同质性: 影响社会网络结构的重要外部因素

前面讨论的"三元闭包"影响网络结构,属于网络自身的因素(内部因素)

提要

- 同质性的基本含义
- 同质性在网络中的一种评估方式
- 归属网、社会归属网对同质性的影响
- OSN数据分析例子
- 隔离——同质性的一种现象, 谢林模型

同质性(homophily)

物以类聚,人以群分近朱者赤,近墨者黑

- 每个人的特质可分为两种:
 - 固有特质: 性别、种族、母语等
 - 可变特质:居住区、爱好、专长、思想等
- 基本问题:因为相似,才成为朋友(selection);还是因为成为朋友后变得相似(social influence)?
 - 给定相似性,区别"选择"与"社会影响"的作用程度是社会学研究中一个经典问题

一个反映较强同质性的社会网络

社会网络中同质性判别的一个测度

- 假设人们按照两种属性区分(例如性别),我们来看如何判断社会网络中同质性体现的程度
 - 直观上:相同颜色的 节点的聚集程度
 - 如何定量把握?

- 端点颜色相同的边如果太多,则同质性迹象明显
- 多少算"太多"? (什么是基准? "混合得比较均匀")
 - 考虑不同颜色节点的占比,随机给节点着色的情况

逆同质性社会网络的一个例子

归属网络: 描述人与相遇机会的关系

John Doerr Amazon Shirley Tilghman Google Arthur Levinson Apple Al Gore Steve Disney Jobs Andrea Jung General Electric Susan Hockfield

归属网络的一 个实际例子

- · 名人可能在多家公司的董事会中兼职,分董事会中兼职,分析这种结构,以及他们之间的个人关系,对理解公司的行为有帮助
- 这种现象也可能造成一些丑闻

社会归属网:考察同质性的一个工具

社会归属网: 三元闭包、社团闭包、会员闭包可同时显现

• 社团闭包→选择; 会员闭包→社会影响

社团闭包验证: 基于共同兴趣建立联系的概率

利用在线数据支持同质性研究

- 定义(社会归属网):人、社团;人和人的关系,人和社团的关系
 - 社团:某些人共同参与的活动

会员闭包(社会影响): 基于相关朋友数,参与一个博客话题社区的概率

利用在线数据研究选择与社会影响的互动

每个编辑有一个"user talk page",其他编辑可以在上面留言,从而构成通信(社会网络)关系。

- 两个编辑之间相似性的变化与"选择"和"社会影响"的关系
 - 定义"相似性"一编辑文章(与/或)
- 没有联系(通信)之前,相似主要因为选择;达到足够相似度时则容易发生联系,然后社会影响开始对相似性提高起作用

隔离(segregation)

• 同质性影响下发生的过程

谢林模型示意

解释隔离现象(宏观,全局)并不一定是个人刻意选择(微观,局部)的结果

х	х				
Х	0		0		
х	х	0	0	0	
х	0			х	х
	0	0	х	х	х
		0	0	0	

X1*	X2*				
Х3	O1*		O2		
X4	X5	О3	O4	O5*	
X6*	O6			X7	X8
	07	O8	X9*	X10	X11
		О9	O10	O11*	

谢林模型 示意

Х3	X6	O1	O2		
X4	X 5	O3	O4		
	O6	X2	X1	X7	X8
O11	07	O8	X9	X10	X11
	O5	O9	O10*		

谢林模型的运行(两次)

• 150行 * 150列,各10000,t=3;随机初始

局部要求的一种无隔离的满足

Х	Χ	0	0	Х	Х
Х	Χ	0	0	Х	Х
0	0	Х	Х	0	0
0	О	Χ	Х	0	Ο
Х	Χ	0	О	Х	Х
Х	Х	0	0	Х	Х

T=4(b) After 150 steps (a) After $20 \ steps$

小节

- 同质性概念及其对社会网络的影响
- 社会网络中同质性迹象的评估
- · 基于社会归属网的概念,结合OSN数据分析,考察同质性现象的方法
- 在同质性研究中的计算机模拟方法(以隔离为例)

作业

• 第4章 3,4

• Or

• 实现谢林模型并提交源代码及运行结果