PROJECT 1: DATA QUERIES OF WIKIPEDIA

Kevin M Conlin

OBJECTIVES

- Find the English Wikipedia article that got the most traffic on October 20, 2020.
- Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article.
- Find what series of Wikipedia articles, starting with Hotel California, keeps the largest fraction of its readers clicking on internal links.
- Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia.
- Analyze how many users will see the average vandalized Wikipedia page before the offending edit is reversed.
- Run an analysis you find interesting on the Wikipedia datasets we're using.

Find the English Wikipedia article that got the most traffic on October 20, 2020.

Find the English Wikipedia article that got the most traffic on October 20, 2020.

I first downloaded and concatenated all of the hourly page view data for October 20th. However, this gave me 24 records of each page, each with its hourly page views. This file also included all data from all Wikipedia projects (not just en and en.m). To fix this, I created a MapReduce job that took this massive input file and output a file that that included only the English articles, and output them as a daily (article, page views pair).

```
conlink@DESKTOP-93ULVNL:~$ hdfs dfs -ls /user/conlink/pageviews
Found 2 items
drwxr-xr-x - conlink supergroup
                                          0 2020-10-28 12:00 /user/conlink/pageviews/10-20
drwxr-xr-x - conlink supergroup
                                          0 2020-10-28 12:40 /user/conlink/pageviews/dailyPageViews_10_20
conlink@DESKTOP-93ULVNL:~$ hdfs dfs -ls /user/conlink/pageviews/10-20
Found 1 items
-rw-r--r-- 1 conlink supergroup 4615630043 2020-10-28 12:00 /user/conlink/pageviews/10-20/pageviews-10-20
conlink@DESKTOP-93ULVNL:~$ hdfs dfs -ls /user/conlink/pageviews/dailyPageViews_10_20
Found 2 items
-rw-r--r-- 1 conlink supergroup
                                          0 2020-10-28 12:40 /user/conlink/pageviews/dailyPageViews_10_20/_SUCCESS
           1 conlink supergroup 140340823 2020-10-28 12:40 /user/conlink/pageviews/dailyPageViews_10_20/part-r-00000
-rw-r--r--
conlink@DESKTOP-93ULVNL:~$
```

Find the English Wikipedia article that got the most traffic on October 20, 2020 (Cont).

After loading the MR output file into a hive database, I retrieved the top ten view pages of 10/20/2020 with the following HQL command:

SELECT * FROM 10_20_pageviews ORDER BY views DESC LIMIT 10;

10_20_pageviews.article	10_20_pageviews.views
Hain_Page Special:Search Jeffrey_Toobin CRajagopalachari The_Haunting_of_Bly_Manor Robert_Redford Jeff_Bridges	10_20_pageviews.views 5961008 1476831 544714 321459 210558 185139 178779 159163
Bible Chicago_Seven	151484 149966

Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article.

Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article.

First, I ran a MapReduce job to output a key value pair of (article name, number of occurrences) for every article in which people followed an internal link.

This drastically reduced the size of the data file I would need to query to find a result, i.e. which article had the most users follow an internal link.

Ŀ	Permission	ļĵ	Owner	J1	Group) ļĵ	Size	↓ ↑	Last Mod	lified	ļ†	Replication	J1	Block Size	Ţ	1	Name			↓ ↑	
	-rw-rr		conlink		superç	group	1.32 (ЭB	Oct 26 10	:29		1		128 MB		(clickstream-e	nwik	ki-2020-09.tsv		
Ţ	Permission		↓↑ O\	wner	↓ ↑	Group	ŢŢ	Size	e ↓↑	Last Mo	odifi	ed 🎵	Repli	cation	lî ı	Bloc	ck Size	Ţţ	Name	↓ ↑	
	-rw-rr			nlink		supergro	up	0 B		Oct 27 (07:51		1			128	MB		_SUCCESS		
	-rw-rr			nlink		supergro	up	46.5	52 MB	Oct 27 0	07:51		1		,	128	MB		part-r-00000		

Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article (Cont.)

I then repeated this process on the total pageviews using the page view data from the same time period (September 2020). This was a very laborious MapReduce job, as the total pageview files amounted to roughly 40 GB

Map input records=4325550946 Map output records=1486364229 Map output bytes=36619787376 Map output materialized bytes=39592684955 Input split bytes=104400 Combine input records=0 Combine output records=0 Reduce input groups=16674407 Reduce shuffle bytes=39592684955 Reduce input records=1486364229 Reduce output records=16674407 Spilled Records=5306002131 Shuffled Maps =720 Failed Shuffles=0 Merged Map outputs=720 GC time elapsed (ms)=307473 CPU time spent (ms)=25103170 Physical memory (bytes) snapshot=370164768768 Virtual memory (bytes) snapshot=1848327323648 Total committed heap usage (bytes)=344082350080 Peak Map Physical memory (bytes)=529518592 Peak Map Virtual memory (bytes)=2572742656 Peak Reduce Physical memory (bytes)=986562560 Peak Reduce Virtual memory (bytes)=2589093888

Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article (Cont.)

After creating tables in Hive for each of the MapReduce outputs, I used the following HQL command to join the two tables on article name, as well as to display the clickthrough rate for the top ten pages in September 2020:

SELECT 09_pageviews.aritcle AS Article,

09_pageviews.views AS Total_Views,

link_count.links AS Links_Followed,

ROUND(link_count.links/09_pageviews.views*100, 2) AS Clickthrough_Percentage

FROM 09_pageviews

INNER JOIN link_count ON 09_pageviews.aritcle=link_count.article

WHERE 09_pageviews.views > 1000000

ORDER BY Clickthrough_Percentage DESC

LIMIT 10;

Find the Wikipedia article that has the largest fraction of its readers following an internal link to another Wikipedia article (Cont.)

article	total_views	links_followed	clickthrough_percentage
Dune_(2020_film)	1278838	1201459	93.95
Cobra_Kai	2459988	2241751	91.13
COVID-19_pandemic_by_country_and_territory	1207880	1093321	90.52
Schitt's_Creek	1493588	1339942	89.71
Elizabeth_II	1065045	922145	86.58
Sarah_Paulson	1252257	987550	78.86
Supreme_Court_of_the_United_States	1278921	1002716	78.4
2016_United_States_presidential_election	1052232	768124	73.0
Enola_Holmes_(film)	1980000	1356311	68.5
2020_United_States_presidential_election	1150820	749205	65.1

Find what series of Wikipedia articles, starting with Hotel California, keeps the largest fraction of its readers clicking on internal links.

Find what series of Wikipedia articles, starting with Hotel California, keeps the largest fraction of its readers clicking on internal links.

In order to discover which series of articles kept users following links originating from Hotel California, I created a Hive table that contained all of the clickstream data for September of 2020. I then ran the following HQL command:

SELECT * FROM clickstream
WHERE previous_article='Hotel_California'
ORDER BY clicks DESC
LIMIT 10;

clickstream.previous_article	clickstream.current_article	clickstream.link_type	clickstream.clicks
Hotel_California Hotel_California Hotel_California	 Hotel_California_(Eagles_album) Don_Henley Don_Felder	link link link link	2222 1537 1519
Hotel California	Facles (band)	llink	1225

Based On this output, it was clear that the article that the majority of users linked to from Hotel_California was Hotel_Califonia_(Eagles_Album) I then repeated this process replacing previous article with the current article to follow the series of top articles.

clickstream.previous_article	clickstream.current_article	clickstream.link_type	clickstream.clicks
Hotel_California_(Eagles_album) Hotel_California_(Eagles_album) Hotel_California_(Eagles_album) Hotel_California_(Eagles_album)	The_Long_Run_(album) Hotel_California Their_Greatest_Hits_(1971-1975) Eagles_(band)	link link link link link	2127 2010 897 801

Find what series of Wikipedia articles, starting with Hotel California, keeps the largest fraction of its readers clicking on internal links (Cont).

		+		
clickstream.previous_article	clickstream.current_article	clickstream.link_type	clickstream.clicks	
The_Long_Run_(album) The_Long_Run_(album) The_Long_Run_(album) The_Long_Run_(album)	Eagles_Live Hotel_California_(Eagles_album) I_Can't_Tell_You_Why	link link link link	1322 654 470	
clickstream.previous_article	clickstream.current_article	clickstream.link_type	clickstream.click	
Eagles_Live Eagles_Live Eagles_Live	Eagles_Greatest_Hits,_Vol2 The_Long_Run_(album) Seven_Bridges_Road	link link link link	1136 223 127	
clickstream.previous_article	clickstream.current_article	clickstream.link_type	clickstream.clicks	
	The_Very_Best_of_the_Eagles Eagles_Live	-+ link link	-+ 996 186	

Based on these 5 HQL queries, I found the most common series of articles to be followed from Hotel California to be: Hotel California => Hotel California (Eagles album) => The Long Run (album) => Eagles Live => Eagles Greatest Hits, Vol. 2 => The_Very_Best_of_the_Eagles

It is important to note that this method does not account for the possibility that people could arrive at these intermediate articles through other means, but instead assumes that people arrived at each new queried article via link from the previous article's query.

Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia.

Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia.

In order to find articles with more popularity in each of the three countries, I focused on isolating the hours in which each of these countries is most likely to be using the internet. Using data provided by Carna Botnet, I determined internet traffic in each country corresponded most heavily with daylight hours.

Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia (Cont).

Using my MapReduce for page views, I isolated just the relevant information for my search (pageview traffic on en and en.m articles), loaded each countries individual activity into a corresponding table on Hive, and ran an HQL query across the three tables:

```
SELECT us_activity.article AS article_name,
us_activity.views AS united_states_views,
uk_activity.views AS united_kingdom_views,
au_activity.views AS australia_views
FROM us_activity
INNER JOIN uk_activity ON uk_activity.article=us_activity.article
INNER JOIN au_activity ON au_activity.article=us_activity.article
ORDER BY us_activity.views DESC
LIMIT 25;
```

Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia (Cont).

	+	+	+
article_name	united_states_views	united_kingdom_views	australia_views
Main_Page	3502059	3483323	2838781
Special:Search	870115	900024	679682
[-	316346	331540	250520
CRajagopalachari	211820	209067	402
Jeffrey_Toobin	170950	147620	192879
The_Haunting_of_Bly_Manor	109227	80802	110539
Sokushinbutsu	104346	1260	459
Chicago_Seven	83446	60463	95757
Bible	81275 •	82847	75149
Three_Red_Banners	77797	15065	151
Robert_Redford	77723	91547	96999
Deaths_in_2020	73092	64318	52903
The_Trial_of_the_Chicago_7	67382	52702	68698
Peter_Madsen	67085	47444	656
Harshad_Mehta	65657	80640	46253
Jeff_Bridges	64358	78810	84728
Andy_Burnham	63288	52189	10904
QAnon	62960	54879	53123
2016_United_States_presidential_election	61147	44415	47720
Kamala_Harris	57950	40521	30137
Joe_Biden	57168	44732	50449
Abbie_Hoffman	57053	38762	73035
Hunter_Biden	56698	41744	52377
Murder_of_Kim_Wall	55705	45314	614
/Rush_Limbaugh	55666	44056	31245

Find an example of an English Wikipedia article that is relatively more popular in the UK. Find the same for the US and Australia (Cont).

Based on the results from the HQL query shown on the previous slide, I determined articles related to US Politics are relatively more popular in the United States, Articles relating to Hollywood/Entertainment are more popular among Australian Wikipedia users, and UK Wikipedia users are the most likely to use the internal search features of Wikipedia.

SELECT

FORMAT_NUMBER(AVG(revision_seconds_to_identity_revert/3600), 0) AS HOURS,

FORMAT_NUMBER(AVG((revision_seconds_to_identity_revert%3600)/60), 0) AS MINUTES,

FORMAT_NUMBER(AVG((revision_seconds_to_identity_revert%3600)%60), 0) AS SECONDS

FROM wiki_edits

WHERE revision_seconds_to_identity_revert > 0;


```
SELECT

FORMAT_NUMBER(AVG(views)/30, 0) AS average_views_per_day,

COUNT(aritcle) AS total_pages

FROM 09_pageviews;
```

SELECT

(AVG(revision_seconds_to_identity_revert)/86400) AS average_days_to_revert FROM wiki_edits

WHERE revision_seconds_to_identity_revert > 0;


```
SELECT

FORMAT_NUMBER(14*(AVG(revision_seconds_to_identity_revert)/86400), 2)

AS average_page_views_before_revision

FROM wiki_edits

WHERE revision_seconds_to_identity_revert > 0;
```

NOTE: One important caveat to note in the previous analysis is that the revision_seconds_to_identity_revert field, which provides the amount of time that passes between an initial revision and the time in which that revision is reverted to a previous state, has some major inconsistencies in its original format. Though the documentation implies that this field is a number of seconds, many of the values in the original dataset are very large negative numbers. As a form of simplification, I omitted al fields of this data that were not positive values, however it is difficult to know what the values of those negative fields were intended to be, and thus my final result may be skewed by the omission of this data.

Run an analysis you find interesting on the Wikipedia datasets we're using.

Analyze the percentage of mobile views across various pages to look for any correlation between consumption medium and article content.

For this objective, I analyzed the percentage of mobile views for various pages to attempt to find a relationship between content type and viewing methods.

After altering my MapReduce for page views to output only mobile page views, I created a table for mobile page views and ran two HQL queries to return the highest and lowest percentages of mobile views.

Analyze the percentage of mobile views across various pages to look for any correlation between consumption medium and article content (Cont).

SELECT 09_pageviews.aritcle AS Article,

09_pageviews.views AS Total_Views,

ROUND(mobile_views.views/09_pageviews.views*100, 2) AS Mobile_Percentage

FROM 09_pageviews

INNER JOIN mobile_views ON mobile_views.article=09_pageviews.aritcle

WHERE 09_pageviews.views > 1000000

ORDER BY Mobile_Percentage DESC

LIMIT 10;

10;	article	total_views	mobile_percentage
	Robert_FKennedy_Jr XXXX Dennis_Nilsen SPBalasubrahmanyam William_Zabka Ralph_Macchio Sarah_Paulson Nurse_Ratched Dan_Levy_(Canadian_actor) Tyler_Herro	1112876 2056847 3564441 2387782 1346183 1260530 1252257 1266740 1191431 1158733	99.88 97.9 87.73 86.04 84.37 83.88 83.15 82.7 80.88

Analyze the percentage of mobile views across various pages to look for any correlation between consumption medium and article content (Cont).

SELECT 09_pageviews.aritcle AS Article,

09_pageviews.views AS Total_Views,

ROUND(mobile_views.views/09_pageviews.views*100, 2) AS Mobile_Percentage

FROM 09_pageviews

INNER JOIN mobile_views ON mobile_views.article=09_pageviews.aritcle

WHERE 09_pageviews.views > 1000000

ORDER BY Mobile_Percentage ASC

\mathbb{N}	4	Τ	1	\bigcirc	۰
ΙV	ш			J	٠,

article	total_views	mobile_percentage
+	+ 3170711 1487955 1234802 41915305 1289577 1207880 1376694 3316200 1376339	2.35 8.4 25.16 39.58 41.7 42.88 42.92 47.18 49.75

Analyze the percentage of mobile views across various pages to look for any correlation between consumption medium and article content (Cont).

Based upon the results of the two HQL queries I ran, I believe a loose correlation can be drawn between the nature of an article's content and the medium through which people are most likely to use when viewing it. Based on the high prevalence of more light-hearted/entertainment-based articles in the first query, it appears these types of topics lend themselves more readily to mobile viewing.

In contrast, those article that had a higher percentage of desktop users seemed to correlate with more serious topics, such as statistics relating to the coronavirus or articles related to work/study topics like the periodic table of elements.

SOURCES

- https://dumps.wikimedia.org/other/analytics/
- https://dumps.wikimedia.org/other/pageviews/readme.html
- https://dumps.wikimedia.org/other/mediawiki_history/readme.html
- https://dumps.wikimedia.org/other/clickstream/readme.html
- https://darknetdiaries.com/imgs/carna.gif

GITHUB REPO

https://github.com/Kevin-Conlin/pj1

Questions?