1

Assignment 2

AI1110: Probability and Random Variables

Indian Institute of Technology Hyderabad

Aditya Garg CS22BTECH11002 26 April 2023

11.16.1.12: One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball.

- (a) What is the probability that two black balls are chosen?
- (b) What is the probability that two balls of opposite colour are chosen?

Solution:

Let Z be a Bernoulli random variable

$$Z = \begin{cases} 0, & \text{if Urn 1 chosen} \\ 1, & \text{if Urn 2 chosen} \end{cases}$$
 (1)

Since both events are equally likely

$$Pr(Z = 0) = Pr(Z = 1)$$
 (2)

$$=\frac{1}{2}\tag{3}$$

Let X_i be a random variable where i denotes the turn

$$X_i = \begin{cases} 0, & \text{if Black ball chosen} \\ 1, & \text{if White ball chosen} \end{cases}$$
 (4)

Let X_1 be a random variable denoting first ball is chosen and X_2 be random variable denoting second ball is chosen.

X_1	X_2	Description
0	0	Both Black chosen
1	1	Both White chosen
0	1	Black,White chosen
1	0	White,Black chosen

TABLE 1

(a) Let *E* be event that 2 black balls are chosen. Required Probability:

$$Pr(X_1 + X_2 = 0, Z = 0) =$$

$$Pr((X_1 + X_2 = 0)|Z = 0) Pr(Z = 0)$$

$$= \frac{2}{3} \times \frac{1}{2} \times \frac{1}{2}$$

$$= 1/6$$
(6)

$$\therefore \Pr(E) = \frac{1}{6} \tag{7}$$

(b) Let *E* be event that balls of opposite colours are chosen.

From the axioms of probability, Required Probability:

$$Pr ((X_1 + X_2) = 1) = 1 - Pr ((X_1 + X_2) = 0) - Pr ((X_1 + X_2) = 2)$$

(8)

By Symmetry

$$Pr(X_1 + X_2 = 0, Z = 0) = Pr(X_1 + X_2 = 2, Z = 1)$$
(9)

$$=\frac{1}{6}\tag{10}$$

Using (6) and (9)

$$Pr((X_1 + X_2) = 1) = 1 - 2 \times \frac{1}{6}$$
 (11)
= $\frac{2}{3}$ (12)

$$\therefore \Pr(E) = \frac{2}{3} \tag{13}$$