ma5210 assignment 1

Nguyen Ngoc Khanh - A0275047B

August 2024

Let (M, \mathcal{T}) be a topological space. We assume that (M, \mathcal{T}) satisfies the following conditions:

- 1. (M, \mathcal{T}) is Hausdorff and second countable
- 2. $\{U_1, U_2, U_3\}$ is an open cover of M
- 3. For each j=1,2,3, there is a continuous function $h_j:U_j\to\mathbb{C}^n$

1 Question 1

Suppose we want (M, \mathcal{T}) to be a topological manifold with an atlas

$$\mathcal{C} = \{(U_1, h_1), (U_2, h_2), (U_3, h_3)\}\$$

what additional property/properties do we need to impose on (h_j, U_j) 's

Hint: you have to change to codomain of each h_j

Answer. For C to be an atlas, we require each h_j to be a homeomorphism from U_j to an open subset of \mathbb{C}^n . Two properties for each j

- 1. $h_j: U_j \to U'_j$ where U'_j is an open set in \mathbb{C}^n
- 2. h_j is a homeomorphism

2 Question 2

Suppose (M, \mathcal{T}) is a topological manifold with atlas \mathcal{C} as in Question 1.

What additional property/properties do we need to impose on $\mathcal C$ so that $(M,\mathcal T)$ is a complex analytic manifold with atlas $\mathcal C$

Answer. For each i, j such that $U := U_i \cap U_j \neq \emptyset$, the transition function

$$t_{ij} = h_j h_i^{-1} : h_i(U) \to h_j(U)$$

is complex analytic.

3 Question 3

Suppose (M, \mathcal{T}) is a complex analytic manifold with atlas \mathcal{C} as in Question 2. Let U_4 be an open subset of U_1 and let h_4 be the restriction of h_1 on U_4 . Let $U_4' = \operatorname{im} h_4 \subseteq \mathbb{C}^n$. Is

$$\mathcal{D} = \{(U_1, h_1), (U_2, h_2), (U_3, h_3), (U_4, h_4)\}\$$

an atlas of (M, \mathcal{T}) as a complex analytic manifold?

Answer. \mathcal{D} is an atlas of (M, \mathcal{T}) as a complex analytic manifold

Proof. We will verify that (1) $h_4: U_4 \to U_4'$ is a homeomorphism from open set $U_4 \subseteq M$ to open set $U_4' \subseteq \mathbb{C}^n$ and (2) h_{i4} and h_{4i} are complex holomorphic for all i such that $U_i \cap U_4 \neq \emptyset$

- (1) h_4 is a restriction of homeomorphism h_1 , so h_4 is still a homeomorphism. Since U_4 open in U_1 and U_1 open in M, U_4 is also open in M, therefore, U_4' is open set in \mathbb{C}^n as it is the image of open set U_4 under open mapping h_4 . Hence, $h_4: U_4 \to U_4'$ is a homeomorphism from open set $U_4 \subseteq M$ to open set $U_4' \subseteq \mathbb{C}^n$
- (2) Let $U_i \cap U_4 \neq \emptyset$, then $U_i \cap U_1 \neq \emptyset$, the transition functions h_{1i} and h_{i1} are complex holomorphic. As the transition h_{4i} is restriction of h_{1i} on open set $h_4(U_4 \cap U_i)$, they are complex holomorphic

4 Question 4

Question 3 provides a method of adding more charts to the atlas C by restricting the h_j 's to open subsets. Could you think of other method(s) of creating more charts to add to the atlas C?

Answer. Some methods to creating more charts

1. Let $h_i: U_i \to U_i' \subseteq \mathbb{C}^n$ be a chart and $g: U_i' \to U_i'' \subseteq \mathbb{C}^n$ be a homeomorphism such that for every chart $h_j: U_j \to U_j'$ with $U:=U_j \cap U_i \neq \emptyset$, the composition $gt_{ji}=gh_ih_j^{-1}:h_j(U)\to gh_i(U)$ and $t_{ij}g^{-1}=h_jh_i^{-1}g^{-1}:gh_i(U)\to h_j(U)$ are still complex holomorphic.

One example of compatible g is the translation, let any $p \in U_i$, define $g(z) = z - h_i(p)$ so that the composition gh_i maps p to $0 \in \mathbb{C}^n$ (this is used in the proof of "global holomorphic functions are necessarily constant")

Once we can find g, define a new chart by

$$(U_i, gh_i: U_i \to U_i'')$$

Let i = j, we see that g is necessarily holomorphic. Furthermore, composition of n-variables holomorphic functions are n-variables holomorphic, we conclude that g is holomorphic homeomorphism 1.

Proving composition of *n*-variables holomorphic functions are *n*-variables holomorphic. Let $y: A \to \mathbb{C}^n$, $x: y(A) \to \mathbb{C}^n$ be complex holomorphic. We will show that $xy: A \to \mathbb{C}^n$ is holomorphic.

For each i=1,...,n, y_i is holomorphic, for every $z^{(0)}=(z_1^{(0)},...,z_n^{(0)})\in A$, there exists an open ball B_i^z centered at $z^{(0)}$ of radius $r_i^z>0$ such that for all $z\in B_i^z$, for each i=1,...,n, the series below is absolutely convergent

$$y_i(z) = \sum_{(a_1, \dots, a_n) \in \mathbb{N}^n} c_{a_1, \dots, a_n} (z_1 - z_1^{(0)})^{a_1} \dots (z_n - z_n^{(0)})^{a_n}$$

Similarly, for each $j=1,...,n,\,z_j$ is holomorphic, there exists an open ball B_j^y centered at $y(z^{(0)})$ of radius $r_j^y>0$, for every $z\in y^{-1}B_j^y\cap B_1^z\cap...\cap B_n^z$, the series below is absolutely convergent

$$x_j y(z) = \sum_{(b_1, \dots, b_n) \in \mathbb{N}^n} d_{b_1, \dots, b_n} (y_1(z) - y_1(z^{(0)}))^{b_1} \dots (y_n(z) - y_n(z^{(0)}))^{b_n}$$

By absolute convergence, rearrange the terms, $x_j y(z)$ is a convergent power series when $z \in y^{-1} B_j^y \cap B_1^z \cap ... \cap B_n^z$. We choose an open ball B_j centered at $z^{(0)}$, hence each $x_j y$ is holomorphic. Therefore, xy is n-variables holomorphic.

¹I am still not sure that *n*-variables holomorphic is necessarily homeomorphism

5 Question 5

Suppose (M, \mathcal{T}) is a complex analytic manifold with atlas \mathcal{C} as in Question 2. Show that (M, \mathcal{T}) is a real smooth manifold of (real) dimension 2n.

Proof. Let $g:\mathbb{C}^n\to\mathbb{R}^{2n}$ be the canonical homeomorphism from \mathbb{C}^n to \mathbb{R}^{2n} defined by

$$g:(a_1+ib_1,...,a_n+ib_n)\mapsto (a_1,b_1,...,a_n,b_n)$$

Let $C = \{(U_i, h_i)\}_{i \in I}$, define

$$\mathcal{D} = \{(U_i, gh_i)\}_{i \in I}$$

We will prove that \mathcal{D} makes (M, \mathcal{T}) a real analytic manifold of dimension 2n by verifying transition function being real analytic.

Let $U:=U_i\cap U_j\neq\varnothing$, the new transition function is $gh_jh_i^{-1}g^{-1}:gh_i(U)\to gh_j(U)$ where $h_jh_i^{-1}$ is complex holomorphic. Let $z^{(0)}=(a_1^{(0)}+ib_1^{(0)},...,a_n^{(0)}+ib_n^{(0)})\in h_i(U)$, there is an open ball B centered at $z^{(0)}$ of radius r>0 such that for all $z=(a_1+ib_1,...,a_n+ib_n)\in B$, the series below is absolutely convergent

$$h_{j}h_{i}^{-1}(z) = \sum_{(d_{1},...,d_{n})\in\mathbb{N}^{n}} c_{d_{1},...,d_{n}} (z_{1} - z_{1}^{(0)})^{d_{1}}...(z_{n} - z_{n}^{(0)})^{d_{n}}$$

$$= \sum_{(d_{1},...,d_{n})\in\mathbb{N}^{n}} c_{d_{1},...,d_{n}} [(a_{1} - a_{1}^{(0)}) + i(b_{1} - b_{1}^{(0)})]^{d_{1}}...[(a_{n} - a_{n}^{(0)}) + i(b_{n} - b_{n}^{(0)})]^{d_{n}}$$

By absolute convergence, rearrange the terms, let $x^{(0)}=(a_1^{(0)},b_1^{(0)},...,a_n^{(0)},b_n^{(0)})$ and $x=(a_1,b_1,...,a_n,b_n)$, $gh_jh_i^{-1}g^{-1}(x)$ can be written as an absolutely convergent power series. Hence, for all $x^{(0)}\in gh_i(U)$, there exists an open ball B' centered at $z^{(0)}$ of radius r>0 such that for all $x\in B'$, $gh_jh_i^{-1}g^{-1}$ can be written as an absolutely convergent power series. That is, $gh_jh_i^{-1}g^{-1}$ is analytic.