HengLiEnShaun_task2

August 5, 2021

```
[1]: import pandas as pd
     import numpy as np
     import re
     import matplotlib.pyplot as plt
     import seaborn as sns
     eps = np.finfo(float).eps
     from numpy import log2 as log
     import sys
     adultdata = pd.read_csv('adult.data',_
      →names=["Age","Workclass","FNLWGT","Education","Education-num",\
      →"Marital_status", "Occupation", "Relationship", "Race", "Sex", \
      → "Capital-gain", "Capital-loss", "Hours-per-week", "Native-country", \
     attName = ["Age","Workclass","FNLWGT","Education-num",\
                "Marital status", "Occupation", "Race", "Sex", \
                "Capital-gain", "Capital-loss", "Hours-per-week", "Native-country"]
     adultdata
[1]:
                         Workclass FNLWGT
                                               Education Education-num
            Age
     0
             39
                         State-gov
                                     77516
                                               Bachelors
                                                                      13
     1
             50
                  Self-emp-not-inc
                                                                      13
                                      83311
                                               Bachelors
     2
             38
                           Private 215646
                                                 HS-grad
                                                                       9
     3
                                                                       7
             53
                           Private 234721
                                                    11th
                           Private 338409
                                               Bachelors
             28
                                                                      13
     32556
             27
                           Private 257302
                                              Assoc-acdm
                                                                      12
     32557
             40
                           Private 154374
                                                 HS-grad
                                                                       9
                                                                       9
     32558
                           Private 151910
                                                 HS-grad
             58
                                                                       9
     32559
             22
                           Private 201490
                                                 HS-grad
     32560
             52
                      Self-emp-inc 287927
                                                 HS-grad
                 Marital_status
                                          Occupation
                                                        Relationship
                                                                         Race \
     0
                  Never-married
                                        Adm-clerical
                                                       Not-in-family
                                                                        White
     1
                                                             Husband
             Married-civ-spouse
                                     Exec-managerial
                                                                        White
```

```
2
                       Divorced
                                  Handlers-cleaners
                                                      Not-in-family
                                                                      White
     3
                                                            Husband
                                                                      Black
            Married-civ-spouse
                                  Handlers-cleaners
     4
            Married-civ-spouse
                                     Prof-specialty
                                                               Wife
                                                                      Black
                                                                •••
     32556
            Married-civ-spouse
                                       Tech-support
                                                               Wife
                                                                      White
                                                                      White
     32557
            Married-civ-spouse
                                  Machine-op-inspct
                                                            Husband
     32558
                        Widowed
                                       Adm-clerical
                                                          Unmarried
                                                                      White
                                                          Own-child
                                                                      White
     32559
                 Never-married
                                       Adm-clerical
            Married-civ-spouse
     32560
                                                                      White
                                    Exec-managerial
                                                               Wife
                                   Capital-loss
                                                Hours-per-week Native-country \
                    Capital-gain
     0
              Male
                             2174
                                                                  United-States
     1
              Male
                                0
                                              0
                                                             13
                                                                  United-States
     2
              Male
                                0
                                              0
                                                             40
                                                                  United-States
     3
              Male
                                              0
                                                             40
                                                                  United-States
                                0
     4
            Female
                                0
                                              0
                                                             40
                                                                           Cuba
     32556
                                0
                                              0
                                                             38
                                                                  United-States
            Female
     32557
              Male
                                0
                                              0
                                                             40
                                                                  United-States
     32558
            Female
                                0
                                              0
                                                             40
                                                                  United-States
     32559
              Male
                                              0
                                                             20
                                                                  United-States
                                0
     32560
            Female
                            15024
                                              0
                                                             40
                                                                  United-States
            Class
     0
             <=50K
     1
             <=50K
             <=50K
     3
             <=50K
             <=50K
     32556
            <=50K
     32557
             >50K
     32558
             <=50K
             <=50K
     32559
     32560
             >50K
     [32561 rows x 15 columns]
[2]: adulttest = pd.read_csv('adult.test',__
      →"Marital_status", "Occupation", "Relationship", "Race", "Sex", \
     → "Capital-gain", "Capital-loss", "Hours-per-week", "Native-country", \
                                                 "Class"])
     adulttest = adulttest.drop([0])
     adulttest
```

[2]:		Age	Workclass	FNLWGT	Education	Education-num	\
	1	25	Private	226802.0	11th	7.0	
	2	38	Private	89814.0	HS-grad	9.0	
	3	28	Local-gov	336951.0	Assoc-acdm		
	4	44	Private	160323.0	Some-college	10.0	
	5	18	?	103497.0	Some-college	10.0	
	_	10	•		_	10.0	
	 16277	39	 Private	 215419.0	 Bachelors	13.0	
	16278	64	?	321403.0	HS-grad		
	16279	38	Private	374983.0	Bachelors	13.0	
	16280	44	Private	83891.0	Bachelors	13.0	
	16281	35	Self-emp-inc	182148.0	Bachelors	13.0	
			Marrital atatus	_	0	Dalatianahin	\
			Marital_status		Occupation 	Relationship	\
	1	3.6	Never-married		-op-inspct	Own-child	
	2		ried-civ-spouse		ng-fishing	Husband	
	3		ried-civ-spouse		ctive-serv	Husband	
	4	Mar	ried-civ-spouse		-op-inspct	Husband	
	5		Never-married	l	?	Own-child	
	•••		•••		•••	•••	
	16277		Divorced	l Prof	-specialty	${ t Not-in-family}$	
	16278		Widowed	l	?	Other-relative	
	16279	Mar	ried-civ-spouse	e Prof	-specialty	Husband	
	16280		Divorced	l Adı	m-clerical	Own-child	
	16281	Mar	ried-civ-spouse	e Exec-	managerial	Husband	
			Race	e Sex	Capital-gain	Capital-loss	\
	1		Black	. Male	0.0	0.0	
	2		White	e Male	0.0	0.0	
	3		White	e Male	0.0	0.0	
	4		Black	. Male	7688.0	0.0	
	5		White	e Female	0.0	0.0	
			•••	•••	•••	•••	
	16277		White	e Female	0.0	0.0	
	16278		Black		0.0		
	16279		White		0.0		
	16280	Asi	an-Pac-Islander				
	16281		White		0.0		
	10201		W112 0 C	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0	0.0	
		Hour	s-per-week Nat	ive-countr	y Class		
	1		_	nited-State			
	2			nited-State			
	3			ited-State			
	4			rited States			
	5			rited-State:			
			30.0 01	irteu-plate:	5 \-00N.		
	 16077		 26 0 II-	 	 - /-EOV		
	16277		36.0 Ur	nited-State	s <=50K.		

```
1627840.0United-States<=50K.</th>1627950.0United-States<=50K.</td>1628040.0United-States<=50K.</td>1628160.0United-States>50K.
```

[16281 rows x 15 columns]

```
[3]: import random
def train_test_split(df, test_size):
    if isinstance(test_size, float):
        test_size = round(test_size * len(df))

indices = df.index.tolist()
    test_indices = random.sample(population=indices, k=test_size)

test_df = df.loc[test_indices]
    train_df = df.drop(test_indices)

return train_df, test_df
```

[4]: adultdatatrain, adultdatapostpruning = train_test_split(adultdata, 0.33)

[5]: adultdatatrain

[5]:		Age	Workclass	FNLWGT	Education	Education-num	\
	0	39	State-gov	77516	Bachelors	13	
	1	50	Self-emp-not-inc	83311	Bachelors	13	
	2	38	Private	215646	HS-grad	9	
	3	53	Private	234721	11th	7	
	4	28	Private	338409	Bachelors	13	
					•••		
	32554	53	Private	321865	Masters	14	
	32557	40	Private	154374	HS-grad	9	
	32558	58	Private	151910	HS-grad	9	
	32559	22	Private	201490	HS-grad	9	
	32560	52	Self-emp-inc	287927	HS-grad	9	

	${ t Marital_status}$	Occupation	Relationship	Race	\
0	Never-married	Adm-clerical	${\tt Not-in-family}$	White	
1	Married-civ-spouse	Exec-managerial	Husband	White	
2	Divorced	Handlers-cleaners	Not-in-family	White	
3	Married-civ-spouse	Handlers-cleaners	Husband	Black	
4	Married-civ-spouse	Prof-specialty	Wife	Black	
•••	•••	•••			
32554	Married-civ-spouse	Exec-managerial	Husband	White	
32557	Married-civ-spouse	Machine-op-inspct	Husband	White	

32558 32559 32560		Widowed ver-married -civ-spouse	Adm-cleri Adm-cleri Exec-manager	cal Own-ch		
0 1 2 3	Sex Male Male Male Male	Capital-gain 2174 0 0 0	Capital-loss 0 0 0 0	Hours-per-week 40 13 40 40	Native-country United-States United-States United-States United-States	\
4 32554 32557 32558 32559 32560	Female Male Male Female Male Female	0 0 0 0 0 0 15024	0 0 0 0	40 40 40 40 20 40	Cuba United-States United-States United-States United-States United-States	
0 1 2 3 4 32554 32557 32558 32559	Class <=50K <=50K <=50K <=50K >50K >50K <=50K <=50K					
32560	>50K					

[21816 rows x 15 columns]

[6]: adultdatapostpruning

[6]:		Age	Workclass	FNLWGT	Education	Education-num	\
	29959	43	Private	69333	HS-grad	9	
	2857	28	?	157813	11th	7	
	19690	38	Self-emp-not-inc	334366	Some-college	10	
	7238	29	Private	183009	Bachelors	13	
	2710	50	Private	92079	Some-college	10	
					•••	•••	
	32045	20	Private	184045	Some-college	10	
	15924	72	Private	33404	10th	6	
	19417	44	Private	151985	Masters	14	
	27911	21	Private	245572	9th	5	
	11363	32	Private	209808	Some-college	10	

```
Marital_status
                                       Occupation
                                                      Relationship
29959
                               Machine-op-inspct
                                                           Husband
        Married-civ-spouse
2857
                   Divorced
                                                         Unmarried
19690
        Married-civ-spouse
                                 Farming-fishing
                                                              Wife
7238
                                  Prof-specialty
             Never-married
                                                     Not-in-family
2710
        Married-civ-spouse
                                    Tech-support
                                                           Husband
32045
             Never-married
                                            Sales
                                                         Unmarried
15924
                    Widowed
                                    Adm-clerical
                                                     Not-in-family
        Married-civ-spouse
                                                              Wife
19417
                                 Exec-managerial
27911
                                                         Own-child
             Never-married
                                   Other-service
11363
        Married-civ-spouse
                                            Sales
                                                           Husband
                       Race
                                  Sex
                                        Capital-gain
                                                       Capital-loss
29959
                      White
                                 Male
                                                    0
                                                                   0
                                                    0
                                                                   0
2857
                      White
                               Female
                                                    0
19690
                      White
                               Female
                                                                   0
7238
                               Female
                                                    0
                      Other
                                                                1590
                                                    0
2710
                      White
                                 Male
                                                                   0
32045
                      Black
                               Female
                                                    0
                                                                   0
15924
                      White
                               Female
                                                    0
                                                                   0
19417
                      White
                               Female
                                                    0
                                                                   0
27911
                                 Male
                                                    0
        Amer-Indian-Eskimo
                                                                   0
11363
                      White
                                 Male
                                                    0
                                                                1740
       Hours-per-week
                        Native-country
                                           Class
29959
                    48
                          United-States
                                           <=50K
2857
                    58
                                 Canada
                                           <=50K
                          United-States
19690
                    15
                                           <=50K
7238
                    40
                          United-States
                                           <=50K
2710
                    45
                          United-States
                                            >50K
32045
                    30
                          United-States
                                           <=50K
15924
                    20
                          United-States
                                           <=50K
19417
                    24
                          United-States
                                            >50K
27911
                    40
                          United-States
                                           <=50K
11363
                    47
                          United-States
                                           <=50K
```

[10745 rows x 15 columns]

```
entropy = 0
  values = df[Class].unique()

for value in values:
    fraction = df[Class].value_counts()[value] / len(df[Class])
    entropy += -fraction * np.log2(fraction)
  return entropy

# Calculate Entropy by attribute
def findEntropyAttribute(df,attribute):
```

```
[8]: # Calculate Entropy by attribute
         #print('Calculating entropy by attribute....')
         \#print(f'df (findEntropy): \n{df}')
         #print('attribute (findEntropyAttribute): ', attribute)
         Class = df.keys()[-1] #To make the code generic, changing target variable_
     \rightarrow class name
         target_variables = df[Class].unique() #This gives all 'Yes' and 'No'
         variables = df[attribute].unique()
                                              #This gives different features in_
     → that attribute (like 'Hot', 'Cold' in Temperature)
         entropy2 = 0
         for variable in variables:
             entropy = 0
             for target_variable in target_variables:
                 num = len(df[attribute][df[attribute] == variable][df[Class] ==__
      →target_variable])
                 den = len(df[attribute][df[attribute] == variable])
                 fraction = num / (den+eps)
                 entropy += -fraction * log(fraction+eps)
             fraction2 = den / len(df)
             entropy2 += -fraction2 * entropy
         return abs(entropy2)
```

```
[9]: # Calculate information gain and return the best splitting node (feature)
def infoGain(df):
    #print('Calculate information gain .....')
    #print(f'df (findEntropy): \n{df}')
    IG = []
    for key in df.keys()[:-1]:
        IG.append(findEntropy(df) - findEntropyAttribute(df,key))

return df.keys()[:-1][np.argmax(IG)]
```

```
[10]: def giniImpurity2(valueCounts):
    #print('Calculating gini impurity .....')
    #print(f'df (findEntropy): \\n{df}')
```

```
#print('valueCounts.keys(): ', valueCounts.keys())
n = valueCounts.sum()
p_sum = 0
for key in valueCounts.keys():
    p_sum = p_sum + (valueCounts[key] / n ) * (valueCounts[key] / n )
    gini = 1 - p_sum

return gini

# Calculating gini impurity for the attiributes
def giniSplitAtt2(df, attName):
    #print('Calculating gini impurity by attribute.....')
#print(f'df (giniSplitAtt2): \\n{df}')
```

```
[11]: # Calculating gini impurity for the attiributes
def giniSplitAtt2(df, attName):
    #print('Calculating gini impurity by attribute.....')
    #print(f'df (giniSplitAtt2): \\n{df}')
    #print('attName (giniSplitAtt2): ', attName)
    attValues = df[attName].value_counts()
    gini_A = 0
    for key in attValues.keys():
        dfKey = df[className][df[attName] == key].value_counts()
        numOfKey = attValues[key]
        n = df.shape[0]
        gini_A = gini_A + (( numOfKey / n) * giniImpurity2(dfKey))
    return gini_A
```

```
[12]: def giniIndex2(df, attributeNames):
         #print('Calculate gini index2 .....')
         \#print(f'df (findEntropy): \n{df}')
         #print('attributeNames (qiniIndex2): ', attributeNames)
         giniAttribute = {}
         minValue = sys.maxsize
         for key in attributeNames:
             #print('======= key (qiniIndex2): ', key)
             giniAttribute[key] = giniSplitAtt2(df, key)
             if giniAttribute[key] < minValue:</pre>
                 minValue = giniAttribute[key]
                 selectedAttribute = key
             #print(f'Gini for {key} is {giniAttribute[key]:.3f}')
         minValue = min(giniAttribute.values())
         #selectedAttribute = min(giniAttribute.keys())
         #print(' and minValue (giniIndex2): ', minValue)
         #print('^^^^^^^^ giniIndex2 methods is returning (giniIndex2):',__
      \rightarrow selected Attribute)
         return selectedAttribute
```

```
[13]: def getSubtable(df, node, value):
    return df[df[node] == value].reset_index(drop=True)
```

```
[14]: print(findEntropy(adultdatatrain))
     0.7916055274436617
[15]: print(findEntropy(adultdatapostpruning))
     0.8058870769537714
[16]: print(findEntropy(adulttest))
     0.788708184990964
[17]: print(findEntropyAttribute(adultdatatrain, 'Age'))
     0.6964351954649428
[18]: print(findEntropyAttribute(adultdatapostpruning, 'Age'))
     0.695114351673674
[19]: | print(findEntropyAttribute(adulttest, 'Age'))
     0.6904502539000037
[20]: print(infoGain(adultdatatrain))
     FNLWGT
[21]: def buildTree(df,model,tree=None):
          # print('000000000000000000 Building a classification tree......
       →.....′)
          # print(f'DataFrame: \n{df}')
          # print('tree (buildTree): ', tree)
          Class = df.keys()[-1] #To make the code generic, changing target variable
       \rightarrow class name
          # print('Class (buildTree): ', Class)
          #Here we build our decision tree
          #Get attribute with maximum information gain
          #print('model (buildTree): infoGain')
          if model == 'infoGain':
              #print('Calling infoGain(df)')
              node = infoGain(df)
              #print('Calling giniIndex2')
              node = giniIndex2(df, attName)
          # print('node (buildTree): ', node)
```

```
#Get distinct value of that attribute e.g Salary is node and Low, Med and
      \hookrightarrow High are values
        attValueBT = np.unique(df[node])
         # print('attValue (buildTree): ', attValueBT)
         #Create an empty dictionary to create tree
         if tree is None:
            tree = {}
            tree[node] = {}
         #We make loop to construct a tree by calling this function recursively.
         #In this we check if the subset is pure and stops if it is pure.
        for value in attValueBT:
            # print('value (buildTree): ', value)
            subtable = getSubtable(df,node,value)
            clValue,counts = np.unique(subtable[className],return_counts=True)
            if len(counts) == 1: # Checking purity of subset
                → Recursive call 1 *********)
                # print('node (buildTree): ', node)
                # print('value (buildTree): ', tree)
                tree[node][value] = clValue[0]
            else:
                → Recursive call 2 *********)
                # print('node (buildTree): ', node)
                # print('value (buildTree): ', tree)
                # print(f'subtable (buildTree): \n{subtable}')
                tree[node][value] = buildTree(subtable, model) # Calling the
      → function recursively
         \hookrightarrow (buildTree) ---->: ', tree)
        return tree
[22]: import pprint
     className = 'Education'
     #className = 'creditRating'
     print('Target Class: ', className)
     model = 'gini'
     #model = 'infoGain'
     t=buildTree(adultdatatrain, model)
     pprint.pprint(t)
    Target Class: Education
```

{'Education-num': {1: 'Preschool',

```
3: '5th-6th',
                        4: '7th-8th',
                        5: '9th',
                        6: '10th',
                        7: '11th',
                        8: '12th',
                        9: ' HS-grad',
                        10: 'Some-college',
                        11: 'Assoc-voc',
                        12: 'Assoc-acdm',
                        13: 'Bachelors',
                        14: ' Masters',
                        15: ' Prof-school',
                        16: ' Doctorate'}}
[23]: # Calculating gini impurity for the attiributes
      def gini_split_a(attribute_name):
          attribute_values = adultdatatrain[attribute_name].value_counts()
          gini_A = 0
          # print('class_name: ', className)
          # print('attribute_values: ', attribute_values)
          for key in attribute_values.keys():
              df_k = adultdatatrain[className][adultdata[attribute_name] == key].
       →value_counts()
              n_k = attribute_values[key]
              n = adultdatatrain.shape[0]
              gini_A = gini_A + (( n_k / n) * giniImpurity2(df_k))
          return gini_A
      #attribute_names = ['age', 'income', 'student', 'creditRating']
      gini_attiribute ={}
      for key in attName:
          gini_attiribute[key] = gini_split_a(key)
          print(f'Gini for {key} is {gini_attiribute[key]:.3f}')
     Gini for Age is 0.787
     Gini for Workclass is 0.804
     Gini for FNLWGT is 0.200
     Gini for Education-num is 0.000
     Gini for Marital_status is 0.805
     Gini for Occupation is 0.760
     Gini for Race is 0.807
     Gini for Sex is 0.808
     Gini for Capital-gain is 0.800
     Gini for Capital-loss is 0.803
     Gini for Hours-per-week is 0.798
     Gini for Native-country is 0.802
```

2: '1st-4th',

```
[24]: # Compute Gini gain values to find the best split
    # An attribute has maximum Gini gain is selected for splitting.

min_value = min(gini_attiribute.values())
    print('The minimum value of Gini Impurity : {0:.3} '.format(min_value))
    print('The maximum value of Gini Gain : {0:.3} '.format(1-min_value))

selected_attribute = min(gini_attiribute.keys())
    print('The selected attiribute is: ', selected_attribute)

The minimum value of Gini Impurity : 0.0
    The maximum value of Gini Gain : 1.0
    The selected attiribute is: Age
```

1 Classification

```
[25]: def check_purity(data):
    label_column = data[:, -1]
    unique_classes = np.unique(label_column)

if len(unique_classes) == 1:
    return True
else:
    return False
```

```
[27]: def calculate_entropy(data):
    label_column = data[:, -1]
    _, counts = np.unique(label_column, return_counts=True)
    probabilities = counts / counts.sum()
    entropy = sum(probabilities * -np.log2(probabilities))
```

```
return entropy
def calculate_overall_entropy(data_below, data_above):
   n = len(data_below) + len(data_above)
   p_data_below = len(data_below) / n
   p_data_above = len(data_above) / n
   overall_entropy = (p_data_below * calculate_entropy(data_below)
                      + p_data_above * calculate_entropy(data_above))
   return overall_entropy
def calculate_mse(data):
   actual_values = data[:, -1]
    if len(actual_values) == 0: # empty data
       mse = 0
   else:
       prediction = np.mean(actual_values)
       mse = np.mean((actual_values - prediction) **2)
   return mse
def calculate_overall_metric(data_below, data_above, metric_function):
   n = len(data_below) + len(data_above)
   p_data_below = len(data_below) / n
   p_data_above = len(data_above) / n
   overall_metric = (p_data_below * metric_function(data_below)
                     + p_data_above * metric_function(data_above))
   return overall_metric
def determine_best_split(data, potential_splits):
   overall_entropy = 9999
   for column_index in potential_splits:
        for value in potential_splits[column_index]:
            data_below, data_above = split_data(data,__
 →split_column=column_index, split_value=value)
            current_overall_entropy = calculate_overall_entropy(data_below,__
→data_above)
```

```
if current_overall_entropy <= overall_entropy:</pre>
                      overall_entropy = current_overall_entropy
                      best_split_column = column_index
                      best_split_value = value
          return best_split_column, best_split_value
[28]: def split_data(data, split_column, split_value):
          split_column_values = data[:, split_column]
          data_below = data[split_column_values <= split_value]</pre>
          data_above = data[split_column_values > split_value]
          return data_below, data_above
[29]: def classify_data(data):
          label_column = data[:, -1]
          unique_classes, counts_unique_classes = np.unique(label_column,_
       →return_counts=True)
          index = counts_unique_classes.argmax()
          classification = unique_classes[index]
          return classification
[30]: def decision_tree_algorithm(df, counter=0, min_samples=2, max_depth=5):
          # data preparations
          if counter == 0:
              global COLUMN_HEADERS
              COLUMN HEADERS = df.columns
              data = df.values
          else:
              data = df
          # base cases
          if (check_purity(data)) or (len(data) < min_samples) or (counter ==__
       →max_depth):
              classification = classify_data(data)
              return classification
          # recursive part
```

```
else:
              counter += 1
              # helper functions
              potential_splits = get_potential_splits(data)
              split_column, split_value = determine_best_split(data, potential_splits)
              data_below, data_above = split_data(data, split_column, split_value)
              # instantiate sub-tree
              feature_name = COLUMN_HEADERS[split_column]
              question = "{} <= {}".format(feature_name, split_value)</pre>
              sub_tree = {question: []}
              # find answers (recursion)
              yes_answer = decision_tree algorithm(data_below, counter, min_samples,_
       →max_depth)
              no_answer = decision_tree_algorithm(data_above, counter, min_samples,__
       \rightarrowmax_depth)
              # If the answers are the same, then there is no point in asking the
       \hookrightarrow qestion.
              # This could happen when the data is classified even though it is not_
       \rightarrowpure
              # yet (min_samples or max_depth base cases).
              if yes_answer == no_answer:
                  sub_tree = yes_answer
              else:
                  sub_tree[question].append(yes_answer)
                   sub_tree[question].append(no_answer)
              return sub_tree
[31]: def predict_example(example, tree):
          # tree is just a root node
          if not isinstance(tree, dict):
              return tree
          question = list(tree.keys())[0]
          feature_name, comparison_operator, value = question.split()
          if str(example[feature_name]) == value:
              answer = tree[question][0]
          else:
              answer = tree[question][1]
          # base case
```

```
if not isinstance(answer, dict):
              return answer
          # recursive part
          else:
              residual_tree = answer
              return predict_example(example, residual_tree)
[32]: def make_predictions(df, tree):
          if len(df) != 0:
              predictions = df.apply(predict_example, args=(tree,), axis=1)
          else:
              # "df.apply()"" with empty dataframe returns an empty dataframe,
              # but "predictions" should be a series instead
              predictions = pd.Series()
          return predictions
[33]: def classify_example(example, tree):
          if isinstance(tree, str):
              return tree
          else:
              question = list(tree.keys())[0]
          feature_name, comparison_operator, value = question.split()
          # ask question
          if example[feature_name] == value:
              answer = tree[question][0]
          else:
              answer = tree[question][1]
          # base case
          if not isinstance(answer, dict):
              return answer
          # recursive part
          else:
              residual_tree = answer
              return classify_example(example, residual_tree)
[34]: def calculate_accuracy(df, tree):
          df["classification"] = df.apply(classify_example, axis=1, args=(tree,))
          df["classification_correct"] = df["classification"] == df["Class"]
```

```
accuracy = df["classification_correct"].mean()
          return accuracy
[35]: tree = decision_tree_algorithm(adultdatatrain, max_depth=3)
[36]: pprint.pprint(tree)
     {'Relationship <= Husband': [{'Education-num <= 12': [{'Capital-gain <= 5013':</pre>
     [' '
      '<=50K',
      1 1
      '>50K']},
                                                              ' >50K']},
                                    {'Capital-gain <= 6849': [' <=50K', ' >50K']}]}
[37]: print(calculate_accuracy(adultdatapostpruning, tree))
     0.24662633783154955
         Post pruning
[38]: def filter df(df, question):
          feature, comparison_operator, value = question.split()
          df_yes = df[df[feature].astype(str) == value]
          df_no = df[df[feature].astype(str) != value]
          return df_yes, df_no
[39]: def determine_leaf(df_train):
          return df train.Class.value counts().index[0]
[40]: def determine_errors(df_val, tree):
          predictions = make_predictions(df_val, tree)
          actual_values = df_val.Class
          # number of errors
          return sum(predictions != actual_values)
[41]: def pruning_result(tree, df_train, df_val):
          leaf = determine_leaf(df_train)
          errors_leaf = determine_errors(df_val, leaf)
          errors_decision_node = determine_errors(df_val, tree)
          if errors_leaf <= errors_decision_node:</pre>
```

```
return leaf
          else:
              return tree
[42]: def post_pruning(tree, df_train, df_val):
          question = list(tree.keys())[0]
          yes_answer, no_answer = tree[question]
          # base case
          if not isinstance(yes answer, dict) and not isinstance(no answer, dict):
              return pruning_result(tree, df_train, df_val)
          # recursive part
          else:
              df_train_yes, df_train_no = filter_df(df_train, question)
              df_val_yes, df_val_no = filter_df(df_val, question)
              if isinstance(yes_answer, dict):
                  yes_answer = post_pruning(yes_answer, df_train_yes, df_val_yes)
              if isinstance(no_answer, dict):
                  no_answer = post_pruning(no_answer, df_train_no, df_val_no)
              tree = {question: [yes_answer, no_answer]}
              return pruning_result(tree, df_train, df_val)
[43]: metrics = {"max depth": [], "acc tree": [], "acc tree pruned": []}
      for n in range(10, 25):
          df_train, df_test = train_test_split(adultdatapostpruning, test_size=0.15)
          df_train, df_val = train_test_split(df_train, test_size=0.15)
          tree = decision_tree_algorithm(df_train, max_depth=n)
          tree_pruned = post_pruning(tree, df_train, df_val)
          metrics["max depth"].append(n)
          metrics["acc_tree"].append(calculate_accuracy(df_test, tree))
          metrics["acc_tree_pruned"].append(calculate_accuracy(df_test, tree_pruned))
```

```
[44]: df_metrics.plot(figsize=(12, 5), marker="o")
```

[44]: <AxesSubplot:xlabel='max_depth'>

df_metrics = pd.DataFrame(metrics)

df_metrics = df_metrics.set_index("max_depth")

[]: