Network Programming

Introduction to Computer Systems 23rd Lecture, Dec. 9, 2024

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua

Class 2: Guan Xuetao

Class 3: Lu Junlin

The Notion of an internet Protocol

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols
- How is it possible to send bits across incompatible LANs and WANs?
- Solution: protocol software running on each host and router
 - Protocol is a set of rules that governs how hosts and routers should cooperate when they transfer data from network to network.
 - Smooths out the differences between the different networks

What Does an internet Protocol Do?

Provides a naming scheme

- An internet protocol defines a uniform format for host addresses
- Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it

Provides a delivery mechanism

- An internet protocol defines a standard transfer unit (packet)
- Packet consists of header and payload
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

A Client-Server Transaction

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

Note: clients and servers are processes running on hosts (can be the same or different hosts)

Transferring internet Data Via Encapsulation

Global IP Internet (upper case)

- Most famous example of an internet
- Based on the TCP/IP protocol family
 - IP (Internet Protocol)
 - Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host
 - UDP (Unreliable Datagram Protocol)
 - Uses IP to provide unreliable datagram delivery from process-to-process
 - TCP (Transmission Control Protocol)
 - Uses IP to provide reliable byte streams from process-to-process over connections
- Accessed via a mix of Unix file I/O and functions from the sockets interface

Hardware and Software Organization of an Internet Application

A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32-bit IP addresses
 - 128.2.203.179
 - 127.0.0.1 (always localhost)
- 2. As a convenience for humans, the Domain Name System maps a set of identifiers called Internet *domain names* to IP addresses:
 - 128.2.217.3 is mapped to <u>www.cs.cmu.edu</u>
 - www.cs.cmu.edu "resolves to" 128.2.217.3
- 3. A process on one Internet host can communicate with a process on another Internet host over a *connection*

Aside: IPv4 and IPv6

- IPv4 (Internet Protocol Version 4) specified 1981
 - 32-bit host addresses.
 - Known to not be enough for everyone since ~1990
 - Majority of Internet traffic still carried by IPv4
- IPv6 (Internet Protocol Version 6) specified 1996
 - 128-bit addresses (2001:0db8:0:0:0:0:cafe:1a7e)
 - Intended to replace IPv4
 - Very slow adoption due to need to replace routers
- Application programmers mostly don't have to care
 - Sockets API makes it easy to write code that seamlessly uses either, as necessary

IPv6 traffic to Google

https://www.google.com/intl/en/ipv6/statistics.html

(1) IP Addresses

- IP address: 32-bit identifier associated with each host or router *interface*
- interface: connection between host/router and physical link
- router's typically have multiple interfaces
- host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

Subnets

■ What's a subnet?

 device interfaces that can physically reach each other without passing through an intervening router

■IP addresses have structure:

- subnet part: devices in same subnet have common high order bits
- host part: remaining low order bits

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- •detach each interface from its host or router, creating "islands" of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24 (high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
- what are the /24 subnet addresses?

IP Address Structure

■ IP (V4) Address space divided into classes:

■ Network ID Written in form w.x.y.z/n

- n = number of bits in host address
- E.g., CMU written as 128.2.0.0/16
 - Class B address

Unrouted (private) IP addresses:

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

IP Addresses

- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in network byte order (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```
/* Internet address structure */
struct in_addr {
    uint32_t s_addr; /* network byte order (big-endian) */
};
```

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242

(2) Internet Domain Names

Domain Naming System (DNS)

- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS
- Conceptually, programmers can view the DNS database as a collection of millions of *host entries*.
 - Each host entry defines the mapping between a set of domain names and IP addresses.
 - In a mathematical sense, a host entry is an equivalence class of domain names and IP addresses.

Properties of DNS Mappings

- Can explore properties of DNS mappings using nslookup
 - (Output edited for brevity)

 Each host has a locally defined domain name localhost which always maps to the loopback address 127.0.0.1

```
linux> nslookup localhost
Address: 127.0.0.1
```

Use hostname to determine real domain name of local host:

```
linux> hostname
whaleshark.ics.cs.cmu.edu
```

Properties of DNS Mappings (cont)

Simple case: one-to-one mapping between domain name and IP address:

```
linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175
```

Multiple domain names mapped to the same IP address:

```
linux> nslookup cs.mit.edu
Address: 18.25.0.23
linux> nslookup eecs.mit.edu
Address: 18.25.0.23
```

And backwards:

Properties of DNS Mappings (cont)

Multiple domain names mapped to multiple IP addresses:

```
linux> nslookup www.tencent.com
Address: 116.131.60.102
Address: 115.56.90.84
Address: 116.196.155.54
Address: 115.56.90.198
Address: 116.196.145.223
linux> nslookup www.tencent.com
Address: 116.196.155.54
Address: 116.196.145.223
Address: 115.56.90.84
Address: 116.131.60.102
Address: 115.56.90.198
```

Some valid domain names don't map to any IP address:

```
linux> nslookup ics.cs.cmu.edu
(No Address given)
```

(3) Internet Connections

- Clients and servers most often communicate by sending streams of bytes over TCP connections. Each connection is:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - Reliable: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.
- A socket is an endpoint of a connection
 - Socket address is an IPaddress:port pair
- A port is a 16-bit integer that identifies a process:
 - Ephemeral port: Assigned automatically by client kernel when client makes a connection request.
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)

Well-known Service Names and Ports

- Popular services have permanently assigned well-known ports and corresponding well-known service names:
 - echo servers: echo 7
 - ftp servers: ftp 21
 - ssh servers: ssh 22
 - email servers: smtp 25
 - Unencrypted Web servers: http 80
 - SSL/TLS encrypted Web: https 443
- Mappings between well-known ports and service names is contained in the file /etc/services on each Linux machine.

Anatomy of a Connection

- A connection is uniquely identified by the socket addresses of its endpoints (socket pair)
 - (cliaddr:cliport, servaddr:servport)

Using Ports to Identify Services

Sockets Interface

- Set of system-level functions used in conjunction with Unix I/O to build network applications.
- Created in the early 80's as part of the original Berkeley distribution of Unix that contained an early version of the Internet protocols.
- Available on all modern systems
 - Unix variants, Windows, OS X, IOS, Android, ARM

Sockets

- What is a socket?
 - To the kernel, a socket is an endpoint of communication
 - To an application, a socket is a file descriptor that lets the application read/write from/to the network
 - Using the FD abstraction lets you reuse code & interfaces
 - Remember: All Unix I/O devices, including networks, are modeled as files
- Clients and servers communicate with each other by reading from and writing to socket descriptors

The main distinction between regular file I/O and socket I/O is how the application "opens" the socket descriptors

Socket Address Structures

Generic socket address:

- For address arguments to connect, bind, and accept (next lecture)
- Necessary only because C did not have generic (void *) pointers when the sockets interface was designed
- For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

```
struct sockaddr {
  uint16_t sa_family;    /* Protocol family */
  char sa_data[14];    /* Address data */
};
```


Family Specific

Socket Address Structures

- Internet (IPv4) specific socket address:
 - Must cast (struct sockaddr_in *) to (struct sockaddr *) for functions that take socket address arguments.

Host and Service Conversion: getaddrinfo

- getaddrinfo is the modern way to convert string representations of hostnames, host addresses, ports, and service names to socket address structures.
 - Replaces obsolete gethostbyname and getservbyname funcs.

Advantages:

- Reentrant (can be safely used by threaded programs).
- Allows us to write portable protocol-independent code
 - Works with both IPv4 and IPv6

Disadvantages

- Somewhat complex
- Fortunately, a small number of usage patterns suffice in most cases.

Host and Service Conversion: getaddrinfo

- Given host and service, getaddrinfo returns result that points to a linked list of addrinfo structs, each of which points to a corresponding socket address struct, and which contains arguments for the sockets interface functions.
- Helper functions:
 - freeadderinfo frees the entire linked list.
 - gai strerror converts error code to an error message.

Linked List Returned by getaddrinfo

addrinfo Struct

- Each addrinfo struct returned by getaddrinfo contains arguments that can be passed directly to socket function.
- Also points to a socket address struct that can be passed directly to connect and bind functions.

Host and Service Conversion: getnameinfo

- getnameinfo is the inverse of getaddrinfo, converting a socket address to the corresponding host and service.
 - Replaces obsolete gethostbyaddr and getservbyport funcs.
 - Reentrant and protocol independent.

Conversion Example

```
#include "csapp.h"
int main(int argc, char **argv)
   struct addrinfo *p, *listp, hints;
   char buf[MAXLINE];
    int rc, flags;
   /* Get a list of addrinfo records */
   memset(&hints, 0, sizeof(struct addrinfo));
   // hints.ai family = AF INET; /* IPv4 only */
   hints.ai_socktype = SOCK STREAM; /* Connections only */
    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
        fprintf(stderr, "getaddrinfo error: %s\n", gai strerror(rc));
       exit(1);
                                                              hostinfo.d
```

Conversion Example (cont)

Running hostinfo

```
whaleshark> ./hostinfo localhost
127.0.0.1
whaleshark . . /hostinfo whaleshark . ics . cs . cmu . edu
128.2.210.175
whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198
whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e
```

Socket Programming Example

- Echo server and client
- Server
 - Accepts connection request
 - Repeats back lines as they are typed

Client

- Requests connection to server
- Repeatedly:
 - Read line from terminal
 - Send to server
 - Read reply from server
 - Print line to terminal

Echo Server/Client Session Example

Client

Server

whaleshark: ./echoserveri 6616	
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707)	(A)
server received 26 bytes	(B)
server received 17 bytes	(C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708)	(D)
server received 29 bytes	(E)

Recall: Unbuffered RIO Input/Output

- Same interface as Unix read and write
- Especially useful for transferring data on network sockets

```
#include "csapp.h"
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);
Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error
```

- rio readn returns short count only if it encounters EOF
 - Only use it when you know how many bytes to read
- rio_writen never returns a short count
- Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor

Recall: Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially cached in an internal memory buffer

```
#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
```

- rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf
 - Especially useful for reading text lines from network sockets
- Stopping conditions
 - maxlen bytes read
 - EOF encountered
 - Newline ('\n') encountered

Echo Client: Main Routine

```
#include "csapp.h"
int main(int argc, char **argv)
    int clientfd;
    char *host, *port, buf[MAXLINE];
    rio t rio;
   host = argv[1];
   port = argv[2];
    clientfd = Open clientfd(host, port);
   Rio readinitb(&rio, clientfd);
    while (Fgets(buf, MAXLINE, stdin) != NULL) {
       Rio writen(clientfd, buf, strlen(buf));
       Rio readlineb(&rio, buf, MAXLINE);
       Fputs(buf, stdout);
    Close(clientfd);
    exit(0);
                                                  echoclient.c
```

Iterative Echo Server: Main Routine

```
#include "csapp.h"
void echo(int connfd);
int main(int argc, char **argv)
    int listenfd, connfd;
    socklen t clientlen;
    struct sockaddr storage clientaddr; /* Enough room for any addr */
    char client hostname[MAXLINE], client port[MAXLINE];
    listenfd = Open listenfd(argv[1]);
    while (1) {
       clientlen = sizeof(struct sockaddr storage); /* Important! */
       connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
       Getnameinfo((SA *) &clientaddr, clientlen,
                    client hostname, MAXLINE, client port, MAXLINE, 0);
       printf("Connected to (%s, %s)\n", client hostname, client port);
       echo(connfd);
       Close (connfd);
    exit(0);
                                                               echoserveri.c
```

Echo Server: echo function

- The server uses RIO to read and echo text lines until EOF (end-of-file) condition is encountered.
 - EOF condition caused by client calling close (clientfd)

```
void echo(int connfd)
{
    size_t n;
    char buf[MAXLINE];
    rio_t rio;

    Rio_readinitb(&rio, connfd);
    while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
        printf("server received %d bytes\n", (int)n);
        Rio_writen(connfd, buf, n);
    }
}
```


Review: getaddrinfo

getaddrinfo converts string representations of hostnames, host addresses, ports, service names to socket address structures

Sockets Interface: socket

Clients and servers use the socket function to create a socket descriptor:

```
int socket(int domain, int type, int protocol)
```

Example:

Example:

Use getaddrinfo to generate the parameters automatically, so that code is protocol independent.

Sockets Interface: bind

■ A server uses bind to ask the kernel to associate the server's socket address with a socket descriptor:

```
int bind(int sockfd, SA *addr, socklen_t addrlen);
Our convention: typedef struct sockaddr SA;
```

- Process can read bytes that arrive on the connection whose endpoint is addr by reading from descriptor sockfd
- Similarly, writes to sockfd are transferred along connection whose endpoint is addr
- Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

Sockets Interface: listen

- Kernel assumes that descriptor from socket function is an active socket that will be on the client end
- A server calls the listen function to tell the kernel that a descriptor will be used by a server rather than a client:

```
int listen(int sockfd, int backlog);
```

- Converts sockfd from an active socket to a listening socket that can accept connection requests from clients.
- backlog is a hint about the number of outstanding connection requests that the kernel should queue up before starting to refuse requests (128-ish by default)

Sockets Interface: accept

Servers wait for connection requests from clients by calling accept:

```
int accept(int listenfd, SA *addr, int *addrlen);
```

- Waits for connection request to arrive on the connection bound to listenfd, then fills in client's socket address in addr and size of the socket address in addrlen.
- Returns a connected descriptor connfd that can be used to communicate with the client via Unix I/O routines.

Sockets Interface: connect

A client establishes a connection with a server by calling connect:

```
int connect(int clientfd, SA *addr, socklen_t addrlen);
```

- Attempts to establish a connection with server at socket address addr
 - If successful, then clientfd is now ready for reading and writing.
 - Resulting connection is characterized by socket pair

```
(x:y, addr.sin_addr:addr.sin_port)
```

- x is client address
- y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

connect/accept Illustrated

1. Server blocks in accept, waiting for connection request on listening descriptor listenfd

2. Client makes connection request by calling and blocking in connect

3. Server returns connfd from accept. Client returns from connect. Connection is now established between clientfd and connfd

Connected vs. Listening Descriptors

Listening descriptor

- End point for client connection <u>requests</u>
- Created once and exists for lifetime of the server

Connected descriptor

- End point of the <u>connection</u> between client and server
- A new descriptor is created each time the server accepts a connection request from a client
- Exists only as long as it takes to service client

Why the distinction?

- Allows for concurrent servers that can communicate over many client connections simultaneously
 - E.g., Each time we receive a new request, we fork a child to handle the request

Sockets Helper: open_clientfd

Establish a connection with a server

AI_ADDRCONFIG means "use whichever of IPv4 and IPv6 works on this computer". Good practice for clients, not for servers.

Sockets Helper: open_clientfd (cont)

```
/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p->ai next) {
    /* Create a socket descriptor */
    if ((clientfd = socket(p->ai family, p->ai socktype,
                           p->ai protocol)) < 0)
        continue; /* Socket failed, try the next */
    /* Connect to the server */
    if (connect(clientfd, p->ai addr, p->ai addrlen) != -1)
       break; /* Success */
    Close(clientfd); /* Connect failed, try another */
/* Clean up */
Freeaddrinfo(listp);
if (!p) /* All connects failed */
   return -1;
else /* The last connect succeeded */
   return clientfd;
                                                           csapp.c
```


Sockets Helper: open_listenfd

 Create a listening descriptor that can be used to accept connection requests from clients.

AI_PASSIVE means "I plan to listen on this socket."

AI_ADDRCONFIG normally not used for servers, but we use it for convenience

Sockets Helper: open_listenfd(cont)

```
/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai next) {
   /* Create a socket descriptor */
    if ((listenfd = socket(p->ai family, p->ai socktype,
                           p->ai protocol)) < 0)
        continue; /* Socket failed, try the next */
   /* Eliminates "Address already in use" error from bind */
   Setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
               (const void *)&optval , sizeof(int));
    /* Bind the descriptor to the address */
    if (bind(listenfd, p->ai addr, p->ai addrlen) == 0)
       break; /* Success */
   Close(listenfd); /* Bind failed, try the next */
}
                                                         csapp.c
```

A production server would not break out of the loop on the first success. We do that for simplicity only.

Sockets Helper: open_listenfd (cont)

```
/* Clean up */
Freeaddrinfo(listp);
if (!p) /* No address worked */
    return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {
    Close(listenfd);
    return -1;
}
return listenfd;
}</pre>
```

Key point: open_clientfd and open_listenfd are both independent of any particular version of IP.

Testing Servers Using telnet

- The telnet program is invaluable for testing servers that transmit ASCII strings over Internet connections
 - Our simple echo server
 - Web servers
 - Mail servers

Usage:

- linux> telnet <host> <portnumber>
- Creates a connection with a server running on <host> and listening on port <portnumber>

Testing the Echo Server With telnet

```
whaleshark> ./echoserveri 15213
Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes
server received 8 bytes
makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
Hi there!
Hi there!
Howdy!
Howdy!
^1
telnet> quit
Connection closed.
makoshark>
```

For More Information

- W. Richard Stevens et. al. "Unix Network Programming: The Sockets Networking API", Volume 1, Third Edition, Prentice Hall, 2003
 - THE network programming bible.
- Michael Kerrisk, "The Linux Programming Interface", No Starch Press, 2010
 - THE Linux programming bible.
- Complete versions of all code in this lecture is available from the 213 schedule page.
 - http://www.cs.cmu.edu/~213/schedule.html
 - csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c
 - You can use any of this code in your assignments.

Additional slides

Key Layers of the Internet

early milestones	Key Layers of the Internet	milestones
email@-1971 Ray Tomlinson	CONTENT	1987-HyperCard Bill Atkinson
Archie-1990 Emtage & Deutsch	SEARCH ENGINE*	1998-Google Brin & Page
DOS Houdini-1986 Neil Larson	BROWSERS	1993-Mosaic Marc Andreessen
Vannevar Bush, Ted Nelson, Douglas Engelbart	WORLD WIDE WEB	1990-http:// Tim Berners-Lee
ARPANET-1969 J.C.R. Licklider	INTERNET	1975-TCP/IP Cerf & Kahn
SAGE-1956 George Valley	NETWORKS	1973-Ethernet Robert Metcalfe
Z3-1941 Konrad Zuse	COMPUTERS	1976-Apple Jobs & Wozniak

Web Server Basics

- Clients and servers communicate using the HyperText Transfer Protocol (HTTP)
 - Client and server establish TCP connection
 - Client requests content
 - Server responds with requested content
 - Client and server close connection (eventually)
- Current version is HTTP/1.1
 - RFC 2616, June, 1999.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Web Content

Web servers return content to clients

 content: a sequence of bytes with an associated MIME (Multipurpose Internet Mail Extensions) type

Example MIME types

text/html
HTML document

text/plain
Unformatted text

• image/gif
Binary image encoded in GIF format

• image/png Binary image encoded in PNG format

image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:

http://www.iana.org/assignments/media-types/media-types.xhtml

Static and Dynamic Content

- The content returned in HTTP responses can be either static or dynamic
 - Static content: content stored in files and retrieved in response to an HTTP request
 - Examples: HTML files, images, audio clips, Javascript programs
 - Request identifies which content file
 - Dynamic content: content produced on-the-fly in response to an HTTP request
 - Example: content produced by a program executed by the server on behalf of the client
 - Request identifies file containing executable code
- Web content associated with a file that is managed by the server

URLs and how clients and servers use them

- Unique name for a file: URL (Universal Resource Locator)
- Example URL: http://www.cmu.edu:80/index.html
- Clients use prefix (http://www.cmu.edu:80) to infer:
 - What kind (protocol) of server to contact (HTTP)
 - Where the server is (www.cmu.edu)
 - What port it is listening on (80)
- Servers use suffix (/index.html) to:
 - Determine if request is for static or dynamic content.
 - No hard and fast rules for this
 - One convention: executables reside in cgi-bin directory
 - Find file on file system
 - Initial "/" in suffix denotes home directory for requested content.
 - Minimal suffix is "/", which server expands to configured default filename (usually, index.html)

HTTP Requests

- HTTP request is a request line, followed by zero or more request headers
- Request line: <method> <uri> <version>
 - <method> is one of GET, POST, OPTIONS, HEAD, PUT,
 DELETE, or TRACE
 - **<ur>: <ur>:** is typically URL for proxies, URL suffix for servers
 - A URL is a type of URI (Uniform Resource Identifier)
 - See http://www.ietf.org/rfc/rfc2396.txt
 - **version>** is HTTP version of request (HTTP/1.0 or HTTP/1.1)
- Request headers: <header name>: <header data>
 - Provide additional information to the server

HTTP Responses

HTTP response is a response line followed by zero or more response headers, possibly followed by content, with blank line ("\r\n") separating headers from content.

Response line:

<version> <status code> <status msg>

- <version> is HTTP version of the response
- <status code> is numeric status
- <status msg> is corresponding English text
 - 200 OK Request was handled without error
 - 301 Moved Provide alternate URL
 - 404 Not found Server couldn't find the file
- Response headers: <header name>: <header data>
 - Provide additional information about response
 - Content-Type: MIME type of content in response body
 - Content-Length: Length of content in response body

Example HTTP Transaction

```
whaleshark> telnet www.cmu.edu 80
                                          Client: open connection to server
Trying 128.2.42.52...
                                          Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET / HTTP/1.1
                                          Client: request line
Host: www.cmu.edu
                                          Client: required HTTP/1.1 header
                                          Client: blank line terminates headers
HTTP/1.1 301 Moved Permanently
                                          Server: response line
Date: Wed, 05 Nov 2014 17:05:11 GMT
                                          Server: followed by 5 response headers
Server: Apache/1.3.42 (Unix)
                                          Server: this is an Apache server
Location: <a href="http://www.cmu.edu/index.shtml">http://www.cmu.edu/index.shtml</a> Server: page has moved here
Transfer-Encoding: chunked
                                          Server: response body will be chunked
Content-Type: text/html; charset=...
                                          Server: expect HTML in response body
                                          Server: empty line terminates headers
                                          Server: first line in response body
15c
<HTML><HEAD>
                                          Server: start of HTML content
</BODY></HTML>
                                          Server: end of HTML content
                                          Server: last line in response body
Connection closed by foreign host.
                                          Server: closes connection
```

- HTTP standard requires that each text line end with "\r\n"
- Blank line (" \r \n") terminates request and response headers

Example HTTP Transaction, Take 2

```
whaleshark> telnet www.cmu.edu 80
                                         Client: open connection to server
Trying 128.2.42.52...
                                         Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET /index.shtml HTTP/1.1
                                         Client: request line
Host: www.cmu.edu
                                         Client: required HTTP/1.1 header
                                         Client: blank line terminates headers
HTTP/1.1 200 OK
                                         Server: response line
Date: Wed, 05 Nov 2014 17:37:26 GMT
                                         Server: followed by 4 response headers
Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...
                                         Server: empty line terminates headers
1000
                                         Server: begin response body
<html ..>
                                         Server: first line of HTML content
</html>
                                         Server: end response body
Connection closed by foreign host.
                                         Server: close connection
```

Example HTTP(S) Transaction, Take 3

```
whaleshark> openssl s client www.cs.cmu.edu:443
CONNECTED (0000005)
Certificate chain
Server certificate
----BEGIN CERTIFICATE----
MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAw
djELMAkGA1UEBhMCVVMxCzAJBqNVBAqTAk1JMRIwEAYDVQQHEwlBbm4qQXJib3Ix
EjAQBqNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5Db21tb24xHzAdBqNVBAMT
wkWkvDVBBCwKXrShVxQNsj6J
----END CERTIFICATE----
subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes
Ave/O=Carnegie Mellon University/OU=School of Computer
Science/CN=www.cs.cmu.edu
                              issuer=/C=US/ST=MI/L=Ann
Arbor/O=Internet2/OU=InCommon/CN=InCommon RSA Server CA
SSL handshake has read 6274 bytes and written 483 bytes
>GET / HTTP/1.0
HTTP/1.1 200 OK
Date: Tue, 12 Nov 2019 04:22:15 GMT
Server: Apache/2.4.10 (Ubuntu)
Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu
... HTML Content Continues Below ...
```

Tiny Web Server

■ Tiny Web server described in text

- Tiny is a sequential Web server
- Serves static and dynamic content to real browsers
 - text files, HTML files, GIF, PNG, and JPEG images
- 239 lines of commented C code
- Not as complete or robust as a real Web server
 - You can break it with poorly-formed HTTP requests (e.g., terminate lines with "\n" instead of "\r\n")

Tiny Operation

- Accept connection from client
- Read request from client (via connected socket)
- Split into <method> <uri> <version>
 - If method not GET, then return error
- If URI contains "cgi-bin" then serve dynamic content
 - (Would do wrong thing if had file "abcgi-bingo.html")
 - Fork process to execute program
- Otherwise serve static content
 - Copy file to output

Tiny Serving Static Content

```
void serve static(int fd, char *filename, int filesize)
    int srcfd;
    char *srcp, filetype[MAXLINE], buf[MAXBUF];
    /* Send response headers to client */
    get filetype(filename, filetype);
    sprintf(buf, "HTTP/1.0 200 OK\r\n");
    sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
    sprintf(buf, "%sConnection: close\r\n", buf);
    sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
    sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
    Rio writen(fd, buf, strlen(buf));
    /* Send response body to client */
    srcfd = Open(filename, O RDONLY, 0);
    srcp = Mmap(0, filesize, PROT READ, MAP PRIVATE, srcfd, 0);
   Close(srcfd);
   Rio writen(fd, srcp, filesize);
   Munmap(srcp, filesize);
                                                              tinv.c
```

Serving Dynamic Content

- Client sends request to server
- If request URI contains the string "/cgi-bin", the Tiny server assumes that the request is for dynamic content

Serving Dynamic Content (cont)

The server creates a child process and runs the program identified by the URI in that process

env.pl

Serving Dynamic Content (cont)

- The child runs and generates the dynamic content
- The server captures the content of the child and forwards it without modification to the client

Issues in Serving Dynamic Content

- How does the client pass program arguments to the server?
- How does the server pass these arguments to the child?
- How does the server pass other info relevant to the request to the child?
- How does the server capture the content produced by the child?
- These issues are addressed by the Common Gateway Interface (CGI) specification.

CGI

- Because the children are written according to the CGI spec, they are often called CGI programs.
- However, CGI really defines a simple standard for transferring information between the client (browser), the server, and the child process.
- CGI is the original standard for generating dynamic content. Has been largely replaced by other, faster techniques:
 - E.g., fastCGI, Apache modules, Java servlets, Rails controllers
 - Avoid having to create process on the fly (expensive and slow).

The add.com Experience

- Question: How does the client pass arguments to the server?
- Answer: The arguments are appended to the URI
- Can be encoded directly in a URL typed to a browser or a URL in an HTML link
 - http://add.com/cgi-bin/adder?15213&18213
 - adder is the CGI program on the server that will do the addition.
 - argument list starts with "?"
 - arguments separated by "&"
 - spaces represented by "+" or "%20"

- URL suffix:
 - cgi-bin/adder?15213&18213
- Result displayed on browser:

```
Welcome to add.com: THE Internet addition portal.
```

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

- Question: How does the server pass these arguments to the child?
- Answer: In environment variable QUERY_STRING
 - A single string containing everything after the "?"
 - For add: QUERY STRING = "15213&18213"

```
/* Extract the two arguments */
if ((buf = getenv("QUERY_STRING")) != NULL) {
    p = strchr(buf, '&');
    *p = '\0';
    strcpy(arg1, buf);
    strcpy(arg2, p+1);
    n1 = atoi(arg1);
    n2 = atoi(arg2);
}
adder.c
```

- Question: How does the server capture the content produced by the child?
- Answer: The child generates its output on stdout. Server uses dup2 to redirect stdout to its connected socket.

```
void serve dynamic(int fd, char *filename, char *cgiargs)
    char buf[MAXLINE], *emptylist[] = { NULL };
    /* Return first part of HTTP response */
    sprintf(buf, "HTTP/1.0 200 OK\r\n");
   Rio writen(fd, buf, strlen(buf));
    sprintf(buf, "Server: Tiny Web Server\r\n");
   Rio writen(fd, buf, strlen(buf));
    if (Fork() == 0) { /* Child */
        /* Real server would set all CGI vars here */
        setenv("QUERY STRING", cgiargs, 1);
       Dup2(fd, STDOUT FILENO);  /* Redirect stdout to client */
       Execve(filename, emptylist, environ); /* Run CGI program */
   Wait(NULL); /* Parent waits for and reaps child */
                                                                   tinv.c
```

Notice that only the CGI child process knows the content type and length, so it must generate those headers.

```
/* Make the response body */
sprintf(content, "Welcome to add.com: ");
sprintf(content, "%sTHE Internet addition portal.\r\n", content);
sprintf(content, "%sThe answer is: d + d = d\r\p>",
        content, n1, n2, n1 + n2);
sprintf(content, "%sThanks for visiting!\r\n", content);
/* Generate the HTTP response */
printf("Content-length: %d\r\n", (int)strlen(content));
printf("Content-type: text/html\r\n\r\n");
printf("%s", content);
fflush(stdout);
exit(0);
                                                               adder
```

```
bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
GET /cgi-bin/adder?15213&18213 HTTP/1.0
                                                    HTTP request sent by client
HTTP/1.0 200 OK
                                                    HTTP response generated
Server: Tiny Web Server
                                                    by the server
Connection: close
Content-length: 117
Content-type: text/html
                                                    HTTP response generated
Welcome to add.com: THE Internet addition portal.
                                                    by the CGI program
p>The answer is: 15213 + 18213 = 33426
Thanks for visiting!
Connection closed by foreign host.
bash:makoshark>
```

Proxies

- A *proxy* is an intermediary between a client and an *origin server*
 - To the client, the proxy acts like a server
 - To the server, the proxy acts like a client

Why Proxies?

- Can perform useful functions as requests and responses pass by
 - Examples: Caching, logging, anonymization, filtering, transcoding

Fast inexpensive local network

Evolution of Internet

Original Idea

- Every node on Internet would have unique IP address
 - Everyone would be able to talk directly to everyone
- No secrecy or authentication
 - Messages visible to routers and hosts on same LAN
 - Possible to forge source field in packet header

Shortcomings

- There aren't enough IP addresses available
- Don't want everyone to have access or knowledge of all other hosts
- Security issues mandate secrecy & authentication

Evolution of Internet: Naming

Dynamic address assignment

- Most hosts don't need to have known address
 - Only those functioning as servers
- DHCP (Dynamic Host Configuration Protocol)
 - Local ISP assigns address for temporary use

Example:

- Laptop at CMU (wired connection)
 - IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 - Assigned statically
- Laptop at home
 - IP address 192.168.1.5
 - Only valid within home network

Evolution of Internet: Firewalls

Firewalls

- Hides organizations nodes from rest of Internet
- Use local IP addresses within organization
- For external service, provides proxy service
 - 1. Client request: src=10.2.2.2, dest=216.99.99.99
 - 2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
 - 3. Server responds: src=216.99.99.99, dest=176.3.3.3
 - 4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2