Probabilistic Modelling of Sequences

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

Department of Electronic Systems NTNU

HT2020

Frame-Based Processing

Sequences in Statistical Terms

Sequences in Statistical Terms

Sequences in Statistical Terms

Timeless sequences

Time sequences

Timeless sequences

Nel mezzo del cammin di nostra vita mi exigiti per una selva oscura, ché la diritta via era smarrita. Ahi quanto a dir qual era è cosa dura esta selva selvasgia e aspra e forte che nel pensier rinova la paura! Tant' è amara che poco è più morte; ma per trattar del ben ch'i' vi trovai, dirò de l'altre cose chi' v'ho scorte. Io non so ben ridir com' i' v'intrai, tant' era pien di sonno a quel punto che la verace via abbandonai.

Historical Perspective

- Hidden Markov Models first studied in the '60s¹²
- applied to ASR in the mid '70s³
- later seen as special case of Bayesian Networks⁴

¹R. Stratonovich. "Conditional Markov Processes". In: *Theory of Probability and its Applications* 5.2 (1960), pp. 156–178.

²L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

³J. Baker. "The DRAGON system—An overview". In: *IEEE Trans. Acoust., Speech, Signal Process.* 23 (1975), pp. 24–29.

⁴J. Pearl. "Bayesian networks: a model of self-activated memory for evidential reasoning". In: *Proceedings of the 7th Conference of the Cognitive Science Society*. University of California, Irvine, Aug. 1985, pp. 329–334.

```
p(x_1,\ldots,x_7)=
    p(x_1)
    p(x_2|x_1)
    p(x_3|x_1,x_2)
    p(x_4|x_1,x_2,x_3)
    p(x_5|x_1,x_2,x_3,x_4)
    p(x_6|x_1,x_2,x_3,x_4,x_5)
    p(x_7|x_1, x_2, x_3, x_4, x_5, x_6)
```



```
p(x_1,\ldots,x_7)=
    p(x_1)
    p(x_2|x_1)
    p(x_3|x_1,x_2)
    p(x_4|x_1,x_2,x_3)
    p(x_5|x_1, x_2, x_3, x_4)
    p(x_6|x_1,x_2,x_3,x_4,x_5)
    p(x_7|x_1, x_2, x_3, x_4, x_5, x_6)
```


$$p(x_1, ..., x_7) =$$

$$p(x_1)$$

$$p(x_2)$$

$$p(x_3)$$

$$p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1, x_3)$$

$$p(x_6|x_4)$$

$$p(x_7|x_4, x_5)$$

$$p(x_1, \dots, x_7) = \prod_{k=1}^K p(x_k | \mathsf{pa}_k)$$

If we observe x_4 ...

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

Tail-to-tail:

 x_6 and x_7 conditionally independent

If we observe x_4 ... d-separation:

Head-to-tail:

 x_2 and x_6 conditionally independent

Tail-to-tail:

 x_6 and x_7 conditionally independent

Head-to-head:

 x_1, x_2 and x_3 dependent (explaining away)

independence assumption (e.g. i.i.d) not satisfactory

$$p(x_1,\ldots,x_N)=p(x_1)p(x_2,\ldots,x_N|x_1)$$

$$p(x_1, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3, \ldots, x_N|x_1, x_2)$$

$$p(x_1, ..., x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdots \cdots p(x_N|x_1, ..., x_{N-1})$$

$$p(x_1, ..., x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdots \cdots p(x_N|x_1, ..., x_{N-1})$$

Most general case, applying chain rule recursively (p(a,b) = p(a)p(b|a))

$$p(x_1, ..., x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdots \cdots p(x_N|x_1, ..., x_{N-1})$$

Grows quadratically with sequence length (N)!!!

First order Markov assumption: $p(x_n|x_1,...,x_{n-1}) \approx p(x_n|x_{n-1})$

$$p(x_1, \dots, x_N) = p(x_1) \prod_{n=2}^{N} p(x_n | x_{n-1})$$

Second order Markov assumption:

$$p(x_1,\ldots,x_N) = p(x_1)p(x_2|x_1)\prod_{n=3}^N p(x_n|x_{n-2},x_{n-1})$$

Third order Markov assumption:

$$p(x_1, \dots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)$$

$$\prod_{n=4}^{N} p(x_n|x_{n-3}, x_{n-2}, x_{n-1})$$

Third order Markov assumption:

$$p(x_1, \dots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)$$

$$\prod_{n=4}^{N} p(x_n|x_{n-3}, x_{n-2}, x_{n-1})$$

Grows quadratically with order!!!

Mixture Models

Adding latent variables z_n

State Space Models

Adding latent variables z_n

State Space Models: Properties

• given z_n , z_{n+1} is independent of z_1,\ldots,z_{n-1} $p(z_{n+1}|z_1,\ldots,z_n)=p(z_{n+1}|z_n)$

State Space Models: Properties

- given z_n , z_{n+1} is independent of z_1, \ldots, z_{n-1} $p(z_{n+1}|z_1, \ldots, z_n) = p(z_{n+1}|z_n)$
- $p(x_{n+1}|x_1,\ldots,x_n)$ does not simplify

State Space Models: Properties

- given z_n , z_{n+1} is independent of z_1, \ldots, z_{n-1} $p(z_{n+1}|z_1, \ldots, z_n) = p(z_{n+1}|z_n)$
- $p(x_{n+1}|x_1,\ldots,x_n)$ does not simplify

We have modelled indefinitely long dependencies with a limited set of parameters!

• Emission: $p(x_n|z_n)$

- Emission: $p(x_n|z_n)$
- Transition: $p(z_n|z_{n-1})$

- Emission: $p(x_n|z_n)$
- Transition: $p(z_n|z_{n-1})$
- Initial: $p(z_1)$

- Emission: $p(x_n|z_n)$
- Transition: $p(z_n|z_{n-1})$
- Initial: $p(z_1)$

State Space Models Instances

- \bullet if z_n are discrete: Hidden Markov Models
- ullet if z_n are continuous: Linear Dynamical Systems

Hidden Markov Models

State space models with discrete z_n

- Emission: $p(x_n|z_n) = p(x_n|z_n, \phi)$ equivalent to Mixture Model
- Transition: $p(z_n|z_{n-1}) = p(z_n|z_{n-1}, A)$
- Initial: $p(z_1) = p(z_1|\pi)$

Hidden Markov Models (HMMs)

Elements:

set of states: S transition probabilities: A(prior probabilities: $\pi($ state to observation probs: $\phi($

$$S = \{s_1, s_2, s_3\}$$

$$A(s_a, s_b) = P(s_b, t | s_a, t - 1)$$

$$\pi(s_a) = P(s_a, t_0)$$

$$\phi(o, s_a) = P(o | s_a)$$

Hidden Markov Models (HMMs)

Left-to-right HMM

Elements:

set of states: $S = \{s_1, s_2, s_3\}$ transition probabilities: $A(s_a, s_b) = P(s_b, t | s_a, t-1)$ prior probabilities: $\pi(s_a) = P(s_a, t_0)$ state to observation probs: $\phi(o, s_a) = P(o | s_a)$

HMMs: Trellis (Lattice)

HMMs: Trellis (Lattice)

A probabilistic perspective: Bayes' rule

$$P(\mathsf{words}|\mathsf{sounds}) = \frac{P(\mathsf{sounds}|\mathsf{words})P(\mathsf{words})}{P(\mathsf{sounds})}$$

- \bullet P(sounds|words) can be estimated from training data and transcriptions
- P(words): a priori probability of the words (Language Model)
- \bullet P(sounds): a priori probability of the sounds (constant, can be ignored)

Probabilistic Modelling

Problem: How do we model P(sounds|words)?

Probabilistic Modelling

Problem: How do we model P(sounds|words)?

Every feature vector (observation at time t) is a continuous stochastic variable (e.g. MFCC)

Stationarity

Problem: speech is not stationary

- we need to model short segments independently
- the fundamental unit can not be the word, but must be shorter
- usually we model three segments for each phoneme

Stationarity

Problem: speech is not stationary

- we need to model short segments independently
- the fundamental unit can not be the word, but must be shorter
- usually we model three segments for each phoneme

Stationarity

Problem: speech is not stationary

- we need to model short segments independently
- the fundamental unit can not be the word, but must be shorter
- usually we model three segments for each phoneme

Local probabilities (frame-wise)

If segment sufficiently short

$$P(\mathsf{sounds}|\mathsf{segment})$$

can be modelled with standard probability distributions

$$\phi_{s_a}(x) = P(x|s_a)$$

Usually Gaussian or Gaussian Mixture

Global Probabilities (utterance)

Problem: How do we combine the different P(sounds|segment) to form P(sounds|words)?

Answer: Hidden Markov Model (HMM)

• what is the probability that the model has generated the sequence of observations? (isolated word recognition)

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

• what is the probability that the model has generated the sequence of observations? (isolated word recognition) forward algorithm

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

- what is the probability that the model has generated the sequence of observations? (isolated word recognition) forward algorithm
- what is the most likely state sequence given the observation sequence? (continuous speech recognition)

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

- what is the probability that the model has generated the sequence of observations? (isolated word recognition) forward algorithm
- what is the most likely state sequence given the observation sequence? (continuous speech recognition) Viterbi algorithm⁵

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

- what is the probability that the model has generated the sequence of observations? (isolated word recognition) forward algorithm
- what is the most likely state sequence given the observation sequence? (continuous speech recognition) Viterbi algorithm⁵
- o how can the model parameters be estimated from examples? (training)

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

- what is the probability that the model has generated the sequence of observations? (isolated word recognition) forward algorithm
- what is the most likely state sequence given the observation sequence? (continuous speech recognition) Viterbi algorithm⁵
- how can the model parameters be estimated from examples? (training) Baum-Welch⁶

⁵A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

⁶L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

Isolated Words Recognition

Compare Likelihoods (forward algorithm)

HMM Inference: Joint Distribution

$$X = \{x_1, \dots, x_N\}$$
$$Z = \{z_1, \dots, z_N\}$$

$$P(X, Z|\theta) = p(z_1|\pi) \left[\prod_{n=2}^{N} p(z_n|z_{n-1}, A) \right] \prod_{m=1}^{N} p(x_m|z_m, \phi)$$

HMM Inference: Joint Distribution

$$X = \{x_1, \dots, x_N\}$$
$$Z = \{z_1, \dots, z_N\}$$

$$P(X, Z|\theta) = p(z_1|\pi) \left[\prod_{n=2}^{N} p(z_n|z_{n-1}, A) \right] \prod_{m=1}^{N} p(x_m|z_m, \phi)$$

HMM Inference: Joint Distribution

$$X = \{x_1, \dots, x_N\}$$
$$Z = \{z_1, \dots, z_N\}$$

$$P(X, Z|\theta) = p(z_1|\pi) \left[\prod_{n=2}^{N} p(z_n|z_{n-1}, A) \right] \prod_{m=1}^{N} p(x_m|z_m, \phi)$$

$$z_2$$

$$x_{n-1}$$

$$x_n$$

HMM Inference: Likelihood Function

marginalise joint distribution over Z:

$$P(X|\theta) = \sum_{Z} p(X, Z|\theta)$$

Problem: there are K^N possible sequences for Z

HMM Likelihood

Very Similar to Template Matching

Same Solution: Dynamic Programming

Solution: Forward algorithm

Instead of AccD[h,k] (Template Matching)

$$\alpha_n(j) \equiv p(x_1, \dots, x_n, z_n = s_j | \theta)$$

At the end, instead of AccD[H,K]:

$$P(X|\theta) = \sum_{i=1}^{M} \alpha_N(i)$$

Forward Probability

Initialization:

$$\alpha_1(j) = \pi_j \phi_j(x_1)$$

Recursion:

$$\alpha_n(j) = \left[\sum_{i=1}^{M} \alpha_{n-1}(i) a_{ij}\right] \phi_j(x_n)$$

Forward Probability

Initialization:

$$\alpha_1(j) = \pi_j \phi_j(x_1)$$

Recursion:

$$\alpha_n(j) = \left[\sum_{i=1}^{M} \alpha_{n-1}(i) a_{ij}\right] \phi_j(x_n)$$

equivalent to sum-product in Bayesian Networks

Backward probability

$$\beta_n(i) \equiv p(x_{n+1}, \dots, x_N | z_n = s_i)$$

Initialization:

$$\beta_N(i) \equiv p(?|z_n = s_i) \equiv 1$$

Recursion:

$$\beta_n(i) = \left[\sum_{j=1}^M a_{ij} \phi_j(x_{n+1}) \beta_{n+1}(j) \right]$$

Find best sequence of states: why?

Find best sequence of states: how?

- Viterbi algorithm⁷
- equivalent to max-sum in Bayesian Networks

⁷A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

Find best sequence of states: how?

- Viterbi algorithm⁷
- equivalent to max-sum in Bayesian Networks

⁷A. J. Viterbi. "Error Bounds for Convolutional Codes and an Asymtotically optimum decoding algorithm". In: *IEEE Trans. Inf. Theory* IT-13 (Apr. 1967), pp. 260–269.

Summary: update rules

Forward algorithm (sum-product):

$$\alpha_n(j) = \left[\sum_{i=1}^M \alpha_{n-1}(i)a_{ij}\right] \phi_j(x_n)$$

Viterbi algorithm (max-sum):

$$V_n(j) = \max_{i=1}^{M} [V_{n-1}(i)a_{ij}] \phi_j(x_n)$$

$$B_n(j) = \arg \max_{i=1}^{M} [V_{n-1}(i)a_{ij}]$$