Parameter estimation

Lecture 13a (STAT 24400 F24)

1/15

Parametric model notations

General notation:

- $X_1, \ldots, X_n = \text{data drawn i.i.d. from the distribution}$
- $\theta = \text{the unknown parameter(s)}$
- θ lies in $\Theta = \text{subspace of } \mathbb{R}$ (or \mathbb{R}^2 if two parameters, etc)
- We will write $f(x \mid \theta)$ for the density or PMF of the distribution

e.g., Exponential(
$$\lambda$$
) \leadsto density $f(x \mid \lambda) = \lambda e^{-\lambda x}$

Poisson(
$$\lambda$$
) \rightsquigarrow PMF $f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$

- If frequentist, θ is non-random not a conditional density/PMF
- If Bayesian, θ is random it's a conditional density/PMF

A parametric model

Suppose that we observe data generated from a *known* distribution with *unknown* parameter(s).

For example,

- The data is $N(\mu, \sigma^2)$, with μ unknown (and σ^2 known).
- The data is $N(\mu, \sigma^2)$, with μ and σ^2 unknown.
- The data is Exponential(λ), with λ unknown.
- The data is Binomial(n, p), with n known and p unknown.

How can we estimate the unknown parameter(s)?

How can we perform inference on the unknown parameter(s)?

(Inference includes confidence intervals, credible interval, hypothesis testing, etc.)

2 / 15

Parameter estimation

Given data $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$, would like to estimate the unknown θ

An estimator $\widehat{\theta}$ is any map from \mathbb{R}^n to Θ , mapping the data (X_1, \ldots, X_n) to an estimate $\widehat{\theta}$ of θ

Some familiar examples:

- $N(\mu, \sigma^2)$, with μ unknown (& σ^2 known) $\rightsquigarrow \hat{\mu} = \bar{X}$
- $N(\mu, \sigma^2)$, with $\mu \& \sigma^2$ unknown $\rightsquigarrow (\widehat{\mu}, \widehat{\sigma}^2) = (\overline{X}, S^2)$
- Binomial(n, p), with n known and p unknown $\Rightarrow \hat{p} = \bar{X} = \text{the observed fraction of Heads}$

Note: any estimator $\widehat{\theta}$ must be a function of X_1, \dots, X_n only (it cannot depend on the true value θ since that's unknown)

Unbiasedness of an estimator $\hat{\theta}$

An estimator $\hat{\theta}$ is **unbiased** if $\mathbb{E}(\hat{\theta}) = \theta$, for all values $\theta \in \Theta$.

treat θ as fixed, and draw $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$

For example, for $N(\mu, \sigma^2)$ with μ unknown (& σ^2 known):

- $\widehat{\mu}=\bar{X}$ is unbiased, since $\mathbb{E}(\widehat{\mu})=\mathbb{E}(\bar{X})=\mu$ for any value of μ
- $\widehat{\mu}=2\bar{X}-1$ is not unbiased: $\mathbb{E}(\widehat{\mu})=2\mu-1 \iff \mathbb{E}(\widehat{\mu})=\mu$ only if $\mu=1$

If θ is multidimensional, $\widehat{\theta}$ is unbiased if each of its components is unbiased.

For example, for $N(\mu, \sigma^2)$ with $\mu \& \sigma^2$ unknown:

• $(\widehat{\mu}, \widehat{\sigma}^2) = (\bar{X}, S^2)$ is unbiased, since $\mathbb{E}(\widehat{\mu}) = \mathbb{E}(\bar{X}) = \mu$ and $\mathbb{E}(\widehat{\sigma}^2) = \mathbb{E}(S^2) = \sigma^2$, for any μ, σ^2

 $5\,/\,15$

Parameter estimation (normal mean)

Example: normal sampling — $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

- If $\theta = \mu$ is unknown while σ^2 is known:
 - The family of densities is

$$f(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

- Our usual estimator is $\widehat{\theta} = \overline{X}$
- It is unbiased since $\mathbb{E}(\bar{X}) = \mu$
- $SD(\bar{X}) = SE(\bar{X}) = \sigma/\sqrt{n}$.
- Its sampling distribution is $\bar{X} \sim N(\mu, \sigma^2/n)$

Sampling distribution and standard error of estimator $\hat{\theta}$

The **sampling distribution** is the distribution of $\widehat{\theta}$ (since $\widehat{\theta}$ is a function of the sample)

treat θ as fixed, and draw $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$

(the sampling distribution generally depends on the unknown θ)

Standard error (SE) refers to any estimate of the standard deviation of $\widehat{\theta}$ (true SD may depend on θ , while SE depends on the data but not on θ)

 $6\,/\,15$

Parameter estimation (normal mean & variance)

Example: normal sampling — $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

- If $\theta = (\mu, \sigma^2)$:
 - The family of densities is

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

- Our usual estimators are $\widehat{\theta} = (\bar{X}, S^2)$
- It's unbiased since $\mathbb{E}(\bar{X}) = \mu$ and $\mathbb{E}(S^2) = \sigma^2$.
- Joint sampling distribution:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}), \quad \frac{n-1}{\sigma^2} \cdot S^2 \sim \chi^2_{n-1}, \quad \bar{X} \perp S^2$$

- $SD(\bar{X}) = \sigma/\sqrt{n}$, estimated via $SE(\bar{X}) = S/\sqrt{n}$
- We have not computed $SE(S^2)$ (relates to the χ^2 distrib.)

Goodness of estimator, MSE

For a one-dimensional θ and an estimator $\widehat{\theta}$,

$$\mathsf{MSE} = \mathbb{E}\big((\widehat{\theta} - \theta)^2\big)$$

$$\nwarrow$$

$$\mathsf{treat} \; \theta \; \mathsf{as} \; \mathsf{fixed, and draw} \; X_1, \dots, X_n \overset{\mathsf{iid}}{\sim} f(\cdot \mid \theta)$$

- MSE generally depends on the unknown θ
- If $\widehat{\theta}$ is unbiased, then $\mathbb{E}(\widehat{\theta}) = \theta \Rightarrow \mathsf{MSE} = \mathsf{Var}(\widehat{\theta})$
- In general:

$$\mathsf{MSE} = \mathbb{E}\Big(\underbrace{\big(\big(\mathbb{E}(\widehat{\theta}) - \theta\big) + (\widehat{\theta} - \mathbb{E}(\widehat{\theta}))\big)^2}_{= \text{ constant}}$$

$$= (\mathbb{E}(\widehat{\theta}) - \theta)^2 + \underbrace{\mathbb{E}\Big(\big(\widehat{\theta} - \mathbb{E}(\widehat{\theta}))^2\Big)}_{= \mathsf{Var}(\widehat{\theta})} + 2(\mathbb{E}(\widehat{\theta}) - \theta) \cdot \underbrace{\mathbb{E}(\widehat{\theta} - \mathbb{E}(\widehat{\theta}))}_{= 0}$$

$$= (\mathbb{E}(\widehat{\theta}) - \theta)^2 + \mathsf{Var}(\widehat{\theta})$$

9 / 15

The bias-variance tradeoff

$$\mathsf{MSE} = \left(\underbrace{\mathbb{E}(\widehat{\theta}) - \theta}\right)^2 + \mathsf{Var}(\widehat{\theta})$$

The bias/variance tradeoff:

sometimes we can reduce one term at the cost of increasing the other.

For normal data:

- The sample mean $\hat{\mu} = \bar{X}$ has zero bias, and variance $= \sigma^2/n$
- The estimator $\hat{\mu} \equiv 0$ has high bias (for most μ 's), and variance = 0

10 / 15

Method of moments - outline

The **method of moments** (MoM) is a strategy for constructing an estimator $\widehat{\theta}$.

If θ is one-dimensional:

- Compute the population mean $\mathbb{E}(X)$ as a function of θ
- Compute the sample mean $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$
- Choose $\widehat{\theta}$ as the value of θ so that $\mathbb{E}(X) = \bar{X}$

If θ is k-dimensional:

- Compute population moments $\mathbb{E}(X)$, $\mathbb{E}(X^2)$, ..., $\mathbb{E}(X^k)$ as functions of θ
- Compute the sample moments $\frac{1}{n}\sum_i X_i$, $\frac{1}{n}\sum_i X_i^2$, ..., $\frac{1}{n}\sum_i X_i^k$
- Choose $\widehat{\theta}$ as the value of θ so that $\mathbb{E}(X^j) = \frac{1}{n} \sum_i X_i^j$ for all j (solving a system of k equations, for a k-dimensional unknown)

The method is better illustrated by examples.

Method of moments example: Normal mean (σ^2 is known)

Example: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ for unknown $\mu \in \mathbb{R}$ (σ^2 is known.

Goal: Construct an estimator $\hat{\mu}$ for parameter μ using Method of moments.

• The density is

$$f(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

- For $X \sim f(\cdot \mid \mu)$, $\mathbb{E}(X) = \mu$
- Apply MoM to calculate $\widehat{\mu}$:

$$\bar{X} = \hat{\mu}$$

Method of moments example: Normal μ, σ^2

Example: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ for unknown $\mu \in \mathbb{R}$, $\sigma^2 > 0$.

Goal: Construct estimators $\hat{\mu}, \hat{\sigma}^2$ for parameters μ, σ^2 using MoM.

- The density is $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$
- For $X \sim f(\cdot \mid \mu, \sigma^2)$, $\mathbb{E}(X) = \mu$ and $\mathbb{E}(X^2) = \mu^2 + \sigma^2$
- Apply MoM to calculate $\widehat{\mu}, \widehat{\sigma}^2$:

$$ar{X}=\widehat{\mu}$$

$$rac{1}{n}\sum_i X_i^2 = \widehat{\mu}^2 + \widehat{\sigma}^2$$
 compare to $rac{1}{n-1}$ for S^2

 $\Rightarrow \hat{\mu} = \bar{X} \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i} X_i^2 - \hat{\mu}^2 = \frac{1}{n} \sum_{i} X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i} (X_i - \bar{X})^2$

13 / 15

Method of moments example: Uniform

Example: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$ for unknown $\theta > 0$

• The density is

$$f(x \mid \theta) = \frac{1}{\theta} \cdot \mathbb{1}_{0 \le x \le \theta}$$

• For $X \sim f(\cdot \mid \theta)$,

$$\mathbb{E}(X) = \int_{x=0}^{ heta} x \cdot rac{1}{ heta} \ \mathsf{d} heta = rac{ heta}{2}.$$

• Apply method of moments to calculate $\widehat{\theta}$:

$$\bar{X} = \frac{\widehat{\theta}}{2} \quad \Rightarrow \quad \widehat{\theta} = 2\bar{X}.$$

Method of moments example: Exponential

Example: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Exponential}(\lambda)$ for unknown $\lambda > 0$

The density is

$$f(x \mid \lambda) = \lambda e^{-\lambda x} \cdot \mathbb{1}_{x > 0}$$

- For $X \sim f(\cdot \mid \lambda)$, $\mathbb{E}(X) = 1/\lambda$
- Apply MoM to calculate $\widehat{\lambda}$:

$$ar{X} = rac{1}{\widehat{\lambda}} \quad \Rightarrow \quad \widehat{\lambda} = rac{1}{ar{X}}.$$

 $14\,/\,15$