HP Prime for All

Docs: Commands

,			
Search:			
Scarcii.			
,			

<u>#link</u>

Syntax

value!

Description

Factorial. Returns the factorial of a positive integer. For non-integers, $! = \Gamma(x + 1)$. This calculates the Gamma function.

Example

6! returns 720

discussion

%

<u>#link</u>

Syntax

%(x, y)

Description

x percent of y. Returns (x/100)*y.

Example

%(20,50) returns 10

discussion

%CHANGE

#link

Syntax

%CHANGE(x, y)

Description

Percent change from x to y. Returns 100*(y-x)/x. %CHANGE(20,50) returns 150

discussion

%TOTAL

%TOTAL(x, y)

Description

Percent total; the percentage of x that is y. Returns 100*y/x. %TOTAL(20,50) returns 250.

discussion

#link

Syntax

discussion

<u>#link</u>

Syntax

Object1×Object2

Description

Multiplication.

Returns the result of multiplying Object1 and Object2. The objects may be numerical values or expressions that return numerical results. The objects may also be lists or matrices of appropriate dimensions.

Example

3*2 returns 6

discussion

#link

Syntax

Object1 + Object2

Description

Addition.

Returns the result of adding Object2 to Object 1. The objects may be numerical values or expressions that return numerical results. The objects may also be lists or matrices of appropriate dimensions.

Example

3+2 returns 5

discussion

-

Object1 - Object2

Description

Subtraction.

Returns the result of subtracting Object2 from Object 1. The objects may be numerical values or expressions that return numerical results. The objects may also be lists or matrices of appropriate dimensions.

Example

3-2 returns 1

discussion

#link

Syntax

.*(Lst||Mtrx,Lst||Mtrx)

Description

Performs an element-by-element multiplication of 2 lists or 2 matrices.

Example

[[1,2],[3,4]] .* [[3,4],[5,6]] returns [[3,8],[15,24]]

discussion

<u>#link</u>

Syntax

matrix .+ real/complex or real/complex .+ matrix

Description

Adds the real/complex to each element of the matrix

Example

[1,2].+3 returns [4,5]

discussion

#link

Syntax

matrix .- real/complex or real/complex .- matrix

Description

Substract the real/complex to each element of the matrix (or the reverce as appropriate)

Example

[3,4].-2 returns [1,2]

discussion

#link

Syntax

./(Lst||Mtrx,Lst||Mtrx)

Description

Performs an element-by-element division of 2 lists or 2 matrices.

Example

[[1,2],[3,4]] ./ [[3,4],[5,6]] returns [[1/3,1/2],[3/5,2/3]]

discussion

#link

Syntax

.^(Mtrx,Intg(n))

Description

Calculates the power of each element of the matrix.

Example

[[1,2],[3,4]] .^ 3 returns [[1,8],[27,64]]

discussion

#link

Syntax

Object1/Object2

Description

Division.

Returns the result of dividing Object1 by Object2. The objects may be numerical values or expressions that return numerical results. The objects may also be lists or matrices of appropriate dimensions.

Example

3÷2 returns 1.5

variable := object

Description

Assigns object to variable.

Example

A := 3 stores the value 3 in the variable A

F1 := 3-x makes F1(x)=3-x

M5 := [1, 2] stores a vector in M5

discussion

#link

Syntax

value1 < value2</pre>

Description

<: Less than or equal to.

Tests whether or not Value1 is less than Value2. Returns 1 if true, 0 if false.

Example

 $2 \le 1$ returns 0

discussion

#link

Syntax

Value1 ≤ Value2

Description

≤: Less than or equal to.

Tests whether or not Value1 is less than Value 2. Returns 1 if true, 0 if false.

Example

 $2 \le 1$ returns 0

Alternative: <=

discussion

Syntax

Value1 ≠ Value2

Description

≠: Not equal to.

Tests if Value 1 is not equal to Value 2. Returns 1 if true, 0 if false.

Example

 $3 \neq 5$ returns 1

Alternatives: <>

discussion

<u>#link</u>

Syntax

value1 == Value2

Description

==: equal to.

Tests is Value1=Value2. Returns 1 if true, 0 if false.

Example

3==2 returns 0

discussion

#link

Syntax

value1 == Value2

Description

==: equal to.

Tests is Value1=Value2. Returns 1 if true, 0 if false.

Example

3==2 returns 0

discussion

#link

Syntax

value1 > value2

Description

>: Greater than.

Tests whether or not Value 1 is greater than Value 2. Returns 1 if true, 0 if false.

Example

2 > 1 returns 1

discussion

#link

Syntax

Value1 ≥ Value2

Description

≥: Greater than or equal to.

Tests whether or not Value 1 is either greater than or equal to Value 2. Returns 1 if true, 0 if false.

Example

 $3 \ge 4 \text{ returns } 0$

Alternative: >=

discussion

<u>#link</u>

Syntax

Value1^Value2

Description

Exponentiation.

Returns the result of raising Value1 to the power of Value2.

Example

2^{^3} returns 8

discussion

#link

Syntax

QUOTE(expression)

Description

Returns the expression unchanged and un-evaluated.

This function is mostly used with the STO \triangleright command in order to store a function in a function variable. For example if you want to store SIN(X) in F1.you cannot do SIN(X) \triangleright F1 as SIN(X) would be evaluated and a numerical result would be stored into F1.

QUOTE(SIN(X)) \rightarrow F1 will store SIN(X) in F1.

a2q

#link

Syntax

a2q(Mtrx, VectVar)

Description

a2q(A,X)=the quadratic form q associated to A, X=vector of variables.

Example

a2q([[1,2],[4,4]],[x,y]) returns $x^2+6*x*y+4*y^2$

discussion

abcuv

#link

Syntax

abcuv(Polya,Polyb,Polyc,[Var])

Description

Returns [u,v] suchthat au+bv=c for 3 polynomials a, b, and c.

Example

abcuv $(x^2+2*x+1,x^2-1,x+1)$ returns [1/2,-1/2]

discussion

about

#link

Syntax

about(Var(a))

Description

Returns the hypothesis made with assume on the variable a.

Example

about(n) returns n

discussion

ABS

#link

Syntax

ABS(expr) or ABS(matrix)

Description

For numerical arguments, returns the absolute value of the expression. For matrix arguments, returns the returns the Frobenius (Euclidean) norm of the array.

Example

ABS(-3.14) returns 3.14 and ABS([[1,2],[3,4]]) returns 5.477225576125ussion

abscissa

#link

Syntax

abscissa(Pnt or Vect)

Description

Returns the abscissa of a point or a vector.

Example

abscissa(point(1+2*i)) returns 1

discussion

ACOS

#link

Syntax

ACOS(Value)

Description

ACOS: the inverse cosine function.

This Shift-key combination returns the inverse cosine of Value. The output depends on the Angle Measure setting.

Example

ACOS(-1) returns 3.14159265359

discussion

acos2asin

#link

Syntax

acos2asin(Expr)

Description

Replaces arccos(x) by $\pi/2$ -arcsin(x) in the argument Expr.

Example

acos2asin(acos(x)+asin(x)) returns $\pi/2-asin(x)+asin(x)$

discussion

acos2atan

acos2atan(Expr)

Description

Replaces $\arccos(x)$ by $\pi/2 - \arctan(x/\sqrt{1-x^2})$ in the argument.

Example

acos2atan(2*acos(x)) returns $2*(\pi/2-atan(x/(\sqrt{(1-x^2))}))$

discussion

ACOSH

#link

Syntax

ACOSH(value)

Description

Inverse hyperbolic cosine.

Example

ACOSH(1.54308063482) returns 1

discussion

ACOT

#link

Syntax

ACOT(value)

Description

Arc cotangent. The function derived from the inverse of the Cotangent function.

Example

ACOT(1) returns 45 in degree mode

discussion

ACSC

#link

Syntax

ACSC(value)

Description

Arc cosecant. The function derived from the inverse of the Cosecant function.

Example

ACSC(1) returns 90 in degree mode

ADDCOL(matrixname, vector, column_number)

Description

Add Column. Inserts values from vector into a column before column_number in the specified matrix. The size of vector must be the same as the number of rows in the matrix matrixname.

additionally

#link

Syntax

additionally(Expr)

Description

Make an additional assumption about a variable.

Example

assume(n,integer);additionally(n>5) returns DOM_INT,n

discussion

ADDROW

#link

Syntax

ADDROW(matrixname, vector, row_number)

Description

Add Row. Inserts values from vector into a row before row_number in the specified matrix. The size of vector must be the same as the number of columns in the matrix matrixname.

discussion

affix

<u>#link</u>

Syntax

affix(Point) or affix(Vector)

Description

Returns the coordinates of a point or both the x- and y-lengths of a vector as a complex number.

Example

affix(point(3,2)) returns 3+2*i if GA is a point at (1, -2), then affix(GA) returns 1-2*i. discussion

algvar

#link

Syntax

algvar(Expr)

Description

List of the variables by ascending algebraic extension order.

Example

algvar($\sqrt{x+y}$) returns [[y],[x]]

discussion

ALOG

#link

Syntax

ALOG(value)

Description

The common antilogarithm. This is more accurate than 10^x due to limitations of the power function.

Example

ALOG(2) returns 100

discussion

alog10

#link

Syntax

alog10(Expr)

Description

Function $x -> 10^x$.

Example

alog10(3) returns 1000

discussion

altitude

#link

Syntax

altitude(point1, point2, point3)

Description

Given three non-collinear points, draws the altitude of the triangle defined by the three points that passes through the first point. The triangle does not have to be drawn.

Example

altitude(A, B, C) draws a line passing through point A that is perpendicular to BC.

discussion

AND

#link

Syntax

Value1 AND Value2

Description

Logical AND.

Returns 1 if both value1 and value2 are non-zero; otherwise returns 0.

Example

3 AND 2 returns 1

discussion

angle

#link

Syntax

angle(Vertex, Point2, Point3)

Description

Returns the measure of a directed angle. The first point is taken as the vertex of the angle as the next two points in order give the measure and orientation.

Example

angle(GA, GB, GC) returns the measure of ∡BAC

discussion

angleat

#link

Syntax

angleat(Vertex, Point2, Point3, Point4)

Description

Used in Symbolic view. Given the three points of an angle and a fourth point as a location, displays the measure of the angle defined by the first three points, with a label,

at the location in the Plot view given by the fourth point. The first point is the vertex of the angle.

Example

angleat(GA, GB, GC, point(0,0)) displays "aA=" at the origin, followed by the measure of ${}_{\bot}BAC$.

angleatraw

#link

Syntax

angleatraw(Pnt(A)),Pnt(B),Pnt(C),(Pnt or Cplx(z0)))

Description

angleatraw(A,B,C,z0) displays at point(z0), the value of the measure of the angle (ABLAC) on

Ans

#link

Syntax

ANS

Description

ANS: Last answer.

Returns the result of the last calculation made in Home view to its full precision. The variable ANS is different from the numbers in Home's history. A value in ANS is stored internally with the full precision of the calculated result, whereas the displayed numbers match the display mode.

append

#link

Syntax

append((Lst||Seq|| Set,Elem)

Description

Append an element to a list.

Example

append([1,2,3],4) returns [1,2,3,4]

discussion

apply

#link

Syntax

apply(Fnc(f),Lst(1))

Description

Apply the function f at the elements of the list I (option matrix for a matrix).

Example

```
apply(x->x^3,[1,2,3]) returns [1,8,27]
```

discussion

approx

<u>#link</u>

Syntax

approx(Expr,[Int])

Description

Numerical evaluation of the first argument (we can give the number of digits as second argument).

approx(expression) works also and does the same thing.

Example

approx(2/3) returns 0.66666666667

discussion

ARC

#link

Syntax

ARC(G, x, y, r, [[41, 42], [color]])

Description

Draws a circle on GROB G, centered at (x, y), with radius r. If $\angle 1$ and $\angle 2$ are specified, draws an arc from $\angle 1$ to $\angle 2$ using the current angle mode.

discussion

ARC_P

#link

Syntax

 $ARC_P(G, x, y, r, [[41, 42], [color]])$

Description

Draws a circle on GROB G, centered at (x, y), with radius r. If $\angle 1$ and $\angle 2$ are specified, draws an arc from $\angle 1$ to $\angle 2$ using the current angle mode.

arcLen

arcLen(Expr, Real1, Real2)

Description

Returns the length of the arc of a curve between two points on the curve. The curve is an expression, the independent variable is declared, and the two points are defined by values of the independent variable.

This command can also accept a parametric definition of a curve. In this case, the expression is a list of 2 expressions (the first for x and the second for y) in terms of a third independent variable.

Example

```
arcLen(x^2, x, -2, 2) returns 9.29...
arcLen(\{\sin(t), \cos(t)\}, t, 0, \pi/2) returns 1.57...
```

discussion

area

#link

Syntax

area(Circle) or area(Polygon) or area(Expr, x=value1..value2)

Description

Returns the area of a circle or polygon. Can also return the area under a curve between two points.

Example

If GA is defined to be the unit circle, then area(GA) returns π . area(4-x^2/4, x=-4..4) returns 64/3 or 21.333... discussion

areaat

#link

Syntax

areaat(Polygon, Pnt||Cplx(z0)|

Description

Displays at point(z0), with a legend, algebraic area of a circle or of a (star) polygon (e.g. triangle, square, ...).

areaatraw

#link

Syntax

areaatraw(Polygon, Pnt||Cplx(z0)|

Description

Displays at point(z0), algebraic area of a circle or of a (star-)polygon (e.g. triangle, square, ...).

discussion

ARG

<u>#link</u>

Syntax

ARG(x+yi)

Description

The ARG function finds the angle determined by a complex number.

Example

ARG(3+3i) returns 45 in degree mode.

discussion

ASC

#link

Syntax

ASC("string")

Description

Returns a vector containing the ASCII codes of string.

Example

ASC("AB") returns [65, 66]

discussion

ASEC

#link

Syntax

ASEC(value)

Description

Arc secant. The function derived from the inverse of the Secant function.

Example

ASEC(1) returns 0 in degree mode

discussion

ASIN

#link

Syntax

ASIN(Value)

Description

ASIN: the inverse sine function.

This Shift-key combination returns the inverse sine of Value. The output depends on the Angle Measure setting.

Example

ASIN(1) returns 1.57079632679

discussion

asin2acos

#link

Syntax

asin2acos(Expr)

Description

Replaces $\arcsin(x)$ by $\pi/2-\arccos(x)$ in the argument.

Example

asin2acos(acos(x)+asin(x)) returns $\pi/2-acos(x)+acos(x)$

discussion

asin2atan

#link

Syntax

asin2atan(Expr)

Description

Replaces $\arcsin(x)$ by $\arctan(x/\sqrt{1-x^2})$ in the argument.

Example

asin2atan(2*asin(x)) returns 2*atan($x/(\sqrt{(1-x^2)})$)

discussion

ASINH

#link

Syntax

ASINH(value)

Description

Inverse hyperbolic sine.

Example

ASINH(1.17520119365) returns 1

assume

#link

Syntax

assume(Expr)

Description

Make an assumption on a variable.

Example

assume(a>0) returns a

discussion

ATAN

#link

Syntax

ATAN(Value)

Description

ATAN: the inverse tangent function.

This Shift-key combination returns the inverse tangent of Value. The output depends on the Angle Measure setting.

Example

ATAN(0) returns 0

discussion

atan2acos

#link

Syntax

atan2acos(Expr)

Description

Replaces $\arctan(x)$ by $\pi/2-\arccos(x/\sqrt{(1+x^2)})$ in the argument.

Example

atan2acos(atan(2*x) returns $\pi/2$ -acos((2*x)/ $\sqrt{(1+(2*x)^2)}$)

discussion

atan2asin

#link

Syntax

atan2asin(Expr)

Description

Replaces $\arctan(x)$ by $\arcsin(x/\sqrt{1+x^2})$ in the argument Expr.

Example

atan2asin(atan(y/x) returns asin((y/x)/ $\sqrt{(1+(y/x)^2)}$)

discussion

ATANH

<u>#link</u>

Syntax

ATANH(value)

Description

Inverse hyperbolic tangent.

Example

ATANH(.761594155956) returns 1

discussion

atrig2In

#link

Syntax

atrig2ln(Expr)

Description

Rewrites the expression Expr containing inverse trigonometric functions with equivalent logarithmic functions.

Example

atrig2ln(atan(x)) returns (i*ln((i+x)/(i-x)))/2

discussion

barycenter

#link

Syntax

barycenter([Point1, Weight1], [Point2, Weight2],...,[Pointn, Weightn])

Description

Calculates the hypothetical center of mass of a set of points, each with a given weight (a real number). Each point, weight pair is enclosed in square brackets as a vector.

Example

barycenter([-3,1],[3,1],[4,2]) returns point(2,0)

basis

#link

Syntax

basis(Lst(vector1,..,vectorn))

Description

Extract a basis from a spanning set of vectors.

Example

basis([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) returns [[-3,0,3],[0, $\frac{1}{6}$] basis([[1,2,3],[4,5,6],[0, $\frac{1}{6}$]) returns [[-3,0,3],[0, $\frac{1}{6}$]) basis([[1,2,3],[4,5,6],[0, $\frac{1}{6}$]) returns [[-3,0,3],[0, $\frac{1}{6}$]) returns [[-3,0,3],[0,\frac{1}{6}]) returns [[-3,0,3],[0,\frac{1}{6}] returns [[-3,0,3],[0,\frac{1}{6}]]

BEGIN

#link

Syntax

BEGIN commands; END;

Description

Defines a set of commands to be executed in a block.

Example

SQM1

EXPORT SQM1(X)

BEGIN

RETURN X^2-1 ;

END;

This program defines a user function named SQM1(X). From the Home view, entering SQM1(8) returns 63.

Beta

#link

Syntax

Beta(Expr,Expr)

Description

Returns Gamma(x)*Gamma(y)/Gamma(x+y).

Example

Beta(3,2) returns 1/12

BINOMIAL

#link

Syntax

BINOMIAL(n, k, p)

Description

Binomial probability density function. Computes the probability of k successes out of n trials, each with a probability of success, p.

Returns Comb(n,k) if there is no third argument. Note that n and k are integers with k=n.

Example

BINOMIAL(4, 2, 0.5) returns 0.375

discussion

BINOMIAL_CDF

#link

Syntax

BINOMIAL_CDF(n, p, k)

Description

Cumulative binomial distribution function. Returns the probability of k or fewer successes out of n trials, with a probability of success, p for each trial. Note that n and k are integers with k=n.

Example

BINOMIAL_CDF(4, 0.5, 2) returns 0.6875

discussion

BINOMIAL_ICDF

#link

Syntax

BINOMIAL_ICDF(n, p, q)

Description

Inverse cumulative binomial distribution function. Returns the number of successes, k, out of n trials, each with a probability of p, such that the probability of k or fewer successes is q.

Example

BINOMIAL_ICDF(4, 0.5, 0.6875) returns 2

discussion

bisector

bisector(Point1, Point2, Point3)

Description

Given three points, creates the bisector of the angle defined by the three points whose vertex is at the first point. The angle does not have to be drawn in the Plot view.

Example

bisector(GA, GB, GC) draws the bisector of $_{4}BAC$. bisector(0,-4i,4) draws the line given by y=-x

discussion

BITAND

#link

Syntax

BITAND(int1[, int2..,intn])

Description

Bitwise logical AND. Takes n integers as input and returns their bitwise logical AND.

Example

BITAND(20, 13) returns 4

discussion

BITNOT

#link

Syntax

BITNOT(int)

Description

Bitwise logical NOT. Takes one integer as input and returns its bitwise not.

discussion

BITOR

#link

Syntax

BITOR(int1[, int2..,intn])

Description

Bitwise logical OR. Takes n integers as input and returns their bitwise logical OR.

Example

BITOR(9, 26) returns 27

#link

BITSL

Syntax

BITSL(int1[, int2])

Description

Bitwise shift left. Takes one or two integers as input and returns the result of shifting the bits in the first integer to the left by the number of places indicated by the second integer. If there is no second integer, then the bits in the first integer are shifted to the left one place.

Example

BITSL(28, 2) returns 112 BITSL(5) returns 10

discussion

BITSR

#link

Syntax

BITSR(int1[, int2])

Description

Bitwise shift right. Takes one or two integers as input and returns the result of shifting the bits in the first integer to the right by the number of places indicated by the second integer. If there is no second integer, then the bits in the first integer are shifted to the right one place.

Example

BITSR(112, 2) returns 28 BITSR(10) returns 5

discussion

BITXOR

#link

Syntax

BITXOR(int1[, int2..,intn])

Description

Bitwise logical exclusive OR (XOR). Takes n integers as input and returns their bitwise XOR.

Example

BITXOR(9, 26) returns 19

#link

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

BLIT

#link

Syntax

BLIT([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2], [c])

Description

Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between points (dx1, dy1) and (dx2, dy2). Does not copy pixels from srcG that are color c.

The defaults for the optional arguments are:

tratG=G0

srcG=G0

sx1, sy1 = srcGRB top left corner

sx2, sy2=srcGRB bottom right corner

dx1, dx2=trgtGRB top left corner

dx2, dy2=calculated so destination area is the same as source area

c=all pixel colors

discussion

BLIT_P

#link

Syntax

BLIT_P([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2],
[c])

Description

Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between points (dx1, dy1) and (dx2, dy2). Does not copy pixels from srcG that are color c.

The defaults for the optional arguments are: trqtG=G0

```
srcG=G0
sx1, sy1=srcGRB top left corner
sx2, sy2=srcGRB bottom right corner
dx1, dx2=trgtGRB top left corner
dx2, dy2=calculated so destination area is the same as source area
c=all pixel colors

discussion
```

blue

<u>#link</u>

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

bounded_function

#link

Syntax

discussion

BREAK

#link

Syntax

BREAK [n];

Description

Exits from expression local loop structure.

Example

```
FOR A FROM 1 TO 10 DO
   B:= (A+3) MOD 5
   IF B==1 THEN BREAK;
   END;
END;
```

If n is specified, allow to exit n loop structures.

breakpoint #link

Syntax

Description

breakpoint(Intg)

Adds a breakpoint. <u>discussion</u>

 $B \rightarrow R$ #link

Syntax

B→R(#integer)

Description

Transform an integer into a real number. <u>discussion</u>

canonical_form #link

Syntax

canonical_form(Trinom(a*x^2+b*x+c),[Var])

Description

Canonical form of a second degree polynomial.

Example

canonical_form($2*x^2-12*x+1$) returns $2*(x-3)^2-17$ discussion

#link

CAS

Syntax

CAS(expression) or CAS.function(...) or CAS.variable[(...)]

Description

Evalute an expression or variable using the CAS.

Note that outputs in numerical mode are transformed into strings or lists of expressions for symbolic matrices.

discussion

CASE

#link

Syntax

CASE IF test1 THEN commands1 END IF test2 THEN commands2 END ... IF testN THEN commandsN END [DEFAULT] [commandsD] END;

Description

Starts a "CASE...END" branch structure.

Example

Evaluates test1. If true, executes commands1 and ends the CASE.

Otherwise, evaluates test2. If true, executes commands2. Continues evaluating tests until a true is found. If no true test is found, executes commandsD, if provided.

discussion

cat

<u>#link</u>

Syntax

cat(SeqObj)

Description

Evaluates the arguments, then concatenates them into a string.

Example

cat("aaa","c",12*3) returns "aaac36"

discussion

CEILING

<u>#link</u>

Syntax

CEILING(value)

Description

Least integer greater than or equal to value.

Example

CEILING(3.2) returns 4 and CEILING(-3.2) returns -3

discussion

center

#link

Syntax

center(Circle)

Description

Returns the center of a circle

Example

center(circle(x^2+y^2-x-y)) returns point(1/2,1/2)

discussion

cFactor

<u>#link</u>

Syntax

cFactor(Expr)

Description

Factorisation of the expression in C (on the Gauss integers if there are more than 2 variables).

Example

cFactor(x^2*y+y) returns (x+i)*(x-i)*y

discussion

CHAR

#link

Syntax

CHAR(list or vector) or CHAR(integer)

Description

Returns the string corresponding to the ASCII character codes in vector, or the single character associated with integer.

Example

CHAR(65) returns "A" and CHAR({82, 77, 72}) returns "RMH"

discussion

charpoly

#link

Syntax

charpoly(Mtrx,[Var])

Description

List of the coefficients of the characteristic polynomial of a matrix or characteristic polynomial of a matrix with the second argument as variable.

Example

charpoly([[1,2],[3,4]]) returns poly1[1,-5,-2]

discussion

CHECK

CHECK(n)

Description

Checks (selects) the corresponding symbolic definition field in the current app. The integer n must be between 0 and 9 for most apps. For Statistics 1-Var and Statistics 2-Var apps, n must be between 1 and 5.

Example

CHECK(3) would check F3 if the current app is Function. Then a checkmark would appear next to F3 in Symbolic view, F3 would be plotted in Plot view, and evaluated in Numeric view

discussion

chinrem

#link

Syntax

chinrem([Lst||Expr,Lst||Expr],[Lst||Expr,Lst||Expr])

Description

Chinese remainder for polynomials written as matrices.

Example

```
chinrem([[1,2,0],[1,0,1]],[[1,1,0],[1,1,1]]) returns [[2,2,1],[1,1,2,1,1]].
```

discussion

CHISQUARE

#link

Syntax

CHISQUARE(n, x)

Description

Chi-square probability density function. Computes the probability density of the Chi-squared distribution at x, given n degrees of freedom.

Example

CHISQUARE(2, 3.2) returns 0.100948258997

discussion

CHISQUARE_CDF

#link

Syntax

CHISQUARE_CDF(n, k)

Description

Cumulative χ^2 (Chi-squared) distribution function. Returns the lower-tail probability of the χ^2 probability density function for the value x, given n degrees of freedom.

Example

CHISQUARE_CDF(2, 6.1) returns 0.952641075609

discussion

CHISQUARE_ICDF

#link

Syntax

CHISQUARE_ICDF(n, p)

Description

Inverse cumulative χ^2 (Chi-squared) distribution function. Returns the value x such that the χ^2 lower-tail probability of x, with n degrees of freedom, is p.

Example

CHISQUARE_ICDF(2, 0.952641075609) returns 6.1

discussion

cholesky

<u>#link</u>

Syntax

cholesky(Mtrx)

Description

For a numerical symmetric matrix A, returns L matrix such that A=L*tran(L).

Example

cholesky([[3,1],[1,4]]) returns [[$3*\sqrt{3}/3$,0],[$\sqrt{3}/3$,11/ $3*\sqrt{33}/11$]] discussion

CHOOSE

#link

Syntax

```
CHOOSE(var, "title", "item1", "item2",[..."item14"]) or CHOOSE(var, "title", {"item1"..."itemN")
```

Description

Displays a choose box with the given title and containing items with the strings "item1", etc. If the user choose an object, var will be updated to contain the number of the selected object (an integer, 1, 2, 3, ...); otherwise, stores zero in var if the user exits without choosing.

Returns true (non zero) if the user selects an object, otherwise return false (0). discussion

chrem

#link

Syntax

chrem(LstIntg(a,b,c...),LstIntg(p,q,r,...))

Description

Chinese remainders for integers.

Example

chrem([2,3],[7,5]) returns [-12,35]

discussion

Ci

<u>#link</u>

Syntax

Ci(Expr)

Description

Cosine integral int(cos(t)/t,t= $-\infty..x$).

Example

Ci(1.0) returns 0.337403922901

discussion

circle

#link

Syntax

discussion

circumcircle

#link

Syntax

circumcircle(Point1, Point2, Point3)

Description

Draws the circumcircle of a triangle; that is, the circle circumscribed about a triangle.

Example

circumcircle(GA, GB, GC) draws the circle circumscribed about ΔΑΒαiscussion

coeff

coeff(Expr,[Var], [Term])

Description

Returns the list of coefficients of a polynomial with respect to the second argument or the coefficient of the term whose degree is Term.

Example

```
coeff(x^3+2) returns [1,0,0,2]
coeff(2*y^2-3,y,0) returns -3
```

discussion

col

<u>#link</u>

Syntax

col(Mtrx(A),Intg(n)||Interval(n1..n2))

Description

Returns the column n or the sequence of the columns n1...n2 of the matrix A, or optional argument of count,count_eq,count_inf,count_sup.

Example

col([[1,2,3],[4,5,6],[7,8,9]],1) returns [2,5,8]

discussion

colDim

#link

Syntax

coldim(Mtrx)

Description

Number of columns of a matrix.

Example

coldim([[1,2,3],[4,5,6]]) returns 3

discussion

collect

#link

Syntax

collect(Expr or {Expr1, Expr2,...,Exprn})

Description

Collects likes terms in a polynomial expression (or of a list of polynomial expressions).

Example

collect(x+2*x+1-4) returns 3*x-3

discussion

COLNORM

#link

Syntax

COLNORM(matrix)

Description

Column Norm. Finds the maximum value (over all columns) of the sums of the absolute values of all elements

Example

COLNORM([[1,2],[3,4]]) returns 6

discussion

COMB

#link

Syntax

COMB(n, r)

Description

Combinations. Returns the number of combinations (without regard to order) of n things taken r at a time: n!/(r!(n-r))

Example

COMB(5,2) returns 10

discussion

comDenom

#link

Syntax

comDenom(Expr, [Var(var)])

Description

Returns the expression after reduction at the same denominator: the numerator and the denominator are developed [according to the powers of the variable var].

Example

comDenom $(1/x+1/y^2+1)$ returns $(x*y^2+x+y^2)/(x*y^2)$

discussion

#link

common_perpendicular

common_perpendicular(Line(D1),Line(D2))

Description

Draws the common perpendicular of the lines D1 and D2.

discussion

companion

<u>#link</u>

Syntax

companion(Poly, Var)

Description

Companion matrix of a polynomial (an=1).

Example

companion(x^2+5x-7,x) returns [[0,7],[1,-5]]

discussion

compare

#link

Syntax

compare(Obj(arg1),Obj(arg2))

Description

Returns 1 if type(arg1)<type(arg2) or if type(arg1)=type(arg2) and arg1<arg2, else returns 0.

Example

compare(1,2) returns 1

discussion

complexroot

#link

Syntax

complexroot(Poly(P),Real(1),[Cplx(a)],[Cplx(b)])

Description

Returns the list of the vertices of the squares (side<=1) containing roots of P [inside the rectangle with opposed vertices a and b] with their mulitiplicity.

Example

```
complexroot(x^5-2*x^4+x^3+i,0.1) returns [[[(-21-12*i)/32,(-18-9*i)/32],1],[[(6-15*i)/16,(-6-21*i)/(16-16*i)],1],[[(27+18*i)/(16+16*i),(24-3*i)/16],1],[[(6+27*i)/(16+16*i),(9+6*i)/8],1],
```

CONCAT

#link

Syntax

CONCAT(value1, value2, [..value16])

Description

Concatenation. Concatenates (joins) items into a list.

Example

COND

#link

Syntax

COND(matrix)

Description

Condition Number. Finds the 1-norm (column norm) of a square matrix.

Example

COND([[1,2],[3,4]]) returns 21

discussion

conic

#link

Syntax

conic(Expr)

Description

Plots the graph of a conic section defined by an expression in x and y.

Example

conic(x^2+y^2-81) draws a circle with center at (0,0) and radius Afcussion

CONJ

#link

Syntax

CONJ(x+yi)

Description

Complex Conjugate. Reverses the sign of the imaginary part of a complex number.

Example

CONJ(3+4i) returns 3-4i

discussion

contains

#link

Syntax

contains((Lst(1) or Set(1)),Elem(e))

Description

Tests if a set contains an expression (returns the index+1 or 0).

Example

contains(%{0,1,2,3%},2) returns 3

discussion

content

#link

Syntax

content(Poly,[Var])

Description

Returns the gcd of the coefficients of the polynomial Poly.

Example

content($2*x^2+10*x+6$) returns 2

discussion

CONTINUE

#link

Syntax

discussion

CONVERT

#link

Syntax

CONVERT(Value_Unit1, 1_Unit2)

Description

Converts Value in Unit1 to the corresponding value in compatible Unit2.

Example

CONVERT(20_m, 1_ft) returns 65.6167979003_ft

Alternative: 20_m ▶ _ft <u>discussion</u>

convexhull

<u>#link</u>

Syntax

convexhull(Lst)

Description

Convex hull of a list of 2D points.

Example

convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i) returns $1-3*i,1+2*i,-2+i,\frac{1}{2}$

coordinates

#link

Syntax

coordinates(Pnt or Cplx or Vect)

Description

Returns the list (resp matrix) of the abscissa and of the ordinate of a point or a vector (resp of points or vectors).

Example

coordinates(point(1+2*i)) returns [1,2]

discussion

CopyVar

#link

Syntax

CopyVar(Var(var1), Var(var2))

Description

Copy the storage without evaluation of var1 into var2.

discussion

correlation

#link

Syntax

correlation(Lst||Mtrx,[Lst])

Description

Returns the correlation of the elements of its argument.

Example

correlation([[1,2],[1,1],[4,7]]) returns $33/(6*\sqrt{31})$

discussion

COS

<u>#link</u>

Syntax

cos(value)

Description

Returns the cosine of Value. Value is interpreted as either degrees or radians, depending on the setting of Angle Measure in Home Modes or Symbolic Setup.

Example

in radian mode, $COS(\pi)$ returns -1.

discussion

cos2sintan

#link

Syntax

cos2sintan(Expr)

Description

Replaces cos(x) by sin(x)/tan(x) in the argument.

Example

cos2sintan(cos(x)) returns sin(x)/tan(x)

discussion

COSH

#link

Syntax

COSH(value)

Description

Hyperbolic cosine.

Example

ASINH(1.17520119365) returns 1

COT

#link

Syntax

COT(value)

Description

Cotangent. The Cotangent function; that is, cos(x)/sin(x).

Example

COT(45) returns 1 in degree mode

discussion

count

#link

Syntax

count(Fnc(f),(Lst||Mtrx)(1),[Opt(row||col)])

Description

Returns f(I[0])+f(I[1])+...+f(I[size(I)-1]).

Example

count((x)->x,[2,12,45,3,7,78]) returns 147

discussion

covariance

<u>#link</u>

Syntax

covariance(Lst||Mtrx,[Lst])

Description

Returns the covariance of the elements of its argument.

Example

covariance([[1,2],[1,1],[4,7]]) returns 11/3

discussion

covariance_correlation

#link

Syntax

covariance_correlation(Lst||Mtrx,[Lst])

Description

Returns the list of the covariance and the correlation of the elements of its argument.

Example

covariance_correlation([[1,2],[1,1],[4,7]]) returns $[11/3,33/(6*\sqrt{2}iseussion]]$

cpartfrac

#link

Syntax

cpartfrac(RatFrac)

Description

Performs partial fraction decomposition in C of a fraction.

Example

cpartfrac($(x)/(4-x^2)$) returns $1/((x-2)^*-2)+1/((x+2)^*-2)$

discussion

crationalroot

#link

Syntax

crationalroot(Poly(P))

Description

Returns the list of complex rational roots of P without indicating the multiplicity.

Example

crationalroot($2*x^3+(-5-7*i)*x^2+(-4+14*i)*x+8-4*i$) returns [(3+i)/2,2*i,1+i]

discussion

CROSS

#link

Syntax

CROSS(vector1, vector2)

Description

Cross Product. Finds the cross product of vector1 with vector2.

Example

CROSS([1,2],[3,4]) returns [0, 0, -2]

discussion

CSC

#link

Syntax

CSC(value)

Description

Cosecant. The Cosecant function; that is, $1/\sin(x)$

Example

CSC(90) returns 0 in degree mode

discussion

cSolve

#link

Syntax

csolve(Eq,Var)

Description

Returns the solutions, including comlex solutions, of Eq, for Var. If Eq is an expression, solves Eq=0.

Example

csolve($x^4=1,x$) returns $\{1,-1,-i,i\}$

discussion

cumSum

#link

Syntax

cumSum(Lst(1)||Seq||Str)

Description

Returns the list (or the sequence or the string) Ir where the elements are the cumulative sum of the list l:Ir[k]=sum(I[j],j=0..k) (or Ir=sum(I[j],j=0..k)) (k=0..size(I)-1)).

Example

cumSum([0,1,2,3,4]) returns [0,1,3,6,10]

discussion

curl

#link

Syntax

curl(Lst(A,B,C),Lst(x,y,z))

Description

Returns the curl of a vector. curl([A,B,C],[x,y,z])=[dC/dy-dB/dz,dA/dz-dC/dx,dB/dx-dA/dy].

Example

curl([2*x*y,x*z,y*z],[x,y,z]) returns [z-x,0,z-2*x]

discussion

curve

#link

Syntax

curve(Expr)

Description

Reserved word.

discussion

cyan

<u>#link</u>

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

cyclotomic

#link

Syntax

cyclotomic(Expr)

Description

Generates a vector representing the nth cyclotomic polynomial.

Example

cyclotomic(20) returns [1,0,-1,0,1,0,-1,0,1]

discussion

cZeros

#link

Syntax

cZeros(Expr,[Var]) or cZeros(ListExpr, ListVar)

Description

Returns the roots, including complex roots, of Expr (that is, the solution of Xpr=0) or the matrix where the lines are the solutions of the system : Expr1=0, Expr2=0....

Example

 $cZeros(x^4-1)$ returns [1,-1, i, -i]

discussion

C→PX

<u>#link</u>

Syntax

 $C \rightarrow PX(x, y)$ or $C \rightarrow PX(\{x, y\})$

Description

Transform cartesian coordinates into pixel coordinates. Returns a list.

discussion

DEBUG

#link

Syntax

DEBUG(ProgramName(arguments))

discussion

degree

#link

Syntax

degree(Poly)

Description

Returns the degree of the polynomial Poly.

Example

 $degree(x^4+x)$ returns 3

discussion

DELCOL

#link

Syntax

DELCOL(matrixname ,column_number)

Description

Delete Column. Deletes the column column_number from the matrix matrixnamgiscussion

delcols

#link

Syntax

delcols(Mtrx(A),Interval(n1..n2)||n1)

Description

Returns the matrix where the columns n1..n2 (or n1) of the matrix A are deleted.

Example

delcols([[1,2,3],[4,5,6],[7,8,9]],1..1) returns [[1,3],[4,6],[7,9] is cussion

DELROW

#link

Syntax

DELROW(matrixname, row_number)

Description

Delete Row. Deletes the row row_number from the matrix matrixname.

discussion

delrows

<u>#link</u>

Syntax

delrows(Mtrx(A),Interval(n1..n2)||n1)

Description

Returns the matrix where the rows n1..n2 (or n1) of the matrix A are deleted.

Example

 $\texttt{delrows}([[1,2,3],[4,5,6],[7,8,9]],1..1) \ \texttt{returns} \ [[1,2,3],[7,8,9]]_{\underline{discussion}}$

deltalist

#link

Syntax

deltalist(Lst)

Description

Returns the list of the difference of two terms in succession.

Example

deltalist([1,4,8,9]) returns [3,4,1]

discussion

denom

#link

Syntax

denom(a/b)

Description

Simplified Denominator. For the integers a and b, returns the denominator of the fraction a/b after simplification.

Example

denom(10/12) returns 6

discussion

#link

desolve

Syntax

desolve(Eq,[TimeVar],Var)

Description

Solves a differential equation.

Example

desolve(y''+y=0,y) returns $G_0*cos(x)+G_1*sin(x)$

discussion

DET

#link

Syntax

DET(matrix)

Description

Determinant of a square matrix.

Example

DET([[1,2],[3,4]]) returns -2

discussion

diag

#link

Syntax

diag(Lst(1)||Mtrx(A))

Description

Returns either the diagonal matrix with diagonal I or the diagonal of A.

Example

diag([1,2],[3,4]) returns [1,4]

diff

#link

Syntax

diff(Expr,[Var or ListVar])

Description

Returns the derivative of an expression with respect to a given variable. You can use the differentiation template in the Template menu as well.

Example

```
diff(x^3-x) returns 3*x^2-1
diff(\sin(x)-\cos(y), x) returns \cos(x)
diff(\sin(x)-\cos(y), y) returns \sin(y)
```

discussion

DIFFERENCE

#link

Syntax

DIFFERENCE({list1}, ...{listN})

Description

Returns a list of the elements that are not common between 2 or more of the lists.

Example

DIFFERENCE($\{1,2,3\},\{2,4,8\}$) returns $\{1,3,4,8\}$

discussion

DIM

#link

Syntax

DIM(string)

Description

Returns the number of characters in string.

Example

DIM("12345") returns 5

discussion

DIMGROB

#link

Syntax

```
DIMGROB(G, w, h, [color]) or DIMGROB(G, w, h, list)
```

Description

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (ie, 1 bit for alpha channel, and 5 bits for R, G and spinsion

DIMGROB_P

#link

Syntax

DIMGROB_P(G, w, h, [color]) or DIMGROB(G, list)

Description

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (ie, 1 bit for alpha channel, and 5 bits for R, G and selection)

Dirac

<u>#link</u>

Syntax

Dirac(Real)

Description

Function derivative of Heaviside.

Example

Dirac(1) returns 0

discussion

distance

#link

Syntax

distance((Pnt or Cplx),(Pnt or Cplx or Curve))

Description

Calculates the distance between 2 points, or a point and a curve.

Example

distance(0,1+i) returns $\sqrt{2}$

#link

distance2

Syntax

distance2(point1, point2) or distance2(point, curve)

Description

Returns the square of the distance between two points or between a point and a curve.

Example

```
distance2(1+i, 3+3i) returns 8. if GA is the point at (0, 0) and GB is defined as plotfunc(4-x^2/4), then distance (GA, GB) returns 12. discussion
```

distanceat

#link

Syntax

distanceat(GeoObj(A),GeoObj(B),(Pnt or Cplx))

Description

distanceat(A,B,z0) displays at point(z0), with a legend, the distance between 2 geometrical objects.

Example

A:=point(0);B:=point(1+i);distanceat(A,B,(1+i)/2)) returns $\sqrt{2}$ discussion

distanceatraw

#link

Syntax

distanceatraw(Point1, Point2, Point3) or distanceatraw(Point1, Curve,
Point3)

Description

This command is used in Symbolic view. Similar to distanceat(), this command returns the distance between two points or between a point and a curve and places that measurement at the location of Point3 in the Plot view. The distance is unlabeled.

Example

distanceatraw(1+I, 3+3i, point(0,0)) returns 2.828...or $2\sqrt{2}$ and places that measure at the origin in Plot view.

If GA is the point at (0, 0) and GB is defined as plotfunc $(4-x^2/4)$, then distanceat(GA, GB, GA) returns 3.464... or $2\sqrt{3}$ and places this

measure in Plot view at (0,0).

Define A:=point(0) and B:=point(1+i); then distanceatraw(A,B,(1+i)/2)) returns $\sqrt{2}$ and places this measurement at (1/2, 1/2) discussion

divergence

<u>#link</u>

Syntax

divergence(Lst(A,B,C),Lst(x,y,z))

Description

Returns the divergence of a vector. divergence([A,B,C],[x,y,z])=dA/dx+dB/dy+dC/dz.

Example

 $divergence([x^2+y,x+z+y,z^3+x^2],[x,y,z]) returns 2*x+3*z^2+1 \underline{discussion}$

divis

#link

Syntax

divis(Poly(P) or LstPoly)

Description

Returns the list of divisors of a polynomial.

Example

divis(x^2-1) returns [1,x-1,x+1,(x-1)*(x+1)]

discussion

division_point

#link

Syntax

division_point(Point1, Point2, Realk) or division_point(Cplx1, Cplx2,
Cplxk)

Description

For two points A and B, and a numerical factor k, returns a point C such that $C-B=k^*(C-A)$. The two points may be referenced by name or represented by a complex number.

Example

division_point(0,6+6*i,4) returns point (8,8)

#link

divpc

Syntax

divpc(Poly1,Poly2,Integer)

Description

Returns the n-degree Taylor polynomial for the quotient of 2 polynomials.

Example

divpc(x^4+x+2 , x^2+1 ,5) returns the 5th-degree polynomial $x^5+3*x^4-x^3-2*x^2+x+2$

DO

#link

Syntax

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO command(s) END;

Description

Sets variable var to start; then, for as long as this variable's value is less than or equal to (or more than for a DOWNTO) finish, executes command(s) and adds (or substract for DOWNTO) 1 (or increment) to var.

Example

```
FOR A FROM 1 TO 10 STEP 2
  DO
     PRINT(A);
END;
will print 1 3 5 7 9
```

discussion

DOT

<u>#link</u>

Syntax

DOT(matrix1, matrix2)

Description

Dot Product. Finds the dot product of two arrays, matrix1 and matrix2.

Example

DOT([1,2],[3,4]) returns 11

DRAWMENU

#link

Syntax

DRAWMENU({text...}) or DRAWMENU(text...)

Description

Draw a menu containing the items specified

discussion

DrawSlp

<u>#link</u>

Syntax

DrawSlp(Reala, Realb, Realm)

Description

Given three real numbers m, a, b, draws a line with slope m that passes through the point (a, b).

Example

DrawSlp(2,1,3) draws the line given by y=3x-5

discussion

e

#link

Syntax

e

Description

Natural logarithm base, internally represented as 2.71828182846

discussion

EDITLIST

#link

Syntax

EDITLIST(listname)

Description

Starts the List Editor and displays the specified list. If used in programming, returns to the program when user presses OK (menu key).

Example

EDITLIST(L1) edits list L1.

Syntax

EDITMAT(matrixname)

Description

Starts the Matrix Editor and displays the specified matrix. If used in programming, returns to the program when user presses OK (menu key).

Example

EDITMAT(M1) edits matrix M1.

discussion

egcd

#link

Syntax

egcd((Poly or Lst),(Poly or Lst),[Var])

Description

Returns the extended greatest common divisor of 2 polynomials.

Example

 $\operatorname{egcd}((x-1)^2, x^3-1) \text{ returns } [-x-2, 1, 3*x-3]$

discussion

Ei

#link

Syntax

Ei(Expr)

Description

Exponential integral int(exp(t)/t,t= $-\infty..x$)

Example

Ei(1.0) returns 1.89511781636

discussion

EIGENVAL

#link

Syntax

EIGENVAL(matrix)

Description

Displays the eigenvalues in vector form for matrix.

Example

EIGENVAL([[1,2],[3,4]]) returns [5.37228132327 -.372281323269] discussion

eigenvals

#link

Syntax

eigenvals(Mtrx)

Description

Returns the sequence of the (calculable) eigenvalues of a matrix.

Example

eigenvals([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) returns 3,-3,-3

discussion

eigenvects

#link

Syntax

eigenvects(Mtrx)

Description

Computes the eigenvectors of a diagonalizable matrix.

Example

eigenvects([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) returns [[1,-3,-3],[-2,0,-3],[1,3,-3]]

#link

EIGENVV

Syntax

EIGENVV(matrix)

Description

Eigenvectors and Eigenvalues for a square matrix. Displays a list of two arrays. The first contains the eigenvectors and the second contains the eigenvalues.

Example

EIGENVV([[1,2],[3,4]]) returns { [[eigenvectors]],[[eigenvalues]]discussion

eigVc

#link

Syntax

eigVc(Mtrx)

Description

Computes the eigenvectors of a diagonalizable matrix.

Example

eigVl

#link

Syntax

eigVl(Mtrx(A))

Description

Returns the Jordan matrix associated to A when the eigenvalues are calculable.

Example

eigVl([[4,1],[-4,0]]) returns [[2,1],[0,2]]

discussion

element

<u>#link</u>

Syntax

element(object, real) or element(real1..real2)

Description

Creates a point on a geometric object whose abscissa is a given value or creates a real value on a given interval.

Example

element(plotfunc(x^2),-2) creates a point on the graph of $y = x^2$. Initially, this point will appear at (-2,4). You can move the point, but it will always remain on the graph of its function.

element(0..5) creates a value of 2.5 initially. Tapping on this value and pressing Enter enables you to press a cursor key to increase or decrease the value in a manner similar to a slider bar. Press Enter again to close the slider bar. The value you set can be used as a coefficient in a function you subsequently plot.

discussion

#link

ellipse

Syntax

```
ellipse(Point1, Point2, Point3) or ellipse(Point1, Point2, Realk)
```

Description

Draws an ellipse, given the foci and either a point on the ellipse or a scalar that is one half the constant sum of the distances from a point on the ellipse to each of the foci.

Example

ellipse(GA, GB, GC) draws the ellipse whose foci are points A and B and which passes through point C.

ellipse(GA, GB, 3) draws an ellipse whose foci are points A and B. For any point P on the ellipse, AP+BP=6.

ELSE

#link

Syntax

```
IF test THEN command(s) [ELSE commands] END;
```

Description

Evaluates test. If test is true (non 0), executes command(s); otherwise, executes the comands in the ELSE clause nothing happens.

Example

```
IF A<1
  THEN PRINT("A IS SMALLER THAN 1");
  ELSE PRINT("A IS LARGER THAN 1");
END;</pre>
```

discussion

END

#link

Syntax

discussion

equation

#link

Syntax

equation(curve) or equation(point)

Description

Returns the Cartesian equation of a curve in x and y, or the Cartesian coordinates of a point.

Example

```
equation(line(1-i,i)) returns y=-2*x+1
If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as circle(GA, GB-GA), then equation(GC) returns x^2 + y^2
```

equilateral_triangle

#link

Syntax

equilateral_triangle(Point1, Point2, [Var])

Description

Draws an equilateral triangle defined by one of its sides; that is, by two consecutive vertices. The third point is calculated automatically, but is not defined symbolically. If a lowercase variable is added as a third argument, then the third point is labeled with the variable name and the coordinates of the third point are stored in that variable. The orientation of the triangle is counterclockwise from the first point.

Example

equilateral_triangle(point(0,0), point(1,0)) draws the equilateral trangle through the points at (0,0), (1,0), and $(1/2, \sqrt{3}/2)$. discussion

erf

<u>#link</u>

Syntax

erf(Real(x0))

Description

Returns the approximate value of $2/\sqrt{\pi^*}$ int(exp(-t^2),t,0,x0)

Example

erf(1) returns 0.84270079295

discussion

erfc

#link

Syntax

erfc(Real(x0))

Description

Returns the approximate value of $2/\sqrt{\pi^*}$ int(exp(-t^2),t,x0, ∞).

Example

erfc(1) returns 0.15729920705

discussion

euler

#link

Syntax

euler(x);

Description

Euler's phi (or totient) function. Takes a positive integer x and returns the number of positive integers less than or equal to x that are coprime to x.

Example

euler(6) returns 2

discussion

EVAL

<u>#link</u>

Syntax

EVAL(expression)

Description

Evaluates the expression. Usefull in programs where parameters are passed non evaluated with QUOTE <u>discussion</u>

evalc

#link

Syntax

evalc(Expr)

Description

Returns a complex expression simplified with the format real+i*imag

Example

evalc(1/(x+y*i)) returns $x/(x^2+y^2)+(i)*(-y)/(x^2+y^2)$

discussion

evalf

#link

Syntax

```
evalf(Expr,[Int])
```

Description

Numerical evaluation of the first argument (we can give the number of digits as second argument).

approx(expression) works also and does the same thing.

Example

evalf(2/3) returns 0.666666666667

discussion

even

<u>#link</u>

Syntax

even(Intg(n))

Description

Returns 1 if the integer is even, else returns 0.

Example

even(6) returns 1

discussion

exact

#link

Syntax

exact(Expr)

Description

Converts the expression to a rational or real expression.

Example

exact(1.4141) returns 14141/10000

discussion

exbisector

#link

Syntax

exbisector(Point1, Point2, Point3)

Description

Given three points that define a triangle, creates the bisector of the exterior angles of the triangle whose common vertex is at the first point. The triangle does not have to be drawn in the Plot view.

Example

exbisector(GA, GB, GC) draws the bisector of the exterior angles of \triangle ABC whose common vertex is at point A.

exbisector(0,-4i,4) draws the line given by y=x

discussion

excircle

<u>#link</u>

Syntax

excircle(Point1, Point2, Point3)

Description

excircle(A,B,C) draws the A-excircle of the ABC triangle.

Draws one of the excircles of a triangle, a circle tangent to one side of the triangle and also tangent to the extensions of the other two sides.

Example

excircle(GA, GB, GC) draws the circle tangent to BC and to the rays AB and AC.

EXECON

#link

Syntax

EXECON("expression with &", lists or matrices)

Description

Returns a matrix or list composed of the result of the evaluation of the expression after replacement of & by each item in the input.

Example

EXECON("&1+1", $\{1,2,3\}$) returns $\{2,3,4\}$

If EXECON has only 1 list or matrix input, using & followed by a number A (between 1 and 9) will replace &A by the element i+A-1 of the input. Example: EXECON("&2-&1", { 1, 4, 3, 5}") returns {3, -1, 2} - the difference between 2 successive elements.

If EXECON has 2 or more lists or matrices input, using & followed by a number A (between 1 and 9) will replace &1 by the element from the Ath input.

Example: EXECON("&1+&2", $\{1,2,3\},\{4,5,6\}$) returns $\{5,7,9\}$

If EXECON has 2 or more lists or matrices as input, using & followed by 2 numbers A and B (between 1 and 9) will reaplace &AB by the element i+B-1 of the Ath input.

Example: EXECON("&22-&1", $\{1,2,3\},\{4,5,6,7\}$) returns $\{4,4,4\}$

Note that for matrix input, the elements are treated as if the matrix was a vector.

discussion

#link

Syntax

EXP(value)

Description

The natural exponential. This is more accurate than e^x due to limitations of the power function.

discussion

exp2pow

#link

Syntax

exp2pow(Expr)

Description

Transforms an expression of the form exp(n*In(x)) to x^n .

Example

exp2pow(exp(3*ln(x))) returns x^3

discussion

exp2trig

#link

Syntax

exp2trig(Expr)

Description

Transforms the complex exponential into sine and cosine.

Example

exp2trig(exp-(i*x)) returns cos(x)-i*sin(x)

discussion

expand

#link

Syntax

expand(Expr)

Description

Full distribution of multiplication and division over addition and subtraction.

Example

expand((x+y)*(z+1)) returns y*z+x*z+y+x

discussion

expexpand

#link

Syntax

expexpand(Expr)

Description

Expands exponentials using the identity $\exp(a*f(x)) = (\exp(f(x)))^a$.

Example

expexpand(exp(3*x)) returns exp(x) 3

discussion

EXPM1

#link

Syntax

EXPM1(value)

Description

Exponent minus 1. This is more accurate than EXP when x is close to zero.

Example

EXPM1(.23) returns .258600009929

discussion

exponential_regression

#link

Syntax

exponential_regression(Lst||Mtrx(A),[Lst])

Description

Returns the coefficients (a,b) of $y=b*a^x$: it is the best exponential that approximates the points where the coordinates are the rows of A (or the 2 lists).

Example

exponential_regression([[1.0,2.0],[0.0,1.0],[4.0,7.0]]) returns

EXPORT

#link

Syntax

Variable declaration: EXPORT var_1[:=value][, more variables]; forward

function declaration: EXPORT function(params); Normal function

declaration: or EXPORT function[(params)] BEGIN END;

Description

In a program, declares a list of exported variable or an exported function.

discussion

EXPR

#link

Syntax

EXPR(string)

Description

Parses string into a number or expression.

Example

EXPR("2+3") returns 5

discussion

extract_measure

#link

Syntax

extract_measure(Var)

Description

Returns the definition of a geometric object. For a point, that definition consists of the coordinates of the point. For other objects, the definition mirrors their definition in Symbolic view, with the coordinates of their defining points supplied.

Example

extract_measure(angleatraw(0,1,1+i,1) extract_measure(distanceatraw(0,1+i,(1+i)/2)) returns $\sqrt{2}$

discussion

ezgcd

#link

Syntax

ezgcd(Poly,Poly)

Description

Returns the GCD of 2 polynomials with at least 2 variables, with the ezgcd algorithm.

Example

 $ezgcd(x^2-+3*x-xy-3*y,x^2-y^2)$ returns x-y

discussion

f2nd

#link

Syntax

f2nd(Frac or RatFrac)

Description

Returns the list built with the numerator and the denominator of the simplified fraction.

Example

f2nd(42/12) returns [7,2]

discussion

factor

#link

Syntax

factor(Expr)

Description

Factorizes a polynomial.

Example

factor(x^4-1) returns $(x-1)*(x+1)*(x^2+1)$

discussion

factor_xn

<u>#link</u>

Syntax

factor_xn(Poly)

Description

Factorizes x^n in $P \to polynomial Poly (n=degree of polynomial P).$

Example

factor_xn(x^4-1) returns $x^4*(1-x^4)$

factorial

#link

Syntax

factorial(Intg(n)|| Real(a))

Description

factorial(n)=n!. For non-integers, factorial(a)=a! = G(a+1). This calculates the Gamma function.

Example

factorial(4) returns 24

discussion

factors

#link

Syntax

factors(Poly) or factors({Poly1, Poly2, ..., Polyn})

Description

Returns the list of prime factors of a polynomial; each factor followed by its multiplicity.

Example

factors(x^4-1) returns [$x-1,1,x+1,1,x^2+1,1$]

discussion

fcoeff

#link

Syntax

fcoeff(Root1, Oder1, Root2, Order2, ..., Rootn, Ordern)

Description

Returns the polynomial described by a list of roots, each followed by its order.

Example

fcoeff([1,2,0,1,3,-1]) returns $((x-1)^2)^*x^*(x-3)^{-1}$

discussion

fft

<u>#link</u>

Syntax

fft(Vect or (Vect(L),Intg(a),Intg(p))

Description

Fast Fourier Transform in R or in the field Z/pZ, with a as primitive n-th root of 1

```
(n=size(L)).
```

Example

FILLPOLY

#link

Syntax

FILLPOLY([G], {coordinates...} or [Coordinates], Color, [Alpha])

Description

Fills the polygon specified by the provided Cartésian coordinates using the color provided.

If Alpha (0 to 255) is provided, the polygon is drawn with trensparency.

Example

FILLPOLY([(0,0),(1,1),(2,0),(3,-1),(2,-2)], #FF, 128)

discussion

FILLPOLY_P

<u>#link</u>

Syntax

FILLPOLY_P([G], {coordinates...} or [Coordinates], Color, [Alpha])

Description

Fills the polygon specified by the provided pixel coordinates using the color provided. If Alpha (0 to 255) is provided, the polygon is drawn with trensparency.

Example

FILLPOLY_P([(20,20),(120,120),(150,20),(180,150),(50,100)], #FF, diseussion

FISHER

#link

Syntax

FISHER(n, d, x)

Description

F (Fisher or Fisher-Snedecor) probability density function. Computes the probability density at the value x, given numerator n and denominator d degrees of freedom.

Example

FISHER_CDF

#link

Syntax

FISHER_CDF(n, d, x)

Description

Cumulative F (Fisher or Fisher-Snedecor) distribution function. Returns the lower-tail probability of the F probability density function for the value x, given numerator n and denominator d degrees of freedom.

Example

FISHER_CDF(5, 5, 2) returns 0.76748868087

discussion

FISHER_ICDF

#link

Syntax

FISHER_ICDF(n, d, p)

Description

Inverse cumulative F (Fisher or Fisher-Snedecor) distribution function. Returns the value x such that the F lower-tail probability of x, with numerator, n and denominator, d degrees of freedom, is p.

Example

FISHER_ICDF(5, 5, 0.76748868087) returns 2

discussion

FLOOR

#link

Syntax

FLOOR(value)

Description

Greatest integer less than or equal to value.

Example

FLOOR(-3.2) returns -4

discussion

fMax

#link

Syntax

fMax(Expr,[Var])

Description

Returns the abscissa of the maximum of the expression.

Example

 $fMax(-x^2+2*x+1,x)$ returns 1

discussion

fMin

#link

Syntax

fMin(Expr, [Var])

Description

Returns the abscissa of the minimum of the expression.

Example

 $fMin(x^2-2*x+1,x)$ returns 1

discussion

FNROOT

#link

Syntax

FNROOT(expression, variable, [quess], [quess2])

Description

Function root-finder (like the Solve app). Finds the value for variable at which expression most nearly evaluates to zero. Uses guess as initial estimate.

Example

FNROOT(M*9.8/600-1, M, 1) returns 61.2244897959

discussion

FOR

#link

Syntax

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO command(s) END;

Description

Sets variable var to start; then, for as long as this variable's value is less than or equal to (or more than for a DOWNTO) finish, executes command(s) and adds (or substract for DOWNTO) 1 (or increment) to var.

format

#link

Syntax

format(Real,Str("f4"||"s5"||"e6"))

Description

Transforms the real into a string with the indicated format (f=float,s=scientific,e=engineering).

Example

format(9.3456, "s3") returns 9.35

discussion

FP

#link

Syntax

FP(value)

Description

Returns the Fractional part of value.

Example

FP (23.2) returns .2

discussion

fracmod

#link

Syntax

fracmod(Expr(Xpr),Intg(n))

Description

Returns the fraction a/b such as a/b=Xpr mod n, $-\sqrt{n/2}$ and 0<=b< $\sqrt{n/2}$

Example

fracmod(41,121) returns 2/3

FREEZE

#link

Syntax

FREEZE

Description

Prevents the screen from being redrawn after the program ends. Leaves the modified display on the screen for the user to see.

discussion

froot

#link

Syntax

froot(RatPoly(F))

Description

Returns the list of roots and poles of F with their mulitiplicity.

Example

froot($(x^5-2*x^4+x^3)/(x-3)$) returns [0,3,1,2,3,-1]

discussion

fsolve

#link

Syntax

fsolve(Expr, Var, [Guess or Interval], [Method])

Description

Numerical solution of an equation or a system of equations.

Example

fsolve(cos(x)=x,x,-1..1) returns [0.739085133215]

discussion

function_diff

#link

Syntax

function_diff(Fnc(f))

Description

Returns the derivative function of the function f.

Example

function_diff(sin) returns (`x`)->cos(`x`)

Gamma

#link

Syntax

Gamma(Real(x0))

Description

Calculus of Gamma at a point x0 (Gamma(n+1)=n! for n integer).

Example

Gamma(5) returns 24

discussion

gauss

<u>#link</u>

Syntax

gauss(Expr, VectVar)

Description

Splits a quadratic form as a sum/difference of square.

Example

gauss($x^2+2*a*x*y$,[x,y]) returns (a*y+x) $^2+(-y^2)*a^2$

discussion

gbasis

#link

Syntax

gbasis(ListPoly, ListVar)

Description

Returns the Groebner basis of the ideal spanned by the list of polynomials.

Example

gbasis($\{x^2-y^3,x+y^2\}$, $\{x,y\}$) returns $[y^4-y^3,x+y^2]$

discussion

gcd

#link

Syntax

gcd(Poly1, Poly2)

Description

Returns the greatest common divisor of 2 polynomials of several variables. Can also be used as integer gcd.

Example

 $gcd(x^2-4,x^2-5*x+6)$ returns x-2 gcd(45,30) returns 15

discussion

GETBASE

<u>#link</u>

Syntax

GETBASE(#integer)

Description

Returns the base used for display for this integer.

0: system

1: bin

2: oct

3: dec

4: hex

discussion

GETBITS

#link

Syntax

GETBITS(#integer)

Description

Returns the number of bits used for calculations with this integer.

discussion

GETKEY

#link

Syntax

GETKEY

Description

Returns the ID of the first key in the keyboard buffer, or -1 if no key was pressed since the last call to GETKEY. Key IDs are integers from 0 to 50, numbered from top left (key 0) to bottom right (key 50).

0= Apps

1 = Symb

2 = Up

3 = Help

4= Esc

```
5= Home
6= Plot
7= Left
8= Right
9= View
10= Cas
11 = Num
12 = Down
13= Menu
After that, the keys are number from top left (14= Vars) to bottom right (50= \pm)discussion
                                                                                 #link
 GETPIX
Syntax
GETPIX([G], x, y)
Description
Returns the color of the pixel of G with coordinates (x,y).
                                                                            discussion
                                                                                 #link
 GETPIX_P
Syntax
GETPIX_P([G], x, y)
Description
Returns the color of the pixel of G with coordinates (x,y).
                                                                            discussion
```


grad

Syntax

```
grad(Expr, ListVars)
```

Description

Returns the gradient of the expression Expr.

Example

 $grad(2*x^2*y-x*z^3,[x,y,z]) \ returns \ [2*2*x*y-z^3,2*x^2,-x*3*z^2] \ \underline{discussion}$

gramschmidt

#link

Syntax

gramschmidt(Basis(B),ScalarProd(Sp))

Description

Returns an orthonormal base of E of base B for the scalar product Sp.

Example

gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1)) returns [$1/(\sqrt{2})$,(1+x-1)/($\sqrt{6}$)/3] discussion

greduce

#link

Syntax

greduce(Poly, ListPoly, ListVar)

Description

Returns the remainder of the division of a polynomial by a Groebner basis.

Example

greduce(x*y-1,{ x^2-y^2 ,2* $x*y-y^2$, y^3 },{x,y}) returns (1/2)* y^2-1 discussion

green

#link

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red) discussion #link GROBH **Syntax** GROBH(G) **Description** Returns the height of G. discussion #link GROBH_P **Syntax** GROBH_P(G) **Description** Returns the height of G. discussion #link GROBW **Syntax** GROBW(G) **Description** Returns the width of G. discussion #link GROBW_P **Syntax** GROBW_P(G) **Description** Returns the width of G. discussion #link half_line **Syntax**

half_line(Point1, Point2)

Description

Given 2 points, draws a ray from the first point through the second point.

Example

half_line(0, 1+i) draws a ray starting at the origin and passing through the point at (1,1) discussion

halftan

#link

Syntax

halftan(Expr)

Description

Transforms sin(x), cos(x) and tan(x) as a function of tan(x/2).

Example

halftan($\sin(x)$) returns $(2*\tan(x/2))/((\tan(x/2))^2+1)$

discussion

halftan_hyp2exp

#link

Syntax

halftan_hyp2exp(Expr)

Description

Transforms the trigonometric functions in tan(x/2) and hyperbolic functions into expontials.

Example

halftan_hyp2exp(sin(x)+sinh(x)) returns $(2*tan(x/2)/((tan(x/2))^2+1)+(exp(x)-1/exp(x))/2$

halt

#link

Syntax

halt(NULL)

Description

Puts a program in step-by-step debug mode.

discussion

hamdist

hamdist(Intg,Intg)

Description

Bit Hamming distance.

Example

hamdist(0x12,0x38) returns 3

discussion

harmonic_conjugate

#link

Syntax

harmonic_conjugate(Line or Pnt,Line or Pnt,Line or Pnt)

Description

Returns the harmonic conjugate of 3 points or of 3 parallel or concurrent lines or the line of conjugates of a point in respect to 2 lines.

discussion

harmonic_division

#link

Syntax

harmonic_division(Pnt or Line,Pnt or Line,Pnt or Line,Var)

Description

Returns the 4 points (resp lines) and affects the last argument, such as the 4 points (resp lines) are in a harmonic division.

discussion

has

#link

Syntax

has(Expr, Var)

Description

Checks if a variable is in an expression.

Example

has(x+y,x) returns 1

discussion

head

<u>#link</u>

head(Vect or Seq or Str)

Description

Shows the first element of a vector or a sequence or a string.

Example

head(1,2,3) returns 1

discussion

Heaviside

<u>#link</u>

Syntax

Heaviside(Real)

Description

Function equal to 0 if x<0 and 1 if x>=0

Example

Heaviside(1) returns 1

discussion

hermite

#link

Syntax

hermite(Integer)

Description

Returns nth Hermite polynomial.

Example

hermite(3) returns 8*x^3-12*x

discussion

hessenberg

#link

Syntax

hessenberg(Mtrx(A))

Description

Matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P.

Example

 $\begin{array}{lll} hessenberg([[1,2,3],[4,5,6],[7,8,1]]) & returns & [[[1,0,0],[0,4/7,1],\\ & [0,1,0]],[[1,29/7,2],[7,39/7,8],[0,278/49,3/7]]] & discussion \end{array}$

hessian

#link

Syntax

hessian(Expr,LstVar)

Description

Returns the hessian matrix of the expression Expr.

Example

$$\label{eq:hessian} \begin{split} \text{hessian}(2*x \wedge 2*y - x*z, [x,y,z]) \ \ \text{returns} \ \ [[4*y,4*x,-1],[2*2*x,0,0],[-d_{is}Q_{ij}Q_{ij}]_{ij} \end{split}$$

hexagon

#link

Syntax

hexagon(Point1, Point2, [Var1, Var2, Var3, Var4])

Description

Draws a regular hexagon defined by one of its sides; that is, by two consecutive vertices. The remaining points are calculated automatically, but are not defined symbolically. The orientation of the hexagon is counterclockwise from the first point.

Example

hexagon(0,6) draws a regular hexagon whose first two vertices are at (0,0) and (6,0).

hexagon(0,6, a, b, c, d) draws a regular hexagon whose first two vertices are at (0, 0) and (6, 0)l labels the other four vertices a, b, c, and d, and stores the coordinates into the CAS variables a, b, c, and d. You do not have to define variables for all four remaining points, but the coordinates are stored in order. For example, hexagon(0,6, a) stores just the third point into the CAS variable a.

hilbert

<u>#link</u>

Syntax

hilbert(Intg(n))

Description

Returns the order n Hilbert matrix: Hjk=1/(j+k+1) j,k=1..n

Example

hilbert(4) returns [[1,1/2,1/3,1/4],[1/2,1/3,1/4,1/5],[1/3,1/4,1/5,1/6], [1/4,1/5,1/6,1/7]] discussion

 \rightarrow HMS

#link

Syntax

→HMS(value)

Description

Decimal to hours-minutes-seconds.

Change the way a number is displayed to HMS format.

 \rightarrow HMS(8.5) returns 8°3

discussion

#link

HMS→

Syntax

HMS→(value)

Description

Hours-minutes-seconds to decimal.

Forces a number to be displayed in decimal format if it was previously displayed in DMS format

HMS→(8°30) returns 8.5

discussion

homothety

#link

Syntax

homothety(Point, Realk, Object)

Description

Dilates a geometric object, with respect to a center point, by a scale factor.

Example

homothety(GA, 2, GB) creates a dilation centered at point A that has a scale factor of 2. Each point P on geometric object B has its image P' on ray AP such that AP'=2AP.

homothety(point(0,0),1/3,point(9,9)) creates an image point at $(3_{diseussion})$

hyp2exp

hyp2exp(ExprHyperb)

Description

Transforms the hyperbolic functions with the exponential function.

Example

hyp2exp(cosh(x)) returns (exp(x)+1/exp(x))/2

discussion

hyperbola

#link

Syntax

hyperbola(Point1, Point2, Point3) or hyperbola(Point1, Point2, Realk)

Description

Draws a hyperbola, given the foci and either a point on the hyperbola or a scalar that is one half the constant difference of the distances from a point on the hyperbola to each of the foci.

Example

hyperbola(GA, GB, GC) draws the hyperbola whose foci are points A and B and which passes through point C.

hyperbola(GA, GB, 3) draws a hyperbola whose foci are points A and B.

For any point P on the hyperbola, |AP-BP|=6.

discussion

iabcuv

#link

Syntax

iabcuv(Intg(a),Intg(b),Intg(c))

Description

Returns [u,v] such as au+bv=c for 3 integers a,b,c

Example

iabcuv(21,28,7) returns [-1,1]

discussion

ibasis

#link

Syntax

ibasis(Lst(Vect,..,Vect),Lst(Vect,..,Vect))

Description

Basis of the intersection of two vector spaces.

Example

ibasis([[1,0,0],[0,1,0]],[[1,1,1],[0,0,1]]) returns [[-1,-1,0]] $_{\mbox{discussion}}$

ibpdv

#link

Syntax

ibpdv(Expr1,Expr2,[Var],[Real1],[Real2])

Description

Integration by parts of Expr1=u(Var)*v'(Var) with Expr2= v'(Var) (or 0) as 2nd argument. You can specify a variable of integration and also the bounds of integration (Real1 and Real2).

Example

ibpdv(x*ln(x),1) returns $(-1/4)*x^2+(1/2)*(x^2)*ln(x)$

discussion

ibpu

#link

Syntax

ibpu(Expr1,Expr2,[Var],[Real1],[Real2])

Description

Integration by parts of Expr1=u(Var)*v'(Var) with Expr2=u(Var) (or 0) as 2nd argument. You can specify a variable of integration and also the bounds of integration (Real1 and Real2).

Example

ibpu(ln(x), ln(x), x, 1, 3) returns [3*ln(3), -1]

discussion

ichinrem

#link

Syntax

ichinrem([a,p],[b,q]))

Description

Integer Chinese Remainder Theorem for two equations. Takes two lists [a, p] and [b, q] and returns a list of two integers, [r, n], such that $x \equiv r \mod n$. In this case, $x \equiv r \mod n$ and $x \equiv r \mod n$ and $x \equiv r \mod n$.

Example

ichinrem([2, 7], [3, 5]) returns [-12, 35]

discussion

icontent

#link

Syntax

icontent(Poly,[Var])

Description

Returns the GCD of the integer coefficients of a polynomial.

Example

icontent($24x^3+6x^2-12x+18$) returns 6

discussion

id

#link

Syntax

id(Seq)

Description

The name of the identity function $(R^n-> R^n)$

Example

id(1,2,3) returns 1,2,3

discussion

IDENMAT

#link

Syntax

IDENMAT(n)

Description

Identity matrix. Creates a square matrix of dimension $n \times n$ whose diagonal elements are 1 and off-diagonal elements are zero.

Example

IDENMAT(2) returns [[1,0],[0,1]]

discussion

identity

#link

Syntax

identity(Intg(n))

Description

Returns the identity matrix of specified dimension n.

Example

identity(3) returns [[1,0,0],[0,1,0],[0,0,1]]

discussion

idivis

<u>#link</u>

Syntax

idivis(a)

Description

Integer divisors. Returns a list of all the factors of the integer a.

Example

idivis(12) returns [1, 2, 3, 4, 6, 12]

discussion

iegcd

<u>#link</u>

Syntax

iegcd(a,b)

Description

Extended greatest common divisor for two integers. Returns [u,v,igcd(a,b)] such that a*u+b*v=igcd(a,b).

Example

iegcd(14, 21) returns [-1, 1, 7]

discussion

IF

#link

Syntax

IF test THEN command(s) [ELSE commands] END;

Description

Evaluates test. If test is true (non 0), executes command(s); otherwise, executes the comands in the ELSE clause nothing happens.

Example

```
IF A<1
```

```
THEN PRINT("A IS SMALLER THAN 1");
ELSE PRINT("A IS LARGER THAN 1");
```

END; discussion

ifactor

#link

Syntax

ifactor(a)

Description

Prime factorization. Returns the prime factorization of the integer a as a product. Can be used with STO.

Example

ifactor(150) returns 2*3*5^2

discussion

ifactors

#link

Syntax

ifactors(a)

Description

Prime factors. Similar to ifactor, but returns a list of the factors of the integer a with their multiplicities.

Example

ifactors(150) returns [2, 1, 3, 1, 5, 2]

discussion

IFERR

#link

Syntax

IFERR commands1 THEN commands2 [ELSE commands3] END;

Description

Executes sequence of commands1. If an error occurs during execution of commands1, execute sequence of commands2. Otherwise, execute sequence of commands3.

Many conditions are automatically recognized by the HP Prime as error conditions and are automatically treated as errors in programs. This command facilitates error-trapping of such errors.

ifft

ifft(Vect)

Description

Inverse Fast Fourier Transform.

Example

IFTE

#link

Syntax

IFTE(Expr, Trueclause, Falseclause)

Description

If...Then...Else...

If Expr evaluates true (1), evaluates Trueclause; if not, evaluates Falseclause.

Example

IFTE(2<3, 5-1, 2+7) returns 4

discussion

igcd

#link

Syntax

igcd(a, b)

Description

Greatest common divisor. Returns the integer that is the greatest common divisor of the integers a and b.

Example

igcd(24, 36) returns 12

discussion

ihermite

#link

Syntax

ihermite(Mtrx(A))

Description

Hermite normal form of a matrix with coefficients in Z: returns U,B such that U is invertible in Z, B upper triangular and $B=U^*A$

Example

ilaplace

#link

Syntax

ilaplace(Expr,[Var],[IlapVar])

Description

Inverse Laplace transform of a rational fraction.

Example

ilaplace($1/(x^2+1)^2$) returns $(-x)*\cos(x)/2+\sin(x)/2$

discussion

IM

#link

Syntax

IM(x+yi)

Description

Imaginary Part. Returns the imaginary part of a complex number.

Example

IM(3+4i) returns 4

discussion

incircle

#link

Syntax

incircle(Point1, Point2, Point3)

Description

Draws the incircle of a triangle, the circle tangent to all three sides of the triangle.

Example

incircle(GA, GB, GC) draws the incircle of $\triangle ABC$.

discussion

#link

INPUT

Syntax

```
INPUT(var,["title"], ["label"], ["help"], [reset])
```

Description

or INPUT({vars},["title"], [{"labels"}], [{"help"}], [{reset}])

Starts a dialog box with header title and one field named label (with value default), displaying help at the bottom. The dialog box includes CANCEL and OK menu keys. If the user presses the OK menu key, the variable var is updated and 1 is returned. If the user presses the CANCL menu key, var is not updated and 0 is returned.

INSTRING

#link

Syntax

INSTRING(string1, string2)

Description

Returns the index of the first occurrence of string2 in string1. Returns 0 if str2 is not present in str1. Note that the first character in a string is in position 1.

Example

```
INSTRING("vanilla", "van") returns 1
INSTRING("banana", "na") returns 3
INSTRING("ab", "abc") returns 0
```

discussion

int

#link

Syntax

```
int(Expr,[Var],[Real1,Real2])
```

Description

Integral (definite or indefinite). You can specify a variable of integration as well as the bounds of integration. You can use the integration template in the Template menu as well.

Example

```
int(1/x) returns ln(abs(x))
int(sin(x),x,0,\pi) returns 2
```

discussion

inter

inter(Curve1, Curve2)

Description

Returns the intersections of two curves as a vector.

Example

inter(8-x^2/6, x/2-1) returns [[6, 2] [-9, -11/2]], indicating that there are two intersections-one at (6,2) and the other at (-9, -5.6] scussion

INTERSECT

<u>#link</u>

Syntax

INTERSECT({list1}, ...{listN})

Description

Returns a list of the elements common to all the lists.

Example

INTERSECT($\{1,2,3\},\{2,4,8\}$) returns $\{2\}$

discussion

interval2center

#link

Syntax

interval2center(Interval or Real)

Description

Returns the center of the interval or the object.

Example

interval2center(2..5) returns 7/2

discussion

inv

#link

Syntax

inv(Expr||Mtrx)

Description

Returns the inverse of an expression or matrix.

Example

inv(9/5) returns 5/9

discussion

inversion #link

Syntax

inversion(Point1, Realk, Point2)

Description

Draws the inversion of a point, with respect to another point, by a scale factor.

Example

inversion(GA, 3, GB) draws point C on line AB such that AB*AC=3. In this case, point A is the center of the inversion and the scale factor is 3. Point B is the point whose inversion is created.

In general, the inversion of point A through center C, with scale factor k, maps A onto A', such that A' is on line CA and CA*CA'=k, where CA and CA' denote the lengths of the corresponding segments. If k=1, then the lengths CA and CA' are reciprocals.

INVERT

#link

Syntax

INVERT([G], [x1, y1], [x2, y2])

Description

Inverts the rectangle on G defined by the diagonal points (x1,y1) and (x2,y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1 = top left corner of G

x2, y2=bottom right corner of G

If only one x,y pair is specified, it refers to the top left corner of G.

discussion

INVERT_P

#link

Syntax

INVERT_P([G], [x1, y1], [x2, y2])

Description

Inverts the rectangle on G defined by the diagonal points (x1,y1) and (x2,y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1 = top left corner of G

x2, y2=bottom right corner of G

If only one (x,y) pair is specified, it refers to the top left corner of G.

discussion

invlaplace

#link

Syntax

ilaplace(Expr,[Var],[IlapVar])

Description

Returns the inverse Laplace transform of Expr.

Example

ilaplace $(1/(x^2+1)^2)$ returns $(-x/2)*\cos(x)+(1/2)*\sin(x)$

discussion

invztrans

#link

Syntax

invztrans(Expr,[Var],[InvZtransVar])

Description

Inverse z transform of a rational fraction.

Example

invztrans($1/(x^2+1)^2$) returns $(x*exp(x*(-i)*\pi/2)+x*exp(x*(i)*\pi/2)+4*Dirac(x)-2*exp(x*(-i)*\pi/2)-2*exp(x*(i)*\pi/2))/4$

discussion

#link

Syntax

IP(value)

Description

Integer part. Returns the Integer part of value.

Example

IP(23.2) returns 23

discussion

iPart

iPart(Real||LstReal)

Description

Returns the argument without its fractional part (type=DOM_FLOAT).

Example

iPart(4.3) returns 4.0

discussion

iquo

#link

Syntax

iquo(a, b)

Description

Euclidean quotient. Returns the integer quotient when the integer a is divided by the integer b.

Example

iquo(63, 23) returns 2

discussion

iquorem

#link

Syntax

iquorem(a, b)

Description

Euclidean quotient and remainder. Returns the integer quotient and remainder when the integer a is divided by the integer b.

Example

iquorem(63, 23) returns [2, 17]

discussion

irem

#link

Syntax

irem(a, b)

Description

Euclidean remainder. Returns the integer remainder when the integer a is divided by the integer b.

Example

irem(63, 23) returns 17

discussion

is_collinear

#link

Syntax

is_collinear(Point1, Point2, ..., Pointn)

Description

Takes a set of points as argument and tests whether or not they are collinear. Returns 1 if the points are collinear and 0 otherwise.

Example

is_collinear(point(0,0), point(5,0), point(6,1)) returns 0. $\frac{\text{discussion}}{\text{discussion}}$

is_concyclic

#link

Syntax

is_concyclic(Point1, Point2, ..., Pointn)

Description

Takes a set of points as argument and tests if they are all on the same circle. Returns 1 if the points are all on the same circle and 0 otherwise.

Example

is_conjugate

#link

Syntax

is_conjugate(Crcle, Point1, Point2, [Point3]) or is_conjugate(Line1,
Line2, Line3, {Line4])

Description

Returns 1 if the 3 (resp 4) arguments are conjugated toward a circle (resp 2 lines) and 0 otherwise.

discussion

is_coplanar

is_coplanar(Point1, Point2, Point3, Point4)

Description

Tests if 4 points are in the same plane. Returns 1 if true or 0 if false.

discussion

is_element

#link

Syntax

is_element(Point, Object)

Description

Tests if a point is on a geometric object. Returns 1 if it is and 0 otherwise

Example

is_element(point($(\sqrt{2})/2$),($(\sqrt{2})/2$)),circle(0,1)) returns 1

discussion

is_equilateral

<u>#link</u>

Syntax

is_equilateral(Point1, Point2, Point3)

Description

Takes three points and tests whether or not they are vertices of a single equilateral triangle. Returns 1 if they are and 0 otherwise..

Example

is_equilateral(triangle(0,2,1+i* $\sqrt{3}$)) returns 1.

discussion

is_harmonic

#link

Syntax

is_harmonic(Pnt or Cplx,Pnt or Cplx,Pnt or Cplx,Pnt or Cplx)

Description

Returns 1 if the 4 points are in a harmonic division and 0 otherwise.

discussion

is_harmonic_circle_bundle

#link

Syntax

is_harmonic_circle_bundle(Lst(Crcle))

Description

Returns 1 if the circles build a bundle, 2 if they have the same center, 3 if they are the same and 0 otherwise.

is_harmonic_line_bundle

<u>#link</u>

Syntax

is_harmonic_line_bundle(Lst(Line))

Description

Returns 1 if the lines have a common point, 2 if they are parallels, 3 if they are the same and 0 otherwise.

is_isosceles

#link

Syntax

is_isosceles(Point1, Point2, Point3)

Description

Takes three points and tests whether or not they are vertices of a single isosceles triangle. Returns 0 if they are not. If they are, returns the number order of the common point of the two sides of equal length (1, 2, or 3). Returns 4 if the three points form an equilateral triangle.

Example

is_isosceles(point(0,0), point(4,0), point(2,4)) returns 3
is_isosceles(triangle(0,i,1+i)) returns 2

discussion

is_orthogonal

#link

Syntax

is_orthogonal(Line1, Line2) or is_orthogonal(Circle1, Circle2

Description

Tests whether or not two lines or two circles are orthogonal (perpendicular). In the case of two circles, tests whether or not the tangent lines at a point of intersection are orthogonal. Returns 1 if they are and 0 otherwise.

Example

is_orthogonal(line(y=x),line(y=-x)) returns 1.

discussion

is_parallel #link

Syntax

is_parallel(Line1, Line2)

Description

Tests whether or not two lines are parallel. Returns 1 if they are and 0 otherwise.

Example

is_parallel(line(2x+3y=7),line(2x+3y=9) returns 1.

discussion

is_parallelogram

#link

Syntax

is_parallelogram(Point1, Point2, Point3, Point4)

Description

Tests whether or not a set of four points are vertices of a parallelogram. Returns 0 if they are not. If they are, then returns 1 if they form only a parallelogram, 2 if they form a rhombus, 3 if they form a rectangle, and 4 if they form a square.

Example

is_parallelogram(point(0,0), point(2,4), point(0,8), point(-2,4))
returns 2.
discussion

is_perpendicular

#link

Syntax

is_perpendicular(line1, Line2)

Description

Similar to is_orthogonal. Tests whether or not two lines are perpendicular. Returns 1 if they are or 0 if they are not.

Example

is_perpendicular(line(y=x),line(y=-x)) returns 1

discussion

is_rectangle

#link

Syntax

is_rectangle(Point1, Point2, Point3, Point4)

Description

Tests whether or not a set of four points are vertices of a rectangle. Returns 0 if they are not, 1 if they are, and 2 if they are vertices of a square.

Example

is_rectangle(point(0,0), point(4,2), point(2,6), point(-2,4)) returns 2.

with a set of only three points as argument, tests whether or not they are vertices of a right triangle. Returns 0 if they are not. If they are, returns the number order of the common point of the two perpendicular sides (1, 2, or 3).

is_rectangle(point(0,0), point(4,2), point(2,6)) returns 2.

discussion

is_rhombus

#link

Syntax

is_rhombus(Pnt or Cplx,Pnt or Cplx,Pnt or Cplx,Pnt or Cplx)

Description

Returns 1 or 2 if the 4 points (or the object) build a rhombus (2 for a square) and 0 otherwise.

discussion

is_square

<u>#link</u>

Syntax

is_square(Point1, Point2, Point3, Point4)

Description

Tests whether or not a set of four points are vertices of a square. Returns 1 if they are and 0 otherwise.

Example

is_square(point(0,0), point(4,2), point(2,6), point(-2,4)) return s_{is} c_{ussion}

ISKEYDOWN

#link

Syntax

ISKEYDOWN(Key_ID)

Description

Returns true (non-zero) if the key whose Key_ID is provided is currently pressed, and

false (0) if it is not.

ismith

#link

Syntax

ismith(Mtrx(A))

Description

Smith normal form of a matrix with coefficients in Z : returns U,B,V such that U and V are invertible in Z, B is the diagonal, B[i,i] divide B[i+1,i+1] and B=U*A*V.

Example

```
 ismith([[1,2,3],[4,5,6],[7,8,9]]) \ returns \ [[1,0,0],[4,-1,0],[-1,2,-1]], \\ [[1,0,0],[0,3,0],[0,0,0]],[[1,-2,1],[0,1,-2],[0,0,1]] \ \underline{discussion}
```

isobarycenter

#link

Syntax

isobarycenter(Point1, Point2, ..., Pointn)

Description

Returns the hypothetical center of mass of a set of points. Works like barycenter but assumes all points have equal weight.

Example

```
isobarycenter(-3,3,3*\sqrt{3}*i) returns point(3*\sqrt{3}*i/3), which is equivalent to (0,\sqrt{3}).
```

discussion

isopolygon

#link

Syntax

isopolygon(Point1, Point2, Realn), where realn is an integer greater than 1.

Description

Draws a regular polygon given the first two vertices and the number of sides, where the number of sides is greater than 1. If the number of sides is 2, then the segment is drawn. You can provide CAS variable names for storing the coordinates of the calculated points in the order they were created. The orientation of the polygon is counterclockwise.

Example

isopolygon(GA, GB, 6) draws a regular hexagon whose first two vertices

isosceles_triangle

#link

Syntax

isosceles_triangle(Point1, Point2, Angle)

Description

Draws an isosceles triangle defined by two of its vertices and an angle. The vertices define one of the two sides equal in length and the angle defines the angle between the two sides of equal length. Like equilateral_triangle, you have the option of storing the coordinates of the third point into a CAS variable.

Example

isPrime

#link

Syntax

isprime(a)

Description

Prime integer test. Returns true if the integer a is prime; otherwise, returns false.

Example

isprime(1999) returns true

discussion

ITERATE

#link

Syntax

ITERATE(expr, var, ivalue, #times)

Description

Repeatedly for #times evaluates expr in terms of var. The value for var is updated each time, starting with ivalue.

ITERATE(X^2 , X, 2, 3) returns 256.

discussion

ithprime

ithprime(n)

Description

Nth prime. For the integer n, returns the nth prime number less than 100,000-200,000.

Example

ithprime(5) returns 11

discussion

jacobi_symbol

#link

Syntax

jacobi_symbol(Intg,Intg)

Description

Jacobi symbol.

Example

jacobi_symbol(132,5) returns -1

discussion

jordan

<u>#link</u>

Syntax

jordan(Mtrx)

Description

Returns the list made by the matrix of passage and the Jordan form of a matrix.

Example

jordan([[0,2],[1,0]]) returns $[[\sqrt{2},-\sqrt{2}],[1,1]],[[\sqrt{2},0],[0,-\sqrt{2}]]$ discussion

JordanBlock

#link

Syntax

JordanBlock(Expr(a),Intg(n))

Description

Returns a matrix n*n with a on the diagonal, 1 above, and 0 everywhere else.

Example

JordanBlock(7,3) returns [[7,1,0],[0,7,1],[0,0,7]]

discussion

ker

#link

Syntax

ker(Mtrx(M))

Description

Kernel of a linear application of matrix M.

Example

ker([[1,2],[3,6]]) returns [2, -1]

discussion

KILL

<u>#link</u>

Syntax

KILL;

Description

Stops the execution of the program.

discussion

l1norm

#link

Syntax

11norm(Vect)

Description

Returns the I1 norm of the vector=sum of the absolute value of its coordinates.

Example

11norm([3,-4,2]) returns 9

discussion

I2norm

#link

Syntax

11norm(Vect)

Description

Returns the I1 norm of the vector=sum of the absolute value of its coordinates.

Example

11norm([3,-4,2]) returns 9

discussion

lagrange

#link

Syntax

lagrange((Listxk, Listyk) or lagrange(Matrix)

Description

Returns the polynomial of degree n-1 such that P(xk)=yk, for k=0, 1, ..., n-1.

Example

lagrange([1,3],[0,1]) returns (1/2)*(x-1)

discussion

laguerre

#link

Syntax

laguerre(Integer)

Description

Returns the nth Laguerre polynomial.

Example

laguerre(4) returns $(1/24)*a^4+(-1/6)*a^3*x+5/12*a^3+1/4*a^2*x^2+(-3/2)*a^2*x+35/24*a^2+(-1/6)*a*x^3+7/4*a*x^2+(-13/3)*a*x+25/12*a+1/24*x^4+(-2/3)*x^3+3*x^2-4*x+1$

discussion

laplace

#link

Syntax

laplace(Expr,[Var],[LapVar])

Description

Returns the Laplace transform of Expr.

Example

laplace(exp(x)*sin(x)) returns $1/(x^2-2*x+2)$

discussion

laplacian

#link

Syntax

laplacian(Expr(Xpr),LstVar)

Description

Returns the Laplacian of the expression Xpr with respect to the list of variables.

Example

$$\label{laplacian} \begin{split} &\text{laplacian}(\exp(z)*\cos(x*y),[x,y,z]) \text{ returns } -x^2*\cos(x*y)*\exp(z) - \\ &y^2*\cos(x*y)*\exp(z) + \cos(x*y)*\exp(z) \end{split}$$

lcm

#link

Syntax

lcm(Intgr1, Intgr2) or lcm(Poly1, Poly2) or lcm(Rational1, Rational2)

Description

Returns the lowest common multiple of 2 polynomials of several variables or of 2 integers or of 2 rationals.

Example

lcm(6,4) returns 12

discussion

lcoeff

#link

Syntax

lcoeff(Poly||Lst)

Description

Returns the coefficient of the term of highest degree of a polynomial (I=leading).

Example

 $1coeff(-2*x^3+x^2+7*x)$ returns -2

discussion

left

#link

Syntax

discussion

LEFT

#link

Syntax

LEFT(string, n)

Description

Returns the first n characters of the string. **Example** LEFT("MOMOGUMBO",3) returns "MOM" discussion #link legendre **Syntax** legendre(Integer) **Description** Returns the nth Legendre polynomial. **Example** legendre(4) returns $(35/8)*x^4+(-15/4)*x^2+3/8$ discussion #link legendre_symbol **Syntax** legendre_symbol(Intg,Intg) **Description** Legendre symbol. **Example** legendre_symbol(132,5) returns -1 discussion #link length **Syntax** size(Lst or Str or Seq)

Description

Returns the size of a list, a string or a sequence.

Example

size([1,2,3]) returns 3

discussion

lgcd

lgcd(Seq or Lst)

Description

Returns the greatest common divisor of a list of polynomials or of integers.

Example

lgcd($\{45,75,20,15\}$) returns 5 lgcd($\{x^2-2*x+1,x^3-1,x-1\}$) returns x-1

discussion

limit

<u>#link</u>

Syntax

limit(Expr, Var, Val)

Description

Limit of an expression as a variable approaches a value. Returns the limit (2 sided or 1-sided) of the given expression as the given variable approaches a value.

Example

 $\lim_{x \to \infty} \frac{1}{n^*x} - \frac{1}{n$

discussion

lin

<u>#link</u>

Syntax

lin(Expr)

Description

Linearization of exponentials.

Example

 $lin((exp(x)^3+exp(x))^2)$ returns exp(6*x)+2*exp(4*x)+exp(2*x)

discussion

line

#link

Syntax

line(Point1, Point2) or line(a*x+b*y+c) or line(point1, slope=realm)

Description

Draws a line. The arguments can be two points, a linear expression of the form a*x+b*y+c, or a point and a slope.

Example

line(2+i, 3+2i) draws the line whose equation is y=x-1; that is, the line through the points (2,1) and (3,2). line(2x-3y-8) draws the line whose equation is 2x-3y=8 line(3-2i,slope=1/2) draws the line whose equation is x-2y=7; that is, the line through (3, -2) with slope m=1/2 discussion

LINE

#link

Syntax

LINE([G], x1, y1, x2, y2, [color])

Description

Draws a line on GROB G between points (x1,y1) and (x2,y2).

discussion

LINE_P

#link

Syntax

LINE_P([G], x1, y1, x2, y2, [color])

Description

Draws a line on GROB G between points (x1,y1) and (x2,y2).

discussion

linear_interpolate

#link

Syntax

linear_interpolate(Mtrx,xmin,xmax,xstep)

Description

Makes a regular sample from a polygonal line defined by a 2 row matrix.

Example

linear_interpolate([[1,2,6,9],[3,4,6,7]],1,9,1) returns [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0], [3.0,4.0,4.5,5.0,5.5,6.0,6.33333333333,6.66666666667,7.0]]

discussion

linear_regression

#link

Syntax

linear_regression(Lst||Mtrx(A),[Lst])

Description

Returns the coefficients a and b of $y=a^*x+b$

It is the best line approximation to the points where the coordinates are the rows of A (or the 2 lists).

Example

linear_regression([[0.0,0.0],[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]])
returns 4.0,-2.0

discussion

LineHorz

#link

Syntax

LineHorz(Expr(a))

Description

Draws the horizontal line y=a

discussion

LineTan

#link

Syntax

LineTan(f(x), [Var], Value)

Description

Draws the tangent to y=f(x) at x=Value.

Example

LineTan(x^2-x , 1) draws the line whose equation is y=x-1, which is tangent to the graph of $y=x^2-x$ at x=1.

LineVert

#link

Syntax

LineVert(Expr(a))

Description

Draws the vertical line x=a

discussion

linsolve

#link

Syntax

linsolve(ListLinEq,ListVar)

Description

Linear equations system solver. Solves a set of linear equations for their common variable set.

Example

linsolve([x+y+z=1, x-y=2, 2*x-z=3],[x,y,z]) returns [3/2, -1/2, 0] discussion

ПЫЅТ

#link

Syntax

ПLIST(list)

Description

List Product. Calculates the product of all elements in list.

Example

 Π LIST({2,3,4}) returns 24.

discussion

 Δ LIST

#link

Syntax

ΔLIST(list)

Description

List Difference. Creates a new list composed of the first differences of list; that is, the differences between the sequential elements in list. The new list has one fewer elements than list.

Example

 Δ LIST({1, 2, 3, 5, 8}) returns {1, 1, 2, 3}

discussion

 ΣLIST

#link

Syntax

ΣLIST(list)

Description

Sum of a list. Returns the sum of all elements in list.

Example

list2mat

#link

Syntax

list2mat(Lst(1),Intg(n))

Description

Returns the matrix with n columns and where terms are the list I completed eventually by 0.

Example

list2mat([1,8,4,9],1) returns [[1],[8],[4],[9]]

discussion

LN

#link

Syntax

LN(Value)

Description

Returns the natural logarithm of Value. The natural logarithm is the logarithm to the base e, Euler's number.

Example

LN(1) returns 0

discussion

Iname

#link

Syntax

lname(Expr)

Description

List of variables in the expression.

Example

lname(exp(x)*2*sin(y)) returns [x,y]

discussion

Incollect

#link

Syntax

lncollect(Expr)

Description

Collect logarithms. Applies $ln(a)+n*ln(b)=ln(a*b^n)$ where n is an integer.

Example

lncollect(ln(x)+2*ln(y)) returns $ln(x*y^2)$

discussion

Inexpand

<u>#link</u>

Syntax

lnexpand(Expr)

Description

Expands logarithms.

Example

lnexpand(ln(3*x)) returns ln(3)+ln(x)

discussion

LNP1

#link

Syntax

LNP1(value)

Description

Natural log plus 1. This is more accurate than the natural logarithm function when x is close to zero.

Example

LNP1(.23) returns .207014169384

discussion

LOCAL

#link

Syntax

LOCAL var_1[:=value][, more variables];

Description

Declares a local variable.

If the declaration is in a function block, these variables will be local to the function.

if the declaration is in the main program body, the variables are local to the programussion

locus

#link

Syntax

locus(Point, Element)

Description

Given a first point and a second point that is an element of (a point on) a geometric object, draws the locus of the first point as the second point traverses its object discussion

LOG

#link

Syntax

LOG(Value, [Base])

Description

Returns the logarithm of Value in Base. By default, Base=10.

Example

LOG(8,2) returns 3 while LOG(8) returns 0.903089986992

discussion

log10

#link

Syntax

log10(Expr)

Description

Common logarithm (base 10).

Example

log10(10) returns 1

discussion

logarithmic_regression

#link

Syntax

logarithmic_regression(Lst||Mtrx(A),[Lst])

Description

Returns the coefficients a and b of y=a*ln(x)+b: it is the best logarithm that approximates the points where the coordinates are the rows of A (or the 2 lists).

Example

logb

<u>#link</u>

Syntax

logb(Real)

Description

Logarithm of base b.

Example

logb(5,2) returns ln(5)/ln(2) which is approximately 2.3219280948 ciscussion

logistic_regression

#link

Syntax

logistic_regression(Lst(L),Real(x0),Real(y0))

Description

Returns y,y',C,y'max,xmax,R: y is a logistic function (sol of y'/y=a*y+b), such that y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of L.

Example

logistic_regression([0.0,1.0,2.0,3.0,4.0],0.0,1.0) returns
[-17.77/(1+exp(-0.496893925384*x+2.82232341488+3.14159265359*i)),discussion([0.0,1.0,2.0,3.0,4.0],0.0,1.0)

LQ

#link

Syntax

LQ(matrix)

Description

LQ Factorization. Factors an m n matrix into three matrices: {[[m n lowertrapezoidal]],[[n n orthogonal]], [[m m permutation]]}.

Example

LQ([[1,2],[3,4]])

discussion

LSQ

#link

Syntax

LSQ(matrix1, matrix2)

Description

Least Squares. Displays the minimum norm least squares matrix (or vector).

Example

LSQ([[1,2],[3,4]],[[5],[11]]) returns [[1],[2]]

discussion

#link

Syntax

LU(matrix)

Description

LU Decomposition. Factors a square matrix into three matrices:

{[[lowertriangular]],[[uppertriangular]],[[permutation]]}

The uppertriangular has ones on its diagonal.

Example

LU([[1,2],[3,4]])

discussion

Ivar

<u>#link</u>

Syntax

lvar(Expr)

Description

List of variables of an object (with rational dependence).

Example

lvar(exp(x)*2*sin(y)) returns [exp(x), sin(y)]

discussion

magenta

#link

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

MAKELIST

#link

Syntax

MAKELIST(expression, variable, begin, end, [increment])

Description

Make List. Calculates a sequence of elements for a new list. Evaluates expression, incrementing variable from begin to end values, using increment steps (default 1). The MAKELIST function generates a series by automatically producing a list from the repeated evaluation of an expression.

Example

MAKELIST(2*x-1, X, 1, 5, 1) returns $\{1, 3, 5, 7, 9\}$

discussion

MAKEMAT

#link

Syntax

MAKEMAT(expression, n, [m])

Description

Make Matrix. Creates a matrix of dimension $n \times m$, using expression to calculate each element. If expression contains the variables I and J, then the calculation for each element substitutes the current row number for I and the current column number for J. With two arguments, this creates a vector of size n.

Example

MAKEMAT(0,3,3) returns [[0,0,0],[0,0,0],[0,0,0]] MAKEMAT($\sqrt{2}$,2,3) returns [[$\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$],[$\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$]] MAKEMAT(I+J-1,2,3) returns [[1,2,3],[2,3,4]] MAKEMAT($\sqrt{2}$,2) returns [$\sqrt{2}$, $\sqrt{2}$]

discussion

MANT

#link

Syntax

MANT(value)

Description

Mantissa. Returns the significant digits of value.

Example

MANT(21.2E34) returns 2.12

discussion

map

<u>#link</u>

Syntax

map(Lst(1),Fnc(f))

Description

Apply the function f at the elements of the list I or at a polynomial of internal format.

Example

 $map([1,2,3],x->x^3)$ returns [1,8,27]

discussion

mat2list

#link

Syntax

mat2list(Mtrx)

Description

Returns the list of the terms of the matrix.

Example

mat2list([[1,8],[4,9]]) returns [1,8,4,9]

discussion

matpow

#link

Syntax

matpow(Mtrx,Intg(n))

Description

Calculates the n power of a matrix by jordanization.

Example

Syntax

MAX(value1,[value2],[..value16])

Description

Maximum. Returns the greatest of the values given, or the greatest value of a list.

Example

MAX(210,25) returns 210 and $MAX(\{1, 8, 2\})$ returns 8

discussion

maxnorm

<u>#link</u>

Syntax

maxnorm(Vect or Mtrx)

Description

Norm with the maximum of a vector (or of a matrix): $\max(x_1,x_2,...,x_n) = \max(|x_1|,...,|x_n|)$

Example

maxnorm([1,2]) returns 2

discussion

MAXREAL

#link

Syntax

MAXREAL

Description

mean

#link

Syntax

mean(Lst||Mtrx,[Lst])

Description

Mean of a list with the second argument as weight, or of the columns of a matrix.

Example

mean([1,2,3],[1,2,3]) returns 7/3

discussion

median

<u>#link</u>

Syntax

median(Lst||Mtrx,[Lst])

Description

Returns the median of a list with the second argument as the weight, or of the columns of a matrix.

Example

median([1,2,3,5,10,4]) returns 3.0

discussion

median_line

#link

Syntax

median_line(Point1, Point2, Point3)

Description

Given three points that define a triangle, creates the median of the triangle that passes through the first point and contains the midpoint of the segment defined by the other two points.

Example

median_line(0, 8i, 4) draws the line whose equation is y=2x; that is, the line through (0,0) and (2,4), the midpoint of the segment whose endpoints are (0, 8) and (4, 0).

member

#link

Syntax

member(Elem(e),(Lst(1) or Set(1)))

Description

Tests if e is in the list or the set I = 0 or k+1 with I[k]=e

Example

member(1, [4,3,1,2]) returns 3

#link

Syntax

MID(string, position, [n])

Description

Extracts n characters from string starting at position. If n is not specified, then MID extracts the remainder of the string from position.

Example

MID("MOMOGUMBO",3,5) returns "MOGUM" MID("PUDGE",4) returns "GE"

discussion

midpoint

<u>#link</u>

Syntax

midpoint(Segment) or midpoint(Point1, Point2)

Description

Returns the midpoint of a segment. The argument can be either the name of a segment or two points that define a segment. In the latter case, the segment need not actually be drawn.

Example

midpoint(0,6+6i) returns point(3,3)

discussion

MIN

#link

Syntax

MIN(value1, [value2], [..value16])

Description

Minimum. Returns the lesser of the values given, or the lesser value of a list.

Example

MIN(210,25) returns 25 and $MIN(\{1, 8, 2\})$ returns 1

discussion

MINREAL

#link

Syntax

MINREAL

Minimum real number. The smallest real number that the HP Prime can represent. Its value is 1E-499. Any number smaller than this is represented as zero.

discussion

mkisom

#link

Syntax

mkisom(Vect,(Sign(1) or -1))

Description

Matrix of an isometry given by its proper elements.

Example

mkisom $(\pi,1)$ returns [[-1,0],[0,-1]] in radian mode

discussion

MKSA

#link

Syntax

MKSA(Value_Unit)

Description

Converts the measurement Value_Unit to its corresponding value and unit in Unit's MKSA equivalent. MKSA stands for the Meter-Kilogram-Second-Ampere system.

Example

MKSA(32_yd) returns 29.2608_m.

discussion

MOD

#link

Syntax

value1 MOD value2

Description

Modulo. Returns the remainder of value1/value2.

Example

9 MOD 4 returns 1

discussion

modgcd

#link

Syntax

modgcd(Poly,Poly)

Description

Returns the GCD of 2 polynomials, with the modular algorithm.

Example

 $modqcd(x^{4-1},(x-1)^{2})$ returns x-1

discussion

MOUSE

#link

Syntax

MOUSE[(index)]

Description

Returns the current pointer's location.

returns: two lists of the form {#x, #y, #originalx, #originaly, #type}, one for each potential pointer.

Note, if a pointer is unused, returns an empty list

#type is: #0: New, #1: Completed, #2: Drag, #3: Stretch, #4: Rotate, #5: LongClick

MOUSE(x) returns the nth element that would be returned if MOUSE was called with no arguements or -1 if the associated pointer is not down.

discussion

mRow

#link

Syntax

mRow(Expr(Xpr),Mtrx(A),Intg(n1))

Description

Multiplies the row n1 of the matrix A by Xpr.

Example

mRow(12,[[1,2],[3,4],[5,6]],1) returns [[12,24],[3,4],[5,6]]

discussion

MSGBOX

#link

Syntax

MSGBOX(expr,[OK_Cancel]) or MSGBOX(string,[OK_Cancel])

Description

Displays a message box with either the value of expression or string. If OK_Cancel? is true, displays OK and CANCEL menu keys, otherwise only displays the OK menu key.

Default value for OK_Cancel is false.

Returns true (non-zero) if the user presses OK, false (0) if the user presses CANGEGERISION

mult_c_conjugate

#link

Syntax

mult_c_conjugate(Expr)

Description

Returns the expression after multiplication by the complex conjugated quantity of the denominator (or of the numerator if no denominator).

Example

mult_c_conjugate(1/(3+i*2)) returns 1*(3+(-i)*2)/((3+(i)*2)*(3+(-discay))ion

mult_conjugate

#link

Syntax

mult_conjugate(Expr)

Description

Returns the expression after multiplication by the conjugated quantity of the denominator (or of the numerator if no denominator).

Example

mult_conjugate($\sqrt{3}$ - $\sqrt{2}$) returns ($\sqrt{3}$ -($\sqrt{2}$))*($\sqrt{3}$ + $\sqrt{2}$)/($\sqrt{3}$ + $\sqrt{2}$)

discussion

nDeriv

#link

Syntax

nDeriv(Expr(Xpr), Var(var), [Real(h)])

Description

Returns an approximation of the derivative number at a point:(Xpr(var+h)-Xpr(var-h))/(2*h) (by default h=0.001).

Example

nDeriv(f(x),x,h) returns (f(x+h)-(f(x-h)))*0.5/h

discussion

NEG

#link

Syntax

-Value or -Expression

Description

Unary minus.

Changes the sign of Value or Expression. Used to enter negative numbers.

discussion

nextprime

<u>#link</u>

Syntax

nextprime(a)

Description

Next prime. Returns the next prime number greater than the integer a.

Example

nextprime(12) returns 13

discussion

normal

<u>#link</u>

Syntax

normal(Expr)

Description

Simplify the expression.

Example

normal(2*x*2) returns 4*x

discussion

NORMALD

#link

Syntax

NORMALD($[\mu, \sigma,] x$)

Description

Normal probability density function. Computes the probability density at the value x, given the mean, μ , and standard deviation, σ , of a normal distribution. With one argument, x, returns the probability density at x, assuming a mean of zero and standard deviation of 1.

Example

NORMALD(0.5) returns 0.352065326765 and NORMALD(0, 2, 0.5) returns

0.193334058402 <u>discussion</u>

NORMALD_CDF

#link

Syntax

NORMAL_CDF(μ , σ , x)

Description

Cumulative normal distribution function. Returns the lower-tail probability of the normal probability density function for the value x, given the mean, μ , and standard deviation, σ , of a normal distribution. With one argument, x, returns the lower-tail probability of the normal probability density function for the value x, assuming a mean of zero and standard deviation of 1.

Example

NORMAL_CDF(0, 1, 2) returns 0.97724986805

discussion

NORMALD_ICDF

#link

Syntax

NORMALD_ICDF(μ , ε , p)

Description

Inverse cumulative normal distribution function. Returns the cumulative normal distribution value associated with the lower-tail probability, p, given the mean, μ , and standard deviation, ϵ , of a normal distribution. With one argument, p, assumes a mean of zero and a standard deviation of one.

Example

NORMALD_ICDF(0, 1, 0.841344746069) returns 1

discussion

normalize

#link

Syntax

normalize(Lst||Cplx)

Description

Returns the vector divided by its 12norm. It is also an option for plotfield.

Example

normalize(3+4*i) returns (3+4*i)/5

NOT

#link

Syntax

NOT Value

Description

Logical NOT.

Returns 1 if Value is zero; otherwise returns 0.

Example

NOT 3 returns 0

discussion

#link

nSolve

Syntax

nSolve(Expr, Var | | orVar=Guess)

Description

Returns a numerical solution of an equation or a system of equations.

Example

nsolve(cos(x)=x,x) returns 0.739085133215 nsolve(cos(x)=x,x=1.3) returns 0.739085133215

discussion

NTHROOT

#link

Syntax

Value1 √ Value2

Description

NTHROOT: the nth root function.

This Shift-key combination is the NTHROOT function. It returns the primary Value1 root of Value2. On the keyboard, the NTHROOT function is represented by $n\sqrt{\ }$.

Example

3√ 8 returns 2

discussion

numer

#link

Syntax

numer(a,b)

Description

Simplified Numerator. For the integers a and b, returns the numerator of the fraction a/b after simplification.

Example

numer(10/12) returns 5

discussion

odd

#link

Syntax

odd(Intq(n))

Description

Returns 1 if the integer is odd, otherwise returns 0.

Example

odd(6) returns 0

discussion

odesolve

#link

Syntax

odesolve(Expr, VectVar, VectInitCond, FinalVal, [tstep=Val, curve])

Description

Ordinary Differential Equation solver. Solves an ordinary differential equation given by Expr, with variables declared in VectrVar and initial conditions for those variables declared in VectrInit. For example, odesolve(f(t,y),[t,y],[

Example

odesolve(sin(t*y),[t,y],[0,1],2) returns [1.82241255674]

discussion

open_polygon

#link

Syntax

open_polygon(LstPnt||LstCplx)

Description

Returns and draws the polygonal line where its vertices are the element of I.

#link

Syntax

Value1 OR Value2

Description

Logical OR.

Returns 1 if either Value1 or Value2 is non-zero, otherwise returns 0.

Example

3 OR 2 returns 1

discussion

order_size

<u>#link</u>

Syntax

order_size(Expr)

Description

Remainder (O term) of a series expansion: $limit(x^a* order_size(x), x=0)=0$ if a>0 discussion

ordinate

<u>#link</u>

Syntax

ordinate(Poinnt) or ordinate(Vecctor)

Description

Returns the ordinate of a point or a vector.

Example

ordinate(point(1+2*i)) returns 2

discussion

orthocenter

#link

Syntax

orthocenter(Triangle) or orthocenter(Point1, Point2, Point3)

Description

Returns the orthocenter of a triangle; that is, the intersection of the three altitudes of a triangle. The argument can be either the name of a triangle or three non-collinear points that define a triangle. In the latter case, the triangle does not need to be drawn.

Example

orthocenter(0,4i,4) returns (0,0)

discussion

pa2b2

#link

Syntax

pa2b2(Intq(n))

Description

Returns [a,b] such as $a^2+b^2=n$ (for n prime and n=1 (mod 4))

Example

pa2b2(17) returns [4,1]

discussion

pade

#link

Syntax

pade(Expr(Xpr), Var(x), (Intg(n) || Poly(N)), Intg(p))

Description

Pade approximation $P/Q=Xpr \mod x^{(n+1)}$ or mod N with degree(P)<p

Example

pade(exp(x),x,10,6) returns (-x^5-30*x^4-420*x^3-3360*x^2-15120*x-30240)/(x^5-30*x^4+420*x^3-3360*x^2+15120*x-30240) discussion

parabola

#link

Syntax

parabola(Point, Line) or parabola(Point, Realk) or parabola(Expr)

Description

Draws a parabola, given a focus point and a directrix line, or the vertex of the parabola and a real number that represents the focal length

Example

parabola(GA, GB) draws a parabola whose focus is point A and whose directrix is line B.

parabola(GA, 1) draws a parabola whose vertex is point A and whose focal length is 1.

parabola($x-y^2+y-2$) draws the graph of the parabolic equation $x=y_0^2 = y_0^2 = y_$

#link

parallel

Syntax

parallel(Point, Line)

Description

Draws a line through a given point that is parallel to a given line.

Example

parallel(A, B) draws the line through point A that is parallel to line B.

parallel(point(3-2*i), line(x+y-5)) draws the line through the point (3, -2) that is parallel to the line whose equation is x+y=5; that is, the line whose equation is y=-x+1.

parallelogram

#link

Syntax

parallelogram(Point1, Point2, Point3)

Description

Draws a parallelogram given three of its vertices. The fourth point is calculated automatically but is not defined symbolically. As with most of the other polygon commands, you can store the fourth point's coordinates into a CAS variable. The orientation of the parallelogram is counterclockwise from the first point.

Example

parallelogram(0,6,9+5i) draws a parallelogram whose vertices are at (0,0), (6,0), (9,5), and (3,5). The coordinates of the last point are calculated automatically.

parameq

#link

Syntax

parameq(Obj)

Description

Returns a parametric equation for the geometric object Obj. The parametric equation is true for all complex numbers that represent points on Obj.

Example

parameq(circle(0,1)) returns -exp(i*t)

partfrac

#link

Syntax

partfrac(RatFrac or Opt)

Description

Performs partial fraction decomposition on a fraction.

Example

partfrac($x/(4-x^2)$) returns (-1/2)/(x-2)-(1/2)/((x+2)

discussion

pcoeff

#link

Syntax

pcoeff(Vect)

Description

Returns the polynomial coefficients having the roots specified in the vector Vect.

Example

pcoeff([1,0,0,0,1]) returns poly1[1,-2,1,0,0,0]

discussion

perimeter

#link

Syntax

perimeter(Polygon) or perimeter(Circle)

Description

Returns the perimeter of a polygon or the circumference of a circle.

Example

```
perimeter(0,1,i) returns \sqrt{2+2} If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as circle(GA, GB-GA), then perimeter(GC) returns 2\pi. If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as square(GA, GB-GA), then perimeter(GC) returns 4. discussion
```

perimeterat

#link

Syntax

perimeterat(Polygon, Pnt||Cplx(z0))

Description

Displays at point(z0), with a legend, the perimeter of a circle or of a polygon (e.g. triangle, square, ...).

perimeteratraw

#link

Syntax

perimeteratraw(Polygone, Pnt||Cplx(z0))

Description

Displays at point(z0), the perimeter of a circle or of a polygon (e.g. triangle, squarecus) sion

PERM

#link

Syntax

PERM(n, r)

Description

Permutations. Returns the number of permutations (with regard to order) of n things taken r at a time: n!/(n-r)!

Example

PERM(5,2) returns 20

discussion

perpen_bisector

#link

Syntax

discussion

perpendicular

#link

Syntax

perpendicular(Point, Line) or perpendicular(Point1, Point2, Point3)

Description

Draws a line through a given point that is perpendicular to a given line. The line may be defined by its name, two points, or an expression in x and y.

Example

perpendicular(GA, GD) draws a line perpendicular to line D through point

A. perpendicular(3+2i, GB, GC) draws a line through the point whose coordinates are (3, 2) that is perpendicular to line BC. perpendicular(3+2i,line(x-y=1)) draws a line through the point whose coordinates are (3, 2) that is perpendicular to the line whose equation is x - y = 1; that is, the line whose equation is y = -x + 5.

ΡI

#link

Syntax

π

Description

The ratio of the circumference to the diameter of any circle. Internally represented as 3.14159265359.

PIECEWISE

#link

Syntax

discussion

pivot

#link

Syntax

pivot(Mtrx(A),Intg(nl),Intg(nc))

Description

Returns the matrix from A creating zeros in the column nc, by the method of Gauss-Jordan with the element A[nl,nc] as pivot.

Example

pivot([[1,2],[3,4],[5,6]],0,1) returns [[1,2],[0,-2],[0,-4]]

discussion

PIXOFF

#link

Syntax

PIXOFF([G], x, y)

Description

Sets the color of the pixel of G with coordinates (x,y) to white.

#link PIXOFF_P **Syntax**

 $PIXOFF_P([G], x, y)$

Description

Sets the color of the pixel of G with coordinates (x,y) to white.

discussion

PIXON

#link

Syntax

PIXON([G], x, y, [color])

Description

Sets the color of the pixel of GROB G with coordinates (x,y).

discussion

PIXON_P

#link

Syntax

PIXON_P([G], x, y, [color])

Description

Sets the color of the pixel of GROB G with coordinates (x,y).

discussion

plotcontour

#link

Syntax

plotcontour(Expr(Xpr), [LstVar], [LstVal])

Description

Draws 11 contour-lines $z=z_min,...z=z_max$ of the surface z=Xpr, where the contourlines are defined by the 3rd argument. discussion

plotfield

#link

Syntax

plotfield(Expr, VectVar, [Opt])

Description

plotfield(f(t,y),[t,y]) draws the slope field of the differential equation y'=f(t,y)

plotfunc

#link

Syntax

plotfunc(Expr)

Description

Draws the plot of a function, given an expression in the independent variable x. Note the use of lowercase x.

Example

plotfunc($3*\sin(x)$) draws the graph of $y=3*\sin(x)$.

discussion

plotimplicit

#link

Syntax

plotimplicit(Expr, Var1, Var2)

Description

plotimplicit(f(x,y),x,y) or plotimplicit(f(x,y),[x,y]) graph of f(x,y)=0

discussion

plotinequation

#link

Syntax

plotinequation(Expr, [x=xrange, y=yrange], [xstep], [ystep])

Description

Shows the graph of the solution of inequations with 2 variables.

discussion

plotlist

<u>#link</u>

Syntax

plotlist(Lst(1)||Mtrx(M))

Description

Draws a polygonal line through the points of abscissa 0,...,n and ordinate l=[y0,...,yn] or the line through the points of abscissa in the first M column and the ordinates in the second column.

plotode

#link

Syntax

plotode(Expr, VectVar, VectInitCond)

Description

plotode(f(t,y),[t,y],[t,y],[t,y]) draws the solution of y'=f(t,y) and y(t,y)=y0 or of the system [x'=g(t,x,y),y'=h(t,x,y)] with x(t,y)=x0 and y(t,y)=y0.

plotparam

#link

Syntax

plotparam(Cplx||Lst,Var||Lst(Var))

Description

plotparam(a(x)+i*b(x),x=x0..x1) draws the curve X=a(x),Y=b(x) x=x0..x1 or plotparam([a(u,v),b(u,v),c(u,v)],[u=u0..u1,v=v0..v1]) draws the surface X=a(u,v),Y=b(u,v),Z=c(u,v) u=u0..u1 and v=v0..v1.

discussion

plotpolar

#link

Syntax

plotpolar(Expr, Var, VarMin, VarMax)

Description

plotpolar(f(x),x,a,b) draws the polar curve r=fx) for x in [a,b]

discussion

plotseq

#link

Syntax

plotseq(Expr(f(Var)), Var=[a, xm, xM], Intg(p))

Description

For seeing the pth terms of the sequence u(0)=a, u(n)=f(u(n-1))

discussion

pmin

#link

Syntax

pmin(Mtrx,[Var])

Returns the minimal polynomial of a square matrix.

Example

pmin([[1,0],[0,1]],x) returns x-1

discussion

point

#link

Syntax

point(Real1, Real2) or point(Expr1, Expr2) or point(Complex)

Description

Creates a point, given the coordinates of the point. Each coordinate may be a value or an expression involving variables or measurements on other objects in the geometric construction.

Example

point(3,4) creates a point whose coordinates are (3,4). This point may be selected and moved later.

point(abscissa(GA), ordinate(GB)) creates a point whose x-coordinate is the same as that of a point A and whose y-coordinate is the same as that of a point B. This point will change to reflect the movements of point A or point B.

point2d

#link

Syntax

point2d(Var1, Var2, ..., Varn)

Description

Randomly re-distributes a set of points such that, for each point, x is in the interval [-5, 5] and y is in the interval [-5, 5]. Any further movement of one of the points will randomly re-distribute all of the points.

POISSON

#link

Syntax

 $POISSON(\mu, k)$

Description

Poisson probability mass function. Computes the probability of k occurrences of an event in a time interval, given μ expected (or mean) occurrences of the event in that interval.

For this function, k is a non-negative integer and μ is a real number.

Example

POISSON(4, 2) returns 0.14652511111

discussion

POISSON_CDF

#link

Syntax

POISSON_CDF(μ , x)

Description

Cumulative poisson distribution function. Returns the probability of x or fewer occurrences of an event in a given time interval, given μ expected (or mean) occurrences.

POISSON_CDF(4, 2) returns 0.238103305554

discussion

POISSON_ICDF

#link

Syntax

POISSON_ICDF(μ , p)

Description

Inverse cumulative poisson distribution function. Returns the value x such that the probability of x or fewer occurrences of an event in a time interval, with μ expected (or mean) occurrences of the event in the interval, is p.

Example

POISSON_ICDF(4, 0.238103305554) returns 2

discussion

polar

#link

Syntax

polar(Crcle,Pnt or Cplxe(A))

Description

Returns the line of the conjugated points of A with respect to the circle.

discussion

polar_coordinates

#link

Syntax

polar_coordinates(Pnt or Cplx or LstRectCoord)

Returns the list of the norm and of the argument of the affix of a point (for 2D) or of a complex number or of the list of rectangular coordinates.

Example

polar_coordinates(point(1+2*i)) returns $[\sqrt{5}, atan(2)]$

discussion

polar_point

<u>#link</u>

Syntax

polar_point(Real(r),Real(t))

Description

Returns the point (for 2D) with the arguments r and t as polar coordinates.

discussion

pole

#link

Syntax

pole(Crcle,Line)

Description

Returns the point having the line as polar with respect to the circle.

discussion

poly2symb

#link

Syntax

poly2symb(Lst,Var)

Description

Returns a polynomial (orthe polynomial and its value) in Var (by default x), the polynomial being defined by the vector of coefficients in Vect .

Example

poly2symb([1,2,3],x) returns (x+2)*x+3poly2symb([1,2,3],x=2) returns (x+2)*x+3=11

discussion

POLYCOEF

#link

Syntax

POLYCOEF(vector or list)

Polynomial coefficients. Returns the coefficients of the polynomial with the roots specified in vector.

POLYCOEF({-1, 1}) returns {1, 0, -1}

discussion

POLYEVAL

<u>#link</u>

Syntax

POLYEVAL(vector or list, value)

Description

Polynomial evaluation. Evaluates a polynomial with the coefficients specified in vector, at value.

POLYEVAL({1, 0, -1}, 3) returns 8

discussion

polygon

#link

Syntax

polygon(Point1, Point2, ..., Pointn)

Description

Draws a polygon from a set of vertices.

Example

polygon(GA, GB, GD) draws ΔABD

discussion

polygonplot

#link

Syntax

polygonplot(Mtrx)

Description

Draws the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j, when the xk are sorted (we obtain ncols-1 polygons).

polygonscatterplot

#link

Syntax

polygonscatterplot(Mtrx)

Draws the points (xk,yk) and the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j ,when the xk are sorted (we obtain ncols-1 polygons).

polynomial_regression

#link

Syntax

polynomial_regression(Lst||Mtrx(A),[Lst],Intq(n))

Description

Returns the coefficients (an,...a1,a0) of $y=an*x^n+..a1x+a0$: it is the best polynomial that approximates the points where the coordinates are the rows of A (or the 2 lists) (n is the 2nd argument).

Example

```
polynomial_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) returns [-0.0,1.0,-0.0,0.0] discussion
```

POLYROOT

#link

Syntax

POLYROOT(vector)

Description

Polynomial roots. Returns the roots for the polynomial whose coefficients are specified in vector.

Example

 $POLYROOT([1, 0, -1]) returns \{-1, 1\}$

discussion

POS

#link

Syntax

POS(list, element)

Description

List Position. Returns the position of element within list. If there is more than one instance of the element, the position of the first occurrence is returned. A value of 0 is returned if there is no occurrence of the specified element.

Example

 $POS({0, 1, 3, 5}, 1)$ returns 2

potential

#link

Syntax

potential(Vect(V), VectVar)

Description

Returns U such as derive(U, Vector_of_variable)=V

Example

potential([$2*x*y+3,x^2-4*z,-4*y$],[x,y,z]) returns $2*x^2*y/2+3*x-4\frac{dix}{dix}$

pow2exp

#link

Syntax

pow2exp(Expr)

Description

Converts powers to exponentials. Essentially the inverse of exp2pow.

Example

pow2exp(a^b) returns exp(b*ln(a))

discussion

power_regression

#link

Syntax

power_regression(Lst|Mtrx(A),[Lst])

Description

Returns the coefficients (m,b) of $y=b*x^m$: it is the best monomial that approximates the points where the coordinates are the rows of A (or the 2 lists).

Example

power_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) returns 2.0,1.0 <u>discussion</u>

powerpc

#link

Syntax

powerpc(Cercle,Pnt or Cplx)

Returns the real number d^2-R^2 (d=distance between point and center, R=radius).

Example

powerpc(circle(0,1+i),3+i) returns 8

discussion

powexpand

#link

Syntax

powexpand(Expr)

Description

Expresses a power in the form of a product.

Example

powexpand($2^(x+y)$) yields $(2^x)^*(2^y)$

discussion

powmod

<u>#link</u>

Syntax

powmod(a, n, p)

Description

Power and modulo. For the integers a, n, and p, returns a^n mod p.

Example

powmod(5,2,13) returns 12

discussion

prepend

#link

Syntax

prepend(Lst,Elem)

Description

Puts the element at the beginning of the list.

Example

prepend([1,2],3) returns [3,1,2]

discussion

preval

#link

Syntax

preval(f(Var), Real1, Real2, [Var])

Description

Returns f(Real2)-f(Real1).

Example

preval($x^2-2,2,3$) returns 5

discussion

prevprime

#link

Syntax

prevprime(a)

Description

Previous prime. Returns the previous prime number before the integer a.

Example

prevprime(11) returns 7

discussion

primpart

#link

Syntax

primpart(Poly, [Var])

Description

Returns the polynomial P divided by the gcd of its coefficients.

Example

primpart($2x^2+10x+6$) returns $x^2+5*x+3$

discussion

PRINT

#link

Syntax

PRINT(expr) or PRINT(string) or PRINT()

Description

Prints either the result of expr or string to the terminal.

The terminal is a program text output viewing mechanism which is displayed only when PRINT commands are executed. When visible, you can use the up/down keys to view the text, BKSP to erase the text and any other key to hide the terminal. You can show the

terminal at anytime using the ON+T combination (press and HOLD the ON key, then press the T key, then release both keys). Pressing ON stops the interaction with the terminal.

PRINT with no argument clears the terminal.

discussion

product

#link

Syntax

product(Expr||Lst,[Var||Lst],[Intg(a)],[Intg(b)],[Intg(p)])

Description

Multiplicates the values of the expression when the variable goes from a to b with a step p (product expression, var, begin, end, step) by default p=1) or product of the elements of a list or product element by element of 2 lists or matrix.

Example

product(n,n,1,10,2) returns 945

discussion

projection

#link

Syntax

projection(Curve, Point)

Description

Draws the orthogonal projection of a point onto a curve.

Example

projection(circle(x $^2+y^2=4$),point(6,6)) creates a point on the circle at ($\sqrt{2}$, $\sqrt{2}$)

discussion

proot

<u>#link</u>

Syntax

proot(Vect||Poly)

Description

Returns all computed roots of a polynomial given by its coefficients (may not work if roots are not simple).

Example

proot([1,0,-2]) returns [-1.41421356237,1.41421356237]

propfrac

#link

Syntax

propfrac(Frac or RatFrac)

Description

Simplifies and writes the fraction (or rationnal fraction) A/B as Q+R/B with R<B (or deg(R) < deg(B))

Example

propfrac(28/12) returns 2+1/3

discussion

#link

Psi

Syntax

Psi(Real(a),Intg(n))

Description

Psi(a,n) returns the nth derivative of the digamma function at x=a (Psi(a,0)=Psi(a))

Example

Psi(3,1) returns $\pi^2/6-5/4$

discussion

#link

ptayl

Syntax

ptayl(Poly(P(var)),Real(a),[Var])

Description

Returns the Taylor polynomial Q such as P(x)=Q(x-a)

Example

ptayl($x^2+2*x+1,1$) returns $x^2+4*x+4$

discussion

purge

#link

Syntax

purge(Var)

Description

purge(varname) unassigns the variable varname

PX→C

#link

Syntax

 $PX \rightarrow C(x, y)$ or $PX \rightarrow C(\{x, y\})$

Description

Transform pixel coordinates into cartesian coordinates. Returns a list.

discussion

q2a

<u>#link</u>

Syntax

q2a(QuadraForm, VectVar)

Description

q2a(q(x,y),[x,y]) returns the symmetric matrix associated with the quadratic form q

Example

 $q2a(x^2+2x^y+2y^2,[x,y])$ returns [[1,1],[1,2]]

discussion

QR

#link

Syntax

QR(matrix)

Description

QR Factorization. Factors an mn matrix into three matrices: {[[mm orthogonal]],[[mn uppertrapezoidal]],[[nn permutation]]}.

Example

QR([[1,2],[3,4]])

discussion

quadrilateral

#link

Syntax

quadrilateral(Point1, Point2, Point3, Point4)

Description

Draws a quadrilateral from a set of four points.

Example

quadrilateral(GA, GB, GC, GD) draws quadrilateral ABCD.

discussion

quantile

#link

Syntax

quantile(Lst(1),Real(p))

Description

Returns the quantile of the elements of I corresponding to p (0

Example

quantile([0,1,3,4,2,5,6],0.25) returns [1.0]

discussion

quartile1

#link

Syntax

quartile1(Lst||Mtrx,[Lst])

Description

Returns the 1st quartile of the elements (or of the columns) of the argument.

Example

quartile1([1,2,3,5,10,4]) returns 2.0

discussion

quartile3

#link

Syntax

quartile3(Lst||Mtrx,[Lst])

Description

Returns the 3rd quartile of the elements (or of the columns) of the argument

Example

quartile3([1,2,3,5,10,4]) returns 5.0

discussion

quartiles

#link

Syntax

quartiles(Lst||Mtrx,[Lst])

Description

Returns the min, 1st quartile, median, 3rd quartile, and max of the elements (or of the columns) of the argument.

Example

quartiles([1,2,3,5,10,4]) returns [[1.0],[2.0],[3.0],[5.0],[10.0] discussion

quo

<u>#link</u>

Syntax

quo((Vect or Poly),(Vect or Poly),[Var])

Description

Returns the Euclidean quotient of 2 polynomials

Example

quo([1,2,3,4],[-1,2]) returns poly1[-1,-4,-11]

discussion

quorem

#link

Syntax

quorem(Poly1, Poly2) or quorem(Vector1, Vector2)

Description

Returns the Euclidean quotient and remainder of the quotient of 2 polynomials in a vector. If the polynomials are expressed as vectors of their coefficients, then this command returns a similar vector of the quotient and a vector of the remainder.

Example

quorem($x^3+2*x^2+3*x+4,-x+2$) returns [$-x^2-4*x-11, 26$] quorem([1,2,3,4],[-1,2]) returns [[-1, -4, -11] [26]]

discussion

QUOTE

#link

Syntax

QUOTE(expression)

Description

Returns the expression unchanged and un-evaluated.

This function is mostly used with the STO► command in order to store a function in a function variable. For example if you want to store SIN(X) in F1.you cannot do SIN(X)►F1 as SIN(X) would be evaluated and a numerical result would be stored into F1.

QUOTE(SIN(X))►F1 will store SIN(X) in F1.

radical_axis

#link

Syntax

radical_axis(Crcle,Crcle)

Description

Returns the line of points with same powerpc with respect to the 2 circles.

discussion

radius

#link

Syntax

radius(Circle)

Description

Returns the radius of a circle.

Example

If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as circle(GA, GB-GA), then radius(GC) returns 1.

randexp

#link

Syntax

randexp(Real(a))

Description

Returns a random real according to the exponential distribution of parameter a>0

Example

randexp(1) returns 1.17118631006

discussion

RANDINT

#link

Syntax

RANDINT([a],[b],[c])

Description

Random number. Returns a pseudo-random integer generated using a seed value, and updates the seed value.

With no argument, this function returns a random integer x from 0 to 1. With one argument, this returns a random integer x from 0 to a. With two arguments, this returns a random integer x from a to b. With three arguments, this returns a list of size a with each element being a random integer x from b to c.

Example

RANDINT(3,1,6) returns { random1, random2, random3 }

discussion

RANDMAT

#link

Syntax

RANDMAT (matrixname, rows, columns)

Description

Creates a random matrix with the specified number of rows and columns, and stores the result in matrixname. The entries will be integers ranging from -99 to 99.

Example

RANDMAT(M1,2,2) returns [[n1,n2],[n3,n4]]

discussion

randMat

#link

Syntax

ranm(Intg(n),[Intg(m)],[Interval or quote(DistribLaw)])

Description

Returns a list of size n or a n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law in quote.

Example

ranm(3) returns [-20,72,-86]

discussion

RANDNORM

#link

Syntax

RANDNORM($[\mu]$, $[\sigma]$) or RANDNORM(n, μ, σ)

Description

Return a random number from the normal distribution with the specified mean μ and standard deviation σ . Default values are 0 and 1.

With three arguments, returns a list of size n with each element being a random number

fron the normal distribution with the specified mean μ and standard deviation σ .

Example

RANDNORM(3,0,1) returns { random1, random2, random3 }

discussion

randNorm

#link

Syntax

randnorm(Real(mu), Real(sigma))

Description

Returns a random real with normal distribution N(mu,sigma)

Example

randnorm(0,1) returns -0.860967215689

discussion

RANDOM

#link

Syntax

RANDOM([a],[b],[c])

Description

Random number. Returns a pseudo-random number generated using a seed value, and updates the seed value.

With no argument, this function returns a random number x with $0 \le x < 1$. With one argument, this returns a random number x with $0 \le x < a$. With two arguments, this returns a random number x with $a \le x < b$. With three arguments, this returns a list of size a with each element being a random number x with $b \le x < c$.

Example

RANDOM(3,0,10) returns { random1, random2, random3 }

discussion

randperm

#link

Syntax

randperm(Intg(n))

Description

Returns a random permutation of [0,1,2,...,n-1]

Example

randPoly

#link

Syntax

randpoly([Var],Intgr,[Dist])

Description

Returns a vector of coefficients of a polynomial of variable Var (or x), of degree Intgr and where the coefficients are random integers in the range -99 through 99 with uniform distribution or in an interval specified by Intrvl.

Example

randpoly(t, 8, -1..1) returns a vector of 9 random integers, all of them between -1 and 1.

discussion

RANDSEED

#link

Syntax

RANDSEED([value])

Description

Sets the random number generator seed. With no input, uses current time value as seed.

Example

RANDSEED(3.14)

discussion

RANK

#link

Syntax

RANK(matrix)

Description

Rank of a rectangular matrix.

Example

RANK([[1,2],[3,4]]) returns 2

discussion

ratnormal

#link

Syntax

ratnormal(Expr)

Description

Rewrites Expr as an irreducible rational fraction

Example

ratnormal($(x^2-1)/(x^3-1)$) returns $(x+1)/(x^2+x+1)$

discussion

#link

RE

Syntax

RE(x+yi)

Description

Real Part. Returns the real part of a complex number.

Example

RE(3+4i) returns 3

discussion

reciprocation

#link

Syntax

reciprocation(Crcle,Lst(Pnt,Line))

Description

Returns the list where a point is replaced with its polar or a line is replaced with its pole, with respect to the circle C discussion

RECT

#link

Syntax

RECT([G], [x1, y1], [x2, y2], [edgecolor], [fillcolor])

Description

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgecolor for the perimeter and fillcolor for the inside.

The following values are optional and their defaults are listed:

x1, y1 = top left corner of G

x2, y2=bottom right corner of G

edgecolor=white

fillcolor=edgecolor

Note: To erase a GROB, execute RECT(G). To clear the screen execute RECT(). discussion

RECT_P

<u>#link</u>

Syntax

RECT_P([G], [x1, y1], [x2, y2], [edgeColor],[fillColor])

Description

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgeColor for the perimeter and fillColor for the inside.

The following values are optional and their defaults are listed:

x1, y1 = top left corner of G

x2, y2=bottom right corner of G

edgeColor=white

fillColor=edgeColor

Note: To erase a GROB, execute RECT(G). To clear the screen, execute RECT(). discussion

rectangle

#link

Syntax

rectangle(Point1, Point2, Point3) or rectangle(Point1, Point2, Realk)

Description

Draws a rectangle given two consecutive vertices and a point on the side opposite the side defined by the first two vertices or a scale factor for the sides perpendicular to the first side. As with many of the other polygon commands, you can specify optional CAS variable names for storing the coordinates of the other two vertices as points.

Example

rectangle(GA, GB, GE) draws a rectangle whose first two vertices are points A and B (one side is segment AB). Point E is on the line that contains the side of the rectangle opposite segment AB. rectangle(GA, GB, 3, p, q) draws a rectangle whose first two vertices are points A and B (one side is segment AB). The sides perpendicular to segment AB have length 3*AB. The third and fourth points are stored into the CAS variables p and q, respectively.

rectangular_coordinates

#link

Syntax

rectangular_coordinates(LstPolCoord)

Description

Returns the list of the abscissa and of the ordinate of a point given by the list of its polar coordinates.

Example

rectangular_coordinates([1,-1]) returns [cos(1),-sin(1)]

discussion

red

<u>#link</u>

Syntax

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

REDIM

#link

Syntax

REDIM(matrixname, size)

Description

Redimensions the specified matrix or vector to size. For a matrix, size is a list of two integers {n1, n2}. For a vector, size is a list containing one integer {n}. Existing values in the matrix are preserved. Fill values will be zeros.

discussion

reduced_conic

#link

Syntax

reduced_conic(Expr,[LstVar])

Description

Returns the origin and the matrix of a base in which the conic (given by its equation) is reduced, 0 or 1 (0 if the conic is degenerate), and the equation of the conic in this base and also its parametric equation

Example

$$\label{eq:conic} \begin{split} \text{reduced_conic}(x \wedge 2 + 2 * x - 2 * y + 1) & \text{returns } [[-1,0],[[0,1],[-1,0]],1,y \wedge 2 + 2 * x, \\ & [[-1 + (-i) * (t * t / - 2 + (i) * t),t,-4,4,0.1]]] & \underline{\text{discussion}} \end{split}$$

ref

#link

Syntax

ref(Mtrx(M))

Description

Performs Gauss reduction of a matrix AX=b (M=A|(-b))

Example

ref([[3,1,-2],[3,2,2]]) returns [[1,1/3,-2/3],[0,1,4]]

discussion

reflection

#link

Syntax

reflection(line, Object) or reflection(Point, Object)

Description

Reflects a geometric object over a line or through a point. The latter is sometimes referred to as a half-turn.

Example

eflection(line(x=3),point(1,1)) reflects the point at (1, 1) over the vertical line x=3 to create a point at (5,1). reflection(1+I, 3-2i) reflects the point at (3, -2) through the point at (1, 1) to create a point at (-1, 4).

rem

#link

Syntax

rem(Poly1, Poly2) or rem(Vector1, Vector2)

Description

Returns the Euclidean remainder of the quotient of 2 polynomials. If the polynomials are expressed as vectors of their coefficients, then this command returns a similar vector of the remainder.

Example

rem $(x^3+2*x^2+3*x+4,-x+2)$ returns 26 rem([1,2,3,4],[-1,2]) returns [26]

discussion

syntax
remove(FncBool(f)||e,Lst(1))

Description
Removes the occurences e of l or the elements e such that f(e)=true

Example

remove(x->x>=5,[1,2,6,7]) returns [1,2]

discussion

reorder

<u>#link</u>

Syntax

reorder(Expr,LstVar)

Description

Reorders the variables in E according to the order of the 2nd argument

Example

reorder($x^2+2*x+y^2$,[y,x]) returns y^2+x^2+2*x

discussion

REPEAT #link

Syntax

REPEAT command(s) UNTIL test;

Description

executes command(s) UNTIL the test is true.

A:=5; REPEAT PRINT(A); A:= A-1; UNTIL A<1;

will print 54321

discussion

REPLACE

#link

Syntax

REPLACE(object,start,object)

Description

Replaces portion of a matrix, vector or string starting at start by object.

For a matrix, start is a list containing two numbers; for a vector or string it is a single number.

Note: for strings, you can do: REPLACE("string", "sub_string", "replace_string") <u>discussion</u>

residue

#link

Syntax

residue(Expr, Var(v), Cplx(a))

Description

Returns the residue in a of the expression Expr with v as variable

Example

residue(1/z,z,0) returns 1

discussion

restart

#link

Syntax

restart(NULL)

Description

Purges all the variables

discussion

resultant

#link

Syntax

resultant(Poly,Poly,Var)

Description

Returns the inert form of the resultant for modular computation (irem/mod)

discussion

RETURN

#link

Syntax

RETURN expression;

Description

Exits from a function and returns the value of expression (optional).

Example

EXPORT FACTORIAL(N)

BEGIN

IF N==1 THEN RETURN 1; ELSE RETURN N*FACTORIAL(N-1); END;

REVERSE

<u>#link</u>

discussion

Syntax

END;

REVERSE(list)

Description

Reverse list. Reverses the order of the elements in list and returns them in a new list.

Example

REVERSE($\{2, 3, 4, 5\}$) returns $\{5, 4, 3, 2\}$.

discussion

revlist

#link

Syntax

revlist(Lst(1))

Description

Returns the list I in reverse order

Example

revlist([1,2,3]) returns [3,2,1]

discussion

RGB

#link

Syntax

RGB(R, G, B, [A])

Description

Returns an integer number that can be used as the color parameter for a drawing function. Based on Red, Green and Blue components values (0 to 255).

If Alpha is greater than 128, returns the color flagged as transparent. There is no alpha channel blending on Prime.

discussion

rhombus

#link

Syntax

rhombus(Pnt(A)||Cplx,Pnt(B)||Cplx,Angle(a)||Pnt(P)||Lst(P,a)),[Var(C)], [Var(D)])

Description

Returns and draws the rhombus ABCD such that the angle (AB,AD)=a or such that in the plane ABP the angle(AB,AD)=a or such that in the discussion

RIGHT

<u>#link</u>

Syntax

RIGHT(string, n)

Description

Returns the last n characters of the string.

Example

RIGHT("MOMOGUMBO",5) returns "GUMBO"

discussion

right

#link

Syntax

discussion

right_triangle

#link

Syntax

right_triangle(Point1, Point2, Realk)

Description

Draws a right triangle given two points and a scale factor. One leg of the right triangle is defined by the two points, the vertex of the right angle is at the first point, and the scale factor multiplies the length of the first leg to determine the length of the second leg.

Example

right_triangle(GA, GB, 1) draws an isosceles right triangles with its right angle at point A, and with both legs equal in length to segment AB.

romberg #link

Syntax

romberg(Expr(f(x)), Var(x), Real(a), Real(b))

Description

Uses Romberg's method to return the approximate value of the integral of the expression over the interval a to b

Example

romberg($\exp(x^2), x, 0, 1$) returns 1.46265174591

discussion

ROTATE

#link

Syntax

ROTATE(string, n)

Description

If n is not negative, takes the first n characters of string and put them on the right of string. If n is negative, takes the last n characters and put them on the left of string. If ABS(n)>dim(string), returns string.

Example

ROTATE("12345",2) returns "34512" ROTATE("12345",-1) returns "51234" ROTATE("12345",6) returns "12345"

discussion

rotation

#link

Syntax

rotate(Point, Angle, Object)

Description

Rotates a geometric object, about a given center point, through a given angle.

Example

rotate(GA, angle(GB, GC, GD),GK) rotates the geometric object labeled K, about point A, through an angle equal to $_{4}$ CBD.

discussion

ROUND

#link

Syntax

ROUND(value, [places])

Description

Rounds value to system display settings. If optional places is given, rounds value to places decimal places. If places is negative, rounds to significant digits instead.

Example

ROUND(7.8676,2) returns 7.87

discussion

#link

row

Syntax

row(Mtrx(A),Intg(n)||Interval(n1..n2))

Description

Returns the row n or the sequence of the rows n1..n2 of the matrix A

Example

row([[1,2,3],[4,5,6],[7,8,9]],1) returns [4,5,6]

discussion

rowAdd

#link

Syntax

rowAdd(Mtrx(A),Intg(n1),Intg(n2))

Description

Returns the matrix obtained from matrix A when the n2th row is replaced by the sum of the n1th and n2th rows

Example

rowAdd([[1,2],[3,4],[5,6]],1,2) returns [[1,2],[3,4],[8,10]]

discussion

rowDim

#link

Syntax

rowDim(Mtrx)

Description

Returns the number of rows of a matrix

Example

ROWNORM

#link

Syntax

ROWNORM(matrix)

Description

Row Norm. Finds the maximum value (over all rows) for the sums of the absolute values of all elements in a row.

Example

ROWNORM([[1,2],[3,4]]) returns 7

discussion

rowSwap

#link

Syntax

rowSwap(Mtrx(A),Intg(n1),Intg(n2))

Description

Returns the matrix obtained from A by swapping the n1th row and the n2th row

Example

rowSwap([[1,2],[3,4],[5,6]],1,2) returns [[1,2],[5,6],[3,4]]

discussion

RREF

#link

Syntax

RREF(matrix)

Description

Reduced-Row Echelon Form. Changes a rectangular matrix to its reduced row-echelon form.

Example

RREF([[1,-2,1],[3,4,-1]]) returns [[1,0,.2],[0,1,-.4]]

discussion

rsolve

#link

Syntax

```
rsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal))
```

Description

Gives the value of a recurrent sequence or of a system of recurrent sequences

Example

rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=1 returns $[-n+2*2\wedge n-1]$

discussion

 $R \rightarrow B$

#link

Syntax

R→B(Real [, bits [,base]])

Description

Transform a real number into an integer. Optionally specifies bits and base.

-64<Bits<65

 $0 \le Base \le 4$

0: system, 1: bin, 2: oct, 3: dec, 4: hex

discussion

SCALE

#link

Syntax

SCALE(matrixname, value, rownumber)

Description

Multiplies the specified row_number of the specified matrix by value.

discussion

SCALEADD

#link

Syntax

SCALEADD(matrixname, value, row1, row2)

Description

Multiplies the specified row1 of the matrix name by value, then adds this result to the second specified row2 of the matrix matrixname.

discussion

SCHUR

#link

Syntax

SCHUR(matrix)

Description

Schur Decomposition. Factors a square matrix into two matrices. If matrix is real, then the result is {[[orthogonal]],[[upper-quasi triangular]]}.

If Complex mode is on and the matrix is complex, then the result is {[[unitary]],[[upper-triangular]]}.

Example

SCHUR([[1,2],[3,4]])

discussion

SEC

<u>#link</u>

Syntax

SEC(value)

Description

Secant. The Secant function; that is, $1/\cos(x)$.

Example

SEC(0) returns 1 in degree mode

discussion

segment

#link

Syntax

segment(Point1, Point2)

Description

Draws a segment defined by its endpoints.

Example

segment(1+2i, 4) draws the segment defined by the points whose coordinates are (1, 2) and (4, 0). segment(GA, GB) draws segment AB.

discussion

select

#link

Syntax

select(FncBool(f),Lst(l))

Description

Selects the elements e of I such that f(e)=true

Example

select(x->x>=5,[1,2,6,7]) returns [6,7]

discussion

seq

#link

Syntax

seq(Expr(Xpr),Intg(n)||Var(var),[Intg(a)],[Intg(b)],[Intg(p)])

Description

Returns the sequence (if 2 or 3 arguments) or the list (if 4 or 5 arguments) obtained when var goes from a to b (step p) in Xpr, or when Xpr is repeated n times.

Example

 $seq(2^k, k=0..8)$ returns 1,2,4,8,16,32,64,128,256

discussion

seqsolve

#link

Syntax

seqsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal))

Description

Gives the value of a recurrent sequence $(u_{n+1}=f(u_n) \text{ or } u_{n+2}=f(u_{n+1},u_n)...)$ or of a system of recurrent sequences

Example

seqsolve(2x+n,[x,n],1) returns $-n-1+2*2\land n$

discussion

series

#link

Syntax

series(Expr,Equal(var=limit_point),[Order],[Dir(1,0,-1)])

Description

Returns the series expansion of an expression in the vicinity of a given equality variable. With the optional third and fourth arguments you can specify the order and direction of the series expansion. If no order is specified the series returned is fifth order. If no direction is specified, the series is bidirectional.

Example

series($(x^4+x+2)/(x^2+1)$, x=0,5) returns $2+x-2x^2-x^3+3x^4+x^5+x^6$ *order_size(x)

discussion

SETBASE

#link

Syntax

SETBASE(#integer[, base])

Description

Sets the base used for display of this integer.

If base is not specified the calculator default is used.

 $0 \le Base \le 4$

0: system, 1: bin, 2: oct, 3: dec, 4: hex

discussion

SETBITS

#link

Syntax

SETBITS(#integer[, bits])

Description

Sets the number of bits used for calculations with this integer to bits.

If bits is not specified the calculator default is used.

-64<Bits<65

discussion

shift_phase

#link

Syntax

shift_phase(Expr)

Description

Returns the expressions where the phase of the evaluated trigonometric expressions is increased by $\pi/2\,$

Example

shift_phase(sin(x)) returns $-\cos((\pi+2*x)/2)$

discussion

Si

#link

Syntax

Si(Expr)

Description

Sine integral int(sin(t)/t,t=0..x)

Example

SIGN

#link

Syntax

SIGN(value) or SIGN(x+yi)

Description

Sign. Returns the sign of value. If positive, the result is 1; if negative, -1. If zero, the result is zero. For complex inputs returns the unit vector.

Example

SIGN (2) returns 1

discussion

signature

<u>#link</u>

Syntax

signature(Permut)

Description

Returns the signature of a permutation

Example

signature([2,1,4,5,3]) returns -1

discussion

similarity

#link

Syntax

similarity(Point, Realk, Angle, Object)

Description

Dilates and rotates a geometric object about the same center point.

Example

similarity(0, 3, angle(0,1,i),point(2,0)) dilates the point at (2,0) by a scale factor of 3 (a point at (6,0)), then rotates the result 90° counterclockwise to create a point at (0, 6) discussion

simplify

#link

Syntax

simplify(Expr)

Description

Simplifies an expression.

Example

simplify(4*atan(1/5)-atan(1/239)) yields $(1/4)*\pi$

discussion

simult

#link

Syntax

simult(Mtrx(A),Mtrx(B))

Description

Returns the matrix where the column of index k is solution of A*X=column of index k of B (=B[0..nr-1,k..k] with nr=number of rows of B)

Example

simult([[3,1],[3,2]],[[-2],[2]]) returns [[-2],[4]]

discussion

SIN

#link

Syntax

SIN(Value)

Description

Returns the sine of Value. Value is interpreted as either degrees or radians, depending on the setting of Angle Measure in Home Modes or Symbolic Setup.

Example

in radians mode, $SIN(\pi/2)$ returns 1

discussion

sin2costan

<u>#link</u>

Syntax

sin2costan(Expr)

Description

Rewrites Expr so that sin(x) is replaced by cos(x)*tan(x)

Example

sincos

#link

Syntax

sincos(Expr)

Description

Returns an expression with the complex exponentials rewritten in terms of sine and cosine.

Example

sincos(exp(-i*x)) returns cos(x)-i*sin(x)

discussion

single_inter

#link

Syntax

single_inter(Curve,Curve,[Pnt(A)||LstPnt(L)])

Description

Gives one of the intersections of 2 curves or surfaces (or the intersection near A or not in L) <u>discussion</u>

SINH

#link

Syntax

SINH(value)

Description

Hyperbolic sine.

Example

SINH(1) returns 1.17520119364

discussion

SIZE

#link

Syntax

SIZE(list)

Description

List Size. Returns the number of elements in list.

Example

 $SIZE({0, 1, 2, 3})$ returns 4

discussion

slope

#link

Syntax

slope(Line||Pnt||Cplx,[Pnt||Cplx])

Description

Returns the slope of the line defined in the argument

Example

slope(line(1,2i)) returns -2

discussion

slopeat

#link

Syntax

slopeat(Segment, Point) or slopeat(Line, Point) or slopeat(Ray, Point)

Description

Displays, with a legend, the value of the slope of the segment, ray, or line (Line may be a tangent, bisector, etc.) at the location Point in Plot view.

Example

slopeat(line(point(0,1), point(3,2)),point(-10,4)) places "sline(point(0,1),point(3,2)=1/3" at the point (-10,4) in Plot viewcussion

slopeatraw

#link

Syntax

slopeatraw(Line, Pnt||Cplx(z0))

Description

slopeatraw(d,z0) displays the value of the slope of the line or segment d at point(zQ)ussion

solve

#link

Syntax

```
solve(Expr,[Var] )
```

Description

Solves a polynomial equation or a set of polynomial equations.

Example

 $solve(x^2-3=1)$ returns $\{-2,2\}$

discussion

SORT

#link

Syntax

SORT(list)

Description

Sort list. Sorts the elements of list in ascending order.

Example

SORT({2, 9, 5, 3}) returns {2, 3, 5, 9}.

discussion

SPECNORM

#link

Syntax

SPECNORM(matrix)

Description

Spectral Norm of matrix.

Example

SPECNORM([[1,2],[3,4]]) returns 5.46498570422

discussion

SPECRAD

#link

Syntax

SPECRAD(matrix)

Description

Spectral radius of matrix.

Example

SPECRAD([[1,2],[3,4]]) returns 5.37228132327

discussion

spline

#link

Syntax

spline(Lst(lx),Lst(ly),Var(x),Intg(d))

Description

Returns the natural spline through the points given by lx and ly, variable x, degree d

Example

 $spline([0,1,2],[1,3,0],x,3) \ returns \ [-5*x^3/4+13*x/4+1,5*(x-1)^3/4+-15* \\ (x-1)^2/4+(x-1)/-2+3] \ \underline{discussion}$

sqrfree

#link

Syntax

sqrfree(Expr)

Description

Returns a polynomial factorized as a product of powers of coprime factors where each factor has roots of multiplicity 1

Example

 $sqrfree(x^4-2*x^2+1)$ returns $(x^2-1)^2$

discussion

sqrt

<u>#link</u>

Syntax

√(Expr)

Description

Returns the square root of Expr

Example

 $\sqrt{50}$ returns $5*\sqrt{2}$

discussion

square

#link

Syntax

square(Point1, Point2)

Description

Draws a square, given two consecutive vertices as points.

Example

square(0, 3+2i, p, q) draws a square with vertices at (0, 0), (3, 2), (1, 5), and (-2, 3). The last two vertices are computed automatically and are saved into the CAS variables p and q.

STARTAPP

#link

Syntax

STARTAPP("AppName")

Description

Starts the app AppName. The App's START function will run if present. The App's default view will be started. Note that the START function is always executed when the user presses the START menu key in the App Library. Also works for apps saved in the App Library.

discussion

STARTVIEW

#link

Syntax

STARTVIEW(ViewNumber[,Redraw])

Description

Starts a view of the current app. Redraw, is optional; if Redraw, is true (non 0), it will force a refresh for the view.

The view numbers are as follows:

- 0=Symbolic
- 1 = Plot
- 2=Numeric
- 3=Symbolic Setup
- 4=Plot Setup
- 5=Numeric Setup
- 6=App Info
- 7=Views key

If the current app has views defined under the Views menu, then the following view numbers are used:

- 8=First special view (Split Screen Plot Detail)
- 9=Second special view (Split Screen Plot Table)
- 10=Third special view (Autoscale)
- 11=Fourth special view (Decimal)
- 12=Fifth special view (Integer)
- 13=Sixth special view (Trig)

If ViewNumber is negative, the following global views are used:

- -1=HomeScreen
- -2 = Modes
- -3=Memory Manager
- -4=App Library
- -5=Matrix Catalog
- -6=List Catalog
- -7=Program Catalog
- -8=Note Catalog

discussion

stddev

<u>#link</u>

Syntax

stddev(Lst||Mtrx,[Lst])

Description

Returns the standard deviation of the elements in a list or of the list of standard deviations

Example

stddev([1,2,3]) returns $(\sqrt{6})/3$

discussion

stddevp

#link

Syntax

stddevp(Lst||Mtrx,[Lst])

Description

Returns the population standard eviation of the elements of a list with the second argument as weight.

Example

stddevp([1,2,3]) returns 1

discussion

STEP

#link

Syntax

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO command(s) END;

Description

Sets variable var to start; then, for as long as this variable's value is less than or equal to

(or more than for a DOWNTO) finish, executes command(s) and adds (or substract for DOWNTO) 1 (or increment) to var. FOR A FROM 1 TO 10 STEP 2 DO PRINT(A); END; will print 1 3 5 7 9 discussion #link sto **Syntax** sto(arg1,Var) **Description** Stores the first argument in the variable given as second argument **Example** sto("hello",b) discussion #link STRING **Syntax** STRING(expression) **Description** Evaluates expression and returns the result as a string. discussion #link STRINGFROMID **Syntax**

STRINGFROMID(integer)

Description

Returns the built-in string associated with the ID of the current language.

discussion

STUDENT

#link

Syntax

STUDENT(n, x)

Description

Student's t probability density function. Computes the probability density of the Student's-t distribution at x, given n degrees of freedom.

Example

STUDENT(3, 5.2) returns 0.00366574413491

discussion

STUDENT_CDF

<u>#link</u>

Syntax

 $STUDENT_CDF(n, x)$

Description

Cumulative Student's t distribution function. Returns the lower-tail probability of the Student's t probability density function at x, given n degrees of freedom.

Example

STUDENT_CDF(3, -3.2) returns 0.0246659214813

discussion

STUDENT_ICDF

<u>#link</u>

Syntax

STUDENT_ICDF(n, p)

Description

Inverse cumulative Student's t distribution function. Returns the value x such that the Student's-t lower-tail probability of x, with n degrees of freedom, is p.

Example

STUDENT_ICDF(3, 0.0246659214813) returns -3.2

discussion

sturmab

#link

Syntax

sturmab(Poly, Var, Cplx1, Cplx2)

Description

Returns the number of sign changes of a polynomial in the interval (Cplx1, Cplx2] or the number of complex roots in (Cplx1, Cplx2] if Cplx1 or Cplx2 is non-real.

Example

sturmab($x^3-1,x,-2,5$) returns 1

discussion

sturmseq

#link

Syntax

sturmseq(Poly,[Var])

Description

Returns the Sturm sequence corresponding to a polynomial or to a rational fraction

Example

sturmseq(x^3-1,x) returns [1,[[1,0,0,-1],[3,0,0],9],1]

discussion

SUB

#link

Syntax

SUB(object, start, end)

Description

Extracts a portion, of a list or matrix.

For a matrix, start and end are two lists of two numbers ({row, col}) specifying the top left and bottom right of the portion to extract.

For a vector or list, start and end are two numbers specifying the indexes of the first and last objects of the portion to extract.

discussion

SUBGROB

#link

Syntax

SUBGROB(srcG, [x1, y1], [x2, y2], trgtG)

Description

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1,y1) and (x2,y2) are not specified, then the entire graphic srcG is used. If (x1,y1) is not specified, then the top left corner of srcG is used; if (x2,y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB(G1, G4) will copy G1 in G4.

discussion

SUBGROB_P

#link

Syntax

SUBGROB_P(srcG, [x1, y1], [x2, y2], trgtG)

Description

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1,y1) and (x2,y2) are not specified, then the entire graphic srcG is used. If (x1,y1) is not specified, then the top left corner of srcG is used; if (x2,y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB(G1, G4) will copy G1 in G4.

discussion

subMat

#link

Syntax

subMat(Mtrx(A),Intg(n1),Intg(n2),Intg(n3),Intg(n4))

Description

Extracts a sub matrix with first element=A[n1,n2] and last element=A[n3,n4]

Example

subMat([[1,2],[3,4],[5,6]],1,0,2,1) returns [[3,4],[5,6]]

discussion

subst

<u>#link</u>

Syntax

subst(Expr, Var=value)

Description

Substitutes a value for a variable in an expression.

Example

 $subst(x/(4-x^2), x=3)$ returns -3/5

discussion

sum

#link

Syntax

sum(Expr,Var,Real1, Real2,[Step])

Description

Returns the discrete sum of Expr with respect to the variable Var from Real1 to Real2. You can also use the summation template in the Template menu.

Example

 $sum(n^2,n,1,5)$ returns 55

discussion

sum_riemann

<u>#link</u>

Syntax

sum_riemann(Expr,List(Var1,Var2))

Description

Returns, in the neighbourhood of $n=\infty$, an equivalent of the sum of Expr(Var1,Var2) for Var2 from Var2=1 to Var2=Var1 when the sum is looked at as a Riemann sum associated with a continuous function defined on [0,1]

Example

 $sum_{riemann}(1/(n+k),[n,k])$ returns ln(2)

discussion

suppress

#link

Syntax

suppress(Vect(1),Intg(n))

Description

Returns I without the element of index n

Example

suppress([0,1,2,3],2) returns [0,1,3]

discussion

surd

#link

Syntax

surd(Expr,Intg(n))

Description

Returns Expr to the power of 1/n

Example

surd(8,3) returns $8\land(1/3)$

discussion

SVD

#link

Syntax

SVD(matrix)

Description

Singular Value Decomposition. Factors an m n matrix into two matrices and a vector: {[[m m square orthogonal]], [n n square orthogonal]], [real]}.

Example

SVD([[1,2],[3,4]])

discussion

#link

SVL

Syntax

SVL(matrix)

Description

Singular Values. Returns a vector containing the singular values of matrix.

Example

SVL([[1,2],[3,4]])

discussion

SWAPCOL

#link

Syntax

SWAPCOL(matrixname, column1, column2)

Description

Swap Columns. Exchanges column1 and column2 in the specified matrix matrix matrix

SWAPROW

#link

Syntax

SWAPROW(matrixname, row1, row2)

Description

Swap Rows. Exchanges row1 and row2 in the specified matrix matrixname.

discussion

sylvester

#link

Syntax

```
sylvester(Poly,Poly,Var)
```

Description

Returns the Sylvester matrix of two polynomials

Example

```
sylvester(x^2-1,x^3-1,x) returns [[1,0,-1,0,0],[0,1,0,-1,0], [0,0,1,0,-1],[1,0,0,-1,0],[0,1,0,0,-1]]
```

discussion

symb2poly

<u>#link</u>

Syntax

symb2poly(Expr,[Var]) or symb2poly(Expr, ListVar)

Description

Returns the coefficients of a polynomial Expr with respect to the variable Var or if the second argument is a list returns the internal format of the polynomial. Essentailly the inverse of poly2symb().

Example

symb2poly((x+2)*x+3) returns [1,2,3]

discussion

table

#link

Syntax

table(SeqEqual(index=value))

Description

Defines an array where the index are strings or real numbers

discussion

tail

#link

Syntax

tail(Lst or Seq or Str)

Description

Returns the list (or sequence or string) without its first element

Example

tail([3,2,4,1,0]) returns [2,4,1,0]

discussion

#link

Syntax

TAN(Value)

Description

Returns the tangent of Value. Value is interpreted as either degrees or radians, depending on the setting of Angle Measure in Home Modes or Symbolic Setup.

Example

in radians mode, TAN(0) returns 0

discussion

tan2cossin2

#link

Syntax

tan2cossin2(Expr)

Description

Rewrites Expr with tan(x) replaced by (1-cos(2*x))/sin(2*x)

Example

tan2cossin2(tan(x)) returns (1-cos(2*x))/sin(2*x)

discussion

tan2sincos

#link

Syntax

tan2sincos(Expr)

Description

Rewrites Expr with tan(x) using sin(x)/cos(x)

Example

tan2sincos(tan(x)) returns sin(x)/cos(x)

discussion

tan2sincos2

#link

Syntax

tan2sincos2(Expr)

Description

Rewrites Expr with tan(x) replaced by sin(2*x)/(1+cos(2*x))

tan2sincos2(tan(x)) returns sin(2*x)/(1+cos(2*x))

discussion

tangent

#link

Syntax

tangent(Curve, Point)

Description

Draws the tangent(s) to a given curve through a given point. The point does not have to be a point on the curve.

Example

tangent(plotfunc(x^2), point(1,1)) draws the tangent to the graph $y=x^2$ through the point (1,1); that is, the line whose equation is y=2*x-1. tangent(plotfunc(x^2), GA) draws the tangent to the graph of $y=x^2$ through point A. Point A can then be moved and the tangent will move with it.

tangent(circle(GB, GC-GB), GA) draws one or more tangent lines through point A to the circle whose center is at point B and whose radius is defined by segment BC.

TANH

#link

Syntax

TANH(value)

Description

Hyperbolic tangent.

Example

TANH(1) returns .761594155956

discussion

taylor

#link

Syntax

taylor(Expr, [Var=Value], [Order])

Description

Returns the Taylor series expansion of an expression at a point or at infinity (by default, at x=0 and with relative order=5).

taylor($\sin(x)/x$, x=0) returns 1-(1/6)*x^2+(1/120)*x^4+x^6*order_signs_sign

tchebyshev1

#link

Syntax

tchebyshev1(Integer))

Description

Returns the nth Tchebyshev polynomial of the first kind.

Example

tchebyshev1(3) returns 4*x^3-3*x

discussion

tchebyshev2

#link

Syntax

tchebyshev2(Integer)

Description

Returns the nth Tchebyshev polynomial of the second kind.

Example

tchebyshev2(3) returns 8*x^3-4*x

discussion

tcollect

#link

Syntax

tcollect(Expr)

Description

Collects trigonometric expressions.

Example

tcollect(sin(x)+cos(x)) returns $\sqrt{2*cos(x-1/4*\pi)}$

discussion

texpand

#link

Syntax

texpand(Expr)

Description

Expands a transcendental expression; that is, an expression containing trigonometric, logarithmic, or exponential functions. texpand develops the expression in terms of sin(), cos(), ln(), and exp().

Example

texpand(sin(2*x) + exp(x+y)) returns 2*cos(x)*sin(x) + exp(x)*exp(y) discussion

TEXTOUT

#link

Syntax

```
TEXTOUT(text, [G], x, y, [font], [textColor], [width],
[backgroundColor])
```

Description

Draws text on graphic G at position (x, y) using font. Paints the background before drawing the text using color backgroundColor. If width is specified, does not draw text more than width pixels wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

```
0=current font (default)
```

1=font 10

2=font_12 (Small)

3=font_14 (Medium)

4=font_16 (Large)

 $5 = font_18$

6=font_20

7=font 22

<u>discussion</u>

TEXTOUT_P

#link

Syntax

```
TEXTOUT_P(text, [G], x, y, [font], [textColor], [width],
[backgroundColor])
```

Description

Draws text on graphic G at position (x, y) using font. Paints the background before drawing the text using color backgroundColor. If width is specified, does not draw text more than width pixels wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

0=current font (default)

```
1=font_10
2=font_12 (Small)
3=font_14 (Medium)
4=font_16 (Large)
5=font_18
6=font_20
7=font_22

discussion
```

THEN

#link

Syntax

IF test THEN command(s) [ELSE commands] END;

Description

Evaluates test. If test is true (non 0), executes command(s); otherwise, executes the comands in the ELSE clause nothing happens.

IF A<1

THEN PRINT("A IS SMALLER THAN 1"); ELSE PRINT("A IS LARGER THAN 1"); END:

discussion

tlin

#link

Syntax

tlin(Expr)

Description

Returns a trigonometric expression with the products and integer powers linearized

Example

tlin($\sin(x) \land 3$) returns $(3/4)*\sin(x)-(1/4)*\sin(3*x)$

discussion

ТО

#link

Syntax

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO command(s) END;

Description

Sets variable var to start; then, for as long as this variable's value is less than or equal to (or more than for a DOWNTO) finish, executes command(s) and adds (or substract for DOWNTO) 1 (or increment) to var.

FOR A FROM 1 TO 10 STEP 2 DO PRINT(A); END; will print 1 3 5 7 9

discussion

TRACE

#link

Syntax

TRACE(matrix)

Description

Trace of a square matrix. Finds the trace of a square matrix, equal to the sum of the diagonal elements (also equal to the sum of the eigenvalues).

Example

TRACE([[1,2],[3,4]]) returns 5

discussion

trace

#link

Syntax

trace(Point)

Description

Begins tracing the specified point.

discussion

translation

#link

Syntax

translation(Vector, Object)

Description

Translates a geometric object along a given vector. The vector is given as the difference of two points (head-tail).

Example

translation(O-i, GA) translates object A down one unit. translation(GB-GA, GC) translates object C along the vector AB. <u>discussion</u>

transpose

tran(Mtrx)

Description

Transposes a matrix (without conjugation)

Example

tran([[1,2,3],[1,3,6],[2,5,7]]) returns [[1,1,2],[2,3,5],[3,6,7]]_{discussion}

triangle

#link

Syntax

triangle(Point1, Point2, Point3)

Description

Draws a triangle, given its three vertices.

Example

triangle(GA, GB, GC) draws △ABC.

discussion

TRIANGLE

#link

Syntax

```
TRIANGLE([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha], ["ZString",
z1, z2, z3]) or TRIANGLE([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2],
[z2]},{x3, y3, [c3], [z3]}, ["ZString"]) or TRIANGLE([G], [[x/y
coordinate matrix]], [[color matrix]], {[[z matrix]], [zcode],
[[[projection matrix]]], [zstring]) or TRIANGLE([G])
```

Description

Draws a triangle between specified cartesian coordinates in the graphic using the specified color and transparency (0 \leq Alpha \leq 255). If 3 colors are specified, blends the colors in between the vertexes.

The next form of TRIANGLE allows display of multiple triangles at a time. This is mostly used if you have a set of vertices and want to display them all at once.

The first 2 matrices indicate the x/y coordinates and colors of each points. TRIANGLE will draw 1 quadrilateral for each set of 4 adjacent vertices and blends the colors associated with the 4 points.

If a z and projection matrix are provided, for each point, this matrix is multiplied by the [x,y,z,1] vector to create the display x,y coordinates.

If zcode is a list that contains 3 real numbers { ex, ey, ez } then x,y are further modified by doing x=ez/z*x-ex and y=ez/z*y-ey creating a perspective projection.

If zstring is provided, z clipping will happen using the z value (see below).

If zcode="N" or is a list that starts with "N", then each z is normalized to be between 0 and 255.

About ZString

TRIANGLE([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE to create a Z clipping string (initialized at 255 for each pixels). You can then call TRIANGLE with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE will not draw pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

Example

TRIANGLE(0,0,5,5,5,-5,#FFh,#FF00h,#FF0000h,128)

discussion

TRIANGLE_P

#link

Syntax

```
TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha],
["ZString", z1, z2, z3]) or TRIANGLE_P([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2], [z2]}, {x3, y3, [c3], [z3]}, ["ZString"]) or TRIANGLE_P([G], [[x/y coordinate matrix]], [[color matrix]], {[[z matrix]], [zcode], [[[projection matrix]]], [zstring]) or TRIANGLE_P([G])
```

Description

Draws a triangle between specified pixel coordinates in the graphic using the specified color and transparency ($0 \le Alpha \le 255$). If 3 colors are specified, blends the colors in between the vertexes.

The next form of TRIANGLE allows display of multiple triangles at a time. This is mostly used if you have a set of vertices and want to display them all at once.

The first 2 matrices indicate the x/y coordinates and colors of each points. TRIANGLE_P will draw 1 quadrilateral for each set of 4 adjacent vertices and blends the colors associated with the 4 points.

If a z and projection matrix are provided, for each point, this matrix is multiplied by the [x,y,z,1] vector to create the display x,y coordinates.

If zcode is a list that contains 3 real numbers { ex, ey, ez } then x,y are further modified by doing x=ez/z*x-ex and y=ez/z*y-ey creating a perspective projection.

If zstring is provided, z clipping will happen using the z value (see below).

If zcode="N" or is a list that starts with "N", then each z is normalized to be between 0 and 255.

About ZString

TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can then call TRIANGLE_P with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE_P will not draw pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

TRIANGLE_P(0,20,150,50,100,100,#FFh,#FF00h,#FF0000h,128)

discussion

trig2exp

#link

Syntax

trig2exp(Expr)

Description

Replaces trigonometric functions in Expr with complex exponentials(without linearization).

Example

trig2exp(sin(x)) returns (exp(i*x)-(1/exp(i*x)))/(2*i)

discussion

trigcos

#link

Syntax

trigcos(Expr)

Description

Simplifies the argument Expr using the formulas $sin(x)^2+cos(x)^2=1$ and tan(x)=sin(x)/cos(x) (privileging cosine)

Example

trigcos($\sin(x)^4+\sin(x)^2$) returns $\cos(x)^4-3*\cos(x)^2+2$

discussion

trigexpand

#link

Syntax

trigexpand(Expr)

Description

Expands trigonometric functions.

Example

trigexpand(sin(3*x)) returns $(4*cos(x)^2-1)*sin(x)$

discussion

trigsin

trigsin(Expr)

Description

Simplifies the argument Expr using the formulas $\sin(x)^2 + \cos(x)^2 = 1$ and $\tan(x) = \sin(x)/\cos(x)$ (privileging sine)

Example

trigsin(cos(x) 4 +sin(x) 2) returns sin(x) 4 -sin(x) 2 +1

discussion

trigtan

#link

Syntax

trigtan(Expr)

Description

Simplifies the argument Expr using the formulas $sin(x)^2 + cos(x)^2 = 1$ and tan(x) = sin(x)/cos(x) (privileging tangent)

Example

trigtan(cos(x) 4 +sin(x) 2) returns (tan(x) 4 +tan(x) 2 +1)/(tan(x) 4 +2*tan(x) 2 +1)

discussion

TRN

#link

Syntax

TRN(matrix)

Description

Transpose. Transposes matrix. If Complex mode is on and the matrix contains complex elements, then TRN finds the conjugate transpose.

Example

TRN([[1,2],[3,4]]) returns [[1,3],[2,4]]

discussion

trunc

#link

Syntax

trunc(Real, [Integer]) or trunc(List, [Integer])

Description

Truncates a value to n decimal places (by default n=0). Accepts complex numbers.

trunc(4.3) returns 4 trunc({3.25, 8.71, 9.01},1) returns {3.2, 8.7, 9.}

discussion

TRUNCATE

<u>#link</u>

Syntax

TRUNCATE(value, [places])

Description

Truncates value to system display settings. If optional places is given, truncates value to places decimal places. If places is negative, truncates to significant digits instead.

Example

TRUNCATE(2.3678,2) returns 2.36

discussion

tsimplify

#link

Syntax

tsimplify(Expr)

Description

Returns an expression with transcendentals rewritten as complex exponentials

Example

tsimplify(exp(2*x)+exp(x)) returns exp(x) 2 +exp(x)

discussion

type

#link

Syntax

type(Expr)

Description

Returns n in [1..12] that defines the type of the argument

Example

type("abc") returns DOM_STRING

discussion

TYPE

TYPE(object)

Description

Returns the type of the object:

- 0: Real
- 1: Integer
- 2: String
- 3: Complex
- 4: Matrix
- 5: Error
- 6: List
- 8: Function
- 9: Unit
- 14.?: cas object. the fractional part is the cas type

discussion

UFACTOR

#link

Syntax

UFACTOR(Value_Unit1, 1_Unit2)

Description

Unit factor conversion.

Converts a measurement using a compound unit into a measurement expressed in constituent units.

Example

a Coulomb—a measure of electric charge—is a compound unit derived from the SI base units of Ampere and second: 1 C = 1 A * 1 s. Using UFACTOR, you can express a measurement in Coulombs as a product of Amperes and time.

UFACTOR(100_C,1_A)) returns 100_A*s
UFACTOR(100_C, 1_min) returns 1.6666666667_min*A

discussion

unapply

#link

Syntax

unapply(Expr, Var)

Description

Returns a function defined by an expression.

Example

unapply($2*x^2,x$) returns (x)-> $2*x^2$

discussion

UNCHECK

#link

Syntax

UNCHECK(n)

Description

Unchecks (deselects) the corresponding symbolic definition field in the current app. The integer n must be between 0 and 9 for most apps. For Statistics 1-Var and Statistics 2-Var apps, n must be between 1 and 5.

For example, UNCHECK(3) would uncheck F3 if the current app is Function.

discussion

UNTIL

#link

Syntax

REPEAT command(s) UNTIL test;

Description

executes command(s) UNTIL the test is true.

A:=5; REPEAT PRINT(A); A:= A-1; UNTIL A<1;

will print 5 4 3 2 1

discussion

USIMPLIFY

#link

Syntax

USIMPLIFY(Value_Unitsexpr)

Description

Unit simplification.

Simplifies Value in a complex unit expression Unitsexpr to an equivalent value in a simpler unit expression.

Example

a Joule is defined as 1 $kg*m^2/s^2$.

USIMPLIFY(5_kg*m2/s2) returns 5_J

discussion

valuation

#link

Syntax

valuation(Poly(P))

Description

Returns the valuation (degree of the term of lowest degree) of the polynomial P.

Example

valuation(x^4+x^3) returns 3

discussion

vandermonde

<u>#link</u>

Syntax

vandermonde(Vect(V))

Description

Returns the Vandermonde matrix= $[V^0,V^1,...]$

Example

vandermonde([1,2,3]) returns [[1,1,1],[1,2,4],[1,3,9]]

discussion

variance

#link

Syntax

variance(Lst||Mtrx,[Lst])

Description

Returns the variance of a list with the second argument as the weight, or the list of variance of the columns of a matrix.

Example

variance([3,4,2]) returns 2/3

discussion

vector

#link

Syntax

vector(Pnt,Pnt || Pnt,Vect)

Description

Defines a vector(origin is 0 if 1 arg) with two points or two components or two affix (for

2D) or with a point and a vector or with a point (its extrmity and its origin is [0,0,0) cussion

vertices

#link

Syntax

vertices(Polygon or Polyedr(P))

Description

Returns the list of the vertices of the polygon or polyhedron P.

discussion

vertices_abca

#link

Syntax

vertices_abca(Polygon or Polyedr(P))

Description

Returns the closed list [A,B,...A] of the vertices of the polygon or polyhedron P. discussion

VIEW

<u>#link</u>

Syntax

VIEW "text", Function()

Description

VIEW. Allows a programmer to customize the Views menu. Causes "text" to apear when VIEW key is pressed and Function to be executed when the OK menu key (or ENTER key) is pressed.

discussion

vpotential

#link

Syntax

vpotential(Vect(V),LstVar)

Description

Returns U such as curl(U)=V

Example

vpotential($[2*x*y+3,x^2-4*z,-2*y*z]$,[x,y,z]) returns $[0,-2*x*y*z,-x^3/3+4*x*z+3*y]$

WAIT(n)

Description

Halts program execution for the specified number of seconds.

If n is omitted or 0, halts execution until the user presses a key and returns the keycode (or -1 after 1 minute).

If n is -1, halts executions until the user presses a key or there is a mouse event.

If a key is pressed, the keycode is returned.

After a 1 minute timeout, returns -1

If a mouse event happends, a list of the form $\{ \text{ type, } [x, y], [dx, dy] \}$ is returned. Normally x/y is the event position unless otherwise indicated.

Type can be:

- 0: Mouse Down
- 1: Mouse Move
- 2: Mouse Up (x/y) is not provided)
- 3: Mouse Click (note, if a click is detected, there is no MouseUp)
- 5: Mouse Stretch. x/y is the delta since the last event. dx/dy is the delta since the ORIGINAL mouse down...
- 6: Mouse Rotate, x is original angle, y is new angle in 32nd of a circle.
- 7: Mouse Long Click, This means that the mouse stayed down for 1 second...

Example

WAIT(5) halts program execution for 5 seconds.

discussion

when

#link

Syntax

when(Cond, Expr1, Expr2)

Description

If condition (even symbolic) returns expr1 else returns expr2 (? is the infixed version of when).

WHILE

#link

Syntax

WHILE test DO command(s) END;

Description

executes command(s) WHILE the test is true.

```
A:=5;

WHILE A>1 DO

PRINT(A);

A:= A-1;

END;

will print 5 4 3 2 1
```

white

#link

Syntax

white(Opt)

Description

Option of the display command to display with color.

discussion

XOR

#link

Syntax

Value1 XOR Value2

Description

Exclusive OR.

Returns 1 if either Value1 or Value2 is non-zero but not both; otherwise, returns 0.

Example

3 XOR 2 returns 0

discussion

XPON

#link

Syntax

XPON(value)

Description

Exponent. Returns the exponent of value.

Example

XPON(123.4) returns 2

discussion

yellow

('display')=[color]

Description

For example, suppose you have drawn a circle in the Geometry app. In Symbolic view, the circle's definition might be GC:=circle(GA,GB-GA). If you wanted that circle to be, say, red, you could modify that definition to read:

Example

GC:=circle(GA,GB-GA, ('display')=red)

discussion

zeros

<u>#link</u>

Syntax

zeros(Expr,[Var])

Description

Returns the zeros (reals or complex according to the CAS settings) of the expression Expr for the variable Var (or the matrix where the lines are the solutions of the system : Expr1=0,Expr2=0...).

Example

zeros(x^2+4) returns [] in real mode and [-2*i,2*i] in complex mode cussion

Zeta

#link

Syntax

zeta(Real(a))

Description

Returns if a>1 sum $(1/n^a,n,1,\infty)$

Example

Zeta(2) returns $\pi^2/6$

discussion

zip

#link

Syntax

zip(Fnc2d(f),Lst(l1),Lst(l2),[val(default)])

Description

Returns a list whose j-th entry is f(l1[j],l2[j]): without default value its length is the

minimum of the lengths of the two input lists and else the shorter list is padded with the default value.

Example

zip('+',[a,b,c,d], [1,2,3,4]) returns [a+1,b+2,c+3,d+4]

discussion

ztrans

<u>#link</u>

Syntax

ztrans(Expr,[Var],[ZtransVar])

Description

Z transform of a sequence.

Example

 $ztrans(a^x)$

discussion

© 2017 Oleksandr Sidko — mail to site author