

Counter: $0 \rightarrow 1 \rightarrow 2 \rightarrow ...$

This design is logically incorrect! Why? Buffer gate accepts one input. We have two inputs: $X = X_{T-1}$

This design is logically correct!
But what's the problem?

This design is also logically correct. But what's the problem?

Y	X	$F_1(T+1)$	$F_2(T+1)$
0	0	0	0
0	1	\rightarrow $F_2(T)$	Ō
1	Q	0	F ₁ (T)
1	1	F ₂ (T)	F ₁ (T)

Y	X	F ₁ (T)	F ₂ (T)
0	0	0	0
0	1	F ₂ (T-1)	0
1	0	0	F ₁ (T-1)
1	1	F ₂ (T-1)	F ₁ (T-1)

Y	X	$F_1(T=1)$	$F_2(T=1)$
0	0	0	0
0	1	$F_2(T=0)$	0
1	0	0	$F_1(T=0)$
1	1	$F_2(T=0)$	$F_1(T=0)$

by default, in positive logic F(T=0) = 0

Y	X	$F_1(T=1)$	$F_2(T=1)$
0	0		O
0	1	0	0
1	0	0	0
1	1	0	0

When it goes to 00 state, never recover to 1!

Y	X	$F_1(T=n)$	$F_2(T=n)$
0	0	/) 0) O
0	1	0	0
1	0	0	0
1	1	0	0

How about OR gates? Do they solve the problem? No! Why?

Y	X	$F_1(T+1)$	$F_2(T+1)$
0	0		
0	1		
1	0		
1	1		

Try NOR gates

WOW! If wait longer, it stores the current state!

<u>Y</u>	X	$F_1(T+1)$	F ₂ (T+1)	$F_1(T+2)$	$F_2(T+2)$
0	J 0	F ₂ (T)	F' ₁ (T)	$F_1(I)$	$F_2(T)$
0	1	0	F' ₁ (T)	0	1
1	0	F' ₂ (T)	0	1	0
1	1	0	0	0	0

Y	Χ	F ₁ (T+1)	$F_2(T+1)$	$F_1(T+2)$	$F_2(T+2)$	$F_1(T+3)$	$F_2(T+3)$	$F_1(T+4)$	F ₂ (T+4)
0	0	F' ₂ (T)	F' ₁ (T)	$F_1(T)$	F ₂ (T)	$F_2^{\prime}(T)$	F ² ₁ (T) _	$F_2(T+3)$	$F'_{1}(T+3)$
0	1	0	F' ₁ (T)	0	1	0	1	0	$F'_{1}(T+3)$
1	0	F' ₂ (T)	0	1	0	0	0	$F'_{2}(T+3)$	0
1	1	0	0	0	0	0	0	0	0

Y	X	$F_1(T+1)$	$F_2(T+1)$	$F_1(T+2)$	$F_2(T+2)$	$F_1(T+3)$	$F_2(T+3)$	$F_1(T+4)$	$F_2(T+4)$
0	0	F' ₂ (T)	F' ₁ (T)	F ₁ (T)	F ₂ (T)	F' ₂ (T)	F' ₁ (T)	$F_1(T)$	$F_2(T)$
				0				0	1
1	0	F' ₂ (T)	0	1	0	0	0	1	0
1	1	0	0	0	0	0	0	0	0

Store/Hold Action

Υ	X	$F_1(T+1)$	$F_2(T+1)$	$F_1(T+2)$	$F_2(T+2)$	$F_1(T+3)$	$F_2(T+3)$	$F_1(T+4)$	$F_2(T+4)$
0	0	F' ₂ (T)	F' ₁ (T)	F ₁ (T)	F ₂ (T)	F' ₂ (T)	F' ₁ (T)	F ₁ (T)	F ₂ (T)
0	1	0	F' ₁ (T)	0	1	0	1	0	1
1	0	F' ₂ (T)	0	1	0	0	0	1	0
1	1	0	0	0	0	0	0	0	0

Store/Hold Action

Υ	X	$F_1(T+2)$	F ₂ (T+2)
> 0	0	$F_1(T)$	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Store/Hold Action $2T \rightarrow T$

Υ	X	$F_1(T+1)$	$F_2(T+1)$
0	0	$F_1(T)$	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Reset Action $2T \rightarrow T$

<u>Y</u>	X	$F_1(T+1)$	$F_2(T+1)$
0	0	$F_1(T)$	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Reset Action $2T \rightarrow T$

Υ	R	F ₁ (T+1)	$F_2(T+1)$
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Set Action $2T \rightarrow T$

Y	R	F ₁ (T+1)	$F_2(T+1)$
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Set Action $2T \rightarrow T$

5	R	$F_1(1+1)$	$F_2(1+1)$
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Store/Hold Action $2T \to T$ No Set & No Reset

S	$\left(R\right)$	F ₁ (T+1)	F ₂ (T+1)
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

S	R	Q	Q'
0	0	Q_{t}	Q' _t
0	1	0	1
1	0	1	0
1	1	0	0

Forbidden Action $2T \rightarrow T$ Set & Reset

S	R	$F_1(T+1)$	$F_2(T+1)$
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1	1	0	0

Forbidden Action $2T \rightarrow T$ Set & Reset

S	R	$F_1(T+1)$	$F_2(T+1)$
0	0	F ₁ (T)	F ₂ (T)
0	1	0	1
1	0	1	0
1		X	X

S	R	Q	Q'
0	0	Q_{t}	Q' _t
0	1	0	1
1	0	1	0
1	1	X	X

	S	R	Q	Q'
Hold	0	0	Q _t	Q' _t
Reset	0	1	0	1
Set	1	0	1	0
	1	1	X	X

	S	R	Q	Q'
Hold	0	0	Q _t	Q' _t
Reset	0	1	0	1
Set	1	0	1	0
	1	1	X	X

	S	R	Q	Q'
Hold	0	0	Q _t	Q' _t
Reset	0	1	0	1
Set	1	0	1	0
	1	1	X	X

State Transition Diagram Life Cycle SR=00 SR=00 M6M<u>SR=01</u> SR=10 SR=01 Characteristic Table SR=10SR = 01 SR = 10SR=11 SR=(1)

S and R control how the state changes.

Put a gate/latch on when change applies SR w/ enable input

Е	S	R	S	R	Q	Q'
0		X	0_	0	(Q_t)	Q_t'
1	0	0		0	$\widetilde{Q_t}$	Q'_t
	0	1	0	1	0	1
1	1	0		0	1	0
1	1		1	1	X	X

SR Latch

Section 5.3 Storage Elements: Latches 195

FIGURE 5.5
SR latch with control input

En S R	Next state of Q
$ \begin{array}{c cccc} 0 & X & X \\ \hline 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} $	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change $Q = 0$; reset state $Q = 1$; set state Indeterminate

(b) Function table

FIGURE 5.5 *SR* latch with control input

Characteristic Table

Other Latches

Let's avoid the forbidden action! $R \neq S$ R = S' and S = R'

X		S	R	Q	Q'
0	0	X	X	Q_{t}	Q_t'
1	<u>O</u>	X	X	$\overline{Q_t}$	Q'_{t}
0	1	0	1	0	1
1	1	1	0	1	0
Never h	nappens	1	1	×	×

X	E	S	R	Q	Q'
0	0	X	X	Q_{t}	Q' _t
1	0	X	X	Q_{t}	Q' _t
0	1	0	1	0	1
1	1	1	0	1	0
Never happens		1	1	×	×

X	E	S	R	Q	Q'
0	0	X	X	Q_{t}	Q' _t
1	0	X	X	Q_{t}	Q' _t
0	1	0	1	0	1
1	1	1	_0	1	0
Never happens		4	1	×	×

D	E	Q
	0	Q_{t}
	0	Q_t
0		0
1		1

Characteristic Table

T Latch

Complement

T	D	Q
0	Q ⊕0	Q
1	Q 1	Q'

Characteristic Table

JK Latch

Jack St. Clair Kilby

(Nov. 8, 1923 – June 20, 2005)
Electrical Engineer
The 1st integrated circuit
1958
Nobel Prize in Physics, 2000

Let's mix T and SR: Store, Set, Reset, Complement
Although you have to guess, we'll see a design algorithm for it ©

<u>S</u>	R	S	R	Q
0	0	<u>O</u>	0	Store= $Q_t=1$
0	1	0	1	Reset=0
	0	0	0	$Store = Q_t = 1$
1		0		Reset=0

S	R	S	R	Q
0	0	0	0	$Store=Q_t=0$
0	1	0	0	$Store=Q_t=0$
1	0	1	0	Set=1
1	1	1	0	Set=1

(S)=(J)	R±K	Q
0	0	Store=Q _t
0	1	Reset = 0
1	0	Set = 1
	1	Comp. $\pm Q'_t$

Characteristic Table

Recap

S	R	Q
0	0	Q_t
0	1	0
1	0	1
1	1	X

J	K	Q
0	0	Q_t
0	1	0
1	0	1
1	1	Q_t^{ι}

Clock shortened as clk

timing device that generates a train of pulses