UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES

INSTITUTO DE FÍSICA

Este programa esta en proceso de aprobación por el Consejo de Facultad (última actualización Fri, 25 Sep 2015 08:15:01 -050). Úselo solamente como fuente de información preliminar. Una versión previa del curso puede encontarse en el enlace:

http://astronomia-udea.co/principal/Curriculo/planes.php

Allí se publicará también la versión definitiva de este semestre una vez este aprobado.

PROGRAMA DE ASTROFÍSICA MODERNA

NOMBRE DE LA MATERIA	Astrofísica Moderna
PROFESOR	Esteban Silva Villa
OFICINA	6-233
HORARIO DE CLASE	MJ16-18
HORARIO DE ATENCIÓN	M13-16

INFORMACIÓN GENERAL

Código de la materia	0311603
Semestre	2015-2
Área	Astronomía
Horas teóricas semanales	6
Horas teóricas semestrales	96
No. de créditos	4
Horas de clase por semestre	96
Campo de Formación	Astrofísica y Comología
Validable	Si
Habilitable	Si
Clasificable	No
Requisitos	Termodinámica (302571)
Corequisitos	Ninguno
Programas a los que se ofrece la materia	Astronomia

INFORMACIÓN COMPLEMENTARIA

Dronócito dal Curas:	Adquirir los conocimientes básicos sebra los terros	
Propósito del Curso:	Adquirir los conocimientos básicos sobre los temas mas importantes de la astronomía y la astrofísica que servirán de base para los cursos avanzados en los cuales se profundizara en cada uno de los temas.	
Justificación:	Dentro del plan de estudios de la carrera de astronomía, este curso es la introducción a los cursos profesionales. Los temas que se tocan en él son de extrema importancia, y servirán al estudiante para empezar a visualizar los temas que se verán el resto de la carrera y en los cuales se hace investigación de punta.	
	Los temas que se tocan en este curso servirán para que los estudiantes, de manera conceptual, tengan unas bases que les ayuden con los desarrollos físicos y matemáticos que se encontrarán a través de la carrera.	
Objetivo General:	Adquirir los conocimientos básicos sobre los temas mas importantes de la astronomía y la astrofísica que servirán de base para los cursos avanzados en los cuales se profundizara en cada uno de los temas.	
Objetivos Específicos:	Estudiar los temas principales de la relatividad especialm la aberracion de la luz, el efecto dopler relativista, además de todos los fenómenos principales de la relatividad especial.	
	Estudiar los temas principales de la radiación de cuerpo negro y sus aplicaciones en astronomía, el diagrama H-R, la relación índice color, los espectros estelares y la ley de Pogson.	
	Estudiar los temas principales de la Mecanica cuantica inclueyndo el efecto compton, la teoria de de Broglie, la ecuacion de Schrodinger y el átomo de hidrógeno.	
	Estudiar los procesos mas importantes de la física que llevaron a la astrofísica moderna y saber ubicarlos en la historia.	
	Estudiar y entender los fenómenos relacionados con la radiación de cuerpo negro y aplicarlos a los casos relevantes de la astrofísica.	
	Estudiar y entender los fenómenos relacionados con la mecánica cuántica y aplicarlos a los casos relevantes de la astrofísica.	
	Reconocer la astrofísica como un área importante de formación e investigación.	
	Reconocer la necesidad e importancia de los resultados observacionales como herramienta de validación de modelos teóricos.	
	Reconocer el desarrollo de modelos teóricos como	

	herramienta necesaria para interpretar de manera sólida las observaciones. Interpretar de manera crítica el lugar de la Astrofísica en la historia de la ciencia.	
Contenido Resumido:	1-Introducción Histórica 2-Relatividad especial 3-La luz de los objetos astronómicos. 4-Fundamentos de mecánica cuántica	

UNIDADES DETALLADAS

Unidad No. 1.

Tema(s) a desarrollar	Introducción Histórica	
	Historia de la astronomía del siglo 16 al siglo 18 Historia de la astronomía del siglo 19 al siglo 20	
	Entender y ubicar los procesos que llevaron a la astro física que vemos hoy a través de la historia.	
No. de semanas que se le dedicarán a esta unidad	1	
BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad		
S. Carrol & D. Ostlie, An Introduction to Modern Astrophysics, Ed. 2, 2006. Jorge Zuluaga, Introducción a la Astrofísica, 1998. R. A. Serway, C. Moses, C. Moyer, Modern Physics, 2005. Jorge Zuluaga, Astrofísica Moderna, Notas de Clases, 2012.		

Unidad No. 2.

Tema(s) a desarrollar	Relatividad especial	
Subtemas	Relatividad especial Efecto Doppler relativista Aberración de la luz Equivalencia Masa-Energia	
	Entender los fenómenos básicos de la relatividad especial y su aplicación a fenómenos relacionados con la astrofísica.	
No. de semanas que se le dedicarán a esta unidad	4	
BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad		
S. Carrol & D. Ostlie, An Introduction to Modern Astrophysics, Ed. 2, 2006. Jorge Zuluaga, Introducción a la Astrofísica, 1998. R. A. Serway, C. Moses, C. Moyer, Modern Physics, 2005. Jorge Zuluaga, Astrofísica Moderna, Notas de Clases, 2012.		

Unidad No. 3.

Tema(s) a desarrollar	La luz de los objetos astronómicos.	
Subtemas	Radiación de Cuerpo Negro. La luz producida por objetos incandescentes. Principios de física estadística. Descripción estadística de la luz.	

	La catástrofe Ultravioleta. El espectro de Planck. Relación entre la luz y las propiedades físicas de los objetos astronómicos. Sistemas fotométricos. El diagrama colormagnitud.
	Entender e interpretar los procesos de la radiación del cuerpo negro y como estos dan información sobre los objetos celestes.
No. de semanas que se le dedicarán a esta unidad	6

BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad

S. Carrol & D. Ostlie, An Introduction to Modern Astrophysics, Ed. 2, 2006.

Jorge Zuluaga, Introducción a la Astrofísica, 1998.

R. A. Serway, C. Moses, C. Moyer, Modern Physics, 2005. Jorge Zuluaga, Astrofísica Moderna, Notas de Clases, 2012.

Unidad No. 4.

Tema(s) a desarrollar	Fundamentos de mecánica cuántica	
Subtemas	Efecto Compton Propagación de la luz en la materia. Las propiedades "corpusculares" de la luz. Ecuación de Schrodinger Pozo de potencial infinito y finito. Efecto túnel y oscilador armónico. Niveles atómicos. Átomo de Hidrogeno	
	Entender como la mecánica cuántica es una manera de entender el mundo que nos rodea, y como esta da una amplia explicación de los fenómenos de las astrofísica.	
No. de semanas que se le dedicarán a esta unidad	5	
RIPLINGDA EÍA RÁSICA correspondiente a esta unidad		

BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad

S. Carrol & D. Ostlie, An Introduction to Modern Astrophysics, Ed. 2, 2006.

Jorge Zuluaga, Introducción a la Astrofísica, 1998.

R. A. Serway, C. Moses, C. Moyer, Modern Physics, 2005.

Jorge Zuluaga, Astrofísica Moderna, Notas de Clases, 2012.

METODOLOGÍA a seguir en el desarrollo del curso:

El uso de clases magistrales es indispensable. Sin embargo, las herramientas que usan diferentes laboratorios, como por ejemplo el laboratorio de Física moderna y Óptica pueden ayudar a los estudiantes en la interpretación de los conceptos que se dictan en el curso.

EVALUACIÓN		
Actividad	Porcentaje	Fecha (día, mes, año)
Dado que la evaluación puede ser variable, se presentará acá una posible separación de las actividades de evaluación:		

Quizes: 4 con un total del 10% Parciales: 3 con un total del 60%

Exposición oral: 1 con un total del 20%

Discusión de articulos: 2 con un total del 10%

Actividades de Asistencia Obligatoria:

Dado el tipo de evaluación, la asistencia sera solamente obligatoria el día de la evaluación.

BIBLIOGRAFÍA COMPLEMENTARIA

Bibliografía básica

S. Carrol & D. Ostlie, An Introduction to Modern Astrophysics, Ed. 2, 2006.

Jorge Zuluaga, Introducción a la Astrofísica, 1998.

R. A. Serway, C. Moses, C. Moyer, Modern Physics, 2005.

Jorge Zuluaga, Astrofísica Moderna, Notas de Clases, 2012.

Otros textos

- T. Padmanabhan, An Invitation to Astrophysics, World Scientific, 2006.
- D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, Cambridge, 2000.
- H. Bradt, Astrophysical Processes, Cambridge, 2008.

Boer & Seggewiss, Stars and Stellar Evolution, EDP, 2008.

- A. Tielens, The Physics and Chemistry of the Insterstellar Medium, Cambridge, 2005.
- K. Robinson, Spectroscopy, Springer, 2007.
- L. Spitzer, Physical Processes in the Intestellar Medium, Wiley, 2004.
- L. Torre, Elementos de Relatividad, 2008.
- D.McMahon. Relativity Demystified. McGrawHill. 2006.
- T.A. Moore. Física, Seis Ideas Fundamentales. Tomo II: Las Leyes de la Física son Independientes

de los Marcos de Referencia. McGrawHill, 2003.

- F. Halzen & A. Martin, Quarks & Leptons, Wiley, 1984.
- H. F. Hameka, Quantum Mechanics: a conceptual approach, Wiley, 2004.
- W. Greiner, Quantum Mechanis, an Introduction, Springer, 2001.
- D. Chandler, Introduction to Modern Statistical Mechanics, 1987.
- K. Krane, Física Moderna, Limusa, 1991.

Última actualización: Fri, 25 Sep 2015 08:15:07 -0500

Firma Autorizada Facultad: (No autorizado. Este documento es solo un borrador.)