## **GREat Expectations**

Data-Backed Insights into Grad School Admissions

#### Contents

- Problem Statement
- Data
- Case Studies
  - Case Study 1 Carnegie Mellon University
  - Case Study 2 University of Illinois Urbana-Champaign
  - Case Study 3 University of California Los Angeles
- Comparative Analysis
- Next Steps

#### **Problem Statement**

#### The project aims to:

- Study patterns in student profiles applying to graduate schools
- Compare, differentiate and gain insights about admissions
- Infer about definite existing correlations
- Prepare a budding applicant to build his profile in the best way
- Make conclusions about:
  - Admit/Reject status
  - Strength of an application
  - Probability of admission
  - Appropriate universities

#### Data

- Changed our source to "admits.fyi"
- Rate limited for scraping
- Reverse engineered network calls to get college wise data
- Have pipeline setup
- Data has the following fields



# Case Study 1 Carnegie Mellon University

#### 1. Data Statistics

- 1174 applicants, 28 features
- Sparse matrix, lot of missing data

#### Data Processing

- Redundant features removed
  - Topper Grade, TOEFL R/S/L/W, Grade, Grade Scale
- Irrelevant features removed
  - Term, Year, University applied to
- Features coalesced
  - Grade normalized by dividing by upper limit & scaling: (Grade/Grade Scale)
- Number of features retained = 15
- Feature list 'College\_Main\_Form', 'GRE\_AWA', 'GRE\_Q', 'GRE\_Total', 'GRE\_V', 'Normalized Grade', 'Program', 'Publications', 'Status', 'TOEFL', 'Target\_Major', 'Term', 'Undergrad\_Major', 'Work\_Experience'
- Columns with non-numeric values converted to categorical

|       | GRE_AWA     | GRE_Q       | GRE_Total   | GRE_V       | Normalized_Grade | Publications | TOEFL       | Work_Experience | College_Main_Form_Cat |
|-------|-------------|-------------|-------------|-------------|------------------|--------------|-------------|-----------------|-----------------------|
| count | 1174.000000 | 1174.000000 | 1174.000000 | 1174.000000 | 1174.000000      | 1174.000000  | 1174.000000 | 1174.000000     | 1174.000000           |
| mean  | 3.927598    | 165.217206  | 322.086031  | 156.868825  | 0.819658         | 0.248722     | 109.669506  | 10.608177       | 139.411414            |
| std   | 0.392650    | 3.680970    | 6.711718    | 5.254625    | 0.096249         | 0.531508     | 5.600646    | 15.446957       | 80.132798             |
| min   | 2.500000    | 140.000000  | 280.000000  | 134.000000  | 0.520000         | 0.000000     | 82.000000   | 0.000000        | 0.000000              |
|       |             |             |             |             |                  |              |             |                 |                       |





- Admits ratio over all students => 32%
  - On doing feature comparison across admits







- Very high correlation between GRE and TOEFL: proves that TOEFL is just a bar to measure english
- Accept vs Reject
  - o GRE, Normalized Grades, Publications, Work Ex most important











data:

## Admission prediction Modelled a binary classification task on an 80-20 data split

| Classifier Logistic Reg  |                                                                                      | Decision Tree                                                | Random forest                                                    | Gradient<br>Boosting                                                   | SVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Accuracy                 | 0.72                                                                                 | 0.65                                                         | 0.70                                                             | 0.67                                                                   | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Classification<br>Report | precision recall 0 0.66 0.27 1 0.73 0.93                                             | precision recall 0 0.38 0.29 1 0.73 0.81                     | precision recall 0 0.00 0.00 1 0.71 1.00                         | precision recall 0 0.33 0.13 1 0.71 0.89                               | precision recall 0 0.78 0.30 1 0.75 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Confusion<br>Matrix      | 0 - 17 52 -150 -100 -75 -100 -75 -50 -100 -75 -50 -150 -150 -150 -150 -150 -150 -150 | -120<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100 | -150 -120 -120 -50 -60 -100 -100 -50 -50 -50 -50 -50 -50 -50 -50 | 0 - 9 (0 -125 -100 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75 | - 15 54 - 125 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 12 |  |
| Important<br>Features    |                                                                                      | Normalized<br>Grade, Undergrad<br>major                      | Work ex, GRE V,<br>GRE Q                                         | Normalized<br>Grade,Work ex, GRE                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

## Case Study 2 University of Illinois Urbana-Champaign

#### 1. Data Statistics

- 3947 applicants, 28 features
- Sparse matrix, lot of missing data
- 5 features had all data missing

#### 2. Data Processing

- Features were removed based on number of nan value
- Number of features retained = 15
- Feature list 'College\_Main\_Form', 'GRE\_AWA', 'GRE\_Q', 'GRE\_Total', 'GRE\_V', 'Grade', 'Grade\_Scale', 'Program', 'Publications', 'Status', 'TOEFL', 'Target\_Major', 'Term', 'Undergrad\_Major', 'Work Experience', 'Year'
- Rows with remaining nan values were removed
- Columns with non-numeric values converted to categorical
- Grade was normalized by dividing by the upper limit and scaling





#### 3. Inferences - Data size = (1056, 16)

- The scatter matrix revealed correlation between
  - o GRE total and GRE verbal
  - GRE total and GRE quant
  - GRE total, GRE verbal and TOEFL
    - This confirms that TOEFL tests verbal skills over quantitative
  - Undergraduate major and target major:
    - This shows that applicants mostly stick to the same area

• Out of all applicants, across years, across majors, about 23% got accepted



- Accept vs Reject
  - o GRE, TOEFL:

The mean, stdev were similar => GRE/TOEFL does not play a huge role in admission

• Grades:

There is a significant difference in Grades => Grades play a role in admission

Publications/Work Experience:

Similar work experience, publications slightly higher for admitted students

Majority scored above 100 in TOEFL



Classifiers
 The following classifiers were used to predict admit/reject. Training - 80%, testing - 20%

| Classifier               | Logistic Reg                                                                    | Decision Tree                                     | Random forest                             | Gradient<br>Boosting                     | SVM                                              |  |
|--------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------|--|
| Accuracy                 | 0.74                                                                            | 0.844                                             | 0.726                                     | 0.87                                     | 0.75                                             |  |
| Classification<br>Report | precision recall<br>0 0.71 0.09<br>1 0.74 0.99                                  |                                                   | precision recall 0 0.00 0.00 1 0.73 1.00  | precision recall 0 0.78 0.74 1 0.90 0.92 | precision recall 0 1.00 0.10 1 0.75 1.00         |  |
| Confusion<br>Matrix      | - 150<br>- 125<br>- 120<br>- 75<br>- 50<br>- 75<br>- 50<br>- 75<br>- 70<br>- 75 | -125 -100 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 | -150 -150 -150 -150 -150 -150 -150 -150   | -125<br>-100<br>-75<br>-50<br>-25        | -150 -150 -120 -120 -120 -120 -120 -120 -120 -12 |  |
| Important<br>Features    |                                                                                 | Target major,<br>Grade, College                   | Undergrad<br>major/Target<br>major, Grade | Grade, College,<br>GRE/TOEFL             |                                                  |  |

## Case Study 3 University of California Los Angeles

#### 1. Data Statistics

- 1583 applicants, 28 features
- Sparse matrix, lot of missing data
- Some features like Grade had to be handled explicitly because of differences

#### 2. Data Processing

- Redundant features removed
  - Topper Grade, TOEFL R/S/L/W, Grade Scale
- Irrelevant features removed
  - Term, Year, University applied to
- Number of features retained = 15
- Columns with non-numeric values converted to categorical
- Data was made uniform by replacing either with nan values or by removing the row

|       | GRE_Q       | GRE_V       | Normalized_Grade | GRE_Total   | GRE_AWA     | TOEFL       | Publications | Work_Experience | College_Main_Form_Cat | Progra |
|-------|-------------|-------------|------------------|-------------|-------------|-------------|--------------|-----------------|-----------------------|--------|
| count | 1583.000000 | 1583.000000 | 1583.000000      | 1583.000000 | 1583.000000 | 1583.000000 | 1583.000000  | 1583.000000     | 1583.000000           | 1583   |
| mean  | 165.585597  | 156.685407  | 0.836864         | 322.271004  | 3.941883    | 109.145294  | 0.284270     | 8.758054        | 164.527479            | 2      |
| std   | 3.462473    | 5.393570    | 0.100465         | 6.540390    | 0.357910    | 6.339957    | 0.547421     | 12.926524       | 85.709667             | C      |
| min   | 146.000000  | 137.000000  | -0.100000        | 283.000000  | 2.500000    | 7.000000    | 0.000000     | 0.000000        | 0.000000              | C      |
|       |             |             |                  |             |             |             |              |                 |                       |        |

| Status                  | Admit                                      |
|-------------------------|--------------------------------------------|
| Program                 | MS                                         |
| Target Major            | Computer Science                           |
| GRE Q                   | 166                                        |
| GRE V                   | 158                                        |
| Normalized Grade        | 0.938                                      |
| GRE_Total               | 324                                        |
| GRE_AWA                 | 4                                          |
| TOEFL                   | 120                                        |
| College_Main_Form       | Chaitanya Bharathi Institute of Technology |
| Undergrad_Major         | Computer Science                           |
| Publications            | 0                                          |
| Work_Experience         | 2                                          |
| College_Main_Form_Cat   | 38                                         |
| Program_Cat             | 2                                          |
| Status_Cat              | 0                                          |
| Target_Major_Cat        | 9                                          |
| Undergraduate Major Cat | 8                                          |

#### 3. Inferences - Data size = (1583, 15)

- The correlation plot revealed
  - o Grade and GRE scores do not correlate.
  - Publications and GRE scores also do not correlate
  - GRE total, GRE verbal and TOEFL
    - High Correlation between GRE Total, Verbal and TOEFL
  - Work Experience and Exams:
    - This shows that work experience hampers the performance in exams like GRE and TOEFL



- Out of all applicants, across years, across majors, about 27% got accepted
- Accept vs Reject
  - Grade plays a very important role in deciding the admission
  - TOEFL and GRE scores aren't super important., Average works









Classifiers
The following classifiers were used to predict admit/reject. Training - 80%, testing - 20% along with 5 fold cross validation.

| Classifier            | Logistic Reg | Decision Tree               | Random forest                             | Gradient<br>Boosting        | SVM   |
|-----------------------|--------------|-----------------------------|-------------------------------------------|-----------------------------|-------|
| Accuracy              | 72.87        | 76.34                       | 76.97                                     | 75.07                       | 74.13 |
| F1_Score              | 0.63         | 0.75                        | 0.71                                      | 0.74                        | 0.66  |
| RoC - Score           | 0.51         | 0.66                        | 0.58                                      | 0.65                        | 0.53  |
| Important<br>Features |              | Target major,<br>Grade, GRE | Undergrad<br>major,Target<br>major, Grade | Grade, Target,<br>GRE/TOEFL |       |

## Comparative Analysis

- Importance of GRE and TOEFL
  - TOEFL isn't a deciding factor but just a bar.
  - All of the colleges have a specific GRE threshold where the freq is max
- Difficulty levels
  - CMU is relatively harder to get compared to other universities
  - UCLA does not pay attention to Work Ex and Publication comparatively
- Model Performance
  - F1 & ROC score needs to be analysed rather than accuracy
- Important features
  - Grade and GRE score were the most important across all colleges
  - Work Ex matters in most of the colleges but not all

## Next Steps

- Can an admit ever be guaranteed?
  - Study this question on a wider scale by using cumulative data
- Analyse a regression based task
  - Predict chance of admission rather than a binary decision
- Generate model profile for each institute
  - Ideal GRE, TOEFL scores, number of publications, GPA etc

### **Group Members**

#### Group Number - 4

- Vishaal Udandarao (2016119)
- Suryatej Reddy (2016102)
- Surabhi S Nath (2016271)
- Suril Mehta (2015104)



## Thank You