Intro to Computer Science Assignment 2

Yiping Deng 2017-09-20

6.1 Giving two boolean variable P,Q By truth table, we have $P \to Q = \neg P \lor Q$

$$P \lor Q = \neg \neg P \lor Q = \neg P \to Q$$

$$P \land Q = \neg (\neg P \lor \neg Q) = \neg (\neg \neg P \to \neg Q) = \neg (P \to \neg Q)$$

6.2

1) Truth table proof:

+ P	+ Q	++ R	S	(not P or Q) and (not Q or R) and (not R or S) and (not S or P)
1 0	0	0	0	1
1 0	0	0	1	0
1 0	0	1	0	0
1 0	0	1	1	0
1 0	1	0	0	0
1 0	1	0	1	0
1 0	1	1	0	0
1 0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1
1 +	1 +	1 ++	1	1

+ P	+ (٠ ۲	+ R	-+ -	 S	+·	not	(P	or	Q	or	R	or	S)	or	(P	and	Q	and	R	and	S)
0	()	0		0	1									1							
10	()	0	١	1	1									0							
10	()	1	١	0	1									0							
10	()	1	١	1	1									0							
0	:	1	0	1	0	1									0							
0	:	1	0	1	1	1									0							
0	:	1	1	1	0	1									0							
0	:	1	1	1	1	1									0							
1	()	0	1	0	1									0							
1	()	0	1	1	1									0							
1	()	1	1	0	1									0							
1	()	1	1	1	1									0							
1	:	1	0	1	0	1									0							
1	:	1	0	1	1	1									0							
1	:	1	1	1	0	1									0							
1	:	1	1	I	1	1									1							
	+		+	+		+-																

So, 2

2) DNF form:

$$\begin{split} \varphi(M,N,P,Q,R,S) &= \\ &= \left(\left(\neg (P \lor Q \lor R \lor S) \right) \lor \left(P \land Q \land \land R \land S \right) \right) \right) \land M \land \neg N \\ &= \left(\neg P \land \neg Q \land \neg R \land \neg S \land M \land \neg N \right) \lor \left(P \land Q \land R \land S \land M \land \neg N \right) \end{split}$$

3)

```
\varphi(M, N, P, Q, R, S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P) \land M \land \neg N
(\neg P \lor Q) \land (\neg Q \lor R) = ((\neg P \lor Q) \land \neg Q) \lor ((\neg P \lor Q) \land R)
                                     = (\neg P \land \neg Q) \lor (Q \land \neg Q) \lor ((\neg P \lor Q) \land R)
                                     = (\neg P \land \neg Q) \lor 0 \lor ((\neg P \lor Q) \land R)
                                     = \neg (P \lor Q) \lor ((\neg P \lor Q) \land R)
(\neg R \lor S) \land (\neg S \lor P) = \neg (R \lor S) \lor ((\neg R \lor S) \land P)
                                    (\neg (R \lor S) \lor ((\neg R \lor S) \land P)) \land (\neg (P \lor Q) \lor ((\neg P \lor Q) \land R))
                                     = (\neg (P \lor Q \lor R \lor S))
                                     \vee ((\neg R \vee S) \wedge P) \wedge \neg (P \vee Q))
                                     \vee (\neg (R \vee S) \wedge ((\neg P \vee Q) \wedge R))
                                     \vee ((\neg R \vee S) \wedge P) \wedge ((\neg P \vee Q) \wedge R))
                                     = (\neg (P \lor Q \lor R \lor S))
                                     \vee ((\neg R \vee S) \wedge P) \wedge ((\neg P \vee Q) \wedge R))
                                     = (\neg (P \lor Q \lor R \lor S))
                                     \vee ((\neg R \vee S) \wedge (\neg P \vee Q) \wedge R \wedge P))
                                     = (\neg (P \lor Q \lor R \lor S) \lor (P \land Q \land R \land S)
   \varphi(M,N,P,Q,R,S) = (\neg(R \lor S) \lor ((\neg R \lor S) \land P)) \land (\neg(P \lor Q) \lor ((\neg P \lor Q) \land R)) \land M \land \neg N
                                     = ((\neg (P \lor Q \lor R \lor S)) \lor (P \land Q \land \land R \land S))) \land M \land \neg N
                                     = (\neg P \land \neg Q \land \neg R \land \neg S \land M \land \neg N) \lor (P \land Q \land R \land S \land M \land \neg N)
```

6.3

```
divide: break the case that move x from source to destination into:
        1. move (x-1) from source to the auxillary(e.g.: if source is the first heap,
        the destination is the second heap, the auxillary is the third one)
        2. move the remaining one, which is the biggest, from the source,
        to the destination, which is empty right now.
        3. move (x - 1) elements in step 1)
        from auxillary to the destination
    conquer:
        solve the subproblem step 1) and step 3) recursively.
        note: after step 1), we actually breaks
        the recursive assumption. ( there is one element
        in the source) step 2) recover this
        state(it is non-recursive), then we can safely recursively
        solve step 3) recursively
    combine:
        to get the result, we simply concatenate the 3 lists
solveHanoi 0 _ _ = []
solveHanoi 1 x y = [MakeMove x y]
solveHanoi x 1 3 = solveHanoi (x - 1) 1 2 ++ (solveHanoi 1 1 3) ++ (solveHanoi (x - 1) 2 3)
solveHanoi x 3 1 = solveHanoi (x - 1) 3 2 ++ (solveHanoi 1 3 1) ++ (solveHanoi (x - 1) 2 1)
solveHanoi x 1 2 = solveHanoi (x - 1) 1 3 ++ (solveHanoi 1 1 2) ++ (solveHanoi (x - 1) 3 2)
solveHanoi x 2 1 = solveHanoi (x - 1) 2 3 ++ (solveHanoi 1 2 1) ++ (solveHanoi (x - 1) 3 1)
solveHanoi x 3 2 = solveHanoi (x - 1) 3 1 ++ (solveHanoi 1 3 2) ++ (solveHanoi (x - 1) 1 2)
solveHanoi x 2 3 = solveHanoi (x - 1) 2 1 ++ (solveHanoi 1 2 3) ++ (solveHanoi (x - 1) 1 3)
hanoi :: Int -> [Move]
hanoi x = solveHanoi x 1 3
```