Social-Network Graphs

Mining Social Networks

- ▶ Facebook, Google+, Twitter
- Email Networks, Collaboration Networks
- Identify communities
 - Similar to clustering
 - Communities usually overlap
- Identify similarities amongst nodes of a graph
- Connectedness
- ▶ Transitive closure → reachability

What is a social network?

- Collection of entities that participate in the network
 - ▶ People, telephones, email addresses
- At least one relationship between entities
 - ▶ Binary → facebook friends
 - ▶ Discrete → Google+ circles
 - ▶ Real → average time two phones talk to each other
 - ▶ Directed → Twitter
- Locality, non-randomness

Social Networks as Graphs

- Entities as nodes
- Edges represent the relationship
 - Weights
 - Directed

Collaborative filtering → pair of networks

Graphs with multiple node types

- ► Amazon → Users, products
- Research publications -> Authors, Papers
- ▶ deli.cio.us → users, tags, webpages

Form *k*-partite graphs

Clustering Social-Network Graphs

- Distance measures
- Consider a distance of 1 if edge exists, ∞ otherwise
- Violates triangle inequality
- Consider standard clustering
 - ▶ Agglomerative
 - ▶ Point-assignment

Betweenness

The betweenness of an edge(a, b) is the number of pairs of nodes x and y such that the edge(a, b) lies on the shortest path between x and y

A high betweenness suggests that the edge(a, b) runs between two different groups, i.e., a and b do not belong to the same group.

Node-betweenness Edge-betweenness

Girvan-Newman Algorithm

- ► Hierarchical detection of communities using edge-betweenness
- visits each node X once and computes the number of shortest paths from X to all other reachable nodes
 - BFS starting at X
 - label each node by the number of shortest paths that reach it from the root (X)
 - 3. calculate for each edge e the sum over all nodes Y of the fraction of shortest paths from the root X to Y that go through e

GN Algorithm

- Lets start with node E
- Build the BFS traversal of the graph
- 2. label each node by the number of shortest paths that reach it from the root *E*
- 3. calculate for each edge *e* the sum over all nodes *Y* of the fraction of shortest paths from the root *X* to *Y* that go through *e* bottom-up

GN Algorithm

- Lets start with node E
- Build the BFS traversal of the graph
- 2. label each node by the number of shortest paths that reach it from the root *E*
- 3. calculate for each edge *e* the sum over all nodes *Y* of the fraction of shortest paths from the root *X* to *Y* that go through *e* bottom-up

GN Algorithm

- Repeat the calculation for every node as the root and sum the contributions (edge factors)
- ▶ Divide by 2 to get the true betweenness
 - Every shortest path will be discovered twice

Using betweenness to find communities

- Behaves something like a distance measure
- Add edges in order of increasing betweenness
- Alternatively, think in terms of removing edges with highest betweenness
- As we progressively remove edges we are left with a larger number of smaller communities

Example

Girvan-Newman Algorithm

Complexity

- \blacktriangleright visits each node X once and computes the number of shortest paths from X to all other reachable nodes -n total nodes
 - 1. BFS starting at X $\mathcal{O}(e)$
 - 2. label each node by the number of shortest paths that reach it from the root (X) $\mathcal{O}(e)$
 - 3. calculate for each edge e the sum over all nodes Y of the fraction of shortest paths from the root X to Y that go through e $\mathcal{O}(e)$

O(ne)

Graph Partitioning

- Using spectral methods
- Problem of finding the minimizing cut
 - Minimize the number of edges removed (potentially weighted)
 - constrain the selection of the cut so that the two sets are approximately equal in size
- Normalized cuts
 - ▶ Define the volume of a set of nodes S, denoted V(S), to be the number of edges with at least one end in S
 - Suppose we partition the graph into two disjoint sets S and T
 - Let C(S,T) be the number of edges that connect a node in S to a node in T
 - \blacktriangleright The normalized cut value for S and T is

$$\frac{C(S,T)}{V(S)} + \frac{C(S,T)}{V(T)}$$

Motivation

Graph Laplacian

- Adjacency matrix A
- ▶ Degree Matrix D → diagonal
- ▶ Laplacian matrix L = D A
- \blacktriangleright L is a $n \times n$ symmetric positive semi-definite
 - lacktriangle This means the eigenvalues of L are real and its eigenvectors are real and orthogonal
- ▶ The eigenvalues of *L* are nonnegative

$$0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

Graph Laplacian - eigenvalues

 $\lambda_1(L(\mathcal{G})) = 0$ and the corresponding eigenvector $w_1 = [1,1,...,1]$

$$L1 = 01$$

The number of connected components of \mathcal{G} is equal to the number of λ_i that are equal to 0

Definition: $\lambda_2(L(\mathcal{G}))$ is the algebraic connectivity of \mathcal{G}

The magnitude of λ_2 measures connectivity

In particular, $\lambda_2 \neq 0$ if and only if \mathcal{G} is connected

Spectral Bisection

Compute eigenvector w_2 corresponding to λ_2

else

assign n to second half

Computing eigenvectors

- Iterative method to compute eigenvectors
 - Inverse power method, Lanczos
 - ► Requires matrix vector multiplication
 - ightharpoonup Given x, compute Lx
- Requires partitioning!

Computing λ_2, w_2

- ▶ The second-smallest eigenvalue of L is the minimum of $x^T L x$, s.t.
 - $\sum_{i=1}^n x_i^2 = 1$
 - $\triangleright x$ is orthogonal to 1
- $\blacktriangleright x^T D x = \sum d_i x_i^2$

Computing λ_2, w_2 using Lanczos

- ▶ Given any $n \times n$ symmetric matrix A (such as L(G)), Lanczos computes a tridiagonal $k \times k$ approximation T by doing k matrix-vector products, $k \ll n$
- ► Calculate the eigenvalues/eigenvectors of the much smaller and simpler matrix $T \rightarrow$ tridiagonal QR iteration

Direct discovery of communities

- Although partitioning the graph using betweenness is effective, it has some drawbacks
 - ▶ Not possible to place an individual in two different communities
 - Everyone is assigned a community
- Alternatively, discover communities by looking for subsets of the nodes that have a relatively large number of edges among them
 - ► Finding cliques → NP Complete
 - ► Easier to find complete bipartite subgraphs
 - Counting tringles

