nombre: Thamil Calixto Mamani Quea

formulario de Series

Sene telescópica

$$\sum_{n=1}^{\infty} \frac{1}{n + 1} ; S = 1$$

Serie geometrica

$$\sum_{n=0}^{\infty} \alpha_{r}^{n} \quad \text{Converge si } |r| \geq 1; \quad S = \frac{\alpha}{1-r}$$
Diverge si $|r| \geq \Lambda$

Serie Armónica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
; Divergente

Serie Armonico "P"

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}}; \quad 0 \le p \le 1 \Rightarrow \text{Diverge}$$

$$p > 2 \Rightarrow \text{Converge}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}} = S \Rightarrow R_{n} = S - S_{n}$$

Está acotado por: $0 < R_n < \frac{1}{n^{p-1} p-1}$

Convergencia O Divergencia

$$\sum_{n=1}^{\infty} a_n \begin{cases} \lim_{n\to\infty} S_n = S = S \text{ converge} \\ \lim_{n\to\infty} S_n = \frac{1}{2} \infty = S \text{ diverge} \end{cases}$$

Donde Sn Es la succesion de sumes percieles

$$\sum a_n \approx s$$
 convergents => $\lim_{n\to\infty} a_n = 0$

$$\sum a_n \ y \sum b_n \ convergen$$
 $\sum a_n + b_n \ converge$ $\sum a_n - b_n \ converge$ $\sum c \ a_n \ converge$; $C \in \mathbb{R}$

$$\Sigma$$
 an diverge $\Rightarrow \Sigma$ c an diverge; $c \in \mathbb{R}$
 Σ an converge $\Rightarrow \Sigma$ by diverge $\Rightarrow \Sigma$ antho diverge
PRUEBA DE LA RAZÓN

Sea Zan Una serie con terminos no nulos. Entonces:

i)
$$\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = L < 1 \Rightarrow \sum_{n=1}^{\infty} \alpha_n$$
 converge

ii)
$$\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = L > 1$$
 of $\to \infty = \sum_{n\to\infty} \alpha_n$ as divergente

iii)
$$\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = 1 \Rightarrow \epsilon l$$
 criterio no decide

Sea Zan Una serio infinita. Entonces:

i)
$$\lim_{n\to\infty} \frac{n}{\sqrt{|\alpha_n|}} = L < 1 \Rightarrow \sum \alpha_n$$
 converge

ii)
$$\lim_{n\to\infty} \frac{n}{|\alpha_n|} = L > 2 \text{ of } \to \infty = \sum \alpha_n \text{ diverge}$$

iii)
$$\lim_{n\to\infty} \frac{1}{\sqrt{|\alpha_n|}} = 1 \Rightarrow \text{ el criterio no decide}$$