实验二 基尔霍夫定律的验证

南开大学电子信息实验教学中心 2019年春季学期

一、实验目的

1、通过实验验证基尔霍夫电流定律和电压定律;

2、加深理解"节点电流代数和"及"回路电压代数和"的概念。

3、加深对参考方向概念的理解。

二、实验原理

测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。即对电路中的任一个节点而言,应有 Σ I=0;对任何一个闭合回路而言,应有 Σ U=0。

运用上述定律时必须注意各支路电流或闭合回路的正方向,此方向可预先任意设定。

当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。

三、实验内容

实验电路如图所示,E1连接+12V直流稳压电源;E2连接0-30V可调直流稳压电源,旋动旋钮使电源电压调至+6V。

三、实验内容

- 2. 设支路AB上的电流为 I_1 ,支路BC上的电流为 I_2 ,支路BD上的电流为 I_3 。请同学们自行思考,如何连接电源、直流电流表和直流电压表,能够实现以下的实验要求。要求自主连接电路,完成测量并将实验数据填入表1中。
- ①分别在 E_1 、 E_2 单独作用和 E_1 、 E_2 共同作用时,测量电流 I_1 、 I_2 、 I_3 的值。
- ②分别在 E_1 、 E_2 单独作用和 E_1 、 E_2 共同作用时,测量电压 U_{AB} 、 U_{BC} 和 U_{BD} 的值。
- ③将 E_1 、 E_2 正负颠倒接入电路,再分别测量电流 I_1 、 I_2 、 I_3 的值,测量电压 U_{AB} 、 U_{BC} 和 U_{BD} 的值。

四、实验结果

测量项目	$E_I(V)$	$E_2(V)$	$I_I(\mathrm{mA})$	I_2 (mA)	I_3 (mA)	$U_{AB}(V)$	$U_{BC}(V)$	$U_{BD}(V)$
E _I 单独作用								
E ₂ 单独作用								
E ₁ 、E ₂ 共同作用								
<i>E₁、E₂</i> 正负颠倒后 共同作用								

分析实验结果,是否能够验证基尔霍夫定律,并详细说明。

四、注意事项

- 1. 在进行实验操作之前,建议先规定电路的参考方向,并计算出实验电路中待测的各个参数的理论值,以便在实验测量时,可正确的选定电压表和电流表的量程,同时,也可以在出现问题时(如电路连接错误等)迅速分析并纠正。
- 2. 测量各支路电流时,应注意仪表的极性,及数据表格中"十、一"号的记录。
- 3. 在实验过程中,直流电压源的输出电压值应用电压表测量。稳压电源指示的数值可能与电压表的测量值存在误差,可作为参考值,电源的电压以电压表的测量值为准。

五、思考题

1. 根据实验数据进行分析,具体说明是否能够验证基尔霍夫定理。

THE END

