

Rename t.b.d.

Mein Name

28. Februar 2024

- Trajectory Planning
- 2 Notation
- 3 Bang-Bang-Control
- Quellen

Trajectory Planning

Trajectory Planning I

Einleitung

Wir müssen hier unterscheiden zwischen:

- der Beschreibung der Position der Aktoren
- und der Beschreibung der Lage des Effektors (Werkzeugs)
 - diese wird auch als Pose bezeichnet und kann durch 3
 Positionsangaben (wie x,y,z) und 3 Drehwinkel (wie a,b,c) bezogen auf ein Bezugskoordinatensystem beschrieben werden
 - sie beschreibt eine Bahn im Raum

Einschränkung: zunächst nur die Position der Aktoren

Trajectory Planning I

Aufgabe: Beziehung zwischen Zeit und Position finden

Synonyme: Path Planning, Motion Planning

Unterscheidung hier:

- Geometrie (Path): Position der Aktoren ohne Zeitinformation
- Trajektorie (Trajectory): Position, Geschwindigkeit, Beschleunigung und Ruck als Funktion über die Zeit

Vereinfachung

- Eindimensionale Trajektorie: q = q(t)Definiert durch eine Skalar-Funktion
- Mehrdimensionale Trajektorie: $\mathbf{p} = \mathbf{p}(t)$ Definiert durch eine Vektor-Funktion

Einschränkung: zunächst nur eindimensionale Trajektorien; [PT97]

Trajectory Planning I

 q_0 : Startposition q_1 : Zielposition

$$q_0=q(t_0)$$
 \longrightarrow $q_1=q(t_1)$

Notation I

Position

$$q(t)$$
 (1)

Geschwindigkeit (Velocity)

$$v(t) = \dot{q}(t) = \frac{d}{dt}q(t) \tag{2}$$

Beschleunigung (Acceleration)

$$a(t) = \dot{v}(t) = \frac{d}{dt}v(t) = \ddot{q}(t) = \frac{d^2}{dt^2}q(t)$$
 (3)

Ruck (Jerk)

$$j(t) = \dot{a}(t) = \frac{d}{dt}a(t) = \ddot{v}(t) = \frac{d^2}{dt^2}v(t) = q^{(3)}(t) = \frac{d^3}{dt^3}q(t)$$
 (4)

Bang-Bang-Control I

Prozess: Positionierung

Aufgabe: Positionieren in möglichst kurzer Zeit

Ansatz: Höchstmögliches ausreizen der limitierende(n) Größe(n)

Grenzen: Limitierende Größen (Constraints) ergeben sich

- ullet durch den Motor über die Höchstdrehzahl wird v_{max} festgelegt über das Drehmoment wird a_{max} festgelegt
- ullet durch die Dynamik des mechanischen Systems über Steifigkeit/Nachgiebigkeit wird j_{max} festgelegt
- durch die Geometrie wird festgelegt, ob j_{max} , a_{max} und v_{max} überhaupt erreicht werden können
 - da hier nur eindimensionale Trajektorien betrachtet werden, ist nur die Weglänge der begrenzende Faktor
 - bei mehrdimensionalen Trajektorien ist die Krümmung ein weiterer begrenzender Faktor

Water Taxi I

3D-Printer I

3D-Printer I

Der Datenstruktur MyStructure aus der Datei MyStructure.py ist sehr interessant.

Code

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

MODEL = models.Sequential()

Code

```
# Author: Ardit Sulce, Automate Everything with Python,
# Course URL: https://www.udemy.com/course/automate-ever
import tabula
table = tabula.read_pdf('weather.pdf', pages=1)
print(type(table[0]))
```

table [0]. to_csv('output.csv', index=None)

Vielen Dank für Ihre Aufmerksamkeit

Quellen

Quellen I

Nachfolgend werden die Quellen der Bilder angegeben, die für diese Präsentation in ihrer ursprünglichen Form oder modifiziert verwendet worden sind.

[Are+15] Tilo Arens u.a. *Mathematik*. 3. [pdf] http:

//www.gbv.de/dms/weimar/toc/551047283_toc.pdf

[Link]. Heidelberg: Spektrum akademischer Verlag, 2015.

[BN11] Hans Babovsky und Werner Neundorf. Numerische

Approximation von Funktionen. Techn. Ber. TU Ilmenau

2011. URL:

https://www.tu-ilmenau.de/fileadmin/media/num/neundorf/Dokumente/Preprints/NumApp1.pdf (besucht am 13.01.2017).

Quellen II

[BOS14]

Pierre Bonami, Alberto Olivares und Ernesto Staffetti. "Energy-Optimal Multi-Goal Motion Planning for Planar Robot Manipulators". In: *Journal of Optimization Theory and Applications* 163.1 (2014), S. 80–104. ISSN: 1573-2878. DOI: 10.1007/s10957-013-0516-0. URL: http://dx.doi.org/10.1007/s10957-013-0516-0.

[Bun15]

Bundesministerium für Wirtschaft und Energie (BMWi), Hrsg. Bekanntmachung Digitale Technologien für die Wirtschaft (PAiCE). Platforms—Additive Manufacturing—Imaging—Communication—Engineering Ein Technologiewettbewerb des Bundesministeriums für Wirtschaft und Energie. 2015. URL:

http://bmwi.de/BMWi/Redaktion/PDF/ Publikationen/paice-digitale-technologienfuer-die-wirtschaft-bekanntmachung,property= pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf (besucht am 20.07.2016).

Quellen III

[DIN66025-2]	DIN Deutsches Institut für Normung e.V. DIN 66025-2:1988-09: Programmaufbau für numerisch gesteuerte Arbeitsmaschinen: Wegbedingungen und Zusatzfunktionen. Norm. Berlin, Sep. 1988.
[Far02]	Gerald Farin. <i>Curves and Surfaces for CAGD</i> . 5. [pdf]. San Diego, CA: Academic Press, 2002.
[Far94]	G. Farin. Kurven und Flächen im Computer Aided Geometric Design. Eine praktische Einführung. Vieweg, 1994.
[FH02]	G. Farin und J. Hoschek. <i>Handbook of Computer Aided Geometric Design</i> . Elsevier Science, 2002.
[FS17]	Rida Farouki und Jyothirmai Srinathu. "A real-time CNC interpolator algorithm for trimming and filling planar offset curves". In: Computer-Aided Design 86 (Jan. 2017). DOI: 10.1016/j.cad.2017.01.001.

Quellen IV

[Heh11]	Peter Hehenberger. Computerunterstützte Fertigung: Eine kompakte Einführung. Berlin, Heidelberg: Springer-Verlag, 2011. ISBN: 9783642134753.
[Jak+10]	Gasper Jaklic u. a. "On Interpolation by Planar Cubic G^2 Pythagorean-Hodograph Spline Curves". In: <i>Mathematics of Computation</i> (2010). [pdf].
[Kar+15]	Sami Kara u.a. "The 22nd CIRP Conference on Life Cycle Engineering Minimization of the Energy Consumption in Motion Planning for Single-robot Tasks". In: Procedia CIRP 29 (2015), S. 354—359. ISSN: 2212-8271. DOI: http://dx.doi.org/10.1016/j.procir.2015.02.174. URL: http://www.sciencedirect.com/science/article/pii/S2212827115004886.

Quellen V

[Mar16] Erik Marquardt. Handlungsfelder. Additive

Fertigungsverfahren. Hrsg. von VDI Verein Deutscher Ingenieure e.V. Fachbereich Produktionstechnik und Fertigungsverfahren. 2016. URL: https://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gpl_dateien/6242_PUB_GPL_Handlungsfelder___Additive_Fertigungsverfahren_Internet.pdf (besucht am 13.08.2016).

[PT97] Les Piegl und Wayne Tiller. *The NURBS Book*. 2. Aufl.

New York, NY, USA: Springer-Verlag New York, Inc., 1997 ISBN: 3-540-61545-8

[RM09] H. Hussman R. Malaka A. Butz. *Medieninformatik*. Pearson Studium, 2009.

[Rus+07] David Russell u. a. Apparatus and Methods for 3D Printing. United States Patent, Patent No.: US 7,291,002 B2, 2007.

Quellen VI

[TS16]

[Sin14] Sebastian Sindermann. Schnittstellen und

Datenaustauschformate. German. Springer Berlin Heidelberg, 2014, S. 327–347. ISBN: 978-3-662-43815-2.

DOI: 10.1007/978-3-662-43816-9_14. URL: http://doi.org/10.1007/978-3-662-43816-9_14.

//dx.doi.org/10.1007/978-3-662-43816-9_14.

[SS14] Burak Sencer und Eiji Shamoto. "Curvature-continuous sharp corner smoothing scheme for Cartesian motion

systems". In: 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC). [pdf] und [Version 2

pdf]. Piscataway, NJ: IEEE, 2014, S. 374–379. ISBN: 978-1-4799-2323-6. DOI:

\url{10.1109/AMC.2014.6823311}.

Shingo Tajima und Burak Sencer. "Kinematic corner smoothing for high speed machine tools". In: International Journal of Machine Tools and Manufacture 108 (2016). [pdf], S. 27–43. ISSN: 08906955. DOI: \url{10.1016/j.ijmachtools.2016.05.009}.

Quellen VII

[TS17] Shingo Tajima und Burak Sencer. "Global tool-path smoothing for CNC machine tools with uninterrupted acceleration". In: International Journal of Machine Tools and Manufacture 121 (2017). [pdf], S. 81–95. ISSN: 08906955. DOI:

\url{10.1016/j.ijmachtools.2017.03.002}.

[Wat17a] Waterloo Maple Inc. 2017. Description. letzter Zugriff 14.09.2017. 2017. URL:

https://de.maplesoft.com/support/help/Maple/view.aspx?path=module/description.

[Wat17b] Waterloo Maple Inc. 2017. Export. letzter Zugriff 14.09.2017. 2017. URL:

https://de.maplesoft.com/support/help/Maple/view.aspx?path=module/export.

Quellen VIII

[\ \ \ / - + 1 \ \ -]

[Wat1/c]	Waterloo Maple Inc. 2017. Module. letzter Zugriff 14.09.2017. 2017. URL: https://de.maplesoft.com/support/help/maple/view.aspx?path=module.
[Wat17d]	Waterloo Maple Inc. 2017. <i>ModuleLoad</i> . letzter Zugriff 14.09.2017. 2017. URL: https://de.maplesoft.com/support/help/Maple/view.aspx?path=ModuleLoad.
[Wat17e]	Waterloo Maple Inc. 2017. Option. letzter Zugriff 14.09.2017. 2017. URL: https://de.maplesoft.com/support/help/Maple/view.aspx?path=module/option.
[Wat17f]	Waterloo Maple Inc. 2017. <i>Procedures</i> . letzter Zugriff 14.09.2017. 2017. URL: https://de.maplesoft.com/support/help/Maple/view.aspx?path=procedure.

Quellen IX

[Zaf+20]Anastasios Zafeiropoulos u. a. "Benchmarking and Profiling 5G Verticals' Applications: An Industrial IoT

Use Case". In: IEEE Conference on Network Softwarization, NetSoft 2020. 2020. DOI: 10.1109/NetSoft48620.2020.9165393.

[Zei13] E. Zeidler, Hrsg. Springer-Taschenbuch der Mathematik.

3., neu bearb eitete und erweiterte Auflage. Springer

Verlag, 2013. ISBN: 978-3-8348-2359-5.