Practical RL – Week 2

Shvechikov Pavel

Previously in the course

- The MDP formalism
 - State, Action, Reward, next State
- Cross-Entropy Method (CEM)
 - easy to implement, good results
 - rich theoretical background
 - black box
 - no knowledge of environment
 - no knowledge of intermediate rewards

Improve on the CEM \rightarrow dive into the black box

Given dynamics, how to find an optimal policy?

Definition of Markov Decision Process

MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, where

- \bigcirc \mathcal{A} set of actions
- 3 $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \triangle(\mathcal{S})$ state-transition function, giving us $p(s_{t+1} | s_t, a_t)$
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R} \text{reward function,}$ giving us $\mathbb{E}_R \left[R(s_t, a_t) \mid s_t, a_t \right].$

Markov property

$$p(r_t, s_{t+1} | s_0, a_0, r_0, ..., s_t, a_t) = p(r_t, s_{t+1} | s_t, a_t)$$

(next state, expected reward) depend on (previous state, action)

Goal: solve an MDP by finding an optimal policy

- 1. What is the objective?
 - a. Reward: discounting and design
 - b. Expected objective: state- and action-value function
- 2. How to evaluate the objective?
 - a. Bellman expectation equations
- 3. How to improve the objective?
 - a. Bellman optimality equations
- 4. Combine evaluation and improvement:
 - a. Generalized Policy Iteration

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)

Goals and purposes can be thought of as the maximization of the expected value of the cumulative sum of a received scalar signal

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)

Goals and purposes can be thought of as the maximization of the expected value of the cumulative sum of a received scalar signal

Cumulative reward is called a return:

$$G_t \stackrel{\Delta}{=} R_t + R_{t+1} + R_{t+2} + \dots + R_T$$

E.g.: reward in **chess** – value of taken opponent's piece

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)

Goals and purposes can be thought of as the maximization of the expected value of the cumulative sum of a received scalar signal

Cumulative reward is called a return:

end of an episode $G_t \triangleq R_t + R_{t+1} + R_{t+2} + ... + R_T$ immediate reward

E.g.: reward in **chess** – value of taken opponent's piece

E.g.: data center non-stop cooling system

- States temperature measurements
- Actions different fans speed
- R = 0 for exceeding temperature thresholds
- R = +1 for each second system is cool

What could go wrong with such a design?

E.g.: data center non-stop cooling system

- States temperature measurements
- Actions different fans speed
- R = 0 for exceeding temperature thresholds
- R = +1 for each second system is cool

What could go wrong with such a design?

Infinite return for non optimal behaviour!

$$G_t = 1 + 1 + 0 + 1 + 1 + 0 + \dots = \sum_{t=1}^{\infty} R_t = \infty$$

- State position, velocities of joints
- Actions actuator forces to joints
- R = max(0, d(x, B) d(x', B))

What could go wrong with such a design?

- State position, velocities of joints
- Actions actuator forces to joints
- R = max(0, d(x, B) d(x', B))

What could go wrong with such a design?

Positive feedback loop!

Reward discounting

Reward discounting

Get rid of infinite sum by discounting $0 \le \gamma < 1$

$$G_t \stackrel{\triangle}{=} R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 discount factor

The same cake compared to today's one worth

- \gamma \text{ times less tomorrow}
- γ^2 times less the day after tomorrow

 γ will eat it day by day

Discounting makes sums finite

Maximal return for R = +1

$$G_0 = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}$$

γ	0.9	0.95	0.99
$\frac{1}{1-\gamma}$	10	20	100

Discounting makes sums finite

Maximal return for R = +1

γ	0.9	0.95	0.99
$\frac{1}{1-\gamma}$	10	20	100

Any discounting changes optimisation task and its solution!

$$G_0 = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1 - \gamma}$$

Discounting is inherent to humans

- Quasi-hyperbolic $f(t) = \beta \gamma^t$
- Hyperbolic discounting $f(t) = \frac{1}{1 + \beta t}$

Discounting is inherent to humans

- Quasi-hyperbolic $f(t) = \beta \gamma^t$ Hyperbolic discounting $f(t) = \frac{1}{1 + \beta t}$

Mathematical convenience

$$G_t = R_t + \gamma (R_{t+1} + \gamma R_{t+2} + ...)$$

$$= R_t + \gamma G_{t+1}$$
Remember this one!
We will need it later

Discounting is a stationary end-of-effect model

Any action affects (1) immediate reward (2) next state

Discounting is a stationary end-of-effect model

Any action affects (1) immediate reward (2) next state

Action indirectly affects future rewards —

But how long does this effect lasts?

$$G_{0} = R_{0} + \gamma R_{1} + \gamma^{2} R_{2} + \dots + \gamma^{T} R_{T}$$

$$= (1 - \gamma) R_{0}$$

$$+ (1 - \gamma) \gamma (R_{0} + R_{1})$$

$$+ (1 - \gamma) \gamma^{2} (R_{0} + R_{1} + R_{2})$$

$$\cdots$$

$$+ \gamma^{T} \cdot \sum_{t=0}^{T} R_{t}$$

G is expected return under stationary end-of-effect model

Discounting is a stationary end-of-effect model

Any action affects (1) immediate reward (2) next state

Action indirectly affects future rewards

But how long does this effect lasts?

$$G_0 = R_0 + \gamma R_1 + \gamma^2 R_2 + \ldots + \gamma^T R_T$$
 "Effect continuation" probability
$$\begin{array}{c} (1-\gamma)R_0 \\ + (1-\gamma)\gamma(R_0 + R_1) \\ + (1-\gamma)\gamma^2(R_0 + R_1 + R_2) \\ \cdots \\ + \gamma^T \cdot \sum_{t=0}^T R_t \end{array}$$

G is expected return under stationary end-of-effect model

Reward design – don't shift, reward for WHAT

- E.g.: chess value of taken opponent's piece
 - Problem: agent will not have a desire to win!
- E.g.: moving to destination
 - Problem: agent will not bother about the goal!

Reward design – don't shift, reward for WHAT

- E.g.: chess value of taken opponent's piece
 - Problem: agent will not have a desire to win!
- E.g.: moving to destination
 - Problem: agent will not bother about the goal!

Take away: reward only for WHAT, but never for HOW

Reward design – don't shift, reward for WHAT

- E.g.: chess value of taken opponent's piece
 - Problem: agent will not have a desire to win!
- E.g.: moving to destination
 - Problem: agent will not bother about the goal!

Take away: reward only for WHAT, but never for HOW

Take away: do not subtract mean from rewards

Faulty reward functions

- Reward for ball possession in soccer
 - Vibrating near the ball
- Cyclic behaviours

Reward design – scaling, shaping

What transformations do not change optimal policy?

- Reward scaling division by positive constant
 - May be useful in practise for approximate methods

Reward design - scaling, shaping

What transformations do not change optimal policy?

- Reward scaling division by positive constant
 - May be useful in practise for approximate methods
- Reward shaping add a potential-based shaping function F(s, a, s'):

$$R'(s, a, s') = R(s, a, s') + F(s, a, s')$$
$$F(s, a, s') = \gamma \Phi(s') - \Phi(s)$$

Intuition: when no discounting F adds as much as it subtracts from the total return

Ng, A. Y., Harada, D., & Russell, S. (1999, June). Policy invariance under reward transformations: Theory and application to reward shaping. In ICML (Vol. 99, pp. 278-287).

Expected objective

Optimal policy maximizes expected return

$$\mathbb{E}[G_{0}] = \mathbb{E}[R_{0} + \gamma R_{1} + \dots + \gamma^{T} R_{T}]$$

$$= \mathbb{E}_{E,\pi_{\theta}}[G_{0}]$$

$$= \mathbb{E}_{\pi_{\theta}}[G_{0}]$$

$$= \mathbb{E}[G_{0} \mid \pi_{\theta}]$$

$$= \mathbb{E}_{s_{0:T}}[G_{0}]$$

$$= \mathbb{E}_{s_{0}}[\mathbb{E}_{a_{0}|s_{0}}[R_{0} + \mathbb{E}_{s_{1}|s_{0},a_{0}}[\mathbb{E}_{a_{1}|s_{1}}[\gamma R_{1} + \dots]]]]$$

$$= \sum_{t=0}^{T} \mathbb{E}_{(s_{t},a_{t})\sim p_{\theta}}[\gamma^{t} R_{t}]$$

$$= \mathbb{E}_{\tau\sim p_{\theta}(\tau)}[G(\tau)] \qquad \tau \triangleq (s_{0}, a_{0}, s_{1}, \dots, a_{T-1}, s_{T})$$

$$p_{\theta}(\tau) = p(s_{0}) \prod_{t=0}^{T-1} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t})$$

Backup Tree: how to find an optimal policy?

State- and Action-value functions

v(s) is expected return conditional on state:

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi} [G_{t} | S_{t} = s]$$

$$= \mathbb{E}_{\pi} [R_{t} + \gamma G_{t+1} | S_{t} = s]$$

$$= \sum_{a} \pi(a | s) \sum_{r,s'} p(r,s' | s,a) [r + \gamma \mathbb{E}_{\pi} [G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{a} \pi(a | s) \sum_{r,s'} p(r,s' | s,a) [r + \gamma v_{\pi}(s')]$$

v(s) is expected return conditional on state:

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']\right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) \left[r + \gamma v_{\pi}(s')\right]$$

v(s) is expected return conditional on state:

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$
 Environment
$$= \mathbb{E}_{\pi}[R_{t} + \gamma G_{t+1} \mid S_{t} = s]$$
 Stochasticity
$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']\right]$$
 Policy
$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) \left[r + \gamma v_{\pi}(s')\right]$$
 Stochasticity
$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) \left[r + \gamma v_{\pi}(s')\right]$$

v(s) is expected return conditional on state:

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi}[G_t \,|\, S_t = s] \qquad \qquad \text{Environment}$$

$$= \mathbb{E}_{\pi}[R_t + \gamma G_{t+1} \,|\, S_t = s] \qquad \qquad \text{stochasticity}$$

$$= \sum_{a} \pi(a \,|\, s) \sum_{r,s'} p(r,s' \,|\, s,a) \Big[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} | S_{t+1} = s' \right] \Big]$$
 Policy stochasticity
$$= \sum_{a} \pi(a \,|\, s) \sum_{r,s'} p(r,s' \,|\, s,a) \left[r + \gamma \underline{v_{\pi}(s')} \right]$$
 By definition

Action-value function q(s, a)

Is expected return conditional on state and action:

Intuition: value of following policy π after committing action **a** in state **s**

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} [G_t | S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} [R_t + \gamma G_{t+1} | S_t = s, A_t = a]$$

$$= \sum_{r, s'} p(r, s' | s, a) [r + \gamma \mathbb{E}_{\pi} [G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{r, s'} p(r, s' | s, a) [r + \gamma v_{\pi}(s')]$$

Action-value function q(s, a)

Is expected return conditional on state and action:

Intuition: value of following policy π after committing action **a** in state **s**

No policy stochasticity at
$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t \, | \, S_t = s, \boxed{A_t = a} \right]$$
 first step $= \mathbb{E}_{\pi} \left[R_t + \gamma G_{t+1} \, | \, S_t = s, A_t = a \right]$ $= \sum_{r,s'} p(r,s' \, | \, s,a) \left[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} | S_{t+1} = s' \right] \right]$ $= \sum_{r,s'} p(r,s' \, | \, s,a) \left[r + \gamma v_{\pi}(s') \right]$

Relations between v(s) and q(s,a)

We already know how to write q(s,a) in terms of v(s)

$$q_{\pi}(s, a) = \sum_{r, s'} p(r, s' \mid s, a) \left[r + \gamma \boldsymbol{v_{\pi}(s')} \right]$$

What about v(s) in terms of q(s,a)?

Relations between v(s) and q(s,a)

We already know how to write q(s,a) in terms of v(s)

$$q_{\pi}(s, a) = \sum_{r, s'} p(r, s' \mid s, a) \left[r + \gamma \mathbf{v}_{\pi}(s') \right]$$

What about v(s) in terms of q(s,a)?

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_{\pi}(s')]$$
$$= \sum_{a} \pi(a \mid s) q_{\pi}(s,a)$$

So, we could now write q(s, a) in terms of q(s,a)!

$$q_{\pi}(s, a) = \sum_{r, s'} p(r, s' \mid s, a) \left[r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \right]$$

Bellman expectation equations

Bellman expectation equations

For v(s):

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_{\pi}(s')]$$

= $\mathbb{E}_{\pi} [R_t + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$

For q(s, a):

$$q_{\pi}(s, a) = \sum_{r, s'} p(r, s' | s, a) [r + \gamma v_{\pi}(s')]$$

$$= \sum_{r, s'} p(r, s' | s, a) [r + \gamma \sum_{a'} \pi(a' | s') q_{\pi}(s', a')]$$

What do we gonna do with value functions?

Already know

- Return, value- and action-value functions
- Bellman equations assess policy performance

Optimal policy makes

best actions in each possible state

But how to know which policy is better?

How to compare them?

Bellman optimality equations

Optimal policy is the one with the largest v(s)

We could compare policies on the basis of v(s)

$$\pi \geq \pi' \quad \Leftrightarrow \quad v_{\pi}(s) \geq v_{\pi'}(s) \quad \forall \ s$$

Best policy π_* is better or equal to any other policy

Use optimal policy from s

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

In any finite MDP there is always at least one deterministic optimal policy

Commit action a, and afterwards use optimal policy

Bellman optimality equation for v(s)

Bellman optimality equation for v(s)

Bellman optimality equation for v(s)

Bellman expectation equation for v(s)

Bellman optimality equation for v_{*}(s)

$$v_*(s) = \max_{a} \sum_{r,s'} p(r,s' | s, a) [r + \gamma v_*(s')]$$

= $\max_{a} \mathbb{E} [R_t + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$

Bellman optimality equation for q(s,a)

Bellman optimality equation for q(s,a)

Bellman optimality equation for q(s,a)

Bellman expectation equation for q(s,a)

Bellman optimality equation for q_{*}(s, a)

$$q_*(s, a) = \mathbb{E}\left[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$
$$= \sum_{r, s'} p(r, s' \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]$$

Bellman equations: operator view

Bellman equations: operator view

$$[\mathcal{T}^{\pi}V](s) = \mathbb{E}_{r,s'|s,a=\pi(s)} [r + \gamma V(s')]$$

$$[\mathcal{T}^{\pi}Q](s,a) = \mathbb{E}_{r,s'|s,a} \left[r + \gamma \mathbb{E}_{a' \sim \pi(s')} \left[Q(s',a') \right] \right]$$

$$[\mathcal{T}V](s) = \max_{a} \mathbb{E}_{r,s'|s,a} [r + \gamma V(s')]$$

$$[\mathcal{T}Q](s,a) = \mathbb{E}_{r,s'|s,a} \left[r + \gamma \max_{a'} Q(s',a') \right]$$

Bellman equations: operator view

Bellman expectation equation for v(s)

$$[\mathcal{T}^{\pi}V](s) = \mathbb{E}_{r,s'|s,a=\pi(s)} [r + \gamma V(s')]$$

Bellman expectation equation for q(s,a)

$$[\mathcal{T}^{\pi}Q](s,a) = \mathbb{E}_{r,s'|s,a} \left[r + \gamma \mathbb{E}_{a' \sim \pi(s')} \left[Q(s',a') \right] \right]$$

Bellman optimality equation for v_{*}(s)

$$[\mathcal{T}V](s) = \max_{a} \mathbb{E}_{r,s'|s,a} \left[r + \gamma V(s') \right]$$

Bellman optimality equation for q_{*}(s,a)

$$[\mathcal{T}Q](s,a) = \mathbb{E}_{r,s'|s,a} \left[r + \gamma \max_{a'} Q(s',a') \right]$$

Bellman equations are contractions

Contraction: $d(\mathcal{T}(v), \mathcal{T}(u)) \leq \gamma d(v, u), \quad 0 \leq \gamma < 1$

Operator:
$$[\mathcal{T}v](s) = \max_{a} \mathbb{E}_{r,s'|s,a} [r + \gamma v(s')]$$

 $=\gamma ||v-u||_{\infty}$

Denote $a^* = \arg \max_a \mathbb{E}_{r,s'|s,a} [r + \gamma v(s')]$, then, for any s:

$$[\mathcal{T}v](s) - [\mathcal{T}u](s) \leq r(s, a^*) + \gamma \mathbb{E}_{s'|s, a^*} [v(s')] - r(s, a^*) - \gamma \mathbb{E}_{s'|s, a^*} [u(s')]$$

$$= \gamma \mathbb{E}_{s'|s, a^*} [v(s') - u(s')]$$

$$\leq \gamma \mathbb{E}_{s'|s, a^*} [|v(s') - u(s')|]$$

$$\leq \gamma \max_{s'} |v(s') - u(s')|$$

Hence, taking max over s:

$$||\mathcal{T}v - \mathcal{T}u||_{\infty} \le \gamma ||v - u||_{\infty}$$

Generalized Policy Iteration:

- 1. Policy Evaluation
- 2. Policy Improvement

Policy evaluation

Policy evaluation: motivation

Policy evaluation is also a called prediction problem:

predict value function for a particular policy.

Bellman expectation equation

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_{\pi}(s')]$$

= $\mathbb{E}_{\pi} [R_t + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$

is basically a system of linear equations where

of unknowns = # of equations = # of states

Policy evaluation: algorithm

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in \mathbb{S}^+
Repeat
                                             Bellman expectation
   \Delta \leftarrow 0
                                                equation for v(s)
   For each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) |r + \gamma V(s')|
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

Policy improvement

Policy improvement: an idea

Once we know what is v(s) for a particular policy

We could improve it by acting greedily w.r.t. q(s, a)!

$$\pi'(s) \leftarrow \underset{\boldsymbol{a}}{\operatorname{arg\,max}} \ \overbrace{\sum_{r,s'} p(r,s'\,|\,s,\underset{\boldsymbol{a}}{\boldsymbol{a}}) \left[r + \gamma v_{\pi}(s')\right]}^{q_{\pi}(s,a)}$$

This procedure is guaranteed to produce a better policy!

Policy improvement: an idea

Once we know what is v(s) for a particular policy

We could improve it by acting greedily w.r.t. q(s, a)!

$$\pi'(s) \leftarrow \underset{a}{\operatorname{arg\,max}} \ \sum_{r,s'} \underbrace{p(r,s'\,|\,s,\underset{a}{\boldsymbol{a}})\left[r + \gamma v_{\pi}(s')\right]}_{}$$

This procedure is guaranteed to produce a better policy!

if
$$q_\pi(s,\pi'(s)) \geq v_\pi(s)$$
 for all states then $v_{\pi'}(s) \geq v_\pi(s)$ meaning that $\pi' \geq \pi$

Policy improvement: convergence

If new policy after improvement

$$\pi'(s) \leftarrow \underset{a}{\operatorname{arg\,max}} \underbrace{\sum_{r,s'} p(r,s' \mid s,\underset{a}{a}) \left[r + \gamma v_{\pi}(s')\right]}^{q_{\pi}(s,a)}$$

is the same as the old one

$$\pi' = \pi \quad \rightarrow \quad v_{\pi'} = v_{\pi}$$

then it is optimal, since it satisfies:

$$v_{\pi'}(s) = \max_{a} \sum_{r,s'} p(r,s' \mid s, a) [r + \gamma v_{\pi}(s')]$$

Policy improvement: convergence

If new policy after improvement

$$\pi'(s) \leftarrow \underset{a}{\operatorname{arg\,max}} \sum_{r,s'} \underbrace{p(r,s' \mid s, \mathbf{a})}_{p(r,s' \mid s, \mathbf{a})} \underbrace{[r + \gamma v_{\pi}(s')]}_{p(r,s' \mid s, \mathbf{a})}$$

is the same as the old one

$$\pi' = \pi \quad \rightarrow \quad v_{\pi'} = v_{\pi}$$

then it is optimal, since it satisfies:

Bellman optimality equation

$$v_{\pi'}(s) = \max_{a} \sum_{r,s'} p(r,s' \mid s, a) [r + \gamma v_{\pi}(s')]$$

Determining optimal policy from $v_*(s)$, $q_*(s,a)$

If q* is known – how to recover the optimal policy?

$$\pi_*(s) \leftarrow \underset{a}{\operatorname{arg max}} q_*(s, \underset{a}{a})$$

If v* is known – how to recover the optimal policy?

Determining optimal policy from $v_*(s)$, $q_*(s,a)$

If q* is known – how to recover the optimal policy?

$$\pi_*(s) \leftarrow \underset{a}{\operatorname{arg\,max}} q_*(s, \underset{a}{a})$$

If v* is known – how to recover the optimal policy?

$$\pi_*(s) \leftarrow \underset{a}{\operatorname{arg\,max}} \underbrace{\sum_{r,s'} p(r,s' \mid s, \underbrace{a})}_{p(r,s' \mid s, \underbrace{a})} \underbrace{[r + \gamma v_*(s')]}_{p(r,s' \mid s, \underbrace{a})}$$

Unknown model dynamics → unable to recover optimal policy from v*

Precise evaluation is excessive

Value function

0 iteration

	0.000	0.000	0.000
0.000	0.000	0.000	0.000
0.000	0.000	0.000	

Greedy policy

0 iteration

Value function

0 iteration

	0.000	0.000	0.000
0.000	0.000	0.000	0.000
0.000	0.000	0.000	

5 iteration

	-7.598	-4.986	-3.127
-7.816	-5.834	-2.963	0.543
-6.115	-4.186	0.332	

9999 iteration

	-13.827	-13.289	-11.318
-14.768	-14.193	-10.722	-5.346
-16.111	-13.454	-6.059	

Greedy policy

0 iteration

5 iteration

		+	+
•		†	+
•	+	+	

9999 iteration

		+	+
•		+	+
*	4	+	

Roadmap

Now we know what is

- Policy evaluation (based on Bellman expectation eq)
- Policy improvement (based on Bellman optimality eq)

The finishing touches:

how to combine them to obtain optimal policy?

Generalized Policy Iteration

Policy evaluation

Policy improvement

Generalized policy iteration

- 1. Evaluate given policy
- 2. Improve policy by acting greedily w.r.t. to its value function

Policy evaluation

Policy improvement

Generalized policy iteration

- 1. Evaluate given policy
- 2. Improve policy by acting greedily w.r.t. to its value function

Robustness:

- No dependence on initialization
- No need in complete policy evaluation (states / converg.)
- No need in exhaustive update (states)
 - Example of update robustness:
 - Update only one state at a time
 - in a random direction
 - that is correct only in a expectation

Policy evaluation

Policy improvement

Generalized policy iteration

- 1. Evaluate given policy
- 2. Improve policy by acting greedily w.r.t. to its value function

Policy evaluation

Policy improvement

Policy iteration

- 1. Evaluate policy until convergence (with some tolerance)
- 2. Improve policy

Value iteration

- 1. Evaluate policy only with single iteration
- 2. Improve policy

Policy iteration

Policy iteration: scheme

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Bellman expectation

equation for v(s)

q(s,a)

Value iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$) Bellman optimality Repeat equation for v(s) $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

Output a deterministic policy,
$$\pi \approx \pi_*$$
, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Value iteration (VI) vs. Policy iteration (PI)

- VI is faster per iteration O(|A||S|²)
- VI requires many iterations
- PI is slower per iteration $O(|A||S|^2 + |S|^3)$
- PI requires few iterations

No silver bullet → experiment with # of steps spent in policy evaluation phase to find the best