第1回 確率過程と時系列(2.1.3, 3.1.1, 7.1.3)

村澤 康友

2023年9月25日

今日のポイント

- 1. 試行の結果によって値が決まる数列を確 率変数列(離散確率過程)という. 確率変 数列の実現値を時系列という.
- 2. 必要なら時系列を対数系列, 差分(階差) 系列, 対数差分(階差)系列に変換する. 対数差分は変化率と近似的に等しい.
- 3. 時系列 (y_1,\ldots,y_T) から推定した回帰式 $E(Y_t|Y_{t-1})$ は、一定の条件の下で Y_{T+1} の 予測に使える.

目次

1 1.1 1.2 1.3	確率過程確率		$1. \ 0 \le P(.) \le 1$ $2. \ P(\Omega) = 1$ $3. \ (\sigma$ 加法性) A_1, A_2, \dots が排反なら $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$
1.4	確率変数列	2	(t-1) , $t-1$
2 2.1 2.2	時系列 時系列(p. 208)		1.2 確率変数 (p. 38) 定義 6. 試行の結果によって値が決まる変数を確率 変数という.
3.1 3.2 3.3 3.4	時系列予測同時分布と周辺分布	4	 注 2. すなわち X: Ω → ℝ. 例 1. サイコロの目. 1.3 確率ベクトル 定義 7. 試行の結果によって値が決まるベクトルを確率ベクトルという.
4	今日のキーワード	5	注 3. すなわち $(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$.
5	次回までの準備	5	例 2. n 個(または n 回)振るサイコロの目.

1 確率過程

1.1 確率

定義 1. 結果が偶然に支配される実験を試行という.

定義 2. 試行において起こりうる結果を標本点と いう.

定義 3. 標本点全体の集合を**標本空間**という.

注 1. 標本点を ω , 標本空間を Ω で表すことが多い.

定義 4. 標本空間の部分集合を事象という.

定義 5. 事象に対して定義され、以下の公理を満た す関数 P(.) を**確率**という.

 $1 \ 0 < P() < 1$

1.4 確率変数列

定義 8. 試行の結果によって値が決まる数列を確率 変数列(離散確率過程)という.

注 4. すなわち $\{X_t\}:\Omega\to\mathbb{R}^\infty$. 確率変数・確率 ベクトルと同様に、起こりうる結果に対して確率を 定義できる.

例 3. 無限回振るサイコロの目.

2 時系列

2.1 時系列 (p. 208)

確率変数列 $\{X_t\}$ の実現値 $\{x_t\}$ のうち、実際に観測される部分を (x_1,\ldots,x_T) とする.

定義 9. 確率変数列の実現値を時系列という.

例 4. サイコロを T 回振った結果.

定義 10. 時系列の観測値の数を時系列の長さという.

注 5. 時系列の長さ \neq 標本の大きさ、1 度しか観測 されない時系列の標本の大きさは 1. したがって (x_1,\ldots,x_T) は(長さ T の時系列の)大きさ 1 の 標本.

例 5. サイコロを T 回振る実験を n 回繰り返した 結果は(長さ T の時系列の)大きさ n の標本.

2.2 時系列の変換 (p. 214)

必要なら分析の前に時系列を変換する.

定義 11. $\{x_t\}$ の対数系列は $\{\ln x_t\}$.

注 6. 自然対数で変換する.

注 7. $x_t > 0$ でないと変換できない.

例 6. 株価指数 (NYSE 総合指数) の原系列と対数 系列 (図 1).

定義 12. $\{x_t\}$ の差分(階差)系列は $\{\Delta x_t\}$.

注 8. Δ は(後退)差分演算子. すなわち $\Delta x_t := x_t - x_{t-1}$.

定義 13. $\{x_t\}$ の変化(成長)率系列は $\{\Delta x_t/x_{t-1}\}$.

注 9. 時系列分析ではあまり使われない.

定義 14. $\{x_t\}$ の対数差分 (階差) 系列は $\{\Delta \ln x_t\}$.

注 10. 時系列分析では変化率の代わりによく使われる.

例 7. 株価指数 (NYSE 総合指数) の差分系列と対数差分系列 (図 2).

補題 1. x = 0 の近傍において

$$ln(1+x) \approx x$$

証明. マクローリン展開より

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

したがって x=0 の近傍において

$$e^x \approx 1 + x$$

両辺を対数変換すると

$$x \approx \ln(1+x)$$

定理 1.

$$\Delta \ln x_t \approx \frac{\Delta x_t}{x_{t-1}}$$

証明. 補題より

$$\Delta \ln x_t := \ln x_t - \ln x_{t-1}$$

$$= \ln \frac{x_t}{x_{t-1}}$$

$$= \ln \left(1 + \frac{x_t - x_{t-1}}{x_{t-1}} \right)$$

$$\approx \frac{x_t - x_{t-1}}{x_{t-1}}$$

注 11. 対数差分は正と負が対称. 変化率は正と負が非対称.

例 8. $x_1 := 1$ すなわち $\ln x_1 = 0$ とする.

2

図 2 NYSE 総合指数(週次)の差分系列と対数差分系列

- 1. $\Delta \ln x_2 := 1$, $\Delta \ln x_3 := -1$ なら $\ln x_3 = 0$ より $x_3 = 1 = x_1$.
- 2. $\Delta x_2/x_1=1$, $\Delta x_3/x_2=-1$ なら 100 %増の 100 %減だから $x_3=0\neq x_1$.

3 時系列予測

3.1 同時分布と周辺分布

(X,Y)を確率ベクトルとする.

定義 15. (X,Y) の同時(結合)累積分布関数($cumu-lative\ distribution\ function,\ cdf$) は、任意の (x,y) について

$$F_{X,Y}(x,y) := \Pr[X \le x, Y \le y]$$

定義 16. X の周辺 cdf は、任意の x について

$$F_X(x) := \Pr[X \le x]$$

定義 17. (X,Y) の同時 (結合) 確率質量関数 ($probability\ mass\ function,\ pmf$) は、任意の (x,y) について

$$p_{X,Y}(x,y) := \Pr[X = x, Y = y]$$

定義 18. X の周辺 pmf は、任意の x について

$$p_X(x) := \Pr[X = x]$$

注 12. 同時 pmf と周辺 pmf の関係は

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

定義 19. 任意の (x,y) について

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) \,\mathrm{d}s \,\mathrm{d}t$$

となる $f_{X,Y}(.,.)$ を (X,Y) の同時 (結合) 確率密度 関数 (probability density function, pdf) という.

注 13. F_{X,Y}(.,.) が微分可能なら

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$$

定義 20. X の周辺 pdf は、任意の x について

$$f_X(x) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) \,\mathrm{d}y$$

3.2 条件つき分布

定義 21. X = x が与えられたときの Y の条件つき pmf は、任意の y について

$$p_{Y|X}(y|X = x) := \frac{p_{X,Y}(x,y)}{p_X(x)}$$

注 14. 条件つき確率で定義する

定義 22. X = x が与えられたときの Y の条件つき pdf は、任意の y について

$$f_{Y|X}(y|X=x) := \frac{f_{X,Y}(x,y)}{f_X(x)}$$

注 15. 条件つき確率と同様に定義する。

定義 23. X = x が与えられたときの Y の条件つき期待値は

3.3 回帰 (p. 68)

定義 24. E(Y|X) を求めることを, Y を X に回帰するという.

定義 25. E(Y|X) を与える式を, Y の X 上への回帰モデル(回帰式,回帰関数)という.

注 16. すなわち

$$E(Y|X) = r(X)$$

定義 26. 線形な回帰モデルを**線形回帰モデル**という.

注 17. すなわち

$$E(Y|X) = \alpha + \beta X$$

3.4 1 期先予測

確率変数列 $\{Y_t\}$ の実現値 (y_1,\ldots,y_T) から Y_{T+1} を予測したい. Y_{T+1} の (Y_1,\ldots,Y_T) 上への線形回帰モデルは

$$E(Y_{T+1}|Y_1,\ldots,Y_T) = \alpha + \beta_1 Y_1 + \cdots + \beta_T Y_T$$

 Y_{T+1} が観測されていないため、この式は推定できない。

 $t=2,\ldots,T$ について、 Y_t の Y_{t-1} 上への単回帰モデルを仮定する。すなわち

$$E(Y_t|Y_{t-1}) = \alpha + \beta Y_{t-1}$$

この式は観測値 (y_1, \dots, y_T) から推定できる.一定 の条件の下で,この式を Y_{T+1} の予測に使うことが できる.

4 今日のキーワード

試行,標本点,標本空間,事象,確率,確率変数,確率ベクトル,確率変数列(離散確率過程),時系列,(時系列の)長さ,対数系列,差分(階差)系列,変化(成長)率系列,対数差分(階差)系列,同時(結合)累積分布関数(cdf),周辺cdf,同時(結合)確率質量関数(pmf),周辺pmf,同時(結合)確率密度関数(pdf),周辺pdf,条件つきpmf,条件つきpdf,条件つき期待值,回帰,回帰モデル(回帰式,回帰関数),線形回帰モデル

5 次回までの準備

提出 宿題 1

復習 教科書第2章1.3節,第3章1.1節,第7章 1.3節,復習テスト1

予習 教科書第7章1.1-1.2節,第4章3節