Semistructured Data and Mediation

Prof. Letizia Tanca

Dipartimento di Elettronica e Informazione Politecnico di Milano

SEMISTRUCTURED DATA

FOR THESE DATA THERE IS SOME FORM OF STRUCTURE, BUT IT IS NOT AS

- PRESCRIPTIVE
- REGULAR
- COMPLETE

AS IN TRADITIONAL DBMSs

EXAMPLES

- WEB DATA
- XML DATA
- BUT ALSO DATA DERIVED FROM THE INTEGRATION OF HETEROGENEOUS DATASOURCES

AN EXAMPLE OF SEMISTRUCTURED DATA a page produced form a database

AN EXAMPLE OF SEMISTRUCTURED DATA

AN EXAMPLE OF SEMISTRUCTURED DATA

GRAPH-BASED REPRESENTATION: THE IRREGULAR DATA STRUCTURE APPEARS MORE CLEARLY

A SIMPLE XML DOCUMENT WITH ITS GRAPH BASED REPRESENTATION

```
cproducer>
 <mn-name>Mercury</mn-name>
 <year>1999</year>
                                         PRODUCER
 <model>
 <mo-name>Sable LT</mo-name>
                                        mn-name
 <front-rating>3.84</front-rating>
                                                year
 <side-rating>2.14</side-rating>
 <rank>9</rank>
 </model>
                                                            MODEL
                                       Mercury
                                                1999
</producer>
                                                                     rank
                                                  mo-name
                                               Sable LT
                                                       front-pating side-rating
                                                                2.14
                                                         3.84
```

INFORMATION SEARCH IN SEMISTRUCTURED DATABASES

- WE WOULD LIKE TO:
 - INTEGRATE
 - QUERY
 - COMPARE

DATA WITH DIFFERENT STRUCTURES
ALSO WITH SEMISTRUCTURED DATA,
JUST AS IF THEY WERE ALL
STRUCTURED

DYNAMIC INTEGRATION OF SEMISTRUCTURED DATABASES

AN OVERALL DATA REPRESENTATION SHOULD BE PROGRESSIVELY BUILT, AS WE DISCOVER AND EXPLORE NEW INFORMATION SOURCES

SEMISTRUCTURED DATA MODELS

- BASED ON
 - TEXT
 - TREES
 - GRAPHS
 - LABELED NODES
 - LABELED ARCS
 - BOTH
- THEY ARE ALL DIFFERENT AND DO NOT LEND THEMSELVES TO EASY INTEGRATION

Recall: MEDIATORS

The term <u>mediation</u> includes:

- the processing needed to make the interfaces work
- the knowledge structures that drive the transformations needed to transform data to information
- any intermediate storage that is needed (Wiederhold)

TSIMMIS

Mediator-based approach

IN TSIMMIS:

- UNIQUE, GRAPH-BASED DATA MODEL
- DATA MODEL MANAGED BY THE MEDIATOR
- WRAPPERS FOR THE MODEL-TO-MODEL TRANSLATIONS

OEM (Object Exchange Model) (TSIMMIS)

- Graph-based
- Does not represent the schema
- <u>Directly represents</u> data: self-descriptive

<temp-in-farenheit,int,80>

Object structure

<Object-id, label, type, value>

Nested structure

```
 \begin{array}{l} \langle \text{set-of-temps, set, } \{cmp_1, \, cmp_2\} \rangle \\ cmp_1 \colon \langle \text{temp-in-Fahrenheit, int, } 80 \rangle \\ cmp_2 \colon \langle \text{temp-in-Celsius, int, } 20 \rangle \end{array}
```

OEM (Object Exchange Model) (TSIMMIS)

Typical complications when integrating

- Each mediator is specialized into a certain domain (e.g. weather forecast), thus
- Each mediator must know domain metadata, which convey the data semantics
- On-line duplicate recognition and removal (no designer to solve conflicts at design time here)

Query formulation

"Find books authored by Aho"

```
select library.book.title
where library.book.author = "Aho"
from library (if more than one root is available)
```

OK, but if this query must be produced at run-time, how does the user (or the system, if a transformation has to be applied) know that:

- A node *library* exists, which contains nodes *book*, which in turn contain fields *author* and *title*
- TSIMMIS uses the *Dataguide*: a-posteriori schema, progressively built while exploring the data sources

TSIMMIS's language is LOREL

- Lightweight Object REpository Language
- Object-based
- Similar to OQL, with some modifications appropriate for semistructured data

```
select library.book.title
where library.book.author = "Aho"
from library
```

WRAPPERS (translators)

- Convert queries into queries/commands which are understandable for the specific data source
 - they can extend the query possibilities of a data source
- Convert query results from the source's format to a format which is understandable for the application

WRAPPERS

HTML page

database table(s) (or XML docs)

Example: estraction of information from HTML docs

- Information extraction
 - Source Format: plain text with HTML tags (no semantics)
 - Target Format: relational table (possibly nested, NF²)
 or XML (we add *structure*, i.e. *semantics*)
- Wrapper
 - Software module which performs an extraction step
 - Intuition: use extraction rules which exploit the marking tags

A complex extraction process

Problems

- Web sites change very frequently
- A layout change may affect the extraction rules
- Human-based maintenance of an ad-hoc wrapper is very expensive
- Better: automatic wrapper generation

Automatic wrapper generation...

- We can only use them when pages are regular to some extent
- OK when:
 - Many pages sharing the same structure
 - e.g. pages are dynamically generated from a DB
- → data intensive web sites

Online library

The ROAD RUNNER project

Page Class

 It is the collection of all pages generated by the same script from a common dataset

Schema Derivation

 Given a set of HTML sample pages, belonging to the same class, find the underlying dataset structure (database schema)

→ Solution: Wrapper Generator

- Underlying dataset structure
- Extraction rules


```
<HTML><BODY><TABLE>
<TR>
<TD><FONT>books.com<FONT></TD>
<TD><A> #PCDATA</A></TD></TR>
(<TR>
(<TR>
(<TD><FONT> #PCDATA <FONT></TD>
(<TD><GONT> #PCDATA <FONT></TD>
(<TD><GONT> #PCDATA </GONT></GONT></GONT>
(<TR>
(<TR><TD><B> #PCDATA </GONT></GONT>
<B> #PCDATA </GONT>
<B> #PCDATA </GONT>
(B> #PCDATA </GONT>
)+...
```

Target Schema

```
SET (
TUPLE (A: #PCDATA;
B: SET (
TUPLE (C: #PCDATA;
D: #PCDATA;
E: SET (
TUPLE (F: #PCDATA;
G: #PCDATA;
H: #PCDATA)))
```

21° oct

Model Management approach

(Atzeni, Bernstein, others...)

- Given two different data models (e.g. OO and relational, or XML and OO, etc.) (when datasources are at least semistructured)
- Define general mappings from one model into another, which allow to
 - Map SQL schema to XML schema
 - Map data source to data warehouse
 - Map OO classes to data source tables, ...
- To this end, one possibility is to use a metamodel

METAMODEL

 A METAMODEL IS AN ABSTRACT MODEL FOR THE SPECIFICATION OF CONCRETE MODELS

TWO TYPES OF METAMODELS:

- 1. GENERAL ENTITIES WHOSE SPECIALIZATIONS
 BECOME OBJECTS IN THE TARGET MODEL, E.G.
 GSMM
- 2. ENTITIES DESCRIBING THE OBJECTS OF THE TARGET MODEL, E.G.GEOGRAPHIC DATA FILES (GDF)

Using a metamodel for integrated data representation

- TRANSLATION OF DIFFERENT MODELS INTO A UNIQUE FORMALISM
- EASY A-PRIORI COMPARISON BETWEEN THE DIFFERENT MODEL'S FEATURES
- AUTOMATIC TRANSLATION DICTATED BY THE REPRESENTATION RULES OF THE CONCRETE MODEL INTO THE METAMODEL

GSMM

(General Semistructured Meta-Model)

- GRAPH-BASED
- DOES NOT REPRESENT THE SCHEMA: SELF-DESCRIPTIVE AS TSIMMIS
- GSSM REPLACES THE CONCEPT OF SCHEMA WITH THAT OF CONSTRAINT
- INTRODUCTION OF FLEXIBILITY IN DATA REPRESENTATION

An XML document...

```
<producers>
  <producer>
  <mn-name>Mercury</mn-name>
  <year>1999</year>
  <model>
    <mo-name>Sable LT</mo-name>
    <front-rating>3.84</front-rating>
    <side-rating>2.14</side-rating>
    <rank>9</rank>
    </model>
    ......
</producers></producers>
```


Its representation in GSMM

GSL

General Semistructured Language

RULE BASED, WHERE

- A RULE IS A COLORED GRAPH
 - RED SOLID FOR POSITIVE PREMISES
 - RED DASHED FOR NEGATIVE PREMISES
 - GREEN SOLID FOR POSITIVE CONSEQUENCES
- RULES REPRESENT:
 - QUERIES
 - CONSTRAINTS (EMPTY CONSEQUENCE)

GSL QUERIES

 Q_1 : Find all the B nodes which have at least a C child and link them to a node R_1

 Q_2 : Find all the *B* nodes that do not have children *C* and link them to a node R_2

CONSTRAINTS IN GSL

 C_1 : Whenever a B node has a child, this is a C node

C₂: Each A node has at least a B child

APPLICATION OF THE GSMM METAMODEL

- THE METAMODEL ALLOWS THE CONSTRUCTION OF A GENERIC GRAPH WHICH REPRESENTS AN INSTANCE OF A CONCRETE MODEL
- PLUS CONSTRAINTS (also represented by means of graphs):
 - HIGH LEVEL, OR META- CONSTRAINTS these dictate the sintactic rules of the object data model
 - LOW LEVEL CONSTRAINTS as usual, these dictate the application domain semantics
- IT IS A METAMODEL OF THE FIRST KIND

XML expressed in GSMM

• EACH NODE LABEL HAS CARDINALITY 4:

n_i = <Ntag_i, Ntype_i, Norder_i, Ncontent_i>

Ntype_i says whether the node is the root, an element, a text, ...

Norder_i represents the node's position as a child of its parent node

Ncontent_i may assume a value of type PCDATA or value ⊥

EACH EDGE LABEL HAS CARDINALITY 1:

$$ej = \langle (nh, nk), ELj \rangle$$

 $EL_i = < Etype_i >$

 $Etype_{i} \in \{attribute of, sub-element of\}$

CONSTRAINT REPRESENTATION IN XML

<TAG1,TYPE1,ORDER1,CONTENT1> <TAG1,TYPE1,ORDER1,CONTENT1> <E-type> <E-type> <TAG2,TYPE2,ORDER2,CONTENT2> <TAG2,TYPE2,ORDER2,CONTENT2> **{ E-type=SubElement-of** → TYPE1=element **{ TYPE1=root** ∧ CONTENT1=⊥ **}** ∧ (TYPE2=element ∨ TYPE2=text), E-type=Attribute-of → TYPE1=element ∧ TYPE2=attribute }

THE TYPE OF AN ARC DEPENDS ON THE TYPE OF THE DESTINATION NODES

HIGH LEVEL, OR META-CONSTRAINT: HIGH LEVEL, OR META-CONSTRAINT:

THE GRAPH ROOT HAS TYPE root AND **UNDEFINED CONTENT**

HIGH LEVEL CONSTRAINTS CONTRIBUTE TO THE DEFINITION OF THE STRUCTURE OF ANY XML DOCUMENT

An XML document...

```
cproducers>
cproducer>
  <mn-name>Mercury</mn-name>
  <year>1999</year>
  <model>
   <mo-name>Sable LT</mo-name>
   <front-rating>3.84</front-</pre>
  rating>
   <side-rating>2.14</side-rating>
   <rank>9</rank>
   </model>
</producer>
</producers>
```


Its representation in GSMM

LOW-LEVEL, OR APPLICATION-LEVEL, CONSTRAINTS

cproducer,element,ORDER1,CONTENT1>

<Subelement-of>

<model,element, ORDER2,CONTENT2>

cproducer,element,ORDER1,CONTENT1>

<Subelement-of>

<year,element,ORDER2,CONTENT2>

{ CONTENT2>1990 }

Low-level constraint:

For each PRODUCER element there is at least one MODEL element

Low-level constraint:

YEAR must be greater than 1990

LOW-LEVEL CONSTRAINTS
EXPRESS THE DOCUMENT'S SEMANTICS

Geographic Data Files (GDF)

- GDF is a standard, used for describing roadmaps
 - CITY STREET REGISTER
 - STREET SIGN ARCHIVE
 - TRAFFIC CONTROL SYSTEMS
 - CAR NAVIGATOR SYSTEMS (GPS)
 - **–**
- IT IS A METAMODEL OF THE SECOND KIND

GDF STRUCTURE

- DATASET OF 82 ASCII CHARACTERS RECORDS
 - ENTITIES
 - ATTRIBUTES
 - RELATIONS
- 11 INTEREST THEMES
 - ROADS AND FERRIES
 - BRIDGES AND TUNNELS
 - RAILROADS
 - RIVERS
 - PUBLIC TRANSPORTATION
 - ADMINISTRATION AREAS
 -
- 3 DESCRIPTION LEVELS FOR EACH THEME

GDF

- LEVEL 0 TOPOLOGY
 - A PLANAR GRAPH:
 - POINT
 - ARC
 - NODE
 - POLYGON
 - EACH ELEMENT IS UNIQUELY IDENTIFIED
 BY AN ID
 - TOPOLOGICAL RULES GOVERN INTERNAL STRUCTURE AND RELATIONSHIPS AMONG ELEMENTS

GDF LEVELS

- LEVEL 1 ELEMENTARY ENTITIES

 THIS IS THE BASIS FOR THE CITY STREET

 REGISTER
 - ROAD ELEMENT
 - JUNCTION
 - TRAFFIC AREA
- LEVEL 2 COMPLEX ENTITIES

 THIS IS THE BASIS FOR THE GEOGRAPHIC INFORMATION SYSTEMS
 - STREET
 - INTERSECTION

GDF LEVELS

L812 C625 L814 C629

META-ENTITY DEFINITION

GDF META-SCHEMA

AN ORTHOGONAL APPROACH: A STANDARD FOR METADATA

MULTIMEDIA CONTENT DESCRIPTION INTERFACE

(MPEG-7) http://www.tilab.com/mpeg

- PROVIDES A SET OF TOOLS FOR DESCRIBING MULTIMEDIA CONTENT
- XML-SCHEMA BASED
- NOT BASED ON SPECIFIC APPLICATION DOMAINS, IT ENABLES EASY EXCHANGE AND REUSE OF MULTIMEDIA CONTENTS
 - SPEECH → TEXT
 - IMAGES ←→ TEXT
- IT IS APPLIED IN REAL-TIME AS WELL AS IN NON-REAL-TIME SITUATIONS:
 - OFF-LINE CONTENT STORAGE
 - ON-LINE CONTENT STORAGE
 - STREAM (NO PERMANENT STORAGE)

MPEG-7 TOP LEVEL ELEMENTS

