

Grundlagen der Programmierung

Grenzen von Algorithmen:

Berechenbarkeit Abzählbarkeit

- 1. Identifizieren des Problems
- 2. Formulieren des Problems
- 3. Entwurf des Algorithmus
- 4. Implementierung des Algorithmus
- 5. Anwendung des Algorithmus

→ Problemlösung

Sind alle Probleme algorithmisch lösbar?

Behauptung:

Nein: sogar die meisten Probleme sind **nicht** algorithmisch lösbar.

- Die meisten Funktionen sind nicht (algorithmisch) berechenbar.
- Es gibt (deutlich) mehr Funktionen als Algorithmen.
- Mehr?
 Es gibt unendlich viele Funktionen und Algorithmen.
 ???

Unendlichkeitsbegriffe

 Es gibt in der Mathematik verschiedene "Grade" der Unendlichkeit.

■ Es gibt (nur) abzählbar unendlich viele Algorithmen.

■ Es gibt (aber) überabzählbar viele Funktionen.

Joiversital, Poladani

Abzählbar unendliche Mengen

■ Eine Menge M ist abzählbar unendlich, wenn sie gleichmächtig zur Menge $\mathbb N$ der natürlichen Zahlen ist.

- Zwei Mengen A und B heißen gleichmächtig, A ~B, wenn es eine eineindeutige Abbildung von A auf B (also eine Bijektion) gibt.
 - jedes Element von A wird abgebildet (DB: A)
 - jedes Element von B kommt als Bild vor (WB: B)
 - 1-1-Abbildung

- Die Gleichmächtigkeit ist eine Äquivalenzrelation.
 - reflexiv: $A \sim A$ mit f = id
 - transitiv: Wenn $A \sim B$ mit f_1 und $B \sim C$ mit f_2
 - dann $A \sim C$ mit $f_2 \circ f_1$
 - symmetrisch: Wenn $A \sim B$ mit f
 - dann $A \sim B$ mit f^{-1}

- Die Menge N der natürlichen Zahlen ist abzählbar unendlich.
- lacktriangle Die Menge $\mathbb Z$ der ganzen Zahlen ist abzählbar unendlich.

$$f(n) = \begin{cases} 2n & falls \ n \ge 0 \\ -2n-1 & falls \ n < 0 \end{cases}$$

➤ Die Vereinigung zweier abzählbar unendlicher Mengen ist abzählbar unendlich.

 Die Menge Q⁺ der positiven gebrochenen Zahlen ist abzählbar unendlich.

Das kartesische Produkt zweier abzählbar unendlicher Mengen ist abzählbar unendlich.

- Die Menge Q der rationalen Zahlen ist abzählbar unendlich.
 - Q⁺ ist abzählbar unendlich
 - Q⁻ ist abzählbar unendlich
 - Vereinigung zweier abzählbar unendlichen Mengen ist abzählbar unendlich.
 - \rightarrow Es existiert eine Bijektion $g: \mathbb{Q}^+ \cup \mathbb{Q}^- \longrightarrow \mathbb{N}$
 - Die rationale Zahl 0 muss noch abgebildet werden.

→
$$f(0) = 0$$
; $f(n) = g(n)+1$ für alle $n > 0$

Überabzählbarkeit

- Die Menge \mathbb{R} der reellen Zahlen ist **überabzählbar** unendlich (nicht abzählbar unendlich).
 - Reelle Zahlen sind unendliche Dezimalbrüche (ohne Neuner-Periode).
 - Beweis *indirekt*:

Annahme: \mathbb{R} ist abzählbar unendlich.

Dann gibt es eine Bijektion von ℝ auf ℕ.
 Beschränken uns auf das Einheitsintervall (0; 1):

Es gibt $F: (0; 1) \rightarrow \mathbb{N}$ und somit eine Anordnung der Elemente aus (0; 1): $x_0, x_1, x_2, x_3, x_4, x_5, ...$

Cantors Diagonalisierungsverfahren

Seien die Zahlen aus dem reellen Intervall (0; 1) wie folgt angeordnet:

$$x_0 = 0$$
, $a_{00} a_{01} a_{02} a_{03} a_{04} a_{05} ...$
 $x_1 = 0$, $a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} ...$
 $x_2 = 0$, $a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} ...$
 $x_3 = 0$, $a_{30} a_{31} a_{32} a_{33} a_{34} a_{35} ...$
 $x_4 = 0$, $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45} ...$
 $x_5 = 0$, $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55} ...$

Betrachten nun die Zahl

$$b = 0$$
, $b_0 b_1 b_2 b_3 b_4 b_5 ...$

$$mit b_n = \begin{cases} 1 & falls \ a_{nn} = 0 \\ 0 & falls \ a_{nn} > 0 \end{cases}$$

$$b \neq x_n$$
 für alle $n \geq 0$

→ Widerspruch, da $b \in (0; 1)$

Wir wollten zeigen:

1. Es gibt (nur) abzählbar unendlich viele Algorithmen.

2. Es gibt (aber) überabzählbar viele Funktionen.

Universitation of the state of

Abzählen aller Algorithmen

- Algorithmen sind repräsentiert durch einen Text.
 - Pseudocode
 - Python-Code
 - **-** ...
- Jeder Text ist eine endliche Zeichenkette (ein Wort).
 - Besteht aus ASCII-Zeichen oder Unicode-Zeichen, ...
 (inkl. Leerzeichen, Tabulator, Zeilenumbruch, ...)
 - Buchstaben des Wortes aus einem endlichen Alphabet.
 - Länge des Wortes ist endlich.
 - Es gibt mⁿ Wörter der Länge n über einem Alphabet mit m Buchstaben.

Universita,

Abzählen aller Algorithmen

- Algorithmen sind repräsentiert durch einen Text.
- Es gibt *m*ⁿ Wörter der Länge *n* über einem Alphabet mit *m* Buchstaben.
- Anordnung aller Wörter:
 - zuerst das leere Wort, dann alle Wörter der Länge 1, dann der Länge 2, 3, ... (Ordnen der Länge nach)
 - Wörter gleicher Länge werden alphabetisch geordnet.
- Somit existiert auch eine Anordnung aller Texte, die Algorithmen repräsentieren.
- Die Menge dieser Texte (damit aller Algorithmen) ist abzählbar unendlich.

Überabzählbar viele Funktionen

- Betrachten Menge P aller Funktionen von N in {0,1}.
- Annahme: P ist abzählbar unendlich. Dann existiert eine Bijektion $F: P \to \mathbb{N}$ mit $F^{-1}(n) = f_n$ Betrachten die Matrix aller $a_{nk} = f_n(k)$:

Fazit

 Die meisten Funktionen sind nicht algorithmisch berechenbar.

Frage:

Gibt es eine (in der Informatik interessante) Funktion, die nicht algorithmisch berechenbar ist?