

MAY 08, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.q26g7ykmqgwz/v1

Protocol Citation: Jason D Limberis, Yuxiang Chen 2023. Rapid Ribosome (Polysome) Profiling. **protocols.io** https://dx.doi.org/10.17504/p rotocols.io.q26g7ykmqgwz/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development While we have not tested this protocol, it is theoretically sound.

Created: Apr 10, 2023

Last Modified: May 08,

2023

PROTOCOL integer ID:

80279

Rapid Ribosome (Polysome) Profiling

Jason D
Limberis¹, Yuxiang Chen²

¹University of California, San Francisco; ²Stanford University, Stanford

Jason D Limberis University of California, San Francisco

ABSTRACT

Ribosome profiling is a powerful technique used to study translation at a genome-wide level. It involves the sequencing of ribosome-protected mRNA fragments to determine the positions of ribosomes on transcripts. This information can be used to infer translation rates and identify translated open reading frames. While traditional ribosome profiling methods can be time-consuming and expensive, our method is rapid and cost-effective, and the inclusion of UMIs allows for precise quantification.

ATTACHMENTS

riboSeek.png

А	В
Name	Sequence
RiboS_linker	rCAAGCAGAAGACGGCATACGAGAT
RiboS_linker_primer	ATCTCGTATGCCGTCTTCTGCTTG
RiboS_IlluminaAdapt_TSO_U MI_RNA_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTN NNNNNGATrGrGrG
RiboS_blocking_oligo	CTACCCCAAGCAG
Index 1 Read	GATCGGAAGAGCACACGTCTGAACTCCAGTCAC[i 7]ATCTCGTATGCCGTCTTCTGCTTG
Index 2 Read	AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Oligonucleotides. "r" indicated RNA base.

- Monarch RNA Cleanup Kit (10 μ g) 100 preps **New England Biolabs Catalog** #T2030L
- RtcB Ligase 25 rxns New England Biolabs Catalog #M0458S
- Superase-In RNase Inhibitor Thermofisher Catalog #AM2694
- Template Switching RT Enzyme Mix 100 rxns **New England Biolabs Catalog** #M0466L

Optional

Urea page

TBE

Agarose

BEFORE START INSTRUCTIONS

Read through the protocol and ensure you have the correct reagents depending on your chosen approach

RNA isolation and nuclease footprinting

1 Perform RNA isolation and nuclease footprinting as appropriate for your cell type (see steps 1-17 here for cultured mammalian cells)

Optional: preselection of small RNA fragments

5m

2 Optional but recommended preselection of small RNA fragments using either a urea PAGE gel or bead and membrane selection.

Step 2 includes a Step case.

15% UREA-TEB PAGE

Beads and membranes

step case

15% UREA-TEB PAGE

Recipe for casting own gel: Urea 19.2q 40% Acrylamide/Bis (19:1) 15ml 10X TBE 4ml 25% APS 200ul TEMED 20ul

Adding nuclease free water to 40ml

- 3 Add the appropriate volume of 2X RNA loading buffer to each RNA sample
- 4 Denature the samples for \$ 80 °C \lozenge 00:01:00 followed by $\ge \lozenge$ 00:02:00 on On ice
- 5 Load the samples on the polyacrylamide gel with TBE running buffer
- 6 Pre-run the gel in 1X TBE buffer at 100V for 10min

Optional: preselection of small RNA fragments

5m

3m

Separate by electrophoresis for 01:30:00 7

1h 30m

- **9** Visualize the gel and excise desired region (20-40nts)
- Transfer the excised gel slice to a 🔼 1.5 mL microcentrifuge tube and weigh it.
- 10.1 Pro Tip: Smashing the gel in the tube increases RNA recovery.
- 11 Add 4 volumes of Monarch RNA Cleanup Binding Buffer to the tube with the slice
- Incubate the sample between \$\ 55 \circ\$, gently mixing periodically until the gel slice is completely dissolved (generally < \circ\$ 00:10:00)

10m

- Add two volumes of absolute ethanol to the sample and mix well by pipetting up and down
- 14 Incubate the sample between § 55 °C or an additional § 00:05:00

5m

15 Insert an RNA cleanup column into a collection tube, load the sample onto the column and close

15.1 Spin for \bigcirc 00:01:00 , then discard flow-through

1m

- 16 Re-insert the column into the collection tube
- 16.1 Add \perp 500 μ L RNA Cleanup Wash Buffer
- Spin for 00:01:00 , then discard flow-through

1m

- 16.3 for a total of two washes.
- 17 Transfer the column to a clean 1.5 ml microfuge tube
- Add A 10 µL nucleae-free water directly to the membrane and incubate at Room temperature for 00:05:00

5m

19 Spin for 00:01:00

1m

Overview

20

Linker ligation

- Set up the ligation reaction below and incubate for 01:30:00 at 37 °C

1h 30m

A	В
Component	Volume (μl)
RNA and linker	11
RtcB Reaction Buffer (10X)	2
SUPERase·In (20 U/μl)	1
1 mM GTP	2
10 mM MnCl2	2
RtcB RNA Ligase	1.5
H20	0

RNA cleanup

- 23 Add Δ 100 μL RNA Cleanup Binding Buffer
- 24 Add \perp 150 μ L absolute ethanol and mix by pipetting
- Insert an RNA cleanup column into a collection tube, load the sample onto the column and close the cap
- 25.1 Spin for 00:01:00, then discard flow-through

- 26.2 Spin for 00:01:00 , then discard flow-through
- **26.3** for a total of two washes.
- 27 Transfer the column to a clean 1.5 ml microfuge tube
- Add \perp 10 μ L nucleae-free water directly to the membrane and incubate at Room temperature for \bigcirc 00:05:00
- 29 Spin for 00:01:00

A	В
Component	Volume (µl)
RNA	9
RiboS_linker_primer (100uM; reverse transcription primer)	2
dNTP mix (10 mM each)	2

Mix thoroughly by gently pipetting up and down at least 10 times, then centrifuge briefly to collect the solution to the bottom of the tube

Denature for \bigcirc 00:05:00 at \bigcirc 70 °C in a thermal cycler and then place on ice for \ge 00:01:00

Vortex the Template Switching RT Buffer briefly followed by a quick spin Combine the following components in a reaction tube

A	В
Component	Volume (µl)
Template Switching RT Buffer	5
RiboS_IlluminaAdapt_TSO_UMI_RNA_F (75uM)	1
Template Switching RT Enzyme Mix	1

RT reaction mix

Mix thoroughly by gently pipetting up and down at least 10 times, then centrifuge briefly to collect the solution to the bottom of the tube

32 Combine Δ 7 μL RT reaction mix (above) with Δ 13 μL of the annealed mix, mix well by gently pipetting up and down at least 10 times, then centrifuge briefly to collect the solution to the bottom of the tube Incubate as below

A	В
Temp (C)	Time (m)
42	90
85	5
4	1

Index PCR

2h 37m 30s

33

A	В
Component	Volume (μl)
10 μM Forward Index Primer	2.5
10 μM Reverse Index Primer	2.5
RiboS_blocking_oligo	2
2X Phusion Master Mix	25
TSO reaction	18

PCR components

A	В	С
Cycles	Temp (C)	Time (s)
1	98	30
10	98	5
	60	5
1	72	10

PCR cycle parameters (for selection of <40bp inserts)

Fragment is 150bp excluding insert at this stage

AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNGATGGG[INS

ERT]CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC

Transfer to a clean PCR tube

Optional: Agarose gel size selection

Run a 1% agarose gel, excise the desired band, and perform a gel cleanup.

Optional: Depletion of Abundant Sequences by Hybridization

To perform DASH to deplete unwanted sequences (e.g., rRNA) follow the protocol here.

Quantification

Run a tapestation or bioanalyzer chip
Do qubit or qPCR using an Illumina library quant kit to quantify the library and pool the samples
(see Illumina Sequencing Coverage Calculator for pooling information)

Analysis

Analysis can be done using common pipelines with the addition of <u>umi_tools</u> to count unique reads