CLAIMS

What is claimed is:

An apparatus comprising: a peripheral bus coupled to a peripheral unit to transfer peripheral nformation including a command message specifying a peripheral operation; and 4 a processing slice coupled to the peripheral bus to execute a plurality of 5 threads, the plurality of threads including a first thread sending the command message to the peripheral unit. 6 1 2. The apparatus of claim 1 wherein the peripheral unit is one of an 2 input device and an output device. 1 3. The apparatus of claim 1 wherein the peripheral operation is one of 2 an input operation and an output operation. 1 4. The apparatus of claim 1 wherein the command messages includes 2 at least one of a message content, a peripheral address identifying the peripheral 3 unit, and a command code specifying the peripheral operation. 1 5. The apparatus of claim 1 wherein the peripheral information 2 includes a response message sent from the peripheral unit to the processing slice, 3 the response message indicating the peripheral operation is completed.

-	-	
1	6.	The apparatus of claim 5 wherein the response message includes at
2		thread identifier identifying the first thread, an operation result of
3		operation, a data register address specifying a data register in the
4	processing slice	ce to store the operation result, and a length indicator indicating
5	length of the re	esponse message.
1	7.	The apparatus of claim 6 wherein the peripheral bus comprises:
2	a bi-dii	rectional bus to transfer the command message from the processing
3	slice to the per	ripheral unit and the response message from peripheral unit to the
4	processing slic	ze.
1	8.	The apparatus of claim 1 wherein the processing slice disables the
2	first thread afte	er sending the command message if the command message is a wait
3	instruction.	
1	9.	The apparatus of claim 1 wherein the first thread continues to
2	execute after s	ending the command message if the command message is a non-
3	wait instruction	n.
1	10.	The apparatus of claim 8 wherein the processing slice enables the
2	first thread after	er receiving the response message from the peripheral unit if the
3	first thread wa	s disabled.
1	11.	The apparatus of claim 1 wherein the processing slice comprises:
	004800.P004	17

2	an instruction processing unit to process instructions fetched from a	
3	program memory; and	
4	a thread control unit coupled to the instruction processing unit to manage	
5	initiating and termination of at least one of the plurality of threads.	
1	12. The apparatus of claim 11 wherein the processing slice further	
2	comprises:	
3	a memory access unit coupled to the instruction processing unit to provide	
4	access to one of a plurality of data memories via a data memory switch, the	
5	memory access unit having a plurality of data base registers, each of the data base	
6	registers corresponding to each of the threads; and	
7	a functional unit coupled to the instruction processing unit to perform an	
8	operation specified in one of the instructions; and	
9	a register file coupled to the instruction processing unit and the peripheral	
10	unit having a plurality of data registers, each of the data registers corresponding to	
11	each of the threads.	
1	13. The apparatus of claim 12 wherein the instruction processing unit	
2	comprises:	
2	comprises.	
3	an instruction fetch unit to fetch the instructions from the program memory	
4	using a plurality of program counters, each program counter corresponding to each	
5	of the threads;	
6	an instruction buffer coupled to the instruction fetch unit to hold the	
7	fetched instructions; and	
	004800.P004 18	

an instruction decoder and dispatcher coupled to the instruction buffer to 8 9 decode the instructions and dispatch the decoded instructions to one of the 10 memory access unit, the functional unit, and the peripheral unit; 11 wherein the instructions are executed concurrently in a clock cycle. A method comprising: 1 14. 2 transferring peripheral information to a peripheral unit via a peripheral bus, 3 the peripheral information including a command message specifying a peripheral 4 operation; and executing a plurality of threads by a processing slice, the plurality of 5 threads including a first thread sending the command message to the peripheral 6 7 unit. The method of claim 1/4 wherein the peripheral unit is one of an 1 15. 2 input device and an output device. 1 16. The method of claim 14 wherein the peripheral operation is one of 2 an input operation and an output operation. 17. The method of claim 14 wherein the command messages includes 1 2 at least one of a message content, a peripheral address identifying the peripheral unit, and a command code specifying the peripheral operation. 3 1 18. The method of claim 14 wherein the peripheral information 2 includes a response message sent from the peripheral unit to the processing slice, 3 the response message indicating the peripheral operation is completed.

004800.P004

19. 1 The method of claim 18 wherein the response message includes at 2 least one of a thread identifier identifying the first thread, an operation result of 3 the peripheral operation, a data register address specifying a data register in the 4 processing slice to store the operation result, and a length indicator indicating 5 length of the response message. 20. The method of claim 19 wherein transferring the peripheral 1 2 information comprises: 3 transferring the command message from the processing slice to the 4 peripheral unit and the response message from peripheral unit to the processing 5 slice via a bi-directional bus. 21. 1 The method of claim 14 wherein executing the plurality of threads 2 comprises disabling the first thread after sending the command message if the 3 command message is a wait instruction. 1 22. The method of claim 14 wherein executing the plurality of threads 2 comprises continuing executing the first thread after sending the command 3 message if the command message is a non-wait instruction. 23. 1 The method of claim 21 wherein executing the plurality of threads 2 comprises enabling the first thread after receiving the response message from the 3 peripheral unit if the first thread was disabled. 004800.P004 20

	γ
1	24. The method of claim 14 wherein executing the plurality of threads
2	comprises:
3	processing instructions fetched from a program memory by an instruction
4	processing unit;
5	managing initiating and termination ϕ f at least one of the plurality of
6	threads b a thread control unit.
1	25. The method of claim 24 wherein executing the plurality of threads
2	further comprises:
3	accessing to one of a plurality of data memories by a memory access unit
4	via a data memory switch, the memory access unit having a plurality of data base
5	registers, each of the data base registers corresponding to each of the threads;
6	performing an operation specified in one of the instructions by a functional
7	unit; and
8	storing data in a register file having a plurality of data registers, each of the
9	data registers corresponding to each of the threads.
1	26. The method of claim 24 wherein processing instructions
2	comprises:
3	fetching the instructions from the program memory using a plurality of
4	program counters by an instruction fetch unit, each program counter
5	corresponding to each of the threads;
6	holding the fetched instructions in an instruction buffer; 004800.P004 21
	00T000.1 00T 21

	1	
7	decoding the instructions and dispatching the decoded instructions by an	
8	instruction decoder and dispatcher to one of the memory access unit, the	
9	functional unit, and the peripheral unit; and	
10	executing the instructions concurrently in a clock cycle.	
1	27. A processing system comprising:	
2	a plurality of banks of data memory;	
3	a data memory switch coupled to the banks to data memory;	
4	a program memory to store a program;	
5	a peripheral bus coupled to a peripheral unit to transfer peripheral	
6	information including a command message specifying a peripheral operation; and	
7	a processing slice coupled to the peripheral bus to execute a plurality of	
8	threads, the plurality of threads including a first thread sending the command	
9	message to the peripheral unit.	
1	28. The processing system of claim 27 wherein the peripheral unit is	
2	one of an input device and an output device.	
1	29. The processing system of claim 27 wherein the peripheral	
2	operation is one of an input operation and an output operation.	
1	30. The processing system of claim 27 wherein the command messages	
2	includes at least one of a message content, a peripheral address identifying the	
3	peripheral unit, and a command code specifying the peripheral operation.	

004800.P004

004800.P004

	*	
1	31. The processing system of claim 27 wherein the peripheral	
2	information includes a response message sent from the peripheral unit to the	
3	processing slice, the response message indicating the peripheral operation is	
4	completed.	
1	32. The processing system of claim 31 wherein the response message	
2	includes at least one of a thread identifier identifying the first thread, an operation	
3	result of the peripheral operation, a data register address specifying a data register	
4	in the processing slice to store the operation result, and a length indicator	
5	indicating length of the response message.	
1	33. The processing system of claim 32 wherein the peripheral bus	
2	comprises:	
3	a bi-directional bus to transfer the command message from the processing	
4	slice to the peripheral unit and the response message from peripheral unit to the	
5	processing slice.	
1	34. The processing system of claim 27 wherein the processing slice	
2	disables the first thread after sending the command message if the command	
3	message is a wait instruction.	
-	35. The processing system of claim 27 wherein the first thread	
1		
2	continues to execute after sending the command message if the command message	
3	is a non-wait instruction.	

23

	1
1	36. The processing system of claim 34 wherein the processing slice
2	enables the first thread after receiving the response message from the peripheral
3	unit if the first thread was disabled.
1	37. The processing system of claim 27 wherein the processing slice
2	comprises:
3	an instruction processing unit to process instructions fetched from a
4	program memory; and
5	a thread control unit coupled to the instruction processing unit to manage
6	initiating and termination of at least one of the plurality of threads.
1	38. The processing system of claim 37 wherein the processing slice
2	further comprises:
3	a memory access unit coupled to the instruction processing unit to provide
4	access to one of a plurality of data memories via a data memory switch, the
5	memory access unit having a plurality of data base registers, each of the data base
6	registers corresponding to each of the threads;
7	a functional unit coupled to the instruction processing unit to perform an
8	operation specified in one of the instructions; and
9	a register file coupled to the instruction processing unit and the peripheral
10	unit having a plurality of data registers, each of the data registers corresponding to
11	each of the threads.

		•
1	39. The processing	ng system of claim 38 wherein the instruction
2	processing unit comprises:	
3	an instruction fetch u	unit to fetch the instructions from the program memory
4	using a plurality of program	counters each program counter corresponding to each
5	of the threads;	
6	an instruction buffer	coupled to the instruction fetch unit to hold the
7	fetched instructions; and	
8	an instruction decode	er and dispatcher coupled to the instruction buffer to
9	decode the instructions and	dispatch the decoded instructions to one of the
10	memory access unit, the fun	ctional unit, and the peripheral unit;
11	wherein the instructi	ons are executed concurrently in a clock cycle.
1	40. A processing	system comprising:
2	a plurality of multi-tl	hread processors;
3	a plurality of periphe	eral units;
4	a peripheral bus coup	ed to the peripheral units to transfer peripheral
5	information between the mu	ti-thread processors and the peripheral units, the
6	peripheral information inclu	ding a command message sent from one of the multi-
7	thread processors to one of t	he peripheral units by a thread executing a message
8	instruction.	
1	41. A processing	system comprising:
	004800.P004	25

A

2	a multi-thread processor having program base registers and data base
3	registers;
4	at least one peripheral/units;
5	a peripheral bus coupled to the at least one peripheral unit to transfer
6	peripheral information between the multi-thread processor and the at least one
7	peripheral unit, the peripheral information including a command message sent
8	from one of the multi/thread processors to one of the peripheral units by a thread
9	executing a message instruction.