

InvSCP – Inventory - Software para Controle do Patrimônio		
Gestor do Projeto	Gerente de Projeto	
Elias Batista Ferreira	Hyaygo Vieira de Souza	
eliasbf@gmail.com	hagosouzza@hotmail.com	

Objetivo deste Documento

Este documento tem como objetivo descrever as principais decisões de projeto tomadas pela equipe de desenvolvimento e os critérios considerados durante a tomada destas decisões. Suas informações incluem a parte de *hardware* e *software* do sistema.

Histórico de Revisão					
Data	Autor	Descrição	Versão		
16/10/2018	Estevão Cristino da Silva e Hyago Vieira de Souza	Criação da Documentação de Arquitetura	1.0		

Sumário

S	umári	0	2
1.	IN	FRODUÇÃO	2
	1.1	Finalidade	2
	1.2	Escopo	3
	1.3	Definições, Acrônimos e Abreviações	3
	1.4	Referências	3
2.	RE	PRESENTAÇÃO ARQUITETURAL	3
	2.1	Visão Geral da Arquitetura	5
3.	RE	QUISITOS E RESTRIÇÕES ARQUITETURAIS	5
4.	VIS	SÃO DE CASOS DE USO	5
	4.1	Diagrama de Caso de Uso	6
5.	VIS	SÃO LÓGICA	7
	5.1	Visão Geral – pacotes e camadas	7
6.	VIS	SÃO DE IMPLEMENTAÇÃO	9
	6.1	Diagrama de Classes	9
	6.1	.1 CS-RF01	0
	6.1	.2 CS-RF03	0
	6.1	.3 CS-RF04	1
	6.1	.4 CS-RF05	1
	6.1	.5 CS-RF07	2
	6.1	.6 CS-RF101	2
	6.1	.7 CS-RF161	3
	6.1		
7.	VIS	SÃO DE IMPLANTAÇÃO1	4
8.	DI	MENSIONAMENTO E PERFORMANCE1	4
	8.1	Volume1	4
	22	Performance	1

1. INTRODUÇÃO

1.1 Finalidade

Este documento fornece uma visão arquitetural abrangente do sistema Inventory, usando diversas visões de arquitetura para **representar** diferentes aspectos do sistema. O objetivo deste documento é capturar e comunicar as decisões arquiteturais significativas que foram tomadas em relação ao sistema.

O documento irá adotar uma estrutura baseada na visão "4+1" de modelo de arquitetura [KRU41].

Figura 1 – Arquitetura 4+1

1.2 Escopo

Este Documento de Arquitetura de Software se aplica ao *Inventory*, que será desenvolvido pelo grupo de docentes do Instituto de Informática (UFG) formado por Estevão Silva, Gabriel Menezes, Hyago Souza, João Pedro Pinheiro e Pedro Henrique Coimbra.

1.3 Definições, Acrônimos e Abreviações

QoS – Quality of Service, ou qualidade de serviço. Termo utilizado para descrever um conjunto de qualidades que descrevem as requisitos não-funcionais de um sistema, como performance, disponibilidade e escalabilidade [QOS].

1.4 Referências

[KRU41]: The "4+1" view model of software architecture, Philippe Kruchten, November 1995,

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk

4p1.pdf

[QOS] https://docs.oracle.com/cd/E19636-01/819-2326/6n4kfe7dj/index.html

2. REPRESENTAÇÃO ARQUITETURAL

Este documento irá detalhar as visões baseado no modelo "4+1" [KRU41], utilizando como referência os modelos definidos na MDS. As visões utilizadas no documento serão:

Visão	Público	Área	Modelo da MDS
Lógica	Analistas	Realização dos Casos de Uso	
Processo	Integradores	Performance, Escalabilidade, Concorrência	

Implementação	Programadores	Componentes Software	de	
Implantação	Gerência de Configuração	Nodos físicos		
Caso de Uso	Todos	Requisitos funcionais		
Dados	Especialistas em dados Administradores de dados	Persistência dados	de	

Tabela 1 – Visões, Público, Área e Artefatos da MDS

Arquitetura escolhida Cliente-Servidor com Quatro Camadas (4-Tier)

Analisando os requisitos do software, o sistema será uma aplicação web, a arquitetura escolhida foi a Cliente-Servidor com três camadas.

A arquitetura é dividida em 4 camadas:

- Camada de apresentação: chamada de GUI(Graphical User Interface) que será a camada de interação do usuário com o sistema através de requisições e consultas.
- Camada de Comunicação: Essa camada é responsável por gerir toda comunicação REST entre o cliente e o servidor da aplicação via protocolo HTTP.
- Camada de Negócio: É nessa camada que ficará todas as funções de regras de todo o negócio da *Inventory*. Localizada no servidor Tomcat 9, terá a responsabilidade gerir todas as requisições de forma segura e sem ferir as regras de negócio e segurança.
- Camada de Dados: Composta pelo repositório das informações e as classes que as manipulam. Tem a responsabilidade de receber as requisições da camada de negócios e as

executam no SGBD PostgreSQL. Uma alteração no banco de dados alteraria apenas nas classes desta camada, logo não afetaria as outras camadas.

As 4 camadas da aplicação, separa as responsabilidades e principalmente a parte lógica da apresentação, assim oferecendo mais segurança pois retiramos as responsabilidades da parte do cliente.

A separação em camadas lógicas torna o sistema mais flexível, permitindo que as camadas possam ser alteradas de forma independentes, o que ajuda manutenção futura do sistema.

As camadas podem ainda ser fatorada, em pacotes ou componentes, reduzindo a dependência entre as classes e pacotes, o que oferece uma coesão e menos acoplamento.

Oferece reuso dos componentes do sistema em diferentes partes do sw.

É a arquitetura mais usada no mundo para sistemas corporativos baseados na web, logo temos bastante recursos e frameworks prontos que podem ajudar a compor o sistema.

2.1 Visão Geral da Arquitetura

Figura 1. – Visão da Arquitetura

3. REQUISITOS E RESTRIÇÕES ARQUITETURAIS

Esta seção descrever os requisitos de software e restrições que tem um impacto significante na arquitetura.

Requisito	Solução
Linguagem	Java 10, TypeScript, PL/SQL, HTML5, CSS3 e JavaScript
Plataforma	Windows e Linux
Segurança	Autenticação de usuário com JWT
Persistência	PostegreSQL via JDBC.

Tabela 2 – Exemplo de requisitos e restrições

4. VISÃO DE CASOS DE USO

Esta seção lista as especificações centrais e significantes para a arquitetura do sistema.

Lista de casos de uso do sistema:

- CS-RF01 Movimentação de bem patrimonial (MBP)
- CS-RF03 Registrar Aceite de Saída da Movimentação
- CS-RF04 Registrar Aceite de Entrada do Bem Patrimonial
- CS-RF05 Cancelar Movimentação (MBP)
- CS-RF06 Emitir guia de autorização de transporte
- CS-RF07 Emitir relatório de bens patrimoniais da seção
- CS-RF08 Registrar ordem de serviço
- CS-RF09 Registrar conclusão da ordem de serviço
- CS-RF10 Visualizar histórico do bem patrimonial
- CS-RF16 Emitir inventário
- CS-RF17 Baixar bem patrimonial
- CS-RF19 Pesquisar bem patrimonial usando número de tombamento, denominação ou marca como critério de busca (filtro).

4.1 Diagrama de Caso de Uso

Figura 2 – Diagrama com os casos de uso

5. VISÃO LÓGICA

5.1 Visão Geral – pacotes e camadas

Figura 2.1 – Diagrama de Camadas da Aplicação

powered by Astah

Figura 3 – Diagrama de Pacotes da Aplicação

6. VISÃO DE IMPLEMENTAÇÃO

6.1 Diagrama de Classes

Figura 20 – Exemplo de Diagrama de Classes

6.1.1 CS-RF01

Figura 20 – Diagrama de Sequência Caso de Uso 01

6.1.2 CS-RF03

Figura 21 – Diagrama de Sequência Caso de Uso 03

6.1.3 CS-RF04

Figura 22 – Diagrama de Sequência Caso de Uso 04

6.1.4 CS-RF05

Figura 23 – Diagrama de Sequência Caso de Uso 05

6.1.5 CS-RF07

Figura 24 – Diagrama de Sequência Caso de Uso 07

6.1.6 CS-RF10

Figura 25 – Diagrama de Sequência Caso de Uso 10

6.1.7 CS-RF16

Figura 26 – Diagrama de Sequência Caso de Uso 16

powered by Astah

6.1.8 CS-RF17

Figura 27 – Diagrama de Sequência Caso de Uso 17

powered by Astah

7. VISÃO DE IMPLANTAÇÃO

Descrever os nodos físicos, as configurações e os artefatos que serão implantados.

[Exemplo:

Figura 28 - Diagrama de Implantação Java

8. DIMENSIONAMENTO E PERFORMANCE

8.1 Volume

- Número de estimados usuários: 400
- Número estimado de acessos diários: 50
- Número estimado de acessos por período: 20
- Tempo de sessão de um usuário: 20

8.2 Performance

Enumerar os itens referentes à resposta esperada do sistema:

• Tempo máximo para a execução de determinada transação: 30