

شبکههای عصبی مصنوعی

شبکههای باور عمیق

هادی ویسی

h.veisi@ut.ac.ir

دانشگاه تهران – دانشکده علوم و فنون نوین

نمرست

- شبکه باور عمیق
 - ساختار
 - آموزش
 - کاربرد
 - ماشىين بولتزمن
- ماشين بولتزمن محدود
- (ساختار، آموزش، مثال وآزمون)
- ماشین بولتزمن محدود گاوسی
 - (ساختار، آموزش، مثال وآزمون)
 - o استخراج ویژگی با DBN
 - روش، مثال
- o جعبه ابزار DeeBNet Toolbox

- (DBN: Deep Belief Network) شبکه باور عمیق
 - متشكل از چندلایه ماشین بولتزمن محدود
- o ماشیین بولتزمن محدود (RBM: Restricted Boltzmann Machine) ماشیین بولتزمن
 - نوعی ماشین بولتزمن بدون اتصال واحدهای لایه مشابه
 - ماشىين بولتزمن
 - مدل گرافیکی بدون جهت
 - مدل کردن وابستگی بین متغیرها با یک آرایش دو لایه ای

مدل های گرافیکی

و بیشترین کاربرد این شبکه در دسته بندی و استخراج ویژگی است

• کاربردها

- ٥ تشخيص نوع موسيقي
 - ٥ بازشناسی گفتار
- ٥ مدل سازی آکوستیکی
- o نظارت ویدئویی هوشمند
 - ٥ بازشناسي تصوير

مشکل آموزش شبکههای عمیق ...

o محو شدن گرادیان (Gradient Vanishing)

- مشکل عمده آموزش شبکههای با ساختار عمیق است
- o در شبکههایی که از الگوریتمهای مبتنی بر گرادیان استفاده میکنند
 - o مانند الگوريتم پس انتشار خطا (Back Propagation)
 - o افزایش تعداد لایهها باعث بیشتر شدن مشکل می گردد
- آموزش و تعیین پارامترها در لایههای اولیه شبکه بهخوبی انجام نمی گیرد
 - عمدتا به دلیل نوع تابع فعالسازی می باشد
- o اکثر فعالسازها دامنه بزرگی از مقادیر ورودی را به دامنه کوچکی نگاشت میکنند مانند سیگموید
 - o تشدید روند نگاشت به مقادیر کوچکتر در لایههای بعدی
 - تغییرات بزرگ در مقادیر پارامترها در لایههای اولیه موجب تغییرات کوچک در خروجی میشود
 - ۰ گرادیان کوچک خواهد بود

و راه حل

- آموزش شبکه به صورت لایه به لایه
 - o مانند آموزش شبکه باور عمیق

شبکه باور عمیق ...

o ساختار DBN

- یک شبکه عصبی چند لایه
- از پشته کردن تعدادی RBM حاصل میشود ه هر لایه آن یک RBM

آموزش شبکه باور عمیق ...

۰ آموزش شبکه شامل دو مرحله است

- پیش آموزش (Pre Training)
- ه آموزش ${
 m RBM}$ ها به صورت لایه به لایه با روش زیر انجام می شود:
 - اول m RBM اول $m \circ$
 - اول (پس از آموزش) جهت آموزش m RBM دوم m RBM اول (پس از آموزش) استفاده از خروجی
 - در واقع ویژگی ویژگی ها استخراج می شود
 - ادامه این روند تا آموزش آخرین RBM
- o حل شدن مشكل Vanishing Gradient آموزش شبكه هاى عميق
 - ه یک روش حریصانه (Greedy) است

o استفاده از وزنهای به دست آمده در مرحله pre-training به عنوان وزنهای اولیه جهت آموزش شبکه با الگوریتم پس انتشار خطا

Geoff Hinton

• اولین بار توسط Geoffrey Hinton در سال ۱۹۸۵ معرفی شد

- شبکه دولایه است
- وزنهای بین این دو لایه (W) متقارن است ullet
- شامل مجموعهای از واحدهای قابل مشاهده دودویی و مجموعهای از واحدهای مخفی دودویی
 - $(L \ \mathsf{g} \ \mathsf{J} \ \mathsf{g})$ وجود اتصالات بین نرون های لایه های مشابه واتریسهای وزن $\mathsf{J} \ \mathsf{g}$

General Boltzmann Machine

$$E(v,h) = -\frac{1}{2}v^{T}Lv - \frac{1}{2}h^{T}Jh - v^{T}Wh$$

• به دلیل اتصالات زیاد عملا نمی توان از این شبکه ها استفاده کر د

انر ژی حالت $\{v,h\}$ در ماشین بولتزمن بهصورت زیر است •

$$W_{ij} = W_{ji}$$

... (RBM) ماشین بولتزمن معدود

- نوعی ماشین بولتزمن که اتصالات بین واحدهای مشاهدهپذیر و واحدهای پنهان قطع شده J=0 و L=0
 - (h) شامل: لایه مشاهده پذیر (v) و لایه پنهان ullet
 - واحدهای مشاهده پذیر و واحدهای مخفی هر دو از نوع دودویی هستند
 - وزنهای بین این دو لایه متقارن میباشد

General Boltzmann Machine

Restricted Boltzmann Machine

o آموزش RBM

انرژی حالت $\{v,h\}$ در ماشین بولتزمن محدود بهصورت زیر است

• شبکه به هر حالت ممکن مقادیر بردارهای مشاهده پذیر و مخفی با تابع انرژی، یک مقدار احتمال نسبت میدهد

$$P(v,h) = \frac{1}{Z} \exp(-E(v,h))$$

$$0$$
 انرژی کمتر $=$ احتمال بیشتر

$$Z = \sum_{v} \sum_{h} \exp(-E(v, h))$$

ثابت نرمالسازی

احتمالی که مدل به بردار قابل مشاهده (v) نسبت می دهد برابر است با

$$P(v) = \sum_{h} P(v,h) = \frac{1}{Z} \sum_{h} \exp(-E(v,h))$$

جمع تمام حالات ممكن بردارهاي مخفي

• تابع هدف به صورت زیر تعریف می شود:

حبت رسیدن به انرژی کمتر برای دادههای آموزشی و انرژی بیشتر برای سایر دادهها

$$maximize_{\{w_{ij},a_i,b_j\}} \frac{1}{m} \sum_{l=1}^{m} \log \left(\sum_{h} P(\boldsymbol{v}^{(l)}, \boldsymbol{h}^{(l)}) \right)$$

تعداد نمونه های آموزشی

غير قابل محاسبه است

با توجه به غیر قابل محاسبه بودن مشتق تابع هدف، این مقدار به صورت زیر تخمین زده
 می شود

<>: امید ریاضی بر روی ضرب مقادیر مشاهده پذیر و مخفی

• قانون اصلاح وزنها به صورت زیر محاسبه می گردد

$$\Delta w_{ij} = \epsilon (\langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model})$$

$$\Delta a_i = \epsilon \left(\langle v_i \rangle_{data} - \langle v_i \rangle_{model} \right)$$

$$\Delta b_j = \epsilon (\langle h_j \rangle_{data} - \langle h_j \rangle_{model})$$

$\langle v_i h_j \rangle_{data}$ محاسبه

o حالت دودویی هر واحد مخفی با شرط داشتن واحدهای مشاهده پذیر به احتمال زیر یک می شود. در صورتیکه این مقدار از یک عدد تصادفی در بازه [0-1] بزرگتر بود برابر یک ودر غیر این صورت برابر صفر است.

$$P(h_j = 1 | \boldsymbol{v}) = g\left(b_j + \sum_i v_i w_{ij}\right)$$

به دلیل نبود اتصال بین واحدهای مخفی این واحدها به شرط واحد مشاهده پذیر مستقل هستند

o حالت دودویی هر واحد مخفی با شرط داشتن واحدهای مشاهده پذیر به احتمال زیر یک می شود. در صورتیکه این مقدار از یک عدد تصادفی در بازه [0-1] بزرگتر بود برابر یک ودر غیر این صورت برابر صفر است.

$$P(v_i = 1|\mathbf{h}) = \mathcal{G}\left(a_i + \sum_j h_j w_{ij}\right)$$

به دلیل نبود اتصال بین واحدهای مشاهده پذیر این واحدها به شرط واحد پنهان مستقل هستند

محاسبه می گردد. $v_i h_j >_{data}$ معاسبه می گردد.

$\langle v_i h_j \rangle_{model}$ محاسبه

- o جہت محاسبہ این مقدار می توان از روش های نمونه برداری استفادہ کرد
 - نمونه برداری گیبز
 - سرعت پایین و عملا غیر ممکن
 - روش واگرایی متقابل
 - دقیقا معادل گرادیان نیست ولی دقت قابل قبولی دارد

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

اشین بولتزمن محدود (RBM)...

روش نمونه برداری گیبز (Gibbs Sampling)

- ٥ ابتدا قرار دادن یک بردار از داده آموزشی در لایه مشاهده پذیر
 - ٥ تكرار مراحل زير به صورت نا محدود
 - بروز رسانی تمام واحدهای مخفی به صورت موازی
- بروز رسانی تمام واحدهای مشاهده پذیر به صورت موازی لی مرحله از نمونه برداری گیبز
 - دوباره بروز رسانی واحدهای مخفی

$$\frac{\partial \log p(v)}{\partial W_{ii}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty$$

مرحله صفر از نمونه برداری گیبز و معادل امید ریاضی ضرب v_i و h_j می باشد

• روش واگرایی متقابل (Contrastive Divergence)

- t=1 اجرای نمونه برداری گیبز تا گام زمانی t=1
- قرار دادن یک بردار از ورودی در لایه مشاهده پذیر
- ۰ بروز رسانی تمام واحدهای مخفی به صورت موازی
- بروز رسانی تمام واحدهای مشاهده پذیر به صورت موازی
 - ۰ دوباره بروز رسانی واحدهای مخفی
 - و درنهایت اصلاح وزن ها:

$$\frac{\partial \log p(\mathbf{v})}{\partial W_{ii}} = \langle \mathbf{v}_i h_j \rangle^0 - \langle \mathbf{v}_i h_j^1 \rangle$$

$$\Delta w_{ij} = \alpha \left(\langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1 \right)$$

$$\Delta a_i = \alpha \left(\langle v_i \rangle^0 - \langle v_i \rangle^1 \right)$$

$$\Delta b_j = \alpha \left(\langle h_j \rangle^0 - \langle h_j \rangle^1 \right)$$

• الگوريتم آموزش واگرايي متقابل

- گام - مقداردهی اولیه وزنها به صورت تصادفی و صفر قرار دادن مقادیر بایاس
 - گام ۱ برای هر بردار ورودی گامهای ۲ تا ۹ را تکرار کنید
 - گام ۲– یک بردار ورودی (v) را در لایه مشاهده پذیرقرار دهید.
 - گام ۳– احتمال فعال شدن واحدهای پنهان را به شرط بردار v محاسبه نمایید ullet

$$P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^m w_{ij} v_i)$$

تابع سيگمويد

*Positive*_{hidden}

- گام $^+$ مقدار واحدهای پنهان را در صورتی که احتمال به دست آمده بزرگتر از یک مقدار تصادفی در بازه [0,1] بود برابر یک و در غیر اینصورت برابر صفر قرار دهید (بردار (h))
 - گام ۵– احتمال فعال شدن واحدهای مشاهده پذیر را به شرط بردار h محاسبه نمایید lacktriangle

$$P(v_i = 1|h) = \sigma(a_i + \sum_{j=1}^n w_{ij} h_j)$$

• الگوريتم آموزش (ادامه...)

- [0,1] گام -8 در صورتی که احتمال به دست آمده بزرگتر از یک مقدار تصادفی در بازه بود، مقدار واحدهای مشاهده پذیر را برابر یک و در غیر اینصورت برابر صفر قرار دهید. (v')
 - گام ۷- احتمال فعال شدن واحدهای پنهان را به شرط بردار v' محاسبه نمایید. ullet

$$P(h'_j = 1|v') = \sigma(b_j + \sum_{i=1}^m w_{ij} v'_i)$$

$Negative_{hidden}$

• گام ۸– اگر نرخ یادگیری برابر α باشد تغییرات وزن را به کمک رابطههای زیر محاسبه کنید.

$$\Delta W = \alpha (v^T * Positive_{Hidden} - v^T * Negative_{Hidden})$$

 $\Delta a = \alpha (v - v^T)$

$$\Delta b = \alpha \left(Positive_{Hidden} - Negative_{Hidden} \right)$$

- الگوريتم آموزش (ادامه...)
- گام ۹ وزنها را بروز رسانی کنید.

$$W = W + \Delta W$$

$$b = b + \Delta b$$

$$a = a + \Delta a$$

ماشین بولتزمن معدود (مثال)...

o ساختار شبکه RBM

- تعداد نرونهای لایه مشاهده پذیر: ۵
 - ٥ از نوع دودویی
 - تعداد نرونهای لایه پنهان: ۷
 - ٥ از نوع دودویی
 - نرخ یادگیری:۱.۰
- وزنهای اولیه: مقادیر کوچک تصادفی از یک گوسی
 - ٥ ميانگين صفر و انحراف معيار ١٠٠٠
 - مقادیر اولیه بایاس: صفر

ماشین بولتزمن محدود (مثال)...

• گام • – بردار ورودی را به صورت زیر در نظر بگیرید

|--|

• گام ۱ – وزنها و بایاس را مقدار دهی اولیه کنید

		1	2	3	4	5	6	/
W =	1	-0.0226	0.1101	-0.1062	0.0889	-0.0177	0.1588	0.0216
	2	0.1117	0.1544	0.2350	-0.0765	-0.0196	-0.0804	-0.1166
	3	-0.1089	0.0086	-0.0616	-0.1402	0.1419	0.0697	-0.1148
	4	0.0033	-0.1492	0.0748	-0.1422	0.0292	0.0835	0.0105
	5	0.0553	-0.0742	-0.0192	0.0488	0.0198	-0.0244	0.0722

h —	1	2	3	4	5	6	7
$\nu =$	0	0	0	0	0	0	0

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

Positive_{hidden} $P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^{m} w_{ij} v_i)$

ماشین بولتزمن محدود (مثال)...

گام ۲– احتمال فعال شدن واحدهای پنهان را به شرط بردار v محاسبه نمایید lacktriangle

 $Positive_{Hidden} = \sigma \left[\left((-0.0226*1) + 0 \right) + \left((0.1117*0) + 0 \right) + \left((-0.1089*1) + 0 \right) + \left((0.0033*1) + 0 \right) + \left((0.0553*0) + 0 \right) \right] = \sigma \left(-0.1282 \right) = 0.4680$

• گام ۳– مقدار واحدهای پنهان را در صورتی که احتمال به دست آمده بزرگتر از یک مقدار (h) بود برابر یک و در غیر اینصورت برابر صفر قرار دهید (بردار (h))

				V			
	1	2	3	4	5	6	7
	0	1	0	0	1	1	1
1				1	1	1	1

hبردار

بردار تصادفي

$$P(v_i = 1|h) = \sigma(a_i + \sum_{j=1}^n w_{ij} h_j)$$

ماشین بولتزمن محدود (مثال)...

گام ۴- احتمال فعال شدن واحدهای مشاهده پذیر را به شرط بردار h محاسبه نمایید lacktriangle

$$P(v_i = 1|h)$$
 1 2 3 4 5 0.5677 0.4845 0.5263 0.4935 0.4984

$$\sigma\left[\left((-0.0226*0)+0\right)+\left((0.1101*1)+0\right)+\left((-0.1062*0)+0\right)+\left((0.0889*0)+0\right)+\left((-0.0177*1)+0\right)+\left((0.1588*1)+0\right)+\left((0.0216*1)+0\right)\right]=\sigma\left(0.2728\right)=0.5677$$

[0,1] گام ۵– در صورتی که احتمال به دست آمده بزرگتر از یک مقدار تصادفی در بازه برد. بود، مقدار واحدهای مشاهده پذیر را برابر یک و در غیر اینصورت برابر صفر قرار دهید. $P(v_i=1|h)$

	▼			
1	2	3	4	5
0.5677	0.4845	0.5263	0.4935	0.4984
Λ	V	Λ	V	Λ
1	2	3	4	5
0.7943	0.3112	0.5285	0.1656	0.6020

		Λ	ار $ u'$	برد
1	2	3	4	5
0	1	0	1	0

بردار تصادفي

Hadi Veisi (h.veisi@ut.ac.ir)

Negative_{hidden} $P(h'_{j} = 1|v') = \sigma(b_{j} + \sum_{i=1}^{m} w_{ij} v'_{i})$

ماشین بولتزمن محدود (مثال)...

گام ۶- احتمال فعال شدن واحدهای پنهان را به شرط بردار v' محاسبه نمایید.

 $Negative_{Hidden} = \sigma \left[((-0.0226*0)+0) + ((0.1117*1)+0) + ((-0.1089*0)+0) + ((0.0033*1)+0) + ((0.0553*0)+0) \right] = \sigma (0.115) = 0.5287$

• گام ۷– اگر نرخ یادگیری برابر α باشد تغییرات وزن را به کمک رابطههای زیر محاسبه

		1	2	3	4	5	6	7
	1	0.0468	0.0492	0.0477	0.0452	0.0538	0.0577	0.0479
	1	-0.0529	-0.0501	-0.0577	-0.0446	-0.0502	-0.0501	-0.0474
$\Delta W =$	3	0.0468	0.0492	0.0477	0.0452	0.0538	0.0577	0.0479
	4	-0.0061	-8.9412e-04	-0.0100	6.2134e-04	0.0036	0.0077	5.8260e-04
	5	0	0	0	0	0	0	0

 $\Delta W_{11} = 0.1 * [(1 * 0.4680) - (0 * 0.5287)] = 0.0468$

 $\Delta W = \alpha (v^T * Positive_{Hidden} - v^T * Negative_{Hidden})$

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

ماشین بولتزمن محدود (مثال)...

$\Delta a_1 = 0.1 * [1$. – 0] =0.1				
\	1	2	3	4	5
$\Delta a =$	0.1000	-0.1000	0.1000	0	0

$$\Delta a = \alpha(v - v')$$

 $\Delta b = lpha \Big(\mathit{Positive}_{\mathit{Hidden}} - \mathit{Negative}_{\mathit{Hidden}} \Big)$

		1	2	3	4	5	6	7
Δk	b = 🔻	-0.0061	-8.9412e-04	-0.0100	6.2134e-04	0.0036	0.0077	5.8260e-04
	$\Delta b_1 = 0.1$	1 * [0.4680	0 – 0.5287] =	= -0.0061	1			

• گام ۸- وزنها را بروز رسانی کنید.

$$W = W + \Delta W$$

$$b = b + \Delta b$$

$$a = a + \Delta a$$

ماشین بولتزمن محدود (آزمون) ...

• الگوريتم آزمون (كاربرد)

- گام ۱ برای هر بردار ورودی آزمون گامهای ۲ تا ۴ را تکرار کنید
 - گام ۲– یک بردار ورودی (v) را در لایه مشاهده پذیرقرار دهید. lacksquare
- گام ۳- احتمال فعال شدن واحدهای پنهان را به شرط بردار v محاسبه نمایید lacktriangle

• گام ۴– مقدار واحدهای پنهان را در صورتی که احتمال به دست آمده بزرگتر از یک مقدار تصادفی در بازه [0,1] بود برابر یک و در غیر اینصورت برابر صفر قرار دهید

ماشین بولتزمن محدود گاوسی (GRBM)...

- نوعی ماشین بولتزمن که اتصالات بین واحدهای مشاهده پذیر و واحدهای پنهان قطع شده
- رایج ترین رویکرد برای مدل کردن مشاهدات با مقادیر حقیقی، در قالب ماشین بولتزمن محدود، نوع گوسی آن است
 - ۵ کاربرد در صوت و تصویر
 - واحدهای مشاهده پذیر از نوع حقیقی و واحدهای مخفی از نوع دودویی هستند
 - شامل دو لایه مشاهدهپذیر و لایه پنهان
 - وزنهای بین این دو لایه متقارن میباشد

Restricted Boltzmann Machine

- آموزش...
- انرژی حالت $\{v,h\}$ در ماشین بولتزمن محدود گاوسی بهصورت زیر است •

• شبکه به هر حالت ممکن مقادیر بردارهای مشاهده پذیر و مخفی با تابع انرژی، یک مقدار احتمال نسبت میدهد

$$P(v,h) = \frac{1}{Z} \exp(-E(v,h))$$

$$Z = \sum_{v} \sum_{h} \exp(-E(v, h))$$

ثابت نرمالسازي

ہ انرژی کمتر= احتمال بیشتر

• توزیع حاشیه ای برروی بردار مشاهدات به صورت زیر خواهد بود ه مشامه RBM

$$P(v) = \sum_{h} P(v,h) = \frac{1}{Z} \sum_{h} \exp(-E(v,h))$$

• ثابت نرمالسازی به دلیل پیوسته بودن مقادیر مشاهدات به رابطه زیر تغییر میکند

$$Z = \int_{v}^{r} \sum_{h} \exp(-E(v, h)) dv'$$

• احتمال شرطی واحدهای مشاهده پذیر و مخفی به صورت زیر تغییر میکند

٥ هر واحد مشاهده پذیر با یک گوسی مدل می شود

$$p(v_{i} = x_{i} \mid h) = \frac{1}{\sqrt{2\pi} \sigma_{i}} Exp(-\frac{(x - a_{i} - \sigma_{i} \sum_{j} h_{j} w_{ij})^{2}}{2\sigma_{i}^{2}}) , \qquad p(h_{j} = 1 \mid v) = g(b_{j} + \sum_{i} w_{ij} \frac{v_{i}}{\sigma_{i}})$$

• مشتق احتمال بردار مشاهده پذیر نسبت به بردار وزن به صورت زیر تخمین زده میشود

فاز منفی
$$\frac{\partial \log P(v)}{\partial w_{ij}} = \langle \frac{1}{\sigma_i} v_i h_j \rangle_{data} - \langle \frac{1}{\sigma_i} v_i h_j \rangle_{model}$$

<>: امید ریاضی بر روی ضرب مقادیر مشاهده پذیر و مخفی

- یک عدد ثابت در نظر گرفته می شود و بر روی آن آموزش صورت نمیگیرد σ_i ه
 - اگر σ_i معادل یک در نظر گرفته شود روش اصلاح وزنها تغییری نمی کند σ_i
 - (با نرمالسازی داده ورودی این مقدار معادل یک میشود)
 - قانون اصلاح وزنها به صورت زیر محاسبه می گردد

$$\Delta w_{ij} = \epsilon (\langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model})$$

$$\Delta a_i = \epsilon (\langle v_i \rangle_{data} - \langle v_i \rangle_{model})$$

$$\Delta b_j = \epsilon (\langle h_j \rangle_{data} - \langle h_j \rangle_{model})$$

الگوریتم آموزش

- گام ۰ نرمال سازی داده ورودی
- o هر مولفه ورودی به برداری با میانگین صفر و انحراف معیار یک تبدیل می شود
 - ابتدا میانگین هر مولفه بردار ورودی را محاسبه کنید.
 - 2. سپس انحراف معیار هر مولفه بردار ورودی را محاسبه کنید
 - ... هر مولفه را به کمک رابطه زیر نرمال کنید

الگوریتم آموزش

- گام ۱ مقداردهی اولیه وزنها به صورت تصادفی و صفر قرار دادن مقادیر بایاس
 - گام ۲- برای هر بردار ورودی گامهای ۲ تا ۹ را تکرار کنید
 - گام ۳– یک بردار ورودی (v) را در لایه مشاهده پذیرقرار دهید. •
 - گام ۴- احتمال فعال شدن واحدهای پنهان را به شرط بردار $\,
 u \,$ محاسبه نمایید $\, ullet \,$

$$P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^m w_{ij} v_i)$$

$Positive_{hidden}$

- گام ۵– مقدار واحدهای پنهان را در صورتی که احتمال بهدست آمده بزرگتر از یک مقدار تصادفی در بازه [0,1] بود برابر یک و در غیر اینصورت برابر صفر قرار دهید (بردار h)
 - گام ۶– احتمال فعال شدن واحدهای مشاهده پذیر را به شرط بردار h محاسبه نمایید و بردار حاصل را (v') بنامید

$$P(v_i = 1|h) = (a_i + \sum_{j=1}^{n} w_{ij} h_j)$$

v' بردار

- الكوريتم آموزش (ادامه...)
- گام ۷- احتمال فعال شدن واحدهای پنهان را به شرط بردار v' محاسبه نمایید.

$$P(h_j = 1|v') = \sigma(b_j + \sum_{i=1}^{m} w_{ij} v'_i)$$

 $Negative_{hidden}$

اگر نرخ یادگیری برابر α باشد تغییرات وزن را به کمک رابطههای زیر محاسبه کنید.

$$\Delta W = \alpha (v^T * Positive_{Hidden} - v^T * Negative_{Hidden})$$

$$\Delta a = \alpha(v - v')$$

$$\Delta b = \alpha \left(Positive_{Hidden} - Negative_{Hidden} \right)$$

• گام ۹ – وزنها را بروز رسانی کنید.

$$W = W + \Delta W$$

$$b = b + \Delta b$$

$$a = a + \Delta a$$

ماشین بولتزمن معدود (مثال)...

o ساختار شبکه GRBM

٥ از نوع حقیقی

• تعداد نرونهای لایه پنهان: ۵

٥ از نوع دودویی

- نرخ یادگیری: ۰.۰۰۱
- وزنهای اولیه: مقادیر کوچک تصادفی از یک گوسی
 - ٥ ميانگين صفر و انحراف معيار ١٠٠٠
 - مقادیر اولیه بایاس: صفر

ماشین بولتزمن معدود گاوسی (مثال)...

مثال...

• گام • - نرمالسازی داده ورودی

$$\frac{3.43 - (-3.2368)}{3.9384} = 1.6928$$

	1	2	3 (
1	-0.7379	-0.0963	1.6928
2	1.8242	0.9224	0.2515
3	-1.2349	-1.9055	-0.3282
4	0.9710	0.3600	0.5710
5	-0.1694	0.6708	-1.9009
6	0.1641	0.7021	0.6457
7	0.3885	0.7274	-0.1718
8	-1.2056	-1.3810	-0.7601

داده نرمال شده

کل داده ورودی

	1	2	3
1	-36.2809	-5.1105	3.4300
2	-31.3580	-2.9480	-2.2462
3	-37.2360	-8.9512	-4.5293
4	-32.9975	-4.1419	-0.9878
5	-35.1886	-3.4821	-10.7233
6	-34.5479	-3.4156	-0.6938
7	-34.1167	-3.3621	-3.9135
8	-37.1795	-7.8377	-6.2302

بردار میانگین			
مولفهها	1	2	3
	-34.8631	-4.9062	-3.2368

بردار ورودي

بردار انحراف			
معيار مولفهها	1	2	3
	1.9214	2.1228	3.9384

• گام ۰- بردار ورودی را به صورت زیر در نظر بگیرید

1	2	3
-0.7379	-0.0963	1.6928

• گام ۱ – وزنها و بایاس را مقدار دهی اولیه کنید

		1	2	3	4	5
	1	0.1355	0.0124	-0.0198	0.0825	-0.0469
	2	-0.1072	0.1437	-0.1208	0.1379	-0.0272
	3	0.0961	-0.1961	0.2908	-0.1058	0.1098

$$a = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \end{bmatrix}$$

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

Positive_{hidden}

$$P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^{m} w_{ij} v_i)$$

ماشین بولتزمن معدود گاوسی (مثال)...

گام ۲- احتمال فعال شدن واحدهای پنهان را به شرط بردار v محاسبه نمایید ullet

$$P(h_j = 1|v) = \begin{array}{c|ccccc} 1 & 2 & 3 & 4 & 5 \\ \hline 1 & 0.5183 & 0.4122 & 0.6268 & 0.4370 & 0.5556 \end{array}$$

 $Positive_{Hidden} = \sigma \left[((0.1355*(-0.7379))+0) + ((-0.1072*(-0.0963))+0) + ((0.0961*1.6928)+0) = \sigma (0.073) = 0.5183 \right]$

گام ۳- مقدار واحدهای پنهان را در صورتی که احتمال به دست آمده بزرگتر از یک مقدار (h) بود برابر یک و در غیر اینصورت برابر صفر قرار دهید (بردار [0,1])

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

$$P(v_i = 1|h) = (a_i + \sum_{j=1}^n w_{ij} h_j)$$

ماشین بولتزمن معدود گاوسی (مثال)...

گام ۴- احتمال فعال شدن واحدهای مشاهده پذیر را به شرط بردار h محاسبه نمایید و بردار حاصل را (v') بنامید

$$P(v_i = 1|h)$$
 1 2 3 1 0.0688 -0.2552 0.4967

$$[((0.1355*1)+0) + ((0.0124*0)+0) + ((-0.0198*1)+0) + ((0.0825*0)+0) + ((-0.0469*1)+0)] = 0.688$$

گام ۵- احتمال فعال شدن واحدهای پنهان را به شرط بردار v' محاسبه نمایید.

$$Negative_{Hidden} = \sigma \left[\left. ((0.1355*(0.0688))+0) + ((-0.1072*(-0.2552))+0) + ((0.0961*0.4967)+0) \right] = \sigma \left(0.0844 \right) = 0.5211$$

شبکههای عصبی مصنوعی: شبکه باور عمیق (DBN)

ماشین بولتزمن محدود گاوسی (مثال)...

• گام ۷– اگر نرخ یادگیری برابر α باشد تغییرات وزن را به کمک رابطههای زیر محاسبه کنید.

		1	2	3	4	5
$\Delta W =$	1	-4.1827e-04	-3.3627e-04	-4.9989e-04	-3.5547e-04	-4.4535e-04
	2	8.3119e-05	7.9456e-05	7.8357e-05	8.0320e-05	7.7863e-05
	3	6.1842e-04	4.6589e-04	7.9109e-04	5.0157e-04	6.8481e-04

$$\Delta W_{11} = 0.001 * [(-0.7379 * 0.5183) - (0.0688 * 0.5211)] = -4.18e-04$$

$$\Delta a = \frac{1}{1} \frac{2}{-8.0671e-04} \frac{3}{1.5898e-04} \frac{3}{0.0012}$$

$$\Delta a_1 = 0.001 * [(-0.7379) - (0.0688)] = -8.0671e-04$$

$$\Delta W = \alpha (v^T * Positive_{Hidden} - v^T * Negative_{Hidden})$$

$$\Delta a = \alpha (v - v')$$

$$\Delta b = \alpha \Big(Positive_{Hidden} - Negative_{Hidden} \Big)$$

$$\Delta b_1 = 0.001 * [(0.5183) - (0.5211)] = -2.8431e-06$$

ماشین بولتزمن معدود گاوسی (مثال)...

• گام ۸ – وزنها را بروز رسانی کنید.

$$W = W + \Delta W$$

$$b = b + \Delta b$$

$$a = a + \Delta a$$

ماشین پولتزمن محدود گاوسی (آزمون)...

• الگوريتم آزمون (كاربرد)

- گام ۱ برای هر بردار ورودی آزمون گامهای ۲ تا ۴ را تکرار کنید
 - گام ۲– یک بردار ورودی (v) را در لایه مشاهده پذیرقرار دهید. lacksquare
- گام ۳– احتمال فعال شدن واحدهای پنهان را به شرط بردار v محاسبه نمایید ullet

تابع سيگمويد

$$P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^m w_{ij} v_i)$$

$Positive_{hidden}$

• گام * – مقدار واحدهای پنهان را در صورتی که احتمال بهدست آمده بزرگتر از یک مقدار تصادفی در بازه [0,1] بود برابر یک و در غیر اینصورت برابر صفر قرار دهید

شبکه باور عمیق خود رمز گذار...

O استخراج ویژگی با DBN Autoencoder

- در این Autoencoder هدف کاهش غیر خطی بُعد دادگان است
 - o آموزش به صورت Generative است
 - بدون برچسب گذاری
- شبکه شامل دو بخش: رمز گذار (Encoding) و رمز گشا (Decoding)
 - ٥ رمز گذار: کد کردن داده ورودی
 - ٥ رمز گشا: ساخت دوباره داده ورودی به کمک داده کد شده
 - تعداد نرونهای لایه ورودی با تعداد نرونهای لایه خروجی برابر است

شبکه باور عمیق خود رمز گذار

○ الگوريتم استخراج ويژگى...

- آموزش بخش رمز گذار (Encoding)
- ٥ آموزش با الگوريتم حريصانه شبكه باور عميق
 - به صورت لایه به لایه
- قرار دادن ترانهاده وزنهای بخش رمز گذار به عنوان وزن بخش رمزگشا (Decoding)
 - آموزش کل شبکه خود رمز گذار (شامل بخش رمز گذار و رمز گشا)
 - ٥ با استفاده از الگوریتم پس انتشار خطا استاندارد
 - ارائه داده ورودی به بخش رمز گذار شبکه
 - o ویژگیهای استخراج شده از این بخش ویژگیهای مورد نظر میباشد

استخراج ویژگی با DBN Autoencoder

- مجموعه دادگان
 - فارس دات
- و روش استخراج ویژگی
 - شامل دو مرحله:
- ه استخراج ویژگیهای MFCC از هر فریم
 - از هر فریم ۳۹ ویژگی استخراج می شود
 - o استفاده از DBN Autoencoder
- ورودی: ویژگی های MFCC هر فریم به همراه ۴ فریم بعدی
 - شامل ۴ ماشین بولتزمن محدود
 - ۰ خروجی: ۳۹ ویژگی

استفراج ویژگی با DBN Autoencoder

• استخراج ویژگیهای MFCC از هر فریم

۱۶ میلی ثانیه	طول فريم
75	تعداد فیلترهای مل
همینگ	نوع پنجره گذاری
۸ میلی ثانیه	میزان هم پوشانی فریم ها
۳۹	تعداد ویژگی های MFCC

• استفاده از DBN Autoencoder

مقدار	پارامتر
ویژگیهای MFCC هر فریم بههمراه ۴ فریم بعدی	داده ورودی DBN
190	تعداد نرونهای لایه ورودی
1.74	تعداد نرونهای RBM اول
۵۱۲	تعداد نرونهای RBM دوم
709	تعداد نرونهای RBM سوم
٣٩	تعداد نرونهای RBM چهارم
٣٩	تعداد ویژگیهای استخراج شده

Hadi Veisi (h.veisi@ut.ac.ir)

استخراج ویزگی با DBN Autoencoder

نتایج به دست آمده

ه استفاده از ${
m DBN}$ جهت استخراج ویژگی موجب بهبود دقت شده است

دقت دادههای تست	تعداد مراحل آموزش	نرخ یادگیری	تعداد بلوك حافظه	روش استخراج ویژگی
VV	۵۶	٠.٠٠٣	40.	MFCC
<u> </u>	۵۰	٠.٠٠٣	۲۵۰	DBN

جعبه ابزار DeeBNet Toolbox

- جهت استفاده از شبکه m DBN جعبه ابزار m DeeBNet موجود میباشد m ullet
 - o دانلود جعبه ابزا*ر* و راهنما

• http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html

• جعبه ابزار شامل:

- o تعدادی نمونه کد آماده جهت آشنایی با روش استفاده از جعبه ابزار
 - o فایل *ر*اهنمای استفاده
 - o تعدادی کلاس و تابع برای کار با داده ها و نمونه برداری
 - DBN و RBM و RBM م تعدادی کلاس برای تعریف

معرنی برخی کلاس های مهم DeeBNet Toolbox

o کلاس ValueType

• نوع واحدهای موجود در یک لایه را مشخص می کند

```
• ValueType.binary
```

% واحدها مقادیر \cdot و ۱ ℓ ا می تواند بگیرد

o ValueType.probability

% هر مقدا*ر* حقیقی بین \cdot و ا

• ValueType.Gaussian

% مقدار حقیقی با میانگین \cdot و واریانس \cdot

٥ مثال

• rbmParams=RbmParameters(Hid,ValueType.binary);

معرنی برخی کلاس های مهم DeeBNet Toolbox

RbmType کلاس

- نوع RBM را مشخص می کند
 - ٥ مثال: جهت استخراج ویژگی
- o rbmParams.rbmType=RbmType.generative;
 - طریقه ی تعریف برخی پارامترهای مهم
 - ٥ نرخ يادگيري

- o rbmParameters.learningRate=0.07;
- های آموزشتعداد تکرار های آموزش

o rbmParams.maxEpoch=50;

- o تعیین روش نمونه بردا*ری*
- $\verb|o| rbmParams.samplingMethodType=SamplingClasses.SamplingMethodType.CD|; \\$

معرفی پرخی کلاس های مهم DeeBNet Toolbox

rbmParams کلاس

• همه ی پارامترهای ${
m RBM}$ در این کلاس تعریف می گردد

RbmParameters

- +weight
- +visBias
- +hidBias
- +numHid
- +moment
- +learningRate
- +batchSize
- +maxEpoch
- +epochNumber
- +avgLast
- +penalty
- +samplingMethodType
- +kSamplingIteration
- +rbmType

معرفی برخی کلاس های معم DeeBNet Toolbox

نرمال سازی داده های ورودی

• Meanvar: نرمالسازی دادهها با میانگین صفر و واریانس ۱ • valueType از نوع gaussian می شود

O کلاس DataStore

• برای راحتی کار با این جعبه ابزار داده های خود را به صورت نمودار مقابل مرتب کنید و به صورت یک فایل mat. ذخیره کنید

معرفی برخی کلاس های مهم DeeBNet Toolbox

o کلاس Sampling

• یک کلاس واسط برای استفاده از کلاس های نمونه برداری است

معرفی برخی کلاس های مهم DeeBNet Toolbox

DBN کلاس o

- m RBM با پشته کردن مدل های m DBN ساخت شبکه m DBN
 - o ساخت DBN از نوع
- dbn.dbnType='autoEncoder';

ه پشته کردن m RBM ها

- dbn.addRBM(rbmParams);
 - ه تبدیل DBN به شبکه عصبی جهت پس انتشار خطا
- Function net=DBNtoNN(obj,data)

معرفی پرخی کلاس های مهم DeeBNet Toolbox

- نمونه کد جهت ساخت Autoencoder برای استخراج ویژگی
 - انبع برای گرفتن خروجی از سیستم:
 - dbn.getFeature(.) •

```
data = MNIST.prepareMNIST Small('+MNIST\');
data.normalize('meanvar');
data.validationData=data.testData;
data.validationLabels=data.testLabels;
dbn=DBN();
dbn.dbnTvpe='autoEncoder';
% RBM1
rbmParams=RbmParameters (1000, ValueType.binary);
rbmParams.maxEpoch=50;
rbmParams.samplingMethodType=SamplingClasses.SamplingMethodType.CD;
dbn.addRBM(rbmParams);
% RBM2
rbmParams=RbmParameters (500, ValueType.binary);
rbmParams.maxEpoch=100;
rbmParams.samplingMethodType=SamplingClasses.SamplingMethodType.CD;
dbn.addRBM(rbmParams);
% RBM3
rbmParams=RbmParameters(39, ValueTvpe.binarv);
rbmParams.maxEpoch=50;
rbmParams.samplingMethodType=SamplingClasses.SamplingMethodType.CD;
dbn.addRBM(rbmParams);
dbn.train(data);
save('dbn.mat','dbn');
dbn.backpropagation(data);
save('dbn+BP.mat','dbn');
```