LaPIS Diagnostic Test Workbook - Mathematics

Name : Sanjay S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV115

Sanjay S's Performance Report

Score: 18/40 Percentage: 45.0%

Sanjay S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn Area

Question: 1

Find which of the shaded portion in the given shape represent it's area.

.....

.....

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

 $\underline{\textit{Question: } 3}$

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$25 m \times 25 m$$

.....

$$30~m~\times~20~m$$

Answer:	\boldsymbol{A}	ns	w	er	•
---------	------------------	----	---	----	---

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability	Basis of probability, Sample space in probability	
Arithmetic mean, mode and median	Mean, Median and Mode	

did ilicular
Hi, here in this video you will learn Basics of probability
Question: 4
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 5
Probability of sure events is (greater / smaller) than probability of impossible even
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 6
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

 $\underline{Answer:}$

Things Raju have
Hi, here in this video you will learn Basics of probability
Question: 7
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 8
Write the possible outcomes while spinning the given wheel. $\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 9

A bag contains three balss of colour blue, green and red.	Write the possible outcomes if two balls
are taken out.	
Answer:	
A bag contains, and	balls.
If one of the ball is blue in colour, then other ball can be	or
If one of the ball is green in colour, then other ball can be	e or

If one of the ball is red in colour, then other ball can be _____ or ____.

Therefore, if two balls are taken out then possible outcomes are blue + _____,

Hi, here in this video you will learn Mean, Median, Mode

______+ _____, _____+ _____,

Question: 10

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

......

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations. Arranging the data in ascending order: _____

occurs most number of times. Then, mode of the given data is _____

Question: 11

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

Question: 12

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

$\underline{Answer:}$	
Moon -	

Mean = _______ of all observation ______, number of observation = ______, number of observation = ______.

Here s sum of all observation = ______, number of observation = ______.

Therefore, mean = ______.

Arrange the data in ascending order : ______.

Here, median = ______, mode = _____.

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Transversal angle made by transversal	Basics of Transversal angle	
Related angles	Basic of angles, Complementary angles	
Angle sum property of triangle	Angle sum property of triangle	
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	

Hi, here in this video you will learn Pythagoras property

Question: 13	
--------------	--

In a right angled triangle, square of the $___$ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that ______

.....

Question: 14

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/legs) of the triangle.

......

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

......

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Related Angles

Question: 19

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

Question: 20

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ___, $\angle ABC$ = ___.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 21

Find the complementary angles in the given diagram.

.....

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn **Angle sum property**

Question: 22

Sum of the angles of triangle is _____.

.....

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 23

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ___ = ____

In $\triangle XYZ$, Sum of the angles = _____ = ___ = ____

Therefore, the triangles that satisfy the angle sum property are = ______

Question: 24

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn **Symmerty**

$Question: \ 25$
Line of symmetry is divides any shape into (one / two) (identical / non identical) halves.
Answer:
Lines of symmetry is a line that divides any shape into (equal / unequal) halves. Symmetrical image have (identical / non identical) parts. Therefore, line of symmetry is dividing the shape into halves.
$Question: \ 26$
How many lines of symmetry does square have?
Answer:
Square have sides.
All sides of square are and all angles are
Mark the lines of symmetry.
Therefore, square has lines of symmetry.
Question: 27
Classify the following based on the symmetry. Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle.
Answer:
Lines of symmetry is a line that divides the shape into (equal / unequal) halves. The letter S is (symmetrical / asymmetrical) and have lines of
symmetry.
Scalene triangle is(symmetrical / asymmetrical) and havelines of
symmetry.
The letter K is (symmetrical / asymmetrical) and have lines of symmetry.
Rhombus is(symmetrical / asymmetrical) and have lines of
symmetry.
Cat is (symmetrical / asymmetrical) and have lines of symmetry.
Stars is (symmetrical / asymmetrical) and have lines of symmetry
Hi, here in this video you will learn Related Angles

Question: 28

1. Two angles are complementary if their sum is equal to _____.

2. Two angles are supplementary if their sum is equal to _____.

Answer:

1. When sum of the two angles is equal to 90°, they are called as ______ angle. Example: 45° and 45°, _____, and ____.

2. When sum of the two angles is equal to 180°, they are called as ______ angle. Example: 90° and 90°, _____, and ____.

Question: 29

Shade the complementary angles.

......

......

.....

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ}+95^{\circ}=$ _____ and this is _____ (a / not a) complementary angles.

 $45^{\circ}+45^{\circ}=$ _____ and this is ____ angles.

 $6^{\circ} + 84^{\circ} =$ _____ and this is ____ angles.

 73° + $107^{\circ} =$ ____ and this is ____ angles.

 $36^{\circ} + 64^{\circ} =$ _____ and this is ____ angles.

 $90^{\circ} + 90^{\circ} =$ and this is angles.

 $\underline{Question \colon 30}$

Find the complement and supplement of 15° and 90°

Answer:

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement	of	15°	=	,
Supplement	of	15°	=	

Complement of
$$90^{\circ} = \underline{\hspace{1cm}}$$
.
Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Hi, here in thi	s video y	ou will learn Cr i	iteria ——	of congruence	— (\$ 2
$\underline{Question:~31}$			• • • • • • •		
Circle the groups	that contain	n congruent images.			
			_		
Answer:					
(identical/non-iden	ntical) in sl	napes and size.	· ·	areongruent/not congru	
Question: 32					
		gle are equal to the	_	_	other triangle, then two
$\underline{Answer:}$					
Two triangle are _ Criteria for congru	nence of tria	(congruent/not angles are SSS,	congru	nent) if they are iden and	ntical in shapes and size.
		eria - $(2/3/5)$ corresponding sides			(equal/
				nd (e included angle of the	(one/two) angle between he other triangle.
				s andles and the included	
	SSS	sides and		_ angles are equal	
	SAS	sides and		_ angles are equal	

ASA

sides and _____ angles are equal

Question: 33

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved			
Positive and negative rational numbers	Identification of positive rational numbers		
Operations on rational numbers	Subtraction of rational numbers		
Exponents	Solving exponents		
Fractions	Multiplication of fractions, Division of fraction		
Law of Exponents	Law of Exponents		

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 34

Segregate positive and negative rational number.

......

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

<u>Question: 35</u>

$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 36
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Operation on rational numbers Question: 37
Solve: $\frac{-3}{3} + \frac{1}{3}$
Answer:
Fractions with same denominators are called (like/ unlike) fractions. Fraction can be added only if they are (like/ unlike) fractions.
$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$
$Question: \ 38$
Find the addition of shaded part of box A and shaded part of box B.

$\underline{Answer:}$

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

В

Shaded part of box A in fraction = _____ Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction = _____. Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$ Question: 39 Find the missing values in the given figure. Answer: One litre = $_$ ml $\frac{7}{10}$ of one liter $=\frac{7}{10}$ x ___ ml = __ ml Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ ______ Therefore, result is _ Hi, here in this video you will learn Exponents and power Question: 40 Find the exponential form of 1000. Answer: (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as _____ (Base / Power). 1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$ Question: 41

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

......

Question: 42

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Multiplication on fractions

Question: 43

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 44

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 45

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Division on fractions

......

Question: 46

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{Denominator}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 47 Solve: $\frac{1}{3} \div \frac{14}{3}$ Answer: To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____. $\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$ Question: 48 Find the half of the fraction $\frac{12}{40}$. Answer: To find half of a number, divide the number by _____ $\frac{12}{40} \div \underline{\qquad} = \frac{12}{40} \times \underline{\qquad} = \underline{\qquad}$ Then the answer is _____ Hi, here in this video you will learn Law of exponents Question: 49 $(x)^0$ is equal to ______. Answer: (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In $(x)^0$ base = _____ Power = _____ Any number or variable with power zero is equal to ______. Therefore, $(x)^0$ equal to ______. Question: 50 i. $a^m \times a^n =$ ______

ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are ______ (added/ subtracted).

Question: 51

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

a+n+x bmy 1 ab+mn+xy 0 anx b+m+y

Answer:

Any number with power zero is equal to______ (One/ Zero). Any number with power one is equal to _____ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Comparing Quantities

Topics to be Improved			
Equivalent ratios	Basic of proportion		
Conversion of fraction into percentage	Conversion of fraction into percentage		

	間が35種間
Hi, here in this video you will learn Basics of proportion	
Question: 52	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent r Standard form to express proportion is	atios.
$Question: \ 53$	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

$\underline{Answer:}$

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
<u>Question: 54</u>

If a: b:: c: d is proportion, shade the correct expression

	bc
a =	$\frac{bc}{d}$

Answer:

Two equivalent ratio which are proportion, it can be written as a: b:: c: d or $\underline{\hspace{1cm}}$ (in fraction). First and fourth term are called _____ and second and third term are called _____. In proportion, product of extreme terms is _____ (equal to/ not equal to) product of middle Therefore, $a \times d = \underline{\hspace{1cm}}$ then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Converting fraction into percentage

Question: 55

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator ______.

Therefore, 5% can be expressed as _____

.....

Question: 56

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of _____ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 57

Find the percentage of shaded part of square.

A	nswer	•
	I WO W CI	•

The square shape is divided into	 parts
Number of shaded part of square is $_{-}$	
Shaded part of square in fraction is	

To Convert	into percentage,	x 100

Algebra

Topics to be Improved		
Basics of simple equation	Solving of simple equation	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	

.....

......

......

Hi, here in this video you will learn Solving an equation

Quest	tion:	<i>58</i>

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression = $5(\underline{}) + 5 = \underline{} + \underline{} = \underline{}$.

Question: 59

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \bigsqcup + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times _{---} + 3 = _{---}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question:~60

Arrange the terms in the descending order when the value of x is 2.

Answer:

The given expression are ______.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\qquad} = \underline{\qquad}$$

$$x + 3 = \underline{\qquad} = \underline{\qquad}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.
Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Subtraction on expression

Question:	61

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are _____ and ____.

The two terms will get added only if they are _____(Like/ Unlike) terms.

The sum of two expressions = $_$ + $_$.

The answer is _____

Question: 62

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$.

Total number of boys in school A and school B is $___$ + $___$ = $__$.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school $A = \underline{\hspace{1cm}}$.	school B than school $A = Teache$	ers in school B — Teachers in
Question: 63		
Solve the following:		
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{r} 3a - 5b \\ \hline (-) 5a - 7b \\ \hline -2a - \underline{\hspace{1cm}} \end{array} $	
Answer:		
The two terms will get added only	y if they are (like/unlike)	terms.
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{r} 3a - 5b \\ \hline (-) 5a - 7b \\ \hline -2a - \underline{\hspace{1cm}} \end{array} $	
Question: 64	will learn Types of express	
There are terms in the ex-	xpression 7x + 3y + m + 5.	
of addition.	(variables/ terms) are conn , , , and _ as in the expression.	
Question: 65		
Classify the following expression	into monomial, binomial and polyr	nomial.
1. $7m + n + 2$ 2. $8x^2 + 0$		
3. 7xy + 4m		
Answer:		
1. The terms in expression $8x^2$ Here, expression has	2 + 0 are _ term and it is a	_
2. The terms in expression $7x_3$	y + 4m are	

Here, expression has ______ term and it is a _____

3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a	
Question: 66	
$\underline{Answer:}$	
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a e	expression.