# MEASUREMENTS AND SIGNAL CONDITIONING FOR POWER CONVERTERS

DESIGN OF SWITCH MODE CONVERTERS

DEZSO SERA (DES@ET.AAU.DK)



DEPARTMENT OF ENERGY TECHNOLOGY

AALBORG UNIVERSITY

### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### RESISTIVE VOLTAGE DIVIDER

- □ VOLTAGE IS A POTENTIAL <u>DIFFERENCE</u> BETWEEN TWO POINTS
- VOLTAGE DIVIDER:





### ☐ ADVANTAGES:

Simple
Cheap
Both DC and AC

### ☐ DISADVANTAGES:

NO GALVANIC ISOLATION
RESISTOR VALUES CAN
CHANGE WITH TEMPERATURE



### CAPACITIVE AND INDUCTIVE VOLTAGE DIVIDER

☐ FOR AC ONLY



$$\Box V_{out} = V_{in} \cdot \frac{c_1}{c_1 + c_2}$$

$$V_{out} = V_{in} \cdot \frac{L_2}{L_1 + L_2}$$



### **VOLTAGE DIVIDER - RC**

□ LOW-PASS RC FILTER





### TRANSFORMER

☐ FOR AC ONLY



$$V_{out} = V_{in} \cdot \frac{N_2}{N_1}$$

### ■ ADVANTAGES:

- SIMPLE
- GALVANIC ISOLATION

### ☐ DISADVANTAGES:

- TRANSFORMER NON-LINEARITIES
- LEAKAGE LOSSES
- MORE EXPENSIVE



### HALL SENSOR



- ☐ SMALL CURRENT THROUGH PRIMARY BY MEASURED VOLTAGE
- BALANCING FLUX FROM SUPPLY CIRCUIT IN SECONDARY
- HALL DEVICE USED TO MEASURE FLUX COMPENSATE



### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### MAIN TYPES

- TWO MAIN TYPES: DIRECT AND INDIRECT SENSING
- □ DIRECT SENSING IS BASED ON OHM'S LAW SHUNT RESISTOR Low R shunt → voltage drop is normally measured by differential amplifiers Invasive - the sensing circuit is part of the power circuit No galvanic isolation Usually for lower currents (<100A) Cost effective
- Non-invasive measures the field created by electric current
  Galvanic isolated
  Typically higher currents
  Typically more expensive sensors



### SHUNT RESISTOR



### ☐ ADVANTAGES:

Simple Linear – Vout=I\*R Low-cost

### ☐ DISADVANTAGES:

NO GALVANIC ISOLATION LOSSES ON R



### **CURRENT TRANSFORMER**

☐ AC ONLY



- ☐ CAN MEASURE VERY HIGH CURRENTS
- ☐ GALVANIC ISOLATION
- SECONDARY SIDE CURRENT CAN BE TRANSFORMED TO V BY E.G. SHUNT



### CURRENT TRANSFORMER - ROGOWSKI COIL

□ SPECIAL DESIGNED WITH AIR CORE - LOWER INDUCTANCE AND FASTER RESPONSE

□ VERY GOOD LINEARITY DUE TO AIR CORE



http://powerelectronics.com/power\_conversion\_system\_design/circuit\_analysis/current-measurements-fig2.ipg

TYPICALLY USED FOR MEASURING IN HIGH BANDWIDTH APPLICATIONS >1MHZ, OR FAST TRANSIENT CURRENTS



### HALL-EFFECT SENSOR - PRINCIPLE





### OPEN-LOOP HALL-EFFECT SENSOR



If (Primary Current)



### CLOSED-LOOP HALL-EFFECT SENSOR

☐ ALSO CALLED COMPENSATED, OR ZERO-FLUX



### □ COMPARED TO OPEN-LOOP VERSION:

■ MORE EXPENSIVE

- Higher accuracy, no nonlinearity of Hall sensor
- Higher noise immunity
- No saturation, No temperature drift

### CLOSED-LOOP HALL-EFFECT SENSOR

☐ IMPLEMENTATION EXAMPLE





### CLOSED-LOOP HALL-EFFECT SENSOR

☐ CURRENT MEASUREMENT



Source: LEM



K<sub>N</sub> = 2500/1000

(to ADC)

### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- □ PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### BLOCKS DC CURRENT FLOW BETWEEN THE ISOLATED CIRCUITS

□ PURPOSE:

To be able to pass signals between circuits with different ground potentials Safety - close ground loop through a person

■ MAIN METHODS/PRINCIPLES:

Transformer
Opto-isolator
Capacitor
Hall effect

Isolation impedance / leakage
Blocking/isolation voltage
Bandwidth



### OPTICAL ISOLATION - OPTO-COUPLER

☐ PRINCIPLE



"Optokoppler" by Quark48 at the German language Wikipedia. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Optokoppler.gif#/media/File:Optokoppler.gif

- □ LED IS NON-LINEAR LIGHT SOURCE
- ☐ IN BASIC FORM IS ON/OFF (DIGITAL)
- □ OPTO-COUPLERS HAVE GENERALLY GOOD NOISE IMMUNITY



### OPTICAL ISOLATION

■ IMPLEMENTATIONS - SIGNAL PASSED IN ANALOGUE FORM



http://archives.sensorsmag.com/articles/0199/iso0199\_fig4.gif

■ MATCHED PHOTODIODES



### OPTICAL ISOLATION

☐ IMPLEMENTATIONS - SIGNAL PASSED IN DIGITAL FORM



□ AVOIDS THE SECOND PHOTO-DIODE BUT ADDS TO THE COMPLEXITY



### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- **□** PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### **PROTECTION**

- Over voltage protection
- Over current protection



What if it happens only once?

What if it happens periodically?

### LATCH AND BUFFER



- U106: Latch x fault event makes Qx=1
- U107: NAND gate output = 1 (default 0)
- U108: Buffer Disable = 1 -> gate pulses stopped
- Reset signal needed



### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### WHAT IS AN ADC

### ANALOGUE-TO-DIGITAL CONVERTER

- ☐ CONVERTS AN ANALOGUE, CONTINUOUS SIGNAL AT ITS INPUT INTO A DIGITAL DISCRETE NUMBER AT ITS OUTPUT
- ☐ FOR A 3-BIT ADC, THERE ARE 8 POSSIBLE OUTPUT CODES.



□ IN THIS EXAMPLE, IF THE INPUT VOLTAGE IS 5.5V AND THE REFERENCE IS 8V, THEN THE OUTPUT WILL BE 101 (6V).

# TRANSFER FUNCTION OF ADC AT DIFFERENT RESOLUTION





### **ADC RESOLUTION**

- □ RESOLUTION: THE NUMBER OF DISCRETE VALUES IT CAN PRODUCE OVER THE RANGE OF ANALOGUE VALUES
- IT CAN BE GIVEN IN BITS: FOR EXAMPLE, A 12-BIT RESOLUTION ADC CAN PRODUCE 2<sup>12</sup>= 4096 DISCRETE DIGITAL VALUES OF ITS FULL-SCALE ANALOGUE INPUT VOLTAGE
- IT CAN BE GIVEN IN VOLTS: FOR EXAMPLE, WITH A FULL-SCALE INPUT OF 0-3V, WILL HAVE A RESOLUTION OF 3/4096 = 0.00073V



### TYPICAL A/D CONVERSION SCHEME





### SAMPLE AND HOLD CIRCUIT

- □ THE PURPOSE THE S/H CIRCUIT IS TO KEEP THE VOLTAGE LEVEL CONSTANT DURING THE CONVERSION (MAINLY A CAPACITOR)
- ☐ THE SETTLING TIME (TIME NEEDED TO CHARGE UP THE S/H CAPACITOR) LIMITS THE MAXIMUM INPUT FREQUENCY





### SUCCESSIVE APPROXIMATION





- 1 MSB of DAC input is set to '1' (half of DAC output range)
- 2 Test if DAC output is higher than analog input. If higher, MSB = 0, else MSB = 1
- 3 Repeat 1 and 2 with MSB-1



## SUMMARY OF THE CHARACTERISTICS OF THE ADC

- ☐ THE FULL CONVERSION TIME IS A TWO STEP PROCESS:
  - 1. Charging the sampling capacitor
  - 2. Disconnect C hold from input pin and start the A/D conversion



### PERIODIC SAMPLING





### PERIODIC SAMPLING

### NYQUIST'S RULE

- ☐ SAMPLING OF CONTINUOUS SIGNAL WAVEFORM
- MEASURED SIGNALS WITH COMPLEX WAVEFORMS CAN BE REPRESENTED BY SUM OF SINUSOIDAL (FOURIER)

IN ORDER TO CORRECTLY REPRESENT
THE MEASURED SIGNAL:

0.866 Time

 $F_{sampling} \ge 2 * F_{max}$   $F_{max}$  -THE HIGHEST FREQUENCY COMPONENT IN THE MEASURED SIGNAL

IF THERE ARE (UNDESIRABLE) (b) FREQUENCY COMPONENTS WITH  $F > F_{sampling} \rightarrow \text{ANALOGUE FILTERING}$  PRIOR TO ADC



Understanding Digital Signal Processing, 2nd Edition, Richard G. Lyons Published Mar 15, 2004 by Prentice Hall.



### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### **FILTERING**

#### ■ WHY DO WE USE FILTERING?

Reduce the amplitude of the unwanted frequency components (usually called noise) from the input (measured) signal spectrum

### Unfiltered signal



### Filtered signal





### TYPE OF FILTERS

### LOW PASS

PASSES FREQUENCIES BELOW A CERTAIN FREQUENCY (CUT OFF FREQUENCY) AND REJECTS (ATTENUATES) FREQUENCY

☐ EXAMPLES:

☐ FIRST ORDER

 $V_{\rm R}$   $V_{\rm in}$   $V_{\rm c}$ 

☐ SECOND ORDER





Pass

Stop

### **TYPE OF FILTERS - HIGH PASS**

□ PASSES FREQUENCIES ABOVE A CERTAIN FREQUENCY (CUT OFF FREQUENCY) AND REJECTS (ATTENUATES) FREQUENCIES BELOW THE CUT OFF FREQUENCY



☐ FIRST ORDER











### **TYPE OF FILTERS - BAND PASS**

□ PASSES FREQUENCIES WITHIN A CERTAIN RANGE AND REJECTS (ATTENUATES) FREQUENCIES OUTSIDE THAT RANGE

■ EXAMPLE:

☐ SECOND ORDER







### **TYPE OF FILTERS - BAND STOP (NOTCH)**

□ PASSES FREQUENCIES OUTSIDE A CERTAIN RANGE AND REJECTS (ATTENUATES) FREQUENCIES OUTSIDE THAT RANGE

☐ EXAMPLE:

☐ SECOND ORDER







### **OUTLINE**

- VOLTAGE MEASUREMENT METHODS
- ☐ CURRENT MEASUREMENT METHODS
- ☐ GALVANIC ISOLATION
- PROTECTION
- ☐ ANALOGUE-TO-DIGITAL CONVERSION
- ☐ FILTERING (DIGITAL AND/OR ANALOGUE)



### **EXERCISE**

☐ ON MOODLE

