

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μάθημα: "Επίδοση Υπολογιστικών Συστημάτων"

(8° εξάμηνο)

Λουκάς Άγγελος 03119877

Μαντζαφίνης Αλέξανδρος 03118057

Ομάδα 21

1 Σειρά Ασκήσεων

Μέρος 1°:

Για τον ορισμό, την επίλυση και την απεικόνιση των μοντέλων χρησιμοποιήσαμε το εργαλείο JMVA του πακέτου Java Modeling Tools όπως ζήταγε η εκφώνηση.

Αρχικά εισάγαμε τα δεδομένα της εκφώνησης στο JMVA.

Service Demands	*	Wired	Wireless
Input service demands of each station and class.	Clients	27.0000	24.0000
If the station is "Load Dependent" you can set the service demands for each	Backbone	0.0230	0.0100
number of customers by double-click on "LD Settings" button.	LAN1	0.0750	0.0320
Press "Service Times and Visits" button to enter service times and visits	LAN2	0.0670	0.0000
instead of service demands.	LAN3	0.0000	0.1340
	R1	0.0270	0.0160
	R2	0.0270	0.0000
	R3	0.0000	0.0160
	WEB SERV	0.0590	0.0280
	WEB SERV	0.0700	0.0250
	APP SERVE	0.0480	0.0000
	APP SERVE	0.0540	0.0000
	Db Server	0.0690	0.0000
	Db Server	0.0670	0.0000

Επιλύοντας το σύστημα με την μέθοδο Bard-Schweitzer προκύπτουν τα εξής αποτελέσματα:

(Δεν το υλοποιήσαμε με ΜVΑ καθώς δεν έτρεχε το πρόβλημα με αυτόν τον αλγόριθμο)

1. Παρούσα κατάσταση

α.

Throughput:

Throughput

Throughput of each class for each station. System Throughput is the completion rate at the Reference Station.

*	Aggregate	Wired	Wireless
System	17.2769	9.8280	7.4489
Clients	17.2769	9.8280	7.4489
Backbone	17.2769	9.8280	7.4489
LAN1	17.2769	9.8280	7.4489
LAN2	17.2769	9.8280	7.4489
LAN3	17.2769	9.8280	7.4489
R1	17.2769	9.8280	7.4489
R2	17.2769	9.8280	7.4489
R3	17.2769	9.8280	7.4489
WEB SER	17.2769	9.8280	7.4489
WEB SER	17.2769	9.8280	7.4489
APP SERV	17.2769	9.8280	7.4489
APP SERV	17.2769	9.8280	7.4489
Db Server	17.2769	9.8280	7.4489
Db Server	17.2769	9.8280	7.4489

Response Time:

System Response Time

The global aggregate is the "System Response Time" and is obtained weighting the aggregated values by the relative per-class throughput. **A:** This value of System Response Time **includes** the Residence Time at the Reference Station.

B: This value of System Response Time does NOT include the Residence Time at the Reference Station.

Notice: For open classes the Reference Station always coincides with the arrival process. Thus the B values are not computed.

Aggregate A 42.8318 31.5425 57.7266 B 17.1252 4.5425 33.7266	*	Aggregate	Wired	Wireless
	Aggregate			
B 17.1252 4.5425 33.7266	Α	42.8318	31.5425	57.7266
	В	17.1252	4.5425	33.7266

Utilization:

Utilization

Utilization of a customer class at the selected station. The utilization of a delay station is the average number of customers in the station (it may be greater than 1).

*	Aggregate	Wired	Wireless
Aggregate			
Clients	444.1297	265.3560	178.7736
Backbone	0.3005	0.2260	0.0745
LAN1	0.9755	0.7371	0.2384
LAN2	0.6585	0.6585	0.0000
LAN3	0.9982	0.0000	0.9982
R1	0.3845	0.2654	0.1192
R2	0.2654	0.2654	0.0000
R3	0.1192	0.0000	0.1192
WEB SER	0.7884	0.5799	0.2086
WEB SER	0.8742	0.6880	0.1862
APP SERV	0.4717	0.4717	0.0000
APP SERV	0.5307	0.5307	0.0000
Db Server	0.6781	0.6781	0.0000
Db Server	0.6585	0.6585	0.0000

β.

Για 20 επαναλήψεις από τιμές πληθυσμού 37 έως 740 προκύπτουν τα εξής αποτελέσματα:

Throughput:

Response Time:

Utilization:

γ.

Ένα σύστημα φτάνει σε κορεσμό όταν η χρησιμοποίηση ενός σταθμού γίνεται ίση με 1. Με βάση τις γραφικές μας παρατηρούμε ότι φτάνουμε σε κορεσμό για τους wireless πελάτες όταν ο πληθυσμός φτάσει στα 200-220 clients. Επίσης παρατηρούμε ότι οι wired πελάτες μας δεν φτάνουν σε κορεσμό για το αρχικό πλήθος χρηστών μας. Η στένωση του συστήματος είναι το LAN3 καθώς η ταχύτητά περιορίζεται στα 18Mbps και για αυτό οι wireless φτάνουν πολύ πιο γρήγορα σε κορεσμό σε σχέση με τους wired.

δ.

Από τις παρακάτω γραφικές παραστάσεις παρατηρούμε πως ο λόγος των $\frac{wired}{wireless}$ φτάνει σε μέγιστο όταν οι wired αποτελούν περίπου το 60% του population mix δηλαδή το κλάσμα μας παίρνει τιμή 1.5.

Γραφική του wired/population mix:

Γραφική του wireless/population mix:

Μέρος 2°:

Σε αυτό το μέρος αλλάξαμε το παλιό μας σύστημα αντικαθιστώντας το LAN3 και R3 με μια βελτιωμένη έκδοση του LAN2/R2 και τώρα η CPU του Db Server για λόγους ειδικών απαιτήσεων λειτουργεί σε κατάσταση πολυεπεξεργασίας και τώρα είναι load dependent σύμφωνα με τον εξής τύπο:

$$D(k) = DS * [1 + sqrt(k)/128]$$

α.

Throughput:

Through Throughput	out t of each cla	ss for each
*	Aggregate	All clients
System	13.3333	13.3333
Clients	13.3333	13.3333
Backbone	13.3333	13.3333
LAN1	13.3333	13.3333
LAN2	13.3333	13.3333
R1	13.3333	13.3333
R2	13.3333	13.3333
Web Serv	13.3333	13.3333
Web Serv	13.3333	13.3333
App Serv	13.3333	13.3333
App Serv	13.3333	13.3333
Db Server	13.3333	13.3333
Db Server	13.3333	13.3333

Response Time:

System Response Time

The global aggregate is the "System Response Time" and is obtained weighting the aggregated values by the relative per-class throughput.

A: This value of System Response Time includes the Residence Time at the Reference Station.

B: This value of System Response Time does NOT include the Residence Time at the Reference Station.

Notice: For open classes the Reference Station always coincides with the arrival process. Thus the B values are not computed.

*	Aggregate	All clients
Aggregate		
A	55.5000	55.5000
В	28.5000	28.5000

Utilization:

Utilization

Utilization of a customer class at the selected station. The utilization of a delay station is the average number of customers in the station (it may be greater than 1).

*	Aggregate	All clients
Aggregate		
Clients	1.0000	1.0000
Backbone	0.2641	0.2641
LAN1	1.0000	1.0000
LAN2	0.8933	0.8933
R1	0.3023	0.3023
R2	0.3023	0.3023
Web Serv	0.7867	0.7867
Web Serv	0.9333	0.9333
App Serv	0.6400	0.6400
App Serv	0.7200	0.7200
Db Server	0.0000	0.0000
Db Server	0.8933	0.8933

β.

Για την πραγματοποίηση αυτού το ερωτήματος κάναμε το Db Server CPU load independent καθώς δεν μπορούμε να πάρουμε τις γραφικές για μεταβλητό πλήθος πελατών με load dependent station.

Throughput:

Σύμφωνα με την γραφική παράσταση ο ρυθμός απόδοσης φτάνει σε maximum τιμή για περισσότερους από 170 χρήστες.

Response Time:

Για περισσότερους από 130 πελάτες το response time αυξάνεται σχεδόν γραμμικά με την αύξηση των πελατών.

Utilization:

Πάλι εδώ παρατηρούμε πως το utilization φτάνει σε maximum τιμή για περίπου 170 πελάτες

γ.

Σύμφωνα με τα αποτελέσματα των προηγούμενων ερωτημάτων παρατηρούμε ότι ο ρυθμός απόδοσης του συστήματός μας σταματάει να βελτιώνεται όταν έχουμε φτάσει στους 170 χρήστες. Το συστατικό στένωσης εδώ είναι το LAN2 καθώς πλέον όλοι οι χρήστες συνδέονται μέσω αυτού άρα θα φτάσει σε κορεσμό πιο γρήγορα. Το αποτέλεσμα αυτό ήταν αναμενόμενο κοιτώντας το πρώτο ερώτημα γιατί πριν οι χρήστες χωρίζονταν σε δύο κατηγορίες/κλάσεις και έτσι η δουλειά μοιραζότανε, ενώ τώρα όλος ο φόρτος αναθέτεται σε μία μόνο κλάση.

δ.

Τώρα έχουν περισσότεροι χρήστες πρόσβαση σε δυναμικές σελίδες, αλλά ο αριθμός χρηστών για κορεσμό του συστήματος είναι λιγότερος. Θα προτείναμε αυτήν την αναβάθμιση μόνο αν μας ενδιέφερε ο αριθμός χρηστών που μπορούν να έχουν πρόσβαση σε δυναμικό περιεχόμενο και όχι το συνολικό πλήθος χρηστών.

Μία εναλλακτική, αφού τα LAN1 και LAN2 έχουν εγκατασταθεί σχετικά πρόσφατα, είναι να κρατούσαμε την παλιά κατάσταση και να ανανεώναμε το LAN3 με πιο σύγχρονη τεχνολογία, (αφού υπάρχει για διάστημα μεγαλύτερο δεκαετίας) με μεγαλύτερη ταχύτητα έτσι ώστε να μην έχουμε bottleneck στους wireless χρήστες.

Αφού το backbone μας προσφέρει μεγάλη ταχύτητα (1Gbps), ακόμα μια λύση θα ήταν να καταργήσουμε τελείως το LAN3 και να γίνει αναβάθμιση του LAN1 και LAN2 ώστε να αποφύγουμε το νέο bottleneck που προέκυψε.