Outline (Abstract) Algebra Software Bol-Moufang Groupoids Further Research

Computer-Aided Investigation of Abstract Algebras (Or, The Computer Solved My Thesis Problem...)

David Failing

Department of Mathematics Iowa State University http://dfailing.public.iastate.edu

Truman State University March 21, 2013

Outline

- 1 (Abstract) Algebra
- 2 Software
- Bol-Moufang Groupoids
- 4 Further Research

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2 * (3 * 4) = (2 * 3) * 4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

ullet Every nonzero real number has a multiplicative inverse (in $\mathbb R$).

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2 * (3 * 4) = (2 * 3) * 4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

ullet Every nonzero real number has a multiplicative inverse (in $\mathbb R$).

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

ullet Every nonzero real number has a multiplicative inverse (in $\mathbb R$).

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2 * (3 * 4) = (2 * 3) * 4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

$$Lx. 2 * \overline{2} - .$$

Multiplication in \mathbb{R} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

 \bullet Every nonzero real number has a multiplicative inverse (in $\mathbb R).$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2 * (3 * 4) = (2 * 3) * 4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * \frac{1}{2} = 1$$

Multiplication in \mathbb{Z} is...

Commutative

Ex:
$$2 * 3 = 3 * 2$$

Associative

Ex:
$$2*(3*4) = (2*3)*4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

 Every nonzero integer has a multiplicative inverse (but it's not in Z!)

How do we "fix" this?

- Define \equiv_m on \mathbb{Z} by $x \equiv_m y \Leftrightarrow m \mid x y$. Say that x and y are equivalent "mod" m. Ex: 13 - 7 = 6, so $13 \equiv_6 7$.
- Define $\mathbb{Z}_m = \mathbb{Z}/\equiv_m = \{\overline{0},\overline{1},\ldots,\overline{m-1}\}$ The set of possible remainders when dividing by m

How do we "fix" this?

- Define \equiv_m on \mathbb{Z} by $x \equiv_m y \Leftrightarrow m \mid x y$. Say that x and y are equivalent "mod" m. Ex: 13 - 7 = 6, so $13 \equiv_6 7$.
- Define $\mathbb{Z}_m = \mathbb{Z}/\equiv_m = \{\overline{0},\overline{1},\ldots,\overline{m-1}\}$ The set of possible remainders when dividing by m

If $x * y = \overline{x * y}$ in \mathbb{Z}_m , does every nonzero element have a multiplicative inverse?

In \mathbb{Z}_6

$$3 * 0 = 0$$
, $3 * 1 = 3$, $3 * 2 = 0$, $3 * 3 = 3$, $3 * 4 = 0$, $3 * 5 = 3$

Exercise: Every nonzero element of \mathbb{Z}_m has a multiplicative inverse if and only if m is a prime.

If $x * y = \overline{x * y}$ in \mathbb{Z}_m , does every nonzero element have a multiplicative inverse?

In \mathbb{Z}_6

$$3*0 = 0$$
, $3*1 = 3$, $3*2 = 0$, $3*3 = 3$, $3*4 = 0$, $3*5 = 3$

Exercise: Every nonzero element of \mathbb{Z}_m has a multiplicative inverse if and only if m is a prime.

If $x * y = \overline{x * y}$ in \mathbb{Z}_m , does every nonzero element have a multiplicative inverse?

In \mathbb{Z}_6

$$3*0 = 0$$
, $3*1 = 3$, $3*2 = 0$, $3*3 = 3$, $3*4 = 0$, $3*5 = 3$

Exercise: Every nonzero element of \mathbb{Z}_m has a multiplicative inverse if and only if m is a prime.

Multiplication in \mathbb{Z}_5 is...

Commutative

Ex:
$$2 * 3 = 3 * 2 = 6 \equiv_5 1$$

Associative

Ex:
$$2*(3*4) = (2*3)*4 = 24 \equiv_5 4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * 3 = 6 \equiv_5 3$$

Multiplication in \mathbb{Z}_5 is...

Commutative

Ex:
$$2*3 = 3*2 = 6 \equiv_5 1$$

Associative

Ex:
$$2 * (3 * 4) = (2 * 3) * 4 = 24 \equiv_5 4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * 3 = 6 \equiv_5 1$$

Multiplication in \mathbb{Z}_5 is...

Commutative

Ex:
$$2 * 3 = 3 * 2 = 6 \equiv_5 1$$

Associative

Ex:
$$2*(3*4) = (2*3)*4 = 24 \equiv_5 4$$

• Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * 3 = 6 \equiv_5 3$$

Multiplication in \mathbb{Z}_5 is...

Commutative

Ex:
$$2 * 3 = 3 * 2 = 6 \equiv_5 1$$

Associative

Ex:
$$2*(3*4) = (2*3)*4 = 24 \equiv_5 4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * 3 = 6 \equiv_5 3$$

Multiplication in \mathbb{Z}_5 is...

Commutative

Ex:
$$2 * 3 = 3 * 2 = 6 \equiv_5 1$$

Associative

Ex:
$$2*(3*4) = (2*3)*4 = 24 \equiv_5 4$$

Anything times 1 is itself.

Ex:
$$2 * 1 = 2$$

Ex:
$$2 * 3 = 6 \equiv_5 1$$

Multiplication in \mathbb{Z}_5

Multiplication Table

*5	0	1 0 1 2 3 4	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

GROUP AXIOMS:

Associativity:

$$(\forall a, b, c)[(ab)c = a(bc)]$$
Identity:

$$(\exists e)[ae = ea = a]$$

$$(\forall a)[aa^{-1} = a^{-1}a = e]$$

Multiplication in \mathbb{Z}_5

Multiplication Table

*5	0	1	2 0 2 4 1 3	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

GROUP AXIOMS:

Associativity:

$$(\forall a, b, c)[(ab)c = a(bc)]$$

Identity:

$$(\exists e)[ae = ea = a]$$

$$(\forall a)[aa^{-1} = a^{-1}a = e]$$

Multiplication in \mathbb{Z}_5

Multiplication Tables

Abstract vs. Universal Algebra

- Abstract algebra: studies properties of axiomatically defined structures arising from concrete objects
 e.g. Groups, rings, fields,...
- Universal algebra: studies axiom systems for their own sake.
 e.g. "the theory of groups,"
 What equations are true of all groups?
 Or of certain kinds of groups?
- How can we investigate these?

Abstract vs. Universal Algebra

- Abstract algebra: studies properties of axiomatically defined structures arising from concrete objects
 e.g. Groups, rings, fields,...
- Universal algebra: studies axiom systems for their own sake.
 e.g. "the theory of groups,"
 What equations are true of all groups?
 Or of certain kinds of groups?
- How can we investigate these?

Abstract vs. Universal Algebra

- Abstract algebra: studies properties of axiomatically defined structures arising from concrete objects
 e.g. Groups, rings, fields,...
- Universal algebra: studies axiom systems for their own sake.
 e.g. "the theory of groups,"
 What equations are true of all groups?
 Or of certain kinds of groups?
- How can we investigate these?

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either *proofs* of the goals, or *counterexample(s)* where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- **Output:** either *proofs* of the goals, or *counterexample(s)* where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either *proofs* of the goals, or *counterexample(s)* where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- **Output:** either *proofs* of the goals, or *counterexample(s)* where the assumptions are true but the goals are false.

Mace4

Mace4

Prover9

Prover9

Why Use Software?

- Prover9 and Mace4 are FAST, so we can ask a lot of questions of this sort in a reasonable amount of time.
- REMEMBER, we can either get proofs of or counterexamples to the satisfiability of equations.

Why Use Software?

- Prover9 and Mace4 are FAST, so we can ask a lot of questions of this sort in a reasonable amount of time.
- **REMEMBER**, we can either get proofs of or counterexamples to the *satisfiability of equations*.

A **groupoid** is an algebraic structure $\mathbf{A} = \langle A, * \rangle$ with a single binary operation. Usually, we write xy for x * y.

Definition

We call ${\bf A}$ a ${\bf Cl\text{-}groupoid}$ if * is commutative and idempotent. That is,

$$\begin{aligned}
x * y &= y * x \\
x * x &= x
\end{aligned}$$

A **groupoid** is an algebraic structure $\mathbf{A} = \langle A, * \rangle$ with a single binary operation. Usually, we write xy for x * y.

Definition

We call $\bf A$ a $\bf CI$ -groupoid if * is commutative and idempotent. That is,

$$x * y = y * x$$
$$x * x = x$$

A (join) semilattice is an associative CI-groupoid $S = \langle S, \vee \rangle$.

Definition

Every (join) semilattice determines a partial order relation

$$x \leq_{\lor} y \Leftrightarrow x \lor y = y.$$

Example

The truth table for "or"

$$\begin{array}{c|cccc} \lor & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

determines the ordering with $0 \le 1$

A (join) semilattice is an associative CI-groupoid $S = \langle S, \vee \rangle$.

Definition

Every (join) semilattice determines a partial order relation

$$x \leq_{\lor} y \Leftrightarrow x \lor y = y.$$

Example

The truth table for "or"

determines the ordering with $0 \le 1$

A (join) semilattice is an associative CI-groupoid $S = \langle S, \vee \rangle$.

Definition

Every (join) semilattice determines a partial order relation

$$x \leq_{\lor} y \Leftrightarrow x \lor y = y.$$

Example

The truth table for "or"

$$\begin{array}{c|cccc} \lor & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

determines the ordering with $0 \le 1$.

Weakenings of Associativity

Definition

A groupoid identity $p \approx q$ is of **Bol-Moufang type** if

- the same three variables appear on both sides, in the same order,
- one of the variables appears twice, and
- the remaining two variables appear only once.

Example

The groupoid identity

$$(xx)(yz) = (x(xy))z$$

is of Bol-Moufang type.

Weakenings of Associativity

Definition

A groupoid identity $p \approx q$ is of **Bol-Moufang type** if

- the same three variables appear on both sides, in the same order,
- one of the variables appears twice, and
- the remaining two variables appear only once.

Example

The groupoid identity

$$(xx)(yz) = (x(xy))z$$

is of Bol-Moufang type.

Identities of Bol-Moufang Type (Philips and Vojtěchovský)

A

$$xxyz$$
 1
 $o(o(oo))$

 B
 $xyxz$
 2
 $o((oo)o)$

 C
 $xyyz$
 3
 $(oo)(oo)$

 D
 $xyzx$
 4
 $(o(oo))o$

 E
 $xyzy$
 5
 $((oo)o)o$

 F
 $xyzz$

Representable as X_{ij} , the identity with:

- variable order X
- LHS bracketed by i, and RHS bracketed by j.

There are 6*(4+3+2+1)=60 nontrivial such identities.

Identities of Bol-Moufang Type (Philips and Vojtěchovský)

A

$$xxyz$$
 1
 $o(o(oo))$

 B
 $xyxz$
 2
 $o((oo)o)$

 C
 $xyyz$
 3
 $(oo)(oo)$

 D
 $xyzx$
 4
 $(o(oo))o$

 E
 $xyzy$
 5
 $((oo)o)o$

 F
 $xyzz$

Representable as X_{ij} , the identity with:

- variable order X
- LHS bracketed by *i*, and RHS bracketed by *j*.

There are 6*(4+3+2+1)=60 nontrivial such identities.

Identities X and Y are **equivalent** relative to a set Σ of axioms when

$$\Sigma \& X \Leftrightarrow \Sigma \& Y$$
.

Example

x * y = y * x and $x^{-1} * y^{-1} * x * y = 1$ are equivalent, relative to the group axioms of associativity, identity, and inverses.

Problem

Determine which of the Bol-Moufang identities are equivalent for CI-groupoids. (i.e. for $\Sigma = \{x * y = y * x, x * x = x\}$)

Identities X and Y are **equivalent** relative to a set Σ of axioms when

$$\Sigma \& X \Leftrightarrow \Sigma \& Y$$
.

Example

x*y=y*x and $x^{-1}*y^{-1}*x*y=1$ are equivalent, relative to the group axioms of associativity, identity, and inverses.

Problem

Determine which of the Bol-Moufang identities are equivalent for CI-groupoids. (i.e. for $\Sigma = \{x * y = y * x, x * x = x\}$)

Identities X and Y are **equivalent** relative to a set Σ of axioms when

$$\Sigma \& X \Leftrightarrow \Sigma \& Y$$
.

Example

x * y = y * x and $x^{-1} * y^{-1} * x * y = 1$ are equivalent, relative to the group axioms of associativity, identity, and inverses.

Problem

Determine which of the Bol-Moufang identities are equivalent for CI-groupoids. (i.e. for $\Sigma = \{x * y = y * x, x * x = x\}$)

The 8 Varieties of Cl-Groupoids of Bol-Moufang Type

The 8 Varieties of CI-Groupoids of Bol-Moufang Type

\mathbb{C}	B45: $(x(yx))z = ((xy)x)z$
2SL	A13: $x(x(yz) = (xx)(yz)$
\mathbb{X}	A24: $x((xy)z) = (x(xy))z$
SL	A12: $x(x(yz)) = x((xy)z)$
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz)) = x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz)) = (xy)(xz)$

The 8 Varieties of CI-Groupoids of Bol-Moufang Type

\mathbb{C}	All Cl-groupoids
2SL	x(xy) = xy
X	A24: $x((xy)z) = (x(xy))z$
SL	Semilattices
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz)) = x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz)) = (xy)(xz)$

The 8 Varieties of CI-Groupoids of Bol-Moufang Type

\mathbb{C}	All Cl-groupoids
2SL	x(xy) = xy
\mathbb{X}	A24: $x((xy)z) = (x(xy))z$
SL	Semilattices
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz)) = x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz)) = (xy)(xz)$

Investigate equivalences in other large families of identities.
 Generalized Bol-Moufang identities?

$$\Sigma = \{x * y = y * x\}$$
? $\Sigma = \{x * x = x\}$?

- Investigate the "(normal) subgroup lattices" of groupoids.
 The Universal Algebra Calculator (uacalc.org) is good for this
- Make the UACalc and Prover9/Mace4 interoperable using Python and Sage.
- Prover9/Mace4 also do propositional logic.

Investigate equivalences in other large families of identities.
 Generalized Bol-Moufang identities?

$$\Sigma = \{x * y = y * x\}$$
? $\Sigma = \{x * x = x\}$?

- Investigate the "(normal) subgroup lattices" of groupoids.
 The Universal Algebra Calculator (uacalc.org) is good for this.
- Make the UACalc and Prover9/Mace4 interoperable using Python and Sage.
- Prover9/Mace4 also do propositional logic.

Investigate equivalences in other large families of identities.
 Generalized Bol-Moufang identities?
 Σ = {x * y = y * x}?
 Σ = {x * x = x}?

- Make the UACalc and Prover9/Mace4 interoperable using Python and Sage.
- Prover9/Mace4 also do propositional logic.

Investigate equivalences in other large families of identities.
 Generalized Bol-Moufang identities?
 Σ = {x * y = y * x}?
 Σ = {x * x = x}?

- Investigate the "(normal) subgroup lattices" of groupoids.
 The Universal Algebra Calculator (uacalc.org) is good for this.
- Make the UACalc and Prover9/Mace4 interoperable using Python and Sage.
- Prover9/Mace4 also do propositional logic.

The 8 Varieties of Cl-Groupoids of Bol-Moufang Type

\mathbb{C}	All Cl-groupoids
2SL	x(xy) = xy
X	A24: $x((xy)z) = (x(xy))z$
SL	Semilattices
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz))=x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz))=(xy)(xz)$

CI-groupoids satisfying x * (x * y) = y are known as Steiner quasigroups (*squags*).

Theorem

Every squag is in \mathbb{T}_1 .

Proof.

For squags,

$$x * (x * (y * z)) = y * z = (x * (x * y))z$$

so A14 holds

CI-groupoids satisfying x * (x * y) = y are known as Steiner quasigroups (*squags*).

Theorem

Every squag is in \mathbb{T}_1 .

Proof.

For squags,

$$x * (x * (y * z)) = y * z = (x * (x * y))z$$

so A14 holds

CI-groupoids satisfying x * (x * y) = y are known as Steiner quasigroups (*squags*).

Theorem

Every squag is in \mathbb{T}_1 .

Proof.

For squags,

$$x * (x * (y * z)) = y * z = (x * (x * y))z$$

so A14 holds.

Given

- $\mathbf{S} = \langle S, \vee \rangle$ a semilattice,
- $\{A_s \mid s \in S\}$ a set of groupoids, and
- ullet $\{\phi_{s,t}: \mathbf{A}_s
 ightarrow \mathbf{A}_t \mid s \leq_{\lor} t\}$ a set of homomorphisms,

the **Płonka sum** over S of the groupoids $\{A_s : s \in S\}$ is the groupoid A with universe $\bigcup_{s \in S} A_s$ and multiplication given by:

$$x_1 *^{\mathbf{A}} x_2 = \phi_{s_1,s}(x_1) *^{\mathbf{A}_s} \phi_{s_2,s}(x_2)$$

where $x_i \in \mathbf{A}_{s_i}$, $s = s_1 \vee s_2$.

Constructing \mathbb{Z}_5

Multiplication Tables

Constructing \mathbb{Z}_5

Multiplication Table

*5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
*5 0 1 2 3 4	0	4	3	2	1

 \mathbb{Z}_5 is the Płonka sum of $\mathbf{A}_0 = \langle \{1,2,3,4\}, *_5 \rangle$ and $\mathbf{A}_1 = \langle \{0\}, *_5 \rangle$, over the "or" semilattice.

Płonka's Theorem

Let **V** be the variety defined by $\Sigma \cup \{x \lor y = x\}$ for some set Σ of regular identities, and $x \lor y$ a composite operation. The following classes of algebras coincide:

- **1** The class P(V) of Płonka sums of groupoids from V.
- **②** The class of groupoids defined by Σ and the identities:

$$x \lor x = x$$

$$(x \lor y) \lor z = x \lor (y \lor z)$$

$$x \lor y \lor z = x \lor z \lor y$$

$$x \lor (y * z) = x \lor y \lor z$$

$$(x * y) \lor z = (x \lor z) * (y \lor z)$$

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\}$ and $x \lor y := y * (y * x)$.
- For squags, $x \vee y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

 \mathbb{T}_1 is the class of Płonka sums of squags.

Proof.

• Let $\Sigma =$

$$\{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\},\$$

and $x \lor y := y * (y * x).$

- For squags, $x \lor y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\},$ and $x \lor y := y * (y * x).$
- For squags, $x \lor y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\},$ and $x \lor y := y * (y * x).$
- For squags, $x \lor y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\},$ and $x \lor y := y * (y * x).$
- For squags, $x \lor y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{x * x = x, x * y = y * x, x * (x * (y * z)) = (x * (x * y)) * z\},$ and $x \lor y := y * (y * x).$
- For squags, $x \lor y = x$. \mathbb{T}_1 contains the class of squags, so it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

Questions?