Machine learning Coursework: MATLAB code PDF

Read CSV file & check missing value

```
%read CSV file
filename = "water_potability.csv";
tbl = readtable(filename,'TextType','String');
TF_checkmissing = sum(ismissing(tbl))
```

TF_checkmissing = 1×10 491 0 0 0 781 0 0 162 0 0

Impute mean value in the missing row

```
% 1.) Fill missing with 0
%T1 = fillmissing(tbl, 'constant',0)
% 2.) Remove missing value
%T2 = rmmissing(tbl);
%Find mean in each feature before filling
% T3 = rmmissing(tbl);
% func = @mean;
% xx = varfun(func,T3)
% 3.) Fill missing with mean value
A = fillmissing(tbl, 'constant', 7.0860, 'DataVariables', {'ph'});
B = fillmissing(A,'constant',333.22 ,'DataVariables',{'Sulfate'});
T_mean = fillmissing(B,'constant', 66.401 ,'DataVariables',{'Trihalomethanes'});
%Split Data into two sets Train(80) and Test(20)
tb=T mean;
hpartition = cvpartition(size(tb,1), 'Holdout',0.2); % Nonstratified partition
% Extract indices for training and test
trainId = training(hpartition);
testId = test(hpartition);
% Use Indices to parition the matrix
trainData = tb(trainId,:);
testData = tb(testId,:);
X train = trainData(:,1:9);
y_train = trainData(:,"Potability");
X_test=testData(:,1:9);
y_test=testData{:,"Potability"};
size(X_train)
```

```
ans = 1 \times 2
2621 9
```

```
% Standardized Data into same scale
```

```
X_train= normalize(X_train);
X_test = normalize(X_test);
X_train
```

 $X_{train} = 2621 \times 9$ table

. . .

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity
1	0.0041	0.2613	-0.1464	0.1051	0.9684	1.6899
2	0.7023	0.8501	-0.2473	1.3540	-0.0103	-0.0984
3	0.8523	0.5499	-0.0060	0.5849	0.6459	-0.7777
4	1.3868	-0.4628	-0.4681	-0.3713	-0.6504	-0.3463
5	-1.0310	-0.2433	0.7639	0.2597	-0.1917	-1.7939
6	2.1667	1.5757	0.7640	0.2399	1.6657	-1.7548
7	1.0722	0.2148	-0.9608	-1.6252	-0.8396	0.5889
8	0.0041	-2.3534	-0.8907	0.4237	-1.8008	-0.4572
9	0.1934	-0.9371	1.1876	0.2634	-0.1932	-0.0153
10	0.0274	-1.2054	-0.3821	-2.2301	-1.4210	-0.9685
11	0.0041	-1.4042	0.6018	-0.1869	-0.9476	-0.5752
12	0.2868	0.2751	0.7226	-1.3031	-0.0103	0.2212
13	-0.5050	-0.2914	2.1729	1.5776	0.8567	1.1061
14	-0.0195	0.4488	1.0192	1.8716	-0.0103	-1.3683

Decision Tree model

Properties, Methods

```
accuracy= 1- kfoldLoss(mdl)
```

```
accuracy = 0.5769
```

%% code from MATLAB Control Depth or "Leafiness": https://www.mathworks.com/help/stats %We know that adjust MinLeafSize can improve model accuracy

Fitctree has 3 hyperparameter to control tree depth MaxNumSplits, MinLeafSize, or MinParentSize. We will optimise only MaxNumSplits and MinLeafSize.

Decision tree after tuning parameter

Using two technique for opimise hyperparameters : manual by using for loop and auto OptimizeHyperparameters method from MATLAB

1).hyperparameter optimise by using for loop

```
leafs = [1:2:100]; %MinLeafSize
```

```
np = [1:2:100]; %MaxNumsplit
rng('default')
N = numel(leafs);
NN= numel(np);
err = [];
for n=1:N
    for m=1:NN
         t = fitctree(X_train,y_train,'CrossVal','On',...
              'MaxNumSplits',np(m),'MinLeafSize',leafs(n));
              err(n,m) = kfoldLoss(t);
    end
end
[minValue,I] = min(err(:));
[I_row, I_col] = ind2sub(size(err),I)
I_row = 2
I col = 29
t = fitctree(X_train,y_train,'CrossVal','On', 'MaxNumSplits',I_row,'MinLeafSize',I_col
t =
  {\tt ClassificationPartitionedModel}
   CrossValidatedModel: 'Tree'
        PredictorNames: {'ph'
                             'Hardness' 'Solids' 'Chloramines' 'Sulfate' 'Conductivity' 'Organic_
          ResponseName: 'Potability'
       NumObservations: 2621
                KFold: 10
             Partition: [1×1 cvpartition]
            ClassNames: [0 1]
        ScoreTransform: 'none'
  Properties, Methods
modelLosses = kfoldLoss(t,'mode','individual')
modelLosses = 10 \times 1
   0.3817
   0.3840
   0.3817
   0.4046
   0.3855
   0.3817
   0.3969
   0.3740
   0.3740
   0.3779
y_predict= predict(t.Trained{1},X_train);
y_train_check= y_train{:,:};
confusion_score(y_train_check,y_predict)
precision = 0.7837
recall = 0.5183
```


2). Using auto hyperparameter optimise

optimize hyperparameters automatically : reference from MATLAB https://www.mathworks.com/help/stats/fitctree.html

MDL = fitctree(X_train,y_train,'OptimizeHyperparameters',{'MaxNumSplits','MinLeafSize'

====== Iter	======= Eval	======================================	======================================	========= BestSoFar	======================================	======================================	MaxNumSplits
 	result		runtime	(observed)	(estim.) 		
1 1	Best	0.3926	0.10083	0.3926	0.3926	455	2
2	Best	0.3739	0.15599	0.3739	0.37485	1	33
j 3 j	Accept	0.39565	0.098913	0.3739	0.3739	232	90
4	Accept	0.40671	0.12241	0.3739	0.37576	3	1317
j 5 j	Accept	0.37543	0.079641	0.3739	0.3745	4	33
6	Best	0.37314	0.075918	0.37314	0.37315	1	35
7	Best	0.37047	0.080732	0.37047	0.37049	1	43
8	Best	0.37009	0.096136	0.37009	0.37009 j	1	77
j 9 j	Accept	0.37505	0.07912	0.37009	0.37009 j	2	60
i 10 i	Accept	0.37467	0.074828	0.37009	0.37009 j	10	10
11	Best	0.36551	0.085221	0.36551	0.36551	18	24
12	Accept	0.37734	0.088526	0.36551	0.36551	32	17
i 13 i	Accept	0.38039	0.074075	0.36551	0.37251	13	38
14	Accept	0.36932	0.065718	0.36551	0.37141	1	17
i 15 i	Accept	0.36971	0.069109	0.36551	0.37119	1	16
16	Accept	0.372	0.063523	0.36551	0.37133	1	15
17	Accept	0.38115	0.091081	0.36551	0.37067	1	1
i 18 i	Accept	0.3926	0.03869	0.36551	0.37097	1276	2555
19	Accept	0.3678	0.075644	0.36551	0.36561	2	17

20	Accept	0.37123	0.067575	0.36551 	0.36972 	6 	22 	
Iter	Eval result	Objective 	Objective runtime	BestSoFar (observed)	BestSoFar (estim.)	MinLeafSize	MaxNumSplits	
21	Accept	0.36704	0.12075	0.36551	0.36887	3	18	ĺ
22	Accept	0.36704	0.06394	0.36551	0.36552	4	18	ĺ
23	Accept	0.39527	0.071506	0.36551	0.36561	67	25	Ĺ
24	Accept	0.37657	0.070255	0.36551	0.36923	14	19	ĺ
25	Accept	0.37619	0.060382	0.36551	0.37012	3	12	ĺ
26	Accept	0.38115	0.044251	0.36551	0.37013	27	1	ĺ
27	Accept	0.40099	0.071128	0.36551	0.37012	64	2609	ĺ
28	Accept	0.3926	0.040593	0.36551	0.37013	1305	337	Ĺ
29	Accept	0.3926	0.035674	0.36551	0.37013	1302	1	ĺ
30	Accept	0.3926	0.036778	0.36551	0.37014	1303	18	1

Objective function model

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30 Total elapsed time: 15.8905 seconds

Total objective function evaluation time: 2.2989

Best observed feasible point:

MinLeafSize **MaxNumSplits**

18 24

Observed objective function value = 0.36551 Estimated objective function value = 0.37723 Function evaluation time = 0.085221

Best estimated feasible point (according to models):

MinLeafSize **MaxNumSplits**

> 2 17

Estimated objective function value = 0.37014 Estimated function evaluation time = 0.075801 MDL =

 ${\tt ClassificationTree}$

PredictorNames: {'ph' 'Hardness' 'Solids' 'Chloramines' 'Sulfate' 'Conductivi

ResponseName: 'Potability'

CategoricalPredictors: []

ClassNames: [0 1] ScoreTransform: 'none' NumObservations: 2621

HyperparameterOptimizationResults: [1x1 BayesianOptimization]

Properties, Methods

```
y_predict= predict(MDL,X_train);
y_train_check= y_train{:,:};
confusion_score(y_train_check,y_predict)
```

precision = 0.6845
recall = 0.5710
f1_score = 0.6226
Accuracy = 0.6532

%performance of Decisioin tree on test dataset y_predict = predict(t.Trained{1},X_test); confusion_score(y_test,y_predict)

precision = 0.6765
recall = 0.5124
f1_score = 0.5831
Accuracy = 0.6275


```
% ROC curve Decision tree
[y_predict,scores] = predict(t.Trained{1},X_test);
size(scores);
rocObj_DT = rocmetrics(y_test,scores,t.Trained{1}.ClassNames);
rocObj_DT.AUC;
figure
plot(rocObj_DT,ClassNames=t.Trained{1}.ClassNames(1))
```


Random Forest model

Can use both TreeBagger or fitcensemble to produce Random forest model

```
bag = TreeBagger(100, X_train, y_train, 'method', 'classification')
bag =
  TreeBagger
Ensemble with 100 bagged decision trees:
                   Training X:
                                           [2621x9]
                   Training Y:
                                          [2621x1]
                       Method:
                                     classification
                NumPredictors:
                                                 3
        NumPredictorsToSample:
                  MinLeafSize:
                                                 1
                InBagFraction:
                                                 1
        SampleWithReplacement:
                                                 1
         ComputeOOBPrediction:
                                                 0
 ComputeOOBPredictorImportance:
                                                 0
                                                []
                    Proximity:
                                           101
                                                          '1'
                   ClassNames:
  Properties, Methods
y_predict= predict(bag,X_train);
y_predict = str2double(y_predict);
y_train_check= y_train{:,:};
confusion_score(y_train_check,y_predict)
```

```
recall = 1
f1_score = 1
Accuracy = 1
```



```
t = templateTree('Reproducible',true); % For reproducibility of random predictor sele
bag = fitcensemble(X_train,y_train,'Method','Bag','NumLearningCycles',100,'Learner's',t
bag =
 ClassificationBaggedEnsemble
          PredictorNames: {'ph' 'Hardness' 'Solids' 'Chloramines' 'Sulfate' 'Conductivity'
                                                                                            'Organi
            ResponseName: 'Potability'
   CategoricalPredictors: []
              ClassNames: [0 1]
          ScoreTransform: 'none'
         NumObservations: 2621
              NumTrained: 100
                 Method: 'Bag'
            LearnerNames: {'Tree'}
    ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.
                 FitInfo: []
      FitInfoDescription: 'None'
               FResample: 1
                 Replace: 1
        UseObsForLearner: [2621×100 logical]
 Properties, Methods
figure
```

plot(loss(bag,X_test,y_test,'mode','cumulative'))

xlabel('Number of trees')

ylabel('Test classification error')


```
%% Graph number of tree & Cross-Val reference from from test ensemble quality MATLAB:

cv_mol = fitcensemble(X_train,y_train,'Method','Bag','NumLearningCycles',100,'Kfold',5

figure

plot(loss(bag,X_test,y_test,'mode','cumulative'))

hold on

plot(kfoldLoss(cv_mol,'mode','cumulative'),'r.')

plot(oobLoss(bag,'mode','cumulative'),'k--')

hold off

xlabel('Number of trees')

ylabel('Classification error')

title('K-fold number of tree in RF')

legend('Test','Cross-validation','Out of bag','Location','NE')
```


From the two graphs above we can see that increasing the number of trees can improve our model accuracy. Therefore, we shall adjust the number of trees in forest and the minimum leaf size as a hyperparameter for random forest

Random forest hyperparameter tuning

1.) Using Baysian optimization with TreeBagger

inspiration from the example of Tune Random Forest Using Quantile Error and Bayesian Optimization in MATLAB

```
%% Optimise Random Forest Hyperparameter using Baysian optimization maxMinLS = 20; minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer'); numPTS = optimizableVariable('numPTS',[1,size(X_train,2)-1],'Type','integer'); hyperparametersRF = [minLS; numPTS]; results = bayesopt(@(params)oobErrRF(params,X_train,y_train),hyperparametersRF,...'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
```

Objective function model

bestHyperparameters = results.XAtMinObjective

bestHyperparameters = 1×2 table

	minLS	numPTS
1	1	6

```
Mdl = TreeBagger(300,X_train,y_train,'Method','classification',...
    'MinLeafSize',bestHyperparameters.minLS,...
    'NumPredictorstoSample',bestHyperparameters.numPTS);

y_predict= predict(Mdl,X_train);
y_predict = str2double(y_predict);
y_train_check= y_train{:,:};
confusion_score(y_train_check,y_predict)
```

```
precision = 1
recall = 1
f1_score = 1
Accuracy = 1
```


Note: the disadvantage of using the bayesian optimise function is we cannot apply a cross-validation function to check whether the model is overfitted or not. As we have seen from the confusion matrix it does perform well to predict the training set but poor performance when trying to predict the test set. So, we decide to use fitcensemble optimise hyperparameters instead of using TreeBagger-Baysian

2.) using optimiseHyperparameter with fitcensemble

%optimiseHyperparameter

======							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Method	NumLearningC-
	result	j	runtime	(observed)	(estim.)		ycles
======	=======						
1	Best	0.36627	1.3296	0.36627	0.36627	AdaBoostM1	21
2	Accept	0.3926	0.56852	0.36627	0.36732	Bag	20
3	Accept	0.36894	7.2973	0.36627	0.36735	AdaBoostM1	186
4	Accept	0.38993	7.638	0.36627	0.36628	GentleBoost	359
5	Accept	0.3926	1.774	0.36627	0.36627	AdaBoostM1	423
6	Accept	0.3926	0.54879	0.36627	0.36628	AdaBoostM1	31
7	Accept	0.36818	3.2687	0.36627	0.36628	AdaBoostM1	80
8	Accept	0.37085	0.91017	0.36627	0.36861	AdaBoostM1	18
9	Best	0.36131	2.0379	0.36131	0.36132	AdaBoostM1	j 45 j
10	Accept	0.3781	3.1008	0.36131	0.36132	AdaBoostM1	75
11	Accept	0.36246	19.719	0.36131	0.36132	AdaBoostM1	j 459 j
12	Accept	0.37619	1.6035	0.36131	0.36846	AdaBoostM1	j 35 j
13	Best	0.35902	2.1063	0.35902	0.36501	AdaBoostM1	j 49 j
14	Accept	0.36971	15.83	0.35902	0.36638	AdaBoostM1	j 382 j
15	Accept	0.37696	4.9414	0.35902	0.36642	RUSBoost	j 93 j
16	Accept	0.3926	2.3322	0.35902	0.36646	RUSBoost	j 92 j
17	Accept	0.36093	1.3934	0.35902	0.36624	LogitBoost	j 46 j
18	Accept	0.36169	1.538	0.35902	0.35906	LogitBoost	j 49 j
19	Accept	0.36208	0.682	0.35902	0.35909	AdaBoostM1	j 14 j
20	Accept	0.36322	0.40763	0.35902	0.35911	LogitBoost	j 11 j
======		====================================	============	=============			·
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Method	NumLearningC-
	result	<u> </u>	runtime	(observed)	(estim.)		ycles
 21	 Accept	 0.37085	 4.1981	 0.35902	 0.36256	 AdaBoostM1	======================================
22	Accept	0.3636	10.808	0.35902	0.36293	LogitBoost	404
23	Accept	0.37238	9.2752	0.35902	0.3633	LogitBoost	i 345 i
24	Accept	0.37734	0.5522	0.35902	0.36274	LogitBoost	17
25	Accept	0.3781	10.615	0.35902	0.36353	LogitBoost	i 394 i
26	Accept	0.36131	0.76471	0.35902	0.36172	AdaBoostM1	i 16 i
27	Best	0.35597	1.0727	0.35597	0.35598	AdaBoostM1	22
28	Accept	0.37696	1.3428	0.35597	0.36556	AdaBoostM1	i 30 i
29	l Best	0.33079	48.937	0.33079	0.33685	Bag	i 491 i
30	Accept	0.33575	49.188	0.33079	0.33612	Bag	495
				•			

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 226.8171 seconds

Total objective function evaluation time: 215.7815

Best observed feasible point:

Method	NumLearningCycles	LearnRate	MinLeafSize	
Bag	491	NaN	1	

Observed objective function value = 0.33079 Estimated objective function value = 0.33612 Function evaluation time = 48.9367

Best estimated feasible point (according to models):

Method	NumLearningCycles	LearnRate	MinLeafSize	
Bag	495	NaN	1	

Estimated objective function value = 0.33612 Estimated function evaluation time = 49.0725 Mdl =

 ${\tt ClassificationBaggedEnsemble}$

PredictorNames: {'ph' 'Hardness' 'Solids' 'Chloramines' 'Sulfate' 'Conductivi

ResponseName: 'Potability'

CategoricalPredictors: []
ClassNames: [0 1]
ScoreTransform: 'none'
NumObservations: 2621

HyperparameterOptimizationResults: [1x1 BayesianOptimization]

Properties, Methods

```
y_predict= predict(Mdl,X_train);
y_train_check= y_train{:,:};
confusion_score(y_train_check,y_predict)
```

```
precision = 0.9997
recall = 0.9995
f1_score = 0.9996
Accuracy = 0.9996
```



```
% ROC curve Randomforest
[y_predict,scores] = predict(Mdl,X_test);
size(scores);

rocObj_RF = rocmetrics(y_test,scores,mdl.ClassNames);
rocObj_RF.AUC;
figure
```



```
%performance of Random forest on test dataset
y_predict = predict(Mdl,X_test);
confusion_score(y_test,y_predict)
```

precision = 0.6879
recall = 0.6298
f1_score = 0.6576
Accuracy = 0.6931


```
%% ROC curve : DT vs RF
figure
plot(roc0bj_DT,ClassNames=mdl.ClassNames(1))
hold on
plot(roc0bj_RF,ClassNames=mdl.ClassNames(1))
legend('Decision Tree','Model Operation Point','Random Forest','Model Operation Point')
```


The comparison between the two models in the ROC curve shows that random forest performs better than decision tree to predict the potability of water in this test dataset

```
function confusion_score(x,y)
cm= confusionmat(x, y);
cmt = cm';
diagonal = diag(cmt);
sum_of_rows = sum(cmt, 2);
precision = diagonal ./ sum_of_rows;
precision = mean(precision)
sum_of_columns = sum(cmt, 1);
recall = diagonal ./ sum_of_columns';
recall = mean(recall)
f1_score = 2*((precision*recall)/(precision+recall))
Accuracy= (diagonal(1,1)+diagonal(2,1))/(sum_of_rows(1,1)+sum_of_rows(2,1))
figure
confusionchart(x,y)
title('Confusing Matrix')
end
%reference from: Precision Recall F1 Score from Confusion Matrix in MATLAB https://www
```

```
function oobErr = oobErrRF(params, X_train, y_train)
randomForest = TreeBagger(300, X_train, y_train, 'method', 'classification',...
    '00BPrediction', 'on', 'MinLeafSize', params.minLS,...
    'NumPredictorstoSample', params.numPTS);
oobErr = oobError(randomForest, 'Mode', 'ensemble');
end
%reference from: https://www.mathworks.com/help/stats/tune-random-forest-using-quantil
```