Chemistry 30 IB Acids & Bases

Jad Chehimi

October 15, 2020

Unfinished!

Contents

1	The	ories		
	1.1	Arrhen	nius	
	1.2	Brønst	ted-Lowry (aka. Modified Arrhenius)	
2	Gen	eral Eq	quations	
	2.1	Ionizat	tion of Acids	
		2.1.1	Strong	
		2.1.2	Weak	
	2.2	Dissoc	ciation of Bases	
		2.2.1	Strong	
		2.2.2	Weak	
3	рН	& pOH	ł	
	3 1	K		

1 Theories

The following two equations mean the same thing. $H^+(aq)$ and $H_3O^+(aq)$ are interchangable.

1.1 Arrhenius

$$HX(aq) \longrightarrow H^+(aq) + X^-(aq)$$

- doesn't specifically state water is present (aq)
- uses hydrogen ions, H⁺(aq)
- cannot determine strong or weak

1.2 Brønsted-Lowry (aka. Modified Arrhenius)

$$HX(aq) + H_2O(1) \longrightarrow H_3O^+(aq) + X^-(aq)$$

- specifically states water is present
- uses hydronium ions, H₃O⁺(aq)
- can determine strong or weak

2 General Equations

2.1 Ionization of Acids

Forming ions from molecular compounds.

2.1.1 Strong

$$HX(aq) + H_2O(1) \xrightarrow{> 99.9\%} H_3O^+(aq) + X^-(aq)$$

- ionize completely (> 99.9% of the reaction completes)
- irreversible (→→)
- high K value (K > 1)

2.1.2 Weak

$$HX(aq) + H_2O(l) \stackrel{< 50\%}{\longleftarrow} H_3O^+(aq) + X^-(aq)$$

- do not ionize completely (< 50% of the reaction completes)
- reversible (\Longrightarrow)

- ionize at equilibrium
- low K value (K < 1)

2.2 Dissociation of Bases

Separation of existing ions in solution.

2.2.1 Strong

$$M(OH)_n + H_2O(l) \xrightarrow{> 99.9\%} M^{n+}(aq) + nOH^-(aq)$$

- M is a metal, $M(OH)_n$ is highly soluble
- dissociate quantitatively

2.2.2 Weak

$$X(aq) + H_2O(l) \stackrel{< 50\%}{\rightleftharpoons} HX^+(aq) + OH^-(aq)$$

• dissociate at equilibrium

3 pH & pOH

3.1 K_w

The equilibrium constant of water can be used to solve for hydrogen ion concentration or hydronium ion concentration when you have the other.

$$K_w = [\mathrm{H_3O^+}][\mathrm{OH^-}]$$

$$K_w = 1.00 \times 10^{-14} \, \mathrm{mol} \, \mathrm{L}^{-1}$$

$$1.00\times 10^{-14}\,\text{mol}\,L^{-1} = [\mathrm{H_3O^+}][\mathrm{OH^-}]$$