```
In [1]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import chart_studio.plotly as py
  import plotly.express as px
```

Read data

- · Read the load data file
- · Read the column decription file

```
In [2]: data = pd.read_csv('../data/loan.csv', low_memory=False)
    meta_data = pd.read_excel('../data/Data_Dictionary.xlsx')
    meta_data.columns = ['column_name', 'description']
```

Getting the info of loan data using data.info() function

```
In [3]: data.info(
    max_cols = 111,
    show_counts = True
)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716
Data columns (total 111 columns):

#	Column	Non-Null Count	Dtype
0	id	39717 non-null	int64
1	member_id	39717 non-null	int64
2	loan_amnt	39717 non-null	int64
3	funded_amnt	39717 non-null	int64
4	funded_amnt_inv	39717 non-null	float64
5	term	39717 non-null	object
6	int_rate	39717 non-null	object
7	installment	39717 non-null	float64
8	grade	39717 non-null	object
9	sub_grade	39717 non-null	object
10	emp_title	37258 non-null	object
11	emp_length	38642 non-null	object
12	home_ownership	39717 non-null	object
13	annual_inc	39717 non-null	float64
1 /		20717 11	-1-2

View of loan data

Top 5 rows of load data

```
In [4]: data.head()
```

Out[4]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	 num_tl_90g_dpd_24m	nur
0	1077501	1296599	5000	5000	4975.0	36 months	10.65%	162.87	В	B2	 NaN	
1	1077430	1314167	2500	2500	2500.0	60 months	15.27%	59.83	С	C4	 NaN	
2	1077175	1313524	2400	2400	2400.0	36 months	15.96%	84.33	С	C5	 NaN	
3	1076863	1277178	10000	10000	10000.0	36 months	13.49%	339.31	С	C1	 NaN	
4	1075358	1311748	3000	3000	3000.0	60 months	12.69%	67.79	В	B5	 NaN	

5 rows × 111 columns

Column analysis

Create new data frame for colum analysis where computed following data for each column

- Total number of missing values
- Total % of missing value
- Merged with description data
- Data type of column
- · A shample column which store
 - If column is of int or float type then min and max value
 - If column is of object type the few shample values
- New categorical column for missing value categories depends on % of missing values
 - If 0 then VL (very low)

```
In [5]: column analysis = pd.DataFrame(
             data.isna().sum(),
             columns=['total_of_nan']
         column analysis['missing value percent'] = round(
             column_analysis['total_of_nan'] / len(data) * 100,
         column_analysis['column_name'] = column_analysis.index
 In [6]: column_analysis.set_index(pd.RangeIndex(1, len(column_analysis)+1), drop=True, inplace=True)
 In [7]: column_analysis = column_analysis.merge(meta_data, on=['column_name'], how='left')
 In [8]: def get_column_type(col_name):
             return data[col_name].dtype
 In [9]: column_analysis['dtype'] = column_analysis.column_name.apply(get_column_type)
In [10]: def get_sample_value(col_name):
              col = column_analysis[column_analysis.column_name == col_name]
              dtype = col['dtype'].values[0]
              col_value = data[-data[col_name].isna()][col_name].values
              if (dtype == int or dtype == float) and col['missing_value_percent'].values[0] < 100:</pre>
                  return F'{min(col_value)} | {max(col_value)}'
              elif dtype == object:
                  _values = pd.Series(list(map(str,col_value))).unique()
                  if(len(_values)/len(data) <= .15):
    return ' | '.join(_values)</pre>
                 return ' | '.join(_values[:10])
              else:
                 return None
In [11]: column_analysis['sample_value'] = column_analysis.column_name.apply(get_sample_value)
In [12]: def get_column_category(missins_percent):
              if missins_percent == 0:
                  return 'Very Low (0% missing)'
              elif missins_percent > 0 and missins_percent <= 10:</pre>
                 return 'Low (1-10% missing)
              elif missins_percent > 11 and missins_percent <= 30:</pre>
                  return 'Medium (11-30% missing)
              elif missins_percent > 31 and missins_percent <= 80:</pre>
                 return 'High (31-80% missing)'
              else:
                 return 'Very High (80-100% missing)'
In [13]: column analysis['missing category'] = column analysis.missing value percent.apply(get column category)
```

Calculated % of column under each category

Grupedby type then computed % under each category

If b/w 1 - 10 then L(low)
If b/w 11 - 30 then M(medium)
If b/w 31 - 80 then H(high)
If b/w 81 - 100 then VH(very high)

In [15]: missing_category_percentage

Out[15]:

missing_categ	column_percent	
High (31-80% missi	1.80	1
Low (1-10% missi	9.01	2
Very High (80-100% missi	50.45	3
Very Low (0% missi	38.74	4

Ploting missing % of columns values category wise

Some intresting insite found

- 50% of columns have 100% missing value
- 1.8% of columns have 31 80% missing values
- Only 38.7% of columns have 0% missing values

So decided to go with only those rows which have less then 10% missing value

Percentage of column under mssing categories(depends on % on value missing)


```
In [16]: fig = px.pie(
    missing_category_percentage,
    values='column_percent',
    names='missing_category',
    title='Percentage of column under mssing categories(depends on % on value missing)',
    hole=.5,
    color_discrete_sequence=px.colors.sequential.Agsunset_r,
    labels={'missing_category':'Category', 'column_percent': 'Column Percentage'},
    )
    fig.show()
```

Percentage of column under mssing categories(depends on % on value missing)


```
In [17]: column_analysis.set_index('column_name', inplace=True)
```

Saving the column analysis data for future review

```
In [18]: column_analysis.to_excel('../data/explore_data.xlsx')
```