

Intelligenza Artificiale e al Machine Learning

Classificazione supervisionata

Classificazione: Definizione

- Data una collezione di record (training set)
 - ✓ Ogni record è composto da un insieme di attributi, di cui uno esprime la classe di appartenenza del record.
- Trova un modello per l'attributo di classe che esprima il valore dell'attributo in funzione dei valori degli altri attributi.
- Obiettivo: record <u>non noti</u> devono essere assegnati a una classe nel modo più accurato possibile
 - ✓ Viene utilizzato un test set per determinare l'accuratezza del modello. Normalmente, il data set fornito è suddiviso in training set e test set. Il primo è utilizzato per costruire il modello, il secondo per validarlo.
- I classificatori possono essere utilizzati sia a scopo descrittivo sia a scopo predittivo
- Sono più adatti ad attributi nominali (binari o discreti) poichè faticano a sfruttare le relazioni implicite presenti negli attributi ordinali, numerici o in presenza di gerarchie di concetti (es. scimmie e uomini sono primati)

Classificazione: un esempio

Test Set

Applicazioni

- Predire se una cellula tumorale è benigna o maligna in base alle sue caratteristiche
- Classificare se una transazione con carta di credito sia o meno fraudolenta
- Classificare le strutture proteiche secondarie in alphahelix, beta-sheet, or random coil
- Classificare le news in base all'argomento:finanza, meteo, sport, intrattenimento, ecc.

- Alberi decisionali o Decision Tree
- Regole di decisione
- Nearest-neighbor
- Reti Bayesiane
- Reti neurali
- Support Vector Machines

I Decision Tree

- È una delle tecniche di classificazione maggiormente utilizzate che permette di rappresentare con un albero un insieme di regole di classificazione.
- Struttura gerarchica che consiste di un insieme di nodi, correlati da archi (rami) orientati ed "etichettati". Si hanno due tipi di nodi:
 - ✓ Le classi sono definite nei nodi foglia mentre i rimanenti nodi sono etichettati in base all'attributo che partiziona i record. Il criterio di partizionamento rappresenta l'etichetta degli archi

Ciascun percorso radice-foglia rappresenta una regola di classificazione

NO

NO

MarSt

Single, Divorced

Married

NO

< 80K

NO

YES

6

Decision Tree: un esempio

Categorico Continuo

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attributo di Splitting Refund Yes No NO **MarSt** Married Single, Divorced **TaxInc** NO > 80K < 80 KYES NO

Training Data

Modello: Decision Tree

Decision Tree: un altro esempio

Categorico Continuo

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Ci possono essere più alberi di decisione per lo stesso data set

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Refund		Taxable Income	Cheat
No	Married	80K	?

Decision Tree: imparare il modello

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Induzione con Decision Tree

- Il numero di decision tree cresce esponenzialmente con il numero di attributi
- Gli algoritmi utilizzano generalmente tecniche greedy che fanno localmente la scelta "migliore"
- Sono a disposizione molti algoritmi:
 - ✓ Hunt's Algorithm
 - ✓ CART
 - ✓ ID3, C4.5
 - ✓ SLIQ,SPRINT
- Devono essere affrontati diversi problemi
 - ✓ Scelta del criterio di split
 - ✓ Scelta del criterio di stop
 - ✓ Underfitting
 - ✓ Overfitting
 - ✓ Frammentaizone dei dati
 - ✓ Criterio di ricerca
 - ✓ Espressività
 - ✓ Replicazione degli alberi

Hunt's Algorithm

- Approccio ricorsivo che suddivide progressivamente un insieme di record D_t in insiemi di record via via più puri
- Sia D_t l'insieme dei record del training set corrispondenti al nodo t e y_t={y₁,...,y_k} le possibili label di classe
- Procedura generale:
 - ✓ Se D_t contiene record appartenenti alla sola classe y_j, allora t è un nodo foglia con label y_j
 - ✓ Se D_t è un insieme vuoto, allora t è un nodo foglia a cui è assegnata una classe del nodo padre
 - ✓ Se D_t contiene record appartenenti a più classi, si scelga un attributo e un criterio di split per partizionare i record in più sottoinsiemi.
 - ✓ Si riapplichi ricorsivamente la procedura generale ai sottoinsiemi

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Cheat

Pseudo-codice di massima

```
// Let E be the training set and F the attributes
result=PostPrune (TreeGrowth (E, F));
TreeGrowth (E, F)
 if StoppingCond (E, F) = TRUE then
   leaf=CreateNode();
   leaf.label=Classify(E);
   return leaf;
 else
  root = CreateNode();
  root.test cond = FindBestSplit(E,F);
   let V = \{v \mid v \text{ is a possible outcome of } root.test cond\}
 for each v \in V do
      E_v = \{e \mid root.test cond (e) = v \text{ and } e \in E\}
      child = TreeGrowth(E_{u}, F);
      add child as descendants of root and label edge
                 (root→child) as v
   end for
 end if
 return root;
end;
```


- La ricerca di un albero di decisione ottimo è un problema NP-Completo, ma gli algoritmi eurisitci utilizzati sono molto efficienti
 - ✓ La maggior parte degli approcci eseguono una partizione ricorsiva top down basata su criteri greedy
- La classificazione utilizzando un albero decisionale è estremamente veloce e offre una facile interpretazione dei criteri
 - ✓ Il caso peggiore è O(w) dove w è la profondità dell'albero
- Gli alberi di decisione sono sufficientemente robusti rispetto alla presenza di attributi fortemente correlati
 - ✓ Uno dei due attributi non sarà considerato
 - ✓ E' anche possibile cercare di scartare uno degli attributi in fase di preprocessing mediante opportune tecniche di feature selection

Alcune considerazioni...

- L'espressività degli alberi decisionali è limitata alla possibilità di effettuare partizionamenti dello spazio di ricerca con condizioni che coinvolgono un solo attributo per volta
 - ✓ Decision boundary paralleli agli assi

Questa suddivione non è ottenibile con alberi decisionali tradizionali

Elementi caratterizzanti

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

Come definire la condizione di split

- Dipende dal tipo di attributo
 - ✓ Nominale
 - ✓ Ordinale
 - ✓ Continuo
- Dipende dal numero di split applicabili ai valori dell'attributo
 - ✓ A 2 vie
 - ✓ A più vie

Splitting con attributi nominali

Split a più vie: crea tante partizioni quanti sono i valori dell'attributo

Family Luxury
Sports

Split a 2 vie: crea due partizioni e richiede di suddividere i possibili valori dell'attributo in modo ottimale

Splitting con attributi continui

- Split a più vie: la condizione di split può esere espressa come un test di comparazione che ha per risultato più range di valori. L'algoritmo deve considerare tutti i possibili range di valori come possibili punti di split
- Split a 2 vie: la condizione di split può esere espressa come un test di comparazione con risultato binario. L'algoritmo deve considerare tutti i valori come possibili punti di split

Elementi caratterizzanti

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

Come determinare lo split migliore

 Prima dello split una sola classe con 10 record in classe C0 e 10 record in classe C1

- Il criterio di split deve permettere di determinare classi più pure. Serve una misura di purezza
 - ✓ Gini index
 - ✓ Entropia
 - ✓ Misclassification error

Come determinare lo split migliore

C0	NOO	MO
C1	N01	

Gain = M0 - M12 vs M0 - M34

Misure di impurità

- Dato un nodo p con record appartenenti a k classi e un suo partizionamento in n nodi figli
 - ✓ m = numero di record nel padre p
 - ✓ mi = numero di record nel figlio i

ATTENZIONE a non confondere il numero delle classi (k)

e quello dei nodi figli (n)

$$GINI(i) = 1 - \sum_{j=1}^{k} [p(j|i)]^{2}$$

Gini index: usato in CART, SLIQ, SPRINT.

Entropia usato in ID3 e C4.5

$$Entropy(i) = -\sum_{j=1}^{k} p(j|i) \log p(j|i)$$

Errore di classificazione
$$Error(i) = 1 - \max_{j \in K} p(j|i)$$

 Impurità complessiva dello split è data dalla seguente formula dove meas() è una delle misure introdotte

$$Impurity_{split} = \sum_{i=1}^{n} \frac{m_i}{m} meas(i)$$

Una comparazione dei criteri di splitting

 Valore dei diversi indici, per un partizionamento in due classi

Split basato sul GAIN

- Utilizzando misure di impurità delle classi come Gini e Entropy richiede di scegliere il valore di split che massimizza il "guadagno" in termini di riduzione dell'impurità delle classi dopo lo split.
- Per esempio, considerando l'entropia, il guadagno del partizionamento di un nodo p in n nodi figli è:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{n} \frac{m_i}{m} Entropy(i)\right)$$

- Selezionare il valore di split che massimizza il GAIN tende a determinare criteri di split che generano un numero molto elevato di classi molto pure e con pochi record.
 - ✓ Partizionare gli studenti in base alla loro matricola garantisce che tutte le classi (formate da un solo studente) siano totalmente pure!!

Split basato sulle INFO

- Per evitare il problema della polverizzazione delle classi è preferibile massimizzare il Gain Ratio:
 - ✓ n = numero di nodi figli
 - ✓ m = numero di record nel padre p
 - ✓ mi = numero di record nel figlio i

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{n} \frac{m_i}{m} \log \frac{m_i}{m}$$

- ✓ Maggiore il numero dei figli, maggiore il valore di SplitInfo con una conseguente riduzione del GainRatio
- ✓ Per esempio, assumendo che ogni nodo figlio contenga lo stesso numero di record, SplitInfo = log n.
- ✓ C4.5 utilizza il criterio basato su SplitINFO

Split basato sulle INFO

- Per evitare il problema della polverizzazione delle classi è preferibile massimizzare il Gain Ratio:
 - \checkmark n = da 2 a 64
 - $\sqrt{m} = 100$
 - \checkmark mi = m/n

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

- Interrompere lo split di un nodo quando tutti i suoi record appartengono alla stessa classe
- Interrompere lo split di un nodo quando tutti i suoi record hanno valori similari su tutti gli attributi
 - ✓ La classificazione sarebbe poco significativa e dipendente da piccole fluttuazioni dei valori
- Interrompere lo split quando il numero dei record nel nodo è inferiore a una certa soglia (data fragmentation)
 - ✓ Il criterio selezionato non sarebbe statisticamente rilevante

Metriche per la valutazione del modello

- La Confusion Matrix valuta la capacità di un classificatore sulla base dei seguenti indicatori
 - ✓ TP (true positive): record correttamente classificati come classe Yes
 - ✓ FN (false negative): record **in**correttamente classificati come classe No
 - ✓ FP (false positive): record incorrettamente classificati come classe Yes
 - ✓ TN (true negative) record correttamente classificati come classe No

	CI	Classe prevista									
		Class=Yes	Class=No								
Classe	Class=Yes	TP	FN								
effettiva	Class=No	FP	TN								

 Se la classificazione utilizza n classi, la matrice di confusione sarà di dimensione nxn

Accuratezza

	CI	Classe prevista										
		Class=Yes	Class=No									
Classe	Class=Yes	TP	FN									
effettiva	Class=No	FP	TN									

L'accuratezza è la metrica maggiormente utilizzata per sintetizzare l'informazione di una confusion matrix

Accuracy=
$$\frac{TP+TN}{TP+TN+FP+FN}$$

 Equivalentemente potrebbe essere utilizzata la frequenza dell'errore

Error rate =
$$\frac{FP + FN}{TP + TN + FP + FN}$$

Limiti dell'accuratezza

- L'acuratezza non è una metrica adeguata nel caso in cui le classi contengano un numero fortemente diverso di record
 - ✓ Consideriamo un problema di classificazione binario in cui
 - # record della classe 0 = 9990
 - # record della classe 1 = 10
 - ✓ Un modello che che predica sempre l'appartennza alla classe 0 avrà un'accuratezza di 9990/10000 = 99.9 %

Nel caso di problemi di classificazione binaria la classe la classe "rara" è anche chiamata classe positiva, mentre la classe che include la maggioranza dei record è chiamata classe negativa

Precision e Recall

- Precision e Recall sono due metriche utilizzate nelle applicazioni in cui la corretta classificazione dei record della classe positiva riveste una maggiore importanza
 - ✓ Precision misura la frazione di record risultati effettivamente positivi tra tutti quelli che erano stati classificati come tali
 - ✓ Valori elevati indicano che pochi record della classe negativa sono stati erroneamente classificati come positivi.
 - ✓ Recall misura la frazione di record positivi correttamente classificati
 - ✓ Valori elevati indicano che pochi record della classe positiva sono stati erroneamente classificati come negativi.

Precision,
$$p = \frac{TP}{TP + FP}$$

Recall, $r = \frac{TP}{TP + FN}$

Precision e Recall

precision = 1 se tutti i record positivi sono stati effettivamente individuati
 Positivi
 Negativi

recall = 1 se non ci sono falsi negativi

Se entrambi valgono 1 le classi predette coincidono con quelle reali1

Matrice dei costi

- La matrice dei costi codifica la penalità in cui si incorre nel classificare un record in una classe diversa
 - ✓ Una penalità negativa indica il "premio" che si ottiene per una corretta classificazione

 $C(M)=TP\times C(Yes|Yes)+FP\times C(Yes|No) +FN\times C(No|Yes) +TN\times C(No|No)$

	Cla	asse previs	ta j
	C(i j)	Class=Yes	Class=No
Classe effettiva	Class=Yes	C(Yes Yes)	C(Yes No)
i	Class=No	C(No Yes)	C(No No)

 Un modello costruito struttando, come funzione di purezza, una matrice di costo tenderà a fornire un modello a costo minimo rispetto ai pesi specificati

Calcolo del costo

Cost Matrix	PREDI	CTED (CLASS
	C(i j)	+	•
ACTUAL CLASS	+	-1	100
OLAGO	-	1	0

Model M ₁	PREDI	CTED (CLASS
		+	-
ACTUAL CLASS	+	150	40
OLAGO	•	60	250

Model M ₂	PREDI	CTED (CLASS
		+	-
ACTUAL CLASS	+	250	45
CLASS	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

- Training error: sono gli errori che si commettono sul training set
- Generalization error: sono gli errori che si commettono sul test set (record su cui non è stato addestrato il sistema).
- Underfitting: il modello è troppo semplice e non consente una buona classificazione nè del training set, nè del test set
- Overfitting: il modello è troppo complesso, consente un'ottima classificazione del training set, ma una pessima classificazione del test set
 - ✓ Il modello non riesce a generalizzare poiché è basato su peculiarità specifiche del training set che non si ritrovano nel test set (es. rumore presente nel training set)

Underfitting e Overfitting

- √ 500 cerchi e 500 triangoli
- ✓ Punti circolari: $0.5 \le \text{sqrt}(x12+x22) \le 1$
- ✓ Punti triangolari: sqrt(x12+x22) > 0.5 o sqrt(x12+x22) < 1</p>

Overfitting dovuto al rumore

I confini delle aree sono distorte a causa del rumore

Overfitting dovuto alla ridotta dimensione del training set

Punti presenti nel training set *

La mancanza dei punti nella parte bassa del diagramma rende difficile individuare una corretta classificazione per quella porzione di regione

Come gestire l'Overfitting: prepruing (Early stopping rule)

- Interrompere lo splitting prima che si arrivi a un albero di massima profondità
- Un nodo non può essere splittato ulteriormente se:
 - ✓ Il nodo non contiene istanze
 - ✓ Tutte le istanze appartengono alla medesima classe
 - ✓ Tutti gli attributi hanno gli stessi valori
- Condizioni più restrittive potenzialmente adottabili sono:
 - ✓ Interrompi lo splitting se il numero di istanze nel nodo è inferiore a una quantità fissata
 - ✓ Interrompi lo splitting se la distribuzione delle istanze tra le classi è indipendente dai valori degli attributi
 - ✓ Interrompi lo splitting se non si migliora la misura di purezza (es. Gini o information gain).

- Esegui tutti gli split possibili
- Esamina i nodi del decision tree ottenuto con una logica bottom-up
- Collassa un sottoalbero in un nodo foglia se questo permette di ridurre l'errore di generalizzazione (ossia sul validation set)
 - Scegli di collassare il sottoalbero che determina la massima riduzione di errore (N.B. scelta greedy)
- Le istanze nella nuova foglia possono essere etichettate
 - ✓ In base all'etichetta che compare più frequentemente nel sottoalbero
 - ✓ In base all'etichetta che comapre più frequentemente nelle istanze del training set che appartengono al sottoalbero
- Il post-pruning è più efficace ma implica un maggior costo computazionale
 - ✓ Si basa sull'evidenza del risultato di un albero completo

Elementi caratterizzanti

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

Costruzione del test set

Holdout

- ✓ Utilizzare 2/3 dei record per il training e 1/3 per la validazione
- ✓ Svantaggi:
 - Opera con un training set ridotto
 - Il risultato dipende dalla composizione del training set e del test set

Random subsampling

 Consiste in una esecuzione ripetuta del metodo holdout in cui il dataset di training è scelto casualmente

Cross validation

- ✓ Partiziona i record in k sotto-insiemi distinti
- ✓ Esegui il training su k-1 partizioni ed il test sulla rimanente
- ✓ Ripeti il test k volte e calcola l'accuracy media
- ✓ ATTENZIONE: la cross validation crea k classificatori diversi e quindi la validazione indica quanto il tipo di classificatore e i suoi parametri sono adatti per lo specifico problema
 - I k alberi decisionali costruiti potrebbero avere attributi e condizioni di split diverse a seconda delle caratterisitche del k-esimo training set

Combinazione di classificatori

- Idea: costruire più classificatori di base e predire la classe di appartenza di un record aggregando le classificazioni ottenute
 - ✓ Il risultato del classificatore composto è definito per mezzo di una funzione che, per esempio, assegna il record alla classe che è stata "votata" dal maggior numero di classificatori

Principio di funzionamento

- Supponiamo di avere 25 classificatori semplici
 - ✓ Ogni classificatore ha un error-rate pari a ε = 0.35
 - ✓ Si assuma che i classificatori siamo indipendenti
 - Non c'è correlazione tra gli error-rate dei classificatori
- La probabilità che il classificatore composto dia un risultato errato è:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

- Condizioni necessarie perchè il classificatore composto dia risultati migliori dei classificatori semplici sono:
 - ✓ Che i classificatori siano indipendenti
 - ✓ Che l'error-rate del singolo classificatore sia inferiore a 0.5

Come costruire classificatori composti

- Cambiando il training set: si costruiscono più training set a partire dal data set dato
 - ✓ Bagging e Boosting
- Cambiando gli attributi utilizzati: i singoli classificatori sono basati su un sottoinsieme degli attributi
 - ✓ Utile quando gli attributi sono fortemente ridondanti
 - Random Forest
- Cambiando le classi considerate:
 - ✓ Si partizionano le classi in due gruppi A0 e A1 e si trasforma il problema dato in un problema binario. Le classi che appartengono ad A0 sono classificate come 0 le rimanenti come 1.
 - ✓ I diversi classificatori sono costruiti risuddividendo le classi in sottoinsiemi diversi
 - ✓ La classificazione del classificatore composto si ottiene incrementando di 1 il punteggio delle classi che appartengono al sottoinsieme scelto.
 - ✓ Il record è infine assegnato alla classe che ottiene il punteggio maggiore
 - Error-Correcting Output Coding
- Cambiando i parametri dell'algoritmo di learning:
 - ✓ Topologia e pesi di una rete neurale
 - ✓ Alberi decisionali con politiche di scelta random degli attributi da utilizzare

Bagging vs Boosting vs ...

- Bagging: mira a creare un insieme di classificatori aventi la stessa importanza. All'atto della classificazione, ciascun modello voterà circa l'esito della predizione e l'output complessivo sarà la classe che avrà ricevuto il maggior numero di voti.
- Boosting: a differenza del bagging, ciascun classificatore influisce sulla votazione finale con un certo peso. Tale peso sarà calcolato in base all'errore di accuratezza che ciascun modello commetterà in fase di learning.
- Stacking: mentre nel bagging l'output era il risultato di una votazione, nello stacking viene introdotto un ulteriore classificatore (detto metaclassificatore) che utilizza le predizioni di altri sotto-modelli per effettuare un ulteriore learning.

Bagging

- Permette di costruire classificatori composti che associano un evento alla classe più votata dai classificatori base
- Ogni classificatore è costruito mediante bootstrap di un medesimo trainining set

```
// k = numero di cicli di bootstrap N = card. del training set // \delta()=1 se l'argomento della funzione è TRUE, 0 altrimenti for i=1 to k do Crea un training set D_i di dimensione N Allena un classificatore C_i sul training set D_i end for C^*(\mathbf{x}) = \arg\max_{y} \sum_{i} \delta(C_i(\mathbf{x}) = y)
```

Bagging: un esempio

- Classificatore di base: albero decisionale binario a un livello
 - ✓ Può solo fare scelte del tipo $x \le s \to -1 x > s \to 1$ dove s è lo split point
- II data set

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- L'accuratezza del classificatore base non può superare 70%
 - \checkmark x \leq 0.3 \rightarrow 1 x>0.3 \rightarrow -1
 - $\checkmark x \le 0.7 \rightarrow -1 x > 0.7 \rightarrow 1$

Bagging: le sessioni

Bagging Round 1:

- 55	9										
х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1
У	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1

Bagging Round 2:

99	.9										
х	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1	x <= 0.65 ==> y = 1
у	1	1	1	-1	-1	1	1	1	1	1	x > 0.65 ==> y = 1

Bagging Round 3:

х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	x <= 0.35 ==> y = 1
у	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1

Bagging Round 4:

99	9										
х	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	0.8	0.9	x <= 0.3 ==> y = 1
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 ==> y = -1

Bagging Round 5:

	~										
х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	x <= 0.35 ==> y = 1
у	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.35 ==> y = -1

Bagging Round 6:

х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
у	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 7:

х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	x <= 0.75 ==> y = -1
У	1	-1	-1	-1	-1	1	1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 8:

	9										
х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 9:

x	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	x <= 0.75 ==> y = -1
у	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 10:

х	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9
у	1	1	1	1	1	1	1	1	1	1

Bagging: i risultati

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

 Il bagging permette di ottenere il comportamento di un albero decisionale a due livelli

Disegnare l'albero decisionale a due livelli corrispondente al risultato del bagging

Random Forest

- Appartiene alla famiglia di metodi di Bagging:
 - ✓ Estrazione con re-imbussolamento di un sottoinsieme D_i di pattern dal training set
 - ✓ Addestramento del classificatore C_i sul sottoinsieme D_i
 - ✓ Fusione dei classificatori (e.g., majority vote rule, somma)
- In Random Forest i singoli classificatori sono alberi decisionali
- Per rendere maggiormente indipendenti i classificatori:
 - ✓ per ogni nodo la scelta della feature migliore su cui partizionare non è fatta sull'intero insieme delle d feature (dimensionalità dei pattern), ma su un sottoinsieme random di d' feature. Valore tipico $d' = \sqrt{d}$
 - ✓ In assenza di questo accorgimento (noto anche come feature bagging) molti tree sceglierebbero con elevata probabilità le stesse variabili (quelle più discriminanti).
- Pertanto Random Forest opera simultaneamente due tipi di bagging: uno sui pattern del training set e uno sulle feature

Classificatori K-NN

Prof. Matteo Golfarelli

Alma Mater Studiorum - Università di Bologna

Classificatori Instance-Based

- Non costruiscono modelli ma classificano i nuovi record sulla base della loro somiglianza rispetto agli esempi nel training set
- Sono per questo detti lazy -pigri- learners in contrapposizione agli eager –diligenti, impazienti- learners (rule based, alberi decisionali, reti neurali, ecc.)
 - ✓ Rote-learner: classifica un record solo se coincide con uno del training set
 - ✓ Nearest-Neighbor: classifica il record in base ai più simili del training set

Set of Stored Cases

Atr1	 AtrN	Class				
		A				
		В				
		В		I In	seen C	1000
		С		OII	Seen C	lase
		A		Atr1		AtrN
		С				
		В				

Classificatori Nearest Neighbor

- Utilizzano i k punti "più vicini" (nearest neighbors) per effettuare la classificazione
- Idea di base:
 - ✓ If it walks like a duck, quacks like a duck, then it's probably a duck

Classificatori Nearest Neighbor

Richiedono:

- Un training set
- Una metrica per calcolare la distanza tra i record
- Il valore di k, ossia il numero di vicini da utilizzare

Il processo di classificazione:

- Calcola la distanza rispetto ai record nel traing set
- Identifica k nearest neighbors
- Utilizza le label delle classi dei nearest neighbor per determinare la classe del record sconosciuto (es. scegliendo quella che compare con maggiore frequenza)

Definizione di Nearest Neighbor

I k nearest neighbors di un record \mathbf{x} sono i record del training set che hanno le più piccole k distance da \mathbf{x}

K-Nearest Neighbor

La classificazione di un record z è ottenuta con un processo di majority voting tra i k elementi Dz del training set D più vicini (o simili) a z

$$\overline{y} = \underset{y \in \mathbf{Y}}{\operatorname{arg\,max}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(y_i = y)$$

- ✓ Y è l'insieme delle label di classe
- ✓ I() restituisce 1 se il suo argomento è TRUE, 0 altrimenti
- Tutti i vicini hanno lo stesso peso
 - ✓ L'algoritmo è molto sensibile al valore di k
 - ✓ Questo rischio può essere ridotto pesando il contributo dei vicini in base alla distanza $w = 1/d(\mathbf{z}, \mathbf{x}_i)$

$$\overline{y} = \underset{y \in \mathbf{Y}}{\operatorname{arg\,max}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w \times I(y_i = y)$$

K-Nearest Neighbor

- La scelta di k è importante perchè:
 - ✓ Se k è troppo piccolo, l'approccio è sensibile al rumore
 - ✓ Se k è troppo grande, l'intorno può includere esempi appartenenti ad altre classi

- Per operare correttamente gli attributi devono avere la stessa scala di valori e vanno quindi normalizzati in fase di preprocessing
 - ✓ Esempio: su quale attributo una differenza di 0.5 vale di più?
 - l'altezza di un adulto varia 1.5m to 2.1m
 - il peso di un adulto varia da 40kg a 150kg
 - Lo stipendio di una persona varia da 10K€ to 1M€
- Normalizzare la scala può non essere sufficiente in presenza di diverse distribuzioni dei dati
 - ✓ Mahalanobis distance

K-Nearest Neighbor: Pro & Contro

Pro

- ✓ Non richiedono la costruzione di un modello
- ✓ Rispetto ai sistemi basati su regole o decision tree permettono di costruire "contorni" delle classi non lineari e sono quindi più flessibili

Contro

- Richiedono una misura di similarità o distanza per valutare la vicinanza
- ✓ Richiedono una fase di pre-processing per normalizzare il range di variazione degli attributi
- ✓ La classe è determinata localmente e quindi è suscettibile al rumore dei dati
- ✓ Sono molto sensibili alla presenza di attributi irrilevanti o correlati che falseranno le distanze tra gli oggetti
- ✓ Il costo di classificazione può essere elevato e dipende linearmente dalla dimensione del training set in mancanza di opportune strutture ad indice

AutoMachineLearning

Prof. Matteo Golfarelli

Alma Mater Studiorum - Università di Bologna

La Crescita dei dati

- La crescita esponenziale dei dati rede difficili analizzarli manualmente, ma....
 - ✓ Anche le tecniche di ML richiedono un processo di tuning oneroso
 - ✓ I data scientist non scalano!

Data scientist & Data Enthusiast

- I data scientist sono una delle figure prosessionali più ricercate del momento
 - ✓ Sono figure professionali interdisciplinari difficili da formare

 Sempre più utenti con competenze di base utilizzano tool di Data mining

AutoML

 Automated Machine Learning è il processo di automazione nell'applicazione del ML

- Ha l'obiettivo di identificare la pipeline ottima
 - ✓ Una pipeline è formata da una sequenza di trasformazioni
 - ✓ Ogni trasformazione può essere scelta tra un insieme di alternative
 - ✓ Ogni operazione ha un insieme di iper-parametri
 - ✓ Ogni iper-parametro ha il suo search space

Parametri vs Iper-Parametri

- In un sistema di machine learning ci sono due tipi di parametri:
- Parametri del modello: sono i parametri che sono individuati dal processo di allenamento che porta al fitting.
 - ✓ Decision tree: attributi di split, condizioni di split
- Iper-parametri: Questi sono parametri regolabili che devono essere fissati per ottenere un modello con prestazioni ottimali.
 - ✓ K-nearest neighbor: k, funzione distanza...
 - ✓ Decision tree: split a 2-vie o a molte-vie, funzione di purezza...
 - ✓ PCA: numero dimensioni

CASH: Combined Algorithm Selection and Hyper-parameter optimization problem

- Formalizzato per un singolo operatore la prima volta in Auto-Weka
 - ✓ Dato un dataset D suddiviso in D_{train} e D_{test}
 - ✓ Un insieme di algoritmi $A = \{A_1, \ldots, A_j, \ldots, A_n\}$ con gli associati iperparametri $\{\Theta_1, \ldots, \Theta_j, \ldots, \Theta_n\}$

$$\begin{array}{l} A_1 = Decision \ tree \\ \Theta_1 = \{num_obj, \ pruning\} \\ num_obj = \{2,3,4\} \\ pruning = \{true, \ false\} \end{array}$$

$$A_2=KNN$$

$$\Theta_2=\{K, weight\}$$

$$K=\{2,3,4,5\}$$

$$weight=\{1/\text{dist}, 1/\text{dist2}\}$$

CASH: Combined Algorithm Selection and Hyper-parameter optimization problem

- Formalizzato per un singolo operatore la prima volta in Auto-Weka
 - ✓ Dato un dataset D suddiviso in D_{train} e D_{test}
 - ✓ Un insieme di algoritmi $A = \{A_1, \ldots, A_j, \ldots, A_n\}$ con gli associati iperparametri $\{\Theta_1, \ldots, \Theta_j, \ldots, \Theta_n\}$
 - Una metrica di valutazione M(A^j_θ, D_{train}, D_{test})
 - Accuracy, Precision-Recall
- Trova l'insieme di algoritmi e di iper-parametri che massimizzano la metrica di valutazione

$$A_{\theta^*}^* = \underset{A_j \in A, \theta \in \Theta_j}{\operatorname{argmax}} M(A_{\theta}^j, D_{train}D_{test})$$

CASH: Combined Algorithm Selection and Hyper-parameter optimization problem

- Formalizzato per un singolo operatore la prima volta in Auto-Weka
 - ✓ Dato un dataset D suddiviso in D_{train} e D_{test}
 - ✓ Un insieme di algoritmi $A = \{A_1, \ldots, A_j, \ldots, A_n\}$ con gli associati iperparametri $\{\Theta_1, \ldots, \Theta_j, \ldots, \Theta_n\}$
 - ✓ Una metrica di valutazione M(Aj_θ, D_{train}, D_{test})
 - Accuracy, Precision-Recall
- Trova l'insieme di algoritmi e di iper-parametri che massimizzano la metrica di valutazione

$$A_{\theta^*}^* = \underset{A_j \in A, \theta \in \Theta_j}{\operatorname{argmax}} M(A_{\theta}^j, D_{train}D_{test})$$

 La formulazione precedente è valida per un operatore e va estesa a tutta la pipeline

76

Risoluzione di CASH

- Lo spazio di ricerca può essere enorme sono necessarie tecniche euristiche (che trovino una soluzione ottimale senza esplorarlo tutto)
 - ✓ Grid search
 - ✓ Random search
 - ✓ Heuristics
 - Ant colony optimization
 - Particle Swarm Optimization
 - Simulate Annealing
 - ✓ Genetic algorithms
 - ✓ Multi-resolution optimization
 - Successive Halving
 - Hyper-Band
 - ✓ Bayesian optimization
 - Sequential Model-Based Optimization (SMBO)

AutoML Tool

- Il numero di tool che forniscono funzioni di AutoML è in continua crescita
 - ✓ Cloud-Based
 - Google AutoML
 - Amazon AutoML
 - Azure AutoML
 - Data Iku
 - Data Robot
 - ✓ Distributed
 - MLBase
 - TrasmogrifAl
 - MLBox
 - ATM
 - Rafiki

- ✓ Centralised
 - Auto-Weka
 - Auto-Sklearn
 - HyperOpt
 - HyperOpt-Sklearn
 - TPOT
 - SmartML
 - H2O