

B2 Engineering, Sustainability and the Environment

Wei Huang, Michaelmas Term 2021 Lecture 4

Sustainable energy and Scenario analysis

Course outline

1. Why?

- Global Issues
- Why Engineering?

2. What?

Brundtland Report Triple Bottom Line Stakeholders

3. How?

- Legislation
- Tools
- Metrics

4. When?

- Scenario Analysis
- Structural Change?
- A Sustainable Future

A Sustainable Energy Future?

Scenario analysis

Example scenarios

Low carbon futures & making it happen

Energy company activities

Conclusions

Scenarios

We cannot predict the future!

Many possible futures

Scenarios consider possible alternative futures

Plausible, internally consistent stories to aid strategic thinking

I predict that futurologists will keep on getting it wrong

Need at least two scenarios

Not forecasts which extrapolate from the past

Energy scenario concerns

1) Social and national security

which is intimately tied to energy security

- 2) Economic prosperity
- 3) The environment

Environment Economics Society

Sustainable, CO₂ neutral energy

Greenhouse gas emissions in the UK will be cut to almost zero by 2050 – BBC 12 June 2019

Energy scenario factors

Demand – population growth, economic development

Supplies – availability/price

Renewable energy

Energy efficiency

Public attitudes – Climate change etc

Government policies / incentives

Carbon emissions

Hydrogen economy etc, etc...

Demand: Energy Consumption vs GDP

https://www.eea.europa.eu/soer/data-and-maps/figures/correlation-of-per-capita-energy

Potential of renewable energy

Nuclear (fission and fusion)

Require a new reactor every other day for the next 50 years

Hydroelectric

Technically Feasible: 1.6 TW, Economic: 0.9 TW, Installed Capacity: 0.6 TW

Geothermal

Engineering, practice, Mean flux at surface: 0.057 W/m²

Continental Total Potential: 11.6 TW

Ocean/Tides

Corrosion and amount of energy is low

Wind

4% Utilization, 2-3 TW, Storage, integration to grids

Biomass

Food security, require 31% of total land area

Solar – ultimate energy source!

Nathan Lewis, Powering the planet. MRS BULLETIN 2007

Source: Global energy budget

Figure 2.1 Total energy resources

Source: National Petroleum Council, 2007, after Craig, Cunningham and Saigo (republished from IEA, 2008b).

Solar energy

Taking energy as an example: one hour of sunlight = Mankind annual consumption ~15 TW

100,000 TW

Solar energy is the ultimate and sustainable energy resource

Solar power facts

- Solar irradiance to earth is 1368 W/m²;
- Solar energy hitting the earth surface is ~ 200 W/m²;
- Solar rays include visible light (40%), infrared (50%) and ultraviolet radiation (10%).

Integration of many disciplines will be needed

Chemical Fuel From Solar Energy

Energy density

Energy density is the amount of energy stored in a given unit of mass or volume

Energy transfer efficiency is key

- Oil (30 MJ/L oil) consumption in China is 10.8M barrel/day
 The total energy per day = 30MJx(10.8x10⁶barrel/d)x159L/barrel)=5.1x10¹⁰ MJ/d
- Given average solar energy is 200 W/m², 1.5 X Taihu lake (2250 km²) surface is sufficient to China annual oil demand.

$$T = \frac{200W}{m^2} \times 24h \times \frac{3600s}{h} \times 1.5 \times 2250 \times 10^6 m^2 = 5.8 \times 10^{10} MJ/d$$

However, photosynthesis efficiency is 1%, it requires 160 Taihu lake for oil production = 30% of China arable land area. This is not acceptable!

Renewable Energy

Could meet energy demand many times over.

The sun provides more energy in a day than the world uses in 30 years

More expensive than fossil fuels, but costs falling

Fossil & nuclear industries heavily subsidised!

Issue of intermittency to be solved (or maybe we should be less used to power on demand?)

Production Cost of Electricity

Courtesy Nate Lewis

Nathan Lewis, Powering the planet. MRS BULLETIN 2007

Energy Efficiency

Energy used to meet a societal need!

Very significant scope to reduce energy use.

Domestic applications:

Lighting: compact fluorescent (14W = 60W incandescant)

Appliances:	Ave new UK	best available			
Fridge/freezer,	580	300 kWh/yr			
Washing m/c	1.21	0.9 kWh/cycle			
Boiler efficiency	75	92 %			

Consumer electronics: cut out standby & clocks.

Energy Efficiency

Buildings:

Passive solar; better insulation; smart windows... Combined Heat & Power instead of power alone

Power from coal ~35%, gas ~60%; but ~90% with CHP

Industry:

Pumping: variable speed motors, not throttling. Integration: reduce heating and cooling steps.

Cars: over fourfold reduction.

Potential between 25 and 50% saving

Future lighting systems

- Established technology was incandescent lamps
 - EU prohibited sale of most of these
- Compact Fluorescent Lamps (CFLs) Dimmable versions now available for some time
 - High capital cost and longer life, but much lower running costs
 - Not everyone 'likes' the light
 - Issue with mercury disposal?
- Future is likely to be LEDs
 - Dimmable versions available
 - Becoming available in higher powers
 - Colour now more acceptable 'warm'

New frontier Engineering: Energy self-sufficient building

Diagram adapted from Nathan Lewis

Energy in organic waste can be released as electricity via Microbial Fuel Cell (MFC)?

A MFC device forces bacteria to require energy from organic matter by producing electricity.

- Bacteria attach to anode and produce CO₂ and electrons
- Electrons transport to cathode to produce current
- Electrons and H⁺ interact with oxygen to produce H₂O

Anode: organic waste + $H_2O \rightarrow CO_2 + H^+ + e^-$

Cathode: $O_2 + H^+ + e^- \rightarrow H_2O$

Overall reaction: organic waste $+O_2 \rightarrow CO_2 + H_2O$

Mechanisms of Microbial fuel cells

Shewanella (aka Mr. Clean)

Electron Transfer Mechanisms:

Direct Transfer

o Electron Shuttling

Nanowires

Geobacter (aka The Iron-breather)

Wastewater to produce electricity

Methane production from wastewater sludge

Public attitudes – Climate change

IPCC Fourth Assessment Report: Climate Change 2007

Temperature over the last 420,000 years

Source: Working Group I of the Intergovernmental Panel on Climate Change

Global CO2 level

CARBON DIOXIDE OVER 800,000 YEARS

Global temperature increase above 1.5 C would have extreme weathers and significant damage to human society

https://www.metoffice.gov.uk/research/news/2018/how-much-co2-at-1.5c-and-2c https://climate.nasa.gov/news/2865/a-degree-of-concern-why-global-temperatures-matter/

IPCC Scenarios

- A1 Rapid economic growth, population peaks then declines
 - A1F Fossil intensive
 - A1B Balanced energy supply
 - A1T Non-fossil energy
- A2 More heterogeneous world
 - Regional development, technological changes fragmented and slow
 - Higher population
- B1 Convergent world
 - Same population peak as A1 but lower thereafter
 - More reliance on information economy, renewable energy generation
- B2 Similar to B1 but more diverse
 - Local solutions to economic, social, and environmental sustainability

In 1992 the IPCC released emission scenarios so-called IS92 scenarios were pathbreaking, which were the first global scenarios to provide estimates for the full suite of greenhouse gases.

http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0 https://www.ipcc.ch/report/emissions-scenarios/?idp=0

IPCC Scenarios

Table 1a: Overview of main primary driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the value for the illustrative scenario and the numbers between brackets show the value for the range^a across all 40 SRES scenarios in the six scenario groups that constitute the four families. Units are given in the table. Technological change is not quantified in the table.

Family			A1		A2	B1	B2
Scenario group	1990	AlFI	AlB	AlT	A2	B1	В2
Population (billion)	5.3						
2020		7.6 (7.4-7.6)	7.5 (7.2-7.6)	7.6 (7.4-7.6)	8.2 (7.5-8.2)	7.6 (7.4-7.6)	7.6 (7.6-7.8)
2050		8.7	8.7 (8.3-8.7)	8.7	11.3 (9.7-11.3)	8.7 (8.6-8.7)	9.3 (9.3-9.8)
2100		7.1 (7.0-7.1)	7.1 (7.0-7.7)	7.0	15.1 (12.0-15.1)	7.0 (6.9-7.1)	10.4 (10.3-10.4)
World GDP (1012 1990US\$/yr)	21						
2020		53 (53-57)	56 (48-61)	57 (52-57)	41 (38-45)	53 (46-57)	51 (41-51)
2050		164 (163-187)	181 (120-181)	187 (177-187)	82 (59-111)	136 (110-166)	110 (76-111)
2100		525 (522-550)	529 (340-536)	550 (519-550)	243 (197-249)	328 (328-350)	235 (199-255)
Per capita income ratio:	16.1						
developed countries and							
economies in transition							
(Annex-I) to developing							
countries (Non-Annex-I)							
2020		7.5 (6.2-7.5)	6.4 (5.2-9.2)	6.2 (5.7-6.4)	9.4 (9.0-12.3)	8.4 (5.3-10.7)	7.7 (7.5-12.1)
2050		2.8	2.8 (2.4-4.0)	2.8 (2.4-2.8)	6.6 (5.2-8.2)	3.6 (2.7-4.9)	4.0 (3.7-7.5)
2100		1.5 (1.5-1.6)	1.6 (1.5-1.7)	1.6 (1.6-1.7)	4.2 (2.7-6.3)	1.8 (1.4-1.9)	3.0 (2.0-3.6)

^a For some driving forces, no range is indicated because all scenario runs have adopted exactly the same assumptions.

Source: International Panel on Climate Change, 2002

https://www.ipcc.ch/report/emissions-scenarios/?idp=0

IPCC Scenarios

Source: IPCC WG3 Jan 2001http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0

Low carbon future or zero carbon emission

Many routes to a low carbon future

Will it happen without positive action?

Need to start sooner rather than later - Precautionary principle!

Governments and consumers have key roles

Governments:

Stop subsidies to fossil fuels (>\$200 billion pa?)

Change planning regulations?

Encourage / stimulate renewables

Educate the public

Note: we spend £ billions on defence. Cost effective support for renewables might be regarded as 'insurance'

New science and technology are needed

A solution may lie at the interface of biology and the physical sciences at the nano-scale

- The pursuit of technological goals has led to some of the most innovative science.
- Science done with new technology has the best chance of discovery.

A smart city

A smart city is a framework, application of Information and Communication Technologies (ICT), to promote *sustainable development* practices to address growing urbanization challenges.

ICT: Intelligent network of connected objects and machines that transmit data using wireless technology and the cloud.

Cloud-based innovative Internet of Things (IoT) applications receive, analyse, and manage data in real-time to help to make better decisions that improve quality of life.

Citizens engage with smart city ecosystems in various ways using smartphones and mobile devices. Pairing devices and data with a city's physical infrastructure and services can cut costs and improve sustainability.

Communities can improve energy distribution, streamline trash collection, decrease traffic congestion, and even improve air quality with help from the IoT.

Smart city with energy efficiency

https://www.xenius.in/energy-efficiency-smart-solutions-future-sustained-living/

Why we need smart city?

- Urbanization is a non-ending phenomenon.
- Today, 54% of people worldwide live in cities, a proportion that's expected to reach 66% by 2050.
- Combined with the overall population growth, urbanization will add another 2.5 billion people to cities over the next three decades.
- Environmental, social, and economic sustainability is a must to keep pace with this rapid expansion that is taxing our cities' resources.
- One hundred ninety-three countries have agreed upon the agenda of the Sustainable Development Goals (SDGs), in September 2015 at the United Nations.

https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/inspired/smart-cities

Oxford Smart City

Four essential elements necessary for thriving smart cities:

- Pervasive wireless connectivity
- Open data
- Security you can trust in
- Flexible monetization schemes

Part funded by the European Regional Development Fund, Smart Oxford is the strategic programme.

Average Domestic Carbon Dioxide Emissions Across Britain

Our share of the Westmill windfarm created new generation capacity equivalent to our net annual electricity use

The engineer's tale - summary

- Household energy consumption now 54% of 1999 value and 64% of UK average
- Energy use per m² 37% of UK average
- CO₂ emissions 29% of 1999
 value (and 33% of UK average)
- This all came at a cost
 - Certainly not 'economic'
- But it was (and is) good fun (and might be thought sustainable)

Conclusions

- Sustainable development the key issue for the 21st
 Century
- Will require a major change of approach
- Affordable energy essential for development
- Scientific evidence clearly suggests manmade emissions of Greenhouses Gases having 'a discernible influence on global climate'
- Significant scope to reduce energy consumption
- Renewable energy has the potential to meet future demand

Further reading and acknowledgement

Further reading:

World Energy Scenario 2016

https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Scenarios-2016_Full-Report.pdf

IPCC emission report

http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0

Nathan S. Lewis and Daniel G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. PNAS October 24, 2006. 103 (43) 15729-15735; https://doi.org/10.1073/pnas.0603395103

Nathan Lewis, Powering the planet. MRS BULLETIN 2007

Thanks

David Nowell, Roger Booth, Richard Darton, Malcolm McCulloch