Fundamental Models

Viet Duc Nguyen

August 4, 2024

1 Operations on Outcomes

Proposition 1. The sum of two outcomes is an outcome.

Proof. Let $w, v \in \mathbb{Z}^{V_d}$ be outcomes. Let p be a pascal form. Then p(w+v) = p(v) + p(w) = 0 because p(w) = 0 and p(v) = 0. This proves that w + v is an outcome.

Definition 2. Let $w \in \mathbb{Z}^{V_d}$ be an outcome. Let $v \in \mathbb{Z}^{d+2}$ be some vector. We define $[v \mid w]$ to be the configuration obtained by left-appending v to w in the following way:

Bottom-appending $\begin{bmatrix} w \\ v \end{bmatrix}$ is defined in the following way:

Proposition 3. Left-appending the vector $v = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{Z}^{d+2}$ to a valid outcome $w \in \mathbb{Z}^{V_d}$ with $w_{00} = -1$ yields a valid outcome.

Proof. We consider diagonal pascal forms in $\mathbb{Z}^{V_{d+2}}$ to show that $[v \mid w]$ is an outcome. Let p_k be the k-th diagonal pascal form. The case k = 0 is clear since $p_0([v \mid w]) = 0$ is easy to be seen. For $k = 1, \ldots, d+1$, we have

$$p_k([v \mid w]) = -\binom{d+1}{k} + \binom{d}{k} + \sum_{(i,j) \in V_{d+1}, i > 0} \binom{d+1-(i+j)}{k-i} w_{i-1,j}$$
$$= -\binom{d+1}{k} + \binom{d}{k} + \sum_{(i,j) \in V_d} \binom{d-i-j}{k-(i+1)} w_{i,j}.$$

By substituting $k = \tilde{k} + 1$ we obtain that

$$\sum_{(i,j)\in V_d} {\binom{d-i-j}{\tilde{k}-i}} w_{i,j} = {\binom{d}{\tilde{k}}} \quad \forall \tilde{k} = 0, \dots, d$$

since w is an outcome. Plugging this expression back into $p_k([v \mid w])$ and using Pascal's rule yields $p_k([v \mid w]) = 0$. Hence, $[v \mid w]$ is an outcome.

Finally, $[v \mid w]$ is clearly valid because w is valid. \Box

Corollary 4. Left-appending the vector $v = \begin{bmatrix} w_{00} & 1 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{Z}^{d+2}$ to a valid non-initial outcome $w \in \mathbb{Z}^{V_d}$ yields a valid outcome.

Proof. The proof is similar to the previous one except that we carry some coefficient w_{00} through the calculations.

Corollary 5. Bottom-appending the vector $v = \begin{bmatrix} w_{00} & 1 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{Z}^{d+2}$ to a valid non-initial outcome $w \in \mathbb{Z}^{V_d}$ yields a valid outcome.

Proof. We use symmetry. \Box

2 Binomial Models are Fundamental

Fix some degree $d \in \mathbb{Z}_{>0}$.

Definition 6. Define $T_d = \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid i + j = d\}.$

Lemma 7. Let $w \in \mathbb{Z}^{V_d}$ be a nonzero valid outcome. If $\operatorname{supp}^+(w) \subset T_d$, then we have equality, i.e. $\operatorname{supp}^+(w) = T_d$.

Proof. Fix some vertex $(i,j) \in T_d$. Define p to be the i-th diagonal pascal form. Since w is an outcome, we have that $p(w) = p_{0,0}w_{0,0} + p_{i,j}w_{i,j} = 0$. This is only the case if $w_{i,j} > 0$ because w is nonzero and valid. Hence, $T_d \subset \operatorname{supp}^+(w)$.

Proposition 8. Binomial configurations are fundamental.

Proof by Contradiction. Let $w \in \mathbb{Z}^{V_d}$ be a binomial configuration. Suppose w is not fundamental, i.e. $w = \alpha x + \beta y$ for valid outcomes x and y with $\operatorname{supp}^+(x), \operatorname{supp}^+(y) \subsetneq \operatorname{supp}^+(w) = T_d$ and positive $\alpha, \beta \in \mathbb{Q}_{>0}$. If x = 0, then $y = \beta^{-1}w$. Otherwise by the previous Lemma, we have $\operatorname{supp}^+(x) = T_d$. In either case, we have a contradiction to $\operatorname{supp}^+(x), \operatorname{supp}^+(y) \subsetneq T_d$.

Example 9. Here is an example of a binomial configuration.

```
1
* 3
* * 3
-1 * * 1
```

3 Invariant Operations

Proposition 10. Let $w \in \mathbb{Z}^{V_d}$ be a fundamental outcome. Then, λw is fundamental for all $\lambda \in \mathbb{Q}_{>0}$.

Proof by Contraposition. Assume λw is not fundamental. Then, $\lambda w = \alpha x + \beta y$ for positive $\alpha, \beta \in \mathbb{Q}_{>0}$ and valid outcomes x, y with $\operatorname{supp}^+(x), \operatorname{supp}^+(y) \subsetneq \operatorname{supp}^+(\lambda w)$. Write $w = \frac{\alpha}{\lambda} x + \frac{\beta}{\lambda} y$, which shows that w is not fundamental. \square

Proposition 11. Let $w \in \mathbb{Z}^{V_d}$ be a fundamental outcome, and let $v \in \mathbb{Z}^{V_d}$ be a valid outcome. If $\operatorname{supp}^+(w) = \operatorname{supp}^+(v)$, then $v = \lambda w$ for some $\lambda \in \mathbb{Q}_{>0}$.

Proof. Assume that $\operatorname{supp}^+(w) = \operatorname{supp}^+(v)$. Then there exist fundamental statistical models $\mathcal{M}_1 = (w_v, i_v, j_v)_{v=0}^n$ and $\mathcal{M}_2 = (w_v', i_v, j_v)_{v=0}^n$ that are associated to w and v respectively. Since \mathcal{M}_1 is fundamental, the values $(w_v)_{v=0}^n$ are uniquely determined given the values $(i_v, j_v)_{v=0}^n$. Thus, we conclude that $w_v' = w_v$ for all v = 0, ..., n. The rest follows from Proposition 4.5.

Corollary 12. Let $w \in \mathbb{Z}^{V_d}$ be a fundamental outcome, and let $v \in \mathbb{Z}^{V_d}$ be a valid outcome. If $\operatorname{supp}^+(w) = \operatorname{supp}^+(v)$, then v is fundamental.

Next, we show that certain unsplitting moves preserve the fundamental property.

Example 13. Consider the fundamental outcome below.

```
1
* 3
* * 3
-1 * * 1
```

An unsplitting move at vertex (0,2) yields the outcome below.

```
*
1 2
* * 3
-1 * * 1
```

This outcome is fundamental as we will show in the next proposition.

Proposition 14. Let $w \in \mathbb{Z}^{V_d}$ be a fundamental integral outcome. Let u be an unsplitting move at vertex (i,j). If u(w) is valid and $|\operatorname{supp}^+(u(w))| = |\operatorname{supp}^+(w)|$, then u(w) is fundamental.

Proof by Contradiction. Let $w \in \mathbb{Z}^{V_d}$ be fundamental. For the sake of contradiction, assume u(w) is not fundamental, i.e. $u(w) = \alpha x + \beta y$ for valid outcomes x and y with $\operatorname{supp}^+(x), \operatorname{supp}^+(y) \subsetneq \operatorname{supp}^+(u(w))$. If we denote the splitting move at vertex (i,j) by s, then $w = s(u(w)) = s(\alpha x + \beta y) = \alpha s(x) + \beta y = \alpha x + \beta s(y)$.

Without loss of generality, we assume that s(x) is valid, the reason being that u(w) is valid, which implies $w_{i,j} \geq 1$, and in turn $x_{i,j} \geq 1$ or $y_{i,j} \geq 1$. Thus, we found a decomposition $w = \alpha s(x) + \beta y$ into valid outcomes.

Further examination of this decomposition reveals that $\operatorname{supp}^+(y) \subsetneq \operatorname{supp}^+(w)$ because $|\operatorname{supp}^+(u(w))| = |\operatorname{supp}^+(w)|$ leads to one of the following three cases: (A) we have $\operatorname{supp}^+(u(w)) = \operatorname{supp}^+(w)$, or (B) we have $w_{i,j} = 0$ and $w_{i,j+1} = 1$, which implies $(s(x))_{i,j}$, so $(s(x))_{i,j} = 1$ and therefore $y_{i,j} = 0$.

Left-appending is also an invariant operation.

Proposition 15. Left-appending the unit vector $\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{Z}^{d+2}$ to a fundamental outcome $w \in \mathbb{Z}^{V_d}$ yields a fundamental outcome.

Proof. \Box