

Problems

Ex: 1. Find the current through the diode in the ckt shown in the Fig. Assume the diode as ideal.

The diode will be forward biased.

$$V_{AB} = \frac{10 \times 5}{50+5} = \frac{10}{11}$$

When the Diode is forward biased (S,C).

$$I = \frac{10^{\vee}}{50 \Omega} = 0.2 A.$$

Two indentical diodes are connected as shown, with following characteristics

Shown, with
$$\gamma = 26 \text{ mV}$$
 $\gamma = 2$

$$T_S = 0.1 \mu A \quad \forall \tau = 26 \text{ mV} \quad \gamma = 2$$

Supply voltage = 15V RL=100K Find the voltage across each diode and ct

D, : food biased through the ckt.

through
$$D_1$$
: find blacks D_1 : find blacks D_1 : D_2 D_2 D_3 : D_4 : D_4 : D_4 : D_5 : D_6 : D_7 : D_8 :

De is reverse biased, so et through it is

$$I_{o}\left(e^{\frac{q_{v}V_{l}}{\eta \kappa_{T}}}-1\right)=I_{o}$$

$$\alpha$$
, $ev_1 = \left(\frac{\eta kT}{g_1}\right) \ln 2$

$$V_2 = V - V_1 = 15 - 0.036 = 14.964 V$$