Analisi 1 Manuale di sopravvivenza Ingegneria Informatica

21 ottobre 2025

Indice

Ι	Concetti di base	3	
1	Derivate 1.1 Derivate fondamentali	3 3	
2	Integrali 2.1 Indefiniti 2.1.1 Pils	3 3 4	
3	Limiti notevoli	5	
4	4 Proprietà dei Logaritmi e delle potenze		
5	Fattoriali 5.0.1 Definizione base 5.0.2 Relazioni ricorsive 5.0.3 Fattoriale e coefficienti binomiali 5.0.4 Prodotti notevoli 5.0.5 Somma asintotica	5 5 5 5 6	
6	Circonferenza Goniometrica	6	
7	Ordini di infinito	6	
8	Sviluppi di Taylor con resto di Peano (MCLAURIN)	7	
II	I Studio di Funzione	7	
9	Studio di Funzione9.1 Dominio, simmetrie e segno9.1.1 Dominio9.1.2 Simmetrie9.2 Punti di accumulazione, limiti e asintoti9.3 Studio della continuità e derivabilità, monotònia9.3.1 Continuità9.3.2 Derivabilità9.4 Derivata seconda e convessità9.5 Grafico qualitativo di $f(x)$ 9.5.1 $f(x) = x$ 9.5.2 $f(x) = x^2$ 9.5.3 $f(x) = x^3$	7 7 7 7 8 8 8 8 8 9 9 9 9	

		9.5.4 $f(x) = x $	10
		9.5.5 $f(x) = \ln x$	10
		9.5.6 $f(x) = \frac{1}{\ln x }$	10
		$9.5.7 f(x) = \sqrt{x}$	11
		9.5.8 $f(x) = \sin x$	11
		9.5.9 $f(x) = \cos x$	11
		9.5.10 $f(x) = \tan x$	11
		9.5.11 $f(x) = \arcsin x$	12
		9.5.12 $f(x) = \arccos x$	12
		9.5.13 $f(x) = \arctan x$	12
		9.5.14 $f(x) = e^x$	12
ГΤ	I S	studio della convergenza	12
_	9.6	Condizione necessaria di convergenza	13
	9.7	Serie geometrica	13
	9.8	Serie armoniche	13
		9.8.1 Serie armoniche generalizzate	13
	9.9	Serie di Mengoli (Serie telescopica)	13
	9.10	Criteri con condizioni sufficienti per la convergenza	14
		9.10.1 Criterio del rapporto (D'Alembert)	14
		9.10.2 Criterio della radice (CAUCHY)	14
		9.10.3 Criterio del confronto	14
		9.10.4 Criterio del confronto asintotico	14
		9.10.5 Criterio dell'assoluta convergenza	15
		9.10.6 Criterio di Leibniz	15
10) Con	vergenza degli Integrali	15
		10.0.1 Integrali improri	15
	· 7 - T-		4 6
L١		Equazioni Differenziali	15
	10.1	1	16
		10.1.1 Tipologia 1	16
		10.1.2 Tipologia 2	16
	10.9	10.1.3 Problema di CAUCHY	16 16
		Equazioni dinerenzian A variabili separabili	17
	10.3	Equazioni inicati dei 1 Otunie	Τ (

Parte I

Concetti di base

1 Derivate

1.1 Derivate fondamentali

- $1. \ D[x^n] = nx^{n-1}$
- 2. D[x] = 1
- 3. $D[\frac{1}{x}] = -\frac{1}{x^2}$
- $4. \ D[\sqrt{x}] = \frac{1}{2\sqrt{x}}$
- $5. \ D[a^x] = a^x * ln|a|$
- 6. $D[e^x] = e^x$
- 7. $D[log_a x] = \frac{1}{x*ln a}$
- 8. $D[\ln x] = \frac{1}{x}$
- 9. $D[\sin x] = \cos x$
- $10.\ D[\cos x] = -\sin x$
- 11. $D[\tan x] = \frac{1}{\cos^2 x}$
- 12. $D[\cot x] = -\frac{1}{\sin^2 x}$
- 13. $D[arcsin x] = \frac{1}{\sqrt{1-x^2}}$
- 14. $D[arccos x] = -\frac{1}{\sqrt{1-x^2}}$
- 15. $D[arctan x] = \frac{1}{1+x^2}$

1.2 Regole di derivazione

- 1. D[f(x) + g(x)] = f'(x) + g'(x)
- 2. D[k * f(x)] = k * f'(x)
- 3. D[f(x) * g(x)] = f'(x) * g(x) + f(x) * g'(x)
- 4. $D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)*g(x)-f(x)*g'(x)}{g(x)^2}$

2 Integrali

2.1 Indefiniti

- $1. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c$
- $2. \int \frac{1}{x} dx = \ln|x| + c$
- $3. \int e^x dx = e^x + c$
- 4. $\int a^x dx = \frac{a^x}{\ln a} + c$
- $5. \int \sin x \, dx = -\cos x + c$
- 6. $\int \cos x \, dx = \sin x + c$
- $7. \int \frac{1}{\sin^2 x} dx = -\cot x + c$
- 8. $\int \frac{1}{\cos^2 x} dx = \tan x + c$

9.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

$$10. \int \frac{1}{\sqrt{1+x^2}} dx = \arctan x + c$$

11.
$$\int f(x)^{\alpha} * f'(x) dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

12.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

13.
$$\int e^{f(x)} * f'(x) dx = e^{f(x)} + c$$

14.
$$\int a^{f(x)} * f'(x) dx = \frac{a^{f(x)}}{\ln a} + c$$

15.
$$\int \sin f(x) * f'(x) dx = -\cos f(x) + c$$

16.
$$\int \cos f(x) * f'(x) dx = \sin f(x) + c$$

17.
$$\int \frac{f'(x)}{\cos^2 f(x)} dx = \tan f(x) + c$$

18.
$$\int \frac{f'(x)}{\sin^2 f(x)} dx = -\cot f(x) + c$$

19.
$$\int \frac{f'(x)}{\sqrt{1-f(x)^2}} dx = \arcsin f(x) + c$$

20.
$$\int \frac{f'(x)}{1+f(x)^2} dx = \arctan f(x) + c$$

21.
$$\int f(x) * g'(x) dx = f(x) * g(x) - \int f'(x) * g(x) dx$$

22.
$$\int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c$$

2.1.1 \mathbf{Pils}

Durante lo svolgimento potrei trovarmi i seguenti casi che sono più complessi, riassunti in 3 macro-casi possono essere risolti in modo più semplice.

Caso:

• Grado D < Grado N: Uso la divisione.

• Denominatore: 1° Grado: $\frac{f'(x)}{f(x)}$

• Denominatore 2° Grado: Dopo aver calcolato il Δ ho i tre seguenti casi:

$$-\Delta=0$$
:

*
$$\int f'(x) * f(x)^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

* Divisione A/B

$$-\Delta < 0$$
:

*
$$\int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c$$
 *
$$\int \frac{\text{numeratore} + a - a}{\text{denominatore}} dx$$

$$-\Delta > 0$$
:

* Divisione
$$A/B$$

*
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

3 Limiti notevoli

Espressione in x	Espressione in $f(x)$	F. Indeterminata
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \pm \infty} \left(1 + \frac{1}{f(x)}\right)^{fx} = e$	[1∞]
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$	$\lim_{x \to 0} \frac{a^{f(x)} - 1}{f(x)} = \ln a$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{e^{f(x)} - 1}{f(x)} = 1$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$	$\lim_{x \to 0} \frac{\log_a(1+f(x))}{f(x)} = \frac{1}{\ln a}$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{\ln(1+f(x))}{f(x)} = 1$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{(1+x)^k - 1}{x} = k$	$\lim_{x \to 0} \frac{(1+f(x))^k - 1}{f(x)} = k$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\sin(f(x))}{f(x)} = 1$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{1 - \cos(f(x))}{[f(x)]^2} = \frac{1}{2}$	$\left[\frac{0}{0}\right]$
$\lim_{x \to 0} \frac{tan(x)}{x} = 1$	$\lim_{x \to 0} \frac{\tan(f(x))}{f(x)} = 1$	$\left[\frac{0}{0}\right]$

4 Proprietà dei Logaritmi e delle potenze

Logaritmi	
$log_a(x * y) = log_a(x) + log_a(y)$	
$log_a(\frac{x}{y}) = log_a(x) - log_a(y)$	
$log_a(x^n) = n * log_a(x)$	
$log_b x = \frac{log_a x}{log_a(b)}$	
$log_a(b) = \frac{1}{log_b(a)}$	

Potenze	
$a^n * b^n = (a * b)^n$	
$\frac{a^n}{b^n} = (\frac{a}{b})^n$	
$\frac{a^n}{a^p} = a^{n-p}$	
$(a^n)^p = a^{n^p} = a^{n*p}$	
$a^0 = 1$	

5 Fattoriali

5.0.1 Definizione base

Per $n \in \mathbb{N}$: $n! = n * (n-1) * (n-2) * \dots * 2 * 1$ con 0! = 1 (Per convenzione).

5.0.2 Relazioni ricorsive

1.
$$(n+1)! = (n+1) * n!$$

2.
$$n! = n * (x - 1)!$$

3.
$$n! = \frac{(n+1)!}{n+1}$$

5.0.3 Fattoriale e coefficienti binomiali

$$1. \binom{n}{k} = \frac{n!}{k!(n-k!)}$$

$$2. \binom{n}{k} = \binom{n}{n-k}$$

5.0.4 Prodotti notevoli

1.
$$\binom{(2n)!}{n!} = (n+1)*(n+2)*...*(2n)$$

$$2. \ \frac{(2n)!}{(n!)^2} = \binom{2n}{n}$$

5.0.5 Somma asintotica

$$n! \sim \sqrt{2\pi n} * (\frac{n}{e})^n$$

6 Circonferenza Goniometrica

Circonferenza di raggio unitario situato al centro di un piano cartesiano con centro nell'origine degli assi.

7 Ordini di infinito

NB. È corretto visualizzare f(x) = x! a "gradini" dato che la funzione è definita solo per $x \in \mathbb{N}$

8 Sviluppi di Taylor con resto di Peano (MCLAURIN)

Funzione	Sviluppo in forma troncata	Sviluppo in forma compatta
$(1+u)^{\alpha}$	$1 + \alpha u + \frac{\alpha(\alpha - 1)}{2}u^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{6}u^3 + o(u^3)$	$\sum_{k=0}^{n} \binom{\alpha}{k} u^k + o(u^n)$
e^u	$1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + \frac{u^5}{120} + o(u^5)$	$\sum_{k=0}^{n} \frac{u^k}{k!} + o(u^n)$
sin u	$u - \frac{u^3}{6} + \frac{u^5}{120} - \frac{u^7}{5040} + o(u^7)$	$\sum_{k=0}^{n} (-1)^k \frac{u^{2k+1}}{(2k+1)!} + o(u^{2n+2})$
$\cos u$	$1 - \frac{u^2}{2} + \frac{u^4}{24} - \frac{u^6}{720} + \frac{u^8}{40320} + o(u^8)$	$\sum_{k=0}^{n} (-1)^k \frac{u^{2k}}{(2k)!} + o(u^{2n+1})$
log(1+u)	$u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \frac{u^5}{5} + o(x^5)$	$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{u^k}{k} + o(u^n)$
sinh u	$u + \frac{u^3}{6} + \frac{u^5}{120} + \frac{u^7}{5040} + o(u^7)$	$\sum_{k=0}^{n} \frac{u^{2k+1}}{(2k+1)!} + o(u^{2n+2})$
$\cosh u$	$1 + \frac{u^2}{2} + \frac{u^4}{24} + \frac{u^6}{720} + o(u^6)$	$\sum_{k=0}^{n} \frac{u^{2k}}{(2k)!} + o(u^{2n+1})$
tan u	$u + \frac{u^3}{3} + \frac{2}{15}u^5 + \frac{17}{315}u^7 + \frac{62}{2835}u^9 + o(u^{10})$	-
tanh u	$u - \frac{u^3}{3} + \frac{2}{15}u^5 - \frac{17}{315}u^7 + \frac{62}{2835}u^9 + o(u^{10})$	-
arctan u	$u - \frac{u^3}{3} + \frac{u^5}{5} - \frac{u^7}{7} + \frac{u^9}{9} + o(u^9)$	$\sum_{k=0}^{n} (-1)^k \frac{u^{2k+1}}{2k+1} + o(u^{2n+2})$
arctanh u	-	$\sum_{k=0}^{n} \frac{u^{2k+1}}{2k+1} + o(u^{2n+2})$

Parte II

Studio di Funzione

9 Studio di Funzione

9.1 Dominio, simmetrie e segno

9.1.1 Dominio

Per dominio si intende l'insieme dei valori di x per cui la funzione è definita. Casi tipici:

- Frazioni \rightarrow denominatore $\neq 0$.
- Radici pari \rightarrow argomento ≥ 0 .
- Logaritmi \rightarrow argomento > 0.
- Funzioni goniometriche con $Df(x) \neq \mathbb{R}$ (Esclusi frazioni con seni e coseni ad es. tangente):
 - $-f(x) = \arcsin x \rightarrow Df(x) = [-1, 1]$
 - $f(x) = \arccos x \to Df(x) = [-1, 1]$

Esempio:
$$f(x) = \frac{x-3}{x+1} \Rightarrow \begin{cases} f(x) = 0 & \text{se } x = 3 \\ f(x) > 0 & \text{se } x < -10 \text{ } x > 3 \\ f(x) < 0 & \text{se } -1 < x < 3 \end{cases}$$

9.1.2 Simmetrie

- Parità:
 - $-f(-x) = f(x) \rightarrow$ Funzione pari (simmetria rispetto all'asse y)
 - $-f(-x)=-f(x)\to \text{Funzione}$ dispari (simmetria rispetto all'origine)

Esempio: $f(x) = x^2 \Rightarrow f(-x) = (-x)^2 = x^2 \Rightarrow f$ pari.

9.2 Punti di accumulazione, limiti e asintoti

Principalmente lo studio dei limiti è finalizzato alla determinazione dell'esistenza degli asintoti, questi possono essere:

- Asintoti Verticali \rightarrow Quando il limite in un punto va a $\pm \infty$
- Asintoti Orizzontali \rightarrow Quando $\lim_{x\to\pm\infty} f(x) = L \in \mathbb{R}$
- Asintoti Obliqui

Per gli asintoti obliqui il procedimento è leggermente più lungo, innanzitutto *la presenza di asintoti orizzontali preclude la presenza di asintoti obliqui* quindi se sono presenti as. orizzontali ci si può fermare, in caso non siano presenti fare testo a quanto segue:

Un as. obliquo è una retta (Quindi forma y=mx+q), per trovarlo calcolo la pendenza "m" con: $m=\lim_{x\to\pm\infty}\frac{f(x)}{x}$ se questo limite esiste ed è finito allora possiamo calcolare "q" con: $q=\lim_{x\to\pm\infty}(f(x)-mx)$ se anche questo limite esiste ed è finito allora l'asintoto obliquo esiste ed è proprio: y=mx+q.

NB. se m=0 l'asintoto non è olbiquo ma orizzontale, se il grado del numeratore è maggiore di 1 grado rispetto al numeratore (ad es. $\frac{x^2}{x}$) è comune avere un as. obliquo, se invece il numeratore ha grado maggiore di 2 o più rispetto al numeratore probabilmente avremo un as. verticale.

9.3 Studio della continuità e derivabilità, monotònia

9.3.1 Continuità

Per definizione una funzione è continua in un dato punto x_0 se $\lim_{x\to x_0} f(x) = f(x_0)$ Verifico punti critici del dominio di f e controllo se sono presenti discontinuità, queste possono essere:

- Eliminabile: limite esiste finito ma $f(x_0)$ non è definito o è diverso.
- Di salto: i due limiti laterali esistono ma sono diversi.
- Infinita: almeno un limite laterale tende a $\pm \infty$.

Esempio: $f(x) = \frac{x^2 - 1}{x - 1} \Rightarrow D[f(x)] = \mathbb{R} \setminus \{1\}$ In $x = 1 \to \text{discontinuità eliminabile.}$

9.3.2 Derivabilità

Per definizione una funzione è derivabile in un dato punto x_0 se $f(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ Se f è derivabile allora è continua, ma non sempre vale il contrario.

Strategia operativa:

- 1. Controllo dove la funzione è sospetta (valori assoluti, radici, punti angolosi)
- 2. Verifico che il limite destro e sinistro su quel punto coincidano

Nel caso non dovessero coincidere vuol dire che ci troviamo di fronte ad un punto di non derivabilità, casi più comuni:

- Angolo: ad es. f(x) = |x| funzione continua ma non derivabile, c'è un'improvviso cambio di pendenza, in $x_0 = 0^ f'(x_0) = -1$, in $x = 0^+$ $f'(x_0) = +1$.
- Cuspide: ad es. $f(x) = \sqrt[3]{x}$ funzione continua ma non derivabile, in $x_0 = 0^ f'(x_0) = -\infty$, in $x_0 = 0^+$ $f'(x_0) = +\infty$.
- Tangente verticale: ad es. $f(x) = \sqrt{x}$ non è richiesto che la funzione sia derivabile sia da destra che da sinistra, basta 1 delle due, basta che la funzione sia continua e che la derivata da destra o sinistra vada a $\pm \infty$.

Se una funzione non è continua, automaticamente non è derivabile, ad esempio $f(x) = \frac{1}{x}$ in x = 0 non è derivabile per discontinuità.

Strategia operativa:

- 1. Controllo la continuità. Se non è continua \rightarrow già classificata.
- 2. Se è continua:
 - (a) Calcolo la derivata a destra e sinistra.
 - (b) Confronto i valori:
 - i. Diversi e finiti \rightarrow angolo.
 - ii. Entrambi infiniti con segni opposti \rightarrow **cuspide**.
 - iii. Entrambi con stesso segno \rightarrow tangente verticale.

9.4 Derivata seconda e convessità

In questa fase andiamo a controllare se ci sono cambi di convessità e se sono presenti punti di flesso. Strategia operativa:

- 1. Calcolo la derivata seconda (f''(x))
- 2. Trovo i punti candidati ad essere punti di flesso con f''(x) = 0
- 3. Verifico se in questi punti c'è un cambio di concavità (f passa da f''(x) > 0 a f''(x) < 0 o viceversa), se questo si verifica allora c'è un punto di flesso, altrimenti no.
- 4. Riassumo i vari risultati in uno studio del segno per completezza.

Esempio: $f(x) = x^3$, $f'(x) = 3x^2$, f''(x) = 6x, risolvendo f''(x) = 0 si ottiene x = 0. Per x < 0 si ha $f''(x) < 0 \to \text{concava}$, per $f''(x) > 0 \to \text{convessa}$. Dato che c'è stato un cambio di concavità in x = 0 allora in questo punto c'è un flesso. Esempio: $f(x) = x^4$, $f'(x) = 4x^3$, $f''(x) = 12x^2$, risolvendo f''(x) = 0 si ottiene x = 0. Però f''(x) è sempre ≥ 0 quindi la curva è sempre convessa verso l'alto e quindi non essendoci nessun cambio di concavità in quel punto non c'è un flesso.

9.5 Grafico qualitativo di f(x)

Alla fine dei calcoli svolti fino ad ora dovrebbe esser possibile tracciare un grafico qualitativo della funzione, di seguito si trovano le funzioni fondamentali.

9.5.1 f(x) = x

9.5.2 $f(x) = x^2$

9.5.3 $f(x) = x^3$

9.5.4 f(x) = |x|

9.5.5 $f(x) = \ln x$

9.5.6 $f(x) = \frac{1}{\ln|x|}$

9.5.7 $f(x) = \sqrt{x}$

9.5.8 $f(x) = \sin x$

9.5.9 $f(x) = \cos x$

9.5.10 $f(x) = \tan x$

9.5.11 $f(x) = \arcsin x$

9.5.12 $f(x) = \arccos x$

9.5.13 $f(x) = \arctan x$

9.5.14 $f(x) = e^x$

Parte III

Studio della convergenza

Condizione necessaria di convergenza

Affinche una serie converga è necessario che il termine generale a_n sia infinitesimo (Ovvero $a_n \to 0$ per $n \to +\infty$)

NB. Non è necessario svolgere questo l'imite durante la risoluzione, ma sicuramente è comodo da fare.

NB. Se il risultato del limite è 0 la serie può divergere o convergere il fatto che il risultato sia 0 è necessario solo per la divergenza ma non sufficiente.

9.7 Serie geometrica

$$\sum_{n=0}^{\infty}q^n$$
 con $q\in\mathbb{R}$ è detta serie geometrica.

$$s_n = 1 + q + q^2 + \dots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{se } q \neq 1\\ n + 1 & \text{se } q = 1 \end{cases}$$

$$\lim_{n \to +\infty} s_n = \begin{cases} \frac{1}{1-q} & \text{se } |q| < 1\\ +\infty & \text{se } q \ge 1\\ \text{non esiste} & \text{se } 1 \le -1 \end{cases}$$

$$s_n = 1 + q + q^2 + \dots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{se } q \neq 1 \\ n + 1 & \text{se } q = 1 \end{cases}$$

$$\lim_{n \to +\infty} s_n = \begin{cases} \frac{1}{1 - q} & \text{se } |q| < 1 \\ +\infty & \text{se } q \geq 1 \\ \text{non esiste se } 1 \leq -1 \end{cases}$$

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \text{convergente (con somma} \frac{1}{1 - q}) & \text{se } |q| < 1 \\ \text{divergente indeterminata} & \text{se } q \geq 1 \end{cases}$$

ESEMPIO: $\sum_{n=0}^{\infty} (\frac{1}{2})^n$ converge (essendo $\frac{1}{2} < 1$ dove $\frac{1}{2} = q$) e la somma è: $\frac{1}{1-\frac{1}{2}} = 2$

Siano $\sum_{n=0}^{\infty} a_n e \sum_{n=0}^{\infty} b_n$ due serie numeriche convergenti e sia $k \in \mathbb{R}$. Allora:

1.
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

$$2. \sum_{n=0}^{\infty} Ka_n = K \sum_{n=0}^{\infty} a_n$$

NB. Se $\sum_{n=0}^{\infty} a_n$ converge, anche $\sum_{n=0}^{\infty} Ka_n$ converge (stessa cosa per la divergenza)

9.8 Serie armoniche

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \text{converge} & \text{se } \alpha > 1\\ \text{diverge} & \text{se } \alpha \leq 1 \end{cases}$$

9.8.1 Serie armoniche generalizzat

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} (\log n)^{\beta}} \begin{cases} \text{converge} & \text{se } \alpha > 1 \text{ oppure } \alpha = 1 \text{ e } \beta > 1 \\ \text{diverge} & \text{se } \alpha < 1 \text{ oppure } \alpha = 1 \text{ e } \beta \leq 1 \end{cases}$$

Serie di Mengoli (Serie telescopica) 9.9

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
è detta serie di Mengoli

$$\begin{split} s_n &= 1 \underbrace{\frac{1}{2}}_{n \to +\infty} \underbrace{\frac{1}{2}}_{n \to +\infty} \underbrace{\frac{1}{2}}_{n \to +\infty} \underbrace{\frac{1}{n-1}}_{n \to +\infty} \underbrace{\frac{1}{n-1}}_{n \to +\infty} \underbrace{\frac{1}{n-1}}_{n \to +\infty} \underbrace{\frac{1}{n-1}}_{n \to +\infty} \underbrace{-\frac{1}{n-1}}_{n \to +\infty} \underbrace{-\frac{1}{n-1}}_{n \to +\infty} \cot \theta = 1. \end{split}$$

NB. Trovare negli esercizi la serie telescopica è piuttosto raro.

Criteri con condizioni sufficienti per la convergenza 9.10

Serie a termini di segno variabile $\begin{cases} \text{criterio dell'assoluta convergenza} \\ \text{criterio di Leibniz} \end{cases}$

9.10.1 Criterio del rapporto (D'Alembert)

Sia $a_n > 0$ definitivamente e supponiamo che $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$ (Essendo $a_n > 0$ allora $l \in [0, +\infty)$ oppure $l = +\infty$)

- Se l < 1 allora $\sum a_n$ converge
- Se l > 1 allora $\sum a_n$ diverge
- se l=1 tutto è possibile (bisogna cambiare criterio)

9.10.2 Criterio della radice (CAUCHY)

Siano $a_n \geq 0$ definitivamente e supponiamo che $\lim_{n \to +\infty} \sqrt[n]{a_n} = l$

- Se l < 1 allora $\sum a_n$ converge
- Se l > 1 allora $\sum a_n$ diverge
- se l=1 tutto è possibile (bisogna cambiare criterio)

Esempio: $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\frac{n}{2}}} = \lim_{n \to +\infty} \sqrt[n]{\frac{1}{(\log n)^{\frac{n}{2}}}} = \lim_{n \to +\infty} [(\log n)^{-\frac{n}{2}}]^{\frac{1}{n}} = \lim_{n \to +\infty} (\log n)^{-\frac{1}{2}} = \lim_{n \to +\infty} \frac{1}{\sqrt{\log n}} = 0 < 1 \Rightarrow \text{La serie converge}$

9.10.3 Criterio del confronto

Supponiamo che $0 \le a_n \le b_n$ definitivamente. Allora valgono le seguenti implicazioni:

- $\sum b_n$ converge $\Rightarrow \sum a_n$ converge.
- $\sum a_n$ diverge $a + \infty \Rightarrow \sum b_n$ diverge $a + \infty$.

NB. Le implicazioni inverse in generale non valgono. **Esempio:** $\sum_{n=1}^{\infty} \left(\frac{\cos n}{n}\right)^2 \Rightarrow 0 \leq \left(\frac{\cos n}{n}\right)^2 \leq \frac{1}{n^2} \ \forall n \geq 1, \sum_{n=1}^{\infty} \frac{1}{n^2} \ \text{converge, dunque il criterio del confronto ci assicura che }$ $\sum_{n=1}^{\infty} \left(\frac{\cos n}{n} \right)^2 \text{ converge.}$

9.10.4 Criterio del confronto asintotico

Date 2 successioni a_n e b_n a termini definitivamente positivi se $a_n \sim b_n$ (ovvero se $\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$), allora le corrispondenti serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere.

Esempio: $\sum_{n=1}^{\infty} \frac{n + \cos n}{n^3 - 3n} \sim \frac{1}{n^2} \to \text{converge a } 0.$

9.10.5 Criterio dell'assoluta convergenza

Una serie $\sum_{n=1}^{+\infty} a_n$ si dice assolutamente convergente se la serie dei moduli ad essa associata $\sum_{n=1}^{+\infty} |a_n|$ è convergente.

Come studiare il carattere della serie associata?

- Studio il carattere di $|a_n|$ essendo questa per forza ora una serie a termini positivi uso i criteri delle serie a termini non negativi.
 - Se la serie dei moduli ($|a_n|$) converge, allora la serie di partenza convergerà assolutamente.
 - Se la serie dei moduli ($|a_n|$) diverge (positivamente dato che è per forza a termini positivi), allora la serie di partenza $(\sum_{n=1}^{+\infty} a_n)$ non convergerà assolutamente, **converge o diverge semplicemente.**

NB. Per capire se converge o diverge semplicemente va trovato un nuovo modo nonostante il criterio usato dentro all'assoluta convergenza abbia dato la divergenza come soluzione. (Per martin fai il limite della condizione necessaria di convergenza)

9.10.6 Criterio di Leibniz

Sia $\sum_{n=1}^{+\infty} (-1)^n a_n$ una serie di segno variabile, con $a_n \ge 0 \ \forall n \in \mathbb{N}$. Se valgolo le seguenti ipotesi:

- 1. Esiste il limite: $\lim_{n \to +\infty} a_n = 0$
- 2. a_n sia definitivamente decrescente, quindi basta verificare che: $a_n \ge a_{n+1}$.

Se entrambe valgono allora, il criterio di Leibniz stabilisce che la serie $\sum_{n=1}^{+\infty} (-1)^n a_n$ converge.

Nel caso in cui uno dei due punti non fosse verificato:

- Se non vale la condizione 1 allora la serie diverge.
- Se vale la condizione 1 ma non vale la condizione 2, allora il criterio di **Leibniz non si può applicare**, bisogna cambiare criterio.

10 Convergenza degli Integrali

10.0.1 Integrali improri

Tipo integrale	Forma	Converge se	Diverge se
Vicino a 0	$\int_0^a x^p dx$	p > -1	$p \leq -1$
Vicino a $+\infty$	$\int_{a}^{+\infty} \frac{1}{x^{p}} dx$	p > 1	$p \le 1$

Parte IV

Equazioni Differenziali

L'ordine di un'equazione differenziale è il massimo ordine di derivazione che compare (esempio: f'''(x) + 3f'(x) = 9x è di ordine 3)

Esempio:

$$f'(x) = x \Rightarrow y' = x \rightarrow \text{equazione di 1}^{\circ} \text{ ordine.}$$

Le equazioni di 1° Ordine possono essere:

- 1. Equazioni differenziali "Elementari" (e Problemi di Cauchy)
- 2. Equazioni differenziali a variabili separabili
- 3. Equazioni differenziali lineari

Equazioni differenziali "ELEMENTARI" e "PROBLEMI DI CAUCHY" 10.1

10.1.1Tipologia 1

y' = f(x)

Basta integrare: $y = \int f(x)dx = F(x) + c$

$$y' = 3e^{2x} \Rightarrow y = \int 3e^{2x} dx = 3 \int e^{2x} dx = \frac{3}{2}e^{2x} + c$$

10.1.2 Tipologia 2

y'' = f(x)

Basta integrare 2 volte:

$$y' = \int f(x)dx = F(x) + c_1 y = \int y'dx = \int [F(x) + c_1x]dx = \int F(x) + c_1x + c_2$$

Esempio:

$$y'' = 2 - \cos x$$

 $y' = \int (2 - \cos x) dx = 2x - \sin x + c_1$
 $y = \int (2x - \sin x + c_1) dx = x^2 + \cos x + c_1 x + c_2$
 $y(x) = x^2 + \cos x + c_1 + c_2$ (soluzione generale)

10.1.3 Problema di CAUCHY

Equazione differenziale

Condizion iniziali (tante quanti i parametri da determinare)

$$\begin{cases} y' = -e^{-x} & y = \int (-e^{-x})dx = e^{-x} + c \\ y(0) = 3 & 3 = e^{-0} + c \Rightarrow c = 2 \end{cases} \Rightarrow y(x) = e^{-x} + 2$$

Esempio 2:
$$\begin{cases} y' = x & y' = \int x dx = \frac{x^2}{2} + c_1 \Rightarrow y = \int (\frac{x^2}{2} + c_1) dx = \frac{x^3}{6} + c_1 x + c_2 \\ y(0) = 1 & 1 = \frac{0^3}{6} + c_1 * 0 + c_2 \Rightarrow c_2 = 1 \\ y'(0) = 4 & 4 = \frac{0^2}{2} + c_1 \Rightarrow c_1 = 4 \end{cases} \Rightarrow y(x) = \frac{x^3}{6} + x + 4$$

10.2 Equazioni differenziali "A variabili separabili"

Sono equazioni che si possono ricondurre alla forma: y' = f(x) * g(y), ad esempio: y' = lnx oppure $y' = e^x y \, lny$

Strategia risolutiva:

- 1. Separo le variabili $x \in y$
- 2. Integro ciascun membro alla variabile da cui dipende
- 3. Ricavo y(x)

Esempio 1:

$$y' = y^2 \ln x \Rightarrow \frac{dy}{dx} = y^2 \ln x \Rightarrow \frac{dy}{y^2} = \ln x \, dx \quad \Rightarrow \int \frac{dy}{y^2} = \int \ln x \, dx \\ \Rightarrow -\frac{1}{y} = x \ln x - x + c \quad \Rightarrow y(x) = \frac{-1}{x \ln x - x + c} \text{ (va bene anche } y(x) = 0)$$

Esemplo 2:
$$\begin{cases} y' = \sin x \, e^y \Rightarrow \frac{dy}{dx} = \sin x \, e^y \Rightarrow \int e^{-y} dy = \int \sin x \, dx \Rightarrow e^{-y} = \cos x + c \Rightarrow y(x) = -\ln(\cos x + c) \\ y(\frac{\pi}{2}) = 1 \Rightarrow -\ln(\cos(\frac{\pi}{2}) + c) = 1 \Rightarrow \ln(c) = -1 \Rightarrow c = \frac{1}{e} \end{cases} \Rightarrow y(x) = -\ln(\cos x + c) \Rightarrow y(x)$$

NB. y' = f(x) * g(y) se $\exists \bar{y} \in \mathbb{R}/g(\bar{y}) = 0 \Rightarrow y(x) = \bar{y}$ è una soluzione dell'equazione differenziale. (Conviene prima cercare questo tipo di soluzione e poi proseguire con il procedimento standard)

10.3 Equazioni lineari del "1° Ordine"

solitamente si presentano nelle forme:

$$y'(x) = a(x)y(x) + f(x)$$

$$y'(x) + a(x)y(x) = f(x)$$

Esempi:

$$\bullet \ y' = xy + 2x$$

$$y' + \frac{y}{x} = 4x^2$$

Pre check:

- Se a(x) = 0 è elementare
- Se f(x) = 0 (omogenea) diventa a variabili separabili

Se non è nessuno dei due casi descritti procedo con un nuovo sistema:

- 1. Sposto a sinistra dell'uguale tutti gli elementi che hanno la "y", lascio a destra quelli che hanno solamente la "x"
- 2. Calcolo la primitiva (integrale) di a(x) ($A(x) = \int a(x)dx$)
- 3. Applico la formula: $y(x) = e^{-A(x)} * \int f(x) * e^{A(x)} dx + ce^{-A(x)}$, spesso torna utile risolvere l'integrale per parti i con la sostituzione dell'esponente della "e"

 $Esempio\ 1:$

$$y'(x) = -xy(x) = 2x$$

- 1. Sposto i termini: y' + xy = 2x
- 2. Calcolo la primitiva: $\int x \, dx = \frac{x^2}{2} + c$
- 3. Applico la formula: $y = e^{-\frac{x^2}{2}} * \int 2x * e^{\frac{x^2}{2}} dx + ce^{-\frac{x^2}{2}}$
- 4. Risolvo e scrivo il risultato come: $y(x) = 2 + \frac{c}{\frac{x^2}{c^2}}$

Osservazione 1: Se a(x) e f(x) sono funzioni continue in un certo intervallo I, allora $y(x) = e^{-A(x)} \int f(x)e^{A(x)}dx + ce^{-A(x)}$ è la soluzione generale $\forall x \in I$

Osservazione 2: La costante arbitraria $c \in \mathbb{R}$ può essere determinata se viene fornita una condizione iniziale del tipo:

$$y(x_0) = y_0 \text{ con } x_0 \in I \Rightarrow \begin{cases} y'(x) + a(x)y(x) = f(x) \\ y(x_0) = y_0 \end{cases}$$