45. Small-bias spaces

45.1 Introduction

Now we study small-bias spaces, their explicit constructions, properties and some applications. This note contains materials that were covered in Lectures 43,44, and 45.

45.2 ε -bias spaces

Definition 45.1 (ε -bias distribution). A distribution μ over $\{0,1\}^n$ is an ε -bias distribution if for every set $S \subseteq [n]$, we have the following:

$$\left| \Pr_{x \sim \mu} \left[\sum_{i \in S} x_i = 1 \right] - \Pr_{x \sim \mu} \left[\sum_{i \in S} x_i = 0 \right] \right| \le \varepsilon.$$

A set $S \subseteq \{0,1\}^n$ is an ε -bias space if the uniform distribution over S is an ε -bias distribution.

If we think of the distribution μ as a function $\mu: \{0,1\}^n \to [0,1]$, we can show that $|\hat{\mu}(S)| \leq 2^{-n}\varepsilon$ for every non-empty $S \subseteq [n]$. Observe that for the uniform distribution \mathcal{U}_n , $\hat{\mathcal{U}}_n(S) = 0$ for all $S \neq \emptyset$ and $\hat{\mathcal{U}}_n(\emptyset) = \frac{1}{2^n}$. Therefore we have the following simple observation.

Lemma 45.2. If μ is an ε -bias distribution over $\{0,1\}^n$, then $\|\mu - \mathcal{U}_n\|_2 \leq \varepsilon$.

Proof. First observe that $\hat{\mu}(\emptyset) = \frac{1}{2^n} \sum_x \mu(x) = \frac{1}{2^n}$. Then we have

$$\|\mu - \mathcal{U}_n\|_2^2 = 2^n \sum_{S \subseteq [n]} \left(\hat{\mu}(S) - \hat{\mathcal{U}}_n(S) \right)^2$$
$$= 2^n \sum_{S \neq \emptyset} \hat{\mu}(S)^2 \le 2^n 2^{-2n} \varepsilon^2 (2^n - 1) \le \varepsilon^2.$$

We now define the notion of pseudorandom distributions.

Definition 45.3 (PRG). A distribution μ is ε -pseudorandom for a class C of Boolean functions, if for every $f \in C$, we have

$$\left| \Pr_{x \sim \mu} \left[f(x) = 1 \right] - \Pr_{x \sim \mathcal{U}_n} \left[f(x) = 0 \right] \right| \le \varepsilon.$$

The following observation about small-bias spaces is easy to see.

Lemma 45.4. An ε -bias distribution μ is $\varepsilon/2$ -pseudorandom for the class of linear functions on \mathbb{F}_2^n .

Proof. Since $\Pr_{x \sim \mu} \left[\sum_{i \in S} x_i = 1 \right] + \Pr_{x \sim \mathcal{U}_n} \left[\sum_{i \in S} x_i \right] = 1$, for every $S \subseteq [n]$, we have

$$\left| \Pr_{x \sim \mu} \left[\sum_{i \in S} x_i = 1 \right] - \frac{1}{2} \right| = \left| \Pr_{x \sim \mu} \left[\sum_{i \in S} x_i = 1 \right] - \Pr_{x \sim \mathcal{U}_n} \left[\sum_{i \in S} x_i = 1 \right] \right| \le \frac{\varepsilon}{2}$$

45.3 Balanced codes and small-bias spaces

The notion of small-bias spaces are closely connected to balanced linear codes.

Definition 45.5. A binary linear code $C = [n, k, d]_2$ is an ε -weight balanced code if every non-zero codeword $x \in C$ has Hamming weight $\operatorname{wt}(x) \in \left[\frac{1-\varepsilon}{2}n, \frac{1+\varepsilon}{2}n\right]$.

The Walsh-Hadamard code is an ε -weight balanced code since every non-zero codeword has weight exactly n/2. We will now show that balanced codes give small-bias spaces.

Lemma 45.6. Let $C = [n, k, d]_2$ be an ε -weight balanced binary code, and let $G \in \mathbb{F}_2^{k \times n}$ be its generator matrix. Then, the set of columns of G is an ε -bias space.

Proof. Let $S = C_1, C_2, \ldots, C_n$ be the set of columns of G and each column $C_i \in \mathbb{F}_2^k$. Let μ be the uniform distribution over S. To prove the lemma, we need to show that for every $T \subseteq [k]$ we have

$$\left| \Pr_{C_j \sim \mu} \left[\sum_{i \in T} C_{i,j} = 1 \right] - \Pr_{C_j \sim \mu} \left[\sum_{i \in T} C_{i,j} = 0 \right] \right| \le \varepsilon.$$

To that end, fix $T \subseteq [k]$. This defines a vector $\chi_T \in \mathbb{F}_2^k$ which is the characteristic vector of T. Now $\chi_T \cdot G$ gives a vector $y \in \mathcal{C}$ such that $\operatorname{wt}(y) \in \left[\frac{1-\varepsilon}{2}n, \frac{1+\varepsilon}{2}n\right]$. Then, $\Pr_{i \in r[n]}[y_i = 1] \in \left[\frac{1-\varepsilon}{2}, \frac{1+\varepsilon}{2}\right]$. So, we have $|\Pr_{i \in r[n]}[y_i = 1] - \Pr_{i \in r[n]}[y_i = 0]| \leq \varepsilon$. But, $\Pr_{i \in r[n]}[y_i = 1] = \Pr_{C_j \sim \mu}\left[\sum_{i \in T} C_{i,j} = 1\right]$.

45.3.1 Small-bias spaces from concatenated codes

We will briefly explain how to get explicit small-bias spaces from concatenated codes. Consider a Reed-Solomon code C_1 with parameters $[q, k_1, q - k_1]_q$ where $q = \frac{k_1}{\varepsilon}$. Let C_2 be a Walsh-Hadamard code with parameters $[q, \log q, \frac{q}{2}]_2$. The concatenation of C_1 and C_2 is obtained as follows. Let $x \in [q]^{k_1}$ be the message. First we obtain a Reed-Solomon codeword y of length q, where each $y_i \in [q]$. We encode each y_i with a log q-bit binary string. Now we encode each y_i using the Walsh-Hadamard code C_2 to obtain $z_i \in \mathbb{F}_2^q$. The final codeword z is the concatenation of z_i s and has length q^2 .

The concatenated code takes binary strings of length $k_1 \log q$ and obtaines codewords of length $q^2 = \left(\frac{k_1}{\varepsilon}\right)^2$. Every non-zero string y obtained from the Reed-Solomon encoding has at least $1 - \varepsilon$ fraction of non-zero entries. Each non-zero entry is converted by the Walsh-Hadamard code into a string with 1/2 fraction of ones. So the concatenated code has relative weight at least $\frac{1-\varepsilon}{2}$. Since every non-zero Walsh-Hadamard codeword has relative weight exactly 1/2, the relative weight of the concatenated codeword is at most 1/2 and hence this is an ε -balanced code. This gives an ε -bias space over \mathbb{F}_2^k (where $k = k_1 \log q$) of size at most k^2/ε^2 .

45.4 Small-bias spaces and Cayley expanders

Let G be a group and $S \subseteq G$ any subset of the group. The Cayley graph $\operatorname{Cay}(G,S)$ is a grph whose vertex set is the set of elements of the group G. A vertex $g \in G$, has an edge $(g, g \cdot s)$ for every $s \in S$ and \cdot is the group operation of G. We will now see that for $G = \mathbb{F}_2^n$, an ε -bias space S gives a Cayley graph $\operatorname{Cay}(G,S)$ that is an ε -spectral expander.

Let A be the normalized adjacency matrix of the Cayley graph $\operatorname{Cay}(G,S)$. The matrix A is a $2^n \times 2^n$ matrix where the rows and columns are indexed by the elements of the group G. For a row indexed by an element $g \in \mathbb{F}_2^n$, for each $s \in S$, the entry $A[g,g \cdot s] = \frac{1}{|S|}$. Let χ_T denote the linear function $\chi_T(x) = \sum_{i \in T} x_i$. We can think of χ_T as 2^n -bit vector. We will show that each χ_T is an eigenvector of A with eigenvalue at most ε .

For an element $g \in \mathbb{F}_2^n$, we have

$$A \cdot \chi_T(g) = \sum_{s \in S} \frac{1}{|S|} \chi_T(g \cdot s) = \sum_{s \in S} \frac{1}{|S|} \chi_T(g) \chi_T(s) = \chi_T(g) \sum_{s \in S} \frac{1}{|S|} \chi_T(s).$$

Therefore χ_T is an eigenvector with eigencalue $\sum_{s \in S} \frac{1}{|S|} \chi_T(s)$. Let μ be the uniform distribution over S. Then we have

$$\left| \sum_{s \in S} \frac{1}{|S|} \chi_T(s) \right| = \left| \mathbb{E}_{s \sim \mu} \left[\sum_{i \in T} s_i \right] \right| = \left| \Pr_{s \sim \mu} \left[\sum_{i \in T} s_i = 1 \right] - \Pr_{s \sim \mu} \left[\sum_{i \in T} s_i = 0 \right] \right| \le \varepsilon.$$