrow \epsilon$ (3) 消除文法中的单位产生式: $E \rightarrow E + T \mid T$, $T \rightarrow F \mid T * F$, $F \rightarrow I \mid (E)$ (4) 消除文法中的左递归; S→AB|a, A→Ab|Ba, B→Ac|d (5) 对于文法 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ 分别写出变元 $S \rightarrow P \mid o, P \rightarrow i(B)SF, F \rightarrow eS \mid \epsilon, B \rightarrow 0 \mid 1$ FIRST 集、变元 F 和 B 的 FOLLOW 集。 (6) 对于文法 E→E/E|E&E|i, 写出句子 i/i&i 的所有最左推导,以及对应的 语法树,并判断该文法是不是歧义的。 5. (10 分) 填写下页 NFA 迁移表 1 中 "ε-闭包"一列 (第一列元素的ε-闭包), 并将该 NFA 转换为 DFA, 其中 DFA 的状态用 NFA 状态的集合来表示, 写出 DFA 的迁移表表示。

◆ 对照语法树,结点 N 的综合承属性值只依赖于___(5)____的属性值。

兀系类型是 (4) 等。

表1	a	b	ε	ε-团包
→1	{2,3}		(3)	1
2		(3)	{3,4}	2
3	(4)			3
4		{5}		4
*5			{1}	(5)

6、(10 分) 根据文法构造自下而上分析中用于识别活前缀的 DFA, 并判断是否有冲突, 若有则说明如何消解冲突。

$$S \rightarrow E-n|+$$

 $E \rightarrow n$

 $E \rightarrow n+$

program test;

procedure hool;

var x:integer:

7、(15 分)给定一个类 PASCAL 程序如下,图 示当程序执行到 foo 过程体时的运行时栈当前内容(按照本页右图所示进行,需要填写其中的 20 个问号的值): (注:所有单元长度均为1,另外活动记录格式如下页图,其中 sp 为栈顶指针,栈向着地址减小的方向生长。)

```
procedure foo(var y:integer)
    begin
    writeln(y);
    end
procedure bar(procedure t; var x:integer);
    begin
    t(x);
    end;
```

100:?	
099:?	
098:?	

test

097:? 096:? 095:? 094:?

hool

093:? 092:? 091:? 090:? 089:? 088:?

bar(.)

086:? 085:? 084:? 083:?

foo(.)

fp=?

sp=?

```
begin
xi=3;
bar(foo,x);
end;
fp-> 控制数
begin
begin
bool;
end.
sp-> 帕时变换
```

- **8、(20 分)** 对句子 if x<>y then while x<y \(x = a \) do y:=a \) 进行研义分析。》 如下的属性文法,假设全局变量 nxq 初始化为 100,试完成(1)和(1)
 - (1) 画出该句子的语法树标出树中内结点的各属性的值。
 - (2) 写出输出的四元式, 过程中四元式的某个元若有变化质体衣列出

说明:过程 bp(c, q)将四元组编号 q 返填到以 c 为链头的链上的每个四元组的第四元;过程 merg(p, q)将 p 链链到 q 链的尾巴上 并返回 q 为结果链头,但看 q 为空链则返回 p;过程 Gen(t1,t2,t3,t4)产生一个四元组, 其编号为 nxq 当前值, 并将 nxq 加 1.