Testowanie hipotez statystycznych

Iga Świtalska, Karolina Rakus

Definicje

- 1. **Hipoteza zerowa** hipoteza, której prawdziwość poddajemy w wątpliwość, oznaczana ją jako H_0 . Hipoteza zerowa jest hipotezą prostą, co oznacza, że wyznacza rozkład prawdopodobieństwa, z którego pochodzi próba.
- 2. **Hipoteza alternatywna** hipoteza przeciwko, której sprawdzamy hipotezę zerową. W przeciwieństwie do hipotezy zerowej jest ona hipotezą złożóną. Dla $H_0: \theta = \theta_0$, hipoteza alternatywna może przyjąć postć: $H_1: \theta \neq \theta_0, H_1: \theta > \theta_0$ lub $H_1: \theta < \theta_0$.
- 3. Statytyka testowa -
- 4. **Poziom istotności** przyjęte z góry dopuszczalne ryzyko popełnienia błędu pierwszego rodzaju (uznania prawdziwej hipotezy zerowej za fałszywą), pozwalające określić, powyżej jakich odchyleń zaobserwowanych w próbie test rozstrzygnie na korzyść hipotezy alternatywnej. Poziom istotności oznaczamy jako α .
- 5. **P-wartość** najmniejszy poziom istotności, przy którym zaobserwowana wartość statystyki prowadzi do odrzucenia hipotezy zerowej.
- 6. **Zbiór krytyczny** zbiór wartości statystki testowej prowadzący do odrzucenia hipotezy zerowej H_0 na korzyść hipotezy alternatywnej H_1 .
- Błąd pierwszego rodzaju odrzucenie hipotezy zerowej, gdy ta jest prawdziwa. Prawdopodobieństwo błędu pierwszego rodzaju nazywamy poziomem istotności.
- 8. Błąd drugiego rodzaju przyjęcie hipotezy zerowej, gdy ta jest falszywa (odrucenie hipotezy zerowej, gdy ta jest prawdziwa). Błąd drugiego rodzaju rozpatrujemy dla zadanej alternatywnej wartości parametru θ . Prawdopodobieństwo błędu drugiego rodzaju jest równe 1 moc testu.
- 9. Moc testu prawdopodobieństwo odrzucenia fałszywej hipotezy zerowej i przyjęcia prawdziwej hipotezy alternatywnej dla zadanej alternatywnej wartości parametru θ .

Przypadek 1

Mając próbę z populacji o rozkładzie normalnym $N(\mu, \sigma = 0.2)$, zweryfikujmy $H_0: \mu = 1.5$, na poziomie istotności $\alpha = 0.05$ przeciwko następującym hipotezom alternatywnym:

- (a) $\mu \neq 1.5$
- (b) $\mu > 1.5$
- (c) $\mu < 1.5$

Statystyka Z

Na początku wyznaczymy statystykę testową. Dla testów wartości średniej w dziedzinie rozkładów normalych o znanej wariancji ma ona postać:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}},$$

gdzie \bar{X} - średnia z danych, n - ilość danych. Statystyka Z, pod warunkiem hipotezy zerowej, ma rozkład N(0,1).

P-wartości

Następnie wyznaczymy p-wartości dla każdej z trzech hipotez alternatywnych, skorzystamy ze wzorów:

- (a) $H_1: \mu \neq 1.5$ p-warotść = $2 P_{H_0}(Z \ge |z|) = 2 (1 - P_{H_0}(Z < |z|)) = 2 (1 - F_Z(|z|))$
- (b) $H_1: \mu > 1.5$ p-warotść = $P_{H_0}(Z \ge z) = 1 - P_{H_0}(Z < z) = 1 - F_Z(z)$)
- (c) $H_1: \mu < 1.5$ p-warotść = $P_{H_0}(Z \le z) = F_Z(z) = F_Z(z)$,

gdzie Z - zmienna z rozkładu N(0,1), z - zaobserwowana dla danych statystyka testowa. W naszym przypaku z=-7.0415. Do policzenia p-wartości skorzystamy więc z wartość dystrybuanty standardowego rozkładu normalnego w punkcie -7.0415. Otrzymaliśmy następujące p-wartości:

$$\begin{array}{c|ccccc} & \mu \neq 1.5 & \mu > 1.5 & \mu < 1.5 \\ \text{p-wartość} & 1.9025e - 12 & 1 & 9.5124e - 13 \end{array}$$

Tabela 1: p-wartości

Wnioski Dla pierwszej i trzeciej hipotezy alternatywnej p-wartość jest bliska 0, odrzucamy więc hipotezę zerową na korzyść hipotezy alternatywnej. Dla drugiej hipotezy alternatywnej p-wartość jest równa 1, oznacza to, że dla każdego poziomu istotności nie będziemy odrzucać hipotezy zerowej.

Zbiory krytyczne

Do wyznaczenia zbiorów krytycznych skorzystamy z poniższych wzorów:

(a)
$$H_1: \mu \neq 1.5$$

 $C = \{z: z < -Z_{1-\frac{\alpha}{2}} \lor z > Z_{1-\frac{\alpha}{2}} \}$

(b)
$$H_1: \mu > 1.5$$

 $C = \{z: z > Z_{1-\alpha}\}$

(c)
$$H_1: \mu < 1.5$$

 $C = \{z: z < -Z_{1-\alpha}\},\$

gdzie $Z_{1-\frac{\alpha}{2}}$ to kwantyl rzędu $1-\frac{\alpha}{2}$ dla rozkładu N(0,1), a $Z_{1-\alpha}$ - kwantyl rzędu $1-\alpha.$

Zaznaczymy obszary krytyczne na wykresie gęstości standardowego rozkładu normalnego i zbadamy jak będą się one zmieniać dla różnych poziomów istotności.

Rysunek 1: Zbióry krytyczne dla $\alpha=0.05$

Rysunek 2: Zbiory krytyczne dla $\alpha=0.01$

Rysunek 3: Zbiory krytyczne dla $\alpha=0.1$

Wnioski Im większy poziom istotności, tym większe zbiory krytyczne, czyli większe prawdopodobieństwo odrzucenia hipotezy zerowej, gdy ta jest prawdziwa . . .

Błąd pierwszego rodzaju

Aby obliczyć prawdopodobieństwo błędu pierwszego rodzaju generujemy próbę o rozkładzie normalnym, zgodnym z hipotezą zerową, o długości n=1000. Wyliczamy wartość statystyki testowej Z i sprawdzamy czy znajduje się ona w zbiorze krytycznym. Powtarzamy powyższe kroki N=1000 razy.

Symulacyjnie wyznaczonym prawdopodobieństwem błędu pierwszego rodzaju będzie stosunek ilości powtórzeń, dla których statystyka wpadła do obszaru krytycznego do ilości wszystkich powtórzeń N.

Tabela 2: Średnie prawdopodobieństwa błędu pierwszego rodzaju dla $\alpha=0.05$

Rysunek 4: Rozkład prawdopodobieństwa błędu pierwszego rodzaju dla $\alpha=0.05$

Wnioski Błąd pierwszego rodzaju jest zbliżony do poziomu istotności $\alpha=0.05$ niezależnie od przyjętej hipotezy alternatywnej.

Moc testu i błąd drugiego rodzaju

Aby obliczyć prawdopodobieństwo błedu drugiego rodzaju generujemy próbę o rozkładzie normalnym, zgodnym z hipotezą alternatywną, o długości n=1000. Wyliczamy wartość statystyki testowej Z i sprawdzamy czy znajduje się ona poza zbiorem krytycznym. Powtarzamy powyższe kroki N=1000 razy. Symulacyjnie wyznaczoną mocą testu będzie stosunek ilości powtórzeń, dla których statystyka nie wpadła do obszaru krytycznego do ilości wszystkich powtórzeń N. Moc testu to 1 – prawdopodobieństwo błedu drugiego rodzaju. Będziemy rozważać moc testu i błąd drugiego rodzaju dla poziomu istotności $\alpha=0.05$, ale dla różnych odległości między alterantywną wartością parametru μ oraz wartością $\mu_0=1.5$.

Dla $H_1 : \mu \neq 1.5$:

μ	1.47	1.48	1.49	1.51	1.52	1.53
moc testu	0.9972	0.8854	0.3514	0.3508	0.8861	0.9976
błąd drugiego rodzaju	0.0028	0.1146	0.6486	0.6492	0.1138	0.0024

Dla $H_1: \mu > 1.5$:

μ	1.51	1.52	1.53
moc testu	0.4738	0.9353	0.9989
błąd drugiego rodzaju	0.5262	0.0647	0.0011

Dla $H_1: \mu < 1.5$:

μ	1.47	1.48	1.49
moc testu	0.9990	0.9355	0.4744
błąd drugiego rodzaju	0.0010	0.0645	0.5256

Wnioski Moc testu zwiększa się wraz ze wzrostem odległości odległości między alterantywną wartością parametru μ oraz wartością $\mu_0=1.5$.