多值論理

齊藤 哲平

September 30, 2023

多値論理では、一般には以下のような推論が真でない。 爆発則: A かつ A でないならば、B である。

多値論理では、一般には以下のような推論が真でない。

爆発則:AかつAでないならば、Bである。

排中律:*A* または *A* でない。

多値論理では、一般には以下のような推論が真でない。

爆発則:AかつAでないならば、Bである。

排中律:*A* または *A* でない。

これらの推論に対する批判の例

○ (爆発則)仮定と結論は「関連」しているべきだ。

多値論理では、一般には以下のような推論が真でない。

爆発則:AかつAでないならば、Bである。

排中律:AまたはAでない。

これらの推論に対する批判の例

- (爆発則)仮定と結論は「関連」しているべきだ。
- (排中律)曖昧性を許したいこともあるのでは?

多値論理では、一般には以下のような推論が真でない。

爆発則:A かつ A でないならば、B である。

排中律:*A* または *A* でない。

これらの推論に対する批判の例

- (爆発則)仮定と結論は「関連」しているべきだ。
- (排中律)曖昧性を許したいこともあるのでは?
- (排中律)嘘つきのパラドクスは排中律が原因では?

多値論理では、一般には以下のような推論が真でない。

爆発則:AかつAでないならば、Bである。

排中律:*A* または *A* でない。

これらの推論に対する批判の例

- (爆発則)仮定と結論は「関連」しているべきだ。
- (排中律)曖昧性を許したいこともあるのでは?
- (排中律)嘘つきのパラドクスは排中律が原因では?

以下、命題論理の語彙∨∧¬で考えていく。

b t both true and false t t neither true nor false

Figure: 真理値の構造

b は both true and false で n は neither true nor false

Figure: 真理値の構造

 \circ ∧ は下限を取る操作として見る。例: $\mathbf{t} \wedge \mathbf{b} = \mathbf{b}$ や $\mathbf{b} \wedge \mathbf{n} = \mathbf{f}$

b は both true and false で n は neither true nor false

Figure: 真理値の構造

- $\overline{}$ o \wedge は下限を取る操作として見る。例: ${f t}\wedge{f b}={f b}$ や ${f b}\wedge{f n}={f f}$
- ⋄ ∨ は上限を取る操作として見る。例: $t \lor b = t$ や $b \lor n = t$

b は both true and false で n は neither true nor false

Figure: 真理値の構造

- $oxed{\circ}$ \wedge は下限を取る操作として見る。例: $\mathbf{t} \wedge \mathbf{b} = \mathbf{b}$ や $\mathbf{b} \wedge \mathbf{n} = \mathbf{f}$
- \circ \lor は上限を取る操作として見る。例: $t \lor b = t \Leftrightarrow b \lor n = t$
- ¬はtとfを入れ替える。一方bやnはそのまま。

真理值表

\wedge	t	f	b	n
t	t	f	b	n
f	f	f		f
b	b	f	b	f
n	n	f	f	n

Table: ∧ の真理表

真理值表

\wedge	t	f	b	n
t	t	f	b	n
f	f	f	f	f
b	b	f	b	f
n	n	f	f	n

Table: ∧ の真理表

V	t	f	b	n
t	t	t	t	t
f	t	f	b	n
b	t	b	b	t
n	t	n	t	n

Table: ∨ の真理表

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する反例 と呼ぶ。

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{Q} と呼ぶ。 反例が存在しないとき、その推論は妥当 であるという。

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{D} と呼ぶ。 反例が存在しないとき、その推論は \underline{S} であるという。 妥当な推論の集合を論理 FDE (First Degree Entailment) と呼ぶ。

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{D} と呼ぶ。 反例が存在しないとき、その推論は \underline{S} であるという。 妥当な推論の集合を<u>論理 FDE</u> (First Degree Entailment) と呼ぶ。

命題変数 p,q について以下が成立。

 $oldsymbol{\circ}$ 前提 $p \wedge
eg p$ から結論 q への推論は妥当でない

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{D} と呼ぶ。 反例が存在しないとき、その推論は \underline{S} であるという。 妥当な推論の集合を<u>論理 FDE</u> (First Degree Entailment) と呼ぶ。

命題変数 p,q について以下が成立。

- \circ 前提 $p \wedge \neg p$ から結論 q への推論は妥当でない
- 。 前提 p から結論 $q \vee \neg q$ への推論は妥当でない

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- \circ すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{D} と呼ぶ。 反例が存在しないとき、その推論は \underline{S} であるという。 妥当な推論の集合を<u>論理 FDE</u> (First Degree Entailment) と呼ぶ。

命題変数 p,q について以下が成立。

- \circ 前提 $p \wedge \neg p$ から結論 q への推論は妥当でない
- 前提 p から結論 q ∨ ¬q**へ**の推論は妥当でない
- \circ 前提 $\neg\neg p$ から結論 p への推論は妥当(逆向きの推論も妥当)

Definition (論理 FDE)

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- \circ すべての $B \in X$ に対して $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ で、さらに
- $\circ v(A) \in \{\mathbf{f}, \mathbf{n}\}$

のとき、v を前提 X から A への推論に対する \overline{D} と呼ぶ。 反例が存在しないとき、その推論は \underline{S} であるという。 妥当な推論の集合を<u>論理 FDE</u> (First Degree Entailment) と呼ぶ。

命題変数 p,q について以下が成立。

- 。 前提 $p \land \neg p$ から結論 q への推論は妥当でない
- \circ 前提 p から結論 $q \vee \neg q$ への推論は妥当でない
- \circ 前提 $\neg\neg p$ から結論 p への推論は妥当(逆向きの推論も妥当)
- \circ 前提 $\neg (p \lor q)$ から結論 $\neg p \land \neg q$ への推論は妥当(逆向きも妥当)

爆発則・排中律が妥当でないこと

前提 $p \wedge \neg p$ から結論 q への推論は妥当でない。次の付置を考える。

$$v(p) = \mathbf{b}$$

$$v(q) = \mathbf{f}$$

すると $v(p \wedge \neg p) = \mathbf{b} \wedge \mathbf{b} = \mathbf{b}$ である。

爆発則・排中律が妥当でないこと

前提 $p \wedge \neg p$ から結論 q への推論は妥当でない。次の付置を考える。

$$v(p) = \mathbf{b}$$

$$v(q) = \mathbf{f}$$

すると $v(p \land \neg p) = \mathbf{b} \land \mathbf{b} = \mathbf{b}$ である。

前提 p から結論 $q \vee \neg q$ への推論は妥当でない。次の付置を考える。

$$v(p) = \mathbf{t}$$

$$v(q) = \mathbf{n}$$

すると $v(q \vee \neg q) = \mathbf{n} \vee \mathbf{n} = \mathbf{n}$ である。

二重否定除去が妥当であること

前提 $\neg p$ から結論p への推論は妥当。

p	$\neg \neg p$
t	t
f	f
b	b
n	n

Table: 真理值表

二重否定除去が妥当であること

前提 $\neg \neg p$ から結論 p への推論は妥当。

p	$\neg \neg p$
t	t
f	f
b	b
n	n

Table: 真理值表

二変数になると $4 \times 4 = 16$ 行のテーブルになるのでやりたくない!

命題

任意の前提から帰結する論理式は存在しない。

命題

任意の前提から帰結する論理式は存在しない。

命題

任意の結論を帰結する論理式は存在しない。

証明.

そのような論理式 A があったとする。

命題

任意の前提から帰結する論理式は存在しない。

命題

任意の結論を帰結する論理式は存在しない。

証明.

命題

任意の前提から帰結する論理式は存在しない。

命題

任意の結論を帰結する論理式は存在しない。

証明.

そのような論理式 A があったとする。A に現れない命題変数 p を取り、p に f を、それ以外には f を割りあてると f を、それ以外には f を割りあてると f を、

命題 (FDE が関連性論理であること)

妥当な推論の前提と結論は、共有する命題変数を持つ。

命題

任意の前提から帰結する論理式は存在しない。

命題

任意の結論を帰結する論理式は存在しない。

証明.

命題 (FDE が関連性論理であること)

妥当な推論の前提と結論は、共有する命題変数を持つ。

証明.

共通な命題変数がなければ、前提に現れる変数に b を、結論に現れる変数に n を割り当てれば反例が構成できる。

三値論理 K3·LP

- o Kleene の三値論理 K3 では b を除いて考える。
- Logic of Paradox LP では n を除いて考える。

推論	FDE	K3	LP
$A \land \neg A \vDash B$		妥当	
$A \vDash B \vee \neg B$			妥当
$\neg \neg A \vDash A$	妥当	妥当	妥当

Table: FDE·K3·LP 比較表

三値論理 K3·LP

- Kleene の三値論理 K3 では b を除いて考える。
- 。 Logic of Paradox LP では n を除いて考える。

推論	FDE	K3	LP
$A \land \neg A \vDash B$		妥当	
$A \vDash B \vee \neg B$			妥当
$\neg \neg A \vDash A$	妥当	妥当	妥当

Table: FDE·K3·LP 比較表

命題

K3 では任意の前提から帰結する論理式は存在しない。

三値論理 K3·LP

- Kleene の三値論理 K3 では b を除いて考える。
- 。 Logic of Paradox LP では n を除いて考える。

推論	FDE	K3	LP
$A \land \neg A \vDash B$		妥当	
$A \vDash B \vee \neg B$			妥当
$\neg \neg A \vDash A$	妥当	妥当	妥当

Table: FDE·K3·LP 比較表

命題

K3 では任意の前提から帰結する論理式は存在しない。

命題

LP では任意の結論を帰結する論理式は存在しない。

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\lnot}\})$ を有限多値論理のモデル という。

- \circ 真理値 の集合 V
- 。 指定値 $D \subseteq V$
- 。 真理値表 $f_{\lor}, f_{\land}: V \times V \to V$ と $f_{\lnot}: V \to V$

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\neg}\})$ を有限多値論理のモデル という。

- \circ 真理値 の集合 V
- 。 指定値 $D \subseteq V$
- 。 真理値表 $f_{\lor}, f_{\land}: V \times V \to V$ と $f_{\lnot}: V \to V$

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in D$ で、さらに
- $\circ v(A) \notin D$

のとき、v を前提 X から A への推論に対する反例 と呼ぶ。

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\neg}\})$ を有限多値論理のモデル という。

- \circ 真理値 の集合 V
- 。 指定値 $D \subseteq V$
- 真理値表 $f_{\vee}, f_{\wedge}: V \times V \to V$ と $f_{\neg}: V \to V$

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- \circ すべての $B \in X$ に対して $v(B) \in D$ で、さらに
- $\circ v(A) \notin D$

のとき、v を前提 X から A への推論に対する \overline{DQ} と呼ぶ。 反例が存在しないとき、その推論は妥当 であるという。

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\neg}\})$ を有限多値論理のモデル という。

- \circ 真理値 の集合 V
- 。 指定値 $D \subseteq V$
- 。 真理値表 $f_{\lor}, f_{\land}: V \times V \to V$ と $f_{\lnot}: V \to V$

 $X \cup \{A\}$ を論理式の集合とする。付置 v (真理値割当)について

- 。 すべての $B \in X$ に対して $v(B) \in D$ で、さらに
- $\circ v(A) \notin D$

のとき、v を前提 X から A への推論に対する \overline{DQ} と呼ぶ。 反例が存在しないとき、その推論は妥当 であるという。

直観主義論理は多値論理として特徴づけられない(第十章)。