ハロー・密度揺らぎの相関量から探る原始非ガウス性 増光効果の影響について

並河 俊弥 (東大理)

本研究の動機

初期宇宙の情報を、大規模構造の観測から引き出したい

原始揺らぎの性質は、大規模構造の観測量に反映される

ハローバイアスの特徴的なスケール、 赤方偏移依存性

$$b(k,z) \propto \frac{1}{k^2 D(z)}$$

相関係数

$$\frac{P_{hm}^2}{P_{hh}P_{mm}} \neq 1$$

統計性の異なる複数の場が 揺らぎを生成する場合

* これらの影響は大スケールにおいて顕著になる

これら大規模構造の観測量から、揺らぎの生成モデルを制限、選別 できる可能性がある(単一場 or 複数場 など)

・八口一・密度揺らぎの相関を含む観測

 ハロー(銀河) & 重力レンズ
 CMB レンジング

 銀河の弱重カレンズ

本研究の目的

一方、銀河を含む観測量は、大スケールかつ high-z において弱重カレンズによる増光効果の影響を受ける

$$\delta_g = b\delta_m + (5s - 2)\kappa$$

* 増光効果により、本来の揺らぎとは別の成分が加わる

銀河を用いた観測量から原始非ガウス性を測定するさい、非ガウス性の影響も大スケールで現れるため、増光効果を考慮する必要がある

・目的

本研究では、ハローバイアスや相関係数を用いて非ガウス性を 調べるさいに増光効果が及ぼす影響を評価する

原始非ガウス性の影響

ガウス統計からのずれを次のように表現する

Single
$$\Phi(x) = \phi(x) + f_{\rm NL}[\phi^2(x) - \langle \phi^2 \rangle]$$

φ: ガウス場

Multi $\Phi(x) = \phi_1(x) + \phi_2(x) + f_{\rm NL}[\phi_2^2(x) - \langle \phi_2^2 \rangle]$

Φ: 重力ポテンシャル

[1] ハロー・密度揺らぎ相関への影響

Single
$$P_{hm} = \left[1 + b_g + f_{\rm NL} b_g \alpha(k, z)\right] P_{mm} \qquad \alpha(k, z) = \frac{3\Omega_m H_0^2 \delta_c}{k^2 D(z) T(k)}$$

Multi
$$P_{hm} = \frac{\left[\left(1+b_g\right)\xi^2+(1+b_g+f_{\rm NL}b_g\alpha(k,z)\right]P_{mm}}{1+\xi^2}$$
 ξ : 2つの場の振幅の比(A1/A2)

[2] 相関係数への影響

$$\rho = \frac{\left[\left(1 + b_g \right) \xi^2 + \left(1 + b_g + f_{\rm NL} b_g \alpha(k,z) \right]^2}{\left(1 + \xi^2 \right) \left[\left(1 + b_g \right)^2 \xi^2 + \left(1 + b_g + f_{\rm NL} b_g \alpha(k,z) \right)^2 \right]} \begin{cases} = 1 & \text{Single} \\ \neq 1 & \text{Multi} \end{cases}$$

* ハロー・密度揺らぎ相関だけでは f_{NL} と ξ が縮退するが、相関係数まで見れば、 単一場と複数場が区別できるかもしれない

CMB Lensing, Cosmic Shear and Galaxy Clustering

パワースペクトル $C_{\ell}^{XY} = \langle X_{\ell m} Y_{\ell m}^* \rangle$

観測量 Θ , E, d, γ , δ_a

Magnification Effect

増光による銀河個数密度揺らぎへの影響

$$\delta_g = b\delta_m + (5s - 2)\kappa$$

- High-z ではレンズ効果を受けやすく、 密度揺らぎはあまり成長していない ので増光効果の影響が強い
- レンズ効果は、密度揺らぎに比べて大スケールでピークをもつ

*大スケールかつ high-z において増光効果が大きい

Table 4: The redshift bins, the galaxy bias b_i and the slope s_i [11].

Sample I	0 < z < 0.8	0.8 < z < 1.6	1.6 < z < 2.4	2.4 < z < 3.2	3.2 < z < 4.0	4.0 < z < 4.8
b_i	1.08	1.37	2.02	2.90	3.89	4.81
s_i	0.15	0.20	0.31	0.43	0.54	0.63
Sample II	0 < z < 0.8	0.8 < z < 1.6	1.6 < z < 2.4	2.4 < z < 3.2	3.2 < z < 4.0	
b_i	1.13	1.51	2.73	4.57	6.63	
s_i	0.19	0.35	0.86	1.31	1.75	

* 以降では、これらのセッティングでパワースペクトルを計算する

本研究の解析内容

• CMB レンジング、銀河の個数密度、および銀河の弱重カレンズ から得られる観測量の S/N への影響

• 増光効果を無視することによる相関係数、原始非ガウス性の 系統誤差の評価

Power Spectra

大スケール(I<10)、high-z で増光効果の影響が効いてくることが分かる

 Θn_1

10

 Θn_3

1e-05

1e-06

1e-07

1e-08

1e-09

 $\ell(\ell+1)C_\ell/2\pi$

Survey Design

• CMB ACTPol を想定

全天に対する観測領域の割合: $f_{sky}=0.1$

角度分解能: $\theta = 1.4'$

温度・偏光に対する感度: $\Delta_T = 0.36$, $\Delta_P = 0.5$ [μ K/pix]

銀河 LSST クラスを想定

全天に対する観測領域の割合: $f_{sky}=0.5$

銀河の個数密度: N = 50/arcmin²

これらをもとに S/N を計算する

$$\left(\frac{S}{N}\right)_{<\ell}^{2} = \sum_{L=2} \left(\frac{C_{L}}{\Delta C_{L}}\right)^{2} \qquad \Delta C_{L}^{2} = \frac{\left[\hat{C}_{L}^{XX}\hat{C}_{L}^{YY} + \left(\hat{C}_{L}^{XY}\right)^{2}\right]}{2(L+1)f_{sky}}$$

Signal-to-Noise Ratio

high-z ほど増光効果の影響が効くが、同時に S/N は小さくなる

 Θn_5

10

10

0.1

0.01

0.001

まとめ

- パワースペクトルにおける増光効果は、大スケール・high-z において大きな影響を与える
- high-z にいくほど S/N は下がるが増光効果の影響は大きくなる

今後の計画

- 単一場と複数場のモデルを、将来的観測から区別できるかどうか
- 宇宙論パラメータ、特に原始非ガウス性に対する系統誤差を見積もる

• 増光効果の大きさはバイアスや slope に大きく依存するため、 これらに対し結果がどう影響するか調べる

参考文献

原始非ガウス性

- [1] Bartolo, N., Komatsu, E., Matarrese, S., and Riotto, A. "Non-Gaussianity from Inflation: Theory and Observations" arXiv: 0406398
- [2] Tseliakhovich, D., Hirata, C. and Slosar, A. "Non-Gaussianity and large-scale structure in two-field inflationary model" arXiv: 1004.3302

CMB レンジング

[3] Lewis, A. and Challinor, A. "Weak gravitational lensing of the CMB" Phys. Rep. 429 (2006) 1-65

弱重カレンズ

[4] Munshi, D., Valageas, P., Waerbeke, L. and Heavens, A. "Cosmology with weak lensing survey" arXiv: 0612667

增光効果

[5] LoVerde, M., Hui, L., and Gaztanaga, E. "Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements" Phys. Rev. D 75, 043519 (2007)