CS 565 / Assignment 2

Junehyeong Park

Oct 19, 2020

<Discussion on the question 2 of Assignment 2>

The K-Means method is the most easy and representative method for clustering. However, but there are unavoidable two disadvantages that the user will get random results due to specify the central point randomly so that it can occur the local optima, and how to select the number of clusters. To avoid two problems, I used GMM clustering method, and compared results of various number of clusters.

The GMM clustering method was applied with various number of clusters from 3 to 8. For the options, 'full' for the covariance matrix type and 'false' for the indicator for

identical or nonidentical covariance matrix were selected. The 'sigma', initial covariance matrix for all components, were summed and written on the titles of subplots. According to that, the number of clusters was selected as 5. Following table shows clustered points, written in the 'clustered.csv' result file.

		_		
1	4	5	3	6
2	10	7	11	8
17	20	9	22	12
26	48	14	31	13
29	64	15	38	19
34	70	16	39	32
40	76	18	43	37
42	107	21	54	41
47	143	23	59	44
49	149	24	62	52
51	170	25	63	53
55	176	27	66	61
58	192	28	80	65
60	228	30	84	71
67	239	33	86	85
69	245	35	88	87
73	249	36	93	91
77	262	45	109	94
78		46	113	96
79		50	121	97
89		56	122	98
92		57	131	101
99		68	141	105
102		72	146	111
103		74	147	112
104		75	150	114
117		81	152	115
118		82	154	127
119		83	156	128
120		90	164	129
123		95	166	138
125		100	167	145
130		106	182	148
132		108	185	162
134		110	186	165
135		116	190	173

140	124	194	174
142	126	199	175
151	133	200	178
157	136	206	180
158	137	209	181
159	139	220	187
168	144	221	188
169	153	223	193
171	155	224	201
184	160	230	203
198	161	231	207
202	163	246	210
204	172	251	211
208	177	267	212
213	179		217
214	183		219
218	189		237
222	191		240
226	195		241
232	196		244
233	197		248
235	205		250
236	215		254
242	216		256
243	225		257
259	227		258
260	229		
261	234		
263	238		
266	247		
	252		
	253		
	255		
	264		
	265		
	268		
	269		
	270		