Appendix B.

Exploratory Factor Analysis (EFA) of the EmpathiSEr-P Scale: Initial Three-Factor Solution

This appendix contains further details regarding the initial three-factor solution from the EFA of the EmpathiSEr-P scale which includes all the 37 items of the scale. EFA was conducted using **Principal Axis Factoring (PAF)** and an **oblique rotation method (Direct Oblimin)**.

PAF was chosen over Principal Component Analysis (PCA) because the goal was to identify underlying latent constructs (i.e., psychological dimensions of empathy) rather than merely reduce data into uncorrelated components. While PCA treats all variance (common, unique, and error) as meaningful, PAF focuses only on shared variance among items, which is more appropriate for construct identification.

Direct Oblimin rotation was used instead of an orthogonal method like Varimax because the dimensions of empathy such as cognitive, emotional, and behavioural aspects, are theoretically expected to be correlated rather than independent. Oblique rotation allows for these correlations to emerge in the factor solution, enabling a more accurate and psychologically meaningful representation of the underlying factor structure.

SPSS 29 was used for conducting this analysis.

Table of Contents

Kaiser-Meyer-Olkin (KMO) measure and Bartlett Test of Sphericity	3
Communalities	
Scree Plot	
Factor Matrix	-
Pattern Matrix	8
Structure Matrix	9
Factor Correlation Matrix	10

Kaiser-Meyer-Olkin (KMO) measure and Bartlett Test of Sphericity

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measur	.915	
Bartlett's Test of Sphericity Approx. Chi-Square		4423.587
	df	666
	Sig.	<.001

The overall **Kaiser-Meyer-Olkin (KMO)** measure of sampling adequacy was 0.915, which is classified as "marvellous" according to Kaiser's criterion. The KMO statistic evaluates the proportion of variance among variables that might be common variance, i.e., variance that could be explained by underlying factors. Values above 0.80 are considered excellent, indicating that the data are highly suitable for factor analysis and that patterns of correlations are compact enough to yield reliable factors.

Bartlett's Test of Sphericity assesses whether the observed correlations between items are significantly different from zero (i.e., whether the correlation matrix significantly differs from an identity matrix). An identity matrix is one in which variables are completely uncorrelated, which would make factor analysis inappropriate. In simpler terms, Bartlett's test checks whether there is enough shared variance among items to justify reducing the dataset into underlying latent factors. A statistically significant result (typically p < .05) indicates that the correlations between variables are sufficiently large for factor analysis to proceed. In this study, Bartlett's Test of Sphericity was statistically significant, $X^2(666) = 4423.587$, p < .001, meaning that the items were meaningfully interrelated and thus suitable for uncovering a factor structure.

Communalities

Communalities

emp_p1 emp_p2 emp_p3 emp_p4	.406 .515 .700 .671	.283 .421 .575
emp_p3	.700 .671	.575
	.671	
emp_p4		554
	.263	.007
emp_p5		.125
emp_p6	.621	.458
emp_p7	.597	.467
emp_p8	.546	.367
emp_p9	.299	.242
emp_p10	.512	.499
emp_p11	.730	.564
emp_p12	.723	.523
emp_p13	.501	.422
emp_p14	.416	.374
emp_p15	.359	.327
emp_p16	.643	.610
emp_p17	.634	.527
emp_p18	.624	.611
emp_p19	.482	.254
emp_p20	.614	.562
emp_p21	.401	.361
emp_p22	.627	.489
emp_p23	.615	.504
emp_p24	.497	.360
emp_p25	.351	.314
emp_p26	.334	.116
emp_p27	.490	.442
emp_p28	.387	.243
emp_p29	.643	.539
emp_p30	.678	.635
emp_p31	.522	.439
emp_p32	.742	.607
emp_p33	.682	.525
emp_p34	.297	.178
emp_p35	.511	.372
emp_p36	.405	.327
emp_p37 Extraction Met	.680	.601

Extraction Method: Principal Axis Factoring.

Communalities in PAF represent the proportion of an item's variance that is explained by the common factors, i.e., the shared variance among items, excluding unique variance and measurement error. PAF focuses specifically on the variance that is common across items, making it more appropriate for identifying underlying latent constructs such as empathy dimensions. In this analysis, the initial communalities reflect the estimated shared variance, while the extracted communalities show how much of that shared variance is accounted for by the final three-factor solution. Higher extracted communalities (e.g. > .40) suggest that the items are well-represented by the factors identified in the EmpathiSEr-P scale.

Total Variance Explained

Total Variance Explained

							Rotation Sums of Squared
		Initial Eigenvalu			Sums of Squar		Loadings a
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	12.111	32.733	32.733	11.599	31.348	31.348	10.958
2	3.197	8.642	41.375	2.618	7.076	38.423	4.93
3	2.172	5.869	47.244	1.598	4.319	42.742	3.232
4	1.868	5.049	52.293				
5	1.145	3.095	55.387				
6	1.106	2.990	58.378				
7	1.006	2.718	61.096				
8	.918	2.482	63.578				
9	.916	2.475	66.054				
10	.825	2.231	68.284				
11	.771	2.084	70.369				
12	.751	2.029	72.398				
13	.712	1.925	74.323				
14	.700	1.891	76.214				
15	.679	1.834	78.048				
16	.660	1.783	79.831				
17	.602	1.627	81.459				
18	.537	1.451	82.909				
19	.524	1.416	84.325				
20	.517	1.398	85.723				
21	.493	1.332	87.055				
22	.482	1.302	88.358				
23	.456	1.232	89.589				
24	.431	1.166	90.755				
25	.409	1.107	91.862				
26	.362	.978	92.840				
27	.347	.938	93.778				
28	.325	.879	94.657				
29	.310	.837	95.494				
30	.279	.753	96.247				
31	.251	.679	96.926				
32	.240	.648	97.574				
33	.206	.558	98.132				
34	.204	.550	98.683				
35	.174	.471	99.154				
36	.174	.471	99.606				
37	.146	.452	100.000				

Extraction Method: Principal Axis Factoring.

Total Variance Explained refers to the proportion of common variance in the data accounted for by each factor extracted during the EFA. This table displays the eigenvalues and the percentage of variance explained by each factor after extraction, i.e., the amount of shared variance among items that each factor captures. It also presents the cumulative variance, showing how much of the total common variance is explained by the solution as a whole. A higher cumulative variance indicates a more comprehensive and effective factor structure. In this study, the initial three-factor solution explains 47.244% of the total common variance, suggesting that the factors adequately capture the underlying structure of the EmpathiSEr-P scale.

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.

Scree Plot

Scree Plot is a visual tool used in EFA to help determine the optimal number of factors to retain. It displays the eigenvalues associated with each factor on the y-axis, plotted against the factor number on the x-axis. The key point of interest in the scree plot is the "elbow" or inflection point, the point at which the slope of the curve noticeably levels off. Factors above this elbow typically have higher eigenvalues and are considered meaningful, while those below represent smaller amounts of variance and are often interpreted as noise or less substantive factors. In this study, the scree plot suggested two to four factor solutions, as the curve began to flatten after the fifth factor, supporting the choice of the exploratory factor solutions of the EmpathiSEr-P scale.

Factor Matrix

Eactor	Matrixa

	Factor Matrix				
		Factor			
	1	2	3		
emp_p1	481				
emp_p2	.614				
emp_p3	.700				
emp_p4	.696				
emp_p5		.315			
emp_p6	662				
emp_p7	.664				
emp_p8	.570				
emp_p9	328	.367			
emp_p10	451	.344	.422		
emp_p11	.737				
emp_p12	.701				
emp_p13	.323	.487			
emp_p14	333	.391	.332		
emp_p15			489		
emp_p16	.570	.316	430		
emp_p17	.681				
emp_p18	.555	.447	320		
emp_p19	496				
emp_p20	.728				
emp_p21	341	.412			
emp_p22	.682				
emp_p23	.704				
emp_p24	.542				
emp_p25		.471			
emp_p26					
emp_p27	494	.435			
emp_p28	432				
emp_p29	.597	.405			
emp_p30	.664	.425			
emp_p31	579				
emp_p32	.730				
emp_p33	.686				
emp_p34					
emp_p35	.604				
emp_p36	497				
emp_p37	.770				
Extraction Method: Principal Axis Factoring					

Extraction Method: Principal Axis Factoring.

a. 3 factors extracted. 5 iterations required.

Factor Matrix shows the factor loadings, which represent the correlations between each item and the extracted factors before rotation. These loadings indicate the extent to which each item is associated with each underlying factor. Higher absolute values (typically above 0.4) suggest a stronger relationship between the item and the factor. However, because this matrix reflects unrotated loadings, the interpretation may be less clear if multiple factors are present and items load on more than one factor. For this reason, rotated solutions (e.g., pattern matrix) is generally used for final interpretation. This unrotated factor matrix is included for completeness and to illustrate how items initially aligned with the emerging factor structure prior to rotation.

Pattern Matrix

Pattern	Matrix

Pattern Matrix"			
		Factor	
	1	2	3
emp_p1	458		
emp_p2	.650		
emp_p3	.790		
emp_p4	.759		
emp_p5			
emp_p6	529		
emp_p7	.662		
emp_p8	.628		
emp_p9		.365	
emp_p10		.663	
emp_p11	.658		
emp_p12	.637		
emp_p13			582
emp_p14		.614	
emp_p15			563
emp_p16			638
emp_p17	.563		343
emp_p18	.361		629
emp_p19	461		
emp_p20	.703		
emp_p21		.592	
emp_p22	.666		
emp_p23	.656		
emp_p24	.470		
emp_p25		.494	
emp_p26		.330	
emp_p27		.520	
emp_p28		.319	
emp_p29	.511		462
emp_p30	.584		472
emp_p31	306	.465	
emp_p32	.790		
emp_p33	.747		
emp_p34		.398	
emp_p35	.460		
emp_p36	538		
emp_p37	.714	al Axis Factor	

Extraction Method: Principal Axis Factoring. Rotation Method: Oblimin with Kaiser

a. Rotation converged in 14 iterations.

Pattern Matrix presents the rotated factor loadings from the EFA, showing the unique contribution of each item to each factor after rotation (in this case, direct oblimin). These loadings represent the partial regression coefficients of each item on the factors, indicating the strength and direction of the relationship while controlling for other factors. Higher absolute values (commonly above 0.3) suggest that an item strongly loads on that factor, meaning it is a good indicator of the underlying construct represented by that factor. Because direct oblimin rotation allows factors to correlate, the pattern matrix provides a clearer and more interpretable structure by separating overlapping variance between factors. The pattern matrix is typically used to decide which items belong to which factors, aiding in interpreting and naming the factors.

Structure Matrix

	Matrix

	Structure Matrix			
		Factor		
	1	2	3	
emp_p1	490	.329		
emp_p2	.643			
emp_p3	.743			
emp_p4	.729			
emp_p5		.320		
emp_p6	632	.455		
emp_p7	.674			
emp_p8	.603			
emp_p9	301	.439		
emp_p10	315	.674		
emp_p11	.728	438		
emp_p12	.698	427		
emp_p13			621	
emp_p14		.606		
emp_p15			541	
emp_p16	.459		692	
emp_p17	.644		454	
emp_p18	.478		700	
emp_p19	496			
emp_p20	.729		314	
emp_p21		.600		
emp_p22	.694	333		
emp_p23	.703	343		
emp_p24	.536	420		
emp_p25		.529		
emp_p26				
emp_p27	435	.617		
emp_p28	392	.422		
emp_p29	.563		563	
emp_p30	.633		587	
emp_p31	498	.578		
emp_p32	.762			
emp_p33	.722			
emp_p34		.418		
emp_p35	.565	378		
emp_p36	530			
emp_p37	.767	370		
	Method: Princ			

Extraction Method: Principal Axis Factoring Rotation Method: Oblimin with Kaiser Normalization.

Structure Matrix displays the correlations between each item and the extracted factors in the EFA. While the pattern matrix provides a clear simple structure with items loading distinctly on single factors, the structure matrix often shows cross-loadings because it represents the total correlations between items and factors, including shared variance from factor inter-correlations. In other words, even if an item loads primarily on one factor in the pattern matrix, it can still correlate moderately with other factors in the structure matrix due to factor correlations allowed by the oblique rotation method. This difference highlights why the pattern matrix is generally preferred for determining factor membership, whereas the structure matrix offers insight into the broader relationships among items and factors.

Factor Correlation Matrix

Factor Correlation Matrix

Factor	1	2	3
1	1.000	368	197
2	368	1.000	4.477e-5
3	197	4.477e-5	1.000

Extraction Method: Principal Axis Factoring. Rotation Method: Oblimin with Kaiser

Normalization.

The Factor Correlation Matrix shows the degree of correlation between the extracted factors in the final solution. Since an oblique rotation method (Direct Oblimin) was used in the analysis, it allows the factors to be correlated rather than assuming they are completely independent (as in orthogonal rotations). The values in this matrix indicate how much the factors relate to each other. For example, a moderate to high correlation suggests that the constructs measured by the factors may share some underlying conceptual overlap, which is expected in psychological constructs like empathy.