PS1 Solutions

Jingle Fu, Chaitanya Venkateswaran, Yingjie Zhang

Solution 1. Preference Relations

- **1.a.** Two basic consumptions are: Completeness and Transitivity.
 - 1. Completeness: This means that for $x, y \in X$, we have either $x \succeq y$ or $y \succeq x$, or both.
 - 2. **Transitivity:** This means that for $x, y, x \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.

By saying that \succeq is complete, we mean that for each individual, there is a well-defined preference between two goods. Transitivity implies that we will not face the decision with a series of choices such that the preferences form a cycle/loop.

1.b. By definition, $u(\cdot)$ is a utility function representing the preference \succeq if, for all $x, y \in X$,

$$x \succ y \Leftrightarrow u(x) > u(y)$$
.

Now, we know that $u(x) = u(y) \Leftrightarrow x \sim y$ and $u(x) > u(y) \Leftrightarrow x \succ y$. If $x \succeq y$, then if $y \succeq x$, we have $x \sim y$, showing u(x) = u(y), or if $y \succeq x$ doesn't hold, then $x \succ y$, implying that u(x) > u(y), thus if $x \succeq y$, $u(x) \geq u(y)$.

If $u(x) \ge u(y)$, then u(x) > u(y) or u(x) = u(y), implying that x > y or $x \sim y$, both giving that $x \succeq y$.

1.c. By definition, $u: X \to \mathbb{R}$ is a utility function representing preference relation \succeq means that for all $x, y \in X$,

$$x \succeq y \Leftrightarrow u(x) \ge u(y)$$
.

1. If $x \succeq y$, then $u(x) \geq u(y)$, as $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing, $f(u(x)) \geq f(u(y))$ for all $u(x) \geq u(y)$. Thus, $x \succeq y \Rightarrow f(u(x)) \geq f(u(y))$.

2. If $f(u(x)) \ge f(u(y))$, as f is strictly increasing, this implies that $u(x) \ge u(y)$, which by definition gives that $x \succeq y$. Hence, we have

$$f(u(x)) \ge f(u(y)) \Leftrightarrow x \succeq y,$$

which shows that $v = f \circ u$ is also a utility function representing preference relation \succeq .

Solution 2. Choice Rules

2.a Weak Axiom: Given choice structure $(\mathcal{B}, C(\cdot))$, for some $B \in \mathcal{B}$ and $x, y \in B$, we have $x \in C(\mathcal{B})$. Then, for some other $B' \in \mathcal{B}$, with $x, y \in B'$, and $y \in C(B')$, we must also have $x \in C(B')$.

The WA means that if x is chosen when y is available, then there's no budget set B' containing both x and y that gives the result that y is chosen while x is not.

2.b Revealed Preference Relation: Given choice structure $(\mathcal{B}, C(\cdot))$,

$$x \succeq^* y \Leftrightarrow \text{There is some } B \in \mathcal{B} \text{ and } x, y \in B \text{ s.t. } x \in C(B)$$

Difference from \succeq : The revealed preference relation \succeq * is based on the decision-maker's actual choices, while \succeq is based on the decision-maker's subjective preferences. \succeq * reflects observable behavior, and due to the lack of sufficient observations, it may not always align with the result using the preference approach.

- **2.c.** (i) We prove from both sides. Firstly, \Rightarrow . If $x \succ^* y$, then we know that for some $B \in \mathcal{B}$ and $x, y \in B$, we have $x \in C(B)$ and $y \notin C(B)$. Thus $x \succeq^* y$. Suppose that $y \succeq^* x$, then there exists $B \in \mathcal{B}$, such that $x, y \in B$ and $x \in C(B)$. The Weak Axiom implies that $y \in C(B)$, which is a contradiction. Hence if $x \succ^* y$, $y \succeq^* x$ doesn't hold, which gives $x \succ^{**} y$.

 Secondly, \Leftarrow . If $x \succ^{**} y$, then $x \succeq^* y$ but not $y \succeq^* x$. Still, by the definition of revealed preference, there is some $B \in \mathcal{B}$ and $x, y \in B$, we have $x \in C(B)$, but
 - (ii) The \succ^* need not to be transitive. For example we have three alternatives x, y, z. Let $\mathcal{B} = \{(x, y), (y, z)\}$, and C(x, y) = x and C(y, z) = y, then $x \succ^* y$ and $y \succ^* z$, but since (x, z) is not in any subsets of \mathcal{B} , we don't have $x \succ^* z$.

 $y \notin C(B)$. This gives $\succ^{**} \Rightarrow \succ^*$.

(iii) Bonus Let $x, y, z \in X$, $x \succ^* y$, and $y \succ^* z$. Then $x, y, z \in \mathcal{B}$ and by (i), $x \succ^{**} y$ and $y \succ^{**} z$. Hence, we have neither $y \succeq^* x$ nor $z \succeq^* y$. Since \succeq^* rationalizes $(\mathcal{B}, C(\cdot))$, this implies that $y \notin C(\{x, y, z\})$ and $z \notin C(\{x, y, z\})$. Since $C(\{x, y, x\}) \neq \emptyset$, $C(\{x, y, x\}) = x$, we have $x \succ^* z$.

Solution 3. Consumer Choice

- **3.a** (i) **Set of commodities**: {apple, wine, cheese}. There are L=3 commodities in the set.
 - (ii) A commodity vector is $x = (x_A, x_W, x_C) \in \mathbb{R}^L_+$. Example: x = (2, 15, 0), meaning 2 apples, 15 bottles of wine, and 0 piece of cheese.
 - (iii) Commodity set: A subset of \mathbb{R}^L , showing the constraint to consumer's choice. In this question, the commodity set is

$$X = \{\{x_A, x_W, x_C\} | x_A \in [0, 10], x_W \in [0, 20], x_C \in [0, 15].\}$$

(iv) Budget set is set by commodity vector, price vector and a budget limit. In this question, the budger set is given by:

$$B = \{x \in X | x_A + 2x_W + 4x_C \le 52\}$$

(v) It's given by the equation $x_1 + 2x_2 + 4x_3 = 52$.

3.b (i) Suppose we have two budget and price bundles: (p^0, x^0, w^0) and (p^1, x^1, w^1) , the weak axiom says that, if $p^0x^1 \leq w^0$, then $p^1x^0 \geq w^1$. Otherwise the weak axiom implies that under (p^1, w^1) , x^0 is chosen rather than x^1 , for the condition gives that x^0 is preferred to x^1 .

Right now, we have $p^0x^0 = 2 \times 5 + 4 \times 10 = 50$ and $p^1x^1 = 60 + 3y$. When y = 5,

$$p^{0}x^{1} = (2,4) \times (10,y) = 20 + 4y = 40 < 50 = p^{0}x^{0} = w^{0}.$$

Hence if the WA is satisfied, we'll have $p^1x^0 \geq w^1$. However,

$$P^{1}x^{0} = (6,3) \times (5,10) = 30 + 30 = 60 < 75 = p^{1}x^{1} = w^{1}.$$

If y = 5, the consumption plan doesn't satisfy Weak Axiom.

(ii) If y = 10,

$$p^0x^1 = (2,4) \times (10,y) = 20 + 4y = 60 > 50 = p^0x^0 = w^0.$$

$$p^{1}x^{0} = (6,3) \times (5,10) = 60 < 90 = p^{1}x^{1} = w^{1}$$

We have: $p^0x^1 < w^1$ and $p^1x^0 < w^1$. This gives that: under (p^1, w^1) , x_0 is affordable, and x_1 is preferred to x_0 . Under (p^0, w^0) , we cannot afford x^1 . The consumption plan satisfies Weak Axiom.

(iii) For the general question, we have $w^0 = p^0 x^0 = 50$, $w^1 = p^1 x^1 = 60 + 3y$, $p^0 x^1 = (2,4) \times (10,y) = 20 + 4y$ and $p^1 x^0 = (6,3) \times (5,10) = 30 + 30 = 60$. If the weak axiom is violated, we will have:

$$p^0 x^1 < w^0 \text{ and } p^1 x^0 < w^1$$

which is:

$$20 + 4y \le 50$$
 and $60 \le 60 + 3y$
 $\Rightarrow 4y \le 30$ and $0 \le 3y$
 $\Rightarrow 0 \le y \le 7.5$

Therefore, we have the weak axiom violated if $0 \le y \le 7.5$.

3.c. As we know that $x(p, \alpha w) = \alpha x(p, w)$, we differentiate both sides with respect to α and then let $\alpha = 1$, and we have:

$$x(p,w) = wD_w x(p,w).$$

Hence,

$$\epsilon_{lw} = \frac{\partial x_l(p, w)}{\partial w} \frac{w}{x_l(p, w)} = \frac{x_l(p, w)}{w} \frac{w}{x_l(p, w)} = 1$$

Interpretation

This implies that for every l, the income elasticity is 1, which means a 1% increase in income leads to a 1% increase in the demand for good l.

Illustration with graph: plot the budget line $p_1x_1 + p_2x_2 = w$, along with the wealth expansion path and Engel curves for both goods.

As given in the text, the income elasticity is 1 for all goods and the total expenditure equals the consumer's income(wealth). Thus, as shown in the graph, we can get the conclusion as follows:

The Engel curves are linear, indicating that demand increases proportionally with income. The wealth expansion path shows that the consumer increases consumption of all goods proportionally with income.