Eigenvalues and Positivity of a Matrix

Definition. A matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite (semi-definite) it $x^T A x > 0 \ (\geq 0)$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

Let $A \in \mathbb{R}^{n \times n}$ be any matrix. Please show:

- 1. If A is positive definite (semi-definite), then $\lambda > 0$ (≥ 0) for all eigenvalues $\lambda \in \sigma(A)$. (*Hint*: Rayleigh quotient.)
- 2. The reverse is not true: Find an example of a matrix, which has positive eigenvalues, but is *not* positive definite. (*Hint:* Consider, e.g., a triangular 2 × 2 matrix.)
- 3. The reverse is true for symmetric matrices: Let A be *symmetric* and $\lambda > 0$ (≥ 0) for all eigenvalues $\lambda \in \sigma(A)$, then A is positive definite (semi-definite). (*Hint:* Eigendecomposition.)
- 4. Let A be *symmetric*, then A is invertible if and only if $\lambda \neq 0$ for all eigenvalues $\lambda \in \sigma(A)$. (*Hint*: Eigendecomposition.)

Solution:

1. Let A be positive definite (semi-definite) and let (λ, v) be an eigenpair of A. Then by using the Rayleigh quotient we find

$$\lambda = \frac{v^\top A v}{v^\top v} = \frac{v^\top A v}{\|v\|_2^2} \xrightarrow[>0 \text{ since } v \neq 0]{} > 0 \ \ (\geq 0).$$

2. Take for example

$$A = \begin{pmatrix} 1 & -4 \\ 0 & 2 \end{pmatrix}$$

which has positive eigenvalues $\sigma(A) = \{1,2\}$, but for $x = (1,1)^{\top}$ we have

$$x^{\top}Ax = -3 + 2 = -1 < 0.$$

3. For symmetric $A \in \mathbb{R}^{n \times n}$ we find an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \sigma(A)$, so that

$$A = Q\Lambda Q^T$$
 (eigendecomposition).

Since Q is orthogonal, any vector $x \in \mathbb{R}^n$ can be written as $x = Ix = QQ^\top x = Q\mu$, with coordinates $\mu := Q^\top x$ where $\mu \neq 0$ for $x \neq 0$. Therefore

$$x^{\top}Ax = \mu^{\top}Q^{\top}Q\Lambda Q^{\top}Q\mu = \mu^{\top}\Lambda\mu = \sum_{i=1}^{n}\mu_i^2\lambda_i \ge 0.$$

We have ">" if $x \neq 0$.

4. For symmetric $A \in \mathbb{R}^{n \times n}$ we find an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \sigma(A)$, so that

$$A = Q\Lambda Q^T$$
 (eigendecomposition).

Therefore:

$$A \text{ invertible} \quad \overset{(*)}{\Leftrightarrow} \quad \Lambda \text{ invertible} \quad \overset{(**)}{\Leftrightarrow} \quad \lambda \neq 0 \quad \forall \lambda \in \sigma(A).$$

- (*) product of matrices is invertible if all factors are invertible and orthogonal matrices are invertible with inverse $O^T = O^{-1}$
- (**) diagonal matrices are invertible, if and only if diagonal elements are nonzero

Example: A symmetric and positive definite (spd) \Rightarrow A invertible.