

F(o,r,m,a,l,e) L(o,g,i,k)
Eine sehr kurze und unvollständige
Einführung

Entwicklung der modernen Logik seit Ende des 19. Jahrhunderts

- ► Begriffsschrift Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879)
 - Prädikatenlogik (höherer Stufe) als formale Sprache

Natürliche Sprache

Formale Logik

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebtFussball(X)$

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebtFussball(X)$

Theorem: *liebtFussball(max)*

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

```
istKlein(max) ∧ istJunge(max)
istKindVon(max, christoph)
∀X. istJunge(X) ⊃ liebtFussball(X)
Theorem: liebtFussball(max)
```

Logische Konnektive

(weitere Konnektive: \neg , \lor , \equiv , \exists , =)

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebhFusspall(X)$

Theorem: liebtFussball(max)

Logische Konnektive Individuensymbole

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Logische Konnektive Individuensymbole Prädikaten- und Relationensymbole

Formale Logik

istKlein(max) ∧ istJunge(max)
istKlindVon(max, christoph)
∀X, istJunge(X) ⊃ liehtFussball(X)

Theorem: liebtFussball(max)

Formaler Kalkül (System abstrakter Regeln)

Kalkül des Natürlichen Schliessens — Gerhard Gentzen (1909-1945)

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebtFussball(X)$

Theorem: *liebtFussball(max)*

Formaler Beweis

 $istKlein(max) \land istJunge(max)$

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebtFussball(X)$

Theorem: *liebtFussball(max)*

Formaler Beweis

istKlein(max) ∧ istJunge(max)
istJunge(max)

Natürliche Sprache

Formale Logik

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

istKlein(max) ∧ istJunge(max)
istKindVon(max, christoph)
∀X. istJunge(X) ⊃ liebtFussball(X)

Frage: Liebt Max Fussball?

Theorem: *liebtFussball(max)*

Formaler Beweis

 $\frac{istKlein(max) \land istJunge(max)}{istJunge(max)}$

 $\forall X. istJunge(X) \supset liebtFussball(X)$

Natürliche Sprache

Formale Logik

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

istKlein(max) ∧ istJunge(max)
istKindVon(max, christoph)
∀X. istJunge(X) ⊃ liebtFussball(X)

Frage: Liebt Max Fussball?

Theorem: *liebtFussball(max)*

Formaler Beweis

$$istKlein(max) \land istJunge(max)$$

 $\forall X.\, istJunge(X) \supset liebtFussball(X)$

istJunge(max)

 $istJunge(max) \supset liebtFussball(max)$

Natür	liche S	prache

Formale Logik

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

istKlein(max) ∧ istJunge(max)
istKindVon(max, christoph)
∀X. istJunge(X) ⊃ liebtFussball(X)

Frage: Liebt Max Fussball?

Theorem: *liebtFussball(max)*

Formaler Beweis

liebtFussball(max)

► Aussagenlogik

► Logik erster Stufe

► Logik höherer Stufe

► Modallogik

- \land (regnet \land kalt \supset glatteStrasse)
- ⊃ glatteStrasse

- $\land \forall X.istJunge(X) \supset liebtFussball(X)$
- ⊃ liebtFussball(max)

$$istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$$

 $\exists X.istGott(X)$

 $\square \exists X.istGott(X)$

 $\Diamond \exists X.istGott(X)$

► Aussagenlogik

regnet \land kalt \land (regnet \land kalt \supset glatteStrasse) \supset glatteStrasse

Logik erster Stufe

istfunge(max) \land $\lor X.istfunge(X) \supset liebtFussball(X)$ \supset liebtFussball(max)Logik höherer Stufe

istGott(X) $\equiv \forall \phi.positiv(\phi) \supset \phi(X)$

► Modallogik

 $\exists X.istGott(X)$ $\exists X.istGott(X)$ $\Diamond \exists X.istGott(X)$

Elementare Aussagen (Wahr oder Falsch)

Aussagenlogik

- regnet ∧ kalt
- $(regnet \land kalt \supset glatteStrasse)$
- glatteStrasse

Logik erster Stufe

- *istJunge(max)*
- $\forall X.$ istJunge(X) \supset liebtFussball(X)
- liebtFussball(max)

Logik höherer Stufe

 $istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$

Modallogik

 $\exists X.istGott(X)$

 $\square \exists X.istGott(X)$

 $\Diamond \exists X.istGott(X)$

Individuum Prädikat

Allaussage (Individuen)

Aussagenlogik

- regnet \land kalt
- \land (regnet \land kalt \supset glatteStrasse)
- ⊃ glatteStrasse

► Logik erster Stufe

- istJunge(max)
- $\land \forall X.istJunge(X) \supset liebtFussball(X)$
- ⊃ li¢btFussball(max)

Logik höherer Stufe

 $istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$

► Modallogik

 $\exists X.istGott(X)$ $\Box \exists X.istGott(X)$

□\X.1stGott(X

 $\Diamond \exists X.istGott(X)$

Prädikat

Individuum

Allaussage (Individuen)

Aussagenlogik

- regnet ∧ kalt
- \land (regnet \land kalt \supset glatteStrasse)
- \supset glatteStrasse

Logik erster Stufe

- istJunge(max)
- $\land \forall X.istJunge(X) \supset liebtFussball(X)$
- ⊃ liebtFussball(max)

► Logik höherer Stufe

$$istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$$

► Modallogik

 \Box X.istGott(X) \Diamond \exists X.istGott(X)

Funktionen/Prädikate: in Allaussage, als Argument

► Aussagenlogik

► Logik erster Stufe

Logik höherer Stufe

► Modallogik

$$regnet \land kalt$$

- $\land (regnet \land kalt \supset glatteStrasse)$
- ⊃ glatteStrasse

- $\land \forall X.istJunge(X) \supset liebtFussball(X)$
 - ⊃ liebtFussball(max)

$$istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$$

 $\exists X.istGott(X)$

 $\square \exists X.istGott(X)$

 $\Diamond \exists X.istGott(X)$

Möglicherweise gilt ...

► Aussagenlogik

► Logik erster Stufe

► Logik höherer Stufe

► Modallogik

$$regnet \land kalt$$

- \land (regnet \land kalt \supset glatteStrasse)
- ⊃ glatteStrasse

- $\land \quad \forall X.istJunge(X) \supset liebtFussball(X)$
- ⊃ liebtFussball(max)

$$istGott(X) \equiv \forall \phi.positiv(\phi) \supset \phi(X)$$

```
\exists X.istGott(X)
\Box \exists X.istGott(X)
\Diamond \exists X.istGott(X)
```

Notwendigerweise gilt ...

Theorembeweiser

Bild: Jörg Siekmann

Demo: Theorembeweiser

Natürliche Sprache

Max ist ein kleiner Junge. Er ist ein Kind von Christoph. Alle Jungen mögen Fussball.

Frage: Liebt Max Fussball?

Formale Logik

 $istKlein(max) \land istJunge(max)$ istKindVon(max, christoph) $\forall X. istJunge(X) \supset liebtFussball(X)$

Theorem: liebtFussball(max)

Eingabe an Theorembeweiser (http://www.tptp.org)

```
fof(a1,axiom, istKlein(max) & istJunge(max) ).
fof(a2,axiom,( istKindVon(max,christoph) )).
fof(a3,axiom,( ![X]:(istJunge(X) => liebtFussball(X)) )).
fof(c,conjecture,( liebtFussball(max) )).
```