Reinforcement Learning

A (Fully Deterministic) World

World

A policy is a mapping from State => Action. Normally denoted as $\pi(x)=a$ "What action do I make if I find myself in a particular place?"

Possible Questions.

- 1. If I am in state X. What is the value of following a particular policy?
- 2: What is the best policy?

World

- Set of states S
- Set of actions A
- At each time, agent observes state s_t ∈ S, then chooses action a_t ∈ A
- Then receives reward r_t, and state changes to s_{t+1}
- Markov assumption: P(s_{t+1} | s_t, a_t, s_{t-1}, a_{t-1}, ...) = P(s_{t+1} | s_t, a_t)
- Also assume reward Markov: P(r_t | s_t, a_t, s_{t-1}, a_{t-1},...) = P(r_t | s_t, a_t)

Long Term Reward

Total Reward: Reward is discounted by the time I obtained it $value = \sum_{i} \gamma^{t} r_{t}$; $\gamma = 0.8$

$$value = \sum_{t} \gamma^{t} r_{t}; \gamma = 0.8$$

Long Term Reward

Total Reward: Reward is discounted by the time I obtained it

$$value = \sum_{t} \gamma^{t} r_{t}; \gamma = 0.8$$

We can Reuse Computation!

Value of a Policy if I run for 0 time steps

Value of a Policy if I run for 1 time step

Value of a Policy if I run for 2 time steps

Value of a Policy if I run for 3 time steps

Value Iteration

$$V_{\pi}^{t+1}(x) = R(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, a = \pi(x)) V_{\pi}^{t}(x')$$

Immediate reward of following policy Discounted future reward

Find BEST Policy

Ask the question in a slightly different way. What is the Value of the Best Policy?

$$V_{\pi}^{t+1}(x) = R(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, a = \pi(x)) V_{\pi}^{t}(x')$$

Immediate reward of following policy Discounted future reward

$$V^*(x) = \max_{a'} R(x, a') + \gamma \sum_{x'} P(x'|x, a = a') V^*(x')$$

Immediate reward of following policy Discounted future reward

Find BEST Policy

What is the Value of the Best Policy?

$$V^*(x) = \max_{a'} R(x, a') + \gamma \sum_{x'} P(x'|x, a = a') V^*(x')$$

Immediate reward of following policy Discounted future reward

$$\pi^{\star}(x) = \operatorname{argmax}_{a'} R(x, a') + \gamma \sum_{x'} P(x'|x, a = a') V^{\star}(x')$$

The optimal policy is optimal at every state!

Backgammon

Learning task:

chose move at arbitrary board states

Training signal:

final win or loss

Training:

played 300,000 games against itself

Algorithm:

reinforcement learning + neural network

Result:

World-class Backgammon player

Something is wrong here...

Backgammon Dealing with huge state spaces

Estimate $V^*(x)$ instead of $\Pi(x)$ Approximate $V^*(x)$ using a neural net

$$V^{\star}(x) = \max_{a'} R(x,a') + \gamma \sum_{x'} P(x'|x,a=a') V^{\star}(x')$$
 0 except when you win or lose

Can be estimated from our current network In this case, P(x'|x,a=a') is 0 or 1 for all x'

Since V* is a neural net, we can't 'set' the value V*(x) Instead, use target V*(x) as a training example for the NN

Can't visit every state, so instead play games against yourself to visit the most likely ones.

Unknown World

Do not know the transitions. Do not know the probabilities. Do not know the rewards.

Only know a state when we actually get there!

Possible Questions.

- 1: I am in state X. What is the value of following a particular policy?
- 2: What is the best policy?

Value of Policy

If I know the rewards:

$$V_{\pi}^{t+1}(x) = R(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, a = \pi(x)) V_{\pi}^{t}(x')$$

If I do not know the rewards:

$$V_{\pi}^{t+1}(x_{t}) = \alpha (r_{t} + \gamma (V_{\pi}^{t}(x_{t+1}))) + (1 - \alpha) V_{\pi}^{t}(x_{t})$$

Learning a Policy: Q Learning

Define Q which estimates both values and rewards:

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

Where $\delta(s,a)$ is the result of taking action a in state s

Learning a Policy: Q Learning

Estimate Q the same way we estimated V

$$V_{\pi}^{t+1}(x_{t}) = \alpha (r_{t} + \gamma (V_{\pi}^{t}(x_{t+1}))) + (1 - \alpha) V_{\pi}^{t}(x_{t})$$

$$Q^{t+1}(x_t, a_t) = \alpha(r_t + \gamma(max_a, Q^t(x_{t+1}, a'))) + (1 - \alpha)Q^t(x_t, a_t)$$

$$\gamma = .8, \alpha = .5$$

$$\gamma = .8, \alpha = .5$$

$$\gamma = .8, \alpha = .5$$

$$\gamma = .8, \alpha = .5$$

$$\gamma = .8, \alpha = .5$$

$$\gamma = .8, \alpha = .5$$

 \hat{Q} converges to Q. Consider case of deterministic world where see each $\langle s, a \rangle$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $\langle s, a \rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n ; that is

$$\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|$$

For any table entry $\hat{Q}_n(s, a)$ updated on iteration n+1, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s',a'))| - (r + \gamma \max_{a'} Q(s',a'))|$$

$$= \gamma |\max_{a'} \hat{Q}_n(s',a') - \max_{a'} Q(s',a')|$$

$$\leq \gamma \max_{a'} |\hat{Q}_n(s',a') - Q(s',a')|$$

$$\leq \gamma \max_{s'',a'} |\hat{Q}_n(s'',a') - Q(s'',a')|$$

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| \leq \gamma \Delta_n$$

Use general fact: $|\max_a f_1(a) - \max_a f_2(a)| \le$ $\max_a |f_1(a) - f_2(a)|$