Нахождения уравнения изгиба балки

Докладчик: Пиневич В. Г.

Научный руководитель: Чередниченко А. В.

группа ФН2-41Б

15 июня 2022 г.

Условия равновесия

Состояния равновесия

$$\begin{cases} \sum F_z = 0 \\ \sum M_z = 0 \end{cases} \Leftrightarrow \begin{cases} Q + qdz - Q - Qdz = 0 \\ M + Qdz + qdz\frac{dz}{z} - M - dM = 0 \end{cases}$$

Получаем итоговые условия равновесия

$$\begin{cases} \frac{dQ}{dz} = q \\ \frac{dM}{dz} = Q \end{cases}$$

Равно распределенная нагрузка

Чистый изгиб

Условия чистого изгиба

Только изгибающие моменты, Q=0, M=const

Сечение балки

Деформация сечения

Рассмотрим деформацию как поворот плоских поперечных сечений относительно друг друга. Слой который не изменится при изгибе — нейтральный.

Кривизна нейтрального слоя

$$\frac{1}{\rho} = \frac{d\theta}{dz}$$

Относительное удлинение и напряженность

Случайный отрезок AB=dz получит приращение A'B'-AB. С учетом того, что сечение остается плоским, $A'B'-AB=(\rho+y)d\theta-\rho d\theta=yd\theta,$ где y— расстояние от AB до CD.

Относительное удлинение АВ

$$\varepsilon = \frac{yd\theta}{dz} = \frac{y}{\rho}$$

Напряженность

$$\sigma = \mathsf{E}\varepsilon = \mathsf{E}\frac{\mathsf{y}}{\rho}$$

Изгибающий момент

Изгибающий момент в поперечном сечении стержня может быть выражен через напряжения σ .

Момент сил σdF относительно оси v равен нулю, а относительно x – полному изгибающему моменту M.

Изгибающий момент $M_{ m v}$

$$M_{y} = \int_{F} \sigma x dF = \frac{E}{\rho} \int_{F} y x dF = 0$$

Изгибающий момент $M_{\scriptscriptstyle X}$

$$M_y = \int_F \sigma x dF = \frac{E}{\rho} \int_F y x dF = 0$$
 $M_x = \int_F \sigma y dF = \frac{E}{\rho} \int_F \sigma y^2 dF = M$

Зависимость кривизны стержня от изгибающего момента

$$\frac{1}{\rho} = \frac{M}{EJ_2}$$

Дифференциальное уравнение равновесия стержня

Форма изогнутого стержня

$$\frac{1}{\rho} = \frac{y''}{(1+y'^2)^{\frac{3}{2}}} \approx y''$$

Дифференциальное уравнение балки

$$y'' = \frac{M}{EJ_x}$$

Угол поворота

$$\theta = y'$$

Момент

$$M = EJ_{x}y''$$

Точечная сила

$$Q = EJ_{x}y'''$$

Распр. нагрузка

$$q_y = E J_x y^{IV}$$

Метод начальных коэффициентов

Представим полученные выражения в виде системы. Учитывая граничные условия, решаем ее, получаем уравнение прогиба стержня y(z).

$$\begin{cases} \frac{dQ}{dz} - q_y(z) = 0\\ \frac{dM}{dz} - Q = 0\\ \frac{d\theta}{dz} - \frac{M}{EJ_x(z)} = 0\\ \frac{dy}{dz} - \theta = 0 \end{cases}$$

Метод обобщенных коэффициентов

Функция Дирака

$$\int_{-\infty}^{z} \delta(z-a)\varphi(z)dz = \begin{cases} \infty, z=a\\ 0, z \neq a \end{cases}$$

Возможное представление функции Дирака

Метод обобщенных коэффициентов

Функция Хевисайда

$$H(z-a) = \begin{cases} 0, z < a \\ 1, z \geqslant a \end{cases}$$

Единичная функция Хевисайда

Метод обобщенных коэффициентов

Связь функций Дирака и Хевисайда

$$\int_{-\infty}^{z} \delta(z-a)dz = H(z)$$

Интегрирование функции Дирака

$$\int_0^z f(z)\delta(z-a)dz = f(a)H(z-a)$$

Интегрирование функции Хевисайда

$$\int_0^z f(z)H(z-a)dz = H(z-a)\int_a^z f(z)dz$$

Интегрирование функции Хевисайда

Интеграл функции Хевисайда

Повторный интеграл функции Хевисайда

Балка в заделке

Задача. Составить уравнение упругой линии в заделке, нагруженной на конце сосредоточенной силой P=1 H. $E_{AI}=70$ ГПа, $J_{\rm x}=\frac{lh^3}{12}$ кг · м 2 , h=0.01 м, I=1 м.

Решение методом начальных коэффициентов

Граничное условие

$$y=0$$
; $\theta=0$, при $z=0$

- 1 Найдем момент $M = \int\limits_{z}^{l} P dz = P(l-z)$
- 2 Далее ищем угол наклона сечения θ :

$$\theta = \frac{P}{EJ_x} \int_{z}^{1} (1-z)dz = \frac{P}{EJ_x} (\frac{z^2}{2} - lz + c_1)$$

3 Получаем уравнение изгиба балки:

$$y = \frac{P}{EJ_x} \int_{z}^{1} (\frac{z^2}{2} - Iz + c_1) dz = \frac{P}{EJ_x} (\frac{z^3}{6} - \frac{z^2I}{2} + c_1z + c_2)$$

Решение методом начальных коэффициентов

Найдем c_1 и c_2 . Из граничных условий следует, что $c_1=0$, поскольку y(0)=0, а $c_2=0$, так как $\theta(0)=0$.

Итоговое уравнение

$$y = \frac{P}{EJ_x} (\frac{z^3}{6} - \frac{z^2I}{2})$$

Граничное условие

$$y = 0$$
; $\theta = 0$, при $z = 0$

- f 0 С помощью ф-ии Дирака запишем: $EJ_xy^{IV}=P\delta(z)$

- 4 Найдем угол поворота балки:

$$EJ_{x}y' = P\int_{I}^{z} PH(z)(z-I)dz = PH(z)(\frac{z^{2}}{2}-Iz) + c_{1}$$

5 Получаем уравнение гибкого изгиба балки:

$$y = \frac{P}{EJ_x}(\frac{z^3}{6} - \frac{z^2I}{2})H(z) + c_1z + c_2$$

Из граничных условий получаем: $c_1=0, c_2=0$. Учитывая, что H(z)=1, при $z\leqslant l$, получаем ответ.

Итоговое уравнение

$$y = \frac{P}{EJ_x} \left(\frac{z^3}{6} - \frac{z^2I}{2}\right)$$

Таким образом, графики двух методов совпали.

Двух опорная балка

Задача. Двух опорный стержень длинной I нагружен силой P=1 H, расположен на расстоянии а от левой опоры (рис. $\ref{eq:condition}$). Составить уравнение упругой линии.

Составить уравнение упругой линии.
$$E_{AI}=70$$
 ГПа, $J_{\rm x}=\frac{lh^3}{12}$ кг \cdot м 2 , $h=0.01$ м, $I=1$ м.

Решение методом начальных коэффициентов

Граничное условие

$$\left\{ egin{aligned} y_1 &= 0, \; ext{при} \; z &= 0 \ y_2 &= 0, \; ext{при} \; z &= I \ y_1 &= y_2, \; ext{при} \; z &= a \end{aligned}
ight.$$

Разобьем стержень на 2 части: до точки приложения P и после.

- **1** Сила $Q_1 = \frac{Pb}{L}$.
- **2** Найдем момент $M_1 = \frac{b}{l} \int\limits_{0}^{z} P dz = Pz + c_0^1$. Параметр $c_0^1 = 0$, так как момент равен нулю
- \odot Найдем угол поворота θ_1 :

$$\theta_1 = \frac{b}{l} \frac{P}{EJ_x} \int_{0}^{z} Pz dz = \frac{b}{l} \frac{P}{EJ_x} \left(\frac{b}{l} \frac{z^2}{2} + c_1^1 \right)$$

Получаем первое уравнение изгиба балки y_1 :

$$y_1 = \frac{b}{l} \frac{P}{EJ_x} \int_0^z (\frac{z^2}{2} + \theta_1) dz = \frac{b}{l} \frac{P}{EJ_x} (\frac{z^3}{6} + c_1^1 z + c_2^1)$$

Параметр $c_2^1=0$, так как концах стержень неподвижен по оси y .

Рассмотрим вторую часть стержня.

- **1** Сила $Q_2 = \frac{Pa}{I}$.
- **2** Найдем момент $M_2 = \frac{a}{l} \int_{l}^{z} P dz = -P(z+l)$
- $oldsymbol{3}$ Найдем угол поворота $heta_2$:

$$\theta_2 = -\frac{a}{l} \frac{P}{EJ_x} \int_{l}^{z} P(z+l) dz = -\frac{a}{l} \frac{P}{EJ_x} (\frac{z^2}{2} + zl - c_1^2)$$

 $oldsymbol{4}$ Получаем второе уравнение изгиба балки y_2 :

$$y_2 = -\frac{a}{l} \frac{P}{EJ_x} \int_{1}^{z} \left(\frac{z^2}{2} + zl - c_1^2\right) dz = -\frac{a}{l} \frac{P}{EJ_x} \left(\frac{z^3}{6} + \frac{z^2l}{2} - c_1^2z + c_2^2\right)$$

Из граничных условий получаем:

$$\begin{cases} c_2^1 = 0 \\ c_2^2 = a^3 \frac{1}{6} \end{cases}$$

$$\begin{cases} y_1 = y_2 \\ y_1' = y_2' \end{cases}$$

Решаем систему, подставляем параметры в уравнение y_1 и y_2 .

<u>Итог</u>овые уравнения

$$y(z) = egin{cases} y_1 = rac{P}{6EJ_x}rac{b}{l}(z^3 - rac{2}{3}zl(2l - rac{2}{3}l)), \ ext{при } 0 \leqslant z \leqslant a \ y_2 = rac{P}{6EJ_x}rac{a}{l}(-z^3 + 3z^2l - z(2l^2 + rac{4}{9}l^2) + rac{4}{9}l^4), \ ext{иначе} \end{cases}$$

Решение методом начальных коэффициентов

Пусть $a=\frac{2I}{3}, b=\frac{I}{3},$ тогда уравнение изгиба балки будет иметь следующий график

Граничное условие

$$\left\{ egin{aligned} y = 0, M = 0, & \text{при } z = 0 \ y = 0, M = 0, & \text{при } z = I. \end{aligned}
ight.$$

- f 0 С помощью ф-ии Дирака запишем: $EJ_x y^{IV} = P\delta(z)$
- \bigcirc Интегрируем: $EJ_{\times}y'''=PH(z)$
- 4 Найдем угол поворота балки:

$$y = \frac{P}{EJ_x}(\frac{z^3}{6} - \frac{z^2I}{2})H(z) + c_1z + c_2$$

б Получаем уравнение гибкого изгиба балки:

$$y = \frac{P}{EJ_x}(\frac{z^3}{6} - \frac{z^2I}{2})H(z) + c_1z + c_2$$

Из граничных условий

$$c_2 = 0, c_1 = \frac{PI(3a^2z^2 - 3alz + I^2)}{6a^3EJ_x}.$$

Кроме того, H(z) = 1, при $z \leqslant I$.

Итоговое уравнение

$$y = \frac{P}{EJ_x} \left(-\frac{z^3}{6} \frac{1}{a} + \frac{\left(z - \frac{l}{a}\right)^3}{6} H\left(z - \frac{l}{a}\right) + \frac{l(3a^2z^2 - 3alz + l^2)}{6a^3} \right)$$

Пусть $a=\frac{2l}{3}, b=\frac{l}{3},$ тогда уравнение изгиба балки будет иметь следующий график

Таким образом, графики двух методов совпали.

Результаты

В ходе работы получены следующие результаты

- ① Изучены методы начальных коэффициентов и обобщенных функций нахождения уравнения упругого изгиба стержня.
- Решены 2 типа задач с помощью этих методов, их результат оказался идентичны.
- Метод начальных коэффициентов является более трудоемким и менее удобным по сравнению с методом обобщенных функций, поскольку требует учета большего количества граничных условий, больший объем вычислений.