Álgebra Lineal y Estructuras Matemáticas

J. C. Rosales y P. A. García Sánchez

DEPARTAMENTO DE ÁLGEBRA, UNIVERSIDAD DE GRANADA

Capítulo 7

Diagonalización de matrices

1. Matrices diagonalizables

Una matriz diagonal es una matriz cuadrada que tiene todas sus entradas nulas, salvo eventualmente las de la diagonal. Una matriz cuadrada A es diagonalizable si existen una matriz diagonal D y una matriz regular P tales que $A = PDP^{-1}$.

La diagonalización de matrices es útil para el cálculo de potencias grandes de una matriz, ya que

$$A^{r} = (PDP^{-1})^{r} = PDP^{-1}PDP^{-1} : -1 : PDP^{-1} = PD^{r}P^{-1}.$$

En adelante, A representará una matriz cuadrada de orden $n \times n$ sobre un cuerpo K.

Un elemento $\lambda \in K$ es un valor propio de A si existe $x \in K^n \setminus \{(0, ..., 0)\}$ tal que $Ax = \lambda x$. En tal caso diremos que x es un vector propio asociado al valor propio λ .

Teorema de caracterización de los valores propios. Un elemento $\lambda \in K$ es un valor propio de A si y sólo si $|A - \lambda I_n| = 0$.

Así los valores propios de A son las raíces del polinomio $|A - \lambda I_n| \in K[\lambda]$, que se conoce como polinomio característico de A, y lo denotaremos por $p_A(\lambda)$. Nótese que $gr(p_A(\lambda) = n$.

Ejercicio 82: Calcula el polinomio característico y los valores propios de $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

Propiedades.

- 1) Si A es una matriz triangular, entonces sus valores propios son los valores de la diagonal.
- 2) Los valores propios de A y A^t coinciden.
- 3) |A| = 0 si y sólo si 0 es un valor propio de A.
- 4) Si A es regular y λ es un valor propio de A, entonces λ^{-1} lo es de A^{-1} .
 - \blacksquare Si λ es un valor propio de A, entonces

$$V(\lambda) = \{x \in K^n \ \mathrm{tales} \ \mathrm{que} \ (A - \lambda I_n) x = 0\},$$

(en este caso $0 = (0, ..., 0) \in K^n$) es un subespacio vectorial de K^n . Dicho subespacio la llamamos subespacio vectorial propio asociado al valor propio λ .

Ejercicio 83: Encuentra los subespacios propios asociados a los valores propios de $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

Sean $\lambda_1, \ldots, \lambda_k$ los valores propios de la matriz A. A la multiplicidad de la raíz λ_i de $P_A(\lambda)$ la llamaremos multiplicidad algebraica de λ_i , mientras que la dimensión de $V(\lambda_i)$ es la multiplicidad geométrica de λ_i .

Ejercicio 84: Calcula las multiplicidades algebraicas y geométricas de los valores propios de $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

■ La multiplicidad geométrica de un valor propio es menor o igual que su multiplicidad algebraica.

Criterio de diagonalización. A es diagonalizable si, y sólo si, la suma de las multiplicidades algebraicas de los valores propios de A es $\mathfrak n$ y además para todo valor propio las multiplicidades algebraica y geométrica coinciden.

ullet Toda matriz cuadrada y simétrica con coeficientes en $\mathbb R$ es diagonalizable.

2. Método para diagonalizar una matriz

- 1) Calculamos $p_A(\lambda)$, sus raíces $\lambda_1, \ldots, \lambda_k$ y sus multiplicidades algebraicas, m_1, \ldots, m_k .
- 2) Si $m_1 + \cdots + m_k \neq n$, A no es diagonalizable.
- 3) En caso contrario, para cada λ_i , calculamos el subespacio propio $V(\lambda_i)$ y su dimensión. Si dicha dimensión no coincide con m_i para algún i, entonces A no es diagonalizable.
- 4) Llegado este paso, la matriz A es diagonalizable y D es la matriz que tiene en la diagonal m_1 entradas λ_1 , m_2 entradas λ_2 , y así hasta m_k entradas λ_k . La matriz de paso P se construye colocando en las primeras m_1 columnas una base de $V(\lambda_1)$, a continuación en las siguientes m_2 columnas una base de $V(\lambda_2)$, y así hasta que colocamos en las últimas m_k columnas una base de $V(\lambda_k)$.

Ejercicio 85: Diagonaliza la matriz $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

Ejercicio 86: Diagonaliza la matriz

$$\begin{pmatrix} 2 & 0 & 0 \\ -15 & -4 & 3 \\ -35 & -14 & 9 \end{pmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

Ejercicio 87: Demuestra que $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ con coeficientes reales no es diagonalizable.

Maxima 53: Sea

$$\begin{pmatrix} -1 & 3 & 3 \\ 0 & 2 & 0 \\ 3 & -3 & -1 \end{pmatrix}$$

El comando eigenvectors nos proporciona toda la información para saber si es diagonalizable.

(%i2) eigenvectors(A);

$$(\%02) \qquad [[[-4,2],[1,2]],[[1,0,-1]],[1,0,1],[0,1,-1]]]]$$

La salida nos dice que los valores propios son -4 y 2, con multiplicidades 1 y 2, respectivamente. Además nos da bases para V(-4), $\{(1,0,-1)\}$ y V(2), $\{(1,0,1),(0,1,-1)\}$. Como las multiplicidades algebraicas y geométricas coinciden, y suman 3, A es diagonalizable.

La matriz de paso se calcula poniendo dichas bases una a continuación de la otra en columnas.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$

Comprobamos que efectivamente están bien hechos los cálculos:

$$\begin{pmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Podríamos también haber hecho los cálculos paso a paso, calculando primero el polinomio característico de A.

(%i5) charpoly(
$$A,x$$
);

$$(\%05)$$
 $(-x-1)^2 (2-x) - 9 (2-x)$

Para ver los valores propios, lo factorizamos.

$$-(x-2)^2 (x+4)$$

Y para calcular una base de por ejemplo V(2) utilizamos nullspace.

(%o7)
$$\operatorname{span}\left(\begin{pmatrix} -3\\ -3\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 3\\ -3 \end{pmatrix}\right)$$

Maxima 54:

Veamos para qué valores de a la siguiente matriz es diagonalizable.

$$(\%01) \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & a \end{pmatrix}$$

Calculamos su polinomio característico:

(
$$\%$$
i2) charpoly(A,x);

$$(\%02)$$
 $(a-x) x^2 + x - a$

$$(\%03) - (x-1)(x+1)(x-a)$$

Por lo que si $a \notin \{-1, 1\}$, la matriz es diagonalizable.

(%i4) eigenvectors(A);

$$(\%04)$$
 [[[a, 1, -1], [1, 1, 1]], [[[1, -1, a + 1]], [[1, 1, 0]], [[1, -1, 0]]]]

Veamos qué ocurre para a = 1.

$$(\%05) \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i6) eigenvectors(B);

$$(\%06)$$
 [[[-1,1],[1,2]],[[[1,-1,0]],[[1,0,1],[0,1,-1]]]]

Podemos observar que en este caso la matriz también es diagonalizable.

Por último, para a = -1, tenemos:

(%i7) C:subst(-1,a,A);

$$(\%07) \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(\%08)$$
 [[[1,-1],[1,2]],[[[1,1,0]],[[1,-1,0]]]]

lo que nos dice que en este caso la matriz no es diagonalizable, pues la multiplicidad algebraica del valor propio 2 es mayor que la geométrica.

Índice alfabético

matriz diagonal, 58 diagonalizable, 58 multiplicidad algebraica, 58 geométrica, 58

polinomio característico, 58

subespacio propio, 58

valor propio, 58 vector propio, 58