



# **Kubernetes 1**

BASIC, INSTALLATION, CONFIGURATION AND ARCHITECTURE

caodangsao@gmail.com



## **Learning Paths**



## **Kubernetes Learning Objectives**

Học xong phần này, học viên sẽ nắm được những điều sau:

- Lịch sử và sự phát triển của Kubernetes.
- Kiến trúc và thành phần tổng quan của nó.
- API, các tài nguyên quan trọng nhất tạo nên API và cách sử dụng chúng.
- Cách triển khai và quản lý một ứng dụng sử dụng Kubernetes.
- Có khả năng quản lý cụm Kubernetes.
- Sử dụng HELM để đóng gói và triển khai ứng dụng.

## **Module Target**

Kết thúc bài học, học viên cần đạt được các kĩ năng sau:

- Có hiểu biết về nguồn gốc, tầm quan trọng của Kubernetes
- Nắm được các khái niệm về Kubernetes, các thành phần quan trọng của nó
- Có khả năng cài đặt, cấu hình được cụm Kubernetes phục vụ mục đích học tập hay nhu cầu sử dụng thực tế
- Khả năng tương tác ở mức độ cơ bản với cụm Kubernetes

## Nội dung

- 1 Getting Started
  - Tại sao sử dụng Kubernetes
  - Tổng quan kiến trúc Kubernetes
  - Cài đặt cụm Kubernetes sử dụng minikube
- 2 Kubernetes cluster management
  - Tống quan quản lý cụm Kubernetes
  - Tính sẵn sàng của cụm trong K8s
  - Các công cụ quản lý K8s
- 3 Summary
  - Tóm tắt nội dung buổi học



Lab 2: Tương tác Kubernetes

👸 Lab 3: Cụm Kubernetes HA

Lab 4: Triển khai ứng dụng đơn giản





#### **Section 1:**

## **Getting Started**

#### **Kubernetes Introduction**

- → Kubernetes là hệ thống điều phối containers, nó là Open Source.
- → Kubernetes được tạo ra bởi Google.
- → Kubernetes là một nền tảng loại bỏ các quy trình thủ công tham gia vào việc triển khai ứng dụng trong container.



#### **Kubernetes Introduction**

- Kubernetes sử dụng để quản lý Trạng thái của Containers:
  - Khởi tạo Containers trên server cụ thể.
  - Khởi động lại Containers khi nó bị chết.
  - Di chuyển containers giữa các server
- → Kubernetes được gọi tắt là K8s.



## **Why Kubernetes**



## **Why Kubernetes**



## Why Kubernetes



Được sử dụng trong:

- → Public cloud
- → Private Cloud (Datacenter)
- → Hybrid

#### **Kubernetes Architecture Intro**

→ Giả sử ta đang ở bến cảng, việc điều phối quản lý và vận chuyển hàng hóa do những đối tượng nào đảm nhiệm ?



#### **Kubernetes Architecture - Node types**



#### **Kubernetes Architecture - Pod**

- → Pod là một hay nhiều containers sử dụng chung (storage/network), và mô tả chi tiết cách chạy các containers này.
- → Containers trong Pod dùng chung storage, địa chỉ IP.
- → Mỗi Pod có thể chạy trên nhiều nodes và mỗi node có thể chạy nhiều pods.



#### **Kubernetes Architecture Overview**



#### **Kubernetes Architecture Overview**



#### **Kubernetes Architecture**



#### **ETCD In Kubernetes**



- ★ Lưu trữ trạng thái của cụm trong cơ sở dữ liệu phân tán dưới dạng key-value.
- ★ Back-end của k8s.
- ★ Cung cấp tính sẵn
  sàng cao của dữ liệu
  trạng thái của cụm.
- ★ ETCD đáp ứng đơn giản, bảo mật và nhanh.

## **Kube-apiserver**



- → Kube-apiserver là entry point cho tất cả các lệnh REST được sử dụng để điều khiển cụm.
- → Điểm tương tác với Kubernetes.

## **Kube-apiserver**



Nhiệm vụ của API server:

- Xác thực người dùng
- 2. Xác thực yêu cầu
- 3. Lấy dữ liệu

## **Kube-apiserver**



#### Nhiêm vu của API server:

- 1. Xác thực người dùng
- 2. Xác thực yêu cầu
- 3. Lấy dữ liệu
- 4. **Cập nhật ETCD**
- 5. Tương tác Kuber scheduler
- 6. Tương tác kubelet



- Controller: Chạy nhiều loại controller trong một tiến trình duy nhất.
- → Thực hiện các tác vụ tự động trong cụm K8s
- → Nhiệm vụ chính:
  - Theo dõi tình trạng
  - ♦ Xử lý sự cố



- → Node-Controller : làm nhiệm vụ điều khiển và giám sát node:
  - Theo dõi tình trạng
  - ♦ Xử lý sự cố



- → Replication-Controller: làm nhiệm vụ điều khiển và giám sát số lượng Pod:
  - ◆ Theo dõi tình trạng
  - ♦ Xử lý sự cố



- → Nhiều loại controller làm nhiệm vụ khác nhau:
  - Deployment-controller
  - Job-controller
  - Replicaset
  - **.**..

#### **Kube Scheduler**



#### **Kube Scheduler**

Đối với mỗi Pod mà Scheduler phát hiện, Scheduler sẽ chịu trách nhiệm tìm Node tốt nhất cho Pod đó để chạy.



#### **Kube Scheduler**



- → Kube Scheduler lần lượt thực hiện các bước sau:
- 1. Lọc các nodes phù hợp.
- 2. Xếp hạng nodes
- 3. Lựa chọn node.

#### Kubelet



- → Kubelet: K8s agent chạy trên node làm nhiệm vụ thực thi các lệnh từ api server và giám sát.
- → Kubelet lấy cấu hình của Pod từ API server và đảm bảo rằng các containers được mô tả đang hoạt đông.

#### **Kubelet**



- → Kubelet làm nhiệm vụ:
- 1. Đăng kí node.
- 2. **Tạo Pods.**
- 3. Giám sát node và Pods.

## **Kube-proxy**



- → Kube-Proxy: Kube-proxy chạy trên mỗi node để phân chia network (sub-netting) và đảm bảo rằng các dịch vụ sẵn sàng để kết nối.
- Kube-proxy hoạt động như một network proxy và bộ cân bằng tải cho dịch vụ trên một worker node duy nhất.

#### **Kubernetes Installation**

Kubernetes có thể được cài đặt bằng 2 cách:

→ Triển khai một node (Minikube K8s Cluster) - phù hợp cho phát triển và tập luyện.

→ Triển khai đảm bảo tính sẵn sàng cao (1-Master | 2-Worker) - phù

hợp cho môi trường thực tế.





## Labs



#### Labs



Lab 2: Tương tác cụm Kubernetes

## Namespace trong K8s

Namespace được sử dụng để phân vùng các cụm lớn thành các nhóm nhỏ hơn, dễ quản lý và nhận dạng.



## Namespace trong K8s

→ Tách biệt và tổ chức các Object trong K8s



### Namespace trong K8s

Liệt kê các Namespace trong cụm:

#### \$kubectl get namespaces

- → Mọi cụm đều có namepace default.
- → Chỉ định namespace bằng cách cung cấp tham số sau với kubectl

\$kubectl get pods --namespace <namespace>

- → Lưu ý: Nếu không chỉ định namespace thì câu lệnh sẽ lấy ở trong namespace default.
- → Tạo namespace như sau:

\$kubectl create namespace <namespace>





#### **Section 2:**

#### **Kubernetes cluster management**

### **K8s Management Overview**

- Cụm Kubernetes đảm bảo tính sẵn sàng cao
- → Các công cụ quản lý cụm K8s
- → Cài đặt cụm K8s đảm bảo tính sẵn sàng cao

#### HA in K8s

- → High Availability (HA) hay Tính sẵn sàng cao là gì?
- → Đảm bảo tính HA các node Master hay Control Plane
- → Quản lý Etcd

### **HA** in K8s - Requirements



- → K8s hỗ trợ ứng dụng HA.
- → Đảm bảo HA hạ tầng.
- → Cụm cũng cần đảm bảo HA để hỗ trợ các ứng dụng HA.

#### HA in K8s - HA Cluster



- → Để đảm bảo HA cụm, ta cần nhiều node Control Plane.
- → Người dùng cần Load Balancer để giao tiếp với nhiều control planes.

#### HA in K8s - HA Etcd



#### HA in K8s - HA Etcd





- Các công cụ K8s cung cấp nhiều chức năng hơn.
- → Thực sự cần thiết khi làm quen với các công cụ này.

- → Các công cụ K8s bao gồm:
- → Kubectl
- → Kubeadm
- → Minikube
- → Helm
- → Kompose
- → Kustomize



- → Kubectl là CLI chính thức cho K8s.
- → Chúng ta sẽ sử dụng công cụ này xuyên suốt học phần K8s này.



- → Kubeadm là công cụ giúp đơn giản hóa việc tạo cụm K8s.
- → Giúp người dùng cài đặt và thực hiện chức năng của cụm K8s.



- Minikube là công cụ giúp cài đặt nhanh chóng cụm K8s.
- → Cài đặt cụm k8s với 1 node.



- → Helm là công cụ mạnh mẽ để quản lý Template và Package K8s.
- → Có khả năng chuyển các đối tượng K8s sang template có thể tái sử dụng.



- → Kompose là công cụ chuyển từ tệp Docker Compose sang đối tượng K8s.
- → Có khả năng chuyển các containers từ Compose sang K8s.





- → Kustomize là công cụ quản lý cấu hình cho cấu hình đối tượng K8s.
- → Tương tự như Helm và có khả năng tạo ra templates tái sử dụng được cho K8s.

#### Labs



Lab 3: Cài đặt cụm HA K8s

#### Labs



Lab 4: Triển khai ứng dụng đơn giản





#### **Section 3:**

### **Summary**

## Mục tiêu

Kết thúc bài học, học viên cần đạt được các kĩ năng sau:

- Có hiểu biết về nguồn gốc, tầm quan trọng của Kubernetes
- Nắm được các khái niệm về Kubernetes, các thành phần quan trọng của nó
- Có khả năng cài đặt, cấu hình được cụm Kubernetes phục vụ mục đích học tập hay nhu cầu sử dụng thực tế
- Khả năng tương tác ở mức độ cơ bản với cụm Kubernetes

# Tài liệu tham khảo



# Thank you