"Random or not so random?"

Shuyi Ye, Junhao Zhang, Hongyang Cai, Luobin Wang

Task 1:
Histories of objective function View:

Set 1 View: using "generate_random_numbers(105, 0.5, 20.0, "normal")"

(closer look: last 90 points)

Set 2 View: using "generate_random_numbers(105, 0.5, 1.0, "uniform")"

Conclusion: The strategy without replacement have better performance in both cases.

Proof of "IDG_wo_task1 must converge to the true solution"

(Note: result using n+1 because we start from x0 = 0)

K=0 $X_1 = 0 - \frac{1}{140} \cdot (-y_{10}) = y_{10}$.

 $\chi_2 = y_{10} - \frac{1}{2}(y_{10} - y_{11})$

= = + Yio+ + Yi

Xx = 生Yin+生Yin- =(生Yin+生Yin- Yiz)

= 3/10 + 3/11 + 3/12

Xn = h (40+411+...+41m)

=> Xopt = + = yik , since without replacement,

yio, yii... yin include all value in q

Claim Xn = T & Yik

Base case n=1.

 $X_1 = X_0 - \frac{1}{1+0} \cdot (-y_{10}) = y_{10}$

Assume Xn= + 2 Jik

Xn+1 = 1 2 yik - 1 (1 2 yik - yin)

= (h-h+h) = yik + h+i yin M(n+i) = h+i

= nt (== yik + yin)

= ht Enylik A

Note: In both task 2 and task 3, we run both functions (wr and wo) 200 times and generate the mean value for each point to make the result more accurate.

Task 2
Histories of objective function View:

Conclusion: The strategy without replacement have better performance in this case.

Task 3:
Histories of objective function View:

Convergence:

Conclusion: The strategy without replacement have better performance in this case.