EXISTENCE THEOREM FOR WEAK QUASIPERIODIC SOLUTIONS OF LAGRANGIAN SYSTEMS ON RIEMANNIAN MANIFOLDS

IGOR PARASYUK AND ANNA RUSTAMOVA

ABSTRACT. We establish new sufficient conditions for the existence of weak Besicovitch quasiperiodic solutions for natural Lagrangian system on Riemannian manifold with time-quasiperiodic force function.

- 1. Introduction. Let \mathcal{M} be a smooth complete connected m-dimensional Riemannian manifold equipped with an inner product $\langle \cdot, \cdot \rangle$ on fibers $T_x \mathcal{M}$ of tangent bundle $T \mathcal{M}$. Consider a natural system on \mathcal{M} with Lagrangian function of the form $L|_{T_x \mathcal{M}} = \frac{1}{2} \langle \dot{x}, \dot{x} \rangle \Pi(t, x)$ where $\frac{1}{2} \langle \dot{x}, \dot{x} \rangle$ and $\Pi(t, x)$ stand for kinetic and potential energy respectively. We suppose that the potential energy is represented as $\Pi := -W(\omega t, x)$ where $W(\omega t, x)$ is ω -quasiperiodic force function generated by a function $W(\cdot, \cdot) \in C^{0,2}(\mathbb{T}^k \times \mathcal{M} \mapsto \mathbb{R})$ $(W(\cdot, \cdot)$ is continuous together with $W''_{xx}(\cdot, \cdot)$; here $\mathbb{T}^k = \mathbb{R}^k/2\pi\mathbb{Z}^k$ is k-dimensional torus and $\omega = (\omega_1, ..., \omega_k) \in \mathbb{R}^k$ is a frequencies vector with rationally independent components. The problem is to detect in such a system ω -quasiperiodic oscillations.
- J. Blot in his series of papers [1–4] applied variational method to establish the existence of weak almost periodic solutions for systems in \mathbb{E}^m . Later, this method was used in [5–8] to prove the existence of weak and classical almost periodic solutions for systems of variational type. In [9, 10], weak and classical quasiperiodic solutions were found for natural mechanical systems in convex compact subsets of Riemannian manifolds with non-positive sectional curvature. The goal of the present paper is to extend these results to natural systems on arbitrary Riemannian manifolds.
- **2. Variational method.** One can interpret a natural system on \mathcal{M} as a natural system in Euclidean space \mathbb{E}^n (of appropriate dimension n) with holonomic constraint. Namely, in view of the Nash embedding theorem [11] we consider \mathcal{M} as a submanifold of \mathbb{E}^n for some natural n > m. The set $\mathcal{M} \subset \mathbb{E}^n$ play the role of holonomic constraint for natural system in \mathbb{E}^n with kinetic energy $K = \frac{1}{2} \langle \dot{y}, \dot{y} \rangle_{\mathbb{E}^n}$ and potential energy $-W(\omega t, y)$, if we suppose that $W(\cdot, \cdot)$ is defined in $\mathbb{T}^k \times \mathbb{E}^n$.

In what follows we shall use identical notations for inner product $\langle \cdot, \cdot \rangle_{\mathbb{E}^n}$ of \mathbb{E}^n and the induced inner product $\langle \cdot, \cdot \rangle$ on $T\mathcal{M}$. Let ∇_{ξ} stands for the covariant differentiation of Levi-Civita connection in the direction of vector

 $\xi \in T\mathcal{M}$, and let ∇f stands for gradient vector field of a scalar function $f(\cdot): \mathcal{M} \mapsto \mathbb{R}$, i.e $\langle \nabla f(x), \xi \rangle = \mathrm{d}f(x)(\xi)$ for any $\xi \in T_x\mathcal{M}$.

Denote by $H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ the space of \mathbb{E}^n -valued functions on k-torus which are integrable with the square of Euclidean norm $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. Define on $H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ the standard scalar product $\langle \cdot, \cdot \rangle_0 = (2\pi)^{-k} \int_{\mathbb{T}^k} \langle \cdot, \cdot \rangle d\varphi$ and the corresponding semi-norm $\|\cdot\|_0 := \sqrt{\langle \cdot, \cdot \rangle_0}$. By $H^1_\omega(\mathbb{T}^k \mapsto \mathbb{E}^n)$ denote the space of functions $f(\cdot) \in H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ each of which has weak (Sobolev) derivative $D_\omega f(\cdot) \in H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ in the direction of vector ω . Recall that a function $u(\cdot) \in H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ with Fourier series $\sum_{\mathbf{n} \in \mathbb{Z}^k} u_\mathbf{n} e^{i\mathbf{n} \cdot \varphi}$ has a weak derivative iff the series $\sum_{\mathbf{n} \in \mathbb{Z}^k} |\mathbf{n} \cdot \omega|^2 |\|u_\mathbf{n}\|^2$ converges and then the Fourier series of $D_\omega u(\cdot)$ is $\sum_{\mathbf{n} \in \mathbb{Z}^k} i(\mathbf{n} \cdot \omega) u_\mathbf{n} e^{i\mathbf{n} \cdot \varphi}$.

The space $\mathrm{H}^1_\omega(\mathbb{T}^k \mapsto \mathbb{E}^n)$ is equipped with the semi-norm $\|\cdot\|_1$ generated by the scalar product $\langle D_\omega \cdot, D_\omega \cdot \rangle_0 + \langle \cdot, \cdot \rangle_0$. After identification of functions coinciding a.e., both spaces becomes Hilbert spaces with norms $\|\cdot\|_0$ and $\|\cdot\|_1$ respectively.

To any function $u(\cdot) \in H(\mathbb{T}^k \to \mathbb{E}^n)$ with Fourier series $\sum_{\mathbf{n} \in \mathbb{Z}^k} u_{\mathbf{n}} e^{i\mathbf{n}\cdot\varphi}$, one can put into correspondence a Besicovitch quasiperiodic function $x(t) = u(\omega t)$ defined by its Fourier series $\sum_{\mathbf{n} \in \mathbb{Z}^k} u_{\mathbf{n}} e^{i(\mathbf{n}\cdot\omega)t}$. If $u(\cdot) \in H^1_{\omega}(\mathbb{T}^k \to \mathbb{E}^n)$ then $\dot{x}(t)$ denotes a Besicovitch quasiperiodic function $D_{\omega}u(\omega t)$.

We define weak solution of Lagrangian system on \mathcal{M} with density $L = \frac{1}{2} \langle \dot{x}, \dot{x} \rangle + W(\omega t, x)$ in a slightly different way then in [7]. First, for any bounded subset $\mathcal{A} \subseteq \mathcal{M}$, put

$$\mathcal{S}_{\mathcal{A}} := \mathrm{C}^{\infty} \left(\mathbb{T}^k \mapsto \mathcal{A} \right).$$

Observe that if $u_j(\cdot) \in \mathcal{S}_{\mathcal{A}}$ is a sequence bounded in $H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$ and convergent to a function $u(\cdot)$ by norm of the space $H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ (recall that we consider the set $\mathcal{A} \subseteq \mathcal{M}$ both as a subset of \mathbb{E}^n), then for any $\mathbf{n} \in \mathbb{Z}^k$ the sequence of Fourier series coefficients $u_{\mathbf{n},j}$ converges to $u_{\mathbf{n}}$ and for some K > 0 we have

$$\sum_{|\mathbf{n}| \le N} |\mathbf{n} \cdot \omega|^2 \|u_{\mathbf{n}}\|^2 = \lim_{j \to \infty} \sum_{|\mathbf{n}| \le N} |\mathbf{n} \cdot \omega|^2 \|u_{j,\mathbf{n}}\|^2 \le$$

$$\leq \liminf_{j \to \infty} \sum_{\mathbf{n} \in \mathbb{Z}^k} |\mathbf{n} \cdot \omega|^2 \|u_{j,\mathbf{n}}\|^2 \le K \quad \forall N \in \mathbb{N}.$$

Hence, $u(\cdot) \in H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$ and $||D_{\omega}u||_0 \le \liminf_{j \to \infty} ||D_{\omega}u_j||_0$. Moreover, $u_j(\cdot)$ converges to $u(\cdot)$ weakly in $H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$.

Next, for any bounded subset $\mathcal{A} \subseteq \mathcal{M}$ define a functional space $\mathcal{H}_{\mathcal{A}}$ in a following way: $u(\cdot) \in \mathcal{H}_{\mathcal{A}}$ iff there exists a sequence $u_j(\cdot) \in \mathcal{S}_{\mathcal{A}}$ bounded in $H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$ and convergent to $u(\cdot)$ by norm of the space $H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ (recall that we consider the set $\mathcal{A} \subseteq \mathcal{M}$ both as a subset of \mathbb{E}^n). As it was noted above $\mathcal{H}_{\mathcal{A}} \subset H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$. We shall say that $h(\cdot) \in H^1_{\omega}(\mathbb{T}^k \mapsto \mathbb{E}^n)$ is a vector field along the map $u(\cdot) \in \mathcal{H}_{\mathcal{A}}$ defined in the above sens by a sequence $u_j(\cdot)$ if there exists a sequence $h_j(\cdot) \in \mathbb{C}^{\infty}(\mathbb{T}^k \mapsto \mathcal{T}\mathcal{M})$ such that

 $h_j(\varphi) \in T_{u_j(\varphi)}\mathcal{M}$, the sequences $\max_{\varphi \in \mathbb{T}^k} \|h_j(\varphi)\|$, $\|h_j\|_1$ are bounded, and $\lim_{j \to \infty} \|h - h_j\|_1 = 0$.

Definition 1. A Besicovitch quasiperiodic function $u(\omega t)$ generated by a function $u(\cdot) \in \mathcal{H}_{\mathcal{A}}$ is called a weak quasiperiodic solution of the natural system on \mathcal{M} if it satisfies the equality

$$\langle D_{\omega}u(\varphi), D_{\omega}h(\varphi)\rangle_0 + \langle W_x'(\varphi, u(\varphi)), h(\varphi)\rangle_0 = 0 \tag{1}$$

for any vector field $h(\cdot)$ along $u(\cdot)$.

This definition is natural since the equality (1) holds true for any classical quasiperiodic solution $u(\omega t)$ and continuous vector field $h(\varphi)$ along $u(\cdot)$ with continuous derivative $D_{\omega}h(\cdot)$. It should be also noted the following fact.

The application of variational approach to the problem of detecting weak quasiperiodic solution consists in finding a function $u_*(\cdot) \in \mathcal{H}_{\mathcal{A}}$ which takes values in appropriately chosen bounded subset $\mathcal{A} \subset \mathcal{M}$ and which is a strong limit in $H(\mathbb{T}^k \mapsto \mathbb{E}^n)$ of minimizing sequence for the functional (the averaged Lagrangian)

$$J[u] = \int_{\mathbb{T}^k} \left[\frac{1}{2} \|D_{\omega} u(\varphi)\|^2 + W(\varphi, u(\varphi)) \right] d\varphi \tag{2}$$

restricted to $\mathcal{S}_{\mathcal{A}}$. It is naturally to expect that the first variation of J at $u_*(\cdot)$ vanishes, i.e.

$$J'[u_*](h) := \langle D_{\omega} u_*(\varphi), D_{\omega} h(\varphi) \rangle_0 + \langle W'_x(\varphi, u_*(\varphi)), h(\varphi) \rangle_0 = 0$$
 (3)

for any vector field $h(\cdot)$ along $u_*(\cdot)$. In such a case $u_*(\omega t)$ is a weak quasiperiodic solution.

In order to guarantee the convergence of a minimizing sequence $u_j(\cdot) \in \mathcal{S}_{\mathcal{A}}$ for $J|_{\mathcal{S}_{\mathcal{A}}}$ by norm $\|\cdot\|_0$ it is naturally to impose some convexity conditions both on the set \mathcal{A} and on the functional J. Usually, such conditions are formulated by means of geodesics. But in the case where $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ is not a Riemannian manifold of non-positive sectional curvature, we are not able to determine whether the functional of averaged kinetic energy, namely $J_1[u] := \frac{1}{2} \int_{\mathbb{T}^k} \|D_{\omega}u(\varphi)\|^2 d\varphi$, is convex using geodesics of Levi-Civita connection ∇ . if $(\mathcal{M}, \langle \cdot, \cdot \rangle)$. (The case of Riemannian manifold of non-positive sectional curvature was considered in [9, 10].)

In order to overcome the above difficulty we introduce a conformally equivalent inner product of the form $\langle \cdot, \cdot \rangle_V \big|_{T_x \mathcal{M}} := \mathrm{e}^{V(x)} \, \langle \cdot, \cdot \rangle \, \big|_{T_x \mathcal{M}}$ with appropriately chosen smooth function $V(\cdot): \mathcal{M} \mapsto \mathbb{R}$. With this approach we succeed in establishing a required convexity properties of averaged Lagrangian under certain convexity conditions imposed on functions $V(\cdot)$ and $W(\varphi, \cdot)$.

3. Convexity of averaged Lagrangian. It is easily seen that if $V(\cdot) \in C^{\infty}(\mathcal{M} \mapsto \mathbb{R})$ is a bounded function on \mathcal{M} then the Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle_{V})$ equipped with corresponding Levi-Civita connection is complete.

In fact, by definition, the standard distance between any two points $x_1, x_2 \in (\mathcal{M}, \langle \cdot, \cdot \rangle)$ is defined as

$$\rho(x_1, x_2) := \inf \left\{ l(c) : c \in \mathcal{C}_{x_1, x_2} \right\},\,$$

where C_{x_1,x_2} is the set of all piecewise differentiable paths $c:[0,1] \mapsto \mathcal{M}$ connecting x_1 with x_2 , and l(c) is the length of c on $(\mathcal{M}, \langle \cdot, \cdot \rangle)$. If we denote by $l_V(c)$ the length of path c on $(\mathcal{M}, \langle \cdot, \cdot \rangle_V)$, then

$$\inf_{x \in \mathcal{M}} \sqrt{\mathrm{e}^{V(x)}} l(c) \le l_V(c) \le \sup_{x \in \mathcal{M}} \sqrt{\mathrm{e}^{V(x)}} l(c).$$

Hence, the metric $\rho(\cdot, \cdot)$ and the metric $\rho_V(\cdot, \cdot)$ of $(\mathcal{M}, \langle \cdot, \cdot \rangle_V)$ are equivalent. Now it remains only to apply the HopfRinow theorem (see, e.g., [13, sect. 5.3]).

In order to distinguish geodesics of metrics ρ and ρ_V we shall call them ρ -geodesic and ρ_V -geodesic respectively.

For $x \in \mathcal{M}$, let $\exp_x(\cdot) : T_x \mathcal{M} \mapsto \mathcal{M}$ denotes the exponential mapping of Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ with Levi-Civita connection ∇ and let $\exp_x^V(\cdot) : T_x \mathcal{M} \mapsto \mathcal{M}$ be the analogous mapping of Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle_V)$ with corresponding Levi-Civita connection ∇^V . Note that since both manifolds are complete the domains of both exponential mappings coincide with entire $T_x \mathcal{M}$.

Recall that a set of a Riemannian manifold is called convex if together with any two points x_1, x_2 this set contains a (unique) minimal geodesic segment connecting x_1 with x_2 (see, e.g., [12, sect. 11.8] or [13, sect. 5.2]). It is well known that for any point x_0 an open ball of sufficiently small radius centered at point x_0 is convex. A function $f: \mathcal{D}_f \mapsto \mathbb{R}$ with convex domain $\mathcal{D}_f \subset \mathcal{M}$ is convex iff its superposition with any naturally parametrized geodesic containing in \mathcal{D}_f is convex.

Recall also that for the function $V(\cdot)$, the Hesse form $H_V(x)$ at point x (see., e.g., [13]) is defined by the equality

$$\langle H_V(x)\xi, \eta \rangle := \langle \nabla_{\xi} \nabla V(x), \eta \rangle \quad \forall \xi, \eta \in T_x \mathcal{M}.$$

In addition, let us introduce the following quadratic form

$$\langle G_V(x)\xi,\xi\rangle := \langle H_V(x)\xi,\xi\rangle - \frac{1}{2}\langle \nabla V(x),\xi\rangle^2 \quad \forall \xi \in T_x \mathcal{M},$$

and denote

$$\lambda_{V}(x) := \min_{\xi \in T_{x} \mathcal{M} \setminus \{0\}} \left\langle H_{V}(x)\xi, \xi \right\rangle / \left\| \xi \right\|^{2},$$

$$\mu_{V}(x) := \min_{\xi \in T_{x} \mathcal{M} \setminus \{0\}} \left\langle G_{V}(x)\xi, \xi \right\rangle / \left\| \xi \right\|^{2}.$$

We accept the following hypotheses concerning convexity properties of functions $V(\cdot)$ and $W(\cdot)$:

(H1): there exist a bounded function $V(\cdot) \in C^{\infty}(\mathcal{M} \mapsto \mathbb{R})$ and a bounded domain $\mathcal{D} \subset \mathcal{M}$ such that

$$\lambda_V(x) + \frac{1}{2} \|\nabla V(x)\|^2 \ge 0, \quad \forall x \in \mathcal{D};$$
(4)

(H2): there exist a noncritical value $v \in V(\mathcal{D})$ and a connected component Ω of open sublevel set $V^{-1}((-\infty, v))$ with the following properties: (a) for any $x, y \in \Omega$ the domain \mathcal{D} contains a unique minimal ρ_V -geodesic segment with endpoints x, y; (b) the second fundamental form of $\partial\Omega$ is positive at each point $x \in \partial\Omega$ (i.e. for any $x \in \partial\Omega$ the restriction of $H_V(x)$ to $T_x\partial\Omega$ is positive definite); (c) the function $V(\cdot)$ satisfies the inequality

$$\mu_V(x) \ge 2K^*(x) \quad \forall x \in \Omega \tag{5}$$

where

$$K^*(x) := \max_{\sigma_x(\xi,\eta)} \frac{\langle R(\eta,\xi)\xi,\eta\rangle}{\|\eta\|^2 \|\xi\|^2 - \langle \eta,\xi\rangle^2}$$

is the maximum sectional curvature at point x, R is the Riemann curvature tensor of $(\mathcal{M}, \langle \cdot, \cdot \rangle)$, $\sigma_x(\xi, \eta)$ is a plane defined by vectors $\xi, \eta \in T_x \mathcal{M}$, and $K(\sigma_x(\xi, \eta))$ is a sectional curvature in direction $\sigma_x(\xi, \eta)$ [13];

(H3): the function $W(\cdot, \cdot)$ satisfies the following inequalities

$$\lambda_W(\varphi, x) + \frac{1}{2} \langle \nabla W(\varphi, x), \nabla V(x) \rangle > 0 \quad \forall (\varphi, x) \in \mathbb{T}^k \times \bar{\Omega} \quad (\bar{\Omega} := \Omega \cup \partial \Omega),$$
$$\langle \nabla W(\varphi, x), \nabla V(x) \rangle > 0 \quad \forall (\varphi, x) \in \mathbb{T}^k \times \partial \Omega$$

where $\lambda_W(\varphi, x)$ is minimal eigenvalue of Hesse form $H_W(\varphi, x)$ for the function $W(\varphi, \cdot) : \mathcal{M} \mapsto \mathbb{R}$.

Theorem 1. Let the Hypotheses (H1)–(H3) hold true. Then there exist positive constants C, C_1 and c such that for any $u_0(\cdot), u_1(\cdot) \in C^{\infty}(\mathbb{T}^k \mapsto \Omega)$ one can choose a vector field $h(\cdot) \in C^{\infty}(\mathbb{T}^k \mapsto T\mathcal{M})$ along $u_0(\cdot)$ (this implies that $h(\varphi) \in T_{u_0(\varphi)}\mathcal{M}$ for all $\varphi \in \mathbb{T}^k$) in such a way that the following inequalities hold true

$$c\rho(u_0(\varphi), u_1(\varphi)) \leq ||h(\varphi)|| \leq C\rho(u_0(\varphi), u_1(\varphi)) \quad \forall \varphi \in \mathbb{T}^k,$$
$$||D_{\omega}h(\varphi)|| \leq C_1 [||D_{\omega}u_0(\varphi)|| + ||D_{\omega}u_1(\varphi)||] \quad \forall \varphi \in \mathbb{T}^k,$$
$$J[u_1] - J[u_0] - J'[u_0](h) \geq \frac{\varkappa c^2}{2} \int_{\mathbb{T}^k} \rho^2(u_0, u_1) d\varphi$$

where
$$\varkappa := \min \left\{ \lambda_W(\varphi, x) + \frac{1}{2} \left\langle \nabla W(\varphi, x), \nabla V(x) \right\rangle : (\varphi, x) \in \mathbb{T}^k \times \bar{\Omega} \right\}.$$

The proof of this theorem needs several auxiliary statements and will be given below at the end of present Section.

Proposition 1. The Euler-Lagrange equation for ρ_V -geodesic on Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ has the form

$$\nabla_{\dot{x}}\dot{x} = -\langle \nabla V(x), \dot{x}\rangle \,\dot{x} + \frac{\|\dot{x}\|^2}{2} \nabla V(x),\tag{6}$$

Proof. A ρ_V -geodesic segment with endpoints $x_0, x_1 \in \mathcal{M}$ is an extremal of functional $\Phi[x(\cdot)] = \int_0^1 \mathrm{e}^{V \circ x(t)} \|\dot{x}(t)\|^2 \,\mathrm{d}t$ defined on the space $\mathcal{C}^2_{x_0x_1}$ of twice continuous differentiable curves $x = x(t), t \in [0,1]$, such that $x(0) = x_0, x(1) = x_1$. We are going to derive the Euler-Lagrange equation using the connection ∇ . Consider a variation of $x(\cdot)$ defined by a smooth mapping $y(\cdot,\cdot):[0,1]\times(-\varepsilon,\varepsilon)\mapsto \mathcal{M}$ such that $y(\cdot,\lambda)\in\mathcal{C}^\infty_{x_0x_1}$ for any fixed $\lambda\in(-\varepsilon,\varepsilon)$ and $y(t,0)\equiv x(t)$. Put

$$\dot{y}(t,\lambda) := \frac{\partial}{\partial t} y(t,\lambda), \quad y'(t,\lambda) := \frac{\partial}{\partial \lambda} y(t,\lambda).$$

Obviously, $\dot{y}(t,0) = \dot{x}(t)$, $y(i,\lambda) \equiv x_i$, and $y'(i,\lambda) = 0$, i = 0,1. Then since $\nabla_{y'}\dot{y} = \nabla_{\dot{y}}y'$, we have

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \Big|_{\lambda=0} \int_{0}^{1} \mathrm{e}^{V \circ y} \|\dot{y}\|^{2} \,\mathrm{d}s =$$

$$= \int_{0}^{1} \left[\mathrm{e}^{V \circ y} \left\langle \nabla V \circ y, y' \right\rangle \|\dot{y}\|^{2} + 2 \mathrm{e}^{V \circ y} \left\langle \nabla_{y'} \dot{y}, \dot{y} \right\rangle \right]_{\lambda=0} \,\mathrm{d}t =$$

$$= \int_{0}^{1} \left[\mathrm{e}^{V \circ y} \left\langle \nabla V \circ y, y' \right\rangle \|\dot{y}\|^{2} + 2 \mathrm{e}^{V \circ y} \left\langle \nabla_{\dot{y}} y', \dot{y} \right\rangle \right]_{\lambda=0} \,\mathrm{d}t.$$

Taking into account that

$$\frac{\partial}{\partial t} e^{V \circ y} \left\langle y', \dot{y} \right\rangle = e^{V \circ y} \left\langle \nabla V \circ y, \dot{y} \right\rangle \left\langle y', \dot{y} \right\rangle + e^{V \circ y} \left\langle \nabla_{\dot{y}} y', \dot{y} \right\rangle + e^{V \circ y} \left\langle y', \nabla_{\dot{y}} \dot{y} \right\rangle$$
and $e^{V \circ y} \left\langle y', \dot{y} \right\rangle \Big|_{t=0,1} = 0$, we get

$$\int_{0}^{1} e^{V \circ y} \left\langle \nabla_{\dot{y}} y', \dot{y} \right\rangle dt = -\int_{0}^{1} e^{V \circ y} \left[\left\langle \nabla V \circ y, \dot{y} \right\rangle \left\langle y', \dot{y} \right\rangle + \left\langle y', \nabla_{\dot{y}} \dot{y} \right\rangle \right] dt.$$

From this it follows that the first variation on functional Φ is

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\lambda}\Big|_{\lambda=0} \Phi[y(\cdot,\lambda)] &= \Phi'[x(\cdot)] \left(y'(\cdot,0)\right) = \\ &= \int\limits_0^1 \left[\mathrm{e}^V \left(\left\langle \nabla V, y' \right\rangle \|\dot{x}\|^2 - 2 \left\langle \nabla V, \dot{x} \right\rangle \left\langle \dot{x}, y' \right\rangle - 2 \left\langle \nabla_{\dot{x}} \dot{x}, y' \right\rangle \right) \right] \Big|_{x=x(t),\lambda=0} \mathrm{d}t, \end{split}$$

and the Euler-Lagrange equation is exactly (6).

Proposition 2. Let the Hypothesis (H1) holds true. If a ρ_V -geodesic segment connecting points x_0, x_1 of the set Ω belongs to \mathcal{D} , then this segment belongs to Ω .

Proof. Let $x(\cdot) \in \mathcal{C}^2_{x_0x_1}$ satisfies (6) and let $x(t) \in \mathcal{D}$ for all $t \in [0,1]$. Then

$$\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \mathrm{e}^{V} \Big|_{x=x(t)} =$$

$$= \left[\mathrm{e}^{V} \left(\langle \nabla_{\dot{x}} \nabla V, \dot{x} \rangle + \left\langle \nabla V, - \langle \nabla V, \dot{x} \rangle \dot{x} + \|\dot{x}\|^{2} \nabla V/2 \right\rangle + \langle \nabla V, \dot{x} \rangle^{2} \right) \right] \Big|_{x=x(t)} =$$

$$= \left[\mathrm{e}^{V} \left(\langle \nabla_{\dot{x}} \nabla V, \dot{x} \rangle + \|\dot{x}\|^{2} \|\nabla V\|^{2} / 2 \right) \right] \Big|_{x=x(t)} \ge$$

$$\ge \left[\mathrm{e}^{V} \|\dot{x}\|^{2} \left(\lambda_{V} + \|\nabla V\|^{2} / 2 \right) \right] \Big|_{x=x(t)} \ge 0.$$

Hence, $e^{V \circ x(\cdot)}$ is convex and this implies $V \circ x(t) < v$ for all $t \in [0, 1]$.

Proposition 3. Under the Hypotheses (H1)-(H2), the minimal ρ_V -geodesic segment connecting any two points $x, y \in \Omega$ does not contain conjugate points.

Proof. It is known (see. [13, sect. 3.6]) that the sectional curvature in direction $\sigma_x(\xi_1, \xi_2)$ on Riemannian manifold $(\mathcal{M}, e^V \langle \cdot, \cdot \rangle)$ is represented in the form

$$K_{V}(\sigma_{x}(\xi_{1}, \xi_{2})) = e^{-V} K(\sigma_{x}(\xi_{1}, \xi_{2})) - \frac{e^{-V}}{2} \sum_{i=1}^{2} \left[\langle H_{V}(x)\xi_{i}, \xi_{i} \rangle - \frac{1}{2} \langle \nabla V(x), \xi_{i} \rangle^{2} \right] - \frac{e^{-V}}{4} \|\nabla V(x)\|^{2}$$

where ξ_1, ξ_2 is an orthonormal basis of the plane $\sigma_x(\xi_1, \xi_2)$, and the inequality (5) yields that this curvature is non-positive for any $x \in \bar{\Omega}$. By the Morse–Schoenberg theorem any ρ_V -geodesic segment containing in $\bar{\Omega}$ does not contain conjugate points.

Proposition 4. Under the Hypotheses (H1)-(H3) there exists a smooth mapping $\zeta(\cdot,\cdot): \Omega \times \Omega \mapsto T\mathcal{M}$ such that $\zeta(x,y) \in T_x\mathcal{M}$ and

$$\exp_x^V(\zeta(x,y)) = y, \quad e^{V(x)/2} \|\zeta(x,y)\| = \rho_V(x,y),$$
 (7)

$$\exp_x^V(t\zeta(x,y)) \in \Omega \quad \forall t \in [0,1]. \tag{8}$$

Proof. It is known that if for some $\xi \in T_x \mathcal{M}$ a geodesic segment $\exp_x^V(t\xi)$, $t \in [0,1]$, does not contain conjugate points then the mapping $\exp_x^V(\cdot)$ is local diffeomorphism at any point $t\xi$, $t \in [0,1]$. Under the Hypothesis (H2) for any $x, y \in \Omega$ there exists a unique $\zeta(x,y)$ which satisfies conditions (8). It follows from the implicit function theorem that the mapping $\zeta(\cdot,\cdot): \Omega \times \Omega \mapsto T\mathcal{M}$ is smooth.

If we define the mapping

$$\gamma_V(\cdot,\cdot,\cdot):[0,1]\times\Omega\times\Omega\mapsto\Omega,\quad \gamma_V(t,x,y):=\exp^V_x(t\zeta(x,y)),$$

then for any $x, y \in \mathcal{D}$ the mapping $\gamma_V(\cdot, x, y) : [0, 1] \mapsto \mathcal{D}$ satisfies the equation (6) together with boundary conditions $\gamma_V(0, x, y) = x$, $\gamma_V(1, x, y) = y$. The following scalar differential equation

$$\frac{\mathrm{d}\tau}{\mathrm{d}s} = \exp\left(V \circ \gamma_V(\tau, x, y)\right) \int_0^1 \exp\left(-V \circ \gamma_V(t, x, y)\right) \mathrm{d}t.$$

has a unique strictly monotonically increasing solution

$$\tau(\cdot, x, y) : [0, 1] \mapsto [0, 1], \quad \tau(0, x, y) = 0, \quad \tau(1, x, y) = 1.$$
 (9)

By means of reparametrisation $t = \tau(s, x, y)$ we define a smooth mapping

$$\chi(\cdot,\cdot,\cdot):[0,1]\times\Omega\times\Omega\mapsto\Omega,\quad \chi(s,x,y):=\gamma_V(\tau(s,x,y),x,y)$$

which plays an important role in subsequent reasoning. In [7] $\chi(\cdot,\cdot,\cdot)$ is called the connecting mapping.

Proposition 5. For any $x, y \in \Omega$ the mapping $\chi(\cdot, x, y) : [0, 1] \mapsto \Omega$ satisfies the equation

$$\nabla_{x'}x' = \frac{\|x'\|^2}{2}\nabla V(x),\tag{10}$$

where $x' = \frac{\mathrm{d}x}{\mathrm{d}s}$ and the boundary conditions $\chi(0, x, y) = x$, $\chi(1, x, y) = y$.

Proof. The boundary conditions follow from definition of γ_V and (9). Let us show that (10) is obtained from (6) after the change of independent variable $t = \tau(s)$. In fact, let $\chi(s) = x \circ \tau(s)$. Then (6) takes the form

$$\frac{1}{\tau'}\nabla_{\chi'}\left(\frac{1}{\tau'}\chi'\right) = -\frac{1}{(\tau')^2}\left\langle\nabla V \circ \chi, \chi'\right\rangle \chi' + \frac{\|\chi'\|^2}{2(\tau')^2}\nabla V \circ \chi,$$

or

$$-\frac{\tau''}{\tau'}\chi' + \nabla_{\chi'}\chi' = -\left[\frac{\mathrm{d}}{\mathrm{d}s}V \circ \chi\right]\chi' + \frac{\|\chi'\|^2}{2}\nabla V \circ \chi.$$

From this it follows (10) since $\tau''/\tau' = (V \circ \chi)'$.

Proposition 6. Let $u_i(\cdot) \in \mathcal{S}_{\Omega}$, i = 0, 1. Then under the hypotheses (H1)-(H2) the following inequality is valid

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} \|D_{\omega}\chi(s, u_0(\varphi), u_1(\varphi))\|^2 \ge 0 \quad \forall s \in [0, 1], \ \forall \varphi \in \mathbb{T}^k.$$

Proof. For any fixed $\varphi \in \mathbb{T}^k$ put

$$\eta(s,t) := \frac{\partial}{\partial t} \chi \left(s, u_0(\varphi + \omega t), u_1(\varphi + \omega t) \right) \equiv D_\omega \chi \left(s, u_0(\varphi + \omega t), u_1(\varphi + \omega t) \right),$$
$$\xi(s,t) := \frac{\partial}{\partial s} \chi \left(s, u_0(\varphi + \omega t), u_1(\varphi + \omega t) \right).$$

Then in view of the well known relations (see. e.g., [13],DNF84)

$$\nabla_{\eta}\xi = \nabla_{\xi}\eta, \quad \nabla_{\eta}\nabla_{\xi}\xi - \nabla_{\xi}\nabla_{\eta}\xi = R(\eta,\xi)\xi$$

and (10), we have

$$\begin{split} & \nabla_{\xi}^{2} \eta = \nabla_{\eta} \nabla_{\xi} \xi - R(\eta, \xi) \xi = \\ & = \left\langle \nabla_{\eta} \xi, \xi \right\rangle \nabla V \circ \chi + \frac{\left\| \xi \right\|^{2}}{2} \nabla_{\eta} \nabla V \circ \chi - R(\eta, \xi) \xi \end{split}$$

and hence,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}s^2} \left\| \eta \right\|^2 &= 2 \left[\left\langle \nabla_{\xi}^2 \eta, \eta \right\rangle + \left\| \nabla_{\xi} \eta \right\|^2 \right] = \\ &= 2 \left\| \nabla_{\xi} \eta \right\|^2 + 2 \left\langle \nabla_{\xi} \eta, \xi \right\rangle \left\langle \nabla V \circ \chi, \eta \right\rangle + \\ &+ \left\| \xi \right\|^2 \left\langle \nabla_{\eta} \nabla V \circ \chi, \eta \right\rangle - 2 \left\langle R(\eta, \xi) \xi, \eta \right\rangle \geq \\ &\geq 2 \left\| \nabla_{\xi} \eta \right\|^2 - 2 \left\| \nabla_{\xi} \eta \right\| \left\| \xi \right\| \left| \left\langle \nabla V \circ \chi, \eta \right\rangle \right| + \\ &+ \left\| \xi \right\|^2 \left\langle \nabla_{\eta} \nabla V \circ \chi, \eta \right\rangle - 2 K^* \circ \chi \left\| \xi \right\|^2 \left\| \eta \right\|^2. \end{split}$$

Once the Hypothesis (H2) holds true, we get

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} \|\eta\|^2 \ge$$

$$\ge 2 \|\xi\|^2 \|\eta\|^2 \left[r^2 - |\langle \nabla V \circ \chi, \mathbf{e} \rangle| \, r + \frac{1}{2} \, \langle \nabla_{\mathbf{e}} \nabla V \circ \chi, \mathbf{e} \rangle - K^* \circ \chi \right] \ge 0$$
where $r := \frac{\|\nabla_{\xi} \eta\|}{\|\xi\| \|\eta\|}$.

Now we are in position to prove the Theorem 1. Let $u_i(\cdot) \in \mathcal{S}_{\Omega}$, i = 0, 1. By means of connecting mapping we get the following representation

$$J[\chi(s, u_0, u_1)] = J[u_0] + sJ'[u_0] \left(\chi'_s(0, u_0, u_1)\right) + \frac{s^2}{2} \frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=\theta} J\left[\chi\left(s, u_0, u_1\right)\right]$$
(11)

with some $\theta \in (0,1)$. To estimate from below the term with second derivative we make use of Proposition 6 which together with the Hypothesis (H3) implies

$$\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}} \left[\frac{1}{2} \left\| D_{\omega} \chi \left(s, u_{0}(\varphi), u_{1}(\varphi) \right) \right\|^{2} + W \left(\varphi, \chi(s, u_{0}, u_{1}) \right) \right] \geq
\geq \frac{\mathrm{d}}{\mathrm{d}s} \left\langle \nabla W(\varphi, \chi), \chi'_{s} \right\rangle = \left\langle \nabla_{\chi'_{s}} \nabla W(\varphi, \chi), \chi'_{s} \right\rangle + \left\langle \nabla W(\varphi, \chi), \nabla_{\chi'_{s}} \chi'_{s} \right\rangle =
= \left\langle \nabla_{\chi'_{s}} \nabla W(\varphi, \chi), \chi'_{s} \right\rangle + \frac{\left\| \chi'_{s} \right\|^{2}}{2} \left\langle \nabla W(\varphi, \chi), \nabla V(\chi) \right\rangle \geq \varkappa \left\| \chi'_{s} \right\|^{2}.$$

By the definition of χ we have

$$\chi'_{s}(s, u_{0}, u_{1}) = \tau'(s)\dot{\gamma}_{V}(\tau(s), u_{0}, u_{1}) =$$

$$= \exp\left(V \circ \gamma_{V}(\tau(s), u_{0}, u_{1})\right) \int_{0}^{1} \exp\left(-V \circ \gamma_{V}(t, u_{0}, u_{1})\right) dt \dot{\gamma}_{V}(\tau(s), u_{0}, u_{1}).$$

Since $\gamma_V(t, x, y)$ is ρ_V -geodesic, then $\exp(V \circ \gamma_V) \|\dot{\gamma}_V\|^2$ does not depend on t and

$$e^{V(x)/2} \|\dot{\gamma}_V(0, x, y)\| = e^{V(x)/2} \|\zeta(x, y)\| = \rho_V(x, y).$$

Hence

$$\|\chi'_{s}(s, u_{0}, u_{1})\|^{2} = \left[\int_{0}^{1} \exp\left(-V \circ \gamma_{V}(t, u_{0}, u_{1})\right) dt\right]^{2} \times \exp\left(V \circ \gamma_{V}(\tau(s), u_{0}, u_{1})\right) \rho_{V}^{2}(u_{0}, u_{1}),$$

and (8) implies that there exist positive constants C, c dependent only on $V(\cdot)$ and Ω such that

$$c\rho(u_0, u_1) \le \|\chi_s'(s, u_0, u_1)\| \le C\rho(u_0, u_1).$$
 (12)

Define $h(\varphi) := \chi'_s(0, u_0(\varphi), u_2(\varphi))$. Then (11) with s = 1 yields

$$J[u_1] - J[u_0] - J'[u_0] \left(\chi'_s(0, u_0, u_1) \right) \ge \frac{\varkappa c^2}{2} \int_{\mathbb{T}^k} \rho^2(u_0, u_1) d\varphi.$$

Finally, since the set Ω is bounded and the mapping χ is smooth, there exists positive constant C_1 such that

$$||D_{\omega}h(\varphi)|| \le C_1 \left[||D_{\omega}u_0(\varphi)|| + ||D_{\omega}u_1(\varphi)|| \right] \quad \forall \varphi \in \mathbb{T}^k.$$

The proof of Theorem 1 is complete.

4. Main existence theorem. Now we proceed to the main result of this paper.

Theorem 2. Let the Hypotheses (H1)–(H3) hold true. Then the natural system on Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ with Lagrangian density $L = \frac{1}{2}\langle \dot{x}, \dot{x} \rangle + W(\omega t, x)$ has a weak quasiperiodic solution.

Proof. The proof will consist of three steps.

1. Construction of a projection mapping and its smooth approximation. Put $\Omega + \delta = (\bigcup_{x \in \Omega} B(x; \delta))$ where $B(x; \delta)$ stands for an open ball of radius δ centered at $x \in \mathcal{M}$ on Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$. Since by Hypothesis (H2) v is a noncritical value, then $\partial \Omega = V^{-1}(v)$ is a regular hypersurface with unit normal field $\boldsymbol{\nu} := \frac{\nabla V}{\|\nabla V\|}$. As is well known (see, e.g., [12]), for sufficiently small $\delta > 0$, one can correctly define the projection mapping $P_{\Omega}: \Omega + \delta \to \bar{\Omega}$ such that $P_{\Omega}x \in \bar{\Omega}$ is the nearest point to $x \in \Omega + \delta$. If $x = X(q), q \in \mathcal{Q} \subset \mathbb{R}^{m-1}$, is a smooth local parametric representation of $\partial \Omega$ in a neighborhood of a point $x_0 \in \partial \Omega$, then for sufficiently small $\delta_0 > 0$ the mapping

$$Q \times (-\delta_0, \delta_0) \ni (q, z) \mapsto \exp_{X(q)} (z \boldsymbol{\nu} \circ X(q))$$

introduces local coordinates with the following properties: local equation of $\partial\Omega$ is z=0; each naturally parametrized ρ -geodesic $\gamma(s)=0$

 $\exp_{X(q)}(s\boldsymbol{\nu}\circ X(q))$ is orthogonal to each hypersurface z= const; the Riemannian metric takes the form $\sum_{i,j=1}^{m-1}b_{ij}(q,z)\mathrm{d}q_i\mathrm{d}q_j+\mathrm{d}z^2$, where $B(q,z)=\{b_{ij}(q,z)\}_{i,j=1}^{m-1}$ is positive definite symmetric matrix; the function $V(\cdot)$ is represented in the form $V(q,z)=v+a(q)z+b(q,z)z^2$; the mapping P_{Ω} has the form

$$P_{\Omega}(q,z) := \begin{cases} (q,0) & \text{if} \quad z \in (0,\delta_0), \\ (q,z) & \text{if} \quad z \in (-\delta_0,0]. \end{cases}$$

The projection mapping is continuous on $\Omega + \delta$ and continuously differentiable on $(\Omega + \delta) \backslash \partial \Omega$. Moreover, it turns out that for sufficiently small $\delta > 0$ the derivative $P_{\Omega*}$ is contractive on $(\Omega + \delta) \backslash \partial \Omega$, i.e.

$$||P_{\Omega *}\xi|| \le ||\xi|| \quad \forall \xi \in T_x \mathcal{M}, \ x \in (\Omega + \delta) \setminus \partial \Omega.$$
 (13)

It is sufficiently to prove this inequality for any $x \in (\Omega + \delta) \backslash \partial \Omega$. Let q = q(s), z = z(s) be natural equations of ρ -geodesic which starts at a point $x_0 = (q_0, 0) \in \partial \Omega$ in direction of vector $\eta = (\dot{q}_0, 0) \in T_{x_0} \partial \Omega$. The hypothesis (H2) implies that

$$\langle \nabla_{\eta} \nabla V(x_0), \eta \rangle = \frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=0} V(q(s), z(s)) > 0 \quad \Leftrightarrow \quad a(q_0) \ddot{z}(0) > 0.$$

Since $a(q_0) > 0$ (ν is external normal to $\partial\Omega$) and z-component of geodesic equations is

$$\ddot{z} = \frac{1}{2} \frac{\partial}{\partial z} \sum_{i,j=1}^{m-1} b_{ij}(q,z) \dot{q}_i^2 \dot{q}_j^2,$$

then the matrix $B_z'(q_0,0)$ is positive definite. From this it follows that $B(q,z_1) > B(q,z_2)$ for all q from a neighborhood of q_0 and all $z_1, z_2 \in (-\delta, \delta)$, $z_1 > z_2$ if $\delta \in (0,\delta_0)$ is sufficiently small. Let $\xi = (\dot{q},\dot{z})$ be a tangent vector at point (q,z) where $z \in (0,\delta)$. Then

$$\|\xi\|^2 = \sum_{i,j=1}^{m-1} b_{ij}(q,z)\dot{q}_i\dot{q}_j + \dot{z}^2 \ge$$

$$ge \sum_{i,j=1}^{m-1} b_{ij}(q,z)\dot{q}_i\dot{q}_j \ge \sum_{i,j=1}^{m-1} b_{ij}(q,0)\dot{q}_i\dot{q}_j = \|(\dot{q},0)\|^2 = \|P_{\Omega*}\xi\|^2.$$

Let us introduce a smooth approximation of projection mapping in a following way. For $\varepsilon \in (0, \delta)$ define

$$\varpi_{\varepsilon}(z) := \begin{cases} \exp\left(1/z - 1/(z + \varepsilon)\right), & z \in (-\varepsilon, 0), \\ 0, & z \in \mathbb{R} \setminus (-\varepsilon, 0), \end{cases}$$

$$Z_{\varepsilon}(z) := \int_{-\varepsilon}^{z} \frac{\int_{s}^{0} \varpi_{\varepsilon}(t) dt}{\int_{-\varepsilon}^{0} \varpi_{\varepsilon}(t) dt} ds - \varepsilon, \quad z \in (-\delta_{0}, \delta_{0})$$

Obviously that the function $Z_{\varepsilon}(\cdot)$ is smooth, its derivative, $Z'_{\varepsilon}(z)$, equals 1 for $z \in (-\delta_0, -\varepsilon]$, monotonically decreases from 1 to 0 on $[-\varepsilon, 0]$, and equals 0 for $z \geq 0$. From this it follows that $Z_{\varepsilon}(z)$ equals z for $z \in (-\delta_0, -\varepsilon]$ monotonically increases from $-\varepsilon$ to $Z_{\varepsilon}(0) \in (-\varepsilon, 0)$ on $[-\varepsilon, 0]$, and equals $Z_{\varepsilon}(0)$ for $z \in [0, \delta_0)$. Now locally define

$$P_{\varepsilon,\Omega}(q,z) := \begin{cases} (q, Z_{\varepsilon}(0)) & \text{if} \quad z \in (0, \delta_0), \\ (q, Z_{\varepsilon}(z)) & \text{if} \quad z \in (-\delta_0, 0] \end{cases}$$

and for each point $x \in \Omega$ such that $B(x;\delta) \subset \Omega$ put $P_{\varepsilon,\Omega}(x) = x$. Since $Z_{\varepsilon}(0) < 0$, then

$$P_{\varepsilon,\Omega}(\Omega+\delta)\subset\Omega$$

and since $|Z'_{\varepsilon}(z)| \leq 1$, then for any $z \in (-\delta, \delta)$, and for any tangent vector $\xi = (\dot{q}, \dot{z})$ at point (q, z) we have

$$\|\xi\|^{2} = \sum_{i,j=1}^{m-1} b_{ij}(q,z)\dot{q}_{i}\dot{q}_{j} + \dot{z}^{2} \ge \sum_{i,j=1}^{m-1} b_{ij}(q,Z_{\varepsilon}(z))\dot{q}_{i}\dot{q}_{j} + \left(Z'_{\varepsilon}(z)\dot{z}\right)^{2} =$$

$$= \|(\dot{q},Z'_{\varepsilon}(z)\dot{z})\|^{2} = \|P_{\varepsilon,\Omega*}\xi\|.$$

From this it follows that

$$||P_{\varepsilon,\Omega} \xi|| \le ||\xi|| \quad \forall x \in \Omega + \delta, \ \forall \xi \in T_x \mathcal{M}.$$
 (14)

Besides, the Hypothesis (H3) implies

$$W(\varphi, P_{\varepsilon,\Omega}x) \le W(\varphi, x) \quad \forall \varphi \in \mathbb{T}^m, \, \forall x \in \Omega + \delta$$
 (15)

for sufficiently small δ and $\varepsilon \in (0, \delta)$.

2. Minimization of functional J on $S_{\Omega+\delta}$. Obviously that the functional J restricted to $S_{\Omega+\delta}$ is bounded from below. Let us show that

$$J_* := \inf J[\mathcal{S}_{\Omega+\delta}] = \inf J[\mathcal{S}_{\Omega}]. \tag{16}$$

In fact, if $v_j(\cdot) \in \mathcal{S}_{\Omega+\delta}$ is such a sequence that $J[v_j]$ monotonically decreases to J_* , then (14) and (15) implies

$$J_* \le J[P_{\varepsilon/j,\Omega}v_j] \le J[v_j].$$

Hence, the sequence $u_j(\cdot) := P_{\varepsilon/j,\Omega} v_j(\cdot)$ is minimizing both for $J|_{S_{\Omega}}$ and for $J|_{S_{\Omega+\delta}}$.

3. Convergence of minimizing sequence to a weak solution. Let $u_j(\cdot) \in \mathcal{S}_{\Omega}$ be a minimizing sequence for $J|_{\mathcal{S}_{\Omega}}$. Without loss of generality, we may consider that

$$||D_{\omega}u_j||_0^2 \le M := \frac{2}{(2\pi)^k} \sup_{x \in \Omega} \int_{\mathbb{T}^k} W(\varphi, x) d\varphi - \frac{2}{(2\pi)^k} \int_{\mathbb{T}^k} \inf_{x \in \Omega} W(\varphi, x) d\varphi.$$
(17)

Let $h_j(\cdot) \in C^{\infty}(\mathbb{T}^k \mapsto T\mathcal{M})$ be a sequence of smooth mappings such that $h_j(\varphi) \in T_{u_j(\varphi)}\mathcal{M}$ for any $\varphi \in \mathbb{T}^k$ and besides there exist positive constants K, K_1 such that

$$||h_i||_1 \le K_1, \quad ||h_i(\varphi)|| \le K \quad \forall \varphi \in \mathbb{T}^k, \quad \forall j = 1, 2, \dots$$
 (18)

Let us show that

$$\lim_{j \to \infty} J'[u_j](h_j) = 0. \tag{19}$$

On one hand, $J[u_j]$ decreases to $J_* := \inf J[S_{\Omega}]$. On the other hand, for sufficiently small $s_0 \leq 1$ and for any $j \in \mathbb{N}$ there exists a number $\theta_j \in [-s_0, s_0]$ such that

$$J[\exp_{u_j}(sh_j)] = J[u_j] + sJ'[u_j](h_j) + \frac{s^2}{2} \frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=\theta_j} J[\exp_{u_j}(sh_j)]$$
$$\forall s \in [-s_0, s_0], \quad \forall j \in \mathbb{N},$$

and, besides, there exists a constant $K_2 > 0$ such that

$$\left| \frac{\mathrm{d}^2}{\mathrm{d}s^2} J[\exp_{u_j}(sh_j)] \right| \le K_2 \quad \forall s \in [-s_0, s_0], \quad \forall j \in \mathbb{N}.$$

If now we suppose that $\limsup_{j\to\infty} |J'[u_j](h_j)| > 0$ then one can choose j and $s_j \in [-s_0, s_0]$ in such a way that

$$\exp_{u_j}(s_j h_j) \in \mathcal{S}_{\Omega + \delta}, \quad J[\exp_{u_j}(s_j h_j)] < J_*.$$

Thus, in view of (16), we arrive at contradiction with definition of J_* .

Now by Theorem 1 for any pair $u_{i+j}(\cdot)$, $u_j(\cdot)$ there exists a vector field $h_{ij}(\cdot)$ along $u_j(\cdot)$ such that

$$J[u_{i+j}] - J[u_j] - J'[u_j](h_{ij}) \ge \frac{\varkappa c^2}{2} \int_{\mathbb{T}^k} \rho^2(u_j, u_{i+j}) d\varphi \ge$$
$$\ge \frac{(2\pi)^k \varkappa c^2}{2} \|u_{i+j} - u_j\|_0^2.$$

Since (19) implies $J'[u_j](h_{ij}) \to 0$ as $j \to \infty$, then the sequence $u_j(\cdot)$ is fundamental in $H(\mathbb{T}^k \to \mathbb{E}^n)$ and in view of (17) converges to a function $u_*(\cdot)$ strongly in $H(\mathbb{T}^k \to \mathbb{E}^n)$ and weakly in $H^1_{\omega}(\mathbb{T}^k \to \mathbb{E}^n)$. Without loss of generality we may consider that $u_*(\cdot)$ is defined by a minimizing sequence which converges a.e.

Now it remains only to prove that $u_*(\cdot)$ is a weak solution, i.e. that there holds (3). Let $h(\cdot)$ be a vector field along $u_*(\cdot)$. By definition, there exists a sequence of smooth mappings $h_j(\varphi) \in T_{u_j(\varphi)}\mathcal{M}$ which satisfies (18) and (19). Then, in view of (17), we get

$$\begin{split} &\lim_{j \to \infty} \left| \langle D_{\omega} u_*, D_{\omega} h \rangle_0 - \langle D_{\omega} u_j, D_{\omega} h_j \rangle_0 \right| \le \\ &\le \lim_{j \to \infty} \left| \langle D_{\omega} \left(u_* - u_j \right), D_{\omega} h \rangle_0 \right| + \sqrt{M} \lim_{j \to \infty} \left\| D_{\omega} \left(h - h_j \right) \right\|_0 = 0, \end{split}$$

and by the Lebesgue theorem

$$\lim_{j \to \infty} \int_{\mathbb{T}^k} \left[W \left(\varphi, u_j(\varphi) \right) - W \left(\varphi, u_*(\varphi) \right) \right] d\varphi = 0.$$

Hence,

$$J'[u_*](h) = \lim_{j \to \infty} J'[u_j](h_j) = 0.$$

References

- [1] J Blot. Calculus of variations in mean and convex Lagrangians, Int. J. Math. Anal. Appl., 134 (1988), no. 2, 312–321.
- [2] J Blot. Calculus of variations in mean and convex Lagrangians II, Bull. Austral. Math. Soc., 40 (1989), 457–463.
- [3] J Blot. Calculus of variations in mean and convex Lagrangians III, Israel J. Math., 67 (1989), no. 3, 337–344.
- [4] J Blot. Almost periodically forced pendulum, Funkc. Ekvac. Serio Internacia, 36 (1993), 235–250.
- [5] M.S. Berger and Luping Zhang. A new method for large quasiperiodic nonlinear oscillations with fixed frequencies for nondissipative second order conservative systems of second type, Commun. Appl. Nonlinear Anal., 3 (1996), no. 1, 25–49.
- [6] J. Mawhin, Bounded and almost periodic solutions of nonlinear differential equations: variational vs nonvariational approach, in: Calculus of Variations and Differential Equations (Haifa, 1998), Chapman & Hall/CRC Research Notes in Mathematics, 410, Boca Raton, Raton, FL, 2000, 167–184.
- [7] S. F. Zakharin and I. O. Parasyuk. Generalized and classical almost periodic solutions of Lagrangian systems, Funkc. Ekvac., 42 (1999), 325–338.
- [8] R. Ortega. The pendulum equation: from periodic to almost periodic forcings, Diff. Int. Equat, 22 (2009), no. 9–10, 801–814.
- [9] S.F. Zakharin and I.O. Parasyuk. Generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature, Bull. Kyiv. Univ. (Visnyk Kyiv. Univ.), (1999), Iss. 3, 15–20. (in Ukrainian)
- [10] S.F. Zakharin and I.O. Parasyuk. On smoothness of generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature, Nonlinear Oscillations (Nelinijni Kolyvannya), 2 (1999), no. 2, 180-193. (in Ukrainian)
- [11] J. Nash. The imbedding problem for Riemannian manifolds, Ann. of Math. 63, no. 1 (1956), 2063.
- [12] R.L. Bishop and R.J. Crittenden. Geometry of manifolds, Academic Press, New York – London (1964).
- [13] D. Gromol, W. Klingenberg and W. Meyer. Riemannsche geometrie im grossen, Springer-Verlag, Heidelberg-New York (1968).
- [14] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov. Modern Geometry. Methods and Applications, Springer-Verlag, GTM 93, Part 1, (1984).

National Taras Shevchenko Univesity of Kyiv, Volodymyrs'ka 64, Kyiv, 01033, Ukraine

 $E ext{-}mail\ address: pio@univ.kiev.ua, anna_rustamova@hotmail.com}$