Identify Gate Operations using Action Recognition

DISSERTATION

Submitted in partial fulfillment of the requirements of the M.Tech Data Science and Engineering Degree programme

Ву

VISHALI S

ID No.

Under the supervision of:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
Pilani (Rajasthan), INDIA
August 2022

Identify Gate Operations using Action Recognition

Problem Statement:

Airport ground operations are one of the main causes of late departures. A common mantra in the aviation industry is "The plane is not making any money while it is on the ground". This statement represents the underlying hurdles faced by the airline industry. There is a need to strive for efficiency, as airlines wish to keep their planes grounded for as short as possible.

Benefit:

While stationary, the airline is not earning any revenue with its plane, while facing many costs at the same time. Not having a quick turnaround time can cost business. In many cases, the amount of time it takes to complete represents cost and can present risk. Fast turnaround time means less money spent on manpower.

Objective of the Project:

Build a system which will take video as an input and recognize the ground activities which are bridge connecting, baggage handling and miscellaneous. To achieve this, we must build a model based on visual-analytical approach that can automatically recognize the activities.

Resource:

Operating System: High end Machine with 8VRAM or above

Languages/Scripting: Python

Libraries: PyTorch, Tensorflow, Matplotlib, OpenCV, Albumentations

Solution Architecture:

The spatiotemporal features of the videos are extracted using the image processing techniques. The preprocessed data will be given to the models. In Training phase, deep learning algorithms are used to extract the features and preciously recognize the actions.

Risk:

Data collection was at potential risk. We observed the open-source datasets for action recognition like ActivityNet, UCF101 and HMDB51. It has an average of 100 to 150 videos for each action. Downloaded videos from YouTube & performed trimming operation to focus only on the actions we required. Collected around 130 videos for each category.

Fig 1: Overall Gate Monitoring System

Fig 2: Proposed Solution Architecture

Project Plan & Deliverables:

SL NO	Task	Planned duration (In weeks)	Name of Deliverables	Status
1	Understanding the project requirements and specifications	2 weeks		Done
2	Data collection	2 weeks	Dataset	Done
3	Data Preprocessing	3 weeks	Processed Dataset	Done
4	Exploration of algorithms and initial training	5 weeks	Literature study & Model	Done
5	Adding miscellaneous data as one more category	1 week	Dataset	Done
6	Inference the model	1 weeks	Model	Done
7	Documentation for final report	2 weeks	Code & Report	Done

Fig 3: Representation of workflow

Data Acquistion:

Data Collection:

Dataset Folder Structure:

Data Visualization:

Data Exploration:

Action Categories	3
Average Videos per Action Category	130
Average Number of Frames per Video	812.85
Average Frames Width per Video	1154.58
Average Frames Height per Video	713.00
Average Frames per Seconds per Video	27.37

Baggage Handling -

Video Duration Distribution

Jet Bridge Connecting

Input Video Frames

Data Preprocessing:

Optical Flow X Coordinates Frames

Coordinates Frames

Statistic of overall dataset

Statistic of overall dataset

RGB Frames

Exploration of algorithms and model training:

Single Frame CNN

Hyperparameters	Value	
Epoch	50	
Batch size	4	
Loss	categorical_crossentropy	
Optimizer	Adam	

This network uses single architecture that fuses information from all frames at the last stage. It works by running an image classification model on every single frame of the video and then average all the individual probabilities to get the final probabilities vector.

ConvLSTM

Hyperparameters	Value
Epoch	50
Batch size	4
Loss	categorical_crossentropy
Optimizer	Adam

This is implemented by using a combination of ConvLSTM cells. A ConvLSTM cell is a variant of an LSTM network. It has got convolution embedded in the architecture, which makes it capable of identifying spatial features of the data while keeping into account the temporal relation.

LRCN Model

Hyperparameters	Value	
Epoch	50	
Batch size	4	
Loss	categorical_crossentropy	
Optimizer	Adam	

This network combines CNN and LSTM layers in a single model. The CNN model can be used to extract spatial features from the frames in the video and LSTM model can then use the spatial features extracted by CNN at each time-steps for temporal sequence modeling. This way the network learns spatiotemporal features directly in an end-to-end training, resulting in a robust model.

Two Stream Network

Hyperparameters	RGB	Optical
,, ,	Value	Value
Epoch	250	350
Batch size	25	25
Learning rate	0.001	0.001
Loss	Cross	Cross
LUSS	entropy	entropy
Optimizer	SGD	SGD

This network is composed of two separate convolution neural networks. One to handle spatial features and one to handle temporal or motion features. The input to the two-stream architecture only contains a single frame for the spatial stream and a fixed-size group of optical flow maps for the temporal stream.

Model Training Results:

Single Frame CNN

Training Results

Loss	0.09544
Accuracy	0.9787

LRCN Model Total Loss vs Total Validation Loss val loss 1.0 0.8 0.6 0.4 0.2 Total Accuracy vs Total Validation Accuracy val accuracy 0.8 0.7 0.6 0.5 0.4916 Loss 0.84523 Accuracy

Two Stream Network

RGB frames:

Loss	0.6643
Accuracy	0.63402

Optical frames:

Loss	0.6546
Accuracy	0.63402

Model Inference:

Single Frame CNN

CLASS NAME: bridge_connecting AVERAGED PROBABILITY: 9.6e+01
CLASS NAME: misclaneous AVERAGED PROBABILITY: 0.13
CLASS NAME: baggage handling AVERAGED PROBABILITY: 0.003

CLASS NAME: baggage_handling AVERAGED PROBABILITY: 9.2e+01
CLASS NAME: bridge_connecting AVERAGED PROBABILITY: 6.2
CLASS NAME: misclaneous AVERAGED PROBABILITY: 1.5

CLASS NAME: misclaneous AVERAGED PROBABILITY: 1e+02
CLASS NAME: bridge_connecting AVERAGED PROBABILITY: 0.13
CLASS NAME: baggage handling AVERAGED PROBABILITY: 0.00011

ConvLSTM

Action Predicted: bridge_connecting Confidence: 0.8162801265716553

Action Predicted: baggage_handling Confidence: 0.8300662636756897

Action Predicted: misclaneous Confidence: 0.9995587468147278

LRCN Model

Action Predicted: bridge_connecting Confidence: 0.8911964893341064

Action Predicted: baggage_handling Confidence: 0.8003833293914795

Action Predicted: misclaneous Confidence: 0.9992884397506714

Two Stream Network

RGB frames:

```
s/eval_gms_pytorch$ python spatial_demo.py
 got 15 test videos
ample 1/15: GT: 0, Prediction: 0 ample 2/15: GT: 0, Prediction: 0
mple 3/15: GT: 0, Prediction: 3
mple 4/15: GT: 0, Prediction:
mple 5/15: GT: 0, Prediction:
mple 7/15: GT: 1, Prediction:
mple 8/15: GT: 1, Prediction:
mple 11/15: GT: 2, Prediction:
mple 12/15: GT: 2, Prediction: 2
mple 13/15: GT: 2, Prediction: 2
ample 14/15: GT: 2, Prediction: 2 ample 15/15: GT: 2, Prediction: 2
tal match found: 10
tal videos: 15
curacy is 0.6667
                                            :~/two stream pytorch/scr
s/eval gms pytorch$
```

Optical frames:

```
pts/eval_gms_pytorch$ python temporal_demo.py
tion recognition temporal model is loaded in 3.7351 seconds.
got 15 test videos
mple 1/15: GT: 0, Prediction:
mple 2/15: GT: 0, Prediction:
mple 3/15: GT: 0, Prediction:
mple 4/15: GT: 0, Prediction:
mple 5/15: GT: 0, Prediction:
mple 8/15: GT: 1, Prediction:
mple 10/15: GT: 1, Prediction: 1
mple 11/15: GT: 2, Prediction: (
mple 12/15: GT: 2, Prediction: (
mple 13/15: GT: 2, Prediction: 2
mple 14/15: GT: 2, Prediction: 2
mple 15/15: GT: 2, Prediction: 2
tal match count: 10
                                       :~/two stream pytorch/so
pts/eval gms pytorch$
```

Questions?