EL2450 Hybrid and Embedded Control

Lecture 13: Hybrid systems bisimulations

- Definition of timed, multi-rate, and rectangular automata
- Over-approximations of reachable sets
- Model-checking of transition systems over LTL specifications

Today's Goal

You should be able to

- model a timed automaton
- translate a multi-rate and rectangular automaton to a timed automaton
- understand the concept of reachability analysis for hybrid systems through reach set over-approximation
- understand the model checking process for FTS under LTL specifications

Timed Automata

Timed automata are a subclass of hybrid automata TA = (Q, X, Init, f, D, E, G, R)

- $Q = \{q_1, \ldots, q_m\}, X = \mathbb{R}^n_+, \operatorname{Init} \subseteq Q \times \{0\}^n$
- f(q, x) = (1, ..., 1): "clock" dynamics
- $E \subseteq Q \times Q$
- D(q), G(e) are rectangular sets, i.e., they are finite boolean combinations of constraints of the form $x_i \bowtie a_i$, where $\bowtie \in \{<, \leq, =, \geq, >\}$, and a_i is a positive integer.
- $R(e,x) = \{y\}$, where $y_i = 0$ or $y_i = x_i$ for all $1 \le i \le n$.

Example: Timed Automaton

Labeled Timed Automata

Labeled timed automata are a subclass of hybrid automata TA = (Q, X, Init, f, Act, D, E, G, R)

- $Q = \{q_1, \ldots, q_m\}, X = \mathbb{R}^n_+, \operatorname{Init} \subseteq Q \times \{0\}^n$
- f(q, x) = (1, ..., 1): "clock" dynamics
- Act is the set of events
- $E \subseteq Q \times Act \times Q$
- D(q), G(e) are rectangular sets, i.e., they are finite boolean combinations of constraints of the form $x_i \bowtie a_i$, where $\bowtie \in \{<, \leq, =, \geq, >\}$, and a_i is a positive integer.
- $R(e,x) = \{y\}$, where $y_i = 0$ or $y_i = x_i$ for all $1 \le i \le n$.

Example: Labeled Timed Automaton

Timed Automata as Transition Systems

A timed automaton TA = (Q, X, Init, f, Act, D, E, G, R) can be interpreted a transition system $T_{TA} = (S, \Sigma, \rightarrow, S_0 = \text{Init})$:

- $S = Q \times X$ and $(q, x) \in S$ denotes the state
- Σ = Act ∪ Time where the generators Act are the event names and Time the continuous evolution
- $(q,x) \xrightarrow{\sigma} (q',y)$ for $\sigma \in Act$ if
 - there exists $(q, \sigma, q') \in E$, and
 - x satisfies the guard $G(q, \sigma, q')$, $\{y\} = R((q, \sigma, q'), x)$, and y satisfies the domain D(q').
- $(q,x) \xrightarrow{\mathsf{Time}} (q,x')$ if $x' = x + \mathsf{Time}$, and x' satisfies D(q).

Region Equivalence for One Variable

Let \equiv be an equivalence, where $x \equiv x'$ iff

- $x > M \land x' > M$, where M is the largest value associated with x that appears in TA, or
- $x \le M_i, x' \le M$, $\lfloor x \rfloor = \lfloor x' \rfloor$, and $frac(x) = 0 \Leftrightarrow frac(x') = 0$

$$[x]_{\equiv} = \{x' \mid x \equiv x'\}$$

Region Equivalence for Two Variables

- Equivalence classes: points (orange circles), line segments (blue lines), open sets (between lines)
- $M_x = 4$, $M_y = 3$

Reachability for Timed Automata

- Determine equivalent regions
- Find the quotient transition system of T_{TA} , as \hat{T}_{TA}
- Compute reachable set of \hat{T}_{TA}
- Same reachability for T_{TA}

Multi-Rate Automata

Reachability for Multi-Rate Automata

- Translate into timed automata
- Multi-rate automaton has to be initialized, i.e., if a rate of a variable changes along an edge, then the variable has to be reset along the edge

Example: Remove x := 0 from the previous example

Rectangular Automata

Reachability for Rectangular Automata

- Translate into multi-rate and then into timed automata
- Rectangular automaton has to be initialized, i.e., if a rate of a variable changes along an edge, then the variable has to be reset along the edge

Example: Remove x := 0 from the previous example

Over-Approximation of Reach Set

- It is often hard to calculate Reach exactly
- Compute an over-approximation A ⊃ Reach instead
- Note that $A \cap B = \emptyset$ implies that Reach $\cap B = \emptyset$, so safety is guaranteed if the algorithm based on over-approximation terminates

Approximate a Set with a Polyhedron

- Choose normal vectors c_1, \ldots, c_n
- Wrap the set in the polyhedron
- Solve an optimization problem

by R. Alur

Figure

Flowpipe Approximation

Figure by R. Alur

- Divide Reach(S_0) into $[t_k, t_k + 1]$ segments
- Enclose each segment with a convex polytope
- Reach(S_0) is a union of polytopes

Beyond Reachability Verification

- More complex properties can be expressed and verified,
- Temporal logics, such as LTL, CTL.
- Verification or synthesis of a system and its specification

Model-checking: system model

System modeled as *labeled* finite transition systems (FTS) $\mathcal{T} = (S, \Sigma, \Pi, \rightarrow, L, S_0)$:

- *S* is a set of states;
- Σ is a set of admissible actions;
- Π is a set of atomic propositions;
- $\rightarrow \in S \times \Sigma \times S$ is a set of transitions;
- $S_0 \subseteq S$ is the set of initial states;
- $L: S \to 2^{\Pi}$ s.t. $L(s) \subseteq \Pi$ is the set of propositions satisfied by $s \in S$.

Note: the FTS would be weighted by adding costs on the transitions.

Model-checking: specification

Specification given as linear temporal logic (LTL) formulas over Π :

$$\varphi ::= \pi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi_1 \mid \mathsf{X} \varphi_1 \mid \varphi_1 \mathsf{U} \varphi_2 \mid \mathsf{F} \varphi_1 \mid \mathsf{G} \varphi_1,$$

see Lecture 9 for details.

Control tasks: Safety: $G \neg \varphi_1$. Order: $F(\varphi_1 \land F(\varphi_2 \land F\varphi_3))$.

Response: $\varphi_1 \rightarrow \varphi_2$. Liveness: $GF\varphi_1$.

Büchi automaton $\mathcal{A}_{\varphi} = (Q, 2^{\Pi}, \delta, Q_0, F)$

- Q is a finite set of states;
- 2^Π is an input alphabet;
- $\delta: Q \times 2^{\Pi} \to 2^{Q}$ is a transition relation;
- Q₀, F ⊆ Q are initial and accepting states.

Lecture 13 20 Spring 2019

Model-checking: Büchi Automaton example

Example: $\varphi = (\mathsf{G} \, \mathsf{F} \, r_2) \wedge (\mathsf{G} \, \mathsf{F} \, r_3) \wedge (\mathsf{G} \, \neg \, r_1).$

Software: LTL2BA, LTL2dstar, SPOT...

Model-checking: product automaton

The **product** automaton $\mathcal{P} = \mathcal{T} \otimes \mathcal{A}_{\varphi} = (Q_{\mathcal{P}}, \Sigma, \delta_{\mathcal{P}}, Q_{\mathcal{P},0}, F_{\mathcal{P}})$,

•
$$Q_{\mathcal{P}} = S \times Q$$
;

- $\delta_{\mathcal{P}} \subseteq Q_{\mathcal{P}} \times \Sigma \times Q_{\mathcal{P}}$. $((s, q), \sigma, (s', q')) \in \delta_{\mathcal{P}}$ if $(s, \sigma, s') \in \longrightarrow$ and $q' \in \delta(q, L(s))$;
- $Q_{\mathcal{P},0} = \{(s_0, q_0) \mid q_0 \in Q_0\};$
- $F_{\mathcal{P}} = \{(s, q_f) \mid s \in S, q_f \in F\}.$

Idea: intersection between language generated by \mathcal{T} and the one accepted by \mathcal{A}_{ω} .

Model-checking: graph-search

Graph search for plan prefix and suffix:

- Plan prefix: a path from an initial state to an accepting state;
- Plan suffix: a cycle containing at least an accepting state;
- Combine the plan prefix and suffix (which can be done in different ways).

Next Lecture

Summary

- Summary of the course
- What is in the exam?