- Anmerkungen und Vergleiche zum heutzutage k\u00e4uflichen sog. "Staatl.
  Fachingen Wassers", um eine Perspektive aufzuzeigen, warum es dennoch sinnvoll sein kann, ein solches Wasser selber herzustellen oder alternative Angebote von Elektrolyt-Wasser zum Kauf anzubieten
- zeitgemäße Wege und Ansätze, ein qualitativ hochwertiges Wasser selber herzustellen

Es war eine kleine Reise, erst das Dokument zu lesen, ohne im ersten Anlauf den Inhalt im Detail verstanden zu haben – aber wohl erkennen konnte, dass hier ein kleiner Schatz verborgen liegt; dann das Dokument abzutippen und in eine neues Format zu übertragen, dabei ins tiefere Verständnis zu kommen, etwas über Chemie, Physiologie und Geschichte zu lernen; dann im Detail zu analysieren, umzurechnen, den Aufbau und die Chemie, alles nach bestem Wissen und Gewissen nachzuvollziehen *und* – ganz am Ende – den tatsächlichen Schatz zu heben. Denn als ich das Beschriebene begriff, war der "Zauber" kurz vorbei und dachte: *wie einfach!* Und mit Hinblick auf moderne und alternative Forschungen konnte ich weitere Zusammenhänge dahingehend herstellen, wie bedeutend das Ganze selbst für unsere heutige Zeit ist, darauf hoffend, dass sich mehr Menschen solches Wissen zu Eigen machen wollen.

Die Fußnoten des Originaldokumentes sind in kleinen römischen Zahlen ausgezeichnet, wobei meine eigenen Fußnoten lateinisch nummeriert sind. Alle hierin angegebenen Internet-Quellen sind auch auf archive.org gesichert und wiederzufinden.

Dieses Buch ist auf Github<sup>4</sup> unter der Creative Commons Lizenz<sup>5</sup>, inklusive des Originaldokumentes von Dr. Friedrich Diel, zu finden. Letzteres wird in diesem Jahr genau 222 Jahre alt. wäre, sich ein Gerät zu besorgen, welches sog. Kangen-Wasser herstellt. Dieses Gerät trennt effektiv positiv geladene Teilchen und gesättigte Salze von ionisiertem Wasser. Wenn das Gerät auf die höchste Stufe eingestellt ist, kommt aus dem Hahn also ein sauberes Wasser mit einem Ph-Wert von 11 oder mehr heraus. Um daraus gutes Weinsteinöl herzustellen, sollte man schon beim Auslassen des Wassers die Weinstein/Weinsäure Mischung in großer Menge in das zu befüllende Gefäß geben, damit das Wasser keine Zeit hat, sich aus der Luft wieder mit Sauerstoff zu sättigen.

Eine weitere, günstigere Methode wäre eine Umkehrosmose-Anlage, welche ebenfalls reines Wasser produziert. Einige Umkehrosmose-Anlagen remineralisieren das Wasser nach dem Filtern wieder, was für unsere Zwecke nicht gewünscht ist, da wir dieses gewissermaßen ja selbst beabsichtigen.

Für das Einflößen von  $\mathrm{CO}_2$  in das Weinsteinöl, sprich für die Herstellung des o.g. Mittelsalzes, gibt es heute einfachere Methoden. Man kann sich dafür eines gewöhnlichen Wasser-Maxes bedienen – dazu geht man einfach nach Anleitung vor, also so, als würde man gewöhnliches Wasser mit Kohlensäure versetzen wollen. Doch anstatt Wasser zu verwenden, füllt man das das Behältnis mit unserem hergestellten Weinsteinöl und drückt dann das  $\mathrm{CO}_2$  in den Behälter. Somit sollte der gleiche Effekt erzielt werden, wie bei Luïsçius' Aufbau; und es sollten sich Kristalle im Behältnis bilden, welche das sog. Mittelsalz ausmachen, nachdem die Kristalle auf gewöhnlichem Löschpapier getrocknet wurden. Sicherlich kann man sich noch effektivere Trocknungsmethoden ausdenken.

An dieser Stelle noch einmal der Hinweis, dass dieses Buch auf Github für alle zur Verfügung steht und Menschen mit tiefer gehenden Erfahrungen im Bereich der Chemie äußerst willkommen sind, den Inhalt hier zu vervollständigen bzw. zu korrigieren.

## 0.4 Weiterführende Gedanken

Man könnte sich weiterhin Methoden überlegen, das Mittelsalz mit zusätzlichen Elektrolyten zu versehen. Bisher enthält das beschriebene Mittelsalz als elementares Elektrolyt "nur" Kalium und Calcium aus dem Weinstein. Um dieses jedoch so zu betreiben, dass auch eine Verhältnismäßigkeit der jeweiligen Elektrolyte zueinander herrscht, bedarf es weiteren Nachforschungen, die ich an dieser Stelle noch nicht tätigen konnte – geschweige denn selber Experimente durchzuführen, die dies alles in der Praxis zeigen könnten.

Was mir dazu allerdings in den Sinn kommt, wäre, die sog. Schüssler-

<sup>&</sup>lt;sup>4</sup>github.com/gogolnr1/aqua-mephitica-alcalina

<sup>&</sup>lt;sup>5</sup>CC BY-NC-SA (creativecommons.org/licenses/by-nc-sa/3.0/de/)

5

Für größt mögliche Flexibilität in der Anwendung wird hier vorgeschlagen, selber das Kaluimcarbonat mit Kohlensäure so zu sättigen, dass man ein Mineralsalz erhält, welches nach Bedarf dem Wasser hinzugefügt werden kann.

Die Herstellung dieses Salzes erfolgte wohl folgendermaßen:



Bei diesem Aufbau blies er vermutlich mit dem Mund in die zweite Öffnung des linken Behälters. Die Kreide hatte hierbei die Funktion, das Wasser aus dem Atem zu binden, sodass oben durch das Glasröhrchen nur noch das ausgeatmete CO<sub>2</sub> stömen konnte. Dieses CO<sub>2</sub> strömte dann in das Weinsteinöl<sup>11</sup> des zweiten Behältnisses, in welchem sich dann in der Reaktion [Kaliumcarbonat-?]Kristalle bildeten,<sup>12</sup> die man dann von der Oberfläche des Weinsteinöls, sowie der Innenwand des Glasbehälters entnehmen konnte und auf Löschpapier getrocknet hat.

Dieses Kristallsalz wird hier als "Mittelsalz" bezeichnet, was meines Erachtens soviel bedeutet, dass das Kaliumcarbonat des Weinsteinöls so sehr mit CO<sub>2</sub> gesättigt wird, dass sein salziger Geschmack dabei fast nicht mehr wahrzunehmen ist. Mit diesem Mittelsalz kann man dann beliebig hantieren, sprich in diesem Fall wurden 4,9 g davon in 496 ml Wasser getan, ohne dass der Geschmack sich drastisch geändert hätte; zur Not könne dieses sogar bis zu 7,4 g hochdosiert werden.

Wobei sich das  $K_2C_2O_5$  Salz an der Oberfläche der Lösung und dem Glasrand gebildet hat, während sich das Wasser vermutlich am Boden des Behältnisses sammelte.

 $<sup>^{11}</sup>$ Weinsteinöl = mit Wasserstoff gesättigtes Kaliumcarbonat (HK<sub>2</sub>CO<sub>3</sub>?).

Zitat Wikipedia (de.wikipedia.org/wiki/Weinstein): Als dickflüssige Weinsteinlösung bezeichnet man den Rückstand [aus der Wein-Herstellung], bestehend aus Kaliumcarbonat und Kohle, der infolge der Hygroskopie des Kaliumcarbonats Wasser aus der Luft anzieht, an der Luft zerfließt und daher zerflossenes Weinsteinöl genannt wurde.

<sup>&</sup>lt;sup>12</sup>Annahme:

 $<sup>2 \</sup>text{ KHCO}_3 + \text{CO}_2 = \text{K}_2\text{C}_2\text{O}_5 + \text{H}_2\text{O} \text{ (Wasser)}$ 

That sind nach der libra medica, die aus 12 Unzen bestand, 96 Drachnen oder Denarien, deren jede den achten Theil einer Unze enthielt, aufs Pfund gerechnet worden; so wie nach der libra ponderali nur 84 Drachmen oder Denarien dazu gezählt wurden, in so fern jede Drachme den siebenten Theil einer Unze ausmachte.»

62 Gran pro Quentchen ist der – bzgl. der von A. v. Stipriaan Luïsçius angestellten Untersuchungen<sup>7</sup>– am nahe liegendste Wert, zu dem ich eine Referenz finden konnte, Allerdings erscheint mir der Wert von 63 Gran pro Quentchen – wie im obigen Zitat erwähnt – der wahre zu sein, und kleinere Abweichungen in den Mess- bzw. Kontrollgewichten sind auch nicht ganz auszuschließen. Daher entschied ich mich dazu, für alle weiteren Berechnungen von eben diesen 63 Gran pro Quentchen auszugehen. Das heißt also für die Übersicht:

|            |                   | 1 Drachme         | 63 Gran   |
|------------|-------------------|-------------------|-----------|
|            | 1 Unze            | 8 Drachmen (x63)  | 504 Gran  |
| 1 <b>%</b> | 12  Unzen  (x504) | 96 Drachmen (x63) | 6048 Gran |

Im damaligen Königreich Niederlande betrug 1 Pfund Medizinalgewicht 375 Gramm (eingeführt 1. Januar 1820). $^8$ 

Eine Rechnung mit den historisch korrekten 372 Gramm ergibt bei den nachfolgend errechneten Werten allerdings kaum eine Änderung, weshalb ich mich für diesen Wert als Basis für die Umrechnungen entschieden habe.

Aus dem Zitat des letzterwähnten Buches kann man erkennen, dass das Medizinalpfund (libra medica) 12 Unzen hatte, das Handelspfund (libra ponderali) hingegen 16 Unzen bemaß.

Für die nachfolgenden Umrechnungen seiner Untersuchungsergebnisse verwende ich somit folgende Werte in der metrischen Einheit Gramm:

| 1 Pfun | id (16) | 372   | Gramm oder 3/8 Liter Wasser |
|--------|---------|-------|-----------------------------|
| 1 Unze | e       | 31    | Gramm                       |
| 1 Quei | ntchen  | 3,875 | Gramm                       |
| 1 Gran | n       | 0,062 | Gramm                       |

Wenn also z.B. von  $4\,\%$  Wasser die Rede ist, ergeben sich daraus umgerechnet 1,5 Liter; bei bspw. 330 Gran ergeben sich umgerechnet 20,30 Gramm.

 $<sup>^7\</sup>mathrm{Für}$  63 Gran pro Quentchen hätte er  $5^{1/\!_4}$ anstatt  $5^{1/\!_3}$  Quentchen für 330 Gran angeben müssen, resp. 3 Qu. 40 Gr. hätten 226 oder 229 Gran ergeben müssen, wären 62 resp. 63 Gran die Basis für ein Quentchen.

<sup>&</sup>lt;sup>8</sup>de.wikipedia.org/wiki/Apothekergewicht

So wie die China<sup>1</sup> bei den Wechselfiebern, die Brechwurzel in einigen Arten von Rhur<sup>2</sup>, und die Rhababer in Verschleimung der ersten Wege oder der Gedärme wirkt, eben so heilsam und sicher wirkt und unser Mittel auf Steinschmerzen, die von sandigen, griesigen oder kristallförmigen Stoffen<sup>3</sup> entstehen.

Da nun, ungeachtet der Chemie solche starke Fortschritte gemacht hat, unser bezwecktes Wasser gehörig zusammen zu setzen, doch noch für Viele ein unbegreiflicher Handgriff ist; so habe ich geglaubt, dem Publikum einen wesentlichen Dienst zu erweisen, dasselbe mit einer leichten Zusammensetzung dieses Wassers hierdurch bekannter zu machen.

Schon im Jahre 1793 gab einer meiner Freunde einen Vorschlag zur leichten Verfertigung des mit Luftsäure gesättigten Laugensalzes, und riet zu dem Ende zwei Quentchen Sodasalz<sup>4</sup> in einer Unze Wasser aufzulösen, und von dieser Auflösung jedes Mal einen Löffel in gutem Mineralwasser einzunehmen. Hierzu schlug er besonders Selteser, Lamscheider, Pyrmonter oder Dryburger Wasser vor.

Da ich nun glaube, in der Wahl des Salzes, besonders aber in den Sorten des Wassers eine merkliche Verbesserung hervorbringen zu können; so dient noch folgendes zur Vorschrift:

Das Fachinger Wasser, noch vielen unseren Landsleuten zu wenig bekannt, übertrifft nämlich bei weitem die vorher beschriebenen Wasser, und zwar durch dessen größere Menge von Luft übersättigtem Laugensalz<sup>i·5</sup>, und einfache Vermischung, da die anderen hingegen mehrere Arten Salz in sich enthalten, welche hier gar nicht anwendbar sind, einen weit salzigeren und un-

## Anhang

## 0.1 Zu den Maßeinheiten

Auf Seite 7 gibt v. Stipriaan Luïsçius Hinweise auf die tatsächlich anzuwendende Umrechnung. Er gibt an, dass 5  $\frac{1}{3}$  Quentchen insgesamt 330 Gran, sowie 3 Quentchen 40 Gran 220 Gran seien. Rechnerisch bedeutet das 1, dass 1 Quentchen insgesamt 60 oder 62 sind, wofür ich z.B. auf wikipedia.org keinerlei Hinweise gefunden habe.

Folgende Bücher habe ich zu diesem Thema gefunden und zum Vergleich herangezogen:

- Philologisch-kritischer u. historischer Commentar über die drey ersten Evangelien, Zweyter Theil von Heinrich Eberhard Gottlob Paulus<sup>2</sup>
- Metrologische Tafeln über die alten Maaße, Gewichte und Münzen Roms und Griechenlands nach Romé de l'Isle, übersetzte von G. Große<sup>3</sup>
- Johann Potters griechische Archäologie, oder, Alterthümer Griechenlandes. Aus dem Engländischen übersetzt und mit Anmerkungen und Zusätzen vermehrt, Dritter Theil von John Potter<sup>4</sup>

In diesen konnte ich Referenzen zu annähernden Wertentsprechungen finden. Von Gottlob Paulus heißt es auf den Seiten 679 u. 680:

«Franz. Perez Bayer de numis hebraeo - samaritanis (1781.) welcher hier vorn. zu vergleichen wäre, fand nach dem Gewicht des vorhandenen Schekel mit hebr. samaritanischer Inschrift, daß ein ganzer von Silber 252 = viermal 63 grana (span. Apothekergewicht) wiegt, folgl. eine attische Drachme gerade 63 Gran gewogen habe.»

De l'Isle schreibt auf Seite 25 in Fußnote p):

<sup>&</sup>lt;sup>i</sup>Scheick Bibliothek d. I. p. 167.

<sup>&</sup>lt;sup>I</sup>Chinarinde

<sup>&</sup>lt;sup>2</sup>schwerer Durchfall

<sup>&</sup>lt;sup>3</sup>Nierensteine

<sup>&</sup>lt;sup>4</sup>7,6 Gramm Natron, siehe Anhang Zu den Maßeinheiten

<sup>&</sup>lt;sup>5</sup>Luft übersättigtes Laugensalz = Kaliumhydrogencarbonat

 $<sup>^{1}330 \</sup>text{ Gran} / 62 = 5.32 \text{ Quentchen, resp. } 3 * 60 \text{ Grane} + 40 \text{ Gran} = 220 \text{ Grane}$ 

<sup>&</sup>lt;sup>2</sup>books.google.de/books?id=-WPPudKsXE8C

<sup>&</sup>lt;sup>3</sup>books.google.de/books?id=DGs6AAAAcAAJ

<sup>&</sup>lt;sup>4</sup>books.google.de/books?id=DQdAAQAAMAAJ

Aber um die Stärke des Wassers merklich noch zu vermehren, und solche willkürlich zu vergrößern; so glaube ich, daß es kein besseres Mittel gibt, als das vegetabilische und mineralische Laugensalz selbst mit Luftsäure, in so weit es möglich ist, zu sättigen, und davon so viel in vorerwähntes Wasser zu tun, als es die Umstände erfordern, zu welchem Ende ich nachfolgende Weise einschlug.

Ich nahm einen gemäßigten Kolben mit einem ganz platten Boden, der am Hals eine Dehnung von 1½ Zoll hatte, und setzte denselben auf einen Strohkranz, daß er fest stand; nachher nahm ich eine Bouteille mit zwei Hälsen, und füllte dieselbe mit Kreide, in derer einen Hals, das eine Ende einer gläsernen Röhre, vermittelst eines durchgebrannten Stopfens fest gemacht wurde, indem das andere Ende der Röhre, welche als ein Galgen gebogen war, durch die Dehnung des Kolbenhalses gestochen wurde, so weit, daß sie sich unten in dessen Bauch befand, worin vorher Weinsteinöl² (oleum tartari per deliquium) gegossen war, wodurch des Kolbens platter Boden gleich, und in einer ziemlich großen Oberfläche bedeckt war, die kohlsaure Luft, oder fixe Luft durch deren mehrere Schwere auf die Oberfläche der laugensalzigen Feuch-

<sup>1</sup>Obschon in der Abhandlung von Thilenius, welches wir unten näher berühren werden, nicht gesagt wird, welches Laugensalz dieses sei; so konnte man doch genügsam begreifen, daß dasselbe Miner. Laugensalz sein müsse, nämlich das gewöhnliche der mineral. Wasser, welches ich auch näher bei dem Untersuchen der Bestandteile befunden habe.

sen¹, durch Erbrechen einer sauren grünen Galle u.s.w. befallen, schafft dieses Mineralwasser durch Tilgung des Reizes im Magen oft augenblicklichen Nutzen, und besser, als Krebssteine², und die so häufig mißbrauchte weiße Magnesie³ u. d. gl. Nüchtern eine Zeit lang entwelche Gläser von diesem Wasser, z.B. den dritten Teil eines Krugs getrunken, verbessert auf eine sanfte Weise die Anlage zu diesem jetzt fast zur Mode gewordenen krampfhaften Übel, so wie dieses Mineralwasser bei Magensäure, dem daher rührenden Sodbrennen und Magenschmerzen, aber dem Kopfweh nach einer kleinen Weinfreude unübertreffbar ist, und in diesen Fällen mehrentheils durch Erzeugung eines gelinden Durchfalls den Feind aus dem Leibe schafft.

3) Kinder, die bei einem dicken mit saurem schleimausgetropften Unterleib, an sogenannten Wurm-Zufällen leiden, und bei denen oft ein gehöriger Gebrauch von Arzneimitteln nicht anzubringen ist, werden öfters durch reichliches Trinken dieses Wassers völlig hergestellt, und der bei Zufällen oft aufgehaltene Wachstum der Kinder nachher sichtbar und auffallend befördert. Überhaupt kenne ich kein Mittel, das bei langwierigen schleichenden Kinderkrankheiten, die so sehr mit schleimigen Stockungen in den Drüsen des Unterleibes verbunden sind, ein angenehmeres, und den mehresten Kindern mehr behangendes, viel wirkendes Mittel wäre, als unser Fachinger Wasser, wenn dessen Säure tilgende, Schleim auflösende, und dabei durch sein flüchtigen Eisenstoff die Eingeweide sanft stärkende Kräfte, lange und gehörig benutzt werden. Vielleicht über dessen richtigen Gebrauch ein anderes Mal.

Fried. Diel,
Physicus in Dietz und Doctor
im Baad Embs.



<sup>&</sup>lt;sup>1</sup>auf 0,5 Liter Wasser jeweils ca. 1 Gramm pflanzliches und mineralisches Salz

<sup>&</sup>lt;sup>2</sup>in Wasser gesättigtes Kaliumcarbonat

<sup>&</sup>lt;sup>I</sup>Aufstoßen

<sup>&</sup>lt;sup>2</sup>Krebssteine bestehen vor allem aus Kalk- und Magnesiumsalzen und wurden früher zu Magen- und Zahnpulver verarbeitet. (Quelle: https://www.wissen.de/lexikon/krebssteine)

<sup>&</sup>lt;sup>3</sup>Bittersalzerde, Magnesiumoxid

ner großen Quantität, wenigstens 3 Gr. auf 16 Unzen Fachinger Wasser getan werden kann, ehe der laugensalzige Geschmack verspürt wird.

Möglich, wird man mir einwerfen, daß diese Art zwar geschwinder verfertigt, um unser Wasser in einem Augenblick darstellen zu können, aber dennoch mit nicht geringerem Umschweif, Kosten und den nämlichen Schwierigkeiten von Zusammensetzung verbunden ist, als das gewöhnliche laugensalzige Luftsauerwasser selbst.

Ich weiß nichts darauf zu antworten, als daß derjenige, der Mühe in der Zusammensetzung des einen, auch die nämliche in Verfertigung des anderen finden wird.

Aber diese Schwierigkeit kann auch dadurch noch hinweggenommen werden, indem man mit Gewißheit behaupten kann, daß das trockene luftsaure Laugensalz wohl nächstens in allen Apotheken, wenn nur Nachfrage deßhalb geschehen sollte, zu finden sein wird, wovon sich alsdann Jedermann ohne aller Umstände bedienen kann. Was die Kosten betrifft, so werden auch diese gewiß noch geringer, wenn man eine ansehnliche Quantität zusammensetzte, <sup>i</sup> und Sal tartari, oder gereinigte Pottasche auf einer Platte, und nicht zu feuchtem Orte, geraume Zeit der Luft bloß stellte, wodurch sie langsamer schmelzen, und einen ansehnlichen Teil Luftsäure aus dem Dunstkreise anziehen würden. <sup>I</sup>

## Jetzt noch Etwas über das Fachinger Wasser

Im Anfang erinnerte ich, daß das Fachinger Wasser noch zu wenig bei unseren Landsleuten bekannt, und selbst noch vielen unsern Doktoren fremd sei, indem dasselbe außer [in] einigen großen Städten, nicht zu haben ist, welches doch um seinen mannigfaltigen großen Nutzen äußerst zu beklagen, und vielleicht der Art und Weise, wie man dasselbe bekannt gemacht hat, zuzuschreiben ist, welches wir nicht weiter untersuchen wollen. Im Jahre 1791 ist unter andern eine Abhandlung darüber bei dem Buchhändler van Cleef im Haagi<sup>1</sup> unentgeltlich ausgegeben worden, welches eine Übersetzung eines deutschen Werkchens des Hrn. Dr. Thilenius war, worin die Vollkommenheiten dieses Wassers dargestellt wurden. Weiter sind von Zeit zu Zeit in deutscher Sprache Berichte erschienen, die einen kurzen Auszug aus bemeldeter Abhandlung in sich enthielten, welche indessen, obschon man alles Lob den Tugenden dieses Wassers schuldig ist, in ihrer Erhebung ein wenig zu weit gehen. Da ich dennoch durch meine eigene angestellten Proben von dem außerordentlichen Wert dieses Wassers überzeugt bin, und auch von einem jeden, der seine Bestandteile untersuchen und prüfen will, als ein solches wird befunden werden; so glaube ich, meinen Landsleuten mit der Übersetzung von einem der kleinen Berichte, welche mir als der beste bekannt, und von nachfolgendem Inhalt ist, einen wesentlichen Dienst zu erweisen.



möge, kommt eben angeführten Übeln nicht selten zuvor, hebt auch dieselben, und das leicht Schmelzende dieses Salzes erhebt dasselbe über alle schwer auflösbare Arten.

<sup>&</sup>lt;sup>i</sup>Es ist möglich, daß ich in kurzem Gelegenheit habe, um zu bestimmen, wo und zu welchem Preise diese Sachen zu bekommen sind.

<sup>&</sup>lt;sup>1</sup>Hier wird beschrieben, wie durch sog. "Kalken" Weinsteinöl hergestellt werden kann (siehe Analyseabschnitt im Anhang).

<sup>&</sup>lt;sup>i</sup>Unter dem Titel: Beschreibung des Fachinger Mineralwassers und seiner heilsamen Wirkungen von M. G. Thilenius, Dr. in der Arzneiwissenschaft und Mitgliede der Chur-Männischen Akademie der Wissenschaften.

<sup>&</sup>lt;sup>1</sup>www.fachingen.de/thilenius-1791.pdfx?forced=true