Measure Theory

Kasper Rosenkrands

MATØK7 Fall 2020

1 Notation

1.1 Measure with densities

Theorem 1.1 (Measures with densities). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f: \Omega \to [0, \infty]$ be measureable. Then

$$(f \odot \mu)(A) := \int_{A} f \, d\mu = \int_{\Omega} \chi_{A} f \, d\mu, \quad A \in \mathcal{A}, \tag{1.1}$$

defines a new measure $f \odot \mu : (A) \to [0, \infty]$, called the measure with density f with respect to μ . For every $N \in \mathcal{A}$, the following implication holds,

$$\mu(N) = 0 \implies (f \odot \mu)(N) = 0.$$

1.2 Product σ -algrebras

Definition 1.1. Let $n \in \mathbb{N}$, $n \ge 2$, and suppose that, for every $i \in \{1, ..., n\}$, we are given a measurable space $(\Omega_i, \mathcal{A}_i)$.

1. The smallest σ -algebra on $\times_{i=1}^n \Omega_i$ containing

$$\mathcal{A}_1 * \cdots * \mathcal{A}_n := \{A_1 \times \cdots \times A_n \mid A_1 \in \mathcal{A}_1, \dots, A_n \in \mathcal{A}_n\} \subset \mathcal{P}\left(\underset{i=1}{\overset{n}{\times}} \Omega_i \right)$$

is called the product σ -algebra defined by measns of A_1, \ldots, A_n . It is denoted by

$$\bigotimes_{i=1}^{n} \mathcal{A}_i := \sigma \left(\mathcal{A}_1 * \cdots * \mathcal{A}_n \right).$$

2. Let Γ be a set and let $f_i: \Gamma \to \Omega_i$ be an arbitrary map for every $i \in \{1, \ldots, n\}$. Then the smallest σ -algebra on Γ turning all maps f_1, \ldots, f_n into measurable maps, i.e.,

$$\sigma(f_1,\ldots,f_n) := \sigma\left(\left\{f_i^{-1}(A_i) \mid A_i \in \mathcal{A}_i, i \in 1,\ldots,n\right\}\right),\,$$

is called the initial σ -algebra generated by f_1, \ldots, f_n .