Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 22

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- c) 1 10001000 1101101010000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 273A_{(16)}, \quad CX = 2C11_{(16)}, \quad DX = 018F_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& \mathtt{BX} + (\mathtt{CX} \wedge \mathtt{DX}) \\ \mathtt{VAR2} &=& \mathtt{BX} + (37 \wedge \mathtt{DX}) \\ \mathtt{VAR3} &=& (64 \wedge \mathtt{DX}) + \mathtt{BX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin BX. Psh. nëse është variabla VAR2 atëherë në regjistrin BX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 19 dhe numrit 35 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin CX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $OB_{(16)} + FC_{(16)}$
- b) $59_{(16)} 2D_{(16)}$
- c) $BB_{(16)} 62_{(16)}$
- d) $0C_{(16)} 9E_{(16)}$
- e) $C2_{(16)} A8_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 64 bajtëshe. Cache memoria L1 ka kapacitet prej 128KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$AC57F487_{(16)}$$
, $7AA8EB07_{(16)}$, $1C4D147C_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

D1101rm

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	D1	OB	F1	AA	9A	6A	97	A2
B_1	2E	29	A1	2A	BD	82	63	5F
B_2	72	В8	B8	15	ЗА	75	DC	8B
B_3	85	3B	58	34	41	F8	F3	2F
B_4	FD	95	FA	60	BA	8F	60	D3
B_5	A2	B5	56	CA	B2	DF	DF	2C
B_6	95	52	02	20	B5	В8	55	39
B_7	09	BF	CO	85	9C	FA	07	E5
B_8	78	85	4B	BD	BB	1A	AD	33
B_9	3B	95	C4	63	25	EA	96	88
B_A	82	A8	93	19	CD	4E	23	C6
B_B	53	CF	5E	90	91	6E	45	73
B_C	E1	6E	39	3C	98	4A	93	2A
B_D	43	6D	AC	66	FD	90	A5	В5
B_E	05	9B	80	6D	2B	F4	2E	6D
B_F	24	62	73	70	EF	38	76	32

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?