

Technology showstoppers for the next generation of devices (*)

Prof. William Fornaciari
Politecnico di Milano – Dipartimento di Elettronica e Informazione

william.fornaciari@polimi.it

www.elet.polimi.it/~fornacia

Milano, June 2009

(*) Most of the information contained in this presentation are courtesy of STMicroelectronics: Talk of R.Zafalon @ DATE'09

Outline

- ➤ Market Application rush
- ➤ CMOS Roadmap: 3 main showstoppers
- ➤ Why bothering for low power systems?
 - Technology Scaling, Trends & Roadmap
 - Leakage Aware design strategies
 - Cost of heat removal: packaging and reliability
 - Memory architectures
 - Increased market share of mobile electronics
- ➤ European proposal: ST Computing Platform's Roadmap
 - Platform 2012
- ➤ Not Only Mobile...!
- **Conclusion**

30 Years of Electronics Industry CAGRMIP

Market Application rush

CMOS Roadmap: 3 main showstoppers

Pat Gelsinger, CTO Intel Corp.

Quote from DAC'04 Keynote:

Power is the only limiter !!

CMOS Roadmap: 3 main showstoppers:

- 1. Subthreshold Leakage Current (I_{off})
- 2. Huge Process Variation Spread
- 3. Interconnect Performance and Signal Integrity

Why bothering for low power systems?

- > Practical market issue:
 - ✓ Increasing market share of mobile, asking for longer cruising life
 - ✓ Limitations of battery technology
- **Economic issue:**
 - ✓ Reducing packaging costs and achieving energy savings
- > Technology issue:
 - ✓ Enabling the realization of high-density chips (heat poses severe constraints to reliability)

CMOS at core of chip making still for many y

- POLITECNICO DI MILANO
- The theoretical limit for transistor gate length on silicon is around 1.5nm.
 - ✓ Today's 65nm CMOS process has a gate length of 42nm: i.e **28X larger** than the theoretical limit!
 - ✓ In 32nm, the gate length is 21nm
 - i.e. 14X above limit
- The gate delay determines the fundamental speed of the logic. The theoretical limit is 0.04ps
 - ✓ Today's 65nm logic NAND2 is ~1ps, i.e. **24X slower!**
- Transistor density, i.e. the number of device which can be squeezed into a chip, reaches the limit around 1.8 billion Tx per cm².
 - ✓ Today's 65nm CMOS device is **7.5X larger**! (i.e. 750Kgate/mm² = 2.4M Tx/mm² = 240M Tx/cm²)
- ➤ Performance as measured by clock speed, fell off Moore's Law during the last decade, thanks to Multi Processors computing architectures.

ITRS Roadmap 2007 vs Moore's law

Squeezing costs of computing cores

From multi-core to many-core

IBM - Cell/B.E.

Tilera - TILE64

MIT - RAW

Intel -Terascale

Towards 1B Multi-core architectures

Multi-core architecture: a tiled homogeneous multi-core architecture for general embedded purpose (Godson-T)

Many-core computing fabric template

VDD (no more) scaling is increasing the **«power crisis»**

Power Trend for microprocessors

➤ Power density in Intel's microprocessors:

CMOS Logic Tech Overview

Density vs technology

Source: STMicroelectronics

90/65/45nm Speed vs Leakage

Technology Scaling

- ➤ Increasing contribution of leakage power:
- ✓ Example: ASICs [source: STMicroelectronics]

✓ Example: Microprocessors [source: Intel].

Itanium 2:

180nm, 1.5V, 1.0GHz, 221MTx (core+cache)

Itanium 3:

130nm, 1.3V, 1.5GHz, 410MTx (core+cache)

SoC Requirements for MP platforms (1)

➤ Processing performance is expected to grow more than 200x in the next 15 years.

SoC Requirements for MP platforms (2)

► # PE per chip; Processing Performance; ND2's max switching frequency

Dynamic vs. Leakage Power

Source: ITRS Roadmap

Semiconductor's Challenge

Moore's Law at Work!

Leakage crisis: Is it a technology issue only?

> Trends:

- ✓ nominal Vdd getting stable around 1V
- ✓ MOS's Vth linearly scales to keep costant speed
- ✓ But... leakage grows exponentially with Vth reduction!!
- ✓ sub-threshold current from 100 to 1000 pA/um
- ✓ gate leakage to become larger that sub-threshold
- ✓ total static power from 21E-12 to 60E-12 W/Transistor
- > SOI has major disadvantages w.r.t. sub-threshold reduction!

"Leakage Aware" design strategy includes

A. Gate/Circuit-level techniques

Use of multiple V_{th}

- Dual-V_{th} design.
- Mixed-V_{th} (MVT) CMOS design.
- MTCMOS.
- ✓ Sleep transistor insertion/Voltage islands
- ✓ State retention FFs
- **✓** Techniques for memory circuits

Cell state (stored value) determines exactly which transistors "leak"

- ✓ **State-preserving** techniques:
 - Only suitable choice for non-cache memories (e.g., scratchpad).
- ✓ **State-destroying** techniques:
 - Suitable for caches (can invalidate values).

C. Architectural techniques

- ✓ Adaptive Body Biasing (ABB).
- ✓ Adaptive Voltage Scaling (AVS).
- \checkmark V_{th} hopping.
- ✓ Multiple V_{RR}

Memory Driver

Technological opportunities. 3D Architecture

Thermal map of a Multi Processor SoC

Chip floorplan

Steady state temperature

Some hot spots in steady state:

- § Silicon is a good thermal conductor (only 4x worse than Cu) and temperature gradients are likely to occur on large dies
- § Lower power density than on a high performance CPU (lower frequency and less complex HW)

Thermal Management Challenge

- **▶ BGA package rough** (Cost-performance ÷ High-performance)
 - ✓ max power density = $50 \div 60 \text{ W/cm}2$
 - \checkmark Cost per pin = 0.25÷1.1 ¢/pin (~ 90 pins/cm2)
 - ✓ Max pincount = $500 \div 2500 +$

Increased share of Mobile Phone Subscribers

- Cellular Phones: GSM+CDMA
 - ✓ The fastest growing communication technology of all time.
- ➤ The billionth subcriber user was connected in Q1 2002

Mobile Phones Regional Split at Q4-2008

- ≥ 3,804 M subscribers as of Q4-2008
- ➤ Mobile Broadband Network (HSPA) subscribers has reached 58 M from 11 M on 2007 (i.e. 4 M/Month growth rate).

GSM Regional Statistics Q4-2008

Cellular Phone's standby current

ST's New SoC Roadmap

ST's goal

Replace Heterogeneous mixed HW/SW specialized subsystems by a single scalable and programmable computing fabric while solving manufacturability issues

Platform 2012: SW Stack

Milestones

	Local Cluster	Fabric 1	Local Cluster + 3D	Fabric 2
Application	720p,	1080p	1080p	1080p
	250 Gops	1 Tops	500 Gops	2 Tops
Programming Model	Streaming, SMP	Streaming, SMP	Streaming SMP Client-server	Streaming SMP Client-server
Tools & SW	Local Dynamic	Global Static Local Dynamic	Local Dynamic	Local & Global Dynamic
Variability	Local	Local + Global	Local	Local + Global
Redundancy	On/Off	On/Off	On/Off	Dynamic
3D	V0 if available (Not Mandatory)	V0	V1	V1

Techno Validation
Reusable as an IP

Integrated into product SoC

... and ... not Only Mobile!

- ➤ 20% of electrical energy consumed in Amsterdam is used for Telecom
- ➤ In the US, Internet is responsible for 9% of the electrical energy consumed nation-wide
 - ✓ This grows to 13% with all computer applications
- ➤ Transfering 2 MBytes of data through the internet consumes the energy of 1 pound of coal (1 pound=0.453 Kg)

Source: 2000 CO2 conference, Amsterdam, NL

Conclusion

- > Semiconductor market is still CMOS dominated:
 - ✓ Switching and leakage power.
- ➤ Leakage will become dominant for technology nodes below 65nm.
 - ✓ Leakage power optimization must be addressed from both technology and design points of view.
- Multi Processing Platform:
 - ✓ Not yet supported by "production grade" SW tool chain
- ➤ Higher-level approaches are still in their infancy:
 - ✓ Results are promising.
- The Embedded System's industry calls for a REVOLUTION!

Industry's Needs

- Ultra low power systems
- · Ultra lowopower cognitive cognitive
- · Improved W productivity wag
- · Miero-Sano systems Waterns
- System Ingrickage
 - System On Wafer
 - **Many Cores**

