EE25BTECH11031 - Sai Sreevallabh

Question:

Three vectors **a**, **b** and **c** satisfy the condition $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$. Evaluate the quantity $\mu = \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$. If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ and $|\mathbf{c}| = 2$.

Solution:

Given:

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$$
 and $||\mathbf{a}|| = 3$, $||\mathbf{b}|| = 4$, $||\mathbf{c}|| = 2$ (0.1)

To find

$$\mu = \mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a} \tag{0.2}$$

1

Multiplying $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ with \mathbf{a}^{T} on both sides

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{a}^{\mathsf{T}}\mathbf{c} = 0 \tag{0.3}$$

Similarly, upon multiplying with \mathbf{b}^{T} and \mathbf{c}^{T} , we get

$$\mathbf{b}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} = 0 \tag{0.4}$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{a} + \mathbf{c}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} = 0 \tag{0.5}$$

Adding the above three equations,

$$2\left(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}\right) + \mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} = 0 \tag{0.6}$$

$$\implies 2\mu + \mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} = 0 \tag{0.7}$$

By using $\mathbf{x}^{\mathsf{T}}\mathbf{x} = ||\mathbf{x}||^2$ we get

$$2\mu + (\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + \|\mathbf{c}\|^2) = 0$$
(0.8)

Substituting the values of $\|\mathbf{a}\|$, $\|\mathbf{b}\|$, $\|\mathbf{c}\|$ we get

$$\mu = \frac{-29}{2} \tag{0.9}$$

 \therefore The value of μ is $\frac{-29}{2}$.