The Quasi-Diffusion method for solving transport problems in planar and spherical geometries

Abstract

- Quasidiffusion is used to solve linear transport problems, and converges rapidly with high accuracy
 - using a transport sweep
 - and a diffusion calculation
- more complex than Source Iteration (SI) method
- pros:
 - good for optically thick problems
 - good for problems with a scattering ratio close to unity
- cons:
 - every scalar flux must be positive at each point in the system
 - formulation of diffusion BCs for optimization not obvious

Introduction

- Quasidiffusion Advantages:
 - allows flexibility in the choices of differencing schemes for transport and diffusion
 - may be effective for multidimensional problems with non rectangular meshes
- Disadvantages:
 - angular flux iterates must be positive at each point in the system
 - * otherwise eddington factors can become negative or infinite
 - \cdot results in unstable diffusion
 - optimizing diffusion BCs to optimize accuracy and speed of QD not obvious
 - produces two different solutions separated by truncation error
 - * (1) scalar flux from the transport calculation
 - * (2) scalar flux from diffusion
- Optimization of QD
 - Method that ensures positivity of flux solution
 - new diffusion BCs that lead to more accurate solution algorithms
 - Analytic forms of QD equation are discretized using positive differencing schemes
 - * asymptotic exponential decay of discrete solution. = asymptotic exponential decay of the continuous discrete ordinates solution
 - * guarantees that angular flux iterate is positive

Discussion

- QD are more rapidly convergent than SI for all meshes.
- No substantial difference in QD and DD-DSA convergence was observed for diffusive problems
- $\bullet~\mathrm{QD}$ was faster than DSA for coarse meshes
 - if DSA used negative flux fixiups
- \bullet MQD = diffusion coefficient is modified in QD to exact asymptotic transport eigenvalue is preserved
 - is more accurate than DD for coarse grids