Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 14 - Chapter 16

Started on Sunday, 7 May 2017, 11:58 AM

State Finished

Completed on Sunday, 7 May 2017, 9:41 PM

Time taken 9 hours 43 mins

Grade 100.00 out of 100.00

Question 1

Correct

Mark 11.00 out of 11.00

P16.13a_10ed

Use waveform symmetry and find the Fourier series coefficients for this periodic waveform.

a) Find a_v.

$$a_v = \boxed{0}$$

Volts

b) Find a_k.

$$a_k = (\boxed{4}$$

 V_m/π) $sin(k\pi/2)$ Volts for k odd

c) Find b_k.

$$b_k = \boxed{0}$$

for all k

- a) $a_{v} = 0 \text{ V}$
- b) $a_k = (4V_m/\pi) \sin(k\pi/2) \text{ Volts for k odd}$
- c) $b_k = 0$ for all k

Correct

Question 2

Correct

Mark 11.00 out of 11.00

P16.13b_10ed

Use waveform symmetry and find the Fourier series coefficients for this periodic waveform.

Given over the time range zero to T/2.

a) Find a_v.

$$a_v = \boxed{0}$$

Volts

b) Find a_k.

$$a_k = (-8$$

Vm $/(k\pi)^2$) Volts for k odd

c) Find b_k.

$$b_k = \boxed{0}$$

for all k

- a) a_v = 0 V
- b) $a_k = -8V_p / (k\pi)^2$ Volts for k odd
- c) b_k = 0 for all k

Correct

Mark 11.00 out of 11.00

P16.19a 9ed

Given:

$$v(t)\!=\!\tfrac{-80}{\pi}\!\sum_{n=1,3,5,\dots}^{\infty}\!\tfrac{1}{n}\!\sin\!\left(\tfrac{\pi n}{2}\right)\!\cos\!\left(n\,\omega_{\,0}t\right)\!+\!\tfrac{240}{\pi}\!\sum_{n=1,3,5,\dots}^{\infty}\!\tfrac{1}{n}\!\sin\!\left(n\,\omega_{\,0}t\right)$$

Rewrite the Fourier Series for this waveform using the Alternative Trigonometric Form given by

$$f(t) = a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n)$$

The alternate form is

For
$$n = 1, 5, 9, ... A_n = 252.98$$

/ nπ

angle
$$\theta_n = \boxed{-108.44}$$

° (Degrees, CW from the origin)

For
$$n = 3, 7, 11,...A_n = 252.98$$

/ nπ

and angle
$$\theta_n = \boxed{-71.56}$$

° (Degrees, CW from the origin)

CW = Clock-wise

$$v(t) = \frac{-80}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \sin\left(\frac{\pi n}{2}\right) \cos(n\omega_0 t) + \frac{240}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \sin(n\omega_0 t)$$

Correct

Question 4

Correct

Mark 11.00 out of 11.00

P16.19b_9ed

Given:

$$v(t) = 25 + \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{\pi n}{4}\right) \cos(n\omega_0 t) Volts$$

The Fourier Series for this waveform using the Alternative Trigonometric Form given by

$$f(t) = a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n)$$

Determine:

The average value $a_v = 25$

Volts

$$A_1 = 45.01$$

Volts and $\theta_1 = \begin{bmatrix} 0 \end{bmatrix}$ ° (Degrees)

$$A_2 = \begin{bmatrix} 31.83 \end{bmatrix}$$

Volts and $\theta_2 = 0$ \checkmark ° (Degrees)

Volts and $\theta_3 = 0$ \checkmark ° (Degrees)

$$A_4 = \begin{bmatrix} 0 \end{bmatrix}$$

Volts and $\theta_4 = \begin{bmatrix} 0 \end{bmatrix}$ ° (Degrees)

Volts and $\theta_5 = 0$ \checkmark ° (Degrees)

$$v(t) = 25 + \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{\pi n}{4}\right) \cos(n\omega_0 t - 0^\circ) Volts$$

 $A_1 = 45.0158 \text{ Volts} \text{ and } \theta_1 = 0^{\circ}$

 $A_2 = 31.8310 \text{ Volts}$ and $\theta_2 = 0^\circ$

 $A_3 = 15.0053 \text{ Volts}$ and $\theta_3 = 0^\circ$

 $A_4 = 0$ (zero) Volts and $\theta_4 = 0^{\circ}$

 $A_5 = -9.0032$ Volts and $\theta_5 = 0^\circ$

Marks for this submission: 11.00/11.00.

Question 5

Correct

Mark 11.00 out of 11.00

P16.23 6ed

Given: $v(t) = 450 \pi^2 \text{ mV (milli V)}$ with a period $T = 2\pi \text{ ms (milli sec)}$ $(\pi = \text{pi})$.

The periodic triangular –wave voltage is applied to the circuit shown.

Find the circuit's response $v_0(t)$ by using the first three nonzero Fourier series terms.

You should be able to simplify the Fourier series to

$$v_{0,1}(t) = 2.545$$
 $cos(1000 \checkmark t + 45 \checkmark °) \text{ Volts}$
 $v_{0,3}(t) = .38 \checkmark cos(3000 \checkmark t + 18.43 \checkmark °) \text{ Volts}$
 $v_{0,5}(t) = .141 \checkmark cos(5000 \checkmark t + 11.31 \checkmark °) \text{ Volts}$

 $v_{0,1}(t) = 2.5456\cos(1,000t + 45.0^{\circ})$

 $v_{0,3}(t) = 0.3795\cos(3,000t +18.43^{\circ})$ Volts

 $v_{0.5}(t) = 0.1412\cos(5,000t + 11.31^{\circ}) \text{ Volts}$

 $v(t) = 2.5456\cos(1,000t + 45.0^{\circ}) + 0.3795\cos(3,000t + 18.43^{\circ}) + 0.1412\cos(5,000t + 11.31^{\circ}) \; \text{Volts}$

Correct

Mark 11.00 out of 11.00

P16.27_6ed

The full-wave rectified sine-wave voltage is applied to the circuit shown.

Find the circuit's response $v_0(t)$ by using the first four nonzero Fourier series terms.

$$v_{0,avg}(t) = \boxed{108}$$

Volts

$$v_{0,1}(t) = \boxed{5.41}$$
 $cos(\boxed{240} \checkmark \pi t + \boxed{6.51} \checkmark °) \text{ Volts}$
 $v_{0,2}(t) = \boxed{.257} \checkmark$
 $cos(\boxed{480} \checkmark \pi t + \boxed{3.08} \checkmark °) \text{ Volts}$
 $v_{0,3}(t) = \boxed{.049} \checkmark$
 $cos(\boxed{720} \checkmark \pi t + \boxed{2} \checkmark °) \text{ Volts}$

$$v_{0,avg}(t) = 108 \text{ Volts}$$

 $v_{0,1}(t) = 5.4143 \cos(240\pi t + 6.51^{\circ}) \text{ Volts}$

 $v_{0.2}(t) = 0.2575 \cos(480\pi t + 3.09^{\circ}) \text{ Volts}$

 $v_{0,3}(t) = 0.0486 \cos(720\pi t + 2.04^{\circ}) \text{ Volts}$

 $v(t) = 108 + 5.4143 \cos(240\pi t + 6.51^{\circ}) + 0.2575 \cos(480\pi t + 3.09^{\circ}) + 0.0486 \cos(720\pi t + 2.04^{\circ})$ Volts

Correct

Mark 11.00 out of 11.00

P16.38_6ed

The triangular-wave voltage source is applied to this circuit.

The equation for the function = 50 x 10 6 t $/\pi~$ for 0 \leq t \leq $\pi~\mu s$ (micro sec)

Estimate the average power delivered to the 20 k Ω (kilo (Ohm) resistor when the circuit is in steady-state operation.

$$P_{20\Omega,steady-state} = \boxed{41.64}$$

mW (milli W)

P₂₀₀,steady-state = 41.532 mW

Correct

Mark 11.00 out of 11.00

P16.33_10ed

The periodic current waveform is applied to a 2.5 k Ω (kilo Ohm) resistor.

Given:
$$i(t) = \frac{I_m}{T_2} t$$
 for $0 \le t \le T/2$ and $i(t) = I_m$ for $T/2 \le t \le T$ where $I_m = 5$ A

a) Use the first three nonzero terms in the Fourier Series representation of i(t) to estimate the average power dissipated in the 2.5 kW (kilo Ohm) resistor.

$$P_{2.5 \text{ k}\Omega,\text{estimate}} = \boxed{40.4}$$

kW (kilo Watt)

b) Calculate the exact value of the average power dissipated in the 2.5 k Ω (kilo Ohm) resistor. Hint: You must use the rms integral for the current waveform.

$$P_{2.5 \text{ k}\Omega,\text{exact}} = \boxed{41.67}$$

kW (kilo Watt)

b) Calculate the exact value of the average power dissipated in the 2.5 k Ω (kilo Ohm) resistor.

"-" under estimate "+" = over estimate

a)
$$P_{2.5 \text{ kW,estimate}} = 40.3974 \text{ kW}$$

- b) $P_{2.5 \text{ kW,exact}} = 41.6667 \text{ kW}$
- c) % error = -3.046%

Correct

Question 9

Correct

Mark 12.00 out of 12.00

P16.35_6ed

The voltage and current at the terminals of this network are

$$v(t) = 80 + 200 \cos(500t + 45^{\circ}) + 60 \sin(1,500t)$$
 Volts

$$i(t) = 10 + 6 \sin(500t + 75^{\circ}) + 3 \cos(1,500t - 30^{\circ})$$
 Amps

a) What is the average power at element's terminals?

W

b) What is the rms value of the voltage?

$$V_{\rm rms} = \boxed{167.93}$$

 $V_{\rm rms}$

c) What is the rms value of the current?

 $\mathbf{A}_{\mathrm{rms}}$

- a) P = 1,145 W
- b) $V_{rms} = 167.9286 V_{rms}$
- c) $I_{rms} = 11.0680 I_{rms}$

Correct