Lógica CC Licenciatura em Ciências da Computação

Luís Pinto

Departamento de Matemática Universidade do Minho

1º. semestre, 2020/2021

3. Cálculo de Predicados de Primeira Ordem da Lógica Clássica Observação 123: O Cálculo de Predicados de Primeira Ordem da Lógica Clássica (adiante abreviado por Cálculo de Predicados) é também conhecido na literatura por Lógica de Primeira Ordem Clássica ou, simplesmente, por Lógica de Primeira Ordem.

Observação 124:

Ao contrário do Cálculo Proposicional, no Cálculo de Predicados existem duas classes sintáticas: a classe dos *termos* e a classe das *fórmulas*.

Os termos serão usados para denotar *objetos* do domínio de discurso em questão (por exemplo, *números naturais*, *conjuntos*, etc.).

As fórmulas corresponderão a *afirmações* relativas aos objetos (por exemplo, "dois é um número par" ou "o conjunto vazio é subconjunto de qualquer conjunto").

Observação 124 (cont.):

O Cálculo de Predicados será *parametrizado* por um *tipo de linguagem*, que fixará quais os símbolos que poderão ser usados para construir termos (que designaremos por *símbolos de função*) ou para denotar *relações elementares* entre os objetos (que designaremos por *símbolos de relação*). Este conjunto de símbolos dependerá, naturalmente, do problema em estudo.

Por exemplo, se estivermos a considerar a *Aritmética* (a teoria dos números naturais), entre outros, será útil ter símbolos que denotem o número 0, a operação de adição e a relação de igualdade.

Já no caso de estarmos a considerar *Teoria de Conjuntos*, será útil, por exemplo, ter símbolos para denotar o conjunto vazio, as operações de reunião de conjuntos e de conjunto potência, e as relações de pertença, inclusão e igualdade de conjuntos.

Definição 125: Um *tipo de linguagem* é um terno $(\mathcal{F}, \mathcal{R}, \mathcal{N})$ tal que:

- a) \mathcal{F} e \mathcal{R} são conjuntos disjuntos;
- **b)** \mathcal{N} é uma função de $\mathcal{F} \cup \mathcal{R}$ em \mathbb{N}_0 .

Os elementos de \mathcal{F} são chamados <u>símbolos de função</u> e os elementos de \mathcal{R} são chamados <u>símbolos de relação</u> ou <u>símbolos de predicado</u>.

A função $\mathcal N$ é chamada *função aridade*, chamando-se ao número natural $n=\mathcal N(s)$ (para cada $s\in\mathcal F\cup\mathcal R$) a *aridade* de s e dizendo-se que s é um símbolo n-ário. Intuitivamente, a aridade de um símbolo corresponde ao seu *número de argumentos*. Os símbolos de função de aridade 0 são chamados *constantes*. Neste estudo, assumiremos que os símbolos de relação nunca têm aridade 0.

Os símbolos de aridade 1 dir-se-ão também símbolos *unários*, os de aridade 2 *binários*, etc.

Exemplo 126:

O terno $L_{Arit} = (\{0, s, +, \times\}, \{=, <\}, \mathcal{N})$, onde $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(\times) = 2$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(<) = 2$, é um tipo de linguagem.

Chamaremos a L_{Arit} o tipo de linguagem para a Aritmética.

Exemplo 127:

O terno $L_{grupo} = (\{\cdot, 1, {}^{-1}\}, \{=\}, \mathcal{N})$, onde $\mathcal{N}(\cdot) = 2$, $\mathcal{N}(1) = 0$, $\mathcal{N}({}^{-1}) = 1$ e $\mathcal{N}(=) = 2$, é uma linguagem.

Chamaremos a L_{arupo} o tipo de linguagem para grupos.

Exemplo 128:

O terno $L_{cpo}=(\{\}, \{=, \leq\}, \mathcal{N})$, onde $\mathcal{N}(=)=2$ e $\mathcal{N}(\leq)=2$, é uma linguagem.

Chamaremos a L_{cpo} o tipo linguagem para conjuntos parcialmente ordenados.

Notação 129:

Habitualmente, usaremos a letra *L* (possivelmente indexada) para denotar tipos de linguagens.

Caso nada seja dito em contrário, durante este capítulo L denotará um tipo de linguagem $(\mathcal{F}, \mathcal{R}, \mathcal{N})$, sendo o respetivo conjunto de constantes denotado por \mathcal{C} .

Definição 130: O alfabeto A_L induzido pelo tipo de linguagem L é o conjunto formado pelos seguintes símbolos:

- **a)** \bot , \land , \lor , \neg , \rightarrow e \leftrightarrow (os *conetivos proposicionais*);
- **b)** \exists e \forall , chamados *quantificador existencial* e *quantificador universal*, respetivamente;
- c) $x_0, x_1, ..., x_n, ...$, chamados *variáveis* (*de primeira ordem*), formando um conjunto numerável, denotado por \mathcal{V} ;
- d) "(", ")" e ",", chamados símbolos auxiliares;
- e) os símbolos de função e os símbolos de relação de *L* (que se assume serem distintos de todos os símbolos anteriores).

Exemplo 131:

A sequência de 8 símbolos

$$\exists x_0 \neg (x_0 = 0)$$

é uma palavra sobre o alfabeto $A_{L_{Arit}}$.

Mas, a sequência de 8 símbolos

$$\exists x_0 \neg (x_0 = 1)$$

não é uma palavra sobre $A_{L_{Arit}}$ (1 não é uma das letras do alfabeto $A_{L_{Arit}}$).

Definição 132: O conjunto \mathcal{T}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- **a)** para todo $x \in \mathcal{V}$, $x \in \mathcal{T}_L$;
- **b)** para toda a constante c de L, $c \in \mathcal{T}_L$;
- **c)** para todo o símbolo de função f de L, de aridade $n \ge 1$,

$$t_1 \in \mathcal{T}_L$$
 e ... e $t_n \in \mathcal{T}_L \implies f(t_1, ..., t_n) \in \mathcal{T}_L$, para todo $t_1, ..., t_n \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{T}_L chamaremos termos de tipo L ou, abreviadamente, L-termos.

Exemplo 133:

1 As seguintes 6 palavras sobre $A_{L_{Arit}}$ são termos de tipo L_{Arit} :

$$x_1, x_2, 0, s(0), \times (x_1, x_2), +(\times (x_1, x_2), s(0)).$$

Lida como uma sequência de palavras sobre $\mathcal{A}_{L_{Arit}}$, esta sequência constitui uma sequência de formação de $+(\times(x_1,x_2),s(0))$.

- 2 As palavras sobre $A_{L_{Arit}} = (0, x_1)$ e $< (0, x_1)$ (ambas de comprimento 6) não são L_{Arit} -termos.
 - Apesar de = e < serem símbolos de aridade 2 e de 0 e x_1 serem dois L_{Arit} -termos, = e < são símbolos de relação e não símbolos de função, como exigido na condição **c**) da definição anterior.
 - Estas duas palavras são exemplos do que adiante designaremos por *fórmulas atómicas*.

Exemplo 133 (cont.):

3 As seguintes palavras sobre $A_{L_{grupo}}$ são termos de tipo L_{grupo} (e lidas em sequência constituem uma sequência de formação da última palavra):

$$x_1, x_2, 1, {}^{-1}(x_1), \cdot (x_2, 1), \cdot (\cdot (x_2, 1), {}^{-1}(x_1)).$$

4 O conjunto dos termos de tipo L_{cpo} é o conjunto das variáveis V.

Exemplo 134:

Seja L_0 o tipo de linguagem $(\{c, f_1, f_2\}, \{R_1, R_2\}, \mathcal{N})$, onde $\mathcal{N}(c) = 0$, $\mathcal{N}(f_1) = 1$, $\mathcal{N}(f_2) = 2$, $\mathcal{N}(R_1) = 1$ e $\mathcal{N}(R_2) = 2$.

As seguintes quatro palavras sobre A_{L_0} são L_0 -termos (e constituem uma sequência de formação do último termo):

$$c, x_1, f_2(c, x_1), f_1(f_2(c, x_1)).$$

Notação 135:

Quando f é um símbolo de função binário e $t_1, t_2 \in \mathcal{T}_L$, utilizamos a notação $t_1 f$ t_2 , possivelmente entre parênteses, para representar o L-termo $f(t_1, t_2)$.

Por exemplo, a notação $(x_1 \times x_2) + s(0)$ representará o L_{Arit} -termo $+(\times(x_1,x_2),s(0))$.

No contexto do tipo de linguagem L_{grupo} , termos da forma $^{-1}(t)$ serão, normalmente, denotados por t^{-1} ou $(t)^{-1}$.

Por exemplo, $x_1 \cdot x_1^{-1}$ denotará o L_{grupo} -termo $\cdot (x_1, ^{-1}(x_1))$.

Teorema 136 (Indução Estrutural em *L*-Termos):

Seja P(t) uma condição sobre um L-termo t.

Se:

- **a)** para todo $x \in \mathcal{V}$, P(x);
- **b)** para todo $c \in C$, P(c);
- c) para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1, ..., t_n \in \mathcal{T}_L$, $P(t_1)$ e ... e $P(t_n) \implies P(f(t_1, ..., t_n))$;

então para todo $t \in \mathcal{T}_L$, P(t).

Dem.: Exercício.

Observação 137:

A definição indutiva do conjunto dos *L*-termos é determinista e tem associado um *princípio de recursão estrutural*, para definir funções cujo domínio é o conjunto dos *L*-termos.

Este princípio é usado nas três definições que se seguem.

Definição 138: O *conjunto das variáveis* que ocorrem num *L*-termo *t* é notado por *VAR*(*t*) e é definido, por recursão estrutural em *L*-termos, do seguinte modo:

- a) $VAR(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $VAR(c) = \emptyset$, para todo $c \in C$;
- **c)** $VAR(f(t_1,...,t_n)) = \bigcup_{i=1}^n VAR(t_i)$, para todo $f \in \mathcal{F}$, de aridade $n \geq 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 139:

O conjunto das variáveis que ocorrem no L_{Arit} -termo $x_2 + s(x_1)$ é:

$$VAR(x_2 + s(x_1))$$
= $VAR(x_2) \cup VAR(s(x_1))$
= $\{x_2\} \cup VAR(x_1)$
= $\{x_2, x_1\}.$

Definição 140: O *conjunto dos subtermos* de um L-termo t é notado por subt(t) e é definido, por recursão estrutural em L-termos, do seguinte modo:

- **a)** $subt(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $subt(c) = \{c\}$, para todo $c \in C$;
- **c)** $subt(f(t_1,...,t_n)) = \{f(t_1,...,t_n)\} \cup \bigcup_{i=1}^n subt(t_i), \text{ para todo } f \in \mathcal{F},$ de aridade $n \geq 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 141:

O conjunto dos subtermos do L_{Arit} -termo $(x_2 + s(x_1)) \times 0$ é:

$$\{x_2, x_1, s(x_1), x_2 + s(x_1), 0, (x_2 + s(x_1)) \times 0\}$$

Definição 142: A operação de *substituição* de uma variável x por um L-termo t num L-termo t' é notada por t'[t/x] e é definida por recursão estrutural (em t') do seguinte modo:

a)
$$y[t/x] = \begin{cases} t, & \text{se } y = x \\ y, & \text{se } y \neq x \end{cases}$$
, para todo $y \in \mathcal{V}$;

- **b)** c[t/x] = c, para todo $c \in C$;
- **c)** $f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x])$, para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 143:

1 O L_{Arit} -termo que resulta da substituição da variável x_1 pelo L_{Arit} -termo s(0) no L_{Arit} -termo $x_2 + s(x_1)$ é:

$$(x_2 + s(x_1))[s(0)/x_1]$$
= $x_2[s(0)/x_1] + s(x_1)[s(0)/x_1]$
= $x_2 + s(x_1[s(0)/x_1])$
= $x_2 + s(s(0))$

2
$$(x_2 + s(x_1))[s(0)/x_0] = x_2 + s(x_1)$$

(observe que $x_0 \notin VAR(x_2 + s(x_1))$).

Proposição 144: Sejam x uma variável e t_1 e t_2 L-termos.

Se $x \notin VAR(t_1)$, então $t_1[t_2/x] = t_1$.

Dem.: Por indução estrutural em t_1 . (Exercício.)

Definição 145: Uma palavra sobre o alfabeto induzido por *L* da forma

$$R(t_1,...,t_n),$$

onde R é um símbolo de relação n-ário e $t_1, ..., t_n$ são L-termos, é chamada uma *fórmula atómica de tipo* L ou, abreviadamente, uma L-*fórmula atómica*.

O conjunto das L-fórmulas atómicas é notado por At_L .

Exemplo 146:

1 As três palavras sobre $A_{L_{Arit}}$ que se seguem são fórmulas atómicas de tipo L_{Arit} :

$$=(0,x_1), <(0,x_1), =(+(0,x_1), \times(s(0),x_1)).$$

- 2 Já a palavra sobre $\mathcal{A}_{L_{Arit}} \times (0, x_1)$ não é uma L_{Arit} -fórmula atómica (note-se que \times é um símbolo de função e não um símbolo de relação; de facto, esta palavra é um L_{Arit} -termo).
- 3 As seguintes palavras sobre $A_{L_{grupo}}$ são fórmulas atómicas de tipo L_{grupo} :

$$= (x_0, x_1) e = (x_0 \cdot x_0^{-1}, 1).$$

4 As seguintes palavras sobre $A_{L_{cpo}}$ são fórmulas atómicas de tipo L_{cpo} :

$$= (x_0, x_1) e \le (x_0, x_0).$$

Notação 147:

Quando R é um símbolo de relação binário e $t_1, t_2 \in \mathcal{T}_L$, utilizamos a notação $t_1 R t_2$, possivelmente entre parênteses, para representar o L-fórmula atómica $R(t_1, t_2)$.

Por exemplo, a notação $x_0 < s(0)$ representará a L_{Arit} -fórmula atómica $< (x_0, s(0))$.

Definição 148: O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) $\varphi \in \mathcal{F}_L$, para toda a *L*-fórmula atómica φ ;
- **b)** $\perp \in \mathcal{F}_L$;
- **c)** $\varphi \in \mathcal{F}_L \implies (\neg \varphi) \in \mathcal{F}_L$, para todo $\varphi \in (\mathcal{A}_L)^*$;
- **d)** $\varphi \in \mathcal{F}_L$ e $\psi \in \mathcal{F}_L \implies (\varphi \Box \psi) \in \mathcal{F}_L$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in (\mathcal{A}_L)^*$;
- **e)** $\varphi \in \mathcal{F}_L \implies (Qx \varphi) \in \mathcal{F}_L$, para todo $Q \in \{\exists, \forall\}$, para todo $x \in \mathcal{V}$ e para todo $\varphi \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{F}_L chamaremos *fórmulas de tipo L* ou, abreviadamente, *L-fórmulas*.

Exemplo 149:

1 As seguintes palavras sobre $A_{L_{Arit}}$ são fórmulas de tipo L_{Arit} (fazendo uso das simplificações anteriormente mencionadas na representação de fórmulas atómicas):

$$(x_0 < s(0)),$$

 $(\neg(x_0 < s(0))),$
 $x_0 = x_1,$
 $((\neg(x_0 < s(0))) \rightarrow x_0 = x_1),$
 $(\exists x_1((\neg(x_0 < s(0))) \rightarrow x_0 = x_1)),$
 $(\forall x_0(\exists x_1((\neg(x_0 < s(0))) \rightarrow x_0 = x_1))).$

Lida como uma sequência de palavras sobre $\mathcal{A}_{L_{Arit}}$, esta sequência constitui uma sequência de formação de $(\forall x_0(\exists x_1((\neg(x_0 < s(0))) \rightarrow x_0 = x_1)))$.

Exemplo 149 (cont.):

- 2 $(\forall x_0(x_0 \leq x_0))$ é uma fórmula de tipo L_{cpo} .
- $\exists (\exists x_0(\forall x_1(x_0 \cdot x_1 = 1))) \text{ é uma fórmula de tipo } L_{grupo}.$

Exemplo 150:

Recordemos o tipo de linguagem L_0 do Exemplo 134: $L_0 = (\{c, f_1, f_2\}, \{R_1, R_2\}, \mathcal{N})$, onde $\mathcal{N}(c) = 0$, $\mathcal{N}(f_1) = 1$, $\mathcal{N}(f_2) = 2$, $\mathcal{N}(R_1) = 1$ e $\mathcal{N}(R_2) = 2$.

As seguintes quatro palavras sobre A_{L_0} são L_0 -fórmulas (e constituem uma sequência de formação da última fórmula):

$$R_1(x_1),$$

 $R_2(x_1, f_2(c, x_1)),$
 $(R_1(x_1) \rightarrow R_2(x_1, f_2(c, x_1))),$
 $(\forall x_1(R_1(x_1) \rightarrow R_2(x_1, f_2(c, x_1)))).$

Notação 151:

Os parênteses extremos e os parênteses à volta de negações ou de quantificadores são geralmente omitidos.

Por exemplo, a *L*_{Arit}-fórmula

$$(\forall x_0(\exists x_1((\neg(x_0 < s(0))) \to x_0 = x_1)))$$

pode ser abreviada por

$$\forall x_0 \exists x_1 (\neg (x_0 < s(0)) \to x_0 = x_1).$$

Teorema 152 (Indução Estrutural em *L*-Fórmulas):

Seja $P(\varphi)$ uma condição sobre uma L-fórmula φ . Se:

- **a)** $P(\psi)$, para toda a L-fórmula atómica ψ ;
- **b)** *P*(⊥);
- **c)** $P(\psi) \implies P(\neg \psi)$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $P(\psi_1)$ e $P(\psi_2) \Longrightarrow P(\psi_1 \square \psi_2)$, para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$
- **e)** $P(\psi) \implies P(Qx \psi)$, para todo $Q \in \{\exists, \forall\}, x \in \mathcal{V}, \psi \in \mathcal{F}_L$; então $P(\varphi)$, para todo $\varphi \in \mathcal{F}_L$.

Dem.: Exercício

Observação 153:

A definição indutiva do conjunto das *L*-fórmulas é determinista e tem associado um *princípio de recursão estrutural*, para definir funções cujo domínio é o conjunto das *L*-fórmulas.

Este princípio é usado na definição seguinte.

Definição 154: O conjunto das *subfórmulas* de uma *L*-fórmula φ é notado por $\textit{subf}(\varphi)$ e é definido, por recursão estrutural, do seguinte modo:

- a) $subf(\psi) = \{\psi\}$, para todo $\psi \in At_L$;
- **b)** $subf(\bot) = \{\bot\};$
- **c)** $subf(\neg \psi) = subf(\psi) \cup \{\neg \psi\}$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $subf(\psi_1 \Box \psi_2) = subf(\psi_1) \cup subf(\psi_2) \cup \{\psi_1 \Box \psi_2\}$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \psi_1, \psi_2 \in \mathcal{F}_L;$
- e) $subf(Qx \psi) = subf(\psi) \cup \{Qx \psi\}$, para todo $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$, $\psi \in \mathcal{F}_L$.

Definição 155: Seja φ uma L-fórmula e seja $Qx \psi$ uma subfórmula de φ , onde $Q \in \{\exists, \forall\}, x \in \mathcal{V} \text{ e } \psi \in \mathcal{F}_L$. O *alcance* desta ocorrência do quantificador Qx em φ é a L-fórmula ψ .

Exemplo 156: Na *L_{Arit}*-fórmula

$$\forall x_0(\exists x_1(x_0 = s(x_1)) \rightarrow (\neg(x_0 = 0) \land \exists x_1(x_1 < x_0))) :$$

f 1 o alcance da única ocorrência de $orall x_0$ é

$$\exists x_1(x_0 = s(x_1)) \rightarrow (\neg(x_0 = 0) \land \exists x_1(x_1 < x_0));$$

- o alcance da primeira ocorrência do quantificador $\exists x_1 \in x_0 = s(x_1)$;
- 3 o alcance da segunda ocorrência do quantificador $\exists x_1 \in x_1 < x_0$.

Definição 157:

Numa L-fórmula φ , uma ocorrência (em subfórmulas atómicas de φ) de uma variável x diz-se *livre* quando x não está no alcance de nenhuma ocorrência de um quantificador Qx (com $Q \in \{\exists, \forall\}$); caso contrário, essa ocorrência de x diz-se *ligada*.

Escrevemos $LIV(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências livres em φ e $LIG(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências ligadas em φ .

Exemplo 158:

Seja φ a L_{Arit} -fórmula

$$\exists x_1(\neg(\underbrace{x_0}_{(a)} < s(0)) \rightarrow \forall x_0(\underbrace{x_0}_{(b)} = \underbrace{x_1}_{(a)})).$$

A ocorrência (a) de x_0 é livre, enquanto que a ocorrência (b) de x_0 é ligada.

A ocorrência (a) de x_1 é ligada.

Assim, $LIV(\varphi) = \{x_0\}$ e $LIG(\varphi) = \{x_0, x_1\}$.

Observação 159:

Note-se que $LIV(\varphi) \cap LIG(\varphi)$ não é necessariamente o conjunto vazio (veja-se o exemplo anterior).

Definição 160: A operação de *substituição das ocorrências livres* de uma variável x por um L-termo t numa L-fórmula φ é notada por $\varphi[t/x]$ e é definida, por recursão estrutural em L-fórmulas, do seguinte modo:

- a) $R(t_1,...,t_n)[t/x] = R(t_1[t/x],...,t_n[t/x])$ para todo $R \in \mathcal{R}$, de aridade n, e para todo $t_1,...,t_n \in \mathcal{T}_L$;
- **b)** \perp [t/x] = \perp ;
- **c)** $(\neg \psi)[t/x] = \neg \psi[t/x]$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $(\psi_1 \Box \psi_2)[t/x] = \psi_1[t/x] \Box \psi_2[t/x],$ para todo $\Box \in \{\land, \lor, \to, \leftrightarrow\}, \ \psi_1, \psi_2 \in \mathcal{F}_L;$
- $\textbf{e)} \ \ (Qy \, \psi)[t/x] = \left\{ \begin{array}{ll} Qy \, \psi \ \ \text{se} \ \ y = x \\ \\ Qy \, \psi[t/x] \ \ \text{se} \ \ y \neq x \end{array} \right. \quad \text{, para todo}$ $Q \in \{\exists, \forall\}, \ y \in \mathcal{V}, \ \psi \in \mathcal{F}_L.$

Exemplo 161:

3

$$\begin{array}{ll} & (\exists x_0(x_0 < s(x_1)))[0/x_0] \\ &= \exists x_0(x_0 < s(x_1)) \end{array}$$
 (def. anterior **e**), 1° caso)

$$\begin{array}{ll} & (\exists x_0(x_0 < s(x_1)))[0/x_1] \\ = & \exists x_0(x_0 < s(x_1))[0/x_1] \\ = & \exists x_0(x_0 < s(0)) \end{array} \qquad \text{(def. anterior } \textbf{e}), \ 2^o \text{ caso)} \\ & \text{(def. anterior } \textbf{a}) \text{ e substituição elements}$$

$$\begin{array}{ll} \textbf{4} & (\exists x_0(x_0 < s(x_1)) \land (0 < x_0))[0/x_0] \\ &= & \exists x_0(x_0 < s(x_1)) \land 0 < 0 \end{array}$$
 (porquê?)

Exemplo 162: Seja φ a L_{Arit} -fórmula $\exists x_1(x_0 < x_1)$. Então,

$$\varphi[s(x_1)/x_0] = \exists x_1(s(x_1) < x_1).$$

Observe que em φ a ocorrência livre de x_0 "não depende" da quantificação $\exists x_1$, mas, após a substituição, o termo $s(x_1)$, que substituiu x_0 , "depende" da quantificação $\exists x_1$.¹

Na definição seguinte, identificaremos as condições que evitam este fenómeno indesejado de *captura de variáveis* em substituições.

(Esta noção de interpretação de fórmulas será tornada precisa na secção seguinte.)

 $^{^1}$ Note que tomando \mathbb{N}_0 como domínio de interpretação das variáveis e interpretando s como a função sucessor em \mathbb{N}_0 e < como a relação de igualdade em \mathbb{N}_0 , φ é verdadeira, enquanto $\varphi[s(x_1)/x_0]$ é falsa.

Definição 163: Sejam x uma variável, t um L-termo e φ uma L-fórmula. Diz-se que x é substituível (sem captura de variáveis) por t em φ ou que t é livre para x em φ quando para todas as ocorrências livres de x em φ no alcance de algum quantificador Qy, $y \notin VAR(t)$.

Observação 164: Se x é uma variável que não tem ocorrências livres numa L-formula φ ou t é um L-termo onde não ocorrem variáveis, x é substituível por t em φ .

Exemplo 165: Seja $\varphi = \forall x_1(x_1 < x_2) \lor \neg (x_1 < x_2)$. Então:

- a) x_0 é substituível por $x_1 + s(x_2)$ em φ , pois x_0 não tem ocorrências livres na fórmula;
- **b)** x_1 é substituível por $x_1 + s(x_2)$ em φ , pois a única ocorrência livre de x_1 não está no alcance de qualquer quantificador;
- c) x_2 não é substituível por $x_1 + s(x_2)$ em φ , pois x_2 tem uma ocorrência livre no alcance do quantificador $\forall x_1$ e $x_1 \in VAR(x_1 + s(x_2))$;
- **d)** x_2 é substituível por $x_0 + s(x_2)$ em φ , pois, embora exista uma ocorrência livre de x_2 no alcance do quantificador $\forall x_1$, $x_1 \notin VAR(x_0 + s(x_2))$.

Observação 166: Note-se que, mesmo quando uma variável x não é substituível por um L-termo t numa L-fórmula φ , a operação de substituição de x por t em φ encontra-se definida.

Por exemplo, x_2 não é substituível por $x_1 + s(x_2)$ em

$$\varphi = \forall x_1(x_1 < x_2) \vee \neg (x_1 < x_2));$$

a L_{Arit} -fórmula resultante da substituição de x_2 por $x_1+s(x_2)$ em φ encontra-se definida e é igual a

$$\forall x_1(x_1 < x_1 + s(x_2)) \lor \neg(x_1 < x_1 + s(x_2))),$$

no entanto, ao efetuar a substituição, acontece o fenómeno da captura de variáveis.

Proposição 167: Sejam φ uma L-fórmula, x uma variável e t um L-termo. Se $x \notin LIV(\varphi)$, então $\varphi[t/x] = \varphi$.

Dem.: Por indução estrutural em *L*-fórmulas. A prova está organizada por casos, consoante a *forma* de φ .

a) Caso
$$\varphi = \bot$$
. Então, $\varphi[t/x] = \bot [t/x] \stackrel{\text{(1)}}{=} \bot = \varphi$.

Justificações

(1) Definição de substituição.

b) Caso $\varphi = R(t_1, ..., t_n)$, com $R \in \mathcal{R}$, n-ário, e $t_1, ..., t_n \in \mathcal{T}_L$. Então, $x \notin VAR(t_i)$, para todo 1 < i < n, de outra forma teríamos $x \in LIV(\varphi)$, e contrariaríamos a hipótese. Assim, aplicando a Proposição 144, $t_i[t/x] = t_i$, para todo 1 < i < n. Logo:

$$\varphi[t/x] = R(t_1,...,t_n)[t/x] \stackrel{\text{(1)}}{=} R(t_1[t/x],...,t_n[t/x]) \stackrel{\text{(2)}}{=} R(t_1,...,t_n) = \varphi.$$

Justificações

- (1) Definição de substituição. (2) $t_i[t/x] = t_i$, para todo $1 \le i \le n$.

Sintaxe

c) Caso $\varphi = Qy \varphi_1$, com $Q \in \{\exists, \forall\}$, $y \in \mathcal{V}$ e $\varphi_1 \in \mathcal{F}_L$. c.1) Caso x = y. Então:

$$\varphi[t/x] = (Qy \varphi_1)[t/x] \stackrel{\text{(1)}}{=} Qy \varphi_1 = \varphi.$$

Justificações

(1) Definição de substituição.

c.2) Caso $x \neq y$. Então:

$$\varphi[t/x] = (Qy \varphi_1)[t/x] \stackrel{\text{(1)}}{=} Qy \varphi_1[t/x] \stackrel{\text{(2)}}{=} Qy \varphi_1 = \varphi.$$

Justificações

- (1) Definição de substituição.
- (2) Por hipótese, $x \notin LIV(\varphi)$. Como $LIV(\varphi_1) \subseteq LIV(\varphi) \cup \{y\}$ e $x \neq y$, segue que $x \notin LIV(\varphi_1)$. Logo, por H.I., $\varphi_1[t/x] = \varphi_1$.
- d) Os restantes casos são deixados como exercício.

Definição 168: Uma *L*-fórmula φ diz-se uma *sentença de tipo L* ou uma *fórmula fechada de tipo L* (abreviadamente, uma *L-sentença* ou uma *L-fórmula fechada*), quando $LIV(\varphi) = \emptyset$.

Proposição 169: Seja φ uma L-sentença. Então, para toda a variável x e para todo o L-termo t,

- **11** x é substituível por t em φ ;
- $\varphi[t/x] = \varphi.$

Dem.: Exercício.

