Pairs of Random Variables

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

We started with...

- An Experiment that contains a
 - Procedure, Observations, and Model
- Later we mapped outcomes to numbers
 - One or more outcomes to a point on the line
- We will now map an outcome to a pair of numbers
 - One or more outcomes to a point on a 2-D plane

We started with...

The numbers in the pair correspond to RVs X and Y

 For example, a transmitted sinusoid that is received with a random amplitude and random phase

Outcomes can be described by X = amplitude and Y = phase

Pair of RVs

- We defined a CDF for a single RV X
- For the pair of RVs we define a joint CDF

Joint Cumulative Distribution

Definition 4.1 Function (CDF)

The joint cumulative distribution function of random variables X and Y is

$$F_{X,Y}(x,y) = P[X \le x, Y \le y]. \tag{349}$$

Figure 4.1

The area of the (X, Y) plane corresponding to the joint cumulative distribution function $F_{X,Y}(x, y)$.

 We are interested in the probability of the intersection of the events {X<=x} and {Y<=y}

Joint CDF

(34.41)

I

Theorem 4.1

For any pair of random variables, X, Y,

(a)
$$\subseteq F_{X,Y}(x,y) \leq \subseteq$$

(b)
$$F_X(x) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

(c)
$$F_Y(y) = \frac{1}{x^2}$$

(d)
$$F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) \neq$$

(e) If
$$x \le x_1$$
 and $y \le y_1$, then $F_{X,Y}(x, y) = F_{X,Y}(x_1, y_1)$,

(f)
$$F_{X,Y}(\infty,\infty) =$$

(g)
$$F_{X,Y}(\infty, -\infty) = ?$$

Joint CDF

Theorem 4.1

For any pair of random variables, X, Y,

(a)
$$0 \le F_{X,Y}(x,y) \le 1$$
,

(b)
$$F_X(x) = F_{X,Y}(x, \infty)$$
,

(c)
$$F_Y(y) = F_{X,Y}(\infty, y)$$
,

(d)
$$F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$$
,

(e) If
$$x \le x_1$$
 and $y \le y_1$, then $F_{X,Y}(x, y) \le F_{X,Y}(x_1, y_1)$,

(f)
$$F_{X,Y}(\infty,\infty)=1.$$
 (g) $F_{X,Y}(\infty,-\infty)=0.$

Joint PMF

Joint Probability Mass Function

Definition 4.2 (PMF)

The joint probability mass function of discrete random variables X and Y is

$$P_{X,Y}(x, y) = P[X = x, Y = y].$$

Example of a Joint PMF

Example 4.1 Problem

Test two integrated circuits one after the other. On each test, the possible outcomes are a (accept) and r (reject). Assume that all circuits are acceptable with probability 0.9 and that the outcomes of successive tests are independent. Count the number of acceptable circuits X and count the number of successful tests Y before you observe the first reject. (If both tests are successful, let Y = 2.) Draw a tree diagram for the experiment and find the joint PMF of X and Y. $S_{X} = \{0,1,2\}$

Sy= {0,1,2}

Example of a Joint PMF

Three possible representations of a Joint PMF

$$P_{X,Y}(x,y)$$
 $y = 0$ $y = 1$ $y = 2$ $x = 0$ 0.01 0 0 $x = 1$ 0.09 0.09 0 $x = 2$ 0 0 0.81

$$P_{X,Y}(x,y) = \begin{cases} 0.81 & x = 2, y = 2, \\ 0.09 & x = 1, y = 1, \\ 0.09 & x = 1, y = 0, \\ 0.01 & x = 0, y = 0. \\ 0 & \text{otherwise} \end{cases}$$

Joint PMF

$$\sum_{x \in S_X} \sum_{y \in S_Y} P_{X,Y}(x,y) = ?$$

Probability of an Event B that is in the set $S_X x S_Y$

Theorem 4.2

For discrete random variables X and Y and any set B in the X, Y plane, the probability of the event $\{(X, Y) \in B\}$ is

$$P[B] = \sum_{(x,y)\in B} P_{X,Y}(x,y).$$

VVVS Problem

Quiz 4.2

The joint PMF $P_{Q,G}(q,g)$ for random variables Q and G is given in the following table:

Calculate the following probabilities:

(1)
$$P[Q = 0]$$

(2) $P[Q = G] = P[A = 0, G = 0] + P[A = 1, G = 1]$
(3) $P[G > 1] = P[A = 0, G > 1] + P[A = 1, G > 1] = P(G = 2) + P[A = 3]$
(4) $P[G > Q]$
 $P[G > Q]$

• For discrete RVs X and Y with **joint** PMF $P_{X,Y}$ (x,y), $P_X(x)$ and $P_Y(y)$ are defined as the **marginal** PMFs of X and Y respectively

$$P_{X}(x) = \underbrace{\sum_{y \in S_{Y}} (x, y)}_{y \in S_{Y}}$$
Suppose ue have the joint $P_{X,Y,Z}(x,y) = P[X=x,Y=y)$

$$P_{X}(x) = \underbrace{\sum_{y \in S_{Z}} P_{X,Y,Z}(x,y)}_{z \in S_{Z}}$$

Quiz 4.3

The probability mass function $P_{H,B}(h,b)$ for the two random variables H and B is given in the following table. Find the marginal PMFs $P_H(h)$ and $P_B(b)$.

Theorem 4.3

For discrete random variables X and Y with joint PMF $P_{X,Y}(x,y)$,

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x, y), \qquad P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x, y).$$

Theorem 4.3

For discrete random variables X and Y with joint PMF $P_{X,Y}(x,y)$,

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x, y), \qquad P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x, y).$$

We looked at the joint CDF and the joint PMF.
 What do you expect next?

Joint Probability Density

Definition 4.3 Function (PDF)

Joint PDF

Theorem 4.4

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \, \partial y}$$

$$\frac{\partial^{2}g(24)}{\partial 2\partial y} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} g(24) \right] \\
= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} g(24) \right] \\
= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} g(24) \right] \\
= 12xy + 0 + 0 \\
= 12xy$$

Properties of a Joint PDF

Theorem 4.6

A joint PDF $f_{X,Y}(x, y)$ has the following properties corresponding to first and second axioms of probability (see Section 1.3):

and second axioms of probability (see Section 1.5).

$$p(X \leq D, Y \leq D) = 1$$

$$\Rightarrow \int_{-D}^{\infty} (f_{X,Y}(x,y) dx dy = 1)$$