

Image Source

Image Source

Welcome to Week 16, Lecture 02!

Diagnosing and Interpreting Linear Regression

Agenda

- Assignments
- Announcements
- Last Class:
 - Why Use Linear Regression?
 - How does Linear Regression work?
 - o What are coefficients?
 - The 4 Assumptions of Linear Regression
- Today:
 - Demo: How to fit a linear regression with statsmodels.
 - Diagnosing a Regression model
 - Iterating on our model
 - Advanced approaches for multicollinearity
 - o Goefficient Interpretation

Assignments

Only 1 required assignment:

Project 3 - Part 4(Core)

Highly Recommended:

Do Project 3 - Part 5 for your portfolio!!!

Week 3 assignment feedback added!

Final Assignment Deadline = Friday at 9 AM PST!

- All resubmissions from week 1 and 2.
- All week 3 and 4 assignments turned in.
- Grace Period for Week 3 Resubmits:
 - If you are asked for resubmissions for week 3 assignments, the deadline for submitting those is Monday at 9 AM PST.

Announcements/Reminders

- Requirements:
 - 90% Core Assignment Completion
 - 80% Attendance
 - Deadline: Friday 6/17 at 9 AM PST
- In the second of the second of
 - Friday, July 01st @ 5 PM PST
 - Our cohort + students from 12 week program.
 - In the <u>same Zoom Room as lecture</u>

Linear Regression Assumptions

Review

The 4 Assumptions of Linear Regression

The first 2 assumptions are about the **features**:

- Linearity
- Independence of features (AKA Little-to-No Multicollinearity)

The last 2 assumptions are about the residuals (errors):

- Normality
- Homoscedasticity

Fitting a Linear Regression with Statsmodels

Walkthrough: Linear Regression with statsmodels

Fitting a linear regression to predict movie revenue.

- Basically, the optional assignment: Project 3 Part 5.
- Repo: https://github.com/coding-dojo-data-science/data-enrichment-linear-regression-with-movies
- Last Class:
 - Combining many csvs
 - Feature engineering
 - Preparing the data for a statsmodels OLS (add constant)
- Today:
 - Fitting an OLS model.
 - Interpreting the Model Summary and its coefficients.
 - Diagnosing the model
 - Better meeting the assumptions
 - Advanced approaches to dealing with multicollinearity
- BUT BEFORE WE DIVE BACK IN....

Linear Regression Modeling is Iterative

- Be prepared to try MANY versions of your model with changes to your features.
- Functionize your data prep and evaluation process for easy iteration.
- Keep your notebook organized with headers!
 - Add a header for each iteration of your model.

Diagnosing Linear Regression Models

& What to do if you violate the assumptions

Anscombe's quartet

- All 4 of these regression lines have the SAME scores/metrics.
- Without looking at the data/errors, we CANNOT trust our R2 & RMSE alone!

Assumption of Linearity

Checking for Linearity

That the input features have a linear relationship with the target.

- To check:
 - Use visualizations!

If your features violate linearity

- Simplest solution:
 - Drop features that are not linearly correlated with target.
- More Advanced Solutions (not covered today):
 - Transform your non-linear features into PolynomialFeatures.
 - <u>Towards Data Science: Polynomial Regression</u>
 - Machine Learning Mastery: Polynomial Feature Transformations
- When all else fails:
 - Try a different type of regression!

Assumption of Independence

Checking for multicollinearity

(AKA Little-to-No Multicollinearity)

That the features are not strongly related to other features.

To Check:

- Use correlation heatmaps!
- Use Variance Inflation Factor (VIF).
- Look for condition number warning on model.summary()

If your features have multicollinearity:

- Change argument for your OneHotEncoder:
 - Add drop='first"
 - But can't use handle_unknown='ignore'
- Use Variance Inflation Factor! (will demonstrate today)
 - Get VIF Values for your features.
 - Examples:
 - https://www.geeksforgeeks.org/detecting-multicollinear ity-with-vif-python/
 - Drop features with a score > ~5
- Try creating "interaction" features to combine 2 features that are highly correlated. <u>Chris Albon Article on Interactions</u>

Assumption of Normality

Checking for Normality (of residuals)

The model's residuals are approximately normally distributed.

- To Check:
 - Use a Quantile-Quantile (Q-Q)
 Plot!
- Resource:
 - https://towardsdatascience.co m/q-q-plots-explained-5aa84 95426c0

Source: Sherrytowers Q-Q plot examples

Assumption of Homoscedasticity

(Equal Variance)

Checking for Homoscedasticity

The model residuals have equal variance across all predictions.

- To Check:
 - Plot a residual scatter plot!
 - X-axis: Predicted Y-Values
 - Y-axis: Residuals (y-y_pred)

If you violate assumption of homoscedasticity or normality...

If you violate normality OR homoscedasticity:

- Check for outliers in your target and your numeric features.
 - 1) Try the Z-score rule for outliers first.
 - 2) If still violating residual assumptions, try using the IQR outlier rule
 - We will demonstrate in activity
 - o Perform on the ORIGINAL data, not the z-score outlier-removed data.

Revisit your numeric features and check for nonlinear features

- If so, remove it.
- Note: Remember to tell your stakeholders what range of your target was used in the model.
 - "My model was designed to predict homes with a value < \$2million"</p>

More extreme solutions:

- Forcing your numeric features to be more normally distributed using log-transformation.
 - Convert raw column to a log-transformed column (np.log())
 - Warning: changes meaning of coefficients from the effect of increasing the value of a feature by 1 to:
 - Then effect of a change of 1 PERCENT of a log-transformed feature.
- Use a special transformer from sklearn:
 - Quantile Transformer: Documentation
 - Visual Comparison of Transformers
 - Warning: will also change the interpretation of that features coefficients and I have no idea how to explain it to non-technical stakeholder!

Workflow/Summary

Model Diagnostics: After Each OLS Model

- Display the model.summary()
 - Check R-Squared/Adj R-Squared
- Get predictions and calculate residuals.
- Plot Diagnostic Visualizations:
 - QQ-Plot of the residuals (normality)
 - Residual Scatter Plot (homoscedasticity)
- Check the P-Values of your coefficients.
 - Drop any that are not significant.
 - OHE Columns are dropped All-or-None.
 - If the majority of the column's coefficient are significant, keep them all.
 - If the majority are not significant, drop them ALL.

Remember...

- We like linear regression for its simplicity and interpretability!
- I recommend:
 - using linear regression for explanations moreso than predictions.
 - o avoiding transforming your features as much as possible
 - This includes avoiding scaling numeric features
 - (unless trying to use regularization like LassoRegression)
- "Perfect is the enemy of good" Voltaire
 - We want a better QQ-Plot, not a perfectly flat one.
 - We want a no obvious cone shape to our residual plots, but a blob is ok!

End of Final Lecture

Image Source

Final Thoughts/Advice/Reminders

Discord:

- Send friend requests on Discord to your instructors and cohort mates.
 - Easier to stay in touch!
- Make sure to save any links or conversations you want to keep from the discord channel!

Post-Graduation

- Check Out the <u>Post-Graduation Resources!!!</u>
 - Save the Data Enrichment = notes repo: https://github.com/sensei-jirving/05.16.22-Data-Enrichment-Notes
 - Save our YouTube Playlist:
 https://youtube.com/playlist?list=Playlist
- DON'T STOP CODING AND DOING PROJECTS!
 - Re-do your first project from scratch in a new repo!
- Continue to practice SQL for job interviews!

APPENDIX

- In lieu of continuing our Linear Regression with Movies Part 2, we are going to pivot back to our Linear Regression for House Prices example.
 - Here is a recording of Part 2 of Linear Regression with Movies from last cohort:
 - https://youtu.be/5UGE_HWxePA
- Colab Notebook:
 - https://colab.research.google.com/drive/lvrbweCAik4-CzW9Y8pwON97Ymgu7l_GZ
 ?usp=sharing
 - Continue iterating on the first model in the notebook.
 - Solution Notebook (WIP):
 https://colab.research.google.com/drive/1fZerWju-rec6x-jOSz8p3EJb3d-sL4AE?usp=sharing