#### INLA - Introduction

Elias T. Krainski eliaskr@ufpr.br

62<sup>a</sup> RBras & 17<sup>o</sup> SEAGRO, Jul–2017, Lavras/MG

### Outline

- Tokyo example
- 2 On the Tokyo model

- 3 Bayesian inference
- 4 INLA overview

### Outline

- 1 Tokyo example
- 2 On the Tokyo model

- 3 Bayesian inference
- 4 INLA overview

### A model for Tokyo data

Observation model

$$y_i \sim \text{Binomial}(n_i, p_i)$$

$$p_i = \frac{1}{1 + \exp(-x_i)}$$

the likelihood has no heta

$$\pi(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^{366} \pi(y_i|x_i)$$

#### Latent model

$$\pi(\boldsymbol{x}|\boldsymbol{\theta}) \propto \exp\left\{-\frac{\theta}{2}\left[(x_1 - x_{366})^2 + \sum_{i=2}^{366}(x_i - x_{i-1})^2\right]\right\}$$
(1)  
= 
$$\exp\left\{-\frac{\theta}{2}\boldsymbol{x}^T\boldsymbol{R}\boldsymbol{x}\right\}$$
(2)

#### Latent model

$$\pi(\boldsymbol{x}|\boldsymbol{\theta}) \propto \exp\left\{-\frac{\theta}{2}\left[(x_1 - x_{366})^2 + \sum_{i=2}^{366}(x_i - x_{i-1})^2\right]\right\}$$
(1)  
$$= \exp\left\{-\frac{\theta}{2}\boldsymbol{x}^T\boldsymbol{R}\boldsymbol{x}\right\}$$
(2)

where 
$$\mathbf{R} = \begin{pmatrix} 2 & -1 & & & & & -1 \\ -1 & 2 & -1 & & & & & \\ & -1 & 2 & -1 & & & & & \\ & & & \ddots & & & & \\ & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ -1 & & & & & -1 & 2 \end{pmatrix}$$

eliaskr@ufpr.br INLA - Introduction / 23

### Latent model warning

$$\exp\left\{-\frac{\theta}{2}\left[(x_1-x_{366})^2+\sum_{i=2}^{366}(x_i-x_{i-1})^2\right]\right\}$$
 (3)

(4)

/ 23

intrinsic/improper

$$x_i = 20,$$
  $x_{i-1} = 10 \rightarrow x_i - x_{i-1} = 10$   
 $x_i = 10020,$   $x_{i-1} = 10010 \rightarrow x_i - x_{i-1} = 10$ 

constraint or take the intercept out

eliaskr@ufpr.br INLA - Introduction

# $\pi(\boldsymbol{\theta})$ problem

- Tokyo example:  $Q(\theta) = \theta R$ 
  - ullet bigger heta less variation of  ${m x}$ 
    - related to the variation of  $p_i$
- $\theta > 0$ : people usually use  $\theta \sim \text{Gamma}(a, b)$
- ullet improper distribution: heta values depends on  ${m R}$ 
  - hard to interpret  $\theta$  (a=?????, b=?????)

# $\pi(\mathbf{x}|\theta=1)$ and n

#### The marginal variance and n relation

```
rw.var <- function(n, order) {
    R <- as.matrix(INLA:::inla.rw(n, order=order))</pre>
   mean(diag(INLA:::inla.ginv(R, rankdef=order)))
}
n < c(10, 100, 366, 1000); names(n) < n
rbind(rw1=sapply(n, rw.var, order=1),
      rw2=sapply(n, rw.var, order=2))
##
   10
                100
                             366
                                         1000
## rw1 1.65 16.665 60.99954 166.6665
## rw2 2.40 2381.190 116733.95702 2380955.1304
```

# $\pi(\mathbf{x}|\theta=1)$ : one realization



We need to control the marginal variance!

# $\pi(\boldsymbol{\theta})$ solution

- **1** scale the model  $\rightarrow$  easy to interpret  $\theta$ 
  - Tutorial on scale.option at www.r-inla.org/

# $\pi(\theta)$ solution

- **1** scale the model  $\rightarrow$  easy to interpret  $\theta$ 
  - Tutorial on scale.option at www.r-inla.org/
- 2 AND (new idea) Penalized complexity prior
  - P0: basic model:  $p_i = p_0$
  - P1: complex model: p<sub>i</sub> varies
  - Kullback-Leibler divergence (KLD)
    - a distance from P1 model to P0, KLD(P0/P0) = 0
  - allow variation on p<sub>i</sub>
  - AND supports the basic model
    - Gamma(a, b) always overfits

### Outline

- Tokyo example
- 2 On the Tokyo model

- 3 Bayesian inference
- 4 INLA overview

## On our Bayesian hierarchical model

- ullet Inference on (what we know about)  $oldsymbol{ heta}$  and  $oldsymbol{x}$  given  $oldsymbol{y}$ 
  - in maths:  $\pi({\pmb x}|{\pmb y})$  and  $\pi({\pmb \theta}|{\pmb y})$
- considering  $\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$ ,  $\pi(\mathbf{x}|\boldsymbol{\theta})$  and  $\pi(\boldsymbol{\theta})$

## On our Bayesian hierarchical model

- ullet Inference on (what we know about)  $oldsymbol{ heta}$  and  $oldsymbol{x}$  given  $oldsymbol{y}$ 
  - in maths:  $\pi(\boldsymbol{x}|\boldsymbol{y})$  and  $\pi(\boldsymbol{\theta}|\boldsymbol{y})$
- considering  $\pi(y|x,\theta)$ ,  $\pi(x|\theta)$  and  $\pi(\theta)$
- using the Bayes theorem,

$$\pi(\mathbf{x}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\mathbf{x}$$

# On our Bayesian hierarchical model

- ullet Inference on (what we know about)  $oldsymbol{ heta}$  and  $oldsymbol{x}$  given  $oldsymbol{y}$ 
  - in maths:  $\pi(\boldsymbol{x}|\boldsymbol{y})$  and  $\pi(\boldsymbol{\theta}|\boldsymbol{y})$
- considering  $\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$ ,  $\pi(\mathbf{x}|\boldsymbol{\theta})$  and  $\pi(\boldsymbol{\theta})$
- using the Bayes theorem,

$$\pi(\mathbf{x}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\mathbf{x}$$

- even more...
  - $\pi(\theta_j|\mathbf{y}), j = 1, ..., \dim(\boldsymbol{\theta})$
  - $\pi(x_i|y)$ ,  $i = 1, ..., \dim(x)$

we have to compute

$$\pi(x_i|\mathbf{y}) \propto \int_{x_{\{-i\}}} \int_{m{ heta}} \pi(y|\mathbf{x},m{ heta}) \pi(\mathbf{x}|m{ heta}) \pi(m{ heta}) dm{ heta} d\mathbf{x}_{\{-i\}}$$

we have to compute

$$\pi(x_i|\mathbf{y}) \propto \int_{x_{\{-i\}}} \int_{m{ heta}} \pi(y|\mathbf{x},m{ heta}) \pi(\mathbf{x}|m{ heta}) \pi(m{ heta}) dm{ heta} d\mathbf{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\mathbf{y}) \propto \int_{\mathbf{x}} \int_{\boldsymbol{\theta}_{\{-j\}}} \pi(y|\mathbf{x},\boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}_{\{-j\}} d\mathbf{x}$$

we have to compute

$$\pi(x_i|\mathbf{y}) \propto \int_{\mathbf{x}_{\{-i\}}} \int_{\mathbf{\theta}} \pi(y|\mathbf{x},\mathbf{\theta}) \pi(\mathbf{x}|\mathbf{\theta}) \pi(\mathbf{\theta}) d\mathbf{\theta} d\mathbf{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\mathbf{y}) \propto \int_{\mathbf{x}} \int_{\boldsymbol{\theta}_{\{-j\}}} \pi(y|\mathbf{x},\boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}_{\{-j\}} d\mathbf{x}$$

- remember
  - $dim(\theta)$  is small
  - dim(x) is not small
  - we have to compute very high dimensional integrals

we have to compute

$$\pi(x_i|oldsymbol{y}) \propto \int_{x_{\{-i\}}} \int_{oldsymbol{ heta}} \pi(y|oldsymbol{x},oldsymbol{ heta}) \pi(oldsymbol{x}|oldsymbol{ heta}) \pi(oldsymbol{ heta}) doldsymbol{ heta} doldsymbol{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\mathbf{y}) \propto \int_{\mathbf{x}} \int_{\mathbf{\theta}_{\{-j\}}} \pi(y|\mathbf{x},\mathbf{\theta}) \pi(\mathbf{x}|\mathbf{\theta}) \pi(\mathbf{\theta}) d\mathbf{\theta}_{\{-j\}} d\mathbf{x}$$

- remember
  - $dim(\theta)$  is small
  - dim(x) is not small
  - we have to compute very high dimensional integrals
- typically they are not analytically tractable
  - ullet o we have to approach

/ 23

# using MCMC

- single-site: compute (the expressions) for
  - $p(\theta_i|\boldsymbol{\theta}_{-i}, \boldsymbol{x}, \boldsymbol{y})$
  - $p(x_i|\mathbf{x}_{-i},\boldsymbol{\theta},\mathbf{y})$

# using MCMC

- single-site: compute (the expressions) for
  - $p(\theta_i|\theta_{-i}, \mathbf{x}, \mathbf{y})$
  - $p(x_i|\mathbf{x}_{-i},\theta,\mathbf{y})$
- draw samples from such conditionals
  - WinBUGS, OpenBUGS, JAGS, and others
- ullet use these samples to summarize p(x) and p( heta)

/ 23

## using MCMC

- single-site: compute (the expressions) for
  - $p(\theta_i|\theta_{-i}, \mathbf{x}, \mathbf{y})$
  - $p(x_i|\mathbf{x}_{-i},\boldsymbol{\theta},\mathbf{y})$
- draw samples from such conditionals
  - WinBUGS, OpenBUGS, JAGS, and others
- use these samples to summarize p(x) and  $p(\theta)$
- warning
  - sampling from  $x_i | \mathbf{x}_{-i}, \boldsymbol{\theta}, y$ 
    - slow convergence when strong dependence
    - does not works for our example...
  - better: draw joint sample from  $x | \theta, y$
  - best: use INLA

### Outline

- Tokyo example
- 2 On the Tokyo model

- 3 Bayesian inference
- 4 INLA overview

#### What INLA does

- INLA does:
  - compute marginals of  $\pi(x_i|\mathbf{y})$  and  $\pi(\theta_i|\mathbf{y})$
- how?
  - approach  $\pi(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})$  to approach  $\pi(\boldsymbol{\theta}|\mathbf{y})$
  - explore  $\pi(\boldsymbol{\theta}|\mathbf{y})$ 
    - approach  $\pi(\theta_j|\mathbf{y})$
  - approach  $\pi(x_i|\mathbf{x}_{-i})$

The GMRF-approximation

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{Q} \mathbf{x} + \sum_i \log \pi(y_i | x_i)\right)$$

The GMRF-approximation

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T}(\mathbf{Q} + \operatorname{diag}(\mathbf{c}))(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$$

$$c_i = -rac{dl_i^2}{dx_i^2}$$
 where  $l_i = \log(\pi(y_i|x_i)), \ i=1,...,\#$  data

The GMRF-approximation

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T}(\mathbf{Q} + \operatorname{diag}(\mathbf{c}))(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$$

$$c_i = -rac{dl_i^2}{d\mathsf{x}_i^2}$$
 where  $l_i = \mathsf{log}(\pi(y_i|\mathsf{x}_i)),\ i = 1,...,\#$  data

ullet Markov and computational properties (on  $oldsymbol{Q}$ ) are preserved

/ 23

The GMRF-approximation

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T}(\mathbf{Q} + \operatorname{diag}(\boldsymbol{c}))(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$$

$$c_i = -rac{dl_i^2}{d extstyle z_i^2}$$
 where  $l_i = \log(\pi(y_i| extstyle x_i)), \ i = 1,...,\#$  data

- ullet Markov and computational properties (on  $oldsymbol{Q}$ ) are preserved
- $\widetilde{\pi}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})$  costs
  - temporal: O(n)
  - spatial:  $O(n\log(n))$

If  $y|x, \theta$  is Gaussian, the "approximation" is exact.

Considering

$$\pi(\theta|\mathbf{y}) = \frac{\pi(\theta, \mathbf{x}|\mathbf{y})}{\pi(\mathbf{x}|\theta, \mathbf{y})}$$

Considering

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta}, \mathbf{x}|\mathbf{y})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

Considering

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta}, \mathbf{x}|\mathbf{y})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

Gaussian approximation to denominator

$$\pi(\boldsymbol{\theta}|\mathbf{y}) \approx \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x},\boldsymbol{\theta})}{\pi_{\mathsf{G}}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})}|_{\mathbf{x}=\mathbf{x}^*(\boldsymbol{\theta})}$$

Considering

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta}, \mathbf{x}|\mathbf{y})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})}{\pi(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})}$$

Gaussian approximation to denominator

$$\pi(\boldsymbol{\theta}|\mathbf{y}) \approx \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x},\boldsymbol{\theta})}{\pi_{\mathsf{G}}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})}|_{\mathbf{x}=\mathbf{x}^*(\boldsymbol{\theta})}$$

- mode of  $\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$  (optimization)
  - explore  $\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$ 
    - approach  $\pi(\theta_j|\mathbf{y})$  (numerical integration)

eliaskr@ufpr.br INLA - Introduction / 23

# INLA, $\pi(x_i|\mathbf{y}, \boldsymbol{\theta})$

#### Approaching $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$

- Problem
  - dim(x)=n is not small
  - n marginals to compute
- Laplace approximation

$$\widetilde{\pi}(x_i \mid \mathbf{y}, \boldsymbol{\theta}) \approx \frac{\pi(\mathbf{x}, \boldsymbol{\theta} | \mathbf{y})}{\widetilde{\pi}_{GG}(\mathbf{x}_{-i} | x_i, \mathbf{y}, \boldsymbol{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}_{-i}^*(x_i, \boldsymbol{\theta})}$$

# INLA, $\pi(x_i|\boldsymbol{y},\boldsymbol{\theta})$

Approaching  $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$ 

- Problem
  - dim(x)=n is not small
  - n marginals to compute
- Laplace approximation

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \mathbf{\theta}) \approx \frac{\pi(\mathbf{x}, \mathbf{\theta} | \mathbf{y})}{\widetilde{\pi}_{GG}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \mathbf{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}_{-i}^*(\mathbf{x}_i, \mathbf{\theta})}$$

ullet simpler/cruder (fast) approximation (from  $\pi_{G}(\pmb{x}|\pmb{y},\pmb{ heta}))$ 

$$\hat{\pi}(x_i|\boldsymbol{y},\boldsymbol{\theta}) = N(x_i; \mu_i(\boldsymbol{\theta}), \sigma_i^2(\boldsymbol{\theta}))$$

# INLA, $\pi(x_i|\mathbf{y})$

Approaching  $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$ 

- integrate  $\theta$  out from  $\widetilde{\pi}(x_i \mid \mathbf{y}, \theta)$
- $\bullet$  select values for  $\theta$
- use weighted sum

$$\widetilde{\pi}(x_i \mid \boldsymbol{y}) \propto \sum_j \widetilde{\pi}(x_i \mid \boldsymbol{y}, \boldsymbol{\theta}_j) \times \widetilde{\pi}(\boldsymbol{\theta}_j \mid \boldsymbol{y})$$

#### Remarks

- **1** Expect  $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$  to be accurate, since
  - $x|\theta$  is a priori Gaussian
  - Likelihood models are 'well-behaved' so

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$$

is almost Gaussian.

- ② There are no distributional assumptions on  $\theta|\mathbf{y}$
- 3 Similar remarks are valid to

$$\widetilde{\pi}(x_i \mid \boldsymbol{\theta}, \boldsymbol{y})$$

## How can we assess the error in the approximations?

**Tool 1**: Compare a sequence of improved approximations

- Gaussian approximation
- Simplified Laplace
- Supplied the supplied of the supplied to th

No big differences  $\rightarrow$  good approximation

## How can we assess the error in the approximations?

**Tool 2:** Estimate the "effective" number of parameters as defined in the Deviance Information Criteria:

$$p_{D}(\boldsymbol{\theta}) = \overline{D}(\boldsymbol{x}; \boldsymbol{\theta}) - D(\overline{\boldsymbol{x}}; \boldsymbol{\theta})$$

and compare this with the number of observations Low ratio is good.

This criteria has theoretical justification.

/ 23