

FOR OFFICIAL USE ONLY

ACCESS DB # _____

For: Jan Delaval
OR
John Dantzman

Scientific and Technical Information Center

SEARCH REQUEST FORM

26970
PLEASE PRINT CLEARLY
Location (Bldg/Room#): 4H1-9009
mail : and re

Date: 3/27/00 Requester's Full Name: BENNETT CYCRA Examiner #: 73815
Art Unit: 1627 Phone (305) 737-5 Serial Number: 09/011,940
Results Format Preferred (circle): PAPER DISK E-MAIL

To ensure an efficient and quality search, please attach a copy of the cover sheet, claims, and abstract or fill out the following:

Title of Invention: see ATTACHED

Inventors (please provide full names):

Earliest Priority Date: 8/22/95

Search Topic:

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known.

For Sequence Searches Only Please include all pertinent information (parent, grandchild, divisional, or issued patent numbers) along with the appropriate serial number.
selected invention: claims 1-2, 17-25, 32-50 [method]
selected species: glucose + GLP-1 (Glucagon-like peptide 1)
- see addition species of claim 22

Procedure

1. search clms 1-2, 17-25 & 32-50 in relevant databases
2. search elected embodiment
GLucose + GLP-1
* also search peptide species of chm 22
3. search inventors
4. can combine 3 + 192

RECEIVED
MAR 27 2000
R. S.
TECH/CHEM DIVISION
(STIC)

STAFF USE ONLY

Searcher: Jan

Searcher Phone #: 4498

Searcher Location:

Date Searcher Picked Up: 4/10

Date Completed: 4/10

Searcher Prep & Review Time: 157

Online Time: 90

Type of Search

NA Sequence (#)

AA Sequence (#)

Structure (#)

Bibliographic

Litigation

Fulltext

Other

Vendors and Cost

✓ STN

Dialog

Questel/Orbit

Dr. Link

Lexis/Nexis

Westlaw

WWW/Internet

In-house sequence systems (list)

Other (specify)

=> fil reg

FILE 'REGISTRY' ENTERED AT 13:10:59 ON 10 APR 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 9 APR 2000 HIGHEST RN 261502-99-2
 DICTIONARY FILE UPDATES: 9 APR 2000 HIGHEST RN 261502-99-2

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 11, 2000

Please note that search-term pricing does apply when
 conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT
 for details.

=> d ide can 19

L9 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2000 ACS
 RN 58367-01-4 REGISTRY
 CN DL-Glucose (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN (.-+.)-Glucose
 CN dl-Glucose
 CN Glucose
 FS STEREOSEARCH
 DR 111688-73-4
 MF C6 H12 O6
 LC STN Files: AGRICOLA, BEILSTEIN*, BIOBUSINESS, BIOSIS, CA, CAPLUS,
 CASREACT, CEN, CIN, IMSDIRECTORY, MEDLINE, PIRA, PROMT, TOXLIT, TULSA,
 USPATFULL
 (*File contains numerically searchable property data)

Relative stereochemistry.

83 REFERENCES IN FILE CA (1967 TO DATE)
 4 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 83 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:167313

REFERENCE 2: 132:87465

REFERENCE 3: 132:47466

REFERENCE 4: 132:8597

REFERENCE 5: 132:3529

REFERENCE 6: 131:287966

REFERENCE 7: 131:269262

REFERENCE 8: 131:235507

Point of Contact:
 Jan Delaval
 Librarian-Physical Sciences
 CM1 1E01 Tel: 308-4498

REFERENCE 9: 131:99030

REFERENCE 10: 131:60251

=> d ide can 111

L11 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2000 ACS
 RN 921-60-8 REGISTRY
 CN L-Glucose (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN L(-)-Glucose
 CN L-Glucose
 FS STEREOSEARCH
 MF C6 H12 O6
 CI COM
 LC STN Files: AGRICOLA, BEILSTEIN*, BIOBUSINESS, BIOSIS, CA, CAOLD, CAPLUS,
 CASREACT, CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CSCHEM, GMELIN*, IPA,
 MSDS-OHS, PROMT, RTECS*, TOXLINE, TOXLIT, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: EINECS**
 (**Enter CHEMLIST File for up-to-date regulatory information)

Absolute stereochemistry.

670 REFERENCES IN FILE CA (1967 TO DATE)
 10 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 672 REFERENCES IN FILE CAPLUS (1967 TO DATE)
 8 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 132:189684

REFERENCE 2: 132:178509

REFERENCE 3: 132:152031

REFERENCE 4: 132:146911

REFERENCE 5: 132:117733

REFERENCE 6: 132:85166

REFERENCE 7: 132:26663

REFERENCE 8: 131:349198

REFERENCE 9: 131:303302

REFERENCE 10: 131:297740

=> d ide can 113

L13 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2000 ACS
 RN 50-99-7 REGISTRY
 CN D-Glucose (8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN (+)-Glucose
 CN Anhydrous dextrose
 CN Cartose
 CN Cerelose
 CN Cerelose 2001
 CN Corn sugar
 CN D(+)-Glucose
 CN Dextropur
 CN Dextrose
 CN Dextrosol
 CN Glucolin
 CN Glucose
 CN Glucosteril
 CN Grape sugar
 CN Staleydex 111
 CN Staleydex 333
 CN Sugar, grape
 CN Tabfine 097(HS)
 CN Vadex
 FS STEREOSEARCH
 DR 8012-24-6, 8030-23-7, 162222-91-5, 165659-51-8, 50933-92-1, 80206-31-1
 MF C6 H12 O6
 CI COM
 LC STN Files: AGRICOLA, AIDSLINE, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS,
 BIOTECHNO, CA, CABA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB, CEN,
 CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSCHEM, CSNB, DDFU,
 DETERM*, DIPPR*, DRUGU, EMBASE, GMELIN*, HSDB*, IFICDB, IFIPAT, IFIUDB,
 IMSDIRECTORY, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, NIOSHTIC,
 PDLCOM*, PIRA, PROMT, RTECS*, SPECINFO, TOXLINE, TOXLIT, TULSA, ULIDAT,
 USAN, USPATFULL, VETU, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

Absolute stereochemistry.

105097 REFERENCES IN FILE CA (1967 TO DATE)
 1743 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 105196 REFERENCES IN FILE CAPLUS (1967 TO DATE)
 14 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 132:216291
 REFERENCE 2: 132:216285
 REFERENCE 3: 132:216070
 REFERENCE 4: 132:213079
 REFERENCE 5: 132:212732
 REFERENCE 6: 132:212726
 REFERENCE 7: 132:212596
 REFERENCE 8: 132:212500

REFERENCE 9: 132:211567

REFERENCE 10: 132:209522

=> d ide can 119

L19 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2000 ACS
 RN **59392-49-3** REGISTRY
 CN Gastric inhibitory polypeptide (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Gastric inhibitory peptide
 CN GIP
 CN Glucose-dependent insulinotropic peptide
 CN Glucose-dependent insulinotropic polypeptide
 MF Unspecified
 CI PMS, MAN
 PCT Manual registration
 LC STN Files: AGRICOLA, ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA,
 CANCERLIT, CAPLUS, CHEMCATS, CSCHEM, DDFU, DRUGU, EMBASE, MEDLINE,
 NAPRALERT, TOXLINE, TOXLIT, USPATFULL

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

957 REFERENCES IN FILE CA (1967 TO DATE)
 17 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 959 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:193674

REFERENCE 2: 132:150280

REFERENCE 3: 132:150142

REFERENCE 4: 132:117676

REFERENCE 5: 132:103130

REFERENCE 6: 132:59445

REFERENCE 7: 132:45230

REFERENCE 8: 132:31744

REFERENCE 9: 132:31743

REFERENCE 10: 132:9115

=> d ide can 121

L21 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2000 ACS
 RN **89750-14-1** REGISTRY
 CN Glucagon-like peptide I (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Glucagon-related peptide I
 OTHER NAMES:
 CN Glucagon-related peptide 1
 CN PN: WO9947161 SEQID: 1 claimed sequence
 CN PN: WO9947161 SEQID: 7 claimed sequence
 MF Unspecified
 CI MAN
 LC STN Files: AGRICOLA, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CIN,
 EMBASE, IPA, MEDLINE, TOXLINE, TOXLIT, USPATFULL

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

529 REFERENCES IN FILE CA (1967 TO DATE)

29 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

531 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:212699

REFERENCE 2: 132:176061

REFERENCE 3: 132:176059

REFERENCE 4: 132:175839

REFERENCE 5: 132:161338

REFERENCE 6: 132:147179

REFERENCE 7: 132:146904

REFERENCE 8: 132:146715

REFERENCE 9: 132:132452

REFERENCE 10: 132:132385

=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 13:11:43 ON 10 APR 2000

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 10 Apr 2000 VOL 132 ISS 16
FILE LAST UPDATED: 9 Apr 2000 (20000409/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in HCAPLUS on STN.

=> d his

(FILE 'HCAPLUS' ENTERED AT 12:54:41 ON 10 APR 2000)

DEL HIS

E NAUCK M/AU

L1 52 S E3,E4,E11,E12

E WAGNER F/AU

L2 374 S E3

E WAGNER FRED/AU

L3 67 S E3,E7,E9,E10,E15,E18,E20,E23

E BIONEB/PA,CS

L4 24 S E5-E14
L5 514 S L1-L4
L6 1 S L5 AND PARENTERAL?
L7 0 S L1 AND L2,L3
L8 3 S L1-L3 AND L4

FILE 'HCAPLUS' ENTERED AT 12:57:48 ON 10 APR 2000
 S 50-99-7/REG# OR 921-60-8/REG# OR 58367-01-4/REG#

FILE 'REGISTRY' ENTERED AT 12:58:19 ON 10 APR 2000
L9 1 S 58367-01-4/RN

FILE 'HCAPLUS' ENTERED AT 12:58:20 ON 10 APR 2000
L10 83 S L9

FILE 'REGISTRY' ENTERED AT 12:58:22 ON 10 APR 2000
L11 1 S 921-60-8/RN

FILE 'HCAPLUS' ENTERED AT 12:58:22 ON 10 APR 2000
L12 677 S L11

FILE 'REGISTRY' ENTERED AT 12:58:24 ON 10 APR 2000
L13 1 S 50-99-7/RN

FILE 'HCAPLUS' ENTERED AT 12:58:25 ON 10 APR 2000
L14 105723 S L13
L15 106038 S L14 OR L12 OR L10
L16 20 S L5 AND L15
L17 48 S L5 AND GLUCOSE
L18 49 S L16,L17

FILE 'REGISTRY' ENTERED AT 12:59:03 ON 10 APR 2000

FILE 'REGISTRY' ENTERED AT 12:59:09 ON 10 APR 2000
L19 1 S 59392-49-3

FILE 'HCAPLUS' ENTERED AT 13:00:12 ON 10 APR 2000
L20 1432 S L19 OR GIP OR GASTRIC()INHIBIT?() (POLYPEPTIDE OR PEPTIDE) OR

FILE 'REGISTRY' ENTERED AT 13:00:22 ON 10 APR 2000
L21 1 S 89750-14-1

FILE 'HCAPLUS' ENTERED AT 13:01:30 ON 10 APR 2000
L22 958 S L21 OR GLUCAGON() (LIKE OR RELATED) () PEPTIDE() (1 OR I)
L23 1118 S L22 OR GLP() (1 OR I)
L24 30 S L5 AND L23
L25 22 S L18 AND L24
L26 15 S L25 AND 7 36
L27 15 S L25 AND 7 36 AMIDE
L28 15 S L26,L27
L29 1 S L28 AND COMPOSITION
L30 1146 S L23 OR GLUCAGONLIKE() (PEPTIDE OR POLYPEPTIDE)
L31 30 S L5 AND L30
L32 22 S L31 AND L18
L33 15 S L32 AND 7 36 AMIDE
L34 1 S L33 AND COMPOSITION
L35 1 S L34 AND GASTRIC INHIBIT? PEPTIDE
L36 2 S L32 AND FEED?
L37 3 S L32 AND FOOD?
L38 3 S L32 AND NUTRI?
L39 6 S L36-L38
L40 1 S L39 AND 63/SC,SX
L41 5 S L39 NOT L40
L42 5 S L41 AND L30
L43 21 S L32 NOT L40

FILE 'REGISTRY' ENTERED AT 13:10:59 ON 10 APR 2000

FILE 'HCAPLUS' ENTERED AT 13:11:43 ON 10 APR 2000

=> d all 140

L40 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2000 ACS
 AN 1997:192193 HCAPLUS
 DN 126:190958
 TI Composition and medium for parenteral nutrition
 IN Nauck, Michael
 PA Nauck, Michael, Germany
 SO Ger. Offen., 3 pp.
 CODEN: GWXXBX
 DT Patent
 LA German
 IC ICM A23L001-29
 ICS A23L001-305; A61K038-22
 CC 63-6 (Pharmaceuticals)
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 19530865	A1	19970227	DE 1995-19530865	19950822
	WO 9707814	A1	19970306	WO 1996-US13615	19960822
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ, DE, DE, DK, DK, EE, EE, ES, FI, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT				
	CA 2227278	AA	19970306	CA 1996-2227278	19960822
	AU 9669006	A1	19970319	AU 1996-69006	19960822
	EP 851763	A1	19980708	EP 1996-929722	19960822
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
	CN 1195992	A	19981014	CN 1996-196938	19960822
	JP 11514972	T2	19991221	JP 1996-510445	19960822
PRAI	DE 1995-19530865	19950822			
	WO 1996-US13615	19960822			
AB	The compn. contains glucagonlike peptide 1 (7-36-amide) and/or gastric inhibitory peptide, preferably in a pharmaceutical form for parenteral feeding.				
ST	parenteral pharmaceutical glucagonlike gastric inhibitory peptide				
IT	Nutrients Parenteral feeding Parenteral solutions (drug delivery systems) (compn. and medium for parenteral nutrition)				
IT	Amino acids, biological studies RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (compn. and medium for parenteral nutrition)				
IT	50-99-7, Glucose, biological studies RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (compn. and medium for parenteral nutrition)				
IT	59392-49-3, Gastric inhibitory polypeptide 89750-14-1, Glucagon-related peptide I RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (compn. and medium for parenteral nutrition)				

=> d 143 bib abs hitrn tot

L43 ANSWER 1 OF 21 HCAPLUS COPYRIGHT 2000 ACS

AN 1999:795694 HCAPLUS

DN 132:31283

TI **Glucagon-like peptide-1 improves .beta.-cell response to glucose in subjects with impaired glucose tolerance**

IN Goke, Burkhard; Byrne, Maria

PA BioNebraska, Inc., USA

SO PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

PI WO 9964061 A1 19991216 WO 1999-US10040 19990507

W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

PRAI US 1998-89044 19980612

AB A compn. for the treatment of impaired glucose tolerance (IGT) including a compd. which binds to a receptor for glucagon-like peptide-1, and a pharmaceutical carrier. The amt. of the compd. present is an effective amt. to improve pancreatic .beta.-cell sensitivity to blood glucose levels in a human with IGT. Also, a method for improving the pattern of insulin secretory responses in a human with IGT by administering to the human a compn. comprising a compd. which binds to a receptor for glucagon-like peptide-1 and a pharmaceutical carrier.

IT 50-99-7, D-Glucose, biological studies

RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

(glucagon-like peptide-1 or a compd. that binds to the GLP-1 receptor improves .beta.-cell response to glucose in subjects with impaired glucose tolerance)

IT 89750-14-1, Glucagon-like peptide

I 89750-14-1D, Glucagon-like

peptide I, variants

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(glucagon-like peptide-1 or a compd. that binds to the GLP-1 receptor improves .beta.-cell response to glucose in subjects with impaired glucose tolerance)

L43 ANSWER 2 OF 21 HCAPLUS COPYRIGHT 2000 ACS

AN 1998:719697 HCAPLUS

DN 129:310971

TI **Glucagon-like peptide 1 (GLP-1). A potent gut hormone with a possible therapeutic perspective**

AU Nauck, M. A.

CS Department Medicine, Knappschafts-Krankenhaus, Ruhr-University, Bochum, D-44892, Germany

SO Acta Diabetol. (1998), 35(3), 117-129

CODEN: ACDAEZ; ISSN: 0940-5429

PB Springer-Verlag

DT Journal; General Review

LA English

AB A review with 166 refs. **Glucagon-like peptide 1 (GLP-1)** is a physiol. incretin hormone from the lower gastrointestinal tract, partially explaining the augmented insulin response after oral compared to i.v. **glucose** administration in normal humans. **GLP-1** also lowers glucagon concns., slows gastric emptying, stimulates (pro)insulin biosynthesis, and reduces food intake upon intracerebroventricular administration in animals. Therefore, **GLP-1** offers some interesting perspective for the treatment of type 2, and perhaps also for type 1 diabetic patients. **GLP-1 glucose**-dependently stimulates insulin secretion in type-2 diabetic patients and exogenous administration of **GLP-1** ([7-37] or [7-36 amide]) in doses elevating plasma concns. to approx. 3-4 times physiol. postprandial levels fully normalizes fasting hyperglycemia and reduces postprandial glycemic increments. Due to rapid proteolytic cleavage, which results in an inactive or even antagonistic fragment, **GLP-1** [9-36 amide], and to rapid elimination, the half-life of **GLP-1** is too short to maintain therapeutic plasma levels for sufficient period by s.c. injections of the natural peptide hormone. Current research aims to characterize **GLP-1** analogs with more suitable pharmacokinetic properties than the original peptide. Given the large amt. of **GLP-1** present in L cells, it also appears worthwhile to search for more agents that could mobilize this endogenous pool of **GLP-1**.

IT **89750-14-1, Glucagon-like peptide**

I

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BIOL (Biological study); OCCU (Occurrence); PROC (Process)

(**glucagon-like peptide 1** is a potent gut hormone with a possible therapeutic perspective)

L43 ANSWER 3 OF 21 HCAPLUS COPYRIGHT 2000 ACS
AN 1998:515987 HCAPLUS.

DN 129:211923

TI Relation between gastric emptying of **glucose** and plasma concentrations of **glucagon-like peptide-1**

1

AU Wishart, Judith M.; Horowitz, Michael; Morris, Howard A.; Jones, Karen L.; Nauck, Michael A.

CS Department of Medicine, Royal Adelaide Hospital, Adelaide, 5000, Australia

SO Peptides (N. Y.) (1998), 19(6), 1049-1053

CODEN: PPTDD5; ISSN: 0196-9781

PB Elsevier Science Inc.

DT Journal

LA English

AB **Glucagon-like peptide-1** (

GLP-1) may play a role in regulating gastric emptying.

The aim of this study was to det. the relationship between gastric emptying of **glucose** and plasma concns. of **GLP-1**.

1. Gastric emptying of 75 g of **glucose** dissolved in 350 mL of water was measured by the use of scintigraphy in 12 normal volunteers. Venous blood samples for measurement of **GLP-1**

were obtained immediately before and for 180 min after ingestion of **glucose**. Plasma **GLP-1** rose rapidly from

a baseline of 8.5 pM to 14.3 pM at 10 min, with a peak of 19.2 pM at 30 min after the **glucose** drink. The rate of gastric emptying was

inversely related to the early rise in **GLP-1**, e.g., the 50% emptying time was related to the change in **GLP-1** from baseline at 10 min ($r = 0.57$). The authors conclude that there is an

inverse relationship between gastric emptying of **glucose** and plasma **GLP-1**. This observation is consistent with the

concept that **GLP-1** is a determinant of, rather than

dtd. by, the rate of gastric emptying.

IT **50-99-7, D-Glucose, biological studies**
89750-14-1, Glucagon-related peptide

I

RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (relation between gastric emptying of **glucose** and plasma
 concns. of **glucagon-like peptide-1** in humans)

L43 ANSWER 4 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1998:277998 HCAPLUS
 DN 128:290457
 TI Overnight **GLP-1** normalizes fasting but not daytime
 plasma **glucose** levels in NIDDM patients
 AU Willms, B.; Idowu, K.; Holst, J. J.; Creutzfeldt, W.; Nauck, Michael
A.
 CS Fachklinik Diabetes Stoffwechselkrankheiten, Bad Lauterberg, Germany
 SO Exp. Clin. Endocrinol. Diabetes (1998), 106(2), 103-107
 CODEN: ECEDFQ; ISSN: 0947-7349
 PB Johann Ambrosius Barth
 DT Journal
 LA English
 AB **Glucagon-like peptide 1** (7-36
 amide)**glucagon-like peptide 1**
 (7-36 amide) (**GLP-1**) normalizes fasting blood plasma
glucose in NIDDM patients. The effect was studied of overnight
 i.v. **GLP-1** on the following 24 h-**glucose**
 profiles. Ten NIDDM patients (7 female, 3 male; age 62 yr., BMI
 (Body-Mass-Index) 29.6 kg/m², duration 10 yr., HbA1c 10.9% (normal
 4.0-6.1%), treated with glibenclamide and/or metformin) were studied on 2
 occasions in random order: either **GLP-1** (Saxon
 Biochems., Hannover, FRG, 1 pmol/ kg .cntdot.min) or placebo (0.9% NaCl
 with 1% human serum albumin, Behringwerke, Marburg, FRG) were infused i.v.
 from 22.00 to 7.00 (9 h) and plasma **glucose** profiles were
 obtained during the **GLP-1** infusion and the following
 24 h. **GLP-1** (plasma concn. 110 pmol/L) raised plasma
 C-peptide concns., suppressed glucagon, and lowered plasma **glucose**
 to 5.5 and 6.3 mmol/L at 3.00 and 7.00 a.m. (vs. 10.3 and 11.3 mmol/L,
 resp., with placebo). Thereafter, starting 1 h after breakfast, no
 differences in plasma **glucose**, insulin, C-peptide, or glucagon
 profiles were found between expts. with **GLP-1** and
 placebo. Plasma **glucose** concns. over the whole 24 h period were
 reduced by 18% by **GLP-1** administered overnight. In
 conclusion, (1) overnight **GLP-1** normalizes fasting
 plasma **glucose**, but (2) has no sustained effect on meal-induced
glucose, insulin or glucagon concns. once its administration was
 stopped. (3) Normalization of fasting plasma **glucose** alone does
 not improve daytime metabolic control in NIDDM patients on oral agents.

L43 ANSWER 5 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1997:752513 HCAPLUS
 DN 128:44063
 TI **Glucagon-like peptide 1** inhibition
 of gastric emptying outweighs its insulinotropic effects in healthy humans
 AU Nauck, Michael A.; Niedereichholz, Ulrich; Ettler, Rainer;
 Holst, Jens Juul; Orskov, Cathrine; Ritzel, Robert; Schmiegel, Wolff H.
 CS Department of Medicine, Ruhr-University, Knappschafts-Krankenhaus, Bochum,
 044892, Germany
 SO Am. J. Physiol. (1997), 273(5, Pt. 1), E981-E988
 CODEN: AJPHAP; ISSN: 0002-9513
 PB American Physiological Society
 DT Journal
 LA English
 AB **Glucagon-like peptide 1** (**GLP-1**) has been shown to inhibit gastric emptying of
 liq. meals in type 2 diabetic patients. It was the aim of the present
 study to compare the action of physiol. and pharmacol. doses of i.v.
GLP-1- (7-36) amide and **GLP-1**- (7-37)
 on gastric emptying in normal volunteers. Nine healthy subjects

participated (26 yr; body mass index 22.9 kg/M2; Hb A1C 5.0%) in five expts. on sep. occasions after an overnight fast. A nasogastric tube was positioned for the detn. of gastric vol. by use of a dye-diln. technique (phenol red). GLP-1-(7-36) amide (0.4, 0.8, or 1.2 pmol/kg/min), GLP-1-(7-37) (1.2 pmol/kg/min), or placebo was infused i.v. from -30 to 240 min. A liq. meal (50 g sucrose, 8% amino acids, 440 mL, 327 kcal) was administered at 0 min. Glucose, insulin, and C-peptide were measured over 240 min. Gastric emptying was dose dependently slowed by GLP-1-(7-36) amide. Effects of GLP-1-(7-37) at 1.2 pmol/kg/min were virtually identical. GLP-1 dose dependently stimulated fasting insulin secretion (-30 to 0 min) and slightly reduced glucose concns. After the meal (0-240 min), integrated incremental glucose and insulin responses were reduced (dose dependently) rather than enhanced. In conclusion, (1) GLP-1-(7-36) amide or -(7-37) inhibits gastric emptying also in normal subjects, (2) physiol. doses (0.4 pmol/kg/min) still have a significant effect, (3) despite the known insulinotropic actions of GLP-1-(7-36) amide and -(7-37), the net effect of administering GLP-1 with a meal is no change or a redn. in meal-related insulin responses. These findings suggest a primarily inhibitory function for GLP-1 (ileal brake mechanisms).

IT 89750-14-1, Glucagon-related peptide

I

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(glucagon-like peptide 1

inhibition of gastric emptying outweighs insulinotropic effects in healthy humans)

L43 ANSWER 6 OF 21 HCPLUS COPYRIGHT 2000 ACS

AN 1997:727076 HCPLUS

DN 127:342096

TI A liquid mixed meal or exogenous glucagon-like peptide 1 (GLP-1) do not alter

plasma leptin concentrations in healthy volunteers

AU Drewes, C.; Nauck, M. A.; Horn, R.; Holst, J.; Schmiegel, W.; Brabant, G.

CS Knappschafts-Krankenhaus, Univ. Bochum, Bochum, D-44892, Germany

SO Acta Diabetol. (1997), 34(3), 230-234

CODEN: ACDAEZ; ISSN: 0940-5429

PB Springer-Verlag

DT Journal

LA English

AB The role of glucagon-like peptide 1

[7-36 amide] (GLP-1) and the obese gene product (leptin) was investigated in the central regulation of feeding. Blood plasma leptin concns. (31 pmol/L) did not change within 240 min after ingestion of a liq. test meal nor in response to the i.v. infusion of exogenous GLP-1 leading to plasma levels of 25 and 36 (basal 6) pmol/L. Glucose and insulin increased after meal from 4.7 to 6.0 at 15 min and from 28 to 325 pmol/L at 45 min, resp. Plasma leptin levels showed no short-term changes after feeding a liq. mixed meal and did not appear to be directly influenced by physiol. and pharmacol. elevations in plasma GLP-1.

IT 89750-14-1, Glucagon-related peptide

I

RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

(no effect of GLP-1 on blood leptin)

L43 ANSWER 7 OF 21 HCPLUS COPYRIGHT 2000 ACS

AN 1997:687481 HCPLUS

DN 127:303498

TI **Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus**
 AU Nauck, Michael A.; Holst, J. J.; Willms, B.
 CS Med. Klin., Knappschaftskrankenhaus Bochum, Bochum, D-44892, Germany
 SO Horm. Metab. Res. (1997), 29(9), 411-416
 CODEN: HMMRA2; ISSN: 0018-5043
 PB Thieme
 DT Journal
 LA English
 AB Studies examg. small groups of type 2-(NIDDM) diabetic patients have shown the potential of **glucagon-like peptide 1 (GLP-1)** to normalize fasting hyperglycemia. Patient characteristics detg. the size of the effect have not been reported. Therefore, the results of four studies were analyzed. Exogenous GLP-1 was administered i.v. or s.c. in 37 type 2-diabetic patients, age 60 yr; BMI 28.2 kg/m²; HbA1c 10.6 ; diabetes duration 10 yr, treatment with sulfonylureas, n =33, metformin, n =11, acarbose, n = 3. Results were analyzed using repeated measures anal. of variance and multiple regression anal. Exogenous GLP-1 lowered fasting plasma **glucose** within 4-5 h from 12.8 to 5.3 mmol/L (placebo: 12.8 to 10.0). Only fasting glycemia and the route (i.v. vs. s.c.), but not gender, age, BMI, HbA1c, diabetes duration, treatment with sulfonylureas, metformin, or acarbose, were significant predictors of the plasma **glucose** concns. reached after the administration of GLP-1 (variation: 3.4-8.5 mmol/L). In conclusion, GLP-1 is able to normalize plasma **glucose** in all type 2-diabetic patients studied. This anal. underlines the great therapeutic potential of GLP-1.

IT **89750-14-1, Glucagon-related peptide I**

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus)

L43 ANSWER 8 OF 21 HCPLUS COPYRIGHT 2000 ACS
 AN 1997:578682 HCPLUS
 DN 127:229715
 TI **Glucagonlike peptide 1**
 AU Nauck, Michael A.
 CS Medizinische Universitätsklinik, Knappschafts-Krankenhaus Bochum (Langendreer), Bochum, D 44892, Germany
 SO Curr. Opin. Endocrinol. Diabetes (1997), 4(4), 291-299
 CODEN: CENDES; ISSN: 1068-3097
 PB Rapid Science Publishers
 DT Journal; General Review
 LA English
 AB A review, with 123 refs. **Glucagonlike peptide 1** is a gut hormone with multiple functions. In addn. to (**glucose**-dependently) stimulating insulin and inhibiting glucagon secretion, it decelerates gastric emptying and enhances (pro)insulin biosynthesis. In addn. to these well-established actions, recent studies suggest an important role in the central regulation of food and water intake and possibly as a minor stimulus to TSH secretion. Further effects on "peripheral" tissues involved in the regulation of carbohydrate metab. (liver, muscle, and adipose tissue) are debated but probably make only minor contributions on the level of the whole organism. The well-preserved activity of **glucagonlike peptide 1** in type 2 diabetes has led to the suggestion that this hormone or its analogs may be used as new therapeutic agents to reduce or even normalize hyperglycemia in patients with non-insulin dependent diabetes. Redns. in glucagon plasma levels and motility effects are also obsd. in patients with type 1 diabetes, leading to a significant redn. in fasting and postprandial glycemia. A clin. useful prepn. of **glucagonlike peptide 1**, however, has yet to be developed.

IT 89750-14-1, Glucagon-related peptide

I

RL: BAC (Biological activity or effector, except adverse); BIOL
 (Biological study)
 (Glucagonlike peptide 1)

L43 ANSWER 9 OF 21 HCAPLUS COPYRIGHT 2000 ACS

AN 1997:540016 HCAPLUS

DN 127:215285

TI Glucacon-like peptide 1 (GLP-1) as a new therapeutic approach for type 2-diabetes

AU Nauck, Michael A.; Holst, J. J.; Willms, B.; Schmiegel, W.

CS Dep. Medicine, Knappschafts-Krankenhaus, Bochum, D-44892, Germany

SO Exp. Clin. Endocrinol. Diabetes (1997), 105(4), 187-195

CODEN: ECEDFQ; ISSN: 0947-7349

PB Barth

DT Journal; General Review

LA English

AB A review with many refs. is given on **glucagon-like peptide 1 (GLP-1)** as a new therapeutic approach for type 2-diabetes. GLP-1 is a physiol. incretin hormone in normal humans explaining in part the augmented insulin response after oral vs. i.v. **glucose** administration. In addn., GLP-1 also lowers glucagon concns., slows gastric emptying, stimulates (pro)insulin biosynthesis, reduces food intake upon intracerebroventricular administration in animals, and may enhance insulin sensitivity. Therefore, GLP-1 opposes the type 2-diabetic phenotype characterized by disturbed **glucose**-induced insulin secretory capacity, hyperglucagonemia, moderate insulin deficiency, accelerated gastric emptying, overeating (obesity), and insulin resistance. The other incretin hormone, gastric inhibitory polypeptide (GIP), has lost almost all its activity in type 2-diabetic patients. In contrast, GLP-1 **glucose**-dependently stimulates insulin secretion in diet- and sulfonylurea-treated type 2-diabetic patients and also in patients under insulin therapy long after sulfonylurea 2ndary failure. Exogenous administration of GLP-1 ([7-37] or [7-36 amide]) in doses elevating plasma concns. to approx. 3-4 fold physiol. postprandial levels fully normalizes fasting hyperglycemia in type 2-diabetic patients. The half life of GLP-1 is too short to maintain therapeutic blood plasma levels for sufficient periods by s.c. injections. Current research activities aim at finding GLP-1 analogs with more suitable pharmacokinetic properties than the original peptide. Another approach could be the augmentation of endogenous release of GLP-1, which is abundant in L cells of the lower small intestine and the colon. Interference with sucrose digestion using .alpha.-glucosidase inhibition moves nutrients into distal parts of the gastrointestinal tract and, thereby, prolongs and augments GLP-1 release. Enprostil, a prostaglandin E2 analog, fully suppresses GIP responses, while only marginally affecting insulin secretion and **glucose** tolerance after oral **glucose**, suggesting compensatory hypersecretion of addnl. insulinotropic peptides, possibly including GLP-1. Given the large amt. of GLP-1 present in L cells, it appears worthwhile to look for more agents that could "mobilize" this endogenous pool of the "antidiabetogenic" gut hormone GLP-1.

L43 ANSWER 10 OF 21 HCAPLUS COPYRIGHT 2000 ACS

AN 1997:509760 HCAPLUS

DN 127:203648

TI The pathogenesis of NIDDM involves a defective expression of the GIP receptor

AU Holst, J. J.; Gromada, J.; Nauck, M. A.

CS Dep. Medical Physiology, University Copenhagen, Copenhagen, DK-2200, Den.

SO Diabetologia (1997), 40(8), 984-986

CODEN: DBTGAJ; ISSN: 0012-186X

PB Springer
 DT Journal; General Review
 LA English
 AB A review and discussion with 34 refs., describing decreased incretin effect in non-insulin-dependent diabetes mellitus (NIDDM) patients, full efficacy of **glucagon-like peptide-1** (GLP-1) and lack of effect of Glc-dependent insulinotropic polypeptide (GIP) on insulin secretion, and absence of incretin effect (small loads of Glc) at normal GIP secretion in diabetic .beta.-cells. The apparent polygenicity of NIDDM is hypothesized to be caused by genetically defective expression of the GIP receptor.

IT **89750-14-1, Glucagon-related peptide**
I
 RL: BOC (Biological occurrence); BIOL (Biological study); OCCU (Occurrence)
 (the pathogenesis of NIDDM involves a defective expression of the GIP receptor)

L43 ANSWER 11 OF 21 HCPLUS COPYRIGHT 2000 ACS
 AN 1997:103399 HCPLUS
 DN 126:181413
 TI On the effects of **glucagon-like peptide-1** on blood **glucose** regulation in normal and diabetic subjects
 AU Holst, Jens Juul; Toft-Nielsen, Maj-Brit; Oerskov, Cathrine; Nauck, Michael; Willms, Behrend
 CS Department of Medical Physiology, Panum Institute, University of Copenhagen, Copenhagen, DK-2200, Den.
 SO Ann. N. Y. Acad. Sci. (1996), 805(VIP, PACAP, and Related Peptides), 729-736
 CODEN: ANYAA9; ISSN: 0077-8923
 PB New York Academy of Sciences
 DT Journal; General Review
 LA English
 AB A review, with 54 refs.
 IT **89750-14-1, Glucagon-related peptide**
I
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (**glucagon-like peptide-1** effect
 on blood **glucose** regulation in normal and diabetic humans)

L43 ANSWER 12 OF 21 HCPLUS COPYRIGHT 2000 ACS
 AN 1996:745819 HCPLUS
 DN 126:140060
 TI Effects of subcutaneous **glucagon-like peptide-1** (GLP-1 [7-36 amide]) in patients with NIDDM
 AU Nauck, M. A.; Wollschlaeger, D.; Werner, J.; Holst, J. J.; Oerskov, C.; Creutzfeldt, W.; Willms, B.
 CS Knappschafts-Krankenhaus, Ruhr-Univ., Bochum, D-44892, Germany
 SO Diabetologia (1996), 39(12), 1546-1553
 CODEN: DBTGAJ; ISSN: 0012-186X
 PB Springer
 DT Journal
 LA English
 AB The effects of s.c. administration of **glucagon-like peptide 1** were investigated in non-insulin-dependent diabetic patients. **Glucose**(glucose oxidase), insulin, C-peptide, GLP-1, and glucagon were measured. Results were similar compared with i.v. infusion in normalizing elevated fasting plasma **glucose** concns. when repeated doses are administered.
 IT **89750-14-1, Glucagon-related peptide**
I
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(s.c. glucagon-like peptide 1
effect in patients with NIDDM)

L43 ANSWER 13 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1996:657992 HCAPLUS
 DN 125:293228
 TI Potential of GLP-1 in diabetes management
 AU Holst, J. J.; Nauck, M. A.; Deacon, C. F.; oerskov, C.
 CS Panum Instituttet, University Copenhagen, Copenhagen, 2200, Den.
 SO Handb. Exp. Pharmacol. (1996), 123(Glucagon III), 311-326
 CODEN: HEPHD2; ISSN: 0171-2004
 DT Journal; General Review
 LA English
 AB A review, with 86 refs., of the insulinotropic activity of GLP-1 which discusses: actions of GLP-1 on blood glucose in humans; gastrointestinal effects of GLP-1 in humans; GLP-1 and diabetes; and GLP-1 metab. in normal and diabetic subjects.
 IT 89750-14-1, Glucagon-related peptide I
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (GLP-1 potential in diabetes management in humans)

L43 ANSWER 14 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1996:247447 HCAPLUS
 DN 124:333607
 TI Release of glucagon-like peptide 1 (GLP-1[7-36 amide]), gastric inhibitory polypeptide (GIP), and insulin in response to oral glucose after upper and lower intestinal resections
 AU Nauck, Michael A.; Siemsgluess, J.; Oerskov, C.; Holst, J. J.
 CS Dep. Med., Ruhr-Univ., Bochum, D-44892, Germany
 SO Z. Gastroenterol. (1996), 34(3), 159-66
 CODEN: ZGASAX; ISSN: 0044-2771
 DT Journal
 LA English
 AB The influence of small intestinal resections or colonectomy on changes in glucagon-like peptide 1 (GLP) release were investigated after oral glucose application in inactive Crohn's disease (no surgery), after primarily jejunal or ileal small intestinal resections, and after 6 colonectomy. Oral glucose tolerance tests (75 g) were performed in the fasting state. GLP, insulin, C-peptide, gastric inhibitory peptide (GIP), and glucagon were measured over 240 min. An early (peak: 15-30 min) GLP response was obsd. in all subjects. After colonectomy, higher insulin, C-peptide, and GIP responses were found. Inactive Crohn's disease and resections of the small intestine as well as proctocolectomy did not change GLP response. This may indicate release of GLP after oral glucose from the GLP producing L-cells in the upper gut rather than from the ileum, colon, and rectum. Insulin hypersecretion after colonectomy combined with a normal oral glucose tolerance possibly indicates a reduced insulin secretion.
 IT 50-99-7, D-Glucose, biological studies
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (release of glucagon-like peptide 1 (GLP-1[7-36 amide]), gastric inhibitory polypeptide, and insulin in response to oral glucose after upper and lower intestinal resections)

L43 ANSWER 15 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1996:48902 HCAPLUS
 DN 124:107246
 TI Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in

AU type 2 (noninsulin-dependent) diabetic patients
 Willms, Berend; Werner, Jens; Holst, Jens Juul; Oerskov, Cathrine;
 Creutzfeldt, Werner; **Nauck, Michael A.**
 CS Fachklinik Diabetes und Stoffwechselkrankheiten, Bad Lauterberg, Germany
 SO J. Clin. Endocrinol. Metab. (1996), 81(1), 327-32
 CODEN: JCCEMAZ; ISSN: 0021-972X
 DT Journal
 LA English
 AB The aim of the study was to investigate whether inhibition of gastric emptying of meals plays a role in the mechanism of the blood glucose-lowering action of glucagon-like peptide-1-(7-36) amide [GLP-1-(7-36) amide] in type 2 diabetes. Eight poorly controlled type 2 diabetic patients (age, 58 .+- . 6 yr; body mass index, 30.0 .+- . 5.2 kg/m²; Hb A1c, 10.5 .+- . 1.2%) were studied in the fasting state (plasma glucose, 11.1 .+- . 1.1 mmol/L). A liq. meal of 400 mL contg. 8% amino acids and 50 g sucrose (327 kcal) was administered at time zero by a nasogastric tube. Gastric vol. was detd. by a dye diln. technique using phenol red. In randomized order, GLP-1-(7-36) amide (1.2 pmol/kg.cntdot.min; Saxon Biochems.) or placebo (0.9% NaCl with 1% human serum albumin) was infused between -30 and 240 min. In the control expt., gastric emptying was completed within 120 min, and plasma glucose, insulin, C-peptide, GLP-1-(7-36) amide, and glucagon concns. transiently increased. With exogenous GLP-1-(7-36) amide (plasma level, .apprx.70 pmol/L), gastric vol. remained const. over the period it was measured (120 min; P < 0.0001 vs. placebo), and plasma glucose fell to normal fasting values (5.4 .+- . 0.7 nmol/L) within 3-4 h, whereas insulin was stimulated in most, but not all, patients, and glucagon remained at the basal level or was slightly suppressed. In conclusion, GLP-1-(7-36) amide inhibits gastric emptying in type 2 diabetic patients. Together with the stimulation of insulin and the inhibition of glucagon secretion, this effect probably contributes to the blood glucose-lowering action of GLP-1-(7-36) amide in type 2-diabetic patients when studied after meal ingestion. At the degree obsd., inhibition of gastric emptying, however, must be overcome by tachyphylaxis, redn. in dose, or pharmacol. interventions so as not to interfere with the therapeutic use of GLP-1-(7-36) amide in type 2 diabetic patients.

L43 ANSWER 16 OF 21 HCPLUS COPYRIGHT 2000 ACS
 AN 1995:952161 HCPLUS
 DN 124:1186
 TI **Glucagon-like peptide 1 (7-36)**
 amide) secretion in response to luminal sucrose from the upper and lower gut: A study using .alpha.-glucosidase inhibition (acarbose)
 AU Qualmann, C.; **Nauck, M. A.**; Holst, J. J.; Orskov, C.;
 Creutzfeldt, W.
 CS Dept. Medicine, Georg-August University, Goettingen, Germany
 SO Scand. J. Gastroenterol. (1995), 30(9), 892-6
 CODEN: SJGRA4; ISSN: 0036-5521
 DT Journal
 LA English
 AB After nutrient ingestion there is an early response of glucagon-like peptide 1 (GLP-1) immunoreactivity, although GLP-1 is mainly produced in endocrine cells from the lower gut (ileum and colon/rectum), suggesting that indirect stimulation is important after the ingestion of carbohydrates that are predominantly absorbed from the upper intestine. To enable contact of sucrose with lower gut mucosa, sucrose was administered by mouth with and without the simultaneous ingestion of 100 mg of the .alpha.-glucosidase inhibitor acarbose to six normal healthy volunteers. There was an early increase in GLP-1 15 min after sucrose ingestion. With acarbose, sucrose reached the colon approx. 120 min after ingestion, as indicated by an increase in breath hydrogen exhalation, and GLP-1 release was prolonged. The sucrose-related increases in glucose, insulin, C-peptide,

and gastric inhibitory polypeptide (GIP) and the suppression of glucagon were only marginally affected by acarbose administration. Thus, GLP-1 release appears to be influenced by indirect mechanisms (early response after sucrose) and by direct luminal contact with lower gut mucosal endocrine cells (late response with acarbose).

L43 ANSWER 17 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1995:660255 HCAPLUS
 DN 123:103130
 TI Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships
 AU Ritzel, R.; Oerskov, C.; Holst, J.J.; Nauck, M.A.
 CS Department of Medicine, Ruhr-University, Bochum, D-44892, Germany
 SO Diabetologia (1995), 38(6), 720-5
 CODEN: DBTG AJ; ISSN: 0012-186X
 DT Journal
 LA English
 AB I.v. infusions of **glucagon-like peptide 1 (GLP-1)** [7-36 amide] are **glucose**-dependently insulinotropic and glucagonostatic and normalize plasma **glucose** concns. in non-insulin-dependent diabetic patients. It was the aim of this study to investigate whether s.c. GLP-1 [7-36 amide] also has an influence on insulin and glucagon secretion, and which doses are required for significant effects. Therefore, eight healthy volunteers (24 .+- . 2 yr, body mass index [BMI] 21.9 .+- . 2.3 kg/m²) were studied in the fasting state on five occasions in randomized order. Placebo (0.9% NaCl with 1 % human serum albumin) or GLP-1 [7-36 amide] in doses of 0.15, 0.5, 1.5 or 4.5 nmol/kg body wt. (vol. 1 mL or, at the highest dose, 2 mL) was administered s.c. An i.v. **glucose** bolus (0.33 g/kg body wt.) was injected 30 min later. Blood was drawn for the measurement of **glucose**, insulin, C-peptide, GLP-1 [7-36 amide], and glucagon using specific RIAs. There were dose-related increments in GLP-1 [7-36 amide] concns. ($p < 0.0001$). However, basal values were reached again after 90-120 min. Before **glucose** administration, insulin ($p < 0.0001$) and C-peptide ($p < 0.0004$) increased, whereas glucagon ($p = 0.0018$) and **glucose** ($p < 0.0001$) decreased in a dose-dependent manner. After **glucose** stimulation, integrated increments in insulin ($p = 0.0007$) and C-peptide ($p = 0.02$) were augmented and KG-values increased ($p < 0.0001$) in a dose-related fashion. The extent of reactive hypoglycemia was related to the GLP-1 [7-36 amide] dose. With the highest GLP-1 [7-36 amide] dose, at the time of peak plasma concns., most volunteers felt unwell, and nausea and vomiting were obsd. in four subjects. In conclusion, s.c. GLP-1 [7-36 amide] is also able to stimulate insulin and inhibit glucagon secretion, thereby altering **glucose** assimilation. However, with unmodified GLP-1 [7-36 amide], the duration of action is short, and with high doses side effects are common.

IT 89750-14-1, **Glucagon-related peptide**
I
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 ((GLP-1) [7-36 amide]; pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after s.c. injection in healthy volunteers.
 Dose-response-relationships)
 IT 50-99-7, D **Glucose**, biological studies
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after s.c. injection in healthy volunteers. Dose-response-relationships)

AN 1995:627109 HCAPLUS
 DN 123:26026
 TI Insulinotropic actions of intravenous **glucagon-like peptide-1 (GLP-1)** [7-36 amide] in the fasting state in healthy subjects
 AU Qualmann, C.; **Nauck, M. A.**; Holst, J. J.; Oerskov, C.; Creutzfeldt, W.
 CS Department of Medicine, Georg-August-University, Goettingen, Germany
 SO Acta Diabetol. (1995), 32(1), 13-16
 CODEN: ACDAEZ; ISSN: 0940-5429
 DT Journal
 LA English
 AB **GLP-1** (7-36 amide) stimulates insulin and suppresses glucagon secretion in normal subjects and may, in pharmacol. doses, normalize hyperglycemia in type 2 diabetic patients. It is not known whether such pharmacol. doses can actually lower blood **glucose** to hypoglycemic levels. Therefore, in seven normal fasting subjects, **GLP-1** (7-36 amide) was infused i.v. at 0.3, 0.9 and 2.7 pmol/kg per min for 30 min each. The plasma concn. of **GLP-1** (7-36 amide) increased dose-dependently, but insulin secretion (insulin, C-peptide) was stimulated only marginally. Glucagon was slightly suppressed, and plasma **glucose** was reduced, but not into the hypoglycemic range. In conclusion, when plasma **glucose** concns. are in the normal fasting range, **GLP-1** (7-36 amide) is not able to stimulate insulin secretion to a degree that causes hypoglycemia. This should limit the risk of hypoglycemic responses when **GLP-1** (7-36 amide) is administered in pharmacol. doses to reduce hyperglycemia in type 2 diabetic patients.
 IT 50-99-7, D-Glucose, biological studies
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (**glucagon-like peptide-1** effect
 on plasma **glucose** in humans)

L43 ANSWER 19 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1995:582099 HCAPLUS
 DN 122:306962
 TI Physiological augmentation of amino acid-induced insulin secretion by GIP and **GLP-I** but not by CCK-8
 AU Fieseler, Pia; Bridenbaugh, Stephanie; Nustede, Rainer; Martell, Joachim; Orskov, Cathrine; Holst, Jens J.; **Nauck, Michael A.**
 CS Georg-August Univ., Goettingen, D-37075, Germany
 SO Am. J. Physiol. (1995), 268(5, Pt. 1), E949-E955
 CODEN: AJPHAP; ISSN: 0002-9513
 DT Journal
 LA English
 AB It was the aim of this study to test insulinotropic actions of cholecystokinin octapeptide (CCK-8), gastric inhibitory polypeptide (GIP), and **glucagon-like peptide I** (**GLP-I**)-(7-36) amide at basal **glucose** but physiol. elevated amino acid concns. Therefore, in nine fasting healthy volunteers, an amino acid mixt. was infused i.v. (12.6 g/h over 120 min). On sep. occasions, from 30 to 120 min, placebo (0.9% NaCl-1% human serum albumin), synthetic sulfated CCK-8 (0.5 pmol.cntdot.kg-1.cntdot.min-1), human GIP (1 pmol.cntdot.kg-1.cntdot.min-1), or **GLP-I**-(7-36) amide (0.3 pmol.cntdot.kg-1.cntdot.min-1) was infused i.v. to mimic physiol. increments after a meal. The amino acid infusion lead to a small increment in plasma **glucose** from 4.8 to 5.0 mmol/l and significantly elevated insulin and C-peptide concns. GIP and **GLP-I**-(7-36) amide further stimulated insulin (1.8-fold, and 0.004, resp.) and C-peptide (1.3-fold, and 0.013, resp.), with a subsequent slight redn. in plasma **glucose**. Insulin and C-peptide then decreased again in parallel. CCK-8 was without effect on insulin and C-peptide levels. In conclusion, GIP and **GLP-I**-(7-36) amide are not only able to interact with elevated plasma **glucose** but are insulinotropic also with physiol. raised amino acid concns. Such an interaction could play a role after the ingestion of mixed meals.

Cholecystokinin, is not a physiol. incretin also under these conditions.

L43 ANSWER 20 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1993:420852 HCAPLUS
 DN 119:20852
 TI Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and **glucagon-like peptide-1-(7-36)** amide infused at near-physiological insulinotropic hormone and **glucose** concentrations
 AU Nauck, Michael A.; Bartels, Eckart; Oerskov, Catherine; Ebert, Reinhold; Creutzfeldt, Werner
 CS Dep. Med., Georg August Univ., Goettingen, Germany
 SO J. Clin. Endocrinol. Metab. (1993), 76(4), 912-17
 CODEN: JCCEMAZ; ISSN: 0021-972X
 DT Journal
 LA English
 AB Gastric inhibitory polypeptide (GIP) and **glucagon-like peptide-1-(7-36)** amide (**GLP-1**) are **glucose**-dependent insulinotropic gut hormones that may explain the greater insulin secretory response with oral compared to i.v. **glucose** (incretin effect). To study their individual and combined contributions, in 8 healthy volunteers, on sep. occasions, synthetic human GIP (1 pmol/kg/min) and/or **GLP-1** (0.3 pmol/kg.min) or placebo were infused i.v. (-30 to 120 min), while at 0 min, a **glucose** infusion isoglycemic to the profile after an oral **glucose** load of 50 g/400 mL was started. After the administration of 50 g oral **glucose**, immunoreactive GIP rose several-fold to 337 pmol/L, while there was only a transient (10-30 min) and moderate increment in immunoreactive **GLP-1** (from basal, 25-30, to 41 pmol/L). Isoglycemic i.v. **glucose** infusions led to smaller B-cell responses (estd. incretin effect, 41%). With single infusions of GIP or **GLP-1** (circulating concns., 464 and 54 pmol/L, resp.), B-cell responses were augmented compared to i.v. **glucose** alone and were no longer different from those after oral **glucose**. The combination of GIP and **GLP-1** led to B-cell responses that were higher than those with either hormone alone (additive mode of cooperation). Plasma GIP concns. were similar after endogenous secretion (oral **glucose**) and i.v. infusion, while exogenously administered **GLP-1** led to plasma levels that were maintained at an elevated level for a longer period during exogenous infusion than after stimulation by oral **glucose**. When in 7 volunteers, a lower dose (0.15 pmol/kg.min) of **GLP-1** was infused during isoglycemic **glucose** infusion expts. only for the duration of elevated plasma levels in the oral **glucose** challenges (0-30 min), a transient, increment in insulin and C-peptide concns. was obsd., which was equiv. to 26% of the estd. incretin effect. Circulating GIP seems to make a major contribution to the incretin effect after oral **glucose**, and **GLP-1** appears to mediate a smaller proportion. GIP and **GLP-1** can interact in an additive manner in normal man.
 IT 50-99-7, D-**Glucose**, biological studies
 RL: BIOL (Biological study)
 (insulin secretion response to, in human, gastric inhibitory polypeptide and **glucagon-like peptide 1** effect on)

L43 ANSWER 21 OF 21 HCAPLUS COPYRIGHT 2000 ACS
 AN 1993:16644 HCAPLUS
 DN 118:16644
 TI Lack of effect of synthetic human gastric inhibitory polypeptide and **glucagon-like peptide 1** [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects
 AU Nauck, Michael A.; Bartels, Eckart; Oerskov, Cathrine; Ebert, Reinhold; Creutzfeldt, Werner
 CS Dep. Med., Georg-August-Univ., Goettingen, Germany

SO Digestion (1992), 52(3-4), 214-21
 CODEN: DIGEBW; ISSN: 0012-2823
 DT Journal
 LA English
 AB Gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 [7-36 amide] (GLP-1) are glucose-dependent insulinotropic gut hormones. Under exptl. conditions, both have been shown to reduce stimulated gastric acid secretion. To study their individual and combined effects on pentagastrin-stimulated (0.1 .mu.g/kg/h from -90 to 120 min) gastric vol. and acid and chloride outputs, on sep. occasions, synthetic human GIP (1 pmol/kg/min) and/or GLP-1 [7-36 amide] (0.3 pmol/kg/min) or placebo (0.9% NaCl with 1% albumin) were infused i.v. (from -30 to 120 min) into 9 healthy volunteers. At 0 min, a glucose infusion was started that mimicked the glycemic profile after an oral glucose load of 50 g/400 mL and allowed for the glucose-dependent insulinotropic action of GIP and GLP-1 [7-36 amide]. Pentagastrin stimulated acid output significantly, but neither GIP nor GLP-1 [7-36 amide] either alone or in combination, reduced pentagastrin-stimulated gastric acid secretion. The circulating concns. of GIP and GLP-1 [7-36 amide] obtained at steady state during exogenous administration of synthetic peptides were similar to or higher than those reached after oral glucose (endogenous secretion). In conclusion, (penta)gastrin-stimulated gastric acid secretion is not inhibited by physiol. circulating concns. of GIP or GLP-1 [7-36 amide]. Therefore, the insulinotropic action of these intestinal hormones is physiol. more important than their possible role as enterogastrone.

=> fil biosis

FILE 'BIOSIS' ENTERED AT 13:32:40 ON 10 APR 2000
 COPYRIGHT (C) 2000 BIOSIS(R)

FILE COVERS 1969 TO DATE.
 CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
 FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 5 April 2000 (20000405/ED)

The BIOSIS file has been reloaded. Enter HELP RLOAD and HELP REINDEXING for details.

=> d his 144-

(FILE 'REGISTRY' ENTERED AT 13:10:59 ON 10 APR 2000)

FILE 'HCAPLUS' ENTERED AT 13:11:43 ON 10 APR 2000

FILE 'BIOSIS' ENTERED AT 13:12:16 ON 10 APR 2000
 E NAUCK M/AU
 L44 151 S E3,E4,E10-E12
 E WAGNER F/AU
 L45 262 S E3,E33,E36,E38
 L46 217396 S L9,L11,L13 OR GLUCOSE
 L47 1908 S L20
 L48 1433 S L30
 L49 1336 S L46 AND L47,L48
 L50 12 S L49 AND PARENTER?
 L51 3 S L50 NOT AB/FA
 L52 2050 S L47 OR GASTRIC INHIBITORY () (PEPTIDE OR POLYPEPTIDE OR POLY
 L53 1191 S L22 OR (GLUCAGON OR GLUCACON) () (LIKE OR RELATED) () (PEPTIDE OR
 L54 1351 S L46 AND L52,L53

L55 12 S L54 AND PARENTER?
 L56 3 S L55 NOT AB/FA
 L57 0 S L55 AND COMPOSITION
 L58 15 S L54 AND COMPOSITION
 L59 1 S L58 AND (7()36)/TI
 L60 468 S L54 AND 132?/CC
 L61 398 S L60 AND PY<=1995
 L62 100 S L61 AND 125?/CC
 L63 8 S L61 AND COMPOS?
 L64 20 S L61 AND 7()(34 OR 35 OR 36 OR 37)
 L65 2 S L64 AND INTRADUODEN?
 L66 90 S L44,L45 AND L46
 L67 41 S L66 AND L54
 L68 23 S L67 AND PY<=1995
 L69 26 S L59,L65,L68
 L70 8 S L69 AND 00520/CC
 L71 8 S L69 AND (CONFERENC? OR CONGRESS? OR POSTER? OR SYMPOS? OR MEE
 L72 9 S L70,L71,L59,L65

FILE 'BIOSIS' ENTERED AT 13:32:40 ON 10 APR 2000

=> d all tot 172

L72 ANSWER 1 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1997:427863 BIOSIS
 DN PREV199799727066
 TI Plasma glucagon-like peptide-1 (7-36) amide (GLP-1) response in healthy volunteers to liquid phase, solid phase and meals of differing lipid composition.
 AU Brynes, Audrey E.; Frost, Gary S.; Edwards, C. Mark B.; Ghatei, Mohammad A.; Bloom, Stephen R.
 CS Dep. Nutrition and Dietics, Hammersmith Hosp., London W12 0HS UK
 SO Proceedings of the Nutrition Society, (1997) Vol. 56, No. 2, pp. 224A.
 Meeting Info.: Joint Meeting of the Clinical Nutrition and Metabolism Group of the Nutrition Society and the British Association for Parenteral and Enteral Nutrition Blackpool, England, UK December 3-5, 1996
 ISSN: 0029-6651.
 DT Conference; Abstract
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Metabolism - Proteins, Peptides and Amino Acids *13012
 Nutrition - General Studies, Nutritional Status and Methods *13202
 Nutrition - General Dietary Studies *13214
 Nutrition - Lipids *13222
 Digestive System - Physiology and Biochemistry *14004
 Endocrine System - Pancreas *17008
 BC Hominidae *86215
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Metabolism; Nutrition
 IT Chemicals & Biochemicals
 GLUCAGON; INSULIN; GLUCOSE
 IT Miscellaneous Descriptors
 DIGESTIVE SYSTEM; ENDOCRINE SYSTEM; GLUCAGON-LIKE PEPTIDE-1; GLUCOSE; INSULIN; LIPID; LIQUID MEAL; MEAL LIPID COMPOSITION; NUTRITION; PLASMA; SOLID MEAL
 ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 human (Hominidae)

celsa - 09 / 011940

ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates

RN 9007-92-5 (GLUCAGON)
 9004-10-8 (INSULIN)
50-99-7 (GLUCOSE)

L72 ANSWER 2 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1995:424763 BIOSIS
 DN PREV199598439063
 TI **Glucagon-like peptide 1 (7-36)**
 amide) lowers blood glucose also in type-1-diabetic patients.
 AU Willms, B. (1); Kleine, Nicola; Creutzfeldt, W.; Orskov, C.; Holst, J.;
 Nauck, M.
 CS (1) Bad Lauterberg im Harz, Goettingen Germany
 SO Diabetologia, (1995) Vol. 38, No. SUPPL. 1, pp. A40.
 Meeting Info.: 31st Annual Meeting of the European Association for
 the Study of Diabetes Stockholm, Sweden September 12-16, 1995
 ISSN: 0012-186X.

DT Conference
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of
 Conferences, Congresses, Review Annuals 00520
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Biochemical Studies - Carbohydrates *10068
 Metabolism - Carbohydrates *13004
 Metabolism - Metabolic Disorders *13020
 Endocrine System - Pancreas *17008
 BC Hominidae *86215
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Endocrine System (Chemical
 Coordination and Homeostasis); Metabolism
 IT Chemicals & Biochemicals
 GLUCAGON; AMIDE; GLUCOSE
 IT Miscellaneous Descriptors
 MEETING ABSTRACT

ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 Hominidae (Hominidae)

ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates

RN 9007-92-5 (GLUCAGON)
 17655-31-1 (AMIDE)
50-99-7 (GLUCOSE)

L72 ANSWER 3 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1995:218176 BIOSIS
 DN PREV199598232476
 TI **Glucagon-like peptide-1 and**
 glucose-dependent insulin-releasing polypeptide plasma levels in
 response to nutrients.
 AU Herrmann, Christine; Goeke, Ruediger; Richter, Gerd; Fehmann, Hans-C.;
 Arnold, Rudolf; Goeke, Burkhard (1)
 CS (1) Clin. Res. Unit. Gastrointestinal Endocrinol., Dep. Intern. Med.,
 Philipps Univ. Marburg, Baldingerstrasse, D-35033 Marburg Germany
 SO Digestion, (1995) Vol. 56, No. 2, pp. 117-126.
 ISSN: 0012-2823.

DT Article
 LA English
 AB The nutrient-dependent glucagon-like peptide
 -1 (7-36) amide (GLP-1 release was studied
 in comparison to the glucose-dependent insulin-releasing
 polypeptide (GIP) response in 10 healthy volunteers each
 undergoing various protocols. Plasma samples were saved up to 120 min
 after challenges by oral, intravenous or intraduodenal
 administration of nutrients. Basal plasma-GLP-1 concentrations ranged

between 0.4 and 1.4 pM, maximal postprandial GLP-1 levels peaked between 10 and 12 pM. Intravenous **glucose** (25 g i.v.) did not change basal GLP-1 levels. Oral administration of **glucose** (50 g) induced a biphasic GLP-1 release peaking at 30-60 min and a biphasic **GIP** release peaking at 5 and 45 min. This increase paralleled the secretion of insulin. Oral galactose (100 g) and amino acids (25 g) also induced a rapid plasma GLP-1 response. After fat (67 g corn oil) a strong and long-lasting (gt 120 min) increase of GLP-1 plasma levels occurred. When a mixed liquid meal was given (6 g soybean oil, 5 g casein, 13 g **glucose**) immunoreactive (IR)-GLP-1 rapidly increased and peaked after 5 min with declining levels after 30 min. In response to an **intraduodenal** infusion of a small **glucose** load (5.34 g within 120 min) a rapid, short-lasting GLP-1 response occurred whereas plasma **GIP** and insulin levels remained unaltered. Luminal perfusion of an isolated vascularly perfused rat ileum with a polydiet induced a rapid rise of portally released IR-GLP-1 which was followed by a sustained release. **Glucose** evoked sodium-dependently a sharp increase of IR-GLP-1 levels followed by a plateau release. The intraluminal infusion of a mixture of amino acids or fat was without any effect on IR-GLP-1. We hypothesize that in contrast to **GIP** the GLP-1 release from L cells is triggered by nervous reflexes, by putative humoral factor(s) being released from the upper small intestine in addition to nutrient stimuli acting at the luminal surface of the gut.

CC Cytology and Cytochemistry - Human *02508
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
Nutrition - General Studies, Nutritional Status and Methods
***13202**
 Digestive System - Physiology and Biochemistry *14004
 Endocrine System - Pancreas *17008
 Endocrine System - Neuroendocrinology *17020
 Nervous System - Physiology and Biochemistry *20504
 BC Hominidae *86215
 IT Major Concepts
 Cell Biology; Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Nervous System (Neural Coordination); Nutrition
 IT Chemicals & Biochemicals
 GLUCAGON; GLUCOSE; INSULIN
 IT Miscellaneous Descriptors
 GASTRIC INHIBITORY PEPTIDE; L-CELL
 ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 human (Hominidae)
 ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates
 RN 9007-92-5 (GLUCAGON)
50-99-7 (GLUCOSE)
 9004-10-8 (INSULIN)
 L72 ANSWER 4 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1995:93920 BIOSIS
 DN PREV199598108220
 TI **GIP and GLP-1(7-36)amide secretion in response to intraduodenal nutrient infusions in pigs.**
 AU Knapper, J. M. E. (1); Morgan, L. M. (1); Fletcher, J. M.; Marks, V. (1)
 CS (1) Nutritional Metabolism Research Group, Sch. Biol. Sci., Univ. Surrey, Guildford GU2 5XH UK
 SO **Proceedings of the Nutrition Society**, (1994) Vol. 53, No. 3, pp. 228A.
 Meeting Info.: **Scientific Meeting of the Nutrition Society**
 Southampton, England, UK August 2-5, 1994
 ISSN: 0029-6651.
 DT Conference
 LA English
 CC **General Biology - Symposia, Transactions and Proceedings of**

Conferences, Congresses, Review Annuals 00520

Biochemical Methods - Proteins, Peptides and Amino Acids *10054
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Lipids 10066
 Biochemical Studies - Carbohydrates 10068
 Biophysics - Molecular Properties and Macromolecules *10506
 Movement *12100
 Metabolism - Carbohydrates *13004
 Metabolism - Proteins, Peptides and Amino Acids *13012
Nutrition - General Studies, Nutritional Status and Methods *13202
Nutrition - General Dietary Studies *13214
Nutrition - Carbohydrates *13220
Nutrition - Lipids *13222
Nutrition - Proteins, Peptides and Amino Acids *13224
 Digestive System - General; Methods *14001
 Digestive System - Physiology and Biochemistry *14004
 Endocrine System - General *17002
 Endocrine System - Pancreas *17008
 Routes of Immunization, Infection and Therapy *22100

BC Suidae *85740

IT Major Concepts
 Biochemistry and Molecular Biophysics; Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Metabolism; Methods and Techniques; Nutrition; Physiology

IT Chemicals & Biochemicals
GLUCOSE; GLUCAGON

IT Miscellaneous Descriptors
 CARBOHYDRATE; FAT; GLUCAGON-LIKE PEPTIDE
 1 ACTIVE TRUNCATED FORM; GLUCOSE-DEPENDENT
 INSULINOTROPIC POLYPEPTIDE; GUT HORMONE SECRETION;
 MEETING ABSTRACT; POSTPRANDIAL METABOLISM

ORGN Super Taxa
 Suidae: Artiodactyla, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 Suidae (Suidae)

ORGN Organism Superterms
 animals; artiodactyls; chordates; mammals; nonhuman vertebrates; nonhuman mammals; vertebrates

RN 50-99-7 (GLUCOSE)
 9007-92-5 (GLUCAGON)

L72 ANSWER 5 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
AN 1994:462728 BIOSIS
DN PREV199497475728
TI Release of GLP-1 (7-36 amide) after oral glucose in relation to glucose tolerance and sex.
AU Nauck, M. (1); Erpenstein, A.; Holst, J. J.; Orskov, C.; Von Boberg, C.; Wirtz, G.; Tillil, H.; Koebberling, J.; Creutzfeldt, W.
CS (1) Bochum Germany
SO Diabetologia, (1994) Vol. 37, No. SUPPL. 1, pp. A118.
Meeting Info.: 30th Annual Meeting of the European Association for the Study of Diabetes Duesseldorf, Germany September 27-October 1, 1994
ISSN: 0012-186X.
DT Conference
LA English
CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Genetics and Cytogenetics - Sex Differences *03510
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Carbohydrates 10068
 Pathology, General and Miscellaneous - Diagnostic *12504
 Metabolism - Carbohydrates *13004
 Metabolism - Proteins, Peptides and Amino Acids *13012
 Metabolism - Metabolic Disorders *13020

Digestive System - Physiology and Biochemistry *14004
 Endocrine System - Pancreas *17008
 Pharmacology - Clinical Pharmacology *22005
 Pharmacology - Endocrine System *22016

BC Hominidae *86215

IT Major Concepts
 Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Genetics; Metabolism; Pathology; Pharmacology

IT Chemicals & Biochemicals
 AMIDE; GLUCOSE; GLUCAGON

IT Miscellaneous Descriptors
 DIABETES; DIAGNOSTIC-DRUG; GLUCAGON-LIKE PEPTIDE I; GLUCOSE; MEETING ABSTRACT; MEETING POSTER

ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 human (Hominidae)

ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates

RN 17655-31-1 (AMIDE)
 50-99-7 (GLUCOSE)
 9007-92-5 (GLUCAGON)

L72 ANSWER 6 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1994:102263 BIOSIS
 DN PREV199497115263
 TI Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1(7-36)amide in type 2 (non-insulin-dependent) diabetic patients.
 AU Nauck, M. A. (1); Kleine, N.; Orskov, C.; Holst, J. J.; Willms, B.; Creutzfeldt, W.
 CS (1) Div. Gastroenterol. and Endocrinol., Dep. Med., Georg August Univ., D-37073 Goettingen Germany
 SO Digestion, (1993) Vol. 54, No. 6, pp. 389.
 Meeting Info.: International Symposium on Glucagon-Like Peptide-1 Copenhagen, Denmark May 17-19, 1993
 ISSN: 0012-2823.
 DT Article
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Biochemical Studies - General 10060
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Carbohydrates 10068
 Pathology, General and Miscellaneous - Therapy *12512
 Metabolism - Carbohydrates *13004
 Metabolism - Metabolic Disorders *13020
 Digestive System - Physiology and Biochemistry *14004
 Endocrine System - Pancreas *17008
 Pharmacology - Drug Metabolism; Metabolic Stimulators *22003
 Pharmacology - Clinical Pharmacology *22005

BC Hominidae *86215

IT Major Concepts
 Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Metabolism; Pathology; Pharmacology

IT Chemicals & Biochemicals
 METFORMIN; ACARBOSE; INSULIN; C PEPTIDE; GLUCAGON; GLUCOSE; INCRETIN

IT Miscellaneous Descriptors
 ACARBOSE; ANTIDIABETIC-DRUG; C PEPTIDE; GLUCAGON; GLUCOSE; HYPERGLYCEMIA; INCRETIN HORMONE; INSULIN; METABOLIC-DRUG; METFORMIN; SULFONYLUREA; THERAPY

ORGN Super Taxa

Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 human (Hominidae)
 ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates
 RN 657-24-9 (METFORMIN)
 56180-94-0 (ACARBOSE)
 9004-10-8 (INSULIN)
 59112-80-0 (C PEPTIDE)
 9007-92-5 (GLUCAGON)
50-99-7 (GLUCOSE)
 54241-84-8 (INCRETIN)

L72 ANSWER 7 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1994:1376 BIOSIS
 DN PREV199497014376
 TI Insulinotropic actions of GIP and GLP-1 (7-36 amide), but not of CCK-8 at physiologically elevated amino acid concentrations.
 AU Nauck, M. A. (1); Fieseler, P.; Orskov, C.; Holst, J. J.; Nustedt, R.; Martell, J.
 CS (1) Dep. Med., Georg-August-Univ., Goettingen Germany
 SO Diabetologia, (1993) Vol. 36, No. SUPPL. 1, pp. A48.
 Meeting Info.: 29th Annual Meeting of the European Association for the Study of Diabetes Istanbul, Turkey September 6-10, 1993
 ISSN: 0012-186X.

DT Conference
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Carbohydrates 10068
 Metabolism - Proteins, Peptides and Amino Acids *13012
 Nutrition - Proteins, Peptides and Amino Acids *13224
 Digestive System - Physiology and Biochemistry *14004
 Blood, Blood-Forming Organs and Body Fluids - Blood and Lymph Studies *15002
 Endocrine System - Pancreas *17008
 Endocrine System - Neuroendocrinology *17020
 Nervous System - Physiology and Biochemistry *20504

BC Hominidae *86215
 IT Major Concepts
 Blood and Lymphatics (Transport and Circulation); Digestive System (Ingestion and Assimilation); Endocrine System (Chemical Coordination and Homeostasis); Metabolism; Nervous System (Neural Coordination); Nutrition

IT Chemicals & Biochemicals
 AMIDE; CCK-8; CHOLECYSTOKININ-8; GLUCAGON; GLUCOSE
 IT Miscellaneous Descriptors
 CHOLECYSTOKININ-8; GLUCAGON-LIKE INSULINOTROPIC PEPTIDE;
GLUCAGON-LIKE PEPTIDE 1;
MEETING ABSTRACT; PANCREATIC GLUCAGON; PLASMA GLUCOSE
 ; PROTEIN MEAL

ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 human (Hominidae)
 ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates
 RN 17655-31-1 (AMIDE)
 25126-32-3 (CCK-8)
 25126-32-3 (CHOLECYSTOKININ-8)
 9007-92-5 (GLUCAGON)
50-99-7 (GLUCOSE)

L72 ANSWER 8 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1991:536190 BIOSIS

DN BR41:125925
 TI INSULINOTROPIC EFFECTS OF A COMBINATION OF HUMAN SYNTHETIC GIP AND GLP-1 7-36 AMIDE AT PHYSIOLOGICAL PLASMA GLUCOSE IN MAN.
 AU NAUCK M; BARTELS E; ORSKOV C; EBERT R; CREUTZFELDT W
 CS DEP. MED., GEORG-AUGUST-UNIV., GOETTINGEN, GER.
 SO 27TH ANNUAL MEETING OF THE EUROPEAN ASSOCIATION FOR THE STUDY OF DIABETES, DUBLIN, IRELAND, SEPTEMBER 10-14, 1991. DIABETOLOGIA. (1991) 34 (SUPPL 2), A14.
 CODEN: DBTGAJ. ISSN: 0012-186X.
 DT Conference
 FS BR; OLD
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Biochemical Methods - Proteins, Peptides and Amino Acids 10054
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Metabolism - Carbohydrates 13004
 Metabolism - Metabolic Disorders 13020
 Digestive System - Physiology and Biochemistry *14004
 Endocrine System - General *17002
 Endocrine System - Pancreas *17008
 Immunology and Immunochemistry - General; Methods 34502
 BC Hominidae 86215
 IT Miscellaneous Descriptors
 ABSTRACT GASTRIC INHIBITORY PEPTIDE GLUCAGON LIKE PEPTIDE DIABETES DIABETES MELLITUS RADIOIMMUNOASSAY
 RN 50-99-7 (GLUCOSE)
 17655-31-1 (AMIDE)
 96352-57-7 (GLUCAGON LIKE PEPTIDE)

 L72 ANSWER 9 OF 9 BIOSIS COPYRIGHT 2000 BIOSIS
 AN 1988:476775 BIOSIS
 DN BR35:106665
 TI INSULINOTROPIC ACTIVITY OF SYNTHETIC HUMAN GIP IN MAN.
 AU NAUCK M; STRIETZEL J; EBERT R; CREUTZFELDT W
 CS DIV. GASTROENTEROL. ENDOCRINOL., DEP. MED., UNIV. GOETTINGEN, GOETTINGEN, FRG.
 SO 24TH ANNUAL MEETING OF THE EUROPEAN ASSOCIATION FOR THE STUDY OF DIABETES, PARIS, FRANCE, SEPTEMBER 5-8, 1988. DIABETOLOGIA. (1988) 31 (7), 525A.
 CODEN: DBTGAJ. ISSN: 0012-186X.
 DT Conference
 FS BR; OLD
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Clinical Biochemistry; General Methods and Applications *10006
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Carbohydrates 10068
 Metabolism - Carbohydrates *13004
 Metabolism - Proteins, Peptides and Amino Acids *13012
 Endocrine System - Pancreas *17008
 Dental and Oral Biology - General; Methods 19001
 BC Hominidae 86215
 IT Miscellaneous Descriptors
 ABSTRACT GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE ORAL GLUCOSE
 RN 50-99-7 (GLUCOSE)

=> fil embase

FILE COVERS 1974 TO 6 Apr 2000 (20000406/ED)

EMBASE has been reloaded. Enter HELP RLOAD for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d his 173-

(FILE 'BIOSIS' ENTERED AT 13:12:16 ON 10 APR 2000)

FILE 'BIOSIS' ENTERED AT 13:32:40 ON 10 APR 2000

FILE 'EMBASE' ENTERED AT 13:32:58 ON 10 APR 2000

```
L73    168442 S L46
L74    2534 S L52 OR L53
L75    2734 S L74 OR (GLUCAGON OR GLUCACON) () LIKE () (PEPTIDE OR POLYPEPTIDE
L76    1308 S L73 AND L75
L77    16 S L76 AND ?PARENTERAL?
L78    12 S L77 AND PY<=1995
L79    2 S L78 AND (PROLONGED)/TI
          E NAUCK M/AU
L80    133 S E3,E4
          E WAGNER F/AU
L81    208 S E3,E4
L82    39 S L76 AND L80,L81
L83    19 S L82 AND PY<=1995
L84    19 S L83 NOT L77
L85    12 S L84 AND INFUS?
L86    14 S L79,L85
L87    7 S L84 NOT L86
```

FILE 'EMBASE' ENTERED AT 13:43:41 ON 10 APR 2000

=> d all tot 186

```
L86 ANSWER 1 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
AN 95159725 EMBASE
DN 1995159725
TI Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1
[7-36 amide] after subcutaneons injection in healthy volunteers.
Dose-response-relationships.
AU Ritzel R.; Orskov C.; Holst J.J.; Nauck M.A.
CS Department of Medicine, Ruhr-University Bochum, Knappschafts-Krankenhaus,
In der Schornau 23-25, D-44892 Bochum, Germany
SO Diabetologia, (1995) 38/6 (720-725).
ISSN: 0012-186X CODEN: DBTGAJ
CY Germany
DT Journal; Article
FS 003 Endocrinology
  006 Internal Medicine
  037 Drug Literature Index
LA English
SL English
AB Intravenous infusions of glucagon-like
peptide 1 (GLP-1) [7-36 amide] are glucose
-dependent insulinotropic and glucagonostatic and normalize plasma
glucose concentrations in non-insulin-dependent diabetic patients.
It was the aim of this study to investigate whether subcutaneous GLP-1
[7-36 amide] also has an influence on insulin and glucagon secretion, and
which doses are required for significant effects. Therefore, eight healthy
volunteers (24 .+- . 2 years, body mass index [BMI] 21.9 .+- . 2.3 kg/m2)
were studied in the fasting state on five occasions in randomized order.
Placebo (0.9% NaCl with 1% human serum albumin) or GLP-1 1:7-36 amide] in
```

doses of 0.15, 0.5, 1.5 or 4.5 nmol/kg body weight (volume 1 ml or, at the highest dose, 2 ml) was administered subcutaneously. An intravenous glucose bolus (0.33 g/kg body weight) was injected 30 min later. Blood was drawn for the measurement of glucose, insulin, C-peptide, GLP-1 [7-36 amide], and glucagon using specific radioimmunoassays. There were dose-related increments in GLP-1 [7-36 amide] concentrations ($p < 0.0001$). However, basal values were reached again after 90-120 min. Before glucose administration, insulin ($p < 0.0001$) and C-peptide ($p < 0.0004$) increased, whereas glucagon ($p=0.0018$) and glucose ($p < 0.0001$) decreased in a dose-dependent manner. After glucose stimulation, integrated increments in insulin ($p = 0.0007$) and C-peptide ($p = 0.02$) were augmented and $k(G)$ -values increased ($p < 0.0001$) in a dose-related fashion. The extent of reactive hypoglycaemia was related to the GLP-1 [7-36 amide] dose. With the highest GLP-1 [7-36 amide] dose, at the time of peak plasma concentrations, most volunteers felt unwell, and nausea and vomiting were observed in four subjects. In conclusion, subcutaneous GLP-1 [7-36 amide] is also able to stimulate insulin and inhibit glucagon secretion, thereby altering glucose assimilation. However, with unmodified GLP-1 [7-36 amide], the duration of action is short, and with high doses side effects are common.

CT Medical Descriptors:

- *glucagon release
- *insulin release
- adult
- article
- clinical protocol
- clinical trial
- drug administration
- drug effect
- female
- human
- human experiment
- intravenous drug administration
- male
- normal human
- priority journal
- radioimmunoassay
- subcutaneous drug administration

Drug Descriptors:

- *glucagon like peptide 1 [7-36] amide: PD, pharmacology
- *glucagon like peptide 1 [7-36] amide: DO, drug dose
- *glucagon like peptide 1 [7-36] amide: AD, drug administration
- c peptide: EC, endogenous compound
- glucagon: EC, endogenous compound
- glucose: EC, endogenous compound
- insulin: EC, endogenous compound

RN (**glucagon like peptide 1 [7-36]**
 amide) 119637-73-9; (c peptide) 59112-80-0; (glucagon) 11140-85-5,
 62340-29-8, 9007-92-5; (**glucose**) 50-99-7, 84778-64-3;
 (insulin) 9004-10-8

CO Saxon (Germany)

L86 ANSWER 2 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

AN 95159414 EMBASE

DN 1995159414

TI Physiological augmentation of amino acid-induced insulin secretion by GIP and GLP-I but not by CCK-8.

AU Fieseler P.; Bridenbaugh S.; Nustede R.; Martell J.; Orskov C.; Holst J.J.; Nauck M.A.

CS Dept. of Medicine, Knappschafts-Krankenhaus, Ruhr University Bochum, In der Schornau 23-25, 44892 Bochum, Germany

SO American Journal of Physiology - Endocrinology and Metabolism, (1995) 268/5 31-5 (E949-E955).

ISSN: 0193-1849 CODEN: AJPMD

CY United States

DT Journal; Article
 FS 002 Physiology
 003 Endocrinology
 LA English
 SL English
 AB It was the aim of this study to test insulinotropic actions of cholecystokinin octapeptide (CCK-8), **gastric inhibitory polypeptide (GIP)**, and **glucagon-like peptide I (GLP-I)-(7-36) amide** at basal **glucose** but physiologically elevated amino acid concentrations. Therefore, in nine fasting healthy volunteers, an amino acid mixture was **infused** intravenously (12.6 g/h over 120 min). On separate occasions, from 30 to 120 min, placebo (0.9% NaCl-1% human serum albumin), synthetic sulfated CCK-8 (0.5 pmol .cntdot. kg-1 .cntdot. min-1), human **GIP** (1 pmol .cntdot. kg-1 .cntdot. min-1), or GLP-I-(7-36) amide (0.3 pmol .cntdot. kg-1 .cntdot. min-1) was **infused** intravenously to mimic physiological increments after a meal. The amino acid **infusion** lead to a small increment in plasma **glucose** from 4.8 .+- .0.2 to 5.0 .+- .0.2 mmol/l and significantly elevated insulin and C-peptide concentrations. **GIP** and GLP-I- (7-36) amide further stimulated insulin (1.8-fold, P = 0.0001 and 0.004, respectively) and C-peptide (1.3-fold, P = 0.0003 and 0.013, respectively), with a subsequent slight reduction in plasma **glucose** (P < 0.0001). Insulin and C-peptide then decreased again in parallel. CCK-8 was without effect on insulin and C-peptide levels. In conclusion, **GIP** and GLP-I-(7-36) amide are not only able to interact with elevated plasma **glucose** but are insulinotropic also with physiologically raised amino acid concentrations. Such an interaction could play a role after the ingestion of mixed meals. Cholecystokinin, on the other hand, is not a physiological incretin also under these conditions.
 CT Medical Descriptors:
 *insulin release
 adult
 amino acid blood level
 article
 glucose blood level
 glucose metabolism
 hormonal regulation
 human
 human experiment
 insulin like activity
 male
 normal human
 priority journal
 Drug Descriptors:
 *cholecystokinin octapeptide
 *gastric inhibitory polypeptide
 *glucagon like peptide 1
 *insulin: EC, endogenous compound
 glucose: EC, endogenous compound
 RN (cholecystokinin octapeptide) 25126-32-3; (**gastric inhibitory polypeptide**) 59392-49-3; (**glucagon like peptide 1**) 89750-14-1; (**insulin**) 9004-10-8; (**glucose**) 50-99-7, 84778-64-3
 L86 ANSWER 3 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 95131371 EMBASE
 DN 1995131371
 TI Insulinotropic actions of intravenous **glucagon-like peptide-1 (GLP-1)** [7-36 amide] in the fasting state in healthy subjects.
 AU Qualmann C.; Nauck M.A.; Holst J.J.; Orskov C.; Creutzfeldt W.
 CS Medizinische Universitätsklinik, Ruhr-Universität Bochum,
 Knappschaftskrankenhaus, In der Schornau 23-25, D-44892 Bochum, Germany
 SO Acta Diabetologica, (1995) 32/1 (13-16).

CY ISSN: 0940-5429 CODEN: ACDAEZ
 CY Germany
 DT Journal; Article
 FS 003 Endocrinology
 006 Internal Medicine
 029 Clinical Biochemistry
 030 Pharmacology
 037 Drug Literature Index
 LA English
 SL English
 AB GLP-1 (7-36 amide) stimulates insulin and suppresses glucagon secretion in normal subjects and may, in pharmacological doses, normalize hyperglycaemia in type 2 diabetic patients. It is not known whether such pharmacological doses can actually lower blood glucose to hypoglycaemic levels. Therefore, in seven normal fasting subjects, GLP-1 (7-36 amide) was infused intravenously at 0.3, 0.9 and 2.7 pmol/kg per min for 30 min each. The plasma concentration of GLP-1 (7-36 amide) increased dose-dependently, but insulin secretion (insulin, C-peptide) was stimulated only marginally. Glucagon was slightly suppressed, and plasma glucose was reduced, but not into the hypoglycaemic range. In conclusion, when plasma glucose concentrations are in the normal fasting range, GLP-1 (7-36 amide) is not able to stimulate insulin secretion to a degree that causes hypoglycaemia. This should limit the risk of hypoglycaemic responses when GLP-1 (7-36 amide) is administered in pharmacological doses to reduce hyperglycaemia in type 2 diabetic patients.
 CT Medical Descriptors:
 *insulin release
 adult
 article
 clinical trial
 controlled study
 diet restriction
 dose response
 drug effect
 glucagon release
 glucose blood level
 human
 human experiment
 hyperglycemia
 hypoglycemia
 intravenous drug administration
 male
 non insulin dependent diabetes mellitus
 normal human
 priority journal
 Drug Descriptors:
 *glucagon like peptide 1 [7-36] amide: CT, clinical trial
 *glucagon like peptide 1 [7-36] amide: PD, pharmacology
 c peptide: EC, endogenous compound
 glucagon: EC, endogenous compound
 glucose: EC, endogenous compound
 insulin: EC, endogenous compound
 RN (glucagon like peptide 1 [7-36]
 amide) 119637-73-9; (c peptide) 59112-80-0; (glucagon) 11140-85-5,
 62340-29-8, 9007-92-5; (glucose) 50-99-7, 84778-64-3;
 (insulin) 9004-10-8
 CO Saxon (Germany)
 L86 ANSWER 4 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 93286381 EMBASE
 DN 1993286381
 TI Preserved incretin effect in type 1 diabetic patients with end-stage nephropathy treated by combined heterotopic pancreas and kidney transplantation.
 AU Nauck M.A.; Busing M.; Orskov C.; Siegel E.G.; Talartschik J.;

CS Baartz A.; Baartz T.; Hopt U.T.; Becker H.-D.; Creutzfeldt W.
 Div. of Gastroenterol./Endocrinology, Department of Medicine, Georg August
 University, Robert-Koch-Strasse 40, W-3400 Gottingen, Germany

SO Acta Diabetologica, (1993) 30/1 (39-45).
 ISSN: 0940-5429 CODEN: ACDAEZ

CY Germany

DT Journal; Article

FS 003 Endocrinology
 006 Internal Medicine
 029 Clinical Biochemistry

LA English

SL English

AB Insulin secretion is stimulated better by oral than by intravenous glucose (incretin effect). The contribution of the autonomic nervous system to the incretin effect after oral glucose in humans is unclear. We therefore examined nine type 1 diabetic (insulin-dependent) patients with end-stage nephropathy, studied after combined heterotopic pancreas and kidney transplantation, and 7 non-diabetic kidney recipients (matched for creatinine clearance and immunosuppressive medication). The release of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) immunoreactivity and B cell secretory responses (IR insulin and C-peptide) to oral (50 g) and 'isoglycaemic' intravenous glucose (identical glycaemic profile) were measured by radioimmunoassay. The difference in B cell responses between the two tests represents the contribution of the enteroinsular axis to the response after oral glucose (incretin effect). Insulin responses after the oral glucose challenge were similar in the two patient groups despite systemic venous drainage of the pancreas graft in the pancreas-kidney-transplanted group. In both groups GIP and GLP-1 increased after oral but not after intravenous glucose, and B cell secretory responses were significantly smaller (by 55.2 .+- . 7.7% and 46.5 .+- . 12.5%, respectively) with 'isoglycaemic' intravenous glucose infusions. The lack of reduction in the incretin effect in pancreas-kidney-transplanted patients, whose functioning pancreas is denervated, indicates a lesser role for the nervous system and a more important contribution of circulating incretin hormones in mediating the enteroinsular axis in man.

CT Medical Descriptors:
 *diabetic nephropathy: SU, surgery
 *insulin dependent diabetes mellitus
 *kidney transplantation
 *pancreas transplantation
 adult
 article
 clinical article
 controlled study
 female
 human
 male
 Drug Descriptors:
 *gastric inhibitory polypeptide: EC, endogenous compound
 *glucagon like peptide 1: EC, endogenous compound
 *glucose
 *insulin: EC, endogenous compound
 (gastric inhibitory polypeptide)
 59392-49-3; (glucagon like peptide
 1) 89750-14-1; (glucose) 50-99-7,
 84778-64-3; (insulin) 9004-10-8

L86 ANSWER 5 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 93218656 EMBASE
 DN 1993218656
 TI Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in Type 2 (non-insulin-dependent) diabetic patients.

AU Nauck M.A.; Kleine N.; Orskov C.; Holst J.J.; Willms B.;
 Creutzfeldt W.
 CS Medizinische Klinik, Ruhr-Universitat, Knappschafts-Krankenhaus, In der
 Schornau 23-25, D-44892 Bochum, Germany
 SO Diabetologia, (1993) 36/8 (741-744).
 ISSN: 0012-186X CODEN: DBTGAJ
 CY Germany
 DT Journal; Article
 FS 003 Endocrinology
 006 Internal Medicine
 030 Pharmacology
 037 Drug Literature Index
 LA English
 SL English
 AB **Glucagon-like peptide 1 (GLP-1)**
 (7-36 amide) is a physiological incretin hormone that is released after nutrient intake from the lower gut and stimulates insulin secretion at elevated plasma **glucose** concentrations. Type 2 (non-insulin-dependent) diabetic patients GLP-1 (7-36 amide) retains much of its insulinotropic action. However, it is not known whether the magnitude of this response is sufficient to normalize plasma **glucose** in Type 2 diabetic patients with poor metabolic control. Therefore, in 10 Type 2 diabetic patients with unsatisfactory metabolic control (HbA(1c) 11.6 .+- .1.7%) on diet and sulphonylurea therapy (in some patients supplemented by metformin or acarbose), 1.2 pmol x 1-1 x min-1 GLP-1 (7-36 amide) or placebo was **infused** intravenously in the fasting state (plasma **glucose** 13.1 .+- .0.6 mmol/l). In all patients, insulin (by 17.4 .+- .4.7 nmol x 1-1 x min; p = 0.0157) and C-peptide (by 228.0 .+- .39.1 nmol x 1-1 x min; p = 0.0019) increased significantly over basal levels, glucagon was reduced (by -1418 .+- .308 pmol x 1-1 x min) and plasma **glucose** reached normal fasting concentrations (4.9 .+- .0.3 mmol/l) within 4 h of GLP-1 (7-36 amide) administration, but not with placebo. When normal fasting plasma **glucose** concentrations were reached insulin returned towards basal levels and plasma **glucose** concentrations remained stable despite the ongoing **infusion** of GLP-1 (7-36 amide). Therefore, exogenous GLP-1 (7-36 amide) is an effective means of normalizing fasting **glucose** concentrations in poorly-controlled Type 2 diabetic patients. The **glucose**-dependence of insulinotropic actions of GLP-1 (7-36 amide) appears to be retained in such patients.
 CT Medical Descriptors:
 *caloric restriction
 *hyperglycemia: PC, prevention
 *non insulin dependent diabetes mellitus: DT, drug therapy
 adult
 article
 clinical article
 controlled study
 female
 human
 intravenous drug administration
 male
 priority journal
 Drug Descriptors:
 *acarbose: DT, drug therapy
 *c peptide: EC, endogenous compound
 *glucagon: EC, endogenous compound
 *glucagon like peptide: PD, pharmacology
 *glucose: EC, endogenous compound
 *insulin: EC, endogenous compound
 *metformin: DT, drug therapy
 *placebo
 *sulfonylurea derivative: DT, drug therapy
 RN (acarbose) 56180-94-0; (c peptide) 59112-80-0; (glucagon) 11140-85-5,
 62340-29-8, 9007-92-5; (glucagon like peptide)
) 82905-30-4; (glucose) 50-99-7, 84778-64-3; (insulin)

CO 9004-10-8; (metformin) 1115-70-4, 657-24-9
 CO Saxon (Germany)

L86 ANSWER 6 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 93110837 EMBASE
 DN 1993110837
 TI Additive insulinotropic effects of exogenous synthetic human
gastric inhibitory polypeptide and
glucagon-like peptide-1-(7-36) amide
infused at near-physiological insulinotropic hormone and
glucose concentrations.

AU Nauck M.A.; Bartels E.; Ebert R.; Creutzfeldt W.
 CS Gastroenterology/Endocrinology Div., Department of Internal Medicine,
 Georg August University, Robert Koch Strasse 40,D 3400 Gottingen, Germany
 SO Journal of Clinical Endocrinology and Metabolism, (1993) 76/4 (912-917).
 ISSN: 0021-972X CODEN: JCMAZ

CY United States
 DT Journal; Article
 FS 003 Endocrinology
 LA English
 SL English

AB **Gastric inhibitory polypeptide (GIP**
) and **glucagon-like peptide-1**
-(7-36) amide (GLP-1) are **glucose**-dependent insulinotropic gut
hormones that may explain the greater insulin secretory response with oral
compared to iv **glucose** (incretin effect). To study their
individual and combined contributions, in eight healthy volunteers, on
separate occasions, synthetic human **GIP** (1 pmol/kg .cntdot. min)
and/or GLP-1 (0.3 pmol/kg .cntdot. min) or placebo were **infused**
iv (-30 to 120 min), while at 0 min, a **glucose infusion**
'isoglycemic' to the profile after an oral **glucose** load of 50
g/400 mL was started. After the administration of 50 g oral
glucose, immunoreactive **GIP** rose several-fold to 337
.+- 43 pmol/L, while there was only a transient (10- 30 min) and moderate
increment in immunoreactive GLP-1 (from basal, 25-30, to 41 .+- 4
pmol/L). Isoglycemic iv **glucose infusions** led to
smaller B-cell responses (estimated incretin effect, 41 .+- 5%). With
single **infusions** of **GIP** or GLP-1 (circulating
concentrations, 464 .+- 73 and 54 .+- 3 pmol/L, respectively), B-cell
responses were significantly augmented compared to iv **glucose**
alone and were no longer significantly different from those after oral
glucose. The combination of **GIP** and GLP-1 led to B-cell
responses that were significantly higher than those with either hormone
alone (additive mode of cooperation). Plasma **GIP** concentrations
were similar after endogenous secretion (oral **glucose**) and iv
infusion, while exogenously administered GLP-1 led to plasma
levels that were maintained at an elevated level for a longer period
during exogenous **infusion** than after stimulation by oral
glucose. When, in seven volunteers, a lower dose (0.15 pmol/kg
.cntdot. min) of GLP-1 was **infused** during isoglycemic
glucose infusion experiments only for the duration of
elevated plasma levels in the oral **glucose** challenges (0-30
min), a significant, but transient, increment in insulin and
concentrations was observed, which was equivalent to 26 .+-.
estimated incretin effect. Therefore, in conclusion, circula'
GIP seems to make a major contribution to the incretin effec
after oral **glucose**, and GLP-1 appears to mediate a smaller
proportion. **GIP** and GLP-1 can interact in an additive manne.
normal man.

CT Medical Descriptors:
*insulin like activity
*oral glucose tolerance test
article
hormone release
human
human experiment

intravenous glucose tolerance test

male

normal human

pancreas islet beta cell

priority journal

Drug Descriptors:

*c peptide: EC, endogenous compound

gastric inhibitory polypeptide**glucagon like peptide 1 [7-36] amide**

*glucose: EC, endogenous compound

*insulin: EC, endogenous compound

RN (c peptide) 59112-80-0; (**gastric inhibitory****polypeptide**) 59392-49-3; (**glucagon**

like peptide 1 [7-36] amide) 119637-73-9; (

glucose) 50-99-7, 84778-64-3; (insulin) 9004-10-8

L86 ANSWER 7 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

AN 93040953 EMBASE

DN 1993040953

TI Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: Effects of loxiglumide, a specific cholecystokinin receptor antagonist.

AU Baum F.; Nauck M.A.; Ebert R.; Cantor P.; Hoffmann G.; Choudhury A.R.; Schmidt W.E.; Creutzfeldt W.

CS Division of Gastroenterology, Department of Medicine, Georg August University, Robert-Koch-Strasse 40, D-W-3400 Gottingen, Germany

SO Digestion, (1992) 53/3-4 (189-199).

ISSN: 0012-2823 CODEN: DIGEBW

CY Switzerland

DT Journal; Article

FS 003 Endocrinology

030 Pharmacology

037 Drug Literature Index

048 Gastroenterology

LA English

SL English

AB To estimate the contribution of postprandial cholecystokinin (CCK) responses to circulating insulin concentrations and insulin secretion, a specific CCK receptor antagonist (loxiglumide; 10 mg/kg body weight/h) or saline were infused intravenously in normal volunteers, beginning 90 min before insulin secretion was stimulated on separate occasions by the intraduodenal administrations of glucose, glucose and protein, and glucose plus protein with the admixture of pancreatin. The release of CCK (radioimmunoassay) was stimulated by the protein component of the nutrients from basal 2.4 .+- .4 to 8.0 .+- .1.2 pmol/l. CCK plasma levels were significantly higher with loxiglumide ($p<0.05$). Glucose-dependent insulinotropic polypeptide (GIP) was also released by all nutrient mixtures. Loxiglumide significantly inhibited the amount of bilirubin and pancreatic enzymes recovered from duodenal aspirates. In contrast, in none of the experiments, C-peptide increments and hence insulin secretion rates were altered by loxiglumide. With glucose and protein as intraduodenal stimulus (no pancreatin added), the plasma amino acids rose significantly less (by approximately 50% of the control experiment) and the increment in insulin (but not C-peptide) concentrations was significantly reduced by loxiglumide. This is most likely explained by a change in insulin metabolic clearance. This effect cannot be a primary action of CCK because there was no similar effect of loxiglumide with the same intraduodenal stimulus plus added pancreatin. Pancreatic enzymes reduced maldigestion secondary to loxiglumide effects on pancreatic exocrine secretion: The increment in circulating amino acid concentrations was similar with and without loxiglumide. In conclusion, CCK does not alter insulin secretion and, therefore, is not an incretin hormone in man. Blocking CCK actions on the exocrine pancreas by loxiglumide, however, can secondarily cause reductions in postprandial insulin profiles by altering insulin clearance.

These changes are possibly related to reductions in circulating amino acid concentrations.

CT Medical Descriptors:

- *insulin release
- *postprandial state
- adult
- amino acid blood level
- article
- aspiration
- cholecystokinin blood level
- controlled study
- drug blood level
- drug effect
- duodenum
- human
- human experiment
- insulin blood level
- insulin metabolism
- intravenous drug administration
- male
- normal human
- pancreas function
- priority journal
- volunteer

Drug Descriptors:

- *cholecystokinin receptor
- *cholecystokinin: EC, endogenous compound
- *cholecystokinin receptor blocking agent: CR, drug concentration
- *cholecystokinin receptor blocking agent: PD, pharmacology
- *cholecystokinin receptor blocking agent: DO, drug dose
- *insulin: EC, endogenous compound
- *loxiglumide: CR, drug concentration
- *loxiglumide: DO, drug dose
- *loxiglumide: PD, pharmacology
- amino acid: EC, endogenous compound
- bilirubin: EC, endogenous compound
- c peptide: EC, endogenous compound
- glucose**
- pancreas polypeptide: EC, endogenous compound
- pancreatin
- protein

RN (cholecystokinin) 9011-97-6, 93443-27-7; (insulin) 9004-10-8;
 (loxiglumide) 107097-80-3; (amino acid) 65072-01-7; (bilirubin)
 18422-02-1, 635-65-4; (c peptide) 59112-80-0; (**glucose**)
50-99-7, 84778-64-3; (pancreas polypeptide) 59763-91-6;
 (pancreatin) 8049-47-6; (protein) 67254-75-5

CN (1) Cr 1505

CO (1) Rotta (Italy)

L86 ANSWER 8 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

AN 93037285 EMBASE

DN 1993037285

TI Preserved incretin activity of **glucagon-like peptide 1** [7-36 amide] but not of synthetic human **gastric inhibitory polypeptide** in patients with type- 2 diabetes mellitus.

AU Nauck M.A.; Heimesaat M.M.; Orskov C.; Holst J.J.; Ebert R.; Creutzfeldt W.

CS Gastroenterology/Endocrinology Div., Department of Internal Medicine, Georg-August-Universitat, Robert-Koch-Strasse 40, D-3400 Gottingen, Germany

SO Journal of Clinical Investigation, (1993) 91/1 (301-307).

ISSN: 0021-9738 CODEN: JCINAO

CY United States

DT Journal; Article

FS 003 Endocrinology

LA English

SL English
 AB In type-2 diabetes, the overall incretin effect is reduced. The present investigation was designed to compare insulinotropic actions of exogenous incretin hormones (**gastric inhibitory peptide [GIP]** and **glucagon-like peptide** 1 [GPL-1] [7-36 amide]) in nine type-2 diabetic patients (fasting plasma **glucose** 7.8 mmol/liter; hemoglobin A(1c) 6.3+-0.6%) and in nine age- and weight-matched normal subjects. Synthetic human **GIP** (0.8 and 2.4 pmol/kg .cntdot. min over 1 h each), GLP-1 [7-36 amide] (0.4 and 1.2 pmol/kg .cntdot. min over 1 h each), and placebo were administered under hyperglycemic clamp conditions (8.75 mmol/liter) in separate experiments. Plasma **GIP** and GLP-1 [7-36 amide] concentrations (radioimmunoassay) were comparable to those after oral **glucose** with the low, and clearly supraphysiological with the high **infusion rates**. Both **GIP** and GLP-1 [7-36 amide] dose-dependently augmented insulin secretion (insulin, C-peptide) in both groups ($P < 0.05$). With **GIP**, the maximum effect in type-2 diabetic patients was significantly lower (by 54%; $P < 0.05$) than in normal subjects. With GLP-1 [7-36 amide] type-2 diabetic patients reached 71% of the increments in C-peptide of normal subjects (difference not significant). Glucagon was lowered during hyperglycemic clamps in normal subjects, but not in type-2 diabetic patients, and further by GLP-1 [7-36 amide] in both groups ($P < 0.05$), but not by **GIP**. In conclusion, in mild type-2 diabetes, GLP-1 [7-36 amide], in contrast to **GIP**, retains much of its insulinotropic activity. It also lowers glucagon concentrations.

CT Medical Descriptors:
 *non insulin dependent diabetes mellitus
 adult
 aged
 article
 clinical article
 controlled study
 female
glucose clamp technique
 human
 insulin like activity
 insulin release
intravenous glucose tolerance test
 male
oral glucose tolerance test
 priority journal
 Drug Descriptors:
 *C peptide: EC, endogenous compound
***gastric inhibitory polypeptide: EC, endogenous compound**
 *glucagon: EC, endogenous compound
***glucagon like peptide 1 [7-36] amide: EC, endogenous compound**
***glucose: EC, endogenous compound**
 *insulin: EC, endogenous compound
 hemoglobin alc: EC, endogenous compound
 RN (c peptide) 59112-80-0; (**gastric inhibitory polypeptide**) 59392-49-3; (glucagon) 11140-85-5,
 62340-29-8, 9007-92-5; (**glucagon like peptide** 1 [7-36] amide) 119637-73-9; (**glucose**) 50-99-7,
 84778-64-3; (insulin) 9004-10-8; (hemoglobin alc) 62572-11-6

L86 ANSWER 9 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 92350254 EMBASE
 DN 1992350254
 TI Lack of effect of synthetic human **gastric inhibitory polypeptide** and **glucagon-like peptide** 1 [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects.
 AU Nauck M.A.; Bartels E.; Orskov C.; Ebert R.; Creutzfeldt W.
 CS Div Gastroenterology/Endocrinology, Department of Internal Medicine,

Georg-August-University, Robert-Koch-Strasse 40, D-W-3400 Gottingen,
Germany

SO Digestion, (1992) 52/3-4 (214-221).
ISSN: 0012-2823 CODEN: DIGEBW

CY Switzerland
DT Journal; Article
FS 002 Physiology
037 Drug Literature Index
048 Gastroenterology
LA English
SL English

AB Gastric inhibitory polypeptide (GIP)
) and glucagon-like peptide 1
 [7-36 amide] (GLP-1) are glucose-dependent insulinotropic gut hormones. Under experimental conditions, both have been shown to reduce stimulated gastric acid secretion. To study their individual and combined effects on pentagastrin-stimulated (0.1 .mu.g/kg/h from - 90 to 120 min) gastric volume, acid and chloride output, on separate occasions, synthetic human GIP (1 pmol/kg/min) and/or GLP-1 [7-36 amide] (0.3 pmol/kg/min) or placebo (0.9% NaCl with 1% albumin) were infused intravenously (from - 30 to 120 min) in 9 healthy volunteers. At 0 min, a glucose infusion was started that mimicked the glycemic profile after an oral glucose load of 50 g/400 ml and allowed for the glucose-dependent insulinotropic action of GIP and GLP-1 [7-36 amide]. Pentagastrin stimulated acid output significantly, but neither GIP nor GLP-1 [7-36 amide] either alone or in combination, reduced pentagastrin-stimulated gastric acid secretion. The circulating concentrations of GIP and GLP-1 [7-36 amide] obtained at steady state during exogenous administration of synthetic peptides were similar to or higher than those reached after oral glucose (endogenous secretion). In conclusion, (penta)gastrin-stimulated gastric acid secretion is not inhibited by physiological circulating concentrations of GIP or GLP-1 [7-36 amide]. Therefore, the insulinotropic action of these intestinal hormones is physiologically more important than their possible role as enterogastrone.

CT Medical Descriptors:
 *drug effect
 *stomach acid secretion
 adult
 article
 clinical article
glucose infusion
 human
 insulin release
 intravenous drug administration
 male
 normal human
oral glucose tolerance test
 priority journal
 stomach acid
 stomach volume
 Drug Descriptors:
***gastric inhibitory polypeptide**
***glucagon like peptide 1 [7-36] amide**
***pentagastrin**
 chloride: EC, endogenous compound
 insulin: EC, endogenous compound
 RN (**gastric inhibitory polypeptide**)
59392-49-3; (glucagon like peptide
 1 [7-36] amide) 119637-73-9; (pentagastrin) 5534-95-2; (chloride)
 16887-00-6; (insulin) 9004-10-8
 CO Bissendorf (Germany)

DN 1990002403
 TI Suppression of insulin receptor binding by prolonged enteral or parenteral nutrient infusion in the rat: Role of **gastric inhibitory polypeptide**.
 AU Baer A.R.; Dupre J.
 CS Department of Physiology, University of Western Ontario, London, Ont., Canada
 SO Canadian Journal of Physiology and Pharmacology, (1989) 67/9 (1105-1109).
 ISSN: 0008-4212 CODEN: CJPAA3
 CY Canada
 DT Journal; Article
 FS 002 Physiology
 003 Endocrinology
 037 Drug Literature Index
 LA English
 SL French; English
 AB In the rat, prolonged enteral or parenteral alimentation with a high-carbohydrate diet results in hyperinsulinemia, which is substantially greater with the parenteral route. Supplementing the parenteral infusate with porcine **gastric inhibitory polypeptide (GIP)** to approximate plasma immunoreactive **GIP** levels achieved with enteral feeding further increases steady-state plasma insulin and **glucose** concentrations, suggesting insulin resistance. We examined the effects of sustained hyperinsulinemia elicited by continuous nutrient infusion on insulin binding to isolated rat adipocytes and the modification of this response by **GIP**. Compared with a baseline group, both enterally and parenterally alimented groups showed decreased insulin receptor binding affinity. However, despite substantially different steady-state plasma insulin levels, insulin binding was similar with either infusion route. Factors other than plasma insulin concentration alone therefore contribute to insulin receptor down-regulation during prolonged enteral alimentation. Supplementing the parenteral infusate with exogenous **GIP** resulted in a further reduction in insulin receptor affinity. Thus, adaptation to continuous nutrient infusion is characterized by insulin receptor down-regulation regardless of the route of nutrient delivery. An additional suppression of insulin receptor binding may in part be responsible for the insulin resistance elicited by prolonged exogenous **GIP** administration.
 CT Medical Descriptors:
 *adipocyte
 *glucose blood level
 *hyperinsulinemia
 *insulin resistance
 *parenteral nutrition
 cell culture
 rat
 controlled study
 animal experiment
 animal cell
 nonhuman
 male
 article
 priority journal
 Drug Descriptors:
 *insulin receptor
 radioisotope
 *gastric inhibitory polypeptide: PD, pharmacology
 *insulin: TO, drug toxicity
 *insulin: DO, drug dose
 RN (**gastric inhibitory polypeptide**)
 59392-49-3; (insulin) 9004-10-8

TI Insulinotropic properties of synthetic human **gastric inhibitory polypeptide** in man: Interactions with glucose, phenylalanine, and cholecystokinin-8.
 AU Nauck M.; Schmidt W.E.; Ebert R.; Strietzel J.; Cantor P.; Hoffmann G.; Creutzfeldt W.
 CS Division of Gastroenterology and Endocrinology, Department of Medicine, Georg-August-University Gottingen, D-3400 Gottingen, Germany
 SO Journal of Clinical Endocrinology and Metabolism, (1989) 69/3 (654-662). ISSN: 0021-972X CODEN: JCMAZ
 CY United States
 DT Journal
 FS 003 Endocrinology
 006 Internal Medicine
 029 Clinical Biochemistry
 048 Gastroenterology
 030 Pharmacology
 037 Drug Literature Index
 LA English
 SL English
 AB The quantitative contribution of **glucose-dependent insulinotropic polypeptide [gastric inhibitory polypeptide (GIP)]** to the incretin effect after oral **glucose** (augmentation of insulin secretion over the degree that is explained by the glycemic rise) is not known. Therefore, hyperglycemic clamp experiments (8 mmol/L, corresponding to postprandial **glucose** concentrations) were performed in healthy volunteers and synthetic human **GIP** was **infused** for 60 min at a rate (.apprx.1.3 pmol/kg.cntdot.min) that results in plasma **GIP** concentrations similar to those occurring after oral **glucose** loads of 75 g. The MCR for exogenous **GIP** was .apprx.6 mL/kg.cntdot.min; the decay after ceasing **infusion** was exponential with a t(1/2) of about 18 min, and the resulting volume of distribution was about 140 mL/kg. At euglycemic (basal) plasma **glucose** concentrations (5.0 mmol/L) similar values were found. Insulin secretion was stimulated by hyperglycemia alone, but was greatly (2.3-fold based on C-peptide) potentiated by **GIP infusions** (P < 0.001 for integrated incremental values). When integrated incremental responses over 120 min of **GIP**, immunoreactive insulin, and immunoreactive C-peptide were compared after oral **glucose** and during **GIP infusions**, no significant differences were found. Peak **glucose** concentrations after oral **glucose** (7.6 .+- .6 mmol/L) were similar to mean plasma **glucose** values during clamp experiments (8.2 .+- .1 mmol/L; P = 0.124). However, mean **glucose** concentrations after oral **glucose** were lower (6.0 .+- .3 mmol/L; P = 0.0004). Additional **infusion** of sulfated cholecystokinin-8 (25 pmol/kg.cntdot.h) or the amino acid phenylalanine (1.7 .mu.mol/kg.cntdot.min) did not further stimulate insulin secretion and had no influence on the pharmacokinetics of exogenous **GIP**. It is concluded that human synthetic **GIP** is insulinotropic in man and that this activity may well explain a substantial part of the incretin effect after oral **glucose**. There is no interaction with cholecystokinin or phenylalanine in concentrations found after mixed meals.
 CT Medical Descriptors:
 *incretin
 *insulin release
 adult
 human experiment
 human
 normal human
 male
 female
 priority journal
 Drug Descriptors:
 c peptide

*cholecystokinin octapeptide: IT, drug interaction
 *gastric inhibitory polypeptide: PD, pharmacology
 *gastric inhibitory polypeptide: IT, drug interaction
 *gastric inhibitory polypeptide: PK, pharmacokinetics
 *glucose: IT, drug interaction
 *phenylalanine: IT, drug interaction
 RN (c peptide) 59112-80-0; (cholecystokinin octapeptide) 25126-32-3; (gastric inhibitory polypeptide) 59392-49-3; (glucose) 50-99-7, 84778-64-3; (phenylalanine) 3617-44-5, 63-91-2
 CO Peninsula (United Kingdom); Braun melsungen
 L86 ANSWER 12 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 88175636 EMBASE
 DN 1988175636
 TI Lack of insulinotropic effect of endogenous and exogenous cholecystokinin in man.
 AU Reimers J.; Nauck M.; Creutzfeldt W.; Strietzel J.; Cantor P.; Hoffmann G.
 CS Division of Gastroenterology and Endocrinology, Department of Medicine, Georg August University, D-3400 Gottingen, Germany
 SO Diabetologia, (1988) 31/5 (271-280).
 ISSN: 0012-186X CODEN: DBTGAJ
 CY Germany
 DT Journal
 FS 037 Drug Literature Index
 003 Endocrinology
 006 Internal Medicine
 048 Gastroenterology
 LA English
 SL English
 AB Intraduodenal phenylalanine administration (333 mg/min over 60 min) released endogenous cholecystokinin in healthy young subjects as demonstrated radioimmunologically and by intraduodenal bilirubin and pancreatic enzyme output. Concomitantly, there was only a small increase over basal in circulating immunoreactive-insulin and immunoreactive-C-peptide concentrations. In healthy volunteers intraduodenal infusions of saline (10 ml/min), glucose (333 mg/min) or phenylalanine (333 mg/min) were performed for 60 min when plasma glucose was clamped at approximately 8 mmol/l. Phenylalanine enhanced immunoreactive-insulin and immunoreactive-C-peptide responses three-fold more than did the same amount of glucose.
 Immuno-reactive gastric inhibitory polypeptide responses were small and not different after glucose and phenylalanine administration. Immunoreactive cholecystokinin was significantly stimulated to 9.4 .+- . 1.4 pmol/l only by intraduodenal phenylalanine. Plasma phenylalanine concentrations increased into the supraphysiological range (approximately 1.5 mmol/l). Intravenous infusions of phenylalanine achieving plasma concentrations of 1.2 mmol/stimulated insulin secretion at elevated plasma glucose concentrations (approximately 8 mmol/l clamp experiments), but had no effect at basal plasma glucose concentrations. A small increase in cholecystokinin also was observed. Intravenous infusions of synthetic sulphated cholecystokinin-8 leading to plasma concentrations in the upper postprandial range (8-12 pmol/l) did not augment the immunoreactive-insulin or immunoreactive-C-peptide levels during hyperglycaemic clamp experiments, in the absence or presence of elevated plasma phenylalanine concentrations. It is concluded that the augmentation of the glucose-induced insulin release by intraduodenal administration of phenylalanine cannot be related to cholecystokinin release, but rather is explained by the combined effects of elevated glucose and phenylalanine concentrations. In man, cholecystokinin does not augment insulin secretion caused by moderate hyperglycaemia, elevations of phenylalanine concentrations, or combinations thereof.
 CT Medical Descriptors:
 *glucose blood level

*hyperglycemia
 *insulin release
 duodenum
 human
 incretin effect
 priority journal
 normal human
 clinical article
 human experiment
 intravenous drug administration
 Drug Descriptors:
 *c peptide
***gastric inhibitory polypeptide**
 *phenylalanine
 bilirubin
 pancreas enzyme
 *cholecystokinin octapeptide
 RN (c peptide) 59112-80-0; (**gastric inhibitory polypeptide**) 59392-49-3; (phenylalanine) 3617-44-5,
 63-91-2; (bilirubin) 18422-02-1, 635-65-4; (cholecystokinin octapeptide)
 25126-32-3
 CO Bachem (Switzerland)

 L86 ANSWER 13 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 86106802 EMBASE
 DN 1986106802
 TI Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes.
 AU Nauck M.; Stockmann F.; Ebert R.; Creutzfeldt W.
 CS Department of Medicine, Division of Gastroenterology and Metabolism,
 D-3400 Gottingen, Germany
 SO Diabetologia, (1986) 29/1 (46-52).
 CODEN: DBTG AJ
 CY Germany
 DT Journal
 FS 003 Endocrinology
 006 Internal Medicine
 029 Clinical Biochemistry
 LA English
 AB Integrated incremental immunoreactive insulin and connecting peptide responses to an oral **glucose** load of 50 g and an 'isoglycaemic' intravenous **glucose infusion**, respectively, were measured in 14 Type 2 (non-insulin-dependent) diabetic patients and 8 age- and weight-matched metabolically healthy control subjects. Differences between responses to oral and intravenous **glucose** administration are attributed to factors other than **glucose** itself (incretin effect). Despite higher **glucose** increases, immunoreactive insulin and connecting peptide responses after oral **glucose** were delayed in diabetic patients. Integrated responses were not significantly different between both groups. However, during 'isoglycaemic' intravenous **infusion**, insulin and connecting peptide responses were greater in diabetic patients than in control subjects as a consequence of the higher glycaemic stimulus. The contribution of incretin factors to total insulin responses was 72.8 .+- . 6.9% (100% = response to oral load) in control subjects and 36.0 .+- . 8.8% in diabetic patients (p < 0.05). The contribution to connecting peptide responses was 58.4 .+- . 7.6% in control subjects and 7.6 .+- . 14.5% (p < 0.05) in diabetic patients. Ratios of integrated insulin to connecting peptide responses suggest a reduced (hepatic) insulin extraction in control subjects after oral as compared to intravenous **glucose**. This was not the case in diabetic patients.
 Immunoreactive **gastric inhibitory polypeptide** responses were not different between control subjects and diabetic patients. A reduced or lost incretin effect in the face of normal **gastric inhibitory polypeptide** response in Type 2 diabetic patients may be explained by decreased sensitivity of the B cells towards the insulinotropic effect of **gastric inhibitory polypeptide** or to hyposecretion or reduced

effectiveness of as yet unidentified humoral or nervous gut factors with incretin activity.

CT Medical Descriptors:

- *incretin effect
- *non insulin dependent diabetes mellitus
- insulin release
- endocrine system
- priority journal
- etiology
- biological model
- human
- adult

Drug Descriptors:

***gastric inhibitory polypeptide**

(**gastric inhibitory polypeptide**)

59392-49-3

L86 ANSWER 14 OF 14 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.
 AN 86027574 EMBASE
 DN 1986027574
 TI Effects of **gastric inhibitory polypeptide** in
 the response to **prolonged parenteral** or enteral
 alimentation in rats.
 AU Baer A.R.; Dupre J.
 CS Department of Medicine, University of Western Ontario, London, Ont. N6A
 5A5, Canada
 SO Diabetes, (1985) 34/11 (1108-1112).
 CODEN: DIAEAZ
 CY United States
 DT Journal
 FS 037 Drug Literature Index
 003 Endocrinology
 048 Gastroenterology
 030 Pharmacology
 LA English
 AB To examine the effects of long-term elevation of plasma **gastric inhibitory polypeptide (GIP)**, the responses to parenteral (PA) or enteral (EA) alimentation were studied in conscious rats with duodenal and venous cannulae. A weight-maintaining liquid diet (84% as glucose, 16% as amino acids) was infused at a constant rate for 6 days by either route, and daily blood samples were taken. A subset of animals receiving PA also received porcine GIP with the infusate (PA plus GIP; plateau plasma immunoreactive GIP, IRGIP, 610 .+- . 120 pg/ml). With PA, plasma IRGIP did not change from basal levels, whereas with EA IRGIP rose to virtual plateau levels (mean 530 .+- . 110 pg/ml). In the steady state, plasma immunoreactive insulin (IRI) was significantly lower with EA (mean, 153 .+- . 5 .mu.U/ml) than with PA (mean, 226 .+- . 15 .mu.U/ml), which in turn was lower than with PA plus GIP (mean, 375 .+- . 23 .mu.U/ml, P < 0.001 by ANOVA). A similar ranking of plasma glucose levels occurred in the steady state, with means of 113 .+- . 7 (EA), 126 .+- . 3 (PA), and 184 .+- . 9 (PA plus GIP) mg/dl (P < 0.001 by ANOVA). To assess the response to transient hyperglycemia in the steady state, an intravenous glucose bolus was given to each group on the fifth day. Peak plasma IRI levels did not differ among the three groups; however, the glucose disappearance rate was significantly slower with PA plus GIP compared with either EA or PA. Assuming that porcine GIP did not stimulate glucose production, this peptide appeared to induce hyperinsulinemia with insulin resistant parenteral alimentation. The contrasting features of relatively low glucose and insulin levels during enteral alimentation associated with high levels of endogenous IRGIP in the blood suggest either (1) that the findings depend on variations of GIP or its actions in the different species, or (2) that mechanisms originating in the intestine act to preserve insulin sensitivity during absorption of nutrients from the gut under physiologic conditions.

CT Medical Descriptors:

- *alimentation
- *drug blood level
- *drug mechanism
- *drug monitoring
- *food drug interaction
- *insulin resistance
- *insulin sensitivity
- *intestine absorption
- hyperglycemia
- hyperinsulinemia
- plasma
- rat
- endocrine system
- priority journal
- intravenous drug administration
- oral drug administration
- preliminary communication
- nonhuman
- small intestine
- animal experiment

Drug Descriptors:

- *gastric inhibitory polypeptide
- *glucose
- *insulin

RN (**gastric inhibitory polypeptide**)

59392-49-3; (glucose) 50-99-7, 84778-64-3;
(insulin) 9004-10-8

=> fil medline

FILE 'MEDLINE' ENTERED AT 14:01:50 ON 10 APR 2000

FILE LAST UPDATED: 7 APR 2000 (20000407/UP). FILE COVERS 1960 TO DATE.

MEDLINE has been reloaded to reflect the annual MeSH changes made by the National Library of Medicine for 2000. Enter HELP RLOAD for details.

OLDMEDLINE, data from 1960 through 1965 from the Cumulated Index Medicus (CIM), has been added to MEDLINE. See HELP CONTENT for details.

Left, right, and simultaneous left and right truncation are available in the Basic Index. See HELP SFIELDS for details.

THIS FILE CONTAINS CAS REGISTRY NUMBERS FOR EASY AND ACCURATE SUBSTANCE IDENTIFICATION.

=> d his 188-

(FILE 'EMBASE' ENTERED AT 13:32:58 ON 10 APR 2000)

FILE 'EMBASE' ENTERED AT 13:43:41 ON 10 APR 2000

FILE 'MEDLINE' ENTERED AT 13:44:01 ON 10 APR 2000

L88	208876 S L46
L89	2502 S L75
L90	1230 S L88 AND L89
L91	880 S L90 AND PY<=1995
L92	44 S L91 AND ?PARENTERAL?
L93	23193 S (GLUCOSE (L) (AD OR PD OR TH OR PK)) / CT
L94	28 S L92 AND L93
L95	294 S ((GASTRIC INHIBITORY POLYPEPTIDE) (L) (PD OR PK OR AD OR TU)) / C
L96	5 S L95 AND L94
L97	7 S L94 AND GLUCAGON?

L98 15 S L92 AND GLUCAGON?
 L99 8 S L98 NOT L97
 L100 7689 S (GLUCAGON (L) (PD OR PK OR TU OR AD))/CT
 L101 1 S L100 AND L94
 L102 6 S L96, L101

FILE 'MEDLINE' ENTERED AT 14:01:50 ON 10 APR 2000

=> d all tot

L102 ANSWER 1 OF 6 MEDLINE
 AN 86194059 MEDLINE
 DN 86194059
 TI Effect of GIP on insulin release to intravenous glucose infusion in hyperthyroid rats.
 AU Muller M K; Hellwig J; Schafer A; Goebell H; Brown J C
 SO HORMONE AND METABOLIC RESEARCH, (1986 Mar) 18 (3) 163-6.
 Journal code: GBD. ISSN: 0018-5043.
 CY GERMANY, WEST: Germany, Federal Republic of
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198608
 AB Triiodothyronine induced hyperthyroidism caused significantly elevated basal and stimulated glucose and insulin levels in rats. The release of Gastric Inhibitory Polypeptide (GIP) following an oral glucose load was not significantly different between euthyroid and hyperthyroid rats. The insulin response, however, was significantly higher in hyperthyroid rats. Following intravenous glucose hyperthyroid rats showed a diminished insulin response when compared with euthyroid rats but intravenous infusion of glucose together with GIP caused a significantly higher insulin response in hyperthyroid rats. It is hypothesized that in hyperthyroidism there is an increased sensitivity to the insulinotropic action of GIP and that this mechanism could emphasize the importance of the enteroinsular axis in pathophysiological states.
 CT Check Tags: Animal; Male; Support, Non-U.S. Gov't
 Administration, Oral
 Blood Glucose: ME, metabolism
 Disease Models, Animal
 *Gastric Inhibitory Polypeptide: PD, pharmacology
 Glucose: AD, administration & dosage
 *Glucose: PD, pharmacology
 Hyperthyroidism: CI, chemically induced
 *Hyperthyroidism: PP, physiopathology
 Infusions, Parenteral
 Insulin: BL, blood
 *Insulin: SE, secretion
 Rats
 Rats, Inbred Strains
 Triiodothyronine
 RN 11061-68-0 (Insulin); 50-99-7 (Glucose); 59392-49-3
 (Gastric Inhibitory Polypeptide); 6893-02-3 (Triiodothyronine)
 CN 0 (Blood Glucose)
 L102 ANSWER 2 OF 6 MEDLINE
 AN 86151365 MEDLINE
 DN 86151365
 TI The priming effect of glucose on the gastric inhibitory polypeptide-induced insulin release.
 AU Jorde R; Amland P F; Burhol P G
 SO SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, (1986 Jan) 21 (1) 47-50.
 Journal code: UCS. ISSN: 0036-5521.

CY Norway
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198606
 AB Six healthy subjects were given a 15-min intravenous infusion of **gastric inhibitory polypeptide (GIP)** in a dose of 1.0 microgram X kg⁻¹ X h⁻¹ at a mean blood **glucose** level of 4.9 mmol/l after a priming infusion with **glucose**. A significant insulin release was seen during the **GIP** infusion, an effect that could not be demonstrated without the priming **glucose** infusion.
 CT Check Tags: Female; Human; Male; Support, Non-U.S. Gov't
 Adult
 Blood Glucose: AN, analysis
 Gastric Inhibitory Polypeptide: BL, blood
 *Gastric Inhibitory Polypeptide: PD, pharmacology
 Glucose: AD, administration & dosage
 *Glucose: PD, pharmacology
 Infusions, Parenteral
 Insulin: BL, blood
 *Insulin: SE, secretion
 Time Factors
 RN 11061-68-0 (Insulin); 50-99-7 (Glucose); 59392-49-3
 (Gastric Inhibitory Polypeptide)
 CN 0 (Blood Glucose)

L102 ANSWER 3 OF 6 MEDLINE
 AN 86008905 MEDLINE
 DN 86008905
 TI Effects of atropine and **gastric inhibitory polypeptide** on hepatic **glucose** uptake and insulin extraction in conscious dogs.
 AU Chap Z; Ishida T; Chou J; Lewis R; Hartley C; Entman M; Field J B
 NC AM 25253 (NIADDK)
 AM 27685 (NIADDK)
 SO JOURNAL OF CLINICAL INVESTIGATION, (1985 Sep) 76 (3) 1174-81.
 Journal code: HS7. ISSN: 0021-9738.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Abridged Index Medicus Journals; Priority Journals; Cancer Journals
 EM 198601
 AB Previous studies comparing the effects of oral, intraportal, and peripheral venous administration of **glucose** in conscious dogs demonstrated a significant increase in hepatic extraction of insulin only after oral **glucose**, but similar hepatic uptake of **glucose** after oral and intraportal **glucose**, which was greater than that after peripheral intravenous **glucose** infusion. This study evaluated the effect of atropine blockade of the parasympathetic nervous system on the increased fractional hepatic extraction of insulin and the role of **gastric inhibitory polypeptide (GIP)** on augmented hepatic uptake of oral **glucose** in conscious dogs with chronically implanted Doppler flow probes on the portal vein and hepatic artery, and catheters in the portal and hepatic veins and carotid artery. Since atropine infusion decreased absorption of **glucose**, and in order to achieve comparable portal vein levels of **glucose** and insulin, the dogs receiving atropine were given 1.9 +/- 0.1 g/kg **glucose**, compared with the control dogs who received 1.1 +/- 0.1 g/kg. The percentage of the **glucose** load that was absorbed was greater in the dogs not given atropine (80 +/- 4 vs. 44 +/- 7%), but because of the different loads, the absolute amount of **glucose** absorbed was similar in both groups (20.2 +/- 1.6 vs. 21.7 +/- 4.1 g). Although delayed by atropine, the peak portal vein **glucose** and insulin concentrations and the amounts presented to the liver were similar in both groups. However, the increased portal vein

plasma flow and fractional hepatic extraction of insulin observed after oral glucose was not observed in the dogs infused with atropine. The net hepatic glucose uptake after oral glucose was significantly less at 10, 20, and 45 min in the atropine-treated dogs, and the area under the curve over the 180-min period was 44% less. However, the latter was not statistically significant. Infusion of GIP with peripheral intravenous glucose did not increase hepatic uptake of glucose or the fractional hepatic extraction of insulin compared with peripheral intravenous glucose alone. These results indicate an important role for parasympathetic innervation in the augmented fractional hepatic extraction of insulin, and increased portal vein plasma flow after oral glucose. Although a relationship between the augmented fractional extraction of insulin and the net hepatic glucose uptake may exist, it does not necessarily indicate that the former is required for the latter. Such parasympathetic innervation may be involved in the greater removal of glucose by the liver after oral compared with peripheral glucose administration. (ABSTRACT TRUNCATED AT 400 WORDS)

CT Check Tags: Animal; Female; Male; Support, U.S. Gov't, P.H.S.

Administration, Oral

Atropine: AD, administration & dosage

*Atropine: PD, pharmacology

Blood Glucose: ME, metabolism

Dogs

Gastric Inhibitory Polypeptide: AD, administration & dosage

*Gastric Inhibitory Polypeptide: PD, pharmacology

Glucose: AD, administration & dosage

*Glucose: ME, metabolism

Hepatic Artery

Hepatic Veins

Infusions, Parenteral

*Insulin: BL, blood

*Liver: ME, metabolism

Portal Vein

RN 11061-68-0 (Insulin); 50-99-7 (Glucose); 51-55-8 (Atropine);
59392-49-3 (Gastric Inhibitory Polypeptide)

CN 0 (Blood Glucose)

L102 ANSWER 4 OF 6 MEDLINE

AN 85218446 MEDLINE

DN 85218446

TI Effect of intravenously infused porcine GIP on serum insulin in obese and lean subjects studied with the hyperglycemic clamp technique.

AU Amland P F; Jorde R; Burhol P G; Giercksky K E

SO SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, (1985 Apr) 20 (3)
309-14.

Journal code: UCS. ISSN: 0036-5521.

CY Norway

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 198509

AB To ascertain whether an altered sensitivity to gastric inhibitory polypeptide (GIP) in morbidly obese subjects can play a role in the postprandial hyperinsulinemia seen in this condition, eight obese and eight control subjects were studied with an intravenous infusion of porcine GIP. The blood glucose was maintained at 4 mmol/l above the basal level by a hyperglycemic clamp technique. Although the mean serum insulin level was higher in the obese group throughout the study, the shapes of the serum insulin curves were almost identical in the two groups after the GIP infusion. This together with the normal GIP secretion found in obese subjects question the existence of a causal relationship between an overactive entero-insular axis and the hyperinsulinemia found in these subjects.

CT Check Tags: Comparative Study; Female; Human; Male; Support, Non-U.S. Gov't

Adult

Blood Glucose: AN, analysis

Body Weight

***Gastric Inhibitory Polypeptide: AD, administration & dosage**

Gastric Inhibitory Polypeptide: BL, blood

***Gastrointestinal Hormones: AD, administration & dosage**

Glucose: AD, administration & dosage

Infusions, Parenteral

***Insulin: BL, blood**

Insulin: SE, secretion

Middle Age

***Obesity: BL, blood**

Secretory Rate: DE, drug effects

RN 11061-68-0 (Insulin); 50-99-7 (Glucose); 59392-49-3
(Gastric Inhibitory Polypeptide)

CN 0 (Blood Glucose); 0 (Gastrointestinal Hormones)

L102 ANSWER 5 OF 6 MEDLINE

AN 83288121 MEDLINE

DN 83288121

TI Preservation of incretin activity after removal of **gastric inhibitory polypeptide (GIP)** from rat gut extracts by immunoabsorption.

AU Ebert R; Unger H; Creutzfeldt W

SO DIABETOLOGIA, (1983 Jun) 24 (6) 449-54.

Journal code: E93. ISSN: 0012-186X.

CY GERMANY: Germany, Federal Republic of

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 198312

AB The action of watery rat gut extracts on **glucose**-induced insulin release in anaesthetized rats was examined before and after removal of **GIP** by immunoabsorption. Infusions of **GIP**-containing rat gut extracts nearly doubled the insulin release induced by intravenous **glucose** (1 g X kg⁻¹ X h⁻¹). Peak insulin secretion was 98 +/- 11 mU/l (mean +/- SEM) after intravenous **glucose** and increased to 178 +/- 16 mU/l following infusion of **glucose** plus gut extract (p less than 0.005). After injection of **GIP** antiserum in sufficient amounts to neutralize the **GIP** activity in the gut extract preparation, the additional insulin release due to the gut extract was reduced by only 30%. After complete removal of **GIP** from gut extracts by immuno-absorption, more than 50% of the incretin effect remained. These data suggest that the insulinotropic activity of rat gut extracts can only be partially related to **GIP**. The existence of additional insulinotropic gut factors which may also be released following oral **glucose** is postulated.

CT Check Tags: Animal; Male; Support, Non-U.S. Gov't

Antibodies: AD, administration & dosage

***Gastric Inhibitory Polypeptide: AD, administration & dosage**

Gastric Inhibitory Polypeptide: IM, immunology

***Gastrointestinal Hormones: AD, administration & dosage**

Glucose: AD, administration & dosage

Glucose: ME, metabolism

Immunosorbent Techniques

Infusions, Parenteral

***Insulin: SE, secretion**

***Intestines: ME, metabolism**

***Peptide Fragments: ME, metabolism**

Rats

Rats, Inbred Strains

Time Factors

***Tissue Extracts: AD, administration & dosage**

Tissue Extracts: AN, analysis

RN 11061-68-0 (Insulin); 119637-73-9 (glucagon-like peptide I (7-36)amide); 50-99-7 (Glucose); 59392-49-3 (Gastric

CN **Inhibitory Polypeptide)**
 CN 0 (Antibodies); 0 (Gastrointestinal Hormones); 0 (Peptide Fragments); 0 (Peptides); 0 (Tissue Extracts)

L102 ANSWER 6 OF 6 MEDLINE
 AN 77259542 MEDLINE
 DN 77259542

TI Augmented **gastric inhibitory polypeptide**
 response to intraduodenal **glucose** by exogenous gastrin and
cholecystokinin.

AU Sirinek K R; Cataland S; O'Dorisio T M; Mazzaferri E L; Crockett S E; Pace
 W G

SO SURGERY, (1977 Oct) 82 (4) 438-42.
 Journal code: VC3. ISSN: 0039-6060.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Abridged Index Medicus Journals; Priority Journals

EM 197712

CT Check Tags: Animal
 *Cholecystokinin: PD, pharmacology
 Dogs
 Duodenum
 Fasting
***Gastric Inhibitory Polypeptide: ME, metabolism**
***Gastrins: PD, pharmacology**
***Gastrointestinal Hormones: ME, metabolism**
Glucagon: PD, pharmacology
***Glucose: AD, administration & dosage**
Glucose: DU, diagnostic use
Glucose: PD, pharmacology
Infusions, Parenteral
 Pentagastrin: PD, pharmacology
 Secretin: PD, pharmacology
 Sodium Chloride: PD, pharmacology
 Stimulation, Chemical

=> fil wpids

FILE 'WPIDS' ENTERED AT 14:18:37 ON 10 APR 2000
 COPYRIGHT (C) 2000 DERWENT INFORMATION LTD

FILE LAST UPDATED: 06 APR 2000 <20000406/UP>
 >>>UPDATE WEEKS:
 MOST RECENT DERWENT WEEK 200017 <200017/DW>
 DERWENT WEEK FOR CHEMICAL CODING: 200017
 DERWENT WEEK FOR POLYMER INDEXING: 200017
 DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> D COST AND SET NOTICE DO NOT REFLECT SUBSCRIBER DISCOUNTS -
 SEE HELP COST <<<

>>> FOR UP-TO-DATE INFORMATION ABOUT ALL 'NEW CONTENT' CHANGES TO
 WPIDS, INCLUDING THE DERWENT CHEMISTRY RESOURCE (DCR),
 PLEASE VISIT [<<<](http://www.derwent.com/newcontent.html)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES,
 SEE [<<<](http://www.derwent.com/covcodes.html)

=> d his l103-

(FILE 'MEDLINE' ENTERED AT 14:01:50 ON 10 APR 2000)

FILE 'WPIDS' ENTERED AT 14:02:26 ON 10 APR 2000

E NAUCK M/AU
 L103 5 S E3,E4
 E WAGNER F/AU
 L104 139 S E3,E4
 L105 144 S L103,L104
 E GLUCOSE/DCN
 E E3+ALL/DCN
 L106 7698 S E2 OR 0038/DRN
 E GLUCOSE/DCN
 E E8+ALL/DCN
 L107 18 S E2
 E GLUCOSE/DCN
 E E9+ALL/DCN
 L108 30290 SEA "L814"/M0,M1,M2,M3,M4,M5,M6
 L109 45926 S L106-L108 OR GLUCOSE
 L110 97 S L109 AND (GLUCAGON? OR GLUCACON?)
 L111 32 S L109 AND (GLP OR GIP)
 L112 11 S L109 AND GASTRI? () INHIBIT? () (PEPTIDE OR POLYPEPTIDE OR PO
 L113 104 S L110-L112
 L114 27 S L109 AND A61K038-26/IC, ICM, ICS, ICA, ICI
 L115 110 S L113,L114
 L116 7 S L109 AND L105
 L117 1 S L116 AND PARENTER?
 L118 15 S L110-L115 AND ?PARENTERAL?
 L119 1 S L118 AND L105
 L120 2 S D03-H01T?/MC AND L110-L115
 L121 2 SEA (L110 OR L111 OR L112 OR L113 OR L114 OR L115) AND
 R023/M0,M1,M2,M3,M4,M5,M6
 L122 5 S L110-L115 AND A61K009-08/IC, ICM, ICS, ICA, ICI
 L123 19 S L118-L122
 L124 13 SEA M782/M0,M1,M2,M3,M4,M5,M6 AND L123
 L125 6 S L123 NOT L124
 L126 5 S L124 AND (NUTRITION OR TREAT?)/TI
 L127 2 S L126 NOT (TRANSDERMAL OR SHOCK OR AMYLIN)/TI

FILE 'WPIDS' ENTERED AT 14:18:37 ON 10 APR 2000

=> d all abeq tech tot

L127 ANSWER 1 OF 2 WPIDS COPYRIGHT 2000 DERWENT INFORMATION LTD
 AN 1997-146440 [14] WPIDS
 DNC C1997-046880
 TI Compsns. for **parenteral nutrition** - contg.
glucagon-like peptide 1 and/or gastric
inhibitory peptide.
 DC B04 D13
 IN NAUCK, M; NAUCK, M A; WAGNER, F W
 PA (BION-N) BIONEBRASKA INC; (NAUC-I) NAUCK M A; (NAUK-I) NAUCK M A; (NAUC-I)
 NAUCK M
 CYC 73
 PI DE 19530865 A1 19970227 (199714)* 3p A23L001-29
 WO 9707814 A1 19970306 (199716) EN 20p A61K038-26 <--
 RW: AT BE CH DE DK EA ES FI FR GB GR IE IT KE LS LU MC MW NL OA PT SD
 SE SZ UG
 W: AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU
 IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ
 PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN
 AU 9669006 A 19970319 (199728) A61K038-26 <--
 EP 851763 A1 19980708 (199831) EN A61K038-26 <--
 R: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
 CZ 9800508 A3 19990113 (199908) A61K038-26 <--
 CN 1195992 A 19981014 (199909) A61K038-26 <--
 JP 11514972 W 19991221 (200010) 22p A61K038-00
 ADT DE 19530865 A1 DE 1995-19530865 19950822; WO 9707814 A1 WO 1996-US13615
 19960822; AU 9669006 A AU 1996-69006 19960822; EP 851763 A1 EP 1996-929722

19960822, WO 1996-US13615 19960822; CZ 9800508 A3 WO 1996-US13615
 19960822, CZ 1998-508 19960822; CN 1195992 A CN 1996-196938 19960822; JP
 11514972 W WO 1996-US13615 19960822, JP 1997-510445 19960822
FDT AU 9669006 A Based on WO 9707814; EP 851763 A1 Based on WO 9707814; CZ
 9800508 A3 Based on WO 9707814; JP 11514972 W Based on WO 9707814
PRAI DE 1995-19530865 19950822
IC ICM A23L001-29; A61K038-00; **A61K038-26**
 ICS A23L001-305; **A61K009-08**; A61K009-22; A61K031-00;
 A61K031-70; A61K038-22
AB DE 19530865 A UPAB: 19970407
 Compsns. for **parenteral** nutrition contain **glucagon**
 -like peptide 1 [7-36 amide] and/or **gastric inhibitory**
peptide.
 ADVANTAGE - High-calorie nutrition can be given with reduced risk of
 hyperglycaemia and with reduced risk of hypoglycaemia compared with the
 use of insulin.
 Dwg.0/0
FS CPI
FA AB; DCN
MC CPI: B04-N02; B14-E11; **D03-H01T2**

L127 ANSWER 2 OF 2 WPIDS COPYRIGHT 2000 DERWENT INFORMATION LTD
AN 1996-010691 [01] WPIDS
DNC C1996-003346
TI Treating insulin-requiring diabetes with **glucagon**-like
 peptide or derivs. - opt. together with insulin, provides improved
 control of blood **glucose** levels.
DC B04
IN DUPRE, J
PA (AMYL-N) AMYLIN PHARM INC; (LONH-N) LONDON HEALTH ASSOC; (AMYL) AMYLIN
 PHARM INC
CYC 65
PI WO 9531214 A1 19951123 (199601)* EN 29p A61K038-26 <--
 RW: AT BE CH DE DK ES FR GB GR IE IT KE LU MC MW NL OA PT SD SE SZ UG
 W: AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE
 KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE
 SG SI SK TJ TM TT UA UG US UZ VN
 AU 9524044 A 19951205 (199620) A61K038-26 <--
 EP 762890 A1 19970319 (199716) EN A61K038-26 <--
 R: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
 JP 10500114 W 19980106 (199811) 28p A61K038-26 <--
 AU 711611 B 19991014 (200001) A61K038-26 <--
ADT WO 9531214 A1 WO 1995-CA287 19950512; AU 9524044 A AU 1995-24044 19950512;
 EP 762890 A1 EP 1995-917874 19950512, WO 1995-CA287 19950512; JP 10500114
 W JP 1995-529262 19950512, WO 1995-CA287 19950512; AU 711611 B AU
 1995-24044 19950512
FDT AU 9524044 A Based on WO 9531214; EP 762890 A1 Based on WO 9531214; JP
 10500114 W Based on WO 9531214; AU 711611 B Previous Publ. AU 9524044,
 Based on WO 9531214
PRAI GB 1994-9496 19940512
REP 2.Jnl.Ref: WO 9111457; WO 9325579
IC ICM **A61K038-26**
 ICS A61K038-28
ICI **A61K038-26**, A61K038:
AB WO 9531214 A UPAB: 19971021
 Insulin-requiring diabetes is treated by admin of (a) insulin and (b)
glucagon-like peptide 1 (7-37) (IIa), **glucagon**-like
 peptide 1 (7-36) amide (IIb), or an analogue or fragment of (IIa) or
 (IIb). Also new is the treatment of type I diabetes with these peptides
 alone without using insulin.
 USE - The method is used in human medicine for the treatment of types
 I or II diabetes. The use of (IIa)/(IIb) alone may be suitable for
 treating some cases of type I, partic. in remission phase subjects. The
 peptides may be given orally, nasally or **parenterally**.
 ADVANTAGE - The use of (IIa)/(IIb), opt. in (synergistic) combination
 with oral hypoglycaemics, is already known for treatment of non-insulin

dependent diabetes. It is now found, that these peptides improve control of glycaemia in patients requiring insulin. When administered before a meal, they delay the increase in blood glucose levels by inhibiting emptying of the stomach (insulin secretion is not affected) and thus, should be effective even in patients with no residual insulin-secreting capacity. The use of the peptides may make it possible to reduce the overall insulin dose.

Dwg.1/6

FS CPI
FA AB; GI
MC CPI: B04-J03A; B04-N04; B14-S04

=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 14:42:10 ON 10 APR 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 10 Apr 2000 VOL 132 ISS 16
FILE LAST UPDATED: 9 Apr 2000 (20000409/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in HCAPLUS on STN.

=> d his

(FILE 'HOME' ENTERED AT 14:30:45 ON 10 APR 2000)
SET COST OFF

FILE 'REGISTRY' ENTERED AT 14:31:01 ON 10 APR 2000
L1 3 S 58367-01-4 OR 921-60-8 OR 50-99-7
L2 1 S 59392-49-3
L3 1 S 89750-14-1

FILE 'HCAPLUS' ENTERED AT 14:31:44 ON 10 APR 2000
L4 106038 S L1
L5 1427 S L2 OR L3
L6 250112 S L4 OR GLUCOSE
L7 20351 S L5 OR GLUCAGON? OR GLUCACON? OR GIP OR GLP OR GASTRIC INHIBIT
L8 8020 S L6 AND L7
L9 86 S L8 AND ?PARENTERAL?
L10 81 S L2 (L) THU/RL OR L3 (L) THU/RL
L11 45 S L10 AND L8
L12 6789 S L8 AND PY<=1995
L13 42 S L8 AND PRY<=1995
L14 40 S L8 AND PRY.B<=1995
L15 50 S L8 AND AY<=1995
L16 45 S L8 AND AY.B<=1995

L17 6798 S L12-L16
 L18 4 S L17 AND L10
 L19 75 S L17 AND L9
 L20 1 S L19 AND L18
 L21 1 S 63/SC,SX AND L17 AND L9
 L22 5 S 1/SC,SX AND L17 AND L9
 L23 1 S 17/SC,SX AND L17 AND L9
 L24 50 S 18/SC,SX AND L17 AND L9
 L25 31 S NUTRI?/CW AND L17 AND L9
 L26 7 S L20-L23
 L27 52 S L24-L26 NOT (NAUCK M? OR WAGNER F?)/AU
 L28 9 S COMPOSITION AND L27
 L29 2053 S L1 (L) THU/RL OR L1 (L) FFD/RL
 L30 81 S L2 (L) FFD/RL OR L3 (L) FFD/RL OR L2 (L) THU/RL OR L3 (L) THU
 L31 2 S L29 AND L30
 L32 0 S L27 AND L29
 L33 0 S L27 AND L30
 L34 1 S L31 NOT NAUCK ?/AU

FILE 'HCAPLUS' ENTERED AT 14:42:10 ON 10 APR 2000

=> d all

L34 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2000 ACS
 AN 1999:626062 HCAPLUS
 DN 131:262604
 TI Pharmaceutical compositions for prolonged peptide release and preparation method
 IN Pellet, Marc; Bismuth, Frederic
 PA Societe de Conseils de Recherches et d'Applications Scientifiques (S.C.R.A.S, Fr.
 SO PCT Int. Appl., 23 pp.
 CODEN: PIXXD2
 DT Patent
 LA French
 IC ICM A61K038-09
 ICS A61K038-31; A61K009-14; A61K047-26
 CC 63-6 (Pharmaceuticals)
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9948517	A1	19990930	WO 1999-FR667	19990322
	W:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			
	FR 2776520	A1	19991001	FR 1998-3667	19980325
	AU 9929384	A1	19991018	AU 1999-29384	19990322
PRAI	FR 1998-3667	19980325			
	WO 1999-FR667	19990322			
AB	Novel solid or semi-solid pharmaceutical compns. comprising a sol. peptide salt capable of jellifying, having a high sp. surface area is disclosed. Said compns. can also comprise an excipient and/or water. Once injected to a patient, the compns. jellify and release the peptide salt for a long time interval not less than 15 days. Lanreotide acetate (I) with sp. surface of 0.61 m ² /g was dissolved in water at 30 g/L. The soln. was then lyophilized to obtain I with sp. surface of 5.41 m ² /g. A homogeneous soln. of 3 g I in 6.927 mL water was prep'd. for direct injection to a patient.				
ST	prolonged release pharmaceutical injection peptide; lanreotide prolonged				

IT release pharmaceutical injection
 IT Drug delivery systems
 (injections, sustained release; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Solvents
 (org.; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Surfactants
 (pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Blood-coagulation factors
 Bone morphogenetic proteins
 Carbohydrates, biological studies
 Enkephalins
 Interleukin 2
 Interleukins
 Peptides, biological studies
 Platelet-derived growth factors
 Polysaccharides, biological studies
 Tumor necrosis factors
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Alcohols, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (polyhydric; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Thymus hormones
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (thymostimulin; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Interferons
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (.alpha.; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Integrins
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (.alpha.IIb.beta.3; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Interferons
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (.beta.; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT Interferons
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (.gamma.; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT 116243-73-3, Endothelin
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (antagonists; pharmaceutical compns. for prolonged peptide release and prepn. method)
 IT 50-56-6, Oxytocin, biological studies 50-70-4, Sorbitol, biological studies 50-99-7, Glucose, biological studies 58-82-2, Bradykinin 63-42-3, Lactose 69-65-8, Mannitol 1066-17-7, Colistin 1393-25-5, Secretin 1404-26-8, Polymyxin B 1405-87-4, Bacitracin 1405-97-6, Gramicidin 1407-47-2, Angiotensin 9001-01-8, Kallikrein 9002-60-2, Acth, biological studies 9002-61-3, Human chorionic gonadotropin 9002-62-4, Prolactin, biological studies 9002-64-6, Parathyroid hormone 9002-67-9, Luteinizing hormone 9002-68-0, Follicle-stimulating hormone 9002-71-5, Thyroid stimulating hormone 9002-72-6, Growth hormone 9002-76-0, Gastrin 9002-79-3, Melanocyte stimulating hormone 9007-12-9, Calcitonin 9007-92-5, Glucagon, biological studies 9011-97-6, Cholecystokinin 9015-68-3, Asparaginase 9034-39-3, Somatotropin 9034-40-6, Lh rh 9035-54-5 9039-53-6, Urokinase 9061-61-4, Nerve growth factor 9063-57-4, Tuftsin 9066-59-5, Lysozyme hydrochloride 11000-17-2, Vasopressin 11096-26-7,

celsa - 09 / 011940

Erythropoietin 17650-98-5, Caerulein 24305-27-9, Thyrotropin releasing hormone 31362-50-2, Bombesin 33507-63-0, Substance p 37221-79-7, Vasoactive Intestinal peptide 39379-15-2, Neurotensin 51110-01-1, Somatostatin 51110-01-1D, Somatostatin, analogs and derivs. Somatostatin 51110-01-1D, Motilin 53714-56-0, Leuprorelin 57773-63-4, Triptoreline 52906-92-0, Buserelin 59392-49-3, Gastric inhibitory polypeptide 57982-77-1, Endorphin 60529-76-2, Thymopoietin 61512-21-8, Thymosin 60118-07-2, Epidermal growth factor 62683-29-8, Colony stimulating factor 63340-72-7, Thymus humoral factor 65807-02-5, Goserelin peptide 70904-56-2, Kyotorphin 74913-18-1, Dynorphin 78922-62-0, Serum thymic peptide 82785-45-3, Neuropeptide y 83150-76-9, Octreotide 83652-28-2, Calcitonin gene related peptide y 83150-76-9, Octreotide Lanreotide 127984-74-1, Lanreotide acetate 103370-86-1, Parathyroid 160296-12-8 164003-54-7, TFX-Thymomodulin 108736-35-2, RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (pharmaceutical compns. for prolonged peptide release and prepn. method)