通知实验安排

数字逻辑电路课程有16个学时的实验,初步安排:

具体安排参见公共邮箱中的word文档。

实验地点:综合实验楼306房间

实验设备台套数有限,所以一次只能安排一个班实验。

第六章作业布置

1、由于期中考试,作业推迟一周交。第8周才交作业。

数字逻辑

丁贤庆

ahhfdxq@163.com

第六章

时序逻辑电路

回忆: 各种常用的触发器

1. 维持阻塞触发器

在CP脉冲的上升沿到来瞬间 使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = D$$

2.下降沿触发的 JK 触发器

JK触发器

在CP脉冲的下降沿到来瞬间使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = J \overline{Q^n} + \overline{K}Q^n$$

6.2 时序逻辑电路的分析

6.2.1 分析同步时序逻辑电路的一般步骤

6.2.2 同步时序逻辑电路分析举例

6.2 时序逻辑电路的分析

时序逻辑电路分析的任务:

分析时序逻辑电路在输入信号的作用下,其状态和输出 信号变化的规律,进而确定电路的逻辑功能。

分析过程的主要表现形式:

时序电路的逻辑功能是由其状态和输出信号的变化规律呈现出来的。所以,分析过程主要是列出电路状态表或画出状态图、工作波形图。

(1) 先找触发器的种类和数量。

(2) 写出触发器特性方程、输出方程。

$$Q^{n+1} = D$$

$$\begin{array}{c|c}
J & -1J & -Q \\
CP & > C1 \\
K & -1K & -\overline{Q}
\end{array}$$

$$Q^{n+1} = J \overline{Q^n} + \overline{K}Q^n$$

(3) 根据特性方程和输出方程,填写状态转换真值表。

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(3) 根据特性方程和输出方程,填写状态转换真值表。

(3) 根据特性方程和输出方程,填写状态转换真值表。

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(3) 根据特性方程和输出方程,填写状态转换真值表。

状态转换真值表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(4) 根据状态状态真值表,画出状态状态图。 状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(3) 根据特性方程和输出方程,填写状态转换真值表。

(4) 在状态转换图中找闭合回路。

(4) 在状态转换图中找闭合回路。

6.1.2 时序逻辑电路功能的表达

1. 逻辑方程组

状态方程组

$$Q_1^{n+1} = \overline{Q_0^n} A$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n)A$$

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1)\overline{A}$$

2. 根据方程组列出状态转换真值表

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1) \overline{A}$$

状态方程组

$$Q_1^{n+1} = \overline{Q_0^n} A$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n)A$$

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

"110"检测电路, 该电路检测到110时就Y输出1.

"1110"检测电路, 该电路检测到1110时 就Y输出1.

综合,"110"和"1110"检测电路, 该电路检测到110或 者1110时就Y输出1.

6.2.2 同步时序逻辑电路分析举例

例1 试分析如图所示时序电路的逻辑功能。

解: (1)了解电路组成。

电路是由两个T触发器组成的同步时序电路。

(2) 根据电路列出三个方程组

输出方程组: $Y=AQ_1Q_0$

激励方程组:

$$T_0 = A$$

$$T_1 = AQ_0$$

将激励方程组代入T触发器的特性方程得 状态方程组

$$Q^{n+1} = T \oplus Q^n = T\overline{Q^n} + \overline{T}Q^n$$

$$Q_0^{n+1} = A \oplus Q_0^n$$

$$Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$$

(3) 根据状态方程组和输出方程列出状态表

$$Q_0^{n+1} = A \oplus Q_0^n$$

$$Q_0^{n+1} = A \oplus Q_0^n$$
 $Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$

$$Y = A Q_1 Q_0$$

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^n$	⁺¹ / Y
21 20	A=0	A=1
0 0		
0 1		
10		
11		

(4) 画出状态图,找出闭合回路

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
21 20	A=0	A=1	
0 0	00/0	01/0	
0 1	01/0	10/0	
10	10/0	11/0	
11	11/0	00/1	

(5) 画出时序图

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
212 0	A=0	A=1	
0 0	00/0	01/0	
0 1	01/0	10/0	
10	10/0	11/0	
11	11/0	00/1	

(6) 逻辑功能分析

观察状态图和时序图可知,电路是一个由信号A控制的可控二进制计数器。当A=0时停止计数,电路状态保持不变;当A=1时,在CP上升沿到来后电路状态值加1,一旦计数到11状态,Y输出1,且电路状态将在下一个CP上升沿回到00。输出信号Y的下降沿可用于触发进位操作。

例2 试分析如图所示时序电路的逻辑功能。

解: 1.了解电路组成。

电路是由两个JK触发器组成的莫尔型同步时序电路。

2. 写出下列各逻辑方程式:

激励方程

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus Q_1$$

输出方程

$$Y=Q_2Q_1$$

状态转换真值表

Q_2^n	Q_1^n	X	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

将激励方程代入JK触发器的特性方程得状态方程

整理得:

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

3.列出其状态转换表,画出状态转换图和波形图

$$Q_1^{n+1} = Q_1^n$$

$$Q_1^{n+1} = Q_1^n$$
 $Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$

$$Y=Q_2Q_1$$

状态转换表

$\mathbf{Q}_{2}^{n+1}\mathbf{Q}_{1}^{n+1}/Y$ $\mathbf{Q}_2^n \mathbf{Q}_1^n$ X=1X=00 0 1 0

状态转换真值表

Q_2^n	Q_1^n	X	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0		_	
1	1	1			

画出状态图

$\mathbf{Q}_{2}^{n}\mathbf{Q}_{1}^{n}$	$\mathbf{Q}_2^{n+1}\mathbf{Q}_1^{n+1}/Y$		
Q2Q1	X=0	X=1	
0 0	0 1/0	1 1/0	
0 1	1 0/0	0 0/0	
1 0	1 1/0	0 1/0	
1 1	0 0 / 1	1 0/1	

根据状态转换表, 画出波形图。

$Q_1^nQ_0^n$	Q_1^{n+1}	Y	
	X=0	<i>X</i> =1	
0 0	01	11	0
0 1	10	0 0	0
10	11	0 1	0
11	0 0	10	1

 Q_1

 Q_2

 Y_{-}

状态转换图

4. 确定电路的逻辑功能.

•X=0时

电路进行减1计数。

电路功能: 可逆计数器

Y可理解为进位或借位端。

例3 分析下图所示的同步时序电路。

根据电路列出逻辑方程组:

输出方程组

$$Z_0 = Q_0$$

$$Z_0 = Q_0$$
 $Z_1 = Q_1$ $Z_2 = Q_2$

$$Z_2 = Q_2$$

激励方程组

$$D_0 = \overline{Q}_1^n \overline{Q}_0^n$$

$$D_1 = Q_0^n$$

$$D_2 = Q_1^n$$

Z0算输入还是输出?

由于Q0是输出, 所以Z0只能是输出!

状态转换真值表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

将激励方程代入D触发器的特性方程得状态方程

$$Q^{n+1} = D$$

得状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_1^n \overline{Q}_0^n$$
 $Q_1^{n+1} = D_1 = Q_0^n$
 $Q_2^{n+1} = D_2 = Q_1^n$

2.列出其状态表

状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	
001	
010	
011	
100	
101	
110	
111	

3. 画出状态图

状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	001
001	010
010	100
011	110
100	0 0 1
101	010
110	100
111	110

4. 画出时序图

5、逻辑功能分析(找闭合回路)

由状态图可见,电路的有效状态是三位循环码。 从时序图可看出,电路正常工作时,各触发器的Q端轮流出现一个宽度为一个CP周期脉冲信号,循环周期为3 T_{CP} 。电路的功能为脉冲分配器或节拍脉冲产生器。

