Insert Title

Juntian Zheng, Zihao Zhen, and Wuwei Yuan

Tsinghua University

Abstract.

1 Introduction

Write Something Here.

2 Preliminary

Write Something Here.

3 SIDH

Write Something Here.

4 Implementation

4.1 Parameter Choices

Although p can be arbitrary for our protocol, the implementation of the protocol benefits from some special forms of p. Choosing $p \equiv -1 \pmod{4}$ means that -1 is not a square in \mathbb{F}_{p^2} and hence $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ for $i^2 = -1$, which makes the arithmetic simpler.

In our implementation, we follow [CLN16] and choose

$$p = 2^{372} \cdot 3^{239} - 1.$$

TODO Write something about the balance of $2^{372} \approx 3^{239}$.

TODO Write something about the choice of the curve and etc.

4.2 Implementation Details

We use the GMP library [Gt12] as our high precision arithmetic library. Based on GMP library, we build up several C++ classes based on our purpose.

- Integer class: we wrap the GMP library into the integer class, which is more convenient to use.
- Fp class: we implement the basic \mathbb{F}_p field using Integer class as well as computing the square root of an element.
- Fp2 class: similar to \mathbb{F}_p , we implement the basic \mathbb{F}_p field containing the square root algorithm.
- Curve class:
- RPoint class:
- Isogeny class:
- IsogenyChain class:

4.3 Experiments

5 Conclusion

Write Something Here. cite example [DF17]

References

- CLN16. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular isogeny Diffie-Hellman. In CRYPTO~2016,~Part~I,~LNCS~9814,~pages~572-601. Springer, Heidelberg, August 2016.
- DF17. L. De Feo. Mathematics of isogeny based cryptography, 2017.
- Gt12. T. Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.