

Digital Logic Design

Decoder & Encoder

Decoder

A **n-to-2**ⁿ **decoder** takes an **n-bit** input and produces **2**ⁿ outputs. The n inputs represent a binary number that determines which of the 2ⁿ outputs is *uniquely* true.

Example:

- Reception counter: When you reach an Academic Institute
- Receptionist asks: Which Dept. to go?
- Based on your Specific answer, Receptionist redirects you to the specific building.

The job of the Decoder is to **Decode!**

-It knows what to do for a fixed question.

Use:

- Memory addressing
- Address to a particular location.

2-to-4 decoder

- A 2-to-4 decoder operates according to the following truth table.
 - The 2-bit input is called S1 S0, and the four outputs are Q0 Q1 Q2 Q3.
 - If the input is the binary number i, then output Qi is uniquely true.

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

For instance, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all false.

This circuit "decodes" a binary number into a "one-of-four" code.

Logic diagram of a 2-to-4 decoder

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$Q0 = S1' S0'$$

$$Q1 = S1' S0$$

$$Q2 = S1 S0'$$

$$-Q3 = S1 S0$$

Decoding ONLY a specific sequence:

The output is 1 only when:

$$A_0 = 1$$
 $A_1 = 0$
 $A_2 = 0$
 $A_3 = 1$

Use:

- 1) Encryption system,
- 2) Counter decoding...etc.

3-to-8 Binary Decoder

Truth Table:

X	y	Z	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$	$\mathbf{F_4}$	$\mathbf{F_5}$	$\mathbf{F_6}$	\mathbf{F}_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
			0						0	0
0	1	1	0	0	0	1	0	0	0	0
			0							
1	0	1	0	0	0	0	0	1	0	0
			0						1	0
1	1	1	0	0	0	0	0	0	0	1

4-bit decoder

BIN	IARY	INPL	JTS	DECODING								C	UT	PUT	S					
A_3	A ₂	<i>A</i> ₁	A_0	FUNCTION	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	$A_3A_2A_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	$\overline{A}_3 A_2 A_1 A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Enable inputs

Many devices have an additional enable input, which is used to "activate" or "deactivate" the device.

For a decoder,

EN=0 "deactivates" the decoder. By convention, that means all of the decoder's outputs are 0.

EN=1 activates the decoder, so it behaves as specified earlier. Exactly one of the

outputs will be 1.

EN	51	50	Q0	Q1	Q2	Q3
CIV	<u> </u>	00	Qυ	<u> </u>	- QL	- ५०
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

2-to-4

<u>3-to-8</u>

A variation of the standard decoder

The decoders we've seen so far are active-high decoders.

EN	S 1	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 An active-low decoder is the same thing, but with an inverted EN input and inverted outputs.

EN	S 1	<i>5</i> 0	Q0	Q1	Q2	Q3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	×	×	1	1	1	1

So what good is a decoder?

Do the truth table and equations look familiar?

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Decoders are sometimes called minterm generators.
 - For each of the input combinations, exactly one output is true.
 - Each output equation contains all of the input variables.
 - These properties hold for all sizes of decoders.
- This means that you can implement arbitrary functions with decoders. If you have a sum of minterms equation for a function, you can easily use a decoder (a minterm generator) to implement that function.

Mysteriously Similar

• Active-high decoders generate *minterms*, as we've already seen.

• The output equations for an **active-low** decoder are mysteriously similar, yet somehow different.

It turns out that active-low decoders generate maxterms.

Implementing Functions using Decoders

Design example: addition

- Let's make a circuit that adds three 1-bit inputs X, Y and Z.
- We will need two bits to represent the total; let's call them C and S, for "carry" and "sum." Note that C and S are two separate functions of the same inputs X, Y and Z.

Decoder-based adder

Here, two 3-to-8 decoders implement C and S as sums of minterms.

• The "+5V" symbol ("5 volts") is how you represent a constant 1 or true in Logic Works. It has been used here so that the decoders are always active.

Decoder expansion

- Combine two or more small decoders with **enable** inputs to form a larger decoder.
- Here a 3-to-8 decoder has been constructed from two 2-to-4 decoders:

52	51	<i>5</i> 0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Modularity

- Be careful not to confuse the "inner" inputs and outputs of the 2-to-4 decoders with the "outer" inputs and outputs of the 3-to-8 decoder (which are in boldface).
- This is similar to having several functions in a program which all use a formal parameter "x".

• You could verify that this circuit is a 3-to-8 decoder, by using equations for the 2-to-4 decoders to derive equations for the 3-to-8.

Active-low decoder example

- So we can use active-low decoders to implement arbitrary functions too, but as a product of maxterms.
- For example, here is an implementation of the function, $f(x,y,z) = \Pi(4,5,7)$, using an active-low decoder.

- The "ground" symbol connected to EN represents logical 0, so this decoder is always enabled.
- Remember that you need an AND gate for a product of sums.

Use two 3 to 8 decoders to make 4 to 16 decoder

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

4-to-16 decoder using only 2-to-4 decoders (no gates)

BCD-to-7-segement decoder

			<u> </u>		3-1		-		401	_	
DECIMAL		INP	UTS			SE	GMEN	NO TI	TPUT:	5	
DIGIT	D	С	В	Α	а	ь	с	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X

Summary

- A n-to-2ⁿ decoder generates the minterms of a n-variable function.
 - As such, decoders can be used to implement arbitrary functions.
- Some variations of the basic decoder include:
 - Adding an enable input.
 - Using active-low inputs and outputs to generate maxterms.
- We also talked about:
 - Applying our circuit analysis and design techniques to understand and work with decoders.
 - Using block symbols to encapsulate common circuits like decoders.
 - Building larger decoders from smaller ones.

Encoders

An **Encoder** is a combinational logic circuit that performs a "reverse" decoder function.

An Encoder accepts an active level on one of ots inputs representing a digit, such as a decimal or octal digit, and converts it to a coded output, such as BCD or binary.

Encoders can also be devised to encode various symbols and alphabetic characters. The process of converting from familiar symbols or numbers to a coded format is called **Encoding**.

2ⁿ-to-n Encoder:

8-to-3 Binary Encoder

At any one time, only one input line has a value of 1.

				Outputs				
Ιο	I 1	I 2	I 3	I 4	I 5	I 6	I 7	y_2 y_1 y_0
1	0	0	0	0	0	0	0	0 0 0
0	(1)	0	0	0	0	0	0	0 0 1
0	0	1	0	0	0	0	0	0 1 0
0	0	0		0	0	0	0	$0 1 \bigcirc$
0	0	0	U	1	0	0	0	1 0 0
0	0	0	0	0	(1)	0	0	1 0 (1)
0	0	0	0	0	0	1	0	1 1 0
0	0	0	0	0	0	0	(1)	1 1 (1)

8-to-3 Priority Encoder

• What if more than one input line has a value of 1?

Example:

- For the above mentioned problem, let's give priority to higher bits
- •Ignore "lower priority" inputs.
- •The sequence is:

• Idle indicates that no input is a 1.

			Inp	uts								
Ι 0	Ι 1	I 2	Ι ₃	I 4	I 5	I 6	I ₇	Ŋ	/2	y ₁	у ₀	Idle
0	0	0	0	0	0	0	0)	(X	Χ	1
1	0	0	0	0	0	0	0	()	0	0	0
Χ	1	0	0	0	0	0	0	()	0	1	0
Χ	Χ	1	0	0	0	0	0	()	1	0	0
Χ	Χ	Χ	1	0	0	0	0	()	1	1	0
Χ	Χ	Χ	Χ	1	0	0	0	-	1	0	0	0
Χ	Χ	Χ	Χ	Χ	1	0	0	-	1	0	1	0
Χ	Χ	Χ	Χ	Χ	Χ	1	0		1	1	0	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	1		1	1	1	0

Priority Encoder (8 to 3 encoder)

- Assign priorities to the inputs
- When more than one inputs are asserted, the output generates the code of the input with the highest priority: 7>6>5>4>3>2>1>0

Priority Encoder (Irregular sequence)

° Assign priorities to the inputs in the following order:

° Priority Encoder:

H4=I4. I3'.I5'.I2'

H6=I6. I4'. I3'.I5'.I2'

H7=I7. I6'. I4'. I3'.I5'.I2'

H1=I1, I7', I6', I4', I3', I5', I2'

H0=I0. I1'. I7'. I6'. I4'. I3'.I5'.I2'

IDLE= 10'.11'. 12'.13'.14'.15'.16'.17'

° Encoder

Priority encoder

The Decimal - D - BCD Priority Encder:

Let Prically is given to the higher order digits. Requirements to activate A0:

17 A₀ is HIGH if 1 is HIGH and 2,4,6,8 LOW
A₀ is HIGH if 3 is HIGH and 4,6,8 LOW
A₀ is HIGH if 5 is HIGH and 6,8 LOW
A₀ is HIGH if 7 is HIGH and 8 LOW
A₀ is HIGH if 9 is HIGH

Therefore, $A_0 = 1.2'.4'.6'.8' + 3.4'.6'.8' + 5.6'.8' + 7.8' + 9$

- 2) A_1 is HIGH if 2 is HIGH and 4,5,8,9 LOW A_1 is HIGH if 3 is HIGH and 4,5,8,9 LOW A_1 is HIGH if 6 is HIGH and 8,9 LOW A_1 is HIGH if 7 is HIGH and 8,9 LOW Therefore, $A_1 = (2+3)4'.5'.8'.9' + (6+7)8'.9'$
- 3) A_2 is HIGH if 4 is HIGH and 8,9 LOW A_2 is HIGH if 5 is HIGH and 8,9 LOW A_2 is HIGH if 6 is HIGH and 8,9 LOW A_2 is HIGH if 7 is HIGH and 8,9 LOW Therefore, $A_2 = (4+5+6+7)8'$. 9'
- 4) A_3 is HIGH if 8 &9 are HIGH Therefore, $A_3 = 8+9$

Reference:

Mixed contents from books by Floyd; Mano; Vahid And Howard.

Acknowledgement:

Nafiz Ahmed Chisty

Thanks