УПРАЖНЕНИЯ

Задание 1. Найти множество точек комплексной плоскости, удовлетворяющее условию:

1.1.
$$|z+1-i| = |z-1+i|$$
; 1.2. $|z+1-2i| \le 0$; 1.3. $|z+2-i| = \sqrt{3}$

1.2.
$$|z+1-2i| \le 0$$
;

1.3.
$$|z+2-i|=\sqrt{3}$$

1.4.
$$|z-2|^2 + |z+2|^2 = 26$$
; 1.5. $\left| \frac{z-1}{z+1} \right| \le 1$; 1.6. $\frac{1}{4} < \text{Re}\left(\frac{1}{\overline{z}}\right) + Jm\left(\frac{1}{\overline{z}}\right) < \frac{1}{2}$;

1.6.
$$\frac{1}{4} < \text{Re}\left(\frac{1}{\bar{z}}\right) + Jm\left(\frac{1}{\bar{z}}\right) < \frac{1}{2}$$
;

1.7.
$$|z-i|+|z+i|=4$$
; 1.8. $Jm(\bar{z})^2<1$; 1.9. $|z|-\text{Re }z\leq 0$ 1.10. $|z|>2+Jmz$

1.8.
$$\text{Jm}(\bar{z})^2 < 1$$

1.9.
$$|z| - \text{Re } z \le 0$$

1.10.
$$|z| > 2 + Jmz$$

Задание 2. Записать в тригонометрической форме:

2.1.
$$z = -\sqrt{3} + i$$
;

2.2.
$$z = -4$$
:

$$2.3^*$$
. $z = 2 + \sqrt{3} + i$;

2.4.
$$z = \frac{1 + i\sqrt{3}}{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)};$$
 2.5. $z = -1 - i\sqrt{3};$ 2.6. $z = -\sqrt{2} + i\sqrt{2};$

2.5.
$$z = -1 - i\sqrt{3}$$
;

2.6.
$$z = -\sqrt{2} + i\sqrt{2}$$
;

2.7.
$$z = 1 - \sin \alpha + i \cos \alpha \quad \left(0 < \alpha < \frac{\pi}{2}\right);$$

2.8.
$$z = 1-i$$

2.9.
$$z = 1 + \cos \alpha + i \sin \alpha \quad (\pi < \alpha \le 2\pi);$$
 2.10. $z = -\cos \frac{\pi}{12} - i \sin \frac{\pi}{12};$

2.10.
$$z = -\cos\frac{\pi}{12} - i\sin\frac{\pi}{12}$$
;

Задание 3. Записать в алгебраической форме:

3.1.
$$\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
;

3.1.
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right);$$
 3.2. $2 \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right);$ 3.3. $\left(\frac{-1 + i \sqrt{3}}{2i} \right)^2;$

3.3.
$$\left(\frac{-1+i\sqrt{3}}{2i}\right)^2$$

3.4.
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{40}$$
; 3.5. $e^{i\pi}$; 3.6. $3e^{i2\pi k}$; 3.7. $4e^{i\frac{\pi}{4}}$;

3.5.
$$e^{i\pi}$$

3.6.
$$3e^{i2\pi k}$$
;

3.7.
$$4e^{i\frac{\pi}{4}}$$
;

3.8.
$$\frac{(1+i)^9}{(1-i)^7}$$

3.9.
$$\frac{\cos\alpha + i\sin\alpha}{\cos\beta - i\sin\beta}$$

3.8.
$$\frac{(1+i)^9}{(1-i)^7}$$
; 3.9. $\frac{\cos\alpha + i\sin\alpha}{\cos\beta - i\sin\beta}$; 3.10. $\left(1 + \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^4$;

Задание 4. Вычислить:

4.1.
$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$$
;

4.2.
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{10}$$
; 4.3. $\frac{\left(-1+i\sqrt{3}\right)^{15}}{\left(1-i\right)^{10}}$

4.3.
$$\frac{\left(-1+i\sqrt{3}\right)^{15}}{\left(1-i\right)^{10}}$$

4.4.
$$(1-i)^8 (1-i\sqrt{3})^{-6}$$
; 4.5. $\left(\frac{i^5+2}{i^{19}+1}\right)^2$; 4.6. $\frac{(-1-i\sqrt{3})^5}{(1+i)^2}$

4.5.
$$\left(\frac{i^5+2}{i^{19}+1}\right)^2$$
;

4.6.
$$\frac{\left(-1-i\sqrt{3}\right)^5}{\left(1+i\right)^2}$$

4.7.
$$\left(\frac{1-i}{1+i}\right)^{13}$$
; 4.8*. $\left(\frac{1+\sqrt{2}+i}{2}\right)^{16}$; 4.9*. $\left(1+\frac{\sqrt{3}+i}{2}\right)^{12}$; 4.10*. $\left(1-\frac{\sqrt{3}-i}{2}\right)^{24}$.

Задание 5. Найти все значения $\sqrt[n]{w}$, если :

5.1.
$$w = -8$$
, $n=3$;

5.2.
$$w = -1$$
, $n=4$

5.1.
$$w = -8$$
, $n=3$; 5.2. $w = -1$, $n=4$; 5.3. $w = -4+i\sqrt{48}$, $n=3$;

5.4.
$$w = 1+i$$
, $n=8$:

5.4.
$$w = 1+i$$
, $n=8$; 5.5. $w = 2-i2\sqrt{3}$, $n=4$; 5.6. $w = 27i^5$, $n=3$;

5.6.
$$w = 27i^5$$
, $n=3$;

5.7.
$$w = i^4$$
, $n=3$

5.8.
$$w=-1+i$$
, $n=3$;

5.7.
$$w = i^4$$
, $n=3$; 5.8. $w=-1+i$, $n=3$; 5.9. $w = 2+i2\sqrt{3}$, $n=2$;

5.10.
$$w = \sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right), n=5.$$

Задание 6. Вычислить и изобразить геометрически на комплексной плоскости:

6.1.
$$\sqrt[3]{1}$$
:

6.2.
$$\sqrt[3]{-1}$$

6.3.
$$\sqrt[3]{i}$$

6.1.
$$\sqrt[3]{1}$$
; 6.2. $\sqrt[3]{-1}$; 6.3. $\sqrt[3]{i}$; 6.4. $\sqrt[3]{-i}$; 6.5. $\sqrt[4]{i^3}$;

6.5.
$$\sqrt[4]{i^3}$$
:

6.6.
$$\sqrt[5]{i^6}$$

6.7.
$$\sqrt{i}$$
:

6.8.
$$\sqrt[4]{1}$$

6.9.
$$\sqrt[6]{64}$$
;

6.6.
$$\sqrt[5]{i^6}$$
; 6.7. $\sqrt[5]{i}$; 6.8. $\sqrt[4]{1}$; 6.9. $\sqrt[6]{64}$; 6.10. $\sqrt[3]{i^{15}}$.

Задание 7. Пользуясь формулой Муавра, выразить через степени sin α и $\cos \alpha$ следующие функции:

7.1.
$$\sin 4\alpha$$
:

7.2.
$$\cos 4\alpha$$

7.3.
$$\sin 5\alpha$$

7.1.
$$\sin 4\alpha$$
; 7.2. $\cos 4\alpha$; 7.3. $\sin 5\alpha$; 7.4. $\cos 5\alpha$; 7.5. $\cos 6\alpha$;

7.6.
$$\sin 6\alpha$$
; 7.7. $\sin 7\alpha$; 7.8. $\cos 7\alpha$; 7.9. $\cos 8\alpha$; 7.10. $\sin 8\alpha$.

7.8.
$$\cos 7\alpha$$
;

7.9.
$$\cos 8\alpha$$
; 7.10. $\sin 8\alpha$

Задание 8. Решить уравнение:

8.1.
$$z^3 + 3z^2 + 3z + 3 = 0$$

8.1.
$$z^3 + 3z^2 + 3z + 3 = 0$$
; 8.2. $z^4 - 4z^3 + 6z^2 - 4z - 15 = 0$

8.3.
$$z^9 + 27 = 0$$
;

8.4.
$$z^6 + 27 = 0$$
;

8.5.
$$z^8 + z^4 + 1 = 0$$
;

8.6.
$$z^3 + 9z - 26 = 0$$
;

$$8.8 \quad 7^3 + 37^2 - 37 - 1 = 0$$

8.8.
$$z^3+3z^2-3z-1=0$$
; 8.7. $z^3-6z^2+57z-196=0$;

8.9.
$$z^3-6z+4=0$$
;

8.10.
$$z^3 + 45z - 98 = 0$$
.