Навигация в синтетических пространствах

Студент гр. 5057/2 Руцкий Владимир

23.10.2010

Задача навигации

- Дано:
 - 1. Рабочее пространство W
 - 2. Интеллектуальный агент (или несколько)
 - 3. Начальная А и конечная В точки из W
- Требуется:

Найти (кратчайший) путь для агента из АвВ

Классификация задач навигации. Рабочее пространство

- Размерность пространства
- Статическое или динамическое

Классификация задач навигации. Интеллектуальные агенты

- Количество агентов
- Коммуникация агентов
- Сведения агента о пространстве
 - всё пространство
 - локальная область
- Ограничения памяти агента
- Число степеней свободы агента

Классификация задач навигации. Дополнительные ограничения

- Геометрические
- Кинематические

Сложность задачи

- В большинстве реальных постановок NPполные или NP-трудные
 - 2D, полигональные препятствия N^2
 - 3D, препятствия тетраэдры NP-трудная

Упрощение задач навигации

- Сведение к меньшим размерностям
 - 3D -> 2D / d3D
- Снятие геометрических ограничений
 - агент материальная точка

Методы, ориентированные на агента

- Агент не обладает знаниями о всём пространстве
- Агент «видит» небольшую окрестность рядом с собой
 - Тактильная информация о пространстве

GoStraight

- Работает в отсутствие препятствий
- Используется в более сложных алгоритмах

LHT/RHT (1)

• Left (Right) Hand Traverse - обход препятствия по левой (правой) руке

LHT/RHT (2)

• Не всегда работает

CT

- Conditional Traverse аналогично LHT/RHT, но с выбором направления обхода
 - Например, по вектору нормали к препятствию

BUG1

• Обход препятствия до точки, ближайшей к цели

BUG2

• Обход препятствия до точки выхода луча из препятствия

Методы, ориентированные на пространство

- Агенту известно всё пространство
- Решение:
 - 1. Построить граф, моделирующий свойства достижимости
 - 2. Найти путь в графе
 - 3.По возможности сократить путь (если он приближенный)

Road Graph (1)

• Построим трапецоидальную карты по рёбрам препятствий и удалим трапеции, лежащие внутри препятствий

Road Graph (2)

• Построим граф по трапециям

Visibility Graph

- Построим граф:
 - вершины вершины препятствий

• соединим рёбрами видимые вершины

Метод декомпозиции

• Разбиваем свободное пространство на ячейки

Метод потенциалов

- Вводится потенциальное поле: P(v) = G(v) + O(v)
 - G(v) убывает с приближением v к цели
 - O(v) возрастает при приближении к препятствию

Выводы

- Рассмотрены две категории алгоритмов навигации в 2D агентом-материальной точкой
 - Ориентированные на агента
 - Ориентированные на пространство

Спасибо за внимание!