

AI-BASED DIAGNOSIS OF ANEURY SMS

주최 경북대학교병원,부산대학교병원,전남대학교병원

팀명 키움화이팅

팀원 김수인 곽엘림 박민영

박지은 하민세 한규원

GOAL

- 익명화 의료 데이터 셋 활용 인공지능(AI) SW 개발
- 익명화된 뇌혈관조형술 데이터 이용
- 뇌동맥류 여부, 위치를 진단

DATA

- 총 1127명의 환자 뇌혈관조형술 영상
- 환자 당 **좌/우 X 내경/추골 X 전면/후면** 영상 포함
- 환자 1명 당 총 8종의 영상

INFERENCE PIPELINE 전체 추론 파이프라인

Data Splition 분류기 학습을 위한 데이터 분할

Original Data

For Binary CLF

			Anterior		Posterior					
Index		sum	path			Index	sum	path		
4	1002	1	/content/drive/MyDrive/2023_k_ium_composition/		4	1002	0	/content/drive/MyDrive/2023_k_ium_composition/		
5	1002	1	/content/drive/MyDrive/2023_k_ium_composition/		5	1002	0	/content/drive/MyDrive/2023_k_ium_composition/		

For Multi-Label CLF

					6		9	
path	sum	MCA	ACOM	ACA	Ant Chor	ICA	Index	
/content/drive/MyDrive/2023_k_ium_composition/	1	0	1	0	0	0	1002	4
/content/drive/MyDrive/2023_k_ium_composition/	1	0	1	0	0	0	1002	5

Anterior

Posterior

path	sum	РСОМ	PCA	BA	SCA	PICA	VA	Index	
/content/drive/MyDrive/2023_k_ium_composition/	0	0	0	0	0	0	0	1002	4
/content/drive/MyDrive/2023_k_ium_composition/	0	0	0	0	0	0	0	1002	5

Data Preprocessing क्वंचित्र हुं हुं भू विशेष विशेष्ट यह विशेष्ट विशेष वि

01 Resize/Normalization

- 계산 효율성 증대
- 학습과 추론에 일관된 결과 획득
- 학습 수행 일반화

02

- 정상 이미지는 Resize + 정규화만 진행
- 이미지 가장자리의 여백은 제거 후 Resize
- 이미지 내 텍스트 있는 경우 배경 픽셀값으로 변환

03 Augmentation

Median Blur : 이미지의 노이즈 감소 -> 사용

Bitwise_not : 색상 반전에 이용 -> 사용

Horizontal Flip : 좌우반전, 성능감소로 -> 미사용 Vertical Flip : 상하반전, 성능감소로 -> 미사용

텍스트가 있는 이미지

여백이 있는 이미지

해당 이미지는 같은 위치의 사진이 아닙니다

Model / Loss 성능 최우수 모델 및 손실함수

Task	Data for Training	Model	Loss	Optimizer		
Binary CLF	Anterior Dataset	MedNet(ResNet10)	BCE Loss	AdamW		
Binary CLF	Posterior Dataset	MedNet(ResNet10)	BCE Loss	AdamW		
Multi-Label CLF	Anterior Dataset	SwinNet	Asymmetric Loss	AdamW		
Multi-Label CLF	Posterior Dataset	ResNet18	Asymmetric Loss	AdamW		

Metric: ROC(Binary) / F1Score(Multi-Label)

Tuning Methods 성능 향상을 위한 튜닝 Methods

 Data Imbalancing 문제 해결을 위해 Binary CLF에선 양/음성 데이터 비율로, Multi-Label CLF에선 한 데이터 내 양성 판정 위치 합 비 율에 따라 Weighted Sampling을 수행

 고정 Learning Rate로 학습 시 Loss/Val Score 수렴 X -> Scheduler 도입으로 Learning Rate 1/10 축소해 수렴 유도 (patience = 2)

 가중치 감쇠 완화에 효과적인 Adam의 변종 AdamW를 Optimizer로 도입해 학습 속도와 성능 개선

 극심한 데이터 불균형으로 인해 10~20 Epoch 이후 모두 Frequent Data에 Overfitting 되는 문제 해결을 위해 Early Stopping 도입: 5회 이상 진전이 없으면 학습 종료

Results & Improvements

• • • 최종 결과 및 추후 보완점

Results

Task	Data for Training	Train Loss	Val Loss	Val Score		
Binary CLF	Anterior Dataset	0.07472	2.17023	0.60		
Binary CLF	Posterior Dataset	0.06718	0.45695	0.55		
Multi-Label CLF	Anterior Dataset	16.89743	17.43649	0.51		
Multi-Label CLF	Posterior Dataset	6.32751	13.99973	0.38		

Metric: ROC(Binary) / F1Score(Multi-Label)

Improvements

- 1. Improve Metric Reliability
- 2. Train with more Data
- 3. Use Segmentation to Train Data
- 4. Use XAI to explain the Inference Result
- 5. Use more Complex/Massive Model

Sources

출시

Asymmetirc Loss

https://github.com/Alibaba-MIIL/ASL/blob/main/src/loss_functions/losses.py

MedNet Weight

https://huggingface.co/TencentMedicalNet/MedicalNet-Resnet18

#