HMM vs. CRF

Hidden Markov Model

Conditional Random Fields

Conditional Random Fields

• CRFs model can incorporate arbitrary features and domain knowledge in a flexible and straightforward way.

The choice of features is a *critical*, by very hard pro

Example

Corpus V

S S

他 恨 她

Feature template

 C_0

Features

$$f(S_0 = S, C_0 = \textcircled{tb}) = 1$$

$$f(S_0 = S, C_0 = 1) = 1$$

$$f(S_0 = S, C_0 =$$
地 $) = 1$

Test

S S

他 爱 她

他 爱 她

$$C_0$$
 C_0 C_0

$$B = 0 \quad 1/S \quad 1/B$$

$$E = 0 = 1/S = 1/B$$

$$I \quad 0 \quad 1/S \quad 1/B$$

$$S = 1$$
 $1/S = 2/B$

S B > 5

Example

Corpus

S S

他 恨 她

Test

S S

他 爱 她

Feature template

 $C_0 S_{-1}S_0$

Features

$$f(S_0 = S, C_0 = \textcircled{H}) = 1$$

$$f(S_0 = S, C_0 = 1) = 1$$

$$f(S_0 = S, C_0 =$$
地 $) = 1$

$$f(S_{-1} = S, S_0 = S) = 2$$

$$f(S_{-1} = NIL, S_0 = S) = S$$

他 爱 她

$$C_0$$
 C_0 C_0

$$B = 0 = 2/S = 4/S$$

$$E = 0 = 2/S = 4/S$$

$$I = 0$$
 $2/S$ $4/S$

Viterbi algorithm

Conditional rapidom fields

 $f(S_0 = S, O_1 = \mathcal{H})$

S B E S B E S S B E S S B E S
$$f(S_0 = S, O_0 = \vec{n})$$
 $f(S_0 = S, O_{-1} = \vec{l}), O_0 = \vec{n}$ $f(S_0 = S, O_{-2} = \vec{l})$ $f(S_0 = S, O_{-2} = \vec{l})$ $f(S_0 = S, O_{-2} = \vec{l})$ $f(S_0 = S, O_0 = \vec{n})$ $f(S_0 = S, O_0 = \vec{n})$

$$f(S_0 = S, O_2 = 始)$$
 $f(S_0 = S, O_{-1} = 小, O_0 = 就, O_1 = 开)$

 $f(S_0 = S, O_0 =$ 就 $, O_2 =$ 始)

Conditional random fields

 $f(S_0 = S, S_2 = E, O_0 = \hat{\mathbf{x}})$

 $f(S_0 = S, S_{-1} = E, O_0 =$ 就 $, O_{-1} =$ 小)

S B E S B E S S B E
$$f(S_0 = S, S_{-1} = E, O_0 = 就)$$
 $f(S_0 = S, S_{-1} = B, O_0 = 就)$ $f(S_0 = S, S_{-2} = B, O_0 = 就)$

$$S \quad B \quad E \quad (1) \quad B \quad E \quad S \quad B \quad E \quad S$$

$$f(S_0, O_0)$$
 $f(S_0 \neq S, O_0 = \vec{R}) + +$ $f(S_0 \neq I, O_0 = \vec{R}) - -$

$$f(S_0, O_{-1}, O_0) f(S_0 = S, O_{-1} = 1, O_0 = 就) + f(S_0 = I, O_{-1} = 1, O_0 = 就) - f(S_0, O_{-1}, O_0) f(S_0 = S, O_0 = I, O_0 = I$$

$$f(S_0, O_0, O_1)$$
 $f(S_0 \neq S, O_0 = \hat{\mathbf{x}}, O_1 = \mathcal{H}) + + f(S_0 = I, O_0 = \hat{\mathbf{x}}, O_1 = \mathcal{H}) - -$

$$f(S_0, O_{-1}, O_1) f(S_0 = S, O_{-1} = I, O_1 = I, O_1$$

$$f(S_{0}, O_{-1}, O_{1}) f(S_{0} = S, O_{-1} = I), O_{1} = H) + f(S_{0} = I, O_{-1} = I), O_{1} = H) - -$$

$$f(S_{-1}, S_{0}) \qquad f(S_{-1} = E, S_{0} = S) + + \qquad f(S_{-1} = E, S_{0} = I) - -$$

$$f(S_{-1} = S, S_{0} = B) + + \qquad f(S_{-1} = I, S_{0} = B) - -$$

$$f(S_{-1} = S, S_0 = B) + +$$
 $f(S_{-1} = I, S_0 = B) - -$

Hash Table
- Appoising 0

