

Fig. 1

Fig. 2

(1)	1.25 = $\pi \cdot 173 / 71$
(2)	1.249 = $2 + 10.152$
(3)	1.248 = $1.249 - 0.001.1721$
(4)	1.247 = $1.248 - 1.1753$
(5)	1.246 = $1.247 - 1.1751$
(6)	1.245 = $1.246 - 0.001.1731$
(7)	1.244 = $1.245 - 1.1735$
(8)	1.243 = $1.244 - 1.1731$
(9)	1.242 = $1.243 - 1.1735$
(10)	1.241 = $1.242 - 1.1731$
(11)	1.240 = $1.241 - 1.1731$
(12)	1.239 = $1.240 - 1.1731$
(13)	1.238 = $2 + 1.1731$
(14)	1.237 = $1.238 - 1.1731$
(15)	1.236 = $1.237 - 0.001.1731$
(16)	1.235 = $1.236 - 1.1731$
(17)	1.234 = $1.235 - 1.1731$
(18)	1.233 = $1.234 - 1.1731$
(19)	1.232 = $1.233 - 1.1731$
(20)	1.231 = $1.232 - 1.1731$
(21)	1.230 = $1.231 - 1.1731$
(22)	1.229 = $1.230 - 1.1731$
(23)	1.228 = $1.229 - 1.1731$
(24)	1.227 = $1.228 - 1.1731$
(25)	1.226 = 281
(26)	1.225 = $40.168 - 1.2421$
(27)	1.224 = $16 - 1.1731$
(28)	1.223 = $r.173 - 1.2309$
(29)	1.222 = $10 - 1.169$
(30)	1.221 = $1.222 - 1.1641$
(31)	1.220 = $-80 - 1.123$
(32)	1.219 = $1.220 - 1.1231$
(33)	1.218 = $1.219 - 1.1231$
(34)	1.217 = $1.218 - 1.1231$
(35)	1.216 = $1.217 - 1.1231$
(36)	1.215 = $1.216 - 1.1231$
(37)	1.214 = $1.215 - 1.1231$
(38)	1.213 = $1.214 - 1.1231$
(39)	1.212 = $1.213 - 1.1231$
(40)	1.211 = $1.212 - 1.1231$
(41)	1.210 = $1.211 - 1.1231$
(42)	1.209 = $16 - 1.1231$
(43)	1.208 = $1.209 - 1.1231$
(44)	1.207 = $1.208 - 1.1231$
(45)	1.206 = $1.207 - 1.1231$
(46)	1.205 = $1.206 - 1.1231$
(47)	1.204 = $1.205 - 1.1231$
(48)	1.203 = $1.204 - 1.1231$
(49)	1.202 = $r.173 - 1.2309$
(50)	1.201 = $1.202 - 1.1231$
(51)	1.200 = $-12 - 1.1231$
(52)	1.199 = $r.173 - 1.2309$
(53)	1.198 = $16 - 1.1721$
(54)	1.197 = $1.198 - 1.1665$
(55)	1.196 = $1.197 - 1.1665$
(56)	1.195 = $1.196 - 1.1665$
(57)	1.194 = 244
(58)	1.193 = $1.194 - 1.1665$
(59)	1.192 = $1.193 - 1.1665$
(60)	1.191 = $1.192 - 1.1665$
(61)	1.190 = $10.167 - 1.1549$
(62)	1.189 = $15 - 1.1415$
(63)	1.188 = $1.189 - 1.1223$
(64)	1.187 = $r.173 - 1.1334$
(65)	1.186 = $10 - 12.1711$
(66)	1.185 = $1.186 - 1.1273$
(67)	1.184 = $1.185 - 1.1273$
(68)	1.183 = $1.184 - 1.1273$
(69)	1.182 = $1.183 - 1.1273$
(70)	1.181 = $1.182 - 1.1273$
(71)	1.180 = $1.181 - 1.1273$

104

Fig. 3

Fig. 4(a)

Fig. 4(b)

Fig. 5

KEY:
 $Rd = +, -$
 $Gr = \div$
 $bl = *$
 pup = memory transaction

Common L-L mapping of Example mapped onto Affine with ASAPS schedule

Key:
$Rd = +,-$
$Gr = \div$
$bl = *$

Fig. 6(a)

Common LCS-G of Example mapped onto Perspective DAG with ASAP schedule

Fig. 7

Fig. 8

Fig. 9 (a)

Fig. 9 (b)

Fig. 10

Fig. 11

Figure 12: First Graph's edges arranged into a Bin Sequence

Graph number 2, Figure 13: The Second Graph

13(c)
Figure 14: The Second Graph arranged in a Modified Bin Sequence

Fig. 14

Fig:X Affine preloop common architecture after ASAP schedule

Figure 7: Perspective preloop common architecture after ASAP schedule

Note: Some multiplier and adder outputs also form outputs from the module.

Figure 2 Common architecture with multiplexers in delay paths to accommodate both affine and perspective instantiations.

Figure 12: Path based edge activation

~~Illustrative example for our scheduling algorithm~~

(A) This example demonstrates ~~the~~ initialization strategy. It describes how the CDFG is split into individual DFGs. Moreover, it also shows the various fields required for each node and edge.

A. Initial CDFG:

For the CDFG of Fig. 13x

B. Initialization of CDFG data structure and Branching tree *proceeds as follows:*

Var_indices: var[0] = D; var[1] = C; var[2] = K;

Assume number of processing elements of type = 1

Branching tree paths: DCK, DCK', DC'K, DC'K', D'CK, D'CK', D'C'K, D'C'K'

Branching tree paths not possible: D'CK, D'CK', D'C'K, D'C'K'

Removing K we get: D'C, D'C'

Final Branching tree paths: DCK, DCK', DC'K, DC'K', D'C, D'C'.

Tables XX and YY are the node and edge lists, respectively, for the CDFG of Fig. 13x. Figs. 14x - 19x are the individual Data Flow Graphs (DFGs) of the CDFG of Fig. 13x.

C. List of individual DFGs:

DFG[0] → DCK

Fig 14x

DFG[1] → DCK'

Fig. 15x

DFG[2] → DC'K

Fig. 16X

DFG[4] → D'C

Fig 18x

$DFG[5] \rightarrow D'C'$

Fig 19x

Figure 15: PCP Scheduling with Resource Dependencies in the Partial Path Region

2/1X
Figure 14: PCP based Scheduling2/2X
Figure 16: Branching Tree

23x
Figure 17: Influence of Reconfiguration time on Scheduling

Figure 18: Scheduled Process Charts with Resource and Data Dependency
24X

	Expression α	Expression β	Expression θ	Expression γ
Process A		0		
Process B		10		
.....				
.....				

	Expression α	Expression β	Expression θ	Expression γ
Process A		30		
Process B		40		
.....				
.....				

↓

and so on.

~~25X~~
Figure 19: Dynamic Entry Updates in the NSM and LSMS

Ali-1 Tool Set Overview

Ali-2 Constraints

Ali-3 Routing Architecture Overview

Ali-4 Multiple vs. Single Building Block

Ali-5 Overall Architecture

Ali-6 Switching

*Ali-7 Methodology**Ali-8 Control Flow Effect on Clusters*

	A	B	C	D	E	F
A	0	X	X	X	X	X
B	5	0	X	X	X	X
C	6	0	0	X	X	X
D	4	3	7	0	X	X
E	1	4	1	0	0	X
F	3	0	4	5	3	0

*Ali-9a Cost matrix**Ali-9b Pre-placement**Ali-10 Design Flow*

CLU = Configurable Logic Unit; LU = Logic Units; SN = Switching Network
CM = Configuration Memory; LSM = Logic Schedule Manager

Figure 21: The Internals of the Reconfigurable Unit

Fig 17x

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.