

- 지도학습(Supervised Learning)
- 비지도학습(*Unsupervised Learning*)
- 준지도 학습(Semi supervised Learning)
- 강화학습(Reinforcement Learning)

Ref: hands on machine learning 2nd - oreily

Ref: hands on machine learning 2nd - oreily

- 비지도학습(Unsupervised Learning)
 - <u>군집(clustering)</u>
 - $k \overline{\Theta}$ \overline{U} (k means)
 - 계층군집분석(hierarchical cluster analysis)
 - 이상치탐지(outlier detection)
 - <u>차원축소(dimension reduction)</u>
- 지도학습(Supervised Learning)
 - -k-최근접 이웃 $(k-nearest\ neighbors, KNN)$
 - <u>회귀(Regression)</u>
 - <u>선형회귀(linear regression)</u>
 - <u>로지스틱회귀(logistic regression)</u>
 - <u>서포트벡터머신(support vector machine, SVM)</u>
 - 결정트리(decision tree)와 랜덤 포레스트(random forest)
 - <u>신경망(neural networks)</u>
 - <u>합성곱신경망(convolutional neural network, CNN)</u>
 - <u>순환신경망(recurrent neual network, RNN)</u>

분류, 회귀, 군집

• Iris Database(https://archive.ics.uci.edu/ml/datasets/iris)

• Attribute(feature): 150개 샘플 각각에 대해 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비를 측정 기록

1. sepal length in cm

- 2. sepal width in cm

- 3. petal length in cm

- 4. petal width in cm

5. class(label): setosa, versicolour, virginica

		Felai		20 2 14 h	GISICOIO	-8
•			1			SECTION IN
ica	100 m)	
es 🗢			Sepal			
sa	Virginica				Setos	a

Sepal length ◆	Sepal width ◆	Petal length +	Petal width +	Species ♦
5.2	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa

7.0	3.2	4.7	1.4	I. versicolor
6.4	3.2	4.5	1.5	I. versicolor
6.9	3.1	4.9	1.5	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor

6.3	3.3	6.0	2.5	I. virginica
5.8	2.7	5.1	1.9	I. virginica
7.1	3.0	5.9	2.1	I. virginica
6.3	2.9	5.6	1.8	I. virginica

• 회귀의 유래

- 서양에서는 영국의 유명한 유전학자 갈톤(F. Galton, 1822 ~ 1891) 에 의해서 회귀 라는 용어가 등장
 - 유전에 관한 논문「Family Likeness in Stature (1886)」에서 처음 회귀에 대하여 정의.
 - 보편적 회귀법칙 (law of universal regression)
 "일반적으로 키가 큰 부모에게서 키 큰 자녀가, 키가 작은 부모에게서 키 작은 자녀가 태어난다. 그렇지만 <u>자녀들의 평균 키는 전체 인구의 평균 키로 회귀하는 경향</u>이 있다.
 즉, 키가 큰 부모이든 작은 부모이든 그들에게서 태어난 자녀들의 평균 키는 전체 평균 키 수준에 접근하는 현상으로 나타난다는 것이다"

• 회귀분석

- 변수와 변수 사이의 상관관계를 알아보기 위한 통계적 분석방법, 독립변수의 값에 의하여 종속변수의 값을 예측하기 위함
 - 독립변수(independent variable): 종속변수에 영향을 미치는 변수
 - 종속변수(dependent variable) : 분석의 대상이 되는 변수
- 머신러닝 : 독립변수는 특징(feature), 종속변수는 결정 값(target, predict)
- 단순회귀분석(단변량, simple regression analysis)
 - 하나의 종속변수와 하나의 독립변수의 관계를 분석
- 다중회귀분석(다변량, multiple regression analysis):
 - 하나의 종속변수와 둘 이상의 독립변수간의 관계를 분석

• 기온이 섭씨 1도 올라감에 따라 아이스크림 판매량에 미치는 영향(예측)은?

(단위 : 도, 십만 개)

온 도(X)	23	25	26	27	28	29	30	31	33
판매량 (Y)	29	23	25	28	33	35	36	32	29

- 두 변수 사이에 positive(+) or negative(-)의 관계가 존재
- 두 변수는 선형관계 또는 비선형 관계
- 두 변수 사이에 존재하는 관련 성(함수관계)

- y = ax + b
- 기울기(slope): a, Y절편(intercept): b

- 하나의 특성(x)과 연속적인 타깃(y)사이의 관계를 모델링 $\hat{y} = w_0 + w_1 x$
- 회귀선(regression line) : 데이터에 가장 잘 맞는 직선
- 오차(error): 회귀선과 데이터 사이의 직선 거리

다변량 선형회귀

특성이 여러 개 : $x_1, x_2, \cdots x_n$

$$\hat{y} = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$

$$= \sum_{i=0}^n w_i x_i = w^T x$$

$$v = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

$$y = (w_1 \quad w_2 \quad w_3) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (w_1 x_1 + w_2 x_2 + w_3 x_3)$$

$$y_i = oldsymbol{eta}_0 + oldsymbol{eta}_1 x_i + oldsymbol{\epsilon}_i$$
 (ϵ_i : 오차항)

- 오차항 ϵ_1 ,..., ϵ_n : 오차분산 σ^2 에 대하여 정규분포 한다고 가정 $N(0,\sigma^2)$ 평균은 0. 실제 값이 회귀선상에 있는 점을 중심으로 분포되어 있고 분산 σ^2 은 모든 x 값에 동일

- 회귀직선 $y = \beta_0 + \beta_1 x$ 를 데이터 $(x_1, y_1), ..., (x_n, y_n)$ 에 적합(fit)시키는 과정
- 데이터셋에 가장 근접한 직선을 찾는 과정

minimize =
$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

상관계수(Correlation coefficient): 두 변수들 간의 연관 정도

 m_r : mean of X

 m_{v} : mean of Y

 s_x : standard deviation of X, $\sqrt{\frac{\sum_{i=1}^n (X_i - m_x)^2}{n-1}}$

 s_y : standard deviation of Y, $\int_{1}^{\infty} \frac{\sum_{i=1}^{n} (Y_i - m_y)^2}{n-1}$

r: the correlation between X and Y(Pearson's r)

Pearson's
$$\mathbf{r} = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}}, \quad (x = X - m_x, y = Y - m_y)$$

Х	Y
1.00	1.00
2.00	2.00
3.00	1.30
4.00	3.75
5.00	2.25

•	Pearson's r =	$\sum xy$
	reurson si –	$\sqrt{\sum x^2 \sum y^2}$

$m_{_{\chi}}$	m_{y}	\mathcal{S}_{χ}	$S_{\mathcal{Y}}$	r
3	2.06	1.581	1.072	0.627

- $slope(a) = r \cdot s_x/s_y = (0.627) \cdot (1.072)/1.581 = 0.425$
- $intercept(b) = m_y a \cdot m_x = 2.06 (0.425)(3) = 0.785$

• \hat{Y} : predicted values

• $Y - \hat{Y}$: errors of prediction

• $\hat{Y} = 0.425X + 0.786$

Best fitting line

minimizes the sum of the squared errors of prediction.

X	Y	Ŷ	$Y-\widehat{Y}$	$(Y-\hat{Y})^2$
1.00	1.00	1.210	-0.210	0.044
2.00	2.00	1.635	0.365	0.133
3.00	1.30	2.060	-0.760	0.578
4.00	3.75	2.485	1.265	1.600
5.00	2.25	2.910	-0.660	0.436

- 실제 값에서 예측 값간의 차이 제곱의 합이 최소일 때의 값을 찾는 방법
- $(\hat{Y} Y)^2$ \hat{y} : 예측값, Y: 실제 값

$$\frac{(\hat{y}^{(1)} - y^{(1)})^2 + (\hat{y}^{(2)} - y^{(2)})^2 + \dots + (\hat{y}^{(5)} - y^{(5)})^2}{5}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_{(i)} - Y_{(i)})^2$$

http://onlinestatbook.com/2/regression/intro.html

LinearRegression

```
from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()

lin_reg.fit(X, y)

lin_reg.intercept_, lin_reg.coef_

\beta_0, \beta_1 (array([4.04967799]), array([[3.01093259]]))
```

```
X_new = np.array([[0], [2]])
lin_reg.predict(X_new)
```

[0], [1] 의 예측 결과 : array([[4.04967799], [10.07154317]])


```
import numpy.random as rnd
np.random.seed(42)
# 2차 방정식으로 비선형 데이터 생성
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
plt.plot(X, y, "b.")
plt.xlabel("$x 1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
plt.show()
                            y 61
                                             X_1
```

```
# 훈련세트에 있는 각 특성을 제곱(2차 다항)하여 새로운 특성 추가

from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2, include_bias=False)

X_poly = poly_features.fit_transform(X)

X[0]
```

array([-0.75275929])

```
X_poly[0]
```

array([-0.75275929, 0.56664654])

```
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y) # X_poly : 원래 특성 x와 새로운 특성 포함
lin_reg.intercept_, lin_reg.coef_
```

(array([1.78134581]), array([[0.93366893, 0.56456263]]))

- 실제함수 : $y = 0.5x_1^2 + 1.0x_1 + 2.0$
- 예측모델: $y = 0.56x_1^2 + 0.93x_1 + 1.78$

```
X_new=np.linspace(-3, 3, 100).reshape(100, 1)
X_new_poly = poly_features.transform(X_new)
y_new = lin_reg.predict(X_new_poly)
plt.plot(X, y, "b.")
plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([-3, 3, 0, 10])
plt.show()
```

