Séance n°7

Alternative de Fredholm (suite)

Corrigé

10 Janvier 2006

Exercice 1. Théorème de prolongement unique

1.1 - Nous rappelons la formule de Taylor avec reste intégral valable pour des fonctions de $H^2([a,b[)]$:

$$u(x) = u(x_0) + (x - x_0)u'(x_0) + \int_{x_0}^x (x - t)u''(t) dt.$$

Si $u(x_0)=u'(x_0)=0$, alors par l'inégalité Cauchy-Schwartz et pour $x\geq x_0$,

$$|u(x)|^{2} \leq \left(\int_{x_{0}}^{x} (x-t)^{2} dt\right) \left(\int_{x_{0}}^{x} |u''(t)|^{2} dt\right)$$

= $\frac{1}{3} (x-x_{0})^{3} \int_{x_{0}}^{x} |u''(t)|^{2} dt$

D'autre part, et en écrivant que

$$u'(x) = u'(x_0) + \int_{x_0}^x u''(t) dt,$$

on déduit

$$|u'(x)|^2 \le (x - x_0) \int_{x_0}^x |u''(t)|^2 dt.$$

Le résultat s'obtient facielement à partir de ces deux dernières inégalités pour $x \ge x_0$. Le cas $x \le x_0$ se traite de la même façon.

1.2 - En utilisant l'hypothèse du théorème, on déduit que

$$|u(x)|^2 + |u'(x)|^2 \le 2K^2(\varepsilon + \varepsilon^3/3) \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} (|u(t)|^2 + |u'(t)|^2) dt,$$

soit en intégrant sur $]x_0 - \varepsilon, x_0 + \varepsilon[,$

$$\int_{x_0-\varepsilon}^{x_0+\varepsilon} (|u(t)|^2+|u'(t)|^2)\,dt \leq 4\varepsilon K^2(\varepsilon+\varepsilon^3/3)\int_{x_0-\varepsilon}^{x_0+\varepsilon} (|u(t)|^2+|u'(t)|^2)\,dt.$$

On choisit ε assez petit pour que

$$4\varepsilon K^2(\varepsilon + \varepsilon^3/3) < 1.$$

Pour ce ε , u = 0 sur $]x_0 - \varepsilon, x_0 + \varepsilon[$.

1.3 - On prend comme ε le plus petit entre celui de la question 1.2 et la taille du domaine sur lequel u s'annule. On découpe l'intervalle Ω en sous intervalles de taille ε en commençant par le milieu du domaine sur lequel u s'annule. On raisonne ensuite de proche en roche.

Exercice 2. Application au problème de vibrations acoustiques

2.1 - La formulation variationnelle s'écrit : trouver $p \in H^1(\Omega)$ tel que

$$\int_{\Omega} \nabla p \cdot \nabla \overline{v} dx - \int_{\Omega} (k^2 + i\sigma k) p \, \overline{v} \, dx = \int_{\partial \Omega} g \, \overline{v} \, d\gamma$$

pour tout $v \in H^1(\Omega)$.

2.2 - Supposons g = 0. En prenant v = p et en considérant la partie imaginaire on déduit que p = 0 sur D. D'autre part la solution de la formulation variationnelle vérifie au sens des distribution

$$\Delta p = k^2 p + i\sigma k \, p.$$

Ceci prouve en particulier que $\Delta p \in L^2(\Omega)$ et qu'il vérifie l'inégalité requise par le théorème de prolongement unique avec $K = |k^2 + i\sigma k|$. On déduit alors que p = 0 sur tout Ω .

2.3 - Le problème s'écrit sous la forme

$$a(u,v) + b(u,v) = \ell(v)$$

avec

$$a(u,v) = \int_{\Omega} \nabla p \cdot \nabla \overline{v} dx + \int_{\Omega} p \, \overline{v} dx$$

$$b(u,v) = -\int_{\Omega} (k^2 + 1 + i\sigma k) p \,\overline{v} \,dx$$

$$\ell(v) = \int_{\partial \Omega} g \, \overline{v} \, d\gamma$$

où a est sesquilinéaire continue coercive sur $H^1(\Omega) \times H^1(\Omega)$, b est sesquilinéaire continue $L^2(\Omega) \times L^2(\Omega)$, ℓ linéaire sontinue sur $H^1(\Omega)$ et on a que l'injection de $H^1(\Omega)$ dans $L^2(\Omega)$ est compacte. L'aternative de Fredholm s'applique donc à cette formulation variationnelle : c.à.d l'unicité implique le caractère bien posé du problème.

Exercice 3. Inégalités de Poincaré

Supposons que l'inéglité n'est pas vérifiée. Alors pour tout entier n on peut trouver $u_n \in H_0^1(\Omega), u_n \neq 0$ tq.

$$||u_n||_{L^2(\Omega)} \ge n ||\nabla u_n||_{L^2(\Omega)}$$

Soit $v_n = u_n/\|u_n\|_{L^2(\Omega)}$. Cette suite vérifie

$$||v_n||_{L^2(\Omega)} = 1 \text{ et } ||\nabla v_n||_{L^2(\Omega)} \le \frac{1}{n}.$$

On déduit en particulier que (v_n) est bornée dans $H^1(\Omega)$ et donc (par le théorème de Rellich) admet une sous-suite convergente (v_{n_k}) dans $L^2(\Omega)$. La suite (v_{n_k}) est donc de Cauchy dans $L^2(\Omega)$. L'inégalité

$$\|\nabla v_{n_k}\|_{L^2(\Omega)} \le \frac{1}{n_k}$$

montre que la suite (v_{n_k}) est aussi de Cauchy dans $H_0^1(\Omega)$. Notons v sa limite dans $H_0^1(\Omega)$. Cette limite vérifie

$$\|\nabla v\|_{L^2(\Omega)} = \lim_{n_k \to \infty} \|\nabla v_{n_k}\|_{L^2(\Omega)} = 0.$$

Ainsi

$$\nabla v = 0$$
 dans $\Omega \Rightarrow v = cte$ dans Ω .

Mais comme $v \in H_0^1(\Omega)$, cte = 0 et donc v = 0. Ceci est en contradiction avec

$$||v||_{L^2(\Omega)} = \lim_{n_k \to \infty} ||v_{n_k}||_{L^2(\Omega)} = 1.$$

- **3.1** Nous avons besoin de Ω connexe et Γ_0 de mesure non nulle pour déduire que la constante = 0 et arriver à une contardiction.
- **3.2** Il suffit que $\ell(1) \neq 0$!

Exercice 4. Application aux modes de vibrations propres des membranes

4.1 - La seule propriété qui mérite attention et a(u, u) = 0 implique u = 0!

4.2 - Nous avons en effet

$$a(u, u) \le \rho^* \|\nabla u\|_{L^2(\Omega)}^2 \le \rho^* \|u\|_{H^1(\Omega)}^2$$

et par l'inégalité de Poincaré

$$a(u, u) \ge \rho_* \|\nabla u\|_{L^2(\Omega)}^2 \ge \frac{\rho_*}{2} \min(1, C_{\Omega}^2) \|u\|_{H^1(\Omega)}^2.$$

L'espace V muni du produit scalaire $a(\cdot,\cdot)$ est donc un espace de Hilbert.

4.3 - Comme l'application bilinéaire $(u, v) \mapsto (u, v)_{L^2}$ est symétrique continue sur $V \times V$, le théorème de Riesz nous garantie l'existence et la continuite de T.

La compacité provient du fait que

soit

$$\sqrt{a(Tu, Tu)} \le C||u||_{L^2(\Omega)}$$

et l'injection de V dans $L^2(\Omega)$ est compacte.

4.4 - La formulation variationelle du problème aux valeurs propres s'écrit

$$a(u,v) = \lambda(u,v)_{L^2(\Omega)} \ \forall v \in V$$

soit

$$a(u, v) = \lambda a(Tu, v) \ \forall v \in V$$

et donc

$$u = \lambda T u$$
.

Il suffit d'appliquer donc les résultats du cours à l'opérateur T compact autoadjoint et strictement positif sur V.

4.5 - Par construction $a(u_n, u_m) = \delta_{n,m}$. Ainsi

$$(v_n, v_m)_{L^2(\Omega)} = \frac{a(v_n, v_m)}{\lambda_n} = \sqrt{\lambda_n} \sqrt{\lambda_m} \frac{a(u_n, u_m)}{\lambda_n} = \delta_{n,m}.$$

La famille des v_n est donc orthonormale. Montrons que pour tout $w \in L^2(\Omega)$

$$\left\| w - \lim_{N \to \infty} \sum_{n=1,N} (w, v_n)_{L^2(\Omega)} v_n \right\|_{L^2(\Omega)} \to 0 \; ; \text{quand } N \to \infty.$$

Par le théorème de Riesz, il existe un unique $u \in V$ tq.

$$a(u,v) = (w,v)_{L^2(\Omega)} 2$$

Or, comme les (u_n) forment une base hilbertienne de V pour le produit scalaire $a(\cdot,\cdot)$. En posant

$$u_N = \sum_{n=1,N} a(u,u_n)u_n,$$

on

$$a(u-u_N, u-u_N) \to 0$$
; quand $N \to \infty$.

Le résultat s'en déduit aisément!

4.6 - D'une part, les u_n forment une base hilbertienne de V pour le roduit scalaire $a(\cdot, \cdot)$ donc

$$a(u,u) = \sum_{n\geq 1} |a(u,u_n)|^2 = \sum_{n\geq 1} \lambda_n^2 |(u,u_n)_{L^2(\Omega)}|^2 = \sum_{n\geq 1} \lambda_n |(u,v_n)_{L^2(\Omega)}|^2$$

D'autre part les v_n forment une base hilbertienne de $L^2(\Omega)$ donc

$$(u,u)_{L^2(\Omega)} = \sum_{n>1} |(u,v_n)_{L^2(\Omega)}|^2$$

Ainsi

(1)
$$\mathcal{R}(u) = \frac{\sum_{n \ge 1} \lambda_n |(u, v_n)_{L^2(\Omega)}|^2}{\sum_{n \ge 1} |(u, v_n)_{L^2(\Omega)}|^2}$$

qui permet d'établir facilement les formules demandées.

4.7 - Posons

$$\mu_n = \min_{E_n \subset V} \left(\max_{u \in E_n, u \neq 0} \mathcal{R}(u) \right).$$

En prenant $E_n = V_n$ on déduit par la formule (1) que

$$\max_{u \in E_n, u \neq 0} \mathcal{R}(u) \le \lambda_n$$

et donc $\mu_n \leq \lambda_n$. Réciproquement, soit E_n un sous espace vectoriel de V de dimension n. Comme la dimension de $V_{n-1} < n$, $E_n \cap V_{n-1}^{\perp} \neq \{0\}$. Soit u un élément de cette intersection. D'après la question précédente

$$\lambda_n \le \mathcal{R}(u) \le \max_{u \in E_n, u \ne 0} \mathcal{R}(u).$$

Ceci étant vrai pour tout E_n , on en déduit que $\mu_n \geq \lambda_n$.

4.8 - Soit Γ_0' et Γ_0'' deux parties de $\partial\Omega$ telles que $\Gamma_0' \subset \Gamma_0''$. En notant V' et V'' les espaces respectivement associés à Γ_0' et Γ_0'' , on a $V'' \subset V'$ et donc d'après la formule du min-max $\lambda_n' \leq \lambda_n''$.

4.9 - ...