```
1 import pandas as pd
2 import numpy as np
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import Binarizer
6 from google.colab import drive
7 drive.mount("/content/drive")
8 #Object of dataset
9 data = pd.read_csv("/content/drive/MyDrive/MLLab/Admission_Predict_Ver1.1.csv")
10 data.columns
```

dtype='object')

1 data.head()

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

1 data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 500 entries, 0 to 499Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype				
0	Serial No.	500 non-null	int64				
1	GRE Score	500 non-null	int64				
2	TOEFL Score	500 non-null	int64				
3	University Rating	500 non-null	int64				
4	S0P	500 non-null	float64				
5	LOR	500 non-null	float64				
6	CGPA	500 non-null	float64				
7	Research	500 non-null	int64				
	Chance of Admit	500 non-null	float64				
dt							

dtypes: float64(4), int64(5) memory usage: 35.3 KB

1 data.isnull().sum()

Serial No. GRE Score TOEFL Score 0 University Rating SOP (-) LOR 0 CGPA 0 Research 0 Chance of Admit dtype: int64 0

1 data.corr()

	Serial No.	GRE Score	T0EFL Score	University Rating	SOP	LOR	CGPA
Serial No.	1.000000	-0.103839	-0.141696	-0.067641	-0.137352	-0.003694	-0.074289
GRE Score	-0.103839	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878
TOEFL Score	-0.141696	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574
University Rating	-0.067641	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254
SOP	-0.137352	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154
LOR	-0.003694	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469

```
2 binary = Binarizer(threshold = 0.60)
3 y = data[['Chance of Admit ']]
4 y = binary.transform(data[['Chance of Admit ']])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but Binarizer was fitted
      warnings.warn(
   4
1 print(data["Chance of Admit "].astype)
    <br/> <bound method NDFrame.astype of \theta
                                              0.92
           0.76
    2
           0.72
    3
           0.80
    4
           0.65
           0.87
    495
           0.96
    496
    497
           0.93
    498
           0.73
    499
           0.84
    Name: Chance of Admit , Length: 500, dtype: float64>
1 print(data.drop(["Serial No." , "Research"], axis=1))
         GRE Score TOEFL Score University Rating
                                                       SOP LOR
                                                                    CGPA
    0
                337
                              118
                                                        4.5
                                                              4.5
                324
                                                       4.0
                                                              4.5
    1
                              107
                                                                   8.87
    2
                316
                              104
                                                    3 3.0
                                                              3.5
                                                                   8.00
    3
                                                              2.5
                322
                              110
                                                     3 3.5
                                                                   8.67
    4
                                                    2 2.0
                314
                              103
                                                              3.0 8.21
                                                   ...5
                                                                   9.02
    495
                332
                              108
                                                       4.5
                                                              4.0
    496
                337
                              117
                                                     5
                                                       5.0
                                                              5.0
                                                                    9.87
                                                    5 4.5
    497
                330
                              120
                                                              5.0 9.56
    498
                312
                              103
                                                     4
                                                       4.0
                                                              5.0
                                                                   8.43
    499
                327
                              113
                                                     4 4.5
                                                              4.5 9.04
         Chance of Admit
    0
                      0.92
                      0.76
    1
    2
                      0.72
    3
                      0.80
    4
                      0.65
    495
                      0.87
    496
                      0.96
    497
                      0.93
    498
                      0.73
    499
                      0.84
    [500 rows x 7 columns]
1 #Data Preparation
2 traindata = data[['Serial No.', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research', 'Chance of Admit ']]
3 train , test = train_test_split(traindata, test_size = 0.25 , random_state = 0)
1 train.shape
    (375, 9)
1 test.shape
    (125, 9)
1 features = ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR', 'GGPA', 'Research']
2 x = data[features]
3 y = binary.transform(data[['Chance of Admit ']])
4
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but Binarizer was fitted
     warnings.warn(
    (500, 7)
   4
1 y.shape
    (500, 1)
1 from sklearn.tree import DecisionTreeClassifier
3 admission_model = DecisionTreeClassifier(random_state = 1)
```

1 #Object of Binarizer

```
6 admission_model.predict(x)
 array([1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1., 0., 1.,
    1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;1.,\;1.,\;1.,\;1.,
    1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1.,
    1.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 1.,\ 1.,\ 1.,\ 1.,\ 0.,\ 1.,\ 1.,
    1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1.,
    0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 1.,\ 1.,\ 1.,\ 1.,\ 1.,\ 1.,\ 0.,\ 0.,\ 0.,\ 1.,
    0.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 1.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 1.,\ 1.,
    1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;0.,\;0.,\;1.,\;1.,\;1.,\;0.,\;1.,
    1.,\;1.,\;1.,\;1.,\;0.,\;0.,\;0.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;1.,\;0.,
```

4 admission_model.fit(x , y)