# Predicting Loan Applicant Risk Profile Using Machine Learning

Commerce 3FN3 Big Data in Finance

G-15

# Problem Background

Every year banks receive thousands of loan applications each with unique circumstances that must be evaluated.



This presents a variety of issues for banks to solve such as time consumption, inconsistencies, limited scalability, underutilization of data, and compliance risks.



Without the support of software and machine learning, interacting with all the information about each loan applicant is impossible for even a large team of employees.



Banks such as Deutsche Bank, Bank of America, and JP Morgan Chase are adopting machine learning and robotic process automation to improve their loan processing systems. They are using software platforms that can streamline the loan processing workflow such as nCino, LendingPad, Finastra, and Fiserv



The next step for a definite solution to automating banks loans is combining the features of the existing systems into a streamlined and accurate program. This project will provide an accurate, transparent, and simple system that highlights the risk of each loan applicant to assist institutions of all sizes in the decision-making process.



# Project Objective

- The algorithm itself, given client metrics, will evaluate the applicant based on previous loan applications from other clients and their outcomes
- This evaluation will determine:
- 1. if the client is likely or unlikely to successfully pay off the loan
- 2. if they should be approved or declined for the loan

# **Proposed Solution**

Our solution takes in a large dataset of financial profiles, cleans it, and then uses supervised learning to train an algorithm that can determine the risk of a loan and whether it should be approved. This solution provides a fast and accurate method for banks to evaluate loan applications at a large scale.



### **Dataset**

|   | Age | Gender     | Education<br>Level | Marital<br>Status | Income | Credit<br>Score | Loan<br>Amount | Loan<br>Purpose | Employment<br>Status | Years at<br>Current Job | Payment<br>History | Debt-to-<br>Income<br>Ratio | Assets<br>Value | Number of<br>Dependents | City            | State | Country                      | Previous<br>Defaults | Marital<br>Status<br>Change | Risk<br>Rating |
|---|-----|------------|--------------------|-------------------|--------|-----------------|----------------|-----------------|----------------------|-------------------------|--------------------|-----------------------------|-----------------|-------------------------|-----------------|-------|------------------------------|----------------------|-----------------------------|----------------|
| 0 | 49  | ) Male     | PhD                | Divorced          | 72799  | 688             | 45713          | Business        | Unemployed           | 19                      | Poor               | 0.154313                    | 120228          | 0                       | Port Elizabeth  | AS    | Cyprus                       | 2                    | 2                           | Low            |
| 1 | 57  | ' Female   | Bachelor's         | Widowed           | NaN    | 690             | 33835          | Auto            | Employed             | 6                       | Fair               | 0.14892                     | 55849           | 0                       | North Catherine | ОН    | Turkmenistan                 | 3                    | 2                           | Medium         |
| 2 | 21  | Non-binary | Master's           | Single            | 55687  | 600             | 36623          | Home            | Employed             | 8                       | Fair               | 0.362398                    | 180700          | 3                       | South Scott     | ОК    | Luxembourg                   | 3                    | 2                           | Medium         |
| 3 | 59  | Male       | Bachelor's         | Single            | 26508  | 622             | 26541          | Personal        | Unemployed           | 2                       | Excellent          | 0.454964                    | 157319          | 3                       | Robinhaven      | PR    | Uganda                       | 4                    | 2                           | Medium         |
| 4 | 25  | Non-binary | Bachelor's         | Widowed           | 49427  | 766             | 36528          | Personal        | Unemployed           | 10                      | Fair               | 0.143242                    | 287140          | NaN                     | New Heather     | IL    | Namibia                      | 3                    | 1                           | Low            |
| 5 | 30  | Non-binary | PhD                | Divorced          | NaN    | 717             | 15613          | Business        | Unemployed           | 5                       | Fair               | 0.295984                    | NaN             | 4                       | Brianland       | TN    | Iceland                      | 3                    | 1                           | Medium         |
| 6 | 31  | Non-binary | Master's           | Widowed           | 45280  | 672             | 6553           | Personal        | Self-employed        | 1                       | Good               | 0.37889                     | NaN             | NaN                     | West Lindaview  | MD    | Bouvet Island<br>(Bouvetoya) | 0                    | 1                           | Low            |
| 7 | 18  | B Male     | Bachelor's         | Widowed           | 93678  | NaN             | NaN            | Business        | Unemployed           | 10                      | Poor               | 0.396636                    | 246597          | 1                       | Melissahaven    | MA    | Honduras                     | 1                    | 1                           | Low            |
| 8 | 32  | Non-binary | Bachelor's         | Widowed           | 20205  | 710             | NaN            | Auto            | Unemployed           | 4                       | Fair               | 0.335965                    | 227599          | 0                       | North Beverly   | DC I  | Pitcairn Islands             | 4                    | 2                           | Low            |
| 9 | 55  | i Male     | Bachelor's         | Married           | 32190  | 600             | 29918          | Personal        | Self-employed        | 5                       | Excellent          | 0.484333                    | 130507          | 4                       | Davidstad       | VT    | Thailand                     | NaN                  | 2                           | Low            |

- Data is to be gathered from financial institution databases of prior applications, then cleaned and normalized
- Datasets on the side are examples with 15000 rows and 19 columns of client data before and after being processed

|       | Age | Gender         | Education<br>Level | Marital<br>Status | Income | Credit<br>Score | Loan<br>Amount | Loan<br>Purpose | Employment<br>Status | Years at<br>Current<br>Job | Payment   | Debt-to-Income<br>Ratio | Assets<br>Value | Dependent | Previous<br>Defaults | Marital<br>Status<br>Change | Risk<br>Rating |
|-------|-----|----------------|--------------------|-------------------|--------|-----------------|----------------|-----------------|----------------------|----------------------------|-----------|-------------------------|-----------------|-----------|----------------------|-----------------------------|----------------|
| 0     | 49  | Male           | PhD                | Divorced          | 72799  | 688             | 45713          | Business        | Unemployed           | 19                         | Poor      | 0.154313                | 120228          | 0         | 2                    | 2                           | Low            |
| 1     | 57  | Female         | Bachelor's         | Widowed           | 69773  | 690             | 33835          | Auto            | Employed             | 6                          | Fair      | 0.14892                 | 55849           | 0         | 3                    | 2                           | Medium         |
| 2     | 21  | Non-<br>binary | Master's           | Single            | 55687  | 600             | 36623          | Home            | Employed             | 8                          | Fair      | 0.362398                | 180700          | 3         | 3                    | 2                           | Medium         |
| 3     | 59  | Male           | Bachelor's         | Single            | 26508  | 622             | 26541          | Personal        | Unemployed           | 2                          | Excellent | 0.454964                | 157319          | 3         | 4                    | 2                           | Medium         |
| 4     | 25  | Non-<br>binary | Bachelor's         | Widowed           | 49427  | 766             | 36528          | Personal        | Unemployed           | 10                         | Fair      | 0.143242                | 287140          | 2         | 3                    | 1                           | Low            |
| ***   |     |                |                    | 2000              |        |                 |                |                 | 500                  |                            |           | ***                     |                 |           |                      |                             | ::::::         |
| 14995 | 23  | Non-<br>binary | Bachelor's         | Widowed           | 48088  | 609             | 26187          | Home            | Self-employed        | 2                          | Fair      | 0.317633                | 159362          | 4         | 2                    | 0                           | Low            |
| 14996 | 56  | Male           | PhD                | Single            | 107193 | 700             | 35111          | Auto            | Self-employed        | 10                         | Fair      | 0.155126                | 79102           | 2         | 0                    | 0                           | Medium         |
| 14997 | 29  | Non-<br>binary | PhD                | Married           | 46250  | 642             | 44369          | Home            | Unemployed           | 19                         | Excellent | 0.593999                | 196930          | 4         | 2                    | 1                           | High           |
| 14998 | 53  | Non-<br>binary | PhD                | Divorced          | 40180  | 638             | 32752          | Home            | Self-employed        | 12                         | Excellent | 0.478035                | 276060          | 2         | 0                    | 2                           | High           |
| 14999 | 24  | Non-<br>binary | Bachelor's         | Widowed           | 69773  | 765             | 27544          | Personal        | Self-employed        | 18                         | Excellent | 0.116083                | 71699           | 3         | 3                    | 2                           | Low            |
|       |     |                |                    |                   |        |                 |                |                 |                      |                            |           |                         |                 |           |                      |                             |                |

# Summary of Results



- The test accuracies of all algorithms is relatively low which is indicative of a dataset issue
- For an actual implementation, good and strongly correlated data or more datapoints would be necessary for higher accuracy

### Solution Details

### Used Libraries: pandas, sklearn

#### Random Forests

```
random_forests_pipe = Pipeline(
[
    ('transform_columns', ColumnTransformation),
    ('pca', PCA(n_components = 32)),
    ('rf', RandomForestClassifier(random_state = 100))
]
)
random_forests_pipe.fit(X_train, Y_train)
print("Random Forests Accuracy(test data):", random_forests_pipe.score(X_test, Y_test) * 100, "%")
print("Random Forests Accuracy(training data):", random_forests_pipe.score(X_train, Y_train) * 100, "%")
```

#### **K-Nearest Neighbours**

#### **Gradient Boosting**

```
gradient_boosting_pipe = Pipeline(
   [
    ('transform_columns', ColumnTransformation),
    ('pca', PCA(n_components = 32)),
    ('gb', GradientBoostingClassifier())
   ]
)

gradient_boosting_pipe.fit(X_train, Y_train)
print("Gradient Boosting Accuracy(test data):", gradient_boosting_pipe.score(X_test, Y_test) * 100, "%")
print("Gradient Boosting Accuracy(training data):", gradient_boosting_pipe.score(X_train, Y_train) * 100, "%")
```

#### Naive Bayes

```
naive_bayes_pipe = Pipeline(
[
   ('transform_columns', ColumnTransformation),
   ('pca', PCA(n_components = 32)),
   ('nb', GaussianNB())
]

naive_bayes_pipe.fit(X_train, Y_train)
print("Naive Bayes Accuracy(test data):", naive_bayes_pipe.score(X_test, Y_test) * 100, "%")
print("Naive Bayes Accuracy(training data): ", naive_bayes_pipe.score(X_train, Y_train) * 100, "%")
```

#### Logistic Regression

#### SVC

```
svc_pipe = Pipeline(
[
   ('transform_columns', ColumnTransformation),
   ('pca', PCA(n_components = 32)),
   ('svc', SVC())
]

svc_pipe.fit(X_train, Y_train)
print("SVC Accuracy(test data):", svc_pipe.score(X_test, Y_test) * 100, "%")
print("SVC Accuracy(training data):", svc_pipe.score(X_train, Y_train) * 100, "%")
```

# Recommendations and Business Impacts



Implement a machine learning algorithm to assist in loan application processing

- Will allow for more flexible reaction time and capacity for the processing of new applications.
- No longer need to rely on employee capacity for tasks which can be automated.



### **Employee Reduction**

 With the machine learning algorithm implemented, fewer man hours to process loan applications will be required <u>Faster loan application turn around times</u>

 Algorithm can operate around the clock or be scaled easily as demand fluctuates, application backlog can be reduced or eliminated completely

### Timeline

#### Months 1-3

Establish the exact type of data set and parameters upon which the algorithm will be trained on and collect all data into raw dataset

### Months 4-6

Determine optimal clean up and normalization script for the raw dataset

#### Months 7-10

Test all algorithms with varying parameters to identify which is most accurate

### **Months 11-13**

Implement policies for future data collection and processing

### **Months 14-18**

Create a front end to the algorithm for the employees who will be utilizing the tool

### **Months 19-31**

Begin solution rollout and continually test and make changes as needed based on feedback

### **Ongoing**

Implement full solution and reduce staff as needed

## Conclusion - What we learned

### **Conclusion**

 By implementing a machine learning algorithm, tasks that typically take a significant amount of time can be automated. This allows for operating costs to be reduced while increasing overall flexibility as it is easier to scale compute power than employee count.

### What we learned

- Developed a deeper understanding of how to implement machine learning to real life applications
- Learned of the limitations of machine learning and the importance of large datasets to train the algorithms upon
- Became more familiar with each different machine learning model and their parameters, developing an understanding of the importance of fine-tuning algorithms based on their application