Devoir Maison n°1

Consignes:

- Le présent devoir est à rendre le 8 octobre.
- Le travail à plusieurs est encouragé et vous pouvez rendre une copie avec plusieurs noms (pas plus de 3 noms par copie).
- Les réponses à toutes les questions doivent être rédigées en détail de façon claire et concise.

Exercice 1. Continuité de la dérivée

Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 2. Etude de fonction

On définit la fonction φ de \mathbb{R}_+^* dans \mathbb{R} par $\varphi(x) = x^2 - 2\ln(x) - 1$ et la fonction g par

$$\left\{ \begin{array}{ll} -\sqrt{\varphi(x)} & \text{si} & 0 < x < 1 \\ \sqrt{\varphi(x)} & \text{si} & 1 \le x \end{array} \right.$$

- 1. Etudier les variations de la fonction φ .
- 2. Déterminer l'image par φ de \mathbb{R}_+^* .
- 3. Montrer que g est définie et continue sur \mathbb{R}_+^* .
- 4. Montrer que g est dérivable sur chacun des intervalles]0,1[et $]1,+\infty[$ et calculer sa dérivée.
- 5. Montrer que g est croissante sur \mathbb{R}_+^* .

Exercice 3. Développements limités

Soit α un nombre réel non nul. Former le développement limité à l'ordre 3, au voisinage de 0, de chacune des fonctions suivantes :

- 1. $f(x) = \cos(\alpha \ln(1+x))$
- 2. $g(x) = \sin(\alpha \ln(1+x))$
- 3. h(x) = 2f(x)g(x)

Exercice 4. Calcul de limite

Calculer le limite en 0 de la fonction suivante, en utilisant les développements limités :

$$f(x) = \frac{e^x - \sqrt{1 + 2x}}{x \sin x}$$

Exercice 5. Développements limités

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par f(x) = 0 si $x \leq 0$ et $f(x) = e^{-\frac{1}{x}}$ sinon.

1. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, f est dérivable n fois sur $]0, \infty[$ et que sa dérivée d'ordre n s'écrit sur cet intervalle :

$$f^{(n)}(x) = \frac{P_n(x)e^{-\frac{1}{x}}}{x^{2n}}$$

où P_n est un polynôme.

- 2. Pour tout $n \in \mathbb{N}$, Démontrer que f est dérivable n fois en 0 et calculer la dérivée d'ordre n de f en 0.
- 3. Calculer pour tout $n \in \mathbb{N}$, le développement limité de f en 0 à l'ordre n: Quelles conclusions en tirer?