MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 17, 2024 Lecture 19 D3

Diagonalizability: Summary

Thus: If an $n \times n$ matrix A has n linearly independent eigenvectors v_1, \ldots, v_n , then A is diagonalizable. Moreover, if $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues, then $P^{-1}AP = \Lambda$, where the diagonalizing matrix is $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$, and the

diagonal matrix is
$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
, i.e., $P^{-1}AP = \Lambda$, where

The diagonal entries of Λ are eigenvalues of A and

The columns of P are corresponding eigenvectors of A.

The EVD of A is
$$A = P\Lambda P^{-1}$$
.

Note: P need not be unique, e.g., replace v_1 by $2v_1$, etc.

Extra Reading: Simultaneous Diagonalizability

Assume A and B are diagonalizable. Then A and B have same eigenvector matrix S if and only if AB = BA.

Proof. (\Rightarrow) Assume $S^{-1}AS = \Lambda_1$ and $S^{-1}BS = \Lambda_2$, where Λ_1 and Λ_2 are diagonal matrices. Then

$$AB = (S\Lambda_1S^{-1})(S\Lambda_2S^{-1}) = S(\Lambda_1\Lambda_2)S^{-1}$$
 and $BA = S(\Lambda_2\Lambda_1)S^{-1}$.
Since $\Lambda_1\Lambda_2 = \Lambda_2\Lambda_1$, we get $AB = BA$.

(Part of \Leftarrow) Assume AB = BA. If $Ax = \lambda x$, then $ABx = B(Ax) = B(\lambda x) = \lambda Bx$. If Bx = 0, then x is an eigenvector of B, associated to $\mu = 0$. If $Bx \neq 0$, then x and Bx both are eigenvectors of A, associated to λ .

Special case: Assume all the eigenspaces of A are one dimensional. Then $Bx = \mu x$ for some scalar $\mu \Rightarrow x$ is an eigenvector of B. We will not prove the general case.

Eigenvalues of A^k

• If $Av = \lambda v$, then $A^2v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v$. Similarly $A^kv = \lambda^k v$ for any $k \ge 0$.

Thus if v is an eigenvector of A with associated eigenvalue λ , then v is also an eigenvector of A^k with associated eigenvalue λ^k for $k \ge 0$. If A is invertible, then $\lambda \ne 0$. Hence, the same also holds for k < 0 since $A^{-1}v = \lambda^{-1}v$.

• If A is diagonalizable , then $P^{-1}AP = \Lambda$ is diagonal where columns of P are eigenvectors of A.

Since $(P^{-1}A^kP) = \Lambda^k$, which is diagonal, we see that A^k is diagonalizable, and the eigenvectors of A^k are same as eigenvectors of A. Similarly, the same also holds for k < 0 if A is invertible.

Question: What is the EVD of A^k .

Reading Slide - Application: Fibonacci Numbers

Let $F_0 = 0$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$ for $k \ge 2$ define the Fibonacci sequence. What is the kth term?

If
$$u_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
, then $\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_k \\ F_{k-1} \end{pmatrix}$, i.e., $u_k = Au_{k-1}$ for $n \ge 1$, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow u_k = A^k u_0$ for $k \ge 1$.

Characteristic polynomial of A: $\lambda^2 - \lambda - 1$; Eigenvalues:

$$\lambda_1 = \frac{1+\sqrt{5}}{2}, \ \lambda_2 = \frac{1-\sqrt{5}}{2}.$$

There are 2 distinct eigenvalues \Rightarrow the associated eigenvectors x_1 and x_2 are linearly independent $\Rightarrow \{x_1, x_2\}$ is a basis for \mathbb{R}^2 .

Write
$$u_0 = c_1 x_1 + c_2 x_2$$
. Then $u_k = A^k u_0 = A^k (c_1 x_1 + c_2 x_2)$

$$= c_1 A^k x_1 + c_2 A^k x_2 = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^k x_1 + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^k x_2.$$

Q: Find x_1 , x_2 , c_1 and c_2 and get the exact formula for F_k .

An Application: Predator-Prey Model

Let the owl and rat populations at time k be O_k and R_k respectively. Owls prey on the rats, so if there are no rats, the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%.

In particular, the rat and owl populations dependence is as follows:

$$O_{k+1} = 0.5O_k + 0.4R_k$$

 $R_{k+1} = -pO_k + 1.1R_k$

The term -p calculates the rats preyed by the owls.

Thus, if
$$P_k = \begin{pmatrix} O_k \\ R_k \end{pmatrix}$$
 and $A = \begin{pmatrix} 0.5 & 0.4 \\ -p & 1.1 \end{pmatrix}$, then $P_{k+1} = AP_k$ for all k . In particular, $P_k = A^k P_0$.

Exercise: If we start with a certain initial population of owls and rats, how many will be there in, say, 50 years, i.e., given P_0 , what is P_{50} ? What is the steady state, i.e., what is $\lim_{k\to\infty} P_k$?

An Application: Steady State

Suppose we have a system where the current state u_k depends on the previous one u_{k-1} linearly, i.e., $u_k = Au_{k-1}$. Then observe that $u_k = A^k u_0$. The steady state of the system is $u_{\infty} = \lim_{k \to \infty} (u_k)$. How do we find this?

- If u_0 is an eigenvector of A associated to λ , then $u_k = \lambda^k u_0$.
- Let v_1, \ldots, v_r be eigenvectors of A associated respectively to $\lambda_1, \ldots, \lambda_r$. If $u_0 \in \operatorname{Span}\{v_1, \ldots, v_r\}$, i.e., $u_0 = c_1v_1 + \cdots + c_rv_r$ for scalars c_1, \ldots, c_r , then

 $u_k = A^k u_0 = c_1 A^k v_1 + \dots + c_r A^k v_r = c_1 \lambda_1^k v_1 + \dots + c_r \lambda_r^k v_r$. In particular, if A is diagonalizable, then there is a basis of \mathbb{R}^n of eigenvectors of A. Hence, this is applicable to every $u_0 \in \mathbb{R}^n$.

Let A be diagonalizable, and u_k represent population.

- Under what conditions will there be a population explosion?
- What conditions will force the population to become extinct?
- When does it stabilise (to a non-zero value)?

Hint: Depends on $|\lambda_i|$.

Extra Reading: Complex Eigenvalues

Example: Rotation by 90° in \mathbb{R}^2 is given by $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. It

has no real eigenvectors since rotation by 90° changes the direction.

Q has eigenvalues, but they are not real. $\det(Q - \lambda I) = \lambda^2 + 1$ $\Rightarrow \lambda_1 = i$ and $\lambda_2 = -i$, where $i^2 = -1$. Let us compute the eigenvectors.

$$(Q-iI)x_1 = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} x_1 = 0 \Rightarrow x_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}, (Q+iI)x_2 = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} x_2 = 0 \Rightarrow x_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

The eigenvalues, though imaginary, are distinct, hence eigenvectors are linearly independent.

$$\text{If } P = \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}, \text{ then } P^{-1}QP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

Extra Reading: Complex Vectors

Conclusion: We need complex numbers \mathbb{C} even if we are working with real matrices. Over \mathbb{C} , an $n \times n$ matrix A always has n eigenvalues.

Reason: Fundamental theorem of Algebra

Every polynomial over \mathbb{C} of degree n has n roots in \mathbb{C} .

Inner product on \mathbb{R}^n

Defn. Define the **inner product** (dot product) of two vectors $v, w \in \mathbb{R}^n$ as $v \cdot w = v^T w$

For v, w in \mathbb{R}^n and c in \mathbb{R}

- $\bullet \ v \cdot w = v^T w = v_1 w_1 + \dots + v_n w_n = w^T v = w \cdot v.$
- (Bilinearity)

$$(v+w) \cdot z = (v+w)^T z = v^T z + w^T z = v \cdot z + w \cdot z$$

 $cv \cdot w = (cv)^T w = c(v^T w) = v^T (cw) = v \cdot cw.$

• $v \cdot v = v^T v \ge 0$ and $v^T v = 0$ if and only if v = 0.

Define **length** (or norm) of v in \mathbb{R}^n to be $||v|| = \sqrt{v \cdot v}$.

Henceforth we will use $v^T w$ directly to write the dot product.

Reading: Length of a vector in \mathbb{R}^3 and \mathbb{R}^n

Let
$$v = (2,3,2)$$
. By Pythagoras theorem, $||v|| = \sqrt{||(2,3,0)||^2 + ||(0,0,2)||^2}$

$$=\sqrt{2^2+3^2+2^2}=\sqrt{17}.$$

Generalize by induction: Let $v = (x_1, \dots, x_n)^T \in \mathbb{R}^n$. Define $||v|| = \sqrt{||(x_1, \dots, x_{n-1}, 0)||^2 + ||(0, 0, \dots, x_n)||^2}$ = $\sqrt{x_1^2 + \dots + x_n^2} + x_n^2 = \sqrt{v^T v}$.

The length in \mathbb{R}^n is compatible with the vector space structure. Let $v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then,

- $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
- ||cv|| = |c|||v|| $||v + w|| \le ||v|| + ||w||$ (Triangle Inequality)

Orthogonal vectors in \mathbb{R}^n

We say vectors v and w in \mathbb{R}^n are orthogonal (perpendicular) if they satisfy the Pythagoras theorem, that is,

$$||v||^2 + ||w||^2 = ||v - w||^2$$

$$||v||^{2} + ||w||^{2} = (v - w)^{T}(v - w)$$

$$= (v^{T} - w^{T})(v - w)$$

$$= v^{T}v - w^{T}v + v^{T}w + w^{T}w$$

$$= ||v||^{2} - 2v^{T}w + ||w||^{2} \quad \text{(since } w^{T}v = v^{T}w \text{)}$$

Therefore, v and w are defined to be orthogonal if and only if $v^T w = 0$.

Think! What can be said about Span $\{v\}$ and Span $\{w\}$ when v and w are orthogonal to each other in \mathbb{R}^3 ?

Orthogonal and Orthonormal Sets

Defn. A set of *non-zero* vectors $\{v_1, \dots, v_k\} \subset \mathbb{R}^n$, is said to be an **orthogonal set** if $v_i^T v_j = 0$ **for all** $i, j = 1, \dots, i \neq j$.

Examples:
$$\{(1,3,1),(-1,0,1)\}\subset \mathbb{R}^3$$
, $\{(2,1,0,-1),(0,1,0,1),(-1,1,0,-1)\}\subseteq \mathbb{R}^4$, $\{(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}),(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})\}\subseteq \mathbb{R}^3$, $\{e_1,\cdots,e_n\}\subseteq \mathbb{R}^n$.

Of these, the last two examples have all unit vectors (vectors of length one).

Defn. An orthogonal set $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ with all unit vectors, i.e., $||v_i|| = 1$ for all i, is called an **orthonormal set**.

Note: If $\{v_1, \dots, v_k\}$ is an orthogonal set, then $\{u_1, \dots, u_k\}$ is orthonormal, for $u_i = v_i/||v_i||$.

Exercise: If $S = \{v_1, ..., v_k\}$ is an orthogonal set, then v_k is orthogonal to each $v \in \text{Span}\{v_1, ..., v_{k-1}\}$.

Orthogonality and Linear Independence

Theorem: An orthogonal set in \mathbb{R}^n is linearly independent.

Proof. Let $\{v_1, \dots, v_k\}$ be an orthogonal set in \mathbb{R}^n , i.e. $v_i \neq 0$ and $v_i^T v_j = 0$ for $i \neq j$. Note that for i = j, $v_i^T v_i = ||v_i||^2 \neq 0$. Assume for some $a_1, \dots, a_k \in \mathbb{R}$,

$$a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k} = 0$$

$$\Rightarrow (a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k})^{T}v_{1} = 0 \cdot v_{1} = 0$$

$$\Rightarrow (a_{1}v_{1}^{T} + a_{2}v_{2}^{T} + \dots + a_{k}v_{k}^{T}) v_{1} = 0$$

$$\Rightarrow a_{1}v_{1}^{T}v_{1} + a_{2}v_{2}^{T}v_{1} + \dots + a_{k}v_{k}^{T}v_{1} = 0$$

$$\Rightarrow a_{1}||v_{1}||^{2} = 0$$

$$\Rightarrow a_{1} = 0 \text{ since } v_{1} \neq 0$$

Similarly, we get $a_2 = \cdots = a_n = 0$. Hence $\{v_1, \dots, v_k\}$ is linearly independent.

True/False: Any matrix whose columns form an orthogonal set is invertible. Give example

Matrices with Orthogonal Columns

Let $A = [v_1 \cdots v_n]$ be $m \times n$. If $\{v_1, \dots, v_n\}$ form an *orthonormal* set in \mathbb{R}^m , then

$$A^{T}A = \begin{pmatrix} v_1^{T} \\ \vdots \\ v_n^{T} \end{pmatrix} \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} = \begin{pmatrix} v_1^{T}v_1 & \dots & v_1^{T}v_n \\ \vdots & & \vdots \\ v_n^{T}v_1 & \dots & v_n^{T}v_n \end{pmatrix} = I_n.$$

Defn. A square matrix *A* whose column vectors form an orthonormal set is called an orthogonal matrix.

If $Q = [u_1 \cdots u_n]$ is an orthogonal matrix, then

- $\{u_1, \ldots, u_n\}$ is an orthonormal set (by definition)
- $Q^TQ = I = QQ^T$ Why?
- $||Qv|| = \sqrt{(Qv)^T(Qv)} = \sqrt{v^T Q^T Qv} = \sqrt{v^T x} = ||v||.$
- \Rightarrow the only (real) eigenvalues of Q, if they exist, are ± 1 .
- Row vectors of Q are orthonormal since $QQ^T = I$.

Orthogonal Matrices: Examples

Examples: 1.
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
. 2. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

3.
$$\frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$