Facultatea de Matematică şi Informatică Algoritmi şi Structuri de Date – Laborator Anul I, semestrul I, an universitar 2017/2018

Web: http://laborator.wikispaces.com

Tema 9 5 decembrie 2017

Probleme obligatorii

Termen de predare : Laboratorul din săptămâna 13 (11 ianuarie 2018)

- (2 p) **1.** Sa se implementeze algoritmul *randomized quick-sort* (alegerea pivotului se va face aleator).
- (3 p) **2.** Să se scrie algoritmul pentru sortarea unui şir de numere folosind metoda Heapsort. Structura de Heap va fi implementată ca un arbore binar **într-una** din cele două forme care urmează:
 - a) max Heap arbore binar în care fiecare nod are cheia mai mare decât oricare dintre fiii săi.
 - b) min Heap arbore binar în care fiecare nod are cheia mai mică decât oricare dintre fiii săi.

Scrieți funcții pentru crearea heap-ului și pentru decapitarea lui.

- (3 p) **3.** Sa se implementeze o coadă cu priorități folosindu-se un heap (Cormen, capitolul 7.5). Elementele cozii vor avea doua câmpuri: prioritate și cheie. Vor exista urmatoarele operatii:
- insert (q, x) care insereaza nodul x in coada q;
- maximum (q) care intoarce elementul de prioritate maxima din coada q;
- extract_max(q) care intoarce elementul de prioritate maxima din q, eliminându-l din coadă.

Probleme suplimentare

Termen de predare : Laboratorul din săptămâna 13 (11 ianuarie 2018)

- (2 p) **4**. Să se implementeze algoritmul *Shell-Sort* folosind ca tablou de incremenți unul dintre şirurile propuse în materialul ajutător alăturat.
- (2 p) **5.** Sa se optimizeze procedura de *sortare rapidă*, folosind următoarea tehnică: subșirurile de dimensiune ≤ 11 elemente se sortează cu inserția directă.

(4 p) 6. Roata

Una dintre atracțiile celebrului parc de distracții Prater din Viena este Marea Roată Vieneză. Din ea se poate admira priveliștea întregii Viene.

Roata are n cabine, numerotate de la 1 la n în sens orar şi dispuse simetric pe circumferinţa roţii. Îmbarcarea clienţilor se face în cabina în care roata este tangentă cu solul, iar rotirea începe cu cabina 1 aflată în poziţia de îmbarcare şi se face în sens antiorar. Un client plăteşte pentru o rotire 1 EUR şi poate cumpăra un număr oarecare de rotiri.

Cei p clienți care doresc utilizarea roții trebuie să respecte următoarea procedură: clientul cu numărul de ordine i își cumpără un bilet pe care sunt înscrise numărul său de ordine și numărul de rotiri c_i , $1 \le i \le p$, apoi se așează la rând. Când în poziția de îmbarcare este o cabină liberă sau se eliberează o cabină, roata se oprește și urcă următorul clientul. Un client coboară după ce se efectuează numărul de rotiri înscris pe bilet.

Cerință

Să se scrie un program care, cunoscând numărul n de cabine al roţii, numărul p de clienţi, precum şi numărul de rotiri cumpărate de fiecare client, c_i , $1 \le i \le p$, să calculeze:

- suma totală încasată de administratorul roţii de la clienţi;
- ordinea în care coboară clienţii din roată;
- numărul cabinei din care coboară ultimul client.

Date de intrare

Fişierul de intrare roata.in conţine pe primul rând numărul natural n, pe al doilea rând numărul natural p iar pe al treilea rând numerele naturale c_i , $1 \le i \le p$, separate printr-un spaţiu, cu semnificaţiile de mai sus.

Date de ieşire

Fişierul de ieşire roata.out va conţine pe prima linie suma totală încasată, pe a doua linie numerele de ordine ale clienţilor, în ordinea coborârii, separate printr-un spaţiu, iar pe a treia linie numărul cabinei din care va coborî ultimul client.

Restricții

- 2 ≤ n ≤ 360
- $1 \le p \le 100000$
- $1 \le c_i \le 100\ 000$
- pentru rezolvarea primei cerințe se acordă 20% din punctaj, iar pentru celelalte două cerințe se acordă câte 40% din punctaj fiecare.

Exemplu

roata.out	Explicaţie
29	Roata are n = 4 cabine şi numărul de clienţi este p = 7.
3524176	Primul client cumpără 6 rotiri, al doilea 4 rotiri,, iar al
3	şaptelea client cumpără 3 rotiri. Suma totală încasată
	este de 29 EUR. După ce primii 4 clienţi se urcă în roată
	29 3 5 2 4 1 7 6

și se efectuează o rotire completă, primul care coboară este clientul al 3-lea și imediat se urcă clientul al 5-lea. După încă 2 rotiri, clientul al 5-lea coboară și se urcă clientul al 6-lea. După încă o rotire coboară clientul al 2-lea și se urcă al 7-lea client. Ultimii 4 clienți coboară în ordinea 4, 1, 7, 6. Cabina din care coboară ultimul client este cabina cu numărul 3

OJI 2012 - clasa a 9-a

(3 p) 7. La coadă

La BIG au băgat pui. Instantaneu s-a format o coadă de N persoane, numerotate în ordine de la 1 la N. La coadă se pot întâmpla următoarele lucruri:

- 1. Servire: prima persoană de la coadă primește un pui și pleacă acasă.
- 2. Sosire: la coadă se mai așează o persoană. Noii veniţi sunt numerotaţi în continuare: N + 1, N + 2 ş.a.m.d.
- 3. Îmbrâncire(x): persoana numărul x face rost de o relaţie şi se îmbrânceşte până pe prima poziţie a cozii. Dacă persoana era deja prima, nu se schimbă nimic.

Se dă o listă de K operaţii. Să se spună care este configuraţia finală a cozii. Se garantează că în niciun moment lungimea cozii nu va depăşi N (oamenii se descurajează dacă văd o coadă prea lungă şi nu se mai aşează). Se garantează că operaţiile de servire şi îmbrâncire nu se vor efectua pe o coadă goală.

Date de intrare

Fişierul de intrare lacoada.in conţine pe prima linie numerele N şi K. Pe următoarele K linii se vor găsi operaţiile, numerotate ca mai sus, într-una din formele

1

3 x

Se garantează că x este numărul unei persoane din coadă.

Date de ieşire

În fişierul de ieşire lacoada.out se va tipări pe prima linie lungimea cozii la sfârșitul operaţiilor. Pe a doua linie se vor tipări, în ordine, numerele persoanelor de la coadă, începând cu prima.

Restricții

- 1 ≤ N ≤ 60.000
- 1 ≤ K ≤ 1.000.000

Exemplu

lacoada.in	lacoada.out	Explicaţie
6 6	5	5 se îmbrânceşte, coada devine 5 1 2 3 4 6
3 5	31246	5 este servit, coada devine 1 2 3 4 6
1		3 se îmbrânceşte, coada devine 3 1 2 4 6
3 3		7 soseşte, coada devine 3 1 2 4 6 7
2		7 se îmbrânceşte, coada devine 7 3 1 2 4 6
3 7		7 este servit, coada devine 3 1 2 4 6
1		

Autor: Cătălin Frâncu

Probleme facultative

Termen de predare : Laboratorul din săptămâna 13 (11 ianuarie 2018)

- (5 ps) **1.** Spunem ca o tabla de sah de 2^k x 2^k patrate este defecta, daca unul din cele 2^{2^k} patrate lipseste. Problema va cere sa acoperiti o astfel de tabla cu tromino-uri (Figura 1), astfel incat oricare doua tromino-uri nu se suprapun, ele nu acopera patratul lipsa, dar acopera toate celelalte patrate. Sugestii de implementare:
 - (a) o acoperire a unei table m x m se poate reprezenta printr-o matrice Tabla[m][m], unde Tabla[i][j] indica numarul trominoului cu care este acoperit patratul (i; j).
 - (b) Functia recursiva ce construieste solutia poate fi de forma: Acopera (rt, ct, rd, cd, latura), unde:
 - i. rt, ct reprezinta randul si coloana patratului din coltul stanga sus al portiunii patratice de tabla ce trebuie acoperita;
 - ii. rd, cd reprezinta randul si coloana patratului lipsa;
 - iii. latura reprezinta latura portiunii patratice de tabla ce trebuie acoperita.

Figura 2. O tablă de şah defectă de dimensiuni $2^2 \times 2^2$