(1) Suppose f(x) is a continuous function as well as a pdf. We also assume that there is some number M > 0 so that

$$0 \le f(x) \le M$$
 for all $x \in \mathbb{R}$ and $f(x) = 0$ for all $|x| \ge M$.

Let $U_n \sim \text{Uniform}([-M, M])$ and $V_n \sim \text{Uniform}([0, M])$, $n \in \mathbb{N}$, all be independent. Setting n = 1 initially, we perform the following: If $V_n \leq f(U_n)$ we return the value U_n and stop; if not we increase n by one and repeat.

- (a) What is the distribution of the number of iterations n that we perform? With what parameter?
- (b) What is the pdf of the returned value U_n ?

Remark: This is a simple example of a rejection sampling algorithm.

- (2) Suppose X_1 , X_2 , and X_3 are independent and uniformly distributed on [0,1].
 - (a) What is the probability of the event $X_1 \leq X_2 \leq X_3$?
 - (b) What is the joint pdf of X_1 and X_2 conditioned on the event $X_1 \leq X_2$?
 - (c) What is the joint pdf of X_1 , X_2 , and X_3 conditioned on $X_1 \leq X_2 \leq X_3$?
 - (d) Find the PDF for the median of these three random variables.
- (3) Suppose $X \sim \text{Exponential}(\lambda = 1)$ and the law of Y is then defined via

$$f_{Y|X}(y|x) = xe^{-xy}1_{[0,\infty)}(y).$$

We may say that $Y \sim \text{Exponential}(x)$, conditioned on X = x.

- (a) What is the joint pdf of X and Y?
- (b) What is the marginal law of Y?
- (c) Find $\mathbb{E}(\frac{1}{1+Y})$ in two ways: via part (b) and via the law of total expectation.
- (d) What is the law of X conditioned on Y = y?
- (e) What is $\mathbb{E}(X|Y=y)$?
- (4) Let $T_1, T_2, T_3 \sim \text{Exponential}(\lambda)$ be independent and let

$$Y_1 = T_1$$
, $Y_2 = T_1 + T_2$, and $Y_3 = T_1 + T_2 + T_3$.

- (a) Determine the pdf of Y_2 given $Y_1 = y_1$.
- (b) Determine the pdf of Y_2 given $Y_1 = y_1$ and $Y_2 = y_2$, written $f_{Y_3|Y_2,Y_1}(y_3|y_2,y_1)$.
- (c) Deduce the joint pdf of Y_1 , Y_2 , and Y_3 .
- (d) Determine $f_{Y_1,Y_2|Y_3}(y_1,y_2|y_3)$.
- (5) Given a vector $\vec{\mu} \in \mathbb{R}^2$ and a 2×2 positive definite matrix Σ , we say that $(X_1, X_2) \sim N(\vec{\mu}, \Sigma)$ if they have joint pdf

$$f_{X_1,X_2}(\vec{x}) = [\det(2\pi\Sigma)]^{-1/2} \exp\{-\frac{1}{2}(\vec{x}-\vec{\mu})\cdot\Sigma^{-1}(\vec{x}-\vec{\mu})\}.$$

(a) For a fixed vector \vec{a} , find the mean and variance of the random variable

$$Z = \vec{a} \cdot \vec{X} = a_1 X_1 + a_2 X_2.$$

(b) Show that Z is normally distributed