Задачи к 5 лекции

Нечитаев Дмитрий

12 ноября 2019 г.

Изменения

- 1. Новое доказательство максимальности площади в упражнении 2 (ссылка)
- 2. Лагранжиан без первой производной координаты от времени в задаче 2 (ф-ла 2.5.1) (ссылка)
- 3. Анализ устойчивости маятника Капицы в задаче 2 (ссылка)
- 4. Рассмотрены границы применения потенциала в задаче 2 (ссылка)
- 5. Изучение порядка обобщенных скоростей в Лагранжиане (ссылка)

Упражнение 1

Лагранжиан в ДСК

Выражение для Лагранжиана свободной частицы в интегрциальной системе отсчета с ДПСК:

$$L = \frac{mv^2}{2} = \frac{m}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) \tag{1}$$

Находим уравнение движения:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i} \tag{2}$$

$$m\ddot{q}_i = 0 \tag{3}$$

Лагранжиан в цилиндрических координатах

$$\begin{cases} x = r \cos \phi \\ y = r \sin \phi \end{cases} \Rightarrow \begin{cases} \dot{x} = \dot{r} \cos \phi - r \sin(\phi) \dot{\phi} \\ \dot{y} = \dot{r} \sin \phi + r \cos(\phi) \dot{\phi} \\ \dot{z} = \dot{z} \end{cases}$$
(4)

После возведения в квадрат и подстановки в уравнение (1), получаем:

$$L = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\phi}^2 + \dot{z}) \tag{5}$$

Уравнения движения:

$$\begin{cases}
m\ddot{r} = mr\dot{\phi}^2 \\
\frac{d}{dt}(mr^2\dot{\phi}^2) = 0 \\
m\ddot{z} = 0
\end{cases}$$
(6)

Лагранжиан в сферических координатах

$$\begin{cases} x = r \cos \theta \cos \phi \\ y = r \cos \theta \sin \phi \\ z = r \sin \theta \end{cases} \Rightarrow \begin{cases} \dot{x} = \dot{r} \cos \theta \cos \phi - r\dot{\theta} \sin \theta \cos \phi - r\dot{\phi} \cos \theta \sin \phi \\ \dot{y} = \dot{r} \cos \theta \sin \phi - r\dot{\theta} \sin \theta \sin \phi + r\dot{\phi} \cos \theta \cos \phi \\ \dot{z} = \dot{z} \sin \theta + r\dot{\theta} \cos \theta \end{cases}$$
(7)

Тогда Лагранжиан примет вид:

$$L = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\phi}^2 \sin^2 \theta)$$
 (8)

Уравнения движения:

$$\begin{cases}
m\ddot{r} = mr\dot{\theta}^2 + mr\dot{\phi}^2 \sin^2 \theta \\
\frac{d}{dt}(mr^2\dot{\theta}) = mr^2\dot{\phi}^2 \sin(\theta)\cos(\theta) \\
\frac{d}{dt}(mr^2 \sin^2(\theta)\dot{\phi}) = 0
\end{cases} \tag{9}$$

Лагранжиан в криволиниейных координатах

Пусть нам теперь дан закон преобразования координат:

$$\begin{cases} x = x(\xi, \eta, \zeta) \\ y = y(\xi, \eta, \zeta) \\ z = z(\xi, \eta, \zeta) \end{cases} \Rightarrow D = \begin{pmatrix} \partial x/\partial \xi & \partial x/\partial \eta & \partial x/\partial \zeta \\ \partial y/\partial \xi & \partial y/\partial \eta & \partial y/\partial \zeta \\ \partial z/\partial \xi & \partial z/\partial \eta & \partial z/\partial \zeta \end{pmatrix}$$
(10)

Тогда справедливо соотношение между дифференциалами:

$$\begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = D \begin{pmatrix} d\xi \\ d\eta \\ d\zeta \end{pmatrix} \Rightarrow (dx \ dy \ dz) = (d\xi \ d\eta \ d\zeta) D^{T}$$
(11)

Перемножая строчку и столбец можно определить выражение для dl^2 :

$$dl^{2} = \begin{pmatrix} dx & dy & dz \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} d\xi & d\eta & d\zeta \end{pmatrix} D^{T} D \begin{pmatrix} d\xi \\ d\eta \\ d\zeta \end{pmatrix}$$
(12)

Замечаем, что $v^2 dt^2 = dl^2$, т.е Лагранжиан преобретает вид:

$$L = \frac{m}{2} \begin{pmatrix} \dot{\xi} & \dot{\eta} & \dot{\zeta} \end{pmatrix} D^T D \begin{pmatrix} \dot{\xi} \\ \dot{\eta} \\ \dot{\zeta} \end{pmatrix}$$
 (13)

Пусть $\{q_1,q_2,q_3\}$ - новые координаты, а $\{x_1,x_2,x_3\}$ - старые координаты, тогда:

$$D = \left(\frac{\partial x^i}{\partial q^j}\right) \Rightarrow L = \frac{m}{2} \left(\dot{q}^j \frac{\partial x^i}{\partial q^j} \frac{\partial x^i}{\partial q^k} \dot{q}^k\right) = \frac{m}{2} \left(\dot{q}^j \dot{q}^k \frac{\partial x^i}{\partial q^j} \frac{\partial x^i}{\partial q^k}\right) \tag{14}$$

Из выражения (14) можно получить, что в Лагранжиан обобщенные скорости входят только во второй степени, данные рассуждения работают, если нет зависимости координатных функций от времени, в противном случае появляются дополнительные слагаемые.

Получим уравнения движения. Для этого продифференцируем Лагранжиан по \dot{q}^p :

$$\frac{\partial L}{\partial \dot{q}^p} = \frac{m}{2} \left(\delta_p^j \dot{q}^k \frac{\partial x^i}{\partial q^j} \frac{\partial x^i}{\partial q^k} + \delta_p^k \dot{q}^j \frac{\partial x^i}{\partial q^j} \frac{\partial x^i}{\partial q^k} \right) = m \dot{q}^k \frac{\partial x^i}{\partial q^p} \frac{\partial x^i}{\partial q^k}$$
(15)

Тогда уравнения движения принимают вид:

$$\frac{d}{dt} \left(m \dot{q}^k \frac{\partial x^i}{\partial q^p} \frac{\partial x^i}{\partial q^k} \right) = \frac{\partial}{\partial q^p} \left(\frac{m}{2} \dot{q}^j \dot{q}^k \frac{\partial x^i}{\partial q^j} \frac{\partial x^i}{\partial q^k} \right) \tag{16}$$

Криволинейные координаты с зависимостью от времени

Выясним что происходит с Лагранжианом, когда координатные функции зависят от времени. Пусть $\{q_1, q_2, q_3\}$ - новые координаты, а $\{x_1, x_2, x_3\}$ - старые координаты, тогда:

$$v^{2} = \frac{dx^{i}}{dt} \cdot \frac{dx^{i}}{dt} = \left(\frac{\partial x^{i}}{\partial q^{j}}\dot{q}^{j} + \frac{\partial x^{i}}{\partial t}\right) \left(\frac{\partial x^{i}}{\partial q^{k}}\dot{q}^{k} + \frac{\partial x^{i}}{\partial t}\right) = \dot{q}^{k}\dot{q}^{j}\frac{\partial x^{i}}{\partial q^{k}}\frac{\partial x^{i}}{\partial q^{j}} + 2\dot{q}^{k}\frac{\partial x^{i}}{\partial q^{k}}\frac{\partial x^{i}}{\partial t} + \frac{\partial x^{i}}{\partial t} \cdot \frac{\partial x^{i}}{\partial t}$$
(17)

Первый член характеризует относительное изменение координаты частицы, а два последних учитывают движение системы координат. Лагранжиан примет вид:

$$L = \frac{m}{2} \left(\dot{q}^k \dot{q}^j \frac{\partial x^i}{\partial q^k} \frac{\partial x^i}{\partial q^j} + 2\dot{q}^k \frac{\partial x^i}{\partial q^k} \frac{\partial x^i}{\partial t} + \frac{\partial x^i}{\partial t} \cdot \frac{\partial x^i}{\partial t} \right)$$
(18)

В качестве примера, когда в Лагранжиане есть слагаемое, содержащее первую степень скорости, можно взять c/κ , которая движется равноускоренно вдоль оси OX.

$$L = \frac{m}{2} \left(v_{\text{oth}}^2 + 2v_{\text{oth}} at + a^2 t^2 \right) \tag{19}$$

Получается, что если координатные функции не содержат зависимости от t, то Лагранжиан свободной частицы имеет только члены квадратичные по скоростям. Если зависимость от времени присутствует, то могут появиться члены первого порядка.

Упражнение 2

Поиск решения

Пусть дана гладкая замкнутая кривая Γ без самопересечений. Необходимо найти кривую, которая при заданной длине ограничивает максимальную площадь.

Для решения введем 2 интегральных представления: площади A и длины P, задаваемые следующими формулами:

$$A[\Gamma] = \int_{S} dx dy = \frac{1}{2} \int_{\Gamma} x dy - y dx = \frac{1}{2} \int_{0}^{1} (x\dot{y} - y\dot{x}) dt$$
 (1)

$$P[\Gamma] = \int_0^1 \sqrt{\dot{x}^2 + \dot{y}^2} ds \tag{2}$$

Если зафиксировать длину кривой, но изменять площадь, то получим задачу на условный экстремум функционала $A[\Gamma]$, причем т.к условие записано в интегральном представлении, то для нахождения нужной кривой достаточно исследовать на безусловный экстремум функционал:

$$F[\Gamma](\lambda) = A[\Gamma] - \lambda P[\Gamma] = \int_0^1 \left(\frac{1}{2}(x\dot{y} - y\dot{x}) - \lambda\sqrt{\dot{x}^2 + \dot{y}^2}\right) dt \quad \text{где } \lambda \in \mathbb{R}$$
 (3)

Для этого воспользуемся уравнение Эйлера-Лагранжа:

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \Leftrightarrow \begin{cases}
\frac{1}{2} \dot{y} = \frac{d}{dt} \left(-\frac{y}{2} - \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right) \\
-\frac{1}{2} \dot{x} = \frac{d}{dt} \left(\frac{x}{2} - \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)
\end{cases} \Leftrightarrow \begin{cases}
\frac{d}{dt} \left(y + \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right) = 0 \\
\frac{d}{dt} \left(x - \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right) = 0
\end{cases} \tag{4}$$

Из системы следует, что выражения под знаком дифференциала сохраняются, т.е. являются константами:

$$\begin{cases} y + \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = C_1 \\ x - \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = C_2 \end{cases} \Leftrightarrow \begin{cases} C_1 - y = \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \\ x - C_2 = \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \end{cases} \Rightarrow (x - C_1)^2 + (y - C_2)^2 = \lambda^2$$
 (5)

Получилось уравнение окружности, причем константу λ можно найти из условия для периметра $\pm 2\pi\lambda = P$, тогда все потенциально подходящие кривые описываются уравнением:

$$(x - C_1)^2 + (y - C_2)^2 = \frac{P^2}{4\pi^2}$$
(6)

Доказательство максимальности

Перепишем функционал $F[\Gamma]$ в полярных координатах:

$$F[\Gamma](\lambda) = \int_0^{2\pi} \left(\frac{1}{2}r^2 - \lambda\sqrt{r^2 + r'^2}\right) d\phi \tag{7}$$

Переобозначим подынтегральную функцию как $L(r, r', \phi)$, тогда вторая вариационная производная $F[\Gamma](\lambda)$ в точке $r(\phi) = r_0$, где r_0 — радиус окружности.

$$\frac{\delta^2 F}{\delta \eta^2} = \lim_{\alpha \to 0} \frac{\partial^2}{\partial \alpha^2} \int_0^{2\pi} L(r_0 + \alpha \eta, r'_0 + \alpha \eta', \phi) d\phi = \int_0^{2\pi} \lim_{\alpha \to 0} \frac{\partial^2}{\partial \alpha^2} L(r_0 + \alpha \eta, r'_0 + \alpha \eta', \phi) d\phi \tag{8}$$

Для нахождения втой производной посчитаем d^2L , с учетом того, что функция не зависит явно от ϕ получаем соотношение:

$$d^{2}L = \frac{\partial^{2}L}{\partial r^{2}}dr^{2} + \frac{\partial^{2}L}{\partial r'^{2}}dr'^{2} + 2\frac{\partial^{2}L}{\partial r\partial r'}dr'dr$$
(9)

Непосредственное вычисление частных производных и подстановка функции $r(\phi) = r_0 = const$

$$\begin{cases}
\frac{\partial^{2} L}{\partial r^{2}} = 1 - \lambda \frac{r'^{2}}{(r^{2} + r'^{2})^{3/2}} \\
\frac{\partial^{2} L}{\partial r'^{2}} = -\lambda \frac{r^{2}}{(r^{2} + r'^{2})^{3/2}} \\
\frac{\partial^{2} L}{\partial r \partial r'} = \lambda \frac{rr'}{(r^{2} + r'^{2})^{3/2}}
\end{cases} \Rightarrow
\begin{cases}
\frac{\partial^{2} L}{\partial r^{2}} = 1 \\
\frac{\partial^{2} L}{\partial r'^{2}} = -\frac{\lambda}{r_{0}} \\
\frac{\partial^{2} L}{\partial r \partial r'} = 0
\end{cases}$$
(10)

Вместо dr подставляем $\alpha \eta$, а dr' заменяем на $\alpha \eta'$, тогда вторая вариационная производная примет вид¹:

$$\frac{\delta^2 F}{\delta \eta^2} = \int_0^{2\pi} \left(\eta^2 - \frac{\lambda}{r_0} \eta'^2 \right) d\phi \tag{11}$$

Вспомним, что из условия на периметр было получено: $\lambda = r_0$.

$$\frac{\delta^2 F}{\delta \eta^2} = \int_0^{2\pi} \left(\eta^2 - \eta'^2 \right) d\phi \tag{12}$$

Тут η - хорошая² периодическая функция, которую можно разложить в ряд Фурье:

$$\eta = \sum_{n=1}^{\infty} A_n \sin(n\phi) + B_n \cos(n\phi) \Rightarrow \eta' = \sum_{n=1}^{\infty} A_n n \cos(n\phi) - B_n n \sin(n\phi)$$
 (13)

Тогда равенство Парсеваля дает:

$$\sum_{n=1}^{\infty} A_n^2 + B_n^2 - n^2 A_n^2 - n^2 B_n^2 = \frac{1}{\pi} \int_0^{2\pi} \left(\eta^2 - \eta'^2 \right) d\phi \tag{14}$$

Левая часть уравнения (14) отрицательна, при всех функциях $\eta \in C^1[0; 2\pi]$, кроме функций вида: $A\sin(\phi) + B\cos(\phi)$. Покажем, что класс подобных функций периметр не сохраняет.

Несколько рассуждений позволят нам упростить дальнейшие выкладки:

¹Тут мы подставили значение dr, dr', затем использовали формулу Тейлора $L(q, q', t) = L(q_0, q'_0, t) + dL + \frac{1}{2!}d^2L + ...$, вычислили производную по α , затем взяли предел.

 $^{^{2}}$ Суммируемая с квадратом на $[0; 2\pi]$, дифференцируемая.

- 1. Функцию вида $A\sin\phi + B\cos\phi$ можно привести к виду $R\sin(\phi + \theta)$, где $R, \theta \in \mathbb{R}$
- 2. Т.к. мы будем производить интегрирование по периоду, то на θ можно не обращать внимание.

С учетом сказанного выше находим периметр:

$$\tilde{P} = \int_0^{2\pi} \sqrt{(r_0 + R\sin\phi)^2 + R^2\cos^2\phi} d\phi = \int_0^{2\pi} \sqrt{r_0^2 + 2r_0R\sin\phi + R^2} d\phi \tag{15}$$

Эллиптический интеграл, брать мы, конечно, не будем, а вот оценить разность можно.

$$\tilde{P} - P = \int_0^{\pi} \left(\sqrt{r_0^2 + 2r_0 R \sin \phi + R^2} - r_0 \right) d\phi + \int_0^{\pi} \left(\sqrt{r_0^2 - 2r_0 R \sin \phi + R^2} - r_0 \right) d\phi \tag{16}$$

Покажем, что периметр \tilde{P} будет больше изначального периметра. Для этого исследуем на сколько сильно отличаются подынтегральные выражения от r_0 .

$$\sqrt{r_0^2 + R^2 + 2r_0R\sin\phi} - r_0 \quad \lor \quad r_0 - \sqrt{r_0^2 + R^2 - 2r_0R\sin\phi}$$

$$\sqrt{r_0^2 + R^2 + 2r_0R\sin\phi} + \sqrt{r_0^2 + R^2 - 2r_0R\sin\phi} \quad \lor \quad 2r_0$$

$$2r_0^2 + 2R^2 + 2\sqrt{(r_0^2 + R^2)^2 - 4r_0^2R^2\sin^2\phi} \quad \lor \quad 4r_0^2$$

$$\sqrt{(r_0^2 + R^2)^2 - 4r_0^2R^2\sin^2\phi} \quad \lor \quad r_0^2 - R^2 > 0$$

$$r_0^4 + R^4 + 2r_0^2R^2 - 4r_0^2R^2\sin^2\phi \quad \lor \quad r_0^4 + R^4 - 2r_0^2R^2$$

$$r_0^2R^2 \lor r_0^2R^2\sin^2\phi$$

$$1 \lor \sin^2\phi$$

$$1 \ge \sin^2\phi$$

Данная цепочка сравнений справедлива при двух словиях: $r_0 > R$ и $x \in \left[\arcsin(\frac{R}{2r_0}); \pi - \arcsin(\frac{R}{2r_0})\right]$. Второе условие отвечает тому, что $r_0 - \sqrt{r_0^2 + R^2 - 2r_0R\sin\phi} \ge 0$.

Возвращаясь к интегралу (16) делаем вывод, что на $x \in \left[\arcsin(\frac{b}{2a}); \pi - \arcsin(\frac{b}{2a})\right]$ сумма от двух интегралов положительна. На оставшемся множестве подынтегральные функции положительны, а значит и разность периметров не будет равна 0.

Таким образом мы доказали, что семейство возмущений $\eta = A \sin \phi + B \sin \phi$ при достаточно малых $\sqrt{A^2 + B^2}$ не входит во множество функций, которые сохраняют периметр фигуры. Таким образом доказан сильный максимум функционала $F[\Gamma]$.

Задача 1

Пусть дан шарик и две точки в пространстве с известными координатами. Какую форму желоба нужно сделать, чтобы шарик без начальной скорости скатился под действием силы тяжести от одной точки к другой за наименьшее время?

Для удобства введем систему координат как показано на рисунке: Пусть параметризация кри-

вой имеет вид: y = y(x), тогда длина элемента дуги определяется соотношением:

$$dl = \sqrt{1 + y'^2} dx \tag{1}$$

Из теоремы об изменении кин энергии находим:

$$v = \sqrt{\varkappa y} \tag{2}$$

Тогда за время dt = dl/v шарик пройдет кусочек дуги, а значит для оптимизации времени спуска можно ввести функционал:

$$S[y(x)] = \int_0^l \frac{\sqrt{1 + y'^2}}{\sqrt{\varkappa y}} dx \tag{2}$$

Для удобства рассчетов таскать за собой $\sqrt{\varkappa}$ не будем. Обозначим подынтегральное выражение за L(y,y').

Можно и дальше упрощать жизнь: для этого стоит заметить, что L не зависит явно от x, а это нам очень помогает, ведь тогда верен переход:

$$\frac{dL}{dx} = \frac{\partial L}{\partial y}y' + \frac{\partial L}{\partial y'}y'' + \frac{\partial L}{\partial x} \quad \Leftrightarrow \quad \frac{dL}{dx} = \frac{\partial L}{\partial y}y' + \frac{\partial L}{\partial y'}y'' \quad \Leftrightarrow \quad \frac{\partial L}{\partial y}y' = \frac{dL}{dx} - \frac{\partial L}{\partial y'}y'' \tag{3}$$

Для оптимизации интегрального функционала используем уравнение Эйлера-Лагранжа:

$$\frac{\partial L}{\partial y} = \frac{d}{dx} \frac{\partial L}{\partial y'} \tag{4}$$

Домножим обе части на y' и воспользуемся подстановкой из выражения (3):

$$\frac{dL}{dx} = y'' \frac{\partial L}{\partial y'} + y' \frac{d}{dx} \frac{\partial L}{\partial y'} = \frac{d}{dx} \left(y' \frac{\partial L}{\partial y'} \right) \quad \Leftrightarrow \quad \frac{d}{dx} \left(L - y' \frac{\partial L}{\partial y'} \right) = 0 \tag{5}$$

Поучаем дифференциальное уравнение:

$$L - y' \frac{\partial L}{\partial y'} = C \tag{6}$$

Подставляем L в уравнение (6):

$$\frac{\sqrt{1+y'^2}}{\sqrt{y}} - y' \frac{y'}{\sqrt{y}\sqrt{1+y'^2}} = C \iff \frac{1}{\sqrt{y}\sqrt{1+y'^2}} = C \iff (1+y'^2)y = (1/C)^2 \equiv k \tag{7}$$

$$y'^2 = \frac{k}{y} - 1 \quad \Rightarrow \quad y' = \sqrt{\frac{k - y}{y}} \Leftrightarrow \sqrt{\frac{y}{k - y}} dy = dx$$
 (8)

$$y = k\sin^2\theta \Rightarrow dy = 2k\sin\theta\cos\theta d\theta \tag{9}$$

$$\int_0^{\theta_0} \left| \frac{\sin \theta}{\cos \theta} \right| 2k \cos \theta \sin \theta d\theta = k \int_0^{\theta_0} (1 - \cos(2\theta)) d\theta = \frac{k}{2} \left(2\theta_0 - \sin(2\theta_0) \right) = x(\theta_0)$$
 (10)

Получаем кривую, заданную параметрически:

$$\begin{cases} x(\theta) = \frac{k}{2} \Big(2\theta - \sin(2\theta) \Big) & \forall \theta \in \left[0; \frac{\pi}{2}\right] \end{cases}$$

 Числа k, θ_0 находится из системы (11) при подстановке $x(\theta_0) = l$ и $y(\theta_0) = H$.

Задача 2

Рассмотрим обычный маятник, точка подвеса которого может совершать движение по какомуто произвольному, но известному закону $\mathbf{r}(t)$. Сам маятник представляет собой невесомую палку длины l и с массой m на конце.

1. Лагранжиан системы

Для однозначного определения положения маятника нам достаточно знать где находится точка подвеса и 2 угла, задающие точку на сфере, причем скорость маятника определяется соотношением:

$$\vec{V_A} = \vec{V_0} + \vec{\omega} \times \vec{l} \tag{1.1}$$

Тогда лагранжиан системы примет вид:

$$L = \frac{m(\vec{V}_0(t) + \vec{\omega} \times \vec{l})^2}{2} + m\vec{g}(\vec{r}(t) + \vec{l})$$
(1.2)

$$L = \frac{m}{2}V_0^2 + \frac{m}{2}\omega^2 l^2 + m(\vec{V_0}, \vec{\omega} \times \vec{l}) + m\vec{g}(\vec{r} + \vec{l})$$
(1.3)

2. Конкретный закон r(t)

Пусть теперь $\vec{r}(t) = r_0 \cos(\gamma t) \cdot (\cos \theta, \sin \theta)$, тогда лагранжиан примет вид:

$$L = \frac{m}{2}\gamma^2 r_0^2 \sin^2(\gamma t) + \frac{m}{2}\dot{\phi}^2 l^2 - m\gamma r_0 \sin(\gamma t)\dot{\phi}l\cos(\phi - \theta) - mg\Big(r_0\cos(\gamma t)\sin(\theta) - l\cos(\phi)\Big)$$
(2.1)

Выкидываем все полные производные из Лагранжиана:

$$L = \frac{m}{2}\dot{\phi}^2 l^2 - m\gamma r_0 \sin(\gamma t)\dot{\phi}l\cos(\phi - \theta) + mgl\cos(\phi)$$
(2.2)

Если ввести обозначения $\tau=\omega_0 t,\,\omega_0=\sqrt{g/l},\,A=\frac{\gamma}{\omega_0}\frac{r_0}{l},\,B=\frac{\gamma}{\omega_0}$ то можно обезразмерить Лагранжиан (m=1):

$$\tilde{L} = \frac{\dot{\phi}^2}{2\omega_0^2} - A\frac{\dot{\phi}}{\omega_0}\sin(\gamma t)\cos(\phi - \theta) + \cos(\phi)$$
(2.3)

Параметр A характеризует отношение максимальных скоростей точки подвеса (γr_0) и математического маятника $(\omega_0 l)$. Последним штрихом будет нахождение связи между производными ϕ'_{τ} и ϕ'_{t} :

$$\frac{d\phi}{dt} = \frac{d\phi}{d\tau} \frac{d\tau}{dt} \Leftrightarrow \frac{\phi_t'}{\omega_0} = \phi_\tau' \tag{2.4}$$

Собираем все вместе:

$$\tilde{L} = \frac{{\phi'}_{\tau}^2}{2} - A{\phi'}_{\tau}\sin(B\tau)\cos(\phi - \theta) + \cos(\phi)$$
(2.5)

Выделим полную производную по времени:

$$\tilde{L} = \frac{{\phi'}_{\tau}^2}{2} + \cos(\phi) + \left(-A\phi'_{\tau}\sin(B\tau)\cos(\phi - \theta) - B\cos(B\tau)A\sin(\phi - \theta) \right) + B\cos(B\tau)A\sin(\phi - \theta) =$$

$$= \frac{{\phi'}_{\tau}^2}{2} + \cos(\phi) + \frac{d}{d\tau}\left(-A\sin(B\tau)\sin(\phi - \theta) \right) + AB\cos(B\tau)\sin(\phi - \theta)$$

Выкидываем полную производную:

$$\tilde{L} = \frac{{\phi'}_{\tau}^2}{2} + \cos(\phi) + AB\cos(B\tau)\sin(\phi - \theta)$$
(2.5.1)

Находим уравнения движения:

$$\frac{d}{d\tau} \left(\phi_{\tau}' - A \sin(B\tau) \cos(\phi - \theta) \right) = -A \phi_{\tau}' \sin(B\tau) \sin(\phi - \theta) - \sin(\phi) \Leftrightarrow
\phi_{\tau}'' + A \phi_{\tau}' \sin(B\tau) \sin(\phi - \theta) - AB \cos(B\tau) \cos(\phi - \theta) = A \phi_{\tau}' \sin(B\tau) \sin(\phi - \theta) - \sin(\phi) \Leftrightarrow
\phi_{\tau}'' = AB \cos(B\tau) \cos(\phi - \theta) - \sin(\phi)$$
(2.6)

Или в старых обозначениях:

$$\ddot{\phi} + \omega_0^2 \sin(\phi) = \frac{r_0}{l} \gamma^2 \cos(\gamma t) \cos(\phi - \theta)$$
 (2.7)

3. Вспомогательная задача

Рассмотрим колебание грузика на пружинке жесткости k, к которому приложена быстрая периодическая сила $F = m f_0 \cos(\omega t), \, \omega \gg \sqrt{k/m} = \omega_0$.

Уравнение движения:

$$x'' + \omega_0^2 x = f_0 \cos(\omega t) \quad x(0) = 0, \quad x'(0) = v_0$$
(3.1)

Точное решение данной задачи Коши:

$$x(t) = \frac{f_0}{\omega^2 - \omega_0^2} \cos(\omega_0 t) + \frac{f_0}{\omega_0^2 - \omega^2} \cos(\omega t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$$
 (3.2)

Рис. 1: График решения x(t) при $\omega/\omega_0=55$

Перепишем уравнение (3.2) и учтем, что $v_0/\omega_0\gg f_0/(\omega^2-\omega_0^2)$, при $\omega\gg\omega_0$:

$$x(t) \approx \frac{f_0}{\omega_0^2 - \omega^2} \cos(\omega t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$$
 (3.3)

Вид уравнения (3.3) позволяет сделать некоторые выводы относительно решения:

- 1. В системе есть 2 характерных времени $\tau_1=1/\omega_0$ и $\tau_2=1/\omega$. Это связано с тем, что решение уравнения состоит из двух гармоник. Гармоника с частотой ω_0 отвечает за движение маятника без учета внешней силы: $x_0(t)$ невозмущенное решение. Вторая гармоника задает смещение относительно $x_1(t)$ и появляется из-за внешней силы.
- 2. Смещение относительно невозмущенного решения задается формулой:

$$x_1(t) = \frac{f_0}{\omega_0^2 - \omega^2} \cos(\omega t) \tag{3.4}$$

При $\omega \gg \omega_0$ можно разложить $x_1(t)$ по степеням ω_0/ω . Первый порядок дает нам ответ:

$$x_1(t) \approx -\frac{f_0}{\omega^2} \cos(\omega t) \tag{3.5}$$

4. Быстрые и медленные переменные

Вернемся к исследованию решения уравнения (2.7). Решение будем искать в виде суммы $\phi(t) = \psi(t) + \chi(t)$, где $\psi(t)$ — периодическое решение с частотой ω_0 , а $\chi(t)$ — периодическое решение с частотой γ и амплитудой $\ll 1$.

Малось амплитуды решения с частотой γ следует из соотношения (3.5). Действительно, если подставить в качестве $f_0 = \frac{r_0}{l} \gamma^2 cos(\phi - \theta)$, то амплитуда χ будет порядка $r_0/l \ll 1$.

Подставим теперь в уравнение (2.7) вместо $\phi(t)$ сумму $\psi(t) + \chi(t)$, раскладывая функции по степеням χ до первого порядка.

$$\ddot{\psi} + \ddot{\chi} + \omega_0^2 \sin \psi + \chi \omega_0^2 \cos \psi = \frac{r_0}{l} \gamma^2 \cos(\gamma t) \left(\cos(\psi - \theta) - \chi \sin(\psi - \theta) \right)$$
(4.1)

Т.к функция $\chi(t)$ осциллирует с частотой γ , то для получения уравения на $\chi(t)$ необходимо сгруппировать все слагаемые осциллирующие с той же частотой (или достаточно близкой к ней).

$$\ddot{\chi} + \chi \omega_0^2 \cos \psi = \frac{r_0}{l} \gamma^2 \cos(\gamma t) \left(\cos(\psi - \theta) - \chi \sin(\psi - \theta) \right)$$
(4.2)

Теперь вспоминаем, что на самом деле $\chi \ll 1$ и слагаемые содержащие χ можно выкинуть. Но выкидывать $\ddot{\chi}$ **НЕЛЬЗЯ** т.к. амплитуда второй производной порядка $\frac{r_0}{l} \gamma^2 \gg \frac{r_0}{l}$.

$$\ddot{\chi} = \frac{r_0}{l} \gamma^2 \cos(\gamma t) \cos(\psi - \theta) \Rightarrow \chi(t) = -\frac{r_0}{l} \cos(\gamma t) \cos(\psi - \theta)$$
(4.3)

В последнем переходе мы интегрировали вторую производную, считая что ψ на временах порядка $1/\gamma$ практически не меняется.

Усредним уравнение (4.1) по периоду $T=2\pi/\gamma$, в таком случае все слагаемые содержащие χ в нечетных степенях обратятся в 0, а величины, которые осциллируют с частотой $\omega_0\ll\gamma$ практически не изменяются.

$$\ddot{\psi} + \omega_0^2 \sin \psi = \frac{r_0^2 \gamma^2}{l^2} < \cos^2(\gamma t) >_T \sin(\psi - \theta) \cos(\psi - \theta) = \frac{r_0^2 \gamma^2}{2l^2} \sin(\psi - \theta) \cos(\psi - \theta)$$
(4.4)

Преобразуем выражение:

$$\ddot{\psi} = -\frac{d}{d\psi} \left(\frac{r_0^2 \gamma^2}{4l^2} \cos^2(\psi - \theta) - \omega_0^2 \cos \psi \right)$$
(4.5)

Выражение в скобках можно заменить функцией $U_{• \Phi \Phi}(\psi)$.

$$U_{9\Phi\Phi}(\psi) = \frac{r_0^2 \gamma^2}{4l^2} \cos^2(\psi - \theta) - \omega_0^2 \cos \psi$$
 (4.6)

5. Положения равновесия и их устойчивость

1 случай $\theta = \frac{\pi}{2}$

Положения равновесия соответствуют экстремумам потенциалной энергии. Используем коэффециент A, введенный во 2 пункте, тогда при $\theta = \pi/2$ потенциал можно переписать:

$$U = \omega_0^2 \left(\frac{A^2}{4} \sin^2(\psi) - \cos(\psi) \right)$$
 (5.1.1)

$$\frac{dU}{d\psi} = \omega_0^2 \left(\frac{A^2}{2} \sin \psi \cos \psi + \sin \psi\right) \tag{5.1.2}$$

$$\frac{d^2U}{d\psi^2} = \omega_0^2 \left(\frac{A^2}{2}\cos(2\psi) + \cos\psi\right) \tag{5.1.3}$$

Точки экстремума отвечают углам: 0, π , $\arccos(-2A^{-2})$, причем положение $\psi=0$ устойчиво, а $\psi=\arccos(-2A^{-2})$ устойчивым не является:

$$\frac{d^2U}{d\psi^2}(\arccos(-2A^{-2})) = \omega_0^2 \left(\frac{A^2}{2}(2(2A^{-2})^2 - 1) - 2A^{-2}\right) = \omega_0^2 \left(\frac{2}{A^2} - \frac{A^2}{2}\right) < 0$$
 (5.1.4)

Данное соотношение верно, если существует $\arccos(-2A^{-2})$ т.е. $2A^{-2} < 1 \Leftrightarrow \sqrt{2} < A \Leftrightarrow \sqrt{2gl} < \gamma r_0$. В точке $\psi = \pi$ устойчивость определяется параметром A:

$$\frac{d^2U}{d\psi^2}(\pi) = \omega_0^2 \left(\frac{A^2}{2} - 1\right) \tag{5.1.5}$$

При $\sqrt{2} < A \Leftrightarrow \sqrt{2gl} < \gamma r_0$ положение является устойчивым, в противном случае равновесие неустойчиво.

2 случай $\theta=0$

Положения равновесия соответствуют экстремумам потенциалной энергии. Используем коэффециент A, введенный во 2 пункте, тогда при $\theta = 0$ потенциал можно переписать:

$$U = \omega_0^2 \left(\frac{A^2}{4} \cos^2(\psi) - \cos(\psi) \right)$$
 (5.2.1)

$$\frac{dU}{d\psi} = \omega_0^2 \left(-\frac{A^2}{2} \sin \psi \cos \psi + \sin \psi \right) \tag{5.2.2}$$

$$\frac{d^2U}{d\psi^2} = \omega_0^2 \left(-\frac{A^2}{2}\cos(2\psi) + \cos\psi \right) \tag{5.2.3}$$

Точки экстремума отвечают углам: 0, π , $\arccos(2A^{-2})$, причем положение $\psi=0$ неустойчиво, а $\psi=\arccos(2A^{-2})$ устойчиво:

$$\frac{d^2U}{d\psi^2}(\arccos(2A^{-2})) = \omega_0^2 \left(-\frac{A^2}{2}(2(2A^{-2})^2 - 1) + 2A^{-2} \right) = \omega_0^2 \left(-\frac{2}{A^2} + \frac{A^2}{2} \right) > 0$$
 (5.2.4)

Данное соотношение верно, если существует $\arccos(-2A^{-2})$ т.е. $2A^{-2} < 1 \Leftrightarrow \sqrt{2} < A \Leftrightarrow \sqrt{2gl} < \gamma r_0$. В точке $\psi = \pi$ устойчивости нет:

$$\frac{d^2U}{d\psi^2}(\pi) = \omega_0^2 \left(-\frac{A^2}{2} - 1 \right) < 0 \tag{5.2.5}$$

Общий случай $\theta \in (0; \pi/2)$

Рассмотрим качественное поведение точек равновесия. Для этого обратимся к потенциалу $U_{•\Phi}(\psi)$ из формулы (4.6), который упростим для дальшейших выкладок:

$$U_{\theta \Phi \Phi}(\psi) = \omega_0^2 \left(\frac{A^2}{4} \cos^2(\psi - \theta) - \cos\psi\right) = \omega_0^2 U(\psi)$$
(5.3.1)

Можно заметить, что потенциал $\forall \psi, \theta$ зажат между кривыми $\frac{A^2}{4} - \cos \psi$ и $-\cos \psi$.

Рис. 2: Графики зависимости $U(\psi)$ при различных θ отмечены пунктиром.

Понятно, что касание с ограничивающими кривыми происходит когда слагаемое $\frac{A^2}{4}\cos^2(\psi-\theta)$ обращается в 0 или 1.

Детальней рассмотрим что происходит на интервалах между касаниями. Сначала положим, что A>2. Точки касания: $\{\theta-\pi;\theta-\pi/2;\theta;\theta+\pi/2\}=\{\psi_1,\psi_2,\psi_3,\psi_4\}$.

Участок (ψ_1, ψ_2)

На интегрвале (ψ_1, ψ_2) производная $\partial U/\partial \psi < 0$:

$$\partial U/\partial \psi = -\frac{A^2}{4}\sin(2\psi - 2\theta) + \sin\psi = \{\psi = t + \theta - \pi\} = -\frac{A^2}{4}\sin(2t) - \sin(t + \theta)$$
 (5.3.2)

$$\begin{cases} t \in (0; \pi/2) \\ \theta \in (0; \pi/2) \end{cases} \Rightarrow \begin{cases} \theta + t \in (0; \pi) \\ -A^2/4\sin(2t) < 0 \end{cases} \Rightarrow \begin{cases} -\sin(\theta + t) < 0 \\ -A^2/4\sin(2t) < 0 \end{cases} \Rightarrow \partial U/\partial \phi < 0$$
 (5.3.3)

Важно заметить, что в рассуждениях не использовался факт A>2, значит вывод о знаке произ-

Рис. 3: Пример графика зависимости $U(\psi), A>2$

водной справделив при любых A.

Участок (ψ_2, ψ_3)

Производные в точках ψ_2, ψ_3 имеют разные знаки: $\frac{\partial U}{\partial \psi}(\psi_2) < 0$ $\frac{\partial U}{\partial \psi}(\psi_3) > 0$, действительно, ведь в точках ψ_2, ψ_3 член $\sim \cos^2(\psi - \theta)$ имеет нулевую производную, значит знак производной определяет $-\cos(\psi)$. Из гладкости функции потенциала делаем вывод, что производная непрерывна, а значит существует точка $\psi^* \in (\psi_2; \psi_3)$, которая отвечает минимуму потенциальной энергии.

Покажем, что на (ψ_2, ψ_3) существует только один экстремум. Для этого положим противное и выберем из набора точек экстремума $\psi_{*1}, \psi_{*2}, ... \in (\psi_2, \psi_3)$ минимальный, пусть это будет $\psi_{*1} \equiv \psi_0$. Тогда для производной потенциальной энергии верно:

$$\frac{\partial U}{\partial \psi} = -\frac{A^2}{4}\sin(2\psi - 2\theta) + \sin\psi = \{\psi = t + \theta - \pi/2\} = \frac{A^2}{4}\sin(2t) - \cos(t + \theta)$$
 (5.3.4)

Функция $\frac{A^2}{4}\sin(2t)$ является выпуклой вверх, а это значит, что любая секущая будет лежать не выше графика. Т.е справедлива цепочка неравенств: $\cos(t+\theta) < \frac{\pi}{2} - \theta - t < \frac{A^2}{4}\sin(2t) \quad \forall t \in \left(A_t, C_t\right)^3$. Причем, проверка крайних точек интегрвала показывает, что $\forall t \in [A_t, C_t]$ верно $\cos(t+\theta) < \frac{A^2}{4}\sin(2t)$. Повторяя рассуждения для интервала $\left(B_t, A_t\right)$, убеждаемся, что $\forall t \in \left(B_t, C_t\right] \cos(t+\theta) < \frac{A^2}{4}\sin(2t)$, а с учетом того, что $\frac{A^2}{4}\sin 2t >= 0 > \cos(t+\theta) \forall t \in \left(C_t, \frac{\pi}{2}\right]$ делаем вывод: на $(\psi_2; \psi_3)$ будет только один минимум потенциальной энергии. В данном пунке никаких предположений

 $^{^3\}mathrm{Тут}$ А — это точка на графике, а A_t — ордината точки A

относительно значений A не выдвигалось, а значит и результат, полученный в данном пункте не зависит от A.

Участок $(-\pi, \psi_1) \cup (\psi_4, \pi)$

Тут, как и в прошлом пункте, в крайних⁴ точках знаки $\frac{\partial U}{\partial \psi}$ различны: $\frac{\partial U}{\partial \psi}(\psi_4) > 0$ $\frac{\partial U}{\partial \psi}(\psi_1) < 0$. Гладкость функции потенциала позволяет нам заключить, что на данном участке есть точка максимума. Доказательство единественности и независимости от A ответа можно посмотреть в прошлом пунке, ход рассуждений для данного интервала будет аналогичным.

Участок (ψ_3, ψ_4)

Самый интересный участок потенциала, т.к. на данном интервале уголов количество точек равновесия зависит от параметра A.Разобьем интервал на два равных и посмотрим что происходи с точками равновесия. Для этого изучим знак производной в точке $\psi_3 + \pi/4$:

$$\frac{\partial U}{\partial \psi}(\psi_3 + \pi/4) = \sin(\theta + \pi/4) - \frac{A^2}{4} \tag{5.3.5}$$

- 1. A>2, тогда для любого угла θ значение производной в центральной точке будет отрицательным, тогда мы приходим к знакомой ситуации, когда знаки производных в крайних точках интервала различны $(U'_{\psi}(\psi_3)>0 \quad U'_{\psi}(\psi_4)>0 \quad U'_{\psi}(\psi_3+\pi/4)<0)$. Интервал содержит 1 максимум и 1 минимум потенциальной энергии.
- 2. A=2, тогда при $\theta=\frac{\pi}{4}$ производная обращается в 0, но данная точка не является точкой экстремума.
- 3. $A = 2, \theta \neq \frac{\pi}{4}$ возвращаемся к пункту 1.
- 4. $\sqrt{2} < A < 2$, $\theta + \frac{\pi}{4} \in \left[\frac{\pi}{4}; \arcsin\left(\frac{A^2}{4}\right)\right) \cup \left(\pi \arcsin\left(\frac{A^2}{4}\right); \frac{3\pi}{4}\right]$ производная в центральной точке будет отрицательна $\Rightarrow 1$ пункт.
- 5. $\sqrt{2} < A < 2$, $\theta + \frac{\pi}{4} \in \left[\frac{\pi}{4}; \arcsin\left(\frac{A^2}{4}\right)\right) \cup \left(\pi \arcsin\left(\frac{A^2}{4}\right); \frac{3\pi}{4}\right]$ производная в центральной точке будет положительна \Rightarrow точек экстремума нет.
- 6. $0 < A \le \sqrt{2}$ производная в центральной точке положительная при любом угле $\theta \in (0; \pi/4)$ \Rightarrow точек экстремума нет.

 $^{^4}$ Под крайними точками в данном случае мы будем понимать ψ_1 и ψ_4 , т.к. объединение двух интервалов по сути описывает изменеие угла в пределах $(\psi_4, 2\pi + \psi_1)$

Применимость результата

Стоит отметить, что соотношение (4.6) было получено в предположении $r_0/l \ll 1$. Это равносильно $\gamma/\omega_0 \gg A$. Действительно если по условию нам дано, что $\gamma \gg \omega_0$, то увеличение r_0 до величин порядка l повлечет за собой рост амплитуды колебаний маятника, но с другой стороны, если обратиться к виду потенциальной кривой (см Рис. 3 или Рис. 2), то становится ясно, что увеличение A делает потенциальные ямы уже, а следовательно, и амплитуды колебаний меньше.

Список литературы

- [1] А.В. Ожегова, Р.Г. Насибуллин, Методические указания к решению "простейшей задачи"вариационного исчисления, Казань, 2013.
- [2] Ландау Л. Д., Лифшиц Е. М. Механика. Издание 4-е, исправленное. Москва: Наука, 1988.