

I CLAIM:

- 1 1. An electronic circuit, comprising:
 - 2 circuit elements arranged in an array of rows and columns, said circuit
 - 3 elements being alterable in response to data stored therein and configured to shift data
 - 4 therebetween;
 - 5 a strobe line electrically coupled to ones of said circuit elements constituting a
 - 6 set to provide thereto a strobe signal to cause said ones of said circuit elements in said set to
 - 7 shift the data to additional ones of said circuit elements outside said set; and
 - 8 a strobe buffer connected between said strobe line and at least two of said
 - 9 circuit elements within said set to buffer the strobe signal on said strobe line and provide a
 - 10 buffered strobe signal to said at least two of said circuit elements.
- 1 2. The electronic circuit of Claim 1, wherein said strobe buffer operates to
2 amplify the strobe signal received on said strobe line and to provide the amplified strobe
3 signal as said buffered strobe signal.
- 1 3. The electronic circuit of Claim 1, wherein said set comprises ones of said
2 circuit elements located in at least a portion of at least two adjacent rows of said array.
- 1 4. The electronic circuit of Claim 1, wherein said at least two of said circuit
2 elements within said set are ones of said circuit elements located in two adjacent rows and
3 two adjacent columns of said array.

1 5. The electronic circuit of Claim 1, wherein said at least two of said circuit
2 elements within said set are ones of said circuit elements located in two adjacent rows and
3 four adjacent columns of said array.

1 6. The electronic circuit of Claim 1, wherein:
2 said strobe line is coupled to ones of said circuit elements located in a first pair
3 of adjacent rows of said array to provide a first strobe signal to said ones of said circuit
4 elements located in said first pair of adjacent rows; and
5 said electronic circuit additionally comprises an additional strobe line coupled
6 to ones of said circuit elements located in a second pair of adjacent rows of said array to
7 provide a second strobe signal to said ones of said circuit elements located in said second pair
8 of adjacent rows.

1 7. The electronic circuit of Claim 6, wherein said first strobe signal is operable to
2 shift data from said ones of said circuit elements in said first pair of adjacent rows to said
3 ones of said circuit elements in said second pair of adjacent rows.

1 8. The electronic circuit of Claim 1, wherein said strobe line is coupled to ones
2 of said circuit elements in at least a portion of at least two adjacent columns of the array.

1 9. The electronic circuit of Claim 1, wherein said strobe line is coupled to ones
2 of said circuit elements in at least a portion of a single row or column of the array.

1 10. The electronic circuit of Claim 1, wherein said strobe line is coupled to at least
2 two groups of said circuit elements positioned non-orthogonally within the array with respect
3 to one another in the array.

1 11. The electronic circuit of Claim 1, further comprising:
2 a data buffer connected to at least one end of the array of said circuit elements to
3 provide the data to said circuit elements.

1 12. The electronic circuit of Claim 11, wherein said data buffer is configured to
2 load data into ones of said circuit elements in at least a portion of at least two rows of the
3 array.

1 13. The electronic circuit of Claim 11, wherein said data buffer comprises buffer
2 elements, each of said buffer elements loading data into a respective portion of the array, said
3 strobe line being within a second portion of said array and being connected to clock one of
4 said buffer elements associated with a first portion of the array to load data into the first
5 portion of the array.

1 14. The electronic circuit of Claim 1, wherein said circuit elements are light
2 modulation elements, said light modulation elements including:
3 memory elements configured to store the data and connected to shift the data
4 therebetween; and
5 pixel controllers configured to alter the state of respective ones of said light
6 modulation elements in response to the data stored in respective ones of the memory
7 elements.

1 15. The electronic circuit of Claim 14, wherein each of said memory elements
2 further includes an output node electrically coupled to said respective pixel controller and to
3 an input node of a non-adjacent one of said memory elements.

1 16. The electronic circuit of Claim 14, wherein said strobe buffer prevents a short
2 in one of said at least two memory elements from disabling the other of said at least two
3 memory elements.

1 17. The electronic circuit of Claim 14, wherein said light modulation elements
2 comprise liquid crystal material.

1 18. The electronic circuit of Claim 17, wherein:
2 the pixel controllers include pixel electrodes configured to receive the data
3 stored in the respective memory elements, and
4 said light modulation elements collectively comprise a common electrode
5 configured to receive a common electrode signal for said light modulation elements.

1 19. The electronic circuit of Claim 14, wherein:
2 said light modulation elements additionally include micromirrors, and
3 the pixel controllers comprise electromechanical devices configured to control
4 the state of said respective ones of said micromirrors in response to the data stored in the
5 respective ones of said memory elements.

1 20. The electronic circuit of Claim 1, wherein said electronic circuit additionally
2 comprises:
3 additional strobe lines; and
4 a shift register electrically connected to said strobe lines to apply strobe
5 signals sequentially thereto.

1 21. The electronic circuit of Claim 20, wherein said shift register implements a
2 ripple clock.

1 22. A method for performing photolithography, said method comprising:
2 loading data representing an image into light modulation elements arranged in
3 sets;
4 altering ones of the light modulation elements in response to the data loaded
5 thereinto to transfer an instance of the image onto a substrate;
6 applying to the light modulation elements in each one of said sets a respective
7 strobe signal to shift the data to the light modulation elements in another of said sets, said
8 applying comprising buffering the strobe signal among at least two of the light modulation
9 elements within said one of said sets; and
10 altering ones of the light modulation elements in response to the data shifted
11 thereinto to transfer another instance of the image onto the substrate.

1 23. The method of Claim 22, wherein each said altering further comprises:
2 applying a voltage in response to the data to change optical characteristics
3 of the light modulation elements.

1 24. The method of Claim 22, wherein said applying further comprises:
2 amplifying the strobe signal; and
3 providing the amplified strobe signal to the light modulation elements in said
4 one of said sets.

- 1 25. The method of Claim 22, wherein said applying further comprises:
 - 2 utilizing a ripple clock to control the timing of said applying.
- 1 26. The method of Claim 22, further comprising:
 - 2 providing the light modulation elements arranged in an array of rows and
 - 3 columns, at least one of the sets comprising ones of the light modulation elements positioned
 - 4 non-orthogonally in the array with respect to one another.
- 1 27. The method of Claim 22, wherein:
 - 2 the method additionally comprises providing the light modulation elements
 - 3 arranged in an array of rows and columns, at least one of said sets comprising ones of the
 - 4 light modulation elements in at least a portion of at least two of the rows, and
 - 5 said applying additionally comprises applying the strobe signal to shift the
 - 6 data between ones of the light modulation elements in non-adjacent ones of the rows of the
 - 7 array.
- 1 28. The method of Claim 22, wherein:
 - 2 the method additionally comprises providing the light modulation elements
 - 3 arranged in an array of rows and columns, at least one of said sets comprising ones of the
 - 4 light modulation elements in at least a portion of at least two of the columns, and
 - 5 said applying additionally comprises applying the strobe signal to shift the
 - 6 data between ones of the light modulation elements in non-adjacent ones of the columns of
 - 7 the array.

1 29. The method of Claim 22, wherein:
2 the method additionally comprises providing the light modulation elements
3 arranged in an array of rows and columns; and
4 said loading comprises loading the data from a data buffer into the light
5 modulation elements at one end of the array.

1 30. The method of Claim 29, wherein said loading comprises loading the data into
2 ones of the light modulation elements in at least a portion of at least two rows of the array.

1 31. The method of Claim 29, wherein said loading comprises loading the data into
2 one of the light modulation elements in at least a portion of at least two columns of the array.

1 32. The method of Claim 29, wherein said loading comprises loading data into a
2 first section of the array in response to a strobe signal derived from the strobe signal used to
3 shift data in a second section of the array.