Class 2 CONTENTS

Class 2

Shikhar Saxena

January 06, 2023

Contents

- Random Experiments and Sample Space (Ω)
- \circ Probability Measure (\mathbb{P}) and it's axioms
- \circ Sigma-Algebra (\mathcal{F})
 - * Null set
 - ★ Element and it's complement
 - ★ Closure under countable union of disjoint element
- Borel σ -algebra $\mathcal{B}(\mathbb{R})$
 - \star When $\Omega = \mathbb{R}$
- Conditional Probability
 - ★ Chain rule

$$P(A_1 \cap A_2 \dots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_n|A_1 \cap A_2 \cap \dots A_{n-1})$$

- Independent Events
- Conditional Independence P(AB|C) = P(A|C)P(B|C)
- Mutually exclusive and Independence
 - \star If one has zero-probability then related.
- Random Variable
 - * Map from one probability space to another
 - \star Most cases the resultant probability space has sample space \mathbb{R} .

$$\div (\Omega, \ \mathcal{F}, \ \mathbb{P}(.)) \ \stackrel{X}{\longrightarrow} \ (\mathbb{R}, \ \mathcal{B}(\mathbb{R}), \ \mathbb{P}_X(.))$$

- $X^{-1}(B)$ is called the preimage or the inverse image of B.
- * Discrete vs Continuous R.V.
- \star nth moment $E[X^n]$
- * Law of unconscious statistician $E[g(X)] = \sum g(x)p_X(x)$.
- \star Joint Random Variabless