Outline

- Tree
- Example: XHTML and CSS
- Binary Tree
- Traversal
- Application: Expression Tree

- A rooted tree data structure stores information in nodes
 - Similar to linked lists:
 - There is a first node, or root
 - Each node has variable number of references to successors
 - Each node, other than the root, has exactly one node pointing to it

- The degree of a node is defined as the number of its children:
 - deg(I) = 3
- Nodes with the same parent are siblings
 - J, K, and L are siblings

- Nodes with degree zero are also called leaf nodes
- All other nodes are said to be internal nodes, that is, they are internal to the tree

- These trees are equal if the order of the children is ignored
 - unordered trees
- They are different if order is relevant (ordered trees)
 - We will usually examine ordered trees (linear orders)
 - In a hierarchical ordering, order is not relevant

 The shape of a rooted tree gives a natural flow from the root node, or just root

- A path is a sequence of nodes

 (a0, a1, ..., an)

 where ak + 1 is a child of ak is
- The length of this path is n
- E.g., the path (B, E, G)has length 2

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth of the node, e.g.,
 - E has depth 2
 - L has depth 3

- The height of a tree is defined as the maximum depth of any node within the tree
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be −1

- The descendants of node B are B, C, D, E, F, and G:
- The ancestors of node I are I, H, and A:

- Another approach to a tree is to define the tree recursively:
 - A degree-0 node is a tree
 - A node with degree n is a tree if it has n children and all of its children are disjoint trees (i.e., with no intersecting nodes)
- Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

- The XML of XHTML has a tree structure
- Cascading Style Sheets (CSS) use the tree structure to modify the display of HTML

```
Consider the following XHTML document
     <html>
         <head>
             <title>Hello World!</title>
         </head>
         <body>
             <h1>This is a <u>Heading</u></h1>
             This is a paragraph with some
             <u>underlined</u> text.
         </body>
     </html>
```

Consider the following XHTML document

The nested tags define a tree rooted at the HTML

tag

</body>

</html>

```
html
<html>
                                               head
                                                                              body
    <head>
        <title>Hello World!</title>
                                          "Hello World!"
                                                           "This is a "
    </head>
                                                                      "Heading"
    <body>
                                                                     "This is a paragraph with "
                                                                                                       text."
        <h1>This is a <u>Heading</u></h1>
                                                                                             "underlined"
        This is a paragraph with some
        <u>u>underlined</u> text.
```

Web browsers render this tree as a web page

- A binary tree is a restriction where each node has exactly two children:
 - Each child is either empty or another binary tree
 - This restriction allows us to label the children as left and right subtrees
- At this point, recall that Ig(n) = Q(logb(n)) for any b

We will also refer to the two sub-trees as

- The left-hand sub-tree, and
- The right-hand sub-tree

Sample variations on binary trees with five nodes:

A full node is a node where both the left and right sub-trees are non-empty trees

Legend:

full nodes neither leaf nodes

An *empty node* or a *null sub-tree* is any location where a new leaf node could be appended

A full binary tree is where each node is:

- A full node, or
- A leaf node

These have applications in

- Expression trees
- Huffman encoding

The binary node class is similar to the single node class:

```
public:
#include <algorithm>
                                                Binary_node( Type const & );
                                                Type value() const;
template <typename Type>
                                                Binary_node *left() const;
class Binary_node {
                                                Binary node *right() const;
    protected:
                                                bool is_leaf() const;
        Type node_value;
                                                int size() const;
        Binary_node *p_left_tree;
                                                int height() const;
        Binary node *p right tree;
                                                void clear();
```

We will usually only construct new leaf nodes

```
template <typename Type>
Binary_node<Type>::Binary_node( Type const &obj ):
node_value( obj ),
p_left_tree( nullptr ),
p_right_tree( nullptr ) {
    // Empty constructor
}
```

The accessors are similar to that of Single_list

```
template <typename Type>
Type Binary_node<Type>::value() const {
    return node value;
template <typename Type>
Binary_node<Type> *Binary_node<Type>::left() const {
    return p_left_tree;
template <typename Type>
Binary_node<Type> *Binary_node<Type>::right() const {
    return p right tree;
```

Much of the basic functionality is very similar to Simple_tree

```
template <typename Type>
bool Binary_node<Type>::is_leaf() const {
    return (left() == nullptr) && (right() == nullptr);
}
```

Size

The recursive size function runs in $\Theta(n)$ time and $\Theta(h)$ memory

• These can be implemented to run in $\Theta(1)$

```
template <typename Type>
int Binary_node<Type>::size() const {
    if ( left() == nullptr ) {
       return ( right() == nullptr ) ? 1 : 1 + right()->size();
    } else {
       return ( right() == nullptr ) ?
            1 + left()->size() :
            1 + left()->size() + right()->size();
                        14
```

Height

The recursive height function also runs in $\Theta(n)$ time and $\Theta(h)$ memory

• Later we will implement this in $\Theta(1)$ time

```
int Binary_node<Type>::height() const {
    if ( left() == nullptr ) {
       return ( right() == nullptr ) ? 0 : 1 + right()->height();
    } else {
       return ( right() == nullptr ) ?
            1 + left()->height() :
            1 + left()->height() + right()->height();
```

Clear

Removing all the nodes in a tree is similarly recursive:

```
template <typename Type>
void Binary_node<Type>::clear( Binary_node *&p_to_this ) {
    if ( left() != nullptr ) {
       left()->clear( p_left_tree );
    if ( right() != nullptr ) {
                                                  left_tree Pright_tree
       right()->clear( p_right_tree );
    delete this;
    p_to_this = nullptr;
```

Traversal

There are 2 types of traversal:

- The breadth-first traversal visits all nodes at depth k before proceeding onto depth k +
 - Easy to implement using a queue
- Another approach is to visit always go as deep as possible before visiting other siblings: *depth-first traversals*

Breadth-First Traversal

Breadth-first traversals visit all nodes at a given depth

- Can be implemented using a queue
- Run time is $\Theta(n)$
- Memory is potentially expensive: maximum nodes at a given depth
- Order: ABHCDGIEFJK

Breadth-First Traversal

The implementation was already discussed:

- Create a queue and push the root node onto the queue
- While the queue is not empty:
 - Push all of its children of the front node onto the queue
 - Pop the front node

Backtracking

To discuss depth-first traversals, we will define a backtracking algorithm for stepping through a tree:

- At any node, we proceed to the first child that has not yet been visited
- Or, if we have visited all the children (of which a leaf node is a special case), we backtrack to the parent and repeat this decision making process

We end once all the children of the root are visited

depth-first traversal

We define such a path as a depth-first traversal

We note that each node could be visited twice in such a scheme

- The first time the node is approached (before any children)
- The last time it is approached (after all children)

Implementing depth-first traversal

Performed on this tree, the output would be

 $\label{eq:condition} $$\langle A \rangle \langle B \rangle \langle C \rangle \langle D \rangle \langle C \rangle \langle E \rangle \langle F \rangle \langle G \rangle \langle G \rangle \langle E \rangle \langle B \rangle \langle H \rangle \langle I \rangle \langle J \rangle \langle K \rangle \langle K \rangle \langle L \rangle \langle I \rangle \langle M \rangle \langle M \rangle \langle H \rangle \langle A \rangle $$$

Implementing depth-first traversal

Alternatively, we can use a stack:

- Create a stack and push the root node onto the stack
- While the stack is not empty:
 - Pop the top node
 - Push all of the children of that node to the top of the stack in reverse order
- Run time is $\Theta(n)$
- The objects on the stack are all unvisited siblings from the root to the current node
 - If each node has a maximum of two children, the memory required is $\Theta(h)$: the height of the tree

With the recursive implementation, the memory is $\Theta(h)$: recursion just hides the memory

Guidelines

Depth-first traversals are used whenever:

- The parent needs information about all its children or descendants, or
- The children require information about all its parent or ancestors

In designing a depth-first traversal, it is necessary to consider:

- 1. Before the children are traversed, what initializations, operations and calculations must be performed?
- 2. In recursively traversing the children:
 - a) What information must be passed to the children during the recursive call?
 - b) What information must the children pass back, and how must this information be collated?
- 3. Once all children have been traversed, what operations and calculations depend on information collated during the recursive traversals?
- 4. What information must be passed back to the parent?

Preorder-Inorder-Postorder Traversal

Preorder Traversal

Root – Left - Right

Preorder Traversal

Example

Postorder Traversal

Left - Right - Root

Example

Inorder Traversal

Left – Root - Right

Example

Run times

Recall that with linked lists and arrays, some operations would run in $\Theta(n)$ time

The run times of operations on binary trees, we will see, depends on the height of the tree

We will see that:

- The worst is clearly $\Theta(n)$
- Under average conditions, the height is $\Theta(\sqrt{n})$
- The best case is $\Theta(\ln(n))$

Run times

If we can achieve and maintain a height $\Theta(\lg(n))$, we will see that many operations can run in $\Theta(\lg(n))$ we

Logarithmic time is not significantly worse than constant time:

$$lg(1000) \approx 10 \qquad kB$$

$$lg(1000000) \approx 20 \qquad MB$$

$$lg(100000000) \approx 30 \qquad GB$$

$$lg(1000000000) \approx 40 \qquad TB$$

$$lg(1000^n) \approx 10 n$$

Application: Expression Tree

Any basic mathematical expression containing binary operators may be represented using a binary tree

For example, 3(4a + b + c) + d/5 + (6 - e)

Application: Expression Tree

Observations:

- Internal nodes store operators
- Leaf nodes store literals or variables
- No nodes have just one sub tree
- The order is not relevant for
 - Addition and multiplication (commutative)
- Order is relevant for
 - Subtraction and division (non-commutative)
- It is possible to replace non-commutative operators using the unary negation and inversion:

$$(a/b) = a b^{-1}$$
 $(a - b) = a + (-b)$

Application: Expression Tree

A post-order depth-first traversal converts such a tree to the reverse-Polish format

$$3\ 4\ a \times b\ c + + \times d\ 5 \div 6\ e - + +$$

Reference

Allen, W. M. (2007). Data structures and algorithm analysis in C++. Pearson Education India.

Nell B. Dale. (2003). C++ plus data structures. Jones & Bartlett Learning.

เฉียบวุฒิ รัตนวิลัยสกุล. (2023). โครงสร้างข้อมูล. มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

https://ece.uwaterloo.ca/~dwharder/aads/Lecture_materials/