

Graph Analysis Team Introduction Experience in GraphBLAS and Graph Databases

Semyon Grigorev

Saint Petersburg State University

April 30, 2022

Group Info

- Established in 2012
- Lead: Semyon Grigorev
 - ▶ PhD (2016), Associate professor (2016, SPbSU)
 - dblp: https://dblp.org/pid/181/9903.html
 - ► h-index (scopus): 5
 - s.v.grigoriev@spbu.ru
- PhD students: 2
- Master students: 5
- Bachelor students: 6
- Publications
 - ► Total: > 30
 - ► Scopus: 25

Research Area

- High-performance graph analysis
 - ► GraphBLAS-based algorithms design, implementation and evaluation
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis

Research Area

- High-performance graph analysis
 - ► GraphBLAS-based algorithms design, implementation and evaluation
 - Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis
- Formal Language Constrained Path Querying (FLPQ)
 - New algorithms development
 - Complexity analysis
 - New classes of languages investigation
 - ▶ High performance algorithms implementation and evaluation

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - ► Highly parallel

¹https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - Highly parallel

- High-performance implementations
 - SuiteSparse:GraphBLAS¹: pure C
 - ▶ GraphBLAST²: GPGPU, Cuda C
 - ► Huawei's GraphBLAS³: C++

¹https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - Highly parallel
- More information on GraphBLAS
 - Home page: https://graphblas.org/
 - ► GraphBLAS-related resources: https://graphblas.org/GraphBLAS-Pointers/
 - Introduction to GraphBLAS:

http://mit.bme.hu/~szarnyas/grb/graphblas-introduction.pdf

- SuiteSparse:GraphBLAS¹: pure C
- GraphBLAST²: GPGPU, Cuda C
- ► Huawei's GraphBLAS³: C++
- **•** . . .

¹https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS Applications

- BFS-like algorithms
 - ▶ BFS: levels, parents, multiple sources
 - SSSP
 - **.**...
- Graph clustering

- Transitive closure based algorithms
 - APSP
- Triangle counting
- . . .

GraphBLAS Applications

- BFS-like algorithms
 - ▶ BFS: levels, parents, multiple sources
 - SSSP
- Graph clustering

- Transitive closure based algorithms
 - APSP
- Triangle counting
- . . .
- LAGraph: collection of GraphBLAS-based algorithms
 - ► GitHub: https://github.com/GraphBLAS/LAGraph
 - Latest report: https://arxiv.org/pdf/2104.01661.pdf

Formal Language Constrained Path Querying (FLPQ)

- A way to use formal languages to specify constraints on paths
 - ▶ Regular path querying (RPQ): regular expressions as constraints
 - ► Context-free path querying (CFPQ): context-free grammars as constraints

Formal Language Constrained Path Querying (FLPQ)

- A way to use formal languages to specify constraints on paths
 - ▶ Regular path querying (RPQ): regular expressions as constraints
 - ► Context-free path querying (CFPQ): context-free grammars as constraints
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying

Our Results: GraphBLAS Implementation

- Tools
 - ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
 - ▶ Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL

Our Results: GraphBLAS Implementation

- Tools
 - ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
 - ▶ Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- Papers
 - ► SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)

GraphBLAS Implementation Evaluation: SPbLA¹

Time consumption

matrix-matrix multiplication performance

¹More details: https://github.com/JetBrains-Research/spbla#performance

GraphBLAS Implementation Evaluation: SPbLA¹

Time consumption

¹More details: https://github.com/JetBrains-Research/spbla#performance

Table: Triangles counting algorithms evaluation results. Time in milliseconds (lower is better).

Dataset			Nvidia			Intel	
Name	#V	#E	GR	GB	SP	SS	SP
coAuthorsCiteseer	227.3K	1.6M	2.1	2.0	9.5	17.5	64.9
coPapersDBLP	540.4K	30.4M	5.7	94.4	201.9	543.1	1537.8
roadNet-CA	1.9M	5.5M	34.3	5.8	16.1	47.1	357.6
com-Orkut	3M	234M	218.1	1583.8	2407.4	23731.4	15049.5
cit-Patents	3.7M	16.5M	49.7	52.9	90.6	698.3	684.1
soc-LiveJournal	4.8M	68.9M	69.1	449.6	673.9	4002.6	3823.9

Table: Triangles counting algorithms evaluation results. Time in milliseconds (lower is better).

Dataset				Nvi	Intel		
Name	#V	#E	GR	GB	SP	SS	SP
coAuthorsCiteseer	227.3K	1.6M	2.1	2.0	9.5	17.5	64.9
coPapersDBLP	540.4K	30.4M	5.7	94.4	201.9	543.1	1537.8
roadNet-CA	1.9M	5.5M	34.3	5.8	16.1	47.1	357.6
com-Orkut	3M	234M	218.1	1583.8	2407.4	23731.4	15049.5
cit-Patents	3.7M	16.5M	49.7	52.9	90.6	698.3	684.1
soc-LiveJournal	4.8M	68.9M	69.1	449.6	673.9	4002.6	3823.9

Table: Triangles counting algorithms evaluation results. Time in milliseconds (lower is better).

Dataset			Nvidia			Intel	
Name	#V	#E	GR	GB	SP	SS	SP
coAuthorsCiteseer	227.3K	1.6M	2.1	2.0	9.5	17.5	64.9
coPapersDBLP	540.4K	30.4M	5.7	94.4	201.9	543.1	1537.8
roadNet-CA	1.9M	5.5M	34.3	5.8	16.1	47.1	357.6
com-Orkut	3M	234M	218.1	1583.8	2407.4	23731.4	15049.5
cit-Patents	3.7M	16.5M	49.7	52.9	90.6	698.3	684.1
soc-LiveJournal	4.8M	68.9M	69.1	449.6	673.9	4002.6	3823.9

Table: Triangles counting algorithms evaluation results. Time in milliseconds (lower is better).

Dataset			Nvidia			Intel	
Name	#V	#E	GR	GB	SP	SS	SP
coAuthorsCiteseer	227.3K	1.6M	2.1	2.0	9.5	17.5	64.9
coPapersDBLP	540.4K	30.4M	5.7	94.4	201.9	543.1	1537.8
roadNet-CA	1.9M	5.5M	34.3	5.8	16.1	47.1	357.6
com-Orkut	3M	234M	218.1	1583.8	2407.4	23731.4	15049.5
cit-Patents	3.7M	16.5M	49.7	52.9	90.6	698.3	684.1
soc-LiveJournal	4.8M	68.9M	69.1	449.6	673.9	4002.6	3823.9

Our Results: Graph Databases Extensions with CFPQ

- Tools
 - ► GLL4Graph: CFPQ for Neo4j
 - CFPQ for RedisGraph

Our Results: Graph Databases Extensions with CFPQ

- Tools
 - GLL4Graph: CFPQ for Neo4j
 - CFPQ for RedisGraph
- Papers
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - ► Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)

Graph Databases Extensions with CFPQ: Evaluation

- Tools
 - ► CFPQ PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ✓ GraphBLAS-based CFPQ algorithms
 - GraphBLAS-based RPQ algorithms
 - **☆** GraphBLAS-based MCFG-PQ algorithms

- Tools
 - CFPQ PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ✓ GraphBLAS-based CFPQ algorithms
 - GraphBLAS-based RPQ algorithms
 - GraphBLAS-based MCFG-PQ algorithms
 - CFPQ_Data: dataset for FLPQ algoriths evaluation
 - ✓ Graphs for CFPQ evaluation
 - Graphs for RPQ evaluation
 - Integration with LDBC Graphalytics

- Tools
 - CFPQ PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ✓ GraphBLAS-based CFPQ algorithms
 - GraphBLAS-based RPQ algorithms
 - GraphBLAS-based MCFG-PQ algorithms
 - CFPQ_Data: dataset for FLPQ algoriths evaluation
 - ✓ Graphs for CFPQ evaluation
 - Graphs for RPQ evaluation
 - Integration with LDBC Graphalytics
 - tDBC Graphalytics extension for evaluation of formal language constrained path querying

- Tools
 - CFPQ PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ✓ GraphBLAS-based CFPQ algorithms
 - GraphBLAS-based RPQ algorithms
 - GraphBLAS-based MCFG-PQ algorithms
 - CFPQ_Data: dataset for FLPQ algoriths evaluation
 - ✓ Graphs for CFPQ evaluation
 - Graphs for RPQ evaluation
 - Integration with LDBC Graphalytics
 - tDBC Graphalytics extension for evaluation of formal language constrained path querying
- Papers
 - Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)