- 카이제곱(χ^2) 분포 (chi-squared distribution)
 - 카이제곱 확률변수와 확률밀도함수
 - ◆ $Z_1, Z_2, ..., Z_k$ 가 k개의 서로 독립인 표준정규 확률변수 $(Z_i \sim^{iid} N(0,1), i = 1,2,...,k)$ 일 때,
 - ▶ 확률변수 $X = Z_1^2 + Z_2^2 + \dots + Z_k^2$ 는 자유도가 k인 카이제곱 분포를 따르는 것으로 정의.
 - ◆ 자유도 k인 카이제곱분포의 확률밀도함수는 다음과 같고, 이 경우, $X \sim \chi^2(k)$ 라고 함.

$$f(x) = \frac{1}{\Gamma(\frac{1}{2}) 2^{\frac{k}{2}}} x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}, \qquad 0 \le x < \infty$$

■ 카이제곱 분포의 평균과 분산

 $X \sim \chi^2(k)$ 인 경우,

- \bullet E[X] = k
- V[X] = 2k

- 카이제곱 분포 확률밀도함수 개형
 - ◆ 오른쪽으로 치우친 비대칭 구조이지만 자유도 k가 커질수록 정규분포와 비슷하게 평균에 대칭인 모양이 됨.

- 카이제곱 분포의 가법성
 - 확률변수 U는 자유도가 k_1 인 카이제곱 분포를, 확률변수 V는 자유도가 k_2 인 카이제곱 분포를 따르며, U와 V는 서로 독립이라고 할 때,
 - ▶ U + V 는 자유도가 $k_1 + k_2$ 인 카이제곱 분포를 따른다.

- 카이제곱 확률변수의 $(1-\alpha)$ 분위수 : $\chi^2_{\alpha,k}$
 - $X \sim \chi^2(k)$ 일 때, $P[X > c] = \alpha$ 를 만족하는 X의 (1α) 분위수 c를 $\chi^2_{\alpha,k}$ 으로 표기함.

- 예제
 - \bullet 다음의 $\chi^2_{\alpha,k}$ 를 구하여라.

0,05

 $X \sim \chi^2(16)$ 이라고 할 때, 다음을 만족하는 b,c를 구하여라..

$$P(X < b) = 0.10$$

$$P(X < b) = 0.10.$$
- $P(X < c) = 0.95.$

$$C = \chi^{2}_{0,05,16}$$

```
> gchisq(0.95, df=8)
[1] 15.50731
> qchisq(0.05, df=8)
[1] 2.732637
> achisq(0.10, df=16)
[1] 9.312236
> gchisq(0.95, df=16)
[1] 26.29623
```

- t 분포 (t-distribution)
 - t 확률변수와 확률밀도함수

- ▶ 확률변수 $\left(T = \frac{27}{10000}\right)$ 자유도가 k인 t 분포를 따르는 것으로 정의.
- ◆ 자유도가 k인 t 분포의 확률밀도함수는 다음과 같고, 이 경우 T~t(k)라고 함.

$$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \frac{1}{\sqrt{k\pi}} \frac{1}{\left(1 + \frac{t^2}{k}\right)^{\frac{k+1}{2}}}, \quad \infty < t < \infty$$

■ t 분포의 평균과 분산

$$\bullet \ \underline{E[X]} = 0$$

•
$$V[X] = \frac{\overline{k}}{k-2}$$
 (단, $k > 2$)

C1.0JN

- t 분포 확률밀도함수 개형
 - ◆ 표준정규분포처럼 0을 중심으로 대칭이지만 표준정규분포보다 꼬리가 더 두꺼움. 자유도 k 가 커질수록 표준정규분포의 밀도함수에 근사하게 됨.

- t 확률변수의 $(1-\alpha)$ 분위수 : $t_{\alpha,k}$
 - \bullet $X \sim t(k)$ 일 때, $P[X > C] = \alpha$ 를 만족하는 $X \hookrightarrow (1-\alpha)$ 분위수 $c = t_{\alpha,k}$ 으로 표기함.

tak

■ 예제

0,75,10

◆ 다음의 $t_{\alpha,k}$ 를 구하여라.

$$qt(o_{i}p_{s}, df=2s)$$

$$t_{1}-\alpha_{i}k=-t_{\alpha_{i}k}$$

to. P5,10

```
> qt(0.95), df=25
[1] 1.708141
> qt(0.975), df=(15)
[1] 2.13145
> qt(0.05, df=10)
[1] -1.812461
> qt(0.025, df=8)
[1] -2.306004
              ~ F[3,5]
```

- (F 분포 (F distribution)
 - F 확률변수와 확률밀도함수

확률변수 $X = \frac{v_{/k_1}}{v_{/k_2}}$ 가유도 k_1, k_2 F 분포를 따르는 것으로 정의.

◆ 자유도 k_1 , k_2 인 F 분포의 확률밀도함수는 다음과 같고, 이 경우, $X \sim F(k_1, k_2)$ 라고 함.

$$\underbrace{f(x)} = \underbrace{\frac{\Gamma\left(\frac{k_1+k_2}{2}\right)}{\Gamma\left(\frac{k_1}{2}\right)\Gamma\left(\frac{k_2}{2}\right)} \left(\frac{k_1}{k_2}\right)^{\frac{k_1}{2}} x^{\frac{k_1}{2}-1} \left(1 + \frac{k_1}{k_2}x\right)^{-\frac{1}{2}(k_1+k_2)}, 0 \le x < \infty}$$

- F분포 확률밀도함수 개형
 - ◆ 오른쪽으로 치우친 비대칭 구조임.

■ F분포의 평균과 분산

$$X \sim F(k_1, k_2)$$
 인 경우

$$F[X] = \frac{k_2}{k_2 - 2}$$

$$V[X] = \frac{2k_2^2(k_1 + k_2 - 2)}{k_1(k_2 - 2)^2(k_2 - 4)}$$

■ F 확률변수의 $(1-\alpha)$ 분위 $(+ : F_{\alpha,k_1,k_2})$

• $X \sim F(k_1, k_2)$ 일 때, $P[X > c] = \alpha$ 를 반족하는 X의 $(1 - \alpha)$ 분위수 c를 F_{α, k_1, k_2} 으로 표기한다.

- 예제
 - ◆ 다음의 F_{α,k_1,k_2} 를 구하여라.

- 균일분포 (uniform distribution)
 - 균일확률변수와 확률밀도함수
 - ◆ 확률변수 X가 실구간 (a, b)에서 균일하게 분포되어 있을 때, 그 확률밀도함수와 분포함수는 아래와 같이 주어점.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \text{ 인경우} \\ 0, & \text{그외의 경우} \end{cases}$$

• 이 경우 $X \sim U(a,b)$ 라고 함.

■ 균일분포의 확률밀도함수 개형

 $E[X] = \int_{\alpha}^{b} x f(x) dx = \frac{\alpha + b}{2}$ $V[X] = E[X^{2}] - E[X]^{2}$ $\int_{\alpha}^{b} x^{2} f(\alpha) dx$ $\int_{\alpha}^{b} x^{2} f(\alpha) dx$

■ 균일분포의 특성치 (b-q) X~U(a,b)인 경우

$$\bullet E[X] = \frac{a+b}{2}$$

$$\bullet \ \overline{V[X]} = \frac{(b-a)^2}{12}$$

$$f(x) = \sqrt{\frac{1}{b-a}}$$

$$0 \leq x \leq b$$
.

■ 예제

◆ 어느 기업의 주식의 수익률이 하루 동안 -1%~9%까지 변할 수 있고 이 수익률의 변화는 연속형 균일분포를 따른다고 한다. 하루동안 이 주식의 수익률의 변화가 -1%~1% 사이에 있을 확률은 얼마인가?

X~ Unif [-1, 9]

$$f(a) = \frac{1}{10} - 1 \leq x \leq p$$
otherwise.

 $P \left[-1 < X < 1 \right] = 2 \times \frac{1}{10} = 0.2.$