

Enhancing Classification of Aquatic Species through Supervised Contrastive Learning and Advanced Image Super-Resolution

Presented By:
Sadia Nasrin Tisha
Geethanjali Nallani

Outline

- > Problem Statement
- Dataset Description
- Super Resolution Techniques
- Classification Task
- > Result
- Discussion
- > Limitations
- > Future Works

Problem Statement

•Background:

- Invasive species like Zebra and Quagga mussels have become ecological threats in North America.
- US government is funding the QZAP program, which is spending roughly \$2M / year.

•Impact:

These species damage ecosystems and infrastructure, causing substantial economic losses.

•Current Detection Methods:

Conventional methods are costly, time consuming, and require expert knowledge.

Challenges with Traditional Methods:

Reliance on manual sampling and microscopy.

•Need for Automation:

Importance of developing automated monitoring and efficient methods for early detection of invasive species

Figure 1: Boat Propeller clogged by Zebra mussel

Invasive Species Larvae Dataset

- •Source: High-definition video recordings of aquatic streams from the Colorado River near Davis Dam, Arizona.
- •Processing Method: Kalman Filter-based proprietary algorithm for identifying, tracking, and extracting larvae imagery.
- •Dataset Composition:
 - Total Organisms: 6905 (1220 organisms that are invasive, 5685 non-invasive).
 - Total Images: 88050 (44646 images of invasive species, 43404 images of non-invasive species).

Figure 2: Example of invasive dreissenid and non-invasive species larvae

Invasive Species

Non Invasive Species

How does the enhancement of image quality through super-resolution techniques affect the performance of supervised contrastive learning models in the classification of aquatic species?

Workflow

Super Resolution Techniques

SRCNN ARCHITECTURE

Output of SRCNN

SRCNN Model:

PSNR: 34.73 MSE: 65.69 SSIM: 0.933

ESRGAN ARCHITECTURE

Output of ESRGAN

MSE: 13.287592887878418

SSIM: 0.9840068817138672

MSE: 242.84938049316406

SSIM: 0.7274059653282166

ESRGAN Model:

Original Image

Degraded Image

PSNR: 30.728313446044922 MSE: 54.985599517822266 SSIM: 0.8243040442466736

Super Resolution Image

PSNR: 38.93376541137695 MSE: 8.311963081359863 SSIM: 0.9795677065849304

WATER-NET ARCHITECTURE

Output of WATER-NET MODEL

Water-Net Model:

Original Image

Preprocessed Image

Resoluted Image

PSNR: 3.255649779322247 MSE: 30726.66015625

SSIM: 0.004971958876738931

PSNR: 27.052611230102865 MSE: 128.17969618055557 SSIM: 0.9617064937385186

Classification task

Supervised Contrastive Learning

Image Augmentation Methods

Normalization

This layer standardizes the images to have a mean of 0 and a standard deviation of 1.

- Help neural networks train faster and more effectively
- Ensures that the input data varies within a similar range.

Random Flip

This layer randomly flips the images horizontally. Horizontal flipping is a simple way to increase the diversity of the training dataset without collecting new images.

- Help in improving the robustness of the model
- Making it better at generalizing from the training data to new, unseen data.

Random Rotation

This layer randomly rotates the images by up to 0.02 radians (approximately 1.15 degrees).

 Useful for training models that need to recognize objects in different orientations.

- **Baseline classifier** is trained the on encoder and the classifier parts are trained together as a single model to minimize the cross entropy loss.
- The **supervised contrastive model** is trained in two phases:
 - In the first phase, the encoder is pre-trained to optimize the supervised contrastive loss. In the second phase, the classifier is trained using the trained encoder with its weights freezed; only the weights of fully-connected layers with the softmax are optimized.
- Convolutional Neural Network(CNN) model consists of two convolutional layers followed by max pooling, a flatten layer, and two dense layers with the final output layer using softmax activation for binary classification. The model is compiled with the Adam optimizer and categorical cross-entropy loss function.

Result

Model	Standard resolution	SRCNN	ESRGAN	Water-Net
Baseline classification model	96.29%	91.34%	95.28%	88.71%
Supervised contrastive learning	89.43%	87.63%	96.96%	88.19%
Convolutional Neural network	86.00%	81.56%	91.06%	89.39%

Discussion

- **ESRGAN** showed an improvement in classification accuracy over standard resolution images.
- This suggests that ESRGAN's method of enhancing texture and detail particularly beneficial for the features necessary in species classification.

- **SRCNN and WaterNet**, despite improving certain image quality metrics, did not lead to better classification performance and in some cases, reduced accuracy.
- This might be attributed to the types of image alterations these techniques introduce, such as noise or loss of critical detail.

Limitations

- Training Data Compatibility
- Sensitivity to Super Resolution Artifacts
- Model Sensitivity to Image Quality Changes

Future Works

- Enhance the image quality
- Enhanced Model Training
- Use of Data Augmentation
- Hybrid SR Techniques
- Cross-Domain Validation
- Exploring Alternative Machine Learning Approaches and Dataset

Thank you

Any auestion?