聚合物溶液粘度的测定

一. 实验目的

- 1. 了解旋转粘度计的构造
- 2. 了解流体粘度的测定原理。
- 3. 掌握流体粘度的测定方法。

二. 实验原理

同轴圆筒粘度计又称 Epprecht 粘度计,是测量低粘度流体粘度的一种基本仪器。其原理示意图如图 9-1 所示。

图 9-1 旋转粘度计的简单示意图

仪器的主要部分由一个圆筒形的容器(外筒)和一个圆筒形的转子(内筒)组成, 待测液体装入圆筒形的容器内,半径为 R_1 的内筒由弹簧钢丝悬挂,并以角速度 ω 匀速旋 转,如果内筒浸入待测液体部分的深度为 L,则待测液体的粘度可用下式计算:

$$\eta = \frac{M}{4\pi L\omega} (\frac{1}{R_1^2} - \frac{1}{R_2^2}) \tag{9-1}$$

其中, R_1 和 R_2 分别为内筒的外经及外筒的内径。M 为内筒受到液体的粘滞阻力而产生的扭矩。这样,通过内筒角速度和扭矩的测定,就可以通过粘度计的几何尺寸计算出液体的粘度。

三. 仪器和试剂

1. NDJ-79 旋转式粘度计(上海安得仪器设备有限公司) 本仪器的主要构造和配件如图 9-2 所示。

1 温度计支架 5 主机 9 转子 Ⅲ 组转子: 1、10、100 Ⅲ 组转子: 01、02、04、05

2 温度计 6 避震器拖架 10 电源开关

3 第 Ⅲ 组测量容器 7 第 Ⅱ 组测量容器 11 变速器: 1:10、1:100

4 调零螺钉 8 托架 12 测定器螺母

图 9-2 NDJ-79 型旋转粘度计的构造及配件

本仪器共有两组测量器,每组包括一个测定容器(3或7)和几个测定转子(9所示系列)配合,其有关数据见表 9-1。测定时可根据被测液体的大致粘度范围选择适当的测定容器及转子;为取得较高的测试精度,读数最好大于30分度而不得小于20分度,否则,应该变换转子或测试容器。

指针(5)指示之读数乘以转子系数即为测得的粘度(单位为 mPa•s),即:

$$\eta = K \cdot a \tag{9-2}$$

式中: η为待测液体的粘度; K 为系数; a 为指针指示的读数 (偏转角度)。

第二测定组用以测定较高粘度的液体,配有三个标准转子(呈圆筒状,各自的因子为 1、10 和 100),当粘度大于 10000 mPa•s 时,可配用减速器,以测得更高的粘度。1:10 的减速器,转子转速为 75 转/分,1: 100 的减速器为 7.5 转/分,最大量程分别为 100000 mPa•s 和 1000000 mPa•s。

第三测定组用来测量低粘度液体,量程为 1~50 mPa◆s,共有四个转子(呈圆筒形),供测定各种粘度时选用,四个转子各自的因子为 0.1、0.2、0.4、0.5。

测定组号	因子	转速 (转/分)	量程范围	系数 (每一刻度值)	所需试样量(ml)	
	1		$10^1 \sim 10^2$	1		
	10	750	$10^2 \sim 10^3$	10		
II	100		$10^3 \sim 10^4$	100	15	
	F10×100	75	$10^4 \sim 10^5$	1000		
	F100×100	7.5	$10^5 \sim 10^6$	10000		
III	0.1	750	1~10	0.1		
	0.2		2~20	0.2	70	
	0.4		4~40	0.4	70	
	0.5		5~50	0.5		

表 9-1 各测定组及转子所对应的参数

2. 试剂和样品

蒸馏水,浓度分别为1%、5%、10%(重量百分比)的聚乙烯醇水溶液。

四. 准备工作

- 1. 松开滚花螺栓,将黄色避震器脱架(6)取下。
- 2. 松开测定器螺母,将测定器Ⅱ(7)从脱架取下。

- 3. 接通电源: 工作电压为~220±10%, 50Hz。
- 4. 连轴器安装:连轴器是一左旋滚花带勾的螺母,固定于电机同轴的端部。拆装时用专用插杆插入胶木园盘上的小孔卡住电机轴。(使用减速器时测定组则配有短小勾,用于转子悬挂)。
- 5. 零点调整: 开启电机,使其空转,反复调节调零螺钉,使指针指到零点。 (为了节约时间,以上准备工作可由指导教师事先做好)

五. 实验步骤

1. 蒸馏水粘度的测定

将蒸馏水缓缓地注入第 III 测试容器中,使液面与测试容器锥形面下部边缘齐平,将转子全部浸入液体,测试容器放在仪器的脱架上,同时把转子悬挂在仪器的连轴器上,此时转子应全部浸没于液体中,开启电机,转子旋转可能伴有晃动,此时可前后左右移动脱架上的测试容器,使与转子同心从而使指针稳定即可读数。

- 2. 1%聚乙烯醇溶液粘度的测定
- 将1%的聚乙烯醇溶液缓缓注入第Ⅱ测试容器中,按上述步骤读出指针读数。
- 3.5%聚乙烯醇溶液粘度的测定
- 将 1:10 的减速器安装在电机轴上,按上述步骤读出指针读数。
- 4. 10%聚乙烯醇溶液粘度得测定
- 将 1: 100 的减速器安装在电机轴上,按上述步骤读出指针读数。

六. 数据处理

根据记录的指针读数,乘以相应的转子系数,计算出蒸馏水和聚乙烯醇溶液的粘度, 当使用减速器时,还应该乘以减速器的减速倍率。

实验记录及报告:	<u>_</u>						
******	^	-		04			
聚合物溶液粘度的测定							
*************************************		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	^ ^ ^ 	}			
班 级:	姓 名:	学	号:				
同组实验者:		实验	运日期 :				
指导教师签字:	_	评	分:				
(实验过程中,认真记录并与	真写本实验数据	,实验结束后,	送交指导教师	5签字)			
一. 实验过程及数据记录:							
样品: 溶剂:		实验温度:					

样品	读数		系数	减速器	粘度	
	最大值	最小值	平均值	(K)	倍率	(mPa.s)
蒸馏水						
1%PVA溶液						
5%PVA溶液						
10%PVA 溶液						

二. 数据处理

根据记录的最大值和最小值,分别计算出相应的平均值;然后乘上相应的转子系数 及减速器的倍率,用式 9-2 计算出各样品的粘度。并将数值填写在下表中。

样品	读数 (平均值)	系数(K)	减速器倍率	粘度(mPa.s)
蒸馏水				
1%PVA溶液				

5%PVA溶液		
10%PVA 溶液		

三. 回答问题及讨论

1. 为什么聚合物溶液的粘度要远远大于相应溶剂的粘度?

2. 溶液的浓度如何影响溶液的粘度?

3. 旋转粘度计适合测定什么流体的粘度,为什么?