

Robotic Makeup Application System

Alejandro Varela Dillon Naidu Jason Ramsarran Jason Calle Junmin Xu Chun Kit Wong

Department of Mechanical Engineering
The City College of New York

Requirements

Met:

- Computer vision implementation ([x y z] capture)
- Responds and interacts with the user
- An adaptable base which houses the camera and allows the robotic arm to adjust itself for different heights

Not met:

- Start button and OLED display for initiation and status of lip balm command
- Ultrasonic proximity sensor to signal stop and start

Trade study: Robotic arms

Universal Robots UR3

Braccio

\$22,000

\$749

uArm Swift Pro

\$235

Trade study: Robotic arms

Given scores of 1-3 (higher is better)

Weight	3	3	3	2	2	2	2	2
Robotic Arm	Affordability	On-board software	User- friendly	Degrees of Freedom	Repeatability	Expandability	Appearance	Compactness
uArm Swift Pro	2	3	3	2	3	3	3	3
Universal Robots UR3	1	3	3	3	3	2	3	1
Braccio	3	1	2	3	1	1	2	2
Weighted score:	uArm Swift Pro	Universal Robots UR3	Braccio					
	52		36					
Cost	\$749	\$22,000	\$235					

uArm Swift Pro 66

FaceBase A Resource For Craniofacial Researchers LCE Dimensions Statistics

Mandibular Width Avg (mm)

Adult Male: 100 - 108

Adult Female: 94 - 100

Std: 5 - 10

Facial Width Avg (mm)

Adult Male: 133 - 141

Adult Female: 126 - 133

Std: 4 - 7

Facial Length Avg (mm)

Adult Male: 120 - 132

Adult Female: 116 - 123

Std: 5 - 7

Torso length data

User	Height (cm)
User 1	28
User 2	25
User 3	26
User 4	28
User 5	27
User 6	26
Average User Data	26.66

Specifications			
	uArm Swift Pro		
Weight	2.2kg		
Degrees of Freedom	4		
Repeatability	0.2mm		
Max. Payload	500g		
Working Range	50mm ~ 320mm		
Max. Speed	100mm/s		
Connector	Micro USB		
Wireless	Bluetooth 4.0		
Input Voltage	DC 12V		
Power Adapter	Input:100 ~ 240V 50/60Hz; Output: 12V5A 60W		

Testing

- A. Accuracy testing: we are trying to see how much the robotic arm is in synch with the Intel's Depth camera by testing out our equation for data manipulation
 - 1. A red dot is drawn on the mannequin
 - 2. The camera is used to extract the red dot's location data
 - 3. The data points is manipulated through the code
 - 4. Then the robotic arm attempts to move to that location

A. How was this accomplished?

- Uarm's applications can tell us the exact location of the robotic arm
- 2. And we then compared these values to our data points after it was manipulated

Accuracy Test

Test#	Actual x (mm)	Expected x (mm)	Actual y (mm)	Expected y (mm)	Actual z (mm)	Expected z (mm)
1	330	321	14	6	3	14
2	320	328	132	154	5	11
3	220	208	61	60	20	14
4	280	266	34	49	9	12
5	260	244	123	109	15	14

Average offset in y (mm)	12.50
Average offset in z (mm)	14.00
Average offset in x (mm)	11.80

Results

- Our data manipulation equation was found to have different offset values at different depths
 - a. The reason for this will be explained by Dillon
- 2. Through the tests we found to have better accuracy for the Z and Y coordinates at a smaller X, while at higher X
- We expected to have almost identical (X) depth values but that seem to vary as well

Force Sensor

Trial - 1 Force (N)	Trial - 2 Force (N)	Trial - 3 Force (N)
0.66	0.77	1.2
0.47	1.29	0.77
1.66	1.57	0.81
1.77	0.67	0.62
1.19	0.78	1.3
0.16	1.05	0.62
Average: 0.99 (N)	Average: 1.02 (N)	Average: 0.88 (N)

Trade study: Sensors

OpenMV Cam H7	Pixy 2	Intel RealSense	
\$60	\$59	\$199	

Trade study: Sensors

Given scores of 1-3 (higher is better)

Weight	3	1	2	3
Type of Sensor	Programming ease	Depth sensing	Image tracking	Affordability
OpenMV Cam H7	3	1	3	2
Intel RealSense	3	3	3	2
Pixy 2	2	1	2	2
Weighted score	OpenMV Cam H7	Pixy camera	Intel RealSense	
	22	17	24	

Infrared Projector and Camera

OCCLUSION SHADOWS

System Schematic

Budget

Part	Cost \$
uArm Swift Pro	749.00
uArm free of cost	-749.00
Intel RealSense Depth Camera D435i	199.99
uArm Universal Holder	25.00
uArm Ultrasonic Ranger	19.90
uArm Controller	99.00
3D Printed Base	68 .00
Rubber Sheet	9.66
Total	\$411.89

Modeling of the Base Platform

The CAD file for the uArm Swift Pro was obtained from the manufacturer.

We plan to mount the robotic arm on a platform to raise its height, then secure sensors on openings in the platform.

The camera and sensor will be mounted at eyelevel with the user sitting upright at ~10 cm away.

Original Model

FRONT VIEW

Platform Model Mk2

RIGHT VIEW

Final Platform Model

Landmark Tracking

Facial tracking was used by using a machine learning library called dlib.

68 facial landmarks were placed on the face and were tracked in realtime.

This was used on the output of the Intel RealSense D435i to track both the face along with the depth.

Coordinate System Conversion

The camera coordinates are obtained from a 640x480 grid of pixels of an image

The range of the robotic arm was observed inside the range of the camera.

The range (in mm) was divided by the total number of pixels, to get a ratio of mm per pixel.

The camera coordinates were multiplied by this ratio to obtain the mm value to be used by the arm.

Improvements

- 1. Improve accuracy by either keeping the face at a fixed distance or having different equations depending on distance (machine learning)
- 2. User Interface with different options for makeup applications such as (eyebrows, foundation)
- 3. Incorporate Display
- 4. Force Feedback
- 5. Proximity sensors around the arm
- 6. Incorporate voice activated shutdown/pause feature

Our website

https://vinlarzaby.github.io/Automaticmakeup/

References

Face statistics: https://www.facebase.org/facial_norms/summary/#palpfislength_r

Hardware Pictures for website

