SITE INVESTIGATION REPORT

FORMER GALT GAS COMPANY SITE CAMBRIDGE, ONTARIO

OCTOBER 1991

SITE INVESTIGATION REPORT

FORMER GALT GAS COMPANY SITE CAMBRIDGE, ONTARIO

Report prepared for:

Waste Site Evaluation Unit Waste Management Branch Ontario Ministry of the Environment

Report prepared by:

Conestoga-Rovers & Associates Limited

NOVEMBER 1991

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1991
This publication may be reproduced for non-commercial purposes with appropriate attribution.

DISCLAIMER

This report was prepared for the Ontario Ministry of the Environment as part of a Ministry - Funded Project. The views and ideas expressed in this report are those of the author and do not necessarily reflect the views and policies of the Ministry of the Environment, nor does mention of trade names of commercial products constitute endorsement or recommendation for use.

EXECUTIVE SUMMARY

The former Galt Gas Company Site is located within a parcel of property adjacent to the Grand River in Cambridge, Ontario. The current property owner purchased the property without knowing of the coal gasification plant which existed during the approximate period of 1886-1910. The property owner planned to re-develop the Site prior to being notified of the existence of the former coal gasification plant by the Ontario Ministry of the Environment (MOE).

The shoreline of the Grand River adjacent to the former coal gasification plant has apparently been extended outwards by filling. Currently, the Grand River Conservation Authority (GRCA) owns the property between the owner's property and the Grand River. A flood control berm is located on the GRCA property.

Several phases of investigation have been conducted. Initially, geotechnical boreholes were drilled for development purposes. These boreholes identified geologic conditions in the overburden. This work was not funded by the MOE. The investigative work conducted for the environmental investigation has included drilling 21 boreholes; chemical analysis of 16 soil samples; installation of four monitoring wells in the overburden; analysis of groundwater/fluid samples from three monitoring wells; inspection of the bottom of the Grand River adjacent to the former coal gasification plant; and analysis of water and sediment samples from the Grand River.

The geology of the Site from surface downwards includes a sand fill with gravel and rubble (up to 5 metres thick adjacent to the Grand River), an upper sequence of sands, a basal sand and gravel unit and bedrock. The bedrock is approximately 5 to 12 metres below ground surface. In some areas, thin silt layers are encountered within the overburden. A water table aquifer is found within the native sands at a depth of approximately 3.5 to 4.5 metres below ground surface. Water level measurements indicate that groundwater flow is in a southerly direction, parallel to that of the Grand River. The groundwater velocity was estimated to be approximately 1 metre/year.

The conclusions of this investigation are as follows:

1) The material underlying the former coal gasification plant includes concrete and soil containing coal tar residues. Gasoline and diesel fuel odours are also noted in this area.

- 2) Coal tar residues are present in soil to the west of the former coal gasification plant. These residues are found sporadically and may have been placed in part during historical filling along the edge of the Grand River.
- Coal tar residues are present in soil beneath the GRCA flood control berm.
- 4) The coal tar residues are generally found in the saturated soils and represent a potential source of groundwater contamination.
- 5) Groundwater flow on the property appears to be approximately parallel to the Grand River and toward the south.
- 6) Groundwater at the southern end of the property does not exhibit contamination by PAHs. One monitoring well exhibits low concentrations of VOCs. The VOC contamination has various potential sources, including the coal tar residues and former automobile service stations in the area.
- 7) Coal tar residues have not migrated to the southern property boundary as evidenced by the absence of PAHs in soil and groundwater at the two monitoring wells at the boundary.
- 8) Coal tar residues are not visually present in the bed of the Grand River adjacent to the former coal gasification plant.
- 9) Water and sediment in the Grand River does not exhibit a detectable impact by PAHs from the former coal gasification plant.

The recommendations based on this investigation are as follows:

- 1) Any proposed disturbance of the area containing coal tar residues should be reported in writing to the MOE, Waste Management Branch prior to commencement and conducted in accordance with applicable regulations and guidelines.
- 2) A monitoring program should be implemented in the short term to assess the potential migration of contaminants in groundwater and surface water. This would include:
 - i) measuring water levels in the monitoring wells and the Grand River quarterly for one year;

- ii) collecting water samples from wells which do not contain coal tar and from two locations in the Grand River on a semi-annual basis for one year (groundwater samples would be analyzed for PAHs and VOCs, surface water samples would be analyzed for PAHs); and
- iii) reporting all results to MOE.

The need for monitoring would be re-assessed at the end of the one year period.

TABLE OF CONTENTS

		<u>P</u>	age
ACK	NOWL	EDGEMENT AND DISCLAIMER	i
EXEC	CUTIVE	E SUMMARY	ii
1.0	INTR	ODUCTION	1
2.0	HISTO 2.1 2.2	ORICAL LAND USE OPERATION OF GAS WORKS (1886-1910) POST-CLOSURE OF GAS WORKS (1910-PRESENT)	3
3.0	FIELI 3.1 3.2 3.3 3.4	D INVESTIGATION PHASE I AND II INVESTIGATIONS PHASE III INVESTIGATION PHASE IV INVESTIGATION FIELD DATA SUMMARY	7 7
4.0	GEOL 4.1 4.2 4.2.1 4.2.2 4.2.3	OGY/HYDROGEOLOGY GEOLOGY HYDROGEOLOGY Groundwater Flow Hydraulic Conductivity Groundwater Flow Velocity	9 10 11
5.0	CON 5.1 5.1.1 5.1.2 5.2 5.3	TAMINANT DISTRIBUTION SOIL Summary of Borehole Observations Analytical Results of Soil Samples GROUNDWATER GRAND RIVER WATER AND SEDIMENT	13 13 15
6.0	CON 6.1 6.2	CLUSIONS AND RECOMMENDATIONS CONCLUSIONSRECOMMENDATIONS	22

LIST OF FIGURES

		Following Page
FIGURE 1.1	LOCATION OF MILL RACE ON THE GRAND PROPERTY	1
FIGURE 2.1	SITE OCCUPANCY - 1918	3
FIGURE 2.2	SITE OCCUPANCY - 1941	4
FIGURE 3.1	LOCATION OF BOREHOLES, MONITORING WELLS AND RIVER SAMPLING/INSPECTION	7
FIGURE 4.1	GEOLOGIC CROSS SECTION LOCATIONS	9
FIGURE 4.2	GEOLOGIC CROSS SECTION A-A'	9
FIGURE 4.3	GEOLOGIC CROSS SECTION B-B'	9
FIGURE 4.4	GEOLOGIC CROSS SECTION C-C'	9
FIGURE 4.5	GROUNDWATER CONTOURS	11
FIGURE 5.1	LOCATION OF BOREHOLES EXHIBITING CONTAMINATION	14

LIST OF PLANS

PLAN 1 SITE PLAN

BACK POCKET

LIST OF TABLES

•		Following Page
TABLE 4.1	SUMMARY OF WATER ELEVATION DATA	10
TABLE 5.1	SUMMARY OF ODOURS REPORTED IN GEOTECHNICAL SOIL BORINGS	13
TABLE 5.2	SUMMARY OF CONTAMINATION NOTED IN 1987 AND 1990 SOIL BORINGS	14
TABLE 5.3	PHASE I ANALYTICAL RESULTS - PAHs IN SOIL	15
TABLE 5.4	PHASE II ANALYTICAL RESULTS - PAHs IN SOIL LEACH	15
TABLE 5.5	PHASE II ANALYTICAL RESULTS - PAHs IN SOIL	15
TABLE 5.6	PHASE IV ANALYTICAL RESULTS - PAHs AND METALS IN SOIL	16
TABLE 5.7	ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87	17
TABLE 5.8	ANALYTICAL RESULTS OF GROUNDWATER SAMPLES	17
TABLE 5.9	ANALYTICAL RESULTS OF GRAND RIVER SEDIMENT SAMPLES	19
TABLE 5.10	ANALYTICAL RESULTS OF GRAND RIVER WATER SAMPLES	19

LIST OF APPENDICES

APPENDIX A GRAND RIVER INSPECTION REPORT

BY INTEGRATED EXPLORATIONS

APPENDIX B FIELD METHODS FOR PHASE IV INVESTIGATION

APPENDIX C BOREHOLE LOGS

APPENDIX D MISCELLANEOUS FIELD DATA

APPENDIX E ANALYTICAL REPORTS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has completed an investigation of coal tar contamination at the site of the former Galt Gas Co. gas works in Cambridge, Ontario. The investigation has been carried out under the terms of a cost sharing agreement between the property owner (Mill Race on the Grand, Inc.) and the Ontario Ministry of the Environment (MOE) and a proposal by CRA dated June 1989 (1).

The initial phases of the investigation were reported by CRA in September 1987 (2). This report incorporates the information contained in the September 1987 report and provides an updated assessment of site conditions utilizing all data generated to date.

The area occupied by the former coal gasification plant is part of a larger parcel which was occupied by a textile mill until the mid 1980's. This parcel is herein referred to as the Mill Race on the Grand property (the property). The current owner purchased the property without knowing of the coal gasification plant which existed during the approximate period of 1886-1910.

Figure 1.1 shows the location of the Mill Race on the Grand property, which is situated on the west side of Water Street North in the City of Cambridge, north of the Parkhill Dam. The property fronts on Water Street and backs onto the flood control berm for the Grand River. The flood control berm property is owned by the Grand River Conservation Authority (GRCA).

This report is organized as follows:

- Section 2 contains a discussion of historical land use as originally reported in September 1987.
- Section 3 contains a discussion of field investigation methods.
- Section 4 contains a discussion of the geology/hydrogeology in the area investigated.
- Section 5 contains a discussion of contaminant distribution in the various media examined.
- Section 6 contains conclusions and recommendations.

2.0 HISTORICAL LAND USE

2.1 OPERATION OF GAS WORKS (1886-1910)

The history of the gasification plant and adjacent property was compiled through a review of documentation from the Cambridge Archives, the Cambridge Gallery and Library, the Gore-Mutual Insurance Company of Cambridge and oral communications with local residents.

gasification plant are illustrated in Figure 2.1. This plan was reproduced from a fire insurance map stored at the Cambridge Gallery and Library. The fire insurance map was dated 1910 and was revised in 1918. Fire insurance maps are typically detailed site plans (to scale) of city blocks showing all building construction including materials. The original 1910 map depicted two large diameter gas holding tanks of 32,000 cubic foot and 15,000 cubic foot capacity respectively, separated by a large one-storey Purifying Retort building and several small storage buildings. The gas holding tanks measured approximately 2,400 square feet (55 feet diameter) and 1,600 square feet (45 feet diameter). The purifying-retort building measured approximately 2,500 square feet. The 1918 revised drawing does not record this layout. Figure 2.1 locates the above-mentioned tanks according to the 1910 survey. The Grand River shoreline configuration during the period was also recorded and is shown on Figure 2.1.

Based upon the above and the MOE release dated

January 20, 1987 listing former coal gasification plant sites, the operations at

this plant started in the late 19th Century and ended prior to World War I (approximately 1886-1910).

Concurrent with coal gasification operations was the operation of the Galt Robe Company immediately to the north. The building consisted of one large three-storey structure. A lumber yard occupied the area to the south.

2.2 POST-CLOSURE OF GAS WORKS (1910-PRESENT)

Between 1910 and 1918, as indicated by the revised fire insurance map, the coal gasification operations had ceased and the structures were utilized for storage. In addition an auto garage and repair shop had located immediately adjacent to, and north of, the former coal gasification plant.

Figure 2.2 presents the property development/occupancy as defined on a 1941 Provincial Insurance Survey Map obtained from the Gore-Mutual Insurance Company, Cambridge. As indicated on Figure 2.2, the Grand River shoreline has been partially changed, presumably by filling, and the textile mill expanded over the former gas plant. The total frontage of the textile mill along Water Street was on the order of 520 feet as scaled from the 1941 plan. Measurements taken at the property during the investigative program confirm the frontage to be 530 feet indicating generally good agreement with the 1941 record. The construction history of the property remains relatively unchanged from 1941 until the present. Several

gasoline/service stations were apparently located along the east side of Water Street in recent years.

The textile mill was demolished to grade in the early 1980s. The basement floor slab and foundation walls still exist.

3.0 FIELD INVESTIGATION

Field investigations by CRA have been conducted in four phases and have consisted of the following:

- Drilling of 21 boreholes to determine geologic conditions and the presence of coal tar contamination.
- ii) Collection and chemical analysis of 16 soil samples from boreholes.
- iii) Installation of four monitoring wells to allow groundwater sample collection and for determining groundwater flow direction.
- iv) Collection and chemical analysis of groundwater/fluid samples from three monitoring wells.
- Inspection of the bottom of the Grand River adjacent to the former coal gasification plant.
- vi) Collection and analysis of water and sediment samples from the Grand River.

The first two phases of the field investigation included primarily borehole installation and were reported in September 1987(2). The third phase of the investigation included inspection of the Grand River and sampling of water and sediment from the river. This work was completed in early 1989. The fourth phase included installation of additional boreholes

and monitoring wells and additional sampling of water from the Grand River. This work was completed in the spring of 1990.

3.1 PHASE I AND II INVESTIGATIONS

The field investigation methods for Phase I and II are described in the September 1987 report (2). During Phase I and II, 13 boreholes were advanced using hollow stem or solid stem augers and one monitoring well was installed to monitor the presence of coal tar or groundwater contamination. Soil and groundwater samples were collected for analysis. Boreholes were drilled at the property prior to the coal tar investigation by Peto-MacCallum Ltd. This work was part of the geotechnical investigation for the proposed property re-development.

3.2 PHASE III INVESTIGATION

Phase III consisted of an underwater investigation of the Grand River bottom by Integrated Explorations Ltd. of Guelph, Ontario under the direction of CRA. The report of the investigation is contained in Appendix A. The river bottom was visually inspected and the sediments were "probed" over a 50 metres by 50 metres area adjacent to the former coal gasification plant as shown on Figure 3.1. Water and sediment samples were collected for analysis.

3.3 PHASE IV INVESTIGATION

The Phase IV investigation included the items described in the Proposal for Additional Investigative Work (1) (i.e. drilling of boreholes, installation of three monitoring wells and sampling of water in the Grand River). The work was conducted during the period of February to May 1990. The field methods for the Phase IV work are described in Appendix B.

3.4 FIELD DATA SUMMARY

Borehole logs for all borehole and well installations (including boreholes by Peto-MacCallum) are included in Appendix C. Additional field data which was collected (i.e. grain size data) are included in Appendix D. The locations of all boreholes, monitoring wells and river sampling points are shown on Figure 3.1 (presented previously).

Analytical reports for all samples collected during the entire program are contained in Appendix E.

4.0 GEOLOGY/HYDROGEOLOGY

4.1 GEOLOGY

Geologic cross-sections are used to illustrate geologic conditions. Cross-section locations are shown on Figure 4.1. The geological setting beneath the property, as shown on cross-section Figures 4.2, 4.3 and 4.4, is represented by fill overlaying an upper sequence of sands (SM, SP and SW) overlay a basal sand and gravel unit (SW-GP). A silt (ML) bed, of approximately 0.5 metre thickness, is found between these clastic units in the eastern area of the site as shown on Figure 4.2. An organic silt (OL) is noted to overlie the upper sands in the western areas of the site as shown on Figure 4.3. The soil classifications are from the modified Unified Soil Classification system and are defined in Appendix C.

The basal sand and gravel unit consists of a dense to very dense coarse sand and gravel with occasional cobbles. This unit is found approximately 4.0 to 8.0 metres below the surface and is inferred to be 2.0 to 5.0 metres thick, extending to the bedrock surface, approximately 5.0 to 12.0 metres below the surface.

The upper sands consist of a poorly to well graded, fine to coarse grained sand with occasional silt seams and traces of gravel. The sands are found approximately 1.5 to 5.0 metres below the ground surface and vary in thickness from 1.0 to 5.0 metres. The unit is continuous under the property but, terminates abruptly at the western property boundary as shown on Figure 4.4.

2067-16/05/90-4 0

A silt or sandy silt bed of approximately 0.5 metres thickness is found stratigraphically between the upper sands and basal sand and gravel in the eastern portion of the property.

Loose, dark gray, organic silts with occasional sand seams are found in a limited area of the northwest quarter of the property as shown on Figure 4.2. These organic silts directly overly the upper sands and are approximately 2.0 metres in thickness.

The entire property is covered by a sand fill containing occasional gravel and limited amounts of construction rubble (brick pieces). This fill tends to increase in thickness from approximately 2.0 metres at the eastern property boundary, near Water Street, to approximately 5.0 metres at the western property boundary adjacent to the Grand River. It is believed that the shoreline of the Grand River was extended westward from Water Street by the placement of these fill materials.

4.2 HYDROGEOLOGY

A water table aquifer is found within the native sands at the property. The water table is approximately 3.5 to 4.5 metres below the ground surface or at an elevation ranging from 263.902 to 264.118 metres above mean sea level (AMSL). Table 4.1 summarizes the historical water level data.

TABLE 4.1

SUMMARY OF WATER ELEVATION DATA

			Water	Water Elevation (m. AMSL.)	(MSE)			
	Ref. Elev.	4/29/87	2/27/90	3/14/90	3/26/90	5/3/90	5/22/90	12/11/90
Well Number								
OW8-87	269.178	264.548	264.298	264.718	264.438	264.118	264.498	264.418
OW15-90	268.542	1 1	264.052	264.502	264.272	263.902	264.312	264.232
OW17-90	269.560	!	264.210	264.540	264.380	264.035	264.360	264.330
River Station								
Number 1 (upstream) Number 2 (downstream)	265.715 265.267	1 1	1 1	1 1	264.824 264.794	264.815 264.767	1 1	1 1

4.2.1 Groundwater Flow

Groundwater flow within the water table aquifer is in a southerly direction, parallel to that of the Grand River as indicated by the water level data presented in Table 4.1, which were collected during spring and late fall conditions in 1990. This parallel groundwater flow pattern is thought to be significantly influenced by the Parkhill Dam immediately downstream of the property. During the period of water level measurements, the water elevation in the Grand River was found to be higher than the groundwater elevations on the property. This may be due to seasonal effects. Figure 4.5 illustrates the groundwater contours for May 3, 1990 taken from four groundwater observation wells: OW8-87, OW14-90, OW15-90 and OW17-90.

4.2.2 Hydraulic Conductivity

The in situ hydraulic conductivity of the screened material of groundwater monitoring wells OW14-90 and OW15-90 was determined by single well response testing of the wells. Data from these tests are presented in Appendix D. The hydraulic conductivity of these wells, as calculated following Hvorslev (1951) (5) is 1.0×10^{-3} cm/sec and 6.0×10^{-5} cm/sec, respectively. The geometric mean of these values is 2.4×10^{-5} cm/sec and is used to characterize the hydraulic conductivity of the aquifer.

۰f

2087-16/05/90 -4 -0

4.2.3 Groundwater Flow Velocity

The average horizontal groundwater flow velocity can be determined using the modified Darcy equation:

$$\overline{V} = \frac{Ki}{n}$$

where:

K - hydraulic conductivity,

i - horizontal hydraulic gradient, and

n - effective porosity.

Using the geometric mean of the hydraulic conductivity of 2.4×10^{-6} m/sec (2.4×10^{-4} cm/sec), a horizontal hydraulic gradient of 0.0036 (m/m) and an assumed effective porosity of 0.30, a horizontal linear groundwater velocity of 2.9×10^{-8} m/sec or 0.93 m/yr is calculated.

5.0 CONTAMINANT DISTRIBUTION

5.1 SOIL

5.1.1 Summary of Borehole Observations

A total of 22 boreholes were completed by

Peto-MacCallum Ltd. (Peto) for geotechnical investigation as discussed in the
September 1987 report (2). Peto reported oil odours in several samples
recovered during the investigation. Table 5.1 presents a summary of the
location, depth and soil stratigraphy where the odours were reported.

The location of soil borings conducted by CRA in 1987 were selected on the basis of information from Peto borings, the location of the former coal gasification plant and the location of potential areas of contact with subsurface material during the proposed property development.

The soil borings conducted in 1990 by CRA were placed to define the extent of contamination outside of the limits of the former coal gasification plant and for installation of monitoring wells at the southern property boundary. In addition, a total of two boreholes and one monitoring well were to be placed through the top of the GRCA flood control berm. This part of the program was modified, in consultation with the MOE, because of difficulties and safety concerns regarding access of drilling equipment to the top of the berm. Two holes were drilled on the side of the berm (BH16-90, OW17-90) on GRCA property. One of these two boreholes (OW17-90) was completed as an observation well.

TABLE 5.1

SUMMARY OF ODOURS
REPORTED IN GEOTECHNICAL SOIL BORINGS

Borehole	Depth ft (m) BGS	Geodetic Elev. ft (m) AMSL	Soil/Odour ⁽¹⁾ Desc r iption	Remarks
103	12.5 (3.81)	868 (264.56)	Sand and Silt Fill/ Strong oil smell	West of reported gas holder location
104	11 (3.35)	865 (263.66)	Coarse Sand/Strong smell of oil	Inside purifying retort building
202	10 (3.05)	870 (265.18)	Sand and Gravel Fill/Strong smell of oil	West of reported gas holder location
108	15 (4.57)	863 (263.05)	Fine to Medium Sand/ Strong smell of oil	Near north property limit

Note:

Table 5.2 contains a summary of the contamination noted in the soil borings conducted by CRA in 1987 and 1990. Figure 5.1 shows in plan view the locations where contamination was noted. From this information, the following general observations are made:

- Concrete material is present beneath the existing textile mill foundation where the former coal gasification plant was located.
- Odours of coal tar, gasoline and diesel fuel are noted in the area of the former coal gasification plant.
- iii) The contamination is generally not encountered until the water table is reached.
- iv) The boreholes exhibiting the greatest amount of coal tar contamination are OW8-87, BH10-87 and BH13-87.
- v) A coal tar odour is noted at the north end of the property along with coal fragments.
- vi) Odours are noted in boreholes installed on GRCA property.
- vii) Contamination is not noted at boreholes on the southern property boundary (OW14-90, OW15-90).

TABLE 5.2

SUMMARY OF CONTAMINATION NOTED IN 1987 AND 1990 SOIL BORINGS

Borehole	Description
BH1-87	- none
BH2-87	- strong coal tar odour at water table (El. 263.8 m)
BH3-87	- coal tar odour at water table (El. 264.8 m)
	- strong gasoline odour (El. 263.7 m)
BH4-87	- strong coal tar odour at water table (El. 264.6 m)
	- strong gasoline odour (El. 264.0 m)
BH5-87	- none
BH6-87	- strong coal tar odour beneath buried concrete slab (El. 264.6 m)
BH7-87	- coal tar odour (El. 267.0 m)
OW8-87	- strong coal tar odour and coal tar at water table (El. 264.8 m)
	down to and into fine grained layer (El. 262.0 m)
BH9-87	- slight coal tar odour above probable concrete (El. 266.0 m)
BH10-87	- diesel fuel odour at water table (El. 264.8 m)
	- strong coal tar odour and coal tar (El. 263.0 m)
BH11-87	- strong diesel fuel odour at water table (El. 264.8 m)
BH12-87	- strong diesel odour at water table (El. 265.0 m)
BH13-87	- slight coal tar odour at water table (El. 264.5 m) with increasing
	coal tar odour with depth
	- coal tar saturated above thin silt/sand layer (El. 262.2 m)
OW14-90	- none
OW15-90	- none
BH16-90	- very slight odour (El. 263.7 m)
	- slight odour, water discoloured (El. 262.3 m)
	- moderate odour in sand/gravel below silt layer (El. 261.0 m)
OW17-90	- slight odour in silt layer (El. 264.0 m)
	- slight odour in sand layer (El. 263.0 m)
BH18-90	- strong odour and sheen (El. 263.0 m)
	- strong odour and product (El. 262.0 m)
BH19-90	- none
BH20-90	- strong odour and product (El. 262.5 m)
BH21-90	- none

2087-16/05/90 4 -0

5.1.2 Analytical Results of Soil Samples

During Phase I, two soil samples were analyzed for the indicator polynuclear aromatic hydrocarbons (PAHs); naphthalene and benzo(a)pyrene. These compounds were selected as indicators because of mobility (naphthalene) and carcinogenicity (benzo(a)pyrene). The results are contained in Table 5.3. One sample was obtained from the vicinity of the former coal gasification plant (BH6-87) and the other was obtained from the north end of the property (BH7-87) where odours were noted from the geotechnical investigation. The only detection was naphthalene at BH6-87.

During Phase II, ten soil samples were analyzed for PAHs in leachate from soil and two soil samples were analyzed for total concentration of PAHs. These results are contained in Tables 5.4 and 5.5, respectively.

As shown in Table 5.4, benzo(a)pyrene was not detected in any of the leach samples. There were no detections of PAHs in the leach samples collected from the unsaturated zone. Various PAHs were detected in the leach samples collected from the saturated zone. The number of PAH compounds and their concentrations in the leach samples collected from within the silt layer at BH10-87 (4.6 - 5.2 m) are significantly lower than those of samples collected in the saturated zone above the silt layer at the same borehole.

With respect to the total PAH concentrations shown in Table 5.5, several PAHs including benzo(a)pyrene were detected in soil

TABLE 5.3

PHASE I ANALYTICAL RESULTS PAHs IN SOIL

Sample	Depth	Concentrati	ion (ppm) (1)
Location	m (ft)	Naphthalene	Benzo(a)pyrene
BH6-87	2.4 (8)	2.38	<0.5
DI 17 07	2.0.2.(.10.12)	<0.0F	<0.05
BH7-87	3.0-3.6 (10-12)	<0.05	<0.05

Notes:

1. Total concentration in soil

PHASE II ANALYTICAL RESULTS PAHS IN SOIL LEACH

	OW8-87	37				BH10-87				
	3.8-4.4 m		1.5-2.1 m		2.3-2.9 m		3.8-4.4 m		4.6-5.2 m	
PAH Compound (µg/1.)	(12.5-14.5 ft) [5]	MDL	(5.0-7.0 ft) [4]	II WDF	(7.5-9.5 ft) (5 MDL	MDL	(12.5-14.5 ft) [5]	MDL	(15.0-17.0 ft) [6]	MDL
Acenaphthene	50.4	0.2		0.1	27.1	0.1	3.4	-	0.5	0.1
Acenaphthylene	2.7	0.2	,	0.1	0.4	0.1	355	_		0.1
Anthracene	0.5	0.2	,	0.1	-	0.1	21	-		0.1
Benz(a)Anthracene+Chrysene	٠	0.2	,	0.1	1	0.1		-	,	0.1
Benzo(b)Fluoranthene and										
Benzo(k)Fluoranthene	•	0.2	,	0.1	,	0.1	•	2		0.1
Benzo(a)Pyrene		0.2	,	0.1	,	0.1	,	2	,	0.1
Benzo(g,h,i)Perylene		0.4		0.2		0.2	,	5		0.2
Dibenz(a,h)Anthracene	,	0.4	,	0.2	,	0.2	,	5		0.2
Fluoranthene		0.2	ı	0.1	0.2	0.1	5.6	_		0.1
Huorene	6.7	0.2	,	0.1	5.1	0.1	82	_		0.1
Indeno(1,2,3-cd)l'yrene		0.4	٠	0.2	1	0.2	1	5		0.2
Naphthalene	240	0.2	,	0.1	0.3	0.1	777	_	1.4	0.1
Phenanthrene	9.9	0.2	•	0.1	9	0.1	160	-	,	0.1
Pyrene	•	0.2	1	0.1	0.5	0.1	6.1	-		0.1

TABLE 5.4

PHASE II ANALYTICAL RESULTS PAHS IN SOIL LEACH

	B	BH11-87		BH12-87	2-87			BHII	BH13-87	1
	2.3-2.9 т		0.75-1.35 m		2.3-2.9 m		1.5-2.1 m		5.3-5.9 т	
PAH Compound (µg/L)	(7.5-9.5 ft)	[5] MDE	(2.5-4.5 ft) [4] MDL	MDL	(7.5-9.5 ft) (51 MDL	MDL	(5.0-7.0 ft) (4) MDL	[4] MDL	(17.5-19.5 ft) [5]	MDL
Acenaphthene	0.3	0.1	•	0.1	,	0.1	,	0.1	47.7	. –
Acenaphthylene	ı	0.1	•	0.1	,	0.1	1	0.1	283	-
Anthracene	ı	0.1	1	0.1	,	0.1	1	0.1	6.2	_
Benz(a)Anthracene+Chrysene	ı	0.1	•	0.1		0.1	•	0.1	•	-
Benzo(b)Fluoranthene and										
Benzo(k)Fluoranthene	•	0.1		0.1	,	0.1	4	0.1	•	2
Benzo(a)Pyrene	,	0.1	1	0.1	,	0.1	,	0.1	ı	2
Benzo(g,h,j)Perylene	•	0.2	,	0.2	,	0.2		0.2	ſ	2
Dibenz(a,h)Anthracene	•	0.2	ı	0.2		0.2	ŀ	0.2	1	5
Fluoranthene	•	0.1	•	0.1	,	0.1	,	0.1	3.5	-
Fluorene	0.2	0.1	1	0.1	1	0.1	ı	0.1	82	
Indeno(1,2,3-cd)Pyrene	•	0.2	1	0.2	1	0.2	•	0.2	٠	2
Naphthalene	1.6	0.1	,	0.1	,	0.1	٠	0.1	10,550	-
Phenanthrene	0.4	0.1	,	0.1	0.2	0.1	•	0.1	117	-
Pyrene	•	0.1	•	0.1	ı	0.1	•	0.1	5.7	-

Notes:

- [1] MDL = Method Detection Limit
- [2] Blank value indicates compound not detected at the MDL

- [3] Total concentration in soil leach
 [4] Sample from unsaturated zone
 [5] Sample from saturated zone
 [6] Sample from within or below silt layer

TABLE 5.5

PHASE II ANALYTICAL RESULTS
PAHs IN SOIL

	BH13	3-87	OW8	3-87
	5.3-5.9 m		3.8-4.4 m	
PAH Compound (ppm)	(17 <i>5-</i> 19 <i>5</i> ft)	MDL	(12.5-14.5 ft)	MDL
Acenaphthene	2,230	30		3
Acenaphthylene	160	30	89.2	3
Anthracene	1 ,2 50	30	55.8	3
Benz(a) Anthracene	400	30	11.3	3
Benzo(b)Fluoranthene and				
Benzo(k)Fluoranthene	420	50	TR	5
Benzo(a)Pyrene	530	50	TR	5
Benzo(g,h,i)Perylene	330	150		15
Chrysene	640	30	23.7	3
Dibenz(a,h)Anthracene	••	150		15
Fluoranthene	2,400	30	112	3
Fluorene	780	30	16.1	3
Indeno(1,2,3-cd)Pyrene	220	150		15
Naphthalene	10,300	30	180	3
Phenanthrene	5,250	30	188	3
Pyrene	510	30	24.8	3

Notes:

- 1. MDL = Method Detection Limit
- 2. Blank value indicates compound not detected at the MDL
- 3. TR = Trace
- 4. Total concentration in soil

samples. The concentrations present are higher in the vicinity of the former coal gasification plan (BH13-87) than at the property boundary (OW8-87). However, these samples were obtained from different depth horizons, and the concentrations of PAHs at a given location are expected to vary with depth due to the gravity effect on coal tar migration.

During Phase IV, two soil samples were collected and analyzed for PAHs and metals. These results are contained in Table 5.6. The samples were collected from the southern property boundary (OW14-90) and beneath the GRCA flood control berm (OW17-90). These samples were obtained from the saturated soil zone.

With respect to the PAH data, there were no detections at OW14-90 and there were several detections at OW17-90 at concentrations of approximately 1 ppm or less. The concentrations found at OW17-90 are significantly lower than those at OW8-87 which is approximately 30 metres upgradient of OW17-90 with respect to groundwater flow. This would be expected if the contaminants at OW17-90 were present as a result of transport with groundwater. With respect to the metals data, the concentrations present in both samples are similar to background concentrations of metals in surface soil in an urban location. The concentrations present are similar to or lower than the upper limits of normal concentrations in Ontario urban surface soil presented by the MOE (3).

TABLE 5.6

PHASE IV ANALYTICAL RESULTS PAHs AND METALS IN SOIL

Parameter	Sample	Location
	OW14-90 (3.81 - 4.42m)	OW17-90 (5.33 - 5.94 m)
PAHs (ppm)		
Acenaphthene	< 0.05	0.69
Acenaphthylene	< 0.05	0.05
Anthracene	< 0.05	0.35
Benz(a)anthracene	< 0.05	0.19
Benzo(b)fluoranthene		0.17
and Benzo(k)fluoranthene	< 0.12	0.24
Benzo(a)pyrene	<0.1	0.2
Benzo(g,h,i)pervlene	<0.2	<0.2
Chrysene	< 0.05	0.21
Fluoranthene	<0.05	0.53
Fluorene	<0.05	0.32
Indeno(1,2,3-cd)pyrene	~0.05	0.32
and Dibenz(a,h)anthracene	<0.25	0.05
Naphthalene		<0.25
Phenanthrene	<0.05 <0.05	0.42
Pyrene		1.2
Tyrene	<0.05	0.75
Metals (ppm)		
Hexavalent Chromium	0.179	0.28
Zinc	56	89/92
Cadmium	0.10	0.30/0.40
Cobalt	2.5	2.5/2.5
Copper	13.5	14.5/12.5
Lead	5.0	
Chromium	17	18.0/20.0
Nickel	9	23/24
Bervllium	<1	12/13
Molybdenum		<1/<2
Vanadium	4	4/4
Barium	14	24/27
Mercury	17	38/42
Arsenic	<0.02	< 0.02
Selenium	<0.5	3.0/3
Silver	<0.5	<0.5/<1
- -	<0.5	<0.5/<1
Antimony	<1	<1/<2

5.2 **GROUNDWATER**

Monitoring wells OW8-87 and OW17-90 have been noted to contain non-aqueous phase liquids (e.g. oil, tar). A fluid sample was collected from OW8-87 and analyzed for PAHs as part of Phase II. This sample contained elevated concentrations of PAHs and VOCs but the sample is not indicative of groundwater quality. The analytical results for this sample are contained in Table 5.7. Monitoring well OW17-90 was not sampled since the well contains non-aqueous phase liquids which would interfere with the assessment of groundwater quality at this location.

As discussed in Section 4, groundwater flow at the property is towards the south. Monitoring wells OW14-90 and OW15-90 are expected to intercept floating and dissolved contaminants in groundwater which passes through the soil beneath the former coal gasification plant and vicinity.

The analytical results for groundwater samples collected in 1990 from OW14-90 and OW15-90 are contained in Table 5.8. PAHs were not detected in either sample. Volatile organic compounds (VOCs) were not detected in the sample from OW15-90. Several VOCs were detected in the sample from OW14-90 including chloroform, ethylbenzene and xylenes at concentrations of up to 4.3 μ g/L. A total concentration of 16 μ g/L of untargeted aromatic compounds was also detected. The VOCs which were detected in OW14-90 are not necessarily solely related to coal tar deposits, but may be related to petroleum products. An auto garage and some gasoline service stations are known to have existed in the area. These facilities would

ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87

Compound	MDL	OW8-87
PAHs (μg/L)		
Acenaphthene	10	112
Acenaphthylene	10 .	19.3
Anthracene	10	126
Benz(a)Anthracene	10	33.7
Chrysene	10	52.5
Benzo(b)Fluoranthene and		
Benzo(k)Fluoranthene	20	41
Benzo(a)Pyrene	20	54.6
Benzo(g,h,i)Perylene	50	TR
Dibenz(a,h)Anthracene	50	-
Fluoranthene	10	239
Fluorene	10	303
Indeno(1,2,3-cd)Pyrene	50	TR
Naphthalene	10	8,788
Phenanthrene	10	805
Pyrene	10	267

ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87

Compound	MDL	OW8-87
VOCs (µg/L)		
Benzene	1,000	8,940
Bromodichloromethane	100	-
Bromoform	500	-
Bromomethane	100	-
Carbon Tetrachloride	500	-
Chlorobenzene	100	-
Chloroethane	100	-
2-Chloroethyl Vinyl Ether	5,000	-
Chloroform	100	-
Chloromethane	100	-
Dibromochloromethane	100	-
1.2-Dichlorobenzene	150	_
1,3-Dichlorobenzene	150	
1,4-Dichlorobenzene	150	-
1,1-Dichloroethylene	100	-
1,1-Dichloroethane	100	-
1,2-Dichloroethane	100	-
trans-1,2-Dichloroethylene	100	-
Dichloromethane	5,000	-
1,2-Dichloropropane	100	-
cis-1,3-Dichloropropene	250	-
trans-1,3-Dichloropropene	100	-
Ethylbenzene	50	5,000
A-Methylstvrene	50	130
Mesitylene	50	740
1,1,2,2-Tetrachloroethane	1,000	_
Tetrachloroethylene	100	-
Toluene	500	4,190
1,1,1-Trichloroethane	100	-
1,1,2-Trichloroethane	250	
Trichloroethylene	100	-
Trichlorofluoromethane	500	_
m+p Xylene	50	1,410
o-Xylene	50	780
Vinyl Chloride	250	
Other Aromatic Compounds	50	

Notes:

- 1. MDL = Method Detection Limit
- 2. Blank value indicates not detected at the MDL
- 3. Other Aromatic Compounds = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene
- 4. TR = Trace

ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

Compound	MDL	OW14-90	OW15-90
PAHs (μg/L)			
Acenaphthene	1	ND	ND
Acenaphthylene	1	ND	ND
Anthracene	1	ND	ND
Benz(a)Anthracene	1	ND	ND
Benzo(b)Fluoranthene	1	ND	ND
Benzo(k)Fluoranthene	1	ND	ND
Benzo(a)Pyrene	1	ND	ND
Benzo(g,h,i)Perylene	2.5	ND	ND
Chrysene	1	ND	ND
Fluoranthene	1	ND	ND
Fluorene	1	ND	ND
Indeno(1,2,3-cd)Pyrene and			
Dibenz(a,h)Anthracene	3	ND	ND
Naphthalene	1	ND	ND
Phenanthrene	1	ND	ND
Pyrene	1	ND	ND

· ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

Compound	MDL	OW14-90	OW15-90
VOCs (μg/L)			
Benzene	1	ND	ND
Bromodichloromethane	1	ND	ND
Bromoform	2	ND	ND
Bromomethane	10	ND	ND
Carbon Tetrachloride	2	ND	ND
Chlorobenzene	1	ND	ND
Chloroethane	10	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Chloroform	1	4.3	ND
Chloromethane	10	ND	ND
Dibromochloromethane	1	ND	ND
Dibromoethane	4	ND	ND
1,2-Dichlorobenzene	1	ND	ND
1,3-Dichlorobenzene	1	ND	ND
1,4-Dichlorobenzene	1	ND	ND
1,1-Dichloroethylene	1	ND	ND
1,1-Dichloroethane	1	ND	ND
1,2-Dichloroethane	2	ND	ND
trans-1,2-Dichloroethylene	1	ND	ND
Dichloromethane	5	ND	ND
1,2-Dichloropropane	1	ND	ND
cis-1,3-Dichloropropene	1	ND	ND
trans-1,3-Dichloropropene	1	ND	ND
Ethylbenzene	1	1.1	ND
A-Methylstyrene	1	ND	ND
Methylstyrene Isomers	1	ND	ND
Mesitylene	1	ND	ND
Styrene	2	ND	ND
1,1,2,2-Tetrachloroethane	2	ND	ND
Tetrachloroethylene	1	ND	ND
Toluene	2	ND	ND
1,1,1-Trichloroethane	2	ND	ND
1,1,2-Trichloroethane	1	ND	ND
Trichloroethylene	1	ND	ND
Trichlorofluoromethane	2	ND	ND
m+p Xylene	2.	TR	ND.
o-Xylene	1	1.5	ND
Vinyl Chloride	5	ND	ND
Other Aromatic Compounds	1	16	ND
	•	10	140

Notes:

- 1. ND = Not Detected
- 2. TR = Trace
- 3 Other aromatic compounds = total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

likely have had underground storage tanks which could have leaked into the ground in the past.

The non-aqueous phase liquids which are encountered in the boreholes and at well locations OW8-87 and OW17-90 represent a potential source of groundwater contamination. The ultimate discharge point of groundwater is undefined, however it appears that coal tar material in the saturated soil zone does not readily solubilize into groundwater and migrate, as evidenced by the analytical results of soil and water samples from monitoring wells OW14-90 and OW15-90.

5.3 GRAND RIVER WATER AND SEDIMENT

The underwater inspection of the Grand River was carried out over a 50 metre by 50 metre area as shown on Figure 3.1 presented previously. The intensity of the search pattern by the diver was greatest near the shore as discussed in the report by Integrated Explorations (Appendix A). The diver visually observed the bottom sediments and used white plastic probes driven 75 to 150 millimetres into the soil every 0.6 to 1.0 metres to detect any buried coal tar. Coal tar, if any is present, which contacts the probe is made visible on the probe due to the affinity of oils for the plastic and the propensity to spread as a thin film over the plastic surface. In addition, seven holes were cut in the ice and underlying sediments were agitated with a pole to observe a possible oil sheen.

There were no observances of coal tar or oil material in water or sediments through the efforts described above. Therefore, it is considered that coal tar contamination does not exist in the survey area, which is the most probable area in the river for this material to appear in relation to the former coal gasification plant.

As part of the December 1988 river inspection, two surface water and three sediment samples were collected and analyzed for PAHs. In addition, two water samples were collected in May 1990 and analyzed for PAHs. Sample locations are shown on Figure 3.1 presented previously. The water samples were collected from approximately 20 cm above the river bottom.

Analytical results for sediment and water samples are contained in Tables 5.9 and 5.10, respectively. Sediment samples S-1 and S-2 were collected within the river inspection area. These samples contain low concentrations of various PAHs. The total concentrations of PAHs in these samples were 4.42 ppm in S-1, 4.16 ppm in S-1 duplicate and 1.93 ppm in S-2. Sediment sample S-3 was collected upstream of the survey area and just downstream of a storm outfall pipe. The total concentration of PAHs in this sample was 5.66 ppm. The concentrations of PAHs at all three sampling locations are similar.

Sample S-3 is considered to be representative of background conditions in the Grand River near the property. The boreholes drilled during the geotechnical investigation adjacent to the area of sample S-3 (i.e. BH205, 206, 207) did not encounter any coal tar deposits based on

TABLE 5.9

ANALYTICAL RESULTS OF GRAND RIVER SEDIMENT SAMPLES

Compound (ppm)	MDL	S-1	S-1 (Dup)	S-2	S-3
Acenaphthene	0.02	ND	ND	0.02	0.02
Acenaphthylene	0.02	ND	ND	ND	ND
Anthracene	0.02	0.03	0.06	0.03	0.1
Benz(a)Anthracene	0.02	0.3	0.3	0.1	0.2
Benzo(b)Fluoranthene and					
Benzo(k)Fluoranthene	0.02	1.0	0.9	0.4	1.1
Benzo(a)Pyrene	0.02	0.5	0.4	0.1	0.7
Benzo(g,h,i)Perylene	0.04	0.2	0.3	0.1	0.4
Chrysene	0.02	0.6	0.5	0.1	0.5
Dibenz(a,h)Anthracene	0.04	0.09	0.1	TR	0.1
Fluoranthene	0.02	0.6	0.6	0.4	0.9
Fluorene	0.02	ND	ND	ND	0.04
Indeno(1,2,3-cd)Pyrene	0.04	0.2	0.2	0.08	0.3
Naphthalene	0.02	ND	ND	ND	ND
Phenanthrene	0.02	0.3	0.2	0.2	0.5
Pyrene	0.02	0.6	0.6	0.4	0.8

Notes:

ND - Not Detected

TR - Trace

MDL - Method Detection Limit

TABLE 5.10 ANALYTICAL RESULTS OF GRAND RIVER WATER SAMPLES

Compound (µg/L)	MDL (1)	W-1	W-2	MDL (2)	W-3	W-4
Acenaphthene	0.05	ND	ND	1.2	ND	ND
Acenaphthylene	0.05	ND	ND	1.5	ND	ND
Anthracene	0.05	ND	ND	2	ND	ND
Benz(a)Anthracene	0.05	ND	ND	2	ND	ND
Benzo(b)Fluoranthene and						
Benzo(k)Fluoranthene	0.05	0.06	ND	4	ND	ND
Benzo(a)Pyrene	0.05	ND	ND	3	ND	ND
Benzo(g,h,i)Pervlene	0.1	ND	ND	5	ND	ND
Chrysene	0.05	ND	ND	2	ND	ND
Dibenz(a,h)Anthracene	0.1	ND	ND	NA	NA	NA
Fluoranthene	0.05	0.06	ND	2	ND	ND
Fluorene	0.05	ND	ND	1.5	ND	ND
Indeno(1,2,3-cd)Pyrene	0.1	ND	ND	NA	NA	NA
Naphthalene	0.05	ND	ND	1.2	ND	ND
Phenanthrene	0.05	ND	ND	2	ND	ND
Pyrene	0.05	ND	ND	1.5	ND	ND
Dibenz (a,h) Anthracene and						
Indeno (1,2,3-cd)Pyrene	NA	NA	NA	8	ND	ND

Notes:

ND - Not Detected

NA - Not Applicable
(1) Method Detection Limit for samples W-1 and W-2
(2) Method Detection Limit for samples W-3 and W-4

visual and olfactory observations. It would be expected that PAHs would be found in the river sediments because of the developed nature of the area and the many potential sources of PAHs in a developed area. A study of typical concentrations of PAHs in the environment by the MOE (5) indicated the presence of benzo (a) pyrene in soils and sediments near a highway at 2 ppm. It would be expected that similar concentrations may be encountered near roadways in the watershed of the Grand River. These sediments would then be expected to migrate to the river. Therefore, the concentration of PAHs found in the Grand River sediment samples could be expected to result from background activities.

The water sample collected in December 1988 adjacent to the former coal gasification plant (just upstream of sediment sample location S-2) showed two detections; benzo(b)fluoranthene/benzo(k)fluoranthene at $0.06 \,\mu\text{g/L}$ and fluoranthene at $0.06 \,\mu\text{g/L}$. These values are slightly above the detection limit of $0.05 \,\mu\text{g/L}$. These compounds were also detected in all three sediment samples which were analyzed. It is possible that these compounds were present in the water sample as a result of suspended sediments containing PAHs. The sediments may have become suspended by the movement of the diver.

The water sample collected in May 1990 adjacent to the former coal gasification plant did not contain detectable quantities of PAHs. This sample was collected without any agitation of sediments. These results may be more indicative of the water quality in the Grand River near the former coal gasification plant than the earlier results.

PAHs were not detected in the water samples which were collected in December 1988 and May 1990 upstream of the former coal gasification plant.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Based on the information presented in this report, the following conclusions are made:

- The material underlying the former coal gasification plant includes concrete and soil containing coal tar residues. Gasoline and diesel fuel odours are also noted in this area.
- 2) Coal tar residues are present in soil to the west of the former coal gasification plant. These residues are found sporadically and may have been placed in part during historical filling along the edge of the Grand River.
- Coal tar residues are present in soil beneath the GRCA flood control berm.
- 4) The coal tar residues are generally found in the saturated soils and represent a potential source of groundwater contamination.
- 5) Groundwater flow on the property appears to be approximately parallel to the Grand River and toward the south.
- 6) Groundwater at the southern end of the property does not exhibit contamination by PAHs. One monitoring well exhibits low

concentrations of VOCs. The VOC contamination has various potential sources, including the coal tar residues and former automobile service stations in the area.

- 7) Coal tar residues have not migrated to the southern property boundary as evidenced by the absence of PAHs in soil and groundwater at the two monitoring wells at the boundary.
- 8) Coal tar residues are not visually present in the bed of the Grand River adjacent to the former coal gasification plant.
- 9) Water and sediment in the Grand River does not exhibit a detectable impact by PAHs from the former coal gasification plant.

6.2 RECOMMENDATIONS

Based on the above, the following recommendations are made:

 Any proposed disturbance of the area containing coal tar residues should be reported in writing to the MOE, Waste Management Branch prior to commencement and conducted in accordance with applicable regulations and guidelines.

- 2) A monitoring program should be implemented in the short term to assess the potential migration of contaminants in groundwater and surface water. This would include:
 - measuring water levels in the monitoring wells and the Grand River quarterly for one year;
 - ii) collecting water samples from wells which do not contain coal tar and from two locations in the Grand River on a semi-annual basis for one year (groundwater samples would be analyzed for PAHs and VOCs, surface water samples would be analyzed for PAHs); and
 - iii) reporting all results to the MOE.

The need for monitoring would be re-assessed at the end of the one year period.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Julian Henzuen

Donald H. Haycock, P. Eng.

Julian Hayward, P. Eng.

REFERENCES

- Proposal for Additional Investigative Work, Former Galt Gas Co. Site, Conestoga-Rovers & Associates, June 1989.
- 2) Subsurface Investigation, Former Galt Gas Co. Site, Conestoga-Rovers & Associates, September 1987.
- 3) Guidelines for the Decommissioning and Clean-up of Sites in Ontario, Ontario Ministry of the Environment, January 1989.
- 4) Hvorslev, M. J. 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36, Vicksburg, Miss.
- 5) Polynuclear Aromatic Hydrocarbons, A Background Report Including Available Ontario Data, ARB-TDA-Report No. 58-79, Ministry of the Environment, Air Resources Branch, Technology Development and Appraisal Section, September 1979.

APPENDIX A

GRAND RIVER INSPECTION REPORT
BY INTEGRATED EXPLORATIONS

DIVING INSPECTION OF COAL TAR SITE IN THE GRAND RIVER, CAMBRIDGE (GALT), ONTARIO

Report No. PJ8818-1
December 29, 1988

REPORT PREPARED BY

Al Melkic,

DIVING INSPECTION OF COAL TAR SITE IN THE GRAND RIVER, CAMBRIDGE (GALT), ONTARIO

INTRODUCTION J4

On December 17. 1938, Integrated Explorations conducted an underwater inspection of the area suspected of harbouring coal tar in the Grand River. The site was adjacent to the area known as the "Mill Race on the Grand", and located on the east bank, south of the Samuelson railway bridge in Cambridge (Galt). The purpose of the dive was to survey an area bounded by a 50 by 50 meter square for signs of coal tar using visual and coal tar probing methods. Some representative samples of water and sediment were also collected from the area.

Those involved in the project included the following: Mr. Julian Hayward who directed the survey, Mr. Al Melkic, who supervised the dive team and acted as stand by diver, Mr. Yves Rollin who worked as our primary diver, and Mr. Christopher Wade who functioned as the dive tender. Also, various OMOE officials dropped in briefly to observe our survey operation.

SITE OBSERVATIONS

- 1 AREA SURVEYED is illustrated in the attached survey plan. It was bounded by a 50 by 50 meter square. As illustrated in our drawing, the diver conducted an intensive search near shore and a looser but more extensive search as he proceeded towards the middle of the river. This is a standard procedure as contaminants entering rivers from the land are usually found close to shore.
- 2 DIVING CONDITIONS included ice cover of 4 to 6 inches and two feet visibility. Observations made by the diver were relayed to the surface crew. Ice holes were cut in strategic places to allow the diver to verify his position with respect to surface transect lines which were layed out over the surface of the ice.
- 3 TAR PROBING TECHNIQUE was used to aid visual inspection as buried coal tar is difficult to distinguish from silt and clay. Technical notes pertaining to the coal tar probing methodology are appended to this report.

- 4 PRESENCE OF COAL TAR was not indicated anywhere in our survey. Our experience from other coal tar surveys would lead us to believe that there is no coal tar present in the area. It should be noted that even if coal tar is hidden beneath superficial sediments, the movement of the diver and his umbilical line combined with the continual probing of the sediments would be sufficient to reveal such deposits.
- 5 RIVER SUBSTRATE was characterized by cobbles and boulders within 5 to 7 meters from shore. These were covered with a light silt varying between 0 to 15 cm in thickness. Further out from shore where the depth approached 6 ft. the bottom substrate changed to between 2 1/2 and 5 cm of silt cover over gravel with a clay substrata. Some areas were encountered where the tar probe could be pushed 36 cm into the soft sediment.
- 6 SEDIMENT AND WATER SAMPLES were collected at points depicted in the survey sketch map attached to this report. The two water samples were collected at a height of 20 cm from the river bottom. The three sediment samples were collected by scraping material directly into the sampling jars.

Technical Notes Regarding Novel Tar Probing Technology

Integrated Explorations has developed a number of techniques for quickly estimating the extent of underwater coal tar deposits without resorting to costly chemical analysis. Some of these techniques were used to develop the first map delineating the coal tar spill site in the Rideau River in 1986. This methodology was later improved upon and used with great success at the Port Stanley site in 1987. Currently the probing technique is being used in the Trent River to explore for creosote contamination in outlying areas for the Kingston Regional MOE. In February of 1989 our firm will be using this probing method to delineate the extent of a coal tar contaminated site in Owen Sound for the London Regional Ministry of the Environment.

With this method, oily and tar-like substances occurring as minute specks are made visible by virtue of their affinity for the plastic probe and their propensity to spread as a thin film over such surfaces. This provides a distinct advantage in detecting tiny specks covered by sediments. It also makes it easier to spatially resolve contaminated areas by providing a large number of visual indications per unit area without having to retrieve actual samples except for verification. With this technique, a diver can also distinguish between tar-like substances and clay which in our experience has always presented difficulties underwater.

- Sampli Sumple numbers Parin 011 100 >2 - Sediment #2, water # 1 >3 - Sediment #3, water # 2 90 SAMPLING POINTS > () = Sediment #1

(7 m from Shore)

MAIN ICE HOLE FOR DIVING

APPENDIX B

FIELD METHODS FOR PHASE IV INVESTIGATION

1.0 FIELD INVESTIGATION

The Phase IV field investigation program was conducted during the period of February 5, 1990 to May 3, 1990. This program consisted of the installation of three groundwater monitoring wells, completion of five soil boreholes, soil sampling of the groundwater monitoring wells and soil boreholes, monitoring of water levels at four groundwater monitoring well locations and two river level stations, groundwater and river water sampling and level surveying of the installed groundwater monitoring wells and soil boreholes. A detailed description of these tasks follows.

1.1 GROUNDWATER MONITORING WELL INSTALLATION

The firm of Strata Drilling Incorporated of Cambridge,
Ontario, was retained by CRA to install three groundwater monitoring wells;
OW14-90, OW15-90 and OW17-90 (Figure 3.1, previous). The boreholes were
advanced utilizing a CME-55 truck-mounted drill rig equipped with
4-1/4 inch I.D. hollow stem augers. During the course of the drilling
operation split-spoon samples of the soils were collected at 2.5 foot intervals
in order to assess the stratigraphic sequences at each of the boreholes. The soil
samples were examined and the descriptions logged by a qualified CRA
technician. Blow counts for Standard Penetration Tests (SPT) were also
recorded during the soil sampling event. The recovered soil samples were
labeled as to sample interval and location and retained for future reference.

Once the desired borehole depth had been achieved, groundwater monitoring wells were installed into the borehole. Construction of the groundwater monitoring wells consisted of a 4.0 foot length of #10 slot, 2 inch diameter, stainless steel well screen connected by coupled 2 inch diameter black iron riser pipe. Construction details for the groundwater monitoring wells installed during the Phase IV investigation are provided in Table B-1.

The groundwater monitoring well installations were completed with a native sand pack caved to a minimum height of 2.0 feet above the top of the screen. The remaining annular space was filled with a mixture of cuttings and bentonite grout to within 2.0 feet of the surface which was subsequently filled with concrete. A protective steel casing was placed over the groundwater monitoring well and set into the concrete to complete the installation.

1.2 SOIL BOREHOLES

The firm of Strata Drilling Incorporated was also retained by CRA to complete five soil boreholes; BH16-90, BH18-90, BH19-90, BH20-90 and BH21-90 (Figure 3.1, previous). Each of these boreholes was advanced to the desired depth utilizing the equipment and methods employed during the installation of the groundwater monitoring wells. As previously, during the course of the drilling operations, split-spoon samples of the soils were collected at 2.5 foot intervals in order to assess the stratigraphic sequences at each of the boreholes. The retrieved soil samples were examined and the

TABLE B-1 MONITORING WELL COMPLETION DETAILS

Well Number	Ground Elevation (m AMSL)	Reference Elevation (m AMSL)	Total Depth (m)	Screened Elevation (m AMSL)	Interval Depth (m)	Screened Material
OW14-90	267.541	268.409	5.79	263.84 - 262.62	4.57 - 5.79	sand
OW15-90	267.639	268.542	5.49	264.27 - 263.05	4.27 - 5.49	sand
OW17-90	268.484	269.560	5.83	264.95 - 263.73	4.61 - 5.83	sand

descriptions logged by a qualified CRA technician. Blow counts for Standard Penetration Tests (SPT) were also recorded during the soil sampling events. The recovered soil samples were labeled as to the sample interval and location and retained by CRA for future reference.

Upon completion of the borehole to the desired depth, the borehole was backfilled using only clean cuttings. The remaining annular space was then grouted using a bentonite grout to within 2.0 feet of the surface, which was subsequently filled with concrete to provide a good surface seal.

In order to prevent any form of cross-contamination from borehole to borehole, the drilling rig and all equipment was washed using a high pressure, hot water (steam) washer. The wash water was collected in a trough and pumped to 45 gallon drums for future disposal.

1.3 SOIL SAMPLING

During the course of the drilling operations for the groundwater monitoring wells and the soil boreholes, soil samples were collected at 2.5 foot intervals, using split-spoon sampling techniques. The recovered soil samples were examined and the descriptions logged by a qualified CRA technician. The soil samples were retained in precleaned laboratory glass jars and labeled as to the sample interval and location. Soil samples selected for laboratory analysis were packed on ice in a secure chest

and shipped via courier to the contract laboratory. Chain-of-Custody forms accompanied each shipment.

In order to prevent any cross-contamination between successive soil samples and prior to taking of the first soil sample, the split-spoon sampling device was cleaned using a clean water wash followed by a distilled water rinse, a methanol rinse and a final distilled water rinse.

1.4 GROUNDWATER SAMPLING

Prior to groundwater sampling, each groundwater monitoring well was developed by removing a minimum of five standing well volumes of groundwater from the well using a Wattera pump and polytubing set within the well casing. Stabilization criteria were met when two consistent measurements of pH and conductivity were recorded.

Observations of color, turbidity and odor were also noted during the well development and are presented in Table B-2 along with the aforementioned development criteria.

Once the groundwater monitoring wells had been suitably developed, two groundwater samples were collected from each of the wells. The first sample, for Volatile Organic Compounds (VOC), was collected in a 40-ml laboratory glass vial. A second sample, for Polynuclear Aromatic Hydrocarbons (PAH), was collected in a 1-litre amber glass container. All samples were assigned a unique sample number, packed on ice in a secure

TABLE B-2

WELL DEVELOPMENT AND STABILIZATION PARAMETERS

Comments	moderate recharge moderate recharge moderate recharge	contains silty sands contains silty sands contains silty sands	sheen, moderate recharge sheen, moderate recharge sheen, moderate recharge sheen, moderate recharge
Odour	нопе попе попе	попе попе попе	moderate coal tar moderate coal tar moderate coal tar moderate coal tar
Colour	brown brown brown	dark grey dark grey dark grey	błack błack grey grey
Clarity	very turbid very turbid very turbid very turbid	very turbid very turbid very turbid	very turbid very turbid very turbid very turbid
Conductivity (umhos/cm)	1020 1020 1020 1020	920 920 920	1020 1040 1040 1040
Hq	6.0 6.3 6.4 6.4	6.67	6.7 6.7 6.6 6.6
Volume Removed (L)	9.0 4.0 4.0	4.5 2.0 3.0	3.0 3.0 3.0
Well Volume (L)	4.0	3.0	2.0
Well Number	OW14-90	OW15-90	OW17-90

chest and shipped via courier to the contract laboratory. A chain-of-custody form accompanied the shipment of samples.

1.5 RIVER WATER SAMPLING

Water samples from the Grand River were collected on May 3, 1990, at two locations, approximately 20 cm above the river bed. The method employed in order to retrieve the river water samples consisted of securing a rubber stopper sealed, 1-litre, amber glass bottle to a long pole with tape. The bottle was then placed into the river, approximately 10 feet from shore, such that the bottle was upright and the base of the bottle rested on the river bed. The rubber stopper was then removed allowing the bottle to fill. The retrieved sample was then assigned a unique sample number, packed on ice in a secure chest and shipped via courier to the contract laboratory. A chain-of-custody form accompanied the shipment.

1.6 WATER LEVEL MONITORING

During the course of the Phase IV investigation, groundwater elevations were measured in groundwater monitoring wells; OW8-87, OW14-90, OW15-90 and OW17-90 on several occasions (see Table 4.1, previous). The water levels were obtained using a Solinst water level indicator which emits an audible signal when the probe comes in contact with the water surface. The probe is attached to a flat embossed tape, calibrated to 1 cm intervals, which allows for accurate water level readings to

within 2 mm. In order to avoid any cross-contamination between groundwater monitoring wells and prior to the first reading, the stainless steel probe was washed with a methanol and distilled water rinse.

1.7 LEVEL SURVEY

In order to establish horizontal and vertical control, CRA conducted a level survey of the groundwater monitoring wells and boreholes in February 1990. The reference and ground elevations are included on the stratigraphic and instrumentation logs in Appendix C.

1.8 SINGLE WELL RESPONSE TESTS

Single well response tests were conducted on two groundwater monitoring wells; OW14-90 and OW15-90. The method employed in the tests involved displacing the groundwater within the well casing with a slug of known volume and monitoring the water levels, over time, as they returned to the static level. The recorded date was then analyzed following methods outlined by Hvorslev (1951) to determine the hydraulic conductivity.

APPENDIX C

BOREHOLE LOGS

SOIL CLASSIFICATION SYSTEM (MODIFIED U.S.C.)

	MAJOR	NOISION	GROUP SYMBOL	TYPICAL DESCRIPTION	
	NIGHLY ORG	ANIC SOILS	PI	PEAT AND OTHER HIGHLY ORGANIC SOILS	
£	Z z		GW.	WELL-GRADED GRAYELS, GRAVEL-SAND MIRTURES, < S% FINES	
2 216 16	18 GEN 144 E 812E	CLEAN GRAVELS	GP	POORLY-GRADED GRAVELS, AND GRAVELS SAND MIXTURES, < 5% FINES	
H H O 30	CRAVELS MORE FHAN HALF COARSE FRACTION LANGER THAN HO A SIEVE SIEE		GM.	SILTY GRAYELS, GRAYEL-SAND-SILT MIXTURES > 12% FINES	
CRAIMED SOILS	10 A A A A A A A A A A A A A A A A A A A	DIRTY GRAVELS	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MISTURES > 12% FINES	
COANSE GRAINEO SOILS IMORE THAN HALF BY WEIGHF LARGER THAN HO 300 SIEVE 5127)			sw	WELL-GRADED SANDS, GRAVELLT SANDS, < 3% FINES	
COARSE F BY WEICH	SANDS MORE THAN HALF COARTE FRACTION JMALLER THAN NO. 4 SIEVE SIZE	IF COAN	SOUTH TO STANDS	87	POORLT-GRADED SANDS, OR GRAVELLT SANDS, < ST. FINES
HAH HAL	SANDS THAN HALL TION SMALL HO, 4 SIEVE		SM	SILTT SANOS, SAND-SILT MIXTURES > 12% FINES	
THOME T	FAACT	DIRTY SANDS	sc	CLATET SANDS, SAND-CLAY MIXTURES > 12% FINES	
1 221	SILTS SELOW "A" LINE ON		ML	INDRGANIC SILTS AND VERY FINE SANDS. ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	
2 2 2	PLAST	TICITY CHART; IGISLE ORGANIC	мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDT OR SILTY SOILS	
IS HO J		CLAYS	CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAYELLT, SANDT, OR SILTY CLAYS, LEAN CLAYS	
AINEO S		E "A" LINE ON YIGITY CHART:	CI	INORGANIC CLAYS OF MEDIUM PLASTICITY SILTY CLAYS	
FINE, GRAINED SOILS		IGIBLE ORGANIC	СН	INORGANIC CLATS OF HIGH PLASTICITY,	
FINE, GRAINED SOILS INDRE THAN HALF BY WEICHT PASSES NO 300 SIEVE SIZE)	ORGANIC S	ILTS & ORDANIC CLAYS	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS	
WORE TH	BEL .PLA	OW "A" LINE ON STIGITY GHART	. он	ORGANIC CLAYS OF HIGH PLASTICITY	

HOLE DESIGNATION, BH1-87

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT NO. 2087

DATE COMPLETED. MARCH 16, 1987

(1 - 7)

CLIENT.

MILLRACE ON THE GRAND INC.

DRILLING METHOD. SOLD AUGER

LOCATION: CRA SUPERVISOR: B. FEDY AS PER PLAN

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		AMPLE	_
BG		m AMSL	INSTALLATION	£ C 2	À T	
	GROUND SURFACE	268.43		80 11 00	Ē	
	CONCRETE FLOOR SLAB	268.03	於於到			
1.0	GW GRAVEL (Fill): some sand, maximum aggregate size: 20 mm dia., compact, brown, moist		BOREHOLE			
	SM SAND (Fill): some silt, little gravel, poorly groaed, medium groined, dense, brown, moist	267.23	CUTTINGS			
2.0	SM SAND: some silt, poorly graded, medium grained, dense, brown, moist	266.23				
3.0	- becomes water saturated with occasional		· · · · · · · · · · · · · · · · · · ·			
4.0	thin seams of coorse SP.	264 43 5	2 徐然符 《紫裳			
5.0	END OF HOLE @ 4.90 m BGS.	263.53	<u> </u>			
6.0						
7.0						
8.0						
9.0						
10.0						
11.0						
11.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION: 8H2-87

PROJECT NO. 2087

DATE COMPLETED. MARCH 16, 1987

CLIENT MILLRACE ON THE GRAND INC.

DRILLING METHOD. 95mm ID -SA

LOCATION: AS PER PLAN

CRA SUPERVISOR B FEDY

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SA	MPLE	
m BG	CHARLES A FILE DESCRIPTION OF THE PROPERTY OF	m AMSL	INSTALLATION	N	\$	`\ \
	GROUND SURFACE	268.44		υπια κ C	A+-E	7 L J L
	CONCRETE FLOOR SLAB	200.04	8,9833			
- 1.0	GW GRAVEL (Fill): some sand, compoct, brown, moist SM SAND (Fill): some silt, trace clay, fine	268.04	200mme BOREHOUE	155	X	10
	grained, compact, brown, maist		CUTTINGS		H	
2.0	SM SAND some silt, layered, dilatent, low to non-plastic, compact, brown, maist, accessand layer of medium grained SP	256.64		2SS		14
	gramas a			355		55
- 3.0	SP SAND: trace silt, trace fine gravel, layered, medium grained, very dense, brown, maist	265.44		4\$\$	X	28
4.0	SP SAND: uniform, loyered, becomes grey,	264.44	深溪	5SS		25
	water saturated - strong coal for odour	263.84				
5.0		263.24	经经验	655	X	, 8
	END OF HOLE @ 5.20 m BGS.	200.24				
6.0						
7.0						
- 8.0						
0.0						
- 9.0						
9.0						
10.0						
11.0		-				
12.0						
13.0						
	L					

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (16/03/87)

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION: BH3-87

PROJECT NO. 2087

DATE COMPLETED. MARCH 15, 1987

CL.ENT. MILLRACE ON THE GRAND INC.

DRILLING METHOD. 95mm .D -SA

(--9)

LOCATION: AS PER PLAN

CRA SUPERVISOR B FEDY

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
BC		m AMSL	INSTALLATION	C 2	Ş	1
	GROUND SURFACE	267.06		3 @ w Q	A T E	į
	CONCRETE FLOOR SLAB		次於 沙			_
1.0	GW GRAVEL (Fill): some sand, compact, brown, maist, becomes black with occasional coal fragments	266.66	6.5 BOREHOLE	155	X	2
20	SP SAND: trace silt, layered, fine grained, dense, brown, moist, becomes siltier, water saturated — thin seam of fine SM, black	265.66	CUTTINGS	255		2
3.0	— grey, strong coal tar occur			355		2
4.0	- brown/yellow with strong gasaline odour	263.16		455	X	2
	END OF HOLE @ 3.90 m BGS.					
5.0				ļ		
6.0						
6.0						
70						
7 0						
7 0 8.0 9.0						
7 0 8.0 9.0 10.0						
7 0 8.0 9.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND T STATIC WATER LEVEL T (16/03/87)

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION B-4-67

PROJECT NO. 2087

DATE COMPLETED. MARCH 15, 1987

CLIENT

MILLRACE ON THE GRAND INC.

DRILLING METHOD. 95mm D HSA

LOCATION: AS PER PLAN

CRA SUPERVISOR B. FEDY

	Toronto occopy Drov. A. Drugova	E. E. u. D				
DEPTH m BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SA	MPLE	
m 56		III AWGE	INSTRUCTION.	⊣ ∷	A	* 6.2
	GROUND SURFACE	267.04		and a	Ξ.	7 2.
	CONCRETE FLOOR SLAB		SKOK!	1		-
	GW GRAVEL (Fill): some sand, occasional cool	266.64	BOREHOLE			
1.0	fragments, bricks and other rubble, loose, brown to black, moist		以次次	155	∇	20
	SW-SM SAND (Fill): some gravel, some silt,	265.64				
2 0	some flyash, occasional pebbles, wood			255	X	37
20	fragments, slag, compact, white to brown, moist SM SAND: some silt, poorly graces, fine to	264.76	三 然総			
	meaium grained, compact, brown, water	264 64		388	X	. 4
3.0	saturated - grey/black, strong coal tar odour.	263.99				
	SP SAND: some gravel, medium to coarse		- 1	455		. 5
4.0	grained, compact, grey to yellow, water saturated, strong gasoline adour	263.24				
	END OF HOLE @ 3.80 m BGS.					
5.0						
50	•					
6.0						
			•			
70						
0 0						
8 0						
9.0		1				
10.0						
11.0						
120						
13.0						
2.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL T (16/03/87

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION: BH5-87

PROJECT NO. 2087

DATE COMPLETED. MARCH '7, '987

(4-11)

LOCATION:

DRILLING METHOD. 95mm 10 -SA

MILLRACE ON THE GRAND INC. CLIENT: AS PER PLAN

CRA SUPERVISOR: B. FEDY

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPL	
3G		m AMSL	INSTALLATION	Ž	+15	^
	GROUND SURFACE	266.59		0 3 @ W W W	A T	4
	GROUND SURFACE	200.39		N D	Ε	200
	CONCRETE FLOOR SLAB	200.10	(次公司)			
	GW GRAVEL (Fill): some sand, compact, brown,	266.19	6.5TH BOREHOLE			
1.0	moist (5:11)	265.79	经 股	155		9
	SM SAND (Fill): some silt, little gravel, occasional brick fragments and other rubble.	265.19	CUTTINGS	122		,
	Voose, brown to red, dry	200.73	STATE OF THE STATE		1	
2.0	SM SAND: some silt, fine groined, uniform,		长秋 公	255	X	
	dilatent, loyered, oxidized seams, compact, light brown, water saturated	264.19	三 联连续			
			(系統)	388	X	2
3.0	- thin seam gravel SG					
			没家袋	4\$\$	X	1,
			的 於 於 就 的 一			
4.0	- thin seam gravel SG	262.39	以次以 及	555	X	4
	END OF HOLE @ 4.20 m BGS.	,,				
5.0					-	
J.U						
6.0						
7.0						
8.0						
9.0						
10.0						
10.0						
11.0						
12.0						
13.0						
				1		

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

STATIC WATER LEVEL ____ (16/03/87

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION: 8-6-87

PROJECT NO.. 2087

DATE COMPLETED. MARCH 17, 1987

(_-:1,

DRILLING METHOD. SOLD AUGER

CL'ENT MILLRACE ON THE GRAND INC.

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE
BG		m AMSL	INSTALLATION	2	\$
	GROUND SURFACE	267.04		a ma	TE
	CONCRETE FLOOR SLAB	266.64	25253		
1.0	GW CRAVEL (Fill): some sand, accasional pebbles, cool fragments, compact, black, moist.	266.64 266.34	200mmø BOREHOLE		
	SG SAND: some gravel, some silt, medium grained, compact, light brown, ary.	265.54 265.24	CUTTINGS CAPPED WITH BENTONITE PELLETS		
2.0	CONCRETE SLAB	264.94	12100054		
	ML SILT some sand, fine grained, cahesive, black, water saturated.	264.54	经保险		
30	SM SAND: some silt, trace clay, trace grave, meaium grained, grey/black, water saturated, strong coal tar adour. END OF HOLE @ 2.50 m BGS.				
4.0	END OF HOLE @ 2.30 m BGS.				
50					
6.0					
70					
8.0					
9.0					
10.0					
11.0					
12.0					
13.0					

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (16/03/87)

(L-13)

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION: BH7-87

PROJECT NO. 2087

LOCATION: AS PER PLAN

DATE COMPLETED. MARCH 17, 1987.

DRILLING METHOD: 95mm D -SA

MILLRACE ON THE GRAND INC. CLIENT.

CRA SUPERVISOR B. FEDY

m BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SAI	APLE	
	GROUND SURFACE	268.05		טייישוּבּ כּ	A T E	
	SM TOPSOIL: organic, black, moist		1888			
1.0	SM SAND (Filt): sand, some silt, occasional coal fragments and rubble, trace flyash and slag, fine grained, loose, brown to yellow, dry, coal smell moist, dilatent, compact, coal tar adour	267.65	BOREHOLE	188		1
2.0				2\$\$	$\frac{1}{2}$	•
3.0	SM SAND: some silt, uniform, fine grained, dilatent, loyered, oxidized seams, compact to dense, light brown, very moist	265.45 265.05		3SS 4SS	$\frac{1}{2}$,
4.0	- water saturated - thin seam of CL, some silt, firm	263.65		555		
5.0	END OF HOLE @ 4.40 m BGS.	203.03				
6.0						
7.0						
8.0						
8.0						
9.0						
9.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (17/03/87)

HOLE DESIGNATION: OW8-87

PROJECT NO. 2087

DATE COMPLETED. April 20, 1987

CLENT MILL RACE ON THE GRAND INC

DRILLING METHOD: 108mm I.D. H.S.A.

(1-01)

LOCATION: AS PER PLAN

PROJECT NAME: FORMER GALT GAS CO. SITE

CRA SUPERVISOR P HAYES

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPL	_
BG		m AMSL	INSTALLATION	0.7	\$,
	REFERENCE ELEVATION (Top of riser) GROUND ELEVATION	269.178 268.16	LOCKING CAP	3 @ w fr	Ē	1
	SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose.		50 mm BJ.P. PIPE	155	X	
: 0	prown, maist.		BOREHOLE	255	X	
2.0	-void 2.27m to 2.59m		GROUT	355		1
3.0	CO CANO	265.26		455	×	4
5.0	SP — SAND, some gravel, loase, poorly graded, meaium grained, brown, water saturated, weak coal tar adour.	264 81	고	555	\boxtimes	i
4.0	 very loose, plack, sample is coal tar saturated, strong coal tar adour, split spoon coated in a coal tar water mix, 		BENTONITE AL	555	\times	
5.0	- HNU reading downhole 6.8ppm.		SAND PACK	755	X	
	 fine grained, poorly graded, loose, sand grains black, sample saturated with coal tar CL - CLAY, some silt, soft, massive, low plastic. 	262.52	WELL SCREEN	855	X	
6.0	brown, maist, coal tar found as streaks and blebs throughout sample	262.06	SCREEN DETAILS:			
7.0	END OF HOLE AT 6.1 m B.G.S.		Screened Interval: 5.18 m to 6.1 m AMSL Length – .91 m Diameter – 50 mm			
8.0			Slot # 10 Material—Stainless Steel			
9.0						
10.0						
11.0						
12.0						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS WATER FOUND X STATIC WATER LEVEL X

STRATIGRAPHIC AND INSTRUMENTATION LOG

(OVERBURDEN)

PROJECT NAME FORMER GALT GAS CO SITE

HOLE DESIGNATION: 8-9-87

PROJECT NO. 2087

DATE COMPLETED. Apr 20, 1987

_-02;

DRILLING METHOD. 108mm .0 - S.A

CLIENT. MILLRACE ON THE GRAND INC.

LOCATION. AS PER PLAN

CRA SUPERVISOR. P. HAYES

EPT		STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
3	G		m AMSL	INSTALLATION	- Z	3	3
		GROUND SURFACE	267.04		3 ⊕ ⊕ ⊕	å E	A
		Concrete Floor Slap	200.04	D5 674		-	
		GW - SAND AND GRAVEL (FILL), some red brick fragments, paoriy sorted, conesionless, very	266.94	200mm BOREHOLE	53		
		fragments, paorty sorted, conesionless, very dense, prown, moist	266.08	NAME OF THE PERSON OF THE PERS	255	-	3
1.	0	-slight coal for occur	200.00	1666/1es			
				AUGER CUTTINGS			
		-very dense zone, probable concrete side wall of buried tank?	265.24	57632			
2.	0						
		Refuser - END OF HOLE AT 1.8m B.G.S.					
		- hale backfilled to surface with					
3.	0	cuger cuttings					
4.							
4.							
5.	0						
٠.	_						
	- 1						
6.	0						
7.	0						
	Ì						
8.	0						
9.	0	•					
1.0							
10	.0						
11.	0						
12	.0						
13	.0						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\subseteq \text{STATIC WATER LEVEL } \subseteq

(1-03)

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT NO. 2087

MILL RACE ON THE GRAND NO

CLENT LOCATION

AS PER PLAN

HOLE DESIGNATION: BH10-87

DATE COMPLETED. Apr 21, 1987

DRILLING METHOD. 108mm I.D - S.A.

CRA SUPERVISOR: P. HAYES

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE			
m BG		m AMSL	INSTALLATION			7	
	GROUND SURFACE	267.04		2 3 mmæ	4 T-12	V & J 36	
	Concrete Floor Sind SM - SAND AND SILT (FILL), some gravel, loose, massive, dark brown, maist.	266.94	泛於	155	X	6	
1.0	SP = SAND, little gravel, poorly graded, compact, medium grained, brown, maist,	266.24	200mm BOREHOLE	255		3.	
2.0	-water saturated	264 76	又 S BOREHOLE	355		1.9	
- 3.0	-black film and liquid on sand grains, iridescent sneen, strong diesel addur -slight diesel addur, greyish white sands		GEMENT	4SS 5SS	X	17	
4.0	-black, cool tar saturated, strong coal tar adour, HNU recang downhole 2 ppm			655		3.	
5.0	SM — SAND, same set, little clay, compact, , fine grained, massive, brown, water saturated	262.32		7SS 8SS	X	.3	
6.0	GM - GRAVEL, some silt, some sand, some snalev imestone fragments, well graded, dense, ight prown, water saturated	261.25		955		48	
- 7.0	Auger Refusal, END OF HOLE AT 7.16 m B.G.S.	259.88		1055	X	63	
8.0	BOREHOLE GROUTED TO SURFACE UPON COMPLETION						
9.0							
10.0							
- 11 0				-			
- 12.0							
- 13.0							

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

PROJECT NAME FORMER GALT GAS CO. SITE

HOLE DESIGNATION: 8-11-27

_-041

PROJECT NO ..

2087

DATE COMPLETED. Apr. 21, 1987.

CLIENT

WIL RACE ON THE GRAND INC.

DRILLING METHOD. 108mm ILD - SA

AS PER PLAN LOCATION:

CRA SUPERVISOR P HAYES DEPTH I STRATIGRAPHIC DESCRIPTION & REMARKS **ELEVATION** MONITOR SAMPLE m 30 m AMSL INSTALLATION GROUND SURFACE 267.04 Concrete Floor Sico 266.94 155 GW - SAND AND GRAVEL (FILL), compact, well graded, whitish brown, slightly moist. 1.0 255 25 265.52 200mm ø BORFHOLF Concrete Slab NO SAVPLE 20 264.91 ∇ SP - SAND, trace silt, loose to compact, boorly 254 75 graded, medium grained, mottled brown 388 CEMENT GROUT black, water and diesel saturated, strong 3.0 diesel ocour 4SS -trace gravel 4.0 -irigescent sneen to samples, strong diesel 23 555 addur, dawnhole HNU 10ppm 262.02 3 655 5.0 TML - SiLT, same sand, little clay, very fine 261.89 755 28 gramed, compact, massive, brown, water saturated 6.0 GM - GRAVEL, some silt, some sand, some 60 833 shaley mestone fragments, well graded, dense, gnt prown, water saturated 7.0 260.03 00-955 Auger Refusal, END OF HOLE AT 7.01m B.G.S. on probable bedrock 8.0 BOREHOLE GROUTED TO SURFACE UPON COMPLETION 9.0 - 10.0 - 110 12.0 130

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME: FORMER GALT CAS CO SITE

HOLE DESIGNATION BH12-87

PROJECT NO. 2087

DATE COMPLETED. Apr. 22, 1987

(1-05)

CLIENT MILL RACE ON THE GRAND NO.

DRILLING METHOD. 108mm .0 + S.A

LOCATION: AS PER PLAN

CRA SUPERVISOR. P HAYES

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SAMPLE		
m BG	GROUND SURFACE	267.05	INSTALLATION	0m@KC2	ATE SE	
- 10	Concrete Floor Sigb SW — SAND (FILL), same gravel, some red brick fragments, well graded, loose, brown, moist, no chemical adour	266.95	5555 5555 5555 5555	1SS 2SS		
- 2.0	SP - SAND, little graver, medium grained, laose, massive, poorly graded, brown, maist, siignt clese: adour, water saturated at 2.13m - piack film caating sand grains, strong	265.53 264.95	→ 200mm a BOREHOLE	3SS 4SS	\$ 2	
- 3.0	aiesel adaur		GEMENT GEMENT GEMENT GEMENT GEMENT GEMENT GEMENT GEMENT	555		
- 4.0	—slight diesel adour ML — SiLT AND SAND, some day, very fine grained, poorly gracec, massive, firm, light	262.84		655		
- 5.0	GM - GRAVEL, same silt, same sand, dense, well graded, prown, water saturated	262.02		755	2	
- 6.0	Auger Refusal, END OF HOLE AT 5.53m B.G.S. on possible bedrack					
7.0	BOREHOLE GROUTED TO SURFACE UPON COMPLETION					
- 8.0						
9.0						
10.0						
11.0						
12.0						
13.0						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

(1-06)

PROJECT NAME: FORMER GALT GAS CO. SITE

PROJECT NO. 2087

MILL RACE ON THE GRAND INC.

CLENT

LOCATION - AS PER PLAN

HOLE DESIGNATION BH13-B7

DATE COMPLETED. April 23, 1987

DRILLING METHOD. 108mm I.D. - S.A

CRA SUPERVISOR P HAYES

	m AMSL		
	THE AWGL	NOITALLATZNI	- L C Z
GROUND SURFACE	268.34		B = E
Aspnait	268.28	经 资料	
SW — SAND (FILL), little gravel, well graded, loase, massive, brown, maist.		200mm. •	
		7.50% (2.50%)	155
	254.57		255
SP — SAND, loase, massive, medium grained brown, water saturated —greyish black sands, faint coal tar adour	264.52		355
-black, coal for staining on sand grains, moderate coal far oddur		(4) (4) (4)	455
-sample saturated with coal tar, sample HNU 100ppm ML-SILT and SAND, same clay, massive, firm, light brown, saturated, coal tar found as	262.23		555
Stringers between clean silt and sand GM-GRAVE., some silt, some sand, dense, well graded brown, water saturated			755
Auger Refusal, END OF HOLE AT 7.32m B.G.S. on passible bedrock BOREHOLE GROUTED TO SURFACE	201.01		
UPON COMPLETION			
	SP - SAND, loase, massive, medium grained brown, water saturated - greyish black sands, faint coal tar adour - black, coal tar staining on sand grains, moderate coal tar adour - sample saturated with coal tar, sample HNU 100ppm ML-SILT and SAND, same clay, massive, firm, light brown, saturated, coal tar found as stringers between clean silt and sand GM-GRAVE., some silt, some sand, gense, well graded brown, water saturated Auger Refusal, END OF HOLE AT 7.32m B.G.S. on passible bedrock	Aspnalt SW - SAND (FILL), little gravel, well graded, loase, massive, brown, maist. SP - SAND, loase, massive, medium grained brown, water saturated - greyish black sands, faint coal tar odour - black, coal tar staining on sand grains, moderate coal tar odour - sample saturated with coal tar, sample HNU 100ppm ML-SILT and SAND, same day, massive, firm, light brown, saturated, coal tar found as saturated brown, water saturated GM-GRAVE., some silt, some sond, dense, well graded brown, water saturated Auger Refusal, END OF HOLE AT 7.32m B.G.S. on passible bedrock BOREHOLE GROUTED TO SURFACE	Asgnalt SW - SAND (FILL), little gravel, well graded, loase, massive, brown, moist. SP - SAND, loase, massive, medium grained brown, water saturated - greyish black sands, faint coal tar adour - black, coal tar staining on sand grains, maderate coal tar adour - sample saturated with coal tar, sample HNU 100ppm ML-SILT and SAND, some clay, massive, firm, light brown, saturated, coal tar found as satingers between clean silt and sand GM-GRAVE., some silt, some sand, aense, well graded brown, water saturated Auger Refusal, END OF HOLE AT 7.32m B.G.S. on passible bedrock BOREHOLE GROUTED TO SURFACE

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME, FORMER GALT GAS CO. SITE

HOLE DESIGNATION OW: 4-90

PROJECT NO. 2087

DATE COMPLETED. FEBRUARY 7, 1990

CLIENT

MILTACE ON THE GRAND NO.

DRILLING METHOD. 108mm D -SA

LOCATION:

AS PER PLAN

CRA SUPERVISOR K VANDERMEULEN

- 1	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS		m AMSL	INSTALLATION	70	ş	
ĺ	REFERENCE ELEVATION (Top of Riser)	268.409	=	9	A	
	GROUND ELEVATION	267.54		arra a	Ε	
	OL(TOPSOIL)	267.39	100 10			
1	SW(SAND)File, some sand, little gravel, fine		O. C. CONCRETE			
1	to medium grained, well groded, very dense,					
1.0	brown, moist		BENTONITE			
			- 11			
			203mme BOREHOLE			
2.0						
1						
30		264 46				
			BENTONITE PELLET SEAL			
	CW(SAL2)	263.73 263.73	SAND PACK			
40	SW(SAND), some sand, little gravel, trace to little silt, fine to coarse grained, well			155	X	
-	graded, very dense, brown		50.8mme BLACK			1
			F			
5.0	•		WELL SCREEN			
6.0			दर्शका			
6.0			CAVE	200	7	1
				255	X	:
7.0						
7.0						
			\$200 B		-	
8.0			The state of the s	3SS	X	
3.0					1	1
			\$13.42A			
9.0		050	自然			
3.0	ML(SILT), trace to little sand, fine grained,	258.4		455		1
	dilatent, cense, brown, wet, no adour			+33		
10,0			高語を記			
			建 多点			
11.0			(C) (A)	555.	X	
		-	SCREEN DETAILS			1
			Screened Interval	BGS		
12.0			Length -1.22m			
	Auger refusc	255.2	Diameter - 50.8mm	ח		1
	END OF HOLE @ 12 34 m BCS.		Slot # 10	- Charl		
13.0			Material - Stainles Sand pack interval			
			3.72m to 5.79m			
			Material - Natural	Sand		1

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\) (14/03/90)

PROJECT NAME, FORMER GALT GAS CO SITE

HOLE DESIGNATION: 0W15-90

PROJECT NO. 2087

CLIENT.

LOCATION: AS PER PLAN

MILLRACE ON THE GRAND INC.

DATE COMPLETED: FEBRUARY 6, 1990

DRILLING METHOD: 108mm D HSA

CRA SUPERVISOR: K VANDERMELLEN

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
BGS		m AMSL	INSTALLATION	7 0	5	١
	REFERENCE ELEVATION (Top of Riser) GROUND ELEVATION	268.54 267.64		3 @LJ0	ξ .	
	Aspnoit	267.49	الما الما			_
1.0	SP(SAND)Fill, some sand, little gravel, trace silt, fine grained, poorly graded, cabbles, dense, brown/black, moist		CONCRETE CONCRETE	155		2
20	Little to trace grovel, little silt, loose, brown		203mme BOREHOLE	255		
20	Some sand, little silt, fine grained, loose, prown, maist	:		355		
3.0	Same sand, little gravel, trace silt, fine grained, poorly graded, very dense, metal, brown, moist	264 50	BENTONITE PELLET SEAL	455		9
4.0	SW(SAND), some sonds, little to trace gravel, fine to coarse grained, well graded, dense,	263.83 263.83	50.8mm# BLACK	555		4
5.0	brown, wet, no odour Little gravel, very dense	000.46	SAND PACK WELL SCREEN	655	A	5
	SW-GW(SAND/GRAVEL), some sand, some gravel, fine to coarse grained, well graded, very cense, brown, wet	262.46	<u>日</u>	755		
6.0			CAVE	855		e
7.0						
8.0	Cobbles			9\$\$	X	>
	Augus sof as					
9.0	Auger refusci END OF HOLE @ 8.69 m BGS.	258.95	SCREEN DETAILS: Screened Interval: 4.27m to 5.49m BGS			
10.0			Length —1.22m Diameter —50.8mm Slot # 10			
11 0			Material — Stoinless Steel Sand pack interval: 3.51m to 5.49m BGS Material — Natural Sand			
120			meteral netaral same			
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME, FORMER GALT GAS CO. SITE

HOLE DESIGNATION: BH16-90

PROJECT NO.

2087

DATE COMPLETED. FEBRUARY 8. 990

CLENT. MILLRACE ON THE GRAND INC.

DRILLING METHOD: 108mm 0 -SA

._- 7)

LOCATION: AS PER PLAN

CRA SUPERVISOR: K. VANDERMEULEN

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SA	MPLE	<u>. </u>
BGS	GROUND ELEVATION	268.20	INSTALLATION	0.110 € 6.2	A + 12	7.7 A 1.36
1 0	OL(TOPSOIL) SW(SAND)FILL, some sand, little gravel, fine to medium grained, well graded, dense, cobbles, moist	268.05	CONCRETE CONCRE	8		
3.0	Little silt, construction material, bricks, rocks, medium dense, brown, wet, no oddur or product Rocks	264.54		155	XX	21
5.0	Flyash, black, wood, wet, very slight coal tar oadur, no product or sheen present ML(SILT), little to trace sand, trace clay,	262.41 262.10		3SS 4SS		6
7.0	fine to medium grained, brown/black, wet, signt coal tar odour, water discolaured SW-GW(SAND/GRAVEL), some sand, some gravel, medium coarse grained, well graded, brown, very dense, wet, moderate coal tar odour Dense, moderate goal tar odour, no product END OF HOLE @ 7.47 m BGS.	260.73		55S 6SS	X	3
9.0						
10.0						
11.0						
120						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \$\square \text{STATIC WATER LEVEL }\square

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION OW17-90

PROJECT NO., 2087

DATE COMPLETED. FEBRUARY 9, 1993

_- 6

CL ENT.

MILLRACE ON THE GRAND INC.

DRILLING METHOD: 108mm 0 -SA

LOCATION:

AS PER PLAN

CRA SUPERMISOR: K. VANDERMEULEN

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
n BGS		m AMSL	INSTALLATION	6.7	5	
	REFERENCE ELEVATION (Top of Riser)	269.560		9 C. I CD E	E	
	GROUND ELEVATION	268.484	1111	10.	-	
	OL(TOPSOIL)	268.33	DIO O CONCRETE			
	SW(SAND)FILL, some sand, little gravel, fine to medium grained, dense, copples, brown,		D.9 10-			
٠.٥	moist					
			BENTONITE			
			203mme BOREHOLE	155	∇	
2.0					μ	
3.0			SAND PACK			
5.0			50 8 - 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	255	∇	
		264.54 264.52	50.8mmø BLACK	233		
40		264.52		355		
		264.06		333		
	OL(SILT), trace fine sand, loose, block, wood chips, decayed vegetation, wet, slight coal tar			455		
50	odour	263.3	WELL SCREEN	-33		
	SW(SAND), some sand, little graver, fine to coarse grained, well graded, medium dense,			555		>
6.0	brown, slight coal tar odour, wet		H	233		
0.0		262.08		666		
	ML(SILT), trace fine sand, medium dense,	262.08 261.93		655		>
7.0	SW(SAND), some sand, little graver, medium	261.77	SCREEN DETAILS.			
	to coarse grained, well graded, medium dense,		Screened Interval: 4.61m to 5.83m BGS	1		
	brown, wet, very slight coal tor odour END OF HOLE @ 6.71 m BGS.		Length -1.22m			
8.0	END OF HOLE @ 8.71 m BGS.		Diameter - 50.8mm			
			Slot # 10 Matérial — Stainless Stee			
9.0			Sand pack interval:			
3.0			2.44m to 6.71m BGS			
			Material - Natural Sand			
10.0						
11.0						
12.0						
13.0						
				1	4	

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL T (14/03/90)

(L-01)

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION BH18-90

PROJECT NO. 3318

DATE COMPLETED: FEBRUARY 9, 1990

DRILLING METHOD. 108mm ID HSA

CLIENT. MILLRACE ON THE GRAND INC.

CRA SUPERVISOR: K. VANDERMEULEN

LOCATION: AS PER PLAN

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SAMPLE
m 503	GROUND ELEVATION	268.16	INSTRUCTION	22 4 4 E E E E E E E E E E E E E E E E E
- 2.5	SW(SAND)FILL, little gravel, trace silt, medium coorse grained, well graded, loose, brown, maist, no adour Little silt, loose, dark brown, wet, no adour	265.27	CONCRETE SURFACE SEAL 203mme BOREHOLE	155 🔀 9
- 5.0	Little to some silt, dark brown to black, wet, no adour Trace product, strong coal tar odour, sheen,	262.98	BEN TONITE GROUT	2SS 2 3SS 8 4SS 9
- 7.5	SP(SAND), trace gravel, fine grained, poorly graded, very loose, black, wet, strong coal tar adaur product Trace to little gravel, shell fragments, brown to black, medium dense, wet, coal tar ladour	261.45 260.08		5SS 2 6SS 35 7SS 35 8SS >50
- 10.0	SW-GW(SAND/GRAVEL), some sand, some gravel medium to coarse grained, well graded, dense brown, wet, no odour Very dense			
- 12.5	Auger refusal END OF HOLE @ 8.08 m BGS. NOTES: 1.Contamination approximately 4.57			
- 15.0	to 6.4m BGS.			
- 17.5				
- 20.0				
- 22.5				
- 25.0			*	
- 275				
- 30.0				
- 32.5				

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION BH19-90

PROJECT NO.. 3318

DATE COMPLETED. FEBRUARY 7, 1990

CLIENT.

DRILLING METHOD: 108mm 'D -SA

(1-02)

LOCATION:

AS PER PLAN

MILLRACE ON THE GRAND INC.

CRA SUPERVISOR: K. VANDERMEULEN

		STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
m	BGS		m AMSL	INSTALLATION	7 0	S	V
		GROUND ELEVATION	268.17		3 (D) (C) (C)	A	A L U
_					- P	Ε	i.
		SM(SAND)FILL, some sond, some silt, little gravel, trace clay, fine grained, poorly		CONCRETE SURFACE SEAL			
		graded, loose, brown, very moist		2000	155		6
	2.5		265.28 265.27	203mme BOREHOLE			Ů
		SP(SAND), little silt, trace clay, fine	203.27	*	255	\boxtimes	15
		groined, medium dense, brown, wet, no odour or product		BENTONITE			
	5.0	Dense	202.67	BEN TONITE GROUT	355	\bowtie	38
		Medium grained	262.53		4SS 5SS	\rightleftharpoons	28 53
		SM(SAND), little siit, fine grained, poorly \araded, medium aense, brown, wet, no adour [261.31	200	655		21
	7.5	graded, medium cense, brown, wet, no odour finin clay seam at 6.55m BGS, no odour	260.55		755		>50
		SW-GW(SAND/GRAVEL), some sand, some gravel,					
	10.0	medium coorse grained, well graded, medium dense, brown, wet, no odour					
	10.0	Very dense					
		END OF HOLE @ 7.62 m BGS. NOTES: 1. Auger refusal at 7.62m BGS.					
	12.5	Notes: 1. Auger relusion of 7.02:11 Bos.					
. •	15.0						
	17.5						
	20.0						
	22.5						
4	22.5						
:	25.0						
			1				
:	27.5						
	30.0						
	32.5						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND V STATIC WATER LEVEL V

GRAIN SIZE ANALYSIS

HOLE DESIGNATION: 8420-90

PROJECT NO. 3318

DATE COMPLETED: FEBRUARY 8, 1990

CLENT MILLRACE ON THE GRAND INC.

DRILLING METHOD: 108mm D -SA

(1-03)

LOCATION: AS PER PLAN

PROJECT NAME: FORMER GALT GAS CO. SITE

CRA SUPERVISOR K VANDERMEULEN

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	_
m BGS		m AMSL	INSTALLATION	M C 2	3	V
	GROUND ELEVATION	268.28		⊕wa.	AT-E	1701
	Aspnoit	268.13	CONCRETE SEAL			
	SW(SAND)FILL, some sand, little gravel, fine to meaium grained, well graded, cobbles,		200 to 300 at 200	155	\boxtimes	14
2.5	medium dense, brown, moist, no odour	265.23	203mme BOREHOLE	2SS 3SS	X	21 9
	SP(SAND), some sand, trace silt, fine grained, poorly graded, loose, brown, maist,			455		20
5.0	no odour Praduct (2.54cm) at 5.79m BGS., sneen,		BEN TONITE GROUT	5SS 6SS	\rightleftharpoons	>30
	strong coal tar adour Sneen, strong coal tar adour	261.88 261.42		755		>50
7.5	SM(SAND), some sand, same silt, fine grained, paorly graded, brown, dense, wet, slight	260.66		888	×	1.7
	SW-GW(SAND/GRAVEL), some sond, some grovel,					
10.0	medium to coarse grained, well graded, medium dense, brown, wet, no odour					
	END OF HOLE @ 7.62 m BGS. NOTES: 1. Auger refusal at 7.62m BGS.					
12.5	Notes. 1. Auge Telusal of Tisem Boo.					
15.0						
17.5						
20.0						
22.5						
25.0						
27.5						
30.0						
30.0						
- 32.5						
32.5						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

(L-04)

PROJECT NAME: FORMER GALT GAS CO. SITE

HOLE DESIGNATION: BH21-90

PROJECT NO. 3318

LOCATION: AS PER PLAN

DATE COMPLETED: FEBRUARY 7, 1990

DRILLING METHOD. 108mm ID HSA

CLIENT: MILLRACE ON THE GRAND INC.

CRA SUPERVISOR: K. VANDERMEULEN

HT930	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
n BGS		m AMSL	INSTALLATION	CZ	Ş	~
	GROUND ELEVATION	268.16		₩ @ Lu 0	A T E	4 5 5
	Asphalt SW(SAND)FILL, some sand, little gravel, trace	268.07	O CONCRETE SURFACE SEAL			
2.5	to little silt, fine to medium groined, cobbles, construction material, well graded, very dense, brown, moist, no odour		203mme BOREHOLE			
	SW(SAND), some sand, littel gravel, fine to coorse grained, well graded, medium dense,	264.50 264 35	BENTONITE GROUT	1\$\$	\times	1
5.0	brown, wet	004.70	GROUT	255	\times	2
7.5	ML(SILT), trace sand, trace clay, fine grained, dilatent, very dense, brown, wet	261.76 260.84		3\$\$	\times	>5
10.0	SW-GW(SAND/GRAVEL), some sand, some gravel, fine coorse grained, well graded, rock, brown, wet, no abour or product No adour or product	259.17		555	\text{\ti}\}\text{\ti}\text{\texi{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{	>5
10 5	END OF HOLE @ 8.99 m BGS.					
12.5						
15.0						
17.5						
20.0						
22.5						
25.0						
27.5						
30.0						
					1	

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

CHECKED AV

JOS NAME NEWLANDS TEXTILES INC. PROPERTY 108 N. 84 F 303 LOCATION 160 WATER STREET NORTH, CAMBRIDGE, ONTARTO BORING DATE 1984.10.05 ENGINEER TV B TECHNIC AN F K.S BORING METHOD CONTINUOUS FLIGHT HOLLOW STEM AUGERS SAMPLES SHEAR STRENGTH C. LIBUID LIMIT_ SDIL PROFILE PLASTIC LIMIT_ Dw 5/1001 WATER CONTENT. GROUNDWATER ORSERVATIONS AND REMARKS DESCRIPTION DYNAMIC CONE PENETRATION . STANDARD PENETRATION TEST . 77 DEPTH ft. BLD45/FOOT MATER CONTENTS = z GROUND ELEVATION 878.9 FILL: Dark brown and brown silty sand, and dravel to l in. diameter, damp, 18 SS occassional concrete and 875 slag pieces 2 | 55 85 SS 59 4 SS 11.0 2 ORGANIC SILT: Very loose black organic silt, wet 49.0 865 5 SS 2 48.4 SS 6 9 17.0 SAND: Loose dark grey and black medium-fine sand, some 860 7 organic shells, wet 29 encountering brown peat 8 SS 4 00 GRAVEL: Dense to very dense brown gravel to 15 in. 855 diameter some coarse sand, 0.000 wer 9 55 15 850 2 10 55 50/4 10. After sample 10 free water at 11.0 ft. inside auders. 840 Upon completion or drilling, no free water, cave Borehole terminated at 835 42.5 ft. MOTES Power augered to 42.5 ft., no samples taken below 30.2 ft., soil description based on suger cuttings and observations during drilling.

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

ВС	RING METHOD CONTINUOUS FLIGHT				SAMPLI			STRENC	TH C.			ID LIMI	Ť	w _t	HNICIAN P. V.S.
FPTH t.	DESCRIPTION	116.1 MI	villy villy	MINEN M	12.0	BLOWS-1001	DYNAS		PENE HETRA	TRATION THON TEST	: 2		TENT	յ» թ _ Կ Կոլ Պ	GROL NOWATH ORSERVATION AND REWARKS
2.5	ENCOUNTERING 876.5 FILL: Brown silty sand and gravel fill encountering black cinder fill and black coarse sand and gravel to l in. diamete some brick rubble, wet ORGANIC SILT: Loose black organic silt, wet SAND: Loose grey mediumine sand some ordanic shells GRAVEL: Very dense grey gravel and coarse sand, wet Borehole terminated at 28.2 ft. Auger refusal on possible boulder or bedrock	10.00.00.00.00.00.00.00.00.00.00.00.00.0	875 865	7 8	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	3 3 6 2 4 7 9	ll is	>			,		8	0.0	After sample free water a ft. inside a ft. i

HECKED BY LAP

80	RING METHOD CONTINUOUS FLIGHT	_HOT	1014_	_								CHALL AND PLEE
	SOIL PROFILE	_		!	SAMPLI		SHEAR ST	RENGTH C.		PLASTIC L		
ארדיקום ליי	DIN KIPTION	97.53	1911	# 12 7 -	17.11	100 S.4 OCT	DYNAMIC	CONE PENE D PENETRA	TRATION .	TATER CO	יייייייייייייייייייייייייייייייייייייי	ANTERNATIONS AN BIMARKS
	CPH NOTELL ATION 879.1	_	=	'		÷ 2	20	RLOWS FOO	Ret	WATER	CONTINU	1
6-5 -0-5 -0-5 -0-5 -0-5	Fith Brown silty sand and gravel, moist becoming red brown medium sand, moist becoming black sand and ORGANIC SILT: Very loose black organic silt, moist SAND: Loose dark grey medium sand, wet	\$ 2 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	875 870 865	2 3 4 5 6 7 7	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$			ALQUIS POR	AU		CONTINUE DE LA CONTIN	Inon completion of drilling, fr water at 12.0 fc toave At 21.0 fc thours after drilling, free water at 11.9 fc cave at 7.0 fc
			820			1						
60.0			100							ļ		
	Borehole terminated at 50.0 ft.		1			1				1		

		ING DATE	BOR						TER STREET NORTH		
HNICIAN =	LIOUID LIMIT		STRENGTH C		SAMPLE	_	_0h_	1101	CONTINUOUS FLICHT		BOF
C#QUN; Q#NI # 1	PLASTIC LIMIT PATER CONTENT	ETRATION :		= 1 = 1	14.6	4	VA IIIIN	17.	SOIL PROFILE		FFTH
	WATER CONTENT		#LOW5/FO	2 ×	-	ž	=	=	25 020 3	GROUND ELEVATION	τ.
	10 10 10	1	40 6			+	-		silty sand and		\rightarrow
								\bowtie	5 in. diameter.	gravel to 15	
	0			8	5 S	1	875	100	s, moist	some bricks	
					\vdash	-					\dashv
	<u> </u>			2	SS	2	1	\times			
				N.		\vdash					_
	مر			4	55	-	870	1	m.V. Josep de mey	000000000000000000000000000000000000000	÷
								124	T:V. loose die grey T, molst		
	5		>	3 2	5.5	4		0.00	se grey black h in. diameter	gravel to 15	-
				}			865	0.	tone, some silty	trace limest	3
	9			19	55	5	-	0:0	t	becoming wet	
	1			18	SS	-		100			4
	0			* 0	33			20	: Very soft brown	CTIMU ATAV	+
							860		/. W.T.P.L. /	SILEV CLAV.	
	1 7			18	.55	7			ct light brown	SILT: Compact	,
	18			7	\$5	8			set prown wegium	to fine sand	=
	1911			1			1	\mathbf{h}	ct brown with		#
							855		ing silt, moist	rust stainin	
	1					-		#11	et brown fine	SAND: Compac	0
	16			10	55	9		100	some limestone		
						-				gravel	
							850	2.54	ry dense brown	GRAVEL: Very	0
								00	ry dense brown	gravel, wet	\exists
						-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
						-	7		dense brown	SAND: Very	0
							845			gravel, wet	
				_		-					
						-					4
							840	-			٦
Upon com						_	-				
of drill						-					-
water at	,										
						5	835		erminated at	Borehole te	_
drilling	1							1		42.5 ft.	4
water at							1			i	_
						-				-	_
		110						1			
]	
						-				-	_
								1			
		'									
						-					
					-	-					
						-				1	-
										1	

WEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

ια	NAME NEWLANDS TEXTILES INC. TATION 160 WATER STREET NORTH RING METHOD CONTINUOUS ELIGHT	c.	MERI	DGE					BOR	NG DATE	984		1	\ CI ¹	0 94 F 122 NEER _ 2 W B
801	SOIL PROFILE			i	SAMPL		_	STRE	GTH C			ID LIMIT.		_	NCIAN - F.E
OEFTH :	DI-SCRIPTION	111.1 %19	MILLANTION	NI THE REAL PROPERTY IN	1441	Owth Dot	STAN	DARD PI	ENETR	ETRATION (LITION TEST	-	ER CONTI	E-A1		GROUNDWATER OBSFRIATIONS OND REMARKS
		+	1-	-	-	i = 2		0 4	0 0	0 80	+-	10 20	341	-	
7.0	GROUNDELEVATION 880.7 FILL: Black and dark brown silty sand topsoil SAND: Compact light brown silty sand, some rust stain ing, trace of oroanics, moist becoming dense light brown medium sand, some gravel to .7 in. diameter, damp becoming very dense groy medium to coarse sand, moist SANDY SILT: Compact brown sandy silt, wet GRAVEL: Very dense brown gravel, wet SAND: Very dense brown sandwet Borehole terminated at 42.5 ft.		875 870 865	3 3 4 4 5 5 6 6 7 7	\$\$ \$\$ \$\$	6 14 40 48 51 29			9.4.5./5.0	0 10		AFFR CO	Z I	E f	fter sample 6 ree water at 18 t. inside auger pon completion f drilling, no ree watet, cave t 14.0 fr
NOTES	Power augered to 42.5 ft., based on auger cuttings an	no	samp	100	take	n be	lov	25.5	ft.	, soil	desci	riptio	on.		

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

PM L 1984

CHECKEDAN TEE

JOB NAME NEWLANDS TEXTILES INC. PROPERTY 84 F 323 LOCATION 160 WATER STREET NORTH, CAMBRIDGE, ONTARIO 80RING DATE 1984.10.09 FICINITE B . B BORING METHOD CONTINUOUS FLIGHT HOLLOW STEM AUGERS SAMPLES SHEAR STRENGTH C. SOIL PROFILE PLASTIC LINIT. WATER CONTENT. _--0851 #1 4 TIONS DESCRIPTION DYNAMIC CONE PENETRATION . STANGARD PENETRATION TEST . OFFTH ft. BLOWS FOOT MATERICONTINES Ξ, GROUND ELENATION 883.9 FILL: Black and brown silty sand, trace black organics, 1 55 Ç 2 | 55 0 SAND: Loose red brown medicate fine sand, damp-moist 875 3 \$5 9.0 encountering some gravel ç 4 | 55 5 13.0 GRAVEL: Very dense brow gravel and coarse sand. Very dense brown 870 55 34 damp 6 | 55 8.5 0 , becoming wet 865 7 55 39 8 55 51 After sample 8 SAND: Very dense red brown coarse sand, some gravel to free water at 17.0 ft. inside AUGETS. l in. diameter, wet 860 855 GRAVEL: Very dense brown gravel, wet Upon completion of drilling, no Screnole terminated at 31.0 ft. Auger refusal on possible boulder or bedrock free water, cave at 16.5 ft. 850 NOTES Power augered to 31.0 ft., no samples taken below 21.5 ft., soil description based on auger cuttings and observations during drilling.

MEMBER OF THE ASSOCIATION OF CONSULTING EMGINEERS OF CANADA

PM1 1504

90				200	em Au	igers						cus
	ORING METHOD CONTINUOUS Fligh			Ī	SAMPL		SHEAR STRENG	TH C _v		LICLID LIMIT		CHNETAN S. Ke.I.
)FPTH	OUSCRIPTION	du rati	113 44 [10]	KINES B	13.61	OWSHING	DYNAMIC CONE	ETRATION '	ION .	PLASTIC LIMIT		LIROLNOWATER OBSERVATIONS AND BEMARKS
	GROUND ELEVATION 878.3		=	-	_	= z	20 40	S/FOOT	ın	* ATHR CONTIN	T T	
C. 0	Borehole terminated at 31.0 ft.		855	8	\$\$ \$\$ \$\$ \$\$ \$\$	21 51 28 51 40 38 67						Borehole become wet after samp 5. Blowback inside augers at 25.0 ft.; began was: boring. Upon completion of drilling. Upon drilling. Upon drilling.

80	RING METHOD Continuous Fligh				\4 \1P 1			STREN	GTH C _u		-1	LIQUID I INF		CHNICIAN A 1
אדקקם	DESCRIPTION	116130	HIVAIRON	# 12.7 J.	100	100.5/4.001 VALUES				TRATION Z3T MONT	τ:	PLASTIC LIM	187	1 A _ NDW- ORNE - 47 4 NP #1 N/A
	GROUND FLINATION 879.0	12-2-	-	_		ã 2		n BLO	31700	Bn .		WATER C	1817 81	
19.0	FILL: Asphaltic concrete pavement over brown and dark brown mixture of silt and aand with some gravel, trace of organics, moist SAND: Very dense brown fine to coarse sand with little gravel, saturated Decoming medium to coarse sand with little gravel, saturated Borehole terminated at 31.5 ft.		875 870 865 855	6.	22 22 22 22 22 22 22 22 22 22 22 22 22	81	9-					0 0 0 0 0 0		Upon complof drilling borehole cand water at 11.9 ft

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

SAND Compact black silty sand organics, strong oil smell saturated (possible fill)	80	RING METHOD CONTINUOUS Flight	Hol.	0-	S c e	m Aug	jers			CHNIC IN C e
DEMANTION THE DESCRIPTION THE STORY LIGHT BROWN AND GRAVELY COMPACT CAGUNDELIVATION 879.9 FILL Brown light brown and sand with some gravel occasional cobbles and brick pieces, moist Decoming brown and dark brown silty sand. some gravel, occasional cobbles and brick pieces, moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist Decoming brown and dark brown silty sand. some gravel, very moist silty sand. Decoming brown and dark brown silty sand. some gravel, very moist silty sand. Decoming brown and dark silty silty sand. Decoming brown and dark silty silty sand. Decoming brown and dark silty silty sand. Decoming brown silty sand. Decoming brown and dark silty silty sand. Decoming brown silty sand. Decoming brown and dark silty silty sand. Decoming brown sil		SOIL PROFILE				SAMPL	ES	SHEAR STRENGTH Cu		1
Fill Brown light brown, and fed maxture of silt and sand with some gravel, occasional cobbles and brick pieces, moist Decoming brown and dark brown silty sand, some gravel, very moist	EPTH	DESCRIPTION	98 0311	1	NI MARIE	=	OWSHORT	DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST	WATER CONTENT	B. ONATHE ORSERVATIONS AND BLVIABLS
and red mixture of silt and sand with some gravel, occasional cobbles and brick pieces, moist SS 14				=			# Z		10 10 1	1
	7.0	FILL. Brown, light brown, and red mixture of silt and sand with some gravel. occasional cobbles and brick pieces, moist becoming brown and dark brown silty sand. some gravel, very moist coal inclusions below 12.5 ft. with strong oil smell, saturated SAND: compact black silty sand, trace of shells and organics, strong oil smell, saturated (possible fill) SAND AND GRAVEL: Compact to dense grey fine to coarse sand and gravel, saturated Borehole terminated at		875 870 865 855	3 4 5 6	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	14 11 5 13 6 11 23	10 SLOW SOOT AN	Q 0 0 Q	Blowback inside augers at 25 fibegan washborned for filling borehole caved to 19.5 ft. and water level at water level at
										-

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

0.0	RING METHOD Continuous Flight	Sol	10 5	tem	Aug	ers					_ 1	CHNIC AN D. Fe
	SOIL PROTEIT				(4 CIPE	5	SHEAD	STRENGTH		PLASTIC LINIT		
) P T H	DESCRIPTION	9 m	VATIES -	x (47)-14	1	VALUES	DYNA	MIC CONE PER	+ OITARTS	WATER CONTE	4T*	HI O SQUEA SPS BS A F SD RESSA
	GROUNDILIVATION 8-6.1	-	Ξ	ž		a z	,	HLOWS F	001 n0 an	*ATER COS	ti \1.	
_	FILL: 1.0 in. concrete slab over fine to medium sand, some gravel, trace silt, moist to saturated SAND: Compact grey coarse sand with little gravel, strong smell of oil, saturated		870 870	3	\$\$ \$\$ \$\$ \$\$	6 13 4 12		Propo	acd sever	3		Borehole buet after 4. Upon complof drilin borchole cat 8.0 free wa

100	PROPOSED MILL RACE ATION Water Street North RING METHOD CONTINUOUS Fligh	, Cambi	ridge	, Ont	tari	D BC	RING DATI		FRUNCIA D. Matche
	SOIL PROFIT+		-	SAMPLE		SHEAR STRENGTH	С,	. LIQUID LINE	-*.
DEPTH	DEM RIPTION	98 - 11 - 1	N 1 7 7	17.61	OWNERD	DYNAMIC CONF PE STANDARD PENET RLOWS	NETRATION BATION TEST	PLASTIC LINIT	# #01 NDWATSA # 108 NB NATIONS ND 81 MARKS
		XX	+		a z	20 40	gil Rib	WALL STATE OF THE	
	FILL: Brown mixture of fine to coarse sand with gravel, moist SAND AND GRAVEL: Very dense brown fine to coarse sand end gravel, damp becoming medium to coarse sand and gravel, saturated SAND: Dense brown silty sand, occasional clayey silt seams, saturated Borehole terminated at 17.0 ft.	E:	75 1 2 10	SS	16 35 63 50	•	ed sever	C C C C C C C C C C C C C C C C C C C	Upon completion of drilling, water level at 13.5 ft. inside augers. After removing augers, borehole caved to 3.0 ft. with no free water to the cave of
								<u> </u>	
NOTES									<i>al</i>

SOIL PROFILE							STRENGTHC	LIQUID LINIT	CHNE IN 5 Fe.
DESCRIPTION		-	_	34111	-	SHEAR :	SIRPACINE, .	PLASTIC LIMIT	
	1	VIII. V 111	# [R7.17		2.	1	* OITATISHEN SHOO N	by b b	Book Sidna are David Book some Child Book office
	1	-			37	20	40 Act an	4.511.5107.1171	
FILL: 2.5 in. concrete slab over brown clayey silt, with some sand and gravel, very moist SAND: Compact brown and light brown silty sand, occasional silt seams, very moist to saturated Borehole terminated at 17.0 ft.		875 870 865	3	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	10 14 30 19 15	•	Proposed sever	0 5	Borehole bedwet after sa 4. Upon complet of drilling, borehole cav at 12.0 ft. water level 11.0 ft.

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

LICKTION MASSES SERVES NOTES, CARDISON, ORDERIO BORNCOAFE 1985,01,2) NOTES SERVES NOTES OF SER	10	B NAME PROPOSED MILL RACI								10)	8 86 F 33
SITE Compact raddah District Convert salt, moist to very Month of the convert salt and co		CATION Water Street North	h, Ca	mbr	doe	, Or	tarı	O BORING DAT	E 1986.04.23	_ 1	GINEER G. Mitchel.
STANCE CONTINUES OF STANCE STANCE STANCE CONTINUES CONTI	80		t Hol	llow						TE	CHNICAN D FALLY
FILE Dark brown and prove and prove mixture of silt and prove mixture of silt and prove mixture of silt and prove and sphalt, concrete, brick and coal, moist to very days and coal, moist to	DEPTH		ON 6.5 4 B	N A THIN	a .		_	DYNAMIC CONE PENETRATION STANDARD PENETRATION TES	PLASTIC LIMIT		BOLNDWATER OBSERVATIONS END REMARKS
Storm mixture of silt and sand with little gravel. asphalt, concrete, brick and coal, moist to very moist 1 15 15 15 15 15			ļ.,	=			ã z	70 40 80 Bn	MATER CONTIN	† = 10	
	18.0	FILL: Dark brown and brown mixture of silt and sand with little gravel, occasional pieces of asphalt, concrete, brick and coal, moist to very moist SILT: Compact reddish brown sandy silt, moist to wet Borehole terminated at 27.0 ft. upon meeting refusal to auger on		885	3 4	\$\$ \$\$ \$\$ \$\$	30 6 6 19 16	Proposed sever	0		borehole caved to 24.0 ft. with
PML:584 WEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA		M MEMILE AT	THE	A 5 4	001	ATIC	N 0"	F CONSULTING FEC	INFERS OF CASE		CHECKED AV Gh

									CHATTAN D Ye.
	RING METHOD Continuous Flight				SAMPL		SHEAR STRENGTH C.	LIQUID LIMIT	
FPTH	DESCRIPTION	7 7 7 1 1	7 = 7	N IN WILL	22	PASSINI	DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST	MATER CONTENT.	#ULNOWATER
	GROUNG ELEVATION 877.9	-	=	ž		- z		WATER CONTENTS	
. 0 . 0	FILL: 16.0 in. concrete slab over brown mixture of fine to coarse sand and gravel, little silt, moist ORGANIC SILT: Stiff dark grey organic silt with sand seams, wet SAND: Compact dark grey fine to medium sand, trace of organics, strong smell of oil, saturated (possible fill) Borehole terminated at 16.5 ft.		875 865	4	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	25 21 18 11 11 13	invert level		Upon completion of drilling, water level a 8.0 ft. inside hollow stem augers. After removin augers boreho caved to 2.0 with no free water.

PMEL 1904

PML 1504

RO R									
	ING METHOD CONTINUOUS Flight H	~~~~	,,,,,,	_	SAMPL		SHEAR STRENGTH C	LIOUID LIMIT	HNR 11 2. (P.
	SOIL PROFIEE	i	z		SAMPL		SHEAR STRENGTH C.	PLASTIC LIMIT	
אדיפונ	QESCRIPTION.	G. 131	HIVAIN	NI.MS &	1	DWS/DOOT	DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST	WATER CONTENT	9- NDWAT HNFRNATIO +ND RFM 4R
\rightarrow	GROUND ELEVATION 880.1		-			⊋ z	20 41 60 10	WATER CONTENT	
3-0-12-0 14-0 14-0	becoming wet with inclusions of coal and brick, strong smell of coll o		875 860 855	3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22 22 22 22 22 22 22 22 22 22 22 22 22	12 4 8 9 23 17			After sample water level a 14.0 ft. Upor complete drilling, bot caved to 13.3 with no free

WEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

0.0	CATION Water Street North, Car RING METHOD Continuous Flight H							BOR	ING D	A1F	1986.06.03		GINER V tobe
80	SOIL PROFILE		- 5.0	_	SAMPL	ES	SHEAR	TRENGTH O			LIQUID LIMIT_	w_t	HANDIAN E. Fei
HTTGG	DESCRIPTION GROUND ELEVATION 880.2	10 to NO	111 VATION	NUMBER	TVPÉ	BLOWS/FORT	DYNAM	C CONE PEN IRD PENETR BLOWS FO			PLASTIC LIMIT. WATER CONTENTS WATER CONTENTS WATER CONTENTS	ر ا	OBSERVATIONS AND REMARKS
	Fill: Brown fine to medium sand, little gravel, damp becoming dark brown and black fine to coarse sand and gravel		875	1 2 3	SS SS	5 7	10 x x x x x x x x x x	40	-	10	0	in	
4.2	ORGANIC SILT: Loose dark grey Crganic silt, numerous sand seems, saturated	\times \(\times \)	865	5	\$\$ \$\$ \$\$	17					0	438	After sample 5, water level at 12.0 ft. Water sample tal following sample
23.0	becoming organic sand with shells SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, saturated		855	7	SS	8		-	, / /	\ , \ /:		55%	
5.0	viver, securous		850		22	50	9 in			/	a .		
	Borehole terminated at 35.0 ft. upon meeting refusal to auger												Upon completion drilling, boreho caved to 12.0 ft with water level 7.3 ft.
									•				

	B NAME PROPOSED MILL RACE COND		~~_						65 <u>F 132A</u>
	CATION Nater Street North, Cam						BORING DATE 19		NIEW I Mirmel
во	RING METHOD Continuous Flight	Hollo	w_Ste	T. AL					CHNIL A' D. Keily
DEFTH	DESCRIPTION	THE THE	111 VATITON	N I H H H	SAMPL E	DWS/fox17	OYNAMIC CONE PENETRATION : STANDARD PENETRATION TEST •	FLASTIC LIMIT WE WATER CONTENT WE WATER CONTENT WE WELL WATER CONTENT OF THE PROPERTY OF THE P	R-SENDWATER OBSERVATIONS OND REMARKS
19.0	GROWNIC SILT: Loose dark grey organic salt with occasional and same same same same same same same same		875 870 865 855	3 4 5 6 7		3	Sign Sign Sign Sign Sign Sign Sign Sign	0 0 0	After sample 5 water level at 11.5 ft. Upon completion o drilling, porerol cavec to 5.0 ft. with no free water

00				_	riers				115 45 2. Yelly
	SOIL PROFILE				SAMPL	,	SHEAR STRENGTH C.	PLASTIC LIMIT	
ЕРТН	DESCRIPTION	0x 53 53	111101	MUMBI R	ž	DWS/LDOT VALUES	DYNAMIC CONE PENETRATION TE	WATER CONTENT W	RULNOWATER URNER ATTONS END REMARKS
	GROUND ELEVATION 879.4		=	z		= z	20 40 60 80	* ATTROUNDED	
2.0	FILE: Dark grey and black fine to medium sand, little gravel, coal, brick pieces and cinders, moist to wet ORGANIC SELT: Loose dark grey organic silt, saturated becoming organic sand with shells SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, saturated Borehole terminated at 27.5 ft. upon meeting refusal to auger		870 865 855	3 3 4 5 6	\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$	14 8 7 2 3 5 5 3			After sample 7, water level at 17.5 ft. Upon completion drilling, corero open to 20.0 ft. with water level 13.5 ft.

PM1/104

	RING METHOD CONTENUOUS F. 10ht			_ ^	ioe: 3			*1	· e
	SOIL PROFILE				SAMPLI		SHEAR STRENGTH Cu	LIQUID LIMIT	
FJTH	DESCRIPTION	DECL ND	MILVATION	MINH H	17.1	11 DW 5/1 001	DINAMIC CONE PENETRATION STANDARD PENETRATION TEST RLOWS FOOT	PLASTIC LIMIT	813 NORATE 851 P. A TION 1ND REMARA
_	GROUND ELEVATION 880.0	XX	-			34	20 40 AC 80		
33.0	Decoming organic sand with shells SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, saturated Borehole terminated at 29.5 ft. upon meeting refusal to auger		875 870 865 850		SS SS SS	24 10 14 4 3 3		541 0	

MEMBER OF THE ASSOCIATION OF CONSULTING ENGINEERS OF CANADA

101	NAME PROPOSED MELL RACE CON	m-co	TUMS						44 F 1324
LO	CATION hater Street North, Ca	- ~ ~				_	BORING DATI 1	9965 74 <u>• 75</u>	y s. v. l <u>. Mitchell</u>
80	RING METHOD Continuous Flight	Hollo	Sto 						. <u> </u>
-	אחוג משונו		_	-	SAMPL		-	*LASTIC LIMIT	
DFZTH	DESCRIPTION	11.1 NO	III vation	NI-MBI R	25	VALUE V	DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST	MATER CONTENT	H 11 NOW 6 1 2 (IN R - 4 TON) NO - 1 NO 4 R 6 S
	GROUND FLINATION 878.2	1 -	Ξ	ž		1 z	HLOWS FOOT	*ATERIONTENT	
	FILL: Dark grey and black fine	11					_		(
-	to coarse sand with coal and brick, moist to saturated	X		\vdash	-	-			
	brick, morse to saturates	\times	875		SS	37	12/2	3	
$\overline{}$		\otimes							4
-		100			525	6	1	4	1
	and the same of th	1001	870	Ę				460	Ú.
	ORGANIC SILT: Loose dark grey organic silt, occasional sand	$\parallel \parallel$		3	SS	3	13	461	7
	seams, saturated	11 11	1	4	SS	3	4 1	56%	G
			0.00	-			1	, ,	
		$\ \ _{J}$	865						
$\overline{}$							1.5	1 47%	1
17.0				5	SS	6	6 3 x	1,1	
	becoming organic sand with		860	二				1 1 1	
_	shells	11 11		H			x .		
		$\ \cdot\ $		6	SS	7		531	ΦAfter sample 6,
22.2		1171	855	\vdash		{			water level at 18.5 ft.
	SAND AND GRAVEL: Very dense brown fine to coarse sand and		023					-	
1	gravel, saturated			7	SS	83	-	3	-
-			850	-				1	
		,		8	22	147		0	
		0	845						
35.0				\vdash					
33.0	200	1	1						Upon completion of
	Borehole terminated at 35.0 ft								drilling, borehole caved to 20.0 ft.
									with water level at 10.5 ft.
									- 10.3 .1.
-								4 4 1	
_				-					
-				-		-			
									1
_									7
•							i		_
0									
HOTES	<u> </u>	1					l., l., l., l., l.,		4
									\sim
									CHECKED AV

APPENDIX D

MISCELLANEOUS FIELD DATA

SINGLE WELL RESPONSE TEST - DATA AND CALCULATIONS HVORSLEV METHOD (1951)

JECT NAME: MILL RACE ON THE GRAND HOLE DESIGNATION: 0W14-90

JECT NUMBER: 2087 DATE TESTED: FEB. 27/90

ENT: C.N.A. Holdings Inc. TEST TYPE: Falling

ERVISOR: Ken VanderMeulen

 . ELEVATION:
 268.41 m AMSL
 WELL RADIUS (r):
 0.025 m

 TIC DEPTH (H):
 4.440 m
 BOREHOLE RADIUS (R):
 0.102 m

 G VOLUME:
 1.046 L
 SCREEN LENGTH (L):
 1.220 m

 PL. (H-Ho):
 0.533 m
 TIME LAG (To):
 61 sec

RAULIC CONDUCTIVITY K = (r*r*ln(L/R))/(2*L*To): 1.0E-03 cm/sec

TIME (actual time)							WATER	1	DISPL.	;	%DISPL.	
	i a.	3VE !	(HH:MM:SS)	1.	ΤΠΤΔΙ	i	DEPTH	1	:H - b:	1	(H-h)/	1
_		,	00:00:00				(h)		,	i	(H-Ho)	
_					,					. i.		
			00:00:07			,	4.250		0.190		0.357	
	;		00:00:15		1.5					í	0.282	
			00:00:25			-	4.330	1	0.110	1	0.206	
	1		00:00:36		36				0.080	-	0.150	
	1		00:00:44				4.380		0.060		0.113	
	1											
		i	00:00:54	i	54	i	4.400	i	0.040	i	0.075	
	1	;	00:01:04	1	64	3	4.410	1	0.030	1	0.056	- 1
	1	;	00:01:16	1	76	-	4.420	1	0.020	8	0.038	1
	1	1	00:01:30	1	90	1	4.430	1	0.010	1	0.019	8
	1	1	00:01:42	1	102	1	4.430	1	0.010	1	0.019	1
	1	1	00:03:30	1	210	1	4.430	1	0.010	1	0.019	;

SINGLE WELL RESPONSE TEST - DATA AND CALCULATIONS HVORSLEV METHOD (1951)

ECT NAME: MILL RACE ON THE GRAND HOLE DESIGNATION: 0W15-90 IECT NUMBER: 2087

DATE TESTED:

Feb. 27/90 Falling

NT: C.N.A. Holdings Inc. TEST TYPE: RVISOR: Lisa Lavallee

3 VOLUME: 1.046 L PL. (H-Ho): 0.533 m

ELEVATION: 268.54 m AMSL IC DEPTH (H): 4.490 m

WELL RADIUS (r):

0.025 m BOREHOLE RADIUS (R): 0.102 m SCREEN LENGTH (L): TIME LAG (To): 1.220 m

1055 secs

RAULIC CONDUCTIVITY K = (r*r*ln(L/R))/(2*L*To): 6.0E-05 cm/sec

! TIME (actual time) !		: DISPL. : :H - h: :	%DISPL. (H-h)/ (H-Ho)
00:00:11	1 4.150	0.340	0.638
: 00:00:17 :	7 : 4.160	0.330	0.619
00:00:31	1 4.165	0.325	0.610
1 00:00:40 1	0 1 4.170	0.320	0.601
1 00:00:55	5 : 4.180	0.310	0.582
	7 : 4.190	0.300	0.563
1 00:01:39 1	9 4.200	0.290	0.544
1 00:02:00 1 12	0 4.210	0.280	0.526
: 00:03:00 : 18	0 : 4.230	0.260	: 0.488
. 1 00:04:00 1 24		0.240	0.451
1 00:05:00 30		0.225	0.422
; 00:06:00 ; 38		0.210	0.394
1 00:07:00 1 42		0.200	0.375
1 00:08:00 1 48		0.185	0.347
00:09:00 54		0.175	0.329
00:10:00 60		0.163	0.306
00:11:00 66		0.155	0.291
00:12:00 72		0.145	0.272
00:13:30 8:		0.135	0.253
00:15:00 90		0.122	0.229
00:16:30 99		0.112	0.210
00:18:00 108		0.107	0.201
00:19:30 117		0.097	0.182
00:21:30 129		0.090	0.169
00:23:30 14:		0.080	0.150
00:25:30 153		0.070	0.131
00:27:30 18.			0.122
00:27:30 17:		0.060	0.113
00:31:30 18		0.033	0.099
00:34:30 20:		0.040	0.075
1 00:39:00 234		0.038	0.071
00:37:00 23:		0.035	0.071
00:44:30 26		0.030	0.056
1 00:47:30 28		0.035	0.047
1 00:52:30 31:		0.015	0.028
00:57:30 34		0.008	0.015
01:02:30 37		0.008	0.015
01:07:30 40		0.008	0.015

(9H - H) / (4 - H)

- բոցուկիլույո

PROJECT NO. . KKB3..... (AMPHOOK LOCATION . FHISE? DATE . APRIL 23/67 PROJECT NAME

SOIL DESCRIPTION

TESTED BY

PERCENT ぬ RETAINED MEICHL of Hills 2 \$ 8 B 8 2 · municipal 2 (III) COARBE DOMP IS II OF OFENING SOIL DESCRIPTION GRAVEL 3216 TESTED BY (URB SIEVE SERIES) THE . COARDE ģ SILE CLASSIFICATION GRAIN SIZE ANALYSIS (MM.) SAND DATA SHEET 표 NO. OF MESHES PER 2 SIZE 200 M GRAIN PINE BRAIN M. L. T. COARBE (HH) PROJECT NO. ..⊋ÇŠ.∤.... DIAMETER CAMBRIDGE DATE ... RIGHT ZULT. LOCATION . REJUCK? BRAIN FINE EGUIVALENT CLAY PROJECT NAME 000 8 2 2 2 3 2 2 3 PERCENT 旭 PASSAG WEIGHT

APPENDIX E

ANALYTICAL REPORTS

DATE. March 30, 1987

CLIENT ORDER #

2087

Attention: Ms. K. Kaufman

REPORT # NL-2402

Analysis of Soil Samples for Naphthalene and Benzo(a)Pyrene

Ms. Kaufman,

Two (2) soil samples, received March 19, 1987, were analysed for naphthalene and benzo(a)pyrene indicator PAH compounds by solvent extraction and gas chromatography with flame ionization detection. Results and detection limits are shown in the table below.

Table - Concentration of Indicator PAH Compounds in Soil Samples (ug/g)

Sample	Naphthalene	Benzo(a) Pyrene
BF 0016	2.38	<0.5
BF 0025	<0.05	<0.05

Chromatograms will be kept on file.

Sincerely,

NOVALAB LIMITED

B.E. Crowlev B.Sc.

Approved by J.D. Fenwich, Ph.D., P. Chem.

BEC/hl

John D. Ferwick
74-024

DATE May 19, 1987

CLIENT ORDER #

2087

REPORT # NL-2535

RE Analysis of Soil for PAH Analysis of Leachate for PAH

Ms. Kaufman,

Ten (10) soil samples were received April 28, 1987. Two (2) of these samples were analysed for polycyclic aromatic hydrocarbons by EPA method 625. All ten (10) soil samples were leached, according to the leaching procedure of Environment Quebec, and the resulting leachate was analysed also for PAH by EPA method 625.

Results and detection limits are shown in the appended tables.

Chromatograms will be kept on file. Results of gc/ms analyses are not corrected for recovery.

Sincerely,

NOVALAB LIMITED

B.E. Crowley, B.Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl encl. John D. Fannich

CONCENTRATION OF PAH IN SDIL SAMPLES ug/g

COMPOUND	2087 #1	MDL	2087 #2	HOL	Blank	MOL
ACENAPHTHENE	2230	30	-	3	-	0.3
ACENAPHTHYLENE	160	30	89.2	3	-	0.3
ANTHRACENE	1250	30	55.8	3	-	0.3
BENZ (A) ANTHRACENE	400	30	11.3	3	-	0.3
CHRYSENE	640	30	23.7	3	-	0.3
BENZO (B) FLUORANTHENE						
BENZO(K)FLUORANTHENE	420	50	TR	5		0.5
BENZO(A)PYRENE	530	50	TR	5	-	0.5
BENZD(GHI)PERYLENE	330	150	-	15	-	1.5
DIBENZ(A,H)ANTHRACENE	-	150	-	15	-	1.5
FLUORANTHENE	2400	30	112	3	-	0.3
FLUDRENE	780	30	16.1	3	-	0.3
INDENO(1,2,3-cd)PYRENE	220	150	-	15	-	1.5
NAPHTHALENE	10300	30	180	3	-	0.3
PHENANTHRENE	5250	30	188	3	-	0.3
PYRENE	510	30	24.8	3	-	0.3

HDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)— and benzo(k) fluoroanthene is shown in the row for benzo(b) fluoranthene.

RECOVERY OF SURROGATE STANDARDS

COMPOUND	2087 #1	2087 #2	Blank
D8-NAPHTHALENE		•	55.6
D10-ANTHRACENE			57.2
DIO-FLUORANTHENE			60.8
D12-PERYLENE			100

CONCENTRATION OF PAH IN LEACHATE SAMPLES ug/L

	2087	2087	Mai	2087		2087	2087	2087	2087	
COMPOUND	#1	#5	MDL	12	MOL	#3	#4	16	\$7	MDL
ACENAPHTHENE	47.7	3.4	1	50.4	0.2	-	27.1	0.5	0.3	0.1
ACENAPHTHYLENE	283	355	1	2.7	0.2	-	0.4	-	-	0.1
ANTHRACENE	6.2	21	1	0.5	0.2	-	1	-	-	0.1
BENZ (A) ANTHRACENE+CHRYSENE	-	-	1	-	0.2	-	-	-	-	0.1
8ENZO(B)FLUORANTHENE										0.1
BENZO(K)FLUORANTHENE	-	-	2	-	0.2	-	-	-	-	0.1
BENZO(A)PYRENE	-	-	2	-	0.2	-	-	-	-	0.1
BENID (GHI) PERYLENE	-	-	5	-	0.4	-	-	-	-	0.2
DIBENZ(A, H) ANTHRACENE		-	5	-	0.4	-	-	-	-	0.2
FLUORANTHENE	3.5	5.6	1	-	0.2	-	0.2	-	-	0.1
FLUORENE	82	82	1	6.7	0.2	-	5.1	-	0.2	0.1
INDENO(1,2,3-cd)PYRENE	-	-	5	-	0.4	-	-	-	-	0.2
NAPHTHALENE	10550	777	1	240	0.2	-	0.3	1.4	1.6	0.1
PHENANTHRENE	117	160	1	6.6	0.2	-	6	-	0.4	0.1
PYRENE	5.7	6.1	1	-	0.2		0.5	-	-	0.1

MDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoroanthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS (2)

COMPOUND	2087	2087	2087	2087	2087	2087	2087
	#1	#5	\$2	8 3	\$4	#6	#7
D8-NAPHTHALENE	94.4	63.5	52.2	62.2	50.6	63.5	56.7
D10-ANTHRACENE	81.4	63	87.4	76.7	85.7		83.2
010-FLUORANTHENE D12-PERYLENE	74.1	63.6	90.9 83.5	75.6 46.6	85 82.4	78.8 44.9	82.9 81.3

CONCENTRATION OF PAH IN LEACHATE SAMPLES ug/L

COMPOUND	2087 #8	2087 #9	2087 #10	Leach. Blank	Lab Blank	MDL
ACENAPHTHENE	-	-	-	-	-	0.1
ACENAPHTHYLENE	-	-	-	-	-	0.1
ANTHRACENE	-	-	-	-	-	0.1
BENZ(A)ANTHRACENE + CHRYSENE	-	-	-	-	-	0.1
BENZO(B)FLUORANTHENE						
BENZO(K)FLUORANTHENE	-	-	-	-	-	0.1
8ENZO(A)PYRENE	-	-	-	-	-	0.1
BENZO(GHI)PERYLENE	-	-	-	-	-	0.2
DIBENZ(A, H) ANTHRACENE	. •	-	-	-	-	0.2
FLUDRANTHENE	-	-	-	-	-	0.1
FLUORENE	-	-	-	-	-	0.1
INDEND(1,2,3-cd)PYRENE	-	-	-	-	-	0.2
NAPHTHALENE	-	-	-	-	-	0.1
PHENANTHRENE	-	0.2	-	-	-	0.1
PYRENE	-	•	-	-	-	0.1

MOL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoroanthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS (I)

COMPOUND	2087 #8	20B7 #9	2087 #10	Leach. 81ank	Lab Blank
D8-NAPHTHALENE	47.6	67	87.9	72.1	68.6
D10-ANTHRACENE	71.2	74.5	87.4	75.7	86.8
010-FLUORANTHENE	80.4	82	90.4	93.2	87.1
D12-PERYLENE	87.3	45.5	59.1	44.5	92.9

CH	IAIN OF	CUST	YDC	PROJECT NE.		PROJECT NA	ME	• •
	REC	ORD		2087	<u> </u>	MILL	RA	CE CONTROMINIUM
SAMI	PLER'S SIGNATI	URE Pel	er Hau	ys		SAMPLE	AINERS	95114.5
SEQ.	SAMPLE Ng.	DATE	TIME	SAMPLE LOCAT	ION	TYPE	S THO	REMARKS
	#1	Acril 18	}-			Scil	1	TOTAL + LEACH F
	12	. /					1	TIDIAL GLEATH IN
	11 3		-			1	1	LEACH PRHIM
	#4						1	1
	a = 7			•			1	
	# F					1	1	
	4 8					1.	+	
	# 4						1	,
	#10				1	4	1	V
				<u> </u>				
							_	
\rightarrow								
-								<u> </u>
				TOTAL NS OF	CONTAIN	FR9	10	
						2113		
RELI	QUISHED BY	City	1	DATE/TI	ME	RECEIVED	BY:	11. 12.
	سب	(\$161	11	- 7-39			<u></u>	(SIGN)
RELIN	OUISHED BY:	AKRIL!	an	DATE/TI	ME 	RECEIVE	3-	PHARITE FICE.
RELIN	QUISHED BY:			DATE/TI	ME	RECEIVE	BY:	
	/ [3]-	(\$161	1)	-				(SIGN)
RELINQUISHED BY:			DATE/TI	ME	RECEIVED	BY:		
(SIGN)		-			3-	(SIGN)		
METH	OD OF SHIPMEN	T:	SHIPPE	D BY:	RECEIV	ED FOR LAI	BORA	TORY BY: DATE / TIME
					(SIGN) _	1821:No	Gin	22/4
COND	TION OF SEAL	UPON REC	EIPT:		COOLE	OPENED	BY	DATE/TIME
	RAL CONDITION				(SIGN)	FRU.	-14	J. L' J.
							-	

WHITE - RECEIVING LABORATORY COPY
YELLOW - SHIPPER'S COPY

PINK - CRA LABORATORY COPY GOLDEN ROD - CRA OFFICE COPY

DATE. May 19, 1987

CLIENT ORDER #

2087

REPORT # NL-2526

RE: Analysis of Water for PAH and Volatile Priority Pollutants

Ms. Kaufman,

One (1) sample of water, received May 1, 1987, was analysed for volatile priority pollutants by EPA method 624. One (1) sample of water, also received May 1, 1987, was analysed for polycyclic aromatic hydrocarbons by EPA method 625.

Results and detection limits are shown in the appended tables.

Chromatograms will be kept on file. Results of gc/ms are not corrected for recovery.

Sincerely,

NOVALAB LIMITED

B.E. Crowley, B/Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl

John D. Fanwick

CONCENTRATION OF VOLATILE PRIORITY POLLUTANTS IN WATER ug/L

COMPOUND	W-042987 PH-001	MDL
BENZENE	8940	1000
BRONODICHLOROMETHANE	-	100
BRONOFORM	-	500
BRONONETHANE	-	100
CARBON TETRACHLORIDE	-	500
CHLOROBENZENE	-	100
CHLORGETHANE	-	100
2-CHLOROETHYL VINYL ETHER	-	5000
CHLOROFORM	-	100
CHLDROMETHANE	-	100
DIBROMOCHLOROMETHANE	-	100
1,2-DICHLOROBENZENE	-	150
1,3-DICHLOROBENZENE	-	150
1,4-DICHLOROBENZENE	•	150
1,1-DICHLOROETHYLENE	•	100 100
1,1-DICHLOROETHANE	•	***
1,2-DICHLOROETHANE	•	100
TRANS-1, 2-DICHLOROETHYLENE	•	100 5000
DICHLOROMETHANE	-	100
1,2-DICHLOROPROPANE	-	250
CIS-1,3-DICHLOROPROPENE	-	100
TRANS-1, 3-DICHLDROPROPENE	5000	50
ETHYLBENZENE	5000 130	50
A-METHYLSTYRENE	740	50
MESITYLENE	/40	1000
1,1,2,2-TETRACHLORDETHANE		100
TETRACHLOROETHYLENE	4190	500
TOLUENE	4130	100
1,1,1-TRICHLOROETHANE	-	250
1,1,2-TRICHLOROETHANE		100
TRICHLOROETHYLENE	-	500
TRICHLOROFLUDROMETHANE	1410	50
H+P-IYLENE	1410 780	50
0-XYLENE	/80	250
VINYL CHLORIDE		50
OTHER ARCHATIC COMPOUNDS	•	30

MOL . METHOD DETECTION LIMITS

OTHER AROMATIC COMPOUNDS = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

Total concentration of 1,3- and 1,4-dichlorobenzene is shown in the row for 1,4-dichlorobenzene.

CONCENTRATION OF PAH IN WATER SAMPLES ug/L

COMPOUND	W-042987 PH-001	Lab Blank	MOL
ACENAPHTHENE	112	-	10
ACENAPHTHYLENE	19.3	-	10
ANTHRACENE	126	-	10
BENZ (A) ANTHRACENE	33.7	-	10
CHRYSENE	52.5	-	10
BENZO(B)FLUORANTHENE			
BENZO(K)FLUORANTHENE	41	-	20
BENZO(A)PYRENE	54.6	-	20
BENZO(GHI)PERYLENE	TR	-	50
DIBENZ(A, H) ANTHRACENE	-	-	50
FLUORANTHENE	239	-	10
FLUORENE	303	-	10
INDENO(1,2,3-cd)PYRENE	TR	-	50
NAPHTHALENE	8788	-	10
PHENANTHRENE	B05	-	10
PYRENE	267	-	10

MDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k) fluoroanthene is shown in the row for benzo(k) fluoranthene.

RECOVERY OF SURROGATE STANDARDS

COMPOUND	₩-042987 PH-001	Lab Blank
D8-NAPHTHALENE D10-ANTHRACENE D10-FLUDRANTHENE D12-PERYLENE		62.8 68.8 78.3 51.4

			-		1				
CH.	CHAIN OF CUSTODY PROJECT NR. PROJECT NAME: RECORD 1 2007 MILL RACE CON.								
SAMPI	LER'S SIGNATI	URE W	In H	<u> </u>				E	
SEQ.	SAMPLE Ng.	DATE	TIME	SAMPLE LO	CATION	┤ [*]	TYPE	ME. OF CONTAINERS	REMARKS
Ng.	00/	April 29				1	cter	2	PAH UCC
	-		·						,
	1 TAI	icho	K						
						-			
						\vdash			
						-			1
								7_	
				TOTAL NO	. OF CON	TAINE	RS —	1	
RELIN	QUISHED BY Y		N)	- april	SQIST		RECEIVED	2-	(Noine Smit)
RELING	OUISHED BY:	KKA 1	mun!	/- <u>/</u> //	7/11/C	,~	RECEIVE	3-	(SIGN)
RELING	OUISHED BY:	(516	N)	DAT	E/TIME		RECEIVED	BY:	(SIGN)
RELING	OUISHED BY:	. (\$16		DAT	TE/TIME		RECEIVED	3-	
METHO	METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: DATE / TIME								
	CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER: (SIGN) COOLER OPENED BY: DATE/TIME								
	WHITE - RECEIVING LABORATORY COPY								

YELLOW - SHIPPER'S COPY
PINK - CRA LABORATORY COPY
GOLDEN ROD - CRA OFFICE COPY

DATE Jan. 27, 1989

CLIENT ORDER =

2087

REPORT #

NL-4496

Attention: Ms. D. Hayes

RE Analysis of Water and Sediment for PAH - Project 2087

Ms. Hayes,

Two (2) water samples and three (3) sediment samples, received December 19, 1988, were analysed for polycyclic aromatic hydrocarbons by gc/ms equipped with a mass selective detector operated in the single ion monitoring mode (EPA method 625).

The water samples, identified as 2087 W-1 and 2087 W-2, were extracted on December 21, 1988 and analysed by gc/ms on December 24, 1988. The sediment samples, identified as 2087 S-1, 2087 S-2, and 2087 S-3, were extracted on December 23, 1988 and analysed by gc/ms on January 7, 1989.

The water samples contained only a very small amount of fine sediment, and this was allowed to settle out completely before the water for analysis was taken. The sediment samples were allowed to settle for four (4) days before the water portion was removed and the resulting sediment analysed (as discussed with Mr. Brian Crowley). The removed water was retained. One sample was also analysed in duplicate. Results and detection limits are shown in the attached Tables.

Chromatograms will be kept on file. Results are not corrected for recovery.

Sincerely,

MOVALAB LIMITED

L.W. Tang, B.Sc. for J.D. Fenwick, Ph.D., P.Chem.

LWT/hl encl.

CONCENTRATION OF POLICICLIC ABOMATIC BIOBOCABBONS IN SOIL 48/8

			DUPL.			
	2087	2087	2087	2087		
COMPOUND	S-1	5-2	S-1	2-3	BLANK	HDL
ACENAPETEENE	-	0.02	-	0.02		0.02
ACENAPETETLENE			-		-	0.02
ANTERACENE	0.03	0.03	0.06	0.1	-	0.02
BENZ(A)ANTERACENE	0.3	0.1	0.3	0.2		0.02
BENZO(B)PLUORANTEENE]						
BENZO(K)FLUORANTHENE]	1.0	0.4	0.9	1.1	•	0.02
BENZO(A)PTRENE	0.5	0.1	0.4	0.7	•	0.02
BENZO (GHI) PERYLENE	0.2	0.1	0.3	0.4	•	0.04
CHRISENE	0.6	0.1	0.5	0.5	•	0.02
DIBENZ(A, H)ANTERACENE	0.09	TE	0.1	0.1	•	0.04
FLUORANTEENE .	0.6	0.4	0.6	0.9	-	0.02
PLUORENE		-	-	0.04	-	0.02
INDENO(1,2,3-CD)PYRENE	0.2	80.0	0.2	0.3	-	0.04
NAPHTHALENE		-			•	0.02
PERMANTERENE	0.3	0.2	0.2	0.5	-	0.02
PYRENE	0.6	0.4	0.6	0.8	-	0.02

HDL = NETROD DETECTION LIMIT

TR = TRACE

Total concentration of benzo(b)- and benzo(k)fluoranthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS (I)

CONCENTRATION OF POLYCYCLIC AROMATIC BYDROCARBONS IN WATER $$u_{\rm g}/L$$

COMPOUND	2087 ₩-1	2087 ¥-2	BLANK	MDL
ACENAPHTHEME			-	0.05
ACENAPETETLENE	-	•	-	0.05
ANTHRACENE		-		0.05
BENZ(A)ANTERACENE	-	-	-	0.05
BENZO(B)FLUORANTHENE]				
BENZO(K)PLUORANTHENE	0.06	•	-	0.05
BENZO(A)PIRENE			-	0.05
BENZO(GHI)PERTLENE	-	-		1.0
CERTSENE	-			0.05
DIBENZ(A, E)ANTHRACENE	-			1.0
PLUORANTEENE	0.06	-		0.05
PLUORENE	-	-		0.05
INDENO(1,2,3-CD)PTRENE	-	-	-	1.0
NAPETBALENE				0.05
PERMANTERENE			-	0.05
PTRENE		-		0.05

MDL = METROD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k) fluoranthene is shown in the row for benzo(k) fluoranthene.

RECOVERY OF SURROGATE STANDARDS (I)

COMPOUND	2087 ¥-1	2087 ¥-2	BLANK
D8-WAPETRALEME	54	41.6	32.4
	59.4	57.4	54.3
DIO-FLUORANTEENE	67.9	70.1	66.8
DI2-PERTLENE	80.4	85.5	83.5

CHAIN OF CUSTO	ווטנ	PROJECT Nº: PROJECT NAME:					
SAMPLER'S SIGNATURE	re reacters	SA)	WHE CONTRACTOR	REMARKS			
SEQ. SAMPLE Nº DATE	TIME SAMPLE !		PE 2 N				
		-,	· · · · /	1. 1. 1			
T-N-1 1-1 -5 1:		1 - 22					
	=	200					
= 1 7-W-2 = 10 1	5 0	200					
	-		7 20				
				.+			
				•			
	TOTAL NUM	BER OF CONTAINER	s 5				
ANTICIPATED CHEMICAL HAZARDS:	none						
RELINQUISHED BY:	(D)	TE/TIME RE	CEIVED BY:				
The let	15/12/3	6/130	2 -	(300)			
RELINQUISHED BY:			CEIVED BY:	(==-,			
TEN		1	3 —	(904)			
(SIGN) RELINQUISHED BY:		TE/TIME RE	CEIVED BY:	(301)			
		TE/ IIME					
— (SIGN)				(994)			
ADDITIONAL SIGNATURE SHEET REQUIRED							
METHOD OF SHIPMENT:	SHIPPED BY:	RECEIVED FO	OR LABORATO	RY BY: DATE/TIME			
CONDITION OF SEAL UPON RECEIP		COOLER OF	PENED BY:	DATE/TIME			
GENERAL CONDITION OF COOLER:		(30H)					
WHITE - CRA OFFICE COPY YELLOW - RECEIVING LABORATORY COPY PINK - CRA LABORATORY COPY GOLDEN ROD - SHIPPERS OCS 674							

14 Abacus Road Canada L6T 5B7

Tei |416| 458-4044 Brampton, Ontario Fax. (416) 458-7303

Rec'd CRA

Page 1 . Beak Analytical REPORT Work Order # 90-02-108 MAP 1 1/2 1990 REPORT Conestoga-Rovers & Associates PREPARED Beak Analytica, Services TS 65: Colo, Drive 87 .4 Abacus Road waterloo, Ontario <u>LET 387</u> ATTEM <u>Chester Lastoria</u> PHONE 4<u>16</u>-458-4044 41v 101 ATTEN <u>Graham lieureau</u> CONTACT K_MOMIL_AN CLIENT CRA SAMPLES 1 ggmpank Conestoga-Rovers & Associates Beak Analytical Services hereby disclaims any and all " inability related to anomaious data arising from normal analytical and or sampling protocci. Should further information be required, please contact the Supervisor WORK ID Project 1097 Millrade TAKEN 02,112,90 TRAKE 7/08 Soil 00.1 INVOICE under separate cover TEST CODES and NAMES used on this report SAMPLE IDENTIFICATION HEXCRS Hexavalent Chromium 01 5-2087-KMV-001 11 S-2087-KMV-005 501_ZM Zinc ___ 502_00 Cadmium 504_CO Cobalt 305_3U Copper SCT PE Lead 508_CR Chromius 509_NI Nickel S10_88 Beryllium_ S11_MO Molybgenum 513_V Vanadium S16 BA Barium S20 HG Mercury S21_AS Arsenic S22 SE Selenium

> 523_AG_Silver S25 SB Antimony

Conestoga-Povers & Associates 651 Colby Drive Waterioo, Ontario M2V 102

Date Received: 02/13/90 Date Reported: 03/05/90 Work Order: 90-02-108 Category:

Attn: Granam Chevreau

work ID: Project 2087 Millinace 201 101 22 17

	-	70,10	, ,
Test	Units	S-2087-KMV-001	S-2087-KMV-005
Hexavalent Ch		0.179	0.28
nonavarone on	ug/ 3		****
Zinc		56	89/92
Cadmium	4 3 . 3	0.10	0.30/0.40
Cobalt	9g - 9	2.5	2.5/2.5
CODAIL	ug/g	2.3	1.3/1.3
Copper		13.5	14.5/12.5
Lead	ug/g	5.0	18.0/20.0
	ug/g		
Chromium		17	23/24
Nickel	ug/g	9	12 / 13
	n 3 /3		
Beryllium		<1	<1/<2
Molybdenum	ug/g	4	4 / 4
	ug/g		
Vanadium		14	24/27
Barium	ug/g	17	38/42
Barlus	ug/g	17	38/42
Mercury	23/3	<0.02	<0.02
	ug/g		
Arsenic		<0.5	3.0/3
Selenium	ug/g	<0.5	<0.5/<1
Selening	ug/g	٧٠.٥	(0.3/\1
Silver	-3, 3	<0.5	<0.5/<1
	ug/g		
Antimony		<1	<1/<2
	ug/g		

Certified By: Gradues

14 Abacus Road Tel: (416) 458-4044 Brampton, Ontario Fax: (416, 458-7303). Canada L6T 5B7

Page 2

Beak Analytical REPORT

Work Order \$ 90-02-108

Received: 02/13/90

Test Methodology

TEST CODE HEXCRS NAME Hexavalent Chromium

Diphenylcarbalise - Colorimetris

Reference: Ontario Ministry of the Environment, Handbook of Analytical Methods

for Environmental Samples, 1983, No. CG1.

W.O. #90.02.108

QA/QC REPORT

PARAMETER	EXTRACTED DATE	ANALYSED DATE	ANALYTICAL BLANK	QA/QC
Cadmium	February 14, 1990	February 20, 1990	<0.0001 mg/L	8CSS-1
				True Value: 0.25 Analyzed Value: 0.24
Cobalt	Not Applicable	February 26, 1990	<0.001 mg/L	BCSS-1
				True Value: 11.4 Analyzed Value: 10.4
Copper	Not Applicable	February 20, 1990		WP 386
				True Value: 100 Analyzed Value: 107
Lead	Not Applicable	February 21, 1990	<0.001 mg/L	WP386
				True Value: 22.7 Analyzed Value: 21.2
Chromium	Not Applicable	February 28, 1990	<0.01 mg/L	WP386
				True Value: 123 Analyzed Value: 58.5
Hercury	February 19, 1990	February 20, 1990	<0.05 ug/L	WP386
				True Value: 0.12 Analyzed Value: 0.10
Arsenic	February 21, 1990	February 21, 1990	<1 ug/L	8CSS-1
				True Value: 11.1 Analyzed Value: 9.5
Selenium	February 21, 1990	February 21, 1990	<1 ug/L	BCSS-1
				True Value: 0.43 Analyzed Value: <0.5
Antimony	February 20, 1990	February 20, 1990	<2 ug/£	8CSS-1
				True Value: 0.59 Analyzed Value: <1

W.O.	\$90.	.02.	108
------	-------	------	-----

QA/QC REPORT (CONTINUED)

PARAMETER	EXTRACTED DATE	ANALYSED DATE	ANALYTICAL BLANK	9A/9C
Zinc	Not Applicable	February 19, 1990	0.02 mg/L	8CSS-1
				True Value: 119 Analyzed Value: 115
Mickel	Not Applicable	February 19, 1990	<0.01 mg/L	8CSS-1
				True Value: 55.3 Analyzed Value: 54.1
8erylliu∎	Not Applicable	February 21, 1990	<0.01 mg/L	BCSS-1
				True Value: 1.3 Analyzed Value: 1.6
Molybdenum	Not Applicable	February 21, 1990	<0.01 mg/L	BCSS-1
				True Value: - Analyzed Value: 5.4
Vanadiu⊪	Not Applicable	February 21, 1990	<0.01 mg/L	8CSS-1
				True Value: 93.4 Analyzed Value: 49.8
Bariu∎	Not Applicable	February 21, 1990	<0.01 mg/L	BCSS-1
				True Value: - Analyzed Value: 56.6
Silver	Not Applicable	February 21, 1990	<0.01 mg/L	Municipal Sludge
				True Value: 80.6 Analyzed Value: 70.0

W.O. #90.02.108

METHODS

Cadmium Graphite Furnace

Cobalt Graphite Furnace

Copper Graphite Furnace

Lead Graphite Furnace

Chromium DCP

Mercury Cold Vapour - Flameless Atomic Absorption (MOE 1983)

Arsenic Hydride Generation

Selenium Hydride Generation

Antimony Graphite Furnace

Zinc DCP

Nickel DCP

Beryllium DCP

Molybdenum DCP

Vanadiue DCP

Barium DCP

Silver Graphite Furnace

Note: Beckman Instruments Inc.

Direct Current Plasma (DCP) Optional Emission Spoectrometric Method for Trace Elemental

Analysis of Water and Wastes. Method AES 0029, 1984

TEL (514) 636-6218, 631-1838 FAX (514) 631-9814

DATE March 7, 1990

CLIENT ORDER #

2087

REPORT #

NL-6713

Attention: Mr. G. Chevreau

RE. Analysis of Soil Samples - Project Millrace

Sir.

Two (2) soil samples, received February 13, 1990, were extracted February 27, 1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection. Results are shown in the attached Table.

Chromatograms will be kept on file.

Regards.

NOVALAB LIMITED

Elinatia a

E.E. Keirstead, B.Sc., Dipl.

JAFrand

Approved by J.D. Fenwick, Ph.D., P.Chem.

EEK/h1 encl.

John D. Ferrwich

MONITORING DATA

CONCENTRATION OF POLYCYCLIC ARONATIC HYDROCARBONS IN SOIL

	3/21	: 4 "
	S-2087	S-2087
COMPOBILD	XXV-002	KMY-006
MAPETHALENE	< 0.05	0.42
ACENAPHTHYLENE	< 0.05	0.05
ACEMAPETHEME	< 0.05	0.69
PLBORENE	< 0.05	0.32
PHERANTHRENE	< 0.05	1.2
ANTHRACENE	< 0.05	0.35
PLOGRANTHEME	<-0.05	0.53
PYREME	< 0.05	0.75
BENZ(A)ANTHRACENE	< 0.05	0.19
CHRISENE	< 0.05	0.21
BER20(B)PLUORANTHENE		
BENZO(K)PLOORANTRENE]	< 0.12	0.24
BENZO(A)PYRENE	< 0.1	0.2
INDENO(1,2,3-CD)PYRENE]		
DIBERZ(A, E)ANTERACENE)	< 0.25	< 0.25
BEN20(G,E,I)PERYLENE	< 0.2	< 0.2

HOL - METROD DETECTION LIMIT

C = LESS THAN

Total concentration of benzo(b)- and benzo(k)fluoranthene is shown in the row for benzo(k)fluoranthene.

Total concentration of indemo(1,2,3-cd) pyrene and dibens(a,h) anthracene is shown in the row for dibenz(a,h) anthracene.

-								
CHAIN OF	CUST	YOU	PROJECT Nº:	PROJE	ECT NAME:			
RECO	ORD	/	2087	M	ILLRAC	E	,	
SAMPLER'S SIGNATURE		~sm	(909)		SAMPLE TYPE	Nº OF CONTAINERS	RE	MARKS
SEQ. SAMPLE Nº	DATE	ПМЕ	SAMPLE LOCATO	NIC		2 8		
C-2087-KON-002	32 26.70				SOIL	1	PAH	
				-	- · · ·	/	PAH	
C-2007-KMU-806 2	2.09.90				SOK	<u>'</u>	PAH	
								
				-				
						-		-
						-		
	1							
			TOTAL NUMBER (YE CONT	AINEDS	2		
ANTICIPATED CHEMICA	L HAZARDS	1 S:	- \ \ .		7110/2	-		
	1		PNA,	PH				
RELINQUISHED BY:	A		DATE/TI	ME	RECEIVED	BY:	5. Du	ug way
RELINQUISHED BY:	<u> </u>		DATE/TI	ME	RECEIVED	BY:		
	(SIGN)		_			3-	(9	ON)
RELINQUISHED BY		······	DATE/TI	ME	RECEIVED	_		
N	(33GH)					(4)	(9	GH).
ADDITIONAL SIGNATURE SHEET REQUIRED	E							
METHOD OF SHIPMENT	:	SHIPPE	D BY:	RECEIV	VED FOR LABO	DRATO	ORY BY:	DATE/TIME
CONDITION OF SEAL U	JPON RECE	IPT:		1	ER OPENED E	Y:		DATE/TIME
GENERAL CONDITION C				(SIGH) -	5. Du	yı		DATE/TIME
	RA OFFICE		RY COPY					

The same of the

PINK - CRA LABORATORY COPY
GOLDEN ROD - SHIPPERS

TEL. (514) 636-6218, 631-1838 FAX (514) 631-9814

Rec'd CRA

APR 0 2 1990

DATE.

March 28, 1990

CLIENT ORDER #

2087

REPORT #

2087

MONITORING DATA

NL-6896

Attention: Mr. G. Chevreau

RE: Analysis of Water Samples - Project Mill Race

Sir,

Four (4) water samples were received on February 26, 1990. Two (2) water samples were extracted on February 28, 1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection and the other two (2) samples were extracted on February 26, 1990 and analysed for volatile priority pollutants by gc/ms. Results and detection limits are shown in the attached Tables.

All data will remain on file.

Sincerely.

NOVALAB LIMITED

B.E. Crowlev. B.Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl encl.

John D. Fenwick
74-024
OUEBEC

CONCENTRATION OF VOLATILE PRIORITY POLLUTANTS IN WATER ${\tt ug/L}$

)	_	
	W-2087	W-2087		
COMPOUND	KMV-001	KMV-005	BLANK	MDL
BENZENE	ND	ND	ND	1
BROMODICHLOROMETHANE	ND	ND	ND	1
BROMOFORM	ND	ND	ND	2
BROMOMETHANE	ND	ND	ND	10
CARBON TETRACHLORIDE	NO	ND	ND	2
CHLOROBENZENE	ND	ND	ND	1
CHLOROETHANE	NO.	NO	ND	10
2-CHLOROETHYL VINYL ETHER	ND	ND	ND	10
CHLOROFORM	4.3	ND	ND	1
CHLOROMETHANE	ND	ND.	ND	10
DIBROMOCHLOROMETHANE	ND	ND	ND	1
DIBROMOETHANE	ND	ND	ND	4
1,2-DICHLOROBENZENE	ND	ND	ND	1
1.3-DICHLOROBENZENE	ND	ND	ND	1
1.4-DICHLOROBENZENE	ND.	ND	NO	1
1.1-DICHLOROETHYLENE	ND.	ND	ND	1
1,1-DICHLOROETHANE	ND	ND	ND	1
1,2-DICHLOROETHANE	ND	ND	ND	2
TRANS-1.2-DICHLOROETHYLENE	NO.	ND	NO.	1
DICHLOROMETHANE	ND	ND	ND	5
1.2-DICHLOROPROPANE	ND	ND	ND	1
CIS-1,3-DICHLOROPROPENE	ND	ND	ND	1
TRANS-1,3-DICHLOROPROPENE	ND	ND	ND	1
ETHYLBENZENE	1.1	ND	ND	1
A-METHYLSTRYENE	ND	NO	ND	1
METHYLSTYRENE ISOMERS	ND	ND	ND	1
MESITYLENE	NO	ND	ND	1
STYRENE	ND	ND	ND	2
1,1,2,2-TETRACHLOROETHANE	ND	ND	ND	2
TETRACHLOROETHYLENE	ND	ND	ND	1
TOLUENE	ND	ND	NO	2
1,1,1-TRICHLOROETHANE	ND	ND	ND	2
1,1,2-TRICHLOROETHANE	ND	ND	ND	1
TRICHLOROETHYLENE	ND	ND	ND	1
TRICHLOROFLUOROMETHANE	NO	ND	NO	2
M+P-XYLENE	TR	ND	ND	2
0-XYLENE	1.5	ND	ND	1
VINYL CHLORIDE	· ND	ND	ND	5
OTHER AROMATIC COMPOUNDS	16	ND	ND	1

MOL = METHOD DETECTION LIMITS

ND = NOT DETECTED

TR = TRACE

OTHER AROMATIC COMPOUNDS = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

CONCENTRATION OF POLYCYCLIC ARONATIC HYDROCARBONS IN WATER

	ug/L	_	
COMPOUND	W-2087 INV-002	B-2087 KMY-006°	MDL
MAPETBALEDE	ID.	I D	1
ACEMAPETETLEME	ND	MD	1
ACEMAPETELLE	ND	MD	1
PLOOREME	ID	D	1
PHIMARTERIAL	MD.	MD.	1
ANTHRACENE	MD.	B D	1
FLOORANTHENE	#D	MD.	1
PYREME	MD.	I D	1
BENZ(A)ANTHRACENE	IID	MD	1
CHRYSINE	MD	11 D	1
BENZO (B) PLUORANTHEME	11D	₽ D	1
BENZO(K) PLOORANTHERE	MD	MD	1
BENZO(A)PYREME 1HDENO(1,2,3-CD)PYREME]	MD	I D	1
DIBERZ(A.H)ANTHRACENE	ND	II.D	3
BENZO(G,H,I)PERYLENE	MD.	WD	2.5

NDL = METROD DETECTION LINIT

ND = Not Detected

fotal concentration of indeno(1,2,3-cd)pyrene and dibens(a,h)anthracene is shown in the row for dibenz(a,h)anthracene.

	~							
СН	AIN OF REC	CUST		PROJECT Nº:		CT NAME:	ce	
SAME	PLER'S SIGNATU		miles m)	eule	_	SAMPLE	NERS .	REMARKS
SEQ.	SAMPLE Nº	DATE	(SAMPLE LOCATO	IN	TYPE	Nº OF	VCWW/V2
14.	n - 2080-	KMV- X	21	well	u	rates		Voc
	11	- 00	2	11		11		PAL
	11	- 00		11		D.		voc
	1 2087- K			well		water		FAH
					_			1
							-	
		-						
								<u> </u>
-		-						
							++	
							 	
		1	π	TAL NUMBER O	F CONTA	UNERS	4	
ANTI	CIPATED CHEMIC	_						
		al tai				I peggi en	6V.	
RELINQUISHED BY: K. Kander Mento			ula	DATE/TIME 2/23/9013:30		RECEIVED	BT: 5	/ Juguar
(304)				DATE/TIME		RECEIVED BY:		
RELINQUISHED BY:				DATE/TIME		7		
(3.64)						. (304)		
RELINQUISHED BY:				DATE/TIME		RECEIVED BY:		
(300)						(SQN)		
ADDI	TIONAL SIGNATU	JRE _						
METH	HOD OF SHIPME	NT:	SHIPPED	BY:	RECEIVE	ED FOR LAB	ORATORY	BY: DATE/TIME
Couses FED				DC . (90H) —				
CONDITION OF SEAL UPON RECEIPT:					COOLER OPENED		3Y:	DATE/TIME
GENERAL CONDITION OF COOLER:				61)	(3001)	(SON) 5 - Juguan Philip 1:		
W	IITE -	CRA OFFICE	COPY	0004			/	

WHITE - CRA OFFICE COPY
YELLOW - RECEIVING LABORATORY COPY
PINK - CRA LABORATORY COPY
GOLDEN ROD - SHIPPERS

Nº 007517

DATE: May 31, 1990

CLIENT ORDER #

2087

Attention: Mr. G. Chevreau

REPORT #

NL-7287

RE: Analysis of Water Samples - Project : 2087

Sir.

Two (2) water samples, received May 4, 1990, were extracted May 10,1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection (EPA 610). Results are shown in the attached Table.

Chromatograms will be kept on file.

Regards,

NOVALAB LIMITED

B.B.Crowley, S.Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/er encl.

CONCENTRATION OF POLICYCLIC AROMATIC BYDROCARBONS IN WATER $$u_{\rm E}/L$$

COMPOUND	¥-3 03/05/90	¥-4 03/05/90	MDL
NAPETRALENE	-	-	1.2
ACENAPHTHYLENE	-	-	1.5
ACEMAPETEENE	-	-	1.2
FLUORENE	-		1.5
PHENAN THRENE	-		2
ANTHRACENE	-	-	2
PLUORANTHEME		-	2
PYRENE	-		1.5
BENZ(A)ANTERACENE	-	-	2
CHRYSENE	-	-	2
BENZO(B+K)PLUORANTHENE	-	-	4
BEN2O(A)PYRENE	-	-	3
INDENO(1,2,3-CD)PYRENE)	-	-	8
DIBENZ(A, H)ANTHRACENE}			
BEN20(GEI)PERYLENE	-	-	5

HDL = METHOD DETECTION LIMIT

Total concentration of indeno (1,2,3-CD)pyrene and dibenz(A,B)authracene is shown in the row of indeno (1,2,3-CD) pyrene.

GAS OIL

