Makeup Examination Nov/Dec - 2022

I / II Semester Diploma Examination

ENGINEERING MATHEMATICS (20SC01T)

Time: 3 Hours]

[Max. Marks: 100

Instruction: i) Answer ONE full question from each section.

ii) One full question carries 20 marks.

SECTION - I

Write four type of matrices with one example for each. 1. (a)

(4)

OR

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ then Find $3A + 2B$

(b) If
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix}_{\text{then find adj A}}$$
 (6)

OR

Find the characteristic roots of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$

Applying Cramer's rule solve the system of linear equations **(5)** (c)

$$3x + y = 4$$
 and $x + 3y = 4$

QP-Code: 20SC01T

The Tata motors company Ltd., has two outlets, one in Bengaluru and one in Belgaum, among other things, it sells Tata Nexon, Tata Tiago, and Tata Punch cars. The monthly sales of these cars at the two stores for two months are Given in the following tables:

October sells

	Bengaluru	Belgaum
Tata Nexon	25	35
Tata Tiago	15	20
Tata Punch	18	05

November sells

	Bengaluru	Belgaum
Tata Nexon	35	45
Tata Tiago	30	50
Tata Punch	26	25

Use matrix arithmetic to calculate the change in sales of each product in each Store from October to November.

OR

For the given matrix
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
 verify $A \cdot adjA = |A|I$, where 'I' is the unit matrix of the order 2.

SECTION - II

2. (a) Find the slope and y-intercept of the line
$$5x - 3y + 9 = 0$$
 (4)

OR

Find the equation of straight line of slope 3units and y-intercept 4.

(b) Find the equation of straight line passing through the point (3,4) and perpendicular to 4x+2y+3=0.

(6)

OR

Find the equation of straight line passing through the point (2,-5) and (3,7)

(c) Using slope point form of straight line find the equation of line passing through the point (1,2), inclined at 45^0 to the x - axis

OR

Find the equation of straight line whose 'x'- intercept and y-intercept are 5 and 6 respectively. Write the standard form of it.

(d) Find the equation of straight line passing through the point (2,3) and parallel to 5x - 4y + 4 = 0

OR

If $\frac{3}{5}$ and $\frac{7}{3}$ are the slopes of two lines, find the angle between the two lines

SECTION – III

3.(a) Convert 30° into radians and $\frac{\pi}{12}$ into degree. (4)

OR

Prove that $tan(45^{\circ} + A) = \frac{1 + tanA}{1 - tanA}$

(b) Prove that
$$sin\theta cos(90 - \theta) + cos\theta sin(90 - \theta) = 1$$

(6)

OR

Prove that $\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)} = tanA$

(c) Write the formula for sin(A + B) then find the value of $sin75^{\circ}$

OR

Simplify $\frac{\cos(360^{\circ}-A)\tan(360^{\circ}+A)}{\cot(270^{\circ}-A)\sin(90^{\circ}+A)}$

(d) Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$ (5)

OR

Prove that $\cos 2\theta = 2\cos^2 \theta - 1$

SECTION - IV

4. (a) Differentiate $x^3 + x^2 + 3x + 9$ with respect to x. (4)

OR

If y = (x+1)(x-1) then find $\frac{dy}{dx}$.

(b) Find the maximum and minimum value of a function

(6)

 $y = x^3 - 12x^2 - 27x + 16$

A ball will throw vertically upwards and reaches maximum height s in feet. The height reached is given by $s = -16t^2 + 64t$. How much time it takes to reach maximum height? Find also the maximum height reached by the ball.

(c) If
$$y = Ae^{mx} + Be^{-mx}$$
 then prove that $\frac{d^2y}{dx^2} - m^2y = 0$ (5)

OR

Find the derivative of a function $\frac{1+\sin x}{1-\sin x}$ w.r.t.x.

(d) Find the equation of normal to the curve
$$y = 1 - x^3$$
 at the point (2, 3)

OR

If
$$y = (1 + x^2) \tan^{-1} x$$
 then find $\frac{dy}{dx}$.

SECTION - V

5. a) Integrate
$$2x^3 - \frac{3}{x} + 4\cos x + \frac{1}{1+x^2}$$
 w.r.t. x (4)

OR

Integrate (x-2)(x+3) w.r.t x.

b) Evaluate
$$\int \sin^2 x \ dx$$
 (6)

Evaluate
$$\int_0^{\frac{\pi}{4}} tan^2 x dx$$

Register Number:

QP-Code: 20SC01T

c) Using definite integrals, find the area bounded by the curve $y = 4x - x^2 - 3$, x-axis and the ordinates x = 1 and x = 3. (5)

OR

The curve $y^2 = x^2 + 5x$ is rotated about x -axis. Find the volume of the solid generated by revolving the curve between the ordinates x = 1, x = 2 about x -axis

d) Using integration by parts evaluate the indefinite integral $\int x \sin x \, dx$. (5)

Evaluate
$$\int_0^1 \frac{(tan^{-1}x)^3}{1+x^2} dx$$

Course Code: 20SC01T

SCHEME OF VALUATION

Q No	Particulars	Marks
		Section - I
1 (a)	Types	1]
	Example (each $\frac{1}{2}$ marks)	$\begin{bmatrix} 1 \\ \vdots \end{bmatrix} = 4$
	2	
		OR
	Finding 3A and 2B	2) [
		├ = 4
	Finding 3A+2B	2
1(b)	Finding minors	4
	Writing cofactor	$1 \rightarrow \boxed{=6}$
	witting coractor	
	Writing adjoint	1)
		OR
	Writing $ A - \lambda I = 0$	
	Finding Characteristic	3
	Equation Finding	= 6
	Characteristic roots	2 2
1(c)	Finding Δ , Δ_x , Δ_y	$\begin{bmatrix} 3 \\ \end{bmatrix}$
	Finding v and v	$\begin{bmatrix} 2 \end{bmatrix}$ $= 5$
	Finding x and y	OR
	Writing Given Data in	2
	Matrix Form	
		$\begin{vmatrix} 2 \end{vmatrix} = 5$
	Finding difference	$\begin{bmatrix} 2 & \boxed{ = 5} \end{bmatrix}$
	Answer	
1(d)	Finding AB	3 7
		<u></u>
	Finding $(AB)^T$	$ 2 \cup C $
	T' 1' A J' A	OR
	Finding A. adjA	
	Finding A I	$2 \rightarrow \boxed{=5}$
		_ [3]
	Conclusion	1 ノ

Q.N		MARKS
	PARTICULAR	
	SECTION -	II
2(a)	Finding slope	2
	Finding y-intercept	2
	OR	
	Writing $m=3$ and $c=4$	1
	Formula	

	Substituting values	1
	Final equation	1
2(b)	Writing $4x+2y+K=0$	2
	Getting value of k	2
	result	2
	OR	
	Formula	2
	Substituting values	2
	Simplification and	2
	result	
2(c)	Finding $m = 1$	2
	Formula	1
	Substituting values	1
	Final equation	1
	OR	
	Writing standard form	2
	Substituting values	1
	Simplification	1
	Final equation	1
2(d)	Writing 5x-4y+K=0	2
	Getting value of k	2
	result	1
	OR	
	Formula	2
	Substituting values	1
	Simplification	1
	Result	1

O No	Dontionland	Moulto
Q No	Particulars	Marks
		ection - III
3 (a)	Converting 30° to radian	
	Converting $\frac{\pi}{12}$ to degree	2 $= 4$
		OR
	tan (A + B) formula	
	substituting 45 ⁰	$\begin{vmatrix} 2 \end{vmatrix} = 4 \end{vmatrix}$
	Result	1
(b)	Allied angle change	
(0)		
	Substitution	
	Trigonometric identity	$\begin{vmatrix} 1 \end{vmatrix} = 6 \end{vmatrix}$
	Result	1
		OR
	$\sin (A + B)$ and $\cos (A + B)$	4
	(2 mark each)	
	Simplification	1
	Proving RHS	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} = 6 \begin{vmatrix} 1 \\ 1 \end{vmatrix}$
	Troving Kris	
(c)	$\sin(A+B)$ formula	2 \(\sum_
	each T – value $\frac{1}{2}$ mark	$\begin{vmatrix} 2 \end{vmatrix} = 5 \end{vmatrix}$
	<u>=</u>	1
	result	
		OR

	Each allied angle (1 mark each) Simplification and result	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ $= 5$
1(d)	Simplifying sin20°sin40° Simplifying cos20° sin80°	$\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = 5$
		OR
	$cos2\theta$ formula	
	$\sin^2 \theta$ formula	$2 \longrightarrow \boxed{=5}$
	Rest	1 丿

Q.N0	Particular	Marks
	SECTION-IV	•
4(a)	Differentiation of each term	1+1+1+1 = 4
	OR	
	Applying algebraic formula or multiplication	1
	Differentiation and Answer	2+1 $=4$
4(b)	Finding first and second derivative of a function	1+1
	Getting value of x	$\begin{vmatrix} 2 & $
	Finding maximum and Minimum value	1+1
	OR	
	Finding $\frac{ds}{dt}$	2
	dt	
	Taking $\frac{ds}{dt} = 0$	$\begin{vmatrix} 1 \\ -6 \end{vmatrix}$
	$\frac{1}{dt} \frac{dt}{dt}$	
	Getting time value	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	Finding displacement value	
4(c)	dy	2
	Finding $\frac{dy}{dx}$	
	d^2 v	=5
	Finding $\frac{d^2y}{dx^2}$	2
	Simplification and Answer	1
	OR	1 /
	Using Quotient rule	2
	Derivative of 1+sinx	
	Derivative of 1-sinx	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	Simplification and answer	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
4(d)	Differentiation and getting slope	
+(u)	Equation of normal formula	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} \rightarrow \begin{vmatrix} =5 \end{vmatrix}$
	Substitution and simplification	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	OR	_
	Using product rule	2
	Differentiation each term	$1+1 \qquad \boxed{=5}$
	Answer	ر 1

Q.N0	Particular			Marks
		SEC	TION V	
5(a)	Integration of each 1	4M		
	mark			
	(1+1+1+1)			
			OR	
	Simplification	1 M		
	Integration	3M		
5(b)	Writing sin^2x	2M		
	formula	1 M		
	Substitution	1M		
	Integration		OB	
	XX '4' 4 2	2) (OR	
	Writing tan^2x	2M		
	formula Integration	1M 1M		
	Integration Substituting limit	2M		
	values	21 V1		
	Simplification			
5(c)	Writing Area	1M		
3(0)	Formula	2M		
	Integration	2M		
	Simplification and			
	Result			
			OR	
	Writing Volume	1M		
	Formula	2M		
	Integration	2M		
	Simplification and			
	Result			
5(d)	Formula for	1M		
	integration by parts	1M		
	Substitution	3M		
	Calculation and			
	Result		OB	
	Carla adidandi	13.4	OR	
	Substitution Differentiation	1M		
		1M 1M		
	Finding new limits Simplification	2M		
	Simpinication	Z1 V1		

MODEL ANSWERS

	SECTION I		
1(a)	1. Row matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$		
	2. Column matrix $A = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$		
	3. Square matrix $S = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$		
	4. Diagonal matrix $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$		
	20 22		
	OR If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ then Find $3A + 2B$		
	$3A = 3\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$ $2B = 2\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 2 & 8 \end{bmatrix}$		
	$3A + 2B = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} + \begin{bmatrix} 6 & 4 \\ 2 & 8 \end{bmatrix}$ $= \begin{bmatrix} 9 & 10 \\ 11 & 20 \end{bmatrix}$		
1(b)	To find the adjoint we need to find the cofactors first		
	$ \begin{vmatrix} C_3 = + \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} \\ = +(2-3) = -1 \\ C_1 = -\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} \\ = -(1-6) = 5 \\ C_2 = +\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \\ = -(1-2) = 1 \\ C_2 = +\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \\ = +(3-4) = -1 \end{vmatrix} $ $ \begin{vmatrix} C_1 = -\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} \\ = -(1-6) = 5 \\ C_2 = +\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \\ = +(3-4) = -1 \end{vmatrix} $ $ \begin{vmatrix} C_2 = +\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \\ = +(1-4) = -3 \end{vmatrix} $ $ \begin{vmatrix} C_3 = -\begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} \\ = -(3-2) = -1 \end{vmatrix} $ $ \begin{vmatrix} C_2 = +\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \\ = -(3-2) = -1 \end{vmatrix} $ $ \begin{vmatrix} C_1 = -\begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} \\ = -(9-2) = -7 \end{vmatrix} $ $ \begin{vmatrix} C_1 = -\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ = +(6-1) = +5 \end{vmatrix} $		
	Cofactor matrix $C = \begin{bmatrix} -1 & 1 & -1 \\ 5 & -1 & -7 \\ -3 & -1 & 5 \end{bmatrix}$		
	$AdjA = [cofactor\ matrix]^T$		
	$adjA = \begin{bmatrix} -1 & 5 & -3 \\ 1 & -1 & -1 \\ -1 & -7 & 5 \end{bmatrix}$		
	OR		
	Given $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$		
	Characteristic equation is 'A' defined as $ A - \lambda I = 0$ $\Rightarrow \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 4 - \lambda \end{vmatrix} = 0$		
	$\Rightarrow (3 - \lambda)(4 - \lambda) - 2 = 0$ \Rightarrow 12 - 3\lambda - 4\lambda + \lambda^2 - 2 = 0		

	$\Rightarrow 12 - 7\lambda + \lambda^2 - 2 = 0$ $\Rightarrow \lambda^2 - 7\lambda + 10 = 0$ $\Rightarrow \lambda^2 - 5\lambda - 2\lambda + 10 = 0$ $\Rightarrow \lambda(\lambda - 5) - 2(\lambda - 5) = 0$ $\Rightarrow (\lambda - 5)(\lambda - 2) = 0$ $\Rightarrow \lambda - 5 = 0 \text{ or } \lambda - 2 = 0$ $\Rightarrow \lambda = 5 \text{ or } \lambda = 2$ Therefore the characteristics roots of the given matrix are $\lambda = 5$ and $\lambda = 2$
1(c)	Given system of linear equations $3x + y = 4$ $x + 3y = 4$
	Consider $\Delta = \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} = 9 - 1 = 8$
	$\Delta_{x} = \begin{vmatrix} 4 & 1 \\ 4 & 3 \end{vmatrix} = 12 - 4 = 8$
	$\Delta_{y} = \begin{vmatrix} 3 & 4 \\ 1 & 4 \end{vmatrix} = 12 - 4 = 8$
	$x = \frac{\Delta_x}{\Delta} = \frac{8}{8} = 1$ $y = \frac{\Delta_y}{\Delta} = \frac{8}{8} = 1$
	x = 1 and $y = 1$
	OR
	By transforming given data to matrix form Let October sells be $O = \begin{bmatrix} 25 & 35 \\ 15 & 20 \\ 18 & 5 \end{bmatrix} N = \begin{bmatrix} 35 & 45 \\ 30 & 50 \\ 26 & 25 \end{bmatrix}$ Let November sells
	Change in sells is given by
	$O - N = \begin{bmatrix} 25 & 35 \\ 15 & 20 \\ 18 & 5 \end{bmatrix} - \begin{bmatrix} 35 & 45 \\ 30 & 50 \\ 26 & 25 \end{bmatrix}$
	$= \begin{bmatrix} -10 & -10 \\ -15 & -30 \\ -8 & -20 \end{bmatrix} \text{ or } \begin{bmatrix} 10 & 10 \\ 15 & 30 \\ 8 & 20 \end{bmatrix}$
1(d)	Given $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$
	$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$
	$= \begin{bmatrix} (1 \times 3) + (2 \times 1) & (1 \times 2) + (2 \times 4) \\ (3 \times 3) + (4 \times 1) & (3 \times 2) + (4 \times 4) \end{bmatrix}$
	$= \begin{bmatrix} 3+2 & 2+8 \\ 9+4 & 6+16 \end{bmatrix}$
	$= \begin{bmatrix} 5 & 10 \\ 13 & 22 \end{bmatrix}$

$(AB)^T = \begin{bmatrix} 5 & 13 \\ 10 & 22 \end{bmatrix}$
OR
Given $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$
$\Rightarrow adjA = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$
Consider $A. adjA = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$
$= \begin{bmatrix} (3 \times 4) + (2 \times -1) & (3 \times -2) + (2 \times 3) \\ (1 \times 4) + (4 \times -1) & (1 \times -2) + (4 \times 3) \end{bmatrix}$
$= \begin{bmatrix} 12 - 2 & -6 + 6 \\ 4 - 4 & -2 + 12 \end{bmatrix}$
$= \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} - \dots (1)$
Consider $ A I = \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$= (12-2) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$=10\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}=\begin{bmatrix}10 & 0\\0 & 10\end{bmatrix}(2)$
From (1) and (2) $A \cdot adjA = A I$

"Certified that the model answers prepared by me for code 20SC01T are from prescribed textbook and model answers and scheme of valuation prepared by me are correct".

"Award full marks for alternative methods of answers"

Plantuma RAVI KUMAR R

Lecturer in Science 136 – Government polytechnic BAGEPALLI

SECTION - II

2(a) Find the slope and y-intercept of the line
$$5x - 3y + 9 = 0$$
Given: $5x - 3y + 9 = 0$
 $a = 5$ $b = -3$ $c = 9$

$$Slope = \frac{-a}{b} = \frac{-5}{-3} = \frac{5}{3}$$

$$y - intercept = \frac{-c}{b} = \frac{-9}{-3} = \frac{9}{3} = 3$$

	OR
	Find the equation of straight line of slope 3units and y-intercept 4.
	Given: $slope m = 3$ $c = 4$
	y = mx + c
	y = 3x + 4
	3x - y + 4 = 0
2(b)	Find the equation of straight line passing through the point (3,4) and perpendicular to
	4x + 2y + 3 = 0
	Given: $4x + 2y + 3 = 0$ $4x + 2y + 3 = 0$
	$a = 4$ $b = 2$ $c = 32x - 4y + k = 0 \dots (1)$
	, , , , , , , , , , , , , , , , , , , ,
	$Slope = \frac{-a}{b} = \frac{-4}{2} = -22(3) - 4(4) + k = 0$
	$(y-y_1) = \frac{-1}{m}(x-x_1)$ OR $6-16+k=0$
	μ
	$(y-4) = \frac{-1}{-2}(x-3) - 10 + k = 0$
	$\frac{1}{2}$ $\frac{1}$
	$(y-4) = \frac{1}{2}(x-3) k = 10$ (substitute in equ -1)
	<u> </u>
	2(y-4) = 1(x-3)2x-4y+10 = 0
	2y - 8 = x - 3
	x - 3 - 2y + 8 = 0 Or $x - 2y + 5 = 0$
	x - 2y + 5 = 0
	OR
	Find the equation of straight line passing through the point $(2, -5)$ and $(3,7)$
	Given: $(x_1, y_1) = (2, -5)$
	$(x_2, y_2) = (3,7)$
	$(y-y_1) = \frac{(y_2-y_1)}{(x_2-x_1)} (x-x_1)$
	$(y-y_1) = \frac{(x_2-x_1)}{(x_2-x_1)}$
	(7+5)
	$(y + 5) = \frac{(7+5)}{(3-2)} (x-2)$
	$(y + 5) = \frac{12}{1}(x - 2)$
	1
	1(y+5) = 12(x-2)
	y + 5 = 12x - 24
	12x - y - 29 = 0
2(c	Using slope point form of straight line find the equation of line passing through the point
)	$(1,2)$, inclined at 45^0 to the x – axis
	Given: $(x_1, y_1) = (1, 2)$
	$\theta = 45^{0}$
	$m = tan \theta$
	m = tan 45
	m = 1
	$(y-y_1) = m(x-x_1)$
	(y-2) = 1(x-1)
	y - 2 = x - 1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OR

Find the equation of straight line whose 'x'- intercept and y-intercept are 5 and 6 respectively. Write the standard form of it.

Given:
$$a = 5$$

$$b = 6$$

Standard form of equation is $\frac{x}{a} + \frac{y}{b} = 1$

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{5} + \frac{y}{6} = 1$$

$$\frac{(6x+5y)}{30} = 1$$

$$6x + 5y = 30$$

$$6x + 5y - 30 = 0$$

2(d) (d) Find the equation of straight line passing through the point (2,3) and parallel to 5x - 4y + 4 = 0

Given:
$$5x - 4y + 4 = 0$$

 $a = 5$ $b = -4$ $c = 4$
 $Slope = \frac{-a}{b} = \frac{-5}{-4} = \frac{5}{4}$
 $(y - y_1) = m(x - x_1)$
 $(y - 3) = \frac{5}{4}(x - 2)$
 $4(y - 3) = 5(x - 2)$
 $4y - 12 = 5x - 10$
 $5x - 10 - 4y + 12 = 0$
 $5x - 4y + 2 = 0$

Alternative method

$$5x - 4y + 4 = 0$$

 $5x - 4y + k = 0$ (1)
 $5(2) - 4(3) + k = 0$
 $10 - 12 + k = 0$
 $-2 + k = 0$
 $k = 2$
(substitute in equ -1)
 $5x - 4y + 2 = 0$

OR

If $\frac{3}{5}$ and $\frac{7}{3}$ are the slopes of two lines, find the angle between the two lines

Given:
$$m_1 = \frac{3}{5} \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \tan \theta = \left| \frac{\frac{3}{5} - \frac{7}{3}}{1 + \frac{37}{53}} \right|$$

$$m_2 = \frac{7}{3} \tan \theta = \left| \frac{\frac{9 - 35}{15}}{1 + \frac{21}{15}} \right| \qquad \tan \theta = \left| \frac{\frac{-26}{15}}{\frac{15 + 21}{15}} \right|$$

$$\tan \theta = \left| \frac{-26}{36} \right| \tan \theta = \left| \frac{-13}{18} \right|$$

$$\tan \theta = \frac{13}{18} \theta = \tan^{-1} \left(\frac{13}{18} \right)$$

3(a) Consider
$$,30^{0} = 30^{0} \times \frac{\pi}{180^{0}}$$

$$= \frac{\pi}{6} \ radians$$
Consider
$$\frac{\pi}{12} \ radians = \frac{\pi}{12} \times \frac{180^{0}}{\pi} = \frac{180^{0}}{12}$$

$$\frac{\pi}{12} = 15^{0}$$

	OR
	We know that $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ Consider $LHS = \tan(45^{0} + A)$ $\tan(45^{0} + A) = \frac{\tan 45^{0} + \tan A}{1 - \tan 45^{0} \tan A}$ $\tan(45^{0} + A) = \frac{1 + \tan A}{1 - \tan A} = RHS$
3(b)	Consider $\cos(90 - \theta) = \sin\theta$ $\sin(90 - \theta) = \cos\theta$ $LHS = \sin\theta \cos(90 - \theta) + \cos\theta \sin(90 - \theta)$ $= \sin\theta \sin\theta + \cos\theta \cos\theta$ $= \sin^2 \theta + \cos^2 \theta = 1 = RHS [according to first trigonometric identity]$
	OR
3(c)	LHS= $\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)}$ $= \frac{(\sin A \cos B + \cos A \sin B) + (\sin A \cos B - \cos A \sin B)}{(\cos A \cos B - \sin \sin B) + (\cos A \cos B + \sin A \sin B)}$ $= \frac{2 \sin A \cos B}{2 \cos A \cos B}$ $= \frac{\sin A}{\cos A}$ $= \tan A$ $= RHS$ Consider $\sin(A+B) = \sin A \cos B + \cos A \sin B$
	$\sin 75^{0} = \sin (30^{0} + 45^{0})$ $\sin (30^{0} + 45^{0}) = \sin 30^{0} \cos 45^{0} + \cos 30^{0} \sin 45^{0}$ $= \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$ $= \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}}$ $\sin 75^{0} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$
	OR
	Consider $\cos(360^{0} - A) = \cos(A)$ $\tan(360^{0} + A) = \tan(A)$ $\cot(270^{0} - A) = \tan(A)$ $\sin(90^{0} + A) = \cos(A)$ $\operatorname{Consider} \frac{\cos(360^{0} - A)\tan(360^{0} + A)}{\cot(270^{0} - A)\sin(90^{0} + A)}$ $= \frac{\cos A \tan A}{\tan A \cos A} = \frac{1}{1} = 1$
3(d)	$LHS = sin20^{0} sin40^{0} sin80^{0}$ $= sin80^{0} sin40^{0} sin20^{0}$

$$= -\frac{1}{2}(\cos(120^{\circ}) - \cos 40^{\circ})\sin 20^{\circ}$$

$$= -\frac{1}{2}\left(-\frac{1}{2} - \cos 40^{\circ}\right)\sin 20^{\circ}$$

$$= -\frac{1}{2}\left(-\frac{1}{2}\sin 20^{\circ} - \cos 40^{\circ}\sin 20^{\circ}\right)$$

$$= -\frac{1}{2}\left(-\frac{1}{2}\sin 20^{\circ} - \frac{1}{2}(\sin(60^{\circ}) - \sin 20^{\circ}) \right)$$

$$= -\frac{1}{2}\left(-\frac{1}{2}\sin 20^{\circ} - \frac{1}{2}\sin 60^{\circ} + \frac{1}{2}\sin 20^{\circ}\right)$$

$$= -\frac{1}{2}\left(-\frac{1}{2}\sin 60^{\circ}\right)$$

$$= -\frac{1}{2}\left(-\frac{1}{2} \times \frac{\sqrt{3}}{2}\right)$$

$$= \frac{\sqrt{3}}{8}$$

$$= \text{RHS}$$
OR

$$\frac{\text{We know that}}{\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta}$$

$$\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta$$

$$\cos 2\theta = \cos^{2}\theta - (1 - \cos^{2}\theta)$$

$$\cos 2\theta = \cos^{2}\theta - 1 + \cos^{2}\theta$$

$$\cos 2\theta = 2\cos^{2}\theta - 1$$

"Certified that the model answers prepared by me for code 20SC01T are from prescribed textbook and model answers and scheme of valuation prepared by me are correct".

"Award full marks for alternative methods of answers"

RAVI KUMAR R

BAGEPALLI

Lecturer in Science 136 – Government polytechnic

SECTION-IV	
4 (a)	
	$\frac{d}{dx}(x^3 + x^2 + 3x + 9) = 3x^2 + 2x + 3 + 0$
	$=3x^2+2x+3$
	OR

	y = (x+1)(x-1)
	$y = x^2 - 1$
	Diff w.r.t.x
	$\frac{dy}{dx} = \frac{d}{dx}(x^2 - 1) = 2x - 0 = 2x$
4 (b)	$y = x^3 - 12x^2 - 27x + 16$
	Differentiate w.r.t.x
	$\frac{dy}{dx} = \frac{d}{dx}\left(x^3 - 12x^2 - 27x + 16\right)$
	$\frac{dy}{dx} = 3x^2 - 12 \times 2x - 27 + 0$
	$\frac{dy}{dx} = 3x^2 - 24x - 27$
	For function to be maxima or minima put $\frac{dy}{dx} = 0$
	$0 = 3x^2 - 24x - 27 \qquad \Rightarrow \qquad 3x^2 - 24x - 27 = 0$
	Divide both side by 3
	$x^{2}-8x-9=0$ Solve the above quadratice quation by factorizat ion method
	$x^2 - 8x - 9 = 0 -9x^2 = -9x + x$
	$x^2 - 9x + x - 9 = 0$
	x(x-9)+1(x-9)=0
	(x-9)(x+1) = 0
	$x-9=0 \qquad or \qquad x+1=0$
	x = 9 or $x = -1$
	x = 9,-1 are the stationary point s
	$\frac{dy}{dx} = 3x^2 - 24x - 27$
	Again diff w.r.t.x
	$\frac{d^2y}{dx^2} = 3 \times 2x - 24 + 0$
	$\frac{d^2y}{dx^2} = 6x - 24$

When
$$x = -1$$

$$\left(\frac{d^2y}{dx^2}\right)_{x=-1} = 6(-1) - 24 = -6 - 24 = -30 < 0$$

Therfore the function is maxima at x = -1 and its maximum value is given

$$y = x^3 - 12x^2 - 27x + 16$$

$$put x = -1$$

$$y_{\text{max}} = (-1)^3 - 12(-1)^2 - 27(-1) + 16$$

$$y_{\text{max}} = -1 - 12 \times 1 + 27 + 16$$

$$y_{\text{max}} = -1 - 12 + 27 + 16$$

$$y_{\text{max}} = 43 - 13 = 30$$

When x = 9

$$\left(\frac{d^2y}{dx^2}\right)_{x=9} = 6(9) - 24 = 54 - 24 = 30 > 0$$

Therfore the function is minima at x = 9 and its minimum value is given

$$y = x^3 - 12x^2 - 27x + 16$$

$$put x = 9$$

$$y_{\min} = (9)^3 - 12(9)^2 - 27(9) + 16$$

$$y_{\min} = 729 - 12(81) - 243 + 16$$

$$y_{\min} = 729 - 972 - 243 + 16$$

$$y_{\min} = 745 - 1215 = -470$$

Differentiate w.r.t.x

$$\frac{ds}{dt} = \frac{d}{dt} \left(-16t^2 + 64t \right) \implies \frac{ds}{dt} = -16 \times 2t + 64$$

$$\frac{ds}{dt} = -32t + 64$$

when ball reaches maximum height at that time velocity v = 0

$$0 = -32t + 64$$

$$32t = 64$$

$$t = \frac{64}{32} = 2$$

$$t = 2 \sec$$

Therfore the ball taken time to raech maximum height is 2 sec.

Now find maximum height put $t = 2 \sec in (1)$

$$s = -16t^2 + 64t$$

$$s = -16(2)^2 + 64(2)$$

$$s = -16 \times 4 + 128 = -64 + 128 = 64$$
 feet

 $\frac{dy}{dx} = -3x^2$

 $\left(\frac{dy}{dx}\right)_{at\ A(2.3)} = -3(2)^2 = -12$

m=-12
The equation of normal to the curve at the point (2, 3) with slope m=-12 is
$y - y_1 = \frac{-1}{m}(x - x_1)$ \Rightarrow $y - 3 = \frac{-1}{-12}(x - 2)$
$y-3 = \frac{1}{12}(x-2)$ \Rightarrow $12(y-3) = 1(x-2)$
$12y - 36 = x - 2 \qquad \Rightarrow \qquad x - 2 - 12y + 36 = 0$
x-12y+34=0
OR
$y = \left(1 + x^2\right) \tan^{-1} x$
Differentiate w.r.t.x
$\frac{dy}{dx} = \frac{d}{dx} \left[\left(1 + x^2 \right) \tan^{-1} x \right]$
$w.k.t \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$
$\frac{dy}{dx} = \left(1 + x^2\right) \frac{d}{dx} \left(\tan^{-1} x\right) + \tan^{-1} x \frac{d}{dx} \left(1 + x^2\right)$
$\frac{dy}{dx} = \left(1 + x^2\right) \times \frac{1}{\left(1 + x^2\right)} + \tan^{-1} x \times (0 + 2x)$
$\frac{dy}{dx} = 1 + 2x \tan^{-1} x$

"Certified that the model answers prepared by me for code 20SC01T are from prescribed textbook and model answers and scheme of valuation prepared by me are correct". **Award full marks for alternative methods of answers.**

Lecture/science 117-Govt Polytechnic Raichur

	SECTION V
5 a)	Integrate $2x^3 - \frac{3}{x} + 4\cos x + \frac{1}{1+x^2}$ w.r.t. x
	Let $I = \int 2x^3 dx - \int \frac{3}{x} dx + \int 4\cos x dx + \int \frac{1}{1+x^2} dx$
	$I = \int 2x^3 - \frac{3}{x} + 4\cos x + \frac{1}{1+x^2} dx$ $I = \frac{x^4}{2} - 3\log x + 4\sin x + \tan^{-1} x + c$
	$I = \frac{x^{2}}{2} - 3\log x + 4\sin x + \tan^{-1} x + c$
	OR
	Let $I = \int (x-2)(x+3) \mathrm{d}x$
	Let $I = \int (x-2)(x+3) dx$ $I = \int x^2 + x - 6 dx$
	$I = \frac{x^3}{3} + \frac{x^2}{2} - 6x + c$

b)	$1-\cos 2x$
0)	Using $\sin^2 x = \frac{1 - \cos 2x}{2}$
	Then $I = \int \sin^2 x dx$
	$I = \int \frac{1 - \cos 2x}{2} dx$
	$I = \int \frac{1}{2} - \frac{\cos 2x}{2} dx$
	$I = \frac{1}{2}x - \frac{\sin 2x}{4} + c$
	$I = \frac{1}{2}x - \frac{1}{4} + c$
	OR
	Using $tan^2x = sec^2x - 1$
	π
	$I = \int_{0}^{\frac{\pi}{4}} tan^2 x dx$
	$\frac{\sigma}{\pi}$
	$I = \int sac^2 x - 1 dx$
	$I = \int_{0}^{\infty} \sec x - 1 dx$
	$I = \int_{0}^{\frac{\pi}{4}} \sec^2 x - 1 dx$ $I = \left[\tan x - x \right]_{0}^{\frac{\pi}{4}}$
	$I = \left(\tan\frac{\pi}{4} - \frac{\pi}{4}\right) - (\tan 0 - 0)$
	$I = 1 - \frac{\pi}{4}$
c)	Required Area $A = \int_a^b y dx$
	$\int_{-\infty}^{3}$
	$A = \int_{1}^{3} 4x - x^2 - 3 dx$
	$A = \frac{4x^2}{2} - \frac{x^3}{3} - 3x$
	$A = \frac{1}{2} - \frac{3}{3} - 3x$
	$A = \left[\frac{4x^2}{2} - \frac{x^3}{3} - 3x\right]_{1}^{3}$
	$A = \left[\frac{1}{2} - \frac{1}{3} - \frac{3x}{3}\right]_1$
	$A = \left[2(3)^2 - \frac{3^3}{3} - 3(3) \right] - \left[2(1)^2 - \frac{1^3}{3} - 3(1) \right]$
	L
	$A = [18 - 9 - 9] - \left[2 - \frac{1}{3} - 3\right] = \frac{4}{3} \text{ sq.units}$
	OR
	Required Volume, $V = \int_{a}^{b} y^{2} dx$
	$V = \int_{-\infty}^{\infty} x^2 + Ex dy$
	$V = \int_{1}^{\infty} x^2 + 5x \mathrm{dx}$
	$[x^3 5x^2]^2$
	$V = \left[\frac{x^3}{3} + \frac{5x^2}{2}\right]^2$
	$V = \left[\frac{(2)^3}{3} + \frac{5(2)^2}{2} \right] - \left[\frac{(1)^3}{3} + \frac{5(1)^2}{2} \right]$
	50
	$V = \frac{59}{6}$ cubic.units
d)	Let $I = \int x \sin x dx$
	Integrating by parts using $\int uv \ dx = u \int v \ dx - \int \left[\frac{du}{dx} \cdot \int v \ dx\right] dx$, we get
	$I = x \int \sin x dx - \int (-\cos x) 1 dx$
	$I = x(-\cos x) + \int \cos x dx$
	$I = x(-\cos x) + \int \cos x dx$

$I = -x \cos x + \sin x + c$
OR
Let $I = \int_0^1 \frac{(tan^{-1}x)^3}{1+x^2} dx$ Substituting $tan^{-1}x = t$ Differentiating w.r.t t ,
$\frac{1}{1+x^2} = \frac{dt}{dx} \Rightarrow \frac{dx}{1+x^2} = dt$ Lower limit $x = 0$, $t = 0$; Upper limit $x = 1$, $t = \frac{\pi}{4}$
$I = \int_0^{\frac{\pi}{4}} t^3 dt = \left[\frac{t^4}{4} \right]_0^{\frac{\pi}{4}} = \frac{\pi^4}{1024}$