Zhen Zhang

Email: zhen_zhang1@brown.edu Website: https://zzhang222.github.io Mobile: $+1\ 401-712-1299$

Programming Skills

• Machine learning: PyTorch, Tensorflow, Scikit-learn, XGBoost, LightGBM

• Programming: Python, MATLAB, Linux command, LaTeX, SQL.

EDUCATION

Brown University	Sep 2018 - Now
• Ph.D. in Applied Mathematics; Advisor: Prof. George Em Karniadakis	GPA: 4.00/4.00
• City University of Hong Kong • Major in Computing Mathematics; Advisor: Prof. Ding-Xuan Zhou; Minor in CS	Sep 2014 – Jun 2018 <i>GPA:</i> 4.08/4.30
Scholarships and Awards	

Fellowship for graduate students, Division of Applied Mathematics, Brown University Sep 2018 HKSAR government scholarship (top 2% in university), HKSAR Sep 2016, Sep 2017

EXPERIENCES

Graduate research work

Brown University

Supervisor: Dr. George Em Karniadakis, Dr. Guang Lin, Dr. Yeonjong Shin

Sep 2019 - now

- Conduct research on structure-preserving neural networks utilizing prior physical knowledges. Responsible for the idea formulation, proof of universal approximation theorems and simulations (using PyTorch).
- o Develop symplectic neural networks (SympNets) for the prediction of time series which exhibit conservative properties. The prediction MSE is decreased by 90% over the SOTA method Hamiltonian neural network on the three-body benchmark task.
- Apply SympNets to the simultaneous optimal path planning problem of 256 agents (continuous in space). Optimize the algorithm to reduce the training time from 8 to 1.5 hours.
- o Develop Poisson neural networks as a generalization of SympNet, which allows training data to be written in arbitrary coordinates. Establish universal approximation theorems and propose the prediction of a nonlinear Schrödinger equation as a new benchmark.
- Develop GENERIC formalsim informed neural networks for the prediction of time series which exhibit dissipative properties. The prediction MSE is decreased by one order of magnitude over the existing methods.

Summer research internship

UTK/ORNL

Supervisor: Dr. Kwai Wong, Dr. Cheng Liu, Dr. Lonnie Crosby

May 2016 - Aug 2016

- Receive training on high performance computing (HPC) in Oak Ridge National Laboratory
- Propose a parallel version of a dasymetric mapping algorithm in GIS and implemented it in MPI. The new method can incoporate multi-scale demographic datasets and improve running efficiency. The overall running speed is increased by 15 times when 16 processes are utilized.

Publications

* indicates equal contribution or alphabetical order.

Journals:

- 1. Pengzhan Jin*, Zhen Zhang*, Aiqing Zhu, Yifa Tang and George Em Karniadakis. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Networks 132. 166-179 (2020)
- 2. Sheng Zhang*, Joan Ponce*, **Zhen Zhang***, Guang Lin and George, Karniadakis. An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Comput Biol 17(9)
- 3. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Zhen Zhang, Guang Lin and George Em Karniadakis. Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nature Computational Science (2021)
- 4. Zhen Zhang, Yeonjong Shin and George Em Karniadakis. GFINNs: GENERIC Formalism Informed Neural Networks for Deterministic and Stochastic Dynamical Systems. (Accepted by Philos. Trans. R. Soc. A)

- 5. Pengzhan Jin, **Zhen Zhang**, Yannis Kevrekidis and George Em Karniadakis. Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks. (Accepted by *IEEE TNNLS*)
- 6. Tingwei Meng*, **Zhen Zhang***, Jerome Darbon and George Em Karniadakis. SympOCnet: Solving optimal control problems with applications to high-dimensional multi-agent path planning problems. (Submitted to SISC)

Book chapters:

1. Mitchell Daneker, **Zhen Zhang**, George Em Karniadakis, Lu Lu. System biology informed neural network. (Under review, invited by book series *Methods in Molecular Biology*)

INVITED TALKS

NUMDIFF-16

Halle, Germany

SympNet & PNN: structure-preserving networks for identifying Hamiltonian & Poisson systems.

Sep 2021

OTHER SERVICES

• Reviewer: JCP, CMAME

Teaching assistant: APMA 1170, Brown University: Introduction to Computational Linear Algebra (Fall 2019)
 APMA 1660, Brown University: Statistical Inference II (Spring 2020)