Communication Networks II

Streaming Media

Prof. Dr.-Ing. **Ralf Steinmetz** KOM - Multimedia Communications Lab

Overview

- 1 Basics
 - 1.1 Motivation
 - 1.2 Traditional Approach to Access Media Content
 - 1.3 Streaming Approach to Access Media Content
- 2 Streaming Media
 - 2.1 Classification of Streaming Approaches
 - 2.2 Streaming Applications
- 3 HTTP Streaming
 - 3.1 Steps in HTTP Streaming
 - 3.2 Streaming in HTML5
- **4 HTTP Live Streaming**
 - 4.1 Interaction Between Client and Server
 - **4.2 HTTP Live Streaming Playlist**
- **5 P2P Streaming**
- 6 Flash Streaming

1 Basics

Big Date ...

Forecast: Video & Streaming

Source: http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html#~overview,

1.1 Motivation

Big data ..

Mu	٧٠	T·E		
SI decimal prefixes		Binary	IEC binary prefixes	
Name	Value	usage	Name	Value
(Symbol)			(Symbol)	
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰
See also: Multiples of bits · Orders of magnitude of data				

Source: http://en.wikipedia.org/wiki/Exabyte

Motivation

By 2015 ca. 3 billion Internet users

By 2015 ca. 15 billion global network "connections"

- fixed and mobile personal devices
- machine-to-machine "connections"

By 2015, Total monthly traffic ca. 80.5 EB

By 2015, more than 80% of the traffic → video traffic

Source: http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html#%7Eforecast

1.2 Traditional Approach to Access Media Content

Situation and Problem:

- Phase 1: media content to be downloaded completely (before)
- Phase 2: watching it
- User has to wait a long time

1.3 Streaming Approach to Access Media Content

Advantages:

- Playback starts as soon as playout buffer is filled with data (1 10 sec)
- Continuous stream of data

Steps for Streaming Media

Compress audio stream using an audio codec

MP3, Ogg Vorbis, or AAC

Compress video stream using a video codec

■ H.264, MPEG-4 or V8

Assemble encoded audio and video streams in a container bitstream

■ FLV, WebM, ASF or ISMA

Deliver bitstream from a streaming server to client via transport protocol

RTP or TCP or UDP

Streaming client may interact with the streaming server using a control protocol

HTTP or RTSP

2 Streaming Media

Streaming:

- Continuous flow of media data
 - from sender
 - to receiver(s)
- Client starts playback directly after couple of seconds (1-10s)
- Server sends data with speed:
 - prefetching_factor
 - X * media_bit_rate
 - Usually prefetching_factor
 - $X = \sim 2$

Two basic types of streaming:

On-demand-streaming

- Complete media already available at the source
- Spooling possible
- Unicast-based communication

Live-streaming

- Data generated in real-time
- No spooling possible
- Multicast-based communication possible

2.1 Classification of Streaming Approaches

Type of streaming

- Video on Demand VoD
- Live-Streaming

Streaming protocol

- HTTP
- RTSP
- Flash Streaming

Data delivery

- UDP
- TCP

Distribution

- Client/Server
- P2P-Streaming

Type of Media

- Audio
- Video

Client / Device

- PC
- Mobile Device
- Set-Top-Box

Alternatives for the Delivery of Streaming Data

Via UDP with constant sending rate = playback speed

- Client directly starts playback of media data
- Drawbacks: buffer underrun possible
- Packet loss possible
 - → retransmission at application layer (if possible)

Via UDP with buffer time of 2-5s

- To compensate jitter and delay in transmission
- Packet loss possible
 - → retransmission at application layer (if possible)

Via TCP

- To transmit data as fast as possible
- Retransmission of data done by TCP → better QoE for user
- Starvation possible due to in order delivery of data
 → underrun of playout buffer

2.2 Streaming Applications

Mixed-Media Websites

- HTML websites with media content
 - E.g.: news sites: Spiegel.de, CNN.com

Online Media Libraries

- Video / Audio Archives
 - E.g.: ZDF-mediathek
- Copyright protected content

Video Portals

- User generated content
 - E.g.: YouTube.com, MyVideo.de

Internet Radio

- Shoutcast.com
- Phonostar

Internet Video Stores

- Flat rate
 - E.g. Amazon prime
- Pay-per view
 - E.g.: videoload.de

IP-TV

- Via Set-Top-Box
 - E.g.: T-Home Entertain

Most visited Websites of the World

www.KOM.tu-darmstadt.de

Google

Facebook

?

Example YouTube

Video platform for exchanging videos

History

- Founded by Chad Hurley, Steve Chen und Jawed Karim
 - in 2005
- Bought by Google
 - in 2006
 - for 1.3 billion EUR

Data - amount

- More than 1 billion unique users visit YouTube each month
- Over 6 billion hours of video are watched each month on YouTube
 - that's almost an hour for every person on Earth, and
 - 50% more than last year
- 100 hours of video are uploaded to YouTube every minute
- 70% of YouTube traffic comes from outside the US

YouTube is localized in 56 countries and soacross: 61 Janguages typress_statistics Source: http://de.wikipedia.org/wiki/YouTube#Statistik

Alexa traffic ranking

In late 2014

- Ranked #3
- Third most visited website in the world
- Producing ~10% of the world's data traffic in the Internet

Techniques used

- Apache Web Server / MySQL
- H.264 / Flash-Video / HTML 5Video

3 HTTP Streaming

Delivery of media stream via HTTP

3.1 Steps in HTTP Streaming

Properties:

Delivery of media stream via HTTP

- Split up media content into a set of chunks of equal size
- Request video stream chunk by chunk

Cheap streaming alternative

- No dedicated streaming server required
- No problems with NATs because of the usage of port 80

Stream played within browser plugin

Different representations of same video content

to be kept in separate files

Media data delivered via TCP

using the open HTTP connection

Steps in HTTP Streaming

User clicks on link

- → 1. request metadata
- → 2. metadata-file send back

Browser determines suitable application based on content type

- → start corresponding player
- → 3. handover metadata-file

Media Player sends HTTP-GET message

→ 4. to receive media content in response

3.2 Streaming in HTML5

Since version 5 HTML supports streaming of media content

- Added <video> tag
- Additional optional fields

No further plugin required,

codec integration in browser needed

```
<video controls="controls">
  <source src="movie.mp4" type="video/mp4" />
  <source src="movie.ogg" type="video/ogg" />
  <source src="movie.webm" type="video/webm" />
Your browser does not support the video tag.
  </video>
```

Attribute	Value	Description	
autoplay	autoplay	If present, then the video will start playing as soon as it is ready	
controls	controls	If present, controls will be displayed, such as a play button	
height	pixels	Sets the height of the video player	
loop	Іоор	If present, the video will start over again, every time it is finished	
muted	muted	Specifies that the audio output of the video should be muted	
poster	URL	Specifies the URL of an image representing the video	
preload	auto, metadata, none	Specifies whether or not the video should be loaded when the page loads	
src	URL	Specifies the URL of the video file	
width	pixels	Sets the width of the video player	

4 HTTP Live Streaming

Problem:

Normal HTTP streaming not suitable for Live Streaming

- Data rate cannot be adjusted to meet requirements of devices
 - → might lead to starving peers
 - → no automatic fallback
- Quality level has to be selected manually at the beginning
- Codec / parameter change requires to restart the streaming

Solution:

Adaptive streaming solution over HTTP

- Developed by Apple for iOS-Streaming
- Works with HTML4 and 5

Idea:

To break overall stream into a sequence of small HTTP-based file downloads

- client may select from a number of alternate streams
 - containing the same content
- same material encoded at a variety of data rates
- adapt stream to the available data rate
- start of streaming session
 - download an extended M3U
 - M3U: format of data for a playlist containing the metadata
- All streams transmitted as MPEG-2 transport stream

4.1 Interaction Between Client and Server

4.2 HTTP Live Streaming Playlist

Extends current playlist format (m3u)

Now playlists should end with *.m3u8

Specifies a set of new tags:

- EXT-X-TARGETDURATION
 - approx. duration of next media file
- EXT-X- MEDIA-SEQUENCE
 - unique sequence number
- EXT-X-KEY
 - information to decrypt the media (if necessary)
- EXT-X-PROGRAM-DATE-TIME
 - associates the beginning of the next media file with an absolute date/time
- EXT-X-ALLOW-CACHE
 - indicates whether the client may cache downloaded media files for later replay
- EXT-X-ENDLIST
 - End of Playlist
- EXT-X-STREAM-INF
 - next URI in the Playlist file identifies another Playlist file

```
#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://a.de/hq/0001.ts
#EXTINF:10,
http://a.de/hq/0002.ts
...
#EXT-X-ENDLIST

HQ.m3u8
```

EXT-X-STREAM-INF Tag

General notation:

#EXT-X-STREAM-INF:[attribute=value][,attribute=value]* <URI>

Following attributes are allowed:

- BANDWIDTH=<n>
 - Max bandwidth of the video
- PROGRAM-ID=<i>
 - Program needed to play the media content
- CODECS="[format][,format]*,
 - The format of each media sample
 - Each media file must be

HTTP Live Streaming Playlist Example


```
#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=256000
http://a.de/hq/video1.m3u8
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=100000
http://a.de/lq/video1.m3u8
#EXT-X-ENDLIST

Main.m3u8
```

```
#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://a.de/hq/0001.ts
#EXTINF:10,
http://a.de/hq/0002.ts
...
#EXT-X-ENDLIST

HQ.m3u8
```

```
#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://a.de/lq/0001.ts
#EXTINF:10,
http://a.de/lq/0002.ts
...
#EXT-X-ENDLIST
LQ.m3u8
```

5 P2P Streaming

P2P video streaming has become

- increasingly popular approach for streaming (live) content
- many receivers, similar to IPTV

Some P2P and overlay basics needed ...

■ → see separate section

Two approaches for P2P video streaming

- Tree-based overlay
 - Push content delivery
 - Single or multiple tree
- Mesh-shaped overlay
 - Pull content delivery (swarming)
 - Like BitTorrent with modified chunk selection

Research issues

- Streaming topology
- Scalable video codecs (more bandwidth, better quality)

6 Flash Streaming

Additional Real-Time Messaging Protocol (RTMP) used for communication between

- Flash-Player and Flash-Server
- Transport of media content done like in HTTP Streaming
- Enables adaptive streaming like RTP / RTCP

Advantages over HTTP-Streaming

- Better support for live streaming
- Browser-independent due to the use as a plugin
- Support for user interactions
- Embedded audio- and video codecs

Drawbacks:

- Flash Plugin needs to be installed
- Proprietary (Adobe) but specification publicly available since 2008
- Today, Flash-Streaming is a de-facto standard
- In 2009:
 - 98% of the Internet users have Flash installed
 - 80% of all Internet videos are based on Flash

Flash Video - FLV

Container format developed by Adobe

Audio Tags

- Audio-Stream
- Codecs: MP3, Speex, Nellymoser, G.711, AAC (MP4), PCM
- Up to 44 kHz, 16 Bit

Video Tags

- Video-Stream
- Codecs: On2 VP6, AVC (H.264), Screen Video, Sorensen H.263

Data Tags (Script)

Flash ActionScript

Meta Data

duration, width, height, videodatarate, framerate

Representation within FLV file

FLV file contains different representations of the media content

Different bitrate, codec

Selection of the representation via HTTP

Usually via some AJAX mechanism

```
<encodings>
<tvpe1>
<filename>48817 180x100 VP6 388.flv</filename>
<fileitem>4f41dcbf-69a2-47d2-9f57
8a53249ac7a 180x100 VP6 388.flv</fileitem>
<codec>VP6</codec>
<totalbitrate>388</totalbitrate>
<averagebitrate>384</averagebitrate>
<videobitrate>260</videobitrate>
<audiobitrate>128</audiobitrate>
<duration>116</duration>
<framerate>25.0</framerate>
</type1>
<type2>
</type9>
<encodings>
```

Flash Streaming Session (YouTube)

