درخت

تعریف (لیست)

هر عنصر از لیست دو مولفه دارد

- 1. کلید: که مقدار مورد نظر مارا در خود نگه میدارد (یک یا چند مولفه)
 - 2. بعدی: که اشارهگری به عنصر بعدی لیست است (تنها یک عنصر)

درخت

• اگر هر عنصر، دو یا چند عنصر بعدی داشته باشد.

درخت

- درخت: گراف همبند و بدون دور
 - جنگل: گراف بدون دور
 - جنگل=چند درخت

درخت جهتدار

• درخت جهتدار: درختی که یالهای آن جهتدار باشد

ریشه

- ریشه: گره که هیچ یال ورودی ندارد.
 - H گرهullet

درخت ریشه دار

• درخت ریشه دار: درختی جهتداری که با نظمی بر حسب ریشه نشان داده شده است

روابط (درخت به عنوان شجرهنامه)

- پدر و فرزند: به ازای هر یال جهت دار u o v، گره u پدر و گره v فرزند است
 - H فرزند I است و H پدر H
 - I پدر J,K,L است و J,K,L پدر ا

- **برادر**: گرههایی که پدر یکسان دارند
 - برادر هستند J,K,L •

درجه هر راس

- درجه (خروجی) هر راس: تعداد فرزندان آن گره میباشد
 - $\deg(H) = 1 \cdot$
 - $deg(I) = 3 \cdot$

برگ

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

- **برگ**: گره بدون فرزند
- گره داخلی: گرههایی که برگ نیستند

گره داخلی

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

• برگ: گره بدون فرزند

• گره داخلی: گرههایی که برگ نیستنا

درخت ترتیب دار

• درخت بدون ترتیب: درختی که ترتیب گرهها اهمیت ندارد

• درخت ترتیب دار: درختی که ترتیب گرهها اهمیت دارد

مسير

- . مسیر: رشته ای به صورت $(a_0,a_1,...,a_k)$ به طوری که هر a_{k+1} فرزند
 - طول مسير: تعداد يالهاي مسير

مثال: (B,E,G) با طول ۲

اولاد

- اولاد گره v: گرههایی که مسیری از v به آنها وجود دارد
 - زیر درخت گره: درختی شامل تمام اولاد آن گره

اجداد

• اجداد گره v: تمام گرههایی که مسیری از آنها به v وجود دارد

عمق

- عمق (سطح) گره: طول مسیر از ریشه تا گره
 - فقط یک مسیر وجود دارد.

 lpha عمق L: lpha

- ارتفاع گره: طول مسیر از گره تا دورترین برگ خود
 - ارتفاع درخت: ارتفاع ریشه

- درخت الله درختی که در آن هر گره حداکثر k فرزند دارد
 - درخت دودویی: نام دیگر درخت ۲تایی است

• درخت الله کامل: درختی که همه گرهها بجز عمق آخر کاملا پر هستند و در عمق آخر از چپ به راست پر شده اند.

- درخت متوازن: درختی که عمق برگها حداکثر ۱ واحد اختلاف داشته باشد
 - درخت کاملا متوازن: درختی که عمق هر دو برگ برابر باشد

Perfect

Full

Balanced

ویژگیها

• درخت با n راس دقیقا n-1 یال دارد (اثبات استقرا)

پیاده سازی درخت (اشارهگرها)

تعریف (لیست)

هر عنصر از لیست دو مولفه دارد

- 1. کلید: که مقدار مورد نظر مارا در خود نگه میدارد (یک یا چند مولفه)
 - 2. بعدی: که اشارهگری به عنصر بعدی لیست است (تنها یک عنصر)

پیاده سازی درخت (اشارهگرها)

برای درخت التایی:

هر عنصر از لیست 1+ مولفه دارد

- 1. کلید: که مقدار مورد نظر مارا در خود نگه میدارد
- 2. متغیر فرزند: که اشارهگری به فرزندان است (می توان به صورت لست یا آرایه نگه داشت) k

- هر گره دو متغییر نگه میدارد:
 - 1. کلید
 - 2. اندیس پدر خود

• مشکل این روش چیه؟

Index	1	2	3	4	5	6	7	8	9	10	11	12	13
Key	а	b	С	d	е	f	g	h	i	j	k	- 1	m
Р	0	1	1	1	1	3	3	3	5	8	8	9	9

- هر گره دو متغییر نگه میدارد:
 - 1. کلید
 - 2. اندیس پدر خود

• مشکل این روش چیه؟

عدم دست رسی سریع به فرزندان

Index	1	2	3	4	5	6	7	8	9	10	11	12	13
Key	а	b	С	d	е	f	g	h	i	j	k	I	m
Р	0	1	1	1	1	3	3	3	5	8	8	9	9

• اگر بخواهیم به فرزندان دسترسی داشته باشیم:

- برای درخت لاتایی، هر گره 2+k متغییر نگه میدارد:
 - 1. کلید: که مقدار مورد نظر مارا در خود نگه میدارد
 - 2. اندیس پدر خود
 - 3. اندیس فرزندان k

- 1. کلید: که مقدار مورد نظر مارا در خود نگه میدارد
 - 2. اندیس پدر خود
 - 3. اندیس فرزندان k

Index	1	2	3	4	5	6	7	8	9	10	11	12	13
Key	а	b	С	d	е	f	g	h	i	j	k	- 1	m
Р	0	1	1	1	1	3	3	3	5	8	8	9	9
Ch 1	2		6		9			10	12				
Ch 2	3		7					11	13				
Ch 3	4		8										
Ch 4	5												

تعریف درخت به صورت بازگشتی

درخت T:

- ریشه ۲
- $T_1, ..., T_k$ زیردرختهای •

روشهای خواندن تمام عناصر درخت

- پیمایش درخت preorder
 - پیمایش درخت inorder
- پیمایش درخت postorder

پیمایش درخت - preorder

درخت T:

- وریشه ۲
- $T_1,...,T_k$ زیردرختهای ullet

$$preorder(T) = r, preorder(T_1), preorder(T_2), ..., preorder(T_k)$$

پیمایش درخت - inorder

درخت T:

- وریشه ۲
- $T_1,...,T_k$ زیردرختهای \bullet

$$inorder(T) = inorder(T_1), r, inorder(T_2), ..., inorder(T_k)$$

پیمایش درخت - postorder

درخت T:

- وریشه ۲
- $T_1,...,T_k$ زیردرختهای \bullet

 $postorder(T) = postorder(T_1), postorder(T_2), ..., postorder(T_k), r$

دادهساختارها و مبانى الگوريتمها

 $\operatorname{Preorder}(T) \colon \, a,b,c,f,g,h,j,k,d,e,i,l,m$

 $\operatorname{Inorder}(T) \colon \, b,a,f,c,g,j,h,k,d,l,i,m,e$

Postorder(T): b, f, g, j, k, h, c, d, l, m, i, e, a

مسئله ١

• اگر پیمایش preorder و postorder یک درخت داده شده باشد، آیا میتوان پیمایش inorder آن درخت را پیدا کرد؟

Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF

Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

• اگر پیمایش preorder و postorder یک درخت داده شده باشد، آیا میتوان پیمایش inorder آن درخت را پیدا کرد؟

Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF

Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

درخت را میسازیم.

• اگر پیمایش preorder و postorder یک درخت داده شده باشد، آیا میتوان پیمایش inorder آن درخت را پیدا کرد؟

Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF

Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

درخت را میسازیم.

- $preorder(T) = r, preorder(T_1), preorder(T_2), ..., preorder(T_k)$
- postorder(T) = postorder (T_1) , postorder (T_2) , ..., postorder (T_k) , r

پیمایش درخت - preorder

- preorder(T) =
- r,
- r_1 , $preorder(T_1 r_1)$,
- r_2 , preorder $(T_2 r_2)$,
- ...,
- r_k , preorder $(T_k r_k)$

پیمایش درخت - postorder

- postorder(T) =
- postorder $(T_1-r_1), r_1,$
- postorder $(T_2-r_2), r_2,$
- ...,
- postorder $(T_k r_k), r_k$,
- r

- Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF
- Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- $\bullet \ \operatorname{postorder}(T) = \operatorname{postorder}\big(T_1 r_1\big), r_1, \operatorname{postorder}\big(T_2 r_2\big), r_2, \ldots, \operatorname{postorder}\big(T_k r_k\big), r_k, r_k, r_k + r_k$

بیدا کردن r

- Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF
- Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- postorder $(T) = \text{postorder}(T_1 r_1), r_1, \text{postorder}(T_2 r_2), r_2, \ldots, \text{postorder}(T_k r_k), r_k, r_k, r_k, r_k$

r_1 پیدا کردن

Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF

Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- postorder $(T) = \text{postorder}(T_1 r_1), r_1, \text{postorder}(T_2 r_2), r_2, \dots, \text{postorder}(T_k r_k), r_k, r_k$

T_1 پیدا کردن

- Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF
- Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- postorder $(T) = \text{postorder}(T_1 r_1), r_1, \text{postorder}(T_2 r_2), r_2, \ldots, \text{postorder}(T_k r_k), r_k, r_k, r_k, r_k$

r_2 پیدا کردن

- Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF
- Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- postorder $(T) = \text{postorder}(T_1 r_1), r_1, \text{postorder}(T_2 r_2), r_2, \ldots, \text{postorder}(T_k r_k), r_k, r_k, r_k, r_k$

T_2 پیدا کردن

- Preorder: MNHCRSKWTGDXIYAJPOEZVBULQF
- Postorder: CWTKSGRHDNAOEPJYZIBQLFUVXM

- $preorder(T) = r, r_1, preorder(T_1 r_1), r_2, preorder(T_2 r_2), ..., r_k, preorder(T_k r_k)$
- postorder $(T) = \text{postorder}(T_1 r_1), r_1, \text{postorder}(T_2 r_2), r_2, \ldots, \text{postorder}(T_k r_k), r_k, r_k, r_k, r_k$

درخت دودویی معادل (فرزند چپ – برادر راست)

• میتوان هر درخت التایی را با یک درخت دودویی نمایش داد

• آیا پیمایش preorder یک درخت، با پیمایش preorder درخت دودویی معادل آن برابر است؟

مسئله ۲ - مثال

• Preorder: abcfghjkdeilm

• Preorder: abcfghjkdeilm

• ابتدا درخت دودویی معادل حالت کلی را نشان میدهیم

•
$$preorder(T) =$$

- r,
- r_1 , $preorder(T_1 r_1)$,
- r_2 , preorder $(T_2 r_2)$,
- ...,
- r_k , preorder $(T_k r_k)$

• preorder(T) =

- preorder(T) =
- r,
- preorder(T'),

- preorder(T) =
- r,
- r_1 , $preorder(T_1 r_1)$,
- preorder(T")

•
$$preorder(T) =$$

- r,
- r_1 , $preorder(T_1 r_1)$,
- r_2 , preorder $(T_2 r_2)$,
- ...,
- r_k , preorder $(T_k r_k)$

• آیا پیمایش postorder یک درخت، با پیمایش postorder درخت دودویی معادل آن برابر است؟