Escuela Politécnica Macional

Departamento de Formación Básica Fundamentos de la Física

Nombre: Huilca Villagómez Fernando Eliceo

Curso: GR11

Fecha de entrega: 30/11/2022

Conceptos básicos de cinemática

- 1. ¿Cuál de las siguientes es una cantidad física vectorial?
- a) distancia
- b) tiempo
- c) trayectoria
- d) desplazamiento
- e) sistema de referencia
- De las siguientes afirmaciones, escoja la correcta:
- a) la posición de una partícula es una cantidad física escalar
- b) la trayectoria de una particula es una cantidad física escalar
- c) la velocidad de una partícula es una cantidad física escalar
- d) la rapidez de una partícula es una cantidad física escalar
- e) desplazamiento necesariamente tiene la misma dirección que la posición
- 3. Al medir el desplazamiento de una partícula, se está determinado la:
- a) trayectoria
- b) distancia recorrida
- c) posición inicial
- d) posición final
- e) variación de la posición en un intervalo de tiempo
- 4. Dos partículas parten del punto A y llegan al punto B. entonces necesariamente sus:
- a) trayectorias son iguales
- b) trayectorias son rectilineas
- c) trayectorias son curvilineas
- d) desplazamientos son iguales
- e) distancias recorridas son iguales
- 5. Si una partícula se desplaza desde un punto A hasta un punto B y luego regresa a A, entonces

es correcto afirmar que:

- a) la distancia recorrida por la partícula es cero
- b) la partícula necesariamente se mueve a lo largo de una trayectoria rectilínea
- c) el desplazamiento de la partícula es nulo
- d) la distancia recorrida es menor que la magnitud del desplazamiento
- e) la partícula necesariamente regresó al origen del sistema de referencia
- 6. El desplazamiento de una partícula es igual a su posición final siempre que la:
- a) trayectoria sea rectilinea
- b) trayectoria sea curvilínea
- c) partícula regrese a su posición inicial
- d) particula parta desde el reposo
- e) partícula parta desde el origen del sistema de referencia
- 7. Si una partícula se mueve por una circunferencia de radio R y da una vuelta completa, la
- magnitud del desplazamiento con respecto a la distancia recorrida:
- a) es mayor
- b) es menor
- c) es igual
- d) depende del intervalo de tiempo
- e) no quarda ninguna relación

Suma, resta, composición y descomposición de vectores

- 8. Sean los vectores \vec{A} y \vec{B} no nulos. Si se cumple que $[\vec{A} + \vec{B}] = A$, donde A = B, entonces el ángulo que forman A y B es:
 - a) No
 - b) 30°
 - c) 60°
 - d) 90°
 - e) 120°
- 9. Si se cumple la relación $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$, entonces se puede afirmar que:
 - a) los puntos A, B y C son colineales
 - b) AB y BC son perpendiculares
 - c) AB y BC tienen el mismo módulo
 - d) AB y BC son paralelos
 - e) AB y BC son componentes vectoriales de AC

Vector unitario

- De las siguientes afirmaciones, escoja la correcta:
 - a) para determinar el unitario de un vector, es necesario conocer el módulo de dicho vector.
 - b) el módulo un vector unitario puede ser mayor que 1.
 - c) un vector unitario es adimensional.
 - d) la suma de dos vectores unitarios necesariamente es otro vector unitario.
 - e) sea: $\vec{v} = \vec{i} + \vec{i} + \vec{k}$; \vec{v} es un vector unitario.
- 11. Dado el vector unitario $\vec{\mu} = \frac{1}{2}\vec{i} + \frac{1}{2}\vec{j} \pm \alpha \vec{k}$. El valor de α es:

 - b)

 - e) 1
- 12. Sea \overrightarrow{A} un vector tridimensional cuyas componentes rectangulares son $\overrightarrow{A_x}$, $\overrightarrow{A_y}$ y $\overrightarrow{A_z}$. Entonces, si A es el módulo del vector \overrightarrow{A} , su vector unitario es:
 - a) $(A_x/A)\vec{i} + (A_y/A)\vec{j}$
 - b) $(A_{\tau}/A)\vec{i} + (A_{z}/A)\vec{k}$
 - c) $(A_x/A)\vec{i} + (A_y/A)\vec{j} + (A_z/A)\vec{k}$
 - d) $(A_y/A)\vec{i} + (A_z/A)\vec{j} + (A_x/A)\vec{k}$
 - e) $(A/A_x)\vec{i} + (A/A_y)\vec{j} + (A/A_z)\vec{k}$

Tregunta? Qué medide dele tener d'ansulo D comprendido entre los exctores A y B para que a cumple independientemente cada una de las siguientes relaciones. a) $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$ El angulo entre la vecture tiene que ser de sos para que el midulo del resultante sea el mismo B=90 -B B b) |A+B|>|A-B| El angulo entre los rectores tiene que Der de 8590 8490 -B c) |A + B | < |A - B | El ángulo entre los rectores tiene que pen de 0 > 90 B>90

