Problem Set One

D. Zack Garza

January 27, 2020

Contents

1	Humphreys 1.1	1
	1.1 a	1
	1.2 b	1
2	Humphreys 1.3*	2

1 Humphreys 1.1

1.1 a

If $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} for which $\mu \in [\lambda]$.

Proposition: $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M

Proof: It suffices to check that $\mathfrak{g} \curvearrowright M^{[\lambda]} \subseteq M^{[\lambda]}$, i.e. this module is closed under the action of $U(\mathfrak{g})$. Let $g \in U(\mathfrak{g})$ be arbitrary. Choose a ordered basis $\{e_i\}$ for \mathfrak{g} , then this can be extended to a PBW basis for $U(\mathfrak{g})$ given by $\left\{\prod_i e_i^{t_i} \mid t_i \in \mathbb{Z}\right\}$. Then take a triangular decomposition $U(\mathfrak{g}) = U(\mathfrak{n}^-)U(\mathfrak{h})U(\mathfrak{n})$. We can then write $u = \prod_i a_i^{t_i} \prod_j h_j^{t_j} \prod_k b_k^{t_k}$ and consider how each component acts.

Since
$$\mathfrak{n} = \bigoplus_{\alpha \in \Phi^+} g_{\alpha}$$

Proposition: M is the direct sum of finitely many submodules of the form $M^{[\lambda]}$.

Proof:

1.2 b

Proposition: The weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 Humphreys 1.3*

Proposition: For any $M \in \mathcal{O}$, $M(\lambda)$ satisfies the following property:

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda), M) = \operatorname{Hom}_{U(\mathfrak{g})} \left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}, M \right) \cong \operatorname{Hom}_{U(\mathfrak{b})} \left(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}} M \right).$$

Proof:

Noting that

- $\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda},$
- $\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}} M$ is an identification of the \mathfrak{g} -module M has a \mathfrak{b} module by restricting the action of \mathfrak{g} , consider the following two maps:

$$F: \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M)$$
$$\phi \mapsto (F\phi : z \mapsto \phi(1 \otimes z)),$$

and using the action of \mathfrak{g} on M,

$$G: \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M)$$
$$\psi \mapsto (G\psi : g \otimes v \mapsto g \curvearrowright \psi(v)).$$

Note that the maps $G\psi$ are defined on ordered pairs, but are clearly bilinear and thus uniquely extend to maps on the tensor product.

It suffices to show that these maps are well-defined and mutually inverse.

To see that F is well-defined, let $\phi: U(\mathfrak{g}) \otimes C_{\lambda} \to M$ be fixed; we will show that the set map $F\phi: \mathbb{C}_{\lambda} \to M$ is $U(\mathfrak{b})$ -linear. Let $b \in U(\mathfrak{b})$, then

$$b \curvearrowright F\phi(v) \coloneqq b \curvearrowright (z \mapsto \phi(1 \otimes z))(v)$$

$$\coloneqq b \curvearrowright \phi(1 \otimes v)$$

$$= \phi(b \curvearrowright (1 \otimes v)) \quad \text{since } \phi \text{ is } U(\mathfrak{g})\text{-linear and } b \in U(\mathfrak{g})$$

$$= \phi((b \curvearrowright 1) \otimes v) \quad \text{by the definition/construction of } M(\lambda) \text{ as a } U(\mathfrak{g})\text{-module.}$$

$$= \phi(1 \otimes (b \curvearrowright v)) \quad \text{since } \mathbb{C}_{\lambda} \text{ is a \mathfrak{b}-module and the tensor is over } U(\mathfrak{b})$$

$$\coloneqq (z \mapsto \phi(1 \otimes z))(b \curvearrowright v)$$

$$\coloneqq F\phi(b \curvearrowright v).$$

To see that G is well-defined, let $\psi: C_{\lambda} \to M$ be fixed; we will show that the set map $G\psi: U(\mathfrak{g}) \otimes C_{\lambda} \to M$ is $U(\mathfrak{g})$ -linear. Let $u \in U(\mathfrak{g})$, then

```
\begin{split} u \curvearrowright G \psi(g \otimes v) &\coloneqq u \curvearrowright (g \otimes v \mapsto g \curvearrowright \psi(v))(g \otimes v) \\ &\coloneqq u \curvearrowright (g \curvearrowright \psi(v)) \\ &= (ug) \curvearrowright \psi(v) \quad \text{since $M$ is a $\mathfrak{g}$-module with a well-defined action.} \\ &\coloneqq (g \otimes v \mapsto g \curvearrowright \psi(v))(ug \otimes v) \\ &\coloneqq G \psi(ug \otimes v). \end{split}
```

To see that FG is the identity, let ϕ be defined as above and fix $g_0 \otimes v_0 \in U(\mathfrak{g}) \otimes \mathbb{C}_{\lambda}$. Then

$$GF\phi(g_0\otimes v_0)=G(v\mapsto\phi(1\otimes v))(g_0\otimes v_0)$$

$$\coloneqq G(f) \quad \text{for notational convenience}$$

$$\coloneqq G(g\otimes v\mapsto g\curvearrowright f(v))(g_0\otimes v_0)$$

$$=g_0\curvearrowright f(v_0)$$

$$=g_0\curvearrowright\phi(1\otimes v_0)$$

$$=\phi(g\curvearrowright(1\otimes v_0)) \quad \text{since } g_0\in\mathfrak{g} \text{ and } \phi \text{ thus commutes with the } \mathfrak{g}\text{-action by definition}$$

$$=\phi(g_0\curvearrowright 1\otimes v_0) \quad \text{by definition of the action on } U(\mathfrak{g})\otimes C_\lambda \text{ as a } U(\mathfrak{g}) \text{ module} \qquad \coloneqq \phi(g_0$$

To see that $GF := G \circ F$ is the identity, let ψ be defined as above and fix $z_0 \in \mathbb{C}_{\lambda}$. Then

$$FG\psi(z_0) = F(g \otimes v \to g \curvearrowright \psi(v))(z_0)$$

$$\coloneqq F(\lambda)(z_0) \quad \text{for notational convenience}$$

$$= (v \mapsto \lambda(1 \otimes v))(z_0)$$

$$= \lambda(1 \otimes z_0)$$

$$\coloneqq 1 \curvearrowright \psi(z_0)$$

$$= \psi(z_0).$$