Topic 3 - Manipulating Power Serses
$\int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{\infty} x^{n} = \int_{-\infty}^{\infty} + x + \chi^{2} + \chi^{3} + \dots$
If 1x121 this is a convergent geometric
series, for = 1 domain (1,1)
2) $g(x) = \frac{x}{1-x}$ Note $g(x) = x + 6$
$g(x) = x \left(1 + x + x^2 + x^3 + \dots \right)$
$= X + X^2 + X^3 + X^4 + \dots$
$=\frac{2}{2} \times \frac{n}{n-1} = \frac{2}{2} \times \frac{n+1}{n-1}$
also converges on interval (1,1)
3) $h(x) = \frac{1}{1+x^2}$ looks like $f(x)$ where
Xi3 replaced with -x2
$\frac{1}{1+\chi^2} = \frac{1}{1-(-\chi^2)}$
use same poner serses at fort 1 but with -x2
$h(x) = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$
$\frac{1}{h \cos \left \frac{(-1)^{n+1} x^{2n+2}}{(-1)^{n} x^{2n}} \right = x^{2} < x $

Page: _____

