```
enclose math symbols by
```

$$[tex].\dots...[/tex].$$

For instance [tex]x^2\sqrt{x}[\tex] will produce " $x^2\sqrt{x}$ ".

If you want to find out how a math formula was input by another user, click on the message's "quote" button!

For those of you who know LaTeX: [tex]...[/tex] is equivalent to \$...\$. Thus you cannot use \$, \$\$, \[, \]. Avoid \begin{...}...\end{...}, etc. All mathematical symbols, but only a small subset of LaTeX-commands will work on our CyberBoard.

A LATEX crash-course.

Special characters. The following symbols have special meaning in LATEX: # \$ % _ { } ~ ^ \
You can print the first seven of these by using \# \\$ \% _ \{ \}.

Lines and Text. \\ starts a new line, \\ includes a space, \mbox{...} includes text.

Sub- and Superscripts. x^2 produces x^2 , x_{2n} produces x_{2n} . Here is another example: $\log_5 25 = 2$.

Fractions. Use \frac to display fractions. Example: \frac{\pi^2}{6} gives $\frac{\pi^2}{6}$.

Roots. Use \sqrt. For instance, \sqrt{a^2+b^2} produces $\sqrt{a^2+b^2}$. You can also get "other" roots: \sqrt[3]{2} yields $\sqrt[3]{2}$.

Delimiters. The inputs () [] $\{$ } yield the outputs () [] $\{$ }.

Greek letters.

α	\alpha	β	\beta	γ	\gamma	δ	\delta
ϵ	\epsilon	ζ	\zeta	η	\eta	θ	\theta
ι	\iota	κ	\kappa	λ	\lambda	μ	\mu
ν	\nu	ξ	\xi	π	\pi	ρ	\rho
σ	\sigma	au	\tau	v	\upsilon	ϕ	\phi
χ	\chi	ψ	\psi	ω	\omega	ε	\varepsilon
ϑ	\vartheta	ϖ	\varpi	ϱ	\varrho	ς	\varsigma
φ	\varphi	Γ	\Gamma	Δ	\Delta	Θ	\Theta
Λ	\Lambda	Ξ	\Xi	Π	\Pi	\sum	\Sigma
Υ	\Upsilon	Φ	\Phi	Ψ	\Psi	Ω	\Omega

Functions.

\log	\log	lg	\lg	ln	\ln	\exp	\exp
\sin	\sin	cos	\cos	\tan	\tan	\cot	\cot
sec	\sec	\csc	\csc	arcsin	\arcsin	arccos	\arccos
arctan	\arctan	\deg	\deg	arg	\arg	\inf	\inf
\sup	\sup	\min	\min	max	\max	\lim	\lim
lim inf	\liminf	\limsup	\limsup	\det	\det	\dim	\dim
ker	\ker	\gcd	\gcd	mod	\bmod		

Miscellaneous Symbols.

×	\aleph	1	\prime	\forall	\forall
\hbar	\hbar	Ø	\emptyset	3	\exists
\imath	\imath	∇	\nabla	\neg	\neg
J	\jmath	$\sqrt{}$	\surd	b	\flat
ℓ	\ell	Т	\top	Ц	\natural
Ø	\wp	\perp	\bot	#	\sharp
\Re	\Re		\1	.	\clubsuit
\Im	\Im	7	\angle	\Diamond	\diamondsuit
∂	\partial	\triangle	\triangle	\Diamond	\heartsuit
∞	\infty	\	\backslash	•	\spadesuit

"Large" Operators.

Binary Operations.

\pm	\pm	\cap	\cap	\vee	\vee
Ŧ	\mp	\cup	\cup	\wedge	\wedge
\	\setminus	\forall	\uplus	\oplus	\oplus
•	\cdot	П	\sqcap	\ominus	\ominus
×	\times		\sqcup	\otimes	\otimes
*	\ast	◁	\triangleleft	\oslash	\oslash
*	\star	\triangleright	\triangleright	\odot	\odot
\Diamond	\diamond	}	\wr	†	\dagger
0	\circ	\bigcirc	\bigcirc	‡	\ddagger
•	\bullet	\triangle	\bigtriangleup	П	\amalg
÷	\div	∇	\bigtriangledown		

Relations.

\leq	\leq	\geq	\geq	=	\equiv
\prec	\prec	\succ	\succ	\sim	\sim
\preceq	\preceq	\succeq	\succeq	\simeq	\simeq
«	\11	\gg	\gg	\simeq	\asymp
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
	\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	\in	\ni	\ni	\propto	\propto
\vdash	\vdash	\dashv	\dashv	=	\models
\smile	\smile		\mid	Ė	\doteq
$\overline{}$	\frown	İl	\parallel	\perp	\perp

Arrows.

←	\leftarrow	\rightarrow	\rightarrow
`	• • • • • • • • • • • • • • • • • • • •	,	
\leftarrow	\longleftarrow	\longrightarrow	\longrightarrow
\Leftarrow	\Leftarrow	\Rightarrow	\Rightarrow
\iff	\Longleftarrow	\Longrightarrow	\Longrightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
\longleftrightarrow	\longleftrightarrow	\iff	\Longleftrightarrow
\leftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
_	\leftharpoonup		\rightharpoonup
$\overline{}$	\leftharpoondown	\rightarrow	\rightharpoondown
\uparrow	\uparrow	\downarrow	\downarrow
\uparrow	\Uparrow	\Downarrow	\Downarrow
\uparrow	\updownarrow	1	\Updownarrow
7	\nearrow		\nwarrow
\	\searrow	/	\swarrow
\mapsto	\mapsto	\longmapsto	\longmapsto
\rightleftharpoons	\rightleftharpoons		

Matrices, arrays, etc. $\ensuremath{\texttt{Matrices}}$, etc. $\ensuremath{\texttt{Mo}}\ensurem$

$$\label{left(begin{array}{cc}1\&0\\0&1\\end{array}\right)\ produces \left(\begin{array}{cc}1&0\\0&1\end{array}\right).$$

\right. matches a \left... and is necessary to "close" the \left tag, but does not produce any output. Example:

$$f(x) = \left\{ \left(\frac{2}{0}, %\mbox{ if } x \leq 0 \right), & \mbox{ if } x>0 \right\}.$$

produces
$$f(x) = \begin{cases} 0, & \text{if } x \leq 0 \\ 1, & \text{if } x > 0 \end{cases}$$

 $\{cc\}$ after the \begin{array} command means that the array has two centered columns. Other alignment options are r and 1. Use | to insert a vertical line. \begin{array} has two centered columns. Other alignment options are r and 1. Use | to insert a vertical line. \begin{array} has two centered columns. Other alignment options are r and 1. Use | to insert a vertical line. \begin{array} has two centered columns.

yields
$$\begin{bmatrix} 4 & 1 & 2 \\ -4 & -1 & -2 \end{bmatrix}$$

Over- and underlining. \underline{\overline{x^2}+1} yields $\overline{x^2}+1$,

Font size. Use \displaystyle to make formulas bigger;

compare $\frac{1}{2}$ to $\frac{1}{2}$: $\frac{1}{2}$ versus $\frac{1}{2}$.

С