Introduction

- What is an Operating System?
- Mainframe Systems
- Desktop Systems
- Multiprocessor Systems
- Distributed Systems
- Clustered System
- Real -Time Systems
- Handheld Systems
- Computing Environments

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
- Use the computer hardware in an efficient manner.

Computer System Components

- 1. Hardware provides basic computing resources (CPU, memory, I/O devices).
- 2. Operating system controls and coordinates the use of the hardware among the various application programs for the various users.
- Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs).
- 4. Users (people, machines, other computers).

Operating System Definitions

- Resource allocator manages and allocates resources.
- Control program controls the execution of user programs and operations of I/O devices.
- Kernel the one program running at all times (all else being application programs).

Mainframe Systems

- Reduce setup time by batching similar jobs
- Automatic job sequencing automatically transfers control from one job to another. First rudimentary operating system.
- Resident monitor
 - initial control in monitor
 - control transfers to job
 - when job completes control transfers pack to monitor

OS Features Needed for Multiprogramming

- I/O routine supplied by the system.
- Memory management the system must allocate the memory to several jobs.
- CPU scheduling the system must choose among several jobs ready to run.
- Allocation of devices.

Time-Sharing Systems-Interactive Computing

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
- A job swapped in and out of memory to the disk.
- On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard.
- On-line system must be available for users to access data and code.

Desktop Systems

- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system' often individuals have sole use of computer and do not need advanced CPU utilization of protection features
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

- Multiprocessor systems with more than on CPU in close communication.
- *Tightly coupled system* processors share memory and a clock; communication usually takes place through the shared memory.
- Advantages of parallel system:
 - Increased throughput
 - Economical
 - Increased reliability
 - graceful degradation
 - fail-soft systems

Parallel Systems (Cont.)

- Symmetric multiprocessing (SMP)
 - Each processor runs and identical copy of the operating system.
 - Many processes can run at once without performance deterioration.
 - Most modern operating systems support SMP
- Asymmetric multiprocessing
 - Each processor is assigned a specific task; master processor schedules and allocated work to slave processors.
 - More common in extremely large systems

Distributed Systems

- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.
- Advantages of distributed systems.
 - Resources Sharing
 - Computation speed up load sharing
 - Reliability
 - Communications

Distributed Systems (cont)

- Requires networking infrastructure.
- Local area networks (LAN) or Wide area networks (WAN)
- May be either client-server or peer-to-peer systems.

Clustered Systems

- Clustering allows two or more systems to share storage.
- Provides high reliability.
- *Asymmetric clustering*: one server runs the application while other servers standby.
- Symmetric clustering. all N hosts are running the application.

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.
- Real-Time systems may be either *hard* or *soft* real-time.

Real-Time Systems (Cont.)

- Hard real-time:
 - Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)
 - Conflicts with time-sharing systems, not supported by general-purpose operating systems.
- Soft real-time
 - Limited utility in industrial control of robotics
 - Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.

Handheld Systems

- Personal Digital Assistants (PDAs)
- Cellular telephones
- Issues:
 - Limited memory
 - Slow processors
 - Small display screens.

Computing Environments

- Traditional computing
- Web-Based Computing
- Embedded Computing