1. Інтегральні діоди

 $\mathcal{L}io\partial u$ в IC призначені для виконання ряду логічних функцій перемикання електричних сигналів, випрямлення електричного струму, детектування сигналів.

Будь-який з p–n-переходів транзисторної структури, а також їх комбінація можуть бути використані як інтегральний діод.

Основними параметрами інтегральних діодів ϵ :

- пробивна напруга U_{np} ;
- власна C_{II} і паразитні C_0 ємності;
- зворотні струми I_{36} ;
- час відновлення зворотного струму $t_{\rm s}$.

Еквівалентні схеми увімкнення транзисторних структур в якості діодів містять власну ємність діода $C_{\mathcal{I}}$ і паразитні ємності C_0 , які здійснюють істотний вплив на характеристики діодів.

Пробивні напруги U_{np} діодів залежать від типу застосовуваного переходу. Якщо застосовується невеликий емітерний перехід з сильно легованою областю емітера, то пробивні напруги невеликі. Навпаки, при використанні протяжного, слаболегованого переходу колектора пробивні напруги достатньо великі.

Зворотні струми I_{3B} є по суті струмами термогенерації, які залежать від об'єму p–n-переходу. Тому вони мають великі значення у діодів, в яких використовується великий перехід колектора (табл. 10.1).

Час відновлення зворотного струму $t_{\rm B}$ визначає час перемикання діода у відкритий або закритий стани.

Таблиця 10.1 Порівняльні параметри різних видів p–n-переходів у біполярному транзисторі

Параметри	Тип діода				
	Б-Е	Б-К	БЕ – К	БК – Е	Б – ЕК
U_{np} , B	7 - 8	40 - 50	40 - 50	7 - 8	7 - 8
$I_{\scriptscriptstyle 3B}$, н ${\sf A}$	0,5-1	15 - 30	15 - 30	0,5-1	20 - 40
$C_{\mathtt{A}}$, п Φ	0,5	0,7	0,7	0,5	1,2
C_0 , п Φ	1,2	3	3	3	3
$t_{\scriptscriptstyle \mathrm{B}},~\mathrm{HC}$	50	75	50	10	100

Порівняльний аналіз параметрів біполярних інтегральних діодів показує, що залежно від функціонального призначення діода можна вибрати потрібну структуру.

У цілому оптимальним варіантом для ІС ϵ структури типу БК-Е на основі переходу "база-емітер" із закороченим на базу колектором і тип Б-Е на основі переходу "база-емітер" із розімкненим колом колектора (рис. 10.1).

В ІС використовуються інтегральні стабілітрони, які являють собою напівпровідниковий діод з швидким наростанням зворотного струму при пробої p-n-переходу і нормованим значенням пробивної напруги. Вони призначені для стабілізації напруги на навантаженні.

Рис. 10.1. Схеми діодного увімкнення і конструкції інтегральних біполярних діодів типів:

- а) база-емітер (Б-Е); б) база-колектор (Б-К); в) база колектор-емітер (БК-Е);
- г) база емітер-колектор (БЕ-К); д) база-емітер колектор (Б-ЕК). C_{π} ємність діода між катодом і анодом; C_0 паразитна ємність на підкладку; Π підкладка.

Інтегральні стабілітрони формуються на базі структури біполярного транзистора залежно від необхідної напруги. Так зворотне увімкнення переходу "база-емітер" дозволяє отримати стабілізовану напругу в межах 5-10 В,

зворотне увімкнення переходу БЕ-К застосовують, коли потрібно отримати стабілізовану напругу 3-5 В.

Декілька послідовно увімкнених в прямому напрямі діодів типу БК-Е можуть бути використані як джерела стабілізованої напруги, кратної прямому переходу (0,7 В). Температурна чутливість таких стабілітронів лежить в межах декількох мВ/°С.

В IC використовуються також діоди Шотткі, які являють собою контакт металу з кремнієм, легованим донорною домішкою ($< 10^{17}$ см $^{-3}$).

На рис. 10.2 наведені конструктивні рішення планарних діодів Шотткі:

- конструкція з охоронним кільцем із p^+ -області кремнію дозволяє виключити сильні електричні поля на краях (a);
 - діод Шотткі із розширеним електродом дозволяє уникнути пробою (б);
 - конструкція з випрямляючими і омічними контактами (в).

Рис. 10.2. Конструктивні рішення планарних діодів Шотткі: 1— метал, який утворює бар'єр Шотткі; 2— метал, який утворює омічних контакт.

В якості матеріалу частіше за все використовують алюміній. Для якісних діодів Шотткі як матеріал використовують сплав платини і нікелю Ni_xPt_{1-x} , який утворює з кремнієм силіцидний шар. Змінюючи значення x, можна отримати висоту бар'єрів від 0,64 еВ при x=0 (або 100% Ni) до 0,84 еВ при x=100% (або 100% Pt).

Інтегральні МДН-транзисторні діоди формуються також на базі p–n-переходів транзисторів з індукованим каналом в підкладках різного типу електропровідності (рис. 10.3).

Рис. 10.3. Діоди в МДН-транзисторних структурах формуються типу В-П і С-П (n^+-p) в р-кремнієвій підкладці (а) та В-П і С-П (p^+-n) в n-кремнієвій підкладці (б).