BAYESIAN ESTIMATION

EVALUATING THE POSTERIOR

Tools for Macroeconomists: The essentials

Petr Sedláček

STARTING POINT

Aim is to be able to calculate something like

$$\mathbb{E}[g(\Psi)] = \frac{\int g(\Psi)P(\Psi|\mathcal{Y}^T)d\Psi}{\int P(\Psi|\mathcal{Y}^T)d\Psi}$$

- · we know how to calculate $P(\Psi|\mathcal{Y}^T)$
- · but we cannot draw from it
- the system is too large for numerical integration

PRINCIPLE OF POSTERIOR EVALUATION

We cannot draw from the "target" distribution, but

- 1. can draw from a different, "stand-in", distribution
- 2. can evaluate both stand-in and target distributions
- · 3. comparing the two, we can re-weigh the draw "cleverly"

PRINCIPLE OF POSTERIOR EVALUATION

- the above procedure is the idea of "importance sampling"
- MCMC methods effectively a version of importance sampling
 - $\boldsymbol{\cdot}$ traveling through the parameter space is more sophisticated
 - and or acceptance probability more sophisticated

A FEW EXAMPLES

A FEW SIMPLE EXAMPLES

Problem:

- we want to simulate x
- · x comes from truncated normal with
 - mean μ and variance σ^2
 - and a < x < b

Solution:

- 1. draw y from $N(\mu, \sigma^2)$
- 2a. if $y \in (a, b)$ then keep draw (accept) and go back to 1
- · 2b. otherwise discard draw (reject) and go back to 1

A FEW SIMPLE EXAMPLES

Problem:

- want to draw x from F(x), but we cannot
- we can sample from H(x) and $f(x) \le ch(x) \ \forall x$

Solution:

- 1. sample y from H(y)
- 2. accept draw with probability $\frac{f(y)}{ch(y)}$ and go back to 1

Note:

- · acceptance rate higher for lower c
- optimal c is $c = \sup_{x} \frac{f(x)}{h(x)}$
- Metropolis-Hastings sampler (MCMC) is a generalization

IMPORTANCE SAMPLING

Main idea very similar to the previous example:

- · cannot draw from $P(\Psi|\mathcal{Y}^T)$
- but can draw from $H(\Psi)$
- \cdot be smart in reweighing (accepting) the draws

$$\mathbb{E}[g(\Psi)] = \frac{\int g(\Psi)P(\Psi|\mathcal{Y}^T)d\Psi}{\int P(\Psi|\mathcal{Y}^T)d\Psi}$$

$$= \frac{\int g(\Psi)P(\Psi|\mathcal{Y}^T)\frac{h(\Psi)}{h(\Psi)}d\Psi}{\int P(\Psi|\mathcal{Y}^T)\frac{h(\Psi)}{h(\Psi)}d\Psi}$$

$$= \frac{\int g(\Psi)\omega(\Psi)h(\Psi)d\Psi}{\int \omega(\Psi)h(\Psi)d\Psi}$$

Approximate the integral using MC integration:

$$\mathbb{E}[g(\mathbf{\Psi})] \approx \frac{\sum_{m=1}^{M} \omega(\mathbf{\Psi}^{(m)}) g(\mathbf{\Psi}^{(m)})}{\sum_{m=1}^{M} \omega(\mathbf{\Psi}^{(m)})}$$

• M is the number of draws from importance function $h(\Psi)$

How to best choose h(.)?

- we'd like h(.) to have fatter tails compared to f(.)
- normal distribution has rather thin tails
- $\cdot \to$ often not a good importance function

MARKOV CHAIN MONTE CARLO

SOME PRELIMINARIES FOR MCMC

Markov property:

• if for all $k \ge 1$ and all $t P(x_{t+1}|x_t, x_{t-1}, ..., x_{t-k}) = P(x_{t+1}|x_t)$

Transition kernel:

- $\mathcal{K}(x,y) = P(x_{t+1} = y | x_t = x)$ for $x, y \in \mathcal{X}$
- \cdot \mathcal{X} is the sample space

MAIN IDEA BEHIND MCMC METHODS

- as before, we'd like to sample from $P(\Psi|\mathcal{Y}^T)$, but we cannot
- MCMC methods provide a way to
 - · create a Markov chain transition kernel (K) for Ψ
 - · that has an invariant density $P(\Psi|\mathcal{Y}^T)$
 - why is this useful?
 - · starting with some initial values $P(\Psi_0)$
 - simulate the Markov chain $P' = \mathcal{K}P$
 - · (eventually) distribution of Markov chain $ightarrow P(\Psi|\mathcal{Y}^T)$

MAIN IDEA BEHIND MCMC METHODS

Ways of constructing such kernels

- Gibbs sampling
 - special case, more often in empirical work
- Metropolis (-Hastings) algorithm
 - · we'll talk about this in detail

GIBBS ALGORITHM

GIBBS ALGORITHM

Special case: can sample from conditional distributions

- · instead of draws of Ψ from $P(\Psi|\mathcal{Y}^T)$
- portion Ψ into k blocks
- sample each from $P(\Psi^{j}|\mathcal{Y}^{T}, \Psi^{-j})$ for j = 1, ..., k
- iterate until convergence

GIBBS SAMPLING

Iterations (k = 2):

- · initiate sample with Ψ_0
- then iterate according to:

$$\Psi_{i+1}^1 \sim P(\Psi^1 | \mathcal{Y}^T, \Psi_i^2)$$

$$\Psi_{i+1}^2 \sim P(\Psi^2 | \mathcal{Y}^T, \Psi_i^1)$$

- can prove that the above converges to $P(\Psi|\mathcal{Y}^T)$
- · discard first B number of draws to eliminate influence of Ψ_0

GIBBS SAMPLING

- · once Markov chain has converged
- proceed as if we could sample directly:

$$\mathbb{E}[g(\mathbf{\Psi})] = \frac{1}{m} \sum_{i=1}^{m} g(\mathbf{\Psi}_i)$$

certain caveats, such as serial correlation of draws

METROPOLIS-HASTINGS ALGORITHM

METROPOLIS-HASTINGS ALGORITHM

Main idea same as with importance sampling:

- 1. draw from a stand-in distribution $h(\Psi; \theta)$
 - \cdot θ explicitly shows parameters of stand-in distribution
 - · e.g. mean (μ_h) and variance (σ_h^2)
- 2. accept/reject based on probability $q(\Psi_{i+1}|\Psi_i)$
- 3. go back to 1
 - · 3a. stand-in density does not change (indpendent MH)
 - 3b. mean of stand-in adjusts (random walk MH)
- · can show convergence to target distribution

ACCEPTANCE PROBABILITY

"Metropolis"

$$q(\Psi_{i+1}|\Psi_i) = \min \left[1, \frac{P(\Psi_{i+1}^*|\mathcal{Y}^T)}{P(\Psi_i|\mathcal{Y}^T)}\right]$$

- Ψ_{i+1}^* is the new candidate draw from stand-in distribution
- · if $P(\Psi_{i+1}^*|\mathcal{Y}^T)$ high relative to $P(\Psi_i|\mathcal{Y}^T)$
- $\cdot \, o$ accept candidate draw with certainty

ACCEPTANCE PROBABILITY

"Metropolis-Hastings"

$$q(\Psi_{i+1}|\Psi_i) = \min \left[1, \frac{P(\Psi_{i+1}^*|\mathcal{Y}^T)}{P(\Psi_i|\mathcal{Y}^T)} \frac{h(\Psi_i;\theta)}{h(\Psi_{i+1}^*;\theta)} \right]$$

- · scale down by relative likelihood in stand-in density
 - a more "common" draw from the stand-in gets less "weight"
 - $\cdot \to q(\Psi_{i+1}|\Psi_i)$ is lowered
 - force algorithm to explore less likely areas of the state-space

UPDATING THE STAND-IN DENSITY

"Independence chain variant"

- stand-in distribution does not change
- · it is independent across Monte Carlo replications
- this is also the case in importance-sampling

UPDATING THE STAND-IN DENSITY

"Random walk variant"

- candidate draws are obtained according to $\Psi_{i+1}^* = \Psi_i + \epsilon_{i+1}$
- \cdot ϵ_i from a symmetric density around 0 and variance σ_h^2
 - · mean of the stand-in density adjusts with each accepted draw
 - in θ , $\mu_h = \Psi_i$

SUMMARY OF MCMC WITH MH ALGORITHM

- 1. maximize posterior $P(\Psi|\mathcal{Y}^T)$
 - \cdot this yields the posterior mode $\widehat{\Psi}$
- 2. draw from a stand-in distribution $h(\Psi; \theta)$
 - should have fatter tails than posterior
- · 3. accept/reject based on probability $q(\Psi_{i+1}|\Psi_i)$
 - Metropolis vs. Metropolis-Hastings specification
- 4a. go back to 2
 - · random walk vs. independent chain variant
- 4b. stop
 - · still need to discuss convergence criteria

SUMMARY OF MCMC WITH MH ALGORITHM

In the end, it doesn't seem so bad

- but where do you have to compute the likelihood?
- · what does this entail?

So why not just be more clever and use conjugate priors?

Convergence

CHOICE OF STAND-IN DENSITY

- · stand-in should have fatter tails
- $\boldsymbol{\cdot}$ variance parameter important for acceptance rate
- optimal acceptance rates:
 - · around 0.44 for estimation of 1 parameter
 - around 0.23 for estimation of more than 5 parameters

CHOICE OF STAND-IN DENSITY

- often, stand-in is $N(\hat{\Psi}, c^2 \Sigma_{\Psi})$
 - \cdot $\hat{\Psi}$ is the posterior mode
 - + Σ_{Ψ} is the inverse (negative) Hessian at the mode
- tip: start with $c = 2.4/\sqrt{d}$
 - · *d* is number of estimated parameters
- increase (decrease) c if acceptance rate is too high (low)

CONVERGENCE STATISTICS

- theory says that distribution will converge to target
- · when does this happen?
- $\cdot \to \text{diagnostic tests}$
 - sequence of draws should be from the invariant distribution
 - $\boldsymbol{\cdot}$ moments should not change within/between sequences

BROOKS AND GELMAN STATISTICS

I draws and J sequences

$$W = \frac{1}{J} \sum_{j=1}^{J} \frac{1}{I-1} \sum_{i=1}^{I} (\Psi_{i,j} - \overline{\Psi}_{j})^{2}$$

$$B = \frac{1}{J} \sum_{j=1}^{J} \left(\overline{\Psi}_{j} - \overline{\Psi} \right)^{2}$$

- B/I: estimate of the variance of the mean across sequences
- W: estimate of average variance within sequences

BROOKS AND GELMAN STATISTICS

Combine the two measures of variance:

$$V = \frac{I - 1}{I}W + \frac{B}{I}$$

- \cdot as the length of the simulation increases
- want these statistics to "settle down"

GEWEKE STATISTIC

- partition a sequence into 3 subsets $s = \{I, II, III\}$
- \cdot compute mean $(\overline{\Psi}^{\mathtt{S}})$ and standard errors $(\sigma_{\Psi}^{\mathtt{S}})$
 - · s.e.'s must be corrected for serial correlation
- then, under convergence CD is distributed N(0,1)

$$CD = \frac{\overline{\Psi}^l - \overline{\Psi}^{lll}}{\sigma_{\Psi}^l + \sigma_{\Psi}^{lll}}$$

TAKING STOCK

TAKING STOCK

Evaluating the posterior distribution

- · draw from a "stand-in" distribution
- evaluate draw under stand-in and posterior distribution
- use the relative probabilities to accept/reject the draw
- · for each draw, need to re-solve the model

