# Neural Machine Translation with Byte-Level Subwords

### Byte-Level Vocabularies

- Based on byte-level representation (e.g. UTF-8 encoding) of sentence strings
- Using BPE (byte-pair encoding) to segment byte stream into byte n-grams

片 手の | 拍手 | の | 音 片 | 手 E3 81 | AE | 拍 | 手 E3 81 | AE | E9 9F | B3

#### Compacter than pure characters

- Pure bytes: maximum 256 possible bytes
- Byte-level BPE (BBPE): any size >= 257, can be compacter than pure characters!
- BBPE has fewer rare symbols and shorter tokenized sentences (runs faster)

#### Generic and having no OOV tokens

Any sentence strings can be represented by bytes. BBPE contains all bytes and has no OOV tokens.

#### Example: BPE vs. BBPE

| Original |     | 質問して証明と証拠を求めましょう                                                                                                                                               | Ask_questions,demandproof,demandevidence.                                                                                                                            |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Byte     |     | E8 B3 AA E5 95 8F E3 81 97 E3 81 A6 E2 96 81 E8 A8 BC E6 98 8E<br>E3 81 A8 E8 A8 BC E6 8B A0 E3 82 92 E6 B1 82 E3 82 81 E3 81 BE<br>E3 81 97 E3 82 87 E3 81 86 | 41 73 6B E2 96 81 71 75 65 73 74 69 6F 6E 73 2C E2 96 81 64 65 6D 61 6E 64 E2 96 81 70 72 6F 6F 66 2C E2 96 81 64 65 6D 61 6E 64 E2 96 81 65 76 69 64 65 6E 63 65 2E |
|          | 1K  | E8 B3 AA E595 8F しE381 A6 <u>E8 A8 BC 明 E381 A8 E8 A8 BC E6</u><br>8B A0 をE6 B1 82 めE381 BE しょう                                                                | Ask_quest ions,dem andpro of,dem andev idence.                                                                                                                       |
|          | 2K  | E8 B3 AA 問 しE381 A6 <u>E8 A8BC 明 E381 A8 E8 A8BC E68B A0</u> を<br>E6 B1 82 めE381 BE しょう                                                                        | Ask_quest ions,_dem and_proof,_dem and_evidence.                                                                                                                     |
| BBPE     | 4K  | E8 B3 AA 問 しE381 A6 <b>E8 A8BC</b> 明E381 A8 E8 A8BC 拠 をE6 B1<br>82 めE381 BE しょう                                                                                | As kquest ions ,d em andpro of ,d em andev id ence .                                                                                                                 |
|          | 8K  | E8 B3 AA問 しE381 A6 <u>E8 A8BC 明E381 A8 E8 A8BC 拠 をE6 B1</u><br>82めE381 BE しょう                                                                                  | As kquestions ,demandpro of ,demandevidence .                                                                                                                        |
|          | 16K | E8 B3 AA問 しE381 A6 <u>E8 A8BC 明E381 A8 E8 A8BC 拠 をE6 B1</u><br>82めE381 BE しょう                                                                                  | As kquestions ,demandproof ,demandevidence .                                                                                                                         |
|          | 32K | E8 B3 AA問しE381 A6 <u>E8 A8BC 明E381 A8 E8 A8BC 拠 をE6 B1 82</u><br>めE381 BE しょう                                                                                  | As kquestions ,demandproof ,demandevidence .                                                                                                                         |
| CHAR     |     | 質問して 証 明と証拠を求めましょう                                                                                                                                             | Ask_questions,_demand_proof,_demand_evidence.                                                                                                                        |
| BPE      | 16K | 質問 して <b> 証明 と 証拠 を求 め</b> ましょう                                                                                                                                | As kquestions ,demandpro of ,demandevidence .                                                                                                                        |
| DI L     | 32K | 質問 して証明 と 証拠 を求め ましょう                                                                                                                                          | As kquestions ,demandproof ,demandevidence .                                                                                                                         |

#### **Embedding Contextualization**

BBPE symbols are finer-grained and more generic. Contextualized embeddings (via convolution/RNN) help better disambiguation.

## Qualitative Comparison: BPE vs. BBPE

#### BBPE is less long tail distributed



## BBPE has more cross-lingual sharing



## Importance of Embedding Contextualization



#### **Experimental Results**

#### Noisy Character Set: En-De

|            |          | Test BLEU    | Params |
|------------|----------|--------------|--------|
| $T_{base}$ | Byte+    | 26.59        | 45M    |
|            | BBPE 2K+ | 26.98        | 47M    |
|            | BBPE 4K+ | 27.08        | 47M    |
|            | Char+    | 26.73        | 47M    |
|            | BPE 32K  | 27.31        | 61M    |
|            | BPE 32K+ | <b>27.41</b> | 62M    |
|            | BPE 37K* | 27.3         | 65M    |
| $T_{big}$  | Byte+    | 26.94        | 181M   |
| J          | BBPE 2K+ | 28.78        | 183M   |
|            | BBPE 4K+ | 28.27        | 185M   |
|            | Char+    | 27.24        | 185M   |
|            | BPE 32K  | 28.36        | 210M   |
|            | BPE 32K+ | 28.77        | 215M   |
|            | BPE 37K* | 28.4         | 213M   |

3.4K character set with a lot of non-En / non-De ones.

#### Character-Rich Language: Ja-En

|            |                      | KFTT  | TED         | JESC  | All   |
|------------|----------------------|-------|-------------|-------|-------|
| # of tr    | ain samples          | 440K  | 223K        | 2.8M  | 3.5M  |
| # of to    | est samples          | 1.2K  | 8.5K        | 2K    | 11.7K |
| Michel     | Michel et.al. (2018) |       | 13.25       | 18.00 | _     |
| $T_{base}$ | Byte+                | 23.12 | 15.14       | 15.69 | 16.27 |
|            | BBPE 4K+             | 24.15 | 15.59       | 16.10 | 16.80 |
|            | Char+                | 23.67 | 15.26       | 15.68 | 16.43 |
|            | BPE 16K+             | 23.63 | 16.15       | 16.18 | 17.19 |
| $T_{big}$  | Byte+                | 23.68 | 16.08       | 16.29 | 17.46 |
| J          | BBPE 4K+             | 23.88 | <b>19.0</b> | 17.93 | 19.58 |
|            | Char+                | 23.71 | 16.69       | 17.01 | 18.33 |
|            | BPE 16K+             | 24.08 | 18.34       | 17.89 | 19.14 |

7.9K character set. 99.99% tokens covered by the top 2.4K characters.

## Multilingual Setting: Many-to-En

|                       |                                                                    | Ar                                                 | De                                                 | He                                                 | It                                                 | Az                                                 | Be                                                 | Gl                                                 | Sk                                                 | All                                                | Params                                 |
|-----------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------|
|                       | # of train examples<br># of test examples                          |                                                    | 167K<br>4.5K                                       | 211K<br>5.5K                                       | 203K<br>5.6K                                       | 5.9K<br>0.9K                                       | 4.5K<br>0.7K                                       | 10K<br>1K                                          | 61K<br>2.4K                                        | 5.1M<br>165K                                       |                                        |
|                       | Aharoni et al. 19<br>Neubig & Hu 18                                |                                                    | 28.87                                              | 30.19                                              | 32.42                                              | 11.7                                               | 18.3                                               | 29.1                                               | 28.3                                               |                                                    |                                        |
| $\overline{T_{base}}$ | Byte+<br>Char+                                                     | 31.13<br>31.52                                     | 35.98<br><b>36.73</b>                              | 36.77<br><b>36.85</b>                              | 38.36<br><b>38.62</b>                              | 14.64<br><b>15.40</b>                              | <b>25.12</b> 24.90                                 | 35.12<br><b>35.44</b>                              | 33.08<br><b>33.31</b>                              | 30.38<br><b>30.75</b>                              | 45M<br>51M                             |
| $T_{base}$            | BBPE 2K+<br>BBPE 4K+<br>BPE 16K<br>BPE 16K+<br>BPE 32K<br>BPE 32K+ | 30.79<br>30.64<br>29.70<br>30.20<br>29.02<br>29.87 | 35.53<br>34.93<br>34.35<br>34.97<br>34.08<br>34.64 | 36.27<br>36.07<br>34.47<br>35.55<br>34.18<br>35.26 | 37.82<br>37.62<br>37.02<br>37.49<br>36.63<br>37.43 | 13.64<br>13.76<br>13.28<br>12.65<br>12.56<br>12.35 | 24.70<br>24.84<br>24.61<br>23.66<br>22.48<br>22.05 | 34.17<br>33.90<br>33.55<br>33.95<br>32.33<br>33.62 | 32.83<br>32.12<br>31.72<br>32.16<br>31.26<br>31.61 | 29.91<br>29.74<br>29.00<br>29.62<br>28.81<br>29.43 | 46M<br>47M<br>53M<br>54M<br>61M<br>62M |

58 source languages to En. 10.8K character set.

## Transfer Learning on Unseen Characters

|                         |          | Train | Finetune   | BLEU |
|-------------------------|----------|-------|------------|------|
| $T_{flores}$            | BPE 5K*  | Si-En | _          | 7.2  |
| v                       | BBPE 4K+ | Si-En | _          | 7.1  |
| $\overline{T_{flores}}$ | BBPE 4K+ | X-En  | -          | 0.3  |
| v                       | BBPE 4K+ | X-En  | enc        | 8.3  |
|                         | BBPE 4K+ | X-En  | enc, dec   | 8.1  |
|                         | BBPE 4K+ | X-En  | embed, enc | 9.0  |
|                         | BBPE 4K+ | X-En  | all        | 8.6  |

Pre-training on multilingual many-to-En, and finetuning on Si-En. Si characters are unseen in the pre-trained model.

#### References

Costa-jussà, Marta R., Carlos Escolano, and José AR Fonollosa (2017). "Byte-based neural machine translation". *In: Proceedings of the First Workshop on Subword and Character Level Models in NLP*Chung, Junyoung, Kyunghyun Cho, and Yoshua Bengio (2016). "A Character-level Decoder without Explicit Segmentation for Neural Machine Translation". *In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1693-1703.* 

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann (2017). "Fully character-level neural machine translation without explicit segmentation". *Transactions of the Association for Computational Linguistics 5 (2017): 365-378.* 

