

Course Title : Digital Logic Design

Course Code : CSE345

Section : (03)

Semester : Summer 2021

Project Report

Project Name: 4-bit Binary to Even Parity Code Converter.

Submitted To

Musharrat Khan
Senior Lecturer
Department of Computer Science and Engineering
East West University

Submitted By

Name: Md. Jannatul Haq ID: 2018-1-60-224

Submission Date

12/09/2021

1. Problem Statement

A 4-bit code converter for even parity converts the 4-bit input to 5-bit output so that even parity is ensured.

2. Design Details

Truth Table:

ABCD	F
0000	0
0001	1
0010	1
0011	0
0100	1
0101	0
0110	0
0111	1
1000	1
1001	0
1010	0
1011	1
1100	0
1101	1
1110	1
1111	0

So,

$$F = A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + ABC'D + ABCD' + AB'C'D' + AB'CD$$

$$= A'B' (C'D + CD') + A'B (C'D' + CD) + AB (C'D + CD') + AB' (C'D' + CD)$$

$$=$$
 A'B' (C XOR D) + A'B (C XNOR D) + AB (C XOR D) + AB' (C XNOR D)

$$= (C XOR D) (A'B' + AB) + (C XNOR D) (A'B + AB')$$

$$=$$
 (C XOR D) (A XNOR B) $+$ (C XNOR D) (A XOR B)

$$=$$
 (A XNOR B) (C XOR D) $+$ (A XOR B) (C XNOR D)

Assuming,

$$x = (A XOR B),$$

$$y = (C XOR D)$$

So,

$$\mathbf{F} = \mathbf{x'y} + \mathbf{xy'}$$

$$= x XOR y$$

$$=$$
 (A XOR B) XOR (C XOR D)

3. Circuit Diagram:

4. Structural and Behavioral Verilog Code and Simulation Results:

Structural Verilog Code:

```
module evenParity(input A,B,C,D, output F);
wire w1,w2;
xor g1(w1,A,B),
    g2(w2,C,D);
xor g3(F,w1,w2);
endmodule
```

Simulation Result:

Procedural Model:

```
module evenParity(input A, B, C, D, output reg F);
always @(A, B, C, D)begin
F=0;
if(~A&~B&~C&D) F=1;
if(~A&~B&C&~D) F=1;
if(~A&B&~C&~D) F=1;
if(A&B&~C&D) F=1;
if(A&B&C&D) F=1;
if(A&B&C&D) F=1;
if(A&B&C&~D) F=1;
if(A&B&C&~D) F=1;
end
endmodule
```

Simulation Result:

Continuous Assign Statement:

module evenParity(input A,B,C,D, output F);

assign

$$\begin{split} F &= (\sim &A \& \sim B \& \sim C \& D) \mid (\sim A \& B \& \sim C \& \sim D) \mid (\sim A \& B \& \sim C \& \sim D) \mid (\sim A \& B \& C \& \sim D) \mid (A \& B \& \sim C \& \sim D) \mid (A \& \sim B \& \sim C \& \sim D) \mid (A \& \sim B \& C \& \sim D); \end{split}$$

endmodule

Simulation Result:

