Network Visualization (TensorFlow)

In this notebook we will explore the use of *image gradients* for generating new images.

When training a model, we define a loss function which measures our current unhappiness with the model's performance; we then use backpropagation to compute the gradient of the loss with respect to the model parameters, and perform gradient descent on the model parameters to minimize the loss.

Here we will do something slightly different. We will start from a convolutional neural network model which has been pretrained to perform image classification on the ImageNet dataset. We will use this model to define a loss function which quantifies our current unhappiness with our image, then use backpropagation to compute the gradient of this loss with respect to the pixels of the image. We will then keep the model fixed, and perform gradient descent *on the image* to synthesize a new image which minimizes the loss.

In this notebook we will explore three techniques for image generation:

- 1. **Saliency Maps**: Saliency maps are a quick way to tell which part of the image influenced the classification decision made by the network.
- 2. **Fooling Images**: We can perturb an input image so that it appears the same to humans, but will be misclassified by the pretrained network.
- 3. **Class Visualization**: We can synthesize an image to maximize the classification score of a particular class; this can give us some sense of what the network is looking for when it classifies images of that class.

This notebook uses **TensorFlow**; we have provided another notebook which explores the same concepts in PyTorch. You only need to complete one of these two notebooks.

In [99]:

```
# As usual, a bit of setup
import time, os, json
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from cs231n.classifiers.squeezenet import SqueezeNet
from cs231n.data_utils import load tiny imagenet
from cs231n.image_utils import preprocess image, deprocess image
from cs231n.image utils import SQUEEZENET MEAN, SQUEEZENET STD
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
def get session():
    """Create a session that dynamically allocates memory."""
https://www.tensorflow.org/tutorials/using gpu#allowing gpu memory growth
    config = tf.ConfigProto()
   config.gpu options.allow growth = True
```

```
session = tf.Session(config=config)
  return session

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-i
python
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

Pretrained Model

For all of our image generation experiments, we will start with a convolutional neural network which was pretrained to perform image classification on ImageNet. We can use any model here, but for the purposes of this assignment we will use SqueezeNet [1], which achieves accuracies comparable to AlexNet but with a significantly reduced parameter count and computational complexity.

Using SqueezeNet rather than AlexNet or VGG or ResNet means that we can easily perform all image generation experiments on CPU.

We have ported the PyTorch SqueezeNet model to TensorFlow; see: cs231n/classifiers/squeezenet.py for the model architecture.

To use SqueezeNet, you will need to first download the weights by descending into the cs231n/datasets directory and running get_squeezenet_tf.sh. Note that if you ran get_assignment3_data.sh then SqueezeNet will already be downloaded.

Once you've downloaded the Squeezenet model, we can load it into a new TensorFlow session:

[1] landola et al, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size", arXiv 2016

In [100]:

```
tf.reset_default_graph()
sess = get_session()

SAVE_PATH = 'cs231n/datasets/squeezenet.ckpt'
if not os.path.exists(SAVE_PATH + ".index"):
    raise ValueError("You need to download SqueezeNet!")
model = SqueezeNet(save_path=SAVE_PATH, sess=sess)
```

INFO:tensorflow:Restoring parameters from cs231n/datasets/squeezenet.ckpt

Load some ImageNet images

We have provided a few example images from the validation set of the ImageNet ILSVRC 2012 Classification dataset. To download these images, descend into cs231n/datasets/ and run get imagenet val.sh.

Since they come from the validation set, our pretrained model did not see these images during training.

Run the following cell to visualize some of these images, along with their ground-truth labels.

```
In [101]:
```

```
from cs231n.data_utils import load_imagenet_val
X_raw, y, class_names = load_imagenet_val(num=5)

plt.figure(figsize=(12, 6))
for i in range(5):
    plt.subplot(1, 5, i + 1)
    plt.imshow(X_raw[i])
    plt.title(class_names[y[i]])
    plt.axis('off')

plt.gcf().tight_layout()
```


Preprocess images

The input to the pretrained model is expected to be normalized, so we first preprocess the images by subtracting the pixelwise mean and dividing by the pixelwise standard deviation.

```
In [106]:
```

```
X = np.array([preprocess_image(img) for img in X_raw])
```

```
In [107]:
```

```
X_raw, X
```

```
Out[107]:
```

```
(array([[[ 76, 122, 191],
          [ 75, 122, 191],
          [ 76, 122, 193],
          . . . ,
          [112, 156, 221],
          [112, 156, 221],
          [112, 156, 222]],
         [[ 76, 123, 194],
          [ 76, 123, 193],
          [ 77, 123, 192],
          [112, 156, 221],
          [111, 156, 222],
          [112, 156, 223]],
         [[ 77, 124, 192],
          [ 78, 123, 193],
          [ 79, 123, 195],
          [113, 158, 223],
```

```
[114, 158, 224],
  [113, 158, 224]],
. . . ,
[[255, 255, 255],
 [255, 255, 255],
 [255, 255, 255],
 [255, 255, 255],
 [255, 255, 255],
 [255, 255, 255]],
[[255, 255, 255],
 [255, 255, 255],
 [255, 255, 255],
 . . . ,
 [255, 255, 255],
 [255, 255, 255],
 [255, 255, 255]],
[[255, 255, 255],
 [255, 255, 255],
 [255, 255, 255],
  . . . ,
 [255, 255, 255],
 [255, 255, 255],
 [255, 255, 255]]],
[[[255, 254, 233],
 [255, 254, 233],
 [255, 254, 233],
 [253, 253, 189],
 [254, 253, 189],
 [252, 252, 187]],
[[255, 254, 233],
 [255, 254, 233],
 [255, 254, 233],
 [254, 253, 194],
 [254, 253, 191],
 [253, 251, 189]],
[[255, 254, 233],
 [255, 254, 233],
 [255, 254, 233],
 . . . ,
 [253, 244, 186],
 [253, 241, 185],
 [252, 238, 181]],
. . . ,
[[159, 139, 111],
 [163, 140, 111],
 [160, 136, 103],
```

```
[255, 254, 233],
  [255, 254, 233],
 [255, 254, 233]],
[[156, 134, 104],
 [161, 140, 110],
 [161, 139, 107],
  . . . ,
 [255, 254, 233],
 [255, 254, 233],
 [255, 254, 233]],
[[149, 127, 96],
 [154, 134, 102],
 [159, 138, 104],
 . . . ,
 [255, 254, 233],
 [255, 254, 233],
 [255, 254, 233]]],
[[[239, 246, 248],
 [241, 247, 248],
 [242, 249, 247],
 . . . ,
 [145, 136, 124],
 [200, 194, 189],
 [116, 111, 101]],
[[246, 250, 248],
 [246, 250, 248],
 [246, 251, 246],
 . . . ,
 [142, 136, 126],
 [205, 199, 196],
 [120, 113, 106]],
[[239, 248, 246],
 [238, 248, 246],
 [237, 248, 246],
 [142, 136, 124],
 [204, 201, 196],
 [117, 114, 105]],
. . . ,
[[240, 241, 244],
 [226, 227, 231],
 [212, 215, 219],
 . . . ,
 [ 71, 123, 106],
 [ 74, 122, 106],
 [ 73, 123, 106]],
[[210, 212, 213],
 [222, 223, 223],
 [237, 238, 239],
  [ 74, 119, 103],
       1 0 0
             1 / / 1
```

```
[ /5, 120, 104],
  [ 74, 121, 106]],
 [[249, 249, 250],
 [250, 250, 251],
  [248, 249, 251],
  [ 70, 119, 104],
  [ 72, 121, 104],
  [ 74, 121, 106]]],
[[[104, 115,
              97],
  [174, 192, 146],
  [ 91, 124,
               88],
  . . . ,
  [ 32,
         37,
               39],
  [ 30,
         40,
               42],
  [ 43,
          61,
               44]],
 [[ 32,
          51,
               54],
 [ 52,
          73,
               70],
  [ 35,
          60,
               58],
  . . . ,
  [ 27,
          36,
               46],
  [ 32,
          35,
               44],
  [ 31,
          41,
               43]],
 [[ 38,
          51,
               51],
 [ 41,
          47,
               46],
  [ 30,
          47,
               45],
  . . . ,
  [ 39,
          54,
               64],
  [ 40,
          51,
               88],
  [ 38,
          45,
               59]],
 . . . ,
 [[ 76, 139,
               45],
               46],
 [104, 162,
 [143, 191,
               88],
  . . . ,
  [103, 149,
               52],
  [ 90, 149,
               47],
  [ 62, 128,
               22]],
 [[106, 161,
               48],
 [103, 161,
               26],
  [117, 175,
               22],
  . . . ,
  [110, 153,
               49],
  [104, 157,
               26],
  [ 91, 155,
               10]],
 [[106, 165,
               23],
 [ 69, 138,
               16],
 [122, 178,
               14],
  . . . ,
  [ 89, 139,
               22],
  [ 77, 140,
               11],
  Γ ΩΩ 152
                5111
```

```
[[[108, 129, 126],
         [100, 123, 114],
         [ 96, 118, 112],
         . . . ,
         [ 94, 115, 105],
         [ 90, 109, 95],
         [ 90, 109, 97]],
        [[ 92, 113, 106],
         [ 90, 112, 101],
         [ 99, 120, 114],
         . . . ,
         [ 92, 111,
                     98],
         [ 91, 109,
                     97],
         [ 82, 100,
                     87]],
                    81],
        [[ 74, 94,
         [ 76, 96, 81],
         [ 92, 113, 104],
         [ 77, 96,
                     78],
         [ 83, 99,
                     85],
         [ 83, 100,
                    85]],
        . . . ,
        [[209, 220, 237],
         [212, 223, 241],
         [212, 224, 240],
         . . . ,
         [ 63,
                40,
                     32],
         [ 76,
               51,
                    26],
         [113,
               85,
                    65]],
        [[208, 220, 235],
         [208, 220, 236],
         [209, 221, 235],
         . . . ,
         [ 61,
               37,
                    29],
         [ 76,
                50,
                     33],
                     32]],
         [ 68,
                46,
        [[201, 213, 227],
         [203, 215, 229],
         [209, 221, 235],
         [ 85,
               61,
                    43],
         [ 78, 54, 40],
               34,
                    16]]]], dtype=uint8),
         [ 60,
array([[[-0.81642264, 0.10014006, 1.5245317],
         [-0.8335474, 0.10014006, 1.5245317],
         [-0.81642264, 0.10014006,
                                     1.5593902 ],
         . . . ,
         [-0.19993155, 0.69537824,
                                    2.0474076 ],
         [-0.19993155, 0.69537824, 2.0474076],
         [-0.19993155, 0.69537824,
                                     2.0648367 ]],
        [[-0.81642264] 0.11764706] 1.5768193 1.
```

[00, 104, 0]]],

```
[[ 0.01032203, 0.11103100, 1.0100100]]
 [-0.81642264, 0.11764706, 1.5593902],
 [-0.79929787, 0.11764706, 1.541961],
 . . . ,
 [-0.19993155, 0.69537824, 2.0474076],
 [-0.2170563, 0.69537824, 2.0648367],
 [-0.19993155, 0.69537824, 2.0822659]],
[-0.79929787, 0.13515405, 1.541961],
 [-0.78217316, 0.11764706, 1.5593902],
 [-0.7650484, 0.11764706, 1.5942485],
 [-0.18280679, 0.7303922, 2.0822659],
 [-0.16568205, 0.7303922, 2.0996952],
 [-0.18280679, 0.7303922, 2.0996952]],
. . . ,
[[ 2.2489083 , 2.4285715 , 2.64
                                     ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 . . . ,
 [ 2.2489083 , 2.4285715 , 2.64
                                    1,
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ]],
[[ 2.2489083 , 2.4285715 , 2.64 ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
                                  ],
 [ 2.2489083 , 2.4285715 , 2.64
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ]],
[[ 2.2489083 , 2.4285715 , 2.64
                                    ],
[ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 . . . ,
 [ 2.2489083 , 2.4285715 , 2.64 ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ],
 [ 2.2489083 , 2.4285715 , 2.64
                                    ]]],
[[[ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 . . . ,
 [ 2.2146587 , 2.3935575 , 1.4896734 ],
 [ 2.2317834 , 2.3935575 , 1.4896734 ],
 [ 2.1975338 , 2.3760502 , 1.454815 ]],
[[ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2317834 , 2.3935575 , 1.5768193 ],
 [ 2.2317834 , 2.3935575 , 1.5245317 ],
 [ 2.2146587 , 2.3585434 , 1.4896734 ]],
[[ 2.2489083 , 2.4110641 , 2.2565577 ],
[ 2.2489083 , 2.4110641 , 2.2565577 ],
```

```
[ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2146587 , 2.235994 , 1.4373858 ],
 [ 2.2146587 , 2.1834733 ,
                           1.4199566 ],
 [ 2.1975338 , 2.1309524 , 1.3502399 ]],
. . . ,
[[0.60493195, 0.3977592, 0.13019615],
 [0.673431, 0.41526622, 0.13019615],
 [0.6220567, 0.3452382, -0.0092374],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ]],
[[0.5535577, 0.3102242, 0.0081918],
 [ 0.63918144, 0.41526622, 0.11276696],
 [0.63918144, 0.3977592, 0.06047938],
 . . . ,
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ]],
[[0.43368444, 0.18767506, -0.13124175],
 [ 0.5193082 , 0.3102242 , -0.02666659],
 [ 0.60493195, 0.3802522 , 0.0081918 ],
 . . . ,
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ],
 [ 2.2489083 , 2.4110641 , 2.2565577 ]]],
[[[ 1.9749122 , 2.2710083 , 2.5179958 ],
 [ 2.0091617 , 2.2885156 , 2.5179958 ],
 [ 2.0262864 , 2.3235295 , 2.5005665 ],
 [0.3651854, 0.3452382, 0.35677567],
 [ 1.3070468 , 1.3606442 , 1.4896734 ],
 [-0.13143253, -0.09243695, -0.04409578]],
[[ 2.0947855 , 2.3410363 , 2.5179958 ],
 [ 2.0947855 , 2.3410363 , 2.5179958 ],
 [ 2.0947855 , 2.3585434 , 2.4831376 ],
 [ 0.31381115, 0.3452382 , 0.39163405],
 [ 1.3926706 , 1.4481792 ,
                           1.6116778],
 [-0.06293353, -0.05742295, 0.04305018]],
[[ 1.9749122 , 2.3060222 , 2.4831376 ],
 [ 1.9577874 , 2.3060222 , 2.4831376 ],
 [ 1.9406626 , 2.3060222 , 2.4831376 ],
 . . . ,
 [ 0.31381115, 0.3452382 , 0.35677567],
 [ 1.3755459 , 1.4831933 , 1.6116778 ],
 [-0.11430778, -0.03991595, 0.02562099]],
. . . ,
[[ 1.9920369 , 2.1834733 , 2.4482791 ],
```

```
[ 1.7522904 , 1.9383754 , 2.2216995 ],
 [ 1.5125438 , 1.7282913 , 2.0125492 ],
 [-0.9020464, 0.11764706, 0.04305018],
 [-0.8506721, 0.10014006, 0.04305018],
 [-0.8677969, 0.11764706, 0.04305018]],
[[ 1.4782944 , 1.6757703 , 1.907974 ],
 [ 1.6837914 , 1.8683473 , 2.0822659 ],
 [ 1.9406626 , 2.1309524 , 2.3611329 ],
 . . . ,
 [-0.8506721, 0.04761905, -0.0092374],
 [-0.8335474, 0.06512605, 0.0081918],
 [-0.8506721, 0.08263306, 0.04305018]],
[[ 2.1461596 , 2.3235295 , 2.5528543 ],
 [ 2.1632845 , 2.3410363 , 2.5702832 ],
 [ 2.129035 , 2.3235295 , 2.5702832 ],
 [-0.91917115, 0.04761905, 0.0081918],
 [-0.88492167, 0.08263306, 0.0081918],
 [-0.8506721, 0.08263306, 0.04305018]]],
[[-0.33692956, -0.02240895, -0.11381256],
 [ 0.86180323, 1.3256303, 0.74021804],
 [-0.55955136, 0.13515405, -0.2706753],
 [-1.5699118, -1.3879551, -1.1247058],
 [-1.6041614, -1.3354341, -1.0724182],
 [-1.3815396, -0.9677871, -1.0375599]],
[[-1.5699118, -1.1428571, -0.86326796],
 [-1.2274169, -0.757703, -0.5844008],
 [-1.5185376, -0.9852941, -0.79355115],
 [-1.6555357, -1.405462, -1.0027015],
 [-1.5699118, -1.4229691, -1.0375599],
 [-1.5870366, -1.317927, -1.0549891]],
[[-1.4671633, -1.1428571, -0.91555554],
 [-1.4157891, -1.212885, -1.0027015],
 [-1.6041614, -1.212885, -1.0201306],
 [-1.4500387, -1.0903361, -0.68897593],
 [-1.4329139, -1.1428571, -0.2706753],
 [-1.4671633 , -1.247899 , -0.776122 ]],
[[-0.81642264, 0.3977592, -1.0201306],
 [-0.33692956, 0.8004202, -1.0027015],
 [ 0.33093593, 1.3081232 , -0.2706753 ],
 . . . ,
 [-0.35405433, 0.57282925, -0.8981263],
 [-0.57667613, 0.57282925, -0.9852723],
 [-1.0561693, 0.2051822, -1.4210021]],
[-0.30268008, 0.78291327, -0.9678431],
 [-0.35405433, 0.78291327, -1.3512855],
```

```
[-0.11430778, 1.0280112, -1.4210021],
 [-0.23418105, 0.64285725, -0.9504139],
 [-0.33692956, 0.71288526, -1.3512855],
 [-0.55955136, 0.6778712, -1.6301525]],
[[-0.30268008, 0.8529412, -1.403573],
 [-0.9362959, 0.3802522, -1.5255773],
 [-0.02868402, 1.0805323, -1.5604358],
 [-0.59380084, 0.3977592, -1.4210021],
 [-0.79929787, 0.41526622, -1.6127234],
 [-0.6109256, 0.62535024, -1.7172985]]
[[[-0.26843056, 0.2226892, 0.39163405],
 [-0.4054286, 0.11764706, 0.18248373],
 [-0.4739276, 0.03011205, 0.14762534],
 [-0.5081771, -0.02240895, 0.02562099],
 [-0.57667613, -0.12745096, -0.14867094],
 [-0.57667613, -0.12745096, -0.11381256]],
[[-0.5424266, -0.05742295, 0.04305018],
 [-0.57667613, -0.07492995, -0.04409578],
 [-0.42255333, 0.06512605, 0.18248373],
 [-0.5424266, -0.09243695, -0.09638336],
 [-0.55955136, -0.12745096, -0.11381256],
 [-0.7136741, -0.28501397, -0.28810447]],
[[-0.8506721, -0.39005598, -0.39267966],
 [-0.81642264, -0.35504198, -0.39267966],
 [-0.5424266, -0.05742295, 0.0081918],
 [-0.79929787, -0.35504198, -0.44496724],
 [-0.69654936, -0.30252096, -0.32296288],
 [-0.69654936, -0.28501397, -0.32296288]],
 . . . ,
[[ 1.4611696 , 1.8158263 , 2.3262744 ],
 [ 1.5125438 , 1.8683473 , 2.3959913 ],
 [ 1.5125438 , 1.8858544 , 2.3785625 ],
 [-1.0390445, -1.3354341, -1.2467101],
 [-0.81642264, -1.1428571, -1.3512855],
 [-0.18280679, -0.547619, -0.67154676]],
[[ 1.4440448 , 1.8158263 , 2.2914162 ],
 [ 1.4440448 , 1.8158263 , 2.3088455 ],
 [ 1.4611696 , 1.8333333 , 2.2914162 ],
 [-1.073294 , -1.3879551 , -1.2989979 ],
 [-0.81642264, -1.160364 , -1.229281 ],
 [-0.95342064, -1.230392, -1.2467101]],
 [[ 1.3241715 , 1.6932774 , 2.1519828 ],
 [ 1.3584211 , 1.7282913 , 2.186841 ],
 [ 1.4611696 , 1.8333333 , 2.2914162 ],
```

```
...,
[-0.6622999 , -0.9677871 , -1.0549891 ],
[-0.78217316, -1.0903361 , -1.1072767 ],
[-1.0904187 , -1.4404761 , -1.5255773 ]]]], dtype=float32))
```

Saliency Maps

Using this pretrained model, we will compute class saliency maps as described in Section 3.1 of [2].

A **saliency map** tells us the degree to which each pixel in the image affects the classification score for that image. To compute it, we compute the gradient of the unnormalized score corresponding to the correct class (which is a scalar) with respect to the pixels of the image. If the image has shape (H, W, 3) then this gradient will also have shape (H, W, 3); for each pixel in the image, this gradient tells us the amount by which the classification score will change if the pixel changes by a small amount. To compute the saliency map, we take the absolute value of this gradient, then take the maximum value over the 3 input channels; the final saliency map thus has shape (H, W) and all entries are nonnegative.

You will need to use the <code>model.scores</code> Tensor containing the scores for each input, and will need to feed in values for the <code>model.image</code> and <code>model.labels</code> placeholder when evaluating the gradient. Open the file <code>cs231n/classifiers/squeezenet.py</code> and read the documentation to make sure you understand how to use the model. For example usage, you can see the <code>loss</code> attribute.

[2] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

In [108]:

```
def compute saliency maps(X, y, model):
   Compute a class saliency map using the model for images X and labels y.
   Input:
   - X: Input images, numpy array of shape (N, H, W, 3)
   - y: Labels for X, numpy of shape (N_{\bullet})
   - model: A SqueezeNet model that will be used to compute the saliency m
ap.
   Returns:
   - saliency: A numpy array of shape (N, H, W) giving the saliency maps f
or the
   input images.
   saliency = None
   # Compute the score of the correct class for each example.
   # This gives a Tensor with shape [N], the number of examples.
   # Note: this is equivalent to scores[np.arange(N), y] we used in NumPy
   # for computing vectorized losses.
   correct scores = tf.gather nd (model.scores,
                               tf.stack((tf.range(X.shape[0]), model.labe
s), axis=1))
# TODO: Produce the saliency maps over a batch of images.
```

```
# 1) Compute the "loss" using the correct scores tensor provided for yo
77.
       (We'll combine losses across a batch by summing)
   # 2) Use tf.gradients to compute the gradient of the loss with respect
       to the image (accessible via model.image).
#
   # 3) Compute the actual value of the gradient by a call to sess.run().
       You will need to feed in values for the placeholders model.image a
nd
      model.labels.
#
   # 4) Finally, process the returned gradient to compute the saliency map
#pass
   grads = tf.gradients(correct scores, model.image)
   dx = tf.reduce sum(grads, axis=0)
   saliency = sess.run(dx, feed dict={model.image:X, model.labels:y})
   saliency = np.max(np.abs(saliency), axis=3)
END OF YOUR CODE
return saliency
In [109]:
X.shape
Out[109]:
(5, 224, 224, 3)
In [110]:
y.shape
Out[110]:
(5,)
```

Once you have completed the implementation in the cell above, run the following to visualize some class saliency maps on our example images from the ImageNet validation set:

```
In [111]:
```

```
uer snow sattency maps (A, y, mask):
   mask = np.asarray(mask)
    Xm = X[mask]
    ym = y[mask]
    saliency = compute saliency maps(Xm, ym, model)
    for i in range(mask.size):
        plt.subplot(2, mask.size, i + 1)
        plt.imshow(deprocess image(Xm[i]))
        plt.axis('off')
        plt.title(class names[ym[i]])
        plt.subplot(2, mask.size, mask.size + i + 1)
        plt.title(mask[i])
        plt.imshow(saliency[i], cmap=plt.cm.hot)
        plt.axis('off')
        plt.gcf().set size inches(10, 4)
    plt.show()
mask = np.arange(5)
show saliency maps(X, y, mask)
```


INLINE QUESTION

A friend of yours suggests that in order to find an image that maximizes the correct score, we can perform gradient ascent on the input image, but instead of the gradient we can actually use the saliency map in each step to update the image. Is this assertion true? Why or why not?

ANSWER: Yes, that might be a good idea. The idea with saliency maps is that we can compute the gradient of output category with respect to input image. Then we can use these gradients to find input regions that cause the biggest change in the output. Intuitively, this should highlight salient image regions that most contribute towards the output.

Fooling Images

We can also use image gradients to generate "fooling images" as discussed in [3]. Given an image and a target class, we can perform gradient **ascent** over the image to maximize the target class, stopping when the network classifies the image as the target class. Implement the following function to generate fooling images.

In [112]:

```
def make fooling image(X, target y, model):
   Generate a fooling image that is close to X, but that the model classif
ies
   as target y.
   Inputs:
   - X: Input image, a numpy array of shape (1, 224, 224, 3)
   - target y: An integer in the range [0, 1000)
   - model: Pretrained SqueezeNet model
   Returns:
   - X fooling: An image that is close to X, but that is classifed as targ
et y
   by the model.
   # Make a copy of the input that we will modify
   X fooling = X.copy()
   # Step size for the update
   learning rate = 1
# TODO: Generate a fooling image X fooling that the model will classify
as
   # the class target y. Use gradient *ascent* on the target class score,
using #
   # the model.scores Tensor to get the class scores for the model.image.
#
   # When computing an update step, first normalize the gradient:
#
   # dX = learning rate * g / ||g|| 2
#
#
   # You should write a training loop, where in each iteration, you make a
n
    # update to the input image X fooling (don't modify X). The loop should
   # stop when the predicted class for the input is the same as target y.
#
#
   # HINT: It's good practice to define your TensorFlow graph operations
   # outside the loop, and then just make sess.run() calls in each iterati
on.
   # HINT 2: For most examples, you should be able to generate a fooling i
mage
   # in fewer than 100 iterations of gradient ascent. You can print your
```

```
# progress over iterations to check your algorithm.
#pass
  #iter = 0
  scores = model.scores
  dX pre = tf.gradients(scores[:,target y],model.image)
  dX pre = tf.squeeze(dX pre,[0])
  dX = learning rate*dX pre/ tf.norm(dX pre)
  while True:
     gradient step, scores out = sess.run([dX, scores], feed dict={model
.image:X fooling}
     if np.argmax(scores out) == target y:
        return X fooling
     X fooling += gradient step
#
                       END OF YOUR CODE
return X fooling
In [113]:
```

```
## adele
scores =sess.run(model.scores, {model.image: X_fooling})
scores.shape
dX_pre = tf.gradients(scores[:,target_y],model.image)
dX_pre
```

Out[113]:

[None]

Run the following to generate a fooling image. You should ideally see at first glance no major difference between the original and fooling images, and the network should now make an incorrect prediction on the fooling one. However you should see a bit of random noise if you look at the 10x magnified difference between the original and fooling images. Feel free to change the idx variable to explore other images.

In [114]:

```
idx = 0
Xi = X[idx][None]
target_y = 6
X_fooling = make_fooling_image(Xi, target_y, model)

# Make sure that X_fooling is classified as y_target
scores = sess.run(model.scores, {model.image: X_fooling})
assert scores[0]_argmax() == target y. 'The network is not fooled!'
```

```
L DCOTCD[0].argman()
# Show original image, fooling image, and difference
orig img = deprocess image(Xi[0])
fool img = deprocess image(X fooling[0])
# Rescale
plt.subplot(1, 4, 1)
plt.imshow(orig img)
plt.axis('off')
plt.title(class names[y[idx]])
plt.subplot(1, 4, 2)
plt.imshow(fool img)
plt.title(class names[target y])
plt.axis('off')
plt.subplot(1, 4, 3)
plt.title('Difference')
plt.imshow(deprocess image((Xi-X fooling)[0]))
plt.axis('off')
plt.subplot(1, 4, 4)
plt.title('Magnified difference (10x)')
plt.imshow(deprocess_image(10 * (Xi-X fooling)[0]))
plt.axis('off')
plt.gcf().tight layout()
```


Class visualization

By starting with a random noise image and performing gradient ascent on a target class, we can generate an image that the network will recognize as the target class. This idea was first presented in [2]; [3] extended this idea by suggesting several regularization techniques that can improve the quality of the generated image.

Concretely, let I be an image and let y be a target class. Let $s_y(I)$ be the score that a convolutional network assigns to the image I for class y; note that these are raw unnormalized scores, not class probabilities. We wish to generate an image I^* that achieves a high score for the class y by solving the problem

```
I^* = \arg \max
```

where R is a (possibly implicit) regularizer (note the sign of R(I) in the argmax: we want to minimize this regularization term). We can solve this optimization problem using gradient ascent, computing gradients with respect to the generated image. We will use (explicit) L2 regularization of the form $R(I) = \lambda |I| 2^2$

and implicit regularization as suggested by [3] by periodically blurring the generated image. We can solve this problem using gradient ascent on the generated image.

In the cell below, complete the implementation of the create class visualization function.

- [2] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.
- [3] Yosinski et al, "Understanding Neural Networks Through Deep Visualization", ICML 2015 Deep Learning Workshop

```
In [115]:
```

```
from scipy.ndimage.filters import gaussian_filter1d
def blur_image(X, sigma=1):
    X = gaussian_filter1d(X, sigma, axis=1)
    X = gaussian_filter1d(X, sigma, axis=2)
    return X
```

In [116]:

```
def create class visualization(target y, model, **kwargs):
   Generate an image to maximize the score of target y under a pretrained
model.
   Inputs:
   - target y: Integer in the range [0, 1000) giving the index of the clas
   - model: A pretrained CNN that will be used to generate the image
   Keyword arguments:
   - 12 reg: Strength of L2 regularization on the image
   - learning rate: How big of a step to take
   - num iterations: How many iterations to use
   - blur every: How often to blur the image as an implicit regularizer
   - max jitter: How much to gjitter the image as an implicit regularizer
   - show every: How often to show the intermediate result
   mmm
   12 reg = kwargs.pop('12 reg', 1e-3)
   learning rate = kwargs.pop('learning rate', 25)
   num iterations = kwargs.pop('num iterations', 100)
   blur every = kwargs.pop('blur every', 10)
   max jitter = kwargs.pop('max jitter', 16)
   show every = kwargs.pop('show every', 25)
   # We use a single image of random noise as a starting point
   X = 255 * np.random.rand(224, 224, 3)
   X = preprocess image(X)[None]
# TODO: Compute the loss and the gradient of the loss with respect to
#
   # the input image, model.image. We compute these outside the loop so
#
   # that we don't have to recompute the gradient graph at each iteration
#
   # Note: loss and grad should be TensorFlow Tensors, not numpy arrays!
#
   # The loss is the score for the target label, target y. You should
```

```
# use model.scores to get the scores, and ti.gradients to compute #
  # gradients. Don't forget the (subtracted) L2 regularization term!
#
loss = None # scalar loss
  grad = None # gradient of loss with respect to model.image, same size a
s model.image
  #scores = sess.run(model.scores, {model.image: X fooling})
  scores = model.scores
  grad = tf.gradients(scores[:,target y]-12 reg*tf.norm(model.image),mode
1.image)
  grad = tf.squeeze(grad,[0])
END OF YOUR CODE
for t in range(num iterations):
     # Randomly jitter the image a bit; this gives slightly nicer result
S
     ox, oy = np.random.randint(-max jitter, max jitter+1, 2)
     X = np.roll(np.roll(X, ox, 1), oy, 2)
# TODO: Use sess to compute the value of the gradient of the score
for #
     # class target y with respect to the pixels of the image, and make
     # gradient step on the image using the learning rate. You should us
0
     # the grad variable you defined above.
#
     # Be very careful about the signs of elements in your code.
gradient step, scores out = sess.run([grad, scores],
feed dict={model.image:X})
     X += learning rate*gradient step
END OF YOUR CODE
     #
# Undo the jitter
          rell(nn rell(V ex 1) ex 2)
```

```
X = \text{np.roll}(\text{np.roll}(X, -OX, I), -OY, Z)
        # As a regularizer, clip and periodically blur
        X = np.clip(X, -SQUEEZENET MEAN/SQUEEZENET STD, (1.0 - SQUEEZENET ME
AN)/SQUEEZENET STD)
        if t % blur every == 0:
            X = blur image(X, sigma=0.5)
        # Periodically show the image
        if t == 0 or (t + 1) % show_every == 0 or t == num_iterations - 1:
            plt.imshow(deprocess image(X[0]))
            class name = class names[target y]
            plt.title('%s\nIteration %d / %d' % (class name, t + 1, num iter
ations))
            plt.gcf().set_size_inches(4, 4)
            plt.axis('off')
            plt.show()
    return X
```

Once you have completed the implementation in the cell above, run the following cell to generate an image of Tarantula:

In [117]:

```
target_y = 76 # Tarantula
out = create_class_visualization(target_y, model)
```


tarantula Iteration 25 / 100

tarantula Iteration 50 / 100

tarantula Iteration 75 / 100

tarantula Iteration 100 / 100

Try out your class visualization on other classes! You should also feel free to play with various hyperparameters to try and improve the quality of the generated image, but this is not required.

In [118]:

```
# target_y = 78 # Tick
# target_y = 187 # Yorkshire Terrier
# target_y = 683 # Oboe
# target_y = 366 # Gorilla
# target_y = 604 # Hourglass
print(class_names[target_y])
X = create_class_visualization(target_y, model)
```

swing

swing Iteration 1 / 100

swing Iteration 25 / 100

swing Iteration 50 / 100

swing Iteration 75 / 100

swing Iteration 100 / 100

In []: