itsatt sommuen

Eksamen matematikk 3-termin våren 2016

Oppgave 1

Bruk L'Hopitals regel til å finne følgende grenser:

1.
$$\lim_{x\to 0} \frac{\sin x}{x}$$
, 2. $\lim_{x\to 0} x \ln x$

Oppgave 2.

Finn den deriverte av y(x) for følgende funksjoner:

1.
$$y = \frac{x}{x+1}$$
, 2. $y = x\cos(5x)$, 3. $y = \ln(x^2+3)$.

Oppgave 3

Du fyller vann inn i en kuleformet ballong slik at radien r øker. Volumet er $V = (4\pi/3)r^3$.

Hvor raskt øker radien når radien er 0,1m og du fyller inn en liter per sekund?

Oppgave 4

Inni en sirkel med radius r=1 er det en firkant som vist i figuren. Sirkellikningen er $x^2+y^2=1$.

- a) Vis at firkantens areal er $A(x) = 4x\sqrt{1-x^2}$.
- b) Hvor stor er den største firkanten vi kan ha i sirkelen. Hvilken fasong har denne firkanten?

Oppgave 5

Beregn følgende integraler:

a)
$$\int \frac{1}{(2x+1)^3} dx ,$$

b)
$$\int (\sin x)^{3/2} \cos x \, dx$$

c)
$$\int xe^x dx$$

Oppgave 6

a) Vis at de to skjæringspunktene med minst x-verdier for positive verdier av x til grafene av funksjonene $y = \sin x$ og $y = \cos x$ er $\left(\pi/4, 1/\sqrt{2}\right)$ og $\left(5\pi/4, -1/\sqrt{2}\right)$.

b) Finn arealet mellom grafene i området mellom de to skjæringspunktene.

Oppgave 7

- a) Vis ved å bruke delvis integrasjon og identiteten $\cos^2 x + \sin^2 x = 1$ at $\int \cos^2 x \, dx = \frac{1}{2} \sin x \cos x + \frac{x}{2} + C \, .$
- b) Finn volumet av rotasjonslegemet som dannes når flaten mellom x-aksen, y-aksen og grafen til kurven $y = \cos x$ roteres om x-aksen.

Oppgave 8

Finn avstanden fra punktet (6,0,-6) til planet x-y=4.

Oppgave 9

Gitt tre vektorer $\vec{A} = \begin{bmatrix} 1,1,-1 \end{bmatrix}$, $\vec{B} = \begin{bmatrix} 2,1,1 \end{bmatrix}$, $\vec{C} = \begin{bmatrix} -1,-2,3 \end{bmatrix}$

- a) Finn arealet utspent av vektorene \vec{A} og \vec{B} .
- b) Finn volumet utspent av vektorene \vec{A} , \vec{B} og \vec{C} .

Løsningsforslag eksamen i matematikk tretermin våren 2016

Oppgave 1

- 1. $\lim_{x\to 0} \frac{\sin x}{x} = \frac{0}{0}$ er et ubestemt uttrykk. For å finne verdien av grensen bruker vi L'Hopitals regel og får: $\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{x} = \underline{1}$.
- 2. $\lim_{x\to 0} x \ln x = 0$ ($-\infty$) som er et ubestemt uttrykk. Vi gjør det da om til en brøk og bruker L'Hopitals regel: $\lim_{x\to 0} x \ln x = \lim_{x\to 0} \frac{\ln x}{1/x} = \lim_{x\to 0} \frac{1/x}{-1/x^2} = -\lim_{x\to 0} x = 0$.

Oppgave 2

Volumet til en kule med radius r er $V = (4\pi/3)r^3$. Derivasjon ved å bruke kjerneregelen gir:

$$\frac{dV}{dt} = \frac{dV}{dr}\frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$
, som leder til: $\frac{dr}{dt} = \frac{1}{4\pi r^2} \frac{dV}{dt}$.

Innsetting av
$$r = 0.1m$$
 og $\frac{dV}{dt} = 10^{-3} \frac{m^3}{s}$ gir $\frac{dr}{dt} = \frac{10^{-3} m^3 / s}{4\pi \cdot 10^{-2} m^2} = \frac{1}{40\pi} \frac{m}{s} = \frac{10}{4\pi} \frac{cm}{s} \approx 0.8 \frac{cm}{s}$.

Oppgave 3

1.
$$y = \frac{x}{x+1}$$
. Derivasjon gir $y' = \frac{1(x+1)-x}{(x+1)^2} = \frac{1}{(x+1)^2}$.

2.
$$y = x\cos(5x)$$
. Derivasjon gir $y' = \cos(5x) - 5x\sin(5x)$.

3.
$$y = \ln(x^2 + 3)$$
. Derivasjon gir $y' = \frac{2x}{x^2 + 3}$.

Oppgave 4

- a) Firkantens areal er A=4xy. Fra sirkellikningen fås for halvsirkelen $y=\sqrt{1-x^2}$, som gir $A=4x\sqrt{1-x^2}$.
- b) Maksimalt areal fås når A'=0. Derivasjon gir:

$$A' = 4\sqrt{1 - x^2} + 4x\frac{1}{2}\frac{-2x}{\sqrt{1 - x^2}} = \frac{4(1 - x^2) - 4x^2}{\sqrt{1 - x^2}} = 4\frac{1 - 2x^2}{\sqrt{1 - x^2}} = 0 \text{ gir } x = \frac{1}{\sqrt{2}} \text{ som gir } x = \frac{1}{\sqrt{2}}$$

$$A_{maks} = 4\frac{1}{\sqrt{2}}\sqrt{1-\frac{1}{2}} = 4\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}} = \underline{2}.$$

Videre fås $y = \frac{1}{\sqrt{2}} = x$ som viser at firkanten med maksimalt areal er et kvadrat.

Oppgave 5

a)
$$I = \int (2x+1)^{-3} dx$$
, $u = 2x+1$, $du = 2dx$, $dx = (1/2)du$ som gir
$$I = \frac{1}{2} \int u^{-3} du = \frac{1}{2} \left(-\frac{1}{2} \right) u^{-2} + C = -\frac{1}{4} \frac{1}{(2x+1)^2} + C$$
.

b)
$$I = \int (\sin x)^{3/2} \cos x \, dx$$
, $u = \sin x$, $du = \cos x \, dx$ som gir
$$I = \int u^{3/2} \, du = \frac{1}{1 + 3/2} u^{1+3/2} + C = \frac{2}{5} u^{5/2} + C = \frac{2}{5} (\sin x)^{5/2} + C$$
.

c)
$$I = \int xe^x dx$$
. Bruker delvis integrasjon og får: $\int xe^x dx = xe^x - \int e^x dx = \underline{x}e^x - e^x + C$.

Oppgave 6

- a) Grafen til funksjonene $y = \sin x$ og $y = \cos x$ skjærer hverandre i punkter med x-verdier gitt ved $\sin x = \cos x$, dvs. $\tan x = 1$. Ved å bruke enhetssirkelen ser vi at de to minste, positive vinklene er $x = \pi/4$ som gir $y = \sin(\pi/4) = 1/\sqrt{2}$ og $x = 5\pi/4$ som gir $y = \sin(5\pi/4) = -1/\sqrt{2}$. Dvs. skjæringspunktet er $(\pi/4, 1/\sqrt{2})$ og $(5\pi/4, -1/\sqrt{2})$.
- b) Arealet mellom grafene er:

$$A = \int_{\pi/4}^{5\pi/4} (\sin x - \cos x) dx = \left[-\cos x - \sin x \right]_{\pi/4}^{5\pi/4} = -\sin \frac{5\pi}{4} - \cos \frac{5\pi}{4} + \sin \frac{\pi}{4} + \cos \frac{\pi}{4} = 2\sqrt{2} \ .$$

Oppgave 7

- a) $I = \int \cos^2 x \, dx = \int \cos x \cos x \, dx$. Vi innfører $u' = \cos x$, $u = \sin x$, $v = \cos x$, $v' = -\sin x$ Ved å bruke formelen for delvis integrasjon, $\int u'v \, dx = uv - \int uv' \, dx$, fås da: $I = \sin x \, \cos x + \int \sin^2 x \, dx = \sin x \, \cos x + \int (1 - \cos^2 x) \, dx = \sin x \, \cos x + x + 2C - I$., der jeg har valt å kalle integrasjonskonstanten 2C. Dermed fås $2I = \sin x \, \cos x - x + 2C$ som gir $\int \cos^2 x \, dx = \frac{1}{2} \sin x \, \cos x + \frac{x}{2} + C$.
- b) Volumet til rotasjonslegemet er:

$$V = \pi \int_{0}^{\pi/2} \cos^2 x \, dx = \left[\frac{1}{2} \sin x \cos x + \frac{x}{2} \right]_{0}^{\pi/2} = \frac{1}{2} \sin \frac{\pi}{2} \cos \frac{\pi}{2} + \frac{1}{2} \frac{\pi}{2} - \left(\frac{1}{2} \sin 0 \cos 0 + 0 \right) = \frac{\pi}{\underline{4}} \, .$$

Oppgave 8

Vi skal finne avstanden fra punktet (6,0,-6) til planet x-y=4. Da brukes at avstanden fra et punkt (x_0, y_0, z_0) til et plan med likningen Ax+By+Cz+D=0 er $d=\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}}$.

Her er
$$x_0 = 6$$
, $y_0 = 0$, $z_0 = -6$ og $A = 1$, $B = -1$, $C = 0$, $D = -4$. Dette gir $d = \frac{6-4}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac$

Oppgave 9

a) Arealet utspent av vektorene $\vec{A} = \begin{bmatrix} 1,1,-1 \end{bmatrix}$, $\vec{B} = \begin{bmatrix} 2,1,1 \end{bmatrix}$ er:

$$\left| \vec{A} \times \vec{B} \right| = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 1 & 1 & -1 \\ 2 & 1 & 1 \end{vmatrix} = \left| \begin{bmatrix} 2, 3, -1 \end{bmatrix} \right| = \sqrt{2^2 + 3^2 + (-1)^2} = \underline{\sqrt{14}}.$$

b) Volumet utspent av vektorene \vec{A} , \vec{B} og $\vec{C} = \begin{bmatrix} -1, -2, 3 \end{bmatrix}$ er:

$$V = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ -1 & -2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ -1 & -2 \end{vmatrix} = 5 - 7 + 3 = \underline{1}.$$