Einführung in die angewandte Stochastik

Fabian Meyer

31. Juli 2020

Inhaltsverzeichnis

1	Wah	ırscheinlichkeitsrechnung	3
	1.1	Definitionen	3
	1.2	Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung, Zähldichte	3
	1.3	Diskreter Wahrscheinlichkeitsraum	3
	1.4	Laplace-Raum	3
	1.5	Träger eines diskreten Wahrscheinlichkeitsraum	3
	1.6	Diskrete Wahrscheinlichkeitsverteilungen	3
	1.7	Nicht-diskrete Wahrscheinlichkeitsmaße mit Riemann-Dichten	3
	1.8	σ -Algebra	4
	1.9	Kolmogorov-Axiome	4
	1.10	Borelsche σ -Algebra	4
	1.11	Riemann-Dichte, Verteilungsfunktion	4
	1.12	Träger einer Riemann-Dichtefunktion	4
	1.13	Ereignisfolgen, limes superior, limes inferior	5
	1.14	Siebformel von Sylvester-Poincaré	5
	1.15	Bedingte Wahrscheinlichkeit	5
	1.16	Stochastische Unabhängigkeit	5
	1.17	Produktraum	5
2	Zufa	ıllsvariablen und Wahrscheinlichkeitsmaße	6
	2.1	Indikatorfunktion	6
	2.2	Stochastische Unabhängigkeit von Zufallsvariablen	6
	2.3	Summe unabhängiger Zufallsvariablen, Faltung	6
	2.4	Quantilfunktion	6
	2.5	Multivariate/Mehrdimensionale Verteilungsfunktion	7
	2.6	Randverteilung, Marginalverteilung, Randdichte	7
	2.7	Erwartungswerte	7
	2.8	Moment	8
	2.9	k-tes Moment, Varianz, Kovarianz	8
	2.10	Verschiebungssatz von Steiner	8

2.11	Unkorreliertheit, Korrelationskoeffizient
2.12	Ungleichungen mit Momenten
2.13	Erwartungswertvektor, Kovarianzmatrix
2.14	Erzeugende Funktion
2.15	Bedingte Verteilungen
2.16	Bedingter Erwartungswert, bedingte Varianz
2.17	Bedingte Erwartung
2.18	Eine Version des Schwachen Gesetzes großer Zahlen
2.19	1. Version des starken Gesetzes großer Zahlen
2.20	2. Version des starken Gesetzes großer Zahlen
2.21	Eine Version des zentralen Grenzwertsatzes

1 Wahrscheinlichkeitsrechnung

1.1 Definitionen

- Grundraum Ω (Grundmenge, Ergebnisraum)
- Menge aller möglichen Ergebnisse eines Zufallsexperiments
- $\omega \in \Omega$ Ergebnis.
- Ereignis A (,B,...)- Menge von Ergebnissen. Ein Eregnis, das genau ein Element besitzt heißt Elementarereignis

1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung, Zähldichte

Sei $\mathfrak{P} = Pot(\Omega)$ (Menge aller Ereignisse über Ω) und $p: \Omega \to [0,1]$ Abbildung mit $\sum_{\omega \in \Omega} p(\omega) = 1$. Dann ist

$$P(A) = \sum_{\omega \in A} p(\omega), A \in \mathfrak{P}$$

Wahrscheinlichkeitsmaß/Wahrscheinlichkeitsverteilung auf \mathfrak{P} (oder Ω).

1.3 Diskreter Wahrscheinlichkeitsraum

Wenn $|\Omega|$ höchstens abzählbar unendlich dann ist (Ω, P) diskreter Wahrscheinlichkeitsraum.

1.4 Laplace-Raum

$$P(A) = \frac{|A|}{|\Omega|}$$

Ziehen aus Urne ohne Wiederholung ohne Reihenfolge kein Laplace-Raum.

1.5 Träger eines diskreten Wahrscheinlichkeitsraum

$$T = \{ \omega \in \Omega \mid P(\omega) > 0 \}$$

1.6 Diskrete Wahrscheinlichkeitsverteilungen

Zur Festlegung der Verteilung wird jedem Element von $T = \{x_1, \ldots\}$ Wahrscheinlichkeit $p_k \in [0, 1)$ zugewiesen mit $\sum_k p_k = 1$

1.7 Nicht-diskrete Wahrscheinlichkeitsmaße mit Riemann-Dichten

- jedem Intervall wird eine Wahrscheinlichkeit zugewiesen
- statt Potenzmenge neues Mengensystem σ -Algebra

1.8 σ -Algebra

 $\Omega \neq \emptyset.$ $\mathfrak{P} \subset Pot(\Omega)$ heißt $\sigma\text{-Algebra von Ereignissen über }\Omega,\text{falls:}$

- 1. $\Omega \in \mathfrak{P}$
- 2. $A \in \mathfrak{P} \Rightarrow A^c \in \mathfrak{P}$
- 3. Für jede Folge A_1, A_2, \ldots in \mathfrak{P} gilt: $\bigcup_{n=1}^{\infty} A_n \in \mathfrak{P}$

1.9 Kolmogorov-Axiome

Sei $P: \mathfrak{P} \to [0,1]$ mit

- $P(A) \ge 0$, für $A \in \mathfrak{P}$
- $P(\Omega) = 1$
- $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$, für paarweise diskunkte Mengen

Dann heißt P Wahrscheinlichkeitsmaß/Wahrscheinlichkeitsverteilung auf Ω . $(\Omega, \mathfrak{P}, P)$ heißt Wahrscheinlichkeitsraum, (Ω, \mathfrak{P}) heißt messbarer Rauum oder Messraum.

1.10 Borelsche σ -Algebra

Die kleinstmögliche σ -Algebra über einem Intervall (hier z.B. [a,b]), welche alle Teilmengen des Intervalls enthält heißt Borelsche σ -Algebra \mathcal{B}^1 . Für $\Omega \subset \mathbb{R}^n$ entsprechend \mathcal{B}^n .

1.11 Riemann-Dichte, Verteilungsfunktion

Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) \geq 0, x \in \mathbb{R}$ und $\int_{\infty}^{\infty} f(x) dx = 1$ integrierbar, dann heißt f Riemann-Dichtefunktion. Wahrscheinlichkeitsmaß festgelegt über

$$F(x) = P((-\infty, x]) = \int_{-\infty}^{x} f(y)dy$$

F ist Verteilungsfunktion. Für Verteilungsfunktionen siehe Formelsammlung.

1.12 Träger einer Riemann-Dichtefunktion

Das größtmögliche Intervall I mit $f(x)>0, x\in I$ heißt Träger der zugehörigen Verteilungsfunktion.

1.13 Ereignisfolgen, limes superior, limes inferior

 $(A_n)_n$ in \mathfrak{P} heißt isoton (monoton wachsend), falls $A_n \subset A_{n+1}, \forall n \in \mathbb{N}$ oder antiton (monoton fallend), falls andersrum. Für eine Ereignisfolge ist:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} (\bigcup_{k=n}^{\infty} A_k) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

$$\liminf_{n \to \infty} A_n = \lim_{n \to \infty} \left(\bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \right)$$

Es gilt:

 $\limsup_{n\to\infty} A_n = \{\omega \in \Omega \mid \omega \text{ liegt in unendlich vielen der } A_i\}$

 $\liminf_{n\to\infty} = \{\omega \in \Omega \mid \omega \text{ liegt in allen } A_i \text{ bis auf endlich viele} \}$

1.14 Siebformel von Sylvester-Poincaré

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i_1} \cap A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) - \dots$$

1.15 Bedingte Wahrscheinlichkeit

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ heißt elementar bedingte Wahrscheinlichkeit von A und B. P(A|B) bildet wiederrum eine Wahrscheinlichkeitsverteilung und $(\Omega, \mathfrak{P}, P(\cdot|B))$ ist ein Wahrscheinlichkeitsraum. Es gilt:

•
$$P(A|B) = P(B|A) \cdot \frac{P(A)}{P(B)}$$

•
$$P(\bigcap_{i=1}^{n} A_i) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_2 \cap A_1)$$

1.16 Stochastische Unabhängigkeit

 A_1 und A_2 heißen paarweise stochastisch unabhängig, falls $P(A_i \cup A_j) = P(A_1) \cdot P(A_2)$. A_1, A_2, \ldots heißen (gemeinsam) stochastisch unabhängig, falls für jede endliche Auswahl von Indizes $\{i_1, \ldots, i_s\}$ gilt: $P(A_{i_1} \cap \ldots \cap A_{i_s}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_s})$.

1.17 Produktraum

Für diskrete Wahrscheinlichkeitsräume $(\Omega_i, \mathfrak{P}_i, P_i)$ heißt $(\Omega, \mathfrak{P}, P)$ mit $\Omega = \{(\omega_i, \dots, \omega_n \mid \omega_i \in \Omega_i)\}, \mathfrak{P} = Pot(\Omega)$ und $P(\{\omega\}) = \prod_{i=1}^n P_i(\{\omega_i\}), \omega = (\omega_1, \dots, \omega_n) \in \Omega$ heißt Produktraum.

$$(\Omega, \mathfrak{P}, P) = (\Omega_1, \mathfrak{P}_1, P_1) \times \ldots \times (\Omega_n, \mathfrak{P}_n, P_n)$$

2 Zufallsvariablen und Wahrscheinlichkeitsmaße

Zufallsvorgänge hier wieder beschrieben durch den Wahrscheinlichkeitsraum $(\Omega, \mathfrak{P}, P)$, wobei der Ausgang des Vorgangs $\omega \in \Omega$ ist. Dabei ist häufig nicht ω von Interesse sondern ein Funktionswert $X(\omega)$, wobei X eine Abbildung auf $X: \omega \to \mathbb{R}^n$ ist.

$$P(X = k) = P(\{\omega \in \Omega \mid X(\omega) = k\}) = P^X(\{k\})$$

und

$$P^X: \mathcal{B} \to [0,1]$$

X heißt Zufallsvariable (falls n=1), sonst Zufallsvektor. Eine Zufallsvariable erzeugt im Wertebreich der Funktion eine neue Wahrscheinlichkeitsverteilung.

2.1 Indikatorfunktion

 $\mathfrak{I}_A:\Omega\to\mathbb{R}=1$, falls $\omega\in A$, sonst 0, heißt Indikatorfunktion von A. Und es gilt \mathfrak{I}_A ist bin(1,p) verteilt, p=P(A).

2.2 Stochastische Unabhängigkeit von Zufallsvariablen

Die Zufallsvariablen $X_i: (\Omega, \mathfrak{P}, P) \to (\Omega_i, \mathfrak{P}_i, P^{X_i})$ heißen stochastisch unabhängig, falls

$$P(\bigcap_{i} \{X_i \mid X_i \in A_i\}) = \prod_{i} P(X_i \in A_i), \forall A_i \in \mathfrak{P}_i$$

2.3 Summe unabhängiger Zufallsvariablen, Faltung

Für stochastisch unabhängige Zufallsvariablen X, Y auf \mathbb{Z} mit Zähldichten f, g gilt, die Zähldichte von X + Y = h:

$$h(k) = \sum_{j \in \mathbb{Z}} f(j) \cdot g(k-j) = \sum_{j \in \mathbb{Z}} f(k-j) \cdot g(j) = P(X+Y=k)$$

h = f * g ist Faltung der Dichten f und g. In \mathbb{R} ergibt sich die Zähldichte als Integral statt als Summe über obige Funktion.

2.4 Quantilfunktion

Die Umkehrfunktion $F^{-1}(y) = \inf\{x \in \mathbb{R} \mid F(x) \geq y\}$ der Verteilungsfunktion F heißt Quantilfunktion oder Pseudoinverse von F (existiert nur, falls F bijektiv, also streng monoton (wachsend)).

2.5 Multivariate/Mehrdimensionale Verteilungsfunktion

Sei $X = (X_1, ..., X_n)$ ein n-dimensionaler Zufallsvektor. Dann ist die multivariate/mehrdimensionale Verteilungsfunktion:

$$F^X(x) = P(X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n]) = P(X_1 \le x_1, \dots, x_n \le x_n)$$

mit

$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

2.6 Randverteilung, Marginalverteilung, Randdichte

Sei $X = (X_1, \ldots, X_n)$ ein Zufallsvektor und m < n. Dann heißt $(X_{i_1}, \ldots, X_{i_m})$ Randoder Marginalverteilung zu (i_1, \ldots, i_m) . Die Randverteilung wird bestimmt, indem man in die nicht benötigten Komponenten \mathbb{R} einsetzt. Die *i*-te Randdichte wird wie folgt bestimmt:

$$f^{X_i}(t) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f^X(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n$$

 X_1, \ldots, X_n sind genau dann stochastisch unabhängige Zufallsvariablen, wenn

$$f^{(X_1,\dots,X_n)}(x_1,\dots,x_n) = \prod_{i=1}^n f^{X_i}(x_i)$$

Zudem sind (X_1, X_2) genau dann stochastisch unabhängig, wenn sie normalverteilt sind, mit Parameter $\rho = 0$.

2.7 Erwartungswerte

Sei X eine Zufallsvariable mit Zähldichte p oder Riemann-Dichte f. Dann gilt für den Erwartngswert EX:

1. Sei $X(\Omega) \subset [0, \infty)$ oder $X(\Omega) \subset (-\infty, 0]$.

a)
$$EX = E(X) = \sum_{x \in X(\Omega)} xp(x)$$
, oder

b)
$$EX = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

2. Ist $E(max(X,0)) < \infty$, oder $E(min(X,0)) > -\infty$, dann heißt EX wie in 1 Erwartungswert von X (unter P)

Für Zufallsvariablen mit Werten in \mathbb{N}_0 gilt auch:

$$EX = \sum_{n=1}^{\infty} P(X \ge n)$$

2.8 Moment

Als (allgemeines Moment) bezeichnet man den Erwartungswert einer Funktion g(x) = E(g(x)). Um ihn zu berechnen, berechnet man die Wahrscheinlichkeit des Auftretens jedes Ereignisses und multipliziert dies mit dem Wert von g an dieser Stelle also:

$$E(g(x)) = \sum_{(t_1, \dots, t_k) \in supp(P^X)} P^X((t_1, \dots, t_k)) \cdot g(t_1, \dots t_k))$$

bzw.

$$E(g(x)) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f^{X}(t_{1}, \dots, t_{k}) \cdot g(t_{1}, \dots, t_{k}) dt_{1} \dots dt_{k}$$

Für stochastisch unabhängige Zufallsvariablen mit (endlichen) Erwartungswerten gilt:

$$E(\prod_{i=1}^{n} X_i) = \prod_{i=1}^{n} E(X_i)$$

2.9 k-tes Moment, Varianz, Kovarianz

- 1. $m_k(c) = E((X-c)^k)$ heißt k-tes Moment von X um c (unter P). (zentrales Moment, falls c=0)
- 2. $VarX = E((X EX)^2)$ ist die Varianz (Streuung) von X
- 3. Kov(X,Y) = E((X EX)(Y EY)) ist die Kovarianz von X und Y

Zudem ist:

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} VarX_i + 2 * \sum_{1 \le i < j \le n} Kov(X_i, X_j)$$

und Kov(X,Y) = 0, falls X,Y stochastisch unabhängig.

2.10 Verschiebungssatz von Steiner

$$E((X-a)^2) = VarX + (EX-a)^2$$

2.11 Unkorreliertheit, Korrelationskoeffizient

- 1. X,Y heißen unkorreliert, falls Kov(X,Y)=0
- 2. Der Korrelationskoeffizient ist $Korr(X,Y) = \frac{Kov(X,Y)}{\sqrt{VarX} \cdot \sqrt{VarY}} \in [-1,1]$

Für unkorrelierte Zufallsvariablen gilt:

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

Stochastisch unabhängige Variablen sind unkorreliert. (aber nicht andersrum (außer bei Normalverteilungen))).

2.12 Ungleichungen mit Momenten

- 1. Ungleichung von Jensen: Sei $h: \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion (linksgekrümmt), und E(h(X)) und EX existieren und sind endlich. Dann ist $E(h(X)) \ge h(EX)$ (bzw. andersrum im konkaven Fall)
- 2. Ungleichung von Markov: Sei $g:[0,\infty)\to[0,\infty)$ monoton wachsend. Dann ist:

$$P(|X| > \epsilon) \le P(|X| \ge \epsilon) \le \frac{1}{g(\epsilon)} E(g(|X|)), \epsilon > 0$$

3. Ungleichung von Tschebyscheff:

$$P(|X - EX| \ge \epsilon) \le \frac{VarX}{\epsilon^2}$$

2.13 Erwartungswertvektor, Kovarianzmatrix

Hier X nicht Zufallsvariable, sondern Zufallsvektor.

- 1. $E(X) = (EX_1, \dots, EX_n)$ ist der Erwartungsvektor von X
- 2. Kov(X) Kovarianzmatrix von X mit $Kov(X)_{i,j} := Kov(X_i, X_j)$

2.14 Erzeugende Funktion

 $g(t) = Et^X$ (für alle t, für die der Erwartungswert endlich existiert) heißt (wahrscheinlichkeits)erzeugende Funktion von X (bzw. von P^X).

Ist $(0, 1 + \epsilon) \subset K$ für ein $\epsilon > 0$, so existieren alle Momente $EX^k, k \in \mathbb{N}$ und es gilt:

$$g^{(k)}(1) = E(\prod_{i=0}^{k-1} (X - i)), k \in \mathbb{N}$$
$$g'(1) = EX$$

K ist hier der Konvergenzbereich von $\sum_{k=0}^{\infty} t^k p_k = Et^X$. Und X eine Zufallsvariable mit diskreter Wahrscheinlichkeitsverteilung auf \mathbb{N}_0 .

Falls X, Y stochastich unabhängig mit diskreten Wahrscheinlichkeitsverteilungen auf \mathbb{N}_0 sind gilt $Et^{X+Y} = Et^X \cdot Et^Y$. h mit:

$$h(t) = Ee^{tX}$$

heißt momenterzeugende Funktion von X. Existiere h(t) für $t \in (-\epsilon, \epsilon), \epsilon > 0$. Dann gilt:

- 1. h bestimmt die zugrundeliegende Wahrscheinlichkeitsverteilung eindeutig.
- 2. Es existieren alle absoluten Momente $E(|X|^k), k \in \mathbb{N}$ endlich.
- 3. h ist im Nullpunkt beliebig oft differenzierbar, und es gilt: $h^{(k)}(0) = EX^k, k \in \mathbb{N}$

2.15 Bedingte Verteilungen

Sei (X,Y) diskret verteilter Zufallsvektor. Dann heißt

$$p^{Y|X}(y\mid x) = p^{Y|X=x}(y) = P(Y=y)\mid X=x) = \begin{cases} \frac{p^{(X,Y)}(x,y)}{p^X(x)}, & p^X(x) > 0\\ p^Y(y), & p^X(x) = 0 \end{cases}$$

bedingte Wahrscheinlichkeitsverteilung von Y unter (der Hypothese) X = x und $p^{Y|X}$ heißt bedingte Zähldichte von Y unter X. Für Dichte ist die Definition analog.

2.16 Bedingter Erwartungswert, bedingte Varianz

Erwartungswerte definiert wie im nicht bedingten Fall, als Wahrscheinlichkeit wird jedoch $p^{Y|X=x}(y)$ bzw. $f^{Y|X=x}(y)$ betrachtet.

2.17 Bedingte Erwartung

Analog wird die Bedingte Erwartung von Y unter $X E(Y \mid X)$ definiert.

2.18 Eine Version des Schwachen Gesetzes großer Zahlen

Seien X_1, \ldots paarweise unkorrelierte Zufallsvariablen mit $EX_i = \mu$ und $VarX_i \leq M < \infty$ für Konstante M > 0. Dann ist:

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\epsilon\right)\leq\frac{M}{n\epsilon^{2}}\xrightarrow{n\to\infty}0,\epsilon>0$$

2.19 1. Version des starken Gesetzes großer Zahlen

Seien X_1, \ldots stochastisch unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum mit endlichen Varianzen und es gelte $\sum_{n=1}^{\infty} \frac{VarX_n}{n^2} < \infty$. Dann ist:

$$P\left(\left\{\omega \in \Omega \mid \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} EX_i \xrightarrow{n \to \infty} 0\right\}\right) = 1$$

2.20 2. Version des starken Gesetzes großer Zahlen

Seien X_1, \ldots stochastisch unabhängig und identisch verteilt, mit $EX_1 = \mu$. Dann ist:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{n \to \infty} \mu$$

2.21 Eine Version des zentralen Grenzwertsatzes

Scheint mir nicht in der Klausur vorzukommen, da Terme zu lang. Außerdem habe ich dann eine Ausrede um das mir nicht angucken zu müssen.