

LCS de Permutations

Pour deux séquences x et y, on définit LCS(x,y) comme la longueur de leur plus longue sous-séquence commune.

On vous donne 4 entiers n,a,b,c. Déterminez s'il existe 3 permutations p,q,r des entiers de 1 à n, telles que :

- LCS(p,q) = a
- LCS(p,r) = b
- LCS(q,r) = c

Si de telles permutations existent, trouvez n'importe quel triplet de permutations qui respecte ces contraintes.

Une permutation p des entiers de 1 à n est une séquence de taille n telle que tous ses éléments sont des entiers distincts dans l'intervalle [1,n]. Par exemple, (2,4,3,5,1) est une permutation des entiers de 1 à 5, tandis que (1,2,1,3,5) et (1,2,3,4,6) n'en sont pas.

Une séquence c est une sous-séquence d'une séquence d si c peut être obtenue depuis d par la suppression d'un certain nombre de ses éléments (possiblement zéro ou tous). Par exemple, (1,3,5) est une sous-séquence de (1,2,3,4,5) tandis que (3,1) n'en est pas une.

La plus longue sous-séquence commune de deux séquences x et y est la plus longue séquence z qui est une sous-séquence à la fois de x et de y. Par exemple, la plus longue sous-séquence des séquences x=(1,3,2,4,5) et y=(5,2,3,4,1) est z=(2,4) puisque c'est une sous-séquence des deux séquences, et que c'est la plus longue parmi celles qui vérifient cette dernière condition. LCS(x,y) est la longueur de la plus longue sous-séquence commune, qui vaut z dans l'exemple ci-dessus.

Entrée

La première ligne contient un unique entier t ($1 \le t \le 10^5$) - le nombre de tests. La description des tests suit.

L'unique ligne de chaque test contient 5 entiers n,a,b,c,output ($1 \le a \le b \le c \le n \le 2 \cdot 10^5$, $0 \le output \le 1$).

Si output=0, vous devez uniquement déterminer si de telles permutations existent. Si output=1, vous devez aussi trouver un tel triplet de permutations s'il existe.

Il est garanti que la somme des n sur tous les tests ne dépasse pas $2 \cdot 10^5$.

Sortie

Pour chaque test, sur la première ligne, affichez "YES", si de telles permutations p,q,r existent, ou "NO" dans le cas contraire. Si output=1, et si de telles permutations existent, affichez trois lignes supplémentaires :

Sur la première ligne, affichez n entiers p_1, p_2, \ldots, p_n - les éléments de la permutation p.

Sur la deuxième ligne, affichez n entiers q_1, q_2, \ldots, q_n - les éléments de la permutation q.

Sur la troisième ligne, affichez n entiers r_1, r_2, \ldots, r_n - les éléments de la permutation r.

S'il y a plusieurs triplets valides, affichez n'importe lequel d'entre eux.

Vous pouvez afficher chaque lettre dans n'importe quelle casse (par exemple, "YES", "Yes", "yes", "yEs", "yEs" seront reconnues comme des réponses positives).

Exemple

Entrée:

```
      8

      1 1 1 1 1

      4 2 3 4 1

      6 4 5 5 1

      7 1 2 3 1

      1 1 1 0

      4 2 3 4 0

      6 4 5 5 0

      7 1 2 3 0
```

Sortie:

```
YES

1

1

1

NO

YES

1 3 5 2 6 4

3 1 5 2 4 6

1 3 5 2 4 6

NO

YES

NO

YES

NO
```

Commentaires

Dans le premier test, LCS((1),(1)) vaut 1.

Dans le deuxième test, on peut démontrer qu'il n'existe pas de telles permutations.

Dans le troisième test, l'un des exemples valides est p=(1,3,5,2,6,4), q=(3,1,5,2,4,6), r=(1,3,5,2,4,6). Il est facile de voir que :

- LCS(p,q)=4 (l'une des plus longues sous-séquences communes est (1,5,2,6))
- LCS(p,r)=5 (l'une des plus longues sous-séquences communes est (1,3,5,2,4))
- LCS(q,r)=5 (l'une des plus longues sous-séquences communes est (3,5,2,4,6))

Dans le quatrième test, on peut démontrer qu'il n'existe pas de telles permutations.

Score

```
1. (3 points) : a=b=1, c=n, output=1
2. (8 points) : n \leq 6, output=1
3. (10 points) : c=n, output=1
4. (17 points) : a=1, output=1
5. (22 points) : output=0
6. (40 points) : output=1
```