

enting

# NICHTER ARE ARE U.S. PAT, OFF

and other alloys



THE Historical Map of the United States of America, used as the cover illustration of this book, represents the development of the Electric Light and Power Industry.

(Data given below is reproduced from panel on back cover)

- 1876—A system of electric lighting by arc lamps perfected by Charles F. Brush.
- 1879—High resistance incandescent electric lamp invented by Thomas A. Edison.
- 1880—Experimental Central Station operated by Edison at Menlo Park, N. J.
- 1882—First commercial central station on Pearl Street, City of New York.
  First hydro-electric central station at Appleton, Wisconsin.
- 1883—Three-wire direct current system of electric distribution installed at Sunbury, Pennsylvania.
- 1884—Sprague Motor introduced. First electric street railway transportation in Cleveland, Ohio.
- 1885—National Electric Light Association founded. Invention by William Stanley of transformer for alternating current.
- First regulating commission, Massachusetts.

  1886—First commercial lighting system using alternating current operated by William Stanley at Great Barrington, Massachusetts.

  George Westinghouse established alternating current plant at
- Buffalo, N. Y. 1888—Tesla invented polyphase alternating current motor without commutator.
- 1891—The first steam railway to electrify part of its line was the Baltimore & Ohio Railway at Baltimore, Md.
- 1892-Work started on Niagara Falls Power Plant.
- 1893—The electric flat iron, the first household appliance operated by electric current was exhibited at World Fair, Chicago, Ill.
- 1896—High tension alternating current transmission lines with substations for the transformers were introduced.
- 1903—First all turbine central station built in Chicago with 5,000 kw. units.
- 1906-Tungsten filament lamp introduced.
- 1907—First modern regulating commission with broad powers—New York and Wisconsin.
- 1914—Customer ownership started in the territory of the Pacific Gas & Electric Co.
- 1920-Federal Water Power Act.
- 1922-First Commercial mercury turbine 2,000 kva., Hartford, Conn.

In the decade following the World War, Electric Light and Power Industry enjoyed great growth and prosperity. The period was characterized by the application of the idea of "Superpower" through the interconnection of generating system, by the extension of electric service to household appliances on a greater scale, by the advancement of farm electrification and by the development of large scale organizations through mergers and centralized control.

While this historical outline covers the major developments in the art—between the lines were thousands of inventions that have contributed mightily toward electrical advancement. It is a significant fact, that for each invention which required resistance alloy as an integral part the inventor had at his disposal a fully developed dependable resistance in the form of "Nichrome."

## THIS BOOK, R-28

HAS BEEN COMPILED BY

## DRIVER-HARRIS COMPANY

AS AN AID TO THOSE UPON WHOM RESTS THE RESPONSIBILITY FOR THE PROPER SELECTION OF ALLOYS USED IN MANUFACTURING PROCESSES

In Canada, The B. Greening Wire Co. Ltd., Hamilton

DATA AND SPECIFICATIONS
PERTAINING TO

ALLOYS
FOR ELECTRICAL
RESISTANCE



Plant at Harrison, New Jersey



Plant at Morristown, New Jersey

## The Scope of Driver-Harris Alloys

THIS catalog is designed to cover the properties and characteristics of alloys for electrical resistance and electrical heating

applications.

The activities of the Driver-Harris organization extend to a great many other industries which require alloys of unusual qualities made to very strict specifications. Years of experience have familiarized our staff with the problems of resistance to heat, including mechanical stresses, oxidation and chemical corrosion produced by high temperatures. We are also prepared to offer materials to be used in high vacuum applications, in spark plug electrodes and in many branches of the automotive industry.

In fact, the entire range of industries requiring high quality castings, bars, rods, sheet, strip, strand and wire, is served with products manufactured in the various mills of the

Driver-Harris Company.

The facilities of the Driver-Harris Company comprise highest types of modern equipment, including both arc and induction electric melting furnaces, hot rolling mills, complete foundry, steam hammers, cold rolling sheet and strip mills, wire drawing equipment, insulating machinery, heater cord machinery and research laboratories—all under the supervision of a thorough staff of engineers and metallurgists.

Manufacturing plants are located in Harrison, New Jersey; Morristown, New Jersey; Manchester, England; Gassicourt, France;

and Torino, Italy.

The Driver-Harris Company also maintains branch offices at General Motors Building, Detroit; 562 West Randolph Street, Chicago, and 7016 Euclid Avenue, Cleveland. In the Chicago Branch ample stocks are available for immediate service to customers.

## Contents

|                                           | PAGE     |
|-------------------------------------------|----------|
| Scope of Driver-Harris Alloys.            | 5        |
| NICHROME IV                               |          |
| Description and Application               | 3 and 9  |
| Properties and Price List                 | 10       |
| Current Temperature Characteristics       | 12       |
| Temperature Resistance Chart              | 13       |
| Resistance of "Nichrome" IV Ribbon.       | 14       |
| Feet per Pound of "Nichrome" IV Ribbon    | 15       |
| Prices of "Nichrome" IV Ribbon            | 16       |
| Hot Rolled Strip, Rounds and Squares.     | 17       |
| Design of "Nichrome" IV Heating Elements. | 20       |
| Registered Trade Marks                    | 21       |
| NICHROME                                  |          |
| Description and Application 22            |          |
| Properties and Price List                 | 24       |
| Temperature Resistance Chart              |          |
| Current Temperature Characteristics       | 26       |
| Resistance of "Nichrome" Ribbon           | 27       |
| Prices of "Nichrome" Ribbon               | 28       |
| Hot Rolled Strip, Rounds and Squares.     |          |
| Design of "Nichrome" Heating Elements     | ) and 31 |
| No. 95 ALLOY                              |          |
| Description and Application               | 32       |
| Properties and Price List                 | 33       |
| HEATER CORD                               |          |
| Description34                             |          |
| Types and Styles                          | and 3    |
| ADVANCE                                   |          |
| Description and Application               |          |
| Temperature Resistance Chart              |          |
| Properties and Price List.                | . 40     |

## Contents

|                                                          | PAGE |
|----------------------------------------------------------|------|
| Current Temperature Characteristics                      |      |
| Resistance of "Advance" Ribbon                           | 42   |
| Prices of "Advance" Ribbon                               |      |
| LUCERO                                                   |      |
|                                                          | 1 45 |
| Description and Application                              |      |
| Temperature Resistance Chart                             |      |
| Properties and Price List                                | 47   |
| MANGANIN                                                 |      |
| Description and Application                              | 48   |
| Properties and Price List                                | 49   |
| PURE NICKEL                                              |      |
|                                                          | 50   |
| Description and Application.                             | 50   |
| Temperature Resistance Chart                             | 51   |
| Properties and Price List.                               | 52   |
| Cold Rolled                                              | 53   |
| COMET                                                    |      |
| Description, Application, Properties and Price List      | 54   |
| Size Limits Cold Rolled and Hot Rolled Products          | 55   |
| "Nichrome" Sheet                                         | 56   |
| Additional D-H Alloys                                    | 57   |
| USEFUL DATA                                              |      |
| Ohms Law                                                 | 58   |
| Properties of Materials                                  | 59   |
| Weight of Resistance Ribbon in Pounds Per 1000 Ft        | 60   |
| Weight per Running Foot of Rounds, Squares, Hexagons and |      |
| Octagons                                                 | 61   |
| Weight per Running Foot of Flats                         | 62   |
| Conversion Factors                                       | 63   |
| Conversion Tables for Fahrenheit and Centigrade Scales   | 64   |
| Comparison of Wire Gauges                                | 65   |
| "NICHROME" CASTINGS                                      | 66   |
| Weights of Coils and Spools                              | 67   |
| Summary of D-H Products                                  | 68   |
|                                                          |      |



THE application of electrical energy to industrial heating has so many advantages that the field for electric heating apparatus includes the entire industrial world, there being scarcely a manufacturing plant that does not require accurate and automatically-controlled heating equipment which means electric heat.

The modern home, where convenience and refinement are the prime considerations, also requires high grade electrical cooking and heating appliances.

To provide a resistor material that will endure the high temperatures necessary for the satisfactory operation of electric furnaces, ovens, heaters, ranges and special appliances is a difficult metallurgical problem.

"Nichrome" IV elements are used



"Nichrome" IV (Karma), the most recent development of the Driver-Harris Company, is a super nickelchrome resistance alloy and is specially made for this high temperature service. It will effectively resist oxidation at temperatures up to 1150° C. (2102° F.).

This super-nickelchrome alloy is made of the purest nickel and chromium available. The induction furnace melting process used exclusively by the Driver-Harris Company in making this product, inhibits the formation of oxide inclusions and all other contaminations.

Special processes during the successive stages of manufacture insure, in the finished product, the high quality inherent in the metal because of the selection of raw materials and the melting operation.

Rigid inspections and tests are applied at each step of the manufacture to insure "Nichrome" IV fulfilling the demands encountered in heavy duty heating apparatus, operating at high temperatures for long periods.

in these electric furnaces



#### Nichrome IV

#### The Super Nickelchrome Wire

Specific resistance 650 ohms per circular mil-foot at 20°C. (68°F.). For temperature resistance chart see page 13.

## Factors to be used in determining resistance at elevated temperatures.

| Temp. Cent Temp. Fahr Resis. in Ohms |    | 68  | 212 | 392           | 572 | 400<br>752<br>0 1 049 | 932 | 1112 | 1292 | 1472 | 1652 | 1832            |
|--------------------------------------|----|-----|-----|---------------|-----|-----------------------|-----|------|------|------|------|-----------------|
| No. Diam.                            | Oh | nms | 11  | Veight<br>Per |     | Fe                    | et  |      | Oh:  | ms   |      | st Price<br>Per |

| No.<br>B.<br>&<br>S.       | Diam.<br>in<br>Inches                                | Ohms<br>Per Ft.<br>at 20°C.<br>(68°F.)             | Weight Per 1000 Ft. Bare Wire Pounds                     | Feet<br>Per Pound<br>Bare Wire                             | Ohms<br>Per Pound<br>Bare Wire                                                | List Price<br>Per<br>Pound<br>Bare Wire              |
|----------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5      | 289<br>.258<br>.229<br>.204<br>.182                  | .0077<br>.0097<br>.0123<br>.0156                   | 239.0<br>190.0<br>150.0<br>119.0<br>95.0                 | 4 .32<br>5 .40<br>6 .88<br>8 .65<br>10 .9                  | . 033<br>. 052<br>. 085<br>. 134<br>. 214                                     | \$4.05<br>4.05<br>4.05<br>4.05<br>4.05               |
| 6<br>7<br>8<br>9           | .162<br>.144<br>.128<br>.114<br>.102                 | .0247<br>.0313<br>.0396<br>.0501<br>.0624          | 72.0<br>59.0<br>47.0<br>37.6<br>29.2                     | 13.7<br>17.4<br>22.0<br>27.8<br>34.7                       | .363<br>.545<br>.871<br>1.39<br>2.17                                          | 4.05<br>4.05<br>4.05<br>4.11<br>4.17                 |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064<br>.057                 | .0784<br>.0990<br>.1253<br>.1586<br>.2000          | 23.7<br>18.8<br>14.8<br>11.7<br>9.3                      | 43.6<br>55.0<br>69.5<br>88.0                               | 3.42<br>5.45<br>8.71<br>13.9<br>22.2                                          | 4.23<br>4.32<br>4.41<br>4.50<br>4.59                 |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032                 | .2499<br>.3209<br>.4062<br>.5015                   | 7.45<br>5.73<br>4.57<br>3.70<br>2.93                     | 139<br>178<br>225<br>279<br>352                            | 34.7<br>57.1<br>91.4<br>140<br>223                                            | 4.68<br>4.80<br>4.95<br>5.18<br>5.40                 |
| 21<br>22<br>23<br>24<br>25 | .0285<br>.0253<br>.0226<br>.020<br>.0179             | .8002<br>1.015<br>1.272<br>1.625<br>2.028          | 2.32<br>1.83<br>1.46<br>1.15<br>0.91                     | 444<br>563<br>708<br>903<br>1,130                          | 355<br>571<br>901<br>1,511<br>2,291                                           | 5.70<br>6.15<br>6.60<br>7.20<br>7.80                 |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113                     | 2 571<br>3 223<br>4 094<br>5 090<br>6 500          | 0.72<br>0.58<br>0.46<br>0.365<br>0.286                   | 1,425<br>1,790<br>2,280<br>2,830<br>3,600                  | 3,663<br>5,769<br>9,334<br>14,400<br>23,400                                   | 8 . 40<br>9 . 00<br>9 . 60<br>10 . 20<br>10 . 80     |
| 31<br>32<br>33<br>34<br>35 | .0089<br>.008<br>.0071<br>.0063<br>.0056             | 8.206<br>10.15<br>12.89<br>16.37<br>20.72          | 0.226<br>0.183<br>0.144<br>0.113<br>0.090                | 4,550<br>5,630<br>7,150<br>9,100<br>11,500                 | 37,330<br>57,140<br>92,160<br>148,960<br>238,000                              | 11.40<br>12.00<br>12.90<br>14.10<br>15.75            |
| 36<br>37<br>38<br>39<br>40 | .005<br>.0045<br>.004<br>.0035<br>.0031              | 26.00<br>32.09<br>40.62<br>53.06<br>67.63          | 0.071<br>0.058<br>0.046<br>0.035<br>0.026                | 14,400<br>17,800<br>22,500<br>29,500<br>37,500             | 374,400<br>571,000<br>914,000<br>1,565,000<br>2,536,000                       | 18.00<br>21.00<br>25.50<br>31.50<br>39.00            |
| 10                         | .00275<br>.0025<br>.00225<br>.002<br>.00175<br>.0015 | 85 95<br>104 0<br>128 3<br>162 5<br>212 2<br>288 8 | .02147<br>.01775<br>.01437<br>.01136<br>.00769<br>.00639 | 47,500<br>57,700<br>71,500<br>90,000<br>117,000<br>160,000 | 4,082,000<br>6,000,000<br>9,175,000<br>14,625,000<br>24,800,000<br>46,200,000 | 48.00<br>60.00<br>75.00<br>90.00<br>112.00<br>142.00 |

Unless otherwise specified material listed above will be supplied soft temper. Prices of Cotton and Silk Covered Wires furnished on request.

THOSE industries which utilize heat in the manufacture of their products are gradually and steadily turning to electricity.

Electric heat, capable of so many refinements and of such accurate control, is essential to many processes. In the successful application of electric heat "Nichrome" is indispensable.

Driver-Harris Alloys are found in all parts of the industrial world. Only a few installations are illustrated in this catalog, but wherever quality is considered for electric heating, there "Nichrome" and "Nichrome" IV will be found.

As the best means of determining quality of their products, the Driver-Harris Company has used life tests of its wires. The extensive use of life tests in the development of nickelchrome wire for electric heating necessitated the development of a complete laboratory and methods of testing.

The Driver-Harris Technical staff will be glad to furnish, upon request, further information concerning life tests and their services and laboratory facilities are at your disposal.



Industrial furnace equipped with "Nichrome" IV

## Current Temperature Characteristics of

#### Nichrome IV

The Super Nickelchrome Wire

Showing amperes necessary to produce a given temperature. Applying only to straight wires stretched horizontally in free air.

| В.                         | Diam.                                | 200                                  | 300                                  | 400                                  | 500                                  | 600                                  | 700                                  | 800                                  | 900                                  | 1000                                 | 1100°C                               |
|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| &<br>S.                    | in<br>Inches                         | 392                                  | 572                                  | 752                                  | 932                                  | 1112                                 | 1292                                 | 1472                                 | 1652                                 | 1832                                 | 2012°F                               |
| 1<br>2<br>3<br>4<br>5      | 289<br>258<br>229<br>204<br>182      | 87.0<br>74.0<br>62.6<br>53.1<br>44.5 | 113<br>96.0<br>81.5<br>69.0<br>58 4  | 117                                  | 166<br>141<br>119<br>101<br>85.3     | 195<br>165<br>140<br>119<br>101      | 227<br>193<br>164<br>139<br>117      | 257<br>218<br>185<br>157<br>133      | 292<br>248<br>211<br>178<br>151      | 332<br>281<br>239<br>202<br>171      | 378<br>320<br>272<br>230<br>195      |
| 6<br>7<br>8<br>9           | 162<br>144<br>128<br>114<br>102      | 37 6<br>32 1<br>27 3<br>23 1<br>19 5 | 49-4<br>41-6<br>35-4<br>30-0<br>25-4 | 60.0<br>50.8<br>43.1<br>36.5<br>30.9 | 72 2<br>61 0<br>51 9<br>43.8<br>37.1 | 85.0<br>72.0<br>61.0<br>51.6<br>43.7 | 99 0<br>83 8<br>71 0<br>60 0<br>51 0 | 112<br>95.0<br>80.6<br>68.0<br>57.7  | 128<br>108<br>91 5<br>77.5<br>65.6   | 144<br>122<br>104<br>87.6<br>74.4    | 164<br>139<br>118<br>100<br>85       |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064<br>.057 | 16.5<br>14.0<br>11.8<br>10.0<br>8.50 | 21 5<br>18 2<br>15 3<br>13 0<br>11 1 | 26.1<br>22.1<br>18.2<br>15.9<br>13.5 | 31.4<br>26.6<br>22.5<br>19.0<br>16.2 | 36 9<br>31 3<br>26 5<br>22 5<br>19 0 | 43 0<br>36.5<br>30.9<br>26.1<br>22.2 | 48-6<br>41-3<br>35-0<br>29-6<br>25-1 | 55.3<br>47.0<br>39.8<br>33.7<br>28.5 | 62 6<br>53 2<br>45 0<br>38 1<br>32 3 | 71.5<br>60.8<br>51.3<br>43.3<br>36.8 |
| 16<br>17<br>18<br>19<br>20 | 051<br>045<br>040<br>036<br>032      | 7.20<br>6.10<br>5.18<br>4.37<br>3.70 | 7.95<br>6.73<br>5.70                 | 9 65<br>8 20<br>6 95                 | 9.85<br>8.35                         | 9.85                                 |                                      | 21.4<br>18.1<br>15.3<br>12.9<br>10.9 | 24.3<br>20.5<br>17.4<br>14.7<br>12.4 | 27.5<br>23.2<br>19.7<br>16.7<br>14.1 | 31 4<br>26 4<br>22 4<br>19 0<br>16 1 |
| 21<br>22<br>23<br>24<br>25 | 0285<br>0253<br>0226<br>020<br>0179  | 3 2 65<br>5 2 26<br>1 91             | 3.45<br>2.84<br>2.48                 | 4.20<br>3.57<br>3.02                 | 5.05<br>4.30<br>3.64                 | 5 95<br>5 06<br>4 27                 | 6.95<br>5.90<br>4.97                 | 7 85<br>0 6 67<br>5 63               | 8 90<br>7 7.60<br>8 6 40             | 8 60                                 | 8 2                                  |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113     | 2 1.16                               | 1 51<br>1 29<br>1 11                 | 1.84<br>1.58<br>1.35                 | 2 21<br>1 89<br>1 62                 | 2 .61<br>2 .23<br>1 .92              | 3 04<br>2 60<br>2 2 23               | 3 44<br>2 94<br>3 2 55               | 3 90<br>4 3 35<br>2 2 95             | 3 - 89<br>5 3 - 89<br>5 3 2          | 2 5 0<br>9 4 4<br>5 3 70             |
| 31<br>32<br>33<br>34<br>35 | -0089<br>008<br>.0071<br>.0063       | . 54<br>1 . 46<br>3 . 40             | . 70<br>5 . 60<br>5 . 52             | . 86<br>. 74<br>2 63                 | 1.03<br>.88<br>.77                   | 1 21<br>1 02<br>.90                  | 1 42<br>1 1 2<br>1 1 0               | 2 1 6<br>1 1 3<br>4 1 1              | 0 1 8:<br>7 1 5:<br>8 1 3:           | 2 2 00<br>6 1.7<br>4 1.5             | 6 2 35<br>7 2 02<br>2 1 73           |
| 36<br>37<br>38<br>39<br>40 | .005<br>.004<br>.004<br>.003<br>.003 | 5 .25<br>.21<br>5 .18                | . 33<br>. 28<br>. 3                  | 3 .40<br>3 .34<br>4 .29              | . 48<br>4 . 41<br>9 . 35             | 3 .5'<br>-49<br>5 4                  | 7 6<br>9 5<br>1 4                    | 5 .7<br>7 .6<br>9 .5                 | 5 .8<br>4 .7<br>4 .6                 | 5 .9<br>3 .8<br>2 .7                 | 6 1 10<br>2 93<br>0 .80              |

#### Temperature Resistance Chart Nichrome IV and Nichrome



The temperature coefficient curves of "Nichrome" and "Nichrome" IV shown above represent wire slowly cooled from 1000° C., as specified by the American Society for Testing Materials. Slight variations from this curve may be expected due to variations in methods of annealing of different sizes of wire.

Heat-treating furnace equipped with "Nichrome" IV elements



#### Resistance of Nichrome IV

The Super Nickelchrome Ribbon

Specific Resistance 510 ohms per sq. mil-foot at 20°C. 68°F.

Factors to be used in determining resistance at elevated tempertures. These figures are given as a basis for engineering calculations and represent average material as received.

| Temp. Cent.<br>Temp. Fale. |   | 20  | 900<br>171 | 300<br>391 | 900<br>571 | 400<br>752 | 500<br>920 | 680<br>1112 | 100   | 800<br>(47) | 908<br>1651 | 3000<br>1837 |
|----------------------------|---|-----|------------|------------|------------|------------|------------|-------------|-------|-------------|-------------|--------------|
| s can in where .           | 1 | 000 | 1 005      | 1 025      | 1 (4)      | 1454       | 1 053      | 1 043       | 1 344 | 1 046       | 2 055       | 1 056        |

#### Resistance in Ohms Per Foot at 20°F. (68°C)

| Th                               | ickness                            |                                           |                                  |                                         | 10                                  | 15.1-                                           | laches                               |                                                   |                                              |                                               |                                              |
|----------------------------------|------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|
| 10 40 60                         | Ins.                               | 14                                        | 1 26                             | * 9                                     | 1.2                                 | 36                                              | 19                                   | -3                                                | L                                            | 34.                                           | 1                                            |
| 10<br>11<br>12<br>13<br>14<br>15 | 064<br>064                         |                                           |                                  |                                         | 0452<br>0507                        | 00035<br>00057<br>0301<br>0301<br>03036<br>0380 | 49<br>(1.65<br>(021<br>(0238         | 01.00<br>01.01<br>01.05<br>01.41<br>0.35<br>0.179 | 0080<br>0086<br>0000<br>0113<br>0127<br>0143 | 01066<br>0074<br>0083<br>0084<br>0006<br>0019 | 0050<br>0056<br>0062<br>0070<br>0079<br>0089 |
| 16<br>17<br>18<br>19<br>21       | 061<br>045<br>040<br>036<br>032    |                                           |                                  | 108<br>120<br>135                       | 086T<br>0643<br>723<br>0803<br>0904 | (425<br>(481<br>(541<br>(602<br>(678            | 0286<br>0302<br>0340<br>0377<br>0425 | (00.00)<br>(0006)<br>(0055)<br>(0053)<br>(0016)   | 0.160<br>0181<br>0204<br>0225<br>0255        | .0133<br>.0151<br>.0170<br>.0188<br>.0212     | 0000<br>0113<br>0127<br>0141<br>0141         |
|                                  | 1055<br>1051<br>1005<br>101<br>179 |                                           | - 434<br>- 435                   | 152<br>172<br>192<br>217<br>242         | 101<br>114<br>128<br>144<br>161     | 0761<br>0857<br>0900<br>100<br>114              | 0477<br>0600<br>0600<br>0680         | 451<br>451<br>6.0<br>669                          | (035<br>(1802)<br>(1861)<br>(1418)<br>(435)  | (0008<br>(0068<br>(0300<br>(0540<br>(0079     | 00 78<br>0201<br>0205<br>0258<br>0284        |
| 25                               | 0159<br>0142<br>0125<br>0113       | 1 736                                     | 5.0f<br>611<br>688<br>768<br>868 | 273<br>305<br>344<br>384<br>434         | 151<br>203<br>209<br>290<br>327     | 128<br>144<br>162<br>181<br>214                 | 0855<br>0867<br>107<br>120<br>136    | 0641<br>0715<br>0809<br>0902<br>1902              | 0513<br>0514<br>0647<br>0712<br>0816         | 0427<br>0478<br>0539<br>0601<br>0680          | 0336<br>0454<br>0450<br>0450                 |
| 1188333                          | 0086<br>008<br>0 TO<br>0 ES        | 1 950<br>1 170<br>2 445<br>1 755<br>3 100 |                                  | 457<br>614<br>682<br>781                | 366<br>419<br>461<br>521<br>585     | 229<br>255<br>257<br>324<br>364                 | 152<br>170<br>151<br>215<br>242      | 115<br>127<br>143<br>161<br>182                   | 0916<br>100<br>114<br>129<br>145             | 0764<br>.0850<br>.0857<br>1.079<br>1.214      | 0.573<br>0.63<br>0.713<br>0.805<br>0.910     |
| 533399                           | 005<br>0045<br>004<br>0005<br>0081 | 1 472<br>1 856<br>4 96<br>5 6.0           | 1 529<br>1 45<br>2 808           | 983<br>1 092<br>1 228<br>1 4 4<br>1 585 | 655<br>704<br>519<br>-936           | 408<br>453<br>530<br>983<br>678                 | 2772<br>3002<br>340<br>388<br>439    | 2.4<br>225<br>255<br>291<br>329                   | 163<br>181<br>214<br>233<br>263              | 136<br>151<br>170<br>194<br>219               | . 102<br>103<br>127<br>145<br>164            |

After careful investigation by a committee of the American Society for Testing Materials, working in conjunction with the U.S. Bureau of Standards, it has been found that the cross-sectional area of ribbon having rounded edges depends about the ratio of which to thickness, and is always less than a cross-section of having the maximum with a and thickness of the ribbon.

The continues of the cibbs.

First a sizes of and by COSS and those and it to be marrowed that a strong of the continues that a size and the continues that it is continued to a cross section of S less has a true rectangle while those sizes which have a ratio of will to thickness greater has 15 to 1 are calculated on a cross-section of 17, less than a true rectangle.

Unless otherwise specified material listed above will be supplied soft temper-

## Feet Per Pound of Nichrome IV The Super Nickelchrome Ribbon

| Thic                             | kness                                        |                                      |                                    |                                   | Wid                                  | lth—Inc                                    | ches                                 |                                        |                                        |                                                |                                        |
|----------------------------------|----------------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------|
| B &  <br>S.                      | Ins.                                         | 1/32                                 | 1/16                               | 1/8                               | 3/16                                 | 1/4                                        | 3/8                                  | 1/2                                    | 5/8                                    | 3/4                                            | 1                                      |
| 10<br>11<br>12<br>13<br>14<br>15 | .102<br>.091<br>.081<br>.072<br>.064<br>.057 |                                      |                                    |                                   | 24.5<br>25.8                         | 11.6<br>13.3<br>14.5<br>16.3<br>18<br>20.2 | 7.1<br>8.2<br>9.1<br>10.2<br>11.4    | 5 3<br>6 1<br>6 7<br>7 6<br>8 5<br>9 7 | 4.2<br>4.9<br>5.4<br>6.0<br>6.8<br>7.7 | 3 5<br>4 1<br>4 5<br>5 0<br>5 7<br>6 4         | 2.6<br>3.0<br>3.4<br>3.8<br>4.3<br>4.8 |
| 16<br>17<br>18<br>19<br>20       | .051<br>.045<br>.040<br>.036<br>.032         |                                      |                                    | 59.4<br>65<br>73.7                | 31<br>35<br>38.6<br>42.3<br>48       | 22.8<br>25.7<br>28.4<br>31.5<br>35.8       | 14.5<br>16.5<br>18.4<br>20.3<br>23.2 | 10.8<br>12.3<br>13.8<br>15.3<br>17.4   | 8.7<br>9.9<br>11<br>12.2<br>13.9       | 7-3<br>7.9<br>9.1<br>10.2<br>11.5              | 5.4<br>6.2<br>6.9<br>7.6<br>8.7        |
| 21<br>22<br>23<br>24<br>25       | .0285<br>.0253<br>.0226<br>.020<br>.0179     |                                      | 237<br>265                         | 80.5<br>92.6<br>101<br>115<br>129 | 53.5<br>60.7<br>66.9<br>75.3<br>82.7 | 40<br>45.3<br>48.8<br>55.3<br>62.1         | 25 9<br>29 5<br>32 5<br>36 8<br>41 4 | 19_4<br>22_1<br>24_4<br>27_5<br>31_1   | 15.5<br>17.7<br>19.6<br>22.1<br>24.7   | 13<br>14 7<br>16 3<br>18 4<br>20 7             | 9,7<br>11<br>12.2<br>13.8<br>15.5      |
| 26<br>27<br>28<br>29<br>30       | .0159<br>.0142<br>.0126<br>.0113<br>.010     | 950                                  | 295<br>326<br>366<br>407<br>457    | 143<br>160<br>179<br>196<br>221   | 92.6<br>103<br>117<br>131<br>147     | 69.5<br>77.9<br>88.5<br>97.8               | 46 4<br>52<br>58 2<br>65 4<br>73 7   | 34 8<br>38 9<br>44 2<br>48 8<br>55 3   | 27.8<br>31<br>35.4<br>39.1<br>44.2     | 23 . 2<br>25 . 9<br>29 . 5<br>32 . 5<br>36 . 8 | 17.4<br>19.3<br>22<br>24.4<br>27.6     |
| 31<br>32<br>33<br>34<br>35       | .0089<br>.0080<br>.0071<br>.0063<br>.0056    | 1070<br>1180<br>1310<br>1470<br>1670 | 512<br>571<br>636<br>716<br>804    | 248<br>277<br>312<br>351<br>402   | 159<br>185<br>206<br>234<br>268      | 127<br>141<br>159<br>180<br>201            | 79.2<br>92.3<br>104<br>117<br>134    | 63.5<br>71<br>80<br>89 8<br>100        | 50 8<br>56 5<br>63 6<br>71 7<br>80 2   | 42 4<br>47<br>53<br>59 8<br>67                 | 31.8<br>35.2<br>39.8<br>45<br>50.1     |
| 36<br>37<br>38<br>39<br>40       | .0050<br>.0045<br>.0040<br>.0035<br>.0031    | 1830<br>1980<br>2260<br>2590<br>2910 | 884<br>960<br>1105<br>1262<br>1425 | 442<br>480<br>551<br>631<br>712   | 295<br>320<br>369<br>421<br>474      | 221<br>240<br>276<br>316<br>356            | 147<br>160<br>184<br>211<br>237      | 110<br>120<br>138<br>158<br>178        | 88.5<br>96<br>111<br>126<br>142        | 73_5<br>80<br>92<br>105<br>119                 | 55.2<br>60<br>68.5<br>79<br>88.4       |

Unless otherwise specified material listed above will be supplied soft temper.

Pit type furnace with "Nichrome" IV elements



## List Price Per Pound of Nichrome IV

The Super Nickelchrome Ribbon

| This                       | kivess                              |                                           |                                           | Width                                  | —Inches                                |                                        |                                        |
|----------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| BAS                        | Inches                              | 160                                       | ( le                                      | Ja.                                    | 3%                                     | 5.0                                    | t <sub>4</sub> to 1                    |
| 24<br>25<br>26<br>27<br>28 | 020<br>0179<br>0159<br>0142<br>0126 |                                           |                                           | \$6 45<br>6 60<br>6 75<br>6 90<br>7 20 | \$6 30<br>6 45<br>6 60<br>6 75<br>6 90 | \$6 15<br>6 30<br>6 45<br>6 60<br>6 75 | \$6 00<br>6 15<br>6 30<br>6 45<br>6 60 |
| 29<br>30<br>31<br>32<br>33 | 0113<br>010<br>0089<br>008<br>0071  | \$19 20<br>20 10                          | \$11 70<br>12 00<br>12 30<br>12 90        | 7 50<br>7 80<br>8 10<br>8 40<br>8 70   | 7 05<br>7 20<br>7 35<br>7 50<br>7 80   | 6 90<br>05<br>20<br>7 35<br>7 65       | 6 75<br>6 90<br>7 20<br>7 50<br>7 80   |
| 34<br>35<br>36<br>37<br>38 | 0063<br>0056<br>005<br>0015<br>004  | 21 00<br>22 50<br>24 00<br>25 50<br>27 75 | 13 50<br>14 40<br>15 30<br>16 20<br>17 40 | 9 00<br>9 30<br>9 75<br>10 50<br>12 00 | 8 25<br>8 70<br>9 30<br>9 90<br>10 80  | 8 10<br>8 85<br>9 60<br>10 50<br>12 00 | 8 40<br>9 30<br>10 50<br>12 00         |
| 39                         | 0035                                | 30 75<br>34 50                            | 19 20<br>21 75                            | 15 00<br>18 00                         | 13 50<br>16 50                         | 15 00<br>18 00                         |                                        |

#### SPECIAL SIZES

| Thickness                | Width                                  | Tlackness                | Width                          |
|--------------------------|----------------------------------------|--------------------------|--------------------------------|
| Inches                   | Ly to 234                              | Inches                   | le to 244"                     |
| 100<br>080<br>080<br>070 | \$5 10<br>5 10<br>5 10<br>5 10<br>5 10 | 050<br>040<br>030<br>020 | \$5 25<br>5 40<br>5 70<br>6 00 |

Prices at "Nichrome" IV Ribbon of special dimensions furnished on request. Unless otherwise specified material listed above will be samplied soft temper.

Typical heaters with "Nichrome" and "Nichrome" IV elements



#### Hot Rolled Nichrome IV

(For tolerances see page 55)

#### Strip

Specific resistance 510 ohms per square mil-foot. Since the cross sections are not true rectangles because of the rounded corners, the resistance figures in this table are 8% above the theoretical rectangular section. Approximate weight per cubic inch 0.31 lb.

| Size       | Ohms     | Weight   | List Price |
|------------|----------|----------|------------|
| Inches     | Per Foot | Per Foot | Per Pound  |
| 58 x .100  | . 0082   | .21      | \$4.05     |
| 78 x .125  | . 0046   | .374     |            |
| 118 x .125 | . 0035   | .490     |            |
| 158 x .125 | . 0024   | .720     |            |
| 218 x 366  | . 00126  | 1.36     |            |
| 4 x 14     | . 00049  | 3.5      |            |

#### Rounds and Squares

The unit of weight is 0.31 lb. per cu. in. In the case of 1" squares and smaller, the rounded corners will decrease the weight and increase the resistance per foot by about 3%. On larger squares, the error is approximately 6%. The following table is on this basis.

|                                                                                    | RO                                                                                                              | OUNDS                                                                                        |                                                                                    |                                                    | SC                                                                     | UARES                                                       |                                                        |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| Size<br>Inches                                                                     | Ohms<br>Per Foot                                                                                                | Weight<br>Per Foot                                                                           | List<br>Price Per<br>Pound                                                         | Size<br>Inches                                     | Ohms<br>Per Foot                                                       | Weight<br>Per Foot                                          | List<br>Price Per<br>Pound                             |
| 1/4<br>5/66<br>3/8<br>7/66<br>1/2<br>5/8<br>3/4<br>1<br>1/8<br>1/4<br>1/3/8<br>1/2 | .010<br>.0067<br>.0044<br>.0032<br>.0025<br>.0016<br>.0011<br>.0006<br>.000493<br>.000400<br>.000330<br>.000277 | .172<br>.257<br>.390<br>.537<br>.690<br>1.07<br>1.56<br>2.86<br>3.69<br>4.56<br>5.52<br>6.57 | \$3.60<br>3.60<br>3.60<br>3.60<br>4.05<br>4.05<br>4.05<br>Prices on<br>Application | 1/4<br>5/6<br>3/8<br>7/6<br>1/2<br>5/8<br>3/4<br>1 | .0078<br>.005<br>.0035<br>.0026<br>.0020<br>.00125<br>.00087<br>.00049 | . 22<br>.344<br>.491<br>.661<br>.860<br>1.37<br>1.98<br>3.5 | \$3.60<br>3.60<br>3.60<br>4.05<br>4.05<br>4.05<br>4.05 |

For prices of Hexagons and Octagons use list prices of Squares. Unless otherwise specified material listed above will be supplied soft temper.

### The Electric Range

THOUSANDS of electric ranges have been sold in years past and thousands more will be sold during the coming years. The convenience and cleanliness of electric heat and the quality and tastiness of food prepared electrically are recognized factors and the time is coming when every modern home will be equipped with an electric range together with cord-attached appliances. "Nichrome" IV, the super nickelchrome resistor, is doing its part to make the electric range a reliable and useful adjunct to the electrical home.



Cooking equipment of one of Chicago's largest hotels in which
"Nichrome" IV elements are used





## Suggestions on Design of Nichrome IV Heating Elements

The Super Nickelchrome Wire

The table below gives size of "Nichrome" IV suggested for a given number of watts at 110 volts. The sizes selected are those which will operate at approximately 1700° F. in open coils and are suitable for radiant heaters, range units, etc.

#### 110 Volt Circuit

| Watts                            | Amperes                              | B. & S. Size                     | Ohms 75° F                           | Len                            | gth                        |
|----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------|----------------------------|
| 300<br>325<br>350<br>375<br>400  | 2 72<br>2 95<br>3 2<br>3 4<br>3 64   | 25<br>24<br>24<br>24<br>24<br>23 | 37 6<br>34 7<br>31 6<br>30 1<br>25 1 | 19 Ft.<br>22<br>20<br>19<br>22 | 4 Ins<br>5<br>5<br>6<br>10 |
| 425<br>450<br>475<br>500<br>525  | 3 87<br>4 10<br>4 32<br>4 55<br>4 77 | 23<br>22<br>22<br>22<br>22       | 26 4<br>25 0<br>23 7<br>22 5<br>21 5 | 21<br>25<br>24<br>23<br>22     | 5<br>4<br>0<br>0           |
| 550<br>575<br>600<br>625<br>650  | 5 23<br>5 46<br>5 67<br>5 91         | 21<br>21<br>21<br>21<br>21<br>20 | 20 5<br>19 6<br>18 7<br>18 0<br>17 3 | 26<br>25<br>24<br>23<br>28     | 7<br>6<br>4<br>5<br>5      |
| 675<br>700<br>725<br>730<br>775  | 6_15<br>6_36<br>6_58<br>6_82<br>7_04 | 20<br>20<br>20<br>20<br>20<br>19 | 16 6<br>16 1<br>15 6<br>15 0<br>14 5 | 27<br>26<br>25<br>24<br>30     | 3 5 7 0                    |
| 830<br>830<br>900<br>950<br>1000 | 7 26<br>7 72<br>8 17<br>8 63<br>9 08 | 19<br>19<br>19<br>19             | 14 1<br>13 3<br>12 5<br>11 9<br>11 3 | 29<br>27<br>25<br>24<br>29     | 0<br>5<br>10<br>6<br>2     |

For other voltages divide the number of watts required at that voltage by the voltage factor below. Select the nearest number of watts in the 110 volt table, multiply the length in 110 volt table by voltage factor. Suppose a device will require 550 watts and the supply voltage is 150. Factor for 150 volts is 1.36 and 11 = 405 watts. Nearest value in 110 volt table is 400 and would require No. 23 wire. This size should be used on 150 volts but length should be 21 x 1.36 or 28 7".

#### Voltage Factors on Basis of 110 Volts

| Voltage | 100 | 120  | 150  | 200  | 220 | 240  | 32   |
|---------|-----|------|------|------|-----|------|------|
| Factor  | .91 | 1.09 | 1.36 | 1.82 | 2.0 | 2.18 | 0.29 |

Each electrical alloy covered by this data book has its special advantages in certain specific uses. These uses are briefly outlined, but are intended as a general guide only.

The data which will enable engineers to establish a working basis for the practical application of these alloys are given in the various tables and charts.

The values given in the tables throughout the catalog are average values and are subject to the usual manufacturing tolerances which vary for the different alloys. We will be pleased to supply tolerances for specific materials upon application.

The following names are registered Trade Marks applying solely to alloy products, described in this catalog, made by the Driver-Harris Company. The right to these names, therefore, belongs exclusively to the Driver-Harris Company:

- NICHROME IV—The Super Nickelchrome wire made for long exposure to extremely high temperatures.
- NICHROME—The Nickelchrome wire universally used for portable electric heating devices.
- COMET—For general use at medium high temperatures.
- ADVANCE—The resistance wire, so well-known for extreme accuracy and dependability, that it is the standard for thermo couples.
- LUCERO—An alloy developed to overcome the objectionable characteristics of German Silver.
- MAGNO—A manganese nickel alloy developed for Spark Plug Electrodes and Ignition purposes.

### **Nichrome**

## -the great name in appliance heating

"ICHROME" (Calido), which has become synonymous with electrical resistance throughout the world, is the standard of quality recognized by eminent engineers in the electrical industry.

The Driver-Harris Company is the originator of "Nichrome" and has been manufacturing this special alloy for nearly a generation.

Because the increasing demands and rigid specifications of the trade have been satisfied with "Nichrome", it has won universal approval. In fact, "Nichrome" quality is so definitely established that many of the leading manufacturers





and distributors assure their customers by advertising matter and labels that their applicances have *genuine* "Nichrome" heating elements.

This alloy resists oxidation and is non-corrosive. It is giving entire satisfaction as the electrical heating element material in millions of high grade appliances throughout the world.

"Nichrome" has a wide range of application in heating devices operating up to 900° C. (1652° F.), which includes all the cord-attached domestic appliances.

It is also used in general applications such as radio rheostats and potentiometers, high resistance rheostats, industrial rheostats, dipping baskets, woven wire mesh, etc.





## Nichrome Resistance Wire

Specific resistance 675 ohms per circular mil-foot at 20°C. 68°F. For temperature resistance chart see page 25.

## Factors to be used in determining resistance at elevated temperatures

| Temp. Cent.        | 20 | 100 | 200 | 300 | 400 | 500 | 600  | 700  | 600  | 900  | 1000 |
|--------------------|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Temp Fahr          | 68 | 212 | 392 | 572 | 752 | 932 | 1112 | 1292 | 1472 | 1652 | 1832 |
| Parietance in Ohms |    |     |     |     |     |     |      |      |      |      |      |

| No.<br>B.                  | Diam.<br>in<br>Inches                    | Ohms<br>Per Ft<br>at 20°C-<br>(68°F.)              | Weight<br>Per<br>1000 Ft.<br>Bare Wire<br>Pounds | Feet<br>Per Pound<br>Bare Wire                  | Ohms<br>Per Pound<br>Bare Wire                                  | List Price<br>Per<br>Pound<br>Bare Wire        |
|----------------------------|------------------------------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| 1 2 3 4 5                  | 289<br>258<br>229<br>204<br>182          | 0081<br>0101<br>0128<br>0162<br>0203               | 231 0<br>184 0<br>145 0<br>115 0<br>92 0         | 4 33<br>5 43<br>6 90<br>8 70<br>10 9            | .035<br>.054<br>.090<br>139<br>218                              | \$2.70<br>2.70<br>2.70<br>2.70<br>2.70<br>2.70 |
| 61-89                      | 162<br>144<br>1285<br>114<br>102         | 025<br>0325<br>0408<br>0519<br>0549                | 73.0<br>57.0<br>45.0<br>36.0<br>29.0             | 13 7<br>17 5<br>22 2<br>27 8<br>34 5            | 356<br>560<br>910<br>1 44<br>2 20                               | 2 70<br>2 70<br>2 70<br>2 74<br>2 78           |
| 11<br>12<br>13<br>14<br>15 | .091<br>081<br>072<br>064<br>.057        | 0815<br>102<br>130<br>164<br>207                   | 23 0<br>18 0<br>14 0<br>11 0<br>9 2              | 43 5<br>55 6<br>69 9<br>88 5<br>109             | 3 52<br>5 67<br>9 08<br>14 51<br>22 5                           | 2 82<br>2 88<br>2 94<br>3 00<br>3 06           |
| 15<br>17<br>18<br>19       | 051<br>045<br>040<br>036<br>032          | 259<br>333<br>421<br>520<br>659                    | 7 2<br>5 6<br>4 42<br>3 58<br>2 83               | 139<br>179<br>226<br>279<br>353                 | 36 0<br>59 6<br>95 1<br>145<br>232                              | 3 12<br>3 20<br>3 30<br>3 45<br>3 60           |
| 21<br>22<br>23<br>24<br>25 | 0285<br>0253<br>0226<br>0201<br>0179     | 831<br>1 055<br>1 321<br>1 670<br>2 106            | 2 24<br>1 77<br>1 41<br>1 12<br>89               | 446<br>565<br>709<br>893<br>1 123               | 370<br>590<br>936<br>1,491<br>2,365                             | 3 80<br>4 10<br>4 40<br>4 80<br>5 20           |
| 26 27 25 29 31             | 0159<br>0142<br>0126<br>0113<br>0100     | 2 669<br>3 347<br>4 251<br>5 286<br>6 750          | 70<br>56<br>44<br>35<br>276                      | 1,429<br>1,786<br>2,273<br>2,57<br>3,623        | 3 *14<br>5 9 .77<br>9 662<br>15 102<br>24 455                   | 5.60<br>6.00<br>6.40<br>6.80                   |
| 31<br>32<br>34<br>34       | 0089<br>0080<br>0071<br>0063<br>0056     | 8 521<br>10 546<br>13 39<br>17 15<br>21 524        | 299<br>177<br>139<br>110<br>087                  | 4.566<br>5.650<br>7.194<br>9.191<br>11.49       | 58 906<br>59 584<br>96 327<br>154 601<br>247 310                | 7 60<br>8 00<br>8 60<br>9 40<br>10 50          |
| 35<br>31<br>35<br>39       | 0050<br>0045<br>0040<br>0035<br>0001     | 27 000<br>33 333<br>42 187<br>55 102<br>70 239     | 069<br>056<br>045<br>034<br>025                  | 14.490<br>17.860<br>22.220<br>29.410<br>40.000  | 391.230<br>595.327<br>937.395<br>1.620.500<br>2.8.9.500         | 12 00<br>14 00<br>17 00<br>21 00<br>26 00      |
|                            | 0.275<br>0.25<br>0.225<br>0.02<br>0.0175 | 89 256<br>108 000<br>133 333<br>168 750<br>220 408 | 021<br>017<br>014<br>011<br>005                  | 47 600<br>58 900<br>71 500<br>91 000<br>125 000 | 4.248.600<br>6.361.200<br>9.533.000<br>15.356.000<br>27.551.000 | 32 00<br>40 00<br>50 00<br>60 00<br>75 00      |
|                            | .0015                                    | 300 000                                            | .006                                             | 166 666                                         | 50.000.000                                                      | 95 O                                           |

Unless otherwise specified material listed above will be supplied of temper Prices of Cotton and Silk Covered Wires jurnished on request.

#### Temperature Resistance Chart Nichrome and Nichrome IV



The temperature coefficient curves of "Nichrome" and "Nichrome" IV shown above represent wire slowly cooled from 1000°C., as specified by the American Society for Testing Materials. Slight variations from this curve may be expected due to variations in methods of annealing of different sizes of wire.

Typical classes of percolators equipped with "Nichrome" and "Nichrome" IV



## Current Temperature Characteristics of Nichrome Resistance Wire

Showing amperes necessary for a given temperature. Applying only to straight wires stretched horizontally in free air.

| No.<br>B.                  | Diam.                                    | 100                                            | 200                                                           | 300                                    |                | 400                                  | 500                                       | 600                                       | 700                                       |                                 | 800                                       | 900°C.                                    |
|----------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------------------|----------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|
| &<br>S.                    | In-<br>ches                              | 212                                            | 392                                                           | 572                                    | -              | 752                                  | 932                                       | 1112                                      | 1292                                      |                                 | 1472                                      | 1652°F.                                   |
| 1 2 3 4 5                  | .289<br>.258<br>.229<br>.204             | 54 . 2<br>45 . 9<br>38 . 9<br>33 . 0<br>28 . 0 | 100.0<br>84.5<br>71.5<br>60.6<br>51.4                         | 136.0<br>115.0<br>97.5<br>82.6<br>70.0 | 14<br>12<br>10 | 9.0<br>3.0<br>1.5<br>3.0             | 201.0<br>170.0<br>144.0<br>122.0<br>103.0 | 225.0<br>191.0<br>162.0<br>137.0<br>116.0 | 254.0<br>215.0<br>182.0<br>154.0<br>130.0 | 4                               | 280.0<br>237.0<br>201.0<br>170.0<br>144.0 | 308.0<br>261.0<br>221.0<br>187.0<br>158.0 |
| 6<br>7<br>8<br>9           | .162<br>.144<br>.1285<br>.114<br>.102    | 23.8                                           | 43.5<br>36.8<br>31.2<br>26.4<br>22.4                          | 59.4<br>50.3<br>42.6<br>36.1<br>30.6   | 5              | 73.7<br>52.5<br>53.0<br>14.8<br>38.0 | 87.4<br>74.0<br>62.6<br>53.0<br>44.8      | 98.7<br>83.7<br>71.0<br>60.0<br>51.2      | 110.0<br>93.5<br>79.2<br>67.1<br>57.0     |                                 | 122.0<br>104.0<br>87.6<br>74.3<br>63.1    | 134.0<br>113.0<br>96.2<br>81.5<br>68.8    |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064<br>.057     | 10.4<br>8.80<br>7.45<br>6-31<br>5 35           | 19.0<br>16.1<br>13.6<br>11.5<br>9.77                          | 25.9<br>22.0<br>18.6<br>15.8<br>13.4   | 6              | 32.2<br>27.3<br>23.1<br>19.6<br>16.6 | 38.0<br>32.1<br>27.2<br>23.0<br>19.5      | 43.4<br>36.8<br>31.0<br>26.2<br>22.3      | 48.3<br>40.8<br>34.6<br>29.3<br>24.8      |                                 | 53.5<br>45.3<br>38.4<br>32.4<br>27.6      | 58.3<br>49.4<br>41.9<br>35.5<br>30.2      |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032     | 4.54<br>3.85<br>3.26<br>2.76<br>2.32           | 8.28<br>7.02<br>5.95<br>5.04<br>4.27                          | 11.35<br>9.60<br>8.13<br>6.88<br>5.83  |                | 14.1<br>12.0<br>10.1<br>8.60<br>7.30 | 16.5<br>14.0<br>11.8<br>10.1<br>8.53      | 18.9<br>16.0<br>13.6<br>11.55<br>9.70     | 21.0<br>17.8<br>15.1<br>12.8<br>10.8      | 3                               | 23.4<br>19.8<br>16.8<br>14.2<br>12.0      | 25.6<br>21.7<br>18.4<br>15.6<br>13.2      |
| 21<br>22<br>23<br>24<br>25 | .0285<br>.0254<br>.0226<br>.0201         | 1.67<br>1.42<br>1.20                           | 3.62<br>3.07<br>2.60<br>2.20<br>1.86                          | 4.94<br>4.18<br>3.54<br>3.00<br>2.54   |                | 6.17<br>5.23<br>4.43<br>3.75<br>3.18 | 7.23<br>6.13<br>5.19<br>4.40<br>3.73      | 8.21<br>6.96<br>5.90<br>5.00<br>4.25      | 6.6                                       | 30<br>51<br>50                  | 10.2<br>8.65<br>7.33<br>6.20<br>5.27      | 11.2<br>9.46<br>8.02<br>6.80<br>5.76      |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113         | .73<br>.62<br>.52                              | 1.34<br>2 1.13<br>7 .96                                       | 1.82<br>1.54<br>0 1.30                 | )5             | 2.70<br>2.28<br>1.85<br>1.57<br>1.33 | 3.16<br>2.68<br>2.27<br>1.93<br>1.64      | 3.61<br>3.06<br>2.62<br>2.22<br>1.89      | 3. 2. 2. 2.                               | 36<br>86<br>45                  | 4.47<br>3.80<br>3.23<br>2.71<br>2.30      | 4.88<br>4.13<br>3.50<br>2.97<br>2.52      |
| 31<br>32<br>33<br>34<br>35 | .0089<br>.0080<br>.0071                  | .32<br>1 .27<br>3 .23                          | 1 .57<br>2 .49<br>1 .41                                       | 7 .79<br>0 .6<br>6 .5                  | 70             | 1.13<br>.95<br>.80<br>.68            | 9 1.00 5 .84                              | 1.30                                      | 5 1.<br>5 1.<br>1.                        | 50                              | 1.95<br>1.66<br>1.41<br>1.18<br>1.00      | 2.14<br>1.81<br>1.53<br>1.29<br>1.09      |
| 36<br>37<br>38<br>39<br>40 | .004                                     | 5 .14<br>0 .12<br>5 .10                        | $\begin{vmatrix} 1 & .25 \\ 0 & .21 \\ 1 & .18 \end{vmatrix}$ | .6 .2                                  | 44<br>91<br>46 | .49<br>.41<br>.35<br>.29             | 6 .51<br>2 .44<br>8 .37                   | 8 .50<br>0 .50<br>3 .41                   | 97<br>07<br>30                            | 765<br>650<br>552<br>463<br>396 | .72<br>2 .61<br>7 .51                     | 1 .783<br>3 .663<br>7 .566                |
|                            | .0027<br>.0025<br>.0025<br>.0022<br>.002 | 5 .06<br>5 .05<br>.04                          | 50 .10<br>50 .09<br>12 .0°                                    | 05 .1<br>91 .1<br>77 .1                | 45<br>22       |                                      |                                           |                                           |                                           |                                 |                                           |                                           |
|                            | .0015<br>.0012<br>.001                   | 5 .02                                          | .03                                                           | .0                                     | 71<br>51<br>35 |                                      |                                           |                                           |                                           |                                 |                                           |                                           |

## Resistance of Nichrome Ribbon

Specific resistance 530 ohms per square mil-foot at 20°C. (68°F.).

Factors to be used in determining resistance at elevated temperatures. These figures are given as a basis for engineering calculations and represent average material as received.

| Temp. Cent    | 20    | 100   | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000° |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temp. Fahr    | 68    | 212   | 392   | 572   | 752   | 932   | 1112  | 1292  | 1472  | 1652  | 1832  |
| Resis. in Ohm | 1.000 | 1.006 | 1.029 | 1.047 | 1.057 | 1.072 | 1.077 | 1.082 | 1.088 | 1.095 |       |

#### Resistance in Ohms Per Foot at 20° C. (68° F.)

| Thi                              | ickness                                      |                                      |                                      |                                           |                                           | Width-                                             | -Inche                                             | s                                                  |                                                    |                                                    |                                           |
|----------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| B.<br>&<br>S.                    | In-<br>ches                                  | 1/52                                 | 1/16                                 | 1/8                                       | 3/16                                      | 1/4                                                | 3/8                                                | 1/2                                                | 5/8                                                | 3/4                                                | 1                                         |
| 10<br>11<br>12<br>13<br>14<br>15 | .102<br>.091<br>.081<br>.072<br>.064<br>.057 |                                      |                                      |                                           | .0469                                     | .0221<br>.0247<br>.0278<br>.0313<br>.0352<br>.0395 | .0138<br>.0155<br>.0174<br>.0196<br>.0221<br>.0248 | .0104<br>.0116<br>.0131<br>.0147<br>.0166<br>.0186 | .0083<br>.0093<br>.0104<br>.0117<br>.0133<br>.0148 | .0069<br>.0078<br>.0087<br>.0098<br>.0110<br>.0124 | .0052<br>.0058<br>.0065<br>.0074<br>.0083 |
| 16<br>17<br>18<br>19<br>20       | .051<br>.045<br>.040<br>.036<br>.032         |                                      |                                      | .112<br>.125<br>.140                      | .0589<br>.0668<br>.0751<br>.0835<br>.0939 | .0442<br>.0501<br>.0563<br>.0626<br>.0704          | .0277<br>.0314<br>.0353<br>.0392<br>.0442          | .0208<br>.0235<br>.0265<br>.0294<br>.0331          | .0166<br>.0188<br>.0212<br>.0235<br>.0265          | .0138<br>.0157<br>.0177<br>.0196<br>.0221          | .0104<br>.0118<br>.0133<br>.0147          |
| 21<br>22<br>23<br>24<br>25       | .0285<br>.0253<br>.0226<br>.020<br>.0179     |                                      | .451                                 | . 158<br>. 178<br>. 199<br>. 225<br>. 251 | .105<br>.118<br>.133<br>.150<br>.168      | .0791<br>.0891<br>.0938<br>.106<br>.118            | .0496<br>.0559<br>.0625<br>.0707<br>.0789          | .0372<br>.0419<br>.0469<br>.0530<br>.0592          | .0297<br>.0335<br>.0375<br>.0424<br>.0474          | .0248<br>.0279<br>.0313<br>.0353<br>.0395          | .0186<br>.0209<br>.0235<br>.0265<br>.0296 |
| 26<br>27<br>28<br>29<br>30       | .0159<br>.0142<br>.0126<br>.0113<br>.010     | 1.80                                 | .567<br>.635<br>.715<br>.798<br>.902 | .283<br>.317<br>.357<br>.399<br>.451      | .189<br>.211<br>.238<br>.301<br>.340      | . 133<br>. 149<br>. 168<br>. 188<br>. 212          | .0889<br>.100<br>.112<br>.125<br>.141              | .0666<br>.075<br>.084<br>.094<br>.106              | .0533<br>.060<br>.067<br>.075<br>.085              | .0444<br>.050<br>.056<br>.063<br>.071              | .0333<br>.037<br>.042<br>.047<br>.053     |
| 31<br>32<br>33<br>34<br>35       | .0089<br>.008<br>.0071<br>.0063<br>.0056     | 2.02<br>2.25<br>2.54<br>2.86<br>3.22 | 1.01<br>1.12<br>1.27<br>1.43<br>1.61 | .506<br>.638<br>.719<br>.810<br>.912      | .382<br>.425<br>.479<br>.540<br>.608      | . 239<br>. 265<br>. 298<br>. 336<br>. 378          | .159<br>.177<br>.199<br>.224<br>.252               | .119<br>.133<br>.149<br>.168<br>.189               | .095<br>.106<br>.119<br>.135<br>.151               | .079<br>.088<br>.100<br>.112<br>.126               | .060<br>.067<br>.075<br>.084<br>.095      |
| 36<br>37<br>38<br>39<br>40       | .005<br>.0045<br>.004<br>.0035<br>.0031      | 3.60<br>4.00<br>4.51<br>5.15<br>5.82 | 1.80<br>2.00<br>2.55<br>2.91<br>3.29 | 1.02<br>1.13<br>1.27<br>1.45<br>1.65      | .681<br>.756<br>.851<br>.973<br>1.098     | .424<br>.471<br>.530<br>.606<br>.684               | .283<br>.314<br>.353<br>.404<br>.456               | .212<br>.236<br>.265<br>.303<br>.342               | .170<br>.188<br>.212<br>.242<br>.274               | .141<br>.157<br>.177<br>.202<br>.228               | .106<br>.118<br>.133<br>.151<br>.171      |

After careful investigation by a committee of the American Society for Testing Materials, working in conjunction with the U. S. Bureau of Standards, it has been found that the cross-sectional area of ribbon having rounded edges, depends upon the ratio of width to thickness, and is always less than a true rectangle having the maximum width and thickness of the ribbon.

Ribbon sizes  $\frac{1}{4}$ " and  $\frac{1}{16}$ " by .0253 and thicker and all ribbon narrower than  $\frac{1}{16}$ " is rolled with round edges. The resistance of ribbon with round edges and having a ratio of width to thickness less than 15 to 1 is calculated on a cross section of 6% less than a true rectangle, while those sizes which have a ratio of width to thickness greater than 15 to 1 are calculated on a cross-section of 17% less than a true rectangle.

Unless otherwise specified material listed above will be supplied soft temper.

## Nichrome Resistance Ribbon

| Thic                       | kness                                   |                                           |                                         | Width-                                 | Inches                                 |                                        |                                        |
|----------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| No.<br>B. & S.             | Inches                                  | 1 64                                      | 1/32                                    | 1/16                                   | 1/8                                    | 3/16                                   | ½ to 2                                 |
| 24<br>25<br>26<br>27<br>28 | .020<br>.018<br>.016<br>.0142<br>.0126  |                                           |                                         | \$4_30<br>4_40<br>4_50<br>4_60<br>4_80 | \$4,20<br>4,30<br>4,40<br>4,50<br>4,60 | \$4.10<br>4.20<br>4.30<br>4.40<br>4.50 | \$4_00<br>4_10<br>4_20<br>4_30<br>4_40 |
| 29<br>30<br>31<br>32<br>33 | .0113<br>.010<br>.0089<br>.008          | \$12.80<br>13.40                          | \$7.80<br>8.00<br>8.20<br>8.60          | 5,00<br>5,20<br>5,40<br>5,60<br>5,80   | 4.70<br>4.80<br>4.90<br>5.00<br>5.20   | 4 60<br>4 70<br>4 80<br>4 90<br>5 10   | 4 50<br>4 60<br>4 80<br>5 00<br>5 20   |
| 34<br>35<br>36<br>37<br>38 | .0063<br>.0056<br>.005<br>.0045<br>.004 | 14.00<br>15.00<br>16.00<br>17.00<br>18.50 | 9.00<br>9.60<br>10.20<br>10.80<br>11.60 | 6-00<br>6-20<br>6-50<br>7-00<br>8-00   | 5 50<br>5 80<br>6 20<br>6 60<br>7 20   | 5.40<br>5.90<br>6.40<br>7.00<br>8.00   | 5.60<br>6.20<br>7.00<br>8.00           |
| 39<br>40                   | 0035                                    | 20_50<br>23_00                            | 12.80<br>14.50                          | 10 00<br>12 00                         | 9-00<br>11.00                          | 10,00<br>12.00                         |                                        |

#### SPECIAL SIZES

| Thickness<br>Inches          | Width 1/2" to 23/4"                    | Thickness<br>Inches          | Width 1/2" to 23/4"            |
|------------------------------|----------------------------------------|------------------------------|--------------------------------|
| .100<br>.090<br>.080<br>.070 | \$3.40<br>3.40<br>3.40<br>3.40<br>3.40 | .050<br>.040<br>.030<br>.020 | \$3.50<br>3.60<br>3.80<br>4.00 |

Prices of "Nichrome" Ribbon of special dimensions furnished on request. Unless otherwise specified material listed above will be supplied soft temper.

A variety of waffle irons with "Nichrome" and "Nichrome" IV elements



#### Hot Rolled Nichrome

(For tolerances see page 55)

#### Strip

Specific resistance 530 ohms per square mil-foot. Since the cross sections are not true rectangles because of the rounded corners, the resistance figures in this table are 8% above the theoretical rectangular section. Approximate weight per cubic inch 0.3 lb.

| Thick-<br>ness<br>Inches                  |                                                | Resistance, Ohms Per Foot                                |                                                          |                                                            |   |                          |                                    | Approximate Weight Per Foot Figures are based on true rectangular sections at 0.3 lb. per cu. in. |                              |                                              |                |  |  |
|-------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|---|--------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|----------------|--|--|
|                                           | Width—Inches                                   |                                                          |                                                          |                                                            |   |                          | Width—Inches                       |                                                                                                   |                              |                                              |                |  |  |
| 1                                         | 1/2                                            | 3/4                                                      | 1                                                        | 112                                                        | 2 | $\frac{1}{2}$            | 3/4                                | 1                                                                                                 | 1 1/2                        | 2                                            |                |  |  |
| 1/2<br>7/16<br>3/8<br>5/16<br>1/4<br>3/16 | .00266<br>.00311<br>.00373<br>.00466<br>.00621 | .00155<br>.00178<br>.00207<br>.00249<br>.00311<br>.00414 | .00116<br>.00133<br>.00155<br>.00186<br>.00233<br>.00311 | .000776<br>.000888<br>.00104<br>.00124<br>.00155<br>.00207 |   | .79<br>.67<br>.56<br>.45 | 1.35<br>1.17<br>1.01<br>.84<br>.67 | 1.35                                                                                              | 2.34<br>2.05<br>1.68<br>1.35 | 3.60<br>3.16<br>2.70<br>2.24<br>1.80<br>1.36 | <b>\$2</b> .70 |  |  |

#### Rounds, Squares, Hexagons and Octagons

The unit of weight is 0.30 lbs. per cu. in. In the case of 1" squares and smaller, the rounded corners will decrease the weight and increase the resistance per foot by about 3%. On larger squares, the error is approximately 6%. The following table is on this basis.

|                                                                              | Ro                                                                                      | ounds                                                                                                                     |                                         |                                                                     | Sc                                                                       | luares                                                                                                                |                            |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|
| Size<br>Inches                                                               | Weight<br>Per Foot                                                                      | Ohms<br>Per Foot                                                                                                          | List<br>Price Per<br>Pound              | Size<br>Inches                                                      | Weight<br>Per Foot                                                       | Ohms<br>Per Foot                                                                                                      | List<br>Price Per<br>Pound |
| 1 ½<br>1 3/8<br>1 1/4<br>1 1/8<br>1 3/4<br>5/6<br>1/2<br>7/16<br>3/8<br>5/16 | 6.36<br>5.34<br>4.41<br>3.57<br>2.83<br>1.59<br>1.12<br>.71<br>.54<br>.40<br>.28<br>.18 | .000300<br>.000357<br>.000432<br>.000533<br>.000675<br>.00120<br>.00173<br>.00270<br>.00352<br>.00480<br>.00691<br>.01080 | Prices on<br>Appli-<br>cation<br>\$2.70 | 1 1/4<br>1 1/8<br>1 7/8<br>3/4<br>5/8<br>1/2<br>7/16<br>3/8<br>5/16 | 5.63<br>4.53<br>3.60<br>2.74<br>2.01<br>1.40<br>.90<br>.69<br>.51<br>.35 | .000361<br>.000445<br>.000546<br>.000713<br>.000971<br>.001400<br>.002190<br>.002854<br>.003885<br>.005595<br>.008742 | \$2.70<br>2.70             |

For Prices of Hexagons and Octagons use list prices of Squares.

Nickel, Advance, Comet and other special alloys can be supplied in these shapes and sizes.

Unless otherwise specified material listed above will be supplied soft temper.

## Suggestions on Design of Nichrome Heating Elements

The tables below give size of "Nichrome" suggested for a given number of watts at 110 volts. The sizes are selected to operate at approximately 1500°F. in open coils and are suitable for electric irons, toasters, hot plates, space heaters, etc.

#### Nichrome Wire. 110 Volts

| Watts                           | Amperes                                  | B. & S. Size                     | Ohms 75° F                           | Leng                           | Length                    |  |  |
|---------------------------------|------------------------------------------|----------------------------------|--------------------------------------|--------------------------------|---------------------------|--|--|
| 250<br>300<br>350<br>400<br>450 | 2.27<br>2.72<br>3.2<br>3.64<br>4.10      | 25<br>24<br>23<br>23<br>23<br>22 | 43.6<br>36.4<br>31.0<br>27.2<br>24.1 | 21 Ft.<br>22<br>24<br>21<br>23 | 2 Ins<br>0<br>0<br>0<br>5 |  |  |
| 475<br>500<br>550<br>575<br>600 | 4 .32<br>4 .55<br>5 .0<br>5 .23<br>5 .46 | 22<br>22<br>21<br>21<br>21       | 23.0<br>21.8<br>19.8<br>18.9<br>18.1 | 22<br>21<br>24<br>23<br>22     | 4<br>0<br>5<br>2<br>4     |  |  |
| 615<br>640<br>660<br>700<br>750 | 5.6<br>5.82<br>6.0<br>6.36<br>6.81       | 20<br>20<br>20<br>20<br>20<br>19 | 17.7<br>17.0<br>16.5<br>15.6<br>14.5 | 27<br>26<br>25<br>24<br>28     | 6<br>6<br>8<br>4<br>5     |  |  |

#### Nichrome Ribbon. 110 Volts. 1/6" Width

| Watts                                  | Amperes                                      | Thickness                               | Ohms 75° F                                               | Length                           |                            |
|----------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------|
| 400<br>425<br>440<br>450<br>475        | 3 64<br>3 87<br>4 00<br>4 1<br>4 32          | .003<br>.0035<br>.0035<br>.004<br>.0045 | 27 . 2<br>25 . 6<br>24 . 7<br>24 . 1<br>22 . 9           | 9 Ft.<br>10<br>10<br>11<br>12    | 10 Ins<br>9<br>5<br>7<br>5 |
| 500<br>525<br>550<br>575<br>600        | 4.55<br>4.77<br>5.0<br>5.23<br>5.46          | .0045<br>.005<br>.005<br>.0056          | 21.8<br>20.8<br>19.8<br>18.9<br>18.1                     | 11<br>12<br>11<br>12<br>12       | 8<br>6<br>11<br>10<br>3    |
| 625<br>650<br>660<br>675<br>700<br>750 | 5.68<br>5 91<br>6 00<br>6.15<br>6 36<br>6 82 | .0063<br>.0071<br>.0071<br>.008<br>.008 | 17 . 4<br>16 . 7<br>16 . 5<br>16 . 1<br>15 . 6<br>14 . 5 | 12<br>13<br>13<br>15<br>14<br>15 | 11<br>11<br>10<br>0<br>7   |

## Suggestions on Design of Nichrome Heating Elements

For voltages other than 110 divide the number of watts required at the given voltage by the voltage factor below. Select the nearest number of watts in the 110 volt table, multiply the length in 110 volt table by the voltage factor. Suppose an electric iron takes 550 watts and the

supply voltage is 100. Factor for 100 volts is .91 and  $\frac{550}{.91}$  = 605 watts.

Nearest value in 110 volt table is 600 watts which requires 12' 3" of  $\frac{1}{16}$  x .0056 "Nichrome" ribbon. This gives the size to be used on 110 volts, but the length should be .91 x 12'3" or 11'2". The winding for 550 watts, 110 volts would then be 11'2" of  $\frac{1}{16}$  x .0056 "Nichrome" ribbon.

#### Voltage Factors on Basis of 110 Volts

| Voltage | 100 | 120  | 150  | 200  | 220 | 240  | 32   |
|---------|-----|------|------|------|-----|------|------|
| Factor  | .91 | 1.09 | 1.36 | 1.82 | 2_0 | 2.18 | 0 29 |

Element arrangements of "Nichrome" and "Nichrome" IV



## No. 95 Alloy

O. 95 Alloy is a copper-nickel alloy developed by the Driver-Harris Company particularly for use on radio rheostats where high carrying capacity combined with fairly high resistance is essential.

This alloy is melted and processed in the Driver-Harris plant with the same care and precision as is given to their other highly specialized alloys.

Commercial and domestic toasters-"Nichrome" and "Nichrome" IV



### No. 95 Alloy

Specific Resistance 95 ohms per circular mil-foot at  $20^{\circ}$  C.  $(68^{\circ}$  F.). Temperature coefficient over the range of  $15^{\circ}$  to  $100^{\circ}$  C.  $(59^{\circ}$  to  $212^{\circ}$  F.) is + .00045 per degree C. Thermal E. M. F. against copper not over .027 millivolts per degree centigrade between  $0^{\circ}$  and  $100^{\circ}$  C.

| No.<br>B.<br>&<br>S. | Diam.<br>in<br>Inches | Ohms<br>Per Ft.<br>at 20° C.<br>(68° F.) | Weight Per 1000 Ft. Bare Wire Pounds | Feet<br>Per Pound<br>Bare Wire | Ohms<br>Per Foot<br>Bare Wire | List Price<br>Per<br>Pound<br>Bare Wire |
|----------------------|-----------------------|------------------------------------------|--------------------------------------|--------------------------------|-------------------------------|-----------------------------------------|
| 15                   | .057                  | .0292                                    | 9.2                                  | 109                            | 3.18                          | \$1.48                                  |
| 16                   | .051                  | .0365                                    | 7.2                                  | 139                            | 5.07                          | 1.51                                    |
| 17                   | .045                  | .0469                                    | 5.6                                  | 179                            | 8.39                          | 1.55                                    |
| 18                   | .040                  | .0593                                    | 4.42                                 | 226                            | 13.4                          | 1.60                                    |
| 19                   | .036                  | .0733                                    | 3.58                                 | 279                            | 20 4                          | 1.65                                    |
| 20                   | .032                  | .0927                                    | 2.83                                 | 353                            | 32.7                          | 1.70                                    |
| 21                   | .0285                 | .1169                                    | 2.24                                 | 446                            | 52.1                          | 1_75                                    |
| 22                   | .0254                 | .1472                                    | 1.77                                 | 565                            | 83.1                          | 1_80                                    |
| 23                   | .0226                 | .1859                                    | 1.41                                 | 709                            | 131.8                         | 1.85                                    |
| 24                   | .0201                 | . 234                                    | 1.12                                 | 893                            | 208.9                         | 1 90                                    |
| 25                   | .0179                 | .296                                     | 0.89                                 | 1,123                          | 332                           | 2.00                                    |
| 26                   | .0159                 | .375                                     | 0.70                                 | 1,429                          | 535                           | 2.10                                    |
| 27                   | .0142                 | . 471                                    | 0.56                                 | 1,786                          | 841                           | 2.25                                    |
| 28                   | .0126                 | .598                                     | 0_44                                 | 2,273                          | 1.359                         | 2.40                                    |
| 29                   | .0113                 | .743                                     | 0.35                                 | 2,857                          | 2,122                         | 2.55                                    |
| 30                   | .0100                 | .950                                     | 0.276                                | 3,623                          | 3,440                         | 2,70                                    |
| 31                   | .0089                 | 1.199                                    | 0.219                                | 4,566                          | 5,470                         | 2.90                                    |
| 32                   | .0080                 | 1.484                                    | 0_177                                | 5,656                          | 8,390                         | 3 10                                    |
| 33                   | .0071                 | 1.884                                    | 0.139                                | 7,194                          | 13,500                        | 3.30                                    |
| 34                   | . 0063                | 2.393                                    | 0.110                                | 9,091                          | 21,750                        | 3.70                                    |
| 35                   | .0056                 | 3.029                                    | 0.087                                | 11,490                         | 34.800                        | 4.50                                    |
| 36                   | .0050                 | 3.800                                    | 0.069                                | 14,490                         | 55,000                        | 5.50                                    |
| 37                   | .0045                 | 4.691                                    | 0.056                                | 17,860                         | 82,000                        | 7.00                                    |
| 38                   | .0040                 | 5.937                                    | 0.045                                | 22,220                         | 131,900                       | 9.00                                    |
| 39                   | .0035                 | 7.755                                    | 0.034                                | 29,410                         | 228,000                       | 12.00                                   |
| 40                   | .0031                 | 9.885                                    | 0.025                                | 40,000                         | 395,000                       | 16.00                                   |





#### Types

A—Two conductors twisted and braided over all with finishing braid. B-Individual conductors covered with a finishing braid and then

twisted (twisted pair).

-Two conductors laid parallel and braided over all with the finishing braid.

#### Asbestos Construction

To meet the requirements of various manufacturers our heater cord is supplied in various types of asbestos constructions, designated as follows: B-Conductors insulated with rubber, braided with asbestos yarn and

covered with finishing braid.

V—Conductors insulated with rubber, wound with asbestos roving and covered with finishing braid.

Our method of applying roving renders it unnecessary to use cotton leaders, thereby obtaining maximum insulating qualities. S-Conductors insulated with rubber, wound with asbestos yarn and

covered with finishing braid.

R—Conductors covered with asbestos first then insulated with rubber and covered with finishing braid.

#### Copper Construction

Conductors can be supplied in any of the following constructions:

J-.010 Copper stranded L-.0063 Copper braided M - .005

K = .0063N-.005 Copper stranded

#### Finish

Any color or combination of colors can be furnished in the following finishes, including combinations of cotton and silk.

1—Mercerized cotton 2—Glazed " (peeler) 3—Soft

4—Pure Floss Silk 5—Worsted

6-Rayon

These designations facilitate ordering, for example:

#### No. 18 AVI-No. 2 and 6-Black and Green

This represents the following:

Size—No. 18

Type—A (two conductors under one finishing braid)
Asbestos—V (wound with asbestos roving)
Copper—J (.010" stranded)
Finish—2 and 6 (part glazed cotton and part rayon)

Color—Black cotton and green rayon

#### Marker

Driver-Harris quality heater cord can be easily identified by a marker which consists of two threads, one blue and one white, laid parallel with

the copper. Heater cord is usually furnished in coils of long length. We have facilities, however, for furnishing cords cut to length with ends finished. Orders for finished cords must be accompanied by complete specifications.



—a good heater cord increases respect for the appliance. D-H cord is the Better Heater Cord.

#### Advance

NICKEL and Copper have been scientifically combined in the Driver-Harris alloy "Advance" (Ideal), with the result that a resistance material of unusual properties and characteristics has been obtained. While this alloy finds most important application for industrial and radio rheostats, motor starters, etc., it is preeminently useful to the manufacturers of measuring instruments and precision equipment.

Its non-corrosive quality and unvarying resistance with changing temperatures over practical ranges has caused its selection for these precision purposes. As a matter of fact, the change in resistance with change in temperature cannot be detected within operating temperatures of the applications mentioned above, without the most delicate

and sensitive laboratory equipment.

This alloy, prepared by Driver-Harris precision methods, is one of the most valuable thermo-electric materials on the market for thermo elements. It is used particularly by pyrometer manufacturers whose reputations are based upon the quality and accuracy of their equipment.

This material is made to their exact thermo-electric specifications and therefore orders for "Advance" for thermo-electric purposes should be sent to the pyrometer

manufacturer whose calibrations are involved.

Radiators equipped with "Nichrome" or "Advance"



#### Temperature Resistance Chart Advance and Lucero



The above chart shows change in resistance of 1 ohm of wire with increasing temperature.

"Advance" or "Nichrome" wire are the favorites for heater pads



#### Advance Resistance Wire

Specific resistance 294 ohms per circular mil-foot at 20°C. (68°F.). The change of resistance with change of temperature is negligible.

Thermal E. M. F. against copper is approximately 0.043 millivolts per degree Centigrade, between 0°C. and 100°C. For temperature resistance chart see page 39.

## Factors to be used in determining resistance at elevated temperatures

| Tem                        |                                             | ade                                                        | 20<br>68                                  | 100<br>212                                 | 200<br>392                                           | 300<br>572                      | 400<br>752                                                       | 500<br>932                                |                                                    |
|----------------------------|---------------------------------------------|------------------------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| Resi                       | stance in                                   | Ohms                                                       | 1.000                                     | 1.002                                      | 1-002                                                | 1.001                           | 1.005                                                            | 1.01                                      | 7 1.037                                            |
| No.<br>B.<br>&<br>S.       | Diam.<br>in<br>Inches                       | Ohms<br>Per Ft.<br>at 20 C.<br>(68 F.)                     | Weigh<br>Per<br>1000 F<br>Bare W<br>Pound | ire                                        | Feet<br>Per Poun<br>Bare Wir                         |                                 | Ohms<br>Per Pour<br>Bare Wi                                      |                                           | List Price<br>Per<br>Pound<br>Bare Wir             |
| 1<br>2<br>3<br>4<br>5      | 289<br>258<br>229<br>204<br>182             | -003<br>.004<br>.005<br>.007<br>.008                       | 253 0<br>201 0<br>159 0<br>126 0<br>100 0 | )                                          |                                                      | 94                              |                                                                  | 0136<br>0217<br>0346<br>0549<br>0874      | \$1.30<br>1.30<br>1.30<br>1.30<br>1.30             |
| 6<br>7<br>8<br>9           | 162<br>144<br>1285<br>114<br>102            | 011<br>014<br>017<br>022<br>028                            | 79.0<br>63.0<br>50.0<br>39.0<br>32.0      | )<br>)<br>)                                | 20<br>25                                             | 7<br>9<br>.0<br>.6<br>.3        |                                                                  | . 139<br>. 221<br>. 351<br>. 559<br>. 888 | 1.30<br>1.30<br>1.30<br>1.32<br>1.34               |
| 11<br>12<br>13<br>14<br>15 | 091<br>081<br>072<br>064<br>057             | .035<br>.044<br>.056<br>.071<br>.090                       | 25 (<br>20 (<br>15 1<br>12 9              | 7                                          | 50<br>63                                             | 0.0<br>0.0<br>3.7<br>0.6<br>2.0 | 2<br>3<br>5                                                      | 41<br>246<br>573<br>.678<br>.03           | 1.36<br>1.39<br>1.42<br>1.45<br>1.48               |
| 16<br>17<br>18<br>19<br>20 | 051<br>-045<br>-040<br>-036<br>-032         | -113<br>-145<br>-184<br>-226<br>-287                       | 7<br>6<br>4<br>3<br>3                     | 2<br>9<br>9                                |                                                      | 0                               | 22<br>36<br>57                                                   | .36<br>.83<br>.29<br>.71<br>.74           | 1 .51<br>1 .55<br>1 .60<br>1 .65<br>1 .70          |
| 21<br>22<br>23<br>24<br>25 | 0285<br>0254<br>0226<br>0201<br>0179        | .362<br>.460<br>.575<br>.725                               | 2-<br>1<br>1.<br>1-<br>0.                 | 9<br>5<br>2                                | 520<br>66                                            | 0.0<br>6.0<br>7.0<br>3.0<br>1.0 | 23<br>36<br>58                                                   | 5.9<br>2.0<br>9.0<br>66 6<br>82 9         | 1.75<br>1.80<br>1.85<br>1.90<br>2.00               |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113<br>.0100   | 1 162<br>1 455<br>1 850<br>2 300<br>2 940                  | 0 0                                       | 77<br>61<br>48<br>38<br>30                 | 1,29<br>1,63<br>2,08<br>2,63<br>3,33                 | 9.0<br>3.0<br>2.0               | 1,48<br>2,35<br>3,74<br>5,96<br>9,47                             | 58<br>19<br>54                            | 2.10<br>2.25<br>2.40<br>2.55<br>2.70               |
| 31<br>32<br>33<br>34<br>35 | 0089<br>0080<br>0071<br>0063<br>0056        | 3 680<br>4 600<br>5 830<br>7 400<br>9 360                  | 0.0                                       | 24<br>19<br>15<br>12<br>095                | 4,16<br>5,26<br>6,66<br>8,33<br>10,53                | 3 0<br>7.0<br>3 0               | 15,0°<br>23,9°<br>38,1°<br>60,6°<br>96,3°                        | 70<br>10<br>20                            | 2 90<br>3 10<br>3 30<br>3 70<br>4 50               |
| 36<br>37<br>38<br>39<br>40 | 0050<br>-0045<br>-0040<br>-0035<br>-0031    | 11 760<br>14 550<br>18 375<br>24 100<br>30 593             | 0 0                                       | 076<br>060<br>047<br>038<br>.028           | 13,16<br>16,66<br>21,27<br>26,31<br>35,71            | 6 0<br>6 0                      | 153,2<br>243,6<br>388,3<br>616,0<br>1,092,5                      | 50<br>60<br>00                            | 5.50<br>7 00<br>9.00<br>12.00<br>16.00             |
|                            | .00275<br>.0025<br>.00225<br>.002<br>.00175 | -38 888<br>46.400<br>58.103<br>72.500<br>96.078<br>130.666 | 0<br>0<br>0<br>0                          | .021<br>017<br>014<br>.011<br>.008<br>.006 | 47,60<br>58,90<br>71,50<br>91,00<br>125,00<br>166,60 | 00.00                           | 1,850,0<br>2,730,0<br>4,150,0<br>6,600,0<br>12,000,0<br>21,600,0 | 00<br>00<br>00<br>00                      | 21 00<br>27 00<br>35 00<br>45 00<br>60 00<br>80 00 |

Unless otherwise specified material listed above will be supplied soft temper. Prices of Cotton and Silk Covered Wires furnished on request.

# Current Temperature Characteristics of Advance Resistance Wire

Showing amperes necessary for a given temperature. Applying only to straight wires stretched horizontally in free air.

|                  | Diam.                                      | 100                                  | 200                                  | 300                                  | 400                                    | 500                                    | 600° C.                                  |
|------------------|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|
| No.<br>B. & S.   | in<br>Inches                               | 212                                  | 392                                  | 572                                  | 752                                    | 932                                    | 1112° F.                                 |
| 1                | . 289                                      | 82.6                                 | 154 0                                | 215.0                                | 268 0                                  | 310 0                                  | 394.0                                    |
| 2                | . 258                                      | 70.0                                 | 130 0                                | 182.0                                | 227 0                                  | 263 0                                  | 334.0                                    |
| 3                | . 229                                      | 59.4                                 | 110 0                                | 154.0                                | 193 0                                  | 223 0                                  | 283.0                                    |
| 4                | . 204                                      | 50.3                                 | 93 5                                 | 130.0                                | 164 0                                  | 189 0                                  | 240.0                                    |
| 5                | . 182                                      | 42.6                                 | 79 2                                 | 110.0                                | 139 0                                  | 160 5                                  | 203.0                                    |
| 6<br>7<br>8<br>9 | . 162<br>. 144<br>. 1285<br>. 114<br>. 102 | 36.1<br>30.6<br>25.9<br>22.0<br>18.6 | 67_1<br>57_0<br>48_3<br>40_8<br>34_6 | 93.5<br>79.2<br>67.1<br>57.0<br>48.3 | 118 0<br>100 0<br>84 5<br>71 5<br>60 6 | 136 0<br>115 0<br>97 5<br>82 6<br>70 0 | 172 0<br>146 0<br>124 0<br>105 0<br>89 1 |
| 11               | .091                                       | 15.8                                 | 29 3                                 | 40 8                                 | 51 4                                   | 59 4                                   | 75.5                                     |
| 12               | .081                                       | 13.4                                 | 24 8                                 | 34 6                                 | 43 5                                   | 50 3                                   | 64.0                                     |
| 13               | .072                                       | 11.35                                | 21 0                                 | 29 3                                 | 36 8                                   | 42 6                                   | 54.2                                     |
| 14               | .064                                       | 9.60                                 | 17 8                                 | 24 8                                 | 31 2                                   | 36 1                                   | 45.9                                     |
| 15               | .057                                       | 8.13                                 | 15 1                                 | 21 0                                 | 26 4                                   | 30 6                                   | 38.9                                     |
| 16               | .051                                       | 6.88                                 | 12 8                                 | 17 8                                 | 22 4                                   | 25_9                                   | 33 0                                     |
| 17               | .045                                       | 5.83                                 | 10 85                                | 15 1                                 | 19 0                                   | 22_0                                   | 28 0                                     |
| 18               | .040                                       | 4.94                                 | 9 20                                 | 12 8                                 | 16 1                                   | 18_6                                   | 23 8                                     |
| 19               | .036                                       | 4.18                                 | 7 80                                 | 10 85                                | 13 6                                   | 15_8                                   | 20 2                                     |
| 20               | .032                                       | 3.54                                 | 6 61                                 | 9 20                                 | 11 50                                  | 13_4                                   | 17 1                                     |
| 21               | .0285                                      | 3 00                                 | 5 60                                 | 7.80                                 | 9 77                                   | 11 35                                  | 14 5                                     |
| 22               | .0254                                      | 2 54                                 | 4 67                                 | 6.61                                 | 8 28                                   | 9 60                                   | 12 3                                     |
| 23               | .0226                                      | 2 15                                 | 3 96                                 | 5.60                                 | 7 02                                   | 8 13                                   | 10 4                                     |
| 24               | .0201                                      | 1 82                                 | 3 36                                 | 4.67                                 | 5 95                                   | 6 88                                   | 8 80                                     |
| 25               | .0179                                      | 1 54                                 | 2 86                                 | 3.96                                 | 5 04                                   | 5 83                                   | 7 45                                     |
| 26               | 0159                                       | 1 305                                | 2 45                                 | 3 36                                 | 4 27                                   | 4 94                                   | 6 31                                     |
| 27               | 0142                                       | 1 105                                | 2 08                                 | 2 86                                 | 3 62                                   | 4 18                                   | 5 35                                     |
| 28               | 0126                                       | 0 935                                | 1 77                                 | 2 45                                 | 3 07                                   | 3 54                                   | 4 54                                     |
| 29               | 0113                                       | 0 791                                | 1 50                                 | 2 08                                 | 2 60                                   | 3 00                                   | 3 85                                     |
| 30               | 0100                                       | 0 670                                | 1 23                                 | 1 77                                 | 2 20                                   | 2 54                                   | 3 <b>2</b> 6                             |
| 31               | 0089                                       | 0 567                                | 1 06                                 | 1 50                                 | 1 86                                   | 2 15                                   | 2 76                                     |
| 32               | 0080                                       | 0 480                                | 0 90                                 | 1 28                                 | 1 58                                   | 1 82                                   | 2 32                                     |
| 33               | 0071                                       | 0 406                                | 0 765                                | 1 06                                 | 1 34                                   | 1 54                                   | 1 97                                     |
| 34               | 0063                                       | 0 344                                | 0 650                                | 0 90                                 | 1 13                                   | 1 305                                  | 1 67                                     |
| 35               | 0056                                       | 0 291                                | 0 552                                | 0 765                                | 0 960                                  | 1 105                                  | 1 42                                     |
| 36               | 0050                                       | 0 246                                | 0 467                                | 0 650                                | 0 814                                  | 0_935                                  | 1 20                                     |
| 37               | -0045                                      | 0 208                                | 0 396                                | 0 552                                | 0 680                                  | 0_791                                  | 1 02                                     |
| 38               | -0040                                      | 0 176                                | 0 335                                | 0 467                                | 0 577                                  | 0_670                                  | 0 863                                    |
| 39               | -0035                                      | 0 149                                | 0 284                                | 0 396                                | 0 490                                  | 0_567                                  | 0 734                                    |
| 40               | -0031                                      | 0 126                                | 0 240                                | 0 335                                | 0 416                                  | 0_480                                  | 0 623                                    |

#### Resistance of Advance Ribbon

Specific resistance 231 ohms per square mil-foot at 20°C. (68°F.).

## Factors to be used in determining resistance at elevated temperatures

| Temp. Centigrade Temp. Fahrenheit |       | 100<br>212 | 200<br>392 | 300<br>572 | 400<br>752 | 500<br>932 | 600°<br>1112° |
|-----------------------------------|-------|------------|------------|------------|------------|------------|---------------|
| Resistance in Ohms                | 1.000 | 1.002      | 1.002      | 1.001      | 1.005      | 1.017      | 1.037         |

#### Resistance in Ohms Per Foot at 20° C. (68° F.)

| Thick          | kness  |       |        |       | Width- | -Inches |       |       |        |
|----------------|--------|-------|--------|-------|--------|---------|-------|-------|--------|
| No.<br>B. & S. | Inches | 1/16" | 1/8′′  | 8/16" | 1/4"   | 3/8"    | 1/2"  | 3/4"  | 1''    |
| 14             | . 064  |       |        |       |        |         | .0072 | .0048 | . 0036 |
| 15             | .057   |       |        |       |        |         | .0081 | .0054 | .0040  |
| 16             | .051   | =     |        |       |        | 1       | .0091 | .0061 | .0045  |
| 17             | .045   |       |        |       |        |         | .0103 | .0069 | .0051  |
| 18             | .040   |       |        |       |        |         | .0115 | .0077 | .0058  |
| 19             | .036   |       |        |       |        |         | .0128 | .0086 | .0064  |
| 20             | .032   | . 122 | .0614  | .0409 | .0307  | .0192   | .0144 | .0096 | .0072  |
| 21             | .0285  | .137  | .0689  | .0459 | .0344  | .0216   | .0162 | .0108 | .0081  |
| 22             | .0253  | . 155 | .0777  | .0518 | .0388  | .0243   | .0183 | .0122 | .0091  |
| 23             | .0226  | .173  | .0869  | .0579 | .0410  | .0272   | .0204 | .0136 | .0102  |
| 24             | .020   | . 196 | .0982  | .0655 | .0450  | .0307   | .0230 | .0154 | .0115  |
| 25             | .0179  | .219  | .1098  | .0732 | .0516  | .0344   | .0258 | .0172 | .0129  |
| 26             | .0159  | 247   | .1236  | .0824 | .0580  | .0387   | .0290 | .0194 | .0145  |
| 27             | 0142   | .276  | .1384  | .0922 | .0650  | . 0435  | .0326 | .0218 | .0163  |
| 28             | .0126  | .312  | .1560  | . 104 | .0735  | .0490   | .0367 |       |        |
| 29             | .0113  | .347  | .1739  | . 131 | .0820  | .0545   | .0410 |       |        |
| 30             | .010   | .393  | . 1965 | . 148 | .0925  | .0616   | .0462 |       |        |
| 31             | .0089  | .441  | .2208  | .166  | .1040  | .0693   |       |       |        |
| 32             | .008   | . 491 | .2783  | . 185 | .1155  | .0770   |       |       |        |
| 33             | .0071  | 553   | .3135  | .209  | .1300  | .0870   |       |       |        |
| 34             | .0063  | .624  | . 3534 | .235  | .1470  | 0989    |       |       |        |
| 35             | .0056  | . 702 | . 3975 | .265  | .1650  | .1100   |       |       |        |
| 36             | .005   | .786  | . 4453 | .296  | .1850  | .1230   |       |       |        |
| 37             | .0045  | .873  | . 4947 | .329  | .2060  | .1370   |       |       | 12.10  |
| 38             | .004   | 1.113 | . 5566 | .371  | .2310  | .1540   |       |       |        |
| 39             | .0035  | 1.272 | .6361  | . 424 | .2640  | .1760   |       |       |        |
| 40             | .0031  | 1.436 | .7182  | .478  | .3080  | .2050   |       |       |        |

Unless otherwise specified material listed above will be supplied soft temper. For weights of this alloy refer to page 62.

# List Price Per Pound of Advance Resistance Ribbon

| Thic                 | kness                          |                              |                              | Width-         | -Inches      |              |              |
|----------------------|--------------------------------|------------------------------|------------------------------|----------------|--------------|--------------|--------------|
| No.<br>B. & S.       | Inches                         | 148                          | 18                           | 346            | 1/4          | 3/8          | ½ to 2¾′     |
| 20 21                | .060                           | \$2.25                       | \$2.05                       | \$2.05         | \$1.85       | \$1.85       | \$1.65       |
|                      | .050                           | 2.30                         | 2.10                         | 2.10           | 1.90         | 1.90         | 1.70         |
|                      | .040                           | 2.35                         | 2.15                         | 2.15           | 1.95         | 1.95         | 1.75         |
|                      | .032                           | 2.40                         | 2.20                         | 2.20           | 2.00         | 2.00         | 1.80         |
|                      | .0285                          | 2.45                         | 2.25                         | 2.25           | 2.05         | 2.05         | 1.85         |
| 22                   | .0253                          | 2 50                         | 2 30                         | 2 30           | 2 10         | 2 10         | 1_90         |
| 23                   | .0226                          | 2 55                         | 2 35                         | 2 35           | 2 15         | 2 15         | 1.95         |
| 24                   | .0201                          | 2 60                         | 2 40                         | 2 40           | 2 20         | 2 20         | 2.00         |
| 25                   | .0179                          | 2 70                         | 2 50                         | 2 50           | 2 30         | 2 30         | 2.05         |
| 26                   | .0159                          | 2 80                         | 2 60                         | 2 60           | 2 40         | 2 40         | 2.10         |
| 27                   | .0142                          | 2.90                         | 2.70                         | 2.70           | 2.50         | 2 50         | 2.20         |
| 28                   | .0126                          | 3.00                         | 2.80                         | 2.80           | 2.60         | 2 60         | 2.30         |
| 29                   | .0113                          | 3.10                         | 2.90                         | 2.90           | 2.70         | 2 70         | 2.40         |
| 30                   | .010                           | 3.20                         | 3.00                         | 3.00           | 2.80         | 2 80         | 2.50         |
| 31                   | .0089                          | 3.30                         | 3.10                         | 3.10           | 2.90         | 2 90         | 2.60         |
| 32                   | .008                           | 3.40                         | 3.20                         | 3.20           | 3.00         | 3 00         | 2 80         |
| 33                   | .0071                          | 3.50                         | 3.30                         | 3.30           | 3.20         | 3 20         | 3 00         |
| 34                   | .0063                          | 3.70                         | 3.50                         | 3.50           | 3.40         | 3 40         | 3 20         |
| 35                   | .0056                          | 3.90                         | 3.70                         | 3.70           | 3.60         | 3 60         | 3 40         |
| 36                   | .005                           | 4.20                         | 4.00                         | 4.00           | 3.90         | 3 90         | 3 70         |
| 37<br>38<br>39<br>40 | .0045<br>.004<br>.0035<br>.003 | 4.50<br>5.10<br>6.10<br>7.60 | 4.40<br>5.10<br>6.10<br>7.60 | 4, 40<br>5, 10 | 4 30<br>5.00 | 4-30<br>5.00 | 4.20<br>5.00 |

Prices of Advance Ribbon of Special Dimensions furnished on request. Unless otherwise specified material listed above will be supplied soft temper.

These rheostats are equipped with "Advance"



#### Lucero

"LUCERO", an inexpensive Nickel-Copper alloy, has an ever widening field of application due to its adaptability for wire and strip requirements where strength and non-corrosive characteristics are needed to produce a superior product.

"Lucero", it will be noted, has a higher specific resistance than German or Nickel Silver and is far more permanent.

As this alloy contains no zinc, it is absolutely reliable and will neither break down structurally nor become brittle

For fashioning metals-



under repeated heating and cooling. It may be operated continuously at temperatures up to 600° C. (1112° F.) without oxidation taking place.

"Lucero" will take a brilliant luster finish resembling platinum. It is widely used by the general trade using wire and strip in their product.

This alloy eliminates the necessity of nickel plating wire or strip and has the added advantage of greater strength than iron, brass, copper or similar metals.

"Lucero" frequently finds useful application when a non-corrosive spring metal is desired.





## Temperature Resistance Chart Lucero and Advance



The above chart shows change in resistance of 1 ohm of wire with increasing temperature.

Table stoves or grills-"Nichrome" or "Nichrome IV" elements



#### Lucero Resistance Wire

Specific resistance 256 ohms per circular mil-foot at 20°C. (68°F.). For temperature resistance chart see page 46.

## Factors to be used in determining resistance at elevated temperatures

|                            | np. Centig<br>np. Fahre                   |                                     | 20<br>68                                | 100<br>212                                       | 200<br>392     | 300<br>572                           |    | 400<br>752                                     | 500<br>932                              |   | 600°<br>1112°                             |
|----------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------------------|----------------|--------------------------------------|----|------------------------------------------------|-----------------------------------------|---|-------------------------------------------|
| Res                        | istance in (                              | Ohms                                | 1.000                                   | 1.165                                            | 1.220          | 1.257                                | 1. | 270                                            | 1.323                                   | 1 | 1.363                                     |
| No.<br>B.<br>&<br>S.       | Diam.<br>in<br>Inches                     | Per<br>at 2                         | nms<br>r Ft.<br>20°C.                   | Weight<br>Per<br>1000 Ft.<br>Bare Wire<br>Pounds | Per l          | eet<br>Pound<br>Wire                 |    | Ohr<br>Per Po<br>Bare V                        | ound                                    | F | t Price<br>Per<br>Pound<br>e Wire         |
| 1<br>2<br>3<br>4<br>5      | .289<br>.258<br>.229<br>.204<br>.182      | . (                                 | 0031<br>0039<br>00495<br>00625<br>00785 | 252.<br>202.<br>159.<br>126.<br>100.             |                | 3.96<br>4.95<br>6.30<br>7.93<br>10.0 |    |                                                | .0135<br>.0210<br>.0334<br>.053<br>.085 |   |                                           |
| 6<br>7<br>8<br>9<br>10     | .162<br>.144<br>.128<br>.114<br>.102      | . (                                 | 0099<br>0125<br>0159<br>020<br>025      | 79.5<br>62.5<br>49.5<br>38.8<br>31.4             |                | 12.6<br>16.0<br>20.2<br>25.7<br>31.8 |    |                                                | .135<br>.216<br>.345<br>.555<br>.858    |   | 1 .29<br>1 .31<br>1 .32                   |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064<br>.057      | . (                                 | 0314<br>040<br>050<br>063<br>080        | 25.0<br>19.8<br>15.7<br>12.4<br>9.8              |                | 40.0<br>50.4<br>63.7<br>82.0<br>102  |    |                                                | 1 36<br>2 16<br>3 44<br>5 57<br>8 77    |   | 1 .33<br>1 .36<br>1 .38<br>1 .40<br>1 .43 |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032      |                                     | 100<br>128<br>162<br>200<br>254         | 7.8<br>6.1<br>4.8<br>3.9<br>3.1                  |                | 128<br>163<br>207<br>256<br>323      |    | 2<br>3<br>5                                    | 3 8<br>1.5<br>6.2<br>5 3<br>8.3         |   | 1.46<br>1.49<br>1.51<br>1.55<br>1.60      |
| 21<br>22<br>23<br>24<br>25 | .0285<br>.0253<br>.0226<br>.020<br>.0179  |                                     | 320<br>406<br>510<br>549<br>311         | 2.48<br>1.94<br>1.54<br>1.26<br>.965             | 1              | 407<br>515<br>648<br>823<br>035      |    | 14<br>22<br>35<br>57<br>90                     | 5<br>6<br>6                             |   | 1.64<br>1.69<br>1.73<br>1.79<br>1.83      |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113          | 1.0<br>1.2<br>1.0<br>2.0<br>2.0     | 29<br>64<br>04                          | .763<br>.610<br>.460<br>.385<br>.302             | 1<br>2<br>2    | 310<br>640<br>,170<br>,600<br>,300   |    | 1,45<br>2,28<br>3,84<br>5,72<br>9,24           | 0<br>0<br>0                             |   | 1.87<br>1.90<br>1.94<br>1.98<br>2.01      |
| 31<br>32<br>33<br>34<br>35 | .0089<br>.0080<br>.0071<br>.0063<br>.0056 | 3.2<br>4.0<br>5.<br>6.1<br>8.3      | 06<br>17<br>56                          | .239<br>.194<br>.154<br>.120<br>.095             | 5<br>6<br>8    | ,175<br>,150<br>,550<br>,330<br>,500 |    | 14,80<br>22,60<br>36,50<br>59,00<br>94,00      | 0<br>0<br>0                             |   | 2 .03<br>2 .09<br>2 .23<br>2 .42<br>2 .59 |
| 36<br>37<br>38<br>39<br>40 | .0050<br>.0045<br>.0040<br>.0035<br>.0031 | 10.4<br>12.8<br>16.2<br>21.2<br>27. | 2                                       | .075<br>.061<br>.048<br>.037<br>.029             | 16<br>20<br>27 | 300<br>300<br>600<br>000<br>500      | 3  | 149,00<br>225,00<br>360,00<br>518,00<br>010,00 | 0<br>0<br>0                             |   | 3.00<br>3.58<br>4.68<br>6.33<br>9.49      |

Unless otherwise specified material listed above will be supplied soft temper.

For weights of this material refer to page 61.

Prices of above material in ribbon form furnished on request.

## Manganin

MANGANIN is an alloy of copper, manganese and nickel. By carefully controlling the manufacture of this alloy, it is possible to obtain material with an exceedingly low temperature coefficient. When the finished material is properly stabilized the resistance of Manganin does not change with age.

The thermal electromotive force against copper is negligible, which is of importance in minimizing the effect of differences in temperature in the electric circuit and makes Manganin wire ideal for Wheatstone bridges and other precision instruments.

The principal use of this material is in the form of sheet for electrical instrument shunts and wire for precision multipliers and standard coils.





#### Manganin Resistance Wire

Specific resistance 290 ohms per circular mil-foot at 20°C. (68°F.). Temperature coefficient over the range of 15° to 35°C. (59° to 95°F.), with the peak of the curve at 25°C. (77°F.), will be between .00002 and .000005 per degree C. Thermal E.M.F. against copper not over 0.003 millivolts per degree centigrade, between 0°C. and 100°C.

| No.<br>B.<br>&<br>S. | Diam.<br>in<br>Inches | Ohms<br>Per Ft.<br>at 20°C.<br>(68°F.) | Weight Per 1000 Ft. Bare Wire Pounds | Feet<br>Per Pound<br>Bare Wire | Ohms<br>Per Pound<br>Bare Wire | List Price<br>Per<br>Pound<br>Bare Wire |
|----------------------|-----------------------|----------------------------------------|--------------------------------------|--------------------------------|--------------------------------|-----------------------------------------|
| 15                   | .057                  | .089                                   | 9_2                                  | 109.0                          | 9.70                           | \$1.97                                  |
| 16                   | .051                  | .110                                   | 7.2                                  | 139.0                          | 15 29                          | 2.01                                    |
| 17                   | .045                  | .142                                   | 5.6                                  | 179.0                          | 25.4                           | 2.07                                    |
| 18                   | .040                  | .180                                   | 4.42                                 | 226.0                          | 40-6                           | 2.13                                    |
| 19                   | .036                  | .218                                   | 3.58                                 | 279.0                          | 60.82                          | 2.20                                    |
| 20                   | .032                  | . 282                                  | 2_83                                 | 353.0                          | 99_5                           | 2.27                                    |
| 21                   | .0285                 | .356                                   | 2_24                                 | 446.0                          | 158                            | 2.33                                    |
| 22                   | .0254                 | . 452                                  | 1-77                                 | 565.0                          | 255                            | 2 40                                    |
| 23                   | .0226                 | .567                                   | 1.41                                 | 709.0                          | 402                            | 2.47                                    |
| 24                   | .0201                 | .717                                   | 1.12                                 | 893.0                          | 704                            | 2.53                                    |
| 25                   | .0179                 | . 905                                  | 0.89                                 | 1,123.0                        | 1,016                          | 2 67                                    |
| 26                   | .0159                 | 1.147                                  | 0.70                                 | 1,429 0                        | 1,639                          | 2.80                                    |
| 27                   | .0142                 | 1.438                                  | 0_56                                 | 1,786.0                        | 2,568                          | 3.00                                    |
| 28                   | .0126                 | 1.825                                  | 0_44                                 | 2,273.0                        | 4,148                          | 3.20                                    |
| 29                   | .0113                 | 2.270                                  | 0.35                                 | 2,857.0                        | 6,485                          | 3.40                                    |
| 30                   | .0100                 | 2.899                                  | 0.276                                | 3,623 0                        | 10,503                         | 3.60                                    |
| 31                   | .0089                 | 3.661                                  | 0.219                                | 4,566.0                        | 16,716                         | 3,87                                    |
| 32                   | .0080                 | 4.531                                  | 0.177                                | 5,656.0                        | 25.627                         | 4.13                                    |
| 33                   | .0071                 | 5.753                                  | 0.139                                | 7,194.0                        | 41,387                         | 4.40                                    |
| 34                   | .0063                 | 7.304                                  | 0_110                                | 9,091.0                        | 66,400                         | 4.93                                    |
| 35                   | .0056                 | 9.234                                  | 0.087                                | 11,490.0                       | 106,098                        | 6.00                                    |
| 36                   | .0050                 | 11.599                                 | 0.069                                | 14,490.0                       | 168,069                        | 733                                     |
| 37                   | .0045                 | 14 352                                 | 0.056                                | 17,860.0                       | 256,326                        | 9.33                                    |
| 38                   | .0040                 | 18.120                                 | 0-045                                | 22,220.0                       | 402,626                        | 12.00                                   |
| 39                   | .0035                 | 23.767                                 | 0.034                                | 29,410.0                       | 698,987                        | 16.00                                   |
| 40                   | .0031                 | 32_220                                 | 0.025                                | 40,000.0                       | 1,288,800                      | 21 33                                   |

Unless otherwise specified material listed above will be supplied soft temper.

Prices of Cotton and Silk Covered Wires furnished on request. Manganin is also furnished in ribbon and strip.

#### Pure Nickel

D-H Quality

PRIVER-HARRIS Quality Pure Nickel is supplied in round sizes from .001 to heavy machine rods and in any dimensions of cold rolled sheet and cold rolled strip up to 24 inches wide.

D-H Quality Pure Nickel represents the maximum refinement of this metal in its purest commercial state and is supplied to customers after an accurate study of the exact requirements of the trade. The common applications of this material are resistance thermometers and various parts in incandescent and radio lamp manufacture. D-H Quality Pure Nickel is easy to keep clean, immune to rust and corrosion with no protective coating to chip or wear and therefore lasts indefinitely. It is also used in many instances for decorative purposes because of its beautiful platinum white color, the finish which it will take, and its non-corrosive properties.

D-H Quality Pure Nickel is particularly close-grained and tough and has been applied on many applications purely on account of its physical properties.





### Temperature Resistance Chart Pure Nickel Wire



The above chart shows change in resistance of 1 ohm of wire with increasing temperature.

Continuous brazing furnace equipped with "Nichrome" IV elements



## Pure Nickel Wire

D-H Quality

Specific resistance 58 ohms per circular mil-foot at 20°C. (68°F.).

#### Factors to be used in determining resistance at elevated temperatures

| Temp. Cer<br>Temp. Fal     | ntigrade<br>nrenheit                      | 20<br>68   | 100<br>212                                | 200<br>392                                | 300<br>572                      | 400<br>752                                 | 500<br>932                      |                                           |
|----------------------------|-------------------------------------------|------------|-------------------------------------------|-------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|
| Resistance                 |                                           | 1.000      | 1.35                                      | 2.00                                      | 2.80                            | 3.70                                       | 4.10                            | 4.48                                      |
| No.<br>B. & S.             | Diam.<br>in<br>Inches                     | Per        | ms<br>Ft.                                 | Weigh<br>Per<br>1000 F<br>Bare W<br>Pound | t.<br>ire                       | Feet<br>Per Pou<br>Bare W                  |                                 | List Price<br>Per Pound<br>Bare Wire      |
| 1<br>2<br>3<br>4<br>5      | .289<br>.258<br>.229<br>.204<br>.182      | .0         | 00694<br>00871<br>0110<br>0139<br>0175    | 253.0<br>201.0<br>159.0<br>126.0<br>100.0 |                                 | 4<br>6<br>7<br>10                          | .95<br>.98<br>.29<br>.94        | \$1.50<br>1.50<br>1.50<br>1.50<br>1.50    |
| 6<br>7<br>8<br>9           | .162<br>.144<br>.1285<br>.114<br>.102     | 0.0        | 0221<br>0280<br>0354<br>00445<br>00557    | 79.0<br>63.0<br>50.0<br>39.0<br>32.0      |                                 | 15<br>20<br>25                             | 7<br>5.9<br>5.6<br>3            | 1.50<br>1.50<br>1.50<br>1.52<br>1.54      |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064              | 0.         | 00700<br>00883<br>01118<br>01415<br>01785 | 25.0<br>20.0<br>15.7<br>12.4<br>9.8       |                                 | 50<br>63                                   | 0.0<br>0.0<br>3.7<br>0.6<br>2.0 | 1.56<br>1.59<br>1.62<br>1.65<br>1.68      |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032      | . (        | )2228<br>)2864<br>)362<br>)447<br>)566    | 7.8<br>6.2<br>4.9<br>3.9<br>3.1           |                                 | 204<br>256                                 | 1.0                             | 1.71<br>1.75<br>1.80<br>1.85<br>1.90      |
| 21<br>22<br>23<br>24<br>25 | .0285<br>.0254<br>.0226<br>.0201          | . (        | 0714<br>0905<br>1135<br>1435<br>1809      | 2.5<br>1.9<br>1.5<br>1.2<br>0.9           |                                 | 520<br>66'                                 | 0.0<br>6.0<br>7.0<br>3.0<br>1.0 | 1.95<br>2.00<br>2.05<br>2.10<br>2.20      |
| 26<br>27<br>28<br>29<br>30 | .0159<br>.0142<br>.0126<br>.0113<br>.0100 |            | 2293<br>2876<br>365<br>454<br>579         | 0 7<br>0 6<br>0 4<br>0 3<br>0 3           | 8<br>8<br>8                     | 1,29<br>1,63<br>2,08<br>2,63<br>3,33       | 9.0<br>3.0<br>2.0               | 2.30<br>2.45<br>2.60<br>2.75<br>2.90      |
| 31<br>32<br>33<br>34<br>35 | .0089<br>.0080<br>.0071<br>.0063<br>.0056 | 1.1        | 732<br>905<br>15<br>45<br>84              | 0.2<br>0.1<br>0.1<br>0.1                  | 9 5 2                           | 4,16<br>5,26<br>6,66<br>8,33<br>10,53      | 3.0<br>7.0<br>3.0               | 3.10<br>3.30<br>3.50<br>3.90<br>4.70      |
| 36<br>37<br>38<br>39<br>40 | .0050<br>.0045<br>.0040<br>.0035<br>.0031 | 3.         | 31<br>87<br>62<br>75<br>44                | 0.0                                       | 060                             | 13,16<br>16,66<br>21,27<br>26,31<br>35,71  | 67_0<br>76.0<br>16.0            | 5.70<br>7.20<br>9.20<br>12.00<br>16.00    |
| - 10                       | .00275<br>.0025<br>.00225<br>.002         | 5 11<br>14 | .49                                       | 0.0                                       | 021<br>017<br>014<br>011<br>008 | 47,60<br>58,90<br>71,50<br>91,00<br>125,00 | 00 0<br>00 0<br>00 0            | 21.00<br>27.00<br>35.00<br>45.00<br>60.00 |
|                            | .0015                                     | 25         |                                           | 0.                                        | 006                             | 166,66                                     | 66.0                            | 80.00                                     |

For weights of this material refer to page 61.
Unless otherwise specified material listed above will be supplied soft temper.
Prices of Cotton and Silk Covered Wires furnished on request.
Pure Nickel is also furnished in Ribbon, Strip and Sheet.
For prices of Manganese Nickel add 5c. net to pure Nickel net.

## Cold Rolled Pure Nickel

D-H Quality

#### Ribbon, Strip and Sheet

|                            |                                                                | Ril                                  | obon                                 | and                  | Strip                                          |                                      |                                                             |                                        |                                      | S                                    | heet                                 |                                        |                                      |
|----------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------|------------------------------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|
| Thi                        | ckness                                                         |                                      | 1                                    | Vidth-               | -Inche                                         | es.                                  |                                                             |                                        |                                      | Width                                | —Incl                                | nes                                    |                                      |
| No.<br>B.<br>&<br>S.       | In-<br>ches                                                    | 1/16                                 | 1/8                                  | 3 16                 | 14                                             | 3.8                                  | 1/2 to 23/4                                                 | Thick                                  | 3 to 4                               | 4 <sup>1</sup> 16<br>to 7            | 7 <sup>1</sup> / <sub>16</sub> to 12 | 12 <sup>1</sup> <sub>16</sub><br>to 18 |                                      |
| 20<br>21                   | .060<br>.050<br>.040<br>.032<br>.0285                          |                                      |                                      | \$2 40<br>2 45       |                                                |                                      |                                                             | . 187<br>. 156<br>. 125                | \$1.48<br>1.48<br>1.51<br>1.52       |                                      | \$1 49<br>1 49<br>1 52<br>1 53       | 1.55                                   | \$1.48<br>1.48<br>1.53               |
| 22<br>23<br>24<br>25<br>26 | .0253<br>.0226<br>.0201<br>.0179<br>.0159                      | 2.70<br>2.75<br>2.80<br>2.90<br>3.00 | 2.70                                 | 2 55<br>2 60<br>2 70 | 2 . 30<br>2 . 35<br>2 . 40<br>2 . 50<br>2 . 60 | 2.38<br>2.40<br>2.50                 | 2.15<br>2.20<br>2.25                                        | .081<br>.078<br>.072                   | 1.53<br>1.53<br>1.55<br>1.56<br>1.60 | 1 59<br>1 61<br>1 61<br>1 61<br>1 64 | 1.57<br>1.60<br>1.60<br>1.60         | 1.61<br>1.61<br>1.62                   | 1.56<br>1.57<br>1.57<br>1.59         |
| 27<br>28<br>29<br>30<br>31 | .0142<br>.0126<br>.0113<br>.010<br>.0089                       | 3 10<br>3 20<br>3 30<br>3 40<br>3 50 | 2 90<br>3 00<br>3 10<br>3 20<br>3 30 | 3.00<br>3.10<br>3.20 | 2.70<br>2.80<br>2.90<br>3.00<br>3.10           | 2.70<br>2.80<br>2.90<br>3.00<br>3.10 | 2.50<br>2.60<br>2.70                                        |                                        | 1.60<br>1.61<br>1.62<br>1.64<br>1.66 | 1 65<br>1 66<br>1 67                 | 1.65<br>1.67<br>1.69<br>1.70<br>1.75 | 1.66<br>1.67<br>1.69                   | 1 . 64<br>1 . 66<br>1 . 66<br>1 . 66 |
| 32<br>33<br>34<br>35<br>36 | .008<br>.0071<br>.0063<br>.0056                                | 3.60<br>3.70<br>3.90<br>4.20<br>4.30 | 3.40<br>3.50<br>3.70<br>3.90<br>4.20 | 3.50                 | 3.20<br>3.40<br>3.60<br>3.80<br>4.10           | 3.20<br>3.40<br>3.60<br>3.80<br>4.10 | 3.20<br>3.40<br>3.60                                        | .032<br>.030<br>.0285<br>.025<br>.0225 | 1.69<br>1.69<br>1.71<br>1.71<br>1.72 | 1.73<br>1.75<br>1.76<br>1.79         | 1 78<br>1 81<br>1 86<br>1 86<br>1 86 | 1.72<br>1.76<br>1.76                   | 1.70<br>1.70<br>1.74<br>1.74<br>1.85 |
| 37<br>38<br>39<br>40       | .0045<br>.004<br>.0035<br>.003                                 | 4.70<br>5.30<br>6.30<br>7.80         | 4.60<br>5.30<br>6.30<br>7.80         | 4 60 5 30            | 4 50<br>5 20                                   | 4.50                                 |                                                             | .020                                   | 1.73                                 | 1.79                                 | 1 88                                 | 1.82                                   | 1.85                                 |
|                            | 0025<br>00225<br>00225<br>002<br>00175<br>0015<br>00125<br>001 |                                      |                                      |                      |                                                |                                      | 11.60<br>16.30<br>20.95<br>28.35<br>46.50<br>55.85<br>70.00 | r pour                                 | nd.                                  |                                      |                                      |                                        |                                      |

#### Comet

"COMET" (193 Alloy) is a nickel-chromium-iron alloy, whose chromium content renders it resistant to oxidation in devices operating from low to medium temperatures.

It is an inexpensive material and due to low cost and high resistance is used extensively in elevator and crane controllers, and in heavy duty rheostats.

## Properties of Comet Resistance Wire

Specific resistance 550 ohms per circular mil-foot at 20°C. (68°F.).

Factors to be used in determining resistance at elevated temperatures

| 6.4                        | Fahren                                     | adeheit                                | 20<br>68         | 100<br>212                           | 200<br>392 | 300<br>572                | 400<br>752                               | 500<br>932 | 600<br>1112 | 700<br>1292                          | 800<br>1472 | 900<br>1652                            |
|----------------------------|--------------------------------------------|----------------------------------------|------------------|--------------------------------------|------------|---------------------------|------------------------------------------|------------|-------------|--------------------------------------|-------------|----------------------------------------|
| Resi                       | stance in (                                | Ohms                                   | 1,000            | 1.086                                | 1.197      | 1.292                     | 1.365                                    | 1.425      | 1.473       | 1.504                                | 1.538       | 1_585                                  |
| No.<br>B.<br>&<br>S.       | Diam.<br>in<br>Inches                      | Ohms<br>Per Ft.<br>at 20° C<br>(68° F) | 1000<br>Bare     | ight<br>Per<br>O Ft.<br>Wire<br>unds |            | Feet<br>Per Por<br>Bare W | und                                      |            | Ohmer Pou   | ınd                                  | Pe          | Price<br>Per<br>ound<br>Wire           |
| 1<br>2<br>3<br>4<br>5      | . 289<br>. 258<br>. 229<br>. 204<br>. 182  | .006<br>.008<br>.010<br>.013<br>.016   | 184<br>141<br>11 | 1.0<br>4.0<br>5.0<br>5.0<br>2.0      |            |                           | 4.33<br>5.43<br>6.90<br>8.70<br>10.9     |            |             | .029<br>.043<br>.069<br>.110<br>.173 |             | \$1.60<br>1.60<br>1.60<br>1.60<br>1.60 |
| 6<br>7<br>8<br>9           | . 162<br>. 144<br>. 1285<br>. 114<br>. 102 | .021<br>.026<br>.033<br>.042<br>.052   | 5<br>4<br>3      | 3.0<br>7.0<br>5.0<br>6.0<br>9.0      |            |                           | 13.7<br>17.5<br>22.2<br>27.8<br>34.5     |            |             | .276<br>.447<br>.719<br>1.13<br>1.73 | 7           | 1.60<br>1.60<br>1.60<br>1.62<br>1.64   |
| 11<br>12<br>13<br>14<br>15 | .091<br>.081<br>.072<br>.064               | .066<br>.083<br>.106<br>.134           | 1                | 3.0<br>8.0<br>4.3<br>1.3<br>9.2      |            |                           | 43.5<br>55.6<br>69.9<br>88.5<br>09.0     |            |             | 2.82<br>4.47<br>7.19<br>11.4<br>17.7 |             | 1.66<br>1.69<br>1.72<br>1.75<br>1.78   |
| 16<br>17<br>18<br>19<br>20 | .051<br>.045<br>.040<br>.036<br>.032       | .211<br>.271<br>.343<br>.424<br>.537   |                  | 7.2<br>5.6<br>4.42<br>3.58<br>2.83   |            | 1 2 2                     | 39.0<br>.79.0<br>226.0<br>279.0<br>353.0 |            | 1           | 28.3<br>46.6<br>74.5<br>13.0<br>82.0 |             | 1.81<br>1.85<br>1.90<br>1.95<br>2.00   |

Unless otherwise specified material listed above will be supplied soft temper.

Prices of Cotton and Silk Covered Wires furnished on request.

Comet is also furnished in ribbon and strip.

## Specifications Size Limits for Hot Rolled Products

N hot rolled rods size limit is plus or minus .010" up to  $\frac{3}{4}$ " square or round. On sizes between  $\frac{3}{4}$ " and  $\frac{1}{4}$ " dimensions are held within plus or minus  $\frac{1}{4}$ ".

The limit of tolerance of hot rolled flats is plus or minus .010" on thickness and plus or minus  $\frac{1}{32}$ " on width.

In cases where the metal is to be used for mechanical purposes, and size is of paramount importance, it should be so stated on the order so that the alloy may be rolled to size rather than to resistance.

#### Resistance Limits

The resistance limit on hot rolled flats or rods is plus or minus 8%. In those cases where the customer specifies the resistance, the metal is not held exactly to size but is rolled to the correct cross sectional area and within plus or minus 8% of the specified resistance.

#### Weight—Length Limits

Flats and rods in sizes smaller than  $1\frac{1}{4}$ " square can be supplied in continuous lengths having a maximum weight of 55 pounds. These lengths can easily be calculated in the Table on "Rounds and Squares."

While these figures represent the maximum weight—length—relation, it should be understood that it is not possible to guarantee that all material will have that maximum relationship.

#### Size Limits for Cold Rolled Sheet

Sizes and dimensions listed in this catalog are standards, but special widths or thicknesses can be supplied. Full information will be given upon request.

See page 55 for description of sheet containers.

#### Nichrome Sheet Hot and Cold Rolled

Approximate Weight Per Cubic Inch 0.3 Lbs.

RECENT developments in the heat treating field have brought forward the need of "Nichrome" in sheet form. To meet this demand, the Driver-Harris Company is prepared to supply Hot or Cold Rolled "Nichrome" Sheet, "Nichrome" Containers and other special forms.

"Nichrome" is a high temperature resisting alloy, which resists oxidation at all temperatures up to 2000° F. Besides its great resistance to oxidation at high temperatures, "Nichrome" is resistant to the action of most acids and alkalies.

Full information will be given upon request.

Photo of Carburizing Containers made of "Nichrome" Sheet Manufactured under Henderson Patent No. 1,270,519



#### Additional D-H Alloys

In addition to the various alloys described in this catalog the Driver-Harris Company is equipped and prepared to melt, hot roll, cold roll and finish alloys containing nickel, chromium, iron, copper and various other elements. When the demands of the trade dictate a particular alloy of certain physical properties this company is prepared to supply such alloy and welcomes inquiries.

"Magno" is the registered trade mark applying to a manganese nickel alloy which is used in the manufacture of incandescent lamps and radio

tubes.

141 Alloy is an alloy of nickel and iron (70% Nickel) characterized chiefly by its high temperature coefficient of electrical resistance. The temperature coefficient of 141 Alloy is .004 per degree Centigrade between  $20^\circ$  and  $100^\circ$ C. and the specific resistance is 120 ohms per cir. milfoot annealed and 140 ohms per cir. milfoot hard.

Among the special alloys not mentioned previously in this data book, is the trade marked material "Climax" which is approximately a 25% to 28% Nickel alloy with an electrical resistance of 500 ohms per cir. milfoot. Its prominent application is in the glass industry for capping wire but it is also used somewhat extensively for rheostats in heavy sizes.

Driver-Harris also prepares a 36% Nickel Steel (Invar) characterized by an extremely low temperature coefficient of linear expansion up to 200°C. The temperature coefficient of linear expansion of this alloy is approximately .000002 per degree C. between 20°C. and 125°C. and .0000097 per degree C. from 20° to 400°C. Above this temperature the alloy has about the expansion of Bessemer Steel. One of the applications of this alloy is in bimetallic thermostat elements.

Other Nickel Steels are available. The most common being 42% and 48% Nickel, notable for their coefficient of linear expansion approxi-

mating that of various grades of glass.

Driver-Harris hot rolling facilities are such that hot rolled specifications can be handled at all times.

"Nichrome" is used as the element in this large carburizing furnace



#### Useful Data

#### Direct Electric Current

Ohms Law E=IR

Where E=Electromotive force in volts, I=Current in amperes, R=Resistance in ohms.

In any direct current circuit the total resistance R of several resistances  $(r_1, r_2, r_3, \text{ etc.})$  connected in series equals the sum of resistances.

$$R=r_1+r_2+r_3+\ldots r_n$$

In any direct current circuit the total resistance R of several resistances  $(r_1, r_2, r_3, \text{ etc.})$  connected in parallel is computed as follows:

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \dots + \frac{1}{r_n}$$

The heat developed in a conductor is directly proportional to the resistance, the square of the current and the time during which the current flows.

#### $H = I^2Rt \times 0.0009478$

Where I is the current in amperes, R is the resistance in ohms, t is the time in seconds, H is the heat in BTU.

To find the approximate resistance of  $R_t$ , of a wire at any temperature.  $R = R_0 (1+xt)$ 

Where  $R_t$  is the resistance at temperature t,  $R_{\circ}$ , is the resistance given in the table, x is the temperature coefficient, and t is the difference in temperature between  $R_{\circ}$  and  $R_t$ .

The power W in watts consumed in any direct current circuit is equal to the product of the volts and the amperes.

$$W = EI = I^2R$$

Under similar conditions, the carrying capacity of two wires of equal diameter but of different materials, varies inversely as the square root of their specific resistances at the same temperature.

# Properties of Materials

| Material                   | at 20° Ce       | specific Kesistance<br>at 20° Centigrade | Temperature<br>Coefficient                | Coefficient<br>of Linear                    | Approx.          | Maximum<br>Working          | Tensile<br>Strength                     | 9            | Weight                  |
|----------------------------|-----------------|------------------------------------------|-------------------------------------------|---------------------------------------------|------------------|-----------------------------|-----------------------------------------|--------------|-------------------------|
|                            | Microhm<br>Cms. | Ohms Per<br>Circular<br>Mil-Foot         | Per Deg. C.<br>Between<br>20°C. to 100°C. | Expansion<br>Per Deg. C.<br>20°C. to 100°C. | Point<br>Deg. C. | Tempera-<br>ture<br>Deg. C. | Pounds Per<br>Square Inch<br>(Annealed) | Gravity      | Cubic<br>Inch<br>Pounds |
| Silver                     | 1.60            | 9.75                                     | 0.0040                                    | ×                                           | 096              | :                           | 42,000                                  | 10.6         | .381                    |
| Copper (USS)               | 1.751           | 10.55                                    | 0.0040                                    |                                             | 1085             | :                           | 35,000                                  | 8.9<br>6.8   | 0320                    |
| Special Bronze (Low Brass) | 5.86            | 32.3                                     | 00000                                     | 1.75 x 10-6                                 |                  |                             | 41,000                                  | 180.0        | 310                     |
| Zinc                       | 0.302           | 30.0                                     | 0.0040                                    | 35 X                                        | 419              |                             | 30,000                                  | 7.7          | 2100                    |
| Silicon Bronze             | 6.04            | 40.0                                     |                                           | 1.75 × 10-8                                 | :                | :                           | 45,000                                  | × ×          | 300                     |
| Tin                        | 9.53            | 57.5                                     | 0.0048                                    |                                             | 232              |                             | 4,000                                   | 7.3          | .263                    |
| Iron (Pure)                | 10.145          | 61.1                                     | 0.0062                                    | 1.14 x 10-6<br>1.26 x 10-6                  | 1575             | 200                         | 52,000<br>61,000                        | 7.7          | .280                    |
| Galvanized Steel           | 11.05           | 66.7                                     |                                           |                                             |                  |                             | 75,000                                  | 7.8          | . 280                   |
| Phosphor Bronze            | 11.6            | 70.0                                     |                                           |                                             |                  | :                           | 20,000                                  | 88.88        | .320                    |
| Platinum                   | 11.932          | 72.0                                     | 0.0037                                    | 0.86 x 10-6                                 | 1710             | - (                         | 20,000                                  | 21.2         | .765                    |
| 2% Manganese Nickel        | 13.95           | 95.0                                     | 0.00036                                   | 1.37 x 10-6                                 | 1435             | 200<br>400<br>900           | 000'6/                                  | × ×          | .320                    |
|                            | 10.0            | 114 7                                    | 0 0041                                    | 9 09 5 10 6                                 | 968              |                             | 3 000                                   | 11 4         | 410                     |
| Crucible Steel             | 19.10           | 115.0                                    | 0.0041                                    | 1.14 x 10-5                                 | 250              |                             | 75,000                                  | 7.7          | 280                     |
| 141 Alloy                  | 19.9            | 120.0                                    | 0.0040                                    |                                             |                  | 200                         |                                         | 8.7          | .314                    |
| Special Manganese Nickel   | 20.             | 120.0                                    | 0.0029                                    | 1.37 x 10-6                                 | 1435             | 200                         | 74,000                                  | 0.00<br>0.00 | 320                     |
| 10% INICKEL SHVET          | 30.0            | 100.0                                    | 0.00020                                   |                                             | 1069             | 7007                        | 30,000                                  | 0.01         | 669                     |
| 30% Nickel Silver          | 40.2            | 241 0                                    | 0.000199                                  | 1 73 x 10-6                                 | 7001             | 260                         | 000.09                                  | 0.00         | .314                    |
| Manganin                   | 48.3            | 290.0                                    | +0.00002                                  |                                             |                  | 100                         | 70,000                                  | 8.15         | .294                    |
| Lucero                     | 42.6            | 256.                                     | (20°C35°C.)<br>0.0019                     | 1.35 x 10-5                                 | 1360             | 200                         | 75,000                                  | 8.9          | .320                    |
| Advance (Ideal)            | 48.8            | 294.0                                    | ±0.00002                                  | 1.44 x 10-5                                 |                  | 500                         | 62,000                                  | 8.9          | .320                    |
| Climax (Phoenix)           | 83.0            | 500.0                                    | 0.000978                                  |                                             |                  | 009                         | 75,000                                  | 8.15         | 294                     |
| Nichrome III (Rayo)        | 89.5            | 540.0                                    | 0.00015                                   |                                             | 1390             | 1100                        | 110,000                                 | × 00 00      | 306                     |
| Comet (193 Alloy)          | 92.0<br>104.0   | 550.0                                    | 0.000100                                  | 1.71 x 10-8<br>1.32 x 10-5                  | 1390             | 1150                        | 120,000                                 | 8.5          | 908                     |
| Nichrome (Calido)          | 9.111           | 675.0                                    | 0,00017                                   | 1.37 x 10-6                                 | 1350             | 1000                        | 100,000                                 | 8.15         | .294                    |

Data given above is representative of these alloys and represents average values.

Weight of Resistance Ribbon in Pounds Per 1000 Feet

This table is for Nichrome. To find the weight of Advance, S.M.L. Alloy, or Nickel, multiply by 1.09. To find the weight of Nichrome IV, multiply by 1.04.

| PICK | Thickness |       |        |       |      |       |      |              |       |       |       |       |         |
|------|-----------|-------|--------|-------|------|-------|------|--------------|-------|-------|-------|-------|---------|
| No.  | T. A. L.  | 1771  | 1,30,1 | 3,611 | . %  | 3 16" | 14"  | , xx<br>, xx | 1,2," | 2 8   | 34"   | 1,,   | B. & S. |
| ŝ    | Inches    | 725   | 01     |       |      |       |      |              |       | 140 0 | 168.0 | 224.0 | 14      |
|      | 064       |       |        |       |      | 42.0  | 2000 | 104.0        | 100   | 125.0 | 150.0 | 200.0 | 15      |
| 40 3 | 057       |       |        |       |      |       |      |              |       | 112.0 |       |       | 16      |
| -    | 500       |       |        |       |      | - 20  |      |              |       | 100   |       |       | 17      |
| -    | 100.      |       |        |       |      |       |      |              |       | 0.00  |       |       | 18      |
| 17   | .043      |       |        | 13.2  | 17.6 |       |      |              |       | 0-00  |       |       |         |
| _    | 040       |       |        |       |      |       |      |              |       |       |       |       | 19      |
| 1    | -         |       |        |       |      |       |      |              |       |       |       |       | 20      |
| _    | .036      |       |        |       |      |       |      |              |       | 0.07  | 700   | 100   | 200     |
| -    | .032      | -100  |        |       |      |       |      |              |       |       |       |       | 170     |
|      | 0285      |       |        |       |      |       |      |              |       |       |       |       | 777     |
| 22   | 0254      |       | 5.6    | 7 CO  | 10.0 | 100   | 0.02 | 30.0         | 40.0  | 50.0  | _'    |       | 23      |
| ~    | 0226      |       |        |       |      |       |      |              | 1     | -     |       |       | 10      |
|      |           |       |        |       |      |       |      |              |       | 44.0  | 53.0  | 0.07  | 770     |
| _    | 0201      |       |        |       |      |       |      |              |       |       |       |       | 220     |
|      | 0179      |       |        |       |      |       |      |              |       |       |       |       | 97      |
|      | 0159      |       |        |       |      |       |      |              |       |       |       |       | 7       |
| 7    | 0142      | 1 56  | 3.1    | 4.70  | 6.25 | 200   | 17.0 | 16.6         | 22.0  | 27.6  | 33.0  |       | 287     |
| 200  | 0126      | 1.38  |        |       |      |       |      |              |       |       |       | 1     | 00      |
|      |           |       |        |       | 1    |       | 10.9 |              |       | 25,6  | 30-7  | 41.0  | 570     |
| 0    | 0113      |       |        |       |      |       | 701  | 19.7         | 17 0  |       |       |       | 30      |
|      | 0100      |       |        |       |      |       | 30   |              |       |       |       |       | 31      |
| -    | 0000      |       |        |       | -    |       | 0.0  |              |       |       |       |       | 32      |
| - 0  | 0000      |       |        |       |      |       | 0 /  |              |       |       |       | -     | 33      |
| 32   | 0000      | 20.00 | 1.56   | 2 34  | 3.12 |       | 62.5 |              |       |       | - 1   |       | -       |
| 2    | 1700.     |       |        |       |      |       |      |              | 11 9  |       |       | 22.4  | 34      |
| 1.   | 0000      |       |        |       |      |       | _    |              | 10    |       |       |       | 35      |
| 4    | .0003     |       |        |       | -    |       | ٠.   |              | 0.0   |       |       |       | 36      |
| 2    | 9900      |       |        |       |      |       |      |              | 000   |       |       |       | 3       |
| 9    | .0020     |       |        |       |      |       |      |              | 0.8   | 10.0  | 12.0  | 0071  | 38      |
| 7    | .0045     | 0.50  | 3.0    | 00.1  | 20.7 | 9.64  | 3 52 | 5.3          | 7.0   |       |       |       | 5       |
| 38   | 0040      |       |        |       |      |       |      |              |       |       |       |       | 26      |
|      |           |       |        | 1 14  | 1    |       | 3.04 | 4.6          | 6.1   | 9 2   | 9.15  | 10.2  | 40      |
| 39   | .0035     | 0 32  | 99     | 00 0  | 1 32 | 1 98  | 2 64 |              |       |       |       |       |         |

## Weight Per Running Foot of Rounds, Squares, Hexagons and Octagons

This table is for Nichrome and Comet. To find the weights of Advance,
Lucero and Nickel multiply by 1.09. To find weights of
Nichrome IV multiply by 1.04

| Size<br>Inches                                                                                     | Rounds                                     | Squares                                       | Hexagons                                    | Octagons                                  | Size                                                                                            |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| 1 16<br>1 8<br>3 16<br>1 4<br>5 16                                                                 | .0109<br>.0437<br>.0975<br>.173<br>.270    | .0139<br>.0556<br>.1241<br>.221<br>.345       | .012<br>.048<br>.108<br>.191<br>.298        | .0115<br>.046<br>.1028<br>.1823<br>.286   | 1 16<br>1 5<br>3 16<br>1 4<br>5 16                                                              |  |
| 3 /8<br>7 /16<br>1 /2<br>9 /16<br>5 /8                                                             | .390<br>.530<br>.693<br>.876<br>1.082      | . 496<br>. 676<br>. 884<br>1.115<br>1.380     | . 430<br>. 585<br>. 763<br>. 966<br>1 . 193 | .411<br>.559<br>.730<br>.922<br>1.142     | 3 8<br>7 16<br>1 ½<br>9 16<br>5 8                                                               |  |
| 11/16<br>3/4<br>13/16<br>7/8<br>15/16                                                              | 1.310<br>1.558<br>1.830<br>2.122<br>2.517  | 1.668<br>1.985<br>2.330<br>2.704<br>3.200     | 1.443<br>1.716<br>2.016<br>2.34<br>2.675    | 1.381<br>1.642<br>1.932<br>2.234<br>2.646 | 11 16<br>3 4<br>13 16<br>7 8<br>15 16                                                           |  |
| $ \begin{array}{c} 1 \\ 1^{1}_{16} \\ 1^{1}_{8} \\ 1^{3}_{16} \\ 1^{1}_{4} \end{array} $           | 2.772<br>3.128<br>3.504<br>3.908<br>4.329  | 3.536<br>3.982<br>4.460<br>4.975<br>5.520     | 3.06<br>3.44<br>3.86<br>4.31<br>4.76        | 2.918<br>3.32<br>3.69<br>4.12<br>4.56     | $\begin{array}{c} 1 \\ 1_{16} \\ 1_{18} \\ 1_{316} \\ 1_{14} \end{array}$                       |  |
| $ \begin{array}{c} 15_{16} \\ 13_{8} \\ 17_{16} \\ 11_{2} \\ 11_{16} \end{array} $                 | 4.774<br>5.240<br>5.726<br>6.232<br>6.767  | 6.078<br>6.592<br>7.291<br>7.940<br>8.614     | 5.27<br>5.76<br>6.30<br>6.87<br>7.45        | 5.03<br>5.52<br>6.03<br>6.57<br>7.13      | $\begin{array}{c} 1^{5}_{16} \\ 1^{3}_{8} \\ 1^{7}_{16} \\ 1^{1}_{2} \\ 1^{9}_{16} \end{array}$ |  |
| $ \begin{array}{c} 1^{5}_{8} \\ 1^{11}_{16} \\ 1^{3}_{4} \\ 1^{13}_{16} \\ 1^{7}_{8} \end{array} $ | 7.324<br>7.889<br>8.488<br>9.103<br>10.068 | 9.320<br>10.048<br>10.816<br>11.590<br>12.800 | 8.07<br>8.72<br>9.35<br>10.05<br>10.73      | 7.71<br>8.30<br>8.94<br>9.58<br>10.58     | $\begin{array}{c} 1^{5} \\ 1^{11} \\ 1^{3} \\ 1^{13} \\ 1^{13} \\ 1^{7} \\ 8 \end{array}$       |  |
| 1 <sup>15</sup> / <sub>16</sub>                                                                    | 10.400<br>11.088                           | 13.245<br>14.144                              | 11.48<br>12.24                              | 10.96<br>11.67                            | $\frac{1^{15}}{2}$ 16                                                                           |  |

## Weight Per Running Foot of Flats

Table for Nichrome (Calido), Comet (193 Alloy) and Manganin. Multiply by 1.09 to find weight of Advance (Ideal), Lucero and Nickel. Multiply by 1.04 to find weight of Nichrome III (Rayo) and Nichrome IV (Karma). Multiply by 0.946 to find weight of Cold Rolled Strip Steel.

| nch   | Decimal | 1/16" | 1.8"   | 1/4"  | 3/8"  | 1/2"  | 5/8"  | 3/4"  | 7/8"  | 1''   | Inch  |
|-------|---------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1,32  | .03125  | .007  | .014   | .028  | .041  | .055  | .069  | .083  | .097  | .110  | 1/82  |
| 3/16  | .0625   | .014  | .028   | .055  | .083  | .110  | .138  | .166  | .193  | . 221 | 1/16  |
| 3/82  | .09375  | .021  | .041   | .083  | .124  | .166  | .207  | .248  | .290  | .330  | 3/82  |
| 1/8   | 125     | .028  | .055   | .112  | .166  | .221  | . 276 | .331  | .386  | .441  | 1/8   |
| 5/82  | 15625   | .035  | .069   | .138  | .207  | .276  | .345  | .414  | . 482 | .551  | 5/82  |
| 3/16  | . 1875  | .041  | .083   | .166  | .248  | .331  | .414  | . 497 | .579  | . 662 | 3/16  |
| 7/82  | .21875  | .048  | .097   | . 193 | .290  | .386  | . 482 | . 578 | . 675 | .771  | 7/82  |
| 1/4   | .25     | .055  | .110   | .221  | .331  | .442  | . 552 | . 663 | .773  | . 883 | 1/4   |
| 9/32  | .28125  | .062  | .124   | .248  | .372  | . 496 | .621  | .744  | .868  | .992  | 9/32  |
| 5 16  | .3125   | .069  | .138   | .276  | .414  | . 552 | . 690 | . 828 | .966  | 1.103 | 5/16  |
| 11/32 | .34375  | .076  | .152   | .304  | . 456 | . 607 | .758  | .912  | 1.062 | 1.214 | 11/82 |
| 3/8   | .375    | .083  |        | .331  | .497  | . 663 | .828  | .993  | 1.158 | 1.325 | 8/8   |
| 13/52 | .40625  | .090  | 1      | .358  | . 538 | .716  | .896  | 1.076 | 1.253 | 1.434 | 13/32 |
| 7/16  | . 4375  | .097  | . 193  | .386  | .579  | .773  | .966  | 1.158 | 1.352 | 1.546 | 7/16  |
| 15/82 | . 46875 | .104  |        | .413  | . 621 | .828  | 1.035 | 1.242 | 1.448 | 1.656 | 15/82 |
| 1/2   | .50     | .110  | .221   | . 441 | .662  | . 883 | 1.103 | 1.325 | 1.546 | 1.766 | 1/2   |
| 17/32 | . 53125 | .117  | .234   | .468  | . 703 | .938  | 1.173 | 1.406 | 1.641 | 1.874 | 17/82 |
| 9/16  | . 5625  | .124  | .248   | . 496 | .744  | . 992 | 1.242 | 1.490 | 1.737 | 1.986 | 9,10  |
| 19/32 | 59375   | .131  | .262   | . 524 | .787  | 1.048 | 1.312 | 1.573 | 1.833 | 2.09  | 19/8  |
| 5/8   | . 625   | .138  | .276   | . 552 | .828  | 1.103 | 1.380 | 1.656 | 1.93  | 2.21  | 5/8   |
| 21/32 | . 65625 | .145  | . 290  | .578  | .870  | 1.158 | 1.448 | 1.738 | 2.03  | 2.32  | 21/3  |
| 11/16 | .6875   | .152  | .304   | .607  | .912  | 1.214 | 1.517 | 1.820 | 2.13  | 2.43  | 11/1  |
| 23/32 | .71875  | .158  | .317   | . 634 | .953  | 1.269 | 1.586 | 1.904 | 2.22  | 2.54  | 23/3  |
| 3/4   | .75     | . 166 | .331   | . 663 | .993  | 1.325 | 1.656 | 1.987 | 2.32  | 2.65  | 3/4   |
| 25/82 | .78125  | .172  | .345   | .688  | 1.035 | 1.378 | 1.725 | 2.07  | 2.41  | 2.76  | 25/3  |
| 13/16 | .8125   | .179  | .358   | .716  | 1.076 | 1.434 | 1.792 | 2.15  | 2.51  | 2.87  | 13    |
| 27/82 | .84375  | .186  |        | .745  | 1.117 | 1.490 | 1.863 | 2.22  | 2.61  | 2.98  | 27    |
| 7/8   | .875    | .193  |        |       | 1.158 | 1.546 | 1.932 | 2.32  | 2.70  | 3.09  | 1 3   |
| 29/82 |         | .200  |        |       | 1.202 | 1.600 | 2.000 | 2.40  | 2.80  | 3.20  | 29    |
| 15/16 |         | .20   | 1      | .828  | 1.242 | 1.656 | 2.068 | 2.48  | 2.89  | 3.31  | 15    |
| 31/32 | .96875  | .21   | 4 .428 | .855  | 1.283 | 1.711 | 2.140 | 2.57  | 2.99  | 3.42  | 31    |
| 1     | 1.00    | .22   | 14     |       | 1.325 | 1.766 | 2.208 | 2.65  | 3.09  | 3.353 |       |

- 1 inch (in.) = 1000 mils = 25.4001 millimeters (mm.)
- 1 foot (ft.) = 0.304801 meters (m.)
- 1 U. S. mile (mi.) = 1.60935 kilometers (km.)

#### AREA

- 1 square inch (sq. in.) = 6.452 square centimeters (sq. cm.)
- 1 square mil = 0.000001 sq. in. = 1.273 circular mils = 0.000645 sq. mm.
- 1 circular mil = 0.7854 sq. mils = 0.0005067 sq. mm.
- 1 circular mil is the area of a circle 1 mil in diameter
- The area of a circle in circular mils equals the square of the diameter in mils
- The area of a circle = 0.7854 x (diameter)<sup>2</sup>

#### MISCELLANEOUS CON-VERSION FACTORS

- 1 pound per foot = 1488.6 grams per meter
- 1 foot per pound = 0.0006566 meters per gram
- 1 ohm per foot = 3.2809 ohms per meter
- 1 foot per ohm = 0.30474 meters per ohm
- 1 ohm per pound = 0.003205 ohms per gram
- 1 pound per ohm = 453.46 grams per ohm
- 1 ohm per mil-foot=6.014 microhm-centimeters=601.4 ohms per square millimetermeter
- 1 ohm per square millimeter-meter = 0.01 microhm centimeters = 0.00166 ohms per mil-foot
- 1 microhm=centimeter=100 ohms per square millimeter-meter= 0.166 ohms per mil-foot
- 1 pound per square inch = .0007029 kilograms mm.
- 1 kilogram per sq. mm. = 1422.52 pounds sq. inch
- 1 pound avoirdupois=4536 kilogram
- 1 kilogram = 2.2046 pounds

1 kw. hour = 2,655,000 ft. lbs. 3,600,000 joules 3411 B. T. U. 367,100 kilogram meters

#### DECIMALS OF AN INCH FOR EACH SIXTY-FOURTH

164-.015625 -.031253/4-.046875 -.0625564-.078125 -.09375 3/32 7/64-. 109375 .125 1/8 964-.140625 5/32 -.15625 11/64-.171875 3/16 . 1875 13/64-.203125 7/32 .21875 15/64-234375 250 1/4 17/4-.265625 .28125 19/64-. 296875 5/16 .3125 21/64-.328125 11/32 34375 23/64-.359375 375 3/8 25 64-390625 13/32 40625 27/64-. 421875 7/16 .4375 29 64 - 453125 15/32 46875 3164-484375 500 1/2 33 64 515625 17/32 53125 35 64 546875 5625 37/64-578125 59375 39 64 608375 625 5/8 41 61 640625 21/32 65625 43 64- 671875 11/16 -.6875 45 64-703125 23/32 71875 47 64-734375 .750 3/4 765625 25/32 78125 51 64-796875 13/16 8125 63 64-. 828125 27/32 84375 -.859375 .875 7/8 890625 90625 5964 -.921875 -.9375 6164-.953125 31/32 -.96875 63/61 -.9843751.000

## Conversion Tables of Fahrenheit and Centigrade Scales

To change a temperature C, in degrees Centigrade, to F degrees Fahrenheit, multiply by  $\frac{9}{5}$  and add 32

$$^{\circ}F = \frac{9}{5}C + 32.$$

To change a temperature F, in degrees Fahrenheit, to C degrees Centigrade, subtract 32 and multiply by  $\frac{5}{9}$   ${}^{\circ}C = \frac{5}{9} (F - 32).$ 

| 9                                      |                                        |                          |                                 |                                 |                                      |                                 |                                      |                                      |                                      |                                      |                                               |
|----------------------------------------|----------------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|
| Cent.                                  | Fahr.                                  | Cent.                    | Fahr.                           | Cent.                           | Fahr.                                | Cent.                           | Fahr.                                | Cent.                                | Fahr.                                | Cent.                                | Fahr.                                         |
| 0                                      | 32                                     | 230                      | 446                             | 460                             | 860                                  | 690                             | 1274                                 | 920                                  | 1688                                 | 1150                                 | 2102                                          |
| 5                                      | 41                                     | 235                      | 455                             | 465                             | 869                                  | 695                             | 1283                                 | 925                                  | 1697                                 | 1155                                 | 2111                                          |
| 10                                     | 50                                     | 240                      | 464                             | 470                             | 878                                  | 700                             | 1292                                 | 930                                  | 1706                                 | 1160                                 | 2120                                          |
| 15                                     | 59                                     | 245                      | 473                             | 475                             | 887                                  | 705                             | 1301                                 | 935                                  | 1715                                 | 1165                                 | 2129                                          |
| 20                                     | 68                                     | 250                      | 482                             | 480                             | 896                                  | 710                             | 1310                                 | 940                                  | 1724                                 | 1170                                 | 2138                                          |
| 25                                     | 77                                     | 255                      | 491                             | 485                             | 905                                  | 715                             | 1319                                 | 945                                  | 1733                                 | 1175                                 | 2147                                          |
| 30                                     | 86                                     | 260                      | 500                             | 490                             | 914                                  | 720                             | 1328                                 | 950                                  | 1742                                 | 1180                                 | 2156                                          |
| 35                                     | 95                                     | 265                      | 509                             | 495                             | 923                                  | 725                             | 1337                                 | 955                                  | 1751                                 | 1185                                 | 2165                                          |
| 40                                     | 104                                    | 270                      | 518                             | 500                             | 932                                  | 730                             | 1346                                 | 960                                  | 1760                                 | 1190                                 | 2174                                          |
| 45                                     | 113                                    | 275                      | 527                             | 505                             | 941                                  | 735                             | 1355                                 | 965                                  | 1769                                 | 1195                                 | 2183                                          |
| 50                                     | 122                                    | 280                      | 536                             | 510                             | 950                                  | 740                             | 1364                                 | 970                                  | 1778                                 | 1200                                 | 2192                                          |
| 55                                     | 131                                    | 285                      | 545                             | 515                             | 959                                  | 745                             | 1373                                 | 975                                  | 1787                                 | 1205                                 | 2201                                          |
| 60                                     | 140                                    | 290                      | 554                             | 520                             | 968                                  | 750                             | 1382                                 | 980                                  | 1796                                 | 1210                                 | 2210                                          |
| 65                                     | 149                                    | 295                      | 563                             | 525                             | 977                                  | 755                             | 1391                                 | 985                                  | 1805                                 | 1215                                 | 2219                                          |
| 70                                     | 158                                    | 300                      | 572                             | 530                             | 986                                  | 760                             | 1400                                 | 990                                  | 1814                                 | 1220                                 | 2228                                          |
| 75                                     | 167                                    | 305                      | 581                             | 535                             | 995                                  | 765                             | 1409                                 | 995                                  | 1823                                 | 1225                                 | 2237                                          |
| 80                                     | 176                                    | 310                      | 590                             | 540                             | 1004                                 | 770                             | 1418                                 | 1000                                 | 1832                                 | 1230                                 | 2246                                          |
| 85                                     | 185                                    | 315                      | 599                             | 545                             | 1013                                 | 775                             | 1427                                 | 1005                                 | 1841                                 | 1235                                 | 2255                                          |
| 90                                     | 194                                    | 320                      | 608                             | 550                             | 1022                                 | 780                             | 1436                                 | 1010                                 | 1850                                 | 1240                                 | 2264                                          |
| 95                                     | 203                                    | 325                      | 617                             | 555                             | 1031                                 | 785                             | 1445                                 | 1015                                 | 1859                                 | 1245                                 | 2273                                          |
| 100                                    | 212                                    | 330                      | 626                             | 560                             | 1040                                 | 790                             | 1454                                 | 1020                                 | 1868                                 | 1250                                 | 228:                                          |
| 105                                    | 221                                    | 335                      | 635                             | 565                             | 1049                                 | 795                             | 1463                                 | 1025                                 | 1877                                 | 1255                                 | 229                                           |
| 110                                    | 230                                    | 340                      | 644                             | 570                             | 1058                                 | 800                             | 1472                                 | 1030                                 | 1886                                 | 1260                                 | 230:                                          |
| 115                                    | 239                                    | 345                      | 653                             | 575                             | 1067                                 | 805                             | 1481                                 | 1035                                 | 1895                                 | 1265                                 | 230:                                          |
| 120                                    | 248                                    | 350                      | 662                             | 580                             | 1076                                 | 810                             | 1490                                 | 1040                                 | 1904                                 | 1270                                 | 231:                                          |
| 125                                    | 257                                    | 370                      | 671                             | 585                             | 1085                                 | 815                             | 1499                                 | 1045                                 | 1913                                 | 1275                                 | 232                                           |
| 130                                    | 266                                    |                          | 680                             | 590                             | 1094                                 | 820                             | 1508                                 | 1050                                 | 1922                                 | 1280                                 | 233                                           |
| 135                                    | 275                                    |                          | 689                             | 595                             | 1103                                 | 825                             | 1517                                 | 1055                                 | 1931                                 | 1285                                 | 234                                           |
| 140                                    | 284                                    |                          | 698                             | 600                             | 1112                                 | 830                             | 1526                                 | 1060                                 | 1940                                 | 1290                                 | 235                                           |
| 145                                    | 293                                    |                          | 707                             | 605                             | 1121                                 | 835                             | 1535                                 | 1065                                 | 1949                                 | 1295                                 | 236                                           |
| 150<br>155<br>160<br>165<br>170        | 302<br>311<br>320<br>329<br>338        | 385<br>390<br>395        | 716<br>725<br>734<br>743<br>752 | 610<br>615<br>620<br>625<br>630 | 1130<br>1139<br>1148<br>1157<br>1166 | 840<br>845<br>850<br>855<br>860 | 1544<br>1553<br>1562<br>1571<br>1580 | 1070<br>1075<br>1080<br>1085<br>1090 | 1958<br>1967<br>1976<br>1985<br>1994 | 1300<br>1305<br>1310<br>1315<br>1320 | 237<br>238<br>239<br>239<br>240               |
| 175<br>180<br>185<br>190<br>195        | 347<br>356<br>365<br>374<br>383        | 410<br>415<br>420        | 761<br>770<br>779<br>788<br>797 | 635<br>640<br>645<br>650<br>655 | 1175<br>1184<br>1193<br>1202<br>1211 | 865<br>870<br>875<br>880<br>885 | 1589<br>1593<br>1607<br>1616<br>1625 | 1095<br>1100<br>1105<br>1110<br>1115 | 2003<br>2012<br>2021<br>2030<br>2039 | 1325<br>1330<br>1335<br>1340<br>1345 | 241<br>242<br>243<br>244<br>245               |
| 200<br>205<br>210<br>215<br>220<br>225 | 392<br>401<br>410<br>419<br>428<br>437 | 435<br>440<br>445<br>450 | 815<br>824<br>833<br>842        | 665<br>670<br>675<br>680        | 1238<br>1247<br>1256                 | 905                             | 1661<br>1670                         | 1130<br>1135<br>1140                 | 2084                                 | 1355<br>1360<br>1365<br>1370         | 246<br>247<br>248<br>248<br>248<br>249<br>250 |

## Comparison of Wire Gauges

| Gauge No.                    |                                                | rown & Sha<br>or America                                |                                                              | Old<br>English<br>or<br>London            | Birm-<br>ingham<br>or<br>Stubs       | W. &<br>M.<br>and<br>Roebling         | British<br>Stand-<br>ard or<br>Imperial   | U. S.<br>Stand-<br>ard                    | Gauge No.                   |
|------------------------------|------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|
|                              | Diam.<br>in<br>Inches                          | Area<br>Square<br>Inches                                | Area<br>Circular<br>Mils                                     | Diameter of Wire in Inches                |                                      |                                       |                                           |                                           |                             |
| 0000<br>000<br>00<br>00<br>0 | .46000<br>.40964<br>.36480<br>.32495<br>.28930 | .166<br>.132<br>.105<br>.0829<br>.0657                  | 212,000,0<br>168,000.0<br>133,000.0<br>106,000,0<br>83,700.0 | . 454<br>. 425<br>. 380<br>. 340<br>. 300 | .454<br>.425<br>.380<br>.340<br>.300 | .393<br>.362<br>.331<br>.307<br>283   | .400<br>.372<br>.348<br>.324<br>.300      | .406<br>.375<br>.344<br>.313<br>.281      | 0000<br>000<br>00<br>0<br>0 |
| 2<br>3<br>4<br>5<br>6        | .25763<br>.22942<br>.20431<br>.18194<br>.16202 | .0521<br>.0413<br>.0328<br>.0260<br>.0206               | 66,400.0<br>52,600.0<br>41,700.0<br>33,100.0<br>26,300.0     | .284<br>.259<br>.238<br>.220<br>.203      | 284<br>259<br>238<br>220<br>203      | .263<br>.244<br>.225<br>.207<br>.192  | 276<br>252<br>232<br>212<br>192           | 266<br>250<br>234<br>219<br>203           | 2<br>3<br>4<br>5<br>6       |
| 7<br>8<br>9<br>10            | .14428<br>12849<br>11443<br>10189<br>.09074    | .0164<br>.0130<br>.0103<br>.00815<br>.00647             | 20,800.0<br>16,500.0<br>13,100.0<br>10,400.0<br>8,230.0      | .180<br>.165<br>.148<br>.134<br>.120      | .180<br>.165<br>.148<br>.134<br>.120 | 177<br>162<br>148<br>135<br>120       | .176<br>.160<br>.144<br>.128<br>.116      | 188<br>172<br>156<br>141<br>125           | 7<br>8<br>9<br>10<br>11     |
| 12<br>13<br>14<br>15<br>16   | .08081<br>.07199<br>.06408<br>.05706<br>.05082 | .00513<br>.00407<br>.00323<br>.00256<br>.00203          | 6,530.0<br>5,180.0<br>4,110.0<br>3,260.0<br>2,580.0          | .109<br>.095<br>.083<br>.072<br>.065      | .109<br>.095<br>.083<br>.072<br>.065 | .105<br>.092<br>.080<br>.072<br>.063  | -104<br>.092<br>.080<br>.072<br>.064      | 109<br>0938<br>0781<br>0703<br>.0625      | 12<br>13<br>14<br>15<br>16  |
| 17<br>18<br>19<br>20<br>21   | .04525<br>.04030<br>.03589<br>.03196<br>.02846 | .00161<br>.00128<br>.00101<br>.000802<br>.000636        | 2,050.0<br>1,620.0<br>1,290.0<br>1,020.0<br>810.0            | .058<br>.049<br>.040<br>.035<br>.0315     | .058<br>.049<br>.042<br>.035<br>.032 | .054<br>.047<br>.041<br>.035<br>.032  | 056<br>-048<br>-040<br>-036<br>-032       | .0563<br>0500<br>.0438<br>.0375<br>.0344  | 17<br>18<br>19<br>20<br>21  |
| 22<br>23<br>24<br>25<br>26   | .02535<br>.02257<br>.02010<br>.01790<br>.01594 | .000505<br>.000400<br>.000317<br>.000252<br>.000200     | 642.0<br>509.0<br>404.0<br>320.0<br>254.0                    | .0295<br>.027<br>.025<br>.023<br>.0205    | .028<br>.025<br>.022<br>.020<br>.018 | 028<br>025<br>023<br>020<br>018       | .028<br>.024<br>.022<br>.020<br>.018      | 0313<br>0281<br>-0250<br>0219<br>-0188    | 22<br>23<br>24<br>25<br>26  |
| 27<br>28<br>29<br>30<br>31   | 01420<br>.01264<br>.01126<br>.01003<br>.00893  | 000158<br>000126<br>0000995<br>0000789<br>0000626       | 101.0                                                        | 01873<br>0165<br>0155<br>01373<br>01225   | .014<br>.013<br>.012                 | .017<br>.016<br>.015<br>.014<br>.0135 | .0164<br>.0148<br>.0136<br>.0124<br>.0116 | .0172<br>.0156<br>.0141<br>.0125<br>.0109 | 27<br>28<br>29<br>30<br>31  |
| 32<br>33<br>34<br>35<br>36   | .00795<br>.00708<br>.00630<br>.00561<br>.00500 | .0000496<br>0000394<br>.0000312<br>.0000248<br>.0000196 | 50 1<br>39 8<br>31 5                                         | .0112<br>.0102<br>.0095<br>.009<br>.0075  |                                      | .013<br>.011<br>.010<br>.0095<br>.009 | 0108<br>.010<br>.0092<br>.0084<br>.0076   | .0094<br>.0086<br>.0078                   | 33<br>3-<br>35              |
| 37<br>38<br>39<br>40         | .00445<br>.00397<br>.00353<br>.00314           | .0000156<br>.0000123<br>.0000098<br>.0000078            | 15.7<br>12.5                                                 |                                           | 5                                    | . 0085<br>. 008<br>. 0075<br>. 007    | .006                                      | ,0063                                     | 38<br>39<br>40              |

#### Nichrome Castings

WHEN carburizing, vitreous enameling, glass making, heat treating and other processes involving high temperatures became larger industrial factors, the Driver-Harris Company applied their energies and resources to the problem of manufacturing and supplying special castings which would endure in high temperatures.

After a great deal of research and experiment such a type of casting was developed and perfected, and marketed under the Driver-Harris Company Trade Mark, "Nichrome".

"Nichrome" Castings do not crack, warp, or scale under repeated heating and cooling in oxidizing atmospheres or under various operating conditions where other castings fail.

Information in connection with numerous applications and the suitability of "Nichrome" Castings may be had by sending blueprints and data to the Driver-Harris Company.

Cast "Nichrome" is used extensively for carburizing and case-hardening Carburizing containers are manufactured under Henderson Patent No. 1,270,519





## Weights of Coils and Spools

IN gauges of No. 17 B. & S. and larger, the Driver-Harris Company supplies wire in coils; all sizes smaller than No. 17 B. & S. being furnished on spools.

The following table gives the approximate quantity placed on a spool or in a coil, but is subject to some variation. This variation is more apt to occur between sizes 18 to 24 B. & S.

| . How<br>Sup-<br>plied | Approximate<br>Weight per Unit   |  |  |  |  |
|------------------------|----------------------------------|--|--|--|--|
| Coiled                 | 15 to 50 lbs. per coil           |  |  |  |  |
| Spooled                | 8 to 12 lbs. per spool           |  |  |  |  |
| 6.6                    | 3 to 5.5 lbs. per spool          |  |  |  |  |
| 4.4                    | 0.75 to 2.5 lbs. per spool       |  |  |  |  |
| 6.6                    | 0.25 to 1 lb. per spool          |  |  |  |  |
| 6.6                    | 0.10 to 0.20 lb. per spool       |  |  |  |  |
|                        | Supplied  Coiled Spooled  ""  "" |  |  |  |  |



## Summary of D-H Products

#### Wire-Ribbon-Strip-Rods

For Electrical Purposes

Nichrome\* IV Comet\* Manganin Nichrome\* Lucero\* Nickel Advance\*

For Mechanical and Chemical Purposes

Nichrome\* Monel Metal Low Brass Nickel Bronze Phosphor Bronze Lucero\* High Brass

For Spark Plugs

Magno\*
Special Nickel Alloys

High Manganese Nickel
Monel Metal

For Thermo Couples Advance\*

Flexible Stranded and Braided Wires From any of our alloys

Rods—Strips—Sheets

Nichrome\*
Nichrome\* IV
Special Nickel Alloys
Lucero\*

Ferro Nickel Alloys
Ferro Chromium
Monel Metal
Magno\*

Advance\*
Invar
Manganin
Comet\*

Cords

Braided Heater Cord—Veriflex, Wrapped Asbestos Curling Iron Cord Heater Pad Conductor

"Nichrome" Castings
For Heat Resisting Purposes

Carbonizing Containers
Lead, Cyanide and Salt Pots
Retorts

Tubes
Furnace Parts
Dipping Baskets

Pyrometer Tubes
Enameling Racks
Chains

"Nichrome"\* B
For Addition to Cast Iron

"Chromax"\*

For heat-resisting purposes at medium temperatures

"Nichrome"\* Valves

For Marine Diesel Engines and Heavy Duty Gas Engines

Hot Rolled Carbon and Tool Steels

in Round-Square-Hexagon-Octagon and Special Shapes

\*Trade Mark Reg. U. S. Pat. Off.





Reproduced by permission of BONBRIGHT & COMPANY, Incorporated

## DRIVER-HARRIS COMPANY





#### [BLANK PAGE]



