Solutions to Problem 4 of Homework 8 (8 (+3) points)

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, November 17

Let $\star: \{1, \ldots, k\} \times \{1, \ldots, k\} \mapsto \{1, \ldots, k\}$ be a binary operation. Below we assume the values of $a \star b$ for $a, b \in \{1, \ldots, k\}$ are stored in some $k \times k$ array M such that $M[a][b] = a \star b$. Consider the problem of examining a string $x = x_1 x_2 \ldots x_n$, where each $x_i \in \{1, \ldots, k\}$, and deciding whether or not it is possible to parenthesize the expression $x_1 \star x_2 \star \ldots \star x_n$ in such a way that the value of the resulting expression is a given target element $t \in \{1, \ldots, k\}$. Notice, the multiplication table is neither commutative or associative, so the order of multiplication matters (and, hence, the result of the expression is not even well defined unless a complete "parenthesization" is specified). For example, consider the following multiplication table and the string x = 2221.

Table 1: Multiplication table

	1	2	3
1	1	3	3
2	1	1	2
3	3	3	3

Parenthesizing it $(2 \star 2) \star (2 \star 1)$ gives t = 1, but $((2 \star 2) \star 2) \star 1$ gives t = 3. On the other hand, no possible parenthesization gives t = 2 (you may check this).

(a) (8 points) Assume you are given as input the following: n, k, t, x[1...n] and M. Give a dynamic programming algorithm that runs in time polynomial in n and k and outputs YES if there exists a paranthesization for x that results in the product equal to t, and NO otherwise. For instance, in the above example with x = 2221, the answer is YES if t = 1 or t = 3, but NO if t = 2.

Solution:

Define a 3d-array R and initialize it to 0 such that R[i, j, k] denotes the number of paranthesizations of $x_i \star x_{i+1} \star \ldots \star x_j$ such that the product evaluates to k.

Therefore, the base case is $R[i, i, x_i] = 1$ i.e the number of paranthesizations of x_i such that the product evaluates to x_i is 1

Otherwise, if i < j, let $p \in \{1, ..., k\}$ and let $S_p = \{(\alpha_y^p, \beta_y^p)\}$ where $1 \le \alpha_y^p \le k$, $1 \le \beta_y^p \le k$ and $|S_p| \le k$ be the set of all tuples such that $\alpha_y^p \star \beta_y^p = p$.

Then for any given expression $(x_i \star x_{i+1} \star \ldots \star x_j)$, we can divide it into two partitions $(x_i \star \ldots \star x_t)$ and $(x_{t+1} \star \ldots \star x_j)$ where $i \leq t < j$.

If
$$x_i \star x_{i+1} \star \ldots \star x_j = p \implies (x_i \star \ldots \star x_t) = \alpha_y^p$$
 and $(x_{t+1} \star \ldots \star x_j) = \beta_y^p$.

The number of ways in which α_y^p can be obtained from $(x_i \star \ldots \star x_t)$ using different paranthesizations is $R[i, t, \alpha_y^p]$.

Similarly, the number of ways in which β_y^p can be obtained from $(x_{t+1} \star ... \star x_j)$ using different paranthesizations is $R[t+1, j, \beta_y^p]$

Note that t ranges from i to j-1 and y ranges from 1 to $|S_p|$. Therefore, the total number of ways to obtain p from $(x_i \star x_{i+1} \star \ldots \star x_j)$ using different paranthesizations is

$$R[i, j, p] = \sum_{y=1}^{|S_p|} \sum_{t=i}^{j-1} R[i, t, \alpha_y^p] R[t+1, j, \beta_y^p]$$

Using the above recurrence equation and the base cases fill all the entries of R and at then end the answer is YES if R[1, n, t] > 0 and NO otherwise

(b) (3 points (Extra credit)) Analyze the running time of your algorithm.

Solution:

From the above recurrence relation, it is clear that evaluating R[i,j,p] i.e one entry of the 3d matrix R takes $(j-i)|S_p|$ steps. Now we have k number of 2d arrays of size $n \times n$. Evaluating some p^{th} matrix out of these k number of 2d array takes time $O(n^3)|S_p|$ time where $1 \le p \le k$

Therefore total time taken to calculate all the k number of 2d arrays i.e a 3d array R of size $n \times n \times k$ will be $O(n^3)(|S_1|+\ldots+|S_k|)$. Time taken to constructs the sets S_1,\ldots,S_k is $O(k^2)$ as we need to traverse the multiplication table of size k^2 and therefore $|S_1|+\ldots+|S_k|=k^2$.

Therefore the running time of the algorithm is $O(n^3k^2)$

GOWTHAM GOLI (N17656180), Homework 8, Problem 4, Page 2