1. Limits and Continuity

- $\lim(x \to a) f(x) = L$
- $\lim(x \to \infty) 1/x^n = 0$, for n > 0
- $\lim(x \to 0) \sin(x)/x = 1$
- $\lim(x \to 0) (e^x 1)/x = 1$
- L'Hôpital's Rule: If limit is 0/0 or ∞/∞, then lim f(x)/g(x) = lim f'(x)/g'(x)

2. Derivatives

- $d/dx(x^n) = n \cdot x^{n-1}$
- $d/dx (e^x) = e^x$
- d/dx (ln x) = 1/x
- $d/dx (\sin x) = \cos x$
- $d/dx (\cos x) = -\sin x$
- $d/dx (tan x) = sec^2x$
- $d/dx (arcsin x) = 1/\sqrt{(1 x^2)}$
- $d/dx (arctan x) = 1/(1 + x^2)$

Rules

• Product Rule: (uv)' = u'v + uv'

- Quotient Rule: (u/v)' = (u'v uv') / v²
- Chain Rule: $d/dx [f(g(x))] = f'(g(x)) \cdot g'(x)$

3. Integration

- $\int x^n dx = x^{n+1} / (n + 1) + C$, for $n \neq -1$
- $\int 1/x \, dx = \ln|x| + C$
- $\int e^x dx = e^x + C$
- $\int \sin x \, dx = -\cos x + C$
- $\int \cos x \, dx = \sin x + C$
- $\int \sec^2 x \, dx = \tan x + C$
- $\int 1/(1 + x^2) dx = \arctan x + C$
- $\int 1/\sqrt{1-x^2} dx = \arcsin x + C$

Techniques

- Substitution: $\int f(g(x))g'(x) dx = \int f(u) du$
- Integration by Parts: ∫u dv = uv ∫v du
- Partial Fractions: Break rational expressions before integrating
- Trig Substitution: Use trig identities for expressions with square roots

4. Definite Integrals and Applications

- $\int_{a^b} f(x) dx$: Area under the curve
- Average value of f(x): $(1/(b-a)) \int_{a}^{b} f(x) dx$
- Net change: $\int_{a^b} f'(x) dx = f(b) f(a)$
- Area between curves: $\int_{a^b} [f(x) g(x)] dx$
- Volume by Disk Method: $V = \pi \int_{a^b} [f(x)]^2 dx$
- Volume by Shell Method: $V = 2\pi \int_{a^b} x \cdot f(x) dx$

5. Series and Sequences

- Geometric Series: ∑ arⁿ = a / (1 r), for |r| < 1
- Taylor Series:

$$f(x) = \sum [f^n(a) / n!] \cdot (x - a)^n$$

• Maclaurin Series (Taylor series at a = 0):

$$e^{x} = \sum x^{n} / n!$$

 $\sin x = \sum (-1)^{n} x^{2n+1} / (2n + 1)!$
 $\cos x = \sum (-1)^{n} x^{2n} / (2n)!$
 $\ln(1 + x) = \sum (-1)^{n+1} x^{n} / n$

6. Multivariable Calculus

- Partial Derivatives: ∂f/∂x, ∂f/∂y
- Gradient: $\nabla f = \langle \partial f / \partial x, \partial f / \partial y, ... \rangle$
- Double Integrals:
 ∫∫ f(x, y) dA

- Jacobian: Used for change of variables in multiple integrals
- Lagrange Multipliers: $\nabla f = \lambda \nabla g$ (for constrained optimization)

7. Differential Equations

- Separable Equations: dy/dx = g(x)·h(y)
 ⇒ ∫ (1/h(y)) dy = ∫ g(x) dx
- First-Order Linear: dy/dx + P(x)y = Q(x) $\Rightarrow y = e^{-\int P(x) dx} \cdot [\int Q(x) \cdot e^{-\int P(x) dx} dx + C]$
- Exponential Growth/Decay: y = y₀·e^(kt)
- Newton's Law of Cooling: dT/dt = -k(T T env)

8. Constants and Identities

- $e \approx 2.71828$
- $\pi \approx 3.14159$
- In(e) = 1
- ln(1) = 0
- d/dx (ln|x|) = 1/x
- d/dx (a^x) = a^x ln(a)