부트로더

Hancheol Cho

부트로더란?

- 펌웨어가 실행되기전에 초기화기능 수행
 - DDR 메모리 초기화
 - Linux 커널 로딩
- 펌웨어 업데이트 수행
 - 원하는 통신 방식으로 JTAG 같은 툴 없이 펌웨어 업데이트 진행

부트로더 종류

- On-Chip 부트로더
 - MCU에 기본으로 내장된 부트로더로 별도의 부트로더를 제작하지 않더라도 사용 가능 (STM BOOTLOADER 등)
- 사용자 부트로더
 - 직접 제작한 부트로더로 다양한 프로토콜과 통신 방식 지원 가능

STM BOOTLOADER

- STM32 에 기본 포함된 부트로더로 다양한 인터페이스 지원
- o BOOT 핀 상태로 부트로더 실행 모드 선택함

Boot mode selection			
воот	Boot address option bytes	Boot area	
0	BOOT_ADD0[15:0]	Boot address defined by user option byte BOOT_ADD0[15:0] ST programmed value: Flash on ITCM at 0x0020 0000	
1	BOOT_ADD1[15:0]	Boot address defined by user option byte BOOT_ADD1[15:0] ST programmed value: System bootloader at 0x0010 0000	

부트로더 종류

- STM BOOTLOADER
 - 부트로더 부팅 과정

부트로더 구현시 유의사항

부트로더 구현 순서

FLASH 메모리 맵

- STM32F746의 FLASH 메모리 구성
 - FLASH 메모리는 Sector 단위로 지워지기 때문에 Sector 단위로 부트로더용량 고려 필요

Block	Name	Bloc base address on AXIM interface	Block base address on ICTM interface	Sector size
	Sector 0	0x0800 0000 - 0x0800 7FFF	0x0020 0000 - 0x0020 7FFF	32 KB
	Sector 1	0x0800 8000 - 0x0800 FFFF	0x0020 8000 - 0x0020 FFFF	32 KB
	Sector 2	0x0801 0000 - 0x0801 7FFF	0x0021 0000 - 0x0021 7FFF	32 KB
Main memory	Sector 3	0x0801 8000 - 0x0801 FFFF	0x0021 8000 - 0x0021 FFFF	32 KB
block	Sector 4	0x0802 0000 - 0x0803 FFFF	0x0022 0000 - 0x0023 FFFF	128 KB
	Sector 5	0x0804 0000 - 0x0807 FFFF	0x0024 0000 - 0x0027 FFFF	256 KB
	Sector 6	0x0808 0000 - 0x080B FFFF	0x0028 0000 - 0x002B FFFF	256 KB
	Sector 7	0x080C 0000 - 0x080F FFFF	0x002C 0000 - 0x02F FFFF	256 KB
	System memory	0x1FF0 0000 - 0x1FF0 EDBF	0x0010 0000 - 0x0010 EDBF	60 Kbytes
Information block	OTP	0x1FF0 F000 - 0x1FF0 F41F	0x0010 F000 - 0x0010 F41F	1024 bytes
	Option bytes	0x1FFF 0000 - 0x1FFF 001F	-	32 bytes

FLASH 메모리 맵

• FLASH 메모리의 영역 할당

부트로더 실행

- 부트로더 실행을 위한 별도 버튼 할당
 - 리셋 혹은 전원 On시에 부트로더를 강제로 실행 할 수 있는 기능 필요 (리커버리 모드)
 - 일반적으로는 전원 On시 부트로더 실행 후 펌웨어로 점프함.

부트로더 실행

• 부팅 순서 정의

펌웨어 이미지 생성

 부트로더에서 펌웨어 버전을 확인 할 수 있도록 특정 위치에 펌웨어 버전을 위치시킴

펌웨어 이미지 생성

- 프로젝트 빌드 후에 생성된 펌웨어 Binary에 대한 정보를 Tag정보로 Flash에 저장
 - Tag는 펌웨어 Binary의 유효성 검증용

펌웨어 Tag 구성

- 펌웨어 Tag에는 펌웨어 유효성을 검증할 수 있는 데이터가 포함
 - 펌웨어 위치 및 크기와 CRC 혹은 체크섬 데이터를 이용하여 검증 함

Tag를 포함한 Memory Map

메모리 정의

- hw_def.h 에 메모리 주소 정의
 - 메모리 주소를 정의하여 변경하기 쉽도록 적용

```
hw_def,h
...

#define FLASH_FW_SIZE (768*1024) // 768KB

#define FLASH_FW_ADDR_START 0x08040000

#define FLASH_FW_ADDR_END (FLASH_FW_ADDR_START + FLASH_FW_SIZE)
...
```

통신 프로토콜

- 시리얼 통신 프로토콜 정의 송신 패킷
 - o PC에서 MCU가는 패킷으로 명령을 전송함

STX	Cmd	Option	LENGTH_L	LENGTH_H	Data[0]		Data[n]	CheckSum	ETX
0x02	0x00 ~ 0xFF	CheckSum	0x03						

- 시리얼 통신 프로토콜 정의 수신 패킷
 - o MCU에서 PC로 보내는 패킷으로 송신 패킷을 수신시 그에 대한 응답으로 보냄

STX	Cmd	Error	LENGTH_L	LENGTH_H	Data[0]		Data[n]	CheckSum	ETX
0x02	0x00 ~ 0xFF	CheckSum	0x03						

프로토콜 데이터 수신 처리

- 수신되는 데이터를 1바이트씩 받아서 처리함.
 - 상태머신을 이용하여 각 상태를 정의하고 패킷을 확인함.

1바이트 송/수신 예외 처리

• Host->Slave로 전송하는 바이트 사이의 타임아웃 발생 처리

패킷 송/수신 타임아웃

• Host->Slave로 전송하는 명령어 패킷에 대한 응답 타임아웃 발생 처리

부트로더 명령어 구성

- 부트로더를 위한 명령어
 - BOOT_CMD_READ_VERSION
 - 현재 버전을 읽는다.
 - BOOT_CMD_READ_BOARD_NAME
 - 보드 이름을 읽는다.
 - BOOT_CMD_FLASH_ERASE
 - FLASH에 원하는 영역을 지운다.
 - BOOT_CMD_FLASH_WRITE
 - FLASH에 원하는 데이터를 Write한다.
 - 한번에 Write할 수 있는 양은 통신 버퍼 크기로 제한된다.
 - BOOT_CMD_JUMP_TO_FW
 - 펌웨어로 점프한다.

```
#define BOOT_CMD_READ_VERSION 0x00

#define BOOT_CMD_READ_BOARD_NAME 0x01

#define BOOT_CMD_FLASH_ERASE 0x02

#define BOOT_CMD_FLASH_WRITE 0x03

#define BOOT_CMD_JUMP_TO_FW 0x08
```

명령어 처리 순서

- cmdReceivePacket함수에서 통신 프로토콜 분석 후 정상 패킷 수신
- 수신된 패킷의 명령어에 따라 해당 함수를 수행함

명령어 처리 순서

```
void apInit(void)
 cmdInit(&cmd_boot);
 cmdBegin(&cmd_boot, _DEF_UART1, 115200);
/oid apMain(void)
 uint32_t pre_time;
 pre_time = millis();
 while(1)
   if (cmdReceivePacket(&cmd_boot) == true)
     bootProcessCmd(&cmd_boot);
   if (millis()-pre_time >= 100)
     pre_time = millis();
     ledToggle(_DEF_LED1);
```

펌웨어 다운로드 순서

• 명령어를 이용해서 PC용 Downloader 프로그램과 통신으로 다운로드 진행

