The Quadratic Sieve Factoring Algorithm

Vũ Cao Cường Nguyễn Thanh Hoàng

Đai học Bách khoa Hà Nôi

Ngày 8 tháng 1 năm 2016

Overview

- Giới thiệu bài toán
 - Phát biểu bài toán
 - Các thuật toán
 - Úng dụng
- Thuật toán Quadratic Sieve
 - Thuât toán Fermat
 - Thuật toán Quadratic Sieve

Phát biểu bài toán

Bài toán phân tích thừa số nguyên tố

- Phân tích thừa số là bài toán phân tích một hợp số ra thành tích của những số nguyên bé hơn.
- Nếu những số nguyên này là số nguyên tố thì đó là bài toán phân tích thừa số nguyên tố.
- Chưa có thuật toán hiệu quả nếu hợp số là số lớn.

Các thuật toán phân tích thừa số nguyên tố

Các thuật toán phân tích thừa số nguyên tố

Với giá trị của số N cần phân tích:

- ullet Nhỏ hơn 2^{16} : Tìm các số nguyên tố n chia hết dựa trên kiểm thử.
- ullet Nhỏ hơn 2^{70} : Richard Brent's modification of Pollard's rho algorithm.
- Nhỏ hơn 10⁵⁰: Lenstra elliptic curve factorization
- Nhỏ hơn 10¹⁰⁰: Quadratic Sieve
- Lón hơn 10¹⁰⁰: General Number Field Sieve

Ứng dụng

Bài toán RSA

- Bài toán Phân tích ra thừa số nguyên tố các số nguyên lớn là vấn đề toán học của độ an toàn hệ thống RSA.
- Nếu kẻ tấn công tìm được 2 số nguyên tố p và q sao cho: n = pq, kẻ tấn công sẽ tìm ra số mũ bí mật d từ khóa công khai và có thể giải mã theo đúng quy trình của thuật toán.

Định lí Fermat

Dinh lí Fermat

- Cho một số nguyên n, Định lí Fermat tìm số nguyên x và y thoả mãn: $n=x^2-y^2$ hay n=(x+y)(x-y)
- Tính p = gcd(x + y, n) và q = gcd(x y, n)
- n = pq là cách phân tích số nguyên n ra thừa số.

How it Works

- Fermat's method hoạt động tốt với trường hợp nhân tử có giá trị gần \sqrt{N} .
- Hạn chế của sử dụng Fermat's method: Độ phức tạp tính toán là lớn đối với số nguyên lớn $(O(N^{1/3}))$.

How it Works

Xét

$$Q(x) = (x + \lceil \sqrt{n} \rceil)^2 - n = X^2$$

- Tính toán $Q(x_1), Q(x_2), \ldots, Q(x_k)$ với $Q(x_i)$ khi phân tích ra các số nguyên tố thì chỉ chứa các số nguyên tố trong vector cơ sở.
- Chọn một tập con r phần tử $Q(x_{i1}), Q(x_{i2}), \ldots, Q(x_{ir})$ sao cho

$$Q(x_{i1})Q(x_{i2})\dots Q(x_{ir})=y^2$$

bằng phương pháp khử Gauss.

How it Works

• Từ r phần tử $Q(x_{i1}), Q(x_{i2}), \ldots, Q(x_{ir})$, ta có

$$Q(x_{i1})Q(x_{i2})...Q(x_{ir}) = Y^2$$

trong đó
$$X^2 - Y^2 = n$$

Từ X và Y, tính p và q theo Fermat's method.

How it Works

• Với k=B+10, với B là số lượng số nguyên tố trong vector cơ sở, xác suất để tìm được tập con r phần tử thỏa mãn $Q(x_{i1})Q(x_{i2})\dots Q(x_{ir})=y^2$ là $\frac{1023}{1024}$

The End