X5: RESTRICTION MAPPING ALGORITHMS - TASK 1 - 2

TASK 1 - b

The function "multiset" takes a list X of *length n* as an input and performs $\binom{n}{2}$ computations, in order to come up with the final result, which is multiset ΔX . If we expand the aforementioned formula, we get: $\binom{n}{2} = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$. As a result, the time complexity of "multiset" is $O(n^2)$.

TASK 2

Initially,

$$L = \{1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11, 12, 15\}$$

width = 15

$$L = \{1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11, 12\}$$

 $X = \{0, 15\}$

- > 1st run: y = 12, $\Delta(12, X) = \{3, 12\}$, $L = \{1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11\}$, $X = \{0, 12, 15\}$
- ightharpoonup 2nd run: y = 11, $\Delta(11, X) = \{1, 4, 11\}$, $L = \{1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 9, 9, 10\}$, $X = \{0, 11, 12, 15\}$
- > 3^{rd} run: y = 10, $\Delta(10, X) = \{1, 2, 5, 10\}$, $L = \{1, 2, 3, 3, 4, 5, 6, 6, 6, 9, 9\}$, $X = \{0, 10, 11, 12, 15\}$
- Arr **4**th **run:** y = 9, Δ(9, X) = {1, 2, 3, 6, 9}, L = {3, 4, 5, 6, 6, 9}, X = {0, 9, 10, 11, 12, 15}
- > 5^{th} run: y = 9, $\Delta(9, X) = \{0, 1, 2, 3, 6, 9\}$, $\Delta(width 9, X) = \{3, 4, 5, 6, 6, 9\}$, $L = \{\}$, $X = \{0, 6, 9, 10, 11, 12, 15\}$

The recursive calls of the *PartialDigest* algorithm can be illustrated by the following recursion tree:

Chantzi Efthymia 1

X5: RESTRICTION MAPPING ALGORITHMS - TASK 1 - 2

Chantzi Efthymia