# Factorial Designs II

Sean Hellingman ©

Design for Data Science (ADSC2030) shellingman@tru.ca

Winter 2025



### **Topics**

- Introduction
- Creating Factorial Designs
- Analysis in R
- Two-Level Factorials

- Two-Level Factorials in R
  - Number of Replicates
- One Replicate Per Cell
- Model Assumptions
- Exercises and References

#### Introduction

- When many factors are under study, it is more efficient to study them together.
- There is more power in detecting main effects.
- Higher order interactions may also be detected.



Figure: Source: (1)

### **Factorial Designs**

- Factorial Designs examine all possible combinations of factor levels.
- The number of replicates of a specific level of one factor is increased by the product of the number of levels of all other factors in the design.
- The same power or precision can be obtained with fewer replicates.

### Multi-Factor Designs in R I

- There are many ways to create this kind of design in R.
- We can use the expand.grid() function to create a data frame of all possible combinations:

```
• D <- expand.grid(Factor.1 =
 as.factor(c(level.1,...,level.i)),
 Factor.2 = as.factor(c(level.1,...,level.j)), ...,
 Factor.k = as.factor(c(level.1,...,level.m)))</pre>
```

- To replicate you can use the rbind() function:
  - D <- rbind(D.D)</pre>

### Multi-Factor Designs in R II

- Randomization:
  - set.seed(2030) # Reproducible
  - D <-D[order(sample(1:nrow(D))), ] # Randomization
  - write.csv(D, file="Design.csv") # save optional

- Assume that we examine four levels for each of the two previous factors from the helicopter experiment and also want to examine two drop heights:
  - Wing Length: 4, 4.75, 5.5, 6 (inches)
  - Body Width: 3.25, 3.75, 4, 4.25 (inches)
  - Drop Height: 1.5, 2 (metres)
- Use R to come up with a randomized three-factor design with two replications for each combination.

# **Mathematical Model (Multiple Factors)**

• The mathematical model for a completely randomized multi-factor factorial design (*m* factors) can be written as:

$$Y_{ij...mk} = \mu_{ij...m} + \epsilon_{ij...mk}. \tag{1}$$

- *i* represents the level of the first factor.
- *m* represents the level of the *z*<sup>th</sup> factor.
- *k* represents the replicate number.
- This model is called a *cell means model* and  $\mu_{ij...m}$  represents the expected response in the  $ij...m^{th}$  cell.

#### **Alternative Mathematical Model**

• The effects model:

$$Y_{ij...mk} = \mu + \alpha_i + \beta_j + ... + \gamma_m + \alpha \beta_{ij} + ... + \alpha \beta \cdots \gamma_{ij...m} + \epsilon_{ij..mk}.$$
 (2)

- $\alpha_i$ ,  $\beta_j$ , ...  $\gamma_m$  are the main effects:
  - $\alpha_i$  represents the difference between the marginal average of all experiments at the  $i^{th}$  level of the first factor and the overall average.
  - $\gamma_j$  represents the difference between the marginal average at the  $m^{th}$  level of the  $z^{th}$  factor and the overall average.
- Now we consider all possible interactions.

# Illustrative Example 1

 Using the web data from the daewr package and the description in the example code (changes in the webpage configuration) we have the following model:

$$\begin{aligned} \mathsf{prop}_{ijkl} &= \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \gamma_k + \alpha\gamma_{ik} + \beta\gamma_{jk} + \alpha\beta\gamma_{ijk} + \delta_l + \\ &\alpha\delta_{il} + \beta\delta_{jl} + \alpha\beta\delta_{kl} + \gamma\delta_{kl} + \alpha\gamma\delta_{ikl} + \beta\gamma\delta_{ikl} + \alpha\beta\gamma\delta_{ijkl} \end{aligned}$$

 Because we have a different number of replicates we will use the contr.sum and type = "III" arguments in R.

#### Effects Model in R

- Use the lm() function to estimate the linear model with all interactions.
- If there is only one observation per group you will need to remove a term
  - Otherwise, include all of the terms.
- Next use the Anova() function from the car package with the type
  "III" argument to examine the significance of the overall interactions.

- Estimate the effects (linear) model with the prop variable as the response variable.
- Omit the four-way interaction A:B:C:D as we only have one replication for each group.
- Perform an ANOVA on your resulting model.
- What do you think your results imply?

### **Visualizing Interactions**

• We can use the code from the previous slides to examine interactions or we can use the plot\_model(lm, type = "int") function from the *sjPlot* package.

- Estimate the effects model on the *COdata* that we covered in Example 3 of Factorial Designs I.
- Use the plot\_model() function to examine the interaction term.
- Use the plot\_model() function to examine the interaction terms from Example 2.

#### **Two-Level Factorials**

- As we increase the number of factors in a design, the treatment combinations increases exponentially.
  - Four factors with 5 levels:  $4^5 = 1024$  runs needed
- Very popular approach is to design experiments with two-level factors  $(2^k)$ .
- The two levels are often denoted (-) and (+) for lowest and highest respectively.

#### **Two-Level Factorials Notation**

- We can replace the i notation by + or -.
- For Example:  $\alpha_- = -\alpha_+$
- We can define the effects of the main effects of a two-level factorial:

$$E_A = \bar{y}_{+...} - \bar{y}_{-...}$$

- Represents the change in the average response caused by going from low (-) to high (+) in factor A.
- $\beta_A$  is one half of the effect  $E_A$ .

### **Effects**



Figure: Source: (1)

# Geometric Representation (2<sup>3</sup>)



$$E_A = (y_{+-} + y_{++} + y_{+-} + y_{+++})/4 - (y_{--} + y_{-+} + y_{-+} + y_{-+})/4$$

Figure: Source: (1)

#### **Two-Level Factorials Notation**

- We can examine the terms including interactions in R using the lm() function.
- To include the half effects we need to include the contr.FrF2 from the DoE.base package argument to the estimation process.

$$\textit{X}_{\textit{A}} = \frac{\textit{ActualFactorSetting} - \textit{FactorMidPoint}}{\textit{HalfTheRange}}$$

- R Code:
  - model <- lm(response ~ Factor.1\*Factor.2\*...\*Factor.m, data = data, contrast = list(Factor.1=contr.FrF2, Factor.2=contr.FrF2,..., Factor.m=contr.FrF2))
  - summary(model)

- Load the volt dataset from the daewr package into R.
- Take some time to examine the data.
- Estimate a linear model using the method covered on the previous slide.
- Remember, these estimates are half of the main effects values.
- Are the main effects meaningful?

• Visualize any significant interactions from Example 4.

### **Example 4 Comments**

 Removing any insignificant terms we may obtain the following model formula:

$$y = 668.563 - 16.813 \left( \frac{Temp - 27}{5} \right) - 6.688 \left( \frac{CWarm - 2.75}{2.25} \right) \left( \frac{Temp - 27}{5} \right)$$

• We have a significant interaction.

### Number of Replicates Shortcut I

- Assume we are interested in a power equal to 0.95 for a two-level factorial design with  $\alpha=0.05$ .
- The formula to obtain the number of **runs** *N*:

$$N = ((8\sigma)/\Delta)^2. \tag{3}$$

- $\bullet$   $\sigma$  is the standard deviation of the experimental error.
- $N = r \cdot 2^k$
- This formula only works for two-level factorial designs.

- Use the formula on the previous slide to write a function in R to estimate the number of replicates needed.
- Use your function and the following information to approximate how many replicates will we need to obtain a power of 0.95 for the experiment from Example 4.
  - $\sigma = 15.0$  (Known by lab technician)
  - $\Delta = 30.0$  (Suggested by students)

### Number of Replicates Shortcut II

- Assume we have a budget for an experiment.
- ullet The formula can be rearranged to find  $\Delta$  (the size of effect we are likely to detect):

$$\Delta = 8 \cdot \sigma / \sqrt{N} \tag{4}$$

- $\bullet$   $\sigma$  is the standard deviation of the experimental error.
- $N = r \cdot 2^k$
- This formula only works for two-level factorial designs.

### One Replicate Per Cell

- It is very possible that only one replicate per cell is *needed*.
- In the case that there is only one replicate per cell, we cannot estimate the variance of the error term to conduct any of the hypothesis tests.
- There are visualisation methods that we can use to identify possible significant effects.

# One Replicate Per Cell in R

Estimate a model (contr.FrF2 not needed):

• model <- lm(response  $\sim$  A\*B\*..., data = data)

Off diagonal elements from this plot are significant:

- library(daewr)
- fullnormal(coef(model)[-1],alpha=.025)
- There are other methods to detect significant terms.
  - LGB(coef(model)[-1], rpt = FALSE)

- Import the *chem* dataset into R.
- Take a moment to understand the data.
- Are there any significant factors in this experiment?

# **Model Assumptions with Replication**

 When there are replicates for each cell (combination of factor levels) we can use the previous methods discussed to check for normality and a constant variance.

- Methods:
  - Scatterplots of residuals
  - Q-Q plot
  - Shapiro-Wilk Test
  - o ncvTest()

### **Model Assumptions WITHOUT Replication**

- When we do not have replication it is more difficult to test for violations.
- Generally, violations of normality are driven by an outlier.
  - Will bias the estimated effects away from 0. (recall the plots used to detect significance for one replicate)
- In R:
  - Gaptest(data) Daniel's Method to find an outlier in an unreplicated
    2<sup>k</sup> design
  - The response is in the last column of the data frame.

#### **Comments on Outliers**

- When a detected *outlier* is removed or corrected, results should be interpreted with caution.
- When we have multiple replicates at factor setting where an outlier is detected, it may be okay to interpret the results.
- If there are two or fewer replicates and an outlier is detected, it may be advisable to rerun the experiment.

- Import the BoxM dataset into R.
- Use the techniques we used in Example 7 to detect any significant factors with regards to the response *y*.
- Use the Gaptest() function to detect any possible outliers.
- What conclusions can we draw from the results?

#### Exercise 1

- Take some time to work through the examples in these slides on your own.
  - See if you can solve them and interpret the results without the *Filled* example code.

#### References & Resources

- Lawson, J. (2014). Design and Analysis of Experiments with R (Vol. 115). CRC press.
- plot\_model()
- contr.FrF2
- fullnormal()
- LGB()
- Anova
- Gaptest()