CIS 575: Introduction to Algorithm Analysis, Exam I

February 22, 2017, 2:30-3:20pm

General Notes

- You can have one sheet (each side may be used) of notes, but no other material and no use of laptops or other computing devices.
- If you believe there is an error or ambiguity in any question, mention that in your answer, and *state your assumptions*.
- Please write your name on this page.

Good Luck!

NAME:

1. Asymptotic Behavior, 20p.

In this question, you are asked to compare pairs of functions, and for each pair (f,g), and each $X\in\{O,\Omega,\Theta,o,\omega\}$, say whether $f\in X(g)$ or not. The first entry has been given, reflecting that $n^2\in O(n^3)$ and even $n^2\in o(n^3)$.

f	g	O	Ω	Θ	o	$\mid \omega \mid$
n^2	n^3	YES	NO	NO	YES	NO
\sqrt{n}	$\lg(n)$					
$n \lg(n)$	$n \ln(n)$					
n^3	2^n					
$\lg(n^2)$	$\lg(n)$					
$\lg(n!)$	$n \lg(n)$					

2. Algorithm Correctness, 25p. Consider the (yet incomplete) algorithm

Precondition: x, y are integers with $x \ge 0$ and y > 0 **Postcondition:** returns q, r such that $x = q \cdot y + r$ and $y > r \ge 0$

$$\begin{array}{l} \text{Modulo}(x,y) \\ q,r \leftarrow 0,\underline{\hspace{1cm}} \\ // \text{ Invariant: } x = q \cdot y + r \text{ and } r \geq 0 \\ \textbf{while} \underline{\hspace{1cm}} \\ q,r \leftarrow q+1,\underline{\hspace{1cm}} \\ \textbf{return } q,r \end{array}$$

Fill in the 3 missing expressions in the above algorithm, so that

- 1. the invariant is established by the initial assignments;
- 2. the invariant is maintained by the loop body;
- 3. the loop test eventually becomes false and then the invariant implies the postcondition.

You are *not* asked to prove that your answers make the 3 conditions hold.

3. Analyzing Recursive Algorithms, 35p. Consider the two programs

$$\begin{aligned} & \text{FUNSORT}(A[1..n]) \\ & \text{if } n > 1 \\ & m \leftarrow \lfloor n/2 \rfloor \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & \text{for } j \leftarrow m+1 \text{ to } n \\ & \text{if } A[j] < A[i] \\ & A[i] \leftrightarrow A[j] \\ & \text{FUNSORT}(A[1..m]) \\ & \text{FUNSORT}(A[m+1..n]) \end{aligned} \qquad \begin{aligned} & \text{WRONGSORT}(A[1..n]) \\ & \text{if } n > 1 \\ & m \leftarrow \lfloor n/2 \rfloor \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & \text{if } A[i+m] < A[i] \\ & A[i] \leftrightarrow A[i+m] \end{aligned}$$

(a, 20p). For each program, write a recurrence for its running time. (You do not need to argue for it.)

$$T(n) \in T(n) \in$$

(b, 15p). Use the Master Theorem (listed on the bottom) to solve the above recurrences, so as to express the running time in the form $\Theta(f(n))$ with f as simple as possible.

Master Theorem (one version). Given the recurrence

$$T(n) = aT(n/b) + f(n)$$
 for $n > n_0$

with a an integer and with b > 1 a real number, $\lfloor \rfloor$ or $\lceil \rceil$ around n/b, and T eventually non-decreasing. With $r = \lg_b a$, solutions are as follows:

- 1. if $f(n) \in X(n^r)$ then $T(n) \in X(n^r \lg n)$ $(X \in \{O, \Omega, \Theta\})$.
- 2. if $f(n) \in X(n^q)$ with q > r then $T \in X(n^q)$ $(X \in \{O, \Omega, \Theta\})$.
- 3. if $f(n) \in O(n^q)$ with q < r then $T \in \Theta(n^r)$.

4. Properties of asymptotic notation, 20p. Below is a proof of the result:

if
$$f(n) \in O(n^3)$$
 and $g(n) \in \Omega(n)$ then $h(n) \in O(n^2)$
where $h(n) = \frac{f(n)}{g(n)}$ (whenever $g(n) > 0$).

Your task is to fill in the missing parts.

Begin Proof. By assumption, there exists $n_1 \geq 0$ and $c_1 > 0$ such that for $n \geq n_1$ we have

$$f(n) \leq \underline{\hspace{1cm}}$$

and there exists $n_2 \geq 0$ and $c_2 > 0$ such that for $n \geq n_2$ we have

$$g(n)$$
_____.

We infer that for $n \ge \max(\underline{})$ and $c = \underline{}$ we have the calculation

$$h(n) = \frac{f(n)}{g(n)} - \frac{c_1 n^3}{c_2 n} = cn^2$$

which does show $h(n) \in O(n^2)$. End Proof.