Problem 1 Write, test and debug a matlab function

function [p, q] = pcoeff(t, n, k) % t: solution times $t(1) < t(2) < \ldots < t(n) < t(n+1)$ % n+1: new time step % k: number of previous steps $t(n-k+1) \ldots t(n)$

which computes coefficients p and q for the k-step predictor-corrector method

$$v_{n+1} = u_n + \int_{t_n}^{t_{n+1}} p(t)dt = u_n + p_1 f_n + p_2 f_{n-1} + \dots + p_k f_{n-k+1},$$

$$u_{n+1} = u_n + \int_{t_n}^{t_{n+1}} q(t)dt = u_n + q_1 f(t_{n+1}, v_{n+1}) + q_2 f_n + \dots + q_k f_{n-k+2}.$$

Here p(t) is the degree k-1 polynomial which interpolates the values $f_j = f(t_j, u_j)$ for $n-k+1 \le j \le n$ and q(t) is the degree k-1 polynomial which interpolates the values f_j for $n-k+2 \le j \le n$ and also the predicted slope $f(t_{n+1}, v_{n+1})$ at t_{n+1} . Thus

$$p_j = \int_{t_n}^{t_{n+1}} \prod_{i \neq j} \frac{t - t_{n-i+1}}{t_{n-j+1} - t_{n-i+1}}$$

and

$$q_j = \int_{t_n}^{t_{n+1}} \prod_{i \neq j} \frac{t - t_{n-i+2}}{t_{n-j+2} - t_{n-i+2}}$$

for $1 \le j \le k$. Tabulate the coefficients p and q with constant step size h=1 and $k \le 5$ and verify against Adams-Bashforth and Adams-Moulton methods. (Hint: the integrands are polynomials of degree k-1 for which $\lceil k/2 \rceil$ Gaussian integration points and weights will give an exact result.)

Problem 2 Write, test and debug a matlab function

function [t, u] = pcode(a, b, ua, f, r, k, N)

% a,b: interval endpoints with a < b

% ua: vector $u_1 = y(a)$ of initial conditions

% f: function handle f(t, u, r) to integrate

% r: parameters to f

% k: number of previous steps to use at each regular time step

% N: total number of time steps,

% t: output times for numerical solution $u_n \sim y(t_n)$, t(1) = a, t(N) = b

 $\mbox{\ensuremath{\mbox{\%}}}$ u: numerical solution at times t

which uses pcoeff to approximate the solution vector y(t) of the vector initial value problem

$$y' = f(t, y, r)$$

$$y(a) = y_a$$

by the family of methods you derived in problem 1, with $u_1 = y_a$. Start with $k_1 = 1$ and a tiny step size

$$h_1 = (b-a) \left(\frac{h}{b-a}\right)^{k/2}$$

which brings the one-step error in line with the $O(h^k)$ error. Increase the step size smoothly (e.g. by $h_1 \leftarrow (1+1/k)h_1$) and increase k_1 (e.g. by steps of 1 up to k) until $h_1 \geq h = (b-a)/(N-1)$ and then continue with uniform step sizes. (To save CPU time, (a) when the most recent k step sizes are uniform, the predictor-corrector coefficients p and q can be frozen and (b) many values of f can be saved rather than re-evaluated.)

(a) Use pcode.m with odd k=1 through 11 and N=10000, 20000, 40000, 80000 and 160000 to approximate the final solution vector u(T) of the initial value problem derived in problem 4 of problem set 8. Tabulate the errors

$$E_{kN} = \max_{1 \le j \le 4} |u_j(T) - u_j(0)|.$$

Estimate the constant C_k such that the error behaves like $C_k h^k$.

- (b) Measure the CPU time for each run and estimate the total CPU time necessary to obtain an orbit which is periodic to three–digit, six–digit and twelve–digit accuracy.
- (c) Plot some inaccurate solutions and some accurate solutions and draw conclusions about values of k which give three, six or twelve digits of accuracy for minimal CPU time.
- (d) Compare to the results of euler.m and idec.m.

Problem 3 Consider a differential equation

$$y'(t) = f(t, y(t)),$$

where f satisfies the condition

$$(u-v)(f(t,u)-f(t,v)) \le 0$$

for all u and v.

(a) Suppose U(t) and V(t) are exact solutions. Show that

$$|U(t) - V(t)| \le |U(0) - V(0)|$$

for all $t \geq 0$.

(b) Suppose W satisfies a perturbed differential equation

$$W'(t) = f(t, W(t)) + r(t)$$

for $t \geq 0$. Show that

$$|U(t) - W(t)| \le |U(0) - W(0)| + \int_0^t |r(s)| ds$$

for $t \geq 0$.

(c) Show that two numerical solutions u_n and v_n generated by implicit Euler (e.g. with different initial values) satisfy

$$|u_n - v_n| < |u_0 - v_0|$$

for all $n \geq 0$.

(d) Show that the local truncation error τ_{n+1} of the implicit Euler method

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

is given by

$$\tau_{n+1} = \frac{y_{n+1} - y_n}{h} - f(t_{n+1}, y_{n+1}) = -\frac{h}{2}y''(\zeta)$$

where $y_n = y(t_n)$ is the exact solution and ζ is an unknown point.

(e) Show that the numerical solution u_n generated by implicit Euler with $u_0 = y_0$ satisfies

$$|u_n - y_n| < nh\tau$$

for $0 \le nh < \infty$, where $\tau = Mh/2$ and $|y''| \le M$.

Problem 4 Consider the linear initial value problem

$$y' = -L(y(t) - \varphi(t)) + \varphi'(t)$$
$$y(0) = y_0$$

where $\varphi(t) = \cos(30t)$.

- (a) Solve the initial value problem exactly.
- (b) Use euler.m to solve the initial value problem with y(0)=2 for $0 \le t \le 1$ with $L=10^k$ for k=1 to 5. For each L use $h=10^{-j}$ with j=1 to 6. Tabulate the errors.
- (c) Write a matlab script ieuler.m which uses the implicit Euler method to solve the initial value problem with y(0)=2 for $0 \le t \le 1$ with $L=10^k$ for k=1 to 5. For each L use $h=10^{-j}$ with j=1 to 6. Tabulate the errors. Plot an accurate solution for each L.

Problem 5 (cf. BFB 6.1.12) Write, test and debug a matlab code

function [t, u] = solveinteq(a, b, kernel, rhs, p, n)

% a, b: endpoints of interval

% kernel: function handle for kernel K = kernel(t, s) of integral equation

% rhs: function handle for right-hand side f = rhs(t, p) of integral equation

% p: parameters for rhs

% n: number of quadrature points and weights

% t: evaluation points in [a,b]

% u: solution values at evaluation points

which uses n-point Gaussian quadrature points t_i and weights w_i on [a, b] (generated by gaussint.m) to approximate the solution y(t) of the integral equation

$$y(t) + \int_{a}^{b} K(t,s)y(s) \ ds = f(t,p)$$
 (1)

on the interval $a \leq t \leq b$. Your code should set up the $n \times n$ linear system

$$u_i + \sum_{j=1}^{n} K(t_i, t_j) w_j u_j = f(t_i, p)$$
 (2)

for approximate values $u_i \approx y(t_i)$ and solve it by Gaussian elimination with partial pivoting.

- (a) Suppose [a, b] = [0, 1] and the kernel K is given by $K(t, s) = \cos(t)\sin(s)$. For any positive real number m, find a right-hand side f(t, m) such that the exact solution y(t) of the integral equation (1) is given by $y_m(t) = \cos(mt)$.
- (b) Solve the problem in (a) numerically by solveinteq, using even n=2 through 16 and odd integers m=1 through 9. Tabulate the errors at integration points

$$E_n = \max_{1 \le i \le n} |u_i - y_m(t_i)|$$

vs. m and n.

- (c) For an arbitrary right-hand side f and the specific kernel $K(t,s) = \cos(t)\sin(s)$ in (a), find a formula for the exact solution u of the linear system of equations (2).
- (d) Use the error formula for Hermite interpolation to show that the local truncation error in (a)

$$\tau_i = y(t_i) + \sum_{j=1}^{n} w_j K(t_i, t_j) y(t_j) - f(t_i)$$

is bounded by

$$|\cos(t_i)| \left(\int_0^1 \prod_{i=1}^n (t-t_i)^2 dt \right) \left| \frac{v^{(2n)}(\xi)}{(2n)!} \right|$$

as $n \to \infty$, where $v(s) = \sin(s)y(s)$.

(e) Assume that all the derivatives of the exact solution y in (a) are bounded by

$$|y^{(n)}(t)| \le m^n$$

for some fixed m > 0. Use (d) and (c) to prove that

$$E_n \le 2 \max_i |\tau_i| \to 0$$

as $n \to \infty$.