Magnetic and Geometric Properties of the Ising Model on Lattice Random Walks

Ilya Pchelintsev
Scientific Adviser: Burovsky Evgeny Andreevich
The Department of Applied Mathmatics
National Research University "Higher School of Economics"
The Moscow Institute of Electronics and Mathematics
Moscow, Russia
iipchelintsev@edu.hse.ru

22nd of March, 2023

Table of contents

Introduction

2 Results

Future work

Ising-ISAW model

- Linear self-avoiding conformation (SAW-models)
- Spin subsistem inside of the monomers (regular Ising model)
- Close-range interaction (1)
- Tricriticality of the phase transition point [1]

$$H_{u,N,\{\sigma\}} = -\sum_{\langle i,j\rangle} J\sigma_i\sigma_j, \quad i,j \in u, \ |u| = N$$
 (1)

◆□▶◆□▶◆□▶◆□▶◆□▶□

Universality of critical properties of the regular Ising model

$$H_{L,r,\{\sigma\}} = -\sum_{\langle i,j\rangle} J\sigma_i\sigma_j$$
 (2)

(a) Example of the regular Ising model and its gyration ellipse

(b) Critical cumulant as a function of the lattice ratio [2]

Question №1

Equal critical geometrical properties \Rightarrow equal critical magnetic ones?

Lattice nearest-neighbors modifications

Question №2

Universality of lattices with equal numbers of dimensions OR equal coordination numbers?

Observables

Critical cumulant:

$$U_4 = 1 - \frac{\langle m^4 \rangle}{3\langle m^2 \rangle^2} \tag{3}$$

Gyration tensor of SAW-system [3]:

$$Q_{N,\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} (w_{i,\alpha} - w_{c,\alpha})(w_{i,\beta} - w_{c,\beta})$$
 (4)

Aspect ratio of the SAW-system:

$$r = \sqrt{\frac{\langle q_1 \rangle_N}{\langle q_2 \rangle_N}} \tag{5}$$

Asphericity:

$$\mathcal{A} = \left\langle \frac{(q_1 - q_2)^2}{(q_1 + q_2)^2} \right\rangle_N \tag{6}$$

Ilya Pchelintsev Scientific Adviser: Burov Magnetic and Geometric Properties of th 22nd of March, 2023 6/13

Critical Asphericity

(a) Asphericity of the regular Ising as a function of the lattice ratio

(b) Asphericity of the Ising-ISAW as a function of J in the crit. region

Structure	lattice	J_c	
SAW	Square	0.8340(5) [4]	
lattice	Rectangular	$\ln{(1+\sqrt{2})/2}$ [5]	

Results

Ising-ISAW				
J	\mathcal{A}	r	U ₄ Rectangular	
0.831	0.415	0.465	0.338 ± 0.006	
0.832	0.4072	0.47	0.343 ± 0.006	
0.836	0.373	0.492	0.349 ± 0.006	

Result

As for Ising-ISAW $U_4 = 0.308(8)$, critical cumulant showed complete mismatch.

Bulks of the Square lattice

Monomers according to the number of interactions:

- 2 neighbors 1D-chains
- 3 neighbors boundaries of the cluster
- 4 neighbors core of the cluster

Bulk results

- First order transition was determined in cubic Ising-ISAW
- Continious transition in triangular Ising-ISAW
- Clear depiction of the chain consolidation

Anticipated results

J=0 case research:

- fractions scaling nature as functions of the chain length?
- comparability of the lattice modifications

References

- P.-G. de Gennes, *Scaling concepts in polymer physics*. Cornell University Press, 1979.
- W. Selke, "Critical Binder cumulant of two-dimensional Ising models," *Eur. Phys. J. B*, vol. 51, no. 2, pp. 223–228, 2006.
- S. Caracciolo, M. Gherardi, M. Papinutto, and A. Pelissetto, "Geometrical properties of two-dimensional interacting self-avoiding walks at the θ -point," *J. Phys. A: Math. Theor.*, vol. 44, no. 11, pp. 1–24, 2011.
- K. Faizullina, I. Pchelintsev, and E. Burovski, "Critical and geometric properties of magnetic polymers across the globule-coil transition," 2021.
- L. Onsager, "Crystal statistics. i. a two-dimensional model with an order-disorder transition," *Phys. Rev.*, vol. 65, pp. 117–149, Feb 1944. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.65.117

Thanks for watching!