- x א. אנו מחפשים את השורש בין 1 ל x מספר הצעדים בגודל $arepsilon^2$ הנדרשים להגיע מ 1 ל x. א. אנו מחפשים את השורש בין 1 ל x מספר $(x-1)/arepsilon^2$ הוא $(x-1)/arepsilon^2$ כשעבור
- למעשה ניתן להראות שעבור arepsilon קטן מספיק אכן יימצא מספר שמקיים את הדרישה (למעשה ניתן להראות שעבור בצעדים של $arepsilon^2$ קטן מספיק, ולכן לא צריך לצעוד עד א אלא רק עד $|c^2-x|<arepsilon$
 - $n = (x-1)/\varepsilon$ ב. אם נתעלם מההערה בסוגריים,
 - . $O(x/\varepsilon)$ אדול מספיק היא x ג. כפי שכתוב, הסיבוכיות עבור
 - $\left|c^2-x\right|<arepsilon$ אם c אם הוא השורש המקורב, הדרישה היא c אם c .2 $\Rightarrow \left|2(c-\sqrt{x})(c+\sqrt{x})\right|<arepsilon\Rightarrow \Delta x<arepsilon/2x$

$$c \cong \sqrt{x}$$
 וקרבנו $\Delta x \equiv \left| (c - \sqrt{x}) \right|$ כשהצבנו

 $n=\left(x-1
ight)/\Delta x=(x-1)2\sqrt{x}\,/\,\varepsilon$ גודל המרחב בו אנו מחפשים הוא (סעיף ב) על \sqrt{x} (סעיף בשיטת ה Bisection search את מרחב החיפוש אנו כל פעם חוצים לשניים בשיטת ה $\log_2(n)$ (סעיף ג) לאיבר בודד, ולכן מספר הצעדים הנדרש הוא (סעיף א) $\log_2(n)$, ועבור $\log_2(n)$ גדול מספיק אפשר לכתוב שהסיבוכיות היא $\log_2(n)$

$$O(\log(2x^{3/2}/\varepsilon)) = O(\log(x^{3/2}/\varepsilon))$$