Spans

December 20, 2023

This chapter contains some material about spans. Notably, we discuss and explore:

- 1. The basic definitions around spans (Section 1);
- 2. The relation between spans and functions (Proposition 7.1.1.1);
- 3. The relation between spans and relations (Propositions 7.2.2.1 and 7.3.1.1 and Remark 7.5.1.1).
- 4. "Hyperpointed sets" (??). I don't know why I wrote this...

TODO:

- 1. https://www.sciencedirect.com/science/article/pii/0022404994
 900094?ref=pdf_download&fr=RR-2&rr=834107b75c906aa4
- 2. https://arxiv.org/abs/1605.08100
- 3. https://arxiv.org/abs/1603.08181
- 4. https://arxiv.org/abs/1601.02307
- 5. https://arxiv.org/abs/1507.01460
- 6. https://arxiv.org/abs/1506.08870
- 7. https://arxiv.org/abs/1505.00048
- 8. https://arxiv.org/abs/1501.07592
- 9. https://arxiv.org/abs/1501.04664
- 10. https://arxiv.org/abs/1501.00792

- 11. https://arxiv.org/abs/1412.6560
- 12. https://arxiv.org/abs/1412.0212
- 13. https://arxiv.org/abs/1409.0837
- 14. https://arxiv.org/abs/1408.5220
- 15. https://arxiv.org/abs/1308.6548
- 16. https://arxiv.org/abs/1304.0219
- 17. https://arxiv.org/abs/1210.8192
- 18. https://arxiv.org/abs/1210.1433
- 19. https://arxiv.org/abs/1201.3789
- 20. https://arxiv.org/abs/1112.0560
- 21. https://arxiv.org/abs/1109.1598
- 22. https://arxiv.org/abs/1101.4594
- 23. https://arxiv.org/abs/1012.6001
- 24. https://arxiv.org/abs/1011.3243
- 25. https://arxiv.org/abs/0910.2996
- 26. https://arxiv.org/abs/0810.2361
- 27. https://arxiv.org/abs/0803.2429
- 28. https://arxiv.org/abs/0712.2525
- 29. https://arxiv.org/abs/0706.1286
- 30. https://arxiv.org/abs/math/0611930
- 31. https://arxiv.org/abs/2311.15342
- 32. https://arxiv.org/abs/2310.19428
- 33. https://arxiv.org/abs/2309.08084
- 34. https://arxiv.org/abs/2308.01662

- 35. https://arxiv.org/abs/2301.11860
- 36. https://arxiv.org/abs/2301.01199
- 37. https://arxiv.org/abs/2212.09060
- 38. https://arxiv.org/abs/2208.07183
- 39. https://arxiv.org/abs/2205.06892
- 40. https://arxiv.org/abs/2203.16179
- 41. https://arxiv.org/abs/2201.09551
- 42. https://arxiv.org/abs/2112.04599
- 43. https://arxiv.org/abs/2111.10968
- 44. https://arxiv.org/abs/2107.07621
- 45. https://arxiv.org/abs/2106.14743
- 46. https://arxiv.org/abs/2105.14654
- 47. https://arxiv.org/abs/2102.08051
- 48. https://arxiv.org/abs/2102.04386
- 49. https://arxiv.org/abs/2101.06734
- 50. https://arxiv.org/abs/2011.11042
- 51. https://arxiv.org/abs/2010.15722
- 52. https://arxiv.org/abs/2006.10375
- 53. https://arxiv.org/abs/2006.10375
- 54. https://arxiv.org/abs/2005.10496
- 55. https://arxiv.org/abs/2003.11541
- 56. https://arxiv.org/abs/2002.10334
- 57. https://arxiv.org/abs/1909.00069
- 58. https://arxiv.org/abs/1907.02695

- 59. https://arxiv.org/abs/1905.06671
- 60. define a relational span
- 61. consider giving Ran and Rift their dedicated sections on the relations chapter, perhaps together with the other sections on co/limits
- 62. https://arxiv.org/abs/1710.02742
- 63. https://arxiv.org/search/math?searchtype=author&query=Walker,+Charles
- 64. https://arxiv.org/abs/1706.09575
- 65. https://arxiv.org/abs/1710.01465
- 66. fibred categories: https://arxiv.org/abs/1806.02376
- 67. https://arxiv.org/abs/1806.10477v2
- 68. double categorical limits in Rel^{dbl}
- 69. double categorical limits in Span^{dbl}
- 70. internal adjoint equivalences in **Rel**
- 71. internal adjoint equivalences in Span
- 72. 2-categorical limits in **Rel**;
- 73. morphism of internal adjunctions in **Rel**;
- 74. morphism of internal adjunctions in Span;
- 75. morphism of co/monads in Span;
- 76. What is Adj(Span(A, B))?
- 77. monoids, comonoids, pseudomonoids, etc. in Span.
- 78. write down the dumb intuition about spans inducing morphisms $\mathsf{Sets}(S,A) \to \mathsf{Sets}(S,B)$ instead of $\mathcal{P}(A) \to \mathcal{P}(B)$ from the similarity between

$$S \to A \times B$$

and

$$A \times B \to \{\mathsf{t},\mathsf{f}\}.$$

This intuition is justified by taking A = pt or B = pt.

- 79. What about using the direct image with compact support in $g(f^{-1}(a))$?
- 80. Monads in $\mathsf{Span} \mid$ develop this in the level of morphisms too
- 81. Comonads in Span are spans whose legs are equal | develop this in the level of morphisms too
- 82. Does Span have an internal **Hom**?
- 83. Examples of spans
- 84. Functional and total spans
- 85. closed symmetric monoidal category of spans
- 86. double category of relations
- 87. collage of a span
- 88. equivalence spans?
- 89. functoriality of powersets for spans
- 90. Is Span a closed bicategory?
- 91. skew monoidal structure on Span(A, B)
- 92. Adjunctions in Span
- 93. Isomorphisms in Span
- 94. Equivalences in Span
- 95. Interaction between the above notions in Span vs.in **Rel** via the comparison functors
- 96. $\operatorname{Hom}_{\mathcal{C}}(S,A) \times \operatorname{Hom}_{\mathcal{C}}(f^*(S),A)$.
- 97. Proof of non-existence of left Kan extensions/lifts in **Rel** (when do these exist btw?)
- 98. add intuition for spans as relations with multiple witnesses
- 99. description of unitors and associators of span

Contents 6

Contents

1	Spa	ns	7
	1.1	The Walking Span	7
	1.2	Spans	7
	1.3	Morphisms of Spans	8
	1.4	Functional Spans	(
	1.5	Total Spans	
2	Cat	tegories of Spans	11
	2.1	The Category of Spans Between Two Sets	11
	2.2	The Bicategory of Spans	14
	2.3	The Monoidal Bicategory of Spans	16
	2.4	The Double Category of Spans	16
	2.5	Properties of The Bicategory of Spans	19
3	Lin	nits of Spans	22
	3.1	tmp2	22
	3.2	tmp	23
	3.3	Left Kan Extensions	23
	3.4	Right Kan Extensions	24
	3.5	Right Kan Lifts	25
4	Col	limits of Spans	26
5	Co	nstructions With Spans	26
	5.1	Representable Spans	26
	5.2	Composition of Spans	26
	5.3	Horizontal Composition of Morphisms of Spans	27
	5.4	Properties of Composition of Spans	28
	5.5	The Inverse of a Span	29
6	Functoriality of Spans		
	6.1	Direct Images	29
	6.2	Functoriality of Spans on Powersets	29
7	Cor	mparison of Spans to Functions and Relations	29
	7.1	Comparison to Functions	
	7.2	Comparison to Relations: From Span to Rel	
	7.3	Comparison to Relations: From Rel to Span	33

A Otl	her Chapters	36
7.5	Comparison to Multirelations	35
	Comparison to Relations: The Wehrheim–Woodward Construc-	35

1 Spans

1.1 The Walking Span

Definition 1.1.1.1. The **walking span** is the category Λ that looks like this:

1.2 Spans

Let A and B be sets.

Definition 1.2.1.1. A span from A to B^1 is a functor $F \colon \Lambda \to \mathsf{Sets}$ such that

$$F([-1]) = A,$$

$$F([1]) = B.$$

Remark 1.2.1.2. In detail, a span from A to B is a triple (S, f, g)

 $^{^1}Further\ Terminology:$ Also called a roof from A to B or a correspondence from A to B.

consisting of 2,3,4

- The Underlying Set. A set S, called the **underlying set of** (S, f, g);
- The Legs. A pair of functions $f: S \to A$ and $g: S \to B$.

1.3 Morphisms of Spans

Definition 1.3.1.1. A morphism of spans from (R, f_1, g_1) to $(S, f_2, g_2)^5$ is a natural transformation $(R, f_1, g_1) \Longrightarrow (S, f_2, g_2)$.

Remark 1.3.1.2. In detail, a morphism of spans from (R, f_1, g_1) to

³Every span (S, f, g) from A to B determines in particular a relation $R: A \to B$ via

$$R \stackrel{\text{def}}{=} \{ (f(a), g(a)) \mid a \in A \},$$

i.e. where $R(a) = g(f^{-1}(a))$ for each $a \in A$; see Proposition 7.2.2.1.

⁴In general, spans from A to B may be thought of as relations from A to B which can relate an element $a \in A$ to an element $b \in B$ in multiple ways via f and g, with the "set of witnesses of $a \sim_S b$ " being given by

$$\operatorname{Wit}_{S}(a,b) \stackrel{\text{def}}{=} \{ s \in S \mid a = f(s) \text{ and } g(s) = b \}.$$

This analogy is made precise by Remark 7.5.1.1. Note, however, that when making the passage from sets to categories, the suitable generalisation of an assignment $(a,b) \mapsto \operatorname{Wit}_S(a,b)$ for each $(a,b) \in A \times B$ becomes that of a profunctor (TODO), which differs from spans of categories.

⁵ Further Terminology: Also called a morphism of roofs from (R, f_1, g_1) to (S, f_2, g_2) or a morphism of correspondences from (R, f_1, g_1) to (S, f_2, g_2) .

 $^{^2}Picture:$

 (S, f_2, g_2) is a function $\phi \colon R \to S$ making the diagram⁶

commute.

1.4 Functional Spans

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

Definition 1.4.1.1. The span λ is **functional** if f the following equivalent conditions are satisfied:

- 1. The associated relation $g \circ f^{-1}$ of λ is functional.
- 2. For each $s, t \in S$, if f(s) = f(t), then g(s) = g(t).
- 3. this "f-relative injectivity" condition is the same as being a monomorphism/monoid/whatever in nice category | maybe this is the same as being a skew monoid in Span(A, B) or something?

1. a^{7}

Definition 1.4.1.2. The span λ is **total** if f is surjective.

Let $\lambda = \left(A \xleftarrow{f} S \xrightarrow{g} B\right)$ be a span. A morphism of spans from id_A to $\lambda \diamond \lambda^\dagger$

⁷Here we could perhaps also use the direct image with compact support $g_!$ of g (see Constructions With Sets, Definition 4.5.1.1) instead of the usual direct image, although

 $^{^6} Alternative\ Picture:$

is a morphism

$$s: A \to S \times_B S$$

making the diagram

commute, where $S \times_B S$ is the pullback

$$S \times_B S \cong \{(s,t) \in S \times S \mid g(s) = g(t)\}$$

$$S \times_B S \longrightarrow S$$

$$\downarrow \qquad \qquad \downarrow g$$

$$S \xrightarrow{g} B$$

of S with itself along g. In particular, $\operatorname{pr}_1 \circ s$ and $\operatorname{pr}_2 \circ s$ are both left-inverses/retractions for f, i.e. we have

$$(\operatorname{pr}_1 \circ s) \circ f \cong \operatorname{id}_A,$$

 $(\operatorname{pr}_2 \circ s) \circ f \cong \operatorname{id}_A.$

Thus, by Categories, ?? of ??, f is injective if $A \neq \emptyset$.

the expression for $g_!(f^{-1}(a))$ seems a bit weird. It can also actually be given as a right Kan extension (Relations, Item 11 of Proposition 2.5.1.1):

$$g_{!}(f^{-1}(a)) = g_{!}(\{s \in S \mid f(s) = a\})$$

$$= \{b \in B \mid g^{-1}(b) \subset \{s \in S \mid f(s) = a\}\}$$

$$= \{b \in B \mid \text{for each } s \in S, \text{ if } g(s) = b, \text{ then } f(s) = a\}$$

$$= [\operatorname{Ran}_{g}^{\dagger}(f)](a)$$

as in the diagram

1.5 Total Spans

2 Categories of Spans

2.1 The Category of Spans Between Two Sets

Let A and B be sets.

Definition 2.1.1.1. The category of spans from A to B is the category $\mathsf{Span}(A,B)$ defined by

$$\mathsf{Span}(A,B) \stackrel{\mathrm{def}}{=} \mathsf{Fun}(\Lambda,\mathsf{Sets}) \underset{\mathrm{ev}_{[-1]},\mathsf{Sets},[A]}{\times} \mathsf{pt} \underset{[B],\mathsf{Sets},\mathrm{ev}_{[1]}}{\times} \mathsf{Fun}(\Lambda,\mathsf{Sets}),$$

as in the diagram

Remark 2.1.1.2. In detail, the category of spans from A to B is the category $\mathsf{Span}(A,B)$ where

- Objects. The objects of Span(A, B) are spans from A to B;
- Morphisms. The morphism of Span(A, B) are morphisms of spans;
- *Identities*. The unit map

$$\mathbb{M}^{\mathsf{Span}(A,B)}_{(S,f,g)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{Span}(A,B)}((S,f,g),(S,f,g))$$

of
$$\mathsf{Span}(A,B)$$
 at (S,f,g) is defined by
$$\mathrm{id}_{(S,f,g)}^{\mathsf{Span}(A,B)} \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathrm{id}_S;$$

• Composition. The composition map $\circ^{\mathsf{Span}(A,B)}_{R,S,T} \colon \mathsf{Hom}_{\mathsf{Span}(A,B)}(S,T) \times \mathsf{Hom}_{\mathsf{Span}(A,B)}(R,S) \to \mathsf{Hom}_{\mathsf{Span}(A,B)}(R,T)$ of $\mathsf{Span}(A,B)$ at $((R,f_1,g_1),(S,f_2,g_2),(T,f_3,g_3))$ is defined by $\psi \circ^{\mathsf{Span}(A,B)}_{R,S,T} \phi \stackrel{\mathrm{def}}{=} \psi \circ \phi.$

Proposition 2.1.1.3. Let A and B be sets.

1. As a Pullback. We have an isomorphism of categories

 $^8 Picture:$

 $^9 Picture$:

Proof. Item 1, As a Pullback: In detail, the pullback $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}} \mathsf{Sets}_{/B}$ is the category where

- Objects. The objects of $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}} \mathsf{Sets}_{/B}$ consist of pairs ((S, f), (S', g)) of objects of Sets consisting of
 - A pair (S, f) in $Obj(Sets_{/A})$ consisting of a set S and a map $f: S \to A$;
 - A pair (S',g) in $Obj(Sets_{/B})$ consisting of a set S' and a map $g: S \to B$;

such that

$$\underline{\overline{\Xi}(S,f)} = \underline{\overline{\Xi}(S',g)}.$$

Thus the objects of $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}} \mathsf{Sets}_{/B}$ are the same as spans from A to B.

• Morphisms. A morphism of $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}} \mathsf{Sets}_{/B}$ from (S, f, g) to (S', f', g') consists of a pair of morphisms

$$\phi \colon S \to S'$$
$$\psi \colon S \to S'$$

such that the diagrams

such that

$$\underbrace{\overline{\Xi}(\phi)}_{\stackrel{\text{def}}{=}\phi} = \underbrace{\overline{\Xi}(\psi)}_{\stackrel{\text{def}}{=}\psi}.$$

Thus the morphisms of $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}} \mathsf{Sets}_{/B}$ are also the same as morphisms of spans from (S, f, g) to (S, f', g').

• Identities and Composition. The identities and composition of $\mathsf{Sets}_{/A} \times_{\mathsf{Sets}}$ $\mathsf{Sets}_{/B}$ are also the same as those in $\mathsf{Span}(A,B)$.

This finishes the proof.

2.2 The Bicategory of Spans

Definition 2.2.1.1. The **bicategory of spans** is the bicategory Span where

- Objects. The objects of Span are sets;
- Hom-Categories. For each $A, B \in \text{Obj}(\mathsf{Span})$, we have

$$\mathsf{Hom}_{\mathsf{Span}}(A,B) \stackrel{\mathrm{def}}{=} \mathsf{Span}(A,B);$$

• *Identities.* For each $A \in \text{Obj}(\mathsf{Span})$, the unit functor

$$\mathbb{M}_A^{\mathsf{Span}} \colon \mathsf{pt} \to \mathsf{Span}(A,A)$$

of Span at A is the functor picking the span (A, id_A, id_A) :

• Composition. For each $A, B, C \in \text{Obj}(\mathsf{Span})$, the composition bifunctor

$$\circ^{\mathsf{Span}}_{A,B,C} \colon \mathsf{Span}(B,C) \times \mathsf{Span}(A,B) o \mathsf{Span}(A,C)$$

of Span at (A, B, C) is the bifunctor where

- Action on Objects. The composition of two spans

is the span $(R \times_B S, f_1 \circ \operatorname{pr}_1, g_2 \circ \operatorname{pr}_2)$, constructed as in the diagram

- Action on Morphisms. The horizontal composition of 2-morphisms is defined via functoriality of pullbacks: given morphisms of spans

their horizontal composition is the morphism of spans

constructed as in the diagram

• Associators and Unitors. The associator and unitors are defined using the universal property of the pullback.

2.3 The Monoidal Bicategory of Spans

2.4 The Double Category of Spans

Definition 2.4.1.1. The **double category of spans** is the double category $\mathsf{Span}^\mathsf{dbl}$ where

- Objects. The objects of Span^{dbl} are sets;
- Vertical Morphisms. The vertical morphisms of Span^{dbl} are functions $f: A \to B$;
- Horizontal Morphisms. The horizontal morphisms of Span^{dbl} are spans $(S, \phi, \psi) \colon A \to X$;
- 2-Morphisms. A 2-cell

of Span^{dbl} is a morphism of spans from the span

to the span

• Horizontal Identities. The horizontal unit functor

$$\not\Vdash^{\mathsf{Span}^{\mathsf{dbl}}} \colon \left(\mathsf{Span}^{\mathsf{dbl}}\right)_0 \to \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1$$

of $\mathsf{Span}^\mathsf{dbl}$ is the functor where

– Action on Objects. For each $A \in \mathrm{Obj}\Big(\Big(\mathsf{Span}^{\mathsf{dbl}}\Big)_0\Big)$, we have $\mathbb{1}_A \stackrel{\mathrm{def}}{=} (A, \mathrm{id}_A, \mathrm{id}_A)$,

as in the diagram

– Action on Morphisms. For each vertical morphism $f\colon A\to B$ of $\mathsf{Span}^\mathsf{dbl}$, i.e. each map of sets f from A to B, the identity 2-morphism

$$\begin{array}{ccc} A & \stackrel{\mathbb{F}_A}{\longrightarrow} & A \\ \downarrow & & \parallel & \downarrow \\ f & & \mathbb{F}_f & \downarrow f \\ & \mathbb{F}_B & \stackrel{\mathbb{F}_B}{\longrightarrow} & B \end{array}$$

of f is the morphism of spans from

to

given by the isomorphism $A \xrightarrow{\cong} A \times_B B$;

• Vertical Identities. For each $A \in \text{Obj}(\mathsf{Span}^\mathsf{dbl})$, we have

$$\operatorname{id}_A^{\operatorname{\mathsf{Span}}^{\operatorname{\mathsf{dbl}}}} \stackrel{\operatorname{def}}{=} \operatorname{id}_A;$$

• Identity 2-Morphisms. For each horizontal morphism $R\colon A\to B$ of Span^{dbl}, the identity 2-morphism

$$\begin{array}{ccc}
A & \xrightarrow{S} & B \\
\downarrow \operatorname{id}_{A} & & \downarrow \operatorname{id}_{B} \\
\downarrow A & \xrightarrow{S} & B
\end{array}$$

of R is the morphism of spans from

to

given by the isomorphism $S \xrightarrow{\cong} A \times_A S$;

• Horizontal Composition. The horizontal composition functor

$$\odot^{\mathsf{Span}^{\mathsf{dbl}}} \colon \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1 \times_{\left(\mathsf{Span}^{\mathsf{dbl}}\right)_0} \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1 \to \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1$$

of Span^{dbl} is the functor where

- Action on Objects. For each composable pair

$$A \xrightarrow{(R,\phi_R,\psi_R)} B \xrightarrow{(S,\phi_S,\psi_S)} C$$

of horizontal morphisms of Span^{dbl}, we have

$$(S,\phi_S,\psi_S)\odot(R,\phi_R,\psi_R)\stackrel{\mathrm{def}}{=} S\circ^{\mathsf{Span}}_{A,B,C}R,$$

where $S \circ_{A,B,C}^{\mathsf{Span}} R$ is the composition of (R, ϕ_R, ψ_R) and (S, ϕ_S, ψ_S) defined as in Definition 2.2.1.1;

- Action on Morphisms. For each horizontally composable pair

of 2-morphisms of Span^{dbl},

• Vertical Composition of 1-Morphisms. For each composable pair $A \xrightarrow{F} B \xrightarrow{G} C$ of vertical morphisms of $\mathsf{Span}^\mathsf{dbl}$, i.e. maps of sets, we have

$$g \circ^{\mathsf{Span}^{\mathsf{dbl}}} f \stackrel{\text{def}}{=} g \circ f;$$

• Vertical Composition of 2-Morphisms. For each vertically composable pair

$$\begin{array}{cccc}
(R,\phi_R,\psi_R) & & B \xrightarrow{(S,\phi_S,\psi_S)} Y \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
B \xrightarrow{(S,\phi_S,\psi_S)} & & C \xrightarrow{(T,\phi_T,\psi_T)} Z
\end{array}$$

of 2-morphisms of Span^{dbl},

• Associators and Unitors. The associator and unitors of Span^{dbl} are defined using the universal property of the pullback.

2.5 Properties of The Bicategory of Spans

Proposition 2.5.1.1. Let $\lambda = (A \xleftarrow{f} S \xrightarrow{g} B)$ be a span.

- 1. Self-Duality.
- 2. Isomorphisms in Span.

- 3. Equivalences in Span.
- 4. Adjunctions in Span. Let A and B be sets. 10
 - (a) We have a natural bijection

$$\left\{ \begin{array}{c} \text{Adjunctions in Span} \\ \text{from } A \text{ to } B \end{array} \right\} \cong \left\{ \begin{array}{c} \text{Spans } A \xleftarrow{f} S \xrightarrow{g} B \\ \text{from } A \text{ to } B \text{ with} \\ f \text{ an isomorphism} \end{array} \right\}.$$

(b) We have an equivalence of categories

$$\mathsf{MapSpan}(A,B) \stackrel{\mathrm{eq.}}{\cong} \mathsf{Sets}(A,B)_{\mathsf{disc}},$$

where $\mathsf{MapSpan}(A, B)$ is the full subcategory of $\mathsf{Span}(A, B)$ spanned by the spans $A \xleftarrow{f} S \xrightarrow{g} B$ from A to B with f an isomorphism.

(c) We have a biequivalence of bicategories

$$\mathsf{MapSpan} \overset{\scriptscriptstyle{\mathrm{eq.}}}{\cong} \mathsf{Sets}_{\mathsf{bidisc}},$$

where MapSpan is the sub-bicategory of Span whose Hom-categories are given by $\mathsf{MapSpan}(A,B)$.

- 5. Monads in Span.
- 6. Comonads in Span.
- 7. Monomorphisms in Span.
- 8. Epimorphisms in Span.
- 9. Existence of Right Kan Extensions.
- 10. Existence of Right Kan Lifts.
- 11. Closedness.

Proof. Item 1, Self-Duality:

Item 2, Isomorphisms in Span:

Item 3, *Equivalences in* Span:

Item 4, Adjunctions in Span: We first prove Item 4a.

We proceed step by step:

In the literature (e.g. $[\mathbf{ref}]$),...are called maps and denoted by $\mathsf{MapSpan}(A,B)$

1. From Adjunctions in Span to Functions. An adjunction in Span from A to B consists of a pair of spans

together with maps

We claim that these conditions

- 2. From Functions to Adjunctions in Rel.
- 3. Invertibility: From Functions to Adjunctions Back to Functions.
- 4. Invertibility: From Adjunctions to Functions Back to Adjunctions.

We now proceed to the proof of Item 4b. For this, we will construct a functor

$$F \colon \mathsf{Sets}(A,B)_{\mathsf{disc}} \to \mathsf{MapSpan}(A,B)$$

and prove it to be essentially surjective and fully faithful, and thus an equivalence by Categories, ?? of ??. Indeed, given a map $f: A \to B$, let F(f) be the representable span associated to f of Definition 5.1.1.1, and let F send the unique (identity) morphism from f to itself to the identity morphism of F(f) in MapSpan(A, B). We now prove that F is fully faithful and essentially surjective:

1. F Is Fully Faithful: Given maps $f, g: A \Rightarrow B$, we need to show that

$$\operatorname{Hom}_{\mathsf{MapSpan}(A,B)}(F(f),F(g)) = \begin{cases} \operatorname{pt} & \text{if } f = g, \\ \emptyset & \text{otherwise.} \end{cases}$$

Indeed, a morphism from F(f) to F(g) takes the form

From the relations $id_A = id_A \circ \phi$ and $f = g \circ \phi$, we see that $\phi = id_A$, and thus from the relation $f = g \circ \phi$ there is such a morphism iff f = g.

2. F Is Essentially Surjective: Let λ be a span of the form

we claim that $\lambda \cong F(f \circ \phi^{-1})$. Indeed, we have morphisms

inverse to each other in $\mathsf{MapSpan}(A,B)$, and thus $\lambda \cong F(f \circ \phi^{-1})$.

Finally, we prove Item 4c.

Item 5, *Monads in* Span:

Item 6, *Comonads in* Span:

Item 7, Monomorphisms in Span:

Item 8, *Epimorphisms in Span*:

Item 9, Existence of Right Kan Extensions:

Item 10, Existence of Right Kan Lifts:

Item 11, Closedness:

3 Limits of Spans

3.1 tmp2

$$\operatorname{Hom}_{\operatorname{Rel}(A,X)}(\operatorname{Lan}_S(R),T) \cong \operatorname{Hom}_{\operatorname{Rel}(B,X)}(R,T \diamond S)$$

3.2 tmp

- 1. $\operatorname{Lan}_S(R) \subset T$, i.e. if $a \sim_{\operatorname{Lan}_S(R)} x$, then $a \sim_T x$.
- 2. $R \subset T \diamond S$, i.e. if $b \sim_R x$, then there exists some $a \in A$ such that $a \sim_S b$ and $b \sim_T x$.

3.2 tmp

 $\operatorname{Hom}_{\operatorname{Span}(A,X)}\bigl(S\times_BS',K\bigr)\cong\operatorname{Hom}_{\operatorname{Span}(B,X)}\bigl(S',R(K)\bigr)$

3.3 Left Kan Extensions

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

Proposition 3.3.1.1. The left Kan extension

$$\operatorname{Lan}_{\lambda} \colon \operatorname{\mathsf{Span}}(A,X) \to \operatorname{\mathsf{Span}}(B,X)$$

along λ in Span exists and is the functor given on objects by sending a span λ' in $\mathsf{Span}(A,X)$ as in

to the span

$$\operatorname{Lan}_{\lambda}(\lambda') \stackrel{\text{def}}{=} (\operatorname{Lan}_{\lambda}(S'), \operatorname{Lan}_{\lambda}(\phi), \operatorname{Lan}_{\lambda}(\psi)),$$

in $\mathsf{Span}(B,X)$ where

• The set $\operatorname{Lan}_{\lambda}(S')$ is given by

$$\operatorname{Lan}_{\lambda}(S') \stackrel{\text{def}}{=} \Sigma_{g}(S')$$

$$\stackrel{\text{def}}{=} S'$$

where $\Sigma_g(S')$ is the dependent sum of $\phi \colon S' \to A$ along g of Fibred Sets, Definition 2.3.1.1;

- The map $\operatorname{Lan}_{\lambda}(\phi) \colon \operatorname{Lan}_{\lambda}(S') \to B$ is given by $\Sigma_g(\phi)$;
- The map $\operatorname{Lan}_{\lambda}(\psi) \colon \operatorname{Lan}_{\lambda}(S') \to X$ is given by ψ .

3.4 Right Kan Extensions

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

Proposition 3.4.1.1. The right Kan extension

$$\operatorname{Ran}_{\lambda} \colon \operatorname{\mathsf{Span}}(A,X) \to \operatorname{\mathsf{Span}}(B,X)$$

along λ in Span exists and is the functor given on objects by sending a span λ' in Span(A, X) as in

to the span

$$\operatorname{Ran}_{\lambda}(\lambda') \stackrel{\text{def}}{=} (\operatorname{Ran}_{\lambda}(S'), \operatorname{Ran}_{\lambda}(\phi_{S'}), \operatorname{Ran}_{\lambda}(\psi_{S'})),$$

in $\mathsf{Span}(B,X)$ where

• The set $\operatorname{Ran}_{\lambda}(S')$ is given by

$$\operatorname{Ran}_{\lambda}(S') \stackrel{\text{def}}{=} \coprod_{b \in B} \prod_{s \in g^{-1}(b)} \phi_{S'}^{-1}(f(s));$$

• The map $\operatorname{Ran}_{\lambda}(\phi_{S'}) \colon \operatorname{Ran}_{\lambda}(S') \to B$ is given by

$$[\operatorname{Ran}_{\lambda}(\phi_{S'})](b,(s'_s)_{s\in q^{-1}(b)})\stackrel{\text{def}}{=} b;$$

for each $(b, (s'_s)_{s \in g^{-1}(b)}) \in \operatorname{Ran}_{\lambda}(S');$

• The map $\operatorname{Ran}_{\lambda}(\psi_{S'}) \colon \operatorname{Ran}_{\lambda}(S') \to X$ is given by

$$[\operatorname{Ran}_{\lambda}(\psi_{S'})](b,(s'_s)_{s\in g^{-1}(b)}) \stackrel{\text{def}}{=} \psi_{S'}(s'_i)$$

for each $(b, (s'_s)_{s \in g^{-1}(b)}) \in \operatorname{Ran}_{\lambda}(S')$, where the i in s'_i denotes any $s \in g^{-1}(b)$, as we have $\psi_{S'}(s'_i) = \psi_{S'}(s'_j)$ for all $s \in g^{-1}(b)$.¹¹

Proof. \Box

3.5 Right Kan Lifts

(Although right Kan lifts aren't really limits, this is probably the most appropriate to place this section.)

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

Proposition 3.5.1.1. The right Kan lift

$$\operatorname{Rift}_{\lambda} \colon \mathsf{Span}(X, B) \to \mathsf{Span}(X, A)$$

along λ in Span exists and is the functor given on objects by sending a span λ' in Span(X,B) as in

to the span

$$\operatorname{Rift}_{\lambda}(\lambda') \stackrel{\text{def}}{=} (\operatorname{Rift}_{\lambda}(S'), \operatorname{Rift}_{\lambda}(\phi), \operatorname{Rift}_{\lambda}(\psi)),$$

in $\mathsf{Span}(X,A)$ where

• The set $Rift_{\lambda}(S')$ is given by

$$\operatorname{Rift}_{\lambda}(S') \stackrel{\text{def}}{=} \Pi_f(S'),$$

where $\Pi_f(S')$ is the dependent product of $\psi \colon S' \to A$ along f of Fibred Sets, Definition 2.3.1.1;

 $^{^{11} \}mathrm{Indeed}$

- The map $\operatorname{Rift}_{\lambda}(\phi) \colon \operatorname{Rift}_{\lambda}(S') \to X$ is given by ϕ ;
- The map $\operatorname{Rift}_{\lambda}(\psi) \colon \operatorname{Rift}_{\lambda}(S') \to A$ is given by $\Pi_f(\psi)$.

Proof.

4 Colimits of Spans

5 Constructions With Spans

5.1 Representable Spans

Definition 5.1.1.1. Let $f: A \to B$ be a function.

• The representable span associated to f is the span

from A to B.

• The corepresentable span associated to f is the span

from B to A.

5.2 Composition of Spans

Definition 5.2.1.1. The **composition** of two spans

is the span $(R \times_B S, f_1 \circ \operatorname{pr}_1, g_2 \circ \operatorname{pr}_2)$, constructed as in the diagram

5.3 Horizontal Composition of Morphisms of Spans

Definition 5.3.1.1. The **horizontal composition** of a pair of 2-morphisms of spans

is the morphism of spans

constructed as in the diagram

5.4 Properties of Composition of Spans

Proposition 5.4.1.1. Let $\lambda = \left(A \xleftarrow{f} S \xrightarrow{g} B\right)$ be a span.

1. Functoriality.

Proof.

- 5.5 The Inverse of a Span
- 6 Functoriality of Spans
- 6.1 Direct Images
- 6.2 Functoriality of Spans on Powersets

7 Comparison of Spans to Functions and Relations

7.1 Comparison to Functions

Proposition 7.1.1.1. We have a pseudofunctor

$$\iota \colon \mathsf{Sets}_{\mathsf{bidisc}} o \mathsf{Span}$$

from Sets_{bidisc} to Span where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, we have

$$\iota(A) \stackrel{\text{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \text{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, the action on Hom-categories

$$\iota_{A,B} \colon \mathsf{Sets}(A,B)_{\mathsf{disc}} \to \mathsf{Span}(A,B)$$

of ι at (A,B) is the functor defined on objects by sending a function $f\colon A\to B$ to the span

from A to B.

• Strict Unity Constraints. For each $A \in \text{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, the strict unity constraint

$$\iota_A^0 : \mathrm{id}_{\iota(A)} \Longrightarrow \iota(\mathrm{id}_A)$$

of ι at A is given by the identity morphism of spans

$$\begin{array}{c|c}
A & \operatorname{id}_{A} \\
A & \operatorname{id} & A, \\
\operatorname{id}_{A} & \operatorname{id}_{A}
\end{array}$$

as indeed $id_{\iota(A)} = \iota(id_A);$

• Pseudofunctoriality Constraints. For each $A, B, C \in \text{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, each $f \in \mathsf{Hom}_{\mathsf{Sets}_{\mathsf{bidisc}}}(A, B)$, and each $g \in \mathsf{Hom}_{\mathsf{Sets}_{\mathsf{bidisc}}}(B, C)$, the pseudofunctoriality constraint

$$\iota_{q,f}^2 : \iota(g) \circ \iota(f) \Longrightarrow \iota(g \circ f)$$

of ι at (f,g) is the morphism of spans from the span

to the span

given by the isomorphism $A \times_B B \cong A$.

Proof. Omitted. \Box

7.2 Comparison to Relations: From Span to Rel

7.2.1 Relations Associated to Spans

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

Definition 7.2.1.1. The relation associated to λ is the relation

$$S(\lambda): A \to B$$

from A to B defined as follows:

• Viewing relations from A to B as functions $A \times B \to \{\text{true}, \text{false}\}\$, we

define

$$\iota_{A,B}(S)_b^a \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if there exists } x \in S \text{ such} \\ & \text{that } a = f(x) \text{ and } b = g(x), \end{cases}$$

for each $(a, b) \in A \times B$.

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[\iota_{A,B}(S)](a) \stackrel{\text{def}}{=} g(f^{-1}(a))$$

for each $a \in A$.

• Viewing relations from A to B as subsets of $A \times B$, we define

$$\iota_{A,B}(S) \stackrel{\text{def}}{=} \{ (f(x), g(x)) \mid x \in S \}.$$

Proposition 7.2.1.2. Let $\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$ be a span.

- 1. Interaction With Identities.
- 2. Interaction With Composition.
- 3. Interaction With Inverses.

Proof. \Box

7.2.2 The Comparison Functor from Span to Rel

Proposition 7.2.2.1. We have a pseudofunctor

$$\iota \colon \mathsf{Span} \to \mathsf{Rel}$$

from Span to **Rel** where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Span})$, we have

$$\iota(A) \stackrel{\text{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \mathrm{Obj}(\mathsf{Span}),$ the action on Hom-categories

$$\iota_{A,B} \colon \mathsf{Span}(A,B) \to \mathbf{Rel}(A,B)$$

of ι at (A, B) is the functor where

- Action on Objects. Given a span

from A to B, the image

$$\iota_{A,B}(S) \colon A \to B$$

of S by ι is the relation from A to B defined as follows:

* Viewing relations as functions $A \times B \to \{\text{true}, \text{false}\}\$, we define

$$\iota_{A,B}(S)_b^a \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if there exists } x \in S \\ & \text{such that } a = f(x) \\ & \text{and } b = g(x), \\ \text{false} & \text{otherwise} \end{cases}$$

for each $(a, b) \in A \times B$;

* Viewing relations as functions $A \to \mathcal{P}(B)$, we define

$$[\iota_{A,B}(S)](a) \stackrel{\text{def}}{=} g(f^{-1}(a))$$

for each $a \in A$;

* Viewing relations as subsets of $A \times B$, we define

$$\iota_{A,B}(S) \stackrel{\text{def}}{=} \{ (f(x),g(x)) \mid x \in S \}.$$

- Action on Morphisms. Given a morphism of spans

$$\begin{array}{c|c}
R \\
f_R & \downarrow & g_R \\
A & \phi & B, \\
f_S & \downarrow & f_S
\end{array}$$

we have a corresponding inclusion of relations

$$\iota_{A,B}(\phi) \colon \iota_{A,B}(R) \subset \iota_{A,B}(S),$$

since we have $a \sim_{\iota_{A,B}(R)} b$ iff there exists $x \in R$ such that $a = f_R(x)$ and $b = g_R(x)$, in which case we then have

$$a = f_R(x)$$

$$= f_S(\phi(x)),$$

$$b = g_R(x)$$

$$= g_S(\phi(x)),$$

so that $a \sim_{\iota_{A,B}(S)} b$, and thus $\iota_{A,B}(R) \subset \iota_{A,B}(S)$.

Proof. Omitted.

7.3 Comparison to Relations: From Rel to Span

Proposition 7.3.1.1. We have a lax functor

$$\left(\iota,\iota^2,\iota^0\right)\colon \mathbf{Rel} o \mathsf{Span}$$

from Rel to Span where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Span})$, we have

$$\iota(A) \stackrel{\text{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \mathrm{Obj}(\mathsf{Span})$, the action on Hom-categories

$$\iota_{A,B} \colon \mathbf{Rel}(A,B) \to \mathsf{Span}(A,B)$$

of ι at (A,B) is the functor where

- Action on Objects. Given a relation $R: A \to B$ from A to B, we define a span

$$\iota_{A,B}(R) \colon A \to B$$

from A to B by

$$\iota_{A,B}(R) \stackrel{\text{\tiny def}}{=} (R, \upharpoonright \operatorname{pr}_1 R, \upharpoonright \operatorname{pr}_2 R),$$

where $R\subset A\times B$ and $\lceil \operatorname{pr}_1R$ and $\lceil \operatorname{pr}_2R$ are the restriction of the projections

$$\begin{aligned} \operatorname{pr}_1\colon A\times B \to A,\\ \operatorname{pr}_2\colon A\times B \to B \end{aligned}$$

to R;

- Action on Morphisms. Given an inclusion ϕ : $R \subset S$ of relations, we have a corresponding morphism of spans

$$\iota_{A,B}(\phi) : \iota_{A,B}(R) \to \iota_{A,B}(S)$$

as in the diagram

• The Lax Functoriality Constraints. The lax functoriality constraint

$$\iota_{R,S}^2 \colon \iota(S) \circ \iota(R) \Longrightarrow \iota(S \diamond R)$$

of ι at (R,S) is given by the morphism of spans from

to

$$\begin{array}{c|c} S \diamond R \\ & |\operatorname{pr}_1 S \diamond R \\ A \end{array} \qquad C$$

given by the natural inclusion $R \times_B S \hookrightarrow S \diamond R$, since we have

$$R \times_B S = \{((a_R, b_R), (b_S, c_S)) \in R \times S \mid b_R = b_S\};$$

$$S \diamond R = \left\{(a, c) \in A \times C \mid \text{there exists some } b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\right\};$$

• The Lax Unity Constraints. The lax unity constraint 12

$$\iota_A^0 \colon \underbrace{\operatorname{id}_{\iota(A)}}_{(A,\operatorname{id}_A,\operatorname{id}_A)} \Longrightarrow \underbrace{\iota(\chi_A)}_{(\Delta_A,\lceil \operatorname{pr}_1\Delta_A,\lceil \operatorname{pr}_2\Delta_A)}$$

of ι at A is given by the diagonal morphism of A, as in the diagram

Proof. Omitted.

7.4 Comparison to Relations: The Wehrheim-Woodward Construction

7.5 Comparison to Multirelations

Remark 7.5.1.1. The pseudofunctor of Proposition 7.2.2.1 and the lax functor of Proposition 7.3.1.1 fail to be equivalences of bicategories. This happens essentially because a span $(S, f, g): A \to B$ from A to B may relate elements $a \in A$ and $b \in B$ by more than one element, e.g. there could be $s \neq s' \in S$ such that a = f(s) = f(s') and b = g(s) = g(s').

Thus, in a sense, spans may be thought of as "relations with multiplicity". And indeed, if instead of considering relations from A to B, i.e. functions

$$R \colon A \times B \to \{\mathsf{true}, \mathsf{false}\}$$

from $A \times B$ to $\{\text{true}, \text{false}\} \cong \{0, 1\}$, we consider functions

$$R: A \times B \to \mathbb{N} \cup \{\infty\}$$

from $A \times B$ to $\mathbb{N} \cup \{\infty\}$, then we obtain the notion of a **multirelation from** A **to** B, and these turn out to assemble together with sets into a bicategory MRel that is biequivalent to Span; see [some-algebraic-laws-for-spans-and-their-connections-with-multiple of the set of t

¹²Which is in fact strong, as δ_A is an isomorphism.

7.6 Comparison to Relations via Double Categories

Remark 7.6.1.1. There are double functors between the double categories Rel^{dbl} and Span^{dbl} analogous to the functors of Propositions 7.2.2.1 and 7.3.1.1, assembling moreover into a strict-lax adjunction of double functors; see [higher-dimensional-categories].

Appendices

A Other Chapters

Set Theory	14. Internal Categories
1. Sets	Cyclic Stuff
2. Constructions With Sets	15. The Cycle Category
3. Pointed Sets	Cubical Stuff
4. Tensor Products of Pointed Sets	16. The Cube Category
5. Indexed and Fibred Sets	Globular Stuff
	17. The Globe Category
6. Relations	Cellular Stuff
7. Spans	18. The Cell Category
8. Posets	Monoids

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

33. Measurable Spaces

34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes