Week 12 F2F Example Solutions

- 1. **Example 11.1** Note that $e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}x^n$ for $x \in \mathbb{R}$.
 - (a) Since $\mathbf{A}^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$ for $n = 1, 2, \dots$,

$$e^{\mathbf{A}} = \begin{pmatrix} 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots & 0 & 0 \\ 0 & 1 + \frac{1}{1!} 2 + \frac{1}{2!} 2^2 + \cdots & 0 \\ 0 & 0 & 1 + \frac{1}{1!} 3 + \frac{1}{2!} 3^2 + \cdots \end{pmatrix} = \begin{pmatrix} e & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^3 \end{pmatrix}.$$

(b) Let
$$\mathbf{P} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
. Then $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$. Since $\mathbf{A}^n = \mathbf{P} \begin{pmatrix} 2^n & 0 \\ 0 & 4^n \end{pmatrix} \mathbf{P}^{-1}$ for $n = 1, 2, \ldots$,

$$e^{\mathbf{A}} = \mathbf{P} \begin{pmatrix} 1 + \frac{1}{1!} 2 + \frac{1}{2!} 2^2 + \cdots & 0 \\ 0 & 1 + \frac{1}{1!} 4 + \frac{1}{2!} 4^2 + \cdots \end{pmatrix} \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} e^4 + e^2 & e^4 - e^2 \\ e^4 - e^2 & e^4 + e^2 \end{pmatrix}.$$

2. **Example 11.2** Let a_n , b_n and c_n be the percentage of customers choosing brand A, B and C, respectively, after n months. Then for n = 1, 2, ...,

$$\begin{cases} a_n = 0.97a_{n-1} + 0.01b_{n-1} + 0.02c_{n-1} \\ b_n = 0.01a_{n-1} + 0.97b_{n-1} + 0.02c_{n-1} \\ c_n = 0.02a_{n-1} + 0.02b_{n-1} + 0.96c_{n-1}. \end{cases}$$

Let
$$\boldsymbol{x_n} = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$$
 and $\boldsymbol{A} = \begin{pmatrix} 0.97 & 0.01 & 0.02 \\ 0.01 & 0.97 & 0.02 \\ 0.02 & 0.02 & 0.96 \end{pmatrix}$.

Then
$$\boldsymbol{x_n} = \boldsymbol{A}\boldsymbol{x_{n-1}} = \cdots = \boldsymbol{A}^n\boldsymbol{x_0}$$
 where $\boldsymbol{x_0} = \begin{pmatrix} 100 \\ 0 \\ 0 \end{pmatrix}$.

By Algorithm 6.2.4, we find
$$\mathbf{P} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
 such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.96 & 0 \\ 0 & 0 & 0.94 \end{pmatrix}$.

Then

$$\boldsymbol{x_n} = \boldsymbol{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.96^n & 0 \\ 0 & 0 & 0.94^n \end{pmatrix} \boldsymbol{P}^{-1} \boldsymbol{x_0} = \frac{50}{3} \begin{pmatrix} 2 + 3 \cdot 0.96^n + 0.94^n \\ 2 - 3 \cdot 0.96^n + 0.94^n \\ 2 - 2 \cdot 0.94^n \end{pmatrix}.$$

The present market shares are $\frac{50}{3}[2+3\cdot0.96^4+0.94^4]\%\approx 88.8\%$, $\frac{50}{3}[2-3\cdot0.96^4+0.94^4]\%\approx 3.9\%$ and $\frac{50}{3}[2-2\cdot0.94^4]\%\approx 7.3\%$ for brand A, B and C, respectively.

The market shares will stabilize after a long run and
$$\lim_{n\to\infty} x_n = \begin{pmatrix} \frac{100}{3} \\ \frac{100}{3} \\ \frac{100}{3} \end{pmatrix}$$
.

1

3. Example 11.3 Set $y_3 = y_1'$ and $y_4 = y_2'$. This gives the first-order system

$$\begin{cases} y_1' = & y_3 \\ y_2' = & y_4 \\ y_3' = 2y_1 + y_2 + y_3 + y_4 \\ y_4' = -5y_1 + 2y_2 + 5y_3 - y_4 \end{cases}$$

The coefficient matrix for this system is

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{pmatrix}.$$

Solving for the eigenvalues of \mathbf{A} , we find that \mathbf{A} has 4 distinct eigenvalues $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 3$, $\lambda_4 = -3$ and the corresponding eigenvectors

$$\mathbf{x_1} = (1, -1, 1, -1)^T$$
 $\mathbf{x_2} = (1, 5, -1, -5)^T$
 $\mathbf{x_3} = (1, 1, 3, 3)^T$ $\mathbf{x_4} = (1, -5, -3, 15)^T$.

Thus, the general solution to the first-order system is of the form

$$c_1 \mathbf{x_1} e^t + c_2 \mathbf{x_2} e^{-t} + c_3 \mathbf{x_3} e^{3t} + c_4 \mathbf{x_4} e^{-3t}$$
.

Now we use the initial condition provided to find c_1, c_2, c_3, c_4 . When t = 0, we have

$$c_1 \mathbf{x_1} + c_2 \mathbf{x_2} + c_3 \mathbf{x_3} + c_4 \mathbf{x_4} = (4, 4, 4, -4)$$

or equivalently

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 5 & 1 & -5 \\ 1 & -1 & 3 & -3 \\ -1 & -5 & 3 & 15 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 4 \\ -4 \end{pmatrix}.$$

The above system can be solved to give the unique solution $c_1 = 2, c_2 = 1, c_3 = 1, c_4 = 0$. Thus the solution to the initial value problem is

$$\boldsymbol{Y} = 2\boldsymbol{x_1}e^t + \boldsymbol{x_2}e^{-t} + \boldsymbol{x_3}e^{3t}.$$

Thus

$$\begin{pmatrix} y_1 \\ y_2 \\ y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} 2e^t + e^{-t} + e^{3t} \\ -2e^t + 5e^{-t} + e^{3t} \\ 2e^t - e^{-t} + 3e^{3t} \\ -2e^t - 5e^{-t} + 3e^{3t} \end{pmatrix}.$$