DIFFERENCIÁLSZÁMÍTÁS

I. Differenciálhatóság

1.
$$f(x) = \begin{cases} x^3 & , x \le 1 \\ ax + b & , x > 1 \end{cases}$$

Határozza meg a és b értékét, amelyre f folytonos és differenciálható az értelmezési tartományán.

2.
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 Határozza meg az f függvény deriváltját.
3.
$$f(x) = \begin{cases} x^4 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 Hol folytonos a derivált függvény?

3.
$$f(x) = \begin{cases} x^4 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 Hol folytonos a derivált függvény?

4.
$$f(x) = x \arctan \frac{1}{x}$$
, $x \neq 0$ és $f(0) = 0$.

Határozza meg a derivált függvényt.

5. Legyen
$$f(x) = \sqrt{2x-3}$$
. $f'(2) = ?$

II. Deriváltak meghatározása a differenciálási szabályok segítségével

Határozza meg az f deriváltját, ahol

1.
$$f(x) = \frac{\sin(3x+2)}{\sqrt{1+x^2}}$$
 2. $f(x) = e^{\cos x} \cdot (x\sqrt{x} + 1/x^4)$ 3. $f(x) = \ln^2(5x+6)$ 4. $f(x) = \sqrt{\arcsin\frac{1}{x}}$ 5. $f(x) = 3^{5x+2} \cdot tg^3(1+x^2)$ 6. $f(x) = \log_3(1+shx)$ 7. $f(x) = x^x$ 8. $f(x) = (1+x)^{\sin x}$ 9. $f(x) = (1+chx)^{2+3x}$

4.
$$f(x) = \sqrt{\arcsin \frac{1}{x}}$$
 5. $f(x) = 3^{5x+2} \cdot tg^3 (1 + x^2)$ 6. $f(x) = \log_3 (1 + shx)$

7.
$$f(x) = x^x$$
 8. $f(x) = (1+x)^{\sin x}$ 9. $f(x) = (1+chx)^{2+3x}$

III. Igazolja az alábbi egyenlőtlenségeket

1.
$$\sqrt{1+x}\langle 1+x/2, x>0$$
 2. $arctgx\langle x, x>0$

3.
$$\ln x \langle x-1, x>1$$
 4. $e^x \rangle 1 + x + x^2 / 2, x>0$

1.
$$\sqrt{1+x}\langle 1+x/2, x>0$$
 2. $arctgx\langle x, x>0$ 3. $\ln x\langle x-1, x>1$ 4. $e^x\rangle 1+x+x^2/2, x>0$ 5. $x-\frac{x^3}{6} \le \sin x \le x, x\ge 0$ 6. $arctgx\ge x-\frac{x^3}{3}, x\ge 0$

IV. Számolja ki az alábbi határértékeket

1.
$$\lim_{x \to 0} \frac{\sin x - x}{2x^3}$$
 2. $\lim_{x \to +\infty} \frac{2x + \sin x}{x + 3\sin x}$ 3. $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$ 4. $\lim_{x \to +\infty} x \operatorname{arctg} \frac{1}{x}$ 5. $\lim_{x \to 0} x e^{1/x}$ 6. $\lim_{x \to 0+} x^2 \ln x$

4.
$$\lim_{x \to +\infty} x \arctan \frac{1}{x}$$
 5. $\lim_{x \to 0} x e^{1/x}$ 6. $\lim_{x \to 0+} x^2 \ln x$

7.
$$\lim_{x \to +\infty} \frac{\ln x}{x^2}$$

8.
$$\lim_{x\to 0} (\cos x)^{1/x^2}$$

9.
$$\lim_{x\to 0} (1+shx)^{1/x}$$

V. Ábrázolja az alábbi függvényeket

1.
$$f(x) = x^5 - 5x^3$$

2.
$$f(x) = x^2 - 2\ln x$$

2.
$$f(x) = x^2 - 2\ln x$$
 3. $f(x) = \frac{x}{(x-1)^2}$

4.
$$f(x) = \frac{x^2}{(x-1)^2}$$
 5. $f(x) = \frac{x^3}{(x-1)^2}$ 6. $f(x) = \frac{1-\ln x}{x^2}$

5.
$$f(x) = \frac{x^3}{(x-1)^2}$$

6.
$$f(x) = \frac{1 - \ln x}{x^2}$$

7.
$$f(x) = (x-6)e^{-x}$$

8.
$$f(x) = e^{1/x}$$

9.
$$f(x) = xe^{1/x}$$

$$10. \ f(x) = x^2 \ln x$$

a) Ábrázolja a függvényt.

b) Adja meg az $x^2 \ln x = k$ egyenlet megoldásainak a számát.

c) Adjon meg olyan intervallumokat, amelyeken létezik inverz függvény.

11.
$$f(x) = xe^{-x}$$

a) Ábrázolja a függvényt.

b) Adjon olyan intervallumokat, amelyeken létezik inverz függvény.

c) Határozza meg a függvény maximumát , minimumát – ha léteznek- a [0,5] intervallumon,

a $[0,+\infty)$ intervallumon és a $(0,+\infty)$ intervallumon.