Name:

Honor Code:

Instructions:

- Use the space on the accompanying pages to work the problems. Do not use a bluebook. Attach additional worksheets if necessary.
- If you wish to have partial credit awarded for any of your incorrect answers you must write clearly and legibly. Explain your work in words, if necessary.
- Read the instructions provided with each problem.
- Don't Panic.

1.

- (a) [16 points] Find the range of K for stability in the following system
- (b) [2 points] *Roughly* sketch the step response for K=-100 [use your results from (a) as a guide].
- (c) [2 points] *Roughly* sketch the step response for K=+100 [use your results from (a) as a guide].

$$\begin{array}{c|c}
\hline
 & \\
\hline
 & \\$$

$$\frac{Po(e^{1/2})}{\delta} = \frac{K - \Delta(\rho + \eta)}{\delta} = -\frac{\delta^2 - 4\rho + \kappa}{\delta}$$

$$\frac{(cscche)}{(0+12)}\left(\frac{-b^2-40+k}{b}\right) = \frac{(150+1)(-b^2-40+k)}{b^2+12b}$$

Feedback
$$\frac{(150+1)[-0^{2}-40+K)}{0^{2}+120+[150+1](-0^{2}-40+K)}$$

$$= \frac{(150+1)[-0^{2}-40+K)}{0^{2}+120-150^{3}-600^{2}+15K0-0^{2}-40+K}$$

$$= \frac{(150+1)(-0^{2}-40+K)}{0^{3}[-15]+0^{2}[-60]+0[15K+8]+K}$$

Ruth Table

- (b) [2 points] Let $M_1=M_2=1$, $K_1=K_2=1$, and D=2. Use the initial value theorem to show that when excited by a step input, $x_1(t) \rightarrow 0$ as $t \rightarrow 0$.
- (c) [2 points] Use the final value theorem to show that $x_1(t) \rightarrow 1$ as $t \rightarrow \infty$ when f(t)=u(t).
- (d) [6 points] The following graph shows the step response of the system. Explain why it looks the way it does in two or three sentences.

(1)
$$X_1(2) [D^2 M_1 + DA + k_2] + X_2(2) [-k_2] = 0$$

(2)
$$F(a) = X_1(a) \left[-K_2 \right] + X_2(a) \left[M_2 a^2 + K_1 + K_2 \right]$$

From (1)
$$X_2(2) = X_1(0) \left[\frac{M_1 \Omega^2 + D_2 + K_2}{K_2} \right]$$

=)
$$F(0) = \chi_1(0) \left[\left[-k_2 \right] + \left[\frac{M_1 0^2 + D_0 + k_2}{k_2} \right] \left[M_2 0^2 + K_1 + K_2 \right] \right]$$

$$\frac{\chi(0)}{F(0)} = \frac{1}{-K_2 + \frac{(M_10^2 + 0.0 + K_2)}{K_2}(M_20^2 + K_1 + K_2)}}$$

$$=\frac{K_{2}}{(M_{1}o^{2}+D_{1})+K_{2})(M_{2}o^{2}+k_{1}+k_{2})-K_{2}^{2}}$$

$$(M_1 o^2 + 0.0 + K_2)(M_2 o^2 + K_1 + K_2) - K_2$$

(e)
$$\lim_{N \to 0} \int_{0}^{\infty} G(x) = \frac{\kappa_{2}}{(\kappa_{2})(\kappa_{1} + \kappa_{2}) - \kappa_{2}^{2}} = \frac{\kappa_{2}}{\kappa_{1} \kappa_{2}} = \frac{1}{\kappa_{1} \kappa_{2}}$$

The force is applied starting at t=0. The block respond.
by moving down quickly. The springs and dampers then pull back causing the mass to recoil. As time gues ECE 365/460 Midterm Exam on, eventually the black settles at position = 1.

5. Consider the following system

- (a) [8 points] Write the Closed Loop Transfer Function.
- (b) [6 points] Find all relevant second-order parameters of the system when $K_1=1$ and $K_2=2$ and sketch the output when the system is excited by a step input. Show that the system is stable.
- (c) [6 points] Repeat (b) for $K_1=2$ and $K_2=1$. Show that the system is stable.

(a)
$$\frac{1}{D+1} \frac{1}{1+\left(\frac{1}{D+1}\right)\left(\frac{1}{k_{2}+1}\right)} \times \frac{(D+1)(k_{2}+1)}{(D+1)(k_{2}+1)}$$

$$= \frac{K_{2}+1}{(D+1)(k_{2}+1)+1} = \frac{k_{2}+1}{k_{2}D+D+k_{2}+2}$$

$$= \frac{K_{2}+1}{(D+1)(k_{2}+1)+1} = \frac{k_{2}+1}{k_{2}D+D+k_{2}+2} + \frac{k_{1}}{2} \left(\frac{k_{2}+1}{D+1}\right) + \frac{k_{2}+1}{2} \left(\frac{k_{2}+1}{D+1}\right) \left(\frac{k_{2}+1}{D+1}\right) + \frac{k_{2}+1}{$$

b) TF =
$$\frac{3}{3a^2+7a+7} = \frac{1}{a^2+\frac{7}{3}a+\frac{7}{3}}$$

 $w_n^2 = \frac{1}{3}$, $23w_n = \frac{4}{3}$
 $\Rightarrow 0s = 2.459$ Ts = 343 0 Tp-3.19
Stubility $\frac{3^2}{3} = \frac{3}{7}$ or $\frac{a^2}{a^1} = \frac{1}{7/3}$
 $\frac{3}{a^1} = \frac{7}{7}$ or $\frac{a^2}{a^2+\frac{7}{3}a+\frac{7}{3}}$
 $0 = \frac{4}{3a^2+5a+7} = \frac{2}{a^2+\frac{5}{3}a+\frac{7}{3}}$
 $w_n^2 = \frac{7}{3}$, $23w_n = \frac{5}{4}$

$$w_n^2 = \frac{7}{9}$$
, $23w_n = \frac{5}{9}$
=> $0s = 6.95\%$ $T_s = 3.70$ $T_p = 2.30$

Stab.l.ty
$$a^2$$
 a 7
 a^1 **5**
 a^2 **7**
 a^2 **8**
 a^2 **9**
 a^2

grapho:

ECE 365/460 Midterm Exam

10 of 10

Winter 2000

3.

- (a) [5 points] Find the Transfer Function Vout(s)/Vin(s) for the following system.
- (b) [5 points] Determine and plot the step response.
- (c) [5 points] Find Vout(t) when Vin() = $5 \sin 10\pi t$.

$$\frac{O-V_{i,\nu}(o)}{V_{pc}} + \frac{O-V_{i,\nu}(o)}{R} = \frac{V_{i,\nu}(o)}{V_{i,\nu}(o)} = -Roc$$

$$\frac{V_{N}(s)}{V_{N}(s)} = -Rac$$

(b) when
$$V_{,n}(o) = \frac{1}{o}$$
, $V_{out}(a) = -RC$
 $V_{out}(a) = -RCS(a)$

$$V_{\infty}(0) = \frac{5.10\pi}{D^2 + (10\pi)^2}$$
 $V_{\infty}(0) = \frac{-50\pi RC}{D^2 + (10\pi)^2}$

$$\frac{-50\pi}{\rho^2 + (107)^2}$$

5. [20 points] Answer the following 10 questions True or False.

Answer true if and only if the system is stable for each of the closed loop denominators.

$$\Box$$
 i) Denominator(s)=-s²-3s-2

ii) Denominator(s)=
$$(s-1)(-s^3-4s^2-2s-1)$$

iv) Denominator(s)=
$$(s+1)(s+2)(s^2-4s+3)$$

Answer the following second order systems questions true of false

$$F$$
 v) A CLTF with denominator s^2+3s+2 is underdamped

$$\forall$$
 vi) It is possible to choose K in to get 10% overshoot in a system with CLTF s²+3s+K.

Answer the following partial fraction expansion questions true or false

$$\frac{(s+1)}{s^2(s+2)} = \frac{.25}{s} + \frac{.5}{s^2} + \frac{-.25}{s+2}$$

$$\frac{(s+1)}{s(s+2)} = \frac{.25}{s} + \frac{-.25}{s+2}$$

$$F$$
 ix)

$$\frac{(s+1)}{s(s^2+2s+2)} = \frac{1}{s} + \frac{-1}{s+1}$$

The inverse Laplace Transform of x)

$$\frac{(s+1)}{s(s^2+2s+2)}$$

Includes an $e^{-at} \sin(\omega t)$ term for some ω and a.