Rīgas Tehniskā Universitāte

Datorzinātnes un Informācijas Tehnoloģijas fakultāte Informātikas un programmēšanas katedra

Risinājumu algoritmizācija un programmēšana

Laboratorijas darbs Nr. 3 Vienkārša aprēķinu programma

> DITF RDBL 1. kurss 14. grupa Sergejs Terentjevs Studena apl. 061RDB140

	Darba izpildes grafiks		
	Protokola	Darbs ar datoru	Ieskaite
	sagatave		
Pēc plāna (ned.)			
Faktiski (ned.)			

1. Darba uzdevums

Apgūt aprēķinu programmas izstrādi.

Sastādīt programmu, kas aprēķina tuvāko faktoriālu, kas ir mazāks par ievadīto skaitli (Ja ievadam 30, rezultātam jābūt 24).

2. Aprēķinu metode

Ievadīta skaitļa faktoriālu mēs aprēķināsim ar cikla operatoru palīdzību (mana gadījuma, **while to do**), kurš izpildīs darbību tik ilgi, kamēr faktoriāls būs vienāds vai mazāks par ievadīto skaitli, to mēs paveiksim pēc sakarības:

$$x = x*i$$
,

kur x ir faktoriāls,

i – cikla vērtība, kura izpildās līdz noteiktam nosacījumam (i:=i+1).

Pirms darbības izpildes nodefinēsim šo mainīgo sākotnējo vērtību, šajā uzdevuma 1.

Tuvāko faktoriālu mēs izsecināsim pēc šādas sakarības:

$$a = x/i$$

kur **a** ir tuvākais faktoriāls,

Pēc šīs sakarības mēs izdalīsim galējo faktoriālu ar galējo cikla vērtību, tādejādi iegūsim tuvāko faktoriālu.

Piemērs:

Ievadītais skaitlis ir 5,

X	i
1	1
1+1=2	1*2=2
1+2=3	2*3=6

$$a = 6/3 = 2$$

3. Algoritma izstrāde

Izdalīsim aprēķinu algoritma (proti programmas) soļus:

- programmas LOGO izvade;
- nepieciešamo datu ievade;
- aprēķins un rezultātu izvade.

LOGO izvade un datu ievade ir acīm redzamas. Aprēķinu-izvada daļa sastāv no vairākiem soļiem:

- nosacījuma pārbaude, jo faktoriāls nevar būt vienāds ar 0 un būt negatīvam;
- faktoriāla aprēkins;
- tuvāka faktoriāla aprēķins;

Izvēlēsimies programmā izmantojamo mainīgo (identifikatoru) vārdus:

 \mathbf{x} – faktoriāls.

i – cikla vērtība, kura izpildās līdz noteiktam nosacījumam,

- a tuvākais faktoriāls,
- **n** ievadītais skaitlis, kuram jāaprēķina tuvākais faktoriāls.

Izstrādātajai programmai galveno soļu blokshēma:

4. Programmas pirmteksts

```
Program lab 3;
  uses crt;
  var a, x: real;
  i,n: integer;
Begin
   Clrscr;
   Writeln ('ievadiet skaitli');
   readln (n);
if n>0 then begin
   i:=1;
  x := 1;
While x \le n do begin i := i+1;
  x:=x*i;
end;
if x \ge n then a := x/i;
  Writeln ('tuvakais faktorials, kurš mazaks par n ir', a:6:2);
  Writeln:
  Writeln ('piezimes: koeficents ir',i);
  Writeln ('faktorials ir', x:6:2);
end else writeln ('faktoriāls negatīvs vai vienads ar 0 nemedz but');
Readln;
End.
```

5. Programmas izstrādes un skaņošanas projekts

- 1. Ievadīt visu programmu pa daļām, saglabājot programmas pirmteksta failu.
- 2. Nokompilēt programmu un likvidēt visas sintaktiskās kļūdas.
- 3. Pārbaudīt programmas darbību ar kontroldatiem.

6. Kontroldati programmas skaņošanai

Programmas darbību pārbaudīsim ar sekojošiem datiem:

- 1) Ievadītais skaitlis 30 (faktoriāls 120, cikla mainīgais 5), tuvākais faktoriāls ir 24;
- 2) Ievadītais skaitlis 5 (faktoriāls 6, cikla mainīgais 3), tuvākais faktoriāls ir 2;
- 3) Ievadītais skaitlis 7 (faktoriāls 24, cikla mainīgais 4), tuvākais faktoriāls ir 6;

7. Laboratorijas darba sagatavošanai patērētais laiks

Dotā laboratorijas darba sagatavošanai ir patērēts:

- aprēķinu metodes izstrādei 20 min;
- algoritma izstrādei 10 min;
- programmas pirmteksta uzrakstīšanai 40 min;
- skaņošanas metodikas izstrādei 20 min.

kopējais laika patēriņš 1stunda 30 min.

8. Laboratorijas darba gaita

- 1) ir iegūts fails ar programmas pirmtekstu;
- 2) ir novērstas 5 sintakses kļūdas;
- 3) veicot skaņošanu pēc kontroldatiem kļūdas nav konstatētas.
- 4) programma tika noskaņota un ir testēta ar visiem paredzētajiem kontroldatiem.

9. Rezultāti

Ir iegūta programma, kuras shēma atbilst blokshēmai. Sagatavotajā programmas pirmtekstā ir izlabotas 5 kļūdas. Programmas darbā kļūdas nav konstatētas.

10. Secinājumi

Ir iegūta strādājoša aprēķinu programma.