

Осторическая справка Особенности и состав модели Основные понятия реляционной модели данных Целостность реляционных данных

Историческая справка

Эдгар Франк («Тед») Кодд 1923-2003

- □ *Реляционная модель данных (РМД)* изобретена Т. Коддом в 1970 г.
- Codd E.F. The Relation Model for Large Shared Data Banks // Communications of the ACM. 1970. № 6.
- За разработку реляционной модели данных Кодд был удостоен звания "IBM Fellow" (1976) и премии Тьюринга (1981).
- В настоящее время 99,99% коммерческих СУБД основаны на РМД.

Технологии баз данных СМ.Л. Цымблер

Особенности РМД

- □ Логический характер объектов модели
- □ Отношения логические, а не физические структуры.
- □ Информационный принцип построения объектов
 - □ Информация в базе данных представлена одним и только одним способом - явным заданием значений атрибутов в кортежах отношений; нет никаких указателей - физических адресов для связи значений.
- □ Поддержка декларативного и императивного программирования
- Реляционная алгебра декларативное программирование и декларативное описаний ограничений целостности.
- □ Процедурный язык манипулирования данными.

Технологии баз данных © М.Л. Цымблер

Состав РМД

- Структурный аспект
 - □ Данные в базе данных представляют собой набор отношений.
- □ Аспект целостности
 - □ Отношения отвечают определенным условиям целостности.
 - РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы
- Аспект манипулирования
 - □ РМД поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).
- □ Аспект нормализации
- □ Ограничения на структуру отношений базы данных, улучшающие эффективность работы с базой данных.

Технологии баз данных © М.Л. Цымблер

Основные термины РМД

Термин РМД	Англ. термин	Неформальный термин
Отношение	Relation	Таблица
Кортеж	Tuple	Запись таблицы
Атрибут	Attribute	Столбец таблицы
Домен	Domain	Тип данных у значений в столбце таблицы
Первичный ключ	Primary key	Поле - уникальный идентификатор записи

Для чего нужны домены? Домены ограничивают сравнения select Имя_Д from P, SP where P.Код_Д=SP.Код_Д select Имя_Д from P, SP where P.Вес=SP.Количество Домены допускают запросы к словарю базы данных select Имя_Отношения, Имя_Атрибута from СловарьБД_Отношения where Имя_Домена="Код_П" Домены не поддерживаются в SQL в полной мере.

Технологии баз данных СМ.Л. Цымблер

Отношение

10

- \square *Отношение R*, определенное на множестве доменов $D = \{D_1,...,D_k\}$ состоит из двух частей: заголовок и тело.
- □ Заголовок отношения множество пар < *Lunя-стрибута: Lunя-домена*>, т.е. множество $\{<A_j:D_j>, ..., <A_n:D_n>\}$, где имена атрибутов A_j различны, домены атрибутов $D_j \in D$ не обязательно различны.
- □ Тело отношения множество кортежей.
- Бортеж множество пар <имя-атрибута:значение-атрибута>, т.е. множество ${<}A_i.v_{ii}>$, ..., ${<}A_n.v_{in}>$ }, где i ∈ $\{1,...,m\}$, .
- □ Значения *т* и *n* − кардинальное число и степень отношения (арность) .

Технологии баз данных © М.Л. Цымблер

Отношения vs таблицы

Отношение	Таблица
Не может содержать одинаковых кортежей (тело отношения – множество)	Может содержать одинаковые строки
Кортежи не упорядочены (тело отношения – множество)	Строки таблицы могут быть упорядочены
Атрибуты не упорядочены (заголовок отношения – множество)	Столбцы таблицы могут быть упорядочены
Значения атрибутов кортежей атомарные (или отношение нормализовано)	Ячейка таблицы может содержать другую таблицу

Виды отношений

10

- □ *Базовое отношение* именованное отношение (переменная отношения), которое постоянно хранится в базе данных.
- □ *Производное отношение* отношение, определенное через базовые посредством реляционного выражения.
- □ Представление виртуальное (не хранящееся постоянно в базе данных) именованное производное отношение. Применяется для реализации внешнего уровня ANSI/SPARC архитектуры систем баз данных.
- □ Снимок именованное производное отношение, которое постоянно хранится в базе данных. Применяется для реконструкции базы данных после сбоев.
- □ Результат запроса неименованное производное отношение.
- Хранимое отношение отношение, которое поддерживается в физической памяти.

Технологии баз данных © М.Л. Цымблер

Виды отношений

Базовое отношение

- □ create base relation S (Koд_П domain (Koд_П), Имя domain (Имя), Город domain (Город), primary key (Код_П))
- Представление

 □ create view Надежные П as select Код П, Имя from S

where Рейтинг>=15 □ Снимок

- create snapshot Поставляемые _Детали as select Код _Д, Имя from P, SP where P.Код _Д=SP.Код_Д refresh every day
- Промежуточный результат (выражение реляционной алгебры)
- ((S JOIN SP) WHERE Код_Д=Р1')[Код_П, Имя_П]

Технологии баз данных © М.Л. Цымблер

Реляционная БД

□ Реляционная база данных – база данных, воспринимаемая пользователем (на внешнем уровне ANSI/SPARC архитектуры систем баз данных) как набор нормализованных отношений различной степени.

Технологии баз данных © М.Л. Цымблер

Целостность реляционных данных	Потенциальный ключ	Потенциальный ключ
 Ключи Потенциальные, первичные и альтернативные Простые и составные Внешние Ссылочная целостность NULL-значения 	 □ Подмножество К атрибутов отношения R является потенциальным ключом, если К обладает следующими свойствами: 1. Уникальность ■ Никакие два кортежа в R не могут иметь одинаковое значение в К. 2. Неизбыточность ■ Никакое подмножество К не обладает свойством уникальности. 	Каждое отношение имеет минимум один потенциальный ключ (все атрибуты отношения) Потенциальных ключей может быть несколько
Технологии баз данных С М.Л. Цымбаер	Технологин баз данных СМЛ. Цымблер	Технологин баз данных СМЛ. Цымблер

Назначение потенциальных ключей Потенциальный ключ позволяет адресовать кортежи отношения. веlect Имя from S where Код_П='S1' Код_П\$ | Мив | Город | Рейтинг | S1 | Беидер | Одесса | 15 | S2 | Воробъянию | Старгород | 14 | S5 | Деточкин | Энс | 5 | S3 | Горбунков | Черноморск | 8 | S10 | Беидер | Москва | 20 |

Виды потенциальных ключей

- Если потенциальный ключ состоит из более чем одного атрибута, он называется составным, иначе – простым.
- Один из потенциальных ключей должен быть выбран в качестве первичного ключа. Остальные потенциальные ключи называются альтернативными ключами.

Технологии баз данных СМ.Л. Цымблер

Внешний ключ

- \square Внешний ключ FK в отношении R2 это подмножество атрибутов R2 такое, что
 - \square существует отношение R1 (не обязательно отличное от R2) с потенциальным ключом CK
 - \blacksquare для каждого значения FK существует кортеж в R1 с совпадающим значением CK.

Технологии баз данных © М.Л. Цымблер

Внешние ключи Внешний ключ составной (простой), если соответствующий потенциальный ключ составной (простой).

Технологии баз данных © М.Л. Цымблер

Правила внешних ключей

- Что делать в случае попытки удалить (обновить)
 потенциальный ключ, на который ссылается внешний ключ?
- □ Удаление поставщика, имеющего хотя бы одну поставку.
- Изменение кода детали, входящей хотя бы в одну поставку.

ı	Код_П*	Имя_П		Код_П*	Код_Д*	К-во		Код_Д*	Имя_Д
//	S1	Бендер	$\overline{}$	S1	P1	300		P1	Гайка
ı	S2	Воробьянинов	—	S1	P5	500		P2	Болт
ı	S5	Деточкин		S3 (P2	900		P5	Шуруп
ı	S3	Горбунков		S3	P1	100		P7	Дюбель
ı	S10	Бендер		S10 (P2	400			
ı				Texa	ологии баз да	нных	© М.Л.	Цымблер	

Правила внешних ключей

- □ Ограничить запретить удаление (обновление) кортежей ссылочного отношения до момента, когда в ссылающемся отношении не будут отсутствовать кортежи с соответствующим значением внешнего ключа.
- Каскадировать удалить (обновить) кортежи ссылочного отношения с соответствующим значением внешнего ключа.
- □ Установить в NULL удалить (обновить) кортежи ссылочного отношения и в ссылающемся отношении установить у соответствующих кортежей неопределенное значение внешнего ключа (NULL).
- □ Установить по умолчанию удалить (обновить) кортежи ссылочного отношения и в ссылающемся отношении установить у соответствующих кортежей значение внешнего ключа по умолчанию (в этой базе данных).

Технологии баз данных СМ.Л. Цымблер

Технологии баз данных СМ.Л. Цымблер

Установка в умолчание и NULL

NULL-значения

- □ *NULL-значение* специальное значение, показывающее отсутствие информации.
 - NULL≠", NULL≠' ', NULL≠'_', NULL≠0
 - create base relation R (

Attr domain (Domain) nulls [not] allowed)

□ NULL-значения порождают трехзначную логику.

AND	TRUE	FALSE	NULL
TRUE	TRUE	FALSE	NULL
FALSE	FALSE	FALSE	FALSE
NULL	NULL	FALSE	NULL

OR	TRUE	FALSE	NULL
TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	NULL
NULL	TRUE	NULL	NULL

Технологии баз данных © М.Л. Цымблер

NULL-значения и потенциальные ключи

- ☐ Ни один элемент первичного ключа базового отношения не может принимать NULL-значение.
- Записываемые в отношение кортежи должны быть идентифицируемы!
- Результирующее отношение может иметь NULLзначение в первичном ключе.
- select Цвет from P
- Для альтернативных ключей первичные значения могут быть разрешены или запрещены.
 - Если альтернативный ключ может принимать NULLзначения, то он не может быть выбран в качестве первичного.

Технологии баз данных СМ.Л. Цымблер

NULL-значения и внешние ключи

- □ Внешний ключ FK в отношении R2 это подмножество атрибутов R2 такое, что
 - \square существует отношение R1 (не обязательно отличное от R2) с потенциальным ключом CK
- FK может принимать неопределенное значение NULL, а для каждого отличного от NULL значения FK в RI существует кортеж с совпадающим значением CK.
- □ create base relation R2 (
 foreign key (FK) references R1 (CK)
 on (delete | update) restrict | cascade | set null
 nulls [not] allowed)

Технологии баз данных © М.Л. Цымблер

