ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 20 febbraio 2017

Esercizio A

$R_{1} = 100 \ \Omega$ $R_{3} = 80 \ k\Omega$ $R_{4} = 1250 \ \Omega$ $R_{5} = 21 \ k\Omega$ $R_{6} = 100 \ \Omega$ $R_{7} = 900 \ \Omega$ $R_{8} = 18 \ k\Omega$	$R_{11} = 60 \text{ k}\Omega$ $R_{12} = 2 \text{ k}\Omega$ $R_{13} = 26 \text{ k}\Omega$ $R_{14} = 50 \text{ k}\Omega$ $C_1 = 2.2 \text{ nF}$ $C_2 = 1 \mu\text{F}$ $C_3 = 1 \mu\text{F}$	R ₁	V_{cc} R_2 C_1 R_3	R_{5} R_{4}	R_{ϵ} R_{γ}	V _{cc}	V_{cc} R_{12} C_4 R_{13} R_{14} R_{14} C_3 R_{10}	
	•	I Ÿ	,,,,,	\int_{0}^{∞}		R ₁₁	l D	
$R_9 = 9 \text{ k}\Omega$	$C_4 = 330 \text{ nF}$					nnn	, ,,,,,,	
$R_{10} = 30 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$							

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo con $V_{T2} = 1$ V con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 13 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 315588 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.26$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =1321 Hz; f_{z2} =177 Hz; f_{p2} =184 Hz; f_{z3} = f_{p3} ; f_{z4} =0 Hz; f_{p4} =9 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A+B}\right)\left(C\ \overline{D} + D + \overline{E}\right) + \overline{A}\left(\overline{B}\ \overline{C}\ \overline{D} + B\ \overline{E}\right) + \overline{C}\ D$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 4.8 \; k\Omega$
$R_2 = 15 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 47 nF
$R_4 = 9 \text{ k}\Omega$	$V_{CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = -1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. R: f = 3547 Hz)

SERCIZIO A

$$I_{12} = \frac{V_{cc} - V_{o}}{R_{12}} = 2.5 \text{ mA}$$

$$I_{13} = \frac{V_D}{R_{13}} = 0.5 \text{ mA}$$

$$\left(V_{05}-V_{7}\right)=\left(\frac{1}{2}\right)\frac{\overline{L_{0}}}{K}=2V$$

$$V_{DS} = V_{D} - V_{S} = 13 - 9 = 4 V > (V_{GS} - V_{T}) = 2V =) hp. verificata$$

 $Q_2: \begin{cases} I_0 = 2mA \\ V_{05} = 4V \\ V_{65} = 3V \\ \Im m = 2mA \\ V \end{cases}$

$$g_m = 2\kappa (V_{os} - V_T) = 2 \frac{mA}{V}$$

$$I_8 = \frac{V_{cc} - V_5}{R_8} = 0.5 \text{ mA}$$

$$T_3 = \frac{V_5}{R_3} = ImA$$

R = 100R

$$V_{cE} = V_c - V_E = 5V$$

 $V_{ce} = 5V$ $V_{ce} = 5V$ $V_{de} = 6.8365 \mu A$ $V_{de} = 280$ $V_{de} = 4800 D$ $V_{de} = 300$

$$V_{u} = (-g_{m} v_{gs})(R_{12}||R_{13}||R_{14}) = Q$$

$$V_{g} = v$$

$$\frac{\int_{\mathbb{R}}^{2} R_{2} ||R_{3}||}{R_{2} + R_{2} ||R_{3}|} = ib \left[\left(R_{2} ||R_{2}||R_{3} \right) + hie + R_{4} \left(h \rho_{0} + L \right) \right]$$

$$g = \frac{Vu}{V_{i}} = \frac{9m(R_{i2}||R_{i3}||R_{i4})(-hle)}{R_{i2}} \frac{R_{5}}{R_{5}+R_{6}+(R_{8}||R_{3}||\frac{1}{gm})} \frac{461.54}{R_{2}+R_{2}||R_{3}} \frac{0.938}{R_{2}+R_{2}||R_{3}||R_{3}} \frac{2.623 \times 10^{-6}}{R_{2}+R_{2}||R_{3}||R_$$

$$= -1.264 \quad (|A_{cg}| = 2 dB)$$

$$C_1: f_{21} = \emptyset H_{\xi}$$

$$f_{P1} = \frac{1}{2\pi c_2 R_{V1}} = 1320.9 H_{\xi}$$

$$C_4 = f_{24} = \emptyset \text{ A}^2$$

$$f_{PA} = \frac{1}{2\pi c_4 R_W} = 9.3 \text{ A}^2$$

$$= \overline{AB}(\overline{CO} + \overline{D+E}) + \overline{ABCD} + \overline{ABE} + \overline{CD} =$$

$$= \overline{AB}(\overline{CO} + D + \overline{E}) + \overline{ABCD} + \overline{ABE} + \overline{CD} =$$

A+B) ((D+D+E)+A(BCD+BE)+CD=

=
$$\overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}D + \overline{A}\overline{B}\overline{E} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{E} + \overline{C}D =$$

$$= \overline{ABD} + \overline{ABD} + \overline{AE} + \overline{CD} =$$

$$= \overline{A}\overline{B} + \overline{A}\overline{E} + \overline{C}\overline{D} =$$

$$= \bar{A} (\bar{B} + \bar{E}) + \bar{C} D$$

$$\left(\frac{W}{L}\right)_{L} = \rho = S$$

$$\left(\frac{W}{L}\right)_{L} = n = 2$$

PON: Serie
$$U_3 - U_4$$
; $U_3 - U_5$; $U_6 - U_7$ $\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = x$

$$\frac{1}{x} \neq \frac{1}{x} = \frac{1}{p} \implies x = 2p = 10 \implies \left(\frac{W}{L}\right)_{3,4,5,6,7} = 10$$

1) PDN: Serie
$$U_8 - U_{11}, U_{12}$$
, $U_9 - U_{11} - U_{12}$
 $\frac{1}{x} + \frac{1}{x} + \frac{1}{x} = \frac{1}{n} = 1$ $\times = 3n = 6 = (\frac{w}{L})_{8,3,11,12}$

Serie
$$U_8 - U_p$$
; $U_9 - V_{10}$
 $\frac{1}{x} + \frac{1}{3n} = \frac{1}{n} = x = \frac{3}{2}n = 3 = (\frac{1}{x})_{10}$

ERCIZIO C R_{2} R_{3} R_{4} R_{5} R_{5} R_{5} R_{5} R_{6} R_{7} R_{8} R_{8}

$$R_{1} = 200 R$$

$$R_{2} = 15 K R$$

$$R_{3} = 1 K R$$

$$R_{4} = 9 K R$$

$$R_{5} = 4800 R$$

$$R_{6} = 1 K R$$

$$C = 47 nF$$

$$R_{4} = \frac{1}{2} V_{cc} = V_{cc} V_{s1} = \emptyset V \Rightarrow V_{os1} = V_{cc} = V_{1} on$$

$$R_{1} = \frac{V_{cc} R_{4}}{R_{2} | R_{3} r_{k}} = \frac{V_{7} = V_{cc} R_{4}}{R_{2} | R_{3} r_{k}} = \frac{V_{7} = V_{cc} R_{4}}{R_{2} | R_{3} r_{k}} = \frac{1}{2} V_{cc} = \frac{2V}{R_{2} | R_{3} r_{k}} = \frac{1}{2} V_{cc} = \frac{2V}{R_{2} | R_{3} r_{k}} = \frac{1}{2} V_{cc} = \frac{2V}{R_{3} r_{k}} = \frac{1}{2} V_{cc} = \frac{1}{2} V_{cc} = \frac{2V}{R_{3} r_{k}} = \frac{1}{2} V_{cc} = \frac{1}$$

$$V_{13} = \frac{1}{3}V_{cc} = 2V$$

$$V_{f} = V_{f} \frac{1}{R_{f} + R_{1} + R_{5}} \cdot R_{5} = 4.4534V$$

$$I_{2|13} = \frac{V_{c2} - V_{7it}}{R_{2}I_{1}R_{3}} = \frac{2}{337.5} = 2.13 \text{ m/s}$$

$$I_4 = \frac{V_{74}}{R_4} = \frac{2}{9 \times 10^3} = 4.4 \times 10^{-4} A$$

$$R_{V_1} = R_5 \prod_{i=1}^{n} R_{i+1} + R_{\tau} = 860.3 \ \mathcal{L}$$

 $T_1 = R_{V_2} C = 40.46 \ \mu S$

2)
$$U=0$$
 (=) $U_2 \circ FF$
 $D=\emptyset$)=) $Q_1 \circ FF$

$$V_{12} = V_{con1} = 3.662 V$$
 $V_{con2} = V_{11} = 2V$