

In the Specification

Please amend the specification as follows:

Please amend paragraph [0040] as follows:

[0040] This formula gives the transmission T of the device provided with a metallic guide, and is as follows:

$$\left[\left[T = e^{-rs} z \frac{a \sin^2 \alpha}{4A} \right] \right]$$

$$T = e^{-\rho \sigma z} \frac{\pi a \sin^2 \alpha}{4A}$$

In this formula:

- A is the metallic guide section (in m²),
- a is the section (in m²) of the optical fibre that is coupled to the scatterer and in which the laser beam is to be centred,
- α is the numerical aperture angle of the fibre,
- z is the guide length (in m),
- ρ is the density of particles that scatter light (number per m³), and
- σ is the scattering cross section (in m²).

Please amend paragraph [0067] as follows:

[0067] In the case of a straight propagation, the variation dL of luminance L (in W/m²/sr) when crossing a thickness dz of an elementary volume is such that:

$$\left[\left[\frac{dL}{dz} = -(a + b)L \right] \right]$$

$$\frac{dL}{dz} = -(\alpha + \beta)L$$

where α is the absorption coefficient (in m⁻¹) and β the scattering coefficient (in m⁻¹).

Please amend paragraph [0072] as follows:

[0072] The total luminance I in the direction \vec{s} at point r is dissociated into two terms corresponding to the reduced incident luminance I_{ri} and the scattered luminance I_d . The following two equations are obtained:

$$\left[\left[\frac{dI_{ri}}{ds}(r, \vec{s}) = -\rho\sigma_t I_{ri}(r, \vec{s}) \right] \right] \quad \frac{dI_{ri}}{ds}(r, \vec{s}) = -\rho\sigma_t I_{ri}(r, \vec{s})$$

$$\frac{\rho\sigma_t}{4\pi} \int_{4\pi} \rho(\vec{s}, \vec{s}') I_{ri}(r, \vec{s}') d\omega' \frac{dI_d}{ds}(r, \vec{s}) = -\rho\sigma_t I_d(r, \vec{s}) = \frac{\rho\sigma_t}{4\pi} \int_{4\pi} \rho(\vec{s}, \vec{s}') I_d(r, \vec{s}') d\omega' + \epsilon(r, \vec{s}) + \epsilon_{ri}(r, \vec{s})$$

$$\text{where } \left[\left[\epsilon_{ri}(r, \vec{s}) = \frac{\rho\sigma_t}{4\pi} \int_{4\pi} \rho(\vec{s}, \vec{s}') I_{ri}(r, \vec{s}') d\omega' \right] \right] \quad \epsilon_{ri}(r, \vec{s}) = \frac{\rho\sigma_t}{4\pi} \int_{4\pi} \rho(\vec{s}, \vec{s}') I_{ri}(r, \vec{s}') d\omega'$$

Please amend paragraph [0075] as follows:

[0075] In these equations,

$$[[h = 2\rho\sigma_{tr}/3 \text{ and } K_d = 3\rho\sigma_{tr}\rho\sigma_a]] \quad h = 2\rho\sigma_{tr}/3 \text{ and } K_d = 3\rho\sigma_{tr}\rho\sigma_a$$

where $\sigma_{tr} = \sigma_a + \sigma_s(1-\mu)$ and μ is the cosine of the average scattering angle.

Please replace paragraph [0076] with the following amended paragraph:

The scattered illumination at a point r is then expressed as follows:

$$U_d(r) = \int_v G(r, r') Q(r') dV' + \int_s \frac{G(r, r') Q_1(r')}{2\pi h} dS'$$

where $Q(\vec{r}) = Q(r, \theta, z) =$

$$\left[\left[3\rho\sigma_{tr} \frac{P_0}{\pi W^2} \exp(-\rho\sigma_t z) \exp\left(\frac{-2r^2}{W^2}\right), \right] \right] \underline{3\rho\sigma_{tr} \frac{P_0}{\pi W^2} \exp(-\rho\sigma_t z) \exp\left(\frac{-2r^2}{W^2}\right)}, \text{ where}$$

$Q_1(\vec{r})$ is zero for isotropic scattering, dV is the volume of the sample, P_0 is the incident power of the laser beam and W is the radius at $1/e^2$ of the laser beam.

Please replace paragraph [0083] with the following amended paragraph:

[[0083]] The order of magnitude of this value can be found by simple considerations. The reduced incident illumination decreases in the following form:

$$\left[\left[U_{ri}(z) = K1x \frac{\exp(-\rho\sigma_t z)}{\theta^2 z^2} \right] \right] \underline{U_{ri}(z) = K1x \frac{\exp(-\rho\sigma_t z)}{\theta^2 z^2}}$$

where $K1$ is a proportionality constant and θ is the aperture angle at $1/e^2$ of the laser beam in the material, while we can write the following for the scattered illumination, due to the conservation of energy, and assuming that this illumination is constant over a sphere of radius z :

$$[[4\pi z^2 U_d(z) = K2x(1 - \exp(-\rho\sigma_t z))]]$$

$$4\pi z^2 U_d(z) = K2x(1 - \exp(-\rho\sigma_t z))$$

where $K2$ is a proportionality constant.