Appln No. 10/735,148 Amdt date August 21, 2006 Reply to Office action of May 19, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently amended) A ductile reinforced amorphous metal object comprising: an amorphous metal alloy forming a substantially continuous matrix; and a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy.
- 2. (Original) A composite amorphous metal object as recited in claim 1 wherein the second phase is in the form of particles precipitated in situ from nucleation sites distributed in a melt comprising the amorphous metal alloy and second phase alloy.
- 3. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and

a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein the second phase is formed from a molten alloy having an original composition in the range of from 52 to 68 atomic percent zirconium, 3 to 17 atomic percent titanium, 2.5 to 8.5 atomic percent copper, 2 to 7 atomic percent nickel, 5 to 15 atomic percent beryllium, and 3 to 20 atomic percent niobium.

4. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and

Appln No. 10/735,148 Amdt date August 21, 2006 Reply to Office action of May 19, 2006

a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein the second phase is sufficiently spaced apart for inducing a uniform distribution of shear bands throughout a deformed volume of the composite, the shear bands involving at least four volume percent of the composite before failure in strain and traversing both the amorphous metal phase and the second phase.

5. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and

a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein the second phase comprises particles having a particle size in the range of from 0.1 to 15 micrometers.

- 6. (Original) A composite amorphous metal object as recited in claim 5 wherein the second phase comprises particles having a particle size in the range of from 10 to 15 micrometers.
- 7. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and

a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein the second phase comprises particles having a spacing between adjacent particles in the range of from 0.1 to 20 micrometers.

- 8. (Original) A composite amorphous metal object as recited in claim 7 wherein the spacing between adjacent particles in the range of from 1 to 10 micrometers.
- 9. (Original) A composite amorphous metal object as recited in claim 1 wherein the second phase comprises in the range of from 5 to 50 volume percent of the composite.

Appln No. 10/735,148 Amdt date August 21, 2006 Reply to Office action of May 19, 2006

phase is less than 50%.

- 10. (Original) A composite amorphous metal object as recited in claim 1 wherein the second phase comprises in the range of from 15 to 35 volume percent of the composite.
- 11. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein second phase is in the form of dendrites.

12. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein the volumetric proportion of the amorphous metal

13. (Previously presented) A reinforced composite amorphous metal object comprising:

an amorphous metal alloy forming a substantially continuous matrix; and

a second ductile metal phase embedded in the matrix and formed in situ in the matrix by crystallization from a molten alloy, wherein above the elastic limit a stress-strain curve of the composite amorphous metal alloy and ductile metal phase exhibits a slope $d\sigma/d\epsilon > 0$, wherein σ is stress and ϵ is strain.