

Chapter 1: Functions and Limits

- 1.1 Functions and Their Representations
- 1.2 Basic Classes of Functions
- 1.3 The Limit of a Function
- 1.4 Calculating Limits
- 1.5 Continuity
- 1.6 Limits Involving Infinity

The pictures are taken from the books:

[1) James Stewart, Essential Calculus, Early Transcendentals, Cengage Learning, 2nd Edition, 2012, ISBN-13: 978-1133112280]
2) G. Strang and E. J. Herman, Calculus 1, https://openstax.org/details/books/calculus-volume-1

Chapter 1.1

Functions and Their Representations

Chapter 1.1: Functions

 \bullet Consider two variables x and y. How does x affects y?

Chapter 1.1: Functions

Definition:

A function $f: D \to R$ is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set R.

Chapter 1.1: Functions

Definition:

A function $f: D \to R$ is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set R.

The vertical test line

Chapter 1.1: Representing Functions

There are four possible ways to represent a function:

• verbally (description in words)

• visually (graph)

• numerically (table of values)

• algebraically (formula)

t	Population (millions)
0	1650
10	1750
20	1860
30	2070
40	2300
50	2560
60	3040
70	3710
80	4450
90	5280
100	6080
110	6870

Chapter 1.1: Representing Functions

1.1 Examples

For each of the following functions, determine the i. domain and ii. range.

a)
$$f(x) = (x-4)^2 + 5$$
,

$$f(x) = \sqrt{3x+2} - 1,$$

a)
$$f(x) = (x-4)^2 + 5$$
, b) $f(x) = \sqrt{3x+2} - 1$, c) $f(x) = \frac{3}{x-2}$

Chapter 1.1: Piecewise defined Functions

$$f(x) = \begin{cases} 1 - x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$

Chapter 1.1: Symmetry

- i. Even functions: f(-x) = f(x), ii. Odd functions: f(-x) = -f(x)

Chapter 1.1: Symmetry

Examples: (a)
$$f(x) = x^5 + x$$
, (b) $g(x) = 1 - x^4$, (c) $h(x) = 2x - x^2$

(b)
$$g(x) = 1 - x^4$$

(c)
$$h(x) = 2x - x^2$$

Chapter 1.1: Increasing and Decreasing Functions

Definition:

- A function f(x) is called **increasing** on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.
- A function f(x) is called **decreasing** on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Chapter 1.2

Basic Classes of Functions

• Linear Function:

$$f(x) = ax + b,$$

slope=
$$a = \tan(\theta) = \frac{y_2 - y_1}{x_2 - x_1}$$

• Polynomial:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$y = x^2 + x + 1$$

$$y = x^3 - x + 1$$

$$y = x^4 - 3x^2 + x$$

$$y = 3x^5 - 25x^3 + 60x$$

• Power Functions: $f(x) = x^a, x^{1/a}, x^{-1}, a = 1, 2, 3, 4, ...$

• Rational Functions: $f(x) = \frac{P(x)}{O(x)}$,

$$f(x) = \frac{P(x)}{Q(x)}$$

where P, Q polynomials

• Trigonometric functions: $\sin(x)$, $\cos(x)$, $\tan(x)$

• Trigonometric functions: $\sin(x)$, $\cos(x)$, $\tan(x)$

$$\sin^2(a) + \cos^2(a) = 1$$

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \sin(b)\cos(a)$$

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$$

$$\sin(2a) = 2\sin(a)\cos(a)$$

$$\delta_{\approx \pi}$$

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$$

• Exponential and Logarithmic functions: $f(x) = a^x$ $g(x) = \log_a(x)$

Examples: Dancing with Engineers

Chapter 1.2: Conmination of Functions

i.
$$(f+g)(x) = f(x) + g(x)$$
 Addition
ii. $(f-g)(x) = f(x) - g(x)$ Subtraction
iii. $(f \cdot g)(x) = f(x) \cdot g(x)$ Multiplication
iv. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Division
v. $(f \circ g)(x) = f(g(x))$ Composition

Chapter 1.2: Combination of Functions

Example:
$$f(x) = \sqrt{x}$$
, $D = [0, \infty)$, $R = [0, \infty)$ $g(x) = \sqrt{2-x}$, $D = (-\infty, 2]$, $R = [0, \infty)$

$$f(x) + g(x) = \sqrt{x} + \sqrt{2 - x}, \qquad D = [0, 2], \qquad R = [\sqrt{2}, 2]$$

$$f(x) - g(x) = \sqrt{x} - \sqrt{2 - x}, \qquad D = [0, 2], \qquad R = [-\sqrt{2}, \sqrt{2}]$$

$$f(x) \cdot g(x) = \sqrt{x} \cdot \sqrt{2 - x}, \qquad D = [0, 2], \qquad R = [0, 1]$$

$$\frac{f(x)}{g(x)} = \frac{\sqrt{x}}{\sqrt{2 - x}}, \qquad D = [0, 2], \qquad R = [0, \infty)$$

$$f(g(x)) = (2 - x)^{1/4}, \qquad D = (-\infty, 2], \qquad R = [0, \infty)$$

$$g(f(x)) = \sqrt{2 - \sqrt{x}}, \qquad D = [0, 4], \qquad R = [0, \sqrt{2}]$$

Chapter 1.3

The Limit of a Function

http://webspace.ship.edu/msrenault/GeoGebraCalculus/limit intuitive one side.html

Motivation: Mass-Energy Equivalence: $E = mc^2$ \rightarrow $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

What happens as $v \to c$?

$$f(x) = \frac{x^2 - 4}{x - 2} \,,$$

$$g(x) = \frac{|x-2|}{x-2} \,,$$

$$h(x) = \frac{1}{(x-2)^2}$$

$$f(x) = \frac{1}{(x-a)^n}$$

26

$$\lim_{x \to 0} \frac{\sin(x)}{x} = ?$$

$$\lim_{x \to 0} \sin\left(\frac{1}{x}\right) = ?$$

- 1. $\lim_{x \to 10} f(x) = ?$
- 2. $\lim_{x \to -2^+} f(x) =$
- $\lim_{x \to -8} f(x) = ?$
- $\lim_{x \to 6} f(x) = ?$

Chapter 1.3: Intuitive Definition

• Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself, and let L be a real number. If all values of the function f(x) approach the real number L as the values of $x \neq a$ approach the number a, then we say that the limit of f(x) as x approaches a is L. Symbolically, we express this idea as

$$\lim_{x \to a} f(x) = L \qquad \Leftrightarrow \qquad \lim_{h \to 0} f(h+a) = L$$

• Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself, and let L be a real number. Then,

$$\exists \lim_{x \to a} f(x) = L \qquad \text{iff} \qquad \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

Chapter 1.3: Precice Definition

• Let f(x) be defined for all $x \neq a$ over an open interval containing a. Let L be a real number. Then

$$\lim_{x \to a} f(x) = L$$

if, for every $\varepsilon > 0$, there exists a $\delta > 0$, such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

30

Chapter 1.3: Conceptual Calculation of a Limit

- For a function $f: D \to R$ calculate the limit $\lim_{x \to x_0} f(x)$
- 1. Check if x_0 is a point at which f changes type, and/or a point which does not belong to the domain of f.
- **2a.** If yes, then calculate $\lim_{x\to x_0^{\pm}} f(x)$ and compare them
- **2b.** If no, then $\lim_{x \to x_0} f(x) = f(x_0)$

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

1.)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\mathbf{2.)} \qquad \lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

3.)
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

4.)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

5.)
$$\lim_{x \to a} |f(x)| = |\lim_{x \to a} f(x)|$$

6.)
$$\lim_{x \to a} \sqrt[\nu]{f(x)} = \sqrt[\nu]{\lim_{x \to a} f(x)}, \quad \text{if } f(x) \ge 0 \text{ around } a$$

7.)
$$\lim_{x \to a} f^{\nu}(x) = \left[\lim_{x \to a} f(x)\right]^{\nu}, \qquad \nu \in \mathbb{N}$$

Theorem:

If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Theorem:

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then

(Sandwich Theorem)

$$\lim_{x \to a} g(x) = L$$

Example: Show that
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

http://webspace.ship.edu/msrenault/GeoGebraCalculus/limit_trig_sin.html

1.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + x - 6} = \frac{4}{5}$$

$$\mathbf{2.} \quad \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{1}{6}$$

3.
$$\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta} = 0$$

4.
$$\lim_{x \to 2} \frac{2x^2 - 3x + 1}{5x + 4} = \frac{3}{14}$$

5.
$$\lim_{x \to 3} \left(\frac{1}{x-3} - \frac{4}{x^2 - 2x - 3} \right) = \frac{1}{4}$$
 10. $\lim_{x \to 2} \frac{|x^3 - x - 1| - |x - 7|}{x^2 - 4} = 3$

6.
$$f(x) = \begin{cases} 4x - 3, & x < 2 \\ (x - 3)^2, & x \ge 2 \end{cases}$$

7.
$$\lim_{x \to 1} \frac{\sqrt{x-1} - \sqrt{x^2 - x}}{\sqrt{x^2} - 1} = 0$$

8.
$$\lim_{x\to 0} \sin(x)\cos(1/x) = 0$$

9.
$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - 5x + 6} = -1$$

$$\lim_{x \to 2} \frac{|x^3 - x - 1| - |x - 7|}{x^2 - 4} = 1$$

Chapter 1.5: Continuity

http://webspace.ship.edu/msrenault/GeoGebraCalculus/limit_intuitive_one_side.html

Chapter 1.5: Continuity

<u>Definition</u>:

A function f is **continuous at a number** a if and only if the following three conditions are satisfied:

- i. f(a) is defined
- ii. $\lim_{x \to a} f(x)$ exists
- iii. $\lim_{x \to a} f(x) = f(a)$

A function is **discontinuous at a point** a if it fails to be continuous at a.

Chapter 1.5: Continuity over an Interval

- A function f(x) is said to be **continuous** from the right at a if $\lim_{x\to a^+} f(x) = f(a)$
- A function f(x) is said to be **continuous** from the left at a if $\lim_{x\to a^-} f(x) = f(a)$

Example: In which intervals is $f(x) = \frac{x-1}{x^2+2x}$ continuous?

Chapter 1.5: Continuity

Theorems:

• If f(x) is continuous at L and $\lim_{x \to a} g(x) = L$, then $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$

• If g is continuous at a and f is continuous at
$$g(a)$$
, then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

- Polynomials, rational functions, root functions and trigonometric functions are continuous at every number in their domains.
- If f and t are continuous at a and c is a constant, then the following functions are also continuous at a:

1.
$$f \pm g$$
, **2.** cf , **3.** fg , **4.** $\frac{f}{g}$ if $g(a) \neq 0$

Chapter 1.5: Continuity

1.
$$f(x) = \begin{cases} \ln(3x - 2) + 3x^2 - 4, & x > 1\\ \frac{\sqrt{|x|}}{x - 2}, & x \le 1 \end{cases}$$

2.
$$g(x) = \begin{cases} \frac{ax^2 + bx - 5}{x - 1}, & x \neq 1 \\ 8, & x = 1 \end{cases}$$

3.
$$h(x) = \begin{cases} x^2 + 2x + a^2, & x \le b \\ \sin(x-b) - 1, & x > b \end{cases}$$

Chapter 1.5: The Intermediate Value Theorem

• Let f be continuous over a closed, bounded interval [a,b]. If N is any real number between f(a) and f(b), then there exists a number $c \in (a,b)$ such that f(c) = N.

Chapter 1.5: The Intermediate Value Theorem

- 1. Show that $f(x) = x \cos(x)$ has at least one zero.
- **2.** If f(x) is continuous over [1,2], f(1) > 0 and f(2) > 0, can we use I.V.T. to conclude that f(x) has no zeros in the interval [1,2]?
- **3.** For $f(x) = 1/x^3$, f(-1) = -1 < 0 and f(1) = 1 > 0. Can we conclude that f(x) has a zero in the interval [-1,1]?
- **4.** Show that there is at least one $x_0 \in (0,1)$, such that $x_0^2 + 3x_0 = e^{x_0} + 1$.

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$f(x) = \frac{2x}{x - 3}$$

$$f(x) = \tan(x)$$

1.6 Examples

1.
$$\lim_{x \to 1/2} \frac{4x - 5}{(2x - 1)^2} = -\infty$$

2.
$$\lim_{x \to 2} \frac{6x - 3}{\sqrt{x - 2}} = \infty$$

3.
$$\lim_{x \to -1} \frac{4x+1}{|x+1|} = -\infty$$

4.
$$\lim_{x \to 0} \left(\frac{1}{\sqrt{x}} - \frac{1}{|x|} \right) = -\infty$$

1.6 Examples

1.
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 5x - 3} = \frac{3}{5}$$

5.
$$\lim_{x \to \infty} \frac{e^x + 2^{x+1}}{2e^x + 2^x} = \frac{1}{2}$$

2.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2} - x \right) = 0$$

6.
$$\lim_{x \to -\infty} x(\cos(1/x) - 1) = 0$$

3.
$$\lim_{x \to \infty} \frac{x^2 + 2x}{4 - x} = -\infty$$

7.
$$\lim_{x \to -\infty} \frac{x^2 \cos(1/x) - x^2}{2x - 1} = 0$$

4.
$$\lim_{x \to \infty} (2x - |x^3 - x - 1|) = -\infty$$

8.
$$\lim_{x \to \infty} \frac{x}{x^2 + 2} \cos(5x) = 0$$