ROBOT MAPPING

Assignment: Sheet 3, Extended Kalman Filter

Authors:

Elias M Maharmeh Isra R AL-Sharabati

1 Exercise 1: Bayes Filter and Extended Kalman Filter

- Q1: Describe briefly the two main steps of the Bayes filter in your own words
 - Prediction step: use the motion model to predict the next state x_t given that the robot(system) is at state x_{t-1} and execute the commands u_t , this occurs by convolving the motion model $p(x_t|x_{t-1}, u_t)$ with the prior belief of state x_{t-1}
 - Update step : exploit the information from the sensor/s reading to re-weight our belief about the possible state x_t value
- Q2: Describe briefly the meaning of the following probability density functions
 - $-p(x_t|x_{t-1},u_t)$: the probability of ending up at state x_t given that the robot(system) is at state x_{t-1} and execute the command u_t ; this probability distribution is over the state x_t random variable
 - $-p(z_t|x_t)$: the probability that the sensor would produce a reading of z_t at the state x_t ; this probability distribution is over the measurement z_t random variable
 - bel (x_t) : the probability (internal belief) that the robot is at pose x_t ; given all the history (poses, measurements and applied commands) up to time t.
- Q3: Specify the distributions that correspond to the above mentioned three terms in the EKF
 - $-p(x_t|x_{t-1},u_t)$: the mean of this distribution in case of EKF is the system dynamics $g(x_{t-1},u_t)$, while the system motion noise still $Q \in \mathbb{R}^{nXn}$, due to the assumption of additive noise.
 - $-p(z_t|x_t)$: the mean of this distribution in case of EKF is the sensor mapping nonlinear function $h(\bar{\mu})$, while the system motion noise still $R \in \mathcal{R}^{mXm}$, due to the assumption of additive noise.
 - bel (x_t) : the mean and covarience of this distribution is is calculated using the Jacobians matrices of the system dynamic model and the measurement model.
- Q3 : Explain in a few sentences all of the components of the **EKF** algorithm, and why they are needed. Specify the dimensionality of these components.
 - $-\mu_t$: state estimate at time t, (n, 1).
 - Σ_t : covariance matrix at time t, (n, n).
 - $-\bar{\mu}_t$: state estimate propagated through time using the process model, (n,1).
 - $-\bar{\Sigma_t}$: covariance matrix at time t updated with Jacobian **G**, and process noise **Q**, (n,n).
 - -g: function to update state space based on system model, (n,1).
 - $-G_t^x$: Jacobian of the motion matrix, (n,n).
 - $-R_t$: measurement noise, (m, m).
 - -h: measurement function, (m, 1).
 - $-H_t^x$: Jacobian of h, (m,n).
 - $-Q_t$: process noise, (n,n).
 - $-K_t$: Kalman gain, (n,m)

2 Exercise 2: Jacobians

• Q1 : Derive the Jacobian matrix G_t^x of the noise-free motion function g with respect to the pose of the robot. Use the odometry motion model as in exercise sheet 1:

$$\begin{pmatrix} \mathbf{x}_{t} \\ \mathbf{y}_{t} \\ \theta_{t} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{t-1} \\ \mathbf{y}_{t-1} \\ \theta_{t-1} \end{pmatrix} + \begin{pmatrix} \delta_{trans} \cos \left(\delta_{rot1} + \theta_{t-1}\right) \\ \delta_{trans} \sin \left(\delta_{rot1} + \theta_{t-1}\right) \\ \delta_{rot1} + \delta_{rot2} \end{pmatrix}$$
(1)

If we denote the control vector u_t by $(\delta_{r1}, \delta_t, \delta_{r2})$, this particular motion model is defined as:

$$\begin{pmatrix} \mathbf{x}_{t} \\ \mathbf{y}_{t} \\ \theta_{t} \end{pmatrix} = g(\mathbf{x}_{t-1}, u_{t}) = \begin{pmatrix} \mathbf{x}_{t-1} + \delta_{t} \cos(\delta_{r1} + \theta_{t-1}) \\ \mathbf{y}_{t-1} + \delta_{t} \sin(\delta_{r1} + \theta_{t-1}) \\ \delta_{r1} + \delta_{r2} + \theta_{t-1} \end{pmatrix}$$
(2)

The Jacobin G_t is obtained by differentiating every row with respect to $x_{t-1}, y_{t-1}, \theta_{t-1}$, then evaluate it at the best current estimate $\mu_{x,t-1}, \mu_{y,t-1}, \mu_{\theta,t-1}$:

$$G_{t} = \begin{pmatrix} \nabla_{X} g(x_{t-1}, u_{t})_{1} \\ \nabla_{X} g(x_{t-1}, u_{t})_{2} \\ \nabla_{X} g(x_{t-1}, u_{t})_{3} \end{pmatrix}$$
(3)

Where the vector $X = (x_{t-1}, y_{t-1}, \theta_{t-1})$ is the current state so far. Evaluating the gradients in equation 3 at the best state estimate $\mu_{x,t-1}, \mu_{y,t-1}, \mu_{\theta,t-1}$

$$G_t = \begin{pmatrix} 1 & 0 & -\delta_{trans} sin(\mu_{\theta,t-1} + \delta_{rot1}) \\ 0 & 1 & \delta_{trans} cos(\mu_{\theta,t-1} + \delta_{rot1}) \\ 0 & 0 & 1 \end{pmatrix}$$

$$\tag{4}$$

• Q2 : Derive the Jacobian matrix H_i^i of the noise-free sensor function h corresponding to the i^{th} landmark.

$$h(\bar{\mu}_t, i) = z_t^i = \begin{pmatrix} r_t^i \\ \phi_t^i \end{pmatrix} = \begin{pmatrix} \sqrt{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,y})^2} \\ \operatorname{atan2}(\bar{\mu}_{i,y} - \bar{\mu}_{t,y}, \bar{\mu}_{i,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta}) \end{pmatrix}$$
(5)

where $(\bar{\mu}_{i,x}, \bar{\mu}_{i,x})^T$ is the position of the landmark, $(\bar{\mu}_{i,x}, \bar{\mu}_{i,x}, \bar{\mu}_{t,\theta})^T$ is the pose of the robot at time t, and r_t^i and ϕ_t^i are the observed range and bearing of the landmark, respectively.

The sensor jacobian matrix is obtained by differentiating the sensor mapping function h(.) with respect to the current best prediction of the robot pose.

$$H_t^i = \begin{pmatrix} \frac{\partial r_t^i}{\partial \bar{\mu}_{t,x}} & \frac{\partial r_t^i}{\partial \bar{\mu}_{t,y}} & \frac{\partial r_t^i}{\partial \bar{\mu}_{t,\theta}} \\ \frac{\partial \phi_t^i}{\partial \bar{\mu}_{t,x}} & \frac{\partial \phi_t^i}{\partial \bar{\mu}_{t,y}} & \frac{\partial \phi_t^i}{\partial \bar{\mu}_{t,\theta}} \end{pmatrix}$$
(6)

$$H_t^i = \begin{pmatrix} \frac{-\bar{\mu}_{i,x} + \bar{\mu}_{t,x}}{\sqrt{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,y})^2}} & \frac{-\bar{\mu}_{i,y} + \bar{\mu}_{t,y}}{\sqrt{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,y})^2}} & 0\\ \frac{\bar{\mu}_{i,y} - \bar{\mu}_{t,y}}{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,x})^2} & -\bar{\mu}_{i,x} + \bar{\mu}_{t,x}}{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,y})^2} & -1 \end{pmatrix}$$
 (7)