Numpy Arrays

3D

2D

221	O	0
149	255	255
200	11	13
78	56	74

Escala de Cinza

Colorido

Imagens

Criar a Tela

1000

tela = np.zeros

Criar a Tela

1000

tela[:,:] = (255, 255, 255)

Plotar a Circunferencia

Plotar o ponto_um

Plotar o ponto_dois

Plotar o ponto_dois

Equação da reta

Equação da circunferência

$$y = ax + b (reta)$$

$$(x - x_0)^2 - (y - y_0)^2 = r^2$$

$$(y - y_0)^2 = r^2 - (x - x_0)^2$$

$$y - y_0 = \sqrt{r^2 - (x - x_0)^2}$$

$$y = \sqrt{r^2 - (x - x_0)^2} + y_0 \text{ (circ)}$$

Igualar as equações para encontrar os pontos de intersecção

Legenda

```
a = coeficiente angular da reta

b = coeficiente linear da reta

x_0 = centro da circ. (coord x)

y_0 = centro da circ. (coord y)

r = raio da circunferência
```

Seguem os próximos desenvolvimentos

Igualando as equações para encontrar as intersecções

$$reta = circunferencia$$

$$a\mathbf{x} + b = \sqrt{r^2 - (\mathbf{x} - \mathbf{x}_0)^2} + y_0$$

$$a\mathbf{x} + b - y_0 = \sqrt{r^2 - (\mathbf{x} - \mathbf{x}_0)^2}$$

$$(a\mathbf{x} + b - y_0)^2 = r^2 - (\mathbf{x} - \mathbf{x}_0)^2$$

$$a^2\mathbf{x}^2 + b^2 + y_0^2 + 2a\mathbf{x}b - 2a\mathbf{x}y_0 - 2by_0 = r^2 - \mathbf{x}^2 + 2\mathbf{x}x_0 - x_0^2$$

$$a^2\mathbf{x}^2 + b^2\mathbf{x}^0 + y_0^2\mathbf{x}^0 + 2ab\mathbf{x}^1 - 2ay_0\mathbf{x}^1 - 2by_0\mathbf{x}^0 - r^2\mathbf{x}^0 + 1\mathbf{x}^2 - 2x_0\mathbf{x}^1 + x_0^2\mathbf{x}^0 = 0$$

$$(a^2 + 1)\mathbf{x}^2 + (2ab - 2ay_0 - 2x_0)\mathbf{x}^1 + (b^2 + y_0^2 - 2by_0 - r^2 + x_0^2)\mathbf{x}^0 = 0$$

$$coe f_a = a^2 + 1$$

 $coe f_b = 2ab - 2ay_0 - 2x_0$
 $coe f_c = b^2 + y_0^2 - 2by_0 - r^2 + x_0^2$

Encontrando os pontos de cruzamento

$$x_1=rac{-coef_b^2+\sqrt{\Delta}}{2coef_a}$$
 Primeira $y_1=ax_1+b$ Solução $y_2=ax_2+b$ Segunda $y_2=ax_2+b$

Equação de Segundo Grau

Plota os pontos de intersecção

O ponto solução, é o ponto de maior distância com o ponto_um

Sobra apenas o ponto_solucao

Versiera Pronta

Curva Versiera

pontos_versiera = (ponto_dois_x, solucao_y)