WHAT IS CLAIMED IS:

1	1. A method comprising:
2	(a) reacting a grafted microfine polymer powder with a
3	cyclodextrin to form a cyclodextrin-attached grafted polymer; and
4	(b) dispersing the cyclodextrin-attached grafted polymer in a base
5	polymer.
1	2. The method of claim 1 wherein the base polymer is selected
2	from the group consisting of polyolefins, polystyrene, and mixtures thereof.
1	3. The method of claim 2 wherein the polyolefin is selected from
2	the group consisting of homopolymers and copolymers of ethylene and propylene.
1	4. The method of claim 1 wherein from about 1 to about 30 percent
2	by weight of the cyclodextrin-attached grafted polymer is dispersed in from about
3	99 to about 70 percent by weight of the base polymer.
1	5. The method of claim 1 wherein the grafted microfine polymer
2	powder is a microfine polymer onto which an ethylenically unsaturated monomer
3	has been grafted.
1	6. The method of claim 5 wherein the ethylenically unsaturated
2	monomer is selected from the group consisting of unsaturated carboxylic acids,
3	unsaturated carboxylic acid derivatives, unsaturated alkoxy silanes, and mixtures
4	thereof.
1	7. The method of claim 6 wherein the ethylenically unsaturated
2	monomer is maleic anhydride.
1	8. The method of claim 1 wherein the grafted microfine polymer
2	powder is made by a process comprising:

3	(a) heating a mixture comprising a carboxylic acid-functionalized
4	polyolefin, a nonionic surfactant, and a polar liquid medium containing at least 50
5	wt. % water to a temperature above the melting point of the polyolefin to form a
6	dispersion of liquified polyolefin in the polar liquid medium; and
7	(b) cooling the dispersion below the melting point of the polyolefin
8	to produce a carboxylic acid-functionalized polyolefin powder.
1	9. The method of claim 8 wherein the polyolefin is grafted.
1	10. The method of claim 9 wherein the weight ratio of polar liquid
2	medium to grafted polyolefin is from 1:1 to 9:1 and the weight ratio of nonionic
3	surfactant to grafted polyolefin is from 0.05:1 to 5:1.
1	11. The method of claim 10 wherein the grafted polyolefin is
2	polyethylene grafted with from about 0.5 to about 5 wt. % maleic anhydride, and the
3	nonionic surfactant is a block copolymer of ethylene oxide and propylene oxide.
1	12. The method of claim 11 wherein the grafted polyethylene is high
2	density polyethylene (HDPE) or linear low density polyethylene (LLDPE) grafted
3	with from about 1 to about 4 wt. % maleic anhydride.
1	13. The method of claim 12 wherein the grafted HDPE and LLDPE
2	have a melt index (MI) from 5 to 2000 g/10 min.
1	14. The method of claim 11 wherein the nonionic surfactant contains
2	at least 50 wt.% of ethylene oxide recurring units and has a number average
3	molecular weight of at least 4500.
1	15. The method of claim 1 wherein the cyclodextrin is a cyclodextrin
2	inclusion complex.
1	16. A dispersed cyclodextrin inclusion complex made by the method
2	of claim 15

1	17. A dispersed cyclodextrin-containing polymer made by a method
2	comprising:
3	(a) reacting a grafted microfine polymer powder with a cyclodextrin
4	inclusion complex to form a cyclodextrin-attached grafted polymer; and
5	(b) dispersing the cyclodextrin-attached grafted polymer in a base
6	polymer.
1	18. The method of claim 17 wherein the base polymer is selected
2	from the group consisting of polyolefins, polystyrene, and mixtures thereof.
1	19. The method of claim 18 wherein the polyolefin is selected from
2	the group consisting of homopolymers and copolymers of ethylene and propylene.
1	20. The method of claim 17 wherein from about 1 to about 30
2	percent by weight of the cyclodextrin-attached grafted polymer is dispersed in from
3	about 99 to about 70 percent by weight of the base polymer.