

Prefix Suffix Max

You are given an array a of n integers: $a[1], a[2], \ldots, a[n]$. Your task is to process q operations of the following two types.

- 0 *l r*:
 - \circ Compute the prefix max array p of size r-l+1, where

$$p[i] = \max(a[l], a[l+1], \ldots, a[l+i-1])$$
 for $1 \leq i \leq r-l+1$.

 \circ Compute the suffix max array s of size r-l+1, where

$$s[i] = \max(a[l+i-1], a[l+i], \ldots, a[r])$$
 for $1 \leq i \leq r-l+1$.

• Compute z, the dot product of p and s, that is,

$$z = \sum_{i=1}^{r-l+1} p[i] \cdot s[i].$$

 \circ Print z modulo $998\ 244\ 353$, that is, if q and r are uniquely determined integers such that

$$z = q \cdot 998\ 244\ 353 + r$$
 and $0 \le r < 998\ 244\ 353$,

print r.

- 1 *l r x*:
 - Add x to each of the elements $a[l], a[l+1], \ldots, a[r]$.

Input

Read the input from the standard input in the following format:

- line 1: n q
- line 2: a[1] a[2] ... a[n]
- line 2+i ($1 \le i \le q$): this line describes operation i and follows one of the following formats:
 - \circ 0 l r
 - \circ 1 l r x

Output

Let k be the number of operations of the first type. Write the output to the standard output in the following format:

• line i ($1 \le i \le k$): the answer to the i-th occurrence of the first type of operations.

Constraints

- $1 \le n, q \le 100\ 000$
- $1 \le l \le r \le n$
- $-100\ 000\ 000 \le a[i] \le 100\ 000\ 000$ (for all $1 \le i \le n$)
- $-100\ 000\ 000 \le x \le 100\ 000\ 000$

Subtasks

- 1. (4 points) $n, q \leq 1000$
- 2. (6 points) $a[i] \le a[i+1]$ (for all $1 \le i < n$), and all operations are of the first type.
- 3. (8 points) $1 \le a[i] \le 2$ (for all $1 \le i \le n$), and all operations are of the first type.
- 4. (13 points) $1 \le a[i] \le 500$ (for all $1 \le i \le n$), and all operations are of the first type.
- 5. (25 points) All operations are of the first type.
- 6. (44 points) No further constraints.

Examples

Example 1

```
5 3
1 2 5 3 4
0 1 5
1 1 2 4
0 1 5
```

The correct output is:

```
80
144
```

For the first operation, p=[1,2,5,5,5] and s=[5,5,5,4,4]. So, $z=1\cdot 5+2\cdot 5+5\cdot 5+5\cdot 4+5\cdot 4=80$.

After the second operation, a = [5, 6, 5, 3, 4].

For the third operation, p = [5, 6, 6, 6, 6] and s = [6, 6, 5, 4, 4]. So, $z = 5 \cdot 6 + 6 \cdot 6 + 6 \cdot 5 + 6 \cdot 4 + 6 \cdot 4 = 144$.