Type *Markdown* and LaTeX: α^2

Type *Markdown* and LaTeX: α^2

- a) Genere una tabla con el histograma de los datos con el intervalo, frecuencia observada, Frecuencia relativa, frecuencia acumulada.
- b) Grafique la función fdp((frecuencia relativa) y FDA (frecuencia acumulada)

#	Intervalo-Clase	Frecuencia Observada	Frecuencia relativa(fdp)	Frecuencia acumulada (FDA)
1	(min, max)			(121)

- c) Estimar la media y la varianza .. etc.
- d) Genere 10 números aleatorios con los siguientes parámetros Xo=349, a= 347,c=47,M=1000
- e) Encuentre los valores de los tiempos de servicio para los 10 números aleatorios generados y grafique los resultados de los 10 datos.

#	# ALEATORIO	FDA	TIEMPO DE
			SERVICIO
			SIMULADO
1			
2			
3			
8			
9			
10			

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import scipy.stats as stats
    from scipy.stats import poisson

datos = pd.read_excel(r"",)
    datos
```

Out[1]:		tiempo_servicio
	0	0.1
	1	4.1
	2	4.9
	3	4.8
	4	15.9

67 6.9 68 3.1 69 1.6 70 2.1

71 1.9

72 rows × 1 columns

a) Genere una tabla con el histograma de los datos con el intervalo, frecuencia observada, Frecuencia relativa, frecuencia acumulada.

Frecuencia relativa

```
In [5]: # OBTENER LOS DATOS UNICOS DE LA TABLA
lis = datos["tiempo_servicio"].unique()
lis
dfclases=pd.DataFrame(lis,columns=["tiempo_servicio"])
datafi=pd.crosstab(index=datos["tiempo_servicio"], columns = "Fi")
li = datafi.values
dfclases["Fi"] = li
total = dfclases.sum(axis=0)
datahi = dfclases["Fi"]/total["Fi"] # aqui calculamos la frecuencia
datahi.values
# agregamos nueva columna de frecuencia relativa
dfclases["hi"] = datahi
dfclases
```

		lases["hi"] = lases	dat	ahi
Out[5]:		tiempo_servicio	Fi	hi
	0	0.1	2	0.027778
	1	4.1	1	0.013889
	2	4.9	1	0.013889
	3	4.8	3	0.041667
	4	15.9	3	0.041667
	5	6.7	1	0.013889
	6	2.1	1	0.013889
	7	2.3	1	0.013889
	8	2.5	4	0.055556
	9	3.3	1	0.013889
	10	3.8	1	0.013889
	11	6.1	1	0.013889
	12	2.8	1	0.013889
	13	5.9	2	0.027778
	14	3.4	1	0.013889
	15	3.1	2	0.027778
	16	0.4	3	0.041667
	17	2.7	3	0.041667
	18	0.9	3	0.041667
	19	2.9	2	0.027778
	20	4.5	1	0.013889
	21	1.1	2	0.027778
	22	4.2	3	0.041667
	23	4.6	1	0.013889
	24	7.2	2	0.027778
	25	5.1	1	0.013889
	26	2.6	1	0.013889

	tiempo_servicio	Fi	hi
27	2.4	1	0.013889
28	11.5	2	0.027778
29	10.3	4	0.055556
30	4.3	1	0.013889
31	2.2	1	0.013889
32	5.2	1	0.013889
33	8.2	2	0.027778
34	7.3	1	0.013889
35	3.5	2	0.027778
36	7.9	1	0.013889
37	6.2	1	0.013889
38	5.8	1	0.013889
39	1.4	1	0.013889
40	0.5	1	0.013889
41	7.1	1	0.013889
42	6.9	1	0.013889
43	1.6	1	0.013889
44	1.9	1	0.013889

```
In [2]: x=datos["tiempo_servicio"]
    plt.figure(figsize=(10,5))
    plt.hist(x,bins=8,color='pink')
    plt. axvline(x. mean(),color='red',label='Media')
    plt. axvline(x. median(),color='blue',label='Mediana')
    plt. axvline(x. mode()[0],color='green',label='Moda')
    plt.xlabel('Total de minutos de los servicios')
    plt.ylabel('Frecuencia')
    plt.legend()
    plt.show()
```


Frecuencia absoluta

```
In [6]: lis = datos["tiempo_servicio"].unique()
    dfclases=pd.DataFrame(lis,columns=["tiempo_servicio"])
    datafi=pd.crosstab(index=datos["tiempo_servicio"], columns = "Fi")
    li = datafi.values
    dfclases["Fi"] = li
    dfclases
```

	dfc.	lases	
Out[6]:		tiempo_servicio	Fi
	0	0.1	2
	1	4.1	1
	2	4.9	1
	3	4.8	3
	4	15.9	3
	5	6.7	1
	6	2.1	1
	7	2.3	1
	8	2.5	4
	9	3.3	1
	10	3.8	1
	11	6.1	1
	12	2.8	1
	13	5.9	2
	14	3.4	1
	15	3.1	2
	16	0.4	3
	17	2.7	3
	18	0.9	3
	19	2.9	2
	20	4.5	1
	21	1.1	2
	22	4.2	3
	23	4.6	1
	24	7.2	2
	25	5.1	1
	26	2.6	1
	27	2.4	1
	28	11.5	2
	29	10.3	4
	30	4.3	1

	tiempo_servicio	Fi	
31	2.2	1	
32	5.2	1	
33	8.2	2	
34	7.3	1	
35	3.5	2	
36	7.9	1	
37	6.2	1	
38	5.8	1	
39	1.4	1	
40	0.5	1	
41	7.1	1	
42	6.9	1	
43	1.6	1	
44	1.9	1	

```
In [3]: x=datos["tiempo_servicio"]
    plt.figure(figsize=(10,5))
    plt.hist(x,bins=None,color='green')
    plt. axvline(x. mean(),color='red',label='Media')
    plt. axvline(x. median(),color='yellow',label='Mediana')
    plt. axvline(x. mode()[0],color='black',label='Moda')
    plt.xlabel('Tiempo')
    plt.ylabel('Clientes')
    plt.legend()
    plt.show()
```


b) Grafique la función fdp((frecuencia relativa) y FDA

(frecuencia acumulada)

```
In [34]: lis = datos["tiempo_servicio"].sort_values(ascending=True).unique()
         dat = pd.DataFrame(lis, columns=["intervalo-clases"])
         datafi = pd.crosstab(index=datos["tiempo_servicio"], columns = "fi")
         li = datafi.values
         dat["fi"] = li
         datahi = 100 * datafi["fi"] / 50
         datahi = datahi.values
         dat["hi"] = datahi
         Fi = dat["fi"].values
         a = []
         b = 0
         for c in Fi:
             b = c + b
             a.append(b)
         dat["Fi"] = a
         dat["Hi"] = a
```

	dat	- -				
Out[34]:		intervalo-clases	fi	hi	Fi	Hi
	0	0.1	2	4.0	2	2
	1	0.4	1	2.0	3	3
	2	0.5	1	2.0	4	4
	3	0.9	3	6.0	7	7
	4	1.1	3	6.0	10	10
	5	1.4	1	2.0	11	11
	6	1.6	1	2.0	12	12
	7	1.9	1	2.0	13	13
	8	2.1	4	8.0	17	17
	9	2.2	1	2.0	18	18
	10	2.3	1	2.0	19	19
	11	2.4	1	2.0	20	20
	12	2.5	1	2.0	21	21
	13	2.6	2	4.0	23	23
	14	2.7	1	2.0	24	24
	15	2.8	2	4.0	26	26
	16	2.9	3	6.0	29	29
	17	3.1	3	6.0	32	32
	18	3.3	3	6.0	35	35
	19	3.4	2	4.0	37	37
	20	3.5	1	2.0	38	38
	21	3.8	2	4.0	40	40
	22	4.1	3	6.0	43	43
	23	4.2	1	2.0	44	44

	intervalo-clases	fi	hi	Fi	Hi
24	4.3	2	4.0	46	46
25	4.5	1	2.0	47	47
26	4.6	1	2.0	48	48
27	4.8	1	2.0	49	49
28	4.9	2	4.0	51	51
29	5.1	4	8.0	55	55
30	5.2	1	2.0	56	56
31	5.8	1	2.0	57	57
32	5.9	1	2.0	58	58
33	6.1	2	4.0	60	60
34	6.2	1	2.0	61	61
35	6.7	2	4.0	63	63
36	6.9	1	2.0	64	64
37	7.1	1	2.0	65	65
38	7.2	1	2.0	66	66
39	7.3	1	2.0	67	67
40	7.9	1	2.0	68	68
41	8.2	1	2.0	69	69
42	10.3	1	2.0	70	70
43	11.5	1	2.0	71	71
44	15.9	1	2.0	72	72

c) Estimar la media y la varianza .. etc

In [19]: datos.describe()

Ο.		T 4 A T	
()I	IT I	1191	
\mathbf{c}	4 C		

	tiempo_servicio
count	72.000000
mean	4.018056
std	2.714298
min	0.100000
25%	2.275000
50%	3.400000
75%	5.100000
max	15.900000

```
In [23]: print('La varianza es: ', datos.var())
         La varianza es: tiempo servicio
                                             7.367416
         dtype: float64
In [24]: print('La media de los tiempos es: ', datos.median())
         La media de los tiempos es: tiempo_servicio
         dtype: float64
In [25]: print('La desviacion estandar del tiempo es: ', datos.std())
         La desviacion estandar del tiempo es: tiempo_servicio
                                                                   2.714298
         dtype: float64
In [26]: print('La moda de los datos es ', datos.mode())
         La moda de los datos es
                                     tiempo_servicio
                        2.1
         1
                        5.1
```

d) Genere 10 números aleatorios con los siguientes parámetros Xo=349, a=347,c=47,M=1000

```
In [27]: n, m, a, x0, c = 10, 1000, 347, 349, 47
         x = [1] * n
         r = [0.1] * n
         print (" Método de Congruencia Lineal ")
         print("-----")
         print ("n=cantidad de números generados : ", n)
         print()
         print ("m : ", m)
         print ("a : ", a)
print ("c : ", c)
         print ("Xo : ", x0 )
         for i in range(0, n):
             x[i] = ((a*x0)+c) % m
             x0 = x[i]
             r[i] = x0 / m
         # Guardamos los datos en un dataframe
         d = {'Xn': x, 'ri': r }
         dfMCL = pd.DataFrame(data=d)
         dfMCL
          Método de Congruencia Lineal
         n=cantidad de números generados : 10
              1000
         a: 347
         c: 47
         Xo: 349
Out[27]:
             Xn
                    ri
          0 150 0.150
             97 0.097
          2 706 0.706
             29 0.029
            110 0.110
            217 0.217
            346 0.346
            109 0.109
```

e) Encuentre los valores de los tiempos de servicio para los 10 números aleatorios generados y grafique los resultados de los 10 datos.

870 0.870 937 0.937

```
In [47]: #Longitud de la clase
          r=max(datos['tiempo_servicio'])-min(datos['tiempo_servicio'])
         long=len(datos)/r
         print('La longitud es ->',long)
          La longitud es -> 4.556962025316455
In [45]: landa=15.9-0.1
         dfexp = dfMCL['ri']
          exp_x = dfexp.values*(-1/landa)*np.log(dfexp)
          dfMCL["FDA"] = exp_x
         dfMCL[:10]
Out[45]:
              Xn
                     ri
                          exp_x
                                    FDA
             150 0.150 0.018011 0.018011
              97 0.097 0.014323 0.014323
             706 0.706 0.015556 0.015556
              29 0.029 0.006498 0.006498
             110 0.110 0.015367 0.015367
             217 0.217 0.020984 0.020984
             346  0.346  0.023241  0.023241
             109 0.109 0.015290 0.015290
             870 0.870 0.007668 0.007668
             937 0.937 0.003859 0.003859
 In [ ]:
```