MC-RV PH-263 Formula Sheet

Constants

Electric permittivity	$\varepsilon_0 = 8.85 \ 10^{-1}$	$= 1/(4\pi 9 10^9) F/m$	Magnetic permeability	$\mu_0 = 4\pi \ 10^{-7} N/A^2$
-----------------------	----------------------------------	----------------------------	-----------------------	--------------------------------

Electron mass
$$m_e=9.11\ 10^{-31} kg=0.511 {MeV\over c^2}$$
 Speed of light $c=2.998\ 10^8 {m\over s}$

Proton mass
$$m_p = 1.67 \ 10^{-27} kg = 938.3 \ MeV/c^2$$
 Speed of sound in air $v = 343 \ \frac{m}{s}$

Planck constant
$$h = 6.63 \ 10^{-34} \ Js = 4.14 \ 10^{-15} \ eV \ s$$
 $h \ c = 1239.8 \ eV \ nm$

$$h = \frac{h}{2\pi} = 1.05 \ 10^{-34} Js = 6.58 \ 10^{-16} eV s$$
 $h c = 197.3 \ eV \ nm$

Bohr radius
$$a = 5.29 \ 10^{-11} m = 52.9 \ pm$$
 Avogadro's number $N_A = 6.023 \ 10^{23}$

Rydberg constant
$$R=1.097\ 10^7\ m^{-1}$$
 Number of atoms $N=\frac{m}{M}\ N_A$

Atomic mass unit
$$1u = 1.66 \ 10^{-27} kg$$
 Electron-volt $1 \ eV = 1.6 \ 10^{-19} J$

Bohr magnetron
$$\mu_B = -\frac{e}{2m} \hbar = 9.27 \ 10^{-24} \ A \ m^2 = 5.788 \ 10^{-5} \frac{eV}{T}$$
 Conversion $c^2 = 931.5 \frac{MeV}{V}$

Chapters 15-16 Mechanical Waves-Sound

Traveling wave equation
$$y(x,t) = A\sin(\omega t \mp kx \mp \varphi) = A\sin(\frac{2\pi}{\tau}t \mp \frac{2\pi}{\lambda}x \mp \varphi)$$

Speed of wave
$$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$$
 Transverse velocity $v_y(x,t) = \frac{\partial y}{\partial t}$

Speed of wave on string
$$v=\sqrt{\frac{T}{\mu}}$$
 Linear mass density $\mu=\frac{M}{L}$

Wave equation
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$
 Energy $E_{\lambda} = \frac{1}{2} \mu A^2 \omega^2 \lambda$ Power $P = \frac{energy}{time}$

Interference of waves
$$y(x,t) = 2 A \cos \frac{\varphi}{2} \sin(kx - \omega t + \frac{\varphi}{2})$$
 Intensity $I = \frac{P}{A_{\perp}} = \frac{\frac{1}{2} \mu \omega^2 A^2 v}{4 \pi r^2}$

Standing wave equation
$$y(x,t) = 2 A \sin(kx) \cos(\omega t) = 2 A \sin(\frac{2\pi}{\lambda}x) \cos(\frac{2\pi}{\tau}t)$$

Standing wave on string
$$L=n\frac{\lambda}{2}$$
 $f_n=n\frac{v}{2L}=n\,f_1$ $n=1,2,3...$ # antinodes

Open-open pipe resonance
$$L=n\frac{\lambda}{2}$$
 $f_n=n\frac{v}{2L}=n\,f_1$ $n=1,2,3...$ # nodes

Half-open pipe resonance
$$L=n\frac{\lambda}{4}$$
 $f_n=n\frac{v}{4L}=n\,f_1$ $n=1,3,5,...$

Sound level
$$\beta = 10 \log \frac{I}{I_0}$$
 $I_0 = 10^{-12} \frac{W}{m^2}$ whisper level

Doppler frequency
$$f' = \frac{v \pm v_D}{v \pm v_S} f$$
 where (+) is for D toward S or S away from D

(−) is for S toward D or D away from S

Chapters 32 Electromagnetic Waves

Gauss electric
$$\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_0} q_{enc}$$
 Gauss magnetic $\Phi_B = \oiint \vec{B} \cdot d\vec{A} = 0$

MC-RV PH-263 Formula Sheet

Electro-magnetic waves	$\vec{E}(\vec{r},t) = E_m \sin(\kappa x - \omega t) \hat{j}$	$\vec{B}(\vec{r},t) = B_m \sin(\kappa x - \omega t) \hat{k}$
------------------------	--	--

Speed of light
$$c = \frac{E}{B} = \frac{E_m}{B_m} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \frac{\omega}{\kappa} = \lambda f = 3 \cdot 10^8 \frac{m}{s}$$
 $rms = \frac{max}{\sqrt{2}}$

Poynting vector
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
 Intensity $I = \frac{power}{area} = S_{ave} = \frac{1}{c\mu_0} E^2_{rms}$

Radiation pressure
$$p_r = \frac{I}{c}$$
 (total absorption) $p_r = \frac{2I}{c}$ (perfect reflection)

Standing el.mg. waves
$$x = n\frac{\lambda}{2}$$
 nodal planes \vec{E} $x = (2n+1)\frac{\lambda}{4}$ nodal planes \vec{B}

Resonance condition
$$L=n\frac{\lambda}{2}$$
 AND $f_n=\frac{c}{\lambda_n}=n\frac{c}{2L}$

Ch.33-36 Optics

Law of reflection
$$heta_i = heta_r$$
 Law of refraction $heta_1 sin heta_1 = heta_2 sin heta_2$

Index of refraction
$$n = \frac{c}{v} > 1$$
 Critical angle $\theta_C = \theta_1$ when $\theta_2 = 90^\circ$

Wavelength in medium
$$\lambda_n = \frac{\lambda}{n}$$
 Frequency $f_n = f$

Polarization
$$I = \frac{1}{2}I_0$$
 for incident un-polarized

$$I_t = I \cos^2 \theta$$
 for incident polarized

Spherical mirrors
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} = \frac{2}{R}$$
 Magnification $m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$

Lens-maker's formula in air
$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
 $\frac{1}{f} = \frac{2(n-1)}{R}$ for $R_1 = R_2 = R$

Thin lens formula
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$
 Magnification $m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$

Mirror Convention distances on same/opposite side as object are +/-

Thin-lens Conventions

Object distance
$$d_o > 0$$

Image type
$$d_i > 0$$
 real-image on opposite side $d_i < 0$ virtual-image on same side

Image orientation
$$h_i > 0$$
 upright $h_i < 0$ inverted

Focal distance
$$f > 0$$
 converging lens $f < 0$ diverging lens

Radius of curvature
$$R>0$$
 object faces convex $R<0$ object faces concave refractive surface

Thin-film interference Hard
$$n_1 < n_2 \rightarrow \Delta x = \frac{\lambda}{2}$$
 Soft $n_1 > n_2 \rightarrow \Delta x = 0$

Condition
$$2L = (2m+1)\frac{\lambda}{2n}$$
 Constructive 1 phase shift $(\lambda/2)$ OR Destructive no phase shift $(0 \text{ or } \lambda)$

$$2L = m \frac{\lambda}{n}$$
 Destructive 1 phase shift $(\lambda/2)$ OR Constructive no phase shift $(0 \text{ or } \lambda)$

Number of rulings
$$N = \frac{w}{d}$$
 Half-width of line at θ $\theta_{hw} = \frac{\lambda}{N \, d \, cos \theta}$ Resolving power $R = \frac{\lambda_{ave}}{\Delta \lambda} = m \, N$ Dispersion at angle θ $D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d \, cos \theta}$ Rayleigh's Criterion for circular-opening diffraction $sin\theta_R = 1.22 \, \frac{\lambda}{D}$ $D = diameter$

	Bright	Dark		Intensity
	$\sin\theta \cong tan\theta = \frac{y}{L}$ (SAA)			
Double-slit interference	$d \sin \theta = m \lambda$	$\mathbf{d}\sin\theta = (2m+1)\frac{\lambda}{2}$		$I = 4I_m \cos^2 \beta$ $\beta = \pi \frac{d}{\lambda} \sin \theta$
DSI		2		$\beta = \pi \frac{d}{\lambda} \sin \theta$
Single-slit diffraction		$a\sin\theta = m \lambda$		$I = I_m \left(\frac{\sin \alpha}{m}\right)^2$
SSD				$I = I_m \left(\frac{\sin \alpha}{\alpha}\right)^2$ $\alpha = \pi \frac{a}{\lambda} \sin \theta$
Double-slit diffraction		$a\sin\theta = m_d\lambda$	(SSD)	$I = I_m \cos^2 \beta \left(\frac{\sin \alpha}{\alpha} \right)^2$
DSD = SSD + DSI	$d \sin \theta = m_i \lambda$	$a \sin \theta = m_d \lambda$ $a \sin \theta = (2m_i + 1)\frac{\lambda}{2}$	(DSI)	α
Diffraction grating	$d \sin \theta = m\lambda$			

Ch.37 Special relativity and Relativistic energy and momentum

Time dilation	$\Delta t = \gamma \Delta t_0$	Length contraction	$L = \frac{L_0}{v}$
Time dilation	$\Delta t = \gamma \Delta t_0$	Length contraction	L =

Lorentz transformation
$$x' = \gamma(x - u t)$$
 $x = \gamma(x' + u t')$

$$t' = \gamma (t - \frac{u x}{c^2}) \qquad \qquad t = \gamma (t' + \frac{u x'}{c^2})$$

$$v' = \frac{v - u}{1 - \frac{v \cdot u}{c^2}}$$
 $v = \frac{v' + u}{1 + \frac{v' u}{c^2}}$

Kinetic energy
$$K=(\gamma-1)\,E_0$$
 Rest energy $E_0=\,m\,c^2$

Total energy
$$E=\gamma\,E_0=K+E_0$$
 and $E^2=p^2c^2+{E_0}^2$

Linear momentum
$$p=\gamma\,m\,v$$
 $\gamma=rac{1}{\sqrt{1-(v/c)^2}}=rac{1}{\sqrt{1-eta^2}}$ $\beta=rac{v}{c}$

Ch.38-41 - Wave Properties and Q.M. I-II

Photon energy
$$E = h f$$
 Photon momentum $p = \frac{h}{\lambda} = \frac{h f}{c} = \frac{E}{c}$

Particle energy
$$E=h\ f=\hbar\ \omega$$
 Particle momentum $p=rac{h}{\lambda}=\hbar\ k$ (De Broglie wave)

Stefan-Boltzmann
$$I = \sigma T^4 = \int_0^\infty I(\lambda) d\lambda$$
 Wien displacement $\lambda_m T = 2.9 \ 10^{-3} \ m \cdot K$

$$\sigma = 5.67 \ 10^{-8} \frac{W}{m^2 K^4}$$
 Planck distribution
$$I(\lambda) = \frac{2\pi \ h \ c^2}{\lambda^5 \left(e^{\frac{hc}{\lambda kT}} - 1\right)}$$

Photoelectric effect
$$h f = \Phi + K_{max}$$
 $K_{max} = \frac{1}{2} m_e v_{max}^2 = e V_0$ and $\Phi = h f_0$

Compton effect
$$\Delta \lambda = \lambda' - \lambda = \lambda_C (1 - \cos \varphi)$$
 Compton wavelength $\lambda_C = \frac{h}{mc} = \frac{h c}{E_0}$

Uncertainty principle
$$\Delta p_x \ \Delta x \ \geq \frac{\hbar}{2}$$
 $\Delta E \ \Delta t \ \geq \frac{\hbar}{2}$

Bohr quantization
$$L_n = r_n \ m \ v_n = n \ \hbar$$
 $h \ f = \frac{h \ c}{\lambda} = E_i - E_f$ $\frac{1}{\lambda} = R \left(\frac{1}{n_{low}^2} - \frac{1}{n_{high}^2} \right)$

Bohr H atom
$$r=a_0\,n^2$$
 $E_n=-rac{13.6\,eV}{n^2}$

MC-RV PH-263 Formula Sheet

Schrödinger equation
$$-\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2}+U(x)\,\psi(x)=E\,\psi(x)$$
 Free particle $U(x)=0$

Probability
$$P(a < x < b) = \int_a^b |\Psi(x,t)|^2 dx$$
 Normalization $\int_{-\infty}^\infty |\Psi(x,t)|^2 dx = 1$

Infinite square well
$$\psi(x) = \sqrt{\frac{2}{L}} \sin(\frac{n\pi}{L}x)$$
 $n = 1,2,3,...$ $E_n = \frac{p^2}{2m} = n^2 \frac{\pi^2 h^2}{2 m L^2} = n^2 E_1$

Tunneling probability
$$T = 16 \frac{E}{U_0} \left(1 - \frac{E}{U_0} \right) e^{-2\kappa L} \cong 2 e^{-2\kappa L} \qquad \kappa = \frac{1}{\hbar} \sqrt{2m \left(U_0 - E \right)}$$

Q. harmonic oscillator
$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega$$
 $n = 0,1,2,3,$

Hydrogen atom G.S. wave functions
$$\psi_{100} = \frac{1}{\sqrt{\pi \, a^3}} \, e^{-\frac{r}{a}}$$
 $dV = 4 \, \pi r^2 \, dr$

Radial probability density
$$P(r) = 4 \pi r^2 |\psi|^2 = \frac{4}{a^3} r^2 e^{-2 r/a} \qquad P(r) dr = \psi(r)^2 dV$$

$$P(R) = \int_0^R P(r)dr = 1 - \left[1 + 2\frac{R}{a} + 2\left(\frac{R}{a}\right)^2\right]e^{-2\frac{R}{a}}$$

Hydrogen atom energy
$$E_n = -\frac{13.6 \, eV}{n^2} \qquad \qquad n = 1,2,3,...$$

Selection rules energy shells
$$n = 1 (K), 2 (L), 3 (M), ...$$

orbital angular momentum
$$L=\sqrt{l(l+1)}\,\hbar$$
 $l=0\;(s),\;1\;(p),\;2\;(d),\;3\;(f),...,n-1$

orbital magnetic quantum #
$$L_z=m_l\,\hbar$$
 $m_l=0,\,\pm 1,...,\,\pm l$

Ch.43 Nuclear Physics

Mass number
$$A=Z+N$$
 Effective nuclear radius $r=r_0\,A^{1/3}$ $r_0=1.2\,fm$

Binding energy
$$E_b = \left(Z\,m_pc^2 + N\,m_nc^2\right) - {}^A_ZM$$
 Binding energy per nucleon $E_{b/n} = \frac{E_b}{4} \sim 7 - 9\,MeV$

Decay rate OR activity
$$R(t) = -\frac{dN(t)}{dt} = \lambda \, N(t)$$
 Half-life $T_{1/2} = \frac{\ln 2}{\lambda} = \tau \, ln2$

Decay law
$$N(t) = N_0 \ e^{-\lambda \, t} \qquad \qquad \text{OR} \qquad R(t) = \lambda \, N_0 = R_0 \ e^{-\lambda \, t}$$

Units
$$1 Ci = 3.7 \ 10^{10} \ Bq$$
 $1 Bq = 1 \ decay/s$

Alpha decay
$$Q = \left[M {A \choose Z-2} D + \alpha \right] \qquad Q = \left[M {A-4 \choose Z-2} D - M {A-4 \choose Z-2} D - M {A-4 \choose Z-2} D \right] c^2$$

Nuclear reaction
$$a + X \rightarrow b + Y$$
 $Q = [(M_X + M_a) - (M_Y + M_b) c^2]$