班级自动化 7 班	学号220320720	6_ 姓名_	_彭尚品	教师签字_	x to h
实验日期2024/3/2	29	预习成绩_	2.0	总成绩	

分光计的调节及应用

一、预习

- 1. 分光计调节的主要步骤与要点;
- 2. 如何调整望远镜光轴与分光计的中心轴垂直,何为"各半调节法(对半调节法)"?
- 3. 衍射光栅测定光的波长工作原理是什么?

答:1.①调节望远镜目镜,直轮看到分别极上清晰的基准线

- ②调节望远镜物镜,使望远镜聚焦到无穷远
- ②望远镜长轴与载物台转轴垂〔粗调〕
- 图 望远镜光轴与载物台转轴垂 [细调]
- 日洞整平行光管与望远镜光轴周轴

2. 光程调再细调

(1)粗调:放置双面的射镜,使其与截约台上一条到线重台,镜面正对望远镜 调节望远镜体仰螺钉和戴约台的三颗螺钉,直至双面的射镜或估射面 的射回来的绿色针像都能被观察到

C2)细调:第一片:用"舒调洗"

二、原始数据记录

表 1 用衍射光栅测定光的波长实验数据

	衍射级次	+ -		标准波长		
颜色	k	$ heta_1$	$ heta_2$	heta'ı	heta'2	(nm)
	1	250°20'	70°18'	231°29'	51°27'	
绿	2	259°59'	80°1'	221°3'	41°5'	546.1
	3	270°7'	90°10'	211°21'	31°20'	
	1	250°50'	70°45'	230°45'	50°51'	
黄 1	2	261°1'	81°2'	220°23'	40°28'	577.0
	3	271°55'	91°41'	209°12'	29°10'	
	1	250°54'	70°52'	230°51'	50°52'	
黄 2	2	261°7'	81°11'	220°29'	40°27'	579.1
	3	272°54'	92°52'	210°1'	30°3'	

表 2 测三棱镜材料折射率实验数据

操作	$ heta_1$	$ heta_2$	θ '1	θ'2
测三棱镜顶角	168°38'	348°40'	48°57'	228°53'
测三棱镜最小	2000151	118°9' 246°30'		660201
偏向角	298°15'	118-9	246°30'	66°28'

三、数据处理

- 1. 分别计算相应三种颜色的光(绿光、黄光 1、黄光 2)在衍射级次 k=1、2、3 时波长的测量值 λ_k ,并计算波长平均值 λ_k ,将 λ 与汞灯波长的标准值相比较,计算测量的相对误差。要求写出完整的计算过程,包括所用公式和代入实验数据后的表达式。
- 2. 计算衍射光栅对黄光 1 和黄光 2 在衍射级次 k=1、2、3 时的角色散率 D_k 。
- 3. 计算三棱镜的顶角、绿光对应的最小偏向角,计算三棱镜材料对绿光的折射率,双黄光的折射率测量为选做内容。

答:

1、实验中为测衍射角,测量的是±k 级衍射条纹对应的角度数据,而且为了避免偏心差,每条衍射条纹对应的角度都从两个间隔 180 的游标各读取一个数值。分别计算每个游标两次读数之差,再取平均值,这样就得到去除偏心差后的±k 级衍射条纹之间的张角,将其再除以 2,就得到±k 级衍射条纹相对于中心明纹的衍射角。

计算结果如下,其中光栅常量 d=1/300 mm

颜色	衍射级次 k	$\psi_k = \frac{(\theta_1 - \theta_1') + (\theta_2 - \theta_2')}{4}$	$\lambda_k = \frac{dsin(\psi_k)}{k}$ (nm)	波长平均 - 值 λ(nm)	标准波长 (nm)	相对误差
绿	1	9.425	545.854	548.911	546.1	0.515
	2	19.467	555.431			%
	3	29.400	545.449			
黄 1	1	9.996	578.588	578.065	577.0	0.185
	2	20.300	578.226			%
	3	31.308	577.382			
黄 2	1	10.013	579.543	579.406	579.1	0.053
	2	20.341	579.363			%
	3	31.425	579.313			

2、衍射光栅对某波长为 λ 的光束在衍射级次 k 时的角色散率 D_k 由下式给出:

$$D_k = \frac{k}{dcos\theta}$$

计算结果如下:

颜色	衍射级次 k	$\psi_k = \frac{(\theta_1 - \theta_1') + (\theta_2 - \theta_2')}{4}$	$D_k = \frac{k}{dcos\theta} \text{ (mm}^{-1}\text{)}$
黄 1	1	9.996	304.62
	2	20.300	639.73
	3	31.308	1053.39
黄 2	1	10.013	304.64
	2	20.341	639.91
	3	31.425	1054.69

- 3、计算三棱镜的顶角、绿光对应的最小偏向角,计算三棱镜材料对绿光的折射率
- (1) 计算三棱镜顶角,公示如下:

$$A = \pi - \frac{\left|\theta_1 - \theta_1'\right| + \left|\theta_2 - \theta_2'\right|}{2}$$

操作	$ heta_1$	$ heta_2$	heta'1	θ'2	A
测三棱镜顶角	168°38'	348°40'	48°57'	228°53'	60°16'

即三棱镜顶角为 A = 60°16'

(2) 计算绿光对应的最小偏向角,公式如下:

$$\delta_{\min} = \frac{\left| \theta_1 - \theta_1' \right| + \left| \theta_2 - \theta_2' \right|}{2}$$

操作	$ heta_1$	$ heta_2$	heta'1	θ'2	A
测三棱镜最小偏向角	298°15'	118°9'	246°30'	66°28'	51°43'

即绿光对应的最小偏向角为 $\delta_{min}=51^{\circ}43'$

计算三棱镜材料对绿光的折射率,公式如下:

$$n = \frac{\sin\left(\frac{\delta_{\min} + A}{2}\right)}{\sin\frac{A}{2}}$$

计算得到 n = 1.651

四、讨论题

- 1. 应用分光计进行测量之前,应调节到何种状态?
- 2. 按游标原理,读出下图中的角度数。

答:

1,

- (1) 望远镜聚焦于无穷远,能接收平行光;
- (2) 望远镜光轴与载物台转轴垂直;
- (3) 平行光管发射出平行光,并与望远镜光轴同轴。
- 2、5 大格+24 小格对齐,5°24′