2012 Fall Electromagnetics II - Quiz I

Date: 22/10/2012

Problem 1

In the system shown in Fig. 1, assume that V_g is a constant voltage source of 80 V and the switch S is closed at t=0. Find and sketch: (a) the line voltage versus z for t=0.2 μ s; and (b) the line current versus z for t=0.4 μ s; (c) the line voltage versus z for z=30 m; and (d) the line current versus z for z=-40 m. $R_S=60$ Ω

Problem 2

In the system shown in Fig. 2: (a) find the output voltage V_o across the 150 Ω resistor for $V_g(t) = \delta(t)$; and **(b)** find the amplitude of $V_o(t)$ versus ω for $V_g(t) =$

(a).
$$V_{9}(t) = S(t)$$
 Fig. 2
 $\Gamma_{1} = \frac{300-50}{300+50} = \frac{250}{350} = \frac{5}{7}$, $\Gamma_{2} = \frac{150-300}{150+300} = \frac{-150}{450} = -\frac{1}{3}$
 $\Gamma_{3} = \frac{150-150}{150+150} = 0$.
 $\rightarrow T_{1} = 1 + \Gamma_{1} = \frac{12}{7}$, $T_{2} = 1 + \Gamma_{2} = 1 - \frac{1}{3} = \frac{2}{3}$, $T_{3} = 1 + \Gamma_{3} = 1$.

$$V^{+} = V_g \times \frac{50}{50+50} = \frac{1}{2} V_g \implies V_g = A S(t - (T_1 + T_2 + T_3)) + (F_1 F_2) A S(t - (T_1 + T_2 + T_3 + 2) + A F_1 F_2)^2 S(t - (T_1 + T_2 + T_3 + 2) + 2 \times 2 T_2)$$

(b)
$$V_g(t) = \cos(\omega t)$$

if $\tilde{i}_{g} = \delta(t) \rightarrow \text{output} = h(t) = \tilde{i}_{g} = h(t) = \tilde{i}_{g} = h(t)$

then input =
$$x(t)$$
 \rightarrow out put = $y(t)$ = $x(t)$ \times $h(t)$
Now $x(t)$ = $\cos(\omega t)$, $h(t)$ = (a) $\exists b$ $\forall y(t)$
 $\Rightarrow y(t)$ = $\cos(\omega t)$ \times $\forall y(t)$ $\Rightarrow y(t)$ = $\cos(\omega t)$ $\Rightarrow (a)$ $\Rightarrow (a)$ $\Rightarrow (b)$

$$\Rightarrow \text{ phasor } \frac{1}{Y(\omega)} = \sum_{n=0}^{\infty} \frac{4}{7} \left(\frac{5}{21}\right)^n e^{-j\omega(3+2n)\mu} = \frac{4}{7} e^{-j3\omega\mu} \sum_{n=0}^{\infty} \left(\frac{5}{21}\right)^n \left(e^{-j\omega^2\mu}\right)^n$$

3.
$$(a) \frac{V_0}{5} + V = L \frac{d(\frac{V_0}{270} - \frac{V}{20})}{dt} + (\frac{V_0}{270} - \frac{V}{20}) \frac{V}{20}$$

$$V + \frac{L}{270} \frac{dV}{dt} = 0$$

at
$$t=1$$
 L open $[1]_{t=1}=0$
 $\frac{V_0}{2a_0} - \frac{V^-}{Z_0} = 0$ $[V]_{t=1}=\frac{V_0}{5}$
(c) $V = A \cdot e^{-\frac{2a_0}{5}(t-T)}$
 $I[V]_{t=1}=\frac{V_0}{5} \Rightarrow V = \frac{2a_0}{5}(t-T) + 5I$

4 (a)
$$V_0 + V = L \cdot \frac{d(L)}{dt} = L \cdot \frac{d(-\frac{V}{Z_0})}{dt} = -\frac{L}{Z_0} \cdot \frac{dV}{dt}$$

$$(C) \xrightarrow{\Rightarrow z^{\dagger}} V_{\circ} \qquad \underline{V^{\dagger}}$$

$$(d)_{V_0+V^+=L} \cdot \frac{d(-I^+)}{dt} = -\frac{L}{z_0} \frac{dv^+}{dt} \qquad \qquad \frac{L}{z_0} \frac{dv^+}{dt} + V^+=-V_0$$

Problem 5.

Characteristic at 2=0 is Vs = 100-100 Is Charateristic at 2=1 is VL = 200 IL

Problem 6.

(a)
$$\Delta I_{c2}(\xi,t) = C_{m} \Delta \xi \frac{\partial V_{i}(\xi,t)}{\partial t}$$

$$\Delta V_{c2}(\xi,t) = C_{m} \Delta \xi \frac{\partial I_{i}(\xi,t)}{\partial t}$$

$$\Delta V_{c2}(\xi,t) = C_{m} \Delta \xi \frac{\partial I_{i}(\xi,t)}{\partial t}$$

$$\Delta V_{c2}(\xi,t) = C_{m} \Delta \xi \frac{\partial I_{i}(\xi,t)}{\partial t}$$

$$\Delta V_{c2}(\xi,t) = C_{m} \Delta \xi \frac{\partial I_{i}(\xi,t)}{\partial t}$$

$$\Delta V_{c2}^{-1} = \frac{1}{2} \delta_{0} \Delta I_{c2} - \frac{1}{2} \Delta V_{c2}$$

$$\Delta V_{c2}^{-1} = \frac{1}{2} \delta_{0} \Delta I_{c2} + \frac{1}{2} \Delta V_{c2}$$

$$\Delta V_{c3}^{-1} = \frac{1}{2} \delta_{0} \Delta I_{c2} + \frac{1}{2} \Delta V_{c2}$$

$$\Delta V_{c3}^{-1}(\xi,t) = C_{c3}^{-1} \delta_{c3} \Delta V_{c3}$$

$$\Delta V_{c3}^{-1}(\xi,t) = C_{c3}^{-1} \delta$$

