

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

18MAT31: Transform Calculus, Fourier Series and Numerical Techniques Assignment - II

Q. No						Q	uestic	ons						Blooms Level	CO'S
1.	Obtain the deduce that	_					<i>f</i> (<i>x</i>)	=x-x	χ ² in –	-π ≤ <i>x</i>	: ≤ π ε	and hen	ce	L1, L2, L3	CO2
2.	Obtain the $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{1^2}$				the fur	nction	<i>f</i> (<i>x</i>)	= x in	n (-π,	π) and	l hence	deduc	e that	L1, L2, L3	CO2
3.	Obtain the	luce th	at $\frac{\pi^2}{8}$:	$=\frac{1}{1^2}$	$+\frac{1}{3^2}+$	$\frac{1}{5^2} + \cdots$	•							L1, L2, L3	CO2
4.	Obtain the Fourier series of the function $f(x) = \frac{\pi - x}{2}$ in $[0,2\pi]$ and hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$								L1, L2, L3	CO2					
5.	Find the Fourier series expansion of the function $f(x) = \frac{\pi x}{\pi (2 - x)}$ $0 < x < 1$ $1 < x < 2$							1 < 2	L1, L2, L3	CO2					
6.	Obtain the Fourier series of the function $f(x) = \frac{2-x}{x-6}$ $0 < x < 4$ Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$								L1, L2, L3	CO2					
7.	Obtain the half range Fourier Cosine series for the function $f(x) = \sin x$ in $[0, \pi]$:]	L1, L2, L3	CO2					
8.	Find the Fourier half range sine series of the function $f(x) = 2x - x^2$ in [0,3]								L1, L2, L3	CO2					
9.	Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data $x(deg) = 0$ 45 90 135 180 225 270 315							ries	L1, L2, L3	CO2					
	у	2		1.5	1		0.5	0	0.5		1	1.5			
10.	Express y as a Fourier series up to first harmonic given that										L1, L2, L3	CO2			
	x(deg)	0	30	60	90	120	150	180	210	240	270	300	330		
	у	1.8	1.1	0.3	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0		
													_ _		

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

'n Institute w	: 2001 ith a Difference											
11.	The following table gives the variations of periodic current over a period											CO2
	t(sed	c)	0	$\frac{T}{6}$	$\frac{T}{3}$	$\frac{T}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	T			
	A(am	A(amp) 1.98 1.3 1.05 1.3 -0.88		-0.25	1.98							
	Show the of the fi			nstant pa	rt of 0.75	in the cu	arrent and	also obtain	the ampl	itude		
12.	Fourier expansion of y from the following data								L1, L2, L3	CO2		
		х	0	1	2	3	4	5				
		y 9 18 24 28 26 20										
13.	Using the Taylor's series method solve $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ at the point $x = 0.2, 0.3$. Consider up to 4 th degree term								L1, L2, L3	CO4		
14.	Using Runge – Kutta method solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$ by taking the step length as 0.2						g the	L1, L2, L3	CO4			
15.	Using Runge – Kutta method solve $\frac{dy}{dx} = y(x + y)$ with $y(0) = 1$ at $x = 0.2$ by taking the step length as 0.2						aking	L1, L2, L3	CO4			
16.	Using the modified Euler's method solve the IVP $\frac{dy}{dx} = x + y^2$, $y(0) = 1$ at $x = 0.2$ by taking $h = 0.1$. Carry out two iterations at each step						0.2 by	L1, L2, L3	CO4			
17		he mo					$\frac{y}{x} = x + y$	² , y(0) =	1 at $x =$	1 in	L1, L2, L3	CO4
18	Using Milne's predictor – corrector method find y when $x = 0.4$ given that $\frac{dy}{dx} = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$. Apply the corrector formula twice.						ly the	L1, L2, L3	CO4			
19	Using Milne's predictor – corrector method find y when $x = 1.4$ given that $\frac{dy}{dx} = x^2 + \frac{y}{2}$, $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$. Apply the corrector formula twice.				apply	L1, L2, L3	CO4					
20	Using Milne's predictor – corrector method find y when $x = 1.4$ given that $\frac{dy}{dx} = x^2(1+y)$, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$. Apply the corrector formula twice.					CO4						

Submission Last Date: 17.11.2020

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 **DEPARTMENT OF MATHEMATICS**

Multiple choice questions
1. Fourier expansion of an odd function has only terms.
a) Cosine b) Sine c) Both cosine and sine d) None
2.If $f(x) = x^4$ in $(-1,1)$, then the Fourier coefficient $b_n =$
a) 0 b) $\frac{4(-1)^n}{n^2}$ c) $\frac{1-(-1)^n}{n^2}$ d) None
3. Fourier expansion of an even function $f(x)$ in $(-\pi, \pi)$ has only terms.
a) Cosine b) Sine c) Both cosine and sine d) None
4. If $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ then $f(0) =$
5. If $(x) = x^2 in (-2,2)$, $f(x+4)=f(x)$, then $a_n =$ a) $\int_0^2 x^2 cos \frac{n\pi x}{2} dx$ b) $\int_0^4 x^2 cos \frac{n\pi x}{4} dx$ c) $\int_0^2 x^2 cos \frac{n\pi x}{4} dx$ d) none
6. If $f(x)$ an odd function in $(-\pi, \pi)$, then the graph of $f(x)$ is symmetric about the
a) x- axis b) y-axis c) origin d) none
7. The mean value of f(x)cosnx in $(0,2 \pi)$ a) $\frac{a_n}{2}$ b) $\frac{b_n}{2}$ c) $\frac{a_0}{2}$ d) none
8. The period of a constant function is a) 2π b) $2l$ c) not defined d) none
9. A function f(x) defined for 0 <x<1 (-1,="" 1)="" an="" be="" can="" extended="" function="" if<="" in="" odd="" periodic="" td="" to=""></x<1>
a) $f(-x) = -f(x)$ b) $f(-x) = f(x)$ c) $f(-x) \neq -f(x) \neq f(x)$ d) none
10. If $f(x)$ is defined in $(0, I)$ then the period of $f(x)$ to expand it as a half-range sine series is
a) 2 π b) 2l c) l d) none
11. If x=c is a point of discontinuity then the Fourier series of f(x) at x=c gives f(x)
a) $\frac{1}{2}(f(c-0)+f(c+0))$ b) $f(c)$ c) $\frac{f(c)}{2}$ d) none
12. Period of $ \sin x $ is a)2 π b) 3 π c) π
13. Using sine series for f(x)=1, in $0 < x < \pi$, show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = 1$
a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2}{12}$ c) $\frac{\pi^2}{8}$ d) none
14. The term $a_1 cos x + b_1 sin x$ In the Fourier series is called
a) constant term b) first harmonic c) second harmonic d) none
15. The value of b_n in the Fourier series of f(x)= x in $-\pi < x < \pi$, a) 0 b) $\pi/2$ c) π d) none
16.If Fourier transform of f(x) is F(s) then the inverse formula is a) $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{-isx} dx$
b) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx} dx$ c) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$ d) none
$\sqrt{2\pi} J_{-\infty} = \sqrt{2\pi} J_{-\infty} = 2\pi$
17. Fourier sine transform of 1/x is a) $\frac{s^2}{2}$ b) $\frac{s}{2}$ c) s^2 d) none
17. Fourier sine transform of $1/x$ is a) $\frac{s^2}{2}$ b) $\frac{s}{2}$ c) s^2 d) none
17. Fourier sine transform of $1/x$ is a) $\frac{s^2}{2}$ b) $\frac{s}{2}$ c) s^2 d) none 18. Fourier cosine transform of e^{-x} is a) $\frac{s}{s^2+1}$ b) $\frac{1}{s^2+1}$ c) $\frac{1}{s^2-1}$ d) none 19. The value of $\int_0^\infty \frac{\sin x}{x} dx$ is a) $\frac{\pi}{4}$ b) π c) $\frac{\pi}{2}$ d) none
17. Fourier sine transform of $1/x$ is a) $\frac{s^2}{2}$ b) $\frac{s}{2}$ c) s^2 d) none 18. Fourier cosine transform of e^{-x} is a) $\frac{s}{s^2+1}$ b) $\frac{1}{s^2+1}$ c) $\frac{1}{s^2-1}$ d)none