Reinforcement Learning for Business, Economics, and Social Sciences

Unit 1-5: Inference with Batched Bandits

Davud Rostam-Afschar (Uni Mannheim)

How to get bandits normal?

Obs	Selected arm	Reward
1	А	0
2	В	0
3	Α	1
4 5	В	0
5	Α	0
6 7	В	1
	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

- Does arm A or arm B perform better?
- ▶ Which arm to play in next trial (round 17)?

Bandits >> A/B Tests

- Push to replace non-adaptive randomized trials with bandits
 - ▶ In development and labor economics, finance, biostats, health, ...
 - Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)

Problem:

- Bandits are not easy to implement
 Not available in statistical software like Stata
- Bandits break inference Adaptive arm allocations
 - \rightarrow breaks asymptotics of usual estimators
 - \rightarrow wrong confidence intervals
- ► Solution: Batched OLS (BOLS) for Batched Bandits

A Simple Example

- lacktriangle OLS and BOLS under Beta-Bernoulli two-arm Thompson Sampling with batch size $N_t=100$ at batch t=10
- ▶ All simulations are with no margin $(\beta_1 = \beta_0 = 0)$

(a) Empirical distribution of standardized OLS estimator for the margin

(b) Empirical distribution of standardized BOLS estimator for the margin

Batchwise Data Collection

Obs	Selected arm	Batch	Reward
1	А	0	
2	В	0	
3	Α	0	
4	В	0	
5		1	
6		1	
7		1	
8		1	
9		2	
10		2	
11		2	
12		2	
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5		1	
6		1	
7		1	
8		1	
9		2	
10		2	
11		2	
12		2	
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	
6	В	1	
7	Α	1	
8	В	1	
9		2	
10		2	
11		2	
12		2	
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	0
6	В	1	1
7	Α	1	1
8	В	1	0
9		2	
10		2	
11		2	
12		2	
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	0
6	В	1	1
7	Α	1	1
8	В	1	0
9	А	2	
10	Α	2	
11	Α	2	
12	В	2	
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	0
6	В	1	1
7	Α	1	1
8	В	1	0
9	Α	2	0
10	А	2	1
11	Α	2	1
12	В	2	0
13		3	
14		3	
15		3	
16		3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	0
6	В	1	1
7	Α	1	1
8	В	1	0
9	А	2	0
10	Α	2	1
11	Α	2	1
12	В	2	0
13	Α	3	
14	Α	3	
15	Α	3	
16	В	3	

Obs	Selected arm	Batch	Reward
1	А	0	0
2	В	0	0
3	Α	0	1
4	В	0	0
5	Α	1	0
6	В	1	1
7	Α	1	1
8	В	1	0
9	Α	2	0
10	Α	2	1
11	А	2	1
12	В	2	0
13	Α	3	1
14	Α	3	0
15	Α	3	1
16	В	3	0

Obs	Selected arm	Batch	Reward	True Expected Reward
1	Α	0	0	0.5
2	В	0	0	0.2
3	А	0	1	0.5
4	В	0	0	0.2
5	Α	1	0	0.5
6	В	1	1	0.2
7	Α	1	1	0.5
8	В	1	0	0.2
9	А	2	0	0.5
10	А	2	1	0.2
11	А	2	1	0.5
12	В	2	0	0.2
13	А	3	1	0.5
14	А	3	0	0.2
15	А	3	1	0.5
16	В	3	0	0.2

Obs	Selected arm	Batch	Reward	True Expected Reward	OLS
1	А	0	0	0.5	0.600
2	В	0	0	0.2	0.167
3	Α	0	1	0.5	0.600
4	В	0	0	0.2	0.167
5	Α	1	0	0.5	0.600
6	В	1	1	0.2	0.167
7	Α	1	1	0.5	0.600
8	В	1	0	0.2	0.167
9	А	2	0	0.5	0.600
10	Α	2	1	0.2	0.600
11	Α	2	1	0.5	0.600
12	В	2	0	0.2	0.167
13	Α	3	1	0.5	0.600
14	Α	3	0	0.2	0.600
15	Α	3	1	0.5	0.600
16	В	3	0	0.2	0.167

Obs	Selected arm	Batch	Reward	True Expected Reward	OLS	Batch-Wise OLS
1	Α	0	0	0.5	0.600	0.500
2	В	0	0	0.2	0.167	0.000
3	Α	0	1	0.5	0.600	0.500
4	В	0	0	0.2	0.167	0.000
5	Α	1	0	0.5	0.600	0.500
6	В	1	1	0.2	0.167	0.500
7	Α	1	1	0.5	0.600	0.500
8	В	1	0	0.2	0.167	0.500
9	Α	2	0	0.5	0.600	0.667
10	Α	2	1	0.2	0.600	0.667
11	Α	2	1	0.5	0.600	0.667
12	В	2	0	0.2	0.167	0.000
13	Α	3	1	0.5	0.600	0.667
14	Α	3	0	0.2	0.600	0.667
15	Α	3	1	0.5	0.600	0.667
16	В	3	0	0.2	0.167	0.000

Obs	Selected arm	Batch	Reward	True Expected Reward	OLS	Batch-Wise OLS	ω_t
1	А	0	0	0.5	0.600	0.500	$\sqrt{\frac{2\times2}{2+2}}$
2	В	0	0	0.2	0.167	0.000	$\sqrt{\frac{2\times 2}{2+2}}$
3	Α	0	1	0.5	0.600	0.500	$\sqrt{\frac{2\times 2}{2+2}}$
4	В	0	0	0.2	0.167	0.000	$\sqrt{\frac{2\times 2}{2+2}}$
5	А	1	0	0.5	0.600	0.500	$\sqrt{\frac{2\times 2}{2+2}}$
6	В	1	1	0.2	0.167	0.500	$\sqrt{\frac{2\times 2}{2+2}}$
7	А	1	1	0.5	0.600	0.500	$\sqrt{\frac{2\times 2}{2+2}}$
8	В	1	0	0.2	0.167	0.500	$\sqrt{\frac{2\times 2}{2+2}}$
9	Α	2	0	0.5	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
10	Α	2	1	0.2	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
11	Α	2	1	0.5	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
12	В	2	0	0.2	0.167	0.000	$\sqrt{\frac{1\times3}{1+3}}$
13	Α	3	1	0.5	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
14	А	3	0	0.2	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
15	А	3	1	0.5	0.600	0.667	$\sqrt{\frac{1\times3}{1+3}}$
16	В	3	0	0.2	0.167	0.000	$\sqrt{\frac{1\times3}{1+3}}$

Point estimates OLS vs. BOLS

Aggregate or batched OLS (BOLS) estimator

$$\Delta^{\mathsf{BOLS}} = rac{\sum_{t}^{T} \omega_{t} imes \Delta_{t}^{BOLS}}{\sum_{t}^{T} \omega_{t}},$$

where
$$\omega_t = \sqrt{rac{N_{t,k} imes N_{t,b}}{N_{t,k} + N_{t,b}}}.$$

- \triangleright $N_{t,k}$ is the number of times that comparison arm k was played
- \triangleright $N_{t,b}$ is the number of times that baseline arm b was played
- weights batchwise estimates
- such that the aggregate margins are consistent and asymptotically normally distributed (Zhang, Janson, and Murphy, 2020)

Example from stylized data structure

OLS
$$\widehat{Reward} = 0.6 - 0.433 \times \mathbb{1}_{arm B}$$

$$\begin{array}{c} \text{BOLS } -0.443 = \frac{1 \times 0.5 + 1 \times 0 + \sqrt{\frac{1 \times 3}{1 + 3}} \times 0.667 + \sqrt{\frac{1 \times 3}{1 + 3}} \times 0.667}{1 + 1 + \sqrt{\frac{1 \times 3}{1 + 3}} + \sqrt{\frac{1 \times 3}{1 + 3}}} \\ \widehat{\text{Reward}} = 0.6 - 0.443 \times \mathbb{1}_{\text{arm B}} \end{array}$$

Inference OLS vs. BOLS

$$\mathbb{P}\Big(\Delta^{\mathsf{BOLS}} - c\sigma w_t \leq \mu \leq \Delta^{\mathsf{BOLS}} + c\sigma w_t\Big) = 1 - lpha,$$

- ightharpoonup where Δ^{BOLS} is the weighted estimated marginal effect
- \blacktriangleright μ is the hypothesized difference between means of the arms
- ightharpoonup c is a critical value, e.g., the $1-\alpha/2=97.5$ th percentile of a normal
- $ightharpoonup \sigma$ reflects the sampling error
- \blacktriangleright w_t is a weight correcting the bias due to adaptive sampling

$$w_t = \sqrt{T}/\sum_{t=1}^T \omega_t.$$

T is the total number of batches

Batched Bandits in Practice

Six call methods to enroll rice farmers

- Kasy and Sautmann (2021) designed an experiment using exploration sampling for Precision Agriculture for Development
- ► NGO that works with government partners to provide a phone-based personalized agricultural extension service to farmers in India
- ► Aim is to choose best call methods to enroll rice farmers in one state

Six call methods to enroll rice farmers

- ▶ The outcome (reward) is a binary variable for call completion:
 - ightharpoonup = 1 if call recipient answered five questions asked during call
 - ightharpoonup = 0 otherwise

- Exploration sampling replaces the Thompson assignment shares
- modification shifts weight away from the best performing option to competing treatments
- ▶ 10,000 valid phone numbers randomly assigned to one of 16 batches
- ▶ batch size was 600 numbers each (and one with 400)
- ► From June 3, 2019 batches run every other day, completed next day

- . use "example data\kasy_sautmann_2021.dta", clear
- . bbandits outcome treatment date

Number of obs	=	10000			
Est. Rewards only best arm	=	1926	Mean reward best arm	=	0.1926
Actual total reward	=	1804	Actual mean reward	=	0.1804
Est. reward uniformly chosen arms	=	1709	Mean reward uniform	=	0.1709

Arm b	Mean Reward						Share arm b
	0.1606						0.0903
k v. b	Margin OLS	Margin BOLS	z	P> z	[95% Conf.	Interval]	Share arm k
1-0 2-0 3-0 4-0	0.0320 0.0185 -0.0158 0.0078	0.0406 0.0249 -0.0289 0.0188	2.61 1.51 -1.12 0.97	0.009 0.132 0.262 0.330	0.0101 -0.0075 -0.0795 -0.0191	0.0711 0.0572 0.0216 0.0568	0.3931 0.2234 0.0366 0.1081
5-0	0.0192	0.0243	1.40	0.161	-0.0097	0.0582	0.1485

Treatment	0	1	2	3	4	5
SMS	—	1h ahead	24h ahead	6:30 pm	1h ahead	24h ahead
Call time	10 am	10 am	10 am		6:30 pm	6:30 pm

The figure was generated using kasy_sautmann_2021.dta and running bbandits outcome treatment date7

The figure was generated using kasy_sautmann_2021.dta and running bbandits outcome treatment date

Takeaways

Clear best and worst arms

- ▶ Best: Calling farmers at 10 am after a message an hour ahead
- ▶ Worst: Calling at 6:30 pm without a text message alert

Improvement of success rate

- ▶ 18.04% success rates within the experiment
- ▶ 17.15% success rate with equal assignment

References I

- KASY, M., AND A. SAUTMANN (2021): "Adaptive Treatment Assignment in Experiments for Policy Choice," *Econometrica*, 89(1), 113–132.
- KEMPER, J., AND D. ROSTAM-AFSCHAR (2025): "Earning While Learning: How to Run Batched Bandit Experiments," University of Mannheim.
- OFFER-WESTORT, M., A. COPPOCK, AND D. P. GREEN (2021): "Adaptive Experimental Design: Prospects and Applications in Political Science," *American Journal of Political Science*, 65(4), 826–844.
- ZHANG, K., L. JANSON, AND S. MURPHY (2020): "Inference for Batched Bandits," *Advances in neural information processing systems*, 33, 9818–9829.

Takeaways

How to run Batched Bandit Experiments?

- Bandits may improve learning and exploitation
- ► There is a push to use more bandits in real experiments in economics, biostats, health, psychology, political science (Offer-Westort, Coppock, and Green, 2021), ... and survey research methods!
- need for valid inference to support conclusions
 - bandits break inference
 - researchers want valid confidence intervals
- Batched bandit inference (download BBandits)
 - ► (Kemper and Rostam-Afschar, 2025)
 - BOLS allows valid statistical inference & correct coverage for batched bandits