Day 1: R introduction

Himanshu Yadav

14.12.2020

```
# Statistical data analysis workshop (organized by YUVA Germany)
# Day 1 - R introduction and graph plotting
### 0. Getting ready
# Try simple arithmetic operations
2+1
     # Press CTRL + ENTER to see the output in the console
## [1] 3
2*4
## [1] 8
20/10
## [1] 2
25/4
## [1] 6.25
25%/%4
## [1] 6
        # Exponent
3^2
## [1] 9
```

```
# Why there is "[1]" in front of output everytime
# 1. Vectors
x <- 2
X
## [1] 2
# A sequence of data elements of the same variable type
# Consider a sequence of integers from 1 to 4
x \leftarrow c(1,2,3,4)
                               # c() is a function for concatenation
X
## [1] 1 2 3 4
x[1]
## [1] 1
x[3]
## [1] 3
x[5] <- 2
## [1] 1 2 3 4 2
x[c(1,5)]
## [1] 1 2
y <- c("a","b")
У
## [1] "a" "b"
y [2]
## [1] "b"
```

```
y[3] <- 2
У
## [1] "a" "b" "2"
y[4]
## [1] NA
z <- c(TRUE, FALSE, TRUE)
## [1] TRUE FALSE TRUE
z[2]
## [1] FALSE
# Vector is the fundamental data type in R
# All scalars are considered one-element vectors
x <- 2
X
## [1] 2
x[1]
## [1] 2
y <- "a"
У
## [1] "a"
str(x)
## num 2
str(y)
## chr "a"
```

```
typeof(y)
## [1] "character"
typeof(x)
## [1] "double"
x < -1:2
typeof(x)
## [1] "integer"
# 1.1 Simple operations on vectors
# 1.1.1 Adding and deleting vector elements
#need to 'reassign' the vector for adding/deleting elements
#the size is determined at its creation
x \leftarrow c(88,5,12,13)
## [1] 88 5 12 13
x[1]
## [1] 88
x[2]
## [1] 5
x[1:3] # Give me elements of the vector at positions 1,.,3
## [1] 88 5 12
x[c(1,3)]
## [1] 88 12
```

```
# Combine two vectors
x \leftarrow c(1,6,5)
## [1] 1 6 5
y < -3:7
У
## [1] 3 4 5 6 7
z \leftarrow c(x,y)
## [1] 1 6 5 3 4 5 6 7
c(x,65,y)
## [1] 1 6 5 65 3 4 5 6 7
c(x,65,y,1009)
## [1]
                               3 4 5 6 7 1009
           1 6
                     5
                         65
#1.1.2 obtaining the length of a vector
x \leftarrow c(1,2,4)
length(x)
## [1] 3
#1.1.3 declarations
#no prior declaration needed to use a variable
z <- 3
#if one needs to access specific element of a 'new' vector then
#R must be told beforehand that the variable is a vector
#W[1] <- 3 #will not work
W \leftarrow c(3, 2) \# will work
```

```
#or
W <- vector(length = 2)
W[1] < -3
W[2] <- 2
## [1] 3 2
#1.1.4 vector arithmetic and logical operations
x \leftarrow c(1,2,4)
x + c(5,0,-1)
## [1] 6 2 3
x * c(5,0,-1)
## [1] 5 0 -4
x / c(5,0,-1)
## [1] 0.2 Inf -4.0
x + c(5,0,-1,1) # You get an output 6, 2, 3, 2 Why? What is happening?
## Warning in x + c(5, 0, -1, 1): longer object length is not a multiple of shorter
## object length
## [1] 6 2 3 2
# R duplicates the first value of vector x in the 4th position
x + c(5,0,-1,1,1) # Now first and second element of x are duplicated
## Warning in x + c(5, 0, -1, 1, 1): longer object length is not a multiple of
## shorter object length
## [1] 6 2 3 2 3
c(x,x[1:2])+c(5,0,-1,1,1)
## [1] 6 2 3 2 3
```

```
#1.1.5 vector indexing
y \leftarrow c(1.2,3.9,0.4,0.12)
## [1] 1.20 3.90 0.40 0.12
y[c(1,3)]
## [1] 1.2 0.4
y[2:3]
## [1] 3.9 0.4
v <- 3:4
## [1] 3 4
y [v]
## [1] 0.40 0.12
x \leftarrow c(4,2,17,5)
x[c(1,1,1)]
## [1] 4 4 4
y \leftarrow x[c(1,1,3)]
## [1] 4 4 17
#-ve subscript mean that we want to exclude the given elements
z \leftarrow c(5,12,13)
z[-1]
## [1] 12 13
```

```
z[-1:-2]
## [1] 13
4:1
## [1] 4 3 2 1
1:4
## [1] 1 2 3 4
-1:-4
## [1] -1 -2 -3 -4
# a:b gives a sequence that starts with a and increases/decreases by 1
1.1:6
## [1] 1.1 2.1 3.1 4.1 5.1
6:1.1
## [1] 6 5 4 3 2
#1.1.6: seq()
#a more general operator than :
seq(from=12,to=30,by=3)
## [1] 12 15 18 21 24 27 30
seq(from=1,to=30,by=1)
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30
1:30
   [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30
```

```
seq(from=1,to=100,by=10)
    [1] 1 11 21 31 41 51 61 71 81 91
seq(from=1.1,to=2,length=10)
   [1] 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
#1.1.7: rep()
x \leftarrow rep(8,4)
## [1] 8 8 8 8
rep(c(5,12,13), 3)
## [1] 5 12 13 5 12 13 5 12 13
rep(c(5,12,13), each=3)
## [1] 5 5 5 12 12 12 13 13 13
k < -rep(c(5,12,13), each=3)
## [1] 5 5 5 12 12 12 13 13 13
str(k)
## num [1:9] 5 5 5 12 12 12 13 13 13
#1.1.8: NA and NULL values
#NA: missing data
#NULL: value does not exist
x \leftarrow c(88, NA, 12, 168, 13)
## [1] 88 NA 12 168 13
```

```
mean(x)
## [1] NA
mean(x, na.rm=T)
## [1] 70.25
x \leftarrow c(88, NULL, 12, 168, 13)
mean(x)
## [1] 70.25
u <- NULL
length(u)
## [1] 0
u \leftarrow NA
length(u)
## [1] 1
# 1.2 Analysis using vectors
# 1.2.1 filtering
#subset
(x \leftarrow c(6,1:3,NA,12))
## [1] 6 1 2 3 NA 12
## [1] 6 1 2 3 NA 12
x[x>5]
## [1] 6 NA 12
subset(x,x>5)
## [1] 6 12
```

```
#which
#to find position rather than the number itself
z \leftarrow c(5,2,-3,8)
which (z < 6)
## [1] 1 2 3
z[which(z < 6)]
## [1] 5 2 -3
which(z*z<8)
## [1] 2
#ifelse()
x < -1:10
y \leftarrow ifelse(x ==4,NA,x)
## [1] 1 2 3 NA 5 6 7 8 9 10
y \leftarrow ifelse(x \% 2 == 0,5,12)
У
## [1] 12 5 12 5 12 5 12 5 12 5
#%% is the modulus operator: gives the remainder
#of a division
x %% 2
## [1] 1 0 1 0 1 0 1 0 1 0
(x \% 2 == 0)
## [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
## [1] 12 5 12 5 12 5 12 5 12 5
```

```
z <- ifelse(x %% 2 == 0, 'even', 'odd')
## [1] "odd" "even" "odd" "even" "odd" "even" "odd" "even" "odd" "even"
#2.2 Mean, SDs
y \leftarrow c(34,67,209,55,69,100)
mean(y)
## [1] 89
sd(y)
## [1] 62.58754
var(y)
## [1] 3917.2
#2.3 Hist, Plots
У
## [1] 34 67 209 55 69 100
hist(y)
```

Histogram of y


```
plot(y)
points(y)
```


barplot(y)

#Exercises


```
#(1) Manually create a vector with 10 numbers
#      (a) Get all the values that are greater than 5
#      (b) Get all the values that are odd
#      (provide two ways to do this)
#      (c) Get the index of all the odd values
#      (d) Check if all values are even
#      (e) Check if any value is even

#(2) Manually create a vector with 5 numbers
#      (a) Now create another vector where the 1st element is 1 more than the length of
#      and has a length of 10. The max value of this new vector should be 20
#      (b) What is the difference between the length of the two vectors?
```

```
# 1.3 Factors

x <- c(5,12,13,12)
x

## [1] 5 12 13 12

xf <- factor(x)
xf

## [1] 5 12 13 12

## Levels: 5 12 13

str(xf)

## Factor w/ 3 levels "5","12","13": 1 2 3 2

xf +x

## Warning in Ops.factor(xf, x): '+' not meaningful for factors

## [1] NA NA NA NA
plot(xf)</pre>
```


plot(x)

```
# 2. Matrix
x \leftarrow matrix(1:4,nrow=2,ncol = 2)
x[1,]
## [1] 1 3
x[,1]
## [1] 1 2
x[2,2]
## [1] 4
y <- matrix(5:6,nrow=2,ncol = 1)</pre>
У
    [,1]
##
## [1,]
## [2,]
# 2.1 Matrix operations
# Matrix multiplication
#x%*%y
#x*y
# Multiplication by a scalar
#x*2
```

```
#Element wise multiplication
#x[,2]*y
# Matrix transpose
t(x)
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
# Addition
\#x+y
\#x[,2]+y
y \leftarrow matrix(0:3,nrow = 2,ncol = 2)
У
## [,1] [,2]
## [1,] 0 2
## [2,] 1 3
x+y
## [,1] [,2]
## [1,] 1 5
## [2,] 3 7
# Substraction
x-y
## [,1] [,2]
## [1,] 1 1
## [2,] 1 1
# Matrix cross product
crossprod(x,y)
## [,1] [,2]
## [1,] 2 8
## [2,] 4 18
t(x)%*%y
## [,1] [,2]
## [1,] 2 8
## [2,] 4 18
```

```
crossprod(x,y)==t(x)%*%y
       [,1] [,2]
##
## [1,] TRUE TRUE
## [2,] TRUE TRUE
# Determinant
det(x)
## [1] -2
# 3. Data frames
# Data-frames are collection of equal-length vectors in two dimesnions
# A data frame is like a matrix, but here each column may have
#different variable type.
#Technically, a data frame is a list, with the components of that list being
#equal-length vectors
#3.1 Representing and accessing data frames
kids <- c("Manish", "Abhay")</pre>
ages <-c(12, 10)
d <- data.frame(kids, ages)</pre>
##
      kids ages
## 1 Manish
            12
## 2 Abhay
             10
str(d)
## 'data.frame':
                  2 obs. of 2 variables:
## $ kids: Factor w/ 2 levels "Abhay", "Manish": 2 1
## $ ages: num 12 10
d <- data.frame(kids, ages, stringsAsFactors = FALSE)</pre>
##
      kids ages
## 1 Manish
           12
## 2 Abhay
             10
```

```
str(d)
                   2 obs. of 2 variables:
## 'data.frame':
## $ kids: chr "Manish" "Abhay"
## $ ages: num 12 10
kids <- c("Manish")</pre>
ages <-c(12, 10)
df <- data.frame(kids, ages)</pre>
df
##
      kids ages
## 1 Manish 12
## 2 Manish 10
#Accessing values
d
##
      kids ages
## 1 Manish 12
## 2 Abhay 10
d[1]
##
      kids
## 1 Manish
## 2 Abhay
d[2]
## ages
## 1
      12
## 2
      10
d[[1]]
## [1] "Manish" "Abhay"
d[[2]]
## [1] 12 10
```

```
d$kids
## [1] "Manish" "Abhay"
d$ages
## [1] 12 10
d[,1]
## [1] "Manish" "Abhay"
studentID <- c(101:110)
marks <-c(40,12,34,56,78,90,87,56,89,60)
results <- data.frame(studentID,marks)</pre>
results
##
      studentID marks
## 1
            101
                    40
## 2
            102
                    12
## 3
            103
                    34
## 4
            104
                    56
## 5
            105
                    78
            106
## 6
                    90
## 7
            107
                    87
## 8
            108
                    56
## 9
            109
                    89
## 10
            110
                    60
# Average marks in class
mean(results$marks)
## [1] 60.2
# How many students failed, marks<40
which(results$marks<40)</pre>
## [1] 2 3
length(which(results$marks<40))</pre>
```

[1] 2

```
results$marks<40
    [1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##
any(results$marks<40) # Is "any" element of the vector TRUE</pre>
## [1] TRUE
all(results$marks<40) # Are all values of the vector true
## [1] FALSE
# What are IDs of students who failed?
which(results$marks<40)</pre>
## [1] 2 3
results$studentID[which(results$marks<40)]</pre>
## [1] 102 103
# Filtering
# Only show results of passed students
subset(results,marks>=40)
      studentID marks
##
## 1
            101
                   40
## 4
            104
                   56
## 5
            105
                   78
## 6
            106
                   90
## 7
            107
                   87
## 8
            108
                   56
## 9
            109
                   89
## 10
            110
                   60
results[which(results$marks>=40),]
      studentID marks
##
## 1
            101
                   40
## 4
            104
                   56
## 5
            105
                   78
## 6
            106
                   90
## 7
            107
                   87
## 8
            108
                   56
## 9
            109
                   89
## 10
            110
                   60
```

```
# Average marks of students who passed the exam
subset(results,marks>=40)$marks
## [1] 40 56 78 90 87 56 89 60
mean(subset(results,marks>=40)$marks)
## [1] 69.5
#3.2: Reading from external files as data frames
#getwd() tells you where you are
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
new.d
    Student Exam1 Exam2 Age
## 1
      Abhay
              100
                     98 10
## 2 Manish
              57
                     75 12
## 3 Kavita
              100
                     99 11
str(new.d)
                   3 obs. of 4 variables:
## 'data.frame':
## $ Student: Factor w/ 3 levels "Abhay", "Kavita",..: 1 3 2
## $ Exam1 : int 100 57 100
## $ Exam2 : int 98 75 99
           : int 10 12 11
## $ Age
new.d$Student <- as.character(new.d$Student)</pre>
str(new.d)
## 'data.frame':
                   3 obs. of 4 variables:
## $ Student: chr "Abhay" "Manish" "Kavita"
## $ Exam1 : int 100 57 100
## $ Exam2 : int 98 75 99
           : int 10 12 11
## $ Age
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, stringsAsFactors = FALS
str(new.d)
## 'data.frame':
                   3 obs. of 4 variables:
## $ Student: chr "Abhay" "Manish" "Kavita"
## $ Exam1 : int 100 57 100
## $ Exam2 : int 98 75 99
```

\$ Age : int 10 12 11

```
# 3.2.1 'header' attribute
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
new.d
     Student Exam1 Exam2 Age
##
## 1
      Abhay
               100
                      98 10
## 2 Manish
                57
                      75 12
## 3 Kavita
               100
                      99 11
new.d <- read.table(file = "data-frame-file.dat", sep="\t")</pre>
new.d
                V2
##
         V1
                      V3 V4
## 1 Student Exam1 Exam2 Age
## 2 Abhay
               100
                      98 10
## 3 Manish
                57
                      75 12
## 4 Kavita
               100
                      99 11
new.d <- new.d[-c(1),]
new.d
       V1 V2 V3 V4
##
## 2 Abhay 100 98 10
## 3 Manish 57 75 12
## 4 Kavita 100 99 11
#I can add column names manually
colnames(new.d) <- c("Student", "Exam1", "Exam2", "Age")</pre>
new.d
     Student Exam1 Exam2 Age
##
## 2
      Abhay
               100
                      98 10
## 3 Manish
                57
                      75 12
## 4 Kavita
               100
                      99 11
# 3.2.2 'sep' attribute
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep=" ")</pre>
new.d
     Student.Exam1.Exam2.Age
##
## 1
           Abhay\t100\t98\t10
## 2
           Manish\t57\t75\t12
## 3
          Kavita\t100\t99\t11
```

```
# 3.2.3 Accessing columns and rows
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
new.d
    Student Exam1 Exam2 Age
## 1
      Abhay
              100
                     98 10
## 2 Manish
               57
                     75
                        12
## 3 Kavita
              100
                     99 11
# Info
head(new.d)
    Student Exam1 Exam2 Age
## 1
              100
                     98 10
      Abhay
## 2 Manish
               57
                     75 12
## 3 Kavita
              100
                     99 11
dim(new.d)
## [1] 3 4
new.d$Student
## [1] Abhay Manish Kavita
## Levels: Abhay Kavita Manish
new.d$Exam1
## [1] 100 57 100
# Columns
new.d[,c(1,2)]
##
    Student Exam1
## 1 Abhay
               100
## 2 Manish
               57
## 3 Kavita
              100
new.d[,c(1,3)]
    Student Exam2
##
## 1 Abhay
               98
## 2 Manish
               75
## 3 Kavita
               99
```

```
# Rows
new.d[c(1,2),]
    Student Exam1 Exam2 Age
## 1 Abhay 100 98 10
## 2 Manish
              57
                   75 12
new.d[c(1,3),]
    Student Exam1 Exam2 Age
## 1 Abhay
             100 98 10
## 3 Kavita
             100
                   99 11
# 3.3 Removing rows and columns
new.d
    Student Exam1 Exam2 Age
## 1 Abhay
             100
                   98 10
            57
## 2 Manish
                   75 12
## 3 Kavita
             100
                 99 11
new.d[-c(1),]
    Student Exam1 Exam2 Age
## 2 Manish
              57 75 12
## 3 Kavita 100
                   99 11
new.new.d \leftarrow new.d[-c(1),]
new.new.d
    Student Exam1 Exam2 Age
## 2 Manish
              57 75 12
## 3 Kavita
             100 99 11
new.d[,-c(2)]
    Student Exam2 Age
## 1 Abhay
              98 10
## 2 Manish
              75 12
## 3 Kavita 99 11
new.new.d \leftarrow new.d[,-c(2)]
new.new.d
```

```
Student Exam2 Age
## 1
       Abhay
                98 10
## 2 Manish
                75 12
## 3 Kavita
                99 11
# 3.4 complete.cases function
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
new.d
     Student Exam1 Exam2 Age
## 1
       Abhay
               100
                      98 10
## 2 Manish
                57
                      75
                         12
## 3 Kavita
               100
                      99
                         11
new.d[complete.cases(new.d),]
     Student Exam1 Exam2 Age
## 1
               100
       Abhay
                      98 10
## 2 Manish
                57
                      75
                         12
## 3 Kavita
               100
                      99
                         11
new.d[!complete.cases(new.d),]
## [1] Student Exam1
                       Exam2
## <0 rows> (or 0-length row.names)
# if data has NA values i.e., missing values
new.d$Exam1[2] <- NA
new.d
##
     Student Exam1 Exam2 Age
## 1
       Abhay
               100
                      98
                         10
## 2 Manish
                NA
                      75
                         12
               100
## 3 Kavita
                      99 11
new.d[complete.cases(new.d),]
##
     Student Exam1 Exam2 Age
## 1
       Abhay
               100
                      98 10
## 3 Kavita
               100
                      99 11
new.d[!complete.cases(new.d),]
     Student Exam1 Exam2 Age
## 2 Manish
                NA
                      75
                          12
```

```
new.d <- new.d[complete.cases(new.d),]</pre>
# 3.5 Operations on rows and columns
new.d <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
new.d
##
     Student Exam1 Exam2 Age
## 1
       Abhay
               100
                      98
## 2 Manish
                57
                      75
                          12
## 3 Kavita
               100
                      99
                          11
new.d$Exam1+new.d$Exam2
## [1] 198 132 199
new.d$Exam1-new.d$Exam2
## [1] 2 -18
                 1
mean(new.d$Exam1)
## [1] 85.66667
sd(new.d$Exam1)
## [1] 24.82606
max(new.d$Exam1)
## [1] 100
min(new.d$Exam1)
## [1] 57
is.numeric(new.d$Student)
## [1] FALSE
is.numeric(new.d$Exam1)
## [1] TRUE
```

```
# 3.6: Adding variables i.e., columns to the dataframes
new.d
    Student Exam1 Exam2 Age
## 1 Abhay
              100
                    98 10
## 2 Manish
               57
                    75 12
## 3 Kavita
              100
                    99 11
# You can add a vector of same length
totalMarks <-c(198,132,199)
new.d$total <- totalMarks</pre>
new.d
    Student Exam1 Exam2 Age total
##
## 1 Abhay
              100 98 10
                             198
                    75 12
## 2 Manish
            57
                             132
## 3 Kavita
              100
                             199
                    99 11
totalMarks <- new.d$Exam1+new.d$Exam2
totalMarks
## [1] 198 132 199
new.d$total <- totalMarks</pre>
new.d
    Student Exam1 Exam2 Age total
## 1 Abhay
              100
                    98 10
                             198
## 2 Manish
            57
                    75 12
                             132
## 3 Kavita
              100
                    99 11
                             199
new.d$total <- new.d$Exam1+new.d$Exam2
# 3.7 ifelse function
grade <- c("A","B","C")</pre>
new.d$grade <- grade
new.d
    Student Exam1 Exam2 Age total grade
## 1 Abhay
              100
                    98 10
                             198
                                    Α
## 2 Manish 57
                    75 12
                             132
                                    В
## 3 Kavita 100 99 11
                             199
                                     С
```

```
new.d$grade <- ifelse(new.d$Exam1>80, "A", "B")
new.d
##
     Student Exam1 Exam2 Age total grade
## 1
                          10
                                198
       Abhay
               100
                      98
## 2 Manish
                57
                      75
                          12
                                132
                                        В
## 3 Kavita
               100
                      99
                          11
                                199
                                        Α
new.d$grade <- ifelse(new.d$Exam1>80,ifelse(new.d$Exam2>80,"A","B"),"B")
new.d
     Student Exam1 Exam2 Age total grade
## 1
       Abhay
               100
                      98
                          10
                                198
## 2 Manish
                57
                      75
                          12
                                132
                                        В
                                199
## 3 Kavita
               100
                      99
                         11
                                        Α
#Exercises
#(1) Create a data frame as shown below
# Stimuli_id cond rt
# 1
                  300
# 1
              b
                  420
# 2
                  330
              \boldsymbol{a}
# 2
                  412
# 3
              \boldsymbol{a}
                   250
# 3
                  523
# (2) Find the mean RT for each condition i.e., condition 'a' and condition 'b'
# Your output should look like:
# cond mean.rt
        293.33
    a
    b
        451.66
# (3) Draw a barplot showing mean RT for each condition
# Load data from file 'dep_length.dat'
# (4) Compute the following
# (a) Number of variables and observations in the data
# (b) Number of observations having length=0
# (c) Overall Mean length, mean length for each direction
# (d) Draw histogram for lengths
# (e) Draw barplot showing mean length for each direction
# (f) Add a column "type" in the dataframe which has
    value "adjacent" if length is O, else "apart"
```

```
# (q) Which of the directions has more number of higher lengths i.e., length>7
# 4. Data frame manipulation
# 4.1 Combining multiple data frames
df1 <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
df1
##
    Student Exam1 Exam2 Age
## 1
      Abhay
              100
                     98
                    75
## 2 Manish
               57
                        12
## 3 Kavita
              100
                    99 11
df2 <- read.table(file = "data-frame-file.dat", header = TRUE, sep="\t")</pre>
df2
##
    Student Exam1 Exam2 Age
## 1
              100
                     98
                        10
      Abhay
## 2 Manish
               57
                     75
                        12
## 3 Kavita
              100
                    99
                        11
# rbind function
df <- rbind(df1,df2)</pre>
df
    Student Exam1 Exam2 Age
##
## 1
      Abhay
              100
                     98 10
## 2 Manish
              57
                     75 12
## 3 Kavita
              100
                    99 11
## 4 Abhay
                        10
              100
                    98
## 5 Manish
              57
                        12
                    75
## 6 Kavita
              100
                    99
                        11
# cbind
cbind(df1,df2)
    Student Exam1 Exam2 Age Student Exam1 Exam2 Age
##
## 1
      Abhay
              100
                     98
                        10
                             Abhay
                                     100
                                            98
                                               10
## 2 Manish
               57
                     75
                        12 Manish
                                      57
                                            75
                                              12
## 3 Kavita
              100
                    99 11 Kavita
                                     100
                                            99 11
```

```
examdiff <- df1$Exam1 - df2$Exam2
df1 <- cbind(df1, examdiff)</pre>
df1
##
    Student Exam1 Exam2 Age examdiff
## 1
                    98 10
      Abhay 100
## 2 Manish
              57 75 12
                                -18
                  99 11
## 3 Kavita
              100
                                  1
# merge function
df2 \leftarrow df2[,c(1,4)]
df1 \leftarrow df1[,c(1,2,3)]
df2
    Student Age
## 1 Abhay 10
## 2 Manish 12
## 3 Kavita 11
df1
##
    Student Exam1 Exam2
## 1 Abhay
              100
                    98
## 2 Manish
                    75
            57
## 3 Kavita
              100
                    99
merge(df1,df2)
    Student Exam1 Exam2 Age
## 1 Abhay
              100
                    98 10
## 2 Kavita
              100
                    99 11
## 3 Manish 57 75 12
df1$Age <- df2$Age[match(df1$Student, df2$Student)]
df1
##
    Student Exam1 Exam2 Age
## 1
              100
                    98 10
      Abhay
## 2 Manish
               57
                    75 12
## 3 Kavita
              100
                    99 11
######################################
# 4.2 "dplyr" package
```

```
# COVID-19 data
# Reference: https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data
# Description: daywise cases, deaths per country, total population
covid <- read.table("COVID19data.csv", header = TRUE, sep=",")</pre>
covid <- covid[,-1]</pre>
head(covid)
##
        dateRep day month year cases deaths
                                                 country popData2019 continentExp
## 1 11/12/2020 11
                       12 2020
                                   63
                                          10 Afghanistan
                                                             38041757
                                                                              Asia
## 2 10/12/2020 10
                                          16 Afghanistan
                       12 2020
                                  202
                                                             38041757
                                                                              Asia
## 3 09/12/2020
                       12 2020
                                          13 Afghanistan
                  9
                                  135
                                                             38041757
                                                                              Asia
## 4 08/12/2020
                       12 2020
                                  200
                                           6 Afghanistan
                                                             38041757
                                                                              Asia
                                          26 Afghanistan
## 5 07/12/2020
                  7
                       12 2020
                                  210
                                                             38041757
                                                                              Asia
                                          10 Afghanistan
## 6 06/12/2020
                       12 2020
                                  234
                                                             38041757
                                                                              Asia
dim(covid)
## [1] 61261
library(dplyr)
# 4.2.1 select function
# Suppose I only want number of cases on every date, and want to throw rest columns
# Syntax is select(dataframeName, selectedColumnNames)
# Alternative syntax: dataframeName %>% select(selectedColumnNames)
d.cases <- select(covid,cases)</pre>
head(d.cases)
##
     cases
## 1
        63
## 2
       202
## 3
       135
## 4
       200
## 5
       210
## 6
       234
d.cases <- select(covid, dateRep, cases)</pre>
head(d.cases)
        dateRep cases
## 1 11/12/2020
```

```
## 2 10/12/2020
                  202
## 3 09/12/2020
                  135
## 4 08/12/2020
                  200
## 5 07/12/2020
                  210
## 6 06/12/2020
                  234
# Select date, country, cases
d.cases <- select(covid, dateRep, country, cases)</pre>
head(d.cases)
##
        dateRep
                    country cases
## 1 11/12/2020 Afghanistan
                               63
## 2 10/12/2020 Afghanistan
                              202
## 3 09/12/2020 Afghanistan
                              135
## 4 08/12/2020 Afghanistan
                              200
## 5 07/12/2020 Afghanistan
                              210
## 6 06/12/2020 Afghanistan
                              234
# Alternatively
d.cases <- covid %>% select(dateRep,country,cases)
head(d.cases)
##
        dateRep
                    country cases
## 1 11/12/2020 Afghanistan
## 2 10/12/2020 Afghanistan
                              202
## 3 09/12/2020 Afghanistan
                              135
## 4 08/12/2020 Afghanistan
                              200
## 5 07/12/2020 Afghanistan
                              210
## 6 06/12/2020 Afghanistan
                              234
# 4.2.2 filter function
# Suppose I want to select only those rows
# where number of cases in day is greater than 2000
# If you can recall, you can do this using subset() function
highRate <- subset(covid, cases>2000)
head(highRate)
           dateRep day month year cases deaths
                                                  country popData2019 continentExp
## 2023 11/12/2020 11
                          12 2020 6994
                                            209 Argentina
                                                             44780675
```

```
# You can also do this using filter() function from "dplyr"
highRate <- filter(covid, cases>2000)
head(highRate)
##
        dateRep day month year cases deaths
                                             country popData2019 continentExp
                      12 2020
## 1 11/12/2020
                11
                               6994
                                       209 Argentina
                                                        44780675
                                                                       America
## 2 10/12/2020 10
                      12 2020 5303
                                       213 Argentina
                                                        44780675
                                                                       America
## 3 09/12/2020
                      12 2020 3610
                                       121 Argentina
                                                                      America
                 9
                                                        44780675
## 4 08/12/2020
                      12 2020 3216
                                       118 Argentina
                 8
                                                        44780675
                                                                       America
                                       138 Argentina
## 5 07/12/2020
                 7
                      12 2020 3278
                                                        44780675
                                                                      America
## 6 06/12/2020
                                       120 Argentina
                 6
                      12 2020 5201
                                                        44780675
                                                                      America
#Alternatively
highRate <- covid %>% filter(cases>2000)
head(highRate)
##
        dateRep day month year cases deaths
                                             country popData2019 continentExp
## 1 11/12/2020 11
                      12 2020
                              6994
                                       209 Argentina
                                                        44780675
                                                                      America
## 2 10/12/2020 10
                                       213 Argentina
                      12 2020 5303
                                                         44780675
                                                                       America
## 3 09/12/2020
                      12 2020 3610
                                       121 Argentina
                 9
                                                        44780675
                                                                       America
                                       118 Argentina
## 4 08/12/2020
                 8
                      12 2020 3216
                                                        44780675
                                                                      America
                      12 2020 3278
## 5 07/12/2020
                 7
                                       138 Argentina
                                                        44780675
                                                                       America
## 6 06/12/2020
                  6
                      12 2020 5201
                                       120 Argentina
                                                        44780675
                                                                      America
#Show columns dateRep, country and cases only, when no. of cases>2000
#Apply both filter and select function
highRate <- covid %>% filter(cases>2000) %>% select(dateRep,country,cases)
head(highRate)
##
        dateRep
                  country cases
## 1 11/12/2020 Argentina
                          6994
## 2 10/12/2020 Argentina 5303
## 3 09/12/2020 Argentina 3610
## 4 08/12/2020 Argentina 3216
## 5 07/12/2020 Argentina 3278
## 6 06/12/2020 Argentina 5201
#List all the countries that had cases>50000 on any day
#in the last month
str(covid)
## 'data.frame':
                   61261 obs. of 9 variables:
                  : Factor w/ 347 levels "01/01/2020", "01/02/2020", ...: 132 120 108 96 84
## $ dateRep
## $ day
                  : int 11 10 9 8 7 6 5 4 3 2 ...
```

```
$ month
                : int 12 12 12 12 12 12 12 12 12 12 ...
## $ year
                ## $ cases
                : int 63 202 135 200 210 234 235 119 202 400 ...
## $ deaths
                : int 10 16 13 6 26 10 18 5 19 48 ...
               : Factor w/ 214 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 ...
   $ popData2019 : int 38041757 38041757 38041757 38041757 38041757 38041757
   $ continentExp: Factor w/ 6 levels "Africa", "America", ...: 3 3 3 3 3 3 3 3 3 ...
highRate <- covid %>% filter(cases>50000&month==11)
# & means 'AND'
# | means 'OR'
# Try: TRUE & FALSE, TRUE | FALSE
head(highRate)
       dateRep day month year cases deaths country popData2019 continentExp
## 1 29/11/2020 29
                     11 2020 51922
                                     587 Brazil
                                                  211049519
                                                                America
## 2 08/11/2020
                     11 2020 86852
                                     304 France
                                                   67012883
                8
                                                                 Europe
## 3 07/11/2020 7
                     11 2020 60486
                                     828 France
                                                                 Europe
                                                   67012883
## 4 06/11/2020
                6
                     11 2020 58046
                                     363 France
                                                   67012883
                                                                 Europe
## 5 03/11/2020
                     11 2020 52518
                                                                 Europe
                3
                                     416 France
                                                   67012883
## 6 07/11/2020
                7
                     11 2020 50356
                                          India 1366417756
                                                                   Asia
                                     577
head(highRate$country)
## [1] Brazil France France France India
## 214 Levels: Afghanistan Albania Algeria Andorra Angola ... Zimbabwe
unique(highRate$country)
## [1] Brazil
                             France
                                                     India
## [4] Spain
                             United States of America
## 214 Levels: Afghanistan Albania Algeria Andorra Angola ... Zimbabwe
# 4.2.3 summarise function
# Now suppose I want to calculate total number of cases in each country
totalCases <- covid %>% group_by(country) %>% summarise(total.cases=sum(cases))
head(totalCases)
## # A tibble: 6 x 2
##
    country total.cases
##
    <fct>
                     <int>
## 1 Afghanistan
                     48116
```

```
## 2 Albania 46061
## 3 Algeria 90579
## 4 Andorra 7190
## 5 Angola 15925
## 6 Anguilla 10
```

totalCases <- as.data.frame(totalCases) totalCases</pre>

##		country	total.cases
##	1	Afghanistan	48116
##	2	Albania	46061
##	3	Algeria	90579
##	4	Andorra	7190
##	5	Angola	15925
##	6	Anguilla	10
##	7	Antigua_and_Barbuda	146
##	8	Argentina	1482216
##	9	Armenia	146317
##	10	Aruba	5011
##	11	Australia	28000
##	12	Austria	311067
##	13	Azerbaijan	162774
##	14	Bahamas	7585
##	15	Bahrain	88632
##	16	Bangladesh	485965
##	17	Barbados	291
##	18	Belarus	154392
##	19	Belgium	600261
##	20	Belize	8805
##	21	Benin	3090
##	22	Bermuda	364
##	23	Bhutan	434
	24	Bolivia	146385
##	25	Bonaire, Saint Eustatius and Saba	170
##	26	Bosnia_and_Herzegovina	98603
##	27	Botswana	12058
##	28	Brazil	6781799
	29	British_Virgin_Islands	75
	30	Brunei_Darussalam	152
	31	Bulgaria	174568
	32	Burkina_Faso	3579
	33	Burundi	721
##	34	Cambodia	356
##	35	Cameroon	25087
##	36	Canada	442069

## 37	Cape_Verde	11203
## 38	Cases_on_an_international_conveyance_Japan	696
## 39	Cayman_Islands	292
## 40	Central_African_Republic	4932
## 41	Chad	1739
## 42	Chile	566440
## 43	China	91972
## 44	Colombia	1399911
## 45	Comoros	617
## 46		6049
## 47	Congo	149815
	Costa_Rica	
## 48 ## 49	Cote_dIvoire	21590
	Croatia	163992
	Cuba Cuma Ĩ Sa a	9181
## 51	Curaçao	3325
## 52	Cyprus	14052
## 53	Czechia	569205
## 54	Democratic_Republic_of_the_Congo	13996
## 55	Denmark	100489
## 56	Djibouti	5717
## 57	Dominica	85
## 58	Dominican_Republic	151721
## 59	Ecuador	200379
## 60	Egypt	120147
## 61	El_Salvador	40741
## 62	Equatorial_Guinea	5183
## 63	Eritrea	656
## 64	Estonia	16598
## 65	Eswatini	6633
## 66	Ethiopia	115360
## 67	$Falkland_Islands_(Malvinas)$	19
## 68	Faroe_Islands	519
## 69	Fiji	44
## 70	Finland	29572
## 71	France	2337966
## 72	French_Polynesia	15535
## 73	Gabon	9300
## 74	Gambia	3779
## 75	Georgia	183099
## 76	Germany	1272078
## 77	Ghana	52738
## 78	Gibraltar	1069
## 79	Greece	121253
## 80	Greenland	19
## 81	Grenada	43
## 82	Guam	7052
	0.000	–

## 83	Guatemala	127786
## 84	Guernsey	289
## 85	Guinea	13368
## 86	Guinea_Bissau	2444
## 87	- Guyana	5811
## 88	Haiti	9465
## 89	Holy_See	26
## 90	Honduras	113207
## 91	Hungary	271200
## 92	Iceland	5524
## 93	India	9796769
## 94	Indonesia	598933
## 95	Iran	1083023
## 96	Iraq	571253
## 97	Ireland	75203
## 98	<pre>Isle_of_Man</pre>	370
## 99	Israel	352860
## 100	Italy	1787147
## 101	Jamaica	11443
## 102	Japan	171542
## 103	Jersey	1555
## 104	Jordan	253121
## 105	Kazakhstan	183630
## 106	Kenya	90305
## 107	Kosovo	45004
## 108	Kuwait	145495
## 109	Kyrgyzstan	76718
## 110	Laos	41
## 111	Latvia	23706
## 112	Lebanon	142187
## 113	Lesotho	2178
## 114	Liberia	1676
## 115	Libya	89183
## 116	Liechtenstein	1477
## 117	Lithuania	86949
## 118	Luxembourg	40037
## 119	Madagascar	17638
## 120	Malawi	6053
## 121	Malaysia	78499
## 122	Maldives	13308
## 123	Mali	5576
## 124	Malta	10884
## 125	${ t Marshall_Islands}$	4
## 126	_ Mauritania	10268
## 127	Mauritius	515
## 128	Mexico	1217126

##	129	Moldova	122685
##	130	Monaco	657
##	131	Mongolia	905
	132	Montenegro	40165
##	133	Montserrat	13
##	134	Morocco	391529
	135	Mozambique	16521
##	136	-	104487
##	137	Myanmar Namibia	15773
	138		245650
##	139	Nepal Netherlands	584980
##	140	New Caledonia	364980
	141	-	1736
	142	New_Zealand	
##	143	Nicaragua	5887 2126
	143	Niger	
		Nigeria	71344
	145	North_Macedonia	70883
##	146	Northern_Mariana_Islands	113
	147	Norway	39524
	148	Oman	125669
##	149	Pakistan	432327
	150	Palestine	119420
	151	Panama	185424
##	152	Papua_New_Guinea	684
	153	Paraguay	90958
	154	Peru	979111
##	155	Philippines	445540
##	156	Poland	1102096
	157	Portugal	335207
##	158	Puerto_Rico	101763
##	159	Qatar	140516
##	160	Romania	539107
	161	Russia	2569126
	162	Rwanda	6349
	163	Saint_Kitts_and_Nevis	26
	164	Saint_Lucia	274
##	165	Saint_Vincent_and_the_Grenadines	91
	166	San_Marino	1868
	167	Sao_Tome_and_Principe	1009
##		Saudi_Arabia	359415
	169	Senegal	16766
	170	Serbia	249224
##	171	Seychelles	187
	172	Sierra_Leone	2435
	173	Singapore	58297
##	174	Sint_Maarten	1201

```
## 175
                                            Slovakia
                                                           124921
## 176
                                            Slovenia
                                                            91921
## 177
                                    Solomon Islands
                                                                17
## 178
                                             Somalia
                                                              4579
## 179
                                        South_Africa
                                                           836764
## 180
                                         South_Korea
                                                            40786
## 181
                                         South Sudan
                                                              3181
## 182
                                               Spain
                                                          1720056
## 183
                                           Sri Lanka
                                                            30613
## 184
                                               Sudan
                                                            20468
## 185
                                            Suriname
                                                              5337
## 186
                                              Sweden
                                                           312728
## 187
                                         Switzerland
                                                           367218
## 188
                                               Syria
                                                              8787
## 189
                                              Taiwan
                                                               725
## 190
                                          Tajikistan
                                                            12588
## 191
                                            Thailand
                                                              4180
## 192
                                         Timor_Leste
                                                                31
## 193
                                                 Togo
                                                              3182
## 194
                                Trinidad_and_Tobago
                                                              6833
## 195
                                             Tunisia
                                                           107814
## 196
                                              Turkey
                                                           558517
## 197
                           Turks_and_Caicos_islands
                                                               768
## 198
                                              Uganda
                                                            25730
## 199
                                             Ukraine
                                                           858714
## 200
                               United_Arab_Emirates
                                                           181405
## 201
                                      United Kingdom
                                                          1787783
## 202
                       United_Republic_of_Tanzania
                                                               509
## 203
                           United States of America
                                                         15616381
                      United_States_Virgin_Islands
## 204
                                                              1733
## 205
                                                              8487
                                             Uruguay
## 206
                                                            74664
                                          Uzbekistan
## 207
                                             Vanuatu
                                                                 1
## 208
                                           Venezuela
                                                            106280
## 209
                                             Vietnam
                                                              1385
## 210
                                  Wallis and Futuna
                                                                 3
## 211
                                      Western Sahara
                                                              766
## 212
                                               Yemen
                                                              2081
## 213
                                              Zambia
                                                            18091
## 214
                                            Zimbabwe
                                                            11081
```

```
# Total number of cases per month in each country
totalCases <- covid %>% group_by(country, year, month) %>% summarise(total.cases=sum(case
totalCases <- as.data.frame(totalCases)
head(totalCases)</pre>
```

country year month total.cases

```
## 1 Afghanistan 2019
                          12
                                       0
## 2 Afghanistan 2020
                           1
                                       0
## 3 Afghanistan 2020
                           2
                                        1
## 4 Afghanistan 2020
                           3
                                      140
                           4
## 5 Afghanistan 2020
                                    1808
## 6 Afghanistan 2020
                           5
                                   12576
# 4.2.4 mutate function
# I want to add the total.cases column in the same covid dataframe
totalCases <- covid %>% group_by(country) %>% mutate(total.cases=sum(cases))
totalCases <- as.data.frame(totalCases)</pre>
head(totalCases)
##
        dateRep day month year cases deaths
                                                  country popData2019 continentExp
## 1 11/12/2020
                        12 2020
                                           10 Afghanistan
                                                              38041757
                 11
                                   63
                                                                                Asia
## 2 10/12/2020
                 10
                        12 2020
                                  202
                                           16 Afghanistan
                                                              38041757
                                                                                Asia
## 3 09/12/2020
                        12 2020
                                  135
                                           13 Afghanistan
                                                              38041757
                                                                                Asia
## 4 08/12/2020
                        12 2020
                                  200
                                            6 Afghanistan
                  8
                                                              38041757
                                                                                Asia
## 5 07/12/2020
                   7
                        12 2020
                                  210
                                           26 Afghanistan
                                                              38041757
                                                                                Asia
## 6 06/12/2020
                        12 2020
                                           10 Afghanistan
                                  234
                                                              38041757
                                                                                Asia
##
     total.cases
## 1
           48116
## 2
           48116
## 3
           48116
## 4
           48116
## 5
           48116
## 6
           48116
# Can you create a dataframe sorted by total number of cases per country
# I want columns - country, total.cases, total.deaths, populaton
covid.table <- covid %>%
  group_by(country,popData2019) %>%
  summarise(Cases=sum(cases), Deaths=sum(deaths)) %>%
  select(country, Cases, Deaths, popData2019)
covid.table <- as.data.frame(covid.table)</pre>
head(covid.table)
##
         country Cases Deaths popData2019
## 1 Afghanistan 48116
                          1945
                                  38041757
## 2
         Albania 46061
                           965
                                   2862427
## 3
         Algeria 90579
                          2564
                                  43053054
## 4
         Andorra 7190
                            78
                                     76177
## 5
          Angola 15925
                           362
                                  31825299
## 6
        Anguilla
                             0
                                      14872
                     10
```

Why I did not use mutate here? Think about it!

sort(covid.table\$Cases)

##	[1]	1	3	4	10	13	17	19	19
##	[9]	26	26	31	36	41	43	44	75
##	[17]	85	91	113	146	152	170	187	274
##	[25]	289	291	292	356	364	370	434	509
##	[33]	515	519	617	656	657	684	696	721
##	[41]	725	766	768	905	1009	1069	1201	1385
##	[49]	1477	1555	1676	1733	1736	1739	1868	2081
##	[57]	2126	2178	2435	2444	3090	3181	3182	3325
##	[65]	3579	3779	4180	4579	4932	5011	5183	5337
##	[73]	5524	5576	5717	5811	5887	6049	6053	6349
##	[81]	6633	6833	7052	7190	7585	8487	8787	8805
##	[89]	9181	9300	9465	10268	10884	11081	11203	11443
##	[97]	12058	12588	13308	13368	13996	14052	15535	15773
##	[105]	15925	16521	16598	16766	17638	18091	20468	21590
##	[113]	23706	25087	25730	28000	29572	30613	39524	40037
##	[121]	40165	40741	40786	45004	46061	48116	52738	58297
##	[129]	70883	71344	74664	75203	76718	78499	86949	88632
##	[137]	89183	90305	90579	90958	91921	91972	98603	100489
##	[145]	101763	104487	106280	107814	113207	115360	119420	120147
##	[153]	121253	122685	124921	125669	127786	140516	142187	145495
##	[161]	146317	146385	149815	151721	154392	162774	163992	171542
##	[169]	174568	181405	183099	183630	185424	200379	245650	249224
##	[177]	253121	271200	311067	312728	335207	352860	359415	367218
##	[185]	391529	432327	442069	445540	485965	539107	558517	566440
##	[193]	569205	571253	584980	598933	600261	836764	858714	979111
##	[201]	1083023	1102096	1217126	1272078	1399911	1482216	1720056	1787147
##	[209]	1787783	2337966	2569126	6781799	9796769	15616381		

sort(covid.table\$Cases,decreasing = TRUE) # Returns values

##	[1]	15616381	9796769	6781799	2569126	2337966	1787783	1787147	1720056
##	[9]	1482216	1399911	1272078	1217126	1102096	1083023	979111	858714
##	[17]	836764	600261	598933	584980	571253	569205	566440	558517
##	[25]	539107	485965	445540	442069	432327	391529	367218	359415
##	[33]	352860	335207	312728	311067	271200	253121	249224	245650
##	[41]	200379	185424	183630	183099	181405	174568	171542	163992
##	[49]	162774	154392	151721	149815	146385	146317	145495	142187
##	[57]	140516	127786	125669	124921	122685	121253	120147	119420
##	[65]	115360	113207	107814	106280	104487	101763	100489	98603
##	[73]	91972	91921	90958	90579	90305	89183	88632	86949
##	[81]	78499	76718	75203	74664	71344	70883	58297	52738

##	[89]	48116	46061	45004	40786	40741	40165	40037	39524
##	[97]	30613	29572	28000	25730	25087	23706	21590	20468
##	[105]	18091	17638	16766	16598	16521	15925	15773	15535
##	[113]	14052	13996	13368	13308	12588	12058	11443	11203
##	[121]	11081	10884	10268	9465	9300	9181	8805	8787
##	[129]	8487	7585	7190	7052	6833	6633	6349	6053
##	[137]	6049	5887	5811	5717	5576	5524	5337	5183
##	[145]	5011	4932	4579	4180	3779	3579	3325	3182
##	[153]	3181	3090	2444	2435	2178	2126	2081	1868
##	[161]	1739	1736	1733	1676	1555	1477	1385	1201
##	[169]	1069	1009	905	768	766	725	721	696
##	[177]	684	657	656	617	519	515	509	434
##	[185]	370	364	356	292	291	289	274	187
##	[193]	170	152	146	113	91	85	75	44
##	[201]	43	41	36	31	26	26	19	19
##	[209]	17	13	10	4	3	1		

order(covid.table\$Cases,decreasing = TRUE) # Returns indices

```
##
     [1] 203 93
                   28 161
                           71 201 100 182
                                             8
                                                44
                                                     76 128 156
                                                                  95 154 199 179
                                                                                   19
##
    [19]
          94 139
                       53
                           42 196 160
                                                 36 149 134 187 168
                   96
                                        16 155
                                                                      99 157 186
                                                                                   12
##
    [37]
          91 104 170 138
                           59 151 105
                                        75 200
                                                         49
                                                                                    9
                                                 31 102
                                                              13
                                                                  18
                                                                      58
                                                                          47
                                                                               24
##
    [55] 108 112 159
                       83 148 175 129
                                        79
                                            60 150
                                                         90 195 208 136 158
                                                     66
                                                                                   26
##
    [73]
          43 176 153
                        3 106 115
                                    15 117 121 109
                                                     97 206 144 145 173
                                                                                    2
##
    [91] 107 180
                   61 132 118 147 183
                                        70
                                            11 198
                                                     35 111
                                                              48 184 213 119 169
                                                                                   64
                       72
## [109] 135
               5 137
                           52
                                54
                                    85 122 190
                                                 27 101
                                                         37 214 124 126
                                                                                   50
## [127]
          20 188 205
                       14
                            4
                                82 194
                                        65 162 120
                                                     46 142
                                                              87
                                                                  56 123
                                                                                   62
## [145]
              40 178 191
                           74
                                32
                                    51 193 181
                                                     86 172 113 143 212 166
          10
                                                 21
                                                                               41 141
## [163] 204 114 103 116 209 174
                                    78 167 131 197 211 189
                                                                  38 152 130
                                                              33
                                                                                   45
## [181]
          68 127 202
                       23
                           98
                                22
                                    34
                                        39
                                             17
                                                 84 164 171
                                                              25
                                                                  30
                                                                       7 146 165
                                                                                   57
          29 69 81 110 140 192
                                    89 163
                                                80 177 133
## [199]
                                            67
                                                               6 125 210 207
```

covid.table[order(covid.table\$Cases,decreasing = TRUE),]

##		country	Cases	Deaths	popData2019
##	203	United_States_of_America	15616381	292179	329064917
##	93	India	9796769	142186	1366417756
##	28	Brazil	6781799	179765	211049519
##	161	Russia	2569126	45280	145872260
##	71	France	2337966	56940	67012883
##	201	${\tt United_Kingdom}$	1787783	63082	66647112
##	100	Italy	1787147	62626	60359546
##	182	Spain	1720056	47344	46937060
##	8	Argentina	1482216	40431	44780675
##	44	Colombia	1399911	38484	50339443
##	76	Germany	1272078	20970	83019213

##	128	Mexico	1217126	112326	127575529
	156	Poland	1102096	21630	37972812
	95	Iran	1083023	51496	82913893
	154	Peru	979111	36499	32510462
	199	Ukraine	858714	14470	43993643
##	179	South Africa	836764	22747	58558267
##	19	- Belgium	600261	17692	11455519
##	94	Indonesia	598933	18336	270625567
##	139	Netherlands	584980	9889	17282163
##	96	Iraq	571253	12526	39309789
##	53	Czechia	569205	9341	10649800
##	42	Chile	566440	15774	18952035
##	196	Turkey	558517	15531	82003882
##	160	Romania	539107	12948	19414458
##	16	Bangladesh	485965	6967	163046173
##	155	Philippines	445540	8701	108116622
##	36	Canada	442069	13109	37411038
	149	Pakistan	432327	8653	216565317
	134	Morocco	391529	6492	36471766
	187	Switzerland	367218	5273	8544527
	168	Saudi_Arabia	359415	6012	34268529
##		Israel	352860	2962	8519373
	157	Portugal	335207	5278	10276617
	186	Sweden	312728	7354	10230185
	12	Austria	311067	4158	8858775
	91	Hungary	271200	6622	9772756
	104	Jordan	253121	3250	10101697
	170	Serbia	249224	2172	6963764
	138	Nepal	245650	1663	28608715
	59	Ecuador	200379	13850	17373657
	151	Panama	185424	3287	4246440
	105	Kazakhstan	183630	2550	18551428
##		Georgia	183099	1694	3996762
	200	United_Arab_Emirates	181405	602	9770526
##		Bulgaria	174568	5405	7000039
	102	Japan	171542	2502	126860299
##		Croatia	163992 162774	2420	4076246 10047719
	13 18	Azerbaijan Belarus	154392	1793 1238	9452409
##		Dominican Republic	154392	2358	10738957
##		Costa_Rica	149815	1882	5047561
	24	Bolivia	146385	9008	
	24 9	Armenia	146305	2445	11513102 2957728
	9 108	Kuwait	145495	910	4207077
	112	Lebanon	143493	1170	6855709
	159	Qatar	140516	240	2832071
##	109	Qata1	140010	240	2002011

##	83	Guatemala	127786	4345	17581476
##	148	Oman	125669	1463	4974992
	175	Slovakia	124921	1104	5450421
	129	Moldova	122685	2500	4043258
	79	Greece	121253	3370	10724599
	60	Egypt	120147	6854	100388076
	150	Palestine	119420	1008	4981422
	66	Ethiopia	115360	1779	112078727
##	90	Honduras	113207	2968	9746115
##	195	Tunisia	107814	3758	11694721
##	208	Venezuela	106280	938	28515829
##	136	Myanmar	104487	2201	54045422
##	158	Puerto_Rico	101763	1238	2933404
##	55	Denmark	100489	918	5806081
##	26	Bosnia_and_Herzegovina	98603	3199	3300998
##	43	China	91972	4739	1433783692
##	176	Slovenia	91921	1387	2080908
##	153	Paraguay	90958	1914	7044639
##	3	Algeria	90579	2564	43053054
##	106	Kenya	90305	1568	52573967
##	115	Libya	89183	1273	6777453
##		Bahrain	88632	347	1641164
##	117	Lithuania	86949	764	2794184
##	121	Malaysia	78499	396	31949789
	109	Kyrgyzstan	76718	1307	6415851
	97	Ireland	75203	2117	4904240
	206	Uzbekistan	74664	611	32981715
	144	Nigeria	71344	1190	200963603
	145	North_Macedonia	70883	2051	2077132
	173	Singapore	58297	29	5804343
	77	Ghana	52738	326	30417858
	1	Afghanistan	48116	1945	38041757
##		Albania	46061	965	2862427
	107	Kosovo	45004	1161	1798506
	180	South_Korea	40786	572	51225321
##		El_Salvador	40741	1186	6453550
	132	Montenegro	40165	566	622182
		Luxembourg	40037	384	613894
	147 183	Norway Sri Lanka	39524 30613	382 146	5328212 21323734
	70	Finland	29572	442	5517919
		Australia	28000	908	25203200
	198	Uganda	25730	220	44269587
	35	Cameroon	25730	443	25876387
	111	Latvia	23706	304	1919968
	48	Cote_dIvoire	21590	133	25716554
ππ	10	ooge_arvorie	21000	100	20110004

##	184	Sudan	20468	1319	42813237
	213	Zambia	18091	364	17861034
##	119	Madagascar	17638	258	26969306
##	169	Senegal	16766	343	16296362
##		Estonia	16598	141	1324820
##	135	Mozambique	16521	139	30366043
##		Angola	15925	362	31825299
		Namibia	15773	158	2494524
##	72	French_Polynesia	15535	91	279285
##	52	Cyprus	14052	72	875899
##		Democratic_Republic_of_the_Congo	13996	349	86790568
##		Guinea	13368	79	12771246
##	122	Maldives	13308	47	530957
	190	Tajikistan	12588	88	9321023
##	27	Botswana	12058	36	2303703
##	101	Jamaica	11443	270	2948277
##		Cape_Verde	11203	109	549936
		Zimbabwe	11081	305	14645473
	124	Malta	10884	164	493559
##	126	Mauritania	10268	210	4525698
##	88	Haiti	9465	233	11263079
##	73	Gabon	9300	62	2172578
##	50	Cuba	9181	136	11333484
##	20	Belize	8805	183	390351
##	188	Syria	8787	476	17070132
##	205	Uruguay	8487	90	3461731
##	14	Bahamas	7585	163	389486
##	4	Andorra	7190	78	76177
##	82	Guam	7052	115	167295
##	194	Trinidad_and_Tobago	6833	122	1394969
##	65	Eswatini	6633	126	1148133
##	162	Rwanda	6349	53	12626938
##	120	Malawi	6053	186	18628749
##	46	Congo	6049	99	5380504
##	142	Nicaragua	5887	162	6545503
##	87	Guyana	5811	154	782775
##	56	Djibouti	5717	61	973557
	123	Mali	5576	184	19658023
##	92	Iceland	5524	28	356991
	185	Suriname	5337	117	581363
##	62	Equatorial_Guinea	5183	85	1355982
##	10	Aruba	5011	46	106310
##		Central_African_Republic	4932	63	4745179
	178	Somalia	4579	121	15442906
	191	Thailand	4180	60	69625581
##	74	Gambia	3779	123	2347696

##	20	Durking Fogo	2570	69	00201202
##		Burkina_Faso Curaçao	3579	8	20321383 163423
		_	3325		
	193 181	Togo	3182	66	8082359
	21	South_Sudan	3181	62	11062114
		Benin	3090	44	11801151
	86	Guinea_Bissau	2444	44	1920917
	172	Sierra_Leone	2435	74	7813207
	113	Lesotho	2178	44	2125267
	143	Niger	2126	80	23310719
	212	Yemen	2081	606	29161922
	166	San_Marino	1868	49	34453
##		Chad	1739	102	15946882
	141	New_Zealand	1736	25	4783062
	204	United_States_Virgin_Islands	1733	23	104579
	114	Liberia	1676	83	4937374
	103	Jersey	1555	32	107796
	116	Liechtenstein	1477	17	38378
	209	Vietnam	1385	35	96462108
	174	Sint_Maarten	1201	26	42389
	78	Gibraltar	1069	5	33706
	167	Sao_Tome_and_Principe	1009	17	215048
	131	Mongolia	905	0	3225166
	197	Turks_and_Caicos_islands	768	6	38194
	211	Western_Sahara	766	1	582458
	189	Taiwan	725	7	23773881
##		Burundi	721	1	11530577
##		Cases_on_an_international_conveyance_Japan	696	7	NA
	152	Papua_New_Guinea	684	7	8776119
	130	Monaco	657	2	33085
	63	Eritrea	656	0	3497117
	45	Comoros	617	7	850891
##		Faroe_Islands	519	0	48677
	127	Mauritius	515	10	1269670
	202	United_Republic_of_Tanzania	509	21	58005461
##		Bhutan	434	0	763094
##		Isle_of_Man	370	25	84589
##		Bermuda	364	9	62508
##		Cambodia	356	0	16486542
##		Cayman_Islands	292	2	64948
##		Barbados	291	7	287021
##		Guernsey	289	13	64468
	164	Saint_Lucia	274	4	182795
	171	Seychelles	187	0	97741
##		Bonaire, Saint Eustatius and Saba	170	3	25983
##		Brunei_Darussalam	152	3	433296
##	7	Antigua_and_Barbuda	146	4	97115

```
2
## 146
                           Northern Mariana Islands
                                                            113
                                                                               57213
## 165
                  Saint Vincent and the Grenadines
                                                             91
                                                                      0
                                                                              110593
## 57
                                             Dominica
                                                             85
                                                                      0
                                                                               71808
## 29
                             British Virgin Islands
                                                             75
                                                                      1
                                                                               30033
## 69
                                                                      2
                                                             44
                                                 Fiji
                                                                              889955
## 81
                                                                      0
                                              Grenada
                                                             43
                                                                              112002
## 110
                                                             41
                                                                      0
                                                 Laos
                                                                             7169456
## 140
                                       New Caledonia
                                                             36
                                                                      0
                                                                              282757
## 192
                                          Timor Leste
                                                             31
                                                                      0
                                                                             1293120
## 89
                                                             26
                                                                      0
                                             Holy See
                                                                                 815
## 163
                              Saint Kitts and Nevis
                                                             26
                                                                      0
                                                                               52834
                                                                      0
## 67
                        Falkland Islands (Malvinas)
                                                                                3372
                                                             19
## 80
                                            Greenland
                                                                      0
                                                             19
                                                                               56660
## 177
                                     Solomon Islands
                                                             17
                                                                      0
                                                                              669821
## 133
                                          Montserrat
                                                             13
                                                                      1
                                                                                4991
## 6
                                             Anguilla
                                                             10
                                                                      0
                                                                               14872
## 125
                                    Marshall Islands
                                                              4
                                                                      0
                                                                               58791
## 210
                                   Wallis and Futuna
                                                               3
                                                                      0
                                                                                  NA
## 207
                                              Vanuatu
                                                               1
                                                                      0
                                                                              299882
```

```
# dataframe[rowIDs,]

# What is number of observations for each country in the data

covid %>%
    group_by(country) %>%
    summarise(count=n())
```

```
## # A tibble: 214 x 2
##
      country
                           count
##
      <fct>
                           <int>
##
    1 Afghanistan
                             337
    2 Albania
##
                             278
##
    3 Algeria
                             342
## 4 Andorra
                             273
##
    5 Angola
                             265
    6 Anguilla
                             260
##
    7 Antigua_and_Barbuda
                             267
##
    8 Argentina
                             280
    9 Armenia
##
                             338
## 10 Aruba
                             264
## # ... with 204 more rows
```

```
# More summaries
covid %>%
  group_by(country) %>%
  summarise(count=n(),
            total.cases=sum(cases),
            mean.cases=mean(cases),
            max.cases=max(cases),
            min.cases=min(cases))
## # A tibble: 214 x 6
##
                           count total.cases mean.cases max.cases min.cases
      country
##
      <fct>
                           <int>
                                        <int>
                                                   <dbl>
                                                              <int>
                                                                         <int>
## 1 Afghanistan
                             337
                                        48116
                                                143.
                                                               1063
                                                                             0
## 2 Albania
                             278
                                        46061
                                                166.
                                                                873
                                                                             0
                                                265.
                                                                             0
## 3 Algeria
                             342
                                        90579
                                                               1133
## 4 Andorra
                             273
                                         7190
                                                 26.3
                                                                299
                                                                             0
                                                 60.1
                                                                355
                                                                             0
## 5 Angola
                             265
                                        15925
                                                                  2
                                                                             0
## 6 Anguilla
                             260
                                           10
                                                  0.0385
                                                                 39
                                                                             0
## 7 Antigua and Barbuda
                             267
                                          146
                                                  0.547
## 8 Argentina
                             280
                                      1482216 5294.
                                                              18326
                                                                             0
## 9 Armenia
                             338
                                       146317
                                                433.
                                                               4527
                                                                             0
## 10 Aruba
                             264
                                                 19.0
                                                                176
                                                                             0
                                         5011
## # ... with 204 more rows
#4.3 "Reshape2" package
library(reshape2) #long-to-wide, wide-to-long
student.id <- c("s1", "s2", "s3", "s4", "s5", "s6")
m1 \leftarrow c(12, 10, 45, 22, 30, 27)
m2 \leftarrow c(55, 60, 72, 89, 45, 55)
data.wide <- data.frame(student.id, m1, m2, stringsAsFactors = FALSE)</pre>
data.wide
##
     student.id m1 m2
## 1
             s1 12 55
## 2
             s2 10 60
## 3
             s3 45 72
## 4
             s4 22 89
## 5
             s5 30 45
## 6
             s6 27 55
#this is the wide format, each variable is a column
```

```
#this is the long format, variables are attributes with values
#(in another column)
#useful of a wide variety of R functions, e.g. gaplot, lm
melt(data.wide)
## Using student.id as id variables
      student.id variable value
##
## 1
              s1
                        m1
                               12
## 2
              s2
                        m1
                               10
## 3
              s3
                        m1
                              45
## 4
                              22
              s4
                        m1
## 5
              s5
                        m1
                              30
## 6
              s6
                        m1
                              27
## 7
                        m2
                              55
              s1
## 8
              s2
                        m2
                              60
## 9
              s3
                        m2
                              72
## 10
              s4
                        m2
                              89
## 11
               s5
                        m2
                               45
## 12
                               55
              s6
                        m2
melt(data.wide, id = "student.id")
##
      student.id variable value
## 1
              s1
                        m1
                               12
## 2
              s2
                        m1
                               10
## 3
              s3
                        m1
                              45
## 4
              s4
                        m1
                              22
## 5
                              30
              s5
                        m1
## 6
              s6
                        m1
                              27
## 7
              s1
                        m2
                              55
## 8
              s2
                        m2
                              60
## 9
              s3
                        m2
                              72
## 10
              s4
                        m2
                              89
## 11
                        m2
                               45
              s5
## 12
                               55
              s6
                        m2
data.long <- melt(data.wide, id = "student.id")</pre>
head(data.long)
##
     student.id variable value
## 1
             s1
                       m1
                              12
## 2
             s2
                              10
                       m1
## 3
             s3
                       m1
                             45
## 4
             s4
                       m1
                             22
```

```
## 5
            s5
                    m1
                          30
## 6
            s6
                    m1
                          27
#Coverting long to wide
dcast(data.long,student.id~variable)
##
    student.id m1 m2
## 1
           s1 12 55
## 2
           s2 10 60
## 3
           s3 45 72
## 4
           s4 22 89
## 5
           s5 30 45
           s6 27 55
## 6
#OR
reshape(data.long,idvar = "student.id",timevar="variable", direction = "wide")
    student.id value.m1 value.m2
##
## 1
            s1
                    12
                             55
## 2
            s2
                    10
                             60
## 3
            s3
                    45
                             72.
## 4
                   22
                             89
            s4
## 5
            s5
                    30
                             45
## 6
            s6
                    27
                             55
#Links
#http://seananderson.ca/2014/09/13/dplyr-intro.html
#http://seananderson.ca/2013/10/19/reshape.html
# 6. Graph plotting
library(ggplot2)
#A graph is made up of layers.
#Visual elements are known as geoms ('geometric objects')
#for example: bar, line, etc.
#Geoms have aesthetic properties (aes()) that control
#the appearance of the graph elements (or the graph as a whole)
#for example: color, size, style
#geoms: geom_bar(), geom_point(), geom_line(), geom_smooth()
      geom_histogram(), geom_boxplot(), geom_text(), etc.
```

```
data <- read.table("Howell.csv", header = T,sep=",")</pre>
data \leftarrow data[,-1]
head(data)
     height
              weight age male
## 1 151.765 47.82561 63
## 2 139.700 36.48581
                      63
## 3 136.525 31.86484
## 4 156.845 53.04191 41
                             1
## 5 145.415 41.27687
                      51
                            0
## 6 163.830 62.99259
                      35
                             1
data$Gender <- ifelse(data$male==1, "Male", "Female")</pre>
head(data)
             weight age male Gender
     height
## 1 151.765 47.82561 63
                                 Male
                            1
## 2 139.700 36.48581 63
                            0 Female
## 3 136.525 31.86484 65 0 Female
## 4 156.845 53.04191 41
                           1
                                Male
## 5 145.415 41.27687 51
                           0 Female
## 6 163.830 62.99259 35
                            1
                                Male
data <- data %>% mutate(Gender=ifelse(male==1, "Male", "Female"))
head(data)
##
     height
             weight age male Gender
## 1 151.765 47.82561 63
                                 Male
## 2 139.700 36.48581 63
                             0 Female
## 3 136.525 31.86484 65
                           0 Female
## 4 156.845 53.04191 41
                                Male
                           1
## 5 145.415 41.27687 51
                            0 Female
## 6 163.830 62.99259 35 1
                                Male
# 6.1 Scatter plots
# Age on X axis and Weight on Y axis
base.plot<-ggplot(data=data, aes(x=age, y=weight))</pre>
base.plot
```



```
p <- base.plot +ggtitle("Relationship between age and weight")
p</pre>
```



```
#plot the points
p + geom_point()
```


p + geom_point(color="Blue")

Relationship between age and v

p + geom_point(color="red")

?geom_point

starting httpd help server ...

done

p + geom_point(color="blue",shape=6)

Relationship between age and v

p + geom_point(color="blue",size=1.5)

Relationship between age and v

Group datapoints by values of a third variable
p+geom_point(aes(colour=Gender))


```
p <- p+geom_point(aes(colour=Gender))
p+scale_color_manual(values=c("#4682b4","#e9967a"))</pre>
```

Relationship between age and v

p+scale_color_manual(values=c("#4682b4","#e9967a"))+theme_bw()


```
p+scale_color_manual(values=c("#4682b4","#e9967a"))+theme_bw()+
    xlab("Age (in years)")+ylab("Weight (in Kilograms)")
```



```
ggplot(data=data,aes(x=age,y=weight))+
  ggtitle("Relationship between age and weight")+
  geom_point(aes(colour=Gender))+
  scale_color_manual(values=c("#4682b4","#e9967a"))+
  theme_bw()+
  xlab("Age (in years)")+
  ylab("Weight (in Kilograms)")
```



```
ggsave("Age_vs_weight_scatterplot.pdf",height=3,width=5)

ggplot(data=data,aes(x=age,y=weight,colour=Gender))+
    ggtitle("Relationship between age and weight")+
    geom_point()+
    scale_color_manual(values=c("#4682b4","#e9967a"))+
    theme_bw()+
```

```
xlab("Age (in years)")+
ylab("Weight (in Kilograms)")
```



```
ggplot(data=data,aes(x=age,y=weight,colour=Gender))+
   ggtitle("Relationship between age and weight")+
   geom_point()+
   scale_color_manual(values=c("#4682b4","#e9967a"))+
   theme_bw()+
   xlab("Age (in years)")+
   ylab("Weight (in Kilograms)")+
   theme(legend.title = element_blank())
```



```
ggplot(data=data,aes(x=age,y=weight,colour=Gender))+
   ggtitle("Relationship between age and weight")+
   geom_point()+
   scale_color_manual(values=c("#4682b4","#e9967a"))+
   theme_bw()+
   xlab("Age (in years)")+
```



```
# Facet_wrap()
# Show and Male and Female data separately side by side

p <- ggplot(data=data,aes(x=age,y=weight))+</pre>
```

```
ggtitle("Relationship between age and weight")+
geom_point()+
theme_bw()+
xlab("Age (in years)")+
ylab("Weight (in Kilograms)")
p
```


p + facet_wrap(~Gender)


```
p + facet_wrap(~Gender,nrow=2)
```


p + facet_wrap(~Gender,ncol=2)

Relationship between age and v

p + facet_wrap(~Gender,scales = "free")

6.2 regression line
#the line summarizes the relationship between age and weight
#the shaded area is the 95% confidence interval around the line
p

Relationship between age and v

p+geom_smooth()

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Relationship between age and v

p+geom_smooth(size=1.8)

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Relationship between age and v (sumside the sum of the

p+geom_smooth(size=1.8,method="lm")

`geom_smooth()` using formula 'y ~ x'

Relationship between age and v

p+geom_smooth(size=1.8,aes(colour=Gender))

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Relationship between age and v


```
ggsave("Age_vs_Weight_regression.pdf", width=5, height=3)
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'

Relationship between age and v

6.3 Histograms

head(data)

```
weight age male Gender
##
      height
## 1 151.765 47.82561
                                  Male
                       63
## 2 139.700 36.48581
                       63
                              0 Female
## 3 136.525 31.86484
                       65
                              0 Female
## 4 156.845 53.04191
                       41
                                  Male
## 5 145.415 41.27687
                              0 Female
                       51
## 6 163.830 62.99259
                       35
                                  Male
                              1
p <- ggplot(data,aes(x=weight))+theme_bw()+</pre>
  ggtitle("Distribution of body weight in !Kung San population")
р
```

Distribution of body weight in !Kung \$

p+geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution of body weight in !K

p+geom_histogram(bins=100)

Distribution of body weight in !K


```
p+geom_histogram(bins=100,colour="black",fill="white")
```

Distribution of body weight in !K

p+geom_histogram(bins=100,colour="blue",fill="blue")

Distribution of body weight in !K


```
ggplot(data,aes(x=height))+theme_bw()+
geom_histogram(bins=50,colour="black",fill="white")+
facet_wrap(~Gender)
```



```
ggplot(data,aes(x=weight))+theme_bw()+
geom_histogram(bins=50,colour="black",fill="white")+
facet_wrap(~Gender)
```



```
ggplot(data,aes(x=weight))+theme_bw()+
geom_histogram(bins=50,colour="black",fill="white")+
facet_wrap(~Gender)+
ylab("")+
theme(axis.text.y = element_blank())
```



```
# 6.4 Density plots
p <- ggplot(data, aes(x=weight))
p</pre>
```


p+geom_density()

p+geom_density(colour="blue",size=1.5)

p+geom_density(aes(colour=Gender),size=1.5)


```
ggsave("Weight_density_plot.pdf",width=5,height=4)

# 6.5 boxplot

# median at the centre
# sorrounded by a box; top/bottom: Upper/Lower quartile
# this covers the middle 50% of the data
# the vertical bar above and below (and the points) show
# the top and bottom 25% respectively
# the bars specifically: upper whisker = 3rd quartile + 1.5*IQR
```

```
# lower whisker = 1st quartile - 1.5*IQR

p <- ggplot(data, aes(x=Gender, y=weight))
p + geom_boxplot()</pre>
```


6.6 Error bars

```
data.m <- data %>% group_by(Gender) %>% summarize(avgHeight=mean(height),SDheight=sd(he
data.m <- as.data.frame(data.m)
data.m</pre>
```

```
## Gender avgHeight SDheight
## 1 Female 134.6303 25.93023
## 2 Male 142.3210 28.87132
```

```
p <- ggplot(data=data.m,aes(x=Gender,y=avgHeight))+theme_bw()
p + geom_point(size=2)</pre>
```



```
# I want to show the distribution of heights using
# an error bar that goes from one SD below average to one SD higher

p + geom_point(size=2)+
geom_errorbar(aes(ymin=avgHeight-SDheight,ymax=avgHeight+SDheight))
```



```
# 6.7 Line plots
# Could be more useful than scatter plots sometimes
data.m <- data %>%
  group_by(Gender,age) %>%
  summarize(Weight=mean(weight), upper.w=quantile(weight)[4], lower.w=quantile(weight)[2]
data.m <- as.data.frame(data.m)</pre>
head(data.m)
##
     Gender age
                   Weight
                            upper.w
                                      lower.w
## 1 Female 0
                 6.427237 7.668540
                                     5.003687
## 2 Female 1
                7.540967 8.136306 7.002327
## 3 Female 2 13.154168 13.877080 12.246984
## 4 Female 3 11.701256 12.842324 11.233489
## 5 Female 4 12.991158 13.579410 12.665139
## 6 Female 5 13.878655 15.223681 12.757275
# Line plot between Age and weight
p <- ggplot(data.m,aes(x=age,y=Weight,group=Gender,color=Gender))+theme_bw()</pre>
р
```


p + geom_line(size=1.1)

p + geom_line() + geom_point(size=1.5)


```
ggplot(data.m,aes(x=age,y=Weight,group=Gender,color=Gender))+
   theme_bw()+
   geom_line(size=1.1)
```



```
ggplot(subset(data.m,age<20),aes(x=age,y=Weight,group=Gender,color=Gender))+
    theme_bw()+
    geom_line(size=1.1)</pre>
```



```
ggplot(subset(data.m,age<20),aes(x=age,y=Weight,group=Gender,color=Gender))+
    theme_bw()+
    geom_line(size=1.1)+
    facet_wrap(~Gender)+
    theme(legend.position = "top")</pre>
```

Gender — Female — Male


```
ggplot(subset(data.m,age<20),aes(x=age,y=Weight,group=Gender,color=Gender))+
    theme_bw()+
    geom_line()+
    facet_wrap(~Gender)+
    theme(legend.position = "top")+
    geom_point(size=1.1)+
    geom_errorbar(aes(ymax=upper.w,ymin=lower.w))</pre>
```

Gender → Female → Male


```
ggplot(subset(data.m,age<20),aes(x=age,y=Weight,group=Gender,color=Gender))+
    theme_bw()+
    geom_line()+
    theme(legend.position = "top")+
    geom_point(size=1.1)+
    geom_errorbar(aes(ymax=upper.w,ymin=lower.w))</pre>
```

Gender Female Male 50 40 40 20 10 5 10 15 age


```
p+geom_bar(stat="identity")
```


Warning: position_dodge requires non-overlapping x intervals

Warning: position_stack requires non-overlapping x intervals


```
# 6.9 Heat maps
# To visualize relationships between categorical data
head(covid)
```

##		dateRep	day	month	year	cases	${\tt deaths}$	country	popData2019	continentExp
##	1	11/12/2020	11	12	2020	63	10	Afghanistan	38041757	Asia
##	2	10/12/2020	10	12	2020	202	16	Afghanistan	38041757	Asia
##	3	09/12/2020	9	12	2020	135	13	Afghanistan	38041757	Asia
##	4	08/12/2020	8	12	2020	200	6	Afghanistan	38041757	Asia
##	5	07/12/2020	7	12	2020	210	26	Afghanistan	38041757	Asia

```
## 6 06/12/2020 6 12 2020 234 10 Afghanistan 38041757 Asia
```

```
covid.m <- covid %>% filter(year==2020&continentExp=="Asia") %>% group_by(country,month
covid.m <- as.data.frame(covid.m)
head(covid.m)</pre>
```

```
## country month Cases
## 1 Afghanistan 1 0
## 2 Afghanistan 2 1
## 3 Afghanistan 3 140
## 4 Afghanistan 4 1808
## 5 Afghanistan 5 12576
## 6 Afghanistan 6 16713
```

```
# Number of cases per month in each country

p <- ggplot(subset(covid.m,month>2),aes(x=factor(month),y=factor(country),fill=Cases))
p + geom_tile()
```



```
# Month wise cases in Europe

covid.m <- covid %>% filter(year==2020&continentExp=="Europe") %>% group_by(country,moncovid.m <- as.data.frame(covid.m)
head(covid.m)

## country month Cases</pre>
```

```
## 1 Albania 3 223
## 2 Albania 4 543
## 3 Albania 5 356
## 4 Albania 6 1344
## 5 Albania 7 2731
## 6 Albania 8 4183
```



```
# Case normalized by population in Asian counteries
covid.m <- covid %>% filter(year==2020&continentExp=="Asia") %>% group_by(country,month
covid.m <- as.data.frame(covid.m)</pre>
head(covid.m)
##
         country month popData2019 Cases
                                           Cases.perc
                                       0 0.000000e+00
## 1 Afghanistan
                     1
                          38041757
## 2 Afghanistan
                     2
                          38041757
                                       1 2.628690e-06
## 3 Afghanistan
                     3
                         38041757
                                     140 3.680167e-04
## 4 Afghanistan
                     4
                         38041757 1808 4.752672e-03
## 5 Afghanistan
                     5
                          38041757 12576 3.305841e-02
## 6 Afghanistan
                          38041757 16713 4.393330e-02
                     6
ggplot(subset(covid.m,month>2),
       aes(x=factor(month),y=factor(country),fill=Cases.perc))+
 geom_tile()+
 scale_fill_gradient(low="white", high="blue")+
 theme(axis.text.x = )
```



```
# Deaths in Europe

covid.m <- covid %>% filter(year==2020&continentExp=="Europe") %>% group_by(country,moncovid.m <- as.data.frame(covid.m)
head(covid.m)</pre>
```

```
## country month Mortality
## 1 Albania 3 12
## 2 Albania 4 19
## 3 Albania 5 2
## 4 Albania 6 25
```

```
## 5 Albania 7 96
## 6 Albania 8 126
```



```
# America
covid.m <- covid %>% filter(year==2020&continentExp=="America") %>% group_by(country,month)
covid.m <- as.data.frame(covid.m)</pre>
head(covid.m)
##
      country month Mortality
## 1 Anguilla
                  3
## 2 Anguilla
                             0
## 3 Anguilla
                  5
                             0
## 4 Anguilla
                  6
                             0
## 5 Anguilla
                  7
                             0
## 6 Anguilla
ggplot(subset(covid.m,month>2),
       aes(x=factor(month),y=factor(country),fill=Mortality))+
  geom_tile()+
  scale_fill_gradient(low="white", high="blue")+
  theme(axis.text.x = )
```



```
########
## Homework
#Load the file 'Hindi-word-recognition-data.csv' as a dataframe
# The data are from a "word recognition experiment"
# About experiment: words are presented on a computer screen one by one
# A participant has to recognize the word as quickly as possible
# Our hypothesis is that
# "The words which are more frequent in everyday use will be read faster"
# i.e., the words with high frequency will have small reaction times
# "The words which are long in size will be read slower"
# i.e., the words with longer length will have larger reaction times
hindi <- read.table("Hindi-word-recognition-data.csv",sep=",",header=T)
head(hindi)</pre>
```

```
label frequency length reactionTime
##
     X word
## 1 1
          1 hfshort 4.857125
                                   2
                                         749.3158
## 2 2
                                   2
          2 hfshort 4.905634
                                         694.6500
## 3 3
         3 lfshort 2.033606
                                   3
                                         779.1500
## 4 4
         4 hfshort 4.640838
                                   2
                                         659.5263
          5 hflong 3.785533
## 5 5
                                   5
                                         691.4583
## 6 6
          6 hfshort 5.391810
                                         614.1923
```

#(1) What is the variable type of column "label"

#(2) Filter all the observations where label "hfshort"

#(3) Draw histogram of reactionTime in "hfshort" labeled words

#(4) Add a column "ReadingSpeed" in the dataframe such that

it shows value "Fast" when reactionTime is less than 600 otherwise "Slow"

#(5) Summarize mean, SD of reactionTime by each label

#There are four labels hfshort, hflong, lfshort, lflong

#(6) Draw barplots showing mean reaction time for each label

#(7) Draw errorbar over barplots (ranging from mean-SD to mean+SD)

#(8) Draw density plots showing distribution of

```
#reaction times in each of four labels
#(9) Draw scatter plot of frequency and reactionTime
#(10) Does scatter plot suggest any relationship between
# frequency and reaction time?
#(11) Draw reactionTime~frequency scatter plot in side by side for
# each label using facet_wrap
#(12) Draw regression line between reactionTime and frequency
#(13) Show scatter plot and regression line for reactionTime and length
#(14) Do this:
hindi$frequency <- as.integer(hindi$frequency)
hindi.m <- hindi %>% group_by(frequency,length) %>% summarise(count=n())
hindi.m <- as.data.frame(hindi.m)
head(hindi.m)</pre>
```

```
##
    frequency length count
## 1
          1
               2.0
## 2
               2.5
           1
                      1
## 3
          1
               3.0
                     10
## 4
           1
               5.0
                     11
## 5
               5.5
                      5
           1
## 6
           2
               2.5
                      3
```

```
# Use hindi.m dataframe and
```

[#] draw a heatmap between freuency and length where gradient colour is determined by "c