Kmeans Clustering

Nazerfard, Ehsan

nazerfard@aut.ac.ir

Figure © towardsdatascience.com/

Cluster Analysis

Cluster analysis or clustering: Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.

Applications

- Document clustering (news, ...)
- Community Detection in Social Networks
- Sentiment analysis (customer reviews, ...)
- Gene expression clustering
- Clustering of patients based on phenotypic and genotypic factors for efficient disease diagnosis
- Market Segmentation
- Anomaly detection
- Fraud detection
- □ Finding groups of driver behaviors based upon patterns of automobile motions (normal, drunken, sleepy, rush hour driving, etc.)
- **...**

Major Clustering Approaches

- Partitioning-based approach
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors.
 - Typical methods: k-means, k-medoids, CLARA, CLARANS
- Density-based approach
 - Based on connectivity and density functions
 - Typical methods: DBSCAN, OPTICS, DenClue
- Hierarchical approach
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - o Typical methods: Agnes, Diana, BIRCH, CURE, CHAMELEON
- Model-based approach
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM

Major Clustering Approaches (cont.)

- Grid-based approach
 - Based on a multiple-level granularity structure
 - Typical methods: STING, CLIQUE, WaveCluster
- Frequent Pattern-based approach
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster
- Support Vector approach
 - Based on the idea of mapping data points into higher dimensional feature space via a kernel function.
 - Typical methods: SVC, Kernel K-means
- Graph Theoretic approach
 - Typical methods: Spectral Clustering

Partitioning-based Approach

Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors.

Example: K-means

K-means Clustering

- Assume K clusters
- Iterate between two following steps:
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization

sklearn.cluster.KMeans

- Assume K clusters
- Iterate between two following steps
 - A. Updating the assignment of data to clusters
 - B. Updating the cluster's summarization
- ullet Each cluster C is described by a centroid μ_c

- Assume K clusters
- Iterate between two following steps:
 - A. Updating the assignment of data to clusters
 - B. Updating the cluster's summarization
- □ Assignment of i_{th} example: $z_i \in 1...K$

Iterate until convergence

A. For each data, find the closest centroid:

$$z_i = \underset{c}{\operatorname{argmin}} ||x_i - \mu_c||^2, \forall i$$

- Iterate until convergence
 - B. Set each cluster to the mean of all assigned data:

$$\forall c$$
, $\mu_c = 1/m_c \sum_{i \in S_c} x_i$ $S_c = \{i: z_i = c\}, m_c = |S_c|$

<u>Demo</u>

K-means Properties

Poor initialization may lead to poor clustering

- Solution?
 - Multiple Initializations → randomness
 - K-means++, Intelligent K-means

K-means Properties (cont.)

- Distance metrics
 - $oldsymbol{l}_1$ norm (Manhattan distance)
 - o *l*₂ norm (Euclidean distance)
 - Cosine distance
- Centroids
 - Mean
 - Median → Sensitivity to outliers?
 - Medoid
 - Most commonly used on data when a mean or centroid cannot be defined, such as graphs.

K-means Properties (cont.)

- Instance-based
- □ Time complexity: O(tkm)
- Non-parametric
- Linearly separable data

K-means: Linear Separable

Sum of Square Error

Sum of Square Error (SSE)

$$SSE = \sum_{k} \sum_{\boldsymbol{x_i} \in C_k} ||\boldsymbol{x_i} - C_k||^2$$

Goal: minimizing within-cluster distance

Optimal number of Clusters

Elbow method

K-means Variations

- K-medoids/PAM (Partitioning Around Medoids)
- CLARA (Clustering Large Applications)
- CLARANS (A Clustering Algorithm based on Randomized Search)

PAM Algorithm

Arbitrary choose k object as initial medoids

Assign each remaining object to nearest medoids

K=2

Total Cost = 26

Randomly select a nonmedoid object, O_{ramdom}

Do loop **Until** no change

Swapping O and O_{ramdom} If quality is improved.

Compute total cost of swapping

© J. Han et al., Data Mining: Concepts and Techniques, 2006

K-means Variations (cont.)

Fuzzy C-means

Kernel K-means

Further Reading

- Clustering Categorical Data
 - ROCK (<u>robust clustering algorithm for categorical attributes</u>)
 - Sudipto Guha, Rajeev Rastogi, Kyuseok Shim, ICDE'99
- Mean Shift Clustering

References

□ Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd edition, 2006.