Processamento de Consultas

Banco de Dados: Teoria e Prática

André Santanchè e Luiz Celso Gomes Jr Instituto de Computação – UNICAMP Novembro 2019

Qual a resposta para a vida, o universo e tudo mais?

(Guia do Mochileiro das Galáxias)

- Qual a resposta para a vida, o universo e tudo mais?
 - 7,5 milhões de anos depois(Guia do Mochileiro das Galáxias)

- Qual a resposta para a vida, o universo e tudo mais?
 - ... 7,5 milhões de anos depois
 - □... a resposta é:

(Guia do Mochileiro das Galáxias)

- Qual a resposta para a vida, o universo e tudo mais?
 - ... 7,5 milhões de anos depois
 - □ ... a resposta é: **42**

(Guia do Mochileiro das Galáxias)

Processamento de Consultas

- ■Consultas declarativas permitem que o SGBD escolha a melhor estratégia para o processamento para o usuário, só a resposta interessa
- ■Consultas são como códigos de programas e devem ser compiladas antes de executadas, o que envolve diversos passos como análise léxica, sintática, validação, otimização e geração de código de execução.

Execução de Consulta

Passos Típicos (Elmasri, 2010)

Análise e Validação

- Análise e Validação
 - □ Análise léxica
 - □ Análise sintática
 - □ Validação
- Representações internas:
 - □ árvore de consulta
 - □ grafo de consulta

Estratégia de Execução

- Consulta possui muitas estratégias de execução possíveis
- ■Planejamento da Estratégia de Execução
 - □ Otimização → processo de escolha da estratégia adequada (razoavelmente eficiente)

Código da Consulta

- Pode ser:
 - □ Executado diretamente
 - modo interpretado
 - □ Armazenado e executado quando necessário
 - modo compilado

Execução do Código

- Processador executa código da consulta
- ■Produz resultado da execução

Ênfase desta aula: Otimização de Consultas

Consultas Declarativas

- ■"O quê" ao invés de "Como"
- Otimização de consulta
 - □ Solução razoavelmente eficiente (Elmasri, 2011)
 - □ Solução ótima pode ser muito custosa

Consulta SQL em Álgebra Relacional

- ■Consulta SQL → Álgebra Relacional Estendida
 - □ Inclui operadores como COUNT, SUM e MAX
- Consulta SQL decomposta em blocos
 - ☐ Bloco de Consulta ou Bloco Simples:
 - Contém uma única expressão SELECT-FROM-WHERE (GROUP BY e HAVING se houver)
 - Sem aninhamento
 - Consultas aninhadas são identificadas como consultas independentes

Decomposição em Blocos Exemplo

Tabela

Pessoa(Codigo, Nome, Telefone, AnoFiliacao)

Nome dos filiados mais antigos:

```
SELECT Codigo, Nome
FROM PESSOA
WHERE AnoFiliacao = (SELECT MIN(AnoFiliacao))
FROM PESSOA)
```

- Blocos
- SELECT Codigo, Nome
 FROM PESSOA
 WHERE AnoFiliacao = (referência ②)
- 2SELECT MIN(AnoFiliacao)) FROM PESSOA

Algoritmos para Operações

Execução do Código

- Processador executa código da consulta
- ■Produz resultado da execução

Ordenação Externa

■Como você usaria a ordenação para evitar duplicatas?

- ■Como você usaria a ordenação para evitar duplicatas?
 - □ Ao ordenar, registros iguais ficarão juntos e podem ser removidos.

Liste os algoritmos de ordenação que você conhece.

Algoritmos de Ordenação

- ■Bubble Sort
- Quick Sort
- Merge Sort
- Heap Sort
- Selection Sort
- ■Insertion Sort

■Qual deles você usaria para uma ordenação de dados que estão em disco, considerando que você não consegue colocar todo o conjunto de dados na memória de uma única vez?

- ■Qual deles você usaria para uma ordenação de dados que estão em disco, considerando que você não consegue colocar todo o conjunto de dados na memória de uma única vez?
 - Merge Sort

Merge Sort Tradicional

Ordenação Externa

5,9 7,2 8,4 1,6 3,6 9,1 5 entrada

Entrada organizada em páginas de tamanhos iguais:

- 13 blocos de disco (bd)
- 3 blocos de memória (bm)

Exemplo Inspirado em (Ramakrishnan, 2013)

Passo inicial de ordenação de páginas em memória:

- pode ser usado qualquer algoritmo (e.g., quick sort)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

Primeiro merge:

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

- 3 blocos de memória (bm)
- 13 leituras e 13 gravações de bloco (bd*2 transferências)

Ordenação Externa Números

- ■bd blocos em disco
- ■bm blocos de memória
 - \Box bm_e blocos de entrada = bm 1
 - \Box bm $_{s}$ blocos de saída = 1

Ordenação Externa -■Ordenação – passo 0

- - □ 2*bd = 2*13 = 26 transferências (leitura e gravação)
- Merge a partir do passo 1
 - □ 2*bd = 2*13 = 26 transferências a cada passo
- Rodadas por passo
 - \circ rodadas = $|bd/bm_{0}| = |13/2| = 7$
- ■Total de Passos
 - \circ $|\log_2 \operatorname{rodadas}| + 1 = |\log_2 7| + 1 = 4 \text{ passos}$
- \blacksquare Custo: 2*bd * ($\lfloor \log_2 \operatorname{rodadas} \rfloor + 1$)
- | → notação para teto()

Como Otimizar?

Se eu tiver 5 blocos de memória?

Ordenação Externa -

- ■Ordenação Passempenho
 - □ 2*bd = 2*13 = 26 transferências (leitura e gravação)
- Merge a partir do passo 1
 - □ 2*bd = 2*13 = 26 transferências a cada passo
- Rodadas por passo
 - \Box rodadas = |bd/bm_e| = |13/4| = 4
- Total de passos
 - $\square |\log_{bme} \operatorname{rodadas}| + 1 = |\log_4 4| + 1 = 2 \text{ passos}$
- ■Custo: 2*bd * (|log_{bme}rodadas|+1)
- | → notação para teto()

Seleção

Esquema Conceitual – Exemplo

Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema multi-usuário" por prof. Geovane Cayres Magalhães

Tabelas para exemplo - Táxis

Táxi (TX)

<u>Placa</u>	M arca	Modelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Corrida (R1)

<u>C II d</u>	<u>Placa</u>	<u>Data Pedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	18/02/2003

Seleção?

$$O_{Placa='JDM8776'}(TX)$$

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Exatamente Igual Chave Primária

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Exatamente Igual Outra Chave

$$O_{AnoFab=2002}(TX)$$

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Seleção?

$$O_{AnoFab=2002}(TX)$$

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Seleção?

$$O_{AnoFab>2000}(TX)$$

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	Gol	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
J D M 8 7 7 6	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Faixa (>, <, >=, <=)

$$O_{AnoFab>2000}(TX)$$

<u>Placa</u>	M arca	M odelo	AnoFab
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	Wolksvagen	G o l	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1999

Algoritmos de Seleção

- Exatamente igual
 - □ chave primária
 - □ outra chave
- Faixa
 - □>, <, >=, <=
- **■**compostos

Algoritmos de Seleção

- ■Pesquisa linear
- ■Pesquisa binária
- Usando índice primário
- Usando chave hash
- Combinado com o índice primário
- Usando índice de agrupamento
- Usando índice secundário

Seleção Conjuntiva x Dijuntiva

- seleção conjuntiva e.g., and
- seleção dijuntiva e.g., or

Algoritmos de Seleção Conjuntiva

- ■Índice para uma das condições
- ■Índice composto envolvendo ambas as condições
- ■Índice individual para cada condição

Questão

- Selecionar fichas de candidatos (analisando todos os alunos da Unicamp em pastas em papel):
 - □ idade > 19 anos
 - □ curso = "Engenharia Civil"
- ■Considerando que duas pessoas analisarão as fichas e cada uma analisará um campo (uma analisa idade e outra analisa curso)
- ■Em que ordem você faria a análise?

Seletividade

- seletividade: valor entre 0 e 1
- n registros
- ■igualdade atributo único
 - □ seletividade: 1/n

Seletividade Atributo Não Único

- ■i valores
- i igualmente distribuído
- registros por valor?
- seletividade?

Seletividade Atributo Não Único

- ■i valores
- i igualmente distribuído
- n/i registros por valor
- seletividade: 1/i

Seletividade Atributo Não Único

primeiro as condições com valor menor de seletividade

Exercício

■Considere a execução de uma consulta envolvendo uma seleção em um atributo que possui um índice. É sempre mais eficiente usar o índice do atributo no processamento?

Junção (Join)

Exercício

- ■Considere duas tabelas ti e tj que vão sofrer um JOIN.
- Considere as seguintes funções:
 - match(ti,tj) verifica se os registros
 correntes de ti e tj atendem à condição de
 JOIN (retorna verdadeiro se atenderem);
 - □ add-result(ti, tj) adiciona as tuplas ao resultado do JOIN no formato esperado.

Escreva uma rotina na forma de algoritmo (formato livre) que realize o JOIN entre ti e

Junção (Join) de Loop Aninhado

```
for each ti
  for each tj
  if match(ti, tj)
    add-result(ti, tj)
```

Junção de Loop Aninhado Números

- ni número de tuplas ti
- nj número de tuplas tj
- pares de tuplas? (comparações?)

Junção de Loop Aninhado Números

- ni número de tuplas ti
- nj número de tuplas tj
- ■ni*nj pares de tuplas

Divisão por Blocos

- ■bi bloco de tuplas ti
- ■bj bloco de tuplas tj

Junção de Loop Aninhado Números

- ni número de tuplas ti
- nj número de tuplas tj
- ■ni*nj pares de tuplas

- ■bi bloco de tuplas ti
- ■bj bloco de tuplas tj
- leituras de blocos?

Exercício Quantas Leituras de Bloco?

```
for each ti
  for each tj
  if match(ti, tj)
    add-result(ti, tj)
```


Junção de Loop Aninhado Números

- ni número de tuplas ti
- nj número de tuplas tj
- ■ni*nj pares de tuplas

- ■bi bloco de tuplas ti
- ■bj bloco de tuplas tj
- ■bi + bj*ni leituras de blocos

Exercício

■Considere que é possível realizar uma iteração por bloco e outra iteração das tuplas dentro do bloco. Como você otimizaria o algoritmo?

Junção de Loop Aninhado em Bloco

```
for each bi
  for each bj
  for each ti in bi
    for each tj in bj
    if match(ti, tj)
        add-result(ti, tj)
```

Junção de Loop Aninhado em Bloco Números

- ■bi bloco de tuplas ti
- ■bj bloco de tuplas tj
- leituras de blocos?

Junção de Loop Aninhado em Bloco Números

- bi bloco de tuplas ti
- ■bj bloco de tuplas tj
- ■bi + bj*bi leituras de blocos

Junção de Loop Aninhado Números

■Situações:

- □ Quantas transferências de bloco se todos os blocos couberem de uma vez na memória?
- Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)

Junção de Loop Aninhado Números

■Situações:

- □ Quantas transferências de bloco se todos os blocos estiverem na memória?
 - bi + bj transferências
- Quantas transferências se os blocos de um dos loops estiver todo na memória e qual deles escolher (bi ou bj)?
 - escolher bj
 - bi + bj transferências

Exercício Casa

- Considere as seguintes tabelas e consulta:
 - □ Aluno(ra, nome, id_dept)
 - □ Departamento(id_dept, nome_dept)
 - SELECT ra, nome, nome_dept
 FROM Aluno, Departamento
 WHERE Aluno.id_dept = Departamento.id_dept
- ■Escreva o pseudo-código para o processamento do join na consulta acima.
 - a) Considere que todas as tabelas cabem na memória.
 - b) Considere que apenas a tabela Departamento cabe na memória.

Outras Junções

- ■Junção Indexada
- ■Junção Merge
- ■Junção Hash

Projeção

- Recorte dos campos
- **(?)**

Projeção

- Recorte dos campos
- Registros sem duplicatas
 - □ SQL → padrão não eliminar duplicatas
 - DISTINCT → elimina duplicatas
 - □ Registros com garantia de ser únicos
 - e.g., contendo chave primária
 - □ Registros sem garantia de ser únicos
 - ordenação
 - hashing

Otimização de Consulta

Estratégia de Execução

- Consulta possui muitas estratégias de execução possíveis
- ■Planejamento da Estratégia de Execução
 - □ Otimização → processo de escolha da estratégia adequada (razoavelmente eficiente)

SQL p/ Álgebra

■ Versão SQL

SELECT Codigo, Nome FROM PESSOA WHERE AnoFiliacao = 1990

Versão em álgebra

 $\pi_{\text{Codigo,Nome}}(O_{\text{AnoFiliacao}=1990}(\text{PESSOA}))$

Combinação de Operações usando Pipelining

- Uma consulta é mapeada em uma sequência de operações
- A execução de cada operação produz um resultado temporário
- Alternativa
 - □ Evitar ao máximo resultados temporários
 - □Pipelining
 - concatena operações
 - conforme uma saída é produzida gera entrada para a operação subsequente

Codigo	N o m e	Telefone	A n o Filia c a o
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
1 6 3 7	D o ria n a	9 8 7 6 - 5 4 3 2	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M e lissa	7 6 5 4 - 3 2 1 0	1990
2111	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3

Codigo	Nome	Telefone	A n o Filia c a o	
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990	
1637	Doriana	9876-5432	1983	
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5	
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990	
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1983	

1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
---------	----------	-------------------	------

Codigo	Nome	Telefone	AnoFiliacao	
1 5 2 5	Asdrúbal	5 4 3 2 -1 0 9 8	1990	
1637	Doriana	9876-5432	1983	_
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5	
2 0 4 2	M e lissa	7 6 5 4 - 3 2 1 0	1990	
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3	ī

1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990

Codigo	Nome	Telefone	A n o Filia c a o	
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990	
1637	Doriana	9876-5432	1983	
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5	
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990	
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3	

1				
	1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990

Codigo	Nome	Telefone	A n o Filia c a o
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
1 6 3 7	Doriana	9876-5432	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6543-2109	1983

1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
---------	----------	-------------------	------

1637	Doriana	9876-5432	1983

Codigo	Nome	Telefone	A n o Filia c a o
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
1 6 3 7	D o ria n a	9876-5432	1983
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3

1525 Asdrúba	5 4 3 2 - 1 0 9 8	1990
--------------	-------------------	------

	1637	Doriana	9876-5432	1983
- 1				

Codigo	Nome	Telefone	A n o Filia c a o	
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990	
1 6 3 7	D o ria n a	9876-5432	1983	
1701	Quincas	8 7 6 5 - 4 3 2 1	1985	
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990	
2111	H o rácio	6 5 4 3 - 2 1 0 9	1983	

1525 Asdrúbal

1637	D o ria n a	9 8 7 6 - 5 4 3 2	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5

Codigo	Nome	Telefone	A n o Filia c a o
1 5 2 5	Asdrúbal	5 4 3 2 -1 0 9 8	1990
1637	D o ria n a	9 8 7 6 - 5 4 3 2	1983
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1983

1525 Asdrúbal

1701	Quincas	8 7 6 5 - 4 3 2 1	1985
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990

Codigo	Nome	Telefone	AnoFiliacao
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
1 6 3 7	D o ria n a	9876-5432	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6543-2109	1 9 8 3

1525 Asdrúbal

2 0 4 2	M e lissa	7 6 5 4 - 3 2 1 0	1990
2111	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3

Codigo	Nome	Telefone	A n o Filia c a o
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990
1 6 3 7	D o ria n a	9876-5432	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3

1525 Asdrúbal

	2 0 4 2	M elissa	7 6 5 4 - 3 2 1 0	1990
- 1				

2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3

Codigo	Nome	Telefone	AnoFiliacao
1 5 2 5	Asdrúbal	5 4 3 2 -1 0 9 8	1990
1 6 3 7	D o ria n a	9 8 7 6 - 5 4 3 2	1 9 8 3
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5
2 0 4 2	M e lis s a	7 6 5 4 - 3 2 1 0	1990
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1983

1 5 2 5	Asdrúbal
2 0 4 2	M elissa

Codigo	Nome	Telefone	A n o Filia c a o		
1 5 2 5	Asdrúbal	5 4 3 2 -1 0 9 8	1990		
1 6 3 7	D o ria n a	9 8 7 6 - 5 4 3 2	1 9 8 3		
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5		
2 0 4 2	M e lissa	7 6 5 4 - 3 2 1 0	1990		
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1 9 8 3		

1 5 2 5	Asdrúbal
2 0 4 2	M elissa

Codigo	Nome	Telefone	A n o Filia c a o	
1 5 2 5	Asdrúbal	5 4 3 2 - 1 0 9 8	1990	
1 6 3 7	D o ria n a	9 8 7 6 - 5 4 3 2	1 9 8 3	
1701	Quincas	8 7 6 5 - 4 3 2 1	1 9 8 5	
2 0 4 2	M e lis s a	7 6 5 4 - 3 2 1 0	1990	
2 1 1 1	H o rácio	6 5 4 3 - 2 1 0 9	1983	

Árvore de Consulta

Exercício

Transforme esta query em uma sentença em álgebra relacional e construa a árvore para ela:

SELECT LIVRO. Titulo

FROM LIVRO, PERTENCE, CATEGORIA

WHERE CATEGORIA.Nome = "poesia" AND

LIVRO.ISBN = PERTENCE.ISBN AND

CATEGORIA.Codigo = PERTENCE.CodCategoria AND

LIVRO.Ano > 1996

Exercício

SELECT LIVRO.Titulo

FROM LIVRO, PERTENCE, CATEGORIA

WHERE CATEGORIA.Nome = "poesia" AND

LIVRO.ISBN = PERTENCE.ISBN AND

CATEGORIA.Codigo = PERTENCE.CodCategoria AND

LIVRO.Ano > 1996

π_{LIVRO.Titulo}(O_{CATEGORIA.Nome="poesia" **AND** LIVRO.ISBN=PERTENCE.ISBN **AND** CATEGORIA.Codigo=PERTENCE.CodCategoria **AND** LIVRO.Ano>1996}

(LIVRO x PERTENCE x CATEGORIA))

Exercício

SELECT LIVRO.Titulo

FROM LIVRO, PERTENCE, CATEGORIA

WHERE CATEGORIA.Nome = "poesia" AND

LIVRO.ISBN = PERTENCE.ISBN AND

CATEGORIA.Codigo = PERTENCE.CodCategoria AND

LIVRO.Ano > 1996

 $\pi_{\text{LIVRO.Titulo}}(\sigma_{\text{CATEGORIA.Nome="poesia"}}$ AND LIVRO.Ano>1996

((LIVRO ⋈ LIVRO.ISBN=PERTENCE.ISBN PERTENCE)

CATEGORIA.Codigo=PERTENCE.CodCategoria CATEGORIA))

 $\pi_{\text{LIVRO.Titulo}}(\sigma_{\text{CATEGORIA.Nome="poesia"}}$ AND LIVRO.Ano>1996

((LIVRO ⋈_{LIVRO.ISBN=PERTENCE.ISBN} PERTENCE) ⋈_{CATEGORIA.Codigo=PERTENCE.CodCategoria} CATEGORIA))

 $\pi_{\text{LIVRO.Titulo}}$ OCATEGORIA.Nome="poesia" ANDLIVRO.Ano>1996 CATEGORIA.Codigo=PERTENCE.CodCategoria JVRO.ISBN=PERTENCE.ISBN CATEGORIA PERTENCE

Heurísticas para Otimização de Consulta (Elmasri, 2011)

Heurísticas para Otimização de Consulta

■Título dos livros sobre poesia escritos depois de 1996

SELECT LIVRO.Titulo

FROM LIVRO, PERTENCE, CATEGORIA

WHERE CATEGORIA.Nome = "poesia" AND

LIVRO.ISBN = PERTENCE.ISBN AND

CATEGORIA.Codigo = PERTENCE.CodCategoria AND

LIVRO.Ano > 1996

Heurística para Otimização de Consulta

 $\pi_{\text{LIVRO.Titulo}}$

CATEGORIA.Nome="poesia" **AND** LIVRO.ISBN=PERTENCE.ISBN **AND** CATEGORIA.Codigo=PERTENCE.CodCategoria **AND** LIVRO.Ano>1996

Regras de Transformação

- 1.Operações seleção conjuntivas podem se converter em cascatas de seleção
- 2. Operação de seleção é comutativa
- 3. Comutação de seleção com projeção
 - □ caso o resultado da projeção tenha atributos requeridos pela seleção

Regras de Transformação

- 4. Seleção e junção (ou produto cartesiano) são comutativas
 - □se atributos da seleção são de apenas uma das relações
- 5. Operações de união e interseção são comutativas
 - □ diferença não é

Regras de Transformação

- 6. Seleção é comutativa com operações de conjunto (união, interseção e diferença)
 - □ sel (A U B) equivale sel(A) U sel(B)

- Quebrar operações de seleção conjuntivas (1)
 - maior liberdade
- ■Mover seleção em direção às folhas (2), (3), (4), (5) e (6)
 - □ apenas 1 tabela → acima da tabela
 - □ duas tabelas → acima da junção

Quebrando e Descendo Seleções

Seleções OCATEGORIA.Codigo=PERTENCE.CodCategoria OLIVRO.ISBN=PERTENCE.ISBN CATEGORIA.Nome="poesia" CATEGORIA LIVRO.Ano>1996 PERTENCE **LIVRO**

■Operações de seleção mais restritivas devem ser executadas primeiro (5) e (6)

Troca de Categoria com Livro

Regras de Transformação

- 7. As operações de junção e produto cartesiano são comutativas
- 8.As operações de junção, produto cartesiano, união e interseção são associativas

Regra de Transformação

9. Operações de produto cartesiano + seleção podem se converter em junção

Converta produtos cartesianos + seleções em junções

Produto Cartesiano + Seleção = Junção

Regras de Transformação

- 10. Cascata de projeções podem ser ignoradas e convertidas na última
 - □ Pr1(Pr2(Pr3(A))) equivale Pr1(A)
- 11.Operações de projeção e união são comutativas
 - □ proj (A U B) equivale proj(A) U proj(B)

Regras de Transformação

- 12. Operação de projeção pode ser comutada com junção (ou produto cartesiano)
 - □ Relação A → atributos a₁,...,a_n
 - □ Relação B → atributos b₁,...,b_m
 - $\Box L = (a_1, ..., a_n, b_1, ..., b_m)$
 - □ Condição só contém atributos L
 - □ proj_L(A junção B) equivale (proj_{a1,...,an}(A)) junção (proj_{b1...,bn}(B))

- ■Baseados em (10), (11) e (12)
 - □ Desmembrar operações de projeção
 - Mover projeções em direção às folhas
 - □ Criar operações de projeção para manter apenas atributos necessários

Projeções Mais Cedo

■Identificar subárvores com operações a ser combinadas em um algoritmo

Exercício

- Considere as seguintes tabelas:
 - $\square R(\underline{A},B,C,D)$
 - □ S(<u>E</u>,F,G,H) F é chave-estrangeira que referencia R(A)
- a) desenhe um plano de acesso otimizado para a consulta:
 - □ select A from R, S where A=5 and G=7 and F=A

Agradecimentos

■ Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides. Página do Celso:

http://dainf.ct.utfpr.edu.br/~gomesjr/

■ Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.

Referências

- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003)

 Database Management Systems. McGraw-Hill,

 3rd edition.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link: http://creativecommons.org/licenses/by-nc-sa/3.0/

■ Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/ Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/