第 11 章 2024 秋代数学 (研) 期末试题

▲ 练习 11.1(20 分)

- 1. 验证:ann(R) 是 M 的双边理想.
- 2. 设 $_RM$ 是 Noether 模且环 R 交换, 证明: 商环 R/ann(M) 是 Noether 环.
- 3. 设 $_RM$ 是 Artin 模且环 R 交换, 讨论: 商环 R/ann(M) 是否总为 Artin 环?(提示: $\mathbb{Z}[1/p]/\mathbb{Z}$.)
- 4. 断言(2)对于非交换环是否总成立?
- 练习 11.2(40 分) 考虑 \mathbb{C} 上的有限生成代数 $R = \mathbb{C}[x_1, x_2, \cdots, x_n]/I$, 以及形式幂级数代数 $\mathbb{C}[[y]] = \{\sum_{i=0}^{\infty} a_i y^i | a_i \in \mathbb{C}\}$, 及其分式域 $\mathbb{C}((y))$. 回顾 $\mathrm{rad}(R) = \bigcap_{\mathfrak{m} \in \mathrm{Max}(R)} \mathfrak{m}$ 为 Jacobson 根.
 - 1. 对于任意多项式 $f = f(x_1, x_2, \dots, x_n)$, 证明: $f + I \in rad(R)$ 当且仅当 $f \in \sqrt{I}$.
 - 2. 计算并论证:ℂ[[*y*]] 的 Jacobson 根和 nil 根.
 - 3. 证明: $\mathbb{C}[[y]]$ 不同构于任何有限生成复代数.
 - 4. 描述 C[[y]] 的所有有限生成不可分解模, 并计算这些模的自同态代数.
 - 5. 考虑自然的 $\mathbb{C}[[y]]$ 模 $L = \mathbb{C}((y))/\mathbb{C}[[y]]$. 计算并论证:L 是否为 Noether 模? 是否为 Artin 模? 是否为 不可分解模?
- ▲ 练习 11.3(20 分) 设 A 为有限维复代数. 考虑有限维左 A- 模 V 及其相应地代数同态 ρ : A → End_ℂ(V).
 - 1. 试证明: 模 V 是单的, 当且仅当 ρ 是满射.
 - 2. 设 A 复半单代数. 考虑另外的左 A 模 (V', ρ') . 证明: 模 V 和 V' 同构, 当且仅当 $\mathrm{Ker}(\rho) = \mathrm{Ker}(\rho')$.
 - 3. 设基域改为实数域. 类似 (1) 中, 考虑单的左 A— 模 V 以及相应的实代数同态 ρ : $A \to \operatorname{End}_{\mathbb{R}}(V)$. 是 否仍有 ρ 总是满射?
- 练习 11.4(15 分) 考虑集合 $X = \{ \text{有序对}(i,j) | i,j=1,2,3 \}$, 对称群 S_3 自然作用到 $X \perp , g(i,j) = (g(i),g(j))$. 试将 S_3 的置换表示 $\mathbb{C}X$ 分解为不可约表示的直和. 提示: 同构意义下, 描述其不可分解直和项及其相应的重数即可.
- **练习 11.5(5** 分) 设 $m,n \ge 1$. 设有 (保持单位元的) 复代数同态 $M_n(\mathbb{C}) \to M_m(\mathbb{C})$. 试证明:n 整除 m.