14. Se A = $\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$, ache B, de modo que B² = A.

こ= 2

$$B = \begin{pmatrix} a & 2 \\ c & 4 \end{pmatrix} \quad B \cdot B = B^{2} = A = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 \\ c & d \end{pmatrix} \begin{pmatrix} a & 2 \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2} + 2c & ae + 2d \\ ac + cd & ac + d^{2} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} a^{2} + 2c & 3 & 4 \\ ac + 2c & -2 & 4 \\ ac + cd & -2 & 4 \\ ac + cd & -4 & ac + d \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} a & 2 & 4 & 4 & 4 \\ ac & -2 & 4 & 4 \\ ac & -2 & 4 & 4 \end{pmatrix}$$

De 1 e 4

)
$$a^{2} + b = 3 = 7$$
 $a^{2} + d^{2} = 4$
 $a^{2} - d^{2} = 0$
 $a^{2} - d^{2} = 0$

Como C=2e e
$$\alpha=d$$
; segue
$$B = \begin{pmatrix} \alpha & e \\ c & d \end{pmatrix} = \begin{pmatrix} \alpha & e \\ de & \alpha \end{pmatrix}$$

$$A = B^{2} = \begin{pmatrix} \alpha & e \\ de & \alpha \end{pmatrix} \begin{pmatrix} \alpha & e \\ de & \alpha \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} \alpha^{2} + \lambda P^{2} & \lambda A \\ 4\alpha P & \alpha^{2} + \lambda P^{2} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

$$\lambda = \begin{pmatrix} \alpha^{2} + \lambda P^{2} & \lambda A \\ 4\alpha P & \alpha^{2} + \lambda P^{2} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & 3 \end{pmatrix}$$

$$\lambda = \begin{pmatrix} \alpha^{2} + \lambda P^{2} & \lambda A \\ 2\alpha P & 2 \end{pmatrix}$$

(3)
$$dax = -\lambda$$
 (7) $a^{2} + \lambda e^{\lambda} = 3$
 $ax = -1$ Supomba $a, e \in \mathbb{Z}$
 $entao P | a^{2} + \lambda e^{\lambda} = 3$
 $Se gue:$
 $(a, e) = (\pm 1, \pm 1)$
 $MAS a = -Ne$
 $entao$
 $(a, e) = (1, -1)$
 $9U(a, e) = (-1, 1)$

Voltando:

$$(a \ a) = (a \ b) = B?$$

 $(a \ a) = (a \ b) = B?$
 $(a \ a) = (a \ b) = (1 \ -1)$
 $(a \ a) = (a \ b) = B?$
 $(a \ b) = (1 \ -1)$
 $(a \ a) = (1 \ -1)$
 $(a \ b) = (1 \ -1)$

Se
$$(\alpha, \mu) = (-1, 1)$$

entas:
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$
 $B^{1} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = A$
Entas: $B = \left\{ \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \right\}$