第8章 人工神经网络及其应用

■ 人工神经网络已在模式分类、机器视觉、机器听觉、智能计算、机器人控制、信号处理、组合优化问题求解、联想记忆、编码理论、医学诊断、金融决策和数据挖掘等领域获得了卓有成效的应用。

第8章 人工神经网络及其应用

- 神经网络(Neural Networks, NN)
- 生物神经网络(Natural Neural Network, NNN): 由中枢神经系统 (脑和脊髓)及周围神经系统 (感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最重要的是脑神经系统。
- ■人工神经网络(Artificial Neural Networks, ANN): 模拟人脑神经系统的结构和功能,运用大量简单处理单元经广泛连接而组成的人工网络系统。

大 脑 模型

■人脑构造:

皮层(cortex) 中脑(midbrain) 脑干(brainstem) 小脑(cerebellum)

- 人脑由10¹¹~10¹⁴个神经细胞(神经元)交织在一起的网状结构组成,其中大脑皮层约140亿个神经元,小脑皮层约1000亿个神经元。 连接总计可能有100,000,000,000,000个
- 神经元约有1000种类型,每个神经元大约与10³~ 10⁴个其他神经元相连接,形成错综复杂而又灵活多变的神经网络。

A generalized diagram of a neuron (p. 906). — Purves et. al., 1998

如果将一个人的大脑中所有神经细胞的轴突和树突依次连接起来,并 拉成一根直线,可从地球连到月亮, 再从月亮返回地球。

第8章 人工神经网络及其应用

- 神经网络(Neural Networks, NN)
- 生物神经网络(Natural Neural Network, NNN): 由中枢神经系统 (脑和脊髓)及周围神经系统 (感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最重要的是<u>脑神经系统</u>。
- ■人工神经网络(Artificial Neural Networks, ANN): 模拟人脑神经系统的结构和功能,运用大量简单处理单元经广泛连接而组成的人工网络系统。
 - 硬件实现:电子、光电元件——神 经计算机、TPU、NPU等;
 - 软件实现: 仿真软件, NN模拟软件——TensorFlow, PyTorch, Caffe, Paddle Paddle等
 - ▶神经网络方法: 隐式的知识表示方法

第8章 人工神经网络及其应用

- □ 8.1 神经元与神经网络
- □ 8.2 BP神经网络及其学习算法
- □ 8.3 卷积神经网络及其应用
- □ 8.4 Hopfield神经网络及其应用
- □ 其他神经网络
- 重点: BP神经网络、卷积神经网络等典型神经网络模型的结构及工作原理
- 难点:不同激活函数的特点、梯度下 降法和反向传播、卷积操作等点

□ 1. 生物神经元结构

- □ 1. 生物神经元结构
- 工作状态:
- 兴奋状态:细胞膜电位 > 动作电位的阈值 → 神经冲动
- 抑制状态: 细胞膜电位 < 动作电位的阈值
- 学习与遗忘:由于神经元结构的可塑性,突触的传递作用

可增强和减弱。

□ 2.人工神经元模型

人工神经元i的模型图

生物神经网络的最小单元----神经元

$$y_{i} = f(w_{i1}u_{1} + w_{i2}u_{2} + ... + w_{in}u_{n} - \theta_{i})$$

$$= f(\sum_{j=1}^{n} w_{ij}u_{j} - \theta_{i}) = f(\sum_{j=0}^{n} w_{ij}u_{j}) = f(\mathbf{w}_{i}^{T}\mathbf{u})$$

$$(u_{0} = -1, w_{i0} = \theta_{i})$$

- 输入: 一个向量
- ・ 输出: 一个标量
- · 运算:
 - 线性变换 (加权求和)
 - 非线性变换 (非线性函数)

p. 9

- □ 2.人工神经元模型
- 激活函数(Activation) (传输函数、输出变换函数)

$$y = hardlim(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Hard-Limit Transfer Function

$$y = hardlims(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

Symmetric Hard-Limit Trans. Funct.

(阶跃函数或硬极限函数)

(对称硬极限函数)

- □ 2.人工神经元模型
- ■激活函数(Activation)

(传输函数、输出变换函数)

$$y = logsig(x) = \frac{1}{1 + e^{-\alpha x}}$$

$$\alpha = 1$$

Log-Sigmoid Transfer Function

Tan-Sigmoid Transfer Function

(Sigmoid函数或对数S形函数)

(tanh函数或双曲正切S形函数)

- □ 2.人工神经元模型
- ■激活函数(Activation) (传输函数、输出变换函数)

□ 2.人工神经元模型

人工神经元i的模型图

$$y_{i} = f(\sum_{j=1}^{n} w_{ij} u_{j} - \theta_{i}) = f(\sum_{j=0}^{n} w_{ij} u_{j})$$

$$(u_{0} = -1, w_{i0} = \theta_{i})$$

人工神经元i的模型图

$$\begin{vmatrix} y_i = f(\sum_{j=1}^n w_{ij}u_j + b_i) = f(\sum_{j=0}^n w_{ij}u_j) \\ (u_0 = 1, w_{i0} = b_i) \end{vmatrix}$$

- □ 2.人工神经元模型
- ■激活函数(Activation)

(传输函数、输出变换函数)

(输入)

- 一个神经元 有什么用?不同的激励函
 - 不同的激励函数区别是什么?

Char 8 pp. 14

简单的线性分类问题

每一个数据点 (x_1, x_2) ,如何区分一个数据点是橙色的还 是蓝色的?

分界线: $w_1x_1 + w_2x_2 + b = 0$ 蓝色点: $w_1x_1 + w_2x_2 + b > 0$

黄色点:
$$w_1x_1 + w_2x_2 + b < 0$$

人工神经元的模型图

$$y = f(w_1x_1 + w_2x_2 + b)$$

不同的激励函数应用时有什么区别?

 $f(\cdot)$ 可以采用哪些激活函数?

A. Linear

B. Sigmoid

C. Tanh

D. ReLU函数

非线性二分类问题

-5 -4 -3 -2 -1 0 1 2 3 4

5

3

0

-2

Sigmoid函数

- · sigmoid函数也叫 Logistic 函数
- · 特点:
 - 它可以将一个实数映射到(0,1)的区间
 - 在特征相差不是特别大时效果比较好
- ・ 用法:
 - 通常用来做二分类
- ・ 缺点:
 - 激活函数计算量大
 - 容易出现梯度消失
 - 当数据分布在曲线平滑位置时很容易就会出现梯度消失

$$f(z) = \frac{1}{1 + \exp(-z)}.$$

早期最流行的激活函数,激活函数的代名词

Tanh函数

- · Tanh函数 也称为双切正切函数
- · 特点:
 - 取值范围为[-1,1]
 - 输出是以0为中心
 - 可以认为是一个放大的sigmoid函数

- $f(z) = \tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}},$
 - tanh(x) = 2sigmoid(2x) 1

- · 用法:
 - 实际中tanh会比sigmoid更常用
 - 循环神经网络中常用
 - 靠近输出值位置
 - 二分类问题
- · 缺点:
 - 梯度消失
 - 在曲线几乎水平的区域学习非常的慢

Sigmoid函数的改进版

- 1、解决了原点对称问题;
- 2、比sigmoid更快

ReLU

- ・ ReLU函数 (矫正的线性单元)
 - Rectified Linear Unit(ReLU)
- $\phi(x) = \max(0, x)$

- · 特点:
 - 大于0的部分输出为数据本身
 - 小于0的部分输出为0
 - ReLU 对于梯度收敛有巨大加速作用
 - 只需要一个阈值就可以得到激活值节省计算量
- ・ 用法:
 - 深层网络中隐藏层常用
- · 缺点:
 - 过于生猛,一言不合就判4刑,直接使数据变为0,从 此节点后相关信息全部丢失

2、收敛速度更快

 $y=max(\alpha x, x)$ $\alpha = small const. (e.g. 0.1)$ Leaky ReLU

Char 8 pp. 19

线性激活函数

- linear函数
- ・特点
 - 输入是什么, 输出就是什么
 - 没有做任何 非线性变换
- ・用法
 - 仅仅用于线性回归
- ・缺点
 - 没有非线性变换
 - 无法拟合非线性函数
 - 无法建立非线性模型

y = x

房价 = 面积 * a + b

没有非线性变换的"激活函数"

简单的线性分类问题

每一个数据点 (x_1, x_2) ,如何区分一个数据点是橙色的还是蓝色的?

分界线: $w_1x_1 + w_2x_2 + b = 0$ 蓝色点: $w_1x_1 + w_2x_2 + b > 0$ 黄色点: $w_1x_1 + w_2x_2 + b < 0$

问题的关键: 必须为 w₁、w₂ 和 b(可作为w₀)找到合适的值——即所谓的参数值,然后指示计 算机如何分类这些数据点

人工神经元的模型图

$$y = f(w_1x_1 + w_2x_2 + b)$$

f(·)可以采用Linear, Sigmoid, Tanh, ReLU函数

8.1 神经元与神经网络

- 8.1.1 神经元模型
- 8.1.2 单神经元学习规则
- 8.1.3 人工神经网络

• 单神经元的连接权修正公式: $w_i(t+1) = w_i(t) + \eta z_i(t)$

1. 误差纠正学习规则 (delta学习规则)

$$\Delta w_i(t) = \eta u_i(t)e(t), \qquad \eta > 0$$

$$e(t) = d - y(t)$$

$$w_i(t+1) = w_i(t) + \Delta w_i(t)$$

两个样本被分错,直线向误 分类样本一侧移动

一个误分类样本被纠正,直线向另一误分类样本侧移动

直到所有训练数据都被正确分类

2. Hebb学习规则(1944)

■当某一突触两端的神经元同步激活时,该连接的强度增强,反之减弱。

$$\Delta w_i(t) = \eta u_i(t) y(t), \qquad \eta > 0$$

$$w_i(t+1) = w_i(t) + \Delta w_i(t)$$

How Dog Training Works

巴甫洛夫的条件反射实验

3. 竞争学习

■以某种内部规则(与外部环境无关)确定竞争层获胜神经元,对获胜神经元,对获胜神经元,对获胜神经元,对称胜神经元与输入间的连接权值进行调整,其余不变。

$$\Delta w_i(t) = \eta [u_i(t) - w_i(t)], \qquad \eta > 0$$

$$w_i(t+1) = w_i(t) + \Delta w_i(t)$$

8.1 神经元与神经网络

- 8.1.1 神经元模型
- 8.1.2 单神经元学习规则
- 8.1.3 人工神经网络

8.1 神经元与神经网络

- 8.1.1 神经元模型
- 8.1.2 单神经元学习规则
- 8.1.3 人工神经网络

1958年,**约翰霍普金斯大学**David Hubel 和 Torsten Wiesel 发现人的视觉系统的信息处理是分级的,人对物品的识别可能是一个不断迭代不断抽象的过程。

object models

视网膜得到原始信息后,经由区域V1初步处理得到边缘和方向特征信息,其次经由区域V2的进一步抽象得到轮廓和形状特征信息,如此迭代地经由更多更高层的抽象最后得到更为精细的分类。

- □ 1. 神经网络的结构
 - (1) 前馈型(前向型)

• 全连接: 每个神经元都和下一层的所有神经元相连

BP 神 经 |XX| 络

非线性分类问题

8.1 神经元与神经网络

□1. 神经网络的结构

(2) 反馈型

反馈连接在各级视觉皮层中 广泛存在。例如初级视皮层 (V1) 4C 层神经元只有不 超过8%的突触输入是来自于 LGN 前馈输入(Peters et al., 1994)

Gilbert, Li, 2013

- 高级皮层的反馈对低纸皮层的反应进行调制
- 同级皮层中的反馈也对神经元的反应进行调制
- 现在的用于图像处理的深度学习模型主要前馈模型,只是 视觉皮层的一个粗糙近似

□1. 神经网络的结构

(2) 反馈型

络(RNN, LSTM)也

Hopfield神经网络

- □ 2. 神经网络的工作方式
- 同步(synchronous, 或并行)方式: 任一时刻神经网络中所有神经元同时调整状态;
- 异步(asynchronous, 或串行)方式: 任一时刻只有一个神经元调整状态, 而其它神经元的状态保持不变。

- □ 决定人工神经网络性能的3大要素:
 - 神经元的特性;
 - 神经元之间相互连接的形式——拓扑结构;
 - 为适应环境而改善性能的学习规则。

Char 8 pp. 34

- □ 3. 神经网络的学习方式
- ◆有监督学习
- ◆无监督学习
- ◆半监督学习

有监督学习: BP神 经网络、卷积神经网 络、胶囊网络、图卷 积神经网络等

无监督学习: 自组织神 经网络、自动编码器等

半监督学习:生成对抗网络等

max pooling

fully connected+ReLU

□ 4. 神经网络的发展概况

也正是由于该比赛,CNN吸引到了众多研究者的注意。

Char 8 pp. 36

Geoffrey Hinton 加拿大多伦多大学 Yann LeCun 纽约大学 Yoshua Bengio 加拿大蒙特利尔大学

2019年3月27日 ——ACM宣布,深度学习的三位创造者Yoshua Bengio, Yann LeCun, 以及 Geoffrey Hinton获得了2019年的图灵奖。

图片出处: https://tech.sina.com.cn/d/i/2019-03-27/doc-ihsxncvh6044779.shtml

从一个矩阵乘说起

图2 AlexNet模型每层每秒浮点运算次数及参数数量

CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) > 200 > 500 90-100 参数(百万) 60 138 23.2 计算量(百万) 720 15300 5000

从计算量角度,99%以上计算都是矩阵乘

图片出处: https://www.cnblogs.com/sindy-zhang/p/9012340.html

华为昇腾310/910 芯片(2018.10.10), 同等功耗和面积下比Nvidia V100/TPU 极致算力都高

主流机器学习框架

百度PaddlePaddle(2016.9)、 华为MindSpore(2018.10)

库名	发布者	支持语言	支持系统		
TensorFlow	Google	Python/C++/ Java/Go	Linux/Mac OS/ Windows/Android/iOS		
Caffe	UC Berkeley	Python/C++/ Matlab	Linux/Mac OS/Windows		
CNTK	Microsoft	Python/C++/ BrainScript	Linux/Windows		
MXNet	DMLC (分布式机器学习 社区)	Python/C++/Matlab/ Julia/Go/R/Scala	Linux/Mac OS/ Windows/Android/iOS		
Torch/Pytorch	Facebook	C/Lua/Python	Linux/Mac OS/ Windows/Android/iOS		
Theano	蒙特利尔大学	Python	Linux/Mac OS/Windows		
Neon	Intel	Python	Linux		

主流机器学习框架

百度PaddlePaddle(2016.9)、 华为MindSpore(2018.10)

库名	学习材 料 丰富程 度	CNN建模 能力	RNN建模 能力	易用程度	运行速度	多GPU支持 程度
TensorFlow	***	***	**	***	**	**
Caffe	*	**	*	*	*	*
CNTK	*	***	***	*	**	*
MXNet	**	**	*	**	**	***
Torch	*	***	**	**	***	**
Theano	**	**	**	*	**	**
Neon	*	**	*	*	**	**

主流机器学习框架

百度Paddle(2016.9)、 华为MindSpore(2018.10)

框架	github过去两年增长率		2019年7月		2017年9月				1
	star	fork	star	fork	star	fork	发布时间	公司	开发语言
pytorch ###	303%	394	29635	7186	7361	1456	2016	facebook	c++, lu
tensorflow ##	87%	121%	130540	75929	69781	34355	2015	google	CFF
paddlepaddle 🎵	71%	72W	9246	2484	5405	1447	2016	baidu	C++
mxnet f	56%	47%	17316	6145	11127	4179	2017	apache	C++
dl4j 🔰	53%	31%	用过	或了解:	过这些		2014	eclipse	java
caffe2	50%	731		平台?			2017	facebook	C++
caffe	41%	3911	Α.	有 B.	没有		2014	berkeley vision	C++
cntk	31#	35%	16258	4310	12366	3190	2016	microsoft	C++
theano	28%	9%	8834	2493	6902	2290	2007	MILA	python
keras	-		42504	16187	-	-	2015	google	python
chainer	-		4887	1294		-	2015	chainer	python

十大深度学习框架GitHub数据变化(caffe, caffe2分开统计)

神经网络的种类

- □ 神经网络基础: 单层感知器、线性神经网络、BP神经网络、Hopfield神经网络等
- □ 神经网络进阶:<u>玻尔兹曼机</u>、受限玻尔兹曼机、<u>递归神</u> <u>经网络</u>等
- □ 深度学习网络:深度置信网络、卷积神经网络、<u>深度残</u> 差网络、LSTM网络、胶囊网络、生成对抗网络等
- □ 深度网络应用:应用于传统的数据挖掘与机器学习问题 , 手写体识别, 图像识别,应用于自然语言处理, AlphaGo等