Numerical Methods for PDEs

Boundary Element Methods, Lecture 6 Fast Algorithms for Integral Equations

L. Proctor, S. De, K. Nabors, J. Phillips, B. Buchmann, J.White

December 12, 2016

Outline

Reasons for Fast Solvers

Collocation System Reminder

Fast Solver General Approach

Using Iterative methods
Fast matrix-vector products

Fast Multipole Algorithms
Precorrected-FFT Algorithms

Discretize Surface Into Panels

Piecewise Constant Basis

Integral Equation :
$$\Psi(x) = \int_{surface} rac{\sigma(x')}{\|x-x'\|} dS'$$

Discretize Surface Into Panels

Background

Centroid Collocation

Put collocation points at panel centroids

Dense Matrix

Resultant Dense Matrix

Matrix Entries Are Never Zero

$$A_{i,j} = \int_{panel_j} rac{1}{\|x_{c_i} - x'\|} dS'$$

Distant Elements Decay Slowly

$$\propto rac{1}{\|x_{c_i} - x_{panel_j\ center}\|}$$

Too Slow To Ignore.

Dense Matrix

Complicated Examples

Need More than 100,000 unknowns!!
Need 100 Gigabytes to Store Matrix.

Dense Matrix

Gaussian Elimination

For i = 1 to n-1 { "For each Row" For j = i+1 to n { "For each Row below pivot"
$$A_{jk} \leftarrow A_{jk} \qquad A_{ji} \qquad A_{ik} \qquad \text{Form n-1 reciprocals (pivots)} \\ A_{jk} \leftarrow A_{jk} \qquad A_{ik} \qquad \text{Form n-1 reciprocals (pivots)} \\ A_{ik} \qquad \text{Form } \sum_{i=1}^{n-1} (n-i) = \frac{n^2}{2} \text{ multipliers} \\ \text{Perform } \sum_{i=1}^{n-1} (n-i)^2 \approx \frac{2}{3} n^3 \\ \text{Multiply-adds} \\ \text{M$$

 n^3 — Too Expensive!

Electrostatics Application

General Iterative "Algorithm"

- 0: Guess at panel charges $\vec{\alpha}$
- 1: Compute the centroid potentials from the charges $\mathbf{A}\vec{\alpha}$
- 2 : Compare the computed to known potentials $\mathbf{R} = \mathbf{\Psi} \mathbf{A}\vec{\alpha}$
- 3: Fix the panel charges, go to Step 1.

Conjugate Gradient (CG)

CG for 2nd Kind

Eigenvalues for 2^{nd} Kind Integral Equation

Conjugate Gradient (CG)

CG for 2nd Kind Cont.

Conjugate-Gradient convergence rate

$$\left\|r^k
ight\| \leq 2\left(\sqrt{rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}}} - 1\left/\sqrt{rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}}} + 1
ight)^k \left\|r^0
ight\|$$

For discretized Second Kind equations

$$rac{\lambda_{max}}{\lambda_{min}}$$
 is bounded independent of n

Number of CG iterations independent of n!!

Conjugate Gradient (CG)

Steps of CG

The kth step of the Conjugate Gradient Algorithm

compute Ap_{ν}

$$\alpha_k = \frac{\left(r^k\right)^T \left(Ap_k\right)}{\left(Ap_k\right)^T \left(Ap_k\right)}$$

 $x^{k+1} = x^k + \alpha_k p_k$

$$r^{k+1} = r^k - \alpha_k A p_k$$
 and the residual
$$p_{k+1} = r^{k+1} - \frac{\left(Ar^{k+1}\right)^T \left(Ap_k\right)}{\left(Ap_k\right)^T \left(Ap_k\right)} p_k$$
 Compute the new orthogonalized search direction

For discretized Integral equations, A is dense

Determine optimal step size in kth search direction

> Update the solution and the residual

Conjugate Gradient (CG)

Cost of CG

Complexity of the Conjugate Gradient Method

Algorithm is $O(n^2)$ for integral equations even though # of iterations, k, is small!

Conjugate Gradient (CG)

Accelerate CG?

Accelerate the Conjugate Gradient Method

Exactly compute Ap_k

Dense matrix-vector (M-V) product costs $O(n^2)$

Approximately compute Ap_k

Reduces M-V product costs to O(n) or $O(n \log n)$

Need a fast approximation for matrix-vector products

Direct Computation

Fast Solvers

- Physical interpretation:
 - $\mathbf{A}p = N$ "potentials" due to N charges.
- $\bullet O(N^2)$ if done naively

Fast Solvers

Simplification of the A Matrix

1-D Strip of Charge in 3-D Space

$$egin{bmatrix} A_{11} \ A_{12} \ A_{21} \ A_{22} \ \cdots \ A_{28} \ A_{81} \ A_{82} \ \cdots \ A_{88} \end{bmatrix} egin{bmatrix} lpha_1 \ lpha_2 \ lpha_8 \end{bmatrix} = egin{bmatrix} \Psi_1 \ \Psi_2 \ lpha_8 \end{bmatrix}$$

What can one say about the A matrix?

Fast Solvers

Properties of A.

The A matrix is:

- Symmetric
 Potential at j due to unit charge i = Potential at i due to unit charge j
- All the Diagonal Values are the Same

$$A_{ii} = \int_{ ext{panel}_i} rac{1}{\|ec{x}' - ec{x}_{c_i}\|}$$

 Each Superdiagonal & Subdiagonal Element is Equal along Its Own Diagonal as Well

Fast Solvers

More Properties of A.

How many unique entry values are there in A?

Fast Solvers

Geometric Simplification

Approximate (by grouping) the elements that are a "reasonable distance" away from the element which you are evaluating

Fast Potential Concept

Fast Solvers

- Decompose potential into short- and long- range.
- Approximate long-range part of potential.
- Sum short-range part in normal manner
- ullet Multilevel decomposition for "O(N)" algorithm

Computational Costs

Fast Solvers

DEC 21164-333		
N	Gaussian Elim	"Fast" $O(N)$
	300 MFLOPS	30 MFLOPS
5e4	3 days,20GB	80sec, 130M
1e5	25 days,80GB	2.5min, 300M
5e5	8.8yrs,2TB	15min, 1.5GB

- Gaussian Elimination: $O(n^3)$ time, $O(n^2)$ memory
- Iterative with direct M-V: $O(n^2)$ time, $O(n^2)$ memory
- Fast Methods: O(n) time, O(n) memory

Direct Potential Evaluation

- ullet Potential at point i: $v_i(r_i,\phi_i, heta_i) = \sum_{j=1} q_j\, P_{ij}.$
- Complete evaluation at d points costs d^2 operations.

Multipole Representation

1D Strip in 3D Space...

How many operations are needed to form the clusters?

The cost of forming clusters is, in general,

$$O(n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\ldots)\approx O(n)$$

Multipole Representation

...1D Strip in 3D Space

What is the cost of estimating the evaluation point potential?

The cost of gathering clusters is $O(n \log n)$

Multipole Representation

Computational Example

Multipole Representation

General Case...

Approximate potential at point i:

$$v_i(r_i,\phi_i, heta_i) pprox \sum_{j=0}^{order} \sum_{k=-j}^{j} rac{M_j^k}{r_i^{j+1}} Y_j^k(\phi_i, heta_i)$$

Multipole Representation

...General Case

Multipole coefficients function of panel charges:

$$M_j^k \stackrel{ riangle}{=} \sum_{i=1}^d rac{q_i}{A_i} \int_{ ext{panel } i}
ho^j Y_j^{-k}(lpha,eta) dA.$$

- Computing Multipole expansions costs order d operations.
- Each approximate potential evaluation costs order 1 operations.

d potential evaluation due to d panels in order d operations

Error Scale Invariance

Error
$$\leq K \left(\frac{R}{r}\right)^{order+1}$$

Error
$$\leq K \left(\frac{3R}{3r}\right)^{order+1}$$

Multipole Algorithm Hierarchy

Hierarchy guarantees:

Bounded error:

$$\mathsf{Error} \leq K \left(rac{R}{r}
ight)^{order+1} \ \leq K \left(rac{1}{2}
ight)^{order+1}$$

order = 2 yields one
percent accuracy.

Order *n* ops for *n* potentials.

Local Representations

Cost Reduction

- Construct a local expansion to represent distant charge potentials.
- Evaluate a single local expansion, rather than many multipole expansions, at each evaluation point.

Local Representations

Clustered Evaluations

 Local expansion summarizes the influence of distant charge for clusters of evaluation points.

Local Representations

Clustered Evaluations

- Gives O(n) potential evaluation when combined with coalescing of charge done by multipole expansions.
- Approximate potential at point *i*:

$$v_i(r_i,\phi_i, heta_i)pprox \sum_{j=0}^{order}\sum_{k=-j}^{j}L_j^kY_j^k(\phi_i, heta_i)r_i^j.$$

Local Representations

Summary of Operations

Local Representations

Summary of Operations

- Multipole and local expansions are built using complementary hierarchies.
- Complete calculation consists of:
 - 1. Build multipoles (Upward Pass).
 - 2. Build locals (Downward Pass).
 - 3. Evaluate local expansions and nearby charge potential (Evaluation Pass).

Local Representations

Hierarchy Construction

- First build the multipole expansions moving upward from child to parent.
- Then build the local expansions by moving downward from parent to child.
- Computation has a tree structure.

Local Representations

Construction Details

- Conversion of multipole expansions to local expansions.
- A child's local expansion is its parents local expansion plus conversions of multipole expansions in child's interaction range.

M M M M M M

M M M M M M

M

 $\widehat{(M)}\widehat{M}$

 $\widehat{\mathbf{M}}$

L

 $\overline{\mathbf{M}}$

 \widehat{M}

 $\widehat{\mathbf{M}}$

Adaptive Algorithm

Multipole Inefficiency...

Direct Evaluation

$$v_4(x,y,z) = q_1P_{41} + q_2P_{42} + q_3P_{43}$$

Adaptive Algorithm

...Multipole Inefficiency

Multipole Evaluation

$$v_4(x,y,z)pprox ar{M}_0^0rac{1}{r}+ar{M}_1^0rac{z}{r^3}-ar{M}_1^1rac{x}{2r^3}-ar{M}_1^1rac{y}{2r^3}$$

Using Multipole MORE expensive than Direct.

Adaptive Algorithm

Simple Adaptive Scheme

If there are fewer panels than multipole coefficients, calculate the panels' influence directly.

- Similarly, local expansions are not used if there are fewer evaluation points than local expansion coefficients.
- Retains O(mn) complexity for nonuniform panel distributions.

Computational Examples

Sphere Potential Distribution

- ullet Potential given by $\psi(x) = -rac{x_3}{2\|x\|^3}$.
- ullet Charge given by $\sigma(x) = \frac{-3}{8\pi}x_3$.

Computational Examples

Sphere Potential Distribution

• Error should decay like $\frac{1}{n}$.

Computational Examples

Sphere Potential Distribution

- Multipole approximations eventually interfere.
- Higher-order multipole expansions needed for higher accuracy.

Computational Examples

re Example

- ullet Potential on each sphere: $\psi(x) = -rac{x_3}{2\|x\|^3}$.
- Does not correspond to a simple physical problem.

Computational Examples

Two Sphere Example

• Direct matrix-vector product cost increases like n^2 .

Computational Examples

Two Sphere Example

- Multipole matrix-vector product cost increases like n.
- The slope for the multipole algorithm depends on accuracy.
- For order 2 expansions, breakpoint is about n = 400.

Complexity Summary

For an integral equation discretized with n panels:

- Gaussian elimination: $O(n^3)$.
- Iterative Matrix Solution, direct M-V $O(n^2)$.
- Multipole accelerated Iterative method O(n).

Introduction

Strip of Charge in Space

Bring the ends of the strip of charge together to form a ring.

Introduction

Produces a "Circulant Matrix"

Algorithm Outline

- 1. Project panel charges on grid
- 2. Calculate grid-charge potentials on grid
- 3. Interpolate grid potentials onto panels
- 4. Local corrections [compute nearby interactions directly]

Algorithm Outline

PFFT Grid Balances Costs

- Grid Selected So Direct Cost equals FFT Cost.
- Finer Discretizations Usually Yield Finer Grids.

Algorithm Analysis

Interpolation and Projection...

Approximate potential Ψ at x due to charge at y by interpolating potential using points and weights x_i, w_i

Algorithm Analysis

Interpolation and Projection...

Interpolate: potential at x due to unit charge at y

$$\Psi(x|y) \simeq \hat{\Psi}(x|y) = \sum w_i g(x_i,y)$$

Anterpolate: potential at y due to unit charge at x

$$\Psi(y|x) \simeq \hat{\Psi}(y|x) = \sum w_i g(y,x_i)$$

So

$$\hat{\Psi}(y|x) = \hat{\Psi}(x|y)$$

Same as representing charge at x with w_i and evaluating at y

Algorithm Analysis

...Interpolation and Projection

Equivalent conditions:

- \bullet Approx Potential in cell due to charge at large R.
- ullet Approx Potential at large IR due to charge in cell.
- \bullet Cost is O(N)

Algorithm Analysis

Grid Potentials

Let H be grid charge-potential mapping

$$H:q_g o\Psi_g$$

- *H* is Toeplitz
- Embed *H* in circulant matrix

$$\left[egin{array}{c} \psi_g \ x \end{array}
ight] = \left[egin{array}{c} H \ X \ X \end{array}
ight] \left[egin{array}{c} q_g \ 0 \end{array}
ight]$$

Use FFT for matrix multiply
 Must Have Translation Invariance

Algorithm Analysis

Grid Potentials

• Cost $O(M \log_2 M)$, M = # cells

Algorithm Analysis

Nearby Interactions

Direct interactions

Cost
$$O(N \lceil n_c \rceil)$$

$$\lceil n_c \rceil$$
 = max # panels /cell

Local corrections

$$\mathsf{Cost}\ O(1) - O(N) - O(Nn_I^2)$$

Algorithm Analysis

Inhomogeneity Problem

Empty Grid due to FFT - Inefficient

Examples

PFFT vs. Multipole

• Comparisons: PFFT p = 3 to Multi l = 2

Example	CPU	Memory	Product	Error
via	0.61	0.37	0.23	0.18
woven5x5	0.45	0.48	0.22	0.09
cube	0.38	0.32	0.12	0.12
bus3x8	0.27	0.27	0.07	0.01
SRAM	0.39	0.43	0.17	0.07
mean	0.42	0.37	0.16	0.09

Faster with 10× better accuracy!

PFFT vs. direct

Memory

	Example	Memory Usage		
Name	Panels[conductors]	P/FFT	Direct	
via	6120[4]	21 Mb	(286 Mb)	
woven5x5	9360[10]	50 Mb	(668 Mb)	
woven15	82080[30]	246 Mb	(50.2 Gb)	
cube	126150[1]	225 Mb	(119 Gb)	

PFFT vs. direct

Time

Example	CPU Usage		
Name	P/FFT	Dir. Iter.	Gauss. Elim.
via	1.1 min	(5.6 min)	(1.9 hrs)
woven5x5	5.2 min	(42 min)	(6.9 hrs)
woven15	1.7 hrs	(11.5 days)	(194 days)
cube	3.3 min	(8.4hrs)	(2.7 yrs)

Summary

Reasons for Fast Solvers

Collocation System Reminder

Fast Solver General Approach

Using Iterative methods

Fast matrix-vector products

Two Fast Methods

Fast Multipole - Multiresolution

Precorrected-FFT - Translation Invariance