しる ①性质 後性: Saifilt) -> Saifils> MAS: $f(t-kT)u(t-kT) \Rightarrow F(s) = \sum_{k=0}^{\infty} F(s) = \frac{F_k(s)}{1-e^{-k}}$. ISTILE S.t. (H) -> FLS-S.) 尺点: flat) - falf(を) Conj: $f'(t) \longrightarrow F^*(s^*)$ $tage: f_1(t)f_{1(t)} \longrightarrow \frac{13\times12}{2\pi j}$ $\frac{1}{2\pi j}$ $\frac{1}{2\pi j}$ $\frac{1}{2\pi j}$ $\frac{1}{2\pi j}$ $\frac{1}{2\pi i}$ $\frac{1$ S帧は:-tft) -> df(s) オから(な: f(o+)= lim f(t)= lim sf(s), lim f(t)= lim sf(s). too too 四表 SH) -> 1 s(t-t) -> ē sto $S(t-t) \rightarrow e^{-w}$ $S(t-t) \rightarrow$ **从下的种**地. e^{at} with $\rightarrow \frac{1}{s+a}$ $\frac{t^n}{n!}e^{at}$ $\rightarrow \frac{1}{(s-a)^{n+1}}$ $\Rightarrow \frac{1}{s^2-b^2}$ Simust -> W Count -> S = at simust -> W = at count -> Sta (Sta) +w = at count -> Sta (Sta) +w = (St 选:虚钱 u同=4 $+ sinwt \rightarrow \frac{2sw}{(s^2+w^2)^2} + coswt \rightarrow \frac{s^2-w^2}{(s^2+w^2)^2} + sinh(at) \rightarrow \frac{a}{s^2-a^2} + cosh(at) \rightarrow \frac{s}{s^2-a^2}$ 萬斯 调=证=0 i(t)= 110/k -> i(5)= 1/10/k AOL OF -Va R-F)AOL=Y in- Cdy - u(s) = 50 us+ u(o), ils) = scu(s)-cu(o)

Fire = (11, 18) = 1 ftode

3th for einde . f = inffimed dw

性质: ① f(f(f(n))=2Tf(-w) (对称性) 包含性 ③ f(f(at))= [a|f(=) ④ f(f(t-to))=F(w)e)wto

fyline)= Flw-w)

 $\oint \left(\frac{d^{n}f(t)}{dt^{n}}\right) = (jw)^{n}F(w)$ $\oint \left(\frac{d^{-n}f(t)}{dn}\right) = \iint f(t) dt = \frac{f(w)}{jw} + nF(s)dw$

O fictorficts - filmfilm/ filmfilm = infilmfilm

D图的多至于(10) u(t-KT) -> fn=frow) | w=nw1, w为 知识处

 $e^{-\alpha t}U(t) \rightarrow \frac{1}{\alpha + jw}$ $e^{-(\alpha t)t} \rightarrow \frac{2\alpha}{\beta^{2}+w^{2}}$ $u(t+\frac{1}{\epsilon}) - u(t-\frac{1}{\epsilon}) \rightarrow \frac{1}{\epsilon} \frac{1}{k} \frac{1}{$

Property	Section	Periodic Signal	Fourier Series Coefficients	L18	$e^{-at}(1-at)$	$\frac{p}{(p+a)^2}$
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$	L20	$\frac{1}{t}\sin at\cos bt$, $\frac{1}{2}\left(\arctan \frac{a}{t}\right)$	$\frac{+b}{p} + \arctan \frac{a-b}{p}$
Linearity Time Shifting Frequency Shifting	3.5.1 3.5.2	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M}	L21	$\frac{e^{-at}-e^{-bt}}{t}$	$\ln \frac{p+b}{p+a}$
Conjugation Time Reversal Time Scaling	3.5.6 3.5.3 3.5.4	$x^*(t)$ x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a^*_{-k} a_{-k} a_k	L22	$1 - \operatorname{erf}\left(\frac{a}{2\sqrt{t}}\right), a > 0$ (See Chapter 11, Section 9)	$\frac{1}{p} e^{-a\sqrt{p}}$
Periodic Convolution Multiplication	3.5.5	$\int_{T} x(\tau)y(t-\tau)d\tau$ $x(t)y(t)$	Ta_kb_k $\sum_{l=-\infty}^{+\infty}a_lb_{k-l}$	L23	$J_0(at)$ (See Chapter 12, Section 12)	$(p^2 + a^2)^{-1/2}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$	L24	$u(t-a) = \begin{cases} 1, & t > a > 0 \\ 0, & t < a \end{cases}$	$\frac{1}{p}e^{-pa}$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$	(1	unit step, or Heaviside function)	$e^{-ap} - e^{-bp}$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$egin{array}{l} \{a_k = a_{-k}^* \ \Re e\{a_k\} = \Re e\{a_{-k}\} \ \Im e\{a_k\} = -\Im e\{a_{-k}\} \ a_k = a_{-k} \ \& a_k = -\& a_{-k} \ \end{array}$	L25	$f(t) = u(t - a) - u(t - b)$ $\downarrow 1$ $\downarrow 0$ a b	p
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	x(t) real and even x(t) real and odd $\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re\{a_k\}$ $j \Im\{a_k\}$	L26	f(t) t	$\frac{1}{p}\tanh\left(\frac{1}{2}ap\right)$
	р.	arseval's Relation for Periodic Signals			-1 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2a & 3a & 4a \end{bmatrix}$	

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

L5	$t^k, \ k > -1$	$\frac{k!}{p^{k+1}}$ or $\frac{\Gamma(k+1)}{p^{k+1}}$	Property	Periodic Signal	Fourier Series Coefficients
L6	$t^k e^{-at},\ k>-1$	$\frac{k!}{(p+a)^{k+1}} \text{ or } \frac{\Gamma(k+1)}{(p+a)^{k+1}}$		$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \left\{ \begin{array}{l} a_k \\ b_k \end{array} \right\} Periodic with period N$
L7	$\frac{e^{-at} - e^{-bt}}{b - a}$	$\frac{1}{(p+a)(p+b)}$	Linearity Time Shifting	$Ax[n] + By[n] x[n - n_0]$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$
<i>L</i> 8	$\frac{ae^{-at} - be^{-bt}}{a - b}$	$\frac{p}{(p+a)(p+b)}$	Frequency Shifting Conjugation Time Reversal	$e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$	a_{k-M} a_{-k}^* a_{-k}
L9	$\sinh at$	$\frac{a}{p^2 - a^2}$	Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k$ (viewed as periodic) with period mN
L10	$\cosh at$	$\frac{p}{p^2 - a^2}$	Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
L11	$t \sin at$	$\frac{2ap}{(p^2 + a^2)^2}$	Multiplication	x[n]y[n]	$\sum_{l=\langle N\rangle}a_lb_{k-l}$
T 10	1000-1	-	First Difference	x[n]-x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
L12	$t\cos at$	$\frac{p^2 - a^2}{(p^2 + a^2)^2}$	Running Sum	$\sum_{k=-\infty}^{n} x[k] \begin{cases} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{cases}$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
L13	$e^{-at}\sin bt$	$\frac{b}{(p+a)^2 + b^2}$		K = -00 (0	$a_k = a_{-k}^*$
L14	$e^{-at}\cos bt$	$\frac{p+a}{(p+a)^2+b^2}$	Conjugate Symmetry for	x[n] real	$\Re\{a_k\} = \Re\{a_{-k}\}$ $\Im\{a_k\} = -\Im\{a_{-k}\}$
L15	$1-\cos at$	$\frac{a^2}{p(p^2+a^2)}$	Real Signals		$ a_k = a_{-k} $
L16	$at - \sin at$	$\frac{a^3}{p^2(p^2+a^2)}$	Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
F 15		$\frac{2a^3}{(p^2+a^2)^2}$	Even-Odd Decomposition	$\int x_e[n] = \mathcal{E}v\{x[n]\} [x[n] \text{ real}]$	$\Re e\{a_k\}$
$L17 \sin at - at \cos at$	$(n^2 + n^2)^2$	of Real Signals	$\begin{cases} x_o[n] = \Theta d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$j\mathfrak{G}m\{a_k\}$	

$$0 \leq \omega_k = \frac{2\pi}{N} k < 2\pi$$

 $\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$ 当 $N o \infty$, DFT对于区间 $[0,2\pi]$ 的划分越来越细致, ω_k 从离散的值最终变成整个实数区间。(相当于往区间 $[0,2\pi]$ 中不断插值),或者说DFT是DTFT在 $\omega=rac{2\pi}{N}k$ 处的采样。

$$X\left(\omega
ight)=\sum_{n=-\infty}^{\infty}x\left[n
ight]e^{-j\omega n},0\leq\omega<2\pi$$

DTFT是 $N o \infty$ 时DFT的极限。