

Nch 650V/9A Super Junction Power MOSFET

V _{DSS}	650V
$R_{DS(on)}(Max.)$	0.68Ω
I_D	9A
P _D	48W

Outline

FEATURES

- ◆ Low on-resistance
- Fast switching speed
- lack Gate-source voltage (V_{GSS}) guaranteed to be ± 20 V
- Drive circuits can be simple
- Parallel use is easy
- Pb-free lead plating; RoHs compliant

Inner circuit

Application

Switching Power Supply

Packaging specificationa

	Packaging	Bulk
	Reel size (mm)	-
Tuna	Tape width (mm)	-
Туре	Basic ordering unit (pcs)	1000
	Taping code	-
	Marking	CMS6509A

ORDERING INFORMATION

Part Number	Temperature Range	Package
CMS6509AENX	-55°ℂ to 150°ℂ	TO-220FP

*Note:

AE*Series

N*:N-ch Mosfet

X*TO-220FP

Nch 650V/9A Super Junction Power MOSFET

ABSOLUTE MAXIMUM RATINGS (Ta=25℃)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	650	V
Continuous drain current	Tc=25°C	*1 I _D	±9	Α
Continuous drain current	Tc=100°C	I _D *1	±4.9	Α
Pulsed drain current		I _{D, pulse} *2	±27	Α
Gate-Source Voltage		V _{GSS}	±20	V
Avalanche energy, single pulse		E _{AS} *3	153	mJ
Avalanche energy, repetitive	Avalanche energy, repetitive		0.23	mJ
Avalanche current, repetitive		I _{AR}	1.4	Α
Power Dissipation (Tc=25°C)	Power Dissipation (Tc=25°C)		48	W
Junction temperature		T _J	150	$^{\circ}\!\mathbb{C}$
Range of storage temperature		T _{stg}	-55 to +150	$^{\circ}\mathbb{C}$
Reverse diode dv/dt		Dv/dt *4	15	V/ns
Drain-Source Voltage Slope	V _{DS} =480V ; Tj=25℃	Dv/dt	50	V/ns

THERMAL RESISTANCE

Parameter	Symbol		Unit			
Parameter	Symbol	Min.	Тур.	Max.	Onit	
Thermal resistance , junction-case	R _{thJC}	-	-	2.6	°C/W	
Thermal resistance , junction-ambient	R _{thJA}	-	-	70	°C/W	
Soldering temperature , wavesoldering for 10s	T _{sold}	-	-	265	$^{\circ}\!\mathbb{C}$	

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Parameter	Combal	Conditions	Value			11!4
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250uA	650	-	-	V
		V _{DS} = 600V, V _{GS} = 0V				
Zero gate voltage drain current	I _{DSS}	T _j = 25°C	-	0.1	100	uA
		T j = 125℃	-	-	1000	
Gate-Source leakage current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA
Gate threshold voltage	V _{GS(th)}	V _{DS} = 10V, I _D = 1mA	2	-	4	V
		V _{GS} = 10V, I _D = 2.8A				
Static drain-source on-state resistance	R _{DS(on)} *5	T j = 25°C	-	0.520	0.68	Ω
		T j = 125°C	-	1.00	-	
Gate input resistance	R_{G}	F = 1MHz, open drain	-	9.6	-	Ω

Nch 650V/9A Super Junction Power MOSFET

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Downworton	Comphal	Conditions		Value		Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transconductance	G _{fs} *5	V _{DS} = 10V, I _D = 4.5A	2.2	4.4	-	S
Input capacitance	C _{iss}	V _{GS} = 0V	-	430	-	
Output capacitance	C _{oss}	V _{DS} = 25V	-	470	-	pF
Reverse transfer capacitance	C _{rss}	F = 1MHZ	-	55	-	
Effective output capacitance, energy related	C _{o(er)}	V _{GS} = 0V	-	23	-	, C
Effective output capacitance, time related	C _{o(tr)}	V _{DS} = 0V to 480V	-	100	-	pF
Turn-on delay time	T _{d(on)} *5	\(\ - 200\(\) \(\ - 10\(\)	-	25	-	
Rise time	T _r *5	$V_{DD} \sim 300 \text{V}, V_{GS} = 10 \text{V}$ $I_D = 4.5 \text{A}$	-	35	-	no
Turn-off delay time	T _{d(off)} *5	$R_L = 66.6\Omega$	-	75	-	ns
Fall time	T _f *5	$R_G = 10\Omega$	-	30	-	

GATE CHARACTERISTICS (Ta=25°C)

Parameter	Symbol	Conditions	Value			Unit
		Conditions	Min.	Тур.	Max.	Oille
Gate plateau voltage	V _(plateau)	$V_{DD} \sim 300 V$, $I_D = 9 A$	-	6.4	-	V
Total gate charge	Qg *5	2001	-	23	-	
Gate-Source charge	Q _{gs} *5	$V_{DD} \sim 300V$ $I_D = 9A$	-	4	-	nC
Gate Drain charge	Q _{gd} *5	V _{GS} = 10V	-	15	-	

*1 : Limit only by maximum temperature allowed

*2 : Pw \leq 10us, Duty cycle \leq 1%

*3 : $I_D = 1.4A$, $V_{DD} = 50V$

*4 : Reference measurement circuits Fig.5-1

*5: Pulsed

Nch 650V/9A Super Junction Power MOSFET

BODY DIODE ELECTRICAL CHARACTERISTICS (Source-Drain) (Ta=25°C)

Parameter	Symbol	Symbol Conditions	Value			Unit
	Symbol	Conditions	Min.	Тур.	Max.	Offic
Inverse diode continuous, forward current	I _S *1	- Tc=25℃	-	-	9	Α
Inverse diode direct current, pulsed	I _{sM} *2	10-25	-	ı	27	А
Forward Voltage	V _{SD} *5	V _{GS} = 0V, I _S = 9A	-	-	1.5	V
Reverse recovery time	T _{rr} *5		-	380	ı	ns
Reverse recovery charge	Q _{rr} *5	$I_S = 9A$ Di/dt = 100A/us	-	3.8	-	uC
Peak reverse recovery current	I _{rrm} *5		-	20	-	Α

TYPICAL TRANSIENT THERMAL CHARACTERISTICS

Symbol	Value	Unit
R _{th1}	0.344	
R _{th2}	1.15	K/W
R _{th3}	2.2	
C _{th1}	0.00137	
C _{th2}	0.0145	Ws/K
C _{th3}	0.451	

Application Circuit

Nch 650V/9A Super Junction Power MOSFET

Electrical characteristic curves

Fig.1 Power Dissipation Derating Curve

Junction Temperature : T_i [°C]

Fig.2 Maximum Safe Operating Area

Drain - Source Voltage : V_{DS} [V]

Pulse Width: Pw [s]

vs Junction Temperature 120 Avalanche Energy : E_{AS} / E_{AS} max. [%] 100 80 60

40

20

0

0

25

50

Fig.4 Avalanche Energy Derating Curve

Junction Temperature : T_i [°C]

100

125

150

175

75

Nch 650V/9A Super Junction Power MOSFET

Drain Current : I_D [A]

Drain Current: I_D[A]

Electrical characteristic curves

Fig.5 Typical Output Characteristics(I)

Drain - Source Voltage: VDS [V]

9

Fig.6 Typical Output Characteristics(II)

Drain - Source Voltage : V_{DS} [V]

Fig.7 T_i = 150°C Typical Output

Drain - Source Voltage : V_{DS} [V]

Fig.8 T_i = 150°C Typical Output Characteristics(II)

Drain - Source Voltage : V_{DS} [V]

Electrical characteristic curves

Fig. 10 Typical Transfer Characteristics

Gate - Source Voltage : V_{GS} [V]

Gate Threshold Voltage: V_{GS(th)} [V] 3.5 3.0 2.5 2.0 -25 0 25 50 75 100 125 150 -50

Junction Temperature : T_i [°C]

Fig.12 Transconductance vs. Drain Current

Drain Current : In [A]

Nch 650V/9A Super Junction Power MOSFET

Electrical characteristic curves

Fig.13 Static Drain - Source On - State

Gate - Source Voltage : V_{GS} [V]

Fig.14 Static Drain - Source On - State Resistance vs. Junction Temperature

Junction Temperature : T_i [°C]

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current

Fig.16 Static Drain - Source On - State Resistance vs. Drain Current

Drain Current : I_D [A]

●Electrical characteristic curves

Fig.17 Typical Capacitance

vs. Drain - Source Voltage 10000 1000 Capacitance : C [pF] 100 10 =25°C 1MHz = 0V0.01 0.1 1 10 100 1000

Drain - Source Voltage : V_{DS} [V]

Fig.18 Coss Stored Energy

Drain - Source Voltage : VDS [V]

400

600

200

Fig.19 Switching Characteristics

Drain Current : ID [A]

1

0

Fig.20 Dynamic Input Characteristics

Total Gate Charge : Q_a [nC]

Electrical characteristic curves

Fig.21 Inverse Diode Forward Current vs. Source - Drain Voltage

Source - Drain Voltage : V_{SD} [V]

Fig.22 Reverse Recovery Time vs.Inverse Diode Forward Current

Inverse Diode Forward Current: Is [A]

Nch 650V/9A Super Junction Power MOSFET

Dimension	Millim	eters	Dimension	Milli	meters
Diffiension	Min.	Max.	Difficusion	Min.	Max.
А	4.68	4.73	Е	9.95	10.22
A1	2.45	2.55	е	5.0	08 Ref
A2	2.80	2.90	L	9.45	10.65
A3	0.60	0.75	L1	2.79	3.30
b	0.75	0.85	L2	15.60	16.00
b1	1.33	1.40	Q	3.20	3.40
С	0.45	0.55	Q1	6.90	7.10
D	15.8	16.0	Р	3.5 Ref	
D1	6.67	6.77			

Nch 650V/9A Super Junction Power MOSFET

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan

T E L: +886-3-567 9979 F A X: +886-3-567 9909 http://www.champion-micro.com

Sales & Marketing

21F., No. 96, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 22102, Taiwan R.O.C

T E L: +886-2-2696 3558 F A X: +886-2-2696 3559