cluster evasao escolar censo

April 5, 2025

1 ATIVIDADE 05/04/2025: POS-MDE-SEDU

1.1 MODELOS DESCRITIVOS

1.1.1 Professor: Sérgio Nery Simões

ATENÇÃO: ao final do notebook, há alguns exercícios de análise e interpretação de clusters. Leia o notebook com atenção procurando entender o que é realizado em cada passo e, ao final, procure resolver os exercícios.

2 Análise Descritiva e Clusterização de Escolas por Evasão Escolar

Este notebook tem como objetivo realizar uma análise descritiva e aplicar técnicas de clusterização para identificar perfis de escolas com base na evasão escolar e características de infraestrutura.

2.1 Importação de bibliotecas

Vamos importar as bibliotecas necessárias para manipulação de dados, visualizações e modelagem com K-means.

```
[1]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.preprocessing import StandardScaler
  from sklearn.cluster import KMeans
  from sklearn.metrics import silhouette_score
  from sklearn.decomposition import PCA
```

2.2 Carregamento dos dados

Aqui carregamos o dataset simulado contendo informações sobre escolas, como localização, tipo de administração, infraestrutura e taxa de evasão.

```
[2]: df = pd.read_csv("../../datasets/evasao_escolar_simulado.csv") # Substitua∟

→pelo caminho correto se necessário

print("Dimensão do dataset:", df.shape)

df.head()
```

Dimensão do dataset: (100, 10)

```
[2]:
        id_escola
                           regiao localizacao dependencia_adm infra_biblioteca
                              S117
     0
                 1
                                         Rural
                                                      Municipal
     1
                 2
                    Centro-Oeste
                                         Rural
                                                      Municipal
                                                                                  1
     2
                 3
                         Sudeste
                                        Urbana
                                                       Estadual
                                                                                  0
     3
                   Centro-Oeste
                                        Urbana
                                                      Municipal
                                                                                  1
                   Centro-Oeste
     4
                                        Urbana
                                                      Municipal
                                                                                  1
        infra_internet
                          infra_laboratorio total_matriculados
                                                                    evasao_percentual
                                                                             12.007803
     0
                      1
                                           0
                                                              1183
                                           0
     1
                      1
                                                               268
                                                                             18.234745
     2
                                           0
                                                              745
                                                                             17.397170
                      1
     3
                                                               252
                                                                             19.930682
                      1
                                           1
     4
                                                                              2.384619
                      0
                                           1
                                                               404
        evasao_absoluta
     0
                     142
     1
                      48
     2
                     129
     3
                      50
     4
                       9
```

2.3 Análise descritiva por região

Vamos calcular a média da evasão percentual por região para entender se há diferenças regionais.

```
[3]: print("Média de evasão percentual por região:")
print(df.groupby("regiao")["evasao_percentual"].mean().round(2))

Média de evasão percentual por região:
regiao
Centro-Oeste 10.64
Nordeste 9.61
Norte 12.61
Sudeste 11.47
Sul 12.08
Name: evasao_percentual, dtype: float64
```

2.4 Visualização da distribuição da evasão

Geramos um histograma para visualizar como a evasão percentual está distribuída entre as escolas.

```
[4]: plt.figure(figsize=(8, 4))
    sns.histplot(df['evasao_percentual'], bins=20, kde=True)
    plt.title("Distribuição da Evasão Percentual")
    plt.xlabel("Evasão (%)")
    plt.ylabel("Frequência")
    plt.grid(True)
    plt.show()
```


2.5 Codificação de variáveis categóricas

Transformamos variáveis categóricas em variáveis numéricas usando one-hot encoding, necessário para os algoritmos de clustering.

```
[5]: df_encoded = pd.get_dummies(df, columns=['regiao', 'localizacao', _
      [6]: df_encoded
[6]:
                    infra_biblioteca
                                      infra_internet
                                                      infra_laboratorio
         id_escola
     0
                 1
                                   0
                                                   1
                                                                      0
                 2
     1
                                   1
                                                   1
                                                                      0
     2
                 3
                                   0
                                                   1
                                                                      0
     3
                 4
                                   1
                                                                       1
                 5
     4
                                   1
                                                   0
                                                                      1
     95
                                   1
                96
                                                   1
                                                                      1
                                   0
     96
                97
                                                   1
                                                                       1
     97
                98
                                   1
                                                   0
                                                                      0
                99
     98
                                   0
                                                   1
                                                                       1
     99
               100
                                   0
                                                   0
                                                                       1
         total_matriculados
                             evasao_percentual
                                                evasao_absoluta regiao_Nordeste
     0
                                     12.007803
                                                            142
                                                                           False
                       1183
                                     18.234745
                                                                           False
     1
                        268
                                                             48
     2
                                     17.397170
                        745
                                                            129
                                                                           False
```

3		252	1	9.930682	50		False
4		404		2.384619	9		False
		•••		•••		•••	
95		308	1	0.911203	33		False
96		1369		0.00000	0		False
97		310		8.072309	25		True
98		427	1	6.652193	71		True
99		310	1	9.996586	61		False
	regiao_Norte	regiao_Sudes	te	regiao_Sul	localizacao_Urbana	\	
0	False	Fal		True	- False		
1	False	Fal	.se	False	False		
2	False	Tr	ue	False	True		
3	False	Fal		False	True		
4	False	Fal		False	True		
	•••	•••		•••	•••		
95	False	Tr	ue	False	True		
96	False	Fal	.se	False	False		
97	False	Fal	.se	False	True		
98	False	Fal	.se	False	True		
99	True	Fal	se	False	False		
	dependencia a	.dm_Federal d	lepe	ndencia adm	Municipal		
0		False	···		True		
1		False			True		
2		False			False		
3		False			True		
4		False			True		
		•••			•••		
95		False			False		
96		False			True		
97		False			False		
98		False			False		
99		False			False		

[100 rows x 14 columns]

2.6 Seleção e normalização de variáveis

Selecionamos as variáveis mais relevantes para o agrupamento e aplicamos a padronização para evitar viés de escala.

```
X = df_encoded[features]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

[8]: X_scaled[0]
[8]: array([-1.12815215, 0.56195149, -0.96076892, 0.94122889, 0.12371553,
```

```
[8]: array([-1.12815215, 0.56195149, -0.96076892, 0.94122889, 0.12371553, -0.51558005, -0.46852129, -0.43643578, 1.68705478, -1.82970656, -0.31448545, 1.19959343])
```

2.7 Escolha do melhor número de clusters (k)

Testamos diferentes valores de k (de 2 a 9) e calculamos o coeficiente de silhouette para encontrar o número ótimo de clusters.

```
[9]: scores = []
for k in range(2, 10):
    kmeans = KMeans(n_clusters=k, random_state=42)
    labels = kmeans.fit_predict(X_scaled)
    score = silhouette_score(X_scaled, labels)
    scores.append((k, score))

# Exibe os resultados
for k, s in scores:
    print(f"Silhouette para k={k}: {s:.4f}")

best_k = max(scores, key=lambda x: x[1])[0]
    print(f"\nMelhor número de clusters: {best_k}")

Silhouette para k=2: 0.0905
Silhouette para k=3: 0.1418
Silhouette para k=4: 0.1794
Silhouette para k=5: 0.1810
```

Silhouette para k=5: 0.1810 Silhouette para k=6: 0.1485 Silhouette para k=7: 0.1433 Silhouette para k=8: 0.1638 Silhouette para k=9: 0.1486

Melhor número de clusters: 5

2.8 Aplicação do K-means com o melhor k

Executamos o algoritmo K-means com o número ideal de clusters encontrado anteriormente.

```
[10]: kmeans = KMeans(n_clusters=best_k, random_state=42)
df['cluster'] = kmeans.fit_predict(X_scaled)
```

2.9 Visualização dos clusters com PCA

Usamos PCA para reduzir a dimensionalidade dos dados e visualizar os grupos formados.

2.10 Interpretação dos clusters

Por fim, analisamos a média das variáveis principais por grupo para interpretar os perfis encontrados.

Médias por cluster:

```
[12]:
               infra_biblioteca infra_internet infra_laboratorio \
      cluster
                           0.44
                                            0.88
      0
                                                                0.34
                                            0.72
                                                                0.72
      1
                           0.61
      2
                           0.38
                                            0.81
                                                                0.62
      3
                           0.50
                                            0.67
                                                                0.50
                           0.86
                                            0.64
                                                                0.36
               total_matriculados evasao_percentual
      cluster
```

```
      cluster
      825.72
      12.86

      1
      828.94
      12.61

      2
      628.88
      11.47

      3
      758.08
      10.70

      4
      873.45
      8.11
```

```
[13]: # Visualização detalhada da distribuição para cada cluster com subplots 2x3
      variables_to_plot = ['infra_biblioteca', 'infra_internet',
                           'infra_laboratorio', 'total_matriculados',
                           'evasao_percentual']
      for cluster_id in sorted(df['cluster'].unique()):
          cluster_df = df[df['cluster'] == cluster_id]
          print(f"\nDistribuições para o Cluster {cluster_id}:")
          fig, axes = plt.subplots(2, 3, figsize=(15, 8))
          axes = axes.flatten()
          for i, var in enumerate(variables_to_plot):
              sns.histplot(cluster_df[var], bins=10, kde=False, ax=axes[i])
              axes[i].set title(f'{var}')
              axes[i].set xlabel(var)
              axes[i].set_ylabel('Frequência')
              axes[i].grid(True)
          for j in range(len(variables_to_plot), len(axes)):
              fig.delaxes(axes[j]) # Remove subplot vazio se houver
          fig.suptitle(f'Distribuição das Variáveis - Cluster {cluster_id}', __
       ofontsize=16)
```

```
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()
```

Distribuições para o Cluster 0:

Distribuição das Variáveis - Cluster 0

Distribuições para o Cluster 1:

Distribuição das Variáveis - Cluster 1

Distribuições para o Cluster 2:

Distribuição das Variáveis - Cluster 2

Distribuições para o Cluster 3:

Distribuição das Variáveis - Cluster 3

Distribuições para o Cluster 4:

Distribuição das Variáveis - Cluster 4

3 Perguntas para Análise e Interpretação dos Clusters

3.0.1 Análise Técnica dos Clusters

- 1. Quais variáveis mais se destacam em cada cluster? (ex: evasão, infraestrutura, número de alunos)
- 2. Há variáveis que variam pouco entre os clusters? O que isso indica?
- 3. Em qual cluster estão concentradas as escolas com maior evasão?
- 4. Qual cluster apresenta maior variabilidade interna? O que isso pode significar?
- 5. As distribuições das variáveis são simétricas ou assimétricas dentro dos clusters?
- 6. Existe algum padrão geográfico (ex: região, zona urbana/rural) associado a cada cluster?
- 7. Alguma infraestrutura aparece de forma consistente nos clusters com menor evasão?

RESPOSTAS:

KE

3.0.2 Análise Gerencial e Tomada de Decisão

- 8. Se você tivesse recursos limitados, qual cluster você priorizaria para intervenção imediata? Por quê?
- 9. Que tipo de ação (pedagógica, tecnológica, estrutural) seria mais adequada para o cluster com maior evasão?

- 10. O cluster com boas condições e baixa evasão pode servir de modelo? O que ele pode ensinar aos demais?
- 11. Que critérios objetivos você usaria para priorizar escolas dentro de um mesmo cluster?
- 12. Como os perfis encontrados poderiam orientar o planejamento de políticas públicas ou programas regionais?

RESPOSTAS:	
_	
` `): Se você fosse apresentar esses resultados à equipe gestora da Secretaria endações faria com base nos clusters encontrados?
•	
· ·	

Bom trabalho!