Improving Nearest Neighbor Rule

George Darmiton da Cunha Cavalcanti (gdcc@cin.ufpe.br)
Cln/UFPE

Introdução

- k-NN é uma das técnicas mais simples e conhecidas de reconhecimento de padrões
- Entretanto, ela apresenta problemas na classificação de padrões que estão próximos a regiões onde ocorre sobreposição entre elementos de classes diferentes ou com alto nível de ruído

Introdução

Introdução

Objetivo

 Encontrar uma medida de distância mais robusta quando padrões de diferentes classes se sobrepõem no mesmo local do espaço

 Em outras palavras, melhorar o desempenho do algoritmo k-NN

- Os padrões são representados como vetores d-dimensionais no espaço Euclidiano Rd
- Conjunto de treinamento

$$\{(\vec{X}_1, Y_1), \ldots, (\vec{X}_n, Y_n)\}$$

Padrão de consulta

$$\vec{X}$$

Para definir a distância adaptativa local entre o padrão consulta \vec{X} e os elementos de treinamento \vec{X}_i

Passo 1

- Construir a maior esfera centrada no padrão \vec{X}_i que exclui todos os padrões de treinamento das outras classes
- Isso pode ser definido como o raio da esfera

$$r_i = \min_{l:Y_l \neq Y_i} d(\vec{X}_i, \vec{X}_l) - \epsilon$$

- Passo 2
 - A distância local adaptativa entre o padrão de consulta \vec{X} e os exemplos de treinamento \vec{X}_i é dada por

$$d_{\text{new}}(\vec{X}, \vec{X}_i) = \frac{d(\vec{X}, \vec{X}_i)}{r_i}$$

Pontos importantes

- 1) A distância apresentada é definida entre um padrão de consulta e exemplos de treinamento
 - Como estender esse conceito para problemas de verificação no qual existe apenas uma classe?
 - Usar um limiar para aceitar ou rejeitar um padrão dependendo do valor do raio
- 2) A função não é simétrica
 - Desta forma, a nova distância não é uma métrica

$$d_{\text{new}}(\vec{X}_i, \vec{X}_j) \neq d_{\text{new}}(\vec{X}_j, \vec{X}_i)$$

As esferas associadas aos exemplos de treinamento

k-NN com distância adaptativa

Referência

Jigang Wang, Predrag Neskovic and Leon N. Cooper. *Improving nearest neighbor rule with a simple adaptive distance measure*.
 Pattern Recognition Letters 28 (2007) 207–213.

