河海大学 2024—2025 学年第一学期

《高等数学 BI》期末试卷 (A卷)

考试对象: 2024 级全校工科各专业本科生 考试日期: 2025 年 1 月 16 日

专业	业学号			姓名				成绩		
任课教师(金坛重修学生填写)										
题-	-	=	Ξ	四	五	六	七	八	成绩	
得	}									
得 分										
一、单选题(每小题 3 分, 共 15 分)										
1. 当 $x \to 0^+$ 时,下列与 x 等价无穷小的是().										
A. $e^{-\sin x} - 1$ B. $\sqrt{1 + \arctan x} - 1$ C. $1 - \cos \sqrt{2x}$ D. $1 - \frac{\ln(1+x)}{x}$										
2. 设 $f(x) = \frac{1}{x^2}$, $ab \neq 0$ 且 $a \neq b$, 则在 a 、 b 之间使得 $f(b) - f(a) = f'(\xi)(b - a)$ 成立的点 ξ										
().										
A. 不存在 B. 只有一点 C. 有两个点 D. 是否存在与 a、 b 之值有关										
3. 设 $f(x) = x^3 - 1 \varphi(x)$, 其中 $\varphi(x)$ 在 $x = 1$ 处连续,则 $\varphi(1) = 0$ 是 $f(x)$ 在 $x = 1$ 处可导的										
().A. 充分必要条件B. 必要但非充分条件C. 充分但非必要条件D. 既非充分也非必要条件										
4. 若 $\int f'(x^2)dx = x^4 + C$ $(x > 0)$, 则 $f(x) = ($).										
A. x^2	+ <i>C</i>	B. $\frac{4}{5}$	$x^{\frac{5}{2}} + C$		C. x	⁴ + C	D.	$\frac{8}{5}x^{\frac{5}{2}}$	+ C	
5. 函数 <i>f</i> ($x) = \ln \frac{1}{1}$	- <i>x</i> - か + <i>x</i>	麦克劳林	木公式)	为 ().				

第 1 页 共 6 页 《高等数学 B I 》期末试卷 (A 卷)

A. $-2\sum_{k=1}^{n} \frac{x^{2k}}{2k} + o(x^{2n})$ B. $-2\sum_{k=1}^{n} \frac{x^{2k-1}}{2k-1} + o(x^{2n-1})$

C.
$$2\sum_{k=1}^{n} \frac{x^{2k}}{2k} + o(x^{2n})$$

D.
$$-2\sum_{k=1}^{n}\frac{x^{2k-1}}{(2k-1)!}+o(x^{2n-1})$$

得 分

二、填空题(每小题3分,共15分)

- 1. 不定积分 $\int \frac{x+5}{x^2-6x+13} dx =$ ______
- 2. 设 y = y(x) 是由方程 $\sqrt[3]{y} = \sqrt[3]{x}(x > 0, y > 0)$ 所确定,则 dy =
- 3. 极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \left(\sqrt[3]{1+t^2}-1\right) dt}{r^3(e^{-x^3}-1)} = \underline{\hspace{1cm}}$
- 4. 曲线 $y = \frac{\ln x}{x} 2x$ 的渐近线方程为_____

- 得分 三、解答下列各题(每小题 6 分, 共 30 分)
- 1. 求极限 $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$.

2. 求曲线 $\begin{cases} x = a \cos^3 t \\ v = a \sin^3 t \end{cases} (a > 0) 在 t = \frac{\pi}{6}$ 处的曲率.

3. 已知 f(x) 的一个原函数为 $\frac{(\arcsin x)^2}{x}$, 求 $\int x f'(x) dx$.

4. 计算定积分 $\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1+x^2}} dx$.

5. 设 $f(x) = 3x^2 + Ax^{-3}$,问正数 A 至少为何值时,可使得对任意 $x \in (0,+\infty)$, 都有 $f(x) \ge 20$?

第 3 页 共 6 页 《高等数学 B I 》期末试卷 (A 卷)

得 分	四、 $(8 分)$ 求 $f(x) = x$
-----	-------------------------

四、(8 %) 求 $f(x) = xe^x$ 的 n 阶分别具有拉格朗日型余项和皮亚诺

型余项的麦克劳林公式.

得 分

五、(8分) 过坐标原点作曲线 $y = \ln x$ 的切线,该切线与曲线

 $y = \ln x$ 以及 x 轴所围成的平面图形记为 D.

- (1) 求D的面积A;
- (2) 求D绕y轴旋转一周所得的旋转体的体积V.

- (1) 证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx;$
- (2) 计算 $\int_0^2 \frac{\sqrt{4-x}}{\sqrt{4-x} + \sqrt{x+2}} dx$.

七、(8分)(1) 计算不定积分 $\int e^x \sin x dx$; 得 分

(2) 求 $I_n = \int e^x \sin^n x dx$ 的递推公式, 其中 n 为大于 1 的整数.

 $f'''(x_0) \neq 0$. (1) 证明 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点; (2) 试问 $x = x_0$ 是否是函数 y = f(x) 的极值点? 为什么?