Лабораторная работа 12

Пример моделирования простого протокола передачи данных

Алади Принц Чисом

Содержание

1	Введение 1.1 Цели и задачи	5 5
2	Выполнение лабораторной работы 2.1 Упражнение	6 13
3	Выводы	18

Список иллюстраций

2.1	Задание деклараций	7	
2.2	Начальный граф	8	
2.3	Добавление промежуточных состояний	10	
2.4	Задание деклараций	11	
2.5	Модель простого протокола передачи данных	12	
2.6	Запуск модели простого протокола передачи данных		
2.7	Пространство состояний для модели простого протокола передачи		
	данных	17	

Список таблиц

1 Введение

1.1 Цели и задачи

Цель работы

Реализовать простой протокол передачи данных в CPN Tools.

Задание

- Реализовать простой протокол передачи данных в CPN Tools.
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

2 Выполнение лабораторной работы

Основные состояния: источник (Send), получатель (Receiver). Действия (переходы): отправить пакет (Send Packet), отправить подтверждение (Send ACK). Промежуточное состояние: следующий посылаемый пакет (NextSend). Зададим декларации модели (рис. 2.1).

Рис. 2.1: Задание деклараций

Состояние Send имеет тип INTxDATA и следующую начальную маркировку (в соответствии с передаваемой фразой).

Стоповый байт ("########") определяет, что сообщение закончилось. Состояние Receiver имеет тип DATA и начальное значение 1"" (т.е. пустая строка, поскольку состояние собирает данные и номер пакета его не интересует). Состояние NextSend имеет тип INT и начальное значение 1'1. Поскольку пакеты представляют собой кортеж, состоящий из номера пакета и строки, то выражение у двусторонней дуги будет иметь значение (n,p). Кроме того, необходимо

взаимодействовать с состоянием, которое будет сообщать номер следующего посылаемого пакета данных. Поэтому переход Send Packet соединяем с состоянием NextSend двумя дугами с выражениями n (рис. 12.1). Также необходимо получать информацию с подтверждениями о получении данных. От перехода Send Packet к состоянию NextSend дуга с выражением n, обратно – k.

Построим начальный граф(рис. 2.2):

Рис. 2.2: Начальный граф

Зададим промежуточные состояния (A, B с типом INTxDATA, C, D с типом INTxDATA) для переходов (рис. 12.2): передать пакет Transmit Packet (передаём (n,p)), передать подтверждение Transmit ACK (передаём целое число k). Добавляем переход получения пакета (Receive Packet). От состояния Receiver идёт дуга к переходу Receive Packet со значением той строки (str), которая находится в состоянии Receiver. Обратно: проверяем, что номер пакета новый и строка не равна стоп-биту. Если это так, то строку добавляем к полученным данным.

Кроме того, необходимо знать, каким будет номер следующего пакета. Для этого добавляем состояние NextRec с типом INT и начальным значением 1'1 (один пакет), связываем его дугами с переходом Receive Packet. Причём к переходу идёт дуга с выражением k, от перехода — if n=k then k+1 else k. Связываем состояния В и С с переходом Receive Packet. От состояния В к переходу Receive Packet — выражение (n,p), от перехода Receive Packet к состоянию С — выражение if n=k then k+1 else k. От перехода Receive Packet к состоянию Receiver: if n=k andalso p<>stop then str^p else str. (если n=k и мы не получили стоп-байт, то направляем в состояние строку и к ней прикрепляем р, в противном случае посылаем только строку). На переходах Transmit Packet и Transmit ACK зададим потерю пакетов. Для этого на интервале от 0 до 10 зададим пороговое значение и, если передаваемое значение превысит этот порог, то считаем, что произошла потеря пакета, если нет, то передаём пакет дальше. Для этого задаём вспомогательные состояния SP и SA с типом Теп0 и начальным значением 1'8, соединяем с соответствующими переходами(рис. 2.3):

Рис. 2.3: Добавление промежуточных состояний

В декларациях задаём(рис. 2.4):

Рис. 2.4: Задание деклараций

Таким образом, получим модель простого протокола передачи данных (рис. 12.3). Пакет последовательно проходит: состояние Send, переход Send Packet, состояние A, с некоторой вероятностью переход Transmit Packet, состояние B, попадает на переход Receive Packet, где проверяется номер пакета и если нет совпадения, то пакет направляется в состояние Received, а номер пакета передаётся последовательно в состояние C, с некоторой вероятностью в переход Transmit ACK, далее в состояние D, переход Receive ACK, состояние NextSend (увеличивая на 1 номер следующего пакета), переход Send Packet. Так продолжается до тех пор, пока не будут переданы все части сообщения. Последней будет передана стоп-последовательность(рис. 2.5):

Рис. 2.5: Модель простого протокола передачи данных

Рис. 2.6: Запуск модели простого протокола передачи данных

2.1 Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний мо-

жет быть вычислено и проанализировано, необходимо сформировать код про-

странства состояний. Этот код создается, когда используется инструмент Войти

в пространство состояний. Вход в пространство состояний занимает некоторое

время. Затем, если ожидается, что пространство состояний будет небольшим,

можно просто применить инструмент Вычислить пространство состояний к ли-

сту, содержащему страницу сети. Сформируем отчёт о пространстве состояний и

проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент

Сохранить отчет о пространстве состояний к листу, содержащему страницу сети

и ввести имя файла отчета.

Из него можно увидеть:

• 6538 состояний и 122964 переходов между ними.

• Указаны границы значений для каждого элемента: промежуточные состо-

яния А, В, С(наибольшая верхняя граница у А, так как после него пакеты

отбрасываются. Так как мы установили максимум 10, то у следующего состо-

яния В верхняя граница – 10), вспомогательные состояния SP, SA, NextRec,

NextSend, Receiver(в них может находиться только один пакет) и состояние

Send(в нем хранится только 8 элементов, так как мы задали их в начале и с

ними никаких изменений не происходит).

• Указаны границы в виде мультимножеств.

Маркировка home для всех состояний (в любую позицию можно попасть из

любой другой маркировки).

• Маркировка dead равная [6255] – это состояния, в которых нет включенных

переходов.

CPN Tools state space report for:

/home/openmodelica/mip/lab-ns/lab 12.cpn

Report generated: Fri Apr 25 23:01:43 2025

13

Statistics

State Space

Nodes: 6538

Arcs: 122964

Secs: 15

Status: Full

Scc Graph

Nodes: 6538

Arcs: 122964

Secs: 2

Boundedness Properties

Best Integer Bounds

	Upper	Lower
New_Page'A 1	6	0
New_Page'B 1	11	0
New_Page'C 1	12	0
New_Page'D 1	14	0
New_Page'NextRec 1	1	1
New_Page'NextSend 1	1	1
New_Page'Receiver 1	1	1

```
New_Page'SA 111New_Page'SP 111New_Page'Send 188
```

Best Upper Multi-set Bounds

New_Page'A 1 6`(8,"排排排排排")

New_Page'B 1 3`(7,"y Nets##")++

8`(8,"#######")

New_Page'C 1 12`9

New_Page'D 1 14`9

New_Page'NextRec 1 1`9

New_Page'NextSend 1 1`9

New_Page'Receiver 1 1`"Modelling and Analysis by Meansof Coloured Petry Nets##"

New_Page'SA 1 1`8

New_Page'SP 1 1`8

New_Page'Send 1 1`(1, "Modellin")++

1'(2, "g and An")++

1`(3, "alysis b")++

1`(4,"y Means")++

1`(5, "of Colou")++

1'(6, "red Petr")++

1`(7,"y Nets##")++

1`(8,"排排排排排)

Best Lower Multi-set Bounds

New_Page'A 1 empty

New_Page'B 1 empty

New_Page'C 1 empty

New_Page'D 1 empty

```
New_Page'NextRec 1 1`9
    New_Page'NextSend 1 1`9
    New_Page'Receiver 1 1`"Modelling and Analysis by Meansof Coloured Petry Nets##"
    New_Page'SA 1
                        1'8
    New_Page'SP 1
                       1`8
    New_Page'Send 1 1`(1,"Modellin")++
1'(2, "g and An")++
1'(3, "alysis b")++
1`(4,"y Means")++
1`(5, "of Colou")++
1'(6, "red Petr")++
1`(7,"y Nets##")++
1`(8,"排排排排排")
Home Properties
 Home Markings
     [6255]
Liveness Properties
 Dead Markings
     [6255]
 Dead Transition Instances
```

New_Page'Send_Packet 1

Live Transition Instances
None

Fairness Properties

No infinite occurrence sequences.

Сформируем начало графа пространства состояний, так как их много(рис. 2.7):

Рис. 2.7: Пространство состояний для модели простого протокола передачи данных

3 Выводы

В процессе выполнения данной лабораторной работы я реализовал простой протокол передачи данных в CPN Tools и проведен анализ его пространства состояний.