医学统计学

第一章 绪论

- 1、统计步骤:研究设计、收集资料、整理资料、分析资料
- **2、研究思路:**研究总体随机抽样得到样本,对样本进行统计描述(统计表、统计图、统计指标),目的是描述样本特征,从而根据样本对总体进行统计推断(参数估计、假设检验)
- 3、数据类型:资料类型是基本功

数据类型	特点	举例	怎么描述?	其他
定量数据	 有大小, 有单位	身高、体重、血压、	频数表、频数	
(计量资料)	有人小,有毕也 	温度、脉搏、WBC 数	图、算指标	
定性数据	有类别,没差别	性别、阴阳性、血型	率、构成比、	二分类的都是
(计数资料)	有矢刑,仅左刑	性别、例阳性、 <u>皿</u> 至	相对比	计数资料
有序数据	有类别,有差别	治疗效果(显效、有		多分类并且有
(等级资料)	有矢刑, 有左刑	效、好转、无效)		等级差别的

- 4、总体: 是指研究对象的全体, 通常由所有的同质观察单位或个体组成
- 5、**样本:**是指从总体中选取的**有代表性的一部分**观察单位或个体,通常使用随机选取(随机抽样)方法获得。(**目的:保证样本代表性**)
- **6、同质:** 指观察单位或研究个体间具有相同或相近的性质,通常要求主要研究指标的影响因素相同或基本相同。
- 7、变异:同一种测量在总体中不同观察单位或个体之间的差别。
- 8、误差

系统误差 由一些固定因素产生,如仪器未进行归零校正、研究对象选择不合适

	随机测量误差	可以通过多次测量对真实值进行比较准确的估计。
随机误差	★抽样误差	由于抽样而引起的样本统计量与总体参数间的差异 解决办法:增加样本量 n。

9、参数与统计量

		均数	标准差	总体率	总体相关	总体回归	
参数	描述总体的	μ	σ	π	ρ	β	_
统计量	描述样本的	$ar{X}$	S	Р	r	b	

- 10、概率: 描述随机事件出现可能性大小的定量度量。
- **11**、小概率事件:发生的可能性很小,认为在一次实验中不太可能发生;如果发生,我们就有理由怀疑前提假设不成立。(在假设检验中用到)

第二章 定量资料的统计描述

- 1、描述方法:图、表、指标
- 2、编制频数表的步骤:
 - a) 求极差
 - b) 确定组段
 - c) 确定组距
 - d) 归组计数
 - e) 整理成表
- 3、绘制频数图:连续型:直方图;离散型:直条图
- 4、频数表和频数图的作用:
 - a) 便于观察数据的分布类型:正态?偏态?
 - b) 大致看出观察值的形态和特征: 高度看出平均水平, 两侧是离散趋势

5、描述集中趋势的统计学指标

算数均数	$ar{X}$	适用于正态分布 或 近似正态分布的资料	$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{\sum X}{n}$	几组数的均值
几何均数	G	①呈倍数关系的等比资料 ②对数正态分布	$G = \sqrt[n]{X_1 X_2 \cdots X_n}$ 次方。为了计算方便,常改用对数的形式计算,即 $G = \lg^{-1} \left(\frac{\lg X_1 + \lg X_2 + \cdots + \lg X_n}{n}\right) = \lg^{-1} \left(\frac{\sum \lg X}{n}\right)$	抗体滴度细菌计数
中位数	М	①偏态分布 · ②一端或两端没有确定数据的资料	$M = L + \frac{i_M}{f_M} (n \times 50\% - f_L)$	先排序, 再 找 中 间数
百分位数	P _x	③分布不明的资料	$P_{x} = L + \frac{i_{x}}{f_{x}} (nx\% - f_{L}) $ n A Property (1)	通 过 频 数 表 计

6、描述离散趋势(变异程度)的统计学指标

极差	R	适用于任何资料	$R = X_{\text{max}} - X_{\text{min}}$	较片面 缺点较
四分位数间距	Q	偏态分布	$Q = P_{75} - P_{25}$	较片面
方差	S ²	正态分布、对称分布	$S^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$	
标准差	S	正态分布、对称分布	$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$	越大越偏离均数
变异系数	CV	①观察单位指标不同,如身高体重 ②同单位资料,但均数相差悬殊	$CV = \frac{S}{X} \times 100\%$	描述相 对离散 程度

- 7、正态分布:均数、标准差
- 8、偏态分布:中位数、四分位数间距

第三章 正态分布

- 1、图形特征: 以μ为中心,左右对称,对称区域的面积相等,曲线下总面积为1.
- 2、两个参数: μ (位置参数): 增大向右移,减小向左移
 - σ (形状参数): 越大越矮胖, 越小越瘦高
- 3、标准正态分布

做 z 变换,
$$z = \frac{X-\mu}{\sigma}$$
 , $Z\sim$ $(0,\ 1)$

90%	$\mu \pm 1.64\sigma$
95%	μ±1.96σ
99%	$\mu \pm 2.58\sigma$

4、医学参考值范围:绝大多数正常人某个指标的波动范围

		正态分布法		百分位数法		
概率 (%)	双侧	单	侧	双侧	単侧	
	水 灰侧	下限	上限	水 灰灰	下限 上限	上限
90	$\bar{x} \pm 1.64S$	<i>x</i> −1.28S	<i>x</i> +1.28S	P ₅ ~P ₉₅	P ₁₀	P ₉₀

95	$\bar{x} \pm 1.96S$	x −1.64S	x +1.64S	P _{2.5} ~P _{97.5}	P ₅	P ₉₅
99	$\bar{x} \pm 2.58S$	\bar{x} – 2.33S	₹+2.33S	P _{0.5} ~P _{99.5}	P ₁	P ₉₉

5、过低异常,算单侧下限;过高异常,算单侧上限。

第四章 定性数据的统计描述

- 1、描述方法:率、构成比、相对比
- 2、率:表示频率或强度的指标= $\frac{{ ilde { idde { ilde { i} { ilde { i$
- 3、构成比: 事物内部各组成部分在整体中所占的比重=^{某一组成部分的观察单位数}×100%(和为100%)
- 4、相对比: A 和 B 两个有关联指标值之比。相对比= $\frac{A}{B}$
- 5、使用相对数要注意的问题:
 - a) 样本数不能太少,分母不能太小,否则误差较大,波动较大。
 - b) 不能把构成和率相混淆。
 - c) 注意资料的可比性。(用标准化消除可比性差)
 - d) 正确计算合计率
 - e) 样本率或构成比存在抽样误差。

第五章 统计表和统计图

- 1、表格的构成:
 - a) 标题: 上方居中
 - b) 标目:横标目、纵标目
 - c) 线条: 只有横线, 不宜使用竖线或斜线
 - d) 数字:用阿拉伯数字表示,小数位数一致,无数字用"一",缺数字用"…",0就用0表示。
 - e) 备注:需要说明时可用"*"标出,将说明文字写在表格的下面。
- 2、统计图的构成:
 - a) 标题: 下方居中
 - b) 图域
 - c) 标目
 - d) 图例
 - e) 刻度

纵横比例 5:7

3、图形的分类

1	直方图	用于表示连续变量频数分布情况	纵轴必须从0开始
2	直条图	用于相互独立的资料。单式、复式条图。 <mark>考的多一点</mark>	纵抽 <i>处沙</i> 从 0 开始
3	圆图	用于描述构成比	
4	百分条图	用1個处构成に	
5	散点图	描述双变量的关系	_
		用于描述随时间变换的资料。	
6	线图	普通线图 (变化的幅度)、半对数线图 (变化的速度)两	
		种。	

第六章 参数估计与假设检验

1、标准误: 描述抽样误差大小的指标, $S_{\overline{X}}=rac{S}{\sqrt{n}}$,增大样本量,减小抽样误差

- \mathbf{Z} 、标准误越大,样本均数 \mathbf{X} 估计总体均数的可靠性越差。
- 3、标准差越大,均数的代表性越差。

t 分布

- 1、t 分布,对样本均数 x 做 t 变换 $(\overline{X} \mu) / (S/\sqrt{n})$
- 2、t 分布图形特征:以 0 为中心,左右对称;只有一个特征参数 v=n-1, v 增大,峰越高。当 v 为 ∞ 时,为标准正态分布。
- 3、了解 t 分布特征,可以查 t 界值表。
- 4、区间估计:按照预先指定的概率(=可信度 $1-\alpha$)估计总体均数所在的范围,范围就是 $1-\alpha$ 的可信区间。

t 分布法	样本量较小,n<50	$\overline{x} \pm t_{\alpha/2,v} S_{\overline{x}}$
正态近似法	样本量较大,n>50	$\overline{x} \pm 1.96S_{\overline{x}}; \ \overline{x} \pm 2.58S_{\overline{x}}$

- 5、可信区间的含义:区间包含总体参数的概率就是1-α,
- 6、准确度和精密度评价可信区间

准确度	1-α的大小,越大准确度越高。	95 的准确度低一点,精密度高
精密度	指区间的宽度,越窄精度越好。	99 的准确度高一点,精密度低

假设检验

差异性	t 检验、x ² 检验、秩和检验
关联性	相关、回归

1、假设检验的步骤

建立假设,确定单双侧检验	$H_0: \ \mu = \mu_0; \ \pi_1 = \pi_2; \ M_d = 0$ $H_1: \ \mu \neq \mu_0; \ \pi_1 \neq \pi_2; \ M_d \neq 0$
确定检验水准	α=0. 05
选定检验方法,计算检验统计量	资料类型: 计量资料、计数资料、等级资料 设计类型: 单样本设计、配对设计、成组设计(完全随机设计)
确定 P 值	查附表可得
作出推断结论	$P \le \alpha$, 拒绝 H_0 , 接受 H_1 , 差别有统计学意义, 可以认为 xxx 和 xxx 是有差别的 $P > \alpha$, 不拒绝 H_0 , 差别无统计学意义, 还不能认为 xxx 和 xxx 是
	不同的

2、两类错误

I	H0 成立,拒绝 H0	假阳性	α	 样本量一定的情况下,α越大,β越小
II	H0 不成立,不拒绝 H0	假阴性	β	,

3、检验效能: 按规定的检验水准α能发现其差别的概率, 其值为 1-β。

t 检验

- 1、用于计量资料,目的:比较均数的差别
- 2、设计: 单样本设计、配对设计、成组设计(完全随机设计)

单	是否满足独立性、正态性,不	H_0 : $\mu = \mu_0$;	$\left(\overline{X} - \mu_0 \right) \overline{X} - \mu_0$	本例自由度
样	满足就用单样本的秩和检验	μο是已知的总	$t = \frac{N - \mu_0}{2} = \frac{N - \mu_0}{2}, \nu = n - 1$	v=n-1, 查表得
本		体均数	$S_{\overline{X}}/S/\sqrt{n}$	t _{0.05/2, v} =***。因
设		H_1 : $\mu \neq \mu_0$;		为 t _{0.05/2, v} >t, 故
计				P>0.05,差异无

配	计算差值是否服从正态分布,	$H_0: \mu_d = 0;$		统计学意义,
对	不服从就用配对秩和检验	H_1 : $\mu_d \neq 0$;	$_{L}$ $_{d}$ $_{d}$ $_{d}$ $_{d}$ $_{d}$	按 α =0.05 水
设			$t = \frac{1}{S_{\bar{d}}} = \frac{1}{S_{\bar{d}}} = \frac{1}{S_{\bar{d}}} = \frac{1}{S_{\bar{d}}}$	准不拒绝 H ₀ ,
计			$S_{ar{d}}$ $S_{ar{d}}$ $S_{ar{d}}/\sqrt{n}$	还不能认为
成	先作正态性、方差齐性检验	H ₀ : $\mu_1 = \mu_2$;	(V V) 0 V V	xxx与xxx存在
组		$H_1: \mu_1 \neq \mu_2;$	$t = \frac{(X_1 - X_2) - 0}{S_{\overline{X}_1 - \overline{X}_2}} = \frac{X_1 - X_2}{S_{\overline{X}_1 - \overline{X}_2}}, \nu = n_1 + n_2 - 2$	差异。(算<查,
设	非正态性 、		$\mathcal{S}_{X_1-X_2}$ $\mathcal{S}_{X_1-X_2}$	P>,算>查,
计	方差不齐			P<)
	人 秋和检验			

x2检验

- 1、用于计数资料,目的:比较率的差别,构成比的差异。
- 2、X² 值反映了实际频数与理论频数的吻合程度。

成组设计和配对设计,两个四格表的检验思路和检验步骤

配对设计	b+c≥40	不校正	$X^2 = \frac{(b-c)^2}{b+c}, v=1$
	b+c<40	校正	$Xc^2 = \frac{(b-c -1)^2}{b+c}, v=1$

- 3、R×C 表中格子的理论频数不应小于 1, 并且 1≤T<5 的格子数不宜超过格子总数的 1/5。
- 4、V=(行-1)×(列-1)
- 5、理论频数 P= (行合计×列合计)/总合计
- 6、二分类比较率,多分类比较构成比

秩和检验

- 1、参数检验和非参数检验的适用条件、特点、优点、缺点。
- 2、知道资料类型、设计类型、大概的检验步骤, H0H1 怎么建立假设, 目的比较总体的分布位置, 配对和单样本比较对差值的总体中位数 Md, 对成组设计比较总体的分布。
- 3、检验思路,是否满足正态性,方差齐性,满足参数检验的条件就用 t 检验,不满足的成组的还有 t'检验、变量变换、秩和检验。

相关

- 1、相关反映互依关系
- 2、线性相关:双变量正态分布的随机变量。
- 3、秩相关: 非正态分布、等级资料、有不确定数值的资料
- 4、特点: -1~1 之间,绝对值越大,相关性越强,没有单位
- 5、步骤: 绘制散点图、计算相关系数、作假设检验、解释相关系数

回归

- 1、回归反映依存关系
 - $\hat{y}_i = a + bx$
- 2、公式:
- 3、b的统计学意义: x每增加(减)一个单位, y平均改变b个单位。
- 4、回归分析的步骤:
 - a) 散点图有无线性趋势
 - b) 用最小二乘法求解 a 和 b, 列回归方程
 - c) 作假设检验,推断总体回归关系是否成立, β 不为 0
- 5、假设检验的两种方法: 方差分析和 t 检验
- 6、线性回归要求:线性、独立性、正态性、等方差
- 7、评价拟合效果的指标:剩余标准差和拟合系数