

Model Predictive Control with Prioritised Actuators

Marco Gallieri (mgallieri.ac@gmail.com) with Jan M. Maciejowski (jmm@eng.cam.ac.uk)

European Control Conference 2015 - Linz

Cambridge University Engineering Department

Multiply-actuated systems

Aircraft example: 16 states, nearly 30 actuators

LASSO Model Predictive Control (ℓ_{asso} -MPC)

Control of multiply-actuated systems – e.g. Aircraft \approx 30 inputs

Figure: Integration of multiple control layers through LASSO MPC.

LASSO Model Predictive Control (ℓ_{asso} -MPC)

Preferred actuators

Cost function:
$$\ell(x_j, u_j) = x_j^T Q x_j + u_j^T R u_j + ||Su_j||_1$$

- Standard MPC moves all the actuators all of the time
- We may have preferred actuators:
 - Aircraft: Ailerons normally, spoilers only if necessary.
- We want sparse control allocation.
- LASSO: ℓ_1 -norm regularisation.
- Quadratic cost on state
 - ⇒ smooth plant behaviour.

Figure: Primary (solid) and secondary actuator (dashed).

Who inspired our work?

Authors who have previously investigated regularised MPC

- H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd, 2010. "Trajectory generation using sum-of-norms regularization", IEEE CDC.
 - MPC with sparse Δu . Reduce actuator's wear and tear.
- M. Nagahara and D.E. Quevedo, 2011. "Sparse representations for packetized predictive networked control", Proc. IFAC World Con.
 - Remote control. Compress control message. Send future N moves.
 Unconstrained boundedness and robustness to communication losses.
- T. Hastie et al. 2011. "The elements of statistical learning", Springer. LASSO for Machine learning. Solution path.

ℓ_{asso} -MPC (or ℓ_1 -regularised MPC) Let's start from a standard quadratic MPC

Control the constrained discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k) + B_w w(k),$$

$$x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U}, \ \|w(k)\|_{\infty} \le \mu, \ \forall k \ge 0,$$

$\ell_{\textit{asso}}\text{-MPC}$ (or $\ell_1\text{-regularised MPC})$

Let's start from a standard quadratic MPC

Control the constrained discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k),$$

$$x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U}, \ \forall k \geq 0,$$

Let's start from a standard quadratic MPC

Control the constrained discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k),$$

$$x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U}, \ \forall k \geq 0,$$

by applying the first move of the optimal sequence

$$\underline{\mathbf{u}}^* = \arg\min_{\underline{\mathbf{u}}} \hat{\mathbf{x}}_N^T P \hat{\mathbf{x}}_N + \sum_{j=0}^{N-1} \hat{\mathbf{x}}_j^T Q \hat{\mathbf{x}}_j + \hat{\mathbf{u}}_j^T R \hat{\mathbf{u}}_j$$

s.t. constraints.

Version 1: Add a 1-norm penalty to obtain sparse u (or Δu)

Control the constrained discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k),$$

$$x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U}, \ \forall k \geq 0,$$

by applying the first move of the optimal sequence

$$\underline{\mathbf{u}}^* = \arg\min_{\underline{\mathbf{u}}} \hat{\mathbf{x}}_N^T P \hat{\mathbf{x}}_N \qquad \qquad + \sum_{j=0}^{N-1} \hat{\mathbf{x}}_j^T Q \hat{\mathbf{x}}_j + \hat{\mathbf{u}}_j^T R \hat{\mathbf{u}}_j + \|S \hat{\mathbf{u}}_j\|_1 \quad \text{s.t. constraints.}$$

Version 2: Add a second 1-norm penalty for stability (difficult conditions)

Control the constrained discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k),$$

$$x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U}, \ \forall k \geq 0,$$

by applying the first move of the optimal sequence¹

$$\underline{\mathbf{u}}^* = \arg\min_{\underline{\mathbf{u}}} \hat{\mathbf{x}}_N^T P \hat{\mathbf{x}}_N + \| \mathbf{Z} \hat{\mathbf{x}}_N \|_1 + \sum_{j=0}^{N-1} \hat{\mathbf{x}}_j^T Q \hat{\mathbf{x}}_j + \hat{\mathbf{u}}_j^T R \hat{\mathbf{u}}_j + \| \mathbf{S} \hat{\mathbf{u}}_j \|_1 \quad \text{s.t. constraints.}$$

¹M. Gallieri and J. M. Maciejowski, *Stabilising Terminal Cost and Terminal Controller for lasso-MPC: Enhanced Optimality and Region of Attraction*, ECG 2013

Asymptotic Stability: How to choose the terminal cost?

Apply the first move of the optimal sequence

$$\underline{\mathbf{u}}^* = \arg\min_{\underline{\mathbf{u}}} \frac{\mathbf{F}(\hat{\mathbf{x}}_{N})}{\mathbf{F}(\hat{\mathbf{x}}_{N})} + \sum_{j=0}^{N-1} \hat{x}_j^T Q \hat{x}_j + \hat{u}_j^T R \hat{u}_j + \|S \hat{u}_j\|_1$$

s.t.
$$\hat{x}_j \in \mathbb{X}, \ \hat{u}_j \in \mathbb{U}, \ \forall j = 0, \ 1, \dots, N-1, \ \hat{x}_N \in \mathbb{X}_f.$$

MPC stability assumption (Mayne et al., 2000)

- $F((A+BK)\hat{x}_N) F(\hat{x}_N) \leq -\ell(\hat{x}_N, K\hat{x}_N)$, for some $K, \forall \hat{x}_N \in \mathbb{X}_f$.
- X_f is positively invariant under u(k) = Kx(k).

Asymptotic Stability: How to choose the terminal cost?

MPC stability assumption (Mayne et al., 2000)

- $F((A+BK)\hat{x}_N) F(\hat{x}_N) \leq -\ell(\hat{x}_N, K\hat{x}_N)$, for some $K, \forall \hat{x}_N \in \mathbb{X}_f$.
- X_f is positively invariant under u(k) = Kx(k).

Two possible strategies

- Partial regularisation: $S = [0 \ \bar{S}], F(x) = x^T P x$. Prioritised actuators (first actuators stabilise the plant).
- New terminal cost: Multiple levels of priority. Using Minkowski functions for stability²

²Gallieri M., Maciejowski J. M., Soft constrained LASSO-MPC for robust LTI tracking: Enlarged feasible region and an ISS gain estimate, CDC 2013.

Objectives:

- Use preferred actuators $(u^{(i)})$ to stabilise system
- If control error large \Rightarrow Use also auxiliary actuators $(u^{(ii)})$

Is this possible?

- ℓ_1 -regularisation as exact penalty function $\Rightarrow u^{(\mathrm{ii})} = 0$ when x close to the origin
- For LTI systems, ℓ_{asso} -MPC is strongly convex
- Explicit solution is piecewise affine in x and S (assume S diagonal or change coordinates).

SISO Example: Solution path for varying S

- We can use explicit MPC to compute the PWA solution path and the regularisation parameter (upper bound)
- Example: A = B = Q = R = 1, N = 3, $|x| \le 5$, $|u| \le 1$, $S \in (0, 30]$.

ℓ_{asso} -MPC (or ℓ_1 -regularised MPC) Prioritised actuators

Theorem

The maximal feasible set for which it is possible to have $u^{(ii)} = 0$ is

$$\tilde{\mathbb{X}}_{N}^{(i)} = \mathcal{Q}^{(i)}(\mathcal{K}_{N-1}(\mathbb{X}, \mathbb{X}_{f})) \cap \mathbb{X}. \tag{1}$$

Tuning procedure for regularisation parameter

- **1.** Choose \mathbb{X}_{nom} in \mathbb{X} in which to enforce $u^{(ii)} = 0$.
- Find MPQP solution to modified MPC problem with auxiliary constraints:

•
$$u^{(ii)} = u_{+}^{(ii)} - u_{-}^{(ii)}$$
, s.t. $u_{+}^{(ii)} = 0$, $u_{-}^{(ii)} = 0$.

- 3. Use MPQP solution to find $\gamma^{\star}=$ maximum Lagrange multiplier for auxiliary constraints.
- **4.** Set regularisation parameter $\bar{S} = \lambda I$, $\lambda \ge \gamma^* \Rightarrow \text{Cost of regularisation} > \text{cost reduction for original problem}$.

MIMO example: Prioritised actuators

$$A = \begin{bmatrix} 0.2 & 0.1 \\ 0 & 1.1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, Q = I, R = I, N = 3,$$
$$\mathbb{X} = \{x \mid ||x||_{\infty} \le 20\}, \mathbb{U} = \{u \mid ||u||_{\infty} \le 5\},$$
$$\mathbb{X}_{\text{nom}} = \{x : |||x|| + \infty \le 5\}, \gamma^* = 13.07.$$

Case study: Aircraft roll control

16 states, nearly 30 actuators

Aircraft roll control

Case 1: Moderate roll rate command (3 deg/sec)

Aircraft roll control

Case 2: Large roll rate command (5 deg/sec)

Aircraft roll control

Case 3: Very large roll rate command (10 deg/sec)

Why ' ℓ_{asso} -MPC'?

- A new concept Perform only most relevant input actions (moves).
- When to use ℓ_{asso} -MPC:
 - 1. Use less input Sparse in time signals (e.g. save fuel).
 - **2.** Move actuators less Reduce wear and tear. $(\|\hat{u}_{j+1} \hat{u}_j\|_1)$.
 - 3. Prioritised actuators Sparsity in channels.

Thank you for the attention! Any questions?

