If
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$

Indeterminate forms other than $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$ that can be handled by L'Hopital's Rule:

$0\!\cdot\!\infty$	0_0	1^{∞}	∞^0
$0 \cdot \infty = \frac{0}{\left(\frac{1}{\infty}\right)}$	$y = 0^{0}$	$y = 1^{\infty}$ \downarrow	$y = \infty^0$
(∞) ↓	$\ln\left(y\right) = \ln\left(0^{0}\right)$	$ \ln\left(y\right) = \ln\left(1^{\infty}\right) $	$\ln\left(y\right) = \ln\left(\infty^0\right)$
0	$\ln(y) = 0 \cdot \ln(0)$	$\ln(y) = \infty \cdot \ln(1)$	$\ln\left(y\right) = 0 \cdot \ln\left(\infty\right)$
$=\frac{0}{0}$	$\ln(y) = 0 \cdot -\infty$	$\ln(y) = \boxed{\infty \cdot 0}$	$\ln\left(y\right) = \boxed{0 \cdot \infty}$
OR $0 \cdot \infty = \frac{\infty}{\left(\frac{1}{0}\right)}$	$\ln(y) = \frac{-\infty}{\frac{1}{0}}$	$ \ln(y) = \frac{0}{\frac{1}{\infty}} $	$\ln\left(y\right) = \frac{\infty}{\frac{1}{0}}$
$=\frac{\infty}{\infty}$	$\ln\left(y\right) = \frac{-\infty}{\infty}$	$ \ln\left(y\right) = \frac{0}{0} $	$ \ln\left(y\right) = \frac{\infty}{\infty} $

You should recognize the limit definition of the number e: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$

Furthermore, if a is a constant where $a \neq 0$, then $\lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n = e^a$

Don't forget your properties of logarithms!

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

$$\log_b(x^n) = n \cdot \log_b(x)$$

$$\log_b(b^m) = m$$

$$b^{\log_b(m)} = m$$

$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = k$$

$$\ln \left[\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n \right] = \ln(k)$$

$$\lim_{n \to \infty} \ln \left(1 + \frac{a}{n} \right)^n = \ln(k)$$

$$\lim_{n \to \infty} \frac{\ln \left(1 + \frac{a}{n} \right)}{\frac{1}{n}} = \ln(k)$$
Note:
$$\lim_{n \to \infty} \frac{\ln \left(1 + \frac{a}{n} \right)}{\frac{1}{n}} \sim \frac{0}{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{1}{1 + \frac{a}{n}} \cdot -an^{-2}$$

$$\lim_{n \to \infty} \frac{1}{-n^{-2}} = \ln(k)$$

$$\lim_{n \to \infty} \frac{1}{1 + \frac{a}{n}} \cdot a = \ln(k)$$

$$\lim_{n \to \infty} \frac{1}{1 + \frac{a}{n}} \cdot \lim_{n \to \infty} a = \ln(k)$$

$$\lim_{n \to \infty} \frac{1}{1 + \frac{a}{n}} \cdot \lim_{n \to \infty} a = \ln(k)$$

$$1 \cdot a = \ln(k)$$

$$a = \ln(k)$$

$$a = \ln(k)$$

$$e^a = k$$

$\lim_{x\to 0} x^x \sim 0^0$	$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \sim 1^{\infty}$	$\lim_{x \to \infty} x^{\frac{1}{x}} \sim \infty^0$
$\lim_{x \to 0} x^x = y$ $\ln\left(\lim_{x \to 0} x^x\right) = \ln\left(x\right)$	$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x = y$	$\lim_{x \to \infty} x^{\frac{1}{x}} = y$
$\ln\left(\lim_{x\to 0} x^x\right) = \ln\left(y\right)$ $\lim_{x\to 0} \ln\left(x^x\right) = \ln\left(y\right)$	$\ln\left(\lim_{x\to\infty}\left(1+\frac{2}{x}\right)^x\right) = \ln\left(y\right)$	$ \ln\left(\lim_{x\to\infty}x^{\frac{1}{x}}\right) = \ln\left(y\right) $
$\lim_{x \to 0} \underbrace{x \cdot \ln(x)}_{0 \cdot \infty} = \ln(y)$	$\lim_{x \to \infty} \ln \left[\left(1 + \frac{2}{x} \right)^x \right] = \ln \left(y \right)$	$\lim_{x\to\infty}\ln\left(x^{\frac{1}{x}}\right) = \ln\left(y\right)$
$\lim_{x \to 0} \frac{\ln(x)}{\left(\frac{1}{x}\right)} = \ln(y)$	$\lim_{x \to \infty} x \cdot \ln\left(1 + \frac{2}{x}\right) = \ln\left(y\right)$	$\lim_{x\to\infty}\frac{1}{x}\cdot\ln\left(x\right)=\ln\left(y\right)$
$\begin{pmatrix} x \end{pmatrix}$	∞.0	$\lim_{x \to \infty} \frac{\ln(x)}{x} = \ln(y)$
\downarrow $\lceil \ln(x) \rceil'$	$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{2}{x}\right)}{\frac{1}{x}} = \ln\left(y\right)$	
$\lim_{x \to 0} \frac{\left[\ln(x)\right]'}{\left[x^{-1}\right]'} = \ln(y)$	$\underbrace{\begin{array}{c} x \\ \frac{0}{0} \end{array}}$	$\lim_{x \to \infty} \frac{\left[\ln(x)\right]'}{\left[x\right]'} = \ln(y)$
$\lim_{x \to 0} \frac{\frac{1}{x}}{-x^{-2}} = \ln\left(y\right)$	$\lim_{x \to \infty} \frac{\left[\ln\left(1 + \frac{2}{x}\right)\right]'}{\left[\frac{1}{x}\right]'} = \ln\left(y\right)$	$\lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{1} = \ln\left(y\right)$
1	$\begin{bmatrix} \prod_{x \to \infty} \\ \left[\frac{1}{x}\right]' \end{bmatrix} = \operatorname{Im}(y)$	$0 = \ln(y)$ $e^0 = e^{\ln(y)}$
$\lim_{x \to 0} \frac{x}{-\frac{1}{x^2}} = \ln(y)$		1 = y
$\lim_{x \to 0} -x = \ln(y)$ $0 = \ln(y)$	$\lim_{x \to \infty} \frac{\left(\frac{1}{1 + \frac{2}{x}}\right) \cdot -2x^{-2}}{-x^{-2}} = \ln\left(y\right)$	$\lim_{x \to \infty} x^{\frac{1}{x}} = 1$
$e^{0} = e^{\ln(y)}$ $1 = y$	$\left(\begin{array}{c} 1 \\ -2 \end{array}\right) \cdot -2 x^{2}$	X-700
$\lim x^{x} = 1$	$\lim_{x \to \infty} \frac{\left(\frac{2}{1+\frac{2}{x}}\right)^{-2x^2}}{-x^2} = \ln(y)$	
$\lim_{x \to 0} x = 1$		
	$\lim_{x \to \infty} \left \frac{1}{1 + \frac{2}{x}} \right \cdot 2 = \ln(y)$	
	$2 = \ln(y)$ $e^2 = e^{\ln(y)}$	
	$y = e^2$ $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x = e^2$	
	$\lim_{x \to \infty} \left(1 + \frac{z}{x} \right) = e^2$	

$$\lim_{x \to 0} \frac{5^{x} - 4^{x}}{3^{x} - 2^{x}} = \lim_{x \to 0} \frac{5^{x} - 2^{2x}}{3^{x} - 2^{x}}$$

$$= \lim_{x \to 0} \frac{\frac{5^{x}}{2^{x}} - \frac{2^{2x}}{2^{x}}}{\frac{3^{x}}{2^{x}} - 1}$$

$$= \lim_{x \to 0} \frac{\left(\frac{5}{2}\right)^{x} - 2^{x}}{\left(\frac{3}{2}\right)^{x} - 1}$$

$$\downarrow$$

$$= \lim_{x \to 0} \frac{\ln\left(\frac{5}{2}\right)\left(\frac{5}{2}\right)^{x} - \ln\left(2\right)2^{x}}{\ln\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)^{x}}$$

$$= \lim_{x \to 0} \frac{\ln\left(\frac{5}{2}\right)\left(\frac{5}{2}\right)^{x} - \ln\left(2\right)2^{x}}{\ln\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)^{x}}$$

$$= \frac{\ln\left(\frac{5}{2}\right)}{\ln\left(\frac{3}{2}\right)}\left(1\right) - \frac{\ln\left(2\right)}{\ln\left(\frac{3}{2}\right)}\left(1\right)$$

$$\approx 0.55033...$$