

1. 高中数学 VS 大学数学

高中数学

计算、技巧、答案 语言相对非正式 具体,如数字与函数

大学数学

定义、定理、证明 语言精确、形式化 抽象, 如空间与映射

线性代数

理解抽象结构:如向量空间、线性映射

熟悉语言:复杂的符号系统

锤炼逻辑性: 定义-定理-证明

2. 集合的语言

常见数集的表达:

自然数集№,整数集ℤ,有理数集ℚ,实数集ℝ,复数集ℂ

一些符号:

```
A = \{1, 2, 3\}
1 \in A
\{1\} \subseteq A
\emptyset \subseteq A, \quad A \subseteq A
\emptyset \in P(A) = \{B | B \subseteq A\}
\emptyset \subseteq P(A)
```

3. 逻辑符号

	符号	中文含义	推荐英文表述	
\forall	A	任意/对所有	For all / For every	
3	3	存在	There exists	
\Rightarrow	⇒	推出	Implies	
\Leftrightarrow	⇔	当且仅当	If and only if	

比较: $\forall a \in \mathbb{R}, \exists b \in \mathbb{R} \ s. \ t. \ a + b = 0;$

 $\exists \mathbf{0} \in \mathbb{R} \ s.\ t.\ \forall c \in \mathbb{R}, \mathbf{0} + \mathbf{c} = \mathbf{c}.$

注: s.t. = such that

4. 求和与连乘符号

重点: 求和号 Σ 两种常见写法: $\sum_{i=m}^{n} a_i$

读法: Sigma

西格玛(音译)

相关概念:下标(指标)、下限

上限、通项

注意区分

哑指标可以被替换为任意其他符号,而不改变求和的意义

例: $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_i = \sum_{k=1}^{n} a_k$

确切指标是在表达式上下文中真实存在、值固定的指标

例: $\Rightarrow b = \sum_{i=1}^{100} a_i(*)$, 其中 $a_i = \sum_{j=1}^{i} j$ (**)

在(*)中, i是哑指标; 在(**)中, i是确切指标, j是哑指标。

连乘号Ⅱ

$$\prod_{i=1}^{n} a_i = a_1 a_2 \cdots a_n$$

5. 映射

回顾函数的定义,定义域、函数值、值域、自变量、因变量 映射的定义 定义域、陪域、值域(注意区分陪域和值域) 像、原像、像集、原像集 什么是单射、满射、双射? 变换的定义

6. 希腊字母

α,β,γ:标量

λ, μ: 特征值

 δ : 增量/变化量

ε: 小正数

θ: 角度

 ξ : 向量/变量

π: 圆周率

Ⅱ: 连乘符号

 φ , ϕ , ψ : 映射/角度

 σ : 奇异值/映射

Σ: 求和符号/对角矩阵

Ω:集合/空间

区分 α 和a; ω 和w; φ 和 ψ

UPPERCASE	LOWERCASE	NAME	UPPERCASE	LOWERCASE	NAME
\boldsymbol{A}	α	Alpha	N	ν	Nυ
\boldsymbol{B}	β	Beta	arvarrow	ξ	Ksi
Γ	γ	Gamma	0	0	Omicron
Δ	δ	Delta	П	π	Pi
E	\mathcal{E}	Epsilon	P	ρ	Rho
Z	ζ	Zeta	$oldsymbol{\Sigma}$	σ	Sigma
H	η	Eta	T	τ	Tau
$\boldsymbol{\varTheta}$	θ	Theta	Y	υ	Upsilon
I	ı	lota	Φ	φ	Phi
K	K	Карра	X	χ	Chi
$\boldsymbol{arLambda}$	λ	Lambda	Ψ	Ψ	Psi
M	μ	Μυ	Ω	ω	Omega

7. 反证法与数学归纳法

反证法 (Proof by Contradiction)

思路: 假设结论不成立 → 推导出与公理或定理或条件的矛盾

→ 故原结论必须成立。

数学归纳法 (Mathematical Induction)

第一: 验证 n = 1 成立; 假设 n = k 成立, 证明 n = k + 1 也成立。从而结论对任意自然数 n 成立。

第二:验证 n = 1 成立;假设 $n \le k$ 成立,证明 n = k + 1 也成立。从而结论对任意自然数 n 成立。

注:若不熟悉, 找两个例子演练

8. 充要条件、充分性与必要性

充分必要条件 - 剖析概念间的等价性

线性代数的魅力之一:将看似不同的概念通过**充要条件**联系起来。

例子: 假设A是 $n \times n$ 阶矩阵,则以下陈述等价:

- •A 是可逆矩阵。
- • $\det(A) \neq 0$.
- •齐次线性方程组 Ax = 0 只有平凡解。
- •*A* 的行(列)向量线性无关。
- $\bullet A$ 可表示为有限个初等矩阵的乘积。

矩阵(Matrix)简释: 一个长方形数表(数阵) 电影The Matrix

区分充分性和必要性

9. 复数

孰悉:

复数的基本运算(加、减、乘、除、共轭、模长)复平面

10. 多项式运算

熟悉:

多项式的加法、减法、乘法和带余除法 多项式的因式分解 韦达定理 知道:代数基本定理

谢谢!