EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

BEST AVAILABLE COPY

PUBLICATION NUMBER

: 08308637

PUBLICATION DATE

26-11-96

APPLICATION DATE

: 19-05-95

APPLICATION NUMBER

: 07120959

APPLICANT :

SUNSTAR INC;

INVENTOR:

MATSUMOTO HITOSHI;

INT.CL.

A46B 9/04 A46D 1/00 A61C 15/00

B21F 45/00 C22C 19/07

TITLE

WIRE FOR INTERDENTAL BRUSH AND

INTERDENTAL BRUSH

(a)

ABSTRACT :

PURPOSE: To obtain durable and sturdy wire for an interdental brush, which is excellently inserted between teeth by setting the diameter of the wire, tensile characteristics of its composing material, and breaking elongation and tensile elasticity of the wire before a helically winding process to specific values.

CONSTITUTION: The diameter of wire for an interdental brush is set to 0.15-0.30mm. The tensile characteristics of the wire are set as follows. Proof stress is 40kgf/mm² or higher, breaking elongation is 40% or higher, and tensile elastic modulus is 10,000kgf/mm² or higher. Since the brush is used under a wet condition, as materials satisfying such characteristics, various stainless steels having high corrosion resistance such as a ferritic stainless steel and an austenitic stainless steel, a nickel based alloy, a cobalt based alloy, and a titanium nickel alloy are suitable. As a result, the helically winding process can be performed without break or buckling of the wire. The brush 1 is used by being embedded and fixed to a short handle 2 and is disposed, or the brush 1 is embedded and fixed to a short handle base 3 and they are detachably attached to a long holder 4 and used.

COPYRIGHT: (C) 1996,JPO

Eingegangen

23, Sep. 2003

Keller & Partner AG

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-308637

(43)公開日 平成8年(1996)11月26日

51)Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
A 4 6 B 9/04		7361 – 3K	A46B	9/04		
A 4 6 D 1/00	102	,	A 4 6 D	1/00	102	
A 6 1 C 15/00			A61C 1	5/00		
B 2 1 F 45/00			B21F 4	5/00	E	3
C 2 2 C 19/07		•	C 2 2 C 19	9/07	A	ł.
			審査請求	未請求	請求項の数5	OL (全 7 頁)
21)出願番号 特	持願平7-120959		(71)出願人	0001063	24	
				サンスタ	ター株式会社	
22)出願日 平	∞成7年(1995)5月	19日		大阪府郡	5槻市朝日町3番	針1号
			(72)発明者	鶴川 正	直希	
				大阪府四	四條畷市南野2-	9 - 10
			(72)発明者	松本	_	
		ı		大阪府の	大田市千里丘上3	7-1-618
			(74)代理人	公理十	柳野 隆生	

(54) 【発明の名称】 歯間プラシ用線材ならびに歯間プラシ

((57) 【要約】

【目的】 座屈や破断がなく耐久性に優れるとともにプラシに腰があって操作性にも優れ、しかも歯間への挿通性にも優れた歯間プラシ用線材とそれを用いた歯間プラシを提供せんとするものである。

【構成】 ワイヤーをラセン巻き加工して毛束をワイヤー間に挟持固定したブラシを有する歯間ブラシ用線材ならびに歯間ブラシであって、ラセン巻き加工前のワイヤーが、 $0.15\sim0.30\,\mathrm{mm}$ の直径を有し、且つワイヤー素材の引張特性が耐力 $40\,\mathrm{kg}\,\mathrm{f/mm}^2$ 以上、破断伸び $40\,\mathrm{%以}$ 上、引張弾性率 $10000\,\mathrm{kg}\,\mathrm{f/mm}^2$ 以上である歯間ブラシ用線材ならびに歯間ブラシ。

1

【特許請求の範囲】

【請求項1】 ワイヤーをラセン巻き加工して毛束をワイヤー間に挟持固定したブラシを有する歯間ブラシに用いる線材であって、

ラセン巻き加工前のワイヤーが、0.15~0.30mmの直径を有し、且つワイヤー素材の引張特性が耐力40kgf/mm²以上、破断伸び40%以上、引張弾性率10000kgf/mm²以上である歯間プラシ用線材。

【請求項2】 ワイヤーをラセン巻き加工して毛束をワ 10 イヤー間に挟持固定したプラシを有する歯間プラシであって、

ラセン巻き加工前のワイヤーが、 $0.15\sim0.30\,\mathrm{m}$ mの直径を有し、且つワイヤー素材の引張特性が耐力 $40\,\mathrm{kg}\,\mathrm{f/mm^2}$ 以上、破断伸び $40\,\mathrm{%}$ 以上、引張弾性率 $10000\,\mathrm{kg}\,\mathrm{f/mm^2}$ 以上である歯間ブラシ。

【請求項3】 ワイヤー素材が、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、析出硬化系ステンレス鋼、ニッケル基合金、コパルト基合金、チタン・ニッケル合金のいずれかである請求項2記載の歯間プラシ。

【請求項4】 ワイヤー素材が、Co:30~50%、Cr:20~30%、Ni:10~25%、Fe:10~20%、Mo:0.1~10%の化学成分組成を基礎としたコバルト基合金である請求項2記載の歯間プラシ

【請求項5】 ワイヤー素材が、Co:40%、Cr:20.5~22.5%、Ni:15.5~17.5%、Mo:5.8~6.8%、Mn:0.9~1.5%、Si:0.5%、C:0.1~0.15%、P:0.03%、S:0.015%、残部Feの化学成分組成を有するコバルト基合金である請求項2記載の歯間プラシ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は耐久性に優れるとともに 操作性に優れ、且つ歯間への挿通性にも優れた歯間ブラ シ用線材とそれを用いた歯間ブラシに関する。

[0002]

【従来の技術】歯間ブラシはブラシとこのブラシを支持するハンドルとより主として構成され、ブラシは1本のワイヤーを途中で折り返し、ワイヤー間に毛束を挟み込んだうえこのワイヤーを捻じって製造している。ワイヤーとしては一般に0.25mm~0.35mmの直径を有するステンレス鋼線、なかでもSUS304製の鋼線が多用されている。

[0003]

【発明が解決しようとする課題】歯問プラシは歯間に挿通したプラシを押し引きすることにより歯間に堆積した 歯垢や歯石を除去するものであるから、ブラシの軸芯を 構成するワイヤーは歯間に挿通可能な太さであって、且 つワイヤーには押し引き動作によっても座屈しない剛性 が要求される。また歯間ブラシはブラシ基部を折り曲げ てブラシを歯間に位置づけることから、折り曲げ動作に 対しても破断しない耐久性も要求される。従来の歯間ブ ラシは剛性が十分でないためワイヤーがS字状に曲がる 座屈現象が発生しやすく、またブラシ基部の折り曲げ操 作が繰り返されると使用途上で破断することもあり耐久 性がよくなかった。歯間部への通過性を向上させるため には、細いワイヤーを用いることが要求されるが、ワイ ヤー径を細くすると前記座屈現象や破断現象はより深刻 なものとなる。

【0004】本発明はこのような現況に鑑みてなされたものであり、座屈や破断がなく耐久性に優れるとともにプラシに腰があって操作性にも優れ、しかも歯間への挿通性にも優れた歯間プラシ用線材とそれを用いた歯間プラシを提供するものである。

[0005]

【課題を解決するための手段】本発明者は上記課題を解決するに際して、歯間ブラシのワイヤーに要求される条件について検討を行い、歯間ブラシのワイヤーには次の条件(D2)③④が必要となることを確認した。

①人体にとって化学的に無害であること。

②ワイヤーの捻じり戻り(以下、スプリングバックと称す)が生じずラセン巻き加工が可能であること。

③ワイヤーの屈曲動作が頻繁に繰り返されても容易に破断しないこと。

④ワイヤーの軸心方向に沿ったブラッシング動作に対して、ワイヤーが座屈しないこと。

【0006】これら条件をほぼ満足する歯間ブラシの提案としては特開平5-317123号がある。この発明は曲げ強度の大きいワイヤー、即ち引張弾性率の大きなワイヤーを用いて、ワイヤーの破断防止及び座屈防止効果を高めるとともに、ワイヤーに低融点熱可塑性樹脂を被覆したうえこの樹脂をラセン巻き加工後に溶融固化することにより、スプリングバック現象を防止したものである。この発明によればワイヤーのスプリングバックを防止できるため従来どおりのラセン巻き加工を踏襲しながら、ワイヤーの破断強度や座屈強度を高めることが可能となったものの、この発明手法ではワイヤーへの樹脂被覆及び被覆樹脂の溶融固化作業が新たに必要となって工数が増える問題があり、また被覆樹脂の存在によりワイヤー径が事実上増加して歯間への挿通性が低下するという問題があった。

【0007】本発明は上記①②③④の条件を満足する歯間プラシを樹脂被覆という手段によらず実現しようとするものであり、この課題を歯間プラシ用途に最も適したワイヤー素材を選択することによって解決せんとするものである。本発明者の研究によれば上記条件②③④の各性質はワイヤーの機械的性質のなかでも特に引張特性に

ISDOCID: <JP 408308637A 1 >

50

30

30

関係していると判断される。このような認識に基づいて完成された本発明は次の内容を有している。請求項1記載の歯間ブラシ用線材は、0.15~0.30mmの直径であり、且つその素材の引張特性を、耐力40kgf/mm²以上、破断伸び40%以上、引張弾性率10000kgf/mm²以上となしたことを特徴としている。より好ましい引張特性は、耐力50kgf/mm²以上、破断伸び60%以上、引張弾性率13000kgf/mm²以上である。また請求項2はこのような線材を用いた歯間ブラシである。

【0008】ワイヤー素材としては、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、ボ出硬化系ステンレス鋼、ニッケル基合 金、コバルト基合金、チタン・ニッケル合金のいずれかを用いることができる。

【0009】請求項1及び2記載の特性が実現できる合金例としては請求項4記載のように、Co:30~50%、Cr:20~30%、Ni:10~25%、Fe:10~20%、Mo:0.1~10%の化学成分組成を基礎としたコバルト主体の合金(以下、コバルト基合金と称す)が挙げられる。

【0010】上記成分構成を有する合金のうち、現在入手容易な合金としては、請求項5記載のように、Co: 40%、Cr:20.5~22.5%、Ni:15.5~17.5%、Mo:5.8~6.8%、Mn:0.9~1.5%、Si:0.5%、C:0.1~0.15%、P:0.03%、S:0.015%、残部Feの化学成分組成を有するコバルト基合金が挙げられる。

[0011]

【作用】本発明の歯間ブラシはワイヤー径が0.15m m~0. 30mmであるため、このワイヤーを捻じって 作製されるプラシの芯材の直径は0.35mm~0.7 0mm程度となり、歯間への挿通性は極めて高い。 耐 力、破断伸び、引張弾性率は相互に関連する特性であ り、先に規定した数値範囲の臨界的意味を個別に論じる ことはできないが、各特性について次のことがいえる。 耐力は、0.2%という非常に小さい永久歪を生じると きの応力を表し、ワイヤーを変形させようとする外力に 抗して形状を維持する強さに関係している。破断伸び は、破断する迄にどれだけ素材が伸びたかを表し、塑性 変形性に関係している。引張弾性率は、歪みにくさを表 し、変形しにくさや剛性に関係している。本発明者の研 究によれば歯間ブラシ用ワイヤーとしては耐力と破断伸 びは共に大きいほど良い。耐力が大きくても破断伸びが 小さければ、変形力に抗して現形状を維持する変形防止 能力は高いものの、塑性変形性に劣るためラセン巻き加 工が困難となる。また引張弾性率は使用時にワイヤーが 座屈しない大きさが必要である。ワイヤー素材の引張特 性を耐力40kgf/mm²以上、破断伸び40%以 50 上、引張弾性率10000kgf/mm²以上としたことで、ワイヤーは歯間プラシ用ワイヤーとして要求される剛性、パネ性、加工性の全てをパランス良く満足することができる。

[0012]

【実施例】以下、本発明の実施例を説明する。図1は本 発明の対象となる歯間プラシの一例である。歯間プラシ は図1(a)に示すようにブラシ1を短軸状のハンドル 2に埋設固定した使い捨てタイプのものや、図1 (b) に示すようにプラシ2を短軸基台3に埋設固定したもの 10 を長軸ホルダー4に脱着自在に装着するタイプ、あるい は図示しないが長軸ホルダー4の先端部を屈曲させたも の、更にブラシとハンドルが別々に構成され、ハンドル にプラシを装着することにより使用するもの等があり、 これら全てが本願発明の対象となる。歯間プラシでは、 歯間対象部位に位置づけるために図2(a)に示すよう にプラシ1の基部を支点とした屈曲動作を繰り返した り、図2(b)に示すようにワイヤー1aの軸線に沿っ て押し引きするブラッシング動作を繰り返すが、本発明 20 はこのような動作に対してワイヤー1 aが破断したり座 屈することをなくすことが目的である。

【0013】図3はプラシの製造手順の概略を示している。その手順は1本のワイヤー1aを途中部で折り曲げ、次いで折り曲げたワイヤー1a間に毛束1bを挟み込んだうえワイヤー1aを捻じって完成させる。この手順は従来技術及び本願においても共通であり、本発明においてはこのようなラセン巻き加工が可能であり且つラセン巻き加工後はスプリングバックすることなくその形状を維持しうる加工性、即ち適度な塑性変形性を与えることも目的である。

【0014】プラシ1は、歯間への挿通性を高める観点からは細くすることが重要であり、本発明ではワイヤー 1本あたりの太さを従来より一般的に用いられている $0.25\sim0.35$ mよりも細い $0.15\sim0.30$ mの範囲のものを用いる。

【0015】 このような細線ワイヤーを用いた場合でも、ワイヤーが破断したり座屈したりすることがなく、且つラセン巻き加工を可能にするためには、ワイヤー素材の引張特性が耐力 $40 \, \text{kg f/mm}^2$ 以上、破断伸び $40 \, \text{kg L}$ 、引張弾性率 $10000 \, \text{kg f/mm}^2$ 以上である必要がある。より好ましい引張特性は、耐力 $50 \, \text{kg f/mm}^2$ 以上、破断伸び $60 \, \text{kg L}$ 、引張弾性率 $13000 \, \text{kg f/mm}^2$ 以上である。

【0016】このような特性を満足する素材としては、口中という温潤な条件下で使用することを考えると耐蝕性の大きいフェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、析出硬化系ステンレス鋼、ニッケル基合金、コバルト基合金、チタン・ニッケル合金が適している。

 $[0\ 0\ 1\ 7]$ コバルト基合金の1例としては、特公昭35-9159号において提案された合金、即ち、 $Co:30\sim50\%$ 、 $Cr:20\sim30\%$ 、 $Ni:10\sim25\%$ 、 $Fe:10\sim20\%$ 、 $Mo:0.1\sim10\%$ の化学成分組成を基礎としたコバルト主体のパネ用合金が挙げられる。またこのような合金に属するものであって容易に入手できる鋼線としてはNAS604PH(日本精線株式会社製)がある。これはCo:40%、 $Cr:20.5\sim22.5\%$ 、 $Ni:15.5\sim17.5\%$ 、 $Mo:5.8\sim6.8\%$ 、 $Mn:0.9\sim1.5\%$ 、Si:0.5%、 $C:0.1\sim0.15\%$ 、P:0.03%、S:0.015%、残部Feの化学成分組成を有するコバルト基合金であり主として時計用ゼンマイバネ材料として用いられている。

【0018】次に本発明の効果を確認するために行った各種試験について述べる。表1に示す組成を有する各種鋼線について、機械的特性の測定、ラセン巻き加工が可能か否かの判定、ブラシとしての性能評価を行った。機械的特性は次のようにして測定した。先ず、100mmの間隔を有する把持具間に試験片を固定し、この100mmの実質的長さを有する試験片を引っ張り速度30mm/分で引っ張って図7に示すような「応力ー歪み曲線」を得る。この図における曲線の始点立ち上がり部の勾配を表す直線Aの傾きから引張弾性率を求める。耐力は図中Bの値、破断伸びは図中Cの値、更に破断強度は図中Dの値で求める。測定結果及び評価結果を表2に示*

*す。尚、使用した鋼線の太さは直径0.25mmを基本としているが、NASY-64及びNASTi-224に関しては0.23mmのものを用いた。定歪み疲労試験、定空隙通過疲労試験、座屈強度は次の方法により測定した。これらの値は大きいほど歯間プラシ用ワイヤーとして優れていると判断できる。尚、サンプル数は5本

6

【0019】〈定歪み疲労試験〉図4(a)に示すように歯間プラシのワイヤー1aを基部付近で90°折曲させた後、これを元の位置に戻し、次に図4(b)に示すように反対方向に90°折曲させた後、再び基の位置に戻し、この往復動作を2回と数えて、ワイヤー1aが破断するまでの曲げ回数を実測した。

であり、表にはその平均値を記載した。

<定空隙通過疲労試験>図5に示すようにそのワイヤー基部から5mmまでの部分が門型ブロック5に位置するように、歯間ブラシを門型ブロック5に内装固定し、露出したブラシ先端部分に対して側方から加圧部材6を当ててワイヤー1aを撓ませる動作を繰り返し、ワイヤー1aが破断するまでの回数を実測した。

〈座屈強度試験〉図6(a)に示すように歯間ブラシのワイヤー先端に加圧板7を当て、この加圧板7の加圧力を徐々に高めていき、図6(b)に示すように座屈したときの荷重を測定した。

[0020]

【表1】

									
金属組成線の種類	С	Si	Mn	P	S	Ni	Сr	Мо	その他
SUS 304 (現行) (オーステナイト系 ステンレス 鋼)	0. 08LIF	1.00以下	2.00以下	0.045 以下	0.030 以下	8.00 ~ 10.50	18.00 ~ 20.00		残量 fe
NAS 604 PH (基) 法(E)	0. 10 ~ 0. 15	0.50以下	0.90 ~ 1.50	0.040 以下	0.030 以下	15. 50 ~ 17. 50	20.50 ~ 22.50	5. 80 ~ 6. 80	Co 40.0 残量 Fe
NAS Y-64 (オーステナイト・ フュライト 来合金	0.03以下	100以下	1.00以下	0. 03E/F	0.02以下	6.50 ~ 7.50	24.0 ~ 26.5	2.75 ~ 3.75	N 0. 10~0. 20 ₩₩Fe
イン科 X-750 (二州基 合金)	0.04	0.2	0.5	_		73.0	15. 5		Nb 1.0, Al 0.7. Ti 2.5, Fe 7.0
NAS Ti-224 (βチタン 合金)	_	-	-	_	_	_		_	V 21.93, A1 3.92, 0 0.092, C 0.010, 残量Ti

			楼旗	特性		ワイヤー		性能評估	SF .		
サンブル名	直径	引張 弹性率	耐力	破断 伸び	破断强度	ラセン巻き加工	定金み・疲労	定空隙 通過 疲労	座III 強度	判定	理由
0((mm)	(%)	(%)	(%)	(%)		試験	試験	(g)		
SUS 304 (現行)	0. 25	12500	27. 8	57. 3	70.6	可	16.6	59.6	522. 6		
NAS 604 PH	0. 25	13300	51. 7	64. 9	101.4	可	22.2	114.8	697. 2	0	現行より 非常に良い
NAS Y-64	0. 23	13000	77.6	27. 0	90.4	可	18.6	33. 4	507. 2	×	疲労に弱い
インコネル X-750	0. 25	8100	35. 3	41.9	78. 3	可	14.0	24, 6	549.0	×	疲労に弱い
NAS Ti-224	0. 23	5900	80. 5	12.7	78.7	可	5. 8	_		×	疲労に弱い

— : 未実施 ※:(kgf/mm²)

【0022】表2から次のことがわかる。現行のSUS 304は耐力が27.8 kg f/mm² と低く、性能評価の各値も小さい。NASY-64は耐力は77.6 kg f/mm² であって50 kg f/mm²以上であるものの破断伸びが27%であって40%未満であり、性能評価は低い。またインコネルX-750は耐力、破断伸びが共に小さく性能評価は低い。そしてNASY-64及びインコネルX-750共に金属疲労が発生し易く破断しやすい。NASTi-224は耐力は80.5 kg f/mm² であって50 kg f/mm² 以上であるものの破断伸びが12.7%であって40%未満であり、また引張弾性率も5900 kg f/mm² と小さく性能評価は低い。そしてNASTi-224は引張弾性率が低いために破断しやすい。

【0023】これらに対してコパルト基合金であるNAS604PHでは耐力51.7kgf/mm²、破断伸びが64.9%であり、且つ引張弾性率が12500k

gf/mm²であり、現行のSUS304と比較すると 定歪み疲労試験で50%、定空隙通過疲労試験で90 %、座屈強度で30%の向上が見られ、定歪み疲労試 験、定空隙通過疲労試験、座屈強度の全てにおいて優れ た評価が得られた。

8

【0024】次に本発明者は本発明実施例であるNAS604PHを用いた歯間ブラシと、SUS304を用いた現行歯間ブラシのそれぞれの使用感についての実使用評価を15人の被験者を対象にして行った。評価項目はワイヤーの弾力、ワイヤー弾力の好き嫌い、ワイヤーの曲がり、ワイヤーの折れ、ワイヤーの耐久性、歯間部への挿入性、歯や歯肉への感触、挿入時や使用時の痛み、清掃効果、毛抜け、総合評価の合計11項目とした。結果を表3に示す。結果は平均値で表した。

[0025]

【表3】

20012 12 100

NAS 604PH をもちいた 開開 ブラシと SUS304を用いた (1) 模定 :P < 0.001. : P < 0.01)

評価項目	評価点数	NAS 604 PH の評価 では (機単偏差)	SUS 304 の配価 (機準備差)
るずカー	20-0-1-N 10-1-N 10-1-N 10	0.67 ° (0.82)	-0.67°° (0.98)
ワイヤー のする する する りい	**************************************	0.47 (0.74)	-0.60 ⁻ (1.06)
スイヤラ	またなかがいに やいいに やいいに やいいに やい	0.33 (0.82)	-1.00** (0.76)
ワイヤー の折れ	2 :: 哲やされいにすい	0.71 (0.83)	0.57 (0.94)
ワイヤーの耐久性	なからない 10 ようない -1 かわるい	0.53	-0.13 (0.99)
韓見軽への	2 :: 種入中すいやすい 01:: をおせんしにい -2: 拳人したくい	0.33 (0.62)	0.38 (0.72)
歯や歯肉	2: より いよう 0: ようわい -1: かるい	0.27 (0.80)	0.13 (0.64)
担人時の	2 :: 感じない じない じまつか じょう で る -1 :: なめ こる -2 :: あるかや にる	0.47 (1.06)	0.73
清掃効果	2 ::: ない 変けする サウタファラッド 1 ::: ない 1 ::: ない 1 ::: ない 2 ::: ない 2 ::: ない 2 ::: ない	0.53	0.13 (0.82)
毛抜け	2 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.47	0.40 (0.74)
総合評価	2: \$U\$304がよいよい 1: \$U\$304がやかよい 0: とちちでもない -1: NAS604PHがややよ -2: NAS604PHがよい	-0. (0.	73 45)

【0026】表3よりわかるようにほとんどの項目において、NAS604PHを用いた本発明の歯間プラシのほうがSUS304を用いた現行歯間プラシより優れていることが実使用試験においても確認された。

[0027]

【発明の効果】本発明の歯間ブラシ用線材ならびにこれ 40 を用いた歯間ブラシは、0.15~0.30 mmの直径を有し、ラセン巻き加工前においてワイヤー素材の引張特性を耐力 40 kg f/mm²以上、破断伸び 40%以上、引張弾性率10000 kg f/mm²以上となし、歯間ブラシ用ワイヤーとして要求される最適な特性を具備するようにしたので、歯間への優れた挿通性を発揮できる細線ワイヤーを用いながらも、使用途上でのワイヤーの座屈や破断のない耐久性を実現でき、且つブラシに腰があって操作性にも優れた歯間ブラシを提供することができる。 50

【図面の簡単な説明】

【図1】 (a), (b) は本発明が対象とする歯間プラシの形態を示す正面図

【図2】 (a), (b)は使用途上においてブラシに 作用する外力を示す説明図

【図3】 ラセン巻き加工の手順を示す説明図

【図4】 (a), (b) は定歪み疲労試験についての 説明図

【図5】 (a), (b) は定空隙通過疲労試験についての説明図

【図6】 (a), (b) は座屈強度試験についての説明図

【図7】 耐力、破断伸び、引張弾性率の算出手法を 説明するための「応力-歪み曲線」を示す図 【符号の説明】

50 1 プラシ

1a ワイヤー

11

1b 毛束 2 ハンドル

3 短軸基台

4 長軸ホルダー6 加圧部材

5 門型プロック

7 加圧板

【図1】

【図2】

【図3】

12

[図7]

