Fonction d'autocorrélation partielle

Modèles ARMA et techniques d'identification

Motivations pour l'autocorrélation partielle

On a vu que pour une moyenne mobile d'ordre q, ou un MA(q), que la fonction d'autocorrélation s'annule à partir du délai q:

$$ho(h) = 0, |h| > q.$$

- ► C'est donc un *outil d'identification*.
- On aimerait un outil similaire pour les modèles AR(p).

Motivations pour l'autocorrélation partielle: modèle AR(1)

- ► Considérons le modèle: $X_t = \phi X_{t-1} + w_t$.
- ▶ On a vu que $\gamma(h) = \phi^h \gamma(0)$, pour $h \ge 1$.
- ▶ En particulier, X_t et X_{t-2} sont corrélés: $\gamma(2) = \phi^2 \gamma(0)$.
- ► En fait: $cov(X_t, X_{t-2}) = cov(\phi X_{t-1} + w_t, X_{t-2})$
- On sait que X_{t-1} et X_{t-2} sont corrélés mais w_t et X_{t-2} ne sont pas corrélés.
- La corrélation entre X_t et X_{t-2} survient compte tenu de la dépendance avec X_{t-1} .
- L'idée principale vise à retirer la dépendance avec la variable intermédiaire X_{t-1} .

Motivations pour l'autocorrélation partielle: modèle AR(1) (suite)

- $\blacktriangleright \text{ Rappel: } X_t = \phi X_{t-1} + w_t.$
- On rappelle également que X_t et X_{t-2} sont corrélés: $\gamma(2) = \phi^2 \gamma(0)$.
- ▶ Regardons la corrélation entre $X_t \phi X_{t-1}$ et $X_{t-2} \phi X_{t-1}$:
 - $ightharpoonup \cot(X_t \phi X_{t-1}, X_{t-2} \phi X_{t-1}) = \cot(w_t, X_{t-2} \phi X_{t-1})$
- ► On constate que $cov(X_t \phi X_{t-1}, X_{t-2} \phi X_{t-1}) = 0$
- Non va voir que ϕX_{t-1} peut être interprété comme la meilleure prévision de X_t en fonction de X_{t-1} (ou comme la meilleure prévision de X_{t-2} en fonction de X_{t-1}).
- Reprenant une interprétation tirée de la régression: $X_t \phi X_{t-1}$ est ce qui reste dans X_t une fois que l'effet de X_{t-1} est retiré.

Définition de l'autocorrélation partielle

Considérons $P(X_h | X_{h-1}, ..., X_1)$ la régression de X_h sur l'ensemble $\{X_{h-1}, ..., X_1\}$:

$$P(X_h|X_{h-1},...,X_1) = \beta_1 X_{h-1} + \cdots + \beta_{h-1} X_1$$

▶ De même, considérons $P(X_0 | X_1, ..., X_{h-1})$ la régression de X_0 sur l'ensemble $\{X_1, ..., X_{h-1}\}$:

$$P(X_0|X_1,...,X_{h-1}) = \alpha_1 X_1 + \cdots + \alpha_{h-1} X_{h-1}$$

- Remarques:
- ▶ 1) Il faudra discuter comment trouver les coefficients $\beta_1, ..., \beta_{h-1}$ et $\alpha_1, ..., \alpha_{h-1}$.
- ▶ 2) L'ouvrage de référence note $X_h^{h-1} = P(X_h | X_{h-1}, ..., X_1)$. La notation utilisée ici est comme dans Brockwell & Davis et permet une utilisation des propriétés des opérateurs de prévision.

Définition de l'autocorrélation partielle

Définition formelle: Soit $\{X_t\}$ un processus stationnaire. L'autocorrélation partielle d'ordre h, notée ϕ_{hh} , est définie comme:

$$\phi_{11} = \operatorname{corr}(X_1, X_0) = \rho(1);$$

$$\phi_{hh} = \operatorname{corr}(X_h - P(X_h | X_{h-1}, \dots, X_1), X_0 - P(X_0 | X_1, \dots, X_{h-1})), h \ge 2$$

- Remarques:
 - ▶ 1) Les écarts (ou résidus; ou erreurs de prévisions) $X_h P(X_h|X_{h-1}, ..., X_1)$ et $X_0 P(X_0|X_1, ..., X_{h-1})$ sont non corrélées avec les variables intermédiaires $X_1, ..., X_{h-1}$; ce sera montré plus tard.
 - ▶ 2) La définition fait du sens car dans le cas d'un processus Gaussien, c'està-dire si $\{X_t\}$ est Gaussien, alors l'autocorrélation partielle telle que définie précédemment est en fait le coefficient de corrélation de la distribution conditionnelle:
 - (X_h) $|X_{h-1}, ..., X_1$. Autrement dit: $\phi_{hh} = \text{corr}(X_h, X_0 | X_{h-1}, ..., X_1)$.

Exemple: AR(1), $X_t = \phi X_{t-1} + w_t$

- ▶ Ainsi selon la définition $\phi_{11} = \rho(1) = \phi$.
- Pour calculer ϕ_{22} , on fait une régression de X_2 sur X_1 . On aura $P(X_2|X_1)=\beta X_1$.
- ▶ Pour trouver β , on minimise le critère $E\{(X_2 X_2)\}$

Exemple: AR(1), $X_t = \phi X_{t-1} + w_t$ (suite)

- Pour trouver α , on procède de même et on note qu'en raison de la stationnarité, des similitudes apparaissent:
- $\text{Or } f_2(\alpha) = E\{(X_0 \alpha X_1)^2\} = EX_0^2 2\alpha E(X_0 X_1) + \alpha^2 EX_1^2 = \gamma(0) 2\alpha\gamma(1) + \alpha^2\gamma(0).$
- ► On dérive on égale à 0: $f_2'(\beta) = -2\gamma(1) + 2\alpha\gamma(0) \Rightarrow \alpha = \frac{\gamma(1)}{\gamma(0)} = \rho(1) = \phi$.
- ► On trouve donc que $\phi_{22} = \text{cor}(X_2 \phi X_1, X_0 \phi X_1) = \text{cor}(w_2, X_0 \phi X_1) = 0$.
- ▶ On va voir qu'en fait, pour un AR(p), toutes les autocorrélations partielles ϕ_{hh} sont nulles pour $h \ge p+1$.