Sistemas Robóticos Autônomos

Modelos Cinemáticos de Robôs com Rodas

Roda Padrão	2 Graus de Liberdade
	Rotação em torno do eixo (motorizado ou não) e rotação em torno do ponto de contato.

Roda Castor	2 Graus de Liberdade
	Rotação em torno do eixo da roda e em torno do eixo vertical excêntrico da junta de direção.

Roda Omnidire	cional	3 Graus de Liberdade
90°	45°	Rotação em torno do eixo da roda (motorizado ou não), em torno dos roletes e em torno do ponto de contato.

Roda Esférica	3 Graus de Liberdade
	Rotação em torno dos eixos dos eixos x e y e em torno do ponto de contato.

Restrições Cinemáticas nas Rodas

<u>Pressupostos</u>:

- •O plano da roda permanece sempre na vertical.
- •O contato com o chão é pontual (um único ponto de contato).
- •Não há deslizamento ou derrapagem do ponto de contato com o chão: a roda efetua rolamento puro em torno do seu eixo e/ou rotação em torno da vertical.

Roda Padrão Ideal

Pressupostos:

- Não ocorre derrapagem lateral (sem escorregamento na direção perpendicular à roda).
- Ponto de contato pontual com o chão.
- Não ocorre escorregamento do ponto de contato em relação ao chão (rolamento ideal).
 - ⇒ A roda pode movimentar-se na direção em que está orientada.
 - ⇒ A roda pode girar em torno de um eixo vertical passando pelo ponto de contato.

Restrições Cinemáticas nas Rodas

- •Restrição de rolamento puro (sem escorregamento): todo movimento no plano da roda deve ser acompanhado por uma rotação correspondente da roda.
- •Restrição de derrapagem lateral: todo movimento está restrito ao plano da roda. A roda não pode movimentar-se na direção do seu eixo

Relação de velocidades no referencial fixo no robô e no referencial inercial global

Relação de velocidades no referencial fixo no robô e no referencial inercial global

Localização = Vetor de Variáveis de Configuração, $\mathbf{q} = [\mathbf{x} \ \mathbf{y} \ \theta]^{\mathrm{T}}$.

Velocidade em espaço de configuração $\mathbf{q'} = [\mathbf{x'} \ \mathbf{y'} \ \theta']^T$

No referencial móvel: $\mathbf{Rq'} = [\mathbf{Rx'} \ \mathbf{Ry'} \ \mathbf{\theta'}]^T$

$$q' = {}^{I}R_{R}.{}^{R}q'$$
 \Rightarrow ${}^{R}q' = {}^{R}R_{I}.q' = ({}^{I}R_{R}).{}^{-1}.q'$

$${}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}} = {}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}} (\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$${}^{\mathbf{R}}\mathbf{R}_{\mathbf{I}} = ({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}})^{-1} = ({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}})^{\mathbf{T}} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Restrições Cinemáticas nas Rodas Parâmetros e Restrições da Roda Padrão Fixa

Restrições Cinemáticas nas Rodas Parâmetros e Restrições da Roda Padrão Fixa

Lembrando que:

$$^{R}\mathbf{q'} = {^{R}\mathbf{R}_{\mathbf{I}}(\theta)}.\mathbf{q'} = (^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathrm{T}}.\mathbf{q'}$$

$$[\mathbf{R}\mathbf{x}' \ \mathbf{R}\mathbf{y}' \ \theta']^{\mathrm{T}} = (\mathbf{R}_{\mathbf{R}}(\theta))^{\mathrm{T}}. [\mathbf{x}' \ \mathbf{y}' \ \theta']^{\mathrm{T}}$$

Restrições Cinemáticas nas Rodas Parâmetros e Restrições da Roda Padrão Fixa

•Restrição de derrapagem lateral:

[
$$cos(\phi+\alpha)$$
 $sen(\phi+\alpha)$ 1. $sen(\alpha)$].(${}^{I}\mathbf{R}_{\mathbf{R}}(\theta)$) ${}^{T}.\mathbf{q}^{*}=0$

•Restrição de rolamento:

[sen(
$$\phi$$
+ α) -cos(ϕ + α) -1.cos(α)].(${}^{I}\mathbf{R}_{\mathbf{R}}(\theta)$) T . \mathbf{q} , = $\omega_{\mathbf{r}}$. $r_{\mathbf{r}}$

Restrições Cinemáticas nas Rodas Parâmetros e Restrições da Roda Padrão Direcional

O ângulo de direção não é fixo: $\alpha = \alpha(t)$.

Restrições Cinemáticas nas Rodas Parâmetros e Restrições da Roda Padrão Direcional

•Restrição de derrapagem lateral:

[cos(
$$\phi$$
+ α (t)) sen(ϕ + α (t)) 1.sen(α (t))].(${}^{I}\mathbf{R}_{\mathbf{R}}(\theta)$) T . \mathbf{q} , = 0

•Restrição de rolamento:

[sen(
$$\phi$$
+ α (t)) -cos(ϕ + α (t)) -1.cos(α (t))].(${}^{I}\mathbf{R}_{\mathbf{R}}(\theta)$) T . \mathbf{q} ' = $\omega_{\mathbf{r}}$. $r_{\mathbf{r}}$

Restrições Cinemáticas nas Rodas

- •Roda Castor: não impõe restrições ao movimento do chassi.
- •Roda Omnidirecional: não impõe restrições ao movimento do chassi.
- •Roda Esférica: não impõe restrições ao movimento do chassi.

1 roda	Configuração
	Uma roda esférica motorizada.

2 rodas	Configuração
	Uma roda dianteira direcional e uma roda traseira tratora. Exemplo: bicicleta
	Duas rodas tratoras com acionamento diferencial, centro de massa centrado sob ou sobre o eixo.

3 rodas	Configuração
	Duas rodas tratoras com acionamento diferencial centradas, com um terceiro ponto de apoio.
	Duas rodas tratoras com acionamento diferencial (traseiras ou frontais), com uma terceira roda onidirecional (suíça, castor ou esférica), frontal ou traseira, não motorizada.
	Uma roda dianteira direcional sem tração e duas rodas traseiras tratoras conectadas (diferenciais).
	Duas rodas traseiras sem tração e uma roda dianteira tratora direcional.
	Três rodas omnidirecionais tratoras arranjadas a 120°. Movimentos onidirecionais.
	"Synchro drive". Três rodas tratoras e direcionais sincronizadas. A orientação não é controlada.

4 rodas	Configuração
	Duas rodas tratoras traseiras e duas rodas dianteiras direcionais. O ângulo de direção deve ser diferente nas duas rodas para evitar derrapagem e deslizamento. (Direção "Ackerman").
	Duas rodas dianteiras tratoras e direcionais e duas rodas traseiras livres. O ângulo de direção deve ser diferente nas duas rodas para evitar derrapagem e deslizamento.
	Quatro rodas tratoras e direcionais.

4 rodas	Configuração
	Quatro rodas suíças onidirecionais.
	Duas rodas traseiras tratoras com acionamento diferencial e duas rodas dianteiras onidirecionais de apoio.
	Duas rodas centrais tratoras com acionamento diferencial e dois apoios adicionais.
	Quatro rodas castor tratoras e direcionais.

- •Cada roda impõe zero ou mais restrições ao movimento do chassi do robô.
- •Apenas a roda padrão fixa e a roda padrão direcional impõem restrições ao movimento do chassi.

•Definindo:

- $N = N_f + N_d = n$ úmero de rodas padrão (N_f fixas e N_d direcionais do robô).
- α_f = ângulos de orientação das N_f rodas fixas.
- $\alpha_d(t)$ = ângulos de orientação das N_d rodas direcionais.
- $\omega_{rf}(t)$ = velocidades de giro das N_f rodas fixas.
- $\omega_{rd}(t)$ = velocidades de giro das N_d rodas direcionais.
- $\omega_{\mathbf{r}}(t)$ = velocidades de giro das N rodas.

$$\mathbf{\omega_{r}}(t) = \begin{bmatrix} \mathbf{\omega_{rf}}(t) \\ \mathbf{\omega_{rd}}(t) \end{bmatrix}$$

Restrições Cinemáticas de um Robô Agrupando as restrições de rolamento de todas as rodas:

$$J_{q}(\alpha_{d}).({}^{I}R_{R}(\theta))^{T}.q^{\prime}-J_{\omega}.\omega_{r}=0$$

onde:

$$\mathbf{J}_{\mathbf{q}}(\mathbf{lpha}_{\mathbf{d}}) = egin{bmatrix} \mathbf{J}_{\mathbf{q}\mathbf{f}} \ \mathbf{J}_{\mathbf{q}\mathbf{d}}(\mathbf{lpha}_{\mathbf{d}}) \end{bmatrix}$$

Agrupando as restrições de derrapagem lateral de todas as rodas:

$$C_{q}(\alpha_{d}).({}^{I}R_{R}(\theta))^{T}.q'=0$$

onde:

•As restrições de rolamento e as restrições de derrapagem lateral podem ser agrupadas em uma única expressão matricial de restrições:

$$\begin{bmatrix} \mathbf{J}_{\mathbf{q}}(\boldsymbol{\alpha}_{\mathbf{d}}) \\ \mathbf{C}_{\mathbf{q}}(\boldsymbol{\alpha}_{\mathbf{d}}) \end{bmatrix} \cdot ({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\boldsymbol{\theta}))^{\mathbf{T}} \cdot \mathbf{q'} = \begin{bmatrix} \mathbf{J}_{\boldsymbol{\omega}} \cdot \boldsymbol{\omega}_{\mathbf{r}} \\ \mathbf{0} \end{bmatrix}$$

Restrições Cinemáticas de um Robô OBSERVAÇÕES:

- No modelo cinemático, incluir as equações de restrições em que as velocidades de rotação $\omega_r(t)$ e/ou os ângulos direcionais $\alpha(t)$ das rodas são controlados (são entradas do sistema).
- Nestas equações, estamos interessados na relação entre essas entradas e a saídas de interesse, que são as velocidades do robô no mundo (q'(t)).
- As equações em que não aparecem velocidades de rotação $\omega_{\rm r}(t)$ e/ou os ângulos direcionais $\alpha(t)$ como entradas controladas, estas grandezas são saídas secundária.
- Se quisermos calcular o seu valor, precisamos arranjar as equações de restrição para achar estes $\omega_r(t)$ e $\alpha(t)$ em função da velocidade do robô q'(t), (que, por sua vez é função dos $\omega_r(t)$ e $\alpha(t)$ que são diretamente controlados (entradas do sistema).

•Exemplo: Robô Móvel com Acionamento Diferencial

Duas rodas padrão fixas: raio r_D e r_E , velocidades ω_D e ω_E ,.

Parâmetros da roda direita:

$$\phi_D = -90^{\circ}$$

$$\alpha_{\rm D} = 180^{\circ}$$

$$1_{D} = b/2$$

Parâmetros da roda esquerda:

$$\phi_{\text{F}} = 90^{\rm o}$$

$$\alpha^{\mathsf{L}} = 0_{o}$$

$$l_{\rm F} = b/2$$

•Restrições de rolamento:

$$[\text{sen}(-90^{\circ}+180^{\circ}) - \cos(-90^{\circ}+180^{\circ}) - (b/2).\cos(180^{\circ})].(^{\mathsf{I}}\mathbf{R}_{\mathsf{R}}(\theta))^{\mathsf{T}}.\mathbf{q'} - \omega_{\mathsf{D}}.r_{\mathsf{D}} = 0$$

$$[\text{sen}(90^{\circ}+0^{\circ}) - \cos(90^{\circ}+0^{\circ}) - (b/2).\cos(0)].(^{\mathsf{I}}\mathbf{R}_{\mathsf{R}}(\theta))^{\mathsf{T}}.\mathbf{q'} - \omega_{\mathsf{E}}.r_{\mathsf{E}} = 0$$

$$\Rightarrow [1 \quad 0 \quad (b/2)].({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathbf{T}}.\mathbf{q'} = \omega_{\mathbf{D}}.\mathbf{r}_{\mathbf{D}}$$

$$\Rightarrow [1 \ 0 \ -(b/2)].({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathbf{T}}.\mathbf{q'} = \omega_{\mathbf{E}}.\mathbf{r}_{\mathbf{E}}$$

•Restrições de derrapagem lateral:

$$[\cos(-90^{\circ}+180^{\circ}) \ \sin(-90^{\circ}+180^{\circ}) \ (b/2).\sin(180^{\circ})].({}^{I}\mathbf{R}_{\mathbf{R}}(\theta))^{T}.\mathbf{q'} = 0$$

$$[\cos(90^{\circ}+0^{\circ}) \quad \sin(90^{\circ}+0^{\circ}) \quad (b/2).\sin(0^{\circ})].({}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathbf{T}}.\mathbf{q'} = 0$$

As duas restrições são idênticas, reduzidas a uma única expressão:

$$[0 \quad 1 \quad 0].(^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathbf{T}}.\mathbf{q}' = 0$$

•Restrições Cinemáticas do Robô:

$$\begin{bmatrix} 1 & 0 & b/2 \\ 1 & 0 & -b/2 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} {}^{\mathbf{I}}\mathbf{R}_{\mathbf{R}}(\theta))^{\mathrm{T}} \cdot \mathbf{q}^{\boldsymbol{\prime}} = \begin{bmatrix} \mathbf{r}_{\mathrm{D}} & 0 \\ 0 & \mathbf{r}_{\mathrm{E}} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\omega}_{\mathrm{D}} \\ \boldsymbol{\omega}_{\mathrm{E}} \end{bmatrix}$$

Onde:

$$\begin{bmatrix} 1 & 0 & b/2 \\ 1 & 0 & -b/2 \\ 0 & 1 & 0 \end{bmatrix} - 1 = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \\ 1/b & -1/b & 0 \end{bmatrix}$$

Resolvendo para q', obtém-se a Função de Cinemática Direta do Robô:

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{\theta'} \end{bmatrix} = \begin{bmatrix} \cos\theta(\mathbf{r}_{\mathrm{D}}\omega_{\mathrm{D}} + \mathbf{r}_{\mathrm{E}}\omega_{\mathrm{E}})/2 \\ \sin\theta(\mathbf{r}_{\mathrm{D}}\omega_{\mathrm{D}} + \mathbf{r}_{\mathrm{E}}\omega_{\mathrm{E}})/2 \\ (\mathbf{r}_{\mathrm{D}}\omega_{\mathrm{D}} - \mathbf{r}_{\mathrm{E}}\omega_{\mathrm{E}})/b \end{bmatrix}$$


```
Posição do referencial fixo no robô em relação ao
(x,y) =
   referencial fixo no espaço de trabalho.
                  Ângulo de orientação do robô em relação ao
\theta =
   referencial fixo no espaço de trabalho.
                  Comprimento do eixo.
b =
                  Raio de giro do robô.
r =
r_D(r_E) = Raio da roda direita (esquerda)
                 Velocidade angular do robô.
\omega =
\omega_{D}(\omega_{E}) = Velocidade angular da roda direita (esquerda).
      Velocidade linear do robô \Rightarrow v = \omega.r
V =
v_D(v_E) = Velocidade linear da borda da roda direita (esquerda).
   \Rightarrow V_D = \omega_D r_D
   \Rightarrow V_F = \omega_F.r_F
```

Para movimentos infinitesimais:

Relação entre velocidades das rodas (ω_E/ω_D) para mover-se com raio de giro r:

$$(2.\omega.r)/(\omega.b) = (2.r/b) = (\omega_D.r_D + \omega_E.r_E)/(\omega_D.r_D - \omega_E.r_E)$$

$$\Rightarrow$$
 $(\omega_E/\omega_D) = [(r-b/2).r_D]/[(r+b/2).r_E]$

$$V_{D}.dt = \omega(r+b/2)dt \qquad \qquad V_{D}+V_{E} = \omega_{D}.r_{D}+\omega_{E}.r_{E} = 2.\omega.r = 2.v$$

$$\Rightarrow \qquad \qquad V_{D}-V_{E} = \omega_{D}.r_{D}-\omega_{E}.r_{E} = \omega.b$$

$$\Rightarrow \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} (r_D/2) & (r_E/2) \\ (r_D/b) & -(r_E/b) \end{bmatrix} \cdot \begin{bmatrix} \omega_D \\ \omega_E \end{bmatrix} \Rightarrow \mathbf{V} = {}^{\mathbf{V}}\mathbf{T}_{\mathbf{W}}.\mathbf{W}$$

onde:
$$\mathbf{V} = [\mathbf{v} \quad \boldsymbol{\omega}]^T$$
 $\mathbf{W} = [\boldsymbol{\omega}_D \quad \boldsymbol{\omega}_E]^T$

$${}^{\mathbf{V}}\mathbf{T}_{\mathbf{W}} = \begin{bmatrix} & (\mathbf{r}_{\mathbf{D}}/2) & (\mathbf{r}_{\mathbf{E}}/2) \\ & (\mathbf{r}_{\mathbf{D}}/b) & -(\mathbf{r}_{\mathbf{E}}/b) \end{bmatrix}$$

Restrições não holonômicas:

- Restrições não holonômicas atuam nas velocidades do robô.
- Devido ao atrito das rodas, o robô não pode se deslocar lateralmente (na direção do eixo).
- A velocidade linear sempre aponta na direção definida pela orientação θ do robô.

Modelo cinemático:

$$dx/dt = v.\cos\theta$$

$$dy/dt = v.sen\theta$$

$$d\theta/dt = \theta' = \omega$$

Multiplicando a 1ª Equação por senθ e a 2ª por cosθ e subtraindo uma da outra, encontramos a restrição não holonômica:

$$dy.cos\theta - dx.sen\theta = 0$$

Ou seja: $dy/dx = sen\theta/cos\theta = tan\theta$