Jame, group no:	

1. (10 points) Consider the function $f(x,y)=x^3+3ay^3+2axy$ where a is a parameter. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:		

2. (10 points) Consider the system

$$\begin{cases} 3x^3 + u(y) + u(z) = 5\\ x + x^3 + 2u(y^3x) = 4 \end{cases},$$

where u(x) is a differentiable function with u(1) = 1.

- (a) Clearly state conditions sufficient to guarantee that the system defines the functions z(y) and x(y) at a point (1,1,1).
- (b) Find z'(y) provided the conditions are met.

Name, group no:	

3. (10 points) Consider the function $f(x,y)=xy^3$ and the point A=(-1,-2).

Find the direction of the maximal rate of change of the function and this maximal rate.

Name, group no:

4. (10 points) For x > 0, y > 0 find the limit

$$u(x,y) = \lim_{t \to 0} \left(x^{\frac{t-1}{t}} + y^{\frac{t-1}{t}} \right)^{\frac{t}{t-1}}$$

Name, group no:	

5. (10 points) Provide an explicit example of a non-convergent sequence (x_n) in \mathbb{R}^2 such that the sequences $y_n = ||x_n||$ and $z_n = ||x_n + 2x_{n+1}||$ are convergent.

Name, group no:	
	•

6. (10 points) Let's consider the sets $A_n = \{x \in \mathbb{R} \mid x^2 n = 1\}$.

Describe the set $A = \bigcup_{n=1}^{\infty} A_n$: is it closed, open, bounded, compact?

Name, group no:	

- 7. A curve represented by the equation $(x^2 + y^2)^2 = x^2 y^2$ is called lemniscate.
 - (a) (5 points) While solving for y=y(x) implicit function defined by this equation is it possible to use IFT in the neighborhood of the point (0,0)?
 - (b) (5 points) Show that in the first quadrant $\{(x,y) \mid x>0, y>0\}$ such implicit function y=y(x) exists. Justify your reasoning.
 - (c) (10 points) Find y'(0) if it exists.

Hint: for c) it is convenient to change Cartesian coordinates to polar coordinates following the formulas $x = r \cos \phi$ and $y = r \sin \phi$.

Name, group no:	

- 8. Let u be a composite function $u=g(x^2+y^2)$, where $g(t)\in C^2$ for t>0.
 - (a) (5 points) Is the formula

$$du = g'(x^2 + y^2)(2xdx + 2ydy)$$

for the total differential valid? Provide a clear argument.

(b) (5 points) For higher order differentials we would like to continue in the same fashion:

$$d^2u = g''(x^2 + y^2)(2xdx + 2ydy)^2$$

Does this method work? Justify your answer.

(c) (10 points) Let $g(t)=\sqrt{t}$. Prove that for the function $u(x,y)=\sqrt{x^2+y^2}$ the second-order differential is non-negative.

Name, group no:	

1. (10 points) Consider the function $f(x,y)=x^3+4ay^3+2axy$ where a is a parameter. Using the total differential find the approximate value of f(1.98,0.99).

Variant ρ Good luck!

Name, group no:		

2. (10 points) Consider the system

$$\begin{cases} 3x^3 + u(y) + u(z) = 5\\ x + x^3 + 3u(y^3x) = 5 \end{cases},$$

where u(x) is a differentiable function with u(1) = 1.

- (a) Clearly state conditions sufficient to guarantee that the system defines the functions z(y) and x(y) at a point (1,1,1).
- (b) Find z'(y) provided the conditions are met.

Name, group no:	

3. (10 points) Consider the function $f(x,y)=xy^3$ and the point A=(-1,-3).

Find the direction of the maximal rate of change of the function and this maximal rate.

Variant ρ Good luck!

Name, group no:

4. (10 points) For x > 0, y > 0 find the limit

$$u(x,y) = \lim_{t \to 0} \left(x^{\frac{t-1}{t}} + y^{\frac{t-1}{t}} \right)^{\frac{t}{t-1}}$$

Name, group no:	

5. (10 points) Provide an explicit example of a non-convergent sequence (x_n) in \mathbb{R}^2 such that the sequences $y_n = ||x_n||$ and $z_n = ||x_n + 3x_{n+1}||$ are convergent.

Variant ρ Good luck!

Name, group no:	

6. (10 points) Let's consider the sets $A_n = \{x \in \mathbb{R} \mid x^2 n = 2\}.$

Describe the set $A=\cup_{n=1}^{\infty}A_n$: is it closed, open, bounded, compact?

Name, group no:	

- 7. A curve represented by the equation $(x^2 + y^2)^2 = x^2 y^2$ is called lemniscate.
 - (a) (5 points) While solving for y = y(x) implicit function defined by this equation is it possible to use IFT in the neighborhood of the point (0,0)?
 - (b) (5 points) Show that in the first quadrant $\{(x,y) \mid x>0, y>0\}$ such implicit function y=y(x) exists. Justify your reasoning.
 - (c) (10 points) Find y'(0) if it exists.

Hint: for c) it is convenient to change Cartesian coordinates to polar coordinates following the formulas $x=r\cos\phi$ and $y=r\sin\phi$.

Variant ρ Good luck!

Name, group no:	

- 8. Let u be a composite function $u=g(x^2+y^2)$, where $g(t)\in C^2$ for t>0.
 - (a) (5 points) Is the formula

$$du = g'(x^2 + y^2)(2xdx + 2ydy)$$

for the total differential valid? Provide a clear argument.

(b) (5 points) For higher order differentials we would like to continue in the same fashion:

$$d^2u = g''(x^2 + y^2)(2xdx + 2ydy)^2$$

Does this method work? Justify your answer.

(c) (10 points) Let $g(t)=\sqrt{t}$. Prove that for the function $u(x,y)=\sqrt{x^2+y^2}$ the second-order differential is non-negative.

Variant ρ Good luck!

Name, gr	oup no:						
		• • • • • • • •	 	 	• • • • • • • •	 	

1. (10 points) Consider the function $f(x,y)=x^3+5ay^3+2axy$ where a is a parameter. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:	

2. (10 points) Consider the system

$$\begin{cases} 3x^3 + u(y) + u(z) = 5\\ x + x^3 + 4u(y^3x) = 6 \end{cases},$$

where u(x) is a differentiable function with u(1) = 1.

- (a) Clearly state conditions sufficient to guarantee that the system defines the functions z(y) and x(y) at a point (1,1,1).
- (b) Find z'(y) provided the conditions are met.

Name, group no:	

3. (10 points) Consider the function $f(x,y)=xy^3$ and the point A=(-1,-4).

Find the direction of the maximal rate of change of the function and this maximal rate.

Name, group no:	

4. (10 points) For x > 0, y > 0 find the limit

$$u(x,y) = \lim_{t \to 0} \left(x^{\frac{t-1}{t}} + y^{\frac{t-1}{t}} \right)^{\frac{t}{t-1}}$$

Name, group no:	

5. (10 points) Provide an explicit example of a non-convergent sequence (x_n) in \mathbb{R}^2 such that the sequences $y_n = ||x_n||$ and $z_n = ||x_n + 4x_{n+1}||$ are convergent.

Name, group no:	

6. (10 points) Let's consider the sets $A_n = \{x \in \mathbb{R} \mid x^2n = 3\}$.

Describe the set $A=\cup_{n=1}^{\infty}A_n$: is it closed, open, bounded, compact?

Name, group no:	

- 7. A curve represented by the equation $(x^2 + y^2)^2 = x^2 y^2$ is called lemniscate.
 - (a) (5 points) While solving for y = y(x) implicit function defined by this equation is it possible to use IFT in the neighborhood of the point (0,0)?
 - (b) (5 points) Show that in the first quadrant $\{(x,y) \mid x>0, y>0\}$ such implicit function y=y(x) exists. Justify your reasoning.
 - (c) (10 points) Find y'(0) if it exists.

Hint: for c) it is convenient to change Cartesian coordinates to polar coordinates following the formulas $x = r \cos \phi$ and $y = r \sin \phi$.

Name, group no:	

- 8. Let u be a composite function $u=g(x^2+y^2)$, where $g(t)\in C^2$ for t>0.
 - (a) (5 points) Is the formula

$$du = g'(x^2 + y^2)(2xdx + 2ydy)$$

for the total differential valid? Provide a clear argument.

(b) (5 points) For higher order differentials we would like to continue in the same fashion:

$$d^2u = g''(x^2 + y^2)(2xdx + 2ydy)^2$$

Does this method work? Justify your answer.

(c) (10 points) Let $g(t)=\sqrt{t}$. Prove that for the function $u(x,y)=\sqrt{x^2+y^2}$ the second-order differential is non-negative.

1	nme, group no:	
		•

1. (10 points) Consider the function $f(x,y)=x^3+6ay^3+2axy$ where a is a parameter. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:	

2. (10 points) Consider the system

$$\begin{cases} 3x^3 + u(y) + u(z) = 5\\ x + x^3 + 5u(y^3x) = 7 \end{cases},$$

where u(x) is a differentiable function with u(1) = 1.

- (a) Clearly state conditions sufficient to guarantee that the system defines the functions z(y) and x(y) at a point (1,1,1).
- (b) Find z'(y) provided the conditions are met.

Name, group no:	

3. (10 points) Consider the function $f(x,y)=xy^3$ and the point A=(-1,-5).

Find the direction of the maximal rate of change of the function and this maximal rate.

Name, group no:

4. (10 points) For x > 0, y > 0 find the limit

$$u(x,y) = \lim_{t \to 0} \left(x^{\frac{t-1}{t}} + y^{\frac{t-1}{t}} \right)^{\frac{t}{t-1}}$$

Name, group no:	
	•

5. (10 points) Provide an explicit example of a non-convergent sequence (x_n) in \mathbb{R}^2 such that the sequences $y_n = ||x_n||$ and $z_n = ||x_n + 2x_{n+1}||$ are convergent.

Name, group no:

6. (10 points) Let's consider the sets $A_n = \{x \in \mathbb{R} \mid x^2n = 4\}$.

Describe the set $A = \bigcup_{n=1}^{\infty} A_n$: is it closed, open, bounded, compact?

Name, group no:

- 7. A curve represented by the equation $(x^2 + y^2)^2 = x^2 y^2$ is called lemniscate.
 - (a) (5 points) While solving for y = y(x) implicit function defined by this equation is it possible to use IFT in the neighborhood of the point (0,0)?
 - (b) (5 points) Show that in the first quadrant $\{(x,y)\mid x>0,y>0\}$ such implicit function y=y(x) exists. Justify your reasoning.
 - (c) (10 points) Find y'(0) if it exists.

Hint: for c) it is convenient to change Cartesian coordinates to polar coordinates following the formulas $x = r \cos \phi$ and $y = r \sin \phi$.

Name, group no:	

- 8. Let u be a composite function $u=g(x^2+y^2)$, where $g(t)\in C^2$ for t>0.
 - (a) (5 points) Is the formula

$$du = g'(x^2 + y^2)(2xdx + 2ydy)$$

for the total differential valid? Provide a clear argument.

(b) (5 points) For higher order differentials we would like to continue in the same fashion:

$$d^2u = g''(x^2 + y^2)(2xdx + 2ydy)^2$$

Does this method work? Justify your answer.

(c) (10 points) Let $g(t)=\sqrt{t}$. Prove that for the function $u(x,y)=\sqrt{x^2+y^2}$ the second-order differential is non-negative.