SEL 310 – Ondas Eletromagnéticas Quiz 8

Considere o guia cilíndrico metálico de raio r_0 mostrado na figura abaixo. O ponto $\mathbf{r}(r,\varphi,z)$ indicado na figura é apenas um ponto arbitrário para salientar que o sistema de coordenadas é cilíndrico. Este guia suporta a propagação tanto de modos TE quanto TM, mas estamos interessados somente na polarização TM (onde apenas H_z =0) com a direção de propagação ao longo de +z e com a seguinte dependência neste eixo:

As equações de Maxwell que governam a propagação de ondas eletromagnéticas nesta estrutura podem ser escritas em função das

componentes longitudinais (z) da seguinte forma:

$E_r = \left[\frac{k_0^2}{rq^2} + j\frac{1}{\beta}\right] \frac{\partial E_z}{\partial r} + \frac{Z}{rq^2} \frac{\partial H_z}{\partial \varphi}$	$E_{\varphi} = -j \frac{1}{\beta} \left[\frac{k_0^2}{q^2} - 1 \right] \frac{1}{r} \frac{\partial E_z}{\partial \varphi} - \frac{Z}{q^2} \frac{\partial H_z}{\partial r}$
$H_r = j \frac{\beta}{q^2} \left[-j \frac{Y}{\beta r} \frac{\partial E_z}{\partial \varphi} - \frac{\partial H_z}{\partial r} \right]$	$H_{\varphi} = -j \frac{\beta}{q^2} \left[\frac{Y}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r} \frac{\partial H_z}{\partial \varphi} \right]$

Supondo que a solução da equação de Helmholtz para esta estrutura é do tipo:

$$E_z = E_0 \cos(\nu \varphi) I_{\nu}(qr) e^{-j\beta z}$$
 V/m,

onde $I_{\nu}(qr)$ é a função de Bessel de ordem ν , e ν é um inteiro, pede-se:

- 1) As expressões para cada uma das componentes de campo. Use a relação de recorrência da derivada da função de Bessel dada abaixo.
- 2) Se a componente E_z for definida como $E_z = E_0 \sin(v\varphi) J_v(qr) e^{-j\beta z}$ V/m, ela ainda seria uma solução do problema? Isso impacta na designação modal (já que $v\neq 0$), mas basta renomear os modos. Explique.
- 3) Projete um guia de onda cilíndrico que suporte a propagação de <u>todos</u> os modos TM abaixo do modo TM_{02} (ou seja, este modo está cortado) na faixa de frequências de 8 GHz $\leq f \leq$ 12 GHz. Liste os modos que se propagam.

Designação	Zeros da derivada da função	Comprimento de onda de corte, λ_c
modal	de Bessel	(relativo a r ₀)
	$J_{\nu}(\kappa_{\nu}), \kappa_{\nu} = qr_0$	
TM_{01}	2.405	$2.61r_0$
TM_{02}	5.52	$1.14r_0$
TM_{11}	3.832	$1.64r_0$
TM_{12}	7.016	$0.89r_0$
TM_{21}	5.135	$1.22r_0$
TM_{31}	6.379	$0.98r_0$
TM_{41}	7.588	$0.83r_0$

Definições:

$$q = \sqrt{k_0^2 - \beta^2} \; \mathrm{rd/m} \; ; \\ Z = -j\omega\mu_0 \quad \Omega/m \; ; \\ Y = -j\omega\varepsilon_0 \quad \mathrm{S}/m \; ; \\ \varepsilon_0 = 8.854 \times 10^{-12} \; F/m ; \; \\ \mu_0 = 4\pi \times 10^{-7} \; H/m \; ; \\ Z = -j\omega\mu_0 \quad \Omega/m \; ; \\ Z = -j\omega\mu_0 \quad \Omega/m \; ; \\ Z = -j\omega\mu_0 \quad \mathrm{S}/m \; ; \\ Z = -j\omega\mu_0 \quad \Omega/m \; ; \\ Z = -j\omega\mu_0 \quad \mathrm{S}/m \; ; \\ Z = -$$

$$\frac{dJ_{\nu}(qr)}{dr} = q \left[\frac{\nu}{qr} J_{\nu}(qr) - J_{\nu+1}(qr) \right]$$

$$f=c/\lambda$$
, onde $c=1/\sqrt{\mu_0\varepsilon_0}$ $\lambda_c=rac{2\pi r_0}{\kappa_v}$