Advanced Machine Learning

Lecture 7: Model Order Selection

Nora Ouzir: nora.ouzir@centralesupelec.fr

Lucca Guardiola: lucca.guardiola@centralesupelec.fr

Oct. - Nov. 2020

Content

- 1. Reminders on ML
- 2. Robust regression
- 3. Hierarchical clustering
- 4. Classification and supervised learning
- 5. Non-negative matrix factorization
- 6. Mixture models fitting
- 7. Model order selection
- 8. Dimension reduction and data visualization

Model Selection and Evaluation

- ► How to set an algorithm's unknown parameters in practice?
- ▶ How to make choices about the model (e.g., kernel type)?
- ► How to choose the best algorithm for a particular problem?

Today's Lecture

Today's Lecture

- 1. Introduction / Motivations
- 2. Cross-validation
- 3. Bayesian approaches and Information criteria
 - 1. The Bayesian viewpoint
 - 2. Information Criteria
- 4. Application example

Today's course

- 1. Introduction / Motivations
- 2. Cross-validation
- Bayesian approaches and Information criteria
 - The Bayesian viewpoint
 - 2. Information Criteria
- 4. Application example

Motivations

Goal: Make high-level decisions about the model we want to use.

Examples from the course

- Number of components in a mixture model
- Target dimension for matrix factorization
- Density/minimum points parameters for density clustering
- ► Type of kernel in a support vector machine
- ▶ Degree of a polynomial in a regression problem
- ▶ But also a network architecture of (deep) neural networks, ...

Curve fitting example

True data generated from a sinusoid $(\sin(2\pi x))$ + (small) Gaussian noise (Bishop, 2006)

Goal: predict the value of t for some new value of x, without knowledge of the green curve \rightarrow Model selection

Curve fitting example

We want to learn a prediction function y such that

$$y(x,\mathbf{w}) = \sum_{i=1}^{M} w_i x^i$$

where M is the polynomial order (unknown) and $\mathbf{w} = (w_0, \dots, w_M)$ are the polynomial coefficients (to be learnt).

Recall:

For w, one minimizes an error function, e.g.,

$$e(\mathbf{w}) = \sum_{n=1}^{N} \frac{\rho}{\rho} (y(x_n, \mathbf{w}) - t_n)$$

- ▶ N: number of observed data.
- $ightharpoonup e(\mathbf{w})$ is a quadratic function w.r.t $\mathbf{w} \Rightarrow$ unique solution \mathbf{w}^*

Curve fitting example

How to evaluate the "best model"?

Curve fitting example: Test vs training data

Differences btw training and test datasets

- Model fits training data perfectly, but may not do well on test data: $(M = 9, e_{RMS} = 0$, but poor estimation of $\sin(2\pi x)) \rightarrow \text{Overfitting}$
- Training performance ≠ test performance, but we are mainly interested in test performance → Generalization
- Need mechanisms for assessing how a model generalizes to unseen test data → Model selection

Curve fitting example: Sample size

Solutions for M = 9 with different numbers of data points

Increasing the size of the data set reduces over-fitting

Example: SVM with Gaussian Kernel

Model choice - Occam's (Ockham) Razor

(Normalized) dist. of data sets for three models of different complexity, in which \mathcal{M}_1 is the simplest and \mathcal{M}_3 is the most complex - \mathcal{D}_0 : observed dataset - \mathcal{M}_2 with intermediate complexity has the largest evidence (Bishop, 2006)

Key Idea: choose the simplest model that explains "reasonably" well the data

Model selection and evaluation

Raised issues

- ► Model evaluation : what measure(s) of performance?
- Estimation of the generalisation capacity of the model
- Practical model selection procedures

True vs Empirical Risk

True vs Empirical Risk

True vs Empirical Risk

Supremum on generalization error

$$R(y) \leq \frac{1}{N} \sum_{i=1}^{N} \rho(y(x_i), t_i) + term(N, h(\mathcal{M}))$$

where h stands for the complexity of the model \mathcal{M} .

- ► The empirical risk is not sufficient for estimating the true error R
- ▶ If h increases \rightarrow overfitting
- ► The bigger the *N* the better!

Generalization

We are looking at $R(\mathcal{D}_{\infty}, y)$ the theoretical performance of y on all possible future data

→ Idea: test on data other than those used for training

Today's course

- Introduction / Motivations
- 2. Cross-validation
- 3. Bayesian approaches and Information criteria
 - The Bayesian viewpoint
 - 2. Information Criteria
- 4. Application example

Validation set

Key Idea: Choose the best model without testing on \mathcal{D}_{test}

- 1. Randomly split $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$
- 2. Train all possible models on \mathcal{D}_{train}
- 3. Evaluate the performance on \mathcal{D}_{val}
- 4. Select the model with the best performance on \mathcal{D}_{val}
- 5. Test the selected model on \mathcal{D}_{test} (used only once)

If data is limited we are wasting training data...

K-fold Cross-validation

Key Idea: give an accurate estimate of the true error without wasting too much data

- 1. Randomly split the data into $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$
- 2. Randomly split $\mathcal{D}_{train} = \mathcal{D}_1 \cup ... \cup mathcalD_K$ into K subsets
- 3. For k = 1, ..., K
 - 3.1 Train the model on K-1 sets
 - 3.2 Evaluate performance on the remaining set \mathcal{D}_k
- 4. Average the K measures of performance

N.B: To reduce variability, multiple rounds of cross-validation are performed using different partitions then averaged.

K-fold Cross-validation

The averaged error can be expressed as

$$R_{CV} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i=1}^{N_k} \rho(t_i^k, y^{k'}(x_i^k))$$

where $y^{k'}$ is learnt using the K-1 partitions exept the k-th one.

- ▶ if K = N, cross-validation is approximately an unbiased estimator of the generalization error \rightarrow too expensive!
- Potential high variance
- Typically we choose K = 5 or K = 10 for a satisfactory bias-variance trade-off.

Cross-validation: Practical procedure

Cross-validation: Practical procedure

Other performance measures to evaluate the model...

Today's course

- Introduction / Motivations
- 2. Cross-validation
- 3. Bayesian approaches and Information criteria
 - 1. The Bayesian viewpoint
 - 2. Information Criteria
- 4. Application example

Today's course

- Introduction / Motivations
- 2. Cross-validation
- 3. Bayesian approaches and Information criteria
 - 1. The Bayesian viewpoint
 - Information Criteria
- 4. Application example

The Bayesian viewpoint

Key Idea: Place a prior $p(\mathcal{M})$ on the class of models

Ingredients

ightharpoonup Given a training set \mathcal{D} , the posterior distribution over models is

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i)$$

► Model evidence (marginal likelihood):

$$\frac{p(\mathcal{D}|\mathcal{M}_i)}{p(\mathcal{D}|\theta_i)} = \int p(\mathcal{D}|\theta_i) p(\theta_i|\mathcal{M}_i) d\theta_i$$

Highest evidence: If we don't have any prior knowledge of the model \rightarrow uniform $p(\mathcal{M})$ and

choose
$$\mathcal{M}_1$$
 over $\mathcal{M}_2 \iff p(\mathcal{D}|\mathcal{M}_1) > p(\mathcal{D}|\mathcal{M}_2)$

Powerful rule but the integral is intractable in practice...

Bayesian Model Averaging

Key Idea: Do not choose a model but make predictions using average over several models with weights given by the posterior probability of each model given the data

- ▶ Place a prior p(M) on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\theta_{\mathcal{M}}$ and average over all models $\mathcal{M}_i, i = 1, \dots, L$

$$p(\mathcal{D}) = \sum_{i=1}^{L} p(\mathcal{M}_i) p(\mathcal{D}|\theta_i) p(\theta_i|\mathcal{M}_i) d\theta_i$$
$$= \sum_{i=1}^{L} p(\mathcal{M}_i) p(\mathcal{D}|\mathcal{M}_i)$$

- Generally gives better answers than a single model
- Computationally expensive and integral often intractable

Today's course

- 1. Introduction / Motivations
- 2. Cross-validation
- 3. Bayesian approaches and Information criteria
 - The Bayesian viewpoint
 - 2. Information Criteria
- Application example

Information criteria

Key Idea: Correct for the bias of MLE by adding a penalty term to compensate for the overfitting of more complex models (large nbr of parameters)

Let M_j be the number of unknown parameters for model \mathcal{M}_j and N the data size

Akaike Information Criterion (AIC)

$$AIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j$$

Information criteria

Key Idea: Correct for the bias of MLE by adding a penalty term to compensate for the overfitting of more complex models (large nbr of parameters)

Let M_j be the number of unknown parameters for model \mathcal{M}_j and N the data size

Akaike Information Criterion (AIC)

$$AIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j$$

Bayesian Information Criterion (BIC) / Minimum Description Length (MDL)

$$BIC(j) = \ln(\rho(\mathbf{x}|\hat{\theta}_{ML})) - \frac{1}{2}M_jN$$

Information criteria

Key Idea: Correct for the bias of MLE by adding a penalty term to compensate for the overfitting of more complex models (large nbr of parameters)

Let M_j be the number of unknown parameters for model \mathcal{M}_j and N the data size

Akaike Information Criterion (AIC)

$$AIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j$$

Bayesian Information Criterion (BIC) / Minimum Description Length (MDL)

$$BIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - \frac{1}{2}M_jN$$

No integrals or posteriors involved \rightarrow Much easier to compute!!

- ▶ BIC penalizes model complexity more heavily than AIC
 - → For finite samples, BIC often chooses models that are too simple, because of its heavy penalty on complexity

- ▶ BIC penalizes model complexity more heavily than AIC
 - → For finite samples, BIC often chooses models that are too simple, because of its heavy penalty on complexity
- ▶ BIC usually works better if the true model is among $\mathcal{M}_1,...,\mathcal{M}_L$
 - → BIC is asymptotically consistent
 - ightarrow AIC tends to choose models which are too complex as $extbf{\textit{N}}
 ightarrow \infty$

- ▶ BIC penalizes model complexity more heavily than AIC
 - → For finite samples, BIC often chooses models that are too simple, because of its heavy penalty on complexity
- ▶ BIC usually works better if the true model is among $\mathcal{M}_1,...,\mathcal{M}_L$
 - → BIC is asymptotically consistent
 - ightarrow AIC tends to choose models which are too complex as $extbf{\textit{N}}
 ightarrow \infty$
- ► AIC is usually preferable otherwise ("all models are wrong")

- ▶ BIC penalizes model complexity more heavily than AIC
 - → For finite samples, BIC often chooses models that are too simple, because of its heavy penalty on complexity
- ▶ BIC usually works better if the true model is among $\mathcal{M}_1,...,\mathcal{M}_L$
 - → BIC is asymptotically consistent
 - ightarrow AIC tends to choose models which are too complex as $extbf{\textit{N}}
 ightarrow \infty$
- ► AIC is usually preferable otherwise ("all models are wrong")
- ▶ Both are mainly suited to N much larger than p (typically $d << \sqrt{N}$)

Other techniques and criteria

Many others techniques:

- Minimum Message Length (see application Bayesian criterion)
- ▶ Modified AIC accounting for small sample size:

$$mAIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j - \frac{M_j(M_j + 1)}{N - M_j - 1}$$

Hypothesis testing vs Bayesian model comparison, ...

For mixture models

- All previous techniques
- ► Split and merge¹(see applications + lab)
- ► Reversible jump²

¹ Zhang, Z. et al., (2003). EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern recognition, 36(9), 1973-1983.

² Zhang, Z. et al., (2004). Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm. Statistics and Computing, 14(4), 343-355.

Today's course

- Introduction / Motivations
- 2. Cross-validation
- Bayesian approaches and Information criteria
 - The Bayesian viewpoint
 - 2. Information Criteria
- 4. Application example