Computational Methods of Optimization First Midterm(7th Dec, 2020)

Time: 60 minutes

Instructions

- $\bullet\,$ Answer all questions
- $\bullet\,$ See upload instructions in the form

In the following, assume that f is a C^1 function defined from $\mathbb{R}^d \to \mathbb{R}$ unless otherwise mentioned. Let $\mathbf{I} = [e_1, \dots, e_d]$ be a $d \times d$ matrix with e_j be the jth column. Also $\mathbf{x} = [x_1, x_2, \dots, x_d]^{\top} \in \mathbb{R}^d$ and $\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}}\mathbf{x}$. Set of real symmetric $d \times d$ matrices will be denoted by \mathcal{S}_d . [n] will denote the set $\{1, 2, \dots, n\}$

- 1. (10 points) Please indicate True(T) or False(F) in the space given after each question. All questions carry equal marks
 - (a) Let a < b where $a, b \in \mathbb{R}$ and $h : [a, b] \to \mathbb{R}$ be differentiable and satisfies h(a) = h(b). Then h has a critical point in (a, b). $\underline{\mathbf{T}}$
 - (b) Suppose the function defined in the previous question satisfies $|h(x) h(y)| \le 1|x y|$ for all $x, y \in (a, b)$. There could exist a point in (a, b) such that $h'(x) \ge 2$, where h'(x) is derivative of h at x. **F**
 - (c) If f is a coercive function then the global minimum must lie at one of the critical points. Recall that a critical point is a point, \mathbf{x} , such that $\nabla f(\mathbf{x}) = 0$. \mathbf{T}
 - (d) Consider $g: \mathbb{R} \to \mathbb{R}, g(u) = u^2 \frac{1}{3}u^3$. The function has a global minimum. **F**
 - (e) The local maximum of g(defined in the previous question) is at u=0. **F**
 - 2. Let $f: S \subset \mathbb{R}^d \to \mathbb{R} \in \mathcal{C}^2$ function. Let $H(\mathbf{x})$ be the Hessian of f with eigenvectors denoted by columns of $U \in \mathbb{R}^{d \times d}$
 - (a) (2 points) Consider $S = \{\mathbf{x} | \mathbf{x} = \mathbf{x}^* + \mathbf{U}\mathbf{v}, \mathbf{v} \in \mathbb{R}^d\}$. \bar{S} , the complement of the set S, is not empty. True or False. Justify with reasons.

Solution: False. The eigenvectors of $H(\mathbf{x}^*)$ form a basis of \mathbb{R}^d and hence $S = \mathbb{R}^d$. Thus \bar{S} is empty.

(b) (4 points) The Hessian, $H(\mathbf{x}^*)$ at a stationary point \mathbf{x}^* has one eigenvalue 0 and the rest positive. For any $\mathbf{x} \in S$ with $\mathbf{v} \neq 0$ $f(\mathbf{x}) > f(\mathbf{x}^*)$ is true. Prove or disprove

Solution: Using second order Taylor expansion and noting that \mathbf{x}^* is a critical point

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^\top H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) + o(\|\mathbf{x} - \mathbf{x}^*\|^2)$$

we have $f(\mathbf{x}) - f(\mathbf{x}^*) = \sum_{i=1}^d \lambda_i v_i^2 + o(\|\mathbf{v}\|^2)$. λ_i is an eigenvalue of H and the last term is true because $\|\mathbf{x} - \mathbf{x}^*\| = \|\mathbf{v}\|$. For arbitrary \mathbf{v} , $f(\mathbf{x}) < f(\mathbf{x}^*)$ as the last term can be of any sign. Hence disproved.

(c) (4 points) Suppose $H(\mathbf{x}^*)$ has negative and positive eigenvalues. Construct two distinct points, \mathbf{x}^1 and \mathbf{x}^2 in terms of \mathbf{U} so that

$$f(\mathbf{x}^1) < f(\mathbf{x}^*) < f(\mathbf{x}^2)$$

Solution: There exists a $\delta > 0$ the small oh term can be neglected. Let j and k be such that $\lambda_j < 0 < \lambda_k$. The points $\mathbf{x}^1 = \mathbf{x}^* + tu_j$ and $\mathbf{x}^2 = \mathbf{x}^* + tu_k$ for any non-zero $|t| \le \delta$ satisfy

$$f(\mathbf{x}^1) = f(\mathbf{x}^*) + t^2 \lambda_i < f(\mathbf{x}^*), \text{ and } f(\mathbf{x}^2) = f(\mathbf{x}^*) + t^2 \lambda_k > f(\mathbf{x}^*)$$

and hence they are desired points.

3. Let $f(x) = \sqrt{1 + x^2}, x \in \mathbb{R}$.

(a) (2 points) Find the x^* , global minimum of the problem

Solution:

$$f(x) \ge 1 = f(0)$$
, for all $x \in \mathbb{R}$

(b) (4 points) Let $x^{(k)}$ be the output of the kth iteration of Newton's method applied to f(x). Find a function g such that

$$|x^{(k+1)} - x^*| \le |g(x^{(k)} - x^*)|$$

Solution: Substituting $f'(x) = \frac{x}{f(x)}$, $f''(x) = \frac{1}{(1+x^2)^{3/2}}$ in Newton's method we obtain $g(z) = z - \frac{f'(z)}{f''(z)} = -z^3$.

(c) (4 points) Using the above relationship find largest a so that the Newton's method is most effective for any $x^{(0)} \in (x^* - a, x^* + a)$.

Solution: $|x^{(0)}| \ge 1$ the method diverges otherwise it converges. Hence a = 1.

4. Consider minimizing the function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$

over $\mathbf{x} \in \mathbb{R}^d$ with $Q \in \mathcal{S}_d^+, \mathbf{b} \in \mathbb{R}^d$ using the steepest descent iterates,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \nabla f(\mathbf{x}^{(k)})$$

executed with exact step-size selection strategy. Let $f^* = f(\mathbf{x}^*)$ be the global minimum. Let $g(\mathbf{y}) = f(A\mathbf{x})$ where A is a $d \times d$ natrix. Consider applying steepest descent procedure to g i.e.

$$\mathbf{y}^{(k+1)} = \mathbf{y}^{(k)} - \alpha_k \nabla g(\mathbf{y}^{(k)})$$

and g^* is the global minimum of g attained at \mathbf{y}^* .

(a) (4 points) State the Hessian of f and g. Derive the relationship between \mathbf{x}^* and \mathbf{y}^*

Solution:

$$g(\mathbf{y}) = \frac{1}{2} \mathbf{y}^{\top} A^{\top} Q A \mathbf{y} - b^{\top} A \mathbf{y}$$

Hence Hessian of g is $A^{\top}QA$ but Hessian of f is Q. Note that $\nabla g(\mathbf{y}^*) = A^{\top}QA\mathbf{y}^* - A^{\top}b = 0$ which is same as $A\mathbf{y}^* = \mathbf{x}^*$.

(b) (3 points) What is the convergence rate of the steepest descent procedure for g?

Solution: Let $\kappa = \frac{\mu_1}{\mu_d}$ be the condition number of $A^{\top}QA$ where μ_1 and μ_d are the largest and the smallest eigenvalues. The rate for g is $\left(\frac{\kappa-1}{\kappa+1}\right)^2$.

(c) (3 points) What is the best value of A?

Solution: The best value of A is obtained when $A^{\top}QA = \mathbf{I}$. This is attained at $A^{\top}A = Q^{-1}$.

5. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a $C^{(2)}$ function. Consider the Quasi-newton update

a.
$$s^{(k)} = -G^{(k)} \nabla f(\mathbf{x}^{(k)})$$

b.
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k s^{(k)}$$

c.
$$G^{(k+1)} = G^{(k)} + A^{(k)} E A^{(k)\top}$$

where $\gamma_k = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})$, $\delta_k = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$, and $A^{(k)} = [\delta_k \quad G^{(k)} \gamma^{(k)}]$ and E is a matrix.

(a) (1 point) What is your name

Solution:

(b) (4 points) Find E corresponding to DFP updates.

Solution: DFP Update is

$$G^{(k+1)} = G^{(k)} + \frac{1}{\delta_k^\top \gamma_k} \delta_k \delta_k^\top - \frac{1}{\gamma_k G^{(k)} \gamma_k} G^{(k)} \gamma_k \gamma_k^\top G^{(k)}$$

Hence $E = \begin{bmatrix} c_1 & 0 \\ 0 & -c_2 \end{bmatrix}$ where $c_1 = \frac{1}{\delta_k^{\top} \gamma_k}$ and $c_2 = \frac{1}{\gamma_k^{\top} G^{(k)} \gamma_k}$

(c) (5 points) Show that for exact line search DFP updates yield positive definite matrices.

Solution: The DFP update

$$G^{(k+1)} = G^{(k)} + \frac{1}{\delta_k^{\top} \gamma_k} \delta_k \delta_k^{\top} - \frac{1}{\gamma_k^{\top} G^{(k)} \gamma_k} G^{(k)} \gamma_k \gamma_k^{\top} G^{(k)}$$

The proof for $G^{(k)} - \frac{1}{\gamma_k G^{(k)} \gamma_k} G^{(k)} \gamma_k \gamma_k^{\top} G^{(k)}$ was done in class (2 points). We need to show that $\delta_k^{\top} \gamma_k > 0$. For exact line search

$$\nabla f(\mathbf{x}^{(k+1)})^{\top} \delta_k = 0$$

Thus $\delta_k^{\top} \gamma_k = -\nabla f(\mathbf{x}^{(k)})^{\top} \delta_k \ge 0$ as $\delta_k = \alpha_k s_k$ where s_k is a descent direction.