Aufgabe3.1

Die Schaltung soll einen Zähler darstellen der in 3er Schritten vorwärts oder rückwärts Zählt. Das Umstellen der Zählrichtung erfolgt durch den Schalter x_0 .

$$\mathbf{A} {=} \{X, Y, Z, \delta, \mu\}$$
, mit

$$X: B \Rightarrow \{x_0\}$$

Y:
$$B^4 \Rightarrow \{y_3, y_2, y_1, y_0\}$$

Y:
$$B^4 \Rightarrow \{y_3, y_2, y_1, y_0\}$$

Z: $B^6 \Rightarrow \{Z_5, Z_4, Z_3, Z_2, Z_1, Z_0\}$, mit

$$ON(Z_0) = \{0000\}$$

$$ON(Z_1) = \{0011\}$$

$$ON(Z_2) = \{0110\}$$

$$ON(Z_3) = \{1001\}$$

$$ON(Z_1) = \{1100\}$$

$$ON(Z_5) = \{1111\}$$

$$ON(Z_4) = \{1100\}$$

$$ON(Z_5) = \{1111\}$$

$$\delta : B^3 \Rightarrow \{z_2^+, z_1^+, z_0^+\}$$

Für die Zustandsübergangsfunktion gilt

$$z_2^+ = (x_0 \wedge \neg z_2 \wedge z_1 \wedge \neg z_0) \vee (\neg x_0 \wedge z_1 \wedge z_0) \vee (x_0 \wedge z_2 \wedge 2_0)$$

$$z_1^+ = (\neg x_0 \wedge \neg z_2 \wedge \neg z_1 \wedge z_0) \vee (\neg x_0 \wedge z_1 \wedge \neg z_0) \vee (x_0 \wedge \neg z_2 \wedge \neg z_1)$$

$$z_0^+ = \neg z_0$$

$$z_0^+ = \neg z_0$$

$$\hat{\mu} : B^4 \Rightarrow \{y_3, y_2, y_1, y_0\} , \text{mit}$$

$$y_3 = z_2 \lor (z_1 \land z_0)$$

$$y_2 = z_2 \vee z_1 \wedge z_0$$

$$y_1 = \neg z_1 \wedge \neg z_0 \vee z_1 \wedge \neg z_0$$

$$y_0 = z_0$$

Dazu die Wertetabelle												
x_0	\mathbf{Z}	z_2	z_1	$ z_0 $	y_3	y_2	y_1	y_0	Z^+	z_{2}^{+}	$ z_1^+ $	z_{0}^{+}
0	Z_0	0	0	0	0	0	0	0	Z_1	0	0	1
0	Z_1	0	0	1	0	0	1	1	Z_2	0	1	0
0	Z_2	0	1	0	0	1	1	0	Z_3	0	1	1
0	Z_3	0	1	1	1	0	0	1	Z_4	1	0	0
0	Z_4	1	0	0	1	1	0	0	Z_5	1	0	1
0	Z_5	1	0	1	1	1	1	1	Z_0	0	0	0
0	_	1	1	0	*	*	*	*	_	*	*	*
0	_	1	1	1	*	*	*	*	_	*	*	*
1	Z_0	0	0	0	0	0	0	0	Z_5	1	0	1
1	Z_1	0	0	1	0	0	1	1	Z_0	0	0	0
1	Z_2	0	1	0	0	1	1	0	Z_1	0	0	1
1	Z_3	0	1	1	1	0	0	1	Z_2	0	1	0
1	Z_4	1	0	0	1	1	0	0	Z_3	0	1	1
1	Z_5	1	0	1	1	1	1	1	Z_4	1	0	0
1	_	1	1	0	*	*	*	*	_	*	*	*
1	_	1	1	1	*	*	*	*	_	*	*	*

Daraus ergeben sich folgende KV-Diagramme für z_2^+, z_1^+ und z_0^+ . z_2^+

Aufgabe 3.2