

министерство науки и высшего образования российской федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра математического обеспечения и стандартизации информационных технологий (МОСИТ)

ОТЧЕТ ПО САМОСТОЯТЕЛЬНОЙ РАБОТЕ №1

по дисциплине «Структуры и алгоритмы обработки данных»

Тема: «Одномерный массив»

Выполнил студент группы ИКБО-15-23

Гольд Д.В.

Принял старший преподаватель

Скворцова Л.А.

ОГЛАВЛЕНИЕ

1	. УСЛОВИЕ ЗАДАЧИ	3
2	. РАЗРАБОТКА РЕШЕНИЯ	4
	2.1. Таблица (табл. 1) заполненная согласно требованиям задания	4
	2.2. Функциональные зависимости, полученные в результате анализа алгоритма. Описание получения функций для различных случаев, если для алгоритма они должны быть рассмотрены.	6
	2.3. Код алгоритма на языке С++	7
	2.4. Разработанные тесты представить в форме таблицы (табл. 2)	7
	2.5. Скрины результатов тестирования алгоритма на задаче размером	9
	2.6. Результаты исследования алгоритма (тестирования) на различных объемах данных и получение времени его выполнения. Результаты прогонов занести в табл. 4.	
3	.ВЫВОД	11
4	. СПИСОК ИСТОЧНИКОВ	12

1. УСЛОВИЕ ЗАДАЧИ.

- 1. Выполнить разработку алгоритма задачи варианта, представляя последовательность как массив из n значений, Записать алгоритм на псевдокоде.
- 2. Определить, для полученного алгоритма, функциональную зависимость (функцию), указывающей зависимость количества выполняемых инструкций от размера задачи.
- 3. Технологию подсчета количества инструкций алгоритма представить в таблице табл. 1. При этом:
- псевдокод алгоритма разместить в столбце Инструкции (оператор) алгоритма таблицы табл. 1, каждая управляющая инструкция строго в отдельной строке таблицы;

Дано натуральное число n и последовательность натуральных чисел. Определить количество чисел последовательности, сумма цифр которых кратна 7.

2. РАЗРАБОТКА РЕШЕНИЯ.

2.1. Таблица (табл. 1) заполненная согласно требованиям задания.

Таблица 1. Форма представления алгоритма при получении функции зависимости количества выполняемых инструкций от размера задачи

//Условие. Дано натуральное число n и последовательность натуральных чисел. Определить количество чисел последовательности, сумма цифр которых кратна 7.

//Предусловие. n- кол-во чисел в массиве, A[]- массив чисел, m- кол-во цифр в числе. До выполнения алгоритма имеется входной поток чисел, представленных в виде строковых значений, которые предполагается преобразить в целые числа для анализа. Программа ожидает, что входные данные будут корректными строковыми представлениями целых чисел и что пользователь будет вводить корректные значения.

//Постусловие. После выполнения алгоритма получается результат, который представляет собой количество чисел в последовательности, сумма цифр которых кратна 7.

Algorithm(n, A[])

Номер	Инструкция (оператор)	Количество
строки	алгоритма	выполнений
инструкции		инструкции
алгоритма		
1	n ← 0	1
2	$count \leftarrow 0$	1
3	total ← 0	1
4	for $i \leftarrow 1$ to n do	1 + 3(n + 1)
5	input num_str	0
6	num ←	n
	check_variable_int(num_str)	
7	$sum \leftarrow 0$	n
8	temp_num ← num ч	n
9	While temp_num > 0 do	(m+1)n
10	digit ← temp_num % 10	2mn
11	sum ← sum + digit	2mn
12	temp_num ← temp_num //	2mn
	10	
13	If sum $\%$ 7 == 0 then	2n
14	$count \leftarrow count + 1$	2n

15	total ← total + num	2n
16	If count > 0 then	1
17	Output total / count	1
18	Output "No numbers found	0
	with sum of digits divisible by 7"	

$$F(n) = 4 + 3(n + 1) + 3n + (m+1)n + 6mn + 6n + 2 = 6 + 3n + 3 + 3n + mn + n + 6mn + 6n + 2 = 9 + 13n + 7mn$$

2.2. Функциональные зависимости, полученные в результате анализа алгоритма. Описание получения функций для различных случаев, если для алгоритма они должны быть рассмотрены.

$$F_{\text{худший}}(n) = 9 + 13n + 7mn$$

$$F_{\text{лучший}}(n) = 8 + 9n + 7mn$$

$$F_{\text{средний}}(n) = 8 + 11n + 7mn$$

2.3. Код алгоритма на языке С++.

```
#include <iostream>
#include <string>
#include <sstream>
using namespace std;
int check_variable_int(string variable) {
    int result;
    while (true) {
        try {
            result = stoi(variable);
            return result;
        catch (const exception& err) {
            cout << "eerror/ required type - integer/float \n\ntry entering again:</pre>
" ;
            getline(cin, variable);
        }
    }
}
int sumOfDigits(int number) {
    int sum = 0;
    while (number > 0) {
        sum += number % 10;
        number /= 10;
    }
    return sum;
}
int main() {
    string n_str;
    cout << "enter the number of numbers in the sequence: ";</pre>
    getline(cin, n_str);
    int n = check_variable_int(n_str);
    int count = 0;
    cout << "enter a sequence of numbers:\n";</pre>
    for (int i = 0; i < n; ++i) {</pre>
        string num_str;
        getline(cin, num_str);
        int num = check_variable_int(num_str);
        if (sumOfDigits(num) % 7 == 0) {
            count++;
        }
    }
    cout << "the number of numbers in the sequence whose sum of digits is a</pre>
multiple of 7: " << count << endl;</pre>
    return 0;
}
```

2.4. Разработанные тесты представить в форме таблицы (табл. 2).

Таблица 2. Шаблон таблицы тестов

	Название алгоритма операции				
Номер теста	Входные данные	Эталон результата (ожидаемый результат)			
1	123 456 789 100	2			
2	21 14 35 63 42	4			

2.5. Скрины результатов тестирования алгоритма на задаче размером n=20.

2.6. Результаты исследования алгоритма (тестирования) на различных объемах данных и получение времени его выполнения. Результаты прогонов занести в табл. 4.

Таблица 4. Параметры алгоритма при оценке сложности алгоритма

Размер	Время	Количество	Время
задачи(n)	выполнения	инструкций	выполнения Т
	алгоритма(сек)	по формуле функции	инструкций
		(T)	на компьютере
			(Т/быстродей
			ствие комп.)
			(сек)
1	0.000354	0	4
100	0.000842	4408	0.0000628346
200	0.0009	44008	0.0000945276

3.ВЫВОД

В ходе самостоятельной работы приобретены практические навыки:

- эмпирическое определение вычислительной сложности алгоритмов на теоретическом и практическом уровнях;
- выбор эффективного алгоритма решения вычислительной задачи из нескольких.

4. СПИСОК ИСТОЧНИКОВ

1. Скворцова Л.А. Структуры и алгоритмы обработки данных. Часть 1: линейные структуры данных в алгоритмах [Электронный ресурс]: Практикум / Скворцова Л.А., Гусев К.В., Филатов А.С. — М.: МИРЭА — Российский технологический университет, 2023.