Lic.^a Eng. Informática da FCTUC

28/10/2016

Duração: 45m

Nome completo:

Número de estudante:

Este teste tem 3 questões. Responda apenas ao que lhe é pedido nos lugares indicados para o efeito. Nas questões 2 e 3, uma resposta certa terá a cotação máxima que lhe for atribuída, e uma resposta errada terá o valor negativo da metade dessa cotação.

- 1. (a) Encontre uma fórmula logicamente equivalente a $\neg(a \lor b) \land \neg c$ que contenha apenas os conectivos \neg e \rightarrow . Justifique a resposta.
 - (b) Use o método de Quine para mostrar que a fórmula

$$(\neg(a \to b) \lor a) \to (b \to (b \to a))$$

é uma tautologia.

2.	Indique se os seguintes argumentos estão correctos: (S: sim, N: não)	\mathbf{S} \mathbf{N}
	(a) Estudo tudo só se for ao concerto. Não vou ao concerto. Então não estudo tudo.	
	(b) q é condição necessária para p. Verifica-se q ou a negação de r.	
	Logo, se r se verifica, então p também.	
	p o q ee r	

$$\begin{array}{ccc}
 & p & \\
 & \neg q & \\
\hline
 & \therefore & r
\end{array}$$

3. Indique o valor lógico (V: verdade ; F: falso) das seguintes sentenças nos mundos A e B em baixo.

Sentenças	A	В
$Large(a) \leftrightarrow BackOf(a,d)$		
$\exists x (Tet(x) \land RightOf(x, a)) \land \neg [\exists x (Between(x, c, a))]$		
$\forall x \forall y \ (SameShape(x,y) \land SameRow(x,y) \rightarrow SameSize(x,y))$		
$\forall x \Big(Tet(x) \to \exists y \ \big(Dodec(y) \land BackOf(x, y) \big) \Big)$		

 ▲ Tetraedro Pequeno
 ■ Cubo Pequeno
 ● Dodecaedro Pequeno

 ▲ Tetraedro Médio
 ■ Cubo Médio
 ● Dodecaedro Médio

 ▲ Tetraedro Grande
 ■ Cubo Grande
 ● Dodecaedro Grande