本章教学内容

*基本内容

- ■稳定性定义
- 线性定常系统稳定性的代数判据——Routh判据
- 李雅普诺夫方法

稳定性

稳定与不稳定运动示意图

现实生活中的各种稳定性

线性定常系统稳定性

前面讲的随动系统是一个四阶微分方程,代入参数得

$$0.025\varphi^{(4)} + 0.55\varphi^{(3)} + 1.5\varphi'' + \varphi' + \varphi = \psi$$

特征方程

$$0.025s^4 + 0.55s^3 + 1.5s^2 + s + 1 = 0$$

特征根

$$s_1 = -18.94, s_2 = -2.61, s_{3.4} = -0.228 \pm j0.871$$

$$\varphi(t) = Ae^{s_1t} + Be^{s_2t} + Ce^{-0.228t}\sin(0.871t + \theta) + \varphi^*(t)(\varphi^*(t))$$

A、B、C、 θ 由初始条件求出

当
$$t \to \infty$$
, 前三项 $\to 0$, $\varphi(t) \to \varphi^*(t)$

现将k(k为开环比例系数)增大10倍,再解特征方程得

$$s_1 = -18.87$$
, $s_2 = -4.13$, $s_{3,4} = 0.501 \pm j2.21$

线性定常系统稳定性

于是得 $\varphi(t) = Ae^{s_1t} + Be^{s_2t} + Ce^{0.501t}\sin(2.21t + \theta) + \varphi^*(t)$

∴ 只要 $C \neq 0$,当 $t \rightarrow ∞$, $\varphi(t) \rightarrow ∞$,达不到 $\varphi^*(t)$

可见 $\varphi(t)$ 取决于特征根,组成 $\varphi(t)$ 的分量诸如 $e^{\lambda_i t}$,叫运动模态。由这个例子我们可以得到下面的结论:

线性系统稳定的充分必要条件是特征方程的根必须具有负的实部,或说特征根都在s平面的左半平面

但是,对于非线性方程,在有些初始条件下,解能达到一种确定的状态,称为稳定的运动,而在另一些初始条件下的解表现为不稳定的运动。所以,对一个非线性系统,不能笼统地称系统稳定与否,而只能说哪些解是稳定的,哪些是不稳定的。

见教科书p184图3.2.1例

非线性系统稳定性

$$\frac{dy}{dt} + y(y-1) = 0$$
, $y(0) = y_0$ 解析解为: $y(t) = \frac{1}{1-(1-\frac{1}{y_0})e^{-t}}$

解曲线是:

$$y_0 = 1$$
, $y(t) = 1$

$$y_0 = 2$$
, $y(t) = \frac{1}{1 - \frac{1}{2}e^{-t}}$

$$y_0 = -0.5, \ y(t) = \frac{1}{1 - 3e^{-t}}$$

 $t = 1.1$

数学模型回顾:一个高阶微分方程可以化成一个一阶微分方程组

$$a_3 x^{(3)} + a_2 x^{\prime\prime} + a_1 x^{\prime} + a_0 x = u$$

设:
$$\begin{cases} x_1 = x \\ x_2 = x' \\ x_3 = x'' \end{cases}$$
 有:
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = \frac{1}{a_3}(-a_0x_1 - a_1x_2 - a_2x_3) + \frac{1}{a_3}u \end{cases}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{a_2} \end{bmatrix} u \quad \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} G(s) = C(sI - A)^{-1}B + D$$

系统的变化可以用状态向量在高维空间中的运动轨迹描述

[定义] 对于系统 $\dot{x} = f(x,t)$,满足 $f(x_e,t) = 0$ 的状态 x_e

称作系统的平衡状态或平衡点。

[定义] 若某一平衡点附近足够小的邻域内没有别的平衡

点,则称它为孤立平衡点。

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -x_1(t) \end{cases}$$

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\sin(x_1(t)) \end{cases}$$

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -x_1(t)x_2(t) \end{cases}$$

[定义] 假设 x_e 是系统 $\dot{x} = f(x)$ 的孤立平衡状态。如果对于

任意给定正实数 $\varepsilon > 0$, 都存在 $\delta(\varepsilon) > 0$, 使得从满足不等式

$$\|\mathbf{x}_0 - \mathbf{x}_e\| \le \delta(\varepsilon)$$

的任意初始状态出发的系统运动x(t)均成立

$$\|\mathbf{x}(t) - \mathbf{x}_e\| \le \varepsilon, t \ge t_0$$

则称平衡状态 x 是 (在李雅普诺夫意义下) 稳定的。

称平衡状态 x_e <mark>不稳定</mark>: 若 x_e 不满足上述稳定的条件。

[定义] 称平衡状态 x_e 新近稳定:若 x_e 稳定,且存在一个

邻域 (吸引域),其内出发的运动恒有 $\lim_{t\to\infty} ||x-x_e||=0$ 。

[定义] 称平衡状态 x_e 全局渐近稳定:若 x_e 渐近稳定,且吸引域充满整个状态空间。

◆ 平衡状态唯一是全局渐近稳定的必要条件。

工程上总是希望系统是大范围渐近稳定的。

李雅普诺夫稳定性的示意性说明

稳定

渐近稳定

不稳定

$$\dot{X} = f(X, t, u)$$

如果一个关于X的微分方程组,在初始条件 $X(t_0) = X_0$ 下有解X(t),且对于任意给定的正数 $\varepsilon > 0$,总存在一个正数 $\delta(\varepsilon)$,当初始条件 X_0 变为 \widetilde{X}_0 时,只要 $\|\widetilde{X}_0 - X_0\| \le \delta$,其相应解 $\widetilde{X}(t)$ 在 $t > t_0$ 的任何时刻都满足 $\|\widetilde{X}(t) - X(t)\| < \varepsilon$,则称解X(t)是稳定的。如果不存在这样的正数 δ ,则称解X(t)是不稳定的。

李雅普诺夫方法

2.1 第一方法 (间接法)

设x。是系统

$$\dot{x} = f(x) \tag{2-1}$$

$$\dot{y} = Ay$$
, $A = \frac{\partial f}{\partial x^T}\Big|_{x = x_e} =$

的平衡状态。该系统在
$$x_e$$
处的线性化模型为:
$$\dot{y} = A y, \quad A = \frac{\partial f}{\partial x^T} \bigg|_{x = x_e} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \bigg|_{x=x_e}$$

李雅普诺夫方法

2.1 第一方法 (间接法)

根据 A 的特征值, 有如下稳定性判别定理:

[定理 2-1] 若A 的特征值均具有负实部, x_e 是渐近稳定的;若存在特征值具有正实部, x_e 是不稳定的;其它情况,则不能判定。

◆ 线性化方法不能给出全局稳定性的判断。如果系统有多个平衡点,则可直接判断原点不是其全局渐近稳定平衡点。

Liapunov第一方法 (见教科书P190)

- 若线性化后系统特征方程的所有根均为负实数或实部为负的复数,则原系统的运动不但是稳定的而且是渐近稳定的。线性化过程中被忽略的高于一阶的项也不会使运动变成不稳定。
- · 若线性化后系统特征方程的诸根中,只要有一个为正实数或实部为正的复数,则原系统的运动就是不稳定的。被忽略的高于一阶的项也不会使运动变成稳定。
- 若线性化后系统特征方程的诸根中,有一些是实部为零的,而其余均具有负实部,则实际系统运动的稳定与否与被忽略的高阶项有关。这种情况下不可能按照线性化后的方程来判断原系统的运动稳定性。若要分析原系统的运动稳定性必须分析原系统的非线性数学模型

严格的说Liapunov第一方法只适用于无穷小范围内

李雅普诺夫方法

2.1 第一方法 (间接法)

[例 2-1] 判断下列系统在原点处的稳定性。

$$\begin{cases} \dot{x}_1 = x_2 \cos x_1 \\ \dot{x}_2 = -\sin x_1 - x_2 \end{cases}$$

解:原点是系统的平衡点(唯一?)。在原点处线性化可得:

$$A = \begin{bmatrix} -x_2 \sin x_1 & \cos x_1 \\ -\cos x_1 & -1 \end{bmatrix} \Big|_{x=0} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

特征根均在左半开平面内,因此原点是该系统的渐近稳定平衡点。

李雅普诺夫方法

2.1 第一方法 (间接法)

[例 2-2] 判断下述系统在原点处的稳定性

$$\begin{cases} \dot{x}_1 = -x_1^3 - 4x_2 \\ \dot{x}_2 = 3x_1 - x_1 x_2 \end{cases}$$

解:原点是系统的平衡点。在原点处线性化可得:

$$A = \begin{bmatrix} -3x_1^2 & -4 \\ 3 - x_2 & -x_1 \end{bmatrix} \Big|_{x=0} = \begin{bmatrix} 0 & -4 \\ 3 & 0 \end{bmatrix}$$

特征根均在虚轴上,间接法失效。

李雅普诺夫稳定性——传递函数角度

稳定性就看传递函数极点的分布

稳定的充要条件是所有极点实部为负,有一个极点实部为正即不稳定

开环不稳定系统闭环可能稳定

开环极点为1和-2,存在正根,不稳定。加反馈后:

$$G(s) = \frac{5}{s^2 + s + 3}$$
, 极点为 $\frac{-1 \pm i\sqrt{11}}{2}$, 实部小于0, 稳定。

稳定性的代数判据

根据微分方程特征方程的系数,不解方程来判断是否有右半平面的根 Routh和Hurwitz分别独立提出了稳定性判据,其功能是判断一个代数多 项式有几个根位于复数平面的右半面

例1 特征方程

$$2s^6 + 5s^5 + 3s^4 + 4s^3 + 6s^2 + 14s + 7 = 0$$

构造Routh表如下:

例1 特征方 $2s^6 + 5s^5 + 3s^4 + 4s^3 + 6s^2 + 14s + 7 = 0$

程

<i>s</i> ⁶	s ⁶ : 2	s ⁴ : 3	s ² : 6	s ⁰ : 7
s ⁵	s ⁵ : 5	s ³ : 4	s ¹ : 14	
s ⁴	$-\frac{1}{5}\begin{vmatrix}2&3\\5&4\end{vmatrix}=\frac{7}{5}$	$-\frac{1}{5} \begin{vmatrix} 2 & 6 \\ 5 & 14 \end{vmatrix} = \frac{2}{5}$	$-\frac{1}{5}\begin{vmatrix}2&7\\5&0\end{vmatrix}=7$	
s^3	18 7	-11		
s^2	115 18	7	$\frac{18}{7} = -\frac{5}{7} \left \frac{5}{7} \right $	$\frac{4}{2}$
s^1	$-\frac{1589}{115}$		$\frac{1}{7} = -\frac{1}{7} \left \frac{7}{5} \right $	5
s^0	7			

例1 特征方 $2s^6 + 5s^5 + 3s^4 + 4s^3 + 6s^2 + 14s + 7 = 0$

程

<i>s</i> ⁶	s ⁶ : 2	s ⁴ : 3	s ² : 6	<i>s</i> ⁰ : 7
<i>s</i> ⁵	<i>s</i> ⁵: 5	s ³ : 4	s ¹ : 14	
s^4	$-\frac{1}{5}\begin{vmatrix}2&3\\5&4\end{vmatrix}=\frac{7}{5}$	$-\frac{1}{5} \begin{vmatrix} 2 & 6 \\ 5 & 14 \end{vmatrix} = \frac{2}{5}$	$-\frac{1}{5}\begin{vmatrix}2&7\\5&0\end{vmatrix}=7$	
s^3	$\frac{18}{7}$	-11	• 第一列系数全型系统稳定的充分。	
s^2	115 18	7	条件。 •出现负号说明	有右半
s^1	$-\frac{1589}{115}$	一次变号	平面的根,变- 数对应于右半-	
s^0	7	人 <mark>二次变号</mark>	的个数。	

例2 特征方程
$$s^4 + 5s^3 + 10s^2 + 20s + 24 = 0$$

- ・ 第一列系数出现0, 用小正数 ϵ 代替。
- ・ ϵ =0时需判断符号
- ・ 若 を 处上下元素符 号相同,表示有一 对纯虚根;不相同 则表示一次变号

s ⁴	1	10	24	
s^3	5	20		
s ²	$-\frac{1}{5}\begin{vmatrix} 1 & 10 \\ 5 & 20 \end{vmatrix} = 6$	$-\frac{1}{5}\begin{vmatrix} 1 & 24 \\ 5 & 0 \end{vmatrix} = 24$		
s ¹	$-\frac{1}{6} \begin{vmatrix} 5 & 20 \\ 6 & 24 \end{vmatrix} = 0(\epsilon)$	此例解得根为		
s ⁰	$-\frac{1}{\epsilon} \begin{vmatrix} 6 & 24 \\ \epsilon & 0 \end{vmatrix} = 24$	上 $2j$, -2 , -3		

例3 特征方程
$$s^3 - 3s + 2 = 0$$

两次变号,说明有两个根在右半平面。

例4 特征方程 $s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$

<i>s</i> ⁵	1	24	-25
s ⁴	2	48	-50
s ³	0(8)	0(96)	
<i>s</i> ²	24	-50	
s ¹	112.7		
s ⁰	-50		

出现全零行时构造辅助多项式 $2s^4 + 48s^2 - 50$, 以求导所得 $8s^3 + 96s$ 代替全零行

例4 特征方程 $s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$

<i>s</i> ⁵	1			24		-25
s ⁴		2	0上	下同号说明有一对约	虚根	-50
s ³		0(8)	Г	0(96)		
<i>s</i> ²		24	出现全 0 行说明有一对大小相等原点对称的根 $($ 由辅助多项式 $2s^4+48s^2-50$ 解出			
s ¹		112.7	מזעם (《四冊助多坝北23	+ 403	— 50用牛山
s ⁰		-50	一次变号说明有一个正实根			

关于稳定的必要条件

设想特征方程的根全部为负实数或实部为负的共轭复数,则特征方程 一定可以分解成下面一些因式的乘积

$$(s+\alpha)$$
, $(s+\beta+j\gamma)(s+\beta-j\gamma)$ $\alpha,\beta,\gamma>0$ $(s+\alpha)$, $(s^2+2\beta s+\beta^2+\gamma^2)$

可见特征方程全部系数必为正 (幂次不缺项)

结论:特征方程系数全为正是系统稳定的必要条件(但不充分)

、二、三阶系统稳定的充要条件

用Routh判据来分析一、二、三阶系统,得到稳定的充要条件

$$a_1s+a_0=0,$$

$$a_2s^2 + a_1s + a_0 = 0,$$

$$a_3s^3 + a_2s^2 + a_1s + a_0 = 0,$$

$$a_1 > 0, a_0 > 0$$

$$a_2$$
 , a_1 , $a_0 > 0$

$$a_3s^3 + a_2s^2 + a_1s + a_0 = 0$$
, $a_3, a_2, a_1, a_0 > 0$, $a_2a_1 > a_3a_0$

参数稳定性和参数稳定域

系统传递函数一般可表示为如下形式

$$G(s) = \frac{k(\tau_1 s + 1) \cdots (\tau_m s + 1)}{s^{\gamma}(T_1 s + 1) \cdots (T_n s + 1)}$$

系统的参数集中体现在k(开环比例系数)和诸T,它们是影响系统稳定的主要因素

- · 一般情况下, k过大不利于稳定 (有些特殊情况, 条件稳定)
- · 增大时间常数,不利于稳定
- · 增多时间常数,不利于稳定

参数稳定性和参数稳定域

参数稳定域 (单参数稳定域)

设一个单位负反馈系统的开环传递函数

$$G_{_{\mathcal{H}}}(s) = \frac{k(\frac{1}{3}s+1)}{s(s+1)(2s+1)}$$

试找出k的稳定范围。(指闭环系统)

首先列出特征方程: $1 + G_{\pi}(s) = 0$

即
$$s(s+1)(2s+1) + k(\frac{1}{3}s+1) = 0$$
, $2s^3 + 3s^2 + (1 + \frac{1}{3}k)s + k = 0$

根据Routh判据
$$\left\{ \frac{k > 0}{3\left(1 + \frac{1}{3}k\right) > 2k} \right.$$
 $\therefore 0 < k < 3$ 是 k 的稳定范围

参数稳定性和参数稳定域

双参数稳定域

$$G_{_{\mathfrak{H}}}(s) = \frac{k(\tau s + 1)}{s(s+1)(2s+1)}$$
 $k, \tau > 0$

特征方程:
$$2s^3 + 3s^2 + (1+k\tau)s + k = 0$$

$$3(1+k\tau)>2k$$

$$\tau > \frac{2}{3} - \frac{1}{k}$$

试画出 $\tau - k$ 的关系曲线

李雅普诺夫直接方法 (第二方法)

- 1 基本概念
- 2 李雅普诺夫直接方法(第二方法)
- 3 构造李雅普诺夫函数的方法

基本概念

1.1 标量函数的定号性

[定义 1-1] 称标量函数V(x) 正定 (半正定): 若V(0) = 0, 且对任意非零x, V(x) > 0 ($V(x) \ge 0$)。

[定义 1-2] 称标量函数V(x)负定 (半负定): 若-V(x)是正定 (半正定) 的。

[定义 1-3] 正定和半正定(负定和半负定)统称为非负定(非正定)。无任何定号性称为不定。

基本概念

1.1 标量函数的定号性

- ◆ 注意, $V(\mathbf{0}) = 0$ 是定号性的必要条件。在不引起混淆时,可直接用 V(x) > 0 表示正定,其余类推。
- ◆ 定号性可以是原点邻域上的局部性质,如:标量函数 $V(\mathbf{x}) = [(x_1^2 + x_2^2) 1](x_1^2 + x_2^2)$ 在域 $\{\Omega \mid x_1^2 + x_2^2 < 1\}$ 上是负定的。

基本概念

1.1 标量函数的定号性

例如,在二维空间中:

$$x_{1}^{2} + x_{2}^{2}$$

$$(x_{1} + x_{2})^{2}$$

$$-(x_{1}^{4} + x_{2}^{2})$$

$$-x_{1}^{2}$$

$$x_{1}^{2} - x_{2}^{2}$$

1.1 标量函数的定号性

考虑二次型函数 $x^T A x$ 的定号性,A是实对称矩阵

[定理 1-1] 实对称矩阵 A 是正定(半正定)的,当且仅当所有特征值均大于(大于等于)零。

[定理 1-2] 实对称矩阵 A 是正定(半正定)的,当且仅当所有主子式均大于(大于等于)零。

1.1 标量函数的定号性

实对称矩阵 A 的各阶顺序主子式:

$$\boldsymbol{\pi}_{1} = a_{11}, \quad \boldsymbol{\pi}_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$$

$$\boldsymbol{\pi}_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \dots, \boldsymbol{\pi}_{n} = |A|$$

1.1 标量函数的定号性

[定理 1-3 (赛尔维斯特判据)] 实对称矩阵 A 为

- (1) 正定当且仅当 $\pi_k > 0, k = 1, 2, \dots, n$
- (2) 负定当且仅当 $(-1)^k \pi_k > 0, k = 1, \dots, n$
- (3) 半正定的充要条件是所有主子式都大于等于 0

1.1 标量函数的定号性

- 在判断矩阵 A 的正定性时, 可以将主子式简化为顺序主子式
- 在判断矩阵 A 的半正定性时,不可以将主子式简化为顺序主 子式

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

李雅普诺夫稳定性

- 1 基本概念
- 2 李雅普诺夫直接方法(第二方法)
- 3 构造李雅普诺夫函数的方法

2.2 第二方法 (直接法)

思想来源:

系统变化可以看成一种运动过程;

运动过程伴随着某种能量的变化;

稳定性意味着能量的单调消耗性;

能量消耗反过来可以描述稳定性。

关键是:是否能找到这个能量函数!

2.2 第二方法(直接法)

设原点是系统

$$\dot{x} = f(x) \tag{2-1}$$

的平衡状态。V(x)是正定的标量函数 (能量函数),它沿系统状态轨线对时间t的导数为

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x^T} f(x)$$
 (2-2)

李雅普诺夫第二方法是根据V(x)和 $\dot{V}(x)$ 的定号性,判别系统平衡状态的稳定性。

2.2 第二方法 (直接法)

[定理 2-2] V(x) 正定, $\dot{V}(x)$ 负定, 则原点是渐近稳定的; 进而, 若 $\|x\| \to \infty$ 时, $V(x) \to \infty$, 则原点是全局渐近稳定的。

[定理 2-3] V(x)正定, $\dot{V}(x)$ 半负定,则原点是稳定的;此外,若 $\dot{V}(x)$ 除原点外沿状态轨线不恒为零,则原点是渐近稳定的;再进一步,若 $|x|\to\infty$ 时, $V(x)\to\infty$,则原点是全局渐近稳定的。

[定理 2-4] V(x) 正定, $\dot{V}(x)$ 也正定, 则原点是不稳定的。

[例 2-3] 判断下述系统在原点处的稳定性

$$\begin{cases} \dot{x}_1 = -x_1^3 - 4x_2 \\ \dot{x}_2 = 3x_1 - 7x_2 \end{cases}$$

解:原点是唯一平衡点。 考虑

$$V(\mathbf{x}) = 3x_1^2 + 4x_2^2 > 0$$

得

$$\dot{V}(x) = -6x_1^4 - 56x_2^2 < 0$$

当 $||x|| \to \infty$ 时, $V(x) \to \infty$,故原点全局渐近稳定。

下图是该例中V(x) = C ($C_3 > C_2 > C_1 > 0$) 的图形,它是一族包围原点的、闭的、随 $C \to 0$ 向原点退缩的椭圆。

- lacktriangle 以上均为充分条件。某V(x)不满足定理条件时,不能下结论。
- \rightarrow 若V(x) 代表广义能量,则 $\dot{V}(x)$ 代表广义功率。 $\dot{V}(x) < 0$,说明沿状态轨线运动是消耗能量的。
- ◆ 条件可以在平衡点的邻域内满足,存在收敛域或者吸收域。

[例 2-4] 判断下述系统在原点处的稳定性

$$\begin{cases} \dot{x}_1 = -\frac{2x_1}{(1+x_1^2)^2} + 2x_2\\ \dot{x}_2 = -\frac{2x_1 + 2x_2}{(1+x_1^2)^2} \end{cases}$$

解:原点是唯一平衡点。由第一方法判定它是渐近稳定的。

考虑

$$V(\mathbf{x}) = \frac{x_1^2}{1 + x_1^2} + x_2^2 > 0$$

则

$$\dot{V}(\mathbf{x}) = -\frac{4x_1^2}{(1+x_1^2)^4} - \frac{4x_2^2}{(1+x_1^2)^2} < 0$$

所以原点是渐近稳定的。但当 $x_1 \to \infty$, $x_2 \to 0$ 时, $V(x) \to 1$,

即 $||x|| \to \infty$ 时, $V(x) \to \infty$ 不成立,不能保证全局渐近稳定。

下图是该例中V(x) = C的图形。当C < 1时,它是一族包围原点的、闭的、随 $C \to 0$ 向原点退缩的曲线。但当 $C \ge 1$ 时,曲线不再是闭的。从A(C < 1)出发的轨线趋向原点;而从B出发(C > 1)的轨线沿着 x_1 轴趋向无穷远,尽管始终有V > 0, $\dot{V} < 0$ 。

[例 2-5] 判断下述系统在原点处的稳定性

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \boldsymbol{x}$$

试选第 1 个函数

$$V(\mathbf{x}) = 2x_1^2 + x_2^2 > 0$$

$$\dot{V}(x) = 2x_1x_2 - 2x_2^2$$
 不定,不能判定。

试选第 2 个函数

取

$$V(\mathbf{x}) = x_1^2 + x_2^2 > 0$$

得

$$\dot{V}(\mathbf{x}) = -2x_2^2$$

 $\dot{V}(x) = -2x_2^2$ 半负定,故原点稳定。

若 $\dot{V}(x) \equiv 0$,则 $x_2 = \dot{x}_2 \equiv 0$,代入原方程得 $x_1 \stackrel{\downarrow}{=} 0$,因而

 $V(x) \equiv 0$ 仅发生在原点处。而当 $||x|| \to \infty$ 时, $V(x) \to \infty$,

所以原点全局渐近稳定。

试选 3 个函数

EX
$$V(x) = 1.5x_1^2 + x_2^2 + x_1x_2 = x^T \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1 \end{bmatrix} x > 0$$

得
$$\dot{V}(x) = -x_1^2 - x_2^2 < 0$$

且当 $||x|| \to \infty$ 时, $V(x) \to \infty$,所以原点全局渐近稳定。

此例说明,选择不同的 ☑ 函数,可能得到不同的结果,但得到的结论是不矛盾的。找到"好"的 ☑ 函数,需要经验和运气。

[例 2-6] 判断下述系统在原点处的稳定性

$$\begin{cases} \dot{x}_1 = -x_1^3 + x_2^4 \\ \dot{x}_2 = -x_2^3 + x_1^4 \end{cases}$$

解:原点是平衡点但不唯一。线性化方法失效。

$$V(x) = 0.5(x_1^2 + x_2^2) > 0$$

$$\hat{V}(x) = -x_1^4(1-x_2) - x_2^4(1-x_1)$$

在 $x_2 < 1$ 且 $x_1 < 1$ 的区域内(原点是该区域的内点),V(x) < 0。该系统在原点处是渐近稳定的。

◆ 该例中,当 $\|x\|$ → ∞ 时,V(x) → ∞,但不能得出全局渐近稳定的结论,因为 $\dot{V}(x)$ < 0仅在局部区域成立。

[例 2-7] 判断下述系统在原点处的稳定性

$$\begin{cases} \dot{x}_1 = -\frac{1}{2}x_1 + x_2 \\ \dot{x}_2 = (x_1^2 + x_2^2)x_1 - \frac{1}{2}x_2 \end{cases}$$

解:原点是平衡点但不唯一。

选
$$V(\mathbf{x}) = (x_1 + x_2)^2 + 2x_2^2 > 0$$

$$\dot{V}(\mathbf{x}) = 2(x_1 + x_2)(\dot{x}_1 + \dot{x}_2) + 4x_2\dot{x}_2$$

$$= (x_1^2 + x_2^2)[2x_1(x_1 + 3x_2) - 1]$$

显然, $\dot{V}(x)$ 在 $2x_1(x_1 + 3x_2) < 1$ 的区域内 (原点为该区域的内点) 负定, 所以原点是渐近稳定的。

该例中, V(x) 在全空间是正定的, V(x) 在上图中蓝色点划线(双曲线)区域内是负定的, 但该区域并不都是原点的吸引域。通常, 确定吸引域是困难的。

我们可以在 $\dot{V}(x)=0$ 的边界上求V的最小值 V_{\min} ,则 $\left\{x\left|V(x)< V_{\min}\right\}$ 就是一个保守的吸引域(比实际的小)。

曲
$$\dot{V}(x) = 0$$
,即 $2x_1(x_1 + 3x_2) = 1$,得 $x_2 = \frac{1}{3}(\frac{1}{2x_1} - x_1)$

$$V(\mathbf{x})\big|_{V(\mathbf{x})=0} = x_1^2 + 2x_1x_2 + 3x_2^2 = \frac{2}{3}\left(x_1 - \frac{1}{2\sqrt{2}x_1}\right)^2 + \frac{\sqrt{2}}{3} \implies V_{\min} = \frac{\sqrt{2}}{3}$$

得到一个保守的吸引域:

$$x_1^2 + 2x_1x_2 + 3x_2^2 < \frac{\sqrt{2}}{3}$$

如图中粉色区域(椭圆) 所示,橙色实线所示是仿 真所得的实际(最大)吸 引域。

本节小结

◆ 李雅普诺夫第一方法(间接法):

$$\dot{x} = f(x)$$
 > x_e 处线性化 > $\dot{y} = Ay$

- A 的特征值实部均为 $_{\mathbf{0}}$,则 $_{\mathbf{x}_{e}}$ 为渐近稳定平衡点。
- A 有实部为正的特征值,则 x_e 为不稳定平衡点

本节小结

- ◆ 李雅普诺夫第二方法 (直接法):
- [1] V(x) 正定, $\dot{V}(x)$ 负定,则原点是渐近稳定的;进而,若 $\|x\| \to \infty$ 时, $V(x) \to \infty$,则原点是全局渐近稳定的。
- [2] V(x) 正定, $\dot{V}(x)$ 半负定,则原点是稳定的;此外,若 $\dot{V}(x)$ 除原点外沿状态轨线不恒为零,则原点是渐近稳定的;再进一步,若 $\|x\|\to\infty$ 时, $V(x)\to\infty$,则原点是全局渐近稳定的。
- [3]V(x)正定, $\dot{V}(x)$ 也正定,则原点是不稳定的。

李雅普诺夫稳定性

- 1 基本概念
- 2 李雅普诺夫方法
- 3 构造李雅普诺夫函数的方法

对于非线性系统,没有一种构造李雅普诺夫函数的通用方

法。人们通常凭经验和技巧来选取李雅普诺夫函数,最常见的

是二次型函数,等价于找正定矩阵。

还有些方法适用于一些特定情形,如克拉索夫斯基方法、

变量梯度法和偶函数法等方法。

3.1 克拉索夫斯基方法 (Krasovskii)

考虑如下非线性系统

$$\dot{x} = f(x) \tag{3-1}$$

其中f(x)存在连续偏导数。定义雅可比 (Jacobi) 矩阵:

$$\boldsymbol{F}(\boldsymbol{x}) \triangleq \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{x}^{T}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \dots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \dots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}$$

3.1 克拉索夫斯基方法 (Krasovskii)

[定理 3-1] 设 f(0) = 0 , f(x) 存在连续偏导数,且在原点的一个邻域上, $F^T(x) + F(x)$ 负定 (正定),则在此邻域内除原点外, $f(x) \neq 0$ 。

3.1 克拉索夫斯基方法 (Krasovskii)

证明:反设 $\tilde{x} \neq 0$ 是此邻域内的点使得 $f(\tilde{x}) = 0$,则有

$$\mathbf{0} = \widetilde{\mathbf{x}}^T f(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{x}}^T \int_{\sigma=0}^{\sigma=1} F(\sigma \widetilde{\mathbf{x}}) d\sigma \widetilde{\mathbf{x}}$$

$$=\frac{1}{2}\widetilde{x}^{T}\int_{\sigma=0}^{\sigma=1}\left[F^{T}(\sigma\widetilde{x})+F(\sigma\widetilde{x})\right]d\sigma\widetilde{x}\neq0$$

矛盾,故反设不成立,证毕。

3.1 克拉索夫斯基方法 (Krasovskii)

[定理 3-2] 设原点是 $\dot{x} = f(x)$ 的平衡状态,且 f(x)存在连续偏导数。若 $F^T(x)+F(x)$ 负定,则原点是渐近稳定的。进一步,当 $\|x\|\to\infty$ 时,有 $\|f(x)\|\to\infty$,则原点是全局渐近稳定的。

3.1 克拉索夫斯基方法 (Krasovskii)

证明: 取
$$V(x) = \|f(x)\|^2 = f^T(x)f(x)$$

$$\dot{V}(x) = \dot{f}^T(x)f(x) + f^T(x)\dot{f}(x)$$

$$= f^T(x)[F^T(x) + F(x)]f(x)$$

若 $F^{T}(x) + F(x)$ 负定,则由[定理 3-1]得

$$V(x) > 0$$
, $\dot{V}(x) < 0$

证毕。

•

3.1 克拉索夫斯基方法 (Krasovskii)

- ◆ Krasovskii 方法给出的结论仍然是充分条件,当条件不满足时,也不能下结论。
- 也可取 $V(x) = f^{T}(x)Pf(x)$, P > 0; 称为 Jacobi 方法。

◆ 思考: 若 $F^{T}(x)+F(x)$ 正定,能下结论吗?

3.1 克拉索夫斯基方法 (Krasovskii)

[例 3-1] 用 Krasovskii 方法判定下述系统原点的稳定性。

$$\begin{cases} \dot{x}_1 = -x_1 + x_1 x_2 \\ \dot{x}_2 = 0.5 x_1^2 - x_2 \end{cases}$$

解: 原点是平衡点但不唯一, 由第一方法可判定它是渐近稳定的。

3.1 克拉索夫斯基方法 (Krasovskii)

$$\boldsymbol{F}(\boldsymbol{x}) = \begin{bmatrix} x_2 - 1 & x_1 \\ x_1 & -1 \end{bmatrix}$$

是对称矩阵,其顺序主子式为:

$$\Delta_1 = x_2 - 1$$
, $\Delta_2 = 1 - x_2 - x_1^2$

在 $x_2 < 1 - x_1^2$ 的域上(原点是该域的内点),

$$\Delta_1 < 0$$
 , $\Delta_2 > 0$

故 $F^{T}(x)+F(x)$ 在该域上负定,所以原点是渐近稳定的。

3.1 克拉索夫斯基方法 (Krasovskii)

[例 3-2] 用 Krasovskii 方法判定下述系统原点的稳定性。

$$\begin{cases} \dot{x}_1 = -5x_1 + x_2^2 \\ \dot{x}_2 = x_1 - x_2 - x_2^3 \end{cases}$$

解:原点是唯一平衡点,由第一方法可判定它是渐近稳定的。

$$F(x) = \begin{bmatrix} -5 & 2x_2 \\ 1 & -1 - 3x_2^2 \end{bmatrix}, \quad F^T(x) + F(x) = \begin{bmatrix} -10 & 2x_2 + 1 \\ 2x_2 + 1 & -2 - 6x_2^2 \end{bmatrix}$$

3.1 克拉索夫斯基方法 (Krasovskii)

$$F^{T}(x) + F(x) = \begin{bmatrix} -10 & 2x_{2} + 1 \\ 2x_{2} + 1 & -2 - 6x_{2}^{2} \end{bmatrix}$$

$$\Delta_{1} = -10 < 0, \quad \Delta_{2} = 20(1 + 3x_{2}^{2}) - (2x_{2} + 1)^{2} = 56x_{2}^{2} - 4x_{2} + 19 > 0$$
故 $F^{T}(x) + F(x)$ 负定,且当 $\|x\| \to \infty$ 时,

$$\|\mathbf{f}\|^2 = (-5x_1 + x_2^2)^2 + (x_1 - x_2 - x_2^3)^2 \to \infty$$

所以原点是全局渐近稳定的。

3.2 变量梯度法 (Schultz, Gibson)

思路: 先找V(x), 后求V(x)。

(1) 设定V(x) 的梯度 grad V:

$$[\operatorname{grad} V]^T = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \dots & \frac{\partial V}{\partial x_n} \end{bmatrix} \stackrel{\Delta}{=} \begin{bmatrix} \nabla_1 & \dots & \nabla_n \end{bmatrix}$$

(2) 由 grad V 确定 $\dot{V}(x)$

$$\dot{V}(\mathbf{x}) = [\operatorname{grad} V]^T \dot{\mathbf{x}} = \nabla_1 f_1(\mathbf{x}) + \dots + \nabla_n f_n(\mathbf{x})$$

3.2 变量梯度法 (Schultz, Gibson)

(3) 由 $\dot{V}(x)$ 求V(x)

$$V(\mathbf{x}) = \int_{V(0)}^{V(\mathbf{x})} dV(\mathbf{x}) = \int_{0}^{\mathbf{x}} [\operatorname{grad} V]^{T} d\mathbf{x} = \int_{0}^{\mathbf{x}} \sum_{i=1}^{n} \nabla_{i} dx_{i}$$

这是一个沿解曲线的曲线积分, 当被积函数是某个标量场的梯度 时, 结果与积分路径无关。

(4) 构成梯度,满足条件 $\frac{\partial \nabla_i}{\partial x_j} = \frac{\partial \nabla_j}{\partial x_i}, \quad i \neq j$

3.2 变量梯度法 (Schultz, Gibson)

(5) 选择一条简单的积分路径

上述条件满足时,选择按坐标的逐次积分是最方便的:

$$V(\mathbf{x}) = \int_0^{x_1} \nabla_1 \, dx_1 + \int_0^{x_2} \nabla_2 \, dx_2 + \dots + \int_0^{x_n} \nabla_n \, dx_n$$

注意,
$$\int_0^{x_1} \nabla_1 dx_1$$
 时, $x_2 = x_3 = \cdots = x_n = 0$

$$\int_0^{x_2} \nabla_2 dx_2$$
 B, $x_1 = x_1, x_3 = x_4 \dots = x_n = 0$

余类推。

可以选择合适的▽﹐使得该积分为正定函数。

3.2 变量梯度法 (Schultz, Gibson)

[例 3-3] 用变量梯度法判定下述系统平衡状态的稳定性。

$$\begin{cases} \dot{x}_1 = -x_1 + 2x_1^2 x_2 \\ \dot{x}_2 = -x_2 \end{cases}$$

解:原点是唯一平衡点,由第一方法可判定它是渐近稳定的。

(1) 设梯度向量为:

grad
$$V(\mathbf{x}) = \begin{bmatrix} \nabla_1 \\ \nabla_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix}$$

3.2 变量梯度法 (Schultz, Gibson)

(2) 计算导函数:
$$\dot{V}(x) = [\operatorname{grad} V]^T \dot{x}$$

$$\dot{V}(\mathbf{x}) = (a_{11}x_1 + a_{12}x_2)(-x_1 + 2x_1^2x_2) + (a_{21}x_1 + a_{22}x_2)(-x_2)
= -a_{11}x_1^2(1 - 2x_1x_2) - a_{22}x_2^2 - (a_{12} + a_{21})x_1x_2 + 2a_{12}x_1^2x_2^2$$

3.2 变量梯度法 (Schultz, Gibson)

(3) 由
$$\frac{\partial \nabla_1}{\partial x_2} = \frac{\partial \nabla_2}{\partial x_1}$$
, 并假定 a_{ij} 均为常数,可得:

$$a_{12} = a_{21}$$

取
$$a_{12} = a_{21} = 0$$
, $a_{11} = a_{22} = 1$, 得到:

$$\dot{V}(x) = -x_1^2(1-2x_1x_2)-x_2^2$$

若 $1-2x_1x_2>0$,则 $\dot{V}(x)<0$ 。(注意,原点是 $1-2x_1x_2>0$ 成立的范围的内点)。

- 3.2 变量梯度法 (Schultz, Gibson)
 - (4) 按坐标积分求V(x)

$$V(\mathbf{x}) = \int_0^{x_1} x_1 \, dx_1 + \int_0^{x_2} x_2 \, dx_2 = \frac{1}{2} (x_1^2 + x_2^2) > 0$$

(5) 综上, V(x) > 0, 且在原点的一个邻域内有 $\hat{V}(x) < 0$; 所以原点是渐近稳定的。