

Edital de Seleção 062/2015 PROPESP/UFAM

Prova de Conhecimento

Caderno de Questões

CANDIDATO: «NOME»							
INSCRIÇÃO:							
«Inscrição»							
	Assinatura conforme identidade						

INSTRUÇÕES PARA O CANDIDATO:

- Verifique o seu nome e o número da sua inscrição impressos neste CADERNO DE QUESTÕES. Assine seu nome no local apropriado somente quando autorizado pelo aplicador da prova, no momento da identificação.
- As respostas a todas questões devem ser preenchidas na FOLHA DE RESPOSTAS, no campo correspondente a cada questão.
- Em nenhuma hipótese haverá substituição deste CADERNO DE QUESTÕES por erro de preenchimento do candidato.
- As questões 1, 2, 3, 5 e 6 valem 1,0 ponto cada. As outras questões valem 0,5 ponto cada uma.

•

QUESTÃO 01 (Algoritmos e Estruturas de Dados)

Suponha que você recebeu a tarefa de depurar uma implementação de Quicksort, cujo objetivo é classificar um vetor em ordem crescente. Após a primeira etapa da partição ser concluída, o conteúdo do vetor está na seguinte ordem:

10	3	9	14	17	24	22	20

Qual das seguintes afirmações está correta sobre a fase de partição?

- a) O pivô que gerou a partição pode ter o valor 14 ou 17
- b) O pivô que gerou a partição pode ter o valor 14, mas não pode ter o valor 17
- c) O pivô que gerou a partição pode ter o valor 17, mas não pode ter o valor 14
- d) O pivô que gerou a partição não pode ter o valor 14 nem 17
- e) O conteúdo do vetor não pode representar o resultado da etapa partição

QUESTÃO 02 (Algoritmos e Estruturas de Dados)

Quantas vezes o símbolo '#' é impresso pela função foo(4)?

```
void foo (int i) {
  if (i > 1) {
    foo (i/2);
    foo (i/2);
    foo (***
}
cout << "#";
}</pre>
```

- a) 3
- b) 4
- c) 7
- d) 8
- e) Nenhuma das alternativas anteriores

QUESTÃO 03 (Algoritmos e Estruturas de Dados)

Quando um novo nó é inserido no meio de uma lista encadeada, qual das seguintes afirmações é verdadeira:

- a) Somente os nós que aparecem após o novo nó precisam ser movidos
- b) Somente os nós que aparecem antes do novo nó precisam ser movidos
- c) Os nós que aparecem antes do novo nó e o último nó precisam ser movidos
- d) Os nós que aparecem depois do novo nó e o primeiro nó precisam ser movidos
- e) Nenhuma das opções acima

QUESTÃO 04 (Algoritmos e Estruturas de Dados)

Considere uma estrutura de dados do tipo vetor. Com respeito a tal estrutura, é correto que seus componentes sejam, caracteristicamente:

- a) heterogêneos e com acesso FIFO.
- b) heterogêneos e com acesso LIFO.
- c) heterogêneos e com acesso indexado-sequencial.
- d) homogêneos e acesso não indexado.
- e) homogêneos e de acesso aleatório por intermédio de índices.

QUESTÃO 05 (Algoritmos e Estruturas de Dados)

Dada a classe *IntStack* para implementar uma pilha de inteiros:

O que acontece se forem executados os seguintes comandos?

```
IntStack s;
int n1, n2, n3;
s.push(17);
s.push(143);
s.push(42);
n1 = s.pop();
n2 = s.pop();
s.push(n1);
n3 = s.pop();
n1 = s.pop();
```

- a) A pilha ficará vazia; n1=42, n2=143, n3=17
- b) A pilha conterá 42 (top), 42, 143, 17 (bottom); n1=42, n2=42; n3=42
- c) A pilha ficará vazia; n1=17, n2=143, n3=42
- d) A pilha conterá 42 (top), 17 (bottom); n1=42, n2=143, n3=143
- e) A pilha ficará vazia; n1=143, n2=143, n3=42

OUESTÃO 06 (Algoritmos e Estruturas de Dados)

Considere uma lista circular de tamanho 5, contendo os valores A, Z e C. Assim, o ponteiro de início está na posição 0 (zero) e do fim na posição 2 (dois). Dica: o vetor inicia na posição 0 (zero).

Supondo agora que as seguintes operações ocorrerão na lista:

- 1. Dé inserido
- 2. Hé inserido
- 3. Um elemento é deletado
- 4. Fé inserido
- 5. Um elemento é deletado

Qual as posições dos ponteiro de início e fim após essas operações?

- a) Início 0 e fim 0
- b) Início 2 e fim 0
- c) Início 1 e fim 4
- d) Início 4 e fim 4
- e) Nenhuma das alternativas anteriores

QUESTÃO 07 (Arquitetura de Computadores)

Considere uma arquitetura de computador com palavras de 32 bits, dotada de memória virtual paginada, TLB (*Translation Lookaside Buffer*), e memória cache. Durante a execução de um programa nessa arquitetura, o processador necessita efetuar a leitura de um dado guardado no sistema de memória. Sabe-se que a página que contém o dado requisitado encontra-se na memória principal. Com base nessas informações, identifique corretamente qual das seguintes atividades **NÃO** tem a possibilidade de acontecer.

- a) Identificação do número de página a partir do endereço virtual.
- b) Consulta à tabela TLB.
- c) Determinação de uma página vítima.
- d) Consulta à memória cache.
- e) Consulta à tabela de páginas.

QUESTÃO 08 (Arquitetura de Computadores)

Um programa de dez mil instruções é executado em uma máquina multiciclo com frequência de clock de 2 GHz. Sabe-se que 10% das instruções envolvem de leitura de memória, 20% envolvem escrita em memória, 30% são de saltos e desvios, e o restante das instruções envolvem operações aritméticas ou lógicas entre registradores da CPU. O gráfico abaixo mostra quantos ciclos de clock (CPI) cada tipo de instrução leva para ser executada, sem considerar falhas de memória.

Com base nas informações acima e desconsiderando a técnica de pipeline, assinale corretamente qual o tempo de execução do programa na máquina. Lembre-se que: giga $(G) = 10^9$, nano $(n) = 10^{-9}$ e micro $(\mu) = 10^{-6}$.

- a) 380 ns
- b) 76 ns
- c) 76 µs
- d) 38 ns
- e) 38 µs

QUESTÃO 09 (Arquitetura de Computadores)

A tabela abaixo apresenta o conteúdo dos quatro primeiros blocos de uma memória cache de mapeamento direto. Cada linha da tabela representa um bloco da cache, que é composto por oito palavras (words) de 32 bits de tamanho, mais o campo de "tag" correspondente. Considere que os endereços da memória principal têm 32 bits de comprimento. Com base nessas informações, identifique corretamente o endereço base (em base hexadecimal) onde está armazenado o dado em destaque (0xDC2ACDF5).

	ID da palavra (offset)								
tag	000	001	010	011	100	101	110	111	
0011 1011 0011 10	84ECED51	D5ECC61F	08945B46	6A5029D7	BAD1E1E5	DE521A33	0A81B2F0	4202C29C	
1010 0010 1011 01	650598C1	88DDB105	DC2ACDF5	0DB79A84	3E66FC21	D846D3CF	69FEC094	2CABE5EB	
1010 0100 1101 11	D7CE11FA	3ED2A8A6	23BC86A6	BDFA6155	739DE551	92ECEBEE	ACD10BF9	6A3EB6CF	
1101 0111 0111 00	2D80624D	OF1BA69D	EE9FD5B2	A54EBC7B	85ACF4C4	C8CDC5FD	5C5F7DC4	2DDC1659	

- a) Endereço 0xA2B40002
- b) Endereço 0xDC2ACDF5
- c) Endereço 0xA2B41002
- d) Endereço 0x000515A8
- e) Endereço 0xA2B40008

QUESTÃO 10 (Fundamentos Teóricos da Computação)

Analise as seguintes afirmações (todos os números são naturais):

- I. Existe um AFN que reconhece $\{0^{m}1^{n} \mid m \neq n\}$;
- II. A linguagem $\{0^m1^n \mid m \neq n, n \leq 5 \text{ e } m \leq 5\}$ pode ser representada por uma expressão regular;
- III. A linguagem $\{0^m1^n \mid m \neq n, n \leq 5 \text{ e m} > 5\}$ pode ser gerada por uma gramática regular;
- IV. A linguagem $\{0^m1^n \mid m \neq n, n > 5 \text{ e m} > 5\}$ pode ser reconhecida por um AFD.

Marque a alternativa correta:

- a) Estão corretas apenas as afirmativas I e II.
- b) Estão corretas apenas as afirmativas II e III.
- c) Estão corretas apenas as afirmativas II e IV.
- d) Estão corretas apenas as afirmativas III e IV.
- e) Estão corretas apenas as afirmativas II, III e IV.

QUESTÃO 11 (Fundamentos Teóricos da Computação)

Analise as seguintes afirmações:

- I. O lema do bombeamento pode ser usado para mostrar que uma linguagem não é regular;
- II. O lema do bombeamento pode ser usado para mostrar que uma linguagem é regular;
- III. A linguagem dos palíndromos de tamanho par, sobre $\{0,1\}$, pode ser gerada pela gramática, que é regular, $G = \{\{P\}, \{0, 1\}, R, P\}$, em que R contém as regras:

$$P \rightarrow 0P0 \mid 1P1 \mid \lambda$$

IV. Toda linguagem finita possui um AF sem ciclos que a reconhece.

Marque a alternativa correta:

- a) Estão corretas apenas as afirmativas I e II.
- b) Estão corretas apenas as afirmativas II e III.
- c) Estão corretas apenas as afirmativas II, III e IV.
- d) Estão corretas apenas as afirmativas I e IV.
- e) Estão corretas apenas a afirmativa IV.

QUESTÃO 12 (Fundamentos Teóricos da Computação)

Dadas as seguintes afirmações:

I. A linguagem dos números binários que são palíndromos de tamanho ímpar, sobre $\{0,1\}$, pode ser gerada pela gramática, que é regular, $G = \{\{P\}, \{0,1\}, R, P\}$, em que R contém as regras:

$$P \to 0P0 | 1P1 | 0 | 1$$

II. A linguagem $\{0\}^*\{1\}^*$ é gerada pela gramática, que é regular, $G = \{\{P\}, \{0, 1\}, R, P\}$, em que R contém as regras:

$$P \rightarrow 0P \mid 1P \mid 0 \mid 1$$

III. A linguagem $\{1\}^*\{1\}^*$ é gerada pela gramática, que é regular, $G = \{\{P\}, \{0, 1\}, R, P\}$, em que R contém as regras:

$$P \rightarrow 1P \mid 1$$

IV. Toda linguagem gerada por uma gramática regular pode ser reconhecida por um autômato finito determinístico.

Marque a alternativa correta:

- a) Estão corretas apenas as afirmativas I e II.
- b) Estão corretas apenas as afirmativas I e III.
- c) Estão corretas apenas as afirmativas II e IV.
- d) Está correta apenas a afirmativa IV.
- e) Estão corretas apenas as afirmativas II, III e IV.

QUESTÃO 13 (Projeto e Análise de Algoritmos)

Um programador implementou um algoritmo de ordenação cúbico, com função de custo $2n^3$ (número de operações) no pior caso e fez testes para 2 mil elementos com entradas para o pior caso, obtendo tempo de execução de 1 hora. Ele deseja executar seu algoritmo na mesma máquina, e com a mesma implementação, de maneira que seja capaz de processar entradas de 40 mil elementos. Indique a alternativa que melhor aproxima o tempo necessário para executar a tarefa no pior caso, considerando que o custo por operação não será afetado pelo tamanho da entrada.

- a) O tempo total será de 2 horas;
- b) O tempo total será de 20 horas;
- c) O tempo total será de 8 mil horas;
- d) O tempo total será de 3 mil horas;
- e) Nenhuma das anteriores.

QUESTÃO 14 (Projeto e Análise de Algoritmos)

A função de custo para a equação de recorrência abaixo:

$$t(n) = \begin{cases} 2t(n/4) + n & se & n > 1 \\ 0 & se & n \le 1 \end{cases}$$

é:

- a) $2n 2\sqrt{n}$
- b) 2n 2
- c) $2n \log_4 n$
- d) $2n \log_2 n$
- e) Nenhuma das anteriores

QUESTÃO 15 (Projeto e Análise de Algoritmos)

Considere as afirmações abaixo:

- I) Se $f(n) = 2^{1.7n}$ então $f(n) \notin O(2^n)$
- II) Se f(n)=2,2n então $f(n) \in \Omega(3n)$
- III) Se $f(n)=n \log(n)$ então $f(n)=O(n^2)$ e $f(n)=\Omega(n)$ e $f(n)=\Theta(n \log(n))$

Pode-se dizer que:

- a) Todas são falsas
- b) Todas são verdadeiras
- c) Apenas II e III são verdadeiras
- d) Apenas I e II são verdadeiras
- e) Apenas I e III são verdadeiras