XXI. Nemzetközi Magyar Matematikaverseny

Kecskemét, 2012. március 14-18.

12. osztály

1. feladat: A tízes számrendszerben háromjegyű pozitív egész számok közül véletlenszerűen választunk egyet. Mennyi annak a valószínűsége, hogy olyan néggyel osztható számot választunk, melynek jegyei páronként különbözőek?

Tarcsay Tamás (Szeged)

Megoldás: A tízes számrendszerben háromjegyű számok száma 900. Egy pozitív egész szám akkor és csak akkor osztható 4-gyel, ha az utolsó két jegyéből képzett kétjegyű szám osztható

25 különböző 4-gyel osztható végződés van, ezek közül a 00, 44 és 88 nem felel meg, mert ismétlődő számjegy van benne, így marad 22 darab "jó" végződés.

Ezek között 6 tartalmaz 0 számjegyet (04, 08, 20, 40, 60, 80). Ezek elé még 8 különböző számjegyet írhatunk, így 48 darab "kedvező" számot kaphatunk.

A fennmaradó 16 végződés elé 7 különböző számot írhatunk (a 0-t nem), így 112 darab "kedvező" számot kaphatunk. A "kedvező" számok száma: 48+112=160. A keresett valószínűség: $P=\frac{160}{900}=\frac{8}{45}\approx 0{,}18$.

2. feladat: Határozzuk meg a

$$\sqrt{2012} \cdot x^{\log_{2012} x} = x^2$$

egyenlet megoldásai szorzata egészrészének utolsó öt számjegyét!

Kántor Sándorné (Debrecen)

Megoldás: A logaritmus definíciója miatt x > 0. Vegyük az egyenlet mindkét oldalának 2012-es alapú logaritmusát, és használjuk fel a logaritmus azonosságait:

$$\frac{1}{2}\log_{2012}2012 + \log_{2012}^2 x = 2\log_{2012} x.$$

A $\log_{2012} x = a$ jelölés bevezetésével kapjuk, hogy $a^2 - 2a + \frac{1}{2} = 0.$

Innen
$$a_1 = \log_{2012} x_1 = 1 + \sqrt{\frac{1}{2}}$$
 és $a_2 = \log_{2012} x_2 = 1 - \sqrt{\frac{1}{2}}$.

Innen $a_1 = \log_{2012} x_1 = 1 + \sqrt{\frac{1}{2}}$ és $a_2 = \log_{2012} x_2 = 1 - \sqrt{\frac{1}{2}}$. Mindkét megoldás pozitív és összegük 2. $\log_{2012} (x_1 \cdot x_2) = \log_{2012} x_1 + \log_{2012} x_2 = 2$ miatt

$$x_1 \cdot x_2 = 2012^2 = (2000 + 12)^2 = 2000^2 + 48000 + 144 = 4048144,$$

vagyis a szorzat utolsó öt számjegye: 48 144.

3. feladat: Mutassuk meg, hogy

$$\sin^{2010} x + \cos^{2011} x + \sin^{2012} x \le 2$$

bármely valós x esetén!

Katz Sándor (Bonyhád)

Megoldás: Bármely 1-nél nem nagyobb abszolútértékű valós z és bármely $n \geq 2$ esetén teljesül a $z^n \leq z^2$ összefüggés.

Mivel $|\sin x| \le 1$ és $|\cos x| \le 1$, ezért bármely valós x esetén

$$\sin^{2010} x + \cos^{2011} x + \sin^{2012} x \le \sin^2 x + \cos^2 x + \sin^{2012} x \le 1 + 1 = 2.$$

Egyenlőség akkor és csak akkor teljesül, ha $x = \frac{\pi}{2} + k\pi$, (k egész szám).

4. feladat: Az ABC egyenlő szárú háromszögben AC=BC, az AB alap felezőpontja D, az A és a D pontból a BC szakaszra bocsátott merőlegesek talppontja rendre a BC szakasz E, illetve F belső pontja. A DF szakasz G felezőpontját a C ponttal összekötő szakasz és az AF szakasz metszéspontja H. Bocsássunk merőlegeseket a D pontból az AE és az AF egyenesekre, a merőlegesek talppontjai legyenek rendre K és L! Bizonyítsuk be, hogy az AF, EH és KL egyenesek az ABC háromszöghöz hasonló háromszöget zárnak közre!

Bíró Bálint (Eger)

Megoldás: Az állítás bizonyításához készített ábrán az AC szakasz Thalész-körét k, a CBA < = CAB < szögeket pedig β jelöli.

Mivel $ABE \lt = \beta$, ezért az ABE derékszögű háromszögben $BAE \lt = 90^{\circ} - \beta$, így a DAK derékszögű háromszögben $ADK \lt = \beta$, továbbá az egybevágó ACD és BCD derékszögű háromszögekben $ACD \lt = BCD \lt = 90^{\circ} - \beta$.

Az $A,\,D,\,L,\,K$ pontok az AD szakasz fölé rajzolt Thalész-körre illeszkednek, ezek a pontok tehát egy húrnégyszög csúcsai, ebből a kerületi szögek tétele miatt $ADK \lhd = ALK \lhd = \beta$ következik.

Az AF, EH és KL egyenesek által közrezárt LMH háromszögben azonban $HLM \lhd = \beta$, hiszen $ALK \lhd$ és $HLM \lhd$ csúcsszögek.

A továbbiakban belátjuk, hogy a H pont illeszkedik k-ra. Ehhez először igazoljuk, hogy az AF egyenes merőleges a CG egyenesre.

A DF egyenes párhuzamos AE-vel, hiszen mindkettő merőleges BC-re, és mivel D az AB felezőpontja, ezért DF középvonala az ABE háromszögnek, és így F felezőpontja az EF szakasznak. A megfelelő szögek egyenlősége miatt az ABE és DBF háromszögek hasonlók (a hasonlóság aránya 2:1).

A DF szakasz a BCD derékszögű háromszög átfogójához tartozó magassága, és mint ismeretes, ez a magasság két hasonló háromszögre bontja az eredeti háromszöget, eszerint a DBF és CDF háromszögek hasonlók. A hasonlóság tranzitív tulajdonsága miatt ezért az ABE és a CDF háromszögek is hasonlók, a megfelelő oldalak aránya tehát egyenlő, azaz $\frac{AE}{EB} = \frac{CF}{ED}$.

Mivel azonban $FD = 2 \cdot FG$ és $EB = 2 \cdot EF$, ezért

$$\frac{AE}{EF} = \frac{CF}{FG} \tag{1}$$

Az (1) egyenlőség szerint az AEF és CFG háromszögekben két-két oldal aránya megegyezik, ugyanakkor ezekben a háromszögekben az AE; EF illetve CF; FG oldalak derékszöget zárnak be, így tehát az AEF és CFG háromszögek hasonlók.

Hasonló háromszögekben a megfelelő szögek egyenlők, így $FAE \lhd GCF \lhd HCF \lhd$ (az ábrán két ívvel jelölt szögek).

Az A és C pontok az EH egyenes ugyanazon oldalán vannak, az előzőek szerint pedig az A és C pontokból az EH szakasz egyenlő nagyságú szögben látszik, így az A, H, E, C pontok egy körre, a k körre illeszkednek.

Az AHEC húrnégyszögben $ACE < 180^\circ - 2\beta$, ezért a vele szemközti szögre $AHE < 2\beta$ teljesül. Az AHE < mellékszöge az LHM <, és így $LHM < 180^\circ - 2\beta$.

Az LMH háromszögben tehát $HLM \triangleleft + LHM \triangleleft + HML \triangleleft = 180^{\circ}$, azaz $\beta + 180^{\circ} - 2\beta + HML \triangleleft = 180^{\circ}$, innen pedig azonnal adódik, hogy $HML \triangleleft = \beta$.

Az LMH háromszög szögei ezért $HLM \triangleleft = HML \triangleleft = \beta$ és $LHM \triangleleft = 180^{\circ} - 2\beta$, ezért az ABC háromszög, és az AF, EH és KL egyenesek által közrezárt LMH háromszög valóban hasonlók.

 $\textit{Megjegyz\'es}\colon \mathbf{A}\ KL$ egyenes az AEHháromszögnek aDponthoz tartozó Simson-Wallace-egyenese.

5. feladat: A, B, C véges halmazok, amelyekre teljesül, hogy |A| = |B| = |C| = a és $|A \cap B \cap C| = b$, ahol a és b nemnegatív egészek. Adjuk meg a és b függvényeként az $|A \cup B \cup C|$ minimumát és maximumát! (|X| az X halmaz elemeinek számát jelöli.)

Gecse Friques (Kisvárda)

Megoldás: Előbb a maximumot (jelölje x) határozzuk meg. Legyen $M = A \cap B \cap C$, $A_1 = A \setminus M$, $B_1 = B \setminus M$, $C_1 = C \setminus M$. Mivel A az A_1 és M diszjunkt halmazok uniója, ezért $a = |A| = |A_1| + |M|$ és b = |M| miatt $A_1 = a - b$. Hasonlóan $B_1 = a - b$, $C_1 = a - b$.

$$A \cup B \cup C = M \cup A_1 \cup B_1 \cup C_1. \tag{2}$$

Az $|A \cup B \cup C|$ akkor a legnagyobb, ha az A_1, B_1, C_1 halmazok páronként diszjunktak. Ekkor

$$x = \max |A \cup B \cup C| = |M| + |A_1| + |B_1| + |C_1| = b + 3(a - b) = 3a - 2b.$$

Térjünk át a minimum (jelölje y) meghatározására! Az M és az $A_1 \cup B_1 \cup C_1$ halmazok diszjunktak, ezért (2) alapján a $z = |A_1 \cup B_1 \cup C_1|$ jelöléssel

$$|A \cup B \cup C| = |M| + |A_1 \cup B_1 \cup C_1| = b + z. \tag{3}$$

Nézzük, hogyan választható z a legkisebbnek! Vezessük be az $A_1 \cap B_1 = D$, $A_2 = A_1 \setminus D$, $B_2 = B_1 \setminus D$, D = u, v = a - b - u jelöléseket! Két esetet vizsgálunk.

1. Ha $u \geq v$, akkor $u \geq \frac{1}{2}(a-b)$. Ekkor a C halmaz úgy választható, hogy $A_2 \subset C$, $B_2 \subset C$ legyen. Ekkor

$$z = |A_1 \cup B_1 \cup C_1| = |D| + |A_2| + |B_2| + |C_1 \setminus (A_2 \cup B_2) = u + 2v + |C_1 \setminus (A_2 \cup B_2)|.$$
 (4)

De $|C_1 \setminus (A_2 \cup B_2) = a - b - 2v$, mert A_2 és B_2 diszjunktak, és így $A_2 \cap B_2 \cap C_1 = \emptyset$. Ennélfogva

$$z = u + 2v + a - b - 2v = u + a - b \ge \frac{1}{2}(a - b) + a - b = \frac{3(a - b)}{2}.$$

Ha $\frac{1}{2}(a-b)$ egész szám, akkor A_1 -et és B_1 -et úgy választjuk ki, hogy $u=\frac{1}{2}(a-b)$ legyen. Ekkor $z=\frac{1}{2}(a-b)$ és $y=b+\frac{3}{2}(a-b)=\left[\frac{3a-b+1}{2}\right]$, ahol $[\]$ az egészrész jele. Ha az $\frac{1}{2}(a-b)$ $\frac{1}{2}$ -del különbözik egy egész számtól, akkor a halmazokat úgy kell megválasztani, hogy $z=\frac{3a-b}{2}+\frac{1}{2}$ legyen, és ismét $y=b+\frac{3a-b}{2}+\frac{1}{2}=\left[\frac{3a-b+1}{2}\right]$.

2. Ha u>v, akkor a halmazok úgy választhatók, hogy $z=u+2v=a-b+v\geq \frac{3(a-b)}{2}$, és ismét $y=\left[\frac{3a-b+1}{2}\right]$

Tehát a feladat megoldása: $x = 3a - 2b, y = \left[\frac{3a - b + 1}{2}\right]$.

6. feladat: Legyen $a_1=1, a_2=2$ és $\frac{1}{a_{n+2}}=\frac{1}{2}-\sum_{k=1}^n\frac{a_{k+2}}{a_{k+1}\cdot(a_k+a_{k+1}+a_{k+2})}$ $(n\geq 1)$ egész). Adjuk meg a_n -t zárt formában, azaz n függvényeként!

Bencze Mihály (Brassó)

Megoldás: A rekurzív definíció szerint:

$$\frac{1}{a_{1+2}} = \frac{1}{2} - \sum_{k=1}^{1} \frac{a_{k+2}}{a_{k+1} (a_k + a_{k+1} + a_{k+2})} = \frac{1}{2} - \frac{a_{1+2}}{a_{1+1} (a_1 + a_{1+1} + a_{1+2})}$$

$$\frac{1}{a_3} = \frac{1}{2} - \frac{a_3}{a_2 (a_1 + a_2 + a_3)}$$

$$\frac{1}{a_3} = \frac{1}{2} - \frac{a_3}{2(1+2+a_3)}$$

$$\frac{1}{a_3} = \frac{1}{2} - \frac{a_3}{2(3+a_3)}$$

$$6 + 2a_3 = a_3(3+a_3) - a_3^2$$

$$6 + 2a_3 = 3a_3$$

$$6 = a_3$$

Az előzmények alapján megfogalmazható a sejtés, hogy $a_n=n!$. Bizonyítsuk az állítást teljes indukcióval!

Láttuk, hogy $n=1,\ n=2,\ n=3$ esetén igaz az állítás! Tegyük fel, hogy $a_t=t!$, ha t n-nél nem nagyobb pozitív egész szám $(n\geq 4)!$ A rekurzív definíció szerint:

$$\frac{1}{a_{t+1}} = \frac{1}{a_{(t-1)+2}} = \frac{1}{2} - \sum_{k=1}^{t-1} \frac{a_{k+2}}{a_{k+1}(a_k + a_{k+1} + a_{k+2})} =$$

$$= \frac{1}{2} - \sum_{k=1}^{t-2} \frac{a_{k+2}}{a_{k+1}(a_k + a_{k+1} + a_{k+2})} - \frac{a_{t+1}}{a_t(a_{t-1} + a_t + a_{t+1})}$$

Alkalmazva az indukciós feltevést:

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{(k+2)!}{(k+1)!(k!+(k+1)!+(k+2)!)} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{k+2}{k! \cdot (1+k+1+(k+1)(k+2))} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{k+2}{k! \cdot (1+k+1+k^2+3k+2)} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{k+2}{k! \cdot (k^2+4k+4)} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{k+2}{k! \cdot (k+2)^2} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \frac{1}{k! \cdot (k+2)} - \frac{a_{t+1}}{t! \cdot ((t-1)!+t!+a_{t+1})}$$

Ugyanakkor

$$\frac{1}{(k+1)!} - \frac{1}{(k+2)!} = \frac{(k+2)! - (k+1)!}{(k+1)! \cdot (k+2)!} = \frac{(k+1)!(k+2-1)}{(k+1)! \cdot (k+2)!} = \frac{k+1}{(k+2) \cdot (k+1) \cdot k!} = \frac{1}{k! \cdot (k+2)!} = \frac{1}{(k+2)!} = \frac$$

Ezt felhasználva

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \sum_{k=1}^{t-2} \left(\frac{1}{(k+1)!} - \frac{1}{(k+2)!} \right) - \frac{a_{t+1}}{t! \cdot ((t-1)! + t! + a_{t+1})}$$

$$\frac{1}{a_{t+1}} = \frac{1}{2} - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{3!} + \frac{1}{4!} - \dots - \frac{1}{(t-2)!} + \frac{1}{(t-1)!} - \frac{1}{(t-1)!} + \frac{1}{t!} - \frac{a_{t+1}}{t! \cdot ((t-1)! + t! + a_{t+1})}$$

Teleszkópikus összeget kaptunk:

$$\frac{1}{a_{t+1}} = \frac{1}{t!} - \frac{a_{t+1}}{t! \cdot ((t-1)! + t! + a_{t+1})}$$

$$t! = a_{t+1} - \frac{a_{t+1}^2}{(t-1)! \cdot (t+1) + a_{t+1}}$$

$$(t-1)! \cdot (t+1)! + t! \cdot a_{t+1} = (t-1)! \cdot (t+1) \cdot a_{t+1}$$

$$(t-1)! \cdot (t+1)! = (t-1)! \cdot (t+1) \cdot a_{t+1} - t! \cdot a_{t+1}$$

$$(t-1)! \cdot (t+1)! = (t-1)! \cdot a_{t+1} \cdot (t+1-t)$$

$$(t+1)! = a_{t+1}$$

Az állítást bebizonyítottuk.