

$f_{1}^{#2}$	0	0	0	$-\frac{2}{3}$ Ikt ₃	$\frac{1}{3}$ I $\sqrt{2}$ kt	0	$\frac{2k^2t_3}{3}$
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}$	$\frac{\sqrt{2}t_2}{3}$	2 2	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_{1^{+}\alpha\beta}^{\#1}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_{z}$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

$\sigma_{0}^{\#1} + \frac{1}{(1+2k^{2})^{2}t_{3}} - \frac{i\sqrt{2}k}{(1+2k^{2})^{2}t_{3}} 0 0$ $\tau_{0}^{\#1} + \frac{i\sqrt{2}k}{(1+2k^{2})^{2}t_{3}} - \frac{2k^{2}}{(1+2k^{2})^{2}t_{3}} 0 0$ $\tau_{0}^{\#2} + \frac{0}{0} 0 0 0$ $\sigma_{0}^{\#1} + \frac{0}{0} 0 0 0$		$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\tau_{0+}^{*+} \uparrow \qquad $	$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$		0	0
#1.	$\tau_{0}^{\#1}$ †			0	0
$\sigma_{0}^{\#1} + 0 \qquad 0 \qquad 0 \qquad \frac{1}{k^2 r_2 + t_2}$	$ au_{0}^{\#2} \dagger$	0	0	0	0
	$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints						
SO(3) irreps	#					
r#2 == 0	1	듔				+ t2
$\sigma_{0+}^{\#1} - 2 ik\sigma_{0+}^{\#1} == 0$	1	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3	f#2 0+	0	0	0	0
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3		kt3	'n		
$\tau_{1+}^{\#1}{}^{\alpha\beta} + \bar{\imath} k \sigma_{1+}^{\#1}{}^{\alpha\beta} = 0$	3	$f_{0}^{\#1}$	$-i \sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$	3		ļ-			
$\tau_{2+}^{\#1\alpha\beta} == 0$	5	$\omega_{0}^{\#1}$	<i>t</i> ₃	$\sqrt{2} kt_3$	0	0
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5		+	† <u>į</u>	+	+
Гotal #:	24		$\omega_{0}^{\#1}$	$f_0^{\#1}$	$f_{0}^{#2}$	$\omega_{0}^{\#1}$

	$\omega_2^{\#1}{}_+ \alpha eta$	0	0	0			
		$\omega_2^{\#1} +^{lphaeta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{#1} + ^{\alpha \beta \chi}$	_		
D	0 $k^2 r_2 + t_2$						
•	0		$^{\prime\prime}_{2}^{1}_{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$	
>	0	Ţ	$^{#1}_{2}^{#1}$ $\sigma_{2}^{#1}$ $\alpha_{\beta\chi}$	0	0	0	

 $\sigma_{2}^{\#1}$

0

 $\tau_2^{\#1} + ^{\alpha\beta}$

0

 $\sigma_2^{\#1} +^{\alpha\beta\chi}$

0

 $\sigma_2^{\#1} +^{\alpha\beta}$

 $k^2 r_1$

0

0

0

 $\omega_{2^{-}}^{\#1}$

 $f_{2}^{\#1}$

0

0

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$
