# Deep transformation models

for tackling complex probabilistic regression problems







## Non-probabilistic versus probabilistic regression DL models







CPD: Conditional Probability Distribution



## How can we benefit from a probabilistic model?

Carlo's Bakery

Jersey City

Liberty Science Center

Newport Centre

JOURNAL SQUA

WEST SIDE

Lincoln Park MCGINLEY

BERGEN/





### How to train a NN to output the parameter of a CPD?

#### → use the beautiful maximum likelihood principle





#### Maximum likelihood:

$$\begin{aligned} \boldsymbol{w}_{\mathrm{ML}} &= \operatorname*{argmax}_{w} \prod_{i} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(y_{i} - \mu(\boldsymbol{w}))^{2}}{2\sigma(\boldsymbol{w})^{2}}} \\ &= \operatorname*{argmin}_{w} \sum_{i} - \left(\log\left(\frac{1}{\sqrt{2\pi\sigma}}\right) + \frac{(y_{i} - \mu_{i}(\boldsymbol{w}))^{2}}{2\sigma^{2}}\right) \end{aligned}$$
 Negative Log-Likelihood (NLL)

$$(\hat{w}_a, \hat{w}_b)_{\text{ML}} = \underset{w_a, w_b}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_a \cdot x_i + w_b))^2$$
gradient descent with MSE loss
$$\hat{W}_a \qquad \hat{W}_b$$

## Fit a probabilistic regression with flexible non-constant variance



Minimize the mean negative loglikelihood (NLL) on train data:

$$NLL(w) = \sum_{i} -\log(f_{pred,w}(y_i|x_i))$$

$$\mathbf{w}_{\mathrm{ML}} = \underset{w}{\mathrm{argm}} in - \sum_{i} \left( \log \left( \frac{1}{\sqrt{2\pi\sigma_{i}(\mathbf{w})}} \right) + \frac{(y_{i} - \mu_{i}(\mathbf{w}))^{2}}{2\sigma_{i}(\mathbf{w})^{2}} \right)$$

gradient descent with NLL loss

$$\hat{w}_1, \ \hat{w}_2, ..., \ \hat{w}_{27}$$

Note: we do not need to know the "ground truth for s" – the likelihood does the job!

## Use the NLL on test data to assess the prediction performance



Side remark: The NLL is "strictly proper":

The NLL is then and only then minimal, when the predicted CPD matches the data generating CPD.

# What to do if we do not know the family of the conditional outcome distribution?

- Model CPD as mixture (e.g. Gaussians)
- Model CPD via a transformation model!

## We get the likelihood after transformation to a known distribution



$$NLL = \sum_{i} -\log \left( f_{pred}^{y} \left( y_{i} | x_{i} \right) \right) = \sum_{i} -\log \left( f^{z} \left( z_{i} \right) \cdot \left| \frac{\partial h_{\theta_{x_{i}}}}{\partial y} \right| \right|_{y_{i}} \right)$$

"change of variable" formula

## Going back again: Gauss fit as usual



# minimize NLL with known CPD family

$$NLL(w) = \sum_{i} -\log\left(\mathbf{f}_{pred}^{y}\left(y_{i}|x_{i}\right)\right) = -\sum_{i} \log\left(\frac{1}{\sqrt{2\pi\sigma}}e^{\frac{\left(y_{i}-\mu_{y}(w)\right)^{2}}{2\sigma_{y}(w)^{2}}}\right)$$

```
# optimized parameters:
mu_ml = mean(y_obs) # 3.1
sd_ml = sd(y_obs) # 2.3

# optimal NLL
NLL=-sum(log(dnorm(y_obs, mean=3.1, sd=2.3)))
NLL # 11
```



## Gauss fit via transformation approach

Task: find transformation  $h: y \to z = h(y)$  so that  $z \sim N(0,1)$ 

Easy! We know that  $y \sim N(\mu, \sigma)$ , therefor we look for a linear transformation  $z = a \cdot y + b$ 

Let's cheat: Use the good old z-transformation and plug in the ML estimates for  $\mu$  (3.1),  $\sigma$ (2.3):



## Optimizing the parameters of the transformation via minimizing NLL



Task: find parameter values for a and b, that minimize  $\text{NLL} = \sum_{i} -\log \left( f_{pred}^{y} \left( y_{i} \right) \right) = \sum_{i} -\log \left( f^{z} \left( z_{i} \right) \cdot \left| \frac{\partial h_{(a,b)}}{\partial y} \right| \right|_{y} \right) \rightarrow \text{SGD}_{y}$ 

## For non-Gaussian CPDs we need a non-linear transformation



Image credits: Lucas Kook

## Using Bernsteinpolynomials to approximate the transformation h

$$z_{x} = h_{\theta_{x}}^{MLT}(\tilde{y}|X=x) = \sum_{k=1}^{M} \frac{\theta_{k}(x)}{M+1} Be_{k}(\tilde{y})$$

$$\tilde{y} \in [0,1]$$



#### Bernstein polynomials have nice properties:

- They can approximate each function
- The order M controls the flexibility
- Its bijective, i.e. monotone increasing, if parameters  $\vartheta_1 \leq \vartheta_2 \leq \cdots \leq \vartheta_M$

## A non-Gaussian CPD requires a flexible transformation function h



Image credits: Lucas Kook

## Have a look on more complex conditional probability distributions



## Our deep transformation model

$$z_x = h_{\theta(x)}^{DT}(y|X=x) = \alpha(x) \cdot \left(\sum_{k=1}^M \frac{\vartheta_k(x)}{M+1} Be_k\left(\sigma\left(\alpha(x) \cdot y - b(x)\right)\right)\right) - \beta(x)$$

$$z_x = h_{\theta(x)}^{DT}(y|X=x) = f_{3,\alpha_x,\beta_x} \circ f_{2,\theta_{0_x},\dots,\theta_{M_x}} \circ \sigma \circ f_{1,\alpha_x,b_x}(y|X=x)$$

Get parameter  $\theta(x)$  by minimize the NLL

$$NLL = \sum_{train-data} -log\left(f^{z}\left(z_{x}\right) \cdot |h'_{\theta(x)}(y)|\right)$$



## Architecture of our Deep transformation model

$$z_{x} = h_{\theta(x)}^{DT}(y|X=x) = \alpha(x) \cdot \left(\sum_{k=1}^{M} \frac{\vartheta_{k}(x)}{M+1} Be_{k} \left(\sigma\left(a(x) \cdot y - b(x)\right)\right)\right) - \beta(x)$$



We tune the weights via SGD to minimize  $NLL = \sum_{i} -\log(f^{z}(z_{x_{i}}) \cdot |h'_{\theta(x_{i})}(y_{i}|x_{i})|)$  yielding the parameters  $\theta$  of h.

## Learning the parameters of the deep transformation model via SGD



## Learning the parameters of the deep transformation model via SGD



## Learning the parameters of the deep transformation model via SGD



## Application: Predict CPD for age based on an image



## Application: Benchmarking our model

TABLE I

COMPARISON OF PREDICTION PERFORMANCE (TEST NLL, SMALLER IS BETTER) ON REGRESSION BENCHMARK UCI DATASETS. THE BEST METHOD FOR EACH DATASET IS BOLDED, AS ARE THOSE WITH STANDARD ERRORS THAT OVERLAP WITH THE STANDARD ERRORS OF THE BEST METHOD.

| Data Set | N     | DL_MLT            | NGBoost                         | MC Dropout            | Deep Ensembles                    | Gaussian Process | MDN                             | NFN                               |
|----------|-------|-------------------|---------------------------------|-----------------------|-----------------------------------|------------------|---------------------------------|-----------------------------------|
| Boston   | 506   | $2.42\pm0.050$    | $2.43\pm0.15$                   | 2.46 ±0.25            | 2.41 ±0.25                        | 2.37 ±0.24       | $\textbf{2.49}\pm\textbf{0.11}$ | $2.48 \pm 0.11$                   |
| Concrete | 1030  | $3.29 \pm 0.02$   | $3.04\pm0.17$                   | $3.04 \pm 0.09$       | $3.06\ \pm0.18$                   | $3.03 \pm 0.11$  | $3.09\pm0.08$                   | $\textbf{3.03}\ \pm\textbf{0.13}$ |
| Energy   | 768   | $1.06\pm0.09$     | $0.60\pm0.45$                   | $1.99 \pm 0.09$       | $1.38 \pm 0.22$                   | $0.66 \pm 0.17$  | $\textbf{1.04}\pm\textbf{0.09}$ | $1.21 \pm 0.08$                   |
| Kin8nm   | 8192  | $-0.99 \pm 0.01$  | $-0.49 \pm 0.02$                | $-0.95 \pm 0.03$      | $-1.20 \pm 0.02$                  | $-1.11 \pm 0.03$ | NA                              | NA                                |
| Naval    | 11934 | $-6.54 \pm 0.03$  | $-5.34 \pm 0.04$                | $-3.80 \pm 0.05$      | $-5.63 \pm 0.05$                  | $-4.98 \pm 0.02$ | NA                              | NA                                |
| Power    | 9568  | $2.85\pm0.005$    | $\textbf{2.79}\pm\textbf{0.11}$ | $\pmb{2.80\ \pm0.05}$ | $\textbf{2.79}\ \pm\textbf{0.04}$ | $2.81 \pm 0.05$  | NA                              | NA                                |
| Protein  | 45730 | $2.63\pm0.006$    | $2.81 \pm 0.03$                 | $2.89 \pm 0.01$       | $2.83 \pm 0.02$                   | $2.89 \pm 0.02$  | NA                              | NA                                |
| Wine     | 1588  | $0.67\pm0.028$    | $0.91 \pm 0.06$                 | $0.93 \pm 0.06$       | $0.94 \pm 0.12$                   | $0.95 \pm 0.06$  | NA                              | NA                                |
| Yacht    | 308   | $0.004 \pm 0.046$ | $0.20\pm0.26$                   | $1.55 \pm 0.12$       | $1.18 \pm 0.21$                   | $0.10 \pm 0.26$  | NA                              | NA                                |



The 2 CPDs (dashed and solid line) correspond to 2 picked observations in the respective data set.

## I want to thank my colleagues

#### **Project Collaborators:**

- Prof. Dr. Oliver Dürr (HTWG)
- Prof. Dr. Torsten Hothorn (UZH)

#### Thanks for fruitful discussions to:

- Lucas Kook (UZH & ZHAW)
- Lisa Herzog (UZH & ZHAW)
- Elvis Murina (ex ZHAW)
- Matthias Hermann (HTWG)

## Thank you for your attention!