

Série n°3

Gestion de la mémoire centrale

S. BOUKHEDOUMA

USTHB – FEI – département d'Informatique Laboratoire des Systèmes Informatiques -LSI

sboukhedouma@usthb.dz

Exercice 1

A). En appliquant une stratégie de placement *First-Fit,* représentez l'évolution de la mémoire

centrale, suite à chacun des événements suivants :

- 1) arrivée du programme **G** de taille égale à 20 Ko;
- 2) départ du programme B;
- 3) arrivée du programme H de taille égale à 15 Ko;
- 4) départ du programme E;
- 5) arrivée du programme I de taille égale à 40 Ko.
- **B).** Même question, mais cette fois-ci, on applique une stratégie de placement **Best-Fit** et **Worst-Fit**.

L'état initial d'occupation de la mémoire est donné dans la figure suivante:

Etat initial de la mémoire

- 1	A	10K	В	30K	С	5K	D (30K)	10K	Е	15K	F (20K)	10 K
	(10K)		(20K)		(10K)				(5K)			

A, B, C, D, E, F sont déjà chargés en mémoire

Les tailles des partitions libres sont indiquées en couleur orange

A	10K	В	30K	С	5K	D (30K)	10K	E	15K	F (20K)	10 K
(10K)		(20K)		(10K)				(5K)			

Stratégie « First-Fit » : choisir la première partition qui convient pour charger un programme

	A	10K	В	30K		l .	D (30K)	10K	E	15K	F (20K)	10 K
((10K)		(20K)		(10K)				(5K)			

arrivée de G (20K) → chargement de G

A (10K	10K	B (20K)	G (20K)	10K	C (10K)	l .	D (30K)	10K	E (5K)	15K	F (20K)	10 K	
-----------	-----	------------	---------	-----	------------	-----	---------	-----	-----------	-----	---------	------	--

Fin de B → libération de 20K → création d'une partition libre de 30K

A		G (20K)	10K		l .	D (30K)	10K		15K	F (20K)	10 K
(10K)	30K			(10K)				(5K)			

arrivée de H (15K) → chargement de H

		H (15K)	15K	G (20K)	10K	C (10K)	5K	D (30K)	10K	E (5K)	15K	F (20K)	10 K
-	(1014)	(1514)				(IOIX)				(OIC)			

Fin de E → libération de 5K → création d'une partition libre de 30K

A (10K)	H (15K)	15K	G (20K)	10K	C (10K)	I	D (30K)	30K	F (20K)	10 K
	` ′									

arrivée de I (40 K) -> Pas de partition de taille suffisante pour charger I

Problème de fragmentation externe

Solution : compactage de la mémoire

A	H (15K)	G (20K)	С	D (30K)	F (20K)	70K
(10K)			(10K)			

Chargement de I (40K) → partition libre de 30K

A (10K)	H (15K)	G (20K)	C (10K)	D (30K)	F (20K)	I (40K)	30 K
------------	---------	---------	------------	---------	---------	---------	---------

- 1	A	10K	В	30K		l .	D (30K)	10K		15K	F (20K)	10 K
	(10K)		(20K)		(10K)				(5K)			

Stratégie « Best-Fit » : choisir la plus petite partition qui convient pour charger un programme → laisser le plus petit résidu possible dans une partition

	A	10K	В	30K		l .	D (30K)	10K	E	15K	F (20K)	10 K
((10K)		(20K)		(10K)				(5K)			

arrivée de G (20K) → chargement de G

A (10K	10K	B (20K)	G (20K)	10K	C (10K)	l .	D (30K)	10K	E (5K)	15K	F (20K)	10 K	
-----------	-----	------------	---------	-----	------------	-----	---------	-----	-----------	-----	---------	------	--

Fin de B → libération de 20K → création d'une partition libre de 30K

A		G (20K)	10K		l .	D (30K)	10K		15K	F (20K)	10 K
(10K)	30K			(10K)				(5K)			

arrivée de H (15K) → chargement de H dans la plus petite partition qui convient

A		G (20K)	10K		5K	D (30K)	10K	E		F (20K)	10 K
(10K)	30K			(10K)				(5K)	(15 K)		

Fin de E → libération de 5K → création d'une partition libre de 15K

A (1)	0K)	30K	G (20K)	10K	C (10K)	ı	D (30K)	15K		F (20K)	10 K
`	- 1				, ,				(15 K)		

arrivée de I (40 K) -> Pas de partition de taille suffisante pour charger I

Comme la stratégie « First Fit » : Problème de fragmentation externe

Solution : compactage de la mémoire

- 1	A	VVVA /	С	D (30K)	Н	F (20K)	70K
	(10K)		(10K)		(15 K)		

Chargement de I (40K) → partition libre de 30K

A	G (20K)		D (30K)	Н	F (20K)	I (40K)	30K
(10K)		(10K)		(15 K)			

A	10K	В	30K	С	5K	D (30K)	10K	Е	15K	F (20K)	10 K
(10K)		(20K)		(10K)				(5K)			

Stratégie « Worst-Fit » : choisir la plus grande partition qui convient pour charger un programme → laisser le plus grand résidu possible dans une partition

A	10K	В	30K		D (30K)	10K		15K	F (20K)	10 K
(10K)		(20K)		(10K)			(5K)			

arrivée de G (20K) → chargement de G

A (10K)	10K	B (20K)	G (20K)	10K	C (10K)		D (30K)	10K	E (5K)		F (20K)	10 K	
------------	-----	------------	---------	-----	------------	--	---------	-----	-----------	--	---------	------	--

Fin de B → libération de 20K → création d'une partition libre de 30K

	A		G (20K)	10K		5K	D (30K)	10K		15K	F (20K)	10 K
1	(10K)	30K			(10K)				(5K)			

arrivée de H (15K) → chargement de H

A (10K	H (15K)	15K	G (20K)	10K	C (10K)	5K	D (30K)	10K	E (5K)	l	F (20K)	10 K
(1010	(1514)				(1014)				(514)			

Fin de E → libération de 5K → création d'une partition libre de 30K

A (10K)	H (15K)	15K	G (20K)	10K	C (10K)	l	D (30K)	30K	F (20K)	10 K
------------	------------	-----	---------	-----	------------	---	---------	-----	---------	------

arrivée de I (40 K) -> Pas de partition de taille suffisante pour charger I

Problème de fragmentation externe

Solution : compactage de la mémoire

A	H (15K)	G (20K)	C	D (30K)	F (20K)	70K
(10K)			(10K)			

Chargement de I (40K) → partition libre de 30K

A (10K)	H (15K)	G (20K)	C (10K)	D (30K)	F (20K)	I (40K)	30 K
------------	---------	---------	------------	---------	---------	---------	---------

Commentaires

- -Dans ce cas précis, la stratégie « Worst-Fit » se comporte exactement comme la stratégie « First-Fit »
- -Aucune des trois stratégies n'est meilleure que l'autre car elles conduisent à un problème de fragmentation externe
- -Nécessité d'une **opération de compactage** mémoire qui s'avère très coûteuse car il s'agit de reloger les programmes et un re-calcul d'adresses

Exercice 2

Considérons un système d'allocation mémoire à partitions variables. Soient des partitions mémoire libres de 50k, 30k, 200k, 16k, et 30k (dans cet ordre).

- 1. Comment chacun des algorithmes « First-fit », « Best-fit », et « Worst-fit » placerait-il des processus de tailles respectives : 20k, 30k, 10k, 100k, et 60k ?
- 2. Quel algorithme effectue l'utilisation la plus efficace de la mémoire ?

Stratégie First-Fit : choisir la première partition qui convient pour charger un programme

Etat initial

50K	30K	200K	16K	30K
	,			

Chargement de P1

P1	30K	30K	200K	16K	30K
(20K)					

Chargement de P2

P1	P2 (30K)	30K	200K	16K	30K
(20K)	(30K)				

Chargement de P3

P1 (20K)	P2 (30K)	P3 10K	20K	200K	16K	30K
()						

Chargement de P4

P1	P2	P3	20K	P4 (100K)	100K	16K	30K
(20K)	(30K)	10K					

Chargement de P5

P1	P2	P3	20K	P4 (100K)	P5	40K	16K	30K
(20K)	(30K)	10K			(60K)			

Stratégie « Best-Fit »: choisir la plus petite partition qui convient pour charger un programme → laisser le plus petit résidu possible dans une partition

Etat initial

50K 30K 200K 16K 301

Etat initial

Chargement de P1

50K	P1	10K	200K	16K	30K
	20K				

Chargement de P2

50K	P1	10K	200K	16K	P2 (30K)
	20K			l	

Chargement de P3

50K		200K	161	<u> </u>	P2 (30K)
-----	--	------	-----	----------	----------

Chargement de P4

50K	P1 20K	P3 (10K)	P4 (100K)	100K		16K		P2 (30K)	
-----	-----------	-------------	-----------	------	--	-----	--	-------------	--

Chargement de P5

50K		P1 20K	P3 (10K)		P4 (100K)	P5 (60K)	40K		16K		P2 (30K)	
-----	--	-----------	-------------	--	-----------	----------	-----	--	-----	--	-------------	--

Stratégie « Worst-Fit »: choisir la plus grande partition qui convient pour charger un programme → laisser le plus grand résidu possible dans une partition

Etat initial

Etat initial

0K 30K	200K	16K	30K
--------	------	-----	-----

Chargement de P1

50K	30K	P1 (20K)	180K		16K		30K	
-----	-----	-------------	------	--	-----	--	-----	--

Chargement de P2

50K		30K		P1 (20K)	P2 (30K)	150K		16K		30K	
-----	--	-----	--	-------------	-------------	------	--	-----	--	-----	--

Chargement de P3

50K	30K	P1 (20K	P2 (30K)	P3 10K	140K		16K		30K
-----	-----	------------	-------------	-----------	------	--	-----	--	-----

Chargement de P4

50K	30K	P1 (20K)	P2 P3 10K	P4 (100K)	40K		16K		30K	
-----	-----	-------------	-----------	-----------	-----	--	-----	--	-----	--

Chargement de P5 impossible : Pb de fragmentation externe

Commentaires

- -Dans ce cas précis, la stratégie « Worst-Fit » n'est pas bonne car elle génère un problème de fragmentation externe.
- -La stratégie « Best Fit » génère moins de résidus dans les partitions mémoires, donc elle semble être meilleure que la stratégie « First Fit ».

Etat final avec « Best Fit »

50K	P1 20K	P3 (10K)	P4 (100K)	P5 (60K)	40K		16K		P2 (30K)	
-----	-----------	-------------	-----------	----------	-----	--	-----	--	-------------	--

Etat final avec « First Fit »

		P1 (20K)	P2 (30K)		P3 10K	20K		P4 (100K)	P5 (60K)	40K		16K		30K
--	--	-------------	-------------	--	-----------	-----	--	-----------	-------------	-----	--	-----	--	-----

Exercice 3

Considérons la table de segments suivante :

Segment	Base	Limite
0	1219	600
1	3300	14
2	90	100
3	2327	580
4	1952	96

Calculer les adresses physiques associées aux adresses logiques suivantes :

- **a.** 0, 430 **b.** 1, 15 **c.** 2, 50 **d.** 3, 400 **e.** 4, 112

Dans une mémoire segmentée, l'adresse virtuelle (logique) est donnée par le couple (s, d)

s: numéro du segment

d: déplacement dans le segment

L'@ physique = @début du segment + déplacement dans le segment

@début du segment (base) est donnée dans la table des segments

La valeur de d (déplacement) doit être inférieure ou égale à la limite du segment

Exo3-Série3- SYS02- L3-AcadB

Série n°2 – Exercice 3

a. 0, 430

- **b.** 1, 15 **c.** 2, 50 **d.** 3, 400 **e.** 4, 112

- @logique (0, 430)
- @ physique = base (segment 0) + déplacement = 1219 + 430 =**1649**

- **@logique (1, 15)**
- @ physique = base (segment 1) + déplacement
- @ logique erronée car limite (segment 1) = 14 < déplacement =15

- a. 0, 430 **b.** 1, 15 **c.** 2, 50 **d.** 3, 400 **e.** 4, 112

@logique (2, 50)

- @ physique = base (segment 2) + déplacement = 90 + 50 = 140
- **@logique (3, 400)**
- @ physique = base (segment 3) + déplacement = 2327 + 400 = 2727
- **@logique (4, 112)**
- @ physique = base (segment 4) + déplacement
- @ logique erronée car limite (segment 4) = 96 < déplacement =112

Exercice 4

Dans un système paginé, les pages font 256 mots mémoire et on autorise chaque processus à utiliser au plus 4 cadres de la mémoire centrale. On considère la table des pages suivante du processus P1 (ici, les numéros de cadres (frames) sont donnés en binaire):

Page	0	1	2	3	4	5	6	7
Cadre	011	001	000	010	100	111	101	110
Présence	oui	non	oui	non	non	non	oui	non

- 1) Quelle est la taille de l'espace d'adressage du processus P1?
- 2) De combien de mémoire vive dispose ce système ?

Exercice 4

Page	0	1	2	3	4	5	6	7
Cadre	011	001	000	010	100	111	101	110
Présence	oui	non	oui	non	non	non	oui	non

3) Calculez les adresses réelles correspondant aux adresses virtuelles suivantes (vous signalerez

Eventuellement, les erreurs d'adressage) :

240, 546, 1578, 2072

- 4) Que se passe-t-il si P1 génère l'adresse virtuelle 770 ?
- 5) On considère l'adresse virtuelle suivante: 0000 0000 0000 0111. Sachant que les 4 bits de poids fort désigne le numéro de page et que 12 bits suivants représentent le déplacement dans la page, donnez l'adresse physique exprimée en binaire) correspondant à cette adresse.