Задача А. Декартово дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Как известно, двоичное дерево поиска—это корневое двоичное дерево, в каждой вершине v которого записано число x_v , и для любой вершины v выполнено следующее условие: в любой вершине u левого поддерева v число $x_u < x_v$, а в любой вершине u правого поддерева v число $x_v > x_v$.

Двоичное дерево поиска называется geкapmовым gepeвom, если в каждой вершине v записано ещё одно число y_v , и для любой вершины v выполнено следующее условие: в любой вершине u каждого поддерева v число $y_u > y_v$. Другими словами, дерево с числами y_v является двоичной кучей с минимумом.

Дерево называется декартовым, потому что эти свойства наглядны при рассмотрении точек на плоскости с декартовой системой координат. А именно: если нарисовать вершины с координатами (x_v,y_v) на плоскости, всё левое поддерево вершины v расположено слева от v, всё правое поддерево вершины v расположено справа от v, и каждое поддерево v расположено сверху от v.

Вам даны пары чисел (x_i, y_i) , причём все x_i различны, и все y_i также различны. Постройте декартово дерево, в вершинах которого записаны эти пары, или выясните, что это невозможно.

Формат входных данных

В первой строке записано число n — количество пар $(1\leqslant n\leqslant 50\,000)$. Каждая из следующих n строк содержит одну пару чисел: x_i и y_i . Для всех пар $|x_i|,|y_i|\leqslant 30\,000$. Гарантируется, что $x_i\neq x_j$ и $y_i\neq y_j$ для всех $i\neq j$.

Формат выходных данных

Если декартово дерево с таким набором пар построить возможно, выведите в первой строке «YES», в противном случае выведите «NO».

В случае ответа «YES» выведите ещё n строк: i-я строка должна описывать вершину i. Вершины пронумерованы числами от 1 до n, в вершине i записана пара чисел (x_i, y_i) .

Описание вершины состоит из трёх чисел: номер предка, номер левого сына и номер правого сына. Если у вершины отсутствует предок или какой-либо из сыновей, то выводите на его месте число 0.

Если подходящих деревьев несколько, выведите любое.

	стандартный ввод	стандартный вывод
7		YES
5	4	2 3 6
2	2	0 5 1
3	9	1 0 7
0	5	5 0 0
1	3	2 4 0
6	6	1 0 0
4	11	3 0 0

Задача В. Вставка ключевых значений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Вас наняла на работу компания MacroHard, чтобы вы разработали новую структуру данных для хранения целых ключевых значений.

Эта структура выглядит как массив A бесконечной длины, ячейки которого нумеруются с единицы. Изначально все ячейки пусты. Единственная операция, которую необходимо поддерживать — это операция $\operatorname{Insert}(L,K)$, где L — положение в массиве, а K — некоторое положительное целое ключевое значение.

Операция выполняется следующим образом:

- ullet Если ячейка A[L] пуста, то присвоить A[L] := K.
- Если ячейка A[L] непуста, выполнить ${\rm Insert}(L+1,A[L])$, а затем присвоить A[L]:=K.

По заданной последовательности из N целых чисел L_1, L_2, \dots, L_N вам необходимо вывести содержимое этого массива после выполнения следующей последовательности операций:

Insert $(L_1, 1)$ Insert $(L_2, 2)$... Insert (L_N, N)

Формат входных данных

В первой строке содержатся N — число операций Insert — и M — максимальный номер позиции, которую можно использовать в операции Insert (1 $\leq N \leq$ 131 072, 1 $\leq M \leq$ 131 072).

В следующей строке даны N целых чисел L_i , которые описывают операции Insert $(1\leqslant L_i\leqslant M)$.

Формат выходных данных

Выведите содержимое массива после выполнения данной последовательности операций Insert. В первой строке выведите W — номер последней несвободной позиции в массиве. Далее выведите W целых чисел: $A[1], A[2], \ldots, A[W]$. Для пустых ячеек выводите нули.

стандартный ввод	стандартный вывод
5 4	6
3 3 4 1 3	4 0 5 2 3 1

Задача С. Жадность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 6 секунд Ограничение по памяти: 512 мебибайт

В этой задаче вам предстоит решить хорошо известную задачу о рюкзаке. К сожалению, это будет не NP-трудная версия задачи, а более простая модификация.

Дано n предметов в фиксированном порядке, i-й имеет вес s_i и стоимость c_i . Также есть q различных рюкзаков, в i-й из которых помещаются предметы суммарным весом w_i . Вы заполняете рюкзак, жадным образом помещая в него предметы по одному (помните, что порядок предметов фиксирован и важен). Это значит, что вы никогда не вынимаете предметы и всегда помещаете их в рюкзак, если возможно, то есть если суммарный вес предметов в рюкзаке после этой операции не превысит его вместимости. Вы всегда пытаетесь поместить в рюкзак каждый из n предметов по порядку независимо от того, получилось ли поместить в него все предыдущие предметы.

Каждый из рюкзаков нужно заполнить по данному алгоритму и вывести суммарную стоимость предметов, которые в него попали. Все рюкзаки заполняются независимо, то есть каждый рюкзак заполняется всеми предметами независимо от того, были ли эти предметы использованы для других рюкзаков.

Формат входных данных

В первой строке записано целое число n- количество предметов ($1 \le n \le 10^4$).

Во второй строке записано n целых чисел s_1 , s_2 , ..., s_n — веса предметов $(1 \le s_i \le 10^{13})$.

В третьей строке записано n целых чисел c_1 , c_2 , ..., c_n — стоимости предметов ($1 \le c_i \le 10^4$).

В четвёртой строке записано целое число q — количество рюкзаков, которые нужно попробовать заполнить ($1 \le q \le 10^6$).

В пятой строке записаны q целых чисел w_1 , w_2 , ..., w_q — вместительности рюкзаков $(1 \leqslant w_i \leqslant 10^{18})$.

Формат выходных данных

Выведите q целых чисел — суммарную стоимость поместившихся вещей для каждого рюкзака.

стандартный ввод	стандартный вывод
5	7
5 3 2 4 1	3
1 2 3 4 5	15
3	
4 8 100	

Задача D. K-й максимум

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум, то есть элемент, который бы оказался на k-м месте, если бы все элементы выписали в порядке убывания.

Формат входных данных

Первая строка входных данных содержит натуральное число n — количество команд ($2 \le n \le 100\,000$). Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно ($|k_i| \le 10^9$). Возможные типы команд таковы:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума он существует.

Формат выходных данных

Для каждой команды нулевого типа выведите строку, содержащую одно число — k_i -й максимум.

стандартный ввод	стандартный вывод
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача Е. Вперёд!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Капрал Дукар любит раздавать приказы своей роте. Самый любимый его приказ — «Вперёд!». Капрал строит солдат в ряд и отдаёт некоторое количество приказов, каждый из них звучит так: «Рядовые с ℓ_i по r_i — вперёд!»

Перед тем, как Дукар отдал первый приказ, солдаты были пронумерованы слева направо целыми числами от 1 до n. Услышав приказ «Рядовые с ℓ_i по r_i — вперёд!», солдаты, стоящие на местах с ℓ_i по r_i включительно, продвигаются в начало ряда в том же порядке, в котором были.

Например, если в какой-то момент солдаты стоят в порядке 1,3,6,2,5,4, то после приказа «Рядовые с 2 по 3 — вперёд!», порядок будет таким: 3,6,1,2,5,4. А если потом Капрал вышлет вперёд солдат с 3 по 4, то порядок будет уже таким: 1,2,3,6,5,4.

Вам дана последовательность приказов Капрала. Найдите порядок, в котором будут стоять солдаты после исполнения всех приказов.

Формат входных данных

В первой строке входных данных указаны числа n и m — число солдат и число приказов ($2\leqslant n\leqslant 100\,000$, $1\leqslant m\leqslant 100\,000$). Следующие m строк содержат приказы в виде двух целых чисел: ℓ_i и r_i ($1\leqslant \ell_i\leqslant r_i\leqslant n$).

Формат выходных данных

Выведите n целых чисел — порядок, в котором будут стоять солдаты после исполнения всех приказов.

стандартный ввод	стандартный вывод
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача F. Художник

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Итальянский художник-абстракционист Ф. Мандарино увлёкся рисованием одномерных чёрно-белых картин. Он пытается найти оптимальное местоположение и количество чёрных участков картины. Для этого он проводит на прямой белые и чёрные отрезки, и после каждой из таких операций хочет знать количество чёрных отрезков на получившейся картине и их суммарную длину.

Изначально прямая — белая. Ваша задача — написать программу, которая после каждой из таких операций выводит интересующие художника данные.

Формат входных данных

В первой строке входных данных содержится общее количество нарисованных отрезков ($1\leqslant N\leqslant 100\,000$). В последующих N строках содержится описание операций. Каждая операция описывается строкой вида c x ℓ , где c — цвет отрезка (W для белых отрезков, P для чёрных), P а сам отрезок имеет вид P причём координаты обоих концов — целые числа, не превосходящие по модулю P 500 000. Длина задаётся положительным целым числом.

Формат выходных данных

После выполнения каждой из операций необходимо вывести в отдельной строке количество чёрных отрезков на картине и их суммарную длину, разделив эти числа одним пробелом.

٠,	phmcp					
ſ		стандартный ввод			стандартный	вывод
ĺ	7		0	0		
	W 2	2 3	1	2		
	В 2	2 2	1	4		
	В 4	1 2	1	4		
	в 3	3 2	2	6		
	в	7 2	3	5		
	W 3	3 1	0	0		
	W C	0 10				

Задача G. Переворачивания

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 512 мебибайт

Учитель физкультуры школы с углублённым изучением предметов уже давно научился считать суммарный рост всех учеников, находящихся в ряду на позициях от ℓ до r. Но дети сыграли с ним злую шутку. В некоторый момент дети на позициях с ℓ по r меняются местами. Учитель заметил, что у детей не очень богатая фантазия, поэтому они всегда «переворачивают» этот отрезок, то есть ℓ меняется с r, $\ell+1$ меняется с r-1 и так далее. Учитель решил не ругать детей за их хулиганство, а всё равно посчитать суммарный рост на всех запланированных отрезках. Помогите ему это сделать.

Формат входных данных

В первой строке записано два числа n и m ($1 \leqslant n, m \leqslant 200\,000$) — количество детей в ряду и количество событий, произошедших за всё время. Во второй строке задано n натуральных чисел — рост каждого школьника в порядке следования в ряду. Рост детей не превосходит $2\cdot 10^5$. Далее в m строках задано описание событий: три числа q, ℓ , r в каждой строке ($0 \leqslant q \leqslant 1$, $1 \leqslant \ell \leqslant r \leqslant n$). Число q показывает тип события: 0 показывает необходимость посчитать и вывести суммарный рост школьников на отрезке $[\ell,r]$; 1 показывает то, что дети на отрезке $[\ell,r]$ «перевернули» свой отрезок. Все числа во входных данных целые.

Формат выходных данных

Для каждого события типа 0 выведите единственное число на отдельной строке — ответ на этот запрос.

Pri.	Sumeh				
		стандартный ввод	стандартный вывод		
5	6		15		
1	2	3 4 5	9		
0	1	5	8		
0	2	4	7		
1	2	4	10		
0	1	3			
0	4	5			
0	3	5			

Задача Н. Переворачивание дуг

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Задана изначальная строка, а также последовательность операций: переворачивание частей строки. Какая строка получится после всех операций?

Важное дополнение: строка записана на ленте, склеенной в виде кольца — так, что после последней буквы строки следует первая. Позиции на ленте пронумерованы подряд целыми числами от 1 до n, где n—длина строки. Изначальная строка записана от позиции 1 до позиции n.

Каждая операция — переворачивание дуги. Операция задаётся двумя позициями: ℓ и r. На кольце выделяется дуга, состоящая из идущих подряд позиций от ℓ до r: ℓ , $\ell+1$, ..., r-1, r (если $\ell>r$, дуга содержит последнюю и первую позиции). Все буквы на этой дуге переставляются в обратном порядке: первая буква на дуге меняется местами с последней, вторая — с предпоследней, и так далее.

Например, пусть n=5, и изначальная строка равна «acros». После операции с параметрами $\ell=1$ и r=4 перевернётся дуга, состоящая из позиций 1,2,3,4, и строка «acros» превратится в «orcas». После следующей операции с параметрами $\ell=5$ и r=2 перевернётся дуга, состоящая из позиций 5,1,2, и строка «orcas» превратится в «oscar».

Формат входных данных

В первой строке заданы два целых числа n и q: длина строки и количество операций ($1\leqslant n,q\leqslant 200\,000$). Во второй строке задана сама строка, состоящая из n маленьких английских букв. Каждая из следующих q строк содержит параметры очередной операции: два целых числа ℓ и r ($1\leqslant \ell,r\leqslant n$).

Формат выходных данных

Выведите строку, которая получится после всех операций.

стандартный ввод	стандартный вывод	пояснение
5 2	oscar	1,2,3,4:
acros		1234> 4321.
1 4		acros -> orcas
5 2		
		5,1,2:
		125 -> 152
		orcas -> oscar
6.2	erupts	3,4,5,6,1,2:
purest	Clupes	123456 -> 432165
3 2		purest -> erupts
1 1		purest -> erupts
1 1		1:
		1> 1
		erupts -> erupts

Задача І. И снова сумма...

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 512 мебибайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, к которому поступают следующие запросы:

- add (i) добавить в множество S число i (если оно там уже есть, то множество не меняется);
- sum (ℓ , r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $\ell \leqslant x \leqslant r$.

Формат входных данных

Исходно множество S пусто. Первая строка входных данных содержит целое число n — количество операций ($1\leqslant n\leqslant 300\,000$). Следующие n строк содержат операции. Каждая операция выглядит либо как «+ i», либо как «? ℓ r».

Операция «? ℓ r» задаёт запрос «sum (ℓ, r) ».

Если операция «+ i» находится в начале входных данных или следует непосредственно после другой операции «+», то она задаёт запрос «add (i)». Если же она следует непосредственно после запроса «?», и результат этого запроса был y, то выполняется операция «add (v)», где $v=(i+y) \bmod 10^9$.

Во всех операциях параметры лежат в интервале от 0 до 10^9 включительно.

Формат выходных данных

Для каждого запроса выведите одно число – ответ на запрос.

стандартный ввод	стандартный вывод
5	3
+ 1	7
+ 3	
+ 3	
2 4	
+ 1	
2 2 4	

Задача Ј. Своппер

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Современные компьютеры зацикливаются в десятки раз эффективнее человека

Рекламный проспект OS Vista-N

Перед возвращением в штаб-квартиру корпорации Аазу и Скиву пришлось заполнить на местной таможне декларацию о доходах за время визита. Получилась довольно внушительная последовательность чисел. Обработка этой последовательности заняла весьма долгое время.

- Своппер кривой, со знанием дела сказал таможенник.
- А что такое своппер? спросил любопытный Скив.

Ааз объяснил, что своппер — это структура данных, которая умеет делать следующее.

- Взять отрезок чётной длины от x до y и поменять местами число x с x+1, x+2 с x+3, и т. д.
- Посчитать сумму чисел на произвольном отрезке от a до b.

Учитывая, что обсчёт может затянуться надолго, корпорация «МИ Φ » попросила вас решить проблему со своппером и промоделировать ЭТО эффективно.

Формат входных данных

Во входных данных заданы один или несколько тестовых случаев. В первой строке каждого тестового случая записаны число N — длина последовательности и число M — число операций ($1 \leqslant N, M \leqslant 100\,000$). Во второй строке тестового случая содержится N целых чисел, не превосходящих 10^6 по модулю — сама последовательность. Далее следуют M строк — запросы в формате 1 x_i y_i (запрос первого типа) или 2 a_i b_i (запрос второго типа). Сумма всех N и M по всем входным данным не превосходит $200\,000$. Входные данные завершаются строкой из двух нулей. Гарантируется, что $x_i < y_i$, а $a_i \leqslant b_i$.

Формат выходных данных

Для каждого тестового случая выведите ответы на запросы второго типа, как показано в примере. Разделяйте ответы на тестовые случаи пустой строкой.

	стандартный ввод	стандартный вывод
5	5	Swapper 1:
1	2 3 4 5	10
1	2 5	9
2	2 4	2
1	1 4	
2	1 3	
2	4 4	
0	0	