Module: INT102 Assignment 2

1. Assessment

The tasks contribute 10% to the overall assessment of INT102

2. Submission

Please complete the assessment tasks using Microsoft Word and submit it in PDF via Learning. Please including **your name and student ID** on the cover page and name your file as **name_student ID**.

3. Deadline

13-May-2021, Friday, 24:00. Time zone in Beijing, China (GMT+8)

Question 7 is compulsory.

Question 1

1. Given a pattern ATGAA, create a shift table for letters A, G, C, T.

5

2. Apply Horspool's algorithm to search the pattern in text AGCAATGAA, what is the number of comparisons.

Question 2

In the following graph, assume the edges are arranged in the order of

10

$$e_1 = (a, b), e_2 = (a, c), e_3 = (b, d), e_4 = (c, e), e_5 = (d, e), e_6 = (e, b)$$

run Bellman-Ford algorithm to find all shortest paths from vertex a.

Question 3

- 1. Using dynamic programming, fill in the table in computing the length of the Longest Common Subsequence between sequences of GAGT and AGCCCT
- 2. Based on the table, find one of the longest common subsequences of GAGT and AGCCCT.

Question 4

Using a gap penalty of d=-1 and scoring matrix as below

	A	C	G	T
A	1	-3	-2	-3
C	-3	1	-3	-2
G	-2	-3	1	-3
Т	-3	-2	-3	1

1. Optimal global alignment

- a. Using dynamic programming, fill in the table in computing the score of the optimal global alignment of GAGT and AGACCT.
- b. Based on the table, find an optimal global alignment of GAGT and AGACCT.

2. Optimal local alignment

- a. Using dynamic programming, fill in the table in computing the score of the optimal local alignment of GAGT and AGACCT.
- b. Based on the table, find an optimal local alignment of GAGT and AGACCT. 5

Question 5

Apply the branch-and-bound algorithm to solve the travelling salesman problem for the following complete graph.

Question 6

Which of the following statements do not contradict the current state of our knowledge about the complexity classes P, NP, and NPC (NP-complete problems)? Briefly justify your answer.

1.	P = NP = NPC	3
2.	$P = NP$ but $NPC \subseteq NP$	3
3.	$P \neq NP$, $NP = P \cup NPC$ and $P \cap NPC = \{\}$	3
4.	$P \neq NP, P \cap NPC \neq \{\}$	3
5.	$P \neq NP, P \cap NPC = \{\}$	3

Question 7 (COMPULSORY)

Do you complete the assignment independently?

5