Birth Rate Prediction

Alessandro Dare(40208154), Ahmad Elmamlouk(40171892), Suin Kang(40129337), Weilun Zhang (40190549)

https://github.com/suinkangme/Birth_Rate_Prediction

Table of contents

01

Data Collection & Integration

03

Prediction with Machine Learning

02

Data Cleaning & Transformation

04

Data Visualization

OI

Data Collection & Integration

Data Collection

Data sources:

- https://ourworldindata.org/
- https://www.thearda.com/world-religion/national-profiles?u=234c

Files:

- Over 300 files: 18 world data, 300 religious
- Csv excel format

Storage:

google docs, github, google colab

ETL - Extract

Chosen data:

- Relevance
- Accessibility
- Difference to other data
- Ability to integrate

Features chosen:

Population, birth rare, fertility rate, urban population, gdp, gdp per capita, consumer price index, religious population, mortality rate, infant mortality rate, female labor force, education, life expectancy

Format chosen:

- Primary key by country name, id and year
- Additional attribute that affects the birth rate
- Data collected from 1990–2020

Data Integration

Integration:

- Convert original datasets into base schema
- Rename and Delete Columns
- Merge all schemas into complete schema

Base Schema				
Primary Key	Entity:string Code:string Region:string Year:int			
Non Pk	Fourth column:int			

```
| national birth rate= pd.read csv("/content/crude-birth-rate.csv")
    national birth rate.rename(columns = {'Birth rate - Sex: all - Age: all - Variant: estimates':'Birth rate(pre 1000)'}, inplace = True)
    complete dateset(national birth rate, 'Birth rate(pre 1000)', 'complete birth rate')
complete info = pd.DataFrame(columns=['Entity', 'Code', 'region', 'Year', forth column name])
global info = assign regions(global info)
all countries = global info['Code'].unique()
print('all countries', len(all countries))
for country in all countries:
    country info = global info.loc[global info['Code']==country]
    if len(country info)>0:
        years range = range(1990, 2021)
        country info = country info[country info['Year'].isin(years range)].sort values('Year')
       country info = check for outlier values(country info, forth column name)
        missing info = fill missing(country info,country info['Entity'].iloc[0], country info['region'].iloc[0], country,forth column name)
        complete info = pd.concat([complete info, missing info]).sort values('Code')
print('all countries', len(complete info['Code'].unique()))
complete info = filling country by region(complete info, forth column name)
file path = "/content/output/"+save file name+".csv"
complete info = complete info.sort values('Code')
print('all countries', len(complete info['Code'].unique()))
complete info.to csv(file path, index=False)
```


Primary key Entity:string Code:string Region:string Year:int Non Pk GDP:int

Schema Integration

Completed Schema

Primary key	Entity:string
	Code:string
	Region:string
	Year:int
Non Pk	GDP

Years of education

Women In Workforce

Years of education

Primary Entity:string Code:string Region:string Year:int

	Yea	rs of education:
	Primary key	Entity:string Code:string
_		Region:string
		Year:int
	Non Pk	Years of education:int

Women In Workforce %						
Primary key	Entity:string					
	Code:string					
	Region:string					
	Year:int					
Non Pk	Women In Workforce:itn					

Conversion (Our world data):

Original Schema:

Fertility-vs-child-mortality					
Primary key	Entity:string				
	Code:string				
	Region:string				
	Year:int				
Non Pk	Child mortality rate - Sex: all - Age: 0-4 - Variant: estimates, :double				
	Fertility rate - Sex: all -				
	Age: all - Variant: estimates				
	Population (historical estimates)				
	Continent				

New Schema:

	Base
Primary key	Entity:string Code:string
	Region:string Year:int
Non Pk	Child mortality rate %:double

Conversion (Religious data):

Original Schema

Country Schema

Combined Schema

Albania				
Primary key	Year (int)			
Non Pk	R496			
	R603			
	R609			
	R505			
	R530			
	R585			

Albania

Primary key

Entity (string)

Code (string)

Region (string)

Year (int)

Non Pk

Atheists

rate(double)

Primary key

Entity:string

Code:string

Region:string

Year:int

Non Pk

Atheists

rate:double

Process happens normally afterwards

02

Data Cleaning & Transformation

Data Cleaning

For missing values:

• Year Gaps:

- o Take difference between years fill up the gap by increase/decrease
- Ex: Gap between 1991 value:1, and 1995 value:5
- Fill gaps:1992 value:2, 1993 value:3, 1994 value:4

• For <u>zero values</u>:

- Replace with decade mean
- Mean1: 1990-2000 Mean2: 2000-2010, Mean3: 2010-2020

• For missing countries:

- Replace with average of region
- For Every Year

Outliers Detection

Set to zero:

- Negative values
- Nan values

Robust Random Cut Forest:

- Direct checking
- Values removed

Year limit:

• 1990-2020

```
for index, row in country.iterrows():
    if np.isnan(row[what is missing]) or row[what is missing] <0:
         country.loc[index, what is missing]=0
         row[what is missing] = 0
data array = country[what is missing].values[:, None]
num trees = 50
forest = []
for i in range(data array.shape[0]):
    point = data array[i]
    for tree in forest:
        tree.insert point(point, index=i)
avg codisp = np.zeros(data array.shape[0])
 index = np.zeros(data array.shape[0])
 for tree in forest:
    for i in range(data array.shape[0]):
        codisp = np.array(tree.codisp(i))
        avg codisp += codisp
    index += 1
 avg codisp /= index
threshold = np.percentile(avg codisp, 95)
outliers = country[avg codisp > threshold]
if len(outliers) >0:
    print("Outliers:")
    print(outliers)
    print(len(country))
    country = country.drop(outliers, axis = 0).reset index(drop=True)
    print(len(country))
```

```
years_range = range(1990, 2021)
country_info = country_info[country_info['Year'].isin(years_range)].sort_values('Year')
```

Data Transformation

- I. Data Normalization
- 2. Data Scaling
- 3. Data Encoding

Data Normalization

- Elimination of Redundancy
 - Country feature and Code feature
 - Certain datasets provide both name and code
 - country name (ex: Canada)
 - country code (ex: CAN)
 - This information is redundant and was consequently removed from the dataset
- Elimination of Dependency
 - Birth rate feature and Fertility rate feature
 - Birth rate is dependent on fertility rate therefore the fertility rate feature was dropped from the dataset

Data Scaling

- Min-max scaling
 - Min max scaled features with absolute values to fit a [0-1] range
 - EX: GDP years of education
- Percentage scaling
 - All features expressed as ratios or percentages were scaled to fit a [0-1] range
 - EX: Child mortality rate Female labor force participation rate
- Transforming absolute values to ratio values
 - Scaled absolute values of urban/rural populations to population rates to fit a [0-1] range

Min-max scaling

```
def min_max_scale_columns(dataframe,list_of_column_names):
    min_max_scaler = MinMaxScaler()

dataframe[list_of_column_names] = min_max_scaler.fit_transform(dataframe[list_of_column_names])
    return dataframe
```

Percentage scaling

```
def scale_percentage_columns(dataframe, list_of_column_names):
    for i in range(len(list_of_column_names)):
        dataframe[list_of_column_names[i]] = dataframe[list_of_column_names[i]]/100
    return dataframe
```

Absolute to ratio scaling

```
def scale_population_columns(dataframe, list_of_column_names):
    for i in range(len(list_of_column_names)):
        dataframe[list_of_column_names[i]] = dataframe[list_of_column_names[i]]/dataframe['Population']
    return dataframe
```

Data Encoding

One-hot encoding

- one categorical feature in our dataset, country name.
- Represent each categorical value (country name) with an encoded feature of its own
- Each encoded feature holds a binary vector indicating the country of the row

Country
Canada
United States
France

Canada	United States	France
1	0	0
0	1	0
0	0	1

One hot encoding categorical values

```
def generate_one_hot_encode_dataframe(dataframe, column_name):
    encoder = OneHotEncoder(sparse = False)

extracted_text_column = dataframe[column_name]
    transformed_text_column = encoder.fit_transform(extracted_text_column)

encoded_df = pd.DataFrame(transformed_text_column, columns=encoder.get_feature_names_out(text_column_name))
    dataframe.drop(column_name, axis=1, inplace=True)

one_hot_encoded_df = pd.concat([dataframe,encoded_df], axis = 1)
    return one_hot_encoded_df
```

ETL - Transform

Clean

- Imputation of missing countries
- Imputation of missing years
- Imputation of missing values

Transform

- Address formatting discrepancies
- Transform categorical values to numerical values
- Scale numerical values to a [0-1] scale

ETL - Load

Load the transformed data into a model for training

- 1 # load the fully transformed data
- 2 dataset = pd.read_csv('final_transformed_dataset.csv')
- 3 print(dataset.columns)

1 dataset.head()

	Year	Atheists rate	Child mortality rate %	Consumer price index	female labor force participation rate	GDP	GDP per capita	Period life expectancy	Death rate	Population	
0	0.000000	0.0	0.022342	0.002414	0.441184	0.000078	0.193799	0.814113	0.047246	0.000040	
1	0.866667	0.0	0.016182	0.005016	0.513658	0.000151	0.233354	0.849185	0.031638	0.000067	
2	0.233333	0.0	0.021660	0.003254	0.466299	0.000116	0.229769	0.819308	0.041741	0.000051	
3	0.900000	0.0	0.015907	0.004964	0.513834	0.000159	0.244937	0.853136	0.031570	0.000068	
4	0.333333	0.0	0.021312	0.003527	0.470444	0.000129	0.234609	0.820918	0.039420	0.000056	

Machine Learning - Regression

Model 1 - Linear Regression

```
from sklearn.linear_model import LinearRegression
model_1 = LinearRegression()
model_1.fit(X_train, y_train)
```

```
# model 1 evaluation
y_pred_1 = model_1.predict(X_test)
mse_1 = mean_squared_error(y_test, y_pred_1)
```

Model 2 - Support Vector Machine (SVM)

```
from sklearn.svm import SVR
model_2 = SVR(kernel = 'rbf')
model_2.fit(X_train, y_train)
```

```
y_pred_2 = model_2.predict(X_test)
mse_2 = mean_squared_error(y_test, y_pred_2)
```

Machine Learning - Regression

Model 3 - Multi Layer Perceptron (MLP)

```
class Model(nn.Module):
    def __init__(self, input_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, 1)

def forward(self, x):
    return self.fc(x)
```

```
criterion = nn.MSELoss()
optimizer = optim.Adam(model_3.parameters(), lr=0.001)
```

```
# training
num_epochs = 10

for epoch in range(num_epochs):
    model_3.train()
    total_loss = 0.0

    for inputs, targets in train_loader:
        optimizer.zero_grad()
        outputs = model_3(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
```

```
# testing
model_3.eval()
with torch.no_grad():
    y_pred = []
    for inputs, targets in test_loader:
        outputs = model_3(inputs)
        y_pred.append(outputs.numpy())
y_pred = np.concatenate(y_pred)
mse_3 = mean_squared_error(y_test, y_pred)
```

Model performance without transformation

Prediction without feature scaling

```
MSE from Model 1(Linear Regression): 4.6253
MSE from Model 2(SVM Regression): 111.9755
MSE from Model 3(MLP): 975997493775162540032.0000
```

Prediction with feature scaling

```
MSE from Model 1: 3.9375
MSE from Model 2: 119.7355
MSE from Model 3: 201.8581
```


Birth, Child Mortality, life expectancy, and Death rate (High and Low Population Countries)

Birth, Consumer price index, female labor force participation rate, and GDP (High Population)

Birth, Consumer price index, female labor force participation rate, and GDP (Low Population)

Andorra

American Samoa Bermuda Cayman Islands Dominica

Sint Maarten (Dutch part) Turks and Caicos Islands

British Virgin Islands

Faroe Islands Gibraltar

Greenland Saint Kitts and Nevis Liechtenstein Saint Martin (French part)

Monaco Marshall Islands

Palau

Tuvalu

Birth, Population, Rural population rate, and Urban population (High Population)

Birth, Population, Rural population rate, and Urban population (low Population)

Birth and Average years of education

Dashboard

Dashboard

