L13 Time & Space Complexity

For discord mail to support@learnyard.com

Recap

Introduction, Variables, Operators, Input/Output

Control Flow (if-else, loops), Methods/Functions

Array Basics, Strings

Object-oriented programming Concepts

But, the time taken also depends on:

never compare

Device

Programming Language

CP+ >>

Enter a number: 5
Factorial of N = 5 is 120.
logout

Java

Input(s) given

Then, what's the right way to measure time complexity?

Example - Finding the sum of 1st N natural numbers

U LearnYard

Example - Finding the sum of 1st N natural numbers

Basic Approach Brute Approach Z Naîve Approach More operations + Min DS) less operations Optimal Approach > DS 4? -> Solving Minosoft noezle marom LearnYard

Formal Definition

Time complexity is a measure of how the running time of an algorithm grows as the size of the input increases.

Space Complenity - Data Structure

Space complexity measures how the memory/space required by an algorithm grows as the size of the input increases.

😈 LearnYard

Here are some common time complexities (ordered best to worse):

- (2.)O(log n): Logarithmic time complexity
 - 3. O(n): Linear time complexity
- (4.) O(nlogn): Linearithmic time complexity
- 5. O(n²): Quadratic time complexity

Uass 8 -POLI) 1-, 0(log N)

1 < 2 n; 12 1 + 2) for (int ? = 1; Exponentially punt (i); 122 log n 128

U LearnYard

 $12 \, \text{N}, \, 12 \, 1/2$ Exponentially

Comparing different time complexities

Time Comp Input Size	O(LogN)	O(√N)	O(N)	O(NLogN)	O(N*N)	O(N*N*N)	O(2^N)
20	~20 ns	~22 ns	~100 ns	~450 ns	~2 µs	~40 µs	~2 ms
50	~30 ns	~35 ns	~250 ns	~2 µs	~12 µs	~625 µs	~ 2 months
500	~45 ns	~111 ns	~3 µs	~25 µs	~1 ms	~650 ms	Out of Syllabus xD
5000 (5*10^3)	~60 ns	~350 ns	~25 µs	~300 µs	125 ms	~11 mins	Out of Syllabus xD
1 million (10^6)	~100 ns	~5 µs	~5 ms	~100 ms	~1.5 hours	~159 years	Out of Syllabus xD
100 mil (10^8)	~135 ns	~50 µs	~500 ms	~13 secs	~1.6 years	~159 megayears	Out of Syllabus xD
1 billion (10^9)	~150 ns	~0.2 ms	5 secs	~2.5 mins	~159 years	~159 eons	Out of Syllabus xD
1 trillion (10^12)	~200 ns	~5 ms	~1.5 hours	~5.5 hours	~159 megayears	~159 billion eons	Out of Syllabus xD
10^15	~250 ns	~200 ms	~2 months	~8 years	~159K eons	Out of Syllabus xD	Out of Syllabus xD
10^18	~300 ns	~ 5 secs	~159 years	~95 centuries	~159 billion eons	Out of Syllabus xD	Out of Syllabus xD

Approximate Time Taken
(assuming 2*10^8 operations per second

How to calculate time complexity?

```
Example
                                                  N times
    int doRandomStuff(int n) {
        int randomVar = 0;
        for(int i = 1; i <= n; ++i) {</pre>
            randomVar++;
            randomVar %= n;
            for(j = 1; j <= n; ++j) {</pre>
                randomVar += 2;
        while(n > 0) {
10
                                                  log N
11
            randomVar /= 2;
12
            n /= 2;
13
                                           N2 >>> Log N
14
        randomVar = 0;
        return randomVar;
15
```

Let's try some problems

```
Let's start with a simple one. Time Complexity of the following code?

int Sum1ToN(int n) {
  int ans = n*(n+1)/2;
  return ans;
}

O(N)
O(N)
O(N*N)
O(LogN)
```



```
Still easy, what is the time complexity of the following code?
                                                                   Copy
                                               N times
  int getSum(int n, int m) {
    int ans = 0:
   for(int i = 1; i <= n; ++i)</pre>
      for(int j = 1; j <= m; ++j)
        ans++;
   ∕return ans;
                        TC -> O(N*M)
 O(N)
                               Recorded Example
 O(M)
 ○ O(N + M) -
• O(N*M)
```



```
What is the time complexity of the following code?
 int doRandomStuff(int n, int m) {
   int ans = 0:
   for(int i = 1; i <= n; ++i) { -
     int var = n;
     while(var > 0) {
        var /= 2;
                                                                 N 2 10
   return ans;
                      O(NlepN + M)
O(N*LogN)
O(N + LogN + M)
                                          Max (N LOON, M)
\bigcirc O(N + M)
 O(N*LogN + M)
```


Input
$$\begin{cases}
\text{for (int i = 1; i < 2 \text{ n; i+1})} \\
\text{M input}
\end{cases}$$

$$\begin{cases}
\text{for (int i = 1; i < 2 \text{ m; i+1})} \\
\text{Input}
\end{cases}$$

$$\begin{cases}
\text{O(N+M)} \\
\text{O(Mon(N,M))}
\end{cases}$$

Thank You!

Reminder: Going to the gym & observing the trainer work out can help you know the right technique, but you'll muscle up only if you lift some weights yourself.

So, PRACTICE, PRACTICE!

