Содержание

1	Метрические пространства. Примеры	2
2	Внутренние точки в метрическом пространстве. Внутренность	3
3	Граница и замыкание множества в метрическом пространстве	4
4	Топологические пространства. Задание топологии замкнутыми множествами. Примеры	5
5	Расположение точки относительно множества в топологическом пространстве	6
6	Непрерывные отображения в метрических и топологических пространствах	7
7	Гомеоморфизм	7
8	База топологии. Примеры. Критерий базы	8
9	Топология произведения, заданная базой	9
10	Прообраз топологии. Индуцированная топология	10
11	Инициальная топология. Топология проиведения как инициальная	11
12	Финальная топология. Примеры	11
13	Связность пространства и подмножества. Связность замыкания	11
14	Связность отрезка	12
15	Связность объединения. Образ связного множества	12
16	Связность декартова произведения	13
17	Теорема Вейерштрасса о промежуточном значении. Примеры применения	14
18	Компоненты связности	14
19	Линейная связность	15
2 0	Компактность. Примеры. Компактность замкнутого множества	15
21	Компактность образа компактного множества	16
22	Компактные подмножества хаусдорфова пространства	16
23	Лемма Лебега. Компактность отрезка	17
24	Компактность произведения пространств	18
25	Критерий компактности в \mathbb{R}^n	18
26	Теорема Вейерштрасса о достижении максимума. Примеры применения	18
27	Аксиомы отделимости. Критерий Т1	20
2 8	Нормальность метрического пространства	21
29	Нормальность хаусдорфова компакта	22
30	Компактификация по П. С. Александрову	23

1. Метрические пространства. Примеры

Определение 1. M – множество, $\rho: M \times M \to \mathbb{R}$

Говорят, что (M, ρ) – метрическое пространство, если:

1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0 \iff x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \le \rho(x,z) + \rho(z,y)$$

 ρ называется метрикой

Примеры.

1.
$$\mathbb{R}$$
, $\rho(x,y) = |x-y|$

$$2. \mathbb{R}^2$$

(a)
$$\rho_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

(b)
$$\rho_1((x_1,y_1),(x_2,y_2)) = |x_1-x_2|+|y_1-y_2|$$
 – манхэттенская метрика

(c)
$$\rho_n\big((x_1,y_1),(x_2,y_2)\big)=\left(|x_1-x_2|^n+|y_1-y_2|^n\right)^{\frac{1}{n}}$$
 – является метрикой, если $p\geq 1$

Замечание. Неравенство треугольника следует из неравенства Минковского:

$$\left(\sum_{i} |x_i + y_i|^p\right)^{\frac{1}{n}} \le \left(\sum_{i} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i} |y_i|^p\right)^{\frac{1}{p}}$$

(d)
$$\rho_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{ |x_1 - x_2|, |y_1 - y_2| \}$$

3. Аналогично для \mathbb{R}^n

4. M — произвольное множество

$$\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$
 – дискретная метрика

5. (M, ρ) – метрическое пространство

$$\rho'(x,y)=\frac{\rho(x,y)}{1+\rho(x,y)} \quad \text{ или } \quad \rho'(x,y)=\min \left\{\, \rho(x,y),1\,\right\}$$
 Теперь $\rho'(x,y)<1$

6. M – множество строчек из 0 и 1 длины n

ho – количество символов, в которых эти строки различаются

7. M – пространство (хороших) функций на [a, b]

(a)
$$\rho_1(f,g) = \int_a^b |f(x) - g(x)| \, dx$$

(b)
$$\rho_2(f,g) = \sqrt{\int_a^b (f(x) - g(x))^2 dx}$$

(c)
$$\rho_p(f,g) = \left(\int_a^b (f(x) - g(x))^p dx \right)^{\frac{1}{p}}$$

(d)
$$\rho_{\infty} = \sup_{x \in [a,b]} |f(x) - g(x)|$$

8. М – множество (хороших) фигур на плоскости

(a)
$$\rho(F,G) = S_{F \triangle G}$$

(b) Метрика **Хаусдорфа**:

$$\rho(F,G) = \max \left\{ \inf \left\{ \varepsilon \mid \forall f \in F \quad \exists g \in G : \rho(f,g) \le \varepsilon \right\}, \inf \left\{ \varepsilon \mid \forall g \in G \quad \exists f \in F : \rho(f,g) \le \varepsilon \right\} \right\}$$

 $9. \mathbb{Z}$

Напоминание.
$$p \in \mathbb{P}, \qquad n = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot \ldots \cdot p^{\alpha_k} \qquad v_p(n) \coloneqq \alpha_k$$

Введём норму:

$$||n|| \coloneqq 2^{-v_p(n)}$$

Теперь можно ввести p-адическую метрику:

$$\rho_p(a,b) = ||a-b||$$

Замечание. Это расширяется на Q, если ввести

$$v_p(\frac{m}{n}) \coloneqq v_p(m) - v_p(n)$$

2. Внутренние точки в метрическом пространстве. Внутренность

Определение 2. (M, ρ) – метрическое пространство, $A \subset M, \quad x_0 \in M$ Точка x_0 называется внутренней для A, если

$$\exists \varepsilon > 0 : B(x_0, \varepsilon) \subset A$$

Определение 3. Множество внутренних точек называется внутренностью

Обозначение. Int A

Определение 4. Множество A называется открытым, если оно совпадает с $\operatorname{Int} A$, т. е. не содержит ни одной граничной точки

Лемма 1. Объединение открытых является открытым, т. е.

$$\bigcup_{i \in I} U_i$$
 – откр. $\iff \forall i \quad U_i$ – откр.

Доказательство.

$$x_0 \in \bigcup_{i \in I} U_i \implies \exists \, i : x_0 \in U_i \xrightarrow[\overline{Ui - \text{otkp.}}]{} \exists \, \varepsilon : B(x_0, \varepsilon) \subset U_i \implies B(x_0, \varepsilon) \subset \bigcup_{i \in I} U_i$$

Лемма 2. $B(x_0,\varepsilon)$ открыто

Доказательство. Возьмём $\forall x_1 \in B(x_0, \varepsilon)$

Положим $\delta \coloneqq \varepsilon - \rho(x_1, x_0)$

Докажем, что $B(x_1, \delta) \subset B(x_0, \varepsilon)$:

$$\forall x_2 \in B(x_1, \delta) \quad \rho(x_1, x_2) < \delta = \varepsilon - \rho(x_0, x_1)$$
$$\rho(x_0, x_2) \stackrel{\triangle}{\leq} \rho(x_0, x_1) + \rho(x_1, x_2) < \varepsilon$$
$$x_2 \in B(x_0, \varepsilon)$$

Теорема 1. Равносильны определения внутренности:

- 1. Множество внутренних точек
- $2.\ \bigcup_{U \text{ otkp.}} U$
- 3. максимальное открытое подмножество A

Доказательство.

- $2 \iff 3$ Очевидно из леммы 1
- \bullet 2 \Longrightarrow 1

$$x_0\in\bigcup_{\substack{U\subset A\\U\text{ откр.}}}U\subset A\implies\exists\, arepsilon>0: B(x_0,arepsilon)\subset\bigcup_{\substack{U\subset A\\U\text{ откр.}}}U\subset A\implies x_0$$
 – внутр. т. для A

 \bullet 1 \Longrightarrow 2

$$x_0$$
 – внутр. т. для $A \implies \exists \, \varepsilon > 0 : B(x_0, \varepsilon) \subset A$

Применяем лемму 2

3. Граница и замыкание множества в метрическом пространстве

Определение 5. (M,ρ) – метрическое пространство, $A\subset M, \qquad x_0\in M$ x_0 называется

 \bullet внешней для A, если

$$\exists \varepsilon > 0 : B(x_0, \varepsilon) \cap A = \emptyset$$

• граничной – если не внутренняя и не внешняя, т. е. если

$$\forall \varepsilon > 0 \begin{cases} B(x_0, \varepsilon) \not\subset A \\ B(x_0, \varepsilon) \not\subset (M \setminus A) \end{cases}$$

Определение 6.

• Множество внешних точек называется внешностью

Обозначение. $\operatorname{Ext} A$

• Множество граничных точек называется границей

Обозначение. Fr A, δA

Определение 7. Объединение внутренности и границы называется замыканием

Обозначение. $\operatorname{Cl} A$

Определение 8. Множество A называется замкнутым, если оно совпадает с $\operatorname{Cl} A$, т. е. если $M\setminus A$ открыто

Теорема 2. M – метрическое пространство, $A \subset M$

Равносильны определения замыкания:

1. Множество внутренних и граничных точек

- 2. $M \setminus \operatorname{Int}(M \setminus A)$
- 3. $\bigcap_{F = 39MKH} F \supset A F$
- 4. Минимальное замкнутое, содержащее A

Доказательство.

- 3 \iff 4 очевидно
- $1 \iff 2$

$$Int(M \setminus A) = Ext A$$

• 2 \iff 3

$$M \setminus \operatorname{Int}(M \setminus A) = M \setminus \bigcup_{\substack{U \subset M \setminus A \\ U \text{- otkp.}}} U \underset{\substack{\text{(de Moprah)} \\ U \text{- otkp.}}}{=} \bigcap_{\substack{U \subset M \setminus A \\ U \text{- otkp.}}} M \setminus U = \bigcap_{\substack{F \supset A \\ F \text{- замкн.}}} F$$

4. Топологические пространства. Задание топологии замкнутыми множествами. Примеры

Определение 9. X – множество, $\Omega \subset 2^X$

 (X,Ω) называется топологическим пространством, если:

- 1. $\forall \{U_i\} \subset \Omega \quad \bigcup U_i \in \Omega$
- 2. $U_1, ..., U_n \in \Omega \implies \bigcap_{i=1}^n U_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

 Ω называется топологией на X

 $U \in \Omega$ называется открытым

Определение 10. F называется замкнутым, если $X \setminus F$ – открыто

Теорема 3. (X,Ω) – топологическое пространство

- 1. $\{F_i\}_{i\in I}$ замкн. $\Longrightarrow \bigcap_{i\in I}$ замкн.
- 2. $F_1,...,F_n$ замкн. $\Longrightarrow \bigcup_{i=1}^n F_i$ замкн.
- 3. \emptyset , X замкн.

Доказательство. Уже доказано

Замечание. Топологическое пространство можно задавать замкнутыми множествами

Примеры.

- 1. (M, ρ) метр. $\implies M$ тополог. Открыты те множества, которые были открытыми в ρ
- 2. X любое, $\Omega = \{\emptyset, X\}$ антидискретная топология
- 3. X любое, $\Omega = 2^X$ дискретная топология
- 4. "Топология Зарисского" (топология конечных дополнений):

X – бесконечно, замкнутые – конечные и X

5. Стрелка:

$$X = \mathbb{R}$$
 (или \mathbb{R}_+ , или ...)

Открытые – открытые лучи $(a, +\infty), \emptyset, X$

Примечание. Если открытыми считать замкнутые лучи $[a, +\infty)$, то это **не** топология:

$$\bigcap_{n\in\mathbb{N}}\left[\frac{1}{n},+\infty\right]=(0,+\infty)$$

6. Топология Зарисского:

(a)
$$X = \mathbb{C}$$

Замкнутым будем называть множество корней некоторого многочлена

5. Расположение точки относительно множества в топологическом пространстве

Определение 11. (X,Ω) – топологическое пространство, $x_0 \in X$ Окрестностью x_0 будем называть любое открытое множество, содержащее x_0

Определение 12. $A \subset X$, $x_0 \in X$

 x_0 называется

• внутренней, если

$$\exists U_{x_0} \subset A$$

• внешней, если

$$\exists \, U_{x_0} \cap A = \emptyset$$

• граничной, если

$$\forall U_{x_0} \quad \begin{cases} U_{x_0} \not\subset A \\ U_{x_0} \neq \emptyset \end{cases}$$

Определение 13.

• $\operatorname{Int} A$ – множество внутренних точек

• Ext $A = \operatorname{Int}(X \setminus A) =$ множество внешних точек

• $\delta A = \operatorname{Cl} A \setminus \operatorname{Int} A$ – множество граничных точек

Теорема 4. Равносильны определения внутренности:

1. Множество внутренних точек

2. $\bigcup_{U \in \Omega} U$

3. максимальное открытое подмножество A

Доказательство. Точно так же, как теорема 1

Теорема 5. Равносильны следующие определения замыкания:

1. Cl $A=X\setminus \operatorname{Ext} A$ – множество внутренних и граничных точек

2.
$$\bigcap_{F \text{--} \text{--} \text{--} \text{--} \text{--} \text{--} \text{--} \text{--}} F$$

3. минимальное замкнутое, содержащее A

Доказательство. Точно так же, как теорема 2

Утверждение 1. U – откр., F – замкн. Тогда $U \setminus F$ – откр., $F \setminus U$ – замкн.

Доказательство.

- $U \setminus F = U_{\text{откр.}} \cap \underbrace{(X \setminus F)}_{\text{откр.}}$
- $\bullet \ F \setminus U = F \cap (X \setminus U)$

6. Непрерывные отображения в метрических и топологических пространствах

Определение 14. $f: M_1 \to M_2, \qquad (M_1, \rho_1), (M_2, \rho_2)$ – метические f называется непрерывным в точке $x_0 \in M_1$, если

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \forall x \in M_1 \quad \rho_1(x, x_0) < \delta \implies \rho_2(f(x), f(x_0)) < \varepsilon$$

Определение 15. $f: X \to Y, \qquad X, Y$ – топологические

f называется непрерывным в x_0 , если

$$\forall U_{f(x_0)} \quad \exists U_{x_0} : f(U_{x_0}) \subset U_{f(x_0)}$$

Определение 16. $f: M_1 \to M2$ – метрические

f называется непрерывным, если оно непрерывно на всём M_1 , т. е.

$$\forall x_0 \in M \quad \forall \varepsilon > 0 \quad \exists \, \delta > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$$

Определение 17. X_1, X_2 – топологические, $f: X_1 \to X_2$

f называется непр., если

$$\forall U$$
 – откр. в X_2 $f^{-1}(U)$ откр. в X_1

Теорема 6. $(X, \rho), (Y, d)$ – метр., $f: X \to Y$ f непр. \iff прообраз открытого открыт

Доказательство.

f непр. $\stackrel{\text{def}}{\Longleftrightarrow} \forall x_0 \in M \quad \forall \varepsilon > 0 \quad \exists \, \delta > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$

Пусть U – откр. в Y. Нужно доказать, что $f^{-1}(U)$ откр. в X

Возьмём $\forall x_0 \in f^{-1}(U)$

Тогда, по опр. прообраза, $f(x_0) \in U$

$$\Rightarrow \exists \varepsilon > 0 : B(f(x_0), \varepsilon) \in U \Rightarrow \exists \delta > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon) \subset U \iff B(x_0, \delta) \subset f^{-1}(U)$$

• =

Знаем, что прообраз открытого открыт. Хотим доказать непрерывность

Возьмём $\forall x_0 \in X$ и $\forall \varepsilon > 0$

Обозначим $U := B(f(x_0), \varepsilon)$ Знаем, что $f^{-1}(U)$ открыт, и $x_0 \in f^{-1}(U)$

Воспользуемся определением открытого множества:

$$\exists \delta > 0 : B(x_0, \delta) \subset f^{-1}(U) = f^{-1}(B(f(x_0), \varepsilon))$$

$$B(x_0, \delta) \subset f^{-1}(B(f(x_0), \varepsilon)) \implies f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$$

7. Гомеоморфизм

Определение 18. $(X,\Omega_X),(Y,\Omega_Y),\qquad f:X o Y$

Говорят, что f – гомеоморфизм, если

- 1. f непрерывно
- 2. f биекция
- 3. f^{-1} непрерывно

Х и У называются гомеоморфными

Обозначение. $X \simeq Y$

Утверждение 2. Гомеоморфизм – отношение эквивалентности

Доказательство.

- Рефлексивность: $X \simeq Y$, f(x) = x
- ullet Симметрич
сность: $f:X \to Y$ гомеоморфизм $\implies f^{-1}:Y \to X$ гомеоморфизм
- Транзитивность:

 $f:X o Y,\quad g:Y o Z$ – гомеоморфизмы $\implies g\circ f:X o Z$ – гомеоморфизм

8. База топологии. Примеры. Критерий базы

Определение 19. (X,Ω) – тополог., $\mathcal{B}\subset\Omega$

 \mathcal{B} называется базой Ω , если

$$\forall U \in \Omega \quad \exists \left\{ B_i \right\}_{i \in I} \subset \mathcal{B} : U = \bigcup_{i \in I} B_i$$

Пример. (X, ρ) – метр. пр-во

 $\mathcal{B}\coloneqq \{\,B(x_0,\varepsilon)\mid x_0\in X, \varepsilon>0\,\}$ – база метрической топологии

Доказательство.

$$U \subset X \text{ откр.} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \forall x_0 \in U \quad \exists \, \varepsilon > 0 : B(x_0,\varepsilon) \subset U \ \Longleftrightarrow \ \bigcup_{x_0 \in U} B(x_0,\varepsilon) = U$$

Теорема 7 (критерий базы). X – множество, $\mathcal{B} \subset 2^X$

 ${\mathcal B}$ – база некоторой топологии $\Omega \iff$

- 1. $\bigcup_{B_i \subset \mathcal{B}} B_i = X$
- 2. $\forall B_1, B_2 \in \mathcal{B} \quad \forall x_0 \in (B_1 \cap B_2) \quad \exists B_3 \in \mathcal{B} : x_0 \in B_3 \subset (B_1 \cap B_2)$

Доказательство.

- ⇒
 - 1. По определению

2.

$$B_1,B_2\subset\mathcal{B}\implies B_1,B_2$$
 – открытые $\implies (B_1\cap B_2)$ – откр.

Значит, (B_1, B_2) – это объединение некоторых открытых B_3 – одно из них

• =

Пусть $\Omega \coloneqq \{\bigcup_{i \in I} B_i\}$ Докажем, что Ω – топология:

1. Возьмём $U_j \in \Omega \quad (j \in J)$

$$U_j = \bigcup_{i \in I_j} B_{ij}$$
$$\bigcup_{j \in J} U_j = \bigcup_{j \in J} \bigcup_{i \in I_j} B_{ij}$$

2. Докажем, что если $U_1,U_2\in\Omega,$ то $U_1\cap U_2\in\Omega$:

$$U_1 = \bigcup_{i \in I_j} B_{ij}, \qquad U_2 = \bigcup_{i \in I_2} B_{ij}$$
 $orall x_0 \in (U_1 \cap U_2)$ $\begin{cases} \exists \, B_{1i_1} \ni x_0 \\ \exists \, B_{2i_2} \ni x_0 \end{cases} \implies \exists \, B_{x_0} \quad (B_3 \text{ из формулировки})$ $B_{x_0} \in \mathcal{B}$ $x_0 \in B_{x_0} \subset (B_{1i_1} \cap B_{2i_2}) \subset (U_1 \cap U_2)$ $\bigcup_{x_0 \in (U_1 \cap U_2)} B_{x_0} = U_1 \cap U_2$

 $3. \ \emptyset, X \in \Omega$

9. Топология произведения, заданная базой

Пример. $(X,\Omega_X),(Y,\Omega_Y)$ — топ. пр-ва Хотим ввести топологию на $X\times Y$

В чём проблема?.

$$U_1, U_2 \subset X, \qquad V_1, V_2 \subset Y$$

Будут ли верны равенства:

- $(U_1 \times V_1) \cap (U_2 \times V_2) \stackrel{?}{=} (U_1 \cap U_2) \times (V_1 \cap V_2)$
- $(U_1 \times V_1) \cup (U_2 \times V_2) \stackrel{?}{=} (U_1 \cup U_2) \times (V_1 \cup V_2)$

По рисунку видно, что верно только первое равенство

Как мы хотим задать топологию:

$$\left. egin{aligned} U \subset X \text{ откр.} \\ V \subset Y \text{ откр.} \end{aligned} \right\} \implies U \times V$$
 открыто в $(X \times Y)$

 $\mathcal{B}\coloneqq\{\,U\times V\mid U\in\Omega_X,\Omega\in\Omega_Y\,\}$ – не топология (т. к. есть проблемы с объединением) Однако, \mathcal{B} – база топологии

10. Прообраз топологии. Индуцированная топология

Определение 20. X – множество, (Y, Ω_Y) – топ. пр-во, $f: X \to Y$

Хотим ввести самую слабую топологию на X, такую, чтобы f была непрерывной Такая топология называется прооразом топологии Y

Доказательство (корректности). Нужно доказать, что прообраз топологии существует и единственен $f^{-1}(u)$ хотим считать открытыми, если $U \in \Omega_Y$

 $\{f^{-1}(U)\} = \Omega_X$ – топология на X (меньше взять не можем, больше – не должны)

Определение 21. (X,Ω) – топ. пр-во, $Y\subset X$

Определим Ω_Y :

$$\Omega_Y := \{ U \cap Y \mid U \subset \Omega \}$$

 Ω_Y называется индуцированной топологией

Доказательство (корректности).

• Проверим, что объединение открытых открыто:

$$\bigcup_{U_i \in \Omega} (U_i \cap Y) = \bigg(\bigcup_{U_i \in \Omega} U_i\bigg) \cap Y \subset \Omega_Y$$

• Проверим, что пересечение конечного набора открытых открыто:

$$\bigcap_{U_i \in \Omega} (U_i \cap Y) = \left(\bigcap_{U_i \in \Omega} U_i\right) \cap Y \subset \Omega_Y$$

• $\emptyset, Y \in \Omega_Y$

11. Инициальная топология. Топология проиведения как инициальная

Определение 22. $\{(Y_i, \Omega_{Y_i})\}_{i \in I}$ – топ. пр-ва, X – множество $\forall i$ задано отобр. $f: X \to Y_i$

Хотим задать Ω_X – самую слабую, такую, чтобы все f_i были непрерывными

Доказательство (коректности). Докажем, что инициальная топология существует и единственна: $f^{-1}(U)$ будем считать открытым в X

Положим $\mathcal{B} \coloneqq \{f_{ij}^{-1}U_{i1} \cap ... \cap f_{ik}^{-1}U_{ik}\}$ – база некоторой топологии на X

Теорема 8. На $X \times Y$ совпадают две топологии:

- ullet как $B = \{U \times V\}$ база
- инициальная

Доказательство. И та, и другая топологии определяются некоторой базой. Достаточно доказать, что базы совпадают

Найдём базу инициалной топологии:

$$\mathcal{B} = \{ p_x^{-1}(U_1) \cap p_x^{-1}(U_2) \cap \dots \cap p_x^{-1}(U_k) \quad \cap \quad p_y^{-1}(V_1) \cap p_y^{-1}(V_2) \cap \dots \cap p_y^{-1}(V_l) \}$$
$$p_x^{-1}(U) = \{ (x,y) \mid \underbrace{p_x(x,y)}_{=x} \in U \} = U \times Y$$

Аналогично, $p_y^{-1}(V) = Y \times V$ Теперь,

$$\mathcal{B} = \underbrace{(U_1 \times Y) \cap (U_2 \times Y) \cap \dots \cap (U_k \times Y)}_{(U_1 \cap \dots \cap U_k) \times Y} \quad \cap \quad \underbrace{(X \times V_1) \cap (X \times V_2) \cap \dots \cap (X \times V_l)}_{X \times (V_1 \cap \dots \cap V_l)}$$

$$\mathcal{B} = (U_1 \cap U_2 \cap \dots \cap U_k) \times (V_1 \cap V_2 \cap \dots \cap V_l)$$

Получили (открытые в X) × (открытые в Y)

12. Финальная топология. Примеры

Определение 23. $\{\,(X_i,\Omega_i)\,\}_{i\in I}$ – топ. пр-ва, Y – множество

 $\forall i$ задано $f_i: X_i \to Y$

Хотим задать Ω_Y — самую сильную такую, что все f_i непрерывны

Утверждение 3. Несложно заметить, что подойдёт

$$\Omega_Y \coloneqq \{\, U : \forall i \quad f_i^{-1}(U) \text{ откр. в } X\, \}$$

13. Связность пространства и подмножества. Связность замыкания

Определение 24. X – топ. пр-во

Х называется несвязным, если

$$\exists U_1, U_2 \in \Omega_X : \begin{cases} U_1 \cap U_2 = \emptyset \\ U_1 \cup U_2 = X \end{cases}$$

Иначе – связным

Замечание. Несвязность $\implies U_1, U_2$ – открытые и замкнутые одновременно Свзяность означает, что таких (нетривиальных открыто-замкнутых) нет

Определение 25. (X,Ω) – топ. пр-во, $A\subset X$

А называется связным, если оно связно в индуцированной топологии, т. е.

$$\forall U_1, U_2 \in \Omega_X \quad \begin{array}{c} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{array} \} \implies \begin{bmatrix} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{array}$$

 $A \subset B \subset \operatorname{Cl} A$ **Теорема 9.** A связно,

 $\implies B$ связно

Доказательство. Пусть B не связно

$$\implies \exists U_1, U_2 \in \Omega_X : \begin{cases} U_1 \cup U_2 \supset B \\ U_1 \cap U_2 \cap B = \emptyset \\ U_1 \cap B \neq \emptyset \\ U_2 \cap B \neq \emptyset \end{cases}$$

$$A \subset B \implies \begin{cases} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{cases} \xrightarrow{\overline{A \text{ связно}}} \text{ HYO } A \cap U_1 = \emptyset \implies U_2 \supset A$$

Следствие. A связно \Longrightarrow $\operatorname{Cl} A$ связно

14. Связность отрезка

Теорема 10. (0,1) связен

Доказательство. Пусть (0,1) не связен

$$\implies \exists U_1, U_2 - \text{откр.} : \begin{cases} U_1 \cup U_2 \supset (0, 1) \\ U_1 \cap U_2 \cap (0, 1) = \emptyset \end{cases}$$

 $b \in U_2 \cap (0,1)$ Возьмём $a \in U_1 \cap (0,1)$,

Будем считать, что a < b

 $T. \kappa. (0,1)$ не связен, между a и b есть проблемная точка. Найдём её:

$$x_* \coloneqq \sup \{ x \in U_1 \mid x < b \}$$

Почему эта точка проблемная?

$$\begin{bmatrix} x_* \in U_1 \implies \exists \, \varepsilon > 0 : (x_* - \varepsilon, x_* + \varepsilon) \subset U_1 \implies b > x_* + \varepsilon \implies x_* \text{ не } \mathbf{верхняя} \text{ граница } - \not \xi \\ x_* \in U_2 \implies \exists \, \varepsilon > 0 : (x_* - \varepsilon, x_* + \varepsilon) \subset U_2 \implies x_* \text{ не } \mathbf{точная} \text{ верхняя граница } - \not \xi \end{bmatrix}$$

Значит, (0,1) связен

Следствие. [0,1] связен (как замыкание (0,1))

15. Связность объединения. Образ связного множества

Теорема 11. A, B связны, $A \cap B \neq \emptyset$

 $\implies A \cup B$ связно

Доказательство. Пусть
$$U_1, U_2 \in \Omega:$$

$$\begin{cases} U_1 \cup U_2 \subset (A \cup B) \\ U_1 \cap U_2 \cap (A \cup B) = \emptyset \\ U_1 \cap (A \cup B) \neq \emptyset \end{cases}$$
 Возьмём $x_0 \in A \cap B$ НУО считаем, что
$$\begin{cases} x_0 \in U_1 \\ x_0 \notin U_2 \end{cases}$$

$$\begin{cases} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_2 \cap B = \emptyset \end{cases}$$

$$\begin{cases} U_2 \cap B = \emptyset \end{cases}$$

$$\begin{cases} U_2 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_2 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{cases}$$

$$\begin{cases} U_2 \cap A = \emptyset \end{cases}$$

Теорема 12.
$$f: X \to Y$$
 – непр., A – связно $\implies f(A)$ – связно

Доказательство. Пусть f(A) не связно

Это означает, что
$$\begin{cases} f(A) \subset U_1 \cup U_2 \\ U_1 \cap U_2 \cap f(A) = \emptyset \\ U_1 \cap f(A) \ni y_1 \\ U_2 \cap f(A) \ni y_2 \end{cases}$$

$$V_1\coloneqq f^{-1}(U_1), \qquad V_2\coloneqq f^{-1}(U_2)$$

$$V_1\cup V_2=f^{-1}(U_1)\cup f^{-1}(U_2)=f^{-1}(U_1\cup U_2)\supset f^{-1}(f(A))\supset A$$

$$V_1\cap V_2\cap A=\emptyset \text{ (т. к. допустим, } x_*\in V_1\cap V_2\cap A\Longrightarrow f(x_*)\in U_1\cap U_2\cap f(A)=\emptyset)$$

Следствие. $X \simeq Y$ X связно $\implies Y$ связно

16. Связность декартова произведения

Теорема 13. $X \times Y$ связно $\iff X, Y$ связно

Доказательство.

$$p_x: X \times Y \to X, \qquad p_y: X \times Y \to Y$$

$$p_x(x,y) = x \qquad p_y(x,y) = y$$

Оба непрерывны

• Допустим, что $X \times Y$ несвязно Тогда $X \times Y = U_1 \cup U_2$, $U_1 \cap U_2 = \emptyset$ Возьмём $(x_1,y_1) \in U_1$, $(x_2,y_2) \in U_2$ НУО считаем $(x_1,y_2) \in U_1$

17. Теорема Вейерштрасса о промежуточном значении. Примеры применения

Утверждение 4.

$$E \subset \mathbb{R}$$
 связно $\iff \forall x, y \in E \quad x < r < y \implies r \in E$ (1)

Теорема 14. X – топологическое пространство, связное

$$f: X o \mathbb{R}$$
 – непрерывная функция, $f(x_0) = a, \quad f(x_1) = b, \qquad a \le c \le b$

$$\implies \exists x_2 \in X : f(x_2) = c$$

Доказательство. X – связное $\implies f(X)$ – связное

Для удобства, НУО предположим, что a < b

$$a \le c \le b \Longrightarrow_{(1)} \exists x_2 : f(x_2) = c$$

18. Компоненты связности

Определение 26 (компонента связности точки).

$$K_a\coloneqq\bigcup_{\substack{a\in A\ A\ {
m CBЯЗНO}}}A$$
 — СВЯЗНО

Утверждение 5. $K_a=K_b$ или $K_a\cap K_b=\emptyset$

Доказательство. Пусть $\left\{ egin{align*} K_a
eq K_b \ K_a \cap K_b
eq \emptyset \end{array}
ight\} \implies K_a \cup K_b$ связно

Получили множество, содержащее a и b, большее, чем каждая из компонент – $\frac{1}{2}$

Утверждение 6. K_a замкнута

Доказательство. Замыкание связного связно

Если компонента связности не замкнута, то её замыкание тоже будет компонентой связноти, большей данной $\hfill\Box$

Примечание. K_a не обязательно открыта

Теорема 15. (X,Ω) – топологическое пространство. Равносильны следующие условия:

- 1. Компоненты связности X открыты
- 2. $X = \bigcup_{i \in I} X_i$, где X_i комп. связности Топология X совпадает с топологией объединения
- 3. У любой точки существует связная окрестность

Доказательство. Здесь не будет строгого доказательства, потому что там много слов ни о чём

- 1 \iff 3 Очевидно (эта окрестность и будет K_a)
- 2
 Зададим топологию объединения как финальную:

$$\Omega_{\cup} \coloneqq \{ U : \mathrm{id}^{-1}(U) \text{ откр. в } X_i \}$$

Очевидно, что

$$\forall i \ X_i \subset X \implies \exists \operatorname{id}^{-1}(X_i) = X_i$$

Значит, X_i открыто

19. Линейная связность

Определение 27. Путём в X называется непрерывное отображение $f:[0,1] \to X$

Определение 28. X называется линейно связным, если любые две точки соединены путём

Определение 29. $A\subset X$ линейно связно, если любые две точки можно соединить путём в A (не выходящим за пределы A)

Теорема 16. Линейно связное множество является связным

Доказательство. Пусть не связно

$$\iff X = U_1 \cup U_2 : \begin{cases} U_1 \cap U_2 = \emptyset \\ x_1 \in U_1 \\ x_2 \in U_2 \end{cases}$$

$$\implies \exists f: [0,1] \to X: \begin{cases} f(0) = x_1 \\ f(1) = x_2 \end{cases}$$

 $f^{-1}(U_1), f^{-1}(U_2)$ разбивают отрезок $[0,1] \implies [0,1]$ не связен – $\mbox{\em } \mbox{\footnotemark}$

Определение 30. Компонента линейной связности – максимальное линейно связное подмножество

Утверждение 7. Компоненты лин. св. совпадают или не пересекаются

Примечание. Компоненты лин. св. не обязательно замкнуты

20. Компактность. Примеры. Компактность замкнутого множества

Определение 31. X – топ. пр-во

 $\set{U_i}_{i\in I}$ называется открытым покрытием X, если:

1.
$$\bigcup_{i \in I} U_i = X$$

2.
$$\forall i \quad U_i \in \Omega$$

Дальше слово покрытие будет обоначать "открытое покрытие"

Определение 32. $\{U_i\}_{i\in I}$ – покрытие X Если $\{U_{i_j}\}_{i_j\in J\subset I}$ – тоже покрытие X, то оно называется подпокрытием $\{U_i\}_{i\in I}$

Определение 33. X называется компактным, если из любого покрытия можно выбрать конечное подпокрытие

Определение 34. $A \subset X$ компактно, если оно компактно в индуцированной топологии, т. е.

$$\forall \left\{ \begin{array}{l} U_i \end{array} \right\}_{i \in I} : \bigcup_{i \in I} U_i \supset A \quad \exists \, U_{i_1}, U_{i_2}, ..., U_{i_n} : \bigcup_{k=1}^n U_{i_k} \supset A \quad \exists \, U_{i_1}, U_{i_2}, ..., U_{i_n} : \bigcup_{k=1}^n U_{i_k} \supset A \quad \exists \, U_{i_k} \subset A \quad \exists$$

15

Примеры.

- 1. Антидискретное компактно Любое его подмножество компактно
- 2. Любое конечное топ. пр-во компактно
- 3. Бесконечное дискретное не компактно (покрытие одноточечными мн-вами)
- 4. $\mathbb{R}_{\text{станд.}}$ не компактно $(U_n = (-n, n)$ – покрытие, выкинуть ни один нельзя)
- 5. Топология Зарисского компактна
- 6. Стрелка:
 - Ha $[0, +\infty]$ компактна
 - Ha $(0, +\infty)$ не компактна

Теорема 17. X компактно, A замкнуто в X

Доказательство. Рассмотрим $\forall \{U_i\}_{i \in I}$ – покрытие

A Положим $V \coloneqq X \setminus A$ – откр.

 $\{U_i, V\}_{i \in I}$ – покр. X

⇒ ∃ конечное подпокрытие. Выпишем его:

$$V, U_{i_1}, U_{i_2}, ..., U_{i_n}$$

Тогда все U образуют конечное подпокрытие A (т. к. $V \cap A = \emptyset$)

21. Компактность образа компактного множества

Теорема 18. $f: X \to Y$ – непр., $A \subset X$ – комп.

 $\implies f(A)$ – копм.

Доказательство. Пусть $\{V_i \subset Y\}_{i \in I}$ – покрытие f(A)

$$\Longrightarrow \forall i \quad f^{-1}(V_i)$$
 – откр. в X $\Longrightarrow \{f^{-1}(V_i)\}_{i \in I}$ – покрытие A

А компактно, поэтому можно выбрать конечное подпокрытие:

$$f^{-1}(V_{i_1}),...,f^{-1}(V_{i_n})$$
 – кон. подпокр. A

 $V_{i_1},...,V_{i_m}$ – кон. попокр. F(A)

Следствие. Компактность является топологическим свойством

22. Компактные подмножества хаусдорфова пространства

Определение 35. Х называется хаусдорфовым, если любые две точки можно разделить непересекающимися окрестностями, т. е.

$$\forall x, y \in X \quad \exists \, U_x, U_y : U_x \cap U_y = \emptyset$$

Теорема 19. X – хаусдорфово, A компактно

 $\implies A$ замкнуто

Доказательство. Нужно доказать, что $X \setminus A$ открыто Зафиксируем $x_0 \in X \setminus A$

$$X$$
 хаусд. $\implies \forall a \in A \quad \exists \, \left\{ egin{array}{ll} U_{ax_0} - \text{okp. } a \\ V_{ax_0} - \text{okp. } x_0 \end{array}
ight\} : U \cap V = \emptyset$

 $\{\,U_{ax_0}\,\}_{a\in A}$ — покрытие $A\Longrightarrow\exists\,U_{ax_01},...,U_{ax_0n}$ — конечное подпокрытие A Для каждой U_{ax_0i} возьмём парную ей V_{ax_0i} :

$$V \coloneqq \bigcap_{k=1}^{n} V_{ax_0k}$$

V открыто, $V \cap A = \emptyset$ (т. к. $V_i \cap U_i = \emptyset$), $x_0 \in V$

Следствие. X — компактно и хаусдорфово, $A \subset X$ A компактно $\iff A$ замкнуто

23. Лемма Лебега. Компактность отрезка

Лемма 3 (Лебега). $\{U_i\}$ – покрытие [0,1]

$$\exists \underset{\text{число Лебега покрытия}}{\varepsilon > 0} : \forall x_0 \in [0,1] \quad \exists \, U_i : \underbrace{(x_0 - \varepsilon, x_0 + \varepsilon)}_{=B(x_0,\varepsilon)} \cap I \subset U_i$$

Замечание. ε не зависит от x_0

Доказательство. Положим $\varepsilon_i \coloneqq \frac{1}{2^i} \ (\varepsilon_i \to 0)$

Пусть лемма невверна, т. е.

$$\exists x_i : \forall j \quad B(x_i, \varepsilon_i) \not\subset U_i$$

Применим принцип выбора Больцано-Вейерштрасса:

$$\exists x_{n_k} \to x_0$$

$$x_0 \in U_j \implies \exists \sum_{\text{из } veps_i \text{ в первой строчке}} : B(x_0, \varepsilon_i) \subset U_j$$

Рассмотрим $x_{n_k}: \rho(x_{n_k}, x_0) < \frac{1}{2i+1}$

Пусть $b_k \ge i + 1$ (можно так сделать, т. к. последовательность сходится к x_0)

$$B(x_{n_k}, \varepsilon_{n_k})B(x_{n_k}, \varepsilon_{i+1}) \subset B(x_0, \varepsilon_i) \subset U_j$$

A мы предположили, что $B(x_i, \varepsilon_i) \not\subset U_i - \not\downarrow$

Теорема 20. [0,1] компактен

Доказательство. Пусть $\{U_i\}$ – открытое покрытие, ε – его число Лебега

Применим лемму Лебега:

$$[0,1] \cap B(0,\varepsilon) \subset U_0$$

$$B(\varepsilon,\varepsilon)\subset U_1$$

 $B(2\varepsilon,\varepsilon)\subset U_2$

$$[0,1] \cap B(k\varepsilon,\varepsilon) \subset U_k, \qquad (k+1)\varepsilon \ge 1$$

То есть, все эти шары покрывают отрезок Значит, $U_1, ..., U_k$ – конечное подпокрытие

24. Компактность произведения пространств

Теорема 21. X, Y комп. $\iff X \times Y$ комп.

Доказательство.

 $p_x p_x : X \times Y \to X$ – непр. $X \times Y$ – комп. $\implies p_x(X \times Y) = X$ – комп. Аналогично для Y и p_y

Возьмём $\{U_i \times V_i\}$ – покрытие $X \times Y$

Рассмотрим $x_0 \in X$ и слой над ней: $\{x_0\} \times Y \simeq Y \{x_0\} \times Y$ – комп. $\implies \exists \{U_{ix_0} \times V_{ix_0}\}_{i=1}^{n_{x_0}}$ –

$$U_{x_0}\coloneqq \bigcap_{i=1}^n U_{ix_0}$$
 – откр.

Теперь будем менять x_0 :

 $\left\{U_{x_0}\right\}_{x_0\in X}$ — открытое покрытие X X — комп. $\Longrightarrow U_{x_1},...,U_{x_m}$ — конечное подпокрытие $\left\{U_{ix_1}\times V_{ix_1}\right\}_{i=1}^{n_{x_1}},...,\left\{U_{ix_m}\times V_{ix_m}\right\}_{i=1}^{n_{x_m}}$ — конечное подпокрытие

Замечание. Верна теорема Тихонова:

 X_i – комп. $\iff \prod X_i$ – комп.

25. Критерий компактности в \mathbb{R}^n

Определение 36. $A \subset \mathbb{R}^n$ ограничено, если $\exists M > 0 : A \subset B(0, M)$

Или: $S \subset [-M, M]^n$

Теорема 22. $A \subset \mathbb{R}^n$

A компактно $\iff A$ замкнуто и ограничено

Доказательство.

- - Замкнутость:

$$\left. egin{align*} \mathbb{R}^n \text{ хаусдорфово} \\ A \text{ компактно} \end{array} \right\} \implies A$$
 замкнуто

– Ограниченность:

Иначе $\{\,B(0,M)\,\}_{M=1}^\infty$ – покрытие без конечного подпокрытия

[-M,M] комп. ($\simeq [0,1]$) $\implies [-M,M]^n$ – комп. (как прямое произведение)

$$\left. \begin{array}{l} A \text{ замкнуто} \\ A \subset [-M,M]^n \end{array} \right\} \implies A \text{ комп.}$$

26. Теорема Вейерштрасса о достижении максимума. Примеры применения

Теорема 23. $f: X \to \mathbb{R}$ – непр., X – комп.

$$\implies \exists x_0 : \forall x_1 \quad f(x_1) \le f(x_0)$$

Доказательство. X – комп. $\Longrightarrow f(X) \subset \mathbb{R}$ – комп.

Знаем, что компактные подмножества прямой замкнуты и ограничены, а значит, $\exists \max(f(x))$

Пример (метод Штурма).

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n}$$

Доказательство. Докажем его следующим методом (в предположении, что $x_i \ge 0$):

$$S\coloneqq x_1+x_2+\ldots+x_n$$

$$M := \{ (x_1 \cdot \dots \cdot x_n) \in \mathbb{R}^n \mid \begin{cases} x_i \ge 0 \\ \sum_{i=1}^n x_i = S \end{cases} \}$$

$$f(x_1, ..., x_n) := x_1 x_2 ... x_n, \qquad f: M \to \mathbb{R}$$

Утверждается, что если $x_1=x_2=...=x_n=\frac{S}{n},$ то $f(\frac{S}{n},\frac{S}{n},...,\frac{S}{n})\stackrel{?}{\geq} f(x_1,x_2,...,x_n)$ Докажем, что это максимум. Для этого докажем, что остальные точки не являются максимумом:

Пусть $x_i < x_j$

Выберем $\varepsilon < \frac{x_i - x_j}{2}$

Утверждается, что $x_i x_j < (x_i + \varepsilon)(x_j - \varepsilon)$

Докажем это:

$$(x_i + \varepsilon)(x_j - \varepsilon) = x_i x_j + \varepsilon \underbrace{(x_j - x_i - \varepsilon)}_{>0}$$

Получили, что любой набор $\{x_i\}$, кроме одинаковых, улучшаем (при фиксированной сумме)

Если максимум существует, то это одинаковые x_i

Докажем его существование: M – комакт (т. к. это – замкнутое ограниченное подмножество \mathbb{R}^n) $\Longrightarrow_{\mathrm{T. B.}} f$ имеет максимум

Пример (задача Фаньяна). Есть остроугольный треугольник ABC. Хотим вписать в него треугольник XYZ так, чтобы $P(XYZ) \to \min$

Утверждается, что X, Y, Z – основания высот

Доказательство.

$$\{(X,Y,Z)\} = AB \times BC \times CA - \text{комп}.$$

Значит, существует такая конфигурация X,Y,Z, что $P(XYZ)=\max$

Утверждается, что единственная неулучшаемая концигурация:

$$\begin{cases} \angle BXY = \angle BYX \\ \angle AXZ = \angle AZX \\ \angle YCZ = \angle ZCY \end{cases}$$

Докажем это:

Пусть $\angle AZX < \angle CZY$, при этом, $\angle AZ_0X = \angle CZ_0Y$

Вспоминая прошлый семестр, это означает, что $XZ_0 + YZ_0 < XZ + YZ$

Пример (задача Дидоны). Требуется найти фигуру с максимальной площадью при заданном периметре

Утверждается, что это круг

Доказательство. Пусть M – множество выпуклых фигур с периметром P

f — функция площади

Единственная неулучшаемая фигура – круг

Значит, достаточно доказать, что M компактно

Хотим превратить M в топологическое пространство, так, чтобы функция площади была непрерывна Введём для этого метрику. Нам подойдёт метрика Хаусдорфа

В каких случаях M может не быть компактом?.

Рассмотрим в качестве M множество фигур на плоскости. Это (почти всегда) **не** компакт (т. к. фигуры можно сдвигать сколь угодно далеко)

Возьмём в качестве M множество фигур в каком-нибудь ограниченном множестве (например, в квадрате со стороной P)

Метрика – метрика Хаусдорфа

Утверждается, что таким образом построенное множество компактно (без доказательства)

27. Аксиомы отделимости. Критерий Т1

Утверждения. X – топологическое пространство. X может удовлетворять следующим аксиомам:

 T_0 (Колмогорова). Для любых двух различных точек существует окрестность, содержащая ровно одну из них

$$T_1$$
 (Тихонова). $\forall x, y \in X \quad \exists U_x \not\ni y$

$$m{T_2}$$
 (Хаусдорфа). $\forall x,y \in X \quad \exists U_x, U_y : U_x \cap U_y = \emptyset$

$${f T3}$$
 . $orall F$ – замкн. $\forall x
otin F$ \exists открытые $U_x, U_F_{\ni x}$: $U_x \cap U_F = \emptyset$

$$T4$$
 . $\forall F_1, F_2$ — замкн. \exists открытые U_1 , U_2 : $U_1 \cap U_2 = \emptyset$ $\supset F_1 \supset F_2$

Замечание. $T_2 \implies T_1 \implies T_0$

Теорема 24. $T_1 \iff$ любая точка – замкнутое множество

Доказательство.

• ===

$$T_1\iff\forall x_0\in X\quad\forall y\in X\\y\not\in X\\U_y:\begin{cases}y\in U_y\\x_0\notin U_y\end{cases}=X\setminus\{x_0\}\qquad \qquad -\text{ откр.}\\(\text{как объединение открытых})\iff\{x_0\}\text{ - замкн.}$$

• =

$$\forall x \neq y \quad U_x \coloneqq X \setminus \{\, y\,\}$$
 — откр. (т. к. y замкн.)

Получили окрестность, которая содержит x, но не содержит y

Следствие. При T_1 верно, что $T_4 \implies T_3 \implies T_2 \implies T_1$

28. Нормальность метрического пространства

Определение 37. Пространство, удовлетворяющее T_1 и T_3 (по следствию, T_0-T_3) называется регулярным

Определение 38. Пространство, удовлетворяющее T_1 и T_4 (по следствию, T_0 – T_4) называется нормальным

Теорема 25. Метрическое пространство нормально

Теорема 26.

• Хаусдорфовость (T_2) : Возьмём $x \neq y, \qquad \varepsilon \coloneqq \frac{\rho(x,y)}{2}$

$$B(x,\varepsilon) \cap B(y,\varepsilon) \stackrel{\triangle}{=} \emptyset$$

• Регулярность (T_3): Возьмём $x_0 \in X$, F – замкн.

$$\implies \exists \rho(x_0, F) := \inf_{y \in F} \rho(x, y) \stackrel{?}{>} 0$$

Пусть $\inf_{y \in F} \rho(x_0, y) = 0$

$$\implies \exists \ y_n : \rho(x_0,y_n) \xrightarrow[n \to \infty]{} 0 \iff \forall \varepsilon > 0 \quad \exists \ N : \forall n > N \quad y_n \in B(x_0,\varepsilon) \implies \\ \implies x_0 \in \operatorname{Cl}\left\{\ y_n\ \right\} \subset \operatorname{Cl}\left\{\ y_n\$$

Положим $\varepsilon\coloneqq \frac{\rho(x_0,F)}{2}$ Возьмём $U_{x_0}\coloneqq B(x_0,\varepsilon)$ и $U_F\coloneqq \bigcup_{y\in F}B(y,\varepsilon)$ – открыты (т. к. шары открыты)

• T₄ F_1, F_2 – замкнутые. Хотим, чтобы $ho(F_1, F_2)$ могло равняться нулю

$$\begin{cases} \forall x \in F_1 & \exists \, \varepsilon_x \coloneqq \frac{\rho(x, F_2)}{>} 0 \\ \forall y \in F_2 & \exists \, \varepsilon_y \coloneqq \frac{\rho(y, F_1)}{>} 0 \end{cases}$$

$$U_{F_1} \coloneqq \bigcup_{x \in F_1} B(x, \varepsilon_x), \qquad U_{F_2} \coloneqq \bigcup_{y \in F_2} B(y, \varepsilon_y)$$

$$x \in (U_{F_1} \cap U_{F_2}) \implies x \in \left(B(x, \varepsilon_x) \cap B(y, \varepsilon_y)\right)$$

Пусть, НУО, $\varepsilon_x \geq \varepsilon_y$

$$\implies \rho(x,y) < 2\varepsilon_x = \rho(x,F_2)$$

Вспомним, что $x \in F_1, y \in F_2$

Получили, что расстояние от x до некоторой точки фигуры F_2 больше, чем до самой F_2 - $\mbox{\em 4}$

29. Нормальность хаусдорфова компакта

Теорема 27. X – компактно и хаусдорфово $\implies X$ нормально

Доказательство.

ullet Регулярность (T_0-T_3) Возьмём $x_0 \in X$ и F – замкнутое в X ($\Longrightarrow F$ компактно, в силу хаусдорфовости X) B силу хаусдорфовости F,

$$\forall y \in F \quad \exists \, \left\{ \begin{matrix} U_{x_0,y} - \text{otkp.} \\ V_y - \text{otkp.} \end{matrix} \right\} : U_{x_0,y} \cap V_y = \emptyset$$

Возьмём $\{V_y\}_{y\in F}$ – конечное покрытие F

$$\implies \exists \, V_{y_1},...,V_{y_n} \in F$$
 – конечное подпокрытие F

$$U_{x_0} \coloneqq \bigcap_{i=1}^n U_{x_0,y_i}$$
 – откр., $U_F \coloneqq \bigcap_{i=1}^n V_{y_i}$

• Нормальность (T_4)

Заданы F_1, F_2 – замкнутые непересекающиеся множества

Возьмём $x\in F_1,\quad U_x,\quad V_x$: $U_x\cap V_x=\emptyset$ (можно так сделать в силу T_3)

Воспользуемся компактностью \overline{F}_1 (как подмножества X):

Возьмём $\{U_x\}_{x\in F_1}$ – покрытие F_1

Значит, существует $\{U_{x_i}\}_{i=1}^k$ – подпокрытие F_1

$$U_{F_1} := \bigcup_{i=1}^n U_{x_i}, \qquad U_{F_2} := \bigcap_{i=1}^n V_{x_i}$$

30. Компактификация по П. С. Александрову

Определение 39. X называется локально компактным, если у любой точки есть окрестность с компактным замыканием, т. е.

$$\forall x_0 \in X \quad \exists U_{x_0} : \operatorname{Cl} U_{x_0} - \operatorname{комп}.$$

Теорема 28. Х локально компактно и хаусдорфово

$$\implies \exists \hat{X} \coloneqq X \cup \{\infty\}$$

X – подпространство \widehat{X}

 \widehat{X} компактно и хаусдорфово

Доказательство. По условию, $\widehat{X} = X \cup \{\infty\}$

Открытые в \widehat{X} :

- $\infty \in U$ U открыто в $\widehat{X} \iff U$ открыто в X
- $\infty \in U$ U открыто в $\widehat{X} \iff \widehat{X} \setminus U$ компактно $(=X \setminus U)$
- \circ Докажем, что X подпространство \widehat{X} : Достаточно доказать, что если $\infty\in U,$ то $(U\setminus\{\,\infty\,\})$ открыто в X

$$X\setminus \left(U\setminus \set{\infty}\right)$$
 комп. в $X\xrightarrow[X-\text{хаусд.}]{}X\setminus \left(U\setminus \set{\infty}\right)$ замкнуто $\implies \left(U\setminus \set{\infty}\right)$ открыто

- \circ Очевидно, что \widehat{X} компактно
- $\circ\,$ Докажем, что \widehat{X} хаусдорфово:
 - $-x_0,y_0\in (\widehat{X}\setminus \{\infty\})\implies \mathrm{OK}$ (разделяем в X)
 - НУО $x_0 \in (\widehat{X} \setminus \{\infty\}), \quad y_0 = \infty$ В силу локальной компактности X,

$$\exists U_{x_0} \subset X : \operatorname{Cl} U_{x_0}$$
 – комп.

$$U_{y_0} \coloneqq \left(X \setminus \operatorname{Cl} U_{x_0}
ight)$$
 – откр. в \widehat{X} и содержит $y_0 = \infty$