Assignment-11

Satyam Singh EE20MTECH14015

Abstract—This assignment deals with vector sub spaces.

Download tex file from

https://github.com/satyam463/Assignment-11/blob/main/Assignment%2011.tex

1 Problem Statement

Let W_1 and W_2 be sub spaces of a vector space V such that the set-theoretic union of W_1 and W_2 is also a sub space. Prove that one of the spaces W_i is contained in the other.

2 Solution

Since W_1 and W_2 are sub spaces of a vector space V then we have $W_1 \cup W_2$ is sub spaces of a vector space V. Suppose

$$\mathbf{W_1} \not\subseteq \mathbf{W_2}, \mathbf{W_2} \not\subseteq \mathbf{W_1}$$
 (2.0.1)

$$\exists u, v \in \mathbf{V}, u \in \mathbf{W_1} \setminus \mathbf{W_2}, v \in \mathbf{W_2} \setminus \mathbf{W_1}$$
 (2.0.2)

1)

$$u, v \in \mathbf{W_1} \cup \mathbf{W_2} \implies u + v \in \mathbf{W_1} \cup \mathbf{W_2}$$
(2.0.3)

2)

$$u + v \in \mathbf{W_1}, (-u) + (u + v) \in \mathbf{W_1} \implies v \in \mathbf{W_1}$$

$$(2.0.4)$$

3)

$$u + v \in \mathbf{W_2}, (u + v) + (-v) \in \mathbf{W_2} \implies u \in \mathbf{W_2}$$

$$(2.0.5)$$

2.0.4 and 2.0.5 which contradicts the assumption.Hence $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

1