

Задание №1. Графы

Теория

Граф - совокупность объектов со связями между ними

Вершина - точка, объект.

Ребро - связь между двумя вершинами.

Смежность вершин - две вершины называются смежными, если они у них есть общее ребро.

План выполнения 1 задания:

- 1) Определяем степень вершин графа
- 2) Подписываем степени в табличке
- *На первых этапах, степени вершины <u>единственное</u>, что связывает граф и таблицу
- 3) Ищем вершины с уникальным значением степени
- 3.1) Если таких нет, ищем уникальность по степеням смежных вершин (например A соединено с вершинами со степенью 2, 3, 2, а Б с вершинами со степенью 3, 3, 3 и тд.)
- 3.2) В симметричном графе распределяем вершины по симметричным парам. Им так же будет соответствовать пара обозначений из таблицы. Но по отдельности вершины соотнести с таблицей нельзя.
- * Если сложно сразу определять нужные вершины, идём к ним от наиболее "уникальных"
- 4) Соотносим названия вершин с графом
- 5) Смотрим, что именно нас просят найти и записываем ответ

Основные типы задач

По графу:

1) Граф <mark>ассиметричный</mark>: обычно легко найти вершины с уникальной степенью. Как правило требуется точно найти соответствие вершин.

Пример (разбирался на занятии):

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги между пунктами Е и Ж. Передвигаться можно только по указанным дорогам

	П1	П2	ПЗ	П4	П5	П6	П7
П1			25			22	
П2				30			24
П3	25				20	16	
Π4		30				12	14
П5			20				
П6	22		16	12			
П7		24		14			

2) Граф симметричный: у почти всех вершин есть симметричный аналог. Как правило требуется определить примерное (т.к. точно соотнести симметричной паре обозначения из таблицы нельзя) соответствие двум вершинам и записать их в порядке возрастания/убывания

Пример (разбирался на занятии):

На рисунке схема дорог N-ского района изображена в виде графа, в таблице звёздочкой обозначено наличие дороги из одного населённого пункта в другой. Отсутствие звёздочки означает, что такой дороги нет.

Каждому населённому пункту на схеме соответствует номер в таблице, но неизвестно, какой именно номер. Определите, какие номера населённых пунктов в таблице могут соответствовать населённым пунктам С и F на схеме. В ответе запишите эти два номера в возрастающем порядке без пробелов и знаков препинания.

По таблице:

1) Граф взвешенный: у рёбер есть вес, в табличке цифры, просят найти расстояние

Пример: первая задача выше

2) Граф невзвешенный: в таблице звездочки, указывающее наличие ребра, просят соотнести названия вершин между таблицей и графом

Пример: вторая задача выше

Усложненное задание, поиск кратчайшего пути:

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта А в пункт В, если передвигаться можно только по указанным дорогам. В ответе запишите целое число – длину пути в километрах.

	П1	П2	ПЗ	П4	П5	П6	П7
П1			18	10	8	15	
П2			20		11	12	7
ПЗ	18	20				9	
П4	10						14
П5	8	11					6
П6	15	12	9				
П7		7		14	6		

Пошаговое решение:

1. Для удобства визуально отмечаем степени (количество рёбер) у каждой вершины:

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта А в пункт В, если передвигаться можно только по указанным дорогам. В ответе запишите целое число – длину пути в километрах.

- 2. Находим уникальную вершину в графе, это A (т.к. только у неё степень 2). Сразу соотносим с таблицей: A=П4
- 3. Через А определяем в таблице Б и Д. А=П4 пересекается с П1 (степень 4) и П7 (степень 3), это Д и Б соответственно
- 4. Похожим образом соотносим В и Г: Б по графу смежна с вершинами, имеющими степени 2(A), 3(B) и 4(Г). По таблице смотрим пересечение П7 с вершинами, имеющими соответствующие степени:

	Д	Γ	ПЗ	Α	В	П6	Б	
Д			18	10	8	15		4
Γ			20		11	12	7	4
ПЗ	18	20				9		3
Α	10						14	2
В	8	11					6	3
П6	15	12	9					3
Б		7		14	6			3

5. Из-за симметричности соотнести точно ПЗ и П5 с Е и К **не можем**. Переходим к поиску кратчайшего пути. Подписываем ребра на графе соответствующей длиной дороги из таблицы:

	Д	Γ	П3	Α	В	П6	Б	
Д			18	10	8	15		4
Γ			20		11	12	7	4
ПЗ	18	20				9		3
Α	10						14	2
В	8	11					6	3
П6	15	12	9					3
Б		7		14	6			3

- 6.1. Первый вариант, вручную, относительно быстрый, но легко запутаться: перебираем все возможные рациональные варианты пути от начала до конечной точки и, суммируя веса рёбер (длины путей), ищем наикратчайший:
- 6.1.1. <mark>не делаем циклов</mark> вершины в пути не должны повторяться АБГКЕГВ
- 6.1.2. если до какой-то вершины от начала уже найден наикратчайший путь, то нет смысла рассматривать другие более длинные пути до этой вершины: например до Д очевидно наикратчайший путь это сразу от А, равный 10, т.к. единственная возможная альтернатива проходит через Б, а АБ уже само по себе 14, что позволяет не рассматривать все пути типа АБ*Д*,где * это произвольное количество вершин
- 6.2. Второй вариант, алгоритм Дейкстры:

Алгоритм Дейкстры:

1. Переписываем табличку, но без весов:

- 2. Начинаем от первой вершины в пути. Т.к. требуют наикратчайший от А до В, то это будет А
- 3. Значения в табличке наикратчайший путь до соответствующей вершины.
- 4. На первой итерации A ставим 0, а остальным бесконечность. Наименьше значение фиксируем (зеленый квадратик), больше этот столбец не трогаем.

5. Дальше от выбранной вершины с наименьшим значением по изначальной таблице с длинами дорог заполняем пути до смежных вершин. Остальные оставляем бесконечностью. Снова фиксируем наименьшее значение в строке:

6. От зафиксированной вершины Д заполняем длины до смежных вершин, прибавляя при этом зафиксированное значение 10. Если при этом в столбце уже есть значение меньше, чем сумма зафиксированной

величины и длины пути, то оставляем значение меньшее. Значение несмежных вершин оставляем

- 7. Повторяем алгоритм, пока не заполним таблицу или не найдем требуемый кратчайший путь:
 - 1) Фиксируем наименьшее значение в текущей строке
 - 2) Смотрим, какие существуют пути из зафиксированной вершины
 - 3) Если сумма значения текущей ячейки и длинны пути из текущей вершины в смежную меньше, чем уже находящееся выше в столбце значение, то оставляем наименьшее значение.
 - 5) Значения несмежных вершин переносим из ячейки выше
 - 4) Переходим на строку ниже и повторяем алгоритм

8. Проходя по фиксированным значениям восстанавливаем путь с интересующего нас конца (B):

