Eigenschaften

- Lösung finden durch iterative Verbesserungen
 - Aktion wird ausgeführt, welche kurzfristig größte Verbesserung liefert
- schnelle Implementation
- lösen Probleme gut aber nicht optimal
 - lokales Optimum
- gute Laufzeit
 - anstatt exponentieller Laufzeit womöglich polynomiell
- Voraussetzungen
 - Lösungen lassen sich bewerten (Gewinnmaß)
 - kontinuierliche Verbesserung einfach berechenbar

Traveling Salesman Problem

- · Gegeben:
 - Graph G mit Knoten V={1,...,n}

(n Städte)

- Kanten $E \subseteq \{(i,j)|i \neq j \text{ und } i,j \in V\}$

(Verbindungen zwischen Städten)

− Kantengewichte $c_{i,j} > 0$ für alle $(i,j) \in E$

(Kosten der Reise von i nach j)

- Gesucht:
 - Rundreise die die Summe der Kantengewichte minimiert.
 - Eine Rundreise ist ein Kreis durch den Graphen der jeden Knoten genau ein mal besucht.
 - North

 Sea Navariant Right Rostock

 Bremer Herrich Hamburg

 Finden

 Hannove

 Magdeburg

 Leipzig

 Dusberg

 Kolin

 BELL

 Wiesbaden

 Am Main

 CZECH

 REPUBLIC

 Aufuncheim

 Limberg

 Stuffgert

 FRANCE

 Republic

 Aufuncheim

 Limberg

 Stuffgert

 Aufuncheim

 Limberg

 Aufuncheim

 Lim

- Maß für Güte der Lösung: Länge der Reise
- Gieriger Algorithmus:
 - Beginne mit beliebiger Rundreise R
 - Solange eine Verbesserung gefunden wird
 - Für alle Subpfade (a,b,c,d) in R
 - Wenn Länge(a,c,b,d)<Länge(a,b,c,d)
 - » Vertausche b und c im Pfad R
 - » Verbesserung gefunden

Lokales Optimum, Verbesserung mög