Методы искусственного интеллекта

Лекция 4. Обучение. Нейронные сети

Тема 9. Основы обучения с учителем

Постановка задачи обучения с учителем

• Исходные данные:

- Множество примеров (образцов) \mathcal{X} , представленные как векторы *признаков*.
- Пространство меток \mathcal{Y} :
 - Например, у бинарной классификации $\mathcal{Y} = \{0, 1\}$.
- Обучающее множество $S = ((x_1, y_1), ..., (x_m, y_m))$ конечное подмножество $\mathcal{X} \times \mathcal{Y}$
- Образцы распределены в соответствии с некоторым распределением $\mathcal{X}{\sim}\mathcal{D}$
- Есть (неизвестная) функция $f: \mathcal{X} \to \mathcal{Y}$, $y_i = f(x_i)$, $\forall i$.

Постановка задачи обучения с учителем

- Выходные данные алгоритма обучения:
 - Модель (гипотеза, решающее правило) $h \in$ ${\mathcal H}$, где ${\mathcal H}$ - пространство гипотез.
- Мера успеха (для классификации):
 - Вероятность того, что объект, извлеченный из распределения \mathcal{D} , будет неверно классифицирован моделью h:

$$L_{\mathcal{D},f}(h) \stackrel{\mathrm{def}}{=} \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)]$$

• Обучающий алгоритм не знает $\mathcal D$ и f .

 $\frac{2}{3}$ - обучающее множество S

Виды моделей (гипотез)

Пространство гипотез, задаваемое тремя делениями пространства признаков (деревья решений)

Пространство гипотез, задаваемое прямой линией

Пространство гипотез, задаваемое параболой, разграничивающей области с разным значением целевой переменной

Виды моделей (гипотез). Параметрические модели

Пространство гипотез, задаваемое тремя деления и ространства признаков (д ревья решений)

Пространство гипотез, задаваемое прямой линией

Пространство гипотез, задаваемое параболой, разграничивающей области с разным значением целевой переменной

$$y = \theta_1 x + \theta_2$$

$$y = sign[\theta_1 x_1^2 + \theta_2 x_2^2 + \theta_3 x_1 x_2 + \theta_4 x_1 + \theta_5 x_2 + \theta_6]$$

Виды моделей (гипотез). Параметрические модели

$$y = h(x; \theta)$$

heta – вектор параметров модели.

Примеры конкретных моделей:

- y = 3x + 5
 - модель из пространства $\theta_1 x + \theta_2$ при $\theta = (3, 5)$
- $\bullet \ y = 3\sin(2x) + 17$
 - модель из пространства $\theta_1 \sin(\theta_2 x + \theta_3) + \theta_4$ при $\theta = (3, 2, 0, 17)$

Минимизация эмпирического риска и функция потерь

• Поскольку \mathcal{D} и f неизвестны, то $L_{\mathcal{D},f}(h)$ оценить невозможно, поэтому истинная функция ошибок заменяется **эмпирической** функцией ошибки (для классификации):

$$L_S(h) \stackrel{ ext{def}}{=} rac{|\{i \in [m]: h(x_i)
eq y_i\}|}{m}$$
, где $[m] = \{1, \dots, m\}$

Функции потерь

- Функция потерь характеризует качество гипотезы (модели) на обучающем множестве.
- Является обобщением понятия эмпирического риска (в зависимости от класса задачи обучения)

Функции потерь

• Задача регрессии - среднеквадратичная ошибка

$$L_{MSD}(\hat{y}, y) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y} - y)^2$$

• Задача бинарной классификации - бинарная энтропия:

$$L_{BCE}(\hat{y}, y) = -\frac{1}{m} \sum_{i=1}^{m} (y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

Мощность (выразительность) гипотез

Решение задачи. Оптимизация в пространстве параметров гипотезы

- За исключением простейших случаев (константа, линейный тренд и ряда других) о поиск глобального минимума функции потерь невозможен
- Решение: итеративные процедуры, основанные на градиентном спуске:

$$\hat{\theta}_i = \hat{\theta}_{i-1} - \alpha \frac{\partial L_S(h)}{\partial \theta}$$

Пример 1. Задача линейной регрессии

- Дано: набор данных S, включающий значения одной (независимой) переменной X и соответствующие им значения другой переменной Y
- Класс гипотез:
 - Линейные функции вида $y=\theta_1 x + \theta_2$
 - Два параметра: θ_1 , θ_2
- Функция потерь:
 - MSE: $L = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i y_i)^2$

S =	X	У
	2	4
	3	8
	4	10
	4.5	10
	5	10
	6	13
	7	16

Пример 1. Задача линейной регрессии

• Градиент функции потерь по параметрам θ_1 , θ_2 :

$$\frac{\partial L_S(h)}{\partial \theta_1} = \frac{\partial}{\partial \theta_1} \left(\frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 \right) = \\
= \frac{\partial}{\partial \theta_1} \left(\frac{1}{m} \sum_{i=1}^m ((\theta_1 x + \theta_2) - y_i)^2 \right) = \\
= \frac{1}{m} \left(\sum_{i=1}^m 2x \left((\theta_1 x + \theta_2) - y_i \right) \right) = \frac{2}{m} \left(\sum_{i=1}^m x \epsilon_i \right) \\
\frac{\partial L_S(h)}{\partial \theta_2} = \frac{\partial}{\partial \theta_2} \left(\frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 \right) = \\
= \frac{\partial}{\partial \theta_2} \left(\frac{1}{m} \sum_{i=1}^m ((\theta_1 x + \theta_2) - y_i)^2 \right) = \\
= \frac{1}{m} \left(\sum_{i=1}^m 2((\theta_1 x + \theta_2) - y_i) \right) = \frac{2}{m} \left(\sum_{i=1}^m \epsilon_i \right)$$

	X	У
S =	2	4
	3	8
	4	10
	4.5	10
	5	10
	6	13
	7	16

Пример 1. Задача линейной регрессии

Начальные значения:

$$\theta_1 = 1.7$$
$$\theta_2 = 0.0$$

$$\frac{\partial L_S(h)}{\partial \theta} = \begin{pmatrix} \frac{\partial L_S(h)}{\partial \theta_1} \\ \frac{\partial L_S(h)}{\partial \theta_2} \end{pmatrix} = \begin{pmatrix} \frac{2}{m} \left(\sum_{i=1}^m x \epsilon_i \right) \\ \frac{2}{m} \left(\sum_{i=1}^m \epsilon_i \right) \end{pmatrix}$$

S =

X	У
2	4
3	8
4	10
4.5	10
5	10
6	13
7	16

$\hat{y}_i = \theta_1 x + \theta_2$	$\epsilon_i = \hat{y}_i - y_i$	$x\epsilon_i$
3.4	-0.6	-1.2
5.1	-2.9	-8.7
6.8	-3.2	-12.8
7.65	-2.35	-10.575
8.5	-1.5	-7.5
10.2	-2.8	-16.8
11.9	-4.1	-28.7

$$\frac{\partial L_S(h)}{\partial \theta} = \begin{pmatrix} -24.65 \\ -4.99 \end{pmatrix}$$

Пример 2. Задача логистической регрессии

Логистическая функция

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$(-\infty; +\infty) \rightarrow (0; 1)$$

Пример 2. Задача логистической регрессии

• Вид модели:

$$h(x;\theta) = \sigma(\theta x)$$

• Функция потерь:

$$L(\hat{y}, y) = -\frac{1}{m} \sum_{i=1}^{m} (y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$

• Градиент:

$$\frac{\partial}{\partial \theta} L(h(x;\theta), y) = -\frac{1}{m} \sum_{i=1}^{m} (h(x;\theta) - y)x$$

Разновидности градиентного спуска

- По количеству данных, на которых вычисляется градиент:
 - Один образец стохастический градиентный спуск, SGD
 - Мини-пакетный (мини-батч) подмножество фиксированного размера
 - Пакетный (батч) всё обучающее множество
- По особенностям процедуры:
 - Моменты
 - Adam
 - ...

Метрики

- Отличия функции потерь от метрики
 - Метрика (более) интерпретируема в терминах конкретной решаемой задачи, в большей степени выражает то, в какой степени достигается цель обучения модели
 - Попытка формализации степени достижения цели
 - Метрика не обязательно дифференцируема

Метрики. Регрессия

Средняя абсолютная ошибка, Mean absolute error, MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |h(x_i) - y_i|$$

i	X	у	h(x)
1	2	3	5
2	3	9	7
3	4	14	9
4	5	10	11
5	7	16	15

Среднеквадратичная ошибка, Root mean squared error, RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (h(x_i) - y_i)^2}$$

$$MAE = (2 + 2 + 5 + 1 + 1)/5 = 2.2$$

RMSE =
$$\sqrt{4+4+25+1+1}/5 \approx 2.65$$

Метрики. Классификация

• Доля истинных результатов (Accuracy):

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

• Точность (Precision):

$$P = \frac{TP}{TP + FP}$$

• Полнота (Recall):

$$R = \frac{TP}{TP + FN}$$

• F1:

$$F1 = \frac{2 * P * R}{P + R}$$

Матрица ошибок (матрица неточностей)

Истинный класс

	Положительный, Positive	Отрицательный, Negative
Положительный, Positive	Истинно положительные, ТР	Ложно положительные, ошибки 1-го рода, FP
Отрицательный, Negative	Ложно отрицательные, ошибка 2-го рода, FN	Истинно отрицательные, TN

Результат модели

Метрики. Классификация. ROC AUC

Какую долю истинно положительных образцов модель может «вернуть», если ей «разрешить» заданную долю ложно положительных

Nº	Предсказание	Истинный класс	
2	0.9	1	†
4	0.7	1	A
7	0.7	0	
5	0.6	0	\rightarrow
6	0.5	1	†
3	0.1	0	\rightarrow
1	0.0	0	→

Интересные свойства:

- не зависит от порога классификации
- вероятности принадлежности классам не обязаны быть [0; 1], оценивает качество упорядочивания

Метрики. Прочие

Валидация

- Валидация проверка характеристик модели, оценка в какой степени модель удовлетворяет требованиям
 - В частности, на тех данных, которые <u>не были</u> использованы при обучении

- Основные схемы валидации:
 - Отложенная выборка
 - Обучающая и тестовая выборки
 - Обучающая, валидационная и тестовая выборки
 - Перекрестная валидация (K-Fold)

Валидация. Отложенные выборки

Валидация. Перекрестная валидация (кросс-валидация)

Валидация. Важные аспекты разбиения

- Соответствие тестовой выборки целевому использованию модели
- Достаточный размер
- Отсутствие «утечек» в тестовую выборку
 - Тот же пациент
 - Тот же период (во временных моделях)
- Нужна ли группировка?
- Нужна ли стратификация?

Диагностика моделей. Кривые обучения

- Два вида:
 - От размера обучающего множества
 - От количества итераций обучения

Кривые обучения (от размера обучающего множества)

Кривые обучения (от размера обучающего множества)

Кривые обучения (от количества итераций)

OK

Недообученная модель

(продолжить обучение)

Переобученная модель, оверфиттинг,

(ранний останов, увеличить размер обучающего множества, упростить модель)

Тема 10. Обучение нейронных сетей

Модель одного искусственного нейрона

- Без A(.) линейная регрессия
- При $A(x) \equiv \sigma(x) \equiv (1 + e^{-x})^{-1}$ логистическая регрессия (только линейная разделимость)

Слой искусственных нейронов

Нейронная сеть

Нейронная сеть

Функции активации

Внутри сети (скрытые слои)

См. также:

Leaky ReLU, ELU и др.

$$a(x) = \tanh(x)$$

$$\underbrace{\overset{\times}{\xi}}_{0.0} = 0.5$$

$$\underbrace{\overset{\times}{\xi}}_{-0.5} = 0.0$$

Последний слой

Сигмоидальная (бинарная классификация)

$$a(x) = \frac{1}{1 + e^{-x}}$$

Softmax (многоклассовая классификация)

$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \rightarrow \frac{e^{x_i}}{\sum_j e^{x_j}} \rightarrow \begin{pmatrix} 0.27 \\ 0.01 \\ 0.72 \end{pmatrix}$$

Сложность и выразительность сети

- «Выразительность» сети:
 - Количество слоев
 - Количество нейронов в слое
- Теоретически:
 - Достаточно одного скрытого слоя
- На практике:
 - Можно обойтись меньшим количеством нейронов, если использовать больше слоёв
 - Но: при очень глубоких сетях (>10) возможны проблемы
 - Возможные решения: residual networks, skip connections

Регуляризация. Исключение/дропаут (Dropout)

- Цель регуляризации:
 - Уменьшение переобучения

- Весовая регуляризация:
 - Наложение штрафа на величину весов сети:

$$L_r(x, y; \theta) = L(x, y; \theta) + \gamma \hat{R}(\overline{\theta})$$

- Предотвращение образования сильных связей между нейронами в соседних слоях посредством выбрасывания (зануления) выходов слоя с определенной вероятностью
 - Режим обучения и режим «вывода» (предсказания)

Пакетная нормализация (batch normalization)

- Идея:
 - масштабирование данных, приведение их в «удобный» диапазон

Вход: Пакет $B = \{x_1, ..., x_m\}$, параметры γ, β , константа ϵ .

Выход:
$$\{y_1, \dots, y_m\}$$

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i$$

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)$$

$$\hat{x}_i = (x_i - \mu_B) / \sqrt{\sigma_B^2 + \epsilon}$$

$$y_i = \gamma \hat{x}_i + \beta$$

Обучаются

Пакетная нормализация (batch normalization)

• Полезные свойства:

- достигается более быстрая сходимость моделей, несмотря на выполнение дополнительных вычислений;
- пакетная нормализация позволяет каждому слою сети обучаться более независимо от других слоев;
- становится возможным использование более высокого темпа обучения, так как пакетная нормализация гарантирует, что выходы узлов нейронной сети не будут иметь слишком больших или малых значений;
- пакетная нормализация в каком-то смысле также является механизмом регуляризации: данный метод привносит в выходы узлов скрытых слоев некоторый шум, аналогично методу dropout;
- модели становятся менее чувствительны к начальной инициализации весов.

Литература

• Основное:

• Рассел С., Норвиг П. Искусственный интеллект. Современный подход. 4-е издание

• Дополнительно:

- Dive into Deep Learning: http://d2l.ai
- Coursera/DeepLearning.AI: Deep Learning Specialization (Andrew Ng)
- Блог А. Дьяконова: https://alexanderdyakonov.wordpress.com
 - ROC AUC и вообще много хороших материалов:
 - https://alexanderdyakonov.wordpress.com/2017/07/28/auc-roc-площадь-под-кривойошибок/