

# 12 08/2017

| Centre number |        | Candidate number |  |
|---------------|--------|------------------|--|
| Surname       | RHODES |                  |  |
| orename(s)    | JACHIE |                  |  |

# GCSE MATHEMATICS

H

Higher Tier

Paper 3 Calculator

Tuesday 13 June 2017

Morning

Time allowed: 1 hour 30 minutes

#### **Materials**

For this paper you must have:

- a calculator
- · mathematical instruments.



#### Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
   These must be tagged securely to this answer book.

#### Advice

• In all calculations, show clearly how you work out your answer.

| For Exami | ner's Use |
|-----------|-----------|
| Pages     | Mark      |
| 2–3       |           |
| 4–5       |           |
| 6–7       |           |
| 8–9       |           |
| 10–11     |           |
| 12–13     |           |
| 14–15     |           |
| 16–17     |           |
| 18–19     |           |
| 20–21     |           |
| 22–23     |           |
| 24–25     |           |
| 26        |           |
| TOTAL     |           |



# Answer all questions in the spaces provided

1 
$$\mathbf{a} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$$
 and  $\mathbf{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$   $2 \begin{pmatrix} -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix} - \begin{pmatrix} 3 \\$ 

[1 mark]



Which of these values of n makes  $2.7 \times 10^n$  a cube number? Circle your answer.

[1 mark]

0 1 2 3 
$$2 \cdot 7 \times 10^{2} = 27 + 27 = 3^{3}$$

Rearrange  $2x = \frac{y}{w}$  to make w the subject.

Circle your answer.

[1 mark]

$$w = \frac{2y}{x} \qquad w = \frac{2x}{y} \qquad w = \frac{x}{2y}$$

$$(x - y) \qquad 2x \qquad = \qquad (x - y)$$

$$\frac{2y}{2x} \qquad = \qquad (x - y)$$

$$\frac{2y}{2x} \qquad = \qquad (x - y)$$

4



Work out the bearing of *C* from *A*. Circle your answer.

030°

130°

150°

[1 mark]

210°

Turn over for the next question

5 A coin lands on Tails 200 times.

The relative frequency of Tails is 0.4

Work out the number of times the coin was thrown.

[2 marks]

200 = 500

Answer 500

6 How are the whole number solutions to A and B different?

A Solve  $3 \leqslant 3x < 18$ 

B Solve  $3 < 3x \le 18$ 

[2 marks]

1 3 5 3 5 c < 18 +3 +3 3 < 3 c < 18 1 < 3 c < 6

Solchans:

A: 1,2,3,4,5

B: 2,3,4,5,6

A mildes 1 bt not 6

B does not include 1 St includer 6

7 (a) The length of a pipe is 6 metres to the nearest metre.

Complete the error interval for the length of the pipe.



[2 marks]

Answer  $5.5 \text{ m} \leq \text{length} < 6.5 \text{ m}$ 

7 (b) The length of a different pipe is 4 metres to the nearest metre.

Olly says,

"The total length of the two pipes is 11 metres to the nearest metre."

Give an example to show that he could be correct.

|    |     | - 1 | 1 |
|----|-----|-----|---|
| 1  |     | -   | - |
| 1- | - 6 | 1   |   |

6.5 + 4.5 = 11

Turn over for the next question

|         | /              |                       | Not drawn accurately |
|---------|----------------|-----------------------|----------------------|
|         |                |                       |                      |
| For ea  | ach statement, | tick the correct box. |                      |
| The tr  | iangles are eq | uilateral.            | [1 n                 |
|         |                | Must be true          |                      |
|         |                | Could be true         |                      |
|         |                | Must be false         |                      |
| The tri | angles are cor | gruent.               | F4                   |
|         |                | Must be true          | [1 m                 |
|         |                | Could be true         |                      |
|         |                | Must be false         |                      |



9 There are 720 boys and 700 girls in a school.

The probability that a boy chosen at random studies French is  $\frac{2}{3}$   $\times$  7

The probability that a girl chosen at random studies French is  $\frac{3}{5}$  ×700

9 (a) Work out the number of students in the school who study French.

[3 marks]



Answer 900

9 (b) Work out the probability that a student chosen at random from the whole school does **not** study French.

[2 marks]

$$\frac{520}{900} = \frac{26}{45}$$
Answer  $\frac{26}{45}$ 

AB, CD and EF are straight lines.



Not drawn accurately

10 (a) Ava assumes that AB and CD are parallel.

What answer should she get for the size of angle y?

[4 marks]

$$25C + 10 = 50c - 20 \qquad 35c - 20 =$$

$$-18c \qquad -25c \qquad 3 \times 30 - 20 =$$

$$10 = 5c - 20 \qquad 90 - 20 = 70$$

$$+20 \qquad +20$$

$$30 = 3c$$

$$4 = 180 - 70 = 110$$

Answer

degrees

10 (b) In fact,

AB and CD are **not** parallel angle w is 60°

What effect does this have on the size of angle y? Tick a box.



y is bigger



y is the same



y is smaller



Show working to support your answer.

[3 marks]

$$23c + 10 = 60 \quad \text{if } 3c = 25$$

$$43c = 50 \quad 33c - 20 = 3 \times 25 - 20$$

$$5c = 25 \quad = 55^{\circ}$$

y = 120 - SS = 125°

Turn over for the next question

Turn over ▶

[3 marks]

Purple paint is made by mixing red paint and blue paint in the ratio 5 : 2
Yan has 30 litres of red paint and 9 litres of blue paint.

What is the maximum amount of purple paint he can make?

x4-5( q) x4-5



Answer 31.5 litres

12  $\left(ar^{b}\right)^{4} = 16r^{20}$  where a and b are positive integers.

Work out a and b

[2 marks]

$$a = 16$$
  $a = \sqrt{16}$  =  $\frac{20}{4} = 5$ 

$$a = 2$$
  $b = 5$ 

13 In a class of 28 students

the mean height of the 12 boys is 1.58 metres the mean height of all 28 students is 1.52 metres.

Work out the mean height of the girls.

[4 marks]

boys 12×1.58 = 18.96

maen = how many

all 28 x 1.52 = 92.56

28-12= 16 girly

42-56-18-96 = 23-6

girla man= 23.6

Answer

1.475

metres

14 xy = c where  $\underline{c}$  is a constant. Circle the correct statement.

x= 5, y= 5

[1 mark]

y is directly proportional to x

y is directly proportional to  $\frac{1}{x}$ 

y is inversely proportional to  $\frac{1}{x}$ 

x is directly proportional to y

Turn over for the next question

The graph shows the depth of water in a harbour for 12 hours.

d is the depth of water in a harbour in metres

t is the number of hours after 9 am



15 (a) For how many of the 12 hours is the depth more than 5 metres?

[1 mark]

Answer

15 (b) By how much does the depth change between 12 noon and 4 pm?

[1 mark]

Answer 3 metres

| 16 | The value of | a new | car | is | £18 | 000 |
|----|--------------|-------|-----|----|-----|-----|
|    |              |       |     |    |     |     |

The value of the car decreases by

25% in the first year 75% left

12% in each of the next 4 years. 88%

Work out the value of the car after 5 years.

[3 marks]

18000 × 75% × 85% = 8095.867

Answer £ 2095.89



17 Liam drives his car.

He drives the first 9 miles in 9 minutes. 60 mph

He then drives at an average speed of 70 miles per hour for 1 hour 36 minutes.

He finds this information about his car.

| Distance  | Average speed               | Miles travelled per gallon | (mpg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a niles   | 65 miles per hour or less   | 50                         | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 112 miles | More than 65 miles per hour | 40                         | The state of the s |

Use the information to show that his car uses less than 3 gallons of petrol for the drive.

[5 marks]

D=SxT =  $70 \times 1\frac{36}{60} = 112$  miles

112 miles & 40 m/g112 - 40 = 2.8 gallons9 miles at 50 mps9 = 0.18 = 0.18 gallons2.8 + 0.18 = 2.98 gallons



Nick sketches the graph of  $y = 0.5^x$  for  $x \ge 0$ 



Make one criticism of his sketch.

[1 mark]

when 
$$sc=0$$
  $y=1$  (not 0.5) as  $6-5^{\circ}=1$ 

19 A, B, C, D and E are points on a circle.

BFD and AFC are straight lines.



Not drawn accurately

Work out the size of angle x.

You must show your working which may be on the diagram.

[4 marks]

degrees

This sign shows when a lift is safe to use.

Total mass of people must be 450 kg or less

< 450 kg

Ben and some other people are in the lift.

Their total mass is 525 kg to the nearest 5 kg

Ben gets out.

He has a mass of 78 kg to the nearest kg

Is the lift now safe to use?

You must show your working.

| 1 1',   | 255. 253.  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | [4 marks] |
|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| rifle 2 | 20   525   | 530 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in 522.5  | may 527-5 |
| 7       | 7.5 78.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |
| Ben 77  | 78 79      | m:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , m·s     | max 78-5  |
| hood    | 522.5 - 78 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++4       | K.        |
|         | max - m    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 3         |
| max     | 527.5 - 7  | 7-5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 450       | K5        |
|         | Answer     | The second secon | lift ose. | - 15      |

Turn over for the next question





21 Here is a sketch of y = f(x) where f(x) is a quadratic function. The graph intersects the x-axis where x = -2.5 and x = 1



Circle the solution of f(x) > 0

[1 mark]

$$x < -2.5 \text{ or } x > 1$$

$$x < -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x > 1 \times x > -2.5 \text{ or } x$$

$$x > -2.5 \text{ or } x < 1$$

## Work out an expression for the *n*th term of the quadratic sequence

17 40

Give your answer in the form  $an^2 + bn + c$  where a, b and c are constants.

71

[3 marks]



12=1 4 9 16

2

5-3 6 9 71 5-3 6 9 71

+3 +3 +3

Answer 4n+3n-5

Here is a sketch of  $y = x^2 + bx + c$ 

The curve intersects

the x-axis at (5, 0) and point P

the y-axis at (0, -10)



Work out the *x*-coordinate of the turning point of the graph.

[4 marks]

$$y = 3c^{2} + 53c + 6$$

$$y = 3c^{2} + 53c + 6$$

$$0 = (3c - 5)(3c + 2)$$

$$0 = 5^{2} + 53c - 10$$

$$0 = 25 - 10 + 5x$$

$$0 = (-1, 0)$$

$$0 = 15 + 53c$$

$$-15 - 15$$

$$-17 = 56c$$

$$3c = -3$$

$$-2 + 3.5 = 1.5$$

$$y = 3c^{2} - 33c - 10$$

Answer  $\Delta = 1.5$ 

A ball is thrown from a point 6 metres above the ground.

The graph shows the height of the ball above the ground, in metres.



Estimate the speed of the ball, in m/s, after 1 second.

You must show your working.

[2 marks]

$$V = \frac{d}{E} = \frac{3}{2} = 1.5 \text{ m/s}$$



25 (b) Work out the size of angle ECM.

[4 marks]



1C= 2 5241 (MC)= 964

(OPP)

9/ C

ten D = OPI

0 = ten /

25241)

0 - 25 - 78599

Answer

25.8

degrees

Turn over for the next question

6

Turn over ▶

Rectangle ABCD is the horizontal base of a triangular prism ABCDEF.

$$AE = BE$$

E is vertically above M, the midpoint of AB.

$$AB = 16 \text{ cm}$$

$$AE = 17 \text{ cm}$$

$$BC = 30 \text{ cm}$$



**25 (a)** Show that EM = 15 cm

[2 marks]

$$17/4$$
 EM  $(EM)^2 = 17^2 - 8^2$   
 $8$  EM =  $5/7^2 - 8^2$ 

Here is an L-shape.

All dimensions are in centimetres.





The area of the L-shape is 65 cm<sup>2</sup>

Work out the value of x.

[6 marks]

$$-33c^{2} - 385c - 10$$

$$-33c^{2} - 385c - 10$$

$$+33c^{2} - 385c - 10$$

$$\frac{\text{Check}}{9c = 9 \times \frac{5}{7}} = 15$$

$$(10-3c)=\frac{25}{3}(3x+1)=6$$
  $\frac{25}{3}x6=50$ 

Answer 
$$SC = \frac{5}{3}$$

| 27 Prove that $x^2$ | + x + 1 is always positiv | <u>e.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [3 marks]    |
|---------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| DC (DC +            | 1) +1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC + 0.5     |
|                     |                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.275 40.52 |
| = ( )c + 0.5        | -0.25 +1                  | + 6.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.275 40.58 |
|                     |                           | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 36 + 0.25  |
| = ()1+0.5)          | +0.75                     | Mark the second of the second |              |
| Ar bea              | 0.5) 2 id                 | d dray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s ce         |
| pailhe              | the the                   | salation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lei .        |
| alwass              | be positi                 | œ'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| positive<br>always  | then the                  | sal-tian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le i         |

### **END OF QUESTIONS**