

Dependent	- Sources	
= Used n	wether in mod	edine active
dorres	2 Simulation	leling active test benches.
0.201.2	3,000,000,000,000	04 220. 32
M 1/1/20	Comballed	(to.
Voltage.	Source (VCVS)	Op-Amp modeled
Voltage	Source (VCVS)	us of a lock
u(t)=0	(alt)	wateres
tite du	(t) (zlt) (t) (t) (t) (t)	with a.
-0-0	-6-	VCVS
1/2(t)=x1/1	(+)	
independent	to of 12(t) (X > Voltage gain (Unit less)
· .		(Unit less)
(2) Vol	tage_controlled	current source
i.(+)=0 =	ie ie	(VCCS)
0 >	0	-ó ₊
V _s (t)	g vs(t)	V2(t)
5		-0-
ST		
in(t)	= of. Vy(t) indep	sendent of In(t)
$a \rightarrow tr$	ansconductource	- (Unit stemens)
Es. Trans	istor modeled	endent of ly(t) (Unit: siemens) with a vccs
		<u> </u>

linear circuits 2 systems des satisfy

TIME-INVARIANCE PRINCIPLE

If i(t) & v(t) satisty the

constitutive relations, then

i(t-T) & v(t-T) also satisfies

for any value of T

Circuits composed entirely of linear time-invariant elements (except Independent sources), form Linear Time-Invariant (LTI) systems.

ANALYTICAL TOOLS FOR ANALYZING, UNDERSTANDING & DESIGNING LTI SYSTEMS.

KIRCHOFF'S LAWS.

KIRCHOFFS CORRENT LAW (KCL):
Aigebraic sum of the currents
entering/lewing a circuit mode is zero.

 $i_1+i_2-i_3+i_4=0$ $2i_1=0$

KIRCHOFF'S VOLTAGE LAW (KVL) Algebraic sum of the directed voltage drops around any circuit mesh is zero. ZUX=0 => 0,-4,-V3+14=0 NOTE: KCL 2 KUL are derived from Maxwell's egreation with the assumption that there is no Vadiation Together, Kirchoff's laws & the constitutive relations provide a set of 2N independent egiltions for N voltages 2 N surrents associated with N branchy of the circuit. Several techniques are available for reducing the number of anknowns. The first such procedure &

NODE EQUATIONS PROCEDURE
1). Pick a reference node.
The resulting pans, will be
The resulting egns, will be simplest if the chosen node
is one of the that is common
to largest number of branches.
8
2) Assign a node voltage voriable
2) Assign a node voltage voriable to every other node, except the
only one of two nodes connected
by an ideal voltage source (independent
or dependent) need be assigned a
node voltage variable.
3) Write KCL for all assigned node using the constitutive relations.
using the caretitutive relations.
(If one or more ideal voltage sources are connected, write KCL enclosing
are connected, write KCL enclosing
etu voltage source.)

Using super position:

O 60 = 0 [open]

Ui = R1 Ro -

2) lo = 0 [short]

Uz" = -RI.Ro io - E)

RITRO

By superposition & D1 = V1+V1

=> $V_1 = R_1$ ($V_0 - i_0 R_0$)

Side Notes Simplification Methods & RI+R2+.. RN. O-WW-W-:--WO (O-WW-O -GN (=) (3) SOLVE PREVIOUS EXAMPLE USING NODE METHOD: RI R3 R5 3R < step1 KCLCey: (4-10)G1+ (4-62)G3+ GG2=0 KCL@ es: (e2-4)G3 + (l2-16)G4 + l2G5=0

P

Moving constants to RHS & collecting unknowns:
unknowns :
$(G_{3}+G_{2}+G_{3})\cdot e_{1}$ - $G_{3}\cdot e_{2}=G_{4}\cdot V_{0}$ - $G_{3}\cdot e_{1}$ + $(G_{3}+G_{4}+G_{5})\cdot e_{2}=G_{4}\cdot V_{0}$
- (20 0 la + (Ba+Ga+GE).l = Ga No
95 91 (93141,43) 9-990
In matrix forms
J, O
-G3 G3+G4+G5 P2 GA. V2
Goé = V Sources.
Sourcas
Conductance matrix unknown
Solve: C = G. V
Exercise: G1,G5= 1/8.2k, 9,94=1/3.9k G3 = 1/1.5k, V0=3V
G3 = 1/1.5K . V0 = 3V
Find Q, Q2
Solve about using pythan.
Solve and out

.

Example Ro 00 The venin equivalent 1) VIH: by superposition VTH = Vo - 40 RO. RtH = Ra RM+ Uz = R1 UTH = R1 (Vo-ioRo)

R1+RTH R1+R0

NORTON METHOD Test/load/etc. Norton equivalent.

Mettod:

1) by smrtting the two terminals.

(2) Rosa : Same method as Thevenin

Ava.	
	NON-LINEAR CKTS.
Non-linear elemen	uts:
Diode.	479
1	1 45 = Toc 20/14
	> 90
Ideal switch	(€)
i(t)	ntrol = independent f(t)
i(t) = 0 : open state v(t) = 0 : close state	open state closed state
•	open str.

į

Analytical solution Node equation Vo - SD _ This equation has to be solved iteratively. Not very insight feel. Graphical method Vok Incremental Analysis To be covered during mas smalle signal modeling. Do Python Problem

Using Linear Analysis
Toolbox to solve non-cinear problems * Node analysis cannot be used since a nou-linear doment is present. -> Therenin/Norton equivalent of the cht. enclosed Enside his obtted cèrele. Which one Norton or Therein? -Since we have a previous example for a way to solve equivalent.

			<u> </u>	
Signal I	ied o	LLE.		
Simplif	RT#	to the state of th		
		70		
VTH (-	7		
*				
		era E		
		.a.S		
1.0				