实验一: 单片机基础实验

- 一、 仿真实验
- 1. 开关检测实验
- 2. 流水灯实验

二、硬件实验

3.1 数字量输入输出实验

3.1.1 实验目的

了解P1 口作为输入输出方式使用时, CPU 对P1 口的操作方式。

3.1.2 实验设备

PC机一台, TD-NMC+教学实验系统、或 "TD-PIT++教学实验系统+TD-51 系统平台"、或

"TD-PITE 教学实验系统+TD-51 系统平台"

3.1.3 实验内容

P1 口是8 位准双向口,每一位均可独立定义为输入输出。编写实验程序,将P1 口的低4

位定义为输出,高4 位定义为输入,数字量从P1 口的高4 位输入,从P1 口的低4 位输出控制

发光二极管的亮灭。

3.1.4 实验步骤

实验参考程序及实验步骤如下。

实验参考程序: (DigitIO.C)

```
#include "SST89x5x4.H"

void main(void)
{

unsigned char data i; //data为存储器类型说明

while(1)
{

P1 = P1 | 0xF0; //声明高4 位为输入
```

```
i = P1;
P1 = (i>>4)&0x0F;
}
```

实验步骤:

- 1. 按图3-1-1 所示,连接实验电路图,图中"圆圈"表示需要通过排线连接;
- 2. 编写实验程序,编译链接无误后进入调试状态;
- 3. 运行实验程序,观察实验现象,验证程序正确性;
- 4. 按复位按键,结束程序运行,退出调试状态;
- 5. 自行设计实验,验证单片机其它IO 口的使用。

图3-1-1 实验接线图

开关及LED 显示单元原理图如图3-1-2 所示。

图3-1-2 开关及LED 显示单元原理图

附:

C51 编译器除了支持ANSI C 标准的关键字以外,还扩展了如下表所示的关键字。 在C 程

序设计中经常遇到。

关键字	用 途	说明
bit	位标量声明	声明一个位标量或位类型的函数
sbit	位变量声明	声明一个可位寻址变量
sfr	特殊功能寄存器声明	声明一个8位特殊功能寄存器
sfrl6	特殊功能寄存器声明	声明一个 16 位特殊功能寄存器
data	存储器类型说明	直接寻址的8051内部数据存储器,访问速度最快。
bdata	存储器类型说明	可位寻址的 8051 内部数据存储器,允许位与字节混合访问。
idata	存储器类型说明	间接寻址的8051内部数据存储器,允许访问全部内部地址。
pdata	存储器类型说明	"分頁"寻址的 8051 外部数据存储器,用 MOVX @Ri 指令访问。
xdata	存储器类型说明	8051 外部数据存储器,用 MOVX @DPTR 指令访问。
code	存储器类型说明	8051 程序存储器,用 MOVC @A+DPTR 指令访问
interrupt	中断函数说明	定义一个中断函数
using	寄存器组定义	定义 8051 的工作寄存器组