Practice Test 2

- 1) Consider the following static systems. [10 pts each]
- a. Pulley system shown with hanging mass M=10 kg. Determine $T_1,\,T_2,\,T_3,\,T_4,\,T_5,\,T_6.$

b. Mass M hanging from wires, one horizontal and one at angle θ with the ceiling. Determine the tension in the each wire as a function of θ , g and M.

2) Consider the following kinetic systems. [10 pts each]
a. Three blocks $m_1 = 1 \text{kg}$, $m_2 = 2 \text{kg}$ and $m_3 = 3 \text{kg}$ have a 12 Newton force applied to them. They slide across a frictionless surface.
Draw a free body diagram for each mass and determine the magnitude of each force on each mass.
b. A modified Atwood's machine with masses m_1 , m_2 and m_3 is shown.
b. A modified Atwood's machine with masses m_1 , m_2 and m_3 is shown. Determine the tensions T_1 and T_2 and the acceleration a in terms of m_1 , m_2 , m_3 and g .

3) 1-D Collisions. [20 pts]

A 5kg block moving at 4m/s to the right strikes a 1kg block moving at 10m/s to the left.

Determine the final velocities if the masses collide inelastically.

Determine the final velocities if the masses collide elastically.

Determine the final velocities if the masses collide super-elastically and double the system's KE in the collision.

4) Consider a ramp of variable angle θ and friction coefficients $\mu_s=0.2$ and $\mu_k=0.1$.

Determine the range of angles for which:

- objects will slide up the ramp and slide back down
- objects will slide up the ramp and stop
- moving objects will slide down the ramp without stopping
- moving objects will stop while sliding down the ramp

5) A block, mass m=1 kg, slides from the top of a sphere, radius r=10 meter beginning from a speed $v_0=2$ meters per second.

Determine the height at which the block loses contact with the sphere.