Aula 2 - Modelagem Conceitual: MER e Diagrama ER com Exemplos de Relacionamentos

Objetivo

Nesta aula, iremos estudar:

- Compreender o conceito de modelagem conceitual e sua importância na construção de um banco de dados eficiente.
- Aprender a representar dados de forma estruturada utilizando o **Modelo Entidade- Relacionamento (ER)**.
- Aprender sobre o **Modelo Entidade-Relacionamento Estendido (MER)** e sua aplicação em sistemas mais complexos.
- Explorar os tipos de relacionamentos no modelo ER (1:1, 1:N, N:M) com exemplos práticos.
- Aplicar os conceitos aprendidos a um **exemplo progressivo**, desde a análise do problema até a construção dos diagramas ER e MER.
- Desenvolver uma atividade prática baseada em um caso real.

1. Introdução à Modelagem Conceitual

A modelagem conceitual é a **primeira etapa** do processo de desenvolvimento de um banco de dados. Seu objetivo é criar um **esboço visual** que represente a estrutura dos dados de um sistema, sem se preocupar ainda com a implementação técnica.

A modelagem conceitual ajuda a:

- Definir corretamente os dados que serão armazenados.
- Identificar as relações entre diferentes informações.
- Garantir a consistência e integridade dos dados no sistema.
- Melhorar o desempenho e escalabilidade do banco de dados.

Essa modelagem é representada graficamente por um **Diagrama Entidade-Relacionamento (ER)** e pode ser estendida utilizando o **Modelo Entidade-Relacionamento Estendido (MER)**.

2. Modelo Entidade-Relacionamento (ER)

O Modelo ER representa os elementos do banco de dados por meio de entidades, atributos e relacionamentos.

2.1. Entidades

As **entidades** representam os objetos principais do sistema que precisam ser armazenados no banco de dados.

P Exemplo:

- Em um sistema de biblioteca, as entidades podem ser Usuário, Livro e Empréstimo.
- Em um e-commerce, podem ser Cliente, Pedido e Produto.

Cada entidade será posteriormente convertida em uma tabela no banco de dados.

2.2. Atributos

Os atributos são as características das entidades.

Cada atributo pode ser de um tipo diferente, conforme mostrado na tabela abaixo:

Tipo de Atributo	Descrição	Exemplo
Simples	Contém um único valor	Nome, CPF, Data de Nascimento
Composto	Pode ser dividido em partes menores	Endereço (Rua, Número, Cidade)
Multivalorado	Pode ter múltiplos valores	Telefones de um cliente
Derivado	Pode ser calculado a partir de outros	Idade (calculada a partir da data de
	atributos	nascimento)

3. Tipos de Relacionamentos e Exemplos

Os relacionamentos estabelecem **ligações entre as entidades**. Vamos explorar os três tipos principais:

3.1. Relacionamento 1:1 (Um para Um)

- Cada registro em uma entidade está relacionado com apenas um registro em outra entidade.
- Exemplo: Um funcionário tem um único crachá e cada crachá pertence a apenas um funcionário.

Diagrama ER

Relacionamento 1:1 (Um para Um)

Cada funcionário possui exatamente um crachá Cada crachá pertence a exatamente um funcionário

3.2. Relacionamento 1:N (Um para Muitos)

- Um registro em uma entidade pode estar relacionado a **múltiplos registros** em outra entidade.
- Exemplo: Um cliente pode fazer vários pedidos, mas cada pedido pertence a um único cliente.

📌 Diagrama ER

Relacionamento 1:N (Um para Muitos)

3.3. Relacionamento N:M (Muitos para Muitos)

- Um registro em uma entidade pode estar relacionado a **múltiplos registros** em outra entidade, e vice-versa.
- Exemplo: Um aluno pode estar matriculado em várias disciplinas, e uma disciplina pode ter vários alunos matriculados.
- Para representar esse relacionamento, usamos uma tabela intermediária.

📌 Diagrama ER

Relacionamento N:M (Muitos para Muitos)

Relacionamento N:M implementado através de tabela intermediária (MATRÍCULA)

Aqui, a tabela Matricula serve como uma ponte entre Aluno e Disciplina.

4. Modelo Entidade-Relacionamento Estendido (MER)

O Modelo ER Estendido (MER) adiciona novos conceitos ao modelo ER para melhor representar cenários mais complexos.

4.1. Generalização e Especialização

- Generalização: Ocorre quando várias entidades semelhantes são agrupadas em uma entidade mais genérica.
 - PExemplo: As entidades **Aluno** e **Professor** podem ser generalizadas para **Pessoa**.
- **Especialização**: O contrário da generalização uma entidade genérica é dividida em subtipos mais específicos.
 - Exemplo: A entidade **Pessoa** pode se especializar em **Aluno** e **Professor**, cada um com atributos específicos.

📌 Diagrama MER

Generalização e Especialização

Generalização (bottom-up)

Especialização (top-down)

Comparação entre Generalização e Especialização

- Generalização (abordagem bottom-up): Combinamos entidades existentes com características comuns em uma nova entidade mais genérica
- Especialização (abordagem top-down): Dividimos uma entidade genérica em subclasses mais específicas com atributos adicionais únicos

5. Atividade Prática - Sistema de Locadora de Veículos

5.1. Análise do Sistema

Uma locadora de veículos deseja informatizar seu sistema de gestão de aluguel de carros. O sistema precisa armazenar informações sobre:

- Os clientes que alugam veículos.
- Os veículos disponíveis.
- Os contratos de aluguel.
- Os pagamentos dos aluguéis.