MYE023: Homework #1

Due on Monday, April 7, 2017

Vassilios V. Dimakopoulos

George Z. Zachos

March 28, 2017

Contents

1	\mathbf{Exe}	ercise #1	3
	1.1	About	3
	1.2	Experiment details	3
		1.2.1 System	3
	1.3	Timing Results	4
	1.4	Conclusion	8

1 Exercise #1

1.1 About

This exercise is about the calculation of the mathematical constant π using POSIX threads and dynamic scheduling. During dynamic scheduling the parallelizable loops are divided into chunks of iterations (tasks) and are dispatched to the threads available to the runtime system for execution. The dispatch takes place in respect to the current processor workload where the thread executes and as a result load balancing is achieved. In case chunk size is one (1) iteration, we refer to this technique as self-scheduling.

The purpose of this exercise is to time the calculation of π and observe how altering the number of threads and chunk size will affect execution time.

1.2 Experiment details

The calculation consists of $5 * 10^8$ loop iterations, while thread number takes value in $\{1, 4, 16\}$ and chunk size in $\{1, 10, 10^2, 10^3, 10^4 \text{ and } 10^5\}$.

1.2.1 System

The experiments were conducted on a Dell OptiPlex 7020:

- CPU: Intel® CoreTM i5-4590 CPU @ 3.30GHz (64 bit)
- RAM: 2 DIMMs x4GiB @ 1600MHz DDR3
- Cache line size: 64B (in all levels)
- Cache associativity:
 - L1, L2: 8-way set associative
 - L3: 12-way set associative

Figure 1: Topology information of a Dell OptiPlex 7020

1.3 Timing Results

In the following tables and plots the recorded execution times are displayed.

Timing results of π calculation (Time unit: seconds)								
Chunk Size	# of threads	1st run	2nd run	3rd run	4thr run	Average time		
1	1	18.451202	18.443870	18.444319	18.441278	18.44516725		
1	4	98.559317	98.393137	99.515415	98.189223	98.664273		
1	16	95.482310	95.205719	95.275233	95.197046	95.290077		

Table 1: Timing results of π calculation using chunk size = 1 iteration

Figure 2: Timing results of π calculation using chunk size = 1 iteration

Timing results of π calculation (Time unit: seconds)								
Chunk Size # of threads 1st run 2nd run 3rd run 4thr run Average time								
10	1	6.505206	6.510850	6.507051	6.511070	6.50854425		
10	4	10.843631	10.728116	10.715714	10.832101	10.7798905		
10	16	10.829372	10.820372	10.842818	10.748566	10.810282		

Table 2: Timing results of π calculation using chunk size = 10 iteration

Figure 3: Timing results of π calculation using chunk size = 10 iterations

Timing results of π calculation (Time unit: seconds)								
Chunk Size	# of threads	1st run	2nd run	3rd run	4thr run	Average time		
100	1	6.275921	6.279012	7.893470	6.281098	6.68237525		
100	4	2.428611	2.464799	2.463414	2.425332	2.445539		
100	16	2.425184	2.459710	2.432488	2.458897	2.44406975		

Table 3: Timing results of π calculation using chunk size = 100 iteration

Figure 4: Timing results of π calculation using chunk size = 100 iterations

Timing results of π calculation (Time unit: seconds)							
Chunk Size	# of threads	1st run	2nd run	3rd run	4thr run	Average time	
1000	1	6.248489	6.254362	6.254913	6.251492	6.252314	
1000	4	1.733363	1.735331	1.732440	1.734742	1.733969	
1000	16	1.731060	1.726669	1.730891	1.732937	1.73038925	

Table 4: Timing results of π calculation using chunk size = 1000 iteration

Figure 5: Timing results of π calculation using chunk size = 1000 iterations

Timing results of π calculation (Time unit: seconds)							
Chunk Size	# of threads	1st run	2nd run	3rd run	4thr run	Average time	
10000	1	6.244337	6.252478	6.250002	6.252064	6.24972025	
10000	4	1.664214	1.659239	1.660260	1.659163	1.660719	
10000	16	1.660762	1.664066	1.661164	1.658869	1.66121525	

Table 5: Timing results of π calculation using chunk size = 10000 iteration

Timing results of π calculation (Time unit: seconds)								
Chunk Size	# of threads	1st run	2nd run	3rd run	4thr run	Average time		
100000	1	6.237799	6.234975	6.244593	6.235083	6.2381125		
100000	4	1.661888	1.658459	1.667569	1.651900	1.659954		
100000	16	1.653965	1.652250	1.651300	1.651015	1.6521325		

Table 6: Timing results of π calculation using chunk size = 100000 iteration

Figure 6: Timing results of π calculation using chunk size = 10000 iterations

Figure 7: Timing results of π calculation using chunk size = 100000 iterations

1.4 Conclusion

blah blah