

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Fundamentos de Matemática III — Avaliação PS Prof. Adriano Barbosa

Matemática	27/02/2018
Matematica	21/02/2010

1	
2	
3	
4	
5	
Nota	

Aluno	(م)																	
Aluno	(\mathbf{a})	• •	 	 	 	 	 • •	 										

Todas as respostas devem ser justificadas.

Avaliação P1:

1. Determine $x, y \in \mathbb{R}$ tais que:

(a)
$$(x+yi)(2+3i) = 1+8i$$

(b)
$$(x+yi)^2 = i^5$$

2. Represente no plano cartesiano os conjuntos abaixo:

(a)
$$\{z \in \mathbb{C} \mid |z| = 1\}$$

(b)
$$\{z \in \mathbb{C} \mid Re(z) \ge 1 \text{ e } Im(z) \ge 2\}$$

3. Calcule $(-1+i)^6$.

4. Resolva a equação $x^4 = -1$.

5. Calcule os valores de $\alpha \in \mathbb{R}$ tais que $f = g^2$, onde $f = x^4 + 2\alpha x^3 - 4\alpha x + 4$ e $g = x^2 + 2x + 2$.

Avaliação P2

- 1. Efetue a divisão de $f = 3x^5 x^4 + 2x^3 + 4x 3$ por $g = x^3 2x + 1$.
- 2. Resolva a equação polinomial $(x+1)(x^2-x+1)=(x-1)^3$.
- 3. Determine a e b reais de modo que a equação $2x^3 5x^2 + ax + b = 0$ admita 2 + i como raiz simples.
- 4. Escreva as funções quadráticas abaixo na forma canônica e esboce seus gráficos indicando o vértice da parábola:

(a)
$$f(x) = 2x^2 - x + 2$$

(b)
$$f(x) = -x^2 + 2x - 3$$

5. As equações $x^4 + 2x^3 + 3x^2 + 4x + 2 = 0$ e (x - a)(x - b)(x - c)(x - d) = 0, onde a, b, c e d são números racionais, podem ter raízes em comum?

Relações de Girard:

Para
$$ax^2 + bx + c = 0$$
: $r_1 + r_2 = -\frac{b}{a}$ e $r_1r_2 = \frac{c}{a}$

Para
$$ax^3 + bx^2 + cx + d = 0$$
: $r_1 + r_2 + r_3 = -\frac{b}{a}$, $r_1r_2 + r_2r_3 + r_3r_1 = \frac{c}{a}$ e $r_1r_2r_3 = -\frac{d}{a}$