Download the jupyter notebook from ILIAS or

run the notebook in colab:

https://colab.research.google.com/drive/1eWA7jI4R7JMZFLzRMAXI5ckCKZyBKSRQ

(https://tinyurl.com/yx2xnook)

ATML Tutorial 03

Advanced Topics in Machine Learning 03.03.2020 Adam Bielski

Information

- First assignment now on ILIAS (due date: 24/03/2020)
- Bring your laptops next week

Last week

- Basic PyTorch (tensors, CPU/GPU computations, gradients with torch.autograd)
- Feeding data with PyTorch **Dataset** objects (_getitem__, _len__)
- Iterating datasets with **DataLoaders**
- Creating models with nn.Module subclasses (forward method) and linear layers (nn.Linear)
- Running the models

Today

- training neural networks in PyTorch
- debugging and analyzing overfitting/underfitting

Neural networks

- Input (features): **x** pixels of cat/dogs images
- Output (labels/target values): y
 cat/dog label
- We want to find a function f that will approximate f(x) = y and can be run on new data when y is unknown

Neural networks approximate the function **f** by composition of functions

$$f(x)=f^{(3)}(f^{(2)}(f^{(1)}(x)))$$

Multilayer Perceptron (MLP)

MLP: $f(x)=f^{(3)}(f^{(2)}(f^{(1)}(x)))$

A class of neural networks, where $f^{(i)}(x) = \phi(x\mathbf{w}^T + b)$

w, b - parameters we we want to optimize

 ϕ - non-linear function

Multilayer Perceptron (MLP)

Source: https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html

Loss functions - how different is prediction from target values?

We will **optimize** parameters of a neural network to **minimize** a loss function.

Problem	Output activation	Loss function
Regression y = real value	Linear / no activation	Mean square error L = mean([y - y']^2)
Regression (within range) y scaled to y =[-1; 1]	Tanh [-1; 1] / Sigmoid [0; 1]	Mean square error L = mean([y - y']^2)
Binary classification y = 0 or y = 1	Sigmoid 1/(1+exp(-x)) Probability of class y=1	Binary cross-entropy L = -y*log(y') - (1-y)*log(1-y')
Multi-class classification y=0n	Softmax y'=exp(x_i)/sum(exp_j) Vector of probabilities for each class	Cross-entropy L = -log(y'[y]) (maximize probability of true class)

Loss functions - PyTorch

PyTorch documentation - https://pytorch.org/docs/stable/nn.html#loss-functions

Problem	Output activation (in model)	Loss function
Regression y = real valued vector	nn.Linear(h_dim, y_dim)	nn.MSELoss()
Regression (within range) y scaled to y =[-1; 1]	nn.Linear(h_dim, y_dim), nn.Tanh()	nn.MSELoss()
Binary classification y = 0 or y = 1	nn.Linear(h_dim, 1), nn.Sigmoid()	nn.BCELoss()
	nn.Linear(h_dim, 1)	nn.BCEWithLogitsLoss() // combines Sigmoid and NLLLoss
Multi-class classification y=0n	nn.Linear(h_dim, n), nn.LogSoftmax()	nn.NLLLoss()
	nn.Linear(h_dim, n)	nn.CrossEntropyLoss() // combines LogSoftmax and NLLLoss

Training neural networks (high-level description) Stochastic Gradient Descent

```
Input: feature vectors \mathbf{x} = \{\mathbf{x} = \mathbf{i}\}, targets \mathbf{y} = \{\mathbf{y} = \mathbf{i}\}, neural network model \mathbf{f}(\mathbf{x}; \theta) with randomly initialized parameters \theta

Output: optimized model parameters \theta

for number of training iterations do sample minibatch of m samples \{(\mathbf{x} = \mathbf{i}, \mathbf{y} = \mathbf{i})\} compute predicted \mathbf{y}' = \mathbf{f}(\mathbf{x}; \theta) compute loss \mathbf{L} = loss = function(\mathbf{y}', \mathbf{y}) compute gradients \nabla \theta = \mathbf{L} /// backpropagation algorithm update parameters \theta < \theta = \mathbf{d} =
```

Training neural networks (high-level description) Stochastic Gradient Descent

Source: https://nikcheerla.github.io/deeplearningschool/2017/09/08/ch2.1-linear-regression-sgd/

Let's train some networks!

Cat VS Dog

