Private Key Encryption

Information-Theoretic Security: Eve doesn't have enough information to crack the message, even with unlimited computation power

Computation Security: Eve is computationally limited (e.g. can't factor quickly)

Kerkhoff's Principle: We assume that

- Eve knows the encryption scheme
- Eve knows the alphabet and language
- Eve doesn't know the key
- Key is chosen randomly

Cracking General Sub Cipher

Let σ be a permutation. We look at the frequency vectors of n-grams (length 26^n).

Then over some redos and lots of iterations (swapping $j, k \in \{0, \dots, 25\}$), we find the best candidate for σ_r

Cracking Vigenere Cipher

First we find the length of the key L. We assume that a word that appears frequently will likely appear in the same position $i \pmod{L}$

• For example is "aiq" appears in the slots (57, 58, 59), (87, 88, 89), (102, 103, 104), (162, 163, 164), we can deduce that the length of the key is a divisor of the gaps between these sequences, $L = \{1, 3, 5, 15\}$

This will create a stream of every Lth character. We can do shift analysis on these streams

Linear Cong Gen

Use a recurrence $x_{i+1} = AX_i + B \pmod{M}$ to find random-looking bits. Need $\gcd(A, M) = 1$

For this example we have $x_0 = 2134, A = 4381, B = 7364, M = 8397$

$$x_{n+1} = 4381x_n + 7364 \pmod{8397}$$

We decode $x_0 = 2134$ into (21, 34) and view letters as 2 digit numbers (mod 20) and do column addition (mod 10)

The first few values of x_n are

- $x_0 = 2134$
- $x_1 = 2160$
- $x_2 = 6905$
- $x_3 = 3778$

Text-Letter	S	E	С	R	E	Т
Text-Digits	19	05	03	18	05	20
Key-Digits	21	60	69	05	37	78
Ciphertext	30	65	62	13	32	98

To decode

Bob Wants	$m_{1,1}m_{1,2}$	$m_{2,1}m_{2,2}$	$m_{3,1}m_{3,2}$
Bob Knows Key	21	60	62
Bob Sees	30	65	62

Thus Bob can deduce $m_{i,j}$

- $m_{1,1} + 2 \equiv 3 \implies m_{1,1} \equiv 3 2 \equiv 1$
- $m_{1,2} + 1 \equiv 0 \implies m_{1,2} \equiv -1 \equiv 9$
- Thus the first letter is 19 = S

Cracking LCG

Assume that Eve knows that A, B, M are all 4 digits and that the document contains the word "Pakistan". So Eve looks at each 8 sequence of letters and tests it. Suppose Eve tests the sequence (24, 66, 87, 47, 17, 45, 26, 96)

Text-Letter	Р	A	K	I	S	Т	A	N
Text-Digits	16	01	11	09	19	20	01	14
Key-Digits	$k_{11}k_{12}$	$k_{21}k_{22}$	$k_{31}k_{32}$	$k_{41}k_{42}$	$k_{51}k_{52}$	$k_{61}k_{62}$	$k_{71}k_{72}$	$k_{81}k_{82}$
Ciphertext	24	66	87	47	17	45	26	96

Eve guesses that the key digits are (18, 65, 76, 48, 08, 25, 25, 82) and is able to create the formulas

$$7648 = 1865A + B \pmod{M}$$

 $825 \equiv 7648A + B \pmod{M}$
 $2582 \equiv 825A + B \pmod{M}$

Using some arithmetic, we can find the values of A, B, M

• Note $7649 \le M \le 9999$ since M is 4 digits long and gcd(A, M) = 1

After finding A, B, M, Eve can recursively solve for x_0

Finally, after finding x_0, A, B, M still needs to recover the entire plaintext and test IS-ENGLISH. If it fails, then Eve needs to test the next sequence

Matrix Cipher

```
Brute force takes O(26^{n^2}) and row-by-row takes O(n26^n)

Let T=t_1t_2\dots t_N where t_i=t_i^1\dots t_i^8

Note that Mt_i=m_i\implies R_jt_i=m_i^j

for i = 1 to 8

for r in Z^{8}_{26}

T' = (r * t_1, ... r *t_N)

if IS-ENGLISH(T')

r_i = r

goto next i
```

For an $n \times n$ matrix, each PT-CT pair gives n equations, resulting in n^2 variables and n^2 equations. Thus we need n pairs

Randomized Shift Cipher

Determinstic ciphers map message to the same ciphertext

Randomized shift sends $((r_1; m_1 + f(r_1)), \ldots)$ and decodes $(c_1 - f(r_1), \ldots)$

Math for Public Key Encryption

Exponentiation

Given a, n, p, calculate $a^n \pmod{p}$ by converting the exponent into binary and using repeated squaring. Then we have

$$a^n = a^{n_1} * a^{n_2} * \cdots$$
 where n_1, n_2, \ldots are powers of 2

Example: $17^{265} \pmod{101}$

$$265 = 2^8 + 2^3 + 2^0 \implies 17^{265} = 17^{2^8} * 17^{2^3} * 17^{2^0} \equiv 84 * 36 * 17 \equiv 100 \pmod{101}$$

Discrete Log

Given g, y, p output x such that $g^x \equiv a \pmod{p}$. Represented as $DL_{p,g}(y) = x$

This problem is suspected to be hard for $g \in \{p/3, \dots, 2p/3\}$. Although there are some tricks

- If g is a generator of Z_p^* then $g^{(p-1)/2} \equiv p \equiv -1$
- Example: $3^x \equiv 92 \pmod{101} \implies 92 \equiv 101 9 \equiv (-1)3^2 \equiv 3^{50} * 3^2 \equiv 3^{52}$

Generator for \mathbb{Z}_p^*

Theorem: if g is NOT a generator, then exists x such that

- x | p 1
- $x \neq p 1$
- $g^x \equiv 1 \pmod{p}$

We also want **safe primes** such that p-1=2q is prime

Let F be the set of factors, except p-1, of p-1. Then $F=\{2,q\}$

Thus we loop through $g \in \{p/3, \dots, 2p/3\}$ and compute g^x for each $x \in F$. If any = 1 then g is NOT a generator

Primality Testing

Fermat's Little Theorem: $a^p \equiv a \pmod{p}$

Thus we can take a random subset of $R = \{2, \dots, p-1\}$ and for each $a \in R$ \$, if $a^p \not\equiv a$ then p is NOT a prime

Generating Primes

Return an L-bit prime

Idea is to pick a random $y \in \{0,1\}^{L-1}$ and let x = 1y, then test if x is a safe prime

Diffie-Hellman

Given a security param L

- 1. Alice finds (p, g) such that len(p) = L
- 2. Alice sends (p,q) to Bob (Eve sees this)
- 3. Alice picks random a and sends $g^a \pmod{p}$ to Bob (Eve sees this)
- 4. Bob picks random b and sends $g^b \pmod{p}$ to Alice (Eve see this)
- 5. Alice computes $(g^b)^a = g^{ab}$
- 6. Bob computes $(g^a)^b = g^{ab}$

 q^{ab} is the **shared secret** and it believed that it is hard for Eve to find q^{ab}

El Gamal

- 1. Alice and Bob do Diffie Hellman
- 2. Alice and Bob share $s = g^{ab} \pmod{p}$
- 3. Alice and Bob compute $s^{-1} \pmod{p}$
- 4. $\operatorname{Enc}(m) = c = ms \pmod{p}$
- 5. $Dec(c) = cs^1 = mss^{-1} = m \pmod{p}$

RSA

Fermat-Euler Theorem: $a^m \equiv a^{m \pmod{\phi(n)}} \pmod{n}$ for a rel prime to n

Example: $14^{999,999} \pmod{393}$

$$\phi(393) = \phi(3*131) = 2*130 = 260$$

Then $14^{999,999} = 14^{199,999 \pmod{260}} \pmod{393} \equiv 14^{39} \pmod{393}$

Algorithm:

- 1. Alice picks 2 primes p, q of length L and computes N = pq
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$
- 3. Alice picks $e \in \{R/3, \ldots, 2R/3\}$ that is relatively prime to R
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$
- 5. Alice broadcasts (N, e) so that both Bob and Eve can see it
- 6. Bob wants to send $m \in \{1, \dots, N-1\}$ and broadcasts $m^e \pmod{N}$
- 7. Alice receives $m^e \pmod{N}$ and computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \pmod{R}} \equiv m \pmod{N}$$

RSA issues

NY, NY problem solved by having Bob concatenate a random r and sending $(rm)^e$

- Alice knows that r takes up the first L_1 bits and m takes up the last L_2 bits
- RSA is malleable, so if Eve sees a message, she can figure out a way to send a similar one

Pollard-Rho

Idea is to find a factor p of N. We find x, y such that $x \equiv y \pmod{p} \implies \gcd(x - y, N)$ is a nontrivial factor since p divides both

Let $x_{i+1} = f(x) = x_i^2 + c$. Then for each x_i we check if $gcd(x_i - x_j, N) \neq 1$ for j < i

Pollard p-1

Idea is that $p \mid n \implies \gcd(2^{p-1} - 1 \pmod{n}, n) \neq 1$ (Fermat's Little Theorem)

- Since p is unknown, we take $2^{k(p-1)} 1 \pmod{n}$ for any k
- Idea is that we raise 2 to a power and hope it has p-1 as a divisor

TODO GO OVER THIS