

Separation axioms on enlargements of generalized topologies

C. Carpintero, N. Rajesh E. Rosas Recibido Junio 20, 2013 Aceptado Julio 2, 2013

Abstract

The concept of enlargement of a generalized topology was introduced by Császár [3]. In this paper, we introduce the notion of κ - T_i (i = 0, 1/2, 1, 2) and study some properties of them.

1. Introduction

Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a generalized topology on X if and only if $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $\bigcup G_i \in g$. We call the pair (X,g) a generalized topological spaces on X. The members of μ are called μ -open sets [1] and the complement of a μ -open set is called a μ -closed set. The generalized-closure of a set A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the generalized-interior of A, denoted by $i_{\mu}(A)$, is the union of μ -open sets included in A. Let μ be a generalized topology on X. A mapping $\kappa : \mu \to P(X)$ is called an enlargement [3] on X if $M \subseteq \kappa M$ ($= \kappa(M)$) whenever $M \in \mu$. Let μ be a generalized topology on X and $\kappa : \mu \to P(X)$ an enlargement of μ . Let us say that a subset $A \subseteq X$ is κ_{μ} -open [3] if and only if $x \in A$ implies the existence of a μ -open set M such that $x \in M$ and $\kappa M \subseteq A$. The collection of all κ_{μ} -open sets is a generalized topology on X [3]. A subset $A \subseteq X$ is said to be κ_{μ} -closed if and only if $X \setminus A$ is κ_{μ} -open [3]. The set c_{κ} (briefly $c_{\kappa}A$) is defined in [3] as the following:

 $c_{\kappa}(A) = \{x \in X : \kappa(M) \cap A \neq \emptyset \text{ for every } \mu\text{-open set M containing x}\}.$

2. Preliminaries

Definition 2.1. [3] Let (X, μ) and (Y, ν) be a generalized topological spaces. A function $f: (X, \mu) \to (Y, \nu)$ is said to be (κ, λ) -continuous if $x \in X$ and $N \in \nu$, $f(x) \in N$ imply the existence of $M \in \mu$ such that $x \in M$ and $f(\kappa M) \subset \lambda N$.

Keywords: Generalized Topology, enlargements.

AMSC(2013): 54A05, 54A10, 54D10

Theorem 2.2. [3] Let (X, μ) and (Y, ν) be a generalized topological spaces and $f: (X, \mu) \to (Y, \nu)$ a (κ, λ) -continuous function. Then the following hold:

- 1. $f(c_{\kappa}(A)) \subset c_{\lambda}(f(A))$ holds for every subset A of (X, μ) .
- 2. for every λ_{ν} -open set B of (Y, ν) , $f^{-1}(B)$ is κ_{μ} -open in (X, μ) .

3. Enlargement-separation axioms

Definition 3.1. Let $\kappa : \mu \to P(X)$ be an enlargement and A a subset of X. Then the κ_{μ} -closure of A is denoted by $c_{\kappa_{\mu}}(A)$ and is defined as the intersection of all κ_{μ} -closed sets containing A.

Remark 3.2. Since The collection of all κ_{μ} -open sets is a generalized topology on X, then for any $A \in X$, $c_{\kappa_{\mu}}(A)$ is a κ_{μ} -closed set

Proposition 3.3. Let $\kappa : \mu \to P(X)$ be an enlargement and A a subset of X. Then $c_{\kappa_{\mu}}(A) = \{ y \in X : V \cap A \neq \emptyset \text{ for every } V \in \kappa_{\mu} \text{ such that } y \in V \}.$

Demostración. Denote $E = \{y \in X : V \cap A \neq \emptyset \text{ for every } V \in \kappa_{\mu} \text{ such that } y \in V\}$. We shall prove that $c_{\kappa_{\mu}}(A) = E$. Let $x \notin E$. Then there exists a κ_{μ} -open set V containing x such that $V \cap A = \emptyset$. This implies that $X \setminus V$ is κ_{μ} -closed and $A \subset X \setminus V$. Hence $c_{\kappa_{\mu}}(A) \subset X \setminus V$. It follows that $x \notin c_{\kappa_{\mu}}(A)$. Thus we have that $c_{\kappa_{\mu}}(A) \subset E$. Conversely, let $x \notin c_{\kappa_{\mu}}(A)$. Then there exists a κ_{μ} -closed set F such that $A \subset F$ and $x \notin F$. Then we have that $x \in X \setminus F$, $x \setminus F \in \kappa_{\mu}$ and $(x \setminus F) \cap A = \emptyset$. This implies that $x \notin E$. Hence $E \subset c_{\kappa_{\mu}}(A)$. Therefore $c_{\kappa_{\mu}}(A) = E$.

Example 3.4. Let $X = \{a, b, c, d\}$ and $\mu = P(X) \setminus \{all \ proper \ subsets \ of \ X \ which \ contains \ d\}.$

The enlargement κ add's the element d to each nonempty μ -open set. Then $\kappa_{\mu} = \{\emptyset, X\}$. Now put $A = \{a\}$. Obviously $c_{\kappa_{\mu}}(A) = X$ and $c_{\kappa}(A) = \{a, d\}$. This example shows that $c_{\kappa} \subsetneq c_{\kappa_{\mu}}$.

Example 3.5. Let $X = \Re$ be the real line and $\mu = \emptyset \cup \{\Re \setminus \{x\}, x \neq 0\}$. The enlargement κ is defined as $\kappa(A) = c_{\mu}(A)$. Then $\kappa_{\mu} = \{\emptyset, X\}$.

Example 3.6. Let $X = \Re$ and $\mu = \{\emptyset, \Re\} \cup \{A_a = (a, +\infty) \text{ for all } a \in \Re\}$. The enlargement map κ is defined as follows:

$$\kappa(A) = \begin{cases} A & \text{if } A = (0, +\infty), \\ \Re & \text{if } A \neq (0, +\infty), \\ \emptyset & \text{if } A = \emptyset. \end{cases}$$

The generalized κ_{μ} topology on X is $\{\emptyset, \Re, (0, +\infty)\}$.

Definition 3.7. An enlargement κ on μ is said to be open, if for every μ -neighborhood U of $x \in X$, there exists a κ_{μ} -open set B such that $x \in B$ and $\kappa(U) \supset B$.

Example 3.8. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Define $\kappa : \mu \to P(X)$ as follows:

$$\kappa(A) = \begin{cases} A & \text{if } b \in A \\ c_{\mu}(A) & \text{if } b \notin A. \end{cases}$$

The enlargement κ on μ is open.

Proposition 3.9. If $\kappa : \mu \to P(X)$ is an open enlargement and A a subset of X, then $c_{\kappa}(A) = c_{\kappa_{\mu}}(A)$ and $c_{\kappa}(c_{\kappa}(A)) = c_{\kappa}(A)$ hold and $c_{\kappa}(A)$ is κ_{μ} -closed in (X, μ) .

Demostración. Suppose that $x \notin c_{\kappa}(A)$. Then there exists a μ -open set U containing x such that $\kappa(U) \cap A = \emptyset$. Since κ is an open enlargement, by Definition 3.7, there exists a κ_{μ} -open set V such that $x \in V \subset \kappa(U)$ and so $V \cap A = \emptyset$. By Proposition 3.3, $x \notin c_{\kappa_{\mu}}(A)$, it follows that, $c_{\kappa_{\mu}}(A) \subset c_{\kappa}(A)$. By Corollary 1.7 of [3], we have $c_{\kappa}(A) \subset c_{\kappa_{\mu}}(A)$. In consequence, we obtain that $c_{\kappa}(c_{\kappa}(A)) = c_{\kappa}(A)$. By Proposition 1.3 of [3], we obtain that $c_{\kappa}(A)$ is a κ_{μ} -closed in (X, μ) .

Definition 3.10. Let μ be a generalized topology on X and $\kappa: \mu \to P(X)$ an enlargement of μ . Then a subset A of a generalized topological space (X, μ) is said to be a generalized κ_{μ} -closed (abbreviated by $g.\kappa_{\mu}$ -closed) set in (X, μ) , if $c_{\kappa}(A) \subset U$ whenever $A \subset U$ and $U \in \kappa_{\mu}$.

Proposition 3.11. Every κ_{μ} -closed set is $g.\kappa_{\mu}$ -closed.

Demostración. Straightforward.

Remark 3.12. A subset A is $g.id_{\mu}$ -closed if and only if A is g_{μ} -closed in the sense of Maragathavalli et. al. [4].

Theorem 3.13. Let κ be an enlargement of a generalized topological space (X, μ) . If A is $g.\kappa_{\mu}$ -closed in (X, μ) , then $c_{\kappa}(\{x\}) \cap A \neq \emptyset$ for every $x \in c_{\kappa}(A)$.

Demostración. Let A be a $g.\kappa_{\mu}$ -closed set of (X,μ) . Suppose that there exists a point $x \in c_{\kappa}(A)$ such that $c_{\kappa}(\{x\}) \cap A = \emptyset$. By Proposition 1.3 of [3], $c_{\kappa}(\{x\})$ is a μ -closed. Put $U = X \setminus c_{\kappa}(\{x\})$. Then, we have that $A \subset U$, $x \in U$ and U is a μ -open set of (X,μ) . Since A is a $g.\kappa_{\mu}$ -closed set, $c_{\kappa}(A) \subset U$. Thus, we have $x \notin c_{\kappa}(A)$. This is a contradiction.

The converse of the above Theorem not necessarily is true, as we can see.

Example 3.14. Let N be the set of all natural numbers and μ the discrete topology on N. Let i_0 be a fixed odd number. Define $\kappa : \mu \to P(N)$ as follows:

$$\kappa(\{n\}) = \begin{cases} \{2i : i \in N\} & \text{if } n \text{ is an even number} \\ \{2i + 1 : i \in N\} & \text{if } n = i_0 \\ \{n\} & \text{if } n \text{ is an odd number} \neq i_0 \end{cases}$$

and $\kappa(A) = N$ for the rest. Clearly, κ is an enlargement on μ . Take $A = \{2, 4\}$. It easy to see that $c_{\kappa}(A) = \{2i : i \in N\}$ and $c_{\kappa}(\{x\}) \cap A \neq \emptyset$ for every $x \in c_{\kappa}(A)$ but A not is a $g.\kappa_{\mu}$ -closed set.

Theorem 3.15. Let μ be a generalized topology on X and $\kappa: \mu \to P(X)$ an enlargement on μ .

- 1. If a subset A is $g.\kappa_{\mu}$ -closed in (X, μ) , then $c_{\kappa}(A)\backslash A$ does not contain any nonempty κ_{μ} -closed set.
- 2. If $\kappa : \mu \to P(X)$ be an open enlargement on (X, μ) , then the converse of (1) is true.

Demostración. (1). Suppose that there exists a κ_{μ} -closed set F such that $F \subset c_{\kappa}(A)\backslash A$. Then, we have that $A \subset X\backslash F$ and $X\backslash F$ is κ_{μ} -open. It follows from assumption that $c_{\kappa}(A) \subset X\backslash F$ and so $F \subset (c_{\kappa}(A)\backslash A) \cap (X\backslash c_{\kappa}(A))$. Therefore, we have that $F = \emptyset$. (2). Let U be a κ_{μ} -open set such that $A \subset U$. Since κ is an open enlargement, it follows from Proposition 3.9 that $c_{\kappa}(A)$ is κ_{μ} -closed in (X,μ) . Thus using Proposition 1.1 of [3], we have that $c_{\kappa_{\mu}}(A) \cap X\backslash U$, say F, is a κ_{μ} -closed set in (X,μ) . Since $X\backslash U \subset X\backslash A$, $F \subset c_{\kappa_{\mu}}(A)\backslash A$. Using the assumption of the converse of (1) above, $F = \emptyset$ and hence $c_{\kappa_{\mu}}(A) \subset U$.

Lemma 3.16. Let A be a subset of a generalized topological space (X, μ) and $\kappa : \mu \to P(X)$ an enlargement on (X, μ) . Then for each $x \in X$, $\{x\}$ is κ_{μ} -closed or $(X \setminus \{x\})$ is $g.\kappa_{\mu}$ -closed set of (X, μ) .

Demostración. Suppose that $\{x\}$ is not κ_{μ} -closed. Then $X\setminus\{x\}$ is not κ_{μ} -open. Let U be any κ_{μ} -open set such that $X\setminus\{x\}\subset U$. Then since U=X, $c_{\kappa}(X\setminus\{x\})\subset U$. Therefore, $X\setminus\{x\}$ is $g.\kappa_{\mu}$ -closed.

Definition 3.17. A generalized topological space (X, μ) is said to be a κ - $T_{1/2}$ space, if every $g.\kappa_{\mu}$ -closed set of (X, μ) is κ_{μ} -closed.

Theorem 3.18. A generalized topological space (X, μ) is κ - $T_{1/2}$ if and only if for each $x \in X$, $\{x\}$ is κ_{μ} -closed or κ_{μ} -open in (X, μ) .

Demostración. Necessity: It is obtained by Lemma 3.16 and Definition 3.17. Sufficiency: Let F be $g.\kappa_{\mu}$ -closed in (X,μ) . We shall prove that $c_{\kappa_{\mu}}(F) = F$. It is sufficient to show that $c_{\kappa_{\mu}}(F) \subset F$. Assume that there exists a point x

such that $x \in c_{\kappa_{\mu}}(F) \backslash F$. Then by assumption, $\{x\}$ is κ_{μ} -closed or κ_{μ} -open. Case(i): $\{x\}$ is κ_{μ} -closed set. For this case, we have a κ_{μ} -closed set $\{x\}$ such that $\{x\} \subset c_{\kappa_{\mu}}(F) \backslash F$. This is a contradiction to Theorem 3.15 (1). Case(ii): $\{x\}$ is κ_{μ} -open set. Using Corollary 1.7 of [3], we have $x \in c_{\kappa_{\mu}}(F)$. Since $\{x\}$ is κ_{μ} -open, it implies that $\{x\} \cap F \neq \emptyset$. This is a contradiction. Thus, we have that, $c_{\kappa}(F) = F$ and so, by Proposition 1.4 of [3] F is κ_{μ} -closed.

Definition 3.19. *Jet* $\kappa : \mu \to P(X)$ *be an enlargement. A generalized topological space* (X, μ) *is said to be:*

- 1. κ - T_0 if for any two distinct points $x, y \in X$ there exists a μ -open set U such that either $x \in U$ and $y \notin \kappa(U)$ or $y \in U$ and $x \notin \kappa(U)$.
- 2. κ - T_1 if for any two distinct points $x, y \in X$ there exist two μ -open sets U and V containing x and y, respectively such that $y \notin \kappa(U)$ and $x \notin \kappa(V)$.
- 3. κ - T_2 if for any two distinct points $x, y \in X$ there exist two μ -open sets U and V containing x and y, respectively such that $\kappa(U) \cap \kappa(V) = \emptyset$.

Theorem 3.20. Let A be a subset of a generalized topological space (X, μ) and $\kappa : \mu \to P(X)$ an open enlargement on (X, μ) . Then (X, μ) is a κ -T₀ space if and only if for each pair $x, y \in X$ with $x \neq y$, $c_{\kappa}(\{x\}) = c_{\kappa}(\{y\})$ holds.

Demostración. Let x and y be any two distinct points of a κ - T_0 space. Then by Definition3.19, there exists a μ -open set U such that $x \in U$ and $y \notin \kappa(U)$. It follows that there exists a μ -open set S such that $x \in S$ and $S \subset \kappa(U)$. Hence, $y \in X \setminus \kappa(U) \subset X \setminus S$. Because $X \setminus S$ is a μ -closed set, we obtain that $c_{\kappa}(\{y\}) \subset X \setminus S$ and so $c_{\kappa}(\{x\}) \neq c_{\kappa}(\{y\})$. Conversely, suppose that $x \neq y$ for any $x, y \in X$. Then we have that, $c_{\kappa}(\{x\}) \neq c_{\kappa}(\{y\})$. Thus, we assume that there exists $z \in c_{\kappa}(\{x\})$ but $z \notin c_{\kappa}(\{y\})$. If $x \in c_{\kappa}(\{y\})$, then we obtain $c_{\kappa}(\{x\}) \subset c_{\kappa}(\{y\})$. This implies that $z \in c_{\kappa}(\{y\})$. This is a contradiction, in consequence, $x \in c_{\kappa}(\{y\})$. Therefore, there exists a μ -open set W such that $x \in W$ and $\kappa(W) \cap \{y\} = \emptyset$. Thus, we have that $x \in W$ and $y \notin \kappa(W)$. Hence, (X, μ) is a κ - T_0 space.

Example 3.21. In the Example 3.14. Take $A = \{2,4\}$. $c_{\kappa}(A) - A = \{2i : i \in N - \{1,2\}\}$ not contain nonempty κ_{μ} -open set and A is not $g.\kappa_{\mu}$ -closed set.

Theorem 3.22. A generalized topological space (X, μ) is κ - T_1 if and only if every singleton set of X is κ_{μ} -closed.

Demostración. The proof follows from the respective definitions. \Box

From Theorems 3.18, 3.22 and Definition 3.19 we obtain the following:

$$\kappa$$
- $T_2 \to \kappa$ - $T_1 \to \kappa$ - $T_{1/2} \to \kappa$ - T_0 .

Definition 3.23. Let (X, μ) be a generalized topological space. Then the sequence $\{x_k\}$ is said to κ -converge to a point $x_0 \in X$, denoted $x_k \not \kappa x_0$, if for every μ -open set U containing x_0 there exists a positive integer n such that $x_k \in \kappa(U)$ for all $k \geq n$.

Theorem 3.24. Let (X, μ) be a κ - T_2 space. If $\{x_k\}$ is said to κ -converge sequence, Then it κ -converge to at most one point.

Demostración. Let $\{x_k\}$ be a sequence in X κ -converging to x and y. Then by definition of κ - T_2 space, there exist $U, V \in \mu$ such that $x \in U, y \in V$ and $\kappa(U) \cap \kappa(V) = \emptyset$. Since $x_k \not \kappa_x$, there exists a positive integer n_1 such that $x_k \in \kappa(U)$ for all $k \geq n_1$. Also $x_k \not \kappa_x y$, therefore there exists a positive integer n_2 such that $x_k \in \kappa(V)$, for all $k \geq n_2$. Let $n_0 = \max(n_1, n_2)$. Then $x_k \in \kappa(U)$ and $x_k \in \kappa(V)$, for all $k \geq n_0$ or $x_k \in \kappa(U) \cap \kappa(V)$, for all $k \geq n_0$. This contradiction proves that $\{x_k\}$ κ -converges to at most one point.

Remark 3.25. Note that the above results generalize the well known separation axioms in general topology in an structure more weaker than a topology.

4. Additional Properties

Proposition 4.1. Let $f:(X,\mu) \to (Y,\nu)$ be a (κ,λ) -continuous injection. If (Y,ν) is λ - T_1 (resp. λ - T_2), then (X,μ) is κ - T_1 (resp. κ - T_2).

Demostración. Suppose that (Y, ν) is λ - T_2 . Let x and x' be distinct points of X. Then there exist two open sets V and W of Y such that $f(x) \in V$, $f(x') \in W$ and $\lambda(V) \cap \lambda(W) = \emptyset$. Since f is (κ, λ) -continuous, for V and W there exist two open sets U, X such that $x \in U, x' \in S$, $f(\kappa(U)) \subset \lambda(V)$ and $f(\kappa(S)) \subset \lambda(W)$. Therefore, we have $\kappa(U) \cap \kappa(S) = \emptyset$ and hence (X, μ) is κ - T_2 . The proof of the case of λ - T_1 is proved similarly.

Definition 4.2. An enlargement $\kappa : \mu \times \nu \to P(X \times Y)$ is said to be associated with κ_1 and κ_2 , if $\kappa(U \times V) = \kappa_1(U) \times \kappa_2(V)$ holds for each $(\neq \emptyset)U \in \mu$, $(\neq \emptyset)V \in \nu$.

Definition 4.3. An enlargement $\kappa : \mu \times \nu \to P(X \times Y)$ is said to be regular with respect to κ_1 and κ_2 , if for each point $(x,y) \in X \times Y$ and each $\mu \times \nu$ -open set W containing (x,y), there exists $U \in \mu$ and $V \in \nu$ such that $x \in U$, $y \in V$ and $\kappa_1(U) \times \kappa_2(V) \subset \kappa(W)$.

Proposition 4.4. Let $\kappa : \mu \times \mu \to P(X \times X)$ be an enlargement associated with κ_1 and κ_1 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 space, then the set $A = \{(x, y) \in X \times X : f(x) = f(y)\}$ is a κ -closed set of $(X \times X, \mu \times \mu)$.

Demostración. We show that $c_{\kappa}(A) \subset A$. Let $(x,y) \in X \times X \setminus A$. Then, there exist $U, V \in \nu$ such that $f(x) \in U, f(y) \in V$ and $\kappa_2(U) \cap \kappa_2(V) = \emptyset$. Moreover, for U and V there exist $W, S \in \mu$ such that $x \in W, y \in S$ and $f(\kappa_1(W)) \subset \kappa_2(U)$ and $f(\kappa_1(S)) \subset \kappa_2(V)$. Therefore, we have $\kappa(W \times S) \cap A = \emptyset$. This shows that $(x,y) \notin c_{\kappa}(A)$.

Corollary 4.5. If $\kappa : \mu \times \mu \to P(X \times X)$ is an enlargement associated with κ_1 and κ_1 and it is regular with respect to κ_1 and κ_1 . A generalized topological space (X, μ) is κ_1 - T_2 if and only if the diagonal set $\Delta = \{(x, x) : x \in X\}$ is κ -closed in $(X \times X, \mu \times \mu)$.

Proposition 4.6. Let $\kappa : \mu \times \nu \to P(X \times Y)$ be an enlargement associated with κ_1 and κ_1 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 space, then the graph of f, $G(f) = \{(x, f(x)) \in X \times Y\}$ is a κ -closed set of $(X \times Y, \mu \times \nu)$.

Demostración. The proof is similar to that of Proposition 4.4. \Box

Definition 4.7. An enlargement κ on μ is said to be regular, if for any μ -open neighborhoods U, V of $x \in X$, there exists a μ -open neighborhood W of x such that $\kappa(U) \cap \kappa(V) \supset \kappa(W)$.

Theorem 4.8. Suppose that κ_1 is a regular enlargement and $\kappa: \mu \times \nu \to P(X \times Y)$ is regular with respect to κ_1 and κ_2 . Let $f: (X, \mu) \to (Y, \nu)$ be a function whose graph G(f) is κ -closed in $(X \times Y, \mu \times \nu)$. If a subset B is κ_2 -compact in (Y, ν) , then $f^{-1}(B)$ is κ_1 -closed in (X, μ) .

Demostración. Suppose that $f^{-1}(B)$ is not κ_1 -closed. Then, there exists a point x such that $x \in c_{\kappa_1}(f^{-1}(B))$ and $x \notin f^{-1}(B)$. Since $(x,b) \notin G(f)$ for each $b \in B$ and $G(f) \supset c_{\kappa}(G(f))$, there exists a $\mu \times \nu$ -open set W such that $(x,b) \in W$ and $\kappa(W) \cap G(f) = \emptyset$. By the regularity of κ , for each $b \in B$ we can take two sets $U(b) \in \mu$ and $V(b) \in \nu$ such that $x \in U(b), b \in V(b)$ and $\kappa_1(U(b)) \times \kappa_2(V(b)) \subset \kappa(W)$. Then we have $f(\kappa_1(U(b))) \cap \kappa_2(V(b)) = \emptyset$. Since $\{V(b) : b \in B\}$ is a ν -open cover of B, there exists a finite number of points $b_1, ..., b_n \in B$ such that $B \subset \bigcup_{i=1}^n \kappa_2(V(b_i))$, by the κ_2 -compactness of B. By the regularity of κ_1 ,

there exists $U \in \mu$ such that $x \in U$, $\kappa_1(U) \subset \bigcap_{i=1}^n \kappa_1(U(b_i))$. Therefore, we have $\kappa_1(U) \cap f^{-1}(B) \subset \bigcup_{i=1}^n \kappa_1(U(b_i)) \cap f^{-1}(\kappa_2(V(b_i))) = \emptyset$. This shows that $x \notin c_{\kappa_1}(f^{-1}(B))$, thus we have a contradiction.

Theorem 4.9. Let $f:(X,\mu) \to (Y,\nu)$ be a function whose graph G(f) is κ -closed in $(X \times Y, \mu \times \nu)$ and suppose that the following conditions hold:

- 1. $\kappa_1: \mu \to P(X)$ is open,
- 2. $\kappa_2: \nu \to P(Y)$ is regular, and

3. $\kappa: \mu \times \nu \to P(X \times Y)$ is an enlargement associated with κ_1 and κ_2 and κ is regular with respect to κ_1 and κ_2 .

If every cover of A by κ_1 -open sets of (X, μ) has a finite subcover, then f(A) is κ_2 -closed in (Y, ν) .

Demostración. The proof is similar to that of Theorem 4.8 \Box

Proposition 4.10. Let $\kappa : \mu \times \nu \to P(X \times Y)$ be an enlargement associated with κ_1 and κ_2 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 , then the graph of f, $G(f) = \{(x, f(x)) \in X \times Y\}$ is a κ -closed set of $(X \times Y, \mu \times \nu)$.

Demostración. The proof is similar to that of Proposition 4.4. \Box

Definition 4.11. A function $f:(X,\mu) \to (Y,\nu)$ is said to be (κ,λ) -closed, if for any κ_{μ} -closed set A of (X,μ) , f(A) is λ_{ν} -closed in (Y,ν) .

Theorem 4.12. Suppose that f is (κ, λ) -continuous and (id, λ) -closed. If for every $g.\kappa_{\mu}$ -closed set A of (X, μ) , then the image f(A) is $g.\lambda_{\nu}$ -closed.

Demostración. Let V be any λ_{ν} -open set of (Y, ν) such that $f(A) \subset V$. By the Theorem 2.2 (2), $f^{-1}(V)$ is κ_{μ} -open. Since A is $g.\kappa_{\mu}$ -closed and $A \subset f^{-1}(V)$, we have $c_{\kappa}(A) \subset f^{-1}(V)$, and hence $f(c_{\kappa}(A)) \subset V$. It follows from Proposition 1.3 of [3] and assumption that $f(c_{\kappa}(A))$ is λ_{ν} -closed. Therefore we have $c_{\lambda}(f(A)) \subset c_{\lambda}(f(c_{\kappa}(A))) = f(c_{\kappa}(A)) \subset V$. This implies f(A) is $g.\lambda_{\nu}$ -closed.

Theorem 4.13. If $f:(X,\mu) \to (Y,\nu)$ is (κ,λ) -continuous and (id,λ) -closed. If f is injective and (Y,ν) is λ - $T_{1/2}$, then (X,μ) is κ - $T_{1/2}$.

Demostración. Let A be a g. κ_{μ} -closed set of (X, μ) . We shows that A is κ_{μ} -closed. By Theorem 4.12 and assumptions it is obtained that f(A) is g. λ_{ν} -closed and hence f(A) is λ_{μ} -closed. Since f is (κ, λ) -continuous, $f^{-1}(f(A))$ is κ_{μ} -closed by using Theorem 2.2(2).

Referencias

- [1] A. Császár, Generalized topology, generalized continuity, *Acta Math. Hungar.*, **96** (2002), 351-357.
- [2] A. Császár, Generalized open sets in generalized topology, *Acta Math. Hungar.*, **106** (2005), 53-66.
- [3] A. Császár, Enlargements and generalized topologies *Acta Math. Hungar.*, **120 (2008)**, 351-354.
- [4] S. Maragathavalli, M. Sheik John and D. Sivaraj, On g-closed sets in generalized topological spaces, J. Adv. Res. Pure Maths. 2(1) (2010), 57-64.