Machine Intelligence at Google Scale:

TensorFlow

What is Machine Learning?

data

algorithm

insight

Google Translate

Human:

Someone is using a small grill to melt his sandwich.

Neural Model:

A person is cooking some food on a grill.

One example (of 100s): "Neural Art" in TensorFlow

An implementation of "A neural algorithm of Artistic style" in TensorFlow, for

- Introductory, hackable demos for TensorFlow, and
- Demonstrating the use of importing various Caffe cnn models (VGG and illustration2vec) in TF.

github.com/woodrush/neural-art-tf

Growing Use of Deep Learning at Google

Number of directories containing model description files

Across many products/areas

- Apps
- Maps
- Photos
- Gmail
- Speech
- Android
- YouTube
- Translation
- Robotics Research
- Image Understanding
- Natural Language Understanding
- Drug Discovery

The Machine Learning Spectrum

Data Scientist

TensorFlow

What is TensorFlow?

- TensorFlow
- Google's open source library for machine intelligence
- Tensor: N-dimensional array
- Flow: data flow computation framework (like MapReduce)
- tensorflow.org launched in Nov 2015
 - Most popular Machine Learning library
 - 20,000+ stars / 7000+ forks
 - 165 contributors / > 3000 commits

Portable

- Training on:
 - Data Center
 - o CPUs, GPUs and etc
- Running on:
 - Mobile phones
 - IoT devices

Computation as a Dataflow Graph

Dataflow Graph (forward)

Edges are N-dimensional arrays: *Tensors* biases Add Softmax weights MatMul Xent inputs targets

Dataflow Graph (backward graph and updates)

Backward graph and update are added automatically to graph

Dataflow Graph

- In practice often very complex with 100s or 1000s of nodes and edges
- "Inference" means to execute just the forward path of the graph

Example: Logistic Regression

- 1. *N* examples of data
 - Input x_n
 - Target t_n
- 2. Model with parameters (weights **W**, biases **b**)
 - \circ $\mathbf{y}_n = \operatorname{Softmax}(\mathbf{W} * \mathbf{x}_n + \mathbf{b})$
- 3. CrossEntropy loss to minimize
 - o $loss = -Sum(t_n * ln(y_n))$
- 4. Minimization by Gradient Descent
 - requires gradients of *loss* with respect to parameters W, b
- TensorFlow does automatic differentiation
- Gradient calculation done by TF once model & loss defined

Visualizing learning

Visualizing graphs

Portable

- Training on:
 - Data Center
 - o CPUs, GPUs and etc
- Running on:
 - Mobile phones
 - IoT devices

TensorBoard: visualization tool

The Machine Learning Spectrum

Data Scientist

Cloud Machine Learning Platform

Can I Hug That?

Can I Hug That?

Demo

Easy to use API: pass in an image, we give you insight:

Label

Explicit

Facial Detection

Landmark **Detection**

Logo Detection

Detection

OCR