Ort, Geschwindigkeit und Beschleunigung

Ortsfunktion

$$\vec{r}(t) = \left(\begin{array}{c} x(t) \\ y(t) \\ z(t) \end{array}\right)$$

Geschwindigkeit

Die Geschwindigkeit ist die zeitliche Ableitung der Ortsfunktion:

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \vec{r'}(t) = \begin{pmatrix} \frac{dx(t)}{dt} \\ \frac{dy(t)}{dt} \\ \frac{dz(t)}{dt} \end{pmatrix} = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} v_x(t) \\ v_y(t) \\ v_z(t) \end{pmatrix}$$

Geschwindigkeit ist ein Vektor, die Schnelligkeit ihr Betrag.

Beschleunigung

Die Beschleunigung ist die zeitliche Ableitung der Geschwindigkeits resp. die zweite zeitliche Ableitung der Ortsfunktion.

 ωt

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \begin{pmatrix} \frac{dv_x(t)}{dt} \\ \frac{dv_y(t)}{dt} \\ \frac{dv_z(t)}{dt} \end{pmatrix} \begin{pmatrix} a_x(t) \\ a_y(t) \\ a_z(t) \end{pmatrix}$$

$$\vec{a}(t) = \frac{d}{dt} \left(\frac{d\vec{r}(t)}{dt} \right) = \frac{d^2 \vec{r}(t)}{dt^2}$$

Kreisbewegung

$\omega = ext{Winkel pro Sekunde}$	
$T = \frac{211}{\omega}$ = Periode, Zeit für einen Umlaut	E

Ortsvektor

$$\vec{r}(t) = \left(\begin{array}{c} r\cos(\omega t) \\ r\sin(\omega t) \end{array} \right)$$

$$|\vec{r}(t)| = r$$

Geschwindigkeit

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \left(\begin{array}{c} -r\omega sin(\omega t) \\ r\omega cos(\omega t) \end{array} \right)$$

$$|\vec{v}(t)| = r\omega$$

Beschleunigung

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \begin{pmatrix} -r\omega^2 cos(\omega t) \\ -r\omega^2 sind(\omega t) \end{pmatrix}$$