Lovely Triplets

Daniel loves graphs. He thinks a graph is *special* if it has the following properties:

- It is undirected.
- The length of each edge is 1.
- It includes exactly P different lovely triplets.

A *triplet* is a set of 3 different nodes. A triplet is *lovely* if the minimum distance between each pair of nodes in the triplet is *exactly* Q. Two triplets are different if 1 or more of their component nodes are different.

Given P and Q, help Daniel draw a *special graph*.

Input Format

A single line containing 2 space-separated integers, P (the number of different lovely triplets you must have in your graph) and Q (the required *distance* between each pair of nodes in a lovely triplet), respectively.

Constraints

- 1 < P < 5000
- 2 < Q < 9

Output Format

For the first line, print ${\bf 2}$ space-separated integers, ${\bf N}$ (the number of nodes in the graph) and ${\bf M}$ (the number of edges in the graph), respectively.

On each line i of the M subsequent lines, print two space-separated integers, u_i and v_i , describing an edge between nodes u_i and v_i .

Your output must satisfy the following conditions:

- 0 < N, M < 100
- $1 \leq u_i, v_i \leq N$

If there is more than one correct answer, print any one of them.

Sample Input

3 2

Sample Output

7 7			
1 2			
2 3			
3 4			
4 5			
5 6			
6 1			
1 7			

Explanation

There are exactly P=3 lovely triplets in this graph: $\{1,3,5\}$, $\{2,4,6\}$, and $\{2,6,7\}$.

Observe that each node in a lovely triplet is $oldsymbol{Q}=\mathbf{2}$ edges away from the other nodes composing the lovely triplet.