

2022-06-01

2022-05-31

2022-05-30

2022-05-27

2022-05-26

2022-05-25

2022-05-24

2022-05-23

2022-05-20

2022-05-19

2022-05-18

2022-05-17

2022-05-16

2022-05-13

2022-05-12

2022-05-11

2022-05-10

2022-05-09

2022-05-06

2022-05-05

2022-05-04

2022-05-03

2022-05-02

2022-04-29

2022-04-28

2022-04-27

2022-04-26

2022-04-22

2022-04-21

2022-04-20

2022-04-19

2022-04-15

2022-04-14

2022-04-13

2022-04-12

2022-04-11

2022-04-08

2022-04-07

2022-04-06

2022-04-05

2022-04-04

2022-04-01

2022-03-31

2022-03-30

2022-03-29

2022-03-28

2022-03-24

DoExercises:

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

1000000				
			4: -	
(8)	_	I N.	m_2	WAWA
-	느니	LV	ALLE.	

Soluzione all' esercizio del 2022-05-23 creato per luigi.miazzo

Un giocatore di pallacanestro ha una probabilità del 55% di fare canestro con un tiro da 2 punti.

Quesiti e soluzioni

Quesito 1

Determinare la probabilità che il giocatore non faccia più di 36 punti in 41 tiri tutti da 2 punti, utilizzando l'approssimazione normale (Teorema Limite Centrale) e la correzione di continuità.

Sia X_{41} la v.a che conta il numero di canestri su 41 tiri da 2 punti, quindi $X_{41} \sim bin(n=41,p=0.55)$. Dato che ogni canestro segnato fa guadagnare 2 punti, dovremo calcolarci la probabilità che il giocatore faccia al più 18 canestri.

Sappiamo che $E[X_{41}] = n \cdot p = 22.55$ e $Var(X_{41}) = np(1-p) = 10.1475$ Allora, usando l'approssimazione con TLC e la correzione di continuità si ha

$$P(X_{41} \leq 18) = P\left(\frac{X_{41} - 22.55}{\sqrt{10.1475}} \leq \frac{(18 + 0.5) - 22.55}{\sqrt{10.1475}}\right) \approx \Phi\left(\frac{(18 + 0.5) - 22.55}{\sqrt{10.1475}}\right)$$

- La risposta corretta è: 0.1017967
- La risposta inserita è: 0.102088723007
- che corrisponde a 0.1020887

Quesito 2.

Qual è l'errore assoluto tra la probabilità ottenuta con l'approssimazione calcolata al quesito 1 e il valore esatto? (Nella risposta si diano almeno 3 cifre decimali significative.)

Dobbiamo confrontare la soluzione del quesito 1 con il valore della funzione di ripartizione della variabile aleatoria binomiale X_{41} calcolata in 18, $F_{X_{41}}(18)$. Possiamo, come al solito, usare per questo la funzione in R pbinom . Per concludere, sottraiamo al valore esatto ottenuto quello approssimato calcolato al quesito 1, e prendiamone il valore assoluto.

- La risposta corretta è: 0.000292
- La risposta inserita è: 0.000292037278991
- che corrisponde a 0.000292

Quesito 3

Determinare il numero minimo di tiri che il giocatore deve effettuare affinché la probabilità di segnare almeno 86 punti sia non inferiore a 0.86, utilizzando l'approssimazione normale e la correzione di continuità.

Suggerimento: qnorm(p, mean=0, sd=1) calcola il quantile corrispondente alla probabilità p secondo la distribuzione normale standard.

Sia X_n la v.a. che indica il numero di canestri su n tiri, quindi $X_n \sim bin(n,p=0.55)$.

Dobbiamo quindi determinare n in modo che si verifichi $P(X_n \ge 43) \ge 0.86$, dato che per ottenere almeno 86 punti bisogna fare almeno 43 canestri. Utilizzando l'approssimazione normale e la correzione di continuità, abbiamo

$$0.86 \leq P(X_n \geq 43) = P(X_n > 43 - 0.5) = \qquad = P\left(rac{X_n - n \cdot 0.55}{\sqrt{n \cdot 0.55(1 - 0.55)}} > rac{(43 - 0.5) - n \cdot 0.55}{\sqrt{n \cdot 0.55(1 - 0.55)}}
ight) \ pprox 1 - \Phi\left(rac{(43 - 0.5) - n \cdot 0.55}{\sqrt{n \cdot 0.55(1 - 0.55)}}
ight),$$

da cui segue

$$\Phi\left(\frac{(43-0.5)-n\cdot 0.55}{\sqrt{n\cdot 0.55(1-0.55)}}\right) \leq 0.14 \Leftrightarrow \frac{(43-0.5)-n\cdot 0.55}{\sqrt{n\cdot 0.55(1-0.55)}} \leq \Phi^{-1}(0.14).$$

Come suggerito, possiamo quindi usare qnorm per calcolarci $\Phi^{-1}(0.14)$, dopodiché risolvendo la disuguaglianza si ottiene $n \geq 86.3533726$, ossia $n \geq 87$.

- La risposta corretta è: 87
- La risposta inserita è: 87
- che corrisponde a 87