LINEAR ALGEBRA. LECTURE 3

Transposes, permutations, symmetric matrices

In this lecture we introduce vector spaces and their subspaces.

Row exchanges

What if there are row exchanges? In other words, what happens if there's a zero in a factor position. To swap two rows, we multiply on the left by a permutation matrix. For example,

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \updownarrow$$

swaps the first and second rows of a 3x3 matrix. You can get it by changing first and second rows in the identity matrix. You also can easy check out that the inverse of any permutation matrix P is $P^{-1} = P^{T}$.

There are n! different ways to permute the rows of an $n \times n$ matrix (including the permutation that leaves all rows fixed) so there are n! permutation matrices. These matrices form a multiplicative group.

Permutations

Multiplication by a permutation matrix P swaps the rows of a matrix; when applying the method of elimination we use permutation matrices to move zeros out of pivot positions. Our factorization A = LU then becomes PA = LU, where P is a permutation matrix which reorders any number of rows of A. Recall that $P^{-1} = P^{T}$, i.e. that $P^{T}P = I$.

If P swaps the rows of a matrix how to swap the columns of a matrix. Let's take the matrix $(PA)^T = A^T P^T$. We know that the matrix $(PA)^T$ swaps the columns of matrix A. So, to swap the columns of a matrix we need to multiply it on the Identity matrix with the same swapped columns at the right.

Transposes

When we take the transpose of a matrix, its rows become columns and its columns become rows. If we denote the entry in row i column j of matrix A by A_{ij} , then we can describe A^T by: $A_{ii}^T = A_{ji}$. For example:

$$\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{bmatrix}$$

Symmetric Matrices

A matrix A is *symmetric* if $A^T = A$. Given any matrix R (not necessarily square) the product $R^T R$ is always symmetric, because $\left(R^T R\right)^T = R^T \left(R^T\right)^T = R^T R$. (Note that $\left(R^T\right)^T = R$.). RR^T is also symmetric, but it is different from $R^T R$. Most scientific problems that start with a rectangular matrix R end up with $R^T R$ or RR^T or both.

Vector spaces

Elimination can simplify, one entry at a time, the linear system Ax = b. Fortunately it also simplifies the theory. The basic questions of *existence* and *uniqueness* — Is there one solution, or no solution, or an infinity of solutions — are much easier to answer after elimination, we need to devote one more section to those questions, to find every solution for an m by n system. Then that circle of ideas will be complete.

We can add vectors and multiply them by numbers, which means we can discuss *linear* combinations of vectors. These combinations follow the rules of a vector space. One such vector space is \mathbb{R}^2 , the set of all vectors with exactly two real number components. We depict the vector $\{a,b\}$ by drawing an arrow from the origin to the point (a,b) which is a units to the right of the origin and b units above it, and we call \mathbb{R}^2 the "x - y plane". Another example of a space is \mathbb{R}^n , the set of vectors (columns) with n real number components.

Closure

The collection of vectors with exactly two *positive* real valued components is *not* a vector space. The sum of any two vectors in that collection is again in the collection, but multiplying any vector by, say, -5, gives a vector that's not in the collection. We say that this collection of positive vectors is *closed* under addition but not under multiplication.

If a collection of vectors is closed under linear combinations (i.e. under addition and multiplication by any real numbers), and if multiplication and addition behave in a reasonable way, then we call that collection a *vector space*.

Subspaces

A vector space that is contained inside of another vector space is called a *subspace* of that space. For example, take any non-zero vector V in \mathbf{R}^2 . Then the set of all vectors cV, where c is a real number, forms a subspace of \mathbf{R}^2 . This collection of vectors describes a line through $\{0,0\}$ in \mathbf{R}^2 and is closed under addition.

Definition. A *subspace* of a vector space is a nonempty subset that satisfies the requirements for a vector space: *Linear combinations stay in the subspace*.

- (i) If we add any vectors x and y in the subspace, x+y is in the subspace.
- (ii) If we multiply any vector x in the subspace by any scalar c, cx is in the subspace.

A line in \mathbf{R}^2 that does not pass through the origin is *not* a subspace of \mathbf{R}^2 . Multiplying any vector on that line by 0 gives the zero vector, which does not lie on the line. Every subspace must contain the zero vector because vector spaces are closed under multiplication.

The subspaces of \mathbf{R}^2 are:

- 1. all of \mathbf{R}^2 ,
- 2. any line through $\{0,0\}$ and
- 3. the zero vector alone (Z).

The subspaces of \mathbf{R}^3 are:

- 1. all of \mathbf{R}^3 ,
- 2. any plane through the origin,
- 3. any line through the origin, and
- 4. the zero vector alone (Z).

Column space and nullspace

A vector space is a collection of vectors which is closed under linear combinations. In other words, for any two vectors V and W in the space and any two real numbers c and d, the vector cV+dW is also in the vector space. A subspace is a vector space contained inside a vector space. A plane P containing $\{0,0,0\}$ and a line L containing $\{0,0,0\}$ are both subspaces of \mathbf{R}^3 . The union $P \cup L$ of those two subspaces is generally not a subspace, because the sum of a vector in P and a vector in L is probably not contained in $P \cup L$. The intersection $S \cap T$ of two subspaces S and T is a subspace. To prove this, use the fact that both S and T are closed under linear combinations to show that their intersection is closed under linear combinations.

Column space

Given a matrix A with columns in \mathbf{R}^3 , these columns and all their linear combinations form a

subspace of \mathbf{R}^3 . This is the *column space* C(A). If $A = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}$ the column space of A is the

plane through the origin in
$$\mathbf{R}^3$$
 containing vectors $\begin{bmatrix} 1\\2\\4 \end{bmatrix}$ and $\begin{bmatrix} 3\\3\\1 \end{bmatrix}$.

Our next task will be to understand the equation Ax = b in terms of subspaces and the column space of A.

Column space of A

The column space of a matrix A (mxn) contains all linear combinations of the columns of A. It is a subspace of R^m . With m > n we have more equations than unknowns in Ax = b and usually there will be no solution. The system will be solvable only for a very "thin" subset of all possible b's. One way of describing this thin subset is so simple that it is easy to overlook. The system Ax = b is solvable if and only if the vector b can be expressed as a combination of the columns of A. Then b is in the column space.

Solving Ax = b

Given a matrix A, for what vectors b does Ax = b has a solution x?

Let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$

Then Ax = b does not have a solution for every choice of b because solving Ax = b is equivalent to solving four linear equations in three unknowns. If there is a solution x to Ax = b, then b

must be a linear combination of the columns of A. Only three columns cannot fill the entire four dimensional vector space — any vectors b cannot be expressed as linear combinations of columns of A.

Big question: what b's allow Ax = b to be solved?

A useful approach is to choose x and find the vector b = Ax corresponding to that solution. The components of x are just the coefficients in a linear combination of columns of A. The system of linear equations Ax = b is *solvable* exactly when b is a vector in the *column space* of A.

For our example matrix A, what can we say about the column space of A? Are the columns of A independent? In other words, does each column contribute something new to the subspace? The third column of A is the sum of the first two columns, so does not add anything to the subspace. The column space of our matrix A is a two dimensional subspace \mathbf{R}^2 of \mathbf{R}^4 .

Nullspace of A

The *nullspace* of a matrix A is the collection of all solutions $x = \{x_1, x_2, x_3\}$ to the equation Ax = 0. The column space of the matrix in our example was a \mathbf{R}^2 subspace of \mathbf{R}^4 . The nullspace of A is a subspace of \mathbf{R}^3 . To see that it's a vector space, check that any sum or multiple of solutions to Ax = 0 is also a solution: $A(x_1+x_2) = Ax_1 + Ax_2 = 0 + 0 = 0$ and A(cx) = cAx = 0. In the example:

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

the nullspace N(A) consists of all multiples of $c\{1,1,-1\}=\{c,c,-c\}$; column 1 plus column 2 minus column 3 equals the zero vector. The nullspace of A is the line in in \mathbf{R}^3 of all points $x_1 = c$, $x_2 = c$, $x_3 = -c$. (The line goes through the origin, as any subspace must.) We want to be able, for any system Ax = b, to find C(A) and N(A): all attainable right-hand sides b and all solutions to Ax = 0.

The vectors b are in the column space and the vectors x are in the nullspace. We shall compute the dimensions of those subspaces and a convenient set of vectors to generate them.

Other values of b

The solutions to the equation:

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

do not form a subspace. The zero vector is not a solution to this equation. The set of solutions forms a line in \mathbf{R}^3 that passes through the points $\{1,0,0\}$ and $\{0,-1,1\}$ but not $\{0,0,0\}$.