Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Факультет информационных технологий и программирования Направление "Прикладная математика и информатика"

Отчет к лабораторной работе №3

Методы решения систем линейных уравнений

Выполнили студенты группы М3237

Ярошевский Илья Аникина Вероника Крюков Александр

1 Цели работы

- 1. Реализовать прямой метод решения СЛАУ на основе LU-разложения
- 2. Провести исследование метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания
- 3. Провести исследование метода на матрицых Гильберта различной размерности
- 4. Реализовать метод Гаусса с выбором ведущего элемента для плотных матриц

2 Ход работы

2.1 Прямой метод

2.1.1 Тестирование на матрицах с диагональным преобладание

	ı	l	_m*
n	k	$ x^*-x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
10	0	$5.46103 \cdot 10^{-14}$	$2.7832 \cdot 10^{-15}$
10	1	$1.43296 \cdot 10^{-13}$	$7.30302 \cdot 10^{-15}$
10	2	$3.46274 \cdot 10^{-12}$	$1.76478 \cdot 10^{-13}$
10	3	$1.29306 \cdot 10^{-11}$	$6.59007 \cdot 10^{-13}$
10	4	$3.44677 \cdot 10^{-10}$	$1.75664 \cdot 10^{-11}$
10	5	$1.29248 \cdot 10^{-9}$	$6.5871 \cdot 10^{-11}$
10	6	$3.30301 \cdot 10^{-8}$	$1.68337 \cdot 10^{-9}$
10	7	$5.74436 \cdot 10^{-7}$	$2.92759 \cdot 10^{-8}$
10	8	$8.32931 \cdot 10^{-6}$	$4.24501 \cdot 10^{-7}$
10	9	$1.43609 \cdot 10^{-6}$	$7.31898 \cdot 10^{-8}$
50	0	$1.14086 \cdot 10^{-12}$	$5.50651 \cdot 10^{-15}$
50	1	$4.26714 \cdot 10^{-13}$	$2.0596 \cdot 10^{-15}$
50	2	$2.93195 \cdot 10^{-10}$	$1.41515 \cdot 10^{-12}$
50	3	$2.0648 \cdot 10^{-9}$	$9.96604 \cdot 10^{-12}$
50	4	$6.88083 \cdot 10^{-9}$	$3.32113 \cdot 10^{-11}$
50	5	$1.4312 \cdot 10^{-7}$	$6.90788 \cdot 10^{-10}$
50	6	$1.83487 \cdot 10^{-8}$	$8.85625 \cdot 10^{-11}$
50	7	$2.38532 \cdot 10^{-5}$	$1.15131 \cdot 10^{-7}$
50	8	0.000193578	$9.34332 \cdot 10^{-7}$
50	9	0.00413754	$1.99704 \cdot 10^{-5}$
100	0	$9.65618 \cdot 10^{-12}$	$1.66005 \cdot 10^{-14}$
100	1	$1.06903 \cdot 10^{-10}$	$1.83783 \cdot 10^{-13}$
100	2	$6.80943 \cdot 10^{-10}$	$1.17065 \cdot 10^{-12}$
100	3	$9.96402 \cdot 10^{-9}$	$1.71298 \cdot 10^{-11}$
100	4	$4.38007 \cdot 10^{-8}$	$7.53005 \cdot 10^{-11}$
100	5	$1.54526 \cdot 10^{-6}$	$2.65656 \cdot 10^{-9}$
100	6	$1.16246 \cdot 10^{-6}$	$1.99846 \cdot 10^{-9}$
100	7	$6.24677 \cdot 10^{-5}$	$1.07392 \cdot 10^{-7}$
100	8	0.0003323	$5.71277 \cdot 10^{-7}$
100	9	0.00224864	$3.86579 \cdot 10^{-6}$
500	0	$1.59548 \cdot 10^{-11}$	$2.46801 \cdot 10^{-15}$
500	1	$3.26512 \cdot 10^{-9}$	$5.05073 \cdot 10^{-13}$
500	2	$1.2449 \cdot 10^{-7}$	$1.9257 \cdot 10^{-11}$
500	3	$5.4828 \cdot 10^{-8}$	$8.4812 \cdot 10^{-12}$
500	4	$1.14655 \cdot 10^{-5}$	$1.77358 \cdot 10^{-9}$
500	5	$6.59951 \cdot 10^{-5}$	$1.02086 \cdot 10^{-8}$
500	6	0.000661574	$1.02337 \cdot 10^{-7}$
500	7	0.0112052	$1.73331 \cdot 10^{-6}$
500	8	0.0891671	$1.3793 \cdot 10^{-5}$
500	9	0.635155	$9.82504 \cdot 10^{-5}$
1000	0	$2.48326 \cdot 10^{-8}$	$1.35912 \cdot 10^{-12}$
1000	1	$1.55912 \cdot 10^{-8}$	$8.53328 \cdot 10^{-13}$
1000	2	$3.0785 \cdot 10^{-7}$	$1.6849 \cdot 10^{-11}$

1000	3	$1.72248 \cdot 10^{-5}$	$9.42737 \cdot 10^{-10}$
1000	4	$2.15435 \cdot 10^{-5}$	$1.1791 \cdot 10^{-9}$
1000	5	0.00109214	$5.97744 \cdot 10^{-8}$
1000	6	0.0157364	$8.6127 \cdot 10^{-7}$
1000	7	0.0697018	$3.81486 \cdot 10^{-6}$
1000	8	0.843813	$4.61829 \cdot 10^{-5}$
1000	9	1.70491	$9.33118 \cdot 10^{-5}$

2.1.2 Тестирование на матрицах Гильберта

n	$ x^* - x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
10	$8.25036 \cdot 10^{-9}$	$4.20477 \cdot 10^{-10}$
50	$7.52844 \cdot 10^{-7}$	$3.63371 \cdot 10^{-9}$
100	$3.95193 \cdot 10^{-6}$	$6.79401 \cdot 10^{-9}$
500	0.000432803	$6.69491 \cdot 10^{-8}$
1000	0.00435918	$2.38583 \cdot 10^{-7}$

2.2 Метод Гаусса с выбором ведущего элемента

2.2.1 Тестирование на матрицах с диагональным преобладание

n	k	$ x^* - x_k $	$\frac{\ x^*-x_k\ }{\ x^*\ }$
10	0	$6.32562 \cdot 10^{-14}$	$3.22384 \cdot 10^{-15}$
10	1	$1.60765 \cdot 10^{-13}$	$8.19336 \cdot 10^{-15}$
10	2	$2.30718 \cdot 10^{-12}$	$1.17585 \cdot 10^{-13}$
10	3	$1.2928 \cdot 10^{-11}$	$6.58874 \cdot 10^{-13}$
10	4	$7.32431 \cdot 10^{-10}$	$3.73281 \cdot 10^{-11}$
10	5	$4.16467 \cdot 10^{-9}$	$2.12251 \cdot 10^{-10}$
10	6	$7.18045 \cdot 10^{-9}$	$3.6595 \cdot 10^{-10}$
10	7	$1.43609 \cdot 10^{-7}$	$7.31899 \cdot 10^{-9}$
10	8	$5.45714 \cdot 10^{-6}$	$2.78121 \cdot 10^{-7}$
10	9	$1.00526 \cdot 10^{-5}$	$5.12329 \cdot 10^{-7}$
50	0	$3.39627 \cdot 10^{-12}$	$1.63926 \cdot 10^{-14}$
50	1	$7.07182 \cdot 10^{-11}$	$3.41331 \cdot 10^{-13}$
50	2	$6.73371 \cdot 10^{-10}$	$3.25012 \cdot 10^{-12}$
50	3	$1.86195 \cdot 10^{-8}$	$8.98695 \cdot 10^{-11}$
50	4	$5.47724 \cdot 10^{-8}$	$2.64366 \cdot 10^{-10}$
50	5	$9.17442 \cdot 10^{-9}$	$4.42816 \cdot 10^{-11}$
50	6	$4.27524 \cdot 10^{-6}$	$2.0635 \cdot 10^{-8}$
50	7	$3.20184 \cdot 10^{-5}$	$1.54541 \cdot 10^{-7}$
50	8	0.0010422	$5.03031 \cdot 10^{-6}$
50	9	0.00196329	$9.4761 \cdot 10^{-6}$
100	0	$9.19552 \cdot 10^{-12}$	$1.58086 \cdot 10^{-14}$
100	1	$1.67913 \cdot 10^{-10}$	$2.8867 \cdot 10^{-13}$
100	2	$5.97625 \cdot 10^{-11}$	$1.02741 \cdot 10^{-13}$
100	3	$3.8314 \cdot 10^{-9}$	$6.5868 \cdot 10^{-12}$
100	4	$5.50153 \cdot 10^{-8}$	$9.45803 \cdot 10^{-11}$
100	5	$2.62084 \cdot 10^{-6}$	$4.50565 \cdot 10^{-9}$
100	6	$9.08835 \cdot 10^{-6}$	$1.56243 \cdot 10^{-8}$
100	7	0.000175778	$3.02191 \cdot 10^{-7}$
100	8	0.000469095	$8.06451 \cdot 10^{-7}$
100	9	0.00579465	$9.96195 \cdot 10^{-6}$
500	0	$4.74104 \cdot 10^{-9}$	$7.33379 \cdot 10^{-13}$
500	1	$5.09336 \cdot 10^{-8}$	$7.87879 \cdot 10^{-12}$
500	2	$2.70421 \cdot 10^{-7}$	$4.18307 \cdot 10^{-11}$

500	3	$4.62975 \cdot 10^{-6}$	$7.16164 \cdot 10^{-10}$
500	4	$3.53666 \cdot 10^{-5}$	$5.47076 \cdot 10^{-9}$
500	5	0.000144481	$2.23495 \cdot 10^{-8}$
500	6	0.000741575	$1.14712 \cdot 10^{-7}$
500	7	0.0285386	$4.41456 \cdot 10^{-6}$
500	8	0.414411	$6.41041 \cdot 10^{-5}$
500	9	5.06399	0.000783335
1000	0	$5.03021 \cdot 10^{-8}$	$2.75309 \cdot 10^{-12}$
1000	1	$2.34771 \cdot 10^{-8}$	$1.28493 \cdot 10^{-12}$
1000	2	$1.75109 \cdot 10^{-6}$	$9.58395 \cdot 10^{-11}$
1000	3	$4.60324 \cdot 10^{-5}$	$2.51941 \cdot 10^{-9}$
1000	4	0.000152474	$8.34511 \cdot 10^{-9}$
1000	5	0.000391032	$2.14016 \cdot 10^{-8}$
1000	6	0.116013	$6.34951 \cdot 10^{-6}$
1000	7	0.216661	$1.18581 \cdot 10^{-5}$
1000	8	2.49188	0.000136384
1000	9	33.2835	0.00182164

2.2.2 Тестирование на матрицах Гильберта

n	$ x^* - x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
10	$4.53743 \cdot 10^{-8}$	$2.31249 \cdot 10^{-9}$
50	$6.4107 \cdot 10^{-7}$	$3.09422 \cdot 10^{-9}$
100	$2.98603 \cdot 10^{-6}$	$5.13347 \cdot 10^{-9}$
500	0.000384986	$5.95524 \cdot 10^{-8}$
1000	0.00281381	$1.54003 \cdot 10^{-7}$

2.3 Метод сопряженных градиентов

2.3.1 Тестирование на матрицах с диагональным преобладание

n	$\ x^*-x_k\ $	$\frac{\ x^*-x_k\ }{\ x^*\ }$
10	$1.25957 \cdot 10^{-12}$	$6.41935 \cdot 10^{-14}$
50	$2.75509 \cdot 10^{-6}$	$1.32978 \cdot 10^{-8}$
100	140.714	0.241911
500	$2.93751 \cdot 10^{-5}$	$4.54395 \cdot 10^{-9}$
1000	$7.42658 \cdot 10^{-5}$	$4.06466 \cdot 10^{-9}$
10000	0.00290357	$5.02875 \cdot 10^{-9}$

3 Выводы