

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2550

วิชา ENE 221 Principles of Communication Systems ภาควิชาวิศวกรรมอิเล็กทรอนิกส์ฯ ปีที่ 2 สอบวันพุธที่ 26 ธันวาคม พ.ศ. 2550

เวลา 13.00-16.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 7 ข้อ 10 หน้า
- 2. ให้ทำในข้อสอบทั้งหมดและสามารถเขียนคำตอบต่อหน้าหลังได้
- 3. อนุญาตให้นำเครื่องคำนวณตามเกณฑ์มหาวิทยาลัยเข้าห้องสอบ
- 4. ห้ามนำเอกสารใด ๆ เข้าห้องสอบ
- 5. มีสูตรให้ในหน้าสุดท้าย

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ
เพื่อขออนุญาตออกนอกห้องสอบ
ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา

ชื่อ-สกุล		รหัสนักศึกษา	เลขที่นั่งสอบ	-
รศ. ดร. เรื่องรอง สุลีสถิระ	ผู้ออกข้อสอบ			
Ins 0-2470-0074				

ผศ. คร. วุฒิชัย อัศวินชัยโชติ

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1. กำหนดให้สัญญาณ x(t) เป็นดังรูปข้างล่าง (20 คะแนน)

- (a) จงหา Fourier Series coefficient $C_0 \, \vec{\mathfrak{N}} \, \, n = 0$
- (b) จงหา Fourier Series coefficients C_n ที่ $n \neq 0$
- (c) Plot magnitude spectrum สำหรับ $-3 \le n \le 3$
- (d) Plot phase spectrum สำหรับ $-3 \le n \le 3$

ı.		> t	
4 ~ ~ ~		5 9	
ชอ-สกล	รหสนกศกษา	เลขทนงสอบ	

2. จงหา Fourier Transform X(f) ของ $x(t) = \cos(\pi t)$ (10 คะแนน)

- 3. ระบบ DSB-AM ใช้ carrier signal ที่ความถี่ 1200 KHz และ spectrum ของ message signal M(f) อยู่ระหว่าง $-10 < f < 10\,\mathrm{Hz}$ สัญญาณ DSB-AM ที่ส่งออกอากาศจะมี ความถี่ในช่วงใด (5 คะแนน)
- 4. กำหนดให้ spectrum M(f) ของสัญญาณ m(t) คังรูป (15 คะแนน)

- (a) ถ้าต้องการย้าย spectrum M(f) ไปอยู่ย่านความถี่ 1000 Hz จะต้องทำอย่างไร
- (b) จงวาค spectrum ของ $u(t) = m(t)\cos(2000\pi t)\cos(10000\pi t)$
- (c) จงวาค Block diagram ที่สามารถแยกสัญญาณ m(t) จากสัญญาณ u(t) ได้

ลู่ ตัด₌ชเกล	รหัสนักศึกษา	เลขที่นั่งสอบ	
ช้อ-สกุล	วทฤนเทเษา	เขามหายกก	

5. จงเขียนสมการและวาครูปสัญญาณที่จุด B, C, และ D ในรูป Rectifier Detector ข้างล่าง นี้ โดยที่สัญญาณที่จุด A มีสมการและรูปดังนี้ $u(t) = A_c[1 + \mu m(t)]\cos(2\pi f_c t)$ (15 คะแนน)

และ diode ทำหน้าที่เป็น switching function

$$w(t) = \frac{1}{2} + \frac{2}{\pi} \left(\cos(2\pi f_c t) - \frac{1}{3}\cos(6\pi f_c t) + \frac{1}{5}\cos(10\pi f_c t) - \dots - \frac{(-1)^{n-1}}{(2n-1)}\cos(2\pi f_c t(2n-1))\right)$$

- 6. กำหนดให้ message signal $m(t) = \cos(100\pi t) + \cos(300\pi t)$ (30 คะแนน)
 - a. เขียนสมการสัญญาณ u(t) โดยใช้ Double-sideband Suppressed-carrier AM และ carrier signal $c(t) = 2\cos(2000\pi t)$.
 - **b**. Sketch spectrum |U(f)| VOV u(t)
 - \mathbf{c} . Power ของสัญญาณ u(t) เท่ากับเท่าไร
 - **d.** Channel จะค้องมี bandwidth อย่างน้อยเท่าไรจึงจะสามารถส่งสัญญาณ u(t) ได้
 - e. ใช้ receiver ในรูป
 - I) เขียนสมการ y(t)
 - II) จงบอกว่าจะเกิดปัญหาอะไรถ้า $\theta = \frac{\pi}{2}$
 - III) LPF จะต้องมี bandwidth อย่างน้อยเท่าไรเพื่อที่จะได้ y(t) ใกล้เคียง m(t)

d	ച ച ഭി	4 4	
ชื่อ-สกุล	รห์สนักศกษา	เลขทนั้งสอบ	

- 7. ถ้ากำหนดให้ transmitted signal (16 คะแนน)
 - $u(t) = m_1(t)\cos(2\pi f_1 t) + m_2(t)\sin(2\pi f_1 t) + m_2(t)\cos(2\pi f_2 t) + m_4(t)\sin(2\pi f_2 t)$
 - (a) จงเขียน block diagram ของ receiver ที่สามารถแยกสัญญาณ $m_1(t), m_2(t), \ m_3(t), \ m_4(t)$
 - (b) พิสูจน์ว่า receiver ในข้อ a. สามารถแยกสัญญาณ $m_{\rm l}(t)$ ได้ (พิสูจน์เฉพาะ $m_{\rm l}(t)$)

$$\cos^{2}(\theta) = \frac{1}{2} (1 + \cos(2\theta))$$

$$\cos^{3}(\theta) = \frac{1}{4} (3\cos(\theta) + \cos(3\theta))$$

$$\sin(\theta)\sin(\beta) = \frac{1}{2} (\cos(\theta - \beta) - \cos(\theta + \beta))$$

$$\cos(\theta)\cos(\beta) = \frac{1}{2} (\cos(\theta - \beta) + \cos(\theta + \beta))$$

$$\sin(\theta)\cos(\beta) = \frac{1}{2} (\sin(\theta - \beta) + \sin(\theta + \beta))$$

$$\sin(\theta \pm \beta) = \sin\theta\cos\beta \pm \sin\beta\cos\theta$$

$$\cos(\theta \pm \beta) = \cos\theta\cos\beta \mp \sin\theta\sin\beta$$

$$\cos(\theta \pm \beta) = \cos\theta\cos\beta \mp \sin\theta\sin\beta$$

$$\cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$$

$$\sin(\theta) = \frac{1}{2j} (e^{j\theta} - e^{-j\theta})$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$C_{n} = \frac{1}{T_{0}} \int_{T_{0}} x(t)e^{-j2\pi\eta f_{0}t}dt$$

$$E = \int_{-\infty}^{\infty} x(t)e^{-j2\pi\eta f_{0}t}dt$$

$$E = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} X(f)X^{*}(f)df$$

$$P = \frac{1}{T_{0}} \int_{T_{0}} |x(t)|^{2} dt$$

$$\int_{-\infty}^{\infty} e^{-j2\pi\eta f_{0}t}dt = \delta(f)$$