3.1 Derivatives of Polynomials

Warm-up: Put the following function in order: which is f, f' and f''?

1. Compute the following derivatives.

(a)
$$k(x) = 5x^3 - 2x + 10$$

(b)
$$g(s) = \sqrt{s} - 2s^{\frac{2}{3}}$$

(c)
$$f(x) = \pi^2 - \frac{2}{x}$$

(d)
$$h(t) = t^3(2t - 5)$$

2. Suppose $f(x) = x^{12}$.

(a) Find
$$\frac{d^{10}f}{dx^{10}}$$
. (Hint: look for a pattern!)

(b) Find
$$\frac{d^{14}f}{dx^{14}}$$
.

3. If M is the mass of the earth and G is a constant, the acceleration due to gravity, g, at a distance r from the center of the earth is given by

$$g = \frac{(GM)}{r^2}$$

- (a) Find $\frac{dg}{dr}$.
- (b) What is the practical interpretation (in terms of acceleration) of $\frac{dg}{dr}$? Why would you expect it to be negative?
- (c) You are told that $M=610^{24}$ and $G=6.6710^{-20}$ where M is in kilograms and r in kilometers, and g in km per \sec^2 . What is the value of $\frac{dg}{dr}$ at the surface of the earth (r=6400 km)? Include units.
- (d) What does this tell you about whether or not it is reasonable to assume g is constant near the surface of the earth?
- 4. Find the equation of the line tangent to the graph of f at (1,1), where f is given by $f(x) = 2x^3 2x^2 + 1$. Check your work using Desmos.