ECON675 - Assignment 5

Anirudh Yadav

November 19, 2018

Contents

1	Ma	Many instruments asymptotics									
	1.1	Some moments	2								
	1.2	Some probability limits	2								
	1.3	plim of the classical 2SLS estimator	3								
	1.4	plim of the bias-corrected 2SLS estimator	3								
	1.5	Asymptotic normality of the bias-corrected 2SLS estimator	4								
			6								
2 Weak instruments simulations											

1 Many instruments asymptotics

1.1 Some moments

First,

$$\mathbb{E}[\boldsymbol{u}'\boldsymbol{u}/n] = \frac{1}{n}\mathbb{E}[\boldsymbol{u}'\boldsymbol{u}] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[u_i^2] = \sigma_u^2.$$

An analogous derivation shows that $\mathbb{E}[\boldsymbol{v}'\boldsymbol{v}/n] = \sigma_v^2$.

Next,

$$\mathbb{E}[\boldsymbol{x}'\boldsymbol{u}/n] = \frac{1}{n}\mathbb{E}[\boldsymbol{x}'\boldsymbol{u}] = \frac{1}{n}\mathbb{E}[(\boldsymbol{\pi}'\boldsymbol{Z}' + \boldsymbol{v}')\boldsymbol{u}]$$

$$= \frac{1}{n}\boldsymbol{\pi}'\boldsymbol{Z}'\mathbb{E}[\boldsymbol{u}] + \frac{1}{n}\mathbb{E}[\boldsymbol{v}'\boldsymbol{u}]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[v_{i}u_{i}]$$

$$= \sigma_{uv}^{2},$$

where I used the assumptions that Z and π are nonrandom and $\mathbb{E}[u] = 0$.

Now,

$$\mathbb{E}[\boldsymbol{x'Pu}/n] = \frac{1}{n}\mathbb{E}[(\boldsymbol{\pi'Z'} + \boldsymbol{v'})\boldsymbol{Pu}]$$

$$= \frac{1}{n}\mathbb{E}[\boldsymbol{\pi'Z'Pu}] + \frac{1}{n}\mathbb{E}[\boldsymbol{v'Pu}]$$

$$= \frac{1}{n}\mathbb{E}[\boldsymbol{\pi'Z'u}] + \frac{1}{n}\mathbb{E}[\boldsymbol{v'Pu}]$$

$$= \frac{1}{n}\mathbb{E}[\boldsymbol{v'Pu}]$$

$$= \frac{K}{n}\sigma_{uv}^2$$

since $\mathbb{E}[v_i u_j] = 0$ for all $i \neq j$ and $\sum_{i=1}^n P_{ii} = K$. An analogous derivation proves the last result $\mathbb{E}[\boldsymbol{u}'\boldsymbol{P}\boldsymbol{u}/n] = K/n\sigma_u^2$.

1.2 Some probability limits

First,

$$\begin{split} \boldsymbol{x}'\boldsymbol{x}/n &= (\boldsymbol{\pi}'\boldsymbol{Z}'+\boldsymbol{v}')(\boldsymbol{Z}\boldsymbol{\pi}+\boldsymbol{v})/n \\ &= \frac{\boldsymbol{\pi}'\boldsymbol{Z}'\boldsymbol{Z}\boldsymbol{\pi}}{n} + \frac{\boldsymbol{\pi}'\boldsymbol{Z}'\boldsymbol{v}}{n} + \frac{\boldsymbol{v}'\boldsymbol{Z}\boldsymbol{\pi}}{n} + \frac{\boldsymbol{v}'\boldsymbol{v}}{n} \\ &\to_p \mu + \mathbb{E}[\boldsymbol{\pi}'\boldsymbol{z}_iv_i] + \mathbb{E}[\boldsymbol{z}_i'\boldsymbol{\pi}v_i] + \mathbb{E}[v_i^2] \\ &= \mu + \sigma_v^2 \end{split}$$

Next,

$$egin{aligned} oldsymbol{x'} oldsymbol{Px}/n &= (oldsymbol{\pi'} oldsymbol{Z'} + oldsymbol{v'}) oldsymbol{P(Z\pi + v)}/n \ &= rac{oldsymbol{\pi'} oldsymbol{Z'} oldsymbol{Z\pi}}{n} + rac{oldsymbol{\pi'} oldsymbol{Z'} oldsymbol{Z\pi}}{n} + rac{oldsymbol{v'} oldsymbol{Pv}}{n} \ & o_p \ \mu +
ho \sigma_v^2. \end{aligned}$$

The above convergence result involves a few steps, which I've suppressed for brevity. First, it uses the assumption that Z and π are nonrandom. More importantly, it uses the result that

$$\frac{\boldsymbol{v}'\boldsymbol{P}\boldsymbol{v}}{n} \to_p \mathbb{E}[\boldsymbol{v}'\boldsymbol{P}\boldsymbol{v}/n] = \rho\sigma_v^2$$

since $K/n \to \rho$. Note that this is not just a direct application of the WLLN, since we're not dealing with a sum of iid random variables. Rather, you can show that $\mathbb{V}[v'Pv/n]$ is bounded in probability (i.e. it goes to zero at some rate), and then use the Markov/Chebyshev inequality to get the desired convergence result. This type of result will be used a lot in the following questions too.

An analogous derivation proves the last result, $x'Pu/n \rightarrow_p \rho \sigma_u^2$.

1.3 plim of the classical 2SLS estimator

The classical 2SLS estimator is

$$egin{aligned} \hat{eta}_{ exttt{2SLS}} &= (oldsymbol{x}'oldsymbol{P}oldsymbol{x})^{-1}(oldsymbol{x}'oldsymbol{P}oldsymbol{y}) \ &= (oldsymbol{x}'oldsymbol{P}oldsymbol{x})^{-1}oldsymbol{x}'oldsymbol{P}oldsymbol{x} + oldsymbol{u}'oldsymbol{P}oldsymbol{x}'oldsymbol{P}oldsymbol{x}/oldsymbol{u} + oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u}) \ &= eta + (oldsymbol{x}'oldsymbol{P}oldsymbol{x}/oldsymbol{u})^{-1}(oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u}) \ &= eta + (oldsymbol{x}'oldsymbol{P}oldsymbol{x}/oldsymbol{u})^{-1}(oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u}) \ &= eta + (oldsymbol{x}'oldsymbol{P}oldsymbol{x}/oldsymbol{u})^{-1}(oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u}/oldsymbol{u}) \ &= eta + (oldsymbol{x}'oldsymbol{P}oldsymbol{x}/oldsymbol{u})^{-1}(oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u}) \ &= eta + (oldsymbol{x}'oldsymbol{P}oldsymbol{u}/oldsymbol{u$$

using the CMT and the above results. Thus, $\hat{\beta}_{2SLS} = \beta + \frac{\rho \sigma_u^2}{\mu + \rho \sigma^2} + o_p(1)$.

1.4 plim of the bias-corrected 2SLS estimator

The bias-corrected 2SLS estimator is

$$\hat{\beta}_{2SLS} = (\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{x})^{-1}(\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{y})$$
$$= \beta + (\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{x}/n)^{-1}(\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{u}/n)$$

Now,

$$\mathbf{x}'\check{\mathbf{P}}\mathbf{u}/n = \frac{1}{n}(\mathbf{\pi}'\mathbf{Z}' + \mathbf{v}')(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u}$$

$$= \frac{\mathbf{\pi}'\mathbf{Z}'\mathbf{u}}{n} - \frac{\frac{K}{n}\mathbf{\pi}'\mathbf{Z}'\mathbf{u}}{n} + \frac{\mathbf{v}'\mathbf{P}\mathbf{u}}{n} - \frac{\frac{K}{n}\mathbf{v}'\mathbf{u}}{n}$$

$$\to_p 0 - 0 + \rho\sigma_{uv}^2 + \rho\sigma_{uv}^2$$

$$= 0.$$

Thus, $\hat{\beta}_{2SLS} \to_p \beta$.

1.5 Asymptotic normality of the bias-corrected 2SLS estimator 1.5.1

First note that

$$\mathbf{x}'\check{\mathbf{P}}\mathbf{u} = (\boldsymbol{\pi}'\mathbf{Z}' + \boldsymbol{v}')(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u}$$

$$= \boldsymbol{\pi}'\mathbf{Z}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u} + \boldsymbol{v}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u}$$

$$= \boldsymbol{\pi}'\mathbf{Z}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u} + \left(\check{\mathbf{v}}' + \frac{\sigma_{uv}^2}{\sigma_u^2}\mathbf{u}'\right)(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u}$$

$$= \boldsymbol{\pi}'\mathbf{Z}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u} + \check{\mathbf{v}}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u} + \frac{\sigma_{uv}^2}{\sigma_u^2}\mathbf{u}'(\mathbf{P} - \frac{K}{n}\mathbf{I}_n)\mathbf{u},$$

as required.

1.5.2

Next, note that

$$\mathbb{E}[\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_n)\boldsymbol{u}] = \boldsymbol{\pi}'\boldsymbol{Z}'\mathbb{E}[\boldsymbol{u}] - \frac{K}{n}\boldsymbol{\pi}'\boldsymbol{Z}'\mathbb{E}[\boldsymbol{u}] = 0,$$

since Z is nonrandom. Accordingly, the CLT implies that

$$\frac{1}{\sqrt{n}}\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P}-\frac{K}{n}\boldsymbol{I}_n)\boldsymbol{u}\to_d \mathcal{N}(0,V_1(\rho)),$$

where

$$V_{1}(\rho) = \lim_{n \to \infty} \mathbb{V}[1/\sqrt{n}\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_{n})\boldsymbol{u}]$$

$$= \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_{n})\boldsymbol{u}\boldsymbol{u}'(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_{n})\boldsymbol{Z}\boldsymbol{\pi}]$$

$$= \lim_{n \to \infty} \frac{1}{n} \sigma_{u}^{2} \left[\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_{n})(\boldsymbol{P} - \frac{K}{n}\boldsymbol{I}_{n})\boldsymbol{Z}\boldsymbol{\pi}\right]$$

$$= \lim_{n \to \infty} \frac{1}{n} \sigma_{u}^{2} \left[\boldsymbol{\pi}'\boldsymbol{Z}'\boldsymbol{Z}\boldsymbol{\pi} - 2\frac{K}{n}\boldsymbol{\pi}'\boldsymbol{Z}'\boldsymbol{Z}\boldsymbol{\pi} + \frac{K^{2}}{n^{2}}\boldsymbol{Z}\boldsymbol{\pi}'\boldsymbol{Z}'\boldsymbol{Z}\boldsymbol{\pi}\right]$$

$$= \sigma_{u}^{2}(1 - \rho^{2}).$$

1.5.3

Now,

$$\mathbb{E}[\check{\boldsymbol{v}}'(\boldsymbol{P} - K/n\boldsymbol{I}_n)\boldsymbol{u}] = \mathbb{E}\left[\left(\boldsymbol{v}' - \frac{\sigma_{uv}^2}{\sigma_u^2}\boldsymbol{u}'\right)\boldsymbol{P}\boldsymbol{u} - \frac{K}{n}\left(\boldsymbol{v}' - \frac{\sigma_{uv}^2}{\sigma_u^2}\boldsymbol{u}'\right)\boldsymbol{u}\right]$$
$$= \mathbb{E}[\boldsymbol{v}'\boldsymbol{P}\boldsymbol{u}] - \frac{\sigma_{uv}^2}{\sigma_u^2}\mathbb{E}[\boldsymbol{u}'\boldsymbol{P}\boldsymbol{u}] - \frac{K}{n}\mathbb{E}[\boldsymbol{v}'\boldsymbol{u}] + \frac{K}{n}\frac{\sigma_{uv}^2}{\sigma_u^2}\mathbb{E}[\boldsymbol{u}'\boldsymbol{u}]$$

Then, plugging in the results from part 1 gives

$$\mathbb{E}[\check{\boldsymbol{v}}'(\boldsymbol{P} - K/n\boldsymbol{I}_n)\boldsymbol{u}] = K\sigma_{uv}^2 - \frac{\sigma_{uv}^2}{\sigma_u^2}K\sigma_u^2 - \frac{K}{n} \cdot n\sigma_{uv}^2 + \frac{K}{n}\frac{\sigma_{uv}^2}{\sigma_u^2} \cdot n\sigma_u^2 = 0,$$

as required.

To get the convergence result we would do the following. Compute $\mathbb{V}[\check{\boldsymbol{v}}'(\boldsymbol{P}-K/n\boldsymbol{I}_n)\boldsymbol{u}]$. Using the assumption $\mathbb{V}[\boldsymbol{u}|\check{\boldsymbol{v}}]=\sigma_n^2\boldsymbol{I}_n$, it can be shown that

$$\lim_{n\to\infty} \mathbb{V}[\check{\boldsymbol{v}}'(\boldsymbol{P}-K/n\boldsymbol{I}_n)\boldsymbol{u}] = O(K).$$

Then, we can somehow use the Markov inequality to get the desired convergence result.

1.5.4

Analogous derivations to the above question give the desired results.

1.5.5

Now,

$$\mathbb{E}[\boldsymbol{x}'\boldsymbol{P}\boldsymbol{u}] = \mathbb{E}[(\boldsymbol{\pi}'\boldsymbol{Z}' + \boldsymbol{v}')(\boldsymbol{P} - K/n\boldsymbol{I}_n)\boldsymbol{u}]$$

$$= \mathbb{E}[\boldsymbol{\pi}'\boldsymbol{Z}'(\boldsymbol{P} - K/n\boldsymbol{I}_n)\boldsymbol{u}] + \mathbb{E}[\boldsymbol{v}'(\boldsymbol{P} - K/n\boldsymbol{I}_n)\boldsymbol{u}]$$

$$= 0 + \mathbb{E}[\boldsymbol{v}'\boldsymbol{P}\boldsymbol{u}] - K/n\mathbb{E}[\boldsymbol{v}'\boldsymbol{u}]$$

$$= K\sigma_{uv}^2 - K/n \cdot n\sigma_{uv}^2$$

$$= 0.$$

And

$$\vartheta^{2} = \mathbb{V}[\boldsymbol{x}'\boldsymbol{P}\boldsymbol{u}/\sqrt{n}] = \frac{1}{n}\mathbb{E}[\boldsymbol{x}'\boldsymbol{P}\boldsymbol{u}\boldsymbol{u}'\boldsymbol{P}\boldsymbol{x}]$$

$$= \frac{1}{n}\mathbb{E}[\boldsymbol{x}'(\boldsymbol{P} - K/n\boldsymbol{I}_{n})\boldsymbol{u}\boldsymbol{u}'(\boldsymbol{P} - K/n\boldsymbol{I}_{n})\boldsymbol{x}]$$

$$= \frac{1}{n}\mathbb{E}[(\boldsymbol{x}'\boldsymbol{P}\boldsymbol{u} - K/n\boldsymbol{x}'\boldsymbol{u})(\boldsymbol{u}'\boldsymbol{P}\boldsymbol{x} - K/n\boldsymbol{u}'\boldsymbol{x})]$$

1.5.6

Note that

$$\sqrt{n}(\hat{\beta}_{2SLS} - \beta) = (\boldsymbol{x}' \check{\boldsymbol{P}} \boldsymbol{x}/n)^{-1} (\frac{1}{\sqrt{n}} \boldsymbol{x}' \check{\boldsymbol{P}} \boldsymbol{u})$$

And we assume that

$$\frac{1}{\sqrt{n}} \boldsymbol{x}' \check{\boldsymbol{P}} \boldsymbol{u} \to_d \mathcal{N}(0, \vartheta^2)$$

Thus,

$$\sqrt{n}(\hat{\beta}_{2SLS} - \beta) \rightarrow_d \mathcal{N}(0, \mathbb{E}[\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{x}]^{-1}\vartheta^2\mathbb{E}[\boldsymbol{x}'\check{\boldsymbol{P}}\boldsymbol{x}]^{-1})$$

Intuitively, I think that when $K/n \to \rho = 0$, then the many instruments problem dissipates, so that the bias-corrected 2SLS estimator and the classical 2SLS estimator are asymptotically equivalent.

2 Weak instruments simulations

Table 1 (overleaf) presents the simulation results, which are are a nice illustration of the weak instruments problem. The following results are worth noting:

- For all values of γ , the OLS estimators of β are very bad: recall that the true value of β is zero and for literally every one of the 20,000 OLS regressions, we reject the null that $\beta = 0$ at the 95% level! This is unsurprising, given that x_i is endogenous.
- For lower values of γ (i.e. when z_i is a "weak" instrument for x_i) the 2SLS estimators of β are also very bad. For higher values of γ , the 2SLS estimator is clearly consistent for β ; and for $\gamma = \sqrt{99/n}$, the 2SLS estimator is very precise.

	mean	st.dev.	quantiles			mean	st.dev.	quantiles			
			0.1	0.5	0.9				0.1	0.5	0.9
OLS						OLS					
\hat{eta}	0.99	0.010	0.977	0.99	1.003	\hat{eta}	0.989	0.010	0.975	0.989	1.002
$SE(\hat{\beta})$	0.01	0.001	0.009	0.01	0.011	$SE(\hat{\beta})$	0.010	0.001	0.009	0.010	0.011
$1_{\texttt{rej}}$	1.00	0.000	1.000	1.00	1.000	$1_{\mathtt{rej}}$	1.00	0.000	1.000	1.00	1.000
2SLS						2SLS					
\hat{eta}	0.985	0.491	0.798	0.991	1.175	\hat{eta}	0.875	1.207	0.411	0.826	1.392
$SE(\hat{\beta})$	1.153	40.031	0.070	0.144	0.610	$SE(\hat{\beta})$	3.506	105.963	0.085	0.228	1.328
$1_{\texttt{rej}}$	0.873	0.333	0.000	1.000	1.000	$1_{\texttt{rej}}$	0.697	0.460	0.000	1.000	1.000
\hat{F}	1.027	1.442	0.017	0.468	2.805	\hat{F}	1.273	1.770	0.023	0.584	3.467

(c) $\gamma^2 = 9/n \ (F \approx 10)$

(d) $\gamma^2 = 99/n \ (F \approx 100)$

	mean	st.dev.	quantiles				mean	st.dev.	quantiles		
			0.1	0.5	0.9				0.1	0.5	0.9
OLS						OLS					
\hat{eta}	0.947	0.018	0.924	0.947	0.970	\hat{eta}	0.662	0.035	0.619	0.661	0.707
$SE(\hat{\beta})$	0.017	0.001	0.016	0.017	0.019	$SE(\hat{\beta})$	0.034	0.002	0.031	0.034	0.037
$1_{\texttt{rej}}$	1.00	0.000	1.000	1.00	1.000	$1_{\mathtt{rej}}$	1.00	0.000	1.000	1.00	1.000
2SLS						2SLS					
\hat{eta}	-0.002	0.614	-0.440	0.104	0.363	\hat{eta}	-0.002	0.104	-0.140	0.009	0.121
$SE(\hat{\beta})$	0.502	2.888	0.147	0.283	0.743	$SE(\hat{\beta})$	0.103	0.023	0.077	0.099	0.134
$1_{\mathtt{rej}}$	0.150	0.357	0.000	0.000	1.000	$1_{\mathtt{rej}}$	0.057	0.232	0.000	0.000	0.000
\hat{F}	10.073	6.470	2.760	9.004	19.087	\hat{F}	100.842	25.222	70.239	98.868	133.923