CSE8803/CX4803

Machine Learning in Computational Biology

Lecture 7: PCA, Autoencoder, VAE

Yunan Luo

Logistics: presentation date

- Presentation team finalized (see Canvas -> Quizzes)
- Each team to submit 3 preferred dates via a Google form
 - o Link on Ed
- Deadline: Feb 7 (Mon), 11:59 PM
- Distribute 10 points into the 3 dates
- Detailed announcement on Ed
- Paper selection
 - A paper list will be released
 - More details to follow

Presenting the paper

- Briefly introduce the biological problem
 - E.g., why it's important? What's the motivation? Why use ML/computation methods?
- Clearly state the computational problem
 - E.g., what's are the input and output? What does the data look like?
- Present the methods and results
 - Try to identify key ideas in methods and key takeaways from results
- Optional
 - Your comments on the presented paper
 - Survey of related work
 - Follow-up research ideas or applications

Optional: share your comments on the paper

- Consider you are a reviewer of the paper, share your critical (not necessarily negative) comments/review of the paper
 - Strengths and/or weakness
 - Novelty/significance of the contribution
 - Soundness of the evaluation
 - Further improvement of the paper

Optional: survey of related work

- Positioning the paper in the context of previous and subsequent work
 - Any prior papers that substantially influenced the presented paper?
 - Any newer papers that are largely built on the presented paper
 - Make a brief comparison of them in terms of motivation, strength, limitation, methodology, etc.
- Example: single-cell data integration methods

Argelaguet, R., Cuomo, A.S.E., Stegle, O. et al. Computational principles and challenges in single-cell data integration. Nat Biotechnol 39, 1202-1215 (2021).

Optional: possible follow-up projects or applications

- Propose a follow-up research project idea
 - Any improvements of the proposed method in the paper?
 - Can you think about a solution that addresses some limitations of the proposed method?
- Propose an application based on the paper
 - Think about a new application in biology (not discussed in the paper or our class yet) where the method can be applied to.

Suggestions

- Make sure the presentation ends within the time limit
- Don't put to much information on a single slides
 - Avoid using long sentences or dense tables
 - Use clear, short text
 - Use illustrations/demos to show the methods/data/results
- Connect the presented paper with what we have seen in the class, if possible
- Don't forget important information in the Supplementary Information of journal papers

Introduction

Results (may have a method overview)

Discussion

nature portfolio
Supplementary information
Highly accurate protein structure prediction with AlphaFold

In the format provided by the

Full algorithm details

Supplementary Information (62 page)

References

Methods

Outline

- PCA
- Autoencoder
- Variational Autoencoder (VAE)

Week	Date	Topic	Contents	Instructor
1	1/10/2022	Introduction	Course intro & how to present papers	Zhang
	1/12/2022	Learning from sequence data	Dynamic programming & sequence alignment I	Zhang
2	1/17/2022		No class (MLK Day)	
	1/19/2022		Sequence alignment II	Zhang
3	1/24/2022		HMM & gene/motif finding	Zhang
	1/26/2022		HMM & Profile HMM	Zhang
4	1/31/2022		Deep learning for DNA/protein sequence	Luo
	2/2/2022	Learning from high-dim data	Learn from high-dim data: PCA, autoencoder & VAE	Luo
5	2/7/2022		Learn from high-dim data: MDS, tSNE, UMAP	Zhang
	2/9/2022		Clustering I	Zhang
6	2/14/2022		Clustering II	Zhang
	2/16/2022		Clustering III	Zhang
7	2/21/2022		Student presentation 1-3	
	2/23/2022		Student presentation 4-6	
8	2/28/2022	Learning from structure data	RNA structure prediction	Luo
	3/2/2022		Deep learning for structures (protein structure prediction)	Luo
9	3/7/2022		Student presentation 7-9	
	3/9/2022	Learning from network data	Network basics & traditinal ML for graphs	Luo
10	3/14/2022		Network embeddings	Luo
	3/16/2022		Student presentation 10-12	
11	3/21/2022		No class (Spring Break)	
	3/23/2022		No class (Spring Break)	
12	3/28/2022		Graphical Models	Luo
	3/30/2022		Deep learning for networks (graph neural networks)	Luo

Gene expression matrix

dim(features) >> num(samples)

High-dimensional data

High-dimensional data

Each sample has a large number of features/attributes

Why is high-dimension a problem? The curse of dimensionality:

- Volume of space increases exponentially so data becomes very sparse; sparsity
- Increases the effort of searching drastically
- Makes it harder to calculate (accurate) distances between samples
- Redundancy of data
- A large number of training data samples is required to train a model for high-dim data
- Overfitting

Overfitting

 $p(\text{number of parameters}) \gg n(\text{number of data points})$

A solution: dimensionality reduction

Benefits:

- Reduce redundancy of data
- Identify the most relevant information (find and filter noise) & Cleaning the data
- Reduce computational complexity & Speeding up subsequent learning task
- Building simpler model later
- Visualizing, exploring and understanding the data

Dimensionality reduction: approaches

- Linear transformation:
 - o PCA
 - NMF
- Non-linear transformation
 - Autoencoder, VAE
 - MDS
 - tSNE
 - UMAP
- Different methods have different *objectives*

Principal Component Analysis

Component analysis

How to understand the main signals from the data?

Key assumptions

- Low-rank assumption: High-dimensional data lies on a lower dimensional space (a.k.a, manifold)
- 2. Projections in the lower-dimensional space describes major properties of the data

Slides credit: CS598JP, UIUC, 2020

Principal Component Analysis (PCA)

Goal: Find a projection of the data onto directions that maximize variance of the original data

 Intuition: those are directions in which most information is encoded

Definition: Principal Components (PC) are orthogonal directions that capture most of the variance in the data

Figure credit: Le Song

PCA: Finding principal components

1st PC:

 Projection of data points along 1st PC discriminates data most along any one direction

2nd PC:

- Next orthogonal direction of greatest variability
- 3rd PC...

Figure credit: Le Song

PCA notation

- Input data points: matrix $X = [x_1, x_2, ..., x_N]$ of size $D \times N$
- x_i is the *i*-th column, i.e., the *i*-th example
- x_{ii} is the *j*-th feature of example *i*
- We assume the data is centered, i.e., $\frac{1}{N}\sum_{i=1}^N x_i = \overrightarrow{0}$ o If not centered, replace x_i by x_i μ , where $\mu = \frac{1}{N}\sum_{i=1}^N x_i$

Finding the 1st PC

Given N data points, $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]_{D \times N}$, $\mathbf{x}_i \in \mathbb{R}^D$, find a direction \mathbf{w} where $\|\mathbf{w}\| = 1$, such that the variation of the data along direction \mathbf{w} is maximized.

• The sample variance on the projected on vector w is $\sum_{i=1}^{n} (w^T x_i)^2 = w^T X X^T w$

Find the 1st PC by solving the following optimization problem

$$\max_{oldsymbol{w}} oldsymbol{w}^T oldsymbol{X} oldsymbol{X}^T oldsymbol{w}$$
 such that: $\|oldsymbol{w}\| = 1$

Finding the 1st PC

$$\max_{oldsymbol{w}} oldsymbol{w}^T oldsymbol{X} oldsymbol{X}^T oldsymbol{w}$$
 such that: $\|oldsymbol{w}\| = 1$

Construct Lagrange multiplier

$$\max_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{X} \boldsymbol{X}^T \boldsymbol{w} - \lambda(\|\boldsymbol{w}\| - 1)$$

• Take the derivative with respect to w and set it to $0 \Rightarrow$ solutions are vectors w such that

$$XX^Tw = \lambda w$$

The eigenvalue problem

For a given matrix A

$$Aw = \lambda w$$

 \boldsymbol{w} is the eigenvector and $\boldsymbol{\lambda}$ is the eigenvalue

- There are multiple solutions $w_1, w_2, ...,$ with different (or same) eigenvalues $\lambda_1, \lambda_2, ...$
- The eigenvectors are ortho-normal (symmetric, positive semi-definite)

$$o w_i^T w_i = 0, w_i^T w_i = 1$$

Let A=XX^T and find the eigenvectors and eigenvalues of A

PCA formally

- If we rank eigenvalues from large to small
 - The 1st PC is the eigenvector of XX^T associated with the largest eigenvalue
 - The 2nd PC is the eigenvector of XX^T associated with the 2nd largest eigenvalue
 - 0 ...
- The eigenvalue $\lambda_i / \sum \lambda_i$ denotes the percentage of variance accounted for by the i-th PC \mathbf{w}_i

Q1: how to find eigenvalues/eigenvectors?

Singular value decomposition (SVD)

The SVD is a factorization of a $m \times n$ matrix into

$$A = U \Sigma V^T$$

SVD in Python:

from scipy import linalg
U, s, Vh = linalg.svd(A)

where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

Singular value decomposition (SVD)

Theorem: if a square matrix S is a real and symmetric matrix, then its SVD can be represented as

$$S = V\Lambda V^{\mathsf{T}}$$

where columns of ${\bf V}$ are eigenvectors of ${\bf S}$ and diagonal elements of ${\bf \Lambda}$ are eigenvalues of ${\bf S}$

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Q2: how many PCs

- The eigenvalue λ_i denotes the amount of variability captured along dimension w_i
- Can ignore the components of lower variance (less significant)

Alternative interpretation 1: residual minimization

PCA finds vectors **v** such that projection on to these vectors minimizes reconstruction error

(image source)

Alternative interpretation 2: low-rank approaximation

PCA seeks the best rank-k approximation to the matrix A in the least-squares sense, by solving

minimize
$$||A - Z||_F^2$$

subject to $\operatorname{Rank}(Z) \leq k$,

with variable $Z \in \mathbf{R}^{m \times n}$. Here, $\|\cdot\|_F$ is the Frobenius norm of a matrix, *i.e.*, the square root of the sum of the squares of the entries.

Example: Tissue-specific gene expression

Summary: PCA

- What you should know:
 - Goal: Find a projection of the data onto directions that maximize variance of the original data
 - Optimization objective & algorithm
- Pros
 - Eigenvector method
 - No tuning of parameters
 - No local optima
- Cons
 - Only based on covariance (2nd order statistics)
 - Limited to linear projections
- Next: Nonlinear dimensionality reduction

Autoencoder

Autoencoders

- A neural network to find latent space representation of the original data
 - Unsupervised method (with no labeled training data)
- To make this non-trivial, we add a bottleneck layer whose dimension is much smaller than the input

Why autoencoders?

- Map high-dimensional data to 2D for visualization
- Compression
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

Autoencoders: approach

- Goal: Find the latent space representation that best represent the important information in the original data
 - Recall PCA: maximize the variance
- Approach: bottleneck layer
 - Forces the network to create a compressed representation of the input data (dimensionality reduction)
 - Forces the network to remove redundancy and noise
- Objective: reconstruction error $\mathcal{L}(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} \tilde{\mathbf{x}}\|^2$
 - Can add regularization term to avoid overfitting (identity mapping)

Autoencoders: connection to PCA

Loss function: $\mathcal{L}(x,\widetilde{x})$ (reconstruction error)

Mean square error (MSE):

$$\frac{1}{D} \sum_{i} \|x_i - \widetilde{x}_i\|^2$$

What if we remove non-linearity in NN?

When we remove the non-linearity term in neural network (activation function), (and force encoder and decoder to have the same weights) autoencoder is equivalent to PCA:

$$\widehat{w} = \arg\min_{w} \mathbb{E}[\|x - w^T w x\|^2]$$

$$\widetilde{r}$$

 \mathbf{x}

 \mathbf{w}^{T}

decoder

encoder

W

PCA

$$\mathbf{Z}_{(rxN)} = \mathbf{W}^{\mathsf{T}}_{(rxD)} \mathbf{X}_{(DxN)}$$

A different objective function:

$$= \min || X - WW^TX ||^2$$

Autoencoders: connection to PCA

Autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold

Linear vs nonlinear dimensionality reduction

Image source: https://www.jeremyjordan.me/autoencoders/

Variational autoencoder (VAE)

Variational Autoencoders

Generative models: allow us to sample from the models to generate new data.

Assume training data **x** is generated from underlying unobserved (latent) representation **z**

Intuition: consider **x** as an image, **z** as latent factors to generate **x**: attributes, orientation, etc

Generative models

Maximum likelihood

$$p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z}) \, \mathrm{d}\mathbf{z}$$

- Problem of autoencoder
 - If z is low-dimensional and the decoder is deterministic, then p(x) = 0almost everywhere
- Idea of VAE: instead of encoding an input as a single point, we encode it as a distribution over the latent space.

Maximum likelihood

$$\log p(\mathbf{x}) = \log \int p(\mathbf{z}) \, p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z}$$

$$= \log \int q(\mathbf{z}) \, \frac{p(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z} \qquad \qquad \text{Auxiliary distribution q(z)}$$

$$\log p(\mathbf{x}) = \log \int p(\mathbf{z}) \, p(\mathbf{x}|\mathbf{z}) \, d\mathbf{z}$$

$$= \log \int q(\mathbf{z}) \, \frac{p(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) \, d\mathbf{z}$$

$$\geq \int q(\mathbf{z}) \log \left[\frac{p(\mathbf{z})}{q(\mathbf{z})} \, p(\mathbf{x}|\mathbf{z}) \right] \, d\mathbf{z}$$

Auxiliary distribution q(z)

Jensen's inequality

Convex functions

$$tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2)$$

Generalized version $\int_{x} f(x)p(x) \ge f(\int_{x} xp(x))$

$$\log p(\mathbf{x}) = \log \int p(\mathbf{z}) \, p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z}$$

$$= \log \int q(\mathbf{z}) \, \frac{p(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z} \qquad \text{Auxiliary distribution } \mathbf{q}(\mathbf{z})$$

$$\geq \int q(\mathbf{z}) \log \left[\frac{p(\mathbf{z})}{q(\mathbf{z})} \, p(\mathbf{x}|\mathbf{z}) \right] \, \mathrm{d}\mathbf{z} \qquad \text{Jensen's inequality}$$

$$egin{aligned} \log
ho(\mathbf{z}) &= \log \int
ho(\mathbf{z}) \,
ho(\mathbf{z}) \,
ho(\mathbf{z}) \, \mathrm{d}\mathbf{z} \ &= \log \int q(\mathbf{z}) \, rac{
ho(\mathbf{z})}{q(\mathbf{z})}
ho(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z} \qquad \qquad ext{Auxiliary distribution } \mathbf{q}(\mathbf{z}) \ &\geq \int q(\mathbf{z}) \log \left[rac{
ho(\mathbf{z})}{q(\mathbf{z})} \,
ho(\mathbf{x}|\mathbf{z})
ight] \, \mathrm{d}\mathbf{z} \qquad \qquad ext{Jensen's inequality} \ &= \mathbb{E}_q \left[\log rac{
ho(\mathbf{z})}{q(\mathbf{z})}
ight] + \mathbb{E}_q \left[\log
ho(\mathbf{x}|\mathbf{z})
ight] \end{aligned}$$

$$\log p(\mathbf{x}) \geq \mathbb{E}_q \left[\log \frac{p(\mathbf{z})}{q(\mathbf{z})} \right] + \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right]$$

- Reconstruction term
 - Encourages the model to reconstruct the input
- If we parameterize p(x|z) as Gaussian

$$\begin{split} \log p(\mathbf{x}|\mathbf{z}) &= \log \mathcal{N}(\mathbf{x}; \, G_{\boldsymbol{\theta}}(\mathbf{z}), \eta \mathbf{I}) \\ &= \log \left[\frac{1}{(2\pi\eta)^{D/2}} \exp \left(-\frac{1}{2\eta} \|\mathbf{x} - G_{\boldsymbol{\theta}}(\mathbf{z})\|^2 \right) \right] \\ &= -\frac{1}{2\eta} \|\mathbf{x} - G_{\boldsymbol{\theta}}(\mathbf{z})\|^2 + \mathrm{const} \end{split}$$

$$\log p(\mathbf{x}) \geq \mathbb{E}_q \left[\log \frac{p(\mathbf{z})}{q(\mathbf{z})} \right] + \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right]$$

- Can be written as $-D_{\mathrm{KL}}(q(\mathbf{z}) \| p(\mathbf{z}))$. KL term.
- DKL is the Kullback-Leibler (KL) divergence $\mathrm{D_{KL}}(q(\mathbf{z}) \| p(\mathbf{z})) \triangleq \mathbb{E}_q \left| \log \frac{q(\mathbf{z})}{p(\mathbf{z})} \right|$
 - Widely used to measure the distance between two probability distributions
- Typically, $p(\mathbf{z}) = N(\mathbf{0}, \mathbf{1})$
 - The KL term encourages q(z) to be close to the standard normal distribution $N(\mathbf{0}, \mathbf{1})$.

Variational lower bound

$$\log p(\mathbf{x}) \geq \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right] - \mathrm{D_{KL}}(q||p)$$

The role of each of the two terms:

The reconstruction term

$$\mathbb{E}_q[\log p(\mathbf{x}|\mathbf{z})] = -\frac{1}{2\sigma^2}\mathbb{E}_q[\|\mathbf{x} - G_{\boldsymbol{\theta}}(\mathbf{z})\|^2] + \text{const}$$

is minimized when q is a point mass on

$$\mathbf{z}_* = \arg\min_{\mathbf{z}} \|\mathbf{x} - G_{\theta}(\mathbf{z})\|^2.$$

But a point mass would have infinite KL divergence.

VAE

$$\log p(\mathbf{x}) \geq \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right] - \mathrm{D_{KL}}(q||p)$$

Further reading: "reparameterization trick" (Kigma & Welling, 2013)

(image source)

Application: mutation effect prediction

Frazer, J., Notin, P., Dias, M. et al. Disease variant prediction with deep generative models of evolutionary data. *Nature* 599, 91–95 (2021). https://doi.org/10.1038/s41586-021-04043-8

Application: molecule design

Summary of today

- PCA
 - Linear dimensionality reduction
 - Maximize variance
- Autoencoders
 - Nonlinear dimensionality reduction
 - Minimize reconstruction error
- VAE
 - Problistics generative model
 - Regularized latent space