Identificação de Sistemas Lineares com RNA

Lucas S Schiavini lucaschiavini@hotmail.com

Resumo—O trabalho consiste em aprender a identificar uma função de transferência IIR(Infinite Impulse Response) de segunda ordem variante no tempo utilizando uma rede ADALINE.

I. OBJETIVOS

O objetivo do projeto é aproximar uma função de transferência IIR de segunda ordem variante no tempo por um filtro FIR(Finite Impulse Response), variando taxa de aprendizagem de forma a impedir que o sistema fique instável.

II. INTRODUÇÃO TEÓRICA

Redes neurais surgiram para solução de problemas de classificação e regressão linear. Uma forma de ser estruturada utilizava o conceito do perceptron, com função de transferência com limiar de resposta positivo e negativo. Dessa forma, filtrava valores que estavam acima ou abaixo do limiar e setava o valor 0(eliminando o sinal) ou 1(repetindo o sinal).

De forma similar ao perceptron, existe uma outra forma de utilizar elementos numa rede neural. Uma estrutura de rede com uma função de transferência linear chamado Adaptative Linear Neuron ou ADALINE.

A. ADALINE

Linear Transfer Function

Fig. 1. Adaline: Função de Transferência

Adaline funciona com função de transferência, permitindo perceber o quão correto está sua previsão. Dessa forma os valores dessa rede são estocásticos.

A arquitetura de uma rede ADALINE segue com uma camada com S neurônios conectados a R entradas com uma matriz de pesos W.

Fig. 2. Adaline: Arquitetura

Numa rede simples Adaline é possivel identificar propriedades de forma menos custosa:

Fig. 3. Adaline: Com 2 Entradas e um neurônio

Dessa forma pode-se ver que a saída da rede é de

$$\alpha = purelin(n) = purelin(Wp + b) = Wp + b$$

$$\alpha = w_{1,1}p_1 + w_{1,2}p_2 + b$$

Assim, é possível ver que a forma como a rede retorna o valor passado para a mesma impede que consiga simular comportamentos não lineares.

Temos então a região de decisão da rede:

Fig. 4. Adaline: Região de Decisão

Observando a forma da região, essa rede ADALINE pode classificar objetos em 2 categorias. Dessa forma, nem ADALINE nem o Perceptron são capazes de simular uma função não linear.

B. Regra Widrow-Hoff

O algoritmo de Widrow-Hoff segue a regra de menor erro quadrático. Dessa forma, a partir da apliccação de Widrow-Hoff, os pesos eos viés são ajustados.

A regra de Widrow-Hoff segue:

$$w_{ij} = w_{ij} + \frac{\mu \epsilon_j x_{ij}}{\sum x_k^2}$$

C. FIR e IIR

De forma a lidar com sinais, é possível utilizar filtros para melhorar a qualidade do dado final que vai ser utilizado para medição, teste ou aplicalção.

Dessa forma, existem filtros FIR e IIR. Filtros FIR são filtros de resposta finita ao impulso, isso significa que o filtro não é recursivo e que com um período na ordem de grandeza do filtro a resposta deve ser nula. Já filtros IIR são filtros recursivos e de resposta tendendo a zero num tempo infinito.

Fig. 5. Filtro FIR e IIR

III. DESCRIÇÃO EXPERIMENTAL

O experimento consistiu em adaptar parâmetros de uma rede neural ADALINE de forma a aproximar um sinal IIR por um filtro FIR.

Os parâmetros alterados foram:

• delays: Ordem do sistema FIR

 μ : Taxadeaprendizado band : BandadeNyquist, 0.01ou0.05

Para o treinamento foi utilizado um trecho do sinal gerado pela banda de Nyquist, os dados de 0 a 800. Em seguida é comparado com o sinal de 800 a 1200.

Há também o treinamento de uma rede com todos os sinais, demonstrada com a cor vermelha, é usada como parâmetro para verificar o quão bom o treinamento com menos dados pode ficar. É um limite que não é superado durante o treinamento com menos dados.

Há ainda o sinal em azul, que representa o sinal da função de transferência contínua:

$$G(s) = \frac{1}{s^2 + 0.2s + 1}$$

Esse sinal muda em t = 80s. Assim a nova função de transferência a partir desse ponto é da forma:

$$G(s) = \frac{3}{s^2 + 2s + 1}$$

IV. RESULTADOS

Os resultados foram compilados em gráficos com as devidas identificações na própria legenda do gráfico.

Os primeiros parâmetros a serem alterados foi a ordem do sistema FIR. Começando pela banda de Nyquist de 0.01, temos:

Fig. 6. Ordem 2 do sistema FIR

É possível perceber uma diferença pequena de fase entre o sinal e a rede adaptativa, em vermelho a rede criada usando todos os parâmetros do sinal.

A. Aumento da Ordem do Sistema

Fig. 7. Ordem 3 do sistema FIR

Com o aumento da ordem do sistema é possível ver mais regiões com overshoot, no entanto a diferença entre a aproximação adaptativa do sinal continuou com o mesmo comportamento, leve diferença de fase.

B. Ordem do Sistema 4

Fig. 8. Ordem 4 do sistema FIR

A partir de um sistema de ordem 4 foi analisado a mudança na taxa de aprendizado do sistema. Na figura 8 temos a taxa de 0.4 inicial do sistema. É possível ver uma boa aproximação do sistema adaptativo do sinal, excetuando pontos de overshoot do sistema adaptativo.

Fig. 9. Ordem 4 do sistema FIR: Taxa 0.05

Na figura 9 é possível ver uma grande diferença de fase entre o sinal e o modelo adaptativo, logo com uma menor taxa de aprendizado o treinamento foi menos efetivo nesse caso específico.

Fig. 10. Ordem 4 do sistema FIR: Taxa 0.005

É possível observar que com uma taxa uma ordem de grandeza abaixo tem performance inferior aos casos anteriores como na figura 8.

C. Ordens Superiores

Fig. 11. Ordem 5 do sistema FIR: Taxa 0.2

É possível ver um sistema estável, no entanto com resultado de inferior qualidade ao de ordem inferior.

Fig. 12. Ordem 5 do sistema FIR: Taxa 0.4

Na figura 12 É possível observar que com uma taxa de aprendizado maior, para um sistema de ordem superior a 4, há instabilidade.

Fig. 13. Ordem 10 do sistema FIR: Taxa 0.4

Finalmente, com a mesma taxa de aprendizado da figura 12, ao dobrar a ordem do sistema, o mesmo tem explosão exponencial, portanto, instável.

D. Banda de Nyquist 0.05

Podemos observar também o comportamento da rede ao ser utilizada com um sinal com maior variação. Portanto, foi utilizado um sinal com banda de Nyquist de 0.05.

Fig. 14. Ordem 5 do sistema FIR: Taxa 0.2

É possível perceber uma boa aproximação do sinal pela rede adaptativa.

Fig. 15. Ordem 5 do sistema FIR: Taxa 0.4

Já com o aumento da taxa de aprendizagem, o resultado é uma explosão exponencial.

Fig. 16. Ordem 4 do sistema FIR: Taxa 0.2

Finalmente, com um sistema de ordem 4, é possível ver que a aproximação do sinal pela rede adaptativa tem resultado apreciável.

V. DISCUSSÃO E CONCLUSÕES

Com essa atividade, foi possível entender melhor o funcionamento de uma rede neural do tipo ADALINE, perceber a diferença entre os diferentes parâmetros que a controla. Foi possível identificar também, em cada ponto da resposta esperada o quão longe dele a rede treinada estava. Dessa forma, concluiu-se que a rede ADALINE, diferente do perceptron, possui saída estocástica, ao invés de puramente classificatória.

REFERENCES

Haykin, S.: Neural Networks and Learning Machines, 3rd Ed., Prentice Hall, 2009

Nick McClure, TensorFlow Machine Learning CookBook, Packt, 2017