Jeremy Crowley and Liam Brown

AA 228

Project Update

We are designing an agent for super smash bros melee that uses Q-learning with global approximation to generate an optimal policy to win a match. We define a state space and an action space to frame our problem.

1 State Space

Our state state space contains the following parameters

Non-binary:

- x_a position of our agent
- y_a position of our agent
- \dot{x}_a velocity of our agent
- \bullet \dot{y}_a velocity of our agent
- x_d distance from our agent to opponent
- ullet y_d distance from our agent to opponent
- \dot{x}_d relative velocity from our agent to opponent
- \dot{y}_d relative velocity from our agent to opponent

Binary:

- Υ_1 1 if not off stage
- Υ_2 1 if agent has remaining jump
- Υ_3 1 if agent is facing the opponent
- \bullet Υ_4 1 if the agent in in an attacking state
- ullet Υ_5 1 if the agent in in an blocking state
- \bullet Υ_6 1 if the opponent in in an attacking state
- Υ_7 1 if the opponent in in an blocking state

2 Action Space

Our Action space contains the following parameters to form a reduced set of possible inputs from a gamecube controller. We discretize the analog stick (used to control the movement of agent) and remove redundant inputs.

Non-binary:

- Ψ_1 x position of the analog stick
- Ψ_2 y position of the analog stick

Binary:

- Ω_1 L
- Ω_2 B
- Ω₃ A
- Ω₄ X