CHEAT SHEET

Analysis II

Silvan Metzker Januar 2024

Lizenz: CC BY-SA 4.0

1 Differentialgleichungen

Definition lineare DGL

Eine gewöhnliche lineare Differentialgleichung ist eine Gleichung, welche Ableitungen enthält. Sie hat die Form

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = b(x)$$

wo die Koeffizienten a_0,\ldots,a_{n-1} komplexe Funktionen auf $I\subset\mathbb{R}$ sind, welche von x abhängig sein können. Wenn b(x)=0 gilt, ist die DGL (zugehörig) homogen, ansonsten inhomogen.

Die Menge S an Lösungen ist ein Subset des Raums der komplexen Funktionen auf I mit Dimension n. S_0 das Set der Lösungen zu einer homogenen DGL. Für ein b(x) ist die Menge der Lösungen

$$S_b = \{ f_h + f_p \mid f_h \in S_0 \}.$$

Lineare DGL erkennen

- keine Koeffizienten vor der höchsten Ableitung
- alle Koeffizienten sind stetige Funktionen
- $\bullet\,$ keine Produkte von yoder deren Ableitungen
- $\bullet\,$ keine Potenzen von yoder deren Ableitungen
- \bullet keine Funktionen von y oder deren Ableitungen

1.1 Lineare DGL erster Ordnung

Wir betrachten DGL der Form

$$y' + a(x)y = b(x)$$

1. Homogene Lösung: Löse nach y.

$$y' + a(x)y = 0$$

$$\frac{y'}{y} = -a(x)$$

$$\ln(y) = -A(x) + C$$

$$f_0 := y = e^{-A(x) + C} = z \cdot e^{-A(x)} \quad z \in \mathbb{C}$$

- 2. Partikuläre Lösung: Verwende entweder "Variation der Konstanten" oder "Fundiertes Raten".
- 3. Allgemeine Lösung: Vereinige beide Lösungen, $f_0 + \sum_{j=1}^n \alpha_j f_j$ mit $\alpha_j \in \mathbb{C}$
- **4. Anfangswerte:** Einsetzen der Anfangswerte in die allg. Lösung \to LGS für $\alpha_1, \ldots, \alpha_k$ mit eindeutiger Lösung.

1.2 Variation der Konstanten

Sei $f_p=z(x)e^{-A(x)}$ für eine Funktion $z:I\to\mathbb{C}.$ Dann ist $z'(x)=b(x)e^{A(x)}$ und somit

$$z(x) = \int_{x_0}^x b(t)e^{A(t)} dt$$

Daraus erhalten wir

$$f_p = \int_{x_0}^x b(t)e^{A(t)} dt \cdot e^{-A(t)}$$

1.3 Separation der Variabeln

DGL der Form $y' = \frac{1}{a(y)} \cdot b(x)$ mit a, b stetig, $a(y) \neq 0$.

$$\iff a(y) \cdot y' = b(x)$$

$$\iff \int a(y) \cdot y'(x) \ dx = \int b(x) \ dx + c$$

$$\iff$$
 $A(y) = B(x) + c \quad (\text{mit } A, B \text{ als Stammfunkt.})$

$$\iff y = A^{-1}(B(x) + c)$$

1.4 Fundiertes Raten

Wenn b(x) von einer bestimmten Form ist, versuchen wir folgende f_p , wobei wir unseren Versuch in die DGL einsetzen, was uns dann ein Gleichungssystem für die Konstanten gibt:

b(x)	Raten	
$P_n(x)$	$R_{n+k}(x)$	
$a \cdot e^{\alpha x}$	$b \cdot e^{\alpha x}$	
$a^* \sin(\beta x) + b^* \cos(\beta x)$	$c\sin(\beta x) + d\cos(\beta x)$	
$ae^{\alpha x}\sin(\beta x)$	$e^{\alpha x} \Big(c \sin(\beta x) + d \cos(\beta x) \Big)$	
$be^{\alpha x}\cos(\beta x)$	$e^{\alpha x} \left(c \sin(\beta x) + d \cos(\beta x) \right)$	
$P_n e^{\alpha x}$	$R_n \cdot e^{\alpha x}$	
$P_n e^{\alpha x} \sin(\beta x)$	$e^{\alpha x} \left(R_n \sin(\beta x) + S_n \cos(\beta x) \right)$	
$P_n e^{\alpha x} \cos(\beta x)$	$e^{\alpha x} \left(R_n \sin(\beta x) + S_n \cos(\beta x) \right)$	

 P_n, R_n und S_n sind Polynome abh. von x und k ist die Ordnung der kleinsten Ableitung im homogenen Teil. Gilt auch für $a^* = 0$ oder $b^* = 0$.

- 1. Wenn b(x) eine Linearkombination der Basisfunktionen ist, dann versuche eine Linearkombination.
- 2. Wenn die geratene Lösung der homogenen Lösung entspricht, dann multipliziere mit x^m , wobei x die Vielfachheit der Wurzel ist.

1.5 Lineare DGL mit konstanten Koeff.

Wir wollen lösen: $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_0y = b$. Dann bekommt man das *Charakteristische Polynom*:

$$\iff \lambda^k + a_{k-1}\lambda^{(k-1)} + \dots + a_0 = 0$$

Dann ist die homogene Lösung eine Linearkombination aus $f_{\ell} = x^j e^{\lambda_i x}$ für jede Nullstelle λ_i und dessen Vielfachheit m, also $j \in \{0, ..., m-1\}$.

Falls Reelle Lösungen gesucht und $a_i \in \mathbb{R}$ und seien $\lambda_{i,i+1} = \beta \pm \gamma i$ zwei Nullstellen des charakteristischen Polynom. Dann gilt $f_i = e^{\beta x} \cos(\gamma x)$ und $f_{i+1} = e^{\beta x} \sin(\gamma x)$.

Um eine partikuläre Lösung zu finden, können wir wieder fundiertes Raten oder Variation der Konstanten verwenden. Variation der Konstanten funktioniert wie folgt (hier 2D, bzw. $\ell \in \{1,2\}$):

- (1) Nimm an, dass die homogene Lösung $f_h = z_1 f_1 + z_2 f_2$ ist, für $z_1, z_2 \in \mathbb{C}$.
- (2) Versuche nun $f_p = z_1(x)f_1 + z_2(x)f_2$
- (3) Löse das folgende System

$$z'_1(x)f_1 + z'_2(x)f_2 = 0$$

$$z'_1(x)f'_1 + z'_2(x)f'_2 = b(x)$$

Hier gehen wir wie folgt vor:

$$W = f_1 f_2' - f_2 f_1' \neq 0$$

$$\Rightarrow z_1' = \frac{-f_2 b}{W}, z_2' = \frac{-f_1 b}{W}$$

$$\Rightarrow f_p = -f_1 \int \frac{f_2 b}{W} dt + f_2 \int \frac{f_1 b}{W} dt$$

2 Ableitungen in \mathbb{R}^n

Monom

Ein Monom vom Grad e ist

$$(x_1, \dots, x_n) \mapsto x_1^{d_1} \cdot \dots \cdot x_n^{d_n}$$

 $e = d_1 + \dots + d_n$

 \rightarrow ein Polynom, das nur aus einem Glied besteht.

Polynom

Ein Polynom mit n Variablen vom Grad d ist eine endliche Summe von Monomen mit Grad $e \leq d$.

2.1 Konvergenz

- 1. Skalarprodukt: $\langle x, y \rangle = \sum_{i=0} x_i \cdot y_i$
- 2. Euklidische Norm: $||x||:=\sqrt{x_2^1+\cdots+x_n^2}$ mit den folgenden Eigenschaften:
 - (a) $||x|| \ge 0, ||x|| = 0 \iff x = 0$
 - (b) $||\lambda x|| = |\lambda| \cdot ||x||, \forall \lambda \in \mathbb{R}$
 - (c) $||x+y|| \le ||x|| + ||y||$
 - (d) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

Definition Konvergenz

Sei $(x_k)_{k\in\mathbb{N}}$, $x_k \in \mathbb{R}^n$. Die folgenden Definitionen sind für $\lim_{k\to\infty} x_k = y$ äquivalent:

- 1. $\forall \varepsilon > 0$, $\exists N \ge 1$ so dass $\forall k \ge N ||x_k y|| < \varepsilon$.
- 2. Für jedes $i \in \{1, 2, ..., n\}$ konvergiert die Folge $(x_{k,i})_k$ von reellen Zahlen nach y_i .
- 3. Die Folge der reellen Zahlen $||x_k y||$ konvergiert nach 0.

2.2 Stetigkeit

Sei $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}^m$ und $x_0 \in \mathcal{X}$.

Funktion f ist **stetig in** $\mathbf{x_0}$, falls eine der folgenden Bedingungen erfüllt ist:

- 1. $\forall \varepsilon > 0, \ \exists \delta > 0 \text{ so dass } x \in \mathcal{X}, \ ||x x_0|| < \delta \implies ||f(x) f(x_0)|| < \varepsilon.$
- 2. Für alle Folgen (x_k) in X mit $\lim x_k = x_0$ gilt $\lim f(x_k) = f(\lim x_k)$.
- 3. $\lim_{\substack{x \to \infty \\ x \neq x_0}} f(x) = f(x_0)$

Funktion f ist **stetig in** \mathcal{X} falls f für jeden Punkt $x_0 \in \mathcal{X}$ stetig ist. Es gilt:

- 1. $f(x = x_1, ..., x_n) \mapsto (f_1(x), ..., f_m(x))$ und $f_i : \mathbb{R}^n \to \mathbb{R}$. Dann gilt: $f \text{ stetig} \iff \forall i = 1, ..., m \ f_i \text{ stetig}$.
- 2. Polynome sind stetig.
- 3. Summen + Produkte von stetigen Funktionen sind stetig.
- 4. Funktionen unterschiedlicher Variablen sind stetig, falls alle Variablen stetig sind.
- 5. Verknüpfungen stetiger Funktionen sind stetig.

Sandwich-Lemma

Wenn $f, g, h : \mathbb{R}^n \to \mathbb{R}$ Funktionen für die gilt, dass $\forall x \in \mathbb{R}^n, \ f(x) < g(x) < h(x), \ dann gilt$

$$\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L \implies \lim_{x\to a} g(x) = L$$

Definition Limit zu x_0

Sei $X \subseteq \mathbb{R}^n$ und $f: X \to R^m$. Sei $x_0 \in X$ und $y \in \mathbb{R}^m$. Falls:

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in X, \ x \neq x_0,$$

 $\|x - x_0\| < \delta \implies \|f(x) - y\| < \varepsilon$

Dann gilt:

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y.$$

2.3 Eigenschaften von Mengen

Eine Menge $\mathcal{X} \subset \mathbb{R}^n$ ist

- beschränkt, falls die Menge $\{||x|| \mid x \in \mathcal{X}\}$ in \mathbb{R} beschränkt ist (d.h. $\exists R \geq 0, \ \forall x \in \mathcal{X} : ||x|| \leq R$).
- abgeschlossen, falls jede Folge $(x_k)_{k\in\mathbb{N}}\subset\mathcal{X}$, die in \mathbb{R}^n konvergiert, zu einem Punkt in $y\in\mathcal{X}$ konvergiert. Dies kann mit einem Ball visualisiert werden. Gegenbeispiele: $\frac{1}{k}$, <.
- kompakt, falls sie beschränkt und abgeschlossen ist.
- offen, falls ihr Komplement $\mathbb{R}^n \setminus \mathcal{X}$ abgeschlossen ist. $\forall x \in U, \exists \delta > 0, \{y \in \mathbb{R}^n \mid |x_i y_i| < \delta, \forall i \in [n]\}$
- konvex, falls $\forall x, y \in \mathcal{X} : \lambda x + (1 \lambda)y \in \mathcal{X}$ gilt (die Linie zwischen x, y ist in \mathcal{X}).

Ist $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig, dann: (abg.: abgeschlossen) $U \in \mathbb{R}^m$ offen/abg. $\Longrightarrow f^{-1}(U) \subseteq \mathbb{R}^n$ offen/abg. Beispiele:

- $(a,b) \subset \mathbb{R}$ ist offen.
- $[a,b) \subset \mathbb{R}$ ist weder offen noch abgeschlossen.
- \mathbb{R}^n und \emptyset sind offen.
- $(a_1,b_1)\times(a_2,b_2)\subset\mathbb{R}^2$ ist offen.

Bolzano-Weierstrass

Jede beschränkte Folge in \mathbb{R}^n hat eine konvergente Teilfolge.

Min-Max-Theorem

Sei $\mathcal{X} \subset \mathbb{R}^n, \mathcal{X} \neq \emptyset$ eine kompakte Menge und $f: \mathcal{X} \to \mathbb{R}$ eine stetige Funktion. Dann ist f beschränkt und ein Maximum $(x^+)/\text{Minimum }(x^-)$ existieren, so dass

$$f(x^+) = \sup_{x \in \mathcal{X}} f(x)$$
 $f(x^-) = \inf_{x \in \mathcal{X}} f(x)$

2.4 Partielle Ableitungen

Um eine partielle Ableitung von $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ (wobei \mathcal{X} offen) zu finden, betrachten wir alle Variablen bis auf eine als konstant und leiten nach dieser ab.

$$\frac{\partial f}{\partial x_{0,j}} = \lim_{h \to 0} \frac{f(x_{0,1}, \dots, x_{0,j} + h, \dots, x_{0,n}) - f(x_0)}{h}$$

Für $f: \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \mathbb{R}^n$ gilt

$$\frac{\partial f(x_0)}{\partial x_j} := \begin{pmatrix} \frac{\partial^*}{\partial f_1(x_0)} x_j \\ \vdots \\ \frac{\partial^*}{\partial f_m(x_0)} x_j \end{pmatrix}$$

Partielle Ableitungen haben folgende Eigenschaften:

1.
$$\partial_j(f+g) = \partial_j f + \partial_j g$$

2.
$$\partial_j(f \cdot g) = \partial_j(f) \cdot g + \partial_j(g) \cdot f$$

3.
$$\partial_j(f/g) = \frac{\partial_j(f) \cdot g - \partial_j(g) \cdot f}{g^2}$$
 für $g \neq 0$

Jacobi-Matrix

Sei $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}^m$ und \mathcal{X} eine offene Menge. Die Jacobi-Matrix ist eine $m \times n$ Matrix.

$$J_f = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \le j \le n \\ 1 \le i \le m}}$$

Gradient

Der **Gradient** von $f:U\to\mathbb{R}$ ist:

grad
$$f(x) = \nabla f(x) = \begin{pmatrix} \partial_{x_1} f(x) \\ \vdots \\ \partial_{x_n} f(x) \end{pmatrix}$$

Divergenz

Die Divergenz einer Funktion f ist die Spur der Jacobi-Matrix von f.

$$\operatorname{div}(f)(x_0) = \operatorname{Tr}(J_f(x_0)) = \sum_i (J_f)_{i,i} = \sum_i \partial x_i f_i(x)$$

2.5 Differenzierbarkeit

Differenzierbarkeit

 $U\subseteq\mathbb{R}^n$ offen $f:U\to\mathbb{R}^m$ heisst differenzierbar bei $x_0\in U$ falls es eine lineare Abbildung $A:\mathbb{R}^n\to\mathbb{R}^m$ sodass:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{||x - x_0||} = 0$$

Dreigliedentwicklung

 $df(x_0) = A \iff \text{hat die sog Dreigliedentwicklung}$ $f(x) = f(x_0) + A(x - x_0) + R(x - x_0) \text{ wobei}$

$$R(x-x_0) = \sigma(\|x-x_0\|) \iff \lim_{x \to x_0, x \neq x_0} \frac{R(x-x_0)}{\|x-x_0\|} = 0$$

f diffbar bei $x_0 \iff \text{Alle } f_i: U \to \mathbb{R}$ diffbar bei x_0 Wenn alle partiellen Ableitungen existieren und diese stetig sind, dann ist f differenzierbar.

Falls f, g im Punkt $x_0 \in \mathcal{X}$ differenzierbar sind, gilt:

- 1. f ist stetig im Punkt x_0
- 2. f hat alle partiellen Ableitungen am Punkt x_0 und die Matrix, welche $df(x_0): x \mapsto Ax$ repräsentiert, ist die Jacobi-Matrix von f am Punkt x_0 , d.h. $A = J_f(x_0)$
- 3. $d(f+g)(x_0) = df(x_0) + dg(x_0)$
- 4. Wenn m=1 ist, dann ist $f\cdot g$ differenzierbar. Wenn ausserdem $g\neq 0$ gilt, dann ist es f/g auch.
- 5. Wenn $f: \mathcal{X} \to Y, g: Y \to \mathbb{R}^m$ beide differenzierbar sind, so gilt $d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$. Weiter ist $J_{g \circ f}(x_0) = J_g(f(x_0)) \cdot J_f(x_0)$.

Die Ableitung einer Funktion ist gegeben durch

$$f'(x_0) = \begin{pmatrix} f'_1(x_0) \\ \vdots \\ f'_n(x_0) \end{pmatrix}$$

Richtungsableitung

 $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m$, $v \in \mathbb{R}^n \setminus \{0\}$, $x_0 \in U$. Die *Richtungsableitung* von f in Richtung v bei x_0 ist

$$D_v f(x_0) := \mathcal{J}_g(0) = \begin{pmatrix} \partial_x g_1(0) \\ \vdots \\ \partial_x g_m(0) \end{pmatrix} \in \mathbb{R}^m$$

wobei $g: \{t \in \mathbb{R} \mid x_0 + tv \in u\} \rightarrow \mathbb{R}^m, g(t) = f(x_0 + tv)$

Bem: Falls m = 1, dann $D_{e_i} f(x_0) = \partial_{x_i} f(x_0)$ für e_i den *i*-ten Standardbasisvektor. Dann gilt auch eine einfachere Schreibweise:

$$D_v f(x) = \nabla_v f(x) = \nabla f(x) \cdot \frac{v}{\|v\|}$$

2.6 Höhere Ableitungen

Mit $U\subseteq \mathbb{R}^n$ offen , dann definieren wir $C^\infty\subseteq C^k\subseteq C^1\subseteq C^0$ wie folgt:

$$C^{0}\left(U,\mathbb{R}^{m}\right):=\left\{ \text{Stetige Funktionen }f:U\to\mathbb{R}^{m}\right\}$$

$$C^{1}\left(U,\mathbb{R}^{m}\right):=\left\{ \text{``stetig diffbare''}\ f\right\}$$

$$:= \{f \text{ sodass alle } \partial_{x_i} f_i \text{ stetig/existent} \}$$

$$C^{k}(U, \mathbb{R}^{m}) := \{ f \text{ diffbar und alle } \partial_{x_{j}} f \in C^{k-1}(U, \mathbb{R}^{m}) \}$$

:= $\{ f, \text{ alle } \partial_{x_{j_{1}}} \cdots \partial_{x_{j_{k}}} f_{i} \text{ stetig/existent} \}$

$$C^{\infty}(U,\mathbb{R}^m) := \bigcap_{k=0}^{\infty} C^k(U,\mathbb{R}^m)$$

Hesse-Matrix

Die Hesse-Matrix ist eine $n \times n$ symmetrische Matrix, welche die zweite Ableitung definiert:

$$\operatorname{Hess}_{f}(x_{0}) := \left(\partial_{x_{i}, x_{j}} f(x_{0})\right)_{1 \leq i, j \leq n}$$

2.7 Taylorpolynome

Sei $f \in C^k(U, \mathbb{R})$ und $y_i = (x)_i - (x_0)_i$. Dann ist das k-te Taylorpolynom von f bei x_0 :

$$T_{k}f(x) = \sum_{\substack{m_{1},\dots,m_{n} \geqslant 0\\ m_{1}+\dots+m_{n} \leq k}} \frac{1}{\underbrace{m_{1}! \cdots m_{n}!}} \cdot \partial_{1}^{m_{1}} \cdots \partial_{n}^{m_{n}} f(x_{0})}_{\text{Konstante}}$$

$$\cdot \underbrace{y_{1}^{m_{1}} \cdot \dots \cdot y_{n}^{m_{n}}}_{\text{Monom}} = T_{k}f(x; x_{0})$$

Beispiele:

$$T_1 f(x; x_0) := f(x_0) + \langle \nabla f(x_0), y \rangle$$

 $T_2 f(x; x_0) := T_1 f + \frac{1}{2} \cdot y^\top \cdot \text{Hess}_f(x_0) \cdot y$

Landau-Symbol σ

Sei $U \subseteq \mathbb{R}^n$, $g: U \to \mathbb{R}$, $x_0 \in U$. Dann ist $\sigma(g)$ die Menge der Funktionen $f: U \to \mathbb{R}$, für die gilt:

$$\lim_{x \to x_0, x \neq x_0} \left| \frac{f(x)}{g(x)} \right| = 0$$

Rechenregeln:

- 1. $\sigma(x^a) + \sigma(x^b) = \sigma(x^{\min(a,b)})$
- 2. $\sigma(x^a) \cdot \sigma(x^b) = \sigma(x^{a+b})$
- 3. $x^a \cdot \sigma(x^b) = \sigma(x^{a+b})$

Für Polynome $P(x), x \in \mathbb{R}^n$ (z.B. $x_1^k, x_1 x_2, \dots$):

- 4. $P = \sigma(||x||^k)$ falls $\deg P > k$
- 5. $\sigma(P) = \sigma(||x||^k)$ falls deg P > k
- 6. $P \cdot \sigma(\|x\|^k) = \sigma(\|x\|^{k + \deg P})$

2.8 Definit

Eine (symmetrische) $n \times n$ Matrix A ist

- positiv definit, falls für alle $y \neq 0 : y^{\top}Ay > 0$ (oder falls alle Eigenwerte positiv sind)
- negativ definit, falls für alle $y \neq 0 : y^{\top}Ay < 0$ (oder falls alle Eigenwerte negativ sind)

• indefinit, falls es y, z gibt mit $y^{\top}Ay > 0, z^{\top}Az < 0$ (oder falls sowohl positive als auch negative Eigenwerte existieren)

Eigenwerte können mit dem charakteristischen Polynom gefunden werden:

$$\det \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{pmatrix} = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$
$$\Rightarrow ad - (a + d)\lambda + \lambda^2 - bc = 0$$

Determinante in drei Dimensionen

$$a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

Sylvesterkriterium

A pos. definit $\iff \forall k \in \{1, \dots, n\}, \ \det(A_k) > 0$ mit $A_k = (a_{i,j})_{1 \le i, j \le k}$ als Submatrix (und A symm.).

Für negativ definit, wende das Kriterium mit -A an. **Achtung:** $\det(-A_k) = (-1)^n \det(A_k)$ für $A \in \mathbb{R}^{n,n}$.

Also gilt für symmetrische $A \in \mathbb{R}^{2,2}$: A pos definit \iff det $A > 0, A_{11} > 0$

2.9 Extrema

Kritische Punkte

Ein Punkt $x_0 \in \mathcal{X}$ wo $\nabla f(x_0) = 0$ gilt ist ein kritischer Punkt. Wenn zusätzlich gilt, dass $\det(\operatorname{Hess}_f(x_0)) = 0$, dann ist x_0 degeneriert.

Lokale Extrema

Sei $f: \mathcal{X} \subset \mathbb{R}^n \mapsto \mathbb{R}$ differenzierbar und \mathcal{X} eine offene Menge. Dann ist $x_0 \in \mathcal{X}$ ein **lokales Maximum (Minimum)** falls es ein ε gibt, wo gilt:

$$||x - x_0|| < \varepsilon, x \in U \implies f(x_0) \le (\ge) f(x)$$

Wenn $x_0 \in \mathcal{X}$ ein **lokales Extrema** ist, dann gilt ausserdem $\nabla f(x_0) = 0$.

Sattelpunkt

Wenn ein kritischer Punkt weder Maximum noch Minimum ist, dann nennen wir ihn Sattelpunkt.

Globale Extrema

Sei $f:K\mapsto\mathbb{R}$ und K kompakt, dann existiert ein globales Extrema von f und es ist entweder ein kritischer Punkt oder am Rand von K. Um ein solches Extrema zu bestimmen, teilen wir K in sein Inneres \mathcal{X} und den Rand B auf.

Nun bestimmen wir zuerst wie zuvor die kritischen Punkte von \mathcal{X} . Um die Maximas/Minimas von B zu bestimmen, benötigen wir nur Wissen aus Analysis I (da von der Form $\mathbb{R} \mapsto \mathbb{R}$).

Testen von kritischen Punkten

Sei $f: \mathcal{X} \subseteq \mathbb{R}^n \mapsto \mathbb{R}, \mathcal{X}$ offen und $f \in C^2$. Sei x_0 ein nicht-degenerierter kritischer Punkt von f. Dann gilt:

- 1. $\operatorname{Hess}_f(x_0)$ pos. def. $\Longrightarrow x_0$ ist lokales Minimum.
- 2. $\operatorname{Hess}_f(x_0)$ neg. def. $\Longrightarrow x_0$ ist lokales Maximum.
- 3. $\operatorname{Hess}_f(x_0)$ indefinit $\implies x_0$ ist Sattelpunkt.

Dies funktioniert nicht, wenn x_0 ein degenerierter kritischer Punkt ist. In einem solchen Fall müssen die Vorzeichen überprüft werden.

Es gilt für alle kritischen Punkte x_0 (auch degenerierte):

 $H_f(x_0)$ hat pos. Eigenwerte $\implies x_0$ kein lokales Max.

 $H_f(x_0)$ hat neg. Eigenwerte $\implies x_0$ kein lokales Min.

Kritische Punkte mit Nebenbedingungen

Wenn wir Minimas/Maximas einer Funktion $f: \mathcal{X} \mapsto \mathbb{R}$ mit einer Nebenbedingung $g(x) = 0, g: \mathcal{X} \mapsto \mathbb{R}$ bestimmen wollen, können wir dafür Lagrange-Multiplikatoren verwenden.

Lagrange-Multiplikator

 $U \subseteq \mathbb{R}^n$ offen, $f, g \in C^1(U, R)$ Falls x_0 lokales Extremum von $f|_{g^{-1}(0)}$ (f eingeschränkt auf $\{x \in U \mid g(x) = 0\}$), dann $\nabla g(x_0) = 0$ oder es gibt ein $\lambda \in \mathbb{R}$ sodass

$$\nabla f(x_0) = \lambda \cdot \nabla g(x_0)$$

Niveaumengen (Level Sets):

ax + by + cz = K, wobei K eine Konstante ist

Die Normale zur Oberfläche wird durch den Gradienten der Funktion an einem bestimmten Punkt x_0 gegeben, daher ist die Normale der Gradient der Funktion.

Tagentialraum

Der Tangentialraum eines Graphen f am Punkt x_0 ist gegeben durch $g(x) = f(x_0) + df(x_0)(x - x_0)$.

Lokale Invertierbarkeit

 $U \subseteq \mathbb{R}^n$ offen. $f: U \to \mathbb{R}^x$ diffbar. f heisst **lokal invertierbar** bei $x_0 \in U$ falls eine offene Menge B existert mit $x_0 \in B$, für die gilt: $f(B) \subseteq \mathbb{R}^n$ offen, und es gibt ein diffbares $g: f(B) \to B$ (sodass $f \circ g = id_{f(B)}, g \circ f = id_B$).

Falls $\det(J_f(x_0)) \neq 0$, dann ist f lokal invertierbar bei x_0 . Sei g die lokale Umkehrfunktion, dann: $J_g(f(x_0)) = J_f(x_0)^{-1}$ falls $f C^k \Rightarrow g C^k$.

3 Integrale in \mathbb{R}^n

3.1 Einfache Integrale

Für $f:\mathbb{R}\mapsto\mathbb{R}^n$ ist das Integral definiert als

$$\int_{a}^{b} f(t)dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t)dt \\ \vdots \\ \int_{a}^{b} f_{n}(t)dt \end{pmatrix}$$

Parametrisierte Kurve

Eine parametrisierte Kurve in \mathbb{R}^n ist eine Funktion $\gamma:[a,b]\mapsto\mathbb{R}^n$ wobei γ stückweise in C^1 ist, d.h. wir können γ so partitionieren, dass alle Partitionen in stetig diffbar sind. Eine parametrisierte Kurve muss nicht injektiv sein.

Geschlossener Weg

Ist $\gamma(a) = \gamma(b)$ heisst γ geschlossener Weg. Dann schreibt man auch \oint_{γ} für \int_{γ} .

3.2 Wegintegrale

Sei $\gamma:[a,b]\mapsto\mathbb{R}^n$ eine parametrisierte Kurve und $\mathcal{X}\subset\mathbb{R}^n$ eine Menge, welche das Bild von γ beinhaltet. Sei $f:\mathcal{X}\mapsto\mathbb{R}^n$ eine stetige Funktion. Dann ist ein Wegintegral (auch: Kurvenintegral) definiert als:

$$\int_{\gamma} f(s)ds = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t)dt$$

Wegintegrale haben folgende Eigenschaften:

1. Sie sind unabhängig von orientierte Unparametrisierungen, d.h. sie hängen nur vom Bild der Kurve und nicht von der Parametrisierung ab.

Eine **orientierte Unparametrisierung** eines Wegs $\gamma: [a,b] \to \mathbb{R}^n$, ist ein Weg $\sigma: [c,d] \to \mathbb{R}^n$ mit $\sigma = \gamma \circ \varphi$ wobei $\varphi: [c,d] \to [a,b]$ stetig, diffbar auf (c,d), streng monton wachsend und es gilt $\varphi(c) = a$, $\varphi(d) = b$ (insbesondere ist φ bijektiv).

$$\Rightarrow \int_{\gamma} f(s) \ ds = \int_{\tilde{\gamma}} f(s) \ ds$$

2. Sei $\gamma_1 + \gamma_2$ ein Pfad gegeben durch die Vereinigung zweier Kurven. Dann gilt

$$\gamma_1 + \gamma_2 := \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t) & t \in [b, d + b - c] \end{cases}$$
$$\int_{\gamma_1 + \gamma_2} f(s) \, ds = \int_{\gamma_1} f(s) \, ds + \int_{\gamma_2} f(s) \, ds$$

3. Sei $\gamma:[a,b]\mapsto\mathbb{R}^n$ ein Pfad und $-\gamma$ ist der Pfad in die Gegenrichtung (d.h. $(-\gamma)(t)=\gamma(a+b-t)$). Dann gilt

$$\int_{-\gamma} f(s)ds = -\int_{\gamma} f(s)ds$$

3.3 Potential

Ein differenzierbares skalares Feld $g: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ mit $\nabla g = f, f: \mathcal{X} \mapsto \mathbb{R}^n$ wird ein **Potential** von f genannt. Dies kann wie folgt verwendet werden:

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{a}^{b} \nabla g(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{a}^{b} \frac{d}{dt} (g(\gamma(t))) \, dt$$

$$= g(\gamma(b)) - g(\gamma(a))$$

3.4 Konservative Vektorfelder

Sei \mathcal{X} offen und $f: \mathcal{X} \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ ein stetiges Vektorfeld. Die folgenden Aussagen sind äquivalent:

- 1. Falls für irgendwelche $x_1, x_2 \in \mathcal{X}$ das Wegintegral $\int_{\gamma} f(s)ds$ unabhängig von der Kurve in \mathcal{X} von x_1 nach x_2 ist, dann ist das Vektorfeld f konservativ.
- 2. Jedes Wegintegral in f entlang einer geschlossenen Kurve (Schlaufe) ist 0.
- 3. Ein Potential für f existiert.
- 4. $J_f(x)$ ist symmetrisch.

 $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n$ in C^1 , dann gilt: (falls f sternförmig, gilt die Rückrichtung)

$$f$$
 ist konservativ $\implies \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$

Zusammenfassend gilt:

$$f \in C^0(U, \mathbb{R}^n)$$
 konservativ mit $U \subseteq \mathbb{R}^n$

$$\updownarrow$$

$$f = \nabla g \text{ für } g \in C^1(U, \mathbb{R})$$

$$\Downarrow \quad (\uparrow \quad U \text{ sternförmig})$$

$$J_f(x) \text{ symmetrisch}$$

Wegzusammenhängend

Sei $\mathcal{X} \subset \mathbb{R}^n$ offen. \mathcal{X} ist wegzusammenhängend, falls für jedes Paar an Punkten $x,y \in \mathcal{X}$ ein Pfad $\gamma:(0,1] \mapsto \mathcal{X}$ existiert, der in C^1 ist und $\gamma(0) = x, \gamma(1) = y$ hält.

Sternförmig

Eine Teilmenge $\mathcal{X} \subset \mathbb{R}^n$ wird sternförmig genannt, falls $\exists x_0 \in \mathcal{X}$ so dass $\forall x \in \mathcal{X}$ eine gerade Strecke x_0 nach x existiert, die komplett in \mathcal{X} enthalten ist.

 \mathcal{X} ist konvex $\implies \mathcal{X}$ ist sternförmig

Wenn \mathcal{X} eine sternförmige, offene Teilmenge von \mathbb{R}^n und $f \in C^1$ ein Vektorfeld ist, dann gilt:

$$\partial_j f_i = \partial_i f_j \quad \forall i, j \quad \Rightarrow \quad f \text{ ist konservativ}$$

$$\operatorname{curl}(f) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad f \text{ ist konservativ}$$

 $\operatorname{curl}(f)$ ist definiert als

$$\operatorname{curl}(f) := \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

3.5 Riemann-Integral in \mathbb{R}^2

Partition in zwei Dimensionen

Eine Partition P eines abgeschlossenen Rechtecks $R = [a,b] \times [c,d]$ ist eine Menge von Rechtecken. Für jede Partition $P_x : a = x_0 < \ldots < x_n = b$ von [a,b] und P_y (analog) erhalten wir eine Partition $P_{i,j} = [x_{i-1},x_i] \times [y_{j-1},y_j]$ von R mit der Fläche $\mu(P_{i,j} = (x_i - x_{i-1})(y_j - y_{j-1}))$.

Mit den Hilfsdefinitionen

$$f_{i,j} = \inf_{P_{i,j}} f(x,y), \quad F_{i,j} = \sup_{P_{i,j}} f(x,y)$$

können wir die Unter- und Obersumme bestimmen:

$$s(P_x \times P_y) = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j} \cdot \mu(P_{i,j})$$
$$S(P_x \times P_y) = \sum_{i=1}^{n} \sum_{j=1}^{m} F_{i,j} \cdot \mu(P_{i,j})$$

Sei $f: R \mapsto \mathbb{R}$ beschränkt. f ist auf R integrierbar, falls $\sup_{(P_x,P_y)} s(P_x,P_y) = \inf_{(P_x,P_y)} S(P_x,P_y)$ gilt. Dieser Wert ist dann definiert als:

$$\int_{R} f(x,y) d(x,y) \text{ oder } \int \int_{R} f(x,y) d(x,y)$$

Nicht-Quadratische Flächen

Sei $A \subset R$ eine Fläche. $f: A \subset R \mapsto \mathbb{R}$ ist auf A integrierbar, falls $f \cdot \mathcal{X}_A$ auf R integrierbar ist.

$$\int_{R} f(x,y) \cdot \mathcal{X}_{A}(x,y) d(x,y) \text{ oder } \int_{A} f(x,y) d(x,y)$$

 \mathcal{X}_A ist die charakteristische Funktion von A.

Eigenschaften des Integrals

Sei $f,g:A\subset R\mapsto \mathbb{R}$ auf A integrierbar, dann gilt folgendes:

1. $\alpha, \beta \in \mathbb{R} : \alpha f + \beta g$ ist integrierbar:

$$\int_{A} \alpha f + \beta g \, d(x, y) = \alpha \int_{A} f \, d(x, y) + \beta \int_{A} g \, d(x, y)$$

2. Falls $\forall (x,y) \in A : f(x,y) \leq g(x,y)$, dann gilt:

$$\int_A f(x,y) d(x,y) \le \int_A g(x,y) d(x,y)$$

3. Falls $f(x,y) \geq 0$ und $B \subset A$, dann gilt:

$$\int_{B} f(x,y) d(x,y) \le \int_{A} f(x,y) d(x,y)$$

4. Dreiecksungleichung:

$$\left| \int_A f(x,y) \, d(x,y) \right| \le \int_A |f(x,y)| \, d(x,y)$$

5. Falls f = 1, dann gilt:

$$\int_{A} f(x, y) \, d(x, y) = \int_{A} 1 \, d(x, y) = \gamma(A) = \text{vol}_{n}(A)$$

6. Falls $U_1, U_2 \subseteq \mathbb{R}^n$ kompakt, $f: U_1 \cup U_2 \to \mathbb{R}$ stetig

$$\begin{split} \int_{U_1 \cup U_2} & f(x) \, d(x,y) = \int_{U_1} f(x) \, d(x,y) + \int_{U_2} f(x) \, d(x,y) \\ & - \int_{U_1 \cap U_2} f(x) \, d(x,y) \end{split}$$

Satz von Fubini

Für eine Region $D \subset \mathbb{R}^2 := \{(x,y) \mid a \leq x \leq b, g(x) < y < h(x)\}$ gilt:

$$\int_{D} f(x,y) dx dy = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx$$

Für eine Region $D \subset \mathbb{R}^2 := \{(x,y) \mid c \leq y \leq d, G(y) < x < H(y) \text{ gilt:}$

$$\int_{D} f(x,y) dx dy = \int_{c}^{d} \left(\int_{G(y)}^{H(y)} f(x,y) dx \right) dy$$

Satz von Stolz

Sei $f: R \mapsto \mathbb{R}$ integrierbar auf $R = [a, b] \times [c, d]$. Sei $y \mapsto f(x, y)$ integrierbar auf [c, d] für jedes $x \in [a, b]$. Dann folgt:

$$\int_{R} f(x,y) d(x,y) = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx$$

Paramet. l-Mengen und Vernachlässigbarkeit

1. Für $1 \le l \le n$ ist eine parametrisierte l-Menge in \mathbb{R}^n eine stetige Funktion

$$f: [a_1, b_1] \times \cdots \times [a_l, b_l] \to \mathbb{R}^n$$

2. $B \subseteq \mathbb{R}^n$ heißt vernachlässigbar (negligible), falls $B \subseteq Bild(f_1) \cup \cdots \cup Bild(f_k)$ für l_i -Mengen f_i mit $l_i < n$, sodass f auf $(a_1, b_1) \times \cdots \times (a_l, b_l) \in C^1$.

(Informell: Wir können die ganze Menge mit einer endlichen Menge an Rechtecken beliebiger Grösse überdecken.)

Es gilt: $\int_U f(x) dx = 0$, falls U kompakt und vernachlässigbar

Weitere Integrationskriterien

- 1. Sei R ein kompaktes Rechteck und $f:R\mapsto\mathbb{R}$ ist stetig. Dann ist f integrierbar auf R.
- 2. Sei $f: R \mapsto \mathbb{R}$ beschränkt und X die Menge aller nicht stetigen Punkte von f. Wenn X vernachlässigbar ist, dann ist f auf R integrierbar.
- 3. Sei $\varphi_1, \varphi_2 : [a, b] \mapsto \mathbb{R}$ stetig mit $\forall x \in [a, b] : \varphi_1(x) \leq \varphi_2(x)$ und $A = \{(x, y) \mid a \leq x \leq b, \varphi_1(x) \leq y \leq \varphi_2(x)\}$. Falls $f : A \mapsto \mathbb{R}$ stetig ist, so ist f auf A integrierbar und es folgt dass

$$\int_{A} f(x,y) d(x,y) = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) dy \right) dx$$

Polarkoordinaten

Polarkoordinaten werden definiert durch

$$\varphi: [0,R] \times [-\pi,\pi] \to B_R(0)$$

mit

$$\varphi(r,\theta) = (r\cos(\theta), r\sin(\theta))$$

und

$$B_R = \{(r, \theta) \in X_R : r = 0 \text{ oder } r = R \text{ oder } |\theta| = \pi\}$$

$$\Rightarrow \text{"d}x \, dy = r \, dr \, d\theta$$
"

Lipschitz-Kurve

Eine Kurve $\varphi : [0,1] \mapsto \mathbb{R}^2$ ist Lipschitz, falls $||\varphi(s) - \varphi(t)|| \le M \cdot |s-t| \ \forall s,t \in [0,1]$

Es folgt ausserdem, dass $\varphi([0,1]) \subset \mathbb{R}^2$ eine Nullmenge ist.

3.6 Variablenwechsel

Wenn gilt:

- \bar{U} kompakt, $\bar{U} = U \cup B$, U offen, B vernachlässigb.
- \bar{V} kompakt, $\bar{V} = V \cup C$, V offen, C vernachlässigb.
- $\varphi: \bar{U} \to \bar{V}$ stetig und C^1 auf U
- $\varphi(U) = V, \ \varphi: U \to V \text{ bijektiv}$
- Es gibt eine stetige Funktion $\bar{U} \to \mathbb{R}$, deren Einschränkung auf U gleich $|\det J_{\varphi}|$ ist.
- $f: \bar{V} \to \mathbb{R}$ stetig.

Dann:

$$\int_{\bar{V}} f(y) \, dy = \int_{\bar{U}} f(\varphi(x)) \cdot \left| \det J_{\varphi}(x) \right| dx$$

1. Generell: $dy = |\det J_{\varphi}(x)| dx$

2. Polarkoordinaten: $dx dy = r dr d\theta$

3. Zyl. Koordinaten: $dx dy dz = r dr d\varphi dz$

4. Kugelkoordinaten: $dx dy dz = r^2 \sin(\varphi) dr d\theta d\varphi$

Für mehr Infos siehe letzte Seite.

Achtung: Multiplikation mit der Determinante von Jacobi-Matrix nicht vergessen!

Uneigentliches Integral

Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall, $a \in \mathbb{R}$, $f: [a, \infty) \times I \to \mathbb{R}$ stetig.

$$\int_{[a,\infty)\times I} f(x,y) d(x,y) := \lim_{b\to\infty} \int_{[a,b]\times I} f(x,y) \, d(x,y)$$

Falls $f \ge 0$ folgt aus Fubini:

$$= \int_{a}^{\infty} \int_{I} f(x, y) d(x, y) = \int_{I} \int_{a}^{\infty} f(x, y) d(y, x)$$

Für f > 0 und $f : \mathbb{R}^2 \to \mathbb{R}$:

$$\int_{\mathbb{R}^2} f(x,y)d(x,y) := \lim_{R \to \infty} \int_{[-R,\pi]^2} f(x,y) d(x,y)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) d(x,y)$$

Schwerpunkt

Der Schwerpunkt $\bar{x} \in \mathbb{R}^n$ einer kompakten Menge $U \subseteq \mathbb{R}^n$ ist gegeben durch

$$\bar{x}_i = \frac{1}{\text{vol}(U)} \int_U x_i \, \, \mathrm{d}x$$

Beispiel mit Kettenregel

Sei $f: \mathbb{R}^3 \mapsto \mathbb{R}$ eine glatte Funktion mit $\nabla f\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}, 7\right) = (6, 2, 0)$. Wenn wir nun $\frac{\partial f}{\partial r}\left(\sqrt{3}, \frac{2}{3}\pi, 7\right)$ mit zylindrischen Koordinaten berechnen wollen, dann ist

$$\frac{\partial f(g(r,\theta,z))}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial g_1}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial g_2}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial g_3}{\partial r}$$

Nun können wir die obige Information brauchen, um für $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial z}$ einzusetzen.

3.7 Satz von Green

Der Satz von Green stellt eine Beziehung zwischen Linienintegralen und Doppelintegralen über einen von einer parametrisierten Kurve umschlossenen Bereich her.

Eine parametrisierte Jordan-Kurve ist eine geschlossene parametrisierte Kurve $\gamma: [a,b] \mapsto \mathbb{R}$, wobei $\gamma: [a,b] \mapsto$

 $\mathbb R$ injektiv ist. Eine Jordan-Kurve in $\mathbb R^2$ ist das Bild einer parametrisierten Jordan-Kurve.

Seien b_1, b_2 die Basisvektoren von \mathbb{R}^2 . Dann ist die Orientierung genau dann positiv, wenn die Matrix $[b_1, b_2]$ eine positive Determinante hat.

Ein reguläres Gebiet ist eine offene, beschränkte Teilmenge $A \subset \mathbb{R}^2$, deren Rand ∂A endliche Vereinungen von disjunkten Jordan-Kurven ist.

Eine parametrisierte Jordan-Kurve γ , die eine Randkomponente von A bildet, hat einen positiven Umlaufsinn, falls $(n(t),\gamma'(t))$ eine positiv orientierte Basis von \mathbb{R}^2 bildet. Dabei ist n(t) der Einheitsvektor, welcher orthogonal zu $\gamma'(t)$ steht und von A weg zeigt. (Intuitiv: wenn die umschlossene Menge immer "links" liegt.)

Satz von Green

Sei $A\subset\mathbb{R}^2$ ein reguläres Gebiet und $F:U\mapsto\mathbb{R}^2$ ein Vektorfeld der Klasse C^1 , wobei $(A\cup\partial A)\subset U\subset\mathbb{R}^2$. Dann gilt

$$\int_{\partial a} F(x) ds = \int \int_{A} (\partial_x f_2 - \partial_y f_1) dx dy$$

Um Flächen mit dem Satz von Green zu berechnen, benutzen wir ein Vektorfeld mit $\operatorname{curl}(f)=1,$ beispielsweise

$$f = (0, x) \text{ oder } f(-y, 0)$$

4 Themen aus Analysis I

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Grundsätzlich gilt: Polynome ableiten (g(x)), wo das Integral periodisch ist $(\sin, \cos, e^x,...)$ integrieren (f'(x))
- Teils ist es nötig, mit 1 zu multiplizieren, um partielle Integration anwenden zu können (z.B. im Fall von $\int \log(x) \ dx$)
- Muss eventuell mehrmals angewendet werden

Substitution

Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{g(a)}^{g(b)} f(u) \frac{du}{g'(x)}$.

- g'(x) muss sich irgendwie herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ kann auch das unbestimmte Integral berechnet werden und dann u wieder durch x substituiert werden.

Mitternachtsformel

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Partialbruchzerlegung

Seien p(x), q(x) zwei Polynome. $\int \frac{p(x)}{q(x)}$ wird wie folgend berechnet:

- 1. Falls $\deg(p) \geq \deg(q)$, führe eine Polynomdivision durch. Dies führt zum Integral $\int a(x) + \frac{r(x)}{q(x)}$.
- 2. Berechne die Nullstellen von q(x).
- $3.\ \,$ Pro Nullstelle: Einen Partialbruch erstellen.
 - Einfach, reell: $x_1 \to \frac{A}{x-x_1}$
 - *n*-fach, reell: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
 - Einfach, komplex: $x^2 + px + q \rightarrow \frac{Ax + B}{x^2 + px + q}$
 - *n*-fach, komplex: $x^2 + px + q \rightarrow \frac{A_1x + b_1}{x^2 + px + q} + \dots$
- 4. Parameter A_1, \ldots, A_n (bzw. B_1, \ldots, B_n) bestimmen. (x jeweils gleich Nullstelle setzen, umformen und lösen).

5 Trigonometrie

5.1 Regeln

5.1.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha)$ $\cos(\alpha + 2\pi) = \cos(\alpha)$
- $tan(\alpha + \pi) = tan(\alpha)$ $cot(\alpha + \pi) = cot(\alpha)$

5.1.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$ $\cos(-\alpha) = \cos(\alpha)$
- $tan(-\alpha) = -tan(\alpha)$ $cot(-\alpha) = -cot(\alpha)$

5.1.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha)$ $\cos(\pi \alpha) = -\cos(\alpha)$
- $\tan(\pi \alpha) = -\tan(\alpha)$ $\cot(\pi \alpha) = -\cot(\alpha)$

5.1.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$ $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$ $\cot(\pi/2 \alpha) = -\cot(\alpha)$

5.1.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin^2(\alpha)$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$

5.1.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

5.1.7 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\cosh^2(\alpha) \sinh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$ und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- $\exp(iz) = \cos(z) + i\sin(z)$

•
$$\tan(z) = \frac{\sin(z)}{\cos(z)}$$
 $\cot(z) = \frac{\cos(z)}{\sin(z)}$

- $\sin(x) \le x$
- $\bullet \cos(nx) = 2\cos x \cos((n-1)x) \cos((n-2)x)$
- $\cos((n-1)x + x) = \cos((n-1)x)\cos x \sin((n-1)x)\sin x$
- $\bullet \cos((n-1)x x) = \cos((n-1)x)\cos x + \sin((n-1)x)\sin x$
- $\bullet \cos((n+2)x) = \cos((n+1)x)\cos x \sin((n+1)x)\sin x$

5.1.8 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

5.1.9 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$
- $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta) + \cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}$

5.1.10 Potenzen

- $\bullet \sin^2(\alpha) = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$

Wichtige Werte

deg	0°	30°	45°	60°	90°	180°
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
\sin	0	$\frac{\overline{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan	0	$\frac{1}{\sqrt{3}}$	ī	$\sqrt{3}$	$+\infty$	0

6 Tabellen

6.1 Taylorpolynome

Funktion	x_0	Taylorpolynom
$\sin(x)$	0	$x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} \dots$
$\cos(x)$	0	$1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{40320} \dots$
tan(x)	0	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} \dots$
$\arccos(x)^{(1)}$	0	$\frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3x^5}{40} - \frac{5x^7}{112} - \frac{35x^9}{1152} - \dots$
$\arcsin(x)^{(1)}$	0	$x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \frac{35x^9}{1152} + \dots$
$\arctan(x)^{(1)}$	0	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} \dots$
e^x	0	$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \dots$
$\ln(x)^{(2)}$	1	$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} \dots$
ln(1+x)	0	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$
$\sqrt{1+x}$	0	$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} \dots$
$\frac{ax}{(b-x)^2}$	0	$\frac{ax}{b^2} + \frac{2ax^2}{b^3} + \frac{3ax^3}{b^4} + \frac{4ax^4}{b^5} + \frac{5ax^5}{b^6} \dots$
Einschränk	unger	n: (1): $ x < 1$, (2): $0 < x \le 2$

6.2 Grenzwerte

$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to \infty} 1 + \frac{1}{x} = 1$	
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$	
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$	
$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$	
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x\to 0}\ln(x)=-\infty$	
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$	
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$	
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a),$ $\forall a > 0$	$\lim_{x \to \infty} x^a q^x = 0,$ $\forall 0 \le q < 1$	
$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$	$\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$	
$\lim_{x \to \infty} \sqrt[x]{x} = 1$	$\lim_{x \to \infty} \frac{2x}{2^x} = 0$	
$\lim_{x \to \infty} \left(\sqrt{ax^2 + bx + c} - \sqrt{a} \cdot x \right) = \frac{b}{2\sqrt{a}}$		

6.3 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{-a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq -1)$	$a \cdot x^{a-1}$
$\frac{1}{k \ln(a)} a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{\frac{1}{\cos^2(x)}}{1 + \tan^2(x)}$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

6.4 Weitere Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\operatorname{arcsinh}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arccosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$
$\operatorname{arctanh}(x)$	$\frac{1}{1-x^2}$
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$
$\log_a x $	$\frac{1}{x \ln a} = \log_a(e) \frac{1}{x}$
$\frac{(ax+b)^{n+2}}{a^2(n+1)(n+2)}$	$\frac{(ax+b)^{n+1}}{a \cdot (n+1)}$
$\sqrt{1-x^2} + x \cdot \arcsin(x)$	$\arcsin(x)$
$x \cdot \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$
$x \cdot \arctan(x) - \frac{1}{2}\log(x^2 + 1)$	$\arctan(x)$
$x \cdot \operatorname{arcsinh}(x) - \sqrt{x^2 + 1}$	$\operatorname{arcsinh}(x)$
$\frac{x \cdot \operatorname{arccosh}(x) - \sqrt{x^2 - 1}\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$	$\operatorname{arccosh}(x)$
$\frac{1}{2}\log(1-x^2) + x \cdot \arctan(x)$	$\operatorname{arctanh}(x)$
$\frac{\alpha}{\gamma}\log \gamma x + \beta $	$\frac{\alpha}{\gamma x + \beta}$

6.5 Definite Integrale

$$\int_0^{2\pi} \sin(x) = \int_0^{2\pi} \cos(x) = 0,$$
$$\int_0^{2\pi} \sin^2(x) = \int_0^{2\pi} \cos^2(x) = \pi$$

6.6 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x) \mathrm{d}x$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} dx$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$
$\int (ax+b)^n \mathrm{d}x$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n \mathrm{d}x$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1} x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p+b $
$\int \frac{ax+b}{cx+d} \mathrm{d}x$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
$\int \sqrt{a^2 + x^2} \mathrm{d}x$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$

Koordinatentransformationen in \mathbb{R}^2			
Definition	Max. Definitions-	Volumenelement	
Demintion	bereich	Vorumenciement	
	Polarkoordinaten		
$x = r \cos \theta$	$0 \le r < \infty$	$dxdy = r \ drd\theta$	
$y = r \sin \theta$	$0 \le \theta < 2\pi$		
Elliptische Koordinaten			
$x = ra\cos\theta$	$0 \le r < \infty$	dxdy =	
$y = rb\sin\theta$	$0 \le \theta < 2\pi$	$abr drd\theta$	
Koordinatentransformationen in \mathbb{R}^3			
	Zylinderkoordinater	1	
$x = r \cos \theta$	$0 \le r < \infty$	dxdydz =	
$y = r \sin \theta$	$0 \le \theta < 2\pi$	$r dr d\theta dz$	
z = z	$-\infty < z < \infty$		
Kugelkoordinaten			
$x = r\sin\theta\cos\varphi$	$0 \le r < \infty$	dxdxydz =	
$y = r\sin\theta\sin\varphi$	$0 \le \theta \le \pi$	$r^2 \sin \theta \ dr d\theta d\varphi$	
$z = r \cos \theta$	$0 \le \varphi < 2\pi$		