One-Step Cloning

Materials

2×Basic Assembly Mix(TransGen catalog no. CU201-02)

Linearized vector

Inserts

Nucleasw-free Water

LB agar plates

LB medium

chemo-competent E.coli trans1-T1 cells

LB agar plates(with selection marker)

LB medium

Procedure

Recombine:

1. Calculate the amount of carrier and fragment to be added according to the following proportion. In the $10~\mu L$ reaction system, the recommended dosage of vectors and each insertion fragment was 0.01-0.25 pmols. The optimal molar ratio of the vector to each inserted fragment is 1:2.

Pmols = quality ng /(fragment length bpX0.65kda)

For example: 100 ng of 2000 bp fragment is equal to 100/(20000.65) about 0.08 pmols. 100 ng of 5000 bp fragment is equal to 100/5000*0.65) about 0.03 pmols.

2×Basic Assembly Mix	5 uL
Linearized vector(5-100ng)	x uL
Inserts	y uL
Nucleasw-free Water	To 10 uL

2. Mix gently and react at 50°C for 15 minutes. After the reaction, place the centrifuge tube on ice. Cool for a few seconds. The recombinant product can then be stored at 20C or used directly in the transformation.

Transformation:

- 1. Melt trans1-T1 receptor cells on ice.
- 2. Add 5 μ L of recombinant product into 25 μ L cells, gently shake the centrifugal tube wall to mix (vortex is forbidden), and place on ice for 30 minutes.
- 3. 42°C water bath in heat shock for 90 seconds, after the horse. Transfer to ice and cool for 2 minutes.

- 4. Add 970 μL LB medium at room temperature, then culture in 37°C shaker at 250 rpm for 1 hour.
- 5. The LB plate suitable for resistance was preheated in 37°C.
- 6. Evenly spread 100 μL cells on the plate. And then incubated overnight in incubator 37°C.