

Ampliación de Señales y Sistemas

1 implication de Senates y Sistemus	
Examen final (convocatoria extraordinaria)	
Apellidos	
Nombre	
Titulación (marque con un círculo lo que corresponda): Tecnologías - Telemática - Sistemas - Doble Sistemas+ADE - Doble	Teleco+Aero
Ejercicio 1 (conteste en la hoja del enunciado) [3 puntos]	
Considere una señal $x[n]$ que da lugar a la Transformada de Fourier (TF) denotada como muestra a continuación en el intervalo $[-\pi, \pi)$.	$X(e^{j\Omega})$ que se
$lack Y(e^{j\Omega})$	
$-\pi \frac{-3\pi}{4} \frac{-\pi}{2} \frac{-\pi}{4} 0 \frac{\pi}{4} \frac{\pi}{2} \frac{3\pi}{4} \pi$ Figura 1.1	
(a) Indique si la señal x[n] es periódica y, si lo es, indique su periodo. Justifique muy brev [0.5 puntos]	emente su respuesta.
Justificación:	Indique sí/no:
(b) Indique si la señal x[n] es real. Justifique muy brevemente su respuesta. [0.5 puntos]	
Justificación:	Indique sí/no:
(c) Indique si con la información suministrada puede saber el valor de x[0]. Si la respuesta indique cuál es. Justifique brevemente su respuesta. [0.5 puntos]	es afirmativa
Justificación:	Indique sí/no:
(d) Indique si con la información suministrada puede saber el valor de $\sum_{n=-\infty}^{\infty} x[n] ^2$. Sa afirmativa indique cuál es. Justifique brevemente su respuesta. [0.5 puntos]	Si la respuesta es
Justificación:	Indique sí/no:
	1

(e) Suponga que la señal x[n] se pasa por un filtro paso bajo de amplitud 1 y ancho de banda unilateral $\pi/4$ dando lugar a la señal y[n]. Posteriormente la señal y[n] se transforma en la señal z[n] usando la siguiente relación: z[n]=0 si n es impar y z[n]=y[n/2] si n es par.

Suponiendo que $Z(e^{j\Omega})$ denota la TF de la señal z[n], dibuje $Z(e^{j\Omega})$. [1 punto]

Justificación:

Ejercicio 2 (conteste en la hoja del enunciado) [2 puntos]

Considere una señal x[n] que da lugar a la TF $X(e^{j\Omega})$ que se muestra a continuación en el intervalo $[-\pi, \pi)$

Figura 2.1

(a) Suponga que la señal x[n] se ha obtenido muestreando x(t) con un periodo de T=1ms y que no ha habido ningún tipo de solapamiento. Dibuje $X(j\omega)=TF\{x(t)\}$. [0.5 puntos]

(b) Suponga que la señal y[n] se obtiene a partir de x[n] como y[n]=x[2n]. Dibuje $Y(e^{j\Omega})=TF\{y[n]\}$. [1 punto]

(c) Suponga que la señal y[n] se transforma en una señal continua y(t) usando un conversor "discreto a continuo" ideal con un periodo de interpolación T=2ms. Dibuje $Y(j\omega)$ = TF $\{y(t)\}$. [0.5 puntos]

Ejercicio 3 (conteste en la hoja del enunciado) [2 puntos]

(a) [1 punto] Determinar las DFTs de la longitud indicada para las siguientes secuencias:

Las DFTs deberán calcularse en el orden indicado (es decir, primero la de $x_1[n]$, después la de $x_2[n]$, etc.) de manera que en cada cálculo de DFT se aprovechen, si es posible, las DFTs calculadas con anterioridad.

(b) [0.5 puntos] Calcule de forma directa (sin utilizar DFT) la convolución circular de 3 puntos de las secuencias $x_1[n]$ y $x_3[n]$ para n = 2.

(c) [0.5 puntos] Repita el apartado anterior utilizando las DFTs de $x_1[n]$ y $x_3[n]$.

Ejercicio 4 (conteste en la hoja del enunciado) [2 puntos]

Un sistema LTI discreto causal está descrito por la siguiente ecuación en diferencias:

$$x[n] - \frac{1}{2}x[n-1] = y[n] - 2y[n-1] + \frac{1}{4}y[n-2] - \frac{1}{2}y[n-3]$$

(a) $[0.75 \ puntos]$ Encuentre la función de transferencia H(z) del sistema e indique su región de convergencia.

(b) $[0.25 \ puntos]$ Represente el diagrama de polos y ceros de H(z) en el plano z.

(c) $[0.25 \ puntos]$ ¿Es estable el sistema caracterizado por H(z)?. Justifique su respuesta.

(d) [0.5 puntos] A la salida de dicho sistema se coloca en cascada otro sistema caracterizado por la siguiente función de transferencia:

$$G(z) = \frac{1 - 2z^{-1}}{1 - \frac{1}{2}z^{-1}}, \quad \text{ROC:} |z| > \frac{1}{2}$$

Determine la función de transferencia del sistema total, Q(z), formado por la conexión en cascada de los subsistemas H(z) y G(z). Represente el diagrama de polos y ceros del sistema Q(z).

(e) $[0.25 \ puntos]$ Determine la señal discreta, y'[n], a la salida de Q(z) cuando la entrada viene dada por x'[n] = [1,0,1/4] (es decir, x'[0] = 1, x'[1] = 0, x'[2] = 1/4, 0 para el resto de valores de n).

Ejercicio 5 (conteste en la hoja del enunciado) [1 punto]

Cuando hablamos de diseñar filtros discretos (FIR e IIR) a partir de especificaciones:

(a) ¿A qué nos referimos?.

(b) Represente gráficamente un ejemplo de dichas especificaciones.