Examen ALGAD

1. **1-1**

MULTI 0.5 points 0.10 penalty Single Shuffle

În spațiul vectorial al vectorilor liberi 3 dimensional, se considera vectorii $\overline{a} = 3\overline{i}$; $\overline{b} = \overline{i} + \overline{j}$; $\overline{c} = 2\overline{j} - \overline{k}$. Atunci vectorul $\overline{c} \times \overline{a} - \overline{a} \times \overline{b}$, este:

- (a) $-3\overline{j} 9\overline{k}$ (100%) (b) $-3\overline{j} 6\overline{k}$
- (c) $-3\overline{j} + 9\overline{k}$
- (d) $-3\overline{i} 3\overline{k}$

2. **1-2**

0.10 penalty Single Shuffle MULTI 0.5 points

Se consideră curba Γ definită de parametrizarea $r: \mathbb{R} \to \mathbb{R}^3$: $\overline{r}(t) =$ $a\cos(t)\bar{i} + a\sin(t)\bar{j} + bt\bar{k}$, cu a, b constante reale nenule. Atunci CUR-BURA acestei curbe va fi:

- (a) $\frac{b}{a^2 + b^2}$; (b) $\frac{a}{a^2 b^2}$; (c) $\frac{a}{a^2 + b^2}$; (100%) (d) $\frac{b}{a^2 b^2}$.

3. **1-3**

0.10 penalty Single Shuffle MULTI 0.5 points

În reperul cartezian Oxyz, se dau punctele A, B, C. Dacă G este centrul de greutate al triunghiului ABC, atunci are loc egalitatea

- (a) $\overline{GA} + \overline{GB} \overline{GC} = 0$;
- (b) $-\overline{GA} + \overline{GB} + \overline{GC} = 0$;
- (c) $\overline{GA} + \overline{GB} + \overline{GC} = 0$; (100%)
- (d) $2\overline{GA} + \overline{GB} + 2\overline{GC} = 0$

0.5 points 0.10 penalty Single Shuffle MULTI

Fie V un spațiu vectorial real iar u, v doi vectori nenuli. Atunci cosinusul unghiului dintre vectorii u şi v, este numarul $\theta \in [0, \pi]$ definit prin egalitatea:

- (a) $cos\theta = \frac{(\overline{u} \times \overline{v})}{|\overline{u}| \cdot |\overline{v}|};$ (b) $cos\theta = \frac{\overline{u}}{|\overline{u}| \cdot |\overline{v}|};$ (c) $cos\theta = \frac{\overline{v}}{|\overline{u}| \cdot |\overline{v}|};$ (d) $cos\theta = \frac{(\overline{u}, \overline{v})}{|\overline{u}| \cdot |\overline{v}|};$ (100%)

5. **1-5**

0.10 penalty Single Shuffle MULTI 0.5 points

Se dau vectorii liberi $\overline{a} = \overline{i} + 2\lambda \overline{j} - (\lambda - 1)\overline{k}; \ \overline{b} = (3 - \lambda)\overline{i} + \overline{j} + 3\overline{k}.$ Valoarea parametrului real λ pentru care vectorii \overline{a} și \overline{b} sunt ortogonali este

- (a) $\lambda = 0$
- (b) $\lambda = 3 (100\%)$
- (c) $\lambda = 5$
- (d) $\lambda = 4$

6. **1-6**

0.5 points 0.10 penalty Single Shuffle MULTI

Fie punctele O(0,0,0), A(1,1,2) și B(2,2,6) din reperul cartezian Oxyz. Produsul scalar $2 \cdot \overline{OA} \cdot \overline{OB}$ este

- (a) 30;
- (b) 32; (100%)
- (c) 42;
- (d) -32.

7. **1-7**

0.10 penalty Single Shuffle

Unghiul ϕ dintre vectorii $\overline{v_1} = \overline{i} + \overline{j} - 4\overline{k}$, $\overline{v_2} = \overline{i} - 2\overline{j} + 2\overline{k}$ este

(a)
$$\phi = \frac{\pi}{4}$$

(a)
$$\phi = \frac{\pi}{4}$$
;
(b) $\phi = \frac{3\pi}{4}$; (100%)
(c) $\phi = \frac{\pi}{2}$;
(d) $\phi = \frac{\pi}{6}$.

(c)
$$\phi = \frac{\pi}{2}$$

(d)
$$\phi = \frac{\pi}{6}$$
.

0.10 penalty MULTI 0.5 points Single Shuffle

După rezolvarea sistemului de ecuații liniare,

$$\begin{cases}
-x + 2y = 1 \\
x + y + z = 2 \\
x - y - z = 0
\end{cases}$$

gasim soluțiile:

(a)
$$x = y = 2, z = -1$$

(b)
$$x = y = 1, z = 0 (100\%)$$

(c)
$$x = 1, y = -1, z = 2$$

(d)
$$x = 2, y = 3, z = 1$$

9. **1-9**

0.5 points 0.10 penalty Single Shuffle MULTI

Se consideră curba Γ definită de parametrizarea $r: \mathbb{R} \to \mathbb{R}^3$: $\overline{r}(t) =$ (acost, asint, bt), cu a, b constante reale nenule. Atunci elementul de arc al acestei curbe va fi:

(a)
$$ds = \sqrt{a^2 - b^2} dt$$
;

(b)
$$ds = \sqrt{a^2 + b^2}dt$$
; (100%)

(c)
$$ds = \sqrt{2a^2 - 2b^2}dt$$
;

$$(d) ds = \sqrt{a^2 + 2b^2} dt.$$

10. **1-10**

0.5 points 0.10 penalty MULTI Single Shuffle

Fie B = (2, 2, -1), (2, -1, 2), (-1, 2, 2). Aflați coordonatele vectorului x = (1, 1, 1), în această bază

(a)
$$(\frac{1}{2}, \frac{1}{3}, \frac{1}{2});$$

- (b) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{3});$ (c) $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3});$ (100%)(d) $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}).$

MULTI 0.5 points 0.10 penalty Single Shuffle

Valorile proprii ale formei pătratice: $F: \mathbb{R}^3 \to \mathbb{R}$,

$$F(x) = -x_1^2 + x_2^2 - 5x_3^3 + 6x_1x_3 + 4x_2x_3,$$

sunt:

- (a) $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = 7;$
- (b) $\lambda_1 = 0, \lambda_2 = -2, \lambda_3 = 7$
- (c) $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = -7 (100\%)$
- (d) $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -7$

12. **1-12**

MULTI 0.5 points 0.10 penalty Single Shuffle

Tangenta la elipsa:

$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

în punctul de coordonate M(4,8), este de ecuație:

- (a) y = 2 + 2x;
- (b) y = 3 + 2x;
- (c) y = 1 2x;
- (d) y = 2 2x. (100%)

13. **1-13**

MULTI 0.10 penalty Single Shuffle

Fie dreapta de ecuație (d): $\frac{x+1}{3} = \frac{y-4}{-2} = \frac{z+2}{4}$. Ecuația dreptei care trece prin punctul A(3,-1,-1) și este paralelă cu dreapta (d) este

- (a) $\frac{x-3}{3} = \frac{y+1}{2} = \frac{z+1}{4};$ (b) $\frac{x-3}{3} = \frac{y+1}{-2} = \frac{z+1}{4};$ (100%) (c) $\frac{x-3}{3} = \frac{y-1}{2} = \frac{z+1}{4};$

(d)
$$\frac{x+3}{3} = \frac{y+1}{-2} = \frac{z+1}{4}$$
.

Single Shuffle MULTI 0.5 points 0.10 penalty

Fie $C^0(\mathbb{R})$ spațiul vectorial real al funcțiilor reale și continue. Să se stabilească dimensiunea subspațiului generat de submulțimea $\{e^{ax}, xe^{ax}, x^2e^{ax}\}$ din acest spatiu vectorial $C^0(\mathbb{R})$.

- (a) 1;
- (b) 2;
- (c) 3; (100%)
- (d) 0;

15. **1-15**

0.10 penalty Single Shuffle MULTI 0.5 points

Vectorii din mulțimea $\{(1, -1, 2), (1, 0, 3), (2, 1, 1)\}$

- (a) sunt liniar dependenți;
- (b) au produsul scalar doi câte doi nul;
- (c) sunt liniar independenți; (100%)
- (d) sunt perpendiculari doi câte doi.

16. **1-16**

MULTI 0.5 points 0.10 penalty Single Shuffle

Vectorii din mulțimea $\{(1,1,1),(1,-1,1),(-1,3,-1)\}$

- (a) formează o bază;
- (b) sunt liniar independenți;
- (c) sunt liniar dependenți; (100%)
- (d) sunt paraleli doi câte doi.

17. **1-17**

MULTI 0.5 points 0.10 penalty Single Shuffle

Normalizați vectorul (2, 1, 1) din \mathbb{R}^3

- (a) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right);$ (b) $\left(\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right);$

(c)
$$\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$
; (100%)
(d) $\left(\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$;

(d)
$$\left(\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$
;

0.5 points 0.10 penalty Single Shuffle MULTI

Ortonormalizând vectorii din mulțimea $\{(1,1,1),(1,-1,1),(-1,3,-1)\}$ folosind procedeul Gramm-Schmidt se obține

(a)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right), \left(0, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right\}$$
;

(b)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right), \left(0, \frac{-1}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \right\};$$

(a)
$$\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} 0, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix} \right\};$$

(b) $\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} 0, \frac{-1}{\sqrt{5}}, \frac{1}{\sqrt{5}} \end{pmatrix} \right\};$
(c) $\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} 0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{pmatrix} \right\};$ (100%)
(d) $\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} 0, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \end{pmatrix} \right\}.$

(d)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right), \left(0, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right) \right\}.$$

19. **1-19**

MULTI 1 point 0.10 penalty

Punctul din oficiu - aceasta intrebare-orice raspuns la ea va aduce un punct (punctul din oficiu)

- (a) 1 punct; (100%)
- (b) 1 punct; (100%)
- (c) 1 punct; (100%)
- (d) 1 punct; (100%)

Total of marks: 10