

ESERCIZIO 1 - ENERGIA

Un blocchetto di massa m=200 g viene spinto verso l'alto da una molla. La molla è compressa di x=10 cm rispetto al punto O che identifica la sua posizione di riposo (vedi figura); la costante della molla vale K=2000 N/m. Il tutto avviene su un pianeta ove l'accelerazione di gravità vale g=9.0 m/s². Il blocchetto scivola senza attrito su una guida che procede in verticale fino al punto A distante m da O per poi formare un arco di circonferenza di raggio r (figura). Calcolare:

a) (2 punti) la velocità del blocchetto nel punto O $v_0 = (kx^2/m-2gx)^{1/2}=9.91 \text{ m/s}$

b) (2 punti)) la velocità del blocchetto nel punto A $(v_A)^2 = (v_O)^2 - 2g\overline{OA} = 64 \Rightarrow v_A = 7.89 \text{ m/s}$

c) (2 punti) il tempo impiegato dal blocchetto per percorrere il tratto da O ad A $t_{OA}=(v_O-v_A)/(-g)=0.225$ s

d) (3 punti) il massimo valore del raggio tale per cui il blocchetto non si stacca dalla guida prima di aver raggiunto il punto B

la forza centripeta in B deve essere maggiore della forza di gravità in modo che la forza normale della guida sul blocchetto debba essere maggiore di zero. Tale condizione di traduce in $(v_B)^2/r > g$, ovvero $((v_A)^2-2gr)/r > g \Rightarrow (v_A)^2/r > 3g \Rightarrow r < (v_A)^2/3g \Rightarrow r < 2.30 m$

e) (1 punto): la velocità del blocchetto nell'istante in cui cadendo tocca nuovamente il suolo alla quota di O

Per la conservazione dell'energia tale velocità è uguale a v₀=9.91 m/s

ESERCIZIO 2 - LEGGI DI KIRCHOFF

Nel circuito in figura R_1 = 25 Ohm, R_2 = 48 Ohm, R_3 = 35 Ohm, \mathcal{E}_1 = 9.0 V, \mathcal{E}_2 = 12.0 V.

a) (4 punti) Scrivere un sistema di 3 equazioni in 3 incognite la cui soluzione permetta di determinare le correnti I_1 , I_2 e I_3 che scorrono in R_1 , R_2 e R_3 .

 $I_2=I_1+I_3$ $\mathcal{E}_1=R_1I_1+R_2I_2$ $\mathcal{E}_3=R_3I_3+R_2I_2$ b) (2 punti) Risolvere il sistema per ottenere I_1 , I_2 , I_3 (usare 3 cifre significative) $I_1=0.0455$ A; $I_2=0.164$ A; $I_3=0.118$ A

c) (2 punti) Calcolare la potenza erogata dalla batteria \mathcal{E}_1 P= \mathcal{E}_1 l₁=0.409 W

d) (2 punti) Quanto vale la d.d.p. ai capi della resistenza R_2 ? d.d.p. = R_2I_2 =7,87 V

ESERCIZIO 3 – CAMPO MAGNETICO E FORZA DI LORENTZ

Un elettrone è all'interno di un solenoide che ha 30 spire per cm; la corrente che circola nelle spire vale I= 7 Ampère (il verso è indicato in figura). Al tempo t=0, la velocità dell'elettrone vale v= $3.0\cdot10^3$ m/s ed è diretta perpendicolarmente all'asse del solenoide, come mostrato in figura. Calcolare:

a) (2 punti) Direzione e modulo del campo magnetico B all'interno del solenoide

B= μ_0 nI (ove n=30/0.01=3000 è il numero di spire per metro)=2.64 10⁻²T; verso destra

b) (3 punti) Direzione, verso e intensità della Forza di Lorentz agente sull'elettrone al tempo t=0 F=-ev B= 12.7 10⁻¹⁸ N; perpendicolare al foglio, uscente

c) (3 punti) il raggio dell'orbita dell'elettrone

Si pensi al problema del ciclotrone: mv²/r=evB⇒r=mv/eB=0.647 10⁻⁶ m

d) (2 punti) il periodo T dell'orbita $T=2\pi r/v=1.35$ ns