HW2

id: r12922192

name: 邱冠珅

Q1: Model

Model:

Describe the model architecture and how it works on text summarization.

Architecture:

I am using the multilingual T5-small model (MT5-small) with 77 million parameters. The architecture of MT5 is based on T5.1.1, which is a vanilla encoder-decoder transformer with 8 encoder layers and 8 decoder layers. It was pretrained on the C4 dataset and uses the Gated GELU (GEGLU) activation function instead of ReLU. Dropout was disabled during pretraining and is enabled when I am training the model.

Architecture from: <u>The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time. (jalammar.github.io)</u>

• Text summarization:

The T5 paper mentions that they approach every task as a "text-to-text" mission and conduct pretraining on C4 datasets. Text summarization can also be viewed as a text-to-text mission, which is why mT5 is naturally capable of performing text summarization tasks.

from: [1910.10683] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (arxiv.org)

Preprocessing:

Describe your preprocessing (e.g. tokenization, data cleaning and etc.)

tokenization

I use the T5TokenizerFast tokenizer, which utilizes SentencePiece to split the sentence using the Unigram algorithm and truncates the input to a length of 256 and the output to 64.

data cleaning

Before training, I replaced '\n' with a space and removed unknown symbols from the input, such as ∞ , $\overset{}{\longleftarrow}$, $\overset{}{\leadsto}$, $\overset{}{\Longrightarrow}$, \overset

Q2: Training

Hyperparameter:

Describe your hyperparameter you use and how you decide it.

```
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2 \
--max_source_length 256 \
--max_target_length 64 \
--lr_scheduler_type linear \
--learning_rate 1e-4 \
--optimizer torch.optim.AdamW \
--weight_decay 5e-5 \
--num_beams 2 \
--num_train_epochs 50 \

#To achieve the public baseline, use this hyperparameter set.
#Test on higher learning rates and lower learning rates,
#and performance is the best at 1e-4.

#Set the batch size to 8*2;
#using other settings such as 4*4 for training requires more time.
```

#For other hyperparameters, follow the TA's suggestions and use the default settings."

Learning Curves:

Plot the learning curves (ROUGE on public set versus training steps) (all unit is f1 score*100)

• rouge-1

• rouge-2

• rouge-L

• training loss

Q3: Generation Strategies

Strategies:

Describe the detail of the following generation strategies.

Greedy

Greedy search refers to the strategy of selecting the next word at each time step based on probability, choosing the word with the highest probability.

Beam Search

The most significant issue with Greedy Search is that it only considers the current high-probability word, ignoring high-probability words that might come after low-probability words. Beam Search solves this issue by not only choosing one word with the highest probability but also remembering the next n-1 highest probability words at every step. It then selects the sentence with the highest probability among these n sentences.

· Top-k Sampling

Selecting the top-k words with the highest probabilities, forming a subset of these words, and then normalizing the probabilities within this subset. Subsequently, sampling from the renormalized probability distribution within this subset of words.

Top-p Sampling

Unlike the approach of top-k, which directly discards low probability vocabulary, top-p sampling utilizes cumulative probabilities. In other words, its samples from the vocabulary where the cumulative probability exceeds a certain threshold p. In simple terms, by adjusting the parameter p (0<=p<=1), Top-P Sampling increases the likelihood of generating words with lower occurrence probabilities.

• Temperature

Temperature sampling calculate the probability distribution for each candidate word, then divide these probability values by a parameter called "temperature." Then, input them into the SoftMax to compute a new probability distribution, and select a word from it.

Hyperparameters:

Try at least 2 settings of each strategies and compare the result.
 all scores are f1 standard.

```
Top_k Sampling: num_beams = 1, top_p = 1.0, temperature = 1.0

Top_p Sampling: num_beams = 1, top_k = 50, temperature = 1.0

Temperature Sampling: num_beams = 1, top_k = 50, top_p = 1.0
```

strategy	rouge-1	rouge-2	rouge-L
greedy(beams = 1)	25.508	09.498	22.685
beam search(beams = 2)	26.364	10.294	23.545
beam search(beams = 3)	26.636	10.609	23.809
beam search(beams = 4)	26.681	10.677	23.864
beam search(beams = 5)	26.747	10.734	23.942
beam search(beams = 7)	26.838	10.826	23.975
beam search(beams = 10)	26.877	10.847	23.920
top k (top_k = 5)	23.898	08.263	21.022
top k (top_k = 10)	22.980	07.806	20.244
top k (top_k = 15)	22.395	07.691	19.721
top k (top_k = 25)	22.341	07.607	19.659
top k (top_k = 50)	21.047	07.005	18.624
top k (top_k = 75)	20.915	06.932	18.465
top k (top_k = 100)	20.722	06.891	18.180
top p (top_p = 0.1)	25.560	09.529	22.721
top p (top_p = 0.5)	24.687	09.055	21.894
top p (top_p = 0.7)	23.837	08.508	21.114
top p (top_p = 1.0)	21.419	07.074	18.835
top p (top_p = 5.0)	21.193	07.043	18.671
temperature (temperature = 0.5)	24.693	08.955	21.908
temperature (temperature = 1.0)	21.067	06.961	18.597
temperature (temperature = 2.0)	12.449	02.582	10.861
temperature (temperature =5.0)	05.558	00.226	04.783

What is your final generation strategy? (you can combine any of them)
 Choose beam sampling and num_beams = 7.