### AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists



Multivariate probability distributions – Part 3 of 3 (WMS Ch. 5.5-5.8, 5.11, 5.12)

October 12, 2017
Nicole Mason
Michigan State University
Fall 2017

MICHIGAN STATE

#### **GAME PLAN**

- Review
- Graded in-class exercise

\_\_\_\_\_

#### Multivariate probability distributions (Part 3 of 3)

- 1. Finish coverage of conditional probability distributions
- 2. Independent random variables
- 3. Expected values of (general) functions of RVs
- 4. Covariances and correlation coefficients
- 5. Expected values, variances, covariances, and correlations of linear functions of RVs
- 6. Conditional expectations

#### Graphical representation of univariate vs. bivariate PDFs



**Bivariate** 





Recall that in the univariate case, area under the PDF between a and  $b = P(a \le Y \le b)$ 

$$P(a \le Y \le b)$$

$$= \int_{a}^{b} f(y) dy$$

Bivariate PDFs are 2-dimensional surfaces, so the volume under the surface corresponds to a probability – e.g., above:

$$P(a_1 \le Y_1 \le a_2, b_1 \le Y_2 \le b_2)$$
  
=  $\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1, y_2) dy_1 dy_2$ 

Review MICHIGAN STATI

### Marginal probability distributions

#### Discrete RVs:

$$p_1(y_1) = \sum_{\text{all } y_2} p(y_1, y_2) \text{ and } p_2(y_2) = \sum_{\text{all } y_1} p(y_1, y_2)$$

Table 5.2 Joint probability function for  $Y_1$  and  $Y_2$ , Example 5.5

|                       |      | $y_1$ |      |                                            |
|-----------------------|------|-------|------|--------------------------------------------|
| <i>y</i> <sub>2</sub> | 0    | 1     | 2    | p <sub>2</sub> (y <sub>2</sub> ):<br>Total |
| 0                     | 0    | 3/15  | 3/15 | 6/15                                       |
| 1                     | 2/15 | 6/15  | 0    | 8/15                                       |
| 2                     | 1/15 | 0     | 0    | 1/15                                       |
| Total                 | 3/15 | 9/15  | 3/15 | 1                                          |

**Continuous RVs:** 

 $p_1(y_1)$ :

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
 and  $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$ 

Review

MICHIGAN STATE

### Conditional probability distributions

Recall that 
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

#### Discrete RVs:

$$p(y_1 | y_2) = \frac{p(y_1, y_2)}{p_2(y_2)} \iff P(Y_1 = y_1 | Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)}$$

#### **Continuous RVs:**

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$
 and  $f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}$ 

#### **Conditional CDF:**

 $F(y_1 | y_2)$  means  $P(Y_1 \le y_1 | Y_2 = y_2)$ 

Compute by integrating the conditional PDF over the relevant range.

#### Review

MICHIGAN STATE

## EX) Conditional probability distributions for discrete RVs

Continuing with our previous example about a 2-person committee drawn from Democrats, Republicans, and independents (with bivariate probability distribution below), find the conditional probability distribution of  $Y_1$  given that  $Y_2$ =1.

$$p(y_1 | y_2) = \frac{p(y_1, y_2)}{p_2(y_2)}$$

Answer

$$P(Y_1 = 0 | Y_2 = I) = \frac{p(0, I)}{p_2(I)} = \frac{2/15}{8/15} = \frac{I}{4}$$

$$P(Y_1 = I | Y_2 = I) = \frac{p(I, I)}{p_2(I)} = \frac{6/15}{8/15} = \frac{3}{4}$$

$$P(Y_1 = 2 | Y_2 = I) = \frac{p(2, I)}{p_2(I)} = \frac{0/15}{8/15} = 0$$

Table 5.2 Joint probability function for  $Y_1$  and  $Y_2$ , Example 5.5

|       | <i>y</i> 1  |                         |                                                                                                    | $p_2(y_2)$ :                                          |
|-------|-------------|-------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $y_2$ | 0           | 1                       | 2                                                                                                  | Total                                                 |
| 0     | 0           | 3/15                    | 3/15                                                                                               | 6/15                                                  |
| 1     | 2/15        | 6/15                    | 0                                                                                                  | 8/15                                                  |
| 2     | 1/15        | 0                       | 0                                                                                                  | 1/15                                                  |
| Total | 3/15        | 9/15                    | 3/15                                                                                               | 1                                                     |
|       | 0<br>1<br>2 | 0 0<br>1 2/15<br>2 1/15 | $\begin{array}{c cccc} y_2 & 0 & 1 \\ 0 & 0 & 3/15 \\ 1 & 2/15 & 6/15 \\ 2 & 1/15 & 0 \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Graded in-class exercise

### EX) Conditional probability distributions for continuous RVs

Find the conditional probability,  $P(Y_1 \le 0.5 \mid Y_2 = 1.5)$ , for the continuous bivariate PDF:

$$f(y_1, y_2) = \begin{cases} 0.5, \ 0 \le y_1 \le y_2 \le 2\\ 0, \text{ elsewhere} \end{cases} \qquad f(y_1 | y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

**Conditional PDF:** 

$$f(y_1 | y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

### Independent random variables

What is  $P(A \cap B)$  if events A and B are **independent**?

$$P(A \cap B) = P(A)P(B)$$

Can use similar approach to see if two RVs,  $Y_1$  and  $Y_2$ , are independent:

**CDF**:  $F(y_1, y_2) = F_1(y_1)F_2(y_2)$ 

**Discrete probability distribution :**  $p(y_1, y_2) = p_1(y_1)p_2(y_2)$ 

Continuous probability density function:  $f(y_1, y_2) = f_1(y_1) f_2(y_2)$ 

8

MICHIGAN STATE

### EX) Checking for independence – discrete RVs

Continuing with our previous example about a 2-person committee drawn from Democrats, Republicans, and independents (with bivariate probability distribution below), is  $Y_1$  independent of  $Y_2$ ? Can check any point, but let's try (0,0).

Table 5.2 Joint probability function for  $Y_1$  and  $Y_2$ , Example 5.5

|              |                    | $y_1$ |      |      | $p_2(y_2)$ : |
|--------------|--------------------|-------|------|------|--------------|
|              | $y_2$              | 0     | 1    | 2    | Total        |
|              | 0                  | 0     | 3/15 | 3/15 | 6/15         |
|              | 1                  | 2/15  | 6/15 | 0    | 8/15         |
|              | 2                  | 1/15  | 0    | 0    | 1/15         |
| $p_I(y_I)$ : | Total              | 3/15  | 9/15 | 3/15 | 1            |
|              | D Cencace Learning |       |      |      |              |

**Discrete probability distribution if independent :**  $p(y_1, y_2) = p_1(y_1)p_2(y_2)$ 

### EX) Checking for independence – continuous RVs

Suppose  $Y_1$  and  $Y_2$  have the continuous bivariate PDF below. Are these two RVs independent?

$$f(y_1, y_2) = \begin{cases} 6y_1 y_2^2, & 0 \le y_1 \le 1, \\ 0, & \text{elsewhere} \end{cases}$$

Continuous probability density function if independent:  $f(y_1, y_2) = f_1(y_1) f_2(y_2)$ 

10

### Another way to check for independence

 $Y_1$  and  $Y_2$  are independent RVs if:

$$f(y_1, y_2) = g(y_1)h(y_2)$$

where  $g(y_I)$  is a nonnegative function of  $y_I$  alone and  $h(y_2)$  is a nonnegative function of  $y_2$  alone \*\*\*AND only if

$$f(y_1, y_2) > 0$$
 for  $a \le y_1 \le b$  and  $c \le y_2 \le d$  for constants  $a, b, c, d ***$ .

EX) Suppose  $Y_1$  and  $Y_2$  have the continuous bivariate PDF below. Are these two RVs independent?

$$f(y_1, y_2) = \begin{cases} 2y_1, & 0 \le y_1 \le 1, \\ 0, & \text{elsewhere} \end{cases}$$

### Another example

$$f(y_1, y_2) = \begin{cases} 8y_1 y_2, & 0 \le y_1 \le 1, 0 \le y_2 \le y_1 \\ 0, & \text{elsewhere} \end{cases}$$

We cannot use the alternative method here because the range over which  $y_2$  has positive probability is a function of  $y_1$ .

If we found the marginal distributions for  $y_1$  and  $y_2$ , we would see that:

$$f_I(y_I) = 4y_I^3$$

$$f_2(y_2) = 4y_2(1-y_2^2)$$

So  $f(y_1, y_2) \neq f_1(y_1) f_2(y_2)$ , thus  $Y_1$  and  $Y_2$  not independent

### The expected value of a function of RVs

Recall that in the *univariate* case,

**Discrete RVs:** 
$$E[g(Y)] = \sum_{i} g(y_i)p(y_i)$$

Continuous RVs: 
$$E[g(Y)] = \int_{-\infty}^{\infty} g(y) f(y) dy$$

For the *bivariate* case,

Discrete RVs:

Continuous RVs:

$$E[g(Y_1, Y_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) f(y_1, y_2) dy_1 dy_2$$

### Expected value of a function of RVs – example

Let  $Y_1$  and  $Y_2$  have joint density given by

$$f(y_1, y_2) = \begin{cases} 2y_1, & 0 \le y_1 \le 1, 0 \le y_2 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find  $E(Y_1Y_2)$ .

$$E[g(Y_1, Y_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) f(y_1, y_2) dy_1 dy_2$$

14

MICHIGAN STATI

### Expected value of a function of RVs - Rules

1. 
$$E[cg(Y_1, Y_2)] = cE[g(Y_1, Y_2)]$$
 for any constant  $c$ 

2. 
$$E[g_I(Y_1, Y_2) + g_2(Y_1, Y_2) + ... + g_k(Y_1, Y_2)]$$
  
=  $E[g_I(Y_1, Y_2)] + E[g_2(Y_1, Y_2)] + ... + E[g_k(Y_1, Y_2)]$ 

3. 
$$E(c_1Y_1 + c_2Y_2 + ... + c_kY_k) = c_1E(Y_1) + c_2E(Y_2) + ... + c_kE(Y_k)$$

4. If 
$$Y_1$$
 and  $Y_2$  are independent then
$$E[g(Y_1)h(Y_2)] = E[g(Y_1)]E[h(Y_2)]$$

### Expected value of a function of RVs - Rules - examples

a. What is  $E(Y_1 - Y_2)$  if  $E(Y_1) = 0.75$  and  $E(Y_2) = 0.375$ 

b. What is  $E(3Y_1 - 7Y_2)$ ?

c. What is  $E(Y_1Y_2)$  if  $Y_1$  and  $Y_2$  are independent?

16

MICHIGAN STATE

## Covariance & correlation coefficient of 2 RVs

Recall the formula for the variance of an RV:

$$V(Y) = E\Big[(Y - \mu)^2\Big] = E\Big[(Y - \mu)(Y - \mu)\Big] = E(Y^2) - \Big[E(Y)\Big]^2 = E(Y^2) - \mu^2$$

The formula for the covariance of  $Y_1$  and  $Y_2$  is similar:

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)] = E(Y_1 Y_2) - E(Y_1)E(Y_2) = E(Y_1 Y_2) - \mu_1 \mu_2$$
  
where  $\mu_1 = E(Y_1)$  and  $\mu_2 = E(Y_2)$ .

It is difficult to interpret the magnitude of the covariance, but we can standardize it to get the correlation coefficient,  $\rho$ . Note that  $-1 \le \rho \le 1$ .

$$Corr(Y_1, Y_2) \equiv \rho = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2}$$

where  $\sigma_1$  and  $\sigma_2$  are the standard deviations of  $Y_1$  and  $Y_2$ .

What is the relationship between the signs of Covand Corr?

#### Covariance & correlation coefficient of 2 RVs

- What does it mean to have a positive covariance (or correlation)? Negative? Zero?
- Correlation = +1? -1?

  Perfect Positive Correlation

  Perfect Negative Correlation

  Perfect Neg

MICHIGAN STATE

### Covariance, correlation, & independence

What is  $E(Y_1Y_2)$  if  $Y_1$  and  $Y_2$  are **independent**?

$$E(Y_1Y_2) = E(Y_1)E(Y_2)$$
 if  $Y_1$  and  $Y_2$  are **independent**

What is  $Cov(Y_1Y_2)$  if  $Y_1$  and  $Y_2$  are **independent**?

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2) = E(Y_1)E(Y_2) - E(Y_1)E(Y_2) = 0$$
  
if  $Y_1$  and  $Y_2$  are **independent**

What is  $Corr(Y_1, Y_2)$  if  $Y_1$  and  $Y_2$  are **independent**?

$$Corr(Y_1, Y_2) = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2} = 0$$
 if  $Y_1$  and  $Y_2$  are **independent**

\*\*\*Note: independence implies zero covariance (correlation)
BUT zero covariance (correlation) does NOT imply independence.
Why?

Because <u>covariance</u> & <u>correlation</u> are about <u>linear</u> dependence and it is possible for two variables to have a <u>non-linear relationship</u> but no linear relationship



MICHIGAN STATE

### Calculating the covariance – example #1

$$f(y_1, y_2) = \begin{cases} 2y_1, & 0 \le y_1 \le 1, 0 \le y_2 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

For this joint PDF,  $E(Y_1Y_2)=1/3$ ,  $E(Y_1)=2/3$ , and  $E(Y_2)=1/2$ . Find  $Cov(Y_1, Y_2)$ . Does the answer surprise you? Why or why not?

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2)$$

### Calculating the covariance – example #2

Show that  $Y_1$  and  $Y_2$  are dependent but have zero covariance.

|                       |      | <i>y</i> <sub>1</sub> |      |
|-----------------------|------|-----------------------|------|
| <i>y</i> <sub>2</sub> | -1   | 0                     | +1   |
| -1                    | 1/16 | 3/16                  | 1/16 |
| 0                     | 3/16 | 0                     | 3/16 |
| +1                    | 1/16 | 3/16                  | 1/16 |

$$E[g(Y_1, Y_2)] = \sum_{\text{all } y_2} \sum_{\text{all } y_1} g(y_1, y_2) p(y_1, y_2) \frac{1}{Cov(Y_1, Y_2) = E(Y_1 Y_2) - E(Y_1) E(Y_2)}$$

Rules for the expected value, variance, and covariance of linear functions of RVs:

The bivariate case (see WMS pp. 271-273 for proof & multivariate case)

Random variables  $Y_1$  and  $Y_2$ , and constants  $a_1, a_2, b_1$  and  $b_2$ :

1. 
$$E(a_1Y_1 + b_1 + a_2Y_2 + b_2) = a_1E(Y_1) + b_1 + a_2E(Y_2) + b_2$$
  
EX)  $E(3Y_1 - 2 - 8Y_2 + 5)$ 

2. 
$$V(a_1Y_1 + b_1 + a_2Y_2 + b_2) = a_1^2V(Y_1) + a_2^2V(Y_2) + 2a_1a_2Cov(Y_1, Y_2)$$

EX) 
$$V(Y_1 + Y_2)$$

EX) 
$$V(Y_1 - Y_2)$$

EX) 
$$V(3Y_1 - 2 - 8Y_2 + 5)$$

3. 
$$Cov(a_1Y_1 + b_1, a_2Y_2 + b_2) = a_1a_2Cov(Y_1, Y_2)$$

EX) 
$$Cov(Y_1, -Y_2)$$

EX) 
$$Cov(3Y_1 - 2, -8Y_2 + 5)$$

### Conditional expectations

#### Motivation

- Covariance and correlation measure the <u>linear</u> relationship (linear dependence) between two RVs and treat them symmetrically
- In applied economics, we often want to explain one RV (Y) in terms of another RV (X)
- Call Y the "explained" variable, X the "explanatory" variable
- Recall conditional probability distributions and PDFs: p(y|x) and f(y|x)
- We are often interested in the <u>conditional expectation</u>
  (a.k.a. the <u>conditional mean</u>):
   E(Y|X=x) or, for shorthand, E(Y|X) or sometimes E(Y|x)

24

MICHIGAN STATE

### Conditional expectations & variances - formulas

#### Conditional expectation of Y given X

#### Discrete RVs:

$$E(Y | X = x) = E(Y | X) = \sum_{\text{all } y} y \ p(y | x)$$

#### **Continuous RVs:**

$$E(Y \mid X = x) = E(Y \mid X) = \int_{-\infty}^{\infty} y f(y \mid x) dy$$

How would you use the E[g(Y)|X] formula to find the conditional variance, V(Y|X)?

$$V(Y|X)$$

$$= E(Y^2|X) - \left[E(Y|X)\right]^2$$

#### Conditional expectation of g(Y) given X

#### Discrete RVs:

$$E[g(Y) | X = x] = E[g(Y) | X] = \sum_{\text{all } y} g(y) p(y | x)$$

#### Continuous RVs:

$$E[g(Y) | X = x] = E[g(Y) | X] = \int_{-\infty}^{\infty} g(y) f(y | x) dy$$

#### Conditional expectations & variances - rules Gist: treat the variable you are conditioning on as a constant

1. 
$$E[g(Y)|Y] = g(Y)$$
 for any function  $g(.)$ 

 $EX) E(Y^2 | Y)$ 

$$2. E[g(X)Y | X] = g(X)E(Y | X)$$

EX) 
$$E(2X^2Y|X)$$

3. If *X* and *Y* are independent,

then 
$$E(Y|X) = E(Y)$$
 and  $V(Y|X) = V(Y)$ 

4. If 
$$E(Y|X) = E(Y)$$
, then  $Cov(X,Y) = 0$ 

5. 
$$E[E(Y|X)] = E(Y)$$
 "the law of iterated expectations"

EX) If  $E(WAGE \mid EDUC) = 4 + 0.6 \, EDUC$  and E(EDUC) = 11.5, find E(WAGE).

MICHIGAN STATE

#### Homework:

- WMS Ch. 5 (part 3 of 3)
  - Expected value of a function of RVs & special theorems: 5.72, 5.74
  - Covariance: 5.89, 5.91, 5.92 (Hint:  $E(Y_1)=0.25$  and  $E(Y_2)=0.5$ )
  - Expected values, variances, covariances, and correlations of linear functions of RVs: 5.102, 5.103 (consult Theorem 5.12), 5.110
  - Conditional expectations: none but review & internalize the rules (and include them on your cheat sheet!)

#### Next class:

 Finish Ch. 5 (if need be) and answer any questions you have about the material for the midterm (Ch. 1-5 in WMS and integration)

### In-class exercise #1: calculating the covariance

$$f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

 $E(Y_1)=0.75$ ,  $E(Y_2)=0.375$ . Find  $Cov(Y_1, Y_2)$ .

$$E[g(Y_1, Y_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) f(y_1, y_2) dy_1 dy_2$$

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2)$$

28

MICHIGAN STATE

# In-class exercise #2: variance of a linear function of <u>3</u> random variables

Use Theorem 5.12 (copied on the next slide) and find the formula for:

$$V(a_1Y_1 + b_1 + a_2Y_2 + b_2 + a_3Y_3 + b_3)$$

Rules for the expected value, variance, and covariance of <u>linear</u> functions of RVs:

The general multivariate case Proof on pp. 272-3

Let  $Y_1, Y_2, \ldots, Y_n$  and  $X_1, X_2, \ldots, X_m$  be random variables with  $E(Y_i) = \mu_i$  and  $E(X_i) = \xi_i$ . Define

$$U_1 = \sum_{i=1}^{n} a_i Y_i$$
 and  $U_2 = \sum_{j=1}^{m} b_j X_j$ 

for constants  $a_1, a_2, \ldots, a_n$  and  $b_1, b_2, \ldots, b_m$ . Then the following hold:

- **a**  $E(U_1) = \sum_{i=1}^{n} a_i \mu_i$ .
- **b**  $V(U_1) = \sum_{i=1}^n a_i^2 V(Y_i) + 2 \sum_{1 \le i < j \le n} a_i a_j \text{Cov}(Y_i, Y_j)$ , where the double sum is over all pairs (i, j) with i < j.
- **c**  $Cov(U_1, U_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(Y_i, X_j).$