## **Computational Thinking**

## A brief summary of Week 1

Variable: "A variable is a symbol which is used to represent a varying expression or quantity."

OR

"A variable is a symbol used for representing an unspecified/unknown term."

**Example:** 1. Counting number of cards present in the "Scores" dataset.

For that we created a variable called **Count** and **initialized** it to **0**. Then we add one to **Count** as we move a card from pile 1 to pile 2.

**Count** = 0 + 1 = 1

**Iteration**: "Repetition of a process"

OR

"Iteration is the repetition of a process in order to generate a sequence of outcomes"

**Example**: In the previous example we saw that every time we move cards from pile 1 to pile 2, we add one to variable **Count**. This is nothing but an iteration.

Filtering: "Some specific decision"

OR

"In an iteration if we are only interested in specific item/data which are special to us and not all items."

Example: If we want to only count students from Chennai. In this case also we will move all cards from pile 1 to pile 2 but we will add one to variable **Count** only when we find students from Chennai.

**Multiple filtering**: For example if we want to find number of female students from Chennai.

Filters: (i) Checking gender: Male/Female

(ii) Checking City/Town

So, here total two filters are required to get the number of female students from Chennai.

Flowchart: "Pictorial representation of an algorithm"

OR

"A flowchart is a step-by-step diagrammatic representation using some defined shaped boxes to solve a task."

**Rectangular box: Process or activity:** Set of operations that change the value of data/variables



**Arrow: Flowline**: Shows the order of execution of the program steps



**Diamond: Decision:** Determines which path/direction the program will take (True/False)



**Oval shaped box: Terminal:** Indicates the start or end of the program.



**Datatypes:** (Lecture 1.7): "Defines the values that the variable can take, and the set of operations that are permitted."

**Basic datatypes:** 

**Boolean datatype: Range:** Has only two values: **True** and **False** 

**Operation:** AND, OR (Result type: Boolean)

Result will be Boolean type either **True** or **False** 

**Example:** 

If (X.Gender == 'M' AND X.City/Town == "Chennai")

If (X.Gender == 'M' OR X.City/Town == "Chennai")

Integer datatype: Range: ...., -3, -2, -1, 0, 1, 2, 3,.....

**Operation:** +, -, x, / (Result type: Integer) <, >, == (Result type: Boolean)

Character datatype: Range: All alphanumeric: A, B,....Z, a, b,....,z, 0, 1,....,9

Special characters: ., \$, #, @, .....

**Operation**: == (Result type: Boolean)

**Example:** 'C', '1', '#', 'M', 'F'

**String: Range:** Any **sequence of characters** 

**Operation**: == (Result type: Boolean)

**Example:** "IIT Madras", "21F00055", "can@1#23"

**Subtype of basic datatypes:** "Restrict the basic datatypes in terms of their ranges and constrained on their operations"

Examples: **Seq. No.**: Ranges: 0, 1, 2, ..., Max (some reasonable number)

Operation: None of the integer operations make sense

: Boolean operations such as "==" can be performed

**Marks:** Ranges: 0, 1, ...., 100

Operation: Integer operation such as +, -

## **Transformation of sub-datatypes:**

**Date**: 15 Jan : It is a string datatype.

Questions: What will be the date after 3 days?

We assume, 1 Jan: 0

2 Jan: 1

3 Jan : 2

-----

15 Jan: 14

-----

18 Jan: 17

-----

31 Dec: 364 (for non-leap year)



**Marks:** Physics marks = 80.5

Mathematics marks = 90.5

We want to add the above two subject marks.

Then we performed integer operation, 8050 + 9050 = 17100

After that we need to bring back in original form by using "**print**" (defined in lecture)

print(17100) = 171.00

## **Lists and Records:**

**List:** "A sequence of data elements of same or may be of different datatypes" Example: (i) Subject marks obtained by **Clarence:** [63, 88, 73]

(ii) Details of Clarence: [9, "Clarence", 'M', "6 Dec", "Bengaluru", 63, 88, 73, 224]

**Record:** "Stores data with multiple fields: each of which has a **name** and a **value**" Example: A card of the Scores dataset.

{"Seq. No.": 9, "Name": "Clarence", "DoB": "6 Dec", "Town/City": "Bengaluru", "Mathematics": 63, "Physics": 88, "Chemistry": 73, "Total": 224}

