

Á	ח) 		
<i>.</i> .	v,		 	

REPORT NO T 5/87

THE BODY COMPOSITION PROJECT: A SUMMARY REPORT AND DESCRIPTIVE DATA

U S ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE Natick, Massachusetts

DECEMBER 1986

Approved for public release, distribution unlimited

MEDICAL RESEARCH & DEVELOPMENT COMMAND

3 2 010

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Do not return to the originator.

T 5/87 The Body Composition Project: A Summary Report and Descriptive Data Author(*) P.I. Fitzgerald, J.A. Vogel, W.L. Daniels, J.E. Dziados, M.A. Teves, R.P. Mello and P. J. Reich Performing Organization Name and Address	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
The Body Composition Project: A Summary Report and Descriptive Data 7. Author(*) P.1. Fitzgerald, J.A. Vogel, W.L. Daniels, J.E. Dziados, M.A. Teves, R.P. Mello and P. J. Reich 8. Performing Organization Name and Address	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
P.T. Fitzgerald, J.A. Vogel, W.L. Daniels, J.E. Dziados, M.A. Teves, R.P. Mello and P. J. Reich PERFORMING ORGANIZATION NAME AND ADDRESS	8. CONTRACT OR GRANT NUMBER(*)
P.I. Fitzgerald, J.A. Vogel, W.L. Daniels, J.E. Dziados, M.A. Teves, R.P. Mello and P. J. Reich Performing ORGANIZATION NAME AND ADDRESS	
PERFORMING ORGANIZATION NAME AND ADDRESS	MA DESCRIPT FUENT SERVEST TACK
US Army Research Institute of Environmental Medic Natick, MA 01760-5007	ADEA A WORK HINT HINGERS
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Same as 9. above.	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15 SECURITY CLASS. (of this report)
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY HOTES

13. KEY WORDS (Continue on reverse side if necessary and identify by block number)

·Body fat; lean body mass; body density; muscle mass; physical performance; military appearance; physical fitness; aerobic power; lifting capacity; somatotype.

20. ABSTRACT (Cantinue on reverse side if necessary and identify by block number)

Weight control programs in the Armed Forces have received much attention due to recent interest in the development of military physical fitness programs., Prior to April, 1983, the US Army weight control program, regulated by AR 600=9, 0 incorporated height-weight standards as a screen to identify 'overweight' soldiers. Height-weight tables suffer from many deficiencies; the most common problem is their inability to differentiate between an overweight state that is due to an abundance of muscle as opposed to excess fat. This issue was addressed in Department of Defense Direct_v_1308-1 and as a result, Army Regulation C

DD 1 JAN 73 1473 > DVE K EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

600-9 was revised in April, 1983. The revision included specific instructions for measuring an overweight state in terms of an individual's relative body fat as estimated by the sum of 4 stanfolds. Shortly after implementation, the validity of the height-weight and body fat standards as well as the appropriateness of the skinfold methodology was questioned. A study was designed to create a data base with which to validate several components of the Army weight control program. This report contains summary material and descriptive data for the total project. Data (n=72 variables) are analyzed by gender and race with age as a covariate and are presented for 1194 males and 319 females. Measurements included: demographic data, leisure time physical activity data, medical and smoking histories, photographic assessments in class A uniform and swimsuit, underwater weight with vital capacity and residual lung volume, aerobic capacity via treadmill test, maximal lift capacity to 60 inches, 12 skinfolds, 15 circumferences, 9 diameters, visual rating of adiposity, somatotype and Army physical fitness test results.

Keywords:

Cont &

DISCLAIMERS

Human subjects participated in these studies after giving their free and informed consent. Investigators adhered to AR 70-25 and USAMRDC Regulation 70-25 on Use of Volunteers in Research.

The views, opinions and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

Citations of commercial organizations and trade names in this report do not constitute an Official Department of Army endorsement or approval of the products or services of these organizations.

D

Accesion For NTIS CRA&I

DTIC TAB Unannounced

ACKNOWLEDGEMENTS

The primary author of this report wishes to acknowledge individuals who made this study possible. Everyone involved cannot be included as authors, however, there were some who spent countless hours preparing, packing and unpacking equipment, as well as collecting and analyzing data. It would be nice to recognize each individual for what they uniquely added to the study, however, time and space would not permit this. The following individuals are acknowledged for their time and support: E. Bertrand, D. Burnell, J. Castro, A. Damokosh, T. Daniels, T. Doherty, L. Drolet, J. Foster, P. Frykman, R. Hallstrom, E. Hamilton, E. Harman, W. Holden, D. Hughes, R. Irrizary, H. Kayne, M. Kinney, J. Kirkpatrick, L. Kundla, R. Langevin, S. Legg, R. Manikowski, L. Marchitelli, J. McGrath, J. Miletti, M. Murphy, P. Murphy, J. O'Connell, M. O'Neill, J. Patton, A. Sturgis, J. Tejada, D. Ward, R. Wildgoose, and R. Wilson.

TECHNICAL REPORT

NO. $T_{5/87}$

THE BODY COMPOSITION PROJECT:
A SUMMARY REPORT AND DESCRIPTIVE DATA

BY

PATRICIA I. FITZGERALD, PH.D., CPT, MS, JAMES A. VOGEL, PH.D.,
WILLIAM L. DANIELS, PH.D., MAJ, MS, JOSEPH E. DZIADOS, M.D., MAJ, MC,
MARILYN A. TEVES, M.S., ROBERT P. MELLO, M.S., AND PAMELA J. REICH, B.S.

US ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE, NATICK, MA

FOREWARD

Prior to 1983, the Army Weight Control Program, as described in AR 600-9, utilized a weight for height standard to detect unacceptable excessive overweight or obesity. Since excessive weight can not discriminate between fat and muscle, a 1983 revision of this regulation included a change in the definition of overweight, from weight in proportion to height, to an allowable relative body fat standard. To support this change, body fat standards were set, stratified by gender and age, and a four point skinfold technique was adopted as the method to estimate relative body fat levels for individual soldiers.

Several questions from the 1983 revision concerning the arose appropriateness of the new body fat standards as well as the suitability of the skinfold method chosen to estimate body fat in a US Army population. As a result, it was decided that new or additional information was needed to validate these body fat standards and to explore a more suitable means of assessing body fat in the US Army. This resulted in a tasking to this Institute to conduct research to address these two issues. This report describes the study carried out in answer to this tasking and summarizes the data collected.

TABLE OF CONTENTS

	Page
Disclaimers	
Acknowledgments	
Foreward	111
List of Figures	vii
List of Tables	viii
Abstract	x
Introduction	1
Purpose	5
Design and Methods	6
Study Design	6
Methodology	8
Photographic Assessment	8
Rating of Military Appearance	11
Anthropometry	14
Somatotype Determination	14
Body Composition	15
Residual Lung Volume	15
Vital Capacity	16
Underwater Weight and Body Density	16
Physical Performance	18
Maximal Lift Capacity	18
Aerobic Power	18
Army Physical Fitness Test	22

		Page
Resu	alts	22
	Introduction	22
	Sample Characteristics	24
	Appearance and K Ratings and Somatotype	37
	Body Composition Variables	37
	Cardiovascular and Metabolic Responses to Treadmill Exercise	40
	Anthropometric Variables	40
	Height and Weight	40
	Skinfolds	42
	Circumferences	42
	Diameters	45
	Incremental Dynamic Lift and Physical Fitness Test Performance	45
	Variables	
	Incremental Dynamic Lift	45
	Physical Fitness Test Variables	48
Disc	cussion	48
Appe	endices	
	A. Tasking Letter	A-1
	B. Instructions to Raters and Explanation of K Rating Scale	B-1
	C. Rater Data Sheet	C-1

	•	rage
D.	Specific Description and Anatomic Location of Skinfold,	D-1
	Circumference and Diameter Sites	
E.	Career Management Field/Branch Data	E-1
F.	MOS Classifications	ř-1
Ģ.	Descriptive Statistics for all Data Summarized by Gender,	G-1
	Race and Age	
·H.	Correlation Matrices for All Data Summarized by Gender	H-1
ı.	ANCOVA Tables	Ĭ-1

LIST OF FIGURES

FIGURE NO.	<u>TITLE</u>	PAGE
1	Layout of camera, lights and grid utilized during	10
	the uniform and swimsuit photographic assessments.	
2	Pictures resulting from the uniform and swimsuit	12
	photographic assessments for male soldiers.	
3	Pictures resulting from the uniform and swimsuit	13
	photographic assessments for female soldiers.	
4	Incremental dynamic lift device.	19
5	Preparatory posture for the incremental dynamic lift.	20
6	Posture at completion of the incremental dynamic lift.	2.1

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1	Classification categories for the sub-sample.	7
1a	Percent of sample by age groups that exceeded	ба
	the weight for height screening tables.	
2	Time frame and geographic location of testing.	7
3	Rotation sequences utilized during the 3 phases	9
	of testing.	
4	Representation of unit types in the sample.	26
5	Age and race data for males and females	27
	(frequency and % of total).	
6	Time in service data for males and females	28
	(frequency and % of total).	
7	Frequency of ranks for males and females.	29
8	Responses to the medical questionnaire for males	31
	and females.	
9	Exercise habits of males and females categorized	32
	by yes or no responses.	
10	Frequency of participation (days per week) in	32
	exercise activities.	
11	Exercise habits by activity for males (mean±SD).	34
12	Exercise habits by activity for females (mean±SD).	35
13	Frequency and % of total of individuals	36
	experiencing difficulties with underwater	
	weighing.	
14	Age and physical characteristics of the sample.	38

TABLE NO.	TITLE	PAGE
15	ANCOVA data for means of appearance and K ratings	38
	and somatotype variables summarized by gender	
	and race.	
16	ANCOVA data for means of body composition variables	39
	summarized by gender and race.	
17	ANCOVA data for means of cardiovascular and	41
	metabolic responses to treadmill running	
	summarized by gender and race.	
18	ANCOVA data for means of skinfolds, height and	43
	weight summarized by gender and race.	
19	ANCOVA data for means of circumferences	44
	summarized by gender and race.	
20	ANCOVA data for means of diameters summarized	46
	by gender and race.	
21	ANCOVA data for means of incremental dynamic lift	47
	and military performance variables.	

ABSTRACT

Weight control programs in the Armed Forces have received much attention due to recent interest in the development of military physical fitness Prior to April, 1983, the US Army weight control program, regulated by AR 600-9, incorporated height-weight standards as a screen to identify 'overweight' soldiers. Height-weight tables suffer from many deficiencies; the ost common problem is their inability to differentiate between an overweight state that is due to an abundance of muscle as opposed to excess fat. This issue was addressed in Department of Defense Directive 1308.1 and as a result, Army Regulation 600-9 was revised in April, 1983. The revision included specific instructions for measuring an overweight state in terms of an individual's relative body fat as estimated by the sum of 4 skinfolds. Shortly after implementation, the validity of the heightweight and body fat standards as well as the appropriateness of the skinfold methodology was questioned. A study was designed to create a data base with which to validate several components of the Army weight control program. This report contains summary material and descriptive data for the total project. Data (n=72 variables) are analyzed by gender and race with age as a covariate and are presented for 1194 males and 319 females. Measurements included: demographic data, leisure time physical activity data, medical and smoking histories, photographic assessments in class A uniform and swimsuit, underwater weight with vital capacity and residual lung volume, aerobic capacity via treadmill test, maximal lift capacity to 60 inches, 12 skinfolds, 15 circumferences, 9 diameters, visual rating of adiposity, somatotype and Army physical fitness test results.

processing (seasonand) (seasonand) processing

INTRODUCTION

In the last few years, issues concerning physical fitness have received greater emphasis in the military. The Secretary of the Army, the Honorable John O. Marsh, Jr., has been quoted saying: "The readiness of the US Army begins with the physical fitness of the individual soldiers, the non-commissioned officers, and the officers who lead them." This philosophy was also shared by then President Jimmy Carter, who helped to spark a renewed interest in the positive health benefits of exercise and weight control. He too was keenly interested in the development of military physical fitness programs.

Associated with this increased emphasis in fitness, the Army's weight control program has received much attention, most likely due to personal emphasis from the White House and the Pentagon. Prior to April, 1983, the US Army weight control regulation, Army Regulation(AR) 600-9, incorporated height-weight standards as a screen to identify 'overweight' soldiers. These standards were developed from the Metropolitan Life Insurance actuary data (21).

Height-weight tables suffer from many deficiencies (19). The most common problem is their inability to differentiate between an overweight state that is due to an abundance of muscle as opposed to excess fat. It is possible for someone to be overweight based on height-weight standards, and still have a low percentage of their total weight made up of fat. This problem was first addressed from a military viewpoint by A.R. Behnke et al., in 1942 (1). After performing height and weight measurements on 25 healthy football players, 17 were found to be unfit for military service based

RESERVED TO SELECT THE SECOND SERVED TO SELECT THE SECOND SERVED TO SECOND SERVED SERV

solelý on their body weight. These athletes were considered obese by ordinary weight for height standards. However, careful examination of the composition of their body weight, utilizing the underwater weighing technique, revealed that the 17 'obese' athletes had below average body fat when compared to their sedentary counterparts. These athletes would be incorrectly classified by weight control regulations that use only heightweight tables to determine if an overweight condition was present. However, since the Army has no basis or desire to penalize the muscular individual, a method was needed by which excess weight can be attributed to either muscle This issue was highlighted at a Department of Defense(DoD) or fat. Conference on Physical Fitness at the Airlie House in June, 1980. The recommendations of this conference (35) were incorporated into a DoD Directive, 1308.1 (34). This directive gave instructions regarding physical fitness and weight control programs for all the services and included several recommendations which directly affected the Army's regulation concerning weight control, AR 600-9. These recommendations are summarized as follows:

- 1. Establish gender specific body fat standards to replace the current height-weight tables.
- 2. Take more effective measures to deal with the overweight problem.
- 3. Investigate the best field method for measuring body composition.
- 4. All services should implement body composition measurements in their weight control programs.

RESERVED THE PROPERTY OF THE P

The major thrust of the new directive was that percent body fat would be the determining factor in weight control policy decisions. To implement these new recommendations the following changes were made in AR 600-9, effective 15 April, 1983:

- 1. AR 600-9, which prior to 1982 contained policy for both physical fitness and weight control programs, was divided into two regulations: a 350 series (training) regulation to provide policy for the physical fitness program, and AR 600-9 (a personnel management regulation) to continue to prescribe policies for the weight control program.
- 2. Revision of the height-weight tables. This revision altered height-weight tables to include age stratification. This age adjustment was incorporated to be consistent with the proposed age-adjusted body fat standards.
- 3. Prior to the 1983 revision, "an overweight condition existed when an individual's body weight exceeds the maximum allowable weight standard set forth in the appendix." In the revised regulation, "an individual is considered overweight when his or her percent body fat exceeds the standard specified in paragraph 19c..." The revised regulation depended upon height-weight tables to serve as a primary screen to identify those individuals who were overfat.
- The Army chose to estimate body fat by using the skinfold caliper technique in conjunction with the regression equations of Durnin and Womersley (9). The skinfold technique was chosen because of the techniques available, e.g., radioisotopes, radiography, underwater weighing, potassium-40, circumferences and skinfolds, skinfolds would be the most efficient technique in of equipment required, and personnel, implementation. These arguments could also be used for circumferences: however, when the revisions were being discussed, skinfolds were considered the state of the art "field" technique. The circumference technique of Wright et al., (31) which was utilized by the US Marines, was considered unvalidated for an Army population. The 4 point skinfold technique of Durnin and Womersley (9) was chosen based on the following criteria: a) the method was age adjusted, b) the tables utilized to transform sums of skinfolds to percent body fat were easy to use, c) this method utilized the same skinfolds for men and women, d) all skinfolds were at or above the waist, and e) this methodology was utilized by other NATO armed forces.
- 5. Personnel who exceed the primary screen will have their body fat estimated using the skinfold method described above. The body fat standards are age adjusted to: a) reflect increases in body fat associated with the biological aging process, b) be more realistic in terms of physical changes in body composition with advancing age and c) be more realistic in terms of achievable goals for soldiers in the older age categories.
- 6. Personnel who pass the primary screen will not have their body fat estimated unless specifically requested by a commander because the soldier appears to have excess body fat.

- 7. Personnel who exceed the body fat standards and exhibit no clinical cause for obesity will have their records flagged and will be placed in a supervised weight control program.
- 8. Personnel who, after a medical examination, are considered medically predisposed to obesity, will be placed under the care of a physician.
- 9. Unsatisfactory progress in a weight control program is grounds for separation proceedings.

The above revisions were either the direct result of DoD Directive 1308.1 or the consensus of a Body Composition Working Group (7) which based it's recommendations on normative data and associated aerobic fitness data (29). The new standards and methods were implemented before they could be validated on an Army sample.

Shortly after implementation, both line officers and medical personnel questioned the validity of the height-weight and body fat standards as well as the appropriateness of the skinfold methodology. Most issues could not be answered due to the lack of an adequate base of information. Examples of these included:

- 1. Lack of adequate training of the large numbers of personnel needed to assess body fat by the skinfold technique.
- 2. Potentially large inter-measure variability of the skinfold technique (18).
- 3. Lack of a perfect relationship between body fat estimation using skinfolds and "true" body fat, particularly in the more obese subject. Errors of prediction increase when measurements are made on individuals at the extreme low and high ends of a body fat continuum (14,15).
- 4. Lack of a perfect relationship between appearance and percent body fat, i.e., individuals who meet body fat standards but have poor "military" appearance.

CON TRANSCESS BEFORE THE PROPERTY STREET

5. Failure of individuals to meet body fat standards who apparently meet job and readiness requirements.

PURPOSE

It was obvious to Headquarters, Department of the Army that new data were needed from studies designed specifically to answer the above stated concerns. The Exercise Physiology Division of this Institute was tasked (Appendix A) to acquire information needed to fulfill the following objectives:

- 1. Relate body fat levels to objective measures of physical appearance and performance.
- 2. Relate body fat levels to such factors as age, gender, race, MOS, and time in service.
- 3. Validate the revised height-weight and body fat standards using a sub-sample of active duty Army personnel.
- 4. Determine an improved field method for body fat estimation.

 Therefore, a study entitled "Development of Recommendations for Body Fat Standards and Body Composition Measurements Required for Implementation of the Army Weight Control Program" was designed to address these objectives.

DESIGN AND METHODS

STUDY DESIGN

Our goal was to capture a sample that would represent the US Army population in respect to gender, age, and racial/ethnic characteristics and body fatness. The optimum approach would have been to test a random sample of the entire active duty component. However, as this was quite impractical and, for statistical purposes, unnecessary, a sub-sample was chosen based upon predetermined categories listed in Table 1. The racial and ethnic categories are those suggested by Wallman and Hodgdon (30). Relative fatness of the sample as indicated by the percent falling outside the screening tables as shown in Table 1a.

Data were collected during three 3 week iterations, as shown in Table 2. Two locations were selected to obtain the sample, Fort Hood, Texas and Carlisle Barracks, Pennsylvania. Fort Hood offered a unique opportunity to select from a wide variety of military personnel since it is the largest Army post in the United States, being the home of the First Cavalry Division, the Sixth Cavalry Brigade and the Second Armored Division. Carlisle Barracks, the home of the Army War College, was included to provide the upper age categories which were not readily available at Fort Hood.

Each testing day data were collected on 50-55 soldiers. Soldiers reported for testing either from 0730-1230 or 1300-1800 hours without any prior instructions regarding food or fluid intake. They reported in their Class A uniform, with blouse, and hand carried their medical records, physical fitness test record and gym clothes. Subjects were briefed as to the nature of the study and requirements of their participation. They were informed that their participation was voluntary as required by AR 70-25. Approximately 3% of those soldiers briefed declined to volunteer. Those agreeing to participate signed a statement of informed consent and were randomly placed

Table 1. Classification categories for the sub-sample.

1. Gender	Male Female
2.	17-20 21-27 28-39 40+
3. Race	White-non-Hispanic Black-non-Hispanic Hispanic American Indian/Alaskan Native Asian/Pacific Islan

Table la. Percent of sample by age groups that exceeded the weight for height screening tables

Gender			Age Group		
	<u>A11</u>	17-20	21-27	28-39	40
Male	14	9	13	23	6
Female	34	52	25	40	50

Table 2. Time frame and geographic location of testing.

Phase	Date	Location	Sample Size*
I	25 Jun - 12 Jul 1984	Ft. Hood, TX	620
11	16 Aug - 31 Aug 1984	Carlisle, PA	300
III	15 Oct - 01 Nov 1984	Ft. Hood, TX	620

^{*} approximate

into 5-7 member squads, each with a different rotation through a battery of measurements. These sequences were predetermined and are shown in Table 3.

Before rotating through the test battery, each squad had their pictures taken in their Class A uniform, filled out medical, smoking, and physical activity questionnaires, and received a directed medical examination. This exam was given to ensure that all participants were medically qualified for participation in the study, i.e., having no illness or injury that would place them at risk during the treadmill or lifting measurements.

METHODOLOGY

Photographic Assessment

Black and white, 2.25 x 2.25 inch photographs were taken of each subject, using a Mamiya 625 J camera with an 80mm, f2.8 lens. The camera and lens were supported by a tripod (Slik U212) which had an internal leveling apparatus. The arrangement of the photographic equipment is depicted in Figure 1. The camera was positioned 154 inches perpendicularly in front of the subject, at a height of 45 inches from the floor to the top of the camera body. Lighting was supplied using 4 quartz lights (Smith-Victor K-62) which were positioned in pairs at 77 inches and 154 inches. Black and white Kodak 220 roll film (Tri-X) was used with a 1/60 second shutter speed and a f8 aperture.

The Class A uniform photographs were taken with the soldier wearing a mask to protect his or her identity. Front, side and back views were photographed with the soldier in the position of attention in front of a measured grid. Photographs were taken following the suggestions of Tanner (27) and Carter (5). Figures 2 and 3 are examples of the photographs that resulted from the above process.

THE STATE OF THE S

PHASE	CODE	sequences utilized during the 3 phases of testing. ROTATION SEQUENCE					
,	_	1	2	3.	4	5.	
I	BLUE	рното	RLV/UWW	TM/IDL	ANTHRO	* *	
-	BROWN	TM/IDL	PHOTO	RLV/UWW	ANTHRO		
	PURPLE	RLV/UWW	ANTHRO	TM/IDL	PHOTO		
	YELLOW	ANTHRO	TM/DL	PHOTO	RLV/UWW		
II	BLUE	РНОТО	RLV/UWW	ANTHRO	MS		
	BROWN	PHOTO	ANTHRO	MS	RĽV/UWW		
	PURPLE	PHOTO	MS	anthro	RLV/UWW		
	RED	PHOTO	RLV/UWW	MS	ANTHRO		
III	BLUE	TM/IDL	ANTHRO	IMP	РНОТО	RLV/UWW	
	BROWN	RLV/UWW	PHOTO	TM/IDL	IMP	ANTHRO	
	PURPLE	ANTHRO	TM/IDL	PHOTO	RLV/UWW	IMP	
	RED	PHOTO	RLV/UWW	IMP	ANTHRO	TM/IDL	
	YELLOW	IMP	ANTHRO	RLV/UWW	TM/IDL	PHOTO	
re:	AMMIIDA	Annhana		u sámant e		<u></u> .	
	ANTHRO =	: Anchropom : Impedance	etric meas				
		Increment					
		Muscle st	•				
		· Uniform p	_				
		· Residual			ents.		
		- Kesiduai - Treadmill	_	e measurém	~.,		
		· Underwate		_			

الإنجاج المتجودون ويجوجون الجمعودي الجروجود المحمود المحمود المحمود المحمودي المحمود المحمود المحمود المحمود المحمود

Figure 1. Layout of camera, lights and grid utilized during the uniform and swimsuit photographic assessments.

Bathing suit pictures were taken with the soldier positioned using a standard anthropometric pose (8). The same equipment and views were taken as described above. Males were clad in a black, nylon swim suit and females wore a one piece, dark colored nylon swim suit. A mask was worn to maintain the soldiers' anonymity. Figures 2 and 3 are examples of the photographs that resulted from the above process.

Rating of Military Appearance

The film was developed and, from the negatives, 35 mm slides were made for the appearance rating process.

A panel of military personnel was formed to rate the military appearance of the soldiers. The panel was convened at the Pentagon and contained 11 members (5 female, 6 male); 6 officers, 5 enlisted, and the three major ethnic categories were included. The group consisted of representatives from MILPERCEN, TRADOC, OCAR, NGB, SSC, and FORSCOM. Each rater had had recent troop experience, i.e., was employed in a command or command support position. A complete set of instructions was given to the panel (see Appendix B). A data sheet was completed for each set of slides (see Appendix C). The actual rating was a subjective judgment based on the instructions and as influenced by the rater's own personal perception as to what is acceptable or unacceptable in respect to military appearance.

Slides of soldiers attired in the Class A uniform were rated during the first half of the week. Three projectors were set up and all three views were shown simultaneously. The projectors were positioned to allow for almost "life-size" projections which were viewed for approximately 20 seconds. When the rating of the soldiers in uniform was completed, the same procedure was

MALE UNIFORM

Figure 2. Pictures resulting from the uniform and swimsuit photographic assessments for male soldiers.

Sharal Especiales reserved respondent massessor

FEMALE UNIFORM

Figure 3. Pictures resulting from the uniform and swimsuit photographic assessments for female soldiers.

followed for the rating of the swimsuit slides. An additional score, which was arbitrarily called the 'K Rating' score (3) was obtained for the soldiers in swimsuits to estimate the body fat content. An explanation of this score can be found in Appendix B.

The entire rating process was completed during 5 consecutive working days.

Raters reported to a predetermined room in the Pentagon for 8 hours of rating separated by a 1 hour recess for lunch and arbitrarily spaced short breaks.

Upon completion of the rating process, the data were keypunched and loaded onto a magnetic tape for addition to the body composition data base. The 2 point rating scale (acceptable, non-acceptable) was later eliminated because it was improperly used by the raters.

Anthropometry

All anthropometric measurements were made using standardized techniques described by Behnke and Wilmore (2). Measurements were taken on the right side of the body with the subjects wearing shorts and a T-shirt. A total of 12 skinfolds, 8 diameters and 13 circumferences were measured on each subject. Specific descriptions of the anatomic locations of these sites as well as the determination of height and weight are located in Appendix D. Four anthropometrists were used. They were extensively trained and matched together prior to the study. Training continued until intra-rater reliability scores were less than 6%.

Somatotype Determination

According to Carter (5), "a somatotype is a present morphological conformation. It is expressed in a three numeral rating, consisting of three sequential numerals, always recorded in the same order. Each numeral represents an evaluation of one of the three primary components of physique

which describe individual varieties in human morphology and composition. The Heath-Carter Somatotype System (5) was utilized in this study. This system involves the estimation of three components (endomorphy, mesomorphy, and ectomorphy) using selected anthropometric measurements and mathematical transformations of these measurements. The first component, endomorphy, is a representation of the relative fatness or leanness (lack of fatness) in an individual's physique. The second component, mesomorphy, is a reflection of the relative musculo-skeletal development in relation to the individual's stature. Carter (5) states that this component is the lean body mass relative to stature. The third component, ectomorphy, is a reflection of the relative linearity of individual physiques. This component is derived from the ratio of height/veeight.

The following variables were required for the computation of somatotype:

- 1. Tricep SF
- 5. Height

9. Biceps (flexed) D

- 2. Subscapular SF
- 6. Weight

10. Knee (femur) D

- 3. Suprailiac SF
- 7. Ht/ √/weight
- 11. Calf C

- 4. Calf SF
- 8. Elbow (humerus) D

SF = Skinfold; D = Diameter; C = Circumference For a full description of this method see Carter (5).

Body Composition

1. Residual Lung Volume

An accurate determination of an individual's density from underwater weight for the subsequent determination of body fat requires that residual lung volume be measured just prior to or during the underwater weighing process (13,22,25). To optimize testing time during this study, residual lung volume was determined just prior to the actual underwater weighing process, with the soldier outside of the underwater weighing tank. A simplified oxygen rebreathing technique was utilized (32). The subject assumed a sitting

position during the residual lung volume determination, which was similar to the posture utilized during the underwater weighing process. If there was greater that 150 ml difference, a third measure was taken, and the two closest values were averaged.

2. Vital Capacity

Vital capacity was determined using the procedures described by Cherniak

(6). This measurement was taken as a back-up in case a soldier could not
accurately perform the residual lung volume technique. When this occurred,
the vital capacity was utilized to estimate residual lung volume following the
suggestions of Wilmore et al., (31).

3. Underwater Weight and Body Density

Underwater weighing was conducted in a 4%4%5 foot aluminum tank. An aluminum chair was coupled with a load cell (Ametek), sensitive to 10 g, and both were suspended from a stainless steel trapeze. Output from the load cell was fed through an analog-to-digital converter (Hewlett-Packard) to a desk top calculator, programmed to store weights for subsequent determinations of a stable underwater weight and body composition parameters. The method for determining body density was similar to the one described by Goldman and Buskirk (10).

Soldiers reported to the underwater weighing area in nylon swim suits provided for them. After they were weighed on land and completed the vital capacity and residual lung volume measurements, they entered the underwater weighing tank. Water temperature ranged between 34-39°C throughout the entire study. Consistent water temperatures were maintained by utilizing a filter and heating system attached to the underwater weighing system. It was engaged between subject measurements. Temperature measurements were determined using

a telethermometer (Yellow Springs Instrument Co.). Each soldier was given a 5-7 min orientation period. Most of the soldiers were unfamiliar with the technique and care was taken to ensure that they had a good understanding of the procedures involved in the underwater weighing process. Upon completion of the orientation period, the weight of the seat and an 8 kg weighted diving belt was determined with the subject submerged up to the neck. This was necessary because the water level in the tank rises as a person becomes submerged which affects the final weight of the seat. It was important to ensure that the subject did not touch the seat at this time. Once the seat weight was determined, the soldier secured the weight belt around the waist and sat in the aluminum chair. The soldier's subject number, gender, age, race, body weight, vital capacity and residual lung volume were entered into a Hewlett-Packard 85 desktop computer. The subject was given a noseclip, and a mouthpiece, attached to a snorkel apparatus, was inserted. The soldier submerged completely by bending forward at the waist. Using a series of predetermined signals (voice and tapping on the side of the tank), the soldier took a maximal inhalation followed by a maximal exhalation. Both the tank operator and the computer operator received feedback from the submerged soldier via a load cell indicator and the breathing apparatus. The computer operator would follow the breathing pattern by watching underwater weight changes on the load cell indicator. The tank operator listened to and felt the air leaving the snorkel apparatus. When exhalation started to level off, as evidenced by a stable reading on the load cell indicator and by an inability of the tank operator to perceive the soldier's exhalation from the snorkel apparatus, a computer program was engaged to sample the underwater weight for approximately 10-15 s. Following the sample period the subject was signaled to return to normal breathing until the next trial. The soldier had the option to remain submerged or to surface between trials. A series of 7-10 trials were taken. Body density was calculated using the formula of Buskirk (4). Body density (g/cc) was converted to percent body fat using the formula of Siri (26). A more detailed description of the underwater weighing system and procedure will be presented in a separate technical report.

In a separate study prior to commencing measurements at Fort Hood, repeated measures were made on 35 subjects with the same equipment and procedures to assess variation between days and trials. Twenty-six men and nine women were weighed 10 times in succession each day for five successive days. There was no statistically significant change in density over days or within trials (Days F=0.29, Trials F=0.78, Day/Trial=0.64).

Physical Performance

1. Maximal Lift Capacity

Maximal lift capacity was measured using an incremental lift device, described by McDaniel et al., (20) as shown in Figure 4. Each soldier was required to raise weights on a vertical slide in incremental steps, until the maximal weight that could be lifted was achieved. All subjects started with a minimal lift of 40 pounds (18.18 kg), as this was the weight of the carriage. Males increased each subsequent lift by 20 pounds (9.09 kg), which was decreased to 10 pound (4.45 kg) increments when he appeared to be experiencing difficulty with the weight. Females increased each subsequent lift by 10 pounds (4.45 kg) until failure to raise the carriage to a height of 60 inches (152.4 cm). This sequence is depicted in Figures 5 and 6.

これのできない。 のまではなどがな

のなどが対対。関係できたが必要でなどが対対に

2. Aerobic Power

Aerobic power was determined as maximal oxygen uptake (0_2 max) using a

Figure 4. Incremental dynamic lift device (from reference 20).

Figure 5. Preparatory posture for the incremental dynamic lift.

Figure 6. Posture at completion of the incremental dynamic lift.

motor driven treadmill. A continuous incremental test was used with a test protocol that was adjusted for gender, age, and activity level of the soldier. Soldiers between the ages of 17-35 and physically active soldiers within the 35-39 age range were given a continuous, incremental running test to volitional exhaustion. Hen and women started at running speeds of 6 and 5 mph, respectively, at 0% grade. Every three minutes the treadmill grade was raised 2.5%, to a maximum of 12%. If the subject could continue, the grade remained at 12% and the treadmill speed was increased 0.5 mph every three minutes to exhaustion.

Inactive soldiers between 35 and 39 and all soldiers 40 and older underwent a modified US Air Force School of Aerospace Medicine (USAFSAM) treadmill protocol with 12 lead electrocardiogram (33). The test was begun at 3.3 mph, 0% grade, with a 5% grade increase every 3 minutes. This was continued until 15% grade was reached. At this time, if there were no contraindications to continue, the treadmill speed was increased to 6 mph,0% grade, and the treadmill elevation was raised 2.5% every 3 minutes.

3. Army Physical Readiness Test (APRT)

Records containing the biannual Army fitness test scores (Army Physical Readiness Test) were obtained from the subject's organizational files. The most recent scores for sit-ups and push-ups (in 2 minutes) and time for two mile run were extracted and incorporated into our data files.

RESULTS

INTRODUCTION

Clearly a data set of this magnitude and scope required a structured format for data presentation. The following pattern was followed:

ではないないが、 これのなどのは、 でんか

- A. Frequency tables/distributions were computed by gender for the following variables:
 - 1. Rank
 - C. Duty MOS
 - 3. Time in Service
 - 4. Career Management Field/Branch
 - 5. Unit Type

- 6. Age
- 7. Race Characteristics
 - 8. Medical History
- 9. Exercise History
- R. Descriptive statistics, including mean, standard deviation, minimum, maximum and cases included, were computed for the following variables grouped by gender, rare and age:

- *at VO₂ max
- C. Further analysis included an ANOVA for each dependent variable (N=62) using gender and race as grouping factors, and age as the covariate. This analysis was done to determine if there were differences in the dependent variable between genders and races when the variability due to differences in age was controlled. In order to test the null hypothesis of equality of group

means between genders and among races, it was important to control for the differences in age of these groups as subjects were not randomly selected or assigned by age to each group.

In the analysis of variance procedure, multiple regression was used to reduce unexplained variance; this is followed by the use of an analysis of variance to examine group differences. The analysis of covariance enabled us to statistically control the variability in the dependent variables, due to age, which we could not do given the design of the study.

D. To simplify the reported results and subsequent discussion, variables were clustered into the following categories: a) appearance, which included uniform, swimsuit and 'K' ratings and somatotype variables; b) body composition, which included residual lung volume, vital capacity, density, relative fat, lean body mass and fat mass; c) cardiovascular and metabolic responses to maximal treadmill exercise, which included oxygen uptake in liters and milliliters, carbon dioxide production, ventilatory equivalent, respiratory quotient, maximal heart rate, treadmill speed and treadmill grade; d) anthropometry, which included skinfolds, circumferences, diameters, height and weight; and e) physical performance measurements, which included maximal dynamic lift, push-ups, sit-ups, 2 mile run time and the APFT score.

SAMPLE CHARACTERISTICS

Upon completion of the data collection process, a total of 1513 soldiers, 1194 males and 319 females, volunteered to participate in the study. Career Management Field/Branch data indicated that the largest percentage (13%) of these soldiers (n=201) belonged to the Signal Corps, followed by Quartermaster (n=143, 10%), Infantry (n=135, 9%), Armor (n=141, 9%), and Field Artillary (n=138, 9%). Appendix E lists frequencies and percents of the total sample

for the Career Management Field/Branch data.

As indicated in Table 4, of the five unit types making up the sample population, the largest percentage was represented by Combat Support. Table 5 presents the age and race data as frequencies and percents of the total sample for all subjects, including those who were subsequently eliminated from the sample due to their fear of the underwater weighing process. The largest percentage of both male and female subjects regardless of age fall in the White category followed by Black, Hispanic, Asian/Pacific Islander and American Indian/Alaskan Native, respectively. Also, the 21-27 year age group make up the largest percentage of males and females regardless of race.

Table 6 illustrates the frequency and percent of total sample for time in service data of male and female subjects. These data are stratified by enlisted, warrant officer and officer status. From these data it can be noted that 78.9% of the sample were males compared and 21.3% females. Regardless of gender, 78.6% of the sample was represented by enlisted personnel, followed by officers (21.3%) and warrant officers (1.1%). The majority of the sample had 0-3 years service (31.4%), followed closely by those who had 16-21+ years service (23.7%). The sample was further broken down by component ranks.

These data are represented in Table 7. For males, the rank with the highest frequency occurred at the rank of E4 (n=223, 19.8%), followed by E5 (n=158, 14.0%) and Colonel (n=158, 14%). For females, the rank with the greatest frequency occurred at E4 (n=85, 31.4%), followed by E5 (n=52, 19.2%).

Occupational specialty data are presented in Appendix F. Data were coded numerically according to categories presented in Appendix E. Examination of the data revealed that of the 1128 MOS categories reported by male subjects, 288 did not exist. Forty-seven of the 271 MOS codes reported by females were

Table 4. Representation of unit types in the sample.

Jnit Type	Frequency	Percent of Total
Combat	463	31
Combat Support	535	36
Combat Service Support	315	21
Training	146	10
Staff	32	2

COOR EXPLOSAL VOLUMENT WAS AN ARCHARACT PROPERTY OF THE PROPER

Table 5. Age and race data for males and females (frequency and % of total).

MALES

				THILL	,			
Age Group		W	В	н	AI/AN	API	Other	Totals
17-20	n %	102 6.5	43 3.6	17 1.4	1 0.1	3 0.2	0 0	166 13.9
21-27	n Z	209 17.5	133 11.1	51 4.3	1 0.1	10 0.8	2 0.2	406 34.0
28-39	n %	174 14.6	95 7.9	60 5.0	3 0.2	14 1.2	2 0.2	348 29.1
40+	n Z	238 19.9	17 1.4	11 0.9	0 0	8 0.7	0	274 22.9
ALL	n 7	723 60.6	288 24.1	139 11.6	5 0.4	35 2.9	4 0.3	1194 100.0
				FEMAL	ES			
Age Group		W	В	н	AI/AN	API	Other	Totals
17-20	n %	41 12.9	20 6.3	8 2.5	0 0	3 0.9	0 0	72 22.6
21-27	n %	84 26.3	79 24.8	12 3.8	2 0.6	2 0.6	0	179 56.1
28-39	n %	37 11.6	23 7.2	4 1.2	0 0	1 0.3	1 0.3	66 20.7
40+	n %	2 0.6	0 0	0 0	0 0	0 0	0	2 0.6
ALL	n %	164 51.4	122 38.2	24 7.5	2 0.6	6 1.9	1 0.3	319 100.0

^{*} Data are frequencies and %s of the total sample and include HY subjects.

Table 6. Time in service data for males and females (frequency and % of total).*

<u> </u>	otal	.) .×						
				MALES				
Years :	ln se	rvice:						
Catego	ry	0-3	4-6	<u>7-9</u>	10-15	16-20	21+	ALL
Enlisted	n	417	147	118-	113	62	41	898
	Z	27.6	9.7	7.8	7.5	4.1	2.7	75.3
Officer	n	16	8	5	7	132	110	278
	Z	1.1	0.5	0.3	0.5	8.7	7.3	23.3
Warrant	n	0	2	1	5 0.3	4	4	16
Officer	Z	0.0	0.1	0.1	0.3	0.3	0.3	$\frac{1.4}{1192}$
				FEMALE	S			
Catego	ory	0-3	<u>4-6</u>	<u>7-9</u>	10-15	16-20	<u>21+</u>	ALL
Enlisted	n	179	73	19	16	1	1	289
	7.	11.8	4.8	0.3	1.1	0.1	0.1	90.6
Officer	n	13	6	8	1	1	0	29
	Z	0.9	0.4	0.5	0.1	0.1	0.0	9.1
Warrant	n	0	1	0	0	0	0	1
Officer	7	0.0	0.1	0.0	0.0	0.0	0.0	<u>0.3</u> 31

^{*}Data are frequencies and %'s of total sample, including HY subjects.

Table 7. Frequency of ranks for males and females.

MALES

VALUE LABEL	FREQUENCY
E1	31
E2	76
E3	134
E4	223
E5	163
E6	134
E7	71
E8	12
E9	Ł,
SECOND LIEUTENANT	5
FIRST LIEUTENANT	4
CAPTAIN	12
Major	14
LIEUTENANT COLONEL	5
COLONEL	158

FEMALES

VALUE LABEL	FREQUENCY
E1	2
E2	39
E3	52
E4	85
E5	52
E6	10
E7	3
SECOND LIEUTENANT	1
FIRST LIEUTENANT	8
CAPTAIN	10
MAJOR	7

non-existant.

Medical history questionnaires were administered to a) aid the examining physician as it served as a flag or probe to determine if the physical examination should be directed to a particular area of the body, b) screen was potential subjects who may have had health risks that would contraindicate their participation and c) to provide a general information base concerning the medical background of the test subjects. Results of the questions were summarized by categorizing the anguers to the questions as follows:

a) no or none, b) yes or yes-self, and c) yes-parents or siblings. Frequencies and percents of totals are given for 13 medical history questions relating to cardiovascular disease, asthma, medication, coffee consumption, injuries to the upper and lower body, as well as smoking histories. These data are presented for males and females in Table 8.

A questionnaire was administered to determine background information concerning the exercise habits of the volunteers for this study. The importance of these type of data as well as its limitations have been addressed previously by Kohl et al., (17) and others (23,24,24). Initially the data were summarized using a yes or no response categorization, i.e., did the respondent answer yes to any of the physical activities presented. If no response was indicated for any of the activities listed the person was considered not to participate in any exercise activity on a regular basis. Table 9 presents the results of this initial analysis. Data are reported by gender and age. Ninety-six percent of the total sample responded positively to the activity questionnaire.

The data were further analyzed to determine the frequency of participation (days per week) ranging from 0 (no participation) to 7 days per week. These

TAKAN TAKAN TAKAN MENGANTAN TAKAN TA

Table 8. Responses to the medical questionnaire data for males and females.

	MALES							
QUESTION	RESPONSE CATEGORY							
	(1)	(2)	(3)				
	NO/NONE	YES/SE	CLF YES/PAREN	TS OR SIBS				
High Blood Pressure	719	42	403					
Corenary Artery Disease	1013	5	144					
Stroke	1008	3	165					
Parents Smoke	259	922						
High Cholesterol	925	60	140					
Asthma	1100	84						
Medication	1087	99						
Drink Coffee	556	632						
Injuries-Lower Body	1068	117						
Injuries-Upper Body	1088	102						
Smoker	448	525						
	(EX-SMOKE	R) 166	(PIPE SMOKER)	44				
	<1	1-2	2+					
Parents Smoke-Packs/day	253	500	56					

FEMALES

QUESTION	RESPONSE C			
	(1) NO/NONE	(2) YES/SELF	(3) YES/PARENTS	OR SIBS
High Blood Pressure	165	3	145	
Coronary Artery Disease	275	12	23	
Stroke	260	0	54	
Parents Smoke	67	247		
High Cholesterol	246	2	54	
Asthma	291	25		
Medication	243	75		
Drink Coffee	175	143		
Injuries-Lower Body	286	30		
Injuries-Upper Body	301	17		
Smoker	153	145	19	
	(EX-SMOKE			
Parents Smoke-Packs/day	•	,		
•	<1	1-2	2⁺	
	88	128	11	

Table 9. Exercise habits of males and females categorized by yes or no responses.*

AGE GROUP		MAL	E	FEMALE		
		YES	NO	YES	ИО	
17-20	n	164	2	69	3	
	7.	10.8	0.1	4.6	0.2	
21-27	n	389	17	166	13	
	7	25.7	1.1	11.0	8.0	
28-39	n	337	11	61	5	
	%	22.3	0.7	4.0	0.3	
40+	n	266	8	2	0	
	7	17.6	0.5	0.1	0.0	
ALL	n	1156	38	298	21	
	7.	74.4	2.5	19.7	1.4	

^{*}Data resulting from an analysis of all soldiers who responded 'yes' to any kind of exercise.

Table 10. Frequency of participation (days per week) in exercise activities.

DAYS/WEEK		MALE*		FEMALE**		
	n	7 *	n	% *		
0	38	3.2	21	6.6		
1	8	0.7	1	0.3		
2	44	3.7	8	2.5		
3	402	33.7	136	42.6		
4	176	14.7	43	13.5		
5	274	22.9	65	20.4		
6	66	5.5	7	2.2		
7	186	15.6	38	11.9		

^{*}This is not the % of the total sample, but is a % of all males.

^{**}This is not the % of the total sample, but is a % of all females.

data are presented in Table 10.

The largest portion of the male sample reported that they exercised 3 days per week, followed by 5 days per week. A similar pattern was evidenced for the female subjects.

Data were reduced further by examining the types of activities and duration of participation as shown in Tables 11 and 12. It can be seen that for males the largest portion of the group participated in running activity followed by calisthenics and walk/hike. This pattern is the same for females.

Upon completion of all phases of testing, 1128 males and 271 females were chosen for inclusion in the final data analysis. Although data were collected on a total of 1513 soldiers, 114 of these subjects experienced sufficient difficulty with the underwater weighing process to preclude their inclusion in the primary database. Data from excluded subjects are presented in Table 13.

The difficulties experienced ranged from extreme discomfort in the water to just ordinary fear of the entire process; for example, several subjects were unable to physically put their face into the water. Generally speaking, extreme fear resulted in individuals who had prior negative experiences in water environments. Several subjects had had prior 'near drowning' experiences. A few subjects believed that the ability to swim was a prerequisite for the test and it was difficult to convince them otherwise.

In respect to age, the third age group (28-39) had the greatest number of male subjects experiencing difficulty while the second age group (21-27) had the greatest number of female subjects experiencing difficulty.

Observing the data with reference to race, blacks had the greatest number of subjects experiencing difficulty for both males and females.

The age and physical characteristics of the remaining subjects are

Table 11. Exercise habits by activity for males (mean *SD).*

	n	Days/wk	Range	Mins/day	Range	Distance/day	y Range
Walk/hike	486	4.2	1 - 7	57 86	0 - 720	2.793 3.401	2 - 20 mi
Cycle	132	2.7 1.7	1 - 7	44 39	0 - 240	6.636 6.659	0 - 38 mi
Swim	133	2.7 1.6	1 - 7	44 37	0 - 180	495.496 891.369	0 - 3520 yds
Run	1034	3.5 1.1	1 - 7	28 15	0 - 180	2.973 1.483	0 - 20 mi
Calisthenics	608	3.7 1.2	1 - 7	17 11	0 - 60		
Weight Lift	220	2.9 1.4	1 - 7	47 37	0 - 180		
Karate	28	4.0 1.8	2 - 7	81 34	15 - 120		
Tennis	162	2.4 1.5	1 - 7	72 34	0 - 240		
Baseball	146	2.5 1.1	1 - 7	76 34	0 - 240		
Basketball	179	2.8 1.6	1 - 7	93 59	0 - 360		
Football	8	2.3 1.0	1 - 4	37 34	0 - 90	ı	
Soccer	4	2.2 0.9	1 - 3	80 31	50 - 120	1	
Aerobics	51	2.3 1.5	1 - 7	45 21	0 - 120)	
Other	91	2.5 1.4	1 - 7	135 93	0 - 120)	

^{*}This table refers only to people who participated in each exercise, not the whole group.

Table 12. Exercise habits by activity for females (mean *SD).*

	n	Days/wk	Range	Mins/days Range	Day	Range
Walk/hike	112	4.4 2.0	1 ~ 7	44 0 - 360 56	2.098 2.118	0 - 13 mi
Cycle	33	3.1 1.7	1 - 7	56 0 - 360 69	6.7 <u>2</u> 7 9.241	0 - 50 mi
Swim	34	2.6 1.2	1 - 7	46 0 - 180 44	374.242 744.039	0 - 3520 yds
Run	274	3.4 0.9	1 - 7	24 0 - 60 11	2.558 0.960	0 - 8 m1
Calis	160	3.5 0.9	1 - 7	18 0 - 60 11		
Weight Lift	25	2.6 1.1	1 - 5	38 15 - 120 22		
Karate	2	2.5 0.7	2 - 3	75 60 - 90 21		
Tennis	18	1.9 0.8	1 - 4	57 0 - 90 20		
Baseball	15	2.4 1.1	1 - 5	86 40 - 180 41		
Basketball	18	2.6 1.0	1 - 5	75 20 - 120 29		
Football	5	4.4 1.6	3 - 7	96 60 - 120 25		
Soccer	0		0	0		
Aerobics	62	2.5 1.5	1 - 7	41 0 - 90 16		
Other	9	3.6 1.8	1 - 7	86 0 - 300 90		

^{*}This table refers only to people who participated in each exercise, not the whole group.

Table 13. Frequency and X of total of individuals (hydrophobics) experiencing difficulties with the underwater weighing process and excluded from the database*.

	MALES						
	W	В	H.	AI/AN	API	Other	Total
17-20	1 1.5%	2 3.0%	1 1.5%	0 0	0 0	0 0	4 6.1 7
21-27	6 9.1%	9 13.6%	1 1.5%	0 0	0	1 1.5%	17 25.8%
28-39	8 12.17	20 30.3%	2 30.0%	0	0	0 0	30 45.5%
40+	12 18.2%	2 3.0%	1 1.5%	0	0	0 0	15 22.7%
ALL	27 40.9 %	33 50%	5 7.6%	0 0	0	11.5%	66 100 %
			FE	MALES			
	W	В	Н	AI/AN	API	Other	Total
17-20	4 8.3%	4 8.3%	2 4.2%	0	0	0	10 20.8%
21-27	8 16.7%	13 27.1%	3 6.3%	0	0	0	24 50.0%
28-39	4 8.3%	8 16.7%	1 1.2%	0	1 1.2%	0	14 29.2%
40+	0	0	0	0	0	0	0
ALL	16 33.3%	25 52.1%	6 12.5%	0 0	1 2.1%	0 0	48 100%

^{*}For data coding purposes these individuals are called HY data.

presented in Table 14. Comparisons of males and females indicated that males were more heterogeneous in age than females; our sample only included two women who were over 40 years old, whereas 274 males belonged to this age category. It was not surprising to find that males in our sample had considerably more time in service than the females. As expected, males were also taller, heavier and had a larger body mass index.

APPEARANCE, K RATINGS AND SOMATOTYPE

Mean scores for uniform and swimsuit ratings, K ratings and somatotype are summarized by gender, race and age in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 15. The ANCOVA showed that age was a significant $(p\langle.05\rangle)$ covariate for average uniform rating, K rating, endomorphy, mesomorphy and ectomorphy. Age was not a significant $(p\langle.05\rangle)$ covariate for the average swimsuit rating. Significant $(p\langle.05\rangle)$ gender effects were found for average uniform rating, endomorphy and mesomorphy. Race was a significant $(p\langle.05\rangle)$ factor for all variables except average uniform rating (p=.149). There were no gender by race interactions.

BODY COMPOSITION VARIABLES

Means for body composition variables summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 16.

The results of the ANCOVA showed that age was a significant (p<.05) covariate for all variables in this category, that is, residual lung volume, vital capacity, density, relative fat, lean body mass and fat mass.

Table 14. Age and physical characteristics of the sample excluding hydrophobics.

	ĄĢĘ	;	HÈIÇ	нт	WEÍG	HT	,Bl	MÌ*	SŢ	C+
GENDÉR N	'×	SD	X	-	•					,
MALE 1128	30 . 2	8.9	175.0							
FEMALE 271	24.1	4.5	162.6	6.2	60.4	8.2	22.8	2.7	3.Ž	3 . 0

^{*}BMI = Body Mass Index = Weight(kg)/Height2(m).

Table 15. ANCOVA data for means of appearance and K ratings and somatotype variables summarized by gender and race.

<u>VARIABLE</u>	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE*
Uniform Rating1	males > females	males: H > W > B females: H > W > B	ИО
Swimsuit Rating	females > males	males: $B > H > W^3$ females: $B > H > W^3$	NO
K Rating ¹	females > males	males: $W > H > B^8$ females: $H > W > B^8$	ИО
Endomorphy ¹	males > females ²	males: H > W > B ⁸ females: H > W > B ⁸	ИО
Mesomorphy ¹	males > females ²	males: $B > H > W^3$ females: $H > B > W^3$	NO
Ectomorphy ¹	females > males	males: B > W > H ³ females: W > B > H ³	NO

^{*} Gender by race interaction.

⁺STC = Time in service.

¹ Significant age covariate.

² Significant gender effect.

^{*} Significant race effect.

ANCOVA data for means of body composition variables summarized by gender and race. Table 16.

VARIABLE	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE*
Residual Lung Vol.	males > females ²	males: $\hat{W} > \hat{H} > \hat{B}^3$ females: $\hat{W} > \hat{H} > \hat{B}^3$	NO
Vital, Capacity ¹	males > females	males: W > H > B ³ females: W > H > B ³	YEŠ
Density ¹	males > females 2	males: $\hat{B} > H > W^{2}$ females: $W > H > B^{3}$	YES
Body Fat	females > males ²	males: $W > H > B^8$ females: $W > H > B^8$	ŶĔS
Fat Free Mass	males > females	males: B > W > H ⁸ females: B > W > H ⁸	'nó
Fat Mass ¹	females > males2	males: W > H > B ^s females: W > H > B ^s	ŸĘS

^{*} Gender by race interaction.

1 Significant age covariate.

² Significant gender effect.

^{*} Significant race effect.

Significant (p $\langle .05 \rangle$) gender and race effects were found for all variables in this category. Significant (p $\langle .05 \rangle$) interactions were present for all variables with the exception of residual lung volume and lean body mass.

CARDIOVASCULAR AND METABOLIC RESPONSES TO TREADMILL EXERCISE AT ${\bf \hat{V}0}_2$ MAX

Means for cardiovascular and metabolic responses to treadmill exercise at ${\bf \hat{V}0}_2$ max summarized by gender, race and age are presented in Appendix G.

Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 17.

The results of the ANCOVA indicated that age was a significant (p<.05) covariate for 7 of the 9 variables included in this category. These variables are treadmill grade, carbon dioxide production, ventilatory equivalent, ventilation, respiratory quotient, relative oxygen uptake and heart rate. Age was not a significant (p>.05) covariate for treadmill speed or absolute oxygen uptake. Significant (p<.05) gender effects were found for all variables with the exception of ventilatory equivalent and respiratory quotient. Significant (p<.05) race effects were found for treadmill grade, ventilatory equivalent, respiratory quotient, carbon dioxide production, ventilation and heart rate. The only significant (p<.05) interaction between gender and race occurred for relative oxygen uptake.

名ががある。とは、一般のないないない。

ANTHROPOMETRIC VARIABLES

Height and Weight

Means for height and weight summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 18.

Table 17. ANCOVA data for means of cardiovascular and metabolic responses to maximal treadmill running summarized by gender and race.

VARIABLE	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE*
Treadmill Speed	males > females ²	males: B = H = W females: H > W > B	NO
Treadmill Grade	males > females ²	males: $H > W > B^3$ females: $H > W > B^3$	NO
Ventilation ¹	males > females2	males: $W > H = B^3$ females: $W = B > H^3$	Ю
Carbon Dioxide Production	males > females ²	males: $H = W > B^3$ females: $W = B > H^3$	ю
Absolute Oxygen Uptake	males > females ²	males: W > B > H females: W > H > B	NO
Relative** Oxygen Uptake ¹	males > females ²	males: B > H > W females: H > W > B	YES
Ventilatory Equivalent ¹	males = females	males: $W > H > B^3$ females: $H = W > H^3$	NO
Respiratory Quotient ¹	males > females	males: H > W > B ⁸ females: H > W > B ⁸	NO
Maximal Heart Rate ¹	males = females ²	males: $H > B > W^3$ females: $H > B > W^3$	NO

^{*} Gender by race interaction.

¹ Significant age covariate.

² Significant gender effect.

³ Significant race effect.

^{**} Relative to body weight

The results of the ANCOVA showed that age was a significant (p<.05) covariate for both variables. Significant (p<.05) gender and race effects were also found, however, the interaction of gender and race was not significant (p>.05) for either height or weight.

Skinfolds

Means for all skinfolds summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 18.

The results of the ANCOVA showed that age was a significant (p<.05) covariate for 10 of the 12 skinfolds, that is, chin, chest, subscapular, midaxillary, waist, suprailiac, abdomen, thigh, calf and biceps skinfolds. Age was not a significant (p>.05) covariate for the triceps or knee skinfolds. Significant (p<.05) gender differences were found for 9 of the 12 skinfolds; gender was not a significant (p>.05) factor for midaxillary, abdomen or knee skinfolds. Significant (p<.05) race differences were found in all skinfolds with the exception of the knee skinfold. The biceps skinfold revealed the only significant (p<.05) interaction.

Circumferences

Means for all circumference measurements summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 19.

ACCOMPANY INCOMES NEW PROPERTY OF PROPERTY

The results of the ANCOVA showed that age was a significant (p $\langle .05 \rangle$) covariate for all 15 circumference measures. Significant gender (p $\langle .05 \rangle$)

Table 18. ANCOVA data for means of skinfolds, height and weight summarized by gender and race.

VARIABLE	GENDER EFFECTS	RACE EFFECTS	CENDER X RACE
Height ¹	males > females ²	males: $W > B > H^3$ females: $W > B > H^3$	NO
Weight ¹	males > females ²	males: $W > B > H^3$ females: $W > B > H^3$	NO
Chin SF ¹	females > males ²	males: $W > H > B^3$ females: $W > H > B^3$	NO
Chest SF	males > females ²	males: $W = H > B^3$ females: $H > W > B^3$	ИО
Biceps SF ¹	females > males ²	males: $W > H > B^3$ females: $W > H = B^3$	YES
Triceps SF	females > males ²	males: W > H > B ² females: W > H > B ³	ио
Subscapular SF1	males > females ^r	males: $H > W > B^{3}$ females: $H > W > B^{3}$	NO
Midaxillary SF ¹	males > females	males: $H > W > B^2$ females: $H > W > B^2$	NO
Waist SF ¹	males > females ²	males: $H > W > B^{5}$ females: $H > W > B^{3}$	NO
Abdomen SF ¹	males > females	males: $W > H > B^*$ females: $W > H > B^*$	ИО
Suprailiac SF ¹	males > females ²	males: $H > W > B^3$ females: $H > W > B^3$	по
Thigh SF ¹	females > males ²	males: $W > H > B^3$ females: $W > H > B^3$	ИО
Knee SF	females > males	males: H > W > B females: H > W > B	NO
Calf SF ¹	females > males ^r	males: $W > H > B^3$ females: $W > H > B^3$	NO

^{*} Gender by race interaction.

1 Significant age covariate.

² Significant gender effect.

³ Significant race effect.

ANCOVA data for means of circumferences summarized by gender and

VARIABLE	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE
Head C ¹	males > females2	males: $W = B > H^3$ females: $B > W > H^3$	YES
Neck C ¹	males > females2	males: W > B > H females: B > H > W	NO
Biceps C ¹	males > females ²	males: $B > H > W$ females: $B > H > W$	YES
Flexed Biceps C1	males > females ²	males: B > H > W females: H > B > W	YES
Shoulder C ¹	males > females ²	males: B > W > H females: W > B > H	NO
Chest C ¹	males > females ²	males: $W > H > B^3$ females: $W > H > B^3$	NO
Abdomen 1 C ¹	males > females2	males: $W > H > B^3$ females: $H > W > B^3$	NO
Abdomen 2 C ¹	males > females ²	males: $W > H > B^3$ females: $W > H > B^3$	NO
Hip C ¹	males > females ²	males: W > H > B females: W > H > B	NO
Forearm C1	males > females ²	males: $B > W > H^3$ females: $B > W > H^3$	NO
Wrist C ¹	males > females ²	males: $W > B > H^3$ females: $W = B > H^3$	NO
Thigh C ¹	males > females	males: $B > H > W^3$ females: $B > W > H^3$	NO
Knee C ¹	males > females ²	males: W > B > H fem_les: H > W > B	NO
Calf C1	males > females ²	males: $W > B > H^3$ females: $W > B > H^3$	NO
Ankle C ¹	males > females ²	males: W > B > H ³ females: W > H > B ³	NO

^{*} Gender by race interaction.

i Significant age covariate.

² Significant gender effect.

³ Significant race effect.

differences were found for all circumferences with the exception of thigh circumference. Significant (p<.05) race differences were found for all but 4 circumferences. These were: shoulder, hip, knee and neck circumferences. Significant (p<.05) interactions were found for head, biceps and flexed biceps circumferences.

Diameters

Means for all diameter measurements summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 20.

The results of the ANCOVA showed that age was a significant (p<.05) covariate for all diameter measures. Significant (p<.05) differences between genders were also found for all diameters. Significant (p<.05) race differences were found for all diameters with the exception of the knee diameter. Significant (p<.05) interactions were found for biacromial, biiliac, bitrochanter and chest diameters.

INCREMENTAL DYNAMIC LIFT AND PHYSICAL FITNESS TEST VARIABLES

Incremental Dynamic Lift

Means for incremental dynamic lift summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVA tables are presented in Appendix I. The results of the ANCOVA for these variables are summarized in Table 21.

The results of the ANCOVA indicated that age was not a significant (p>.05) covariate for this variable. Significant (p<.05) gender and race differences were apparent without a confounding significant interaction.

Table 20. ANCOVA data for means of diameters summarized by gender and race.

VARIABLE	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE
Biscromial D ¹	males > females ²	males: $W > B > H^3$ females: $B > W > H^3$	YES
Bideltoid D ¹	males > females ²	males: W > B > H ⁸ females: W > H > B ⁸	МО
Chest D ¹	males > females ²	males: W > H > B ³ females: W > H > B ³	YES
Biiliac D ¹	males > females ²	males: $W > H > B^2$ femalés: $W > H > B^2$	YES
Bitrochanter D ¹	males > females ²	males: $W > H > B^8$ females: $W > H > B^8$	YES
Elbow D ¹	males > females ²	males: $W > B > H^3$ females: $W = B = H^3$	МО
Wrist D ¹	males > females ²	males: $W > B = H^3$ females: $W = B > H^3$	NO
Knee D ¹	males > females ²	males: B > H = W females: H > W > B	NO
Ankle D ¹	males > females2	males: $W = B > H^3$ females: $W = H > B^3$	NO

^{*} Gender by race interaction.

THE PROPERTY OF THE PROPERTY O

Significant age covariate.Significant gender effect.

^{*} Significant race effect.

Table 21. ANCOVA data for means of incremental dynamic lift and fitness test variables.

VARIABLE	GENDER EFFECTS	RACE EFFECTS	GENDER X RACE
Incremental Dynamic Lift	males > females2	males: B > W > H ⁸ females: W > B > H ⁸	NO
Sit-Ups ¹	females > males ²	males: B > H > W females: H > W > B	МО
Push-Ups ¹	males > females2	males: $B > H > W$ females: $H > W > B$	YES
Two Mile Run ¹	females > males ²	males: W > B > H females: W > H > B	NO
Fitness Score ¹	females > males ³	males: B > H > W females: H > B > W	ИО

^{*} Gender by race interaction.

¹ Significant age covariate.

² Significant gender effect.

Significant race effect.

Physical Fitness Test Variables

Means for fitness test variables summarized by gender, race and age are presented in Appendix G. Correlation coefficients are reported separately for males and females in Appendix H. ANCOVÁ tables are presented in Appendix I. The results of the ANCOVÁ for these variables are summarized in Table 21.

The results of the ANCOVA indicated that age was a significant (p $\langle .05 \rangle$) covariate for all of the variables in this category, that is, sit-ups, pushups, two mile run time and APFT score. Significant (p $\langle .05 \rangle$) gender differences were found for all variables, however, significant race effects were found only for push-ups. This finding was confounded by a significant (p $\langle .05 \rangle$) gender by race interaction.

DISCUSSION

This report presents body composition, appearance and physical performance variables by gender, race and age for a large, heterogeneous group of active duty Army personnel. It is unique because it involves a comprehensive set of demographic and physiological measurements for the subjects. Laboratory measurements of appearance were made through photographic assessment and rating by military personnel; body composition, through anthropometric assessment and underwater weighing; and performance, through direct assessment of 0_{2} max, strength and annotation of APFT results. In addition, data were also collected describing smoking and medical histories, leisure time activity, and military demographic data for the sample. Although random sampling techniques were not utilized, most of the subjects in the present sample were stationed at Fort Hood, Texas which is the largest combat arms

post in the continental United States and therefore, provided a reasonable somewhat of a cross section of military personnel with the exception of women over age 35.

This data base will serve as a reference source for many important issues concerning the relationship between military appearance, body composition and physical performance in active duty military personnel. It has thus far been used to validate the height-weight and body fat standards as well as to develop a new method for the estimation of relative body fat for the Army weight control program (Fitzgerald et al., to be published). Health aspects include the relationship between subcutaneous fat patterning and resting blood pressure levels.

Another important application of this type of data base is it's ability to serve as a cross-validation source for other investigators, in both military and civilian sectors, who are interested in testing regression equations developed to predict body composition parameters. Lohman (18) has indicated that testing the generalizability of a prediction equation, through cross-validation techniques, is a crucial aspect of regression equation development. This data set has already been used to cross-validate the circumference techniques used by the US Navy for the estimation of relative body fat in Naval personnel (11,12).

Another unique aspect of this data set is information regarding difficulty with the underwater weighing technique. To be successful, this technique requires the cooperation of the test subject. It has been our experience that initially, most individuals have some degree of difficulty with the technique; however, after several practice trials, they are fully cooperative. Some subjects however, are never able to fully cooperate. This results in an

overestimation of relative fat and underestimation of lean body mass. Although this phenomenon is well known to anyone who works with underwater weighing, (and can certainly produce spurious results), it has not been previously reported in the literature.

Further discussion of the detailed findings contained in this study will be presented in subsequent reports.

THE PROPERTY OF THE PROPERTY O

REFERENCES

- 1. Sehnke, A.R., B.C. Feen and W.C Welham. The specific gravity of healthy young men. JAMA: \$13:495 498, 1942.
- Beanke, A.R. and J.H. Wilmore. Evaluation and Regulation of Body Build and Composition. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1974.
- 3. Blanchard, J.H., H.J. Krzywicki and J.E. Canham. A visual appraisal method for estimating body composition in humans. LATE Institute Report No. 81. November, 1979.
- 4. Buskirk, E.R. Underwater weighing and body density. A review of procedures. It: J. Brozek and A. Henschel (eds), Techniques for Measuring Body Composition. National Academy of Sciences National Research Council, Washington, D.C., 1961.
- Carter, J.E.L. Kinsnthropometry Notes. San Diego State University, San Diego, CA. 1983.
- Cherniack, R.M. Pulmanary Function Testing. W.B. Saunders Company. Phildelphia, 1977.
- 7. Department of Defense Study of the Hilitary Services Physical Fitness. 3 April 1981. Washington, D.C.
- Dupertuis, C.S. Anthropometry of extreme sometotypes. Amer. J. Phys. Anthrop. 8: 367 - 385, 1950.
- 9. Durnin, J.V.G.A. and J. Womersley. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 32: 77 97, 1974.
- 10. Goldman, R.F. and E.R. Buskirk. Body volume measurement by underwater weighing: description of method. In: J. Brozek and A. Henschel (eds.), Techniques for Measuring Body Composition. National Academy of Sciences National Research Council, Washington, D.C., 1961.
- 11. Hodgdon, J.A. and M.B. Beckett 1984 Prediction of percent body fat for U.S. Navy men from body circumferences and height. Report No. 84-11. Naval Health Research Center, San Diego, CA.
- 12. Hodgdon, J.A. and M.B. Beckett 1984 Prediction of percent body fat for U.S. Navy women from body circumferences and height. Report No. 84-29. Naval Health Research Center, San Diego, CA.
- 13. Hsieh, S., G. Klive, J. Porcari and F.I. Katch. Measurement of residual lung volume setting and lying in air and water (and during underwater weighing) and its effects on computed body density. Med. Sci. Sports Exerc., 17: 204, 1985.

- 14: Jackson, A.S. and M.L. Pollock. Generalized equations for predicting body density of men. Br. J. Nutr. 40: 497 504, 1978.
- 15. Jackson, A.S. and M.L. Pollock. Steps toward the development of generalized equations for predicting body composition of adults. Can. J. Appl. Spt. Sci. 7: 189 196, 1982.
- 16. Katch, F.I. and V.L. Katch. Measurement and prediction errors in body composition assessment and the search for the perfect prediction. Res. Quart. Exerc. Sport. 51: 249 260, 1980.
- 17. Kohl, H.W., S.N. Blair and R.S. Paffenbarger. Validity of self report exercise habit responses in a mail survey. Med. Sci. Sports Exerc. 18: 520. 1986.
- 18. Lohman, T.G. Skinfolds and body density and their relation to body fitness: a review. Hum. Biol. 53: 181 225, 1981.
- 19. McArdle, W.D., F.T. Katch and V.L. Katch. Exercise Physiology: Energy, Nutrition and Human Performance. Lea & Febiger. Philadelphia, 1986.
- 20. McDaniel, J.W., R.J. Kendis and S.W. Madole. Weight lift capabilities of Air Force basic trainees. AFAMRL-TR-83-0001. AFAMRL, Human Engineering Division, AMD, AFSC, Wright-Patterson AFB, OH.
- 21. Metropolitan Life Insurance Company: New weight standards for men and women. Statistical Bulletin, 40: 1 4, 1959.
- 22. Ostroye, S.M. and P. Vaccaro. Effect of immersion on RV in young women: implications for measurement of body density. Int. J. Sports Med. 3: 220 223, 1982.
- 23. Paffenbarger, R.S., A.L. Wing and R.T. Hyde. Physical activity as an index of heart attack risk in college alumni. Am. J. Epidemiol. 108: 161 175, 1978.
- 24. Paffenbarger, R.S., R.T. Hyde, A.L. Wing and C.H. Steinmetz. A natural history of athleticism and cardiovascular health. JAMA. 27: 491 495, 1984.
- 25. Robertson, C.H., C.M. Engle and M.E. Bradley. Lung volumes in man immersed to the neck: dilution and plethysmographic techniques. J. Appl. Physiol. 44: 679 682, 1978.
- 26. Siri, W.E. Body composition from fluid spaces and density: analysis of methods. In: Brozek, J. and A. Henschel (eds.), "Techniques for Measuring Body Compositon". National Academy of Sciences National Research Council, Washington, D.C., 1961.
- 27. Tanner, J.M. and J.S. Werner. The reliability of the photogrammetric method of anthropometry with a description of a miniature camera technique. Amer. J. Phys. Anthrop. 7: 145 186, 1949.

- 28. Taylor, H.L., D.R. Jacobs, B. Schucker, J. Knudsen, A.S. Leon and G. Debacker. A questionnaire for the assessment of leisure time physical activities.
- 29. Vogel, J.A., J.F. Patton, R.P. Mello, and W.L. Daniels. An analysis of aerobic capacity in a large United States population. J. Appl. Physiol. 60: 494 500, 1986.
- 30. Wallman, K.K. and J. Hodgdon. Race and ethnic standards for federal statistics and administrative reporting. Statis. Rept. July: 450 454, 1977.
- 31. Wilmore, J.H. The use of actual, predicted and constant residual lung volumes in the assessment of body composition by underwater weighing. Med. Sci. Sports, 1: 87 90, 1969.
- 32. Wilmore, J.H., P.A. Vodak, R.B. Parr and R.N. Girándola. Further simplification of a method for determination of residual lung volume. Med. Sci. Sports. Exerc. 12: 216 218, 1980.
- 33. Wolthius, R.A., V.F. Froelicher, J. Rischer, J. Nosuera, G. Davis, A.J. Stewart and J.H. Triebwasser. New practical treadmill protocols on clinical use. Amer. J. Cardiology. 39: 697 700, 1977.
- 34. Department of Defense Directive No. 1308.1, 29 June 1981. Subject: Physical fitness and weight control programs. ASD (MRA & L).
- 35. Memorandum for Assistant Secretary of Defense (MRA & L) from W. D. Clark, Acting Asst. Sec. of the Army (Manpower and Reserve Affairs, 15 Aug 1980). Subject: Physical Fitness Program Report on Physical Fitness Symposium.

Appendix A

Tasking Letter

DEPARTMENT OF THE ARMY

OFFICE OF THE SURGEON GENERAL WASHINGTON, DC 20310

REPLY TO ATTENTION OF

DASG-PSP

7 MAR 1983

SUBJECT: Requirement for Validation Studies, Army Body Fat Standards

Commander
US Army Medical Research and
Development Command
Fort Detrick, MD 21701

- 1. Reference AR 600-9, The Army Weight Control Program.
- 2. The above cited reference assigns responsibility to the Army Medical Department to recommend body fat standards and to perform body fat measurements.
- 3. The published body fat standards are based on empirical data and reasonable medical judgement. These standards need rigorous review and methodical study over the next few years to determine the appropriateness of the current body fat standards and the methods used to measure body fat.
- 4. Accordingly, request that the Medical Research and Development Command design and conduct a study to accomplish the following objectives:
- a. To measure and describe the distribution of individual body weight and body fat among a typical military sample population.
- b. To measure and describe the relationship between various body fat levels and physical performance parameters such as Army Physical Readiness Test (APRT) scores and physiologic indicators of aerobic fitness.
- c. To measure and describe the relationship between varying body fat levels and appearance of soldiers.
- d. To develop a data base for military personnel by age, sex, race, weight, height, and body fat of body skin folds, body circumferences, and other anthropometric measurements as well as hydrostatically determined body fat values.
- e. To determine the degree of correlation between body fat as measured by the current Army method (caliper) compared with hudrostatic weighing.

DASG-PSP

SUBJECT: Requirement for Validation Studies, Army Body Fat Standards

- f. To develop an improved predictive equation based on skin folds, body circumferences, and/or other anthropometric measurements which will allow more accurate estimates of body fat.
- 5. This study should be concluded by 1 July 1985.
- 6. Points of Contact for this request within the Directorate are COL George

E. T. Stebbing and LTC Frederick J. Erdtmann, Autovon 227-1874.

FOR THE SURGEON GENERAL:

California, o

QUINN H. BECKER

Major General, MC

Deputy Surgeon General

Appendix B

Instructions to Raters and Explanation of K Rating Scale

INSTRUCTIONS TO RATERS

Introduction

You are being asked to rate slide photographs of soldiers in the US Army. As you heard in the briefing, we are responsible for determining the relationship between appearance and performance. The results obtained from this evaluation session will determine the 'appearance' of our data set. We are interested in your own personal standards for what you feel is acceptable military appearance.

During the first two and one half days, you will view slide photographs of soldiers dressed in their Class A uniform. They will have a black mask on to protect their anonymity. Please evaluate how they look in a uniform, not how their uniform looks on them. I know that this is a fine difference, but in some of the photos we were not able to make the uniform look perfect. Each soldier was asked to perform a set of standard anthropometric poses. Each of these poses will be shown to you simultaneously. You will be given 10-15 seconds to evaluate each set of three photographs. You will be given a rating sheet for each set of three photographs (see attached).

During the second half of the week you will be asked to perform the same rating on slide photographs of soldiers dressed (for the most part) in dark colored swim suits. You will also rate the soldiers using the 'K' scale.

This will not be an easy task as there is much work to be done in a short period of time. Please do your best and feel free to ask questions at any time.

The Rating Sheet

Please notice that the sheet is broken into 8 parts, all on one page. When you are rating the Class A pictures, you will only concern yourself with the first 7 parts. The 'K' scale is only to be used for the bathing suit (nude) photos.

Part 1

Date of Rating: is simply the day you are doing the rating. Part 2

Rater #: Each of you will be assigned a rater number. Please use this instead of your name.

Part 3

Subject #: Each photo/slide will have a 4 or 5 digit number in the lower left hand corner. Please copy this into the space provided. If the subject number is only four digits, please place a 0 in the first space on the rating sheet.

Part 4

Subject Gender: 1 = male, 2 = female.

Part 5

Rating Scale Being Used: 1 = Uniform: to be used for the Class A rating; 2 = nude: to be used when you are rating the bathing suit photo; 3 = 'K': to be used when you are rating the bathing suit photo.

Part 6

Uniform/Nude Rating Value Given: This is a 5 point scale where 1 = a POOR rating and 5 = an EXCELLENT rating. Again you are evaluating the military appearance of the soldier in the Class A uniform, according to your own personal standards.

When you are using this scale in conjunction with the bathing suit/nude photo you are rating the appearance of the soldier according to your own personal standards.

Part 7

Acceptability: This is a simple go or no go response which states whether or not you think this person has or does not have acceptable military appearance. This scale is not as sensitive as the 5 point scale. Please use this for both the Class A and nude/swimsuit photos.

Part 8

K Rating Scale: This is a published scale which allows a reviewer to estimate body composition in humans. This will be used for the bathing suit/nude photos only.

Explanation of K Rating Scale

- Fat Score 1 (no visible fat) This person has no fat visible as viewed from these photos.
- Fat Score 2 (very thin) Muscle attachments and blood vessels are clearly seen below the skin surface; a slight amount of fat tissue can be deposited in the extreme lower back, inner thigh area and immediately below the butteck. Abdominal muscling is clearly visible, facial lines are angular and the neck appears to be free of fat deposits.
- Fat Score 3 (thin) Locations of muscle attachments are moderately visible. Blood vessels can be seen below the skin, although the are not clearly visible. Abdominal muscles can be seen to some degree although a slight layer of fat is now deposited in the abdominal area. Facial lines are still fairly angular and free of fat.
- Fat Score 4 (moderate) Location of muscle attachments are not clearly visible. Body lines in general are somewhat smooth in appearance. Abdominal muscles are not clearly visible due to fat tissue covering; however, the stomach does not protrude over the waistline. Facial characteristics are probably best described as being smooth and more circular in appearance than the leaner subjects.
- Fat Score 5 (fat) Body lines are smooth but are now becoming rounded. Abdominal muscles are not visible due to fat deposits. Stomach protrudes over the waistline from about 0-3.5 cm. Fat deposits on torso sides protrude over the waistline slightly. Facial lines are rounded.
- Fat Score 6 (very fat) No muscling is clearly visible due to fat deposits. Stomach protrudes over the waistline at least 3.5-4.0 cm and there are fat deposits protruding over the waistline on the sides. Facial lines are very rounded and the area under the jaw and around the neck have substantial amounts of fat deposited.

KARONINEKAN AGGORGIAN DEKARENDARIA BERBERAK YEUN KUNKUKA MENGRISTAN KINGGORGIAN KINGGORGIA

Fat Score 7 (obese)

Appendix C

Rater Data Sheet

USARIEM Body Composition Study

- 2. Rater #: 7 8
- 3. Subject #: 9 10 11 12 13
- 4. Subject Gender:
 1 = Male
 2 = Female

5. Rating Scale Being Used:
1 = Uniform
2 = Nude
3 = 'K'

- 6. Uniform/Nude Rating Value Given:
 1 = Poor
 2 = Fair
 3 = Good
 - 4 = Very Good 5 = Excellent
- 7. Acceptability:
 1 = Acceptable
 2 = Unacceptable
 17
- 8. 'K' Rating Scale:
 1 = No Visible Fat
 2 = Very Thin
 3 = Thin
 4 = Moderate
 5 = Fat
 6 = Very Fat
 7 = Obese

18

16

Appendix D

Specific Description and Anatomic Location of Skinfold, Circumference and Diameter Sites Anatomical locations for skinfold, direumference, and diameter measurements according to the methodology of Behnke and Wilmore (2).

SKINFOLDS

- Chin: A vertical fold under the mandible which runs between the chin and the neck.
- Chest: An oblique fold over the leteral border of the pectoralis major; just medial to the axilla, running diagonally between the shoulder and the opposite hip.
- Subscapular: An oblique fold under the inferior angle of the scapula running parallel to the axillary border.
- Triceps: A vertical fold midway between the acromion and olecranon processes on the posterior aspect of the arm, the arm held vertically, with the fold running parallel to the length of the arm.
- Hidaxillary: A vertical fold on the midaxillary line approximately at the level of the fifth rib.
- Waist: A vertical fold in the midaxillary line, midway between the twelfth rib and the iliac crest.
- Suprailiac: A vertical fold on the crest of the ilium at the midaxillary line.
- Abdominal: A horizontal fold adjacent to the umbilicus.
- Thigh: A vertical fold on the anterior aspect of the thigh midway between the hip and the knee joints.

- Knee: A vertical fold at the midpoint of the patella.
- Calf: A vertical fold on the medial calf at the level of the maximal circumference.
- Bicep: A vertical fold taken half way between the top of the axillary fold and the antecubital fold.

CIRCUMFERENCES

- Head: Taken just superior to the eyebrow line and encompassing the occipital protuberance.
- Neck: Taken just inferior to the larynx.
- Shoulders: Taken laterally at the maximal protrusion of the deltoid muscles and anteriorly at the articular prominance of the sternum and the second rib.

- Chest: Taken at the level of the xiphoid.
- Abdomen 1: Taken laterally, midway between the lowest lateral portion of the rib cage and the olise crest, and anteriorly, midway between the xiphoid process of the sternum and the umbilicus. This level is the natural waist and is readily identified as the level of the minimal abdominal width when the side profiles are alightly concave.
- Abdomen 2: From a lateral perspective it is at the level of the iliac crests, and anteriorly at the umbilious.
- Hips: From an anterior perspective, this measurement is located at the level of the symphysis pubis, and posteriorly at the maximal protrusion of the gluteal muscles.
- Thigh: Taken midway between the lateral head of the greater trochanter and the tibia,
- Knee: Taken at the mid-patellar level, slightly flexed with the weight transferred to the opposite leg.
- Calf: Taken at the maximal girth.
- Ankle: Taken at the minimal girth, superior to the malleoli.
- Biceps Flexed: Taken at the maximal girth of the mid-arm when flexed to the greatest angle with the underlying muscles fully contracted.
- Biceps Extended: Taken a the maximal girth of the mid-arm when the elbow is locked in maximal extension.
- Forearm: Taken at the maximal girth with the elbow extended and the hand supinated.
- Wrist: The minimal girth just distal to the styloid process of the radius and the ulna.

DIAMETERS

- Biacromial: The distance between the most lateral projections of the acromial processes with the elbows next to the body and the hands resting on the thighs.
- Bideltoid: The distance between the outermost protrusions of the shoulder with the anthropometer making only light contact with the skin.
- Chest Width: Taken with the arms abducted slightly for placement of the anthropometer at the level of the fifth to sixth ribs (nipple line); arms adducted back to the side of the body for the measurement.

- Billiac: taken at the distance between the most lateral projections of the illac crest.
- Bitrochanteric: Taken as the distance between the most lateral projections of the greater trochanters.
- Knee; Distance between the outermost projections of the tibial condyles.
- Ankle: Taken as the distance between the malleoli with the anthropometer pointed upward at a 450 angle.
- Elbow: Taken as the distance between the condyles of the humerus with the elbow flexed and the hand supinated.
- Wrist: Taken as the distance between the styloid processes of the radius and ulna.

Appendix E

Career Management Field/Branch

CAREER MANAGEMENT FIELD/BRANCH

VALUE 01	FREQUENCY 95	PERCENT 06	VALUE 19	FREQUENCY 06	PERCENT 0
02	98	07	20	0	0
03	135	09	21	0	0
04	17	01	22	0	0
05	66	04	23	0	0
06	141	09	24	0	0
07	138	09	25	02	0
08	102	07	26	0	0
09	86	06	2.7	0	0
10	143	10	28	01	0
11	0	0	29	0	0
12	201	13	30	01	0
13	53	04	31	50	3
14	45	03	32	0	0
15	05	0	33	03	0
16	28	02			
17	03	,			
18	75	05			

00	CSM	13 Mil Intell. (MI)
01	Ordnance (ORD)	14 Mil Police (MP)
02	Medical (MED)	15 Chaplin (CHP)
03	Infantry (INF)	16 Chemical (CM)
94	Finance (FIN)	17 Legal (JAG)
05	Engineer (CE)	18 Transporation Corp (TC)
66	Armor (ARM)	25 Cook (CK)
٠ ٢	Field Artillary (FA)	30 CE Sperator
3	Aviation (AVN)	31 Maintenance (MT)
â	* 4	32 Recruiter (RC)
		33 Food Service (FS)
	Secal (SIG)	34 Trng Development (TD)

Sy and expected in expected in the companies of the expected in the companies of the compan

Appendix F

MOS Classifications

PRIMARY MOS CATEGORIES MALES

VALUE LABEL	VALUE	FREQUENCY
E/WSIGINT EMITTER ID/LOC	504	1
SIGNAL SECURITY SPECIALIST		1
E/WSIGINT/MORSE INTERCEPTOR		
INFANTRYMAN	1102	
INDIRECTFIRE INFANTRYMAN		
COMBAT ENGINEER	1202	
ATOMIC DEMOL MUNITION SP	1205	4
ENGINEERTRACKEDVEHICLE CREW		
CANNON CREW MEMBER	1302	
TACFIRE OPERATIONS SP	1303	1
CANNONFIRE DIRECTION SP	1305	10
FIRE SUPPORT SP	1306	18
FA FIREFINDERRADAR OPERATOR	1318	3
FIRE SUPPORT SP FA FIREFINDERRADAR OPERATOR CANNON MISSLE SENIOR SGT	1325	2
DEFENSE ACQ RADAR OPERATOR ADA CHAPARRAL MISSLE CREW	1610	1
ADA CHAPARRAL MISSLE CREW	1616	8
ADA SHORTRANGE GUNNERY CREW	1618	
MANPADS CREWMEMBER	1619	2, 3 3
FA RADAR CREWMEMBER	1702	3
MANPADS CREWMEMBER FA RADAR CREWMEMBER FA TARGET ACQ SP	1703	
GROUNDSURVEILLANCERADARCREW	1711	1
CAVALRY SCOUT	1904	
M48-60 ARMOR CEEWMAN	1905	
M1 ABRAMS ARMOR CREWMAN		
AR SENIOR SGT	1926	
CHAPARRAL SYSTEM MECHANIC		2
AER E/W DEFENSEEQUIP REP		
TACTICAL MICROWAVE SYS REP		
TACTICAL SATELLITE SYS REP	2617	9
TOW/DRAGON REP	2705	3
TOW/DRAGON REP CHAPARRAL/REDEYE REP	2707	2
FORWARDAREA ALERT RADAR REP	2714	3
SINGLE CHANNEL RADIO OPR	3103	5
FIELD RADIO REP	3105	3
TELETYPEWRITER REP	3110	4
COMBAT SIGNALER	3111	3
MULTI CH COMM EQUIP OPR	3113	12
TACTICAL CIRCUIT CONTROLLER	3114	7
FIELD GEN COMSEC REP	3119	1
TACTICAL COMM SYS OPR/MECH	3122	9
COMM ELEC OPERATIONS CHIEF	3126	5
COMM ELEC MAINT CHIEF	3226	1
DAS3 COMPUTER REP	3403	2
FA COMPUTER REP	3425	2
ADP MAINT SUPER	3426	1
AUTO TEST EQUIP REP	3503	1
SPECIAL ELEC DEVICES REP	3505	2

AVIONIC MECH	3511	2
AVIONIC EQUIP MAINT SUPER WIRE SYS INSTALLER	3516	1
		15
TRANS ELEC SWITCHING SYS REI		1
WIRE SYS OPR	3613	4
FIRE CONTROL INSTRUMENT REP	4103	1
AUDIO-VISUAL EQUIP REP	4105	1
OPTICAL LAB SP	4205	1
OPTICAL LAB SP FABRIC REPAIR SPEC	4313	1
METAL WORKER	4402	1
MACHINIST	4405	1
SELFPROPELLED FA TURRET MECI		1
TANK TURRET REP		3
M60A1/A3 TANK TURRET MECH		1
BRADLEY SYS TURRET MECH		1
ARM/FIRE CONTROL MAINT SUPE		1
CARPENTRY/MASONRY SP	5102	1
STRUCTURE SP	5103	1
CONSTRUCTION ENG SUPER	5108	2
	5111	2
	5114	2
INTERIOR ELECTRICIAN	5118	2
UTILITIES EQUIP REP	5203	3
POWER GEN EQIUP REP	5204	2
TRANSMISSION & DIST SP	5207	1
TRANSMISSION & DIST SP SMOKE OPERATIONS SP NBC SP	5403	3
		6
AMMUNITION SP	5502	4
	5705	1
GRAVES REGISTRATION SP	5706	1
GRAVES REGISTRATION SP CONSTRUCTION EQUIP REP	6202	5
CRANE OPR	6206	4
CONCRETE & ASPHALT EQUIP OP	R6208	1
LIGHT WHEEL VEHICLE MECH	6302	33
SELF PROP FA SYS MECH	6304	3
M1 ABRAMS TANK SYS MECH	6305	6
FUEL & ELECT SYS REP	6307	2
TRACK VEHICLE REP	6308	9
QM & CHEM EQUIP REPAIR	6310	4
M1 TANK SYS MECH	6314	1
HEAVY WHEEL VEHICLE MECH	6319	1
BRADLEY FIGHT VEH SYS MECH		1
WHEEL VEHICLE REP	6323	5
TRACK VEH MECH	6325	2
MECH MAINT SUPER	6326	1
MOTOR TRANSPORT OPR	6403	31
TANK CREW MEMBER	6510	1
OBSERVATION AIRPLANE REP		2
UTILITY HELICOPTER REP	6714	9
TACTICAL TRANS HELICOP REP		1
MEDIUM HELICOPTER REP	6721	3
OBSER SCOUT HELICOP REP	6722	8

HEAVY LIFT HELICOP REP	6724	1
AH1 ATTACK HELICOP REP	6725	12
AIRCRAFT MAINT SENIOR SGT	6726	1
AIRCRAFT POWERPLANT REP		2
	6806	2
AIRCRAFT STRUCTURAL REP	6807	4
AIRCRAFT FIRE CONTROL REP		
AIRCRAFT WEAPON SYS REP		3 2
ADMIN SP	7112	6
	7113	1
TRAFFIC MGT COORDINATOR		1
COMBAT TELECOMM CTR OPR		21
FINANCE SP	7303	3
	7404	1
	7502	4
	7503	3
	7504	3 3
PERS INFO SYS MGT SP	7506	3
PERSONNEL SGT	7526	2
EQUIP RECORDS & PARTS SP	7603	6
MEDICAL SUPPLY SP	7610	9
MATERIAL CONTROL & ACCT SP	7616	12
MATERIAL STOR & HANDLING SP		12
PETROLEUM SUPPLY SP	7623	8
SUBSISITENCE SUPPLY SP	7624	1
UNIT SUPPLY SP	7625	22
SENIOR SUPPLY SGT	7626	2
CONSTRUCTION SURVEYOR		1
FA SUPER	8203	8
	8402	1
PUBLIC AFFAIRS/AV CHIEF		1
MEDICAL SP	9101	6
	9102	25
	9103	1
	9104	2
PHARMACY SP	9117	1
MEDICAL LAB SP	9202	1
PETROLEUM LAB SP	9203	1
FOOD SERVICE SP	9402	3
MILITARY POLICE	9502	26
CORRECTIONS NCO	9503	5
INTELLIGENCE ANALYST	9602	4
IMAGERY ANALYST	9604	1
COUNTERINTELLIGENCE AGENT	9702	1
E/W SIGNAL INT ANALYST	9803	5
E/W SIG INT VOICE INT	9807	1
E/W SIG INT NONCOM INTCEP	9810	1

PRIMARY MOS CATEGORIES FEMALES

VALUE LABEL	VALUE	FREQUENCY
CTOVAL CROUDING CD	507	1
SIGNAL SECURITY SP E/W SIGINT MORSE INTERCEPTO FA FIREFINDER RADAR OPR FA RADAR CREWMEMBER FA TARGET ACQUISITION SP WEAPONS SUPPORT RADAR REP	10C	1
E/W SIGINT MORSE INTERCEPTO	1210	1
FA FIREFINDER RADAR OPK	1310	2
FA RADAR CREWMEMBER	1702	2
FA TARGET ACQUISITION SP	1/03	1
WEAPONS SUPPORT RADAR REF	2002	2
TACTICAL SATELLITE SYS REP CHAPARRAL/REDEYE REP SINGLE CHANNEL RADIO OPR FIELD RADIO REP TELETYPEWRITER REP COMBAT SIGNALER	2017	1
CHAPARRAL/REDEYE REP	2107	3
SINGLE CHANNEL RADIO OPR	3105	2
FIELD RADIO REP	3103	2
TELETYPEWRITER REP	2111	1
COMBAT SIGNALER	2111	1
MULTI CH COMM EQUIP OPR COMM ELEC OPR CHIEF WIRE SYS INSTALLER	3113	1
COMM ELEC OPR CHIEF	3120	4
WIRE SYS INSTALLER	3603	1
FIRE CONTROL INSTRUMENT RE	P 4103	1
METAL WORKER	4402	1
WATER TREATMENT SP	5114	3
METAL WORKER WATER TREATMENT SP INTERIOR ELECTRICIAN UTILITIES EQUIP REP POWER GEN EQUIP REP SMOKE OPERATIONS SP	5118	1
UTILITIES EQUIP REP	5203	1
POWER GEN EQUIP REP	5204	2
SMOKE OPERATIONS SP	5403	1
SMOKE OPERATIONS SP NBC SP AMMUNITION SP	5405	8
AMMUNITION SP	5502	3
CONSTRUCTION EQUITS RES	6202	3
LIGHT WHEEL VEHICLE MECH FUEL & ELEC SYS REP TRACK VEHICLE REP QM & CHEM EQUIP REP	6302	9
FUEL & ELEC SYS REP	6307	1
TRACK VEHICLE REP	6308	3
QM & CHEM EQUIP REP	6310	5
HEAVY WHEEL VEHICLE MECH	6213	Ţ
MOTOR TRANS OPR	6403	14
AH1 ATTACK HELICOP TECH II OBSER SCOUT HELICOP REP ATRORAFT POWERPLANT REP	NSP6625	1
OBSER SCOUT HELICOP REP	6722	1
AIROIGH I TOUBLE DIE.	6802	
AIRCRAFT ELECTRICIAN	6806	1
PATIENT ADMIN SP	7107	
ADMIN SP	7112	
CHAPEL ACTIVITIES SP	7113	
TRAFFIC MGT COORDINATOR	7114	
COMBAT TELECOM CTR OPR	7205	
ADT CTR OPR	7207	
FINANCE SP	7303	
ACCOUNTING SP	7304	
COMPUTER/MACHINE OPR	7404	
PROGRAMMER ANALYST	7406	
PERSONNEL ADMIN SP	7502	
PERSONNEL MGT SP	7503	2

PERSONNEL RECORDS SP	7504	6
PERSONNEL ACTION SP	7505	2
PERSONNEL SGT	7526	1
EQUIP RECORDS & PARTS SP	7603	2
MEDICAL SUPPLY SP	7610	4
MATERIAL CONTROL & ACCT SP	7616	13
MATERIAL STOR & HANDL SP	7622	10
PETROLEUM SUPPLY SP	7623	3
SUBSISTENCE SUPPLY SP	7624	1
UNIT SUPPLY SP	7625	14
PHOTOLITHOGRAPHER	8306	1
MEDICAL SP	9101	4
MEDICAL SP NCO	9102	11
PRACTICAL NURSE	9103	1
OPERATING RM SP	9104	2
ENVIRON HEALTH SP	9119	2
MEDICAL LAB SP	9202	3
FOOD SERVICE SP	9402	4
MILITARY POLICE	9502	1
SPECIAL AGENT	9504	2
INTELLIGENCE ANALYST	9602	1
E/W SIGNAL INT ANALYST	9803	1
E/W SIG INT VOICE INT	9807	3
E/W SIG INT NONCOM INTCEP	9810	1

Appendix G

Descriptive Statistics for all Data Summarized by Gender, Race and Age

CHIN SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AŒ:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:					
MEAN	5.264	5.910	7.480	8.875	6.939
STD.DEV.	1.984	2.276	3.163	2.954	2.978
MAXIMUM	14.800	18.800	21.200	20.300	21.200
MINIMAM	2.700	2.200	2.200	4,100	2.200
CASES INCL	162	389	318	258	1127
WHITE MALES:					
MEAN	5.773	6.516	8.320	9.078	7.668
STD.DEV.	2.128	2.423	3.101	2.990	3.031
MAXIMUM	14.800	18.800	21.200	20.300	21.200
MINIMUM	2.900	2.700	3.400	4.100	2.700
CASES INCL.	101	203	166	225	695
BLACK MALES: MEAN	4 005	4 620	F 000	6 603	4 051
	4.205	4.638	5.268	6.293	4.851 1.549
STD.DEV.	0.999	1.252	1.890	1.798	
MAXIM.M	8.100	10.000	10.100	10.100	10.100
MINIMUM	3.000	2.200	2.200	4.300	2.200
CASES INCL.	41	124	75	15	255
HISPANIC MALES	:				
MEAN	4.881	6.602	8.302	9.120	7.320
STD.DEV.	2.008	2.222	3.332	2.606	3.011
MAXIMUM	10.500	12.300	18.000	13.200	18.000
MINIMA	2.700	3.200	3.300	4.200	2.700
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	8.276	6.621	9.094	10.800	7.505
STD.DEV.	3.085	2.454	3.421	5.233	3.008
MAXIMUM	17.900	16.300	17.300	14.500	17.900
MINIMUM	2.400	3.000	3.000	7.100	2,400
CASES INCL	62	155	52	2	271
WHITE FEWALES:	:				
MEAN	9.043	7.696	9.982	10.800	8.584
STD.DEV.	2.500	2.484	2.893	5.233	2.766
HAXIMUM	16.000	16.300	17.300	14.500	17.300
MINIMUM	4.400	4.000	4.700	7.100	4.000
CASES INCL	37	76	33	2	148
BLACK FEMALES:					
MEAN	5.819	5.238	7.260	0.000	5.646
STD.DEV.	1.987	1.649	3.744	0.000	2.242
MAXIMAM	9.300	10.600	17.000	0.000	17.000
MINIMUM	2.400	3.000	3.000	0.000	2.400
CASES INCL	16	66	15	0	97
HISPANIC FEWAL		- 2		A 222	
MEAN	9.533	7.389	6.500	0.000	7.956
STD.DEV.	3.354	2.164	0.300	0.000	2.635
MAXIMUM	13.500	10.800	6.800	0.000	13.500
MINIMUM	4.300	4.200	6.200	0.000	4.200
CASES INCL	6	9	3	0	18

CHEST SKINFOLD (MM) CROUPED BY CENDER, RACE AND AGE

	ACC.				
	AGE: 17-20	21-27	28-39	40+	ALL AGE GROUPS
	17-20	6.L. Z.	20 00		COMBINED
ALL MALES:					
MEAN .	8.660	10.196	15.221	17.613	13.091
STD.DEV.	4.910	6.064	8.7 44	7.816	7.954
MAXIMUM	31.400	39.800	40.400	40.000	40.400
MINIMUM	3.800	3.000	2.500	4.600	2.500
CASES INCL	162	389	318	258	1127
4 (3 43 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
WHITE MALES:			.=	47 656	14,435
MEAN	9.377	11.194	17.111	17.656	8.115
STD.DEV.	5.414	6.438	8.914	7.632	40.400
MAXIMUM	31.400	23.800	40.400	40.000	3.800
MINIMUM	3.800	3.900	4.000	4.600	695
CASES INCL	101	203	166	225	090
BLACK MALES:	a aaa	7.528	11.016	14.653	8.860
MEAN	6.822	7.528 3.718	7.038	8.874	5.609
STD.DEV.	2.645		40.000	40.000	40.000
MAXIMUM	14.000	24.800	2.900	5.900	2.900
MINIMUM	3.900	3.000 124	2. 3 00 75	15	255
CASES INCL	41	124	75	20	
HISPANIC MALE	œ.				
MEAN	<u>~</u> . 9.000	12.802	16.195	21.140	14.439
STD.DEV.	5.030	7.098	8.813	7.126	8.211
MAXIMUM	24.500	32,500	40.000	36.600	40.000
MINIMAM	4.900	4.500	3.400	9.800	3.400
CASES INCL	16	50	58	10	134
GOOD HOO					
ALL FEWALES:				10 170	11 600
MEAN	10.518	11.269	13.573	19.450	11.600
STD.DEV.	5.724	5.843	6.513	17.748	6.131
MAXIMAM	37.400	31.200	32.400	32.000	37.400
MINIMUM	3.800	2.900	3.600	6.900	2.900
CASES INCL	62	155	52	2	271
WHITE FEMALE			14 550	19.450	12.206
MEAN	11.081	11.542	14.558 6.264	17.748	6.295
STD.DEV.	6.225	5.764	32.400	32.000	37.400
MAXIMUM	37.400	31.200	5.200	6.900	3.800
MINIMUM	3.800	4.000 76	33	2	148
CASES INCL	37	10	33	2	2.0
BLACK FEWALE	٥.				
MEAN	8.844	10.111	12.387	0.000	10.254
STD.DEV.	3.750	5.182	7.427	0.000	5.429
MAXIMUM	16.300	27.400	27,300	0.000	27.400
MINIMUM	4.000	2.900	3.600	0.000	2.900
CASES INCL	16	66	15	0	97
iou					
HISPANIC FEW				a aaa	14) 620
MEAN	10.667	15.311	8.567	0.000	12.639 6.971
STD.DEV.	6.269	7.787	1.882	0.000	27.800
MAXIM.M	19.900	27.800	9.800	0.000	3.600
MINIMUM	4.200	3.600	6.400	0.000	3.600 18
CASES INCL	6	9	3	0	10

BICEP SKINFOLD (MA) OROUPED BY CENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
					COMBINED
ALL MALES:		->			
MEAN	5.042	5.193	6.040	6.132	5.625
STD.DEV.	1.696	2.204	2.807	2.133	2.359
MAXIMUM	14.300	20.600	25.000	15.700	25.000
MINIMUM	2.800	2.400	2.000	2.300	2.000
CASES INCL	162	388	318	258	1126
WHITE MALES:					
MEAN	5.201	5. 44 3	6.410	6.168	5.874
STD.DEV.	1.818	2.560	2.671	2.146	2.404
MAXIMUM	14.300	20.600	16.100	15.700	20.600
MINIMUM	3.000	2.400	2.400	2.300	2.300
CASES INCL	101	202	166	225	694
BLACK MALES:					4 474
MEAN	4.880	4.653	5.375	5.907	4.976
STD.DEV.	1.602	1.539	2.458	2.416	1.945
MAXIM.M MINIM.M	9.800 3.200	12.000 2.600	15.300	13.100	15.300 2.600
CASES INCL	3.200 41	2.600 124	2.600 75	4.000 15	2. 6 00 255
COED TACE	41	124	13	13	233
HISPANIC WALES	6:				
MEAN	4.688	5.518	6.019	6.070	5.677
STD.DEV.	1.017	1.872	3.410	1.941	2.614
MAXIMUM	6.700	11.200	25.000	8.300	25.000
MINIMUM	3.000	3.200	2.500	3.000	2.500
CASES INCL	16	50	58	10	134
ALL ETHICS					
ALL FEWALES:	7 007	7 000	0.700	14 000	7 610
STD.DEV.	7.897	7.038	8.763	14.300	7.619 3.663
MAXIMUM	3.583 25.600	3.151 21.100	4.288 19.500	12.587 23.200	25.600
MINIMUM	23.000	3.100	2.400	25.200 5.400	2.400
CASES INCL	62	155	2.400 52	2	271
4425 2102	0 2	200	02.	-	2.12
WHITE FEVALES:	•				
MEAN	8.330	7.989	9.094	14.300	8.406
STD.DEV.	3.826	3.379	4.044	12.587	3.836
MAXIMAM	25.600	17.700	19.200	23.200	25.600
MINIMAM	3.100	3.200	3.400	5.400	3.100
CASES INCL	37	76	33	2	148
DI ACV FEBALIFIC	_				
BLACK FEMALES:	: 6.944	6.091	7.953	0.000	6.520
STD.DEV.	2.884	2.661	4.677	0.000	3.124
MAXIM.M	12.700	21.100	19.500	0.000	21.100
MINIMAM	2.900	3.200	2.400	0.000	2.400
CASES INCL	16	66	15	0.000	2. 400 97
		•		•	4 ,
HISPANIC FEMA					
MEAN	7.367	6.078	6.367	0.000	6.556
STD.DEV.	3.454	1.738	1.750	0.000	2.377
MAXIMUM	13.100	8.700	8.100	0.000	13.100
MINIMUM CASES TAKE	3.800	3.100	4.600	0.000	3.100
CASES INCL	6	9	. 3	0	18

MOKALINGSON BOOKS (S.A. 165500000), BEOCKSON HOLDWALL BEOCKSON

TRICEP SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

Marting Mart		AGE: 17-20	21-27	28-39	40+	ALL AGE GROUPS
MCAIN 10,675 10,503 11,136 11,687 10,977 10,000 31,100 32,200 27,500 31,100 31,000 32		1. 20				COMBINED
STD_DEV. 3.884				44 400	11 607	10 977
SID_DEV. 3.824 4.439 4.430 3.200 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.900 4.879 4	MEAN					
MYDIMM 5.000 3.900 3.200 4.900 3.200 KNEST INCL 162 389 318 258 1127 WHITE MALES: MEAN 11.000 10.928 11.784 11.732 11.406 STD.DEV. 3.713 4.207 4.856 3.383 3.985 STD.DEV. 3.713 4.207 4.856 3.383 3.985 MYXDIMM 5.000 4.000 4.800 5.000 4.000 CASES INCL 101 203 166 225 695 BLACK IMPLES: MEAN 9.863 9.577 10.456 12.333 10.044 MIDIMM 5.100 3.900 21.800 31.00 CASES INCL 101 203 166 225 695 BLACK IMPLES: MEAN 9.863 9.577 10.456 12.333 10.044 MIDIMM 5.100 3.900 27.800 27.800 MIDIMM 5.100 3.900 3.800 6.800 3.800 CASES INCL 41 124 75 15 225 HISPANIC MALES: MEAN 11.131 11.202 10.741 9.820 10.891 STD.DEV. 3.566 4.538 4.406 3.640 4.227 MIXIMAM 7.100 4.800 3.200 4.900 3.200 CASES INCL 16 50 58 10 134 ALL FEMALES: MEAN 17.621 15.966 18.123 18.400 16.777 STD.DEV. 5.600 6.074 6.100 11.314 6.045 MIDIMM 7.300 4.800 3.200 17.100 29.200 MIDIMM 7.300 4.800 3.200 16.00 39.700 CASES INCL 62 155 52 2 271 WHITE FEMALES: MEAN 17.621 15.966 18.123 18.400 16.777 STD.DEV. 5.600 6.074 6.100 11.314 6.045 MIDIMM 7.300 4.300 3.500 10.400 39.700 MIDIMM 7.300 4.300 3.500 10.400 39.700 MIDIMM 7.300 4.300 3.500 10.400 39.700 MIDIMM 7.300 4.900 7.200 6.500 10.400 6.500 MIDIMM 9.400 7.200 6.500 10.400 6.500 MIDIMM 7.300 4.300 3.500 10.000 30.400 MIDIMM 7.300 4.300 3.500 10.000 5.910 MIDIMM 7.300 4.300 3.500 0.000 3.500 MIDIMM 7.300 4.300 3.500 0.000 3.500 MIDIMM 7.300 4.300 3.500 0.000 5.910 MIDIMM 7.300 4.300 3.500 0.000 3.500 MIDIMM 7.300 4.300 3.500 0.000 5.740 MIDIMM 7.300 4.300 3.500 0.000 5.740 MIDIMM 12.200 8.100 18.000 0.000 15.161 STD.DEV. 5.662 5.716 3.724 0.000 5.700 MIDIMM 12.200 8.100 18.000 0.000 6.000 16.161 STD.DEV 5.662 5.716 3.724 0.000 5.700 MIDIMM 12.200 8.100 18.000 0.000 6	• • • • • • •					
MINIMA						
WHITE MALES:	•••					
NEAN	CASES INCL	162	389	310	200	
MAN	WHITE MALES:				44 700	11 450
NAZIDLEY 3.713 3.100 28.900 21.800 31.100 NAZIDLAM 21.400 31.100 4.600 5.000 4.000 NAZIDLAM 5.000 4.000 4.600 5.000 4.000 STD.DEV 4.257 4.656 5.171 6.309 4.879 NAZIDLAM 5.100 3.900 3.800 6.800 3.800 NAZIDLAM 5.100 3.900 3.800 4.227 NAZIDLAM 5.100 4.800 3.200 4.900 3.200 NAZIDLAM 5.100 5.804 11.314 6.045 NAZIDLAM 5.100 5.804 11.314 5.949 NAZIDLAM 5.100 5.804 11.314 5.949 NAZIDLAM 5.100 5.900 5.900 NAZIDLAM 5.200 5.700 5.700 NAZIDLAM 5.200 5.700 5.900 NAZIDLAM 5.200 5.700 5.900 NAZIDLAM 5.200 5.900 5.900 NAZIDLAM	MEAN					
MONDMM 5.000 4.000 4.600 5.000 4.000 A.000 A.0	STD.DEV.					
CASES INCL 101 203 166 225 685						
BLACK MALES: MEAN 9.863 9.577 10.456 12.333 10.044 10.045					• • • • •	
MEAN	CASES INCL	101	203	100,	223	030
M-NN 9.803 9.377 10.500 10.500 14.879				40.450	10, 222	10.044
SID.DEV. 4.23	****					
MINIMAM 5.100 3.900 3.800 6.800 3.800 CASES INCL 41 124 75 15 255 HISPANIC MALES: MEAN 11.131 11.202 10.741 9.820 10.891 STD.DEV. 3.566 4.533 4.406 3.640 4.287 MAXIDAM 21.400 28.700 29.200 17.100 29.200 MINIMAM 7.100 4.800 3.200 4.900 3.200 CASES INCL 16 50 58 10 134 ALL FEMALES: MEAN 17.621 15.966 18.123 18.400 16.777 STD.DEV. 5.600 6.074 6.100 11.314 6.045 STD.DEV. 5.600 6.074 6.100 11.314 6.045 STD.DEV. 5.600 6.074 6.100 11.314 6.045 STD.DEV. 5.600 6.074 6.100 11.314 5.040 MINIMAM 7.300 4.300 3.500 10.400 3.500 CASES INCL 62 155 52 2 271 WHITE FEMALES: MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIDAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 7.300 7.200 6.500 10.400 6.500 MINIMAM 9.400 7.200 3.500 0.000 3.500 MINIMAM 9.400 7.200 3.500 0.000 3.500 MINIMAM 9.400 7.200 3.500 0.000 3.500 MINIMAM 7.300 4.300 3.500 0.000 5.747 MIXIMAM 7.900 24.200 25.100 0.000 27.900 MINIMAM 7.900 24.200 25.100 0.000 77.900 MINIMAM 7.900 24.200 25.100 0.000 5.747 MIXIMAM 7.900 24.200 25.100 0.000 77.900 MINIMAM 7.200 8.100 18.000 0.000 3.000						
MINIMAM S.100 CASES INCL 41 124 75 15 255 HISPANIC WALES:	MUNEXAN					
HISPANIC MALES: TACAN 11.131 11.202 10.741 9.820 10.891 STD.DEV. 3.566 4.538 4.406 3.640 4.287 MAXIMM 21.400 28.700 29.200 17.100 29.200 MINIMAM 7.100 4.800 3.200 4.900 3.200 CASES INCL 16 50 58 10 134 134 134 14.00 16.777 15.000 15.600 6.074 6.100 11.314 6.045 MAXIMAM 34.100 39.700 30.400 26.400 39.700 MINIMAM 7.300 4.300 3.500 10.400 3.500 CASES INCL 62 155 52 2 271 15.949 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 34.100 39.700 17.636 18.400 17.459 17.120 17.636 18.400 17.459 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 EACK FEMALES: Table MAXIMAM 30.200 27.200 30.400 0.000 5.910 MAXIMAM 30.200 27.200 30.400 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 5.747 MAXIMAM 27.900 24.200 25.100 0.000 27.900 MIDIMAM 27.900 24.200 25.100 0.000 27.900 MIDIMAM 27.900 24.200 25.100 0.000 3.100	*******					
MEAN	CASES INCL	41	124	75	15	255
STD.DEV. 3.566 4.538 4.406 3.640 4.287	HISPANIC MALE	<u>'S</u> :			0.000	10.001
SID.DEV. S. S. S. S. S. S. S.	MEAN					
MINIMAM 7.100 4.800 3.200 4.900 3.200 MINIMAM 7.100 4.800 3.200 4.900 3.200 MINIMAM 7.100 4.800 3.200 4.900 134 ALL FEMALES: MEAN 17.621 15.966 18.123 18.400 16.777 STD.DEV. 5.600 6.074 6.100 11.314 6.045 MAXIMAM 34.100 39.700 30.400 26.400 39.700 MINIMAM 7.300 4.300 3.500 10.400 3.500 CASES INCL 62 155 52 2 271 WHITE FEMALES: MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIMAM 30.200 27.200 30.400 0.000 30.400 MINIMAM 7.300 4.300 3.500 0.000 5.747 MIXIMAM 27.900 24.200 25.100 0.000 27.900 MINIMAM 27.900 24.200 25.100 0.000 27.900 MINIMAM 12.200 8.100 18.000 0.000 3.100	STD.DEV.	3.566				
MILTINE FEMALES:	MAXIMM	21.400				
All Females:	MINDALM	7.100				
MEAN	CASES INCL	16	50	58	10	134
STD_DEV.	ALL FEWALES:					
STD.DEV. 5.600 6.074 6.100 11.314 6.045 MAXIM.M 34.100 39.700 30.400 26.400 39.700 MINIM.M 7.300 4.300 3.500 10.400 3.500 CASES INCL 62 155 52 2 271 WHITE FEMALES: MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIM.M 34.100 39.700 28.700 26.400 39.700 MINIM.M 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIM.M 30.200 27.200 30.400 0.000 30.400 MINIM.M 7.300 4.300 3.500 0.000 30.400 MINIM.M 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MAXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 3.100		17.621	15.966			
MINIMAM 7.300 4.300 3.500 10.400 3.500 CASES INCL 62 155 52 2 271 WHITE FEMALES: MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIMAM 30.200 27.200 30.400 0.000 30.400 MINIMAM 7.300 4.300 3.500 0.000 30.400 MINIMAM 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MAXIMAM 27.900 24.200 25.100 0.000 27.900 MINIMAM 27.900 24.200 25.100 0.000 27.900 MINIMAM 27.900 24.200 25.100 0.000 3.100	STD.DEV.	5.600	6.074	6.100		* * * * * * * * * * * * * * * * * * * *
MINUMENT 7,300 1,555 52 2 271	MAXIMUM	34.100	39.700	•		
WHITE FEMALES:	••••	7.300	4.300			
MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIMAM 30.200 27.200 30.400 0.000 30.400 MINIMAM 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES:	CASES INCL	62	155	52	2	271
MEAN 17.946 17.120 17.636 18.400 17.459 STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIMAM 30.200 27.200 30.400 0.000 30.400 MINIMAM 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES:	WHITE FEWALE	S:				
STD.DEV. 4.957 6.401 5.854 11.314 5.949 MAXIMUM 34.100 39.700 28.700 26.400 39.700 MINIMUM 9.400 7.200 6.500 10.400 6.500 CASES INCL 37 76 33 2 148 BLACK FEMALES: MEAN 17.019 14.755 18.400 0.000 15.692 STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIMUM 30.200 27.200 30.400 0.000 30.400 MINIMUM 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MEXIMUM 27.900 24.200 25.100 0.000 27.900 MINIMUM 12.200 8.100 18.000 0.000 3.100			17.120			
MAXIMAM 34.100 39.700 28.700 26.400 39.700 MINIMAM 9.400 7.200 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 10.400 6.500 148 148 17.019 14.755 18.400 0.000 15.692 148 17.019 14.755 18.400 0.000 5.910 15.692 17.019 14.755 18.400 0.000 15.692 17.019 14.755 18.400 0.000 15.692 17.019 14.755 18.400 0.000 15.692 17.019 14.755 18.400 0.000 30.400 16.161 17.019 14.755 18.400 0.000 30.400 30.400 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 18.000 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 0.000 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.400 16.161 17.019 14.755 18.100 16.161 17.019 14.755 18.100 16.161 17.019 14.755 18.100 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109 16.161 16.109		4.957	6.401			
MINIMUM 9,400 7,200 6,500 10,400 6,500 148		34.100	39.700	28.700		
CASES INCL 37 76 33 2 148			7.200	6.500		
MEAN 17.019 14.755 18.400 0.000 15.692			76	33	2	148
MEAN 17.019 14.755 18.400 0.000 15.692	BLACK FEWALE	S:				4 -
STD.DEV. 6.681 5.202 7.213 0.000 5.910 MAXIM.M 30.200 27.200 30.400 0.000 30.400 MINIM.M 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MEXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 8.100			14.755	18.400		
MAXIMUM 30.200 27.200 30.400 0.000 30.400 MINIMUM 7.300 4.300 3.500 0.000 3.500 CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MEXIMUM 27.900 24.200 25.100 0.000 27.900 MINIMUM 12.200 8.100 18.000 0.000 8.100			5.202	7.213		
MINIMUM 7.300 4.300 3.500 0.000 3.500 0.000 GASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MINIMUM 27.900 24.200 25.100 0.000 27.900 MINIMUM 12.200 8.100 18.000 0.000 8.100				30.400		
CASES INCL 16 66 15 0 97 HISPANIC FEMALES: MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MIXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 8.100			4,300	3.500	0.000	
MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MIXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 8.100				15	0	97
MEAN 16.983 14.033 20.900 0.000 16.161 STD.DEV. 5.662 5.716 3.724 0.000 5.747 MIXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 8.100	HISPANIC FEW	WLES:				
STD.DEV. 5.662 5.716 3.724 0.000 5.747 MIXIM.M 27.900 24.200 25.100 0.000 27.900 MINIM.M 12.200 8.100 18.000 0.000 8.100			14.033	20.900		
MENTIMUM 27.900 24.200 25.100 0.000 27.900 MINIMUM 12.200 8.100 18.000 0.000 8.100				3.724		
MINIMUM 12.200 8.100 18.000 0.000 8.100				25.100		
100				18.000		
			9	3	0	18

Secon respectations and respect responds testables indicated in the constant in the second in the se

SUBSCAPULAR SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:			•	
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL WALES:					
MEAN	12.841	14.558	17.808	17.340	15.865
STD.DEV.	4.092	5.515	7.308	5.696	6.228
MAXIMUM	29.400	36.500	40.000	38.900	40.000
MINIMUM	4.000	6.200	4.500	6.300	4.000
CASES INCL	162	389	318	258	1127
WHITE WALES:					
MEAN	12.983	14.214	17.989	17.070	15.861
STD.DEV.	4.171	5.135	7.027	5.517	5.942
MAXIMLM	29.400	29.900	40.000	38.600	40.000
MINIMAM	7.800	6.700	6.900	6.300	6.300
CASES INCL	101	203	166	225	695
BLACK WALES:					44.004
MEAN	12.193	14.070	16.347	18.260	14.684
STD.DEV.	3.635	5.351	7.711	7.587	6.261
MAXIMAM	23.000	34.000	40,000	38.900	40.000
MINIMUM	4.000	6.200	4.500	11.200	4.000
CASES INCL	41	124	75	15	255
HISPANIC WALES	-				
MEAN	13.881	16.682	19.010	20.200	17.618
STD.DEV.	4.655	6.240	7.143	5.511	6.638
MAXIMAM	29.100	36.500	37.400	26.500	37.400
MINIMUM	9.900	8.500	5.500	10.700	5.500
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	13.760	12.862	15.581	16.250	13.614
STD.DEV.	4.698	4.977	6.869	2.758	5.402
MAXIMAM	26.000	29.800	36.400	18.200	36.400
MINIMUM	7.000	5.600	5.400	14.300	5.400
CASES INCL	62	155	52	2	271
WHITE FEWALES:					
MEAN	13.519	12.953	14.809	16.250	13.553
STD.DEV.	4.751	5.374	6.500	2.758	5.491
MAXIMUM	26.000	29.800	33.600	18.200	33.600
MINIMUM	7.000	5.900	5.400	14.300	5.400
CASES INCL	37	76	33	2	148
BLACK FEWALES:					
MEAN	13.081	12.411	17.040	0.000	13.237
STD.DEV.	4.240	4.381	7.679	0.000	5.210
MAXIMUM	21.700	24.500	36.400	0.000	36.400
MINIMAM	7.800	5.600	7.000	0.000	5.600
CASES INCL	16	66	15	0	97
HISPANIC FEWAL					
MEAN	15.800	15.411	13.433	0.000	15.211
STD.DEV	5.136	5.287	5.613	0.000	5.032
MAXIMLM	23.200	21.400	19.800	0.000	23.200
MINIMA	10.000	7.800	9.200	0.000	7,800
CASES INCL	6	9	3	0	18
		-	,		

MIDAXILLARY SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

,	AGE:	2î-27	28-39	40+	ALL AGE GROUPS
	17-20	21-21	20 00		COMBINED
ALL WALES:		40.000	16 251	18.024	15.028
MEAN	11.915	13.257	16.351	6,737	7.385
STD.DEV.	5.561	6.860	8.110	40.000	40.000
MAXIMUM	36.700	36.200	39.200		3.100
MINDMAM	4.300	3.100	3.800	4.800	1127
CASES INCL	162	389	318	258	1127
WHITE MALES:			47.070	17 050	15.984
MEAN	12.547	14.136	17.670	17.950	7.205
STD.DEV.	5,610	6.944	7.876	6.571	39.600
MAXIMUM	30.200	36.200	39.200	39.600	4.300
MINIMAM	5.200	4.300	4.600	4.800	4.500 695
CASES INCL	101	203	166	225	090
BLACK WALES:			10.100	10.047	11.581
MEAN	9.544	10.613	13.403	16.047	6.491
STD.DEV.	3.844	5.350	7.999	8.544	40.000
MAXIMUM	20.700	30.000	39.000	40.000	
MINIMUM	4.300	3.100	3.800	7.200	3.100
CASES INCL	41	124	75	15	255
HISPANIC MALE	<u>'S</u> :		47 000	or 450	16.875
MEAN	13.775	16.420	17.333	21.450	7.988
STD.DEV.	6.994	7.805	8.314	7.006	7.900 39.200
MAXIMUM	36.700	31.900	39.200	32.600	
MINIMA	7.900	3.500	4.000	7.700	3.500
CASES INCL	16	50	58	10	134
ALL FEMALES:				17.00	10 7CT
MEAN	14.368	13.020	15.135	17.900	13.765
STD.DEV.	6.495	5.889	5.474	6.081	6.001
MAXIMUM	34.800	38.000	29.400	22.200	38.000
MINIMUM	3.600	4.800	4.300	13.600	3.600
CASES INCL	62	155	51	2	270
WHITE FEWALES	S:			4W 000	14.000
MEAN	14.611	13.917	14.456	17.900	14.263
STD.DEV.	6.257	5.867	4.984	6.081	5.757
MAXIMAM	34.800	38.000	28.500	22.200	38.000
MINIMUM	3.600	5.700	4.800	13.600	3.600
CASES INCL	37	76	32	2	147
BLACK FEWALE	_			A 600	10 070
MEAN	12.744	11.488	15.893	0.000	12.376
STD.DEV.	6.426	5.218	6.824	0.000	5.846
MAXIMLM	27.800	32.200	29.400	0.000	32.200
MINIMUM	4.600	4.800	4.300	0.000	4.300
CASES INCL	16	66	15	0	97
HISPANIC FEV					4F 000
MEAN	15.533	15.878	16.300	0.000	15.833
STD.DEV.	7.397	6.566	0.985	0.000	6.047
MAXIMAM	29.000	23.500	17.100	0.000	29.000
MINIMAM	6.600	5.800	15.200	0.000	5.800
CASES INCL	6	9	3	0	18

WAIST SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS COMBINED
ALL WALES:					
MEAN	16.059	17.364	20.490	21.797	19.074
STD.DEV.	7.428	8.876	9.972	7.949	9.057
MAXIDALM	40.000	40.300	40.000	40.100	40.300
MINIDALM	4.800	4.100	4.000	4.200	4.000
CASES INCL	162	389	318	258	1127
WHITE WALES:					
MEAN	16.777	18.370	21.680	22.160	20.156
STD.DEV.	7.232	8.765	9.303	7.845	8.648
MAXIMAM	39.900	40.300	40.000	40.100	40.300
MINIMAM	5.500	4.100	4.200	5.000	4.100
CASES INCL	101	203	166	225	695
BLACK WALES:					
MEAN	13.583	14.579	17.163	14.980	15.202
STD.DEV.	6.582	8.235	10.677	8.062	8.844
MAXIMUM	35.000	40.000	40.000	37.500	40.000
MINIMUM	4.800	4.200	4.000	4.200	4.000
CASES INCL	41	124	75	15	255
HISPANIC MALES	S:				
MEAN	17.487	20.214	22.148	23.690	20.985
STD.DEV.	8.613	9.031	9.848	7.634	9.314
MAXIMUM	40.000	40.000	40.000	34.100	40.000
MINIMAM	6.400	6.400	4.500	6.000	4.500
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	17.097	13.549	15.110	21.700	14.720
STD.DEV.	7.718	6.817	6.695	13.435	7.181
MAXIMUM	39.000	37.200	33.600	31.200	39.000
MINIMUM	4.800	4.200	4.200	12.200	4.200
CASES INCL	62	155	52	2	271
WHITE FEMALES	•				
MEAN	17.954	14.412	15.424	21.700	15.622
STD.DEV.	7.143	7.087	6.608	13.435	7.176
MAXIMUM	31.400	37.200	32.000	31.200	37.200
MINIMAM	7.600	4.800	4.200	12.200	4.200
CASES INCL	37	76	33	2	148
BLACK FEWALES	:				
MEAN	14.762	12.118	13.400	0.000	12.753
STD.DEV.	7.536	5.891	6.970	0,000	6.362
MAXIMUM	30.300	32.200	33.600	0.000	33.600
MINIMA	4.800	4.200	4.200	0.000	4.200
CASES INCL	16	66	15	0	97
HISPANIC FEMA	LES:				
MEAN	16.933	15.378	17.200	0.000	16.200
STD.DEV.	11.106	8.059	5.810	0.000	8.458
MAXIMAM	39.000	32.800	22.800	0.000	39.000
MINIMA	9.600	6.700	11.200	0.000	6.700
CASES INCL	6	9	3	0	18

ABDOMEN SKINFOLD (MA) GROUPED BY GENDER, RACE AND AGE

	ACE:				
	17-20	21-27	28-39	40 +	ALL AGE CROUPS
					COMBINED
ALL MALES:					
MEAN	19.328	20.961	26.828	30.263	24.511
STD.DEV.	9.119	10.104	10.823	7.912	10.566
MAXIDALM	40.700	40.600	40.400	40.100	40.700
MINIMUM	5.100	4.400	4.200	7.200	4.200
CASES INCL	162	389	318	258	1127
WHITE MALES:					
MEAN	20.924	22.373	28.215	30.335	26.135
STD.DEV.	9.001	9.782	10.045	7.875	9.918
MAXIMUM	40.700	40.600	40.400	40.100	40.700
MINIMUM	7.300	5.500	4.200	7.200	4.200
CASES INCL	101	203	166	225	695
BLACK MALES:					
MEAN	15.473	17.564	23.351	26.327	19.445
STD.DEV.	8.060	9.632	11.940	8.949	10.615
MAXIMUM	39.300	40.000	40.000	40.000	40.000
MINIMA	5.100	4.400	5.000	8.900	4.400
CASES INCL.	41	124	5.007 75	0. 500 15	
OVER THE	-11	124	15	15	255
HISPANIC MALES	•				
MEAN	19.712	23.746	28.102	32.320	25.790
STD.DEV.	9.310	10.367	10.298	7.084	10.477
MAXIMUM	40.000	40.000	40.000	40.000	40.000
MINIMAM	9.000	7.300	6.200	16.400	6.200
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	21.960	19.672	22.104	31.150	20.746
STD.DEV.	8.255	8.356	7.550	9.970	8.277
MAXIMUM	40.000	40.000	35,400	38.200	40.000
MINIMUM	6.000	5,400	5,600	24.100	5.400
CASES INCL	62	155	52	2	271
WHITE FEWALES:	•				
MEAN	23.681	21.008	22.709	21 150	00.102
STD.DEV.	8.002	8.627	7.292	31.150 9.970	22.193
MAXIM.M	40.000	39.100	35.400	38.200	8.267
MINIMA	9.600	6.400	11,300	24.100	40.000
CASES INCL	37	76	33	24.100 2	6.400 148
DI ACV ETAMETE					
BLACK FEMALES:		17 070	10.007	0.000	40.00
STD.DEV.	19.188 9.248	17.879	19.667	0.000	18.371
		7.608	7.607	0.000	7.844
MAXIMUM MINIMUM	40.000 6.000	40.000	30.100	0.000	40.000
		5.400	5.600	0.000	5.400
CASES INCL	16	66	15	0	97
HISPANIC FEMAL					
MEAN	17.983	20.489	23.400	0.000	20.139
STD.DEV.	5.615	9.882	7.998	0.000	8.145
MAXIMAM	28.600	40.000	28.700	0.000	40.000
MINIMUM	13.400	8.100	14.200	0.000	8.100
CASES INCL	6	9	3	0	18

esa i pasassa i pasasosa i pasasosa (pasasasa i ipasasasa i parasaka i pasasasa i pasasasa i pasasasa i pasas

SUPRAILIAC SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
5					COMBINED
ALL IMLES:					
MEAN	18.741	20.072	23.246	25.084	21.924
STD.DEV.	8.521	9.862	11.022	8.238	9.957
MAXIMUM	40.000	40.700	40.000	40.500	40.700
MINIMA	4.700	4.000	4.000	5.000	4.000
CASES INCL	162	389	318	258	1127
WHITE WALES:					
WEAN	20.127	21.435	24.731	25.288	23.280
STD.DEV.	8.630	9.481	10.161	8.141	9.332
MAXIMM	40.000	40.7GJ	40.000	40.500	40.700
MINIMAM	6.400	4.200	4.000	5.000	4.000
CASES INCL	101	203	166	225	695
BLACK MALES:	44 7700	40.000	40.45	10.017	17 000
MEAN CTD NEW	14.783	16.687	19.157	19.947	17.299
STD.DEV.	7.133	9.309	11.783	8.540	9.853 40.000
MAXIMUM MINIMUM	36.800	40.000	40.000	40.000 8.200	4.000
CASES INCL	4.700 41	4.000 124	4.200	8.20 15	4.00 255
CADED TACT	41	124	75	13	230
HISPANIC MALES	S:				
MEAN	20.262	22.974	25.136	27.300	23.909
STD.DEV.	7.901	10.517	11.009	9.174	10.434
MAXIMAM	40.000	40.000	40.000	38.300	40.000
MINIMAM	10.500	7.100	4.200	8.900	4.200
CASES INCL	16	50	58	10	134
ALL FEMALES:	10.004	42 400	40.005	00 T00	40.000
MEAN SCO	19.284	15.496	16.925	23.700	16.692
STD.DEV. MAXIMUM	9.195	8.418	8.261	15.556	8.721 40.000
MINIMA	40.000 3.800	40.000 3.400	36.200 5.000	34.700 12.700	3.400
CASES INCL.	5.600 62	3.400 155	5.000 52	12.700	271
COCO IIVAL	O.E	100	JZ.	2	211
WHITE FEWALES:	:				
MEAN	20.332	16.145	17.503	23.700	17.597
STD.DEV.	8.401	8.908	8.237	15.556	8.813
MAXIMUM	35.000	40.000	32.700	34.700	40.000
MINIMUM	6.000	3.400	5.000	12.700	3.400
CASES INCL	37	76	33	2	148
DI ACIV EDINI EN					
BLACK FEWALES:		14.000	14 007	0.000	14.703
STD.DEV.	16.662 10.247	14.250	14.607	0.000	8.020
MAXIMUM	40.000	7.518 33.900	7.791 36.200	0.000 0.000	40.000
MINIMUM	3.800	4.200	5.600	0.000	3.800
CASES INCL	16	4.200	15	0.00	97
G WIN THAT	10	•	10	v	Ji
HISPANIC FEWAL	<u>.ES</u> :				
MEAN	1 8.033	18.133	18.467	0.000	18.156
STD.DEV.	11.126	10.120	10.904	0.000	9.931
MAXIMLM	40.000	38.800	29.200	0.000	40.000
MINIMUM	8.200	7.300	7.400	0.000	7.300
CASES INCL	6	9	3	0	18

1860 COSSOS COCCESS E ESSESSO FOR CONSTANT CONTRACTOR CONTRACTOR CONTRACTOR DESIGNATOR CONTRACTOR CONTRACTOR C

NAME SKINFOLD (MA) GROUPED BY GENDER, RACE AND AGE

	AGE:				
•	17-20	21-27	28-39	40+	ALL, AGE GROUPS COMBINED
AL MALES:	≈ 000	7 100	7.499	6.891	7.236
MEAN	7.382	7.188	2.146	1.529	1.933
STD.DEV.	1.949	1.951	15.600	12.400	17.700
MAXDAM	17.000	17.700	3.600	3.800	3.500
MINIMUM	4.000	3.500	3. 800 318	258	1127
CASES INCL	162	369	219	205	***
WHITE WALES:		7.004	7 507	6.901	7.258
MEAN	7.460	7.284	7.587 1.990	1.531	1.838
STD.DEV.	1.710	2.018	13.200	12.400	17.700
MAXIMAM	13.200	17.700	3.700	3.800	3.700
MINIMUM	5.100	4.300		225	695
CASES INCL	101	203	166	223	050
BLACK MALES:	W 400	7 007	7.329	6.487	7.100
MEAN	7.183	7.007		1.639	2.113
STD.DEV.	2.433	1.853	2.400	9.600	17.000
MAXIMUM	17.000	11.600	15.100	4.000	3.500
MINDALM	4.000	3.500	3.600		255
CASES INCL	41	124	75	15	255
HISPANIC MALE			7	0.000	7 200
MEAN	7.375	7.314	7.569	6.830	7.396
STD.DEV.	2.209	2.006	2.142	1.466	2.045
MAXIDILM	12.900	16.200	13.000	9.500	16.200
MINIMA	4.400	5.000	3.600	4.700	3.600
CASES INCL	16	50	58	10	134
ALL FEWALES:					7 500
MEAN	7.989	7.141	8.329	7.200	7.563
STD.DEV.	2.666	2.493	3.243	0.000	2.719
MAXIMUM	16.400	16.700	15.700	7.200	16.700
MINIMUM	4.300	3.600	3.900	7.200	3.600
CASES INCL	62	155	52	2	271
WHITE FEWALES	<u>S</u> :				7 000
MEAN	7.524	7.317	8.491	7.200	7.629
STD.DEV.	2.131	2.633	2.949	0.000	2.601
MAXIMUM	12.700	16.700	15.200	7.200	16.700
MINIMAM	4.300	3.500	4.700	7.200	3.600
CASES INCL	37	76	33	2	148
BLACK FEWALES	S:				
MEAN	8.869	6.883	7.233	0.000	7.265
STD.DEV.	2.809	2.342	3.100	0.000	2.622
MAXIMUM	16.400	14.000	14.900	0.000	16.400
MINIMUM	5.000	3.700	3.900	0.000	3.700
CASES INCL	16	66	15	0	97
HISPANIC FEM	ALES:				
MEAN	7.500	8.144	9.567	0.000	8.167
STD.DEV.	4.166	2.526	4.782	0.000	3.362
MAXIMUM	15.200	12.000	15.000	0.000	15.200
MINIMUM	4.600	5.100	6.000	0.000	4.600
CASES INCL	6	9	3	0	18

CALF SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-3 9	40+	ALL AGE GROUPS
ALL WALES:					COMBINED
MEAN.	9.602	9.147	9:307	8.896	9.200
STD.DEV.	3.859	4.345	4.539	3.460	4.149
MAXIMAM	24.300	29.600	28.000	22.600	29.600
MINIMAM	3.600	2.500	2.200	3.100	2.200
CASES INCL	162	388	318	258	1126
WHITE MALES:					
MEAN	10.308	10.086	10.122	9.106	9.809
STD.DEV.	3.568	4.448	4.655	3.554	4.130
MAXIMUM	21.100	29,600	26.300	22,600	29.600
MINIMLM	4.900	3.100	2.800	3.100	2.800
CASES INCL	101	202	166	225	694
BLACK WALES:			•		
MEAN	7.917	7.652	8.061	7.567	7.810
STD.DEV.	4.002	3.962	4.328	2.565	3.997
MAXIMUM	24.300	27.300	24.000	12.900	27.300
MINIMAM	3.600	3.300	2.400	4.400	2.400
CASES INCL	41	124	75	15	255
trophro M. S					
HISPANIC MALES	•				2.244
MEAN	9.713	9.388	9.233	7.840	9.244
STD.DEV.	4.423	4.043	4.377	2.132	4.115
MAXIMUM	23.900	19.900	28.000	12.200	28.000
MINIMUM	5.300	2.500	2.800	5.300	2.500
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	16.444	15.535	16.552	14.450	15.930
STD.DEV.	5.725	6.645	6.382	5.445	6.374
MAXIMUM	31.300	40.000	34.400	18.300	40.000
MINIMAM	7.400	5.500	2.600	10.600	2.600
CASES INCL	62	155	52	2	271
WHITE FEMALES:					
MEAN	16.905	17.566	15.888	14.450	16.984
STD.DEV.	5.277	6.931	4.907	5.445	6.108
MAXIMAM	29.300	40.000	25.400	18.300	40.000
MINIMUM	7.600	6.100	5.600	10.600	5.600
CASES INCL	37	76	33	2	148
BLACK FEWALES:	:				
MEAN	15.794	13.548	16.413	0.000	14.362
STD.DEV.	6.471	6.062	6.417	0.000	6.236
MAXIMUM	31.300	37.100	23.600	0.000	37.100
MINIMAM	7.700	5.500	3.000	0.000	3.000
CASES INCL	16	66	15	0	97
HISPANIC FEWA	ES:				
MEAN	16.033	14.578	21.200	0.000	16.167
STD.DEV.	7.134	3.674	16.573	0.000	7.710
MAXIMM	27.900	20.400	34.400	0.000	34.400
MINIMUM	7.400	10.200	2.600	0.000	2.600
CASES INCL	6	9	3	0	18
	-	-	-	-	

THICH SKINFOLD (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS COMBINED
ALL MALES:					COMPTHED
MEAN	12.822	12.972	14.621	15.069	13.895
STD.DEV.	5.053	6,137	6.877	5.154	6.076
MAXIMUM	39.100	40.000	39.600	31.600	40.000
MINIMUM	5.100	3:700	3.500	5.100	3.500
CASES INCL	162	389	317	258	1126
WHITE MALES:					
MEAN	13.359	13.844	16.410	15.424	14.896
STD.DEV.	4.485	6.217	6.965	5.218	5.979
MAXIMUM	28.400	40.000	39.600	31.600	40.000
MINIMUM	6.300	5.500	4.600	5.100	4.600
CASES INCL	101	203	165	225	594
BLACK WALES:			44 000	40.000	44 1770
MEAN	11.600	11.268	11.977	12.093	11.578
STD.DEV.	6.596	6.113	6.555	3.346 19.900	6.180 39.100
MAXIM.M	39.100	32.300	32.700 4.200	7.300	39.100
MINIMUM CASES INCL	5.100 41	3.700 124	4.200 75	7.300 15	3.700 255
CASES INCL.	41	124	15	70	235
HISPANIC MALES					
MEAN	13.106	13.986	14.202	12.960	13.898
STD.DEV.	3.956	5.496	5.895	4.251	5.403
MAXIMUM	21.200	28.500	33.800	19.300	33.800
MINIMUM	7.500	6.100	3.500	6.300	3.500
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	27.577	24.645	28.477	29.200	26.085
STD.DEV.	8.887	8.768	8.477	5.657	8.846
MAXIMAM	40.000	40.000	40.000	33.200	40.000
MINIMUM	10.000	7.200	3.700	25.200	3.700
CASES INCL	62	155	52	2	271
WHITE FEMALES					
MEAN	28.608	26.626	28.242	29.200	27.517
STD.DEV.	8.360	8.922	7.779	5.657	8.485
MAXIMUM	40.000	40.000	40.000	33.200	40.000 8.300
MIINIMUM CASES INCL	10.000 37	8.300 76	8.800 33	25.200	8.300 148
		76	33	2	140
BLACK FEWALES			AT 100		aa aa 4
MEAN	25.850	22.315	27.460	0.000	23.694
STD.DEV.	9.237	8.250	10.110	0.000	8.857
MAXIMUM MINIMUM	40.000 10.200	40.000 7.200	40.000 3.700	0.000 0.000	40.000 3.700
CASES INCL	10.200	7.200 66	3.700 15	0.000	3.700 97
		w	19	U	31
HISPANIC FEMA		A 244	00 007	0.000	00 070
MEAN STD.DEV.	26.517 10.457	24.511	35.267 9.100	0.000	26.972
MAXIMUM	39.200	8.210 34.200	8.198 40.000	0.000 0.000	9.339 40.000
MINIMUM	39.200 14.200	10.000	25.800	0.000	10.000
CASES INCL	6	9	25.600	0.00	10.000
	J		_12	· ·	10

HEAD CIRCUMFERENCE (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROU'S COMBINED
ALL WALES:					
MEAN	56.450	56.281	56.802	57.306	56.688
STD.DEV.	1.724	1.866	1.743	1.533	1.781
MAXIMAM	66.700	64.900	65.100	61.500	66.700
MINIMA	52.100	40.400	52,200	53.200	40.400
CASES INCL	162	388	318	259	1127
WHITE WALES:	74 004				F2 750
MEAN	56.391	56.211	56.896	57.335	56.766
STD.DEV.	1.801	2.031	1.742	1.532	1.834
MAXIMUM	66.700	62.800	65.100	61.500	66.700
MINIMA	52.100	40.400	52.200	53.200	40.400
CASES INCL	101	203	166	226	696
BLACK MALES: MEAN	56.578	FC 474	F7 407	57.820	re 7er
STD.DEV.	1.656	56.474	57.137	1.504	56.765
MAXIMUM	61.700	1.504 61.800	1.717	_,	1.632
MINIMUM			62.100	60.300	62.100
	53.000	52.300	52.800	55.800	52.300
CASES INCL	41	124	75	15	255
HISPANIC MALES	<u>}</u> :				
MEAN	56.687	56.153	56.264	56.660	56.304
STD.DEV.	1.412	2.079	1.574	1.402	1.743
MAXIMUM	58.800	64.900	60.300	58.800	64.900
MINIMUM	53.300	50.500	52.500	54.400	50.500
CASES INCL	16	49	58	10	133
ALL FEWALES:					
MEAN	54.460	54.482	54.537	50.850	54.460
STD.DEV.	1.824	1.710	1.769	3.748	1.778
MAXIMAM	59.300	58.500	57.900	53.500	59.300
MINIMAM	51.100	50.500	50.400	48.200	48.200
CASES INCL	62	154	52	2	270
WHITE FEWALES					
MEAN	53.950	54.077	54.097	50.850	54.001
STD.DEV.	1.561	1.684	1.519	3.748	1.668
MAXIMUM	57.200	57.800	56.900	53.500	57.800
MINIMAM	51.100	50.500	51.200	48.200	48.200
CASES INCL	37	75	33	2	147
BLACK FEWALES	•				
MEAN	55.619	55.000	55.813	0.000	55.228
STD.DEV.	2.112	1.624	1.471	0.000	1.707
MAXIMAM	59.300	58.500	57.900	0.000	59.300
MINIMA	53.200	51.200	53.600	0.000	51.200
CASES INCL	16	66	15	0	97
HISPANIC FEMA					
MEAN	54.667	53.956	53.200	0.000	54.067
STD.DEV.	1.727	1.422	3.081	0.000	1.792
MAXIMUM	56.800	55.300	56.500	0.000	56.800
MINIMUM	51.600	50.800	50.400	0.000	50.400
CASES INCL	6	9	3	0	18

GEGGI DEZZERZE PERESZERZI PERESZERZI PERESZERZI MEGANATAK BEZERZERZ POSTOWANI INSPERIOR

NECK CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN	35.888	36.428	37.447	36.951	36.757
STD.DEV.	1.862	2.218	2.330	1.878	2.193
MAXIMAM	41.400	47.500	48.400	42.600	48.400
	29.300	30.200	28.400	26.900	26.900
CASES INC.	162	388	317	259	1126
WHITTE MALES:					
MEAN	35.890	36.427	37.563	36.921	36.778
STD.DEV.	1.749	1.985	2.458	1.874	2.112
MAXIMA	39.500	42.300	48.400	42.600	48.400
MINIMA	29.300	31.900	28.400	26,900	26.900
CASES INCL	101	203	165	226	695
BLACK MALES:					
MEAN	26 010	20, 402	07.400	07 500	44
	36.012	36.493	37.429	37.593	36.757
STD.DEV.	1.955	2.288	2.100	2.106	2.228
MAXIMUM	39,800	47.100	45.300	42.500	47.100
MINIMA	30.900	32.700	32.800	34.300	30.900
CASES INCL	41	123	75	15	254
HISPANIC MALE	2.				
MEAN		20.200	07.040	00.000	
STD.DEV.	35.662	36.300	37.343	36.950	36.724
	1.890	2.932	2.156	1.778	2.480
MAXIMUM	41.200	47.500	43.000	39.400	47.500
MINIMUM	33.200	30.200	31.300	34.300	30.200
CASES INCL	16	50	58	10	134
ALL FEWLES:					
MEAN	31.052	30.845	21 202	01 100	00.000
STD.DEV.	2.117	1.729	31.323	31.100	30.986
MAXIMUM	37.200		1.578	1.556	1.798
MINIMUM		34.500	34.500	32.200	37.200
CASES INCL	22.100	20.000	27.500	30.000	20.000
CASES THAT	62	154	52	2	270
WHITE FEMALES:	•				
MEAN	30.873	30.783	31.309	31.100	20,000
STD.DEV.	2.272	1.945	1.482		30.928
MAXIMUM	34.900	34.300		1.556	1.932
MINIMUM	22.100	20.000	34.500	32.200	34.900
CASES INCL	37	20.000 75	27.500	30.000	20.000
COLD HAL	3/	15	33	2	147
BLACK FEWALES:					
MEAN	30.937	30.958	31.500	0.000	31.038
STD.DEV.	1.416	1.466	1.859	0.000	1.521
MAXIMUM	32.700	34.500	34.400	0.000	34.500
MINIMUM	28.800	27.400	28.700	0.000	27.400
CASES INCL	16	66	15	0.000	
	-~	•	10	U	97
HISPANIC FEMAL					
MEAN	32.050	30.622	30.100	0.000	31.011
STD.DEV.	2.880	1.327	0.794	0.000	1.988
MAXIMAM	37.200	32.300	30.700	0.000	37.200
MINIMIM	28.500	28.100	29.200	0.000	28.100
CASES INCL	6	9	3	0.000	18
		C-		•	~~

BICEP CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:		00.484	00 T00	20.017	60 617
MEAN STOLE	27.592	28.054	28.760	28.317	28.247 2.408
STD.DEV. MAXIMUM	1.919	2.526 41.500	2.592	2.125 40.400	2.408 41.500
MINIMUM	34.300 22.900		37.800 20.800	22.600	20.800
CASES INCL	162	23.100 389	20.600 318	22.000 259	20.800 1128
COCCO THAT	102	309	310	203	1120
WHITE WALES:					
MEAN	27.504	27.833	28.567	28.178	28.072
STD.DEV.	1.882	2.454	2.613	1.849	2.261
MAXIMAM	34.309	41.500	36.200	33.900	41.500
MINIMA	22.900	23.100	20.800	22.600	20.800
CASES INCL	101	203	166	226	696
DE ACTUALITY					
BLACK MALES:	27.946	28.536	29.444	30.860	28.845
STD.DEV.	1.813	2.640	2.368	4.058	2.638
MAXIMUM	32.400	37.500	34.600	40.400	40.400
MINIMA	25.100	23.500	24,600	26.100	23.500
CASES INCL	41	124	75	15	255
0.10.20 2.70.2					
HISPANIC MALES	<u>:</u>				
MEAN	27.425	27.756	28.731	27.990	28.156
STD.DEV.	2.348	2.398	2.571	1.805	2.463
MAXIMUM	33.300	35.800	37.800	31.200	37.800
MINIMA	23.900	23.200	23.200	24.200	23.200
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	24.413	24.172	25.048	24.350	24.396
STD.DEV.	2.169	2.245	2.005	4.172	2.207
MAXIMAM	29,200	35.900	29.100	27.300	35.900
MINIMUM	20.700	19.500	21.000	21.400	19.500
CASES INCL	62	155	52	2	271
WHITE FEMALES:		-4			04.000
MEAN	24.295	24.186	24.824	24.350	24.357
STD.DEV. MAXIMUM	1.991	2.223	2.138	4.172	2.161
MINIMAM	29.200 20.700	32.700 19.500	29.100 21.000	27.300 21.400	32.700 19.500
CASES INCL	20.700	19.500 76	33	21.400	148
THE HILL	3/	70	₩	2	140
BLACK FEWALES:					
MEAN	24.531	24.047	25.640	0.000	24.373
STD.DEV.	2.392	1.835	1.817	0.000	1.996
MAXIMAM	29.000	29.600	29.100	0.000	29.600
MINIM.M	22.100	20.500	22.200	0.000	20.500
CASES INCL	16	66	15	0	97
HISPANIC FEWAL	ES:				
MEAN	24.717	24.322	24.133	0.000	24.422
STD.DEV.	3.271	1.912	0.850	0.000	2.237
MAXIMUM	28.100	27.700	25.000	0.000	28.100
MINIMAM	21.000	21.900	23.300	0.000	21.000
CASES INCL	6	9	3	0	18

WOOD BOOK CONTROL PROPERTY PROPERTY TO SERVICE TO SERVI

FLEXED BICEP CIRCUMPERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	Ì:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
ALL MALES.					COMBINED
ALL MALES: MEAN	32.207	32.821	33.486	32.947	32.949
STD.DEV.	2.340	2.938	2.873	2.314	2.733
MAXIMUM	39.800	44.500	42.900	44.000	44.500
MINIMUM	26.000	25.600	24.900	25.900	24.900
CASES INCL	162	389	24.900 318	25. 900 259	24.900 1128
COLD HAL	102	309	310	209	1120
WHITE MALES:					
MEAN	31.926	32.476	33.210	32,818	32.682
STD.DEV.	2.191	2.611	2.907	2.112	2.508
MAXIMUM	39.800	43.000	42,900	38.900	43.000
MINIMUM	26.500	27.500	24.900	25.900	24.900
CASES INCL	101	203	166	226	596
BLACK MALES:	20 000	oo ror	O4 404	A. A.	
MEAN STD DEV	32.983	33.595	34.424	35.073	33.827
STD.DEV. MAXIMUM	2.297	3.183	2.482	3.950	2.955
MINIMUM	38.400	44.500	38.800	44.000	44.500
CASES INCL	28.100	25.600	29.200	30.800	25.600
CASES THAT	41	124	75	15	255
HISPANIC MALES	ie.				
MEAN	32.125	32.452	33,348	33.200	32.857
STD.DEV.	2.884	3.238	2.872	1.849	2.968
MAXIMUM	38.000	44.200	42.800	36.000	44.200
MINIMUM	26.000	26.000	24.900	29.500	24.900
CASES INCL	16	50	58	10	134
				20	201
ALL FEMALES:					
MEAN	27.095	26.858	28.121	27.850	27.163
STD.DEV.	2.993	2.379	2.200	5.162	2.546
MAXIMUM	43.100	37.400	34.000	31.500	43.100
MINIMLM	22.700	22.400	22.600	24.200	22.400
CASES INCL	60	154	52	2	268
WAITTE EDVALEE.					
WHITE FEMALES:	26.639	26.745	07.000	07.000	00.000
STD.DEV.	2.023	2.1, 2	27,882	27.850	26.989
MAXIMUM	31.600	33.500	2.328 34.000	5.162	2.232
MINIMUM	22.700	22.400	22.600	31.500	34.000
CASES INCL	36	22.400 76	33	24.200	22.400
don har		70	33	2	147
BLACK FEMALES:					
MEAN	27.167	26.871	28.673	0.000	27.202
STD.DEV.	2.310	2.378	1.938	0.000	2.372
MAXIMUM	30.500	37.400	32.100	0.000	37.400
MINIM.M	23.800	22.600	25.900	0.000	22.600
CASES INCL	15	65	15	0	95
LITCOANITC COMM	ce.				
HISPANIC FEMAL	<u>ES:</u> 29.417	07 067	Oc Oct	0.000	07 AAC
STD.DEV.	7.328	27.267 1.664	26.967	0.000	27.933
MAXIMUM	43.100	30.100	0.651	0.000	4.281
MINIMAM	24.100	24.900	27.600	0.000	43.100
CASES INCL	24.100 6	24.900 9	26.300 3	0.000	24.100
- was distributed	9	9 0 1	_	0	18

SHOULDER CIRCUMFERBACE (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL WALES:					= = N. = 3.0 · 3.
MEAN	112.483	113.923	115.614	114.970	114.434
STD.DEV.	5.619	6,339	7.030	5.681	6.382
MAXIMLM	130.700	137.300	136.600	139.300	139.300
MINIMA	94.900	97.000	97.800	95.700	94.900
CASES INCL	162	388	318	259	1127
WHITE MALES:					
MEAN	112.641	114.208	115 001	444 707	444 7700
STD.DEV.	5.483	6.304	115.831	114.727	114.536
MAXIMUM	130.700	137.300	7.026 136.200	5.458	6.181
MINIMUM	94.900	97.000	97.800	127.500	137.300
CASES INCL	101	203	166	95.700 226	94.900 696
		2.00	100	220	090
BLACK MALES:					
MEAN	111.951	113.981	116.163	118.867	114.586
STD.DEV.	5.155	6.104	6.516	7.258	6.374
MAXIMAM	122.700	135.400	127.900	139.300	139.300
MINIMUM	101.300	97.700	101.000	112.000	97.700
CASES INCL	41	123	75	15	254
LITOO MITO AND TO					
HISPANIC MALE	<u> </u>				
MEAN STD DCV	113.181	112.684	114.947	116.750	114.026
STD.DEV.	6.544	7.006	7.253	5.197	6.998
MAXIMUM	129.600	131.100	136.600	128.300	136.600
MINIMUM CASES TAKS	102.800	102.300	99.100	109.100	99.100
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	101.140	100.179	100 240	00 500	100 700
STD.DEV.	5.322	5.317	102.348 4.880	92.500	100.789
MAXIMUM	112.300	122.900	113.500	0.000	5.300
MINIMAM	90.400	84.500		92.500	122.900
CASES INCL	62	155	88.200 52	92.500	84.500
41007 2102	02	135	52	1	270
WHITTE FEMALES	:				
MEAN	101.651	100.267	101.936	92.500	100.937
STD.DEV.	5.271	5.330	5.144	0.000	5.322
MAXIMUM	112.300	113.100	112.500	92.500	113.100
MINIMUM	92.200	84.500	88.200	92.500	84.500
CASES INCL	37	76	33	1	147
BLACK FEWALES	•				
MEAN	100.019	00 074	404.000		
STD.DEV.		99.874	104.253	0.000	100.575
MAXIMUM	5.565	4.710	3.987	0.000	4.968
MINIMAM	108.500	109.800	113.500	0.000	113.500
CASES INCL	91.000	87.500	99.200	0.000	87.500
CASES TACE	16	66	15	0	97
HISPANIC FEMA	LES:				
MEAN	101.283	100.744	97.967	0.000	100.461
STD.DEV.	6.470	3.778	3.493	0.000	4.674
MAXIMUM	109.000	106.000	101.100	0.000	109.000
MINIMUM	90.400	93.900	94.200	0.000	90.400
CASES INCL	6	9	3	0.000	18
				-	~~

CHEST CIRCUMFERENCE (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:					CONDINAL
MEAN	87.312	88.696	93.153	93.281	90.811
STD.DEV.	6.458	6.554	8.119	6.505	7.432
MAXIMAM	112.900	116.800	116.100	116.200	116.800
MINIMAM	71.300	73.800	65.200	64,200	64.200
CASES INCL	161	388	318	259	1126
WHITE MALES:					
MEAN	88.617	90.157	94.773	93.438	92.105
STD.DEV.	6.336	6.558	7.799	6.445	7.164
MAXIMAM	112.900	116.800	116.100	116.200	116.800
MINIMAM	79.200	76.800	77.700	64.200	64.200
CASES INCL	100	203	166	226	695
BLACK MALES:					
MEAN	84.937	86.559	91.624	92.093	88.120
STD.DEV.	4.543	5.559	7.454	6.569	6.649
MAXIMUM	92.700	104.200	108.200	110.700	110.700
MINIMAM	73.800	73.900	76.200	85.600	73.800
CASES INCL	41	123	75	15	254
HISPANIC MALE	-				
MEAN STA	86.369	88.696	92.034	95.730	90.388
STD.DEV.	8.269	7.336	8.752	4.114	8.238
MAXIMUM	111.500	107.200	114.200	105.300	114.200
MINIMUM	71.600	75.800	65.200	91.400	65.200
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	75.571	75.420	78.580	88.350	76.147
STD.DEV.	4.923	5.041	5.637	25.668	5.569
MAXIMUM	85.300	93.600	95.400	106.500	106.500
MINIMUM	63.600	63.800	68.000	70.200	63.600
CASES INCL	62	155	51	2	270
WHITE FEWALES					
MEAN	76.435	76.383	78.600	88.350	77.042
STD.DEV.	4.560	5.055	5.963	25.668	5.738
MAXIMUM	85.200	89.100	95.400	106.500	106.500
MINIMUM	67.000	67.900	68.000	70.200	67.000
CASES INCL.	37	76	32	2	147
BLACK FEWALES		-			
MEAN	73.331	74.064	79.027	0.000	74.710
STD.DEV.	5.679	4.391	5.473	0.000	5.097
MAXIMUM	85.300	85.400	89.900	0.000	89.900
MINIMUM	63.600	64.300	71.200	0.000	63.600
CASES INCL	16	66	15	0	97
HISPANIC FEWLES:					
MEAN STD DEV	76.717	76.856	76.267	0.000	76.711
STD.DEV.	4.881	2.787	4.884	0.000	3.676
MAXIMUM MINIMUM	82.500	81.100	80.200	0.000	82.500
CASES INCL	71.900	73.900	70.800	0.000	70.800
CLOTTO TIACT	6	9	3	0	18

ABDOMEN 1 CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN	77.540	79.721	85.723	86.441	82.639
STD.DEV.	6.006	7.637	9.507	7.054	8.645
MAXIMUM	98.200	111.800	120.400	114.700	120.400
MINIMUM	64.000	64.700	61.700	68.200	61.700
CASES INCL	162	389	318	258	1127
WHITE MALES:					
MEAN	78.359	80.968	87.399	86,445	83,898
STD.DEV.	5.980	7.894	9.220	6.914	8.423
MAXIMUM	97.500	111.800	120.400	112.300	120,400
MINIMUM	68.900	66.000	66.300	68.800	66.000
CASES INCL	101	203	166	225	695
BLACK MALES:					
MEAN	75.837	77.410	83.471	86.040	79.447
STD.DEV.	4.510	6.363	9.972	9.440	8.257
MAXIMUM	85.900	99.500	112.000	114.700	114.700
MINIMAM	68.600	68.300	68.800	76.100	68.300
CASES INCL	41	124	75	15	255
HISPANIC MALES	; .				
MEAN	77.550	80,840	85.297	88.130	82. 92 0
STD.DEV.	7.273	8.193	8.626	7.525	8.719
MAXIMUM	98.200	96.300	113.100	95.100	113.100
MINIMA	65.200	66.600	65.200	68.200	65.200
CASES INCL	16	50	58	10	134
		•••	33	20	201
ALL FEWALES:					
MEAN	69.195	69.233	72.952	75.250	69.985
STD.DEV.	6.103	6.159	6.523	12.092	6.404
MAXIMAM	84.900	97.300	91.600	83.800	97.300
MINIMIM	51.000	55.700	60.600	66.700	51.000
CASES INCL	61	155	52	2	270
WHITE FEWALES:	,				
MEAN	69.097	69.701	73.048	75.250	70.380
STD.DEV.	6.655	6.952	6.665	12.092	6.983
MAXIMAM	84.900	97.300	89.200	83.800	97.300
MINIMAM	51.000	55.700	60.600	66.700	51.000
CASES INCL	36	∞.76	33	2	147
			•		2.11
BLACK FEMALES:					
MEAN	69.244	68.338	73.627	0.000	69.305
STD.DEV.	5.384	4.717	6.829	0.000	5.474
MAXIMAM	78.700	80.100	91.600	0.000	91.600
MINIMA	62.000	60.000	63.500	0.000	60.000
CASES INCL	16	66	15	0	97
HISPANIC FEMAL	FS.				
MEAN	<u></u> 70.367	71.444	69.133	0.000	70.700
STD.DEV.	5.943	3.907	4.532	0.000	4.556
MAXIMLM	77.700	78.200	71.800	0.000	78.200
MINIMA	64.600	67.000	63.900	0.000	63.900
CASES INCL	6	9	3	0.00	18
~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•	3	3	U	10

## ABDOMEN 2 CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17~20	21-27	28-39	40+	ALL AGE GROUPS
			_		COMBINED
ALL MALES:				00.074	04 200
MEAN	78.886	80.836	87.570	88.874	84.300
STD.DEV.	6.968	8.461	10.538	7.330	9.557
MAXIMAM	101.800	114.500	121.500	115.700	121.500
MINIMAM	56.900	65.100	62.800	68.900	56.900
CASES INCL	162	389	318	259	1128
WHITE MALES:					
MEAN	EJ.208	82.667	89.699	88.953	86.028
STD.DEV.	6.847	8.676	10.075	7.134	9.134
MAXIMUM	98.800	114.500	121.500	113.700	121.500
MINIMAM	69.400	66.100	63,500	68.900	63.500
CASES INCL	101	203	166	226	696
BLACK MALES:	70.000	77 700	04 040	07.100	70.000
MEAN	76.288	77.586	84.243	87,100	79.895
STD.DEV.	4.849	7.056	10.902	y.513	8.988
MAXIMUM	87.700	101.800	114.500	115.700	115.700
MINIMA	68.700	67.300	67.500	75.300	67.300
CASES INCL	41	124	75	15	255
HISPANIC MALE	S:				
MEAN	77.731	82.032	87.162	90.360	84.360
STD.DEV.	9.454	8.530	9,793	7.029	9.736
MAXIMUM	101.800	100.300	117.200	97.600	117.200
MINIMUM	56.900	68.200	65.200	71.500	56.900
CASES INCL	16	50	58	10	134
ALL FEWALES:					<b>TO TO</b>
MEAN	72.733	71.543	76.069	77.950	72.731
STD.DEV.	7.582	7.203	8.102	13.789	7.671
MAXIMUM	97.100	105.600	101.200	87.700	105.600
MINIMUM	51.000	59.300	61.200	68.200	51.000
CASES INCL	61	155	52	2	270
WHITE FEMALES	:				
MEAN	73.100	72.868	75.667	77.950	73.622
STD.DEV.	7.575	8.013	7.427	13.789	7.855
MAXIMUM	90.900	105.600	93.800	87.700	105.600
MINIMAM	51.000	61,200	61.200	68.200	51.000
CASES INCL	36	76	33	2	147
	•_				
BLACK FEWALES MEAN	: 71.600	70.006	77.080	0.000	71.363
STD.DEV.	8.307	5.566	10.185	0.000	7.299
MAXIMUM	97.100		101.200	0.000	101.200
		85.300 60.400		0.000	
MINIMUM	63.000	60.400	86.500		60.400
CASES INCL	16	66	15	0	97
HISPANIC FEMA	LES:				
MEAN	73.833	72.033	74.033	0.000	72.967
STD.DEV.	7.083	7.021	6.285	0.000	6.597
MUMIXAN	82.300	83.600	79.900	0.000	83.600
MINIMUM	63.500	62.400	67.400	0.000	62.400
CASES INCL	6	9	3	0	18

### HIP CIRCUMFEENCE (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
==					OMBINED
ALL MALES:	or Mo	or oo4	00.040	00 115	07, 070
MEAN	95.218	95.864	98.642	98.115 5.339	97.072 6.609
STD.DEV. MAXXIMUM	5.998 130.100	6.527 119.400	7.400 127.400	121.400	130.100
MINIMA	78.900	77.800	78.500	78,000	77.800
CASES INCL	162	388	78.300 318	78.000 259	1127
CASES TACE	102	300	310	2.03	1121
WHITE MALES:					
MEAN	95.753	96.575	99.510	98.208	97.688
STD.DEV.	6.093	6.476	6.696	5.051	6.182
M.MC "	130.100	119.400	122.300	111.800	130.100
MANULA	86.200	77.800	78.500	78.000	<i>7</i> 7.800
ASES INCL	101	202	166	226	695
DI 101/1111 DO					
BLACK MALES:	04 266	04 077	00 500	00 407	96.140
STD.DEV.	94.366 4.899	94.877 6.324	98.529 8.798	99.487 7.819	90.140 7.260
MAXIMUM	104.200	114.800	127.400	121.400	127.400
MINIMUM	78.900	80.800	84.200	91.100	78.900
CASES INCL	70.900 41	124	75	15	75.500 255
COLD INCL	41	124	15	10	200
HISPANIC MALE	<b>S</b> :				
MEAN	95.212	96.062	97.719	97.110	96.756
STD.DEV.	6.860	6.457	7.022	4.369	6.631
MAXIMAM	114.700	109.000	119.800	104.200	119.800
MINIMUM	80.600	86.300	83.100	88.300	80.600
CASES INCL	16	50	58	10	134
ALL FBWLES:	04.440	24 224	AT ATA	04.480	04.000
MEAN	94.442	94.201	97.679	94.150	94.926
STD.DEV.	7.369	6.385	6.773	7.142	6.798
MAXIMUM MINIMUM	121.000 77.500	113.200 77.300	120.000 83.000	99.200 89.100	121.000 77.300
CASES INCL	77.500 62	77.300 154	83.000 52	69.100 2	270
CADED TACE	02	104	52	2	210
WHITE FEMALES	S:				
MEAN	94.832	94.844	97.452	94.150	95.417
STD.DEV.	7.586	6.302	5.901	7.142	6.596
MAXIMUM	121.000	113.200	110.300	99.200	121.000
MINIMUM	83.900	81.700	83.000	89.100	81.700
CASES INCL	37	75	33	2	147
	_		,		
BLACK FEWALES	_				04.407
MEAN	94.488	93.382	99.027	0.000	94.437
STD.DEV.	7.563	6.496	8.817	0.000	7.273
MAXIMUM	111.500	110.300	120.000	0.000	120.000
MINIMA	77.500	77.300	86.800	0.000	77.300
CASES INCL	16	66	15	0	97
HISPANIC FEW	NLES:				
MEAN	94.100	96.033	94.967	0.000	95.211
STD.DEV.	6.905	5.209	5.689	0.000	5.604
MAXIMAM	103,700	102.500	99.200	0.000	103.700
MINIMM	85.100	87.300	88.500	0.000	85.100
CASES INCL	6	9	3	0	18

#### FOREARM CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	ME:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
414 444 500					COMBINED
ALL MALES:	27.296	27.554	00 015	07.400	07.610
SID.DEV.	1.785	1.979	28.015 2.091	27.429 1.682	27.619 1.937
MAXIMUM	36.700	39,300	38.200	35.500	39.300
MINIDALM	23.500	22.500	22.000	16.600	16.600
CASES INCL	161	389	318	259	1127
			444	200	4441
WHITE WALES:					
MEAN	27.282	27.564	27.916	27.392	27.551
STD.DEV.	1.863	2,080	2.201	1,508	1.922
MAXIMUM	36.700	39.300	38.200	30.600	39.300
MINIMUM CASES INCL	23.500	23.300	22.000	16.600	16.600
CASES THAT	101	203	166	226	696
BLACK MALES:					
MEAN	27.515	27.844	28.693	29.100	28.117
STD.DEV.	1.557	1.805	1.742	2.246	1.837
MAXIMAM	30.600	34.300	31.900	35.500	35.500
MINIMUM	24.100	23.400	24.600	26.500	23.400
CASES INCL	40	124	75	15	254
ITODIUTO III D	_				
HISPANIC MALE		00.000			
MEAN STD.DEV.	27.062	26.922	27.717	26.000	27.214
MAXIMUM	1.813 31.400	1.829	1.941	2.766	1.998
MINIMUM	23.900	30.500 22.500	33.500	28.700	33.500
CASES INCL.	23. <del>3</del> 00 16	22. <del>500</del> 50	22.700 58	19.000	19.000
COLD INC.	10	50	26	10	134
ALL FEWALES:					
MEAN	23.179	23,096	23.396	22.300	23.167
STD.DEV.	1.529	1.575	1.884	1.697	1.626
MAXIMUM	27.500	28.500	26.700	23.500	28.500
MINIMUM	20.100	14.100	14.000	21.100	14.000
CASES INCL	62	155	52	2	271
WHITE FEWALES				-	
MEAN	: 23.024	22.999	02 470	00 000	00 100
STD.DEV.	1.493	1.293	23.479 1.279	22.300	23.103
MAXIMUM	27.500	25.500	25.700	1.697 23.500	1.350
MINIMUM	20,100	20.100	20.400	21.100	27.500 20.100
CASES INCL	37	76	33	21.100	20.100 148
			•	~	140
BLACK FEWALES					
MEAN	23.594	23.302	23.300	0.000	23.349
STD.DEV.	1.632	1.452	2.998	0.000	1.779
MAXIM.M	27.400	27.400	26.700	0.000	27.400
MINIMAM	21.000	21.000	14.000	0.000	14.000
CASES INCL	16	66	15	0	97
HISPANIC FEWAL	ES:				
MEAN	23.200	23.000	22.867	0.000	23.044
STD.DEV.	1.901	0.733	0.850	0.000	1.190
MAXTIMUM	25.200	24.400	23.500	0.000	25.200
MINIMA	20.900	22.400	21.900	0.000	20.900
CASES INCL	6	9	3	0	18

## WRIST CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CZOUPS
					COMBINED
ALL MALES:					
MEAN	<b>15.683</b>	16.652	16.791	16.868	16.745
STD.DEV.	0.805	1.009	0.946	0.972	0.959
MAXIMAM	19.000	26.900	22.600	26.200	23.900
MINIDALM	14.100	14.000	13.500	14.400	13.500
CASES INCL	162	389	317	259	1127
WHITE MALES:					
MEAN .	16.755	16.809	16.928	16 051	16,843
STD.DEV.	0.654	1.090	0.997	16.851 0.743	0.908
MAXIMUM	18.100	26.900	22.600	19.300	26.900
MINIMAM	15.100	14.000	13.500	14.400	13.500
CASES INCL	101	203	166	226	696
BLACK WALES:					
MEAN	16.571	16.559	16.887	17.873	16.735
STD.DEV.	0.961	0.881	0.762	2.481	1.064
MAXIMLM	18.300	18.800	19.500	26.200	26.200
MINDAM	14.100	14.600	15,200	16.100	14.100
CASES INCL	41	124	75	15	255
HISPANIC MALES					
MEAN	16.600	16.374	16.433	16.320	16 400
STD.DEV.	1.155	0.811	0.887	0.870	16.422 0.887
MAXIMUM	19.000	18.500	18.100	18.100	19.000
MINIMUM	14.400	14.600	13.600	15.000	13.600
CASES INCL	16	50	13.560 58	10	13.600
				20	207
ALL FEWALES:					
MEAN	14.898	14.668	14.690	14.650	14.725
STD.DEV.	1.947	1.419	0.701	0.212	1.452
MAXIMUM	25.800	24.700	16.500	14.800	25.800
MINIMUM	13.000	13.000	13.500	14.500	13.000
CASES INCL	62	155	52	2	271
WHITE FEMALES:					
MEAN	14.703	14.739	14.697	14.650	14.720
STD.DEV.	0.654	1.741	0.745	0.212	1.331
MAXIMUM	16.200	24.700	16.500	14.800	24.700
MINIMUM	13.000	13.200	13.500	14.500	13.000
CASES INCL	37	76	33	2	148
DI ACIV PERSON				_	= 72
BLACK FEMALES:					
MEAN	15.044	14.538	14.820	0.000	14.665
STD.DEV.	2.417	0.633	0.614	0.000	1.131
MAXIMUM	23.900	16.500	16.100	0.000	23.900
MINIMUM	13.600	13.000	14.100	0.000	13.000
CASES INCL	16	66	15	0	97
HISPANIC FEWAL	ES:				
MEAN	15.967	14.222	14.133	0.000	14.789
STD.DEV.	4.870	0.444	0.551	0.000	2.800
MAXIMUM	25.800	14.800	14.700	0.000	25.800
MINIMUM	13.200	13.300	13.600	0.000	13.200
CASES INCL	6	9	3	0	18

# THIGH CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
					COMBINED
ALL WALES:			w.e. w.e.v	FA 004	FO 074
MEAN	52.577	53.314	55.585	53.864	53.974
STD.DEV.	4.796	5.040	5.853	3.774	5.107 76.000
MAXTHAM	63.200	69.800	76.000	64,800	
MINIMUM	29.700	34.600	27.200	41.100	27.200
CASES INCL	162	387	317	259	1125
WHITE WALES:					
MEAN	52.223	53.075	55.145	53,770	53.669
STD.DEV.	4.879	5.012	5.576	3.598	4.818
MAXIMLM	63.200	69.600	72.400	64.200	72.400
MORIDALM	29.700	37.000	39.600	41.100	29.700
CASES INCL	101	203	165	226	695
G1000 2142	202	2.00			
BLÁCK MALES:					
MEAN	53.483	54.380	57.127	57.067	55.206
STD.DEV.	4.663	4.761	5.708	4.087	5.190
MAXIDKAM	62.400	69.800	75.800	64.800	75.800
MINIDALM	44.500	41.400	44.900	49.000	41.400
CASES INCL	41	123	75	15	254
LITCOANTC MAI EC	••				
HISPANIC MALES	_	E0 000	55.728	52.730	53.917
	53.337	52.206 5.581	6.353	4.401	5.923
STD.DEV. MAXIMUM	4.530 61.900	63.700	76.000	61.300	76.000
		34.600	27.200	46.300	27.200
MINIMUM CASES INCL	41.600 16	34. <del>0</del> 00 49	27.200 58	40.500	133
CASES INC.	10	49	36	10	133
ALL FEWALES:					
MEAN	53.805	53.786	54.129	50.300	53.830
STD.DEV.	4.313	4,289	7.003	1.556	4.907
MAXIMUM	64.200	65.000	77.100	51.400	77.100
MINIMUM	45.100	44.000	26.800	49.200	26.800
CASES INCL	62	155	52	2	271
WHITE FEWALES:			#4 aam	<b>70.000</b>	TO 070
MEAN	53.489	53.576	54.327	50.300	53.678
STD.DEV.	4.616	4.437	4.416	1.556	4.448
MAXIMUM	64.200	65.000	66.700	51.400	66.700
MINIMUM	45.100	44.300	46.400	49.200	44.300
CASES INCL	37	76	33	2	148
BLACK FEWALES:	•				
MEAN	54.781	54.167	53.800	0.000	54.211
STD.DEV.	3.873	4.188	11.514	0.000	5.799
MAXIMAM	60.700	63.600	77.100	0.000	77.100
MINIMUM	49.800	44.000	26.800	0.000	26.800
CASES INCL	16	66	15	0.000	97
		••		•	7.
HISPANIC FEWA					
MEAN	53.183	53.633	53.600	0.000	53.478
STD.DEV.	3.282	3.126	2.961	0.000	2.974
MAXIMUM	56.400	59.800	56,400	0.000	59.800
MINDALM	48.600	49.400	50.500	0.000	48.600
CASES INCL	6	9	3	0	18

# KNEE CIRCUMFERENCE (OM) CROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
ALL MALES					COMBINED
ALL MALES: WEAN	26 053	00.000	***		
STD.DEV.	36.857 2.917	36.660	37.203	37.497	37.034
MAXIMAM	55.600	2.49 <del>4</del> 46.200	2.888	2.391	2.669
MINIMAM	25.400	23.400	56.800 20.800	57.700 57.700	57.700
CÁSES INCL	162	23. <del>40</del> 0 389	30.800 318	31.700	23.400
	102	303	210	259	1128
WHITE WALES:					
MEAN	37.011	36.945	37.376	37.561	37.257
STD.DEV.	2.725	2.578	3.021	2.398	2.664
MAXIMLM	55.600	45.700	56.800	57.700	57.700
MINIMAM	32.300	23.400	31.200	31.700	23.400
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	36 3E4	20, 200	<b>27 22 1</b>		
STD.DEV.	36.354 3.517	36.369	37.624	38.060	<b>36.835</b>
MAXIMAM	52.000	2.216	3.100	2.224	2.795
MINIMA	25.400	42.200 32.000	53.400	45.300	53.400
CASES INCL	41	124	30.800	36.300	25.400
2.02	74	124	75	15	255
HISPANIC MALE	S:				
MEAN	37.294	36.454	36.405	36.710	36.552
STD.DEV.	2.554	2.618	2.078	2.490	2.369
MAXIXAM	43.900	46.200	42.900	40.200	46.200
MINIMAM	31.600	32.700	32.400	32.200	31.600
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	24 707	04.070	**		
STD.DEV.	34.727 2.303	34.670	36.260	33.400	34.979
MAXIMUM	40.900	2.602	4.273	0.141	2.986
MINIMUM	31.100	42.400 23.800	57.600	33.500	57.600
CASES INCL	62	25.600 155	25.100 52	33.300	23.800
	<b>V</b> 2	155	52	2	271
WHITE FEWLES:	:				
MEAN	34.432	34.829	36.379	33.400	35.056
STD.DEV.	2.023	2.835	4.584	0.141	3.199
MAXIMUM	38.600	42.400	57.600	33.500	57.600
MINIMUM	31.100	23.800	31.500	33.300	23.800
CASES INCL	37	76	33	2	148
BLACK FEWALES:					
MEAN .	35,394	24 504			
STD.DEV.	2.434	34.524	35.873	0.000	34.876
MAXIMUM	39.500	2.422 40.500	4.111	0.000	2.765
MINIMUM	31.900	29,800	42.800	0.000	42.800
CASES INCL	16	29,600 66	25.100 15	0.000	25.100
		CO .	10	0	97
HISPANIC FEMAL					
MEAN	35.567	34.844	37.033	0.000	35.450
STD.DEV.	3.168	2.053	2.957	0.000	2.570
MAXIMUM	40.900	39.600	40.100	0.000	40.900
MINIMUM CASTES TAXES	31.400	32.900	34.200	0.000	31.400
CASES INCL	6	9	3	0	18

G-26

# CALF CIRCUMFERENCE(OM) GROWEPD BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40∻	ALL AGE CROUPS
					COMBINED
ALL WALES:					
MEAN	36.802	36.790	37.384	37.460	37.113
STD.DEV.	2.610	2.850	3,064	2.242	2.768
MAXIDALM	42.700	46.700	46.600	46.600	46.700
MINIMUM	23.800	26.700	25.600	31.000	23.800
CASES INCL	162	389	318	259	1128
WHITE MALES:					
MEAN	36.818	37.132	37.623	37.582	37.350
STD.DEV.	2.618	2.958	3.155	2.159	2.737
MAXIMUM	42.200	46.700	46.600	46.600	46.700
MINIMUM	23.800	26.700	25.600	31.500	23.800
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	36,880	36.525	37.633	37.233	36.950
STD.DEV.	2,562	2.617	2.835	2.253	2.684
MAXIMLM	41.900	45,000	46.100	43,200	46.100
MINIMUM	30.200	26.800	31.000	33.200	26,800
CASES INCL	41	124	75	15	255
HISPANIC MALES	<b>.</b>				
MEAN	36.675	36.120	36.717	35.170	36.374
STD.DEV.	2.882	2.678	2.820	2.346	2.748
MAXIMUM	42.700	41.700	45.900	38.700	45.900
MINIMUM	30.300	29.500	28.600	31.000	28.600
CASES INCL	16	29.500 50	28.000	10	134
COES INCL	10	\$0	30	10	104
ALL FEWALES:					
MEAN	34.705	34,588	35.367	33.500	34.756
STD.DEV.	2.466	2.919	2.831	0.283	2.801
MAXIMUM	39.800	48.500	47.300	33.700	48.500
MINIMA	29,400	26.000	30,800	33.300	26,000
CASES INCL	62	155	52	2	271
WHITE FEWALES:	•				
MEAN	34.692	34.886	35.524	33.500	34.961
STD.DEV.	2.561	3.375	3.087	0.283	3.101
MAXIMUM	39.800	48.500	47.300	33.700	48.500
MINIMUM	29.400	26.000	30.800	33.300	26.000
CASES INCL	37	76	33	2	148
BLACK FEWALES	•				
MEAN	: 35.000	34.323	34.933	0.000	34.529
STD.DEV.	2.243	2.360	2.422	0.000	34.529 2.346
MAXIMUM					
MINIMUM	38.900 29.500	41.100 29.800	39.200 31.000	0.000 0.000	41.100 29.500
CASES INCL	16	66	15	0	97
HISPANIC FEMA		04 050	AT AA-		<b>84</b>
MEAN	34.333	34.256	35.633	0.000	34.511
STD.DEV.	2.892	2.469	2.957	0.000	2.574
MAXIM.M	37.800	39.800	38.700	0.000	39.800
MINIMAM	30.700	32.000	32.800	0.000	30.700
CASES INCL	6	9	3	0	18

## ANKLE CIRCUMFERENCE(OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS COMBINED
ALL MALES:					CONDINED
MEAN	22.783	22.459	22.307	22.531	22.479
STD.DEV.	1.824	1.699	1.680	1.494	1.672
MAXIMÀM	33.500	32.500	33.400	29.900	33.500
ÁTINTALÁ	19,100	18.400	17.200	15.100	15.100
CASES INCL	162	389	316	258	1125
WHITE MALES:					
HEAN	22.876	22.699	22.554	22,590	22.655
STD.DEV.	1.625	1.634	1.800	1.515	1.637
MAXIXAM	33.500	32.100	33.400	29,900	33.500
MINIMAM	19.100	18.500	17.200	15.100	15.100
CASES INCL	101	203	164	225	693
BLACK MALES:					
MEAN	22.283	22.188	22.236	22.320	22.225
STD.DEV.	1.431	1.704	1.365	1.341	1.540
MAXIMUM	26.400	32.500	26.400	25.700	32.500
MINIMAM	19.800	18.800	19.300	20.300	18.800
CASES INCL	41	124	75	15	255
HISPANIC MALES	<b>3:</b>				
MEAN	23.031	22.348	21.800	22.010	22.167
STD.DEV.	1.861	1.792	1.345	1.593	1.638
MAXIMLM	27.200	31.300	24.800	24.300	31.300
MINÏMLM	19.700	19.800	18.900	18.800	18.800
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	20.769	20.423	20.658	20.350	20.546
STD.DEV.	1.232	1.273	1.114	0.212	1.235
MAXIMUM	25.400	24.500	23,400	20.500	25.400
MINIMUM	18.600	17.800	18.400	20.200	17.800
CASES INCL	62	155	52	2	271
WHITE FEWALES:	<b>:</b>				
MEAN	21.024	20.616	20.688	20.350	20.730
STD.DEV.	1.278	1.424	1.141	0.212	1.323
MAXIMUM	25.400	24.500	23.400	20.500	25.400
MINIMUM	18.800	17.800	18.400	20.200	17.800
CASES INCL	37	76	33	2	148
BLACK FEMALES:	:				
MEAN	20.431	20.227	20.640	0.000	20.325
STD.DEV.	0.939	1.060	1.042	0.000	1.039
MAXIMUM	22.000	23.300	22.100	0.000	23.300
MINIMUM	18.600	18.600	19.000	0.000	18.600
CASES INCL	16	66	15	0	97
HISPANIC FEMAL	ES:				
MEAN	20.667	20.556	20.533	0.000	20.589
STD.DEV.	1.414	1.117	1.762	0.000	1.242
MAXIMAM	22.600	21.700	21.600	0.000	22 600
MINIMAM	18.800	19.000	18.500	0.000	18.500
CASES INCL	6	9	3	0	18

## BIACROMIAL DIAMETER (OM) GROUPED BY GENDER, RACE AND AGE

	ACE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN	40.466	39.959	37.933	41.574	39.831
STD.DEV.	2.627	3.259	3.270	2.742	3.339
MAXIMLM	45.800	46.600	47.600	49.200	49.200
<b>WINIMM</b>	32.100	23.500	25.500	29.500	23.500
CASES INCL	162	389	318	259	1128
WHITE MALES:					
MEAN .	40.398	40,088	38.379	41.783	40.276
STD.DEV.	2.520	3.228	3.547	2.601	3.275
MAXIMM	45.800	46.000	47.600	46,700	47.600
MINIMUM	32.400	24,500	25,500	29.500	24.500
CASES INCL	101	203	1.66	23.550	696
		<del></del>			000
BLACK MALES:					
MEAN	40.480	39.719	37,765	40.113	39.290
STD.DEV.	3.014	3.470	2.778	3.950	3.379
MAXIMUM	44,600	45.400	45.100	49.200	49.200
MINIMUM	32.100	23.500	31.000	34.000	23.500
CASES INCL	41	124	75	15	255
HISPANIC MALES	ş.				
MEAN	41.275	39,944	37.060	40.720	20.012
STD.DEV.	2.195	2.865			38.913
MAXIMUM	44.500	46.600	2.859	2.034	3.188
MINIMAM	37.500		44.500	44.100	46.600
CASES INCL		33.600	31.600	37.500	31.600
CVOCO TINCE	16	50	58	10	134
ALL FEWALES:					
MEAN	33.531	33.235	33.021	32.050	33.253
STD.DEV.	2.989	2.571	2.798	0.212	2.703
MAXIMUM	41.100	40.100	43.100	32,200	43.100
MINIMUM	27.500	27.500	27.900	31.900	27.500
CASES INCL	62	155	52	2	271
				_	
WHITE FEWALES:					
MEAN	33.700	33.357	32.270	32.050	33.182
STD.DEV.	2.634	2.780	1.977	0.212	2.604
MAXIMUM	41.100	40.100	36.300	32.200	41.100
MINDALM	29.600	27.500	27.900	31.900	27.500
CASES INCL	37	76	33	2	148
BLACK FEWALES:	<u>.</u>				
MEAN	33.244	33.238	34.440	0.000	22 405
STD.DEV.	3.687	2.284		0.000	33.425
MAXIMAM	41.100	39.500	3.729	0.000	2.806
MINIMIM	28.600	28.400	43.100	0.000	43.100
CASES INCL	16		29.200	0.000	28.400
AND THE	10	66	15	0	97
HISPANIC FEMAL					
MEAN	33.150	31.611	34.500	0.000	32.606
STD.DEV.	3.745	1.782	3.422	0.000	2.874
MAXIMUM	37.500	35.300	37.000	0.000	37.500
MINIMUM	27.500	29.000	30.600	0.000	27.500
CASES INCL	6	9	3	0	18

## CHEST DIAMETER (OM) OROUPED BY CENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL WALES:					
MEAN	28.714	28.306	27.370	30.547	28.616
STD.DEV.	2.437	2.968	3.299	2.585	3.131
MAXIMUM	36.600	39.000	47.300	39.500	47.300
MININEM	19.500	19.400	20.400	19.000	19.000
CASES INCL	161	388	318	259	1126
WHITE MALES:					
MEAN	29.064	29.005	28.096	30.798	29.380
STD.DEV.	2,102	2.967	2.982	2.439	2.893
MAXIMAM	33.100	39.000	35.100	39.500	39.500
MINIMUM	20.600	21.700	20.700	19.000	19.000
CASES INCL	101	202	166	226	695
C 10/ 1/81 C					
BLACK MALES:	err 300	07 100	00 504	20.010	AT 100
MEAN	27.722	27.163	26.561	28.213	27.138
STD.DEV.	2.747	2.788	3.939	3.167	3.201
MAXIMUM	36.300	32.000	47.300	33.900	47.300
MINIMUM	19.500	19.400	21.100	22.100	19.400
CASES INCL	48	124	75	15	255
HISPANIC MALE	<b>6:</b>				
MEAN	29.127	28.522	26.700	29,950	27.903
STD.DEV.	2.842	2.557	2.962	1.946	2.932
MAXIMAM	36.600	34.000	32.500	32.000	36.600
MINIMA	24.200	21.800	20.400	26.700	20.400
CASES INCL	15	50	58	10	133
ALL FEMLES:					
MEAN	22.448	21.580	21.604	18,450	21.760
STD.DEV.	3.172	2.606	2.707	1.909	2.785
MAXIM.M	29.600	28.300	28.700	19.800	29,600
MINIMA	16.800	17.400	17.500	17.100	16.800
CASES INCL	62	155	52	2	271
		200	42	-	
WITTE FEMALES					
MEAN	22.695	22.120	20.982	18.450	21 960
STD.DEV.	2.935	2.826	2.106	1.909	2.776
MAXIDALM	29.600	28.300	26.800	19.800	29.600
MINIMUM	16.800	18.400	17.500	17 100	16 800
CASES INCL	37	76	33	2	148
BLACK FEWLES	:				
MEAN	21 881	20.979	22.667	0.000	21, 339
STD.DEV	3.547	2.218	3.349	0 000	2 710
MAKIKAN	28.700	26.700	28.700	0 000	28 700
MINIMA	17.200	17 700	18 700	0 000	17 200
CASES INCL	16	66	15	0	9/
HISPANIC FBAA	1 68				
MEAN	21 633	20 722	23.067	0 000	21 417
STD.DEV	3.986	2.296	4 332	0 000	3 190
HAXIMAM	26.700	25.600	25 800	0 000	76 7W
MINIMUM	17 300	17 400	18 000	0 000	17 300
CASES INCL	17 330 8	9	3	0	19
GOOD HALL	U	<b>y</b>	J	U	<b>⊕</b> '₩

## BIILIAC DIAMETER (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL WALES:					
MEAN	26.675	26.027	24.877	28.594	26.386
STD.DEV.	2.487	2.797	3.103	2.313	3.055
MAXDALM	36.300	36.100	33.400	35.100	36.300
MINIMUM	16.100	18.400	17.900	20.900	16.100
CASES INCL	161	<b>388</b>	318	259	1126
WHITE MALES:					
MEAN .	27.042	26,920	25.855	28.896	27.327
STD.DEV.	2.508	2.636	2.903	2.077	2.775
MAXIDALM	36.300	36.100	32.400	35.100	36.300
MINIMUM	16.100	19.000	20.500	21.000	16.100
CASES INCL	100	202	166	226	694
BLACK WALES:					
MEAN	25.527	24.329	23.489	25.900	24.367
STD.DEV.	2.329	2.489	3.065	3.014	2.767
MAXIM.M	29.200	29.500	33.400	31.600	33.400
MINIMUM CASES INCL	18.600	18.400	17.900	21,200	17.900
CNOES INCL.	41	124	75	15	255
HISPANIC MALES					
HEAN	27.125	26.786	24.055	27.630	25.707
STD.DEV.	1.931	2.266	2.913	21.030 2.227	2.904
MAXIM	32.000	31.300	31.200	30.600	32.000
MUNUMUM	24.100	20.800	19.100	23.200	19.100
CASES INCL	16	50	58	10	134
					20.
ALL FEWALES:					
MEAN	24.415	23.465	24.119	24.500	23.817
STD.DEV.	2.764	2.729	2.226	0.424	2.661
MAXIDAM	30,000	30.700	29.400	24.800	30.700
MINDAM	19.000	18.000	20.000	24.200	18.000
CASES INCL	62	154	52	2	270
WHITE FEMILES:					
MEN NEW	24.916	24.134	oo orr	04.500	04 670
STD.DEV.	2.302	24.134 2.785	23.855 1.899	24.500	24.272
MAXIMAH	29.500	2.765 30.700	29.400	0.424 24.800	2.489
MINIMAM	21 000	19.000	21.400	24.200	30.700 19.000
CASES INCL	37	76	33	24.200	148
		. •		~	<b>2</b> +0
BLACK FBALLES					
MEAN	23.050	22.708	24.553	0.000	23.053
STD DEV	3.090	2.546	2.592	0.000	2.703
HAXDALM	29 700	29.800	29.000	0.000	29,800
MINIMA	19.000	18.000	20,000	0.000	18.000
CASES INCL	16	65	15	0	96
HISPANIC FEMAL	£C.				
KEAN TEAN	<u>요</u> 24.633	22.789	25.200	o ~~	00 000
STD.DEV	3.515	1.589	4.095	0.000 0.000	23.806
MAXIM	30 000	25.800	28.000	0.00	2.816
MINDALA	21.500	20.700	20.500	0.000	30.000 20.500
CASES INCL	6	9	3	0.000	20.300 18
	-	<del>-</del>	-	•	20

# BIDELTOID DIAWETER (OM) CROUPED BY CENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN	45.592	45.244	44.260	45.7 <del>44</del>	45.131
STD.DEV.	2.576	3.403	3.438	2.764	3.216
MAXIMUM	54.300	53.200	53.300	57.300	57.300
MINIMUM	37.700	25.600	22.600	35.200	22.600
CASES INCL	162	389	318	259	1128
WITTE MALES.					
WHITE MALES:	45.648	45.372	44.605	45.753	45.353
STD.DEV.	2.380	45.572 3.630	3.300	45.755 2.668	3.120
MAXIMUM	50.800	53.000	53.300	51.500	53.300
MINIMA	38.400	25.600	36.500	35.200	25.600
CASES INCL	101	23.000	36.300 166	226	696
COST TAT	101	200	100	220	690
BLACK MALES:					
MEAN	45.180	45.038	44.332	45.907	44.904
STD.DEV.	2.887	3.006	2.868	4,000	3.024
MAXIMUM	50.600	53.200	51.000	57.300	57 <i>.</i> 300
MINIMA	37.700	37.200	36.300	41.500	36.300
CASES INCL	41	124	75	15	255
1501150					
HISPANIC MALES	_				41.044
MEAN	46.650	45.114	43.353	46.130	44.611
STD.DEV.	2.888	3.350	4.355	1.204	3.842
MAXIMUM	54.300	52.700	51.000	48.000	54.300
MINIMA	43.200	36.000	22.600	44.700	22.600
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	38.727	37.884	38.252	35,650	38.131
STD.DEV.	3.645	2.932	3.060	3.041	3.142
MAXIMUM	47.600	46.000	47,200	37.800	47.600
MINIMA	33.000	31.800	27.600	33.500	27.600
CASES INCL	62	155	52	33.300	27.000
ONCE THE	02	100	32	2	211
WHITTE FEVALES:	:				
MEAN	38.922	38.158	37.655	35.650	38.203
STD.DEV.	3.347	3.221	2.222	3.041	3.076
MAXIMUM	47.000	46.000	42.700	37.800	47.000
MINIMUM	34.300	32.400	33.200	33.500	32.400
CASES INCL	37	76	33	2	148
BLACK FEMALES:	•				
MEAN		27 507	20.100	0 000	37.894
STD.DEV.	37.931 3.993	37.597	39.160	0.000	
	47.600	2.590	4.235	0.000	3.156
MAXIMUM		44.700	47.200	0.000	47.600
MINIMUM	33.000	31.800	27.600	0.000	27.600
CASES INCL	16	66	15	0	97
HISPANIC FEWA	ÆS:				
MEAN	38.717	37.111	40.267	0.000	38.172
STD.DEV.	4.197	1.923	4.008	0.000	3.207
MAXIMAM	44.100	41,200	43.200	0.000	44.100
MINDALM	33.200	35.000	35.700	0.000	33.200
CASES INCL	6	9	3	0	18

## BITROCHANTER DIAMETER (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	2839	40+	ALL AGE GROUPS COMBINED
ALL MALES:					
MEAN	31.525	31.005	29.478	32.716	31.042
STD.DEV.	2.186	3.131	3.123	2.561	3.110
MAXIMUM	37.600	48.900	39.600	39.700	48.900
MINIMUM	24.100	21.500	23.000	19.900	19.900
CASES INCL	162	389	318	259	1128
WHITE MALES:					
MEAN	31.737	31.625	30.216	33.030	31.761
STD.DEV.	2.059	2.801	2.957	2.355	2.804
MAXIMUM	35.600	38.200	36.100	37.900	38.200
MINIMUM	24.100	24.000	23.000	19.900	19.900
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	30.712	29.841	28.764	30.727	29.716
STD.DEV.	2.232	3.606	3.166	3.532	3.344
MAXIMAM	34.700	48.900	38.200	39.700	48.900
MINIMUM	24.200	21.500	23.500	26.800	21.500
CASES INCL	41	124	75	15	255
HISPANIC MALES	S:				
MEAN	32.162	31.506	28.553	31.050	30.272
STD.DEV.	2.390	2.214	3.171	1.893	3.056
MAXTMUM	37.600	35.600	39.600	33.400	39.600
MINIMUM	27.000	26.200	23.400	27.600	23.400
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	28.784	27.750	28.837	26.650	28.187
STD.DEV.	3.236	2.877	2.483	0.495	2.923
MAXIMUM	35.400	35.100	35.300	27.000	35.400
MINIMUM	23.400	22.100	25.000	26.300	22.100
CASES INCL	62	155	52	2	271
WHITE FEWALES:	•				
MEAN	28.927	28.496	28.139	26.650	28.499
STD.DEV.	2.825	3.027	1.712	0.495	2.718
MAXIMLM	34.700	35.100	32.800	27.000	35.100
MINIMUM	25.000	23.400	25.200	26.300	23.400
CASES INCL	37	76	33	2	148
BLACK FEWALES:	•				
MEAN	28.506	27.062	30.013	0.000	27.757
STD.DEV.	3.919	2.633	2.618	0.000	3.052
MAXTMUM	35.400	34.400	35.300	0.000	35.400
MINIMUM	23.400	22.100	25.000	0.000	22.100
CASES INCL	16	66	15	0	97
HISPANIC FEMAL	<u>ES</u> :				
MEAN	28.467	26.511	31.500	0.000	27.994
STD.DEV.	3.995	2.044	5.462	0.000	3.685
MAXIMUM	34.500	31.200	34.900	0.000	34.900
MINIMUM	25.000	23.800	25.200	0.000	23.800
CASES INCL	6	9	3	0	18

# ELBOW DIAWETER (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	4O+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN	6.658	6.620	6.642	6.788	6.670
STD.DEV.	0.501	0.556	0.536	0.488	0.531
MAXIMAM	8.000	9.000	8.000	9.000	9.000
MINIMLM	5.000	5.000	5.000	6.000	5.000
CASES INCL	161	387	318	259	1125
5,10L5 2,10L	101	007	510	209	1125
WHITE MALES:					
MEAN	6.670	6.692	6.729	6.819	6.739
STD.DEV.	0.473	0.552	0.509	0.819	0.739
MAXIMUM	7.000	9.000	8.000		
MINIMLM	6.000	5.000		9.000	9.000
CASES INCL	100	201	5.000	6.000	5.000
OUCH THE	100	201	166	226	693
BLACK MALES:					
MEAN	6.683	c cor	0.000	0.000	0.000
STD.DEV.		6.605	6.693	6.933	6.663
	0.521	0.507	0.519	0.258	0.506
MAXIMUM	7.000	8.000	8.000	7.000	8.000
MINIMUM	5.000	6.000	6.000	6.000	5.000
CASES INCL	41	124	75	15	255
A					
HISPANIC MALES					
MEAN	6.563	6.480	6.397	6.300	6.440
STD.DEV.	0.629	0.580	0.528	0.483	0.555
MAXIMUM	8.000	8.000	7.000	7.000	8.000
MINIMUM	6.000	5.000	5.000	6.000	5.000
CASES INCL	16	50	58	10	134
				10	101
ALL FEWALES:					
MEAN	5.661	5.639	5.750	6.000	5.668
STD.DEV.	0.477	0.482	0.480	0.000	0.480
MAXIMUM	6.000	6.000	7.000	6,000	7.000
MINIMUM	5.000	5.000	5.000		
CASES INCL	62	155		6.000	5.000
WENT THE	02	155	52	2	271
WHITE FEWALES:					
MEAN .	5.676	E 630	r 7ro	0.000	=
STD.DEV.		5.632	5.758	6.000	5.676
MAXIMUM	0.475	0.486	0.435	0.000	0.470
	6.000	6.000	6.000	6.000	6.000
MINIMAM	5.000	5.000	5.000	6.000	5.000
CASES INCL	37	76	33	2	148
DI ACI/ CTRIAL CO					
BLACK FEWALES:	W 00W				
MEAN	5.625	5.667	5.667	0.000	5.660
STD.DEV.	0.500	0.475	0.617	0.000	0.498
MAXIMUM	6.000	6.000	7.000	0.000	7.000
MINIMIM	5.000	5.000	5.000	0.000	5.000
CASES INCL	16	66	15	0	97
				-	<b>~</b> ,
HISPANIC FEMAL					
MEAN	5.667	5.556	6.000	0.000	5.667
STD.DEV.	0.516	0.527	0.000	0.000	0.485
MAXIMUM	6.000	6.000	6.000	0.000	6.000
MINIMAM	5.000	5.000	6.000	0.000	5.000
CASES INCL	6	9	3	0.000	18
	-	-	•	U	10

# WRIST DIAMETER (OM) GROUPED BY GENDER, RACE AND AGE

	AGE:			40	ALL AND ADDEDO
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:	~ ~~~	r 700	F 601	5.887	5.737
MEAN	5.675	5.700	5.691 0.384	0.343	0.362
STD.DEV.	0.328	0.344 7.100	6.900	8.200	8.200
MAXIMM	6.600 4.600	4.800	4.500	4.800	4.500
MINIMUM CASES INCL	162	388	318	259	1127
	102	300	010	200	
WHITE MALES:	F 600	r 747	5.761	5.909	5.794
MEAN COLOR	5.682 0.304	5.747 0.366	0.400	0.332	0.365
STD.DEV. MAXIMUM	6.500	7.100	6.900	8.200	8.200
MINIMUM	5.000	4.900	4.500	4.900	4.500
CASES INCL	101	202	166	226	695
	202	202			
BLACK MALES:		r cro	E 641	5.873	5.664
MEAN SELV	5.654	5.656 0.302	5.641 0.346	0.413	0.338
STD.DEV.	0.383	6.400	6.400	6.600	6.600
MAXIMUM MINIMUM	6.600 4.600	5.000	4.800	5.400	4.600
CASES INCL	4.600	124	4.800 75	15	255
		124	75	10	2
HISPANIC MALES	-		~ ~~~	<b>#</b> 000	P 60P
MEAN	5.656	5.632	5.553	5.690	5.605
STD.DEV.	0.358	0.317	0.347	0.321	0.335
MAXIMUM	6.400	6.300	6.200	6.400	6.400 4.500
MINIMA	5.000	4.800	4.500	5.300 10	4.500 134
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	4.937	4.913	4.986	5.000	4.933
STD.DEV.	0.291	0.316	0.265	0.141	0.300
MAXIMUM	5.400	5.800	5.600	5.100	5.800
MINIMUM	4.100	4.000	4.400	4.900	4.000
CASES INCL	62	155	51	2	270
WHITE FEWALES:	4 070	4 000	r 000	r 000	4 041
MEAN	4.978	4.893	5.006	5.000	4.941 0.278
STD.DEV.	0.236	0.310 5.500	0.230 5.500	0.141 5.100	5.500
MAXIMUM MINIMUM	5.300 4.400	4.000	4.500	4.900	4.000
CASES INCL	4.400 37	4.000 76	32	4.500	147
	O,	,,	<b>02</b>	-	<del>-</del>
BLACK FEWALES:	4 005	4 000	4 007	0.000	4 007
MEAN	4.825	4.938	4.987	0.000	4.927
STD.DEV. MAXIMUM	0.391	0.326	0.338 5.600	0.000 0.000	0.339 5.800
MINIMUM	5.400 4.100	5.800 4.000	4.400	0.000	4.000
CASES INCL	16	4.000	15	0.000	97
CVOCO TIACE	10	•	13	O .	31
HISPANIC FEMAL		. ===	4 000	0.000	4 000
MEAN STD DOV	4.933	4.789	4.800	0.000	4.839
STD.DEV.	0.339	0.247	0.265	0.000	0.275
MAXIMUM MINIMUM	5.300 4.500	5.100 4.300	5.100 4.600	0.000 0.000	5.300 4.300
CASES INCL	4.500 6	4.300 9	4.600 3	0.000	4.300
WITH THAT	O	3	3	V	10

### KNEE DIAWETER (OM) GROUPED BY GENDER, RACE AND AGE

AGE:			
17-20 21-27	28-39	40+	ALL AGE CROUPS
			COMBINED
ALL WALES:			
MEAN 8.739 8.737	8.866	8.729	8.772
STD.DEV. 0.550 0.586	0.599	0.578	0.585
MAXIMLM 10.500 10.500		10.600	10.800
MINIMUM 7.300 6.600	6.300	7.200	6.300
CASES INCL 162 389	318	259	1128
WATTE HAI EC.			
WHITE WALES: MEAN 8.731 8.746	8.877	8.728	8.769
STD.DEV. 0.555 0.606	0.625	0.584	0.598
MAXIM.M 10.000 10.500	10.800	10.600	10.800
MINIMUM 7.300 6.600	6.300	7.200	6.300
CASES INCL 101 203	166	226	696
0000 Haz 101 200	100	220	050
BLACK MALES:			
MEAN 8.800 8.708	8.929	8.953	8.802
STD.DEV. 0.524 0.576	0.564	0.588	0.571
MAXIM.M 9.800 10.000	10.500	10.200	10.500
MINIMUM 7.500 7.000	7.500	8.000	7.000
CASES INCL 41 124	75	15	255
A PROPERTY AND THE			
HISPANIC WALES:			
MEAN 8.713 8.806	8.841	8.650	8.799
STD.DEV. 0.633 0.489	0.553	0.438	0.530
MAXIMUM 10.500 9.800	10.000	9.100	10.500
MINIMAM 7.800 7.300	7.600	7.900	7.300
CASES INCL 16 50	58	10	134
ALL FBWALES:			
MEAN 8.194 8.168	8.419	8.150	8.222
STD.DEV. 0.488 0.524	0.485	0.212	0.514
MAXIMUM 9.200 10.400	9.700	8.300	10.400
MINIMUM 7.000 6.400	7.400	8.000	6.400
CASES INCL 62 155	52	2	271
WHITE FEWALES:			
MEAN 8.151 8.189	8.412	8.150	8.229
STD.DEV. 0.449 0.541	0.493	0.212	0.512
MAXIMUM 8.900 9.600	9.600	8.300	9.600
MINIMAM 7.100 6.400	7.400	8.000	6.400
CASES INCL 37 76	33	2	148
BLACK FEMALES:			
MEAN 8.144 8.159	8.367	0.000	8.189
STD.DEV. 0.592 0.519	0.478	0.000	0.526
MAXIMUM 9.200 10.400	9.700	0.000	10.400
MINIMUM 7.000 6.700	7.800	0.000	6.700
CASES INCL. 16 66	15	0.000	97
	~~	J	<b>.</b>
HISPANIC FEMALES:			
MEAN 8.300 8.156	8.767	0.000	8.306
STD.DEV. 0.363 0.480	0.569	0.000	0.484
MAXIMUM 8.800 9.200	9.400	0.000	9.400
MINIMUM 7.900 7.500			
CASES INCL 6 9	8.300 3	0.000	7.500 18

SALANDE VILLAGO COMPANION DE SALANDE S

## ANKLE DIAMETER (OH) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
					COMBINED
ALL MALES:					
MEAN	7.132	7.07i	7.089	7.265	7.129
STD.DEV.	0.544	0.553	0.464	0.431	0.506
MAXIMUM	8.600	9.600	9.700	8.600	9.700
MINIMUM	2.800	2.400	5.700	6.000	2.400
CASES INCL	162	389	317	259	1127
WHITE MALES:					
MEAN	7.097	7.114	7.154	7.290	7.178
STD.DEV.	0.582	0.546	0.486	0.424	0.506
MAXIMUM	8,100	9.600	9.700	8.600	9.700
MINIMUM	2.800	4.200	5.800	6.000	2.800
CASES INCL	101	203	166	226	696
					333
BLACK MALES:					
MEAN	7.129	7.106	7.103	7.273	7.119
STD.DEV.	0.435	0.420	0.440	0.392	0.426
MAXIMUM	8.100	8.500	9.100	7.900	9.100
MINIMUM	5.900	5.300	6.100	6.800	5.300
CASES INCL	41	124	74	15	254
HISPANIC MALES	•				
MEAN	7.313	6.950	6.931	6.940	6.984
STD.DEV.	0.545	0.456	0.416	0.450	0.461
MAXIMUM	8.600	7.800	7.800	7.400	8.600
MINIMUM	6.400	5.000	5.700	6.100	5.000
CASES INCL	16	50	58	10	134
2102	10	0,5	30	10	134
ALL FEWALES:					
MEAN	6.258	6.304	6.269	6.550	6.289
STD.DEV.	0.315	0.364	0.353	0.071	0.350
MAXIMUM	7.100	7.200	7.400	6,600	7.400
MINIMUM	5.600	5.400	5.500	6.500	5.400
CASES INCL	62	155	52	2	271
WITT FOW FO					
WHITE FEMALES:	0.004	A 00M			
MEAN	6.284	6.305	6.218	6.550	6.284
STD.DEV.	0.298	0.368	0.336	0.071	0.343
MAXIMUM	7.000	7.200	7.100	6.600	7.200
MINIMUM	5.800	5.600	5.500	5.500	5.500
CASES INCL	37	76	33	2	148
BLACK FEWALES:					
MEAN	6.281	6.326	6.373	0.000	6.326
STD.DEV.	0.380	0.367	0.392	0.000	0.370
MAXIMUM	7.100	7.200	7.400	0.000	7.400
MINIMUM	5.600	5.400	5.700	0.000	5.400
CASES INCL	16	66	15	0	97
HISPANIC FEWAL	FC.				
MEAN	요. 6.150	6.178	6.400	۸ ۸۸۸	0.000
STD.DEV.	0.137	0.286	0.346	0.000	6.206
MAXIMUM	6.400	6.500	6.600	0.000	0.275
MINIMUM	5.800	5.600	6.000	0.000	6.600
CASES INCL	6	3.500 9	8.000 3	0.000	5.600
	•	<b>.</b>	2	0	18

#### ENDOMORPHIC SOMATUTYPE COMPONENT GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
ALL MALES.					COMBINED
ALL MALES:	4.238	4.439	5.027	5.286	4.767
STD.DEV.	1.335	1.561	1.752	1.235	1.568
MAXIMIM	8.000	8.500	8.500	8.500	8.500
MINIMAM	1.500	1.000	1.000	0.500	0.500
			318	0.500 259	1124
CASES INCL	162	385	919	253	1124
WHITE WALES:					
KEAN	4.406	4.602	5.265	5.268	4.949
STD.DEV.	1.311	1.448	1.580	1.220	1.437
MAXIMAM	8.000	8,000	8.000	8.000	8.000
MINIMAM	2.000	1.500	1.500	0.500	0.500
CASES INCL	101	201	166	226	694
BLACK WALES:	6 <b>700</b>	0.000	4 400	r 000	1 141
MEAN	3.732	3.996	4.433	5.000	4.141
STD.DEV.	1.323	1.586	2.004	1.452	1.699
MAXIMAM	7.500	8.500	8.500	8.500	8.500
MINIMAM	1.500	1.000	1.000	3.000	1.000
CASES INCL	41	124	75	15	255
HISPANIC WALES:	•				
MEAN	4.563	4.896	5.241	5,450	5.049
STD.DEV.	1.250	1.640	1.644	1.257	1,580
MAXIMUM	8.000	8.000	8.000	7.000	8.000
MINIMA	3.000	2.000	1,000	3.000	1.000
CASES INCL	16	48	58	10	132
CASCS TROT	10	40	36	10	132
ALL FEWALES:					
MEAN	4.976	4.416	4.942	5.500	4.653
STD.DEV.	1.386	1.450	1.530	2.121	1.473
MAXIMUM	8.000	8.500	8,000	7.000	8,500
MINIMUM	2.000	1.500	1.500	4.000	1.500
CASES INCL	62	155	52	2	271
WITE FEWALES:					
MEAN	5.095	4.566	4.894	5.500	4.784
STD.DEV.	1.195	1.530	1.499	2.121	1.457
MAXIMUM	8.000	8.500	7.500	7.000	8,500
MINIMUM	2.500	1.500	1.500	4.000	1.500
CASES INCL	37	76	33	2	148
BLACK FEWALES:					
MEAN .	4.594	4.182	4.867	0.000	4.356
STD.DEV.	1.685	1.320	1.727	0.000	1.459
MAXIMUM	7.500	7.500	8.000	0.000	8.000
MINIMUM	2.000			0.000	1.500
CASES INCL	2.000 16	1.500	1.500	9.00	97
ONCO TACK	10	66	15	U	31
HISPANIC FEWAL	<u> </u>				
MEAN	5.000	4.722	5.167	0.000	4.889
STD.DEV.	1.414	1.622	0.764	0.000	1.389
MAXIMUM	7.500	7.500	6.000	0.000	7.500
MINIMA	3.500	2.500	4.500	0.000	2.500
CASES INCL.	6	9	3	0	18
		=	=		

### MESOMORPHIC SOMATUTYPE COMPONENT GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	<b>4</b> 0+	ALL AGE CROUPS
					COMBINED
ALL MALES:	0 606	0.707	4 404	o roo	0.010
MEAN STD.DEV.	3.636 0.994	3.787	4.101	3.598	3.810
MAXIMUM	6.500	1.239 7.000	1.214 8.000	1.045 7.000	1.171
MINIMA	0.500	9.500	1.000	1.000	8.000 0.500
CASES INCL.	162	385	318	259	1124
WHITE MALES:					
MEAN	3.569	3.692	3.916	3.524	3.673
STD.DEV.	1.032	1.232	1.211	1.010	1.138
MAXIMUM	6.500	7.000	7.500	6.500	7.500
MINIMAM	0.500	0.500	1.000	1.000	0.500
CASES INCL	101	201	166	226	694
BLACK MALES:					
MEAN	3.878	3.875	4.347	4.233	4.035
STD.DEV.	0.835	1.190	1.238	1.266	1.174
MAXIMAM	6.000	7.000	8.000	7.000	8.000
MINIDALM	2.000	1.000	2.500	2.000	1.000
CASES INCL	41	124	75	15	255
HISPANIC MALES	S:				
MEAN	3.500	3.948	4.293	3.700	4.027
STD.DEV.	1.095	1.260	1.132	1.033	1.189
MAXIMAM	6.000	6.500	7.000	5.500	7.000
MINIMAM	1.500	1.500	1.500	2.000	1.500
CASES INCL	16	48	58	10	132
ALL FEWALES:					
MEAN	2.895	2.848	3.144	3.250	2.919
STD.DEV.	0.937	1.085	1.059	1.061	1.048
MAXIMAM	5.500	7.000	6.500	4.000	7.000
MINIMA	1.000	0.500	1.000	2.500	0.500
CASES INCL	62	155	52	2	271
WHITE FEMALES:					
MEAN	2.743	2.770	3.121	3.250	2.848
STD.DEV.	0.983	1.150	1.125	1.061	1.105
MAXIM	5.500	7.000	6.500	4.000	7.000
MINIMUM	1.000	0.500	1.000	2.500	0.500
CASES INCL	37	76	33	2	148
BLACK FBWLES:					
MEAN	2.938	2.841	3.033	0.000	2.887
STD.DEV.	0.793	0.895	0.915	0.000	0.877
MAXIMM	4.500	5.000	4.500	0.000	5.000
MINIMA CASES TAKE	1.500	1.000	1.500	0.000	1.000
CASES INCL	16	66	15	0	97
HISPANIC FEWAL					
MEAN STD, DEV	3.250	3.444	3.667	0.000	3.417
STD.DEV. MAXIMUM	0.880	1.509	1.258	0.000	1.228
MINIMUM	4.500 2.500	6.000	5.000	0.000	6.000
CASES INCL	2.500 6	1.000 9	2.500	0.000	1.000
AMM TATE	U	<b>y</b>	3	0	18

#### ECTEMORPHIC SOMATOTYPE COMPONENT GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					4 704
MEAN	2.154	1.958	1.524	1.656	1.794
STD.DEV.	0.991	1.153	1.072	0.807	1.059
MAXIMUM	5.000	6.000	5.000	4.500	6.000
MINIMAM	0.500	0.500	0 500	0.500	0.500
CASES INCL	162	395	218	259	1124
WHITE MALES:					
MEAN	2.149	2.027	1.566	1.704	1.829
STD.DEV.	1.016	1.199	1.063	0.807	1.045
MAXIMUM	5.000	6.000	4,500	4.500	6.000
MINIMAM	0.500	0.500	0.500	0.500	0.500
CASES INCL	101	201	166	226	694
BLACK MALES:					
MEAN	2.098	1.940	1.560	1.567	1.831
STD.DEV.	0.889	1.031	1.062	0.863	1.026
MAXIMUM	4.500	4.500	4.500	3.000	4.500
MINIMA	0.500	0.500	0.500	0.500	0.500
CASES INCL	41	124	75	15	255
HISPANIC WALES	••				
MEAN	2.219	1.719	1.310	1.150	1.557
STD.DEV.	1.048	1.166	0.977	0.626	1.077
MAXIMUM	4.500	4.500	5.000	2.500	5.000
MINIMUM	0.500	4.500 0.500	0.500	0.500	0.500
CASES INCL			0.500 58	10	132
CASES TACE	16	48	30	10	102
ALL FEMALES:					
MEAN	1.919	2.042	1.721	1.500	1.948
STD.DEV.	1.067	1.063	1.054	1.414	1.070
MAXIMUM	5.000	5.000	4,500	2.500	5.000
MINIMUM	0.500	0.500	0.500	0.500	0.500
CASES INCL	62	155	52	2	271
WHITE FEWALES:		0.445	4 740	4 700	0.017
MEAN	2.081	2.118	1.742	1.500	2.017
STD.DEV.	1.182	1.101	1.083	1.414	1.121
MAXIMUM	5.000	5.000	4.500	2.500	5.000
MINIMUM	0.500	0.500	0.500	0.500	0.500
CASES INCL	37	76	33	2	148
BLACK FEMALES:					
MEAN	1.750	2.038	1.700	0.000	1.938
STD.DEV.	1.049	0.990	1.115	0.000	1.019
MAXIMUM	4.500	5.000	4.500	0.000	5.000
MINIMUM	0.500	0.500	0.500	0.000	0.500
CASES INCL	16	66	15	0.000	97
	~~			_	
HISPANIC FEWA					- 200
MEAN	1.583	1.333	1.833	0.000	1.500
STD.DEV.	0.665	0.866	0.764	0.000	0.767
MAXIMUM	2.500	3.000	2.500	0.000	3.000
MINIMUM	1.000	0.500	1.000	0.000	0.500
CASES INCL	6	9	3	0	18

	AOC.				
	AGE: 17-20	21-27	28-39	40+	ALL AGE GROUP COMBINED
ALL WALES: MEAN	3.367	3.389	3.157	3.346	3.311
STD.DEV.	0.492	0.579	0.733	0.563	0.619
MAXIMUM	4.400	5.000	4.600	5.000	5.000
MINIMUM CASES INCL	1.800 147	1.360 349	1.100 281	1.360 214	1.100 991
WHITE WALES:					
MEAN CTD DOZ	3.299	3.292	3.059	3.352	3.253
STD,DEV. MAXIMUM	0.503 4.100	0.593 5.000	0.723 4.500	0.531 4.240	0.608 5.000
MINIMA	1.800	1.400	1.100	1.450	1.100
CASES INCL	91	180	151	186	608
BLACK MALES: MEAN	3.519	s cm	2 200	0 240	0 704
STD.DEV.	0.414	3.600 0.561	3.309 0.806	3.519 0.857	3.501 0.646
MAXIMUM	4.400	5.000	4.600	5.000	5.000
WINIMAN	2.500	1.360	1.400	1.360	1.360
CASES INCL	39	112	63	14	228
HISPANIC MALE	-	2 000	a oor	0 004	a 270
STD.DEV.	3.401 0.558	3.282 0.444	3.225 0.690	3.324 0.402	3.273 0.568
MAXIMM	4.000	4.000	4.400	4.000	4.400
MINIMAM	1.800	2.100	1.330	2.910	1.330
CASES INCL	13	47	51	8	119
ALL FEMALES: MEAN	3,336	3.208	3.087	0 205	2 000
STD.DEV.	0.636	0.656	0.752	2.325 0.389	3.208 0,675
MAXIMUM	4.700	4.670	4.300	2.600	4.700
MINIMAM	1.200	1.500	1.200	2.050	1.200
CASES INCL	55	138	44	2	239
WHITE FEVALES		2 017	0.107	6 60F	
MEAN STD.DEY.	3,325 0.696	3.215 0.740	3.197 0.714	2.325 0.389	3.224
MAXIMLM	4.700	4.670	4.300	2.600	0.725 4.700
MINIMA	1.200	1.700	1.300	2.050	1.200
CASES INCL	31	71	27	2	131
BLACK FEWALES MEAN	: 3.294	3.250	C 020	0.000	0.404
STD.DEV.	0.516	0.488	2.833 0.880	0.000 0.000	3.194 0.582
MAXIMAM	4.110	4.200	3.750	0.000	4.200
MINIM.M	2.200	2.090	1.200	0.000	1.200
CASES INCL	16	56	13	0	85
HISPANIC FEMAL MEAN		0.404	A AA		
STD.DEV.	3.582 0.694	3.194 0.757	2.963 0.183	0.000	3.277
MAXIMLM	4.600	4.330	3.170	0.000 0.000	0.668 4.600
MINIMAM	2.700	2.180	2.820	0.000	2.180
CASES INCL	5	7	3	0	15
		C	<del>-4</del> 1		

## AVERAGE SWIMSUIT RATING GROUPED BY GENDER, RACE AND AGE

	Æ:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
ALL WALES:					COMBINED
MEAN	3.366	3.288	2.917	2.969	3.118
STD.DEV.	0.624	0.635	0.778	0.542	0.680
MAXIMAM	5.000	5.000	4.440	4.380	5.000
MINIMAM	1.630	1.330	1.000	1.000	1.000
CASES INCL	118	295	235	217	865
WHITE MALES:					
MEAN	3.284	3.146	2.786	2.979	3.018
STD.DEV.	0.598	0.621	0.716	0.521	0.630
MAXIMAM	5.000	5.000	4.130	4.380	5.000
MINIMUM	2.000	1.330	1.130	1.000	1.000
CASES INCL	68	148	129	192	537
BLACK MALES:					
MEAN	3.549	3.567	3.147	3.121	3.426
STD.DEV.	0.646	0.608	0.924	0.760	0.739
MAXIMAM	4.430	4.500	4.440	3.750	4.500
MINIMUM	1.630	1.630	1.000	1.000	1.000
CASES INCL	35	97	50	13	195
HISPANIC MALES	:				
MEAN	3.379	3.167	3.073	2.766	3.128
STD.DEV.	0.668	0.568	0.730	0.288	0.645
MAXIMUM	4.500	4.330	4.280	3.130	4.500
MINIMUM	2.110	2.000	1.250	2.380	1.250
CASES INCL	13	39	40	7	99
ALL FEWALES:					
MEAN	3,125	3.284	2.813	2.165	3.150
STD.DEV.	0.720	0.732	0.823	1.181	0.772
MAXIMUM	4.380	5.000	4.000	3.000	5.000
MINIMUM	1.000	1.130	1.000	1.330	1.000
CASES INCL	48	127	41	2	218
WHITE FEWALES:					
MEAN	3.030	3.244	2.752	2.165	3.070
STD.DEV.	0.718	0.811	0.778	1.181	0.809
MAXIMUM	4.380	4.380	4.000	3.000	4.380
MINIMA	1.000	1.130	1.110	1.330	1.000
CASES TNOL	29	63	25	2	119
BLACK FEWALES:					
MEAN	3.294	3.430	2.838	0.000	3.305
STD.DEV.	0.712	0.562	0.949	0.000	0.695
MAXIMUM	4.220	5.000	4.000	0.000	5.000
MINIMUM	1.440	2.000	1.000	0.000	1.000
CASES INCL	13	53	14	0	80
HISPANIC FEMAL					
MEAN	3.266	2.949	3.430	0.000	3.096
STD.DEV.	0.886	0.844	0.000	0.000	0.811
MAXIMUM	4.380	4.100	3.430	0.000	4.380
MINIMA	2.000	1.780	3.430	0.000	1.780
CASES INCL	5	8	1	0	14

#### KRATING GROUPED BY GENDER, RACE AND AGE

	ACE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL WALES:					
MEAN	2.254	2.522	2.835	3.245	2.738
STD.DEV.	1.582	1.629	1.892	1.579	1.720
MAXIMAM	5.130	5.500	6.250	5.880	6.250
MINIMA	0.000	0.000	0.000	0.000	0.000
CASES INCL	162	389	318	259	1128
WHITE MALES:					
MEAN	2.206	2,578	3,087	3,269	2.870
STD.DEV.	1.690	1.733	1.843	1.531	1.732
MAXIMUM	5.000	5.500	6.130	5.830	6.130
MINIMA	0.000	0.000	0.000	0,000	0,000
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	2.368	2.318	2.374	3.245	2.397
STD.DEV.	1.322	1.475	1.983	1.521	1.627
MAXIMUM	5.130	5.250	6.250	5.500	6.250
MINIMUM	0.000	0.000	0.000	0.000	0.000
CASES INCL	41	124	75	15	255
(CCOMEC III) FO					
HISPANIC MALES		0.701	* ***		
MEAN COLUMN	2.433	2.734	2.638	3.010	2.677
STD.DEV.	1.455	1.641	1.898	2.101	1.758
MAXIMUM	4.890	4.780	5.630	4.880	5.630
MINIMAM	0.000	0.000	0.000	0.000	0.000
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	2.759	2.767	3.113	4,595	2.845
STD.DEV.	1.729	1.575	1.826	1.195	1.663
MAXIMUM	6.330	5.880	5.780	5.440	6.330
MINIMUM	0.000	0.000	0.000	3.750	0.000
CASES INCL	62	155	52	2	271
WITT COM CO				_	
WHITE FEMALES:	0.000				
MEAN	2.893	2.866	3.026	4.595	2.931
STD.DEV.	1.772	1.604	1.916	1.195	1.713
MAXIMUM	6.330	5.880	5.780	5.440	6.330
MINIMAM	0.000	0.000	0.000	3.750	0.000
CASES INCL	37	76	33	2	148
BLACK FEWALES:					
MEAN	2.668	2.552	3.640	0.000	2,740
STD.DEV.	1.600	1.505	1.416	0.000	1.542
MAXIMLM	5.440	4.780	5.440	0.000	5.440
MINIMUM	0.000	0.000	0.000	0.000	0.000
CASES INCL	16	66	15	0.000	97
HISPANIC FEMAL	ES:				
MEAN	2.895	3.530	1.190	0.000	2.928
STD.DEV.	1.639	1.463	2.061	0.000	1.739
MAXIMUM	4.630	4.780	3.570	0.000	4.780
MINIM.M	0.000	0.000	0.000	0.000	4.780 0.000
CASES INCL	6	9	3	0.000	18
	v	3	J	U	10

### VITAL CAPACITY(L) GROUPED BY GENUER, RACE AND AGE

	ACE:				
	17-20	21-27	28-39	40+	ALL ACE CROUPS COMBINED
ALL WALES:					4 443
<b>HEAN</b>	1.120	1.129	1.254	1.597	1.286
STD.DEV.	0.243	0.249	0.255	0.328	0.332 2.500
MAXIMAM	1.900	2.000	2.410	2.500 0,890	2.500 0.550
MINIMAN CASES INCL	0.610 128	0.5 <del>5</del> 0 313	0.610 301	0.890 258	1000
CASES LIKE	120	-513	301	230	1000
WITTE WALES:	4 4 5 4	4 426	4 000	1 004	1.378
MEAN COL	1.151	1.183	1.338 0.261	1.624 0.316	0.341
std.dev. Maximum	0.265	0.243 1.860	0.261 2.410	2.500	2.500
MINIMA	1, <u>900</u> 0,610	0.740	0.810	0,920	0,610
CASES INCL	0.510 81	158	155	226	620
COCO TRO	01	200	100	220	OLU
BLACK IMLES:	1 000	1 000	4 163	1 464	1.114
STD.DEV.	1.028 0.186	1.060 0.229	1.163 0.211	1.464 0.335	0.248
MAXIMUM	1.460	1.620	1.820	2.210	2.210
MINIMA	0.610	0.550	0.610	1.050	0.550
CASES INCL.	32	104	72	14	222
		201	• • •		
HISPANIC HALES:					4 400
HEAN	1.121	1.120	1.181	1.313	1.165
STD.DEV.	0.187	0.285	0.210	0.377	0.255
MAXIM	1.500	2.000	1.770	1.980	2.000
MINIMA	0.850	0.630	0.790	0.890	0.630
CASES INCL	12	41	56	10	119
ALL FEWLES:					
MEAN	0.884	0.950	1.081	1.205	0.963
STD.DEV.	0.182	0.173	0.211	0.078	0.194
MAXIMIM	1.380	1.500	1.650	1.260	1.650
MONDALM	0.500	0.450	0.550	1.150	0.450
CASES INCL	57	150	51	2	260
WHITE FEWALES:					
MEAN	0.901	1.000	1.116	1.205	1.005
STD.DEV.	0.183	0.166	0.205	0.078	0.193
MAXIMUM	1.380	1.400	1.420	1.260	1.420
MINIMA	0.560	0.610	0.550	1.150	0.550
CASES INCL	34	75	32	2	143
BLACK FEWALES:					
MEAN	0.844	0.903	1.049	0.000	0.918
STD.DEV.	0.199	0.170	0.232	0.000	0.194
MAXIM	1.130	1.500	1.650	0.000	1.650
MINIMUM	0.500	0.450	0.710	0.000	0.450
CASES INCL	14	62	15	0	91
HISPANIC FEWAL					_
MEAN	0.947	0.903	0.937	0.000	0.923
STD.DEV.	0.153	0.178	0.092	0.000	0.153
MAXIMUM	1.150	1.150	0.990	0.000	1.150
MINIMA	0.710	0.730	0.830	0.000	0.710
CASES INCL	6	9	3	0	18

# RESIDUAL LUNC VOLLME(L) GROUPED BY GENDER, RACE AND AGE

	ACE:				
	17-20	21-27	28-39	40÷	ALL ACE CROUPS
314 3141 <i>4</i> 72					COMBINED
AL MALES:	1.120	1.129	1.254	1.597	1.286
STD.DEV.	0.243	0.249	0.255	0.328	0,332
MAXIM.M	1.900	2.000	2.410	2.500	2.500
MINDAM	0.610	0.550	0.610	0.890	0.550
CASES INCL	128	313	301	258	1000
and nec	120	420	332		
WHITE HALES:					
MEAN	1.151	1,183	1.338	1.624	1.378
STD.DEV.	0.265	0.243	0.261	0.316	0.341
MANIEKAN	1,900	1.860	2.410	2.500	2.500
MINDAM	0.610	0.740	0.810	0.920	0.610
CASES INCL	81	158	155	226	620
BLACK HALES:					
MEAN.	1.028	1.060	1.163	1.464	1.114
STD.DEV.	0.186	0.229	0.211	0.335	0.248
MAXIMAM	1.460	1.620	1.820	2.210	2.210
MINIMUM	0.610	0.550	0,610	1.050	0.550
CASES INCL	32	104	72	14	222
HISPANIC MALES					
MEAN	1.121	1.120	1.181	1.313	1.165
STD.DEV.	0.187	0.285	0.210	0.377	0.255
MAXIMUM	1.500	2.000	1.770	1.980	2.000
MINIMM	0.850	0.630	0.790	0.890	0.630 119
CASES INCL	12	41	56	10	119
ALL FEWALES:					
MEAN	0.884	0.950	1.081	1.205	0.963
STD.DEV.	0.182	0.173	0.211	0.078	0.194
MAXIMAM	1.380	1.500	1.650	1.260	1.650
MINIMUM	0.500	0.450	0.550	1.150	0.450
CASES INCL	57	150	51	2	260
WHITE FEMALES:	0.001	1 000	1 110	1 005	1.005
MEAN STD, DOV	0.901	1.000 0.166	1.116 0.205	1.205 0.078	0.193
STD.DEV. MAXIMUM	0.183 1.380	1,400	1.420	1.260	1.420
MINIMUM	0.560	0.610	0.550	1.150	0.550
CASES INCL	34	75	32	2	143
GOLD LIGE	O.		<b>52</b>	-	
BLACK FEWALES:					
MEAN	0.844	0.903	1.049	0.000	0.918
STD.DEV.	0.199	0.170	0.232	0.000	0.194
MAXIMUM	1.130	1.500	1.650	0.000	1.650
MINIMAM	0.500	0.450	0.710	0.000	0.450
CASES INCL	14	62	15	0	91
HISPANIC FEWAL	FS.				
MEAN	<u>ట</u> . 0.947	0.903	0.937	0.000	0.923
STD.DEV.	0.153	0.178	0.092	0.000	0.153
MAXIMAM	1.150	1.150	0.990	0.000	1.150
MINIMUM	0.710	0.730	0.830	0.000	0.710
CASES INCL	6	9	3	0	18

# AVERAGE DENSITY(G/CC) FROM HYDROSTATIC WEIGHTING CROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL HALES:					
MEAN	1.061	1.058	1.047	1.044	1.052
STD.DEV. MAXIMUM	0.013	0.015	0.016	0.011	0.016
MINIMUM	1.084 1.018	1.101	1.091	1.078	1.101
CASES INCL	161	1.020 389	1.012 318	1.011 258	1.011 1126
asso nac	101	309	310	256	1120
WHITE WALES:					
MEAN	1.059	1.055	1.043	1.044	1.049
STD.DEV.	0.012	0.013	0.013	0.011	0.014
MAXIMUM	1.084	1.082	1.080	1.078	1.084
MINIMAM	1.018	1.020	1.012	1.011	1.011
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	1.067	1.065	1.057	1.052	1.062
STD.DEV.	0.013	0.015	0.017	0.010	0.016
MAXIMUM	1.083	1.101	1.091	1.068	1.101
MINIMUM	1.019	1.020	1.018	1.033	1.018
CASES INCL	40	124	75	14	253
HISPANIC MALES					
MEAN STD, DOV	1.059	1.054	1.045	1.039	1.050
STD.DEV. MAXIMUM	0.014	0.015	0.013	0.010	0.015
MINIMUM	1.075 1.026	1.089 1.027	1.075	1.053	1.089
CASES INCL	1.026	1.027 50	1.019 58	1.024 10	1.019
and mar	10	30	30	10	134
ALL FEWALES:					
MEAN	1.036	1.038	1.030	1.025	1.036
STD.DEV.	0.011	0.013	0.015	0.022	0.013
MAXIMUM	1.065	1.072	1.087	1.041	1.087
MINIMUM	1.004	0.990	1.006	1.010	0.990
CASES INCL	60	153	51	2	266
WHITE FEWLES:					
MEAN	1.036	1.036	1.030	1.025	1.035
STD.DEV.	0.012	0.014	0.012	0.022	0.013
MAXIMUM	1.058	1.063	1.054	1.041	1.063
MINIMUM	1.004	0.990	1.013	1.010	0.990
CASES INCL	37	76	32	2	147
D 10/ 700/11 00					
BLACK FEMALES:	1 050	4 040			
MEAN STD.DEV.	1.036	1.040	1.031	0.000	1.038
MAXIMUM	0.009 1.056	0.010	0.021	0.000	0.013
MINIMUM	1.024	1.072 1.021	1.087 1.006	0.000 0.000	1.087 1.006
CASES INCL	14	64	15	0.000	93
	<del></del>	O T	10	V	33
HISPANIC FEMAL	<u>ES</u> :				
MEAN	1.036	1.035	1.034	0.000	1.035
STD.DEV.	0.011	0.013	0.007	0.000	0.011
MAXIMUM	1.048	1.057	1.042	0.000	1.057
MINIMUM CASES INCL	1.022	1.019	1.028	0.000	1.019
CADED TACE	6	9	3	0	18

#### PERCENT BODYFAT FROM HYDROSTATIC WEIGHING GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
ALL MALES:					COMBINED
MEAN	16.598	17.959	22.869	24.179	20.576
STD.DEV.	5.765	6.525	6.983	5.172	6.954
MAXTMLM	36.060	35.150	38.990	39.660	39.660
MINIMA	6.600	-0.290	3.750	9.010	-0.290
CASES INCL	161	389	318	258	1126
WHITE MALES:					
MEAN	17.612	19.412	24.865	24.320	22.045
STD.DEV.	5.485	5.719	5.035	5.185	6.297
MAXIMAM	36.060	35.060	38.990	39.660	39.660
MINIMM	6.600	7.660	8.460	9.010	6.600
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	13.965	14.957	18.395	20.736	16.139
STD.DEV.	5.709	6.778	7.708	4.423	7.075
MAXIM	35.820	35.150	36.150	29.000	36.150
MINIMAM	6.980	-0.290	3.750	13.570	-0.290
CASES INCL	40	124	75	14	253
HISPANIC MALES	- ·				
MEAN	17.423	19.627	23.779	26.268	21.657
STD.DEV.	6.089	6.715	6.026	4.453	6.706
MAXIMUM	32.500	32.030	35.820	33.540	35.820
MINIMAM	10.550	4.630	10.470	20.130	4.630
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	27.925	27.034	30.541	32,895	27.951
STD.DEV.	5.217	5.869	6.726	10.189	6.059
MAXIMUM	42.880	50.100	41.900	40.100	50.100
MINIMAM	14.920	11.710	5.380	25.690	5.380
CASES INCL	60	153	51	2	266
WHITE FEWALES:					
MEAN CTD OCT	28.040	27.687	30.763	32.895	28.516
STD.DEV.	5.436	6.528	5.510	10.189	6.174
MAXIMUM MINIMUM	42.880	50.100	38.890	40.100	50.100
CASES INCL	17.860 37	15.750 76	19.460 32	25.690 2	15.750 147
בי ארע נייזאו ייי		-	- <del>-</del>	_	
BLACK FEWALES:		00 100	00.407		
STD.DEV.	27.949 3.963	26.132	30.167	0.000	27.056
MAXIMUM	33.540	4.731 34.820	9.542	0.000	5.805
MINIMUM	18.790	34.820 11.710	41.900 5.380	0.000	41.900
CASES INCL	14	64	15	0.000 0	5.380 93
HISPANIC FEWAL	FQ.			_	
MEAN MEAN	<u>요</u> : 27.927	28.506	28.943	۸ ۸۸	00.000
STD.DEV.	5.019	28.508 6.084	3.430	0.000 0.000	28.386
MAXIMLM	34.250	35.820	31.520	0.000	5.133 35.820
MINIMUM	22.100	18.350	25.050	0.000	18.350
CASES INCL	6	9	3	0.000	18.330
			<del>*</del>	•	10

TOTO THE REPORTED INCOMESSED INSTITUTES INCOMES AND INCOMESSED INC

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:					
MEAN	60.560	60.541	60.723	61.255	60.759
STD.DEV.	6.375	7.425	8.180	6.573	7.321
MAXIMUM	75.100	83.400	95.300	77.600	95.300
MINIMA	41.300	38.600	36.900	37.700	36.900
CASES INCL	161	389	318	258	1126
WHITE MALES:					
MEAN	59.986	60.182	60.408	61.446	60.618
STD.DEV.	5.420	7.207	8.256	6.296	6.977
MAXIMUM	70.700	83.400	95.300	77.400	95.300
MINIMUM	48.300	41.100	36.900	37.700	36.900
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	62.590	62.446	64.632	64.707	63.242
STD.DEV.	7.447	7.434	7.180	6.963	7.367
MAXIM.M	75.100	82.700	82.900	77.600	82.900
MINIMUM	41.300	43.700	46,600	54.700	41.300
CASES INCL	40	124	75	14	253
HISPANIC MALES	S:				
MEAN	59.787	57.970	57.867	56.960	58.067
STD.DEV.	7.172	7.002	6.947	7.137	6.962
MAXIMUM	73.300	76.100	76.200	66.000	76.200
MINIMUM	45.500	38.600	41.500	44.200	38.600
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	43.198	43.124	44.031	39.250	43.286
STD.DEV.	4.642	4.970	4.946	1.485	4.882
MAXIMUM	54,400	67.000	57.600	40.300	67.000
MINIMA	33,700	33.900	35.200	38.200	33.700
CASES INCL	60	153	51	2	266
WHITE FEWALES:	<u>.</u>				
MEAN	42.873	43.020	43.981	39.250	43.141
STD.DEV.	4.578	4.746	4.838	1.485	4.702
MAXIMLM	51.800	56.200	53.700	40.300	56.200
MINIMA	33.900	34.600	35.500	38.200	33.900
CASES INCL	37	76	32	2	147
BLACK FEWALES:	:				
MEAN	44.893	43.586	44.840	0.000	43.985
STD.DEV.	4.467	5.314	5.579	0.000	5.220
MAXIMUM	54.400	67.000	57.600	0.000	67.000
MINIMUM	38.600	33.900	35.200	0.000	33.900
CASES INCL	14	64	15	0.000	93
HISPANIC FEMAL	ES:				
MEAN	42.883	41.256	42.133	0.000	41.944
STD.DEV.	5.488	3.694	2.984	0.000	4.110
MAXIMUM	47.800	45.200	44.100	0.000	47.800
MINIMA	33.700	35.000	38.700	0.000	33.700
CASES INCL	6	9	30.700	0.000	18
	•	J	3	U	10

## FAT MASS (KG) FROM HYDROSTATIC WEIGHING GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MYLES:					40.077
MEAN	12.347	13.652	18.632	19.783	16.277
STD.DEV.	5.272	6.294	7.735	5.563	7.108
MAXIMAM	35.300	38.300	44.000	39.000	44.000
MINIMAM	4.000	-0.200	2.600	6.900	-0.200
CASES INCL.	161	389	318	258	1126
WHITE MALES:					
MEAN	13.138	14.906	20.504	20.014	17.643
STD.DEV.	5.065	6.063	7.112	5.625	6.749
MAXIMUM	30.000	38.300	44.000	39.000	44.000
MINIMAM	4.000	5.200	6.100	6.900	4.000
CASES INCL	101	203	166	226	696
BLACK MALES:					40.070
MEAN	10.240	11.328	15.384	17.007	12.673
STD.DEV.	4.425	6.226	8.569	4.464	7.043
WXTYUM ·	23.200	31.400	41.500	28.000	41.500
MINIMAM	4.900	-0.200	2.600	11.500	-0.200
CASES INCL	40	124	75	14	253
HISPANIC MALES	·.				
MEAN MEAN	2: 13.181	14.612	18.633	20,420	16.615
STD.DEV.	7.048	6.099	7.013	4.485	6.895
MAXIMUM	35.300	26.200	41.500	27.000	41.500
MINIMUM	5.400	2.800	6.500	12.000	2.800
CASES INCL		2.800 50	58	12.00	134
CASES TIACT	16	50	20	10	104
ALL FEWALES:					
MEAN	17.015	16.319	19.773	19.750	17.164
STD.DEV.	4.693	5.237	6.148	8.273	5.459
MAXIMUM	33.500	39.100	38.300	25,600	39.100
MINIMAM	7.500	6.200	3.300	13.900	3.300
CASES INCL	60	153	51	2	266
WHITE FEMALES					
MEAN	16.995	16.936	19.863	19.750	17.626
STD.DEV.	4.821	6.049	5.086	8.273	5.657
MAXIMAM	33.500	39.100	28.500	25.600	39.100
MINIMUM	8.700	7.400	8.600	13.900	7.400
CASES INCL	37	76	32	2	147
BLACK FEMALES	•				
MEAN	17.636	15.561	20.047	0.000	16.597
STD.DEV.	4.285	3.760	8.614	0.000	5.140
MAXIMUM	27.400	23.600	38.300	0.000	38.300
MINIMAM	11.700	6.200	3.300	0.000	3.300
CASES INCL	14	64	15	0.00	93
CASES THAT	7.4	04	15	U	30
HISPANIC FEWA	ES:				
MEAN	16.883	16.758	17.333	0.000	16.894
STD.DEV.	5.007	5.059	3.866	0.000	4.607
MAXIMUM	24.900	25.300	20.000	0.000	25.300
MUMINIM	11.700	9.900	12.900	0.000	9.900
CASES INCL	6	9	3	0	18
			10		

## INCREMENTAL DYNAMIC LIFT(KG) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
*** **** ***					COMBINED
ALL MALES:	125 100	104 740	104 410	117 140	120 174
MEAN COL	135.108 25.774	134.543 26.402	124.416 24.221	117.143 22.584	130.574 25.977
STD.DEV. MÁXIMÚM	200.000	200.000	200.000	180.000	200.000
MINIMAM	60.000	70.000	60.000	70.000	60.000
CASES INCL	139	70.330 361	274	70.000 28	802
COCO THAT	109	301	214	20	002
WHITE MALES:					
MEAN	133.837	134.526	122.029	112.143	129.626
STD.DEV.	23.473	26.338	24.707	18.051	25.796
MAXIM.M	200.000	200.000	200.000	140.000	200.000
MINIMAM	80.000	70.000	60.000	70.000	60.000
CASES INCL	86	190	138	14	428
BLACK MALES:	107.450	100.040	400 000	405 744	100 000
MEAN	137.429	138.246	133.333	125.714	136.222
STD.DEV.	24.893	26.482	21.670	20.702	24.703
MAXIMLM	200.000	200.000	200.000	150.000	200.000
MINIMUM	60.000	70.000	80.000	100.000	60.000
CASES INCL	35	114	69	7	225
HISPANIC MALE	ς.				
MEAN	≃· 137.857	128.000	121.731	122.500	126.174
STD.DEV.	39.062	23.510	24.712	40.311	27.034
MAXIMUM	200.000	200,000	190.000	180.000	200.000
MINIMA	80.000	70.000	80.000	90.000	70.000
CASES INCL	14	45	52	4	115
G 6000 1000	2.7	-10	O2	•	
ALL FEWALES:					
MEAN	67.037	64.685	64.889	40.000	65.144
STD.DEV.	17.871	10.668	9.682	0.000	12.542
MLMIXAM	160.000	100.000	90.000	40.000	160.000
MINIMUM	40.000	40.000	50.000	40.000	40.000
CASES INCL	54	143	45	1	243
WITTE EDINE					
WHITE FEMALES		CA 600	ec 100	40.000	65.923
	69.063 20.377	64.638	66.429	40.000	14.343
STD.DEV.		11.953	10.261	0.000	160.000
MAXIMUM MINIMUM	160,000	100.000	90.000	40.000	40.000
CASES INCL	50.000	40.000	50.000	40.000	130
CASES THAT	32	69	28	1	130
BLACK FEMALES	S:				
MEAN	65.000	64.754	63.077	0.000	64.545
STD.DEV.	10.190	9.239	8.549	0.000	9.211
MAXIMLM	80.000	80,000	80.000	0.000	80.000
MINIMUM	40.000	50.000	50.000	0.000	40.000
CASES INCL	14	61	13	0.000	88
IIIONATO COM	u cc				
HISPANIC FEW	<u>NLES</u> : 60.000	63.333	EC 267	0.000	61.176
STD.DEV.	18.708	8.660	56.667 5.774	0.000	11.663
MAXIMUM	90.000	80.000	5.774 60.000	0.000	90.000
MINIMUM	40.000	50.000	50.000	0.000	40.000
CASES INCL	40.000		3.000	0.000	17
THE COOL	ວ	9	3	v	11

## HEART RATE (BPM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:	704 4CF	102 020	100 000	182.758	189.480
MEAN STA	194.465	193.039	188.269 8.494	8.982	9.475
STD.DEV.	8.942	7.834	210.000	209.000	220.000
MAXIMUM	218.000	220.000	160,000	157.000	157.000
MINIMUM	172.600	170.000	275	223	962
CASES INCL	127	337	215	223	902
WHITE MALES:					
MEAN	194.590	193.225	186.856	182.656	188.426
STD.DEV.	9.557	7.574	8.343	8.603	9.650
MAXIMAM	218.000	210.000	206.000	209.000	218.000
MINIMUM	172.000	172.000	160.000	157.000	157.000
CASES INCL	78	182	146	195	601
BLACK MALES:					
MEAN	192.613	191.819	188.323	183.000	190.336
STD.DEV.	8.192	8.187	8.329	13.064	8.868
MAXIMLM	208,000	212.000	204.000	206.000	212.000
MINIMAM	180.000	170.000	170.000	160.000	160.000
CASES INCL	31	105	65	13	214
HISPANIC MALE	S:				
MEAN	198.643	195.256	191.633	187.222	193.432
STD.DEV.	4.361	8.016	8.472	9.744	8.480
MAXTMAM	206.000	220.000	210.000	197.000	220.000
MINIDALM	190.000	182.000	172.000	165.000	165.000
CASES INCL	14	39	49	9	111
ALL FEWALES:					
MEAN	193.549	190.179	185.391	182.000	189.941
STD.DEV.	7.349	6.850	7.292	0.000	7.492
MAXIMAM	210.000	204.000	203.000	182.000	210.000
MINIMA	178.000	170.000	172.000	182,000	170.000
CASES INCL	51	140	46	1	238
WHITE FEWALES	) <u>:</u>				
MEAN	191.867	190.254	185.607	182.000	189.540
STD.DEV.	7.696	7.302	6.946	0.000	7.603
MAXIMUM	210.000	204.000	203.000	182.000	210.000
MINIMAM	178.000	170.000	175.000	182.000	170.000
CASES INCL	30	67	28	1	126
BLACK FEWALES	<b>5:</b>				
MEAN	196.077	189.783	186.929	0.000	190.264
STD.DEV.	5.204	6.745	7.130	0.000	7.054
MAXIMUM	202.000	204.000	200.000	0.000	204.000
MINIMUM	188.000	178.000	176.000	0.000	176.000
CASES INCL	13	60	14	0	87
HISPANIC FEMA	LES:				
MEAN	197.600	191.444	180.667	0.000	191.353
STD.DEV.	9.940	4.720	8.622	0.000	8.874
MAXIMUM	210.000	200,000	190.000	0.000	210.000
MINIMUM	184.000	185.000	173.000	0.000	173.000
CASES INCL	5	9	3	0	17

# VOLUME OF AIR EXPIRED (L+MIN $^{-1}$ ) AT $90_2$ MAX GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	<del>4</del> 0+	ALL AGE CROUPS
ALL HALES:					COMBINED
MEAN.	141.567	139,797	137.420	118.308	138.529
STD.DEV.	22.662	21.734	22.078	23.065	22.394
MAXIMAM	206.300	198.700	213,000	157.100	213.000
MINIMAM	84.200	73.500	80.700	70.500	70.500
CASES INCL	128	337	262	26	753
WHITE MALES:					
HEAN	141.356	141.593	140.290	119.008	140.397
STD.DEV.	20.463	20.914	23.361	25.275	22.087
MAXIMAM	184.100	187.500	213.000	157.100	213.000
MINIMA	96.700	87.200	80.700	70.500	70.500
CASES INCL	78	182	134	13	407
BLACK MALES:					
MEAN	143.894	138.297	134.782	119.357	137.426
STD.DEV.	25.219	22.213	18.790	16.782	21.869
MAXIMUM	206.300	198.700	184.400	142,100	206.300
MINIMM	84.200	73.500	97.800	94.900	73.500
CASES INCL	32	105	65	7	209
HISPANIC MALE	<u>s</u> :				
MEAN	139.557	139.636	137.245	117.100	137.866
STD.DEV.	26.191	23.604	21.485	39.555	23.380
MAXIMUM	180.600	194.000	186.100	145.900	194.000
MINIMUM	104.900	79.100	91.100	72.000	72.000
CASES INCL	14	39	49	3	105
ALL FEWALES:					
MEAN	94.910	90.584	90.787	82.900	91.521
STD.DEV.	11.822	15.052	14.296	0.000	14.303
MAXIMUM	125.700	128.000	114.900	82.900	128.000
MINIMUM	69.200	48.200	65.500	82.900	48.200
CASES INCL	51	140	45	1	237
WHITE FEMALES	-				
MEAN	95.323	90.290	93.063	82.900	92.038
STD.DEV.	12.052	12.836	14.295	0.000	13.026
MAXIMUM	114.700	117.400	114.900	82.900	117.400
MINIM	69.200	56.300	65.500	82.900	56.300
CASES INCL	30	67	27	1	125
BLACK FEWALES	•				
MEAN CTD DCV	93.262	92.698	88.100	0.000	92.043
STD.DEV.	10.867	16.277	13.876	0.000	15.179
MAXIMUM	115.100	128.000	113.300	0.000	128.000
MINIMUM	75.900	55.700	67.400	0.000	55.700
CASES INCL	13	60	14	0	87
HISPANIC FEW		AW *			
MEAN STD, DOV	99.700	85.733	90.367	0.000	90.659
STD.DEV.	15.959	16.563	14.571	0.000	16.327
MLMII/IM MLMII/IIM	125.700	107.500	105.900	0.000	125.700
CASES INCL	87.100 5	59.200 9	77.000	0.000 0	59.200 17
COCO TIACE	o o	9	G-52	U	17

# CARBON DIOXIDE PRODUCTION(L) AT ${ m YO_2}$ MAX GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
					COMBINED
ALL MALES:					<b>**</b>
MEAN	59.432	57.069	51.166	41.869	54.892
STD.DEV.	6.171	7.714	7.264	9.608	8.410
MAXIMUM	72.100	78.900	71.100	54.400	78.900
MINIMUM	38.000	34.600	34.100	3.100	3.100 753
CASES INCL	128	337	262	26	133
WHITE MALES:					
MEAN.	59.624	57.230	50.842	41.438	55.081
STD.DEV.	5.789	6.917	7.580	5.311	8.079
MAXIMUM	72.100	78.200	69.800	51.400	78.200
MINIMIM	48.500	34.800	37.800	32.800	32.800
CASES INCL	78	182	134	13	407
BLACK MALES:		<b></b>			***
MEAN	58.237	56.918	50.214	39.486	54.451
STD.DEV.	6.515	8.896	6.713	16.965	9.300
MAXIMUM	68.400	78.900	63.600	54.400	78.900 3.100
MINIMUM CASES INCL	38.000 32	34.600 105	34.100 65	3.100	3.100 209
CASES INCL	32	100	03	7	203
HISPANIC MALES	•				
MEAN	61.486	57.392	53.186	46,467	55.663
STD.DEV.	7.672	8.182	6.832	7.454	8.090
MAXIMAM	71.900	75.300	70.400	52.400	75.300
MINIMA	48.000	38.600	40.600	38.100	38.100
CASES INCL	14	39	49	3	105
ALL FEMALES:		40.004	10.000	WO 100	10.011
MEAN	43.680	42.331	40.636	52.100	42.341
STD.DEV.	6.918	4.930	6.459	0.000	5.795
MAXIMAM	64.500	55.600	55.200	52.100	64.500
MINIMUM CASES INCL	29.400 51	29.800 140	28.200 45	52.100 1	28.200 237
CASES TACE	ĐΙ	140	40	1	251
WHITE FEMALES:	:				
MEAN	44.833	42.876	41.667	52.100	43.158
STD.DEV.	6.172	5.193	5.208	0.000	5.550
MAXIMUM	57.500	55.600	54.400	52.100	57.500
MINIMA	31.000	32.100	31.700	52.100	31.000
CASES INCL	30	67	27	1	125
BLACK FEWALES:					
MEAN	38.962	41.628	37.421	0.000	40.553
STD.DEV.	4.912	4.230	6.775	0.000	5.037
MAXIM.M	47.800	50.200	48.400	0.000	50.200
MINIMUM	29.400	32.100	28.200	0.000	28.200
CASES INCL	13	60	14	0	87
HISPANIC FEMAL	ÆS:				
MEAN	45.620	44.244	48.333	0.000	45.371
STD.DEV.	6.750	3.944	8.591	0.000	5.547
MAXIMUM	56.500	50.600	55.200	0.000	56.500
MINIMUM	39.600	39.000	38.700	0.000	38.700
CASES INCL	5	9	3	0	17

## MAXIMAL DXYGEN UPTAKE(L+MIN $^{-1}$ ) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
*** **** ***					COMBINED
ALL WALES: MEAN	3.766	3.693	3.521	2 160	2 607
STD.DEV.	0.427	0.484	0.507	3.168 0.526	3.627 0.500
MAXIMUM	4.930	5.680	5.180	4.230	5.680
MINIMA	2.410	1.980	2.120	1.950	1,950
CASES INCL	128	337	262	26	753
W. 1777					
WHITE WALES:	3.761	2 740	0 551	2 040	2 660
STD.DEV.	0.376	3.742 0.486	3.551 0.539	3.042 0.557	3.660 0.507
MAXIMAM	4.590	5.680	5.180	3.700	5.680
MINIMA	2.990	2.550	2.120	1.950	1.950
CASES INCL	78	182	134	13	407
			20.	20	
BLACK WALES:					
MEAN	3.767	3.660	3.541	3.359	3.629
STD.DEV.	0.434	0.467	0.445	0.300	0.457
MAXIMUM MINIMUM	4.730	4.930	4.810	3.810	4.930
CASES INCL	2.410 32	2.090	2.700	3.040	2.090
CADED TIME	32	105	<b>6</b> 5	7	209
HISPANIC MALES	S:				
MEAN	3.876	3.640	3.514	3.417	3.607
STD.DEV.	0.613	0.491	0.507	0.864	0.532
MAXIMUM	4.930	4.620	4.700	4.230	4.930
MINIMUM	2.840	1.980	2.360	2.510	1.980
CASES INCL	14	39	49	3	105
ALL FEWALES:					
MEAN	2.462	2.338	2.410	2.320	2.378
STD.DEV.	0.312	0.298	0.371	0.000	0.318
MAXIMUM	3.210	3.170	3.210	2.320	3.210
MINIMUM	1.870	1.460	1.650	2.320	1.460
CASES INCL	51	140	45	1	237
WHITE FEWALES:	•				
MEAN	2.542	2.397	2.428	2.320	2.438
STD.DEV.	0.305	0.303	0.393	0.000	0.327
MAXIMUM	3.210	3.170	3.210	2.320	3.210
MINIMUM	1.940	1,880	1.650	2.320	1.650
CASES INCL	30	67	27	1	125
BLACK FEWALES:	_				
MEAN		0.001	0.000	0 000	0.200
STD.DEV.	2.288 0.176	2.291 0.294	2.360 0.319	0.000 0.000	2.302 0.283
MAXIMUM	2.690	2.920	2.980	0.000	2.980
MINIMLM	2.020	1.460	1.890	0.000	1.460
CASES INCL	13	60	1.050	0.000	87
HISPANIC FEMAL	ES:				
MEAN	2.436	2.296	2.600	0.000	2.391
STD.DEV.	0.532	0.217	0.468	0.000	0.369
MAXIMLM	3.200	2.650	3.140	0.000	3.200
MINIMAM	1.870	1.900	2.320	0.000	1.870
CASES INCL	5	9	3	0	17

# VENTILITORY EQUIVALENT AT $10_2$ MAX GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:					
MEAN	37.641	37.934	39.327	37.554	38.356
STD.DEV.	4.517	4.543	5.321	5.309	4.894
MAXIMLM	51.000	52.800	58.000	45.600	58.000
MINIMUM CASES INCL	27.200	27.500	25.300	28.700	25.300
CASES THAT	128	337	262	26	753
WHITE MALES:					
MEAN	37.618	37.949	39.921	39.269	38.577
STD.DEV.	4.303	4.501	5.698	5.491	5.004
MAXIMEM	46.300	52.600	58.000	45.600	58.000
MINIMUM	28.400	28.100	25.300	29.900	25.300
CASES INCL	78	182	134	13	407
BLACK MALES:					
MEAN	38.269	37.779	38.318	35.800	37.956
STD.DEV.	5.069	4.399	5.066	4.270	4.707
MAXIMUM	51.000	48.200	52.900	42.000	52.900
MINIM.M	29.500	27.500	29.300	29.400	27.500
CASES INCL	32	105	65	7	209
HISPANIC MALES	·				
MEAN	36.079	38.521	39.265	33.967	38.412
STD.DEV.	4.335	5.297	4.904	6.768	5.122
MAXIMUM	41.400	52.800	54.000	41.600	54.000
MINIMUM	27.200	29.000	31.800	28.700	27.200
CASES INCL	14	39	49	3	105
ALL EDWICE					
ALL FEMALES:	20.704	00 050	07 074		
MEAN STD.DEV.	38.794	38.950	37.951	35.800	38.714
MAXIMUM	4.755 48.100	5.611 56.300	4.645	0.000	5.247
MINIMLM	28.700	26.500	52.200 29.400	35.800 35.800	56.300 26.500
CASES INCL	51	140	29.400 45	33.600	20.300 237
	<b>02</b>	2-10	40	*	231
WHITE FEMALES:					
MEAN	37.790	37.957	38.752	35.800	38.071
STD.DEV.	4.525	4.652	5.041	0.000	4.670
MAXIMUM	47.700	51.400	52.200	35.800	52.200
MINIMA	28.700	29.300	29.400	35.800	28.700
CASES INCL	30	67	27	1	125
BLACK FEWALES:					
MEAN	40.477	40.622	37.393	0.000	40.080
STD.DEV.	4.633	6.196	3.982	0.000	5.756
MAXTMLM	48.100	56.300	46.300	0.000	56.300
MINIMAM	33.400	26.900	31.800	0.000	26.900
CASES INCL	13	60	14	0	87
HISPANIC FEMAL	ES:				
MEAN	41.700	37.167	34.833	0.000	38.088
STD.DEV.	6.253	5,233	2.421	0.000	5.544
MAXIMLM	47.400	44.500	37.600	0.000	47.400
MINIMA	32.100	28.000	33.100	0.000	28.000
CASES INCL	5	9	<b>3</b> G-55	0	17
			CC-0		

## RESPIRATORY QUOTIENT AT $90_2$ MAX CROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
		<del></del>	22 44		COMBINED
ALL MALES:					
MEAN	1.145	1.139	1.139	1.090	1.138
STD.DEV.	0.061	0.069	0.077	0.070	0.071
MAXIMUM HUNIMUM	1.300 1.010	1.340	1.390	1.240	1.390
CASES INCL	1.010	0.950 337	0.950 262	0.980 26	0.950 753
COLD INL	120	,sor	202	20	155
WHITE MALES:					
MEAN	1.152	1.141	1.147	1.078	1.143
STD.DEV.	0.061	0.065	0.078	0.072	0.070
MAXIMUM	1.300	1.330	1.360	1.240	1.360
MINIMAM CASES INCL	1.040	0.950	1.010	0.980	0.950
CASES THAT	78	182	134	13	407
BLACK MALES:					
MEAN	1.127	1.130	1.116	1.107	1.124
STD.DEV.	0.062	0.078	0.069	0.081	0.073
MAXIMUM	1.270	1.340	1.290	1.220	1.340
MININUM	1.010	0.960	0.960	1.000	0.960
CASES INCL	32	105	65	7	209
HISPANIC MALES					
MEAN	1.148	1.153	1.148	1.120	1.149
STD.DEV.	0.059	0.061	0.079	0.075	0.070
MAXIMUM	1.230	1.280	1.390	1.190	1.390
MINIMUM	1.040	1.050	0.970	1.040	0.970
CASES INCL	14	39	49	3	105
ALL COMETS.					
ALL FEWALES:	1.057	1.068	1 000	1 000	4 000
STD.DEV.	0.064	0.074	1.063 0.075	1.220 0.000	1.065 0.073
MAXIMUM	1.210	1.250	1.230	1.220	1.250
MINIMUM	0.890	0.890	0.940	1.220	0.890
CASES INCL	51	140	45	1	237
WHITE FEMALES:	1 050	4 000			
MEAN STD.DEV.	1.059 0.059	1.062	1.084	1.220	1.067
MAXIMUM	1.160	0.063 1.220	0.074 1.230	0.000 1.220	0.066 1.230
MINIMAM	0.890	0.950	0.950	1.220	0.890
CASES INCL	30	67	27	1	125
				_	
BLACK FEWALES:					
MEAN	1.032	1.071	1.019	0.000	1.057
STD.DEV. MAXIMUM	0.063	0.083	0.066	0.000	0.080
MINIMUM	1.150 0.910	1.240 0.890	1.140	0.000	1.240
CASES INCL	13	60	0.940 14	0.000 0	0.890 87
		•••	4.7	V	OI .
HISPANIC FEWAL					
MEAN	1.098	1.113	1.100	0.000	1.106
STD.DEV.	0.059	0.081	0.046	0.000	0.067
MAXIMUM MINIMUM	1.150	1.250	1.140	0.000	1.250
CASES INCL	1.020 5	0.980	1.050	0.000	0.980
COURT TAIL	5	9	3	0	17

## WAXDWAL DXYGEN UPTAKE(ML $\bullet$ KG $^{-1}\bullet$ MIN $^{-1}$ ) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE CROUPS
					COMBINED
ALL WALES:					
MEAN	51.873	50,084	45.117	46.026	47.961
STD.DEV.	4.457	5.771	5.665	6.517	6.324
MAXIMAM	63.100	66.200	63.000	73.600	73.600
MUMINIM	37.400	32.200	31.500	30.600	30.600
CASES INCL	128	337	276	223	964
WITT MI CO					
WHITE MALES:	£1 710	EN 101	44 700	AC CIT	47.004
STD, DEV.	51.719	50.121	44.739	46.615	47.884
MAXIMAM	4.046 63.100	5.277 65.700	5.789	6.490	6.211
MINIMAM			60.900	73.600	73.600
CASES INCL	42.400 78	33.400	31.500	31.100	31.100
CASES THAT	10	182	146	195	601
BLACK MALES:					
MEAN	51.647	50.270	45,005	42.115	48.390
STD.DEV.	4.595	6,293	5.567	3.617	6. <b>44</b> 2
MAXIMUM	63.000	64.100	57.200	49.900	64.100
MINIMAM	37.400	32.200	33.300	37.400	32.400
CASES INCL	32	105	65	13	215
and has	02	100	w	10	213
HISPANIC MALES	ò:				
MEAN	53.729	49.782	46.345	42.933	48.207
STD.DEV.	6.213	6.734	5.138	6.671	6.600
MAXIMUM	61.500	66,200	63.000	53.000	66.200
MINIMAM	41.000	35.100	35.500	33.600	33.600
CASES INCL	14	39	49	9	111
ALL FEWALES:					
MEAN	41.227	39.624	38.009	42.700	39.668
STD.DEV.	5.250	3.868	5.354	0.000	4.597
MAXIMUM	53.200	53.200	49.800	42.700	53.200
MINIMUM	28.700	29.800	27.200	42.700	27.200
CASES INCL	51	140	46	1	238
WHITE FEWALES:					
MEAN		40.264	20, 200	40.700	10.000
STD.DEV.	42.290 5.004	40.364	38.200	42.700	40.360
MAXIMUM		4.288	4.998	0.000	4.785
MINIMUM	53.200	53.200	49.800	42.700	53.200
CASES INCL	28.700	31.500	27.200	42.700	27.200
CASES THAT	30	67	28	1	126
BLACK FEWALES:	:				
MEAN	37.769	38.860	36.636	0.000	38.339
STD.DEV.	4.119	2.956	5.480	0.000	3.689
MAXIMUM	45.400	47.100	47.000	0.000	47.100
MINIMUM	32.500	31.300	28.500	0.000	28.500
CASES INCL	13	60	28.500	0.00	
	10	•	74	U	87
HISPANIC FEMAL	ES:				
MEAN	41.440	39.756	43.833	0.000	40.971
STD.DEV.	4.889	3.192	6.430	0.000	4.321
MAXIMUM	49.600	44.700	49.600	0.000	49.600
MINIMAM	37.600	34.900	36.900	0.000	34.900
CASES INCL	5	9	3	0	17

## TREADMILL GRADE(%) AT $10_2$ MAX GROUPED BY GENDER, RACE AND AGE

	ME:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
AL MALES:					
MEAN	9.141	8.887	7.651	6.923	8.432
STD.DEV.	1.814	2.110	2.044	2.675	2.168
HAXIMH	12.500	15.000	15.000	15.000	15.000
MINIMA	5.000	2.500	2.500	2.500	2.500
CASES INCL	128	337	262	26	753
WHITE MALES:					
HEAN	9.103	9.052	7.474	6.731	8.468
STD.DEV.	1.755	2.076	2,060	3.127	2.200
MAXIMAM	12.500	15.000	15.000	15.000	15.000
MINIMM	5.000	2.500	2.500	2.500	2.500
CASES INCL	78	182	134	13	407
BLACK HALES:					
MEAN CTD DOZ	9.063	8.619	7.538	6.786	8.289
STD.DEV. MAXIMUM	1.768	2.192	2.001	2.782	2.173
MINIMUM	12.500	15.000	12.500	10.000	15.000
CASES INCL	5.000 32	5.000	2.500	2.500	2.500
OOCS INC.	32	105	65	7	209
HISPANIC HALES					
MEAN	9.821	8.974	8.276	7.500	8.719
STD.DEV.	2.292	2.124	1.987	2.500	2.138
MAXIM.M	12.500	12.500	12.500	10.000	12.500
MINIMUM	5.000	5.000	5.000	5.000	5.000
CASES INCL	14	39	49	3	105
ALL FEWALES:					
MEAN	8.176	7.368	6.889	7.500	7.451
STD.DEV.	2.353	2.158	2.208	0.000	2.237
MAXIMUM	12.500	12.500	12.500	7.500	12.500
MINIMM	2.500	2.500	2.500	7.500	2.500
CASES INCL	51	140	45	1	237
WHITE FEWALES:					
MEAN	8.417	7.187	7.037	7.500	7.452
STD.DEV	2.320	2.259	2.304	0.000	2.321
MAXIMUM	12.500	12.500	12.500	7.500	12.500
MINIMA	5.000	2.500	2.500	7.500	2.500
CASES INCL	30	67	27	1	125
BLACK FEWALES:					
MEAN	6.923	7.625	6.429	0.000	7.328
STD.DEV.	2.317	2.029	2.129	0.000	2.116
MAXIMUM	10.000	12.500	10.000	0.000	12.500
MINIMM	2.500	2.500	2.500	0.000	2.500
CASES INCL	13	60	14	0	87
HISPANIC FEMAL					
MEAN	10.000	7.222	8.333	0.000	8.235
STD.DEV.	1.768	1.954	1.443	0.000	2.122
MAXDAM	12.500	10.000	10.000	0.000	12.500
MINIMUM CASES INCL	7.500	5.000	7.500	0.000	5.000
CASES TIME	5	9	G-58 <b>3</b>	0	17

# TREADMILL SPEED (MPH) AT $70_2$ MAX GROUPED BY GENDER, RACE AND AGE

	AGE:				
	1720	21-27	28-39	40+	ALL AGE GROUPS
			20 00	4,0 .	COMBINED
ALL MALES:					
MEAN	6.418	6.295	6.097	5.769	6.229
STD.DEV.	0.524	0.474	0.460	0.430	0.498
MAXIMAM	7.500	7.500	7.000	6.000	7.500
MINIMIM	5.000	5.000	3.300	5.000	3.300
CASES INCL	128	337	262	26	753
WHITE MALES:					
MEAN	6.385	6.272	6.077	5.692	6.211
STD.DEV.	0.503	0.460	0.498	0.480	0.502
MAXIMUM	7.500	7.500	7.009	6.000	7.500
MINIMAM	6.000	5.000	3.300	5.000	3.300
CASES INCL	78	182	134	13	407
		202	201	10	701
BLACK MALES:					
MEAN	6.453	6.305	6.123	5.714	6.251
STD.DEV.	0.587	0.473	0.442	0.488	0.503
MAXIMLM	7.500	7.000	7.000	6.000	7.500
MINIMUM	5.000	5.000	5.000	5.000	5.000
CASES INCL	32	105	65	7	209
HISPANIC MALES	):				
MEAN	6.429	6.308	6.143	6.000	6.238
STD.DEV.	0.514	0.521	0.395	0.000	0.466
MAXIMUM	7.000	7.000	7.000	6.000	7.000
MINIMUM	6.000	5.000	5.000	6.000	5.000
CASES INCL	14	39	49	3	105
		•		J	100
ALL FEWALES:					
MEAN	5.108	5.143	5.178	6.000	5.146
STD.DEV.	0.439	0.361	0.401	0.000	0.389
MAXIMUM	7.000	6.000	6.000	6,000	7.000
MINIMUM	4.000	4.500	4.500	6.000	4.000
CASES INCL	51	140	45	1	237
WHITTE FEWALES:					
MEAN	5.133	5.179	5.185	6.000	5.176
STD.DEV.	0.507	0.415	0.396	0.000	0.437
MAXIMUM	7.000	6.000	6.000	6.000	7.000
MINIMA	4.000	4.500	5.000	6.000	4.000
CASES INCL	30	67	27	1	125
DI ACIV CITATION				~	****
BLACK FEWALES:	r 033	H 050			
MEAN	5.077	5.083	5.071	0.000	5.080
STD.DEV.	0.277	0.263	0.331	0.000	0.274
MAXIMUM	6.000	6.000	6.000	0.000	6.000
MINIMUM	5.000	5.000	4.500	0.000	4.500
CASES INCL	13	60	14	0	87
HISPANIC FEWALE	<b>ස</b> :				
MEAN	4.900	5.222	5.667	0.000	5.206
STD.DEV.	0.224	0.441	0.577	0.000	0.470
MAXIMUM	5.000	6.000	6.000	0.000	6.000
MINDMUM	4.500	5.000	5.000	0.000	4.500
CASES INCL	5	9	3	0.000	17
			-50	•	±1

(,-59

## SIT-UPS GROUPED BY GENDER, RACE, AND AGE

	ACE:				
	17-20	21-27	28-39	40+	ALL ACC COCUDE
	<b>-</b>		20-09	404	ALL AGE GROUPS
ALL MALES:					COMBINED
MEAN	59.058	57.232	49.913	42.488	EO 400
STD.DEV.	9.733	11.355	12.009	17.139	52.428 14.070
MAXIMUM	79.000	99.000	84.000	99.000	14.079
MINIMA	35.000	28.000	12.000	20.000	99.000
CASES INCL	154	366	287	20.000	12.000
		000	201	201	1014
WHITE MALES:					
MEAN	58.337	55.492	47.881	42.204	50.097
STD.DEV.	9.895	11.314	11.940	17.282	30.097 14.712
MAXIMAM	78.000	84.000	84.000	99.000	99.000
MINIMUM	35.000	28.000	12.000	20.000	12.000
CASES INCL	95	189	151	186	
		200	101	100	621
BLACK MALES:					
MEAN	60.950	59.729	53.225	39.800	57.167
STD.DEV.	9.193	11.559	11.405	14.566	12.197
MAXIMLM	73.000	99,000	79.000	60.000	
MINIMUM	42.000	37.000	30.000	25.000	99.000
CASES INCL	40	118	71	25.00	25.000
		110	11	10	239
HISPANIC MALES	S:				
MEAN	58.800	57.128	51.961	58.800	EE 470
STD.DEV.	9.329	9.877	12.327	19.614	55.178
MAXIMUM	79.000	84.000	84,000		11.625
MINIMUM	40.000	40.000	33.000	80.000	84.000
CASES INCL	15	47	51	40.000	33.000
	20	71	21	5	118
ALL FEWALES:					
MEAN	54.450	51.575	A2 A17	10.000	W
STD.DEV.	11.907	11.982	43.417	16.000	50.576
MAXIMUM	81.000	86.000	11.302 74.000	0.000	12.532
MINIM	30.000	27.000	25.000	16.000	86.000
CASES INCL	60	146	25.000 48	16.000	16.000
	00	140	40	1	255
WHITE FEWALES:	!				
MEAN	54.361	50.603	42.968	16 000	40. 000
STD.DEV.	12.710	12.768	10.741	16.000	49.638
MAXIMUM	81.000	86.000	74.000	0.000	13.157
MINIMUM	30.000	27.000	25.000	16.000	86.000
CASES INCL	36	73	25.000 31	16.000	16.000
	•	75	31	1	141
BLACK FEWALES:					
MEAN	53.800	52.426	43.846	0.000	F4 404
STD.DEV.	11.397	11.270	11.810	0.000	51.404
MAXIMUM	75.000	75.000	65.000	0.000	11.680
MINIM.M	35.000	27.000	26.000	0.000	75.000
CASES INCL	15	61		0.000	26.000
	~~	O1	13	0	89
HISPANIC FEWAL	ES:				
MEAN	<u>57.0∞</u>	55.667	£0 000	A AAA	FF 407
STD.DEV.	5.367	9.747	50.000	0.000	55.167
MAXIMLM	62.000	71.000	17.321 70.000	0.000	9.721
MINIMUM	50.000	40.000	70.000	0.000	71.000
CASES INCL	6	40.000 9	40.000	0.000	40.000
	J	y	3	0	18

# FUSH-UPS GROUPED BY GENDER, RACE, AND AGE

TO THE PERSON OF THE PERSON OF

	AGE: 17-20	21-27	28-39	4Ö+	ALL AGE GROUPS COMBINED
ALL MALES: MEAN STD.DEV. MAXIMAM MINIMAM CASES INCL	55.818 10.923 79.000 20.000 154	55.742 12.933 99.000 13.000 368	49.524 12.281 99.000 15.000 286	35.510 15.525 80.000 15.000 206	49.890 15.156 99,000 13.000 1014
WHITE MALES: MEAN STD.DEV. MAXIMUM MINIMUM CASES INCL	55.558 10.190 79.000 35.000 95	54.932 12.159 99.000 18.000 190	48.007 11.870 80.000 18.000 150	35.330 15.797 80.000 15.000 185	47.503 15.500 99.000 15.000 620
BLACK MALES: MEAN STD.DEV. MAXIM.M MINIM.M CASES INCL	55.650 12.970 75.000 20.000 40	55.831 14.014 99.000 13.000 118	50.829 13.066 99.000 15.000 70	32.500 12.492 56.000 17.000	53.349 14.298 99.000 13.000 238
HISPANIC MA MEAN STD.DEV. MAXIM.M MINIM.M CASES INCL	57.400 10.446 78.000 44.000	57.313 12.027 85.000 40.000 48	52.692 12.695 77.000 33.000 52	38.800 15.707 60.000 20.000 5	54.550 12.781 85.000 20.000 120
ALL FEMALES MEAN STD.DEV. MAXIMLM MINIMLM CASES INC	34.300 11.441 64.000 17.000	32.726 11.709 78.000 15.000 146	28.479 10.647 69.000 12.000 48	10.000 0.000 10.000 10.000	32.208 11.637 78.000 10.000 255
WHITE FEM MEAN STD.DEV. MAXIM.M MINIM.M CASES IN	32.722 11.431 61.000 17.000	33.096 13.507 78.000 16.000 73	27.387 8.405 46.000 13.000 31	10.000 0.000 10.000 10.000	31.582 12.263 78.000 10.000 141
BLACK FEM MEAN STD.DEV MAXIMUM MINIMUM CASES I	34.667 10.279 50.000 17.000	31.754 9.953 59.000 15.000 61	30.462 15.251 69.000 12.000	0.000 0.000 0.000 0.000 0	32.056 10.847 69.000 12.000 89
HISPANIO MEAN STD.DE MAXIMU MINIMU CASES	M 41.000 M 20.000	35.444 8.633 46.000 24.000 9	34.667 7.234 43.000 30.000 3	0.000 0.000 0.000 0.000	7.848

G-61

#### APFT SCORE (POINTS) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:	ava 484	200 400	000 000	040.000	044.000
MEAN	253.276	250.132	233.356 35.466	242.200 54.332	244.806 34.103
STD.DEV. MAXIMUM	29.784 300.000	31.808 300.000	300.000	300.000	300.000
MINIMA	186.000	175.000	129.000	146.000	129.000
CASES INCL	156	378	289	10	833
WITTE MA CO					
WHITE MALES:	248.845	247.883	228.060	249.714	241.556
STD.DEV.	28.197	32.669	33.535	61.921	33.887
MAXIMAM	300,000	300.000	300,000	300,000	300,000
MINIMUM	186.000	182.000	129.000	146.000	129.000
CASES INCL	97	197	149	7	450
DE ACY MALECO.					
BLACK MALES: MEAN	261.718	251.583	240,597	195.000	249.634
STD.DEV.	32.404	31.632	40.205	0.000	35.356
MAXIMAM	300.000	300.000	300,000	195.000	300.000
MINIMUM	190.000	175.000	129.000	195.000	129.000
CASES INCL	39	120	72	1	232
HISPANIC MALE	æ,				
MEAN	261.063	253.776	240.545	261.000	248.785
STD.DEV.	24.551	29.146	33.642	0.000	31.418
MAXIMUM	292.000	300.000	300.000	261.000	300.000
MINIMAM	211.000	199.000	188.000	261.000	188.000
CASES INCL	16	49	55	1	121
ALL STRAIGHT					
ALL FEWALES:	262.525	253.595	255.898	0.000	256.094
STD.DEV.	32.662	255.595 32.519	38.361	0.000	33.800
MAXIMUM	300.000	300,000	300,000	0.000	300.000
MINIM	182.000	156.000	133.000	0.000	133.000
CASES INCL	59	148	49	0	256
much com to	•				
WHITE FEMALE MEAN	<u>5</u> : 263.486	249.389	253.387	0.000	253.862
STD, DEV.	31.467	249.369 35.912	43.144	0.000	36.823
MAXIMUM	300.000	300.000	300.000	0.000	300.000
MUNIDALM	193.000	156.000	133.000	0.000	133.000
CASES INCL	35	72	31	0	138
BLACK FEWALE	c.				
MEAN	<u>3:</u> 258.000	256.031	261.500	0.000	257.172
STD.DEV.	32.397	29.467	29.656	0.000	29.706
MAXIMUM	300.000	300.000	300.000	0.000	300.000
MINIMUM	209.000	191.000	183.000	0.000	183.000
CASES INCL	15	64	14	0	93
HISPANIC FEV	MI ES.				
MEAN	273.333	267.333	265.000	0.000	268.944
STD.DEV.	29.764	26.391	29.138	0.000	26.441
MAXIMUM	300.000	300.000	290.000	0.000	300.000
MINIMAM	220.000	211.000	233.000	0.000	211.000
CASES INCL	6	9	3	0	18

#### TWO MILLE RUN TIME (MINUTES) GROUPED BY GENDER, RACE, AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:	14.010	44.027	45.000	40.00	4
MEAN	14.012	14.367	15.808	16.007	15.057
STD.DEV.	1.616	1.816	1.960	2.096	2.060
MAXIMAM	17.833	19.500	23.000	24.000	24.000
MINIMUM	10.167	10.167	10.333	11.000	10.167
CASES INCL	152	363	285	206	1006
WHITE MALES:					
MEAN	14.360	14.486	16.085	15,975	15.303
STD.DEV.	1.568	1.780	1.928	2.131	2.052
MAXIMUM	17.833	19.333	19.500	24.000	24.000
MINIMUM	10.833	10.500	10.333	11.000	10.333
CASES INCL	95	187	151	185	618
BLACK MALES:					
MEAN	13.299	14.315	15.556	16.273	14.596
STD.DEV.	1.473	1.978	2.013	2.020	2.085
MAXIMUM	17.000	18.333	23.000	19.833	23.000
MINIMAM	10.333	10.833	12.167	14.000	10.333
CASES INCL	39	118	68	11	236
GOOD BIGE	03	110	•	77	230
HISPANIC MALES	<u>:</u>				
MEAN	13.321	14.105	15.297	15.083	14.579
STD.DEV.	1.436	1.601	1.933	1.159	1.858
MAXIMLM	15.333	19.500	20.000	16.667	20.000
MINIMUM	10.167	11.333	11.000	14.000	10.167
CASES INCL	14	46	52	4	116
ALL FEWALES:					
MEAN	17.168	18.028	18.388	0.000	17.898
STD.DEV.	2.363	2.022	3.018	0.000	2.352
MAXIMUM	23.333	23.333	27.667	0.000	27.667
MINIM	12.833	13.833	13.000	0.000	12.833
CASES INCL	59	146	49	0.000	254
	00	170	73	U	204
WHITE FEMALES:	. 17 100	40.007	40		
MEAN	17.120	18.307	18.809	0.000	18.120
STD.DEV.	2.223	2.166	3.345	0.000	2.545
MAXIMUM	22.000	23.333	27.667	0.000	27.667
MINIM	13.000	13.833	13.333	0.000	13.000
CASES INCL	35	73	31	0	139
BLACK FEMALES:					
MEAN	17.711	17.773	17.874	0.000	17.779
STD.DEV.	2.740	1.806	2.025	0.000	1.995
MAXIMUM	23.333	21.333	21.000	0.000	23.333
MINIMAM	13.000	14.000	13.000	0.000	13.000
CASES INCL	15	61	14	0	90
HISPANIC FEMAL	F\$.				
MEAN	16,667	17.498	15.444	0.000	16 070
STD.DEV.	2.266	1.618	1.388		16.879
MAXIM.M	19.333	21.167	17.000	0.000	1.884
MINIMAM	12.833	16.000		0.000	21.167
CASES INCL	6	10.00	14.333	0.000	12.833
SALU HAL	U	<b>y</b>	3	0	18

## WEIGHT (KG) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS COMBINED
ALL MALES:					
MEAN	72.910	74.172	79.355	81.190	77.063
STD.DEV.	8.729	10.634	12.879	9.521	11.313
MAXIMUM	108.600	117.800	126.900	120.200	126.900
MINIMUM	50.900	51.700	48.000	50.200	48.000
CASES INCL	162	389	318	259	1128
WHITE HALES:					
MEAN	73.124	75.068	80.913	81.460	78.261
STD.DEV.	8.097	10.948	12.812	9.049	11.024
MAXIM	90.600	117.800	126,900	111.300	126.900
MINIMAM	58.100	53.100	48.000	50.200	48.000
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	72.844	73.710	80.016	84.280	76.047
STD.DEV.	7.917	9.976	12.615	12.892	11.250
MAXTXAM	88.400	111.500	117.500	120.200	120.200
MINIMA	55,100	58.100	58.200	69.900	55.100
CASES INCL	41	124	75	15	255
HISPANIC WALE	S:				
MEAN	72.969	72.582	76.500	77.380	74.682
STD.DEV.	12.145	10.673	11.944	9.391	11.389
MAXIMAM	108.600	98.600	117.700	89.700	117.700
MINIMUM	50.900	56.100	50.700	56.200	50.700
CASES INCL	16	50	58	10	134
ALL FEMALES:					
MEAN	59.889	59,509	63.575	59.000	60.372
STD.DEV.	7.684	8.095	8.402	6.788	8.166
MAXIMAM	81.800	28.500	91.400	63.800	91.400
MINIMAM	46.100	43.600	44.100	54.200	43.600
CASES INCL	62	155	52	2	271
WHITE FEWALES	:				
MEAN	59.868	59.955	63.482	59.000	60.707
STD.DEV.	7.410	8.471	8.116	6.788	8.182
MAXIMUM	78.100	88.500	79.900	63.800	88.500
MINIMM	46.100	45.200	44.100	54.200	44.100
CASES INCL	37	76	33	2	148
BLACK FEWLES	:				
MEAN	60.981	59.311	64.887	0.000	60.448
STD.DEV.	8.368	7.417	9.655	0.000	8.112
MANITIVAN	81.800	82.300	91.400	0.000	91.400
MINIMUM	50.100	43.600	52.800	0.000	43.600
CASES INCL	16	66	15	0	97
HISPANIC FEMA	lES:				
MEAN	59.767	58.011	59.467	0.000	58.839
STD.DEV.	9.194	6.761	6.816	0.000	7.251
MAXIMAM	72.600	70.500	63.600	0.000	72.600
MINIMAM	49.600	50.200	51.600	0.000	49.600
CASES INCL	6	9	3	0	18

#### HEIGHT (OA) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
	11 20				COMBINED
ALL MALES:					
MEAN	174.652	174.008	174.280	177.776	175.046
STD.DEV.	5.932	6.800	7.295	6.636	6.948
MAXIMUM	188.400	193,200	195.900	195.900	195.900
MINIMUM	155.800	155.600	155.400	155.500	155 160
CASES INCL	162	385	318	259	1124
WHITE MALES:					
MEAN	174.886	175.106	175.955	178.426	176.358
STD.DEV.	5.988	6.873	7.331	6.123	6.781
MAXIMUM	188.400	193.200	195.900	195.900	195.900
MINIMUM	159.400	155.600	155.400	162.500	155.400
CASES INCL.	101	201	166	226	694
BLACK MALES:	474 244	172 700	174 705	178.153	174.394
MEAN	174.244	173.789	174.725	7.529	6.456
STD.DEV.	5.827	6.469	6.389 187.700	189.900	190.100
MAXIMUM	182.500	190.100		161.900	155.800
MINIMA	155.800	160.400	156.900		255
CASES INCL	41	124	75	15	255
HISPANIC MALE	S:				
MEAN	174.556	170.806	170.624	171.500	171.233
STD.DEV.	5.173	5.711	6.311	5.566	5.984
MAXIMUM	183.200	180.500	184.500	178.600	184.500
MINIMUM	167.200	160.200	157.500	163.300	157.500
CASES INCL.	16	48	58	10	132
ALL FEWALES:					
MEAN	162.132	162.434	163.644	157.300	162.559
STD.DEV.	6.153	6.360	5.819	4.243	6.211
MAXIM.M	176.300	179.200	176.900	160.300	179.200
MINIMUM	147.900	144.000	150.700	154.300	144.000
CASES INCL	62	155	52	2	271
CLOTTO THAT	OL.	100	VZ.	_	
WILTE FEMALE	-	4.00 0.00	100.000	427.000	120.010
MEAN	162.722	162.967	163.806	157.300	163.016
STD.DEV.	6.272	6.159	5.786	4.243	6.083
MAXIMAM	176.300	179.200	176.900	160.300	179.200
MINIMA	147.900	147.900	154.400	154.300	147.900
CASES INCL	37	76	33	2	148
BLACK FEWALE	S:				
MEAN	162.575	162.800	164,387	0.000	163.008
STD.DEV.	6.139	6.175	6.186	0.000	6.136
MAXIMUM	176.300	174.000	176.500	0.000	176.500
MINIMUM	149.900	149.300	150.700	0.000	149.300
CASES INCL	16	66	15	0	97
HISPANIC FEM	AJ FS.				
MEAN MEAN	160.817	156.400	160.433	0.000	158.544
STD.DEV.	4.655	7.353	4.053	0.000	6.216
MAXIMAM	167.300	165.800	165.100	0.000	167,300
MINIMUM	154.300	144.000	157.800	0.000	144.000
CASES INCL	154.500	144.000	3	0.00	18
CON TACK	U	3	J	V	10

#### AVERAGE AGE(YRS) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL MALES:					
MEAN STA	19.302	23.771	32.887	43.324	30.189
STD.DEV. MAXIMUM	0.732	2.142	3.558	2.711	8.936
MINIMUM	20.000	27.000	39.000	54.000	54.000
CASES INCL	18.000	21.000	28.000	40.000	18.000
CHOEN THAT	162	389	318	259	1128
WHITE WALES:					
MEAN	19.297	23.448	33.217	43.367	31.644
STD.DEV.	0.729	2.032	3.732	2.723	9.697
MAKIXAM	20.000	27.000	39.000	54.000	54.000
MINIMA	18.000	21.000	28.000	40.000	18.000
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	19.415	24.161	20,002	40,000	00.000
STD.DEV.	0.706	2.206	32.293	42.800	26.886
MAXIM	20.000	27.000	3.308 39.000	1.612	6.480
MINIMAM	18.000	21.000	28.000	47.000	47.000
CASES INCL	41	124	20.007 75	41.000 15	18.000
	••	127	75	15	255
HISPANIC MALE	<u>S</u> :				
MEAN	19.125	24.280	32.552	43.500	28.679
STD.DEV.	0.806	2.186	3.304	3.659	6.981
MAXIMUM	20.000	27.000	39.000	51.000	51.000
MINIMUM	18.000	21.000	28.000	40.000	18.000
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN.	19.355	23.374	21 077	40.000	0.4.0
STD.DEV.	0.630	1.934	31.077 2.930	40.000	24.055
MAXIMUM	20.000	27.000	39.000	0.000 40.000	4.535
MINIMUM	18.000	21.000	28.000	40.000	40.000 18.000
CASES INCL	62	155	52	2	271
				-	211
WHITE FEWALES					
MEAN	19.378	23.171	31.576	40.000	24.324
STD.DEV.	0.639	1.996	3.153	0.000	5.127
MAXIMUM MINIMUM	20.000	27.000	39.000	40.000	40.000
CASES INCL	18.000	21.000	28.000	40.000	18.000
CASES TACE	37	76	33	2	148
BLACK FEMALES:	•				
MEAN	19.375	23.485	30.267	0.000	23.856
STD.DEV.	0.719	1.875	2.492	0.000	3.637
MAXIMAM	20.000	27.000	35.000	0.000	35.000
MINIMUM	18.000	21.000	28.000	0.000	18.000
CASES INCL	16	66	15	0	97
HISPANIC FEMAL	FS.				
MEAN	19.167	23.444	29.667	۸ ۸۸	00.000
STD.DEV.	0.408	1.509	29.00/ 2.082	0.000 0.000	23.056 3.842
MAXIMUM	20.000	26.000	32.000	0.000	32.000
MINIMUM	19.000	21.000	28.000	0.000	19.000
CASES INCL	6	9	3	0.000	18
		<del>-</del>		•	20

THE PARTY OF THE PROPERTY OF T

#### SUM OF BICEP, TRICEP, SUBSCAPULAR, AND SUPRAILLIAC SKINFOLDS (MM) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	AGC: 17-20	21-27	28-39	40+	ALL AGE GROUPS
	<b></b>	<del></del>	20 00		COMBINED
ALL MALES:					
MEAN	47.299	50.312	58.230	60.243	54.387
STD.DEV.	16.166	19.476	22.874	16.576	20.077
MAXIMUM	103.300	108.800	123.000	119.500	123.000
MINIMUM	22.500	17.900	15.200	20.700	15.200
CASES INCL	162	389	318	258	1127
WHITTE MALES:					
MEAN	49.331	51.993	60.914	60.257	56.412
STD.DEV.	16.217	18.627	21.085	16.059	18.721
MAXIMUM	103.300	108.300	108.800	103.000	108.800
MINIMA	24.100	21.300	20.300	20.700	20.300
CASES INCL	101	203	166	225	695
BLACK MALES:					
MEAN	41.720	44.988	51.335	56.447	47.003
STD.DEV.	15.117	18.883	25.006	23.395	20.935
MAXIM	89.800	108.800	112.300	119.500	119.500
MINIMA	22.500	17.900	16.700	32.800	16.700
CASES INCL	41	124	75	15	255
		<del></del> -			
HISPANIC MALE					
MEAN	49.962	56.376	60.907	63.390	58.095
STD.DEV.	15.674	20.661	22.673	16.876	20.957
MANITARM	97.200	101.000	123.000	84.300	123.000
MINIMAM	30.900	24.900	15.400	30.200	15.400
CASES INCL	16	50	58	10	134
ALL FEWALES:					
MEAN	58.561	51.352	59.392	72.650	54.701
STD.DEV.	19.581	19.197	21.085	42.214	20.097
MAXIMAN	118.000	114.300	111.800	102.500	
MINIMUM	23.600	20.700	18.500	42.800	118.000
CASES INCL.	62	155	10.500 52	42.800	18.500 271
300 3100	02	100	32	2	2/1
WHITE FEMALES	_				
MEAN	60.127	54.207	59.042	72.650	57.014
STD.DEV.	18.234	20.970	19.959	42.214	20.381
MAXIMUM	118.000	114.300	98.900	102.500	118.000
MINIMUM	29.800	20.700	22.300	42.800	20.700
CASES INCL	37	76	33	2	148
BLACK FEWALES	5 <b>:</b>				
MEAN	53.706	47.506	58.000	0.000	50.152
STD.DEV.	20.613	16.507	24.609	0.000	18.861
MAXIMUM	92,400	106.100	111.800	0.000	111.800
MINIMUM	23.600	22.600	18.500	0.000	18.500
CASES INCL	16	66	15	0.000	97
UTCOALTC TTO	LEC.				. •
HISPANIC FEWA	<u>LES</u> : 58.183	ro cro	FO 407		<b>MA</b>
STD.DEV.	23.035	53.656 19.710	59.167	0.000	56.083
MAXIMUM	101.700		12.590	0.000	19.075
MINIMUM	37.200	88.600 26.300	73.700	0.000	101.700
CASES INCL	31.200 6	20.300	51.600	0.000	26.300
ann na	J	3	3	0	18

#### SUM OF BICEP, TRICEP, SUBSCAPULAR, AND SUPRAILLIAC SKINFOLDS (MA)-ARMY ROUNDED METHOD-GROUPED BY GENDER, RACE AND AGE

	AGE:	GIOGIED DI G	ded, mache h	-	
	17-20	21-27	28-39	40+	ALL AGE GROUPS
		<del></del>	<b></b>		COMBINED
ALL MALES:					
MEAN	44.722	47.763	55.881	57.694	51.890
STD.DEV.	16.316	19.501	22,836	16.610	20.109
MAXIMLM	100.000	105.000	120,000	115.000	120.000
MARK	20.000	15.000	15.000	20.000	15.000
CASES INCL	162	389	318	25.000	1127
COLD HAL	102	<b>303</b>	510	200	****
WHITE MALES:					
MEAN	46.584	49.310	58.464	57.689	53.813
STD.DEV.	16.385	18.649	21.154	16.167	18.821
MAXIM.M	100,000	105.000	105.000	100.000	105.000
HINIMLM	20.000	20.000	20.000	20.000	20.000
CASES INCL	101	203	166	225	695
COLD THAT	101	200	100	225	030
BLACK MALES:					
MEAN	39.512	42.621	49.133	54.000	44.706
STD.DEV.	15.362	18.865	24.897	22.850	20.886
MAXIM	85.000	105.000	110.000	115.000	115.000
MINIMUM	20.000	15.000	15.000	30.000	15.000
CASES INCL.	41	124	75	15	255
COED THO	41	124	75	15	233
HISPANIC MALE	S:				
MEAN	47.188	53.900	58.621	61.000	55.672
STD.DEV.	16.018	21.003	22.494	16.296	21.024
MAXIMUM	95.000	100.000	120.000	80.000	120.000
MINIMAM	30.000	20.000	15.000	30.000	15.000
CASES INCL	16	50	58	10	134
CHOLD LIKE	10	₩	36	10	104
ALL FEMALES:					
MEAN	56.048	48.903	56.923	70.000	52.232
STD.DEV.	19.755	19.325	21.031	42.426	20.191
MAXIMUM	115.000	110.000	110.000	100.000	115.000
MINIMA	20.000	20.000	15.000	40.000	15.000
CASES INCL	62	155	52	2	271
COLD INCL	OZ.	130	52	2	2/1
WHITE FEWALES	:				
MEAN	57.568	51.711	56.818	70.000	54.561
STD.DEV.	18.582	20.953	19.757	42.426	20.412
MAXIMUM	115.000	110.000	95.000	100.000	115.000
MINIMAM	25.000	20.000	20.000	40.000	20.000
CASES INCL	37	76	33	2	148
	<b>.</b>		•	_	2.0
BLACK FEWALES	<b>:</b> :				
MEAN	51.250	45.000	55.000	0.000	47.577
STD.DEV.	20.535	16.710	24.857	0.000	18.986
MUNITIKANI	90.000	105.000	110.000	0.000	110.000
MINIMA	20.000	20.000	15.000	0.000	15.000
CASES INCL	16	66	15	0	97
HISPANIC FEW		F4 007	ro 607	0.000	ra 000
MEAN	55.833	51.667	56.667	0.000	53.889
STD.DEV.	23.327	20.000	11.547	0.000	19.217
MAXIMUM	100.000	85.000	70.000	0.000	100.000
MINIMUM	35.000	25.000	50.000	0.000	25.000
CASES INCL	6	9	3	0	18

#### PERCENT BODYFAT (DURNIN-WORMERSLEY) GROUPED BY GENDER, RACE AND AGE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
					COMBINED
ALL WALES:					
MEAN	16.457	17.051	20.891	25.699	20.030
STD.DEV.	4.365	5.068	5.005	4.293	5.947
MAXIMAM	27.000	28.000	31.000	37.000	37.000
MINIKM	8.000	4.000	8.000	12.000	4.000
CASES INCL	162	389	313	259	1123
WHITE MALES:					
MEAN	17.010	17.601	21.446	25.712	21,066
STD.DEV.	4.302	4.667	4.503	4.237	5.707
MAXIDAM	27.000	28.000	29.000	37.000	37.000
MINIMAM	8.000	8.000	10.000	12.000	8.000
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	14.878	15.548	19.264	24.400	17.028
STD.DEV.	4.417	5.215	5.831	4.968	5.826
MAXIMM	25.000	28.000	30.000	36.000	
MINIMA	8.000	4.000	8.000		36.000
CASES INCL	41	124	72	17.000	4.000
COO INC	41	124	12	15	252
HISPANIC MALE	S:				
MEAN	17.313	18.540	21.491	26.800	20.278
STD.DEV.	3.683	5.277	4.855	4.442	5.412
MAXIMAM	26.000	27.000	31.000	31.000	31.000
MINIMAM	12.000	8.000	12.000	17.000	8.000
CASES INCL	16	50	57	10	133
ALL FEWALES:					
MEAN .	26.887	24.806	00 000	22 500	or oso
STD.DEV.	5.151	24.800 5.450	28.059	33.500	25.963
MAXIM.M	38.000	37.000	5.221	7.778	5.526
MINIMEM	14.000	14.000	38.000	39.000	39.000
CASES INCL	62		16.000	28.000	14.000
CASC TIAL	OZ.	155	51	2	270
WHITE FEWALES					
MEAN	27.486	25.579	28.000	33.500	26.703
STD.DEV.	4.623	5.485	5.280	7.778	5.374
MAXIMUM	38.000	37.000	36.000	39.000	39.000
MINIMUM	16.000	14.000	16.000	28.000	14.000
CASES INCL	37	76	33	2	148
BLACK FEWALES	•				
MEAN	25.250	23.727	27.714	0.000	24.563
STD.DEV.	5.859	5.205	5.525	0.000	5.492
MAXIMUM	34.000	37.000	38.000	0.000	38.000
MINIMUM	14.000	14.000	19.000	0.000	14.000
CASES INCL	16	66	14	0	96
HISPANIC FEWA	FS:				
MEAN	<u>26.833</u>	25.556	28.000	0.000	00 000
STD.DEV.	5.269	6.146	3.464	0.000	26.389
MAXIMAM	36.000	34.000	32.000	0.000	5.315
MINIMUM	21.000	16.000	26.000	0.000	36.000
CASES INCL	6	9	20.000	0.000	16.000
	J	•	J	V	18

#### PERCENT BODYFAT (DURNIN-WORMERSLEY EXTENDED TABLE) GROUPED BY GENDER, RACE AND ACE

	AGE:				
	17-20	21-27	28-39	40+	ALL AGE GROUPS
ALL ADDEC.					COMBINED
ALL MALES: MEAN	17.717	18.223	21.697	26.708	21.079
STD.DEV.	3.923	4.629	4.983	4.060	5.671
MAXIMUM	28.000	28.700	31.390	37.900	37.900
MAINIM	9.500	6.800	4.900	12.800	4.900
CASES INCL	162	389	316	259	1126
WHITE WALES:					
MEAN	18.260	18.757	22.373	26.735	22.138
STD.DEV.	3.835	4.275	4.332	3.986	5,425
MAXIMUM	28.000	28.600	30.000	37.900	37.900
MINIMUM	10.000	8.600	11.000	12.800	8.600
CASES INCL	101	203	166	226	696
BLACK MALES:					
MEAN	16.180	16.816	19.719	25.427	18.074
STD.DEV.	3.977	4.717	5.991	4.880	5.511
MAXIMUM	26.200	28.700	30.300	37.000	37.000
MINIMA	9.500	6.800	4.900	18.800	4.900
CASES INCL	41	124	75	15	255
HISPANIC MALES	<u>S</u> :				
MEAN	18.550	19.590	22.423	27.560	21.278
STD.DEV.	3.351	4.780	4.712	4.483	5.108
MAXIMAM	27.200	27.700	31.300	31.900	31.900
MINIMUM	13.300	10.500	12.600	17.700	10.500
CASES INCL	16	50	57	10	133
ALL FEWALES:					
MEAN	27.953	25.999	28.869	34.550	27.060
STD.DEV.	4.797	5.023	5.418	7.849	5.219
MAXIMUM	38.800	38.300	38.800	40.100	40.100
MINIMAM	16.300	14.600	13.600	29.000	13.600
CASES INCL	62	155	52	2	271
WHITE FEMALES					
MEAN	28.514	26.726	29.027	34.550	27.792
STD.DEV. MAXIMUM	4.181	5.117	5.071	7.849	5.034
MINIMUM	38,800 19,500	38.300 14.600	37.100 16.800	40.100 29.000	40.100 14.600
CASES INCL	37	76	33	29.000 2	14.600
DI ACV EERIALES					
BLACK FEMALES MEAN	: 26.481	25.011	റ7 നാ	0.000	25.714
STD.DEV.	5.647	4.756	27.993 6.451	0.000	5.255
MAXIMUM	35.100	4.750 37.200	38.800	0.000	38.800
MINIMUM	16.300	15.700	13.600	0.000	13.600
CASES INCL	16	66	15.000	0.000	97
HISPANIC FEWA	I FS•				
MEAN	27.817	26.567	29.067	0.000	27.400
STD.DEV.	5.014	5.572	3.580	0.000	4.943
MAXIMUM	36.700	34.600	33.200	0.000	36.700
MINIMUM	22.300	17.300	27.000	0.000	17.300
CASES INCL	6	9	3	0	18

Appendix H

Correlation Matrices for All Data Summarized by Gender

#### Abbreviations for Correlation Matrix

#### Matrix Abbreviation

#### Variable Name

TIMESER Total Time in Service

RANK Current Rank

CARMGMT Career Management Field/Branch

PRIMOS Primary MOS UNITYPE Unit Type

SITUP
PUSHUP
Number of Sit-Ups (PT Test)
Number of Push-Ups (PT Test)
TWO MILE
2 Mile Run Time (PT Test)
PT SCORE
Total Points Scored (PT Test)
HY
Fear of Underwater Weighing

GENDER Male, Female

RACE

CHINSF
CHINST
CHINST
CHINST
Subscapular Skinfold
TRICEPSF
Triceps Skinfold
MIDAXSF
Midaxillary Skinfold
WAISTSF
Waist Skinfold
SUPRASF

SUPRASE Suprailiac Skinfold **ABDSF** Abdomen Skinfold THISF Thigh Skinfold KNEESF Knee Skinfold CALFSF Calf Skinfold BICEPSF Biceps Skinfold HEADC Head Circumference SHOULC Shoulder Circumference CHSTC Chest Circumference ABD1C Abdomen 1 Circumference ABD2C Abdomen 2 Circumference

HIPC Hip Circumference THIC Thigh Circumference BICEPC Bicep Circur ference FOREC Forearm Circumference WRISTC Wrist Circumference KNEEC Knee Circumference CALFC Calf Circumference ANKLEC Ankle Circumference NECKC Neck Circumference

FLXBICC Flexed Bicep Circumference

AGE Age
HT Height
WT Weight

BIACD
BIDELD
BIDELD
BILLO
BILL

KNEED Knee Diameter
ANKLED Ankle Diameter

CHSTD Chest Diameter
ELBOWD Elbow Diameter
WRISTD Wrist Diameter
VO2LMIN VO2MEX liters/min
VO2MEKG VO2mex ml/kg/min
HR Heart Rate
DYLIFT Incremental Dynamic Lift
VE VE Heart liters/min
Property Continue

VE VE Max liters/min
R Respiratory Quotient
VCO2 VCO2max liters/min
VEVO2 Ventilatory Equivalent
TMSPEED Treadmill Speed (max)
TMGRADE Treadmill Grade (max)
VC Vital Capacity

RLV Residual Lung Volume
MDEN Body Density*
UWWPCBF Percent Body Fat*
UWWLBM Lean Body Mass*

Fat Mass*

#### * From Underwater Weighing

UWWBF

SUMS Sum of 4 Skinfolds* DWFCPFET Percent Body Fat* SUMSA Sum of all skinfolds DWPCBF Percent Body Fat ** ENDO Endomorphy MESD Mesomorphy ECTO Ectomorphy AVUNIR Uniform Rating AVSSR Swimsuit Rating KRATING Visual Appraisal Score

- * Durnin and Womersley Method
- ** Durnin and Womersley Method, Army Modification

:	1 1 1 1	#	PEARSON	CORRE	LATION	C 0 E F	FICIEN	TS (MALES)	· · · · (S	1	; ; ;
	TIMESER	RANK	CARMONT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWONTLE	PTSCORE	¥	6900
TIMESER	1.0036 (1126) P= .000	.7636 ( 1126) P= .000	-6.6167 (1111) Pa .361	.0014 ( 1115) Fm .481	.4485 ( 1198) P= .696	-6.4262 (1014) P≈.006	-6.5013 ( 1014) Pm .688	.3936 ( 1696) Px896	-6.2688 ( 833) F= .000	(1126) Pm.	( 1126) Pm .
RANK	.7636 ( 1126) P= .600	1.6666 ( 1128) Pm .666	-8.0515 (1112) Pm .043	-6.0363 (1117) Fr .061	.5037 ( 1109) Pa .500	-6.3648 (1614) Pr666	-6.3968 (1614) Pm .006	.2446 ( 1866) Pm .866		( 1128) P= .	( ii28)
CARMGMT	-6.6167 (1111) P= .361	-6.0515 ( 1112) P= .043	1.0000 (1112) F= .000	.2831 ( 1156) Pz .666	.1448 ( 1897) Pm .000	-6.6562 (1665) Px .856	-6.6286 (1866) Pm .188	.0786 ( 998 ) 		( 1112) P= .	( 1112) Pm .
PRIMOS	.6614 ( 1116) P= .481	-6.6983 (1117) P= .601	.2831 ( 1166) P= .666	1. <b>6696</b> (1117) P= .866	.2383 ( 1163) P= .866	-6.6871 (1013) Pm.003	-6.6542 (1014) P= .042	.1614 ( 1806) Pm .886	-6.2066 ( 833) P= .806	( i117)	( iii7)
UNITYPE	.4485 ( 1108) P= .668	.5837 ( 1189) P= .888	.1448 ( 1097) P= .000	.2383 ( 11 <i>8</i> 3) P= .000	1.6000 (1169) P= .006	-6.2158 (1002) P= .003	-6.2738 (1863) Pm.866	.1818 ( 996) Pa.:666	-6.1285 ( 822) Pa . 600	( 1189) P= .	( 1189) Pr.
SITUP	-6,4262 (1014) P= .000	-6.3848 (1614) P= .886	-6.6502 ( 1605) P= .658	-6.6871 ( 1613) P= .563	-6.2166 (1002) P= .006	1.6000 (1014) P= .600	. 7699 ( 1669) Pa666	-6.4981 ( 994) Px .066	.7475 ( 801) Pa .000	( ië14) P= .	( ie14)
PUSHUP	-6.5813 (1814) P= .886	-6.3968 (1614) P= .866	-6.0236 (1666) P= .188	-6.6542 (1914) P= .642	-6.2738 ( 1663) P≈ .666	.7099 (1009) P= .666	1.8868 (1814) Px .868	-6.4848 ( 994) Pz .866	.7398 ( 802) P= .006	( iø14) P# .	( 1814) P= .
TWOMILE	.3936 ( 1666) P= .666	.2446 ( 1006) P= .800	. 6786 ( 998) P= . 667	.1614 ( 1886) P= .666	.1818 ( 996) Pm .866	-6.4981 ( 994) P= .00€	-6.4848 ( 994) P= .666	1.8886 ( 1886) Pa .888	-6.6761 ( 796) Pa .606	( 1 <b>668</b> ) Pr	7 1986) 1
PTSCORE	-6.2688 ( 833) Pa .666	-6.6718 ( 833) P= .619	-6.8887 ( 831) P= .005	-6.2066 ( 833) Pa .696	-6.1205 ( 822) P= .660	.7475 ( 801) P= .800	.7393 ( 802) P= .308	-6.6781 ( 796) Pa .866	1.0000 ( 833) P= .000	( . 833) Pz .	933)

1 2 1 1	KNEESF	-6,8478 (1125) P≖.055	-6.6734 (1127) P= .067	.8069 (1111) Pm .416	-6.0118 (1116) P= .347	-6.6446 (1108) P= .069	-6.6335 (1613) Pr .144	-6.6157 ( 1013) Pm .308	.1319 ( 1005) Pm ,000	-6.6846 ( 833) Pa .998
1 1 1	THISF	.1705 ( 1124) P= .000	.16#3 ( 1128) P= .000	-0.0013 ( 1110) P= .482	-6.0054 ( 1115) P= .428	.0767 ( 1167) P= .005	-6.2316 ( 1013) P= .020	-6.2956 (1913) P= .666	.3271 ( 1005) P= .000	-6.2976 ( 832) F= ,666
~ (s	ABOSF	.3989 (1125) P= .000	.3131 ( 1127) P= .666	.6446 (1111) P= .069	.0206 ( 1116) Pm .246	.1968 (1108) Pa000	-8.3764 (1013) Px000	-6.3789 (1613) P= .000	.4544 ( 1805) P= .888	-Ø.3896 (833) P=.666
T S (MALES)	SUPRASF	.2398 ( 1125) P= .000	.1872 ( 1127) P= .000	.0348 (1111) P= .124	.0017 ( 1118) P= .477	.1126 ( 1108) P= .000	-6.2842 (1013) P= .000	-6.2974 (1013) P= .008	.3757 ( 1005) P= .000	-6.3152 ( 833) P= .006
FICIEN	WAISTSF	.2371 ( 1125) P= .000	.1798 ( 1127) P= .606	.0386 (1111) P= .099	-6.0032 (1116) P= .458	.0798 ( 1108) P= .004	-6.2923 (1013) P= .000	-6.2954 (1013) P=.000	.3757 ( 1005) P= .000	-8.3168 ( 833) P= .866
C 0 E F .	MIDAXSF	.3048 (1125) P= .000	.2354 ( 1127) P= .000	.0454 (1111) P= .065	.0120 (1116) P= .345	.1288 ( 1108) P= .000	-6.3279 ( 1613) P= .000	-6.3448 (1013) P=.686	.3075 ( 1005) P= .000	-Ø.3434 ( 833) P= .000
LATION	TRICEPSF	.1397 ( 1125) P= .000	.0937 (1127) P= .601	-0.0026 (1111) P= .465	.6019 ( 1116) P= .476	.0442 (1108) P= .071	-0.2598 ( 1013) P= .000	-6.2777 ( 1613) P= .666	.3297 ( 1005) P= .000	-8.3188 ( 833) P= .000
CORRE	SCAPSF	.2878 ( 1125) P= .000	.1778 ( 1127) P= .000	.0673 (1111) P= .012	.0630 (1116) P= .018	.8991 ( 1108) P= .600	-6.3287 ( 1013) P= .000	-6.3169 (1613) P= .666	.4189 ( 1005) P= .606	-8.3484 ( 833) P= .698
ARSON	CHSTSF	.4384 ( 1125) P= .860	.3424 ( 1127) P= .000	.0655 ( 1111) P= .014	.0678 (1116) P= .012	.2739 ( 1108) P= .600	-0.4125 (1013) P= .000	-6.4087 (1013) P= .000	.4519 ( 1005) P= .000	-6.3973 ( 833) F= .000
1 1 1	CHINSF	.4422 ( 1125) P= .000	.3889 ( 1127) P= .000	.0175 (1111) P= .280	.0213 ( 1116) P= .239	.2377 ( 1108) P= .000	-0.4075 (1013) P= .000	-6.4622 (1613) P= .666	.3895 ( 1005) P= .000	-6.3335 ( 833) P= .000
1 1 1 1	RACE	-0.1258 ( 1126) P= .000	-6.1925 (1128) P= .000	.0320 ( 1112) P= .143	.0749 ( 1117) P= .006	-0.1288 ( 1109) P= .000	.1278 ( 1014) P= .600	.1582 ( 1014) P= .000	-Ø.6832 (1606) P= .664	.0519 ( 833) P= .067
1 1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

1 1 1	1 1 1 1	P E A R	N O S A	CORRE	LATION	C 0 E F F	HCHEN:	T S (MALES)	(6	1 1 1	i i i
	CALFSF	BICEPSF	HEADC	SHOULC	CHSTC	ABD1C	ABD2C	HIPC	THIC	BICEPC	FOREC
TIMESER	-0.0088	.2189	.2224	.1197	.3223	.4015	.4113	.2121	.1469	.1161	.0295
	(1124)	( 1124)	(1125)	( 1125)	( 1124)	( 1125)	( 1128)	( 1126)	( 1123)	( 1126)	( 1125)
	P= .384	P= .000	P= .000	P= .000	P= .866	P= .000	P= .000	P= .000	P= .000	P= .000	P= .162
	-0.0138	.1500	.2149	.0808	.2413	.2963	.3190	.1378	.0948	.0877	-0.0184
	(1126)	(1126)	( 1127)	(1127)	( 1126)	(1127)	( 1148)	( 1127)	( 1125)	(1128)	(1127)
	P= .325	P= .000	P= .666	P= .003	P= .066	P= .000	P= .800	P= .000	Pm001	P= .011	P= .269
САЯМСМТ	-0.0095	.0488	.ø684	.0280	.0406	.0528	.0597	.0343	.Ø102	.0135	.0047
	(1110)	(1110)	( 1111)	(1111)	(1110)	(1111)	(1112)	(1111)	( 1109)	( 1112)	(1111)
	P= .375	P= .061	P= .39Ø	P= .175	P= .092	P= .040	P= .023	P= .127	P= .367	Pm.,326	P= .438
	-0.0014	.0242	.ø3ø9	.0288	.0317	.0634	.ø528	.0491	.Ø536	.0643	.0002
	(1115)	( 1115)	(1116)	(1116)	( 1115)	(1116)	( 1117)	( 1116)	(1114)	( 1117)	(1116)
	P= .482	P= .209	P= .151	P= .168	P= .145	P= .037	P= .ø39	P= .050	P= .Ø37	P= .443	P= .497
UNITYPE	-8.0174	.0816	.1810	.0504	.1440	.1821	.2173	.1123	.6721	.0413	-0.0253
	(1107)	( 1107)	(1108)	(1108)	( 1167)	( 1108)	(1109)	( 1108)	( 1166)	(1109)	(1108)
	P= .282	P= .020	P= .606	P= .047	P= .666	P= .000	P= .000	P≂ .060	F= .008	P= .086	P= .200
	-0.1800	-6.3186	-6.1921	-0.1293	-0.2921	-0.3770	-8.3877	-0.2572	-0.1035	-0.0757	-0.6449
	(1012)	(1012)	(1013)	( 1013)	(1012)	(1013)	(1014)	(1013)	(1011)	(1014)	(1013)
	P= .000	P= .000	P= .000	P= .000	P=.000	P= .000	P=.000	P=.000	P= .000	F= .008	P= .077
PUSHUP	-0.1646	-0.3127	-0.1343	-0.0338	-0.2113	-0.3395	-0.3666	-0.2635	-6.8908	-0.6132	.0305
	(1012)	( 1012)	(1013)	(1013)	(1012)	(1013)	(1014)	(1013)	(1011)	(1614)	(1013)
	P= .000	P= .000	P= .060	P= .141	P= .000	P=.000	P= .000	P= .000	P= .602	P= .337	F= .166
WOMILE	.2502	.3676	.1369	.2007	.3239	.4350	.4515	.3424	.2299	.2073	.1346
	(1004)	( 1664)	( 1005)	( 1005)	( 1004)	(1005)	( 1006)	( 1005)	( 1963)	( 1006)	( 1005)
	P= .000	P= .666	P= .000	P= .000	P= .000	P=.000	Pm .000	P= .000	P= .666	P= .000	P= .000
PTSCORE	-0.2353	-6.3101	-6.6982	-0.1115	-6.2436	-0.3377	-Ø.3639	-6.3122	-6.1593	-0.1057	-6.6438
	( 832)	( 832)	( 832)	( 832)	( 831)	(833)	( 833)	( 832)	(830)	( 833)	( 832)
	P= .000	P= .666	P= .662	P= .001	P= .666	P= .000	P= .@@Ø	P= .900	P= .666	P= .001	P= .163

; ;	1 1 1	1 1 1	PEARSON	CORRE	LATIOR	COEFI	FICIEN	T S (WALES)	(S	i i i	! ! !
	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC	AGE	Ħ	L#	BIACD	BIDELD
TIMESER	.0780	.1154	.1265	-6.6239	.2021	.1000	.8852	.1525	.2932	.0172	-6.6368
	(1125)	( 1126)	( 1126)	(1123)	( 1124)	(1126)	(1126)	( 1122)	( 1126)	( 1126)	(1126)
	P= .005	P= .000	P= .000	P= .212	P= .000	P= .000	P= .000	P= .000	P= .000	P= .282	P= .113
	.0352	.0964	.1018	.0062	.1437	.0531	.7943	.2121	.2408	.1615	.6252
	(1127)	(1128)	( 1128)	(1125)	(1126)	(1128)	( 1128)	( 1124)	( 1128)	( 1128)	(1128)
	P= .119	P= .001	P= .000	P= .418	P= .000	P= .037	P= .000	P= .668	P= .000	P= .000	P= .198
CARMGMT	.ø173	-0.0233	.0073	.ø1ø2	.0545	.Ø138	-0.0157	-6.0576	. #264	-0.0813	-0.0260
	( 1111)	(1112)	(1112)	( 11ø9)	(1110)	( 1112)	(1112)	(1108)	( 1112)	( 1112)	(1112)
	P= .282	P= .219	P= .404	P= .367	P= .035	P= .323	P= .301	P= .029	P= .249	P= .003	P= .176
PRIMOS	-¢ 124	-0.0305	-0.0175	-0.0705	.0673	.0312	.ø111	-6.6225	.03Ø1	-6.2147	-6.1168
	( 1116)	(1117)	(1117)	(1114)	(1115)	( 1117)	( 1117)	(1113)	( 1117)	( 1117)	(1117)
	P= .469	P= .154	P= .280	P= .009	P= .012	P= .149	P= .356	P= .227	P= .168	P= .000	F= .000
UNITYPE	.0413	.0776	.0237	.ø189	.0989	.0392	.5038	.1680	.1625	.1134	.0782
	( 1108)	( 1109)	( 1109)	( 1106)	(1107)	( 1109)	(1109)	( 1105)	( 1109)	( 1109)	(1109)
	P= .085	P= .005	P= .215	P= .265	P= .000	P= .096	P= .000	P= .000	P= .800	P= .600	P= .005
SITUP	-6.1634	-0.1046	-0.1669	-4.6491	-6.1822	-6.0618	-6.4470	-6.1693	-0.2683	.0503	-0.0211
	( 1613)	(1014)	( 1014)	(1012)	(1012)	(1014)	(1014)	( 1616)	(1014)	(1014)	(1014)
	P= .666	P= .000	P= .000	P= .059	P= .000	P= .025	P= .600	P= .666	P= .000	P= .055	P= .251
PUSHUP	-0.0451	-6.1078	-0.1247	-6.6279	-6.6983	.8241	-6.5179	-6.1541	-6.2533	.0135	.0369
	( 1613)	( 1014)	( 1014)	(1612)	(1012)	( 1014)	(1014)	(1616)	(1014)	( 1014)	(1014)
	P= .076	P= .000	P= .000	P= .187	P= .601	P= .222	P= .000	P= .666	P= .000	Pm .334	P= ,126
TWOMILE	.1392	.1673	.2287	.0683	.2139	.1587	.3981	.8488	.3293	-0.1006	.6229
	( 1005)	( 1006)	( 1006)	( 1004)	( 1004)	( 1006)	( 1006)	(1662)	( 1006)	(1006)	(1666)
	P= .600	P= .000	P= .000	P= .015	P= .000	P= .000	P= .000	P= .698	P= .000	P= .001	P= .234
PTSCORE	-6.6991	-6.1147	-6.1815	-6.0658	-6.1683	-0.0611	-6.2711	-6.6323	-6.2484	.1661	.0206
	( 832)	( 833)	( 833)	(832)	( 831)	( 833)	( 833)	( 829)	( 833)	( 833)	( 833)
	P= .662	P= .000	P= .000	P=.030	P= .000	P= .039	P= .006	P= .176	P≖ .866	P= .066	Pm .277

DYLIFT	-0.1967	-6.1176	-0.6462	-0.1527	-0.0818	.2245	.2888	-6.1358	.1982
	( 850)	( 882)	( 866)	( 801)	( 789)	( 743)	( 747)	( 737)	( 753)
	Pu .666	P= .000	Pm .696	P= .000	P= .011	P= .866	P≖ .000	Pm .000	P= .886
¥	-6.4348	-6.3936	-0.0014	.Ø164	-0.2555	.2143	.2874	-6.2312	.1086
	( 960)	( 962)	( 947)	( 951)	( 946)	( 872)	( 871)	( 864)	( 711)
	P= .000	Pm .866	P= .483	P= .3Ø7	P= .000	P= .000	P= .666	P≖ .000	Pm .2002
VOZMLKG	-0.3758	-6.2162	-6.8858	-0.1321	-0.1268	.4161	.4165	-6.6450	.4913
	( 962)	( 964)	( 949)	( 953)	( 948)	( 874)	( 873)	( 866)	( 713)
	P= .886	P= .006	Pi .864	P= .000	P= .000	P= .868	P= .000	P= .000	P= .866
VOZLMIN	-6.2377	-0.0892	-0.8447	-0.0810	-6.6418	.1919	.2328	-0.2805	.2005
	( 751)	( 753)	( 751)	(752)	( 741)	( 701)	( 793)	( 696)	( 708)
	P= .000	P= .029	P= .111	P= .013	P= .128	P= .800	P= .800	P= .000	P= .000
WRISTD	.1693	.1752	-0.0251	-0.0556	.1252	-0.0765	-6.6918	.0879	-6.6436
	( 1126)	( 1127)	(1111)	(1116)	( 1108)	(1013)	(1613)	(1666)	( 832)
	P= .000	P= .606	P= .201	P= .032	P= .666	?= .007	P=.602	P= .663	P= .168
ELBOWD	.0903	.0887	-0.0315	-0.0865	.0299	-0.1056	-8.8684	.0830	-6.0245
	(1123)	(1125)	(1109)	(1114)	(1106)	(1012)	(1012)	(1005)	( 830)
	P= .001	P= .001	P= .147	P= .002	P= .160	P= .000	P=.017	P=.004	P= .241
снѕто	.1465	.2408	-0.0681	-0.1798	.1469	-6.1070	-6.1074	.0696	.Ø194
	( 1124)	( 1126)	(1110)	(1115)	( 1107)	(1012)	(1012)	(1005)	( 831)
	P= .666	P= .000	P= .012	P= .660	P= .000	P=.000	P= .866	P= .014	P= .288
ANKLED	.1095	.1280	-6.8744	-6.0453	.0399	-0.0188	-0.0384	.9181	.0201
	( 1125)	( 1127)	(1111)	(1118)	(1108)	( 1613)	(1013)	( 1005)	( 832)
	P= .000	P= .000	P= .667	P= .065	P= .092	P= .278	P= .111	P= .283	P= .281
KNEED	.0263	-6.0021	-6.0019	.0170	.8564	-0.0690	-0.0485	.0893	-Ø.0862
	(1126)	(1128)	(1112)	(1117)	(1139)	(1014)	(1014)	(1006)	( 833)
	P= .189	P= .472	P= .474	P= .285	P= .830	P= .014	P= .061	P= .602	P= .008
BITROD	.0702	.1744	-6.6864	-0.1851	.1127	-6.8692	-6.1400	.0151	.0059
	(1126)	( 1128)	(1112)	(1117)	(1189)	(1014)	(1014)	(1006)	( 833)
	P= .009	P= .000	P= .664	P= .000	P= .000	P=.014	P= .000	P= .316	P= .433
IILIACD	.1615	.2814	-0.8651	-0.1705	.1943	-0.1351	-0.2054	.8531	-6.0164
	(1124)	(1126)	(1110)	(1115)	(1107)	( 1012)	(1012)	(1024)	( 831)
	P= .000	P= .668	P= .015	P= .000	P= .000	P= .068	P= .000	P= .046	P= .318
	TIMESER	RANK	CARIGGAT	PRIMOS	UNITYPE	sirue	PUSHUP	TWOMILE	PTSCORE
	BITROD KNEED ANKLED CHSTD ELBOWD WRISTD VOZLMIN VOZMLKG HR	IILIACD BITROD KNEED ANKLED CHSTD ELBOWD WRISTD VO2LMIN VO2MLKG HR .1616 .0702 .0263 .1695 .1465 .09903 .1693 -0.2377 -0.3758 -0.4348 (1124) (1126) (1126) (1125) (1124) (1123) (1125) (751) (962) (960) P= .000 P= .009 P= .000 P= .000 P= .000 P= .000 P= .000	IILIACD BITROD KNEED CHSTD ELBOWD WRISTD VO2LMIN VO2MLKG HR  SER .1615 .0702 .0263 .1695 .1465 .09903 .1693 -6.2377 -6.3758 -6.4348  ( 1124) ( 1126) ( 1126) ( 1126) ( 1124) ( 1123) ( 1125) ( 751) ( 962) ( 969) P= .000	TILIACD BITROD KNEED	ILLIACD BITROD KNEED CHSTD CHSTD ELBOWD WRISTD VOLLMIN VOLLKG HR  ILLIACD BITROD KNEED0926316951693169316931693169316931693169316931693169316931693169316931693169316931693169316931693169316931693169316931693169316931693169316931693169316931762176212801762128012801280128012801280128012801280128012831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128312831283128	THILIACD BITROD NAMED	Tilling   Cilical Colling   Cilical Colling Colling Colling   Cilical Colling Collin	The column   The	THILAGO BITROD   NAMED   NAMED   CHSTD   ELBOND   WRISTD   VOZIMIN   VOZIM

1 1 3	CHARLBA	.0524 (1125) Pm .040	.0665 (1126) Pm .013	-6.8673 (1111) P≈ .464	-6.0085 (1116) P= .389	.0631 (1108) P≈ .018	.0020 (1013) P= .474	.0082 ( 1013) Pm .397	.0083 ( 1085) Px .397	
) 1 1 1	CHAPCBF	.4126 ( 1125) P= .000	.3232 ( 1126) P= .000	.6413 (1111) P= .084	.0599 (1116) P= .023	.1968 ( 1108) P= .008	-6.4294 (1013) P= .000	-8.4167 ( 1013) P= .000	.5123 ( 1005) Pm .000	-6.4131 ( 833) Pm .066
(S	NEG	-0.4129 ( 1125) P= .000	-6.3258 (1126) P= .888	-6.6482 (1111) P= .096	-6.8593 (1116) P= .824	-0.1989 ( 1108) P= .000	.4285 ( 1013) P× .000	.4155 ( 1013) P= .666	-6.5122 (1005) P=.000	.4128 ( 833) P= .666
TS (MALES)	RLV	.4925 ( 999) P= .666	.5474 ( 1000) P= .000	-8.8776 ( 985) P= .887	-6.6984 ( 996) P= .661	.3582 ( 984) P= .000	-6.2276 ( 893) P= .066	-6.2886 ( 893) P= .666	.1261 ( 885) Pm .666	-6.6697 ( 711) Pz .398
FICHEN	Ş	.1087 ( 1122) P= .000	.2334 ( 1123) Pm .866	-0.0571 ( 1108) P= .029	-6.6987 (1113) P= .666	.1150 ( 1105) P= .000	-0.0498 ( 1010) P= .657	-6.0175 (1011) P= .289	-6.0644 ( 1602) P= .444	.0320 ( 831) P= .179
COEF	TAGRADE	-6.3199 ( 751) P= .000	-6.1638 ( 753) P= .088	-6.1059 ( 751) P= .002	-6.0856 (752) P=.009	-6.6944 ( 741) P= .665	.3446 ( 701) P= .666	.3277 ( 703) P= .600	-6.5088 ( 896) P= .000	.4225 ( 708) P= .666
LATION	TAKSPEĞD	-6.2651 ( 751) P= .000	-6.1359 ( 753) P= .000	-Ø.1144 ( 751) P= .001	-6.1198 ( 752) P= .001	-0.1054 ( 741) P= .002	.2927 ( 701) P= .000	.3297 ( 703) P= .000	-6.4131 ( 696) P= .000	.3360 ( 708) P= .000
CORRE	VEV02	.1459 ( 751) P= .000	.8687 ( 753) P= .838	-0.6817 ( 751) P= .013	-0.0195 ( 752) P= .296	.Ø76Ø ( 741) P= .Ø19	-6.1862 ( 701) P= .000	-6.1851 ( 703) P= .600	.1773 ( 696) P= .666	-6.1864 ( 768) P= .066
PEARSON	VC02	- <b>6.44</b> 37 ( 751) P= .665	-6.2955 ( 753) P= .600	- <b>Ø.Ø</b> 937 ( 751) P= . <b>Ø</b> Ø5	-8.1882 ( 752) P= .866	-6.1723 ( 741) P= .666	.4833 ( 781) P= .866	.3986 ( 723) P≈ .668	-6.63 <i>87</i> ( \$96) P= .888	.4385 ( 708) P= .666
PE	œ	- <b>6.0</b> 577 (751) P= .057	-8.1644 ( 753) P= .662	-0.0431 ( 751) P= .119	-6.1628 ( 752) P= .662	-Ø.0278 (741) P=.225	-6,0051 (,701) P= .448	-6.9874 ( 783) P= .422	-8.1228 ( 696) P= .001	.0648 ( 708) P= .457
1 1 1 1	VE	-6.1053 (751) P= .002	- <b>6. 6</b> . <b>9</b> 138 (753) P= .353	-6.0858 ( 751) P= .010	-8.8938 (752) P= .885	.0140 ( 741) P= .351	.0367 ( 701) P= .209	.ø562 ( 703) P= .ø68	-6.1124 ( 696) P= .061	.0376 ( 708) P= .159
1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

1 1	† † † †	1 1 1	A & 0 & A	CORRE	LATION	C 0 E F	FICIEN	ITS (WALES)	(s	:	1 1 1 1
	UWMBF	SMNS	DWPCBFEX	SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING
TIMESER	.4070	.2631	.5689	.2618	.5825	.2666	.0175	-6.2024	-6.6659	-6.263Ø	.3292
	(1125)	(1125)	(1124)	( 1125)	( 1121)	( 1122)	( 1122)	(1122)	( 989)	( 863)	( 861)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .886	P= .279	P= .600	P= .619	P= .00Ø	Pm .866
RANK	.3159	.1856	.5092	.1846	.4978	.2004	-8.8633	-0.1286	.0595	-0.1151	.2211
	( 1128)	( 1127)	(1126)	( 1127)	( 1123)	( 1124)	(1124)	(1124)	( 991)	( 865)	( 863)
	P= .000	P= .000	?= .000	P= .000	P= .666	P= .000	P= .617	P= .000	P= .038	P= .000	P= .866
CARMGMT	.ø419	.8428	.0083	.0425	.0643	.0322	.Ø352	~@.@573	-6.8853	-0.0325	.0241
	(1111)	( 1111)	(1110)	(1111)	(1187)	( 1108)	(1108)	(1108)	( 978)	( 861)	( 849)
	P= .ø81	P= .077	P= .391	F= .078	P= .443	P= .142	P= .121	P= .028	P= .864	P= .172	Pm .242
PRIMOS	.0602	.0237	-0.0050	.0293	.0646	.0170	-8.6664	-6.6198	-0.0598	-6.0805	.6412
	(1118)	( 1116)	(1115)	(1116)	(1112)	(1113)	(1113)	(1113)	( 984)	(856)	( 854)
	P= .022	P= .214	P= .433	P= .164	P= ,439	P= .286	Pr495	P= .255	P= .056	P=.0003	P= .114
UNITYPE	.1984	.1029	.3121	.1066	,3891	.1098	-0.0552	-6.6562	.0183	-8.8912	.1482
	( 1108)	( 1108)	( 1107)	(1108)	( 1104)	(1105)	(1105)	(1105)	( 972)	( 852)	( 850)
	P= .000	P= .000	P= .000	P= .000	P= .666	P= .000	P= .033	P= .631	P= .285	P≖.884	P≖.000
SITUP	-0.4289	-0.3351	-6.4547	-6.3319	-6.4464	-6.3338	-6.0244	.1747	.2081	.3505	-0.3645
	(1013)	(1013)	( 1012)	(1013)	( 1009)	(1010)	(1010)	(1616)	( 897)	( 773)	( 771)
	P=.000	P= .000	P= .000	P= .000	P= .600	P=.000	P= .219	P= .006	Pm .000	P= .000	P= .006
PUSHUP	-0.4059	-0.3398	-6.5021	-0.3376	-6.4858	-6.3429	.0811	.1216	.165@	.3425	-6.3461
	(1013)	(1013)	(1012)	(1013)	( 1009)	(1616)	(1610)	( 1610)	( 896)	( 771)	( 769)
	P= .000	P= .000	P= .000	P= .000	P= .003	P= .666	P= .026	P= .666	P= .000	P= .000	P= .006
TWOMILE	.5049	.4286	.4763	.4232	.4722	.4112	.1487	-6.2987	-6.3366	-6.4387	.4461
	( 1005)	( 1005)	( 1064)	( 1005)	( 1601)	( 1602)	( 1662)	(1662)	( 889)	( 768)	( 766)
	P= .000	P= .000	P= .000	P= .000	P= .666	P= .006	P= .666	P= .666	P≃ .666	P≈ .666	Pz606
PTSCORE	-8.4119	-8.3668	-6.3882	-6.3624	-6.3751	-6.3554	-0.0815	.1828	.3629	.3953	-6.3792
	( 833)	( 833)	( 831)	( 833)	( 828)	( 829)	( 829)	( 829)	( 741)	( 614)	( 613)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .009	P= .600	Pm .000	Pm .666	Px .666

1 6 8 7	CENEDER	( 271) Px .	(125.7)	( 276) Pm :	( 271)	( 276) Pr	( 255) P= .	( .265)	( 254) Fr	( 256) Px :
1 1 1	<b>K</b> 3	( 271) P= .	( 271) Pm .	( 27%) Pm .	( 271) P= .	( 270) Pm .	( .255) Pm ,	( 255) P= .	( 254) Px .	( 256)
ES)	PTSCORE	-6.6522 ( 256) Pm .263	.1644 ( 256) Pa648	-8.8186 ( 255) P= .383	.0500 ( 258) Pm .213		.5371 ( 251) Pa . <b>596</b>	.5742 ( 251) P= .868	-6.6497 ( 252) Px .806	1.0000 ( 256) Px .006
T S (FEMALES)	THOMILE	.1350 ( 254) Pm .818	-8.8690 ( 254) P= .137	-6.8682 ( 253) P= .449	-6.6256 ( 254) P= .342	-6.6683 ( 253) P= .146	-6.4227 ( 252) P= .808	-6.3965 ( 252) P* .806	1.000% ( 254) Pz .009	.6.6497 ( 252) P≈ .066
FICHEN	PUSHUP	-6.1137 ( 255) P= .035	-8.8823 ( 255) P= .181	.8546 ( 254) P≖ .193	<b>6</b> .0291 ( 255) P= .322	-0.6526 ( 264) P= .202	.3918 ( 255) P= .666	1.6606 ( 255) P= .666	-6.3965 ( 262) P= .666	.5742 ( 251) Pm .806
C 0 E F	SITUP	-6.2476 ( 255) P= .000	-6.6166 ( 255) P= .437	-6.5296 ( 254) P= .323	- <b>6</b> . <b>6</b> 124 ( 255) P= ,422	.0780 ( 254) P= .108	1.8008 ( 255) P= .006	.3918 ( 255) P= .000	-6.4227 ( 262) Pm . 206	.5371 ( 251) P= .666
LATION	UNITYPE	.0141 ( 270) P= .489	-6.6374 ( 276) P= .276	-6.0248 ( 269) P= .342	.2138 ( 270) P= .060	1.6000 ( 276) P= .000	.6786 ( 254) P= .108	-6.6626 ( 254) P= .262	-8.0683 ( 253) P≖ .146	.6717 ( 255) P= .127
CORRE	PRIMOS	-6.6192 ( 271) P= .376	-6.0538 ( 271) P= .192	-6.1237 ( 270) P= .021	1.0000 ( 271) P= .000	.2138 ( 270) P= .600	-0.0124 ( 255) P= .422	-6.6291 ( 255) P= .322	-0.0256 ( 254) P= .342	.0500 ( 256) P= .213
ARSON	CARMGMT	-8.0208 ( 270) ?= .367	-6.0297 ( 270) P= .313	1.6668 ( 276) P= .666	-0.1237 ( 270) P= .021	-0.0248 ( 269) P= .342	-6.8298 ( 254) P= .323	.6546 ( 254) P= .193	-6.0082 ( 253) P= .449	- <b>0.6</b> 18 <b>6</b> ( 255) P= .383
H	RANK	.3476 ( 271) P= .698	1.0000 ( 271) P= .600	-0.0297 ( 270) P= .313	-6.0530 ( 271) P= .192	-6.6374 ( 270) P= .276	-6.0100 ( 255) P= .437	-0.0623 ( 255) P= .161	-6.0696 ( 254) P= .137	.1844 ( 256) P= .648
1 1 1	TIMESER	1.0000 ( 271) P= .000	.3476 ( 271) P= .000	-Ø.0208 ( 270) P= .367	-0.0192 ( 271) P= .376	.6141 ( 270) P= .409	-6.2470 ( 255) P= .000	-0.1137 ( 255) P= .035	.1350 ( 254) P= .016	-0.0522 ( 256) P= .203
1 1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

(PENALES) CONTROL	SF ABOSF THISF 'QVEESF	3 .1252 .6546 .8436 ) ( 271) ( 271) ( 271) 4 P= .826 P= .188 P= .238	3 .0486 -0.0513 .0160 ) ( 271) ( 271) ( 271) 1 P= .223 P= .200 P= .397	1 .6747 .0912 -6.6105 ) ( 278) ( 276) ( 279) 5 P= .110 Pa .667 P= .432	5 -6.6894 -6.1455 -6.6723 ( 271) ( 271) ( 271) 5 P= .671 P= .668 P= .118	3 -0.0122 -0.0213 -0.0750 ( 276) ( 279) ( 279) 1 P= ,421 P= ,364 P= ,104	7 -0.1748 -0.1624 -0.1993 ( 265) ( 265) ( 255) 1 P= .863 P= .667 P= .661	7 -0.2126 -0.2267 -0.0909 ( 255) ( 255) ( 255) 4 P= .0900 P= .074	2 .2719 .2570 .1361 ) ( 254) ( 254) ( 254) 1 P= .2666 P= .6666 P= .819	
	F SUPRASF	.0763 ( 271) P= .124	-0.0353 ( 271) P= .281	.0461 ( 270) P= .225	-0.1195 ( 271) P= .025	-0.6153 ( 276) P= .461	-0.1437 ( 255) P= .011	-6.1688 ( 255) P= .004	.1982 ( 254) P= .001	
	: WAISTSF	.0356 ( 271) P= .280	-Ø.6568 ( 271) P= .173	.0596 ( 270) P= .165	-0.1294 ( 271) P= .017	-0.0105 ( 270) P= .432	-0.1563 ( 255) P= .008	-0.1958 ( 255) P= .001	.2148 ( 254) P= .666	
	= MIDAXSF	.1505 ( 270) P= .007	.ø389 ( 270) P= .262	-0.0796 ( 269) P= .097	-Ø.0662 ( 270) P= .139	-6.0498 ( 269) P= .208	-0.1882 ( 254) P= .001	-0.1463 ( 254) P= .010	.2368 ( 253) P= .000	
	TRICEPSF	.0880 ( 271) P= .074	-0.0454 ( 271) P= .228	.0512 ( 270) P= .201	-0.1080 ( 271) P= .038	.0481 ( 270) P= .215	-6.2283 ( 255) P= .000	-6.2647 ( 255) P= .066	.3735 ( 254) P= .000	
C O K K F F F	SCAPSF	.1518 ( 271) P= .666	.0264 ( 271) P= .332	.0176 ( 270) P= .387	-6.0819 ( 271) P= .089	-0.0140 ( 270) P= .409	-0.2179 ( 255) P= .000	-0.2466 ( 255) P= .066	.3155 ( 254) P= .000	
ARSON	CHSTSF	.2058 ( 271) P= .600	.0795 ( 271) P= .096	-6.8853 ( 270) P= .081	-0.0056 ( 271) P= .463	-0.0195 ( 270) P= .375	-6.2474 ( 255) P= .000	-Ø.174Ø ( 255) P= .0Ø3	.2869 ( 254) P= .000	
1 1 1	CHINSF	.2211 ( 271) P= .666	.0180 ( 271) P= .384	-0.0096 ( 270) P= .438	.0403 ( 271) P= .254	-0.0392 ( 270) P= .261	-0.2531 ( 255) P= .000	-0.2259 ( 255) P= .000	.2525 ( 254) P= .000	
NOSEVELLE PEARSON	RACE	.1216 ( 271) P= .023	-0.1100 ( 271) P= .035	-0.6562 ( 270) P= .179	-0.0028 ( 271) P= .482	-0.0120 ( 270) P= .422	.0532 ( 255) P= .199	.1128 ( 255) P= .038	-0.0947 ( 254) P= .068	
1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	

1 1 1 1	FOREC	-6.0193 ( 271) Pu .376	.8059 ( 271) Pr .462	.1082 ( 270) Pa .038	-6.1465 ( 271) Pm .008	.0194 ( 270) P# .375	-0.0738 ( 265) Pm .126	-0.0686 ( 255) Fr. 175	.1014 ( 254) Pm .053	-6.8461 ( 256) Pm .232
1 1 1	BICEPC	.6748 ( 271) P= .116	-6.6358 ( 271) Pm .283	.0886 ( 270) P= .073	-0.1462 ( 271) P= .008	.0666 ( 270) P≖ .168	-6.1864 ( 255) Pu .662	-6.1568 ( 265) Pm .068	.2868 ( 254) Px .000	8.1388 ( 256) F≈ .013
'' (SE)	THIC	.8426 ( 271) Pm .242	.271) Pa .461	.6563 ( 270) P= .205	-6.8413 ( 271) P= .249	.1327 ( 276) Pm .015	-6.2378 ( 255) P= .274	-6.2638 ( 265) Pa .001	.2449 ( 254) Pm .000	-6.1326 ( 256) Pm .817
TS (FEWALES	HIPC	.1475 ( 270) P= .008	.0705 ( 270) P= .124	.8684 ( 269) P= .162	.0061 ( 270) P= .500	.8875 ( 269) P= .076	-6.1375 ( 254) P= .014	-6.2417 ( 254) P= .006	.2614 ( 253) P= .000	-0.1463 ( 255) P= .016
FICIEN	ABD2C	.2108 ( 270) P= .000	.0755 ( 270) P= .108	.0317 ( 269) P= .302	-0.1162 ( 270) P= .028	.0345 ( 269) P= .287	-0.2124 ( 254) P= .000	-0.2601 ( 254) P:: .000	.2608 ( 253) P= .001	-0.1852 ( 255) P= .001
C 0 E F	ABDIC	.1194 ( 270) P= .025	.0590 ( 270) P= .167	-6.6002 ( 269) P= .499	-8.1317 ( 270) P= .015	.8488 ( 269) P= .257	-6.1897 ( 254) P= .001	-8.2628 ( 254) P= .868	.2502 ( 253) P= .000	-6.1825 ( 255) P= .002
LATION	CHSTC	.1460 ( 270) P= .011	-0.0085 ( 270) P= .445	.0300 ( 269) P= .312	-6.1114 ( 270) P= .034	.0395 ( 269) P= .259	-8.2084 ( 254) P= .000	-8.1949 ( 254) P= .001	.2156 ( 253) P= .000	-6.1423 ( 255) P= .012
CORREL	SHOULC	.0318 ( 270) P= .302	.8892 ( 278) P= .448	.1035 ( 269) P= .045	-0.0527 ( 270) P= .194	.0753 ( 269) P= .109	-0.1138 ( 254) P= .035	-6.6889 ( 254) P= .679	.0673 ( 254) P= .143	-0.0520 ( 256) P= .203
ARSON	HEADC	-0.0090 ( 270) P= .441	.0734 ( 270) P= .115	.0551 ( 269) P= .184	-0.0944 ( 270) P= .061	.ø194 ( 269) P= .376	-0.1680 ( 254) P= .643	-0.1312 ( 254) P= .018	-0.1104 ( 253) P= .040	-ø.698ø ( 255) P= .069
1 1 H	BICEPSF	.1482 ( 271) P= .007	.ø368 ( 271) P= .273	.0494 ( 270) P= .209	-0.1098 ( 271) P= .036	-0.0666 ( 270) P= .138	-8.2484 ( 255) P= .000	-0.2549 ( 255) P= .000	.3923 ( 254) P= .000	-0.2511 ( 256) P= .000
! ! !	CALFSF	.0283 ( 271) P= .321	-6.6278 ( 271) P= .324	.0306 ( 270) P= .308	-0.1760 ( 271) P= .002	-0.0732 ( 270) P= .115	-0.1617 ( 255) P= .005	-0.2393 ( 255) P= .000	.3024 ( 254) P= .630	-6.2707 ( 256) P= .666
1 1 1 1 1		TIMESER	RAPAK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

	BIDELD	.0295 ( 271) P= .316	-0.1055 ( 271) P= .042	.ø862 ( 270) P= .ø79	-0.1456 . 271) P= .008	.0251 ( 270) P= .341	-0.0586 ( 255) P= .178	.0226 ( 255) P= .360	-6.6502 ( 254) P= .213	-6.6261 ( 258) P= .339
I I I	BIACD	-6.8070 ( 271) P= .455	-8.8797 ( 271) P= .895	.1273 ( 270) P= .018	-0.1330 ( 271) P= .014	.0008 ( 270) P= .498	.0107 ( 255) P= .433	.0448 ( 255) P= .238	-0.1239 ( 254) P= .024	.0591 ( 256) P= .173
LES)	, A.	.1014 ( 271) Pm .048	.0679 ( 271) P= .133	.0513 (270) P= .200	-0.0911 ( 271) P= .067	.0697 ( 270) P= .127	-8.1326 ( 255) P= .017	-6.2977 ( 255) P= .000	.2287 ( 254) P= .000	-0.1776 ( 258) P= .002
HEN (FEN	Ħ	.0154 ( 271) P= .400	.1455 ( 271) P= .008	-6.8234 ( 270) P= .351	.0067 ( 271) P= .457	.0378 ( 270) P= .268	.0777 ( 255) P= .108	-0.2353 ( 255) P= .000	-Ø.ØØ88 ( 254) P= .445	-0.0569 ( 256) P= .269
FICHEN	AGE	.5198 ( 271) P= .666	.4127 ( 271) P= .060	-8.8749 ( 278) P= .118	.0202 ( 271) P= .370	.0084 ( 270) P= .445	-0.3228 ( 255) P= .000	-0.2353 ( 255) P= .000	.2080 ( 254) P= .006	-0.0067 ( 256) P= .458
COEF	FLXBICC	.0593 ( 268) P= .167	-6.0416 ( 268) P= .249	.8941 ( 267) P= .863	-0.1383 ( 268) P= .012	.0946 ( 267) P= .063	-0.0770 ( 252) P= .112	-0.0875 ( 252) P= .083	.1664 ( 251) P= .004	-8.8863 ( 253) P= .468
CORRELATION	NECKC	.0453 ( 270) P= .229	.00886 ( 270) P= .448	.ø699 ( 269) P= .127	-6.0721 ( 270) P= .119	-0.0360 ( 269) P= .278	-0.1107 ( 254) P= .039	-0.0600 ( 254) P= .171	.ø371 ( 253) P= .278	-6.8619 ( 255) P= .162
	ANKLEC	-0.0346 ( 271) P= .285	-0.0680 ( 271) P= .132	. 6789 ( 270) P= . 698	-0.0316 ( 271) P= .303	.0097 ( 270) P= .437	-Ø.Ø356 ( 255) P= .286	-Ø.1152 ( 255) P= .Ø33	.0620 ( 254) P= .163	-0.0705 ( 256) P= .131
ARSOR	CALFC	.ø328 ( 271) P= .298	-Ø.0675 ( 271) P= .134	.1093 ( 270) P= .036	-0.0617 ( 271) P= .156	.0422 ( 270) P= .245	-0.1371 ( 255) P= .014	-Ø.1931 ( 255) P= .001	.2568 ( 254) P= .666	-0.1761 ( 256) P= .002
PEA	KNEEC	.Ø424 ( 271) P= .244	.1303 ( 271) P= .016	.0672 ( 270) P= .135	-Ø.Ø534 ( 271) P= .191	.ø647 ( 27¢) P= .145	-Ø.Ø853 ( 255) P≅.ø87	-0.2010 ( 255) P= .001	.1758 ( 254) P= .002	-6.1389 ( 256) P= .018
1 1 1 1 1 1	WRISTC	.Ø528 ( 271) P= .194	-0.0811 ( 271) P= .158	.0050 ( 270) P= .467	-0.0912 ( 271) P= .067	-0.0635 ( 270) P= .149	-Ø.ØØ98 ( 255) P= .438	.1017 ( 255) P= .053	-0.1718 ( 254) P= .003	.1ø81 ( 256) P= .042
1 1 1 1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

t 1 1	DYLIFT	-6.6966 ( 243) P= .868	.0148 ( 243) Pm .414	.0179 ( 242) Po .391	-0.6446 ( 243) P= .247	.0867 ( 242) P= .459	.6816 (' 228) P= .111	.1537 ( 228) Pm .018	-6.2238 ( 229) Pm . 666	.2137 ( 232) Pr861
1 1 1 1 1	¥	~6.1654 ( 238) P= .005	-6.14€3 ( 238) F= .015	.0839 ( 237) P= .899	-6.1673 ( 238) P= .006	-0.0770 ( 237) P= .119	.1823 ( 223) P= .003	.1861 ( 223) Pm .##6	-6.6991 ( 225) Pa .659	
ES)	VOZMLKG	-8.2245 ( 238) P= .000	-6.6324 ( 238) P= .369	-6.6169 ( 237) P= .398	.0744 ( 238) F= .127	-8.8222 ( 237) P= .367	.3853 ( 223) P= .006	.3733 ( 223) P= .#86	-8.6217 ( 225) P= .006	.4344 ( 227) Pm .806
T S (FEMALES	VO2LMIN	-6.8647 ( 237) P= .161	.0628 ( 237) P= .168	.6649 ( 236) P= .168	-0.6491 ( 237) P= .226	.8495 ( 238) P= .224	.2037 ( 222) P= . <b>93</b> 1	.0168 ( 222) P= .402	-6.3886 ( 224) F= .000	.1973 ( 227) P= . <b>60</b> 1
ICIEN:	WRISTD	.0536 ( 270) P= .190	.0192 ( 270) P= .377	.1418 ( 269) P= .010	-6.8346 ( 270) P= .060	-0.0259 ( 269) P= .336	-0.0475 ( 255) P= .225	- <b>6</b> .6521 ( 255) P= .264	- <b>6</b> .6421 ( 254) P= .262	.0208 ( 256) Pa .378
COEFF	ELBOWD	.0621 ( 271) P= .154	.0916 ( 271) P= .668	. ø389 ( 278) P= .307	-6.0368 ( 271) P= .273	.0582 ( 270) P= .170	. 0288 ( 255) P= .324	-6.0242 ( 255) P= .358	-6.6387 ( 254) P= .278	.0517 ( 256) P= .163
CORRELATION	снзто	-6.8674 ( 271) P= .452	-0.1967 ( 271) P= .001	.1129 ( 270) P= .032	-Ø.1838 ( 271) P= .001	-6.0633 ( 270) P= .479	-6.0121 ( 255) P= .424	.0559 ( 255) P= .187	-6.6851 ( 254) P= .688	-6.6619 ( 256) P= .488
	ANKLED	-6.6493 ( 271) P= .216	-6.0328 ( 271) P= .296	. Ø8Ø5 ( 27Ø) P= . Ø94	-0.0528 ( 271) P= .193	.0344 ( 270) P= .287	.1097 ( 255) P= .040	-0.0118 ( 255) P= .428	-6.1585 ( 254) P= .006	.8838 ( 256) P≃ .891
EARSON	KNEED	.0323 ( 271) P= .298	.1127 ( 271) P= .032	.0150 ( 270) P= .403	-0.1558 ( 271) P= .005	-8.1299 ( 270) P= .016	-8.6783 ( 255) P= .132	-0.1231 ( 265) P= .026	.1641 ( 254) P= .664	-6.8988 ( 256) P= .875
田 a. i	BITROD	.0932 ( 271) P= .063	-0.0674 ( 271) P= .135	.0994 ( 270) P= .052	-0.2034 ( 271) P= .000	.0056 ( 270) P= .464	-6.0192 ( 255) P= .380	-6.0408 ( 255) P= .258	-0.0257 ( 254) P= .342	-0.0131 ( 256) P= .417
1 1 1	IILIACD	.0628 ( 270) P= .152	-0.0362 ( 270) P= .277	.ø882 ( 269) P= .ø75	-0.1158 ( 270) P= .029	-0.0151 ( 269) P= .403	-0.0575 ( 254) P= .181	-6.0484 ( 254) P= .221	-6.0079 ( 253) P= .451	-6.0469 ( 265) P= .223
1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE
						u_15				

: :	UMM. BA	-6.8683 ( 268) Fa .188	6 2663 Fe . 152	, 26.57 Pa , 257	- 0.1278 ( 2063) Fe . 010	, 9276 ( 105) Pr 327	A 250	201 - 4d	7, 2633	100 P
1 1 1	CHAPCOF	2212 7. 268)	( 288) Fu .381	( 205) Pm . 473	1907 PA	( 205) Pa (004	1.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.00 × 2.	-6.3626 ( 258) Fa ( 398)	4226 2433 74 (959)	25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2
LES) "	NO CO	-6.2289 ( 266) Fa .066	( 288) ( 288) Pm 374	-6.0048 ( 205) Pa .463	( 256) 7 356)	-6.0815 - 285) Pa . 623	2539	2824 286) Pk (986)	10 Linux	3818 (1251) 8001
I T S (FEWALES)	RLV	( 260) Pm . 964	1673 ( 258) Pu ( 463	6.8174 ( 259) Fx .398	6.6186 ( 269) Pa 363	-6.8218 -7.369	10.0450 10.0450 10.0450	245) Pa : 059	- 2443 - 2443 - 2443	( 248) Po 673
FICIEN	S K	-6.6584 ( 265) Pa .267	( 265) Pa . 862	-0.6144 ( 264) Pn 468	( 785) P= 483	( 156.) Pa 255	000 A	2421 2421 24331	-0.1318 ( 248) Pe 619	0848 ( 250) Pa 154
ก ถ	TAGRADE	-6.8961 ( 237) Pz .083	, 6645 ( 237) P= .473	-0.0196 ( 230) Px 376	. 1873 ( 237) Pa . 058	P 2383	31.44 ( 212) Pz (1865	2174 ( 222) Pr (661	-6,5832 ( 224) Pn .666	3486 ( 227) Pm (066
LATION	THISPEED	-0.0815 ( 237) P= .196	. 6775 ( 237) F= .117	-0.8242 ( 236) P= .356	.0321 ( 237) Pm .311	-0.0567 ( 236) Pa .103	.1959 ( 222) Pw .602	.1732 ( 222) Pw .005	-0.4162 ( 224) Pm.608	.2535 ( 227) P= .000
CORRE	VEV02	-0.0091 ( 237) Pn .445	.0342 ( 237) P= .366	-6.0275 ( 236) P= .337	-6.0738 ( 237) P= 129	-0.0105 ( 236) P= .436	.0436 ( 222) P= .253	-0.6678 ( 222) P= .458	-0.0142 ( 224) Po .416	-6.0199 ( 227) Fm .383
ARSON	VC02	-6.1323 ( 237) P= .621	-0.6065 ( 237) P= .460	-0.0414 ( 236) P= .263	.0040 ( 237) P= .476	-8.6491 ( 236) P= .226	.4063 ( 222) P= .000	.3400 ( 222) P= .000	-0.6011 ( 224) P= .000	.4319 ( 227) P= .000
1 1 1	œ	.0884 ( 237) P= .154	-0.0078 ( 237) P= .452	-0.0625 ( 236) P= .169	-0.0800 ( 237) P= .110	-8.0554 ( 236) P= 198	.1763 ( 222) P= .004	.ø731 ( 222) P= .139	-0.1512 ( 224) P= .012	.1436 ( 227) P= .016
; ; ;	VE	-0.0675 ( 237) P≃ .150	.0751 ( 237) P= .125	.0416 ( 236) P= .263	-0.0913 ( 237) P= .080	.0407 ( 236) P= .267	.2116 ( 222) P= .001	.0018 ( 222) P= .489	-8.2746 ( 224) P= .000	.1530 ( 227) P= .011
; ; ; ;		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE

1 3 5 ± 1 1 1	KHATING	23.55 216. 22. 216.	, 2037 ( 216) PR . 478	( 215) Pu . 079	-8.8818 ( 218) Pn .216	( 216) Pm (291	-6.2459 ( 263) Pm .006	-8.1556 ( 263) Pm : 814	.3369 ( 263) Pz966	-8.1967 ( 296) PH .663	
2 1 1 2	AYSSR	( 218) Fr001	, 218) Pa , 387	-8.8664 ( 217) Fe . 185	( 218) Pn .324	.0.6366 ( 218) F= .298	. 2968 ( 285) Pm . 898	.1591 ( 205) Pm .011	-6.3229 ( 265) Pa . 606	,2055 ( 207) Px .801	
(ES)	AVANIA	-6.1555 ( 239) Px .008	,0031 ( 239) Pa .481	. #383 (	. 8963 ( 239) Pa . 889	-6.6163 ( 238) Pm .437	.2566 ( 223) P= .806	.1558 ( 223) Pm .818	-6.3589 ( 223) P≈ .686	.2722 ( 226) P= .666	
N T S (FEMALES)	ECTO	-8.6691 ( 271) P= .129	.8536 ( 271) P= .196	-6.0973 (278) P= .055	.1110 ( 271) Pz .034	-6.6553 ( 276) P= .189	.1612 ( 255) P= .065	.6635 ( 255) P= .156	-8.1772 ( 254) P= .002	.6736 ( 256) P= .122	
N II C II L	0534	.0392 ( 271) P= .266	-66882 ( 271) P= .074	. 6083 ( 270) P= .854	-6.1328 ( 271) P= .015	-6.6288 ( 276) P= .319	-0.1793 ( 255) P= .062	.0219 ( 255) P= .364	,1983 ( 254) P= . <b>96</b> 1	-6.0614 ( 256) P= .164	
0 0 M	00,0	.1176 ( 271) P= .627	-0.0231 ( 271) P= .352	.ø518 ( 270) P= .199	-0.1238 ( 271) P= .022	.0109 ( 270) P= .429	-0.2023 ( 255) P= .001	-0.2465 ( 255) P= .000	.3123 ( 254) P= .000	-6.2254 ( 256) P= .866	
LAHION	DWPCBF	.1463 ( 278) P= .888	.0098 ( 276) Pm .436	.ø741 ( 269) P= .113	-0.1298 ( 270) P= .016	.6020 ( 269) P= .487	-0.2180 ( 254) P= .000	-0.2631 ( 254) P= .000	.3114 ( 253) P= .000	-0.1966 ( 255) P= .001	
CORRE	SUMSA	.1262 ( 271) P= .019	-8.0110 ( 271) P= .429	.0481 ( 270) P= .215	-0.1252 ( 271) P= .020	-0.0141 ( 270) P= .409	-0.2258 ( 255) P= .000	-6.2621 ( 255) P= .000	.3469 ( 254) P= .000	-ø.246ø ( 256) P≕.øøø	
N 0 0 0 K U	DWPCBFEX	.1588 ( 271) P= .004	.0081 ( 271) P= .447	.0607 ( 270) P= .160	-0.1247 ( 271) P= .020	.0110 ( 270) P= .429	-0.2307 ( 255) P= .000	-0.2787 ( 255) P= .666	.3385 ( 254) P= .000	-6.2139 ( 256) P= .000	
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	SUMS	.1248 ( 271) P= .020	-6.0152 ( 271) P= .402	.0491 ( 270) P= .211	-8.1283 ( 271) P= .019	-0.0081 ( 270) P= .447	-0.2308 ( 255) P= .000	-0.2635 ( 255) P= .000	.3535 ( 254) P= .000	-ø.2539 ( 256) P≕.øøø	
1 1 1 1 1 1	UWABF	.1979 ( 286) P= .601	.ø346 ( 266) P= .287	.ø169 ( 265) P= .392	-0.0492 ( 266) P= .212	.ø836 ( 265) P= .ø87	-0.2553 ( 250) P= .000	-0.3745 ( 250) P= .000	.4024 ( 249) P= .000	-6.2987 ( 251) P= .000	
1 1 1 1		TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE	

1 1 1 1	1 1 1	PE	ARSON	CORRE	LATION	COEF	FICIEN	TS (MALE	: · (s	1 1	1 1 1
	TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE	¥	GENDER
Ж	( i126) P= .	( 1128) P= .	( i112) P= .	(i117) P= .	(i109) P= .	( iø14) P= .	( 1814) P= .	(1008) P= .	( 833) P= .	( i128) P= .	( i128) P= .
GENDER	( i126) P= .	( 1128) P= .	( i112) P= .	( i117) P= .	( i109) P= .	( iø14) P= .	( iø14) P= .	( iøø6) P≃ .	(	( i128) P= .	(i128) P= .
RACE	-0.1258 (1126) P= .000	-0.1925 (1128) P= .000	.0320 (1112) P= .143	.ø749 (1117) P= .ø86	-6.1288 ( 1109) P= .666	.1278 ( 1014) P= .000	.1582 ( 1014) P= .000	-8.0832 (1006) P= .004	.Ø519 ( 833) P≃ .Ø67	( i128) P= .	( i128) P≖ .
CHINSF	.4422 ( 1125) P= .000	.3889 (1127) P= .000	.Ø175 (1111) P= .28Ø	.0213 ( 1116) P= .239	.2377 ( 1108) P= .000	-8.4875 (1013) P=.888	-0.4022 (1013) P= .000	.3895 (1005) P= .000	-0.3335 (833) P= .000	( i127) P= .	( 1127) P= .
CHSTSF	.4384 (1125) P= .000	.3424 (1127) P= .000	.0655 (1111) P= .014	.0678 (1116) P= .012	.2739 ( 1108) P= .000	-0.4125 (1013) P=.000	-0.4087 (1013) P= .000	. 4519 (1005) P= .000	-6.3973 (833) P≃886	( i127) P= .	( i127) P= .
SCAPSF	.2878 (1125) P= .000	.1778 (1127) P= .000	.0673 (1111) P= .012	.0630 ( 1116) P= .018	.8991 ( 1108) P= .000	-6.3287 ( 1013) P= .000	-6.3109 (1013) P= .000	.4189 ( 1005) P= .000	-6.3484 ( 833) P= .000	( i127) P= .	( i127) P= .
TRICEPSF	.1397 (1125) P= .000	.0937 (1127) P= .001	-6.0028 (1111) P= .485	.0019 ( 1116) P= .475	.0442 (1108) P= .071	-0.2598 ( 1013) P= .000	-8.2777 (1013) P= .000	.3297 ( 1005) P= .000	-6.3188 (833) P≕.866	( i127) P= .	( i127) P= .
MIDAXSF	.3040 (1125) P= .000	.2354 ( 1127) P= .600	.0454 ( 1111) P= .065	.0120 ( 1116) P= .345	.1288 ( 1108) P= .000	-6.3279 (1013) P= .000	-6.3448 (1013) Pm000	.3975 (1885) Pm .000	-6.3434 (833) P=.096	( i127) P= .	( i127) P= .
WAISTSF	.2371 (1125) P= .000	.1798 ( 1127) P= .600	.0386 ( 1111 ) P= .099	-8.8832 (1116) P= .458	.0798 ( 1108) P= .004	-0.2923 (1613) P= .006	-0.2954 (1013) P= .000	.3757 ( 1005) P= .000	-0.3168 ( 833) P= .000	( i127) P= .	( i127) P= .
SUPRASF	.2390 ( 1126) P= .000	.1872 ( 1127) P= .000	.0348 (1111) P= .124	.0017 (1116) Pz477	.1128 ( 1108) P= .000	-6.2842 (1013) P=.000	-6.2974 (1013) P=.000	.3757 ( 1005) P= .000	-6.3152 ( 833) P= .866	( i127) P= .	( i127) P= .

t f t	KNEESF	( i127) P= .	( i127) P= .	.0646 (1127) P= .447	.2424 ( 1127) P= .000	.2896 ( 1127) P= .096	.3887 ( 1127) P= .000	.3374 ( 1127) P= .000	.3148 ( 1127) P= .606	.3614 ( 1127) P= .000	.3846 ( 1127) P= .006
1 1 1 1	THISF	(i126) P= ,	( i126) Pm .	-0.1502 (1126) P= .000	.4162 ( 1126) P= .060	.5265 (1126) P= .000	.5178 ( 1126) P= .600	.7315 ( 1126) P= .000	.5647 ( 1126) P= .000	.5887 ( 1128) P= .600	.6875 ( 1126) P= .666
(s	ABDSF	( i127) P= .	( 1127) P= .	-6.0852 (1127) P= .002	.6358 ( 1127) P= .000	.7884 ( 1127) P= .000	.7431 ( 1127) P= .006	.6114 ( 1127) P= .000	.8058 ( 1127) P= .000	.8407 ( 1127) P= .000	.8666 (1127) Pm .868
TS (MALE	SUPRASF	( i127) P= .	( 1127) P= .	-8.8696 (1127) P= .016	.5958 (1127) P= .000	.7138 ( 1127) P= .666	.7517 ( 1127) P= .000	.6520 ( 1127) P= .000	.8187 ( 1127) P= .600	.9431 ( 1127) P= .000	1,6000 (1127) P= .000
FICHEN	WAISTSF	(i127) P= .	( i127) P= .	-0.8559 (1127) P= .030	.6085 ( 1127) Pa .000	.7244 ( 1127) P= .000	.7662 ( 1127) F= .000	.6524 ( 1127) P= .000	.8523 ( 1127) P= .000	1.8888 (1127) P= .888	.9431 ( 1127) P= .000
COEF	MIDAXSF	( i127) P= .	( i127) P= .	-0.0647 (1127) P= .015	.6772 (1127) P= .600	.8167 (1127) P= .606	.8064 (1127) P= .000	.6496 (1127) P= .800	1.0000 (1127) P= .000	.8523 ( 1127) P= .000	.8187 ( 1127) P= .000
CORRELATION	TRICEPSF	( i127) P= .	( i127) P= .	-6.0968 ( 1127) P= .001	.4208 ( 1127) P= .600	.5396 (1127) P= .600	.5922 ( 1127) P= .000	1.0000 (1127) P= .000	.6496 ( 1127) P= .000	.6524 (1127) P= .000	.6520 (1127) P= .000
	SCAPSF	( i127) P= .	( i127) F= .	.0698 (1127) P= .010	.6038 ( 1127) P= .000	.7542 ( 1127) P= .000	1.0000 (1127) P= .000	.5922 ( 1127) P= .000	.8064 ( 1127) P= .000	.7662 ( 1127) P= .000	.7517 ( 1127) P= .000
ARSON	CHSTSF	( i127) P= .	( i127) P= .	-0.0989 (1127) P= .000	.7847 ( 1127) P= .000	1.6999 (1127) P= .698	.7542 ( 1127) P= .666	.5398 ( 1127) P= .666	.81 <i>07</i> ( 1127) P= .000	.7244 ( 1127) P= .666	.7138 ( 1127) P= .000
1 1 1	CHINSF	( 1127) P= .	( i127) P= .	-0.1653 (1127) P= .000	1.6000 (1127) P= .000	.7047 ( 1127) P= .000	.6038 ( 1127) P= .600	.4208 ( 1127) P= .000	.6772 ( 1127) P= .000	.6065 (1127) P= .600	.5958 ( 1127) P= .000
1 1 1 1	RACE	( 1128) P= .	( i128) P= .	1.0308 (1128) P= .000	-0.1653 (1127) P= .000	-6.0989 (1127) P= .000	.8698 (1127) P= .010	-0.0968 (1127) P= .001	-0.0647 (1127) P= .015	-0.0559 (1127) P= .030	-8.0696 (1127) P=.016
1 1 1		<del>/</del> -	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF
						11 :0					

1 1 1	FOREC	( i127) P= .	( i127) P= .	-6.0392 (1127) P= .094	.1568 ( 1126) P= .000	.2623 ( 1126) P= .000	.3488 ( 1126) P= .800	.2182 ( 1126) P= .600	.2952 ( 1126) P= .000	.2865 ( 1126) P= .000	.2676 ( 1126) P= .000
1 1 1 1	BICEPC	( i128) P= .	( i128) P= .	.6231 ( 1128) P= .219	.2751 ( 1127) P= .668	.4 <i>9</i> 73 ( 1127) P= .000	.5043 ( 1127) P= .600	.4182 ( 1127) P= .000	.4731 ( 1127) P= .000	.4486 ( 1127) P= .900	.4348 ( 1127) P= .000
(s	THIC	( i125) P= .	( 1126) P= .	-0.0097 (1125) P= .372	.2423 ( 1124) P= .000	.4078 ( 1124) P= .000	.4484 ( 1124) P= .000	.3724 ( 1124) P= .008	.3985 ( 1124) P= .888	.3938 ( 1124) P= .000	.3813 ( 1124) P= .696
TS (MALE	HIPC	( i127) P= .	( i127) P= .	-6.1273 ( 1127) P= .000	.4601 ( 1126) P= .000	.6263 ( 1126) P= .900	.6093 ( 1126) P= .000	.5543 ( 1126) P= .008	.8524 ( 1126) P= .000	.6394 ( 1126) P= .000	.6235 ( 1126) P= .000
FICIEN	ABD2C	( i128) P= .	( i128) P= .	-6.1419 ( 1128) P= .000	.6365 ( 1127) P= .000	.7928 ( 1127) P= .000	.7311 ( 1127) P= .660	.5421 ( 1127) P= .000	.7936 ( 1127) P= .000	.7577 ( 1127) P= .000	.7408 ( 1127) P= .000
COEF	ABD1C	( i127) P= .	( i127) P= .	-0.1231 ( 1127) P= .000	.6159 ( 1126) P= .000	.7677 ( 1126) P= .000	.7258 ( 1126) P= .000	.5191 ( 1126) P= .888	.7800 ( 1126) P= .000	.7366 ( 1126) P= .000	.7084 ( 1126) P= .000
LATION	CHSTC	( i126) P= .	( i126) P= .	-0.1803 (1126) P= .000	.6267 ( 1125) P= .000	.6427 ( 1125) P= .000	.5919 ( 1125) P= .000	.3894 ( 1125) P= .888	.6365 ( 1125) P= .000	.6741 ( 1125) P= .000	.5449 ( 1126) P= .000
C O R R E	SHOULC	( i127) P= .	( i127) P= .	-6.6436 (1127) P= .672	.3035 ( 1126) P= .000	.4423 ( 1126) P= .000	.4920 ( 1126) P= .000	.3184 ( 1126) P= .560	.4793 ( 1126) P= .000	.4759 ( 1126) P= .000	.4461 ( 1126) P= .600
ARSON	HEADC	( i127) P= .	( i127) P= .	-0.8920 (1127) P= .001	.2075 (1126) P= .000	.2523 ( 1126) P= .000	.2485 ( 1126) P= .000	.2075 (1126) P= .000	.2319 ( 1126) P= .000	.2390 ( 1126) P= .000	.2384 ( 1126) P= .000
1 1 1	BICEPSF	( i126) P= .	( i126) P= .	-0.0788 (1126) P= .004	.5560 (1128) P= .000	.8523 ( 1126) P= .600	.6594 ( 1126) P= .000	.6532 ( 1126) P= .000	.6771 ( 1126) P= .000	.6456 ( 1126) P= .000	.8155 ( 1128) P= .000
1 1	CALFSF	( i128) P= .	( i126) P= .	-0.1410 (1126) P= .000	.3387 ( 1126) P= .000	.4313 ( 1126) P= .000	.4409 ( 1126) P= .000	.8855 (1126) P= .000	.5103 ( 1126) P= .669	.5172 ( 1126) P= .988	.5136 ( 1126) P= .000
t t 1		È	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF

1 1 1	1 1 1 1 1	П П	X 0 0 X V	CORREL	NOH-Y	C 0 E F F	Z H H D H	T S (MALES	1	: ! !	1 1 1
	IILIACD	BITROD	KNEED	ANKILED	снѕто	ELBOWD	WRISTD	VOZLMIN	VOZMLKG	£	DYLIFT
숲	( i128)	( i128)	( i128)	( i127)	( i126)	( i125)	( i127)	( 753)	( .984)	( .962)	( 862)
	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= ;
GENDER			( i128) P= .	( i127) P= .	( i126) P= .	( i126) P= .	( i127) P= .	( 753) F= .		( 962) P= .	( 802) P= .
RACE	-ø.2728	-0.2359	-Ø.Ø353	-0.1615	-6.2407	-6.2147	-8.1724	-0.1358	-8.6241	.1279	-8.8549
	(1126)	(1128)	(1128)	( 1127)	(1126)	( 1125)	(1127)	( 753)	( 964)	( 962)	( 862)
	P= .øøø	P= .000	P= .118	P= .000	P= .000	P= .000	P= .000	P= .000	P= .227	Pr000	P= .668
CHINSF	.2469	.1672	.0974	.0349	.2809	.1138	.2111	-0.0302	-8.4688	-6.2492	-0.6854
	(1125)	( 1127)	(1127)	(1126)	( 1125)	( 1124)	( 1126)	( 753)	( 963)	( 961)	( 862)
	P= .000	P= .000	P= .001	P= .121	P= .000	P= .000	P= .068	P= .204	P= .000	P= .000	P= .668
CHSTSF	.2219	.1499	.2204	.ø187	.2806	.3848	.1687	.0551	-6.5408	-8.2312	-6.8699
	(1125)	( 1127)	( 1127)	(1126)	( 1125)	( 1124)	( 1120)	( 753)	( 963)	( 961)	( 882)
	P= .000	F= .000	P= .000	P= .265	P= .000	P= .602	P= .000	P= .068	P≕.000	Pm .000	P= .824
SCAPSF	.1220	.1139	.2391	.6009	.1984	.1012	.1831	.0606	-0.5651	-6.1461	-0.6167
	( 1125)	(1127)	(1127)	(1126)	( 1125)	( 1124)	( 1126)	( 753)	( 963)	( 961)	( 862)
	P= .600	P= .600	P= .000	P= .487	P= .000	P= .000	P= .000	P= .048	P= .000	P= .000	P= .381
TRICEPSF	.2542	.2846	.2560	.0505	.2548	.1416	.1844	.1038	-8.4252	-8.0276	.0127
	(1125)	(1127)	(1127)	( 1128)	( 1125)	( 1124)	( 1126)	( 753)	( 963)	( 961)	( 802)
	P= .000	P= .000	P= .600	P= .645	P= .000	P= .000	Pm000	P= .002	P= ,866	P= .196	P= .359
MIDAXSF	.3269	.2894	.2215	.0530	.3786	.1305	.2177	.0995	-0.6422	-0.1483	.0362
	(1125)	(1127)	(1127)	(1126)	( 1125)	( 1124)	( 1126)	(753)	( 963)	( 981)	( 802)
	P= .0000	P= .000	P= .000	P= .038	P= .000	P= .003	P= .000	P= .003	P= .066	P= .688	P= .153
WAISTSF	.2905	.2752	.2192	.0629	.3613	.1287	.2236	.1445	-6.5638	-6.1199	.0873
	(1125)	( 1127)	( 1127)	(1126)	( 1125)	( 1124)	( 1126)	( 753)	( 963)	( 981)	( 802)
	P= .000	P= .000	P= .000	P= .017	P= .000	P= .000	P= .003	P= .200	P≡.666	P= .006	P= .007
SUPRASF	.2833	.2581	.2020	.0195	.3380	.0967	.2105	.1250	-Ø.4883	-0.1159	.0775
	(1125)	(1127)	( 1127)	(1126)	(1125)	(1124)	(1126)	( 753)	( 963)	( 961)	( 802)
	P= .888	P= .000	P= .000	P= .257	P= .000	P= .001	P= .000	P= .000	P= .ØØØ	F= .060	P= .014

1 1 1	1 1 5	ш с. і	PEARSON	CORRE	LATION	COEFF	H C H E N	T S (MALES		1 1 1 1 1 1 1 1 1	1 1 2 1
	VE	œ	VC02	VEV62	TMSPEED	TMGRADE	VC VC	RLV	MOEN		CHARLEM
눞	( .753) P= .	( 753) P= .	( 753) P= .	( .753) P= .	( . 753) P= .	( 753) P= .	( 1123) P= .	( 1000) P= .		( i128) P= .	( 1126) P= .
GENDER		. 753) P= .	, 753) P= .		. 753) P= .	, 753) P= ,	( i123) P= .	( 1800) P= .			( i126) P= .
RACE	-0.1375	-ø.ø463	-6.8386	-6.6383	.03E3	-ø.ø163	-6.3574	-6.2688	.1344	-6.1336	-6.0984
	( 753)	( 753)	( 753)	(753)	( 753)	( 753)	( 1123)	( 1600)	( 1128)	(1126)	(1126)
	P= .000	P= .102	P= .261	P= .147	P= .167	P= .328	P= .666	P= .600	P= .600	P= .000	P= .000
CHINSF	.0036	-0.0349	-0.4543	.0465	-0.3158	-6.3316	.8887	.2882	-0.6537	.8555	.0824
	( 753)	( 753)	( 753)	( 753)	( 753)	( 753)	(1122)	( 999)	(1125)	(1125)	(1125)
	P= .462	P= .170	P= .666	P= .101	P= .000	P= .666	P= .601	P= .888	P= .000	P= .000	P= .003
CHSTSF	.ø758	-0.0794	-0.5466	.ø453	-0.3474	-6.4118	.0520	.1329	-6.7478	.7497	,1534
	( 753)	( 753)	( 753)	( 753)	( 753)	( 753)	(1122)	( 999)	(1125)	(1125)	( 1125)
	P= .ø19	P= .015	P= .000	P= .1Ø7	P= .000	P= .000	P= .041	P= .000	P= .000	P= .000	P= .000
SCAPSF	.ø553	-0.1042	-6.5402	.0057	-6.3322	-6.4129	-0.0955	- <b>6</b> .8257	-0.6858	.0881	.1933
	(753)	( 753)	( 753)	( 753)	( 753)	( 753)	(1122)	( 999)	(1125)	(1125)	( 1125)
	P= .ø65	P= .002	P= .000	P= .438	P= .000	P= .006	P= .001	P= .269	P= .000	Pm000	P= .000
TRICEPSF	.0853	-0.0495	-0.3881	-6.0290	-0.2650	-Ø.2999	.0027	-6.8287	-0.6222	.6227	1187
	( 753)	(753)	( 753)	( 753)	( 753)	( 753)	( 1122)	( 999)	(1125)	( 1125)	( ; 125)
	P= .037	P= .087	P= .000	P= .213	P= .000	P≕.ØØØ	P= .464	P= .257	P= .000	P= .000	P= .000
MIDAXSF	.ø696	-0.0645	-6.5198	-0.0107	-6.3234	-6.4115	.0242	.6453	-0.7642	.7658	.1896
	( 753)	( 753)	( 753)	( 753)	( 753)	( 753)	(1122)	( 999)	(1125)	(1125)	( 1125)
	P= .ø28	P= .038	P= .666	P= .385	P= .000	P= .000	P= .209	P= .076	P= .000	P= .000	P= .000
WAISTSF	.ø886	-0.0751	-6.4699	-6.6368	-6.2758	-₫.3878	.0197	.#194	-6.7321	.7327	.1922
	( 753)	( 753)	( 753)	(753)	(753)	( 753)	( 1122)	( 999)	(1125)	( 1125)	( 1125)
	P= .øø8	P= .020	P= .666	P= .156	P=.000	P= .868	P= .254	P= .276	P= .000	P≖ .666	P= .000
SUPRASF	.ø841	-0.0757	-6.4578	-6.6267	-6.274¢	-8.3746	.0254	.8238	-0.7291	.7288	.1600
	( 753)	(753)	( 753)	( 753)	( 753)	( 753)	( 1122)	( 999)	(1125)	( 1125)	(1125)
	P= .ø11	P= .019	P= .866	P= .286	P= .000	P= .000	P= .198	P= .226	P= .000	P= .000	P= .600

1 ; ; ; ;			DWPCRFFX	SUMSA	DWPCBF	ENDO I	MESO	ECTO	AVUNIR	AVSSR	KRATING
	( i128)	(1127)	( 1126)	( 1127)	( i123)	( i124)	( 1124)	( 1124)	( 991)	(3885)	(£983) (-, 863)
	P= . ( i128) P-	P= . ( 1127)	P= . ( i126) P= .	F= . ( i127) P= .	F= . ( i123) F= .	F= . (1124) P= .	r= . ( i124) P= .	(1124) (1124) P= .	( 991)	(	 (
	-0.1505	-6.0423	-6.1133	-ø.ø371	-0.1050	-8.8589	.1217	-0.0560	.0349	.0619	-6.1629
	(1126)	(1127)	(1126)	(1127)	(1123)	(1124)	( 1124)	(1124)	( 991)	( 865)	( 863)
	P= .000	P= .078	P= .000	P= .1ø7	P= .000	P= .828	P= .000	P= .030	P= .136	P= .034	P= .001
	.8714	.6374	.6903	.833Ø	.6832	.6228	.1586	-0.4327	-Ø.3989	-Ø.5Ø86	.5865
	(1125)	( 1127)	(1125)	(1127)	(1122)	(1123)	(1123)	(1123)	( 99Ø)	( 864)	( 862)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P≃.6ØØ	P= .ØØØ	P= .608
	.7921	.7785	.7758	.7778	.7716	.7510	.2784	-0.5403	-0.5394	-0.6556	.7334
	( 1125)	(1127)	(1125)	(1127)	(1122)	(1123)	( 1123)	(1123)	( 990)	( 864)	( 862)
	P= .686	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .600	P= .600	P= .000	F= .000
	.7433	.8865	.7774	.8853	.7779	.8582	.3848	-0.5918	-0.5527	-8.6211	.7181
	(1126)	(1127)	( 1125)	(1127)	(1122)	(1123)	( 1123)	(1123)	( 990)	( 864)	( 862)
	P= .000	P= .000	P= .000	P= .0000	P= .000	P= .888	P= .000	P= .000	P= .000	P= .000	P= .666
TRICEPSF	.6427	.7957	.6724	.7929	.6738	.7744	.2485	-6.4265	-6.4366	-0.4898	.5841
	( 1125)	(1127)	( 1125)	(1127)	(1122)	(1123)	(1123)	(1123)	( 999)	( 864)	( 862)
	P= .666	P= .000	P= .000	P= .000	P= .600	Pm000	P= .000	P= .000	P≕.666	P= .666	P= .000
MIDAXSF	.8137	.8734	.8080	.8703	.8079	.8525	.3172	-0.5892	-8.5837	-6.6825	.7776
	( 1125)	(1127)	(1125)	(1127)	(1122)	(1123)	(1123)	(1123)	( 990)	( 864)	( 862)
	P= .666	P= .000	P= .800	P= .866	P= .000	P= .000	P= .000	P= .000	P= .900	P= .666	P= .600
WAISTSF	.7753	.9194	.8189	.9152	.8205	.9123	.3043	-6.5842	-0.5485	-6.6636	.7621
	(1125)	(1127)	( 1125)	( 1127)	(1122)	( 1123)	( 1123)	(1123)	( 990)	( 864)	( 862)
	P= .000	P= .000	P= .960	P= .000	P= .000	P= .000	P= .066	P= .000	P= .090	P= .000	F= .966
SUPRASF	.7522	.9397	.8489	.9385	.8517	.9467	.2862	-6.5689	-6.5878	-6.6293	.7557
	( 1125)	(1127)	( 1125)	(1127)	(1122)	(1123)	(1123)	(1123)	( 990)	( 864)	( 862)
	P= .000	Pe. 666	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .666	P= .666	%= .606

1 1 1	1 1 1 1	134	A R S O R	CORREL	NOH LY:	C 0 E F	RICHEN	T S (FEWAL	ES)		1 1 1 2
	TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE	¥	CENDER
¥	. 271) P= .	( 271) P= .	( 270) P= .	( 271) P= .		( 255) P= .		( 254) P= .	P= .	( 271) P= .	( 271) P= .
GENDER	( 271) P= .	( 271) P= .	. 270) P= .	. 271) P= .	. 270) P= .	( 255) P= .	_	( 254) P= .	, 258) P= .	( 271; P= .	( 271) P= .
RACE	.1218 ( 271) P= .023	-0.1100 ( 271) P= .035	-0.0562 ( 270) P= .179	-0.0028 ( 271) P= .482	-0.0120 ( 270) P= .422	.0532 ( 255) P= .199	.1128 ( 255) P= .036	-6.3947 ( 254) P= .068	,8603 ( 256) P= .168	( 271) P= .	( 271) P= .
CHINSF	.2211 ( 271) P= .000	.ø18ø ( 271) P= .384	-0.0096 ( 270) P= .438	.8483 ( 271) P= .254	-0.0392 ( 270) P= .261	-0.2531 ( 255) P= .000	-8.2259 ( 255) P= .000	.2525 ( 254) P= .000	-0.2131 ( 256) P= .000	( 271) P= .	( 271) P= .
CHSTSF	.2098 ( 271) P= .000	.ø795 ( 271) P= .ø96	-0.0853 ( 270) P= .081	-0.0056 ( 271) P= .463	-0.0195 ( 270) P= .375	-0.2474 ( 255) P= .000	-0.1740 ( 255) P= .003	.2809 ( 254) P= .600	-0.1896 ( 256) P= .001	( 271) P= .	( 271) P= .
SCAPSF	.1518 ( 271) P= .006	.0264 ( 271) P= .332	.£176 ( 270) P= .387	-0.0519 ( 271) P= .089	-0.0146 ( 270) P= .409	-0.2179 ( 255) P= .000	-8.2460 ( 265) P= .000	.3155 ( 254) P= .800	-6.2602 ( 250) ?= .000	( 271) P= .	( 271) P= .
TRICEPSF	.0880 ( 271) P= .074	-Ø.Ø454 ( 271) P= .228	.0512 ( 270) P= .201	-0.1680 ( 271) P= .038	.0481 ( 270) P= .215	-0.2203 ( 255) P= .000	-0.2647 ( 255) P= .000	.3735 ( 254) P= .000	-6.2397 ( 256) P= .000	( 271)	?≃ .
MIDAXSF	.1505 ( 270) P= .007	.ø389 ( 270) P= .262	-6.0796 ( 269) P= .097	-6.0362 ( 270) P= .139	-6.0498 ( 269) P= .208	-0.1882 ( 254) P= .001	-0.1463 ( 254) P= .016	.2368 ( 253) P= .000	-0.1789 ( 255) P= .002	( 270) P= .	( 270) P= .
WAISTSF	.0356 ( 271) P= .280	-Ø.Ø568 ( 271) P= .176	.0596 ( 270) P= .165	-6.1294 ( 271) P= .017	-0.0105 ( 270) P= .432	-0.1563 ( 255) P= .006	-0.1958 ( 265) P≕.001	.2148 ( 254) P= .000	-0.1833 ( 256) P= .002	( 271) F= .	( 271) P= .
SUPRASF	.0763 ( 271) P= .124	-0.0353 ( 271) P= .281	.ø461 ( 270) P= .225	- <b>6.1195</b> ( 271) P= .025	-0.0153 ( 270) P= .401	-0.1437 ( 255) P= .011	~6.1688 ( 255) P= .004	.1982 ( 254) P= .001	-6.1568 ( 256) P= .666	( 271) P= .	( 271) P≖ .

1 1 1 1	1 1 1	1 1 0 1	ARSON	CORRE	LATION	C 0 E F I	FICHEN	TS (FEMAI		1 1 1 1	; ; ;
	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF	ABDSF	THISF	KNEESF
Н	( 271)	( 271)	( 271)	( 271)	( 271)	. 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .	P= .
GENDER	( 271) P= .	. 271) P= .	( 271) P= .	. 271) P= .	. 271) P= .	. 270) P= .	( 271) P= .	( 271)	( 271) P= .	. 271) P= .	( 271) P= :
RACE	1.8888	-0.1499	-0.0051	.ø783	-6.6384	.0262	-0.0114	-9.0037	-0.0681	-0.0856	.0629
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .888	P= .007	P= .467	P= .ø99	P= .264	P= .334	P= .426	P= .476	P= .132	P= .086	P= .151
CHINSF	-0.1499	1.0000	.4825	.5715	.5633	.5956	.6064	.5478	.5513	.4537	.2573
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .607	P= .000	P= .600	P= .000	P= .060	P= .000	P= .880	P= .000	P= .600	P= .000	P: .068
CHSTSF	-0.0051 ( 271) P= .467	.4825 ( 271) P= .000	1.0000 ( 271) P= .000		.4060 ( 271) P= .000	.6352 ( 270) P= .000	.3871 ( 271) P= .000	.3344 ( 271) P= .000	.3892 ( 271) P= .066	.2478 ( 271) P= .000	.1244 ( 271) P= .020
SCAPSF	.ø783	.5715	.4799	1.0000	.6061	.7326	.6829	.6258	.5843	.4676	.2831
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .ø99	P= .000	P= .868	P= .000	P= .000	P= .666	P= .000	P= .000	P= .000	P= .808	P= .888
TRICEPSF	-0.0384 ( 271) P= .264	.5833 ( 271) P= .000	.4060 ( 271) P= .000		1.0000 ( 271) P= .000	.6463 ( 270) P= .600	.6664 ( 271) P= .000	.5945 ( 271) P= .000	.6388 ( 271) P= .000	.7881 ( 271) P= .888	.3622 ( 271) P= .000
MIDAXSF	.0262	.6956	.6352	.7326	.6463	1.0000	.7201	.6385	.6118	.5185	.2268
	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)
	P= .334	P= .000	P= .000	P= .888	P= .800	P= .000					
WAISTSF	-6.6114	.6064	.3871	.6829	.6604	.7201	1.0000	.9268	.7763	.5867	.3288
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .426	P= .000	P= .000	P= .866	P= .000	P= .809	P= .000	P= .000	P= .606	P= .000	P= .000
SUPRASF	-8.8837	.5478	.3344	.6258	.5945	.6385	.9268	1.6688	.8343	.5866	.3809
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)
	P= .478	P= .000	P= .000	P= .000	P= .000	P= .666	P= .000	P= .668	P= .666	P= .668	P= .000

! ! !	FOREC	( 271) P= .	( 271) P= .	-6.6626 ( 271) P= .487	.2432 ( 271) P= .666	.2062 ( 271) P= .000	.3269 ( 271) P066	.3263 ( 271) P= .008	.2677 ( 278) P= .888	.2761 ( 271) P= .000	.2164 ( 271) P= .000
1 1 1	BICEPC	( 271) P= .	( 271) P= .	.8697 ( 271) P= .126	.4600 ( 271) P= .000	.3622 ( 271) P= .000	.5577 (271) P=,666	.7221 ( 271) P= .000	.5315 ( 270) P= .000	.5503 ( 271) P= .000	.4927 ( 271) P= .666
(6	THIC	( 271) P= .	( 271) P= .	.0045 ( 271) P= .471	.2567 ( 271) P= .000	.2892 ( 271) P= .000	.4269 ( 271) P= .668	.4884 ( 271) P= .000	.3858 ( 270) P= .800	.3179 ( 271) P= .606	.2824 ( 271) P= .000
S (FEMALES	HIPC	( 270) P= .	( 270) P= :	-ø.ø935 ( 270) P≃ .ø63	.4201 ( 270) P= .000	.3854 ( 270) P= .000	.558ø ( 270) P= .000	.6180 ( 279) P= .000	.5053 ( 269) P= .000	.4959 ( 270) P= .666	.4527 ( 270) P= .600
ICIENT	ABD2C	( 270) P= .	( 270) P= .	-0.0688 ( 270) P= .137	.5322 ( 270) P= .000	.4544 ( 270) P= .000	.6315 ( 270) P= .600	.5418 ( 270) P= .888	.5762 ( 269) P= .000	.5858 ( 270) P= .000	.5457 ( 270) P= .666
COEFF	ABD1C	( 27Ø) P= .	. 270) P= .	-0.0316 ( 270) P= .302	.4936 ( 270) P= .000	.4877 ( 270) P= .000	.5847 ( 270) P= .000	.4938 ( 270) P= .000	.5357 ( 269) P= .000	.4778 ( 270) P= .000	.4324 ( 270) P= .600
NOILY	CHSTC	. 270) P= .	. 278) P= .	-0.0874 ( 270) P= .076	.5369 ( 270) P= .000	.4497 ( 270) P= .000	.5299 ( 270) P= .000	.4930 ( 270) P= .666	.4255 ( 270) P= .000	.4562 ( 270) P= .000	.4160 ( 270) P= .000
ORREL	SHOULC	. 27ø) P= .	. 270) P= .	-8.0041 ( 270) P= .473	.3234 ( 270) P= .866	.2711 ( 270) P= .866	.4239 ( 270) P= .666	.3599 ( 270) P= .000	.3206 ( 269) P= .000	.3695 ( 270) P= .000	.3495 ( 270) P= .000
RSONC	HEADC	( 270) P= .	. 270) P= .	.1419 ( 270) P= .010	-Ø.1378 ( 27Ø) P= .Ø12	-0.0771 ( 270) P= .103	.ø182 ( 270) P= .383	-0.0284 ( 270) P= .321	-6.6497 ( 269) P= .208	-8.0781 ( 270) P= .100	-8.0817 ( 270) P= .090
PEARSON	BICEPSF	( 271) P= .	( 271) P= .	-0.1160 ( 271) P= .035	.6248 ( 271) P= .000	.4849 ( 271) P= .000	.5553 ( 271) P= .000	.6521 ( 271) P= .000	.6160 ( 270) P= .666	.6198 ( 271) P= .000	.5730 ( 271) P= .000
1 1 1 1	CALFSF	. 271) P= .	( 271) P= .	-0.1040 ( 271) P= .044	.4362 ( 271) P= .600	.2977 ( 271) P= .600	.5011 ( 271) P= .600	.6593 ( 271) P= .660	.5468 ( 276) P= .000	.6597 ( 271) P= .000	.5138 ( 271) ?= .000
1 1 1 1		Ή	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF
						11 27					

BIDELD	( 271) P= .	( 271) P= .	.ø331 ( 271) P= .294	.2955 ( 271) P= .000	.Ø454 ( 271) P= .228	.3554 ( 271) P= .666	.3853 ( 271) P= .666	.4818 ( 270) P= .000	.5174 ( 271) P= .000	.4638 ( 271) P= .000
BIACD	( 271) P= :	( 271) P= .	.0130 ( 271) P= .416	.ø7ø9 ( 271) P= .122	-8.1488 ( 271) P= .007	.1248 ( 271) P= .020	.1885 ( 271) P= .001	.1457 ( 270) P= .008	.3392 ( 271) P= .000	.3359 ( 271) P= .000
, t	( 271) P= .	(172) P= .	-6.6792 ( 271) P= .697	.4139 ( 271) P= .000	.3315 ( 271) P= .000	.5483 ( 271) P= .888	.5722 ( 271) P= .000	.4573 ( 270) P= .000	.4567 ( 271) P= .000	.4188 ( 271) P= .600
H	( 271) P= .	( 271) P= .	-0.1820 ( 271) P= .001	-8.6414 ( 271) P= .249	-0.0995 ( 271) P= .051	-8.0878 ( 271) P= .075	-0.6239 ( 271) P= .348	-0.1146 ( 270) P= .030	-6.8953 ( 271) P= .659	-8.8696 ( 271) P= .127
AGE	( 271) P= .	( 271) P= .	-0.0590 ( 271) P= .166	.1810 ( 271) P= .001	.2222 ( 271) P= .888	.1471 ( 271) P= .008	.0812 ( 271) P= .091	.0685 ( 270) P= .131	.0141 ( 271) P= .409	.øøs1 ( 271) P= .447
FLXBICC	( 268) P= .		.1275 ( 268) P= .018	.3984 ( 268) P= .000	.3247 ( 268) P= .000	.4921 ( 268) P= .000	.5942 ( 268) P≃ .000	.4719 ( 267) P= .000	.4338 ( 268) P= .000	.4321 ( 268) P= .000
NECKC	( 270) P= .	. 27ø) P= .	.0585 ( 270) P= .169	616		- 1	.1885 ( 270) P= .001	.2368 ( 269) P= .600	.2048 ( 270) P= .003	.1895 ( 270) P= .001
ANKLEC	( 271) P= .	. 271) P= .	-0.1535 ( 271) P= .006	.2633 ( 271) P= .000	.6331 ( 271) P= .294	.1838 ( 271) P= .001	.3273 ( 271) P= .666	.2021 ( 270) P= .000	.2728 ( 271) P= .000	.2523 ( 271) P= .668
CALFC	( 271) P= .		-Ø.0618 ( 271) P= .156	.3139 ( 271) P= .000	.2108 ( 271) P= .666	.3699 ( 271) P= .000	.5107 ( 271) P= .000	.3386 ( 270) P= .666	.3465 ( 271) P= .000	.2999 ( 271) P= .600
KNEEC	( 271) P= .	. ( .271) P= .	-Ø.0405 ( 271) P= .253	.2766 ( 271) P= .000	.1702 ( 271) P= .002	.3421 ( 271) P= .000	.4605 ( 271) P= .000	.3252 ( 270) P= .000	.3158 ( 271) P= .000	.2518 ( 271) P= .000
WRISTC	( 271) P= .	. ( .271) P= .	.ø331 ( 271) P= .294	.0109 ( 271) P= .429	-0.0549 ( 271) P= .184	-6.0138 ( 271) P= .410	.0233 ( 271) P= .351	-Ø.0207 ( 270) P= .368	.8278 ( 271) P= .328	.ø382 ( 271) P= .265
; ; ; ;	¥	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF

(FEMALES)

1 1 1	DYLIFT	( 243) P= .	( 243) P≖ .	-Ø.Ø368 ( 243) P≕ .284	.0356 ( 243) P= .291	-0.0209 ( 243) P= .373	.ø168 ( 243) P= .398	-0.0134 ( 243) P= .418	.8414 ( 242) P= .261	.0794 ( 243) P= .109	.8799 ( 243) P= .107
; ; ;	#	( 238) P= .	. 238) P= .	.6278 ( 238) P= .339	-Ø.1359 ( 238) P= .Ø18	-6.0847 ( 238) P= .097	-0.1045 ( 238) P= .054	-6.0215 ( 238) P= .371	-6.0345 ( 237) P= .298	-6.6497 ( 238) P= .223	6.6928 ( 238) P= .079
(S3)	VOZMLKG	( 238) P≂ :	( 238) P= .	-0.0612 ( 238) P= .174	-0.2648 ( 238) P= .000	-0.4088 ( 238) P= .000	-0.5183 ( 238) P= .000	-6.5862 ( 238) P= .866	-0.4161 ( 237) P= .000	-8.3267 ( 238) P= .008	-8.3822 ( 238) P= .666
T S (FEWALES)	VOZLMIN	( 237) P= .	( 237) P= .	-0.1589 ( 237) P= .007	.1784 ( 237) P= .003	-0.0254 ( 237) P= .349	.0822 ( 237) P= .104	.1219 ( 237) P= .031	.ø882 ( 236) P= .ø88	.1728 ( 237) P= .664	.1577 ( 237) P= .008
FICHEN	WRISTD	. 270) P= .	. 27ø) P= .	.0087 ( 270) P= .443	.ø699 ( 270) P= .126	-0.0012 ( 270) P= .492	.0625 ( 270) P= .153	.1227 ( 270) P= .622	.ø753 ( 269) P= .1ø9	.1459 ( 270) P= .008	.1563 ( 270) P= .005
COEF	ELBOWD	( 271) P= .	( 271) P= .	-6.0140 ( 271) P= .409	.0139 ( 271) P= .410	-0.0010 ( 271) P= .493	.0641 ( 271) P= .146	.1221 ( 271) P= .022	.ø738 ( 270) P= .114	.0772 ( 271) P= .102	.ø789 ( 271) P= .ø98
LATION	СНЅТО	( 271) P= .	( 271) P= .	-6.0025 ( 271) P= .484	.2176 ( 271) P= .000	-0.0390 ( 271) P= .261	.2462 ( 271) P= .000	.3227 ( 271) P= .000	.3234 ( 270) P= .000	.4908 ( 271) P= .000	.4491 ( 271) P= .000
CORRE	ANKLED	( 271) P= .	. 271) P= .	-Ø.0667 ( 271) P= .137	-0.0514 ( 271) P= .199	-0.1159 ( 271) P= .028	-0.0581 ( 271) P= .171	-0.0035 ( 271) P= .477	-0.0675 ( 270) P= .134	.0212 ( 271) P= .364	.ø162 ( 271) P= .434
A R S O N	KNEED	( 271) P= .	. 271) P= .	.0287 ( 271) P= .319	.2381 ( 271) P= .000	.1119 ( 271) P= .033	.3262 ( 271) P= .000	.4139 ( 271) P= .060	.3168 ( 270) P= .000	.2928 ( 271) P= .000	.2382 ( 271) P= .000
ш с.	BITROD	( 271) P= .	( 271) P= .	-0.0847 ( 271) P= .082	.2666 ( 271) P= .000	-0.0040 ( 271) P= .474	.3093 ( 271) P= .000	.3976 ( 271) P= .666	.3995 ( 270) P= .000	.5148 ( 271) P= .000	.4691 ( 271) P= .060
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IILIACD	( 270) P= .	. 278) P= .	-0.0941 ( 270) P= .061	.2752 ( 270) P= .000	-0.0100 ( 270) P= .435	.2594 ( 270) P= .000	.3324 ( 270) P= .866	.3729 ( 269) P= .666	.4999 ( 270) P= .666	.4399 ( 270) P= .000
1 1 1		눞	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF

, ! !	CWMLBM	( 266) P= :	. 268) P= .	-0.0518 ( 266) P= .200	.0431 ( 266) P= .242	.0101 ( 266) P= .435	.1205 ( 266) Pm .026	.1510 ( 266) P= .007	.0891 ( 285) P= .131	.0811 ( 266) P= .094	.0628 ( 265) P= .154
1 1 1 1	UWMPCBF	( 266) P= .	( 268) P= .	-6.8684 ( 266) P= .163	.5572 ( 266) P= .000	.4754 ( 266) P= .000	.6522 ( 268) P= .000	.6858 ( 266) P= .000	.5991 ( 265) P= .000	.5371 ( 266) P= .000	.5448 ( 266) P= .000
LES)	MOEN	. 268) P= .	. 266) P= .	.0606 ( 266) P= .162	-0.5536 ( 266) P= .000	-0.4728 ( 266) P= .000	-0.6485 ( 268) P= .660	-0.6838 ( 266) P= .000	-0.5957 ( 265) P= .000	-6.5836 ( 266) P= .000	-8.5411 ( 266) P= .006
TS (FEMA	RLV	( 260) P= .	( 268) P= .	-6.2367 ( 260) P= .000	-0.0190 ( 260) P= .380	-0.0883 ( 260) P= .078	-0.1251 ( 260) P= .022	-0.1394 ( 260) P= .012	-0.1902 ( 259) P= .001	-0.1974 ( 260) P= .001	-8.1993 ( 260) P= .861
N H O I L	λC	. 265) P= .	( . 265) P	-8.2717 ( 265) P= .000	.1427 ( 265) P= .010	-0.0038 ( 265) P= .476	-0.0606 ( 265) P= .163	-0.0266 ( 265) P= .333	-0.0798 ( 264) P= .099	-0.0509 ( 265) P= .204	-0.0777 ( 265) P= .164
C 0 EF	TMGRADE	( 237) P= .	( 237) P= .	.0008 ( 237) P= .495	-0.2129 ( 237) P= .000	-0.2405 ( 237) P= .000	-0.3862 ( 237) P= .000	-0.4208 ( 237) P= .000	-6.3141 ( 236) P= .000	-0.3027 ( 237) P= .006	-6.2787 ( 237) P= .000
LATION	TASPEED	( 237) P= .	( 237) P= .	-0.0140 ( 237) P= .415	-Ø.Ø842 ( 237) P:: .ø98	-0.1879 ( 237) P= .002	-6.2597 ( 237) P= .000	-6.2302 ( 237) P= .000	-0.2117 ( 236) P= .001	-6.1863 ( 237) P= .002	-8.2096 ( 237) P= .001
C O R R E	VEV02	( 237) P= .	( 237) P= .	-0.0170 ( 237) P= .397	-0.1756 ( 237) P= .003	.ø157 ( 237) P= .405	-0.1045 ( 237) P= .054	-0.1203 ( 237) P= .032	-0.1158 ( 236) P= .038	-0.1609 ( 237) P= .007	-6.1945 ( 237) P= .001
PEARSON	VC02	. 237) P= .	. 237) P= .	-0.0509 ( 237) P= .218	-Ø.1888 ( 237) P= .002	-Ø.31Ø6 ( 237) P= .00Ø	-Ø.4228 ( 237) P= .øøø	-Ø.4182 ( 237) P= .000	-0.3221 ( 236) P= .000	-6.2780 ( 237) P= .000	-0.2837 ( 237) P= .000
田 山 1 1	œ	( 237) P= .	P= .	-0.0105 ( 237) P= .436	.0403 ( 237) P= .269	.0300 ( 237) P= .323	.ø146 ( 237) P= .412	.0247 ( 237) P= .352	.Ø438 ( 236) P= .252	-0.0132 ( 237) P= .420	-0.0584 ( 237) P= .194
t t t	VE	( 237) P= .	. 237) P= .	-0.1259 ( 237) P= .026	.0084 ( 237) P= .461	-0.0068 ( 237) P= .459	-0.0042 ( 237) P= .474	.Ø148 ( 237) P= .411	-0.0158 ( 236) P≕ .405	.0242 ( 237) P= .358	-0.0130 ( 237) P= .421
1 1 1		¥	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF

1 1 1 1	KRATING	( 216) P= .	( 216) P= .	-0.0351 ( 216) P= .304	.5099 ( 216) P= .000	,4584 ( 216) P= .000	.6388 ( 216) P= .000	.6488 ( 216) P= .888	.6226 ( 215) P= .000	.5891 ( 218) ?= .000	.5200 ( 216) P= .000
1 1 1	AVSSR	( 218) P= .	( 218) P= .	.0250 ( 218) P= .357	-0.4657 ( 218) P= .000	-0.4581 ( 218) P= .000	-0.5618 ( 218) P= .000	-0.5720 ( 218) P= .000	-6.5508 ( 217) P≃ .000	-@.5811 ( 218) P= .000	-0.5373 ( 218) P= .060
(san	AVUNIR	. 239) P= .	( 239) P= .	-Ø.ø386 ( 239) P= .278	-0.2974 ( 239) P= .000	-0.3367 ( 239) P= .000	-6.4777 ( 239) P= .888	-0.4581 ( 239) P= .000	-0.4623 ( 238) P= .000	-6.4237 ( 239) P= .000	-6.3932 ( 239) P≡ .866
T S (FEMA	ECT0	( 271) P= .	. 271) P= .	-0.1025 ( 271) P= .046	-8.4148 ( 271) P= .000	-8.3649 ( 271) P= .000	-0.6932 ( 271) P= .000	-0.5612 ( 271) P= .000	-0.5192 ( 270) P= .000	-0.5128 ( 271) P= .000	-6.4485 ( 271) P= .666
FICIEN	MESO	( 271) P= .	. 271) P= .	.1498 ( 271) P= .007	.3126 ( 271) P= .000	.2635 ( 271) P= .000	.4416 ( 271) P= .000	.5124 ( 271) P= .000	.4212 ( 270) P= .000	.4011 ( 271) P= .000	.5287 ( 271) Pm .866
COEF	ENDO	( 271) P= .	( 271) P= .	.0086 ( 271) P= .444	.6404 ( 271) P= .660	.4681 ( 271) P= .000	.8147 ( 271) P= .000	.8231 ( 271) P= .000	.7543 ( 270) P= .800	.8824 ( 271) P= .000	.8891 ( 271) P= .600
LATION	DWPCBF	( 270) P= .	. 27ø) P= .	-0.0318 ( 270) P= .302	.6643 ( 270) P= .000	.4750 ( 270) P= .000	.7901 ( 270) P= .600	.8133 ( 270) P= .000	.7423 ( 269) P= .000	.8546 ( 270) P= .888	.8546 ( 270) P= .000
CORRE	SUMSA	( 271) P= .	. 271) P= .	-0.0100 ( 271) P= .435	.6681 ( 271) P= .000	.4834 ( 271) P= .666	.8217 ( 271) P= .888	.8353 ( 271) P= .600	.778ø ( 27ø) P= .800	.896¢ ( 271) P= .000	.8854 ( 271) P= .000
A 80 0 X	DWPCBFEX	( 271) P= .	( 271) P= .	-0.0368 ( 271) P= .273	.6760 ( 271) P= .000	.4846 ( 271) P= .000	.7954 ( 271) P= .000	.8234 ( 271) P= .000	.7503 ( 270) P= .600	.8596 ( 271) P= .600	.8581 ( 271) P= .600
- I	SUMS	( 271) P= .	. ( .271) P= .	-6.6122 ( 271) P= .421	.6747 ( 271) P= .000	.4846 ( 271) P= .000	.8239 ( 271) P= .000	.8405 ( 271) P= .000	.7788 ( 270) P= .000	.8972 ( 271) P= .606	.8854 ( 271) P= .000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UWWBF	( 266) P= .	( . 266) P= .	-0.0737 ( 266) P= .115	.5681 ( 266) P= .000	.4800 ( 266) P= .000	.6909 ( 266) P= .000	.7244 ( 266) P= .000	.6199 ( 265) P= .000	.8037 ( 268) P= .000	.5580 ( 286) P≃ .000
1 1 1 1		Η	GENDER	RACE	CHINSF	CHSTSF	SCAPSF	TRICEPSF	MIDAXSF	WAISTSF	SUPRASF

1 1 1	GENDER	( i127) P= .	(1126) P= .	( i127) P= .	( i126) P= .	( i126) P= .	( i127) P= .	( i127) P= .	( i126) P= .	( i127) P= .	( i128) P= .
1 1 1	¥	( i127) P= .	( i126) P= .	( 1127) P= .	( i126) P= .	( i126) P= .	( i127) P= .	( i127) P= .	( i128) P= .	( i127) P= .	( i128) P= .
1 1	PTSCORE	-6.3696 ( 833) P= .000	-0.2976 ( 832) P= .000	-Ø.Ø84Ø ( 833) P≡.ØØ8	-0.2353 ( 832) P= .000	-0.3101 ( 832) P= .000	-0.0982 (832) P= .002	-0.1115 ( 832) P= .001	-0.2438 ( 831) P= .000	-Ø.3377 ( 833) P= .000	-6.3639 ( 833) P= .666
T S (MALES	TWOMILE	.4544 (1005) P= .000	.3271 (1005) P= .000	.1319 ( 1005) P= .000	.2582 ( 1004) P= .000	.387 <i>Ø</i> (1804) P= .000	.1369 ( 1805) P= .000	.2007 ( 1005) P= .000	.3239 ( 1004) P= .000	.4350 ( 1005) P= .000	.4515 ( 1006) P= .000
ICIEN	PUSHUP	-0.3789 (1013) P= .000	-0.2958 (1013) Pm.0000	-0.0157 (1013) P= .308	-0.1646 ( 1012) P= .000	-0.3127 (1012) P=.000	-6.1343 (1013) P= .000	-0.0338 (1013) P= .141	-0.2113 (1012) P= .000	-0.3395 (1013) P= .000	-8.3666 (1014) P= .000
COEFF	SITUP	-8.3764 (1013) P=.000	-8.2316 (1013) P= .000	-0.0335 (1013) P= .144	-0.1800 (1012) P= .000	-0.3186 (1012) P=.000	-0.1921 (1013) P=.000	-6.1293 (1013) P= .000	-0.2921 (1012) P=.000	-6.3776 (1013) P= .000	-0.3877 (1014) P= .000
NO.ILY.	UNITYPE	.1966 (1108) P= .000	.0767 (11107) P= .005	-6.8446 (1188) P= .869	-6.8174 (1107) P= .282	.8616 (1107) P= .828	.1810 (1108) P= .000	.0504 (1108) P= .047	.1440 ( 1107) P= .000	.1821 ( 1108) P= .000	.2173 (1109) P= .000
CORREL	PRIMOS	.0206 (1116) P= .246	- <b>6.0</b> 654 ( 1115) P= .428	-6.0118 (1116) P= .347	-6.0014 (1115) P= .482	.0242 ( 1115) P= .209	.0389 (1116) P= .151	.ø288 ( 1116) P= .168	.0317 (1115) P= .146	.0534 (1118) P= .037	.0628 (1117) P= .039
ARSON	CARMGMT	.0446 (1111) P= .069	-6.0013 (1110) P= .482	.0269 (1111) P= .410	-0.0095 (1110) P= .375	.£486 (1110) P= .£61	.0084 (1111) P= .390	.0280 (1111) P= .175	.0486 (1110) P= .692	.8528 (1111) P= .040	.0597 (1112) P= .023
PEA	RANK	.3131 (1127) P= .000	.1603 (1126) P= .000	-0.0734 (1127) P= .007	-0.0136 (1126) P= .325	.1500 (1126) P= .000	.2149 ( 1127) P= .666	.0808 (1127) P= .003	.2413 ( 1126) P= .000	.2963 (1127) P= .000	.319¢ (1128) P= .668
1 1	TIMESER	.3909 (1125) P= .000	.1705 ( 1124) P= .000	-0.0478 (1125) P= .055	-Ø.0088 (1124) P= .334	.2169 ( 1124) P= .000	.2224 ( 1125) P= .000	.1197 ( 1125) P= .000	.3223 (1124) P= .000	.4015 ( 1125) P= .000	.4116 ( 1128) P= .000
1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	HEADC	SHOULC	CHSTC	ABD1C	ABD2C

1 1 1	KNEESF	.3686 ( 1127) P= .696	.3310 (1126) P= .660	1.8668 (1127) Pz666	.3507 (1126) P= .006	.4075 (1126) Pm .000	.1209 (1126) F= .000	.2921 (1126) P= .000	.2819 ( 1125) Pm .866	.3123 ( 1126) P= .000	.3692 ( 1127) P= .000
1 1 1 1	THISF	.5878 ( 1126) P= .888	1.0000 (1126) Pm .000	.3316 ( 1126) P= .060	.7221 ( 1125) P= .868	.6854 ( 1125) P= .000	.1618 ( 1125) P= .000	.2566 ( 1125) P= .000	.3736 ( 1124) P= .800	.4856 ( 1125) F= .000	.5236 ( 1126) P= .000
(6	ABOSF	1.0000 (1127) P= .000	.5876 (1126) P= .000	.36%6 ( 1127) P= .888	.4968 ( 1126) P= .808	.6105 ( 1126) P= .000	.2676 ( 1126) P= .868	.4826 ( 1126) P= .000	.6357 ( 1125) P= .888	.7749 (1126) Pm .000	.8649 ( 1127) Pm .066
T S (WALES)	SUPRASF	.8606 (1127) P= .606	.5875 ( 1126) P= .000	.3848 ( 1127) P= .600	.5136 ( 1126) P= .000	.615r ( 1726) P= .000	.2364 (1126) P= .000	.4461 ( 1126) P= .000	.5449 (1125) P= .000	.7884 ( 1126) P= .866	.7466 ( 1127) P= .666
HCHEN	WAISTSF	.84 <i>67</i> ( 1127) P= . <i>666</i>	.5887 ( 1126) P= .000	.3614 ( 1127) P= .608	.5172 ( 1126) P= .000	.6459 (1128) P= .000	.2390 (1126) P= .000	.4759 ( 1126) P= .000	.6741 ( 1125) P= .600	.7366 (1126) P= .000	.7577 ( 1127) P= .000
COEF	MIDAXSF	.8058 (1127) P= .000	.5647 ( 1126) P= .000	.3148 ( 1127) P= .000	.5103 (1126) P= .000	.6771 (1126) P= .000	.2319 (1126) P= .000	.4793 ( 1126) P= .800	.6365 ( 1125) P= .000	.7806 (1126) P= .608	.7936 ( 1127) P= .000
NOHLA	TRICEPSF	.6114 ( 1127) P= .000	.7315 ( 1126) P= .000	.3374 (1127) P= .000	.8855 (1126) Pm000	.8532 (1126) P= .000	.2075 (1126) P= .000	.3184 (1126) P= .000	.3894 (1125) P= .866	.5191 (1126) P= .000	.6421 ( 1127) P= .500
CORRE	SCAPSF	.7431 ( 1127) P= .000	.5176 ( 1126) P= .000	.3987 (1127) P= .000	.4409 (1126) P≃.000	.6594 (1126) P= .000	.2485 (1128) P= .000	.4920 (1128) P= .000	.5919 ( 1125) P= .000	.7256 (1126) P= .600	.7311 ( 1127) P= .000
ARSON	CHSTSF	.7884 (1127) P= .000	,5255 (1126) P= .000	.2896 (1127) P000	.4313 ( 1126) P= .900	.6523 (1125) P= .000	.2523 (1126) P= .000	.4423 (1128) P= .966	.6427 ( 1125) P= .666	.7677 (1126) P= .000	.7928 ( 1127) P= .666
田 d. 1	CHINSF	.6358 (1127) P= .000	.4162 (1128) P= .030	.2424 (1127) P= .888	.3367 (1126) P= .000	.556ø (1126) P≃.000	.2075 (1126) P= .000	.3035 (1126) P= .000	.5267 (1125) P= .000	.6159 ( 1126) P= .000	.6365 ( 1127) P= .000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RACE	-6.8852 (1127) P= .002	-0.1502 (1126) P= .000	.0040 (1127) = .447	-8.1418 (1126) P= .608	-Ø.Ø788 ( 1126) P= .Ø64	-0.8926 (1127) P= .001	-6.6438 (1127) P= .672	-6.1803 1126) ⊦≃ .000	-6.1231 (1127) P= .000	-6.1419 (1128) P= .000
1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нелос	SHOULC	CHSTC	ABD1C	ABD2C

1 1 1	FOREC	.2846 ( 1126) Pm .866	.15#6 ( 1125) Pm .000	.2427 ( 1126) P= .000	.2145 ( 1125) P= .000	.2778 (1125) P= .000	.3441 ( 1126) P× .000	.6463 ( 1126) P≖ .666	.5486 (1125) P= .866	.5161 ( 1126) P= .000	.4879 ( 1127) P= .000
 	BICEPC	.4668 ( 1127) Pm .000	.3473 ( 1126) P= .000	.2963 ( 1127) P= .666	.3587 (1126) P= .000	.4336 (1126) Pm .666	.3441 ( 1127) Pm .600	.7076 (1127) Pa600	.6362 ( 1126) Pm .866	.6347 ( 1127) Pm .806	.5111 ( 1128) P= ,600
6	THIC	.4548 ( 1124) P= .900	.4833 ( 1123) P= .568	.2982 ( 1124) P= .000	.3831 ( 1123) P= .000	.3898 ( 1123) P= .000	.3467 ( 1124) P= .000	.6248 ( 1124) P= .666	.6223 ( 1123) P= .606	.8639 ( 1124) P= .866	.5975 ( 1125) P= .000
T S (MALES	HIPC	.6533 ( 1128) P= .866	.6198 ( 1125) P= .000	.3584 ( 1126) P= .000	.5063 ( 1125) P= .000	.5879 ( 1125) P= .000	.4162 ( 1126) P= .660	.7077 ( 1126) Px .000	.7629 ( 1125) P= .000	.8179 ( 1126) P= .000	.8322 ( 1127) P= .000
<b>2</b> 出 い 日 ::	AB02C	.8649 ( 1127) P= .666	.5236 ( 1128) P= .000	.3092 ( 1127) P= .600	.4616 ( 1126) P= .866	.6235 ( 1126) P= .808	.3915 ( 1127) P= .666	.6749 ( 1127) P= .666	.8300 (1126) P= .000	.9614 ( 1127) P= .000	1.0000 (1128) Pm .000
C 0 F F I	ABD1C	.7749 ( 1126) P= .666	.4858 ( 1125) P= .000	.3123 ( 1126) P= .600	.4413 ( 1125) P= .868	,6084 ( 1125) P= ,000	.3953 (1126) P= .000	.7066 (1128) P= .000	.8579 (1126) P= .866	1.0000 (1127) P= .000	.9614 ( 1127) P= .866
NOTLY	CHSTC	.6357 ( 1125) P= .666	.3736 ( 1124) P= .606	.2819 ( 1125) P= .000	.3578 ( 1124) P= .000	.5016 ( 1124) P= .000	.3939 ( 1125) P= .000	.7538 ( 1125) P= .600	1.8868 (1126) P= .688	.8579 ( 1126) P= .000	.8366 (1126) P= .666
C O R R E L	SHOULC	.4826 ( 1126) P= .000	.2600 ( 1125) P= .000	.2921 ( 1126) P= .600	.2898 ( 1125) P= .800	.3963 ( 1125) P= .000	.4165 ( 1126) P= .006	1.0000 (1127) P= .000	.7538 ( 1125) P= .000	.7868 ( 1128) P= .866	.6749 (1127) P= .866
ARSON	HEADC	.2676 (1126) P= .000	.161 <i>6</i> ( 1125) 9= .666	.1209 ( 1126) P= .000	.1851 ( 1125) P= .000	.1928 ( 1125) P= .000	1.0006 (1127) P= .000	.4165 (1126) P= .600	.3939 ( 1125) F= .666	.3953 ( 1126) P= .000	.3915 (1127) P= .000
W &	BICEPSF	.6105 (1126) P= .000	.6054 (1125) P= .000	.4075 (1128) P= .068	.5513 (1125) P= .000	1.0000 (1126) P= .000	.1928 (1125) P= .000	.3983 (1125) P= .006	.5016 (1124) P= .000	.6084 (1125) P= .000	.6235 (1126) P= .000
1 1 1 1 1	CALFSF	.4968 ( 1128) P= .000	.7221 ( 1125) P= .000	.35Ø7 (1126) Pm6ØØ	1.6000 (1126) P= .000	.5513 (1125) P= .000	.1851 (1125) P= .888	.2896 (1125) P= .000	.3576 (1124) P= .000	.4413 ( 1125) P= .000	.4618 ( 1126) P= .000
1 1 1 1 1		ABOSF	THISF	KNEESF	CALFSF	BICEPSF	HEADC	SHOULC	снѕтс	AB01C	ABD2C

1 1 1	BIDELD	.2523 ( 1127) Pm .808	.1476 ( 1126) Pm .000	.1081 ( 1127) Pm .000	.2063 ( 1126) Pm .006	.2064 ( 1126) F = .066	.2844 ( 1127) Pm .886	.5939 ( 1127) Pm .888	.4266 ( 1126) P* .006	.3866 ( 1127) Pm .000	.3827 ( 1128) P= .666
t 1 1 1	BIACD	.0522 (1127) P= .040	-5.9613 (1126) P= .482	-6.6297 (1127) Pm .159	-6.0053 (1126) P= .429	.0272 (1126) P= .181	.1856 ( 1127) P= .000	.2927 ( 1127) P= .888	.1243 ( 1126) Pm .886	.1062 (1127) P= .006	.1636 ( 1128) P= .000
(6	¥	.6217 ( 1127) P= .666	.4513 ( 1126) P= .000	.3226 ( 1127) P= .606	.4276 ( 1126) P= .666	.5449 ( 1126) P= .800	.4987 ( 1127) P= .000	.8888 (1127) P= .866	.8297 ( 1126) P= .808	.8668 ( 1127) P= .868	.8685 ( 1128) P= .600
T S (WALES;	Ħ	.0588 ( 1123) P= .624	.0848 ( 1122) P= .002	.0064 ( 1123) P= .415	.0857 (1122) P= .002	.0937 (1122) Pm .001	.3515 (1123) P= .868	.3569 (1123) Pz .006	.2792 ( 1122) P= .000	.2452 ( 1123) F= .800	.2720 ( 1124) P= .900
HCHE.	AGE	.4026 (1127) Pm000	.1549 ( 1126) Pm .000	.6.0555 (1127) Pm .031	-6.6392 (1126) P= .694	.2039 ( 1126) P= .000	.2151 ( 1127) P= .000	.1232 ( 1127) P= .600	.3227 ( 1126) P= .000	.4676 (1127) Pm966	.4178 ( 1128) Pm .000
C 0 E F F	FLXBICC	.3886 (1127) P= .666	.2383 (1126) P= .000	.2469 ( 1127) P= .666	.2691 (1126) P= .000	.348¢ (1126) P≈.00¢	.3165 ( 1127) P= .000	.7118 ( 1127) P= .666	.6101 ( 1126) Pm .600	.5958 ( 1127) P= .666	.5641 ( 1128) P= .666
ATION	NECKC	.4045 (1125) P= .000	.1875 (1124) P= .000	.2473 ( 1125) P= .600	.1800 (1124) P= .000	.3246 (1124) P= .606	.3989 (1125) P= .000	.6414 (1125) P= .066	.6253 ( 1124) P= .006	.6316 (1125) P= .000	.6133 ( 1126) F= .000
CORREL	ANKLEC	.2121 ( 1124) P= .000	,2371 (1123) P= .000	.2053 (1124) P= .000	.3087 (1123) P= .000	.2069 (1123) P= .000	.3016 (1124) P= .666	.4428 (1124) Pm.0000	.4148 ( 1123) P= .666	.3671 ( 1124) P= .666	.3862 (1125) P= .000
RSON	CALFC	.4163 ( 1127) P= .000	.3715 (1126) P= .000	.2767 (1127) P= .966	.3564 ( 1126) P= .000	.3788 (1126) P= .000	.3378 (1127) P= .000	.6118 (1127) P= .000	.6143 ( 1126) P= .000	.6993 (1127) P= .666	.5958 (1128) P= .600
P E A	KNEEC	.3489 (1127) P= .866	.3197 (1126) P= .000	.2235 (1127) P= .666	.3624 ( 1126) P= .000	.3322 (1126) P= .668	,2995 (1127) P= .000	.4965 (1127) Pz666	.4834 (1126) P= .000	.4838 ( 1127) P= .000	.4838 (1128) P=.000
; ; ; ;	WRISTC	.1990 ( 1126) P= .000	.1421 ( 1125) P= .000	.2230 (1126) P= .000	.1740 ( 1125) P= .000	.2014 ( 1125) F= .000	.3596 (1126) P= .000	.5359 ( 1126) P≃ .000	.4403 (1125) P= .866	.3989 (1128) P= .000	.3974 ( 1127) P= .606
1 1 1 1		ABOSF	THISF	KNEESF	CALFSF	BICEPSF	НЕАОС	SHOULC	CHSTC	ABD1C	ABD2C

1 1 1 1	DYLIFT	.8388 ( 882) P= .192	-0.0360 ( 801) P= .154	.8788 ( 862) P= .822	.8371 ( 861) Pm .147	-8.8262 ( 861) P= .284	.2375 ( 861) Pm .006	.4796 ( 861) P= .006	.3152 ( 866) Pm .666	.1978 ( 861) Pm .666	.1626 ( 862) Pm .866
t t t	£	-6.1716 ( 961) Pa .006	-6.0636 ( 960) P≈ .005	-6.8684 ( 961) P≈ .397	.8463 ( 961) Pm .076	-8.1468 ( 968) Piz .888	-6.1951 ( 961) Pm .006	-6.1166 ( 961) Pm .666	-6.2824 ( 968) PE ,866	-6.2487 ( 961) Pm .869	-6.2596 ( 962) PH .006
	VOZNEKO	-6.5711 ( 963) P= .966	-6.395& ( 962) P= .000	-8.1873 ( 963) P= .866	-8.3438 ( 963) P≈868	-8.4695 ( 962) ⊬= .866	-6.1736 ( 963) P= .666	-6.3367 ( 963) P≖.6666	-6.4126 ( 962) P= .666	-8.5616 ( 963) Pm. 1996	-6.5665 ( 964) P≈ ,96€
T S (MALES	VOZLMIN	.0711 ( 753) P= .026	.0688 ( 752) P= .030	.1577 ( 753) P= .868	.1364 ( 753) Pm .000	.0945 ( 752) P= .005	.3444 ( 752) P= .000	.5168 ( 752) Pm .666	.4277 ( 751) P= .000	.3187 ( 752) P= .000	.2997 ( 753) Pa .000
HCHEN	WRISTD	,2001 ( 1126) P≖ ,000	.1648 ( 1125) P= .005	.1233 ( 1126) P= .806	.1236 ( 1125) P= .003	.1746 ( 1125) P= .000	.2761 (1126) P= .666	.4239 ( 1126) P= .806	.3518 ( 1125) P= .000	.3138 ( 1128) P= .000	.3214 ( 1127) Pm005
C 0 E F F	EL.BOND	.1326 ( 1124) P= .000	.0965 ( 1123) P= .001	.1088 (1124) P= .900	.1198 ( 1123) P= .000	.1157 (1123) P= .000	.2507 (1124) P= .000	.3472 (1124) P= .000	.3135 (1123) P= .000	.2639 (1124) P= .000	.2857 ( 1125) P= .006
NOHLY.	СНЅТО	.3106 (1125) P= .000	.1922 ( 1124) P= .000	.0647 (1125) P= .033	.2009 (1124) P= .000	.2477 ( 1124) P= .000	.2706 (1125) P= .600	.4054 (1125) P= .000	.4538 ( 1124) P= .000	.4045 ( 1125) P= .000	.3967 (1126) P= .666
CORREL	ANKLED	.022 <b>0</b> (1126) P= .230	.0624 (1125) P= .018	.0576 (1126) P= .027	.0789 (1125) P= .005	.0441 (1125) P= .070	.2298 (1126) P= .000	.3033 (1126) P= .000	.2484 ( 1125) P= .000	.1975 ( 1126) P= .000	,1846 ( 1127) P= ,000
A R S O R	KNEED	.2265 ( 1127) P= .000	.2683 (1126) P= .000	.1947 ( 1127) P= .000	.3006 (1126) P= .000	.2312 ( 1126) P= .000	.2498 (1127) P= .000	.4331 ( 1127) P= .000	.4876 ( 1126) P= .888	.3741 ( 1127) P= .666	.37 <i>0</i> 7. ( 1128) P= .666
PE/	BITROD	.1861 ( 1127) P= .000	.2251 (1126) P= .000	.0073 (1127) P= .464	.2144 ( 1126) P= .000	.1929 ( 1126) P= .000	.1729 (1127) P= .666	.1940 (1127) P= .000	.2055 (1126) P= .000	.2139 ( 1127) P= .666	.2428 ( 1128) P= .000
	IILIACD	.23Ø3 (1125) P= .000	.2187 ( 1124) P= .660	-0.0212 (1125) P= .235	.2019 ( 1124) P= .000	.1946 ( 1124) P= .068	.2054 (1125) P= .000	.2057 (1125) P= .000	.2804 ( 1124) P= .000	.2935 (1125) P= .000	.3234 ( 1126) P= .000
1 1 1 1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нелос	SHOULC	CHSTC	ABD1C	ABD2C

; ;	CHALBA	.1674 ( 7425) Pm .886	. 9785 ( 1124) P=986	.1966 ( 1125) Px .006	.1136 ( 1124) Px .986	.1836 ( 1124) Pm .666	.4585 ( 1125) Pm .005	.6969 ( 1125) P= .866	.5406 ( 1124) Fm .000	.4741 ( 1125) Px . <b>506</b>	.4539 ( 1126) Pm .866	
	CARPCER	.7958 ( 1125) Pa .866	.6331 ( 1124) Pa .666	.2629 ( 1125) P= .006	.5368 ( 1124) Px .806	.6671 (1124) Pm.,666	.1961 ( 1125) Pm .006	.3651 ( 1125) Pm .000	.6621 ( 1124) Px .866	.7423 ( 1125) Pm .806	,7682 ( 1126) Pm .000	
(	NGON	-8.7979 ( 1125) Pa .896	-\$.6326 ( 1124) Pr666	-6.2623 (1125) Px .006	-6.5382 (1124) Pa .605	-8.6643 (1124) Pm066	-6.1961 (1125) Pm .666	-6.3634 (1125) Pm666	-6.6061 (1124) Px .606	-6.7495 (1125) Pm. 000	-8.7869 (1126) Pm .866	
CATAMIN C 1	R.	. 1864 ( 999) Pm . 861	.6386 ( 998) Pz115	-6.6962 ( 999) Pa .662	-6.8572 ( 998) P= .836	.#181 ( 999) P= .284	.1985 ( 999) Par. :866	.1124 ( 999) P= .886	.1986 ( 998) Pa .888	.1743 ( 999) Pa .886	.1935 ( 1666) Pm .966	
2 1 1 1 1 1	Ç ¥C	.8555 ( 1122) P= .832	.0514 (1121) Pm .043	-6.0153 (1122) P= .306	. 8454 ( 1121) Pz. 264	-6.6468 (1121) P= .086	.1945 ( 1122) P= .000	.2766 (1122) Pm .0000	.3696 ( 1121) P= .000	.2105 ( 1122) Pm .000	.2327 ( 1123) P= .000	
. T. T.	TMGRADE	-6.4335 ( 753) P= .868	-6.2979 ( 752) P= .600	-6.1201 ( 753) P= .000	-6.2396 ( 753) P= .000	-6.3236 ( 752) P≖ .006	-6.1645 ( 752) P= .000	-6.2739 ( 752) P= .006	-6.3373 ( 751) Ps .006	-6.4263 ( 752) P= .666	-6.4351 ( 753) Pm .006	
NOILA	TASPEED	-6.3673 (753) P=.000	-6.2534 ( 752) P= .068	-6.1562 ( 753) P= .006	-6.2418 ( 753) P= .666	~6.2852 ( 752) P= .000	-6.6786 ( 752) P= .016	-8.1773 ( 752) P= .000	-6.2613 ( 751) P= .666	-6.3439 ( 752) P= .000	-6.3372 ( 763) P= .006	
CORREL	VEV02	-6.6678 ( 753) P= .415	-8.6624 ( 752) P= .474	-6.8957 ( 753) P= .864	.0000 ( 753) P= .500	- <b>6.0376</b> ( 752) P= .156	-6.6449 ( 752) P= .169	-0.1076 ( 752) P= .002	-6.0242 ( 751) P= .254	-6.6162 ( 762) P≃ .329	-6.0203 ( 753) P= .289	
PEARSON	AC02	-6.5762 ( 753) P= .868	-6.3831 ( 752) P= .666	-6.21 <i>97</i> ( 753) P= .000	-6.3346 ( 753) P= .666	-0.4357 (752) Po000	-8.1568 ( 752) P= .000	-6.3512 ( 752) P= .000	-6.4175 ( 751) P= .000	-6.5455 ( 752) P= .000	-6.5536 (753) P= .868	
PE,	œ	-6.1133 (753) P= .001	- <b>6.64</b> 88 ( 752) P= .132	-0.0411 ( 753) P= .130	-8.0557 ( 753) P= .063	-6.0836 ( 752) P= .011	.0032 ( 752) P= .465	-6.6767 (762) P= .618	-6.6458 (751) P= .189	-6.6845 (752) P=.616	-6.0695 (753) P=.628	
1 1 1	Ä	.0458 ( 753) P= .105	.0499 ( 752) P= .086	.0597 ( 753) P= .051	.1055 ( 753) P= .002	.0464 ( 752) P= .102	.2529 ( 752) P= .888	.3412 ( 752) P= .666	.3347 ( 751) P= .868	.2458 ( 752) P= .000	.2283 ( 753) P= .000	
1 1 1 1		ABOSF	THISF	KNEESF	CALFSF	BICEPSF	нелос	SHDULC	CHSTC	AB01C	ABO2C	
						H-37						

1 1 1 1 1	KRATING	. 862) ( 862) Pu . 666	.5614 ( 861) Pm .066	.3213 ( 862) P= .000	.5015 ( 861) Pm000	.5662 ( 861) Pz666	.2462 ( 862) Pm .000	.4597 ( 862) Pm .666	.6682 ( 861) P= .866	.8116 ( 862) P= .036	.8269 ( 863) P= .666
1 1 1	AVSSR	-6.6448 ( 864) PH .696	-8.4971 ( 863) P≖ .000	-5.2627 ( 864) P= .886	-8.4115 ( 863) P≈ .200	-6.5117 ( 863) P= .006	-6.1595 ( 864) P= .006	-6.3131 ( 864) P= .666	-6.5814 ( 863) Pm .006	-5.6646 ( 864) Pm .966	-6.6912 ( 865) P= .686
: (s:	AVUNIR	-6.5686 ( 990) P≃ .666	-8.4698 ( 989) P≈.0008	-8.2931 ( 990) P= .000	-6.3877 ( 989) P= .666	-6.4847 ( 989) P= .000	-6.1116 ( 990) P= .800	-8.3912 ( 990) P= .666	-0.5403 ( 989) P= .000	-6.6264 ( 998) P= .986	-6.6166 ( 991) P= .000
TS (WALES	ECT0	-6.8482 ( 1123) P= .866	-0.4052 (1122) P= .000	-6.3352 (1123) P= .000	-6.3866 (1122) P= .000	-6.4528 (1122) P= .000	-6.2264 (1123) P= .000	-6.5463 (1123) P= .000	-6.6221 (1122) P= .666	-6.6834 (1123) P= .000	-8.8575 (1124) P= .668
FICIEN	MESO	.3347 ( 1123) P= .000	.2289 ( 1122) P= .866	.2720 ( 1123) P= .000	.2388 ( 1122) P= .888	.2767 ( 1122) P= .000	.1466 ( 1123) P= .000	.4699 ( 1123) P= .066	.4633 ( 1122) P= .686	.4389 ( 1123) P= .600	.4647 ( 1124) P= .666
COEF	ENDO	.8743 ( 1123) P= .666	.6638 (1122) P= .666	.4104 ( 1123) P= .680	.5911 ( 1122) P= .060	.6852 ( 1122) P= .000	.2854 (1123) P= .000	.4666 ( 1123) P= .000	.576ø ( 1122) P= .000	.7416 ( 1123) P= .868	.7674 ( 1124) P= .000
LATION	DWPCBF	.8628 (1122) P= .000	.5967 (1121) P= .000	.3042 ( 1122) P= .000	.4884 (1121) P= .666	.6534 (1121) P= .000	.2911 ( 1122) P= .666	.4121 ( 1122) P= .008	.6774 ( 1121) P= .686	.7419 ( 1122) P= .666	.7696 ( 1123) P= .666
CORRE	SUMSA	.855æ (1127) P= .000	.6739 (1126) P= .006	.4295 (1127) P= .000	.5974 (1126) P= .000	.7647 ( 1126) P= .000	.2572 ( 1126) P= .000	.4881 (1126) P= .006	.5945 ( 1125) P= .000	.7576 ( 1126) P= .000	.7816 ( 1127) P= .000
ARSON	DWPCBFEX	.8630 ( 1125) P= .000	.5989 (1124) P= .000	.3087 (1125) P= .000	.4883 (1124) P= .000	.6535 (1124) Pm .000	.2971 ( 1125) P= .666	.4108 (1125) P= .000	.5792 ( 1124) P= .000	.7428 ( 1125) P= .000	.7718 (1126) P= .800
1 1 P E	SMS	.8587 ( 1127) P= .606	.6779 (1126) P= .666	.4308 (1127) P= .000	.6014 ( 1126) P= .000	.7859 (1126) P= .000	.2803 ( 1126) P= .000	.4880 ( 1126) P= .000	.5954 ( 1125) P= .000	.7581 ( 1126) P= .600	.7825 ( 1127) P= .000
1 1 1	UWWBF	.81Ø1 ( 1125) P= .000	.6352 ( 1124) P= .600	.3116 ( 1125) P= .000	.5591 (1124) P= .000	.5849 ( 1124) P= .000	.3228 ( 1125) P= .000	.5831 ( 1125) P= .000	.7552 ( 1124) P= .000	.8705 ( 1125) P= .000	.8882 ( 1126) P= .000
1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нЕАБС	SHOULC	CHSTC	ABD1C	ABD2C

t t i i	GENDER	( 271)	( 271) F= :	( 271) P= :	( 271) P= .	( 271) P= .	( 270) P= .	( 276)	( 27¢) P= .	( 278) P= .	( 270) P= .
1 E 1 E	¥	( 271) P= .	( 271) P= .	( 271) P= .	( 271) P= .	( 271) P= .	( 270) P= :	( 270) P= .	( 270) P= .	( 270) P= .	( 278) P= .
res)	PTSCORE	-0.1525 ( 256) P= .007	-8.2868 ( 256) P= .888	-6.1411 ( 258) P= .012	- <b>6.</b> 27 <i>6</i> 7 ( 256) P= .666	-6.2511 ( 256) P= .666	-6.6986 ( 255) P= .659	6.6526 ( 256) P= .263	-6.1423 ( 255) P= .612	-6.1825 ( 255) P= .002	-6.1852 ( 255) P≈.001
T S (FEMALES)	TWOMILE	.2719 ( 254) P= .966	.2570 ( 254) P= .000	.13Ø1 ( 254) P= .Ø19	.3024 ( 254) P= .000	.3923 ( 254) P= .000	-6.1164 ( 253) P= .646	.0673 ( 254) P= .143	,2158 ( 253) P= ,000	.2502 ( 253) P= .066	.2008 ( 253) P= .001
FICHEN	PUSHUP	-0.2128 ( 255) P= .000	-0.2267 ( 255) P= .000	-0.0909 ( 255) P= .074	-0.2393 ( 255) P= .000	-0.2549 ( 255) P= .000	-0.1312 ( 254) P= .018	-ø.ø889 ( 254) P= .ø79	-6.1949 ( 254) P= .001	-6.2626 ( 254) P= .000	-6.2601 ( 254) P= .866
C 0 E F	SITUP	-0.1748 ( 255) P= .003	-0.1524 ( 255) P= .007	-0.1993 ( 255) P= .001	-0.1617 ( 255) P= .005	-8.2484 ( 255) P≕ .000	-0.1080 ( 254) P= .043	-0.1138 ( 254) P= .035	-6.2084 ( 254) P= .000	-0.1897 ( 254) P= .001	-0.2124 ( 254) P= .000
LATION	UNITYPE	-6.0122 ( 270) P= .421	-0.0213 ( 270) P= .364	-Ø.Ø769 ( 27Ø) P= .1Ø4	-0.6732 ( 270) P= .115	-0.0666 ( 270) P= .138	.0194 ( 269) P= .378	,ø753 ( 289) P= .1Ø9	.#395 ( 269) P= .259	. <b>0468</b> ( 269) P= .257	.0345 ( 269) P= .287
CORRE	PRIMOS	-6.0894 ( 271) P= .071	-0.1455 ( 271) P= .008	-Ø.Ø723 ( 271) P= .118	-0.1760 ( 271) P= .002	-0.1098 ( 271) P= .036	-0.0944 ( 270) P= .061	-0.0527 ( 270) P= .194	-6.1114 ( 270) P= .034	-0.1317 ( 270) P= .015	-0.1162 ( 270) P= .028
EARSON	CARMGMT	.8747 ( 278) P= .118	.8912 ( 270) P= .867	-0.0105 ( 270) P= .432	.ø3ø6 ( 27ø) P= .3ø8	.0494 ( 270) P= .209	.0551 ( 269) P= .184	.1035 ( 269) P= .045	.ø300 ( 269) P= .312	-8.8882 ( 269) P= .499	.0317 ( 269) P= .302
日 1 1 1 日 日	RANK	.0466 ( 271) P= .223	-6.0513 ( 271) P= .200	.ø16ø ( 271) P= .397	-0.0278 ( 271) P= .324	.ø368 ( 271) P= .273	.ø734 ( 270) P= .115	.0092 ( 270) P= .440	-0.0085 ( 270) P= .445	.0590 ( 270) P= .167	.ø755 ( 270) P= .108
1 1 1	TIMESER	.1252 ( 271) P= .020	.ø540 ( 271) P= .188	.0438 ( 271) P= .238	.Ø283 ( 271) P= .321	.1482 ( 271) P= .007	-6.6898 ( 278) P= .441	.ø318 ( 270) P= .302	.1400 ( 270) P= .011	.1194 ( 270) P= .025	.2106 ( 270) P= .000
1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нелос	SHOULC	CHSTC	ABD1C	AB02C

ONA ELEMENTO ELECTRICA SER PRESENTATION RESERVATA PRESENTATA PROGRAMA PROGRAMA PROGRAMA POR PROFESSOR PROGRAMA

	KNEESF	.3557 ( 271) P= .866	.3593 ( 271) Pm .000	1.8888 ( 271) P= .888	.3598 ( 271) P≈ .666	.2853 ( 271) P= .000	.6016 ( 270) P= .494	.8734 ( 270) F= .115	.1861 ( 270) P= .001	.1746 ( 270) P= .002	.1681 ( 270) P= .003
	THISF	.5758 ( 271) P= .000	1.0000 ( 271) P= .000	.3593 ( 271) P= .000	.6725 ( 271) P= .000	.5468 ( 271) P= .000	-0.0761 ( 270) P= .106	.2278 ( 270) P= .000	.3476 ( 270) P= .000	.3436 ( 270) P= .868	.4857 ( 270) P= .098
(63.	ABDSF	1.8888 ( 271) P= .888	.5758 ( 271) P= .000	.3857 ( 271) P= .000	.5039 ( 271) P= .666	.6085 ( 271) P= .000	-0.1390 ( 270) P= .011	.3928 ( 270) P= .000	.4559 ( 270) P= .000	.4816 ( 270) P= .000	.5473 ( 270) P= .000
	SUPRASF	.8343 ( 271) P= .000	.5866 ( 271) P= .660	.3889 ( 271) P= .888	.5138 ( 271) P= .000	.5738 ( 271) P= .060	-0.0817 ( 270) P= .090	.3495 ( 270) P= .000	.4168 ( 270) P= .990	.4324 ( 270) P= .000	.5457 ( 270) P= .000
2 1 1 1 1 1 .	WAISTSF	.7763 ( 271) P= .800	.5867 ( 271) P= .000	.3288 ( 271) P= .888	.5537 ( 271) P= .000	.6198 ( 271) P= .898	-0.0781 ( 270) P= .100	.3695 ( 27@) P= .000	.4562 ( 270) P= .000	.4778 ( 270) P= .666	.5858 ( 270) P= .808
L 10 0	MIDAXSF	.6118 ( 270) P= .000	.5105 ( 270) P= .000	.2268 ( 270) P= .008	.5468 ( 270) P= .000	.6166 ( 270) P= .000	-0.0497 ( 269) P= .208	.3206 ( 269) P= .000	.4255 ( 270) P= .000	.5357 ( 269) P= .000	.5732 ( 289) P= .000
Z	TRICEPSF	.6388 ( 271) P= .000	.7081 ( 271) P= .000	.3622 ( 271) P= .868	.6593 ( 271) P= .006	.6521 ( 271) P= .000	-6.8284 ( 270) P= .321	.3599 ( 270) P= .000	.4938 ( 270) P= .868	.4938 ( 270) P= .000	.5416 ( 270) P= .868
CORRE	SCAPSF	.5843 ( 271) P= .666	.4678 ( 271) P= .000	.2631 ( 271) P= .686	.5Ø11 ( 271) P= .6ØØ	.5553 ( 271) P= .000	.Ø182 ( 270) P= .383	.4239 ( 270) P= .000	.5299 ( 270) P= .666	.5847 ( 270) P= .000	.6315 ( 270) P= .666
PEARSON	CHSTSF	.3892 ( 271) P= .000	.2478 ( 271) P= .666	.1244 ( 271) P= .020	.2977 ( 271) P= .666	.4849 ( 271) P= .668	-6.0771 ( 270) P= .103	.2711 ( 270) P= .606	.4497 ( 270) P= .606	.4877 ( 270) P= .666	.4544 ( 270) P= .608
ш d	CHINSF	.5513 ( 271) P= .000	.4537 ( 271) P= .000	.2573 ( 271) P= .000	.4362 ( 271) P= .000	.6248 ( 271) P= .600	-0.1378 ( 270) P= .012	.3234 ( 270) P= .600	.5369 ( 270) P= .000	.4938 ( 270) P= .000	.5322 ( 270) P= .600
1 1 1	RACE	-Ø.Ø831 ( 271) P= .132	-0.0858 ( 271) P= .080	.0629 ( 271) P= .151	-0.1040 ( 271) P= .044	-0.1100 ( 271) P= .035	.1419 ( 270) P= .010	-6.6641 ( 279) P= .473	-6.0874 ( 270) P= .078	-0.0316 ( 270) P= .302	-Ø.9868 ( 270) P= .137
1 1 1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	HEADC	SHOULC	CHSTC	ABD1C	ABD2C

1 1 1	FOREC	.2314 ( 271) P= .000	.2335 ( 271) P= .000	.2458 ( 271) P= .000	.3165 ( 271) P= .000	.3953 ( 271) P= .060	.1305 ( 270) P= .016	.6071 ( 270) P= .000	.5128 ( 270) F= .866	.5436 ( 270) P= .888
1 1 1 1	BICEPC	.5248 ( 271) P= .000	.5323 ( 271) P= .800	.2793 ( 271) P= .000	.5187 ( 271) P= .000	.5616 ( 271) P= .000	.6771 ( 270) P= .103	.6649 ( 278) P= .868	.6548 ( 270) P= .868	.5774 ( 278) P= .000
ES)	THIC	,3848 ( 271) P= ,668	.4433 ( 271) P= .868	.1473 ( 271) P= .008	.4371 ( 271) P= .666	.3118 ( 271) P= .666	.0944 ( 270) P= .061	.4168 ( 270) P≕.660	.4504 ( 270) P= .696	.5056 ( 270) P= .000
T S (FEWALES)	HIPC	.4912 ( 270) P= .000	.5367 ( 276) P= .000	.2149 ( 270) P= .666	.5181 ( 270) P= .000	.4678 ( 270) P= .000	.0973 ( 269) P= .056	.8057 ( 269) P= .000	.6489 ( 269) P= .000	.6796 ( 289) P= .600
Z Ш Н О Н	ABD2C	.5473 ( 270) P= .000	.4057 ( 270) P= .600	.1681 ( 270) P= .003	.4898 ( 270) P= .666	.4984 ( 270) F= .690	, 1122 ( 269) P= ,033	.6484 ( 269) P= .000	.7113 ( 269) P= .000	.8577 ( 270) P= .666
の 日 日	ABD1C	.4618 ( 270) P= .000	.3436 ( 270) P= .000	.1740 ( 270) P= .002	.4323 ( 270) P= .000	.4742 ( 276) P= .066	.ø696 ( 269) P= .128	.6375 ( 269) P= .000	.7483 ( 269) P= .660	1.9966 ( 276) P= .966
NO H + A	CHSTC	.4559 ( 270) P= .000	.3475 ( 270) P= .666	.1851 ( 270) P= .001	.3886 ( 270) P= .000	.5055 ( 270) P= .000	.ø4ø3 ( 269) P= .255	.6962 ( 269) P= .000	1.0000 ( 270) P= .000	.7483 ( 269) P= .000
CORREL	SHOULC	.3928 ( 270) P= .660	.2278 ( 270) P= .666	.ø734 ( 270) P= .115	. 2402 ( 270) P= .600	.3521 ( 270) P= .000	.1638 ( 269) P= .064	1.6666 ( 276) P= .666	.8962 ( 269) P= .000	.8375 ( 269) P= .000
8 0 N	HEADC	-0.1390 ( 270) P= .011	-0.0761 ( 270) P= .106	.0010 ( 270) P= .494	-0.0408 ( 270) P= .252	-0.0540 ( 270) P= .188	1.0000 ( 270) P= .000	.1638 ( 269) P= .064	.ø4ø3 ( 269) P≔ .255	.ø896 ( 269) F= .128
₩ a. !	BICEPSF	.6085 ( 271) P= .600	.5468 ( 271) P= .000	.2853 ( 271) P= .600	.4999 ( 271) P= .666	1.8666 ( 271) P= .866	-0.0540 ( 270) P= .188	.3521 ( 270) P= .000	.5055 ( 270) P= .000	.4742 ( 270) P= .000
; ; ; ;	CALFSF	.5039 ( 271) P= .000	.6725 ( 271) P= .000	.3598 ( 271) P= .000	1.0000 ( 271) P= .000	.4999 ( 271) P= .000	-Ø.0408 ( 270) P= .252	.2482 ( 278) P= .000	.3886 ( 270) P= .000	. 4323 ( 270) P= .000
1 1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	HEADC	SHOULC	CHSTC	ABD1C
·						H-41				

f t t	BIDELD	.3188 ( 271) P= .666	.3365 ( 271) P= .000	.0752 ( 271) P= .108	.3498 ( 271) P= .000	.2585 ( 271) Fe .000	.1532 ( 270) P= .006	.5728 ( '278) P= .000	.3822 ( 275) P= .866	.3857 ( 275) Pa .000	.4982 ( 270) P= .666
i i i	BIACD	.1776 ( 271) P= .002	.1686 ( 271) P= .003	.0107 ( 271) P= .431	.1728 ( 271) P= .602	.0458 ( 271) P= .230	.1994 ( 270) P= .000	.3911 ( 270) P= .000	.1718 ( 276) P= .002	.1473 ( 276) P= .008	.2935 ( 278) P≖ .606
LES)	144	.4568 ( 271) P= .000	.4442 ( 271) P= .000	,2020 ( 271) P= .000	.5147 ( 271) P= .000	.4509 ( 271) P= .000	.2224 ( 270) P= .000	.7278 ( 270) P= .008	.7194 ( 270) P= .000	.7517 ( 276) P= .000	.7667 ( 270) P= .000
T S (FEMALES	HT	-8.6476 ( 271) P= .221	-6.6366 ( 271) P= .278	-0.1180 ( 271) P= .026	.0555 ( 271) P= .182	-6.6407 ( 271) P= .252	.2449 ( 270) F= .808	.2865 ( 270) P= .000	.1854 ( 270) P= .001	.1513 ( 270) P= .006	.1848 ( 270) P= .001
FICHEN	AGE	.1104 ( 271) P= .035	.0281 ( 271) P= .322	.ø53Ø ( 271) P= .193	.0179 ( 271) P= .385	.1715 ( 271) P= .002	-0.0300 ( 270) P= .312	.1155 ( 270) P= .029	.2675 ( 270) P= .000	.2238 ( 270) P= .000	.2029 ( 270) P= .000
COEFI	FLXBICC	.4459 ( 268) P= .000	.4162 ( 268) P= .000	.3014 ( 268) P= .000	.4237 ( 268) P= .000	.5052 ( 268) P= .000	.1143 ( 267) P= .031	.6575 ( 287) P= .000	.8278 ( 267) P= .000	.6319 ( 267) P= .000	.5733 ( 267) P= ,000
ATION	NECKC	.1813 ( 270) P= .001	.1053 ( 270) P= .642	.1310 ( 270) P= .016	.1367 ( 270) P= .012	.2874 ( 270) P= .660	.1863 ( 269) P= .001	.4769 ( 269) P= .666	.4453 ( 269) P= .000	.4928 ( 269) P= .000	.4123 ( 269) P= .000
CORRE	ANKLEC	.2067 ( 271) P= .000	.3694 ( 271) P= .666	.23 <i>0</i> 7 ( 271) P= .060	.4196 ( 271) P= .000	.2263 ( 271) P= .000	.8954 ( 270) P= .859	.3759 ( 270) P= .000	.3703 ( 270) P= .000	.357 <i>8</i> ( 278) P= .888	.398ø ( 27ø) P= .606
ARSON	CALFC	.3252 ( 271) P= .000	.4898 ( 271) P= .886	.2989 ( 271) P= .690	.4758 ( 271) P= .000	.3711 ( 271) P= .600	.1066 ( 270) P= .040	.4281 ( 270) P= .000	.4445 ( 270) P= .000	.4982 ( 270) P= .000	.4892 ( 278) P= .000
: : : :	KNEEC	.2424 ( 271) P= .003	.3824 ( 271) P= .000	.2273 ( 271) F= .060	.4843 ( 271) P= .000	.3348 ( 271) P= .000	.1738 ( 270) P= .002	.3741 ( 270) P= .666	.4238 ( 270) P= .000	.4331 ( 270) P= .666	.4542 ( 270) P= .600
1 1	WRISTC	.0001 ( 271) P= .500	.0102 ( 271) P= .434	-0.0266 ( 271) P= .335	.ø7ø3 ( 271) P= .124	-0.0049 ( 271) P= .468	.2695 ( 270) P= .666	.2317 ( 278) P= .666	.1814 ( 270) P= .004	.1026 ( 270) P= .048	.1348 ( 278) P= .014
t 1 1 t		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нелос	SHOULC	CHSTC	ABD1C	ABD2C

たから、 というない。 できない。 できない。

1 1 1 1	DYLIFT	.Ø722 ( 243) P= .131	-8.0218 ( 243) P= .367	-6.0499 ( 243) P= .439	.0071 ( 243) P= .458	-Ø.0719 ( 243) F= .132	.Ø514 ( 242) P= .213	.3453 ( 243) P≃ .060	.2074 ( 242) P= .001	.1698 ( 242) F= .844	.1416 ( 242) Pm .014
1 5 2 6	¥	-0.1116 ( 238) P= .043	-6.0122 ( 238) P= .426	-0.0475 ( 238) P= .233	-6.0044 ( 238) P= .473	-8.0870 ( 238) P= .090	-0.0571 ( 237) P= .191	-8.0559 ( 238) P= .195	-8.1407 ( 237) P= .615	-0.1364 ( 237) P= .018	-8.1847 ( 237) P= .854
ES)	VOZNEKG	-0.3627 ( 238) P= .000	-0.3306 ( 238) P= .000	-0.1842 ( 238) P= .002	-0.3739 ( 238) P= .000	-0.4338 ( 238) P= .000	-6.1419 ( 237) P= .014	-0.2395 ( 238) P= .000	-0,3653 ( 237) P= .000	-6.4208 ( 237) P= .666	-6.4186 ( 237) P= .066
T S (FEWALES	YOZLMIN	.1514 ( 237) P= .010	.1586 ( 237) P= .007	.0405 ( 237) P= .268	.2019 ( 237) P= .001	.ø888 ( 237) P= .ø86	.0989 ( 236) P= .065	.5388 ( 237) P= .000	.4495 ( 238) P= .000	.3797 ( 236) P= .666	.4085 ( 238) P= .000
HCIEN	WRISTD	.1378 ( 270) P= .012	.0926 ( 270) P= .065	.ø780 (270) P= .1Ø1	.1677 ( 270) P= .003	.ø759 ( 270) P= .107	.1836 ( 269) P= .001	.3626 ( 269) P= .000	.2913 ( 269) P= .000	.1764 ( 269) P= .063	.2699 ( 269) P= .000
C 0 E F F	ELBOWD	.0520 ( 271) P= .197	-0.0042 ( 271) P= .473	.1500 ( 271) Pa .007	.0472 ( 271) P= .220	.ø163 ( 271) P= .395	.1055 ( 270) P= .042	.2873 ( 270) P= .000	.2076 ( 270) P= .603	.2218 ( 270) P= .000	.1862 ( 270) P= .001
ATION.	СНЅТО	.2736 ( 271) P= .666	.3166 ( 271) P= .000	.0825 ( 271) P= .088	.3338 ( 271) P= .000	.1706 ( 271) P= .003	.1273 ( 270) P= .018	.3412 ( 270) P= .000	.3046 ( 270) P= .000	.2682 ( 270) P= .000	.4125 ( 270) P000
CORREL	MKLED	~6.6451 ( 271) P= .230	-6.6047 ( 271) P= .470	-6.6471 ( 271) P= .220	.0847 ( 271) P= .082	-0.0610 ( 271) P= .159	.1853 ( 270) P= .001	.2779 ( 278) P= .000	.2222 ( 270) P= .000	.1985 ( 270) P= .001	.2357 ( 270) P= .066
ARSON	KNEED	.2431 ( 271) P= .666	.3329 ( 271) P= .060	.2137 ( 271) P= .000	.4152 ( 271) ?= .000	.2514 ( 271) P= .000	.1429 ( 270) P= .009	.3639 ( 270) P= .066	.3671 ( 270) P= .060	.3833 ( 270) P= .000	.3793 ( 270) P= .666
PE/	BITROD	.3211 ( 271) P= .666	.4110 ( 271) P= .000	.0771 ( 271) P= .103	.4278 ( 271) P= .600	.2054 ( 271) P= .000	.1128 ( 270) P= .032	.2953 ( 270) P= .000	.2542 ( 270) P= .000	.2784 ( 278) P= .888	.4711 ( 270) P= .666
1 1 1	IILIACD	.3147 ( 270) P= .600	.3448 ( 270) P= .000	.¢548 ( 270) P= .185	.3405 ( 270) P= .000	.2363 ( 270) P= .000	.0674 ( 269) P= .135	.2475 ( 269) P= .900	.2174 ( 269) P= .000	.2547 ( 269) P= .000	.4312 ( 269) P= .000
1 1 1		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	НЕАБС	SHDULC	CHSTC	ABD1C	ABD2C
						H-43					

! ! !	CHALBIA	.8852 ( 286) P= .883	.0719 ( 266) P= .121	.6383 ( 266) P= .267	.1827 ( 266) P= .001	.08800 ( 268) P= .097	.2800 ( 265) P= .000	.5914 ( 265) P= .000	.4427 ( 285) P= .868	.4514 ( 285) P= .888	.4498 ( 285) P= .000
: : : :	UWWPCBF	.5831 ( 266) P= .000	.5984 ( 266) P= .000	.2617 ( 266) P= .000	.5727 ( 286) P= .000	.5832 ( 268) P= .000	-0.0369 ( 265) P= .275	.3523 ( 265) P= .000	.5077 ( 265) P= .000	.5427 ( 265) P= .000	.6713 ( 265) P= .000
(SE)	MOEN	-8.5792 ( 266) P≕.000	-8.5987 ( 266) P= .000	-8.2595 ( 266) P= .000	-0.5711 ( 266) P= .000	-ø.58ø3 ( 266) P≕.øøø	.ø395 ( 265) P≕ .261	-0.3485 ( 265) P= .000	-0.5625 ( 285) P= .000	-8.5375 ( 265) P= .000	-6.5669 ( 265) ?= .006
ITS (FEMALES)	RLV	-8.1448 ( 260) P= .010	-6.8424 ( 260) P= .248	-0.1246 ( 260) P= .022	-0.1042 ( 260) P= .047	-0.0552 ( 260) P= .188	.ø581 ( 259) P= .178	.0806 ( 259) P= .038	.1149 ( 259) Pm032	.#367 ( 259) P= .278	.ø387 ( 259) P= .268
FICIEN	×	-6.6676 ( 265) P= .451	.0270 ( 265) P= .331	-0.0035 ( 265) P= .477	.0828 ( 265) P= .089	.0170 ( 265) P= .392	.0009 ( 264) P= .494	.3583 ( 264) P= .000	.3515 ( 264) P= .000	.2299 ( 264) P= .666	.2309 ( 264) P= .000
C 0 E F	TWGRADE	-6.2938 ( 237) P= .000	-0.3166 ( 237) P= .668	-0.1828 ( 237) P= .002	-0.3458 ( 237) P= .000	-6.3527 ( 237) P= .000	-6.0098 ( 236) P= .441	-Ø.1398 ( 237) P= .Ø16	-6.2984 ( 236) P= .688	-8.3436 ( 236) P= .000	-8.3897 ( 236) P= .888
NOHLYI	TASPEED	-6.2443 ( 237) P= .000	-6.1977 ( 237) P= .001	-0.1462 ( 237) P= .012	-0.2063 ( 237) P= .001	-0.2220 ( 237) P= .000	-ø.ø369 ( 236) P= .286	-8.8953 ( 237) P= .672	-0.1641 ( 236) P= .055	-6.1542 ( 238) P= .009	- <b>Ø.1</b> 577 ( 236) P= . <b>Ø</b> Ø8
CORRE	VEV02	-6.1302 ( 237) P= .023	-6.2036 ( 237) P= .001	- <b>6</b> .8968 ( 237) P= .078	-0.1614 ( 237) P= .008	-0.0109 ( 237) P= .434	.1349 ( 236) P= .019	-8.1208 ( 237) P= .032	-Ø.1599 ( 238) P≕.ØØ7	-6.6458 ( 236) P= .242	-6.0713 ( 236) P= .138
ARSON	VC02	-0.3248 ( 237) P= .000	-8.3675 ( 237) P= .666	-0.1715 ( 237) P= .004	-0.3395 ( 237) P= .000	-Ø.3663 ( 237) P= .000	-Ø.1225 ( 236) P= .Ø3Ø	-0.2010 ( 237) P= .001	-Ø.3Ø78 ( 236) P= .000	-6.3834 ( 236) P= .000	-@.3572 ( 236) P= .000
田 山 - -	œ	-8.8338 ( 237) P= .384	-6.6439 ( 237) P= .256	-0.0293 ( 237) P= .327	-8.8492 ( 237) P= .226	-0.0329 ( 237) P= .307	-0.0021 ( 236) P= .487	-0.0088 ( 237) P= .464	-0.0228 ( 236) P= .365	-8.8731 ( 236) P= .132	-0.0241 ( 236) P= .357
1 1 1 1	¥	.ø3øø ( 237) P≕ .323	-0.0414 ( 237) P= .263	-0.0363 ( 237) P= .289	.ø385 ( 237) P= .278	.ø748 ( 237) P= .126	.1926 ( 236) P= .001	.3773 ( 237) P= .666	.2479 ( 238) P= .806	.2928 ( 236) P= .868	.2921 ( 236) P= .000
: :		ABDSF	THISF	KNEESF	CALFSF	BICEPSF	нЕАБС	SHOULC	снѕтс	ABD1C	ABD2C

ABDSF SUMS DIPPOSED SUMS DIPPO	1	! ! ! !	<b>և</b> 0 1	2 C U	, o	2 ← + -	υ	2 u	T S (FEUALES)	ا ا ا	1 1 1	; ; ; ;
HUSF - (266)		UWWBF	SMNS	•	SUMSA	DWPCBF	ENDO	MESO	ECT	AVUNIR	AVSSR	KRATINS
THISF (266) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271)	ABDSF	· _ #	•	.8337 ( 271) P= .000	.8217 ( 271) P= .600	• 11	•	• 11	-0.4835 ( 271) P= .000	-0.3662 ( 239) P= .000	-6.5087 ( 218) P= .066	.5281 ( 216) P= .000
F ( 266) ( 271) ( 271) ( 271) ( 2710) ( 2710) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711) ( 2711)	THISF	~ª		.6982 ( 271) P= .000		•	•	• 11		-6.3331 ( 239) P= .666	-0.4549 ( 218) P= .066	.5475 ( 216) P= .000
CALFSF (265) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271)	KNEES	<b>∵</b> ä	.3969 ( 271) P= .000	.3802 ( 271) P= .666	.3978 ( 271) P= .666	•	.3871 ( 271) P= .060	.3461 ( 271) P= .000	-0.2498 ( 271) P= .666	-0.1534 ( 239) P= .009	-6.2338 ( 218) P= .666	.2434 ( 216) P= .986
BICEPSF		~≝	.6471 ( 271) P= .000	.6262 ( 271) P= .666	•	•	- 11	.3498 ( 271) P= .368	-6.4398 ( 271) P= .666	-0.3671 ( 239) P= .000	-0.4635 ( 218) P= .000	.5818 ( 216) P= .000
C 265) ( 270) ( 270) ( 270) ( 269) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) (		~#		.7537 ( 271) P= .000		•	•		•	-0.3766 ( 239) P= .000	-6.4768 ( 218) P= .866	.5286 ( 216) P= .000
C (265) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270) (270	HEADC	~#		-0.0974 ( 270) P= .055	-0.0492 ( 270) P= .210	•	•	•	.0066 ( 270) P= .457	-0.0422 ( 238) P≃ .258	.ø465 ( 217) P= .248	.0.1847 ( 215) P= .863
.6668 .5628 .5619 .5632 .5655 .5293 .3976 -6.5292 -6.5292 -6.5292 -6.5292 .5659 ( 276) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270)	SHOUL	~#	•	.4261 ( 270) P= .000	.4398 ( 270) P= .666	• 11		.3684 ( 270) P= .000	-6.4949 ( 270) P= .666	-6.3267 ( 238) P= .066	-6.3753 ( 217) P= .666	.4608 ( 215) P= .000
. 7096 . 5795 . 5479 . 5771 . 5544 . 5450 . 4628 -0.5772 - 0 ( 265) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 27	CHSTC	<b>∵</b> #	.5628 ( 270) P= .000	.5519 ( 270) P= .000	.5632 ( 270) P= .668	• 11	• 11	.397 <i>0</i> ( 27 <i>0</i> ) P= .666	-0.5202 ( 270) P= .000	-6.4176 ( 238) P= .666	-0.4983 ( 217) P= .666	.5724 ( 215) P= .060
.7352 .6600 .6323 .6600 .6333 .6437 .3978 -0.5727 -0 ( 265) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270) ( 270	ABD1C	<b>∵</b>	.5795 ( 270) P= .000	.5479 ( 270) P= .000		• 11	- 11	. 11	-8.5778 ( 270) F= .000	-6.5082 ( 238) P= .000	-ø.5583 ( 217) P≕.866	.6148 ( 215) P= .000
	ABD2C		.6600 ( 270) P= .000	.6323 ( 270) P= .000	.6800 ( 270) P= .600	.6333 ( 269) P= .000	.6437 ( 279) P= .900	.3978 ( 279) P= .000	-8.5727 ( 270) P= .098	-0.5168 ( 238) P= .000	-6.5819 ( 217) P= .000	.6251 ( 215) P= .000

	GENDER	( i127) P= .	( i125) P= .	( i128)	( i127) P= .	( i127) P= .	( i128) P= .	( i128) P= .	( 1125) P= .	( i128) P= .	( 1128) P= .
1 1 1 1	¥	( i127) P= .	( 1125) P= .	( i128) P= .	( i127) P= .	( i127) P= .	( i128) P= .	( i128) P= .	( i125) Pm .	( i126) P= .	( 1128) P= .
	PTSCORE	-6.3122 ( 832) P= .000	-Ø.1593 ( 83Ø) P≕.ØØØ	-Ø.1Ø57 ( 833) P= .ØØ1	-6.6438 ( 832) P= .103	-0.8991 ( 832) F= .002	-6.1147 ( 833) P= .000	-0.1815 ( 833) P= .000	-0.0656 (832) P= .036	-0.1683 ( 831) P= .000	-0,8611 (833) P= .039
T S (WALES)	TWOMILE	.3424 ( 1005) P= .000	.2299 ( 1003) P= .000	.2073 ( 1006) P= .000	.1340 ( 1005) P= .000	.1392 ( 1005) P= .000	.1673 ( 1006) P= .000	.2287 ( 1006) P= .000	.0683 (1004) P= .015	.2139 ( 1004) P= .000	.1587 (.1606) P= .000
N H C H E N	PUSHUP	-6.2835 (1013) P= .000	-6.0908 (1011) P= .002	-6.0132 (1014) P= .337	.0305 (1013) P= .166	-0.0451 (1013) P= .078	-0.1076 (1014) P= .000	-6.1247 (1014) P= .000	-6.6279 (1012) P= .187	-Ø.0983 (1012) P= .001	.0241 ( 1014) P= .222
COEF	SITUP	-6.2572 ( 1013) P= .000	-0.1035 (1011) P= .000	-0.0757 (1014) P=.008	-6.6449 (1613) P=.677	-0.1034 (1013) P=.000	-0.1046 (1014) P=.000	-0.1569 ( 1014) P= .000	-0.0491 (1012) P= .059	-0.1822 (1012) P= .000	-6.0618 (1014) P= .025
LATION	E YTIND	.1123 ( 1108) P= .600	.0721 (1106) P= .008	.0:13 (1109) P= .085	-0.0253 (1108) P= .200	.ø413 (1108) P= .ø85	.0775 (1109) P= .005	.ø237 ( 1109) P= .215	.Ø189 ( 1106) P= .265	.0989 ( 1107) P= .000	.0392 (1109) P= .096
CORRE	PRIMOS	.8491 (1116) P= .858	.0536 ( 1114) P= .037	.0043 (1117) P= .443	.0002 (1116) P= .497	-0.0024 (1116) P= .489	-0.0305 (1117) P= .154	-0.0175 (1117) P= .280	-0.0705 (1114) P= .009	.6673 ( 1115) P= .612	.0312 ( 1117) P= .149
ARSON	CARMGMT	.0343 (1111) P= .127	.Ø102 ( 1109) P= .367	.0136 ( 1112) P= .326	.0047 (1111) P= .438	.0173 (1111) P= .282	-0.0233 (1112) P= .219	.0073 ( 1112) P= .464	.0102 ( 1109) P= .367	.0545 ( 1110) P= .035	.ø138 ( 1112) P= .323
P E	RANK	.1378 (1127) P= .000	.0948 (1125) P= .001	.0677 (1128) P= .011	-0.0184 (1127) P= .269	.0352 (1127) P= .119	.0964 (1128) P= .001	.1016 (1128) P= .000	.0062 ( 1125) P= .418	.1437 ( 1126) P= .000	.0531 ( 1128) P= .037
1 1 1	TIMESER	.2121 ( 1125) P= .000	.1459 (1123) P= .000	.1161 ( 1126) P= .000	.0295 (1125) P= .162	.0760 (1125) P= .005	.1154 (1126) P= .000	.1255 ( 1128) P= .600	-Ø.0239 (1123) P= .212	.2021 ( 1124) P= .000	.1000 ( 1126) P= .000
1 1 1 1 1		нтРС	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

5 E 1 1	KNEESF	.3504 (1128) P= .606	.2982 (1124) P= .000	.2983 ( 1127) P= .000	.2427 ( 1126) P= .000	.2238 (1125) Pm808	.2236 (1127) P= .000	.2767 (1127) Pr886	.2053 (1124) Pm. 600	.2473 (1125) Pm000	.240) (1127) P= .000
1 1 1	THISF	.5190 ( 1125) P= .000	.4033 ( 1123) P= .000	.3473 ( 1126) P= .000	.1508 ( 1125) P= .000	.1421 ( 1125) P= .000	.3197 ( 1126) P= .063	.3716 ( 1126) P= .000	.2371 ( 1123) P= .660	.1875 ( 1124) P= .000	.2383 ( 1126) P= .000
(S	ABDSF	.6533 ( 1126) P= .000	.4540 ( 1124) P= .000	.4568 ( 1127) P= .000	.2848 ( 1126) P= .000	.1990 ( 1126) P= .666	.3489 ( 1127) P= .666	.4163 ( 1127) Pm .000	.2121 ( 1124) Pm .000	.4045 ( 1125) P= .000	.3880 ( 1127) P= .000
T S (MALES	SUPRASF	.6235 (1126) P= .000	.3813 (1124) P= .666	.4348 (1127) P= .000	.2676 ( 1126) P= .000	.2012 ( 1126) P= .000	.3226 (1127) P= .600	.4076 (1127) P= .006	.2493 (1124) P= .886	.3817 ( 1125) P= .606	.3582 (1127) P≖ .600
FICHEN	WAISTSF	.6394 (1126) P= .000	.3938 (1124) Pm000	.4408 ( 1127) P= .808	.2865 ( 1126) P= .000	.2047 ( 1126) P= .000	.3621 (1127) P= .000	.4325 (1127) P= .000	.2555 ( 1124) P= .000	.3813 ( 1125) P= .000	.3782 ( 1127) P= .666
C 0 E F	MIDAXSF	.6524 ( 1126) P= .000	.3985 ( 1124) P= .000	.4731 ( 1127) P= .608	.2952 ( 1126) P= .000	.2001 ( 1126) P= .000	.3629 ( 1127) P= .000	.4232 ( 1127) P= .800	.2677 ( 1124) P= .866	.4100 ( 1125) P= .000	.4014 ( 1127) P= .000
LATION	TRICEPSF	.5543 (1126) P= .888	.3724 ( 1124) P= .600	.4102 ( 1127) P= .600	.2182 ( 1126) P= .000	.1834 ( 1126) P= .606	.3696 (1127) P= .000	.3966 ( 1127) P= .868	.2549 ( 1124) P= .000	.2189 ( 1125) P= .866	.2948 ( 1127) P= .888
CORRE	SCAPSF	.6093 ( 1126) P= .000	.4464 (1124) P= .000	.5043 (1127) P= .600	.3400 (1126) P= .200	.2042 (1126) P= .000	.3236 (1127) P= .000	.3993 (1127) P= .000	.2019 (1124) P= .000	.4400 (1125) P= .000	.4262 ( 1127) P= .600
ARSON	CHSTSF	.6263 ( 1126) P= .000	.4078 ( 1124) P= .000	.4073 ( 1127) P= .600	.2623 ( 1126) P= .600	.1873 ( 1128) P= .866	.3135 ( 1127) P= .000	.3714 ( 1127) P= .000	.1879 ( 1124) P= .000	.4171 (1126) P= .000	.3389 (1127) P= .000
  	CHINSF	.4601 ( 1126) P= .000	.2423 ( 1124) P= .666	.2751 ( 1127) P= .888	.1568 ( 1126) P= .000	.1336 ( 1126) P= .060	.2165 ( 1127) P= .000	.2971 ( 1127) P= .866	.1286 ( 1124) P= .888	.3725 ( 1125) P= .000	.2184 ( 1127) P= .600
1 1 1 1	RACE	-6.1273 ( 1127) P= .666	-6.0097 (1125) P= .372	.0231 ( 1128) P= .219	-0.0392 (1127) P= .094	-6.1719 ( 1127) P= .000	-0.1181 (1128) P= .000	-6.1108 (1128) P= .000	-0.1152 ( 1125) P= .000	-6.0244 (1126) P= .207	.0342 ( 1128) P= .125
1 1 1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

! ! !	1 1 1	1 1 1	Z 0 % Z ₹	CORRE	LATION	COEF	FICHEN	ITS (MAIES)	(s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i ! ! !
	CALFSF	BICEPSF	HEADC	SHOULC	CHSTC	ABD1C	AB02C	HIPC	HIC	BICEPC	FOREC
HIPC	.5063	.5679	.4102	.7077	.7829	.8179	.8322	1.0000	.6978	.6516	.5522
	(1125)	( 1125)	( 1126)	( 1126)	( 1125)	( 1126)	( 1127)	(1127)	( 1124)	( 1127)	( 1126)
	P= .600	P= .000	P= .600	Pm .000							
THIC	.3831 ( 1123) P= .600			.6248 ( 1124) P= .000	.6223 (1123) P= .000	.6039 ( 1124) P= .000	.5975 ( 1125) P= .000	.6978 ( 1124) P= .000	1.0000 (1125) P= .000	.6654 ( 1125) P= .888	.6467 (1124) P= .686
ВІСЕРС	.3587	.4330	.3441	.7076	.6302	.6347	.6111	.8516	.6654	1.8888	.7376
	( 1128)	( 1126)	( 1127)	( 1127)	(1126)	( 1127)	( 1128)	( 1127)	( 1125)	(1128)	(1127)
	P= .000	P= .888	P= .000	P= .000	P= .660	P= .696	P= .600	P= .000	P= .000	P= .888	P= .666
FOREC	.2145 ( 1125) P= .000		.3441 ( 1126) P= .000	.6403 ( 1126) P= .000	.5480 (1125) P= .000	.5161 ( 1128) P= .000	.4879 ( 1127) P= .000	.5522 (1126) P= .000	.5407 (1124) P= .000	.7375 (1127) P= .000	1.0000 (1127) P= .000
WRISTC	.1740 ( 1125) P= .000	.2014 ( 1125) P= .000		.6359 ( 1126) P= .000	.4403 ( 1125) P= .000	.3999 ( 1126) P= .000	.3974 ( 1127) P= .866	.4705 (1128) P= .000	.3668 (1124) P= .000	.4679 (1127) P= .660	.5604 (1126) P= .800
KNEEC	.3624	.3322	.2995	.4905	.4834	.4838	.4838	.5557	.4877	.4884	.4558
	( 1126)	( 1126)	( 1127)	( 1127)	( 1126)	( 1127)	( 1128)	(1127)	(1125)	(1128)	(1127)
	P= .000	P= .000	P= .000	P= .800	P= .000	P= .000	P= .600	P= .000	P= .000	P= .666	P= .000
CALFC	.3564 ( 1126) P= .000		.3378 ( 1127) P= .900	.611E ( 1127) P= .600	.6143 ( 1126) P= .000	.5993 ( 1127) P= .000	.5958 (1128) P= .000	.6863 ( 1127) P= .666	.6147 ( 1125) P= .808	.5902 (1128) P= .800	.5789 (1127) Pr000
ANKLEC	.3087	.2069	.3016	.4428	.4148	.3671	.3882	.5013	.4883	.4011	.4264
	( 1123)	( 1123)	( 1124)	( 1124)	( 1123)	( 1124)	( 1125)	( 1124)	( 1122)	( 1125)	( 1124)
	P= .600	P= .000	P= .800	P= .888	P= .000	P= .008					
NECKC	.1800	.3248	.3989	.6414	.6253	.6310	.6133	.5798	.5582	.6659	.5700
	( 1124)	( 1124)	( 1125)	( 1125)	( 1124)	( 1125)	( 1126)	( 1125)	(1123)	(1126)	(1125)
	P= .600	P= .000	P= .000	P= .000	P= .000	P= .006	P= .000	P= .866	P= .000	P= .866	Pm.006
FLXBICC	.2891	.348Ø	.3165	.7110	.8101	.5956	.5641	.6851	.8487	.8961	.7328
	( 1126)	(1126)	(1127)	(1127)	( 1126)	(1127)	(1128)	( 1127)	(1125)	(1128)	( 1127)
	P= .000	Pm .000	P= .000	P= .069	P= .666						

1 1 1	BIDELD	.4489 (1127) Pm .866	.2421 ( 1125) Pm .800	,4692 (1128) Pm ,668	.3891 (1127) Fa.666	.4263 ( 1127) % .866	.3816 (1128) 5m .666	.4098 (1128) = .666	.4361 ( 1125) Pm .866	.2864 (1126) Fm .666	.4869 (1128) Px .868
t :	_	\$ C.2	33. 36. 36.	2 (a)	85.8	86.78	86 S	1.68	2 2 2 3	20 <b>2</b>	83.8
1 1	BIACD	1127 Pm . 66	-6.1135 (1125) Pm.:606	.0995 (1128) P= .006	.1493 ( 1127) P= .988	.2888 ( 1127) Pz000	.2188 (1128) Pm000	.1971 (1128) P= .000	.3124 (1125) Pm .000	.0511 (1126) Pm .043	.6976 (1128) P* .001
: : : (S	¥.	.8889 ( 1127) P= .000	.7088 (1125) Pm .000	.7326 ( 1128) Pm .888	.6637 ( 1127) P= .800	.5887 ( 1127) P= .000	.6245 ( 1128) Pm .606	.7486 ( 1128) Fm .666	.5686 (1125) Pm .886	.6743 ( 1126) Pm .806	,7056 (1128) Pm .000
ITS (MALES)	Ħ	.3705 ( 1123) P= .000	.1967 ( 1121) Pa000	.1877 ( 1124) P= .006	.2936 ( 1123) P= .006	.4789 ( 1123) P= .666	.3832 ( 1124) Pm .000	.3236 ( 1124) Pm .000	.4151 ( 1121) Pm .666	.2633 ( 1122) Pm .000	.1873 ( 1124) Pm .000
FICKER	AGE	.1968 ( 1127) P= .666	.1096 ( 1125) P= .000	.6892 ( 1128) P= .666	.0247 ( 1127) P= .264	.ø861 ( 1127) P= .664	.1029 ( 1128) P= .000	.8994 ( 1129) P= .886	-6.8446 ( 1125) P= .867	.1869 ( 1126) P= .008	.Ø833 ( 1128) P≖ .ØØ3
C 0 R	FLXBICC	.6051 ( 1127) P= .000	.6487 ( 1125) P= .000	.8961 ( 1128) P= .666	.7328 ( 1127) P= .000	.4714 ( 1127) P= .600	.4465 (1128) P= .000	.5748 ( 1128) Pm .606	.3727 ( 1125) P= .666	.6633 (1126) P= .606	1.8686 (1128) P= .866
LATION	NECKC	.579 <b>6</b> (1125) P= .000	.5502 (1123) P= .600	.6059 (1126) P= .000	.5766 (1125) P= .666	.4288 ( 1125) P= .000	.3523 (1126) P= .000	.4913 ( 1126) P= .666	.3465 (1123) P= .000	1.0000 (1128) P= .000	,6833 (1126) P≕ ,888
C 0 R R E	ANKLEC	.5013 ( 1124) P= .000	.4083 (1122) P= .000	.4011 ( 1125) P= .000	.4264 ( 1124) P= .600	.5219 ( 1124) P= .000	.4832 ( 1125) P= .000	.6773 ( 1125) P= .888	1.0000 (1125) P= .000	.3465 ( 1123) P= .000	.3727 ( 1125) P= .606
ARSON	CALFC	.6863 ( 1127) P= .000	.6147 ( 1125) P= .000	.5902 ( 1128) P= .000	.5789 ( 1127) P= .000	.4874 ( 1127) P= .000	.5484 ( 1128) P= .000	1.0000 (1128) P= .000	.5773 ( 1125) P= .600	.4913 ( 1126) P= .000	.5748 ( 1128) P= .000
1 G M	KNEEC	.5557 ( 1127) P= .000	.4877 ( 1125) P= .060	.4884 (1128) P= .390	.4558 ( 1127) P= .000	.4724 ( 1127) P= .000	1.6066 (1128) P= .668	.5464 ( 1128) Pm .000	.4832 ( 1125) P= .000	.3523 ( 1126) P= .000	.4455 ( 1128) P= .000
1 t 1	WRISTC	.4705 (1126) P= .000	.3668 (1124) P≃ .000	.4679 ( 1127) P= .000	.5884 (1126) P= .000	1.8888 (1127) P= .888	.4724 ( 1127) P= .000	.4874 ( 1127) P= .000	.5219 ( 1124) P= .000	.4285 ( 1125) P= .000	.4714 ( 1127) P= .000
1 1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC
						H-49					

£ 1 1 1 1	DYLIFT	.2961 ( 861) F= .666	.3348 ( 896) P≖ .666	.5848 ( 802) P= .866	.5267 ( 801) P= .000	.4222 ( 801) P= .000	.3237 ( 802) P≃ .000	.3953 ( 802) P= .006	.3593 ( 301) Px .000	.3248 ( 806) P= .066	.5352 ( 802) Pz .006
1 1 1	뚶	-6.1384 ( 961) P= .006	-8.8586 ( 968) P= .881	-6.6924 ( 962) P= .662	-6.0722 ( 961) P= .013	-0.1115 ( 961) P≃, 266	-6.1692 ( 962) P≡ .006	-6.1588 ( 962) P= .006	-6.8614 ( 966) P= .828	-0.1938 ( 96€) P≈ .00€	-8.8796 ( 962) P= .087
(6	VOZIALKO	-6.4896 ( 963) P≈ .969	-6.3842 ( 962) P= .888	-8.3253 ( 964) P= .866	-6.2385 ( 963) P= .000	-0.1634 ( 963) P= .000	-6,1993 ( 964) P 636	-0.2752 ( 964) P= .000	-6.6546 ( 962) P= .647	-6.3267 ( 962) P≃ .666	-6.2918 ( 964) P= .886
T S (WALES	VOZLMIN	.4397 ( 752) P= .000	.4174 ( 751) P= .000	.4418 ( 753) P= .000	.4815 ( 752) P= .000	.4864 ( 752) P= .866	.4354 ( 753) P≅ .000	.5017 ( 753) Pm .000	.5251 ( 752) P≈ .836	.3789 ( 751) P= .000	.4487 ( 753) P= .066
N I C I E S	WRISTD	.3634 ( 1126) P= .000	.2149 ( 1124) P= .000	.3517 (1127) P= .000	.4032 (1128) P= .000	.6313 (1126) P= .888	.3867 (1127) P= .666	.4841 ( 1127) P= .006	.4409 ( 1124) P= .660	.3313 ( 1126) P= .000	.3439 ( 1127) P= .000
C 0 E F F	EL BOWD	.3474 (1124) P= .666	.2324 (1122) P= .000	.2799 ( 1125) P= .666	.3443 (1124) P= .000	.4452 (1124) P= .896	.3424 (1125) P= .000	.3598 (1125) P= .0000	.3581 (1122) P= .000	.2847 ( 1123) P= .000	.2959 ( 1125) P= .000
NOILA.	СНЅТО	.3574 (1125) P= .000	.0834 (1123) P= .663	.2838 ( 1128) P= .000	.2638 (1125) P= .000	.3467 (1125) P= .600	.3421 ( 1126) P= .600	.351 <i>6</i> (1126) P= .666	.3736 ( 1123) P= .066	.2082 ( 1124) P= .000	.2591 ( 1126) P= .000
CORREL	ANKLED	.2776 ( 1126) P= .000	.2364 ( 1124) P= .000	.2418 (1127) P= .000	.3125 (1126) P= .666	.4466 (1126) P= .000	.3777 (11127) Pe. :560	.3567 (1127) P= .600	.4384 ( 1124) P= .666	.2331 ( 1125) P= .000	.2422 ( 1127) P= .606
ARSON	KNEED	.4672 ( 1127) P= .000	.4959 (1125) P= .000	.398¢ (1128) P= .000	.3796 (1127) P= .000	.4017 (1127) P= .000	.4543 ( 1128) P= .000	.4595 (1128) P= .000	.4393 ( 1125) P= .666	.3548 ( 1128) P= .666	.3731 ( 1128) P= .000
3 d = -	BITROD	.3290 ( 1127) P= .000	-0.0276 (1125) P= .178	.1290 (1128) P= .000	.1433 ( 1127) P= .000	.3031 (1127) P= .000	.3348 (1128) P= .666	.2982 ( 1128) P= .000	.4186 (1125) P= .000	.6262 (1126) P= .190	.1893 ( 1128) P= .606
1 1 1	IILIACD	.3043 (1125) Pm000	-0.0478 (1123) P= .055	.0912 (1126) P= .001	.1042 ( 1125) P= .000	.2724 (1125) P= .000	.3003 (1126) P= .600	.2828 (1126) P= .666	.3893 (1123) P= .666	.0579 (1124) P= .028	.6736 (1128) P= .667
! ! ! !		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

1 1 1	CHARLBA	.6081 (1125) Pm .606	.5785 ( 1123) Fm .000	.6262 ( 1128) Pm . <b>966</b>	.6776 ( 1125) P= .606	.6144 ( 1125) Pm .866	. 5334 . (1126) P= .000	.8482 (1126) Pm .866	.6592 (1123) Fr886	.5862 ( 1124) Pm .866	.6579 ( 1126) Pm .606
1 1 1 1	UMMPCBF	.6164 ( 1125) P= .888	.3697 ( 1123) P= .000	.3345 ( 1126) P= .00M	.1555 ( 1125) Pm .800	.1235 ( 1125) P= .000	,2879 ( 1126) P= .000	.3453 ( 1126) Pm .866	.1578 ( 1123) Pm .866	.2978 ( 1124) Pæ .606	.2464 ( 1125) Pm .006
· (s	NOEN	-6.6087 (1125) Px.000	-6.3683 (1123) P= .000	-6.3331 ( 1126) Pm .600	-6.1547 ( 1125) P= .000	-6.1235 ( 1125) P= .886	-6.2878 ( 1126) P= .888	-6.3445 (1126) P≖ .000	-6.1572 ( 1123) P= .606	-6.2954 (1124) P= .006	-8.2448 ( 1126) Pm .000
T S (MALES)	<b>%</b>	,1151 ( 999) P= ,666	.2677 ( 998) Pm .464	-6.6393 (1666) Pm .167	.0152 ( 999) Pm .315	.1889 ( 999) Pm .000	.1177 ( 1866) P= .666	.0825 ( 1900) Pm .005	.1122 ( 997) P= .666	.1139 ( 998) P= .666	-6.6268 (1696) Pr .199
FICHEN	Š	.2472 ( 1122) P= .000	.1348 ( 1120) Pw .000	.082 <b>6</b> (1123) P= .003	.1665 ( 1122) Pm .000	.3099 (1122) Pm .000	.2331 ( 1123) P= .666	.2687 ( 1123) P= .000	.3189 ( 1120) Pm .000	.1794 ( 1121) P= .900	.6797 ( 1123) P= .664
C 0 E F	TAGRADE	-6.3536 ( 752) P≈ .666	-6.2763 ( 751) P= .666	- <b>6</b> .2424 ( 753) P= .696	-6.1581 ( 752) P= .000	-6.1486 ( 752) P= .000	-6.1514 ( 753) P= .008	-6.2418 ( 753) P= .000	-6.8662 ( 752) P= .035	-6.2822 ( 751) P= .6€3	-6.2219 ( 753) P= .000
NOHFYI	TASPEED	-0.2871 ( 752) P= .000	-6.2061 (751) P= .000	-6.2207 ( 753) P= .000	-6.1324 ( 752) P= .000	-6.6939 ( 752) F= .695	-6.1206 ( 753) P= .006	- <b>6.1863</b> ( 753) P≈ .606	-6.0674 ( 752) P= .058	-6.1686 ( 751) P= .006	-6.1636 ( 753) P= .006
CORRE	VEV02	-6.6742 ( 752) P= .621	-6.6767 ( 751) P= .018	-6.1169 ( 753) P= .001	-0.1078 ( 752) P= .002	-0.0771 ( 752) P= .017	-6.1063 ( 753) P= .002	-6.0948 (753) P= .005	-0.1546 ( 752) P= .000	-6.0162 ( 751) P= .329	-6.6996 (753) P=.663
PEARSON	VC02	-6.4521 ( 752) P= .666	-6.3554 (751) P= .686	-6.3566 ( 753) P= .000	-6.2351 ( 752) P= .000	-0.1484 ( 752) P= .000	-6.2084 ( 753) P= .000	-6.2875 ( 753) P= .000	-6.0544 ( 752) P= .068	-6.3289 ( 751) P≡.888	-8.3171 ( 753) P= .000
1 1 1	œ	-6.6398 ( 752) P= .138	-6.0606 ( 751) P= .048	-6.8879 (753) P= .808	-8.6311 ( 752) P= .197	.03333 ( 752) P= .203	-0.6484 ( 753) P= .692	.0071 ( 753) P= .422	.0123 ( 752) P= .368	-6.6467 ( 751) P= .133	-6.0719 ( 753) P= .024
1 1 1 1 1	Ϋ́	.3161 ( 752) P= .606	.2878 ( 751) P= .668	.2731 ( 753) P= .000	.3127 ( 752) P= .000	.3433 ( 762) P= .000	.2818 ( 753) P= .666	.3423 ( 753) P= .606	.327& ( 752) P= .808	.3667 ( 751) P= .666	.2935 ( 753) P= .000
1 1 1 1		HIPC	THIC	вісерс	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

1 1 1	1 1 1 1	PE/	ARSON	CORREL	NOTTA	C 0 E F	FICHEN	T S (MALES	(s	:	\$ 9 1 \$
	CWABF	SIMS	DWPCBFEX	SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING
HIPC	.7779	.6827	.5973	.6817	.5982	.6649	.4298	-0.6612	-8.5517	-8.5336	.6832
	(1125)	( 1126)	(1125)	( 1126)	( 1122)	( 1123)	( 1123)	(1123)	( 991)	( 865)	( 863)
	P= .666	P= .000	P= .000	P= .666	P= .606	Pr000	Pm .000	P= .866	P= .006	Pr006	Pm .666
THIC	.5250	.4523	.3868	.4519	.3700	.4338	.5329	-0.5818	-8.3989	-6.3232	.4958
	(1123)	( 1124)	(1123)	( 1124)	(1120)	( 1121)	( 1121)	(1121)	( 988)	( 963)	( 861)
	P= .000	P= .066	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .666	Fm .266
BICEPC	.5101	.5102	.4167	.5119	.4148	.4850	.6568	-8.6221	-6.4218	-6.2487	.4535
	(1126)	(1127)	( 1126)	( 1127)	( 1123)	(1124)	( 1124)	(1124)	( 991)	( 865)	( 863)
	P= .000	P= .660	P= .866	P= .006	P= .000	P= .800	P= .888	P≈ .000	P= .000	P= .866	Pm .000
FOREC	.346Ø	.3173	.2312	.3181	.2335	.2992	.5041	-6.4527	-0.3267	-6.1548	.3828
	(1125)	(1126)	( 1125)	( 1126)	( 1122)	( 1123)	(1123)	(1123)	( 990)	( 864)	( 862)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .006	P= .866	P= .009	P= .868
WRISTC	.2962	.2261	.2010	.2245	.1972	.2128	.2628	-6.2151	-6.1787	-6.1095	.1743
	( 1125)	( 1126)	(1125)	( 1126)	(1112)	( 1123)	(1123)	(1123)	( 990)	( 884)	( 862)
	P= .000	P= .000	P= .600	P= .000	P= .860	P= .000	P= .966	P= .000	P= .966	P= .661	Pm .066
KNEEC	.4326	.3778	.3378	.3769	.3355	.3884	.3223	-6.3408	-6.2566	-6.2484	.3726
	( 1126)	( 1127)	( 1126)	( 1127)	(1123)	( 1124)	(1124)	(1124)	( 991)	( 865)	( 863)
	P= .668	P= .000	P= .000	P= .000	P= .000	P= .600	P= .000	P= .000	P= .868	P= .866	Pm .000
CALFC	.5231	.4528	.3866	.4508	.3831	.4407	.5849	-6.5146	-0.4055	-6.3634	.4524
	( 1126)	( 1127)	(1126)	( 1127)	( 1123)	( 1124)	(1124)	(1124)	( 991)	( 865)	( 863)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .808	P= .000	Fm .000	P= .000	P= .866	Pm .0008
ANKLEC	.3198	.2647	.1971	.2625	.1913	.2599	.2883	-6.2427	-8.2284	-6.1594	.2466
	(1123)	( 1124)	( 1123)	( 1124)	( 1120)	(1121)	(1121)	(1121)	( 988)	( 862)	( 860)
	Pm606	P= .000	P= .660	P= .000	P= .000	P= .000	Pm.:600	P= .866	P= .606	Pz666	Pm .000
NECKC	.4689	.4102	.3624	.4093	.3629	.3925	,4097	-6.481€	-6.3597	-6.2621	.3936
	( 1124)	( 1125)	(1124)	( 1125)	(1121)	( 1122)	(1122)	(1122)	( 991)	( 863)	( 861)
	P= .000	P= .000	F= .000	P= .000	P= .000	P= .000	P≖ .000	P= .006	P= .666	P≖ .606	Pm .666
FLXBICC	.4335	.4134	.3248	.4160	.3310	.3885	.6188	-0.5945	-6.3711	-6.2029	.3932
	(1126)	(1127)	( 1126)	( 1127)	(1123)	( 1124)	( 1124)	(1124)	( 991)	( 865)	( 863)
	P= .000	P= .000	P= .000	P= .600	P= .000	F= .000	P= .000	Pm666	P= .000	Pm .006	Px .866

CONTRACTOR OF THE PROPERTY OF

GENDER			) ( 271) P= .							
¥	. 27 P≡ .	. 27 Pa .	( 271) P= .	P= .	. 27 P= .	. 27. P≖ .	( 27. P= .	( 27 P= .	, 27 P= .	, 26 P= .
PTSCORE	-0.1463	-0.1326	-0.1388	-8.6461	.1081	-0.1369	-8.1761	-0.0705	-6.0613	-8.663
	( 255)	( 256)	( 256)	( 256)	( 256)	( 256)	( 256)	( 256)	( 255)	( 253)
	P= .016	P= .017	P= .613	P= .232	P= .042	P= .018	P= .002	P= .131	P= .162	P= .460
TWOMILE	.2614	.2449	.2868	.1814	-6.1718	.1758	.2508	.8620	.0371	.1664
	( 253)	( 254)	( 254)	( 264)	( 254)	( 254)	( 254)	( 254)	( 253)	( 251)
	P= .000	P= .000	P= .000	P= .263	P= .003	P= .002	P= .600	P= .163	Pr278	P= .664
PUSHUP	-6.2417	-6.2038	-8.1508	-0.0588	.1017	-0.2018	-0.1931	-0.1152	-6.0600	-8.8875
	( 254)	( 255)	( 255)	( 255)	( 255)	( 255)	( 255)	( 255)	( 254)	( 252)
	P= .000	F= .001	P= .008	P= .175	P= .053	P= .001	P= .001	P= .033	P= .171	P= .083
SITUP	-0.1375	-0.0378	-0.1804	-6.6738	-6.9698	-0.6853	-0.1371	-6.0356	-0.1107	- <b>0.0</b> 770
	( 264)	( 255)	( 255)	( 255)	( 265)	( 255)	( 255)	( 255)	( 254)	( 252)
	P= .014	P= .274	P= .002	P= .120	P≕.438	P= .687	P= .014	P= .286	P= .039	P= .112
UNITYPE	.8875	.1327	.0666	.0194	-0.0635	.0847	.0422	.8897	-0.0360	.0940
	( 269)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 278)	( 269)	( 267)
	P= .876	P= .015	P= .160	P= .375	P= .149	P= .145	P= .245	P= .437	P= .278	P= .063
PRIMOS	.0001	-6.0413	-0.1462	-0.1465	-0.0912	-0.0534	-0.0617	-0.0316	-6.6721	-0.1383
	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 279)	( 268)
	P= .500	P= .249	P= .008	P= .008	P= .067	P= .191	P= .156	P= .303	P= .119	P= .012
CARMGMT	.0604	.0503	.ø886	.1082	.0050	.8672	.1093	. 6789	.0699	.0941
	( 269)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 270)	( 269)	( 267)
	P= .162	P= .205	P≕ .ø73	P= .038	P= .467	P= .135	P= .036	P= . 698	P= .127	P= .063
RANK	.0705	.0075	-6.6356	.0059	-6.0611	.13Ø3	-0.0675	-0.0680	.00880	-0.0416
	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 268)
	P= .124	P= .451	P= .283	P= .462	P= .158	P= .016	P= .134	P= .132	P= .448	P= .249
TIMESER	.1475	.0426	.0748	-6.6193	.0526	.0424	.0326	-0.0346	. <b>64</b> 53	.0593
	( 270)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 268)
	P= .008	P= .242	P= .110	P= .376	P= .194	P= .244	P= .296	P= .285	P= .229	P= .187
	HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

COEFFICIENTS (FEMALES)

! ! 8	OVEESF	.2149 276) = .888	.1473 271) = .668	.2793 271) = .888	.2456 271) = .866	.0.0260 ( 271) = .335	.2273 271) = .666	.2989 271) = .666	,2367 271) = ,666	.1310 270) = .616	.3814 268) = .686
!	_	ےق	تقت	ٺق	٦ä	Toa	تق	ته ت	تق ح	<u>ٽ</u>	<b>∵</b> ĕ.
1	HISF	.5367 278) .868	.4433 271) .000	.5323 271) .000	2335 271) .000	271) 271)	3824 271) .060	.4898 271) .668	3694 271) .000	1053 270) .642	4162 268) .086
1	¥	<u>ٿ</u> ا۔	~ <u>"</u>	-i	<b>~</b> ≝	~# #	-d	- <u>-                                  </u>	- "		-الله
!	ABOSF	.4912 270) .006	3848 271) .888	5248 271) .668	2314 271) .066	.0001 271) .500	2424 271) .000	.3252 271) .066	2067 271) .888	.1813 270) .601	.4459 268) .066
(S37)	<b>A8</b>	_# 	, _ <u>  </u>	- <u>"</u>	~ <u>"</u>	- H	_¶	"II	_a_	~ª	- #
(FEMALES	SUPRASF	.4527 270) .000	.2624 271) .000	4927 271) .666	2164 271) .666	Ø382 271) .265	.2516 271) .886	.2999 .271)	2523 271) .066	.1895 270) .001	4321 268) .666
<b>→</b>	S	_ <u>"</u>	~ <u>#</u>	- <u>H</u>	~ <u>#</u>	_ <u> </u>	_ <u>_</u>	~ <u>¶</u>	_ <u> </u>	<u>ا</u> ا	اله ^ا
H	ISTSF	.4959 278) .686	.3179 271) .686	5563 271) .086	2761 271) .086	#278 271) .326	3156 271) .000	.3465 271) .000	2728 271) .000	.2846 .27.9) .888	4838 268) .006
F I C	¥¥.	_ <u> </u>	~ <u>¶</u>	_# #	~ <u>#</u>	~ <u>"</u>	~ <u>#</u>	~ <u>#</u>	~ <u>#</u>	~ <u>"</u>	<u>"</u>
) E F	AXSF	. 5653 269) . 886	.3658 270) .800	5315 270) .000	2677 270) .000	.368	3252 270) .066	3386 270) .060	2821 270) .666	.2368 269) .006	4719 287) .000
Ü	MI	_ <u>_</u>	<u></u>	~ <u>"</u>	<u>ال</u>	8 0 1	_# #	_d_	<u>.</u>	ري ا	<u>"</u>
N O H	TRICEPSF	6186 276) .866	.4884 271) .666	7221 271) .066	3283 271) .000	.0233 271) .351	.4605 271) .000	.51 <i>0</i> 7 271) . <i>0</i> 00	3273 271) .666	.1885 270) .001	5942 268) .000
LAT	TR.	_ <u> </u>	-d	_ <u>#</u>	ال ب	~ <u>"</u>	_ <u>"</u>	<u>ال</u> اب	ال ب	_ <u> </u>	~ <u>"</u>
χ Ε	SCAPSF	.558 <i>0</i> 27 <i>0</i> ) .880	4269 271) .000	5577 271) .000	3269 271) .666	Ø138 271) .41Ø	3421 271)	3699 271) .000	1838 271) .001	2986 270) .000	4921 268) . 888
0 0	SC.	~d!	~ <u>#</u>	_d	له ب	9°°	~ <u>∦</u>	~ <u>#</u>	اله ب	_# _#	_# _#
z o	CHSTSF	.3854 270) .000	2892 271) .000	3622 271)	.2062 271) .000	-0.0549 ( 271) P= .184	.1782 271) .882	2108 271) .000	.0331 271) .294	.2649 .278) .636	.3247 268) .006
<b>A</b> S	ž	اله ب	_d	~d!	_# _#	9.04	~ <u>a</u> ll	_¶_		_#	_ ₁ 1
C. Μ	CHINSF	.4281 278) .668	.2567 271) .666	.4688 271) .888	.2432 271) .888	.ø169 271) .429	.2786 271) 666	.3139 271) .666	.2633 271) .666	.2686 270) .000	.3984 268) 686
1 1 1	£	_ H	_¶_		~ <u>¶</u>	~# -#	_¶_	~#	~ <u>"</u>	~d	٣٠.
! !	RACE	-0.0935 ( 270) P= .063	.8845 271) .471	.0697 271) .128	-0.0020 ( 271) P= .487	.6331 271) .294	-0.0405 ( 271) P= .253	-6.0616 ( 271) P= .156	-0.1535 ( 271) P= .066	.0585 270) .169	.1275 268) .ø18
1	RA	P - 6	~ <u>"</u>	~ <u>"</u>	9 ° "	_ _#	ø _ "	اً ^ ال	P	· - 4	- ¶
l l				D U	Ų	5	Ų	Ų	EC	<u>u</u>	CC
1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	*ÆCKC	FLXBICC
						H-54					

1 1 3 1	FOREC	.5276 ( 278) Pz000	.4588 ( 271) Pm .666	.6815 ( 271) P≈ .000	1.6006 ( 271) Pa .806	.2404 ( 271) Px .006	.4725 ( 271) P= .006	.5259 ( 271) Fm .866	.4356 ( 271) Px .800	.4826 ( 278) Pm .666
1 1 1 1	BICEPC	.7162 ( 270) P= .666	.5876 ( 271) P= .800	1.0000 ( 271) Pa .600	.6815 ( 271) P= .000	.2151 ( 271) P= .000	.5311 ( 271) P= .000	.6665 ( 271) P= .666	.4539 ( 271) P= .600	.4215 ( 278) Pr666
t t	THIC	.7636 ( 276) P= .686	1.6666 ( 271) Pr666	.5876 ( 271) Pm966	.4588 ( 271) Px .000	.6667 ( 271) P= .176	.5625 ( 271) Pm .868	.5667 ( 271) Pm .666	.3842 ( 271) P= .606	.3091 ( 270) P= .000
T \$ (FEWALES)	HIPC	1.8666 ( 278) P= .666	.7836 ( 276) Pm .566	.7162 ( 27#) P= .666	.5276 ( 270) P= .006	.1566 ( 278) P= .667	.6282 ( 278) P=	.6216 ( 270) Pm .000	.5469 ( 278) F= .806	.4111 ( 269) P= .888
Z W H O H	ABO2C	.7825 ( 289) P= .888	.4577 ( 278) P= .606	.6502 ( 270) F= .800	.4873 ( 278) P= .000	.1348 ( 276) Pz614	.4542 ( 270) P= .866	.4892 ( 276) Pr666	.3908 ( 278) P= .866	.4123 ( 269) P= .800
0 3 4	ABDIC	.6796 ( 269) P= .666	.5856 ( 270) P= .668	.6774 ( 278) P= .800	.5436 ( 278) P= .866	.1626 ( 270) P= .646	.4331 ( 276) P= .666	.4982 ( 278) P= .966	.3575 ( 276) P= .666	.4926 ( 269) P≖ .666
NO H + A	CHSTC	.5489 ( 269) P≈ .006	.4584 ( 278) P= .666	.654 <b>6</b> ( 278) P= .606	.5128 ( 270) P= .666	.1614 ( 270) P= .064	.4238 ( 276) P= .866	.4446 ( 270) P= .000	.3763 ( 276) P= .666	. 4453 ( 269) P≡ . 966
C O R R E L	SHOULC	.6857 ( 269) P= .866	.4168 ( 270) P= .006	. 5649 ( 276) P= . 566	.6671 ( 278) P= .666	.2317 ( 276) P= .666	.3741 ( 270) P= .866	.4281 ( 276) P= .666	.3769 ( 270) P= .666	,4769 ( 269) P= .866
z 0 ທ ແ	HEADC	.8973 ( 269) P= .856	. <b>6</b> 944 ( 270) P= . <b>6</b> 61	.6771 ( 278) P= .163	.1305 ( 270) P= .018	.2695 ( 276) P= .666	.1738 ( 278) F= .002	.1866 ( 270) P= .848	.0954 ( 270) P= .659	.1863 ( 269) P≃ .001
¥ ₩ 1	BICEPSF	.4678 ( 270) P= .868	.3118 ( 271) P= .600	.5616 ( 271) P= .666	.3053 ( 271) Pz060	-6.0649 ( 271) P= .468	.3348 ( 271) P= .666	.3711 ( 271) P= .000	.2263 ( 271) P= .666	.2874 ( 270) P= .606
	CALFSF	.5181 ( 270) P= .000	.4371 ( 271) P= .666	.5187 ( 271) P= .000	.3165 ( 271) P= .000	.0703 ( 271) P= .124	.4843 ( 271) P= .666	.4758 ( 271) P= .000	.4196 ( 271) P= .666	.1367 ( 278) P= .612
1 1 1 1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC

f f	BIDELD	278 278 8	271)	5111 271) .000	3749 271)	271)	3296 271)	3530 271)	4175 271)	1962 276)	.4711 268) .666
\$ t 1		H	`~#	م	F	ال	· _ #	`~#	" "	∪aH aL	, ∩ ^{tr}
1	BIACD	276)	-6.6276 ( 271) P= .326	2522 271) .006	.1871 271) .861	.2947 271)	.1541 271)	.1899 271) .061	3308 271)	1184 278) .826	2534 258) . 568
;	BI/	اله ب		_ <u>#</u>	~# #	- <u>#</u>	-d	_ _{II}	<u>ٿا</u> ۔		-di
1 1		.863 <b>6</b> 27 <b>8</b> ) .666	.6965 .271)	7848 271) .000	6568 271) .000	2337 271) . 566	6863 271) . 666	7137 271) .666	6188 271) .000	5222 276) .866	7323 268) .066
LES)	¥	- H	~ <u>"</u>	_a. _a.	الم الم	<u>ال</u> اب	<b>∪</b> #	-d	- <u>"</u>	_#.	- <u>"</u> "
(FEMALES		2611 270) .006	271)	1286 271) .017	271) 271)	2161 271) .000	3548 271) .866	2467 271) .866	3427 271)	2487 278) .806	1721 268) .862
S	Ħ	- L	~¶	- E	الهرب	~a!!	~¶	~ <u>₽</u>	~# #	~ <u>"</u>	~ <u>#</u>
Z H	***	884 78)	6149 271) .463	1361 271) .616	4275 271) .326	.6.6123 ( 271) = .426	1429 271) .009	9626 271) .152	6133 271)	.8695 276) .127	1615 268) .864
H	A CE	_a"			بار ال	6	~a!!	<u></u>	9 0	<u>"</u>	Jall Jall
E E	FLXBICC	.6357 267) .888	5173 268) .066	.8541 268) .866	.6728 268) .866	.2814 268) .686	.5003 268) .000	5344 268) .888	3819 268) .000	4713 267)	268) 268)
Ü	5	~d!	ال _ة ب	_ <u> </u>	~d	~å"	~ <u>"</u>	_ <u> </u>	<u>"</u>	ال _ا ب	" _ <u>  </u>
N O H	MECKC	.4111 269) .966	.3691 278) .888	4215 276) .996	.4826 278) .866	1975 270) .001	2763 270) .866	2831 270) .090	2152 270) .060	1.0000 ( 270) = .000	4713 287) .668
LAT	Ž	الم	~ <u>"</u>	_# _#	ال	-# -#	_# _#	_a	~ d	ال _ا ب	- d
85 EN	ANKLEC	5469 270) .006	3842 271) .000	4539 271) .000	4356 271) .096	2941 271) .886	5408 271) .066	6623 271) .986	1.6666 271) = .666	2152 276) . 900	3819 268) .006
0	~	- d	-å	ال _ا ت.	_#	<b>~</b> ª	~g	-d	-i _#	. ~ #	. ~ #
Z	CALFC	.6216 276) 666	.5867 271) .000	.6665 271) .666	.5259 271) : .888	271)	.5962 271) .666	1.6666 ( 271) P= .666	.6623 271) .868	.2831 270) .868	.5344 268) .000
EARS	3	~ <u>#</u>	~ <u>"</u>	_# -#	-d	<b>้</b> ๛ู่ <u>เ</u>	· _ &	ٿاپ ٿ	·_#	٠- ا	`~#
۵	KNEEC	.6282 276) 866	.5825 271) .000	.5311 271) : .698	.4725 271)	.1644 271) .003	1.6866 ( 271) = .688	.5962 271) .000	.5408 271) 060	.2763 278) .868	. 5669 268) . 666
1	₹	_d	- 6	-d	~!!	~a	~ #	~£	`~#	-å	. ~¶
1	WRISTC	.1508 276) .867	.8567 271) .176	.2151 271) .666	.2464 271) .066	1.0000 ( 271) = .000	.1644 271) .003	.1519 271) .606	2941 271) .066	276)	.2814 268) .080
1 1 1	*	. ~ ¶	_¶	`~#	~#	L	. – ¶	~ d	`~#	`~#	ٿا پ
1		U	U	EPC	ပ္ဟ	STC	<del>ن</del> الل	υ L	LEC	Ď.	FLXBICC
; ;		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLX

ARTHOLOGICAL MARKO PROGRAMMA CORRESPONDANCES OF SECURITIES AND CORRESPONDED TO CONTRACTOR OF SECURITIES OF SECURIT

1 1 1 1 1 1 1	DYLIFT	1477 ( '242) P= .011	.2164 ( 243) P= .666	.2196 ( 243) P≖ .666	.2783 ( 243) P= .000	.2114 ( 243) P= .006	.1868 ( 243) P= .858	.1277 ( 243) P= .023	.1787 ( 243) P= .063	.2536 ( 242) P= .000	.2665 ( 241) P= .996
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¥	-8.6692 ( 237) P= .182	.8691 ( 238) Pm .444	-6.6482 ( 238) P= .229	.6376 ( 238) P= .282	.6466 ( 238) P= .276	-8.6346 ( 238) P= .298	-6.6486 ( 238) P= .231	-6.6289 ( 238) P≖ .328	.0644 ( 237) P= .473	-6.6262 ( 236) P= .379
ES)	YOZMLKG	-6.4556 ( 237) P≖.000	-6.3517 ( 238) P= .000	-0.4325 ( 238) F2 .000	-8.2524 ( 238) P≈ .006	.1530 ( 238) P= .607	_6.2963 ( 238) P= .006	-0.3255 ( 238) P= .606	-0.1165 ( 238) P= .036	-6.1841 ( 237) Pm .002	-6.3150 ( 236) P= .900
T S (FEMALES)	VOZLKIN	.4608 ( 236) P= .866	.4259 ( 237) Pm .800	.4829 ( 237) Pm866	.4658 ( 237) P= .666	.3867 ( 237) P= .886	.4418 ( 237) Pm .806	.4285 ( 237) P= .008	.5428 ( 237) P= .508	.3786 ( 236) P= .688	.4621 ( 235) P= .000
NHUHH	MAISTD	.2872 ( 269) Pm . <b>656</b>	.1641 ( 278) Pm .644	.2936 ( 278) P= .006	.3567 ( 270) P= .800	.3861 ( 276) Pz656	.3356 ( 276) P= .886	.3868 ( 276) P= .866	.4769 ( 276) P= .666	.2164 ( 269) P= .886	.2825 ( 267) P= .868
COEF	EL80#0	.1562 ( 276) P= .667	.6592 ( 271) P= .158	.2158 ( 271) P= .800	.3662 ( 271) P= .666	.2262 ( 271) P= .6006	.2198 ( 271) P= .866	.1462 ( 271) P= .616	.2513 ( 271) P= .866	.1721 ( 276) P= .862	.2333 ( 268) P≕ .696
NOILY	CHSTD	.2985 ( 270) Pm .605	.6886 ( 271) P= .674	.3463 ( 271) P≈ .066	.2671 ( 271) P= .666	.2393 ( 271) P= . <b>068</b>	.2359 ( 271) Pr000	.2943 ( 271) P= .666	.3523 ( 271) P= .866	.6882 ( 276) P= .674	.3318 ( 268) P= .666
CORREI	ANKLED	.2716 ( 278) Pa .066	.6464 ( 271) Pz .254	.1683 ( 271) Pm .063	.3892 ( 271) P= .888	.3114 ( 271) P= .666	.2851 ( 271) P= .666	.2974 ( 271) P= .000	.5656 ( 271) Px .006	.1938 ( 278) P= .001	.1527 ( 268) P= .006
X 0 % X Y	KOKEED	.4889 ( 278) P= .066	.4012 ( 271) P= .886	.5024 ( 271) Pz086	.4232 ( 271) P= .000	.1885 ( 271) P= .001	.5716 ( 271) Pa .886	.4828 ( 271) P= .066	.4781 ( 271) Pm .666	.1549 ( 278) P= .005	.4167 ( 268) P= .608
1 1	BITROD	.4371 ( 275) P= .006	.1469 ( 271) Pm. 008	.3589 ( 271) P≖ .008	.1968 ( 271) Pz. 2001	.2583 ( 271) P= .606	.3479 ( 271) Pm .666	.3349 ( 271) Pm .606	.4316 ( 271) P= .066	.6462 ( 270) Pm .225	.3121 ( 268) P= .000
1 1	IILIACO	.3451 ( 269) Pa .000	.6396 ( 275) Pu .258	.3617 ( 275) Pm666	.1153 ( 278) P= .029	.2123 ( 276) Pm .806	.2422 ( 278) P= .686	.2876 ( 278) Pm .666	.3737 ( 276) Pa .088	.6467 ( 269) Pm .263	.2661 ( 267) P= .986
1 1 1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

	CMMCBM	.5193 ( 265) P= .686	.4662 266) = .666	4989 266) = .000	.6106 266) = .000	.3237 ( 286) P= .000	.5000 266) = .660	.4846 266) = .688	.6268 266) = .666	.4902 285) = .666	.5125 . 263) = .000
	CHAPCBF	.6393 ( 265) P= .666 P	.5483 ( 286) ( P= .000 P	,5468 ( 266) P= .666 P	.2316 ( 266) ( 269) ( P= .000 P	-6.6788 ( 266) ( P= .186 P	.3964 ( 268) P= .866 P	.4563 ( 286) ( P= .868 P	. 262 <i>6</i> ( 266) P= . 666	.1417 ( 265) ( P= .011 P	.4566 ( 263) ( P= .866 F
(LES)	NO EN	-6.6369 ( 265) P= .686	-0.5502 ( 266) P= .600	-0.5423 ( 266) P= .000	-6.2288 ( 266) P= .000	.08803 ( 266) P= .096	-0.3886 ( 266) P= .000	-0.4540 ( 268) P= .000	-6.2609 ( 266) P= .000	-6.1394 ( 265) P= .012	-0.4457 ( 263) P= .000
N T S (FEMALES)	RLV	.0207 ( 259) P= .370	-6.1247 ( 260) P= .022	-0.0306 ( 260) P= .315	.0194 ( 260) P= .378	.ø448 ( 260) P= .236	.1208 ( 260) P= .026	.0123 ( 260) P= .422	.1035 ( 260) P= .048	.1235 ( 259) P= .024	.0305 ( 258) P= .313
FICIE	. VC	.1818 ( 264) P= .002	.0862 ( 265) P= .097	.1738 ( 265) P= .002	.31Ø3 ( 26S) P≃ .ØØØ	.1951 ( 265) P= .001	.2833 ( 265) P= .000	.2220 ( 265) P= .000	.3545 ( 265) P= .000	.2757 ( 264) P= .000	.2110 ( 262) P= .000
で の に に に に に に に に に に に に に に に に に に	TWGRADE	-6.3847 ( 236) P= .866	-6.2297 ( 237) P= .000	-0.3328 ( 237) P= .000	-0.1594 ( 237) P= .007	.0992 ( 237) P= .064	-0.2048 ( 237) P= .001	-8.2642 ( 237) P= .000	-0.1017 ( 237) P= .059	-0.0575 ( 236) P= .190	-6.2643 ( 235) P= .001
LATION	TASPEED	-6.2162 ( 236) P= .886	-0.2151 ( 237) P= .000	-0.1764 ( 237) P= .603	-0.1415 ( 237) P= .015	.0685 ( 237) P= .147	-0.0535 ( 237) P= .206	-6.1827 ( 237) P= .002	-0.0551 ( 237) F= .199	-6.0531 ( 238) P= .209	-6.1148 ( 235) P= .040
C O R R E	VEV02	-0.1425 ( 236) P= .014	-0.0689 ( 237) P= .152	-0.1036 ( 237) P= .056	-0.1104 ( 237) P= .045	-0.0091 ( 237) P= .444	-6.1140 ( 237) P= .040	-0.1886 ( 237) P= .002	-6.2175 ( 237) P= .000	-Ø.0865 ( 236) P= .154	-0.1420 ( 235) P= .015
ARSON	VC02	-0.4035 ( 236) P= .000	-6.3342 ( 237) P≃ .068	-0.3550 ( 237) P= .000	-6.1994 ( 237) F= .601	.1585 ( 237) P= .007	-0.2596 ( 237) P= .000	-6.2791 ( 237) P= .688	. a.1188 ( 237) P= .034	-0.1113 ( 236) P= .044	-6.2407 ( 235) P= .000
យ ៤ ៖	Œ	-6.6326 ( 236) F= .369	-8,0377 ( 237) P= .282	.ø199 ( 237) P= .38Ø	.0220 ( 237) P= .368	.0461 ( 237) P= .240	-0.0242 ( 237) P= .355	.0016 ( 237) P= .490	-ø.ø287 ( 237) P= .33ø	.ø762 ( 236) P= .122	.0402 ( 235) P= .270
1 1 1 1	VE	.2743 ( 236) P= .666	.3131 ( 237) P= .000	.2687 ( 237) P= .098	.3898 ( 237) P= .888	.3081 ( 237) P= .000	.2762 ( 237) P= .000	.2118 ( 237) P= .601	.2723 ( 237) Pe .666	.2614 ( 236) P= .000	.2794 ( 235) P= .000
1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

: : : : :	KRATING	.7117 ( 215) P= .000	.5845 ( 216) P= .668	.6476 ( 218) P= .666	.4088 ( 216) P= .000	.Ø199 ( 216) P= .386	.4395 ( 216) P= .000	.5526 ( 216) P= .600	.3687 ( 216) P= .000	.2616 ( 215) P= .000	.5527 ( 215) P= .000
1 1 1	AVSSR	-6.6222 ( 217) P= .606	-6.4219 ( 218) P= .000	-0.5428 ( 218) P= .000	-0.2624 ( 218) P= .000	-0.0500 ( 218) P= .231	-0.3386 ( 218) P= .000	-0.4303 ( 218) P= .000	-0.3310 ( 218) P= .000	-6.2163 ( 217) P= .001	-0.4546 ( 217) P= .008
res)	AVUNIR	-0.5240 ( 238) P= .000	-6.4016 ( 239) P= .000	-6.4667 ( 239) P= .000	-0.2407 ( 239) P= .000	-0.0582 ( 239) P= .185	-6.3417 ( 239) P= .000	-0.3598 ( 239) P= .000	-0.2409 ( 239) P= .000	-0.2205 ( 238) P= .000	-Ø.3823 ( 236) P≕.¢66
T S (FEMALES	ECTO	-6.6149 ( 270) P= .000	-6.5794 ( 271) P= .888	-0.6579 ( 271) P= .000	-0.4988 ( 271) P= .000	-0.0371 ( 271) P= .272	-0.3620 ( 271) P= .000	-0.5984 ( 271) P= .000	-6.3189 ( 271) P= .000	-6.3246 ( 270) P= .866	-0.5766 ( 268) P= .000
FICIEN	MESO	.4459 ( 270) P= .000	.4209 ( 271) P= .600	.6614 ( 271) P= .000	.4748 ( 271) P= .000	.1224 ( 271) P= .022	.3731 ( 271) P= .666	.6057 ( 271) P= .000	.3536 ( 271) P= .000	.1695 ( 270) P= .003	.5498 ( 268) P= .000
COEF	ENDO	.6146 ( 270) P= .000	.4481 ( 271) P= .666	.6572 ( 271) P= .000	.3122 ( 271) P= .000	.0250 ( 271) P= .341	.3773 ( 271) P= .000	.4252 ( 271) P= .060	.2818 ( 271) P= .000	.2554 ( 270) P= .000	.5568 ( 268) P= .000
LATION	DWPCBF	.6059 ( 269) P= .000	.4201 ( 270) P= .606	.6734 ( 270) Pr000	.3431 ( 270) P= .000	.ø388 ( 270) P= .263	.3919 ( 270) P= .000	.4285 ( 270) P= .600	.2731 ( 270) P= .000	.2825 ( 269) P= .000	.5928 ( 267) P= .000
CORRE	SUMSA	.6182 ( 270) P= .000	.4341 ( 271) P= .666	.6811 ( 271) P= .000	.3369 ( 271) P= .666	.0260 ( 271) P= .335	.4017 ( 271) P= .000	.4508 ( 271) P= .000	.2972 ( 271) P= .000	.2771 ( 270) P= .000	.5934 ( 268) P= .000
ARSON	DWPCBFEX	.6893 ( 278) P= .888	.4423 ( 271) P= .000	.6567 ( 271) P= .000	.3125 ( 271) P= .000	.0235 ( 271) P= .350	.3961 ( 271) P= .000	.4389 ( 271) P= .666	.2863 ( 271) P= .666	.2581 ( 270) P= .000	.5655 ( 268) P= .000
PE	SMNS	.6178 ( 270) P= .000	.4322 ( 271) P= .000	.6833 ( 271) P= .666	.3338 ( 271) P= .000	.0190 ( 271) P= .378	.4007 ( 271) P= .000	.4508 ( 271) P= .000	.2988 ( 271) P= .000	.2718 ( 270) P= .000	.5908 ( 268) P= .000
1 1 1	UWWBF	.8162 ( 265) P= .000	.6747 ( 268) P= .000	.7151 ( 266) P= .000	.4381 ( 266) P= .000	.Ø412 ( 266) P= .252	.5677 ( 266) P= .000	.6257 ( 266) P= .000	.4461 ( 266) P= .000	.3185 ( 285) P= .000	.6264 ( 263) P= .000
1 1 1		HIPC	THIC	BICEPC	FOREC	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC

1 1 1	GENDER	( 1128) P= .	( i124) P= .	( 1128) P= .	( i128) P= .	( i128) P= .	( i126) P= .	( i128) P= .	( 1128) P= .	( i127) P= .	( i126) P= .
1 1 1 1 1	¥	( i128) P= .	( i124) P= .		(1128) P= .						(i126) P=:
	PTSCORE	-6.2711 ( 833) P= .000	-6.8323 ( 829) P= .176	-8.2484 ( 833) P= .000	.1661 ( 833) P= .000	.0205 ( 833) P= .277	-0.0164 ( 831) P= .318	.0059 ( 833) P= .433	-8.0882 ( 833) P= .006	.ø201 ( 832) P= .281	.0194 ( 831) P= .288
T S (WALES	TWOMILE	.3981 (1006) P= .000	.0408 ( 1002) P= .098	.3293 ( 1006) P= .000	-0.1006 (1006) P= .001	.0229 (1006) P=.234	.0531 ( 1004) P≃ .046	.0151 ( 1006) P= .316	.0893 (1006) P= .002	.0181 ( 1005) P= .283	.0696 ( 1005) P= .014
H C H E	PUSHUP	-0.5179 ( 1014) P= .000	-0.1541 ( 1010) P= .000	-0.2533 (1014) P=.000	.0135 (1014) P= .334	.0369 (1014) P= .120	-0.2054 (1012) P=.000	-0.1400 (1014) P= .000	-0.0485 (1014) P=.061	-0.0384 (1013) P= .111	-8.1874 (1812) P=.888
COEFF	SITUP	-0.4470 (1014) P=.000	-0.1093 (1010) P=.000	-0.2683 (1014) P=.000	.0503 (1014) P= .055	-0.0211 (1014) P= .251	-0.1351 (1012) P= .000	-0.0692 (1014) P= .014	-0.0690 (1014) Pm .014	~8.6188 (1613) P= .276	-8.1876 (1012) P= .008
ATION-	UNITYPE	.5038 (1109) P= .000	.1680 ( 1105) P= .000	.1625 (1109) P= .000	.1134 (11109) P= .000	.0782 (1109) P= .005	.1943 ( 1107) P= .000	.1127 (11109) P= .000	.0564 (1109) P= .030	.0399 (1103) P= .092	.1459 ( 1107) P= .000
CORREI	PRIMOS	.0111 (1117) P= .355	-0.0225 (1113) P= .227	.83Ø1 (1117) P= .158	-6.2147 (1117) P= .000	-0.1168 (1117) P= .000	-0.1705 (1115) P= .000	-0.1851 (1117) P= .000	.0170 (1117) P= .285	-0.0453 (1116) P= .065	-0.1798 ( 1115) P= .000
A R O N	CARMGMT	-0.0157 ( 1112) P= .301	-0.0570 (1108) P= .029	.0204 ( 1112) P= .249	-0.0813 (1112) P= .003	-0.0280 (1112) P= .176	-0.0661 (1110) P= .015	-6.0804 (1112) P= .004	-0.0019 (1112) P= .474	-0.0744 (1111) P= .007	-6.0681 (1110) P= .012
1 B E 1	RANK	.7943 ( 1126) P= .000	.2121 ( 1124) P= .000	.2408 ( 1128) P= .600	.1615 ( 1128) P= .666	.0252 (1128) P= .199	.2614 (1126) P= .000	.1744 ( 1128) P= .000	-0.0021 (1128) P= .472	.128Ø ( 1127) P= .60Ø	.2408 ( 1126) P= .000
t 1 1	TIMESER	.8852 ( 1126) P= .000	.1525 ( 1122) P= .000	.2932 ( 1126) P= .000	.ø172 ( 1126) P= .282	-0.0360 (1125) P= .113	.1615 ( 1124) P= .600	.ø7ø2 (1128) P= .øø9	.0263 ( 1126) P= .189	.1095 ( 1125) P= .000	.1465 ( 1124) P= .000
1 1 1 1		AGE	뉴	¥4.	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	СНЅТО
						H-60					

; i ;	KNEESF	-6.655 (1127) P= .031	.0064 ( 1123) P= .415	.3225 ( 1127) P= .000	-6.6297 (1127) P= .159	.1081 ( 1127) Pm666	-6.0212 (1125) P= .239	.0073 ( 1127) P= .404	.1947 ( :127) P= .666	.0576 ( 1126) Pm .027	.0547 ( 1125) P= .033
; ; ;	THISF	.1549 ( 1126) P= .000	.0846 ( 1122) P= .602	.4513 ( 1128) P= .000	-0.6013 (1126) P= .482	.1478 ( 1126) P= .000	.2187 ( 1124) P= .000	.2251 ( 1126) P= .000	.2683 ( 1126) P= .860	.0624 ( 1125) P= .018	.1922 ( 1124) P= .666
(9	ABOSF	.4028 ( 1127) P= .000	.0588 (1123) P= .024	.8217 ( 1127) Pm000	.0522 (1127) P= .040	.2523 (1127) P= .000	.2303 ( 1125) P= .600	.1861 ( 1127) P= .666	.2265 ( 1127) P= .986	.0220 (1126) P= .230	.3168 (1125) P= .888
TS (MALES)	SUPRASF	.2464 ( 1127) P= .066	.0762 ( 1123) P= .005	.5811 ( 1127) F= .868	.1252 ( 1127) P= .600	.3003 (1127) P= .000	,2633 ( 1125) P= .000	.2581 ( 1127) P= .000	.2020 (1127) P= .000	.#195 ( 1126) P= .257	.3388 ( 1126) P= .000
Z	WAISTSF	.2389 ( 1127) P= .000	.0828 ( 1123) P= .003	.8169 ( 1127) P= .868	.1255 ( 1127) P= .008	.3647 ( 1127) P= .666	.2905 ( 1126) P= .000	.2752 ( 1127) P= .800	.2192 ( 1127) P= .000	.0829 ( 1126) P= .017	.3613 ( 1125) P= .000
C 0 E F	MIDAXSF	.3179 (1117) P= .866	.0845 (1123) P= .002	.6421 ( 1127) P= .000	.1228 ( 1127) P= .000	.3180 (1127) P= .000	.3269 (1125) P= .000	.2894 (1127) P= .000	.2215 (1127) P= .000	.0530 (1128) P= .038	.3788 (1125) P= .000
LATION	TRICEPSF	.1122 ( 1127) P= .600	.0978 (1123) P= .001	.4908 (1127) P= .600	.0861 (1127) P= .002	.2405 ( 1127) P= ,000	.2542 (1123) P= .000	.2846 ( 1127) P= .000	.2560 ( 1127) P= .000	.0505 ( 1126) P= .045	.2548 ( 1126) P= .000
C O R R E	SCAPSF	.2805 ( 1127) P= .000	.0079 ( 1123) P= .395	.6012 ( 1127) P= .000	.0078 (1127) P= .397	.2532 ( 1127) P= .000	.1220 ( 1125) P= .000	.1139 ( 1127) P= .000	.2391 ( 1127) P= .666	.0009 (1126) P= .487	.1984 ( 1125) P= .000
X 0 0 X Y	CHSTSF	.4447 ( 1127) P= .000	.0874 ( 1123) P= .002	.6057 ( 1127) P= .600	.ø268 ( 1127) P= .185	.2162 ( 1127) P= .000	.2219 ( 1125) P= .000	.1499 ( 1127) P= .660	.2204 ( 1127) P= .000	.0187 ( 1126) P= .265	.2828 ( 1125) P= .000
出 d. !!	CHINSF	.4707 ( 1127) P= .600	.0876 ( 1123) P= .602	.4732 ( 1127) P= .660	.0276 (1127) P= .177	.1046 ( 1127) P= .000	.2469 ( 1125) P= .000	.1672 ( 1127) P= .000	.0974 (1127) P= .001	.0349 (1126) P= .121	.2809 ( 1125) P= .000
1 1 1 1 1	RACE	-6.1149 (1128) P= .000	-6.2846 (1124) P= .000	-0.1571 (1128) P= .000	-6.1604 (1128) P= .000	-6.0857 (1128) P= .002	-6.2728 (1128) P= .000	-0.2359 (1128) P= .000	-0.0353 (1128) P= .118	-0.1615 (1127) P= .000	-6.2407 (1126) P= .000
1 1 1 1		AGE	눞	¥	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	СНЅТО

t 1 1	FOREC	.8247 (1127) P= .264	.2936 (1123) P= .060	.6637 (1127) P= .666	.1493 ( 1127) P= .606	.3891 ( 1127) P= .000	.1642 ( 1125) P= .000	.1433 ( 1127) P= .000	.3796 (1127) Pm000	.3125 ( 1126) Px .008	.2638 ( 1125) Pm .000
1 1 6 2	BICEPC	.#992 ( 1128) P= .666	.1877 ( 1124) P= .606	.7326 ( 1128) P≂ .606	.0995 (1128) P= .666	.4092 ( 1128) P= .600	.0912 (1126) P= .001	.1290 ( 1128) P= .606	.3988 (1128) P≈ .000	.2416 ( 1127) P= .506	.2638 ( 1126) P= .866
(s	THIC	.1896 ( 1125) P= .888	.1967 ( 1121) P= .800	.7088 (1125) P= .600	-0.1135 (1125) P= .000	,2421 ( 1126) P= .000	-0.0478 (1123) P= .955	-0.0278 (1126) P= .178	.4959 ( 1126) P= .000	.2364 ( 1124) P= .866	.0834 (1123) P= .003
TS (MALES)	HIPC	.1900 ( 1127) P= .000	.3705 (1123) P= .000	.8889 (1127) P= .000	.1445 ( 1127) P= .000	.4469 ( 1127) P= .006	.3843 (1125) P= .008	.3290 ( 1127) P= .800	.4672 (1127) Pm000	.2776 ( 1126) P= .666	,3574 (1125) P= .000
FICIEN	AB02C	.4178 ( 1128) P= .886	.2726 ( 1124) P= .866	.8585 ( 1128) P= .000	.1636 ( 1128) P= .000	.3827 ( 1128) P= .000	.3234 ( 1126) P= .000	.2426 ( 1128) P= .666	.3707 ( 1128) P= .666	.1848 ( 1127) P= .000	.3967 ( 1128) P= .000
C 0 R	ABD1C	.4076 (1127) P= .600	.2452 ( 1123) P= .000	.8608 (1127) P= .000	.1062 ( 1127) P= .000	.3866 (1127) P= .800	.2935 (1125) P= .000	.2139 ( 1127) P= .666	.3741 ( 1127) P= .000	.1975 ( 1126) P= .000	.4045 (1125) P= .000
LATION	CHSTC	.3227 ( 1126) P= .666	.2792 ( 1122) P= .000	.8297 ( 1126) P= .000	.1243 ( 1126) P= .000	.4266 ( 1126) P= .000	.2604 (1124) P= .600	.2055 (1128) P= .000	.4078 (1126) P= .600	.2484 ( 1125) P= .000	.4538 ( 1124) P= .000
CORRE	SHOULC	.1232 ( 1127) P= .000	.3509 (1123) P= .000	.8088 (1127) P= .000	.2927 ( 1127) P= .666	.5939 ( 1127) P= .000	.2057 (1125) P= .000	.1940 ( 1127) P= .600	.4331 ( 1127) P= .666	.3033 ( 1126) P= .600	.4054 ( 1125) P= .000
ARSON	HEADC	.2151 ( 1127) P= .600	.3515 ( 1123) P= .000	.4987 ( 1127) P= .666	.1856 ( 1127) P= .000	.2844 ( 1127) P= .666	.2054 ( 1125) P= .000	.1729 ( 1127) P= .000	.2490 ( 1127) P= .000	.2298 ( 1126) P= .060	.2700 ( 1125) P= .000
ш а. !	BICEPSF	.2039 ( 1126) P= .000	.0937 (1122) P= .001	.5449 (1126) P= .000	.0272 (1126) P= .181	.2064 (1126) P= .000	.1948 ( 1124) P= .000	.1929 ( 1126) P= .000	.2312 ( 1126) P= .000	.0441 ( 1125) P= .070	.2477 ( 1124) P= .606
1 1 1	CALFSF	-6.6392 (1126) F= .694	.Ø857 ( 1122) P= .ØØ2	.4278 ( 1126) P= .000	-0.0053 (1126) P= .429	.2063 ( 1126) P= .000	.2019 ( 1124) P= .000	.2144 ( 1126) P= .000	.3006 ( 1126) P= .000	.0769 (1125) P= .005	.2009 ( 1124) P= .600
1 1		AGE	ΗŢ	₩	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	СНЅТО
						u 62					

1 5 6	1 1 1 1	1 1 L	X 0 0 X	CORRE	LATION	C O E F F	X W H O H	T S (WALES)	? (s	1 1 1 1	1 1 1
	WRISTC	KNEEC	CALFC	ANKLEC	NECKC	FLXBICC	AGE	둪	T.M.	BIACD	BIDELD
AGE	.0501	.1029	.0994	-0.0446	.1869	.0833	1.0000	,1575	.2875	.8611	-6.0142
	( 1127)	( 1128)	( 1128)	(1125)	( 1126)	(1128)	(1128)	( 1124)	( 1128)	( 1128)	(1128)
	P= .064	P= .000	P= .000	P= .067	P= .000	P= .003	P= .000	P= .000	P= .000	Pm .826	P= .318
	.4789	.3832	.3230	.4151	.2633	.1873	.1575	1.0000	.5394	.4833	.3678
	( 1123)	( 1124)	( 1124)	( 1121)	( 1122)	( 1124)	( 1124)	(1124)	( 1124)	( 1124)	(1124)
	P= .666	P= .000	P= .660	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	Pm .006	P= .000
	.5887	.6245	.7480	.5680	.6743	.7056	.2875	.5394	1.8888	.2726	.5250
	( 1127)	( 1128)	(1128)	( 1125)	( 1126)	(1128)	( 1128)	(1124)	(1128)	( 1128)	( 1128)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000	P= .888	P= .888	Pm .006	P= .000
BIACD	.2888	.2188	.1971	.3124	.0511	.0976	.0611	.4033	.2726	1.0000	.6881
	(1127)	( 1128)	( 1128)	( 1125)	( 1126)	(1128)	(1128)	( 1124)	( 1128)	(1128)	(1128)
	P= .000	P= .600	P= .666	P= .000	P= .043	P= .001	P= .020	P= .000	P= .860	P= .000	P= .000
BIDELD	.4203	.381Ø	.4098	.4361	.2864	.4069	-6.6142	.3678	.5250	,6801	1.0000
	( 1127)	(1128)	( 1128)	( 1125)	( 1128)	( 1128)	( 1128)	( 1124)	( 1128)	( 1128)	(1128)
	P= .606	P= .000	P= .000	P= .600	P= .000	P= .000	P= .316	P= .000	P= .000	P= .000	F= .000
IILIACD	.2724	.3003	.2826	.3893	.0579	.ø73ø	.2004	.4312	.3707	.7138	.5751
	( 1125)	(1126)	( 1126)	( 1123)	(1124)	( 1126)	( 1126)	( 1122)	( 1126)	( 1126)	(1126)
	P= .000	P= .000	P= .000	P= .666	P= .028	P= .ø07	P= .000	P= .000	P= .000	P= .000	Pa.#66
BITROD	.3031	.3348	.2982	.4186	.0262	.1093	.1002	.4128	.3568	.7329	.6757
	( 1127)	(1128)	( 1128)	( 1125)	( 1126)	( 1128)	( 1128)	( 1124)	(1128)	( 1128)	(1128)
	P= .600	P= .000	P= .668	P= .606	P= .198	P= .000	P= .000	P= .000	P= .000	P= .000	P≖ .080
KNEED	.4017	.4543	.4595	.4393	.3548	.3731	.0158	.2988	.4936	.0766	.3126
	( 1127)	(1128)	( 1128)	( 1125)	( 1126)	( 1128)	( 1128)	( 1124)	( 1128)	(1128)	( 1128)
	P= .666	P= .606	P= .000	P= .800	P= .860	P= .000	P= .298	Pr868	P= .000	P= .005	Pz666
ANKLED	.4468	.3777	.3567	.4384	.2331	.2422	.1029	.4489	.3979	.2915	.2897
	( 1126)	(1127)	( 1127)	( 1124)	( 1125)	( 1127)	( 1127)	( 1123)	( 1127)	( 1127)	( 1127)
	P= .000	P= .668	P= .000	P= .600	P= .868	P= .000	P= .600	P= .000	F= .666	Pm .000	Pm .000
снѕто	.3467	.3421	.3516	.3736	.2082	.2591	.1855	.3366	.4599	.7174	.6727
	( 1125)	( 1126)	(1126)	( 1123)	( 1124)	( 1128)	( 1126)	( 1122)	( 1126)	( 1126)	( 1126)
	P= .863	P= .666	P= .000	P= .600	P= .600	P= .000	P= .000	P= .000	P= .000	Pa .000	Pm .666

t t t	DYLIFT	-6.2317 ( 862) Pm .000	.2685 ( 799) Pm .800	.4112 ( 862) %= .868	. 3648 ( 962) Px . 964	. 4098 ( 862) P 666	.2067 ( 966) Ps906	.2876 ( 962) Pr808	.2429 ( 802) Fx .886	. 3237 ( 961) Pe . 866	.4242 P	
1 1 1 1 1	£	-6.4691 ( 962) Pm .606	-6.1543 ( 958) Pr , 866	-8.2481 ( 962) Pm .866	-6.1158 ( 962) P≈ .666		-8,17#8 ( 961) Pm . 666	( 962) Pm . Med	( 962) Pm . 913	-6.1432 ( 961) Pm .808	-8.1541 ( 968) Pr866	
(	VOZMUKG	-6.3612 ( 964) Px .666	-8.8212 ( 966) P= .256	-6.4427 ( 964) PE .808	.1367 ( 964) Px .866	-6.0287 ( 964) P= .187	-6.6284 ( 963) Px .189	-6.8613 ( 964) Px .484	-6.1271 ( 964) Pm .006	.6366 ( 963) Px .172	-8.8619 ( 962) Fx .826	
T S (MALES)	VOZLMIN	-8.2717 ( 753) Pm .006	.4864 ( 749) Pz886	.5618 ( 763) Pz .886	.4151 ( 753) P= .000	.4934 ( 753) Pm . 886	.3418 ( 752) Pm .606	.3615 ( 753) Pm .#06	.3738 ( 753) Pm .888	.4228 ( 752) Pm .808	,4338 ( 751) Pa . #86	
FICIEN	WRISTD	.1924 ( 1127) Pa .886	.4998 ( 1123) Pm .868	.5858 ( 1127) Pr806	.4418 ( 1127) P= .506	.3979 (1127) P= .000	.4388 ( 1125) Pz. 1896	.4721 ( 1127) Pm .686	.3661 ( 1127) Px .606	.4531 ( 1126) P= .666	.4625 ( 1125) Pa .906	
COEFF	EL BOWD	.0950 (1125) P= .001	.4187 (1121) Pm866	.4363 ( 1125) P= .866	.2868 ( 1125) P= .800	,3149 ( 1125) P= .666	.3678 (1123) Pm006	.3275 ( 1125) P= . <b>656</b>	.3277 ( 1125) P= .068	.3642 (1124) P= .886	.2928 ( 1124) Fe .000	
NOILE	CHSTD	.1855 ( 1126) Pm .000	.3366 (1122) Pz666	.4599 ( 1126) Pm .000	.7174 ( 1126) P= .000	.6727 (1126) P= .006	.7516 (1124) Pm666	.7289 ( 1126) Fx .006	.1442 (1126) Pm000	.3275 (1125) Pa .006	1.8666 (1126) P≖ .686	
CORREL	ANKLED	.1929 (1127) Pa000	.4489 ( 1123) P= .606	.3979 (1127) Per .668	,2915 (1127) P= .000	.2897 (1127) Per. #006	.3196 (1126) Pm006	.3386 (1127) Pe008	.3331 (1127) P= .866	1.6666 (1127) P= .666	.3275 (1125) P= .808	
ARSON	KAEED	.0158 (1128) Pm .298	.2988 ( 1124) P= .666	.4936 (1128) P= .000	.0766 (1128) P= .005	.3126 (1128) P= .000	.1257 ( 1126) P= .000	.1568 (1128) P= .888	1.6666 (1128) P= .866	.3331 (1127) P= . <b>506</b>	.1442 ( 1126) P= .068	
PE/	BITROD	.1082 (1128) P= .600	,4126 (1124) P= .000			.5757 (1128) P= .000			.1568 (1128) Pm .000	.338 <b>6</b> (1127) P= .666	4	
:	IILIACD		4312 122)	.3707 (1126) P= .000	.7136 ( 1126) 9= .606	.6751 ( 1126) P= .000	1.6668 (1128) P= .866	.8508 (1126) P= .000	.1257 ( 1125) P= .986			
1 1		AGE	Ħ	T#	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANGED	СНЅТО	
						11 62						

; ;	CHALBA	.\$259 ( 1126) Pu .192	,6278 ( 1122) F≈ .966	.7861 ( 1126) Pr866	.3448 ( 1126) Pm .888	.5643 (1126) Pm .666	,2759 ( 1124) Pm ,666	.3667 (1126) Pa.000	.4632 ( 1126) Pm .806	.4788 ( 1125) Pm .000	.3614 ( 1124) P± .000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHAPCEF	.4416 (1128) Px .#06	.6273 (1122) Pm .181	.5469 (1126) Pz .006	-0.0364 (1126) P= .154	.157¢ (1126) Pm. 906	.2264 (1124) Pm .0000	.1668 ( 1126) Pm .088	.1675 (1126) Pz998	-6.9691 (1125) Px .386	.2571 (1124) Pm .866
1 1 1 7 (5	MOGN	-6.4425 ( 1126) P= .806	-8.6271 (1122) Pm .182	-8,5451 (1126) P= .006	.0295 ( 1126) P= .162	-0.1567 (1126) P= .666	-6.2277 (1124) P≖.000	-8.1579 (1126) Pm .008	.6.1648 (1125) Pm966	.0693 (1125) Pm.377	-0.2578 (1124) P= .006
T S (MALE	R.V	.5585 ( 1990) P= .906	.4795 ( 998) P= .866	.2326 ( 1800) P≖ .806	.2892 ( 1666) Pm .668	.1273 ( 1000) P= .000	.3642 ( 999) Pm .866	.2846 ( 1960) Px .888	.8468 (1888) Pm .873	.2739 ( 999) P≃ .866	. 2996 ( 999) Px . 866
ICKEN	۷ ۲	,1284 ( 1123) P= .006	. 5464 ( 1119) P= .000	.3386 (1123) P= .266	.2888 ( 1123) P= .000	.2668 (1123) Pm000	.3503 (1121) P= .066	.2918 ( 1123) P≖ .006	.1747 ( 1123) P= .606	.3212 ( 1122) Pm .806	.3354 (1121) P= .868
C O F F F	TMORADE	-6.3448 ( 753) P≖ .005	-6.6986 ( 749) P= .494	-6.3587 ( 753) P= .000	.0577 ( 753) P= .057	-6.1103 (753) P= .661	-6.6383 (762) P= .147	-8.@192 ( 753) P≖ .299	-6.1413 ( 753) P= .000	.Ø18Ø ( 752) P= .311	-0.0776 ( 751) P= .017
ATION	THISPEED	-6.3113 (753) P= .806	.8834 ( 749) P= .463	-6.2644 ( 753) P= .600	.1518 ( 753) P= .000	.6166 ( 753) P= .336	.6136 ( 762) P= .355	.6408 ( 753) P= .132	-ø.1139 ( 753) P≕ .øð1	.6536 ( 752) P= .671	.ø346 ( 751) P= .172
CORREL	VEV02	.1399 ( 753) P= .006	-6.6885 ⟨ 749⟩ P= .668	-6.6968 ( 753) P= .664	-0.1778 ( 753) P= .000	-0.1562 ( 753) P= .000	-6.1461 ( 752) P= .009	-6.1569 ( 753) P= .666	-6.6938 ( 753) P= .0€5	- <b>6</b> .0998 ( 752) P= .063	-6.1419 ( 751) P= .000
A R S O R	VC02	-6.5148 ( 753) P= .866	.8067 ( 749) Pm .427	-8.4482 ( 753) P= .866	.1963 ( 753) P= .666	-6.8329 ( 753) P= .184	.8363 ( 752) P= .168	.ø578 ( 753) P= .ø56	-0.1833 ( 753) P= .009	.0638 ( 752) P= .070	.0017 ( 751) P= .481
PE/	œ	-6.6862 ( 753) P= .014	. <b>6</b> 271 ( 749) P= .229	-0.0688 ( 753) P= .030	.0623 ( 753) P= .476	- <i>8</i> . <b>8</b> 271 ( 753) P= .229	.0053 ( 752) P= .442	.Ø175 ( 763) P= .315	-6.0350 ( 753) P= .169	.0298 ( 762) P= .207	.0064 ( 751) P= .436
1 1	A KE	-6.1387 ( 753) P= .868	.3408 ( 740) P= .000	.2915 (753) P= .000	.2199 ( 753) P≃ .000	.295Ø ( 753) P= .000	.1828 ( 752) P= .000	.1894 ( 753) P= .000	.2371 ( 753) P= .000	.2715 ( 752) P= .000	.2584 ( 751) P= .000
: : : : : : : : : : : : : : : : : : : :		AGE	Ħ	¥4	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	СНЅТО

t 1 1	KRATING	.3226 ( 883) P≖ .896	-6.6262 ( 869) Pm .277	.64@6 ( 863) P≖ .#0®	-6.6241 ( 853) P= .246	.2116 ( 863) P= .668	.2561 ( 863) P≖ .000	.1792 ( 863) Pm .0000	.2586 ( 863) P≖ .0000	.#223 ( 862) Pm .256	.2883 ( 862) Fr .866
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVSSR	-6.2451 ( 865) P= .060	. 851) P= .313	-6.4888 ( 865) Pm .006	.6784 ( 865) P= .019	-6,1163 ( 865) P= .001	-0.2056 ( 865) P= .000	-#.1235 ( 865) P≖ .866	-6.1672 ( 865) Px .606	.6137 ( 864) Pm .343	-6.1779 ( 864) Pm .666
· · · · · · · · · · · · · · · · ·	AVUNIR	-6.0729 ( 991) P= .011	.113¢ ( 987) F= .666	-8.5008 ( 991) P= .000	.0363 ( 991) P= .127	-6.2633 ( 991) P= .666	-6.1666 ( 989) Pm .0006	-6.1218 ( 991) Px .666	-6.2129 ( 991) Pm .866	-6.6424 ( 996) PH .691	-6.2166 ( 989) Pm .066
T S (MALES)	ECTO	-8.1962 ( 1124) P= .000	.3114 ( 1124) P≖ .000	-0.5725 (1124) P= .000	.0417 ( 1124) P= .081	-6.2395 (1124) P= .006	-6.0261 (1122) P= .192	-6.6242 (1124) Pm .269	-6.2516 (1124) Px .008	-6.8427 (1123) Pm .676	-6.2186 (1122) Pm .000
NUTUEN	MESO	-6.0007 (1124) P= .490	-0.3379 (1124) P= .000	.4083 ( 1124) P= .000	-0.0646 ( 1124) P= .015	.2336 ( 1124) P= .000	-0.0695 (1122) P= .010	-0.6273 (1124) P= .188	.5055 (1124) P= .000	.1108 (1123) P= .666	.8981 (1122) Pm .866
C 0 E	EMD0	.2589 ( 1124) P= .600	.0697 ( 1124) P= .010	.6218 ( 1124) P= .666	.8969 ( 1124) P= .001	.2992 (1124) P= .000	.2685 (1122) P= .000	.2538 ( 1124) P= .800	.2356 ( 1124) P= .808	.0257 (1123) P= .184	.3175 ( 1122) P= .866
LATION	DWPCBF	.6844 (1123) P= .888	.1316 (1119) P= .000	.6648 ( 1123) P= .666	.1412 ( 1123) P= .006	.2566 (1123) P= .000	.3295 (1121) P= .000	.2827 ( 1123) P= .666	.1895 ( 1123) Pm .606	.0716 ( 1122) Pm .008	.3672 ( 1121) P= .000
CORREI	SUMSA	.2538 (1127) P= .000	.0725 (1123) P= .008	.6426 ( 1127) P= .000	.0838 (1127) P= .002	.3011 (1127) P= .000	.2412 (1125) P= .000	.2426 (1127) P= .000	.2557 (1127) P= .000	.0242 (1126) P= .208	.3102 ( 1125) P= .000
ARSON	DWPCBFEX	.6138 ( 1128) P= .000	.1344 ( 1122) P= .000	.6067 (1126) P= .000	.1558 (1126) P= .000	.2621 (1128) P= .888	.3468 (1124) P= .000	.2973 (1126) P= .000	.1854 (1126) P= .000	.8802 (1125) P= .864	.3791 ( 1124) P= .000
PE/	SMNS	.2542 (1127) P= .000	.0726 (1123) P= .008	.6430 (1127) P= .000	.0858 (1127) P= .002	.3Ø18 (1127) P= .000	.2451 ( 1125) F= .866	.2463 ( 1127) P= .000	.2558 ( 1127) P= .000	.0258 (1128) P= .193	.3121 ( 1125) P= .000
; ; ;	UWWBF	.4236 ( 1126) P= .668	.2108 ( 1122) P= .000	.7724 ( 1126) P= .000	.0662 (1126) P= .013	.3024 ( 1126) P= .000	.2978 ( 1124) P= .606	.2363 (1126) P= .000	.3002 ( 1126) P= .600	.1287 ( 1125) P= .600	.3523 ( 1124) P= .000
1 1 1		AGE	Η	T#	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	СНЅТО
						u_65					

	TIMESER	RANK	CARMGMT	PRIMOS	UNITYPE	SITUP	PUSHUP	TWOMILE	PTSCORE	₩	GENDER
AGE	.5198 ( 271) P= .000	.4127 ( 271) P= .000	-8.8749 ( 278) P= .116	.0282 ( 271) P= .370	.0084 ( 270) P= .445	-0.3228 ( 255) P= .000	-0.2353 ( 255) P= .006	.2080 ( 254) Pr000	-0.8867 ( 256) P= .458	( 271) P= .	( 271)
Ħ	.ø154 ( 271) P= .400	.1455 ( 271) P= .008	-0.0234 ( 270) P= .351	.8867 ( 271) P= .457	.0378 ( 270) P= .268	.0777 ( 255) P= .108	-0.2353 ( 255) P= .008	-8.0088 ( 254) P= .445	-0.8589 ( 258) P= .289	( 271) P= .	( 271)
₩	.1Ø14 ( 271) P= .Ø48	.0679 ( 271) P= .133	.6513 ( 270) P= .200	-6.8911 ( 271) P= .867	.ø697 ( 270) P= .127	-0.1326 ( 255) P= .017	-8.2977 ( 256) P= .888	.2287 ( 254) P= .000	-0.1770 ( 256) P= .002	. 271) P= .	( 271) P= .
BIACD	-0.6076 ( 271) P= .465	-6.0797 ( 271) P= .695	.1273 ( 270) P= .018	-6.1336 ( 271) P= .014	.0006 ( 270) P= .496	.0107 ( 255) P= .433	.0448 ( 255) P= .238	-6.1239 ( 254) P= .024	.0591 ( 256) P= .173	( 271) P= .	( 271) P= .
BIDELD	.0295 ( 271) P= .315	-0.1055 ( 271) P= .042	.0862 ( 270) P= .079	-0.1456 ( 271) P= .008	.8251 ( 270) P= .341	-0.0538 ( 255) P= .176	.0226 ( 255) P= .360	-0.0502 ( 254) P= .213	-0.0261 ( 256) P= .339	( 271) P= .	( 271)
IILIACD	.0828 ( 270) P= .152	-0.0362 ( 270) P= .277	.0882 ( 269) P= .075	-0.1158 ( 270) P= .029	-0.0151 ( 269) P= .403	-0.0575 ( 254) P= .181	-6.6484 ( 254) P= .221	-8.0079 ( 253) P= .451	-0.0469 ( 255) Pm .228	( 270) P= .	( 270) P= .
BITROD	.ø932 ( 271) P= .ø63	-0.0674 ( 271) P= .135	.0994 ( 270) P= .052	-0.2034 ( 271) P= .000	.0056 ( 270) P= .464	-0.0192 ( 255) P= .38€	-0.0408 ( 255) P= .258	-6.0257 ( 254) P= .342	~6.0131 ( 256) P= .417	( 271) P= .	( 271)
KNEED	.ø323 ( 271) P= .298	.1127 ( 271) P= .032	.0150 ( 270) P= .403	-0.1550 ( 271) P= .005	-8.1299 ( 270) P= .016	-0.0703 ( 255) P= .132	-0.1231 ( 265) P= .025	.1641 ( 254) P= .804	-0.8988 ( 256) P= .875	( 271) P= .	( 271)
ANKLED	-0.0493 ( 271) P= .210	-ø.ø328 ( 271) P≃ .296	.0805 ( 270) P= .094	-0.0528 ( 271) P= .193	.0344 ( 270) P= .287	.1897 ( 255) P= .048	-0.0118 ( 255) P= .426	-6.1585 ( 254) P= .@86	.0838 ( 256) P= .091	( 271) P= .	( 271) P= .
СНЅТО	-0.0074 ( 271) P= .462	-0.1967 ( 271) P= .001	.1129 ( 270) P= .032	-0.1838 ( 271) P= .001	-6.8633 ( 276) P= .479	-0.0121 ( 255) P= .424	.0559 ( 255) P= .187	-6.6851 ( 254) P:: .888	-6.0019 ( 256) P= .488	( 271) P= .	( 271) P= .

COEFFICIENTS

PEARSON

1 1 1 1	KNEESF	.0530 ( 271) P= .193	-0.1180 ( 271) P= .026	.2026 ( 271) Pz.866	.8187 ( 271) P= .431	.0752 ( 271) P= .108	.8548 ( 278) P= .185	.8771 ( 271) P= .183	.2137 ( 271) Pm .MGG	-6.8471 ( 271) P= .228	.8825 ( 271) Pm .068
; ; ;	THISF	.0281 ( 271) P= .322	-0.0360 ( 271) P= .278	.4442 ( 271) P= .666	.1688 ( 271) P= .003	.3365 ( 271) P= .000	.3448 ( 278) P= .866	.4118 ( 271) P= .886	.3329 ( 271) P= .866	-8.8847 ( 271) P= .478	.3188 ( 271) P= .886
LES)	ABOSF	.1164 ( 271) P= .635	-6.6476 ( 271) P= .221	.4588 ( 271) P= .000	.1778 ( 271) P= .662	.3108 ( 271) P= .000	.3147 ( 270) P= .000	.3211 ( 271) P= .600	.2431 ( 271) P= .000	-0.0451 ( 271) P= .238	.2738 ( 271) P= .866
T S (FEMALES)	SUPRASF	.6681 ( 271) 9= .447	-6.0696 ( 271) P= .127	.4188 ( 271) P= .000	.3359 ( 271) P= .808	.4638 ( 271) P= .868	.4399 ( 270) F= .000	.4691 ( 271) Pm .866	.2382 ( 271) P= .866	.8162 ( 271) P= .434	.4491 ( 271) P= .000
FHCHER	WAISTSF	.0141 ( 271) P= .409	-0.0953 ( 271) P= .059	.4567 ( 271) P= .000	.3392 ( 271) P= .000	.5174 ( 271) P= .000	.4999 ( 270) P= .000	.5148 ( 271) P= .000	.2928 ( 271) P= .000	.8212 ( 271) F= .384	.4900 ( 271) P= .000
0 3 8	MIDAXSF	.0686 ( 270) P= .131	-0.1146 ( 276) P= .030	.4573 ( 270) P= .888	.1457 ( 270) P= .008	.4010 ( 270) P= .600	.3729 ( 269) P= .600	.3995 ( 270) P= .000	.3108 ( 270) P= .000	-0.0675 ( 270) P= .134	.3234 ( 270) P= .888
LATION	TRICEPSF	.0812 ( 271) P= .091	-0.0239 ( 271) P= .348	.5722 ( 271) P= .696	.1885 ( 271) P= .001	.3853 ( 271) P= .000	.3324 ( 270) P= .666	.3970 ( 271) P= .660	.4139 ( 271) P= .666	-0.0035 ( 271) P= .477	.3227 ( 271) P= .886
CORRE	SCAPSF	.1471 ( 271) P= .008	-0.0878 ( 271) P= .075	.5403 ( 271) P= .666	.1248 ( 271) P= .626	.3554 ( 271) P= .000	.2594 ( 270) P= .000	.3093 ( 271) P= .000	.3262 ( 271) P= .000	-0.0581 ( 271) P= .171	.2462 ( 271) P= .000
ARSON	CHSTSF	.2222 ( 271) P= .666	-0.0995 ( 271) P= .051	.3315 ( 271) P= .000	-6.1480 ( 271) P= .007	.0454 ( 271) P= .228	-6.6166 ( 270) P= .435	-0.0040 ( 271) P= .474	.1119 ( 271) P= .033	-0.1159 ( 271) P= .028	-0.0390 ( 271) P= .261
1 1 1	CHINSF	.1810 ( 271) P= .001	-0.0414 ( 271) P= .249	.4139 ( 271) P= .000	.ø7ø9 ( 271) P= .122	.2955 ( 271) P= .000	.2752 ( 270) P= .000	.2668 ( 271) P= .000	.2381 ( 271) P= .000	-0.0514 ( 271) P= .199	.2176 ( 271) P= .000
1 1 1 1 1 1 1 1	RACE	-0.0590 ( 271) P= .166	-0.1820 ( 271) P= .001	-6.6792 ( 271) P= .697	.0130 ( 271) P= .416	.0331 ( 271) P= .294	-0.0941 ( 270) P= .061	-6.0847 ( 271) P= .682	.ø287 ( 271) P= .319	-0.0667 ( 271) P= .137	-0.0025 ( 271) P= .484
; 1 1 1		AGE	Ħ	¥	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	снѕтр

: : :	FOREC	.#275 ( 271) P326	.2491 ( 271) P= .666	,6666 ( 271) Pm ,666	.1871 ( 271) P= .061	.3749 ( 271) P= .800	.1163 ( 270) 8= .029	.1960 ( 271) Pm .201	.4232 ( 271) P= .000	.3692 ( 271) P= .606	.2571 ( 271) P= .668
1 1 1	BICEPC	.1361 ( 271) P= .615	.1286 ( 271) Pm .017	.7848 ( 271) P= .000	.2522 ( 272) P= .856	,5111 ( 271) P≃ ,000	.3617 (270) Pa666	.3589 ( 271) P= .000	.5#24 ( 271) P≈ .000	.1693 ( 271) P= .#63	.3483 ( 271) P= .866
(ES)	THIC	.fi149 ( 271) P= .463	.1479 ( 271) P= .667	.6965 ( 271) P= .666	-0.0275 ( 271) P= .326	.2095 ( 271) P= .000	.6396 ( 278) P= .258	.1469 ( 271) P= .008	.4012 ( 271) P= .000	.8484 ( 271) Pm .254	.0880 ( 271) P= .07¥
ITS (FEMA	HIPC	.1894 ( 270) P= .691	.2611 ( 270) P= .000	.8638 ( 270) P= .080	.2198 ( 270) P= .606	.4387 ( 270) P= .080	.3451 ( 289) P= .600	.4371 ( 270) P= .060	.4889 ( 270) P= .666	.2716 ( 270) P= .888	.2985 ( 270) P= .000
FICIEN	ABD2C	.2029 ( 270) P= .000	.1848 ( 270) P= .001	.7687 ( 270) P= .888	.2935 ( 270) P= .005	.4982 ( 270) P= .000	.4312 ( 269) Pm .000	.4711 ( 270) P= .600	.3793 ( 270) P= .000	.2397 ( 270) P= .866	.4125 ( 270) P= .660
COEF	ABD1C	.2238 ( 270) P= .000	,1513 ( 270) P= .006	.7517 ( 270) P= .000	.1473 ( 270) P= .008	.3857 ( 270) P= .600	.2547 ( 269) P= .000	.2784 ( 270) P= .000	.3833 ( 270) P= .000	.1905 ( 270) P= .001	.2682 ( 270) P= .000
LATION	CHSTC	.2875 ( 270) P= .860	.1854 ( 270) P= .001	.7194 ( 270) P= .668	.1718 ( 270) P= .002	.3822 ( 270) P= .000	.2174 ( 269) P= .600	.2542 ( 270) P= .600	.3871 ( 270) P= .666	.2222 ( 270) P= .660	.3046 ( 270) P= .900
CORRE	SHOULC	.1155 ( 270) P= .029	.2865 ( 270) P= .660	.7278 ( 270) P= .609	.3911 ( 270) P= .000	.6728 ( 270) P= .000	.2475 ( 269) P= .000	.2953 ( 270) P= .000	.3639 ( 270) P= .000	.2779 ( 270) P= .000	.3412 ( 270) P= .069
ARSON	HEADC	-8.8388 ( 278) P= .312	.2449 ( 270) P= .000	.2224 ( 270) P= .000	.1994 ( 270) P= .000	.1532 ( 270) P= .006	.0874 ( 269) P= .135	.1128 ( 270) P= .032	.1429 ( 270) P= .689	.1853 ( 270) P= .001	.1273 ( 270) P= .018
日 日 日 日	BICEPSF	.1715 ( 271) P= .002	-0.0407 ( 271) P= .252	.4589 ( 271) P= .888	.0450 ( 271) P= .230	.2585 ( 271) P= .000	.2363 ( 270) P= .000	.2054 ( 271) P= .000	.2514 ( 271) P= .888	-0.0610 ( 271) P= .159	.1780 ( 271) P= .003
1 1 1	CALFSF	.0179 ( 271) P= .385	.0555 ( 271) P= .182	.5147 ( 271) P= .000	.1728 ( 271) P= .002	.3498 ( 271) P= .000	.3405 ( 270) P= .600	.4278 ( 271) P= .600	.4152 ( 271) P= .800	.ø847 ( 271) P= .ø82	.3338 ( 271) P= .000
1 1 1		AGE	Ħ	¥	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	снѕт

; ; ;	RIDELD	-6.6413 ( 271) Ps249	.1853 ( 271) P= .061	.5144 ( 271) Pm .000	. 8616 ( 271) Fz866	1.8566 ( 271) Ps.,665	.8849 ( 270) Pm .608	.7596 ( 271) Pm .000	, 3838 ( 271) Pm , 8898	.3779 ( .271) Pm .866	.7822 ( 271) Pw .868
1 5 1	BIACD	-8.0265 ( 271) Pm .335	,2971 ( 271) Pe . 886	.3227 ( 271) P= .666	1.0088 ( 271) Pm .008	.8018 ( 271) Pm .000	.6796 (278) Pm666	.7423 ( 271) Pm .866	.2158 ( 271) Fr855	.4983 ( 271) Px .866	.7568 ( 271) Ps. 886
l.ES)	T.W.	.1755 ( 271) P= .002	.4917 ( 271) Pm .800	1.0000 ( 271) P= .000	.3227 ( 271) P= .000	,5144 ( 271) P= ,666	.3473 (.278) Px .868	.4352 ( 271) Pm .606	.5514 ( 271) Pm .800	.3854 ( 271) Pm .400	.3398 ( 271) Ps886
T S (FEMALES	Ħ	.0869 ( 271) P= .136	1.0000 ( 271) P= .000	.4917 ( 271) Pt806	.2971 ( 271) Pa808	.1853 ( 271) P= .001	.1854 ( 276) P= .661	.2389 ( 271) Pa .666	.2647 ( 271) Pm . 000	( 271) Ps 966	. 1088 ( 271) Pm . 637
FICIEN	AGE	1.0000 ( 271) P= .000	.0669 ( 271) P= .136	.1765 ( 271) P= .002	-6.6286 ( 271) P= .335	-6.6413 ( 271) P= .249	.0198 ( 270) F= .373	.0300 ( 271) Pm .311	.1472 ( 271) P= .008	.0338 ( 271) P= .290	-6.8923 ( 271) P= .065
C 0 E F	FLXBICC	.1616 ( 268) P= .904	.1721 ( 268) P= .002	.7323 ( 268) P= .866	.2534 ( 268) P= .000	.4711 ( 268) P= .000	.2651 ( 257) P= .885	.3121 ( 268) P= .668	.4167 ( 268) P= .000	.1527 ( 268) P= .008	.3318 ( 268) P= .000
NOILAI	NECKC	.0696 ( 270) P= .127	.2487 ( 270) P= .606	.6222 ( 270) P= .866	,1184 ( 270) P= .626	.1962 ( 270) P= .001	.0407 ( 269) P= .253	.ø462 ( 270) P= .225	.1549 ( 278) P= .005	.1838 ( 270) P= .001	.0882 ( 270) P= .074
C O R R	ANKLEC	-6.0133 ( 271) Pm (414	.3427 ( 271) P= .666	.6188 ( 271) P= .068	.3308 ( 271) P= .808	.4175 ( 271) P= .666	.3737 ( 270) P= .666	.4310 ( 271) P= .000	.4781 ( 271) P= .666	.5658 ( 271) P= .000	.3523 ( 271) P= .000
X 0 0 X X	CALFC	.0626 ( 271) P= .152	.2407 ( 271) P= .000	.7137 ( 271) P= .000	.1899 ( 271) P= .001	.353 <i>Ø</i> ( 271) Pz .600	.2870 ( 276) P= .000	.3349 ( 271) P= .000	.4828 ( 271) P= .000	.2974 ( 271) P= .000	.2943 ( 271) P= .800
日 日 日 日 日	KNEEC	.1429 ( 271) P= .009	.3548 ( 271) F= .666	.6883 ( 271) P= .666	.1541 ( 271) P= .006	.3296 ( 271) P= .000	.2422 ( 270) P= .060	.3479 ( 271) P= .600	.5716 ( 271) P= .000	.2851 ( 271) P= .000	.2359 ( 271) P= .000
1 1 1	WRISTC	-6.0123 ( 271) P= ,426	.2101 ( 271) P= .000	.2337 ( 271) P= .666	.2947 ( 271) P= .800	.2688 ( 271) P= .088	.2123 ( 270) P= .060	.2583 ( 271) P= .000	.1805 ( 271) P= .001	.3114 ( 271) P= .600	.2393 ( 271) P= .000
! !		AGE	Ħ	TX.	BIACD	втрегр	IILIACD	BITROD	KNEED	ANKLED	снѕто
						H-69					

t 2 4 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DYLIFT	.6,6643 ( 243) 84 .159	1.1888 7.443 8.862	243) 7 243)	.2556 ( 243) Pm .0566	3631 ( 243) Pa (600	11174 ( 242) Pm (634	,1564 (243) Pr. ,669	,1345 ( 243) Pw ,818	. 2661 ( 243) Fr 663	.2746 ( 243) Pm .00%
1 5 1	X.	-6.3731 ( 238) Pm .000	( 236) Pm . 421	-6.6714 ( 238) Pa .136	-0.0030 ( 238) Px .482	-0.0003 ( 23E) Fu .449	.8615 ( 237) Pm .491	-8.6163 ( 238) P= .389	( 238) Pa .434	-6.6368 ( 238) Pm . 296	-6.9633 ( 23€) P= .486
ES)	VOZIMLKO	-0.2447 ( 238) Pm .000	-0.0178 ( 238) Pa .397	-6.4278 ( 228) Pa . 906	.8393 ( 238) F= .273	-0.6500 ( 236) P= .182	-6.0818 ( 237) Pr185	-6.1242 ( 238) Pm .628	-8.2419 ( 238) P= .060	.0865 ( 238) P= .153	-0.0486 ( 230) Pm .228
T S (FEMALES)	VOZIJATH	-6.6271 ( 237) P= .339	.5267 ( 237) P= .000	.6285 ( 237) Pm888	.4653 ( 237) Pm008	.4861 ( 237) P= .066	.3686 ( 236) P= .665	.3598 ( 237) P= .000	.3426 ( 237) P= .000	.4831 ( 237) P= .508	.3324 ( 237) P= .000
関して	WRISTD	.1671 ( 276) P= .648	.3968 ( 270) P= .000	.4262 ( 279) P= .060	,4367 ( 278) P= .088	.4078 ( 270) P= .666	.3235 ( 269) P= .668	.3924 ( 270) Pa .000	.3788 ( 270) P= .000	.5264 ( 270) P= .888	.2707 ( 276) P= .000
COEFF	EL.BOWO	.8817 ( 271) P= .656	.2728 ( 271) P= .000	.2531 ( 271) P= .060	.2518 ( 271) P= .000	.1919 ( 271) P= .001	.1899 ( 270) P= .001	.1708 ( 271) P= .002	.3228 ( 271) P= .000	.2751 ( 271) P= .600	.0956 ( 271) P= .051
ATION	снѕто	-6.8921 ( 271) P= .065	.1088 ( 271) P= .037	.3399 ( 271) P= .000	.7568 ( 271) P= .888	.7822 ( 271) P= .000	.7161 ( 270) P= .600	.7758 ( 271) P= .000	.2179 ( 271) P= .000	.3816 ( 271) P= .000	1.0000 ( 271) P= .000
CORREL	ANKLED	.ø338 ( 271) P= .298	.4498 ( 271) P= .000	.3854 ( 271) P= .000	.4983 ( 271) P= .000	.3779 ( 271) P= .000	.3409 ( 270) P= .606	.3993 ( 271) P= .868	.2926 ( 271) P= .000	1.0000 ( 271) P= .000	.3816 ( 271) P= .000
ARSON	KNEED	.1472 ( 271) P= .008	.2647 ( 271) P= .000	.5514 ( 271) P= .000	.2108 ( 271) P= .000	.3828 ( 271) P= .060	.3459 ( 270) P= .066	.3857 ( 271) P= .668	1.0000 ( 271) P= .000	.2920 ( 271) P= .000	.2179 ( 271) P= .688
и о. !	BITROD	.0380 ( 271) P= .311	.2389 ( 271) P= .888	.4352 ( 271) P= .000	.7423 ( 271) P= .888	.7596 ( 271) P= .000	.8276 ( 270) P= .000	1.0000 ( 271) P= .000	.3857 ( 271) P= .000	.3993 ( 271) P= .000	.7756 ( 271) P= .000
1 1 1	TLIACD	.0198 ( 270) P= .373	.1854 ( 270) P= .601	.3473 ( 270) P= .000	.6796 ( 270) P= .000	.6849 ( 270) P= .000	1.0000 ( 270) P= .000	.8276 ( 270) P= .000	.3459 ( 270) P= .000	.3489 ( 270) P= .000	.7161 ( 270) P= .000
1 1 1		AGE	Ħ	¥	BIACD	BIDELD	IILIACD	BITROD	KNEED	ANKLED	снѕто
						u_70	•				

; ; ; ;	CWALPM	.8416 ( 266) Px .263	.6589 ( 266) P= .006	.7575 ( 266) P= .000	,3756 ( 265) P=,006	.4123 ( 268) P= .666	.2669 ( 265) P≕.606	.2917 ( 266) P= .666	.4363 ( 266) P= .000	.5246 ( 266) P= .000	.2598 ( 265) P≃ .000	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UMMPCBF	.2164 ( 266) P≃ .866	.0.1399 ( 266) P= .011	.5458 ( 265) Pm .000	-6.6151 ( 286) P= .463	.2350 ( 266) Pm .000	.2601 ( 265) P= .000	.2650 ( 266) P= .000	.2862 ( 268) P= .666	-6.09559 ( 265) P≖ .059	.1632 ( 286) Pm .004	
LES)	MOEN	-6.2671 ( 266) P= .000	.1397 ( 266) P= .011	-8.5424 ( 266) P≡ .008	.ø188 ( 266) P= .38Ø	-8.2386 ( 266) P≈ .000	-0.2483 ( 265) P= .000	.0.2619 ( 266) P= .000	-6.2761 ( 266) P= .000	.0980 ( 286) P= .055	-6.1591 ( 268) P= .005	
ITS (FEWALES)	RLV	.3338 ( 268) P= .000	.5848 ( 268) P= .868	.1314 ( 260) P= .017	.6929 ( 260) P= .068	-0.0141 ( 260) P= .410	.0524 ( 259) P= .201	.0622 ( 260) P= .159	.1159 ( 260) P= .031	.2408 ( 260) P= .000	-6.0294 ( 260) P= .319	
N II O II II	S K	.1320 ( 265) P= .016	.4862 ( 265) P= .666	.3677 ( 265) P= .000	.1456 ( 265) P= .009	.1652 ( 265) P= .004	.1308 ( 264) P= .017	.1232 ( 265) P= .023	.1932 ( 265) P= .601	.3200 ( 285) P= .600	.1692 ( 265) P= .003	
- C O E F	TMGRADE	-6.2046 ( 237) P= .001	.ø373 ( 237) P= .284	-0.2599 ( 237) P= .000	-0.1132 ( 237) P= .041	-0.1578 ( 237) P= .008	-0.1347 ( 236) P= .019	-6.2017 ( 237) P= .001	-6.1618 ( 237) P= .007	.0335 ( 237) P= .364	-6.2164 ( 237) P= .001	
LATION	TWSPEED	.ø718 ( 237) P= .136	.1011 ( 237) P= .060	-6.1324 ( 237) P= .002	.0591 ( 237) P= .183	-0.0385 ( 237) P= .288	-0.0570 ( 236) P= .192	-6.0276 ( 237) P≃ .346	-6.1373 ( 237) P= .017	.0507 ( 237) P= .218	-0.0169 ( 237) P= .398	
CORRE	VEV02	-0.0729 ( 237) P= .132	-6.0952 ( 237) P= .072	-0.1635 ( 237) P= .006	-6.2318 ( 237) P= .666	-0.2527 ( 237) P= .000	-0.1825 ( 236) P= .002	-0.2266 ( 237) P= .000	-0.1000 ( 237) P= .062	-6.0953 ( 237) P= .072	-6.2523 ( 237) P= .000	
ARSON	VC02	-0.1643 ( 237) P= .006	.0089 ( 237) P= .446	-0.3547 ( 237) P= .000	.0401 ( 237) P= .289	-0.0525 ( 237) P= .211	-0.0424 ( 236) P= .258	-8.0694 ( 237) P= .144	-0.1385 ( 237) P= .017	.0677 ( 237) P= .150	-ø.ø421 ( 237) P= .259	
1 1 P E	œ	.0394 ( 237) P= .273	.ø371 ( 237) P= .285	.0003 ( 237) P= .498	-6.0148 ( 237) P= .410	-0.0246 ( 237) P= .353	.ø117 ( 236) P= .429	.0348 ( 237) P= .297	.1322 ( 237) P= .021	.0164 ( 237) P= .401	-0.0473 ( 237) P= .234	
1 1 1 1 1	VE	-6.0883 ( 237) P= .088	.3611 ( 237) P= .868	.4007 ( 237) P= .000	.1664 ( 237) P= .007	.2105 ( 237) P= .001	.1092 ( 236) P= .647	.1168 ( 237) P= .036	.2059 ( 237) P= .001	.3157 ( 237) P= .000	.0706 ( 237) P= .140	
1 1 1 1		AGE	Ħ	¥.	BIACD	BIDELD .	IILIACD	BITROD	KNEED	ANKLED	снѕто	

KRATING	.21 <b>04</b>	-0.2214	.6332	.0649	.3385	.3038	.3324	.3841	.0058	.2301
	( 216)	( 216)	( 216)	( 216)	( 216)	( 215)	( 216)	( 216)	( 216)	( 216)
	P= .001	P= .001	P= .000	P= .171	P= .000	P≃.900	P= .000	P= .000	P= .486	P= .000
AVSSR	-0.2302	.1372	-6.5360	- <b>0.1230</b>	-0.3091	-0.3293	-0.3543	-0.3147	-0.0146	-6.2789
	( 218)	( 218)	( 218)	( 218)	( 218)	( 217)	( 218)	( 218)	( 218)	( 218)
	P= .000	P= .021	P= .000	P= . <b>0</b> 35	P= .000	P= .000	P= .000	P= .000	P= .415	P= .066
AVUNIR	-0.1467 ( 239) P= .012	.ø678 ( 239) P= .148	-6.4889 ( 239) F= .000	-0.1317 ( 239) P= .021	-8.3333 (239) P=.000	-0.2672 (238) P= .000	-0.2916 ( 239) P= .000	-0.2878 ( 239) P= .000	-8.6424 ( 239) P= .257	-0.2604 ( 239) P= .000
ECTO	-6.0818	.38%2	-0.5576	-0.0709	-0.3535	-0.1477	-0.2168	-0.2826	.0048	-6.2408
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)
	P= .090	P= .000	P= .000	P= .122	P= .000	P= .008	P= .000	P= .000	P= .468	P= .800
MESO	.0898	-6.4022	.4026	.0654	.3242	.1991	.2146	. 5449	.0272	.2238
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)
	P= .070	P= .000	P= .000	P= .142	P= .006	P= .001	P= .000	P= .000	P= .328	P= .666
ENDO	.ø716	-0.0567	.5725	.2562	.4573	.39¢3	. 4441	.3403	-0.0203	.3930
	( 271)	( 271)	( 271)	( 271)	( 271)	( 27¢)	( 271)	( 271)	( 271)	( 271)
	P= .120	P= .176	P= .000	P= .000	P= .800	P≃ .60¢	P= . 666	P= .000	P= .370	P= .000
DWPCBF	.1758	-0.0274	.5769	.2579	.4615	.3824	.4275	.3384	-0.0107	.3793
	( 270)	( 270)	( 270)	( 270)	( 270)	( 259)	( 270)	( 270)	( 270)	( 270)
	P= .002	P= .327	P= .000	P= .000	P= .000	P= .060	P= .000	P= .000	P= .431	P= .000
SUMSA	.8992	-0.0683	.5824	.2468	.4598	.4009	. 4422	.3547	-0.0257	.3897
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)
	P= .052	P= .131	P= .000	P= .600	P= .000	P= .000	P= .000	P= .000	P= .337	P= .000
DWPCBFEX	.1678	-0.0520	.5688	.2164	.4198	.365Ø	.4158	.3414	-0.0378	.3465
	( 271)	( 271)	( 271)	( 271)	( 271)	( 27Ø)	( 271)	( 271)	( 271)	( 271)
	P= .003	P= .197	P= .000	P= .666	P= .000	P= .000	P= .600	P= .000	P= .268	P= .000
SMUS	.0988	-Ø.Ø684	.5813	.2442	.4595	.4031	.4435	.3614	-0.0234	.3891
	( 271)	( 271)	( 271)	( 271)	( 271)	( 270)	( 271)	( 271)	( 271)	( 271)
	P= .052	P= .131	P= .660	P= .000	P= .000	P= .000	P= .000	P= .600	P= .351	P= .000
UWWBF	.2229	.1004	.8119	.1248	.3817	.3282	.3731	.4323	.0364	.2638
	( 268)	( 266)	( 266)	( 266)	( 266)	( 265)	( 266)	( 266)	( 268)	( 266)
	P= .000	P= .051	P= .000	P= .021	F= .000	P= .000	P= .000	P= .000	P= .080	P= .000
	AGE	¥	T-M	ВІАСБ	BIDELD	ILIACD	BITROD	KNEED	ANKLED	СНЅТО

Social Personal respective respective representations and the responsive responsive responsive responsive responsive

1 t i	GENDER	( i125) P= .	( 1127) P= .	( ,753) P= .	( 984) P= .	( .962) P= .	( 802) P= .	( 753) P= .	( `753) P= .	, 753) P= .	( 763)
1 1 1	¥	( i126) P= .	( i127) P= .	( 753) P= .	( 964) P= .	. 962) P= .	( 802) P= .	( 753) P= .	( 753) P= .	( 753) P= .	( 753) P= .
	PTSC0RE	-0.0245 (830) P= .241	-0.0430 (832) P= .108	.2005 ( 708) P= .000	.4913 ( 713) P= .000	.1088 ( 711) P= .002	.1982 ( 750) P= .000	.ø376 ( 708) P= .159	.0040 ( 708) P= .457	.4385 ( 708) P= .600	-6.1864 ( 788) P= .666
T S (MALES	TWOMILE	.0830 (1005) P= .064	.0879 ( 1606) P≃ .003	-0.2805 ( 696) P= .660	-0.6450 ( 866) P= .000	-8.2312 ( 884) P= .000	-0.1358 (737) P= .000	-0.1124 ( 696) P= .001	-8.1228 ( 896) P= .001	-6.6367 ( 696) P= .000	.1773 ( 696) P= .000
ICIEN	PUSHUP	-0.0664 (1012) P= .017	-8.8918 (1013) P= .002	.2328 ( 703) P= .000	.4155 ( 873) P= .900	.2874 ( 871) P= .000	.2868 ( 747) P= .000	.0562 ( 703) P= .068	-6.6674 ( 763) P= .422	.3986 ( 703) P= .000	-6.1851 (763) P=.000
COEFF	SITUP	-8.1056 (1012) P= .000	-0.0765 (1013) P= .007	.1919 ( 701) P= .000	.4101 ( 874) P= .600	.2143 ( 872) P= .666	.2245 ( 743) P= .600	.0367 ( 761) P= .209	-0.0051 ( 701) P= .446	.4033 ( 701) P= .600	-0.1862 ( 701) P= .000
ATION	UNITYPE	.0299 ( 1106) P= .160	.1252 ( 1108) P= .000	- <b>Ø.Ø</b> 418 ( 741) P= .128	-6.1266 ( 948) P= .000	-0.2555 ( 948) P= .000	-0.0818 (789) P=.011	.0140 ( 741) P= .351	-0.0278 ( 741) ?= .225	-6.1723 ( 741) P= .000	.ø76ø ( 741) P= .ø19
CORREL	PRIMOS	-0.0865 (1114) P= .002	-0.0558 (1116) P= .032	-0.0810 (752) P= .013	-0.1321 ( 953) P= .000	.ø164 ( 951) P= .3Ø7	-0.1527 ( 801) P= .000	-0.0938 ( 752) P= .005	-0.1028 ( 752) P≃ .002	-6.1882 ( 752) P= .000	-ø.ø195 ( 752) P= .296
R O S R	CARMGMT	-0.0315 (1109) P= .147	-0.0251 (1111) P= .201	-0.0447 ( 751) P= .111	-0.0850 ( 949) P= .004	-0.0014 ( 947) P= .483	-0.0462 ( 800) P= .096	-0.0350 (751) P= .010	-0.0431 (751) P= .119	-0.0937 (751) P= .005	-6.0817 ( 751) P= .013
- PEA	RANK	.0887 ( 1125) P= .001	.1752 ( 1127) P= .000	-0.0692 ( 753) P= .029	-8.2162 ( 964) P= .000	-0.3936 ( 962) P= .000	-8.1175 ( 802) P= .000	-0.0138 ( 753) P= .353	-0.1044 ( 753) P= .002	-8.2955 ( 753) P= .000	.8687 ( 753) P= .838
	TIMESER	.0903 (1123) P= .001	.1693 ( 1125) P= .000	-0.2377 ( 751) P= .000	-0.3758 ( 962) P= .000	-0.4348 ( 960) P= .000	-0.1987 ( 800) P= .000	-0.1053 ( 751) P= .002	-ø.ø577 ( 751) P= .ø57	-6.4437 ( 751) P= .000	.1459 ( 751) P= .000
1 1 1 1 1		ELBOWD	WRISTD	VOZLMIN	VOZMLKG	HR	DYLIFT	VE	œ	VC02	VEV02

1 1	KNEESF	.1088 ( 1124) P= .663	.1233 (1126) 5000	.1577 753) .000	-0.1873 ( 963) P= .000	-0.0084 ( 961) P= .397	.ø7ø8 6ø2) .ø22	.0597 753) .051	-6.8411 ( 753) P= .138	-6.2197 ( 753) P= .000	-6.0957 ( 753) P= .004
1	모	~ <u>"</u>	<u>_</u>	<b>−</b> å	© _ [	<b>9</b> ∪ d.	<b>∵</b> d.	<b>∽</b> ª	9 ~ E	<b>~</b> _ <u></u>	<b>9</b> √ [[
1 1 1	THISF	.0965 (1123) = .001	.1648 (1125) = .000	.ø688 752) .ø3ø	395 <i>6</i> 962) ,666	-Ø.Ø83Ø ( 96Ø) P≕.øØ5	0360 801) .154	.ø499 752) .ø88	0408 752) .132	-6.3831 (752) P=.000	-6.6824 ( 752) P= .474
:	F			- #	9	9 - M	P	· _ #		,	,
1	ABDSF	.1326 ( 1124) = .666	.2001 ( 1126) P= .000	.ø711 ( 753) = .ø28	-0.5711 ( 963) P= .000	-0.1710 ( 961) P= .000	.0308 ( 802) P= .192	.0458 ( 753) P= .105	-0.1133 ( 753) P= .001	-0.5702 (753) P≃.668	-0.0078 (753) P= .415
- (S	¥8	. T #	T=	`~#	Pi		- 4	.~¶	₽ ~ ₽	P - 18	9 _
(MALES	RASF	.0967 (1124) = .001	.2105 ( 1126) 5= .600	.1250 ( 753) P= .000	.4883 963) .000	-0.1159 ( 961) P= .000	.0775 802) .014	.8841 753) .011	.0757 753) .019	-0.4578 ( 753) P= .000	-0.0207 ( 753) P= .286
S	SC	P 11.		~#	9 ~ H	B - H	~# #	_#_	19 J	10° 18°	9 _ !!
N H	STSF	.1287 ( 1124) %= .000	.2238 (1126) = .000	.1445 753) .068	.5838 963) .868	1199 961) .000	.8873 882) .887	.8886 753) .068	Ø751 753) .ø2Ø	4699 753) .066	Ø368 753) .156
H	¥¥.			#\ #	8 J	6 ~ E	- # - #	~ <u>"</u>	9 1	9 1	8 J
m r	AXSF	.1305 (1124) = .600	.2177 (1126) = .668	.8995 753) : .883	-6.5422 ( 963) P= .000	483 61) ØØØ	.ø362 8ø2) .153	.ø698 753) 2 .ø28	845 753) 838	-0.5198 (753) P=.000	763) 763) : .385
Ü	MID		( 11 P= .	P= 7.	16.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	-0.1483 ( 961) P= .003	~ P.	~ [₽]	-8.0845 (753) P=.038	9 6	9-
Z О Н	TRICEPSF	418 24) 888	844 26) 866	036 53) 002	252 63) <i>686</i>	.Ø276 961) .196	.ø127 8ø2) .359	.0653 753) .037	-0.0495 (753) = .087	.ø.3881 (753) = .øøø	0298 753) .213
<b>⊢ ∀</b> .	TRI	.1418 ( 1124) P= .000	.1844 ( 1126) P= .000	.1036 ( 753) P= .002	-6.4252 ( 963) P≃ .666	9.0°. 9.≡	9. 04	9. ^P	-0.6 -7 -1	P = 10	P
R E I	PSF	812 24) 888	831 26) ØØØ	.0606 753) : .048	651 63) ØØØ	451 61) 006	187 (82) 381	553 53) Ø65	842 53) 882	.462 .53) .888	9857 763) 438
0 0 8	SCAPSF	.1012 ( 1124) P= .000	.1831 ( 1126) P= .000	ø. ^¤ 	-0.5651 ( 963) P= .000	-0.1451 ( 961) P= .000	-0.0107 (802) P= .381	.ø553 ( 753) P= .ø66	-0.1042 ( 753) P= .002	-0.5402 (753) P= .000	.0057 ( 753) P= .438
<b>z</b> .	CHSTSF	848 24) 862	1687 126) .øøø	.ø551 753) : .ø88	54Ø8 963) . ØØØ	2312 961) .008	.ø699 8Ø2) .ø24	.ø758 753) .ø19	.0794 753) .015	,5466 753) .000	.ø453 753) .107
A R S	CHS	.Ø848 (1124) P= .ØØ2	.1687 ( 1126) P= .000	9. ^¶	-Ø.54Ø8 ( 963) P= .ØØØ	-0.2312 ( 961) P= .000	-6.0699 (802) P= .024	9. ^ = P = .	-0.0794 ( 753) P= .015	-Ø.5466 (753) P= .000	å. ↑. ¶.
g m	NSF F			3Ø2 53) 2Ø4	4688 963) . ØØØ	492 61) 888	854 Ø2) ØØ8	.øø35 753) .462	349 53) 170	4543 753) .000	.ø465 753) .1Ø1
1	CHINSF	.1138 ( 1124) P= .600	.2111 ( 1126) P= .000	-0.0302 ( 753) P= .204	-0.4688 ( 963) P= .000	-6.2492 ( 961) P= .000	-0.0854 (802) P= .008	ø. ⊃. 	-0.0349 (753) P= .170	-0.4543 ( 753) P= .000	ø. ∩¶
1	ш				.0241 964) .227	.1279 962) .øøø	882) 868	1375 753) .000	463 53) 102	6.8386 753) = .281	1383 147
1 1	RACE	-0.2147 (1125) P= .000	-0.1724 (1127) P= .000	-0.1358 ( 753) P= .000	-Ø.0241 (964) P=.227	 1. 0 ±	-0.0549 ( 802) P= .060	-0.1375 (753) P= .000	-6.0463 ( 753) P= .102	-6.0306 (753) P= .201	-0.0383 ( 753) P= .147
 		0	0	Z	Š		<b>1</b> —				
:		ELBOWD	WRISTD	VO2LMIN	VOZMLKG	¥	DYLIFT	S S	œ	VC02	VEV02
1						H-74					

t t	FOREC	.3443 ( 1124) P= .000	.4032 (1126) Pm.0000	.4815 752) .066	-6.2365 ( 963) ≥= .666	-6.6722 ( 961) -= .613	.5257 801) 966	3127 762) .660	-0.0311 ( 752) P= .197	-6.2351 (752) P= .000	1078 752) .002
t 1 1	S.	F		-~¶	9°~"		`~#	. ~ ¶	9 - E		
; ; ;	BICEPC	.2799 (1125) = .000	.3517 (1127) = .606	.4416 753) .668	-6.3253 ( 964) = .668	-6.6924 ( 962) = .662	.5848 802) .696	.2731 753) .888	-Ø.6879 ( 753) P= .008	-6.3566 (753) P±.000	-0.1169 ( 753) P≖ .601
\$ \$	83	.T.	. C. H	. ~ "!	ال _ا ت [3	å. ^¶.	· 🍱	_a!!	6 ° "	ان م ان م	5
1 1	THIC	.2324 ( 1122) = .000	.2149 ( 1124) P= .000	.4174 751) = .000	-6.3642 ( 962) P= .000	-6.0986 ( 960) P= .e01	.3348 866) . 666	.2878 . 751) = .666	-6.8686 (751) = .648	-6.3554 ( 751) P= .000	-0.0767 ( 751) P= .018
3	F		<b>1</b>	~ª	<b>%</b> ~ <b>!!</b>	<b>19</b> _ <b>1</b>	~ #	اله ب		8 J	
(MALES)	HIPC	.3474 ( 1124) P= .666	.3634 ( 1126) P= .000	.4397 752) : .000	-8.4686 ( 963) = .668	-6.1384 ( 961) >= .000	.2961 861) .666	.31Ø1 752) : .000	-6.8398 (762) = .138	-6.4521 ( 752) P= .000	-6.6742 ( 762) P= .021
ი - z	Ξ	<u>_</u> #	<u>_</u> #	`_a"	#; <b>□</b> #	<b>6</b> 0 11	<b>~</b> ₫	<b>~</b> ₫	9 J.	4 - 1	
  	AB02C	.2857 (1125) = .660	.3214 ( 1127) 5= .666	.2997 753) : .866	-0.5865 ( 964) P= .000	-8.2598 ( 982) P= .888	.1626 902) .088	.2283 753) .666	-8.0695 (753) P=.028	-0.5536 (753) P= .866	-6.0203 (753) = .289
L	₹	Ŭå!	Ŭ <u>∦</u>	<b>~</b> ª	6 - II		<b>~</b> ª	<b>⊸</b> ª	<b>*</b>   ∪ <u>  </u>	9 J	
1 11 11	AB01C	.2839 (1124) = .686	.3138 ( 1126) P= .000	.3187 752) : .000	- <b>Ø.</b> 581 <b>6</b> ( 983) P= .000	-6.2487 ( 961) P= .888	.1978 8Ø1) .ØØ6	.2458 752) .000	-6.6845 (752) = .016	.5455 752) .000	- <b>Ø.Ø16</b> 2 ( 752) P= .329
-	₹	<u>_</u>		<b>∽</b> ª		9 _ [	<b>∽</b> #	<b>~</b> ₫	9 ~ L	<b>6</b>	
X 0 1 - V	CHSTC	.3135 ( 1123) P≃ .000	.3518 (1125) P= .668	.4277 751) = .888	-6.4128 ( 962) P= .866	-6.2824 ( 968) P= .888	.3152 880) .888	.3347 751) .000	-0.0450 (751) P= .109	.4176 751) .000	-0.0242 ( 751) P= .264
L	ס			_#	9 _ #		`~d	<b>−</b> ª			9 <u> </u>
25 25 25 21	SHOULC	.3472 (1124) = .888	.4239 (1126) = .666	.51 <i>0</i> 6 752) : . <i>0</i> 00	-6.33 <i>67</i> ( 963) P= , <i>888</i>	-6.1166 ( 961) P= .000	.4796 8Ø1) .6Ø0	.3412 752) .000	-0.0767 ( 752) P= .018	.3512 752) .000	-6.1676 ( 752) P= .662
ပ ပ	ัง	<u> </u>		<b>ე</b> ქ	9 ~ ll	9 ~ L	<b>~</b> ₽	<b>~</b> ≝	9 - 1	8 J	
Z 0 0	HEADC	.25 <i>87</i> ( 1124) P= . <i>6</i> 66	.2701 ( 1126) P= .000	.3444 752) : .000	-0.1738 ( 963) P= .000	-8.1951 ( 961) P= .000	.2375 8Ø1) .ØØØ	.2529 752) .666	.0032 752) .465	-0.1660 (752) P= .000	-0.6449 ( 752) P= .109
PEARSON		ال ال	ال الم	<b>~</b> ª	9 9 1	,	<b>~</b> ₫	~≝	<b>~</b> ª	9 <u> </u>	
	BICEPSF	.1157 ( 1123) P= .000	.1746 ( 1125) P= .000	.8945 752) 885	-0.4695 ( 962) P= .000	-8.146Ø ( 96Ø) P= .00Ø	-0.0202 ( 801) P= .284	.0464 752) .102	-0.0836 ( 752) P= .011	-0.4357 ( 752) P= .000	-0.0376 ( 752) P= .156
1 1	<b>6</b>	اله ت	<u>_</u>	ال	9 0	ø		~≝	9 \ I	9° - ₽	<b>%</b> ∪ <b>!</b> !
1	CALFSF	.1198 (1123) = .688	.1235 ( 1125) P= .000	.1384 753) : .888	-8.3438 ( 963) P= .000	.0463 961) 076	.0371 801) .147	.1055 ( 753) P= .002	-0.0557 (753) P= .063	-0.3346 ( 753) P= .000	. 588
1 ! !	Ü	<u></u>	~"	<b>~</b> ₫		`~#	<b>-</b> d	<b>₽</b>	9 <u> </u>		~ <u>"</u>
1 1 !		EL BOWO	WRISTD	VG2LMIN	VOZMLKG		DYLIFT			8	20
1		딥	WRI	<b>V</b> 02	V02	¥	DYL	×	œ	VC02	VEV02

! ! !	BIDELD	.3149 ( 1125) P= .000	.3979 ( 1127) P= .888	.4934 ( 753) P= .888	-6.6287 ( 964) P= .187	-6.6583 ( 962) P= .635	.4698 ( 802) P= .000	.2958 ( 753) P= .666	-6.6271 (753) P= .229	-8.6329 ( 753) P= .184	-6.1562 ( 753) P= .886
1 1 1 1	BIACD	.2868 ( 1125) P= .005	.4416 (1127) P= .000	.4151 ( 753) P= .000	.1387 ( 964) P= .600	-0.1158 ( 962) P= .000	.3648 ( 802) P= .866	.2199 ( 753) P= .000	.0023 ( 753) P= .475	.1963 ( 753) P= .606	-8.1778 (753) P= .000
(s	¥	.4363 (1126) P= .886	.5099 ( 1127) P= .000	.5618 ( 753) P≃ .666	-6.4427 ( 964) P= .888	-0.2481 ( 962) P= .860	.4112 ( 802) P= .000	.3915 ( 753) P= .000	-0.0688 (753) P= .030	-8.4482 ( 753) P= .866	-6.6968 (753) P= .864
T S (MALES	Ħ	.4187 ( 1121) P= .566	.4996 ( 1123) P= .000	.4864 ( 749) P= .868	-8.8212 ( 960) P= .255	-0.1543 ( 958) P= .000	.2885 ( 799) P= .000	.3488 ( 749) P≕ .000	.0271 ( 749) P= .229	.8867 ( 749) P= .427	-Ø.0885 (749) P=.008
FICIEN	AGE	.8958 (1125) P= .801	.1924 ( 1127) P= .888	-6.2717 ( 753) P= .000	-0.3812 ( 964) P= .000	-8.4691. ( 962) P= .868	-0.2317 ( 802) P= .000	-6.1387 ( 753) P= .000	-6.0802 ( 753) P= .014	-0.5148 ( 753) P= .000	.1399 ( 753) P= .000
COEF	FLXBICC	.2959 ( 1126) P= .000	.3439 ( 1127) P= .600	.4487 ( 753) P= .600	-6.2918 ( 964) P= .866	-8.8798 ( 982) P= .667	.5352 ( 802) P= .000	.2935 ( 753) P= .860	-6.0719 ( 753) P= .024	-8.3171 ( 753) P= .808	-6.8996 (753) P=.883
LATION	NECKC	.2847 ( 1123) P= .000	.3313 ( 1125) P= .800	.3789 ( 751) P= .000	-8.3267 ( 962) P= .000	-0.1938 ( 960) Pr000	.3248 ( 800) P= .000	.3007 ( 751) P= .600	-6.6467 ( 751) P= .133	-6.3289 (751) P=.068	-0.0162 ( 751) P= .329
CORRE	ANKLEC	.3581 ( 1122) P= .000	.4489 ( 1124) P= .888	.6251 ( 752) P= .000	-0.0540 ( 962) P≕.047	-0.0614 ( 960) P= .029	.3693 ( 801) P= .000	.3276 ( 752) P= .003	.£123 ( 752) P= .368	-0.0544 ( 752) P= .068	-8.1546 ( 752) P= .000
ARSON	CALFC	.3598 ( 1125) P= .000	.4041 ( 1127) P= .900	.5017 ( 753) P= .000	-Ø.2752 ( 964) P= .ØØØ	-Ø.158Ø ( 962) P= .000	.3953 ( 802) P= .000	.3423 ( 753) P= .000	.0071 ( 753) P= .422	-0.2675 ( 753) P= .000	-8.8948 (753) P= .005
T - T	KNEEC	.3424 (1125) P= .000	.3867 ( 1127) P= .000	.4354 ( 753) P= .000	-Ø.1993 ( 964) P= .ØØØ	-0.1092 ( 962) P= .000	.3237 ( 802) P= .000	.2818 ( 753) P= .000	-6.0484 ( 753) F= .092	-Ø.2084 ( 753) P= .000	-0.1063 ( 753) P= .002
1 1 1 1	WRISTC	.4452 ( 1124) P= .000	.6313 ( 1126) P= .000	.4864 ( 752) P= .000	-Ø.1634 ( 963) P= .000	-0.1115 ( 961) P= .000	.4222 ( 801) P= .000	.3433 ( 752) P= .000	.ø3ø3 ( 752) P= .2ø3	-0.1484 ( 752) P= .000	-0.0771 ( 752) P= .017
1 1 1 1		ELBOWD	WRISTD	VOZLMIN	VOZMLKG	HR	DYLIFT	VE	œ	VC02	VEV02
						u_76					

CACATURACE SEASONS FOR FORESTAND PROPERTY INSTRUMENT TO SEASON TO

1 3	DYLIFT	.3354 799)	.4862 861) .966	.5349 742)	. <b>6</b> 722 742) . <b>6</b> 26	746)	1.8846 ( 842) = .866	.3185 742)	742)	.8641 742) .841	1.1672 742)
:	۵	→en	~ <u>a</u>	~ <u>#</u>	ح الم	Ų.Ž	~~#	~ <u>F</u>	٠Ē	<b>~</b> ₹	1 - 1
1 1	~-	-6.1445 ( 959) = .868	-6.1727 ( 981) = .888	6458 751) .105	.2687 962) .666	.8686 982) .866	8633 740) .674	. <b>6676</b> 751) .632	.1368 751)	.2689 751) .666	751)
; 1	¥			اله	·~#	-i _#	٣٠.	. ~ #	`~#	`~#	. ~ <del>g</del>
1 1 1	VOZIALKO	-8.6773 ( 961) P= .968	-6.8944 ( 963) Pr862	.4284 ( 753) P= .006	1.0000 ( 984) Pr000	,2887 ( 962) P= .896	.0722 ( 742) Pa .025	,2626 ( 753) P= ,000	.1182 ( 753) Pm .001	.8973 ( 763) P= .005	-6.1387 ( 753) Pz.:066
S (MALES)	VOZLMIN	.3712 ( 756) Pm .006	.4323 (752) Pm.: <b>006</b>	1.0000 (753) Pm.000	.4264 ( 753) Pm .868	.8458 ( 751) Pm .185	.5349 ( 742) Pm .806	.6649 ( 753) Pm .#68	.8455 ( 753) Pm .186	.3794 ( 753) Pa .866	.6.2369 (753) P= .866
ICIENT	WRISTD	.5819 ( 1124) P= .686	1.6666 (1127) P= .666	.4323 ( 752) P= .868	-6.8944 ( 963) P= .862	-0.1727 ( 961) P= .606	. 4682 ( 861) Pa . 606	.2625 ( 752) P= . <b>60</b> 6	.0058 ( 762) P= .437	-6.8721 ( 762) P= .824	-6.1191 ( 752) Pr661
C 0 E F F	ELBOWD	1. <b>6606</b> (1125) P= .608	.5019 ( 1124) Pm .0000	.3712 ( 750) P= .000	-6.6773 ( 961) P= .008	-6.1445 ( 959) P= .000	.3354 ( 799) P= .808	.2617 ( 758) P= .898		-6.1832 ( 750) Pm .002	- <b>0</b> .9593 (750) P= .052
ATHON	снзто	.2928 ( 1124) P= .000	.4025 ( 1125) P= .000	.4338 ( 751) P= .000	-8.8619 ( 962) P= .028	-6.1541 ( 960) P= .000	.4242 ( 806) P= .000	.2564 ( 751) P= .600	.8864 ( 751) P= .438	. <b>66</b> 17 ( 751) P= .481	-6.1419 ( 751) Pm .006
CORREL	ANKLED	.3642 ( 1124) P= .666	.4531 ( 1126) P= .000	.4228 ( 752) P= .000	.0306 ( 963) P= .172	-6.1432 ( 961) P= .000	.3237 ( 8Ø1) P= .000	.2715 ( 762) P= .000	.6298 ( 752) P= .267	.8538 ( 752) P= .076	-8.8998 (752) P= .863
ARSON	KNEED	.3277 ( 1125) P= .666	.3081 ( 1127) P= .000	.3730 ( 753) P= .668	-6.1271 ( 964) P= .666	-6.6714 ( 962) P= .613	.2429 ( 802) P= .666	.2371 ( 753) P= .666	-6.6356 (753) P= .169	-0.1833 ( 753) P= .000	- <b>6.6</b> 938 ( 753) P= .605
1 1 E	BITROD	.3275 ( 1125) P= .686	.4721 ( 1127) P= .666	.3815 (753) 5= .888	-6.0013 ( 964) P= .484	-6.1248 ( 962) P= .608	.2976 ( 802) P= .000	.1894 ( 753) P= .000	.0176 ( 753) P= .316	.0678 ( 753) P= .058	-0.1689 ( 753) P= .000
1 1 1 1 1 1 1	IILIACD	.3078 ( 1123) P= .600	.4388 (1125) P= .000	.3418 ( 752) P= .000	-6.6284 ( 963) P= .189	-8.1708 ( 961) P= .000	.2607 ( 800) P= .000	.1828 ( 752) P= .000	.0053 ( 752) P= .442	.0363 ( 752) P= .160	-6.1401 ( 752) P= .000
1 1 1		ELBOWD	WRISTD	VOZLMIN	V02MLKG	H	DYLIFT	VE	œ	VC02	VEV02

 	CWALDA	.4780 (1123) 52 .666	. 5129) ( 1125)	.7868 ( 752) = .866	-6.8861 ( 963) = .864	-8.1767 ( 961) P= .000	.6186 ( 861) = .666	.4621 752)	.6.8239 ( 752) 5= .256	-8.1118 ( 762) P= .001	-6.1728 ( 752) = .666
1 1	PCBF	682 23) 611	212 25) 666	.6.8449 ( 752) ( 389 F	,		456 61) 686	.6169 752) .322 F	.615 .615	.5848 752) .606	6784 752) (
; t t	5	.8682 ( 1123) Px .811	.1212 ( 1126) P= .000		-8.8624 ( 963) Pn .888	-8.1646 ( 961) P= .003	-8.1458 ( 801) P= .000	P	9. J. II	P	
	KOEN	-0.6681 ( 1123) P= .611	-9.1213 (1125) Fz000	.6456 ( 752) P= .189	.6668 ( 963) P≈ .666	.1635 ( 961) Pm .000	.1443 ( 801) P= .006	-6.0168 ( 752) F= .323	.6792 ( 752) P= .015	.5831 ( 752) P= .666	-0.0796 ( 752) P= .015
T S (MALES	<u>۲</u> ۲	,2315 ( 998) Fz. :868	.3895 ( 999) P= .666	.1117 ( 847) P= .002	-8.0792 ( 858) P= .010	-8.3 <b>686</b> (857) P≃.666	-8.9854 ( 683) P= .444	.8958 ( 647) Pr868	.0194 ( 847) P= .311	-8.8278 ( 647) P= .246	.0010 ( 647) P= .498
ICIEN	ΛC	,2869 (1120) P= .060	.3175 (1122) P= .000	.4539 ( 750) P= .000	.1163 ( 986) P= .888	-8.0658 ( 958) P= .022	.2143 ( 799) P= .000	.4155 ( 750) P= .000	.1324 ( 750) P= .000	.1613 ( 750) P= .980	.0369 ( 750) P= .157
C 0 E F F	THGRADE	-5.1632 (750) P=.0832	-6.1627 ( 752) P= .662	.2814 ( 753) P= .000	.6819 ( 753) P= .000	.3255 ( 751) P= .@@@	.0559 ( 742) P= .064	.2115 ( 753) P= .606	.1631 ( 753) P= .666	.6408 ( 753) P= .000	-6.6477 (753) P= .696
MOHLY.	TAKSPEED	-6.6593 (750) P=.652	-6.6229 ( 752) P= .268	.1944 ( 753) P= .000	.5037 ( 753) P= .000	-6.0657 (751) P= .036	.0371 ( 742) P= .157	.1603 ( 753) P= .000	.2284 ( 753) P= .003	.5328 ( 753) P= .000	-8.0168 (753) P= .323
CORREL	VEV02	-6.0593 (750) P= .052	-0.1191 ( 752) P= .001	-6.2359 ( 753) P= .000	-6.1387 ( 753) P= .000	.ø268 ( 751) P= .231	-6.1672 ( 742) P= .000	.5538 ( 753) P= .000	.4133 ( 753) P= .000	.ø494 ( 753) P= .ø88	1.0000 ( 753) P= .000
ARSON	VC02	-6.1632 ( 750) P= .662	- <b>6.</b> 6721 ( 752) P= .624	.3794 ( 753) P= .000	.8973 ( 753) P= .666	.2689 ( 751) P= .000	.0641 ( 742) P= .041	.3738 ( 753) P= .000	.4969 ( 753) P= .600	1.0000 ( 753) P= .000	.0494 ( 753) P= .088
1 H H H H	œ	-6.0034 (750) P= .399	.0058 ( 752) P= .437	.0455 ( 753) P= .108	.1102 ( 753) P= .001	.1308 ( 751) P= .000	.6023 ( 742) P= .475	.3578 ( 753) P= .000	1.0000 ( 753) P= .000	.4969 ( 753) P= .608	.4133 ( 753) F= .000
:	٧Ē	.2617 ( 750) P= .000	.2625 ( 752) P= .666	.6649 ( 753) P= .666	.2620 ( 753) P= .666	.0676 ( 751) P= .032	.3185 ( 742) P= .000	1.0000 ( 753) P= .000	.3578 ( 753) P= .000	.3738 ( 753) P= .000	.5538 ( 753) P= .600
 		EL.BOWD	WRISTD	VOZLMIN	VOZMLKG	꿈	DYLIFT	VE	œ	VC02	VEV02
•						11 70					

KRATING	.1196	.1185	.0880	-6.6535	-0.1872	. 6869	.8828	-8.8911	-6.5491	.0265
	( 861)	( 862)	( 556)	( 733)	( 733)	( 586)	( 556)	( 656)	( 556)	( 556)
	P= .666	P≃ .000	P= .019	P= .000	P= .000	Pz492	P= .627	P= .018	Pm .068	P= .314
AVSSR	-6.0476	-6.6708	.0878	.5168	.1301	.1578	.0726	.1188	.5206	.0003
	( 863)	( 864)	( 557)	( 735)	( 735)	( 587)	( 557)	( 557)	( 857)	( 557)
	Pm .081	P= .619	Pm019	P= .000	P= .000	Pm000	P= .044	P= .602	P= .000	P= .497
AVUNIR	-0.1114	-0.1243	-0.1015	.4068	.1031	-0.0766	-6.0579	.6774	.4031	.0248
	( 988)	( 990)	( 671)	( 844)	( 843)	(715)	( 671)	( 671)	( 671)	( 671)
	P= .000	P= .000	P= .004	P= .000	Pz .001	P= .030	P≈ .067	P= .023	Pm .000	Pm .261
ECTO	-8.8998	-8.1186	-8.2139	.4211	.1251	-6.2449	-0.1692	.0789	.4227	.6639
	(1121)	(1123)	( 749)	( 960)	( 958)	( 799)	( 749)	( 749)	( 749)	(749)
	Pm888	P= .000	P= .866	P= .666	P= .868	P= .000	P≖ .000	P= .616	P= .666	P= .458
MESO	.2586	.1701	.2558	-6.2177	-6.0572	.33Ø1	.1587	-8.0523	-8.2718	-0.0628
	(1121)	( 1123)	( 749)	( 960)	( 958)	( 799)	( 749)	( 749)	( 749)	( 749)
	P= .000	P= .800	P= .000	P= .866	Pr033	P= .000	P= .000	P= .076	P= .666	P= .043
1 00G	.1234	.2176	.1075	-8.5477	-0.1191	.ø441	.0804	-8.0794	-0.5104	-8.8693
	( 1121)	(1123)	( 749)	( 980)	( 958)	( 799)	( 749)	( 749)	( 749)	(749)
	Pm000	P= .000	P= .002	P= .000	P= .000	P= .107	P= .014	P= .015	P= .000	P= .486
DWPCBF	.1342	.2609	.Ø141	-0.5758	-6.2869	-6.6336	.0222	-6.1663	-8.5948	.0244
	( 1120)	(1122)	( 748)	( 959)	( 958)	(797)	( 748)	( 748)	( 748)	( 748)
	P= .000	P= .000	P= .351	P= .000	P= .888	P= .176	P= .272	Pr663	P= .000	P= .253
C U W K E	.1215	.2187	.1168	-0.5599	-Ø.1281	.0377	.0803	-8.0898	-0.5219	-0.0198
	( 1124)	( 1128)	( 753)	( 963)	( 961)	( 802)	( 753)	(753)	( 753)	(753)
	P= .666	P= .000	P= .001	P= .000	P= .000	P= .143	P= .014	P= .007	P= .000	P= .294
FEARSUN S DWPCBFEX	.1420 ( 1123) P= .000	.2700 ( 1125) P= .000	.ø188 ( 751) P= .3Ø4	-0.5724 ( 962) P= .000	-Ø.2923 ( 961) P= .ØØØ	-0.8294 ( 800) P= .204	.0238 ( 751) P= .259	-6,0907 (751) P= .006	-0.5896 ( 751) P= .000	.0213 ( 751) P= .280
SUMS	.1234	.2212	.1131	-0.5648	-0.1256	.0350	.0774	-6.0896	-0.5248	-8.0192
	( 1124)	( 1126)	( 753)	( 963)	( 961)	( 802)	( 753)	(753)	( 753)	(753)
	P= .000	P= .000	P= .001	P= .000	P= .000	P= .161	P= .017	P= .007	P= .000	P= .299
L T T T T T	.2013	.2673	.1508	-6.6114	-6.2114	.0216	.1507	-0.0827	-6.5969	.0265
	( 1123)	(1125)	( 752)	( 963)	( 961)	( 801)	( 752)	( 752)	( 752)	( 752)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .271	P= .000	P= .012	P= .000	P= .234
)   	ELBOWD	WRISTD	VOZLMIN	VOZMLKG	Ħ	DYLIFT	٧ ا	œ	VC02	VEV02

; ; ;	GENDER	( 271) P= .	( 270) P= .	( 237) P= .	( 238) F= .	. 238) P= .	( 243)	( 237)	( 237) P= .	( 237)	( 237) P= .
1 1 1	¥	( 271) P= .	( 270) P= .	( 237) P= .	( 238) P= .	( 238)	( 243) P= .	( 237)	( 237)	( 237) P= .	( 237)
.ES)	PTSCORE	.0617 ( 256) P= .163	.8286 ( 256) P= .370	.1973 ( 227) P= .001	.4344 ( 227) P= .666	.0835 ( 227) P= .105	.2137 ( 232) P= .001	.1530 ( 227) P= .011	.1438 ( 227) Pm .016	.4319 ( 227) P= .600	-6.0199 ( 227) P= .383
T S (FEMAI	TWOMILE	-6.6387 ( 254) P= .270	-0.0421 ( 254) P= .252	-0.3086 ( 224) P= .006	-0,6217 (225) F= .000	-8.8991 ( 225) P= .689	-6.2238 ( 229) P= .866	-0.2746 ( 224) P= .666	-0,1512 ( 224) P= .012	-8.6611 ( 224) P= .000	-Ø.Ø142 ( 224) P= .416
FICHEN	PUSHUP	-8.0242 ( 255) P= 0.0	-0.0521 ( 255) P= .204	.0168 ( 222) P= .402	.3733 ( 223) P= .666	.1561 ( 223) P= .666	.1537 ( 228) P= .010	.0018 ( 222) P= .489	.8731 ( 222) P= .139	.3488 ( 222) P= .868	-6.6676 ( 222) P= .458
COEF	SITUP	.0288 ( 255) P= .324	-0.0475 ( 255) P= .225	.2037 ( 222) P= .001	.3883 ( 223) P= .000	.1829 ( 223) P= .663	.0810 ( 228) P= .111	.2116 ( 222) P= .001	.1763 ( 222) P= .004	,4063 ( 222) P= .000	.Ø436 ( 222) P≂ .259
NOILA	UNITYPE	.0582 ( 270) P= .170	-6.8259 ( 269) P= .336	.0495 ( 238) P= .224	-0.0222 ( 237) P= .367	-6.6776 ( 237) P= .119	.0067 ( 242) P= .459	.0407 ( 236) P= .267	-0.0554 ( 236) P= .198	-0.6491 ( 236) P= .226	-6.6105 ( 236) P= .436
CORREI	PRIMOS	-0.6368 ( 271) P= .273	-0.0948 ( 270) P= .060	-0.0491 ( 237) P= .226	.ø744 ( 238) P= .127	-0.1673 ( 238) P= .005	-6.6446 ( 243) P= .247	-6.0913 ( 237) P= .080	-0.0800 ( 237) P= .110	. 0040 ( 237) P= .476	-0.0736 ( 237) P= .129
N O S & V	CARMGMT	. 6369 ( 276) P= .367	.1416 ( 269) Pm010	.0649 ( 236) P= .160	-Ø.Ø169 ( 237) P= .398	.0839 ( 237) P= .099	.Ø179 ( 242) P= .391	.Ø416 ( 236) P= .263	-0.0625 ( 236) P= .189	-0.6414 ( 236) P= .263	-0.0275 ( 236) P= .337
1 P E	RANK	.0918 ( 271) P= .068	.0192 ( 270) P= .377	.0628 ( 237) P= .168	-6.8324 ( 238) P= .389	-0.1403 ( 238) P= .015	.0140 ( 243) P= .414	.0751 ( 237) P= .125	-Ø.0078 ( 237) P= .452	-0.0065 ( 237) P= .460	.0342 ( 237) P= ,300
1 1	TIMESER	.0621 ( 271) P= .154	.0536 ( 270) P= .190	-0.0647 ( 237) P= .161	-0.2245 ( 238) P= .000	-0.1654 ( 238) P= .005	-Ø.Ø96Ø ( 243) P= .Ø68	-0.0675 ( 237) P= .150	.0864 ( 237) P= .154	-0.1323 ( 237) P= .021	-6.8891 ( 237) P= .445
1 1 2		ELBGMD	WRISTD	VOZLMÍN	VOZMLKG	H	DYLIFT	VE	œ	VC02	VEV02
						11 00					

f	KNEESF	.1600 ( 271) P= .007	.0786 ( 270) P= .161	.0405 ( 237) Pr268	-0.1842 ( 238) P≈ .602	-9.2475 ( 238) P= .233	-0.0689 ( 243) P= .439	-&.ø363 ( 237) P≡ ,289	-6.6293 ( 237) P= .327	-8.1715 ( 237) P= .064	-6.6966 ( 237) P= .676
1 t 1 1	THISF	-6.6642 ( 271) P= .473	.8925 ( 270) P= .865	.1596 ( 237) F≃ .607	-6.33%\$ ( 238) P= .666	-0.0122 ( 238) Pm .428	-0.0219 ( 243) P= .367	-0.0414 ( 237) P= .203	-6.0439 ( 237) P= .250	-8.3475 ( 237) P≈ .868	-0.2036 ( 237) P= .001
.ES)	ABDSF	.0520 ( 271) P= .197	.1378 ( 270) P= .012	.1514 ( 237) P= .010	-0.3627 ( 238) P= .000	-0.1116 ( 238) P= .043	.0722 ( 243) P= .131	.0300 ( 237) P= .323	-0.0336 ( 237) P= .304	-0.3248 ( 237) P= .000	-0.1302 ( 237) P= .023
T S (FEWAL	SUPRASF	.Ø789 ( 271) P= .Ø98	.1583 ( 270) P= .005	.1577 ( 237) P= .008	-0.3822 ( 238) P= .868	-0.0920 ( 238) P= .079	.ø799 ( 243) P= .1ø7	-8.8138 ( 237) P= .421	-8.0664 ( 237) P= .194	-0.2837 ( 237) P= .003	-0.1945 ( 237) P= .001
Z H C H II	WAISTSF	.0772 ( 271) P= .102	.1459 ( 270) P= .008	.1728 ( 237) P= .004	-8.3267 ( 238) P= .000	-0.0497 ( 238) P= .223	.0794 ( 243) P= .109	.0242 ( 237) P= .358	-6.6132 ( 237) P= .426	-6.2788 ( 237) P= .656	-0.1609 ( 237) P= .607
C O E F	MIDAXSF	.ø738 ( 270) P= .114	.ø753 ( 269) P= .1Ø9	.ø882 ( 236) P= .ø88	-6.4161 ( 237) P= .688	-0.0345 ( 237) P= .298	.0414 ( 242) P= .261	-8.0158 ( 236) P= .405	.ø438 ( 236) P= .252	-6.3221 ( 236) P= .000	-6.1158 ( 236) P= .038
NOILY	TRICEPSF	.1221 ( 271) P= .022	.1227 ( 270) P= .022	.1219 ( 237) P= .031	-0.5062 ( 238) P= .000	-0.0215 ( 238) P= .371	-0.0134 ( 243) P= .418	.0148 ( 237) P= .411	.0247 ( 237) P= .352	-0.4182 ( 237) P= .866	-6.1203 ( 237) P= .032
CORREI	SCAPSF	.0641 ( 271) P= .146	.0625 ( 270) P= .153	.0822 ( 237) P= .104	-0.5183 ( 238) P= .000	-0.1045 ( 238) P= .054	.0168 ( 243) P= .398	-0.0042 ( 237) P= .474	.0146 ( 237) P= .412	-6.4228 ( 237) F= .000	-0.1045 ( 237) P= .054
ARSON	CHSTSF	-6.0010 ( 271) P= .493	-0.6612 ( 270) P= .492	-6.0254 ( 237) P= .349	-0.4066 ( 238) P= .660	-0.0847 ( 238) P= .097	-0.0209 ( 243) P= .373	-0.0068 ( 237) P= .459	.0380 ( 237) P= .323	-6.3106 ( 237) P= .000	.0157 ( 237) P= .405
山 山 山 i	CHINSF	.0139 ( 271) P= .410	.0699 ( 270) P= .126	.1784 ( 237) P= .663	-0.2648 ( 238) P= .666	-0.1359 ( 238) P= .018	.ø356 ( 243) P= .291	.0064 ( 237) P= .461	.0403 ( 237) P= .269	-0.1888 ( 237) P= .002	-0.1756 ( 237) P= .003
1 1 1 1	RACE	-6.6146 ( 271) P= .469	.0087 ( 270) P= .443	-0.1589 ( 237) P= .007	-6.0612 ( 238) P= .174	.0278 ( 238) P= .339	-8.0368 ( 243) P= .284	-0.1259 ( 237) P= .026	-0.0105 ( 237) P= .436	-0.0509 ( 237) P= .218	-0.0170 ( 237) P= .397
1 1		GW08-13	WRISTD	VOZLMIN	VOZMLKG	품	DYLIFT	VE	œ	VC02	VEV02

; ; ;	FOREC	.3662 ( 271) Pm .666	.3587 ( 270) P= .666	.4658 ( 237) P≈ .000	-0.2524 ( 238) P≃ .000	.0376 ( 238) P= .282	.2783 ( 243) P= .000	.3898 ( 237) Pm .008	.0220 ( 237) P= .388	-6.1994 ( 237) Pm .861	.6.1164 ( 237) P= .045
1 1 1 1	BICEPC	.2158 ( 271) Pz000	.2936 ( 276) P= .888	.4029 ( 237) Pm .000	-0.4325 ( 238) P= .000	-6.0482 ( 238) P= .229	.2198 ( 243) P≡ .068	.2687 ( 237) Pm .866	.6199 ( 237) Fee .386	-6.3556 ( 237) Pa .666	-6.1836 ( 237) P≃ .856
ES)	THIC	.6592 ( 271) P= .168	.1641 ( 276) Pm .644	.4259 ( 237) Pm .0006	-6.3617 ( 238) P= .666	.0091 ( 238) Pm .444	.2164 ( 243) P≃ .686	.3131 ( 237) P= .888	-0.0377 ( 237) P= .282	-8.334% ( 237) P= .000	-8.0669 ( 237) P= .152
TS (FEMA	HIPC	.1582 ( 278) P= .067	.2872 ( 269) P= .000	.4600 ( 236) P= .600	-0.4558 ( 237) P≃ .008	-6.0592 ( 237) P= .182	.1477 ( 242) P= .011	.2743 ( 236) P= .000	-6.8326 ( 236) P= .389	-6.4635 ( 236) ?= .668	-0.1425 ( 238) P= .814
FICIEN	ABD2C	.1862 ( 270) P= .801	.2699 ( 269) P= .666	.4085 ( 236) P= .600	-6.4186 ( 237) P= .668	-0.1847 ( 237) P= .054	.1416 ( 242) Pm .014	.2921 ( 236) P= .866	-0.6241 ( 236) P= .357	-0.3672 ( 236) P= .000	-6.0713 ( 236) P= .138
C 0 E F	ABD1C	.2218 ( 270) P= .000	.1704 ( 269) P= .003	.3797 ( 236) P= .666	-0.4208 ( 237) P= .000	-0.1364 ( 237) P= .018	.1098 ( 242) P= .044	.2928 ( 236) P= .006	-0.0731 ( 236) P= .132	-6.3834 ( 236) P= .666	-Ø.Ø458 ( 236) P= .242
NOILA	CHSTC	.2076 ( 270) P= .000	.2913 ( 269) P= .000	.4495 ( 236) P= .666	-0.3653 ( 237) P= .800	-0.1407 ( 237) P= .015	.2074 ( 242) P= .001	.2479 ( 236) P= .000	-0.0226 ( 236) P= .365	-6.3678 ( 236) P= .666	-Ø.1599 ( 236) P≕ .ØØ7
CORREI	SHOULC	.2873 ( 270) P= .000	.3626 ( 269) P= .000	.5388 ( 237) P= .000	-8.2395 ( 238) P= .666	-0.0559 ( 238) P= .195	.3453 ( 243) P= .666	.3773 ( 237) P= .668	-Ø.0060 ( 237) P= .464	-6.2010 ( 237) P= .001	-0.1208 ( 237) P= .032
ARSON	HEADC	.1055 ( 270) P= .042	.1830 ( 269) P= .001	.0989 ( 236) P= .065	-0.1419 ( 237) P= .014	-0.0571 ( 237) P= .191	.0514 ( 242) P= .213	.1926 ( 236) P= .001	-0.0021 ( 236) P= .487	-0.1225 ( 236) P= .030	.1349 ( 236) P= .019
P E .	BICEPSF	.ø163 ( 271) P= .395	.0759 ( 270) P= .107	.ø888 ( 237) P= .ø86	-0.4338 ( 238) P= .000	-0.0870 ( 238) P= .090	-0.0719 ( 243) P= .132	.ø748 ( 237) P= .126	-6.6329 ( 237) P= .307	-8.3663 ( 237) P= ,000	-0.0189 ( 237) P= .434
1 1 1	CALFSF	.0472 ( 271) P= .220	.1677 ( 270) P= .003	.2019 ( 237) P= .001	-8.3739 ( 238) P= .868	-6.8844 ( 238) P= .473	.0071 ( 243) P= .456	.ø385 ( 237) P= .278	-8.8492 ( 237) P= .228	-8.3395 ( 237) P= .000	-0.1614 ( 237) P= .006
1 1 1		EL.BOWD	WRISTD	VOZLMIN	VOZMLKG	Ħ	DYLIFT	VĒ	œ	VC02	VEV02

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BIDELO	.1918 ( 271) Pz401	.4878 ( 278) P= .888	.4861 ( 237) Pm .000	.6.6598 ( 238) P= .182	-8.0683 ( 238) P= .449	.3631 ( 243) P= .000	.2165 ( 237) Pm .001	-6.0248 ( 237) Pm .353	-6.8525 ( 237) P= .211	-6.2527 ( 237) P= .000
1 2 1 1	BIACD	.2516 ( 271) Pa .000	.4367 ( 276) P= .868	.4653 ( 237) P= .066	. 6363 ( 236) Pm . 273	-6.0636 ( 238) Pm .482	.2588 ( 243) Pm .0008	.1684 ( 237) P= .887	-6.6148 ( 237) P= .416	.8481 ( 237) P= .269	-6.2316 ( 237) P= .000
LES)	¥	.2531 ( 271) P= .866	. 4282 ( 270) P= .868	.6286 ( 237) Pr006	-8.4278 ( 23E) P= .888	-6.0714 ( 238) P= .138	.2654 ( 243) P= .886	. 4087 ( 237) P= .800	. 6683 ( 237) P= .498	-6.3547 ( 237) P= .666	-0.1635 ( 237) P= .006
TS (FEMALES)	H	,2728 ( 271) P= .666	.3968 ( 270) P= .606	.5287 ( 237) P= .000	-0.6176 ( 238) P= .397	.0130 ( 238) P= .421	.1888 ( 243) PE .682	.3611 ( 237) P= .000	.0371 ( 237) P= .285	.8089 ( 237) P= .448	-0.8952 ( 237) P= .872
FICIEN	AGE	.8817 ( 271) Pea. =9	.1071 ( 270) Pm .040	-6.0271 ( 237) P= .338	-8.2447 ( 238) Pm .600	-0.3731 ( 238) P= .000	-0.0643 ( 243) Pm .159	-0.0883 ( 237) P= .088	.0394 ( 237) P= .273	-0.1643 ( 237) P= .006	-8.0729 ( 237) P= .132
C 0 E F	FLXBICC	.2333 ( 268) P= .668	.2825 ( 267) P= .000	.4821 ( 235) P= .000	-0.3150 ( 236) P≃ .000	-6.0202 ( 238) P= .379	.2685 ( 241) P= .000	.2794 ( 235) P= .009	.0402 ( 235) P= .270	-0.2467 ( 235) P= .096	-0.1420 ( 235) P= .015
LATION	NECKC	.1721 ( 270) P= .662	.2104 ( 269) P= .000	.3700 ( 236) P= .000	-8.1841 ( 237) P= .002	.0044 ( 237) P= .473	.2536 ( 242) P= .006	.2614 ( 236) P= .000	.ø762 ( 236) P= .122	-0.1113 ( 236) P= .044	-0.0665 ( 236) P= .154
C 0 8 8 E	ANKLEC	.2013 ( 271) P= .000	.4729 ( 276) P= .898	.5428 ( 237) P= .666	-0.1165 ( 238) P= .036	-6.6289 ( 238) P= .328	.1787 ( 243) P= .003	.2723 ( 237) P= .888	-0.0287 ( 237) P= .330	-0.1188 ( 237) P= .034	-0.2175 ( 237) P= .000
ARSON	CALFC	.1482 ( 271) P= .810	.3068 ( 270) P= .000	.4285 ( 237) P= .000	-0.3255 ( 238) P= .000	-0.0480 ( 238) P= .231	.1277 ( 243) P= .023	.211 <i>0</i> ( 237) P= .601	.0016 ( 237) P= .490	-8.2791 ( 237) P= .666	-6.1886 ( 237) P= .602
1 1 P E	KNEEC	.2198 ( 271) P= .000	.3350 ( 270) P= .666	.4416 ( 237) P= .600	-6.2903 ( 238) P= .600	-0.0346 ( 238) P= .298	.1060 ( 243) P= .050	.2762 ( 237) P= .000	-0.0242 ( 237) P= .355	-0.2598 ( 237) P= .000	-0.1140 ( 237) P= .040
1 1 1 1	WRISTC	,2262 ( 271) P= ,000	.3881 ( 270) P= .666	.3867 ( 237) P= .600	.1588 ( 238) P= .007	.0466 ( 238) P= .270	.2114 ( 243) P= .000	.3681 ( 237) P= .666	.0461 ( 237) P= .240	.1585 ( 237) P= .007	-0.0091 ( 237) P= .444
1 1		ELBOWD	WRISTD	VOZLMIN	VOZMLKG	HR HR	DYLIFT	VE	œ	VC02	VEV02

1 1 1	DYLIFT	.1365 ( 243) P= .017	.2475 ( 242) P= .000	.4114 ( 234) P= .000	.1469 ( 234) P= .012	.1158 ( 234) P= .039	1.6866 ( 243) F= .668	.2377 ( 234) P= .868	.0393 ( 234) P= .275	.1478 ( 234) P≃ .012	-Ø.1363 ( 234) P= .Ø19
1 1 2 1	뚶	-0.0055 ( 238) P= .466	.0348 ( 237) P= .297	.0333 ( 237) P= .305	.1324 ( 238) P= .021	1.8686 ( 238) P= .888	.1158 ( 234) P= .039	.1417 ( 237) P= .015	.1785 ( 237) P= .004	.1743 ( 237) P= .664	.1339 ( 237) P= .020
ES)	VOZMLKG	-0.0334 ( 238) P= .304	-0.0597 ( 237) P= .180	.4259 ( 237) P= .000	1.0000 ( 238) P= .000	.1324 ( 238) P= .021	.1469 ( 234) P= .012	.2228 ( 237) P= .600	.0715 ( 237) P= .137	.8747 ( 237) P= .000	-0.1445 ( 237) P= .013
T S (FEMALES)	VOZLMIN	.2798 ( 237) P= .000	.4667 ( 236) P= .060	1.0000 ( 237) P= .000	.4259 ( 237) P= .000	.8333 ( 237) P= .305	.4114 ( 234) P= .600	.5877 ( 237) P= .000	.0644 ( 237) P= .162	.3897 ( 237) P= .888	-0.2959 ( 237) P= .000
TICIEN	WRISTD	.3679 ( 270) P= .000	1.8888 ( 278) P= .888	.4067 ( 238) P= .000	-0.0597 ( 237) P= .180	.0348 ( 237) P= .297	.2475 ( 242) P= .888	.2281 ( 236) P= .000	.ø368 ( 236) P= .287	-0.0296 ( 236) P= .326	-0.1461 ( 238) P= .012
COEFF	ELBOWD	1.0000 ( 271) P= .000	.3679 ( 270) P= .868	.2798 ( 237) P= .000	-0.0334 ( 238) P= .304	-0.0055 ( 238) P= .466	.1365 ( 243) P= .017	.2372 ( 237) P= .000	.Ø465 ( 237) P= .238	.0068 ( 237) P= .459	-0.0152 ( 237) P= .408
NOHLY	CHSTD	.0996 ( 271) P= .051	.2707 ( 270) P= .000	.3324 ( 237) P= .000	-0.0486 ( 238) P= .228	-0.0033 ( 238) P= .480	.2746 ( 243) P= .000	.0705 ( 237) P= .140	-6.6473 ( 237) P= .234	-6.0421 ( 237) P= .259	-0.2523 ( 237) P= .000
CORREL	ANKLED	.2751 ( 271) P= .000	.5264 ( 270) P= .000	.4831 ( 237) P= .668	.08865 ( 238) P= .153	-ø.ø36ø ( 238) P= .29ø	.2051 ( 243) P= .001	.3157 ( 237) P= .000	.Ø164 ( 237) P= .4Ø1	.0677 ( 237) P= .150	-0.0953 ( 237) P= .072
ARSON	KWEED	.3228 ( 271) P= .000	.3788 ( 270) P= .600	.3426 ( 237) P= .000	-6.2419 ( 238) P= .000	.ø108 ( 238) P= .434	.1345 ( 243) P= .ø18	.2059 ( 237) P= .001	.1322 ( 237) P= .021	-0.1385 ( 237) P= .017	-0.1000 ( 237) P= .062
H d.	BITROD	.1708 ( 271) P= .002	.3924 ( 270) P= .000	.3598 ( 237) P= .606	-0.1242 ( 238) P= .028	-0.0183 ( 238) P= .389	.1504 ( 243) P= .009	.1168 ( 237) P= .036	.ø348 ( 237) P= .297	-0.0694 ( 237) P= .144	-0.2266 ( 237) P= .000
1 1	IILIACD	.1899 ( 270) P= .001	.3235 ( 269) P= .000	.3080 ( 236) P= .000	-0.0816 ( 237) P= .105	.0015 ( 237) P= .491	.1174 ( 242) P= .634	.1092 ( 236) P= .047	.0117 ( 236) P= .429	-0.0424 ( 236) P= .258	-0.1825 ( 236) P= .002
1 1 1 1		ELBOWO	WRISTD	VOZLMIN	V02MLKG	æ	DYLIFT	VE	œ	VC02	VEV02

TANGESTAND FOR SELECTION OF THE SECRETARIES OF SECRETARIES OF SECRETARIES OF THE SECRETAR

1 1 1	CWMLBM	.2974 ( 266) P= .008	.5045 ( 265) P= .000	.7179 ( 232) P= .000	-0.0865 ( 233) P= .094	.0460 ( 233) P= .242	.3853 ( 238) P= .000	.4998 ( 232) P= .000	.ø528 ( 232) P= .212	-0.0492 ( 232) P= .228	-0.1358 ( 232) P= .020
! ! !	UWWPCBF	-0.0067 ( 266) P= .457	-0.0342 ( 265) P= .289	.0734 ( 232) P= .133	-0.5866 ( 233) P= .000	-0.1296 ( 233) P= .024	-Ø.Ø856 ( 238) P= .Ø94	-0.0122 ( 232) P= .427	-8.0560 ( 232) P= .198	-6.4973 ( 232) P= .666	-0.0839 ( 232) P= .102
ES)	MOEN	.0099 ( 266) P= .436	.6362 ( 265) P= .279	-0.0735 ( 232) P= .132	.5851 ( 233) P≕ .000	.1263 ( 233) P= .027	.0853 ( 238) P= .095	.Ø138 ( 232) P= .418	.ø652 ( 232) P= .201	.4961 ( 232) P= .000	.ø866 ( 232) P= .ø97
TS (FEMALES	RLV	.1534 ( 260) P= .007	.1979 ( 259) P= .001	.1972 ( 226) P= .001	.0099 ( 227) P= .441	-Ø.Ø368 ( 227) P= .291	.1096 ( 232) P= .048	.1548 ( 226) P= .010	.1269 ( 226) P= .028	.ø761 ( 226) P= .127	-6.0002 ( 226) P= .499
FICHEN	۸c	.1782 ( 265) P= .002	.2455 ( 264) P= .000	.5674 ( 231) P= .000	.1993 ( 232) P= .001	-0.0295 ( 232) P= .327	.3132 ( 237) P= .000	.3168 ( 231) P= .666	.0946 ( 231) P= .076	.2227 ( 231) P= .666	-0.1759 ( 231) P= .004
C 0 E F	TMGRADE	-0.0635 ( 237) P= .165	-Ø.ØØ58 ( 236) P= .464	.2821 ( 237) P= .666	.6132 ( 237) P= ,666	.1055 ( 237) P= .053	.0960 ( 234) P= .085	.2124 ( 237) P= .001	.1388 ( 237) P= .016	.6791 ( 237) P= .060	-0.0142 ( 237) P= .414
NOILA	THSPEED	.ø313 ( 237) P= .316	-0.0851 ( 236) P= .096	.234Ø ( 237) P= .000	.4872 ( 237) P= .686	-0.0710 ( 237) P= .138	.0561 ( 234) P= .197	.1405 ( 237) P= .015	.1775 ( 237) P= .003	.5005 ( 237) P= .000	-0.0581 ( 237) P= .186
CORREI	VEV02	-0.0152 ( 237) P= .408	-0.1461 ( 236) P= .012	-6.2959 ( 237) P= .000	-0.1445 ( 237) P= .013	.1339 ( 237) P= .020	-0.1363 ( 234) P= .019	.5859 ( 237) P= .000	.2981 ( 237) P= .000	.ø183 ( 237) P= .389	1.0000 ( 237) P= .000
ARSON	VC02	.0068 ( 237) P= .459	-0.0296 ( 236) P= .326	.3897 ( 237) P= .000	.8747 ( 237) P= .000	( 237) P= .604	.1478 ( 234) P= .012	.3314 ( 237) P= .000	.5407 ( 237) P= .000	1.0000 ( 237) P= .000	.ø183 ( 237) P= .389
1 0 1	œ	.0465 ( 237) P= .238	.ø368 ( 236) P= .287	.0644 ( 237) P= .162	.0715 ( 237) P= .137	.1705 ( 237) P= .004	.ø393 ( 234) P= .275	.3015 ( 237) P= .000	1.0000 ( 237) P= .000	.5407 ( 237) P= .000	.2981 ( 237) P= .000
1 1 1	γE	.2372 ( 237) P= .000	.2281 ( 236) P= .000	.5877 ( 237) P= .000	.2228 ( 237) P= .608	.1417 ( 237) P= .015	.2377 ( 234) P= .000	1.0000 ( 237) P= .000	.3015 ( 237) P= .000	.3314 ( 237) P= .000	.5859 ( 237) P= .000
1 1		ELBOWD	WRISTD	VOZLMIN	VOZMLKG	품	DYLIFT	VE	œ	VC02	VEV02
						H-85					

: : :	GENDER	( . 753) P= .	( 753) P= .	( i123) P= .	( 1000) P= .	( i128) P= .	( i126) P= .	( i126) P= .	( i126) P= .	( 1127) P= .	( 1128) P= .
; ; ; ;	Н	( .763) P= .	( 753) P= .	( i123) P= .	( 1888) P= .	( 1128) P= .	( i126) P= .	( i126) P= .	( i126) P= .	( i127) P= .	( 1128) P= .
(6	PTSCORE	.3368 ( 708) P= .000	.4225 ( 708) P= 000	.ø32ø ( 831) P= .179	-6.8897 ( 711) P= .398	.4120 ( 833) P= .000	-0.4131 ( 833) P= .000	.ø1ø3 ( 833) P= .383	-Ø.4119 ( 833) P≕.260	-0.3680 (833) P=.000	-0.3882 ( 831) P= .600
T S (MALES	TWOMILE	-0.4131 ( 696) P= .000	-0.5088 ( 696) P= .000	-0.0044 (1002) P= .444	.1281 ( 885) P= .000	-0.5122 (1005) P=.000	.5129 ( 1005) P= .060	.0083 (1005) P= .397	.5049 ( 1005) P= .000	.4286 ( 1005) P= .000	.4733 ( 1004) P= .000
FICIEN	PUSHUP	.3097 ( 703) P= .800	.3277 ( 703) P= .000	-6.2175 ( $1011$ ) P= .289	-0.2886 ( 893) P= .000	.4155 ( 1013) P= .000	-0.4167 (1013) P= .000	.0082 (1013) P= .397	-0.4059 (1013) P=.000	-0.3398 (1013) P=.000	-0.5921 (1012) P= .000
COEF	SITUP	.2927 ( 701) P= .000	.3448 ( 701) P= .660	-0.0498 (1010) P=.057	-0.2270 ( 893) P= .000	.4285 ( 1013) P= .000	-0.4294 ( 1013) P= .000	.0020 ( 1013) P= .474	-0.4203 (1013) P=.000	-6.3351 (1013) P= .000	-0.4547 (1012) P= .000
LATION	UNITYPE	-0.1054 ( 741) P= .002	-8.0944 ( 741) P= .005	.1150 ( 1105) P= .000	.3582 ( 984) P= .000	-0.1969 (1108) P= .000	.196 <i>0</i> (1108) P= .000	.0631 (1108) P= .018	.1984 ( 1108) P= .000	.1029 ( 1108) P= .000	.3121 ( 1107) P= .600
CORRE	PRIMOS	-8.1196 (752) P= .001	-0.0856 ( 752) P= .009	-8.8987 (1113) P= .888	-0.0334 ( 990) P= .001	-0.0593 (1116) P= .024	.0599 ( 1116) P= .023	-0.0085 (1116) P= .389	.0802 ( 1116) P= .022	.0237 ( 1116) P= .214	-0.0050 (1115) P= .433
ARSON	CARMGMT	-0.1144 ( 751) P= .001	-0.1059 ( 751) P= .002	-0.0571 (1108) P= .029	-8.0776 ( 985) P= .007	-6.0402 (1111) P= .090	.ø413 (1111) P= .ø84	-6.0073 (1111) P= .404	.0419 (1111) P= .081	.0428 (1111) P= .077	.0083 (1110) F= .391
PE	RANK	-0.1359 ( 753) P= .000	-0.1630 (753) P= .000	.2334 ( 1123) P= .000	.5474 (1000) P= .000	-0.3250 (1126) P= .000	.3232 (1126) P= .000	.0665 (1126) P= .013	.3159 ( 1126) P= .000	.1858 (1127) P= .000	.5092 ( 1126) P= .600
1 1 1 1	TIMESER	-0.2651 ( 751) P= .000	-0.3199 ( 751) P= .000	.1087 (1122) P= .000	.4925 ( 999) P= .000	-0.4129 ( 1125) P= .000	.4128 ( 1125) P= .000	.0524 (1125) P= .040	.4070 (1125) P= .000	.2631 ( 1125) P= .600	.5689 ( 1124) P= .060
1 1 1		TMSPEED	TMGRADE	۸c	RLV	<b>N</b> DEN	UMMPCBF	СКМСВИ	UWWBF	SUMS	DWPCBFEX

1 1 1	KNEESF	-0.1562 ( 753) P= .000	-6.1201 ( 753) P= .000	-6.0153 (1122) P= .305	-3.6962 ( 999) P= .002	-6.2623 (1125) P= .668	.2629 ( 1125) P= .000	.1968 ( 1125) P= .000	.3116 ( 1125) P= .000	.4368 ( 1127) P= .666	.3067 ( 1125) P= .000
1 1 1 1 1	THISF	-6.2534 ( 752) P= .000	-0.2979 ( 752) P= .000	.0514 (1121) P= .043	.0380 ( 998) P= .115	-0.6326 (1124) P= .000	.6331 (1124) P= .000	.0755 (1124) P= .006	.0352 (1124) P= .000	.6778 (1126) P= .660	.5989 (1124) P= .000
	ABDSF	-6.3673 ( 753) P= .600	-6.4335 ( 753) P= .000	.0555 (1122) P= .032	.1064 ( 999) P= .001	-0.7970 (1125) P= .600	.7958 (1125) P= .606	.1674 ( 1125) P= .000	,8101 (1125) P= .600	.8587 ( 1127) P= .000	.0630 (1125) P= .600
T S (MALES	SUPRASF	-6.2744 ( 753) P= .000	-6.3746 ( 753) P= .888	.0254 (1122) P= .198	.0238 ( 999) P= .226	-6.7291 (1125) P= .663	.7288 (1125) P= .600	.1660 ( 1125) P= .600	.7522 ( 1125) P= .000	.9397 (1117) P= .000	.8489 ( 1125) P= .000
HCHEN	WAISTSF	-6.2768 ( 753) P= .000	-0.3873 (753) P= .000	.ø197 ( 1122) P= .254	.Ø194 ( 999) P= .270	-0.7321 (1125) P= .000	.7327 ( 1125) P= .000	.1922 ( 1125) P= .000	.7753 ( 1125) P= .000	.9194 ( 1127) P= .000	.8189 ( 1125) P= .600
COEF	MIDAXSF	-0.3234 ( 753) P= .000	-0.4113 ( 753) P= .000	.0242 ( 1122) P= .209	.0453 ( 999) P= .078	-0.7642 ( 1125) P= .000	.7658 (1125) P= .600	.1896 (1125) P= .000	.8137 ( 1125) P= .000	.8734 ( 1127) P= .888	.8080 (1125) P= .000
NOHLA	TRICEPSF	-0.2850 ( 753) P= .000	-0.2999 ( 753) F= .000	.0027 ( 1122) P= .464	-8.0207 ( 999) P= .257	-0.6222 (1125) P= .000	.6227 ( 1125) P= .000	.1187 ( 1125) P= .600	.6427 ( 1125) P= .000	.7957 (1127) P= .000	.6724 ( 1125) P= .000
CORREI	SCAPSF	-6.3322 ( 753) P= .000	-0.4129 ( 753) P= .666	-0.0955 (1122) P= .001	-0.0257 ( 999) P= .209	-0.6858 ( 1125) P= .000	.6881 ( 1125) P= .000	.1933 ( 1125) P= .606	.7433 ( 1125) P= .600	.8865 ( 1127) P= .000	.7774 ( 1125) P= .000
ARSON	CHSTSF	-9.3474 ( 753) P≃000	-0.4118 ( 753) P= .000	.0520 (1122) P= .041	.1329 ( 999) P= .000	-0.7470 (1125) P= .000	.7497 ( 1125) P= .000	.1534 ( 1125) P= .000	.7921 (1125) P= .600	.7785 ( 1127) P= .000	.7758 ( 1125) P= .000
ш е- !	CHINSF	-0.3158 (753) P= .000	-ø.3316 ( 753) P≃ .øøø	.0887 (1122) Pr001	.2082 ( 999) P= .000	-0.6537 (1125) P= .000	.6555 (1125) P= .000	.0824 (1125) P= .003	.6714 ( 1125) P= .000	.6374 (1127) P= .1388	.6903 ( 1125) P= .000
i i i	RACE	.0353 ( 753) P= .167	-Ø.Ø163 ( 753) P= .328	-6.3574 (1123) P= .000	~Ø.2688 ( 1000) P= .000	.1344 ( 1128) P= .000	-Ø.1338 (1126) P= .000	-0.0934 (1126) P= .000	-0.1505 (1126) P= .000	-Ø.Ø423 (1127) P= .Ø78	-6.1133 ( 1126) P≃ .000
1 1 1 1		TMSPEED	TMGRADE	O _A	RLV	MOEN	UMMPCBF	UMMLBM	CWMBF	SUMS	DWPCBFEX
						н-88					

f 1 1	FOREC	-6,1324 ( 752) P= .600	-6.1581 ( 752) P= .688	.1665 ( 1122) P= .000	.0152 ( 999) P= .315	-0.1547 (1125) P= .000	.1555 (1125) Pm .000	.6778 ( 1125) P= .000	.3460 ( 1125) Pm .000	.3173 ( 1126) P= .000	.2312 ( 1125) P≃ .000
1 1 3 1	BICEPC	-0.2207 ( 753) P= .000	-0.2424 ( 753) P= .000	.0820 (1123) P= .003	-6.6393 (1980) P= .167	-0.3331 (1126) P= .000	.3345 (1126) Pm960	.62\$2 ( 1126) P= .600	.5101 ( 1126) P= .666	.5102 ( 1127) P= .000	.4107 ( 1126) P= .000
	THIC	-6.2061 ( 751) P= .008	-6.2753 ( 751) P= .688	.1348 (1120) Pm000	. 6077 ( 998) P= .404	-0.3683 (1123) P= .000	.3697 (1123) P= .606	.5785 (1123) P= .000	.5250 (1123) P= .000	.4523 ( 1124) P= .800	.3660 ( 1123) P= .0660
T S (MALES)	HIPC	-8.2871 ( 752) P= .000	-Ø.353Ø ( 752) P≕ .ØØØ	.2472 ( 1122) P= .666	.1151 ( 999) P= .000	-0.6087 (1125) P= .000	.6104 ( 1125) P= .888	.6081 (1126) P= .000	.7779 ( 1126) P= .000	.6827 (1126) P= .666	.6973 (1125) F= .000
ICIEN	ABD2C	-0.3372 ( 753) P= .000	-6.4351 ( 753) P= .866	,2327 ( 1123) P= .000	.1935 ( 1000) P= .000	-0.7669 (1126) P= .000	.7682 ( 1126) P= .666	.4539 ( 1126) P= .000	.8882 ( 1128) P= .666	.7825 ( 1127) P= .000	.7718 ( 1126) P= .000
C 0 E F F	ABD1C	-6.3439 ( 752) P= .000	-8.4283 (752) P= .888	.2105 ( 1122) P= .000	.1743 ( 999) P= .000	-0.7405 (1125) P= .000	.7423 ( 1125) P= .000	.4741 ( 1125) P= .000	.8705 (1125) P= .000	.7581 ( 1126) P= .000	.7428 ( 1125) P= .000
NOILA	CHSTC	-6.2613 ( 751) P= .666	-8.3373 ( 751) P= .000	.3098 (1121) P= .000	.1980 ( 998) P= .600	-0.8001 (1124) P= .000	.6021 (1124) P= .000	.5468 (1124) P= .000	.7552 (1124) P= .606	.5954 (1125) P= .000	.5792 (1124) P= .000
CORREL	SHOULC	-6.1773 ( 752) P= .989	-6.2739 ( 752) P= .000	.2766 ( 1122) P= .000	.1124 ( 999) P= .000	-0.3634 (1125) P= .000	.3851 (1125) P= .800	.6909 (1125) P= .000	.5631 (1125) P= .000	.4880 (1126) P= .000	.4166 (1125) P= .000
Z 0 8 ¥	ىلد	-Ø.Ø788 ( 752) P= .Ø18		.1945 ( 1122) P= .000	.1985 ( 999) P= .000	-0.1961 (1125) P= .000	.1961 (1125) P= .000	.4685 (1125) P= .000	.3228 (1125) P= .000	.2803 (1126) P= .600	.2971 ( 1125) P= .000
1 1 1 1		-0.2852 ( 752) P= .000	-0.3230 (752) P= .000	-0.0408 (1121) P= .086	.ø181 ( 999) P= .284	-0.6043 (1124) P= .000	.6071 (1124) P= .000	.183Ø (1124) P= .000	.6649 (1124) P= .000	.7659 (1126) P= .000	.6535 ( 1124) P= .000
1 1 1 3	2	-0.2418 ( 753) P= 000	•		-0.0572 ( 998) P= .036	-0.5382 (1124) P= .000		.1130 1124) .886	.5591 (1124) P= .000	.6014 (1126) P= .000	.4663 ( 1124) P= .000
1 1 1 1	-  -  -  -	TASPEED	TMGRADE	ΛC	RLV	MDEN	UWWPCBF	UWALBW	UMMBF	SMNS	DWPCBFEX
						11-89					

! ! !	BIDELD	.6168 ( 753) P≈ .338	-6.1103 (753) 3=.001	.2663 (1123) P≕ .000	.1273 (1800) P= .868	-0.1567 (1126) P= .000	.157 <i>0</i> (1126) P= .000	.5043 (1126) P= .000	.3024 (1126) P= .000	.3018 (1127) P= .000	.2621 ( 1126) P= .000
1 1 1	BIACD	.1518 ( 753) P= .800	.0577 ( 753) P= .057	.2898 (1123) Pm000	.2892 (1000) P= .000	.0295 (1126) P= .162	-0.0304 (1126) P= .154	.3448 ( 1126) P= .000	.0662 (1126) P= .013	.0858 (1127) P≂ .002	.1556 ( 1128) P≃ .000
s)	¥	-8.2644 ( 753) P= .006	-6.3587 (753) P= .000	.3386 (1123) P= .000	.2328 ( 1000) P= .000	-0.5451 (1126) P= .800	.5469 (1128) P= .800	.7861 ( 1126) P= .000	.7724 ( 1126) P= .806	.6438 (1127) P= .600	.6067 ( 1126) P= .000
TS (WALES)	Ħ	.8634 ( 749) P= .463	-6.0006 ( 749) P= .494	.5464 ( 1119) P≈ .000	.4795 ( 998) P= .888	-0.0271 (1122) P= .182	.0273 (1122) P= .181	.6278 (1122) P= .668	.2108 ( 1122) P= .000	.0720 (1123) P= .008	.1344 ( 1122) P= .000
N H C H H	AGE	-6.3113 ( 753) P= .606	-6.3448 ( 753) P= .000	.1284 (1123) P= .000	.5585 (1000) P= .000	-0.4425 (1126) P= .000	.4416 ( 1126) P= .000	.0259 (1126) P= .192	,4238 (1126) Pm .800	.2542 (1127) P= .000	.6130 ( 1126) P= .000
C 0 E F	FLXBICC	-6.163Ø ( 753) P= .69Ø	-0.2219 ( 753) P= .000	.0797 ( 1123) P= .064	-Ø.Ø268 (1000) P= .199	-0.2448 ( 1126) P= .000	.2464 ( 1126) P= .000	.6579 (1128) P= .000	.4335 ( 1126) P= .000	.4134 ( 1127) P= .606	.3248 ( 1126) P= .000
LATION	NECKC	-6.1606 ( 751) P≃ .000	-0.2622 ( 751) P= .000	.1794 ( 1121) P= .666	.1139 ( 998) P= .666	-0.2954 ( 1124) P= .000	.2970 ( 1124) P= .000	.5862 ( 1124) P= .000	.4609 ( 1124) P= .600	.4102 ( 1125) P= .600	.3624 ( 1124) P= .000
CORRE	ANKLEC	-6.6574 (752) P= .058	-6.8662 ( 752) P= .035	.3189 ( 1120) P= .003	.1122 ( 997) P= .600	-0.1572 ( 1123) P= .000	.1578 ( 1123) P= .000	,5592 ( 1123) P= .000	.3198 (1123) P= .000	.2647 ( 1124) P= .600	.1971 ( 1123) P= .000
ARSON	CALFC	-Ø.1863 ( 753) P= .000	-6.2416 ( 753) P= .000	.2607 ( 1123) P= .600	.0825 (1000) P= .005	-6.3445 (1128) P= .000	.3453 (1126) P= .000	.6402 (1126) P= .000	.5231 (1126) P= .000	.4528 ( 1127) P= .000	.3866 (1126) P= .000
W C I I	KNEEC	-6.1200 ( 753) P= .000	-0.1514 ( 753) P= .000	.2331 (1123) P= .688	.1177 (1880) P= .888	-0.2878 (1126) P= .000	.2879 (1126) P= .000	.5334 (1128) P= .000	.4328 (1126) P= .000	.3778 (1127) P= .666	.3378 ( 1126) P= .000
1 1 1	WRISTC	-0.0939 ( 752) P= .005	-0.1468 ( 752) P= .000	.3099 (1122) P= .000	.1889 ( 999) P= .000	-0.1235 ( 1125) P= .000	.1235 ( 1125) P= .000		.2962 (1125) P= .000	.2281 (1126) P= .000	.2010 (1125) P= .000
1 1 1 1		TMSPEED	TMGRADE	۸c	RLV	MOEN	UWWPCBF	CWALBM	UWMBF	SMNS	DWPCBFEX

; 1 1 1	DYLIFT	.#371 ( 742) P= .157	.0559 ( 742) P= .064	.2143 ( 799) P= .066	-8.8854 ( 683) P= .444	.1443 ( 801) P= .000	-8.1458 ( 801) P= .000	.6166 ( 861) Pm .666	.0216 ( 801) P= .271	.0356 ( 802) P= .161	-6.6294 ( 860) P= .264	
; ; ; ;	뚶	-6.0657 ( 751) P= .036	.3255 ( 751) P= .000	-8.0850 ( 958) P= .022	-8.3080 ( 857) P= .000	.1635 ( 961) P= .000	-8.1848 ( 961) P≕ .000	-8.1767 ( 961) P= .888	-6.2114 ( 961) P= .000	-6.1256 ( 961) P= .668	-8.2923 ( 961) P= .000	
	YOZMLKG	.5037 ( 753) P= .900	.6819 ( 753) P= .000	.1103 ( 960) P= .000	-6.6792 ( 858) P= .616	.6808 ( 963) P= .868	-6.6824 ( 963) P= .868	-0.0861 ( 963) P= .004	-0.6114 ( 963) P= .000	-8.5648 ( 963) P= .000	-6.6724 ( 962) P= .000	
T S (MALES	VOZLMIN	.1944 ( 753) P= .000	,2814 ( 753) P= ,666	.4539 ( 750) P= .000	.1117 ( 647) P= .002	.8458 ( 752) P= .189	-6.0449 ( 752) P= .109	.7088 ( 762) P= .000	.1688 ( 752) P= .000	.1131 ( 753) P= .001	.Ø188 ( 751) P= .304	
RUCHEN	WRISTD	- <b>Ø.</b> 8229 ( 762) P= .268	-6.1627 ( 752) P= .662	.3176 ( 1122) P= .000	.3095 ( 999) P= .000	-0.1213 (1125) P= .000	.1212 ( 1125) P= .600	.5199 ( 1125) P= .000	.2673 (1125) P= .000	.2212 ( 1126) P= .000	.2700 ( 1125) P= .600	
C 0 E F	ELB0#D	-6.8593 (750) P=.852	-0.1032 ( 750) P= .002	.2869 (1120) P= .000	.2315 ( 998) P= .600	-Ø.Ø681 ( 1123) P≕ .Ø11	.0682 (1123) P= .011	.4750 ( 1123) P= .000	.2013 ( 1123) P= .009	.1234 ( 1124) P= .000	.1420 ( 1123) P= .600	
LATION	СНЅТО	.0346 ( 751) P= .172	-6.0778 ( 751) P= .017	.33Ø4 (1121) P= .000	.299¢ ( 999) P= .00¢	-0.2578 (1124) P= .000	.2571 ( 1124) P= .000	.3614 ( 1124) P= .000	.3523 ( 1124) P= .800	.3121 ( 1125) P= .000	.3791 ( 1124) P= .000	
CORRE	ANKLED	.0536 ( 752) P= .071	.0180 ( 752) Pm .311	.3212 (1122) P= .666	.2739 ( 999) P= .666	.0093 (1125) P= .377	-0.0091 (1125) P= .380	.4789 ( 1125) P= .000	.1287 ( 1125) P= .000	.0259 ( 1126) P= .193	.0802 (1125) P= .604	
X 0 0 X Y	KNEED	-6.1139 ( 753) P= .001	-0.1413 ( 753) P= .000	.1747 ( 1123) P= .000	.0460 (1000) P= .073	-0.1668 (1126) P= .000	.1675 ( 1126) P= .000	.4632 ( 1126) P= .000	.3002 ( 1126) P= .000	.2558 (1127) P= .000	.1854 ( 1126) P= .000	
1 1 P	BITROD	.0408 ( 753) P= .132	-6.0192 ( 753) P= .299	.2918 ( 1123) F= .000	.2846 ( 1000) P= .000	-0.1579 (1126) P= .000	.1568 (1126) P= .000	.3067 (1126) P= .000	.2383 ( 1126) P= .000	.2463 ( 1127) P= .000	.2973 ( 1126) P= .600	
1 1 1 1	IILIACD	.ø136 ( 752) P= .355	-Ø.Ø383 (752) P= .147	.3503 (1121) P≕ .000	.3842 ( 999) P= .000	-6.2277 (1124) P= .000	.2264 ( 1124) P= .000	.2759 ( 1124) P= .000		.2461 ( 1125) P= .000	.3466 (1124) P= .000	
1 1 1 1		TWSPEED	TMGRADE	۸c	RLV	KOEN	UWWPCBF	UWMLBM	UWWBF	SUMS	DWPCBFEX	
						11 03						

; ; ; ; ; ;	UMMPCBF UMMLBA	-0.3770 -0.0449 ( 752) ( 752) P= .000 P= .109	-0.4675 -0.0854 ( 752) ( 752) P= .000 P= .010	.0738 .3588 (1123) (1123) Pa007 Pa008	. 2795 ( 1660) ( 1660) P= .667 P= .668	-0.9993 .0796 (1126) (1126) P= .000 == .004	1.0000 -0.0786 (1126) (1126) P= .000 P= .004	-0.0786 1.0000 (1126) (1126) P= .004 P= .000	.9456 .2151 (1126) (1126) P= .000 P= .000	.1793 .1861 (1125) (1125) Pa000 Pa006	.7996 .1418 (1124) (1124)
s)	NOEN	.3766 ( 752) P= .000	.4654 ( 752) P= .000	-0.0757 (1123) P= .666	-0.0801 (1000) P=.006	1.0000 (1126) P= .000	-6.9998 (1126) P=.000	.0796 ( 1126) P= .004	-0.9436 (1126) P= .000	-6.7783 ( 1125) P= .000	-8.8001 (1124)
TS (WALES	RLV	.8038 ( 647) P= .461	-8.0015 ( 647) P= .485	.4973 ( 997) P= .888	1.8888 (1880) P= .888	-0.0801 (1000) P= .006	.0785 ( 1990) P= .007	.2279 ( 1000) P= .000	.1313 ( 1960) P= .868	.861.6 ( 999) P= .488	.2618
FICIEN	χ	.0753 ( 750) P= .020	.1204 ( 750) P= .000	1.6000 ( 1123) P= .660	.4973 ( 997) P= .000	-0.0757 (1123) P= .008	.0738 ( 1123) P= .007	.3588 ( 1123) P= .000	.1641 ( 1123) P= .000	-0.0216 ( 1122) P= .235	.8685
COEF	TMGRADE	.1569 ( 753) P= .600	1.0000 ( 753) P= .000	.1264 ( 750) P= .666	-0.0015 ( 647) P= .485	.4654 ( 752) P= .000	-6.4675 ( 752) P= .000	-6.0854 ( 752) P= .010	-6.4841 ( 752) P= .000	-6.4127 ( 753) P= .666	-6.4469
LATION	TASPEED	1.8608 ( 753) P= .868	.1569 ( 753) P= .000	.0753 ( 750) P= .020	.8038 ( 647) P= .461	.3760 ( 752) P= .000	-8.3778 ( 752) P= .666	-6.6449 ( 752) P= .169	-6.3746 ( 752) P= .666	-6.3267 ( 753) P= .000	-0.3578
C O R R E	VEV02	-6.6168 ( 753) P= .323	-6.6477 (753) P= .096	.0369 ( 750) P= .157	.6016 ( 647) P= .490	-0.0796 ( 752) P= .015	.0794 ( 752) P= .015	-6.1728 ( 752) P= .000	.0265 ( 752) P= .234	-6.0192 ( 753) P= .299	. 0213
ARSON	VC02	.5326 ( 753) P= .000	.6486 ( 753) P= .666	.1613 ( 750) P= .000	-0.0270 ( 647) P= .246	.5831 ( 752) P= .060	-0.5848 ( 752) P= .000	-Ø.1118 ( 752) P= .001	-0.5969 (752) P= .000	-6.5248 ( 753) P= .000	-0.5896
1 1 1	œ	.2264 ( 753) P= .660	.1631 ( 753) P= .000	.1324 ( 750) P= .000	.ø194 ( 647) P= .311	.0792 ( 752) P= .015	-0.0793 ( 752) P≕ .015	-Ø.0239 ( 752) P= .258	-0.0827 ( 752) P= .012	-6.0896 ( 753) P= .007	-6.8987
t 1 1	VE	.1603 ( 753) P= .000	.2115 ( 753) P= .000	.4155 ( 750) P= .000	.ø95ø ( 647) P= .ø09	-ø.ø168 ( 752) P= .323	.ø169 ( 752) P= .322	.4621 ( 752) F= .000	.1567 ( 752) P= .066	.0774 ( 753) P= .017	. 8238
1 1 1		TASPEED	TMGRADE	<b>&gt;</b>	RLV	MOEN	UW#PCBF	CWM_BW	UWWBF	SUMS	DWPCBFEX

AND SOLD SECONDARY CONTROL TO SOLD SECOND SE

1 1 1 1	KRATING	-6.3489 ( 558) F= .000	- <b>6.4</b> 383 ( 556) P= .000	.0493 ( 859) P= .078	.0335 ( 768) P= .177	-0.7852 ( 861) P= .688	.7856 ( 861) P= .000	.1748 ( 861) Pm .000	.8146 ( 861) Px .000	.7882 ( 862) P= .000	.7514 ( 863) P= .000
1 1 1 1	AVSSR	.3277 ( 557) P= .000	.4191 ( 557) P= .000	.0003 ( 861) Pz392	-6.0182 ( 770) P= ,307	.6836 ( 863) P= .0000	-0.6868 ( 863) P≕.666	-8.8244 ( 863) P= .237	-8.7082 ( 883) P:: .006	-6.8691 ( 864) Pm .000	-8.5872 ( 865) H= .000
: : :	AYU	.2966 ( 671) P= .000	.3368 ( 671) P= .000	.0356 ( 986) P= .133	.1165 ( 875) P= .866	.5276 ( 989) P= .000	-0.5318 ( 989) P= .000	-8.1764 ( 989) Pir .0000	-8.6958 ( 989) P= .000	-6.5718 ( 990) P= .660	-6.446Ø ( 99Ø) P≖ .¢ØØ
T S (WALES)	ECT	.2482 ( 749) P= .868	.3229 ( 749) P= .666	.ø887 (1119) P= .øø1	.1693 ( 998) P= .668	.5594 ( 1122) P= .000	-8.5595 (1122) P= .888	-0.2868 (1122) P= .000	-0.6098 (1122) P= .000	-6.6094 (1123) P= .000	-0.6571 (1122) P= .000
Н Э Н	MESO	-6.1685 ( 749) P= .066	-0.2229 ( 749) P= .000	-6.1274 ( 1119) P= .666	-6.2489 ( 998) P= .888	-0.2461 ( 1122) P= .000	.2468 ( 1122) P= .000	.3012 (1122) P= .000	.3274 ( 1122) P= .060	.3466 ( 1123) P= .666	.2416 ( 1122) P= .000
ល ព ក	ENDO	-6.3169 ( 749) P= .000	-8.4668 ( 749) P= .868	-0.0012 (1119) P= .485	.0096 ( 998) P= .381	-6.7803 (1122) P= .908	.7797 ( 1122) P= .000	.1719 ( 1122) P= .600	.8030 (1122) P= .000	.98ø5 (1123) P= .000	.8939 (1122) P= .000
2 0 H 4	DWPCBF	-6.3686 ( 748) P= .666	-6.4518 ( 748) P= .000	.0591 (1118) P= .024	.2586 ( 996) P= .000	-0.7974 (1121) P= .000	.7962 ( 1121) P= .000	.1422 ( 1121) P= .000	.8035 (1121) P= .000	.8851 (1122) P= .000	.9956 (1123) P= .000
		-6.3241 ( 753) P= .000	-6.4113 ( 753) P= .866	-0.0259 (1122) P= .193	-6.6662 ( 999) P= .498	-6.7742 (1125) P= .666	.7763 ( 1125) P= .000	.1885 ( 1125) P= .000	.8162 ( 1125) P= .606	.9973 (1127) P= .000	.8793 (1125) P= .000
Z 0 0 0	DWPCBFEX	-0.3578 ( 751) P= .000	-6.4469 ( 751) P= .000	.ø685 (1121) P= .ø11	.2616 ( 999) P= .000	-0.8001 (1124) P= .000	.7990 ( 1124) P= .000	.1416 ( 1124) P= .000	.8065 ( 1124) P= .000	.8825 ( 1125) P= .000	1.0000 (1126) P= .600
11 0. 1 1	SUMS	-Ø.3267 ( 753) P≕.øØØ	-6.4127 ( 753) P= .000	-0.0218 (1122) P= .235	.0016 ( 999) P= .480	-6.7783 (1125) P= .000	.7793 (1125) P= .000	.1861 ( 1125) P= .000	.8191 ( 1125) P= .600	1.0000 (1127) P= .000	.8825 (1125) P= .000
1 1 1 1	UWABF	-Ø.3748 ( 752) P= .000	-Ø.4841 ( 752) P= .ØØØ	.1641 ( 1123) P= .600	.1313 ( 1690) P= .660	-Ø.9436 (1126) P= .000	.9458 ( 1126) P= .000	.2151 ( 1126) P= .600	1.6000 (1126) P= .600	.8191 ( 1125) P= .000	.8065 (1124) P= .000
u a a a a a a a a a a a a a a a a a a a		TASPEED	TMGRADE	۸c	RLV	MDEN	UWWPCBF	Симпери	CWMBF	SUMS	DWPCBFEX
					ŀ	I-93					

1 1 1 1	GENDER	( 237) Pa .	( 237) P= ,	( 285) P× .	P≖ .	( .266) P≃ .	, 266) P= .		( 266) P= .	( 271) P= .	( 271) P= .
t : :	¥	( 237) P= .	( 237) P= .	( 265) P= .	( 260) P= .	( 266) Pm .	( 286) P= .	( 286) P= .	( 286) Pm .	( 271) P= .	( 271) P= .
ES)	PTSCORE	.2535 ( 227) P= .000	.3406 ( 227) P= .000	.0848 ( 250) Pm .154	.0044 ( 248) P= .473	.3018 ( 251) P= .000	-0.3035 ( 251) P= .000	.ø18ø ( 251) P= .388	-0.2987 ( 251) P= .000	-0.2539 ( 256) P= .000	-0.2139 ( 256) P= .000
T S (FEMAL	TWOMILE	-6.4182 ( 224) P= .008	-8.5696 ( 224) P= .666	-0.1318 ( 248) P= .019	-0.0436 ( 244) P= .249	-0.4215 ( 249) P= .000	.4228 ( 249) P= .860	-0.0533 ( 249) P= .201	.4024 ( 249) P= .003	.3535 ( 254) P= .000	.3385 ( 254) P= .000
ICIEN	PUSHUP	.1732 ( 222) P= .005	.2174 ( 222) P= .601	.0421 ( 249) Pm .254	-0.1001 ( 245) P= .059	.3624 ( 250) P= .000	-0.3626 ( 250) F= .000	-0.0708 ( 250) P= .132	-0.3745 ( 250) P= .000	-Ø.2635 ( 255) P= .000	-0.2767 ( 255) P= .600
C 0 E F F	SITUP	.1959 ( 222) P= .002	.3144 ( 222) P≃ .666	.0843 ( 249) P= .092	-8.6459 ( 245) P= .237	.2639 ( 250) P= .000	-0.2673 ( 250) P= .000	.0583 ( 250) P= .179	-0.2653 ( 250) P= .000	-0.2308 ( 255) P= .000	-0.2307 ( 255) P= .200
ATHON.	UNITYPE	-0.0567 ( 236) P= .193	.0469 ( 236) P= .241	.0407 ( 264) P= .255	-0.0215 ( 259) P= .365	-0.0815 ( 265) P= .093	.0810 ( 265) P= .094	.0276 ( 265) P= .327	.0836 ( 265) P= .087	-0.0081 ( 270) P= .447	.6116 ( 270) P= .429
CORREL	PRIMOS	.0321 ( 237) P= .311	.1073 ( 237) P= .050	.0026 ( 265) P= .463	-6.0186 ( 260) P= .383	.0237 ( 266) P= .350	-0.0236 ( 266) P= .351	-0.1278 ( 266) P= .019	-0.0492 ( 266) P= .212	-0.1263 ( 271) P= .019	-0.1247 ( 271) P= .020
ARSON	CARMGMT	- <b>0</b> .9242 ( 236) P= .356	-0.0206 ( 236) P= .376	-0.0144 ( 264) P= .408	-6.6174 ( 259) P= .390	-0.8648 ( 265) P= .469	.0042 ( 265) P= .473	.0402 ( 265) P= .257	.ø169 ( 265) P= .392	. <b>64</b> 91 ( 270) P= .211	.0607 ( 270) P= .160
	RANK	.Ø775 ( 237) P= .117	.0045 ( 237) P= .473	.0946 ( 265) P= .062	.1673 ( 260) P= .003	-0.0198 ( 266) P= .374	.ø187 ( 266) P= .381	.ø632 ( 266) P≃ .152	.ø348 ( 266) P= .287	-6.0152 ( 271) P= .402	.6081 ( 271) P= .447
! ! !	TIMESER	-0.6815 ( 237) P= .106	-0.0901 ( 237) P= .083	-0.0504 ( 265) P= .207	.0857 ( 260) P= .084	-0.2209 ( 266) P= .000	.2212 ( 266) P= .000	-0.0563 ( 266) P= .180	.1979 ( 266) P= .001	.1248 ( 271) P= .026	.1588 ( 271) P= .004
1 1 1		TWSPEED	TMGRADE	<b>)</b>	RLV	MDEN	UWMPCBF	UWMLBW	UWWBF	SUMS	DWPCBFEX
						u_0/					

The state of the s

1 6 1 1	KNEESF	-6.1462 ( 237) P= .012	-0.1829 ( 237) P= .002	-0.0035 ( 265) P= .477	-0.1246 ( 260) P= .022	-8.2595 ( 266) P= .000	.2817 ( 266) Pz880	,0383 ( 266) P= .267	.2787 ( 266) P= .000	.3969 ( 271) P= .000	.3802 ( 271) P= .000
1 1 1 1 1 1 1	THISF	-8.1977 ( 237) P= .001	-8.3106 ( 237) P= .808	.0278 ( 205) P= .331	-0.0424 ( 280) P= .248	-0.5987 ( 266) P= .660	.5984 ( 266) P= .666	.0719 ( 266) P= ,121	.8017 ( 266) P= .000	.6986 ( 271) P= .000	.8982 ( 271) P= .000
LES)	ABDSF	-0.2443 ( 237) P= .000	-0.2938 ( 237) P= .000	-9.0076 ( 265) P= .451	-8.1440 ( 260) P= .010	-0.5792 ( 266) P= .500	.68Ø1 ( 286) P= .0ØØ	.0852 ( 266) P= .083	.5933 ( 286) P≃ .000	.8221 ( 271) P= .980	.8337 ( 271) P= .000
T S (FEMALES)	SUPRASF	-0.2098 ( 237) P= .001	P	-0.0777 ( 265) P= .104	-0.1993 ( 260) P= .001	-0.5411 ( 268) P= .000	.5448 ( 266) P= .000	.0628 ( 266) P= .154	.5580 ( 266) P= .000	. 887,4 ( 1.1) P= . 888	.8581 ( 271) P= .000
2 1 1 2 1 1 1	WAISTSF	-0.1863 ( 237) P= .002	-6.3827 ( 237) P= .696	-0.0509 ( 265) P= .204	-0.1974 ( 260) P= .001	-ø.5838 ( 266) P≕.¢00	.5871 ( 266) P= .000	.0811 ( 268) P= .094	.8837 ( 268) P= .808	.8972 ( 271) P= .000	.8596 ( 271) P= .000
0 0 E	MIDAXSF	-0.2117 ( 236) P= .661	-0.3141 ( 236) P= .000	-0.0798 ( 264) P= .099	-0.1902 ( 259) P= ,001	-0.5957 ( 265) P= .000	.5991 ( 265) P= .000	.ø691 ( 265) P= .131	.6199 ( 265) P= .000	.7788 ( 270) P= .666	.7503 ( 270) P= .000
E A T H O K	TRICEPSF	-0.2302 ( 237) P= .000	-0.4208 ( 237) P= .660	-0.0266 ( 265) P= .333	-0.1394 ( 260) P= .012	-Ø.6838 ( 266) P≃.000	.6858 ( 266) P= .000	.1510 ( 266) P= .007	.7244 ( 266) P= .000	.8405 ( 271) P= .600	.8234 ( 271) P= .000
CORRE	SCAPSF	-0.2597 ( 237) P= .000	-Ø.3862 ( 237) P= .¢ØØ	-0.0606 ( 265) P= .163	-0.1251 ( 250) P= .022	-Ø.6485 ( 266) P= .000	.6522 ( 266) P= .000	.1205 ( 266) P= .025	.6989 ( 266) P= .888	.8239 ( 271) P= .000	.7954 ( 271) P= .668
PEARSON	CHSTSF	-6.1879 ( 237) P= .662	-0.2485 ( 237) P= .000	-0.0038 ( 265) P= .476	-6.0883 ( 260) P= .078	-0.4728 ( 266) P= .000	.4754 ( 266) P= .900	.ø1ø1 ( 266) P= .435	.4800 ( 266) P= .000	.4846 ( 271) P= .000	.4846 ( 271) P= .000
1 1 1 E	CHINSF	-0.0842 ( 237) P= .098	-0.2129 ( 237) P= .000	.1427 ( 265) P= .010	-0.0190 ( 260) P= .380	-0.5536 ( 266) P= .000	.5572 ( 266) P= .000	.ø431 ( 266) P= .242	.5681 ( 266) P= .000	.6747 ( 271) P= .600	.676ø ( 271) P= .000
3 1 1 1	RACE	-0.0140 ( 237) P= .415	.0008 ( 237) P= .495	-0.2717 ( 265) P= .000	- 0.2307 ( 260) P= .000	.0606 ( 266) P= .162	-0.0604 ( 266) P= .163	-0.0518 ( 286) P= .200	-0.0737 ( 266) P= .115	-6.0122 ( 271) P= .421	-0.0368 ( 271) P= .273
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TMSPEED	TMGRADE	۸c	RLV	MDEN	UWWPCBF	UWWLBW	UWWBF	SMNS	DWPCBFEX

1 1 1 1	FOREC	-6.1415 ( 237) P= .015	-8.1594 ( 237) P= .007	.3103 ( 265) P= .000	.6194 ( 260) P= .378	-6.2288 ( 288) Pn .666	.2316 ( 266) P= .000	.61%8 ( 266) P= .000	.4381 ( 266) P= .000	.3336 ( 271) P= .666	.3125 ( 271) P= .000
1 1 1	BICEPC	-8.1764 ( 237) P≕ .003	-8.3328 ( 237) P= ,666	.1738 ( 285) P= .002	-0.0300 ( 260) P= .315	-8.5423 ( 266) P= .000	.5468 ( 286) P= .000	.4989 ( 260) P= .000	.7151 ( 266) P= .888	.6833 ( 271) P= .666	.6567 ( 271) P= .068
LES)	THIC	-8.2151 ( 237) P= .000	-6.2297 ( 237) F= .000	.0802 ( 265) P= .097	-6.1247 ( 266) P= .022	-0.5502 ( 266) P= .000	,5483 ( 266) P= .000	.4882 ( 266) P= .888	.6747 ( 266) P= .666	.4322 ( 271) P= .000	.4423 ( 271) P= .000
TS (FEMALES	HIPC	-0.2162 ( 236) P= .000	-8.3847 ( 236) P= .888	.1918 ( 264) P= .002	.6207 ( 259) P= .370	-8.6369 ( 265) P= .000	.6393 ( 265) P= .000	.5193 ( 265) P= .000	.8162 ( 265) P= .000	.6176 ( 276) ?= .008	.8693 ( 270) P= .666
FICIEN	ABD2C	-0.1577 ( 236) P= .008	-8.3097 ( 236) P= .000	.2389 ( 264) P= .868	.0387 ( 259) P= .268	-0.5669 ( 265) P= .000	.5713 ( 265) P= .000	.4498 ( 265) P= .868	.7352 ( 265) P= .000	.8600 ( 270) P= .000	.6323 ( 270) P= .888
COEF	ABD1C	-6.1542 ( 236) P= .809	-0.3438 ( 236) P= .000	.2299 ( 264) P= .000	.ø367 ( 259) P= .278	-0.5375 ( 265) P= .000	.5427 ( 265) P= .000	.4514 ( 265) P= .000	.7098 ( 265) P= .000	.5795 ( 270) P= .600	.5479 ( 270) P= .666
LATION	CHSTC	-0.1041 ( 236) P= .055	-8.2984 ( 236) P= .000	.3515 ( 264) P= .000	.1149 ( 259) P= .032	-0.5025 ( 265) P= .000	.5077 ( 265) P= .000	.4427 ( 265) P= .000	.6668 ( 265) P= .000	.5628 ( 270) P= .666	.5519 ( 270) P= .000
CORRE	SHOULC	-8.8953 ( 237) P= .072	-0.1398 ( 237) P= .016	.3583 ( 264) P= .000	.0806 ( 259) P= .098	-Ø.3485 ( 265) P≕.000	.3523 ( 265) P= .800	.5914 ( 265) P= .000	.5526 ( 265) P= .000	.4386 ( 270) P= .000	.4261 ( 270) P= .000
ARSON	HEADC	-6.0369 ( 236) P= .286	-0.0098 ( 236) P= .441	.0009 ( 264) P= .494	.6581 ( 259) P= .176	.0395 ( 265) P= .261	-0.0369 ( 265) P= .275	.2800 ( 265) P= .000	.0807 ( 265) P= .035	-6.0489 ( 270) P= .212	-0.0974 ( 270) P= .055
P E	BICEPSF	-0.2220 ( 237) P= .000	-0.3527 ( 237) P= .000	.0170 ( 265) P= .392	-0.0552 ( 260) P= .188	-0.5803 ( 268) P= .000	.5832 ( 266) P= .000	.0800 ( 268) P= .097	.6006 ( 266) Pz .000	.7763 ( 271) P= .000	.7537 ( 271) P= .000
1 1 1	CALFSF	-0.2063 ( 237) P= .001	-8.3458 ( 237) P= .868	.0828 ( 265) P= .089	-0.1042 ( 260) P= .047	-0.5711 ( 266) P= .000	.5727 ( 266) P= .000	.1827 ( 266) P= .001	.6192 ( 266) P= .000	.6471 ( 271) P= .000	.6262 ( 271) P= .060
1 1 1 1		TASPEED	TMGRADE	۷ ×	RLV	MOEN	UWWPCBF	UWMLBM	UWWBF	SUKS	DWPCBFEX
						H-96					

	BIDELD	-8.6366 ( 237) P= .288	-6.1578 ( 237) Pm .008	.1852 ( 265) P= .004	-0.0141 ( 260) Pr416	-8.2396 ( 266) Pm . 969	.2358 ( 266) P= .698	.4123 ( 286) Pm .988	.3817 ( 268) P= .000	.4595 ( 271) P= .666	.4196 ( 271) P= .600
ŧ	BIACD	.6591 237) .163	-0.1132 ( 237) P= .641	1456 285) .009	.6929 268) 688	.0188 266) 386	-0.0151 ( 286) P= .483	3758 266) .888	.1248 266) .021	.2442 271) .906	.2164 .271) .866
: :	BI	<u>ا</u>	9 J	_#	· ~ "	- a	6 J	ِ مِنْ م	~ di	Jª.	<u></u> ⊸å!
1		-0.1824 ( 237) P= .002	2599 237) .000	3677 265) .000	.1314 260) .817	5424 266) .000	5458 266) .000	.7575 286) .660	.8119 268) .000	.5813 271) .680	.5688 271) .060
res)	¥	6 - II	P - 13	· ~ &	·~#	, ~ <u>"</u>	`~ <u>"</u>	~g	~ <u>"</u> "	~ t	~å.
(FEMALES)		1011 237) .068	.0373 237) .284	.4802 265) .000	.5846 269) .668	.1397 266) .011	1399 266) .011	6889 286) .000	1684 266) .051	-0.6684 ( 271) = .131	.0528 271) .197
ر ا ا	보	<u>"</u>	ال الم	~d	`~ <u>"</u>	- #	% _ !! % _ !!	ِ ڪ <u>ڇ</u>	<u>"</u> "	9 J.	9 - 4
₩ W	w	.0718 237) .138	2046 237) .001	.1320 265) .018	3338 280) . <i>boo</i>	-6.2071 ( 288) =000	.2164 268) .000	0410 268) .253	.2229 286) .086	.0988 271) .052	.1678 271) .663
H C	AGE	~d!	19 <u> </u>	`~å.	`~#	6 ~ <u> </u>	`~a!i	`~ <b>&amp;</b>	~£	<u>ے ہ</u>	~g
ш ш	FLXBICC	-6.1148 ( 235) P= .040	-6.2643 ( 235) P= .001	.2116 262) .666	8385 258) ,313	-0.4457 ( 263) P= .000	.4500 263) .000	.5125 263) .688	.6264 263) .000	.5968 268) . <i>bek</i>	.5855 268) .888
u z	ᇿ	° - ₽	₽ ~ #	`~d!	`~d	8 ~ <u>#</u>	`~#	<b>~</b> ª	<b>∽</b> "	~₽	, ~g
0 I .	NECKC	-6.6531 ( 236) ≥= .269	236) 236) .196	2757 264) .000	.1235 259) .024	-0.1394 ( 265) P= .012	265) 265)	.4902 265) .888	.3185 265) .000	.2718 270) .000	.2581 270) .088
LAJ	2	ال _ا ال	9 - 4	~#	<u>_</u> #	9° _ ii	<b>∽</b> ≝	~₫	~#	~#	<b>~</b> ₫
α α π	ANKLEC	-Ø.Ø551 ( 237) P= .199	.1017 237) .059	.3545 265) .080	.1035 260) .648	.2689 268) .000	.262 <i>8</i> 266) .666	.5288 286)	.4461 256) : .690	.2988 271) : .696	.2863 271) = .686
O U	₹	8	P - 1	<b>∽</b> ª	<b>~</b> ª	6 ~ <u>"</u>	~#	~#	~₫.	~ <u>~</u>	<b>∵</b> a
20	ñ	1827 237) .002	8~8	800	222	808	w ~ Ø	@ <u>~</u> @	222	4563 271) .000	4389 271) .øøø
	۲		.2642 237) .666	.222 <i>0</i> 265) .000	.Ø123 26Ø) .422	.4540 266) .989	.4563 266) .000	.4846 266) 000	.6257 266) 666	•	
A R S	CALFC	-0.1827 ( 237) P= .062	-Ø.2642 ( 237) P= .666	.2220 ( 265) P= .000	.0123 ( 260) P= .422	6 ~ <u>"</u>	. ~¶	· ~#	· _ =	~#	`~#
P E A R		.0535 -0. 237) ( .266 P=	.2048 -9. 237) ( .601 P=	.2633 ( 265) ( .868 P=	.1208 260) ( .026 P=	.3886 -0. 266) ( .666 P=	.3984 .266) ( .060 P=	.5000 266) ( .000 P=	.5377	.4007 .271) ( .000 P=	.3961 ( 271) ( .666 P=
PEAR	KNEEC CAL	10 − ¶	.2048 -9. 237) ( .601 P=	.2633 ( 265) ( .868 P=	~#	-0.3886 -0. ( 266) ( P= .000 P=	.3964 ( 266) ( P= ,060 P=	.5000 ( 268) P= .000 P=	. 5877 ( 286) ( P= 9000 P=	.4007 ( 271) ( P= .000 P=	.3961 ( 271) ( P= .000 P=
PEAR	KNEEC	.8685 -0.0535 -0.	.8992 -6.2048 -9. 237) ( 237) ( .861 P= .861	.1951 .2633 . 265) ( 265) ( . .601 P= .600 P=	. 1208 260) ( 260) ( 236 P= .026 P=	266) ( 266) ( 698 P= 69.	. 3964 . 3966 ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) (	.3237 .5000 . 268) ( 268) ( .600 P= .000	.0412 .6377 286) ( 286) ( 286) P=	.0196 .4007 271) ( 271) ( .378 P= .000 P=	.0235 .3961 . .271) ( .271) ( . .350 P= .606 P=
PEAR		-0.0535 -0. ( 237) ( P= .206 P=	.8992 -6.2048 -9. 237) ( 237) ( .861 P= .861	.1951 .2633 . 265) ( 265) ( . .601 P= .600 P=	.1208 ( 260) ( P= .026 P=	266) ( 266) ( 698 P= 69.	. 3964 . 3966 ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) (	.3237 .5000 . 268) ( 268) ( .600 P= .000	.0412 .6877 286) ( 286) ( 286) P=	.0196 .4007 271) ( 271) ( .378 P= .000 P=	.0235 .3961 (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271)
PEAR	KNEEC	.8685 -0.0535 -0.	.8992 -6.2048 -9. 237) ( 237) ( .861 P= .861	.1951 .2633 . 265) ( 265) ( . .601 P= .600 P=	. 1208 260) ( 260) ( 236 P= .026 P=	266) ( 266) ( 698 P= 69.	. 3964 . 3966 ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) ( 266) (	.3237 .5000 . 268) ( 268) ( .600 P= .000	.0412 .6377 286) ( 286) ( 286) P=	.0196 .4007 271) ( 271) ( .378 P= .000 P=	.0235 .3961 . .271) ( .271) ( . .350 P= .606 P=

:	DYLIFT	234)	.00000 234) .085	3132 237)	232) 232) 848	.8853 238) .685	-6.6856 ( 238) Pr094	.3853 238)	238) 238)	243)	243)
, ,	6	ھ	~ dH	_# _#	`~#	,~¶	8 - W	<u>.</u> .	`_a	`~å	ية -
1 1		6716 237) .138	1065 237) .063	6795 232) .327	8368 227) .291	1263 233)	1296 233) .824	233) 242	233)	86295 338) 884	238) 238) .053
* *	Ŧ	-6.6718 ( 737) PH .138	~# -#	-6.6795 ( 232) P* .327	-6.6368 ( 227) Po .251	~ }	-8.1296 ( 233) F= .824	~# #	20 - E	5 - A	9
1 5	ÇKG	237) 237)	8132 237) .888	1993 232) .861	227)	368 368	233)	233)	6783 233) .888	4233 238) .eog	4799 238) .666
જ	VOZMUKO	.4872 ( 237) Pz586	. 23 . 23	.1993 ( 232) P* .861	.0803 (7227) Fa .441	. E651 ( 233) Pa . 608	-6.5668 (233) 7* .688	-0 08 7 23	-0.E7	-6.4983 ( 238) P= .666	6. 23.47 6. 23.47
(FEXALES)	H	70 cm	20E	****	~~	10 m fri			 8 a B		~~~
S.	VOZLHIN	2348	.2821 237)	231)	220)	232)	. £734 232)	7179 232)	232)	.1431 237)	1631 237)
٠, ح		₩Ě	<b>⊸</b> å	⊸å	∪e.	7 – ₫	~ĕ	-å	~å	∪ã	₩ā
<u>س</u> س	MRISTO	-6.0851 ( 236) P= .898	. 236) . 236)	.2455 284) .888	1079 259)	265)	0.6342 ( 265)	286) 286) 886	1448 265) .038	.1353 278) .013	2703
н и	<b>E</b>	<b>6</b> – <u>1</u>	9 _2	`~#	, ~ <del>2</del>	_g#	T	_ ~ E	~#	~ <u>~</u>	~ <u>&amp;</u>
m m	EL BOYO	237)	237) 237)	265) 265) .002	1834	286) 286) 438	266)	268)	200) 200)	2713	271) 271) .185
O U	ELB	ج. ۾ . . ي	-0.0635 ( 237) Pu .105	~# ~#	٠. چ د	~ # @ 64 ·	.18,5887 ( 266) Pr457	Ž	~ £	~å.	~~ <u>~</u>
z o	۵	8 5 8 8	222	0 0 0 0 0 0	4 6 6 6	200	8000	# <del>- 2</del>	868	5 A B	8 <del></del> 8
X + X	CHSTO	-6.8169 ( 237) Pr398	-8.2104 ( 237) P= .861	.1692 ( 265) Pm .003	-0.0294 ( 288) Ps319	-0.1631 ( 266) P= .605	.1832 ( 288) 2x .884	.2528 ( 266) ≈ .888	.2638 ( 286) % .666	.3631 (172 )	3485 ( 271) 3 . 660
m L	_		· <del>-</del>	_	-		~ ~ A	,	- <b>G</b>		
æ æ	ANKLED	.0507 237)	.0335 237)	.3200 265)	.2488 266) 	. 8988 . 888 . 888	2000 2000 2000 2000 2000	2883	2684 266)	272)	271) 271) . 268
u	•	~g	~ å	~ª	~ ª	~ &	S _ #	~&	~ā	9 _ d	₽ _ d
2	KAKEED	-6.1373 ( 237) Pa .617	-6.1610 ( 237) Pm .007	.1932 265) .001	.1159 268) .631	-6.2761 ( 265 Pz .880	.2862 266) .666	. 4363 266) 898	.4323 266)	3514 271) .666	3414 271)
A R S	₹	9-4	9 _ #	-4	, ~ K	9 - 4	`~a	~ <u>n</u>	ي ۾ ڪ	~ ë	`~a
m	800	.8276 237) .346	2917 237) .001	1232 265) .023	. 8622 260) 159	1619 266) .066	2650 2650 .868	2017 266) .068	3731 266) .000	.4435 271) .060	4168 271) .000
i t	BITROD	-6.6276 ( 237) P= .346	-6.2017 ( 237) P= .001	# 65 F		6 6 7 6 6 7	# 55 55 # -	- 8 B	, w	~ H	~ 4 % .
0 !	9	222	222	8	125	ଅଲଞ	<b>5.08</b>	<b>克太</b> 島	2.52	228	8 28
,	IILIACD	-0.8578 ( 236) P= 192	-0.1347 ( 236) Ps. :019	1388	.8524 ( 253) Pr. 251	-0.2463 (265) Pr. 886	. 2501 ( 205) P 660	2063 ( 265) Pa (000	3282 ( 265) P≅ .880	( 270) P= 080	.3650 ( 270) Pz .000
t 1		,	, – 4	- a		, ~ <u>e</u>	~ a	~ <b>L</b>	- 2	<u></u>	
5 1		TLCPEED	TWGRADE			z	UMMPCBF	CMM. Bu	40	ម	OMPCBFEX
r		AT.	TUC	Š	* &	S E	5	\$	UMMBF	SANS	O.W.O

のでは、1990年に、1990年にある。 1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年には、1990年に

	1 1 1	1 1 1	X 0 0 X Y	CORREL	LATION	ก ก	H	T S (FEWALES)	ES)	; ; ;	1
ΥE		œ	VC02	VEVOZ	TWSPEED	TMGRADE	۷Ç	RLV	MOEN	CHIMPCBF	CWW_BM
.1405		.1775	.5005	-0.0531	1.8688	.0690	.1832	.1541	.3759	-6.3758	.0666
( 237)		( 237)	( 237)	( 237)	( 237)	( 237)	( 231)	( 226)	( 232)	( 232)	( 232)
P= .016		P= .663	P= .000	P= .186	P= .888	P= .145	P= .003	P= .018	P= .668	P= .666	P= .156
.2124		.1388	.5791	-0.0142	.0690	1.0000	.1886	-6.6220	,3349	-6.3373	-6.6493
( 237)		( 237)	( 237)	( 237)	( 237)	( 237)	( 231)	( 226)	( 232)	( 232)	( 232)
F= .601		P= .016	P= .000	Px .414	P= .145	P= .000	P= .853	P= .371	P= .000	P= .866	P= .227
.3168		.0946	.2227	-0.1759	.1832	.1066	1.0000	.4883	.8257	-0.0250	.4863
( 231)		( 231)	( 231)	( 231)	( 231)	( 231)	( 265)	( 259)	( 265)	( 265)	( 265)
P= .000		P= .076	P= .669	P= .004	P= .003	P= .053	P= .000	P= .000	P= .338	P= .342	P= .000
.1548		.1269	.0761	-0.0002	.1541	-0.0228	.4883	1.0000	.1873	-6.1862	.3098
( 226)		( 226)	( 226)	( 226)	( 226)	( 226)	( 259)	( 250)	( 280)	( 260)	( 260)
P= .010		P= .028	P= .127	P= .499	P= .010	P= .371	P= .000	P= .000	Pz661	P= .661	P= .000
.ø136		.0552	.4961	.0856	.3759	.3349	.0257	.1873	1.0000	-6.9998	.1259
( 232)		( 232)	( 232)	( 232)	( 232)	( 232)	( 265)	( 260)	( 266)	( 266)	( 266)
P= .418		P= .201	P= .000	P= .097	P= .000	P= .666	P= .338	P= .001	P= .000	P= .000	P= .020
-0.0122	N - N	-0.0560	-6.4973	-6.0839	-0.3758	-6.3373	-0.0250	-6.1862	-0.9998	1.0000	-0.1236
( 232)		( 232)	( 232)	( 232)	( 232)	( 232)	( 265)	( 250)	( 266)	( 286)	( 266)
P= .427		P= .198	P= .000	P= .102	P= .000	P= .666	P= .342	P= .601	P= .000	P= .000	P= .022
.4996	g_Q	.ø528	-Ø.Ø492	-0.1350	.0666	-0.0493	.4683	.3098	.1259	-0.1236	1.0000
( 232)		( 232)	( 232)	( 232)	( 232)	( 232)	( 265)	( 260)	( 266)	( 286)	( 266)
P= .000		P= .212	P≕.228	P= .020	P= .156	P= .227	P= .000	P= .000	P= .020	P= .022	P≕.000
.1691	406	-0.0408	-0.4991	-0.1145	-6.3329	-0.3560	.1303	-8.0808	-6.9204	.9235	.2338
( 232)		( 232)	( 232)	( 232)	( 232)	( 232)	( 265)	( 260)	( 266)	( 266)	( 266)
P= .005		P= .269	P= .060	P= .041	P= .000	P= .000	P= .017	P= .097	P= .606	P= .000	P= .000
.Ø1Ø8	8 O 4	-Ø.Ø189	-Ø.4268	-0.1509	-0.2689	-6.4134	-0.0549	-6.1717	-0.7207	.7248	.1197
( 237)		( 237)	( 237)	( 237)	( 237)	( 237)	( 265)	( 260)	( 286)	( 286) ·	( 266)
P= .434		P= .386	P= .000	P= .010	P= .000	P= .000	P= .187	P= .003	P= .000	P= .000	P= .626
-0.0132	80.0	-0.0130	-0.4059	-6.1988	-0.2451	-6.3899	-0.0292	-0.1289	-8.7205	.7213	.1212
( 237)		( 237)	( 237)	( 237)	( 237)	( 237)	( 265)	( 260)	( 268)	( 268)	( 266)
P= .420		P= .421	P= .000	P= .001	P= .000	P= .000	P= .318	P= .019	P= .000	P= .666	P= .624

\$ 1 1 1	KRATING	-0.2967 ( 189) P= .000	-0.3729 ( 189) P= .000	.0173 ( 210) P= .402	-0.2177 ( 206) P= .001	-0.7302 ( 211) P= .000	.7324 ( 211) Pm .000	.1803 ( 211) P= .004	.7827 ( 211) P= .000	.65%2 ( 216) P= .000	.6784 ( 216) P= .006
; ; ;	AVSSR	.2464 ( 191) P= .000	.3574 ( 191) P= .888	.0868 ( 212) P= .171	.1414 ( 208) P= .021	.8031 ( 213) P= .000	-Ø.8893 ( 213) P= .000	-0.1325 ( 213) P= .027	-0.6822 ( 213) P= .666	-6.8474 ( 218) P= .000	-Ø.6164 ( 218) P≕ .ØØØ
LES)	AVUNIR	.1854 ( 212) P= .003	.3358 ( 212) P= .000	. 6938 ( 235) P= . 676	.2366 ( 229) P= .600	.4666 ( 235) P= .000	-0.4731 ( 235) P= .000	-0.1746 ( 235) P= ,004	-0.5746 ( 235) P= .000	-0.5024 ( 239) P= .000	-0.4532 ( 239) P≕.0000
T S (FEMALES)	ЕСТО	.2551 ( 237) P= .000	.2537 ( 237) P= .000	.Ø159 ( 265) P= .398	.2951 ( 260) P= .000	.6349 ( 266) P= .000	-0.6344 ( 266) P= .000	-0.1879 ( 268) P= .001	-0.6668 ( 266) P= .000	-6.8837 ( 271) P= .888	-6.6078 ( 271) P= .000
FICIEN	MESO	-8.2061 ( 237) P= .001	-0.2528 ( 237) P= .000	-0.0767 ( 265) P= .107	-0.2558 ( 260) P= .000	-0.4573 ( 266) P= .000	.4621 ( 286) P= .000	.1076 ( 266) P= .640	.5033 ( 266) P= .000	.4827 ( 271) P= .000	.4422 ( 271) P= .666
COEF	ENDO	-0.2661 ( 237) P= .000	-ø.3836 ( 237) P≕.600	-0.0578 ( 265) P= .175	-0.1817 ( 260) P= .002	-0.7058 ( 266) P= .000	.7072 ( 266) P= .000	.1308 ( 266) P= .016	.7324 ( 266) P= .000	.9747 ( 271) P= .888	.9755 ( 271) P= .000
ATION	DWPCBF	- <b>6.2488</b> ( 237) P= .666	-0.3741 ( 237) P= .000	-0.0032 ( 264) P= .480	-0.0975 ( 259) P= .059	-0.7030 ( 265) P= .000	.7034 ( 265) P= .000	.1628 ( 265) P= .004	.7239 ( 265) P= .000	.9652 ( 270) P= .000	.9947 ( 270) P= .600
CORRE	SUMSA	-0.2685 ( 237) P= .000	-0.4070 ( 237) P= .000	-0.0505 ( 265) P= .208	-0.1703 ( 260) P= .003	-6.7179 ( 266) P= .888	.7211 ( 266) P= .000	.1239 ( 266) P= .022	.7543 ( 266) P= .000	.9976 ( 271) P= .686	.9694 ( 271) P= .000
ARSON	DWPCBFEX	-6.2451 ( 237) P= .000	-Ø.3899 ( 237) P= .000	-0.0292 ( 265) P= .318	-0.1289 ( 260) P= .019	-0.7205 ( 266) P= .000	.7213 ( 266) P= .000	.1212 ( 266) P= .024	.7374 ( 266) P= .000	.9712 ( 271) P= .800	1.0000 ( 271) P= .000
PE/	SMUS	-0.2689 ( 237) P= .000	-0.4134 ( 237) P= .000	-0.0549 ( 265) P= .187	-0.1717 ( 260) P= .003	-0.7207 ( 266) P= .000	.7240 ( 266) P= .000	.1197 ( 266) P= .026	.7553 ( 266) P= .000	1.0000 ( 271) P= .000	.9712 ( 271) P= .000
1 1 1	UWWBF	-6.3329 ( 232) P= .666	-0.3560 ( 232) P= .000	.1303 ( 265) P= .017	-6.0808 ( 260) P= .097	-8.9264 ( 266) P= .668	.9235 ( 266) P= .000	.2338 ( 266) P= .000	1.0000 ( 266) P= .000	.7553 ( 266) P= .000	.7374 ( 266) P= .000
1 1 1 1		TMSPEED	TMGRADE	, v	RLV	MDEN	UWWPCBF	UWALBM	UWMBF	SUMS	DWPCBFEX

1 3 1 1	GENDER	( 1127) P= .	( 1123) P= ,	( 1124) P= .	( i124) P= .	( i124) P= .	( 991) P= .	( 885) P= .	( 863) P= .
1 2 1 1	¥	( i127) P= .	( i123) P= .	( i124) P= .	( i124) P= .	( i124) P= .	( 991) P= .	( .865) P= .	( .863) Pm .
(	PTSCORE	-6.3624 ( 833) P= .600	-6.3751 ( 828) P= .000	-0,3554 ( 829) P= .000	-0.0815 ( 829) P= .009	.1828 ( 829) P	.3029 ( 741) P= .000	.3953 ( 614) P= .000	-0.3792 ( 613) P= .600
T S (MALES)	TWOMILE	.4232 ( 1005) P= .000	.4722 ( 1001) P= .666	.4112 ( 1002) P= .000	.1487 ( 1002) P= .000	-0.2987 (1002) P= .000	-0.3366 ( 889) P= .000	-6.4387 (768) P≈.000	.4401 ( 766) P= .606
ICIEN	PUSHUP	-6.3376 (1013) P= .000	-0.4858 (1009) P=.000	-0.3429 (1010) P=.000	.0611 (1010) P= .026	.1216 ( 1010) P= .000	.1550 ( 896) P= .500	.3425 ( 771) P= .000	-0.3401 ( 769) P= .000
COEFF	SITUP	-0.3319 (1012) P= .000	-0.4464 (1209) P=.000	-0.3338 (1010) P= .000	-8.8244 (1010) P= .219	.1747 ( 1010) P= .000	.2081 ( 897) P= .000	.3505 ( 773) P= .000	-0.3645 ( 771) P≈ .666
NOITA	UNITYPE	.1056 ( 1108) P= .000	.3091 (1104) P= .060	.1098 (1105) P= .000	-0.0552 (1105) P= .033	-0.0562 (1105) P= .031	.Ø183 ( 972) P= .285	-0.0912 ( 852) P= .004	.1462 ( 850) P= .000
CORREI	PRIMOS	.0293 (1116) P= .164	.0046 (1112) P= .439	.0170 (1113) P= .286	-0.0004 (1113) P= .495	-0.0198 ( 1113) P= .255	-0.0508 ( 984) P= .056	-0.0805 ( 856) P= .009	.0412 ( 854) P= .114
EARSON	CARMGMT	.0425 (1111) P= .078	.0043 ( 1107) P= .443	.0322 ( 1108) P= .142	.0352 (1108) P= .121	-0.0573 (1108) P= .028	-0.0853 ( 978) P= .004	-0.0325 ( 851) P= .172	.0241 ( 849) P= .242
u u u	RANK	.1846 ( 1127) P= .000	.4978 ( 1123) P= .000	.2804 ( 1124) P= .000	-0.0633 (1124) P= .017	-0.1286 (1124) P= .000	.0595 ( 991) P= .030	-0.1151 ( 865) P= .000	.2211 ( 863) P= .000
1	TIMESER	.2618 ( 1125) P= .000	.5625 (1121) P= .000	.266Ø (1122) P= .000	.0175 (1122) P= .279	-0.2024 (1122) P= .000	-0.0659 ( 989) P= .019	-0.2630 ( 863) P= .000	.3292 ( 861) P= .666
1 ! ! ! ! ! ! ! !		SUMSA	DWPCBF	0049	MESO	ECTO	AVUNIR	AVSSR	KR4.TING

	1 1 1 1	1 1 1 1 1 1 1 1	日 日 日 1	PEARSON	CORREI	LATION	COEFF	ICIEN	T S (MALES		1 1 1	1 1 1
		RACE	CHINSF	CHSTSF	SCAPSF	'RICEPSF	MIDAXSF	WAISTSF	SUPRASF	ABOSF	THISF	KNEESF
	SUMSA	-0.0371 (1127) P= .107	.633Ø ( 1127) P= .000	.7778 ( 1127) P= .868	.8853 (1127) P= .000	.7929 (1127) P= .000	.8763 (1127) P= .666	.9162 (1127) P= .866	.9365 (1127) P= .000	.8550 (1127) P= .000	.6739 ( 1126) Pm .000	.4295 (1127) P= .000
	DWPCBF	-0.10E0 (1123) P= .000	.6832 ( 1122) P= .000	.7718 ( 1122) P= .000	.7779 ( 1122) P= .000	.6738 ( 1122) P= .000	.8079 (1122) P= .000	.8205 ( 1122) P= .000	.8517 (1122) P= .000	.8628 (1122) P= .000	.5967 (1121) P= .000	.3842 ( 1122) := .888
	ENDO	-0.0569 (1124) P= .028	.6220 ( 1123) P= .000	.7510 ( 1123) P= .000	.8582 (1123) P= .000	.7744 ( 1123) P= .000	.8525 (1123) P= .000	.9123 ( 1123) P= .000	.9487 ( 1123) P= .600	.8743 (1123) P= .600	.663Ø ( 1122) P= .000	.4164 (1123) P= .868
ì	MESO	.1217 ( 1124) P= .000	.1586 ( 1123) P= .000	.2784 ( 1123) P= .660	.3848 (1123) P= .000	.2485 (1123) P= .000	.3172 (1123) P= .000	.3643 ( 1123) P= .666	.2862 (1123) P= .000	.3347 (1123) P= .000	.2289 ( 1122) P= .000	.2720 ( 1123) P= .000
H-102	ECT0	-0.0560 (1124) F .030	-0.4327 (1123) P= .000	-0.5403 (1123) P= .000	-0.5918 (1123) P= .000	-0.4265 (1123) F= .000	-0.5892 (1123) P= .000	-0.5842 ( 1123) P= .000	-0.5689 (1123) F= .000	-0.6482 (1123) P= .000	-8.4052 (1122) P= .000	-6.3352 (1123) P= .000
	AVUNIR	.ø349 ( 991) P= .136	-6.3989 ( 990) P= .000	-0.5394 ( 990) P= .000	-0.5527 ( \$90) P= .000	-6.4386 ( 990) P= .888	-6.5837 ( 990) P= .660	-0.5485 ( 990) P= .020	-8.5070 ( 990) P= .000	-Ø.5086 ( 990) P= .000	-8.4898 ( 989) P=.000	-6.2931 ( 99@) P= .000
	AVS:3R	.ø619 ( 865) P= .ø34	-Ø.5086 ( 864) P= .000	-0.6558 ( 864) P= .000	-6.6211 ( 864) P= .000	-Ø.4898 ( 864) P= .000	-0.6325 ( 864) P= .000	-0.6538 ( 864) P= .008	-0.6293 ( 864) P= .000	-Ø.6448 ( 884) P≕.∞0∞	-8.4971 ( 863) P= .668	-6.2627 ( 864) P= .869
	KRATING	-0.1029 ( 863) P= .001	.5865 ( 862) P= .000	.7334 ( 862) P= .666	.7181 ( 862) P= .606	.5841 ( 862) P= .000	.777¢ ( 862) P= .000	.7621 ( 862) P= .000	.7557 ( 862) P= .000	.8036 ( 862) P= .000	.5614 ( 861) P= .666	.3213 ( 862) P= .000

AND THE POST OF THE PROPERTY OF THE POST O

t t t	FOREC	.3181 ( 1126) P= .666	.2335 ( 1122) P= .000	.2992 ( 1123) P= .666	.5841 ( 1123) Pu .666	-6.4527 (1123) P= .000	-8.3267 ( 998) P= .000	-6.1548 ( 864) P= .000	.3020 ( 862) P= .000
1 1 1 1	BICEPC	.5119 ( 1127) P= .000	.4148 ( 1123) P= .000	.4850 (1124) P= .000	.6588 ( 1124) P= .000	-6.6221 (1124) P= .000	-6.4218 ( 991) P= .000	-6.2487 ( 865) P≃ .000	.4535 ( 863) Pa .606
	THIC	.4519 ( 1124) P= .003	.3700 (1126) P= .000	.4338 ( 1121) P= .668	.5329 ( 1121) P= .000	-0.5818 ( 1121) P= .000	-6.3989 ( 988) P= .008	-6.3232 ( 863) P= .000	.4958 ( 861) P= .000
T S (WALES	HIPC	.6817 ( 1126) P= .£00	.6982 ( 1122) P= .000	.8649 ( 1123) P= .000	.4298 ( 1123) P= .860	-0.6012 (1123) P= .000	-0.5517 ( 991) P= .600	-0.5338 ( 865) P= .000	.6832 ( 863) P= .086
FICHEN	AB02C	.7818 ( 1127) P= .000	.7896 (1123) P= .000	.7674 ( 1124) P= .000	.4047 ( 1124) P= .000	-0.6575 ( 1124) P= .000	-6.616¢ ( 991) P= .00¢	-0.6912 ( 865) P= .000	.8269 ( 863) P= .000
COEF	ABD1C	.7570 (1128) P= .000	.7419 ( 1122) P= .000	.7416 ( 1123) P= .000	.4389 ( 1123) P= .000	-0.6834 ( 1123) P= .000	-6.6204 ( 990) P= .600	-0.6640 ( 864) P= .060	.8118 ( 862) P= .008
NOXLY	CHSTC	.5945 (1125) P= .000	.5774 (1121) P= .000	.5760 (1122) P= .000	.4633 (1122) P= .000	-0.6221 (1122) P= .866	-0.5483 ( 989) P= .666	-6.5014 ( 863) P= .600	.6602 ( 861) P= .000
CORRE	SHOULC	.4881 (1126) P= .000	.4121 ( 1122) P= .000	.4668 (1123) P= .000	.4699 (1123) P= .000	-0.5403 (1123) P= .000	-6.3912 ( 990) P= .000	-6.3131 ( 864) P= .000	.4597 ( 862) P= .000
PEARSON	HEADC	.2572 (1126) P= .606	.2911 ( 1122) P= .600	.2854 ( 1123) P= .000	.1468 ( 1123) P= .000	-0.2264 (1123) P= .000	-0.1116 ( 990) P= .000	-0.1595 ( 864) P= .000	.2402 ( 862) P= .000
1 1 1 1	BICEPSF	.7847 (1126) P= .008	.6534 (1121) P= .000	.6852 (1122) P= .000	.2707 (1122) P= .000	-0.4528 (1122) P= .000	-0.4847 ( 989) P= .000	-0.5117 ( 863) P= .000	.5862 ( 861) P= .060
1 1	CALFSF	.5974 (1128) P= .000	.4684 ( 1121) P= .000	.5911 (1122) P= .668	.2388 ( 1122) P= .600	-0.3860 (1122) P= .000	-Ø.3877 ( 989) P≕.øøø	-0.4115 ( 863) P= .000	.5015 ( 861) P= .000
1 1 1		SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING
						H-103			

1 1 1	BIDELD	.3011 ( 1127) P= .000	.2568 ( 1123) P= .000	.2992 ( 1124) P= .000	.2336 ( 1124) P= .000	-8.2395 (1124) P= .000	-8.2633 ( 991) F= .666	-6.1103 ( 865) P= .001	.2116 ( 863) P= .600
1 1 1 1 1 1	BIACD	.6838 ( 1127) P≖ .662	.1412 ( 1123) P= .866	.0969 (1124) P= .001	-6.8646 (1124) P= .015	.ø417 ( 1124) P= .ø81	.ø363 ( 991) P= .127	.0764 ( 865) Fx .019	-6.6241 ( 863) P= .246
(S	¥.	.6426 ( 1127) P= .266	.6648 (1123) P= .000	.6216 (1124) P= .000	.4883 (1124) P= .000	-0.5725 (1124) P= .000	-8.5888 ( 991) P= .886	-0.4388 ( 365) P= .969	.6408 ( 863) P= .000
T S (MALES)	Ħ	.0725 ( 1123) P= .008	.1316 ( 1119) P= .000	.0697 (1124) P= .010	ø.3379 (1124) P= .000	.3114 ( 1124) P= .000	.1138 ( 987) P= .000	.0167 ( 861) P= .313	-6.0202 ( 869) P= .277
FICIEN	AGE	.2538 ( 1127) P= .000	.6044 (1123) P= .000	.2599 (1124) P= .000	-0.0007 (1124) P= .490	-0.1962 (1124) P= .000	-0.0729 ( 991) P= .011	-0.2451 ( 865) P= .000	.3226 ( 863) P= .003
C 0 E F	FLXBICC	.4160 ( 1127) P= .000	.3310 (1123) P= .000	.3885 ( 1124) P= .000	.6188 ( 1124) P= .000	-0.5945 (1124) P= .000	-6.3711 ( 991) P= .000	-0.2029 ( 865) P= .000	.3932 ( 863) P= .000
LATION	NECKC	.4093 (1125) P= .000	.3829 (1121) P= .888	.3925 (1122) P= .000	.4097 ( 1122) P= .000	-8.4818 ( 1122) P≕ .000	-0.3597 ( 991) P= .000	-0.2621 ( 863) P= .000	.3938 ( 861) P≕ .000
C 0 R R	ANKLEC	.2625 ( 1124) P= .000	.1913 ( 1120) P= .000	.2599 ( 1121) P= .000	.2883 (1121) P= .000	-8.2427 (1121) P= .888	-8.2284 ( 988) P= .888	-0.1594 ( 862) P= .000	.2406 ( 860) P= .800
PEARSON	CALFC	.4508 ( 1127) P= .000	.3831 ( 1123) P= .000	.4407 ( 1124) P= .000	.5849 (1124) P= .000	-0.5146 ( 1124) P= .000	-0.4055 ( 991) P= .000	-6.3034 ( 865) P= .000	.4524 ( 863) P= .000
1 1 1	KNEEC	.3769 ( 1127) P= .000	.3355 ( 1123) P= .000	.3684 ( 1124) P= .000	.3223 ( 1124) P= .600	-0.3408 ( 1124) P= .000	-0.2688 ( 991) P= .000	-0.2484 ( 865) P= .000	.3728 ( 863) P= .000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WRISTC	.2245 ( 1128) P= .000	.1972 ( 1122) P= .690	.2128 ( 1123) P= .000	.2628 ( 1123) P= .000	-0.2151 ( 1123) P= .000	-0.1787 ( 990) P= .000	-0.1095 ( 864) P= .001	.1743 ( 862) P= .000
1 1 1		SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING

icada Esperior Peteroxi pocazio esperos esperos esperos esperos esperos esperos esperos esperos esperos esperos

) 1 1 1	DYLIFT	.6377 ( 862) P= .143	-6.0330 ( 797) F= .176	.6441 ( 799) P= .107	.33Ø1 ( 799) P= .000	-6.2449 ( 799) P= .000	-6.6766 ( 715) P= .636	.1578 ( 587) P= .000	.00003 ( 586) P= .492
: : :	꽃	-0.1281 ( 961) P= .000	-6.2869 ( 958) P= .000	-6.1191 ( 958) P= .060	-6.0572 ( 958) P= .038	.1251 ( 958) P= .000	.1ø31 ( 843) P= .061	.1301 ( 735) P= .000	-6.1872 ( 733) P= .000
: : :	VOZMLKG	-0.5599 ( 963) P= .668	-0.5758 ( 959) P= .000	-8.5477 ( 96¢) P= .000	-8.2177 ( 960) P= .000	.4211 ( 960) P= .860	.4068 ( 844) P= .000	.5166 ( 735) P= .000	-Ø.5535 ( 733) P= 998
T S (WALES)	VOZLMIN	.1168 ( 753) P= .001	.0141 ( 748) P= .351	.1075 ( 749) Pm .002	.2558 ( 749) P= .000	-6.2139 ( 749) P= .000	-6.1015 ( 671) P= .604	.0878 ( 557) P= .019	.0880 ( 558) 9- 419
HOHEN	WRISTD	.2187 ( 1126) P= .000	.2609 (1122) P= .000	.2176 ( 1123) P= .000	.1701 (1123) P= .000	-0.1186 (1123) P= .000	-0.1243 ( 990) P= .666	-0.0708 ( 864) F= .019	.1185 ( 862) P- 863
C 0 E F F	ELBOWD	.1215 ( 1124) P= .000	.1342 (1120) P= .000	.1234 ( 1121) P= .000	.2588 (1121) P= .000	-Ø.0990 (1121) P=.000	-Ø.1114 ( 988) P= .ØØØ	-0.ø476 ( 863) P= .ø81	.1198 ( 861)
NOHLY	снѕто	.3102 (1125) P= .000	.3672 (1121) Pm600	.3175 (1122) P= .000	.0981 (1122) P= .000	-0.2186 (1122) P= .000	-Ø.2100 ( 989) P= .030	-Ø.1779 ( 864) P= .ØØØ	.2883 ( 862)
CORREL	ANKLED	.0242 (1126) P= .208	.ø716 (1122) P= .ø08	.0257 (1123) P= .194	.1108 ( 1123) P= .000	-0.0427 (1123) P= .076	-6.8424 ( 990) P=.891	.0137 ( 864) P= .343	.ø223 ( 862)
PEARSON	KNEED	.2557 ( 1127) P= .000	.1895 ( 1123) P= .000	.2358 ( 1124) P= .000	.5055 (1124) P= .000	-0.2510 (1124) P=.000	-0.2129 ( 991) P= .000	-0.1672 ( 865) P=.000	.2588 ( 863)
PE/	BITROD	.2428 ( 1127) P= .000	.2827 (1123) P= .000	.2538 (1124) P= .000	-0.0273 (1124) P= .180	-0.0242 (1124) P= .209	-0.1218 ( 991) P= .000	-0.1235 ( 865) P= .000	.1792 ( 863)
1 1 1	IILIACD	.2412 (1125) P= .000	.3295 (1121) P= .666	.2585 (1122) P= .000	-0.0695 (1122) P= .010	-0.0261 (1122) P= .192	-0.1660 ( 989) P= ,000	-0.2058 ( 865) P= .000	.2561 ( 863)
1 1 1 1 2		SUMSA	DWPCBF	ENDO	MESO	ЕСТО	AVUNIR	AVSSR	KRATING

CHARLESA	.1885	.1422	.1719	.3612	-8.2868	-6.1784	-6.6244	.1748
	(1125)	( 1121)	( 1122)	(1122)	(1122)	( 989)	( 963)	( 861)
	P= .666	P= .000	Pm . med	P= .866	P= .696	P= .000	P= .237	P= .866
UMMPCBF	.7753	.7962	.7797	,2468	-6.5595	-8.531€	-6.6568	.7856
	( 1125)	(1121)	( 1122)	( 1122)	(1122)	( \$89)	( 863)	( 861)
	P= .866	P= .663	P= .666	P= ,0000	?= .666	P= .666	P± .666	Pm .000
NOCH	-6.7742	-6.7974	-6.7883	-6.2461	.5594	.5276	. 5836	-6.7852
	(1125)	(1121)	(1122)	(1122)	(1122)	( 98%)	( 863)	( 561)
	P= .666	Pz#66	P= .000	P= .000	Fm .800	P= .066	Pa 866	P= .000
RLV	-6.9662	.25 <b>63</b>	.8696	-6.2409	.1693	.1165	-6.0182	.0335
	( 999)	( 996)	( 998)	( 998)	( 998)	( 875)	( 776)	( 768)
	Pm .498	Pm .806	P= .381	Pm .666	P= .000	P= .896	P= .307	P= .177
×	-6.8259	.0591	-0.0012	-6.1274	.0887	.6355	.0093	.6496
	(1122)	( 1118)	(1119)	(1119)	(1119)	( 986)	( 861)	( 659)
	P= .193	P= .024	P= .485	P= .868	P= .001	P= .133	P= .392	P= .676
TWGRADE	-6.4113	-6.4518	-6.4668	-6.2229	.3229	.3368	.4191	-6.4383
	( 753)	( 748)	( 749)	( 749)	( 749)	( 671)	( 557)	( 556)
	Pm. :600	P= .000	P= .008	P= .666	P= .888	P= .000	Pm868	Pm .666
TASPEED	-6.3241	-6.3606	-6.3169	-0.1685	.2482	.2966	.3277	-6.3489
	( 753)	( 748)	( 749)	( 749)	( 749)	( 571)	( 557)	( 558)
	P= .000	P= .890	P= .006	P= .000	P= .000	P= .000	P= . <b>66</b> 3	P= .000
VEV02	-0.0198	.0244	-6.6693	-6.6628	. 8639	.0248	.0003	.0205
	( 753)	( 748)	( 749)	( 749)	( 749)	( 671)	( 557)	( 558)
	P= .294	P= .253	P= .466	P= .643	P= .458	P= .261	P= .497	P= .314
VC02	-8.5219	-6.5946	-0.5184	-6.2716	.4227	.4031	.5286	-0.5491
	( 753)	( 748)	( 749)	( 749)	( 749)	( 671)	( 557)	( 556)
	P= .000	P= .000	P= .608	P= .656	P= .886	P= .666	P= .888	P= .000
œ	-6.8898	-6.1003	-6.6794	-6.0523	.ø782	.0774	.1188	-0.6911
	(753)	(748)	( 749)	(749)	( 749)	( 671)	( 557)	( 556)
	P= .067	P= .003	P= .015	P= .076	P= .ø16	P= .023	P= .002	P= .616
ΛĒ	.6003	.0222	.0804	.1587	-0.1592	-0.0579	.0728	.0826
	( 753)	( 748)	(749)	( 749)	( 749)	( 671)	( 557)	( 558)
	P= .014	P= .272	P= .014	P= .000	P= .000	P= .067	P= .044	P= .027
	SUMSA	CMPCBF	ENDO	MESO	ECTO	AVUNIR	AVSSR	KRATING
	R VC02 VEV02 TMSPEED TMGRADE VC RLV NDEN UWMPCBF	VE RLV MDEN UNMPCBF  .6003 -6.0898 -9.5219 -6.3241 -6.4113 -6.8259 -6.8602 -8.7742 .7753 ( 753) ( 753) ( 753) ( 753) ( 753) ( 1122) ( 993) ( 1125) ( 1125) P= .064 P= .064 P= .094 P= .098 P= .000 P= .000	VE RLV MDEN UNWPCBF  .6003 -6.0898 -9.5219 -0.8198 -6.3241 -6.4113 -6.8259 -6.9602 -4.7742 .7753 ( 753) ( 753) ( 753) ( 753) ( 753) ( 753) ( 753) ( 1122) ( 999) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1125) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 1121) ( 112	VE         RLV         NAME         VCO2         THASPEED         THASPEED	VE         R         VCO2         VEV02         TMSPEED         TMGRADE         VC         RLV         MDEN         UMWPC8F           .6083         -0.6898         -0.6129         -0.6138         -0.3241         -6.4113         -6.6259         -6.8662         -6.7742         .7753           ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 753)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754)         ( 754	VEX.   VEX.	VE   R   VC02   VEV02   TMSPEED   TMGRADE   VC   RLV   MDEN   MWPCBF	Vec.   Relation   Vec.   Vec.   Vec.   This Perior   Thickable   Vec.   Relation   Vec.   Name Capta   Vec.   This Perior   Vec.   This Perior   Vec.   Ve

: : :	KRATING	.7863 ( 852) P= .056	.7538 ( 860) P= .860	.7933 ( 859) P= .000	.4149 ( 859) P= .000	-0.6957 ( 859) P= .000	-3.6361 ( 776) P= .000	-0.8035 ( 863) P= .004	1.6666 ( 863) P∞ .866
; ; t	AVSSR	-8.687Ø ( 864) P≖.øØØ	-0.5951 ( 862) P:: .000	-0.6425 ( 861) P= .000	-8.2347 ( 881) P= .888	.4383 ( 861) P= .886	.6315 ( 778) P= .000	1.0000 ( 865) P= .000	-0.8035 ( 863) P≍ .000
(9	AVUNIR	-9.5728 ( 990) P≖ .600	-8.4474 ( 988) P= .266	-8.5387 ( 987) P= .000	~6.4653 ( 987) P= .000	.5396 ( 987) P= .600	1.0000 ( 991) P= .000	,6315 ( 778) P= ,606	-0.6361 ( 776) P= .066
T S (WALES)	ECTO	-8,6888 (1123) P= .868	-8.5805 (1119) P= .866	-6.6163 ( 1124) P= .000	-0.7345 (1124) P= .000	1.8886 (1124) P= .888	.5396 ( 587) P= .000	.43Ø3 ( 861) P= .000	-8.6957 ( 869) P= .888
FICHEN	MESO	.3468 ( 1123) P= .800	.2431 ( 1119) P= .808	.3285 ( 1124) P= .000	1.0000 (1124) P= .000	-0.7345 (1124) P= .000	-0.4653 ( 987) P= .000	-6.2347 ( 861) P= .666	.4149 ( 859) P= .000
COEF	ENG0	.9779 ( 1123) P= .000	.8979 (1119) P= .808	1.0000 (1124) P= .000	.3285 (1124) P= .000	-0.6163 (1124) P= .000	-6.5387 ( 987) P= .000	-0.8425 ( 861) P= .000	.7933 ( 869) P= .000
LATION	DWPCBF	.8870 (1122) P= .000	1.0000 (1123) F= .000	.8979 (1119) P= .608	.2431 ( 1119) P= .000	-0.5605 (1119) P= .000	-6.4474 ( 988) P= .608	-0.5951 ( 862) P= .000	.7538 ( 880) P= .000
CORRE	SUMSA	1.6666 (1127) P= .666	.8870 (1122) P= .000	.9779 (1123) P= .666	.346Ø (1123) P= .000	-0.6088 (1123) P= .000	-0.5728 ( 990) P= .668	-0.6676 ( 864) P= .000	.7863 ( 862) P= .000
ARSON	DWPCBFEX	.8793 ( 1125) P= .066	.9956 (1123) P= .000	.8939 (1122) P= .000	.2416 (1122) P= .000	-0.6571 (1122) P= .000	-0.4460 ( 990) P= .666	-0.5872 ( 865) F= .000	.7514 ( 863) P= .000
1 1 1	SMAS	.9973 ( 1127) P= .000	.8851 (1122) P= .000	.9805 (1123) P= .000	.346Ø (1123) P= .000	-0.6094 (1123) P= .000	-0.5718 ( 990) P= .666	-0.6691 ( 864) P= .000	.7832 ( 862) P= .600
1 1	CWABF	.8162 ( 1125) P= .000	.8035 ( 1121) P= .600	.8030 ( 1122) P= .000	.3274 ( 1122) P= .000	-0.6698 (1122) P= .000	-0.5958 ( 989) P= .666	-0.7082 ( 863) P= .000	.8146 ( 881) P= .698
1 1 1 1		SUMSA	DWPCBF	ENDO	MESO	ЕСТО	AVUNIR	AVSSR	KRATING
						н-107			

での次の

GENDER	( 271) P= .	( 278) Pm .	( 271) P= .	( 271) P= .	-	. 239) P= .	( 218) P= .	P= .
!	( 271)	( 370)	( 271)	( 271)	( 271)	( 239)	( 218)	( 218)
!	P= .	P= .	P= .	P= .	P= .		P= .	P= .
ES) ~ PTSCORE	-6.2488 ( 258) P= .000	-0.1968 ( 255) P= .001	-8.3254 ( 258) P= .888	-0.0614 ( 258) P= .164	.ø736 ( 256) P= .122	.2722 ( 226) P= .000	.2055 ( 207) P= .001	-0.1907 ( 205) F= .003
TWOMILE P	.3469	.3114	.3123	.1983	-8.1772	-8.3589	-0.3229	.3389
	( 254)	( 253)	( 264)	( 264)	( 254)	( 223)	( 205)	( 283)
	P≃ .000	P= .000	P= .000	P= .001	P= .002	P= .888	P= .000	P= .000
FUSHUP	-6.2621	.0.2661	-6.2465	.0219	.0635	.1558	.1591	-0.1550
	( 255)	( 254)	( 255)	( 265)	( 255)	( 223)	( 205)	( 203)
	P= .000	P= .000	P= .000	P= .364	P= .158	P= .010	P= .011	P= .014
SITUP	-Ø.2258	-0.2180	-8.2023	-0.1793	.1612	.2566	.2968	-0.2459
	( 255)	( 254)	( 255)	( 255)	( 255)	( 223)	( 205)	( 203)
	P= .000	P= .000	P= .001	P= .002	P= .005	P= .000	P= .000	P= .000
UNITYPE	~6.0141	.0020	.ø1ø9	-0.0288	-0.0560	-0.0103	-0.0360	.ø377
	( 270)	( 269)	( 27ø)	( 270)	( 270)	( 238)	( 218)	( 216)
	P= .409	P= .487	P= .429	P= .319	P= .180	P= .437	P= .298	P= .291
COKKEL PRIMOS	-8.1252 ( 271) P= .020	-0.1298 ( 270) P= .016	-0.1230 ( 271) P= .022	-0.1320 ( 271) P± .015	.1118 ( 271) P= .034	.0963 ( 239) P= .069	.ø312 ( 218) P= .324	-0.0818 ( 216) P= .116
CARMGMT	.0481	.ø741	.ø516	.0983	-ø.ø973	.ø393	-0.0664	.0968
	( 270)	( 289)	( 270)	( 270)	( 27Ø)	( 238)	( 217)	( 215)
	P= .215	P= .113	P= .199	P= .054	P= .ø55	P= .273	P= .165	P= .079
RANK E	-8.0110	. Ø898	-ø.ø231	-0.0882	.0536	.0031	.ø344	.6037
	( 271)	( 27Ø)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .429	P= .436	P= .352	P= .074	P= .190	P= .481	P= .3ø7	F= .478
TIMESER RANK CARMGN	.1262	.1463	.1175	.0392	-0.0691	-0.1555	-6.2143	.2355
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .019	P= .008	P= .027	P= .260	P= .129	P= .008	P= .601	P= .000
1 1 1 1 t	SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING

KNEESF	.3978	.3831	.3871	.3461	-0.2498	-0.1534	-6.2338	.2434
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 218)
	P= .000	P= .000	P= .008	F= .000	P= .000	P= .009	P≡ .000	P= .808
THISF	.69 <i>07</i>	.3918	.6914	.3601	-8.4788	-6.3331	-0.4549	.5475
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .69 <i>0</i>	P= .668	P= .888	P= .000	P= .000	P≕ .000	P= .000	P= .000
ABDSF	.8217	.8302	.8334	.3302	-0.4835	-0.3662	-0.5807	.5281
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .666	P= .000	P= .800	P= .666	P= .000	P= .000	P= .666	P= .060
SUPRASF	.8864	.8548	.8891	.3287	-Ø.4485	-6.3932	-6.5373	.5200
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .666	P= .000	P= .000	P= .000	P= .000	P= .666	P= .000	P= .600
WAISTSF	.896Ø	.8546	.8824	.4011	-0.5120	-0.4237	-0.5811	.5891
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .00Ø	P= .660	P= .000	P= .000	P= .060	P= .000	P= .000	P= .000
MIDAXSF	.778ø	.7423	.7543	.4212	-0.5192	-Ø.4623	-0.5508	.6226
	( 27ø)	( 269)	( 270)	( 270)	( 270)	( 238)	( 217)	( 215)
	P= .660	P= .000						
TRICEPSF	.8353	.8133	.8231	.5124	0.5612	-0.4581	-0.5720	.6400
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .000	P= .000	P= .666	P= .060	P= .000	P= .666	P= .000	P= .000
SCAPSF	.8217	.7901	.8147	.4416	-0.5932	-0.4777	-0.5618	.6366
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .600	P= .600	P= .000	P= .000	P= .000	P= .666	P= .000	P= .000
CHSTSF	.4834	.475Ø	.4681	.2635	-0.3649	-0.3367	-0.4581	.4584
	( 271)	( 27Ø)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .666	P= .000	P= .000	P= .000	P= .666	P= .000	P= .000	P= .000
CHINSF	.6681	.6643	.8404	.3126	-0.4148	-0.2974	-0.4657	.5099
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .000	P= .000	P= .000	P= .000	F= .600	P= .000	P= .000	P= .000
RACE	-0.0109	-0.0318	.0086	.1498	-0.1025	-Ø.ø386	.0250	-0.0351
	( 271)	( 270)	( 271)	( 271)	( 271)	( 239)	( 218)	( 216)
	P= .435	P= .302	P= .444	P= .007	P= .046	P= .276	P= .357	P= .304
	SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING

S T S

	1 t t t	FOREC		P= .666	.3431 ( 278)	. 1988 1989 1989	( 271) Pr000	.4748	( 271) P= .000	-8.49@g	Fz .500	-6.2487 ( 239)	-6.2824	P= .000
	; ; ; ;	BICEPC		,d.	. 6734 ( 278) P= ,000	.6572	P= .668	.6814	( 2/1) P= .666	-0.6579	P	-8,4667 ( 239) Pr . 886	-0.5428 ( 218)	P= .068 .8476 .238)
	(FEWALES)	-		ii Ii	( 270) P= .666	•	P= .698		ď	-0.5794 ( 271)	r≡ .866 -6.491#	( 239) P= .000	-6.4219 ( 218)	.5845 ( 216)
	ERTS		( 278) ( 278) ( 278)	,	) ( 289) Ø P= .00€		4	( 270)	r 1	( 270) P= 898	-0.5240	( 238) P= .000	-8.6222 ( 217) Pm .060	.7117 ( 215) Page 200
	EFFICI C ABD2C		( 270) 90 P= .000		-11	٠	Ľ.	( 278) P= .800	-0.5727	( 270) P= .666	-0.5168	e . 606	-5.5819 ( 217) P= .866	.6251 ( 215) P= .808
	0 N C 0		600 = 4 000 1000 = 4 000	. 5544 ( 269)	ď	( 278) P= .998		( 270) P≕ .868	-8.5778	P= .000	-0.5082 ( 238)	P= .000 -0.5563	( 217) P= .000	.6148 ( 215) P= .000
	SHOULC CHSTC		<u>"</u>	.5558 ) ( 269)	Ľ .	( 270) 5 P= .666		<b>-</b> #	-0.5202 ( 270)		- <b>6.4</b> 178 ( 238) P- 238	-6.4983	P= .000	,5724 ( 215) P= .686
U	•	3, (4398 3) (278)	Ĭ.	. 4624 ( 269) 2 P= .886	•	P= .666	.3664	4	-6.4949 ( 270)		( 238) P= .000	-0.3753	P= .688	. 215) P≈ . 668
PEARSON		(276) (276) (276) (276)	Ť	( 269) Ø P≃ .082	9,		-0.0052 ( 270) P- 100		( 270) P= .457	-6.6422	( 238) P= .258	.0465	P= .248 -0.1047	( 215) P= .@63
1 1 1	<b>60</b>	( 271) Ø P= .600	`	P= .000	.8789	Ţ	.3036 ( 271) P= .008	-0.4431	( 271) P= .000	-0.3768	739) P= .000	-0.4768 ( 218) P= 200	. 5286	P= .000
1 1 1 1	CALFSF .8448	P= .000	.8868	P= . 686	.6222 ( 271) P= .699	.3498	( 271) P= .000	-0.4398	P= .000	-Ø.3671 (239)	P= .000	-0.4635 ( 218) P= .000	.5818	P= .006
1 1 1	SUMSA	į	DWPCBF	- CONS	2	MESO		ECT0	i	AVUNIR	AVSSR		KRATING	
							H-1	10						

1 1 1 1 1	GIDELD	.4598 ( 271) Pm .686	.4615 ( 27%) P= .600	.4573 ( 271) Pm .066	.3242 ( 271) P= .000	-8.3535 ( 271) P= .886	-6.3333 ( 239) P± .006	-6,3891 ( 218) Pm . 566	.3385 ( 216) P≈ .866
1 1 1	BIACD	.2468 ( 271) Pm .888	.2579 ( 270) P= .066	.2562 ( 271) P= .608	.8654 ( 271) P= .142	-0.0709 ( 271) P= .122	-6.1317 ( 239) Fm .621	-6.1236 ( 218) P= .035	.0649 ( 215) P= .171
res)	¥	.5824 ( 271) P= .886	.5769 ( 276) P= .006	,5725 ( 271) Pz .000	.4026 ( 271) P= .006	-8.5578 ( 271) P= ,008	-6.4889 ( 239) Pm .666	-0.5358 ( 218) Pz000	.6332 (216) P= .000
TS (FEMA	H	-6.8683 ( 271) Pm .131	-6.0274 ( 279) P= .327	-0.0567 ( 271) P= .176	-8.4022 ( 271) P= .000	.3862 ( 271) Pm .000	.6678 ( 239) P≖ .148	.1372 ( 218) P= .021	-6.2214 ( 216) Fm .001
FICIEN	AGE	.8992 ( 271) P= .852	.1758 ( 270) P= .002	.ø716 ( 271) P= .128	.0898 ( 271) P= .078	-0.0818 ( 271) Pr096	-0.1467 ( 239) Pm .012	-6.2382 ( 218) Pu .008	.2164 ( 216) P= .061
COEF	FLXBICC	.5034 ( 268) P= .666	.5928 ( 267) P= .668	.5566 ( 268) P= .606	.6498 ( 268) P= .806	-0.6766 ( 268) P= .000	-0.3823 ( 236) P= .008	-0.4546 ( 217) P= .000	.5527 ( 215) P= .000
LATION	NECKC	.2771 ( 278) P= .000	.2825 ( 269) P= .000	.2554 ( 270) P= .000	.1695 ( 270) P= .003	-0.3240 ( 270) P= .866	-8.2205 ( 238) P= .008	-0.2103 ( 217) P= .001	.2616 ( 215) P= .000
CORRE	ANKLEC	.2972 ( 271) Pa888	.2731 ( 276) = .666	.2818 ( 271) P= .668	.3536 ( 271) P= .000	-0.3189 ( 271) P= .000	-0.2409 ( 239) P= .888	-0.3318 ( 218) P= .666	.3587 ( 216) P= .000
EARSON	CALFC	.4566 ( 271) P= .660	.4285 ( 270) P= .666	.4252 ( 271) P= .000	.6057 ( 271) P= .600	-0.5084 ( 271) P= .000	-0.3598 ( 239) P= .000	-6.4383 ( 218) P= .059	.5526 ( 216) P= .000
P E	MAGEC	.4817 ( 271) P= .666	.3919 ( 270) P= .000	.3773 ( 271) P= .000	.3731 ( 271) P= .666	-0.3620 ( 271) P= .060	-0.3417 ( 239) P= .060	-0.3386 ( 218) P= .000	.4395 ( 216) P= .000
1 1	WRISTC	.0260 ( 271) P= .335	.ø388 ( 270) P= .263	.0250 ( 271) P= .341	.1224 ( 271) P= .022	-0.0371 ( 271) P= .272	-0.0582 ( 239) P= .185	-0.0500 ( 218) P= .231	.0199 ( 216) P= .386
1 1 1 1		SUMSA	DWPCBF	ENDO	MESO	ЕСТО	AVUNIR	AVSSR	KRATING

1 1 1 1 1	O'N. JFT	. 6335 ( 243) Pa . 361	7 240) 7 240)	243)	24828 24828 8882	( 243) PF . 613	( 216) Pr466	.8279 ( 197) Pr .348	. 0779 ( 195) Fe . 139
E # # #	奎	- 6.0005 ( 230) Pa . 692	48,6955 ( 238) ( 238)	7238)	-8-8428 ( 298) Pu , 255	( 238) ( 238) ( 248)	( 212) Fee . 632	, 1370 Fe. :828	(0.00) (0.00) (0.00)
ES)	VD2/ALKG	-6.4933. ( 239) Pm .000	7 238) FH . 000	. 6.4397 ( 238) FH . 666	-6.34628 ( 238) PH ( 666	,3784 ( 238) Pm ,2000	,3998 ( 212) Pm .068	.4521 ( 191) Po . 868	-6.4872 ( 189) F= .206
T S (FEMALES)	VOZLMIN	.1511 ( 237) Pm .816	.1766 ( 237) P= .003	.1638 ( 237) Pm .606	.1185 ( 237) P= .034	-6.2329 ( 237) Pa .006	-0.1288 ( 212) P= .631	-6.1443 ( 191) P= .023	.217 <b>u</b> ( 189) P= .001
T I C I E Z	WRISTO	,1399 ( 276) Pm ,011	.1775 ( 259) P= .002	.1470 ( 270) P= .007	.1489 ( 270) Pæ .007	-8.9818 ( 278) P= .898	-0.0408 ( 238) P= .266	-6.6748 ( 217) P= .136	.#812 ( 215) P= .118
に い に に	EL.BOWO	.0582 ( 271) P= .069	.0833 ( 270) P≖ .086	.8854 ( 271) P= .881	.2371 ( 271) P= .6688	.0206 ( 271) P= .368	-0.0834 ( 239) P= .099	-0.6750 ( 218) Pm .135	.0386 ( 216) P= .286
LATION	СНЅТО	.3897 ( 271) P= .000	.3793 ( 270) P= .668	.3930 ( 271) P= .000	.2238 ( 271) P= .000	-6.2408 ( 271) P= .006	-8.2684 ( 239) P= .063	-8.2789 ( 218) P= .000	.2801 ( 216) P= .000
C C) R R R E	ANKLED	-6.6257 ( 271) P= .337	-0.6107 ( 270) Pm .431	-6.6283 ( 271) P= .378	.0272 ( 271) P= .328	.0648 ( 271) P= .468	-0.0424 ( 239) P= .257	-6.0146 ( 218) P= ,415	.0053 ( 216) P= .466
X S S S X	KAKEED	.3547 ( 271) P= .000	.3384 ( 270) P= .666	.3463 ( 271) P= .600	.5449 ( 271) P= .660	-6.2826 ( 271) P= .666	-6.2878 ( 239) P= ,666	-0.3147 ( 218) P= .000	.3841 ( 216) P= .000
TITLE PEANSON	BITROD	.4422 ( 271) P= .886	.4275 ( 270) P= .000	.4441 ( 271) P= .000	.2148 ( 271) P= .000	-0.2160 ( 271) P= .000	-0.2916 ( 239) P= .000	-8.3543 ( 218) P= .000	.3324 ( 216) P= .000
1 t 1 1	IILIACD	.4669 ( 276) P= .666	.3824 ( 269) P= .000	.3903 ( 270) P= .666	.1991 ( 270) P= .601	-0.1477 ( 270) P= .008	-8.2672 ( 238) P= .000	-0.3293 ( 217) P= .000	.3038 ( 215) P= .000
1 1 1 1		SUNSA	DWPCRF	ENDO	MESO	ECTO	AVUNIR	AVSSR	KRATING
					11	112			

1 1 1 1	CWMLBM	.1239 ( 266) P= .822	.1626 ( 265) P= .664	.1308 ( 266) P= .016	.1076 ( 286) P= .048	-0.1879 ( 266) P= .001	-6.1746 ( 235) P≕ .664	-0.1325 ( 213) P= .027	.1803 ( 211) P= .004
1 1 1 1	UMMPCBF	.7211 ( 266) P= .888	.7834 ( 285) P= .000	.7072 ( 266) P= .000	.4621 ( 206) P= .000	-6.6344 ( 266) P= .000	-0.4731 ( 235) P= .000	-6.6093 ( 213) P= .000	.7324 ( 211) P= .000
(SE	MOEN	-6.7179 ( 286) P= .000	-8.7838 ( 265) P= .683	-0.7058 ( 266) P= .000	-Ø.4573 ( 266) P= .000	.6349 ( 268) P= .000	.4666 ( 235) P= .000	.6831 ( 213) P= .888	-6.7362 ( 211) P= .666
T S (FEWALES	RLV	-0.1703 ( 260) P= .003	-0.0975 ( 259) P= .059	-6.1817 ( 260) P= .002	-8.2558 ( 260) P≕.000	.2951 ( 260) P= .000	.2368 ( 229) P= .000	.1414 ( 203) P= .021	-6.2177 ( 206) P= .001
ICIEN	S X	-0.0505 ( 265) P= .206	-0.6632 ( 284) P= .486	-0.0576 ( 265) P= .175	-6.0767 ( 265) P= .107	.ø159 ( 265) P= .398	.0938 ( 235) P= .076	.0656 ( 212) P= .171	.6173 ( 210) P= .482
COEFF	TMGRADE	-6.4070 ( 237) P= .666	-0.3741 ( 237) P= .000	-0.3836 ( 237) P= .000	-0.2526 ( 237) P= .000	.2537 ( 237) P= .000	.3358 ( 212) P= .000	.3574 ( 191) P= .000	-6.3729 ( 189) P= .000
NOHFA	TWSPEED	-0.2685 ( 237) P= .000	-0.2488 ( 237) P= .000	-0.2661 ( 237) P= .000	-0.2061 ( 237) P= .001	.2551 ( 237) P= .000	.1854 ( 212) P= .003	.2464 ( 191) P= .000	-6.2967 ( 189) P= .000
CORREL	VEV02	-6.1548 ( 237) P= .009	-6.2037 ( 237) P= .001	-8.1972 ( 237) P= .801	-0.0517 ( 237) P= .214	.1245 ( 237) P= .028	.1492 ( 212) P= .015	.1608 ( 191) P= .013	-0.2420 ( 189) P= .666
ARSON	VC02	-0.4168 ( 237) P= .000	-8.3871 ( 237) P= .000	-0.4018 ( 237) P= .000	-0.2274 ( 237) P= .000	.3188 ( 237) P= .000	.3965 ( 212) P= .000	.4096 ( 191) P= .000	-0.4324 ( 189) P= .000
A H H H H	œ	-Ø.0091 ( 237) P= .445	-6.0021 ( 237) P= .487	-0.0148 ( 237) P= .410	.ø569 ( 237) P= .191	.0002 ( 237) P= .499	.1470 ( 212) P= .016	.ø561 ( 191) P= .220	-0.0419 ( 189) F= .284
1 1	ΑĒ	.ø134 ( 237) P= .419	-0.0066 ( 237) P= .460	-6.8095 ( 237) P= .442	.0670 ( 237) P= .152	-0.1076 ( 237) P= .049	.Ø191 ( 212) P= .391	.0083 ( 191) P= .455	-ø.ø136 ( 189) P≕.426
1 1 1 1		SUMSA	DWPCBF	ENDO	MESO	ECT0	AVUNIR	AVSSR	KRATING
•					Н	-113			

	1 1 1		とつのよく						/2-			
	CMMBF	SAMS	DWPCBFEX	SUMSA	DWPCBF	ENDO	MESO	ECT0	AVWIR	AVSSR	KRATING	
SUMSA	.7543 ( 266) P= .888	. 8976 ( 271) P= . 866	.9694 ( 271) P≖ .066	1.8686 ( 271) P≖ .866	.\$691 ( 270) P= .606	.9725 ( 271) Px .668	.4816 ( 271) Pm .606	-6.6669 ( 271) Pr :666	-0.5626 ( 239) Fm .866	-6.6486 ( 218) Px .800	.6936 ( 216) F= .666	
DWPCBF	.7239 ( 265) P= .000	.9652 ( 276) P≖ .066	.9947 ( 270) Pm .866	.9891 ( 270) Pm .000	1.8696 ( 278) P= .886	.9718 ( .270) Px .666	.4415 ( 276) Pz .866	-6.6016 ( 276) Pm .666	-6.4444 ( 238) Pm .006	-6.6676 ( 217) Px .966	.6712 ( 215) Pm .866	
ENDO	.7324 ( 266) P= .000	. 9747 ( 271) P= .000	.9755 ( 271) Pm .606	.9726 ( 271) P= .000	.9718 ( 278) P= .666	1.6666 ( 271) Pz .866	.4452 ( 271) Pr666	-6.6116 ( 271) Px .666	-6.4682 ( 239) P= .666	-6.6638 ( 218) Pz .266	.6683 ( 216) Pa .666	
MESO	.5833 ( 266) P= .888	.4827 ( 271) P=696	.4422 ( 271) P= .666	.4816 ( 271) P= .806	.4415 ( 270) P= .000	.4452 ( 271) Px .666	1.6066 ( 271) P= .606	-6.7374 ( 271) Pm .666	-6.4198 ( 239) Pm .606	-6.5156 ( 218) Pr606	.6428 ( 216) P= .906	
ECTO	-8.6686 ( 268) P= .608	-6.6637 ( 271) P= .666	-6.6678 ( 271) P= .863	-6.6069 ( 271) P= .006	-6.6616 ( 276) F= .606	-6.6118 ( 271) P= .000	-6.7374 ( 271) P= .606	1.8085 ( 271) Ps808	.4314 ( 239) Pm .606	.5686 ( 218) Px .006	-6.8135 ( 216) Pm . 986	
AVUNIR	-0.5746 ( 235) P= .000	-6.5624 ( 239) P= .006	-6.4532 ( 239) Pz.0666	-6.5826 ( 239) P≰ .000	-6.4444 ( 238) P= .606	-6.4682 ( 239) P= .000	-6.4198 ( 239) P= .006	.4314 ( 239) P= .006	1.6006 ( 239) P≈ .606	.7423 ( 199) P= .696	-6.6268 ( 197) Px .866	
AVSSR	-8.6822 ( 213) P= .888	—6.6474 ( 218) P= .000	-6.6164 ( 218) Pz.666	-6.6486 ( 218) P= .666	-6.6678 ( 217) P= .666	-6.6086 ( 218) P= .005	-6.5156 ( 218) P≖ .866	.5686 ( 218) Pz .668	.7423 ( 199) Pz. :#96	1.0006 ( 218) P≈ .000	-6.8037 ( 216) P= .606	
KRATING	7827	.6962	.6784 ( 216)	.6936	.6712 ( 215)	.6683	.6428 ( 216) 8- 998	-6.8136 ( 216)	-6.6268 ( 197)	-6.9837 ( 216)	1.0006	

t t t t	KRATING	.6936 ( 216) P= .806	. 6712 ( 215) P= .030	.6683 ( 216) P= .863	.6428 ( 216) P= .006	-6.8135 ( 216) P= . Wed	-6.6268 ( 197) P= .000	-6.8037 ( 216) P= .860	1.6666 ( 216) P≡ .666
1 1 1	AVSSR	-6.648# ( 218) P= .866	-0.6076 ( 217) P= .000	-6.6088 ( 218) P= .666	-0.5150 ( 213) P= .000	.5666 ( 218) P= .000	.7423 ( 199) P= .000	1.0000 ( 218) P= .000	-6.8637 ( 216) P= .666
LES)	AVUNIR	-0.5626 ( 239) P= .060	-6.4444 ( 238) P= .000	-6.4682 ( 239) P= .000	-ø.4198 ( 239) P= .øøø	.4314 ( 239) Pm .000	1.6686 ( 239) P= .666	.7423 ( 199) P= .000	-6.6268 ( 197) P= .886
ITS (FEMALES)	ECT0	-6.6869 ( 271) P= .686	-6.6016 ( 270) P= .000	-6.6116 ( 271) P= .666	-8.7374 ( 271) P= .006	1.0003 ( 271) P= .600	.4314 ( 239) P= .666	.5606 ( 218) P= .000	-6.8135 ( 216) P= .000
FICIEN	MESO	.4810 ( 271) P= .886	.4415 ( 270) P= .666	.4452 ( 271) P= .000	1.0000 ( 271) P= .000	-0.7374 ( 271) P= .000	-6.4198 ( 239) P= .000	-0.5158 ( 218) P= .006	.6428 ( 216) P= .000
C 0 E F	END0	.9725 ( 271) P= .666	.9718 ( .270) P= .666	1.8666 ( 271) P= .888	.4452 ( 271) P= .000	-6.6116 ( 271) P= .666	-6.4682 ( 239) P= .668	-6.6886 ( 218) P= .666	.6683 ( 216) P= .000
LATION	DWPCB#	.9691 ( 270) P= .000	1.0000 ( 270) P= .000	.9718 ( 270) P= .666	.4415 ( 270) P= .000	-0.6016 ( 270) P= .000	-6.4444 ( 238) P= .666	-5.6076 ( 217) P= .600	.6712 ( 215) P= .688
CORRE	SUMSA	1.9666 ( 271) P= .666	.9891 ( 270) P= .663	.9725 ( 271) P= .000	.4810 ( 271) P= .000	-Ø.6Ø69 ( 271) P= .ØØ6	-Ø.5Ø26 ( 239) P₫.0ØØ	-0.6480 ( 218) P= .000	.6936 ( 216) P= .666
PEARSON	DWPCBFEX	.969. ( 271) P= .666	. 9947 ( 275) P= .000	.9755 ( 271) P= .000	.4422 ( 271) P= .000	-6.6078 ( 271) P= .000	-6.4532 ( 239) P= .000	-0.8164 ( 218) P= .000	.6784 ( 216) P= .666
1 1 E	SUMS	.9976 (271) P= .688	.952. ( 278) P= .608	.9747 ( 271) P= .668	.4827 ( 271) P=606	-6.6037 ( 271) P= .666	-6.5024 ( 239) P= .666	-8.6474 ( 218) P= .888	.6962 ( 216) P= .666
1 1 1	CWWBF	.7543 ( 268) P= .660	.7239 ( 265) P= .866	.7324 ( 266) P= .000	.5833 ( 268) P= .866	-ø.6666 ( 266) P≕.000	-8.5746 ( 235) P= .000	-6.8822 ( 213) P= .666	.7827 ( 211) P= .666
1 1 1		SUNSA	DWPCEF	0 QX3	MESO	ECT0	AVUNIR	AVSSR	KRATING

Appendix I

ANCOVA Tables

#### * * * ANALYSIS OF VARIANCE ***

### AVERAGE UNIFORM RATING

CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	20.030	1	20.030	13.53780	0.000
AGE	20.030	1	20.030	13.53780	0.000
MAIN EFFECTS	12.966	3	4.322	2.921097	0.033
CENDET:	8.188	1	8.188	5.533851	0.019
RACE	5.633	2	2.817	1.903774	0.149
2-WAY INTERACTIONS	3.508	2	1.754	1.185604	0.306
CENDER RACE	3.508	2	1.754	1.185604	0.306
EXPLAINED '	36.504	6	6.084	4.112051	0.000
residual.	1984.090	1341	1.480		
TOTAL	2020.594	1347	1.500		
1399 CASES WERE PROCESSED.					

51 CASES ( 3.6 PCT) WERE MISSING.

### AVERAGE SWIM SUIT RATING

CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	6.403	1	6.403	3.073443	0.080
AGE	6.403	1	6.403	3.073443	0.080
MAIN EFFECTS	21.919	3	7.306	3.507282	0.015
CE SER	2.031	1	2.031	0.9747400	0.324
RACE	18.838	2	9.419	4.521441	0.011
2-WAY INTERACTIONS	0.028	2	0.014	0.6836337E-02	0.993
GENDER RACE	0.028	2	0.014	0.6836337E-02	0.993
EXPLAINED	28.351	6	4.725	2.268160	0.035
RESIDUAL	2793.603	1341	2.083		
TOTAL	2821.954	1347	2.095		
1399 CASES WERE PROCESSED.					

51 CASES ( 3.6 PCT) WERE MISSING.

### VISUAL APPRAISAL RATING

BY CENDER

RACE

WITH ACE

MTIII VOL					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	D⊱	SQUARE	F	0FF
COVARIATES	101.640	1	101.640	36.02525	0.000
AGE	101 640	1	101.640	36.02525	0.000
MAIN EFFECTS	42.197	3	14.066	4.985472	0.002
CIENTUER	25.499	1	25.499	9.037971	0.003
RACE	18.757	2	9.379	3.324156	0.Ò36
2-WAY INTERACTIONS	0.955	2	0.477	0.1692055	0.844
GENDER RACE	0.955	2	0.477	0.1692055	0.844
EXPLAINED	144.792	6	24.132	8.553346	0.000
RESIDUAL	3783.429	1341	2.821		ŕ
TOTAL	3928.220	1347	2.916		
1200 CACTO HETE DEGOTOCED					

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

	ENDOMORPHY
BY	CENDER
	RACE
WITH	ACF

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0FF
COVARIATES	188.894	1	183.894	84.51210	0.000
AGE	188.894	1	188.894	84.51210	0.000
MAIN EFFECTS	91.786	3	30,595	13.68849	0.000
CENDER	8.604	1	8.604	3.849434	0.050
RACE	86.989	2	43.494	19.45955	0.000
2-WAY INTERACTIONS	1.719	2	0.859	0.3844494	0.681
GENDER RACE	1.719	2	0.859	0.3844494	0.681
EXPLAINED	282.399	6	47.066	21.05774	0.000
RESIDUAL	2997.290	1341	2.235		
TOTAL	3279.689	1347	2.435		

1399 CASES WE'VE PROCESSED. 51 CASES ( 3.6 PCT) WERE MISSING.

MESOMORPHY

GENDER

RACE

WITH ACE

HILIII MAL	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	15.301	1	15.301	11.60824	0.001
AGE	15.301	1	15.301	11.60824	0.001
MAIN EFFECTS	181.863	3	60.621	45.99208	0.000
GENDER	149.705	1	149.705	113.5784	0.000
RACE	30.735	2	15.367	11.65901	0.000
2-WAY INTERACTIONS	7.837	2	3.919	2.973077	0.051
GENDER RACE	7.837	2	3.919	2.973077	0.051
EXPLAINED	205.001	6	34.167	25.92177	0.000
RESIDUAL	1767.541	1341	1.318		
TOTAL	1972.542	1347	1.464		
1399 CASES WERE PROCESSED.					

51 CASES ( 3.6 PCT) WERE MISSING.

ECTOMORPHY BY GENDER RACE WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	49.720	1	49.720	46.54889	0.000
AGE ~	49.720	1	49.720	46.54889	0.000
MAIN EFFECTS	19.220	3	6.407	5.997956	0.000
GENDER	0.021	1	0.021	0.1965533E-01	0.889
RACE	19.053	2	9.526	8.918890	0.000
2-WAY INTERACTIONS	0.551	2	0.276	0.2579341	0.773
GENDER RACE	0.551	2	0.276	0.2579341	0.773
EXPLAINED	69.491	6	11.582	10.84310	0.000
RESIDUAL.	1432.351	1341	1.068		
TOTAL	1501.842	1347	1.115		

1399 CASES WERE PROCESSED.

51 CASES (  $3.6\ PCT)$  WERE MISSING.

VTTAL	CAPACITY
T - 1/ V-	G I I TOUL I I

Y CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0FF
COVARIATES	76.634	1	76.634	170.0613	0.000
AGE	76.634	1	76.634	170.0613	0.000
MAIN EFFECTS	410.082	3	136.694	303.3431	0.000
CENDER	263.910	1	263.910	585.6533	0.000
RACE	131.923	2	65.962	146.3780	0.000
2-WAY INTERACTIONS	3.997	2	1.999	4.435099	0.012
gender race	3.997	2	1.999	4.435099	0.012
EXPLAINED	490.713	6	81.785	181.4935	0.000
RESIDUAL	598.880	1329	0.451		
TOTAL	1089.593	1335	0.816		

1399 CASES WERE PROCESSED.

63 CASES ( 4.5 PCT) WERE MISSING.

## RESIDUAL LUNG VOLUME (L)

BY GENDER RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	49.771	1	49.771	792.8098	0.000
AGE	49.771	1	49.771	792.8098	0.000
MAIN EFFECTS	11.381	3	3.794	60.43272	0.000
GENDER	6.038	1	6.038	96.18529	0.000
RACE	5.343	2	2.672	42.55516	0.000
2-WAY INTERACTIONS	0.363	2	0.181	2.88943	0.056
GENDER RACE	0.363	2	0.181	2.88943	0.056
<b>EXPLAINED</b>	61.515	6	10.253	163.3145	0.000
RESIDUAL	75.71	1206	0.063		
TOTAL	137.225	1212	0.113		
AGGO GAGES UPDE PROPERTIES					

1399 CASES WERE PROCESSED.

186 CASES ( 13.3 PCT) WERE MISSING.

## BODY DENSITY (G/CC)

BY GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0FF
COVARIATES	0.019	1	0.019	106.3715	0.000
AGE	0.019	1	0.019	106.3715	0.000
MAIN EFFECTS	0.096	3	0.032	179.6194	0.000
GENDER	0.083	1	0.083	465.6845	0.000
race	0.017	2	0.009	48.32807	0.000
2-WAY INTERACTIONS	0.003	2	0.001	7.129844	0.001
GENDER RACE	0.003	2	0.001	7.129844	0.001
EXPLAINED	0.118	6	0.02	109.9149	0.000
RESIDUAL	0.216	1206	0.000		
THIN	0.334	1212	0.000		

1399 CASES WERE PROCESSED.

186 CASES ( 13.3 PCT) WERE MISSING.

### ANALYSIS OF VARIANCE * * *

### PERCENT BODY FAT FROM UNDERWATER WEIGHING

RACE

WITH ACE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	3753.889	1	3753.889	103.1942	0.000
AGE	3753.889	1	3753.889	103.1942	0.000
MAIN EFFECTS	19523.888	3	6507.963	178.9036	0.000
<b>GENDER</b>	16953.959	1	16953.959	466.0636	0.000
RACE	3410.45	2	1705.225	46.87657	0.000
2-WAY INTERACTIONS	480.774	2	240.387	6.60623	0.001
CENDER RACE	480.774	2	240.387	6.60823	0.001
EXPLAINED	23758.551	6	3959.759	108.8536	0.000
RESIDUAL	43870.566	1206	36.377		
TOTAL	67629.117	1212	55.800		
1399 CASES WERE PROCESSED.					

186 CASES ( 13.3 PCT) WERE MISSING.

### FAT FREE MASS (KG) FROM UNDERWATER WEIGHING

CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	7208.776	1	7208.776	157.7244	0.000
AGE	7208.776	1	7208.776	157.7244	0.000
MAIN EFFECTS	56828.312	3	18942.771	414.4583	0.000
GENDER	56078.602	1	56078.602	1226,972	0.000
RACE	2118.13	2	1059.065	23.17181	0.000
2-WAY INTERACTIONS	178.063	2	89.032	1.947965	0.143
GENDER RACE	178.063	2	89.032	1.947965	0.143
EXPLAINED	64215.152	6	10702.525	234.1659	0.000
RESIDUAL_	55120.093	1206	45.705		
TOTAL	119335.244	1212	98.461		
1399 CASES WERE PROCESSED.					

186 CASES ( 13.3 PCT) WERE MISSING.

### FAT MASS (KG) FROM UNDERWATER WEIGHING

**GENDER** 

RACE

WITH ACE

NIII AGE					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	7782.262	1	7782.262	202.876	0.000
AGE	7782.262	1	7782.262	202.876	0.000
MAIN EFFECTS	3472.949	3	1157.65	30.1788	0.000
GENDER .	1674.651	1	1674.651	43.65652	0.000
RACE	1991.191	2	995.595	25.95421	0.000
2-WAY INTERACTIONS	374.081	2	187.04	4.875962	0.008
GENDER RACE	374.081	2	187.04	4.875962	0.008
EXPLAINED	11629.291	6	1938.215	50.52739	0.000
RESIDUAL	46261.793	1206	38.360		
TOTAL	57891.084	1212	47.765		
1399 CASES WERE PROCESSED.					

186 CASES ( 13.3 PCT) WERE MISSING.

## * * * ANALYSIS OF VARIANCE * * *

VO2 (ML+KG+MEN)
GENDER
RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	4462.05	1	4462.05	176.3439	0.000
AGE	4462.05	1	4462.05	176.3439	0.000
MAIN EFFECTS	16645.939	3	5548.646	219.2871	0.000
CENDER	16141.541	1	16141.541	637.9271	0.000
RACE	107.238	2	53.619	2.119061	0.121
2-WAY INTERACTIONS	264.603	2	132.301	5.228663	0.006
CENDER RACE	264.603	2	132.301	5.228663	0.006
EXPLAINED	21372.592	6	3562.099	140.7771	0.000
residual.	23481.287	928	25.303		
TUTAL	44853.879	934	48.023		
AGO CLOSS HERE BOSCOSSES					

1399 CASES WERE PROCESSED.

464 CASES ( 33.2 PCT) WERE MISSING.

TREADMILL GRADE

BY GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	347.576	1	347.576	80.48598	0.000
AGE	347.576	1	347.576	80.48598	0.000
MAIN EFFECTS	321.983	3	107.328	24.85316	0.000
GENDER	267.050	1	267.050	61.83891	0.000
race	33.872	2	16.936	3.921781	0.020
2-WAY INTERACTIONS	0.780	2	0.390	0.9031036E-01	0.914
GENDER RACE	0.780	2	0.390	0.9031036E-01	0.914
EXPLAINED	670.339	6	111.723	25.87101	0.000
residual.	4072.319	943	4.318		
TOTAL	4742.658	949	4.998		
1399 CASES WERE PROCESSED.					

449 CASES ( 32.1 PCT) WERE MISSING.

TREADMILL SPEED

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	0.493	1	0.493	2.342821	0.126
AGE	0.493	1	0.493	2.342821	0.126
MAIN EFFECTS	216.637	3	72.212	343.1269	0.000
GENDER	213.403	1	213.403	1014.013	0.000
RACE	0.217	2	0.109	0.5166015	0.597
2-WAY INTERACTIONS	0.792	2	0.396	1.880559	0.153
gender race	0.792	2	0.396	1.880559	0.153
EXPLAINED	217.922	6	36.320	172.5808	0.000
RESIDUAL	198,458	943	0.210		
TOTAL	416.380	949	0.439		

1399 CASES WERE PROCESSED.

449 CASES ( 32.1 PCT) WERE MISSING.

## ** ANALYSIS OF VARIANCE ***

BY GENDER
RACE
WITH AGE

•••	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	110885.609	1	110885.609	460.7629	0.000
AGE	110885.609	1	110885.609	460.7629	0.000
MAIN EFFECTS	5603.665	3	1867.888	7.761635	0.000
GENDER	837.835	1	837.835	3.481455	0.062
RACE	4766.689	2	2383.345	9.903511	0.000
2-WAY INTERACTIONS	64.569	2	32.284	0.1341508	0.874
GENDER RACE	64.569	2	32.284	0.1341508	0.874
EXPLAINED	116553.842	6	19425.640	80.71935	0.000
RESIDUAL	322720.437	1341	240.657		
TITAL	439274.279	1347	326.113		

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

BY GENDER RACE WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	97.970	1	97.970	512.0725	0.000
AGE	97.970	1	97.970	512.0725	0.000
MAIN EFFECTS	3.584	3	1.195	6.243778	0.000
CENDER	0.062	1	0.062	0.3230696	0.570
RACE	3.503	2	1.752	9.155524	0.000
2-WAY INTERACTIONS	0.262	2	0.131	0.6841358	0.505
GENDER RACE	0.262	2	0.131	0.6841358	0.505
EXPLAINED	101.816	6	16.969	88.69534	0.000
RESIDUAL	256.562	1341	0.191		
TOTAL	358.378	1347	0.266		

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

## *** ANALYSIS OF VARIANCE ***

CO2 PRODUCTION (L/MIN)

BY CENDER RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	256683.689	1	256683.689	616.1901	0.000
AGE	256683.689	1	256683.689	616.1901	0.000
MAIN EFFECTS	26200.500	3	8733.500	20.96548	0.000
GENDER	19519.141	1	19519.141	46.85729	0.000
RACE	5796.937	2	2898.469	6.958010	0.001
2-WAY INTERACTIONS	1245.931	2	622.966	1.495480	0.225
GENDER RACE	1245.931	2	622.966	1.495480	0.225
EXPLAINED	284130.120	6	47355.020	113.6796	0.000
RESIDUAL	558614.650	1341	416.566		
TUTAL	842744.770	1347	625.646		
1399 CASES WERE PROCESSE	D.				
51 CASES ( 3.6 PCT) W	ERF LITSSTNG				

BY CENDER (L/MIN)

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	0.022	1	0.022	0.1091822	0.741
AGE	0.022	1	0.022	0.1091822	0.741
MAIN EFFECTS	284.577	3	94.859	478.0563	0.000
CENDER	280.335	1	280.335	1412.79	0.000
RACE	0.667	2	0.333	1.68004	0.187
2-WAY INTERACTIONS	0.433	2	0.217	1.09232	0.336
CENDER RACE	0.433	2	0.217	1.09232	0.336
EXPLAINED	285.032	6	47.505	239.4104	0.000
RESIDUAL	184.14	928	0.198		
TOTAL	469.172	934	0.502		
1300 CASES WERE PROCESSED					

464 CASES ( 33.2 PCT) WERE MISSING.

## * ANALYSIS OF VARIANCE ***

	HEART	RATE	(BPM)
BY	GEVDE	₹	
	RACE		
WITH	AGE		

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	6880,162	1	6880.162	109.7401	0.000
AGE	6880.162	1	6880.162	109.7401	0.000
MAIN EFFECTS	2305.086	3	768.362	12.25554	0.000
CENDER	1035.547	1	1035.547	16.51719	0.000
RACE	1092.357	2	546.179	8.711666	0.000
2-WAY INTERACTIONS	108.556	2	54.278	0.8657447	0.421
CENDER RACE	108.556	2	54.278	0.8657447	0.421
EXPLAINED	9293.803	6	1548.967	24.70636	0.000
RESIDUAL.	58181.031	928	62.695		
TOTAL	67474.834	934	72.243		

1399 CASES WERE PROCESSED.

464 CASES ( 33.2 PCT) WERE MISSING.

# SY GENDER

RACE

WITH AGE

HALIII AGE	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	1227749.357	1	1227749.357	429.0622	0.000
AGE	1227749.357	1	1227749.357	429.0622	0.000
MAIN EFFECTS	298807.265	3	99602.422	34.80811	0.000
GENDER	257447.292	1	257447.292	89.97024	0.000
RACE	37236.638	2	18618.319	6.506554	0.002
2-WAY INTERACTIONS	4805.537	2	2402.769	0.8396968	0.432
CENDER RACE	4805.537	2	2402.769	0.8396968	0.432
EXPLAINED	1531362.159	6	255227.027	89.19433	0.000
RESIDUAL	3837233.305	1341	2861.472		
TOTAL	5368595.464	1347	3985.594		
1399 CASES WERE PROCESSED.					

51 CASES ( 3.6 PCT) WERE MISSING.

### *** ANALYSIS OF VARIANCE ***

HEIGHT (CM)
BY GANDER
RACE
WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	8045.299	1	8045.299	192.6407	0.000
AGE	8045.299	1	8045.299	192.6407	0.000
MAIN EFFECTS	29756,522	3	9918.841	237.5017	0.000
CENDER	27768.153	1	27758.153	664.8947	0.000
RACE	2823.184	2	1411.592	33.79987	0.000
2-WAY INTERACTIONS	98.447	2	49.224	1.178635	0.308
gender race	98.447	2	49.224	1.178635	0.308
EXPLAINED	37900.269	6	6316.711	151.2505	0.000
residual.	55837.448	1337	41.763		
TOTAL	93737.717	1343	69.797		

1399 CASES WERE PROCESSED.

55 CASES ( 3.9 PCT) WERE MISSING.

BY GENDER
RACE
WITH AGE

V	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0F F
COVARIATES	30950.845	1	30950.845	296.5846	0.000
AGE	30950.845	1	30950.845	296.5846	0.000
MAIN EFFECTS	42196.810	3	14065.603	134.7828	0.000
GENDER	41813.117	1	41813.117	400.6717	0.000
RACE	744.937	2	372.469	3.569157	0.028
2-WAY INTERACTIONS	23.735	2	11.868	0.1137200	0.893
gender race	23.735	2	11.868	0.1137200	0.893
EXPLAINED	73171.390	6	12195.232	116.8601	0.000
RESIDUAL	139526.039	1337	104.358		
TITTAI	212607 420	1343	158 375		

1399 CASES WERE PROCESSED.

55 CASES ( 3.9 PCT) WERE MISSING.

### ** ANALYSIS OF VARIANCE ***

### CHIN SKINFOLD (MM)

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	0FF
COVARIATES	1915.138	1	1915.138	309.8926	0.000
AGE	1915.138	1	1915.138	309.8926	0.000
MAIN EFFECTS	1758.453	3	586.151	94.84637	0.000
CENDER	508.032	1	508.032	82.20574	0.000
RACE	1354.364	2	677.182	109.5763	0.000
2-WAY INTERACTIONS	22.380	2	11.190	1.810653	0.164
GENDER RACE	22.380	2	11.190	1.810653	0.164
EXPLAINED .	3695.971	6	615.995	99.67550	0.000
RESIDUAL	8275.028	1339	6.180		
TUTAL	11970.999	1345	8.900		
1200 CACEC MEDE DOCCECCED					

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

## CHEST SKINFOLD (MM)

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	14582.115	1	14582.115	322.6982	0.000
AGE	14582.115	1	14582.115	322.6982	0.000
MAIN EFFECTS	3299.459	3	1099.820	24.33871	0.000
GENDER .	205.611	1	205.611	4.550103	0.033
RACE	3205.607	2	1602.803	35.46959	0.000
2-WAY INTERACTIONS	228.299	2	114.149	2.526092	0.080
GENDER RACE	228.299	2	114.149	2.526092	0.080
EXPLAINED	18109.873	6	3018.312	66.79441	0.000
RESIDUAL.	60506.859	1339	45.188		
TOTAL	78616.731	1345	58.451		
1399 CASES WERE PROCESSED					

53 CASES ( 3.8 PCT) WERE MISSING.

61 CASES ( 4.4 PCT) WERE MISSING.

## BICEPS SKINFOLD (MM) BY GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	78.282	1	78.282	12.11194	0.001
AGE	78.282	1	78.282	12.11194	0.001
MAIN EFFECTS	1171.345	3	390.448	60.41081	0.000
GENDER	1008.737	1	1008.737	156.0735	0.000
RACE	201.595	2	100.797	15.59553	0.000
2-WAY INTERACTIONS	77.068	2	38.534	5.962021	0.003
GENDER RACE	77.068	2	38.534	5.962021	0.003
EXPLAINED	1326.694	6	221.116	34.2114	0.000
RESIDUAL	8602.543	1331	6.463		
TOTAL	9929.237	1337	7.427		
1399 CASES WERE PROCESSED.					

### *** ANALYSIS OF VARIANCE ***

### TRICEPS SKINFOLD (MM)

BY GENDER RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	42.636	1	42.636	2.006474	0.157
AGE	42.636	1	42.636	2.006474	0.157
MAIN EFFECTS	7492.856	3	2497.619	117.5406	0.000
GENDER	7186.105	1	7186.105	338.1858	0.000
RACE .	395.187	2	197.594	9.298970	0.000
2-WAY INTERACTIONS	21.883	2	10.941	0.5149168	0.598
GENDER RACE	21.883	2	10.941	0.5149168	0.598
EXPLAINED	7557.374	6	1259.562	59.27636	0.000
RESIDUAL	28452.389	1339	21.249		
TOTAL	36009.763	1345	26.773		

1399 CASES WERE PROCESSED.

### SUBSCAPULAR SKINFOLD (MM)

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	4278.527	1	4278.527	129.2535	0.000
AGE	4278.527	1	4278.527	129.2535	0.000
MAIN EFFECTS	999.141	3	333.047	10.06129	0.000
GENDER	171.396	1	171.396	5.177833	0.023
race	755.485	2	377.743	11.41154	0.000
2-WAY INTERACTIONS	2.659	2	1.329	0.4015820E-01	0.961
GENDER RACE	2.659	2	1.329	0.4015820E-01	0.961
EXPLAINED	5280.327	6	880.054	26.58629	0.000
RESIDUAL	44323.341	1339	33.102		
TOTAL	49603.668	1345	36.880		

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

### MIDAXILLARY SKINFOLD (MM)

BY CENDER

RACE

WITH AGE

172, 111 7 1000					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	6293.849	1	6293.849	141.6995	0.000
AGE	6293.849	1	6293.849	141.6995	0.000
MAIN EFFECTS	2905.481	3	968.494	21.80464	0.000
GENDER	48.368	1	48.368	1.088956	0.297
RACE	2900.741	2	1450.371	32.6536	0.000
2-WAY INTERACTIONS	106.055	2	53.027	1.193857	0.303
GENDER RACE	106.055	2	53.027	1.193857	0.303
EXPLAINED	9305.385	6	1550.897	34.91686	0.000
RESIDUAL.	59474.179	1339	44.417		
TUTAL	68779.564	1345	51.137		

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

## *** ANALYSIS OF VARIANCE ***

	WAIST	SKINFOLD	(MM)
.,	707.50	<del></del>	

BY GENDER RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	7390.719	1	7390.719	106.9938	0.000
AGE	7390.719	1	7390.719	106.9938	0.000
MAIN EFFECTS	5920.432	3	1973.477	28.5696	0.000
GENDER .	1410.525	1	1410.525	20.41987	0.000
RACE	4066.44	2	2033.22	29.43448	0.000
2-WAY INTERACTIONS	84.075	2	42.037	0.6085648	0.544
GENDER RACE	84.075	2	42.037	0.6085648	0.544
EXPLAINED	13395.226	6	2232.538	32.31996	0.000
RESIDUAL	92492.936	1339	69.076		
TOTAL	105888.162	1345	78.727		
ייייי אייייייייייייייייייייייייייייייי					

1399 CASES WERE PROCESSED.

### ABDOMINAL SKINFOLD (MM)

BY GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	22225.74	1	22225.74	262.4415	0.000
AGE	22225.74	1	22225.74	262.4415	0.000
MAIN EFFECTS	5389.672	3	1796.557	21.21375	0.000
GENDER	99.39	1	99.39	1.173596	0.279
RACE	5152.982	2	2576.491	30.4232	0.000
2-WAY INTERACTIONS	168.828	2	84.414	0.9967576	0.369
GENDER RACE	168.828	2	84.414	0.9967576*	0.369
EXPLAINED	27784.24	6	4630.707	54.67937	0.000
RESIDUAL	113397.719	1339	84.688		
TOTAL	141181.958	1345	104.968		

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

### SUPRAILIAC SKINFOLD (MM)

BY GENDER

RACE WITH AGE

W=W. V.	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	0F F
COVARIATES	9235.585	1	9235.585	107.6792	0.000
AGE	9235.585	1	9235.585	107.6792	0.000
MAIN EFFECTS	8420.811	3	2806.937	32.72652	0.000
GENDER	2250.781	1	2250.781	26.24221	0.000
RACE	5541.129	2	2770.565	32.30245	0.000
2-WAY INTERACTIONS	234.445	2	117.222	1.366714	0.255
GENDER RACE	234.445	2	117.222	1.366714	0.255
EXPLAINED	17890.841	6	2981.807	34.76536	0.000
RESIDUAL	114845.336	1339	85.769		
TOTAL	132736.177	1345	98.689		
TOO CACLE MADE DOUGLECOLD					

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

	KNEE SKINFOLD (MA)	
V	COMP	٠

BY GENDER RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0F F
COVARIATES	16.019	1	16.019	3.655942	0.056
ACE	16.019	1	16.019	3.655942	0.056
MAIN EFFECTS	33.051	3	11.017	2.514304	0.057
GENDER	13.456	1	13.456	3.071035	0.080
RACE	22.394	2	11.197	2.555432	0.078
2-WAY INTERACTIONS	4.412	2	2.206	0.5034561	0.605
GENDER RACE	4.412	2	2.206	0.5034561	0.605
EXPLAINED	53.482	6	8.914	2.034295	0.058
RESIDUAL	5867.06	1339	4.382		
TOTAL	5920.541	1345	4.402		

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

# CALF SKINFOLD (MM)

ry **Cender** 

RACE

WITH ACE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	962.574	1	962.574	46.29056	0.000
AGE	962.574	1	962.574	46.2905€	0.000
MAIN EFFECTS	9585.783	3	3195.261	153.6614	0.000
GENDER	8623.806	1	8623.806	414.7223	0.000
RACE	1231.535	2	615.768	29.61252	0.000
2-WAY INTERACTIONS	5.264	2	2.632	0.1265827	0.881
GENDER RACE	5.264	2	2.632	0.1265827	0.881
EXPLAINED	10553.621	6	1758.937	84.58798	0.000
RESIDUAL	27677.039	1331	20.794		
TOTAL	38230.66	1337	28.594		
1000 CACES WEDE DEGOTOSED					

1399 CASES WERE PROCESSED.

61 CASES ( 4.4 PCT) WERE MISSING.

### THICH SKINFOLD (MM)

BY CENDER

RACE

WITH AGE

HI III NOL					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0F F
COVARIATES	341.732	1	341.732	7.962589	0.005
AGE	341.732	1	341.732	7.962589	0.005
MAIN EFFECTS	33923.573	3	11307.858	263.481	0.000
<b>GENDE</b> R	32197.057	1	32197.057	750.214	0.000
RACE	2375.22	2	1187.61	27.67215	0.000
2-WAY INTERACTIONS	36.236	2	18.118	0.4221577	0.656
GENDER RACE	36.236	2	18.118	0.4221577	0.656
EXPLAINED	34301.541	6	5716.923	133.2083	0.000
RESIDUAL	57466.082	1339	42.917		
TOTAL	91767.622	1345	68.229		

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

#### HEAD CIRCUMFERENCE (CM)

CENDER BY

RACE WITH AGE

SIGNIF MEAN SUM OF F OF F SQUARE DF SQUARES SOURCE OF VARIATION 151.6222 0.000 452.938 452.938 COVARIATES 0.000 452.938 151.6222 452.938 1 ACE 93.32954 0.000 278.801 3 836.404 MAIN EFFECTS 0.000 799.111 267.5047 1 799.111 CENDER 12.1746 0.000 72.738 2 36.369 RACE 2 23.068 7.722135 0.00046.136 2-WAY INTERACTIONS 7.722135 0.000 46.136 2 23.068 CENDER RACE 74.50917 0.000 222.58 EXPLAINED 1335.478 6 1331 2.987 RESIDUAL 3976.067

5311.544

1337

3.973

1399 CASES WERE PROCESSED.

TOTAL

61 CASES ( 4.4 PCT) WERE MISSING.

### NECK CIRCUMFERENCE (CM)

BY CENDER RACE

WITH AGE

	SUM DF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	1321.256	1	1321.256	303.6618	0.000
AGE	1321.256	1	1321.256	303.6618	0.000
MAIN EFFECTS	5862.768	3	1954.256	449.143	0.000
CENDER	5817.058	1	5817.058	1336.923	0.000
RACE	8.728	2	4.364	1.002965	0.367
2-WAY INTERACTIONS	0.304	2	0.152	0.3493636E-01	0.966
GENDER RACE	0.304	2	0.152	0.3493636E-01	0.966
EXPLAINED	7184.328	6	1197.388	275.1934	0,000
RESIDUAL	5795.636	1332	4.351		
TOTAL	12979.964	1338	9.701		

1399 CASES WERE PROCESSED.

60 CASES ( 4.3 PCT) WERE MISSING.

### BICEP CIRCUMFERENCE (CM)

BY **GENDER** 

RACE

WITH ACE

MTIII VOE					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	586.856	1	586.856	110.0907	0.000
AGE	586.856	1	586.856	110.0907	0.000
MAIN EFFECTS	2789.711	3	929.904	174.4443	0.000
GENDER	2713.745	1	2713.745	509.0823	0.000
RACE	118.242	2	59.121	11.09078	0.000
2-WAY INTERACTIONS	37.52	2	18.76	3.519256	0.030
GENDER RACE	37.52	2	18.76	3.519256	0.030
EXPLAINED	3414.087	6	569.014	106.7437	0.000
RESIDUAL.	7111.102	1334	5.331		
TOTAL	10525.188	134	7.855		
1399 CASES WERE PROCESSED.					

58 CASES ( 4.1 PCT) WERE MISSING.

# FLEXED BLICEP CIRCUMFERENCE (OM)

BY CENDER

RACE

WITH AGE

SUM OF		MEAN		SIGNIF
squares	DF	square	F	OF F
991.206	1	991.206	145.5189	0.000
991.206	1	991.206	145.5189	0.000
6419.04	3	2139.68	314.1263	0.000
6204.253	1	6204.253	910.846	0.000
280.30	2	140.15	20.57544	0.000
71 <i>.21</i> 2	2	35.636	5.231705	0.005
71.272	2	35.636	5.231705	0.005
7481.518	6	1246.92	183.0602	0.000
9072.955	1332	6.812		
16554.473	1338	12.373		
	SQUARES 991.206 991.206 6419.04 6204.253 280.30 71.272 71.272 7481.518 9072.955	SQUARES DF 991.206 1 991.206 1 6419.04 3 6204.253 1 280.30 2 71.272 2 71.272 2 7481.518 6 9072.955 1332	SQUARES         DF         SQUARE           991.206         1         991.206           991.206         1         991.206           6419.04         3         2139.68           6204.253         1         6204.253           280.30         2         140.15           71.272         2         35.636           7481.518         6         1246.92           9072.955         1332         6.812	SQUARES         DF         SQUARE         F           991.206         1         991.206         145.5189           991.206         1         991.206         145.5189           6419.04         3         2139.68         314.1263           6204.253         1         6204.253         910.846           280.30         2         140.15         20.57544           71.272         2         35.636         5.231705           7481.518         6         1246.92         183.0602           9072.955         1332         6.812

1399 CASES WERE PROCESSED.

60 CASES ( 4.3 PCT) WERE MISSING.

## SHOULDER CIRCUMFERENCE (CM)

Y CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE:	F	0F F
COVARIATES	7050.56	1	7050.56	190.957	0.000
AGE	7050.56	1	7050.56	190.957	0.000
MAIN EFFECTS	33042.045	3	11014.015	298.303	0.000
GENDER	32893.65	1	32893.65	890.8898	0.000
RACE	37.076	2	18.538	0.5020881	0.605
2-WAY INTERACTIONS	32.976	2	16.488	0.4465579	0.640
GENDER RACE	32.976	2	16.488	0.4465579	0.640
EXPLAINED	40125.58	6	6687.597	181.1265	0.000
RESIDUAL	49143.507	1331	36.922		
TOTAL	89269.087	1337	66.768		
1000 CACEO HETE DOOCESOES					

1399 CASES WERE PROCESSED.

61 CASES ( 4.4 PCT) WERE MISSING.

### CHEST CIRCUMFERENCE (CM)

BY CENDER

RACE

WITH AGE

MILL MAC					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	19644.934	1	19644.934	457.5426	0.000
AGE	19644.934	1	19644.934	457.5426	0.000
MAIN EFFECTS	35236.878	3	11745.626	273.5628	0.000
GENDER .	32532.986	1	32532.986	757.7132	0.000
RACE	1606.24	2	803.12	18.70516	0.000
2-WAY INTERACTIONS	32.705	2	16.353	0.3808628	0.683
GENDER RACE	32.705	2	16.353	0.3808628	0.683
EXPLAINED	54914.517	6	9152.42	213.1655	0.000
RESIDUAL	57147.488	1331	42.936		
TOTAL	112062.005	1337	83.816		

1399 CASES WERE PROCESSED.

61 CASES ( 4.4 PCT) WERE MISSING.

# ABDOMEN 1 CIRCUMFERENCE (OM) GENDER

RACE WITH AGE

W2100 V W2	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	27347.401	1	27347.401	486.5545	0.000
ACE	27347.401	1	27347.401	486.5545	0.000
MAIN EFFECTS	21975.872	3	7325.291	130.3288	0.000
CENDER	19644.407	1	19644.407	349.5057	0.000
RACE	1361.384	2	680.692	12.11061	0.000
2-WAY INTERACTIONS	141.477	2	70.738	1.258551	0.284
GENDER RACE	141.477	2	70.738	1.258551	0.284
EXPLAINED	49464.75	6	8244.125	146.6763	0.000
RESIDUAL.	74979.134	1334	56.206		
TOTAL	124443.885	134	92.869		
1200 CACES WEDE DOGGESSED					

1399 CASES WERE PROCESSED.

58 CASES ( 4.1 PCT) WE'RE MISSING.

### ABDOMEN 2 CIRCUMFERENCE (CM)

BY GENDER RACE

WITH AGE

11 de 11 1 1 Volum	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	30853.416	1	30853.416	450.2093	0.000
ACE	30853.416	1	30853.416	450.2093	0.000
MAIN EFFECTS	18789.308	3	6263.103	91.39043	0.000
CIENDER	14341.758	1	14341.758	209.2732	0.000
<b>RACE</b>	3387.936	2	1693.968	24.71818	0.000
2-WAY INTERACTIONS	204.88	2	102.44	1.49479	0.225
CIENDER RACE /	204.88	2	102.44	1.49479	0.225
EXPLAINED	49847.603	6	8307.934	121.2284	0.000
RESIDUAL.	91420.715	1334	68.531		
TOTAL.	141268.319	134	105.424		

1399 CASES WERE PROCESSED.

58 CASES ( 4.1 PCT) WERE MISSING.

### HIP CIRCUMFERENCE (CM)

 $\overline{GENDER}$ 

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	2774.153	1	2774.153	66.3017	0.000
AGE	2774.153	1	2774.153	66.3017	0.000
MAIN EFFECTS	502.976	3	167.659	4.007007	0.007
CENDER	271.839	1	271.839	6.496906	0.011
race	209.567	2	104.784	2.504309	0.082
2-WAY INTERACTIONS	3.874	2	1.937	0.4629388E-01	0.955
GENDER RACE	3.874	2	1.937	0.4629388E-01	0.955
EXPLAINED	3281.003	6	546.834	13.06922	0.000
RESIDUAL.	55816.374	1334	41.841		
TOTAL	59097.377	134	44.103		

1399 CASES WERE PROCESSED.

58 CASES ( 4.1 PCT) WERE MISSING.

	FOREARM	CIRCUMFERENCE (OM)
ŔŶ	CHANER	

BY GENDER RACE

WITH AGE

	SLM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	396.036	1	396.036	117.3253	0.000
AGE	396.036	1	√396.036	117.3253	0.000
MAIN EFFECTS	3898.898	3	1299.633	385.0149	0.000
CIENDER	3876.347	1	3876,.347	1148.364	0.000
RACE	89.73	2	44.\865	13.29127	0.000
2-WAY INTERACTIONS	8.005	2	4.002	1.185664	0.306
GENDER RACE	8.005	2	4.002	1.185664	0.306
EXPLAINED	4302.939	6	717.157	212.4569	0.000
RESIDUAL	4513.095	1337	3.376		
TITTAL	8816,035	1343	6.564		

1399 CASES WERE PROCESSED.

55 CASES ( 3.9 PCT) WERE MISSING.

### WRIST CIRCUMFERENCE (CM)

Y CENDER

RACE

WITH AGE

WITH MGC	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF:	SQUARE	F	OF F
COVARIATES	118.155	1	118.155	107.2699	0.000
AGE	118.155	1	118.155	107.2699	0.000
MAIN EFFECTS	804.397	3	268.132	243.4305	0.000
GENDER	795.528	1	795.528	722.2402	0.000
RACE	15.214	2	7.607	6.906322	0.001
2-WAY INTERACTIONS	3.299	2	1.649	1.497446	0.224
GENDER RACE	3.299	2	1.649	1.497446	0.224
EXPLAINED	925.85	6	154.308	140.0927	0.000
RESIDUAL	1472.67	1337	1.101		
TOTAL.	2398.52	1343	1.786		

1399 CASES WERE PROCESSED.

55 CASES ( 3.9 PCT) WERE MISSING.

### THIGH CIRCUMFERENCE (CM)

BY **GENDER** 

RACE

WITH AGE

MTIU WAC					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	OF F
COVARIATES	322.625	1	322.625	13.03339	0.000
AGE	322.625	1	322.625	13.03339	0.000
MAIN EFFECTS	573.53	3	191.177	7.723154	0.000
GENDER	0.22	1	0.22	0.8892132E-02	0.925
RACE	570.021	2	285.011	11.51385	0.000
2-WAY INTERACTIONS	73.513	2	36,757	1.484895	0.227
GENDER RACE	73.513	2	36.757	1.484895	0.227
EXPLAINED	969,669	6	161.611	6.528773	0.000
RESIDUAL	33021.465	1334	24.754		
TOTAL	33991.133	134	25.367		
1000 CACES MEDIC DOGCESCED					

1399 CASES WERE PROCESSED.

58 CASES ( 4.1 PCT) WERE MISSING.

	CIRCUMFERENCE (OM)	
CEND	₹	_
DACE		

WITH AGE

BY

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	357.227	1	357.227	48.24817	0.000
AGE	357.227	1	357.227	48.24817	0.000
MAIN EFFECTS	697.561	3	232.52	31.40492	0.000
GENDER	662.562	1	662.562	89.48775	0.000
RACE	38.256	2	19.128	2.583487	0.076
2-WAY INTERACTIONS	15.574	2	7.787	1.051752	0.350
CENDER RACE	15.574	2	7.787	1.051752	0.350
EXPLAINED	1070.361	6	178.394	24.0944	0.000
RESIDUAL	9899.071	1337	7.404		
TOTAL.	10969.432	1343	8.168		
1399 CASES WERE PROCESSED.					

55 CASES ( 3.9 PCT) WERE MISSING.

# CALF CIRCUMFERENCE (CM) GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	0FF
COVARIATES	367.836	1	367.836	49.35055	0.000
AGE	367.836	1	367.836	49.35055	0.000
MAIN EFFECTS	1016.748	3	338.916	45.47052	0.000
CENDER	936.384	1	936.384	125.6297	0.000
RACE	99.865	2	49.932	6.699153	0.001
2-WAY INTERACTIONS	4.967	2	2.484	0.3332145	0.717
GENDER RACE	4.967	2	2.484	0.3332145	0.717
EXPLAINED	1389.551	6	231.592	31.07142	0.000
RESIDUAL	9965.369	1337	7.454		
TOTAL	11354.92	1343	8.455		
1399 CASES WERE PROCESSED.					

55 CASES ( 3.9 PCT) WERE MISSING.

# BY GENDER (CM)

RACE

WITH ACE

MTILL YOC					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	32.174	1	32.174	13.50552	0.000
AGE	32.174	1	32.174	13.50552	0.000
MAIN EFFECTS	822.773	3	274.258	115.1254	0.000
CENDER	744.291	1	744.291	312.4317	0.000
RACE	68.347	2	34.174	14.34507	0.000
2-WAY INTERACTIONS	1.969	2	0.985	0.4133156	0.662
GENDER RACE	1.969	2	0.985	0.4133156	0.662
EXPLAINED	856.916	6	142.819	59.95139	0.000
RESIDUAL	3185.071	1337	2.382		
TOTAL	4041.986	1343	3.010		
1300 CASES WERE PROCESSED					

55 CASES ( 3.9 PCT) WERE MISSING.

# BIACROMIAL DIAMETER (OM) BY CENDER

RACE

WITH AGE

**************************************	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	1157.913	1	1157.913	115.4903	0.000
AGE	1157.913	1	1157.913	115.4903	0.000
MAIN EFFECTS	8561.272	3	2853.757	284.6338	0.000
GENDER .	8353.421	1	8353.421	833.1704	0.000
RACE	224.601	2	112.301	11.20087	0.000
2-WAY INTERACTIONS	60.827	2	30.414	3.033455	0.048
GENDER RACE	60.827	2	30.414	3.033455	0.048
EXPLAINED	9780.013	6	1630.002	162.5764	0.000
RESIDUAL	13354.719	1332	10.026		
TOTAL	23134.732	1338	17.291		
1399 CASES WERE PROCESSED.					

# CHEST DIAMETER (CM) CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	9F F
COVARIATES	2131.718	1	2131.718	249.3974	0.000
AGE	2131.718	1	2131.718	249.3974	0.000
MAIN EFFECTS	9180.831	3	3060.277	358.0329	0.000
GENDER	8259.062	1	8259.062	966.2576	0.000
RACE	730.741	2	365.371	42.74603	0.000
2-WAY INTERACTIONS	99.908	2	49.954	5.844296	0.003
GENDER RACE	99.908	2	49.954	5.844296	0.003
EXPLAINED	11412.456	6	1902.076	222.5308	0.000
RESIDUAL	11419.425	1336	8.547		
TOTAL	22831.882	1342	17.013		
4000 CACCO HETE DOCCOCCO					

1399 CASES WERE PROCESSED.

56 CASES ( 4.0 PCT) WERE MISSING.

## BIILIAC DIAMETER (CM)

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square	F	0F F
COVARIATES	945.322	1	945.322	126.651	0.000
AGE	945.322	1	945.322	126.651	0.000
MAIN EFFECTS	2340.895	3	780.298	104.5417	0.000
GENDER	882.497	1	882.497	118.2339	0.000
RACE	1379.678	2	689.839	92.42222	0.000
2-WAY INTERACTIONS	120.42	2	60.21	8.066706	0.000
GENDER RACE	120.42	2	60.21	8.066706	0.000
EXPLAINED	3406.637	6	567.773	76.06825	0.000
RESIDUAL	9942.038	1332	7.464		
TOTAL	13348.675	1338	9.977		
1200 CASES WEDE DOOCESSEN					

1399 CASES WERE PROCESSED.

60 CASES ( 4.3 PCT) WERE MISSING.

BIDELTOID DIAMETER (CM)

BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	721.886	1	721.886	73.84801	0.000
AGE	721.886	1	721.886	73.84801	0.000
MAIN EFFECTS	10007.845	3	3335.948	341.2634	0.000
GENDER	9866.548	1	9866.548	1009.336	0.000
RACE	91.908	2	45.954	4.701032	0.009
2-WAY INTERACTIONS	11.128	2	5.564	0.569204	0.566
GENDER RACE	11.128	2	5.564	0.569204	0.566
EXPLAINED	10740.859	6	1790.143	183.1294	0.000
RESIDUAL	13020.684	1332	9.775		
TOTAL	23761.543	1338	17.759		
1399 CASES WERE PROCESSED.					

60 CASES ( 4.3 PCT) WERE MISSING.

## BITROCHANTER DIAMETER (CM)

CENDER

RACE

WITH AGE

BY

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	532.496	1	532.496	60.55304	0.000
AGE	532.496	1	532.496	60.95304	0.000
MAIN EFFECTS	2110.791	3	703.597	80.5384	0.000
GENDER	1330.579	1	1330.579	152.3069	0.000
RACE	729.236	2	364.618	41.7366	0.000
2-WAY INTERACTIONS	69.487	2	34.743	3.976969	0.019
GENDER RACE	69.487	2	34.743	3.976969	0.019
EXPLAINED	2712.774	6	452.129	51.7537	0.000
RESIDUAL	11671.519	1336	8.736		
TOTAL	14384.293	1342	10.719		
1200 CASES WERE PROCESSED					

56 CASES ( 4.0 PCT) WERE MISSING.

## BLBOW DIAMETER (CM)

CENDER

RACE

WITH ACE

MTILL YOC					
	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	34.916	1	34.916	135.8035	0.000
AGE	34.916	1	34.916	135.8035	0.000
MAIN EFFECTS	193.974	3	64.658	251.4856	0.000
CENDER	189.685	1	189.685	737.7743	0.000
RACE	7.623	2	3.812	14.82489	0.000
2-WAY INTERACTIONS	1.086	2	0.543	2.112571	0.121
GENDER RACE	1.086	2	0.543	2.112571	0.121
EXPLAINED	229.976	6	38.329	149.0809	0.000
RESIDUAL	343.491	1336	0.257		
TOTAL	573.467	1342	0.427		
1399 CASES WERE PROCESSED					

56 CASES ( 4.0 PCT) WERE MISSING.

WRIST DIAMETER (CM) BY CENDER

RACE WITH AGE

SUM OF SIGNIF MEAN SOURCE OF VARIATION SQUARES DF SQUARE F OF F COVARIATES 279.6465 32.491 1 32.491 0.000 AGE 32.491 1 32.491 279.6465 0.000 MAZN! EFFECTS 116.34 38.78 333.7789 0.000 3 CENDER 112.95 972.1631 1 112.95 0.000 RACE 16.12215 3.746 2 1.873 0,000 2-WAY INTERACTIONS 2 1.509094 0.351 0.175 0.221 CENDER RACE 0.351 2 0.175 1.509094 0.221 EXPLAINED 6 0.000 149.181 24.863 214.0002 RESIDUAL 155.571 1339 0.116 TOTAL

304.751 1345

0.227

1399 CASES WERE PROCESSED.

53 CASES ( 3.8 PCT) WERE MISSING.

#### KNEE DIAMETER (CM)

BY CENDER RACE

WITH ACE

SUM OF SIGNIF MEAN SOURCE OF VARIATION F SOUARES DF SQUARE OF F COVARIATES 8.356 8.356 25.63175 0.000 1 ACE 8.356 8.356 25.63175 0.000 1 MAIN EFFECTS 0.000 58.915 3 19.638 60.24332 **CENDER** 57.98 1 57.98 177.8623 0.000RACE 0.198 2 0.099 0.3042177 0.738 2-WAY INTERACTIONS 0.363 2 0.182 0.5573093 0.573 GENDER RACE 0.363 2 0.182 0.5573093 0.573 EXPLAINED 0.000 67.634 6 11.272 34.57939 RESIDUAL 0.326 435.514 1336 TOTAL 503.147 1342 0.375

1399 CASES WERE PROCESSED.

56 CASES ( 4.0 PCT) WERE MISSING.

### ANKLE DIAMETER (CM)

CENDER RY

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	25.762	1	25.762	122.7501	0.000
AGE	25.762	1	25.762	122.7501	0.000
MAIN EFFECTS	132.486	3	44.162	210.424	0.000
GENDER	130.895	1	130.895	623.6922	0.000
RACE	3.569	2	1.784	8.50237	0.000
2-WAY INTERACTIONS	0.398	2	0.199	0.9473328	0.388
GENDER RACE	0.398	2	0.199	0.9473328	0.388
EXPLAINED	158.646	6	26.441	125.9861	0.000
RESIDUAL	280.389	1336	0.210		
TOTAL	439.034	1342	0.327		
AGGG CAGEG MEDE COGGGGGGG					

1399 CASES WERE PROCESSED.

56 CASES ( 4.0 PCT) WERE MISSING.

INCREMENTAL DYNAMIC LIFT
BY GENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	square.	F	OF F
COVARIATES	1479.373	1	1479.373	2.898221	0.089
AGE.	1479.373	1	1479.373	2.898221	0.089
MAIN EFFECTS	747201.383	3	249067.128	487. <del>9444</del>	0.000
CENDER	746482.323	1	746482.323	1462.424	0.000
race	5929.484	2	2964.742	5.80819	0.003
2-WAY INTERACTIONS	2684.397	2	1342.199	2.629485	0.073
GENDER RACE	2684.397	2	1342.199	2.629485	0.073
EXPLAINED	751365.153	6	125227.526	245.3317	0.000
RESIDUAL	473689.82	928	510.442		
TOTAL	1225054.973	934	1311.622		

1399 CASES WERE PROCESSED.

464 CASES (  $33.2\ \mbox{PCT)}$  WERE MISSING.

SIT-UPS BY GENDER RACE WITH AGE

	SUM OF	MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF SQUARE	F	OF F
COVARIATES	75360905.432	1 75360905.432	9.655851	0.002
AGE	75360905.432	1 75360905.432	9.655851	0.002
MAIN EFFECTS	1046410707.689	3 348803569.230	44.69155	0.000
GENDER	1004982545.755	11004982545.755	128.7665	0.000
RACE	35984658.087	2 17992329.044	2.305323	0.100
2-WAY INTERACTIONS	27489685.113	2 13744842.557	1.761101	0.172
gender race	27489685.113	2 13744842.557	1.761101	0.172
EXPLAINED	1149261298.235	6 191543549.706	24.54212	0.000
RESIDUAL	*******	1341 7804687.900		
TOTAL.	******	1347 8623123.810		

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

BY CENDER RACE
WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	74971.631	1	74971.631	223.3346	0.000
AGE	74971.631	1	74971.631	223.3346	0.000
MAIN EFFECTS	7894.611	3	2631.537	7.839141	0.000
GENDER	5402.411	1	5402.411	16.09336	0.000
RACE	2709.514	2	1354.757	4.035715	0.018
2-WAY INTERACTIONS	2002.049	2	1001.024	2.981973	0.051
GENDER RACE	2002.049	2	1001.024	2.981973	0.051
EXPLAINED	84868.290	6	14144.715	42.13599	0.000
RESIDUAL	450162.941	1341	335.692		
TOTAL	535031.231	1347	397.202		
1399 CASES WERE PROCESSED					

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

BY GENDER
RACE
WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
COVARIATES	231.113	1	231.113	9.409032	0.002
AGE	231.113	1	231.113	9.409032	0.002
MAIN EFFECTS	2269.535	3	756.512	30.79902	0.000
GENDER	2086.608	1	2086.608	84.94975	0.000
RACE	105.694	2	52.847	2.151494	0.117
2-WAY INTERACTIONS	21.411	2	10.706	0.4358414	0.647
GENDER RACE	21.411	2	10.706	0.4358414	0.647
EXPLAINED	2522.059	6	420.343	17.11296	0.000
RESIDUAL	32938.778	1341	24.563		
TOTAL	35460.836	1347	26.326		

1399 CASES WERE PROCESSED.

51 CASES ( 3.6 PCT) WERE MISSING.

TWO MILE RUN TIME
BY CENDER

RACE

WITH AGE

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	0FF
COVARIATES	61916.642	1	61916.642	204.5542	0.000
AGE	61916.642	1	61916.642	204.5542	0.000
MAIN EFFECTS	89175.357	3	29725.119	98.20296	0.000
GENDER	85706.592	1	85706.592	283.1491	0.000
RACE	1764.540	2	882.270	2.914758	0.055
2-WAY INTERACTIONS	644.739	2	322.370	1.065013	0.345
GENDER RACE	644.739	2	322.370	1.065013	0.345
EXPLAINED	151736.738	6	25289.456	83.54885	0.000
RESIDUAL	405908.172	1341	302.691		
TOTAL	557644.910	1347	413.990		

1399 CASES WERE PROCESSED. 51 CASES ( 3.6 PCT) WERE MISSING.