

Nome:		
N°:		
Curso:		

Bioquímica Geral A. Teste Pratico. 19 de novembro de 2014

Assimple com O a(s) respecte(s) yardadaira(s); anda DUAS respectes	2-	a	
Assinale com O a(s) resposta(s) verdadeira(s); cada DUAS respostas erradas descontam 1 resposta acertada.	3-	a	
	4-	a	
Atenção:	5-	a	
Duas respostas erradas tiram uma resposta verdadeira.	6-	a	
NAO EALE COM NINCHEM A NAO CED COM O DOCENTE	7-	a	
NAO FALE COM NINGUEM A NAO SER COM O DOCENTE.	8-	a	
	9-	a	
	10-	a	
	11-	a	
	12-	a	
CLASSIFICAÇÃO:	13-	a	

1-	a	b	c	d
2-	a	b	c	d
3-	a	b	c	d
4-	a	b	c	d
5-	a	b	c	d
6-	a	b	c	d
7-	a	b	c	d
8-	a	b	c	d
9-	a	b	c	d
10-	a	b	c	d
11-	a	b	c	d
12-	a	b	c	d
13-	a	b	c	d
14-	a	b	c	d
15-	a	b	c	d
16-	a	b	c	d
17-	a	b	c	d
18-	a	b	c	d
19-	a	b	c	d
20-	a	b	c	d

1. 5 pontos

De modo a determinar a quantidade de proteína total presente numa amostra problema de plasma, um bioquímico da FCT, pipetou 5 μ L da amostra de plasma e adicionou 495 μ L de tampão, obtendo um volume final de 0.5mL. A partir desta solução tirou 50 μ L e adicionou 450 μ L de tampão, sendo que o volume final é de 0.5 mL. A 100 μ L desta última amostra adicionasse 1 mL de reagente de Bradford e a solução apresenta uma absorvência de 0.045 UA.

Foi ainda preparada uma reta de calibração com uma solução de BSA com reagente de bradford:

[BSA] µg	g/μL	0	3	5	7	9	12
Absorvâ	incia	0.015	0.030	0.045	0.060	0.075	0.090

qual a concentração de proteína ($\mu g/L$) na solução resultante de suma 50 μL e 450 μL de tampão (segunda diluição). Indique a recta de calibração.

Concentração Reta de calibração	
---------------------------------	--

2. 5 Pontos

4.4. Pretende-se estudar a cinética de uma enzima Michaeliana que catalisa a hidrólise da ligação glicosídica. Utilizou-se um substrato artificial o-nitrofenil β -D-glucósido (**ONPG**), que após hidrólise liberta ortonitrofenol. A pH elevado este produto é desprotonado dando origem ao o-nitrofenolato (**ONP-**) que é um composto corado. Devido à cor amarela do produto, a reacção pode ser seguida por espectrofotometria de visível. Na tabela encontram-se as leituras de <u>absorvância</u> a λ = 430nm, correspondentes

ao aparecimento de produto para diferentes tempos de reacção. A experiência foi efectuada para diferentes concentrações iniciais de substrato, tendo sido utilizada sempre a mesma quantidade de enzima. A absortividade molar do produto a 430nm é ϵ_{430} = 4.5 mM⁻¹cm⁻¹ e o percurso óptico da célula b=1cm. A lei de Lambert-Beer estabelece a relação entre a absorvância e a concentração da espécie corada: Abs₄₃₀= ϵ_{430} b [ONP⁻]

Tabela – Absorvâncias medidas a 430nm em função do tempo de incubação

tempo (min)	1.0	2.0	3.0	4.0	5.0	6.0
[ONPG] (mM)						
1	0.015	0.030	0.045	0.060	0.070	0.075
2	0.026	0.051	0.077	0.103	0.120	0.128
5	0.045	0.090	0.135	0.180	0.210	0.225
10	0.060	0.120	0.180	0.240	0.280	0.300

A - Lineweaver Burk

1.- Determine as velocidades iniciais (v0) para cada concentração de substrato testada. Explicite as unidades. (2 pontos)

V01=	V02=	V03=	V04=

- 2.- Determine Vm e KM da Enzima. Explicite as unidades.
- (1 ponto) Recta =
- (1 ponto) Vm=
- (1 ponto) KM=
- 1.- Pratica 1.- Considere o coeficiente de extinção molar do citocromo reduzido como 7.04 mM⁻¹ cm⁻
- 1. Qual a concentração de citocromo de uma solução com absorvência 0.44?
- 2.5 pontos
- a) 0.5 M
- b) 0.07 M c) 1 M
- d) 0.0625 M
- 2.-Pratica 2.- Na cromatografia de separação em gel, você separou:

Uma resposta certa

- 2.5 pontos
- a) Hemoglobina de ferricianeto de potássio
- b) Hemoglobina de ditionito de sódio
- c) Hemoglobina, ditionito de sódio e ferricianeto de potássio
- d) Metahemoglobina, desoxihemoglobina e oxihemoglobina

3.- Pratica 3.- Qual a base do método de separação por cromatografia de permuta iónica? Uma resposta certa

2.5 pontos

- a) Adsorção diferencial das proteínas na resina iónica. pH e força iónica sao utilizados para separar as proteínas retidas sequencialmente.
- b) Tamanho das cargas. pH e força iónica são utilizados para separar as proteínas retidas sequencialmente.
- c) pH e força iónica
- d) Catalase (proteína verde) e o citocromo c (proteína vermelha).

4.- Pratica 4.- Para a enzima utilizada na pratica enzimática (varias respostas certas):

2.5 pontos

- a) A atividade não foi constante na experiencia com diferentes pH
- b) A atividade foi constante na experiencia com diferentes pH
- c) A enzima desnaturou em algum momento
- d) A atividade não foi constante na experiencia com diferentes temperaturas