Table des matières

1	Not	ions élémentaires sur les processus stoshatiques	2
	1.1	Continuité stochastique et théorème de Kolmogorov	2
	1.2	Processus stationnaires	2
	1.3	Différentiation et intégration d'un processus aléatoire	2
2	Chaînes de Markov à espace d'états discret		3
	2.1	Matrice stochastique	3
	2.2	Chaînes homogènes de Markov à espace d'états finis	3
	2.3	Equation de Chapman-Kolmogorov	3
3	Processus de Markov à temps continu et à espace d'états discret		
	3.1	Equations directes et inverses de Kolmogorov	5
4	Le mouvement brownien		8
	4.1	Promenade aléatoire	9
	4.2	Propriété de Martingale	10
	4.3	Propriété de Markov	11
	4.4	Répartitions finidimensionnelles d'un processus brownien	12

Notions élémentaires sur les processus stoshatiques

- 1.1 Continuité stochastique et théorème de Kolmogorov
- 1.2 Processus stationnaires
- 1.3 Différentiation et intégration d'un processus aléatoire

Chaînes de Markov à espace d'états discret

- 2.1 Matrice stochastique
- 2.2 Chaînes homogènes de Markov à espace d'états finis
- 2.3 Equation de Chapman-Kolmogorov

Processus de Markov à temps continu et à espace d'états discret

Soit $\{X(t), t \in \mathcal{T}\}$, $\mathcal{T} = [0, +\infty[$, un processus aléatoire sur (Ω, \mathcal{F}, P) et $(\mathcal{F}_t)_{t \in \mathcal{T}}$ sa filtration canonique.

Définition 1 On dit que le processus est de Markov si, pour tout n, pour toute fonction bornée F définie sur \mathbb{R}^n , pour tous $t_1 < t_2 < \cdots < t_n$

$$E\left[F\left(X_{s+t_{1}},X_{s+t_{2}},\cdots,X_{s+t_{n}}\right)|\mathcal{F}_{s}\right]=E\left[F\left(X_{s+t_{1}},X_{s+t_{2}},\cdots,X_{s+t_{n}}\right)|X_{s}\right].$$

Ceci implique en particulier que pour toute fonction f borélienne bornée

$$E[f(X_t)|\mathcal{F}_s] = E[f(X_t)|X_s], \forall t > s.$$

Définition 2 Le processus est dit de Markov fort si la propriété précédente est vraie pour tout couple de temps d'arrêt finis T, S avec T > S.

Soit $X(t) = X(w,t) : \Omega \to E \subseteq N, t \in \mathcal{T}$, i.e. $X_t = X(t)$ est une variable aléatoire discrète pour tout $t \in \mathcal{T}$.

Essayons une autre définition.

Définition 3 $\{X(t), t \in \mathcal{T}\}$ est un processus de Markov, si

$$P\{X(t_k) = i_k | X(t_{k-1}) = i_{k-1}, ..., X(t_1) = i_1\} = P\{X(t_k) = i_k | X(t_{k-1}) = i_{k-1}\}, (1)$$

pour toutes collections $t_1, ..., t_k : 0 \le t_1 < t_2 < ... < t_k, t_j \in \mathcal{T}$ et $i_1, i_2, ..., i_k, i_j \in E(j = 1, 2, ..., k; k \in \mathbb{N}^*)$.

Remarque 1 La propriété markovienne (1) est toujours vérifiée si X(t) est un processus à accroissements indépendants.

Notons

$$p_{ij}(s,t) = P\{X(t) = j | X(s) = i\}, \ s < t,$$

la probabilité de transition de i en j. Dans ce cas pour tous s et t, $0 \le s < t$

$$\mathcal{P}(s,t) = [p_{ij}(s,t)]_{k \times k}$$

représente la matrice stochastique du processus $\{X(t), t \in \mathcal{T}\}$. Il est clair que les éléments de la matrice stochastique $\mathcal{P}(s,t)$ vérifie l'équation de Chapman-Kolmogorov

$$p_{ij}(s,t) = \sum_{k \in \mathcal{E}} p_{ik}(s,u) p_{kj}(u,t), \ 0 < s < u < t.$$

Si pour tous i et j

$$p_{ij}(s,t) = p_{ij}(t-s), \ s < t,$$

nous disons que $\{X_t < t \in \mathcal{T}\}$ est un processus homogène.

3.1 Equations directes et inverses de Kolmogorov

Soit $\{X_t, t \in T\}$ un processus de Markov homogène. Dans ce cas l'équation de Chapman-Kolmogorov peut être présentée sous la forme

$$p_{ij}(s+t) = \sum_{k \in \mathcal{E}} p_{ik}(s) p_{kj}(t)$$
(2)

où $\mathcal{P}(s+t)=\mathcal{P}(s)\mathcal{P}(t)$. Supposons que les probabilités $p_{ij}(t)$ sont différentiables en 0 et

$$p_{ij}(h) = \lambda_{ij}h + o(h), \ (i \neq j) \text{ si } h \to 0.$$

Alors la limite

$$\lambda_{ij} = \lim_{h \to 0} \frac{p_{ij}(h)}{h}, i \neq j. \tag{3}$$

caractérise la vitesse de changement de $p_{ij}(h)$ en 0 et est appelé le taux de transition de l'état i à l'état j.

De l'égalité

$$\sum_{j=1}^{m} p_{ij}(h) = 1$$

on tire

$$\lambda_{ii} = \lim_{h \to 0} \frac{p_{ii}(h) - 1}{h} = \lim_{h \to 0} \frac{-\sum_{i \neq j} p_{ij}(h)}{h} = -\sum_{i \neq j} \lambda_{ij}, \tag{4}$$

Notons $\mathbf{A} = [\lambda ij]_{m \times m}$ la matrice des taux de transition. Les égalités (3) et (4) peuvent être écrite s sous la forme matricielle

$$\lim_{h \to 0} \frac{P(h) - I_m}{h} = \mathbf{A}.\tag{5}$$

En utilisant l'équation de Chapman-Kolmogorov (2) et l'égalité (5) on a

$$\lim_{h \to 0} \frac{P(t+h) - P(t)}{h} = \lim_{h \to 0} \frac{P(t)P(h) - P(t)}{h},$$

$$= \lim_{h \to 0} P(t) \frac{P(h) - I_m}{h},$$

$$= P(t)\mathbf{A}.$$

d'ou l'équation directe de Kolmogorov

$$P'(t) = P(t)\mathbf{A}. (6)$$

De même

$$\lim_{h \to 0} \frac{P(t+h) - P(t)}{h} = \lim_{h \to 0} \frac{P(h) P(t) - P(t)}{h},$$

$$= \lim_{h \to 0} \frac{P(h) - I_m}{h} P(t),$$

$$= \mathbf{A}P(t).$$

d'ou l''equation inverse de Kolmogorov

$$P'(t) = \mathbf{A}P(t). \tag{7}$$

Il faut remarquer que

$$P(t) = e^{\mathbf{A}t} = \sum_{n=0}^{+\infty} \frac{\mathbf{A}^n t^n}{n!}, \ \mathbf{A}^0 = I_m.$$

Remarque 2 Sous forme explicite les équations (6) et (7) sont

$$p'_{ij}(t) = \sum_{k=1}^{m} p_{ik}(t) \lambda_{kj},$$

$$p'_{ij}(t) = \sum_{k=1}^{m} \lambda_{ik} p_{kj}(t).$$

Dans le cas d'un espace d'états dénombrable les équations directes et inverses de Kolomogorov sont vérifiées si la suite (3) converge uniformément.

Le mouvement brownien

Définition 4 On appelle mouvement brownien un processus stochastique à valeurs réelles, $(B_t)_{t\geq 0}$, qui est un processus à accroissements indépendants et stationnaires dont les trajectoires sont continues. Ce qui signifie que

- 1) Continuité: P p.s. la fonction $s \longrightarrow B_t(\omega)$ est une fonction continue.
- 2) Indépendance des accroissement : si $s \le t$, $B_t B_s$ est indépendant de la tribu $\mathcal{F}_s = \sigma(B_r, r \le s)$ est de loi gaussienne centré de variance t s.
- 3) Stationnarité des accroissements : si $s \le t$, la loi de $B_t B_s$ est identique à celle de $B_{t-s} B_0 = B_{t-0}$.

La filtration naturelle est $\mathcal{F}_t = \sigma\{B_s, s \leq t\}$. On lui ajoute de façon implicite les négligeables. On peut montrer qu'elle vérifie alors les conditions habituelles.

Définition 5 Un mouvement brownien est dit standard si : $B_0 = 0$ P - p.s, $\mathbb{E}(B_t) = 0$, et $\mathbb{E}(B_t^2) = t$.

Dans la suite si on parlera de mouvement brownien sans précision, il s'agira d'un movement brownien standard.

Proposition 1 Soit $(B_t)_{t\geq 0}$ est un movement brownien standard, alors B_t est un processus gaussien, i.e. pour tout n et tous $0 \leq t_0 \leq t_1 \leq t_2 \leq \ldots \leq t_n$, $(B_{t_1}, \ldots, B_{t_n})$ est un vecteur gaussien.

Théorème 1 B est mouvement brownien standard si et seulement si B est un processus gaussien continu centré de fonction de covariance

$$Cov(B_t, B_s) = t \wedge s = \min(t, s)$$
.

4.1 Promenade aléatoire

Soit, sur un espace de probabilité (Ω, F, P) une famille de variables aléatoires de Bernoulli indépendantes équidistribuées

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}, i \in \mathbb{N}^*$$

On associe a cette famille la suite $(S_n, n \ge 0)$ définie par

$$S_0 = 0, S_n = \sum_{i=1}^n X_i,$$

On dit que la suite S_n est une promenade aléatoire. On a $E(S_n) = 0, Var(S_n) = n$.

Remarquons que la suite $(S_m - S_n, m \ge n)$ est indépendante de $(S_0, S_1, ..., S_n)$ et que $S_m - S_n$ a la même loi que S_{m-n} .

On procède alors a une double renormalisation. Soit N fixé, on définit une famille de variables aléatoires indexées par les réels de la forme $N_k, k \in \mathbb{N}$, par

$$U_{\frac{k}{n}} = \frac{1}{\sqrt{N}} S_{k,}$$

On a

$$E\left[U_{\frac{k}{n}}\right] = 0 \text{ et } Var\left[U_{\frac{k}{n}}\right] = \frac{k}{N}$$

Les propriétés d'indépendance et de stationarité de la promenade aléatoire restent vérifiées, soit, si $k \geq k', U_{\frac{k}{N}} - U_{\frac{k'}{N}}$ est indépendante de $(U_{\frac{p}{N}}; p \leq k')$, de plus si $k \geq k', U_{\frac{k}{N}} - U_{\frac{k'}{N}}$ a la même loi que $U_{\frac{k-k'}{N}}$.

On définit un processus a temps continu $(U_t, t \ge 0)$ a partir de $U_{\frac{k}{N}}$ en imposant a la fonction $t \to U_t$ d'être affine entre $\frac{k}{N}$ et $\frac{k+1}{N}$. Pour cela, N étant fixé, on remarque que pour tout $t \in \mathbb{R}_+$ il existe $k(t) \in \mathbb{N}$ unique tel que $\frac{k(t)}{N} \le t < \frac{k(t)+1}{N}$ et on pose

$$U_t^N = U_{\frac{k}{n}} - N\left(t - \frac{k}{N}\right) \left(U_{\frac{k-1}{n}} - U_{\frac{k}{n}}\right),\,$$

ou k = k(t). Pour t = 1 on a $U_1^N = \frac{1}{\sqrt{N}}S_N$. Le théorème central-limite implique alors que U_1^N converge en loi vers une variable aléatoire gaussienne centrée réduite.

On montre alors que le processus U^N converge (au sens de la convergence en loi) vers un mouvement Brownien B. En particulier $U_t^N \xrightarrow{loi} B_t$ et $(U_{t_1}^N, ..., U_{t_k}^N) \xrightarrow{loi} (B_{t_1}, ..., B_{t_k})$ pour tout k-uple $(t_1, ..., t_k)$.

4.2 Propriété de Martingale

Définition 6 Un processus $(M_t)_{t>0}$ est dit martingale si

- i) Pour tout $t \geq 0$, M_s est \mathcal{F}_s -mesurable.
- ii) Pour tout $t \geq 0$, M_t est intégrable i.e $\mathbb{E}(|M_t|) < \infty$.
- $iii) \forall t \geq s \geq 0, \mathbb{E}(M_t | \mathcal{F}_s) = M_s, P p.s.$

On définit de manière similaire une sous-martingale si (iii) remplacé par

$$\mathbb{E}\left(M_t \mid \mathcal{F}_s\right) \geq M_s P - p.s.$$

Et sur-martingale si (iii) est remplacé par

$$\mathbb{E}\left(M_t \left| \mathcal{F}_s \right.\right) \leq M_s \ P - p.s.$$

Proposition 2 Le mouvement brownien standard $(B_t, t \ge 0)$ est une martingale par rapport à la filtration naturelle $\mathcal{F}_t^B = (B_s, 0 \le s \le t)$.

Proposition 3 Soit $(B_t)_{t\geq 0}$ un mouvement brownien. Les processus suivants sont des martingales par rapport (\mathcal{F}_t^B)

- i) $M_t = B_t^2 t$.
- ii) $N_t = \exp\left(B_t \frac{t}{2}\right)$.

Définition 7 Le processus $X_t = a + B_t$ est un Brownien issu de a. On dit que X est un Brownien généralisé ou un MB de drift μ si $X_t = x + \mu t + \sigma B_t$ où B est un mouvement Brownien. La variable X_t est une variable gaussienne d'espérance $x + \mu t$ et de variance $\sigma^2 t$.

Les v.a. $(X_{t_{i+1}} - X_{t_i}, t_0 \le t_1 ... \le t_n)$ sont indépendantes.

Proposition 4 Le processus B est un processus gaussien, sa loi est caractérisée par son espérance nulle et sa covariance $Cov(B_t, B_s) = s \wedge t$.

Preuve. Le caractère gaussien résulte de

$$\sum_{i=0}^{n} a_i B_{t_i} = \sum_{i=0}^{n} b_i (B_{t_{i+1}} - B_{t_i})$$

avec $a_i = b_i - b_{i+1}, i \leq n-1, a_n = b_n$. La covariance est égale á $E(B_tB_s)$ car le processus est centré. Si $s \leq t$,

$$E(B_t B_s) = E((B_t - B_s)B_s + B_s^2) = E(B_t - B_s)E(B_s) + E(B_s^2) = s.$$

On peut généraliser : Le processus $(X_t = x + \mu t + \sigma B_t, t \ge 0)$ est un processus gaussien d'espérance $x + \mu t$ et de covariance $E[(X_t - E(X_t))(X_s - E(X_s))] = \sigma^2(s \wedge t)$.

4.3 Propriété de Markov

La propriété de Markov du mouvement Brownien est utilisée sous la forme : pour tout s, le processus $(W_t, t \ge 0)$ défini par $W_t = B_{t+s} - B_s$ est un mouvement Brownien indépendant de \mathcal{F}_s .

Théorème 2 Pour f borélienne bornée, $E(f(B_u)|\mathcal{F}_t) = E(f(B_u)|\sigma(B_t))$ pour u > t.

Preuve. On fait apparaître les accroissements et on utilise les propriétés de l'espérance conditionnelle

$$E(f(B_u)|\mathcal{F}_t) = E(f(B_u - B_t + B_t)|\mathcal{F}_t) = \Phi(u - t, B_t),$$

avec

$$\Phi(u - t, x) = E(f(B_u - B_t + x)) = E(f(Y + x))$$

ou Y a la même loi que $B_u - B_t$, soit une loi $\mathcal{N}(0, u - t)$. Par les mêmes arguments, $E(f(B_u)|\sigma(B_t)) = \Phi(u - t, B_t)$.

Proposition 5 (Propriété de Markov forte) Soit T un temps d'arrêt à valeurs finies. On a alors $E(f(B_{T+s})|\mathcal{F}_T) = E(f(B_{T+s})|\sigma(B_T))$. En particulier, pour tout temps d'arrêt fini T, le processus $(W_t, t \geq 0)$ défini par $W_t = B_{t+T} - B_T$ est un mouvement Brownien indépendant de \mathcal{F}_T .

4.4 Répartitions finidimensionnelles d'un processus brownien

Il suit que quelque soient $n \in \mathbb{N}^*$ et les moments $t_1, ..., t_n$ $(0 = t_0 < t_1 < t_2 < ... < t_n)$, les variables aléatoires $U_1 = B(t_1) - B(t_0)$, $U_2 = B(t_2) - B(t_1)$, ..., $U_n = B(t_n) - B(t_{n-1})$ sont indépendantes et

$$P\{U_j \le x\} = \frac{1}{\sqrt{2\pi(t_j - t_{j-1})}} \int_{-\infty}^x exp\left(-\frac{u^2}{2(t_j - t_{j-1})}\right) du$$

pour tout $x \in \mathbb{R}$, d'où on tire que le vecteur $U = (U_1, ..., U_n)^T$ suit une loi normale $\mathcal{N}_n(0_n, D)$, tel que

et donc la densité de U est

$$f_U(u) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi(t_j - t_{j-1})}} exp\left(-\frac{u_j^2}{2(t_j - t_{j-1})}\right).$$

Notons $\mathbf{B} = (B(t_1), B(t_2), ..., B(t_n))^T$. Il est clair que $\mathbf{B} = AU$, où

puisque $B(t_1)=U_1, B(t_2)=U_1+U_2, ..., B(t_n)=U_1+\ldots+U_n,$ la densité de ${\bf B}$ est

$$f_{\mathbf{B}}(w) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi(t_j - t_{j-1})}} exp\left(-\frac{(w_j - w_{j-1})^2}{2(t_j - t_{j-1})}\right), \ w_0 = 0.$$

Il suit que le processus standard de Wiener est un processus gaussien homogène a accroissements indépendants avec