Seyed Hossein Aalaei-Andabili, Shaherin Basith, Sangdun Choi, and Nima Rezaei

Contents			17.6	Regulatory Effects of TLRs on	
17.1	Introduction	329		PI3K/Akt Signaling Controlling Tumor Progression	3
17.2	TLRs Play Important Roles in Human Carcinogenesis.	330	17.7	TLR-Mediated Hypoxia-Inducible Factor 1 (HIF-1) Expression Leads	
17.3	TLR Regulates Tumor-Induced			to Tumor Progression	3
	Immune System Response	331	17.8	Role of TLRs in Tumor Cell	
17.4	TLR Targeting May Inhibit			Lysis and Apoptosis	3
	Cancer Cell Proliferation	333	17.9	TLRs are Involved in Tumor	
17.5	TLR Triggering Can Promote			Metastasis	3
	Antitumor Response	333	17.10	Concluding Remarks	3
			Refer	moes	3

S.H. Aalaci-Andabili, MD Thoracic and Cardiovascular Surgery, Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida 100129, USA

Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran e-mail: dr.alaei@yahoo.com

N. Rezaei, MD, PhD (⊠)
Research Center for Immunodeficiencies,
Children's Medical Center, Pediatrics Center
of Excellence, Tehran University of Medical Sciences,
Tehran Iran

Department of Immunology, School of Medicine and Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran e-mail: rezaei_nima@tums.ac.ir

S. Basith, PhD • S. Choi, PhD
Department of Molecular Science and Technology,
College of Natural Science, Ajou University,
Suwon 443-749, South Korea

17.1 Introduction

The inante insume system has been shown to be responsible for the diagnosis and raction to pulsopens, leading to inflammatory response and accumulation of professional phaspecystes to the site of invasion [1]. Also, it has been reported that instant immune response in significantly associated plants of the site of invasion [1]. Also, it has been reported that mate immune response in significantly associated plants of the site of the s

Cancer type	TLRs expressed
Basal cell carcinoma	TLR7
Breast cancer	TLR2, 3, 4, 5, 7, and 9
Brain cancer	TLR2 and 4
Colorectal cancer	TLR2, 3, 4, 5, 7, and 9
Cervical cancer	TLR3, 4, 5, and 9
Esophageal squamous cell carcinoma	TLR3, 4, 7, and 9
Bastric cancer	TLR2, 4, 5, and 9
Human head and neck squamous cell carcinoma	TLR4
Hepatocellular carcinoma	TLR2, 3, 4, 6, and 9
Laryngeal cancer	TLR2, 3, and 4
Lung cancer	TLR2, 3, 4, 7, 8, and 9
Melanoma	TLR2, 3, 4, and 7
Ovarian cancer	TLR2, 3, 4, and 5
Oral squamous cell carcinoma	TLR2 and 4
Pancreatic carcinoma	TLR4 and 7
Prostate cancer	TLR3, 4, and 9

Toll-like receptors (TLRs) are transmembrane pathogen recognition receptors (PRRs) that recognize various pathogen-associated molecular patterns (PAMPs), such as bacterial lipoproteins (TLR2), double-stranded RNA (dsRNA) (TLR3), lipopolysaccharide (LPS) (TLR4), flagellin (TLR5), single-stranded RNA (ssRNA) (TLR7 and 8), and cytosine-phosphorothioate-guanine (CpG) DNA (TLR9) [4]. In addition to TLRs. intracellular NOD-like receptors (NLRs) are also involved in human immunity. NLRs are intracellular innate immune detectors of microbial and other dangerous signals [5]. NLRs that contain NALP, NOD1, and NOD2 have been found to be involved in several signaling pathways, leading to regulation of production of proinflammatory cytokines, including interleukin-1ß (IL-1ß) and IL-18. Moreover, NLRs play important roles in the induction of cell death [6]. Additionally, NLRs can discriminate between pathogens which break cellular and mucosal barriers and nonpathogenic microorganisms, therefore providing a functional benefit over TLRs to work as sentinels of the innate immune system at mucosal levels [7]. It has been reported that NODs are also involved in immune response against tumors.

Although simultaneous targeting of TLRs and NLRs has been found to be effective in the induction of CD4* and CD8*T cell function, leading to suppression of tumor growth [8], NOD's targetinglifeging effects on tumors are not adequately stated. Hence, we decided to review the role of TLRs in tumorigeness and discuss the prospect of TLRs in the treatment of cancers.

Activation of various TLR may lead to complete opposite results, such a sail- or protrom or effects. TLR role is cell specific, and the varied outcome of TLR function originates from difference of TLR stimulators in combination with other microemist recommental factors. In his been found that TLR3 activation leads to tumor cell escape from minmane system attack, personing tumor growth. In contrast, triggering of TLR3 on breast cancer cell personotes antisprofilerative signating. Besides, TLR3 expression in head and neck cancer (HNC) induces tumor aeresvise behaviors (Judices tumor aeresvise behaviors).

It has been found that chronic inflammation may lead to cancer initiation [10]. TLR has been recognized as not only being responsible for secretion of proinflammatory cytokines but also for the upregulation of metalloproteinase and integrins. thereby promoting tumor cell invasion and metastasis [11]. Among tumorigenesis cytokines, IL-6 has been shown to play a crucial role in the differentiation, angiogenesis, proliferation, and apoptosis of several cell types [10]. Initially, it has been thought that TLRs are present only on immune cells: however, recently, it has been understood that TLRs also have important functions in human cancers (Table 17.1). Later, it has been discovered that TLRs promote proinflammatory cytokines, leading to tumor growth and chemoresistance. However, various differential pro- and antitumor effects have been recognized for TLRs [12]

17.2 TLRs Play Important Roles in Human Carcinogenesis

In addition to bacterial and viral components, TLR expression increases in response to inflammation by-products and cellular injury, namely, damage-associated molecular patterns (DAMPs) [13]. Even though TLR7 activation shows antitumor responses in various tumors, including basal cell carcinoma (BCC) breast cancer, and