P E X X X

Simple Case Totally Inearly separable

000 000

Seek

Hyperplane that separates w/ maximal margin

1. \$ = normal ve der

2, = point on it

Define $f(\vec{x}) = (\vec{x} - \vec{z}) \cdot \vec{k}$ Signed dictance from $\vec{\theta}$ to \vec{x} decision for

f(x,0)={ 0 => on 8 >0 => "abone" 8 <0 => "below" 8

 $S(\bar{x}) = s:qn(f(\bar{x})) = predicted class of \bar{x}$

fedures	true ±1	predicted 1	Correct +/	margin
X>	4	S(x,)	y, s(x)	y, f(x)
x	42	S(K2)	425(Kz)	y2f(x2)
~ —)	4	S(R)	$y_n s(\vec{x}_n)$	4n f(5m)

Original optimization:	
variables B, Z, M>0	df=2p+1

objective maximize M
constraints y; f(xi) ≥ M Vi

refine

Note $\|\vec{\beta}\|$ does not made blc $f(\vec{x}) = (\vec{x} - \vec{z}) \cdot \vec{\beta} = (\vec{x} - \vec{z}) \cdot \vec{K} \vec{\beta}$ $\|\vec{\beta}\|$ $\|K\vec{\beta}\|$

Reduce dimensionality by encoding M into & via * (|B|=1/m) df 2p+1->2p

OPT 2 df-2P 1 Variables 8, 2 M= 11BII

objective max $M \rightarrow max$ $||\vec{b}|| \rightarrow min$ $||\vec{b}|| \rightarrow min$ $||\vec{b}||^2$ | constraints $y_i f(\vec{x}_i) \geq m \rightarrow y_i (\vec{x}_i - \vec{z}) \cdot \vec{b} \geq 1$ $||\vec{b}||$

~>[y: (x:-2)·8-120 4:)

	71	
	More do reduction	\$434 - 144 -
	Eonotraints $y: (\hat{x} \cdot \hat{\beta} - \hat{z} \cdot \hat{\beta})$	1-1 20
	only role for z	is its dot w/ è
n, samenanister disklik de Fannisalische de vanentum 4 del 49 valle di m	let β0= -2· β	
	OPT3	
	voriables B, Co df. pt/	
	objective min 211B12	
	constraints y: (x:B+ Po) -	150 A:
	7	
n say sirelinendisendise listh-rebreisenmek-lisedis va mits d	How to solve? Lagrange Mult	pliers
	Calc 3 review	
	Boby Lagrange	Critical points
	T(X)	I) At(x) or DA(x) DNE
a manamentermania arrivari de la arrivario de la describir de la describir de la describir de la describir de	legicality constant $h(\vec{x}) = 0$	II) $\Delta t(x) = \lambda \Delta N(x)$
		Lagravege Multiplier
	Paddy Lagrange	
	l objective p(x)	I) $\nabla f(\vec{k})$ or any $\nabla h_i(\vec{k})$ DNE I) $\nabla f(\vec{k}) = \lambda_i \nabla h_i(\vec{k}) + \lambda_2 \nabla h_2(\vec{k}) + \lambda_k \nabla h_k \nabla h_k$
Į.	many equality constraints $h_1(\vec{x})=0$	A) Df(x) = 7,0 h, (x) + 1,20 h2(x) - 1/2
	$h_n(\bar{x}) = 0$	
	Nu(V)= ()	$\nabla \left[f(\vec{x}) - \frac{2}{2} \lambda_i h_i(\vec{x}) \right] = \vec{0}$
		Lagrange Primar

Karush- kuhn Tucker

Fallow 1 objective

 $f(\dot{x})$

Witipedia KKT many constants, equality & inequality $g_i(\vec{x}) \leq 0$ $h_i(\vec{x}) = 0$

(e) mig; (x) = 0 v;

 $L_p = f(\hat{x}) \pm \sum_{i=1}^{n} \mu_{i} g_{i}(\hat{x}) \pm \sum_{i=1}^{n} \mu_{i} h_{i}(\hat{x}) + \text{for mininize}$ $= h_i \text{ maximize}$

KRT Solve $\nabla L_p(\vec{x}) = \vec{\partial}$ $\partial G(\vec{x}) \leq 0$ $\forall i$ $\partial G(\vec{x}) \leq 0$ $\forall i$ $\partial G(\vec{x}) \leq 0$ $\forall i$

Apply kkT to SVM $f(\hat{e}, \beta_0) = \frac{1}{2} ||\hat{g}||^2 = \frac{1}{2} \underbrace{\xi}_{3:1} \beta_2^2 - b \text{ make } \ge 0 \xrightarrow{s} \le 0$ as kkT desires

 $g_{i}(\vec{p},\vec{p}_{0}) = -[y_{i}(\vec{x}_{i}\cdot\vec{p}_{1}\vec{p}_{0}) - 1] \leq 0$ $p_{i}(\vec{p},\vec{p}_{0}) = -[y_{i}(\vec{x}_{i}\cdot\vec{p}_{1}\vec{p}_{0}) - 1] \leq 0$

$$\nabla L_{\rho}(\vec{\beta}, \vec{\beta}) = 0$$

$$k = 0$$

$$\partial \beta_{0} = \frac{1}{2} \underbrace{\xi_{0} - \underbrace{\xi_{1}, \left[q_{1}(\vec{\beta}, 0+1) - 0\right]}_{i=1} - \underbrace{\xi_{1}, \left[q_{1}(\vec{\beta}, 0+1) - 0\right]}_{i=1}$$

$$(\vec{\beta}, \vec{\xi}, 0) = 0$$

$$= -\underbrace{\xi_{1}, q_{1}(\vec{\beta}, 0+1)}_{i=1} - \underbrace{\xi_{1}, q_{2}(\vec{\beta}, 0+1)}_{i=1} - \underbrace{\xi_{1}, q_{2}(\vec$$

all terms j * K Vanish

$$|K|^{2} = \frac{1}{2} \left(2 R_{K} \right) - \frac{1}{2} M_{i} \left[4 \left(X_{i} K + 0 \right) - 0 \right]$$

$$= R_{K} - \frac{2}{2} M_{i} Y_{i} X_{i} K$$

$$= R_{K} - \frac{2}{2} M_{i} Y_{i} X_{i} K$$

Now sub (ASG) into Lp & do a bunch of algebra
Get "Wolfe Pual"

OPT4 Maximize Lo subject to (b) -7 (g)

drap ble =0 Now Focus on (e) Mi g: = 0 4= [-4: (xi · p+ po)-1]=0 2 cases i) H:= O. For each such i, corresponding term drops out of Lo (1) Major complexity reduction 2) 41: >0 & y; (x; ·B+ po) -1 =0. recall: 4; = 11 βo= -2·B M= YIEII dist $(\vec{x}, \vec{\theta}) = (\vec{x} - \vec{z}) \cdot \vec{\beta} = [(\vec{x} - \vec{z}) \cdot \vec{\beta}] M = M(\vec{x} \cdot \vec{z} + \vec{\theta})$ So y; (x; ·B; -(80) -1 = 0 M. yi (xi, Bitho) = 1. 1

Dist (x; , P) = +M

"Only terms of Lp that survive are from vectors that are exactly the minimal margin M from P -> support rector's

Sign ficonce	There	ore typical	ly far	feuer	SIDDOFF	Ventus
		Solvina	constrained	optimize	ction in	50: 1R4
Then n=#	iter the	in in 123000		- Prosection	75. 11	Jack

OPTS Final Variables B, Bo, 4:

For each β, βo, compute S= {i | yi(xi β +βo)-1=0}

objective Maximize Lo= & Mi - . 1 & & Milkyiyk (Xi Xk)

constraints (b) -> Q

Again (a") has been fever terms than (a') or (a)

This is a convex optinization problem. We not ked hard to reduce complexity to a point where quadratic programming methods from numerical analysis can efficiently solve. We wan't go farther down that robbt hole.

"deesen finden f(x) = x . B+Bo

Idea 1 Transform features (often to higher dimension) 2. Fit linear SVM P

Detail

Pick Fundion h: RP -> R8 Apply h to each row x; Goal: the 2 classes can be separated with a hyperplane in the higher dim 120 post-transform

Charges:

$$\begin{array}{c}
\text{Charges} : \\
\text{C$$

In other words,

entry k of the output vector is given by his

decision for
$$f(\vec{x}) = \vec{x} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\beta}$$

$$f(\vec{x}) = \left[\vec{h} \left(\vec{x} \right) \cdot \vec{\beta} \right] + \beta_0$$

$$= \left[\sum_{k=1}^{8} h_k(\vec{x}) \beta_k \right] + \beta_0$$

$$= \left[\sum_{k=1}^{8} h_k(\vec{x}) \sum_{i=1}^{2} h_i y_i h_k(\vec{x}_i) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right] + \beta_0$$

$$= \left[\sum_{i=1}^{8} \mu_i y_i \left(\sum_{k=1}^{8} h_k(\vec{x}) h_k(\vec{x}_i) \right) \right]$$

It may not be obvious, but this is great b/c the only place \vec{h} is involved in the decision function is a dot product $\vec{h}(\vec{x}) \cdot \vec{h}(\vec{x})$.

"Reproducing Kernel Hilbert Spaces" \$5.8 Hashe,

Tibshirani, Friedman

The Kernel Trick

The kernel Trick

Summary: There are special choices for
$$\vec{h}$$
 where \vec{J} k such that

 $\vec{h}(\vec{x}) \cdot \vec{h}(\vec{y}) = k(\vec{x}, \vec{y})$
 \vec{k} is symmetric & positive definite "kernel"

 \vec{k} is computationally efficient

If we stick to one of these special choices of h, we only need to actually use K. Makes SVM efficient.

In fact, we never need to think about h again, Just express using k directly.

Common Choices

• poly namial
$$k(\vec{x}, \vec{y}) = .(1 + \vec{x} \cdot \vec{y})^d$$

• radial busis $k(\vec{x}, \vec{y}) = e^{-81|\vec{x} - \vec{y}||^2}$

· neural network $K(\vec{x}, \vec{y}) = tenh(K, \vec{x} \cdot \vec{y} + K_2)$

Stillern where d, 8, K, EKz are hyperparams.

"signoid" SVM hyper params

- 1. C = cost
- 2. Which Kernel
- 3. hyperparams for that Kernel.

pecicion fon $f(\vec{x}) = \underbrace{\xi_{\mu_i q_i} k(\vec{x}, \vec{x_i}) + \beta_0}$

WIKIPEDIA

Karush-Kuhn-Tucker conditions

In mathematical optimization, the **Karush-Kuhn-Tucker (KKT) conditions**, also known as the **Kuhn-Tucker conditions**, are first derivative tests (sometimes called first-order) necessary conditions for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a saddle point, i.e. a global maximum (minimum) over the domain of the choice variables and a global minimum (maximum) over the multipliers, which is why the Karush-Kuhn-Tucker theorem is sometimes referred to as the saddle-point theorem.^[1]

The KKT conditions were originally named after Harold W. Kuhn and Albert W. Tucker, who first published the conditions in 1951. [2] Later scholars discovered that the necessary conditions for this problem had been stated by William Karush in his master's thesis in 1939.[3][4]

Contents

Nonlinear optimization problem

Necessary conditions

Regularity conditions (or constraint qualifications)

Sufficient conditions

Second-order sufficient conditions

Economics

Value function

Generalizations

See also

References

Further reading

External links

Nonlinear optimization problem

Consider the following nonlinear minimization or maximization problem:

Optimize $f(\mathbf{x})$

subject to

$$g_i(\mathbf{x}) \leq 0,$$

 $h_i(\mathbf{x}) = 0.$

where $\mathbf{x} \in \mathbf{X}$ is the optimization variable chosen from a convex subset of \mathbb{R}^n , f is the objective or utility function, g_i $(i=1,\ldots,m)$ are the inequality constraint functions and h_i $(i=1,\ldots,\ell)$ are the equality constraint functions. The numbers of inequalities and equalities are denoted by m and ℓ respectively. Corresponding to the constraint optimization problem one can form the Lagrangian function

$$L(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu^{\mathsf{T}} \mathbf{g}(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{h}(\mathbf{x})$$

where $\mathbf{g}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))^{\mathsf{T}}$, $\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_\ell(\mathbf{x}))^{\mathsf{T}}$. The Karush-Kuhn-Tucker theorem then states the following.

Theorem. If (\mathbf{x}^*, μ^*) is a saddle point of $L(\mathbf{x}, \mu)$ in $\mathbf{x} \in \mathbf{X}$, $\mu \geq \mathbf{0}$, then \mathbf{x}^* is an optimal vector for the above optimization problem. Suppose that $f(\mathbf{x})$ and $g_i(\mathbf{x})$, i = 1, ..., m, are concave in \mathbf{x} and that there exists $\mathbf{x}_0 \in \mathbf{X}$ such that $\mathbf{g}(\mathbf{x}_0) > 0$. Then with an optimal vector \mathbf{x}^* for the above optimization problem there is associated a non-negative vector μ^* such that $L(\mathbf{x}^*, \mu^*)$ is a saddle point of $L(\mathbf{x}, \mu)$.

Since the idea of this approach is to find a supporting hyperplane on the feasible set $\Gamma = \{\mathbf{x} \in \mathbf{X} : g_i(\mathbf{x}) \geq 0, i = 1, ..., m\}$, the proof of the Karush-Kuhn-Tucker theorem makes use of the hyperplane separation theorem. [5]

The system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in the few special cases where a closed-form solution can be derived analytically. In general, many optimization algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities.^[6]

Necessary conditions

Suppose that the objective function $f: \mathbb{R}^n \to \mathbb{R}$ and the constraint functions $g_i: \mathbb{R}^n \to \mathbb{R}$ and $h_j: \mathbb{R}^n \to \mathbb{R}$ are continuously differentiable at a point x^* . If x^* is a local optimum and the optimization problem satisfies some regularity conditions (see below), then there exist constants μ_i (i = 1, ..., m) and λ_j $(j = 1, ..., \ell)$, called KKT multipliers, such that the following four groups of conditions hold:

Stationarity

For maximizing
$$f(x)$$
: $\nabla f(x^*) - \sum_{i=1}^m \mu_i \nabla g_i(x^*) - \sum_{j=1}^\ell \lambda_j \nabla h_j(x^*) = 0$,

For minimizing
$$f(x)$$
: $abla f(x^*) + \sum_{i=1}^m \mu_i
abla g_i(x^*) + \sum_{j=1}^\ell \lambda_j
abla h_j(x^*) = 0,$

Primal feasibility

$$g_i(x^*) \leq 0$$
, for $i = 1, ..., m$
 $h_i(x^*) = 0$, for $j = 1, ..., \ell$

Dual feasibility

Inequality constraint diagram for optimization problems

$$\mu_i \geq 0$$
, for $i = 1, \ldots, m$

Complementary slackness

$$\mu_i g_i(x^*) = 0$$
, for $i = 1, ..., m$.

In the particular case m=0, i.e., when there are no inequality constraints, the KKT conditions turn into the Lagrange conditions, and the KKT multipliers are called Lagrange multipliers.

If some of the functions are non-differentiable, subdifferential versions of Karush-Kuhn-Tucker (KKT) conditions are available.^[7]

Regularity conditions (or constraint qualifications)

In order for a minimum point x^* to satisfy the above KKT conditions, the problem should satisfy some regularity conditions; some common examples are tabulated here:

Constraint Acronym		Statement		
Linearity constraint qualification	LCQ	If g_i and h_j are affine functions, then no other condition is needed.		
Linear independence constraint qualification	LICQ	The gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x^* .		
Mangasarian- Fromovitz constraint qualification	MFCQ	The gradients of the equality constraints are linearly independent at x^* and there exists a vector $d \in \mathbb{R}^n$ such that $\nabla g_i(x^*)^\top d < 0$ for all active inequality constraints and $\nabla h_j(x^*)^\top d = 0$ for all equality constraints. ^[8]		
Constant rank constraint qualification	CRCQ	For each subset of the gradients of the active inequality constraints and the gradients of the equality constraints the rank at a vicinity of x^* is constant.		
Constant positive linear dependence constraint qualification	CPLD	For each subset of gradients of active inequality constraints and gradients of equality constraints, if the subset of vectors is linearly dependent at x^* with non-negative scalars associated with the inequality constraints, then it remains linearly dependent in a neighborhood of x^* .		
Quasi-normality constraint qualification	QNCQ	If the gradients of the active inequality constraints and the gradients of the equality constraints are linearly dependent at x^* with associated multipliers λ_j for equalities and $\mu_i \geq 0$ for inequalities, then there is no sequence $x_k \to x^*$ such that $\lambda_j \neq 0 \Rightarrow \lambda_j h_j(x_k) > 0$ and $\mu_i \neq 0 \Rightarrow \mu_i g_i(x_k) > 0$.		
Slater's condition	sc	For a convex problem (i.e., assuming minimization, f, g_i are convex an h_j is affine), there exists a point x such that $h(x)=0$ and $g_i(x)<0$.		

It can be shown that

and

(and the converses are not true), although MFCQ is not equivalent to CRCQ.^[9] In practice weaker constraint qualifications are preferred since they provide stronger optimality conditions.

Sufficient conditions

In some cases, the necessary conditions are also sufficient for optimality. In general, the necessary conditions are not sufficient for optimality and additional information is required, such as the Second Order Sufficient Conditions (SOSC). For smooth functions, SOSC involve the second derivatives, which explains its name.

The necessary conditions are sufficient for optimality if the objective function f of a maximization problem is a concave function, the inequality constraints g_j are continuously differentiable convex functions and the equality constraints h_i are affine functions.

It was shown by Martin in 1985 that the broader class of functions in which KKT conditions guarantees global