On preserving AD by forcing

Daisuke Ikegami

(Shibaura Institute of Technology)

Joint work with Nam Trang

We work in $ZF+DC_{\mathbb{R}}$.

The choice priciple $DC_{\mathbb{R}}$ states the following:

For any
$$A \subseteq \mathbb{R} \times \mathbb{R}$$
, if $(\forall x \in \mathbb{R})$ $(\exists x \in \mathbb{R})$ $(x, y) \in A$,
then $(\exists f : \omega \to \mathbb{R})$ $(\forall n \in \omega)$ $(f(n), f(n+1)) \in A$.

We work in $ZF+DC_{\mathbb{R}}$.

The choice priciple $DC_{\mathbb{R}}$ states the following:

For any
$$A \subseteq \mathbb{R} \times \mathbb{R}$$
, if $(\forall x \in \mathbb{R}) \ (\exists x \in \mathbb{R}) \ (x,y) \in A$,
then $(\exists f : \omega \to \mathbb{R}) \ (\forall n \in \omega) \ (f(n), f(n+1)) \in A$.

Let V denote the class of all sets.

Main Open Question

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- ullet V[G] has more reals than V, and
- V[G] also satisfies AD.

Main Open Question

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- ullet V[G] has more reals than V, and

The Axiom of Determinacy (AD) states that one of the players has a winning strategy for any Gale-Stewart game with a payoff set as a subset of the Baire space ω^{ω} .

Background: AD and properties of sets of reals

Theorem (Banach-Mazur, Davis, Mycielski-Steinhaus)

Assume AD. Then every set of reals is Lebesgue measurable, has the Baire property & the perfect set property.

Definition

X: a topological space, $A \subseteq X$

1 A is nowhere dense if int $(cl(A)) = \emptyset$.

Definition

X: a topological space, $A \subseteq X$

- **1** A is nowhere dense if int $(cl(A)) = \emptyset$.
- ② A is meager if A is a countable union of nowhere dense sets.

Definition

X: a topological space, $A \subseteq X$

- **1** A is nowhere dense if int $(cl(A)) = \emptyset$.
- ② A is meager if A is a countable union of nowhere dense sets.
- **3** A has the Baire property if there is an open set U such that the symmetric difference between A and U (i.e., $(A \setminus U) \cup (U \setminus A)$) is meager.

Definition

X: a topological space, $A \subseteq X$

- **1** A is nowhere dense if int $(cl(A)) = \emptyset$.
- ② A is meager if A is a countable union of nowhere dense sets.
- **3** A has the Baire property if there is an open set U such that the symmetric difference between A and U (i.e., $(A \setminus U) \cup (U \setminus A)$) is meager.

Theorem (Banach-Mazur)

AD implies that every set of reals has the Baire property.

Proof: Whiteboard?

Back to Main Open Question

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- $oldsymbol{0}\ V[G]$ has more reals than V, and

Back to Main Open Question

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- ullet V[G] has more reals than V, and
- V[G] also satisfies AD.

Example

If V[G] is a generic extension of V via Cohen forcing, then in V[G], the set $\omega^{\omega} \cap V$ does NOT have the Baire property.

Back to Main Open Question

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- $oldsymbol{0}$ V[G] has more reals than V, and
- \circ V[G] also satisfies AD.

Example

If V[G] is a generic extension of V via Cohen forcing, then in V[G], the set $\omega^{\omega} \cap V$ does NOT have the Baire property.

In particular, AD fails in V[G], so Cohen forcing destroys AD.

Theorem (I., Trang)

Assume the following in $V: \mathsf{ZF} + \mathsf{DC}_{\mathbb{R}} + \mathsf{AD} + {\color{red} V} = \mathbf{L}\big(\mathcal{P}(\mathbb{R})\big) + \text{"Every set of reals is ∞-Borel"}.$

If $\Theta^{V[G]} > \Theta^V$, then AD fails in V[G].

Theorem (I., Trang)

Assume the following in $V: ZF+DC_{\mathbb{R}}+AD+V=L(\mathcal{P}(\mathbb{R}))+$ "Every set of reals is ∞ -Borel".

If $\Theta^{V[G]} > \Theta^{V}$, then AD fails in V[G].

Definition

• $V = L(\mathcal{P}(\mathbb{R}))$ states that V is the smallest transitive proper class model of ZF containing all the sets of reals.

Theorem (I., Trang)

Assume the following in $V: ZF+DC_{\mathbb{R}}+AD+V=L(\mathcal{P}(\mathbb{R}))+$ "Every set of reals is ∞ -Borel".

If $\Theta^{V[G]} > \Theta^{V}$, then AD fails in V[G].

Definition

- $V = L(\mathcal{P}(\mathbb{R}))$ states that V is the smallest transitive proper class model of ZF containing all the sets of reals.
- A set of reals is ∞ -Borel if it is λ -Borel for some λ .

Theorem (I., Trang)

Assume the following in $V: ZF+DC_{\mathbb{R}}+AD+V=L(\mathcal{P}(\mathbb{R}))+$ "Every set of reals is ∞ -Borel".

If $\Theta^{V[G]} > \Theta^V$, then AD fails in V[G].

Definition

- $V = L(\mathcal{P}(\mathbb{R}))$ states that V is the smallest transitive proper class model of ZF containing all the sets of reals.
- A set of reals is ∞ -Borel if it is λ -Borel for some λ .
- The ordinal ⊖ is defined as follows:
 - $\Theta = \sup \{ \gamma \mid \gamma \text{ is a surjective image of } \mathbb{R} \}$

Three remarks on the main result

Remark

• The assumption " $V = L(\mathcal{P}(\mathbb{R}))$ " is essential, i.e., one can find a counter example of the theorem without this assumption.

Three remarks on the main result

Remark

- The assumption " $V = L(\mathcal{P}(\mathbb{R}))$ " is essential, i.e., one can find a counter example of the theorem without this assumption.
- ② The assumption "Every set of reals is ∞-Borel" is non-trivial.

Three remarks on the main result

Remark

- The assumption " $V = L(\mathcal{P}(\mathbb{R}))$ " is essential, i.e., one can find a counter example of the theorem without this assumption.
- ② The assumption "Every set of reals is ∞-Borel" is non-trivial.
- **③** In ZFC, $\Theta = (2^{\aleph_0})^+$, but under AD, Θ is quite large; it is a limit of measurable cardinals.

Background: Large cardinals

Let κ be an uncoutable cardinal.

Large cardinal properties of κ are often described as the existence of elementary embeddings $j: V \to M$ with $\kappa = \text{crit}(j)$.

E.g., measurable cardinals

Background: Large cardinals

Let κ be an uncoutable cardinal.

Large cardinal properties of κ are often described as the existence of elementary embeddings $j: V \to M$ with $\kappa = \text{crit}(j)$.

E.g., measurable cardinals

The closer M is to V, the stronger the large cardinal properties of κ are.

Background: Large cardinals

Let κ be an uncoutable cardinal.

Large cardinal properties of κ are often described as the existence of elementary embeddings $j: V \to M$ with $\kappa = \text{crit}(j)$.

E.g., measurable cardinals

The closer M is to V, the stronger the large cardinal properties of κ are.

Question: What if M = V, i.e., $j: V \rightarrow V$?

Background: Kunen's Theorem

Theorem (Kunen)

There is NO elementary embedding $j \colon V \to V$ with $j \neq \text{id}$ and $(V, \in, j) \models \mathsf{ZFC}$.

Proof: In whiteboard?

Motivation of Main Open Question

Kunen: There is NO non-trivial & elementary $j: V \to V$ such that $(V, \in, j) \models \mathsf{ZFC}.$

Open Question: How about replacing ZFC above with ZF only?

Motivation of Main Open Question

Kunen: There is NO non-trivial & elementary $j: V \to V$ such that $(V, \in, j) \vDash \mathsf{ZFC}.$

Open Question: How about replacing ZFC above with ZF only?

Hamkins et.al.: There is NO non-trivial & elementary $j: V \to V[G]$ such that $(V[G], \in, j) \models \mathsf{ZFC}$, where V[G] is a set generic extension of V.

Woodin???: It is consistent to have $j: V \to V[G]$ as above if one demands $(V[G], \in, j) \models \mathsf{ZF}$ only. But in Woodin's example, $j \upharpoonright \mathsf{Ord} = \mathsf{id}$.

Motivation of Main Open Question

Kunen: There is NO non-trivial & elementary $j: V \to V$ such that $(V, \in, j) \models \mathsf{ZFC}.$

Open Question: How about replacing ZFC above with ZF only?

Hamkins et.al.: There is NO non-trivial & elementary $j: V \to V[G]$ such that $(V[G], \in, j) \models \mathsf{ZFC}$, where V[G] is a set generic extension of V.

Woodin???: It is consistent to have $j \colon V \to V[G]$ as above if one demands $(V[G], \in, j) \models \mathsf{ZF}$ only. But in Woodin's example, $j \upharpoonright \mathsf{Ord} = \mathsf{id}$.

Question

How about demanding $(V[G], \in, j) \models \mathsf{ZF} + \mathsf{AD}$ and V[G] has more reals than V?

Motivation of Main Open Question ctd.

Theorem (Woodin)

Assume AD. If M is an inner model of ZF and V has more reals than M, then ω_1^M must be countable.

Corollary

If $j: V \to V[G]$ is non-trivial & elementary, and V[G] is a model of AD and has more reals than V, then $\operatorname{crit}(j) = \omega_1^V$.

Motivation of Main Open Question ctd.

Theorem (Woodin)

Assume AD. If M is an inner model of ZF and V has more reals than M, then ω_1^M must be countable.

Corollary

If $j: V \to V[G]$ is non-trivial & elementary, and V[G] is a model of AD and has more reals than V, then $\operatorname{crit}(j) = \omega_1^V$.

Coming back to Main Open Question:

Question

Assume AD. Then can one find a set generic extension V[G] of V with the following two properties?

- V[G] has more reals than V, and

The main result stated again

Theorem (I., Trang)

Assume the following in $V: \mathsf{ZF} + \mathsf{DC}_{\mathbb{R}} + \mathsf{AD} + {\color{red} V} = \mathsf{L}\big(\mathcal{P}(\mathbb{R})\big) + \text{"Every set of reals is ∞-Borel"}.$

If $\Theta^{V[G]} > \Theta^{V}$, then AD fails in V[G].

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R}))$ + "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R}))$ + "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

Sketch of proof:

Let G be P-generic over V and assume V[G] was a model of AD.

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R})) +$ "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

Sketch of proof:

Let G be P-generic over V and assume V[G] was a model of AD.

Then $\Theta^{V[G]} > \Theta^V$ and $\Theta^{V[G]}$ is a limit of measurables in V[G].

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R}))$ + "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

Sketch of proof:

Let G be P-generic over V and assume V[G] was a model of AD.

Then $\Theta^{V[G]} > \Theta^V$ and $\Theta^{V[G]}$ is a limit of measurables in V[G].

Now one can show that $X^{\#}$ exists in V[G] for the X in the above fact, and so $X^{\#} \in V$.

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R}))$ + "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

Sketch of proof:

Let G be P-generic over V and assume V[G] was a model of AD.

Then $\Theta^{V[G]} > \Theta^V$ and $\Theta^{V[G]}$ is a limit of measurables in V[G].

Now one can show that $X^{\#}$ exists in V[G] for the X in the above fact, and so $X^{\#} \in V$.

But V is definable in a set generic extension of HOD.

For the proof, we use the following fact:

Fact (Woodin)

Assume AD + $V = L(\mathcal{P}(\mathbb{R}))$ + "Every set of reals is ∞ -Borel". Then HOD = L[X] for some $X \subseteq \Theta$ and V is definable in a set generic extension of HOD.

Sketch of proof:

Let G be P-generic over V and assume V[G] was a model of AD.

Then $\Theta^{V[G]} > \Theta^V$ and $\Theta^{V[G]}$ is a limit of measurables in V[G].

Now one can show that $X^{\#}$ exists in V[G] for the X in the above fact, and so $X^{\#} \in V$.

But V is definable in a set generic extension of HOD.

So $X^{\#} \in \mathsf{HOD} = \mathrm{L}[X]$, contradiction!

Remark (stated again)

In the main theorem, the assumption " $V=\mathrm{L}(\mathcal{P}(\mathbb{R}))$ " is essential.

Remark (stated again)

In the main theorem, the assumption " $V=\mathrm{L}ig(\mathcal{P}(\mathbb{R})ig)$ " is essential.

Fact (Solovay???)

It is consistent that AD holds, every set of reals is ∞ -Borel, and there is a set of reals A which is NOT in the model $HOD(\mathbb{R})$.

Remark (stated again)

In the main theorem, the assumption " $V=\mathrm{L}ig(\mathcal{P}(\mathbb{R})ig)$ " is essential.

Fact (Solovay???)

It is consistent that AD holds, every set of reals is ∞ -Borel, and there is a set of reals A which is NOT in the model $HOD(\mathbb{R})$.

Example

Setting $M = \mathsf{HOD}(\mathbb{R})$ with $A \notin \mathsf{HOD}(\mathbb{R})$, M satisfies the assumptions of the Main Theorem except $V = \mathrm{L}(\mathcal{P}(\mathbb{R}))$, and there is a set generic extension M[G] of M such that M[G] satisfies AD while $\Theta^{M[G]} > \Theta^M$.

Remark (stated again)

In the main theorem, the assumption " $V=\mathrm{L}ig(\mathcal{P}(\mathbb{R})ig)$ " is essential.

Fact (Solovay???)

It is consistent that AD holds, every set of reals is ∞ -Borel, and there is a set of reals A which is NOT in the model $HOD(\mathbb{R})$.

Example

Setting $M = \mathsf{HOD}(\mathbb{R})$ with $A \notin \mathsf{HOD}(\mathbb{R})$, M satisfies the assumptions of the Main Theorem except $V = L(\mathcal{P}(\mathbb{R}))$, and there is a set generic extension M[G] of M such that M[G] satisfies AD while $\Theta^{M[G]} > \Theta^M$.

The P for M[G] is a Vopenka-like forcing with $A \in M[G] \subseteq V$ such that $\mathbb{R}^M = \mathbb{R}^{M[G]}$. This is enough to guarantee the desired properties of M[G].

Further results by other researchers

Theorem (Chan, Jackson)

Assume AD. Then

- ullet any non-trivial well-orderable forcing of length less than Θ destroys AD, and
- ② if Θ is regular, then any non-trivial forcing which is a surjective image of $\mathbb R$ destroys AD.

Further results by other researchers

Theorem (Chan, Jackson)

Assume AD. Then

- ullet any non-trivial well-orderable forcing of length less than Θ destroys AD, and
- ② if Θ is regular, then any non-trivial forcing which is a surjective image of $\mathbb R$ destroys AD.

The demanded properties of P to preserve AD while adding new reals if $V = L(\mathcal{P}(\mathbb{R}))$:

- **1** P needs to collapse ω_1 while preserving Θ ,
- ② for any cardinal $\kappa < \Theta$ in V^P , NO club subset of κ in V witnesses the strong partition property of κ in V^P while there are unboundedly many strong parition property cardinals in Θ in V^P .

THE END.