MAT-266: Independencia entre formas cuadráticas

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Recordatorio 1:

Suponga ${m A}$ matriz $m \times m$, simétrica e idempotente. Entonces,

- (a) $a_{ii} \geq 0, i = 1, \dots, n$.
- (b) $a_{ii} \leq 1, i = 1, \ldots, n.$
- (c) $a_{ij}=a_{ji}=0$, para todo $j\neq i$, si $a_{ii}=0$ o $a_{ii}=1$.

Demostración:

Como A es simétrica e idempotente, tenemos

$$\boldsymbol{A} = \boldsymbol{A}^2 = \boldsymbol{A}^{\top} \boldsymbol{A},$$

de ahí que

$$a_{ii} = \sum_{j=1}^{m} a_{ji}^2,$$

que claramente es no negativo.

Además, podemos escribir

$$a_{ii} = a_{ii}^2 + \sum_{j \neq i} a_{ji}^2.$$

Por tanto, $a_{ii} \geq a_{ii}^2$ y de este modo (b) es satisfecha.

Si $a_{ii} = 0$ o $a_{ii} = 1$, entonces $a_{ii} = a_{ii}^2$ y debemos tener

$$\sum_{i \neq i} a_{ji}^2 = 0,$$

lo que junto con la simetría de A, establece (c).

Lema 1:

Sean $oldsymbol{A}_1,\ldots,oldsymbol{A}_k$ matrices m imes m simétricas e idempotentes y suponga que

$$\boldsymbol{A}_1 + \cdots + \boldsymbol{A}_k = \boldsymbol{I}_k.$$

Entonces $A_i A_j = 0$ para todo $i \neq j$.

Demostración:

Considere cualquiera de esas matrices, digamos ${m A}_h$ y denote su rango por r. Como ${m A}_h$ es simétrica e idempotente, existe una matriz ortogonal ${m P}$ tal que

$$P^{\top}A_{h}P = \begin{pmatrix} I_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Para $j \neq h$, defina ${m B}_j = {m P}^{ op} {m A}_j {m P}$, y note que

$$oldsymbol{I}_m = oldsymbol{P}^ op oldsymbol{P} = oldsymbol{P}^ op oldsymbol{A}_j oldsymbol{P} = \sum_{j=1}^k oldsymbol{P}^ op oldsymbol{A}_j oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} + \sum_{j
eq h} oldsymbol{B}_j.$$

O equivalentemente,

$$\sum_{j\neq h} \boldsymbol{B}_j = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I}_{m-r} \end{pmatrix}$$

Claramente, dado que A_j es simétrica e idempotente, sigue que B_j también lo es. Por Recordatorio 1, sus elementos diagonales son no negativos. Además, $(B_j)_{ll}=0$ para $l=1,\ldots,r$. Así, por la parte (c) del Recordatorio 1 sigue que B_j debe ser de la forma

$$m{B}_j = egin{pmatrix} m{0} & m{0} \\ m{0} & m{C}_j \end{pmatrix},$$

donde C_j es matriz $(m-r) \times (m-r)$, simétrica e idempotente. Ahora, para cualquier $j \neq h$.

$$\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{A}_{j}\boldsymbol{P} = (\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{P})(\boldsymbol{P}^{\top}\boldsymbol{A}_{j}\boldsymbol{P}) = \begin{pmatrix} \boldsymbol{I}_{r} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{j} \end{pmatrix} = \boldsymbol{0},$$

lo que es verdad, sólo si $A_hA_j=\mathbf{0}$, pues P es no singular. Notando que h es arbitrareo, la prueba es completa.

Lema 2:

Sean $oldsymbol{A}_1,\ldots,oldsymbol{A}_k$ matrices simétricas de orden m imes m y defina

$$\boldsymbol{A} = \boldsymbol{A}_1 + \boldsymbol{A}_2 + \cdots + \boldsymbol{A}_k.$$

Considere las siguientes afirmaciones,

- (a) A_i es idempotente, para $i = 1, \ldots, k$.
- (b) A es idempotente.
- (c) $A_i A_j = 0$, para todo $i \neq j$.

Entonces si dos condiciones son satisfechas, la tercera condición debe ser verdadera.

Demostración:

Primero mostraremos que (a) y (b) implica (c). Como \boldsymbol{A} es simétrica e idempotente, existe una matriz ortogonal \boldsymbol{P} tal que

$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = \mathbf{P}^{\top} (\mathbf{A}_1 + \dots + \mathbf{A}_k) \mathbf{P} = \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \tag{1}$$

donde $r = rg(\mathbf{A})$.

Sea $B_i = P^T A_i P$, para $i = 1, \dots, k$. y note que B_i es simétrica e idempotente. Por el Recordatorio 1, tenemos que B_i debe ser de la forma

$$m{B}_i = egin{pmatrix} m{C}_i & m{0} \ m{0} & m{0} \end{pmatrix},$$

donde la matriz $r \times r$, C_i debe ser simétrica e idempotente. Por (1), tenemos

$$C_1 + \cdots + C_k = I_r$$

Por el Lema 1, sigue que $C_iC_j=0$ para $i\neq j$, de donde obtenemos $B_iB_j=0$ y de ahí que $A_iA_j=0$, para $i\neq j$.

(a) y (c) implican (c) sigue de notar

$$\begin{aligned} \boldsymbol{A}^2 &= \left(\sum_{i=1}^k \boldsymbol{A}_i\right)^2 = \sum_{i=1}^k \sum_{j=1}^k \boldsymbol{A}_i \boldsymbol{A}_j = \sum_{i=1}^k \boldsymbol{A}_i^2 + \sum_{i \neq j} \boldsymbol{A}_i \boldsymbol{A}_j \\ &= \sum_{i=1}^k \boldsymbol{A}_i = \boldsymbol{A} \end{aligned}$$

Finalmente, para probar que (b) y (c) implican (a). Suponga que (c) es verdad, entonces $A_1A_j=A_jA_i$ para todo $i\neq j$ y las matrices A_1,\ldots,A_k pueden ser diagonalizadas simultáneamente. Esto es, existe una matriz ortogonal Q tal que

$$\boldsymbol{Q}^{\top} \boldsymbol{A}_i \boldsymbol{Q} = \boldsymbol{D}_i, \qquad i = 1, \dots, k,$$

donde cada una de las matrices $oldsymbol{D}_1,\dots,oldsymbol{D}_k$ es diagonal.

Además,

$$D_i D_j = Q^{\top} A_i Q Q^{\top} A_j Q = Q^{\top} A_i A_j Q = 0, \qquad i \neq j.$$
 (2)

Como \boldsymbol{A} es simétrica e idempotente, también lo es la matriz diagonal

$$\boldsymbol{Q}^{\top} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{D}_1 + \dots + \boldsymbol{D}_k,$$

y cada elemento diagonal de $Q^{\top}AQ$ debe ser 0 o 1. y por (2), lo mismo es válido para para los elementos diagonales de D_1,\ldots,D_k .

De este modo, $oldsymbol{D}_i$ es simétrica e idempotente y de ahí que tambiél lo es

$$A_i = QD_iQ^{\top}, \qquad i = 1, \dots, k,$$

lo que termina la prueba.

Observación:

Suponga que las condiciones del Lema 2 son satisfechas. Entonces (a), implica que $rg(A_i) = tr(A_i)$, y desde (b), sigue que

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}\left(\sum_{i=1}^k \boldsymbol{A}_i\right) = \sum_{i=1}^k \operatorname{tr}(\boldsymbol{A}_i) = \sum_{i=1}^k \operatorname{rg}(\boldsymbol{A}_i).$$

Resultado 1:

Sea $X \sim \mathsf{N}_p(\mu, \Sigma)$, donde $\Sigma > \mathbf{0}$ y suponga $Q_1 = X^{\top}AX$, $Q_2 = X^{\top}BX$ con A y B matrices simétricas $p \times p$. Entonces Q_1 y Q_2 son independientes si $A\Sigma B = \mathbf{0}$.

Demostración:

Tenemos $\Sigma = TT^{\top}$, y defina $G_1 = T^{\top}AT$, $G_2 = T^{\top}BT$. Note que si $A\Sigma B = 0$, entonces

$$G_1G_2 = (T^{\top}AT)(T^{\top}BT) = T^{\top}A\Sigma BT = 0$$

Debido a la simetría de G_1 y G_2 , sigue que

$$\mathbf{0} = (G_1 G_2)^{\top} = G_2^{\top} G_1^{\top} = G_2 G_1.$$

Como $G_1G_2=G_2G_1$ existe una matriz ortogonal P que simultáneamente diagonaliza G_1 y G_2 , esto es

$$P^{\top}G_1P = P^{\top}T^{\top}ATP = D_1,$$

 $P^{\top}G_2P = P^{\top}T^{\top}BTP = D_2.$

De este modo,

$$\mathbf{0} = \mathbf{G}_1 \mathbf{G}_2 = \mathbf{P} \mathbf{D}_1 \mathbf{P}^\top \mathbf{P} \mathbf{D}_2 \mathbf{P}^\top = \mathbf{P} \mathbf{D}_1 \mathbf{D}_2 \mathbf{P}^\top,$$

lo que es verdad, si $D_1D_2=0$. Como D_1 y D_2 son diagonales, sus elementos diagonales deben ocurrir en posiciones diferentes. Es decir, podemos escribir

$$oldsymbol{D}_1 = egin{pmatrix} oldsymbol{M}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix}, \qquad oldsymbol{D}_2 = egin{pmatrix} oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{M}_2 \end{pmatrix}.$$

Sea $oldsymbol{Y} = oldsymbol{P}^{ op} oldsymbol{T}^{-1} oldsymbol{X}$, entonces

$$Q_1 = X^{\top} A X = X^{\top} T^{-\top} P P^{\top} T^{\top} A T P P^{\top} T^{-1} X = Y^{\top} D_1 Y$$

$$Q_1 = X^{\top} B X = X^{\top} T^{-\top} P P^{\top} T^{\top} B T P P^{\top} T^{-1} X = Y^{\top} D_2 Y$$

Además,

$$\mathsf{Cov}(\boldsymbol{Y}) = \mathsf{Cov}(\boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\boldsymbol{X}) = \boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\,\mathsf{Cov}(\boldsymbol{X})\boldsymbol{T}^{-\top}\boldsymbol{P} = \boldsymbol{I}$$

En efecto, $m{Y} \sim \mathsf{N}_p(m{P}^{ op} m{T}^{-1} m{\mu}, m{I})$. Ahora, particionando adecuadamente $m{Y}$ sigue que

$$egin{aligned} oldsymbol{Y}^ op oldsymbol{D}_1 oldsymbol{Y} &= (oldsymbol{Y}_1^ op, oldsymbol{Y}_2^ op) egin{aligned} oldsymbol{M}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} egin{aligned} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{pmatrix} &= oldsymbol{Y}_1^ op oldsymbol{M}_1 oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{pmatrix} &= oldsymbol{Y}_1^ op oldsymbol{M}_1 oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{pmatrix} = oldsymbol{Y}_2^ op oldsymbol{M}_2 oldsymbol{Y}_2, \end{aligned}$$

y la independencia entre Q_1 y Q_2 sigue desde la independencia entre $m{Y}_1$ y $m{Y}_2$.

Resultado 2:

Sea $X \sim N_p(\mu, \Sigma)$, $Q = X^\top A X$ y U = B X. Entonces Q y U son independientes si y sólo si $B \Sigma A = 0$.

Ejemplo:

Considere X_1,\ldots,X_n muestra aleatoria desde $\mathsf{N}(\theta,\sigma^2)$, así

$$\boldsymbol{X} = (X_1, \dots, X_n)^{\top} \sim \mathsf{N}_n(\theta \mathbf{1}, \sigma^2 \boldsymbol{I}_n).$$

Tenemos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \mathbf{1}^{\top} X, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} X^{\top} C X.$$

Como ${m C}{m 1}={m 0}$ sigue la independencia entre \overline{X} y $S^2.$

Resultado 3 (Teorema de Cochran):

Sea $X\sim \mathsf{N}_p(\pmb{\mu},\pmb{\Sigma})$, con $\pmb{\Sigma}>\pmb{0}$. Suponga que \pmb{A}_i es una matriz simétrica de orden $p\times p$ con rango r_i , para $i=1,\ldots,k$, y

$$\boldsymbol{A} = \boldsymbol{A}_1 + \cdots + \boldsymbol{A}_k,$$

es de rango r. Considere las condiciones

- (a) $A_i \Sigma$ es idempotente para i = 1, ..., k.
- (b) $A\Sigma$ es idempotente.
- (c) $A_i \Sigma A_j = \mathbf{0}$ para $i \neq j$.
- (d) $r = \sum_{i=1}^k r_i$.

si dos de (a), (b) y (c) se satisfacen, o si (b) (d) son satisfechas, entonces

- (i) $\boldsymbol{X}^{\top} \boldsymbol{A}_i \boldsymbol{X} \sim \chi^2(r_i, \lambda_i)$, con $\lambda_i = \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu} / 2$, $i = 1, \dots, k$.
- (ii) $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi^{2}(r, \lambda)$, con $\lambda = \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu} / 2$.
- (iii) $m{X}^{ op} m{A}_1 m{X}, m{X}^{ op} m{A}_2 m{X}, \dots, m{X}^{ op} m{A}_k m{X}$ son mutuamente independientes.

Demostración:

Tenemos que $\Sigma = TT^{\top}$ y las condiciones (a)-(d), pueden ser expresadas como:

- (a) $T^{\top}A_iT$ es idempotente para $i=1,\ldots,k$.
- (b) $T^{\top}AT$ es idempotente.
- (c) $(\mathbf{T}^{\top} \mathbf{A}_i \mathbf{T}) (\mathbf{T}^{\top} \mathbf{A}_j \mathbf{T}) = \mathbf{0}$ para $i \neq j$.
- (d) $\operatorname{rg}(\boldsymbol{T}^{\top} \boldsymbol{A} \boldsymbol{T}) = \sum_{i=1}^{k} \operatorname{rg}(\boldsymbol{T}^{\top} \boldsymbol{A}_{i} \boldsymbol{T}).$

Como $T^{\top}A_1T, T^{\top}A_2T, \dots, T^{\top}A_kT$ y $T^{\top}AT$ satisfacen las condiciones del Lema 2.1 Entonces, las condiciones (a)-(d) se satisfacen.

Sabemos que (a) implica (i) y (b) implica (ii). Mientras que, Resultado 1 con (c), garantiza (iii), lo que completa la prueba.

¹y Observación en slide 10.