Job No.: 154 Drumpeel Road, Address: 154 Drumpeel Road, Hastings Date: 8/19/2022

Hastings

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	7.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	39.75 m/s
Wind Pressure	0.95 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High				

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 7.03 m Cpe = -0.9 pe = -0.77 KPa pnet = -0.77 KPa

For roof CP,e from 7.03 m To 14.05 m Cpe = -0.5 pe = -0.43 KPa pnet = -0.43 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 29.20 m $\,$ Cpe = -0.65 $\,$ pe = -0.55 $\,$ KPa $\,$ pnet = -0.55 $\,$ KPa

For side wall CP,e from 0 m To 7.03 m Cpe = pe = -0.55 KPa pnet = -0.55 KPa

Maximum Upward pressure used in roof member Design = 0.77 KPa

Maximum Downward pressure used in roof member Design = 0.45 KPa

Maximum Wall pressure used in Design = 0.88 KPa

Maximum Racking pressure used in Design = 1.03 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 7100 mm Try Purlin 240x45 LVL8

First Page

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.39 S1 Downward =13.82 S1 Upward =27.44

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.91 Kn-m	Capacity	6.08 Kn-m	Passing Percentage	318.32 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.25 Kn-m	Capacity	8.10 Kn-m	Passing Percentage	190.59 %
$M_{0.9D\text{-W}nUp}$	-3.09 Kn-m	Capacity	-4.15 Kn-m	Passing Percentage	134.30 %
V _{1.35D}	1.08 Kn	Capacity	17.37 Kn	Passing Percentage	1608.33 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.40 Kn	Capacity	23.16 Kn	Passing Percentage	965.00 %
$ m V_{0.9D-WnUp}$	-1.74 Kn	Capacity	-28.94 Kn	Passing Percentage	1663.22 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 43.08 mm Limit by AS1170.0 Table C1 Span/250 = 28.40 mm Deflection under Dead and Service Wind = 52.06 mm Limit by AS1170.0 Table C1 Span/120 = 59.17 mm

Reactions

Maximum downward = 2.40 kn Maximum upward = -1.74 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 7300 mm Internal Rafter Span = 6350 mm Try Rafter 2x300x90 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 3.49 S1 Upward = 3.49

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Second page

M1.35D	12.42 Kn-m	Capacity	55.3 Kn-m	Passing Percentage	445.25 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	27.60 Kn-m	Capacity	73.72 Kn-m	Passing Percentage	267.10 %
$M_{0.9D\text{-W}nUp}$	-20.05 Kn-m	Capacity	-92.16 Kn-m	Passing Percentage	459.65 %
V _{1.35D}	7.82 Kn	Capacity	86.84 Kn	Passing Percentage	1110.49 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	17.38 Kn	Capacity	115.78 Kn	Passing Percentage	666.17 %
V _{0.9D-WnUp}	-12.63 Kn	Capacity	-144.72 Kn	Passing Percentage	1145.84 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.425 mm Limit by AS1170.0 Table C1 Span/250 = 26.00 mm Deflection under Dead and Service Wind = 15.34 mm Limit by AS1170.0 Table C1 Span/120 = 54.17 mm

Reactions

Maximum downward = 17.38 kn Maximum upward = -12.63 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 180 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -12.63 Kn

Rafter Design External

External Rafter Load Width = 3650 mm External Rafter Span = 6325 mm Try Rafter 300x90 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.61 S1 Upward = 7.61

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	6.16 Kn-m	Capacity	24.62 Kn-m	Passing Percentage	399.68 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	13.69 Kn-m	Capacity	32.83 Kn-m	Passing Percentage	239.81 %
$M_{0.9D\text{-W}n\text{Up}}$	-9.95 Kn-m	Capacity	-41.04 Kn-m	Passing Percentage	412.46 %
V _{1.35D}	3.90 Kn	Capacity	43.42 Kn	Passing Percentage	1113.33 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	8.66 Kn	Capacity	57.89 Kn	Passing Percentage	668.48 %
$ m V_{0.9D ext{-}WnUp}$	-6.29 Kn	Capacity	-72.36 Kn	Passing Percentage	1150.40 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 12.70 mm Limit by AS1170.0 Table C1 Span/250 = 26.00 mm Deflection under Dead and Service Wind = 15.34 mm Limit by AS1170.0 Table C1 Span/120 = 54.17 mm

Reactions

Maximum downward = 8.66 kn Maximum upward = -6.29 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -75.60 kn > -6.29 Kn

4/9

Single Shear Capacity under short term loads = -14.56 Kn > -6.29 Kn

Girt Design Front and Back

Girt's Spacing = 1150 mm

Girt's Span = 7300 mm

Try Intermediate 200x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward = 0.97

K8 Upward =0.45

S1 Downward = 12.56

S1 Upward =25.30

Shear Capacity of timber = 5 MPa

Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow

3.37 Kn-m

Capacity

3.47 Kn-m

Passing Percentage

102.97 %

 $V_{0.9D\text{-WnUp}}$

1.85 Kn-m

Capacity

24.12 Kn-m

Passing Percentage

1303.78 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 77.96 mm

Limit by AS1170.0 Table C1 Span/120 = 60.83 mm

Sag during installation = 178.04 mm

Reactions

Maximum = 1.85 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 6500 mm

Try Intermediate 200x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1 K8 Downward = 0.97

K8 Upward =0.50

S1 Downward =12.56

S1 Upward =23.87

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow

3.02 Kn-m

Capacity

3.84 Kn-m

Passing Percentage

127.15 %

5/9

V_{0.9D-WnUp} 1.86 Kn-m Capacity 24.12 Kn-m Passing Percentage 1296.77 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 55.40 mm Limit by AS1170.0 Table C1 Span/120 = 54.17 mm Sag during installation = 111.91 mm

Reactions

Maximum = 1.86 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 325 dia. at Floor Level)	Dry Use	Height	7025 mm
Area	82916 mm2	As	62186.71875 mm2
Ix	547372681 mm4	Zx	3368447 mm3
Iy	547372681 mm4	Zx	3368447 mm3
Lateral Restraint	7025 mm c/c		

Loads

Total Area over Pole = 47.45 m^2

Dead	11.86 Kn	Live	11.86 Kn
Wind	21.35 Kn	Snow	0.00 Kn
Moment wind	Kn-m		
Phi	0.8	K8	0.59
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind 707.71 Kn PhiMnx Wind 57.98 Kn-m PhiVnx Wind 147.26 Kn

PhiNcx Dead 424.63 Kn PhiMnx Dead 34.79 Kn-m PhiVnx Dead 88.35 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 1.00 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.94 < 1 OK$

Deflection at top under service lateral loads = 80.17 mm < 93.67 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 600 mm Pile Diameter

L= 2500 mm Pile embedment length

f1 = 5700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 54.15 Kn-m Shear Wind = 9.50 Kn

Pile Properties

Safety Factory 0.55

Hu = 16.98 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 56.92 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.95 < 1 OK

End Pole Design

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1950 mm Pile embedment length

fl = 5700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 11.8625 m^2

Moment Wind = 27.08 Kn-m Shear Wind = 4.75 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.64 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 28.42 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.95 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1950 mm Pile embedment length

f1 = 5700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 27.08 Kn-m Shear Wind = 4.75 Kn

Pile Properties

Safety Factory

Hu = 8.64 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 28.42 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.95 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2500) x Ks(1.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2500)

Skin Friction = 50.48 Kn

Weight of Pile + Pile Skin Friction = 53.98 Kn

Uplift on one Pile = 25.86 Kn

Uplift is ok