Let $T_{s(\phi)}$ be the induced map on $M_{s(\phi)}$. If

$$s(\phi)M_+s(\phi) := \{\psi \in M_+ : \psi = s(\phi)\psi s(\phi)\}$$

where $\langle s(\phi) \psi s(\phi), x \rangle$:= $\langle \psi, s(\phi) x s(\phi) \rangle$ ($x \in M$), and if $\psi \in s(\phi) M_* s(\phi)$, then for all $x \in M$:

$$(T_{\star}\psi)(x) = \psi(Tx) = \langle \psi, s(\phi)(Tx)s(\phi) \rangle =$$

$$= \langle \psi, s(\phi) (T(s(\phi)xs(\phi)))s(\phi) \rangle = \langle T_{+}\psi, s(\phi)xs(\phi) \rangle ,$$

hence $T_\star \psi \in S(\phi) M_\star S(\phi)$. Since the dual of $S(\phi) M_\star S(\phi)$ is $M_{S(\phi)}$, it follows that the adjoint of the reduced map T_\star is identity preserving and of Schwarz type.

For example, if T is an identity preserving semigroup of Schwarz type on M_{\star} such that $\phi \in Fix(T)$, then the semigroup T[(s(\$\phi)M_{\star}s(\$\phi)\$) is again identity preserving and of Schwarz type. Furthermore, if R is a pseudo-resolvent on D = {\$\lambda \in \mathbb{C}} : Re(\$\lambda\$) > 0} with values in M_{\star} which is identity preserving and of Schwarz type such that R(\$\mu\$) \$\phi = \$\phi\$ for some \$\mu \in \mathbb{R}_{\pm}\$, then R|s(\$\phi)M_{\pm}s(\$\phi\$) has the same properties.