15기 정규세션 ToBig's 14기 정재윤

Decision Tree

의사결정나무

1 1 nt

```
Unit 01 | 의사결정 나무란?
Unit 02 | ID3 알고리즘
Unit 03 | CART 알고리즘
Unit 04 | feature가 연속형이라면?
Unit 05 | 가지치기
Unit 06 | 과제 및 데이터 설명
```

Decision Tree

- 의사 결정 규칙을 나무구조로 나타내어 전체 데이터를 소집단으로 분류하거나 예측하는 방법
- 즉, 데이터 사이에 존재하는 패턴을 예측 가능한 규칙들의 조합으로 나타내며, 이 모양이 나무와 비슷해 붙인 이름.

Decision Tree

- 초기 지점은 root node이고, 이외의 node들은 intermediate node라고 한다. 통과하는 node들이 늘어날수록 조건에 부합하는 데이터의 수는 줄어든다.
- Terminal node의 데이터들의 합은 root node의 데이터와 동일함.

Decision Tree

- 초기 지점은 root node이고, 이외의 node들은 intermediate node라고 한다. 통과하어떤eDecision록Tree가 좋은 모델일까? 조건에 부합하는 데이터의 수는 줄어 든다.

- Terminal node의 데이터들약과(중) (중) (중) root node의 데이터와 동일함.

그렇다면 NO

Decision Tree 똑같은 정확도를 내면서; ""

- 초기 지점은 root node Simple한 것을 선호한다!

node들은 int (= Simple 할수록 일반화를 잘한다.)
한다. 통과하는 node들이 늘어날수록

조건에 부합하는 데이터의 수는 줄어

각각의 노드는 최대한 한가지 클래스만 가지고 싶어한다.

- Termi(= 한쪽에 몰려입었을수록 좋은 decision이다.)

(끝마디) (끝마디)

Decision Tree

- 초기 지점은 root note 링다면 어떤 기준을 잡아야 node들은 interm좋은 마노트들을 만들 수 있을까? 한다. 통과하는 node들이 들어날수록 모든 Terminal NO Terminal N

- Terminal node의 데이터들의 합은 root node의 데이터와 동일함.

,어떤 기준을 잡아야 NO

- Q. 불순도를 측정하는 지표는?
- A. Entropy, Gini index
- Q. 어떤 기준으로 노드를 놓아야 하며, 어떤 노드를 가장 위에 놓아야 할까?
- A. ID3 & CART 알고리즘

- 1. 순도 / 불순도 지표
 - ① Entropy (엔트로피)

High Entropy (messy)

Low Entropy (Clean)

1. 순도 / 불순도 지표

Entropy (엔트로피) 👃

- 무질서도를 정량화 해서 표현한 값(열역학)
- 여기서는 데이터의 불확실성을 나타낸다.
- 어떤 집합의 entropy 가 높을수록 그 집단의 특징을 찾는것이 어렵다.
- 우리의 목적 : entropy를 감소시키는 방향으로 분류하기.

Entropy 감소 = 불순도 감소 = 순도 증가

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

Ex1)
$$S = [0,0,0,1,1,1]$$

- *S* is a set of examples
- p_⊕ is the proportion of examples in class ⊕
- p_⊕ = 1 − p_⊕ is the proportion of examples in class ⊕

Ex2)
$$S = [0,0,0,0,0,0]$$

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

Ex3) S = [1,1,1,1,1,1]

- Interpretation:
 - amount of unorderedness in the class distribution of S

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

- S is a set of examples
- p_⊕ is the proportion of examples in class ⊕
- p_⊕ = 1 − p_⊕ is the proportion of examples in class ⊕

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

- *S* is a set of examples
- 불확실성 최소 = 순도 최대 : 엔트로피 0
- $p_{\scriptscriptstyle \ominus} = 1 p_{\scriptscriptstyle \ominus}$ is the proportion of examples

불확실성 최대 = 순도 최소 : 엔트로피 1

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

maximal value at equal

의사결정나무 알고리즘을 활용하자!

예시) 골프 치기 좋은 날씨인가? 아닌가? 어떤 기준으로 먼저 나누어야 할까?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

이렇게 아무거나 하나를 선택해서 쭉쭉 그려 나갈 수 있다. Temperature 하지만, 새로운 데이터에 대해서 잘 설명할 수 있을까? hot mild cool Outlook Outlook Outlook overcast sunny overcast sunny overcast sunny rain ?Humidity Humidity Humidity no yes yes yes yes high high high normal normal normal Windy Windy yes no yes false false true true yes no yes no

2. ID3

- Entropy 지수를 이용한 알고리즘

$$Gain(A) = Info(D) - Info_A(D_i)$$

$$Info(D) = Entropy_{label}$$

$$Info_A(D_i) = \sum_{j=1}^{3} \frac{|D_j|}{|D|} * Entropy_{label_j}$$

D : 주어진 데이터들의 집합

|D|: 주어진 데이터들의 집합의 데이터 개수

2. ID3

가장 먼저 PLAY에 대한 Entropy를 구합시다.

$$E(Play) = \left(-\frac{5}{14} \log_2 \frac{5}{14}\right) + \left(-\frac{9}{14} \log_2 \frac{9}{14}\right)$$

$$E(Play) = 0.94$$

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

1) Entropy (엔트로피) 를 구해보자

• Outlook = sunny: 2 examples yes, 3 examples no

• Outlook = overcast: 4 examples yes, 0 examples no

• Outlook = rainy: 3 examples yes, 2 examples no

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

1) Entropy (엔트로피) 를 구해보자

• Outlook = sunny: 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

• Outlook = rainy: 3 exam	ples yes, 2 examples no
---------------------------	-------------------------

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

Note: this is normally undefined. Here: = 0

$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2{(p_k)}$$

1) Entropy (엔트로피) 를 구해보자

• Outlook = sunny: 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

• Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

• Outlook = rainy: 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

Note: this is normally undefined. Here: = 0

엔트로피는 단일 집합의 품질만 계산한다.

➤ 전체에서의 품질은 어떻게 계산할 수 있을까?

1) Entropy (엔트로피) 를 구해보자

$$Info(D) = Entropy_{label}$$

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	FALSE	No
sunny	hot	high	TRUE	No
overcast	hot	high	FALSE	Yes
rain	mild	high	FALSE	Yes
rain	cool	normal	FALSE	Yes
rain	cool	normal	TRUE	No
overcast	cool	normal	TRUE	Yes
sunny	mild	high	FALSE	No
sunny	cool	normal	FALSE	Yes
rain	mild	normal	FALSE	Yes
sunny	mild	normal	TRUE	Yes
overcast	mild	high	TRUE	Yes
overcast	hot	normal	FALSE	Yes
rain	mild	high	TRUE	No

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

가중치를 고려한 평균을 이용한다!

2) Information Gain을 구해보자

Information Gain for Attribute A

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Information Gain이란?

상위 노드의 Entropy에서 하위노드의 Entropy를 뺀 값!

즉, information Gain 값이 클수록, 엔트로피를 많이 줄였다는 의미. = 엔트로피가 작아졌다.

2) Information Gain을 구해보자

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

$$E(Play, Outlook) = 0.6935$$

 $E(Play, Temp) = 0.911$
 $E(Play, Humidity) = 0.7884$
 $E(Play, Windy) = 0.8921$

$$E(Play) - E(Play, Outlook) = 0.25$$

 $E(Play) - E(Play, Temp) = 0.02$
 $E(Play) - E(Play, Humidity) = 0.1514$
 $E(Play) - E(Play, Windy) = 0.047$

가장 크게 Entropy를 줄인 Outlook을 채택!!

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

$$Gain(Temperature) = 0.571 ext{ bits}$$
 $Gain(Humidity) = 0.971 ext{ bits}$
 $Gain(Windy) = 0.020 ext{ bits}$

Humidity is selected

최종적으로 위와 같은 Decision Tree model이 만들어진다!!

- Q. 불순도를 측정하는 지표는?
- A. Entropy, Gini index
- Q. 어떤 기준으로 노드를 놓아야 하며, 어떤 노드를 가장 위에 놓아야 할까?
- A. ID3 & CART 알고리즘

1. 순도 / 불순도 지표

Gini index (지니지수)

- 데이터의 통계적 분산정도를 정량화 해서 표현한 값
- 어떤 집합의 gini index가 높을수록 그 집단의 데이터가 분산되어있다.
- 우리의 목적 : gini index를 감소시키는 방향으로 분류하기 Gini index 감소 = 불순도 감소 = 순도 증가

$$Gini(A) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} * Gini(D_i)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{x} P_j^2$$

1) CART

- Gini index 를 이용한 알고리즘
- 데이터를 split 했을 때의 불순한 정도
- Binary split을 전제로 분석함
- 데이터의 대상 속성을 얼마나 잘못 분류할지 계산

예시)

age	income	student	credit_rating	Class: buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

이중 가장 작은 Gini index 값을 가지는 변수로 최초 split 이 됨.

예시)

age	income	student	credit_rating	Class: buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

$$Gini(A) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} * Gini(D_i)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{x} P_j^2$$

예시)

age	income	student	credit_rating	Class: buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

Age $\operatorname{Gini}_{age}(D)$

 $Gini_{age=youth}$

 $Gini_{age=middle_aged}$

 $Gini_{age=senior}$

$$Gini(A) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} * Gini(D_i)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{x} P_j^2$$

예시)

age	income	student	credit_rating	Class: buys_compute
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

$$Gini(A) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} * Gini(D_i)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{x} P_j^2$$

Age $\operatorname{Gini}_{age}(D)$

$$Gini_{age=youth} = \frac{5}{14} \left(1 - \frac{2^2}{5} - \frac{3^2}{5} \right) + \frac{9}{14} \left(1 - \frac{7^2}{9} - \frac{2^2}{9} \right) = 0.394$$

$$Gini_{age=middle_aged} = \frac{4}{14} \left(1 - \frac{4^2}{4} - \frac{0^2}{4} \right) + \frac{10}{14} \left(1 - \frac{5^2}{10} - \frac{5^2}{10} \right) = 0.357$$

$$Gini_{age=senior} = \frac{5}{14} \left(1 - \frac{2^2}{5} - \frac{3^2}{5} \right) + \frac{9}{14} \left(1 - \frac{6^2}{9} - \frac{3^2}{9} \right) = 0.457$$

Gini Index

 $Min(Gini_{age_i}) = 0.357$

 $Min(Gini_{income_i}) = 0.443$

 $Min(Gini_{credit}) = 0.429$

 $Min(Gini_{student}) = 0.367$

Age

Middle_aged

	age	income	student	credit_rating	class_buys_computer
2	middle_aged	high	no	fair	yes
6	middle_aged	low	yes	excellent	yes
11	middle_aged	medium	no	excellent	yes
12	middle_aged	high	yes	fair	yes

Youth, senior

	age	income	student	credit_rating	class_buys_computer
0	youth	high	no	fair	no
1	youth	high	no	excellent	no
3	senior	medium	no	fair	yes
4	senior	low	yes	fair	yes
5	senior	low	yes	excellent	no
7	youth	medium	no	fair	no
8	youth	low	yes	fair	yes
9	senior	medium	yes	fair	yes
10	youth	medium	yes	excellent	yes
13	senior	medium	no	excellent	no

- Q. 연속형 변수에 의사결정 나무를 사용하는 방법?
- 1. 전체 데이터를 모두 기준점으로 분할 후 불순도를 계산한다.
- 2. 중위수, 사분위수를 기준점으로 한다.
- 3. Label 의 class 가 바뀌는 수를 기준점으로 한다.

STEP 1. 각 Feature에 대해 오름차순으로 정렬 STEP 2. Label의 class가 변하는 지점을 찾기

INCOME	LOTSIZE	OWNERSHIP
43.2	17.2	X
49.2	17.6	X
52.8	19.6	X
59.4	17.6	X
60	18.4	0
61.5	21	0
64.8	21.6	0
65	20.8	X
84	20.4	X
85.8	16.8	0
87	23.6	0
110.1	19.2	0

INCOME	LOTSIZE	OWNERSHIP	
43.2	17.2	X	
49.2	17.6	X	
52.8	19.6	X	
59.4	17.6	X	
60	18.4	0	
61.5	21	0	
64.8	21.6	0	
65	20.8	X	
84	20.4	X	
85.8	16.8	0	
87	23.6	0	
110.1	19.2	0	

STEP 3. 경계의 평균값을 기준값으로 잡기

INCOME	LOTSIZE	OWNERSHIP	
43.2	17.2	X	
49.2	17.6	X	
52.8	19.6	X	
59.4	17.6	X	59.7
60	18.4	0	59.7
61.5	21	0	
64.8	21.6	0	64.9
65	20.8	X	04.9
84	20.4	X	84.9
85.8	16.8	0	04.9
87	23.6	0	
110.1	19.2	0	

STEP 4. 각 기준점에 대해 분할 후, Gini index 혹은 Entropy 계산

$$G(income_{59.7}) = \mathbf{0.25}$$
 $G(lotsize_{17}) = 0.455$
 $G(income_{64.9}) = 0.486$ $G(lotsize_{18}) = 0.438$
 $G(income_{84.9}) = 0.333$ $G(lotsize_{19.4}) = 0.5$
 $G(lotsize_{20.9}) = 0.333$

위와 같은 과정을 통해 첫 번째 기준점을 정한다.

또한 이 과정을 반복하면 최종 Decision Tree model을 만들 수 있다.

Unit 05 | 가지치기

가지치기란?

- 모든 terminal node의 순도가 100% 인 상태를 Full tree 라고 한다. 이런 경우, 분기가 너무 많아 과적합 위험이 발생한다.
- 분기가 지나치게 증가할 경우 일반화 능력이 떨어 지게 된다.
- 이를 방지하기 위해 의사결정나무에서 과적합을 방지하기 위해 적절한 수준에서 terminal node를 결합해 주는 것

Unit 05 | 가지치기

가지치기의 종류?

- Pre pruning (사전 가지치기) | 트리의 최대 depth 나 분기점의 최소 개수를 미리 지정

- Post pruning (사후 가지치기) | 트리를 만든 후 데이터 포인트가 적은 노드를 삭제/병합

정리

장점

- 1. 결과를 해석하고 이해하기 용이하다.
- 2. 비모수적 모형이기 때문에 선형성, 정규성, 등분산 성 등의 가정이 필요하지 않다.
- 3. 데이터를 가공할 필요가 거의 없다.

단점

- 연속형 변수를 비연속적 값으로 취급하기 때문에 분리의 경계점 부근에서 예측오류가 클 가능성이 있다.
- 2. 데이터의 특성이 특정 변수에 수직/수평적으로 구분되지 못할 때 성능이 떨어지고 트리가 복잡해진다.
- 3. Overfitting 문제가 발생하기 쉽다.
- 4. 중간 단계에서 오류가 발생하면 다음 단계로 에러가 계속 전파된다.
- 5. 적은 개수의 노이즈에도 크게 영향을 받는다.

정리

단점 해결방안

앙상블!!

Unit 06 | 과제

과제1.

- DT_Assignment 1.ipynb

본인이 구현한 함수를 이용해 다음 문제를 풀어주세요.

- 1. 변수 income의 이진분류 결과를 보여주세요
- 2. 분류를 하는데 가장 중요한 변수를 선정하고, 해당 변수의 gini index를 제시해주세요.
- 3. 문제 2에서 제시한 feature로 dataframe을 split 하고, 나눠진 2개의 dataframe에서 각각 다음으로 중요한 변수를 선정하고 해당 변수의 gini index를 제시해주세요.

(변수나 flow는 변경해도 무관합니다. 결과만 똑같이 나오면 됩니다.)

** 주의사항

이 데이터셋 뿐만 아니라 변수의 class가 더 많은 데이터에도 상관없이 적용 가능하도록 구현해주세요. 변수의 class 가 3개를 넘는 경우 모든 이진 분류의 경우의 수를 따져보아야 합니다.

과제1. 참고

get_gini(df, label)
$$\longrightarrow$$
 $Gini(D_i) = 1 - \sum_{j=1}^{x} P_j^2$

get_attribute_gini_index(df, attribute, label)
$$Gini(A) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} * Gini(D_i)$$

과제2.

- DT_Assignment2.ipynb

Entropy를 구하고, 각 변수에 대한 Gain 을 구하는 함수를 구현하는 과제입니다.

주석 꼼꼼히 달아주세요:)

Unit 06 | 과제

- DT_Assignment 1. ipynb
- DT_Assignment2.ipynb
- 파일에 있는 함수 구현! 그리고 함수를 이용해서 문제풀기.
- 본인이 구현한 함수임을 증명하기 위해, <mark>주석</mark>을 꼼꼼히 달아주세요!
- 14기 멘토들을 적극 활용하세요! (다들 잘 알고 있을겁니다 ^0^)

참고자료

- https://ratsgo.github.io/machine%20learning/2017/03/26/tree/
- https://tensorflow.blog/%ED%8C%8C%EC%9D%B4%EC%8D%AC- %EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D/2-3-5- %ED%8B%B8%BB%8B%9D/2-3-5- %ED%8B%B8%BB%8B%9D/2-3-5- %ED%8B%B8%BB%8B%9D/2-3-5- %ED%8B%B8%BB%B8%BB%A6%AC/
- https://yngie-c.github.io/machine%20learning/2020/04/06/decision_tree/
- https://leedakyeong.tistory.com/category/%ED%86%B5%EA%B3%84%20%EC%A 7%80%EC%8B%9D/Algorithm
- https://jihoonlee.tistory.com/16
- https://soobarkbar.tistory.com/17
- Tobigs 13기 김미성님 강의자료

Q & A

들어주셔서 감사합니다.