Chin. Ann. Math. 31B(2), 2010, 191–200 DOI: 10.1007/s11401-008-0445-7

Chinese Annals of Mathematics, Series B

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2010

The Tracial Rokhlin Property for Automorphisms on Non-simple C^* -Algebras**

Jiajie HUA*

Abstract Let A be a unital AF-algebra (simple or non-simple) and let α be an automorphism of A. Suppose that α has certain Rokhlin property and A is α -simple. Suppose also that there is an integer $J \geq 1$ such that $\alpha_{*0}^J = \mathrm{id}_{K_0(A)}$. The author proves that $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Keywords Rokhlin property, Tracial rank zero, AF-algebra 2000 MR Subject Classification 46L35, 46L55

1 Introduction

The Rokhlin property in ergodic theory was adopted to the context of von Neumann algebras by Connes [1]. It was adopted by Herman and Oeneanu [2] for UHF-algebras. Rørdam [13] and Kishimoto [6] introduced the Rokhlin property to a much more general context of C^* -algebras, then Osaka and Phillips studied integer group actions which satisfy certain type of Rokhlin property on some simple C^* -algebras (see [12]). More recently, Lin studied the Rokhlin property for automorphisms on simple C^* -algebras (see [10]).

Phillips proposed how to introduce appropriate Rokhlin property for automorphisms on non-simple C^* -algebras. In this paper, we attempt to introduce certain Rokhlin property for automorphisms on non-simple C^* -algebras; when C^* -algebra is simple, this Rokhlin property is weaker than the Rokhlin property in [10, 12]. If an integer group action of a C^* -algebra has this Rokhlin property, we can conclude that its crossed product is in the C^* -algebra class of tracial rank zero. In particular, these algebras all belong to the class known currently to be classifiable by K-theoretic invariants in the sense of the Elliott classification program. We hope that this case will lead us to more interesting in the Rokhlin property for automorphisms on non-simple C^* -algebras.

The organization of this paper is as follows. In Section 1, we briefly recall the notion of C^* -algebras, then we introduce certain Rokhlin property and discuss some property of crossed product $A \rtimes_{\alpha} \mathbb{Z}$ when an automorphism α of a C^* -algebra A has the Rokhlin property. In Section 2, we show that if A is a unital AF-algebra, suppose that $\alpha \in \operatorname{Aut}(A)$ has the tracial cyclic Rokhlin property and A is α -simple, suppose also that there is an integer $J \geq 1$ such that $\alpha_{*0}^J = \operatorname{id}_{K_0(A)}$. Then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Manuscript received November 10, 2008. Revised April 18, 2009. Published online February 2, 2010.

^{*}Department of Mathematics, East China Normal University, Shanghai 200241, China. E-mail: huajiajie2006@sina.com

^{**}Project supported by the National Natural Science Foundation of China (Nos. 10771069, 10671068) and the Shanghai Priority Academic Discipline (No. B407).

2 The Tracial Rokhlin Property

We will use the following convention:

- (1) Let A be a C^* -algebra, $a \in A$ be a positive element and $p \in A$ be a projection. We write $[p] \leq [a]$ if there is a projection $q \in \overline{aAa}$ and a partial isometry $v \in A$ such that $v^*v = p$ and $vv^* = q$.
- (2) Let A be a C^* -algebra. We denote by $\operatorname{Aut}(A)$ the automorphism group of A. If A is unital and $u \in A$ is a unitary, we denote by $\operatorname{ad} u$ the inner automorphism defined by $\operatorname{ad} u(a) = u^* au$ for all $a \in A$.
- (3) Let $x \in A$, $\varepsilon > 0$ and $\mathcal{F} \subset A$. We write $x \in_{\varepsilon} \mathcal{F}$, if $\operatorname{dist}(x, \mathcal{F}) < \varepsilon$, or there is a $y \in \mathcal{F}$ such that $||x y|| < \varepsilon$.
- (4) Let A be a C^* -algebra and $\alpha \in \operatorname{Aut}(A)$. We say that A is α -simple if A does not have any non-trivial α -invariant closed two-sided ideals.
- (5) A unital C^* -algebra is said to have real rank zero, written RR(A) = 0, if the set of invertible self-adjoint elements is dense in self-adjoint elements of A. Note that every unital AF-algebra has real rank zero.
- (6) A unital C^* -algebra A has the (SP)-property if every non-zero hereditary C^* -subalgebra of A has a non-zero projection. Note that every C^* -algebra A with real rank zero has the (SP)-property.
- (7) Let T(A) be the tracial state space of a unital C^* -algebra A. It is a compact convex set.
- (8) We say that the order on projection over a unital C^* -algebra A is determined by traces, if for any two projections $p, q \in A, \tau(p) < \tau(q)$ for all $\tau \in T(A)$ implies that p is equivalent to a projection $p' \leq q$.
- **Definition 2.1** We denote by $\mathcal{I}^{(0)}$ the class of all finite dimensional C^* -algebras, and denote by $\mathcal{I}^{(k)}$ the class of all unital C^* -algebras which are unital hereditary C^* -subalgebras of C^* -algebras of the form $C(X) \otimes F$, where X is a k-dimensional finite CW complex and $F \in \mathcal{I}^{(0)}$.

We recall the definition of tracial topological rank of C^* -algebras.

Definition 2.2 (cf. [8]) Let A be a unital simple C^* -algebra. Then A is said to have tracial (topological) rank no more than k if for any $\varepsilon > 0$, any finite subset $\mathcal{F} \subset A$, and any non-zero positive element $a \in A$, there exist a nonzero projection $p \in A$ and a C^* -subalgebra $B \in \mathcal{I}^{(k)}$ with $1_B = p$ such that

- (1) $||px xp|| < \varepsilon \text{ for all } x \in \mathcal{F},$
- (2) $pxp \in_{\varepsilon} B \text{ for all } x \in \mathcal{F},$
- $(3) [1-p] \leq [a].$

If A has tracial rank no more than k, we will write $\operatorname{TR}(A) \leq k$. If furthermore, $\operatorname{TR}(A) \nleq k-1$, then we say $\operatorname{TR}(A) = k$.

Definition 2.3 Let A be a unital C^* -algebra, $\alpha \in \operatorname{Aut}(A)$, $a \in A$ be a positive element, and $p \in A$ be a projection. We say $[p] \leq_{\alpha} [a]$ if there exist the mutually orthogonal projections p_i , the mutually orthogonal positive elements a_i and $s_i \in \mathbb{Z}$ for $i = 1, 2, \dots, n$ such that $p = \sum_{i=1}^{n} p_i, \{a_i\}_{i=1}^n$ belong to the hereditary C^* -subalgebra generated by a_i and $[\alpha^{s_i}(p_i)] \leq [a_i]$, $i = \sum_{i=1}^{n} p_i$

 $1, \cdots, n$.

By this definition, we can compare nonzero positive elements with full positive elements by the action of α .

Example 2.1 Let $A = A_0 \oplus A_0$, where A_0 is an infinite dimensional unital simple C^* -algebra with real rank zero, and let $\alpha \in \text{Aut}(A)$ such that $\alpha(a_0, b_0) = (b_0, a_0)$, where $a_0, b_0 \in A_0$. Then for any non-zero projection $q \in A$, there exists a projection $p = (p_1, p_2) \in A$, $p_1 \neq 0$, $p_2 \neq 0$ such that $[p] \leq_{\alpha} [q]$.

Definition 2.4 Let A be a unital C^* -algebra and $\alpha \in \operatorname{Aut}(A)$. We say that α has the tracial Rokhlin property if for every $\varepsilon > 0$, every $n \in \mathbb{N}$, every nonzero positive element $a \in A$, every finite set $\mathcal{F} \subset A$, $\mathcal{F} = \{p_1, \dots, p_m, a_1, \dots, a_s\}$, where $\{p_i\}, i = 1, \dots, m$ are the mutually orthogonal projections, there are the mutually orthogonal projections $e_1, e_2, \dots, e_n \in A$ such that

- (1) $\|\alpha(e_i) e_{i+1}\| < \varepsilon \text{ for } 1 \le j \le n-1,$
- (2) $||e_j b b e_j|| < \varepsilon \text{ for } 1 \le j \le n \text{ and all } b \in \mathcal{F},$
- (3) $||e_1p_je_1|| \ge 1 \varepsilon \text{ for } 1 \le j \le m$,
- (4) with $e = \sum_{j=1}^{n} e_j$, $[1-e] \leq_{\alpha} [a]$.

When A is a unital simple C^* -algebra, the tracial Rokhlin property of the above definition is weaker than the Rokhlin property as in [10, 12], we weak the condition (4) to only require that the positive element 1-e can be compared with the given positive element a by the action of α .

We define a slightly stronger version of the tracial Rokhlin property.

Definition 2.5 Let A be a unital C^* -algebra and let $\alpha \in \operatorname{Aut}(A)$. We say that α has the tracial cyclic Rokhlin property if for every $\varepsilon > 0$, every $n \in \mathbb{N}$, every nonzero positive element $a \in A$, every finite set $\mathcal{F} \subset A$, $\mathcal{F} = \{p_1, \dots, p_m, a_1, \dots, a_s\}$, where $\{p_i\}$, $i = 1, \dots, m$ are the mutually orthogonal projections, there are the mutually orthogonal projections $e_1, e_2, \dots, e_n \in A$ such that

- (1) $\|\alpha(e_j) e_{j+1}\| < \varepsilon \text{ for } 1 \le j \le n, \text{ where } e_{n+1} = e_1,$
- (2) $||e_i b b e_i|| < \varepsilon \text{ for } 1 \le j \le n \text{ and all } b \in \mathcal{F},$
- (3) $||e_1p_je_1|| \ge 1 \varepsilon \text{ for } 1 \le j \le m$,
- (4) with $e = \sum_{j=1}^{n} e_j$, $[1-e] \leq_{\alpha} [a]$.

The only difference between the tracial Rokhlin property and the tracial cyclic Rokhlin property is that in condition (1), we require $\|\alpha(e_n) - e_1\| < \varepsilon$.

Theorem 2.1 Let A be a unital C^* -algebra with real rank zero, and let $\alpha \in \operatorname{Aut}(A)$ have the tracial Rokhlin property. Then A is α -simple if and only if the crossed product $A \rtimes_{\alpha} \mathbb{Z}$ is simple.

Proof Let I be an α -invariant norm closed two-sided ideal of A. Then, by [3, Lemma 1], $I \rtimes_{\alpha} \mathbb{Z}$ is a norm closed two-sided ideal of $A \rtimes_{\alpha} \mathbb{Z}$.

Conversely, let a be a positive element of the C^* -algebra A, $\mathcal{F} = \{a_i; i = 1, 2, \dots, n\}$ elements of A, $s_i \in \mathbb{N}$, $i = 1, 2, \dots, n$ and $\varepsilon > 0$. We prove that there exists a positive element

 $x \in A$ with ||x|| = 1 such that

$$||xax|| \ge ||a|| - \varepsilon$$
, $||xa_i\alpha^{s_i}(x)|| \le \varepsilon$, $||xa_i - a_ix|| < \varepsilon$, $i = 1, 2, \dots, n$.

Because A has real rank zero, let $\varepsilon > 0$, by [9, Theorem 3.2.5], there are mutually orthogonal projections p_1, p_2, \dots, p_m and positive real numbers $\lambda_1, \lambda_2, \dots, \lambda_m$ such that $\left\| a - \sum_{i=1}^m \lambda_i p_i \right\| < 1$

$$\frac{\varepsilon}{3}$$
. Let $a_0 = \sum_{i=1}^m \lambda_i p_i$, $C = \max\{\|a_1\|, \|a_2\|, \cdots, \|a_n\|\}$, $N = \max\{s_1, s_2, \cdots, s_n\}$ and $\varepsilon_0 = \min\{\frac{\varepsilon}{3\|a_0\|}, \frac{\varepsilon}{(N+2)C}\}$.

Apply the tracial Rokhlin property with N in place of n, with ε_0 in place of ε . We can obtain e_1, e_2, \dots, e_N , such that

- (1) $\|\alpha(e_j) e_{j+1}\| < \varepsilon_0 \text{ for } 1 \le j \le N 1,$
- (2) $||e_j a_i a_i e_j|| < \varepsilon_0$ for $1 \le j \le N$ and $1 \le i \le n$,
- (3) $||e_1p_je_1|| \ge 1 \varepsilon_0 \text{ for } 1 \le j \le m.$

Then $||e_1 a_0 e_1|| = \left\| \sum_{i=1}^m \lambda_i e_1 p_i e_1 \right\| \ge ||\lambda_i e_1 p_i e_1|| \ge \lambda_i (1 - \varepsilon_0), \ i = 1, 2, \dots, m.$

We get

$$||e_1 a_0 e_1|| \ge ||a_0|| (1 - \varepsilon_0) \ge ||a_0|| - \frac{\varepsilon}{3}.$$

Then

$$\begin{aligned} \|e_{1}ae_{1}\| &= \|e_{1}a_{0}e_{1} + e_{1}ae_{1} - e_{1}a_{0}e_{1}\| \geq \|e_{1}a_{0}e_{1}\| - \|e_{1}ae_{1} - e_{1}a_{0}e_{1}\| \\ &\geq \|e_{1}a_{0}e_{1}\| - \frac{\varepsilon}{3} \geq \|a_{0}\| - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} \geq \|a\| - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} = \|a\| - \varepsilon, \\ \|e_{1}a_{i}\alpha^{s_{i}}(e_{1})\| &= \|e_{1}a_{i}\alpha^{s_{i}}(e_{1}) - e_{1}a_{i}\alpha^{s_{i-1}}(e_{1}) + e_{1}a_{i}\alpha^{s_{i-1}}(e_{1}) \\ &- e_{1}a_{i}\alpha^{s_{i-2}}(e_{1}) + \dots + e_{1}a_{i}\alpha^{1}(e_{1})\| \\ &< \|e_{1}a_{i}\alpha^{1}(e_{1})\| + (s_{i} - 1)\varepsilon_{0}\|a_{i}\| \\ &< \|a_{i}e_{1}\alpha^{1}(e_{1})\| + s_{i}\varepsilon_{0}\|a_{i}\| < (s_{i} + 1)\varepsilon_{0}\|a_{i}\| < \varepsilon. \end{aligned}$$

So we get (*). Applying this condition and noticing that A is α -simple, we can complete the proof the same as [5, Theorem 3.1]. We omit the details.

Applying (*) and the same proof of Theorem 4.2 in [4], we can get the following result.

Theorem 2.2 Let A be a unital C^* -algebra with real rank zero and let $\alpha \in \operatorname{Aut}(A)$ have the tracial Rokhlin property and A is α -simple. Then any non-zero hereditary C^* -subalgebra of the crossed product $A \rtimes_{\alpha} \mathbb{Z}$ has a non-zero projection which is equivalent to a projection in A.

Lemma 2.1 Let $B = M_{r(1)} \oplus M_{r(2)} \oplus \cdots \oplus M_{r(l)}$ be a finite dimensional C^* -subalgebra of a unital C^* -algebra A, and let $e_{i,j}^{(s)} \in B$ be a system of matrix units for $M_{r(s)}$, $s = 1, 2, \cdots, l$. Then for any $\delta > 0$, there exists $\sigma > 0$ satisfying the following: If $\|pe_{i,i}^{(s)} - e_{i,i}^{(s)}p\| < \sigma$ and $\|pe_{i,i}^{(s)}p\| > \frac{1}{2}$ for $s = 1, 2, \cdots, l$, $i = 1, 2, \cdots, r(s)$, then there is a monomorphism $\varphi : B \to pAp$ such that $\|pbp - \varphi(b)\| < \delta \|b\|$ for all $b \in B$.

Proof It follows from the arguments in [9, Section 2.5] and [11, Proposition 2.3].

Proposition 2.1 Let A be a unital C^* -algebra. Suppose that $\alpha \in \operatorname{Aut}(A)$ is approximately inner and has the tracial Rokhlin property. If for any closed two-sided ideal I of C^* -algebra A,

there is an $n \in \mathbb{N}$, here n only depends on I, such that $K_0(A/I)$ is not n-divisible, then A is α -simple.

Proof Suppose that A is not α -simple, so there exists a closed two-sided ideal I of C^* algebra A such that $\alpha(I) = I$. By the hypothesis, there is an $n \in \mathbb{N}$ such that $K_0(A/I)$ is not n-divisible.

Let $a \in I$ be a non-zero positive element, and $0 < \varepsilon < 1$. There are the mutually orthogonal projections $e_1, e_2, \cdots, e_n \in A$ such that

- (1) $\|\alpha(e_j) e_{j+1}\| < \varepsilon \text{ for } 1 \le j \le n-1,$ (2) with $e = \sum_{j=1}^{n} e_j$, $[1-e] \le_{\alpha} [a]$.

Because α is approximately inner and by (1), we have $[e_1] = [e_2] = \cdots = [e_n]$ in $K_0(A)$.

If $p \in A$ is a projection such that $[p] \leq [b]$, where $b \in I$ is a positive element, then there is a $v \in A$ such that $v^*v = p$ and $vv^* \in \overline{bAb} \subset I$. If $\pi: A \to A/I$ denotes quotient map, $\pi(v)\pi(v^*)=0$ in A/I, $\pi(v)=0$ in A/I, then $p\in I$.

In (2), $[1-e] \leq_{\alpha} [a]$. By the definition of \leq_{α} , $a \in I$ and the discussion above, we have $1 - e \in I$, so $\pi(1 - e) = 0$, [1 - e] = 0 in $K_0(A/I)$, then $n[e_1] = [1]$ in $K_0(A/I)$. This contradicts that $K_0(A/I)$ is not *n*-divisible.

3 Main Results

In the proof of Theorem 3.2, we first prove $TR(A \rtimes_{\alpha} \mathbb{Z}) \leq 1$, then use the following Lemma 3.1 to prove $RR(A \rtimes_{\alpha} \mathbb{Z}) = 0$. The following lemma is similar to [12, Lemma 2.5].

Lemma 3.1 Let A be a unital C^* -algebra with real rank zero, and let $\alpha \in Aut(A)$ have the tracial Rokhlin property. Suppose that A is α -simple and the order on projection over $A \rtimes_{\alpha} \mathbb{Z}$ is determined by traces. Let $\iota: A \to A \rtimes_{\alpha} \mathbb{Z}$ be the inclusion map. Then for every finite set $F \subset A \rtimes_{\alpha} \mathbb{Z}$, every $\varepsilon > 0$, every nonzero positive element $z \in A \rtimes_{\alpha} \mathbb{Z}$, and every sufficiently large $n \in N$ (depending on F, ε and z), there exist a projection $e \in A \subset A \rtimes_{\alpha} \mathbb{Z}$, a unital subalgebra $D \subset e(A \rtimes_{\alpha} \mathbb{Z})e$, a projection $p \in D$, a projection $f \in A$, and an isomorphism $\varphi: M_n \otimes fAf \to D$, such that

- (1) with $(e_{j,k})$ being the standard system of matrix units for M_n , we have $\varphi(e_{1,1} \otimes a) = \iota(a)$ for all $a \in fAf$ and $\varphi(e_{k,k} \otimes 1) \in \iota(A)$ for $1 \leq k \leq n$,
 - (2) with $(e_{j,k})$ as in (1), we have $\|\varphi(e_{j,j}\otimes a)-\alpha^{j-1}(\iota(a))\|\leq \varepsilon \|a\|$ for all $a\in fAf$,
- (3) for every $a \in F$, there exist $b_1, b_2 \in D$ such that $\|pa b_1\| < \varepsilon, \|ap b_2\| < \varepsilon$, and $||b_1||, ||b_2|| \le ||a||,$
 - (4) there is an $m \in \mathbb{N}$ such that $\frac{2m}{n} < \varepsilon$ and $p = \sum_{j=m+1}^{n-m} \varphi(e_{j,j} \otimes 1)$,
- (5) the projection 1-p is Murray-von Neumann equivalent in $A\rtimes_{\alpha}\mathbb{Z}$ to a projection in the hereditary subalgebra of $A \rtimes_{\alpha} \mathbb{Z}$ generated by z and $\tau(1-p) < \varepsilon$ for all $\tau \in T(A \rtimes_{\alpha} \mathbb{Z})$.

Proof Let $\varepsilon > 0$, $F \subset A \rtimes_{\alpha} \mathbb{Z}$ be a finite set, and let $z \in A \rtimes_{\alpha} \mathbb{Z}$ be a nonzero positive element.

Let u be a standard unitary in the crossed product $A \rtimes_{\alpha} \mathbb{Z}$. We regard A as a subalgebra of $A \rtimes_{\alpha} \mathbb{Z}$ in the usual way. Choose $m \in \mathbb{N}$ such that for every $x \in F$ there are $a_l \in A$ for $-m \le l \le m$ such that $\left\|x - \sum_{l=-m}^{m} a_l u^l\right\| < \frac{\varepsilon}{2}$. For each $x \in F$, choose one such expression,

and let $S \subset A$ be a finite set which contains all the coefficients used for all elements of F. Let $M = 1 + \sup_{G} \|a\|$.

Since $A \rtimes_{\alpha} \mathbb{Z}$ has (SP)-property and is simple, by Theorems 2.2 and 2.1, we can use [9, Lemma 3.5.7] to find nonzero orthogonal Murray-von Neumann equivalent projections $g_0, g_1, \dots, g_{2m} \in z(A \rtimes_{\alpha} \mathbb{Z})z$.

Since $A \rtimes_{\alpha} \mathbb{Z}$ is simple, g_0 is a nonzero projection, and the tracial state space $T(A \rtimes_{\alpha} \mathbb{Z})$ of $A \rtimes_{\alpha} \mathbb{Z}$ is weak-* compact, we have $\delta = \inf_{\tau \in T(A \rtimes_{\alpha} \mathbb{Z})} \tau(g_0) > 0$. Now let $n \in \mathbb{N}$ be any integer such that $n > \max(\frac{1}{\delta}, (N+2)(2m+1), \frac{4m}{\varepsilon})$.

Set $\varepsilon_0 = \frac{\varepsilon}{10(2m+1)n^2M}$.

Choose $\varepsilon_1 > 0$ so small that whenever e_1, e_2, \cdots, e_n are mutually orthogonal projections in a unital C^* -algebra B and $u \in B$ is a unitary such that $\|ue_ju^* - e_{j+1}\| < \varepsilon_1$ for $1 \le j \le n$, then there is a unitary $v \in B$ such that $\|v - u\| < \varepsilon_0$ and $ve_jv^* = e_{j+1}$ for $1 \le j \le n$. We can use [9, Lemma 3.5.7] to find nonzero orthogonal Murray-von Neumann equivalent projections $h_1, h_2, \cdots, h_{n+2} \in g_0(A \rtimes_\alpha \mathbb{Z})g_0$ which are Murray-von Neumann equivalent in $A \rtimes_\alpha \mathbb{Z}$. Further use Theorem 2.2 to find a nonzero projection $q \in A$ which is Murray-von Neumann equivalent in $A \rtimes_\alpha \mathbb{Z}$ to a projection in $h_1(A \rtimes_\alpha \mathbb{Z})h_1$.

Apply the tracial Rokhlin property with n-1 in place of n, with $\min(1, \varepsilon_0, \varepsilon_1)$ in place of ε , with S in place of F, and with q in place of x. Recall the resulting projections e_1, e_2, \dots, e_n , and let $e = \sum_{j=1}^n e_j$, $[1-e] \leq_{\alpha} [q]$. Apply the choice of ε_1 to these projections and the standard unitary u, and obtain a unitary $v \in A \rtimes_{\alpha} \mathbb{Z}$ as in the previous paragraph.

We can get Conditions (1)–(4) by the same proof of Lemma 2.5 in [12]. We omit them. It remains to verify Condition (5) of the conclusion. We have

$$1 - p = 1 - e + \sum_{j=1}^{m} e_j + \sum_{j=n-m+1}^{n} e_j.$$

By construction, we have $[1-e] \leq_{\alpha} [h_1] \leq [g_0]$. Now let τ be any tracial state on $A \rtimes_{\alpha} \mathbb{Z}$. Then $\tau(e_j) = \tau(e_1)$ for all j, whence $\tau(e_j) \leq \frac{1}{n}$. The inequality $n > \frac{1}{\delta} \geq \frac{1}{\tau(g_0)}$ therefore implies $\tau(e_j) < \tau(g_0)$. Since all g_j are Murray-von Neumann equivalent, it follows that for any tracial state τ on $A \rtimes_{\alpha} \mathbb{Z}$, we have $\tau(e_j) < \tau(g_j)$ and $\tau(e_{n-j}) < \tau(g_{m+j})$ for $1 \leq j \leq m$. So the order on projection over $A \rtimes_{\alpha} \mathbb{Z}$ is determined by traces implies that $e_j \leq g_j$ and $e_{n-j} \leq g_{m+j}$ in $A \rtimes_{\alpha} \mathbb{Z}$ for $1 \leq j \leq m$. Thus $[1-p] \leq_{\alpha} \left[\sum_{j=0}^{2m} g_j\right]$ which is a projection in the hereditary subalgebra $\overline{z(A \rtimes_{\alpha} \mathbb{Z})z}$.

$$\tau(1-p) = \tau(1-e) + \tau\left(\sum_{j=1}^{m} e_j + \sum_{j=n-m+1}^{n} e_j\right) \le \frac{1}{2m(n+2)} + \frac{2m}{n} < \varepsilon.$$

This is Condition (5) of the conclusion.

Theorem 3.1 Let A be a unital C^* -algebra with real rank zero, and let $\alpha \in \operatorname{Aut}(A)$ have the tracial Rokhlin property. Suppose that A is α -simple and the order on projection over $A \rtimes_{\alpha} \mathbb{Z}$ is determined by traces. Then $A \rtimes_{\alpha} \mathbb{Z}$ has real rank zero.

Proof By applying Lemma 3.1 and the same proof of Theorem 4.5 in [12], we get the theorem.

Theorem 3.2 Let A be a unital AF-algebra. Suppose that $\alpha \in \operatorname{Aut}(A)$ has the tracial cyclic Rokhlin property and A is α -simple. Suppose also that there is an integer $J \geq 1$ such that $\alpha_{*0}^J = \operatorname{id}_{K_0(A)}$. Then $\operatorname{TR}(A \rtimes_{\alpha} \mathbb{Z}) = 0$.

Proof By Theorem 2.1, $A \bowtie_{\alpha} \mathbb{Z}$ is a unital simple C^* -algebra.

Let $0 < \varepsilon < 1$ and $\mathcal{F} \subset A \rtimes_{\alpha} \mathbb{Z}$ be a finite set. To simplify notation, without loss of generality, we may assume $\mathcal{F} = \mathcal{F}_0 \cup \{u\}$, where $\mathcal{F}_0 \subset A$ is a finite subset of the unit ball which contains 1_A and u is a unitary which implements α , i.e., $\alpha(a) = u^*au$ for all $a \in A$. Choose an integer k which is a multiple of J such that $\frac{2\pi}{k-2} < \frac{\varepsilon}{16}$. Put $\mathcal{F}_1 = \mathcal{F}_0 \cup \{u^i a(u^*)^i : a \in \mathcal{F}_0, -k \le i \le k\}$.

Fix $b_0 \in (A \rtimes \mathbb{Z})_+ \setminus \{0\}$. It follows from Theorem 2.2 that there is a nonzero projection $r_0 \in A$ which is equivalent to a nonzero projection in the hereditary C^* -subalgebra generated by b_0 .

Let $\delta = \frac{\varepsilon}{16k^2}$. Since A is a unital AF-algebra, denoted by $A = \bigcup_{m=1}^{\infty} A_m$, where A_m is a finite-dimensional C^* -algebra for $m=1,2,\cdots$, there is a lager enough $m\in\mathbb{N}$ such that $b\in_{\delta} A_m$ for all $b\in\mathcal{F}_1$ and $1_A\in A_m$. Let $A_m=M_{r(1)}\oplus M_{r(2)}\oplus M_{r(l)}$. Note $[(u^k)^*eu^k]=[e]$ in $K_0(A)$ for all projection $e\in A_m$. By [9, Theorem 3.4.6], there exists a unitary $w\in U(A)$ such that $w^*(u^k)^*bu^kw=b$ for all $b\in A_m$. Because A is an AF-algebra, $w\in U_0(A)$. By [10, Lemma 2.6], we have the unitaries $w_i,\ i=1,2,\cdots,k-1$ associated with finite dimensional C^* -subalgebra A_m such that $w=w_1w_2\cdots w_{k-1},\ \|w_i-1\|\le \frac{\pi}{k-2}$. Since $b\in_{\delta}A_m$ for all $b\in\mathcal{F}_1$, there is an $a(b)\in A_m$ such that $\|a(b)-a\|<\delta$. Let $e_{ij}^{(s)}$ be a system of matrix units for $M_{r(s)}$ $(s=1,2,\cdots,l,\ i,j=1,2\cdots r(s))$, and let $\mathcal{G}_0=\{a(b)\ |\ b\in\mathcal{F}_1\}\cup\{e_{ij}^{(s)}\ |\ s=1,2,\cdots,l,\ i,j=1,2\cdots r(s)\}$.

Define
$$\mathcal{F}_2 = \{u^i b u^{-i} : b \in \mathcal{G}_0, -k \le i \le k\}$$
 and let $w_k = 1$.

$$\mathcal{F}_3 = \{(w_{i_1}w_{i_1+1}\cdots w_i)a(w_{i_2}w_{i_2+1}\cdots w_i)^*: a\in\mathcal{F}_1\cup\mathcal{F}_2, \ 1\leq i, i_1, i_2\leq k, \ i_1\leq i, \ i_2\leq i\}.$$

Note that $w, w_i \in \mathcal{F}_3, i = 1, 2, \dots, k-1$.

Since α has the tracial cyclic Rokhlin property, $e_{i,j}^{(s)} \in A_m$ is a system of matrix units for $M_{r(s)}$, $s = 1, 2, \dots, l$, let $\sigma > 0$ be associated with A_m and δ in Lemma 2.1, and let $\eta = \min\{\delta, \sigma\}$. Then there exist projections $e_1, e_2, \dots, e_k \in A$ such that

- (1) $\|\alpha(e_i) e_{i+1}\| < \frac{\eta}{k}$ for $1 \le i \le k$, $e_{k+1} = e_1$,
- (2) $||e_i a a e_i|| < \frac{\eta}{k}$ for $a \in \mathcal{F}_3$,
- (3) $||e_1e_{jj}^{(s)}e_1|| \ge 1 \frac{\eta}{k}$ for $s = 1, 2, \dots, l, \ j = 1, 2, \dots, r(s)$,
- (4) $\left[1 \sum_{i=1}^{k} e_i\right] \le_{\alpha} [r_0].$

Set $p = \sum_{i=1}^{k} e_i$. From (1) above, one can estimate

$$||up - pu|| = \left\| \sum_{i=1}^{k} ue_{i+1} - \sum_{i=1}^{k} e_i u \right\| \le \sum_{i=1}^{k} ||ue_{i+1} - e_i u|| = \sum_{i=1}^{k} ||ue_{i+1} - u\alpha(e_i)|| < \eta.$$

By (1) above, one can see that there is a unitary $v \in A$ such that $||v-1|| < \frac{2\eta}{k}$ and $v^*u^*e_iuv = e_{i+1}, i = 1, 2, \dots, k$. Set $u_1 = uv$. Then $u_1^*e_iu_1 = e_{i+1}, i = 1, 2, \dots, k$ and $e_{k+1} = e_1$. In particular, $u_1^ke_1 = e_1u_1^k$. For any $a \in \mathcal{F}_3 \cap A_m$, since $w \in \mathcal{F}_3$,

$$e_1 w^* e_1 (u_1^k)^* e_1 a e_1 u_1^k e_1 w e_1 \approx \frac{3\eta}{k} e_1 a e_1.$$

By (2) and (3) above, it follows from Lemma 2.1 that there is a monomorphism $\varphi: A_m \to e_1 A e_1$ such that $\|\varphi(a) - e_1 a e_1\| < \delta \|a\|$ for all $a \in A_m$.

By applying [10, Lemma 2.9], we obtain unitaries $x, x_1, x_2, \dots, x_{k-1} \in U_0(e_1Ae_1)$ such that $||x - e_1we_1|| < \delta$, $||x_i - e_1w_ie_1|| < \delta$, $x = x_1x_2 \cdots x_{k-1}$ and $x^*(u_1^k)^*au_1^kx = a$ for all $a \in \varphi(A_m)$. Let $Z = \sum_{i=1}^k e_i u_1^{k+1-i} x_i (u_1^{k-i})^* + (1-p)u_1$. Define $B = \varphi(A_m)$. Then

$$||Z - u_1|| \le \max_i \{||x_i - e_1||\} \le \max_i \{||x_i - e_1 w_i e_1|| + ||e_1 w_i e_1 - e_1||\} < \delta + \frac{\eta}{k} + \frac{\pi}{k-2},$$

 $(Z^k)^*bZ^k = b$ for all $b \in B$ and

$$(Z^i)^* e_1 Z^i \le e_{i+1}, \quad Z^i = u_1^k (x_1 x_2 \cdots x_i) (u_1^{k-i})^*, \quad i = 1, 2, \dots, k, \ e_{k+1} = e_1.$$

Write $B=C_1\oplus C_2\oplus \cdots C_N$, let $\{c_{is}^{(j)}\}$ be the matrix units for C_j , $j=1,2,\cdots,N$, where $C_j=M_{R(j)}$ and put $q=1_B$. Define $D_0=B\bigoplus \bigoplus_{i=1}^{k-1}Z^{i*}BZ^i$, and denote by D_1 the C^* -subalgebra generated by B and $c_{ss}^{(j)}Z^i$, $s=1,2,\cdots,R(j),\ j=1,2,\cdots,N$ and $i=0,1,2,\cdots,k-1$. Then $D_1\cong B\otimes M_k$ and $D_1\supset D_0$.

Define $q_{ss}^{(j)} = \sum_{i=0}^{k-1} Z^{i*} c_{ss}^{(j)} Z^i$, $q^{(j)} = \sum_{s=1}^{R(j)} q_{ss}^{(j)}$ and $Q = \sum_{j=1}^{N} q^{(j)} = 1_{D_1}$. Note $Q = \sum_{i=0}^{k-1} (Z^i)^* q Z^i$ and

$$q_{ss}^{(j)}Z = \Big(\sum_{i=0}^{k-1} Z^{i*}c_{ss}^{(j)}Z^{i}\Big)Z = Z\sum_{i=0}^{k-1} (Z^{i+1})^*c_{ss}^{(j)}Z^{i+1} = Z\Big(\sum_{i=1}^{k-1} Z^{i*}c_{ss}^{(j)}Z^{i} + c_{ss}^{(j)}\Big) = Zq_{ss}^{(j)}.$$

It follows from [10, Lemma 2.11] that $c_{11}^{(j)}, c_{11}^{(j)}Z^i$ and $c_{11}^{(j)}Z^kc_{11}^{(j)}$ generate a C^* -subalgebra which is isomorphic to $C(X_j)\otimes M_k$ for some compact subset $X_j\subset S^1$. Moreover, $q_{ss}^{(j)}Zq_{ss}^{(j)}$ is in the C^* -subalgebra. Let D be the C^* -subalgebra generated by D_1 and $c_{11}^{(j)}Z^kc_{11}^{(j)}$. Then $D\cong\bigoplus_{j=1}^N C(X_j)\otimes B\otimes M_k$. It follows that $q^{(j)}$ and Q commutes with Z. Therefore $QZQ\in D$. Thus,

$$||Qu - uQ|| \le ||Qu - Qu_1|| + ||Qu_1 - QZ|| + ||ZQ - u_1Q|| + ||u_1Q - uQ||$$

$$< \frac{4\eta}{k} + 2\delta + \frac{2\pi}{k - 2} < \varepsilon.$$

From $QZQ \in D$, we also have $QuQ \in_{\varepsilon} D$.

For $b \in \mathcal{F}_0$, we compute

$$(Z^{i})^{*}q(Z^{i})b = (Z^{i})^{*}qu_{1}^{k}(x_{1}x_{2}\cdots x_{i})(u_{1}^{k-i})^{*}b$$

$$\approx_{k\delta+2\eta} (Z^{i})^{*}qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}b$$

$$= (Z^{i})^{*}qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}bu^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}$$

$$\cdot [u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*}.$$

Let $c_i = (u^{k-i})^*bu^{k-i}$. Then $c_i \in \mathcal{F}_1$. There is an $a_i \in \mathcal{G}_0 \subset A_m$ such that $||c_i - a_i|| < \delta$. Since $(w_1w_2 \cdots w_i)\mathcal{F}_1(w_1w_2 \cdots w_i)^* \subset \mathcal{F}_3$, we have

$$(Z^{i})^{*}qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}bu^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*}$$

$$\begin{split} &= (Z^{i})^{*}qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})c_{i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \delta(Z^{i})^{*}qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})a_{i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \delta(Z^{i})^{*}e_{1}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})a_{i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \frac{\eta}{k}(Z^{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})a_{i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}e_{1}[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \delta(Z^{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})c_{i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}q[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \delta(Z^{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}bu^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}q[u^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}]^{*} \\ &\approx \delta(Z^{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^{k}(w_{1}w_{2}\cdots w_{i})^{*}u_{1}^$$

Hence

$$\|(Z^{i})^{*}qZ^{i}b - b(Z^{i})^{*}qZ^{i}\| < 2(k\delta + 2\eta + \delta + \delta) + \frac{\eta}{k} < \frac{\varepsilon}{k}, \quad i = 0, 1, \dots, k - 1.$$

Therefore, for $b \in \mathcal{F}_0$, $\|Qb - bQ\| < k \cdot (\frac{\varepsilon}{k}) = \varepsilon$. It follows that $\|Qa - aQ\| < \varepsilon$ for all $a \in \mathcal{F}$. For any $b \in \mathcal{F}_0$, a same estimation shows

$$||qZ^{i}b(Z^{i})^{*}q - qu_{1}^{k}(w_{1}w_{2}\cdots w_{i})(u^{k-i})^{*}bu^{k-i}(w_{1}w_{2}\cdots w_{i})^{*}(u_{1}^{k})^{*}q|| < 2k\delta + 4\eta.$$

However, $qu_1^k(w_1w_2\cdots w_i)(u^{k-i})^*bu^{k-i}(w_1w_2\cdots w_i)^*(u_1^k)^*q\in_{\delta+2\delta+\frac{4\eta}{k}}B$. It follows that, for $b\in\mathcal{F}_0$,

$$(Z^i)^*qZ^ib(Z^i)^*qZ^i\in_{\frac{\varepsilon}{k}}(Z^i)^*BZ^i,\quad i=0,1,\cdots,k-1.$$

We obtain $QbQ \in_{\varepsilon} D_1 \subset D$ and then $QaQ \in_{\varepsilon} D$ for all $a \in \mathcal{F}$.

Because $\left[1-\sum_{i=1}^k e_i\right]=[1-p]\leq_{\alpha}[r_0]$ in A, there exist the mutually orthogonal projections p_i , the mutually orthogonal positive elements a_i and $s_i\in\mathbb{Z}$ for $i=1,2,\cdots,n$ such that $p=\sum_{i=1}^n p_i,\{a_i\}_{i=1}^n$ belong to the hereditary C^* -subalgebra generated by r_0 , and $\left[\alpha^{s_i}(p_i)\right]\leq \left[a_i\right]$, $i=1,\cdots,n$. Because $\left[\alpha^{s_i}(p_i)\right]=\left[u^{s_i}p_i(u^{s_i})^*\right]=\left[p_i\right]$ in $A\rtimes_{\alpha}\mathbb{Z}$, we obtain $\left[1-\sum_{i=1}^k e_i\right]\leq \left[r_0\right]$ in $A\rtimes_{\alpha}\mathbb{Z}$.

By computation we can get

$$[1-Q] \le \left[1 - \sum_{i=1}^{k} e_i\right] \le [r_0] \le [b_0].$$

So $TR(A \rtimes_{\alpha} \mathbb{Z}) \leq 1$. The order on projection over $A \rtimes_{\alpha} \mathbb{Z}$ is determined by traces by [9, Theorem 3.7.2].

By applying Theorem 3.1, we have $RR(A \rtimes_{\alpha} \mathbb{Z}) = 0$. By [10, Lemma 3.2], we conclude $TR(A \rtimes_{\alpha} \mathbb{Z}) = 0$.

Corollary 3.1 Let A be a unital AF-algebra. Suppose that $\alpha \in \operatorname{Aut}(A)$ has the tracial cyclic Rokhlin property and A is α -simple. Suppose also that there is an integer $J \geq 1$ such that $\alpha_{*0}^J = \operatorname{id}_{K_0(A)}$. Then the restriction map is a bijection from the tracial states of $A \rtimes_{\alpha} \mathbb{Z}$ to the α -invariant tracial states of A.

Proof Since A has real rank zero and $A \rtimes_{\alpha} \mathbb{Z}$ also has real rank zero by Theorem 3.2, the corollary follows from [7, Proposition 2.2].

Example 3.1 Let $A = A_0 \oplus A_0$, where A_0 is an infinite dimensional unital simple AF-algebra. Let $\beta \in \text{Aut}(A_0)$ be an approximately inner automorphism of A_0 and have the traical cyclic Rokhlin property as in [10]. Define $\alpha \in \text{Aut}A$ by $\alpha(a,b) = (\beta(b),\beta(a))$.

Obviously, A is α -simple. Because β is an approximately inner automorphism of A_0 , therefore $\beta_{*0} = \mathrm{id}_{K_0(A_0)}$, then we have $\alpha_{*0}^2 = \mathrm{id}_{K_0(A)}$.

Because β is an approximately inner automorphism of A_0 and has the traical cyclic Rokhlin property as in [10], furthermore by applying [10, Lemma 2.8], it is easy to verify that α has the traical cyclic Rokhlin property in this paper.

So (A, α) satisfies the conditions of Theorem 3.2, then we have $TR(A \rtimes_{\alpha} \mathbb{Z}) = 0$.

Acknowledgement The author is grateful to Professor Huaxin Lin and Professor Yifeng Xue for their helpful comments.

References

- [1] Connes, A., Outer conjugcy class of automorphisms of factors, Ann. Sci. Ecole Norm. Sup., 8, 1975, 383–420.
- [2] Herman, R. and Ocneanu, A., Stability for integer actions on UHF-C*-algebras, J. Funct. Anal., 59, 1984, 132–144.
- [3] Jang, S. and Lee, S., Simplicity of crossed products of C*-algebras, Proc. Amer. Math. Soc., 118(3), 1993, 823–826.
- [4] Jeong, J. and Osaka, H., Extremally rich C*-crossed products and the cancellation property, J. Austral. Math. Soc. Ser. A, 64, 1998, 285–301.
- Kishimoto, A., Outer automorphisms and reduced crossed products of simple C*-algebra, Comm. Math. Phys., 81, 1981, 429–435.
- [6] Kishimoto, A., The Rohlin property for shifts on UHF-algebras and automorphisms of Cuntz algebras, J. Funct. Anal., 140, 1996, 100–123.
- [7] Kishimoto, A., Automorphisms of AT-algebras with the Rohlin property, Operator Theory, 40, 1998, 277-294.
- [8] Lin, H., Tracial topological ranks of C*-algebra, Proc. London Math. Soc., 83, 2001, 199-234.
- [9] Lin, H., An Introduction to the Classification of Amenable C*-Algebra, World Scientific, Singapore, 2001.
- [10] Lin, H., The Rokhlin property for automorphisms on simple C*-Algebras, Operator Theory, Operator Algebras, and Applications, Contemp. Math., Vol. 414, A. M. S., Providence, RI, 2006, 189–215.
- [11] Lin, H., Tracially Quasidiagonal Extensions, Canad. Math. Bull., 46(3), 2003, 388–399.
- [12] Osaka, H. and Phillips, N. C., Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property, Ergodic Theory Dynam. Systems, 26(5), 2006, 1579–1621.
- [13] Rørdam, M., Classification of certain infinte simple C*-algebras, J. Funct. Anal., 131, 1995, 415-458.