12 Regrese

Teorie: Regresní model

Zjišť ujeme, zda hodnoty Y (vysvětlovaná proměnná) závisí na hodnotě x (vysvětlující proměnná). Uvažujeme model $Y = f(\beta_0, \beta_1, \dots, \beta_k; x) + \varepsilon$,

kde $\varepsilon \sim N(0, \sigma^2)$ representuje nesystematické chyby.

Model odhadujeme na základě sady měření $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

Parametry modelu $\beta_0,\beta_1,\ldots,\beta_k$ lze odhadnout například metodou nejmenších čtverců, která

minimalizuje výraz $S(\beta_0, \beta_1, \dots, \beta_k) = \sum_{i=1}^n (y_i - f(\beta_0, \beta_1, \dots, \beta_k; x_i))^2$

 $Y = \beta_0 + \beta_1 x + \varepsilon$ lineární model

 $Y = \beta_0 \cdot e^{\beta_1 x} + \varepsilon$ exponenciální model

 $Y = \beta_0 + \beta_1 \ln(x) + \varepsilon$ logaritmický model

 $Y = \beta_0 \cdot x^{\beta_1} + \varepsilon$ mocninná

 $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$ polynomiální stupně 2

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$ modely s více vysvětlujícími proměnnými

Pokud jsou splněny předpoklady modelu, lze též testovat

Koeficient determinace $R^2 \in (0,1)$ určuje podíl vysvětlených variabilit Y pomocí x.

F-test testuje hypotézu, zda model je významný. $H_0: \beta_1 = 0 \land \beta_2 = 0 \ldots \land \beta_k = 0$

T-testy parametrů testují hypotézy, zda parametry jsou nulové. $H_0: \beta_i = 0, \ j = 0, 1, \dots, k$

V programu Excel existuje několik postupů

přidat spojnici trendu do grafu různé typy modelů

INTERCEPT(y;x) odhadne β_0 lineárního modelu SLOPE(y;x) odhadne β_1 lineárního modelu

LINTREND(y;x;xNew) vypočte $yNew = \hat{\beta}_0 + \hat{\beta}_1 xNew$

LINREGRESE(y;x;koeficient β_0 A/N;statistiky A/N) odhadne β_0,β_1

koeficient determinace R^2

údaje pro testy o nulovosti parametrů

Analýza dat/Regrese odhadne β_0, β_1

koeficient determinace \mathbb{R}^2

p-hodnoty testů o významnosti modelu

intervalové odhady parametrů

p-hodnoty testů o nulovosti parametrů

(12.1) Byla provedena měření rychlosti zvuku ve vzduchu v závislosti na teplotě.

Odhadněte lineární model závislosti rychlosti zvuku na teplotě.

[$rychlost = 331.159 + 0.561 \cdot teplota$, p-hodnota testu H_0 : $\beta_1 = 0$ je 0.0012] [je prokázáno, že rychlost zvuku závisí na teplotě]

(12.2) V tabulce uvedeny hodnoty pružnosti materiálu v závislosti na čase. Navrhněte vhodný model a odhadněte jeho parametry.

[Například model $y = 95.742 \cdot e^{0.07x}$, kdy koeficient determinace $R^2 = 0.9515$]

(12.3) Zajímá nás vliv dešťových srážek na výskyt plísně u brambor a na úrodu. Na pokusných polích v deseti oblastech byly zjištěny údaje o vydatnosti průměrných letních měsíčních srážek (v mm), podíl sazenic napadených plísní (v %) a výnos z jednoho hektaru (v t).

pole	srážky	plíseň	výnos
1	36	40	160
2	40	35	200
3	30	35	140
4	25	25	130
5	41	45	170
6	23	20	150
7	35	30	150
8	34	35	200
9	44	45	230
10	42	40	195

- (a) Ovlivňuje vydatnost srážek výskyt plísně? Ovlivňuje vydatnost srážek výnosy? Souvisí spolu výskyt plísně a výnosy?
- (b) Jaký je vliv srážek na výnos bez vlivu plísní?
- (c) Jaký je vliv plísní na výnos bez vlivu srážek?
- (d) Jaký je celkový vliv srážek a plísní na výnos ?
 - [(a) Srážky plísně a srážky výnos -> souvisí spolu, plíseň výnos -> nesouvisí spolu] [použijeme test o nulovosti korelačního koeficientu]
 - [(b) $vynos = 50.152 + 3.496 \cdot srazky$, jeden milimetr srážek zvýší výnos o 3.496 tun,] [koeficient determinace $R^2 = 0.603$, p-hodnota F-testu významnosti modelu = 0.008]
- [(c) $vynos = 86.458 + 2.458 \cdot plisne$, nezamítám ale $H_0: \beta_1 = 0$ tedy plísně výnos neovlivňují] [koeficient determinace $R^2 = 0.387$, p-hodnota F-testu významnosti modelu = 0.055]

 $[\text{ (d) } vynos = 49.316 + 4.898 \cdot srazky - 1.378 \cdot plisne }]$ [jeden milimetr srážek zvýší výnos o 4.898 tun, jedno procento plísní sníží výnos o 1.378 tun.] [koeficient determinace $R^2 = 0.628$, p-hodnota F-testu významnosti modelu = 0.031]