Théorie de Lie et Représentations I

Pablo Sánchez Ocal 30 septembre 2015

Table des matières

1	Introduction	3
2	Algèbres et leurs représentations	3
3	Algèbres de Lie et leurs représentations	5
4	Algèbres de Lie résolubles et nilpotentes	8

1 Introduction

Pour étudier la **Théorie de Lie** et la **Théorie des Représentations**, on adopterai un point de vue historique en Théorie de Groupes. Galois va voire les groupes comme permutations des racines d'un polynôme.

Ici pour G un groupe, la question c'est l'étude des morphismes de groupes :

$$\rho: G \longrightarrow \mathrm{GL}(V), \tag{1}$$

sent V un espace vectoriel. Alors, à (ρ, V) on dit une représentation de G. Ceci est étudié par la Théorie des Représentations.

On a une double motivation, celle ci pour obtenir information sur G, et une deuxième le fet que les représentations sont un sujet central en science.

Exemple 1. L'exemple fondamental c'est celui de la Physique Quantique : un système quantique n'est que :

$$\rho: A \longrightarrow \operatorname{End}(V) \tag{2}$$

un morphisme d'algèbres, sent A l'algèbre des ensembles et V l'espace des états.

La théorie "varie" (dans le sense que les techniques mathématiques sont différentes) si on parle de groupes, algèbres, corps... En particulier, quelques cas intéressants sont :

- groupes finis, discrets, de Lie et semblants,
- algèbres de dimension finie,
- algèbres de Lie,
- algèbres de Kac-Moody,
- groupes quantiques.

On traitera les trois dernières pendant ce cours, laissent les deux dernières comme exemples pour la deuxième partie.

2 Algèbres et leurs représentations

On fixe \mathbb{K} un corps. On suppose connu le concepte d'A une \mathbb{K} algèbre $(A,+,\times,\cdot)^1$.

Exemple 2. Soit V un \mathbb{K} espace vectoriel, $A = \operatorname{End}_{\mathbb{K}}(V)$ est une algèbre.

Pour A, B des \mathbb{K} algèbres, on a que $f: A \to B$ est un morphisme d'algèbres si f est \mathbb{K} linéaire et multiplicative.

Définition 1. Soit A une \mathbb{K} algèbre. Une représentation de A est un couple (ρ, V) où V es un \mathbb{K} espace vectoriel et $\rho: A \to \operatorname{End}_{\mathbb{K}}(V)$ est un morphisme de \mathbb{K} algèbres. En ce cas, on dit aussi que V est muni d'une structure de A module.

Exemple 3. 1. Tout espace vectoriel V est un $\operatorname{End}_{\mathbb{K}}(V)$ module, avec $\rho = Id$.

2. Soit A une K algèbre. Alors {0} est le module trivial.

^{1.} Ici \times note la multiplication entre elements de A et \cdot la multiplication par elements de \mathbb{K} .

3. Soit $\mathbb{K} = \mathbb{C}$, prenons $q \in \mathbb{C}^*$ un élément qui n'est pas une racine de 1. Soit A l'algèbre définie par générateurs E, F, K, K^{-1} et rélations :

$$KE = q^2 E K, \quad KF = q^{-2} F K, \quad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$
 (3)

Soit $m \ge 0$ et:

$$V_m = \mathbb{C}v_0 \oplus \mathbb{C}v_1 \oplus \cdots \oplus \mathbb{C}v_m. \tag{4}$$

Alors V_m à une structure de A module définie par :

$$\begin{cases} \rho(K) \cdot v_p = q^{m-2p} v_p \\ \rho(E) \cdot v_p = [m-p+1]_q v_{p-1} & pour \ 0 \le p \le m \\ \rho(F) \cdot v_p = [p]_q v_{p+1} \end{cases}$$
 (5)

où
$$v_{-1} = v_{m+1} = 0$$
 et $[r]_q = \frac{q^r - q^{-r}}{q - q^{-1}}$ pour $r \in \mathbb{Z}$. DOUTE

Cette définition à un lien avec les représentations des groupes. Pour G un groupe et \mathbb{K} un corps, on peut associer l'algèbre $\mathbb{K}G$:

$$\mathbb{K}G = \bigoplus_{g \in G} \mathbb{K}e_g,\tag{6}$$

sent $(e_q)_{q \in G}$ une base de $\mathbb{K}G$, avec le produït :

$$e_q \times e_{q'} = e_{qq'} \tag{7}$$

pour $g, g' \in G$. Soit de plus (ρ, V) une représentation du groupe G^2 . Alors V a également une structure de $\mathbb{K}G$ module :

$$\rho' : \mathbb{K}G \longrightarrow \operatorname{End}(V)$$

$$\sum_{g \in G} \lambda_g e_g \longmapsto \sum_{g \in G} \lambda_g \rho(g)$$
(8)

En particulier, l'étude des représentations d'algèbres inclus celle de groupes.

Exemple 4. Soit $G = (\mathbb{C}, +)$ un groupe, $V = \mathbb{C}^2$ un espace vectoriel et :

$$\rho : \mathbb{C} \longrightarrow \operatorname{GL}(V) \\
\alpha \longmapsto \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \tag{9}$$

Alors (ρ, V) est une représentation de G. On a que $\mathbb{C}G = \bigoplus_{g \in G} \mathbb{C}e_g = \mathbb{C}^{(\mathbb{C})}$, et que \mathbb{C}^2 est un $\mathbb{C}^{(\mathbb{C})}$ module.

^{2.} Les groupes ont bien sûr des représentations dans un sens semblant a celui d'algèbres.

3 Algèbres de Lie et leurs représentations

Définition 2. Une algèbre de Lie $(\mathfrak{g}, +, \cdot, [-, -])$ est un \mathbb{K} espace vectoriel $(\mathfrak{g}, +, \cdot)$ muni d'un crochet de Lie :

$$[-,-] : \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}$$

$$(x,y) \longmapsto [x,y]$$

$$(10)$$

qui est unne application K bilineaire, antisymétrique et vérifie la rélation de Jacobi :

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
(11)

pour tous $x, y, z \in \mathfrak{g}$.

Définition 3. On dit que $\mathfrak{g}' \subseteq \mathfrak{g}$ est une sous algèbre de Lie de \mathfrak{g} si \mathfrak{g}' est un sous espace vectoriel stable par [-,-], c'est à dire, $[x,y] \in \mathfrak{g}'$ pour tous $x,y \in \mathfrak{g}'$.

Exemple 5. 1. (Fondamental) Soit A une algèbre. Alors A à une structure d'algèbre de Lie $(A, +, \cdot, *_A)$ en posant :

$$[x, y] = x *_{A} y - y *_{A} x \tag{12}$$

pour tous $x, y \in A$.

2. On peut définir l'algèbre de Lie d'un groupe de Lie. Soit G un groupe de Lie, c'est à dire, un varieté C^{∞} avec une structure de groupe telle que les applications :

$$*: G \times G \longrightarrow G, \quad -^{-1}: G \longrightarrow G$$
 (13)

soit C^{∞} . Pour $e \in G$ l'élement neutre, on défini $\mathfrak{g} = T_eG$ le plan tangent a G en e. Alors $\mathfrak{g} = \mathrm{Lie}(G)$ à une structure d'algèbre de Lie induite par G.

- 3. Pour \mathbb{K} un corps, considérons $M_n(\mathbb{K})$ et $sl_n(\mathbb{K}) = \{M \in M_n(\mathbb{K}) : tr(M) = 0\}$. Clairement $M_n(\mathbb{K})$ est une algèbre de Lie (qui est aussi une algèbre) et $sl_2(\mathbb{K})$ est une sous algèbre de Lie de $M_n(\mathbb{K})$ (car pour $A, B \in M_n(\mathbb{K})$ on a tr(AB-BA) = 0), mais $sl_2(\mathbb{K})$ n'est pas une sous algèbre de $M_n(\mathbb{K})$.
- 4. On défini :

$$\operatorname{sl}_2(\mathbb{C}) = \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbb{C}Y \oplus \mathbb{C}X \oplus \mathbb{C}H. \tag{14}$$

La structure d'algèbre de Lie de $sl_2(\mathbb{C})$ est déterminée par les rélations ([A, B] = AB - BA) :

$$[H, Y] = -2Y, \quad [H, X] = 2X, \quad [X, Y] = H.$$
 (15)

Définition 4. Soit \mathfrak{g} , \mathfrak{g}' algèbres de Lie. Un morphisme d'algèbres de Lie $\rho: \mathfrak{g} \to \mathfrak{g}'$ est une application linéaire telle que $\rho([x,y]) = [\rho(x), \rho(y)]$ pour tous $x, y \in \mathfrak{g}$.

Définition 5. Une représentation (ρ, V) d'une algèbre de Lie \mathfrak{g} est un espace vectoriel V muni d'une application $\rho: \mathfrak{g} \to \operatorname{End}(V)$ qui est un morphisme d'algèbres de Lie. C'est à dire, pour tous $g, g' \in \mathfrak{g}$ on a $\rho([g, g']) = \rho(g) \circ \rho(g') - \rho(g') \circ \rho(g)$.

Exemple 6. 1. (Fondamental) On dit représentation adjointe d'une algèbre de Lie g à la représentation donné par :

$$\rho : \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g}) \\
 x \longmapsto \rho(x) : \mathfrak{g} \longrightarrow \mathfrak{g} \\
 y \longmapsto [x, y]$$
(16)

2. Soit $m \geq 0$ et $V_m = \mathbb{C}v_0 \oplus \mathbb{C}v_1 \oplus \cdots \oplus \mathbb{C}v_m$. Alors V_m a une structure de $\mathrm{sl}_2(\mathbb{C})$ module (dans le sense d'algèbre de Lie) avec :

$$\begin{cases}
H \cdot v_p = (m - 2p)v_p \\
X \cdot v_p = (m - p + 1)v_{p-1} & pour \ 0 \le p \le m \\
Y \cdot v_p = (p + 1)v_{p+1}
\end{cases}$$
(17)

 $o\dot{u}\ v_{-1} = v_{m+1} = 0.$

3. (Algèbre de Heisenberg) On considère $\mathcal{F} = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On prend $p, q, c \in \operatorname{End}_{\mathbb{R}}(\mathcal{F})$ comme :

$$p: \frac{\partial}{\partial x} \quad f \longmapsto \frac{\partial f}{\partial x}$$

$$q: \cdot \qquad f \longmapsto (x \mapsto x \cdot f(x))$$

$$c: \mathrm{Id}_{\mathcal{F}}$$

$$(18)$$

Soit $\mathcal{H} = \mathbb{R}p \oplus \mathbb{R}q \oplus \mathbb{R}c$. Alors \mathcal{H} est une sous algèbre de Lie de $\operatorname{End}_{\mathbb{R}}(\mathcal{F})$ car $[p,q](f(x)) = \frac{\partial}{\partial x}(x \cdot f(x)) - x \cdot \frac{\partial f}{\partial x} = f(x) = c(f(x))$ et alors [p,q] = c avec [c,p] = [c,q] = 0. En fait, \mathcal{F} est une représentation de \mathcal{H} .

Proposition 1. Soit V_1 et V_2 représentations de \mathfrak{g} , alors $V_1 \oplus V_2$ est un \mathfrak{g} module en posant :

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \tag{19}$$

pour $g \in \mathfrak{g}$, $v_1 \in V_1$, $v_2 \in V_2$.

Démonstration. On a bien un morphisme d'algèbres de Lie :

$$[g, g'] \cdot (v_1 + v_2) = [g, g'] \cdot v_1 + [g, g'] \cdot v_2$$

$$= g \cdot (g' \cdot v_1) - g' \cdot (g \cdot v_1) + g \cdot (g' \cdot v_2) - g' \cdot (g \cdot v_2)$$

$$= g \cdot (g' \cdot (v_1 + v_2)) - g' \cdot (g \cdot (v_2 + v_2)).$$
(20)

Définition 6. Soit V_1 et V_2 des \mathbb{K} espaces vectoriels. Alors on défini le produit tensoriel $V_1 \otimes V_2$ comme :

$$V_{1} \otimes V_{2} = \bigoplus_{\alpha \in V_{1} \times V_{2}} \mathbb{K}e_{\alpha} / e_{(\lambda g_{1} + \mu g_{2}, g_{3})} = \lambda e_{(g_{1}, g_{3})} + \mu e_{(g_{2}, g_{3})}$$

$$e_{(g_{1}, \lambda g_{2} + \mu g_{3})} = \lambda e_{(g_{1}, g_{2})} + \mu e_{(g_{1}, g_{3})}$$

$$(21)$$

pour tous $\lambda, \mu \in \mathbb{K}$. Pour $v_1 \in V_1$, $v_2 \in V_2$ on note $v_1 \otimes v_2$ l'image de $e_{(v_1,v_2)}$ dans $V_1 \otimes V_2$, et on lui dit un tenseur pur.

On remarque que les tenseurs purs engendront $V_1 \otimes V_2$, mais pas tout élément de $V_1 \otimes V_2$ est un tenseur pur. De plus, si V_1 a une base $(v_a)_a$ et V_2 a une base $(v_b)_b$, alors les couples $(v_a \otimes v_b)_{a,b}$ forment une base de $V_1 \otimes V_2$. Si V_1 et V_2 sont de dimension finie, alors $V_1 \otimes V_2$ l'est aussi et $\dim(V_1 \otimes V_2) = \dim(V_1) \cdot \dim(V_2)$. Parlons alors du **produit tensoriel des représentations**.

Proposition 2. Soit V_1 et V_2 représentations de l'algèbre de Lie \mathfrak{g} . Alors $V_1 \otimes V_2$ est un \mathfrak{g} module en posant :

$$g \cdot (v_1 \otimes v_2) = (g \cdot v_1) \otimes v_2 + v_1 \otimes (g \cdot v_2) \tag{22}$$

pour tous $g \in \mathfrak{g}$, $v_1 \in V_1$, $v_2 \in V_2$.

Démonstration. On a bien un morphisme d'algèbres de Lie; pour $g, g' \in \mathfrak{g}$:

$$[g,g']\cdot(v_1\otimes v_2) = ([g,g']\cdot v_1)\otimes v_2 + v_1\otimes([g,g']\cdot v_2) = g\cdot(g'\cdot v_1)\otimes v_2 -g'\cdot(g\cdot v_1)\otimes v_2 + v_1\otimes g\cdot(g'\cdot v_2) - v_1\otimes g'\cdot(g\cdot v_2),$$
(23)

et par ailleurs:

$$g \cdot (g' \cdot (v_1 \otimes v_2)) - g' \cdot (g \cdot (v_1 \otimes v_2)) = g \cdot ((g' \cdot v_1) \otimes v_2 + v_1 \otimes (g' \cdot v_2))$$

$$- g' \cdot ((g \cdot v_1) \otimes v_2 + v_1 \otimes (g \cdot v_2)) = (g \cdot (g' \cdot v_1)) \otimes v_2 + \underline{(g' \cdot v_1) \otimes (g \cdot v_2)}$$

$$+ \underline{(g \cdot v_1) \otimes (g' \cdot v_2)} + v_1 \otimes (g \cdot (g' \cdot v_2)) - (g' \cdot (g \cdot v_1)) \otimes v_2$$

$$- (g \cdot \underline{v_1}) \otimes \underline{(g' \cdot v_2)} - (g' \cdot \underline{v_1}) \otimes \underline{(g \cdot v_2)} - v_1 \otimes (g' \cdot (g \cdot v_2)).$$

$$(24)$$

On a l'égalité. \Box

Définition 7. Soient V et W représentations de \mathfrak{g} . Un morphisme de \mathfrak{g} modules $f:V\to W$ est une application linéaire telle que pour tous $v\in V$ et $g\in \mathfrak{g}$:

$$g \cdot f(v) = f(g \cdot v). \tag{25}$$

On à doncs la notion d'isomorphisme de représentations.

Définition 8. Soit V une représentations de \mathfrak{g} . On dit que $V' \subseteq V$ est un sous module si V' est un sous espace vectoriel stable par l'action de \mathfrak{g} , c'est à dire :

$$g \cdot v \in V' \text{ pour tous } g \in \mathfrak{g} \text{ et } v \in V'.$$
 (26)

- **Exemple 7.** 1. Soit V_0 , V_1 et V_2 des $sl_2(\mathbb{C})$ modules. Alors $V_1 \otimes V_1 \cong V_2 \oplus V_0$ comme isomorphisme de $sl_2(\mathbb{C})$ modules. Ceci implique que $V_1 \otimes V_1$ a un sous module de dimension 1.
 - 2. Les sous modules triviaux de V sont {0} et V.

Définition 9. Un \mathfrak{g} module V est dit simple (ou irreductible) si il n'admet pas de sous modules non trivial (lest dit propres).

Exemple 8. Comme $V_1 \oplus V_1 \cong V_2 \otimes V_0$, on a que $V_1 \otimes V_1$ n'est pas simple comme $sl_2(\mathbb{C})$ module.

Proposition 3. Pour chaque $m \in \mathbb{N} \cup \{0\}$ on a que V_m est un $sl_2(\mathbb{C})$ module simple.

Démonstration. Soit $W \subset V_m$ un sous module non nul. Par définition, l'action de H sur V_m est diagonale, et a m+1 sous espaces vectoriels propres des $\mathcal{C}v_p, p=0,\ldots,m$. Donc l'action de H sur W est diagonale, et alors il existe un p avec $v_p \in W$ (un des vecteurs propres). En appliquant X et Y, on obtien que tous les $v_i \in W$ pour $i=0,\ldots,m$. Donc $W=V_m$ donc V_m est simple.

Exemple 9. Soit V un espace vectoriel, posons $\mathfrak{g} = \operatorname{End}(V)$. Alors V est un \mathfrak{g} module simple. En effet, soit $V' \subset V$ un sous module non nul et $v \in V' \setminus \{0\}$. Alors pour $w \in V \setminus \{0\}$ existe un $u \in \mathfrak{g}$ avec u(v) = w, donc $w \in V'$ et V' = V.

On traite maintenant le **problème fondamental en Théorie des Représentations**, c'est à dire, la classification à isomorphisme près des représentations simples d'une algèbre de Lie.

Définition 10. Une représentation d'une algèbre de Lie est dite semi simple si elle est isomorphe à une somme directe de représentations simples.

Exemple 10. 1. Si V est une représentation simple, alors V est semi simple.

- 2. On a que $V_1 \otimes V_1$ est un $sl_2(\mathbb{C})$ module semi simple.
- 3. Le $(\mathbb{C},+)$ module \mathbb{C}^2 , entendu comme :

$$\rho : \mathbb{C} \longrightarrow \operatorname{End}(\mathbb{C}^2)
\alpha \longmapsto \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$
(27)

n'est pas simple. Il n'y a qu'une droite stable : $\mathbb{C} \times 0$.

Théorème 1. Soit $\mathbb{K} = \mathbb{C}$ et G un groupe fini. Une représentation V de dimension finie de G est semi simple.

 $D\acute{e}monstration$. Supposons V non simple. Soit $W \subset V$ un sos module propre. Soit $(e_{\alpha})_{\alpha}$ une base de V (avec $(e_{\alpha}^*)_{\alpha}$ une base de V^* , le duelle) et soit $H: V \times V \to \mathbb{C}$ avec :

$$H(v,w) = \sum_{\substack{g \in G \\ \alpha}} \overline{e_{\alpha}^*(g \cdot v)} e_{\alpha}^*(g \cdot w). \tag{28}$$

On a que H est hermitiénne définie positive. Soit doncs $W' = W^{\perp}$. On veut voire que $V = W \oplus W'$. On a que W' est un G module; en effet, pour $g \in G$, $v \in W'$ et $w \in W$:

$$H(g \cdot v, w) = H(v, g^{-1} \cdot w) = 0 \text{ car } g^{-1} \cdot w \in W,$$
 (29)

et alors $g \cdot v \in W'$. Ici on utilise que $H(u,v) = H(g \cdot u, g \cdot v)$ pour quelconque $g \in G$ et $u,v \in V$. Par récurrence sur la dimension, W et W' sont semi simples, donc V aussi. \square

4 Algèbres de Lie résolubles et nilpotentes

Références

- [1] William Fulton, Joe Harris, Representation Theory: A First Course. Springer Graduate Texts in Mathematics, 129 (3ème édition) 2004.
- [2] Jean-Pierre Serre, Lie Algebras and Lie Groups: 1964 lectures given at Harvard University. Springer Lecture Notes in Mathematics, 1500, 2006.
- [3] ✓ James E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer Graduate Texts in Mathematics, 9 1978.
- [4] Victor G. Kac, Infinite-dimensional Lie algebras. Cambridge University Press, 1990.
- [5] ✓ Karin Erdmann, Mark J. Wildon, *Introduction to Lie Algebras*. Springer Undergraduate Mathematics Series, 2007.
- [6] Andrew Baker, *Matrix Groups : An Introduction to Lie Group Theory*. Springer Undergraduate Mathematics Series, 2002.