FA Reading Group Section 3.1 and 3.2

Functional Derivatives

07/08/2022

Section contents

- ullet Definition of the "derivative" of a map f:X o Y between generic normed spaces
- First order conditions for optimization problems (in possibly infinite dimensions)

Applications: Euler-Lagrange equations/Quantum mechanics/Optimal control, ...

Functional derivative

Let f:X o Y be a map between two normed spaces X and Y. f is said to be differentiable at $x_0\in X$ if there exists $L\in CL(X,Y)$, such that for all $\varepsilon>0$, there exists $\delta>0$ s.t. if $\|x-x_0\|_X<\delta$, then

$$rac{\|f(x) - f(x_0) - L(x - x_0)\|_Y}{\|x - x_0\|_X} < arepsilon$$

Note: This is known as the *Fréchet derivative*. There are weaker notions of functional derivatives, such as the *Gateaux derivative*.

Type signature

The derivative of a function at a point is a linear operator from X to Y, i.e. the derivative has the "type signature"

which contrasts with the good old derivative of a scalar function

$$f':\mathbb{R} o\mathbb{R}$$

Type signature

Primal	Derivative
$f:\mathbb{R} o\mathbb{R}$	$f':\mathbb{R} o\mathbb{R}$
$f:\mathbb{R}^n o\mathbb{R}$	$ abla f: \mathbb{R}^n o \mathbb{R}^n$
$f:\mathbb{R}^n o\mathbb{R}^m$	$\mathcal{J}f:\mathbb{R}^n o\mathbb{R}^{m imes n}$
f:X o Y	Df:X o CL(X,Y)
$\overline{f:X o\mathbb{R}}$	Df:X o X'

Turns out we were just confused about the type signature of the classical derivative!

Key results

- For scalar functions the (Fréchet) derivative is the same as the classical one
- Uniqueness of the derivative
- ullet f differentiable $\Rightarrow f$ continuous (Ex. 3.2)
- Chain rule still works! (Ex. 3.4)

Optimality conditions

From Undergrad Real analysis, remember that, for $f: \mathbb{R} o \mathbb{R}$ (differentiable)

- 1. $x_* \in \mathbb{R}$ is a minimizer of $f \Rightarrow f'(x_*) = 0$
- 2. $f'(x_*)=0$ and $f''(x)\geq 0, \forall x\Rightarrow x_*$ is a minimum of f

When you don't have f'''

For a real valued function $f:X o\mathbb{R}$

- 1. x_* is a minimizer of $f \Rightarrow f'(x_*) = 0$
- 2. f convex and $f'(x_*)=0\Rightarrow x_*$ is a minimizer of f

Extra: Gateaux derivative

f:X o Y is Gateaux differentiable at $x_0\in X$ if there exists a map g:X o Y s.t. $orall h\in X$

$$\lim_{ au o 0}rac{f(x_0+ au h)-f(x_0)}{ au}=g(h)$$

Generalization of the directional derivative! Gateaux derivative: df: X imes X o Y (not necessarily linear, or continuous)

Example: Optimal Control

Minimize

$$\mathcal{J}[x,u,t_0,t_f] = \mathcal{E}(x(t_0),t_0,x(t_f),t_f) + \int_{t_0}^{t_f} \mathcal{F}(x(t),u(t),t) dt$$

with constraints

- $ullet \dot{x}(t) = f(x(t), u(t), t)$
- $h(x(t), u(t), t) \leq 0$
- $e(x(t_0), t_0, x(t_f), t_f) = 0$

Example: Shortest (differentiable) Path

Let $x,y\in\mathbb{R}^n$. Consider the curve length functional $\ell:C^1_0([0,1],\mathbb{R}^n) o\mathbb{R}$

$$\ell(\gamma) = \int_0^1 \|\lambda'(t) + \gamma'(t)\|dt$$

where $\lambda(t) = (1-t)x + ty$

Problem: find the minimizer(s) of ℓ (i.e. the shortest curve from x to y)