Introduction to computer programming with python

Complexity Part 1

Spring Semester, 2023

Contents

Complexity:

- Motivation
- O notation
- Types of order of growth
- Law of addition, law of multiplication
- Complexity growth (via search algorithms)

Complexity - Motivation

Example – constant functions

```
def c_to_f(c):
return (c*9/5) + 32 # 3 operations
```

```
t0 = t.time()
c_to_f(10)
dt = t.time()-t0
print(dt)
```

C=10 or c=1000000 run @ constant time & same # of operations

Complexity - Motivation

Example – iterative function

```
def ave(l):
    res = 0 # 1 op
    for i in l: # n ops
        res+=i # 2*n ops
    return res/len(l) # 1 op
```

```
t0 = t.time()
ave(testList)
dt = t.time()-t0
```

Input size len(I)	Measured time dt	Operations 2+3*n	
7	0 s	23	
7,000,000	0.35 s	21,000,002	

n = len(l)

Timing programs isn't reliable indication of program's efficiency

Runtime varies between algorithms

Runtime varies between implementations, e.g.


```
if k in dict: print(d[k])
d.get('k')
```

Runtime varies between computers

• program's runtime is not predictable based on small inputs' sampling

Input size len(l)	Measured time dt
7	0 s
7,000,000	0.35 s

Exact # of operations versus 'O'

Example: factorial calculation, n>=0

```
def fact(n):
    res = 1 # (1) Op
    for i in range(n,1,-1): # (n-1) Ops
        res*=i # (2*(n-1)) ops
    return res
```

Exact # of operations: 1+3*(n-1)

'O' represents the worst case asymptotic complexity

- Ignore additive constants
- Ignore multiplicative constants

$$O(1+3*(n-1)) \to O(n)$$

Exact # of operations versus 'O'

Numeric examples:

•
$$n^2 + 2n + 2$$
 \longrightarrow $O(n^2)$

•
$$n^2 + 100000n + 3^{1000} \longrightarrow O(n^2)$$

•
$$log(n) + n + 4 \longrightarrow O(n)$$

•
$$0.0001*n*log(n) + 300n \longrightarrow O(n \cdot log(n))$$

•
$$2n^{30} + 3^n$$
 \longrightarrow $O(3^n)$

Types of orders of growth

Orders of growth law of addition

$$O(f(n)) + O(g(n)) = O(f(n)+g(n))$$

Example:

Orders of growth law of addition

$$O(f(n)) + O(g(n)) = O(f(n)+g(n))$$

Example:

Orders of growth law of multiplication

$$O(f(n)) * O(g(n)) = O(f(n)*g(n))$$

Example:

$$O(n) * O(n) = O(n^2)$$

See nested loops

law of multiplication O(n^x) - nested loops

```
|def isSubset(L1, L2):
                                      O(n)
    for e1 in L1:
                   len(L1)
        matched = False
                         len(L2)
        for e2 in L2:
                                       O(n)
            if e1 == e2:
                 matched = True
                 break
        if not matched:
            return False
    return True
```

$$O(n)*O(n) = O(n^2)$$

Complexity growth

notation	complexity	n=10	n=100	n=1000	n=1000000
constant	O(1)	1	1	1	1
logarithmic	O(log(n))	1	2	3	6
linear	O(n)	10	100	1000	1000000
log-linear	O(n log n)	10	200	3000	6000000
n ^c - Polynomial n ² - quadratic	O(n ²)	100	10000	1000000	10 ¹²
exponential	O(2 ⁿ)	1024	12676506 00228229 40149670 3205376	10715086071862673209484250 49060001810561404811705533 60744375038837035105112493 61224931983788156958581275 94672917553146825187145285 69231404359845775746985748 03934567774824230985421074 60506237114187795418215304 64749835819412673987675591 65543946077062914571196477 68654216766042983165262438 6837205668069376	TLDR (אמל"ק)

Searching for an element in a list e.g., linear search

```
def linear_search(L, e):
    found = False # 1 op
    for i in range(len(L)): # n ops
        if e == L[i]: # n ops
        found = True # 1 ops
    return found
```

Orders of growth estimation O(2+n+n) = O(2+2*n) => O(n)By dominant term

Searching for an element in a sorted list Still a linear search

```
def search(L, e):
     for i in range(len(L)): len(L) 
         if L[i] == e: | > len(L) | ←
              return True
         if L[i] > e:
              return False
     return False
```

Orders of growth estimation O(n+(< n)) => O(n)By dominant term

Bisection (binary) search recursive version

```
def binary_search(arr, low, high, x):
  # Check base case
  if high >= low:
    mid = (high + low) // 2
    # If element is present at the middle itself
    if arr[mid] == x:
      return mid
    # If element is smaller than mid, then it can only
    # be present in left sub-array
    elif arr[mid] > x:
       return binary search(arr, low, mid - 1, x)
    # Else the element can only be present in right subarray
    else:
       return binary search(arr, mid + 1, high, x)
  else:
    # Element is not present in the array
    return -1
```

Returns the index of x in sorted array if exists otherwise returns -1

Bisection (binary) search Iterative version

```
def binary_search(arr, x):
  low = 0
  high = len(arr) - 1
  mid = 0
  while low <= high:
    mid = (high + low) // 2
    # If x is greater, ignore left half
    if arr[mid] < x:
       low = mid + 1
    # If x is smaller, ignore right half
    elif arr[mid] > x:
       high = mid - 1
    # means x is present at mid
    else:
       return mid
```

Returns the index of x in sorted array if exists otherwise returns -1

If we reach here, then the element was not present return -1

Bisection (binary) search (log) Complexity analysis

Complexity of iterative Fibonacci

Best case:

0(1)

Worst case:

$$O(1) + O(1) + O(n) \rightarrow O(n)$$

linear O(n)

Complexity of recursive Fibonacci

```
def recFib(n):
    if n==0:
        return 0
    elif n==1:
        return 1
    else:
        return recFib(n-1) + recFib(n-2)
```

of recursive calls

Fibonacci with dictionary

```
def fibbonaci_dict(n,d):
    if n in d:
         return d[n]
    else:
         res = fibbonaci_dict(n-1,d)+fibbonaci_dict(n-2,d) # memoization
         d[n] = res
         return res
d = {1:1,2:2} Initialize dictionary with base cases
print(fibbonaci_dict(6,d))
```

Complexity of recursive Fibonacci with memoization

```
|def fibbonaci_dict(n,d):
    if n in d:
        return d[n]
    else:
        res = fibbonaci_dict(n-1,d)+fibbonaci_dict(n-2,d) # memoization
        d[n] = res
        return res
d = \{1:1,2:2\}
print(fibbonaci_dict(6,d))
```


Summary of Complexity growth

notation	complexity	Example
constant	O(1)	Input independent functions (c to f)
logarithmic	O(log(n))	Binary search in a sorted list
linear	O(n)	Single loops
log-linear	O(n log n)	Merge sort (to be cont.)
n ^c - Polynomial n ² - quadratic	O(n ²)	Nested loops
exponential	O(2 ⁿ)	Recursions with two recursive calls (Fibonacci)