MACS203b

1 Convergence de variables aléatoires

Calcul sur les événements

Prop. • $Si(A_n)_n$ est croissante, $\mathbf{P}(\bigcup_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$.

- $Si(A_n)_n$ est décroissante, $\mathbf{P}(\bigcap_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$.
- $Si \forall n, \mathbf{P}(A_n) = 0 \text{ alors } \mathbf{P}(\bigcup_n A_n) = 0.$
- $Si \forall n, \mathbf{P}(A_n) = A \text{ alors } \mathbf{P}(\bigcap_n A_n) = 1.$

Def. $\limsup_{n\to\infty} A_n = \bigcap_{n\in\mathbb{N}} \bigcup_{k\geqslant n} A_k$, i.e. $\omega\in \limsup_n A_n \iff \forall n, \exists k\geqslant n, \omega\in A_k$.

Donc $\limsup_n A_n$ est réalisé ssi une infinité de A_n est réalisé.

Lem (de Borel-Cantelli). $Si \sum_{n} \mathbf{P}(A_n) < \infty$, alors $\mathbf{P}(\limsup_{n} A_n) = 0$.

Autrement dit, il y a une proba 1 pour que seulement un nombre fini de A_n soient réalisés.

Convergence p.s., en probabilité et dans L^p

Def. (i) On dit que $X_n \xrightarrow{\mathbf{P}} X$ (converge en probabilité) si $\forall \epsilon > 0$, $\mathbf{P}(\|X_n - X\| > \epsilon) \xrightarrow[n \to \infty]{} 0$.

- (ii) On dit que $X_n \xrightarrow{\text{p.s.}} X$ (converge presque sûrement), si $\forall \omega$ **P**-p.p, $X_n(\omega) \to X(\omega)$. Autrement dit il existe $A \in \mathcal{F}$ tel que $\mathbf{P}(A) = 1$ et $\forall \omega \in A$, $\lim_n X_n(\omega) = X(\omega)$.
- (iii) On dit que $X_n \xrightarrow{L^p} X$ (converge vers X dans $L^p(\Omega, \mathbf{R}^d)$) si $X_n, X \in L^p$ et $\mathbf{E}(\|X_n X\|^p) \xrightarrow{\mathbb{R}^d} 0$.

Prop. On note $X_n = \left(X_n^{(1)}, \dots, X_n^{(d)}\right)$ sur $\mathcal{X} = \mathbf{R}^d$. Alors $X_n \xrightarrow{p.s.} X$ p.s. (resp. en probabilité, dans L^p) ssi $\forall k \in [1:d], X_n^{(k)} \xrightarrow{p.s.} X^{(k)}$ (resp. en probabilité, dans L^p).

Prop. Si $X_n \xrightarrow{p.s.} X$ ou $X_n \xrightarrow{L^p} X$ alors $X_n \xrightarrow{\mathbf{P}} X$.

Prop. $Si \ \forall \epsilon > 0, \sum_{n} \mathbf{P}(\|X_n - X\| > \epsilon) < \infty \ alors \ X_n \xrightarrow{p.s.} X.$

Prop. $X_n \xrightarrow{\mathbf{P}} X$ ssi de toute sous-suite $X_{\varphi(n)}$ on peut extraire une autre sous-suite $X_{\varphi\circ\psi(n)}$ telle que $X_{\varphi\circ\psi(n)} \xrightarrow{p.s.} X$. **Th** (de **continuité**). X_n, X v.a. sur \mathbf{R}^d . Soit $h \colon \mathbf{R}^d \to \mathbf{R}^p$ mesurable et continue sur C tel que $\mathbf{P}(X \in C) = 1$, alors

- (i) Si $X_n \xrightarrow{p.s.} X$ alors $h(X_n) \xrightarrow{p.s.} h(X)$
- (ii) Si $X_n \xrightarrow{\mathbf{P}} X$ alors $h(X_n) \xrightarrow{\mathbf{P}} h(X)$.

Th (Loi forte des grands nombres). Soit (X_n) i.i.d. telle que $\mathbf{E}(\|X_1\|) < \infty$. Alors $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p.s.} \mathbf{E}(X_1)$.

Th (Loi faible des grands nombres). *Soit* (X_n) *i.i.d. telle que* $\mathbf{E}(\|X_1\|^2) < \infty$. *On* $a \xrightarrow{1}_n \sum_{i=1}^n X_i \xrightarrow{\mathbf{P}} \mathbf{E}(X_1)$.

Convergence en loi

Rappels : une mesure de proba μ sur $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d)))$ est caractérisée par sa fonction de répartition F_{μ} . $F_{\mu}(x_1, \dots, x_d) = \mu(\prod_i] - \infty \, ; x_i]).$

- On a : F_{μ} croissante.
 - $F_{\mu}(-\infty) = 0$, $F_{\mu}(+\infty) = 1$
- F_{μ} est continue à droite et $\mu(x_0) = F_{\mu}(x_0) F_{\mu}(x_0^-)$

Soit $X: \Omega \to \mathbf{R}^d$ une v.a. On note $P_X = \mathbf{P} \circ X^{-1}$ la loi de X. P_X est une mesure de proba sur \mathbf{R}^d . On note F_X sa fonction de répartition. Pour d = 1, $F_X(x) = \mathbf{P}(X \le x)$.

Def. Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d . On dit que μ_n converge faiblement (ou étroitement) vers μ si $F_{\mu_n}(x) \longrightarrow F_{\mu}(x)$ en tout x point de continuité de F_{μ} . On note $\mu_n \Rightarrow \mu$.

Def. $(X_n)_n, X$ v.a. sur \mathbf{R}^d . On dit que X_n converge en loi vers X (noté $X_n \xrightarrow{\mathcal{L}} X$) si $P_{X_n} \implies P_X$.

$$\begin{array}{ccc} & cv \ ps \\ \textbf{Prop.} & ou \\ cv \ L^p \end{array} \right\} \implies cv \ proba \implies cv \ loi$$

Th (de représentation de Skorohod). Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d telles que $\mu_n \implies \mu$. Il existe un espace de proba et des v.a. (Y_n) , Y sur cet espace telles que :

- $Y \sim \mu, \forall n, Y_n \sim \mu_n$
- $\forall \omega, Y_n(\omega) \longrightarrow Y(\omega)$

Th (de continuité). Soit $X_n \xrightarrow{\mathcal{L}} X$ définie sur $(\Omega, \mathcal{F}, \mathbf{P})$. $h \colon \mathbf{R}^d \to \mathbf{R}^p$ continue sur C telle que $\mathbf{P}(X \in C) = 1$. Alors $h(X_n) \xrightarrow{\mathcal{L}} h(X)$.

1

Th (de Portmanteau). *On a équivalence entre :*

- (i) $X_n \xrightarrow{\mathcal{L}} X$,
- (ii) $\forall f \colon \mathbf{R}^d \to \mathbf{R}$ continue bornée, $\mathbf{E}(f(X_n)) \longrightarrow \mathbf{E}(f(X))$,
- (iii) $\forall A \subset \mathbf{R}^d$ tel que $\mathbf{P}(X \in \delta A) = 0$, on a $\mathbf{P}(X_n \in A) \longrightarrow P(X \in A)$ où $\delta A = \bar{A} \setminus \mathring{A}$

Lem (d'Helly). Soit $(F_n)_n$ une suite de fonctions de répartition. Il existe une sous-suite φ_n et $F: \mathbf{R} \to [0;1]$ croissante, continue à droite, telle que $F_{\varphi_n}(x) \longrightarrow_n F(x)$ en tout x point de continuité de F.

On ajoute une condition pour que la limite vérifie $\lim_{x\to-\infty}F(x)=0$ et $\lim_{x\to+\infty}F(x)=1$.

Def. $(\mu_n)_n$ est dite **tendue** si $\forall \varepsilon > 0, \exists \mathcal{K}$ compact, $\forall n, \mu_n(\mathcal{K}) \geqslant 1 - \varepsilon$.

Dans le cas d = 1 on peut prendre $\mathcal{K} = [-K; K]$.

Def. $(X_n)_n$ est tendue si $\forall \varepsilon > 0, \exists \mathcal{K} \text{ compact}, \forall n, \mathbf{P}(X_n \in \mathcal{K}) \geqslant 1 - \varepsilon.$

Th (de Prokhorov). Soit $(\mu_n)_n$ tendue. Il existe une mesure de probabilité μ sur \mathbf{R}^d et une suite $(\varphi_n)_n$ telle que $\mu_{\varphi_n} \implies \mu$.

Prop. Si toute sous-suite faiblement convergente de $(\mu_n)_n$ tendue converge vers μ^* , alors $\mu_n \implies \mu^*$.

Fonction caractéristique, TCL

La fonction caractéristique d'une mesure de proba μ sur \mathbf{R}^d est

$$\varphi_{\mu} \colon \begin{array}{ccc} \mathbf{R}^{d} & \to & \mathbf{C} \\ t & \mapsto & \int e^{i\langle t|x\rangle} \, \mathrm{d}\mu(x) \end{array}$$

...

Rappel: $\varphi_{\mu} = \varphi_{\nu} \implies \mu = \nu$.

Ex. $\varphi_{\mathcal{N}(0,1)}(t) = e^{-t^2/2}$.

Pour
$$Y = AX + b$$
 on a $\varphi_Y(t) = e^{i\langle t|b\rangle} \varphi_X(A^\mathsf{T} t)$.

Prop. φ_{μ} est continue en zéro.

Th (de Lévy). Soit $(\mu_n)_n$, μ des mesures de probabilité sur \mathbf{R}^d . $\mu_n \implies \mu$ ssi $\forall t \in \mathbf{R}^d$, $\varphi_{\mu_n}(t) \longrightarrow \varphi_{\mu}(t)$.

Th (Procédé de Cramer-Wold). *Soit* X_n , X *des v.a. sur* \mathbf{R}^d . *On a* $X_n \xrightarrow{\mathcal{L}} X \iff \forall t, \langle t \mid X_n \rangle \xrightarrow{\mathcal{L}} \langle t \mid X \rangle$.

Théorème centrale limite

Not.
$$\mathcal{N}(m,\sigma^2)$$
 désigne la loi de densite $\rho(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}}$, et si $\sigma^2 = 0$ c'est la loi δ_m .

Pour X un vecteur gaussien, sa fonction caractéristique vérifie $\phi_X(t)=e^{i\langle t|m\rangle}e^{-\frac{t^{\mathsf{T}}\Sigma t}{2}}$ où ...

Th (central limite). ...

Th (de Linderbergh). *Soit un tableau de v.a.* $(X_{i,n})_{1 \leqslant i \leqslant n}$ *tel que*

- $\forall n$, les v.a $X_{1,n}, \ldots, X_{n,n}$ sont indépendantes,
- $\forall n, \forall i \leqslant n, \mathbf{E}(X_{i,n}) = 0$,
- $\lim_{n} \sum_{i=1}^{n} \operatorname{Cov}(X_{i,n}) = \Sigma$
- $\forall \varepsilon > 0$, $\lim_{n} \sum_{i=1}^{n} \mathbf{E}(\|X_{i,1}\|^2 \mathbf{1}_{\|X_{i,n}\|} > \varepsilon) = 0$.

Alors $\sum_{i=1}^{n} X_{i,n} \xrightarrow{\mathcal{L}} \mathcal{N}(0,\Sigma)$.

2 Manipulation des convergences

Rappel de règles

Prop. (i)
$$X_n \xrightarrow{\mathcal{L}} c \iff X_n \xrightarrow{\mathbf{P}} c$$

$$(ii) \quad \frac{X_n \xrightarrow{\mathcal{L}} X}{Y_n - X_n \xrightarrow{\mathcal{L}} 0} \right\} \implies Y_n \xrightarrow{\mathcal{L}} X$$

(iii)
$$X_n \xrightarrow{\mathcal{L}} X \atop Y_n \xrightarrow{\mathcal{L}} c$$
 $\Longrightarrow (X_n, Y_n) \xrightarrow{\mathcal{L}} (X, c)$

$$\begin{array}{ccc} (iv) & X_n \xrightarrow{\mathbf{P}} X \\ & Y_n \xrightarrow{\mathbf{P}} c \end{array} \right\} \implies (X_n,Y_n) \xrightarrow{\mathbf{P}} (X,c)$$

Notation o_P , O_P

Soit
$$(X_n)$$
 des v.a. $\Omega \to \mathbf{R}^d$ et (Y_n) v.a.r.

Def. La notation $X_n = o_P(1)$ signifie $X_n \xrightarrow{\mathbf{P}} 0$. $X_n = o_P(Y_n)$ signifie $\exists (Z_n) \xrightarrow{\mathbf{P}} 0, X_n = Z_n Y_n$. $X_n = O_p(1)$ signifie que (X_n) est tendue. On dit que X_n est "bornée en probabilité" lorsqu'elle est tendue. $X_n = O_P(Y_n)$ signifie $\exists (Z_n) = O_p(1), X_n = Z_n Y_n$.

Prop. Si $X_n \xrightarrow{\mathcal{L}} X$ alors $X_n = O_P(1)$.

Prop. (i) $o_P(1) + O_P(1) = O_P(1)$,

(ii)
$$o_P(1) \cdot O_P(1) = o_P(1)$$
,

(iii)
$$o_P(1) + o_P(1) = o_P(1)$$
,

(iv)
$$\frac{1}{1+o_P(1)} = O_P(1)$$
.

Lemme de Slutsky et applications

Lem (de Slutsky). $Si X_n \xrightarrow{\mathcal{L}} X \text{ et } Y_n \xrightarrow{\mathcal{L}} c \text{ alors } X_n + Y_n \xrightarrow{\mathcal{L}} X + c, X_n Y_n \longrightarrow cX \text{ et } \frac{X_n}{Y_n} \longrightarrow \frac{X}{c} \text{ (si } c \neq 0).$

Delta-méthode

Soit $g: \mathbf{R}^d \to \mathbf{R}^m$ dérivable en un point $\nu \in \mathbf{R}^d$ de matrice jacobienne $\nabla g(\nu)$.

$$\text{Rappel}: \lim_{h \to 0} \frac{\|g(\nu+g) - g(\nu) - \nabla g(\nu) \cdot h\|}{\|h\|} = 0, \ \nabla g(\nu) = \left(\frac{\partial g_i(\nu)}{\partial \nu_j}\right)_{i \in [\![1];d]\!], j \in [\![1];m]}.$$

Th. Soit $g \colon \mathbf{R}^d \to \mathbf{R}^m$ dérivable en ν . Soient T_n, T des v.a. sur \mathbf{R}^d et (r_n) une suite réelle telle que $r_n \to +\infty$, $r_n(T_n - \nu) \xrightarrow{\mathcal{L}} T$. Alors $r_n(g(T_n) - g(\nu)) \xrightarrow{\mathcal{L}} \nabla g(\nu) \cdot T$.

Statistique asymptotique

Not. • $(\Omega, \mathcal{F}, \mathbf{P})$ espace de proba,

- $(X_i)_{i\in\mathbb{N}}$ v.a. iid
- $\forall i \in \mathbf{N}, X_i = (X_i^{(1)}, \dots, X_i^{(d)})^\mathsf{T},$
- ||·|| norme euclidienne.

Introduction

Def. Estimateur $\hat{\theta}_n$ à valeurs dans $\Theta \subset \mathbf{R}^q$: transformation mesurable de (X_1, \dots, X_n) . $\hat{\theta}_n$ est faiblement consistant si $\hat{\theta}_n \xrightarrow{\mathbf{P}} \theta_0$. $\hat{\theta}_n$ est fortement consistant si $\hat{\theta}_n \xrightarrow{\text{p.s.}} \theta_0$. $\hat{\theta}_n$ est asymptotiquement normal si $\sqrt{n}(\hat{\theta}_n - \hat{\theta}_n)$ $\theta_0) \Longrightarrow \mathcal{N}(0, \sigma_0^2).$

Rem. La consistance est différente du biais. En effet, soit $\bar{X}^n = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\theta}_n = \bar{X}^n + \frac{1}{n}$ est fortement consistant (si $\mathbf{E}(X_1) < \infty$) et biaisé car $\mathbf{E}(\hat{\theta}_n) - \mathbf{E}(X_1) = \frac{1}{n}$.

À l'inverse $\hat{\theta}_n = X_1$ est sans biais mais non consistant.

Def. $\hat{\theta}_n$ est un M-estimateur si $\hat{\theta}_n \in \arg\min_{\theta \in \Theta} M(\theta)$. $\hat{\theta}_n$ est un Z-estimateur si $\Psi_n(\hat{\theta}_n) = 0$.

- - Moindres carrés : $\hat{\beta}_n$ est défini par $\hat{\beta}_n = \arg\min_{\beta \in \mathbf{R}^d} \sum_{i=1}^n (Y_i X_i^\mathsf{T} \beta)^2$. Maximum de vraisemblance : soit la famille paramétrique $\mathcal{P} = \{f_\theta \mid \theta \in \Theta\}$ selon lauelle est distribuée les données (X_1, \ldots, X_n) .

$$\hat{\theta}_n = \arg\max_{\theta \in \Theta} \frac{1}{n} \log(f_{\theta}(X_i))$$

• Estimateur des moments et estimateur des moments généralisés : $\hat{\theta}_n \in \arg\min_{\theta \in \Theta} \left\| \frac{1}{n} \sum_{i=1}^n g(X_i) - \int g \, \mathrm{d}\mathbf{P}_{\theta} \right\|$.

Rem. Un Z-estimateur est toujours un M-estimateur car $\forall \theta \in \Theta, 0 = \left\|\Psi_n(\hat{\theta}_n)\right\| \leqslant \|\Psi_n(\theta)\|$. Un M-estimateur est un Z-estimateur si M_n est continuement dérivableh sur Θ et $\hat{\theta}_n$ est un point intérieur à Θ . Alors $\nabla M_n(\hat{\theta}_n) = 0$. **Prop** (Consistance).

Prop (Consistance Z-estimateur). $Si \hat{\theta}_n$ est un Z-estimateur et

- $\sup_{\theta \in \Theta} \|\Psi_n(\theta) \Psi(\theta)\| \stackrel{\mathbf{P} \text{ resp. p.s.}}{\longrightarrow} 0,$ $\forall \varepsilon > 0, \inf_{\theta \in \Theta \setminus B(\theta_0, \varepsilon)} \|\Psi(\theta)\| > \|\Psi(\theta_0)\|,$

alors $\hat{\theta}_n \stackrel{\mathbf{P}}{\longrightarrow} \stackrel{resp.\ p.s.}{\longrightarrow} \theta_0$.

- Lem. Supposons (i) Θ compact,
- (ii) $\forall \theta \in \Theta, \mathbf{E}(|\rho(X_1, \theta)|) < \infty$,
- (iii) $\exists r \colon \mathcal{X} \to \mathbf{R}_+, \mathbf{E}(r(X_1)) < \infty \text{ où ...}$