

Ù&@^œ^¦ÊÁQ}&È		FÍ»ÁVã¦oÁ, ĐịÁÙ^ã;{ã&ÁÖ^∙ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 1.00
$$C_e =$$
 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Proceure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>1490.19</u>	<u>5123.76</u>	k
Compressive Load =	<u>4917.43</u>	<u>5101.97</u>	k
Lateral Load =	<u>9.97</u>	<u> 1853.55</u>	k
Moment (Weak Axis) =	0.02	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 122829.0 \text{ in-lbs}$ Resisting Force Required = 1861.05 lbs A minimum 132in long x 28in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3101.74 lbs to resist overturning. Minimum Width = <u>28 in</u> in Weight Provided = 5582.50 lbs Sliding 427.45 lbs Force = Friction = Use a 132in long x 28in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1068.63 lbs Resisting Weight = 5582.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 427.45 lbs Cohesion = 130 psf Use a 132in long x 28in wide x 18in tall 25.67 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2791.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs

200 psf/ft

0.00 ft

2500 psi

8 in

Bearing Pressure

Required Depth =

 $f'_c =$ Length =

Lateral Bearing Pressure =

 $\frac{\text{Ballast Width}}{28 \text{ in}} = \frac{29 \text{ in}}{29 \text{ in}} = \frac{30 \text{ in}}{30 \text{ in}} = \frac{31 \text{ in}}{6181 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.33 \text{ ft}) = \frac{5583 \text{ lbs}}{5782 \text{ lbs}} = \frac{5981 \text{ lbs}}{5981 \text{ lbs}} = \frac{6181 \text{ lbs}}{6181 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	- 0.6W		1.	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	- 0.6W	
Width	28 in	29 in	30 in	31 in	28 in	29 in	30 in	31 in	28 in	29 in	30 in	31 in	28 in	29 in	30 in	31 in
FA	1724 lbs	1724 lbs	1724 lbs	1724 lbs	1611 lbs	1611 lbs	1611 lbs	1611 lbs	2373 lbs	2373 lbs	2373 lbs	2373 lbs	-678 lbs	-678 lbs	-678 lbs	-678 lbs
F _B	1786 lbs	1786 lbs	1786 lbs	1786 lbs	1670 lbs	1670 lbs	1670 lbs	1670 lbs	2460 lbs	2460 lbs	2460 lbs	2460 lbs	-2355 lbs	-2355 lbs	-2355 lbs	-2355 lbs
F _V	152 lbs	152 lbs	152 lbs	152 lbs	759 lbs	759 lbs	759 lbs	759 lbs	673 lbs	673 lbs	673 lbs	673 lbs	-855 lbs	-855 lbs	-855 lbs	-855 lbs
P _{total}	9092 lbs	9292 lbs	9491 lbs	9690 lbs	8864 lbs	9063 lbs	9262 lbs	9462 lbs	10415 lbs	10614 lbs	10814 lbs	11013 lbs	316 lbs	436 lbs	556 lbs	675 lbs
M	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4832 lbs-ft	4832 lbs-ft	4832 lbs-ft	4832 lbs-ft	6453 lbs-ft	6453 lbs-ft	6453 lbs-ft	6453 lbs-ft	1225 lbs-ft	1225 lbs-ft	1225 lbs-ft	1225 lbs-ft
е	0.46 ft	0.45 ft	0.44 ft	0.43 ft	0.55 ft	0.53 ft	0.52 ft	0.51 ft	0.62 ft	0.61 ft	0.60 ft	0.59 ft	3.87 ft	2.81 ft	2.20 ft	1.81 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	265.3 psf	263.6 psf	262.1 psf	260.6 psf	242.7 psf	241.8 psf	241.0 psf	240.2 psf	268.7 psf	266.9 psf	265.2 psf	263.7 psf	0.0 psf	0.0 psf	0.0 psf	0.2 psf
f _{max}	443.2 psf	435.4 psf	428.2 psf	421.4 psf	448.0 psf	440.1 psf	432.6 psf	425.7 psf	542.9 psf	531.7 psf	521.2 psf	511.4 psf	55.5 psf	44.7 psf	45.0 psf	47.3 psf

Shear key is not required.

Maximum Bearing Pressure = 543 psf Allowable Bearing Pressure = 1500 psf Use a 132 in long x 28 in wide x 18 in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

1082.2 ft-lbs $M_O =$

927.64 lbs Resisting Force Required =

S.F. = 1.67

Weight Required = 1546.06 lbs Minimum Width = <u>28 in</u> in Weight Provided = 5582.50 lbs

A minimum 132in long x 28in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		28 in		28 in			28 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	237 lbs	645 lbs	237 lbs	938 lbs	2856 lbs	938 lbs	69 lbs	189 lbs	69 lbs	
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	7149 lbs	5583 lbs	7149 lbs	7517 lbs	5583 lbs	7517 lbs	2090 lbs	5583 lbs	2090 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.39 ft	0.39 ft	0.39 ft	0.39 ft	0.39 ft	0.39 ft	0.39 ft	0.39 ft	0.39 ft	
f _{min}	278.2 psf	217.5 psf	278.2 psf	291.6 psf	217.5 psf	291.6 psf	81.4 psf	217.5 psf	81.4 psf	
f _{max}	278.8 psf	217.5 psf	278.8 psf	294.1 psf	217.5 psf	294.1 psf	81.5 psf	217.5 psf	81.5 psf	

Maximum Bearing Pressure = 294 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 28in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 28in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.783 k	Maximum Axial Load = 3.718 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>51%</u>	Utilization = <u>50%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.347 k 12.808 k 7.421 k <u>18%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 36.30 in Allowable Story Drift for All Other Structures, $\Delta = \{$ $0.020h_{sx}$ 0.726 in Max Drift, $\Delta_{MAX} =$ 0.034 in

N/A

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Not Used

Weak Axis: 3.4.14

$$L_b = 120$$
 $J = 0.432$
211.117

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.6$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.4 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$
 $52 = 46$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_L St =$ 25.1 ksi $lx = 897074 \text{ mm}^4$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{rcl}
2.155 & \text{in}^4 \\
y & & 41.015 & \text{mm} \\
\text{Sy} & & & & & & \\
\end{array}$$

$$Sx = 1.335 \text{ in}^3$$

 $M_{max}St = 2.788 \text{ k-ft}$

 $\phi F_L W k =$ 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$Sy = 0.599 \text{ in}^3$$

 $M_{max}Wk = 1.152 \text{ k-ft}$

Compression

3.4.9

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y F c y$$

$$\varphi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

41.32 kips $P_{max} =$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b =$ 88.9 in J = 1.08 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

29.2

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$\begin{array}{ccc}
1 - & & \\
1.6Dp & & \\
S1 = & & 12.2 \\
& & k_1Bp
\end{array}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

3.4.16

 $\phi F_L =$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

 $\phi F_L =$

Compression

3.4.9

b/t =16.2 S1 =12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 58.55 \text{ kips}$$

18.1

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: 3.4.14

24.8 in $L_b =$ 0.942 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = 14^{\circ}$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$φF_L$$
= 1.3 $φyFcy$
 $φF_L$ = 43.2 ksi

77.3

S2 =

$$\phi F_L St = 28.2 \text{ ksi}$$
 $1x = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $5x = 0.621 \text{ in}^3$

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{by}{\theta_b} 1.3Fc}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

1.460 k-ft

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $M_{max}St =$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10
$$Rb/t = 0.0$$

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14	<u>Weak Axis:</u> 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*]$	$\sqrt{((\text{LbSc})/(\text{Cb}^*\sqrt{(\text{lyJ})/2}))]} \qquad \phi F_L = \phi b[\text{Bc-1.6Dc}^*\sqrt{((\text{LbSc})/(\text{Cb}^*\sqrt{(\text{lyJ})/2}))]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$lx = 279836 \text{ mm}^4$$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.8$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 1.03 \text{ in}^2$$

$$7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1 Not Used N/A for Weak Direction $\phi F_L =$ 38.9 ksi 3.4.18

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

3.4.7 λ = 1.11734 0.81 in Bc-Fcy $S1^* = \frac{DC}{1.6Dc^*}$ S1^{*} = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_{L} = 18.9268 \text{ ksi}$

$$\begin{array}{lll} \phi F_L = & 18.9268 \text{ ksi} \\ & \textbf{3.4.9} \\ & b/t = & 24.5 \\ & S1 = & 12.21 \text{ (See } 3.4.16 \text{ above for formula)} \\ & S2 = & 32.70 \text{ (See } 3.4.16 \text{ above for formula)} \\ & \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ & \phi F_L = & 28.2 \text{ ksi} \\ & b/t = & 24.5 \\ & S1 = & 12.21 \\ & S2 = & 32.70 \\ & \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ & \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-73.997	-73.997	0	0
2	M14	٧	-73.997	-73.997	0	0
3	M15	V	-118.396	-118.396	0	0
4	M16	V	-118.396	-118.396	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	170.194	170.194	0	0
2	M14	V	131.716	131.716	0	0
3	M15	V	73.997	73.997	0	0
4	M16	V	73 997	73 997	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	335.906	2	1173.021	1	1.056	1	.005	1	0	1	Ó	1
2		min	-451.218	3	-1201.498	3	.039	15	0	15	0	1	0	1
3	N7	max	.033	9	1284.528	1	261	15	0	15	0	1	0	1
4		min	091	2	-334.283	3	-7.671	1	016	1	0	1	0	1
5	N15	max	.023	9	3782.638	1	0	9	0	9	0	1	0	1
6		min	-1.225	2	-1146.303	3	0	14	0	14	0	1	0	1
7	N16	max	1321.393	2	3924.589	1	0	3	0	3	0	1	0	1
8		min	-1425.808	3	-3941.356	3	0	2	0	2	0	1	0	1
9	N23	max	.033	9	1284.528	1	7.671	1	.016	1	0	1	0	1
10		min	091	2	-334.283	3	.261	15	0	15	0	1	0	1
11	N24	max	335.906	2	1173.021	1	039	15	0	15	0	1	0	1
12		min	-451.218	3	-1201.498	3	-1.056	1	005	1	0	1	0	1
13	Totals:	max	1991.799	2	12622.325	1	0	9						
14		min	-2328.874	3	-8159.223	3	0	14						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	_LC_		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	84.096	1_	529.796	1	-4.45	15	0	3	.2	1	0	1
2			min	2.758	15	-618.592	3	-136.268	1	014	1	.007	15	0	3
3		2	max	84.096	1	371.065	1	-3.423	15	0	3	.066	1	.585	3
4			min	2.758	15	-435.239	3	-104.752	1	014	1	.002	15	5	1
5		3	max	84.096	1	212.334	1	-2.395	15	0	3	0	3	.967	3
6			min	2.758	15	-251.885	3	-73.235	1	014	1	033	1	825	1
7		4	max	84.096	1	53.603	1	-1.368	15	0	3	003	12	1.145	3
8			min	2.758	15	-68.532	3	-41.718	1	014	1	097	1	972	1
9		5	max	84.096	1	114.821	3	34	15	0	3	004	12	1.119	3
10			min	2.758	15	-105.128	1	-10.202	1	014	1	126	1	944	1
11		6	max	84.096	1	298.174	3	21.315	1	0	3	004	15	.89	3
12			min	2.758	15	-263.859	1	.298	12	014	1	119	1	739	1
13		7	max	84.096	1	481.527	3	52.832	1	0	3	003	15	.457	3
14			min	2.758	15	-422.59	1	1.326	12	014	1	078	1	357	1
15		8	max	84.096	1	664.881	3	84.348	1	0	3	0	10	.2	1
16			min	2.758	15	-581.321	1	2.353	12	014	1	002	3	18	3
17		9	max	84.096	1	848.234	3	115.865	1	0	3	.109	1	.934	1
18			min	2.758	15	-740.052	1	3.38	12	014	1	.002	12	-1.021	3
19		10	max	84.096	1	898.783	1	-4.408	12	.014	1	.255	1	1.845	1
20			min	2.758	15	-1031.587	3	-147.381	1	0	3	.006	12	-2.065	3
21		11	max	84.096	1	740.052	1	-3.38	12	.014	1	.109	1	.934	1
22			min	2.758	15	-848.234	3	-115.865	1	0	3	.002	12	-1.021	3
23		12	max	84.096	1	581.321	1	-2.353	12	.014	1	0	10	.2	1
24			min	2.758	15	-664.881	3	-84.348	1	0	3	002	3	18	3
25		13	max	84.096	1	422.59	1	-1.326	12	.014	1	003	15	.457	3
26			min	2.758	15	-481.527	3	-52.832	1	0	3	078	1	357	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
27		14	max	84.096	1	263.859	1	298	12	.014	1	004	15	.89	3
28			min	2.758	15	-298.174	3	-21.315	1	0	3	119	1	739	1
29		15	max	84.096	1	105.128	1	10.202	1	.014	1	004	12	1.119	3
30			min	2.758	15	-114.821	3	.34	15	0	3	126	1	944	1
31		16	max	84.096	1	68.532	3	41.718	1	.014	1	003	12	1.145	3
32			min	2.758	15	-53.603	1	1.368	15	0	3	097	1	972	1
33		17	max	84.096	1	251.885	3	73.235	1	.014	1	0	3	.967	3
34			min	2.758	15	-212.334	1	2.395	15	0	3	033	1	825	1
35		18	max	84.096	1	435.239	3	104.752	1	.014	1	.066	1	.585	3
36			min	2.758	15	-371.065	1	3.423	15	0	3	.002	15	5	1
37		19	max	84.096	1	618.592	3	136.268	1	.014	1	.2	1	0	1
38			min	2.758	15	-529.796	1	4.45	15	0	3	.007	15	0	3
39	M14	1	max	39.21	1	560.874	1	-4.588	15	.008	3	.228	1	0	1
40			min	1.288	15	-488.541	3	-140.484	1	012	1	.007	15	0	3
41		2	max	39.21	1	402.143	1	-3.56	15	.008	3	.089	1	.465	3
42			min	1.288	15		3	-108.968	1	012	1	.003	15	535	1
43		3	max	39.21	1	243.412	1	-2.532	15	.008	3	.001	3	.773	3
44			min	1.288	15			-77.451	1	012	1	014	1	894	1
45		4	max	39.21	1	84.681	1	-1.505	15	.008	3	002	12	.925	3
46			min	1.288	15	-66.742	3	-45.934	1	012	1	083	1	-1.076	1
47		5	max	39.21	1	73.858	3	477	15	.008	3	004	12	.922	3
48			min	1.288	15	-74.05	1	-14.418	1	012	1	116	1	-1.082	1
49		6	max	39.21	1	214.458	3	17.099	1	.008	3	004	15	.761	3
50			min	1.288	15	-232.781	1	.166	12	012	1	115	1	911	1
51		7	max	39.21	1	355.058	3	48.615	1	.008	3	003	15	.445	3
52		,	min	1.288	15	-391.513	1	1.193	12	012	1	078	1	565	1
53		8	max	39.21	1	495.658	3	80.132	1	.008	3	0	10	0	15
54			min	1.288	15		1	2.22	12	012	1	007	1	049	2
55		9	max	39.21	1	636.257	3	111.649	1	.008	3	.1	1	.658	1
56		J	min	1.288	15	-708.975	1	3.248	12	012	1	.002	12	657	3
57		10	max	39.21	1	867.706	1	-4.275	12	.012	1	.241	1	1.534	1
58			min	1.288	15	-776.857	3	-143.165	1	011	2	.006	12	-1.442	3
59		11	max	39.21	1	708.975	1	-3.248	12	.012	1	.1	1	.658	1
60			min	1.288	15	-636.257	3	-111.649		008	3	.002	12	657	3
61		12	max	39.21	1	550.244	1	-2.22	12	.012	1	0	10	0	15
62		12	min	1.288	15	-495.658	3	-80.132	1	008	3	007	1	049	2
63		13	max	39.21	1	391.513	1	-1.193	12	.012	1	003	15	.445	3
64		10	min	1.288	15			-48.615	1	008	3	078	1	565	1
65		14	max	39.21	1	232.781	1	166	12	.012	1	004	15	.761	3
66		17	min	1.288	15	-214.458	3	-17.099	1	008	3	115	1	911	1
67		15	max		1		1		1	.012	1	004	12	.922	3
68		10	min	1.288	15	-73.858	3	.477	15	008	3	116	1	-1.082	1
69		16	max	39.21	1	66.742	3	45.934	1	.012	1	002	12	.925	3
70		10	min	1.288	15	-84.681	1	1.505	15	008	3	083	1	-1.076	1
71		17	max	39.21	1	207.342	3	77.451	1	.012	1	.001	3	.773	3
72		17	min	1.288	15	-243.412	1	2.532	15	008	3	014	1	894	1
73		10	max		1	347.942	3	108.968	1	.012	1	.089	1	.465	3
74		10		1.288	15	-402.143		3.56	15	008	3	.003	15	535	1
		10	min					140.484							-
75 76		19	max min	39.21 1.288	1 1 5	488.541	3	4.588	1 15	.012 008	3	.228 .007	15	<u> </u>	3
77	M15	1		-1.353	15	<u>-560.874</u> 644.121		-4.587	15	.012	1	.228	1	0	2
	IVI 13		max		15		1							0	
78		2	min	<u>-41.144</u>	1_	-272.322 460.724	3	-140.468	1 1 5	007	3	.007	15		3
79			max		15	460.724	1	-3.559	15 1	.012	1	.089	1	.26	1
80		2	min	-41.144	1 1 5	-195.855	3	-108.952	_	007	3	.003 0	15	614	
81 82		3	max	-1.353	15	277.327	1	-2.532	15 1	.012	1	014	3	.435	3
		4	min	<u>-41.144</u>	1 1 5	-119.387	3	-77.435	-	007	3			-1.024	1
83		<u> </u> 4	max	-1.353	15	93.93	_1_	-1.504	15	.012	1	002	12	.525	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-41.144	1	-42.92	3	-45.918	1	007	3	083	1	-1.23	1
85		5	max	-1.353	15	33.548	3	477	15	.012	1	004	12	.531	3
86			min	-41.144	1	-89.468	1	-14.402	1	007	3	116	1	-1.233	1
87		6	max	-1.353	15	110.016	3	17.115	1	.012	1	004	15	.451	3
88			min	-41.144	1	-272.865	1	.196	12	007	3	115	1	-1.031	1
89		7	max	-1.353	15	186.483	3	48.632	1	.012	1	003	15	.286	3
90			min	-41.144	1	-456.262	1	1.223	12	007	3	078	1	626	1
91		8	max	-1.353	15	262.951	3	80.148	1	.012	1	0	10	.036	3
92		T .	min	-41.144	1	-639.659	1	2.25	12	007	3	007	1	017	1
93		9	max	-1.353	15	339.419	3	111.665	1	.012	1	.1	1	.795	1
94		1 3	min	-41.144	1	-823.056	1	3.278	12	007	3	.002	12	298	3
95		10		-1.353	15	1006.453	1	-4.305	12	.007	3	.241	1	1.812	1
96		10	max		1	-415.886	3	-143.181	1		1	.006	12	718	3
		4.4	min	-41.144						012	_				
97		11	max	-1.353	15	823.056	1	-3.278	12	.007	3	.1	1_	.795	1
98		40	min	-41.144	1_	-339.419	3	-111.665	1	012	1	.002	12	298	3
99		12	max	-1.353	15	639.659	1	-2.25	12	.007	3	0	<u>10</u>	.036	3
100			min	-41.144	1_	-262.951	3	-80.148	1	012	1	007	<u>1</u>	017	1
101		13	max	-1.353	15	456.262	1_	-1.223	12	.007	3	003	15	.286	3
102			min	-41.144	1	-186.483	3	-48.632	1	012	1	078	1_	626	1
103		14	max	-1.353	15	272.865	1	196	12	.007	3	004	<u>15</u>	.451	3
104			min	-41.144	1	-110.016	3	-17.115	1	012	1	115	1	-1.031	1
105		15	max	-1.353	15	89.468	1	14.402	1	.007	3	004	12	.531	3
106			min	-41.144	1	-33.548	3	.477	15	012	1	116	1	-1.233	1
107		16	max	-1.353	15	42.92	3	45.918	1	.007	3	002	12	.525	3
108			min	-41.144	1	-93.93	1	1.504	15	012	1	083	1	-1.23	1
109		17	max	-1.353	15	119.387	3	77.435	1	.007	3	0	3	.435	3
110			min	-41.144	1	-277.327	1	2.532	15	012	1	014	1	-1.024	1
111		18	max	-1.353	15	195.855	3	108.952	1	.007	3	.089	1	.26	3
112			min	-41.144	1	-460.724	1	3.559	15	012	1	.003	15	614	1
113		19	max	-1.353	15	272.322	3	140.468	1	.007	3	.228	1	0	2
114		10	min	-41.144	1	-644.121	1	4.587	15	012	1	.007	15	0	3
115	M16	1	max	-2.915	15	613.434	1	-4.455	15	.013	1	.201	1	0	1
116	IVITO		min	-88.778	1	-254.138	3	-136.452	1	009	3	.007	15	0	3
117		2		-2.915	15	430.037	1	-3.427	15	.013	1	.067	1	.24	3
118			max		1		3		1		3				1
		2	min	-88.778	_	-177.67		-104.936 -2.4		009		.002	15	58	3
119		3	max	-2.915	15	246.64	1		15	.013	1	0	12	.395	
120		1	min	-88.778	1_	-101.203	3	-73.419	1_	009	3	032	1_	956	1
121		4	max	-2.915	15	63.243	1	-1.372	15	.013	1	003	12	.465	3
122		-	min	-88.778	1_	-24.735	3	-41.902	1_	009	3	096	1_	-1.128	1
123		5	max	-2.915	15	51.732	3	345	15	.013	1	004	12	.45	3
124			min	-88.778	1_	-120.154		-10.386	1	009	3	125	1_	-1.096	1
125		6	max	-2.915	15	128.2	3	21.131	1	.013	1	004	<u>15</u>	.35	3
126			min	-88.778	1	-303.552	1	.398	12	009	3	119	_1_	861	1
127		7	max		15	204.668	3	52.647	1	.013	1	003	15	.165	3
128			min	-88.778	1	-486.949	1	1.426	12	009	3	078	1_	422	1
129		8	max	-2.915	15	281.135	3	84.164	1	.013	1	0	10	.221	1
130			min	-88.778	1	-670.346	1	2.453	12	009	3	002	1	105	3
131		9	max	-2.915	15	357.603	3	115.681	1	.013	1	.109	1_	1.068	1
132			min	-88.778	1	-853.743	1	3.48	12	009	3	.002	12	46	3
133		10	max	-2.915	15	1037.14	1	-4.508	12	.013	1	.255	1	2.119	1
134			min	-88.778	1	-434.071	3	-147.197		009	3	.007	12	9	3
135		11	max	-2.915	15	853.743	1	-3.48	12	.009	3	.109	1	1.068	1
136			min	-88.778	1	-357.603	3	-115.681	1	013	1	.002	12	46	3
137		12	max	-2.915	15	670.346	1	-2.453	12	.009	3	0	10	.221	1
138		12	min	-88.778	1	-281.135	3	-84.164	1	013	1	002	1	105	3
139		13	max	-2.915	15	486.949	1	-1.426	12	.009	3	003	15	.165	3
140		13	min	-88.778	1	-204.668		-52.647	1	013	1	078	1	422	1
140			111111	-00.110		~204.000	3	-02.047		013		070		422	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

141		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
143			14	max	-2.915	15	303.552	_	398	12		3			.35	3
144				min	-88.778	1	-128.2	3		1		1	119			
146			15	max		15						3		12		3
146	144			min		1	-51.732	3	.345	15	013	1	125	1	-1.096	1
147	145		16	max	-2.915	15	24.735	3		1	.009	3	003	12	.465	3
148	146			min	-88.778	1	-63.243		1.372	15	013	1	096		-1.128	_
149	147		17	max	-2.915	15	101.203	3	73.419	1	.009	3	0	12	.395	3
150	148			min	-88.778	1	-246.64	1	2.4	15	013	1	032	1	956	1
151	149		18	max		15		3	104.936	1	.009	3	.067	1	.24	3
152	150			min	-88.778	1	-430.037	1	3.427	15	013	1	.002	15	58	1
153	151		19	max	-2.915	15	254.138	3	136.452	1	.009	3	.201	1	0	1
155	152			min	-88.778	1	-613.434	1	4.455	15	013	1	.007	15	0	3
154	153	M2	1	max	1153.033	1	2.28	4	1.196	1	0	3	0	3	0	1
155	154			min	-1094.6	3		15	.039	15	0	1	0	1	0	1
156			2	max		1						3		1		15
157						3				15			0	15		
158			3	max	1153.69	1					0	3	0		0	15
159														15		
160			4									3	_			
161															_	
162			5			_						-	_			
163				1											_	
164			6										_			
165																
166			7										_			
167															_	
168			0									_				-
169			0													
170			0													
171			9					_							_	
172			10			_						_	_			
173			10	1												
174			11													
175																
176			40										_			
177 13 max 1156.974 1 2.097 4 1.196 1 0 3 .003 1 001 15 178 min -1091.644 3 .494 15 .039 15 0 1 0 15 006 4 179 14 max 1157.302 1 2.082 4 1.196 1 0 3 .003 1 001 15 180 min -1091.388 3 .491 15 .039 15 0 1 0 15 006 4 181 15 mx 1157.631 1 2.066 4 1.196 1 0 3 .004 1 002 15 182 min -1091.951 3 .487 15 .039 15 0 1 0 15 007 4 183 16 mx 1157.959 1			12													
178			40													
179 14 max 1157.302 1 2.082 4 1.196 1 0 3 .003 1 001 15 180 min -1091.398 3 .491 15 .039 15 0 1 0 15 006 4 181 15 max 1157.631 1 2.066 4 1.196 1 0 3 .004 1 002 15 182 min -1091.151 3 .487 15 .039 15 0 1 0 15 .007 4 183 16 max 1157.959 1 2.051 4 1.196 1 0 3 .004 1 002 15 184 min -1090.905 3 .483 15 .039 15 0 1 0 15 007 4 185 17 max 1158.288 1			13													
180												_				
181 15 max 1157.631 1 2.066 4 1.196 1 0 3 .004 1 002 15 182 min -1091.151 3 .487 15 .039 15 0 1 0 15 007 4 183 16 max 1157.959 1 2.051 4 1.196 1 0 3 .004 1 002 15 184 min -1090.905 3 .483 15 .039 15 0 1 0 15 007 4 185 17 max 1158.288 1 2.036 4 1.196 1 0 3 .004 1 002 15 186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1			14													
182 min -1091.151 3 .487 15 .039 15 0 1 0 15 007 4 183 16 max 1157.959 1 2.051 4 1.196 1 0 3 .004 1 002 15 184 min -1090.905 3 .483 15 .039 15 0 1 0 15 007 4 185 17 max 1158.288 1 2.036 4 1.196 1 0 3 .004 1 002 15 186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476						3							_			
183 16 max 1157.959 1 2.051 4 1.196 1 0 3 .004 1 002 15 184 min -1090.905 3 .483 15 .039 15 0 1 0 15 007 4 185 17 max 1158.288 1 2.036 4 1.196 1 0 3 .004 1 002 15 186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476 15 .039 15 0 1 0 15 008 4 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 <td< td=""><td></td><td></td><td>15</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			15			1										
184 min -1090.905 3 .483 15 .039 15 0 1 0 15 007 4 185 17 max 1158.288 1 2.036 4 1.196 1 0 3 .004 1 002 15 186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476 15 .039 15 0 1 0 15 008 4 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473												_	_			-
185 17 max 1158.288 1 2.036 4 1.196 1 0 3 .004 1 002 15 186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476 15 .039 15 0 1 0 15 002 15 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473 15 .039 15 0 1 0 15 009 4 191 M3 1 max 312.934 2 8.078 4 .014 1 0			16													
186 min -1090.659 3 .48 15 .039 15 0 1 0 15 008 4 187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476 15 .039 15 0 1 0 15 008 4 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473 15 .039 15 0 1 0 15 002 15 191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>													_			
187 18 max 1158.616 1 2.021 4 1.196 1 0 3 .004 1 002 15 188 min -1090.412 3 .476 15 .039 15 0 1 0 15 008 4 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473 15 .039 15 0 1 0 15 002 15 191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0			17													
188 min -1090.412 3 .476 15 .039 15 0 1 0 15 008 4 189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473 15 .039 15 0 1 0 15 009 4 191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>-</td>						3								15		-
189 19 max 1158.945 1 2.005 4 1.196 1 0 3 .005 1 002 15 190 min -1090.166 3 .473 15 .039 15 0 1 0 15 009 4 191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536			18	max		1					0	3				15
190 min -1090.166 3 .473 15 .039 15 0 1 0 15 009 4 191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 <						3		15						15		
191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3	189		19	max		1	2.005				0	3	.005		002	15
191 M3 1 max 312.934 2 8.078 4 .014 1 0 3 0 1 .009 4 192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3	190			min	-1090.166	3	.473	15	.039	15	0		0	15	009	4
192 min -427.376 3 1.899 15 0 15 0 1 0 15 .002 15 193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3		M3	1	max	312.934	2					0	3	0	1		4
193 2 max 312.764 2 7.305 4 .014 1 0 3 0 1 .005 4 194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3						3				15			0	15		15
194 min -427.504 3 1.718 15 0 15 0 1 0 15 .001 15 195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3			2									3	0			
195 3 max 312.594 2 6.533 4 .014 1 0 3 0 1 .003 2 196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3										15				15		
196 min -427.631 3 1.536 15 0 15 0 1 0 15 0 3			3						.014			3				
			4	_								3				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-427.759	3	1.355	15	0	15	0	1	0	15	001	3
199		5	max	312.253	2	4.988	4	.014	1	0	3	0	1	0	15
200			min	-427.887	3	1.173	15	0	15	0	1	0	15	003	3
201		6	max	312.082	2	4.215	4	.014	1	0	3	0	1	001	15
202			min	-428.015	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	311.912	2	3.443	4	.014	1	0	3	0	1	001	15
204			min	-428.142	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	311.742	2	2.671	4	.014	1	0	3	0	1	002	15
206			min	-428.27	3	.628	15	0	15	0	1	0	15	007	4
207		9	max	311.571	2	1.898	4	.014	1	0	3	0	1	002	15
208			min	-428.398	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	311.401	2	1.126	4	.014	1	0	3	0	1	002	15
210			min	-428.526	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	311.231	2	.411	2	.014	1	0	3	0	1	002	15
212			min	-428.653	3	.019	3	0	15	0	1	0	15	009	4
213		12	max	311.06	2	098	15	.014	1	0	3	0	1	002	15
214			min	-428.781	3	433	3	0	15	0	1	0	15	009	4
215		13	max	310.89	2	279	15	.014	1	0	3	0	1	002	15
216			min	-428.909	3	-1.192	4	0	15	0	1	0	15	009	4
217		14	max	310.72	2	461	15	.014	1	0	3	0	1	002	15
218			min	-429.037	3	-1.964	4	0	15	0	1	0	15	008	4
219		15	max	310.549	2	643	15	.014	1	0	3	0	1	002	15
220			min	-429.164	3	-2.736	4	0	15	0	1	0	15	007	4
221		16	max	310.379	2	824	15	.014	1	0	3	0	1	001	15
222			min	-429.292	3	-3.509	4	0	15	0	1	0	15	006	4
223		17	max	310.209	2	-1.006	15	.014	1	0	3	0	1	001	15
224			min	-429.42	3	-4.281	4	0	15	0	1	0	15	004	4
225		18	max	310.038	2	-1.187	15	.014	1	0	3	0	1	0	15
226			min	-429.548	3	-5.054	4	0	15	0	1	0	15	002	4
227		19	max	309.868	2	-1.369	15	.014	1	0	3	0	1	0	1
228			min	-429.676	3	-5.826	4	0	15	0	1	0	15	0	1
229	M4	1	max	1281.461	1	0	1	261	15	0	1	0	1	0	1
230			min	-336.583	3	0	1	-7.99	1	0	1	0	10	0	1
231		2	max	1281.632	1	0	1	261	15	0	1	0	12	0	1
232			min	-336.455	3	0	1	-7.99	1	0	1	0	1	0	1
233		3	max	1281.802	1_	0	1	261	15	0	1	0	15	0	1
234			min	-336.328	3	0	1	-7.99	1	0	1	002	1	0	1
235		4	max	1281.972	1	0	1	261	15	0	1	0	15	0	1
236			min	-336.2	3	0	1	-7.99	1	0	1	003	1	0	1
237		5	max	1282.143	1_	0	1	261	15	0	1	0	15	0	1
238			min	-336.072	3	0	1	-7.99	1	0	1	004	1	0	1
239		6	max	1282.313	_1_	0	1	261	15	0	1	0	15	0	1
240			min	-335.944	3	0	1	-7.99	1	0	1	004	1	0	1
241		7	max	1282.484	1	0	1	261	15	0	1	0	15	0	1
242			min	-335.817	3	0	1	-7.99	1	0	1	005	1	0	1
243		8	max	1282.654	1_	0	1	261	15	0	1	0	15	0	1
244			min	-335.689	3	0	1	-7.99	1	0	1	006	1	0	1
245		9		1282.824	1	0	1	261	15	0	1	0	15	0	1
246			min	-335.561	3	0	1	-7.99	1	0	1	007	1	0	1
247		10		1282.995	_1_	0	1	261	15	0	1	0	15	0	1
248				-335.433	3	0	1	-7.99	1	0	1	008	1	0	1
249		11	max	1283.165	1_	0	1	261	15	0	1	0	15	0	1
250			min	-335.305	3	0	1	-7.99	1	0	1	009	1	0	1
251		12	max	1283.335	1	0	1	261	15	0	1	0	15	0	1
252			min	-335.178	3	0	1	-7.99	1	0	1	01	1	0	1
253		13	max	1283.506	1	0	1	261	15	0	1	0	15	0	1
254			min	-335.05	3	0	1	-7.99	1	0	1	011	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14		1283.676	_1_	0	1	261	15	0	_1_	0	<u>15</u>	0	1
256			min	-334.922	3	0	1	-7.99	1	0	1_	012	1_	0	1
257		15	max	1283.846	<u>1</u>	0	1_	261	15	0	<u>1</u>	0	<u>15</u>	0	1
258			min	-334.794	3	0	1	-7.99	1	0	1	013	1	0	1
259		16	max	1284.017	1	0	1	261	15	0	1	0	15	0	1
260			min	-334.667	3	0	1	-7.99	1	0	1	014	1	0	1
261		17	max	1284.187	1	0	1	261	15	0	1	0	15	0	1
262			min	-334.539	3	0	1	-7.99	1	0	1	015	1	0	1
263		18	max	1284.357	1	0	1	261	15	0	1	0	15	0	1
264			min	-334.411	3	0	1	-7.99	1	0	1	015	1	0	1
265		19		1284.528	1	0	1	261	15	Ö	1	0	15	0	1
266			min	-334.283	3	0	1	-7.99	1	0	1	016	1	0	1
267	M6	1	max	3712.13	1	2.751	2	0	1	0	1	0	1	0	1
268	IVIO	<u> </u>	min	-3585.995	3	.183	3	0	1	0	1	0	1	0	1
269		2		3712.459		2.739	2	0	1	0	1	0	1	0	3
270			min	-3585.749	3	.174	3	0	1	0	1	0	1	0	2
271		3		3712.787	<u> </u>	2.727	2	0	1	0	1	0	1	0	3
272		3		-3585.502	3	.165	3	0	1	0	1	0	1	001	2
		1	min		_				1		1	_	_		
273		4		3713.116	1_	2.715	2	0		0		0	1_	0	3
274		_	min	-3585.256	3	.156	3	0	1	0	1_	0	1_	002	2
275		5		3713.444	1_	2.703	2	0	1_	0	_1_	0	1_	0	3
276			min	-3585.01	3	.147	3	0	1	0	1	0	1_	002	2
277		6		3713.773	1_	2.692	2	0	1	0	1	0	_1_	0	3
278			min	-3584.763	3	.138	3	0	1	0	1	0	1_	003	2
279		7	max	3714.101	_1_	2.68	2	0	1	0	_1_	0	_1_	0	3
280			min	-3584.517	3	.129	3	0	1	0	1	0	1_	004	2
281		8	max	3714.429	_1_	2.668	2	0	1	0	1	0	1_	0	3
282			min	-3584.271	3	.12	3	0	1	0	1	0	1	004	2
283		9	max	3714.758	1	2.656	2	0	1	0	1	0	1	0	3
284			min	-3584.024	3	.111	3	0	1	0	1	0	1	005	2
285		10	max	3715.086	1	2.644	2	0	1	0	1	0	1	0	3
286			min	-3583.778	3	.102	3	0	1	0	1	0	1	005	2
287		11	max	3715.415	1	2.632	2	0	1	0	1	0	1	0	3
288			min	-3583.532	3	.093	3	0	1	0	1	0	1	006	2
289		12	max	3715.743	1	2.62	2	0	1	0	1	0	1	0	3
290			min	-3583.285	3	.084	3	0	1	0	1	0	1	007	2
291		13		3716.072	1	2.608	2	0	1	0	1	0	1	0	3
292			min	-3583.039	3	.076	3	0	1	0	1	0	1	007	2
293		14	max		1	2.596	2	0	1	0	1	0	1	0	3
294			min	-3582.793	3	.067	3	0	1	0	1	0	1	008	2
295		15		3716.729	1	2.585	2	0	1	0	1	0	1	0	3
296			min		3	.058	3	0	1	0	1	0	1	008	2
297		16		3717.057		2.573	2	0	1	0	1	0	1	0	3
298		10		-3582.3	3	.049	3	0	1	0	1	0	1	009	2
299		17		3717.385	<u> </u>	2.561	2	0	1	0	1	0	1	009 0	3
300		17	min		3	.04	3	0	1	0	1	0	1	009	2
		40							1		1		1		3
301		18		3717.714 -3581.807	<u>1</u> 3	2.549 .031	3	0	1	0	1	0	1	01	2
		40	min		_					_	_		_		
303		19		3718.042	1	2.537	2	0	1	0	1	0	1_	0	3
304	N 47	4	min		3	.022	3	0	1	0	1_	0	1_	011	2
305	<u>M7</u>	1		1257.795	2	8.118	4	0	1	0	_1_	0	1_	.011	2
306			min		3	1.905	15	0	1	0	1	0	1_	0	3
307		2		1257.624	2	7.345	4	0	1	0	1	0	_1_	.008	2
308			min		3	1.723	15	0	1	0	1	0	1_	001	3
309		3		1257.454	2	6.573	4	0	1	0	1	0	1_	.005	2
310			min		3	1.542	15	0	1	0	1	0	1	003	3
311		4	max	1257.284	2	5.8	4	0	1	0	1	0	1	.003	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
312			min	-1344.953	3	1.36	15	0	1	0	1	0	1	004	3
313		5	max	1257.113	2	5.028	4	0	1	0	1	0	1	.001	2
314			min	-1345.081	3	1.178	15	0	1	0	1	0	1	005	3
315		6	max	1256.943	2	4.256	4	0	1	0	1	0	1	0	2
316			min	-1345.209	3	.997	15	0	1	0	1	0	1	006	3
317		7	max	1256.772	2	3.483	4	0	1	0	1	0	1	001	15
318			min	-1345.337	3	.815	15	0	1	0	1	0	1	007	3
319		8	max	1256.602	2	2.711	4	0	1	0	1	0	1	002	15
320			min	-1345.464	3	.634	15	0	1	0	1	0	1	007	4
321		9	max	1256.432	2	1.991	2	0	1	0	1	0	1	002	15
322			min	-1345.592	3	.378	12	0	1	0	1	0	1	008	4
323		10	max	1256.261	2	1.389	2	0	1	0	1	0	1	002	15
324			min	-1345.72	3	.054	3	0	1	0	1	0	1	009	4
325		11	max	1256.091	2	.787	2	0	1	0	1	0	1	002	15
326			min	-1345.848	3	398	3	0	1	0	1	0	1	009	4
327		12	max	1255.921	2	.185	2	0	1	0	1	0	1	002	15
328			min	-1345.975	3	849	3	0	1	0	1	0	1	009	4
329		13	max	1255.75	2	274	15	0	1	0	1	0	1	002	15
330			min	-1346.103	3	-1.301	3	0	1	0	1	0	1	009	4
331		14	max	1255.58	2	456	15	0	1	0	1	0	1	002	15
332			min	-1346.231	3	-1.924	4	0	1	0	1	0	1	008	4
333		15	max	1255.41	2	637	15	0	1	0	1	0	1	002	15
334			min	-1346.359	3	-2.696	4	0	1	0	1	0	1	007	4
335		16	max	1255.239	2	819	15	0	1	0	1	0	1	001	15
336			min	-1346.486	3	-3.469	4	0	1	0	1	0	1	006	4
337		17	max	1255.069	2	-1	15	0	1	0	1	0	1	0	15
338			min	-1346.614	3	-4.241	4	0	1	0	1	0	1	004	4
339		18	max	1254.899	2	-1.182	15	0	1	0	1	0	1	0	15
340			min	-1346.742	3	-5.013	4	0	1	0	1	0	1	002	4
341		19	max	1254.728	2	-1.364	15	0	1	0	1	0	1	0	1
342			min	-1346.87	3	-5.786	4	0	1	0	1	0	1	0	1
343	M8	1	max	3779.572	1	0	1	0	1	0	1	0	1	0	1
344			min	-1148.603	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3779.742	1	0	1	0	1	0	1	0	1	0	1
346			min	-1148.475	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3779.913	1	0	1	0	1	0	1	0	1	0	1
348			min	-1148.347	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3780.083	1	0	1	0	1	0	1	0	_1_	0	1
350			min	-1148.22	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3780.253	1	0	1	0	1	0	1	0	1_	0	1
352				-1148.092	3	0	1	0	1	0	1	0	1	0	1
353		6	max	3780.424	1	0	1	0	1	0	1	0	_1_	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3780.594	1	0	1	0	1	0	1	0	1	0	1
356					3	0	1	0	1	0	1	0	1	0	1
357		8		3780.764	1_	0	1	0	1	0	1	0	_1_	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		3780.935	1	0	1	0	1	0	1	0	_1_	0	1
360				-1147.581	3	0	1	0	1	0	1	0	1	0	1
361		10		3781.105	1_	0	1_	0	1	0	1	0	1_	0	1
362					3	0	1	0	1	0	1	0	1	0	1
363		11		3781.275	1	0	1	0	1	0	1	0	_1_	0	1
364					3	0	1	0	1	0	1	0	1	0	1
365		12		3781.446		0	1	0	1	0	1	0	1	0	1
366				-1147.197	3	0	1	0	1	0	1	0	1	0	1
367		13	max	3781.616	1	0	1	0	1	0	1	0	1	0	1 1
368				-1147.07	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

.
: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
369		14	max	3781.787	1	0	1	0	1	0	1	0	1	0	1
370			min	-1146.942	3	0	1	0	1	0	1	0	1	0	1
371		15	max	3781.957	1_	0	1	0	1	0	1_	0	1	0	1
372			min		3	0	1	0	1	0	1	0	1	0	1
373		16	max	3782.127	_1_	0	1	0	1	0	1_	0	1	0	1
374			min	-1146.686	3	0	1	0	1	0	1	0	1	0	1
375		17	_	3782.298	_1_	0	1	0	1	0	_1_	0	1_	0	1
376				-1146.559	3	0	1	0	1	0	1_	0	1	0	1
377		18		3782.468	_1_	0	1	0	1	0	1_	0	1	0	1
378				-1146.431	3	0	1	0	1	0	1	0	1	0	1
379		19		3782.638	_1_	0	1	0	1	0	_1_	0	1	0	1
380				-1146.303	3_	0	1	0	1	0	1_	0	1	0	1
381	<u>M10</u>	1		1153.033	_1_	2.28	4	039	15	0	_1_	0	1_	0	1
382			min	-1094.6	3	.537	15	-1.196	1	0	3	0	3	0	1
383		2		1153.361	1_	2.265	4	039	15	0	1_	0	15	0	15
384			min	-1094.354	3	.534	15	-1.196	1	0	3	0	1	0	4
385		3	max		1	2.249	4	039	15	0	1	0	15	0	15
386				-1094.107	3_	.53	15	-1.196	1_	0	3	0	1	001	4
387		4		1154.018	_1_	2.234	4	039	15	0	1	0	15	0	15
388		_	min		3	.526	15	-1.196	1_	0	3	0	1	002	4
389		5		1154.346	1_	2.219	4	039	15	0	1_	0	15	0	15
390			min		3	.523	15	-1.196	1_	0	3	001	1_	002	4
391		6		1154.675	1	2.204	4	039	15	0	1	0	15	0	15
392		_	min		3	.519	15	-1.196	1_	0	3	001	1	002	4
393		7		1155.003	1	2.188	4	039	15	0	1	0	15	0	15
394			min	-1093.122	3	.516	15	-1.196	1_	0	3	002	1	003	4
395		8		1155.332	1_	2.173	4	039	15	0	1_	0	15	0	15
396			min		3	.512	15	-1.196	1_	0	3	002	1_	003	4
397		9	max		1_	2.158	4	039	15	0	1_	0	15	0	15
398		40	min		3	.508	15	-1.196	1_	0	3	002	1_	004	4
399		10		1155.989	1	2.143	4	039	15	0	1	0	15	001	15
400		4.4	min		3_	.505	15	-1.196	1_	0	3	002	1_	004	4
401		11		1156.317	1	2.127	4	039	15	0	1	0	15	001	15
402		40	min		3	.501	15	-1.196	1_	0	<u>3</u>	003	1_	005	4
403		12		1156.646	<u>1</u> 3	2.112	<u>4</u> 15	039 -1.196	<u>15</u>	0	3	003	15	001	15
404		13	min	-1091.89 1156.974	<u> </u>	.498 2.097	4	039	15	0	<u> </u>	0	15	005 001	15
406		13		-1091.644	3	.494	15	-1.196	1	0	3	003	1	006	4
407		14		1157.302	<u> </u>	2.082	4	039	15	0	<u> </u>	003 0	15	001	15
407		14		-1091.398	3	.491	15	-1.196	1	0	3	003	1	001	4
409		15		1157.631	<u> </u>	2.066	4	039	15	-	<u> </u>	0	15	002	15
410		13		-1091.151	3	.487	15	-1.196	1	0	3	004	1	007	4
411		16		1157.959		2.051	4	039	15	0	<u> </u>	0	15	002	15
412		10		-1090.905	3	.483	15	-1.196	1	0	3	004	1	002	4
413		17		1158.288		2.036	4	039	15	0	1	0	15	002	15
414		- 17		-1090.659	3	.48	15	-1.196	1	0	3	004	1	002	4
415		18		1158.616	1	2.021	4	039	15	0	1	0	15	002	15
416				-1090.412	3	.476	15	-1.196	1	0	3	004	1	008	4
417		19		1158.945	1	2.005	4	039	15	0	1	0	15	002	15
418				-1090.166	3	.473	15	-1.196	1	0	3	005	1	009	4
419	M11	1		312.934	2	8.078	4	0	15	0	1	0	15	.009	4
420				-427.376	3	1.899	15	014	1	0	3	0	1	.002	15
421		2		312.764	2	7.305	4	0	15	0	1	0	15	.005	4
422		_		-427.504	3	1.718	15	014	1	0	3	0	1	.001	15
423		3		312.594	2	6.533	4	0	15	0	1	0	15	.003	2
424				-427.631	3	1.536	15	014	1	0	3	0	1	0	3
425		4		312.423	2	5.76	4	0	15	0	1	0	15	0	2
		_						_				_			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-427.759	3	1.355	15	014	1	0	3	0	1	001	3
427		5	max	312.253	2	4.988	4	0	15	0	1	0	15	0	15
428			min	-427.887	3	1.173	15	014	1	0	3	0	1	003	3
429		6	max	312.082	2	4.215	4	0	15	0	1	0	15	001	15
430			min	-428.015	3	.992	15	014	1	0	3	0	1	004	4
431		7	max	311.912	2	3.443	4	0	15	0	1	0	15	001	15
432			min	-428.142	3	.81	15	014	1	0	3	0	1	006	4
433		8	max	311.742	2	2.671	4	0	15	0	1	0	15	002	15
434			min	-428.27	3	.628	15	014	1	0	3	0	1	007	4
435		9	max	311.571	2	1.898	4	0	15	0	1	0	15	002	15
436			min	-428.398	3	.447	15	014	1	0	3	0	1	008	4
437		10	max	311.401	2	1.126	4	0	15	0	1	0	15	002	15
438			min	-428.526	3	.265	15	014	1	0	3	0	1	009	4
439		11	max	311.231	2	.411	2	0	15	0	1	0	15	002	15
440			min	-428.653	3	.019	3	014	1	0	3	0	1	009	4
441		12	max	311.06	2	098	15	0	15	0	1	0	15	002	15
442			min	-428.781	3	433	3	014	1	0	3	0	1	009	4
443		13	max	310.89	2	279	15	0	15	0	1	0	15	002	15
444			min	-428.909	3	-1.192	4	014	1	0	3	0	1	009	4
445		14	max	310.72	2	461	15	0	15	0	1	0	15	002	15
446			min	-429.037	3	-1.964	4	014	1	0	3	0	1	008	4
447		15	max		2	643	15	0	15	0	1	0	15	002	15
448			min	-429.164	3	-2.736	4	014	1	0	3	0	1	007	4
449		16	max		2	824	15	0	15	0	1	0	15	001	15
450			min	-429.292	3	-3.509	4	014	1	0	3	0	1	006	4
451		17	max		2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-429.42	3	-4.281	4	014	1	0	3	0	1	004	4
453		18	max		2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-429.548	3	-5.054	4	014	1	0	3	0	1	002	4
455		19	max	309.868	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-429.676	3	-5.826	4	014	1	0	3	0	1	0	1
457	M12	1		1281.461	1	0	1	7.99	1	0	1	0	10	0	1
458			min	-336.583	3	0	1	.261	15	0	1	0	1	0	1
459		2		1281.632	1	0	1	7.99	1	0	1	0	1	0	1
460			min	-336.455	3	0	1	.261	15	0	1	0	12	0	1
461		3		1281.802	1	0	1	7.99	1	0	1	.002	1	0	1
462			min	-336.328	3	0	1	.261	15	0	1	0	15	0	1
463		4		1281.972	1	0	1	7.99	1	0	1	.003	1	0	1
464			min	-336.2	3	0	1	.261	15	0	1	0	15	0	1
465		5		1282.143	1	0	1	7.99	1	0	1	.004	1	0	1
466			min	-336.072	3	0	1	.261	15	0	1	0	15	0	1
467		6		1282.313	1	0	1	7.99	1	0	1	.004	1	0	1
468		Ť	min			0	1	.261	15	0	1	0	15	0	1
469		7		1282.484	1	0	1	7.99	1	0	1	.005	1	0	1
470			min	-335.817	3	0	1	.261	15	0	1	0	15	0	1
471		8		1282.654	1	0	1	7.99	1	0	1	.006	1	0	1
472			min		3	0	1	.261	15	0	1	0	15	0	1
473		9		1282.824	1	0	1	7.99	1	0	1	.007	1	0	1
474		Ť		-335.561	3	0	1	.261	15	0	1	0	15	0	1
475		10		1282.995	1	0	1	7.99	1	0	1	.008	1	0	1
476			min		3	0	1	.261	15	0	1	0	15	0	1
477		11		1283.165	1	0	1	7.99	1	0	1	.009	1	0	1
478				-335.305	3	0	1	.261	15	0	1	0	15	0	1
479		12		1283.335	_ <u></u>	0	1	7.99	1	0	1	.01	1	0	1
480		14	min	-335.178	3	0	1	.261	15	0	1	.01	15	0	1
481		13		1283.506	_ <u>3_</u> 1	0	1	7.99	1	0	1	.011	1	0	1
482		13	min		3	0	1	.261	15	0	1	0	15	0	1
402			1111111	-000.00	J	U		.201	IU	U		U	IU	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1283.676	_1_	0	1	7.99	1	0	_1_	.012	_1_	0	1
484			min	-334.922	3	0	1	.261	15	0	1_	0	15	0	1
485		15	max	1283.846	<u>1</u>	0	1	7.99	1	0	<u>1</u>	.013	<u>1</u>	0	1_
486			min	-334.794	3	0	1	.261	15	0	1	0	15	0	1
487		16	max	1284.017	1	0	1	7.99	1	0	1	.014	1	0	1
488			min	-334.667	3	0	1	.261	15	0	1	0	15	0	1
489		17	max	1284.187	1	0	1	7.99	1	0	1	.015	1	0	1
490			min	-334.539	3	0	1	.261	15	0	1	0	15	0	1
491		18	max	1284.357	1	0	1	7.99	1	0	1	.015	1	0	1
492			min	-334.411	3	0	1	.261	15	0	1	0	15	0	1
493		19	max		1	0	1	7.99	1	0	1	.016	1	0	1
494			min	-334.283	3	0	1	.261	15	0	1	0	15	0	1
495	M1	1	max	136.271	1	618.576	3	-2.758	15	0	1	.2	1	0	3
496			min	4.45	15	-528.564	1	-84.017	1	0	3	.007	15	014	1
497		2	max	136.642	1	617.538	3	-2.758	15	0	1	.156	1	.265	1
498		_	min	4.562	15	-529.947	1	-84.017	1	0	3	.005	15	325	3
499		3	max	253.564	3	590.266	1	-2.719	15	0	3	.111	1	.531	1
500		<u> </u>	min	-158.759	2	-451.539	3	-83.032	1	0	1	.004	15	638	3
501		4	max	253.842	3	588.883	1	-2.719	15	0	3	.067	1	.22	1
502		7	min	-158.389	2	-452.577	3	-83.032	1	0	1	.002	15	4	3
503		5	max	254.12	3	587.499	1	-2.719	15	0	3	.024	1	004	15
504		-	min	-158.018	2	-453.614	3	-83.032	1	0	1	0	15	161	3
505		6	max	254.398	3	586.116	1	-2.719	15	0	3	0	15	.079	3
506		0	min	-157.647	2	-454.652	3	-83.032	1	0	1	02	1	4	1
507		7	max	254.677	3	584.732	1	-2.719	15	0	3	002	15	.319	3
508		-	min	-157.276	2	-455.69	3	-83.032	1	0	1	064	1	709	1
509		8		254.955		583.348	1	-2.719	15		3	004	15	.56	3
510		-	max min	-156.906	<u>3</u> 2	-456.728	3	-83.032	1	0	1	108	1	-1.017	1
511		9	max		3	42.048	2	-4.008	15	0	9	.064	1	.654	3
512		9	min	-102.563	2	.42	15	-122.265	1	0	3	.002	15	-1.159	1
513		10	max	263.031	3	40.665	2	-4.008	15	0	9	0	15	.637	3
514		10	min	-102.192	2	.002	15	-122.265	1	0	3	0	1	-1.17	1
515		11	max	263.309	3	39.281	2	-4.008	15	0	9	002	15	.621	3
516		- ' '	min	-101.821	2	-1.715	4	-122.265	1	0	3	065	1	-1.181	1
517		12	max	271.058	3	302.921	3	-2.655	15	0	<u> </u>	.107	1	.541	3
518		12	min	-60.748	10	-627.724	1	-81.154	1	0	3	.003	15	-1.043	1
519		13	max	271.336	3	301.883	3	-2.655	15	0	<u> </u>	.064	1	.382	3
520		13	min	-60.439	10	-629.108	1	-81.154	1	0	3	.002	15	711	1
521		14		271.614	3	300.846	3	-2.655	15	0	<u> </u>	.002	1	.223	3
522		14	max min	-60.13	10	-630.491	1	-81.154	1	0	3	0	15	379	1
		15		271.892			_	-2.655	-		<u> </u>				
523		10			3	299.808	3	-2.055 -81.154	1 <u>5</u>	0	3	022	<u>15</u> 1	.064 046	3
524 525		16	min	<u>-59.821</u> 272.17	<u>10</u> 3	<u>-631.875</u>	1		15	0	<u>ာ</u> 1	022	15	.293	2
		10	max		10	298.77 -633.259	<u>3</u>	-2.655 -81.154	1	0	3	065	15	094	3
526 527		17	min	272.448	3	297.733	3	-81.154 -2.655	15		<u> </u>	005	15	.622	1
528		17			10		1	-2.055 -81.154	1	0	3	108	15 1		3
		18	min			-634.642				0	3		15	251	
529		10	max	-4.566 -136.821	<u>15</u> 1	615.974 -253.135	3	-2.915 -88.854	1 <u>5</u>	0	1	005 154	1	.312 125	3
530 531		10	min						15	_	3	007	15		
		19	max		<u>15</u>	614.591	1	-2.915		0				.009	3
532	NAS	4	min	-136.45	1_1	<u>-254.173</u>	3	-88.854	1	0	1	201	1	013	1
533	<u>M5</u>	1	max		1	2063.117	3	0	1	0	1	0	1	.029	1
534		2	min	8.816	<u>12</u>	-1790.323	2	0	1	0	1	0	1	001	3
535		2	max		1	2062.08 -1791.706	3	0	1	0	1	0	<u>1</u> 1	.974	1
536		3	min	9.001	12		1_1	0		0		0		-1.09 1.076	3
537 538		3		814.687	<u>3</u> 2	1802.526 -1447.112	3	0	1	0	<u>1</u> 1	0	<u>1</u> 1	1.876	3
		1	min					0		0	1	0	•	-2.135	
539		4	шах	814.965	3_	1801.142	1	0	1	0		0	<u>1</u>	.925	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-568.736	2	-1448.15	3	0	1	0	1	0	1	-1.372	3
541		5	max	815.243	3	1799.759	1	0	1	0	1	0	1	.014	9
542			min	-568.365	2	-1449.187	3	0	1	0	1	0	1	607	3
543		6	max	815.521	3	1798.375	1	0	1	0	1	0	1	.158	3
544			min	-567.994	2	-1450.225	3	0	1	0	1	0	1	974	1
545		7	max	815.799	3	1796.991	1	0	1	0	1	0	1	.923	3
546			min	-567.624	2	-1451.263	3	0	1	0	1	0	1	-1.922	1
547		8	max	816.077	3	1795.608	1	0	1	0	1	0	1	1.689	3
548			min	-567.253	2	-1452.301	3	0	1	0	1	0	1	-2.87	1
549		9	max	829.054	3	140.034	2	0	1	0	1	0	1	1.944	3
550			min	-455.395	2	.418	15	0	1	0	1	0	1	-3.248	1
551		10	max	829.332	3	138.65	2	0	1	0	1	0	1	1.885	3
552		1.0	min	-455.025	2	0	15	0	1	0	1	0	1	-3.287	1
553		11	max	829.61	3	137.267	2	0	1	0	1	0	1	1.826	3
554			min	-454.654	2	-1.597	4	0	1	0	1	0	1	-3.325	1
555		12	max	842.685	3	955.784	3	0	1	0	1	0	1	1.603	3
556		12	min	-342.823	2	-1943.685	1	0	1	0	1	0	1	-2.963	1
557		13	max	842.963	3	954.747	3	0	1	0	1	0	1	1.099	3
558		13	min	-342.452	2	-1945.069	1	0	1	0	1	0	1	-1.937	1
559		14	max	843.242	3	953.709	3	0	1	0	1	0	1	.595	3
560		14	min	-342.082	2	-1946.452	1	0	1	0	1	0	1	91	1
		15		843.52	3	952.671	_	0	1		1	0	1	.182	2
561 562		15	max		2	-1947.836	3	0	1	0	1	0	1		13
		4.0	min	-341.711			_		1	_	1			004	
563		16	max	843.798	3	951.633	3	0	<u> </u>	0		0	1	1.146	1
564		47	min	-341.34	2	-1949.22	1	0	1_	0	1	0	1	41	3
565		17	max	844.076	3	950.596	3	0	1	0	1	0	1	2.174	1
566		40	min	-340.97	2	-1950.603	1	0	1	0	1	0	1_	912	3
567		18	max	-9.201	12	2082.359	1	0	1	0	1	0	1	1.124	1
568		1.0	min	-294.77	1	-867.308	3	0	1	0	1	0	1	476	3
569		19	max	-9.015	12	2080.975	1	0	1_	0	1	0	1	.025	1
570	140	-	min	-294.399	1	-868.345	3	0	1	0	1	0	1_	019	3
571	<u>M9</u>	1	max	136.271	1	618.576	3	84.017	1_	0	3	007	15	0	3
572			min	4.45	15	-528.564	1	2.758	15	0	1	2	1_	014	1
573		2	max	136.642	1	617.538	3	84.017	1	0	3	005	15	.265	1
574			min	4.562	15	-529.947	1	2.758	15	0	1	156	1_	325	3
575		3	max	253.564	3	590.266	1	83.032	1	0	1	004	15	.531	1
576			min	-158.759	2	-451.539	3	2.719	15	0	3	111	1	638	3
577		4	max	253.842	3	588.883	1	83.032	1_	0	1	002	15	.22	1
578			min	-158.389	2	-452.577	3	2.719	15	0	3	067	1	4	3
579		5	max	254.12	3	587.499	1	83.032	1	0	1	0	15	004	15
580			min	-158.018	2	-453.614	3	2.719	15	0	3	024	1_	161	3
581		6	max		3	586.116	1	83.032	1	0	1	.02	1_	.079	3
582			min	-157.647	2	-454.652	3	2.719	15	0	3	0	15	4	1
583		7		254.677	3	584.732	1	83.032	1	0	1	.064	1	.319	3
584					2	-455.69	3	2.719	15	0	3	.002	15	709	1
585		8	max	254.955	3	583.348	1	83.032	1	0	1	.108	1	.56	3
586			min	-156.906	2	-456.728	3	2.719	15	0	3	.004	15	-1.017	1
587		9		262.753	3	42.048	2	122.265	1	0	3	002	15	.654	3
588				-102.563	2	.42	15		15	0	9	064	1	-1.159	1
589		10		263.031	3	40.665	2	122.265	1	0	3	0	1	.637	3
590				-102.192	2	.002	15		15	0	9	0	15	-1.17	1
591		11		263.309	3	39.281	2	122.265	1	0	3	.065	1	.621	3
592			min	-101.821	2	-1.715	4	4.008	15	0	9	.002	15	-1.181	1
593		12		271.058	3	302.921	3	81.154	1	0	3	003	15	.541	3
594		_ <u></u>	min	-60.748	10	-627.724	1	2.655	15	0	1	107	1	-1.043	1
595		13		271.336	3	301.883	3	81.154	1	0	3	002	15	.382	3
596			min	-60.439	10	-629.108		2.655	15	0	1	064	1	711	1
000			111111	00.700	. 0	020.100		2.000	.0			100-			_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	271.614	3	300.846	3	81.154	1	0	3	0	15	.223	3
598			min	-60.13	10	-630.491	1	2.655	15	0	1	021	1	379	1
599		15	max	271.892	3	299.808	3	81.154	1	0	3	.022	1	.064	3
600			min	-59.821	10	-631.875	1	2.655	15	0	1	0	15	046	1
601		16	max	272.17	3	298.77	3	81.154	1	0	3	.065	1	.293	2
602			min	-59.512	10	-633.259	1	2.655	15	0	1	.002	15	094	3
603		17	max	272.448	3	297.733	3	81.154	1	0	3	.108	1	.622	1
604			min	-59.203	10	-634.642	1	2.655	15	0	1	.004	15	251	3
605		18	max	-4.566	15	615.974	1	88.854	1	0	1	.154	1	.312	1
606			min	-136.821	1	-253.135	3	2.915	15	0	3	.005	15	125	3
607		19	max	-4.455	15	614.591	1	88.854	1	0	1	.201	1	.009	3
608			min	-136.45	1	-254.173	3	2.915	15	0	3	.007	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate	[r LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.118	1	.005	3 9.3926		NC	1_	NC	1
2			min	0	15	021	3	002	2 -1.565	e-3 3	NC	1	NC	1
3		2	max	0	1	.27	3	.032	1 1.0796		NC	5	NC	2
4			min	0	15	109	1	.001	10 -1.637	e-3 3	824.323	3	7876.522	1
5		3	max	0	1	.506	3	.076	1 1.2196		NC	5	NC	3
6			min	0	15	288	1	.003	15 -1.708	e-3 3	455.751	3	3221.635	1
7		4	max	0	1	.648	3	.114	1 1.3596	-2 1	NC	5	NC	3
8			min	0	15	388	1	.004	15 -1.786	-3 3	358.762	3	2131.188	1
9		5	max	0	1	.68	3	.134	1 1.4996		NC	5	NC	3
10			min	0	15	394	1	.004	15 -1.851	e-3 3	342.464	3	1814.751	1
11		6	max	0	1	.604	3	.129	1 1.64e		NC	5	NC	3
12			min	0	15	309	1	.004	15 -1.923	e-3 3	384.23	3	1879.006	1
13		7	max	0	1	.442	3	.102	1 1.78e	-2 1	NC	5	NC	3
14			min	0	15	153	1	.003	15 -1.995	e-3 3	518.45	3	2393.742	1
15		8	max	0	1	.237	3	.06	1 1.92e	-2 1	NC	4	NC	2
16			min	0	15	0	15	0	10 -2.066	e-3 3	929.823	3	4140.698	1
17		9	max	0	1	.204	1	.017	1 2.06e		NC	4	NC	1
18			min	0	15	.005	15	004	10 -2.138	e-3 3	2666.743	2	NC	1
19		10	max	0	1	.279	1	.014	3 2.2e-	2 1	NC	3	NC	1
20			min	0	1	032	3	009	2 -2.216		1487.59	1	NC	1
21		11	max	0	15	.204	1	.017	1 2.06e	-2 1	NC	4	NC	1
22			min	0	1	.005	15	004	10 -2.138	e-3 3	2666.743	2	NC	1
23		12	max	0	15	.237	3	.06	1 1.92e	-2 1	NC	4	NC	2
24			min	0	1	0	15	0	10 -2.066	e-3 3	929.823	3	4140.698	1
25		13	max	0	15	.442	3	.102	1 1.78e	-2 1	NC	5	NC	3
26			min	0	1	153	1	.003	15 -1.995	e-3 3	518.45	3	2393.742	1
27		14	max	0	15	.604	3	.129	1 1.64e	-2 1	NC	5	NC	3
28			min	0	1	309	1	.004	15 -1.923	e-3 3	384.23	3	1879.006	1
29		15	max	0	15	.68	3	.134	1 1.4996	-2 1	NC	5	NC	3
30			min	0	1	394	1	.004	15 -1.851	e-3 3	342.464	3	1814.751	1
31		16	max	0	15	.648	3	.114	1 1.3596		NC	5	NC	3
32			min	0	1	388	1	.004	15 -1.786	-3 3	358.762	3	2131.188	1
33		17	max	0	15	.506	3	.076	1 1.219		NC	5	NC	3
34			min	0	1	288	1	.003	15 -1.708	e-3 3	455.751	3	3221.635	1
35		18	max	0	15	.27	3	.032	1 1.0796		NC	5	NC	2
36			min	0	1	109	1	.001	10 -1.637		824.323	3	7876.522	1
37		19	max	0	15	.118	1	.005	3 9.3926	-3 1	NC	1	NC	1
38			min	0	1	021	3	002	2 -1.565	e-3 3	NC	1	NC	1
39	M14	1	max	0	1	.193	3	.004	3 5.8566	-3 1	NC	1	NC	1
40			min	0	15	38	1	002	2 -3.485	e-3 3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x	Rotate fr	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	Ö	1	.479	3	.022		7.03e-3	1	NC	5	NC	1
42			min	0	15	743	1	0	10 -4	4.243e-3	3	660.371	1	NC	1
43		3	max	0	1	.72	3	.061	1 8	3.205e-3	1	NC	15	NC	2
44			min	0	15	-1.056	1	.002	15	-5.e-3	3	355.087	1	4022.126	1
45		4	max	0	1	.887	3	.098	1 9	9.379e-3	1	NC	15	NC	3
46			min	0	15	-1.282	1	.003	15 -	5.757e-3	3	266.005	1	2490.975	1
47		5	max	0	1	.964	3	.119	1 1	.055e-2	1	9946.906	15	NC	3
48			min	0	15	-1.404	1	.004	15 -6	6.514e-3	3	234.233	1	2046.065	1
49		6	max	0	1	.953	3	.118		.173e-2	1	9822.515	15	NC	3
50			min	0	15	-1.422	1	.004	15 -7	7.271e-3	3	230.225	1	2070.372	1
51		7	max	0	1	.868	3	.094	1 1	1.29e-2	1	NC	15	NC	3
52			min	0	15	-1.352	1	.003	15 -8	3.029e-3	3	246.8	1	2594.321	1
53		8	max	0	1	.741	3	.056	1 1	.408e-2	1	NC	15	NC	2
54			min	0	15	-1.228	1	0	10 -8	3.786e-3	3	282.828	1	4423.921	1
55		9	max	0	1	.618	3	.017		.525e-2	1	NC	15	NC	1
56			min	0	15	-1.102	1	003	10 -9	9.543e-3	3	332.37	1	NC	1
57		10	max	0	1	.56	3	.013	3 1	.643e-2	1	NC	5	NC	1
58			min	0	1	-1.041	1	008	2 -	-1.03e-2	3	362.797	1	NC	1
59		11	max	0	15	.618	3	.017		.525e-2	1	NC	15	NC	1
60			min	0	1	-1.102	1	003		9.543e-3	3	332.37	1	NC	1
61		12	max	0	15	.741	3	.056	1 1	.408e-2	1_	NC	15	NC	2
62			min	0	1	-1.228	1	0		3.786e-3	3	282.828	1_	4423.921	1
63		13	max	0	15	.868	3	.094		1.29e-2	1_	NC	15	NC	3
64			min	0	1	-1.352	1	.003		3.029e-3	3	246.8	1	2594.321	1
65		14	max	0	15	.953	3	.118		.173e-2	1_	9822.515	<u>15</u>	NC	3
66			min	0	1	-1.422	1	.004		7.271e-3	3	230.225	1	2070.372	1
67		15	max	0	15	.964	3	.119		.055e-2	1	9946.906	<u>15</u>	NC	3
68			min	0	1	-1.404	1	.004		6.514e-3	3	234.233	1_	2046.065	1
69		16	max	0	15	.887	3	.098		9.379e-3	1	NC	15	NC	3
70			min	0	1	-1.282	1	.003		5.757e-3	3	266.005	1_	2490.975	1
71		17	max	0	15	.72	3	.061		3.205e-3	1_	NC	15	NC	2
72			min	0	1	-1.056	1	.002	15	-5.e-3	3	355.087	1_	4022.126	1
73		18	max	0	15	.479	3	.022		7.03e-3	_1_	NC	5	NC	1
74			min	0	1	743	1	0		4.243e-3	3	660.371	1_	NC	1
75		19	max	0	15	.193	3	.004		5.856e-3	_1_	NC	_1_	NC	1
76			min	0	1	38	1	002		3.485e-3	3	NC	1_	NC	1
77	M15	1	max	0	15	.198	3	.004		2.951e-3	3_	NC	_1_	NC	1
78			min	0	1	379	1	001		5.963e-3	1_	NC	1_	NC	1
79		2	max	0	15	.382	3	.023		3.594e-3	3_	NC	_5_	NC	1
80			min	0	1	782	1	0		7.163e-3	1_	595.935	1	NC	1
81		3	max	0	15	.542	3	.061		1.237e-3	3	NC	<u>15</u>	NC	2
82			min	0	1	<u>-1.126</u>	1	.002		3.364e-3	1_	321.29	1_	4010.675	1
83		4	max	0	15	<u>.659</u>	3	.098		4.88e-3	3	NC	<u>15</u>	NC	3
84			min	0	1	-1.372	1	.003		9.564e-3	1_	241.787	1_	2485.246	
85		5_	max	0	15	.726	3	.119		5.523e-3	3_	9955.911	<u>15</u>	NC	3
86			min	0	1	<u>-1.499</u>	1	.004		1.076e-2	1_	214.404	1_	2041.605	
87		6	max	0	15	.742	3	.118		6.166e-3	3_	9833.059	<u>15</u>	NC	3
88		_	min	0	1	<u>-1.506</u>	1	.004		1.197e-2	1_	212.942	1_	2065.449	
89		7	max	0	15	.714	3	.094	1 6	6.809e-3	3_	NC	15	NC 2500 000	3
90			min	0	1	<u>-1.415</u>	1	.003		1.317e-2	1_	231.798	1_	2586.332	1
91		8	max	0	15	.659	3	.056		7.452e-3	3_	NC 074 407	<u>15</u>	NC	2
92			min	0	1	<u>-1.263</u>	1	0		1.437e-2	1_	271.487	1_	4400.546	
93		9	max	0	15	<u>.601</u>	3	.017		3.095e-3	3_	NC	<u>15</u>	NC	1
94			min	0	1	<u>-1.112</u>	1	003		1.557e-2	1_	327.592	_1_	NC	1
95		10	max	0	1	.573	3	.012		3.738e-3	3_	NC	5_	NC	1
96			min	0	1	-1.04	1	007		1.677e-2	1_	363.2	1_	NC	1
97		11	max	0	1	.601	3	.017	1 8	3.095e-3	3	NC	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.112	1	003	10 -1.557e-2	1_	327.592	1_	NC	1
99		12	max	0	1	.659	3	.056	1 7.452e-3	3_	NC	15	NC	2
100			min	0	15	<u>-1.263</u>	1	0	10 -1.437e-2	_1_	271.487	_1_	4400.546	_
101		13	max	0	1	.714	3	.094	1 6.809e-3	3_	NC	15	NC 2500,000	3
102		4.4	min	0	15	<u>-1.415</u>	1	.003	15 -1.317e-2	1_	231.798	1_	2586.332	1
103		14	max	0	1	.742	3	.118	1 6.166e-3	3	9833.059	<u>15</u>	NC	3
104		4.5	min	0	15	<u>-1.506</u>	1	.004	15 -1.197e-2	1_	212.942	1_	2065.449	
105		15	max	0	1	.726	3	.119	1 5.523e-3	3	9955.911	<u>15</u>	NC	3
106		16	min	0	15	<u>-1.499</u>		.004	15 -1.076e-2	1	214.404	1_	2041.605	
107 108		16	max	<u> </u>	15	.659 -1.372	3	.098 .003	1 4.88e-3 15 -9.564e-3	<u>3</u> 1	NC 241.787	<u>15</u> 1	NC 2485.246	3
109		17	min max	0	1	<u>-1.372</u> .542	3	.003 .061	1 4.237e-3	3	NC	15	NC	2
110		17	min	0	15	-1.126	1	.002	15 -8.364e-3	1	321.29	1	4010.675	
111		18	max	0	1	.382	3	.023	1 3.594e-3	3	NC	5	NC	1
112		10	min	0	15	782	1	0	10 -7.163e-3	1	595.935	1	NC	1
113		19	max	0	1	.198	3	.004	3 2.951e-3	3	NC	1	NC	1
114		10	min	0	15	379	1	001	2 -5.963e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.113	1	.003	3 5.155e-3	3	NC	1	NC	1
116	10110		min	0	1	065	3	001	2 -8.731e-3	1	NC	1	NC	1
117		2	max	0	15	.039	3	.032	1 6.061e-3	3	NC	5	NC	2
118			min	0	1	167	2	.001	15 -9.973e-3	1	895.827	1	7919.939	
119		3	max	0	15	.121	3	.076	1 6.967e-3	3	NC	5	NC	3
120			min	0	1	376	2	.003	15 -1.121e-2	1	499.283	1	3228.722	1
121		4	max	0	15	.165	3	.114	1 7.872e-3	3	NC	5	NC	3
122			min	0	1	496	2	.004	15 -1.246e-2	1	398.995	1	2131.751	1
123		5	max	0	15	.163	3	.134	1 8.778e-3	3	NC	5	NC	3
124			min	0	1	511	2	.004	15 -1.37e-2	1	391.192	1	1812.093	1
125		6	max	0	15	.119	3	.13	1 9.684e-3	3	NC	5	NC	3
126			min	0	1	423	2	.004	15 -1.494e-2	1_	461.732	1_	1872.153	
127		7	max	0	15	.041	3	.102	1 1.059e-2	3	NC	5	NC	3
128			min	0	1	255	2	.003	15 -1.618e-2	1	684.15	2	2375.957	1
129		8	max	0	15	.01	9	.06	1 1.15e-2	3	NC	3	NC	2
130			min	0	1	053	3	.002	10 -1.742e-2	_1_	1666.092	2	4070.291	1
131		9	max	0	15	.179	1	.018	1 1.24e-2	3	NC	4_	NC NC	1
132		40	min	0	1	135	3	002	10 -1.866e-2	1_	3441.982	3_	NC NC	1
133		10	max	0	1	.265	1	.01	3 1.331e-2	3	NC	5_	NC NC	1
134		44	min	0	1	172	3	007	2 -1.991e-2	1_	1581.861	1_	NC NC	1
135		11	max	0	1	.179	1	.018	1 1.24e-2	3	NC	4	NC	1
136		12	min	0	15	135	3	002	10 -1.866e-2	1	3441.982	3	NC NC	1
137 138		12	max min	0	15	.01 053	9	.06 .002	1 1.15e-2 10 -1.742e-2	3	NC 1666,003		NC 4070.291	1
139		13	max	0	1	.041	3	.102	1 1.059e-2	3	NC	5	NC	3
140		13	min	0	15	255	2	.003	15 -1.618e-2	1	684.15	2	2375.957	1
141		14	max	0	1	.119	3	.003 .13	1 9.684e-3	3	NC	5	NC	3
142		14	min	0	15	423	2	.004	15 -1.494e-2	1	461.732	1	1872.153	
143		15	max	0	1	.163	3	.134	1 8.778e-3	3	NC	5	NC	3
144		10	min	0	15	511	2	.004	15 -1.37e-2	1	391.192	1	1812.093	
145		16	max	0	1	.165	3	.114	1 7.872e-3	3	NC	5	NC	3
146		10	min	0	15	496	2	.004	15 -1.246e-2	1	398.995	1	2131.751	1
147		17	max	0	1	.121	3	.076	1 6.967e-3	3	NC	5	NC	3
148			min	0	15	376	2	.003	15 -1.121e-2	1	499.283	1	3228.722	
149		18	max	0	1	.039	3	.032	1 6.061e-3	3	NC	5	NC	2
150			min	0	15	167	2	.001	15 -9.973e-3	1	895.827	1	7919.939	
151		19	max	0	1	.113	1	.003	3 5.155e-3	3	NC	1	NC	1
152			min	0	15	065	3	001	2 -8.731e-3	1	NC	1	NC	1
153	M2	1	max	.005	1	.003	2	.006	1 -5.417e-6	15	NC	1	NC	2
154			min	005	3	006	3	0	15 -1.656e-4	1	NC	1	7424.416	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			(n) L/y Ratio	LC		
155		2	max	.005	1	.002	2	.006	1 -5.026			_1_	NC	2
156			min	005	3	006	3	0	15 -1.534		NC	1	8096.507	1
157		3	max	.005	1	.002	2	.005	1 -4.623	e-6 15	NC	1	NC	2
158			min	004	3	005	3	0	15 -1.413	e-4 1	NC	1	8897.257	1
159		4	max	.004	1	.002	2	.005		e-6 15	NC	1_	NC	2
160			min	004	3	005	3	0	15 -1.291	e-4 1	NC	1	9860.71	1
161		5	max	.004	1	.001	2	.004	1 -3.828	e-6 15	NC	1	NC	1
162			min	004	3	005	3	0	15 -1.17e	-4 1	NC	1	NC	1
163		6	max	.004	1	0	2	.004	1 -3.431	e-6 15	NC	1	NC	1
164			min	004	3	005	3	0	15 -1.048	e-4 1	NC	1	NC	1
165		7	max	.004	1	0	2	.003	1 -3.034	e-6 15	NC	1	NC	1
166			min	003	3	005	3	0	15 -9.267	e-5 1	NC	1	NC	1
167		8	max	.003	1	0	2	.003	1 -2.637	e-6 15	NC	1	NC	1
168			min	003	3	004	3	0	15 -8.051	e-5 1	NC	1	NC	1
169		9	max	.003	1	0	2	.002	1 -2.239	e-6 15	NC	1	NC	1
170			min	003	3	004	3	0	15 -6.836	e-5 1	NC	1	NC	1
171		10	max	.003	1	0	2	.002		e-6 15	NC	1	NC	1
172			min	003	3	004	3	0	15 -5.621	e-5 1	NC	1	NC	1
173		11	max	.002	1	0	15	.002	1 -1.445		NC	1	NC	1
174			min	002	3	004	3	0	15 -4.406		NC	1	NC	1
175		12	max	.002	1	0	15	.001	1 -1.048		NC	1	NC	1
176			min	002	3	003	3	0	15 -3.191		NC	1	NC	1
177		13	max	.002	1	0	15	0	1 -6.507	e-7 15	NC	1	NC	1
178			min	002	3	003	3	0	15 -1.976		NC	1	NC	1
179		14	max	.001	1	0	15	0	1 -2.535			1	NC	1
180			min	001	3	002	3	0	15 -7.606		NC	1	NC	1
181		15	max	.001	1	0	15	0	1 4.5456		NC	1	NC	1
182			min	001	3	002	3	0	15 -1.296		NC	1	NC	1
183		16	max	0	1	0	15	0	1 1.67e		NC	1	NC	1
184			min	0	3	002	3	0	15 4.5086		NC	1	NC	1
185		17	max	0	1	0	15	0	1 2.8856		NC	1	NC	1
186			min	0	3	001	4	0	15 9.3816			1	NC	1
187		18	max	0	1	0	15	0	1 4.1e-		NC	1	NC	1
188		10	min	0	3	0	4	0	15 1.3356		NC	1	NC	1
189		19	max	0	1	0	1	0	1 5.315		NC	1	NC	1
190		10	min	0	1	0	1	0	1 1.7336		NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1 -5.377			1	NC	1
192	1010		min	0	1	0	1	0	1 -1.649		NC	1	NC	1
193		2	max	0	3	0	15	0	1 4.115		NC	1	NC	1
194			min	0	2	001	4	0	15 1.35e		NC	1	NC	1
195		3	max	0	3	0	15	0	1 2.4726		NC	1	NC	1
196		<u> </u>	min	0	2	003	4	0	15 8.0786			1	NC	1
197		4	max	0	3	00 <u>3</u> 001	15	0	1 4.5326		NC	1	NC	1
198		_	min	0	2	005	4	0	15 1.4816			1	NC NC	1
199		5	max	0	3	003	15	.001	1 6.5926		NC	1	NC	1
200			min	0	2	002	4	0	15 2.1536			1	NC	1
201		6	max	.001	3	007	15	.001	1 8.6536		NC NC	1	NC	1
202			min	0	2	002	4	0	15 2.826		NC	1	NC	1
203		7	max	.001	3	009	15	.002	1 1.0716		NC NC	1	NC	1
204			min	0	2	002 01	4	<u></u> 0	15 3.4996			4	NC NC	1
205		8	max	.001	3	003	15	.002	1 1.2776	e-4 1	NC	_ 4 _	NC NC	1
206		0		001	2	003 011	4		15 4.1726		8276.647		NC NC	1
		0	min			011	_	0				4		1
207		9	max	.002	3	003 012	15	.002	1 1.4836 15 4.8446		NC 7674 122	<u>1</u> 4	NC NC	1
208		10	min	001				003			7674.132 NC		NC NC	
209		10	max	.002	3	003	15	.003	1 1.6896			2	NC NC	1
210		4.4	min	001	2	013	4	0	15 5.5176			4	NC NC	-
211		11	max	.002	3	003	15	.003	1 1.895	e-4 1_	NC	2	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
212			min	002	2	013	4	0	15	6.19e-6	15		4	NC	1
213		12	max	.002	3	003	15	.003	1	2.101e-4	1_	NC	2	NC	1
214			min	002	2	013	4	0	15	6.863e-6	15	7520.561	4	NC	1
215		13	max	.003	3	003	15	.004	1	2.308e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	7.535e-6		8016.767	4_	NC	1
217		14	max	.003	3	002	15	.004	1	2.514e-4	_1_	NC	1	NC	1
218			min	002	2	011	4	0	15	8.208e-6		8920.882	4_	NC	1
219		15	max	.003	3	002	15	.004	1	2.72e-4	1_	NC	1	NC NC	1
220		40	min	002	2	009	4	0	15	8.881e-6	15	NC NC	1_	NC NC	1
221		16	max	.003	3	002	15	.005	1	2.926e-4	1_	NC	1	NC NC	1
222		47	min	002	2	008	1	0	15	9.554e-6	<u>15</u>	NC NC	1_	NC NC	1
223		17	max	.003	3	001	15	.005	1	3.132e-4	1_	NC NC	1	NC NC	1
224		4.0	min	002	2	006	1	0	15	1.023e-5	<u>15</u>	NC NC	1_	NC NC	1
225		18	max	.004	3	0	15	.006	1	3.338e-4	1_	NC NC	1	NC NC	1
226 227		19	min	003	2	005 0	1	0	15	1.09e-5	<u>15</u>	NC NC	1_1	NC NC	1
		19	max	.004	3	003	15	.006	1	3.544e-4	1_	NC NC	1	NC NC	1
228	N/A	1	min	003	_		2	<u> </u>	15	1.157e-5	15	NC NC	1	NC NC	2
229	<u>M4</u>	1	max	.003	3	.002		-	15		12		1		4
230		2	min	0	1	004	3	006	•	-1.214e-5	12	NC NC		4021.204	1
231			max	.003	3	.002 003	3	0 006	1 <u>5</u>	-3.297e-7 -1.214e-5	<u>12</u>	NC NC	<u>1</u> 1	NC 4380.01	2
233		3	min	.003	1	.002	2	008 0	15	-3.297e-7	12	NC NC	1	NC	2
234		3	max min	.003	3	003	3	005	1	-3.297e-7	1	NC NC	1	4806.646	4
235		4		.003	1	.002	2	<u>005</u> 0	15	-3.297e-7	12	NC NC	1	NC	2
		4	max	.003	3		3		1	-3.297e-7 -1.214e-5	1	NC NC	1		1
236 237		5	min	.002	1	003 .002	2	<u>005</u> 0	15	-1.214e-5 -3.297e-7	12	NC NC	1	5318.807 NC	2
238		- 5	max	0	3	003	3	004	1	-3.297e-7	1	NC NC	1	5940.534	1
239		6	min		_		2			-1.214e-5 -3.297e-7		NC NC	1		2
		6	max	.002	3	.002	3	0	15	-3.297e-7	12	NC NC	1	NC 6705.169	
240 241		7	min	.002	1	003 .001	2	004 0	15	-3.297e-7	12	NC NC	1	NC	2
241			max min	.002	3	002	3	003	1	-3.297e-7	1	NC NC	1	7660.045	
243		8	max	.002	1	.002	2	<u>003</u> 0	15	-3.297e-7	12	NC	1	NC	2
244		-	min	0	3	002	3	003	1	-1.214e-5	1	NC	1	8874.203	
245		9	max	.002	1	.002	2	<u>003</u> 0	15	-3.297e-7	12	NC	1	NC	1
246		1 3	min	0	3	002	3	002	1	-1.214e-5	1	NC	1	NC	1
247		10	max	.002	1	.002	2	0	15	-3.297e-7	12	NC	1	NC	1
248		10	min	0	3	002	3	002	1	-1.214e-5	1	NC	1	NC	1
249		11	max	.001	1	<u>002</u> 0	2	0	15	-3.297e-7	12	NC	1	NC	1
250			min	0	3	002	3	002	1	-1.214e-5	1	NC	1	NC	1
251		12	max	.001	1	0	2	<u>002</u> 0	15	-3.297e-7	12	NC	1	NC	1
252		12	min		3	001	3	001		-1.214e-5	1	NC	1	NC	1
253		13	max	.001	1	0	2	0		-3.297e-7		NC	1	NC	1
254		10	min	0	3	001	3	0	1	-1.214e-5	1	NC	1	NC	1
255		14	max	0	1	0	2	0		-3.297e-7		NC	1	NC	1
256		17	min	0	3	001	3	0	1	-1.214e-5	1	NC	1	NC	1
257		15	max	0	1	0	2	0	15		12	NC	1	NC	1
258		10	min	0	3	0	3	0	1	-1.214e-5	1	NC	1	NC	1
259		16	max	0	1	0	2	0	15			NC	1	NC	1
260		10	min	0	3	0	3	0	1	-1.214e-5	1	NC	1	NC	1
261		17	max	0	1	0	2	0	15	-3.297e-7	•	NC	1	NC	1
262		17	min	0	3	0	3	0	1	-1.214e-5	1	NC	1	NC	1
263		18	max	0	1	0	2	0	15	-3.297e-7	12	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-1.214e-5	1	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-3.297e-7		NC	1	NC	1
266		13	min	0	1	0	1	0	1	-1.214e-5	1	NC	1	NC	1
267	M6	1	max	.017	1	.012	2	0	1	0	1	NC	3	NC	1
268	1010		min	017	3	018	3	0	1	0	1	3836.626	2	NC	1
200			1111111	.017	J	.010	J	U		U		0000.020		INO	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
269		2	max	.016	1	.011	2	0	1	0	1	NC	3	NC	1
270			min	016	3	017	3	0	1	0	1	4206.277	2	NC	1
271		3	max	.015	1	.01	2	00	1	0	_1_	NC	3	NC	1
272			min	015	3	016	3	0	1	0	1		2	NC	1
273		4	max	.014	1	.009	2	0	1	0	_1_	NC	1_	NC	1
274			min	014	3	015	3	0	1	0	1_	5193.064	2	NC	1
275		5	max	.013	1	.008	2	0	1	0	_1_	NC	<u>1</u>	NC	1
276			min	013	3	014	3	0	1	0	1_	5861.27	2	NC	1
277		6	max	.012	1	.007	2	0	1	0	1	NC	1_	NC	1
278			min	012	3	013	3	0	1	0	1_	6698.312	2	NC	1
279		7	max	.011	1	.006	2	0	1	0	_1_	NC	1_	NC	1
280			min	011	3	012	3	0	1	0	1	7766.348	2	NC	1
281		8	max	.01	1	.005	2	0	1	0	_1_	NC	1_	NC	1
282			min	01	3	011	3	0	1	0	1	9159.588	2	NC	1
283		9	max	.01	1	.004	2	0	1	0	_1_	NC	1_	NC	1
284			min	009	3	01	3	0	1	0	1_	NC	1	NC	1
285		10	max	.009	1	.004	2	0	1	0	_1_	NC	1_	NC	1
286			min	008	3	009	3	0	1	0	1_	NC	1_	NC	1
287		11	max	.008	1	.003	2	0	1	0	_1_	NC	1_	NC	1
288			min	007	3	008	3	0	1	0	1	NC	1	NC	1
289		12	max	.007	1	.002	2	0	1	0	_1_	NC	1_	NC	1
290			min	006	3	007	3	0	1	0	1	NC	1_	NC	1
291		13	max	.006	1	.001	2	0	1	0	<u>1</u>	NC	1_	NC	1
292			min	006	3	006	3	0	1	0	1	NC	1	NC	1
293		14	max	.005	1	0	2	0	1	0	1_	NC	1_	NC	1
294			min	005	3	005	3	0	1	0	1	NC	1	NC	1
295		15	max	.004	1	0	2	0	1	0	1_	NC	1_	NC	1
296			min	004	3	004	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	1	0	2	0	1	0	1_	NC	1_	NC	1
298			min	003	3	003	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	1	0	2	0	1	0	1_	NC	1_	NC	1
300			min	002	3	002	3	0	1	0	1	NC	1	NC	1
301		18	max	0	1	0	2	0	1	0	1_	NC	1_	NC	1
302			min	0	3	001	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1_	max	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	0	3	0	15	0	1	0	_1_	NC	1_	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.001	3	0	15	0	1	0	_1_	NC	1_	NC	1
310			min	001	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	0	1	0	_1_	NC	1_	NC	1
312			min	002	2	006	3	0	1	0	1	NC	1_	NC	1
313		5	max	.003	3	002	15	00	1	0	_1_	NC	1_	NC	1
314			min	002	2	007	3	0	1	0	1	NC	1	NC	1
315		6	max	.003	3	002	15	0	1	0	1	NC	1_	NC	1
316			min	003	2	009	3	0	1	0	1	NC	1	NC	1
317		7	max	.004	3	002	15	0	1	0	1	NC	1_	NC	1
318			min	004	2	01	4	0	1	0	1	9203.033	3	NC	1
319		8	max	.005	3	003	15	0	1	0	1	NC	1_	NC	1
320			min	004	2	011	4	0	1	0	1		3	NC	1
321		9	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
322			min	005	2	012	4	0	1	0	1	7864.507	4	NC	1
323		10	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
324			min	006	2	013	4	0	1	0	1	7541.507	4	NC	1
325		11	max	.007	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
326			min	006	2	013	4	0	1	0	1_	7480.05	4	NC	1
327		12	max	.007	3	003	15	0	1	0	_1_	NC	_1_	NC	1
328			min	007	2	013	4	0	1	0	1_	7677.07	4	NC	1
329		13	max	.008	3	003	15	0	1	0	_1_	NC	_1_	NC	1
330			min	007	2	012	4	0	1	0	1	8176.267	4	NC	1
331		14	max	.009	3	003	15	0	1	0	1_	NC	1_	NC	1
332			min	008	2	012	1	0	1	0	1	9091.629	4	NC	1
333		15	max	.009	3	002	15	0	1	0	1	NC	1_	NC	1
334			min	009	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.01	3	002	15	0	1	0	1	NC	1	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	0	1	0	1	NC	1	NC	1
338			min	01	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
340			min	01	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.012	3	0	15	0	1	0	1	NC	1	NC	1
342			min	011	2	008	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.009	2	0	1	0	1	NC	1	NC	1
344	0		min	003	3	011	3	0	1	0	1	NC	1	NC	1
345		2	max	.009	1	.009	2	0	1	0	1	NC	1	NC	1
346			min	003	3	011	3	0	1	0	1	NC	1	NC	1
347		3	max	.008	1	.008	2	0	1	0	1	NC	1	NC	1
348			min	002	3	01	3	0	1	0	1	NC	1	NC	1
349		4	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
350		7	min	002	3	01	3	0	1	0	1	NC	1	NC	1
351		5	max	.002	1	.007	2	0	1	0	+	NC	1	NC	1
352		1	min	002	3	009	3	0	1	0	1	NC	1	NC	1
353		6		.002	1	.007	2	0	1	0	1	NC NC	1	NC	1
354		0	max	002	3	008	3	0	1	0	1	NC NC	1	NC NC	1
		7	min		1				1		1	NC NC	1	NC NC	1
355			max	.006	3	.006	3	<u> </u>	1	0	1	NC NC	1	NC NC	1
356		0	min	002	1	008			1	0			1		
357		8	max	.006	3	.006	2	0	1	0	1	NC NC		NC	1
358			min	002	_	007	3	0	1	0	1_		1_	NC NC	1
359		9	max	.005	1	.005	2	0		0	1_	NC	1_	NC NC	1
360		40	min	002	3	006	3	0	1	0	1_	NC NC	1_	NC NC	1
361		10	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
362		4.4	min	001	3	006	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.004	1	.004	2	0	1	0	1_	NC	1	NC	1
364			min	001	3	005	3	0	1	0	1_	NC	1_	NC	1
365		12	max	.004	1	.004	2	0	1	0	1	NC	1	NC	1
366			min	<u>001</u>	3	004	3	0	1	0	1_	NC	1_	NC NC	1
367		13	max	.003	1	.003	2	0	1	0	_1_	NC	1_	NC	1
368			min	0	3	004	3	0	1	0	_1_	NC	1_	NC	1
369		14	max	.003	1	.003	2	0	1	0	_1_	NC	1_	NC	1
370			min	0	3	003	3	0	1	0	1	NC	1_	NC	1
371		15	max	.002	1	.002	2	0	1	0	_1_	NC	_1_	NC	1
372			min	0	3	003	3	0	1	0	1	NC	1	NC	1
373		16	max	.002	1	.002	2	0	1	0	1_	NC	1	NC	1
374			min	0	3	002	3	0	1	0	1	NC	1	NC	1
375		17	max	.001	1	.001	2	0	1	0	1	NC	1	NC	1
376			min	0	3	001	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	0	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.005	1	.003	2	0	15	1.656e-4	1	NC	1	NC	2
382			min	005	3	006	3	006	1	5.417e-6	15	NC	1	7424.416	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.002	2	0	15	1.534e-4	_1_	NC	_1_	NC	2
384			min	005	3	006	3	006	1	5.02e-6	15	NC	_1_	8096.507	1
385		3	max	.005	1	.002	2	0	15	1.413e-4	_1_	NC	_1_	NC	2
386			min	004	3	005	3	005	1	4.623e-6	15	NC	1_	8897.257	1
387		4	max	.004	1	.002	2	0	15	1.291e-4	1_	NC	1	NC	2
388			min	004	3	005	3	005	1	4.225e-6	15	NC	1_	9860.71	1
389		5	max	.004	1	.001	2	0	15	1.17e-4	1_	NC	1	NC	1
390			min	004	3	005	3	004	1	3.828e-6	15	NC	1_	NC	1
391		6	max	.004	1	0	2	0	15	1.048e-4	_1_	NC	1_	NC	1
392			min	004	3	005	3	004	1	3.431e-6	<u>15</u>	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	9.267e-5	1_	NC	1	NC NC	1
394			min	003	3	005	3	003	1_	3.034e-6	15	NC	1_	NC NC	1
395		8	max	.003	1	0	2	0	15	8.051e-5	1_	NC	1	NC NC	1
396			min	003	3	004	3	003	1	2.637e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	6.836e-5	1_	NC	1	NC NC	1
398		40	min	003	3	004	3	002	1_	2.239e-6	15	NC	1_	NC NC	1
399		10	max	.003	1	0	2	0	15	5.621e-5	1_	NC NC	1_	NC NC	1
400		4.4	min	003	3	004	3	002	1_	1.842e-6	15	NC NC	1_	NC NC	1
401		11	max	.002	1	0	15	0	15	4.406e-5	1_	NC NC	1	NC NC	1
402		40	min	002	3	004	3	002	1 1 1 5	1.445e-6	<u>15</u>	NC NC	1	NC NC	1
403		12	max	.002	1	0	15	0	15	3.191e-5	1_	NC NC	1	NC NC	1
404		40	min	002	3	003	3	001	1_45	1.048e-6	<u>15</u>	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	1.976e-5	1_	NC NC	1	NC NC	1
406		4.4	min	002	3	003	3	0	1_45	6.507e-7	15	NC NC		NC NC	1
407		14	max	.001	3	0	15	0	15	7.606e-6	1_	NC NC	1	NC NC	1
408		4.5	min	001		002	3	0	1	2.535e-7	<u>15</u>	NC NC		NC NC	-
409		15	max	.001 001	3	0 002	15	<u>0</u> 	15	1.29e-7 -4.545e-6	3	NC NC	1	NC NC	1
410		16	min		1	<u>002</u> 0	3 15		15		1	NC NC	1	NC NC	1
412		10	max	0	3	002	3	0	1	-4.508e-7 -1.67e-5	<u>12</u> 1	NC NC	1	NC NC	1
413		17	min max	0	1	<u>002</u> 0	15	0	15		15	NC NC	1	NC NC	1
414		17	min	0	3	001	4	0	1	-9.381e-7	1	NC	1	NC	1
415		18	max	0	1	<u>001</u> 0	15	0	15	-1.335e-6	15	NC NC	1	NC NC	1
416		10	min	0	3	0	4	0	1	-4.1e-5	1	NC NC	1	NC NC	1
417		19	max	0	1	0	1	0	1	-4.1e-5	15	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-5.315e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.649e-5	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	5.377e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-1.35e-7	15	NC	1	NC	1
422			min	0	2	001	4	0	1	-4.115e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-8.078e-7	_	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.472e-5	1	NC	1	NC	1
425		4	max	0	3	003 001	15	0	15		•	NC	1	NC	1
426			min	0	2	005	4	0	1	-4.532e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15			NC	1	NC	1
428		Ť	min	0	2	007	4	001	1	-6.592e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15		•	NC	1	NC	1
430		Ť	min	0	2	009	4	001	1	-8.653e-5	1	NC	1	NC	1
431		7	max	.001	3	002	15	0		-3.499e-6		NC	1	NC	1
432			min	0	2	01	4	002	1	-1.071e-4	1	9284.938	4	NC	1
433		8	max	.001	3	003	15	0	15		•	NC	1	NC	1
434			min	001	2	011	4	002	1	-1.277e-4	1	8276.647	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	1	NC	1
436		Ĭ	min	001	2	012	4	002	1	-1.483e-4	1	7674.132	4	NC	1
437		10	max	.002	3	003	15	0		-5.517e-6		NC	2	NC	1
438			min	001	2	013	4	003	1	-1.689e-4	1	7370.326	4	NC	1
439		11	max	.002	3	003	15	0	15		15	NC	2	NC	1
															$\overline{}$

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
440			min	002	2	013	4	003	1	-1.895e-4	1	7319.68	4	NC	1
441		12	max	.002	3	003	15	0	15	-6.863e-6	15	NC	2	NC	1
442			min	002	2	013	4	003	1	-2.101e-4	1	7520.561	4	NC	1
443		13	max	.003	3	003	15	0	15	-7.535e-6	15	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.308e-4	1	8016.767	4	NC	1
445		14	max	.003	3	002	15	0	15	-8.208e-6	15	NC	1	NC	1
446			min	002	2	011	4	004	1	-2.514e-4	1	8920.882	4	NC	1
447		15	max	.003	3	002	15	0	15	-8.881e-6	15	NC	1	NC	1
448		10	min	002	2	009	4	004	1	-2.72e-4	1	NC	1	NC	1
449		16	max	.002	3	003	15	0	15		15	NC	1	NC	1
450		10	min	002	2	002	1	005	1	-9.554e-6 -2.926e-4	1	NC	1	NC	1
		47									•		•		
451		17	max	.003	3	001	15	0	15	-1.023e-5	<u>15</u>	NC	1	NC NC	1
452		10	min	002	2	006	1	005	1	-3.132e-4	_1_	NC	1_	NC	1
453		18	max	.004	3	0	15	0	15	-1.09e-5	15	NC	1_	NC	1
454			min	003	2	005	1	006	1	-3.338e-4	1_	NC	1_	NC	1
455		19	max	.004	3	0	15	0	15	-1.157e-5	15	NC	_1_	NC	1
456			min	003	2	003	1	006	1	-3.544e-4	1_	NC	1_	NC	1
457	M12	1	max	.003	1	.002	2	.006	1	1.214e-5	1_	NC	1_	NC	2
458			min	0	3	004	3	0	15	3.297e-7	12	NC	1	4021.204	1
459		2	max	.003	1	.002	2	.006	1	1.214e-5	1	NC	1	NC	2
460			min	0	3	003	3	0	15	3.297e-7	12	NC	1	4380.01	1
461		3	max	.003	1	.002	2	.005	1	1.214e-5	1	NC	1	NC	2
462			min	0	3	003	3	0	15	3.297e-7	12	NC	1	4806.646	
463		4	max	.003	1	.002	2	.005	1	1.214e-5	1	NC	1	NC	2
464			min	0	3	003	3	0	15	3.297e-7	12	NC	1	5318.807	1
465		5	max	.002	1	.002	2	.004	1	1.214e-5	1	NC	1	NC	2
466		1	min	0	3	003	3	0	15	3.297e-7	12	NC	1	5940.534	1
		6			1								1	NC	1
467		6	max	.002		.002	2	.004	1	1.214e-5	1_	NC NC			2
468		-	min	0	3	003	3	0	15	3.297e-7	12	NC	1_	6705.169	
469		7	max	.002	1	.001	2	.003	11	1.214e-5	1_	NC	1	NC 7000 045	2
470			min	0	3	002	3	0	15	3.297e-7	12	NC	1_	7660.045	1
471		8	max	.002	1	.001	2	.003	1	1.214e-5	_1_	NC	_1_	NC	2
472			min	0	3	002	3	0	15	3.297e-7	12	NC	1_	8874.203	
473		9	max	.002	1	.001	2	.002	1	1.214e-5	_1_	NC	_1_	NC	1
474			min	0	3	002	3	0	15	3.297e-7	12	NC	1	NC	1
475		10	max	.002	1	.001	2	.002	1	1.214e-5	1	NC	1	NC	1
476			min	0	3	002	3	0	15	3.297e-7	12	NC	1	NC	1
477		11	max	.001	1	0	2	.002	1	1.214e-5	1	NC	1	NC	1
478			min	0	3	002	3	0	15	3.297e-7	12	NC	1	NC	1
479		12	max	.001	1	0	2	.001	1	1.214e-5	1	NC	1	NC	1
480		1-	min	0	3	001	3	0				NC	1	NC	1
481		13	max	.001	1	0	2	0	1	1.214e-5	1	NC	1	NC	1
482		10	min	0	3	001	3	0	15		12	NC	1	NC	1
483		14		0	1	<u>001</u> 0	2	<u> </u>	1	1.214e-5	1	NC NC	1	NC	1
		14	max	0	3		3	0	15	3.297e-7		NC NC	1	NC NC	1
484		4.5	min			001					12				
485		15	max	0	1	0	2	0	1	1.214e-5	1	NC NC	1	NC NC	1
486		4.0	min	0	3	0	3	0	15	3.297e-7	12	NC NC	1_	NC NC	1
487		16	max	0	1	0	2	0	1	1.214e-5	1_	NC	1	NC	1
488			min	0	3	0	3	0	15	3.297e-7	12	NC	1_	NC	1
489		17	max	0	1	00	2	00	1	1.214e-5	_1_	NC	_1_	NC	1
490			min	0	3	0	3	0	15	3.297e-7	12	NC	1	NC	1
491		18	max	0	1	0	2	0	1	1.214e-5	1_	NC	1_	NC	1
492			min	0	3	0	3	0	15	3.297e-7	12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.214e-5	1	NC	1	NC	1
494			min	0	1	0	1	0	1	3.297e-7	12	NC	1	NC	1
495	M1	1	max	.005	3	.118	1	0	1	1.772e-2	1	NC	1	NC	1
496		Ė	min	002	2	021	3	0		-2.266e-2	3	NC	1	NC	1
			11.001	.002	_	1021				Z		.,,			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

				x [in]	LC	y [in]	LC	z [in]			LU	(n) L/y Ratio LC		י בני
497		2	max	.005	3	.058	1	0	15	8.641e-3	_1_	NC 5	NC	1
498			min	002	2	01	3	004	1	-1.121e-2	3	1915.165 1	NC	1
499		3	max	.005	3	.007	3	0	15	2.721e-5	10	NC 5	NC	1
500			min	002	2	007	1	006	1	-1.143e-4	1_	916.616 1	NC	1
501		4	max	.004	3	.036	3	0	15	5.093e-3	1_	NC 5	NC	1
502			min	002	2	082	1	006	1	-4.176e-3	3	572.991 1	NC	1
503		5	max	.004	3	.072	3	0	15	1.03e-2	1	NC 15		1
504			min	002	2	161	1	004	1	-8.243e-3	3	410.148 1	NC	1
505		6	max	.004	3	.113	3	0	15	1.551e-2	1	NC 15	NC	1
506			min	002	2	238	1	002	1	-1.231e-2	3	320.997 1	NC	1
507		7	max	.004	3	.151	3	0	1	2.071e-2	1	9692.928 15	NC	1
508			min	002	2	308	1	0	12	-1.638e-2	3	268.643 1	NC	1
509		8	max	.004	3	.183	3	0	1	2.592e-2	1	8612.578 15	NC	1
510			min	002	2	363	1	0	15	-2.044e-2	3	237.793 1	NC	1
511		9	max	.004	3	.204	3	0	15	2.857e-2	1	8049.296 15	NC	1
512			min	002	2	398	1	0	1	-2.059e-2	3	221.776 1	NC	1
513		10	max	.004	3	.212	3	0	1	2.953e-2	1	7877.752 15	NC	1
514			min	002	2	41	1	0	12	-1.813e-2	3	216.984 1	NC	1
515		11	max	.004	3	.207	3	0	1	3.048e-2	1	8049.137 15		1
516			min	001	2	398	1	0	15	-1.567e-2	3	222.07 1	NC	1
517		12	max	.004	3	.189	3	0	15	2.88e-2	1	8612.244 15		1
518			min	001	2	362	1	0	1	-1.315e-2	3	238.705 1	NC	1
519		13	max	.004	3	.161	3	0	15	2.313e-2	1	9692.337 15		1
520		-10	min	001	2	306	1	0	1	-1.052e-2	3	270.89 1	NC	1
521		14	max	.004	3	.125	3	.002	1	1.747e-2	1	NC 15		1
522		17	min	001	2	235	1	0	15	-7.903e-3	3	325.827 1	NC	1
523		15	max	.004	3	.084	3	.004	1	1.181e-2	1	NC 15	_	1
524		10	min	001	2	157	1	0	15	-5.282e-3	3	420.119 1	NC NC	1
525		16	max	.003	3	.042	3	.006	1	6.142e-3	1	NC 5	NC	1
526		10	min	001	2	078	1	<u>.000</u>	15	-2.66e-3	3	594.044 1	NC	1
527		17	max	.003	3	.003	3	.006	1	4.784e-4	1	NC 5	NC	1
528		17	min	001	2	004	1	0	15	-3.907e-5	3	964.355 1	NC NC	1
529		18		.003	3	.058	1	.004	1	1.051e-2	<u> </u>	NC 5	NC NC	1
530		10	max	003	2	033	3	004 0	15	-4.031e-3	3	2036.616 1	NC NC	1
		40	min											-
531		19	max	.003	3	.113	1	0	15	2.091e-2	1	NC 1	NC NC	1
532	NAC	4	min	001	2	065	3	0	1	-8.178e-3	3	110	NC NC	•
533	<u>M5</u>	1	max	.014	3	.279	1	0	1	0	1_	NC 1	NC NC	1
534			min	009	2	032	3	0	1	0	1_	NC 1	NC NC	1
535		2	max	.014	3	.138	1	0	1	0	1_	NC 5	NC NC	1
536			min	009	2	016	3	0	1	0	1_	812.213 1	NC NC	1
537		3	max	.014	3	.022	3	0	1	0	1	NC 15		1
538			min	009	2	022	1	0	1	0	1_	379.678 1	NC NC	1
539		4	max	.014	3	.099	3	0	1	0	1	9361.537 15		1
540			min	009	2	218	1	0	1	0	1_	230.384 1	NC	1
541		5	max	.014	3	.204	3	0	1	0	_1_	6551.259 15		1
542			min	009	2	431	1	0	1	0	1_	161.039 1	NC	1
543		6	max	.013	3	.321	3	0	1	0	1	5043.912 15		1
544			min	008	2	645	1	0	1	0	1_	123.848 1	NC	1
545		7	max	.013	3	.435	3	0	1	0	1	4173.4 15		1
546			min	008	2	839	1	0	1	0	1	102.369 1	NC	1
547		8	max	.013	3	.531	3	0	1	0	1	3667.234 15		1
548			min	008	2	994	1	0	1	0	1	89.882 1	NC	1
549		9	max	.013	3	.592	3	0	1	0	1	3407.654 15		1
550			min	008	2	-1.092	1	0	1	0	1	83.482 1	NC	1
551		10	max	.012	3	.615	3	0	1	0	1	3329.438 15	NC	1
552			min	008	2	-1.125	1	0	1	0	1	81.578 1	NC	1
553		11	max	.012	3	.599	3	0	1	0	1	3407.711 15	NC	1

Model Name

: Schletter, Inc. : HCV

1101

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			o LC
554			min	008	2	-1.092	1	0	1	0	1_	83.6	1	NC	1
555		12	max	.012	3	.547	3	0	1	0	1_	3667.37	15	NC	1
556			min	007	2	992	1	0	1	0	1	90.271	1	NC	1
557		13	max	.012	3	.463	3	0	1	0	1	4173.681	15	NC	1
558			min	007	2	833	1	0	1	0	1	103.38	1	NC	1
559		14	max	.011	3	.357	3	0	1	0	1	5044.465	15	NC	1
560			min	007	2	635	1	0	1	0	1	126.121	1	NC	1
561		15	max	.011	3	.239	3	0	1	0	1	6552.358	15	NC	1
562			min	007	2	419	1	0	1	0	1	165.969	1	NC	1
563		16	max	.011	3	.12	3	0	1	0	1		15	NC	1
564			min	007	2	205	1	0	1	0	1	241.426	1	NC	1
565		17	max	.01	3	.008	3	0	1	0	1		15	NC	1
566			min	007	2	014	1	0	1	0	1	406.532	1	NC	1
567		18	max	.01	3	.137	1	0	1	0	1	NC	5	NC	1
568		10	min	007	2	087	3	0	1	0	1	884.164	1	NC	1
569		19	max	.01	3	.265	1	0	1	0	1	NC	1	NC	1
570		13	min	007	2	172	3	0	1	0	1	NC	1	NC	1
571	M9	1		.005	3	.118	1	0	15	2.266e-2	3	NC	1	NC	1
572	IVIS		max	003	2	021	3	0	1		-	NC NC	1	NC NC	1
		2	min						1	-1.772e-2	1_				
573		2	max	.005	3	.058	1	.004		1.121e-2	3	NC	5	NC NC	1
574			min	002	2	01	3	0	15	-8.641e-3	1_	1915.165	1_	NC NC	
575		3	max	.005	3	.007	3	.006	1	1.143e-4	1	NC O40	5	NC NC	1
576			min	002	2	007	1	0	15	-2.721e-5		916.616	1_	NC	1
577		4	max	.004	3	.036	3	.006	1	4.176e-3	3	NC	5	NC	1
578		_	min	002	2	082	1	0	15	-5.093e-3	1_	572.991	1_	NC	1
579		5	max	.004	3	.072	3	.004	1	8.243e-3	3		<u>15</u>	NC	1
580			min	002	2	161	1	0	15	-1.03e-2	<u>1</u>	410.148	1	NC	1
581		6	max	.004	3	.113	3	.002	1	1.231e-2	3		15	NC	1
582			min	002	2	238	1	0	15	-1.551e-2	_1_	320.997	1	NC	1
583		7	max	.004	3	.151	3	0	12	1.638e-2	3_		<u>15</u>	NC	1
584			min	002	2	308	1	0	1	-2.071e-2	1_	268.643	1_	NC	1
585		8	max	.004	3	.183	3	0	15	2.044e-2	3_		15	NC	1
586			min	002	2	363	1	0	1	-2.592e-2	1_		1	NC	1
587		9	max	.004	3	.204	3	0	1	2.059e-2	3	8049.296	15	NC	1
588			min	002	2	398	1	0	15	-2.857e-2	1	221.776	1	NC	1
589		10	max	.004	3	.212	3	0	12	1.813e-2	3	7877.752	15	NC	1
590			min	002	2	41	1	0	1	-2.953e-2	1	216.984	1	NC	1
591		11	max	.004	3	.207	3	0	15	1.567e-2	3	8049.137	15	NC	1
592			min	001	2	398	1	0	1	-3.048e-2	1	222.07	1	NC	1
593		12	max	.004	3	.189	3	0	1	1.315e-2	3	8612.244	15	NC	1
594			min	001	2	362	1	0	15	-2.88e-2	1	238.705	1	NC	1
595		13	max	.004	3	.161	3	0	1	1.052e-2	3		15	NC	1
596			min	001	2	306	1	0	15	-2.313e-2	1	270.89	1	NC	1
597		14	max	.004	3	.125	3	0	15	7.903e-3	3		15	NC	1
598			min	001	2	235	1	002	1	-1.747e-2	1	325.827	1	NC	1
599		15	max	.004	3	.084	3	0	15	5.282e-3	3		15	NC	1
600			min	001	2	157	1	004	1	-1.181e-2	1		1	NC	1
601		16	max	.003	3	.042	3	0	15	2.66e-3	3	NC	5	NC	1
602		1.0	min	001	2	078	1	006	1	-6.142e-3	1	594.044	1	NC	1
603		17	max	.003	3	.003	3	<u>.000</u>	15	3.907e-5	3	NC	5	NC	1
604			min	001	2	004	1	006	1	-4.784e-4	1	964.355	1	NC	1
605		18	max	.003	3	.058	1	000	15	4.031e-3	3	NC	5	NC	1
606		10	min	003 001	2	033	3	004	1	-1.051e-3	_		1	NC NC	1
607		19		.003	3	<u>033</u> .113	1		1		3	NC	1	NC NC	1
		19	max					0		8.178e-3			1		1
608			min	001	2	065	3	0	15	-2.091e-2		NC		NC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle I,Na}arPhi_{ extstyle ec,Na}arPhi_{ extstyle p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.