	20	15000	-		i i i i	-	 	-
USN		,		,				
D DIA						la constant	Section .	تستنست

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU III Semester B. E. Examinations Nov/Dec-14

Common to CSE / ISE

DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.

PART-A

S1/31=620

Scanned with OKEN Scanner

			*
1	1.1	The number of permutations of the letters in the word COMPUTER is 8!.	
		What is the number of permutations if only 5 letters are used?	01
	1.2	What is the coefficient of a^5b^2 in the expansion of $(2a-3b)^7$. 6048	02
	1.3	Define power set. If $A = \{0, \phi, \{\phi\}\}$, find $P(A)$.	02
	1.4	Write the duality of $P = \{(A \cup B) \cap \phi\} \cup \{(C \cap D) \cup U\}$.	01
	1.5	Obtain recursive definition of $a_n = n(n+2), n \ge 1$. $a_{n+1} = a_{n+1} = a_{n+2} + 2n+3$	02
	1.6	The possible truth values of p,q and r in $p \rightarrow (q \lor r)$ are $p(1,1,1)$,	
		q=(1,0,0), r=(1,1,0). Check and say Yes/No. The in all our	02
	1.7	State the law for the negation of a conditional. $\neg (P \neg v) = P \wedge 7V$	01
	1.8	Let $A = \{1, 2, 3, 4\}, R = \{(1,2), (2,3), (3,4), (4,2), (3,3)\}$ is a relation on A .	TIT
		Find indegree and outdegree of all vertices. $1,1,2,1$	01
	1.9	Write the matrix of partial order whose Hasse diagram is given below:	
		4 9 95	
		2 3	
			02
	1.10	If '' is the operation of Z, defined by $x \cdot y = x + y + 1$ and if Z is an	
		abelian group, find identity element and inverse element. — (342)	02
	1.11	Find $S(5,3)$. 25	02
	1.12	The word $c = 1010110$ is transmitted through a binary symmetric	
11110	11	channel. If $e = 0101101$ is the error pattern, find the word 'r' received.	01
13	1.13	Find the weights of the following words: 11100,01101. 03,03	01

PART-B

	2 a	Find how many possible arrangements are there, for the letters in	
5	0-7.00	MASSASAUGA. Also find the number of possible arrangements in which	
	25,200	all four, As are together.	05
/	b	In a class of 52 students, 30 are studying $C + +$, 28 are studying Pascal	
		and 13 are studying both. How many in this class are studying at least	
		one of these languages? How many are studying neither of these	
	Syl	languages?	04
	c	How many positive integers n can be formed using the digits	
`/		3, 4, 4, 5, 5, 6, 7 if we want n to exceed $5,000,000$.	07
14		2000/	
		OR	

10605pmp291

	3	a	Find the Rook polynomial for the board shown below: 1 2	3
		b	Obtain the formula for number of derangements of n objects by using Rook polynomials.	04
		C	Determine the number of positive integers $n, 1 \le n \le 2000$, that are not divisible by 2, 3, 5 or 7.	06
4				
	4	a	Let $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$. Prove that $a_n \le 3^n$ for all +ve integers n .	US
		b	The Lucas numbers are defined recursively by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$. Evaluate L_2 to L_{10} .	03
		C	Solve the following: $a_{n+2} + 3a_{n+1} + 2a_n = 3^n, n \ge 0$, $a_0 = 0$, $a_1 = 1$ using generating function method.	08
			OR	
	5	a	In how many ways can a police captain distribute 24 rifle shells to four police officers so that each officer gets at least three shells, but not	
	10	/フ h	more than eight? Define Ackermann's numbers and evaluate $A_{1,3}$ and $A_{2,3}$.	06 05
	5,0	C	Solve: $a_{n+2} - 10a_{n+1} + 21a_n = 3n - 2, n \ge 0.$	05
	6	a	Prove that for any three prepositions $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.	05
		b	Find the negation of each of the following quantified statements: i) $\forall x \ \forall y \ [(x > y) \rightarrow ((x - y) > 0)] \rightarrow \exists y \ \exists y \ \exists y \ \land (y > y) \land (y = y) \Rightarrow 0$	
			ii) $\forall x, \forall y, [(x > y) \rightarrow (x > y) \rightarrow (x > y) \rightarrow (x > y) \rightarrow (x > y)$ iii) $\forall x, \forall y, [(x < y) \rightarrow \exists z, (x < z < y)] \rightarrow \exists x, \exists y, \exists y, \exists y, \exists y, \exists y, \exists y, \exists y,$	- y)
		C	Prove the following identities: i) $p \to (q \to r) \Leftrightarrow (p \land q) \to r$	
			ii) $\left[\neg p \wedge (\neg q \wedge r)\right] \vee (q \wedge r) \vee (q \wedge r) <=> r$	05
			OR	
	7	a	Draw and simplify the switching network for compound preposition:	
	1	**	$(q \lor p \lor \neg q) \land r$ and show that the given network has four switches and equivalent to a network which contains only one switch.	05
			Find whether the following argument is valid:	
			 i) If a triangle has two equal sides, then it is isosceles ii) If a triangle is isosceles, then it has two equal angles 	
			ii) If a triangle is isosceles, then it has two equal angles iii) The triangle ABC does not have two equal angles.	
		1	: ABC does not have two equal sides.	06
			Consider the open statements $p(x), q(x), s(x)$ and $t(x)$, where $p(x): x > 0, q(x) = x$ is even, $s(x) = x$ is divisible by $3, t(x) = x$ is divisible	1
		1	by 7. Express the following statements in words and find its truth	
			value: $V_{x} \left[n(x) \rightarrow n(x) \right]$	
			i) $\forall x, [r(x) \rightarrow p(x)] \lor$ ii) $\exists x, [s(x) \land \neg q(x)] \circlearrowleft$	
			iii) $\forall x, [\neg r(x)]$	
	5		iv) $\forall x, [r(x) \lor t(x)]$	00

Scanned with OKEN Scanner

	b	Let $f: R \to R$ be defined by: $f(x) = \begin{cases} 3x - 5 & for & x > 0 \\ -3x + 1 & for & x \le 0 \end{cases}$	
		Find $f(0), f(-1), f(5/3), f^{-1}(-3), f^{-1}(-6)$. Let f, g, h be functions from Z to Z defined by $f(x) = x - 1$, $g(x) = 3x \cdot h(x) = \begin{cases} 0 & \text{if } x \text{ is even} \end{cases}$	05
		Verify that $f \circ (g \circ h) = (f \circ g) \circ h$.	06
		OR	
9		Let $A = \{a, b, c, d, e\}, R = \{(a, a), (a, b), (b, c), (c, d), (c, e), (d, e)\}$. Find R^{∞} . Draw digraph of R^{∞} , write $M_{R^{\infty}}$, check whether R is strongly connected or not.	
11	C	Let $A = \{1, 2, 3, 4\}$. Determine the nature of the following relation on: $R = \{(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)\}$. Also check whether R is an equivalence relation or not. Also check whether R is a partial ordered relation or not. Find all the extremal elements in Poset, whose Hasse diagram is shown below. Check whether for $B_1 = \{1,2\}$, where $B_1 \subseteq A$, given $A = \{1,2,3,4,5,6,7,8\}$, the Hasse diagram is a lattice or not.	05
		Tolk a, a 6 5 5 7	
	Jak		05
	Jal	For a group G, prove that the function $f = G \rightarrow G$ defined by $f(a) = a^{-1}$	06
0		For a group G , prove that the function $f = G \rightarrow G$ defined by $f(a) = a^{-1}$ is an isomorphism iff a is abelian. If every element of a group G is its own inverse, then show that a is an	06
0	b	For a group G , prove that the function $f = G \rightarrow G$ defined by $f(a) = a^{-1}$ is an isomorphism iff a is abelian. If every element of a group G is its own inverse, then show that a is an abelian group.	06
0	b	For a group G, prove that the function $f = G \rightarrow G$ defined by $f(a) = a^{-1}$	06
	b	For a group G , prove that the function $f = G \rightarrow G$ defined by $f(a) = a^{-1}$ is an isomorphism iff a is abelian. If every element of a group G is its own inverse, then show that a is an abelian group.	06

Scanned with OKEN Scanner

-0.4	-	4	
- Marie	A LANGE	Sans Inc.	

11 a	The word $c = 1010110$ is sent through a binary symmetric channel. If	
0-00	p = 0.02 is the probability of incorrect receipt of a signal, find the probability that c is received as $r = 1011111$. Find the error pattern	05
0000	also. Explain encoding and decoding of a message.	06
C	Let $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^9$ be the encoding function for the (9,3) triple repetition code. If $D: \mathbb{Z}_2^9 \to \mathbb{Z}_2^3$ is the corresponding decoding function, apply D to	
000	decode the following received words. 111101100, 000100011, 010011111, 001110011.	05