Lecture 18 Groups, Rings, Fields and Ideals

1 Groups, Rings and Fields

Definition 1. A group consists of a set G and a binary operation "." defined on G, for which the following conditions are satisfied:

- 1. Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in G$.
- 2. Identity: There exists an element $1 \in G$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in G$.
- 3. Inverse: Given $a \in G$, there exists $b \in G$ such that $a \cdot b = b \cdot a = 1$.

Examples: \mathbb{S}_n of permutations on [n], $GL(n,\mathbb{R})$ of real nonsingular $n \times n$ matrices under matrix multiplication.

If we drop the condition on the existence of an inverse, we obtain a **monoid**. Note that a monoid always has at least one element, the identity. As an example, given a set S, then the set of all strings of elements of S is a monoid, where the monoid operation is string concatenation and the identity is the empty string λ . Monoids are also known as semigroups with identity.

Definition 2. A ring consists of a set R and two binary operations "+" (addition) and "·" (multiplication), defined on R, for which the following conditions are satisfied:

- 1. Additive associative: (a + b) + c = a + (b + c), for all $a, b, c \in R$.
- 2. Additive commutative: a + b = b + a, for all $a, b \in R$.
- 3. Additive identity: There exists an element $0 \in R$ such that for all $a \in R$, 0 + a = a + 0 = a.
- 4. Additive inverse: for every $a \in R$, there exists $-a \in R$ such that a + (-a) = (-a) + a = 0.
- 5. Left and right distributivity: For all $a, b, c \in R$, it holds that $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.
- 6. Multiplicative associativity: For all $a, b, c \in R$, it holds that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

If R is multiplicatively commutative, then it is a commutative ring. Examples: \mathbb{Z} under the usual addition and multiplication, $\mathbb{R}[x]$, $\mathbb{C}[x]$.

Definition 3. A field consists of a set F and two binary operations "+" (addition) and "·" (multiplication), defined on R, for which the following conditions are satisfied:

- 1. $(F, +, \cdot)$ is a ring.
- 2. Multiplicative commutative: For any $a, b \in F$, $a \cdot b = b \cdot a$.

- 3. Multiplicative identity: There exists $1 \in F$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in F$.
- 4. Multiplicative inverse: If $a \in F$ and $a \neq 0$, there exists $b \in F$ such that $a \cdot b = b \cdot a = 1$.

Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}(x), \mathbb{R}(x), \mathbb{C}(x)$.

A field k is algebraically closed if every nonzero polynomial $p(x) \in k[x_1, \dots, x_n]$ has at least a root in k.

2 Ideals

Definition 4. Let R be a commutative ring. A subset I of R is an ideal if

- If $a, b \in I$, then $a + b \in I$.
- If $a \in I$ and $b \in R$, then $ab \in I$.

Theorem 5 (Hilbert's Basis Theorem). Let k be a field, and $I \subset k[x_1, \ldots, x_n]$ be an ideal. Then there exist polynomials g_1, \ldots, g_s such that

$$I = \langle g_1, \dots, g_s \rangle.$$

That is, for every $f \in I$, there exist polynomials f_1, \ldots, f_s such that

$$f = f_1 g_1 + \dots + f_s g_s.$$

Such g_i is called a generator of I.

Definition 6. Let k be a field, and f_1, \ldots, f_m be polynomials in $k[x_1, \ldots, x_n]$. Let the set V be

$$V(f_1, \dots, f_m) = \{(u_1, \dots, u_n) \in k^n : f_i(u_1, \dots, u_n) = 0, i = 1, \dots, m\}.$$

The set $V(f_1, \ldots, f_m)$ is called the affine variety defined by f_1, \ldots, f_m .

Let V be a variety. The set

$$I(V) = \{ f \in k[x_1, \dots, x_n] : f(u_1, \dots, u_n) = 0, \quad \forall u \in V \}$$

is an ideal of the ring $k[x_1, \ldots, x_n]$. It is called the vanishing ideal of V.

Definition 7. Let $I \subset k[x_1, ..., x_n]$ be an ideal. The radical ideal of I, denoted by \sqrt{I} , is the set

$$\sqrt{I} = \{ f \in k[x_1, \dots, x_n] : \exists p \in \mathbb{N}, f^p \}.$$

If $I = \sqrt{I}$, we say I is a radical ideal.

For example $I=< x^m, y^n>$ is not radical, and $\sqrt{I}=< x,y>$. For every V, the vanishing ideal I(V) is radical.

Theorem 8 (Hilbert's Nullstellensatz). Let k be an algebraically closed field, and $I \subset k[x_1, \ldots, x_n]$ be an ideal. Then $I(V(I)) = \sqrt{I}$.