INTRODUCCIÓN A LA PROGRAMACIÓN

ING. GIANKARIS G. MORENO R., M.SC

INTRODUCCIÓN A LA PROGRAMACIÓN

- Las computadoras son herramientas esenciales en casi todos los campos de nuestra vida.
- Una computadora sin un programa, sin instrucciones, es virtualmente inútil.
- Los lenguajes de programación nos permiten escribir esos programas, haciendo posible la comunicación con las computadoras.

ALGORITMO

Un algoritmo puede definirse como una técnica de solución de problemas, que consiste en una serie de instrucciones paso a paso, que produce resultados específicos para un problema determinado.

PROGRAMA

Es una secuencia lógica de instrucciones escritas en un determinado lenguaje de programación, que establece las operaciones que van a ser realizadas por la computadora.

```
require
renderer
Soptions
$module
$topmenu
                 false; $subnav = false;
ain Menu
if ($default_menu_style == 1 or $default_menu_style= 2
                          "menutype=fmenu name\nshowAllChildren=1\nclass et-
          $menuclass = 'horiznav'
          $topmenuclass - top menu'
 elseif ($default menu style = 3 or $default menu style 4
                                        Smodule, toptions
          $topmenu = $renderer-
          $menuclass = 'horiznav d'
          $topmenuclass = 'top menu d'
SPLIT MENU NO SUBS
 elseif ($default menu style
```

- Los paradigmas de programación son estilos de desarrollo de programas.
 Es decir, son modelo para resolver problemas computacionales.
- Entre ellos podemos mencionar:
 - Programación Estructurada
 - Programación Orientada a Objetos
 - Programación Orientada a Eventos

Programación Estructurada:

- Es un paradigma de programación orientado a mejorar la claridad, calidad y tiempo de desarrollo de un programa.
- Se fundamenta en la utilización de las tres estructuras básicas de control: secuencia, selección (alternativas) e iteración (ciclos).
- Luego incorpora la segmentación, que no es más que programar utilizando funciones.

Programación Orientada a Objetos (POO):

- Es un paradigma de programación que utiliza objetos como bloque esencial de construcción.
- El objeto es una unidad que contiene datos y las funciones que operan sobre esos datos.
- sobre esos datos
- La POO tiene cuatro pilares: abstracción, encapsulamiento, herencia y polimorfismo.

Programación Orientada a Eventos:

- Es un paradigma de programación en el que tanto la estructura como la ejecución del programa depende de la ocurrencia de un suceso por lo general definido por el usuario.
- El flujo del programa en este caso es dirigido por el usuario.

ETAPAS PARA LA RESOLUCIÓN DE PROBLEMAS POR COMPUTADORA

I. DEFINICIÓN DEL PROBLEMA

- Es la descripción en forma narrativa o esquemática de modo claro y concreto en un lenguaje corriente el problema que ha de resolverse.
- En pocas palabras, no es más que el enunciado del problema.
- Ejemplo:

Elabore un programa que lea dos lados de un triángulo y calcule e imprima la hipotenusa del triángulo. La fórmula para calcular la hipotenusa es: $H=\sqrt{a^2+b^2}$

2. ANÁLISIS Y DISEÑO DEL PROBLEMA

- Consiste en identificar y describir los elementos en el dominio del problema.
 - ¿Qué datos de entrada me proporciona el problema?
 - ¿Cuál es la salida del problema?
 - ¿Qué procesos debo realizar para obtener la salida?

Entrada

Proceso

Salida

2.ANÁLISIS Y DISEÑO DEL PROBLEMA

Análisis y Diseño								
Entradas	Proceso	Salida						
(escribir de manera narrativa las entradas. Colocar el valor numérico cuando es una constante)	(escribir de manera narrativa el proceso)	(escribir de manera narrativa la salida)						

Ejemplo:

Análisis y Diseño								
Entradas	Proceso	Salida						
ladoA ladoB	Calcular la hipotenusa $H = \sqrt{ladoA^2 + ladoB^2}$	Н						

3. PROGRAMACIÓN

- Esta etapa consiste en escribir un programa para resolver un problema, hacerlo correctamente no es sólo redactar código en un lenguaje de programación específico.
- La correcta ejecución de esta etapa implica seleccionar una técnica que permita tener una visión más clara y detallada de los pasos lógicos a seguir, como por ejemplo:
 - Algoritmo
 - Codificación
 - Prueba de escritorio
 - Compilación
 - Ejecución

3.I.ALGORITMO

- Los algoritmos permiten esquematizar los pasos a seguir usando un lenguaje de especificaciones llamado pseudocódigo.
- Desarrollar software sin un buen algoritmo es como construir una casa sin los planos necesarios. Los resultados podrían ser catastróficos.
- Ejemplo: Algoritmo escrito en lenguaje natural (hipotenusa)
 - Paso I: Solicitar al usuario los dos lados del triángulo (ladoA y ladoB)
 - Paso 2: Calcular la hipotenusa ($H = \sqrt{ladoA^2 + ladoB^2}$)
 - Paso 3: Desplegar en pantalla el valor de la hipotenusa (H)

3.2. PRUEBA DE ESCRITORIO

- Consiste en examinar la solución exhaustivamente con el fin que produzca los resultados deseados; al mismo tiempo, podemos con la prueba detectar, localizar y eliminar errores.
- Debemos considerar varias posibilidades de valores de entrada para garantizar que éstos produzcan siempre un resultado correcto.

tantes moria	Variables en memoria					Pantalla	
	varl	var2	var3				

3.3. CODIFICACIÓN

- La codificación implica la transcripción del algoritmo resultante a un lenguaje de programación.
- Al resultado de la codificación se le denomina Programa Fuente o Código Fuente.
- Ejemplo de codificación en el lenguaje C:

```
//nombre del archivo que contiene este programa:
ProgH.c
  #include <math.h>
  #include <iostream.h>
  #include <conio.h>
  void main()
      float a, b;
     float H;
      clrscr();
//Paso 1
      cout << "Entrar el valor de a : ":
      cin>> a:
      cout << "Entrar el valor de b : ":
      cin>> b:
//Paso 2
       H=sqrt (pow(cat1,2) + pow (cat2, 2));
//Paso 3
      cout<<"Hipotenusa es = "<< H;
      getch();
```

3.4. COMPILACIÓN

- Una vez que el algoritmo ha sido convertido a un programa fuente, es preciso introducirlo a la máquina. Luego, el programa debe ser compilado o traducido al programa objeto.
- Esta tarea la ejecuta un software que da el fabricante, llamado compilador.

 Si tras la compilación se presentan errores (de sintaxis) en el programa fuente, éstos se deben corregir y proceder a compilar otra vez el programa.

3.4. COMPILACIÓN – TIPOS DE ERRORES

Errores de Compilación

Son errores sintácticos, es decir que algo está mal escrito o hay una instrucción incompleta. Si existe un error de sintaxis, la computadora no puede comprender la instrucción, no se obtendrá el programa objeto y el compilador imprime una lista de todos los errores encontrados durante la compilación.

Errores de Ejecución

 Estos errores se producen por instrucciones que la computadora puede comprender pero no ejecutar, ejemplo: la división por cero, o calcular raíces cuadradas de número negativos.

Errores Lógicos

 Ocurren cuando el programa se ejecuta pero los resultados no son correctos. Son los más difíciles de detectar.

3.5. EJECUCIÓN

- La ejecución de un programa consiste en que el computador procese cada una de las instrucciones del programa.
- Al ejecutarse el programa debe hacerse con una amplia variedad de datos de entrada, llamados datos de prueba, que determinarán si el programa tiene errores.

3.6. DOCUMENTACIÓN

- Consiste en describir los pasos a dar en el proceso de resolución de un problema.
- Programas pobremente documentados son difíciles de leer, más difíciles de depurar y casi imposibles de mantener y modificar.
- La documentación de un programa se hace a través de las líneas de comentarios, y se incluyen tantas como sean necesarias para aclarar o explicar el significado de las líneas de código.
- Ejemplo de comentarios en el lenguaje C:

```
//Esto es un comentario
/* Para escribir en varias
líneas hay que hacerlo así */
```


¿PREGUNTAS?