Contents

General Notes:	2
Reference Book	2
Main elements of a model economy	2
Lecture 1: Basic concepts and methods in numerical analysis	3
Types of Error	3
Solving Linear Equations	3
Solving Non-Linear Equations	3
Bisection	3
Newton Methods	3
Golden Ratio	3
Lecture 2: Solving deterministic dynamic models	4
Ramsey "Neoclassical" Growth Model	4
Environment	4
Planner's Problem	5
Phase diagram	5
How to find a numerical solution for more general u, F, θ ?	5
Tutorials	6
Tutorial 1:	7
Tutorial 2	8

General Notes:

70% Problem Sets - 30% Small Exam

Reference Book

Heer & Maussner - Dynamic General Equilibrium Modelling

Main elements of a model economy

- Agents
 - Households and Firms
- Goods
 - Consumption Good
 - Investment Good
- Time
 - Discreet vs continuous
- Structure of Uncertainty
 - Shocks to the economy
- Structure of Market
 - Competition vs. oligopoly vs. monopoly

Lecture 1: Basic concepts and methods in numerical analysis

Soliving problems Numerically:

- Solve the *Policy* function
- Aggregate
 - Easy for Representative Agent models
 - Harder for Heterogeneous Agent models
- Solve for prices such that markets clear

Types of Error

- Truncation
- Round Off

Solving Linear Equations

Solving Non-Linear Equations

Bisection

Newton Methods

Secant Method

Golden Ratio

Lecture 2: Solving deterministic dynamic models

Ramsey "Neoclassical" Growth Model

Environment

- Agents: A representative firm, and a representative HH.
- Time: t = 1, 2, ..., no uncertainty.
- Goods: Labour service lt , a single numeraire output good (price normalised to 1) used for consumption c_t and investment it , and a capital good Kt .
- Endowments: HH is endowed with one unit of labour each period, and initial capital k_0 .
- Technology:
 - The Firm has access to a production function $F(k_t, l_t, z_t)$, including a productivity parameter zt.
 - Households have access to a capital accumulation technology: $k_{t+1} = (1?\delta)k_t + i_t$ (where it may be negative).
- Preferences: Household preferences are defined over consumption and hours U = ?? t=0 ?t u(ct , lt)
- Ownership: The HH owns the firm, receives its profits from production.
- Market structure:
 - "Sequential" trade: Every period, agents trade the numeraire good, the labor service lt (at price wt) and capital services (whose ?rental price" is rt).
 - Firm and HH behave competitively, i.e. maximise their objectives taking prices wt and r_t as given.

Planner's Problem

Simplify using assumptions.

Does a solution exist?

Well K lies in a domain.

- MPK rises at a depreciating rate
- Cost of Capital rises linearly
- the points at which they meet (0 $\bar{F}(K^{max})$ outlines max and min)

Uniqueness

Phase diagram

Trivially, we can rule out solutions other than the steady state due to the *Transversality Condition*.

How to find a numerical solution for more general u, F, θ ?

- Linearisation
- Break up the problem in separate sub-problems: Dynamic programming
 - Solving directly the sequences

Tutorials

Tutorial 1:

Tutorial 2

Interpolation is

 $interp1(x\ vector\ of\ points\ we\ know\ ,\ Value\ of\ the\ function\ at\ known\ points,\ \ Value\ of\ function\ at\ points\ we\ dont$