Monte Carlo Assignment

Name: Naman Goyal Roll No: 180123029

Lab No: **04**

Ques.1)

--> Beta Distribution:

(a1,a2) are chosen and value of a point x^* is calculated by the following formula:

$$x* = (a1-1)/(a1+a2-2)$$

-> x^* is the point where our Beta function maximizes and value of function at x^* . That is $f(x^*) = c$.

1.)

a1 = 1, a2 = 5

Generated Frequencies: Value of (a1,a2) = (1,5) Value of x* = 0.0 Value of c = 5.0

Calculated value of $x^* = 0.0$ and $f(x^*) = 5.0$.

2.)

Calculated value of $x^* = 1.0$ and $f(x^*) = 5.0$

3.)

a1 = 2, a2 = 3

Calculated value of $x^* = 0.33$ and $f(x^*) = 1.77$

a1 = 3, a2 = 2

Calculated value of $x^* = 0.66$ and $f(x^*) = 1.77$

5.)

a1 = 3, a2 = 3

Generated Frequencies: Value of (a1,a2) = (3,3)Value of $x^* = 0.5$ Value of c = 1.875

Caculated value of $x^* = 0.5$ and $f(x^*) = 1.875$

Some Observations:

- -> The peak depends on the values of a1,a2. Thus in the 1^{st} case we observe the graph to be decreasing as the peak shifts towards the left side. Thus changing a1 we can change the value of x having the peak value.
- -> In the 2^{nd} fig I interchanged the value of a1,a2 from the previous problem. Since the value of a2 becomes 1 hence the graph shown is increasing since the value of x^* becomes 1.
- -> In 3^{rd} and 4^{th} fig I have taken some values of a1,a2, in the former case we have peak to the left of x = 0.5, because a1<a2 and in the later case I have peak to the right of x = 0.5 because I just interchanged the value of a1 and a2.
- -> In 5^{th} fig, I kept the value of a1 = a2 = 2 which results in value of peak to be at exact x = 1.5 that is the middle because we have same values of a1 and a2.