ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DIGITAL COMMUNICATION SYSTEM SEMESTER - 5

M			Full Marks: 70
Time: 3 Hours]			Tull Marks: /C
	the contract of the contract o		

GROUP - A

(Multiple Choice Type Questions)

i)	The frequency spectrum of a	square wave	or rectangle wave	n une doman is
	a) Impulse function	b)	Sine function	
	c) Sinc. function	d)	Gaussian function	n
ii)	In quantization has 8 bit cod	e, then SMR	will be	
	a) 32 dB	b)	16 dB	•
•	c) 48 dB	d)	8 dB.	
iii)	In Hofmann coding, the prob	abilities are a	arranged in	
	a) ascending order			
-	b) descending order			
	c) no specification.			
iv)	How many bits would be req	uired to repr	esent a 256 level qu	antization in PCN
	a) 6	b)	8	
	c) 5	d)	7.	
v)	In PCM, the amplitude lev sampling is done at the rate			
	be			

vi)	If the	e quantization has 4 levels whi	ch occi	urs with probability $P_1 = P_4 = \frac{1}{8}$ and
V.	P ₂ =	$P_3 = \frac{3}{8}$, then the information is	ate is	
	a)	1.8 bits/message	b)	3.8 bits/message
	c)	1:6 bits/message	d)	2.6 bits/message.
vii)	The l	Nyquist rate of the composite sign	gnal x (f) = 5 cos 1000 πt cos 3000 πt is
	a)	3000 Hz	b)	1000 Hz
	c)	4000 Hz	d)	2000 Hz.
viii)	The	channel capacity of a band-limit	ted Gau	issian channel is
	a)	$C = B \log_2 \left(1 + \frac{S}{N} \right)$	b)	$C = B \log_2 \left(\frac{S}{N} \right)$
	c)	$C = \frac{1}{B} \log_2 \left(\frac{S}{N} \right)$	d)	$C = \frac{1}{B} \log_2 \left(1 + \frac{S}{N} \right).$
ix)	Whi	ch of the following system is dig	ital?	
	a)	pulse-position modulation	b)	pulse-code modulation
	c)	pulse-width modulation	d)	pulse-frequency modulation.
x) .	PCM	generation requires LPF (low-p	ass filt	er) at the beginning to
· ·	a)	eliminate aliasing effect		
	b)	eliminate quantization noise		
et eg	c)	eliminate decoding noise		San Turking Barbaran Barbaran Barbaran Barbaran Ba
	d)	none of these.		
xi)	Spre	ad spectrum scheme increases		
• .	a)	processing gain	b)	spectral efficiency
	c)	transmission gain	d)	none of these.
xii)	Eye	pattern is used to study		
	a)	ISI	b)	Quantization noise
	c)	Error rate	d)	None of these.

55404 (11/12)

5

GROUP - B

(Short Answer Type Questions)

		(Onote amount Type Successory)	
		Answer any three of the following.	$3 \times 5 = 15$
2.	a)	What are the proportion of line coding.	2
	b)	Draw the Manchester coding and PNRZ coding for $m = 1001011$.	2
	c)	Write down the PSD function of PNRZ signal.	1
3.	a)	Explain the advantages of digital communication system.	2
	b)	Draw block diagram and explain such a system briefly.	3
4.	a)	What is direct sequence spread spectrum?	
	b)	Explain the generation of DSSS.	4
5.	a)	What is eye pattern?	1
	b)	How is it generated in CRO.	2
	c)	What information we get from it?	2
6.	Ехр	plain the principle of operation of QPSK modulator.	5
7.	a)	Explain the implication 'aliasing'.	3
	b)	How is the 'aliasing' effect removed.	2
,4			
		GROUP - C	
		(Long Answer Type Questions)	•
		Answer any three of the following questions.	$3 \times 15 = 45$
8.	a)	What are the disadvantages of DPSK.	4
	b)	What are the disadvantages of BPSK and how is it improved?	4
	c)	What is BFSK?	3
	d)	Describe orthogonal BFSK.	4
9.	a)	State sampling theorem and explain its important.	4
	b)	What is Nyquist rate of sampling.	2

CS/B.TECH (ECE-NEW)/SEM-5/EC-502/08/(09)

- Explain how an analogue signal is converted into a digital signal noising PCM system. d) A television signal has a bandwidth of 4.5 MHz. The signal is sampled and converted into PCM signal. Determine the sampling rate if the signal is to be
- sampled at a rate 20% above Nyquist rate.
- 3 10. What is quantization? Classify them. a)
 - How is non-uniform quantization utilised. 2 b)
 - Deduce the relation of signal to quantization noise. c)
 - Calculate the number of quantization levels for the signal $x(t) = 5 \sin (500 \pi + \theta)$ d)
 - 2 e) What are the related laws for non-uniform quantization.
- 5 11. a) What do you mean by matched filter for digital reception?
 - Derive an expression for error probability of a matched filter? 3 b)
 - State and explain Nyquist criterion for zero ISI. 3 c)
 - d) What is the roll of an equalizer?
- 2 12. a) Define information.
 - 2 b) Define 'Discrete Memoryless Source'.
 - 2 What is 'Entropy'? c)
 - Calculate amount of information if binary digits occur with equal likelyhood in a d) 3 binary PCM system.
 - A discrete source emits one of the five symbols once every millisecond with e) probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{32}$. Determine source entropy and information 6 rate.
- 13. Write short notes for the following:
 - a) Compounding b) Differential Encoding
 - 5 Linear Prediction Coder. c)

END ·

5

5