Taming Load Balancing in Distributed LLM Training

Jiale Xu

Table of Contents

- Background
- Prior Work
- Challenge
- OSDI'25' WLB-LLM
- Discussion on other load balancing issue in MLSys topic.

Background: Distributed LLM Serving Paradigm-Memory Footprint

Figure 1: Estimated memory consumption of pre-training a LLaMA 7B model with a token batch size of 256 on a single device, without activation checkpointing and memory offloading².

Details refer to Section 5.5.

Figure 1: Parameters, optimizer state, and activations memory. The dashed red line represents the memory capacity of an NVIDIA A100 GPU. Present work reduces the activation memory required to fit the model. Details of the model configurations are provided in Table 3.

Model weight and Optimizer State is dominating when apply optimizations.

Activation becomes a bottleneck in memory footprint.

After distributed training and model compression techniques.

Background: Distributed LLM Serving Paradigm-4D Parallel 3. Context Parallel

1. Data Parallel Enlarge input batch Size while duplicating model weight memory

2. Pipeline Parallel Reducing model weight memory while undermining compute efficiency

3. Context Parallel Reducing activation memory & increasing compute capability while duplicating model weight memory & communication overhead

4. Tensor Parallel Reducing overall memory & increasing compute capability while introducing communication overhead

Eternal Goal: Finding a more Efficient Distributed Training Plan

Challenges

Llama2-7b: 4K → Qwen-2.5: 1M

Growing context window size

Varied dataset length distribution

OSDI'25 WLB-LLM

Workload-Balanced 4D Parallelism for Large Language Model Training

Zheng Wang1,2, Anna Cai2, Xinfeng Xie2, Zaifeng Pan1, **Yue Guan**1, Weiwei Chu2, Jie Wang2, Shikai Li2, Jianyu Huang2, Chris Cai2, Yuchen Hao2, Yufei Ding1,2
University of California, San Diego1 Meta2

Finding 1: Imbalanced computation latency within large-scale LLM training job.

(a) Normalized computation latency in an 8K-GPU LLM training job.

Finding 2: Imbalanced Reason: Attention Computation Nature

Document lengths: L0 + L1 = L2 + L3 + L4 + L5 **Computation (triangle areas):** S0 + S1 >> S2 + S3 + S4 + S5

(b) Reason of imbalance: input-dependent nature of attention computation and the varying input document length.

Case Study: (TP=8, CP=16, PP=16,

(a) Imbalance Analysis (TP=8, CP=16, PP=16, DP=4): (1) Normalized computation latency (group by DP and PP); (2) Normalized computation latency in a CP group.

Case Study: (TP=8, CP=16, PP=16, DP=4)

DP ranks
have
different
micro
batches

CP ranks have attention load balancing issue

(b) Document packing at PP level and sequence sharding at CP level.

PP ranks share the same micro-batch

Latency Propagation Chain

Two Optimizations

Packed Docs Data Loader Doc-1 Doc-0 Input Shading Global Batch **Documents** Heavy **Better** Workload CP-0, CP-1, CP-1, CP-0 PP Light Workload Micro-batch Packing **Packing** Micro-batch packing Attention Mask **Better Much Larger Document** Pipeline Workload on Pipeline shard Training CP-1 Training PP-0 PP-0 balancing PP-1 PP-1 DP-0 DP-1 (2) Imbalance from CP-level (1) Imbalance from PP-level Document Packing Sequence Sharding

(b) Document packing at PP level and sequence sharding at CP level.

Better PP Packing

minimize
$$\max(\sum_{i=1}^{N}(W_a(x_{ij}\cdot d_i)+W_l(x_{ij}\cdot d_i))),$$
 $j=1,\cdots,M$ subject to $\sum_{j=1}^{M}x_{ij}=1,$ $i=1,\cdots,N$ (2) $\sum_{i=1}^{N}x_{ij}\cdot d_i \leq L_{max},$ $j=1,\cdots,M$ $x_{ij}\in\{0,1\}$

Better PP Packing

Better Document shard balancing

Better Document shard balancing

Less efficient computation Better load balancing

Discussion On Kernel Load Balancing

Figure 10: Attention kernel performance profiling: (Left) Attention forward latency; (Right) Achieved TFLOPs of the attention forward kernel.

FlashInfer with load balancing logic

Evaluation - Setup

Model Size	Context Window	#GPU	4D Parallelism Configs (TP, CP, PP, DP)	
550M	64K	32	(2, 2, 4, 2)	
	128K	32	(2, 4, 4, 1)	
7B	64K	32	(4, 2, 4, 1)	
	128K	64	(8, 2, 4, 1)	
30B	64K	64	(8, 2, 4, 1)	
	128K	128	(8, 4, 4, 1)	
70B	64K	256	(16, 4, 4, 1)	
	128K	256	(16, 4, 4, 1)	

Table 1: Model and 4D parallelism configurations.

Evaluation - E2E

Takeaway #1. Larger Model, Less improve. Reason: Larger communication

Figure 12: Training performance speedups of WLB-LLM and Fixed-4D over Plain-4D across various configurations.

Figure 13: Performance breakdown of *WLB-LLM* on the 7B model with a 128K context window.

Takeaway #2. PP-Level Load balancing is more important.

Figure 14: Speedups of *WLB-LLM* on the 7B model across context window sizes.

Takeaway #3. Larger Context lead to more speedup Reason: larger context window raises the likelihood of outlier documents appearing

Related Work(s)

SOSP'24 Enabling Parallelism Hot Switching for Ecient Training of Large Language Models

ASPLOS'25 FlexSP: Accelerating Large Language Model Training via Flexible Sequence Parallelism

	Targeted Parallelism	
Hot-switching	TP	
FlexSP	SP	
WLB-LLM	PP+SP	

Comments

Pros:

- 1. Direct and strong motivation and clear design writing.
- 2. Comprehensive evaluation with decent speedup, sensible analysis, and progressive breakdown.

Cons:

1. Not a very impressive/novel idea.

Two ways to achieve load balancing

1. Request Scheduling

Dispatching request evenly to different workers.

2. Resource Re-orchestration

Re-allocate unused resources.

Hot-switching (SOSP'24)

Deduction, Orchestration, and Instantiation

Training with Parallelism Hot Switching

Hot-switching (SOSP'24)

LoongServe (SOSP'24)

Elastic Sequence Parallelism

Runtime Example

DynamoLLM (HPCA'24 Best Paper)

Fig. 4: DynamoLLM architecture: a hierarchy of controllers with cluster resources split into per request-type pools.

DynamoLLM (HPCA'24 Best Paper)

Fig. 5: Example of re-sharding a TP4 model to TP2/TP8.

Discussion: Load Balancing in LLM Serving **Global Scheduler** DynamoLLM **HPCA'24**| Request Scheduling LoongServe SOSP'24 Computation Dispatching **Global Scheduler** Llumnix OSDI'24 Parallelism Hot-switching Mooncake FAST'25 Local Scheduler Local Scheduler Local Scheduler LLM-LTR NIPS'24 Sarathi-Serve OSDI'24 Local Instance Local Instance Local Instance FlashInfer MLSys'25 FlashAttention3 NIPS'25 Nanoflow **Arxiv'24** PodAttention ASPLOS'25

Root Cause: Request Length Discrepancy

	Batching	Computation	Objective	
LLM Training	Static	Prefill	Throughput	
LLM Serving	Continuous	Prefill + Decode	SLO	