Содержание

1	Лекция 11.11.2021 (Жигульский С.В.)					
	1.1	Литература	3			
	1.2	Геомеханика – это	4			
	1.3	Задачи, решаемые при помощи геомеханического моделирования	5			
	1.4	Скаляр и вектор	6			
	1.5	Вектор как понятие тензора 1-го ранга	7			
	1.6	Тензор 2-го ранга (напряжение, деформация)	8			
	1.7	Напряжённое состояние в точке	9			
	1.8	Касательное и нормальное напряжение	10			
	1.9	Тензор напряжений	11			
	1.10	Тензор напряжений. Форма записи	12			
	1.11	Тензор главных напряжений	13			
	1.12	Контрольный вопрос	14			
	1.13	Инварианты тензора	15			
	1.14	Круги Мора (2D НДС)	16			
	1.15	Круги Мора (3D НДС)	17			
	1.16	Напряжённое состояние пласта	18			
	1.17	Соответствие напряжений к режимам разломов	19			
	1.18	Расчёт направляющих косинусов	20			
	1.19	Напряжённое состояние на плоскости в 3D	21			
	1.20	Контрольный вопрос	25			
	1.21	Перемещение	26			
	1.22	Деформация	27			
	1.23	Тензор деформаций	28			
	1.24	Закон Гука в тензорной форме	29			
	1.25	Тензор упругости (жёсткости) изотропная порода	30			
	1.26	Закон Гука	31			
	1.27	Связь напряжение-деформация	32			
	1.28	Упругие модули	33			
	1.29	Связь между напряжением и деформацией	34			
	1.30	Коэффициент Пуассона	35			
	1.31	Эффективное напряжение	36			
	1.32	Номенклатура	37			
	1.33	Разрушение	38			
2	Лекі	Текция 12.11.2021 (Жигульский С.В.) 4				
3	Лекі	Лекция 15.11.2021 (Альчибаев Д.В.) 43				
4	Лекция 18.11.2021 (Альчибаев Д.В.)					

Геомеханика

Конспект лекций

Муравцев А.А. 1 Жигульский С.В. 2 Альчибаев Д.В. 3

24 октября 2022 г.

1 Лекция 11.11.2021 (Жигульский С.В.)

1.1 Литература

Литература

3

¹конспектирует; email: almuravcev@yandex.ru

²лектор, Высшая школа теоретической механики, Санкт-Петербургский Политехнический университет. Дополнительные материалы к лекциям доступны по ссылке.

³лектор, Высшая школа теоретической механики, Санкт-Петербургский Политехнический университет. Дополнительные материалы к лекциям доступны по ссылке.

1.2 Геомеханика – это...

Геомеханика – это...

... раздел, применяющий механику твердого тела, математику и физику, чтобы выяснить, как порода и трещины в ней будут реагировать на:

- Бурение
- Изменение напряжений
- Изменение давления
- Течение флюида
- Изменение температуры
- и т. д.

1.3 Задачи, решаемые при помощи геомеханического моделирования

Задачи, решаемые при помощи геомеханического моделирования

ГЕОЛОГИЯ

- Анализ разрывных нарушений
- Построение модели трещиноватости резервуара
- Оценка проводимости разрывных нарушений
- Прогноз порового давления (АВПД)

БУРЕНИЕ

- Оценка безопасного коридора по плотности бурового раствора
- Выбор оптимальной конструкции скважины (глубины посадки БК)
- Оптимизация траектории скважины

РАЗРАБОТКА

- Подготовка данных для дизайна ГРП, оценка параметров трещины ГРП
- Выбор оптимальных интервалов перфорации
- Оценка прорывов от ППД (авто-ГРП)
- Оценка оптимальной депрессии на пласт в условиях слабоконсолидированных пород и многоствольных скв.

5

1.4 Скаляр и вектор

Скаляр и вектор

Скаляр - геометрические и физические величины, определяемые при выбранной системе единиц (масштабе) одним числом, не изменяющимся при преобразовании координат.

Температура, масса, давление и т.д.

Вектор – с геометрической точки зрения это прямолинейный отрезок, имеющий определенную длину и определенное направление в пространстве.

Вектор – это тензор 1-го ранга.

Количество направлений, которое необходимо для описания физической величины, определяет ранг тензора.

Перемещение, сила, скорость и т.д.

1.5 Вектор как понятие тензора 1-го ранга

Вектор как понятие тензора 1-го ранга

Компоненты вектора – коэффициенты, входящие в комбинацию единичных векторов.

При преобразовании координат поворотом осей на любой угол компоненты вектора преобразуются по закону:

$$a_i' = l_{ij}a_i$$

 $l_{ij} = coslpha_{ij}$ -матрица поворота (направляющих косинусов)

 $lpha_{ii}$ - косинус угла оси і с новой осью ј

Понятие вектора можно обобщить на любой объект, определяемый тремя компонентами, которые при преобразовании координат преобразуются по формуле выше.

1.6 Тензор 2-го ранга (напряжение, деформация)

Тензор 2-го ранга (напряжение, деформация)

Тензор – объект, который используется для описания физической величины, которая зависит от 2-х направлений.

Тензор второго ранга определяется девятью величинами, которые называются компонентами тензора.

При преобразовании координат компоненты тензора второго ранга преобразуются по закону:

$$a'_{kl} = l_{ik}l_{il}a_{ij}$$

 $oldsymbol{l_{ik}}$ - косинус угла оси і с новой осью k

 $oldsymbol{l_{il}}$ - косинус угла оси ј с новой осью $oldsymbol{l}$

Напряженное состояние в любой точке и по любой площадке определяется тензором второго ранга, который называется тензором напряжений.

1.7 Напряжённое состояние в точке

Напряженное состояние в точке

Напряженное состояние в точке пространства определяется совокупностью напряжений, действующих на любую площадку, проходящую через данную точку.

Вектор полного напряжения:

$$\vec{p} = \lim_{\Delta A \to 0} \frac{\Delta \vec{F}}{\Delta A}$$

 $\Delta \vec{F}$ - вектор силы, действующий на бесконечно малую площадь ΔA

Величина вектора полного напряжения будет зависеть от направления вектора нормали и выражаться через:

$$\overrightarrow{p_n} = \vec{p}(\vec{n})$$

Газпром нефть 10

Напряженное состояние в точке

Так как направление полного напряжения в общем случае не совпадает с вектором нормали к площадке, можно разложить $\overrightarrow{p_n}$ на две составляющие: нормальное (σ_n) и касательное (τ) напряжения.

$$\sigma_n = p \cos \alpha$$

$$\tau = p \sin \alpha$$

Полное напряжение:

$$p_n = \sqrt{\sigma_n^2 + \tau^2}$$

Касательное напряжение еще называется тангенциальным или напряжением сдвига.

1.8 Касательное и нормальное напряжение

Касательное и нормальное напряжение

1.9 Тензор напряжений

Тензор напряжений

Если известны напряжения в трех взаимноперпендикулярных плоскостях, которые проходят через точку, то мы знаем напряжение, действующее на любой площадке, которая проходит через данную точку.

1.10 Тензор напряжений. Форма записи

Тензор напряжений форма записи

$$\sigma_{ij} = \begin{pmatrix} \sigma_{\chi\chi} & \sigma_{\chi y} & \sigma_{\chi z} \\ \sigma_{y\chi} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{z\chi} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \quad \text{или} \qquad \sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$

Тензор напряжений является симметричным ($\sigma_{ij} = \sigma_{ji}$):

$$\begin{split} \sigma_{xy} &= \sigma_{yx}, \\ \sigma_{xz} &= \sigma_{zx}, \\ \sigma_{yz} &= \sigma_{zy} \end{split}$$

Этот факт легко показать из условия равенства моментов сил относительно оси, проходящей через центральную точку любой из граней куба.

1.11 Тензор главных напряжений

Тензор главных напряжений

- При повороте элемента (параллелепипида) относительно осей выбранной системы координат всегда можно найти такой сценарий, в котором на трех взаимноперпендикуллярных площадках касательные напряжения будут равны 0, а направления нормальных напряжений совпадать с осями системы координаты.
- ▶ Эти оси будут называться главными, а действующие нормальные напряжения главными напряжениями и обозначаться индексами 1, 2, 3.

$$\sigma_{ij} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

$$\sigma_1 > \sigma_2 > \sigma_3$$

1.12 Контрольный вопрос

Контрольный вопрос

Показать как изменится форма объекта под действием нормальных (S11, S22, S33) и касательных (S13, S32) напряжений на 3Д объекте поочередно.

1.13 Инварианты тензора

Инварианты тензора

$$I_1 = \sigma_{11} + \sigma_{22} + \sigma_{33} = \sigma_1 + \sigma_2 + \sigma_3$$

$$I_2 = \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \sigma_{21}\sigma_{12} - \sigma_{23}\sigma_{32} - \sigma_{31}\sigma_{13} = \ \sigma_1\,\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1$$

$$I_2 = \sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}\sigma_{23} - \sigma_{22}\sigma_{31}\sigma_{31} - \sigma_{33}\sigma_{12}\sigma_{12} = \sigma_1\sigma_2\sigma_3$$

 $\sigma_1, \sigma_2, \sigma_3$ - главные напряжения, получаемые как корни характеристического уравнения:

$$\begin{pmatrix} \sigma_{11} - \sigma & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - \sigma & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} - \sigma \end{pmatrix} = 0$$

1.14 Круги Мора (2D НДС)

Круги Мора (2D НДС)

Если известны главные напряжения, то напряжения по любой площадке могут быть найдены графически путем построения кругов напряжений, известных под названием круги Мора.

2D напряженное состояние (σ_3 = σ_2)

1.15 Круги Мора (3D НДС)

Круги Мора (3D НДС)

Если $\sigma_3 \neq \sigma_2 \neq \sigma_1$ тогда напряженное состояние описывается тремя кругами Мора. l, m, n- направляющие косинусы

$$l = cos(\vec{T}, \overrightarrow{\sigma_1})$$

$$m = cos(\vec{T}, \overrightarrow{\sigma_2})$$

$$n = cos(\vec{T}, \overrightarrow{\sigma_3})$$

$$\vec{\sigma} = cos(\vec{T}, \overrightarrow{\sigma_3})$$

 \vec{T} - нормальный к трещине вектор

$$\left(\sigma_n - \frac{\sigma_2 + \sigma_3}{2}\right)^2 + \tau^2 = \left(\frac{\sigma_2 - \sigma_3}{2}\right)^2 + l^2(\sigma_1 - \sigma_2)(\sigma_1 - \sigma_3)$$

$$\left(\sigma_n - \frac{\sigma_1 + \sigma_3}{2}\right)^2 + \tau^2 = \left(\frac{\sigma_1 - \sigma_3}{2}\right)^2 + m^2(\sigma_2 - \sigma_3)(\sigma_2 - \sigma_1)$$

$$\left(\sigma_n - \frac{\sigma_1 + \sigma_2}{2}\right)^2 + \tau^2 = \left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + n^2(\sigma_3 - \sigma_1)(\sigma_3 - \sigma_2)$$

1.16 Напряжённое состояние пласта

Напряженное состояние пласта

 $\sigma v(Z)$

Напряженное состояние пласта описывается тремя **главными напряжениями**:

- Горное давление (Sv)
- Максимальное горизонтальное напряжение (SHmax)
- Минимальное горизонтальное напряжение (Shmin)

В выбранной системе координат ось Z всегда совпадает с осью σv.

20

1.17 Соответствие напряжений к режимам разломов

Соответствие напряжений к режимам разломов

Напряжения/ Режим	σ_1	σ_2	σ_3
Сброс (Normal Fault)	$oldsymbol{\sigma}_V$	σ_{Hmax}	σ_{hmin}
Сдвиговый (Strike-Slip)	σ_{Hmax}	σ_V	σ_{hmin}
Взброс (Reverse Fault)	σ_{Hmax}	σ_{hmin}	σ_V

1.18 Расчёт направляющих косинусов

Расчет направляющих косинусов

Сброс:

 $l = \cos(Dip)$

 $m = \sin(Strike)\sin(Dip)\cos\theta - \cos(Strike)\sin(Dip)\sin\theta$ $n = -\cos(Srike)\sin(Dip)\cos\theta - \sin(Strike)\sin(Dip)\sin\theta$

Сдвиг:

 $l = \sin(Strike)\sin(Dip)\cos\theta - \cos(Strike)\sin(Dip)\sin\theta$ $m = \cos(Dip)$

 $n = -\cos(Srike)\sin(Dip)\cos\theta - \sin(Strike)\sin(Dip)\sin\theta$

Взброс:

 $l = \sin(Strike)\sin(Dip)\cos\theta - \cos(Strike)\sin(Dip)\sin\theta$

 $m = -\cos(Srike)\sin(Dip)\cos\theta - \sin(Strike)\sin(Dip)\sin\theta$ $n = \cos(Dip)$

 θ – угол между азимутом Shmax и азимутом трещины

1.19 Напряжённое состояние на плоскости в 3D

Напряженное состояние плоскости в 3D

Если на заданной глубине известны направления действия главных напряжений, и пространственная ориентация трещины (азимут и угол падения), то могут быть определены направляющие косинусы нормали к трещине в пространстве главных осей тензора напряжений и как следствие нормальное и касательное напряжения, действующие на плоскость разрыва.

$$\sigma_n = \sigma_2 + l^2(\sigma_1 - \sigma_2) + n^2(\sigma_3 - \sigma_2)$$

$$\tau^2 = \left(\frac{\sigma_2 - \sigma_3}{2}\right)^2 + l^2(\sigma_1 - \sigma_2)(\sigma_1 - \sigma_3) - \left(\sigma_n - \frac{\sigma_2 + \sigma_3}{2}\right)^2$$

Газпром нефты 23

Напряжённое состояние на плоскости в ЗД

Трещины, на которых касательные напряжения равны 0.

Напряжённое состояние на плоскости в 3Д

Показать возможные варианты ориентации трещины на кубе, которая будет расположена на круге Мора (σ_3 - σ_2)

Газпром нефты 25

Напряжённое состояние на плоскости в ЗД

Показать возможные варианты ориентации трещины на кубе, которая будет расположена на круге Мора $(\sigma_1 - \sigma_2)$

Напряжённое состояние на плоскости в 3Д

Показать возможные варианты ориентации трещины на кубе, которая будет расположена на круге Мора (σ_1 - σ_3)

Газпром нефты 27

Напряжённое состояние на плоскости в ЗД

Где расположена такая трещина (пунктирная линия) на круге Мора?

Напряжённое состояние на плоскости в ЗД

1.20 Контрольный вопрос

Контрольный вопрос

Попробовать решить задачу:

Представим, что в массиве существует разлом, необходимо рассчитать нормальное и касательное напряжения, которые действуют на разлом на основе данных о главных напряжениях и ориентации разлома.

Азимут простирания разлома N60E

Угол падения 90

Sv= 25 MPa, Shmax=32 MPa, Shmin=15 MPa (азимут N30E)

1.21 Перемещение

Перемещение

Пусть положение точки P в этой системе координат задается радиусом-вектором ${\bf r}_{{\bf \cdot}}$

В результате воздействия на тело точка P переместилась в положение P', которое задается радиусом-вектором $\mathbf{r_{1}}$.

Вектор $U(\mathbf{r}) = \mathbf{r}_1 - \mathbf{r}$ называется *перемещением*.

Каждая компонента вектора перемещения является функцией координат:

$$\mathbf{U}(\mathbf{r}) = \mathbf{U}(x, y, z) = \{u(x, y, z), v(x, y, z), w(x, y, z)\}$$

Компоненты u, v, w параллельны осям координат XYZ и изменяются непрерывно по объему тела.

1.22 Деформация

Деформация

Деформация – это мера искажения (изменения размеров) физического тела под действием приложенного напряжения.

- Для того, чтобы описать деформацию, необходимо использовать два направления.
- Следовательно, деформация является тензором второго ранга.

Нормальные деформации

$$\varepsilon_{xx} \equiv \frac{\partial u}{\partial x}, \, \varepsilon_{yy} \equiv \frac{\partial v}{\partial y}, \, \varepsilon_{zz} \equiv \frac{\partial w}{\partial z}$$

Деформация сдвига

$$\varepsilon_{xy} \equiv \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) / 2, \ \varepsilon_{xz} \equiv \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) / 2, \ \varepsilon_{yz} \equiv \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) / 2$$

1.23 Тензор деформаций

Тензор деформаций

$$\mathbf{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}. \qquad \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

$$i, j = 1, 2, 3$$

1.24 Закон Гука в тензорной форме

Закон Гука в тензорной форме

Закон Гука выражает линейную связь между напряжением и деформацией.

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}, \quad i, j, k, l = 1, 2, 3$$

Тензор упругости (тензор 4-го ранга)

$$C_{ijkl} = C_{jikl} = C_{ijlk} = C_{jilk}$$

21 компонента матрицы жесткости

1.25 Тензор упругости (жёсткости) изотропная порода

Тензор упругости (жесткости) изотропная порода

Запись тензора упругости (жесткости) по Voigt:

$$11 \rightarrow 1$$
, $22 \rightarrow 2$, $33 \rightarrow 3$, $23 \rightarrow 4$, $13 \rightarrow 5$ и $12 \rightarrow 6$.

$$C_{12} = \lambda$$
 — константа Лама $C_{44} = \mu = (C_{11} - C_{12})/2$ μ - модуль сдвига

1.26 Закон Гука

Закон Гука

$$egin{aligned} arepsilon_{11} &= rac{1}{E} [\sigma_{11} - v(\sigma_{22} + \sigma_{33})] & \text{Модуль Юнга} \ arepsilon_{22} &= rac{1}{E} [\sigma_{22} - v(\sigma_{11} + \sigma_{33})] & arepsilon_{23} &= rac{1}{E} [\sigma_{33} - v(\sigma_{22} + \sigma_{11})] & ext{Коэффициент Пуассона} \ arepsilon_{23} &= rac{1}{2\mu} \sigma_{23} & v &= rac{\lambda}{2(\lambda + \mu)} \ arepsilon_{31} &= rac{1}{2\mu} \sigma_{31} & & & & & & & & & & & & \end{aligned}$$

1.27 Связь напряжение-деформация

Связь напряжение - деформация

Остаточные / пластические деформации

1.28 Упругие модули

Упругие модули

Модуль Юнга – это физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации; это отношение приложенного напряжения к величине соответствующей деформации, соосной прилагаемому напряжению. Его можно рассматривать как характеристику жесткости породы.

Коэффициент Пуассона – это мера латерального расширения при продольном сжатии.

Свойства упругости можно измерить в процессе акустического и плотностного каротажа или путем лабораторных испытаний керна.

38

1.29 Связь между напряжением и деформацией

Связь между напряжением и деформацией

1.30 Коэффициент Пуассона

Коэффициент Пуассона

$$\vartheta = -\frac{\varepsilon_r}{\varepsilon_l} = \frac{D' - D}{L' - L}$$

Коэффициент Пуассона – отношение радиальной деформации к осевой.

Коэффициент Пуассона является очень важным параметром при оценке горизонтальных напряжений.

Для горных пород изменяется от 0,1 до 0,45 д.е. среднее значение 0,25.

Газпром нефть 40

Типичный профиль напряжение/деформация: слабая порода, давление всестороннего сжатия 20 МПа

41

1.31 Эффективное напряжение

Эффективное напряжение

Породы и другие пористые материалы реагируют на воздействие порового давления и приложенные напряжения

По мере снижения пластового давления в пласте возрастают эффективные напряжения и риск разрушения увеличивается

$$\sigma_x' = \sigma_x - \alpha P_p$$

 α = постоянная Биота

42

1.32 Номенклатура

Номенклатура

напряжения: σ_1 = максимальное основное напряжение сжатия

 σ_2 = среднее основное напряжение сжатия

 σ_3 = минимальное основное напряжение сжатия

давления: $P_p = поровое давление$

P_w = давление в стволе скважины

Р_с = давление всестороннего сжатия при испытании пород

эффективное напряжение: $\sigma' = \sigma - \alpha P_p$ при упругом состоянии

 $\sigma' = \sigma - P_p$ при разрушении

43

1.33 Разрушение

Разрушение

Как можно определить разрушение? Не так-то просто.

- Пик или плато напряжений на профиле зависимости напряжений от деформации
- Снижение кривой зависимости напряжений от деформации
- Потеря устойчивости под действием нагрузки (потеря способности выдерживать нагрузку)
- Выход из строя....

44 Газпром нефты **44**

Типичный профиль напряжение/деформация: слабая порода, давление всестороннего сжатия 20 МПа

Критерий разрушения

Мора-Кулона

$$\sigma'_1 - N\sigma'_3 = \text{UCS}$$
 (математически просто) или
$$|\tau| = S_0 + \mu \sigma'_n \ \ \text{(имеет физический смысл)}$$

(Напряжение сдвига для обеспечения скольжения на плоскости = прочность + коэффициент трения х нормальное напряжение на данной плоскости)

Примечание: эффективное напряжение ($\sigma' = \sigma$ - Pp)

F равно UCS, N есть (1+sin ϕ)/(1-sin ϕ). ϕ – это угол внутреннего трения.

 S_0 – это сила сцепления, μ – коэффициент внутреннего трения (= tg ϕ).

46

Газпром нефты 46

Влияние порового давления

Критерий Мора-Кулона: $\sigma'_1 - N_\phi.\sigma'_3 = \text{UCS},$ или $\mid \tau \mid = S_0 + \mu.\sigma'_n$

Это уравнение прямой линии на диаграмме круга Мора.

Критерий Мора-Кулона выполняется в точке касания линии круга Мора.

47

Влияние порового давления

Если суммарное напряжение неизменно, но поровое давление возрастает, то эффективное напряжение будет снижаться.

48 Газпром нефты **48**

Влияние порового давления

Если суммарное напряжение неизменно, но поровое давление возрастает, то эффективное напряжение будет снижаться.

Геометрия и критерий разрушения М-К

Механическийе свойства горных пород – Подведение итогов

Пластовые напряжения; основное направление пластовых напряжений

Тангенциальные и нормальные напряжения – круг Мора

Влияние порового давления и эффективного напряжения

Упругость - обратимые деформации, свойства упругости

Текучесть – начало необратимых деформаций

Разрушение – как оно определяется?

Прочность при одноосном сжатии, критерии разрушения

2 Лекция 12.11.2021 (Жигульский С.В.)

3 Лекция 15.11.2021 (Альчибаев Д.В.)

4 Лекция 18.11.2021 (Альчибаев Д.В.)

Лекция 19.11.2021 (Жигульский С.В.)