Image processing based distance measurement with Image Meter

Haydar Yanik¹* Bülent Turan²

¹Department of Electronics and Automation, Merzifon Vocational School, Amasya University, 05300, Merzifon, Amasya, Türkiye

²Department of Computer Engineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, 60150, Taşlıçiftlik Campus, Tokat, Türkiye

Highlights:

- Image meter unaffected by pixel width
- Improved triangulation method
- Distance measurement with 0.2% error

Keywords:

- · Pixel per meter
- Field of view
- Distance Measurement
- Distance measurement with Stereo Cameras
- Triangulation Method

Article Info:

Research Article Received: 05.08.2021 Accepted: 19.05.2022

10.17341/gazimmfd.979121

Acknowledgment

This study was carried out within the scope of the project named "Development of a Hybrid Method for Image Processing Based Distance Detection", numbered 2020/106, supported by Tokat Gazi Osmanpaşa University Graduate Thesis Support Program Projects (BAP)

Correspondence:

Author: Haydar Yanik e-mail:

haydar.yanik@amasya.edu.tr phone: +90 544 253 3959

Graphical/Tabular Abstract

Distance estimation methods based on image processing have been studied in the literature. In the literature, distance measurement studies based on image processing are carried out using mono and stereo cameras. It seems that the work done with both mono and stereo cameras is Pixel-oriented work. In these studies, it was determined that as the distance detection success was not increased, the area of the Pixel covered in the image increased as the distance increased. The disadvantages of this situation have been revealed. The theoretical foundations of a new image meter, different from existing measurement methods, have been established (Figure A).

Figure A. Image Meter

Purpose:

It is aimed to accurately detect the distance of the target object to the cameras at close and long distances with an image meter.

Theory and Methods:

For measurement, the target object must be separated from the background. For this purpose, segmentation is made from image processing techniques. One of the Stereo cameras takes a reference image, while the other is connected to an electro-mechanical system that can move both Angular and linear. In order to fully match the target object images to the camera images, the moving camera is moved precisely linear and angular. In this way, the angle and linear distance, which minimize the distance between the image axes, are used as parameters used to calculate the distance of the target object to the cameras. Mechanical and software errors that may occur in the system have been added to the distance detection function

Results:

In our study, a method was developed that is not affected by the area covered by the Pixel. This method contains an electromechanical system and is called" Image-Meter". Theoretical calculations of the system were made with developed equations. As a result of calculations, the Maximum error was determined as 0.17%. During the implementation phase of the designed prototype, errors that may occur due to hardware and software components are predicted. It is believed that the Maximum error rate of the system developed together with these errors will be less than 1%.

Conclusion:

The missing aspects of stereo and mono camera distance measurement systems were investigated for the image processing based distance measurement device that is planned to be developed. a new method has been developed to eliminate parameters that affect the measurement result. A prototype was designed to implement the developed method, theoretical calculations have been completed for this measuring device called image-meter. In theoretical calculations, it was determined that the accuracy of the image-meter was below 0.2%.

Görüntü metre ile görüntü işleme tabanlı mesafe ölçümü

Haydar Yanik¹* Bülent Turan²

¹Amasya Üniversitesi, Merzifon Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümü, 05300, Merzifon, Amasya, Türkiye ²Tokat Gazi Osmanpaşa Üniversitesi, Mühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü,60150, Taşlıçiftlik Yerleşkesi, Tokat, Türkiye

<u>Ö N E Ç I K A</u> N L A R

- Pikselden etkilenmeyen görüntü metre
- Geliştirilmiş üçgenleme yöntemi
- %0,2 hata payı ile mesafe ölçümü

Makale Bilgileri

Araştırma Makalesi Geliş: 05.08.2021 Kabul: 19.05.2022

DOI:

10.17341/gazimmfd.979121

Anahtar Kelimeler:

Görüntü işleme, metre kareye düşen piksel sayısı, görüş alanı, stereo kamera ile mesafe ölçümü, üçgenleme metodu

ÖZ

Günümüzde görüntü sensörleri (kameralar), görüntü analizi (sınıflandırma, bölütleme vb.) ve sentezi (nesne tespit, takip, mesafe tespiti vb.) için yaygın olarak kullanılmaktadır. Çalışmada lazer-metre, lidar-metre, radar ve benzeri endüstriyel amaçlar için kullanılabilecek, görüntü işleme tabanlı bir ölçüm cihazının (Görüntü metre) geliştirilmesi için teorik temellerin atılması amaçlanmaktadır. Bu amaçla literatürdeki görüntü işleme tabanlı mesafe tespit yöntemleri incelendi. Bu yöntemlerde başarımını olumsuz etkileyen temel etkenler tespit edilip, bu etkenlerden etkilenmeyen yeni bir yöntem önerilmektedir. Geliştirilmesi planlanan ölçüm cihazı teorik temellere oturtulmaktadır. Bu teorik temellerin işletilmesi, donanımsal ve yazılımsal bileşenlere dayandırılmaktadır. Çalışmada bu teorik temeller verilip, donanımsal ve yazılımsal bileşenlerin tasarımları yapılmaktadır. Çalışmada 1-1000m hedef için yapılan hesaplamalar sonucunda %0.2'nin altında başarı oranına ulaşılabileceği ispat edilmektedir. Çalışma donanım ve yazılım bileşenlere sahip elektro mekanik bir sistemden oluşmaktadır. Donanımsal ve yazılımsal bileşenlerden oluşan hatalar başarı oranını düşüreceği aşikardır. Bu hatalar standart ve rastgele hataları oluşturmaktadır. Çalışmada bu hatalar öngörülüp, mesafe ölçüm denklemine eklenmektedir. Öngörülen hataların tespiti donanımsal prototipin ve yazılım bileşenlerin geliştirilmesi ile gelecek çalışmada belirlenecektir.

Image processing based distance measurement with Image Meter

HIGHLIGHTS

- · Pixel unaffected image meter
- Improved triangulation method
- Distance measurement with 0,2% margin of error

Article Info

Research Article Received: 05.08.2021 Accepted: 19.05.2022

DOI:

10.17341/gazimmfd.979121

Keywords:

Pixel per meter, pixel per meter, field of view, distance measurement, distance measurement with stereo cameras, triangulation method

ABSTRACT

Currently, image sensors (cameras), are widely used for image analysis (classification, segmentation, etc.) and synthesis (object detection, tracking, distance detection, etc.). The aim of the study is to lay the theoretical foundations for the development of an image meter based measurement device (image meter) that can be used for laser-meter, lidar-meter, radar and similar industrial purposes. For this purpose, distance detection methods based on image processing in the literature have been studied. The main factors that negatively affect the performance of these methods have been identified, and a new method has been developed that is not affected by these factors. The measuring device, which is planned to be developed, is based on theoretical foundations. The operation of these theoretical foundations is based on hardware and software components. In the study, these theoretical foundations were given and designs of hardware and software components were realized. In study, as a result of calculations made for 1-1000m, it was determined that a success rate below 0.2% could be achieved. The study consists of an electro-mechanical component have hardware and software projects. It is obvious that errors caused by hardware and software components will reduce the success rate. These errors will consist of standard and random errors. In the study, these errors are foreseen and added to the distance measurement equation. Detection of predicted errors will be determined in the future study with the development of the hardware prototype and software components.

^{*}Sorumlu Yazar/Yazarlar / Corresponding Author/Authors: *haydar.yanik@amasya.edu.tr, bulent.turan@gop.edu.tr / Tel: +90 544 253 3959

1. Giriş (Introduction)

Görüntü işleme, görüntü sensörü tarafından alınan bilgilerin işlenmesi ve analizi demektir [1]. Görüntü bilgisi içerisinde birçok bilgiyi barındırmaktadır [2-4]. Görüntülerin içerdiği verilerin görüntü işleme teknikleri (bölütleme, nesne tespiti/takibi, morfolojik işlemler vb.) ile işlenmesi aşamalarında da hız ve doğruluk beklenmektedir [5, 6]. Mesafe bilgisi görüntü içerisindeki bazı bilgilerin kullanılması ile çıkarılacağı birçok araştırmacı tarafından kabul edilmektedir [7-10] Stereo kameralar ile yapılan ölçümler için yapılan kalibrasyon sayesinde bir çok dışsal etki berteraf edilmektedir [11]. Stereo kameralı mesafe tespit yöntemi için tercih edilen "Üçgenleme Metodu" birçok araştırmacı için temel yöntem kabul edilmektedir [12-14]. Mono kamera ile yapılan mesafe ölçüm sistemleri için tercih edilen alan değişimi yöntemi, ayrık zamanlarda alınan hedef nesne görüntüsünün zamana bağlı kapladığı alan değişimini temel almaktadır [13-16]. Stereo kamera kullanılarak yapılan mesafe tespit yöntemlerinde ise iki farklı noktaya konumlanan kameralardan alınan görüntünün piksel olarak yer değişimi ve bu yer değişim ile birlikte kurulan bir üçgen kullanılmaktadır [17-20]. Optik akış veya 3D görüntüler ile yapılan eşitsizlik haritalarını temel alan çalışmalar da mevcuttur [21-24]. Bu çalışmalarda temel yöntem görüntü eşleştirmedir. Stereo görüntülerde görüntü eşleştirme için birçok araştırmacı farklı yöntemler tercih etmektedir [25-28]. Stereo kameralı derinlik haritası çıkarımı ise görüntü içerisindeki nesnelerin birbirine göre durumlarını inceleyen, kısmi olarak mesafe bilgisi içeren çalışmalardır [27-30]. Stereo kameralı mesafe tespit sistemleri mobil araçlarda mesafe bilgisine erişmek için tercih edilen sistemler arasındadır [31, 32]. Diğer taraftan bu çalışmalara paralel derin öğrenme modelleri ile yapılan mesafe ölçüm sistemleri de mevcuttur [33-36]. Derinlik haritası oluşturma stereo kameralılarla da oluşturulmuş çalışmalar olduğu gibi [37-39], mono kamera kullanılarak da elde edilmektedir [40-42].

Mono kameralı mesafe ölçüm sistemlerinde ek ekipman veya hedef nesne hakkında ek bilgilerin kullanılması birer problem olarak görülmektedir [43-45]. Stereo kameralı mesafe tespit sistemlerinde ise mesafeye bağlı değişen ölçüm duyarlılığı, piksel odaklı çalışmaların dezavantajıdır [46-49].

Görüntü işleme ile yapılan mesafe tespit sistemlerindeki doğruluk payının (±%4) mesafe artıkça azaldığı ve genel çalışmaların yakın mesafede (<100m) olduğu görülmektedir [8, 10, 14, 46].

Mono veya stereo kamera kullanılarak yapılan mesafe tespit yöntemlerindeki ortak taraf her ikisinin de piksele dayalı yöntemler olduğudur. Piksele dayalı yöntemlerde pikselin görüntü ekranı içerindeki yer değişimi kullanılmaktadır. Mesafeye bağlı olarak değişen Kamera Görüş Alanı (Field of View, FoV) ve sabit odaklı kameralar için değişmeyen çözünürlük, Metre Başına Düşen Piksel Sayısını (Pixels Per Meter, PPM) etkileyecektir [50].

Yakın veya uzak mesafelerdeki hedefin kameralara olan uzaklığı ölçülmek istendiğinde, sistemin kullanacağı veriler mesafeden bağımsız veya bu verilerin sistem için birer öznitelik olması gerekmektedir.

Çalışmamız 5 ana kısımdan oluşmaktadır.

- 1. kısımda literatürdeki çalışmalar ve karşılaştırılması,
- 2. kısımda deneysel ve teorik metotlar ile mono ve stereo kameralar ile mesafe tespiti
- 3. kısımda yöntem ve görüntü metre
- 4. kısımda donanım ve yazılım bileşenlerin ölçüm başarımına etkisi
- 5. kısımda ise sonuçlar verilmektedir.

2. Deneysel Metot / Teorik Metod (Experimental Method) / (Theoretical Method)

2.1.Mono Kameralar ile Mesafe Tespiti (Distance Measurement with Mono Cameras)

Bu çalışmalarda mesafe, bazen nesnenin kapladığı alan ile aynı uzaklıktaki hedef tahtasının kapladığı alanın kıyaslanmasıyla, bazen de ardışık görüntülerdeki nesnenin kapladığı alan değişimi ile elde edilmektedir [5, 11].

Şekil 1'de α sabit yatay görüş açısına sahip kameraya ait görüş alanının mesafe ile değişimi gösterilmektedir. Pı, P2, P3 ve P4 farklı uzaklıktaki hedef nesneye ait bir pikseli, FoV1, FoV2, FoV3, FoV4 ise mesafeye bağlı kamera görüş alanını temsil etmektedir. Bu değişim Eş. 1'de formüle edilmektedir.

Şekil 1. Kamera görüş alanı (Field of view)

$$FoV = tan\left(\frac{a}{2}\right) * Z * 2 \tag{1}$$

Kameraya ait FoV değeri mesafe ile değişmektedir. Bu da PPM değerini etkilemektedir. PPM Eş. 2 ile hesaplanmaktadır.

wpx = sabit kamera çözünürlüğü;

$$PPM = \frac{wpx}{FoV} \tag{2}$$

Şekil 2'de, mono kamera ile mesafe tespitinde kullanılan alan değişimi yöntemi verilmektedir.

Şekil 2. Tekli kameralarda görüntü alanının değişimi (Change of field view in mono cameras)

Eş. 3, Eş. 4, Eş. 5, Eş. 6 ve Eş. 7'de; farklı zaman aralığında kamera konumları arasındaki yer değişimi Δl , hedef nesnenin kameranın ilk konumu ile arasındaki mesafe Z, Z mesafesindeki bir pikselin genişliği Px, kare şeklindeki hedef nesnenin genişliği lx ve hedef nesnenin kapladığı toplam piksel sayısı S1 olarak alındı.

$$FoV1 = tan\left(\frac{a}{2}\right) * Z * 2$$
, $FoV2 = tan\left(\frac{a}{2}\right) * (Z + \Delta l) * 2$ (3)

$$PPM1 = \frac{wpx}{FoV1}, \qquad PPM2 = \frac{wpx}{FoV2} \tag{4}$$

$$Px1 = \frac{1}{PPM1},$$
 $Px2 = \frac{1}{PPM2}$ (5)

$$S1 = \frac{Lx^2}{Px1^2}, \qquad S2 = \frac{Lx^2}{Px2^2} \tag{6}$$

Hedef nesnenin görüntü ekranındaki alan değişimi Δs ise Eş. 7'deki gibi hesaplanır.

$$\Delta s = S2 - S1
\Delta s = lx^{2} \left(\frac{1}{Px1^{2}} - \frac{1}{Px2^{2}} \right)
\Delta s = lx^{2} * wpx^{2} * \left(\frac{1}{\left(\tan\left(\frac{a}{2}\right) * Z * 2\right)^{2}} - \frac{1}{\left(\tan\left(\frac{a}{2}\right) * (Z + \Delta l) + 2\right)^{2}} \right)
= \left[lx * \frac{wpx}{\left(2 * \tan\left(\frac{a}{2}\right) \right)} \right]^{2} * \left[\frac{1}{Z^{2}} - \frac{1}{(Z + \Delta l)^{2}} \right]$$
(7)

Burada; lx; sabit, wpx; sabit, a; sabit olduğundan Δs değişimi Z ve Δl ile ters orantılı olarak değişmektedir. Z mesafesi, ölçülmek istenen mesafe olduğu için Δl bu ölçüm mesafesinde sonucu etkileyen en öneli faktördür. Δs değerinin yüksek çıkması ölçüm doğruluğunu arttıracaktır. Fakat belli bir mesafeden sonra bu değeri arttırmak için Δl nin artması yeterli olmayacak veya sistemin ergonomikliğini ortadan kaldıracaktır. Δl 'nin değişimi orta ve uzak mesafelerde (>150m), Δs değişimine etkisi 0 piksele eşit olacağından sonuç üretilemeyecektir. Tablo 1'de piksel bazlı alan değişiminin mesafeye bağlı değişimi verilmektedir.

Tablo 1. Alan değişiminin mesafeye etkisi [5] (Effect of field change on distance)

Z (m)	Δs (Piksel)	Δs (Piksel)	Δs (Piksel)
	$\Delta_l = 0.1$ m için	$\Delta_l = 0.2 \text{m için}$	$\Delta_l = 0.5 \text{m için}$
5	49471.74	96116.88	221110.9
10	6275.806	12367.94	29611.57
15	1868.729	3700.696	8985.456
20	790.33	1568.951	3836.838
30	234.7552	467.1822	1150.799
40	99.16079	197.5825	488.4859
60	29.41764	58.68879	145.6331
100	6.360557	12.70208	31.6132

2.2. Stereo Kameralarda Üçgenleme Metodu (Triangulation Method in Stereo Cameras)

Stereo kamera ile bir nesnenin mesafesi ölçülmek istenildiğinde; iki farklı konuma yerleştirilmiş kameraların senkron olarak alınan görüntünün, görüntü ekranlarındaki koordinatları arasındaki farkı sıfır yapan piksel ve kamera konumu kullanılır. Stereo kamera konumları ve kamera görüntü ekranlarında hedefin çakıştırıldığı nokta sayesinde basit bir üçgen oluşturulur. Genel trigonometrik hesaplamalar ile hedef nesnenin kameralara olan uzaklığı hesaplanır. Buradaki dezavantaj mesafeye bağlı olarak Px değişmesi ve buna bağlı ölçüm hassasiyeti ve çözünürlüğünün Px ters orantılı olmasıdır. Şekil 3'te stereo kameralarda kullanılan üçgenleme yöntemi verilmektedir. Şekil 3'te A ve B stereo kameraları, l kameralar arası mesafeyi, p hedef nesneyi, p hedef nesneyi hedef nesneyi hedef

Şekil 3. Üçgenleme yöntemi (Triangulation method)

Şekil 4. Stereo kamera optik eksenleri (Stereo camera optical axes)

$$\Delta x = PPM * l \tag{8}$$

Kameralar arası mesafenin piksel olarak hesaplanması Eş. 8'de verilmektedir. Eş. 8'de, Δx hedef nesnenin kamera görüntü ekranlarındaki konumları arasındaki farkın piksel olarak değişimini, PPM sayısını ve l mesafesini vermektedir

Kameralar arası mesafenin (l=0.2m) *Px* bağlı olarak değişimi, *a* ve *wpx* sabit alındığında; 150 metrede 5 piksel, 200 metrede yaklaşık 4 piksel, 250-320 metrede yaklaşık 3 piksel, 325-530 metrede yaklaşık 2 piksel ve 540 metreden sonra ise kameralar arası yaklaşık 1 piksele eşit olmaktadır. İki mesafe arasındaki ölçüm duyarlılığı Tablo 2'de verilmektedir. Mesafe arttıkça ölçüm doğrululuğunun azalması piksel temelli çalışmalar olmasından kaynaklanmaktadır [5]. Tablo 2'de üçgenleme yöntemi ile yapılan ölçümlerde, mesafesinin ölçüm sonuçlarındaki hata üzerine etkisi verilmektedir.

3. Görüntü Metre (Image Meter)

Literatürdeki çalışmalar incelendiğinde asıl problemin hesaplamaların piksel temelli yapılması olduğu tespit edilmiştir. Stereo kameralar ile yapılan çalışmalarda görüntü içinde nesnenin kayma miktarı piksel cinsinden bulunur. Mono kameralarda alan değişimi nesnenin kapladığı piksel cinsinden değişimi ile belirlenir. Ancak mesafe arttıkça görüntü içinde piksellerin kapladığı alan artar ve nesne kayması ve alan değişimi piksel cinsinden anlamsız hale gelir.

Görüntü işleme tabanlı mesafe tespit sistemleri piksel bağımsız hale getirilebilirse ölçüm hassasiyeti artırılabilir. Bu sebeple çalışmamızda

Tablo 2. Üçgenleme yönteminde, mesafenin ölçüm hatası üzerindeki etkisi (In the triangulation method, the effect of distance on measurement error)

Z (m)	FoV (m)	<i>Px</i> (m)	PPM (piksel/m)	$\Delta x = (PPM * l)$	Ardışık mesafeler arası piksel farkı	Ardışık mesafeler arası max .hata (m)
10	11.547	0,00250	400.000	400*0,2=80p	-	
11	12.701	0.00276	362.310	362.31*0.2= 72.462=72p	8p/1m	(1/8)*(1/2)=0.0625m
12	13.856	0.00300	333.330	66.666=67p	5p/1m	(1/5)*(1/2)=0.1m
20	23.094	0.00501	199.600	39.92=40p	13p/8m	(8/13)*(1/2) = 0.3075m
30	34.641	0.00751	133.155	26.631 = 27p	13p/10m	(10/13)*(1/2) = 0.3845m
600	692.820	0.15035	6.651	1.330=1p	26p/570m	(570/26)*(1/2)=10.9615m
900	1039.230	0.22552	4.434	0.8868 = 1p	0p/300m	$(300/0)*(1/2)=\infty m$
1000	1154.700	0.25058	3.990	0.798=1p	0p/200m	$(200/0)*(1/2) = \infty m$

hedef nesne mesafesi bulunurken piksel değişimi/farkı parametre olarak kullanılmamaktadır. Şekil 5'te görüntü metreye ait bir tasarım ve değişebilen optik görüş açısını temsil etmektedir. Şekil 5'te lineer ve açısal hareket kabiliyetine sahip B kamerası ile $\Delta x = 0$ yapan β açısı ve l değeri ayarlandığında Eş. 9 ile hedef nesne mesafesi hesaplanabilir.

Şekil 5. Stereo kamera ve kamera açısı (Stereo camera and camera angle)

$$Z = \frac{l}{tan\beta} \tag{9}$$

Eş. 9'da önemli olan parametrelerin (β, l) hassas olarak belirlenmesidir. Özellikle mesafe arttıkça parametrelerdeki en ufak değişiklik ölçüm hassasiyetini azaltmaktadır. Tablo 4'te β açısının ölçüm hassasiyetine etkisi verilmektedir.

Tablo 4'te kameralar arası mesafe (*l*) sabit tutulup 1°, 0.1°, 0.01°, 0.001° lik açısal değişimlerin kısa ve uzun mesafelerde ölçüm

hassasiyetine $(I/\Delta z)$ etkisi verilmektedir. Tablo 4'te açısal değişim miktarı arttıkça ölçüm çözünürlüğünün hem yakın hem de uzak mesafelerde aynı oranda etkisi azalmaktadır. Bu da açısal değişimin mümkün olduğu kadar küçük tutulması gerektiğini göstermektedir. Bununla birlikte açısal değişim 0.001^0 alınsa bile uzun mesafelerde ölçüm hassasiyeti çok düşük olacaktır. Bu durum da açısal değişimin uzun mesafeler için tek başına yeterli bir parametre olamayacağı ortaya çıkacaktır.

Hedef uzaklaştıkça, açısal hareketin ölçüm tahmini üzerine etkisi azalmaktadır. Bunun sebebi, mesafeye bağlı açısal hareket edebilen kameranın ardışık iki optik eksenlerinin P_0 noktasına olan uzaklığının artmasından kaynaklanmaktadır. Bununla birlikte mesafe ile pikselin görüntü içinde kapladığı alanın artması $\Delta x=0$ olmasını sağlar. Uzak mesafede tam çakışmanın sağlanması, kameralar arasındaki mesafenin hassas bir şekilde ayarlanması ile çözülebilir. Böylece uzaklığın hesaplanmasında kullanılacak olan β ve l parametreleri en optimum şekilde bulunması ile hassas bir hesaplama gerçekleştirilir. β ve l parametrelerinin hesaplanması Bölüm 3.1 ve Bölüm 3.2 ayrıntılı olarak verilmektedir.

Şekil 6'da görüntü metreye ait prototip tasarım verilmektedir. Tasarımda kameralar arası mesafeyi kontrol eden lineer aktüatör (linner hassasiyet 1mm), açısal konumlanmayı sağlayan açısal aktüatör (açısal hassasiyet >0.001°) kullanılmaktadır. Stereo kameradan bir tanesi sabit olarak referans noktaya konumlandırılır. Diğeri ise açısal ve lineer hareket edebilen bir elektro mekanik sistem üzerine konumlandırılmaktadır.

l	$\Delta\beta$ (0)		β t	β t+1	Z_{t}	Z_{t+1}	$\Delta_{\rm Z}$	
	1	Y	88^{0}	89^{0}	6.98*10 ⁻³	3.49*10-3	0.0003	
	1	U	1^{0}	2^{0}	11.457	5.727	5.730	
	0.1	Y	89.8^{0}	89.9^{0}	6.98*10 ⁻⁴	3.49*10 ⁻⁴	0.00003	
Ш	0.1	U	0.1^{0}	0.2^{0}	145.591	57.295	88.396	
0,2m	0.01	Y	89.98^{0}	89.99^{0}	6.98*10 ⁻⁵	3.49*10 ⁻⁵	0.000003	
	0.01	U	0.01^{0}	0.02^{0}	1145.915	572.957	572.958	
	0.001	Y	89.998^{0}	89.999^{0}	6.98*10 ⁻⁶	3.49*10 ⁻⁶	0.0000003	
	0.001	U	0.001^{0}	0.002^{0}	11459.155	5729.577	5729.578	
Y:Ya	kın mesaf	e için		U:Uzak mesafe için				

Tablo 4. β 'nın $1/\Delta z$ 'ye etkisi (The effect of β on $1/\Delta z$)

Şekil 6. Görüntü metre (Image meter)

Tasarlanan prototipin çalışma aşamaları aşağıda verilmektedir.

- referans görüntüde hedef nesnenin seçilmesi,
- referans görüntüdeki hedef nesnenin görüntü bölütlemesi,
- B kamera görüntüsünde hedef nesnenin tespiti ve görüntü bölütleme.
- B kamerası açısal hareketi ile $\Delta x = 0$ yapan ideal β açısının belirlenmesi.
- en uygun kameralar arası mesafenin belirlenmesi(l),
- mesafe hesabı (Z)

Sistemin temel algoritması ise Tablo 3'de verilmiştir.

3.1. B Kamerası Görüntü Alma Açısının Hesaplanması (β) (Calculating the Image Acquisition Angle of Camera B)

Görüntü işleme tabanlı mesafe tespit çalışmalarında pikseller elbette olmak zorundadır ve birbirinden farklı pozisyonlara sahip 2 farklı kamera kullanıldığında aynı nesne her iki kamerada farklı pozisyonlarda görüntülenecektir. Ancak kameraların görüntü alma eksen açıları ile oynanarak nesne görüntüleri aynı pozisyona taşınabilir. Böylece Δx 'den bağımsız bir çalışma yapabilmek için ∆x'in 0 olduğu an yakalanmalıdır (Görüntünün insan gözü ile yakalanmasına benzer şekilde). Görüntü metre ile mesafe ölçüm bu temeller üzerinde çalışmaktadır. Çalışmamızda farklı noktalarda konumlanan A ve B kameraları kullanılmaktadır. B kamerası görüntü ekranı içindeki hedef nesne konumunun, A referans kamerası görüntü ekranı içindeki hedef nesne konumu ile çakıştırılması planlanmaktadır. Böylece Δx değeri 0 olacaktır. Δx 'in 0 olduğu anda, açısal hareketli B kamerasının pozisyonu elektro mekanik sistemden alınır (β ve l). β ve l değerleri ne kadar düşük çözünürlükte ve doğru olarak elde edilirse nesnenin kameralara olan uzaklığı o derecede gerçek mesafeye yakın olur. Şekil 7'de tasarlanan prototipte B kamerasının açısal hareketi sonrasında kamera eksen çizgileri, Şekil 8'de ise bu eksen çizgilerinin görüntü ekranındaki piksel kaymasına etkisi verilmektedir.

Şekil 7. Görüntü metrede açısal hareket (Angular movement in image meter)

A ve B kameralarında oluşan nesne görüntülerinin çakışma işlemi hareketli B kamerasının açısal ve lineer hareketleri ile sağlanmaktadır. Öncelikle B kamerası açısal hareket ettirilerek $\Delta x = 0$ yakalanmaktadır. Böylece β açısı tespit edilmektedir. Ancak bu çakıştırma bize mevcut l_b mesafesi (0,2m) için optimum β açısını vermeyecektir. Çünkü B kamerasını hareket ettiren açısal aktüatörün çözünürlüğü bunun için yeterli olmayacaktır. Buna rağmen görüntü içinde pikselin kapladığı alan hedef nesne mesafesi ile doğru orantılı artacağından hedef nesne merkez noktası ile tam çakışma gerçekleştirilemese bile (bkz Şekil 7)

Tablo 3. Sistem algoritması (System algorithm)

```
ALGORITMA 1: GÖRÜNTÜ IŞLEME ILE MESAFE TESPIT IŞLEMI
GİRİŞ
                            :A Kamera (Referans) Görüntüsü
                                 B Kamera Görüntüsü
CIKIS
                            :Hedef Nesne Mesafesi (Z)
                            : \beta = 0^{\circ}, \quad l = 0.200m
İLK DEĞERLER
Eğer referans görüntüde hedef nesne işaretlendiyse
  Hedef nesneyi arka plan görüntüsünden ayırt et
  Hedef nesneyi B kamera görüntüsünde bul ve arka plan görüntüsünden ayırt et
  \Delta x hesanla
 (\Delta x > 0) Koşulu sağladığı sürece
    \beta açısını 1 kademe artır (0.001°)
    \Delta x hesapla
  Bitir
  \beta açısını kaydet
 (\Delta x < 1) Koşulu sağladığı sürece
     l değerini 1 kademe artır (0.001m)
    \Delta x hesapla
  Bitir
  l<sup>+</sup> değerini kaydet
  İlk l değerine dön (0.200m)
(\Delta x > -1)Koşulu sağladığı sürece
     l değerini 1 kademe azalt (0.001m)
    \Delta x hesapla
  l<sub>−</sub> değerini kaydet
  l_a değerini hesapla ve kaydet
  Mesafeyi hesapla (Z)
Hiçbir koşul sağlanmazsa
   Başa dön
Bitir
```

bu noktanın içinde bulunduğu piksel ile çakışma gerçekleşecek ve $\Delta x=0$ olacaktır. $\Delta x=0$ yapan β açısı aşağıda verilen Eş. 10 ve Eş. 11 ile hesaplanmaktadır. Bu değer aynı zamanda servo motorun adım sayısı (n) ve adım hassasiyeti (d) ile de ilişkilidir.

Şekil 8. Stereo görüntü ekranlarına β açısının etkisi [5] (Effect of β angle on stereo image)

$$\Delta x = PPM * ((l_b) - (Z * \tan(\beta)))$$

$$0 = PPM * ((l_b) - (Z * \tan(\beta)))$$

$$0 = ((l_b) - (Z * \tan(\beta)))$$
(10)

$$\tan(\beta) = \frac{l_b}{Z} \Rightarrow \beta = \tan^{-1}\left(\frac{l_b}{Z}\right) ve \ \beta = n * d$$
 (11)

Pratikte görüntüler kullanılarak ∆x hesaplanacak, B kamerası açısal hareket ettirilerek $\Delta x=0$ yapan β açısı bulunmaktadır. Başlangıç pozisyonunda A ve B kameraları birbirine paralel ve kameralar arasındaki mesafe (l_b) 0.2m'dir. l_b mesafesi ve servo motorun ilk adımından sonra alacağı en küçük açı bilgisi; sistemin ölçebileceği maksimum. mesafeyi belirlemektedir. Bu durum Eş. 9'da verilmektedir. Bu kapsamda seçilen açısal servo motorumuzun bir tam turda 32768 adım atması ve enkoderin bu hassasiyeti desteklemesi gerekmektedir. Çünkü her bir adım yaklaşık 0,0109° olacaktır. Böylece ölçülebilecek maksimum mesafe Eş. 9 kullanılarak yaklaşık 1051m olarak bulunur. Piyasada 32768, 64500, 207720, 607000,1003846 adım/tur sahip mutlak enkoderli servo motor bulunmaktadır. 32768 adım/tur tercih edilmesinin sebebi uzaklık limitinin 1000m ile sınırlı olmasıdır. Lineer hareket sonucunda lensler arası mesafenin minimum $l_{-}=0.15m$ ve maksimum. $l_{+}=$ 0.35m olması planlanmaktadır. Böylece aynı β açısı ile farklı mesafeler ölçülebilecek ve mesafe ölçüm çözünürlüğü (l/Δ_z) artacaktır.

3.2. β ile Uyumlu, l Mesafenin Bulunması (Optimum $(l=l_g)$) (Finding the Distance Between Lenses Compatible with the Image Acquisition Angle of the B Camera) (Optimum $(l=l_g)$)

Açısal aktüatör kullanılarak $\Delta x\!=\!0$ yapan β açısı belirlendikten sonra tam çakışmayı sağlayacak l mesafesinin sınırları belirlenmektedir. l mesafesinin l_+ ve l_- sınırları lineer aktüatörün doğrusal hareketi ile ayarlanmaktadır. Tam çakışmayı sağlayan en uygun l_g değeri lineer aktüatörün sınırları ve adım çözünürlüğü kullanılarak hesaplanır. Eş. 12 ve Eş. 13'te l mesafesinin artması (0.2m, 0.201m, 0.202m,, 0.350m) ile $\Delta x\!=\! l$ yapan ilk l değeri l_+ değerini verirken, l mesafesinin azalması (0.2m, 0.199m ,0.198m ,0.197m,, 0.150m) ile $\Delta x\!=\! l$ yapan ilk değer ise l_- değerlerini verir. Daha sonra

bu değerler Eş. 14'de kullanılarak l_g değeri hesaplanır (teorik olarak $\Delta x > 0.5$ koşulunda $\Delta x = +1$, $\Delta x < -0.5$ koşulunda -1 alınmaktadır).

$$-1 = \Delta x = PPM * ((l_{-}) - (Z * \tan(\beta)))$$
 (12)

$$+1 = \Delta x = PPM * ((l_+) - (Z * \tan(\beta)))$$
(13)

$$l_g = \frac{l_+ + l_-}{2} \tag{14}$$

Şekil 9'da l_+ değerinin sınırları ve Şekil 10'da ise l_- değerlerinin sınırları verilmektedir. Böylece β açısı ve bu açıyla birlikte kullanılacak en uygun l mesafesi bulunduktan sonra Eş. 9 aşağıdaki şekilde güncellenerek Z mesafesi hesaplanmaktadır (Eş. 15). Burada önemli olan β açısının ve l_g mesafesinin birbirlerine uyumlu olarak hassas bir şekilde bulunmasıdır.

Sekil 9. l_{-} nin hesaplanması (Calculation of values l_{-})

Şekil 10. l_+ nin hesaplanması (Calculation of values l_+)

$$Z = \frac{l_g}{tan\beta} \tag{15}$$

Çalışmada belirlenen yöntemin başarımı, farklı mesafeler kullanılarak yapılan hesaplamalar ile teorik olarak doğrulanmaktadır. Doğrulama aşamasında Δx değerinin hesaplanması için kullanılan Eş. 9 ve Eş. 14 geliştirilip, Eş. 15 halini almaktadır. l_+ , $\Delta x = +1$ yapan ilk l değeri, l mesafesinin pozitif yönde artırılmasıyla Eş. 13 ile hesaplanmaktadır. l mesafesinin negatif yönde azaltılmasıyla da benzer şekilde Eş. 12 ile l_- değeri hesaplanmaktadır.

Tablo 5'te l_g değeri hesaplandıktan sonra β açısıyla kullanıldığında uzak mesafeler için çok hassas ölçümler gerçekleştirilebilmektedir. l_b değeri ile β açısının birlikte kullanıldığı durumda uzak mesafelerde ölçüm değeri çok büyük hatalar vermektedir. 800, 900, 950, 1000 metreler için ölçüm sonucu 1041.74m hesaplanmaktadır. Dolayısıyla farklı mesafeler için aynı ölçüm sonucu verebilmektedir. Ancak l_g ve β ile yapılan hesaplamada 1000m için 1000.07m, 950m için 950.58m, 900m için 898.5m, 800m için 799.53m gibi düşük hata oranları olup başarı oranları l_b nin sabit alınmasına göre daha yüksek olmaktadır.

Yakın mesafelerde her iki hesaplama yöntemi aynı başarıyı yakalayabilmektedir. l_b ile β açısının birlikte kullanıldığı durumda maksimum hata oranı %30.125 ile 800m de hesaplanmaktadır. $l_{\rm g}$ ile β açısının birlikte kullanıldığı durumda maksimum hata oranı %0.17 ile 900m de hesaplanmaktadır. Bu değer %1'in çok altındadır. Ancak l_b değeri ile β açısının birlikte kullanıldığı durum Tablo 2'de verilen Δx tabanlı çalışmalardan iyi olsa da %30 gibi kabul edilemeyecek hata oranları verebilmektedir. Ayrıca Tablo 6'da 350m, 75m'lerde l_g değeri l_b değerine çok yakın çıkmaktadır. Bazı mesafelerde l_b ile yapılan hesaplamada kabul edilebilir sonuçlar çıksa dahı, bu sonuçlar

tesadüfi olmaktadır. Tablo 5'te l₊ ve l₋ değerleri incelendiğinde en büyük değer 0.318m, en küçük değer 0.053mdir. Bu değerlerin çok büyük bir aralıkta olmaması, lineer aktuatörün boyunu, dolayısıyla prototipin ölçülerini etkilemektedir. Ayrıca kameraların kaplayacağı alan. dolayısıyla birçok kameranın fiziksel boyutları l_{-} nin 0.053m'ye düşmesine izin vermeyecektir. Bu sebeple l_{+} ve l_{-} değerlerinin daha küçük bir aralıkta tutulması prototipin optimum kullanımı için önemlidir. Mesafe bağlı FoV değerinin değişimi, dolayısıyla pikselin kapladığı alanın değişimi, l_+ ve l_- değer aralığı değiştirmektedir. Kameraların optik büyütme özelliğinin kullanılması uzak mesafelerde, kamera görüntü alma açısını düşürerek, FoV değerinin küçülmesini ve pikselin kapladığı alanın daralmasını sağlayacaktır. Bu da l_+ ve l_- değer aralığı küçülecektir. Ayrıca optik büyütme uzak mesafelerdeki küçük nesnelerin görünürlüğünü artıracağı için bu nesnelerin de mesafesinin ölçülebilmesine katkı sağlayacaktır. Hedef nesnesinin referans kamera görüntü ekranı içerisinde bir işaretçi yardımı ile seçilmesinden sonra kameraların görüntü yakınlaştırma özelliği kullanılacaktır. Yakınlaştırma oranları her iki kamerada da es olacak sekilde ve hedef görüntünün görüntü ekranındaki kapladığı alana oranlanarak belirlenecektir.

Tablo 5. lb, lg, β değerlerinin mesafe hesabına etkisi (Effect of lb, lg and β values on distance calculation)

Z (m)	FoV(m)	PPM (piksel)	Δx (piksel)	l _b (m)	$\Delta x=0$ yapa n β açısı	$l = Z * tan(\beta)$ (m) Olması gereken l	l ₊ (m)	l_ (m)	lg (m)	$Z = \frac{l_b}{tan\beta}$ (m) %hata	$Z = \frac{l_g}{\tan\beta}$ (m) %hata
1000	1154,70	3,99	0,80	0,2	0,011	0,191986220	0,318	0,066	0,1920	1041,74 %4,17	1000,07 %0,007
950	1096,90	4,20	0,84	0,2	0,011	0,182386909	0,302	0,063	0,1825	1041,74 %9,57	950,58 %0,06
900	1039,23	4,43	0,87	0,2	0,011	0,172787598	0,286	0,059	0,1725	1041,74 %15,75	898,5 %0,17
800	923,76	4,98	0,99	0,2	0,011	0,153588976	0,254	0,053	0,1535	1041,74 %30,125	799,53 %0,059
350	404,14	11,40	2,28	0,2	0,033	0,201585550	0,246	0,157	0,2015	347,24 %0,79	349,85 %0,04
300	346,41	13,30	2,66	0,2	0,033	0,172787615	0,211	0,135	0,1730	347,24 %15,75	300,36 %0,12
250	288,67	15,96	3,19	0,2	0,044	0,191986255	0,224	0,160	0,1920	260,43 %4,17	250,01 %0,004
100	115,47	39,90	7,98	0,2	0,110	0,191986453	0,205	0,179	0,1920	104,17 %4,17	100,07 %0,07
75	86,60	53,21	10,64	0,2	0,154	0,201586014	0,211	0,192	0,2015	74,41 %0,79	74,97 0,04
72	83,14	55,42	11,09	0,2	0,154	0,193522573	0,203	0,184	0,1935	74,41 %3,35	71,99 %0,014
50	57,73	79,80	15,96	0,2	0,220	0,191987161	0,199	0,185	0,1920	52,08 %4,16	50,00 %0,0
20	23,09	199,50	39,90	0,2	0,572	0,199672300	0,200	0,199	0,1995	20,03 %0,15	19,98 %0,1
10	11,55	399,00	79,80	0,2	1,144	0,199692203	0,201	0,198	0,1995	10,01 %0,1	9,99 %0,1

Tablo 6. Kameraların optik büyütme özelliğinin l_+ , l_- ve Z değerleri üzerine etkisi (The effect of optical zoom of cameras on l_+ , l_- and Z values)

Hedef (m)	10x Büyütme ile Z (m)	FoV (m)	PPM (piksel)	Δx (piksel)	$oldsymbol{eta}^0$	l (m)	l ₊ (m)	l_ (m)	lg (m)	Z (m)
1000	100	115,47	39,9	7,98	0,011	0,191986220	0,205	0,179	0,1920	1000,07
950	95	109,69	42	8,4	0,011	0,182386909	0,195	0,170	0,1825	950,58
900	90	103,923	44,3	8,66	0,011	0,172787598	0,185	0,161	0,1730	901,10
800	80	92,376	49,8	9,96	0,011	0,153588976	0,164	0,143	0,1535	799,53
350	35	40,4145	114,0	22,8	0,033	0,201585550	0,206	0,197	0,2015	349,85
250	25	28,867	159,6	31,92	0,044	0,191986255	0,196	0,188	0,1920	250,01
100	10	11,547	399	79,8	0,110	0,191986453	0,194	0,190	0,1920	100,07
50	5	5,773	798	159,6	0,220	0,191987161	0,193	0,191	0,1920	50,00
20	2	2,3094	1995	399	0,572	0,199672300	0,200	0,199	0,1995	19,98
10	1	1,1547	3990	798	1,144	0,199692203	0,200	0,199	0,1995	9,99

Kameralar arası hesaplanan, l_+ ve l_- değerleri kameraların yakınlaştırma özellikleri kullanılmadan önce bir referans değerinin (l_b =0.2m) altında ve üstünde olması beklenmektedir. Kameraların yakınlaştırma özelliği hedef nesnenin belirlenmesinden sonra yapılacağından l_+ ve l_- değerlerinin her ikisinin de l_b mesafesinin altında veya üstünde olması normal olarak karşılanmaktadır (bkz. Tablo 6; 950m, 900m, 800m, 250m, 100m, 50m).

Tablo 6 incelendiğinde l_+ ve l_- değerlerinin maksimum 0.206m ile minimum 0.143m aralığında değiştiği ve aralığın Tablo 5'e göre daraldığı açıkça görülmektedir. Ayrıca mesafe hesabına etki etmediği görülmektedir. Sadece 900m için hesap değişmektedir. Diğer mesafelerde en uygun kameralar arası mesafe değişmediği için sonuçlar aynı çıkmaktadır. Ayrıca optik büyütme Δx değerini değiştirdiği için Δx tabanlı mesafe ölçümü yapılan çalışmalarda sonucu etkilemektedir. Ancak hesaplanan β açısını değiştirmeyeceği için çalışmamızda kullanılması planlanan yöntemimizi etkilemeyecektir.

4. Ölçüm Başarımına Mekanik Donanım ve Yazılımın Etkisi (Effect of Hardware and Software on Measurement Succes)

4.1. Mekanik Donanımım Ölçüm Başarımına Etkisi (Effect of Hardware on Measurement Performance)

Elektro mekanik sistem, sabit ve hareketli parçalardan oluşmaktadır. Bu durum, mesafe ölçüm başarımını olumsuz etkilemektedir. Bu noktada 2 farklı hata türü oluşma riski vardır. Bunlar;

- Standart mekanik hata
- · Rastgele mekanik hata

Standart mekanik hata; ölçüm cihazının üretimi aşamasında meydana gelmektedir. Farklı zaman dilimlerinde yapılan ölçümlerde bu hata değişmez.

Rastgele mekanik hata; her bir ölçüm esnasında farklı hatalar meydana gelmektedir. Daha önce meydana gelen hatalardan bağımsız olarak oluşan hata türüdür.

Her iki hata türü de ölçüm cihazının üretim aşamasında minimum düzeye çekilebilecek hatalar olmaktadır. Günümüzde benzer hassasiyete sahip mekanik donanımlar üretilebilmektedir. Örnek olarak otomotiv sektöründe araç tekerleklerinin aynı açılarda senkronize hareketi, haritacılık sektöründe total station ölçü cihazı, CNC tezgahlarının parça işleme aparatları vb. verilebilir.

4.2. Sistem Yazılımının Ölçüm Başarımına Etkisi (Effect of System Software on Measurement Performance)

Ölçüm için hedef nesnenin arka plandan ayrıştırılması gerekmektedir. Bunun için görüntü işleme tekniklerinden görüntü bölütleme yapılmaktadır. Bu aşamada her zaman doğru görüntü bölütleme gerçekleşmemektedir. Bu da ölçüm hatasına sebep olabilmektedir. Ancak günümüzde görüntü işleme tekniklerinin başarı oranı gittikçe artmaktadır. Ayrıca kullanıcı ekran üzerinden görüntü bölütlemesinin doğruluğunu kontrol edebilir ve gerektiğinde manuel olarak müdahale edilebilmektedir.

Tablo 6'da elde edilen değerlere bölütleme aşamasında hatasız sonuçlar elde edildiği takdirde ulaşılabilmektedir. Görüntü bölütleme aşamasında yapılacak hatalar hata oranlarının artmasına sebep olmaktadır. Bölütleme aşamasında yapılabilecek hatalar için; A ve B kamera görüntülerinde bölütleme aşamasında aynı hatalar yapılırsa bu durum hata oranını artırmayacaktır, eğer görüntülerden birinde doğru diğerinde yanlış bölütleme yapılırsa ve bu Δx değerini etkilerse hata oranını artıracak olması sistem tarafından ön görülmektedir.

Mekanik donanım ve yazılım hataları hedef nesne mesafe eşitliklerine eklenerek Eş. 16'deki halini alır.

$$Z = \frac{l_g + l_s + l_r + l_{seg}}{tan(\beta + \beta_s + \beta_r)} \tag{16}$$

Es. 16 de;

 l_s =Standart lineer mekanik hata l_r =Random lineer mekanik hata l_{seg} =Görüntü bölütleme hatası =Standart açısal mekanik hata =Random açısal mekanik hata

Eş. 16'de görüntü bölütleme hatası sadece lineer eksen üzerinde etkili olarak ifade edilmektedir. Bunun sebebi bu hatanın küçük olacağı öngörüldüğünden sadece l_g mesafesinin değişimiyle ifade edilebilir.

Eş. 16'de belirtilen hataların limitleri 0'dır. Mekanik hataların uygun bir üretim sürecinde 0'a çok yakın gerçekleştirilebileceği düşünülmektedir. Görüntü bölütleme hataları da görüntü işleme uygulamalarının gelişimi düşünüldüğünde 0 yakın bir değer olarak ulaşılabilir niteliktedir.

5. Sonuçlar (Conclusion)

Literatürde görüntü işleme tabanlı mesafe tahmin yöntemleri incelendi. Literatürde görüntü işleme tabanlı mesafe ölçüm çalışmaları mono ve stereo kameralar kullanılarak gerçekleştirilmektedir. Hem mono hem stereo kameralar ile yapılan çalışmaların piksel odaklı çalışmalar olduğu görülmektedir. Bu çalışmalarda mesafe tespit başarımının artırılmamasının sebebi olarak, mesafe arttıkça pikselin kameraların görüntü ekranları içinde kapladığı alanının artması olduğu görülmektedir. Stereo kamera ile mesafe tespit yöntemleri, hedef nesne görüntüsünün stereo kamera görüntüleri üzerinde piksel bazlı kayma miktarına (Δx) bağlı olarak yapılmaktadır. Çalışmamızda, nesnenin görüntü ekranında piksel bazlı kayma miktarı (Δx) parametre olarak kullanılmamaktadır. Δx 'i sıfır yapan β açısı bulunduktan sonra β açısı ile uyumlu lensler arası mesafe (1) hassas bir şekilde tespit edilmektedir. Böylece geliştirilen yöntemin piksel bağımsızlığı sağlanmaktadır. elektromekanik bir sistem içermektedir. Bu sistem "Görüntü Metre" olarak isimlendirilmektedir. Sistemin doğrulaması, geliştirilen denklemler ile ispat edilmektedir. Yapılan hesaplamalar sonucunda maksimum hatanın %0.17 olması beklenmektedir. Tasarlanan prototipin uygulama aşamasında donanım ve yazılım bileşenlerinden kaynaklanabilecek hatalar öngörülmektedir. Bu hatalarla birlikte geliştirilen sistemin maksimum hata oranının %1'in altında olacağı düsünülmektedir.

Gelecek çalışmalarda prototipin oluşturulması ve yazılımsal geliştirmelerin tamamlanması ile deneysel çalışmanın yapılması planlanmaktadır.

Teşekkür (Acknowledgement)

Bu çalışma Tokat Gaziosmanpaşa Üniversitesi Lisansüstü Tezleri Destekleme Programı Projeleri (BAP) tarafından desteklenen 2020/106 nolu "Görüntü İşleme Tabanlı Mesafe Tespiti İçin Hibrit Bir Yöntemin Geliştirilmesi" isimli proje kapsamında gerçekleştirilmiştir.

Kaynaklar (References)

 Vyas, A., Yu, S., & Paik, J., Fundamentals of digital image processing, In Multiscale Transforms with Application to Image Processing, 3-11, Singapore, 2018.

- Kurnaz Ç., Gül B.K., Determination of the relationship between sodium ring width on iris and cholesterol level, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1557-1568, 2018
- Kılınç M., Gözde H., Detection of buried anti-personnel mines in thermal images by circular hough transformation supported active thermography method, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 697–707, 2020.
- Ülkir O., Ertuğrul I., Akkuş N., Characterization of electrothermal micro-actuator using image processing algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 1159–1170, 2021
- Yanik, H., Turan, B., Mesafe Ölçümünde Image -Metre: Görüntü İşleme ile Mesafe Tespit Yöntemlerinde Eksik Ne?, International Conference on Data Science and Applications, 4, 480-486, 2021.
- Selçuk T., Çolakoğlu A.S., Alkan A., Bread texture analysis and development of user interface using image processing techniques, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 31–41, 2018.
- Takatsuka, M, West, G. A. W., Venkatesh, S., Caelli, T. M., Low-cost interactive active range finder, IEEE Computer Society Conference on Computer Vision and Pattern Recognition 14 (3), 139–144, 2003.
- Phelawan, J., Kittisut, P., Pornsuwancharoen, N., A new technique for distance measurement of between vehicles to vehicles by plate car using image processing, Procedia Eng., 32, 348–353, 2012.
- Seshadrinathan, K., Nestares, O., Wu, Y., Corporation, I., Clara, S., Accurate measurement of point to point distances in 3D camera images, International Symposium on Electronic Imaging, Digital Photography and Mobile Imaging XIII, 20–25, 2017.
- Hassan, M.F.A., Hussain, A., Saad, M.M.H., Win, K., 3D distance measurement accuracy on low-cost stereo camera, Science International, 29 (3), 599-605, 2017.
- Shortis, M., Calibration techniques for accurate measurements by underwater camera systems, Sensors, 15 (12), 30810–30827, 2015.
- 12. Katada, K., Chen, S., Zhang, L., The triangulation of toe-in style stereo camera, In The 2nd International Conference on Intelligent Systems and Image Processing, 18–21, 2014.
- Oh, J. H., Park, J., Lee, S. H., Lee, B. H., & Park, J. I. Error modeling of depth measurement using FIR stereo camera systems, 2013.
- Ashoori, M. E., & Mahlouji, M., Measuring the Distance between the Two Vehicles Using Stereo Vision with Optical Axes Cross. Modern Applied Science, 12 (165), 10-5539, 2017.
- 15. Yamaguti, N., Oe, S., Terada, K., A method of distance measurement by using monocular camera. In Proceedings of the 36th SICE annual conference. IEEE, International session papers, 1255-1260, 1997.
- Mahammed, M. A., Melhum, A. I., & Kochery, F. A., Object distance measurement by stereo vision. International Journal of Science and Applied Information Technology (IJSAIT), 2 (2), 05-08, 2013.
- Theodosis, P., Wilson, L., & Cheng, S., EE368 Final Project: Road Sign Detection and Distance Estimation in Autonomous Car Application, 2013.
- Gan, Y., Xu, X., Sun, W., & Lin, L., Monocular depth estimation with affinity, vertical pooling, and label enhancement. In Proceedings of the European Conference on Computer Vision, 224-239, 2018.
- Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., Zhang, J., Learning for disparity estimation through feature constancy, In Proceedings of the IEEE conference on computer vision and pattern recognition, 2811-2820, 2018.
- Zeglazi, O., Rziza, M., Amine, A., & Demonceaux, C., Efficient Dense Disparity Map Reconstruction using Sparse Measurements. In 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018)., 2018.
- Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T., A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation, In Proceedings of the IEEE conference on computer vision and pattern recognition, 4040-4048, 2016.
- Fan, R., Ai, X., Dahnoun, N., Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Transactions on Image Processing, 27 (6), 3025-3035.2018.
- 23. Hantao, L., Distance determination from pairs of images from low cost cameras, The University of Edinburgh School of Engineering and Electronics MSc in Signal Processing and Communication MSc Project Mission Statement, 1–95, 2005.

- Solak, S., Bolat, E. D., Distance estimation using stereo vision for indoor mobile robot applications, In 2015 9th International Conference on Electrical and Electronics Engineering IEEE, (ELECO), 685-688, 2016
- Nagar, S., Verma, J. Distance measurement using stereo vision, International Journal of Electrical and Electronics Engineers, 7 (01).2015.
- Lai, X. B., Wang, H. S., & Xu, Y. H., A real-time range finding system with binocular stereo vision, International Journal of Advanced Robotic Systems, 9 (1), 26, 2012.
- Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T., Demon: Depth and motion network for learning monocular stereo, In Proceedings of the IEEE conference on computer vision and pattern recognition, 5038-5047, 2017.
- Vedula, S., Rander, P., Collins, R., Kanade, T., Three-dimensional scene flow, IEEE transactions on pattern analysis and machine intelligence, 27 (3), 475-480, 2005.
- Budiharto, W., Santoso, A., Purwanto, D., Jazidie, A., Multiple moving obstacles avoidance of service robot using stereo vision, TELKOMNIKA (Telecommunication Computing Electronics and Control), 9 (3), 433-444, 2011.
- Montiel-Ross, O., Sepúlveda, R., Castillo, O., Quiñones, J., Efficient stereoscopic video matching and map reconstruction for a wheeled mobile robot, International Journal of Advanced Robotic Systems, 9 (4), 120, 2012.
- Stein, G. P., Gdalyahu, Y., Shashua, A., Stereo-assist: Top-down stereo for driver assistance systems, In 2010 IEEE Intelligent Vehicles Symposium, IEEE, 723-730, 2010.
- **32.** Campbell, N. D., Vogiatzis, G., Hernández, C., Cipolla, R., Using multiple hypotheses to improve depth-maps for multi-view stereo, In European Conference on Computer Vision, Springer, Berlin, Heidelberg, 766-779, 2008.
- **33.** Hsu, T. S., Wang, T. C., An improvement stereo vision images processing for object distance measurement. International Journal of Automation and Smart Technology, 5(2), 85-90, 2015.
- Robert, L., Deriche, R., Dense depth map reconstruction: A minimization and regularization approach which preserves discontinuities. In European Conference on Computer Vision, Springer, Berlin, Heidelberg, 439-451, 1996.
- Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T. A., Delmerico, J., Scaramuzza, D., Toward domain independence for learning-based monocular depth estimation, IEEE Robotics and Automation Letters, 2 (3), 1778-1785, 2017.
- Tao, M. W., Hadap, S., Malik, J., Ramamoorthi, R., Depth from combining defocus and correspondence using light-field cameras. In Proceedings of the IEEE International Conference on Computer Vision, 673-680, 2013.
- Kytö, M., Nuutinen, M., Oittinen, P., Method for measuring stereo camera depth accuracy based on stereoscopic vision, In Three-Dimensional Imaging, Interaction, and Measurement, 7864, 168-176, 2011.
- He, Y., Liang, B., Zou, Y., He, J., & Yang, J., Depth errors analysis and correction for time-of-flight (ToF) cameras. Sensors, 17 (1), 92, 2017.
- Holzmann, C., Hochgatterer, M., Measuring distance with mobile phones using single-camera stereo vision, In 2012 32nd International conference on distributed computing systems workshops IEEE., 88-93, 2012.
- 40. Lee, S., Lee, J., Hayes, M.H., Katsaggelos, A.K., Paik, J., Single camera-based full depth map estimation using color shifting property of a multiple color-filter aperture, In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing IEEE. (ICASSP), 801-804, 2012.
- **41.** Wedel, U. Franke, J. Klappstein, T. Brox, and D. Cremers, Realtime depth estimation and obstacle detection from monocular video, Pattern Recognit, 475–484, 2006.
- Jiao, J., Cao, Y., Song, Y., Lau, R., Look deeper into depth: Monocular depth estimation with semantic booster and attention-driven loss. In Proceedings of the European conference on computer vision (ECCV), 53-69, 2018.
- Soyaslan, M., Object distance detection through disparity map in stereo camera system, Sakarya University Journal of Science, 20 (2), 111-119, 2016.
- Reddy Mopuri, K., Krishna Uppala, P., Venkatesh Babu, R., Ask, acquire, and attack: Data-free uap generation using class impressions. arXiv e-prints, arXiv-1808, 2018.

- **45.** Srijha, R., Methodology for distance measurement: A Comparative Study, International Journal of Electronics, Electrical and Computational System IJEECS, 6 (8), 451–457, 2017.
- 46. Chen, K. Y., Tsung, P. K., Lin, P. C., Yang, H. J., Chen, L. G., Hybrid motion/depth-oriented inpainting for virtual view synthesis in multiview applications, In 2010 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video IEEE., 1-4, 2010.
- Bai, M., Luo, W., Kundu, K., Urtasun, R., Exploiting semantic information and deep matching for optical flow. In European Conference on Computer Vision Springer, Cham, 154-170, 2016.
- **48.** Murphey, Y. L., Chen, J., Crossman, J., Zhang, J., Richardson, P., Sieh, L., DepthFinder, a real-time depth detection system for aided driving. In Proceedings of the IEEE Intelligent Vehicles Symposium IEEE., 122-127, 2000.
- **49.** Rahman, A., Salam, A., Islam, M., Sarker, P., An image based approach to compute object distance. International Journal of Computational Intelligence Systems, 1 (4), 304-312, 2008.
- Uslu, O., Özkan, E.., Ip CCTV Sistemlerinde pixel (ppm) hesaplaması ve doğru çözünürlük tespiti, https://www.emo.org.tr/ekler/a48e0098ca1a33f_ek.pdf. yayın tarihi 2016, Erişim tarihi 01.08.2020.