1 Aussagenlogik

```
f ist Belegung \Leftrightarrow f: SK_{AL} \to \{0,1\}
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\lceil \neg \varphi \rceil) = 0
                                                       \operatorname{Wert}_f(\varphi) = 1
                                                                                                                                                                                                                                (Def. 1.2.2)
                                              \operatorname{Wert}_f(\lceil \neg \varphi \rceil) = 1
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\varphi) = 0
                                                                                                                                                                                                                                (Def. 1.2.2)
                                                   \neg \operatorname{Wert}_f(\varphi) = 1
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\varphi) = 0
                                                                                                                                                                                                                                    (Def. 1.2)
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\lceil \varphi \to \psi \rceil) = 1
                \operatorname{Wert}_f(\varphi) = 0 \vee \operatorname{Wert}_f(\psi) = 1
                                                                                                                                                                                                                                 (Def. 1.2.3)
                \operatorname{Wert}_f(\varphi) = 1 \wedge \operatorname{Wert}_f(\psi) = 0
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\lceil \varphi \to \psi \rceil) = 0
                                                                                                                                                                                                                                (Def. 1.2.3)
                                      \operatorname{Wert}_f(\lceil \varphi \to \psi \rceil) = 1
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\varphi) = 1 \Rightarrow \operatorname{Wert}_f(\psi) = 1
                                                                                                                                                                                                                                (Satz 1.1.3)
                                        \operatorname{Wert}_f(\lceil \varphi \wedge \psi \rceil) = 1
                                                                                                      \operatorname{Wert}_f(\varphi) = 1 \ /\!\!/ \ \operatorname{Wert}_f(\psi) = 1
                                                                                                                                                                                                                               (Satz 1.1.1')
                                        \operatorname{Wert}_f(\lceil \varphi \vee \psi \rceil) = 1
                                                                                                      \operatorname{Wert}_f(\varphi) = 1 \ \ \ \ \operatorname{Wert}_f(\psi) = 1
                                                                                                                                                                                                                               (Satz 1.1.2')
                                      \operatorname{Wert}_f(\lceil \varphi \leftrightarrow \psi \rceil) = 1
                                                                                             \Leftrightarrow \operatorname{Wert}_f(\varphi) = 1 \Leftrightarrow \operatorname{Wert}_f(\psi) = 1
                                                                                                                                                                                                                               (Satz 1.1.3')
                                  \varphi ist wahr bezüglich f
                                                                                                       \operatorname{Wert}_f(\varphi) = 1
                                                                                                                                                                                                                                (Def. 1.3.1)
                   \varphi ist logisch wahr \Leftrightarrow \vDash \varphi
                                                                                             \Leftrightarrow \forall f(f \text{ Belegung} \Rightarrow \text{Wert}_f(\varphi) = 1)
                                                                                                                                                                                                                                (Def. 1.3.2)
     \varphi folgt logisch aus \Sigma \iff \Sigma \vDash \varphi
                                                                                                       \forall f(f \text{ Bel. } \wedge \forall \psi(\psi \in \Sigma \Rightarrow \text{Wert}_f(\psi) = 1)
                                                                                                                                                                                                                                (Def. 1.3.4)
                                                                                                                          \Rightarrow \operatorname{Wert}_f(\varphi) = 1
                                                                    \{\psi\} \vDash \varphi
                                                                                             \Leftrightarrow \psi \models \varphi
                                                                                                                                                                                                                                (Def. 1.3.5)
\varphi und \psi sind log. äquiv. \Leftrightarrow \varphi = \psi
                                                                                             \Leftrightarrow \varphi \vDash \psi \wedge \!\! \wedge \psi \vDash \varphi
                                                                                                                                                                                                                                (Def. 1.3.6)
                                                                                             \Leftrightarrow \varnothing \vDash \varphi
                                                                                                                                                                                                                                (Satz 1.2.1)
                                                                              \models \varphi
                                                                                             \Leftrightarrow \forall f(f \text{ Bel.} \wedge \text{Wert}_f(\psi) = 1 \Rightarrow \text{Wert}_f(\varphi) = 1)
                                                                         \psi \vDash \varphi
                                                                                                                                                                                                                                (Satz 1.2.2)
                                                                         \varphi \vDash \psi \quad \Leftrightarrow \quad \vDash \ulcorner \varphi \to \psi \urcorner
                                                                                                                                                                                                                                (Satz 1.3.1)
                                                                    \varphi \dashv \vDash \psi \quad \Leftrightarrow \quad \vDash \ulcorner \varphi \leftrightarrow \psi \urcorner
                                                                                                                                                                                                                                (Satz 1.3.2)
                                                                    \lceil \varphi \wedge \psi \rceil \quad \Leftrightarrow \quad \lceil \neg (\varphi \to \neg \psi) \rceil
                                                                    \lceil \varphi \lor \psi \rceil \quad \Leftrightarrow \quad \lceil (\neg \varphi \to \psi) \rceil
                                                                  \lceil \varphi \leftrightarrow \psi \rceil \quad \Leftrightarrow \quad \lceil \neg ((\varphi \to \psi) \to \neg (\psi \to \varphi)) \rceil
```

2 Piratenlogik

I ist Interpretationsfkt. über Ind.ber. M

ist Interpretationsfkt. über Ind.ber.
$$M \Leftrightarrow I: IK_{\mathcal{L}PL} \cup PK_{\mathcal{L}PL} \to M \cup \ldots \cup M^n$$
 (Def. 1) $M = \langle M, I \rangle$ ist Modell $\Leftrightarrow M \neq \emptyset \wedge I$ ist Interpretationsfkt. über M (Def. 2) β ist M -Belegung $\Leftrightarrow \beta: Var_{\mathcal{L}PL} \to M$ (Def. 3)
$$\beta(x:d)(y) = \begin{cases} d & \text{falls } x = y \\ \beta(y) & \text{sonst} \end{cases}$$
 (Def. 4)
$$t^{\mathcal{M},\beta} = t^{\langle M,I \rangle,\beta} = \begin{cases} \beta(t) & \text{falls } t \in Var_{\mathcal{L}PL} \\ I(t) & \text{sonst} \end{cases}$$
 (Def. 5)
$$M, \beta \vDash \lceil Pt_0 \ldots t_{n-1} \rceil \Leftrightarrow \langle t_0^{\mathcal{M},\beta}, \ldots, t_{n-1}^{\mathcal{M},\beta} \rangle \in I(P)$$
 (Def. 6.1)
$$M, \beta \vDash \lceil s = t \rceil \Leftrightarrow s^{\mathcal{M},\beta} = t^{\mathcal{M},\beta}$$
 (Def. 6.2)
$$M, \beta \vDash \lceil s \neq \psi \rceil \Leftrightarrow \neg(\mathcal{M},\beta \vDash \varphi)$$
 (Def. 6.3)
$$M, \beta \vDash \lceil \varphi \to \psi \rceil \Leftrightarrow \langle \mathcal{M}, \beta \vDash \varphi \Rightarrow \mathcal{M}, \beta \vDash \psi)$$
 (Def. 6.4)
$$M, \beta \vDash \lceil \varphi \to \psi \rceil \Leftrightarrow \forall d(d \in M \Rightarrow \mathcal{M}, \beta(x:d) \vDash \varphi)$$
 (Def. 6.5) φ ist wahr in $M \Leftrightarrow M \vDash \varphi \Leftrightarrow \forall \beta(\beta \text{ ist } M\text{-Belegung} \Rightarrow \mathcal{M}, \beta \vDash \varphi)$ (Def. 6.5) φ ist wahr in $M \Leftrightarrow M \vDash \Sigma \Leftrightarrow \forall \varphi(\varphi \in \Sigma \Rightarrow M \vDash \varphi)$ (Def. 8) φ ist logisch wahr $\Leftrightarrow \forall \mathcal{M}(M \text{ ist Modell} \Rightarrow \mathcal{M} \vDash \varphi)$ (Def. 8) φ folgt logisch aus $\Sigma \Leftrightarrow \Sigma \vDash \varphi \Leftrightarrow \forall \mathcal{M}(M \text{ ist Modell} \Rightarrow \mathcal{M} \vDash \varphi)$ (Def. 12)
$$\lceil \exists x \varphi \rceil \Leftrightarrow \lceil \neg \forall \neg \varphi \rceil \rceil$$

$$\lceil \varphi \iota x \psi \rceil \Leftrightarrow \lceil \exists x (\psi \land \forall y) (\psi(y/x) \rightarrow x = y) \land \varphi) \rceil$$

$$\lceil \iota x \varphi = \iota x \psi \rceil \Leftrightarrow \lceil \exists x (\varphi \land \psi \land \forall y) (\varphi(y/x) \lor \psi(y/x) \rightarrow x = y)) \rceil$$

(Def. 1)

3 Allgemeines

Zu zeigen: $\varphi \Rightarrow \psi$: Gelte: φ Zu zeigen: ψ Zu zeigen: $\forall x(\varphi[x])$... Sei x_0 beliebig Zu zeigen: $\varphi[x_0]$ Zu zeigen: $\exists x(\varphi[x])$ \therefore Definiere: $x_0 = \dots$ "Definiere-Move" Zu zeigen: $\varphi[x_0]$ Zu zeigen: $\forall x (\varphi[x] \Rightarrow \psi[x])$ \therefore Sei x_0 beliebig Gelte: $\varphi[x_0]$ Zu zeigen: $\psi[x_0]$ \therefore Gelte: $\neg \varphi$ Zu zeigen: φ "Reductio" Zu zeigen: $\psi \wedge \neg \psi$ \therefore Zu zeigen: $(\psi \Rightarrow \varphi) \wedge (\neg \psi \Rightarrow \varphi)$ Zu zeigen: φ "Fallunterscheidung" $(\psi \Rightarrow \varphi) \wedge (\neg \psi \Rightarrow \varphi) \quad \Rightarrow \quad \varphi$ $\forall x(\varphi[x]) \Rightarrow \varphi[x_0]$ "Spezialisierung" $\Leftrightarrow \neg \exists x \neg \varphi$ $\varphi \wedge (\varphi \Rightarrow \psi) \Rightarrow \psi$ "MP" $\neg \psi \wedge \wedge (\varphi \Rightarrow \psi)$ "MT" $\varphi \Rightarrow \psi \not \wedge \psi \Rightarrow \chi \quad \Rightarrow \quad \varphi \Rightarrow \chi$ "Kettenschluss" $x \in \{y \mid \varphi[y]\} \quad \Leftrightarrow \quad \varphi[x]$ "Church" $\neg (\varphi \Rightarrow \psi) \quad \Leftrightarrow \quad \varphi \not \land \neg \psi$ $\psi \Leftrightarrow \psi \quad \Leftrightarrow \quad \neg \varphi \Leftrightarrow \neg \psi$ $\varphi \not \mathbb{R} \psi \Leftrightarrow \neg (\varphi \mathbf{R} \psi)$

 $M \subseteq N \quad \Leftrightarrow \quad \forall x (x \in M \Rightarrow x \in N)$

4 Cn

5 KM

$\operatorname{Cn}(\Sigma) = \{ \varphi \mid \Sigma \vDash \varphi \}$ $\operatorname{Cn}(\operatorname{Cn}(\Sigma)) = \operatorname{Cn}(\Sigma)$				$\Sigma \subseteq \Sigma' \Rightarrow \operatorname{Cn}(\Sigma) \subseteq \operatorname{Cn}(\Sigma')$ $\vDash \varphi \Leftrightarrow \forall \Sigma (\varphi \in \operatorname{Cn}(\Sigma))$		
/I-Grundr	ege	eln				
arphi	∴.	φ	(Wh)			
		$\psi \to \varphi$ $\varphi \to \psi$	(As)	$arphi$ \therefore $arphi \lor \psi$ $arphi$ \therefore $\psi \lor arphi$	$(\vee E)$	
$\varphi, \ \varphi \to \psi$ $\neg \psi, \varphi \to \psi$	<i>:</i> .	ψ	(MP) (MT)	$\varphi \lor \psi, \varphi \to \chi, \psi \to \chi \therefore \chi$ $\varphi \leftrightarrow \psi \therefore \varphi \to \psi$	$(\vee B)$	
$\neg \varphi, \varphi \lor \psi$ $\neg \psi, \varphi \lor \psi$	<i>:</i> .	ψ	(MTP)	$\varphi \leftrightarrow \psi$ \therefore $\psi \rightarrow \varphi$ $\varphi \rightarrow \psi, \psi \rightarrow \varphi$ \therefore $\varphi \leftrightarrow \psi$	(BK) (KB)	
$\neg \neg \varphi$	<i>:</i> :.		(DN)	$ \varphi \rightarrow \varphi, \psi \rightarrow \varphi \therefore \varphi \leftarrow \psi $ $ \forall x \varphi \therefore \varphi(t/x) $ $ \varphi(t/x) \therefore \exists x \varphi $	(KB) (∀B) (∃E)	
		$\varphi \wedge \psi$	$(\wedge E)$	$\exists x \varphi \therefore \varphi(a/x) (a \text{ neu})$	$(\exists B)$	
$\varphi \wedge \psi$ $\varphi \wedge \psi$			$(\land B)$		(SI) (Lb)	