ECOM20001 Econometrics 1

Lecture Note 3 Statistics

A/Prof David Byrne Department of Economics University of Melbourne

Stock and Watson: Chapter 3

Summary of Key Concepts

- ► Estimators and sample averages
- Hypothesis tests of means and p-values
- ► Sample variance, sample standard deviation, standard error
- One-sided alternatives
- Confidence intervals
- Comparing means from different populations
- t-statistics with small sample sizes
- Scatterplots, sample covariance and correlation

Introduction

- In lecture note 2 we discussed probability, which is the study of distributions of random variables
 - ▶ could involve 1 variable: what is the mean income level?
 - could involve 2 or more variables: what are mean income levels for males and females?; what is the correlation between the number of pokies per person and average income in an LGA?
- This lecture note reviews statistics, which is the study of testing hypotheses about distributions of random variables
- Key insight of statistics: we can learn about the population distribution from a random sample from that population
- Will continue to focus on the pokies dataset and sample averages means
- ► Some of this material may be review, other parts may not be. All of it is building blocks for regression analysis.

Estimators

- ▶ Throughout we will work with an iid random sample $Y_1, Y_2, ..., Y_n$ from the population with n observations
- Let's first focus on the sample average $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$, an estimator of underlying population mean μ_Y
- ▶ Two key properties of \bar{Y} as an estimator of μ_Y
 - 1. Unbiasedness: $E(\bar{Y}) = \mu_Y$
 - \rightarrow in expectation, the sample average gives us the right answer about the underlying population mean
 - 2. Consistency: as $n \uparrow$, $var(\bar{Y}) = \frac{\sigma_Y^2}{n} \downarrow$
 - \rightarrow as the sample size gets bigger, the variance of our estimator \bar{Y} falls implying that the sample average is more likely to give the right answer about the underlying population mean

Note: skipping \bar{Y} is BLUE and \bar{Y} as a least square estimator of μ_Y on p. 114-115 in the text. Will return to this later with regression analysis.

Hypothesis Testing with the Population Mean

- ▶ We can use a random sample and the sample average \bar{Y} , to test hypotheses about the underlying population mean μ_Y
- ► The null hypothesis is the claim that we are testing

$$H_0: E(Y) = \mu_{Y,0}$$

► The alternative hypothesis is the claim the null is being tested against

$$H_1: E(Y) \neq \mu_{Y,0}$$

Hypothesis Testing with the Population Mean Example

- ▶ Politician says "we don't have a gambling problem there's only 1 pokie per 1000 people on average!"
 - ► H_0 : $E(Negms_1000) = 1$; H_1 : $E(Negms_1000) \neq 1$
- ► Hypotheses involving ≠ are commonly called two-sided alternative hypothesis
 - ▶ they hypothesis can be wrong in two ways: either the true value of the mean relative to the hypothesized is $\mu_Y > \mu_{Y,0}$ or $\mu_Y < \mu_{Y,0}$

- ▶ There are two reasons why \bar{Y} and $\mu_{Y,0}$ might differ:
 - 1. The null is false: the true value of μ_{Y} does not equal $\mu_{Y,0}$
 - 2. Random sampling: the true value of μ_Y indeed equals $\mu_{Y,0}$, but the sample we randomly drew just happened to produce a \bar{Y} that differs from $\mu_{Y,0}$ (say, by a lot)
- ▶ If we observe $\bar{Y} \neq \mu_{Y,0}$, the p-value, also known as the significance probability, helps us determine whether a false null or random sampling was factor that caused this difference

- ▶ To construct a p-value, we first need to know what the probability distribution of \bar{Y} is
- ▶ Recall from lecture note 2, from the Central Limit Theorem (CLT) we know that \bar{Y} is distributed $N(\mu_Y, \sigma_{\bar{Y}}^2)$ if sample size n is large enough
 - \blacktriangleright μ_Y is the population mean
 - $\sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}}$ is the standard deviation of \bar{Y} where σ_Y is the population standard deviation and n is sample size

• Given the CLT, and assuming the null hypothesis is correct (e.g., $\mu_Y = \mu_{Y,0}$), \overline{Y} would be distributed:

$$N(\mu_{Y,0},\sigma_{\bar{Y}}^2)$$

with
$$\sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}}$$

▶ Intuitively, p-values ask: what is the chance of obtaining a sample average at least as extreme as \bar{Y} if the null was true and the underlying population mean was in fact $\mu_{Y,0}$?

p-values example

- ► Consider the first example above where a large sample average was found: $\bar{Y} \mu_{Y,0}$ is big and $\sigma_{\bar{Y}}$ is small
- What does this mean?
- $\bar{Y} \mu_{Y,0}$ implies a <u>big difference</u> between the sample average \bar{Y} and hypothesized population value $\mu_{Y,0}$
- At the same time $\sigma_{\bar{Y}}$ means we have a relatively <u>precise</u> estimate of \bar{Y} (say, compared to the last example where there was larger variance)
- ▶ With a precise \bar{Y} estimate that is far away from $\mu_{Y,0}$ should lead to be confident that $H_0: \mu_Y = \mu_{Y,0}$ is probably not true
 - it would be unlikely to get a large sample average like $\sigma_{\bar{Y}}$ if H_0 were true

▶ Rather than working with the $N(\mu_{Y,0}, \sigma_{\bar{Y}}^2)$ distribution of the sample average \bar{Y} , we equivalently work with a standardized normal random variable z (called a "z-score") in constructing p-values for a given null H_0 :

$$z = \frac{\bar{Y} - \mu_{Y,0}}{\sigma_{\bar{Y}}}$$

where z is distributed N(0,1)

z-score

$$z = \frac{\bar{Y} - \mu_{Y,0}}{\sigma_{\bar{Y}}}$$

where z is distributed N(0,1)

- ▶ Remember, the basic idea is twofold:
 - ▶ false null: if $\bar{Y} \mu_{Y,0}$ is big (causes $\uparrow z$), then $\mu_{Y,0}$ is more likely to be false
 - ▶ random sampling: if $\sigma_{\bar{Y}}$ is big (causes $\downarrow z$), then \bar{Y} is a less precise estimate of μ_Y , and any differences between \bar{Y} and $\mu_{Y,0}$ are more likely driven by random sampling
- ► Competiting forces of "false null" and "random sampling" determine the probability that a null is true, given our random sample and the sample average we computed
 - \rightarrow big z-score means null is less likely to be true

Computing p-values

- ▶ Suppose that \bar{Y}^{act} is the actual sample average from our random sample, and assume for now that $\sigma_{\bar{Y}}$ is known (we will come back to this later).
- ▶ Then the corresponding z-score is

$$z^{act} = \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sigma_{\bar{Y}}}$$

- ▶ p-values formally ask: what is the chance of obtaining a sample average at least as extreme as \overline{Y} if the null was true?
 - Recall that \bar{Y} can be extremely different in magnitude from $\mu_{Y,0}$ if \bar{Y} is really big OR if \bar{Y} is really small

Computing p-values

► The p-value for \bar{Y}^{act} given a null $(H_0: \mu_Y = \mu_{Y,0})$ and alternative $(H_1: \mu_Y \neq \mu_{Y,0})$ hypothesis is defined as:

$$p
-value = P(|z| > |z^{act}|) = 2 \times \Phi(-|z^{act}|)$$

- ▶ Given $\mu_{Y,0}$, you can get a z as large in magnitude as $|z^{act}|$ if z is either really small or really large.
- ▶ The second equality comes from the fact that: (1) z is distributed N(0,1) by the CLT if n is large enough; and (2) the normal distribution is symmetric

 $|z^{act}| = 1.5$

Note: the N(0,1) cumulative density at -I z_act I is the total amount of shaded grey area

 $|z^{act}| = 1.5$

Interpreting p-values

- ▶ The p-value tells us the probability of obtaining a value as extreme as \bar{Y}^{act} if the null $H_0: \mu_Y = \mu_{Y,0}$ is true, given $\sigma_{\bar{Y}}$
- If a p-value for \bar{Y}^{act} is small, then this means it was unlikely that we would have obtained as extreme a value of \bar{Y}^{act} (either high or low) from a random sample from the population if the true value of the mean was indeed $\mu_Y = \mu_{Y,0}$
- ► Small p-values arise either because $\bar{Y}^{act} \mu_{Y,0}$ is big or $\sigma_{\bar{Y}}$ is small (or both) implies we have little confidence from our sample in the null hypothesis that $H_0: \mu_Y = \mu_{Y,0}$
- In contrast, the higher the p-value, the more likely (or there is a higher probability that) \bar{Y}^{act} was generated by a population density with mean $\mu_{Y,0}$

 $\left(ar{Y}^{act} - \mu_{Y,0}
ight)\downarrow$ and $z^{act}\downarrow$: null hypothesis more likely to be true

Either $(\bar{Y}^{act} - \mu_{Y,0}) \uparrow$ and $z^{act} \uparrow$: null hypothesis less likely to be true

Or $\sigma_{\bar{Y}} \downarrow$ and $z^{act} \uparrow$: null hypothesis less likely to be true

p-value Calculations

- Why do we use absolute values in computing a p-value?
- ▶ We use absolute values to capture the two ways in which $H_0: \mu_Y = \mu_{Y,0}$ is false in favour of $H_1: \mu_Y \neq \mu_{Y,0}$:
 - $\bar{Y}^{act} < \mu_{0,Y}$ is much <u>smaller</u> than the hypothesized $\mu_{0,Y}$ value
 - $\bar{Y}^{act} < \mu_{0,Y}$ is much <u>smaller</u> than the hypothesized $\mu_{0,Y}$ value
- So computing a p-value as

$$p
-value = P(|z| > |z^{act}|) = 2 \times \Phi(-|z|)$$

is a short-cut calculation that that exploits the CLT, symmetry of the N(0,1), and accounts for the fact that we reject H_0 in favour of H_1 if we obtain really big or really small \bar{Y} values from our sample relative to a population value $\mu_{Y,0}$

Sample Variance and Sample Standard Deviation

$$z = \frac{\bar{Y} - \mu_{Y,0}}{\sigma_{\bar{Y}}}$$

- ► To compute p-values based on our random sample, we need to be able to estimate σ_v in the denominator
 - ► This is the "we will come back to this later" comment from slide 18 above
- ▶ Since $\sigma_{\bar{Y}} = \frac{\sigma_Y^2}{\sqrt{n}}$, we need to estimate σ_Y^2 , the population variance for Y
- ▶ An unbiased and consistent estimate of the population variance σ_Y^2 is the sample variance, which we denote s_Y^2 :

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^N (Y_i - \bar{Y})^2$$

Standard Error of the Sample Mean

- We can therefore estimate σ_Y using s_Y
- ▶ Putting it all together, this means we can estimate $\sigma_{\bar{Y}}$ with:

$$SE(\bar{Y}) = \frac{s_Y}{\sqrt{n}}$$

where $SE(\bar{Y})$ is called the standard error of \bar{Y}

t-statistics

The standardized sample average plays a central role in hypothesis testing and is called the t-statistic or t-ratio:

$$t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- ▶ It is similar to the z-score except that the denominator is the (estimated) standard error of \bar{Y} , not the (known) $\sigma_{\bar{Y}} = \frac{\sigma_{Y}}{\sqrt{n}}$
- ▶ Key result: if sample size n is large, t is distributed N(0,1)
- This allows us to use t-statistics and the normal distribution together to conduct empirical hypothesis tests
- ▶ In practice, we use the sample average and standard error that we compute using our random sample, \bar{Y}^{act} and $SE(\bar{Y}^{act})$, for computing t-statistics for a given hypothesized $\mu_{Y,0}$:

$$t^{act} = \frac{\bar{Y}^{act} - \mu_{Y,0}}{SE(\bar{Y})^{act}}$$

Computing p-values with t-statistics

- \blacktriangleright t has a N(0,1) distribution (if n is large enough)
- ▶ Cumulative density function (CDF) of N(0,1) is denoted $\Phi(\cdot)$, which by the definition of the CDF implies

$$P(t \le -|t^{act}|) = \Phi(-|t^{act}|)$$

 $ightharpoonup P(t \leq -|t^{act}|)$ is shown in the grey area in the graph above

Computing p-values with t-statistics

► Further recall the definition of a p-value:

$$p
-value = P(|t| > |t^{act}|)$$

As before, because N(0,1) is symmetric, we can use its CDF for testing the null $H_0: \mu_Y = \mu_{Y,0}$ using t statistics:

$$p
-value = 2 \times \Phi(-|t^{act}|)$$

▶ The p-value for t^{act} is the grey area in the graph above

Hypothesis Testing with a Pre-specified Significance Level

- Suppose we want to have rule for rejecting (or not rejecting) our hypothesis $H_0: \mu_Y = \mu_{Y,0}$ versus the alternative $H_1: \mu_Y \neq \mu_{Y,0}$
- Example rejection rule: reject H_0 if the p-value is less than $\alpha = 5\%$, which leads to the rule:

Reject
$$H_0$$
 if $|t^{act}| > 1.96$

where 1.96 is the critical value for the test corresponding to $\alpha = 5\%$, which is often denoted by t_{α}

▶ The value of 1.96 emerges because the area of the under the tails of the N(0,1) distribution outside \pm 1.96 is 5%

Hypothesis Testing with a Pre-specified Significance Level

- $ightharpoonup \alpha$ is called the level of significance
 - smaller α values implies a tougher test as the rejection region shrinks as α shrinks
 - ▶ typical values of α used are 10%, 5%, and 1% with corresponding critical values of 1.65, 1.96, and 2.58
- Interpretation: if $\alpha = 5\%$, the we reject the null $\overline{H_0: \mu_Y = \mu_{Y,0}}$ if the probability of obtaining a t-statistic as extreme t^{act} is less than 5%
- Alternative interpretation: we are ok with the risk of incorrectly rejecting the null $H_0: \mu_Y = \mu_{Y,0}$ when the null is in fact true 5% of the time given t^{act}
 - ► This is also called Type 1 Error

Hypothesis Testing with $\alpha=10\%$, $t_{0.10}=1.65$

Rejection Rule: Reject Null if (t_act > 1.65 OR t_act < -1.65)

Hypothesis Testing with $\alpha = 5\%$, $t_{0.05} = 1.96$

Rejection Rule: Reject Null if (t_act > 1.96 OR t_act < -1.96)

Hypothesis Testing with $\alpha = 1\%$, $t_{0.01} = 2.58$

Rejection Rule: Reject Null if (t_act > 2.58 OR t_act < -2.58)

Steps for Hypothesis Testing a Mean

- 1. State hypothesis test: $H_0: \mu_Y = \mu_{Y,0}$, $H_1: \mu_Y \neq \mu_{Y,0}$
- 2. Compute sample mean \bar{Y} :

$$\bar{Y} = \frac{\sum_{i}^{n} Y_{i}}{n}$$

3. Compute sample standard error of \bar{Y} :

$$SE(\bar{Y}) = \frac{s_Y}{\sqrt{n}}$$
, where: $s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$

4. Compute t-statistic:

$$t^{act} = \frac{Y - \mu_{Y,0}}{SE(\bar{Y})}$$

Steps for Hypothesis Testing a Mean

5. Compute p-value:

p-value =
$$2 \times \Phi(-|t^{act}|)$$

6. Specify a significance level α (say $\alpha=5\%$) and use the rejection rule based on the critical value:

Reject
$$H_0$$
 if $|\mathbf{t}^{act}| > 1.96$ (for $\alpha = 5\%$)

You can equivalently reject based on the p-value:

Reject
$$H_0$$
 if $2\Phi(-|t^{act}|) < \alpha$

Simply put: big t-statistics or (equivalently) small p-values cause you to reject the null hypothesis

Application of Hypothesis Testing to Pokies Data

- ► Politician says "we don't have a gambling problem in Australia there's only 1 pokie per 1000 people on average!"
- ▶ We can use the statistical program R to test this hypothesis
 - 1. Hypothesis: $H_0: \mu_Y = 1$, $H_1: \mu_Y \neq 1$
 - 2. Sample mean:

$$\bar{Y} = 4.88$$

3. Standard error of mean:

$$SE(\bar{Y}) = 0.22$$

4. t-statistic:

$$t^{act} = \frac{4.88 - 1}{0.22} = 17.63$$

- 5. p-value is < 0.00001!
- 6. Rejection rule at $\alpha = 5\%$ significance level:

$$|t^{act}| = 17.63 > 1.96$$

which implies we reject the null that $\mu_Y=1$ at the 5% level of significance!

Application of Hypothesis Testing to Pokies Data

- ▶ What if $H_0: \mu_Y = 4$?
 - $ightharpoonup ar{Y} = 4.88, SE(ar{Y}) = 0.22$
 - $t^{act}=4.04$
 - ▶ p-value=0.0001
 - $|t^{act}|$ =4.04 > 1.96, so reject null at $\alpha = 5\%$
- ▶ What if $H_0: \mu_Y = 4.5$?
 - $\bar{Y} = 4.88, SE(\bar{Y}) = 0.22$
 - $t^{act} = 1.74$
 - ▶ p-value=0.0819
 - ▶ $|t^{act}|$ =1.74 < 1.96, so <u>fail</u> to reject null at $\alpha = 5\%$
- Notice in the latter example that:
 - $|t^{act}|=1.74>1.65$, so reject null at $\alpha=10\%$
 - ightharpoonup Highlights how judgement calls about lpha can influence whether you reject or fail to reject a null

One-Sided Alternatives

▶ We can also propose one-sided alternatives such as:

$$H_1: \mu > \mu_{Y,0}$$

- ▶ In this case, we reject the null $H_0: \mu = \mu_{Y,0}$ in favour of the alternative H_1 only for really large values of t^{act}
 - ▶ This is differs from how we reject the null with a two-sided alternative $H_1: \mu \neq \mu_{Y,0}$, which we do for really large or really small values of t^{act}

One-Sided Alternatives

- ▶ Given this, the p-value for the one-sided alternative $H_1: \mu > \mu_{Y,0}$ is the area of the standard normal distribution to the right of t^{act}
- ▶ So the p-value for the t-statistic corresponds to t-statistics to the left of (less than) t^{act}) in the N(0,1) distribution :

$$p$$
-value = $1 - \Phi(t^{act})$

where note we compute t^{act}) exactly as we did for two-sided hypothesis tests

- ► The rejection rules are what change for one-sided hypothesis tests:
 - $\sim \alpha = 0.10$: reject H_0 if $t^{act} > 1.28$
 - $\alpha = 0.05$: reject H_0 if $t^{act} > 1.65$
 - $\alpha = 0.01$: reject H_0 if $t^{act} > 2.33$

One-Sided Alternatives

 Everything is just the opposite for a one-sided alternative with the less than inequality

$$H_1: \mu < \mu_{Y,0}$$

- ▶ In this case, we reject the null $H_0: \mu = \mu_{Y,0}$ in favour of the alternative H_1 only for really small values of t^{act}
- \blacktriangleright p-value based on the N(0,1) distribution for the t-statistic is:

$$p$$
-value = $\Phi(t^{act})$

- ► The rejection rules for different levels of significant are:
 - $\alpha = 0.10$: reject H_0 if $t^{act} < -1.28$
 - $\alpha = 0.05$: reject H_0 if $t^{act} < -1.65$
 - $\alpha = 0.01$: reject H_0 if $t^{act} < -2.33$

Confidence Intervals

- $ar{Y}$ will never tell us $\underline{\text{exactly}}$ what μ_{Y} is because of random sampling
- ▶ However, we can use our sample to determine a set of values that contains that likely contains the true value of μ_Y with some confidence level
- \blacktriangleright We call this set a confidence interval for μ_Y
- ▶ We construct the confidence interval using the t-statistic:

$$t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

where $\mu_{Y,0}$ is our hypothesized value of the population mean

Constructing a Confidence Interval

- ▶ First, let us specify a confidence level $\alpha = 5\%$, with its associated critical value of 1.96
- Notice that, given a sample mean, the values of hypothesised population means $\mu_{Y,0}$ for which we cannot reject a two-sided test at the 5% level of significance are such that:

$$-1.96 \le \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} \le 1.96$$

▶ If we re-arrange each of these inequalities we obtain:

$$\bar{Y} - 1.96SE(\bar{Y}) \le \mu_{Y,0} \le \bar{Y} + 1.96SE(\bar{Y})$$

Constructing a Confidence Interval

$$\bar{Y} - 1.96SE(\bar{Y}) \le \mu_{Y,0} \le \bar{Y} + 1.96SE(\bar{Y})$$

- ► This is the set of hypothesised values of $\mu_{Y,0}$ for which we cannot reject that the population mean (μ_Y) is the same as the sample average (\bar{Y}) at the 5% level of significance
- ▶ We call this the 95% confidence interval (or 95% CI) for μ_Y .
- ▶ The 95% CI for μ_Y is often written like:

$$[\bar{Y} - 1.96SE(\bar{Y}), \bar{Y} + 1.96SE(\bar{Y})]$$

Interpreting a Confidence Interval

In a 95% CI for μ_Y:

$$[\bar{Y}-1.96SE(\bar{Y}),\bar{Y}+1.96SE(\bar{Y})]$$

 $ar{Y}-1.96SE(ar{Y})$ is the lower bound of the interval, and $ar{Y}+1.96SE(ar{Y})$ is the upper bound

- Interpretation: with random sampling, given values \bar{Y} and $\overline{SE(\bar{Y})}$, there is a 95% chance that the true value of the mean μ_Y sits between the lower and upper bound of the 95% CI
 - we fail to reject the null for hypothesised μ_Y values as small as $\bar{Y} 1.96SE(\bar{Y})$
 - we fail to reject the null for hypothesised μ_Y values as large as $\bar{Y}+1.96SE(\bar{Y})$

Common Confidence Intervals

▶ 90% CI at the $\alpha = 10\%$ level of significance:

$$[\bar{Y} - 1.65SE(\bar{Y}), \bar{Y} + 1.65SE(\bar{Y})]$$

▶ 95% CI at the $\alpha = 5\%$ level of significance:

$$[\bar{Y}-1.96SE(\bar{Y}),\bar{Y}+1.96SE(\bar{Y})]$$

▶ 99% CI at the $\alpha = 1\%$ level of significance:

$$[\bar{Y} - 2.58SE(\bar{Y}), \bar{Y} + 2.58SE(\bar{Y})]$$

▶ General formula for $(1-\alpha)$ % CI at α level of significance:

$$[ar{Y} - t_{lpha} SE(ar{Y}), ar{Y} + t_{lpha} SE(ar{Y})]$$

▶ Cl's have 3 ingredients: \bar{Y} , $SE(\bar{Y})$, and the critical value t_{α} associated with specified level of significance α

Base Case

$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

Impact of \uparrow $(1 - \alpha)$

► (1-α)% CI:

$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

- ▶ Holding $SE(\bar{Y})$ fixed, $\uparrow (1 \alpha)$ implies $t_{\alpha} \uparrow$: we have a wider interval which increases our confidence that $\mu_{Y,0}$ lies within it
- ► For example, a 99% CI is wider than a 95% CI

Impact of $\downarrow (1 - \alpha)$

► (1-α)% CI:

$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

- ▶ Holding $SE(\bar{Y})$ fixed, \downarrow $(1-\alpha)$ implies $t_{\alpha} \downarrow$: we have a more narrow interval which decreases our confidence that $\mu_{Y,0}$ lies within it
- ► For example, a 90% CI is more narrow than a 95% CI

Back to the Base Case

•
$$(1-\alpha)\%$$
 CI:
$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

Impact of $\uparrow SE(\bar{Y})$

► (1-\alpha)% CI:

$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

- ▶ Holding α fixed, \uparrow $SE(\bar{Y})$: for a given $(1-\alpha)$, a noiser estimate of the sample mean implies that we need a wider interval to achieve a $(1-\alpha)$ confidence interval to ensure that $\mu_{Y,0}$ lies within the interval
- Less precision ($\uparrow SE(\bar{Y})$), say from noisier data or a smaller sample size N, forces us to be less confident that we can find $\mu_{Y,0}$ within narrower intervals

Impact of $\downarrow SE(\bar{Y})$

► (1-\alpha)% CI:

$$[\bar{Y} - t_{\alpha}SE(\bar{Y}), \bar{Y} + t_{\alpha}SE(\bar{Y})]$$

- ▶ Holding α fixed, \downarrow $SE(\bar{Y})$: for a given $(1-\alpha)$, a more precise estimate of the sample mean implies that can achieve a $(1-\alpha)$ level of confidence that $\mu_{Y,0}$ lies within and interval using a more narrow interval
- More precision (\downarrow $SE(\bar{Y})$), say from less noisy data or a larger sample size N, allows us to be more confident that we can find $\mu_{Y,0}$ within narrower intervals

Confidence Intervals Example

▶ From our pokies example, 95% CI for μ_Y is

$$[4.87 - 1.96 \times 0.22, 4.87 + 1.96 \times 0.22]$$

which is

- ► Interpretation: There is a 95% chance that the true value of the mean number of pokies per 1,000 people is between 4.44 and 5.30
- ► The 90, 95, and 99% Cls are:
 - ▶ 90% CI = [4.51, 5.23]
 - ▶ 95% CI = [4.44, 5.30]
 - ▶ 99% CI = [4.30, 5.44]
- ▶ Notice how the CI gets wider if $\alpha \downarrow$
 - ightarrow you need a wider <u>interval</u> to be more <u>confident</u> that that μ_Y is within it

- How do we conduct hypothesis tests to address questions like "do males and females make the same earnings on average"?
- ▶ Keeping with the example, to test the difference between two means, let μ_w be hourly earnings for female college graduates (women), and μ_m be hourly earnings for male college graduates
- ▶ Let the hypothesised value of the difference be d_0
- ▶ The null and two-sided alternative is:

$$H_0: \mu_w - \mu_m = d_0; \quad vs. \quad H_1: \mu_w - \mu_m \neq d_0$$

- ▶ A common value for d_0 is $d_0 = 0$
 - ► In words: we test the null that males and females have the same earnings vs the alternative that they do not

- ▶ As before, we use the sample averages to estimate μ_w and μ_m , \bar{Y}_w and \bar{Y}_m
- ▶ Under the CLT, \bar{Y}_w is distributed $N(\mu_w, \sigma_w^2/n_w)$ where σ_w^2 is the population variance of female earnings, and n_w is the number of females in the sample
- ▶ Similarly, \bar{Y}_m is distributed $N(\mu_m, \sigma_m^2/n_m)$ where σ_m^2 is the population variance of male earnings, and n_m is the number of males in the sample
- ▶ Because \bar{Y}_w and \bar{Y}_m are constructed from independent random samples, the distribution of $\bar{Y}_w \bar{Y}_m$ is

$$N(\mu_w - \mu_m, (\sigma_w^2/n_w) + (\sigma_m^2/n_m))$$

which comes directly from our rules for expectations and variances of sums of random variables, and independence

▶ Distribution of $\bar{Y}_w - \bar{Y}_m$ is

$$N(\mu_w - \mu_m, (\sigma_w^2/n_w) + (\sigma_m^2/n_m))$$

- ▶ As before, we can consistently estimate σ_w^2 and σ_w^2 with the sample variance s_w^2 and s_w^2
- lacktriangle So the standard error of $ar Y_w ar Y_m$ is:

$$SE(\bar{Y}_w - \bar{Y}_m) = \sqrt{s_w^2/n_w + s_m^2/n_m}$$

► To test our hypothesis, we can compute the t-statistic exactly as before:

$$t^{act} = \frac{(\bar{Y}_w - \bar{Y}_m) - d_0}{SE(\bar{Y}_w - \bar{Y}_m)}$$

which is distributed N(0,1) if n_w and n_m are large enough

- p-value for t^{act} is $2 \times \Phi(-|t^{act}|)$
- ▶ We reject the null at the $\alpha = 0.10, 0.05, 0.01$ levels of significance if $|t^{act}| > 1.65$ or $|t^{act}| > 1.96$ or $|t^{act}| > 2.58$
- ► Testing one-sided alternatives also follow exactly as before
- ► Confidence interval for the difference in means is computed using the t-statistic from the two-sided hypothesis test
- ▶ The 95% confidence interval for d consists of those values of d that are within \pm 1.96 standard errors of $\bar{Y}_w \bar{Y}_m$:

$$[(\bar{Y}_{w} - \bar{Y}_{m}) - 1.96 \times SE(\bar{Y}_{w} - \bar{Y}_{m}), (\bar{Y}_{w} - \bar{Y}_{m}) + 1.96 \times SE(\bar{Y}_{w} - \bar{Y}_{m})]$$

Comparing Means with Randomised Control Trials

- Economists are increasingly using randomised control trials (RCTs) to test theories and policies
- ▶ The idea mimics what drug companies do
 - find a sample of sick patients
 - randomly give some patients a drug
 - ► to determine if the drug works, compare health outcomes from those who were given the drug to those who were not
- ▶ Let \bar{Y}_T (treated) be the sample mean of health for people who were given the drug, and \bar{Y}_{NT} (not treated) be the sample mean of health for people who were not given the drug
- ▶ We can use tests of means from different populations just discussed to test the hypothesis that $\mu_T \mu_{NT} = 0$; that is, the null that the drug has no causal effect on health
- ▶ We will causal effects and experiments around week 9 and 10

Using the *t*-statistic When Sample Size is Small

- ► Throughout, we have been assuming large sample sizes *n* such that the distribution of *t*-statistics is well-approximated by a N(0,1) distribution
- ▶ What do we do if n is small and the N(0,1) approximation is potentially poor?
- ▶ If the underlying distribution of Y is normally distributed, then $t^{act} = \frac{\bar{Y}^{act} \mu_{Y,0}}{SE(\bar{Y}^{act})}$ has a Student-t distribution, with n-1 degrees of freedom
- ▶ The Student-t distribution with n-1 degrees of freedom can be used instead of the N(0,1) distribution to compute p-values and construct confidence intervals if n is small

Using the *t*-Statistic When Sample Size is Small

- ▶ Modifications are also needed for t-statistics for testing differences of means from two random samples if *n* is small; see the text on p. 134 and 135 for details if interested
- ▶ However, in practice we rarely work with samples in business or economics where n is so small that we need to worry about N(0,1) not being a good approximation for the distribution of t-statistics
- ► Going forward we only focus on doing hypothesis tests assuming sufficiently large sample size that allows us to use N(0,1) approximations for distributions of t-statistics

<u>Note</u>: skipping t-statistic for testing differences of means with small smaples on p.134-135. See the text for details. Again, not often used in practice.

Scatterplots, Sample Covariance, Sample Correlation

- ➤ The final statistical calculations of note are the sample covariance and the sample correlation
- ▶ Sample covariance between random variables *X* and *Y* :

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

Sample correlation (or correlation coefficient):

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

where $-1 \le r_{XY} \le 1$

Pokies Per 1000 People vs. LGA Average Income

- ► Sample Covariance is -3.22; Sample Correlation is -0.237
- Questions from the Prime Minister:
 - ► Is this relationship real? That is, could it just occur because of random sampling/chance?
 - And is this relationship concerning? That is, does an LGA having lower income cause it to have more pokies per person?
- ► To address these questions and other important economic questions, we need to understand regression analysis

Summary of Population Values and Sample Counterparts

Name	Population Value	Sample Estimator	Estimator Calculation
Mean	μ_Y	\bar{Y}_Y	$\frac{\sum_{i=1}^{N} Y_i}{N}$
Variance	σ_X^2	s_Y^2	$\frac{1}{n-1}\sum_{i=1}^N(Y_i-\bar{Y})^2$
Standard Deviation	σ_Y	SY	$\sqrt{s_Y^2}$
Standard Error of $ar{Y}$	$\sigma_{ar{Y}}$	$SE(ar{Y})$	$\frac{SY}{\sqrt{n}}$
Covariance	σ_{XY}	Sχγ	$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})(Y_{i}-\bar{Y})$
Correlation	ρ_{XY}	r_{XY}	$\frac{s_{XY}}{s_X s_Y}$

Summary of Testing

- Test statistics
 - ightharpoonup z-score: $z=rac{ar{Y}-\mu_{Y,0}}{\sigma_{ar{Y}}}$ (assumes $\sigma_{ar{Y}}$ is known)
 - t-statistic: $t = \frac{Y \mu_{Y,0}}{SE(Y)}$ (this is what we actually use)
- ► Two-sided hypothesis test (=) (this is what we most often do)
 - $H_0: \mu_Y = \mu_{Y,0}$ versus alternative $H_1: \mu_Y \neq \mu_{Y,0}$
 - p-value= $P(|t| > |t^{act}|) = 2 \times \Phi(-|t^{act}|)$
- One-sided hypothesis test (>)
 - $H_0: \mu_Y = \mu_{Y,0}$ versus alternative $H_1: \mu_Y > \mu_{Y,0}$
 - ▶ p-value= $1 \Phi(|t^{act}|)$
- One-sided hypothesis test (<)
 - $H_0: \mu_Y = \mu_{Y,0}$ versus alternative $H_1: \mu_Y < \mu_{Y,0}$
 - ▶ p-value= $\Phi(|t^{act}|)$
- ▶ For all hypothesis tests (e.g., =, >, <): reject H_0 if p-value < α where α is the user-specified significance level
 - ightharpoonup can equivalently reject H_0 if $|t^{act}| > t_{lpha}$
 - ightharpoonup commonly-used lpha values are 0.01, 0.05, 0.10

Summary of Confidence Intervals

• $(1-\alpha)$ =99% CI $(\alpha = 0.01 \text{ significance level})$:

$$[\bar{Y} - 2.58SE(\bar{Y}), \bar{Y} + 2.58SE(\bar{Y})]$$

• $(1-\alpha)=95\%$ CI $(\alpha=0.05$ significance level):

$$[\bar{Y}-1.96SE(\bar{Y}),\bar{Y}+1.96SE(\bar{Y})]$$

• $(1-\alpha)=90\%$ CI $(\alpha=0.10$ significance level):

$$[\bar{Y} - 1.65SE(\bar{Y}), \bar{Y} + 1.65SE(\bar{Y})]$$

► Confidence intervals are centered and symmetric around \bar{Y} and become wider if $(1 - \alpha) \uparrow$ or $SE(\bar{Y}) \uparrow$