VERSACHI: Finding Statistically Significant Subgraph Matches using Chebyshev's Inequality

SHUBHANGI AGARWAL[†] sagarwal@cse.iitk.ac.in

SOURAV DUTTA^{††} sourav.dutta2@huawei.com

ARNAB BHATTACHARYA†
arnabb@cse.iitk.ac.in

November, 2021 CIKM 2021, Gold Coast, Queensland, Australia (online)

[†]Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

^{††}Huawei Research Centre, Dublin, Ireland

Subgraph querying is useful in frequent pattern mining, community detection, question answering etc.

Motivation

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION)

FIGURE 2: QUERY

Subgraph querying is useful in frequent pattern mining, community detection, question answering etc.

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION)

FIGURE 2: QUERY

- Two types of matches:
 - Exact matches
 - Approximate Subgraph Matching

Subgraph querying is useful in frequent pattern mining, community detection, question answering etc.

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION)

FIGURE 2: QUERY

- Two types of matches:
 - Exact matches
 - Approximate Subgraph Matching

Subgraph querying is useful in frequent pattern mining, community detection, question answering etc.

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION)

FIGURE 2: QUERY

- Two types of matches:
 - Exact matches
 - Approximate Subgraph Matching

• Similarity metric?

Subgraph querying is useful in frequent pattern mining, community detection, question answering etc.

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION)

FIGURE 2: QUERY

- Two types of matches:
 - Exact matches
 - Approximate Subgraph Matching

- Similarity metric?
 - Statistical Significance (χ^2)

- Capture underlying distribution
 - Chebyshev's Inequality

Introduction Aim @ CIKM 2021

Aim

Goal: Find top-k best approximate matches of the query in the target graph.

Goal: Find top-k best approximate matches of the query in the target graph.

VERSACHI - <u>Vertex Neighborhood Aggregation for Statistically Significant</u> Subgraphs via <u>Chebyshev's Inequality</u>

Goal: Find top-k best approximate matches of the query in the target graph.

VERSACHI - <u>Vertex Neighborhood Aggregation for Statistically Significant</u> Subgraphs via <u>Chebyshev's Inequality</u>

• Capture two-hop similarity of $v \in \mathcal{G}$ with $q \in \mathcal{Q}$

Goal: Find top-k best approximate matches of the query in the target graph.

VERSACHI - <u>Vertex Neighborhood Aggregation for Statistically Significant</u> Subgraphs via Chebyshev's Inequality

- Capture two-hop similarity of $v \in \mathcal{G}$ with $q \in \mathcal{Q}$
- · Chebyshev's Inequality
 - Probability of deviation based on mean and standard deviation

Goal: Find top-k best approximate matches of the query in the target graph.

VERSACHI - <u>Vertex Neighborhood Aggregation for Statistically Significant</u> Subgraphs via <u>Chebyshev's Inequality</u>

- Capture two-hop similarity of $v \in \mathcal{G}$ with $q \in \mathcal{Q}$
- · Chebyshev's Inequality
 - Probability of deviation based on mean and standard deviation
- Pearson's χ^2 statistic
 - Deviation of observed from expected underlying distribution

VERSACHI Overview @ CIKM 2021

VERSACHI

Offline Phase

- Create indexes
- 2. Neighbor similarity $(\eta_{u,v})$
- 3. Graph characteristics
- 4. Discretize values (into category symbols, σ_i)
- 5. Probability of σ_i (using Chebyshev)

Online (Querying) Phase

- i. Create candidate pairs $\langle v, q \rangle$ (using indexes)
- ii. Symbol sequence $(1^{st} \text{ and } 2^{nd} \text{ hop neighbors})$
- iii. Compute similarity of $\langle v, q \rangle$ (statistical significance)
- iv. Greedy expansion

VERSACHI Overview @ CIKM 2021

VERSACHI

Offline Phase

- 1. Create indexes
- 2. Neighbor similarity $(\eta_{u,v})$
- 3. Graph characteristics
- 4. Discretize values (into category symbols, σ_i)
- 5. Probability of σ_i (using Chebyshev)

Online (Querying) Phase

- i. Create candidate pairs $\langle v, q \rangle$ (using indexes)
- ii. Symbol sequence $(1^{st} \text{ and } 2^{nd} \text{ hop neighbors})$
- iii. Compute similarity of $\langle v, q \rangle$ (statistical significance)
- iv. Greedy expansion

VERSACHI Overview @ CIKM 2021

VERSACHI

Offline Phase

- Create indexes
- 2. Neighbor similarity $(\eta_{u,v})$
- 3. Graph characteristics
- 4. Discretize values (into category symbols, σ_i)
- 5. Probability of σ_i (using Chebyshev)

Online (Querying) Phase

- i. Create candidate pairs $\langle v, q \rangle$ (using indexes)
- ii. Symbol sequence $(1^{st} \text{ and } 2^{nd} \text{ hop neighbors})$
- iii. Compute similarity of $\langle v, q \rangle$ (statistical significance)
- iv. Greedy expansion

FIGURE 3: Example Target Graph (\mathcal{G})

Steps

- 1. Create indexes
- 1. Inverted Label index $(IL_{\mathcal{G}})$ map labels to vertices

2. Neighbor Label index $(NL_{\mathcal{G}})$ – labels of neighbors

FIGURE 3: EXAMPLE TARGET GRAPH (\mathcal{G})

$IL_{\mathcal{G}}$ index		
Label Vertex		
A	$\{v_1, v_5\}$	
В	$\{v_2, v_3\}$	
C	$\{v_7, v_8\}$	
D	$\{v_4, v_6\}$	

– Neighbors of
$$v_1 = \{v_2, v_3, v_4\}$$

–
$$NL_{\mathcal{G}}$$
 index of v_1
$$\mathcal{N}(v_1) = \{A, B, B, D\}$$

Steps

- 1. Create indexes
- Neighbor similarity

- Capture neighborhood overlap

 Penalize absence of neighbor labels
- 2. Done $\forall u, v \in \mathcal{G}$
- 3. Modified Tversky index ($\gamma = 3$)

$$\eta_{u,v} = \frac{|\mathcal{N}(u) \cap \mathcal{N}(v)|}{|\mathcal{N}(u) \cap \mathcal{N}(v)| + |\mathcal{N}(v) \setminus \mathcal{N}(u)|^{\gamma}} \text{Eigure 3: Example Target Graph } (\mathcal{G})$$

$$\begin{split} \eta_{v_1,v_4} &= \frac{|\mathcal{N}(v_1) \cap \mathcal{N}(v_4)|}{|\mathcal{N}(v_1) \cap \mathcal{N}(v_4)| + |\mathcal{N}(v_4) \setminus \mathcal{N}(v_1)|^3} \\ &= \frac{3}{(3+2^3)} = \frac{3}{11} \end{split} \qquad \qquad \mathcal{N}(v_1) = \{A,B,B,D\} \\ \mathcal{N}(v_4) &= \{D,A,B,C,A\} \end{split}$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- Graph characteristics

1. $\psi(\mathcal{G})$: Avg. neighbor similarity

$$\psi(\mathcal{G}) = 0.59$$

2. $\delta(\mathcal{G})$: Std. Dev. of similarity

$$\delta(\mathcal{G}) = 0.38$$

FIGURE 3: Example Target Graph (\mathcal{G})

3. $\Delta(\mathcal{G})$: Maximum z-score

$$\Delta(\mathcal{G}) = \max_{u,v \in \mathcal{G}} \left\{ \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} \right\}$$

$$\Delta(\mathcal{G}) = 1.54$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- Graph characteristics

1. $\psi(\mathcal{G})$: Avg. neighbor similarity

$$\psi(\mathcal{G}) = 0.59$$

2. $\delta(\mathcal{G})$: Std. Dev. of similarity

$$\delta(\mathcal{G}) = 0.38$$

FIGURE 3: Example Target Graph (\mathcal{G})

3. $\Delta(\mathcal{G})$: Maximum z-score

$$\Delta(\mathcal{G}) = \max_{u,v \in \mathcal{G}} \left\{ \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} \right\}$$

$$\Delta(\mathcal{G}) = 1.54$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- Graph characteristics
- 4. Discretize values

- Capture degree of matching of a vertex pair
 - based on deviation from $\psi(\mathcal{G})$
- 2. Step size (κ)– Lower values preferred
- 3. # categories/ symbols:

$$\tau = \lceil (\Delta(\mathcal{G}) - 1)/\kappa \rceil$$

@ CIKM 2021

FIGURE 3: EXAMPLE TARGET GRAPH (\mathcal{G})

– Symbol set =
$$\{\sigma_1, \sigma_2, \dots, \sigma_{\tau}\}$$

$$\sigma_1: 0 \le \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + \kappa$$

$$\sigma_{i \in [2,\tau]} : 1 + (i-1) \cdot \kappa \leq \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + i \cdot \kappa$$

$$\tau = \left\lceil \frac{(1.54 - 1)}{0.1} \right\rceil = \left\lceil 5.4 \right\rceil = 6$$

$$\frac{\eta_{v_1, v_4} - \psi(\mathcal{G})}{\delta(G)} = \frac{\frac{3}{11} - 0.59}{0.38} = -0.83$$

Steps

- 1. Create indexes
- Neighbor similarity
- Graph characteristics
- 4. Discretize values

- Capture degree of matching of a vertex pair
 - based on deviation from $\psi(\mathcal{G})$
- 2. Step size (κ)– Lower values preferred
- 3. # categories/ symbols:

$$\tau = \lceil (\Delta(\mathcal{G}) - 1)/\kappa \rceil$$

FIGURE 3: EXAMPLE TARGET GRAPH (G)

– Symbol set =
$$\{\sigma_1, \sigma_2, \dots, \sigma_{\tau}\}$$

$$\sigma_1: 0 \le \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + \kappa$$

$$\sigma_{i \in [2,\tau]}: 1 + (i-1) \cdot \kappa \leq \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + i \cdot \kappa$$

$$\tau = \left\lceil \frac{(1.54 - 1)}{0.1} \right\rceil = \left\lceil 5.4 \right\rceil = 6$$

$$\frac{\eta_{v_1,v_4} - \psi(\mathcal{G})}{\delta(G)} = \frac{\frac{3}{11} - 0.59}{0.38} = -0.83$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- Graph characteristics
- 4. Discretize values

- Capture degree of matching of a vertex pair
 - based on deviation from $\psi(\mathcal{G})$
- 2. Step size (κ) Lower values preferred
- 3. # categories/ symbols:

$$\tau = \lceil (\Delta(\mathcal{G}) - 1)/\kappa \rceil$$

– Symbol set =
$$\{\sigma_1, \sigma_2, \dots, \sigma_{\tau}\}$$

$$\sigma_1: 0 \le \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + \kappa$$

$$\sigma_{i \in [2,\tau]} : 1 + (i-1) \cdot \kappa \leq \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + i \cdot \kappa$$

FIGURE 3: Example Target Graph (\mathcal{G})

For
$$\kappa = 0.1$$
,

$$\tau = \left\lceil \frac{(1.54 - 1)}{0.1} \right\rceil = \left\lceil 5.4 \right\rceil = 6$$

$$\frac{\eta_{v_1,v_4} - \psi(\mathcal{G})}{\delta(G)} = \frac{\frac{3}{11} - 0.59}{0.38} = -0.83$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- Graph characteristics
- 4. Discretize values

- Capture degree of matching of a vertex pair
 - based on deviation from $\psi(\mathcal{G})$
- 2. Step size (κ)– Lower values preferred
- 3. # categories/ symbols:

$$\tau = \lceil (\Delta(\mathcal{G}) - 1)/\kappa \rceil$$

– Symbol set =
$$\{\sigma_1, \sigma_2, \dots, \sigma_{\tau}\}$$

$$\sigma_1: 0 \le \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + \kappa$$

$$\sigma_{i \in [2,\tau]} : 1 + (i-1) \cdot \kappa \leq \frac{|\eta_{u,v} - \psi(\mathcal{G})|}{\delta(\mathcal{G})} < 1 + i \cdot \kappa$$

FIGURE 3: Example Target Graph (\mathcal{G})

For
$$\kappa = 0.1$$
,

$$\tau = \left\lceil \frac{(1.54 - 1)}{0.1} \right\rceil = \left\lceil 5.4 \right\rceil = 6$$

$$\frac{\eta_{v_1,v_4} - \psi(\mathcal{G})}{\delta(G)} = \frac{\frac{3}{11} - 0.59}{0.38} = -0.83$$

Steps

- 1. Create indexes
- Neighbor similarity
- Graph characteristics
- 4. Discretize values
- 5. Probability of σ_i

1. $Pr(\sigma_i)$: Probability of symbol occurrence

2. Using Chebyshev's Inequality $-\Pr(\frac{|X-\mu|}{\delta} \ge t) \le 1/t^2,$ t > 0

FIGURE 3: Example Target Graph (\mathcal{G})

$$\Pr(\sigma_i) = \frac{1}{2} \left[\frac{1}{(1 + (i-1) \cdot \kappa)^2} - \frac{1}{(1+i \cdot \kappa)^2} \right], \quad 2 \le i \le \tau$$

$$\Pr(\sigma_1) = 1 - \sum_{j=2}^{r} \Pr(\sigma_j)$$

$$\sum_{j=0}^{\tau=6} \Pr(\sigma_j) = 0.22$$

$$\Pr(\sigma_1) = 1 - 0.22 = 0.78$$

Steps

- 1. Create indexes
- 2. Neighbor similarity
- 3. Graph characteristics
- 4. Discretize values
- 5. Probability of σ_i

1. $Pr(\sigma_i)$: Probability of symbol occurrence

2. Using Chebyshev's Inequality $-\Pr(\frac{|X-\mu|}{s} > t) < 1/t^2$ t > 0

FIGURE 3: EXAMPLE TARGET GRAPH (G)

$$\Pr(\sigma_i) = \frac{1}{2} \left[\frac{1}{(1 + (i - 1) \cdot \kappa)^2} - \frac{1}{(1 + i \cdot \kappa)^2} \right], \quad 2 \le i \le \tau$$

$$\Pr(\sigma_1) = 1 - \sum_{j=2}^{\tau} \Pr(\sigma_j)$$

$$\sum_{j=2}^{\tau=6} \Pr(\sigma_j) = 0.22$$

$$\Pr(\sigma_1) = 1 - 0.22 = 0.78$$

@ CIKM 2021

Figure 4: Example (a) Traget Graph (\mathcal{G}) and (b) Query Graph (\mathcal{Q})

Steps

pairs

VERSACHI

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

1. Create indexes $(IL_{\mathcal{O}}, NL_{\mathcal{O}})$

$IL_{\mathcal{O}}$ index

Label	Vertex
A	$\{q_1, q_5\}$
В	$\{q_2,q_3\}$
C	$\{q_7\}$
D	$\{q_4, q_6\}$

- Neighbours of
$$q_1 = \{q_2, q_3, q_4\}$$

- Neighbours of
$$q_1 = \{q_2, q_3, q_4\}$$

$$-NL_{\mathcal{Q}}$$
 index of q_1

$$\mathcal{N}(q_1) = \{A, B, B, D\}$$

$$v\in\mathcal{G}, q\in\mathcal{Q}$$

A:
$$\langle \mathbf{v}_1, \mathbf{q}_1 \rangle, \langle \mathbf{v}_1, \mathbf{q}_5 \rangle$$

 $\langle \mathbf{v}_5, \mathbf{q}_1 \rangle, \langle \mathbf{v}_5, \mathbf{q}_5 \rangle$

C:
$$\langle \mathbf{v}_7, \mathbf{q}_7 \rangle, \langle \mathbf{v}_8, \mathbf{q}_7 \rangle$$

Steps

i. Create candidate pairs

VERSACHI

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

1. Create indexes (IL_Q, NL_Q)

$IL_{\mathcal{O}}$ index

Vertex
$\{q_1, q_5\}$
$\{q_2,q_3\}$
$\{q_7\}$
$\{q_4, q_6\}$

- Neighbours of
$$q_1 = \{q_2, q_3, q_4\}$$

- Neighbours of
$$q_1 = \{q_2, q_3, q_4\}$$

$$-NL_{\mathcal{Q}}$$
 index of q_1

$$\mathcal{N}(q_1) = \{A, B, B, D\}$$

Candidate vertex pairs $\langle v, q \rangle$

$$v\in\mathcal{G}, q\in\mathcal{Q}$$

A:
$$\langle \mathbf{v}_1, \mathbf{q}_1 \rangle, \langle \mathbf{v}_1, \mathbf{q}_5 \rangle, \langle \mathbf{v}_5, \mathbf{q}_1 \rangle, \langle \mathbf{v}_5, \mathbf{q}_5 \rangle$$

C:
$$\langle v_7, q_7 \rangle, \langle v_8, q_7 \rangle$$

Steps

- Create candidate pairs
- ii. Symbol sequence

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

For all vertex pairs $\langle v, q \rangle$

- 1. Compute $\eta_{V, q} \longrightarrow 2$. Compute 2^{nd} order neighbor similarit (Greedy best mapping based on η values
- → 3. Assign Symbol

$$\eta_{\mathbf{v}_1,\mathbf{q}_1} = 1$$

$$\langle \mathbf{v}_1,\mathbf{q}_1 \rangle : \sigma_1$$

Vertex Symbol Sequence:

$$O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = \{ \sigma_1, \sigma_2, \sigma_3, \sigma_4 \}$$

Steps

- Create candidate pairs
- ii. Symbol sequence

@ CIKM 2021

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

For all vertex pairs $\langle v, q \rangle$

- 1. Compute $\eta_{v, q}$
- 2. Compute 2^{nd} order neighbor similarity (Greedy best mapping based on η values)
 - → 3. Assign Symbol

$$\eta_{v_1,q_1} = 1$$

$$\langle \mathbf{v}_1, \mathbf{q}_1 \rangle : \sigma_1$$

Neighbour pair	Symbol
$\langle \mathbf{v}_2, \mathbf{q}_2 \rangle$	σ_2
$\langle v_3, q_3 \rangle$	σ_3
$\langle { m v}_4, { m q}_4 angle$	σ_4

Vertex Symbol Sequence:

$$O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$$

Steps

- i. Create candidate pairs
- ii. Symbol sequence

@ CIKM 2021

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

For all vertex pairs $\langle v, q \rangle$

- 1. Compute $\eta_{v,q}$
- \longrightarrow 2. Compute 2^{nd} order neighbor similarity \longrightarrow 3. Assign Symbol (Greedy best mapping based on η values)

$$\eta_{v_1,q_1} = 1$$

$$\langle \mathbf{v}_1, \mathbf{q}_1 \rangle : \sigma_1$$

Neighbour pair	Symbol
$\langle { m v}_2, { m q}_2 \rangle$	σ_2
$\langle v_3, q_3 \rangle$	σ_3
$\langle { m v_4}, { m q_4} \rangle$	σ_4

Vertex Symbol Sequence:

$$O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = \{ \sigma_1, \sigma_2, \sigma_3, \sigma_4 \}$$

Steps

- i. Create candidate pairs
- ii. Symbol sequence
- iii. Compute similarity of $\langle v, q \rangle$

1. Compute similarity $(\chi^2_{(y,q)})$

$$\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle} = \sum_{\forall i} \frac{\left[O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i) - E_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)\right]^2}{O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)}$$

- 2. $O_{(v,q)}(i)$ Observed count of σ_i ; $E_{(v,q)}(i)$ Expected count of σ_i

$$E_{\langle \mathsf{v}, \mathsf{q} \rangle}(i) = l \cdot \Pr(\sigma_i)$$

Steps

- i. Create candidate pairs
- ii. Symbol sequence
- iii. Compute similarity of $\langle v, q \rangle$

1. Compute similarity $(\chi^2_{(y,q)})$

$$\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle} = \sum_{\forall i} \frac{\left[O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i) - E_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)\right]^2}{O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)}$$

- 2. $O_{(v,q)}(i)$ Observed count of σ_i ; $E_{(v,q)}(i)$ Expected count of σ_i
- 3. $O_{\langle v_1, q_1 \rangle} = \{ \sigma_1, \sigma_2, \sigma_3, \sigma_4 \};$ Length of $O_{\langle v_1, q_1 \rangle} = 3 + 1 = 4$

•
$$E_{\langle \mathbf{v}, \mathbf{q} \rangle}(i) = l \cdot \Pr(\sigma_i)$$

- $l = \text{length of } O_{\langle \mathbf{v}, \mathbf{q} \rangle}$

Steps

- Create candidate pairs
- ii. Symbol sequence
- iii. Compute similarity of $\langle v, q \rangle$

1. Compute similarity $\left(\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle}\right)$

VERSACHI

$$\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle} = \sum_{\forall i} \frac{\left[O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i) - E_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)\right]^2}{O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)}$$

- 2. $O_{\langle {\bf v},\,{\bf q} \rangle}(i)$ Observed count of σ_i ; $E_{\langle {\bf v},\,{\bf q} \rangle}(i)$ Expected count of σ_i
- $\textbf{3.} \ \ O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}; \quad \text{Length of } O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = 3+1=4$

•
$$E_{\langle \mathbf{v}, \mathbf{q} \rangle}(i) = l \cdot \Pr(\sigma_i)$$

 $-l = \text{length of } O_{\langle \mathbf{v}, \mathbf{q} \rangle}$

-
$$E_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle}(1) = 4 \cdot 0.78 = 3.12$$

- $O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle}(1) = 1$

$$-\chi^2_{\langle v_1, q_1 \rangle}(1) = \frac{(1-3.12)^2}{3.12} = 1.44$$

$$\begin{split} \Pr(\sigma_i) &= \frac{1}{2} \left[\frac{1}{(1+(i-1) \cdot \kappa)^2} - \frac{1}{(1+i \cdot \kappa)^2} \right], \qquad 2 \leq i \leq \tau \end{split}$$

$$\Pr(\sigma_1) &= 1 - \sum_{j=2}^{\tau} \Pr(\sigma_j)$$

FIGURE 4: PROBABILITY CALCULATION

Steps

- Create candidate pairs
- ii. Symbol sequence
- iii. Compute similarity of $\langle v, q \rangle$

1. Compute similarity $\left(\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle}\right)$

VERSACHI

$$\chi^2_{\langle \mathbf{v},\,\mathbf{q}\rangle} = \sum_{\forall i} \frac{\left[O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i) - E_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)\right]^2}{O_{\langle \mathbf{v},\,\mathbf{q}\rangle}(i)}$$

- 2. $O_{\langle v, q \rangle}(i)$ Observed count of σ_i ; $E_{\langle v, q \rangle}(i)$ Expected count of σ_i
- 3. $O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = \{ \sigma_1, \sigma_2, \sigma_3, \sigma_4 \};$ Length of $O_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle} = 3 + 1 = 4$

•
$$E_{\langle \mathbf{v}, \mathbf{q} \rangle}(i) = l \cdot \Pr(\sigma_i)$$

- $l = \text{length of } O_{\langle \mathbf{v}, \mathbf{q} \rangle}$

$$-E_{\langle \mathbf{v}_1, \mathbf{q}_1 \rangle}(1) = 4 \cdot 0.78 = 3.12$$

$$- O_{\langle v_1, q_1 \rangle}(1) = 1$$

$$-\chi^2_{\langle v_1, q_1 \rangle}(1) = \frac{(1-3.12)^2}{3.12} = 1.44$$

$$\begin{split} \Pr(\sigma_i) &= \frac{1}{2} \left[\frac{1}{(1 + (i-1) \cdot \kappa)^2} - \frac{1}{(1+i \cdot \kappa)^2} \right], \qquad 2 \leq i \leq \tau \end{split}$$

$$\Pr(\sigma_1) &= 1 - \sum_{j=2}^{\tau} \Pr(\sigma_j)$$

Steps

- i. Create candidate pairs
- ii. Symbol sequence
- iii. Compute similarity of $\langle v, q \rangle$
- iv. Greedy expansion

FIGURE 4: EXAMPLE (A) TRAGET GRAPH (\mathcal{G}) AND (B) QUERY GRAPH (\mathcal{Q})

- Expand the candidate vertex pair greedily based on χ^2 similarity.
- Neighbour pairs of $\langle v_1, q_1 \rangle$: $\{\langle v_2, q_2 \rangle, \langle v_3, q_3 \rangle, \langle v_4, q_4 \rangle\}$
- Choose vertex pair with highest similarity $\langle v_4, q_4 \rangle$
- Add it to the candidate answer $\{\langle v_1, q_1 \rangle, \langle v_4, q_4 \rangle\}$
- Repeat (explore neighbors of candidate answer) $\{\langle v_2, q_2 \rangle, \langle v_3, q_3 \rangle, \langle v_5, q_5 \rangle, \langle v_8, q_7 \rangle\}$

Experiments Setup @ CIKM 2021

Experimental Setup

Dataset	# Vertices	# Edges	# Unique Labels
Human	4,674	86,282	44
HPRD	9,460	37,081	307
Protein	43,471	81,044	3
Flickr	80,513	5.9M	195
IMDb	428,440	1.7M	22

TABLE 1: REAL-WORLD DATASETS

- Human, HPRD, Protein: Biological Networks
- Flickr: Social Interaction
- IMDb: Knowledge Graph

Query and Accuracy:

- 6 Types of Queries: exact + 5 noisy
- Noisy: edge addition/deletion, vertex addition/deletion, modified label
- Query vertex sizes: 3, 5, 7, 9, 11, 13 (20 each)
- Total queries: $6 \times 6 \times 20 = 720$
- Accuracy: fraction of edges of Q present in answer

Experiments Results @ CIKM 2021

Performance

Dataset /	Accuracy				
Algorithm	Human	HPRD	Protein	Flickr	IMDb
VELSET [1]	0.42	0.65	0.37	0.75	0.53
G-Finder [2]	0.45	0.12	0.47	out of memory	
VERSACHI	0.90	0.81	0.67	0.84	0.87

TABLE 2: OVERALL ACCURACY

- · Accuracy averaged across query types and sizes.
- >20% accuracy improvements
- VERSACHI: substantial accuracy gain against slight increase in compute time

^[1] Dutta et al. 2017, WWW. 1281-1290.

^[2] Liu et al. 2019. IEEE BigData. 513–522.

Performance

Performance on Barabási-Albert graphs (|V| = 50K, Avg. Degree = 50, $\kappa = 0.001$)

FIGURE 5: EFFECT OF GRAPH SIZE

FIGURE 6: EFFECT OF AVERAGE DEGREE

FIGURE 7: EFFECT OF STEP-SIZE (κ)

To summarize . . .

• Chebyshev's inequality - underlying graph distribution

• Statistical significance - capture deviations

• High accuracy across datasets and noisy queries

- VERSACHI: approximate labelled graph querying
 - scalable and accurate

9/9

@ CIKM 2021

Thank you!! Questions?