CONTROL 1

1- Una esferita de masa m=0.15 g y carga q=-5.0 nC pende de un hilo que se aparta 20° con respecto a la vertical como consecuencia de un campo eléctrico proveniente de un plano cargado uniformemente (figura). ¿Cuánto vale la densidad superficial de carga σ en dicho plano?

- 2- Una esfera conductora de radio r_1 = 1,0 cm posee una carga q_1 y está rodeada de un cascarón esférico concéntrico de radio interior r_2 = 3,0 cm, radio exterior r_3 = 5,0 cm y carga q_2 . El campo eléctrico a 2,0 cm del centro de la esfera es 9,0.10⁴ N/C radial hacia afuera y a 6,0 cm del mismo centro vale 1,5.10⁴ N/C radial hacia adentro. Calcular los valores de q_1 y de q_2 .
- 3- Un protón se mueve directamente hacia el centro de una esfera de 1,00 cm de radio cargada con +100 nC y se detiene a 1,00 cm de la esfera. Calcule la rapidez que alcanzará alejándose hacia el infinito.
- 4- En laboratorio 2: Electrostática. Escriba en su hoja el ítem y el sub ítem correcto.
 - a) Al acercarse muy próximo al electroscopio el electróforo cargado (disco de cobre y mango aislante), la varilla pivotante rota, entonces la/s carga/s son:
 - i. carga nula en cada varilla?
 - ii. una varilla tiene carga positiva y la otra carga negativa?
 - iii. la varilla fija y la pivotante tienen iguales cargas no nulas cada una?
 - b) Al observar el generador de Van de Graaff y sus efectos, en el interior del tubo conductor grande en aceite, las moléculas de las semillas se:
 - i. Cargaban.
 - ii. Polarizaban.
 - iii. Nada les pasa eléctricamente.