Doctoral Dissertation

Dimensional Speech Emotion Recognition by Fusing Acoustic and Linguistic Information

Bagus Tris Atmaja

Supervisor: Professor Masato Akagi

Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology

> Information Science October 16, 2020

Abstract

Humans perceive information in multimodal ways. Among many modalities, hearing is an important modality to perceive emotion from speech. Within speech, not only acoustic information can be extracted but also linguistic information. This linguistic information is extracted by machine via automatic speech recognition (ASR). While the conventional paradigm in speech emotion recognition (SER) is performed by using acoustic information only, a new paradigm involves multimodal processing from multi-channel information. This research aims to propose methods for dimensional SER by combining acoustic and linguistic information. The problem thus exists on how to fuse both information. The following strategies are studied to solve this problem: SER by using acoustic features only, combining acoustic and linguistic information at the feature level, and combining acoustic and linguistic information at the decision level.

The first strategy aims to maximize the potency of recognizing dimensional emotion from acoustic information only. In this study, several acoustic features sets have been evaluated on both low-level and high-level features. Although high statistical functions might be limited in feature size, this kind of feature might be more informative than a local feature since it represents information within an utterance (by mean values) and captures the dynamic between frames (by standard deviations). This study reveals the effectiveness of means and standard deviations from a specific feature set for dimensional SER. Although several approaches has been carried out, acoustic-based SER has a limitation on low score of valence prediction.

A method to improve acoustic-based SER is by fusing acoustic and linguistic information. Linguistic information has been reported more predictive than acoustic information in predicting valence. Two fusing methods for acoustic-linguistic information fusion are studied: early-fusion approach and late-fusion approach. In the feature level (FL) early-fusion approach, two fusion methods are evaluated – feature concatenation and network concatenation. The FL methods show significant performance improvement over unimodal dimensional SER. In the second method using decision level (DL) late-fusion approach, acoustic and linguistic information are trained independently, and the results are fused by SVM to make the final predictions. Although this proposal is more complex than the previous FL fusion, the results show improvements over previous DL approach.

This research links the current problem in dimensional SER with its potential solution. The combination of acoustic and linguistic information fills the gap in dimensional SER. The FL approach improves the performance of unimodal SER significantly. The DL approach improves the FL approach's performance by mimicking human multimodal information fusion. The results devote insights for future strategy in implementing SER, whether to use acoustic-only features (less complex, less accurate), an early-fusion method (more complex, more accurate), or a late-fusion method (most complex, most accurate).

Keywords Dimensional emotion, speech emotion recognition, information fusion, affective computing.

Acknowledgments

The author wishes to express his sincere gratitude to his principal supervisor, Professor Masato Akagi of Japan Advanced Institute of Science and Technology, for his constant encouragement and kind guidance during this dissertation work. Prof. Akagi not only guides the author on the research direction but also pushes the timeline of the author's research to stay on the track. Prof. Akagi is a role model of supervisor for granting "license" for prospectus researcher, a PhD student.

The author also wishes to express his thanks to Professor Unoki, the co-supervisor of this dissertation. Without his critical questions, some part of this doctoral study will not exist. The author owes the idea of multitask learning and silence pause features calculations to Prof. Unoki.

The author is grateful to Professor Kiyoaki Shirai for his helpful suggestions and discussions during minor research. With a background of acoustic information science, the author have no sufficient knowledge of linguistic information processing until conducting minor research in his lab. His patience and kindness accelerate the author understanding on the use of linguistic information for dimensional speech emotion recognition.

The kind, friendly, and warm atmosphere at Acoustic Information Science-Lab (Akagi and Unoki Lab) was the best place for conducting research and study. Surrounded by forests and natural landscape, there is no better place for PhD study except in JAIST. The author would like to thank to all AIS members for their kindness support during his PhD study.

Funding is one of crucial factor when conducting research. The author would like to thank to Ministry of Education, Culture, Sports, Science and Technology (MEXT) for granting a scholarship for his studies.

Finally, the author would like to thanks to his family and friends. This dissertation is dedicated for them.

Contents

\mathbf{A}	bstra	ct		ii
\mathbf{A}	cknov	wledgn	nents	iv
Li	st of	Abbre	eviations x	iii
1	Intr	oducti		1
	1.1	Backgr	round	1
	1.2	Resear	ch aims	2
	1.3	Contri	butions	2
	1.4	Dissert	tation structure	3
2	Lite	rature	Review	5
	2.1	Introd	uction	5
	2.2	Emotio	on models	6
		2.2.1	Categorical emotion	6
		2.2.2	Dimensional emotion	7
	2.3	Featur	es	9
		2.3.1	Acoustic features	9
		2.3.2	Linguistic features	10
	2.4	Classif	iers	11
		2.4.1	SVM	11
		2.4.2	MLP	13
		2.4.3	CNN	13
		2.4.4	LSTM	14
	2.5	Summ	ary	15
3	Res	earch l	Methodology	17
	3.1	Resear	ch motivation	17
		3.1.1	Why is SER difficult?	17
		3.1.2	Why dimensional SER?	18
		3.1.3	· ·	18
	3.2	Resear	ch issues	18
	3.3	Resear	ch philosophy	19
	3.4		· ·	20
		3.4.1		21
		3.4.2	Fusing acoustic and linguistic information at feature level	21
		3 4 3		21

CONTENTS

Re	efere	nces	89
	7.2	Future research directions	76
7	7.1	Summary	75 75
-			
	6.4	Summary	73
		6.3.4 Effect of removing target sentence from MSPIN dataset	72 72
		6.3.3 Speaker-dependent vs. speaker-independent text emotion recognition	
		6.3.2 Results from SVM-based fusion	67
		6.3.1 Results from single modality	65
	6.3	Results and Discussions	65
		6.2.2 SVM for results fusion	64
		6.2.1 LSTM network for unimodal prediction	61
	6.2	Two-stage dimensional SER	61
	6.1	Datasets partition	59
6		ing Acoustic and Linguistic Information at Decision Level	59
	5.5	Summary	57
		5.4.2 Feature Concatenation Results	56
		5.4.1 Bimodal Acoustic-Linguistic Feature Fusion	56
	5.4	Early fusion by network concatenation	56
		5.3.1 Effect of Word Embeddings Dimension	55
	5.3	Dimensional SER with ASR outputs	54
		5.2.2 Discussion in terms of categorical emotions	52
		5.2.1 Results on bimodal feature fusion	49
	5.2	Early fusion by features networks concatenation	47
		5.1.3 CCC loss function	46
		5.1.2 Pre-trained word embeddings	44
		5.1.1 Word embedding	43
_	5.1	Extracting linguistic information	43
5	Fusi	ing Acoustic and Linguistic Information at Feature Level	43
	4.4	Summary	41
	4.3	Acoustic features aggregation	39
		4.2.2 Dimensional SER with silent pause features	36
		4.2.1 Dimensional SER on silence-removed region	34
	4.2	Effect of silent pause features in dimensional SER	33
		4.1.3 Optimizing dimensional SER using different classifiers	32
		4.1.2 SER using high-level acoustic features	30
	1.1	4.1.1 SER using low-level acoustic features	25
_	4.1	Which region of analysis to extract acoustic features in SER	25
4	Sne	ech Emotion Recognition Using Acoustic Features	25
	3.7	Summary	23
	3.6	Evaluation metric	23
	3.5	Datasets	22

CONTENTS vii

Publications 91

CONTENTS viii

List of Figures

2.1	Plutchik wheel of emotions	7
2.2	Graphical representation of circumplex model (VA space)[1]; vertical axis:	0
0.2	arousal; horizontal axis: valence	8
2.3	Division of acoustic features for SER	9
2.4	Divisions of linguistic features used in SER	12
2.5	Graphical illustration of LSTM [2]	15
3.1	The DIK hierarchy and its representation in speech emotion recognition; information (I) is extracted from data (D); knowledge (K) is extracted from information	20
4.1	Hann window and its spectrum	26
4.2	An example of Hamming window (middle) applied to sinusoid signal (left); the resulted windowed signal (right) is multiplication of both	26
4.3	Frame-based processing for extracting low-level descriptors of an acoustic signal; the signal is an excerpt of IEMOCAP utterance with 400 samples	
	frame length and 160 samples hop length; sampling frequency is 16 kHz	27
4.4	Visualization of MFCC features with 13 coefficients (top), mel-spectrogram middle, and log mel-spectrogram with 64 mels	29
4.5	Illustration of Mean+Std extraction from LLDs (e.g., MFCCs)	$\frac{29}{32}$
4.6	Calculation of silence region in speech	$\frac{32}{35}$
4.7	Silent pause features calculation	38
4.8	Different silent threshold factors on normalized RMS	38
4.9	Flow diagram of acoustic input features aggregation	40
4.10	Flow diagram of acoustic outputs aggregation (majority voting)	41
5.1	Two architectures of word2vec: CBOW and Skip-gram [3]	44
5.2	Illustration of GloVe representation	45
5.3	Surface plot of different α and β factors for MTL with two parameters.	
	The best mean CCC score of 0.51 was obtained using $\alpha = 0.7$ and $\beta = 0.2$.	
	Both factors were searched simultaneously/dependently	51
5.4	CCC scores for MTL with three parameters, obtained to find the optimal	
	weighting factors. Linear search was performed independently on each	
	parameter. The best weighting factors for the three parameters were $\alpha =$	
	0.9, $\beta = 0.9$ and $\gamma = 0.2$	52
5.5	Analysis of dropout rates applied to the acoustic and text networks before	
	concatenating them. The dropout rates were applied independently on	
	either network while keeping a fixed rate for the other network	53

LIST OF FIGURES

5.6 5.7	SER architecture by fusing acoustic and linguistic features from ASR outputs Acoustic-linguistic feature concatenation with SVM	
6.1	Proportions of data splitting for each partition of each dataset. In one-stage LSTM processing, the outputs of the model are both development and test data. In the second stage SVM processing, the input data is the prediction from the development set of the previous stage and the output is the prediction of test data	60
	•	
6.2	Structure of acoustic network to process acoustic features	63
6.3	Structure of text network to process word embeddings/vectors	64
6.4	Proposed two-stage dimensional emotion recognition method using DNNs and an SVM. The inputs are acoustic features (af) and text features (tf);	
	the outputs are valence (V), arousal (A), and dominance (D)	65
6.5	Relative improvement in average CCC scores from late fusion using an	
	SVM as compared to the highest average CCC scores from a single modality.	70

 $LIST\ OF\ FIGURES$ x

List of Tables

Number of instances and chunks in each partition USOMS-e dataset	23
Acoustic feature sets: GeMAPS [4] and pyAudioAnalysis [5]. The numbers in parentheses indicate the total numbers of features (LLDs)	30
Results of frame-based LLDs for dimensional SER in IEMOCAP dataset .	31
Results of utterance-based HSF for dimensional SER in IEMOCAP dataset	32
Number of layer and corresponding units on each layer	33
Average CCC score on IEMOCAP dataset using different classifiers (features: pAA_D)	33
9	33
Result of using different duration and threshold factor for removing silence on IEMOCAP dataset; bold-typed scores indicate a higher value than base-	99
line	36
Result of using different duration and threshold factor for removing silence	
on MSP-IMPROV dataset; bold-typed scores indicate a higher value than	
baseline	36
Result of using silence as an additional feature on pAA feature set on IEMOCAP dataset; bold-typed scores indicate a higher mean value than	
baseline	39
Result of using silence as an additional feature on pAA feature set on MSP-IMROV dataset; bold-typed scores indicate a higher mean value than	
baseline	39
Comparison of three conditions for investigating the effect of silence in dimensional SER	40
UAR results on development set: Unimodal acoustic features aggregation vs. baseline [6] (Interspeech 2020 ComParE Elderly Emotion Sub-	
	42
Summary of study on dimensional SER using acoustic features	42
CCC score results on the acoustic networks	48
CCC score results on the text networks	49
Results of bimodal feature fusion (without parameters) by concatenating	
the acoustic and text networks; each modality used either an LSTM, CNN,	
or dense network; batch size $= 8. \dots \dots \dots \dots \dots \dots \dots$	50
(LSTM+LSTM); batch size = 256	51
	in parentheses indicate the total numbers of features (LLDs)

LIST OF TABLES

5.5	Evaluation results on emotion recognition using linguistic information from ASR outputs	55
5.6	Evaluation results on emotion recognition using acoustic and linguistic in-	90
0.0	formation from ASR outputs	55
5.7	Evaluation of different word embedding dimensions	56
5.8	Result of bimodal valence and arousal prediction on development and test partition: official baselines vs. proposed method	57
6.1	Acoustic feature sets derived from the GeMAPS features by [4] and the statistical functions used for dimensional SER in this research	61
6.2	The hyper-parameter used in experiments	62
6.3	CCC score results of dimensional emotion recognition using an acoustic network. The best results on the test set are in bold. LLDs: low-level descriptors from GeMAPS [4]; HSF1: mean + std of LLDs; HSF2: mean	
	+ std + silence	66
6.4	CCC score results of dimensional emotion recognition using text networks; each score is an averaged score of 20 runs with its standard deviation. WE: word embedding; word2vec: WE weighted by pretrained word vector [3];	
	GloVe: WE weighted by pretrained global vector [7]	66
6.5	Optimal parameters for multitask learning	67
6.6	CCC score results of the late-fusion SVM on the IEMOCAP-SD test set	68
6.7	CCC score results of the late-fusion SVM on the MSPIN-SD dataset	68
6.8	CCC score results of late-fusion SVM on the IEMOCAP-LOSO test set	68
6.9 6.10	CCC score results of late-fusion SVM on the MSPIN-LOSO test set Statistics of relative improvement by late fusion using an SVM as compared	69
0.10	to the highest scores for a single modality across datasets; the scores were	
	extracted from the data shown in Figure 6.5	71
6.11	Significant difference between speaker-dependent and speaker-independent scenario on the same text feature set; statistical tests were performed using	, 1
	two-tail paired t —test with p —value = 0.005	71
7.1	Reported results on the IEMOCAP dataset test set (Session 5); the number inside bracket represents the number of layers; sil: silence	76

LIST OF TABLES

List of Abbreviations

ASR Automatic Speech Recognition

CCC Concordance Correlation Coefficient

CNN Convolutional Neural Networks

DNN Deep (learning) Neural Networks

FFT Fast Fourier Transform

FC Fully Connected (Networks)

GeMAPS Geneva Minimalistic Acoustic Parameter Set

HSF High-level Statistical Function

LLD Low-level Descriptor

LSTM Long Short-Term Memory

LOSO Leave One Session Out

MFCC Mel Frequency Cepstral Coefficients

MLP Multilayer Perceptron

MTL Multitask Learning

pAA pyAudioAnalysis

pAA_D pyAudioAnalysis with their deltas

RMS Root Mean Square

RMSE Root Mean Square Energy

SER Speech Emotion Recognition

SD Speaker Dependent

Std/std Standard deviation

STL Single-task Learning

SVM/SVR Support Vector Machine/Support Vector Regression

sil Silence

STFT Short Time Fourier Transform

ZCR Zero Crossing Rate

List of Abbreviations xiii

Chapter 1

Introduction

This chapter introduces the necessary background to conduct the research on dimensional speech emotion recognition. The aims, contributions, and structure of dissertation are also presented to ease following the successor chapters.

1.1 Background

Emotion can be regarded as the major differences between machines and humans. In the beginning of human-machine interaction (HMI) development, no machine (robot) would understand human emotion. Nowadays, there has been attempts to recognize human emotion automatically by machines. If machine could correctly recognize emotion, HMI would be benefited greatly. For example, the vehicle could detect the driver's mood (long time emotion) to ensure safety. In other applications, the satisfaction and performance of user and operator can be measured through call center applications using speech emotion recognition technologies.

Speech emotion recognition (SER) is an emerging technologies resulted by science in multi discipline area including psychology, physiology, acoustics, and affective computing. The psychology of emotion focuses on how human reacts on certain stimuli and how these stimuli affect both mentally and physically of human. The physiology of emotion is related to arousal of the nervous system with various states and strengths of arousal relating to particular emotions. The acoustic of emotion studies on what acoustic features related to the human emotion. The latter affective computing is termed to "computing that relates to, arises from, or influences emotion" [8].

Beside those disciplines, language also have an impact on the expression of emotion. Humans communicate emotion through speech and language [9]. Furthermore, language is argued to shape perceived emotion intrinsically [10]. Thus, utilizing linguistic information in automatic SER may be useful to make machines accurately recognize human emotions.

Information science is a study of using information processing to find solution of important social problem. In information science, a hierarchy of data-information-knowledge (DIK) is known to model the flow of data. This model can be used to model the emotion recognition. The input to data is signal which is acoustic signal in SER. The data is speech dataset. The information are features. The knowledge is emotion category or emotion degree. This concept, which will be explained in more detail in the Chapter 3, correlates information science with SER or models SER in information science point of view.

Acoustic information science is the study of information science for acoustic phenomena, phenomena relates to sound. Speech is part of acoustic information science, thus, the study of speech involves concepts used in acoustic information science (e.g., acoustic signal processing). SER, although a multidisciplinary research, involves two main fields, the acoustics of speech and the psychology of emotion. For automatic SER by computers, the understanding of speech acoustics with computer algorithms will provide a necessary foundation for building a better SER system.

This experimental study explores the necessity of fusing acoustic and linguistic information for dimensional emotion recognition. The study views SER from acoustic information science point of view. Speech contains both linguistic (verbal) and acoustic (nonverbal) information. While the conventional SER method only used acoustic information only, fusing both acoustic and linguistic information exist in human communication and is feasible for human-machine interaction.

1.2 Research aims

That main goal of this research is to investigate the necessity of fusing acoustic information with linguistic information for dimensional SER. To achieve this main goal, three subgoals were addressed: (1) maximizing the potency of SER from acoustic information by investigating region of analysis and silence region for feature extraction, (2) studying the fuse of acoustic and linguistic information at feature level and its effect particularly for valence prediction improvement, and (3) studying the fuse of acoustic and linguistic information at decision level and comparing the results with the previous approach.

1.3 Contributions

The contributions of this dissertation can be traced to the published papers. These contributions can be divided into three areas as follows.

1. acoustic feature extraction

In [11] the authors evaluated categorical speech emotion recognition from silenceremoved speech region. The result suggests that extracting acoustic features from silence-removed region is better than from whole speech region. In [12], the authors utilized silence as an additional feature to statistical functions. The results achieved a better score than baseline raw speech. This contribution is explained in Chapter 4. In [13] the author found that the acoustic features which performed better in SER will also perform better in song emotion recognition.

2. information fusion

In [14, 15, 16], the authors proposed emotion recognition by fusing acoustic and linguistic information at feature level. The results significantly improved unimodal dimensional emotion recognition from either acoustic or linguistic information. Furthermore, the authors discuss the improvement of valence prediction in [17]. While this contribution is discussed in Chapter 5, the improved version of the proposed method, the late fusion method, is explained in Chapter 6. The evaluated fusion methods are expanded not only for acoustic and linguistic fusion but for also acoustic and visual information fusion [18, 19].

3. classification methods

Modern classification methods utilized deep learning models. However, the conventional method such as support vector machine (SVM) and multi layer perceptron (MLP) still exists in many fields. The author showed that tradional MLP with deeper layer and proper configurations performed better than modern deep learning architecture [20]. For SER task with deep learning, the author confirms the need of bigger data size to be fed to deep learning models [21]. The choice of loss function is a matter in machine/deep learning. The author proposed correlation-based function to improve the performance of dimensional SER [18, 22]. The author also evaluated multitask learning (MTL) for predicting valence, arousal, and dominance degrees based on this loss function [15, 23]. Furthermore, the author found that recurrent-based neural networks (RNN) is effective for SER task [24]. The more improvements were obtained when this RNN model is combined with attention model [11].

1.4 Dissertation structure

This dissertation is organized as follows:

- Chapter 2 presents a literature study on speech emotion recognition, particularly on bimodal SER by using acoustic and linguistic information. This chapter reviews the models, features, and classifiers used for SER task.
- Chapter 3 describes research methodology. This chapter consists motivation of researching SER, research issues, research philosophy, research strategies, datasets, and a description of an evaluation metric.
- Chapter 4 describes SER by using acoustic features. This chapter investigates region of analysis and aggregation methods for acoustic-based SER.
- Chapter 5 describes fusion of acoustic and linguistic information at feature level. This chapter evaluates concatenation of features and networks for bimodal emotion recognition from acoustic and linguistic information.
- Chapter 6 describes fusion of acoustic and linguistic information at decision level. This chapter evaluates the late-fusion approach by combining both information on two steps processing including some related issues.
- Chapter 7 presents overall conclusions of the dissertation. Some possible future research directions are proposed from the current research findings.

Chapter 2

Literature Review

This chapter reviews research on speech emotion recognition from two modalities, acoustic and linguistic information. Three main components of speech emotion recognition are studied including emotion models, features, and classification methods. Each section describes these components with their advancement and current limitation.

2.1 Introduction

Speech emotion recognition (SER) is a part of affective computing, computing that relates to, arises from, or influences emotions [8]. SER is an attempt to make computer to be able to recognize expressed emotion in a given utterance. The earliest reported research on SER, perhaps, was the work of Dellaert et al. [25]. The study explores prosodic features with several statistical pattern recognition techniques to classify emotional content of utterances. Under limited number of data (1000 utterances), the system achieved a comparable performance close to human.

The reason to utilize speech to identify humans's emotion are the correlation between voice and emotion and its potential practical applications. There is a strong evidence that humans can recognize other's emotion from their voices. In addition, given the fact that speech is less private that image and video, using speech to recognize emotion benefits future implementation. Another milestone conducted by [26] prove a pilot study to implement SER for call center application. This laboratory-scale study shows a potential application for SER technologies.

The potential application of speech-based emotion recognition triggers the needs for such datasets. During 2000s, several datasets for emotion recognition have been published, including the availability of speech data in the datasets. Among many datasets, the following are commonly used in SER research: EmoDB [27], IEMOCAP [28], MSP-IMPROV [29], and RAVDESS [30]. The availability of these datasets accelerates research on SER area.

The progressive research on SER led to practical implementation in commercial industry. Nowadays, SER has been implemented in various applications, both web/cloud-based applications or standalone applications. Although it is useful to analyze affective state of the subject, these emerging affective recognizer technologies have been criticized by others. Researcher in psychology argued that due to high variability of individuals, the emotional categories does not have an essence [31]. The correlation between particular facial expression and corresponding basic emotion was not strongly supported [32].

Among many other issues, multimodal information fusion is a challenging task in pattern recognition. Recent studies (e.g., [33, 15, 18, 14]) confirms that multimodal classifiers outperform unimodal classifiers. In SER itself, one of the main issue in searching a more predictive feature is whether it suffices to explore acoustic features only or it is necessary to combine acoustic feature with other modalities [34]. For speech, both acoustic and linguistic features can be extracted. Thus, two information can be fused to evaluate the effectiveness of information fusion from single speech modality.

The use of linguistic information for SER is also reasonable from affective computing point of view. In task-processing related tasks, linguistic information is extracted from text for sentiment analysis. This textual information were also used to detect emotion in text [35, 36, 37]. In these works, textual information shows encouraging results on both categorical and dimensional emotion recognition from text. Fusing acoustic and linguistic information may improve the performance of SER more significantly than other strategies.

Indeed, bimodal emotion recognition by fusing acoustic and linguistic information shows significant performance improvement. References [38, 39, 40, 41, 42] shows the usefulness of fusing acoustic and linguistic in different strategies to improve SER performance. Different acoustic and linguistic features were fused using different classifiers. Different fusing strategies were evaluated to investigate the effectiveness of fusion method.

This chapter aims to review current studies of bimodal emotion recognition by utilizing acoustic and linguistic information. The scope of this study includes the emotion models, datasets, features, and classifiers used in bimodal SER. In the end of this chapter is a summary of works done in the past, including the remaining challenge for bimodal SER.

2.2 Emotion models

Before beginning to research emotion recognition, it is important to choose which emotion model to adopt. According to [43], there are at least three views to model humans' emotion: categorical emotion, dimensional emotion, and componential appraisal emotion. However, all research in SER employed either first, second, or combination of both views as target emotion. No research found on using speech data to obtain appraisal emotion. Thus, the following description describes major models in active affective computing research.

2.2.1 Categorical emotion

Categorical emotion, also known as basic emotion, is the discrete emotion which is independent each other in its manifestations. Although the original idea is to organize affective state into their emotion families (rather than discrete emotion); however, most researcher agree that there are six basic emotions: anger, fear, enjoyment, sadness, disgust, and surprise. The first five emotions backed by robust and consistence while the evidence for the surprise is not as firm [44]. Nevertheless, these six basic emotions have been standard in categorical emotions.

Before Ekman coined the terms of basic emotions, Plutchik [45] have defined basic eights bipolar emotions: joy (reproduction), sorrow/sadness (deprivation), acceptance/trust (incorporation), disgust (rejection), surprise (orientation), anticipation (exploration), anger (destruction), fear (protection). These eight emotions can be illustrated

as wheel of emotion, as shown in Figure 2.1. Each emotion can mix with other emotion to make up another emotion, as mixing colors.

Figure 2.1: Plutchik wheel of emotions

Instead of six, a recent research suggest that four latent expressive patterns were commonly observed in facial expressions [46]. However, instead of mentioning the name of basic emotions, the research utilized the term basic "action unit pattern" (AU Pattern), from one to four. Although backed by scientific evidences, this finding did not have any practical implementation yet.

Ekman revised the characteristics which distinguish basic emotion from to 9 criteria [44] to 11 criteria [47]. The new criteria resulted 15 emotions: amusement, anger, contempt, contentment, disgust, embarrassment, excitement, fear, guilt, pride in achievement, relief, sadness/distress, satisfaction, sensory pleasure, and shame. Du et al. shows 21 categories of facial expressions by a facial action coding system analysis. Furthermore, Cowen and Keltner [48] found 27 emotional experience from facial expression by across self-report methods. The growth of the number of categorical emotions, based on facial expression measurement, confirms high variability of humans expressed emotions. As Darwin argued that biological category, including emotion category, does not have an essence, it is hard to map one-to-one facial expressions to emotional states.

2.2.2 Dimensional emotion

Instead of dividing emotion into several categories, a dimensional emotion views emotion as continuous values/degrees of attributes in valance-arousal space (VA) or valence-arousal-dominance (VAD) space. Valence is degree of positive or negative emotion is,

arousal refers to level of activation from sleepiness to boredom (low to high), and dominance is the degree of control over the emotion [49]. In this theory, an emotion or affective state is not independent of one to another. Rather, they are related one to another in systemic manner (in VA or VAD space). Russel argued that the previous categorical emotion can be mapped within VA spaces. An illustration of VA space with several emotion categories is shown in Figure 2.2.

Figure 2.2: Graphical representation of circumplex model (VA space)[1]; vertical axis: arousal; horizontal axis: valence

The search of higher dimensions for dimensional emotion is a worthwhile study. Russel argued that all emotion categories can be mapped in 2D valence-arousal space [50]. However, Fontaine et al. have found that the world of dimensional emotion is not two or three dimensions, but four dimensions [51]. The fourth dimension is unpredictability. In order of importance, the order of dimensional emotions are valence, dominance, arousal, and predictability. Fortunately, five years before this study is published, an emotion recognition challenge involved the four dimensional emotions was held in 2012 [52]. In this challenge, four dimensional emotions were arousal, expectancy, power/dominance, and valence. Expectancy, which represents the predictiveness of the subject's feeling, is very similar to predictability/unpredictability in the latter report.

The third emotion model, hybrid model or appraisal model, can be viewed as extension of dimensional model. In this model, emotion categories are spanned between bipolar dimensions. For instance, "impatience" is located in the upper part of arousal axis (see [53]). This study of appraisal-based emotion theory lead to the development of Geneva emotion wheel (GEW) rating study. This hybrid model has two similarities with the previous 4D dimensional emotion model. First, hybrid model also uses four attributes (i.e., dimensions00): valence, dominance/power, arousal, and conducive/obstructive (instead of predictiveness). Second, in version 2.0 of GEW, two axes used to draw emotion terms are valence and dominance/power, which are two most important emotion attributes according to [51]. Nevertheless, the use of hybrid model in SER is not familiar in SER research community, perhaps, due to the availability of these labels in the dataset.

2.3 Features

The input features to SER system is the most important issue for developing bimodal information SER. If the input is not informative for predicting emotion, or it does not correlate to the predicted emotion, the prediction results will suffer from low performance. In principle: garbage in, garbage out. The following divisions are the useful features for SER from acoustics and linguistics.

2.3.1 Acoustic features

The correlation of acoustic features with emotion has been studied for many years [53, 54]. The main division of acoustic features for SER is the classical and modern approaches, i.e., hand-crafted features vs deep learning-based features. Hand-crafted features employed acoustic features extracted per frame. These features often called local features or low-level descriptor (LLD). In the other hand, statistical features computed from LLDs are a new way to capture the dynamics among frames. This latter features extraction method is called as global features, suprasegmental features, high level features, or high statistical function (HSF). Figure 2.3 shows the division of acoustic features for SER.

Figure 2.3: Division of acoustic features for SER

Eyben et al. [40] divided LLD and HSF into five groups: signal energy, fundamental frequency (perception: pitch), voice quality, cepstral, time signal, and spectral. Prosodic features (fo, duration, intensity, voice quality) have been known to have strong correlation with emotion [55, 56, 57] from psychology point of view. In acoustics, prosody is implemented into several acoustic features, including LLD and HSF. Vayrynen [58] made a distinction between prosodic and acoustic (non-prosodic) features. His study reported that combination of prosodic and acoustic features achieved comparable performance to human reference on basic emotion recognition.

2.3. FEATURES 9

Both references [59] and [38] employed fo and energy-based acoustic features for SER. The former applied both LLD and HSF of fo and energy features, while the latter only applied HSF of fo and energy features. In latter reference, it was found that pitch-based features correlated to SER performance more than energy-based features.

As 'default' feature on most automatic speech recognition (ASR), MFCC has been explored for SER. Metze et al. [60] has found that MFCC is the most informative acoustic features compared to other evaluate acoustic features. Tripathi et al. [61] found that MFCC performed better than spectrogram features on unimodal acoustic SER.

The shift from MFCC to mel-filterbank (MFB) features in ASR motivates SER researchers to adopt the similar direction. Aldeneh et al. [62] extracted 40 MFB features for dimensional SER task on IEMOCAP dataset. Zhang et al. [63] employed the similar MFB with 40-dimensional with z-normalization on categorical IEMOCAP and MSP-IMPROV datasets. Both research showed fair performances (50% - 65% accuracy) from the use of MFB features for SER task.

Phoneme, the smallest unit of speech, has been investigated to be useful for SER task. Zhang et al. [63] furthermore combined MFB with phoneme for the same SER task. Combination of phoneme with MFB outperforms MFB-only of phoneme-only input features. Yenigalla et al. [64] combined phoneme embedding with spectrogram. The phoneme embedding is generated from word2vec model [3] and IEMOCAP speech data. The combination of phoneme with spectrogram achieve the highest accuracy among individual features.

Since most classifiers in modern SER systems used deep learning methods, it is reasonable to extract acoustic representation of speech in end-to-end manner via deep learning methods. In Interspeech 2020 ComParE challenge, two deep-learning based features were given in the baseline system, DeepSpectrum and AuDeep. The provided DeepSpectrum features with ResNet50 network achieve the highest unweighted average recall (AUR) on the test set for elderly emotion sub-challenge.

2.3.2 Linguistic features

Linguistic features are realization of linguistic information. In other terms, it is also called as text features, textual features, lexical features, language features, or semantic features. Although linguistic and lexical terms have different meaning, i.e., These terms in computer science (or information processing) also has a different meaning from the term used in book/article writing, particularly the term "text features". In book/article writing, the text features include component of writing such as glossary, bold typeface, title, headings, captions, and labels. In information science, text or linguistic features are features extracted from written or spoken text. Thus, the term of linguistic features is preferable than text features.

Linguistics features used in emotion recognition represents numerical values related to the emotional states in a word. The simplest way to build linguistic features for emotion detection is emotional keyword spotter [65]. In this framework, every word is assumed to have correlation with emotion categories. For instance, word "disappointed" can be represented as [(2, 0.2), (3, 0.6)] where 2 represents "angry" emotion and 3 represent "sadness" emotion. Both 0.2 and 0.3 represent degrees of emotion's intensity. This emotional keyword spotter can be expanded into emotional phrase spotter [38].

The first systematic linguistic representation of a document, perhaps, is TF-IDF (term-

2.3. FEATURES

frequency inverse document frequency). TF is defined as the frequency of a word in a particular document/utterance. IDF is defined as logarithm of the ratio of total number of documents to the total number containing that word. TF-IDF is multiplication of TF with IDF.

Bag-of-Words (BoW) is a numerical feature vector to represent "words in a bag". First, a fixed integer is assigned to each word occurring in any documents, i.e., building a dictionary from a corpus by assigning word to integer indices. Second, count the number of occurrences of each word and store it as the value of feature j where j is the index of word w in the dictionary [66]. Theses BoW features can be expanded for acoustic and visual modalities (BoAW and BoVW).

Several lexicon dictionaries have been developed to inform 'emotion score' of emotional words. These dictionaries include DAL [67], ANEW [68], VADER [69], and NRC [70]. Using these dictionaries allows direct measurement of emotional words in the given uttteranes. For instance, word "arose" has values of 2.11, 2.00, and 1.40 for pleasentness, activation, and imagery. These values are in 3-point scale; different dictionaries have different scales.

The search of vector representation from a word led to the research of word embedding or word vector. In this approach, deep neural network is used to train large corpus (i.e., a Wikipedia corpus) to generate word vectors based on an algorithm. This approach have resulted a new paradigm in vector representation of linguistic information of a word. Several models exist including word2vec, GloVe, FastText, and BERT. These models are detailed in Chapter 5.

Figure 2.4 shows the division of linguistic features used in SER task. Similar to acoustic features, there is tendency to move to deep learning-based features from hand-crafted features. The opted linguistic feature is usually based on the complexity of the task and the size of data.

2.4 Classifiers

This section reviews four most used classifiers in speech emotion recognition. One is machine learning classifier, i.e., support vector machine (SVM). Others are three deep learning classifiers, i.e., multilayer perceptron (MLP), convolutional neural networks (CNN), and long short-term memory (LSTM) neural networks. The brief descriptions of these classifiers are given below.

2.4.1 SVM

SVM is useful machine learning classifiers for, generally, small datasets. For categorical emotion recognition, SVM applies acoustic or linguistic features for the given labels. This SVM applied to classification task is called as support vector classification (SVC). For dimensional emotion recognition, SVM applies a regression analysis to map them to the given labels. This SVM for regression task is called as support vector regression (SVR).

SVM can accept unimodal or multimodal inputs. In bimodal emotion recognition from acoustic and linguistic information, SVM can be utilized in two-stage schema for evaluation of emotion recognition system from DNNs outputs. In bimodal information fusion, each prediction from the acoustic and text networks is fed into the SVM. From two values (e.g., valence predictions from the acoustic and text networks), the SVM learns to

Figure 2.4: Divisions of linguistic features used in SER

generate a final predicted degree (e.g., for valence). The concept of using the SVM as the final classifier can be summarized as follows.

Suppose that two valence prediction outputs from the acoustic and text networks, $x_i = [x_{ser}[i], x_{ter}[i]]$, are generated by the DNNs, and that y_i is the corresponding valence label. The problem in dimensional SER fusing acoustic and text results is to minimize the following:

$$\min_{w,b,\zeta,\zeta^*} \frac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i + C \sum_{i=1}^n \zeta_i^*$$
subject to
$$w^T \phi(x_i) + b - y_i \le \epsilon + \zeta_i,$$

$$y_i - w^T \phi(x_i) - b \le \epsilon + \zeta_i^*,$$

$$\zeta_i, \zeta_i^* \ge 0, i = 1, \dots, n,$$
(2.1)

where w is a weighting vector, C is a penalty parameter, ζ and ζ^* is the distance between misclassified points and the corresponding marginal boundary (above or below). Here, ϕ is the kernel function. We choose a radial basis function (RBF) kernel because of its flexibility to model a nonlinear process with a dimensional emotion model close to this kernel. The function ϕ for the RBF kernel is formulated as

$$K(x_i, x_j) = e^{\gamma(x_i - x_j)^2},$$
 (2.2)

where γ defines how much influence a single training has on the model. All parameters in this SVM are obtained empirically via linear search in a specific range. Although the

explanation above uses valence, the same also applies for arousal and dominance.

2.4.2 MLP

MLP is a classical feedforward neural network by projecting input data into linearly separable space using non-linear transformation. A hidden layer is the intermediate layer between inputs and outputs, containing many perceptrons (also called as units or nodes). An MLP commonly refers to more than one hidden layer. The MLP used here similar to the definition of connectionist learning proposed by Hinton [71]. As the benchmark methods (LSTM and CNN), deep MLP also has five layers with the same number of units as previous. The layer structure differs from benchmark methods in the absence of flatten layer since the output of the last MLP layers can be coupled directly to three one-unit dense layers. While the previous LSTM and CNN used batch normalization layer in the beginning (input) to speed-up computation process, this deep MLP structure did not use that layer since the implementation only require a minute to run on a CPU-based machine.

MLP is powerful for combining acoustic and linguistic network for network concatenation. Mathematically, the combined Acoustic+Text network, could be formulated as in equation 2.3. Here, f(y) denotes the output of the corresponding layer; W_1, W_2 denote the weights from previous layers (a: acoustic; t: text), i.e., dense layer after LSTM for each network, and the current hidden layer, respectively; x_a and x_t are the acoustic features and word embeddings, respectively; b is a bias; and g is an activation function. Thus, the output of the that dense layer was

$$f(y) = W_2 g([W_{1a}^{\top} x a + b_{1a}; W_{1t}^{\top} x t + b_{1t}]) + b_2.$$
(2.3)

Schuler et al. [38] utilized MLP for combining acoustic and linguistic information. Their evaluation using MLP showed lower error than fusion method by means of logical "OR". Callejar and Cozar [72] compared baseline majority-class method to MLP for evaluating the effect of context on categorical SER task. The result shows that MLP outperforms the baseline method in six out of eight scenarios. Zhang et al. [63] used MLP in all experiments involving acoustic features, phoneme, and combination of both; MLP showed its effectiveness on both single-stage and multi-stage SER tasks.

2.4.3 CNN

CNN is a class of neural networks that contain convolutional layer. Convolution is a mathematical operation between two functions by measuring the overlap of both when one function ("input") is flipped and shifted by another function ("kernel"). The resulting output, which is the goal of a convolution layer, is feature map. This convolution operation is similar to cross-correlation; cross-correlation does not flip the second function. Convolution is also can be seen as cross-correlation with a scalar bias. In fact, the terminology of convolution in deep learning literature views cross-correlation as convolution since many deep learning frameworks did not take bias into account by default.

Convolutional network often applied to image-like data. Time-series data, including acoustic feature vector, can be fed into convolutional networks by using 1-dimensional (1D) CNN. To take the most benefit of CNN, spectrogram and mel-fiterbank (MFB) features are frequently used as input of SER system. For text processing, the main idea

for CNN is to compute vectors for n-grams (e.g., 2-, 3-, and 4-grams) and group them after ward. CNN is commonly used for both speech and language processing.

Apart from convolutional layer, a CNN typically needs fully-connected layer (FC, same as MLP). The feature map as output of convolution layer is fed into MLP to obtain desired outputs. Although recently it is found unnecessary [73], a CNN commonly uses pooling layers after convolutional layers for mitigating and reducing spatial representation [2].

Yenigalla et al. [64] experimented with CNN for categorical SER by inputting phoneme, spectrogram, and combination of both. The combination of both phoneme embeddings and spectrogram achieved the highest perforamence. The architecture each phoneme and spectrogram networks was convolution layer and max-pooling and FC layer. Both networks are concatenated with FC layer to obtain the outputs.

Instead of phoneme and spectrogram, Huang et al. [74] proposed to use bag-of-audiowords for the input of CNN-based SER system. The architecture was similar to [64], i.e., convolution, pooling, and FC layer. The result shows that the use of BoAW outperforms raw acoustic features.

Cho et al. [75] combined acoustic and linguistic information for categorical SER; the acoustic inputs used a LSTM network while the linguistic inputs used a multi-resolution CNN. A multi-resolution CNN is utilized to emotion words by employing word embedding, convolution layer, and global mean pooling. The combination of acoustic network with LSTM, linguistic network with CNN, and emotion vector (e-vector) achieved the highest performance compared to unimodal results.

While most bimodal SER research used CNN for linguistic and LSTM for acoustic information processing, Sebastian and Piereucci [76], used LSTM for text and CNN for speech. The CNN architecture contains two convolution layers and two FC layers. In this case, the performance of CNN-based text emotion recognition is the lowest among other models.

Cai et al. [77] replaced FC layers in most CNN architectures with bidirectional LSTM with attention. The improved architecture was called CNN-Bi-LSTM-Attention (CBLA). On both unimodal and multimodal, CBLA outperforms MLP models by considering both global and temporal information in the data.

2.4.4 LSTM

Long Short-Term Memory (LSTM) neural networks is an extension of recurrent neural network. The idea of using LSTM networks comes from an approach that human has the persistence to keep memory long in a short-term period. Humans don't start their thinking from scratch every second. When reading a paper, a reader understand each word based on our understanding of previous words. Human don't throw everything away and start thinking from scratch again. The thoughts have persistence.

Three gates are introduced in LSTMs: the input gate (\mathbf{I}_t) , the forget gate (\mathbf{F}_t) , and the output gate (\mathbf{G}_t) . In addition to that we introduce memory cells that take the same shape as the hidden state. A memory cell is just a fancy version of a hidden state, custom engineered to record additional information. The three gates in LSTM defined as,

$$\mathbf{I}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xi} + \mathbf{H}_{t-1} \mathbf{W}_{hi} + \mathbf{b}_i), \tag{2.4}$$

$$\mathbf{F}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xf} + \mathbf{H}_{t-1} \mathbf{W}_{hf} + \mathbf{b}_f), \tag{2.5}$$

$$\mathbf{O}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xo} + \mathbf{H}_{t-1} \mathbf{W}_{ho} + \mathbf{b}_o), \tag{2.6}$$

Then the candidate memory cell, memory cell and hidden state are calculated on the following equation.

$$\widetilde{C}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$
(2.7)

$$\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \tilde{\mathbf{C}}_t. \tag{2.8}$$

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t) \tag{2.9}$$

Graphical illustration of LSTM explained by equations above is shown in Figure 2.5.

Figure 2.5: Graphical illustration of LSTM [2]

LSTM has dominated the classifier used in both ASR and SER. Since the data (i.e., input features) are sequence, the straightforward way to process these data is by recurrent neural network. In addition, LSTM is able to model long-range context in emotional features to map it with the emotional labels. Tian et al. [78] used LSTM classifier to build hierarchical neural networks. In [75], LSTM was used to train acoustic features before the network were concatenated to CNN-based linguistic network.

Instead of unidirectional LSTM, bidirectional LSTM (BLSTM) was utilized to learn information both from the past and the future inside the network (unidirectional LSTM only learns from the past). In [77], BLSTM is used for textual network rather than acoustic network. This bidirectional LSTM is often combined with attention model to boost the performance of SER task [11]. However, using BLSTM doubling the complexity of the model which make the model may not suitable for real time application.

2.5 Summary

In this chapter, a review of bimodal speech emotion recognition from acoustic and linguistic information is given. The study focuses on three building blocks of SER from bimodal

2.5. SUMMARY 15

information: emotion models, features, and classifiers. There are three emotion models developed in psychological research; however, most SER research focused in categorical model. In the feature extraction step, there is a move to extract acoustic features by using deep-learning methods, while deep-learning based linguistic features already dominated text processing research including SER from linguistic information. Finally, four common classifiers for SER are briefly described. Although more advanced DNN architectures has been developed, bimodal SER still relies heavily on SVM, MLP, CNN, and LSTM architectures. While this literature study presents the current state of speech emotion recognition research in these three blocks, the raised issues in SER research will be high-lighted in the next Research Methodology chapter along with the research motivation, research concept, research strategies, the datasets and the evaluation metric.

2.5. SUMMARY 16

Chapter 3

Research Methodology

The purpose of this chapter is to introduce the research methodology, justification for using research methods, for this experimental study on dimensional speech emotion recognition by fusing acoustic and linguistic information. This approach allows the examination of the contribution of fusing bimodal information for more accurate speech emotion recognition. The research issues and philosophy used to tackle these issues are discussed in this chapter. The implementation of research philosophy through research strategies are highlighted. The experimental methods including datasets and an evaluation metric are also the primary components of the research methodology, which are presented to close this chapter.

3.1 Research motivation

3.1.1 Why is SER difficult?

Speech emotion recognition (SER) is a difficult task. It differs from other traditional tasks like image recognition (cat vs. dog), digit recognition, or speech recognition. In image recognition, for instance recognizing cat or dog, the feature and the labels are both clear. The difference of eyes, ears, skin color, and shape between cat and dog can be used as informative features. The labels also clear, either cat or dog with high level of confidence. The digit recognition problem has similar properties, from zero to nine can be distinguished by their shapes; this input feature is an important factor for the obtained high accuracy classification. Automatic speech recognition (ASR) also has the similar properties to both cases. SER is different from both.

In SER, both features and labels are not clear. Researchers have attempted to find useful features related to affective states (e.g., [79, 54]). In annotating labels for categorical or dimensional emotion, the datasets makers rely on subjective evaluation. This means that the labels are not exact values (e.g., compared to image labels). However, high agreements among evaluators shows the reliability of the datasets. In this SER problem, it is almost impossible to obtain perfect accuracy which is possible to obtain in the previous image recognition problems.

3.1.2 Why dimensional SER?

While most SER research focus on categorical emotion recognition, only a few focuses on dimensional SER. In contrast, the present evidence about the "fingerprint" in categorical emotion, particularly based on facial expression, is weak [32]. As Darwin argued that biological categories, including emotion categories, does not have an essence due to the high variability of individuals [80], so does emotion categories.

Dimensional emotion may represent humans affective state better than categorical emotion. Instead of dividing emotion into discrete categories, human emotional state may lie in continuous space. In this case, Russel argued that emotion categories can be derived from valance-arousal space [81]. Given this understanding, dimensional SER is more challenging (since it predicts degree) and more useful (since categorical emotion also can be derived) than categorical emotion recognition.

3.1.3 Why fusing acoustic and linguistic information?

The third motivation is about the use of linguistic information. The simplest answer to this question is that linguistic information is also can be extracted from speech, and language is related to emotion. In other words, two information can be extracted from speech without adding other modalities to recognize expressed emotion. Hence, fusing acoustic and linguistic information is reasonable and feasible for future implementation.

There are other possible motivations about fusing acoustic and linguistic information for dimensional SER. One is from human multimodal processing which use linguistic information as cue for emotion perception [10]. Another reason is that linguistic information is widely used in sentiment analysis task which is closely related to emotion recognition. Sentiment analysis can be viewed as emotion recognition in text, which focuses on sentiment or valence prediction.

In speech chain, acoustic and linguistic are connected by a physiological mechanism [82]. This chain shows direct correlation between linguistic and acoustic information. Fusing both information may improve the prediction of the conveyed message. Since the message is elicited from the same sources (thought, information, including expressed emotion), using both information is a straightforward way to track the transported information, in this case the expressed emotion from a speaker.

3.2 Research issues

There are five issues discussed in this dissertation. These issues appear from the previous SER studies [34, 83]. These issues raise in general SER, dimensional SER, and multimodal SER.

The first issues is the region of analysis used for feature extraction in dimensional SER, local areas in frames, or whole utterance processing. The traditional way to extract acoustic feature in acoustical signal processing is frame-based processing. In this way, an utterance is split into several frames in fixed duration, e.g., 25 ms. A window functions applies on these frames, and the intended acoustic features are extracted on these frames. This local feature extraction is known as low-level descriptor (LLD). In contrast, the newer research on speech emotion recognition proposed to extract statistical functions based on these LLDs. These global features are known as high-level statistical function (HSF).

Form both types of feature, it is unclear which one performs better; one claimed that LLDs is enough since it is highly correlated with emotion (e.g., tone and prosody [57]), others claimed that global features are better in classification accuracy and classification time (due to small feature size) [34].

The second issue the effect of silence region in dimensional speech emotion recognition. In conventional ways, acoustic features are extracted from speech utterance including silence region. Some removed silence before extracting acoustic features (e.g., [11, 84, 54, 85]) and some used silence as a feature (e.g., [12, 86]) or as an emotion category [87]. Although silent pause is an important cue for human speech communication [88, 89], it is not clear whether silence contributes to HCI.

The third issue is the low score of valence prediction in dimensional SER. Among three emotion dimensions, valence always obtained lower scores than arousal and dominance. The previous study confirms this evidence [83]. Considering valence is the most important emotion dimension [51], the need to improve valence prediction score is worthwhile of study. Although there are several attempts to improve valence prediction [63, 62, 90], the obtained score is still not comparable to scores achieved by arousal, and dominance (e.g., in [90]).

The fourth issue is whether it suffices to use acoustic features for modeling emotions or if it is necessary to fuse them with linguistic features. Since linguistic information can be obtained from speech (via ASR), it is reasonable to fuse linguistic information with acoustic information. In other studies, it found that linguistic information helps to improve valence prediction [91]. Fusing acoustic and linguistic information may not only improve valence prediction but also other emotion dimensions.

The fifth issue is the scheme or framework to fuse linguistic and acoustic information. If the linguistic information contributes to dimensional emotion prediction, what the most appropriate approach to fuse acoustic and linguistic information is. In human multimodal emotion perception, how multimodal information are fused is not clear. Both acoustic and linguistic information are believed to be processed separately in different region of cortex (right and left hemisphere). In HCI, the simplest method to fuse multimodal information is by concatenating input features from all modalities.

3.3 Research philosophy

A research philosophy can be defined as "a belief about the way in which data about a phenomenon should be gathered, analyzed and used [92]". This research used data-information-knowledge hierarchy (DIK) concept, which is known as the canon of information science [93]. Figure 3.1 shows this DIK concept and its representation in speech emotion recognition area. Although some researchers defined these concepts in different ways [94, 95], the following concepts are the proper and valid explanation used in this research.

Data: speech

Data is worth of nothing. According to Cho [96], signals structure the data. Acoustics signal composes speech; speech is the data. In human communication, speech by a speaker is data for listener. In human computer interaction (HCI), the speech dataset is a collection of recorded utterances from speakers elicited intended expressions. Emotional

Figure 3.1: The DIK hierarchy and its representation in speech emotion recognition; information (I) is extracted from data (D); knowledge (K) is extracted from information.

speech dataset is a type of speech dataset which provides utterances with their emotional labels, in both categorical or dimensional emotions.

Information: acoustic and linguistic

Information is know-what. It is the relevant, usable, significant, meaningful, or processed data [97]. Information is extracted from data. In speech chain, the process of speech from speaker's brain to listener's brain, both acoustic and linguistic information are developed on both brains. How both information fused is not clear until now; however, researchers suggest that both perceived information are processed separately [98, 9] (verbal information in the left cortex and non-verbal information in the right cortex). In HCI, acoustic information can be extracted directly from speech while linguistic information needs mediator, i.e, speech-to-text system, to extract words from speech. Both information are represented as features. Feature extraction is the process of extracting acoustic and linguistic information from the speech dataset and its transcription.

Knowledge: emotion

Knowledge is know-how. It is extracted from information. Knowledge transforms information into instructions (mapping). In human communication, the knowledge to perceive emotion is innate rather than learned [99]. Human can perceive the emotion from the speaker's speech (acoustics) and from their linguistic information [100]. This ability to extract emotion from acoustic and linguistic information can be performed by computer using classification methods given input features.

3.4 Research strategy

A research strategy is steps or ways in which research's goals could be achieved. The goal of this study is to answer the research issues presented previously. This research studies three strategies to answers these research issues. The following is the description and rationale of the strategies.

3.4.1 Dimensional SER by acoustic information

To tackle the first and second issues, this study evaluated dimensional SER based on acoustic features only to maximize its potency. First, the region of analysis is investigated; a thorough comparison among three conditions are performed: (1) extracting acoustic features from silence-removed regions, (2) extracting acoustic features from whole region including silence, and (3) extracting features from whole region and utilizing a silence feature as an additional feature. Second, we evaluated which aggregation method performs better, input features aggregation or outputs aggregation. The common approach in aggregation is outputs aggregation by majority voting; however, input aggregation may perform better particularly on dimensional SER. For instance, humans perceive emotion from acoustic information (e.g., tone) to recognize the emotion based on that information (rather than aggregating emotion/outputs).

3.4.2 Fusing acoustic and linguistic information at feature level

In certain cases, it may be difficult for a listener to perceive the emotion of speaker from acoustic information only. For instance, both joy and angry may have the similar intonation (e.g., high tone); hence it is difficult to differs both emotion. By knowing semantic of utterances, it may be easier to judge the expressed emotion, for both human communication and human computer interaction. This case raises an opportunity to investigate whether linguistic information contributes to dimensional emotion recognition. Although the study of this phenomenon has been performed previously (e.g., in [91]), there are several limitations exist. The emotion model, the used linguistic information, and the classification framework has evolved since the paper was published.

Apart from the need of multimodal/bimodal information fusion, the use of linguistic information has been actively developed for sentiment analysis, analyzing text to obtain affective state of the writer (positive or negative). This 'sentiment' term reflects directly to valance; hence, one possible solution to improve low valence score in dimensional SER is by utilizing linguistic information. Indeed, research showed that the use that utilizing linguistic information improve both categorical [101] and dimensional [91] emotion recognition. Fusing acoustic and linguistic information tackle both third and fourth issue: the necessary of using linguistic information and the low score valence prediction.

A simple approach of fusing acoustic and linguistic information is a fusion at feature level. In this approach, either features or networks can be concatenated to predict dimensional emotions. In the first method, all features are inputted to the same classifier while in the latter both information may have different classifiers (networks). In the latter method, additional networks are needed to fuse both networks, typically a type of dense networks (also called as fully connected [FC] networks or multilayer perceptron [MLP]).

3.4.3 Fusing acoustic and linguistic information at decision level

To extend the fourth issue, it is not only necessary to study the fusing of acoustic and linguistic information at feature level but also at decision level. This strategy is motivated by human multimodal processing. The neural mechanism on how brain processes multimodal information suggest that each information is processed in separate brain region. Hence, a late fusion approach, i.e., decision-level information fusion may work better than feature-level fusion. Apart from investigating which fusion method is better to combine

bimodal information (fifth issue), this strategy can also be used to investigate the third and fourth issues.

3.5 Datasets

The strategies to answer research issues need several instrument to experiment with. One key component in this dimensional SER research is the dataset. Three emotional speech datasets has been chosen for different experiments. These three datasets are explained below.

1. IEMOCAP

IEMOCAP, which stands for interactive emotional dyadic motion capture database, contains recordings of dyadic conversations with markers on the face, head, and hands. The recordings thus provide detailed information about the actors' facial expressions and hand movements during both scripted and spontaneous spoken communication scenarios [28]. This research only uses the acoustic and text features, because the goal is bimodal speech emotion recognition. The IEMOCAP dataset is freely available upon request, including its labels for categorical and dimensional emotion. We use the dimensional emotion labels, which are average scores for two evaluators, because they enable deeper analysis of emotional states. The dimensional emotion scores, for valence, arousal, and dominance, are meant to range from 1 to 5 as a result of Self-Assessment Manikin (SAM) evaluation. We have found some labels with scores lower than 1 or higher than 5; however, we remove those data (seven samples). All labels are then converted from the 5-point scale to a floating-point values in range [-1, 1] when they are fed to a DNN system.

The total length of the IEMOCAP dataset is about 12 hours, or 10039 turns/utterances, from ten actors in five dyadic sessions (two actors each). The speech modality used to extract acoustic features is a set of files in the dataset with a single channel per sentence. The sampling rate of the speech data was 16 kHz. For text data, the manual transcription in the dataset without additional preprocessing is used except for comparing with ASR outputs (chapter 5).

2. MSP-IMPROV

MSP-IMPROV [29], developed by the Multimodal Signal Processing (MSP) Lab at the University of Texas, Dallas, is a multimodal emotional database obtained by applying lexical and emotion control in the recording process while also promoting naturalness. The dataset provides audio and visual recordings, while text transcriptions are obtained via automatic speech recognition (ASR) provided by the authors. As with IEMOCAP, we use the speech and text data with dimensional emotion labels. The annotation method for the recordings was the same as for IEMOCAP, i.e., SAM evaluation, with rating by at least five evaluators. We treat missing evaluations as neutral speech (i.e., a score of 3 for valence, arousal, and dominance). Also as with IEMOCAP, all labels are converted to floating-point values in range [-1, 1] from the original 5-point scale.

The MSP-IMPROV dataset contains 7818 turns/utterances including four scenarios: "Target-improvised" and "Target-read", "Other-improvised", and "Natural-interaction". The further explanation about this dataset will be added in experiment involving this dataset.

3.5. DATASETS 22

Partition	# Stories (text)	# Chunks (audio)
Train	87	2496
Dev	87	2466
Test	87	2816
Total	261	7778

Table 3.1: Number of instances and chunks in each partition USOMS-e dataset

3. USOMS-e

Ulm State of Mind in Speech-elderly (USOMS-e) dataset is the corpus used in the elderly emotion sub-challenge in the Interspeech 2020 computational paralinguistic challenge. The subset of the whole dataset is used with 87 subjects aged 60-95 years; 55 of subjects were male and the rest 32 were female. The dimensional emotion labels were given in valance and arousal divided into three categories: low, medium, and high.

Table 3.1 shows the number of instances/stories and chunks in all partition. The labels are given per each story. The label on the dataset is given on both alphabetic and numeric symbols, i.e., low ('L' or '0'), medium ('M' or '1'), and high ('H' or '2'). We used alphabetic labels as given in the baseline paper. Note that the number of chunks is different for each story; for instance, there are 34 chunks in the first story and 46 chunks in the second story.

3.6 Evaluation metric

Apart from the datasets, a metric to measure the performance of proposed/evaluated methods is needed to evaluate the research. Instead of using several metric, this research focus on the use of concordance correlation coefficient as a single metric to evaluate the performance of dimensional SER. This metric is proposed to be the standard metric for dimensional SER previously [102]. The formula to calculate CCC is given as,

$$CCC = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$
(3.1)

$$CCCL = 1 - CCC \tag{3.2}$$

where ρ is Pearson correlation coefficient (PCC/CC) between predicted emotion degree x and true emotion degree y, σ^2 is a variance and μ is a mean. This metric is more challenging than correlation coefficient since it penalizes the score even the correlation is well but shifted. The penalized values are in proportion to the deviation.

3.7 Summary

This chapter presents the research methodology for studying dimensional SER by fusing acoustic and linguistic information. The motivations to choose this research theme are discussed and the raised issues are presented. Three strategies are highlighted to address these issues including the datasets to evaluate the strategies and a metric to measure the performance. The next three chapters will discuss each strategy proposed in this chapter followed by a Conclusions chapter to end the discussion.

Chapter 4

Speech Emotion Recognition Using Acoustic Features

The purpose of this chapter is three-fold: (1) to investigate the effective region of analysis for acoustic feature extraction, whether frame-based region (local features) or utterance-based region (global features); (2) to evaluate which action is the best with regard of silence region in dimensional speech emotion recognition (SER); and (3) to evaluate which aggregation method performs better for dimensional SER: acoustic input aggregation or outputs aggregation (e.g., majority voting method).

4.1 Which region of analysis to extract acoustic features in SER

4.1.1 SER using low-level acoustic features

SER in conventional ways are performed by extracting acoustic features on frame-based processing and then applied these features to a classifier. Let y(n), with $n=1,2,3,\ldots,L$, denotes acoustic signal with length L. In frame-based processing, this y(n) signal is divided into frames by fixed length. A typical length for a single frame is 16-25 milliseconds (ms) with 10 ms to 15 ms hop length (stride). For 25 ms frame length and 10 ms hop length, which is equal to 60% overlap (15 ms), a window is applied to this frame to make the short-time signal behave as quasistationary signal — near stationary signal. In their original length, an acoustic signal vary with the time: non-stationary property. Windowing processes acoustic signal in short-term interval to remove this property. Figure 4.3 shows the windowing process; short-term windowed signals look more stationary than the original signal.

Windowing multiplies spectrum of input signal with window signal w(n). A typical window function for acoustic signal is Hann and Hamming windows (named after Julius von Hann and Richard W. Hamming). The others are rectangular, Bartlet, Kaiser, and Blackman. The choice of window function is based on two aspects: width of main lobe and additional lobes. Hann and Hamming windows only differ in weighting factors with similar concept: cosine-sum windows

$$w[n] = A + B\cos\left(\frac{2\pi n}{M}\right), \qquad n = -M/2, \dots, M/2,$$
 (4.1)

where A is 0.5 for Hann and 0.54 for Hamming. B is 0.5 for Hann and 0.46 for Hamming. Both window functions are widely used in speech processing due to good trade-off between time and frequency resolution (effect of side lobes). Figure 4.1 shows Hann window and its spectrum, while Figure 4.2 shows an example of Hamming window applied to sinusoid signal and its result.

Figure 4.1: Hann window and its spectrum

Figure 4.2: An example of Hamming window (middle) applied to sinusoid signal (left); the resulted windowed signal (right) is multiplication of both.

The length of a window is usually equal to the length of frame: one window per frame. If the length of a window is smaller than a frame, each frame will be windowed with window length and padded with zeros to match length of frame. It costs more computation. In speech emotion recognition, short window is used to capture short dynamics context while longer window is used to capture mid and longer dynamics. A common approach used short window to extract acoustic features in short-term time while long-term dynamics are modeled by statistical functions. Figure 4.3 shows frame-based processing of an acoustic signal (speech) which windows short-term signals using Hamming window.

Figure 4.3: Frame-based processing for extracting low-level descriptors of an acoustic signal; the signal is an excerpt of IEMOCAP utterance with 400 samples frame length and 160 samples hop length; sampling frequency is 16 kHz.

The acoustic features extracted on each frame are known as local features or low-level descriptor (LLD) [103]. The most common LLD for speech processing is mel-frequency cepstral coefficients (MFCC). MFCC captures different aspects of the spectral shape of a speech. The following steps compute MFCC in sequences. First, FFT/DFT transformed time domain signal into frequency domain signal (spectra). Second, mel frequency warping function convert spectra in linear scale into mel scale. Although several functions have been proposed, a common approach keeps linear scale for acoustic frequencies below 1 kHz and converts to logarithmic scale for acoustic frequencies above 1 kHz. This conversion imitates human perceptual system. Third, convert a power spectrogram (amplitude squared) to decibel (dB) units (log). Finally, DCT computes MFCC as amplitude cepstra.

One of the important parameters in MFCC is the number of coefficients. A number of 13 to 40 coefficients are common for speech processing. For each frame 13 MFCCs are extracted. If there are 40 frames in an utterance, the dimension of MFCC features will be (40, 13). Obviously, the number of frames corresponds to the number of samples divided by hop length (in samples). If an utterance comprises 1 second (s) with 16000 Hz sampling rate, the number of samples is 16000. Using 25 ms (400 samples) window/frame length and 10 ms (160 samples) hop length, the number of frames is 16000/160, i.e., 100 frames. Figure 4.4 top shows an MFCC spectrogram of an IEMOCAP utterance with 13 coefficients.

Recently, researchers found that mel-spectrogram, also called as (mel) filter bank and mel frequency spectral coefficients (MFSC), yields a better performance for deep learning-based automatic speech recognition (ASR) (e.g., [104]). Given that deep learning system is less susceptible with high correlated input, the DCT step in previous MFCC calculation is not necessary since it is linear transformation. DCT discards some information in speech signals which are highly non-linear [105]. Furthermore, a log version (in decibel unit) of mel-spectrogram, i.e., log mel-spectrogram, is preferable one since deep learning learns better in this unit. The conversion from mel-spectrogram to log mel-spectrogram is given by

$$S_{dB} = 10 \log \left(\frac{S}{ref}\right),\tag{4.2}$$

where S is the input power spectrogram and ref is reference power. A value of 1.0 is a common ref value for 32-bit floating-point wav data ('float32').

Figure 4.4 shows visualization of MFCC, mel-spectrogram and log mel-spectrogram. From this figure, it is clear that log mel-spectrogram is more informative than mel-spectrogram and MFCC. This visualization may support the previous argument that log mel-spectrogram may works better in DNN-based speech emotion recognition.

Apart from the use of one type acoustic features for speech processing, some researchers have proposed a set of acoustic features for speech emotion recognition. Eyben et al. [4] proposed Geneva minimalistic parameter set (GeMAPS) as standard acoustic features for affective voice research. The proposed acoustic features are based on: (1) physiological changes in voice production, (2) proven significance in previous studies, and (3) theoretical significance. The proposed acoustic features comprises 23 LLDs as shown in Table 4.1. This acoustic feature set is extracted on frame-processing basis with 25 ms frame length and 10 ms hop length.

Giannakopulos [5] proposed pyAudioanalysis as an open source Python library for audio signal analysis. The library supports a wide range of audio analysis procedures

Figure 4.4: Visualization of MFCC features with 13 coefficients (top), mel-spectrogram middle, and log mel-spectrogram with 64 mels.

such as feature extraction, classification, supervised and unsupervised segmentation, and visualization. Different from GeMAPS feature set, pyAudioanalysis targets a wide range of voice application like audio event detection, speech emotion recognition, music segmentation, and health application. The short-term feature set, which is extracted on frame-processing basis, consists of 34 LLDs. These LLDs are shown in Table 4.1.

Table 4.1: Acoustic feature sets: GeMAPS [4] and pyAudioAnalysis [5]. The numbers in parentheses indicate the total numbers of features (LLDs).

GeMAPs (23)	pyAudioAnalysis (34)		
intensity, alpha ratio, Hammarberg index,	zero crossing rate, energy, entropy		
spectral slope 0-500 Hz, spectral slope	of energy, spectral centroid, spectral		
500-1500 Hz, spectral flux, 4 MFCCs, f_o ,	spread, spectral entropy, spectral flux,		
jitter, shimmer, harmonics-to-noise ratio	spectral roll-off, 13 MFCCs, 12 chroma		
(HNR), harmonic difference H1-H2, har-	vectors, chroma deviation.		
monic difference H1-A3, F1, F1 band-			
width, F1 amplitude, F2, F2 amplitude,			
F3, and F3 amplitude.			

As additional features sets, a temporal difference on pyAudioAnalysis were computed in first order, referred as *deltas*. The addition of first order regression coefficients shows better a performance than original LLDs (MFCC and MFSC) in ASR. In dimensional SER, these temporal difference may show the dynamics between frames. Together with previous four feature sets, these LDDs are compared to evaluate the effectiveness of frame-based LLDs in dimensional SER.

Table 4.2 shows performance of dimensional SER from IEMOCAP dataset in CCC scores. There is no remarkable difference among the use of different commons acoustic features used in acoustic signal processing. This presented results also challenged the specially designed acoustic features namely GeMAPS [28] which is proposed to be the standard feature set for voice research and affective computing [4]. Although it achieves the highest score in LLD comparison, the general purpose pyAudioAnalysis (pAA) features set attained a comparable performance to GeMAPS, and in later analysis it will be shown that this feature set achieve a higher performance than GeMAPS on utterance-based features extraction.

4.1.2 SER using high-level acoustic features

In the previous subsection, it is shown that frame-based acoustic features work with limited performance. In this subsection, the effectiveness of two statistical functions is shown. Two high-level acoustic features, i.e., mean values and standard deviations from LLDs are evaluated from the previous five acoustic feature sets.

The first high-level acoustic features used for this dimensional SER task is mean values. The idea of using this mean values is to capture the common information across all frames. This mean values can be formulated as

Feature	Dim	Val	Aro	Dom	Mean
MFCC	(3414, 40)				
Log Mel	(3414, 128)				
GeMAPS	(3409, 23)				
pAA	(3412, 34)	0.130	0.513	0.419	0.354
$\mathrm{pAA}_{-}\mathrm{D}$	(3412, 68)	0.145	0.526	0.439	0.370

Table 4.2: Results of frame-based LLDs for dimensional SER in IEMOCAP dataset

$$\mu_F = \frac{1}{\mathcal{K}} \sum_{i=1}^n F_i \tag{4.3}$$

where K is the number of frames and F is related feature. For instance, in pyAudio-Analysis, the first feature is zero crossing rate (ZCR). Mean values of ZCR feature is arithmetical mean of all ZCR values in all frames within an utterance.

The second high-level acoustic features is standard deviation (std). This statistical function shows the dispersion of feature values from its mean. While mean is intended to capture the commonalities among features values in all frames within an utterance, std is intended to capture the dynamics of feature values in utterance. Accordingly, std is formulated as follows,

$$\sigma_F^2 = \frac{1}{\mathcal{K}} \sum_{i=1}^n (F_i - \mu_F)^2.$$
 (4.4)

Both mean and std (Mean+Std) are known as valuable functions in SER. References [76, 106, 107] have used Mean+Std for categorical SER. However, most references did not use only Mean+Std, but other statistical functions like median, quartiles, minimum, maximum and other features. It is interesting to experiment with Mean+Std only for dimensional SER given the fact that both high-level features are two most informative descriptors among others statistical functions. Beside reducing size or dimension of features significantly, using Mean+Std consequently speed up computation of SER with regard of their small input features.

Another advantage of using Mean+Std features is no need of zero padding. Although zero padding is useful for FFT calculation (spectral smoothness), it is unclear the effect of zero padding on LLDs for acoustic feature extraction. Zero padded values may impact information represented by features when such processing is performed, e.g., standardization or normalization. Hence, acoustic features represented by Mean+Std features are more informative than LLDs since it only contains information from speech.

An illustration of Mean+Std extraction from LLDs is shown in Figure 4.5. For instance, a MFCC features set from an utterance consists of 3414 frames with 40 MFCC coefficients. For each mean and std features, 40 values are calculated. Both mean and std are concatenated to form Mean+Std features after transposing both statistical features.

Figure 4.5: Illustration of Mean+Std extraction from LLDs (e.g., MFCCs)

Table 4.3: Results of utterance-based HSF for dimensional SER in IEMOCAP dataset

Feature	Dim	Val	Aro	Dom	Mean
MFCC	40	0.155	0.580	0.456	0.397
Log Mel	128	0.151	0.549	0.455	0.385
GeMAPS	23	0.191	0.523	0.452	0.389
pAA	34	0.145	0.563	0.445	0.384
pAA_D	68	0.173	0.612	0.455	0.413

4.1.3 Optimizing dimensional SER using different classifiers

In the previous subsections, the study focuses in search of relevant acoustic features (regions) for feature extraction. As described in the previous chapter, two important components of SER are features and classifiers. In this subsection, a study to optimize dimensional SER using different classifiers is presented.

Long short-term memory (LSTM) networks is used to obtain the previous results on both LLDs and Mean+Std features. The LSTM network consists of 3 layers with 256 units each. This configuration is based on [15]. Since the input is sequences of acoustic features, the use of recurrent-based LSTM network is a straightforward approach. The use of LSTM as classifier for SER have been found useful for both dimensional [108] and categorical task [11]. While the previous results used three layers with the same units, this optimization section varies one to five layers with different number of units.

Apart from LSTM networks, convolutional neural networks (CNN) and multilayer perceptrons (MLP) were accommodated. Both CNN and MLP use varying layers and their corresponding units as shown in Table 4.4. CNN have found to be useful for image-like input. Log mel-spectrogram is an example of this input. MLP, one of the oldest neural network architecture, remains useful due its simplicity to model complex internal representation of their environment [71]. While the implementation of both LSTM and CNN were performed by using Keras toolkit [109], the implementation of MLP was performed using scikit-learn toolkit [66].

Table 4.6 shows result of optimizing dimensional SER using different classifiers. As for the input, all networks take the previous pyAudioAnalysis with deltas (pAA_D). Changing the number of layers and their units changes their performances, as well as changing the classifiers. Using CNN, and improvement from the previous LSTM result was obtained using a single layer with 16 nodes. On using MLP, significant improvements were obtained; the highest average CCC score was obtained using 5 layers. The average CCC score of

Table 4.4: Number of layer and corresponding units on each layer

# layers	# units
1	(16)
2	(32, 16)
3	(64, 32, 16)
4	(128, 64, 32, 16)
5	(256, 128, 64, 32, 16)
6	(512, 256, 128, 64, 32, 16)

Table 4.5: Average CCC score on IEMOCAP dataset using different classifiers (features: pAA_D)

Classifier	1lay	2lay	3lay	4lay	5lay	6lay
		0.403				
CNN	0.415	0.399	0.380	0.376	0.390	0.379
MLP	0.450	0.469	0.448	0.462	0.472	0.452

this architecture is 0.474.

To this end, several steps to observe which region of analysis to extract acoustic features were performed. At first, the common LLDs, like MFCC features, was evaluated. Later, the Mean+Std of these LLDs were used as input features to the same classifier. The results show clearly that extracting statistical functions over frame-based LLDs is better. Mean+Std with small size (40 vs. (3414×40)) consistently performs better than LLDs. An optimization using different classifiers shows improvements from the previous LSTM networks with the same high-level acoustic features.

4.2 Effect of silent pause features in dimensional SER

In the previous section, analysis of region for acoustic feature extraction was investigated. This section investigates the second issue in dimensional SER using acoustic features: which action is better to treat silent pause region in dimensional SER. There are three actions can be taken regarding silent pause in SER:

Table 4.6: Average CCC score on MSP-IMPROV dataset using different classifiers (features: pAA_D)

Classifier	1lay	2lay	3lay	4lay	5lay	6lay
LSTM	0.350	0.378	0.372	0.343	0.317	0.354
CNN	0.356	0.335	0.326	0.349	0.382	0.296
MLP	0.413	0.420	0.421	0.433	0.359	0.369

- removing silence: extract acoustic features from speech-segment only,
- keeping silence: extract acoustic features from whole utterance, including speech and silence regions,
- utilizing silence: utilize silent pause regions as acoustic features.

The goal of this section is to examine which action from these three serves the best for dimensional SER. The second action was already evaluated in the previous results; therefore, only first and third actions will be explained and evaluated in this section. The baseline uses pAA features (with 68 HSFs) to observe the difference among silence-removed region, silence-kept region, and silent pause features as an additional feature.

4.2.1 Dimensional SER on silence-removed region

Removing silence is a common practice in speech processing. ASR avoids recording silence voice and only uses voiced speech to save power and computational load. In automatic SER, the contribution of silence in speech is not clear until now. Aguilar et al. [85] evaluated both removing and keeping silence for unimodal and multimodal categorical emotion recognition. The result is different. Keeping silences lead to better performance in unimodal emotion recognition, while multimodal shows removing silence is better than keeping silence. Atmaja and Akagi [11] shows that removing silence lead to higher accuracies score than using whole speech in categorical speech emotion recognition.

A naive way to calculate silence region within speech is by using root mean square (RMS) energy. Given a threshold τ , if the RMS energy of a speech frame below this τ threshold, then that frame is categorized as a silence. The RMS energy is given by the following equation:

$$x_{rms} = \sqrt{\frac{1}{n}(x_1^2 + x_2^2 + \dots + x_n^2)}$$
 (4.5)

As shown in Figure 4.6 (b), a threshold of 0.065 is a reasonable choice for given speech utterance (an excerpt from IEMOCAP dataset). However, this RMS energy curve occasionally fall below the threshold for a moment and these values are not counted as silence. A better way to detect silence is by probability mapping, a conversion from raw RMS energy to a likelihood/probability. The probability mapping is formulated as

$$P[NS = 1|x_{rms}] = \frac{\exp(x_{rms} - \tau)}{1 + \exp(x_{rms} - \tau)}$$
(4.6)

The result shown in Figure 4.6 (c). The final part in the bottom of the figure shows the result in binary value, an NS of 1 for non-silence and 0 for silence.

In practice, using threshold τ as percentage from maximum values is more intuitive while it gives the similar result. Additionally, (minimum) duration of silence is another important parameter. The minimum number of samples to be removed represents duration of pause in speech communication, which has been studied thoroughly [110]. These two parameters, silence τ and duration d can be used to experiment with for removing silence region and extract the acoustic features from these regions.

Three different thresholds and durations were performed to remove silence from speech dataset. For the threshold, the value of 0.01%, 0.1%, and 5% were examined while

Figure 4.6: Calculation of silence region in speech

Table 4.7: Result of using different duration and threshold factor for removing silence on IEMOCAP dataset; bold-typed scores indicate a higher value than baseline.

Duration (ms)	Threshold (%)	V	A	D	Mean
10	0.1	0.283	0.640	0.454	0.459
10	1	0.234	0.560	0.418	0.404
10	5	0.205	0.568	0.393	0.389
60	0.1	0.279	0.625	0.453	0.452
60	1	0.255	0.574	0.425	0.418
60	5	0.209	0.567	0.398	0.391
100	0.1	0.281	0.629	0.456	0.455
100	1	0.276	0.571	0.429	0.425
100	5	0.205	0.557	0.393	0.385

Table 4.8: Result of using different duration and threshold factor for removing silence on MSP-IMPROV dataset; bold-typed scores indicate a higher value than baseline.

Duration (ms)	Threshold (%)	V	A	D	Mean
10	0.1	0.228	0.575	0.437	0.413
10	1	0.246	0.581	0.431	0.420
10	5	0.148	0.569	0.414	0.377
60	0.1	0.241	0.588	0.442	0.424
60	1	0.259	0.586	0.441	0.429
60	5	0.184	0.569	0.415	0.389
100	0.1	0.239	0.587	0.438	0.421
100	1	0.252	0.580	0.430	0.421
100	5	0.201	0.574	0.422	0.399

for durations were 10 ms 60 ms and 100 ms. The results are shown in Table 4.7. As baseline method, MLP with Mean+Std of pyAudioAnalysis features (without deltas, 68 dimension) were used. The baseline method gains 0.458 of average CCC score. Among nine combinations of duration and threshold for removing silences where acoustic features were extracted, only one result shows a higher performance than the baseline. This result in line with previous research ([11, 86, 85, 87]), in which special adjustments are needed to take the benefit of treating silence pause region in speech.

4.2.2 Dimensional SER with silent pause features

Tian et al. [86] argued that silence is an effective cue for recognizing emotion. Using this idea, Fayek et al. used silence as an additional category for detecting emotion categories from speech signal. Silent pause length also plays an important role in ascribing emotions based on psychoacoustics experiment [89]. These assumptions along with their results are motivation to use silence as a feature for dimensional SER.

There are several ways to count silent pause features in speech. A straightforward

way is by detecting the number of silence regions and compared to it to whole utterance. The result is a portion of silence region over speech. Although this method may represent silent pause more precisely, there are more effort needed to align timing of spoken words and silence region manually to obtain more accurate result. Alternatively, silent pause detection can be done on frame basis calculation with fixed length samples (of speech signals). A frame, then, can be categorized as silence or non silence by a specific rule.

A silent pause feature, in this research, is defined as the proportion of silent frames among all frames in an utterance. In human communication, the proportion of silence in speaking depends on the speaker's emotion. For example, a happy speaker may have fewer silences (or pauses) than a sad speaker. The proportion of silence in an utterance can be calculated as

$$sf = \frac{N_s}{N_t},\tag{4.7}$$

where N_s is the number of frames categorized as silence (silent frames), and N_t is the total number of frames. A frame is categorized as silent if it does not exceed a threshold value defined by multiplying a factor by a root mean square (RMS) energy, X_{rms} . Mathematically, this is formulated as

$$th = \alpha \times \tilde{x}_{rms},\tag{4.8}$$

where \tilde{x}_{rms} is the median value of RMS energy. This calculation differs from the previous study [12] since median value is more similar to the previous silence removal calculation (by percentage from maximum amplitude) than a mean value.

This silence feature is similar to the disfluency feature proposed in [111]. In that paper, the author divided the total duration of disfluency by the total utterance length for n words. Figure 4.7 illustrates the calculation of our silence feature. If x_{rms} from a frame is below th, then it is categorized as silent, and the calculation of equation 4.7 is applied.

Two important parameters for this silent pause features then can be investigated,

- 1. threshold factor (α) , and
- 2. silent pause duration.

This study evaluates three α values, i.e., 0.1, 0.2, and 0.3 based on the previous finding [12]. Silent pause duration of 10 ms, 60 ms, 100 ms, 200 ms, 500 ms, and 1 s are also investigated based on the study of the division of pause [110].

Figure 4.8 shows the use of different threshold factors in determining silent pause features. The lower threshold factor, the smaller number of silence frames correspond to silent pause features. Thus, the choice of silence threshold factor is also a critical aspect when calculating silent pause features apart from the silent pause duration.

Table 4.9 and 4.10 show the result of using silence pauses as a feature on IEMOCAP and MSP-IMPROV datasets. Both results confirm improvement of CCC scores from the baseline. While result on Table 4.9 were obtained using 5 layers MLP, result on Table 4.10 were obtained using 3 layers MLP.

Finally, Table 4.11 shows summary of investigation of three strategies to observe the effect of silence on dimensional speech emotion recognition. In IEMOCAP dataset, utilizing silence leads to higher performance than keeping silence. In MSP-IMPROV dataset,

Figure 4.7: Silent pause features calculation

Figure 4.8: Different silent threshold factors on normalized RMS

Table 4.9: Result of using silence as an additional feature on pAA feature set on IEMO-CAP dataset; bold-typed scores indicate a higher mean value than baseline.

Duration (ms)	Threshold	V	A	D	Mean
10	0.2	0.273	0.607	0.424	0.435
10	0.3	0.288	0.626	0.448	0.454
60	0.1	0.277	0.606	0.424	0.436
60	0.2	0.273	0.606	0.422	0.434
60	0.3	0.283	0.624	0.447	0.451
100	0.1	0.278	0.604	0.421	0.434
100	0.2	0.284	0.624	0.446	0.451
100	0.3	0.298	0.641	0.460	0.466

Table 4.10: Result of using silence as an additional feature on pAA feature set on MSP-IMROV dataset; bold-typed scores indicate a higher mean value than baseline.

Duration (ms)	Threshold	V	A	D	Mean
10	0.1	0.227	0.601	0.443	0.424
10	0.2	0.211	0.586	0.428	0.408
10	0.3	0.209	0.584	0.427	0.407
60	0.1	0.219	0.601	0.436	0.419
60	0.2	0.209	0.586	0.426	0.407
60	0.3	0.207	0.585	0.430	0.407
100	0.1	0.212	0.585	0.425	0.407
100	0.2	0.208	0.586	0.430	0.408
100	0.3	0.207	0.585	0.430	0.407

removing silence leads to higher performance than keeping silence. Both tables show the advantage of either removing silence or utilizing silence; both lead better performances than the baseline score.

4.3 Acoustic features aggregation

The final issue to discuss in this chapter is to choose which aggregation method works best for dimensional SER from acoustic features. It is common in processing audio to split an utterance (or story) into chunks. The goal is for fast processing as well as for reducing the size of recorded/analyzed audio data. While the label is only given per utterance, acoustic features extraction is performed on chunk-based processing, either using LLDs or HSFs. Thus, two options exist: whether aggregating input features to have single label per utterance or aggregating outputs with many labels for a single utterance. For the latter method, the label to represent a single story from many chunk labels can be performed by a such method, e.g., majority voting.

Seven types of LLDs from LibROSA features extractor [112] extracted for acoustic

Table 4.11: Comparison of three conditions for investigating the effect of silence in dimensional SER

Strategy	V	A	D	Mean			
IEMOCAP							
Removing silence	0.283	0.640	0.454	0.459			
Keeping silence	0.268	0.641	0.458	0.456			
Utilizing silence	0.298	0.641	0.460	0.466			
MSP-IMPROV							
Removing silence	0.259	0.586	0.441	0.429			
Keeping silence	0.217	0.586	0.425	0.409			
Utilizing silence	0.227	0.601	0.443	0.424			

input features: MFCCs (40 coefficients), chroma (12), mel-spectrogram (128), spectral contrast (7), tonal centroid (6), deltas of MFCCs (40), and deltas-deltas of MFCCs (40). This feature set is adopted from [113]. In total, there are 273 features on each frame. Following the previous success in using global features for determining region of analysis, Mean+Std from these 273 LLDs were extracted resulting 546-dimensional functional features.

Input features aggregation is a method to choose which features to represent a set of data (story) given many recordings (chunks). Statistical functions were widely used to aggregate many measurements. The choice of mean and maximum values for acoustic feature aggregation is based on assumption that acoustic features representing emotion either from mean values (e.g., mean intonation) or maximum values (e.g., high pitch in specific speech region when expressing fear or happy). In maximum aggregation, the highest column vector value of acoustic features (Mean+Std from LLDs) for each chunk on the same stories. By using these methods, each story has the same n-dimensional feature vector depend on extracted acoustic features. The similar approach was conducted for mean values feature aggregation. Figure 4.9 shows acoustic input aggregation from chunks to story.

Figure 4.9: Flow diagram of acoustic input features aggregation

Output aggregation is often performed by majority voting. The use of majority voting in SER has been implemented in various technique [114, 84]. Majority voting method were often used to choose the final label over different classifiers (known as ensemble method). However, the majority voting defined in this study closer its original term; the most frequent classes is chosen among them to represent the data. In the INTERSPEECH 2020 elderly sub-challenge (ESC), the dataset provided audio files as chunks, parts of an utterance/story. Acoustic features (frame-based processing and statistical functions) were extracted per this chunk and forwarded to a classifier. Thus, in a single story, there are many labels with regard to the number of chunks. Majority voting choose the most frequent labels to represent a story (Figure 4.10).

Figure 4.10: Flow diagram of acoustic outputs aggregation (majority voting)

In comparing mean vs. maximum aggregation methods, it is found that mean aggregation lead to higher UAR score than maximum aggregation in development partition. All results from mean input aggregation attain higher score than baseline majority voting. Table 4.9 also shows that mean input aggregation works better than mean output aggregation. This finding suggests that using all chunks (by averaging) is better than choosing one value from a chunk (by maximum value). This evidence also supports the previous global features approach as solution to choose region of analysis of acoustic features.

The use of aggregation methods reduces feature dimension (for input to classifier) and computational complexity. Using all chunks to process the data, e.g., without feature aggregation increase computation load, increases computational complexity. The number of samples became larger according to the number of chunks. However, the UAR score is low. Using feature aggregation not only reduces complexity and feature dimension, but also increase the performance score.

4.4 Summary

This chapter presented an evaluation of speech emotion recognition from acoustic information. Three problems are investigated including region of analysis for feature extraction, the effect of silent pause region, and the aggregation methods. Table 4.13 presents the

4.4. SUMMARY 41

Table 4.12: UAR results on development set: Unimodal acoustic features aggregation vs. baseline [6] (Interspeech 2020 ComParE Elderly Emotion Sub-Challenge dataset)

Features	Majorit	y Voting [6]	Mean I	nput Agg.	Max In	put Agg.
	V	A	V	A	V	A
LibROSA Mean+Std	-	-	45.1	38.3	42.7	39.7
ComParE	33.3	39.1	43.4	42.7	45.3	37.0
BoAW-125	38.9	42.0	44.6	45.7	44.6	40.1
BoAW-250	33.3	40.5	43.0	40.8	39.6	37.6
BoAW-500	38.9	41.0	42.6	41.0	42.9	37.9
BoAW-1000	38.7	30.5	43.5	41.5	40.2	39.8
BoAW-2000	40.6	39.7	41.9	44.8	43.4	40.1
ResNet50	31.6	35.0	36.5	36.7	37.1	39.0
AuDeep-30	35.4	36.2	38.4	42.1	42.8	35.6
AuDeep-45	36.7	34.9	39.5	40.5	39.3	33.3
AuDeep-60	35.1	41.6	43.4	42.1	40.7	41.4
AuDeep-75	32.7	40.4	41.9	44.4	40.9	43.3
AuDeep-fused	29.2	36.3	43.6	39.5	42.2	39.3

results of these investigations. On the first problem, it was found consistently that high-level statistical functions obtained better performance than low-level descriptors. This result shows that small-feature size is not a problem for DNN-based classifiers (instead the number of data still a problem). The second evaluation on the effect of silent pause region showed that either removing silence or utilizing silence as a feature lead to a better performance that using acoustic features from whole speech region. Between two, it is difficult to choose which one is better based on the current results. The third evaluation showed that input aggregation method showed better performance that output aggregation by majority voting. The findings in this chapter can be studied further for generalization to other datasets.

Table 4.13: Summary of study on dimensional SER using acoustic features

Issue	Proposed method			
Region of analysis	frames		utterance (fixed length)	
Silence region	removing silence	keeping silence	utilizing silence	
Aggregation method	input aggregation		output aggregation	

4.4. SUMMARY 42

Chapter 5

Fusing Acoustic and Linguistic Information at Feature Level

This chapter evaluates fusion of acoustic and linguistic information at feature level. Two approaches were evaluated, network concatenation and feature concatenation. A comparison of manual and automatic transcriptions from IEMOCAP dataset is provided to provide an insight the contribution of current automatic speech recognition system.

5.1 Extracting linguistic information

5.1.1 Word embedding

A classifier needs a set of input features to model input-output relation. One of the common features used in text processing is word embeddings. A word embedding is a vector representation of a word. A numerical value in the form of vector is used to make the computer to be able to process a text data as it only process numerical value. This value is the points (numeric data) in a space of dimension, which the size of dimension is equal to the vocabulary size. The word representations embed those points in a feature space of lower dimension [115]. In the original space, every word is represented by a one-hot vector, a value of 1 for the corresponding word and 0 for others. This element with value of 1 will be converted into a point in range of vocabulary size.

To obtain a vector of each word in an utterance, first, this utterance in the dataset must be tokenized. Tokenization is a process to divide an utterance to the number of constituent words. For example, the text "That's out of control" from IEMOCAP dataset will be tokenized as ['That's', 'out', 'of', 'control']. Suppose the number of vocabulary is 2182 (number of words in IEMOCAP dataset with six emotion categories), then the obtained word vector is something similar to

```
text_vector = [42, 44, 11, 471].
```

An embedding layer will convert those positive fixed integers into dense vectors of fixed size. For instance, 1-dimensional word vector in the utterance will be converted into 2-dimensional dense vector,

$$[42, 44, 11, 471] \rightarrow [[0.12, 0.3], [0.12, 0.29], [-0.54, 0.2], [0.71, 0.23]].$$

Figure 5.1: Two architectures of word2vec: CBOW and Skip-gram [3]

The higher dimensions are used to obtain a better representation of a word vector. A number of 50-, 100-, and 300-dimensional vectors are commonly employed to build pretrained word vectors from large corpus.

To obtain the fixed length for each utterance, a set of zeros can be padded in front of or behind the obtained vector. The size of this zeros sequence can be obtained from the longest sequence, i.e. an utterance within the dataset which has the longest words, subtracted by the length of vector in the current utterance.

5.1.2 Pre-trained word embeddings

A study to vectorize certain words has been performed by several researchers [3, 7, 116]. The vector of those words can be used to weight the word vector obtained previously. The following word embedding techniques are used in this research.

word2vec

Classical word embedding paradigm used unsupervised learning algorithm such as LSA, N-gram and the similar methods. Due to advancements in neural network theory supported by the speedup of computer hardware, the search of word vector shifted to deep learning-based algorithm. Mikolov et al. [3] developed word representation using so-called word2vec (word to vector) using neural network language model trained in two steps. First, continuous word vectors are learned by using a simple model, and then the N-gram neural net language Model (NNLM) is trained on top of these distributed representations of words [3]. Two new model architectures are proposed to obtain word vector: the Continuous-Bag-of-Word (CBOW) architecture to predict the current word based on the context, and the Skip-gram to predict surrounding words given the current word. Figure 5.1 shows those two different architectures and how they process the input to the output.

From those two approaches, skip-gram was founded as an efficient method for learning high-quality distributed vector representations that capture precise syntactic and semantic word relationships [3]. The objective of the Skip-gram model is to maximize the average log probability

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, c \neq 0} \log p(w_{t+j}|w_t)$$
(5.1)

where c is the size of the training context (which can be a function of the center word

Figure 5.2: Illustration of GloVe representation.

 w_t). Larger c results in more training examples and thus can lead to a higher accuracy, at the expense of the training time. The basic Skip-gram formulation of $p(w_{t+j}|w_t)$ can be defined using the softmax function and computational efficiently can be approached by a hierarchical softmax [3].

GloVe

Pennington et al. [7] combined global matrix factorization and local context window methods for learning the space representation of word. In GloVe (Global Vector) model, the statistics of word occurrences in a corpus is the primary source of information available to all unsupervised methods for learning the word representations. Although many such methods now exist, the question still remains as to how meaning is generated from these statistics, and how the resulting word vectors might represent that meaning. Glove captured the global corpus statistics from the corpus, for example, a Wikipedia document or a common crawl document.

In GloVe model, the cost function is given by

$$\sum_{i,j=1}^{V} f(X_{i,j}) (u_{i,j}^{T} v_j + b_i + c_j - \log X_{i,j})^2$$
(5.2)

where,

- V is the size of the vocabulary,
- X denotes the word co-occurrence matrix (so $X_{i,j}$ is the number of times that word j occurs in the context of word i)
- the weighting f is given by $f(x) = (x/x_{\text{max}})^{\alpha}$ if $x < x_{\text{max}}$ and 1 otherwise,
- $x_{\text{max}} = 100$ and $\alpha = 0.75$ (determined empirically),
- u_i, v_j are the two layers of word vectors,
- b_i , c_j are bias terms.

In a simple way, GloVe is a weighted matrix factorization with the bias terms, as shown in Figure 5.2.

FastText

Mikolov et al. [116] improved word2vec CBOW model by using some strategies including

subsample frequent words technique. This modification of word2vec is trained on large text corpus such as news collection, Wikipedia and web crawl. They named the pre-trained model with that modification as FastText. The following probability p_{disc} of discarding a word is used by FastText to subsample the frequent words:

$$P_{disc}(w) = 1 - \sqrt{t/f_w} \tag{5.3}$$

where f_w is the frequency of the word w and t is a parameter > 0.

FastText also counts the classical N-gram word representation by enriching word vector with bag of character n-gram vectors learned from a large corpus. In that computation, each word is decomposed into its character n-grams N and each n-gram n is represented by a vector x_n . The new word vector is then simply the sum of both representations

$$v_w + \frac{1}{|N|} \sum_{n \in N} x_n,\tag{5.4}$$

where v_w is the old word vector. The set of n-grams N is limited to 3 to 6 characters in practical implementation.

BERT

The previous aforementioned word embeddings – word2vec, GloVe, FastText – are generated word representation in context-free model. It means, the same word appears in different phrase has the same word representation, e.g., word "book" in "mathematics book" and "book a hotel". Instead of using context-free model, BERT (bidirectional transformers language understaning) was build upon pre-training contextual representation [117].

BERT is different in many ways then its predecessors. Apart from contextual representation, the main contribution of BERT is to employ bidirectional pre-training for language representation. Unlike its predecessors which model languages in a unidirectional way, i.e., from left to right as writing/reading system, BERT used two unsupervised tasks for pre-training models. The first task is masked language model; the second task is next sentence prediction (NSP). The dimension of BERT model for each word depends on the number of hidden layers used in the architecture, either 768-dimensions for base model or 1024-dimension for large model.

Apart from pretrained model, BERT provides fine-tuning model. Fine-tuning allows BERT to model several tasks, single or text pairs, by swapping out the corresponding inputs and outputs. Fine-tuning can be seen as adjustment of pretrained model according to the context, i.e., the dataset. Hence, the process is fine-tuning only can be done after obtaining the pre-trained model and is relative expensive. Fine-tuning is suitable for specific task rather than general linguistic tasks.

5.1.3 CCC loss function

In the Chapter 3, a metric to measure the performance of dimensional emotion recognition was introduced, namely concordance correlation coefficient. Since, the goal is CCC, using CCC loss instead of conventional regression loss function such as mean square error (MSE) and mean absolute error (MAE) is more beneficial than both error-based loss functions. The CCC loss function (CCCL) to maximize the agreement between the true value and

the predicted emotion can be defined as

$$CCCL = 1 - CCC. (5.5)$$

In single-task learning, the loss function would be one for either valence $(CCCL_V)$, arousal $(CCCL_A)$, or dominance $(CCCL_D)$. In MTL, when the total CCC loss is used as a single metric for all arousal, valence, and dominance, $CCCL_{tot}$ is the following combination of those three CCC loss functions:

$$CCCL_{tot} = CCCL_V + CCCL_A + CCCL_D. (5.6)$$

This MTL equation is referred as "MTL without parameters," because there is no weighting among valance, arousal, and dominance. In this case, the relation among the three emotional dimensions is determined by joint learning in the training process. As it has been stated that these three emotional dimensions are related in a systemic manner [49], two parameters are introduced to weight the valance and arousal, with the weight for dominance determined by subtracting those two parameters from 1. This MTL with two parameters is defined as

$$CCCL_{tot} = \alpha \ CCCL_V + \beta \ CCCL_A + (1 - \alpha - \beta) \ CCCL_D,$$
(5.7)

where α and β are the weighting factors for the valence and arousal loss functions, respectively. This proposed MTL is similar to that defined in [118]. While those authors used the mean squared error (MSE) as the loss function, this study have proposed using this CCC-based loss function. In addition, a parameter γ is added for dominance to obtain independent scales among valence, arousal, and dominance. The resulting MTL with three parameters is defined as

$$CCCL_{tot} = \alpha \ CCCL_V + \beta \ CCCL_A + \gamma \ CCCL_D. \tag{5.8}$$

For comparison with the previous MTL without parameters; α , β , and γ were set to 1 in that equation 5.6, which can be seen as a special case in this MTL with three parameters.

These MTL approaches compare the predicted output from the three one-unit dense layers with the ground truth labels. The training process mechanism relies on the above loss function. Hence, the performance of the produced model is based on this mechanism, too. The choice of loss function is a critical aspect of machine learning, and this study thus proposed this MTL based on the CCC loss to learn valence, arousal, and dominance concurrently.

5.2 Early fusion by features networks concatenation

A simple way to fuse two different information is by concatenating two DNNs of different network modalities. In this fusion method, different features shape is not a problem; the concatenation branch only requires the same the dimension of DNN outputs from each networks. For instance, a 3D vector only can be concatenated with another 3D vector.

A unimodal feature is a feature set from either acoustic or text (e.g., pAA LLD). At first, the system trained each feature set on both LSTM and CNN classifier independently.

Tables 5.1 and 5.2 list the unimodal dimensional emotion results from those acoustic and text networks, respectively. Each table lists the scores for valence, arousal, and dominance in terms of the CCC, along with averaged CCC scores to determine which method performed better. The results were grouped by modality and architecture. They all use the same metric scale and were obtained under the same conditions. Hence, these results can be compared directly with each other.

In the acoustic-based modality, the obtained results are consistent among the feature sets on both architectures. From bottom to top, the performance order was pAA LLD, GeMAPS LLD, GeMAPS HSF, and pAA HSF. Thus, although GeMAPS performed better for LLDs, the HSF for pAA performed best on both the LSTM and CNN architectures. This result supports the previous finding that the mean and standard deviation outperform the low-level descriptors (LLDs) defined in GeMAPS. Furthermore, this finding can be generalized to the means and standard deviations from the other feature sets, as well. In this case, the HSF for pAA performed better than the HSF for the affective-designed GeMAPS.

Comparing the LSTM and CNN architectures, it is found that the LSTM performed better than the CNN did. In terms of all emotional dimensions and the average, the score obtained by the highest-performing LSTM was higher than that obtained by the highest-performing CNN. The best architecture in the acoustic networks were chosen to combine with the best architectures in the text networks.

As for the text networks, word embeddings with pretrained GloVe embeddings performed better than either word embeddings without weighting or word embeddings weighted by the FastText model did. The text networks also showed that the LSTM with GloVe embedding is better than the CNN with the same input feature. In this dimensional emotion recognition, however, the highest performance of a text network was lower than the highest performance of an acoustic network. As with the acoustic networks, two networks were chosen, GloVe with LSTM and GloVe with CNN, to combine in the bimodal network fusion.

Feature set	V	A	D	Mean			
LSTM							
pAA LLD	0.0987	0.5175	0.3536	0.3233			
pAA HSF	0.1729	0.5804	0.4476	0.4003			
$GeMAPS\ LLD$	0.1629	0.5070	0.4433	0.3711			
$GeMAPS\ HSF$	0.1818	0.5306	0.4332	0.3819			
	C	NN					
pAA LLD	0.0687	0.3665	0.3382	0.2578			
pAA HSF	0.1310	0.5553	0.4431	0.3764			
$GeMAPs\ LLD$	0.0581	0.4751	0.4203	0.3178			
$GeMAPs\ HSF$	0.0975	0.4658	0.4170	0.3268			

Table 5.1: CCC score results on the acoustic networks

Feature set	V	A	D	Mean		
LSTM						
WE	0.3784	0.3412	0.3638	0.3611		
word2vec	0.3937	0.3811	0.3824	0.3857		
GloVe	0.4096	0.3886	0.3790	0.3924		
FastText	0.4017	0.3718	0.3771	0.3835		
BERT	0.3858	0.3675	0.3722	0.3752		
		CNN				
WE	0.3740	0.3285	0.3144	0.3390		
word2vec	0.3692	0.3589	0.3613	0.3631		
GloVe	0.3843	0.3646	0.3911	0.3800		
FastText	0.3786	0.3648	0.3147	0.3527		
BERT	0.3598	0.3479	0.3530	0.3535		

Table 5.2: CCC score results on the text networks

5.2.1 Results on bimodal feature fusion

Performance of bimodal networks

According to their unimodal network performance, eight pairs of bimodal acoustic-text networks were evaluated. Table 5.3 lists their performance results in the same way as for the unimodal results. Among the eight pairs, the combination of the LSTM acoustic network and the LSTM text network achieved the best performance. This result in bimodal feature fusion is linear with respect to the obtained results for the unimodal networks, in which the LSTM performed best on both the acoustic and text networks.

In terms of both emotional dimensions and the average CCC score, the LSTM+LSTM pair outperformed the other bimodal pairs. Moreover, the deviation of the LSTM+LSTM pair was also the lowest. It can be stated that, apart from attaining the highest performance, the LSTM+LSTM pair also gave the most stable results. This suggests that the LSTM not only attained comparable results to the CNN with a similar number of trainable parameters but also attained better performance, which differs from what was reported in [119].

One reasonable explanation for why the LSTM performed better is the use of the full sequence instead of the final sequence in the last LSTM layer. In most applications, the last layer in an LSTM stack only returns the final sequence, so that it can be combined with the outputs of other layers (e.g., a dense layer). In this implementation, however, all sequences outputs were returned from the last LSTM layer and flattened the output before combining with the output of another dense layer. This strategy may keep more relevant information than what is returned by the final sequence of the last LSTM layer. On the other hand, this phenomenon is only observed on the acoustic network. In the case of the text network, the last LSTM layer returning the final sequence performed better than the LSTM returning all sequences did. In that case, the last LSTM layer was directly coupled with that of a dense layer.

If the highest unimodal score is chosen as a baseline, i.e., the HSF for pAA, then the relative improvement of the highest bimodal score was 23.97%. A significance test

among the bimodal pair results were performed and it is observed a significant difference between an LSTM+LSTM pair and other pairs such as a CNN+LSTM pair on a two-tail paired test. The small p-value ($\simeq 10^{-5}$) indicated the strong difference obtained by the LSTM+LSTM and CNN+LSTM pairs. While the CNN+LSTM pair obtained the third-highest score, the second-best performance was by a Dense+CNN pair with CCC = 0.485. The significance test result between the LSTM+LSTM pair and this pair was p = 0.0006. The more similar the performance of two acoustic-text network pairs was, the higher the p-value between them was. The assertion that the LSTM+LSTM pair had a strong difference from the other pairs was set with p < 0.005.

Table 5.3: Results of bimodal feature fusion (without parameters) by concatenating the acoustic and text networks; each modality used either an LSTM, CNN, or dense network; batch size = 8.

Acoustic+Text	V	A	D	Mean
LSTM + LSTM	$\textbf{0.418}\pm\textbf{0.010}$	0.571 ± 0.017	0.500 ± 0.017	0.496 ± 0.010
LSTM + CNN	0.256 ± 0.052	0.531 ± 0.031	0.450 ± 0.036	0.412 ± 0.030
CNN + LSTM	0.401 ± 0.020	0.545 ± 0.016	0.478 ± 0.015	0.476 ± 0.012
CNN + CNN	0.399 ± 0.015	0.541 ± 0.020	0.475 ± 0.014	0.472 ± 0.012
LSTM + Dense	0.274 ± 0.050	0.553 ± 0.019	0.484 ± 0.015	0.437 ± 0.018
CNN + Dense	0.266 ± 0.038	0.497 ± 0.059	0.457 ± 0.047	0.407 ± 0.040
Dense + LSTM	0.368 ± 0.105	0.564 ± 0.015	0.478 ± 0.025	0.470 ± 0.043
Dense + CNN	0.398 ± 0.015	0.570 ± 0.013	0.487 ± 0.015	0.485 ± 0.013

Evaluation of MTL with weighting factors

As an extension of the main proposal to jointly learn the valence, arousal, and dominance from acoustic features and word embeddings by using MTL, this study also evaluated some weighting factors for the MTL formulation (equations 4, 5, and 6). In contrast, the above results were obtained using MTL with no parameters (equation 5.6). Thus, the following results show the effect of the weighting parameters on the MTL method.

MTL with two parameters is an approach to capture the interrelation among valence, arousal, and dominance. In equation 5.7, the gains of valence and arousal are provided independently, while the gain of dominance depends on the other gains. This simple weighting strategy may represent the relation among the emotional dimensions if the obtained results are better than the results without this weighting strategy.

Figure 5.3 shows a surface plot of the impact of varying α and β from 0.0 to 1.0 with the corresponding average CCC score. Clearly, performance improvement could be obtained by using proper weighting factors in two-parameter MTL. It is found that $\alpha = 0.7$ and $\beta = 0.2$ were the best weighting factors, and they were also used by the text network. In the unimodal network, the best factors for MTL with two parameters were $\alpha = 0.7$ and $\beta = 0.2$ for the text network, and $\alpha = 0.1$ and $\beta = 0.5$ for the acoustic network. These factors were used to obtain the unimodal results above. In this case, it is difficult to judge whether these same obtained factors for the bimodal network were contributed

by the unimodal network or caused by other factors. Investigation on the cause of this finding is a challenging issue for both theoretical and empirical studies.

Next, MTL with three parameters provided all values for three variables, with the scale of each emotional dimension independent of the other emotional dimensions. MTL with no parameters is also a subset of MTL with three parameters, with $\alpha=1.0$, $\beta=1.0$, and $\gamma=1.0$. The experiments optimized the weighting factors with three parameters by using linear search independently on each emotion dimension. Figure 5.4 shows the impact of the weighting factors on MTL with three parameters. In this scaling strategy, the best weighting factors were $\alpha=0.9$, $\beta=0.9$, and $\gamma=0.2$. The obtained result of CCC=0.497 with these factors was lower, however, than that obtained by MTL with two parameters, i.e., CCC=0.508. While the previous Table 5.3 presented results with batch size = 8, results in Table 5.4 are obtained with batch size = 256, to speed up computation process. The results listed in Table 5.4 show that MTL with two parameters obtained the best performance among the MTL methods. This result suggests that MTL with two parameters may be better at representing the interrelation among the emotional dimensions.

Figure 5.3: Surface plot of different α and β factors for MTL with two parameters. The best mean CCC score of 0.51 was obtained using $\alpha = 0.7$ and $\beta = 0.2$. Both factors were searched simultaneously/dependently.

Table 5.4: Results of MTL with and without parameters for bimodal feature fusion (LSTM+LSTM); batch size = 256.

MTL method	V	A	D	Mean
No parameter	0.409 ± 0.015	0.585 ± 0.011	0.486 ± 0.016	0.493 ± 0.010
Two parameters	$\textbf{0.446}\pm\textbf{0.002}$	0.594 ± 0.003	0.485 ± 0.003	0.508 ± 0.002
Three parameters	0.419 ± 0.012	0.589 ± 0.012	0.483 ± 0.011	0.497 ± 0.008

Figure 5.4: CCC scores for MTL with three parameters, obtained to find the optimal weighting factors. Linear search was performed independently on each parameter. The best weighting factors for the three parameters were $\alpha = 0.9$, $\beta = 0.9$ and $\gamma = 0.2$.

Evaluation of dropout for different modalities

To extend the results and discussion, an investigation the impact of the dropout rate for the acoustic and text networks in bimodal feature fusion was performed. In this evaluation, the dropout rates were varied from each modality before concatenating them. The goal of the evaluation, at first, was to investigate the dropout rates for the different modalities.

Figure 5.5 shows the impact of different dropout rates and the obtained CCC scores. From the figure, using dropout rates of p = 0.1 and p = 0.4 for the acoustic and text networks, respectively, achieved the best score of CCC = 0.510. In fact, these dropout rates were used to obtain the above results on the bimodal network.

From the obtained dropout rates, it is believed that this factor depends on the size of the feature/input rather than on modality differences. The acoustic network used the smaller HSF for pAA, a 68-dimensional vector, as compared to the word embedding's size of 100 sequences × 300-dimensional word vectors. Because the goal of using dropout is to avoid overfitting, it is reasonable that, on small data, the dropout rate is small, while on larger data, the dropout rate increases. Hence, in this research, it can be believed that dropout rates depend on the size of the input rather than its modality.

5.2.2 Discussion in terms of categorical emotions

This paper on dimensional speech emotion recognition using bimodal features is an extension of a similar approach for the categorical method. It is found both similarities and differences as compared to the previous categorical research. Here, the discussion is limited to the best bimodal pairs and the impact of feature sets from different modalities.

In dimensional speech emotion recognition, it is found more consistent results. It is observed low variation among the experiments, while the previous categorical research only used the highest accuracy from many experiments. Both the categorical and dimensional approaches gained performance improvement over unimodal emotion recogni-

Figure 5.5: Analysis of dropout rates applied to the acoustic and text networks before concatenating them. The dropout rates were applied independently on either network while keeping a fixed rate for the other network.

tion by combining acoustic features and word embeddings. Using pairs of acoustic-text networks, it is found that LSTM networks on both modalities performed best in dimensional emotion recognition. This result was also supported by a small standard deviation and significant differences with respect to other results. In the categorical research, a Dense+LSTM pair attained the highest result, followed by a Dense+CNN pair. It is observed high performance in some of the 20 experiments with the Dense+LSTM pair. Its average performance ranked fifth, however, among the eight acoustic-text network pairs. The Dense+CNN pair, which was the second best in the categorical emotion research, also ranked second in this dimensional emotion approach. This result from dimensional emotion recognition was supported by the fact that the LSTM also attained the highest performance on unimodal emotion recognition. Similar unimodal results were also observed in the categorical approach, in which the LSTM architecture performed the best among all the architectures.

A second important finding is the different results between categorical and dimensional emotion recognition from the feature/modality perspective. Feature set/modality, which attained the highest performance in the categorical approach, is different from the dimensional approach. In the categorical approach with the IEMOCAP dataset, word embeddings gave the highest performance in the unimodal model, as reported in [14, 120, 121, 122]. In contrast, in the dimensional approach, the average performance of acoustic features gave better performance over text features. This phenomenon can be explained by the fact that text features (word embeddings) contribute to valence more than acoustic features do (see Tables 5.1 and 5.2). While the authors in [62] found this result, the authors in [123, 40, 91] extended it to find that, for arousal, acoustic features contribute more than text features do. The results here further extend the evidence that text features contribute more in valence prediction, while acoustic features give more accuracy in arousal and dominance prediction. Given this evidence, it is more likely that acoustic features will obtain higher performance in the unimodal case as compared to text features, because they provide better performance for two of the three emotional dimen-

sions. As suggested by Russell [50], however, a categorical emotion can be characterized by its valence and arousal only. This relation shows why text features achieve better performance than acoustic features do on categorical emotion.

As a final remark for this section, some important findings can be emphasized in this feature-level fusion of acoustic-linguistic information for dimensional emotion recognition. Dimensional emotion recognition is scientifically more challenging than categorical emotion recognition. This work achieved more consistent results than what it did in categorical emotion recognition. The combination of LSTM networks for both the acoustic and text networks achieved the highest performance on bimodal feature fusion, as the same architecture did on unimodal emotion recognition. The proposal on using MTL for simultaneously predicting valence, arousal, and dominance worked as expected, and it is found that MTL with two parameters represented the interrelation among the emotional dimensions better than other MTL methods did.

5.3 Dimensional SER with ASR outputs

In the previous section, the linguistic information provided for the fusion with acoustic information came from manual transcription. In real implementation, it is difficult to obtain the linguistic information (i.e., correct transcription of spoken words) from speech. Hence, we evaluate fusion of acoustic and linguistic information from ASR outputs to provide an insight for the achievement of the early-fusion method with current ASR technology.

Figure 5.6 shows an architecture of dimensional SER with ASR outputs. While acoustic information can be processed directly from speech, the linguistic information must wait until text transcription are generated by ASR. This bottleneck between acoustic and linguistic processing is a worth of study for future research direction.

Figure 5.6: SER architecture by fusing acoustic and linguistic features from ASR outputs

An open source project, namely DeepSpeech, was used to produce ASR outputs: text transcription [124]. The system was built upon [125], which used well-optimized end-to-end recurrent neural networks (RNN) to recognition spoken words. The system achieved 45% word error rate (WER) on IEMOCAP dataset. This loss in recognizing original (manual) transcription impacts on lower performance of linguistic-based dimensional SER since some words cannot be obtained correctly.

An evaluation of five word embeddings of ASR outputs from IEMOCAP datasets have been performed. Table 5.5 shows performance of linguistic information on dimensional SER while Table 5.6 shows performances of these embeddings when fused with acoustic information. Compared to manual transcription (Table 5.2), it is clear that these results of ASR outputs are worse than manual transcription. In addition, there is no significant

difference on the use of pretrained models compared to the original word embeddings. In this case, BERT model achieve the highest performance on linguistic-only dimensional SER.

The addition of linguistic information from ASR outputs only improves the baseline acoustic information when it utilized pretrained models. The fusion of acoustic information (pAA_D features) with original word embeddings (WE) attain a lower score than the baseline (average CCC score of 0.4 vs. 0.41). On the use of ASR outputs, pAA_D + FastText is the best pair for Acoustic+Linguistic information from ASR outputs. This highest score from ASR outputs is 0.05 (10% of relative loss) lower than the highest score in manual transcription (0.453 vs. 0.508).

Table 5.5: Evaluation results on emotion recognition using linguistic information from ASR outputs

Feature set	V	A	D	Mean
WE	0.212	0.303	0.351	0.288
word2vec	0.218	0.293	0.350	0.287
GloVe	0.226	0.279	0.349	0.285
FastText	0.218	0.284	0.350	0.284
BERT	0.220	0.300	0.360	0.293

Table 5.6: Evaluation results on emotion recognition using acoustic and linguistic information from ASR outputs

Feature set	V	A	D	Mean
$\overline{pAA_D + WE}$		0.550		
$pAA_D + word2vec$	0.286	0.582	0.470	0.446
$pAA_D + GloVe$	0.275	0.582	0.472	0.443
$pAA_D + FastText$	0.277	0.602	0.479	0.453
$pAA_D + BERT$	0.263	0.599	0.469	0.444

5.3.1 Effect of Word Embeddings Dimension

Since it is observed that BERT attain the highest performance on linguistic-only dimensional SER from ASR outputs, a higher dimension of word embedding may lead to a better performance for dimensional SER from linguistic information. A BERT model has 768-dimension while others have 300-dimension. An investigation for the effect of word embeddings dimension has been performed by varying the original word embedding to 768- and 1024-dimension. Table 5.7 shows the difference of word embeddings dimension on linguistic and Acoustic+Linguistic dimensional SER performances. While the use of higher dimension shows no significant differences on linguistic-only dimensional SER, the use 768- and 1024-dimension improve the Acoustic+Linguistic pairs (pAA_D with origi-

nal WE) to surpass the baseline acoustic-only (pAA_D) performance. The larger inputs (WE) may help the network learn better to achieve these results.

Feature set	Dimension	V	A	D	Mean
WE	300	0.212	0.303	0.351	0.288
	768	0.199	0.307	0.352	0.286
	1024	0.203	0.293	0.347	0.281
$pAA_D + We$	300	0.221	0.550	0.428	0.400
	768	0.255	0.596	0.464	0.438
	1024	0.239	0.564	0.450	0.418

Table 5.7: Evaluation of different word embedding dimensions

5.4 Early fusion by network concatenation

5.4.1 Bimodal Acoustic-Linguistic Feature Fusion

To evaluate different approach for early-fusion dimensional SER by fusing acoustic-linguistic information, this study employs another dataset, the Ulm State of Mind in Speech-elderly (USOMS-e) corpus. The dataset is part of Interspeech 2020 ComParE challenge [6]. The task is to predict categories of valence and arousal which is converted from 0-10 scale to low (0-6), medium (7-8), and high (9-10).

In the previous chapter, evaluation of acoustic-only valance and arousal predictions were evaluated. It is shown that feature-based aggregation is better than outputs-based aggregation (majority voting). Since the goal of the feature aggregation is to have the same dimension $(n \times 1)$ for both acoustic and linguistic features, it is easy to concatenate both features to improve valence and arousal prediction. Figure 5.7 shows an approach on acoustic-linguistic features fusion. Two feature sets are stacked horizontally to build the new feature vector for the input of the SVM classifier.

5.4.2 Feature Concatenation Results

Given a set of acoustic-linguistic features pair $(x_a \text{ and } x_l)$ with valence and arousal category labels ('L', 'M', 'H'), the task of SVM is to classify whether a given feature set belongs to a category of valence and arousal. This classification task is performed using support vector classification (SVC) in scikit-learn toolkit [66] with a linear SVC kernel, 10^6 of maximum iteration, and optimized complexities (C) values in the range $[10^{-6}, 10^1]$ with 10^1 step size. For data balancing, imbalanced-learn toolkit was used [126]; however, no significant difference was fount between balanced and imbalanced data. The other parameters are left as default. The SVC classification is performed separately to predict valence and arousal categories for the same feature set.

Table 5.8 shows the results on using acoustic-linguistic feature concatenation for valence and arousal category prediction on development and test partitions. This study improved the UAR score on development partition from 49.2 to 58.2 for valence and from 40.6 to 52.5 for arousal. On test partition, the UAR scores were improved from 49.8 to

Figure 5.7: Acoustic-linguistic feature concatenation with SVM.

Table 5.8: Result of bimodal valence and arousal prediction on development and test partition: official baselines vs. proposed method

Features		D	ev	Test	
Acoustic	Linguistic	V	A	V	A
ResNet50 [6]	-	31.6	35.0	40.3	50.4
-	BLAtt [6]	49.2	40.6	49.0	44.0
LibROSA	Gmax	58.2	34.6	40.5	34.8
ResNet50	Gmax	58.2	51.0	40.9	50.4
ResNet50	BLAtt	47.6	52.5	56.3	46.4
BoAW-250	BLAtt	58.2	44.4	49.0	47.4

56.3 for valence and from 49.0 to 50.4 for arousal. Although the gain was small, it is shown that bimodal acoustic-linguistic feature concatenation improved the UAR scores of valence and arousal in most combinations of acoustic-linguistic feature pairs. Table 5.8 shows that evidence on both development and test partitions.

5.5 Summary

This chapter reported an investigation of using acoustic features and word embeddings for dimensional speech emotion recognition with multitask learning (MTL). First, it can be concluded that using acoustic features and word embeddings can improve prediction of valence, arousal, and dominance. Word embeddings help improve valence prediction, while acoustic features contribute more for arousal and dominance prediction. All the emotional dimensions gained prediction improvements on bimodal acoustic and text networks, the highest improvement was obtained using LSTM+LSTM architectures pair. Second, our proposed MTL with two parameters could improve prediction of all emotional dimensions as compared to MTL with no parameters. The weighting factors given to valence and

5.5. SUMMARY 57

dominance may represent the interrelation among the emotional dimensions. This formulation only partially represents that interrelation, because the obtained improvement was still small. The formulation can be improved for future research by implementing other strategies, particularly those based on psychological theories and experiments. Third, it was found a mismatch between categorical and dimensional emotion recognition which can be explained as follows. Linguistic-based emotion recognition obtained better results than acoustic features did in categorical emotion, but for dimensional emotion the result was the opposite. This can be explained by the argument that categorical emotion only relies on the valence-arousal space, in which the higher valence prediction obtained by word embeddings may result in better categorical emotion prediction than prediction by acoustic features. Fourth, in comparing manual transcription with ASR outputs, a 10% of loss in CCC score was obtained using word error rate of 45%. Fifth, the feature concatenation of acoustic and linguistic features on USOMS-e dataset obtained higher performances than single modalities emotion recognition. This feature concatenation was performed using acoustic features aggregation explained in the acoustic features side from explained on the previous chapter.

In summary, a combination of speech features and word embeddings can solve the drawback of dimensional speech emotion recognition. The low score of the valence dimension in acoustic-based speech emotion recognition is improved by word embeddings. The combination of both features not just improved valence but arousal and dominance dimensions too. Multitask learning also works as expected; it can simultaneously predict the degrees of three emotion dimensions instead of predicting one by one dimension using single-task learning. This human-perception inspired strategy may mimic how our emotion perception from speech works. Based on the obtained performances, however, there is a room for improvements. In the next chapter, another framework fusion is explored, i.e., a late-fusion based approach.

5.5. SUMMARY 58

Chapter 6

Fusing Acoustic and Linguistic Information at Decision Level

This chapter evaluates fusion of acoustic and linguistic information at decision level to improve speech emotion recognition (SER) performance. The evaluated method consists of two stages. First, deep neural networks (DNN) process the unimodal training data to predict the output (emotion degrees) of development/validation data. Second, the output of DNNs from acoustic and linguistic networks are fed into SVM to obtain the final prediction of emotion degrees.

6.1 Datasets partition

Since the condition of the dataset is also evaluated in this study (lexical-controlled vs lexical-uncontrolled speaker and dependent vs. speaker independent), the datasets are split into four partitions and two scenarios. Two datasets were used in this part of study. The first is IEMOCAP dataset which used in the previous chapters. The dimensional labels are valence (V), arousal (A), and dominance (D) in 5-point integer scale. However, it was found that some labels have values lower than 1 (e.g., 0.5) and higher than 5. These outlier data were removed; the remaining data were converted from 5-point scale to [-1, 1] scale.

In addition to IEMOCAP dataset, MSP-IMPROV dataset [29] was used. The MSP-IMPROV dataset was designed within a dialogue framework to elicit target sentences which had the same semantic content, but were produced with different emotional expressions. In one recording, the target sentences were produced ad lib; for another recording, the target sentences were read. These two recordings are referred to as "Targetimprovised" and "Target-read", respectively. Since the goal is to examine the effect of both linguistic and acoustic information on emotional ratings at late-fusion stage, these recordings were not appropriate for thi study. However, two sets of recordings, which did not have the same semantic content, were able to be used, called "Other-improvised" and "Natural-interaction". The former included conversations of the actors during improvisation sessions; the latter included the exchanges during the breaks, while the actors were not acting, which also were being recorded. A similar protocol was used by [63], and this study followed their lead in referring to this subset of the MSP-IMPROV dataset as MSP-I+N (MSP improvised and natural interaction), or MSPIN. In this work, the same text transcriptions used by Zhang et al. was used (transcriptions are provided by

Figure 6.1: Proportions of data splitting for each partition of each dataset. In one-stage LSTM processing, the outputs of the model are both development and test data. In the second stage SVM processing, the input data is the prediction from the development set of the previous stage and the output is the prediction of test data.

the authors of the dataset); for the additional utterances not included in the Zang study, transcriptions were obtained using Mozilla's DeepSpeech [124]. This study thus use 7166 utterances from a total of 8438. The speech data in the dataset was sampled in mono at 44.1 kHz, with one file per utterance/sentence.

This study split each dataset into two partitions to observe any differences between a speaker-dependent (SD) partition and a speaker-independent partition made by leaving one session out (LOSO) for each dataset. For example, for the IEMOCAP dataset, the last session (i.e., session 5) which is recorded from two different actors (out of 10) is only used for testing. Similarly, for MSP-I+N, all utterances from session 6 (two speakers out of 12) are used for the test set. The rule for data splitting is to divide between the training + development and test sets in a ratio close to 80:20. This rule is applied for both the SD and LOSO partitions. Then, of the training + development data, 80% is used for training and the remaining 20% is used for development, as shown in Figure 6.1. Both methods are evaluated with the same unseen test sets to compare the performance and measure the improvement. Note that the dataset was not validated using cross validation technique, (but instead divided into training and test data) for evaluation since the number of samples for both datasets is adequate (10039 and 7166 samples). This strategy is also utilized to keep the same test set for LSTM (one-stage processing) and SVM (two-stage processing) which is difficult if the samples are shuffled/cross-validated.

Table 6.1: Acoustic feature sets derived from the GeMAPS features by [4] and the statistical functions used for dimensional SER in this research

LLDs	HSF1	HSF2
intensity, alpha ratio, Hammar-	mean (of LLDs),	mean (of LLDs),
berg index, spectral slope 0-500	standard deviation (of	standard deviation (of
Hz, spectral slope 500-1500 Hz,	LLDs)	LLDs), silence
spectral flux, 4 MFCCs, F0, jit-		
ter, shimmer, harmonics-to-noise		
ratio (HNR), harmonic difference		
H1-H2, harmonic difference H1-		
A3, F1, F1 bandwidth, F1 ampli-		
tude, F2, F2 amplitude, F3, and		
F3 amplitude.		

6.2 Two-stage dimensional SER

6.2.1 LSTM network for unimodal prediction

Acoustic emotion recognition

Most SER research uses only acoustic features. The approach to acoustic SER in the study reported in the previous chapter is similar to that research. The acoustic network take the input of mean + std features at the utterance level and then use a silence feature with these statistical functions to investigate any improvement. This evaluation is a continuation of [12] with extension on different feature sets and datasets. Apart from acoustic features used in the previous chapter, this study evaluates three acoustic different feature sets: LLDs of GeMAPS, HSF1, and HSF2.

The LLD features are the 23 acoustic features listed in Table 6.1. For each frame (25 ms), these 23 acoustic features are extracted. With a hop size of 10 ms, the maximum number of sequences is 3409 for the IEMOCAP dataset and 3812 for the MSP-I+N dataset. Hence, the size of the input is 3409×23 for IEMOCAP and 3812×23 for MSP-I+N. The extraction process uses the openSMILE toolkit [127].

Figure 6.2 shows an overview of the acoustic network. LSTM is chosen because the number of training samples is adequate (> 5000 samples) and it shows good results on the previous research [108]. Before entering the LSTM layers, the LLD features at the input layer are fed into a batch normalization layer to speed up the computation process. The three subsequent LSTM layers are stacked with 256 nodes in each layer, following one of the configurations in [128]. Instead of returning the last output of the last LSTM layer, the networks was designed to return the full sequence and flatten it before inputting it to three dense layers that represent valence, arousal, and dominance. The outputs of these last dense layers are then the predictions for those emotion attributes, i.e., the degrees of valence, arousal, and dominance in the range [-1, 1].

The tuning of hyper-parameters follows the previous research [14, 15]. A batch size of 8 was used with a maximum of 50 epochs. An early stop criterion with ten patiences stops the training process if no improvement were made in 10 epochs (before the maxi-

Hyper-parameter	Acoustic network	Text network
network type	LSTM	LSTM
number of layers	3	3
number of units	256	256
fourth layer	Flatten	Dense
hidden activation	linear	linear
output activation	linear (LLD) / tanh (HSF)	linear
dropout rate	0.3 (LLD) / 0 (HSF)	0.3
learning rate	0.001	0.001
batch size	8	8
maximum epochs	50	50
optimizer	RMSprop	RMSprop

Table 6.2: The hyper-parameter used in experiments

mum epoch) and used the last highest-score model to predict the development data. An RMSprop optimizer was used with its default learning rate, i.e., 0.001. Table 6.2 shows the setups on acoustic and text networks. These setups were obtained based on experiments with regard to the size of networks. For instance, the smaller acoustic networks with HSF features employed tanh output activation function and did not use the dropout rate while the larger acoustic networks (with LLD) and text networks employed linear activation function and dropout rate.

For the HSF1 and HSF2 inputs on acoustic networks, the same setup applies. These two feature sets are very small as compared to the LLDs: HSF1 has a size of 1×46 , while HSF2 has a size of 1×47 . This big difference in input size (1:1800) leads to faster computation on HSF1 and HSF2 than on the LLDs. Note that, although Figure 6.2 shows HSF2 as the input feature, the same architecture also applies for the LLDs and HSF1.

The idea of using LSTM is to hold the last output in memory and use the that output as successive step. For instance, LLD with (3409, 23) feature size will process the first time step 1 to the last time step 3409. For HSF1 and HSF2, which contains a single time stamp, the data is processed only once ([1, 46] and [1, 47] for HSF1 and HSF2). Here, the only difference, from multi time steps, is that the network performs three passes (forget gate, input gate, and output gate) instead of a single pass (see [40]). This information will include all information from the networks's memory.

Linguistic emotion recognition

The text network, shown in Figure 6.3 for the MSP-I+N dataset, uses the same input size for the three different text features. The WE, WE with pretrained word2vec, and WE with pretrained GloVe embedding were used on the basis of the previous results with 300 dimensions for each word. The longest sequence in the IEMOCAP dataset is 100 sequences (words), while for MSP-I+N, the longest is 300 sequences. Hence, the input feature sizes for the LSTM layers are 100×300 for IEMOCAP and 300×300 for MSP-I+N with its corresponding number of samples. The same three LSTM layers are stacked as in the acoustic network, but the last LSTM layer only returns the last output. A dense

Figure 6.2: Structure of acoustic network to process acoustic features.

layer with a size of 128 nodes is added after the LSTM layers and before the last three dense layers. Between the dense layers is a dropout layer with the same probability of 0.3 to avoid overfitting.

Figure 6.3: Structure of text network to process word embeddings/vectors.

6.2.2 SVM for results fusion

The choice of an SVM (in this case support vector regression, SVR) as the final classifier to fuse the outputs of the acoustic and text networks is due to its effectiveness in handling smaller data (as compared to a DNN) and its computation speed. The datapoints produced by LSTM processing as the input of SVM is small; i.e., 1600, 1538, 1147, and 1148 for IEMOCAP-SD, IEMOCAP-LOSO, MSPIN-SD and MSPIN-LOSO, respectively. The SVM then applies a regression analysis to map them to the given labels. Figure 6.4 shows the architecture of this two-stage emotion recognition system using DNNs and an SVM. Each prediction from the acoustic and text networks is fed into the SVM. From two values (e.g., valence predictions from the acoustic and text networks), the SVM learns to generate a final predicted degree (e.g., for valence). The concept of using the SVM as the final classifier is summarized as Chapter 2.

Figure 6.4: Proposed two-stage dimensional emotion recognition method using DNNs and an SVM. The inputs are acoustic features (af) and text features (tf); the outputs are valence (V), arousal (A), and dominance (D).

6.3 Results and Discussions

6.3.1 Results from single modality

Before presenting the bimodal feature-fusion results, it is important to show the results of unimodal emotion recognition. The goals here are (1) to observe the (relative) improvement of bimodal feature fusion over using a single modality, and (2) to observe the effects of different features on different emotion attributes.

Tables 6.3 and 6.4 list the single-modality results of dimensional emotion recognition from the acoustic and text networks, respectively. In general, acoustic-based SER gave better results than text-based SER in terms of the average CCC score. For particular emotion attributes, the text network gave a higher CCC score for valence prediction than those obtained by the acoustic network, except on the MSPIN datasets. This confirms the previous finding by [91] that valence is better estimated by semantic features, while arousal is better predicted by acoustic features. In addition, it is found that the dominance dimension was better predicted by acoustic features than by text features. This finding can be inferred from both tables, in which the CCC scores for the dominance dimension are frequently higher from the acoustic network than from the text network.

The exception of a higher valence score on the MSPIN-SD dataset by the acoustic network can be seen as the effect of either the DNN architecture or the dataset's characteristics. In [123], the obtained score was higher for valence than for arousal or liking (the third dimension, instead of dominance) with their strategy on acoustic features. In contrast, [128] obtained a lower score for valence than for arousal and dominance by using their proposed DANN method on the same MSP-IMPROV dataset (whole data, all four scenarios). Given this comparison, it can be concluded that the higher valence score obtained here was an effect of the DNN architecture, because of the multitask learning. The result on a single modality (acoustic network) outperformed the DANN result on MSP-IMPROV, where their highest CCC scores were (0.303, 0.176, 0.476) as compared to the obtained scores of (0.404, 0.605, 0.517) for valence, arousal, and dominance, respectively.

To find the optimal parameter values for α and β , a linear search was performed on the scale [0.0, 1.0] with a step of 0.1. Using this conventional technique, it was found

Table 6.3: CCC score results of dimensional emotion recognition using an acoustic network. The best results on the test set are in bold. LLDs: low-level descriptors from GeMAPS [4]; HSF1: mean + std of LLDs; HSF2: mean + std + silence.

Feature set	V	A	D	Mean	
	IEMO	CAP-S	D		
LLD	0.153	0.522	0.534	0.403	
HSF1	0.186	0.535	0.466	0.396	
HSF2	0.192	0.539	0.469	0.400	
	MSF	PIN-SD			
LLD	0.299	0.545	0.441	0.428	
HSF1	0.400	0.603	0.506	0.503	
HSF2	0.404	0.605	0.517	0.508	
	IEMOC	AP-LO	SO		
LLD	0.168	0.486	0.442	0.365	
HSF1	0.206	0.526	0.442	0.391	
HSF2	0.204	0.543	0.442	0.396	
MSPIN-LOSO					
LLD	0.176	0.454	0.369	0.333	
HSF1	0.201	0.506	0.357	0.355	
HSF2	0.206	0.503	0.346	0.352	

Table 6.4: CCC score results of dimensional emotion recognition using text networks; each score is an averaged score of 20 runs with its standard deviation. WE: word embedding; word2vec: WE weighted by pretrained word vector [3]; GloVe: WE weighted by pretrained global vector [7].

Feature set	V	A	D	Mean		
		IEMOCAP-S	D			
WE	0.389 ± 0.008	0.373 ± 0.010	0.398 ± 0.017	0.387 ± 0.010		
word2vec	0.393 ± 0.012	0.371 ± 0.018	0.366 ± 0.024	0.377 ± 0.016		
GloVe	0.410 ± 0.007	0.381 ± 0.013	0.393 ± 0.016	0.395 ± 0.010		
		MSPIN-SD				
WE	0.120 ± 0.047	0.148 ± 0.023	0.084 ± 0.024	0.105 ± 0.026		
word2vec	0.138 ± 0.031	0.108 ± 0.024	0.101 ± 0.024	0.116 ± 0.017		
GloVe	0.147 ± 0.043	0.141 ± 0.019	0.098 ± 0.017	$\textbf{0.128}\pm\textbf{0.015}$		
		IEMOCAP-LO	SO			
WE	0.376 ± 0.008	0.359 ± 0.018	0.370 ± 0.020	0.368 ± 0.013		
word2vec	0.375 ± 0.058	0.357 ± 0.058	0.365 ± 0.065	0.366 ± 0.059		
GloVe	0.405 ± 0.009	0.382 ± 0.020	0.378 ± 0.021	0.389 ± 0.014		
MSPIN-LOSO						
WE	0.076 ± 0.013	0.196 ± 0.011	0.136 ± 0.015	0.136 ± 0.009		
word2vec	0.162 ± 0.008	0.202 ± 0.005	0.147 ± 0.003	0.170 ± 0.000		
GloVe	0.192 ± 0.004	0.189 ± 0.007	0.129 ± 0.004	0.170 ± 0.003		

that four sets of optimal parameters for the acoustic and text networks. Note that, while only the improvised and natural scenarios (MSP-I+N) were used to find the optimal text-network parameters for the MSP-IMPROV dataset, the whole dataset was used to find the optimal acoustic-network parameters. Table 6.5 lists the optimal parameter values for α and β .

Dataset	Modality	α	β
IEMOCAP	acoustic	0.1	0.5
	text	0.7	0.2
MSP-IMPROV	acoustic	0.3	0.6
	text	0.1	0.6

Table 6.5: Optimal parameters for multitask learning.

To summarize the single-modality results, average CCC scores from three emotion dimensions can be used to justify which feature perform better among others. The results show that HSF2 was the most useful of the acoustic feature sets (in two of four datasets), while the word embedding (WE) with pretrained GloVe embedding was the most useful of the text feature sets. The performance of dimensional emotion recognition in the speaker-independent (LOSO) case was lower than in the speaker-dependent (SD) case, as predicted. Note that both acoustic and text emotion networks used a fixed seed number to achieve the same result for each run; however, text network resulted in different scores. Hence, standard deviations were given to measure fluctuation in 20 runs.

6.3.2 Results from SVM-based fusion

The main proposal of this research is the late-fusion approach combining the results from acoustic and text networks for dimensional emotion recognition. This subsection presents the results for the late-fusion approach, including the obtained performances, comparison with the single-modality results, which pairs of acoustic-text results performed better, and the overall findings.

For each dataset (IEMOCAP-SD, MSPIN-SD, IEMOCAP-LOSO, MSPIN-LOSO), nine combinations of acoustic-text result pairs could be fed to the SVM system. Tables 6.6, 6.7, 6.8, and 6.9 list the respective CCC results for these datasets. Generally, the proposed two-stage dimensional emotion recognition improved the CCC score from single-modality emotion recognition. The pair of results from HSF2 (acoustic) and word2vec (text) gave the highest CCC score on speaker-dependent scenarios.

On the speaker-independent IEMOCAP dataset (IEMOCAP-LOSO), the result from the pair of HSF2 and GloVe gave the highest CCC score. This result linearly correlated with the single-modality results for that dataset, in which HSF2 obtained the highest CCC score among the acoustic features, and GloVe was the best among the text features. On the four datasets, the results from HSF2 obtained the highest CCC score for two out of four datasets while GloVe obtained the highest CCC score for all four datasets. Hence, it can be concluded that the highest result from a single modality, when paired with the highest result from another modality, will achieve the highest performance among possible pairs.

Table 6.6: CCC score results of the late-fusion SVM on the IEMOCAP-SD test set

Inputs	V	A	D	Mean
LLD + WE	0.520	0.602	0.519	0.547
LLD + word2vec	0.552	0.613	0.524	0.563
LLD + GloVe	0.546	0.606	0.520	0.557
HSF1 + WE	0.578	0.575	0.490	0.548
HSF1 + word2vec	0.599	0.590	0.491	0.560
HSF1 + GloVe	0.595	0.582	0.495	0.557
HSF2 + WE	0.598	0.591	0.502	0.564
HSF2 + word2vec	0.595	0.601	0.499	0.565
HSF2 + GloVe	0.598	0.591	0.502	0.564

Table 6.7: CCC score results of the late-fusion SVM on the MSPIN-SD dataset

Inputs	V	A	D	Mean
LLD + WE	0.344	0.591	0.447	0.461
LLD + word2vec	0.326	0.586	0.439	0.450
LLD + GloVe	0.344	0.585	0.439	0.456
HSF1 + WE	0.461	0.637	0.517	0.538
HSF1 + word2vec	0.464	0.634	0.518	0.539
HSF1 + GloVe	0.466	0.630	0.510	0.535
HSF2 + WE	0.475	0.640	0.522	0.546
HSF2 + word2vec	0.486	0.641	0.524	0.550
HSF2 + GloVe	0.485	0.638	0.523	0.549

Table 6.8: CCC score results of late-fusion SVM on the IEMOCAP-LOSO test set

Inputs	V	Α	D	Mean
$\overline{\rm LLD} + { m WE}$	0.537	0.583	0.431	0.517
LLD + word2vec	0.528	0.580	0.421	0.510
LLD + GloVe	0.539	0.587	0.430	0.518
HSF1 + WE	0.565	0.565	0.453	0.528
HSF1 + word2vec	0.536	0.559	0.434	0.510
HSF1 + GloVe	0.559	0.570	0.452	0.527
HSF2 + WE	0.524	0.566	0.452	0.514
HSF2 + word2vec	0.531	0.571	0.445	0.516
HSF2 + GloVe	0.553	0.579	0.465	0.532

HSF2 + GloVe

Inputs	V	A	D	Mean
LLD + WE	0.204	0.485	0.387	0.358
LLD + word2vec	0.267	0.487	0.386	0.380
LLD + GloVe	0.269	0.482	0.375	0.376
HSF1 + WE	0.224	0.565	0.410	0.400
HSF1 + word2vec	0.286	0.558	0.411	0.418
HSF1 + GloVe	0.282	0.555	0.409	0.415
HSF2 + WE	0.232	0.566	0.421	0.406
HSF2 + word2vec	0.287	0.562	0.411	0.420

0.291

0.570

0.405

0.422

Table 6.9: CCC score results of late-fusion SVM on the MSPIN-LOSO test set

To evaluate the improvement obtained by SVM-based late fusion, average CCC scores again can be used as a single metric. The right-most column in Table 6.6, 6.7, 6.8, and 6.9 shows the average CCC scores obtained from the nine pairs of acoustic and text results on the four different datasets. Comparing these bimodal results to unimodal results (Chapter 4 and Chapter 5) shows the difference. All results from SVM improved unimodal results. In speaker-independent (LOSO) results (which are more appropriate for real-life analysis), the scores resulted by pairs of HSF with any word vector obtain remarkable improvements, particularly in the MSPIN-LOSO dataset. For any other pair involving LLDs, the obtained score was also lower as compared to other pairs. Considering all low scores involved LLD results, improving the performance of dimensional emotion recognition by using LLDs is more complicated than by using HSF1 and HSF2 due to the larger feature size and the longer training time. The large network size created by an LLD input as a result of its much bigger feature dimension (e.g., 3409×23 on IEMO-CAP) did not help either the single-modality or late-fusion performance. In contrast, the small sizes of the functional features (HSF1 and HSF2) enabled better performance on a single modality, which led to better performance for the late-fusion score. To obtain functional features, however, a set of LLD features must be obtained first. This problem is a challenging future research direction, especially for implementing dimensional emotion recognition with real-time processing.

In addition to the fact that a speaker-independent dataset is usually more difficult than a speaker-dependent dataset, the low score on MSPIN-LOSO was due to its low scores on a single modality. In other words, lower pair performance from a single modality will result in low performance in late fusion. In particular, these low results derive from low CCC scores from the text modality. The average CCC score for the text modality on the MSPIN-LOSO dataset was less than 0.16, compared to an average score higher than 0.34 for the acoustic modality. All nine pairs in late-fusion approaches improved on the single-modality results because of the two-stage DNN and SVM regression analysis. Thus, out of 36 trials (9 pairs \times 4 datasets), the proposed two-stage dimensional emotion recognition outperforms any single modality result (used in a pair).

The low score on MSPIN for the text modality can be tracked to the origin of the dataset, that is, there may have been a number of sentences semantically identical to the target sentences in the dataset used in this study. Although it is already chosen the

sentences from the improvised dialogues (minus the target sentence) and from the natural interactions only (those sentences produced by the experimenters and subjects during the breaks), some of the sentences in this corpus were semantically identical to that of the target sentences in the "Target-Improvised" data set. This was confirmed retroactively by manually checking the provided transcription and the automatic transcription. Given the nature of the elicitation task in a dialogue framework, this is not surprising. A similarly low result for the text modality on this MSPIN dataset was also shown in [63]. In general, compared to the IEMOCAP dataset, the MSPIN dataset suffers from low accuracy in recognizing the valence category by using acoustic and lexical properties. Interestingly, however, those authors also did not show improvement on the IEMOCAP scripted dataset, another text-based session in which lexical/text features do not contribute significantly.

A relative improvement can be calculated to measure the improvement by the proposed two-stage late fusion and by single modalities. For example, the pair of LLD + WE used the results from the LLDs in the acoustic network and the WE in the text network. We compared the result for LLD + WE with that for the LLDs, as it had a higher score than the WE did. Figure 6.5 thus shows the relative improvement for all nine pairs. All of 36 trials showed improvements ranging from 5.11% to 40.32%. Table 6.10 lists the statistics for the obtained relative improvement. The obtained results show higher relative accuracy improvement as compared to those obtained by [63] for valence prediction, which ranged from 6% to 9%. Nevertheless, their multistage fusion method also showed benefits over the multimodal and single-modality approaches. These findings confirm the benefits of using bimodal/multimodal fusion instead of single-modality processing for valence, arousal, and dominance prediction.

Figure 6.5: Relative improvement in average CCC scores from late fusion using an SVM as compared to the highest average CCC scores from a single modality.

Table 6.10: Statistics of relative improvement by late fusion using an SVM as compared to the highest scores for a single modality across datasets; the scores were extracted from the data shown in Figure 6.5

Statistic	IEMOCAP-SD	MSPIN-SD	IEMOCAP-LOSO	MSPIN-LOSO
Average	39.73%	7.01%	34.15%	15.23%
Max	41.45%	8.22%	40.32%	19.93%
Min	35.80%	5.11%	29.69%	7.64%
Std	1.90%	0.93%	3.84%	3.90%

Table 6.11: Significant difference between speaker-dependent and speaker-independent scenario on the same text feature set; statistical tests were performed using two-tail paired t-test with p-value = 0.005.

Feature	IEMOCAP	MSPIN
WE	Yes	Yes
word2vec	No	Yes
GloVe	Yes	Yes

6.3.3 Speaker-dependent vs. speaker-independent text emotion recognition

While speech-based emotion recognition is performed with a fixed random seed to generate the same result for each run, text-based emotion recognition resulted in different scores for each run. The different results on text emotion recognition probably is caused by initiation of weightings on embedding layers. In this case, statistical tests can be performed on text emotion results to observe the difference between speaker-dependent and speaker-independent scenario. In contrast, statistical tests cannot be performed between acoustic results and bimodal acoustic-text results due to differences of the data (deterministic vs non-deterministic).

Table 6.11 shows if there is a significant difference between speaker-dependent and speaker-independent results on the same feature set. The p-value was set at 0.05 with two-tail paired t-test between mean scores of speaker-dependent and speaker-independent results. This paired t-test was based on the assumption that there are no outliers (after pre-processing) and two different inputs are fed into the same system. Only one result from text emotion recognition shows no significant difference on IEMOCAP dataset while all results from the MSPIN dataset shows a significant difference between speaker-dependent and speaker-independent data. The results from speaker-dependent data did not represent speaker-independent data. In other words, results from speaker-dependent data cannot be used to justify speaker-independent or whole data.

6.3.4 Effect of removing target sentence from MSPIN dataset

Since the goal of this research is to evaluate the contribution of both acoustic and linguistic information in affective expressions, it is necessary to have sentences in the dataset that free from any stimuli control. However, the original MSP-IMPROV dataset contains 20 "target" sentences; a same sentence that is elicited for different emotions. These parts of MSP-IMPROV dataset are irrelevant to this study; hence, it can removed from the dataset (Target - improvised and Target - read parts). However, it was found that the results show low CCC scores indicating the influences of target sentence. These results may be explained, as mentioned in section 6.3.2, that some of the utterances in the data analyzed in this study also inadvertently included sentences semantically the same as those in the improvised target sentences. Hence, it is necessary to compare the contribution of linguistic information in lexical-controlled and lexical uncontrolled datasets.

6.3.5 Final remarks

It has been tried to perform a benchmark between the obtained results in this study and others on the same datasets, scenarios, and metrics. Unfortunately, to the best my knowledge, the only reference is the one reported by [15], which reports an early fusion method on IEMOCAP dataset. The study improves the average CCC score from 0.508 to 0.532. This higher result suggests that late fusion is better than early fusion to model how humans fuse multimodal information, which is inline with neuropyschological research. This late-fusion approach can be embedded with current speech technology, i.e., ASR, in which the text output can be processed to weigh emotion prediction from acoustic features.

Abdelwahab et al. [128] used MSP-Podcast [129] as a target corpora, which is not available for the public yet, and IEMOCAP with MSP-IMPROV as source corpus to implement their DANN for cross-corpus speech emotion recognition. Although the goal is different, it was observed similar patterns between theirs and the acoustic-only speech emotion recognition int this study. First, it was observed that the order of highest to lowest CCC scores is arousal, dominance, and valence. This pattern is also consistent when IEMOCAP is mixed with MSP-IMPROV as reported by [118] (in Table 2). Second, it was observed that the CCC scores obtained in IEMOCAP are higher than those obtained in MSP-IMPROV; this lower score in MSP-IMPROV was due to the smaller size of the dataset.

Along with the SVM architecture, this study also explored the parameters C and γ , because both parameters are important for an RBF-kernel-based SVM architecture [66]. Linear search was used in the ranges of $[10^{-2}, 1, 10^2, 2 \times 10^2, 3 \times 10^2]$ for C and $[10^{-2}, 10^{-1}, 1, 10, 10^2]$ for γ with a fixed value of ϵ , i.e., 0.01. The best parameter values were C = 200 and $\gamma = 0.1$. The repository includes the detailed implementation of the SVM architecture.

Per stated objective in this chapter, this study applied two-stage processing by using DNNs and an SVM for dimensional emotion recognition from acoustic and text features on four different datasets. It is found that the combination of mean + std + silence from the acoustic features and word embeddings weighted by pretrained GloVe embeddings achieved the highest result among the nine pairs of acoustic-text results from DNNs trained with multitask learning. When the performance in obtaining one input to the SVM is very low, the resulting relative improvement due to the SVM is also low. For in-

stance, the lowest improvement on MSPIN-LOSO was from LLD + WE features, in which WE obtained low score (CCC_{avg} or $\overline{CCC}=0.136$) on text network. This phenomenon suggests a challenging future research direction for dealing with very little information, particularly linguistic information, in the fusion strategy. One strategy applied in this research was to use a pretrained GloVe embedding on text features with HSF2 on acoustic features, which improved the \overline{CCC} score from 0.358 (relative improvement = 7.64%) to 0.422 (relative improvement = 19.93%). Other strategies should also be proposed, such as how to handle the data differently when the same sentence elicits different emotions (i.e., whole MSP-IMPROV dataset). In contrast, the current word-embedding feature treats the same sentence as the same representation, even when it conveys different emotions. Although BERT was used in the previous chapter, the configuration only utilized pretrained model instead of fine-tuned model.

6.4 Summary

This chapter presented a late-fusion approach acoustic-linguistic emotion recognition. Several findings can be emphasized on this chapter. First, it was found a linear correlation between the single-modality and late-fusion methods in dimensional emotion recognition. The best results from each modality, when they were paired, gave the best fusion result. In the same way, the worst results obtained from each network, when they were paired, gave the worst fusion results for bimodal emotion recognition. This finding differs from that reported in [14], which used an early-fusion approach for categorical emotion recognition. In their work, the best pair differs from the best methods in single modalities.

Second, text features strongly influenced the score of dimensional SER on the valence dimension, while acoustic features strongly influenced arousal and dominance scores. Accordingly, the proposed two-stage processing can take advantage of text features which are commonly used in predicting sentiment (valence) for the dimensional emotion recognition task. The proposed fusion method improves all three emotion dimensions without attenuating the performance of any dimension. That is, the proposed method elevates the scores for valence, arousal, and dominance subsequently from the highest to the lowest gain.

Third, the combination of input pairs does not matter in the proposed fusion method, as indicated by the low deviation in relative improvement across the nine possible input pairs. What does matter is the performance on the input in the DNN stage. If the performance of a feature set in the DNN stage is low ($\overline{CCC} \leq 0.2$), it will also result in low performance when paired with another low-performance input in the SVM stage.

Future research can be directed to generalize the evaluated method presented in this chapter to other datasets. While the SVM stage in this study only performed once, it can be extended to be performed many times to observe such improvements. These broad research directions are open challenges for researchers in human-computer interaction.

6.4. SUMMARY 73

Chapter 7

Conclusions

This closing chapter divided into two sections, Summary and Future research directions. Both sections are described below.

7.1 Summary

In this dissertation an evaluation of fusing acoustic and linguistic information for dimensional speech emotion recognition (SER) was reported. Three strategies were evaluated to investigate the necessity of fusing linguistic information with acoustic information for dimensional SER. These strategies were dimensional SER using acoustic information only, fusing acoustic and linguistic at feature level, and fusing acoustic and linguistic information at decision level. These strategies yield answers to the following issues:

- region of analysis for feature extractions: high-level statistics (HSF) using mean and standard deviation consistently obtained better performance score than low-level descriptors (LLD);
- effect of silent pause region: both removing silence or using a silence feature as additional features improved performance score from the baseline features extracted from whole speech regions;
- low valence prediction score on dimensional SER: fusing linguistic information with acoustic information could improve the performance of valence prediction;
- the necessity of fusing acoustic and linguistic information: fusing both acoustic and linguistic information consistently and significantly improved performance score;
- framework for fusing acoustic and linguistic information: the late-fusion (decision-level) approach obtained slightly better performance than an early-fusion (feature-level) approach.

Using different methods, improvements of the performance in CCC scores were obtained. Table 7.1 shows averaged CCC scores among valence, arousal, and dominance using different acoustic features, linguistic features, and classifiers on IEMOCAP dataset. Clearly it shows the improvement of the performance scores (average CCC $[CCC_{ave}]$) on the use of different methods.

Table 7.1: Reported results on the IEMOCAP dataset test set (Session 5); the number

1	1 1 .	4	. 1	1	C 1		• 1	• 1
inside	bracket	represents	the	number	\cap t la	avers:	sil.	silence
morac	OI GOILO	TOPIODOILUD	OII	Hambor	01 10	a, orb,	DII.	DITOITO

Acoustic	Linguistic	Classifier	CCC_{avg}
GeMAPS LLD	-	LSTM (3)	0.382
pAA LLD	-	LSTM (3)	0.354
$\mathrm{pAA}_{-}\mathrm{D}\ \mathrm{LLD}$	-	LSTM (3)	0.370
$GeMAPS\ HSF$	-	LSTM (3)	0.389
pAA HSF	-	LSTM (3)	0.384
$pAA_D HSF$	-	LSTM (3)	0.413
$pAA_D HSF$	-	MLP(6)	0.452
pAA_D HSF sil-removed	-	MLP(6)	0.459
$pAA_D HSF + sil$	-	MLP(6)	0.466
-	WE	LSTM (3)	0.3611
-	word2vec	LSTM (3)	0.386
-	GloVe	LSTM (3)	0.392
-	FastText	LSTM (3)	0.384
-	BERT	LSTM (3)	3752
pAA HSF	GloVe	LSTM (3) – LSTM (3) [early fusion]	0.508
pAA HSF + sil (HSF2)	Glove	LSTM (3) – SVM [late fusion]	0.532

The first eight rows in the Table 7.1 shows dimensional SER from acoustic features only. HSF consistently obtained higher CCC scores than LLD. An optimization of this feature set can be achieved using MLP architecture with a deeper layer (a maximum score was obtained using five layers). A comparison of ignoring (keeping) silence, removing silence, and utilizing silence as an additional feature showed that the latter two methods are better than the first. Since linguistic-only dimensional SER is not the focus of this study, the discussion of linguistic-only dimensional SER is not discussed in this study. As suggested in the next research direction, there is bottleneck between acoustic and linguistic processing; the process needs to wait ASR outputs in real application apart from lower scores than acoustic SER.

Instead, the use of linguistic information in addition to acoustic information improved the performance score. Using pAA feature set with LSTM as the baseline, the early fusion method improved average CCC score from 0.400 to 0.508. Furthermore, the late fusion method improved the early fusion method from 0.508 to 0.532. Although there is a room for improvements, this study limits the discussion to this point since the goal is studying the fuse of acoustic and linguistic information for dimensional emotion recognition. Further investigations are recommended in the following Future research direction section.

7.2 Future research directions

The following issues are suggested for the future research on automatic speech emotion recognition based on this study.

Accelerating high-level feature extraction for speech emotion recognition

In this research, it was found that HSF consistently obtained higher performance score than LLD. However, to obtain HSF, LLD first must be extracted. In practice, this is not an efficient method. A strategy to avoid this time lag should be proposed. For instance, dividing frames into chunks and aggregating these HSF (as evaluated in Chapter 4). The computation time must be considered apart from the performance score.

Bimodal late-fusion approach by output aggregation

In the chapter four, we found that input aggregation is better than output aggregation by majority voting. The goal of the input aggregation for acoustic feature is be able to concatenate with linguistic features. The acoustic and linguistic information can be processed separately through different classifier. The output prediction by both modalities can be fused by output aggregation method such as majority voting. Since a late fusion showed a better performance than an early fusion, the obtained score may improve the previous reported score in bimodal feature concatenation (Chapter 4).

Lexical controlled vs. lexical uncontrolled emotion recognition

While this study performed evaluation on parts of MSP-IMPROV datasets, it was found that these parts of dataset (lexical uncontrolled) has been influenced by other parts (lexical controlled). This proposal will evaluate the necessity of linguistic information for SER: do we always need linguistic information for SER? In some cases, linguistic information may be not needed (e.g., in condition in which the intonation to express the emotion is clear). The trade-off between the performance improvement and model complexities should be carried out to judge "when linguistic information is needed, in what condition, and cues to use linguistic information."

Bottleneck between acoustic and linguistic processing

The goal of research is for enhancing human life. While this study focus on proof-of-concept of fusing acoustic and linguistic information for emotion recognition, the real problem may appear on its implementation. One of spotted problem is the bottleneck between acoustic and linguistic processing. Acoustic features can be extracted directly from speech while linguistic information must wait ASR output in practice. This time different processing will make the (emotion recognition) system occupies a longer time if no strategies proposed to minimize the bottleneck.

Model generalization

A common view in emotion recognition has been challenged, particularly based on facial expression. The weak evidence and model-specific results have raised the need for a generalization for automatic emotion recognition. The models and their results reported here can be applied to other datasets. For instance, to check the consistency of efficient high-level features, removing silence for feature extraction, and comparing early fusion to late fusion approaches. While this research evaluated English, an extension to other languages should be able to make within minimum effort, since many linguistic models for these languages are available. The solution to the problem appeared in these multilingual

approach, for instance "when the linguistic information is needed", should be proposed in future research.

References

- [1] J. Posner, J. A. Russell, and B. S. Peterson, "The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology," *Dev. Psychopathol.*, vol. 17, no. 3, pp. 715–734, 2005.
- [2] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020.
- [3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space," jan 2013.
- [4] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andre, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, and K. P. Truong, "The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing," *IEEE Trans. Affect. Comput.*, vol. 7, no. 2, pp. 190–202, apr 2016.
- [5] T. Giannakopoulos, "pyAudioAnalysis: An open-source python library for audio signal analysis," *PLoS One*, vol. 10, no. 12, pp. 1–17, 2015. [Online]. Available: https://github.com/tyiannak/pyAudioAnalysis/
- [6] B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamilton, S. Amiriparian, A. Baird, G. Rizos, M. Schmitt, L. Stappen, H. Baumeister, A. D. Macintyre, and S. Hantke, "The INTERSPEECH 2020 Computational Paralinguistics Challenge: Elderly Emotion, Breathing & Masks," in *INTERSPEECH*, 2020.
- [7] J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global Vectors for Word Representation," in *Conf. Empir. Methods Nat. Lang. Process.*, 2014, pp. 1532–1543.
- [8] R. W. Picard, "Affective Computing," Tech. Rep. [Online]. Available: http://www.media.mit.edu/œpicard/
- [9] S. A. Kotz and S. Paulmann, "Emotion, Language, and the Brain," Language. Linguist. Compass, vol. 5, no. 3, pp. 108–125, mar 2011. [Online]. Available: http://doi.wiley.com/10.1111/j.1749-818X.2010.00267.x
- [10] K. A. Lindquist, L. F. Barrett, E. Bliss-Moreau, and J. A. Russell, "Language and the perception of emotion," *Emotion*, vol. 6, no. 1, pp. 125–138, 2006.
- [11] B. T. Atmaja and M. Akagi, "Speech Emotion Recognition Based on Speech Segment Using LSTM with Attention Model," in 2019 IEEE Int. Conf. Signals Syst. IEEE, jul 2019, pp. 40–44.

- [12] —, "The Effect of Silence Feature in Dimensional Speech Emotion Recognition," in 10th Int. Conf. Speech Prosody 2020, no. May. ISCA: ISCA, may 2020, pp. 26—30.
- [13] —, "On The Differences Between Song and Speech Emotion Recognition: Effect of Feature Sets, Feature Types, and Classifiers," in *TENCON*, 2020. [Online]. Available: http://arxiv.org/abs/2004.00200
- [14] B. T. Atmaja, K. Shirai, and M. Akagi, "Speech Emotion Recognition Using Speech Feature and Word Embedding," in 2019 Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), Lanzhou, 2019, pp. 519—523.
- [15] B. T. Atmaja and M. Akagi, "Dimensional speech emotion recognition from speech features and word embeddings by using multitask learning," *APSIPA Trans. Signal Inf. Process.*, vol. 9, no. May, p. e17, may 2020.
- [16] B. T. Atmaja, Y. Hamada, and M. Akagi, "Predicting Valence and Arousal by Aggregating Acoustic Features for Acoustic-Linguistic Information Fusion," in TENCON, 2020.
- [17] B. T. Atmaja and M. Akagi, "Improving Valence Prediction in Dimensional Speech Emotion Recognition Using Linguistic Information," in *Orient. COCOSDA*, 2020.
- [18] —, "Multitask Learning and Multistage Fusion for Dimensional Audiovisual Emotion Recognition," in *ICASSP 2020 2020 IEEE Int. Conf. Acoust. Speech Signal Process.* IEEE, may 2020, pp. 4482—-4486. [Online]. Available: https://ieeexplore.ieee.org/document/9052916/
- [19] R. Elbarougy, B. T. Atmaja, and M. Akagi, "Continuous Audiovisual Emotion Recognition Using Feature Selection and LSTM," *J. Signal Process.*, vol. 24, no. 6, 2020.
- [20] B. T. Atmaja and M. Akagi, "Deep Multilayer Perceptrons for Dimensional Speech Emotion Recognition," in *APSIPA-ASC*, 2020. [Online]. Available: http://arxiv.org/abs/2004.02355
- [21] B. T. Atmaja, K. Shirai, and M. Akagi, "Deep Learning-based Categorical and Dimensional Emotion Recognition for Written and Spoken Text," *IPTEK J. Proc. Ser.*, 2019.
- [22] B. T. Atmaja and M. Akagi, "Evaluation of Error and Correlation-Based Loss Functions For Multitask Learning Dimensional Speech Emotion Recognition," in *Annu. Conf. Acoust. Vib.*, 2020. [Online]. Available: http://arxiv.org/abs/2003.10724
- [23] —, "Dimensional Speech Emotion Recognition from Acoustic and Text Features Using Multitask Learning," in ASJ Spring Meet., 2020, pp. 1003–1004.
- [24] B. T. Atmaja, R. Elbarougy, and M. Akagi, "RNN-based Dimensional Speech Emotion Recognition!," in ASJ Autumn Meet., Shiga, 2019, pp. 743–744.

- [25] F. Dellaert, T. Polzin, and A. Waibel, "Recognizing emotion in speech," in *Int. Conf. Spok. Lang. Process. ICSLP*, *Proc.*, vol. 3, 1996, pp. 1970–1973.
- [26] V. A. Petrushin, "Emotion In Speech: Recognition And Application To Call Centers," *Proc. Artif. neural networks Eng.*, vol. 710, pp. 22–30, 1999.
- [27] F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss, "A database of German emotional speech," in *Ninth Eur. Conf. Speech Commun. Technol.*, 2005, pp. 1517–1520. [Online]. Available: http://www.expressive-speech.net/emodb/
- [28] C. Busso, M. Bulut, C.-C. C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, "IEMOCAP: Interactive emotional dyadic motion capture database," *Lang. Resour. Eval.*, vol. 42, no. 4, pp. 335–359, 2008.
- [29] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab, N. Sadoughi, and E. M. Provost, "MSP-IMPROV: An Acted Corpus of Dyadic Interactions to Study Emotion Perception," *IEEE Trans. Affect. Comput.*, vol. 8, no. 1, pp. 67–80, jan 2017.
- [30] S. Livingstone and F. Russo, "The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)," *PLoS One*, pp. 1–35, 2018.
- [31] J. Vincent, "AI EMOTION RECOGNITION' CAN'T BE TRUSTED," 2019. [Online]. Available: https://www.theverge.com/2019/7/25/8929793/emotion-recognition-analysis-ai-machine-learning-facial-expression-review
- [32] L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and S. D. Pollak, "Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements," *Psychol. Sci. Public Interes.*, vol. 20, no. 1, pp. 1–68, jul 2019. [Online]. Available: www.psychologicalscience.org/PSPIASSOCIATIONFORhttp://journals.sagepub.com/doi/10.1177/1529100619832930
- [33] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, "A review of affective computing: From unimodal analysis to multimodal fusion," *Inf. Fusion*, 2017.
- [34] M. El Ayadi, M. S. Kamel, and F. Karray, "Survey on speech emotion recognition: Features, classification schemes, and databases," *Pattern Recognit.*, vol. 44, no. 3, pp. 572–587, 2011.
- [35] C. O. Alm, D. Roth, and R. Sproat, "Emotions from text: machine learning for text-based emotion prediction," in *Proc. Conf. Hum. Lang. Technol. Empir. Methods Nat. Lang. Process. HLT '05*, no. October, 2005, pp. 579–586.
- [36] K. Mulcrone, "Detecting Emotion in Text," Tech. Rep., 2012. [Online]. Available: http://s3.eddieoz.com/docs/sentiment{_}analysis/Detecting{_}Emotion{_} in{_}Text.pdf
- Α. Calvo and S. Μ. Kim, "Emotions in Text: Dimenand Categorical Models," Tech. Rep. 3, 2013. [Online]. Availhttps://rafaelacalvo.files.wordpress.com/2013/11/11-calvokim-ci.pdfhttps: able: //onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.2012.00456.x

- [38] B. Schuller, G. Rigoll, and M. Lang, "Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture," in 2004 IEEE Int. Conf. Acoust. Speech, Signal Process., vol. 1. IEEE, 2004, pp. 577–580.
- [39] B. Schuller, R. Müller, M. Lang, and G. Rigoll, "Speaker Independent Emotion Recognition by Early Fusion of Acoustic and Linguistic Features within Ensembles," in *Ninth Eur. Conf. Speech Commun. Technol.*, 2005.
- [40] F. Eyben, M. Wöllmer, A. Graves, B. Schuller, E. Douglas-Cowie, and R. Cowie, "On-line emotion recognition in a 3-D activation-valence-time continuum using acoustic and linguistic cues," *J. Multimodal User Interfaces*, vol. 3, no. 1, pp. 7–19, mar 2010.
- [41] W. Ye and X. Fan, "Bimodal Emotion Recognition from Speech and Text," Int. J. Adv. Comput. Sci. Appl., vol. 5, no. 2, 2014.
- [42] L. Tian, J. Moore, and C. Lai, "Recognizing emotions in spoken dialogue with hierarchically fused acoustic and lexical features," in 2016 IEEE Spok. Lang. Technol. Work. IEEE, dec 2016, pp. 565–572.
- [43] D. Grandjean, D. Sander, and K. R. Scherer, "Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization," *Conscious. Cogn.*, vol. 17, no. 2, pp. 484–495, 2008.
- [44] P. Ekman, "An Argument for Basic Emotions," *Cogn. Emot.*, vol. 6, no. 3-4, pp. 169–200, 1992.
- [45] R. Plutchik and H. Kellerman, Emotion, theory, research, and experience. Academic press, 1980.
- [46] R. E. Jack, W. Sun, I. Delis, O. G. B. Garrod, and P. G. Schyns, "Four not six: Revealing culturally common facial expressions of emotion," *J. Exp. Psychol. Gen.*, vol. 145, no. 6, pp. 708–730, 2016. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/27077757http://doi.apa.org/getdoi.cfm?doi=10.1037/xge0000162
- [47] P. Ekman, "Basic Emotions," in Handb. Cogn. Emot., 2005.
- [48] A. S. Cowen and D. Keltner, "Self-report captures 27 distinct categories of emotion bridged by continuous gradients," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 114, no. 38, pp. E7900–E7909, 2017.
- [49] H. Gunes and M. Pantic, "Automatic, Dimensional and Continuous Emotion Recognition," *Int. J. Synth. Emot.*, vol. 1, no. 1, pp. 68–99, apr 2010.
- [50] J. A. Russell, "A circumplex model of affect," J. Pers. Soc. Psychol., vol. 39, no. 6, pp. 1161–1178, 1980. [Online]. Available: http://content.apa.org/journals/psp/39/6/1161
- [51] J. R. J. Fontaine, K. R. Scherer, E. B. Roesch, C. Phoebe, J. R. J. Fontaine, K. R. Scherer, E. B. Roesch, and P. C. Ellsworth, "The World of Emotions Is Not Two-Dimensional," *Psychol. Sci.*, vol. 18, no. 12, pp. 1050–1057, 2017.

- [52] B. Schuller, M. Valstar, F. Eyben, R. Cowie, and M. Pantic, "AVEC 2012 The continuous audio/visual emotion challenge," in *ICMI'12 Proc. ACM Int. Conf. Multimodal Interact.*, 2012, pp. 449–456.
- [53] K. R. Scherer, "What are emotions? And how can they be measured?" Soc. Sci. Inf., vol. 44, no. 4, pp. 695–729, 2005. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0539018405058216
- [54] P. Mairano, E. Zovato, and V. Quinci, "Do sentiment analysis scores correlate with acoustic features of emotional speech?" Tech. Rep., 2019.
- [55] R. W. Frick, "Communicating Emotion: The Role of Prosodic Features," *Psychol. Bull.*, vol. 97, no. 3, pp. 412–429, 1985.
- [56] S. Mozziconacci, "Prosody and Emotions," Speech Prosody 2002, pp. 1–9, 2002.
- [57] E. Liebenthal, D. A. Silbersweig, E. Stern, J. B. Fritz, D. Zhang, E. Liebenthal, D. A. Silbersweig, and E. Stern, "The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception," Front. Neurosci. www.frontiersin.org, vol. 10, no. NOV, p. 506, 2016. [Online]. Available: www.frontiersin.org
- [58] E. Väyrynen, "Emotion recognition from speech using prosodic features," Ph.D. dissertation, University of Oulu, 2014. [Online]. Available: http://www.oulu.fi/cse/personnel/eero-v{\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{a\global\mathchardef\accent@spacefactor\spacefactor} \accent127a\egroup\spacefactor\accent@spacefactor}yrynen/homepage
- [59] C. M. Lee, S. S. Narayanan, L. Angeles, and R. Pieraccini, "Combining Acoustic and Language Information for Emotion Recognition," *Icslp* 2002, vol. 2002, pp. 6–9, 2002.
- [60] F. Metze, T. Polzehl, and M. Wagner, "Fusion of Acoustic and Linguistic Speech Features for Emotion Detection," in *Proc. Int. Conf. Semant. Comput. (ICSC).*, Berkeley, CA, 2009.
- [61] S. Tripathi, A. Kumar, A. Ramesh, C. Singh, and P. Yenigalla, "Deep Learning based Emotion Recognition System Using Speech Features and Transcriptions," in *Int. Conf. Comput. Linguist. Intell. Text Process.*, apr 2019. [Online]. Available: https://arxiv.org/pdf/1906.05681.pdfhttp://arxiv.org/abs/1906.05681
- [62] Z. Aldeneh, S. Khorram, D. Dimitriadis, and E. M. Provost, "Pooling acoustic and lexical features for the prediction of valence," in *ICMI 2017 - Proc. 19th ACM Int.* Conf. Multimodal Interact. ACM, 2017, pp. 68–72.
- [63] B. Zhang, S. Khorram, and E. M. Provost, "Exploiting Acoustic and Lexical Properties of Phonemes to Recognize Valence from Speech," in *ICASSP*, *IEEE Int. Conf. Acoust. Speech Signal Process. Proc.*, vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., may 2019, pp. 5871–5875.

- [64] P. Yenigalla, A. Kumar, S. Tripathi, C. Singh, S. Kar, and J. Vepa, "Speech emotion recognition using spectrogram & phoneme embedding," in *Interspeech 2018*, 2018, pp. 3688–3692.
- [65] Z. J. Chuang and C.-h. Wu, "Multi-modal emotion recognition from speech and text," *J. Comput. Linguist. Chinese Lang. Process.*, vol. 9, no. 2, pp. 45–62, 2004. [Online]. Available: http://www.aclweb.org/anthology/O/O04/O04-3004.pdf
- [66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine Learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825—-2830, 2011.
- [67] C. Whissell, "Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language," *Psychol. Rep.*, vol. 105, no. 2, pp. 509–521, 2009. [Online]. Available: http://journals.sagepub.com/doi/10.2466/PR0.105.2.509-521
- [68] A. B. Warriner, V. Kuperman, and M. Brysbaert, "Norms of valence, arousal, and dominance for 13,915 English lemmas," *Behav. Res. Methods*, vol. 45, no. 4, pp. 1191–1207, 2013. [Online]. Available: http://link.springer.com/10.3758/s13428-012-0314-x
- [69] C. J. Hutto and E. E. Gilbert, "VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text," in *Eighth Int. Conf. Weblogs Soc. Media* (ICWSM-14)., 2014. [Online]. Available: http://sentic.net/
- [70] S. M. Mohammad, "Obtaining Reliable Human Ratings of Valence, Arousal, and Dominance for 20,000 English Words," *Proc. 56th Annu. Meet. ofthe Assoc. Comput. Linquist.*, vol. 0, pp. 1–11, 2018.
- [71] G. E. Hinton, "Connectionist learning procedures," Artif. Intell., vol. 40, no. 1-3, pp. 185–234, 1989.
- [72] D. Griol, J. M. Molina, and Z. Callejas, "Combining speech-based and linguistic classifiers to recognize emotion in user spoken utterances," *Neurocomputing*, vol. 326-327, pp. 132–140, jan 2019.
- [73] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for Simplicity: The All Convolutional Net," in 3rd Int. Conf. Learn. Represent. ICLR 2015 Work. Track Proc., dec 2014, pp. 1–14. [Online]. Available: http://arxiv.org/abs/1412.6806
- [74] K.-Y. Huang, C.-H. Wu, Q.-B. Hong, M.-H. Su, and Y.-R. Zeng, "Speech Emotion Recognition using Convolutional Neural Network with Audio Word-based Embedding," in 2018 11th Int. Symp. Chinese Spok. Lang. Process. IEEE, nov 2018, pp. 265–269. [Online]. Available: https://ieeexplore.ieee.org/document/8706610/
- [75] J. Cho, R. Pappagari, P. Kulkarni, J. Villalba, Y. Carmiel, and N. Dehak, "Deep neural networks for emotion recognition combining audio and transcripts," *Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH*, vol. 2018-Septe, no. September, pp. 247–251, 2018.

- [76] J. Sebastian and P. Pierucci, "Fusion Techniques for Utterance-Level Emotion Recognition Combining Speech and Transcripts," *Interspeech*, pp. 51–55, 2019. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2019-3201
- [77] L. Cai, Y. Hu, J. Dong, and S. Zhou, "Audio-Textual Emotion Recognition Based on Improved Neural Networks," Math. Probl. Eng., vol. 2019, 2019.
- [78] L. Tian, J. D. Moore, and C. Lai, "Recognizing emotions in dialogues with acoustic and lexical features," in 2015 Int. Conf. Affect. Comput. Intell. Interact. IEEE, sep 2015, pp. 737–742. [Online]. Available: http://ieeexplore.ieee.org/document/7344651/
- [79] A. Batliner, S. Steidl, B. Schuller, D. Seppi, T. Vogt, J. Wagner, L. Devillers, L. Vidrascu, V. Aharonson, L. Kessous, and N. Amir, "Whodunnit - Searching for the most important feature types signalling emotion-related user states in speech," *Comput. Speech Lang.*, vol. 25, no. 1, pp. 4–28, 2011.
- [80] D. Charles, E. Paul, and P. Phillip, "The expression of the emotions in man and animals," *Electron. Text Center, Univ. Virginia Libr.*, 1872.
- [81] J. A. Russel, "A Circumplex Model of Affect," pp. 1161–1178, 1980. [Online]. Available: https://www2.bc.edu/james-russell/publications/Russell1980.pdf
- [82] P. B. Denes, P. Denes, and E. Pinson, The speech chain. Macmillan, 1993.
- [83] X. Li, "A Three-Layer Model Based Estimation of Emotions in Multilingual Speech," Ph.D. dissertation, Japan Advanced Institute of Science and Technology, 2019.
- [84] R. Elbarougy, "Speech Emotion Recognition based on Voiced Emotion Unit," Int. J. Comput. Appl., vol. 178, no. 47, pp. 22–28, 2019.
- [85] G. Aguilar, V. Rozgic, W. Wang, and C. Wang, "Multimodal and multi-view models for emotion recognition," *ACL 2019 57th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf.*, pp. 991–1002, 2020.
- [86] L. Tian, C. Lai, and J. Moore, "Recognizing emotions in dialogues with disfluencies and non-verbal vocalisations," in *Proc. ofthe 4th Interdiscip. Work. Laugh. Other Non-verbal Vocalisations Speech*, 2015, pp. 39–41. [Online]. Available: http://www.research.ed.ac.uk/portal/files/19911606/tian{_}recognizing{_}emotions{_} in{_}dialogues{_}with{_}disfluencies{_}and{_}non{_}verbal{_}vocalisations.pdf
- [87] H. M. Fayek, M. Lech, and L. Cavedon, "Evaluating deep learning architectures for Speech Emotion Recognition," *Neural Networks*, vol. 92, pp. 60–68, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.neunet.2017.02.013
- [88] M. Ephratt, "The functions of silence," J. Pragmat., vol. 40, no. 11, pp. 1909–1938, 2008.
- [89] E. Tisljár-Szabó and C. Pléh, "Ascribing emotions depending on pause length in native and foreign language speech," *Speech Commun.*, vol. 56, no. 1, pp. 35–48, 2014.

- [90] K. Sridhar, S. Parthasarathy, and C. Busso, "Role of Regularization in the Prediction of Valence from Speech," in *Interspeech 2018*. ISCA: ISCA, sep 2018, pp. 941–945.
- [91] S. G. Karadogan and J. Larsen, "Combining semantic and acoustic features for valence and arousal recognition in speech," in 2012 3rd Int. Work. Cogn. Inf. Process. IEEE, may 2012, pp. 1–6.
- [92] R. M. Davison, "An Action Research Perspective of Group Support Systems: How to Improve Meetings in Hong Kong," Ph.D. dissertation, City University of Hong Kong, 1998. [Online]. Available: http://www.is.cityu.edu.hk/staff/isrobert/phd/phd.htm
- [93] M. Frické, "The knowledge pyramid: A critique of the DIKW hierarchy," *J. Inf. Sci.*, vol. 35, no. 2, pp. 131–142, 2009.
- [94] A. Badia, "Data, Information, Knowledge: An Information Science Analysis," J. Am. Soc. Inf. Sci. Technol., vol. 64, no. July, pp. 1852–1863, 2013. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/asi.22883/abstract
- [95] C. Zins, "Conceptual Approaches for Defining Data, Information, and Knowledge," J. Am. Soc. Inf. Sci. Technol., vol. 64, no. July, pp. 1852–1863, 2013. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/asi.22883/abstract
- [96] C. W. Choo, The Knowing Organization: How Organizations Use Information to Construct Meaning, Create Knowledge, and Make Decisions, 2007.
- [97] J. Rowley, "The wisdom hierarchy: Representations of the DIKW hierarchy," J. Inf. Sci., vol. 33, no. 2, pp. 163–180, 2007.
- [98] C. Berckmoes and G. Vingerhoets, "Neural foundations of emotional speech processing," pp. 182–185, 2004.
- [99] D. Matsumoto and B. Willingham, "Spontaneous Facial Expressions of Emotion of Congenitally and Noncongenitally Blind Individuals," J. Pers. Soc. Psychol., 2009.
- [100] L. C. Nygaard and J. S. Queen, "Communicating emotion: Linking affective prosody and word meaning," *J. Exp. Psychol. Hum. Percept. Perform.*, vol. 34, no. 4, pp. 1017–1030, 2008.
- [101] S. Yoon, S. Byun, and K. Jung, "Multimodal Speech Emotion Recognition Using Audio and Text," *Spok. Lang. Technol. Work.*, pp. 112–118, oct 2018. [Online]. Available: http://arxiv.org/abs/1810.04635
- [102] F. Ringeval, B. Schuller, M. Valstar, S. Jaiswal, E. Marchi, D. Lalanne, R. Cowie, and M. Pantic, "AV+EC 2015 The first affect recognition challenge bridging across audio, video, and physiological data," in AVEC 2015 Proc. 5th Int. Work. Audio/Visual Emot. Challenge, co-Located with MM 2015. Association for Computing Machinery, Inc, oct 2015, pp. 3–8.

- [103] P. Herrera, X. Serra, and G. Peeters, "Audio Descriptors and Descriptor Schemes in the Context of MPEG-7," in *Int. Comput. Music Conf.*, 1999, pp. 581–584. [Online]. Available: http://mtg.upf.edu/files/publications/icmc99-perfe.pdf
- [104] A. Mohamed, "Deep Neural Network acoustic models for ASR," Ph.D. dissertation, University of Toronto, 2014.
- [105] H. Μ. Fayek, "Speech Processing for Machine Filter Learning: and banks, Mel-Frequency Cepstral Coefficients (MFCCs) What's In-2016. [Online]. Available: https://haythamfayek.com/2016/04/21/ speech-processing-for-machine-learning.html
- [106] M. R. Morales and R. Levita, "Speech Vs. Text: A Comparative Analysis Of Features For Depression Detection Systems," in 2016 IEEE Spok. Lang. Technol. Work., 2016, pp. 136–143.
- [107] G. S. Tomas, "Speech Emotion Recognition Using Convolutional Neural Networks," Ph.D. dissertation, 2019.
- [108] M. Schmitt and B. Schuller, "Deep Recurrent Neural Networks for Emotion Recognition in Speech," in *DAGA*, 2018, pp. 1537–1540.
- [109] F. Chollet and Others, "Keras," https://keras.io, 2015.
- [110] E. Campione and J. Véronis, "A large-scale multilingual study of pause duration," in *Speech Prosody 2002. Proc. the1st Int. Conf. Speech Prosody*, 2002, pp. 199–202. [Online]. Available: http://www.isca-speech.org/archive/sp2002/sp02{_}199.html
- [111] J. D. Moore, L. Tian, and C. Lai, "Word-level emotion recognition using high-level features," in *Int. Conf. Intell. Text Process. Comput. Linguist.* Springer, 2014, pp. 17–31.
- [112] B. McFee, V. Lostanlen, M. McVicar, A. Metsai, S. Balke, C. Thomé, C. Raffel, A. Malek, D. Lee, F. Zalkow, K. Lee, O. Nieto, J. Mason, D. Ellis, R. Yamamoto, S. Seyfarth, E. Battenberg, V. Morozov, R. Bittner, K. Choi, J. Moore, Z. Wei, S. Hidaka, Nullmightybofo, P. Friesch, F.-R. Stöter, D. Hereñú, T. Kim, M. Vollrath, and A. Weiss, "librosa/librosa: 0.7.2," jan 2020. [Online]. Available: https://zenodo.org/record/3606573
- [113] B. T. Atmaja and M. Akagi, "On The Differences Between Song and Speech Emotion Recognition: Effect of Feature Sets, Feature Types, and Classifiers," 2020. [Online]. Available: http://arxiv.org/abs/2004.00200
- [114] M. C. Sezgin, B. Gunsel, and G. K. Kurt, "Perceptual audio features for emotion detection," *EURASIP J. Audio, Speech, Music Process.*, vol. 2012, no. 1, p. 16, 2012. [Online]. Available: https://asmp-eurasipjournals.springeropen.com/articles/10.1186/1687-4722-2012-16
- [115] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning Book, 2015.

- [116] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, "Advances in pre-training distributed word representations," in *Lr. 2018 11th Int. Conf. Lang. Resour. Eval.*, dec 2019, pp. 52–55.
- [117] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," arXiv Prepr. arXiv, oct 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
- [118] S. Parthasarathy and C. Busso, "Jointly Predicting Arousal, Valence and Dominance with Multi-Task Learning," in *Interspeech*, 2017, pp. 1103–1107.
- [119] M. Schmitt, N. Cummins, and B. W. Schuller, "Continuous Emotion Recognition in Speech Do We Need Recurrence?" in *Interspeech 2019*. ISCA: ISCA, sep 2019, pp. 2808–2812.
- [120] S. Tripathi, S. Tripathi, and H. Beigi, "Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning," apr 2018. [Online]. Available: https://arxiv.org/pdf/1804.05788.pdfhttp://arxiv.org/abs/1804.05788
- [121] S. Yoon, S. Byun, S. Dey, and K. Jung, "Speech Emotion Recognition Using Multihop Attention Mechanism," in *ICASSP 2019 2019 IEEE Int. Conf. Acoust. Speech Signal Process.* IEEE, may 2019, pp. 2822–2826.
- [122] S. Sahu, V. Mitra, N. Seneviratne, and C. Espy-Wilson, "Multi-modal learning for speech emotion recognition: An analysis and comparison of ASR outputs with ground truth transcription," in *Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH*, 2019, pp. 3302–3306.
- [123] S. Chen, Q. Jin, J. Zhao, and S. Wang, "Multimodal multi-task learning for dimensional and continuous emotion recognition," in *Proc. 7th Annu. Work. Audio/Visual Emot. Chall.* ACM, 2017, pp. 19–26.
- [124] Mozilla, "Project DeepSpeech: A TensorFlow implementation of Baidu's DeepSpeech architecture, https://github.com/mozilla/DeepSpeech," 2019. [Online]. Available: https://github.com/mozilla/DeepSpeech
- [125] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, "Deep Speech: Scaling up end-to-end speech recognition," pp. 1–12, 2014. [Online]. Available: http://arxiv.org/abs/1412.5567
- [126] G. Lemaitre, F. Nogueira, and C. K. Aridas, "Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning," *J. Mach. Learn. Res.*, vol. 18, pp. 1–5, sep 2016.
- [127] F. Eyben, M. Wöllmer, and B. Schuller, *Opensmile*. New York, New York, USA: ACM Press, 2016, no. November.
- [128] M. AbdelWahab and C. Busso, "Domain Adversarial for Acoustic Emotion Recognition," *IEEE/ACM Trans. Audio Speech Lang. Process.*, vol. 26, no. 12, pp. 2423–2435, dec 2018.

[129] R. Lotfian and C. Busso, "Building Naturalistic Emotionally Balanced Speech Corpus by Retrieving Emotional Speech from Existing Podcast Recordings," *IEEE Trans. Affect. Comput.*, vol. 10, no. 4, pp. 471–483, 2019.

Publications

Journals

- [1] B. T. Atmaja and M. Akagi, "Dimensional speech emotion recognition from speech features and word embeddings by using multitask learning," APSIPA Trans. Signal Inf. Process., Vol. 9, No. May, p. e17, May 2020.
- [2] R. Elbarougy, B.T. Atmaja and M. Akagi, "Continuous Audiovisual Emotion Recognition Using Feature Selection and LSTM," Journal of Signal Processing, Vol. 24, No. 6, November 2020.
- [3] B.T. Atmaja, and M. Akagi. "Two-stage dimensional emotion recognition by fusing predictions of acoustic and text networks using SVM," Speech Communication (under second review).

International Conferences

- [4] B.T. Atmaja, K. Shirai, and M. Akagi, "Deep Learning-based Categorical and Dimensional Emotion Recognition for Written and Spoken Text," *International Seminar on Science and Technology*, Surabaya, 2019.
- [5] B. T. Atmaja, K. Shirai, and M. Akagi, "Speech Emotion Recognition Using Speech Feature and Word Embedding," in 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2019, pp. 519– 523.
- [6] B. T. Atmaja and M. Akagi, "Speech Emotion Recognition Based on Speech Segment Using LSTM with Attention Model," in 2019 IEEE International Conference on Signals and Systems (ICSigSys), 2019, pp. 40–44.
- [7] B. T. Atmaja and M. Akagi, "Multitask Learning and Multistage Fusion for Dimensional Audiovisual Emotion Recognition," in ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 4482–4486.
- [8] B. T. Atmaja and M. Akagi, "The Effect of Silence Feature in Dimensional Speech Emotion Recognition," in 10th International Conference on Speech Prosody 2020, 2020, May, pp. 26–30.

- [9] B.T. Atmaja and M. Akagi, "Improving Valence Prediction in Dimensional Speech Emotion Recognition Using Linguistic Information," in 2020 23nd Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA), pp. 1-5. IEEE, 2020.
- [10] B.T. Atmaja and M. Akagi, "On The Differences Between Song and Speech Emotion Recognition: Effect of Feature Sets, Feature Types, and Classifiers", TENCON 2020
 - 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 2020.
- [11] B.T. Atmaja, Y. Hamada and M. Akagi, "Predicting Valence and Arousal by Aggregating Acoustic Features for Acoustic-Linguistic Information Fusion" TENCON 2020 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 2020.
- [12] B.T. Atmaja and M. Akagi, 'Deep Multilayer Perceptrons for Dimensional Speech Emotion Recognition," in 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 2020.
- [13] B.T. Atmaja, M. Akagi. "Evaluation of Error and Correlation-based Loss Functions For Multitask Learning Dimensional Speech Emotion Recognition," International Conference on Acoustic and Vibration, Bali, Indonesia, 2020.

Domestic Conferences

- [14] R. Elbarougy, B.T. Atmaja, M. Akagi, "Continuous Tracking of Emotional State from Speech Based on Emotion Unit," *In Proceeding ASJ Autumn Meeting*, 2018.
- [15] B.T. Atmaja, A.N.F. Fandy, D. Arifianto, M. Akagi, "Speech recognition on Indonesian language by using time delay neural network," In Proceeding ASJ Spring Meeting, 2019, pp. 1291–1294.
- [16] B.T. Atmaja, R. Elbarougy, M. Akagi, "RNN-based dimensional speech emotion recognition," In Proceeding ASJ Autumn Meeting, 2019, pp. 743–744.
- [17] B.T. Atmaja, M. Akagi, "Dimensional Speech Emotion Recognition from Acoustic and Text Features Using Multitask Learning," *In Proceeding ASJ Spring Meeting*, 2020, pp. 1003–1004.