

SEM 1-2 (RC 07-08)

F.E. (Semester – I) (Revised in 2007-08) Examination, May/June 2017 APPLIED SCIENCE – I Physics and Chemistry

Duration: 3 Hours Max. Marks: 100

Instructions: 1) Answer one question from each Module.

- 2) Answer each Section in separate answer book.
- 3) Draw diagrams wherever required.
- 4) Assume data if required.

SECTION-I (Physics)

Module - I

		하면 교육하다 로드로 해서에게 대명화생물하다면 보고 있었다면 그 그들이 하고 하고 있다면 되었다면 하다. 아니라 하는 다른 하고 하다.	
1.	a)	With the help of experimental arrangement, explain the method to determine R. I. of transparent liquid. Obtain necessary formula.	5
	b)	Briefly explain physical origin of Hall effect. Derive an expression for Hall voltage developed.	5
	c)	Newton's rings are obtained with reflected light of wavelength 5000 A°. If the diameter of 10 th dark ring is 0.5 cm, calculate the radius of curvature of the lens and hence find out the radius of 50 th dark ring.	5
	d)	What is continuity equation? Derive an expression for continuity equation for holes in a semiconductor.	10
2.	a)	Derive an expression for conductivity of an intrinsic semiconductor in terms of carrier mobility and carrier density.	5
	b)	The Hall coefficient of a doped silicon is found to be 3.66 \times 10 ⁻⁴ m³/c. The resistivity of sample is 8.93 \times 10 ⁻³ Ω -m. Determine the mobility and density of charge carriers.	5
	c)	What do you understand by antireflection coating? Deduce an expression for minimum thickness of antireflection coating.	5
	d)	Explain the formation of interference fringes in a wedge shaped thin film of air enclosed between two plane glass plates. Derive an expression for fringe width in a wedge shaped film in terms of angle of wedge and wavelength of monochromatic light.	10
			10

Module - II

3.	a)	Briefly explain acoustic diffraction method to determine the velocity of ultrasonic waves.	5
	b)	Write short notes on:	5
		i) Electrostatic focussing	
		ii) Quenching in a GM counter.	
	c)	Calculate the frequency of the fundamental note emitted by piezoelectric crystal. Use the following data:	5
		Vibrating length = 3 mm	
		Young's modulus = $8 \times 10^{10} \text{ N/m}^2$, $\rho = 2.5 \times \text{gm/cm}^3$.	•
	d)	Describe four methods of detection of ultrasonic waves. Explain the term direct and inverse piezoelectric method. Explain piezoelectric method of producing ultrasonic waves. How is it superior than magnetostriction method?	10
4.	a)	Write short note on the following:	5
		i) Electron gun	
		ii) Proportional counter.	
	b)	With the help of a neat diagram explain magnetostatic focusing.	5
	c)	Explain four properties of ultrasonic waves. Give an account of medical and industrial applications of ultrasonic waves.	5
	d)	Describe the difference between ionisation chamber, proportional counter and Geiger Muller counter. Briefly explain the construction and working of GM counter. How is quenching achieved in this counter?	10
		OF THE OF X 88 E SO OF DOWN SECTION - II OF S TO INSIGHTS OF THE FIT (d	
		(Chemistry)	
		Module – III	
5.	a)	Explain the working of Mi-MH battery system with relevant reactions.	6
	b)	Outline the construction of a reference electrode and illustrate its use for pH determination.	5
T.S	c)	The following cell Al \mid Al ³⁺ (0.1 M) \mid Al ³⁺ (0.01M) \mid Al was used inorder to obtain electrical energy. State the principle behind its working and calculate the EMF.	5

	d)	Explain the construction and working of hydrogen-oxygen fuel cell system.	5
	e)	Explain the working of Zn-air battery.	4
6.	a)	Define the term 'Electrode Potential'. Determine the electrode potential of the following system:	
		Cu^{2+} (0.1 M) Cu at 25°C. E° of Cu^{2+} = 0.34V.	6
	b)	Outline the construction of glass electrode and illustrate its use in pH determination.	5
	c)	Outline the characteristics of the following fuel cells:	5
		a) Polymer electrolyte fuel cell b) Phosphoric acid fuel cell.	
	d)	Explain the following characteristics with reference to a battery : i) Capacity	5
		ii) Voltage.	
	e)	Explain the working of Li-MnO ₂ battery.	4
		Module – IV	
7.	a)	Explain how corrosion can be controlled by sacrificial anodic protection and metal coatings.	6
	b)	Explain pitting and galvanic type of corrosion by taking suitable examples.	5
	c)	Explain the process of electroplating an article with chromium.	5
	d)	Outline the factors affecting rate of corrosion.	5
	e)	Briefly explain various steps involved in surface preparation of metals before plating process.	4
8.	a)	Explain water-line and stress corrosion by giving suitable examples along with necessary diagrams and reactions involved.	6
	b)	Explain the process of PCB preparation using electroless plating.	5
	c)	Explain how nature of oxide layer affects the further rate of corrosion.	5
	d)	Outline the various types of mechanism involved in dry chemical corrosion.	5
	10	What is motal finishing 2 Cive its technological importance	A
	e)	What is metal finishing? Give its technological importance.	4