The MAL Instruction Set

I	Format	Effect	Notes
la	R, label	R ← label	M[i] = contents of the (aligned)
li	R, constant	R ← constant	word of memory beginning at location i.
lw	R, address	$R \leftarrow M[address]$	• m[i] i= contents of the byte of memory at location i.
lb	R, address	$R \leftarrow (m[address]_7)^{24} \parallel m[address]$	The memory address can take several forms:
lbu	R, address	$R \leftarrow 0^{24} \parallel m[address]$	 label – absolute address
sw	R, address	$R \rightarrow M[address]$	- (R _b) - base address
sb	R, address	$[R]_{70} \rightarrow m[address]$	- I (R _b) – base displacement
add	D, S ₁ , S ₂	$D \leftarrow S_1 + S_2$	D specifies a general register
sub	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 - S_2$	where the result is placed.
mul	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 * S_2$	where the result is placed.
div	D, S_1 , S_2 D, S_1 , S_2	$D \leftarrow S_1 / S_2$ (integer division)	• S ₁ is the contents of a general register.
rem	D, S_1 , S_2 D, S_1 , S_2	$D \leftarrow S_1 \% S_2$ (integer division) $D \leftarrow S_1 \% S_2$ (remainder)	of is the contents of a general register.
and	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 \text{ AND } S_2$	• S ₂ can be either the contents of a
	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 ARU S_2$ $D \leftarrow S_1 OR S_2$	general register or a constant.
or	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 \text{XOR} S_2$	general register of a constant.
xor	D, S_1, S_2 D, S_1, S_2	$D \leftarrow S_1 \text{ NOR } S_2$ $D \leftarrow S_1 \text{ NOR } S_2$	• If S ₁ is not present, then S ₁ is the same as D.
nor	D, S_1, S_2 D, S_1	$D \leftarrow S_1 \text{ NOR } S_2$ $D \leftarrow \text{NOT } S_1$	If S ₁ is not present, then S ₁ is the same as D.
not	D, S_1 D, S_2	$D \leftarrow NOTS_1$ $D \leftarrow S_2$	
move			AMT may be either a general register or a constant.
sll	R_d , R_t , AMT	$R_{d} \leftarrow [R_{t}]_{31-AMT0} \parallel 0^{AMT}$	 AM1 may be either a general register or a constant. 0 ≤ AMT < 32.
srl	R_d , R_t , AMT	$R_d \leftarrow 0^{AMT} \parallel [R_t]_{31AMT}$	$\bigcup \subseteq AIVI1 \subseteq 32.$
sra -	R _d , R _t , AMT	$R_{d} \leftarrow ([R_{t}]_{31})^{AMT} \parallel [R_{t}]_{31AMT}$	E and if it a Classic and it
1.s	F, address	$F \leftarrow M[address]$	F specifies a floating point register
s.s	F, address	$F \leftarrow M[address]$	where the result is placed.
li.s	F, constant	$F \leftarrow constant$	
mov.s	F, F_1	$F \leftarrow F_1$	W specifies a floating point register
add.s	F, F_1, F_2	$D \leftarrow F_1 + F_2$	whose content is to be interpreted as
sub.s	F, F_1, F_2	$D \leftarrow F_1 - F_2$	a two's compliment integer.
mul.s	F, F_1, F_2	$D \leftarrow F_1 * F_2$	
div.s	F, F_1, F_2	$D \leftarrow F_1 / F_2$	• F ₁ , F ₂ , and G each specify a floating point
cvt.s.w	G, W	$G \leftarrow W$	register whose content is to be interpreted
cvt.w.s	W, G	$W \leftarrow G$	as a single-precision floating point number.
mfc0	R, C	$R \leftarrow C$	R is a general register.
mtc0	R, C	$R \to C$	• F is a floating point register.
mfc1	R, F	$R \leftarrow F$	C is a control register.
mtc1	R, F	$R \to F$	
b	label	PC ← label	General Notes
beq	R _s , R _t , label	if $(R_s = R_t)$, then $PC \leftarrow label$	(1) R, R _b , R _d , and R _t are the contents of a
bne	R _s , R _t , label	if $(R_s \neq R_t)$, then $PC \leftarrow label$	general register.
blt	R _s , R _t , label	if $(R_s < R_t)$, then $PC \leftarrow label$	(2) (parallel) indicates concatenation of bit fields.
bgt	R _s , R _t , label	if $(R_s > R_t)$, then $PC \leftarrow label$	(3) Superscripts indicate repetitions of a binary value.
ble	R _s , R _t , label	if $(R_s \leq R_t)$, then $PC \leftarrow label$	(4) Subscripts indicate bit positions (Little-Endian) of
bge	R _s , R _t , label	if $(R_s = R_t)$, then $PC \leftarrow label$	sub-field.
bltz	R, label	if $(R_s < 0)$, then $PC \leftarrow label$	
bgtz	R, label	if $(R_s > 0)$, then $PC \leftarrow label$	Adapted from:
blez	R, label	if $(R_s \le 0)$, then $PC \leftarrow label$	Goodman, James, and Karen Miller.
bgez	R, label	if $(R_s \ge 0)$, then $PC \leftarrow label$	A Programmer's View of Computer Architecture.
bnez	R, label	if $(R_s \neq 0)$, then $PC \leftarrow label$	New York: Oxford UP, Incorporated, 1993. 390-91.
beqz	R, label	if $(R_s = 0)$, then $PC \leftarrow label$	Layout by Joe Kohlmann
j	address	PC ← address	Address may be a label or a register.
jr	R	$PC \leftarrow R$	radicus may be a moor or a register.
	address	$R_{31} \leftarrow PC + 4$; $PC \leftarrow address$	
jal jalr	R _d , R _s	$R_d \leftarrow PC + 4$; $PC \leftarrow R_s$	
_	R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S may be either a general register or a label.
getc	R R	$R \leftarrow 0^{24} \parallel \text{input}_{70}$ $R_{70} \rightarrow \text{output}$	 If S is a general register, effective address is
putc			
puts	S	Print string beginning at effective address	contents of S; if S is a label, effective address is S.

ECE 354 Fall 2008