SESSIONS 3

Heatmap

Data Science Program

Outline

- What is Heatmap?
- How to interpret Heatmap?
- Create Heatmap using Seaborn

What is Heatmap?

What is Heatmap?

- A heat map (or heatmap) is a data visualization technique that shows magnitude of a phenomenon as color in two dimensions.
- A heatmap is a two-dimensional graphical representation of data where the individual values that are contained in a matrix are represented as colors.
- The variation in color may be by hue or intensity, giving obvious visual cues to the reader about how the phenomenon is clustered or varies over space.

How to Interpret Heatmap?

How to Interpret Heatmap?

- A heatmap contains values representing various shades of the same color for each value to be plotted.
- Usually, the darker shades of the chart represent higher values than the lighter shade.
- For a very different value, a completely different color can also be used.

Correlation Heatmap

Correlation Heatmap

- A correlation heatmap uses colored cells, typically in a monochromatic scale, to show a 2D correlation matrix (table) between two discrete dimensions or event types.
- The values of the first dimensions appear as rows of the table, while the values of the second dimension are represented by the columns of the table.
- The color value of the cells is proportional to the number of measurements that match the dimensional values.
- This enables you to quickly identify incidence patterns, and to recognize anomalies.

Create Simple Heatmap using Matplotlib

Simple Heatmap

```
[2]: # Import Library
import pandas as pd
import matplotlib.pyplot as plt

# Create dataset
data = [{2,3,4,1},{6,3,5,2},{6,3,5,4},{3,7,5,4},{2,8,1,5}]
Index = ['I1', 'I2','I3','I4','I5']
Cols = ['C1', 'C2', 'C3','C4']
df = pd.DataFrame(data, index=Index, columns=Cols)

# Showing heatmap
plt.pcolor(df)
plt.show()
```


Create Correlation Heatmap using Seaborn

Correlation Heatmap

```
[3]: # Import library and dataset
     import seaborn as sns
     tips = sns.load_dataset("tips")
     tips.head(3)
        total_bill
                 tip
                                           time size
[3]:
                        sex smoker day
           16.99 1.01 Female
                                No Sun Dinner
           10.34 1.66
                                No Sun Dinner
                       Male
     2
           21.01 3.50
                       Male
                                No Sun Dinner
[7]: # Create correlation matrix
      correlation_matrix = tips[['total_bill', 'tip', 'size']].corr()
      correlation_matrix
[7]:
               total bill
                                    size
      total_bill 1.000000 0.675734 0.598315
           tip 0.675734 1.000000 0.489299
```

size 0.598315 0.489299 1.000000

```
[10]: # Showing Correlation Heatmap using Seaborn

plt.figure(figsize = (8,6))
sns.heatmap(correlation_matrix, annot=True, cmap='RdYlGn')
```

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x136e3ac0>

Reference

- Wikipedia, "Heatmap", https://en.wikipedia.org/wiki/Heat_map
- TutorialsPoint, "Python Heat Maps", https://www.tutorialspoint.com/python_data_science/python_heat_maps.htm
- QuantInsti, "Creating Heatmap Using Python Seaborn", https://blog.quantinsti.com/creating-heatmap-using-python-seaborn/
- Seaborn, "Seaborn.heatmap", https://seaborn.pydata.org/generated/seaborn.heatmap.html

