UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

1 INTRODUCTION

1.1 PROJECT OVERVIEW

The University Admit Eligibility Predictor we have Developed will be looking for the Probability of Admission for a Student in Universities. It predicts the Possibility using IBM Watson Machine Learning. It allows the Users to Provide Feedback for Further Development of the Project. It also resolves them to release their Stress of whether they would get the Admission or not.

1.2 PURPOSE

The Purpose of the Project is to make Students who willing to Join Universities get to know their Chances of Possibility in Admission across Universities. They will be Able to Know their Chances of University Admission. So they would be Confident on getting an Admission. The Project will be Able to Make Students free of the Fear of Failing to Get an Admission in the University and will be Them Focus on their Studies.

2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

This paper proposes a new college admission prediction technique based on using two cascaded knowledge rules for achieving student's college admission with high performance fairly and accurately. The system analyzes student academic merits, background, student records, and the college admission criteria. Then, it predicts the likelihood of university college that a student may enter. For a pursuing graduate student, shortlisting the colleges could be an intense issue. College undergraduates frequently have an inclination to ponder over the chance that their profile suits the college requirements. Computer programs are exceptionally well trained and faster than humans in making decisions. Moreover, the cost of admission in a college is a lot,

making it very crucial for a student that their profile gets shortlisted for a university admission. Accurate prediction of college entrance examination(CEE) results is very important for the candidates to fill in the application and the relevant analysis of the CEE. At present, the prediction of CEE score is based on data statistics, probability model and some weighted combination models. In this paper, machine learning methods are used to carry out the admission lines of research and prediction. Specifically, in this paper the Adaboost algorithm is used to study and forecast, which belongs to ensemble learning. Finally, the result of this model is given, which is better than the current prediction. The engineering admission process is hectic and more than that is to find the college according to student preference i.e stream, location, university and seat type, etc. During the admission process the students always need to check the previous years cutoff of each college by visiting numerous websites & pdf lists which certainly consumes a lot of time. In our web application we will provide cutoff prediction of each college by the dataanalysis of previous years cutoff, recommendation system for colleges listing according to student preferences, furthermore providing detailed comparison between institutions of their choice. The application is developed to bestow a personalized system so as to reduce time and ease the student's college selection process. Students applying for admissions to universities find it difficult to understand whether they have good chances of getting admission in a university or not. Keeping this in focus, we have used logistic regression techniques that have gained attention in the software engineering field for its ability to be used for predictions. This is a novel work on a university admissions predictor using which students can evaluate their competitiveness for getting admission at a university. This is developed by collecting real student data. The data is stored in a form of usable training data for the logistic regression classifier developed to make admissions predictions. We have collected the data from the Internet using a Selenium web scraper. The paper intensely discusses the methods, implementation and challenges faced in the process.

2.2 REFERENCES

Paper 1

Authors: Abdul Hamid M Ragab; Abdul Fatah S. Mashat; Ahmed M Khedra

<u>Year</u>: 2012

<u>Title:</u> HRSPCA: Hybrid Recommender System for Predicting College Admission

Methodology: This paper proposes a new college admission prediction technique based

on using two cascaded knowledge rules for achieving student's college admission with

high performance fairly and accurately. The system analyzes student academic merits,

background, student records, and the college admission criteria. Then, it predicts the

likelihood of university college that a student may enter.

Advantage: The system provides recommendations about which university colleges a

student should be admitted to, taking into consideration not only student's scores but

also other university qualified criteria into account. The HRSPCA system was validated

using real students data. System experiments showed that the HRSPCA system performs

substantially high performance due to allocating admission tasks between two cascading

recommenders

<u>Disadvantage:</u> Out of 66 thousand applicants, Only 16 thousand were able to match

the standard university or college standards.

Paper 2

Authors: Jayashree Katti, Jony Agarwal, Swapnil Bharata, Swati Shinde, Saral Mane,

Vinod Biradar

Year: 2022

<u>Title:</u> University Admission Prediction using Google Vertex AI

<u>Methodology:</u> For a pursuing graduate student, shortlisting the colleges could be an

intense issue. College undergraduates frequently have an inclination to ponder over the

chance that their profile suits the college requirements. Computer programs are

exceptionally well trained and faster than humans in making decisions. Moreover, the

cost of admission in a college is a lot, making it very crucial for a student that their

profile gets shortlisted for a university admission.

<u>Advantage:</u> A University prediction machine learning algorithm is very advantageous

for college undergraduates to choose their dream university which also matches their

resume. The proposed method considers diverse variables related to the student and his

score in various tests.

Disadvantage: The dataset includes LOR, GRE score, CGPA, TOFEL score,

University Rating, SOP, etc. Based on all these criterias, the admission to a particular

university of an undergraduate will be predicted. The Students may not be able to pay

the Exam Fees of all the Above Exams.

Paper 3

<u>Authors:</u> Zhenru Wang , Yijie Shi

Year: 2016

Title: Prediction of the admission lines of college entrance examination based on

machine learning

<u>Methodology:</u> Accurate prediction of college entrance examination(CEE) results is very

important for the candidates to fill in the application and the relevant analysis of the

CEE. At present, the prediction of CEE score is based on data statistics, probability

model and some weighted combination models. In this paper, machine learning methods

are used to carry out the admission lines of research and prediction. Specifically, in this

paper the Adaboost algorithm is used to study and forecast, which belongs to ensemble

learning. Finally, the result of this model is given, which is better than the current

prediction.

Advantage: In this paper, machine learning methods are used to carry out the admission

lines of research and prediction. Specifically, in this paper the Adaboost algorithm is

used to study and forecast, which belongs to ensemble learning. Finally, the result of this

model is given, which is better than the current prediction.

Disadvantage: Of course, the establishment of the model is not very perfect because of the

in-exhaustive data. And there are still a lot of things to be improved. And in the aspect

of feature selection, we only forecast the college entrance examination of Sichuan

province. If we get more data in the future, we can also do university admission line

forecasts. It is also a very significant work.

Paper 4

Authors: Abdul Majeed Inamdar, Tanmay Mhatre, Pravin Nadar, Supriya Joshi

Year: 2022

<u>Title:</u> Personalized College Recommender and Cutoff Predictor for Direct Second Year

Engineering

<u>Methodology:</u> The engineering admission process is hectic and more than that is to find

the college according to student preference i.e stream, location, university and seat type,

etc. During the admission process the students always need to check the previous years

cutoff of each college by visiting numerous websites & pdf lists which certainly

consumes a lot of time. In our web application we will provide cutoff prediction of each

college by the data-analysis of previous years cutoff, recommendation system for

colleges listing according to student preferences, furthermore providing detailed

comparison between institutions of their choice. The application is developed to bestow

a personalized system so as to reduce time and ease the student's college selection

process.

Advantage: It is very clear on the Goal of the Project and is very productive in a large

set available for them.

<u>Disadvantage</u>: It doesn't work well for smaller sets while training. Such larger Sets are

not available on the Web.

Paper 5

Authors: Haseeba Fathiya, Lipsa Sadath

Year : 2021

<u>Methodology:</u> Students applying for admissions to universities find it difficult to understand whether they have good chances of getting admission in a university or not. Keeping this in focus, we have used logistic regression techniques that have gained attention in the software engineering field for its ability to be used for predictions. This is a novel work on a university admissions predictor using which students can evaluate their competitiveness for getting admission at a university. This is developed by collecting real student data. The data is stored in a form of usable training data for the logistic regression classifier developed to make admissions predictions. We have collected the data from the Internet using a Selenium web scraper. The paper intensely discusses the methods, implementation and challenges faced in the process.

<u>Advantage:</u> The web scraper saves a lot of time and reduces labor costs, and the admissions predictor can be a useful tool to students trying to narrow down their university choices

<u>Disadvantage:</u> Many new features can be incorporated to improve the application. The model selected for each university can be tailored to produce the best results for the data available. Experimentation can also be done using other classification algorithms which could improve the accuracy. Other features can be included along with test scores and GPA to produce more accurate results.

S.No	Author	Title of the	Methodology	Pros	Cons
		Paper		(Advantage)	(Disadvantage)
1.	Abdul	HRSPCA:	This paper	The system	Out of 66
	Hamid	Hybrid	proposes a new	provides	thousand
	M	Recommend	college admission	recommendatio	applicants ,
	Ragab;	er System for	prediction	ns about which	Only 16
	Abdul	Predicting	technique based	university	thousand were
	Fatah S.	College	on using two	colleges a	able to match
	Mashat;	Admission	cascaded	student should	the standard
	Ahmed		knowledge rules	be admitted to ,	university or
	M		for achieving	taking into	college

	Khedra		student's college	consideration not	standards.
	(2012)		admission with	only student's	
	(IEEE		high performance	scores but also	
	paper 1)		fairly and	other university	
			accurately. The	qualified criteria	
			system analyzes	into account. The	
			student academic	HRSPCA system	
			merits,	was validated	
			background,	using real	
			student records,	students	
			and the college	data.System	
			admission	experiments	
			criteria. Then, it	showed that the	
			predicts the	HRSPCA system	
			likelihood of	performs	
			university college	substantially	
			that a student may	high	
			enter.	performance due	
				to allocating	
				admission tasks	
				between two	
				cascading	
				recommenders	
2.	Jayashr	University	For a pursuing	A University	The dataset
	ee Katti,	Admission	graduate student,	prediction	includes LOR,
	Jony	Prediction	shortlisting the	machine learning	GRE score ,
	Agarwal,	using Google	colleges could be	algorithm is very	CGPA, TOFEL
	Swapnil	Vertex AI	an intense issue.	advantageous for	score ,
	Bharata,		College	college	University
	Swati		undergraduates	undergraduates	Rating , SOP ,
	Shinde,		frequently have	to choose their	etc. Based on
	Saral		an inclination to	dream university	all these
	Mane,		ponder over the	which also	criterias, the
	Vinod		chance that their	matches their	admission to a
	Biradar		profile suits the	resume. The	particular
	(2022)		college	proposed method	university of an

	(IEEE		requirements.	considers diverse	undergraduate
	paper 3)		Computer	variables related	will be
			programs are	to the student	predicted.The
			exceptionally well	and his score in	Students may
			trained and faster	various tests.	not be able to
			than humans in		pay the Exam
			making decisions.		Fees of all the
			Moreover, the		Above Exams.
			cost of admission		
			in a college is a		
			lot, making it		
			very crucial for a		
			student that their		
			profile gets		
			shortlisted for a		
			university		
			admission.		
3.	Zhenru	Prediction of	Accurate	In this paper,	Of course, the
	Wang,	the admission	prediction of	machine learning	establishment
	Yijie Shi	lines of	college entrance	methods are used	of the model is
	(2016)	college	examination	to carry out the	not very perfect
	(IEEE	entrance	results is very	admission lines	because of the
	Paper 4)	examination	important for the	of research and	in-exhaustive
	rapei 4)	based on	candidates to fill	prediction.	data. And there
		machine	in the application	Specifically, in	are still a lot of
		learning	and the relevant	this paper the	things to be
			analysis of the	Adaboost	improved. And
			CEE. At present,	algorithm is used	in the aspect of
			the prediction of	to study and	feature
			CEE score is	forecast, which	selection, we
			based on data	belongs to	only forecast
			statistics,	ensemble	the college
			probability model	learning. Finally,	entrance
			and some	the result of this	examination of
			weighted	model is given,	Sichuan
			combination	which is better	province. If we

		I		Ι, ,	Г
			models. Machine	than the current	get more data in
			learning methods	prediction.	the future, we
			are used to carry		can also do
			out the admission		university
			lines of research		admission line
			and prediction.In		forecasts. It is
			this paper the		also a very
			Adaboost		significant
			algorithm is used		work.
			to study and		
			forecast, which		
			belongs to		
			ensemble		
			learning.		
			<u> </u>		_
4.	Abdul	Personalized	The engineering	It is very clear	It doesn't work
	Majeed	College	admission process	on the Goal of	well for smaller
	Inamdar,	Recommend	is hectic and more	the Project and is	sets while
	Tanmay	er and Cutoff	than that is to find	very productive	training. Such
	Mhatre,	Predictor for	the college	in a large set	larger Sets are
	Pravin	Direct Second	according to	available for	not available on
	Nadar,	Year	student preference	them.	the Web.
	Supriya	Engineering	i.e stream,		
	Joshi		location,		
	(2022)		university and		
	(2022)		seat type, etc.		
	(IEEE		During the		
	Paper 5)		admission process		
			the students		
			always need to		
			check the		
			previous years		
			cutoff of each		
			college by		
			visiting numerous		
			websites & pdf		
			lists which		
		<u> </u>			

		T	, • 1		
			certainly		
			consumes a lot of		
			time. In our web		
			application we		
			will provide		
			cutoff prediction		
			of each college by		
			the data-analysis		
			of previous years		
			cutoff,		
			recommendation		
			system for		
			colleges listing		
			according to		
			student		
			preferences,		
			furthermore		
			providing detailed		
			comparisons		
			between		
			institutions of		
			their choice. The		
			application is		
			developed to		
			bestow a		
			personalized		
			system so as to		
			reduce time and		
			ease the student's		
			college selection		
			process.		
5.	Haseeba	University	Students applying	The web scraper	Many new
	Fathiya,	Admissions	for admissions to	saves a lot of	features can be
	Lipsa	Predictor	universities find it	time and reduces	incorporated to
	Sadath	Using	difficult to	labor costs, and	improve the
	(2021)	Logistic	understand	the admissions	application. The
	1	l .	<u> </u>	<u> </u>	<u> </u>

(IEEE	Regression	whether they have	predictor can be	model selected
Paper 6)		good chances of	a useful tool to	for each
		getting admission	students trying to	university can
		in a university or	narrow down	be tailored to
		not. Keeping this	their university	produce the best
		in focus, we have	choices	results for the
		used logistic		data available.
		regression		Experimentati
		techniques that		on can also be
		have gained		done using
		attention in the		other
		software		classification
		engineering field		algorithms
		for its ability to		which could
		be used for		improve the
		predictions. This		accuracy. Other
		is a novel work		features can be
		on a university		included along
		admissions		with test scores
		predictor using		and GPA to
		which students		produce more
		can evaluate their		accurate results.
		competitiveness		
		for getting		
		admission at a		
		university. This is		
		developed by		
		collecting real		
		student data. The		
		data is stored in a		
		form of usable		
		training data for		
		the logistic		
		regression		
		classifier		
		developed to		
		make admissions		
 1	<u> </u>		1	

	1		
		predictions. We	
		have collected the	
		data from the	
		Internet using a	
		Selenium web	
		scraper. The paper	
		intensely	
		discusses the	
		methods,	
		implementation	
		and challenges	
		faced in the	
		process.	

2.3 Problem Statement Definition

Nowadays Students after Completing their Board Exams are having High Expectations in their Higher Studies. But During their Admission, They are less likely to get the University they wished they wanted to get. So We are creating a University Admit Eligibility Predictor where the Students will be able to check the Possibility of their admission in the University they wished to Join. We Train the Machine Learning Model with the Admission Details of various Universities. We also provide Details of the Fees Collected by the Universities to give them an idea on the Expenses to be allocated for the Higher Education Purpose. The Students can also be Confident that the University they are expecting accepts students with the Mark he/she is having. So They will not have any Sad Feelings when they don't get the University they are Expecting.

We will be conducting an English Test to make sure that they will be able to make up for the Communication gap in case they are opting for a University outside of their Native Place. Through this Project, We will be able to do a University Admit Eligibility Predictor that will be able to predict the Possibility of a Student's Admission in a Specific University based on their marks.

Who does the Problem affect?	Students Seeking University Admission
What are the Boundaries of the Problem	Students who want to ensure they are Eligible for Specific University
What is the Issue?	Students are not able to see Every Universities Cutoff to Check if they are Eligible for the Respective University.
When does the Issue Occur?	Mostly during the Month when Result is Announced
Where does the Issue Occur?	It occurs in all Educational Institutions
Why is it Important that we fix the Problem?	Students get Depressed when they don't get the University they are Expecting and are not able to concentrate on further Studies and perform poorly.
What Solution solves this Issue?	A Model Trained well enough to predict the Possibilities of a Student getting Admission in a Specific University
What Methodology is used to solve this Issue?	Machine Learning is used for training the Model to be able to Predict the Possibility of a Student being able to join a Specific University.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

STEP 1 : TEAM GATHERING , COLLABORATING AND SELECT THE PROBLEM STATEMENT

STEP 2: BRAINSTORMING, IDEA LISTING AND GROUPING

STEP 3: IDEA PRIORITIZATION

3.3 Proposed Solution

S. No	PARAMETER	DESCRIPTION
1.	Problem Statement (Problem to be Solved)	Students now-a-days are very stressed that they are not able to get the College they wanted to Join. So They are not able to concentrate on their Studies well as they used to. They are a bit disappointed when they don't get the University they preferred. They are asked for more Donations if not met with the Criteria.

2.	Idea / Solution Description	To make the Students stress-free, We are developing a University Admit Eligibility Predictor to provide Students with a Facility that could predict their Possibility to Join a Specific University.
3.	Novelty / Uniqueness	The Predictor not only just Predicts the Possibility of Admission but also Provides similar Admissible Universities as Suggestions for a backup for the Students where they join in case the University they preferred has a higher Criteria.
4.	Social Impact / Customer Satisfaction	Through this, we are able to reduce the stress developed among the Students during the Admission Time. We are able to achieve a Transparent System that is open to all and anyone is able to view the Possibility of Admission without Restrictions of any kind. It prevents the possibility of Parents disapproving of the Children's Higher Education due to higher costs.
5.	Business Model (Revenue Model)	The Predictor also displays the Average amount of Fees Collected by the College per annum which helps the Students ensure they will be able to afford the University Admission. Through this Predictor, we are able to reduce the Amount Spent by Students during the Admission Period and are able to save a considerable amount of money through it.

6.	Scalability of the Solution	The Project is initially developed for a Specific
		University but it is scalable to National or
		International Universities also. It could later be
		upgraded to compute the Donation requested by
		the University for the Cutoff the Student has.
		The Project can also show Currency
		Conversion for
		Admissions in Universities Abroad. These kinds
		of Upgrade are Scalable in this Project.

3.4 Problem Solution fit

4 REQUIREMENT ANALYSIS

4.1 Functional requirement

FUNCTIONAL REQUIREMENTS:

FR No.	FUNCTIONAL REQUIREMENT (EPIC)	SUB REQUIREMENT (STORY / SUB-TASK)
1.)	Home Page	It provides information regarding the Predictor and now it works and will have a Sitemap to the Other Pages.
2.)	User Input	The User will be providing the Score he had got in his Academics and his personal Details which will be used to predict his chances of Admission
3.)	Score Analysis	The Scores are used to predict the Possibilities of Admission in a we'll trained Model deployed in the Cloud.
4.)	Score Result	The Results ie the Possibility of Admission is displayed to the User and Also Other Possible Universities where he could Join are Also Suggested.
5.)	University Page	The Details of Universities that are available are displayed in this Page. So the Students are able to view the Stats of the University.
6.)	Feedback	The User Provides his Feedback where he can provide certain suggestions to be Implemented or the Part of the Project where it is Good.

4.2 Non-Functional requirements

NON FUNCTIONAL REQUIREMENTS:

NFR No.	NON-FUNCTIONAL REQUIREMENT	DESCRIPTION
1.)	Usability	It has high usability because most of the Students will be willing to join Higher Education. It will be user-friendly and very minimalistic information is required.
2.)	Security	The information provided by users are provided with maximum security and complete Confidentiality. None will be able to view the Information provided by the Information.
3.)	Reliability	The Prediction is highly Reliable because The Model is Well Trained with Data of Universities across the world and with Better Accuracy.
4.)	Performance	The Performance of the Admission Predictor is because it has a very less loading Time. It has very few Graphics which also takes only a little space. It is highly accurate in predicting the Admission of the Student.
5.)	Availability	It is made available to the Users at any Time without any Restriction 24*? Because The Model is Deployed in IBM Cloud, which is made to work under any such Circumstances.
6.)	Scalability	Any Number of Users can Access the Predictor without any Issue Because The Model is Deployed in IBM Cloud, which is made to work under any such Circumstances.

5 PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

USER TYPE	FUNCTIONAL REQUIREMENT (EPIC)	USER STORY NUMBER	USER STORY/TASK	ACCEPTANCE CRITERIA	PRIORITY	RELEASE
Customer (Student)	Home	USN - 1	As a User. I will be able to view the Details of the Predictor.	The Information regarding the Predictor is available in Detail.	Low	Sprint - 3
	Details Form	USN - 2	I have to fill the Form with Academic Details and provide information to the Predictor.			Sprint - 2
	Analysis	USN - 3	The Form Results are sent to the Model to predict the Possibilities and Results are Obtained	dict the The Form Input is Sent to Model Securely and The Results are Fetched Successfully.		Sprint -1
	Result	USN - 4	I have to be able to view the Results of the Prediction	I am able to see the chances of Admission in the University.	Medium	Sprint - 2
		USN - 5	I have to be able to view Alternate Universities if the Chances of My Preferred University is very less.	I am able to see Alternate Universities if Chances of My Preferred University are less.	Medium	Sprint - 3
	Feedback	USN - 6	After Completing my Prediction, I have to Share a Feedback to the Prediction for further Improvements	I have shared the Feedback to the Administrator.	Low	Sprint - 4
	Share to Friends	USN - 7	I will be able to share the Predictor to Others.	I am able to Share it.	Low	Sprint - 4
Administrator	Model Generation	USN - 7	I have to train a Model that is able to predict the Chances of Admission Accurately	The Model is well trained and Results are accurate.	High	Sprint - 1
	Model Updation	USN - 8	I have to change the Existing Model with a new Model as it gets Outdated as time passes.	The Model is now Changeable at any Time.	Medium	Sprint - 1
Technical Support	Technical Improvement	USN - 10	I should be able to view Feedbacks and Try to resolve their Query.	The Feedbacks are generated as a Report and are displayed.	Low	Sprint - 4

6 PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

PRODUCT BACKLOG , SPRINT SCHEDULE AND ESTIMATION:

RELEASE	FUNCTIONAL REQUIREMENT (EPIC)	USER STORY NUMBER	USER STORY / TASK	STORY POINTS	PRIORITY	TEAM MEMBER S
Sprint - 3	Home	USN - 1	As a User, I will be able to view the Details of the Predictor.	5	Low	Chandan
Sprint - 2	Details Form	USN - 2	I have to fill the Form with Academic Details and provide information to the Predictor.	6	Medium	Prem , Akash
Sprint -1	Analysis	USN - 3	ne Form Results are sent to the Model to predict the Possibilities and sults are Obtained		High	Prem, Naveen
Sprint - 2	Result	USN - 4	I have to be able to view the Results of the Prediction	8	Medium	Chandan
Sprint - 3		USN - 5	I have to be able to view Alternate Universities if the Chances of My Preferred University is very less.	10	Medium	Prem , Akash
Sprint - 4	Feedback	USN - 6	After Completing my Prediction, I have to Share a Feedback to the Prediction for further Improvements	7	Low	Naveen
Sprint - 4	Share to Friends	USN - 7	I will be able to share the Predictor to Others.	8	Low	Prem
Sprint - 1	Model Generation	USN - 8	I have to train a Model that is able to predict the Chances of Admission Accurately	13	High	Prem , Chandan
Sprint - 1	Model Updation	USN - 9	I have to change the Existing Model with a new Model as it gets Outdated as time passes.	8	Medium	Naveen , Akash
Sprint - 4	Technical Improvement	USN - 10	I should be able to view Feedbacks and Try to resolve their Query.	6	Low	Akash

6.2 Sprint Delivery Schedule

PROJECT TRACKER , VELOCITY & BURNDOWN CHART :

SPRINT	TOTAL STORY POINTS	DURATION	SPRINT START DATE	SPRINT END DATE (PLANNED)	STORY POINTS COMPLETED (AS PER PLANNED DATE)	SPRINT RELEASE DATE (ACTUAL)
SPRINT - 1	30	6 Days	24th Oct 2022	29th Oct 2022	30	29th Oct 2022
SPRINT - 2	14	6 Days	31th Oct 2022	5th Nov 2022	14	5th Nov 2022
SPRINT - 3	15	6 Days	7th Nov 2022	12th Nov 2022	15	12th Nov 2022
SPRINT - 4	21	6 Days	14th Nov 2022	19th Nov 2022	21	19th Nov 2022

VELOCITY: $AV = \frac{sprint\ duration}{velocity}$

SPRINT	TOTAL STORY POINTS	DURATION	AVERAGE VELOCITY
SPRINT -1	30	6 Days	30 = 5
SPRINT - 2	14	6 Days	$\frac{14}{6} = 2.33$
SPRINT - 3	15	6 Days	$\frac{15}{6} = 2.5$
SPRINT - 4	21	6 Days	$\frac{21}{6} = 3.5$
OVERALL	80	24 Days	$\frac{80}{24} = 3.33$

6.3 REPORTS FROM JIRA

Road map

Cumulative Flow Diagram

Scrum Board

7 CODING & SOLUTIONING 7.1 CLIENT SIDE APPLICATION

from flask import Flask, render_template, request from flask_cors import CORS import requests

NOTE: you must manually set API_KEY below using information retrieved from your IBM Cloud account.

```
API_KEY = "PLACE THE API KEY HERE"
```

```
token_response = requests.post("https://iam.cloud.ibm.com/identity/token",data = {
    "apikey":API_KEY , "grant_type":"urn:ibm:params:oauth:grant-type:apikey"
})

mltoken = token_response.json()["access_token"]

header = {"Content-Type" : "application/json" , "Authorization" : "Bearer " + mltoken}

app = Flask(__name___,static_url_path=")
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
```

```
# No cacheing at all for API endpoints.
@app.after_request
def add_header(response):
  # response.cache_control.no_store = True
  if 'Cache-Control' not in response.headers:
    response.headers['Cache-Control'] = 'no-store'
  return response
CORS(app)
@app.route('/',methods=['GET','POST'])
def sendHomePage():
  if(request.method == "GET"):
    return render template('index.html', notification = 'Welcome!')
  else:
    return render_template('index.html', notification = 'You have given ' +
request.form['rating'] + ' Stars Feedback')
@app.route('/predict',methods=['POST'])
def PredictPossibility():
  GREScore = float(request.form['GREScore'])
  TOEFLScore = float(request.form['TOEFLScore'])
  UnivRating = float(request.form['UnivRating'])
  SOP = float(request.form['SOP'])
  LOR = float(request.form['LOR'])
  CGPA = float(request.form['CGPA'])
  Research = 0
  if('Research' in request.form):
    Research = 1
  X = [[GREScore, TOEFLScore, UnivRating, SOP, LOR, CGPA, Research]]
  print(X)
  # NOTE: manually define and pass the array(s) of values to be scored in the next line
  payload_scoring = {"input_data": [{"fields":
[["GREScore","TOEFLScore","UnivRating","SOP","LOR","CGPA","Research"]], "values":
X}]}
  response scoring = requests.post('https://us-
```

```
south.ml.cloud.ibm.com/ml/v4/deployments/1b254abd-eaec-4f59-9e86-
a3674f3eea4c/predictions?version=2022-11-15', json=payload_scoring,
  headers=header)
  print("Scoring response")
  print(response_scoring.json())
  probability = int(round((response_scoring.json()["predictions"][0]["values"][0][0]),2)*100)
  print(probability)
  prob comment = ""
  color scheme = ""
  if(probability > 100):
    probability = 100
  elif(probability < 0):
    probability = 0
  if(probability < 50):
    prob_comment = "The Chances of Getting an Admission is less likely"
    color scheme = 'darkorange'
  elif(probability < 70):
    prob_comment = "There is a slight Chance of Possibility."
    color_scheme = 'yellow'
  else:
    prob_comment = "There is High Chances of Possibility"
    color scheme = 'lawngreen'
  return
render_template('predict.html',predict=probability,comment=prob_comment,color_scheme=co
lor_scheme)
if __name__ == '__main__':
  app.run(debug = True)
7.2 SERVER SIDE MACHINE LEARNING
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
```

df = pd.read_csv('dataset/Admission_Predict.csv')

df.head()

```
df.drop(["Serial No."],axis = 1,inplace = True)
df.head()
df.describe()
df.info()
df.isnull().sum()
sns.distplot(df['TOEFL Score'])
plt.pie(df['University Rating'].value counts(),[0.05,0.05,0.05,0.05,0.05],df['University
Rating'].value_counts().index,autopct='%1.1f%%')
plt.title('University Rating')
plt.plot()
sns.barplot(df.Research.value_counts().index,df.Research.value_counts())
sns.lineplot(df['GRE Score'],df['Chance of Admit'])
def countplot_2(x,hue,title=None,figsize=(12,10)):
  plt.figure(figsize=figsize)
  sns.countplot(data = df[[x,hue]],x=x,hue=hue)
  plt.title(title)
  plt.plot()
countplot_2('Research','University Rating','University based Research Ability')
sns.pairplot(df)
df.corr()
plt.figure(figsize=(12,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
for i in df.columns:
  sns.boxplot(df[i])
  plt.show()
for i in df.columns:
  Q1 = df[i].quantile(0.25)
  Q3 = df[i].quantile(0.75)
  IQR = Q3-Q1
  upper_limit = Q3 + (1.5*IQR)
  lower_limit = Q1 - (1.5*IQR)
  df[i] = np.where(df[i] \ge upper_limit,Q3 + (1.5*IQR),df[i])
  df[i] = np.where(df[i] \le lower_limit,Q1 - (1.5*IQR),df[i])
for i in df.columns:
  sns.boxplot(df[i])
  plt.show()
```

```
X = df.drop(columns=['Chance of Admit'])
X
Y = pd.DataFrame(df['Chance of Admit'])
Y
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X Scaled = pd.DataFrame(scale.fit transform(X),columns = X.columns)
target scale = MinMaxScaler()
Y_Scaled = pd.DataFrame(target_scale.fit_transform(Y),columns = Y.columns)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size = 0.2,random_state=90)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x train,y train)
y_test.to_numpy().flatten()
y_predict = model.predict(x_test)
pd.DataFrame({'Actual':y_test.to_numpy().flatten(),'Predicted':y_predict.flatten()})
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
print(r2_score(y_test,y_predict))
print(mean_absolute_error(y_test,y_predict))
print(mean_squared_error(y_test,y_predict))
print(mean_squared_error(y_test,y_predict,squared=False))
import joblib
joblib.dump(model,r'model/Admission_Predictor.pkl')
```

8 TESTING

8.1 Test Cases

Check Whether The Form is Visible

Check Whether The Submit Button is Clickable

Check Whether the Form Data gets Submitted Successfully to Result Page

Check Whether Displayed Predicted Precentage of Admission

Check Whether If Values are Given Outside of Range It will provide Error Message

Regarding the Range of that Particular Input

Check Whether the Notification Bar Displays 'Welcome' on Entry to the Website.

Check Whether the Feedback Form is Displayed

Check Whether the Emoji are Selectable in Feedback Form

Check Whether Submit Button is Clickable

Check Whether the Notification Bar Displays the Feedback Given.

8.2 User Acceptance Testing

This Report Shows the Number of Bugs resolved or closed at each Severity Level and How they were Resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	7	4	1	3	15
Duplicate	3	2	0	1	6
External	1	0	4	2	7
Fixed	9	4	3	5	21
Not Reproduced	1	0	1	2	4
Skipped	0	0	1	2	3
Won't Fix	1	3	1	0	5
Total	22	13	11	15	61

This Report Shows the Number of Test Cases that have Passed , Failed and untested.

Section	Test Cases	Untested	Fail	Pass
Print Engine	2	0	0	2
Client Application	32	0	0	32
Security	3	0	0	3
Outsource Shipping	2	0	0	2
Exception Reporting	10	0	0	10
Final Report Output	7	0	0	7
Version Control	5	0	0	5

9 RESULTS

9.1 Performance Metrics

EVALUATE THE PERFORMANCE USING METRICS

R2 Score

In [14]: from sklearn.metrics import r2_score
print(r2_score(y_test,y_predict))

0.8724323452611149

Mean Absolute Error

In [15]: from sklearn.metrics import mean_absolute_error
 print(mean_absolute_error(y_test,y_predict))

0.039251015019866026

Mean Sqaured Error

In [16]: from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_test,y_predict))

0.0025295186149925943

Root Mean Squared Error

In [17]: print(mean_squared_error(y_test,y_predict,squared=False))

0.05029431990784441

MODEL TUNING

KFOLD VALIDATION METHOD

In [18]: from sklearn.model_selection import KFold,cross_val_score
 kfold = KFold(n_splits=10, shuffle=True , random_state=100)
 model_kfold = LinearRegression()
 results_kfold = cross_val_score(model_kfold, X, Y, cv=kfold)
 print("Accuracy: %.2f%%" % (results_kfold.mean()*100.0))

Accuracy: 80.22%

10 ADVANTAGES & DISADVANTAGES ADVANTAGES

It is very Quick.

The Results are Accurate.

It is Open Sourced.

No External Payment Required.

Secure. No need to Provide Extra Information such as Login Email ,Password etc.

DISADVANTAGES

It is possible target to Denial of Service Attack Since No Restriction in Access.

There is no Confirmation of Seat Allocation in the Project.

There is Fees Information Provided in the Project.

It is Prediction of Possibility of Admission But Specific University Prediction is not Provided.

Students might get Demotivated on seeing Their Negative Results.

11 CONCLUSION

12 FUTURE SCOPE

In Future we will be able to Train the Machine Learning Model with Institution Specific Data , So That we will be able to check if the Student is able to Join the Institution based on all Cirucumstances such as Distance From Home , Fees Collected by the Institution etc. and so The Suggestions we be Provided on Which College is most Probable in case The College they Requested has No Chances.

13 APPENDIX

Source Code

```
from flask import Flask, render_template, request from flask_cors import CORS import requests
```

NOTE: you must manually set API_KEY below using information retrieved from your IBM Cloud account.

```
API_KEY = "PLACE THE API KEY HERE"

token_response = requests.post("https://iam.cloud.ibm.com/identity/token",data = {
    "apikey":API_KEY , "grant_type":"urn:ibm:params:oauth:grant-type:apikey"
})

mltoken = token_response.json()["access_token"]

header = {"Content-Type" : "application/json" , "Authorization" : "Bearer " + mltoken}

app = Flask(__name___,static_url_path=")
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
```

```
# No cacheing at all for API endpoints.
@app.after_request
def add header(response):
  # response.cache_control.no_store = True
  if 'Cache-Control' not in response.headers:
    response.headers['Cache-Control'] = 'no-store'
  return response
CORS(app)
@app.route('/',methods=['GET','POST'])
def sendHomePage():
  if(request.method == "GET"):
    return render template('index.html', notification = 'Welcome!')
  else:
    return render template('index.html', notification = 'You have given '+
request.form['rating'] + ' Stars Feedback')
@app.route('/predict',methods=['POST'])
def PredictPossibility():
  GREScore = float(request.form['GREScore'])
  TOEFLScore = float(request.form['TOEFLScore'])
  UnivRating = float(request.form['UnivRating'])
  SOP = float(request.form['SOP'])
  LOR = float(request.form['LOR'])
  CGPA = float(request.form['CGPA'])
  Research = 0
  if('Research' in request.form):
    Research = 1
  X = [[GREScore, TOEFLScore, UnivRating, SOP, LOR, CGPA, Research]]
  print(X)
  # NOTE: manually define and pass the array(s) of values to be scored in the next line
  payload_scoring = {"input_data": [{"fields":
[["GREScore","TOEFLScore","UnivRating","SOP","LOR","CGPA","Research"]], "values":
X}]}
  response scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/1b254abd-eaec-4f59-9e86-
```

```
a3674f3eea4c/predictions?version=2022-11-15', json=payload_scoring,
  headers=header)
  print("Scoring response")
  print(response_scoring.json())
  probability = int(round((response_scoring.json()["predictions"][0]["values"][0][0]),2)*100)
  print(probability)
  prob comment = ""
  color scheme = ""
  if(probability > 100):
    probability = 100
  elif(probability < 0):
    probability = 0
  if(probability < 50):
    prob comment = "The Chances of Getting an Admission is less likely"
    color scheme = 'darkorange'
  elif(probability < 70):
    prob_comment = "There is a slight Chance of Possibility."
    color_scheme = 'yellow'
  else:
    prob_comment = "There is High Chances of Possibility"
    color scheme = 'lawngreen'
render_template('predict.html',predict=probability,comment=prob_comment,color_scheme=co
lor_scheme)
if __name__ == '__main__':
  app.run(debug = True)
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  k rel="stylesheet" type="text/css" href="{{ url_for( 'static' , filename='css/styles.css')}
)}}"/>
  <title>University Admit Eligibility Predictor</title>
```

```
</head>
<body>
  <div id="notification" >
    {{notification}}
  </div>
  <h1 id="projName">University Admit Eligibility Predictor</h1>
  <form id="eligibilityForm" method="POST" action="/predict">
    <div class="inputBox">
      GRE Score
      <input class="inputField" type="number" name="GREScore" min="260" max="340"
placeholder="260-340" required/>
    </div>
    <div class="inputBox">
      TOEFL Score
      <input class="inputField" type="number" name="TOEFLScore" min="0" max="120"</pre>
placeholder="0-120" required/>
    </div>
    <div class="inputBox">
      University Rating
      <input class="inputField" type="number" name="UnivRating" min="0" max="5"</pre>
placeholder="0-5" required/>
    </div>
    <div class="inputBox">
      Statement of Purpose
      <input class="inputField" type="number" name="SOP" min="0" max="5" step="0.5"
placeholder="0-5" required/>
    </div>
    <div class="inputBox">
      Letter of Recommendation
      <input class="inputField" type="number" name="LOR" min="0" max="5" step="0.5"
placeholder="0-5" required/>
    </div>
    <div class="inputBox">
      CGPA
      <input class="inputField" type="number" name="CGPA" min="5" max="10"
step="0.01" placeholder="0-10" required/>
    </div>
```

```
<div class="inputBox">
       Completed a Research
       <input class="inputField" type="checkbox" name="Research" value='done'/>
    </div>
    <div class="inputBox">
       <div class="emptyDiv"></div>
       <button id="submitButton" class="inputField" type="submit">Submit</button>
    </div>
  </form>
  <script src="{{ url_for('static',filename='js/index.js' )}}" ></script>
</body>
</html>
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='css/styles.css') }}"</pre>
/>
  <script src="{{ url_for('static', filename='js/index.js') }}" type="text/javascript" ></script>
  <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL
,GRAD@20..48,100..700,1,-50..200"/>
  <title>Results</title>
</head>
<body>
  <h1 id="projName">University Admit Eligibility Predictor</h1>
  <div id="pageSection">
    <h1 id="pageTitle">Results</h1>
    <h1 id="resultText">The Possibility of Admission is : </h1>
    <h1 id="probability" style="color:{{color_scheme}}">{{predict}}%</h1>
    <h1 id="comment" style="color:{{color_scheme}}">{{comment}}</h1>
    <form id="feedbackForm" action="{{url_for('sendHomePage')}}" method="POST" >
       <fieldset id="feedback" >
         <div id="feedbackEmoji">
```

```
<label for="fiveStar">
              <input type="radio" name="rating" id="fiveStar" value="5" checked >
              <span class="material-symbols-outlined">
                sentiment_very_satisfied
              </span>
            </label>
            <label for="fourStar">
              <input type="radio" name="rating" id="fourStar" value="4" >
              <span class="material-symbols-outlined">
                mood
              </span>
            </label>
            <label for="threeStar">
              <input type="radio" name="rating" id="threeStar" value="3" >
              <span class="material-symbols-outlined">
                sentiment satisfied
              </span>
            </label>
            <label for="twoStar">
              <input type="radio" name="rating" id="twoStar" value="2" >
              <span class="material-symbols-outlined">
                sentiment dissatisfied
              </span>
            </label>
            <label for="oneStar">
              <input type="radio" name="rating" id="oneStar" value="1" >
              <span class="material-symbols-outlined">
                sentiment_extremely_dissatisfied
              </span>
            </label>
         </div>
         <input type="submit" id="feedbackSubmit" class="inputField" name="Submit"
value="Submit" />
       </fieldset>
    </form>
    <form id="returnForm" action="{{url_for('sendHomePage')}}}" method="GET" >
       <button id="submitButton" class="inputField">Go Back</button>
```

```
</form>
  </form>
</body>
</html>
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
df = pd.read_csv('dataset/Admission_Predict.csv')
df.head()
df.drop(["Serial No."],axis = 1,inplace = True)
df.head()
df.describe()
df.info()
df.isnull().sum()
sns.distplot(df['TOEFL Score'])
plt.pie(df['University Rating'].value_counts(),[0.05,0.05,0.05,0.05,0.05],df['University
Rating'].value_counts().index,autopct='%1.1f%%')
plt.title('University Rating')
plt.plot()
sns.barplot(df.Research.value_counts().index,df.Research.value_counts())
sns.lineplot(df['GRE Score'],df['Chance of Admit'])
def countplot_2(x,hue,title=None,figsize=(12,10)):
  plt.figure(figsize=figsize)
  sns.countplot(data = df[[x,hue]],x=x,hue=hue)
  plt.title(title)
  plt.plot()
countplot_2('Research','University Rating','University based Research Ability')
sns.pairplot(df)
df.corr()
plt.figure(figsize=(12,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
for i in df.columns:
  sns.boxplot(df[i])
```

```
plt.show()
for i in df.columns:
  Q1 = df[i].quantile(0.25)
  Q3 = df[i].quantile(0.75)
  IQR = Q3-Q1
  upper_limit = Q3 + (1.5*IQR)
  lower limit = Q1 - (1.5*IQR)
  df[i] = np.where(df[i] > = upper limit,Q3 + (1.5*IQR),df[i])
  df[i] = np.where(df[i] \le lower limit,Q1 - (1.5*IQR),df[i])
for i in df.columns:
  sns.boxplot(df[i])
  plt.show()
X = df.drop(columns=['Chance of Admit'])
X
Y = pd.DataFrame(df['Chance of Admit'])
Y
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_Scaled = pd.DataFrame(scale.fit_transform(X),columns = X.columns)
target_scale = MinMaxScaler()
Y_Scaled = pd.DataFrame(target_scale.fit_transform(Y),columns = Y.columns)
from sklearn.model selection import train test split
x train,x test,y train,y test = train test split(X,Y,test size = 0.2,random state=90)
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(x_train,y_train)
y_test.to_numpy().flatten()
y_predict = model.predict(x_test)
pd.DataFrame({'Actual':y_test.to_numpy().flatten(),'Predicted':y_predict.flatten()})
from sklearn.metrics import r2 score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_error
print(r2_score(y_test,y_predict))
print(mean_absolute_error(y_test,y_predict))
print(mean_squared_error(y_test,y_predict))
print(mean squared error(y test,y predict,squared=False))
import joblib
```

joblib.dump(model,r'model/Admission_Predictor.pkl')

GitHub & Project Demo Link

Github Link - https://github.com/IBM-EPBL/IBM-Project-19561-1659700246

 $Project\ Demo\ Link\ -\ \underline{https://drive.google.com/drive/folders/1P8yqJCmuqwywj\ XoR6rtEOR-iseXqTDn?usp=sharing}$