Zweite Definition des Endlichen und Unendlichen.

Richard Dedekind

1889. 3. 9. [9th March 1889]

"Was sind und was sollen die Zahlen?" Seite XVII, in der Form: und was sollen die Zahlen?" page XVII, in the form:

Ein System S heißt endlich, wenn es sich so in sich selbst abbilden lässt, dass kein echter Teil von S in sich selbst abgebildet wird; im entgegengesetzten Fall heißt S ein unendliches System.

Verfolgung dieser Definition eines endlichen Systems S ohne Benutzung der natürlichen Zahlen.

Es sei φ eine Abbildung von S in sich selbst, durch welche kein echter Teil von S in sich selbst abgebildet wird. Kleine lateinische Buchstaben $a, b \dots z$ bedeuten immer *Elemente* von S, große lateinische Buchstaben $A, B \dots Z$ bedeuten Teile von S; die durch φ erzeugten Bilder von a, A werden resp. mit a', A' bezeichnet.

Dass A Teil von B ist, wird durch A 3 B ausgedrückt. Das aus den Elementen a, b, c, \ldots bestehende System wird mit $[a, b, c \ldots]$ bezeichnet.

Es ist also

$$(1) S' 3 S$$

und

(2) aus
$$A'$$
 3 A folgt $A = S$.

1. Satz. S' = S.

 \triangleright Jedes Element von S ist Bild von (mindestens) einem Element r von S. Denn aus (1) folgt (S')' 3 S', also nach (2) unser Satz.

Jedes aus einem einzigen Element s bestehende System [s] ist endlich, weil es keinen echten Teil besitzt und durch die identische Abbildung in sich selbst abgebildet wird. Dieser Fall wird im folgenden ausgeschlossen, S bedeutet ein endliches System, das nicht aus einem einzigen Element besteht.

2. Satz. Jedes Element s ist verschieden von seinem Bilde s', in Zeichen: $s \neq s'$.

 \triangleright Denn wäre s = s', so wäre [s]' = [s'] = [s] 3 [s], nach (2) auch [s] = S im Widerspruch zu unserer Annahme über S.

Zuerst veröffentlicht in der zweiten Auflage (1893) der Schrift First published in the second edition (1893) of the text "Was sind

A system S is called finite if it can be mapped into itself in such a way that no proper part of S is mapped into itself; in the opposite case, S is called an infinite system.

Pursuing this definition of a finite system S without using the natural numbers.

Let φ be a mapping of S into itself, which maps no proper part of S into itself. Small Latin letters $a, b \dots z$ always mean elements of S, capital Latin letters $A, B \dots Z$ mean parts of S. The images of a, A generated by φ are respectively denoted by a', A'.

That A is part of B is expressed by $A \in B$. The system consisting of the elements a, b, c, \ldots is denoted by $[a, b, c, \ldots]$.

This gives

$$(1) S' \in S$$

and

(2) from
$$A' \in A$$
 it follows that $A = S$.

1. Theorem. S' = S.

 \triangleright Every element of S is an image of (at least) one element r of S. Because from (1) it follows $(S')' \in S'$, hence by (2), our proposition.

Every system [s] consisting of a single element s is finite because it has no proper part and is mapped into itself by the identity function. This case is excluded in the following; S means a finite system that does *not* consist of a single element.

2. Theorem. Every element s is different from its image s', in symbols: $s \neq s'$.

 \triangleright Because if s=s', then $[s]'=[s']=[s]\in[s]$, so according to (2), also [s] = S in contradiction to our assumption about S.

- 3. Definition. Ist s ein bestimmtes Element von S so soll mit 3. Definition. If s is a certain element of S, then H_s shall denote H_s jeder solche Teil von S bezeichnet werden, der den beiden any part of S that satisfies the following two conditions: folgenden Bedingungen genügt:
 - I. s ist Element von H_s , also [s] 3 H_s , also auch

$$[s] + H_s = H_s.$$

- II. Ist h ein von s verschiedenes Element von H_s , so ist auch h'Element von H_s ; ist also H 3 H_s , aber s nicht in H enthalten, so ist H' 3 H_s .
- **4. Satz.** S und [s] sind spezielle Systeme H_s , und [s] ist der Durchschnitt (die Gemeinheit) aller dem Elemente s entsprechenden Systeme H_s .
 - ▷ Offenbar.
- **5. Satz.** $H_s = S$ oder echter Teil von S, je nachdem s' in H_s liegt oder nicht.
- \triangleright Denn wenn s' in H_s liegt, so folgt aus (3.II), dass H'_s 3 H_s , also nach (2), dass $H_s = S$ ist; und umgekehrt, wenn $H_s = S$, so liegt auch s' in H_s .
- **6. Satz.** Ist H_s echter Teil von S, so ist s' das einzige Element von H'_s , das außerhalb H_s liegt.
- \rhd Denn jedes Element k von H_s' ist Bildh' von mindestens einem Element h in H_s ; ist nun k = h' verschieden von s', so ist auch h verschieden von s, und folglich nach (3.II) liegt k = h' in H_s , während das Element s' von H'_s nach (5) außerhalb H_s liegt.
- 7. Satz. Jedes System H'_s ist ein System $H_{s'}$, das heißt (Definition (3)):
 - I'. s' ist Element von H'_s .
 - II'. Ist k ein von s' verschiedenes Element von H'_s , so liegt auch k' in H'_{s} .
- \triangleright Das Erste folgt daraus, dass s in H_s liegt, das Zweite daraus, dass nach Satz (6) k in H_s liegt.
- **8. Satz.** Sind $A, B, C \dots$ spezielle, demselben s entsprechende Systeme H_s , so ist auch ihr Durchschnitt H ein System H_s .
- \triangleright Denn zufolge (3.I) ist s gemeinsames Element von A, B, C, \ldots also auch Element von H. Ist ferner h ein von s verschiedenes Element von H, so ist zufolge (3.II) das Bild h' Element von A, von B, von C, ..., also auch von H. Mithin erfüllt H die beiden für jedes H_s charakteristischen Bedingungen I, II in (3).
- **9. Definition.** Sind a, b bestimmte Elemente von S, so soll das Symbol ab den Durchschnitt aller derjenigen Systeme H_b bedeuten (Strecke ab), welche (wie z. B. S) das Element a enthalten.

- - I. s is element of H_s , so $[s] \in H_s$, also

$$[s] + H_s = H_s.$$

- II. If h is an element of H_s different from s, then h' is also an element of H_s . So if $H \in H_s$, but s is not contained in H, then $H' \in H_s$.
- **4. Theorem.** S and [s] are special systems H_s , and [s] is the intersection (the common) of all systems H_s corresponding to the element s.
 - ▷ Obvious.
- **5. Theorem.** $H_s = S$ or H_s is a *proper* part of S, depending on whether s' lies in H_s or not.
- \triangleright For if s' lies in H_s , then it follows from (3.II) that $H'_s \in H_s$, therefore by (2) that $H_s = S$. Conversely, if $H_s = S$, then s' also lies in H_s .
- **6. Theorem.** If H_s is a proper part of S, then s' is the only element of H'_s that lies outside H_s .
- \triangleright This is because every element k of H'_s is the image h' of at least one element h in H. If k = h' is different from s', then h is also different from s, and consequently by (3.II) k = h' lies in H_s , while the element s' of H'_s by (5) lies outside H_s .
- 7. Theorem. Every system H'_s is a system $H_{s'}$, that is (by definition 3.):
 - I'. s' is element of H'_s
 - II'. If k is an element of H'_s that is different from s', then k' also lies in H'_s .
- \triangleright The first follows from the fact that s lies in H_s , the second from the fact that k lies in H_s by (6).
- **8. Theorem.** If $A, B, C \dots$ are special systems H_s corresponding to the same s, then their intersection H is also a system H_s .
- \triangleright Because according to (3.I) s is a common element of A, B, C, \ldots thus also an element of H. If h is an element of H that is different from s, then, by (3.II), the image h' is an element of A, of B, of $C, \ldots,$ and therefore also of H. H thus fulfills the two conditions I and II in definition (3) that are characteristic of every H_s .
- **9. Definition.** If a, b are certain elements of S, then the symbol ab (section ab) should mean the intersection of all those systems H_b which (such as S) contain the element a.

10. Satz. *a* ist Element von *ab*, d. h. [*a*] 3 *ab*.

 \triangleright Denn ab ist der Durchschnitt von lauter solchen Systemen H_b in denen a liegt. (a Anfang von ab.)

11. Satz. ab ist ein System H_b , d. h. [b] 3 ab, und wenn s ein von b verschiedenes Element von ab ist, so ist [s'] 3 ab.

 \triangleright Dies folgt aus (8).

Also b Element (Ende) von ab. Ist H 3 ab, aber b nicht in H enthalten, so ist H' 3 ab.

12. Satz. Aus [a] 3 H_b folgt ab 3 H_b .

▷ Unmittelbare Folge von (9).

13. Satz. aa = [a].

 \triangleright Dies folgt aus (4), weil aa der Durchschnitt aller H_a ist, die ja alle das Element a enthalten nach (3.I).

14. Satz. Ist b' Element von ab, so ist ab = S.

 \triangleright Dies folgt aus (11) und (5).

15. Satz. b'b = S.

 \triangleright Dies folgt aus (14) und (10).

16. Satz. Ist c Element von ab, so ist cb 3 ab.

 \triangleright Dies folgt aus (12), denn ab ist ein H_b , (nach (11)), welches das Element c enthält.

17. Satz. Bedeutet A+B das aus A,B zusammengesetzte System, so ist

$$a'b + b'a = S$$
.

ightharpoonup Denn wenn s Element von a'b, so ist s' in b'a oder a'b enthalten, je nachdem s=b oder verschieden von b (zufolge (10) oder (11) und (3.II)), und ebenso, wenn s Element von b'a, so ist s' in a'b oder b'a enthalten; also ist (a'b+b'a)' 3 a'b+b'a; hieraus folgt der Satz nach (2).

18. Satz. Ist a verschieden von b, so ist ab = [a] + a'b.

 \triangleright Denn da a ein von b verschiedenes Element von ab ist, so ist a' Element von ab (10, 11), und folglich (16) ist a'b 3 ab; da ferner (10) auch [a] 3 ab, mithin

$$[a] + a'b \ 3 \ ab.$$

Ferner: jedes von b verschiedene Element s von [a]+a'b ist entweder = a oder ein von b verschiedenes Element von a'b, in beiden Fällen ist s' (nach (10), (11)) Element von a'b, also auch von [a] + a'b, und da (11) auch [b] 3 [a] + a'b, so ist [a] + a'b ein System H_b ; da endlich auch [a] 3 [a] + a'b, so ist (12) auch

$$ab \ 3 \ [a] + a'b.$$

Aus der Vergleichung beider Resultate folgt der Satz.

10. Theorem. a is an element of ab, i.e., $[a] \in ab$.

 \triangleright This is because ab is the intersection of all systems H_b in which a lies. (So a is the start of ab.)

11. Theorem. ab is a system H_b , i.e. $[b] \in ab$, and if s is an element of ab different from b, then $[s'] \in ab$.

 \triangleright This follows from (8).

So b is an element (the end) of ab. If $H \in ab$ but b is not contained in H, then $H' \in ab$.

12. Theorem. From $[a] \in H_b$, follows from $ab \in H_b$.

▶ Immediate consequence of definition (9).

13. Theorem. aa = [a].

 \triangleright This follows from (4), because aa is the intersection of all H_a that contain the element a according to (3.I).

14. Theorem. If b' is an element of ab, then ab = S.

 \triangleright This follows from (11) and (5).

15. Theorem. b'b = S.

 \triangleright This follows from (14) and (10).

16. Theorem. If c is an element of ab, then $cb \in ab$.

 \triangleright This follows from (12), since ab is an H_b by (11), that contains the element c.

17. Theorem. If A + B means the system composed of A, B, then one has

$$a'b + b'a = S$$
.

 \triangleright Because if s is an element of a'b, then s' is contained in b'a or a'b, depending on s=b or different from b (according to (10) or (11) and (3.II)), and likewise if s is an element of b'a, then s' is contained in a'b or b'a; therefore $(a'b+b'a)' \in a'b+b'a$. This leads to the theorem according to (2).

18. Theorem. If a is different from b, then ab = [a] + a'b.

element of ab (by 10, 11), and consequently (by 16) $a'b \in ab$; since furthermore, by (10), we also have $[a] \in ab$, therefore

$$[a] + a'b \in ab.$$

Also, every element s of [a] + a'b that is different from b is either = a or an element of a'b that is different from b. Thus in both cases s' is (by (10), (11)) an element of a'b, therefore also of [a] + a'b, and since by (11) also $[b] \in [a] + a'b$, it follows that [a] + a'b is a system H_b . Finally, since $[a] \in [a] + a'b$, by (12) also

$$ab \in [a] + a'b$$
.

The theorem follows from the comparison of both results.

19. Satz. Sind a, b verschiedene Elemente von S, so liegt a außer19. Theorem. If a, b are different elements of S, then a lies outside halb a'b, und b liegt außerhalb b'a.

 \triangleright Nimmt man nämlich das Gegenteil an, es gebe ein von b verschiedenes Element a, das in a'b liegt, und bezeichnet mit A das System aller solcher Elemente a, so ergibt sich folgendes.

Setzt man a' = s, so liegt a in sb, und da a verschieden von b ist, also (nach (13)) nicht in bb liegt, so ist s verschieden von b, und hieraus folgt (nach (18)), dass sb = [s] + s'b ist. Da ferner a (nach (2)) verschieden von s ist und in sb liegt, so muss a in s'b liegen, und hieraus folgt wieder (nach (1)), dass auch s (als Bild a') in s'b liegt.

Mithin ist das Bild a' eines jeden Elementes a von A ebenfalls in A enthalten, also A' 3 A. Da aber hieraus a = S folgen würde, während doch A das Element b nicht enthält, so ist unsere Annahme unzulässig, also der Satz wahr, w.z.b.w.

Der zweite Teil folgt durch Vertauschung von a mit b.

20. Satz. Sind a, b verschieden, so haben die Strecken a'b, b'a kein gemeinsames Element.

⊳ Nimmt man nämlich das Gegenteil an, es gebe ein gemeinsames Element m von a'b, b'a, so folgt aus dem vorhergehenden Satz (19), dass m verschieden von b und von a ist; mithin muss (11) das Bild m' ebenfalls gemeinsames Element von a'b und b'a sein.

Bezeichnet man daher mit M das System aller solcher Elemente m, so ist M' 3 M, also M = S. Dies ist aber unmöglich, weil a, b Elemente von S, aber nicht Elemente von M sind. Also ist unser Satz wahr.

schieden.

 \triangleright Denn sonst hätten die Strecken a'b, b'a ein gemeinsames Element a' = b', weil a' (nach (10)) Element von a'b und b' Element von b'a ist.

22. Satz. Aus cb = S folgt c = b'.

 \triangleright Es gibt (nach (1) und (21)) in S ein und nur ein Element a, welches der Bedingung a' = c genügt, und es ist also a'b = S, mithin [a] 3 a'b; es muss daher (19) a = b, also c = b' sein, w.z.b.w.

einer und nur einer der Strecken a'b, b'a enthalten.

 \triangleright Dies folgt aus (17) und (20).

24. Satz. Sind a, b, c verschieden, so haben die Strecken b'c, c'a, a'b kein gemeinsames Element, und dasselbe gilt von den Strecken a'c, b'a, c'b.

⊳ Denn die gegenteilige Annahme, es gebe ein den Strecken b'c, c'a, a'b gemeinsames Element m, führt zu einem Widerspruch. common to the segments b'c, c'a, a'b, leads to a contradiction. Let

a'b, and b lies outside b'a.

 \triangleright If one assumes the opposite, that there is an element a that is different from b and lies in a'b, and that A denotes the system of all such elements a, the following holds.

If one puts a' = s, then a lies in sb, and since a is different from b, and therefore (according to (13)) is not in bb, then s is different from b, and from this it follows (according to 18) that sb = [s] + s'b. Furthermore, since a (according to (2)) is different from s and lies in sb, then a must lie in s'b, and from this it follows (again according to (1)) that s (as the image a') also lies in s'b.

Therefore, the image a' of every element a of A is also contained in A, i.e. $A' \in A$. But since A = S would follow from this, while A does not contain the element b, our assumption is inadmissible, so the theorem is true, qed.

The second part follows by exchanging a with b.

20. Theorem. If a, b are different, then the segments a'b, b'ahave no common element.

▶ If one assumes the opposite, that there is a common element m of a'b, b'a, then it follows from the preceding Theorem 19 that m is different from b and from a; therefore (according to 11) the image m' must also be a common element of a'b and b'a.

Therefore, if M denotes the system of all such elements m, then $M' \in M$, thus M = S. But this is impossible because a, b are elements of S but not elements of M. So our theorem is true.

21. Satz. Sind a, b verschieden, so sind auch die Bilder a', b' ver- **21. Theorem.** If a, b are different, then the images a', b' are also different.

> \triangleright Otherwise the segments a'b, b'a would have a common element a' = b', because (according to 10) a' is an element of a'b and b' is an element of b'a.

22. Theorem. From cb = S follows c = b.

 \triangleright There is (according to 1 and 21) in S one and only one element a which satisfies the condition a' = c, and therefore a'b = S, therefore $[a] \in a'b$; therefore (by 19) a = b, thus c = b', ged.

23. Satz. Sind a, b verschieden, so ist jedes Element von S in **23.** Theorem. If a, b are different, then every element of S is contained in one and only one of the segments a'b, b'a.

 \triangleright This follows from (17) and (20).

24. Theorem. If a, b, c are different, then the segments b'c, c'a, a'b have no common element, and the same applies to the segments a'c, b'a, c'b.

 \triangleright Because the opposite assumption, that there is an element m

Es sei M das System aller solcher Elemente. Da (nach (19)) anicht in a'b, b nicht in b'c, c nicht in c'a liegt, so ist m verschieden von c, a, b, und folglich (11) ist m' ebenfalls gemeinsames Element von b'c, c'a, a'b, also Element von M.

Mithin ist M' 3 M, also M = S. Dies ist aber unmöglich, weil M keins der Elemente a, b, c enthält. Also ist unser Satz wahr.

Der zweite Teil ergibt sich aus dem ersten, wenn man a mit bvertauscht, wodurch die Annahme nicht geändert wird.

Zusatz. Setzt man (wie auch in dem folgenden (25)):

$$A = c'b$$
, $B = a'c$, $C = b'a$; $A_1 = b'c$, $B_1 = c'a$, $C_1 = a'b$,

(nach (17), (20)) ist

$$S = A + A = B + B_1 = C + C_1;$$

 $0 = A - A_1 = B - B_1 = C - C_1.$

Dies gilt auch dann (nach (20)), wenn von den Elementen a, b, c This also applies (according to 20) if at least two of the elements wenigstens zwei verschieden sind.

25. Satz. Sind a, b, c verschieden, so tritt einer und nur einer der beiden folgenden Fälle ein: Entweder ist

$$b'c = b'a + a'c$$
, $c'a = c'b + b'a$, $a'b = a'c + c'b$
 $c'b = c'a - a'b$, $a'c = a'b - b'c$, $b'a = b'c - c'a$

und jedes Element von S liegt in einer, aber nur einer der Strecken c'b, a'c, b'a; oder es ist

$$c'b = c'a + a'b$$
, $a'c = a'b + b'c$, $b'a = b'c + c'a$
 $b'c = b'a - a'c$, $c'a = c'b - b'a$, $a'b = a'c - c'b$

und jedes Element von S liegt in einer, aber nur einer der Strecken b'c, c'a, a'b.

 \triangleright Zufolge (23) liegt c entweder in a'b oder in b'a. Wir betrachten nur den ersten Fall, weil aus ihm der zweite durch Vertauschung von a mit b hervorgeht. Da c in a'b liegt und von b verschieden ist, so liegt (nach (11)) auch c' in a'b, und folglich (16) ist $c'b \ 3 \ a'b$; hieraus folgt (nach 19), dass c'b mit b'a kein gemeinsames Element hat; nun ist (mit 17) a'b + b'a = b'c + c'b, mithin $b'a \ 3 \ b'c$ und folglich (11) liegt a in b'c.

Aus der Annahme, dass c in a'b liegt, hat sich also ergeben: c'b 3 a'b, b'a 3 b'c, a liegt in b'c. Auf dieselbe Weise ergeben sich aus dieser letzten Folgerung, wenn man c, a, b in der Annahme resp. durch a, b, c ersetzt, wieder die Folgerungen a'c 3 b'c, c'b 3 c'a, b liegt in c'a; und hieraus folgt abermals b'a 3 c'a, a'c 3 a'b (und die erste Annahme: c liegt in a'b).

M be the system of all such elements. Since (according to (19)) a is not in a'b, b is not in b'c, c is not in c'a, then m is different from c, a, b, and consequently (by 11) m' is a common element of b'c, c'a, a'b, i.e. an element of M; therefore $M' \in M$, hence M = S.

But this is impossible because M does not contain any of the elements a, b, c. So our theorem is true.

The second part results from the first if one swaps a with b, which does not change the assumption.

Corollary. If you put (as in the following 25):

$$A = c'b$$
, $B = a'c$, $C = b'a$; $A_1 = b'c$, $B_1 = c'a$, $C_1 = a'b$,

so ist $A-B-C=0^1$ (leer) und $A_1-B_1-C_1=0$ (leer) und then $A-B-C=0^1$ (empty) and $A_1-B_1-C_1=0$ (empty) and (according to 17, 20) hence

$$S = A + A = B + B_1 = C + C_1;$$

 $0 = A - A_1 = B - B_1 = C - C_1.$

a, b, c are different.

25. Theorem. If a, b, c are different, then one and only one of the following two cases occurs: Either

$$b'c = b'a + a'c$$
, $c'a = c'b + b'a$, $a'b = a'c + c'b$
 $c'b = c'a - a'b$, $a'c = a'b - b'c$, $b'a = b'c - c'a$

and each element of S lies in one, but only one, of the segments c'b, a'c, b'a; or

$$c'b = c'a + a'b$$
, $a'c = a'b + b'c$, $b'a = b'c + c'a$
 $b'c = b'a - a'c$, $c'a = c'b - b'a$, $a'b = a'c - c'b$

and each element of S lies in one, but only one, of the segments b'c, c'a, a'b.

 \triangleright According to 23, c lies either in a'b or in b'a. We only consider the first case because the second arises from it by exchanging afor b. Since c is in a'b and is distinct from b, then (according to 11) c' also lies in a'b, and consequently (by 16) $c'b \in a'b$; from this it follows (by 19) that c'b has no element in common with b'a; now (by 17) is a'b + b'a = b'c + c'b, therefore $b'a \in b'c$, and consequently (by 11) a is in b'c.

From the assumption that c lies in a'b, it follows: $c'b \in a'b$, $b'a \in b'c$, a lies in b'c. In the same way, this last conclusion follows if one assumes c, a, b replaced by a, b, c, respectively, again we have the consequences $a'c \in bc$, $cb \in c'a$, and that b lies in c'a; and from this it follows again $b'a \in c'a$, $a'c \in a'b$ (and the first assumption: c lies in a'b).

¹[Dabei bedeutet das Zeichen – den Durchschnitt.]

¹[The symbol – means the intersection.]