## SADRŽAJ

| Po | pis sli | ika      |                                                       | V   |
|----|---------|----------|-------------------------------------------------------|-----|
| Po | pis is  | ječaka l | koda                                                  | V   |
| Po | pis ta  | blica    |                                                       | vii |
| 1. | Uvo     | d        |                                                       | 1   |
| 2. | Opis    | s sustav | a i tehničkih zahtjeva                                | 2   |
|    | 2.1.    | Opis p   | roblematike u poljoprivredi - WIP naslov potpoglavlja | 2   |
|    | 2.2.    | Zahtje   | vi na sustav i opis predloženog rješenja              | 2   |
| 3. | Raz     | vojni su | stav ESP32-C3-DevKitM-1                               | 3   |
|    | 3.1.    | Wi-Fi    |                                                       | ۷   |
| 4. | Ama     | azon We  | eb Services (AWS)                                     | 9   |
|    | 4.1.    | Usluge   | e AWS-a za IoT sustave                                | ç   |
|    | 4.2.    | AWS I    | ToT Core                                              | 10  |
|    |         | 4.2.1.   | AWS IoT Fleet Provisioning                            | 13  |
|    |         | 4.2.2.   | AWS IoT OTA                                           | 13  |
|    |         | 4.2.3.   | AWS IoT Device Shadow                                 | 13  |
|    |         | 4.2.4.   | AWS IoT Jobs                                          | 13  |
|    |         | 4.2.5.   | AWS IoT Device Defender                               | 13  |
|    |         | 4.2.6.   | Ostale dostupne IoT usluge u sustavu AWS              | 13  |
| 5. | Pove    | ezivanje | e razvojnog sustava i oblaka                          | 17  |
|    | 5.1.    | Progra   | mska potpora za mikrokontroler                        | 17  |
|    |         | 5.1.1.   | Dinamičko povezivanje mikrokontrolera na Wi-Fi        | 18  |
|    |         | 5.1.2.   | Registracija u sustav AWS                             | 23  |
|    | 5.2.    | Progra   | mska potpora za oblak                                 | 23  |

| Li | teratura                              | 27 |
|----|---------------------------------------|----|
| 7. | Zaključak                             | 26 |
|    | 6.1. Grafana                          | 25 |
| 6. | Web aplikacija                        | 25 |
|    | 5.2.1. Povezivanje s mikrokontrolerom | 23 |

## POPIS SLIKA

| 2.1. | Blok shema sustava                                                    | 2  |
|------|-----------------------------------------------------------------------|----|
| 3.1. | Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [8]                | 3  |
| 3.2. | Blok dijagram modula ESP32-C3 [6]                                     | 4  |
| 3.3. | Wi-Fi RF standardi [7]                                                | 6  |
| 3.4. | Primjer scenarija Wi-Fi povezivanja u načinu rada stanice [8]         | 7  |
| 3.5. | Primjer scenarija Wi-Fi povezivanja u načinu rada pristupne točke [8] | 7  |
| 4.1. | Arhitektura usluga AWS-a za IoT [2]                                   | 10 |
| 4.2. | Princip rada usluge AWS IoT Core [2]                                  | 11 |
| 4.3. | Komponente usluge AWS IoT Core [2]                                    | 11 |
| 5.1. | Arhitektura unificiranog provizioniranja [5]                          | 19 |
| 5.2. | Razvojni sustav spojen s LCD zaslonom                                 | 24 |

## POPIS ISJEČAKA KODA

| 5.1. | Stvaranje pristupne točke              |  |  |  |  | • |  |  |  | 20 |
|------|----------------------------------------|--|--|--|--|---|--|--|--|----|
| 5.2. | Generiranje QR koda iz pristupne točke |  |  |  |  |   |  |  |  | 21 |
| 5.3. | Funkcija za prikaz QR koda na zaslonu  |  |  |  |  |   |  |  |  | 22 |

## POPIS TABLICA

## 1. Uvod

Moj uvod.

## 2. Opis sustava i tehničkih zahtjeva

# 2.1. Opis problematike u poljoprivredi - WIP naslov potpoglavlja

Moj problematični poljoprivredni sustav. Isto tako, možeš naći neke zanimljive radove i neka zanimljiva rješenja pa ih ovdje malo polinkati. Mislim da bi to bilo dosta kul.

### 2.2. Zahtjevi na sustav i opis predloženog rješenja

Ovdje bih mogla napraviti skicu sustava kao i prije 2 godine kako bih lijepo prikazala što želim postići svojim sustavom. Sad sam napravila probnu shemu, no kasnije bih mogla napraviti malo bolju, ovisno o tome kako ću na kraju projektirati sam rad.



Slika 2.1: Blok shema sustava

## 3. Razvojni sustav

## ESP32-C3-DevKitM-1

Razvojni sustav temelji se na modulu ESP32-C3-MINI-1. Modul je jedan u nizu ESP32-C3 serije SoC (engl. *System on Chip*) platformi tvrtke *Espressif*, te sadrži jednojezgreni 32-bitni procesor s RISC-V arhitekturom koji radi na frekvenciji do 160 MHz. Modul sadrži 400 KB memorije tipa SRAM (engl. *Static random-access memory*), od kojih je 16 KB rezervirano za priručnu memoriju (engl. *cache*), 384 MB memorije tipa ROM (engl. *Read-only memory*) te 4 MB memorije tipa *Flash*. Od periferije sadrži 22 programabilna GPIO pina (engl. *General Purpose Input Output*), te digitalna sučelja SPI, UART, I2C i I2S. Također sadrži upravljače za sučelja USB i JTAG koji se mogu koristiti za efikasnije otklanjanje pogrešaka u kodu (engl. *debugging*). Konfiguracija sustava prikazana je na slici 3.1. [6]



Slika 3.1: Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [8]

Budući da modul ima funkciju RF (engl. *radio frequency*) primopredajnika, podržava bežično lokalno umrežavanje odnosno Wi-Fi, koji omogućava propusnost do 20 Mbps protokolom TCP te maksimalnu propusnost od 30 Mbps koristeći protokol UDP. Isto tako, podržava protokol Bluetooth s podrškom za velike udaljenosti.

Modul ESP32-C3-MINI-1 bežični je uređaj niske potrošnje energije (engl. *ultra-low-power*) primarno namijenjen razvoju aplikacija koje koriste Wi-Fi ili *Bluetooth Low Energy* (BLE) protokol. Na slici 3.2 nalazi se blok shema modula sa svim dostupnim značajkama.



Slika 3.2: Blok dijagram modula ESP32-C3 [6]

#### 3.1. Wi-Fi

IEEE 802.11, skupina standarda za bežične lokalne mreže (engl. *WLANs*) [15], nudi nekoliko različitih načina bežične modulacije signala. Pojedini standardi označeni su slovima abecede. Za korisničke mreže postoje dva frekvencijska pojasa: 2,4 GHz i 5 GHz.

Prednosti pojasa od 2,4 GHz su veći doseg, bolje prolaženje kroz fizičke prepreke te bolja podrška jer više bežičnih uređaja koristi pojas od 2,4 GHz nego od 5 GHz. S druge strane, ovaj pojas ima manju propusnost i nudi manje kanala koji se ne preklapaju. Isto tako, može doći do zagušenja mreže jer kućni i Bluetooth uređaji koriste ovaj isti mrežni pojas.

Pojas od 5 GHz nudi brži protok, manje zagušenih kanala te ima više kanala koji se međusobno ne preklapaju. Ipak, ima kraći raspon u usporedbi s mrežama od 2,4 GHz jer teže prolazi kroz prepreke. [10]

U nastavku su opisani ključni standardi Wi-Fi tehnologije [4]:

- 802.11b najsporiji i najjeftiniji standard, emitira u frekvencijskom pojasu od
   2,4 GHz. Može prenijeti do 11 Mbps te koristi komplementarno šifriranje
   (engl. complementary code keying CCK) radi poboljšanja brzine prijenosa.
- 802.11a transmitira u pojasu od 5 GHz i može prenijeti do 54 Mbps. Koristi ortogonalno frekvencijsko multipleksiranje (engl. *orthogonal frequency-division multiplexing OFDM*), što je efikasnija tehnika u odnosu na CCK koja dijeli radio signal u nekoliko podsignala prije slanja primatelju. Ova metoda značajno umanjuje interferenciju.
- 802.11g poput standarda 802.11b, koristi frekvencijski pojas od 2,4 GHz.
   Međutim, može prenijeti do 54 Mbps jer koristi tehniku OFDM.
- 802.11n kompatibilan je standard sa prethodno opisanim standardima. Nudi znatno poboljšanje u rasponu i brzini u odnosu na svoje prethodnike. Ovaj standard može prenijeti do četiri toka podataka, svaki maksimalno 150 Mbps, no većina usmjerivača (engl. *router*) dopušta dva ili tri toka.
- 802.11ac radi isključivo u pojasu od 5 GHz, te je kompatibilan s prethodnim standardima. Manje je sklon interferenciji i brži je od prethodnih standarda s maksimalnim prijenosom od 450 Mbps jednim tokom.
- 802.11ax najnoviji standard koji proširuje nekoliko ključnih mogućnosti svojih prethodnika. Usmjerivači koji podržavaju ovaj standard dopuštaju tok podataka do 9.2 Gbps, što je značajan porast u usporedbi s prethodnicima. Isto tako, moguće je postaviti više antena na jedan usmjerivač, čime je omogućen prihvat više veza odjednom bez usporavanja i interferencije.

Podsustav modula ESP32-C3 za Wi-Fi u skladu je sa standardom IEEE 802.111 te koristi nelicencirani pojas frekvencija od 2,4 GHz. U tom pojasu podržava propusnost od 20 i 40 MHz. Modul također podržava tehniku raznolikosti antena (engl. *antenna diversity*) za poboljšanje prijema i pouzdanosti signala korištenjem RF komutatora (engl. *switch*). Tim komutatorom upravljaju GPIO priključci i koristi se za odabir najbolje antene u kontekstu pouzdanosti i kvalitete signala. [7]

ESP32-C3 u potpunosti implementira protokol Wi-Fi na temelju standarda 802.11 b/g/n. Podržava osnovni skup (engl. *Basic Service Set - BSS*) operacija za značajke pristupne točke (engl. *software enabled access point - SoftAP*). Ovakve pristupne točke koriste softver kako bi omogućile uređajima kojima primarna svrha nije usmjeravanje prometa da postanu virtualni usmjerivač. [11] Također, upravljanje napajanjem odvija se automatski s minimalnom intervencijom domaćina kako bi se smanjila aktivnost uređaja.

Tvrtka *Espressif* također nudi biblioteke za povezivanje putem protokola TCP i IP te korištenje Wi-Fi *mesh* tehnologije. Pruža i podršku za protokole TLS 1.0, 1.1 i 1.2. Na slici 3.3 prikazani su Wi-Fi RF standardi koje koristi modul.

| Name                                |                         | Description                                |  |  |  |  |  |  |  |
|-------------------------------------|-------------------------|--------------------------------------------|--|--|--|--|--|--|--|
| Center frequency range of operating | ng channel <sup>1</sup> | 2412 ~ 2484 MHz                            |  |  |  |  |  |  |  |
| Wi-Fi wireless standard             |                         | IEEE 802.11b/g/n                           |  |  |  |  |  |  |  |
|                                     |                         | 11b: 1, 2, 5.5 and 11 Mbps                 |  |  |  |  |  |  |  |
| Data rate                           | 20 MHz                  | 11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps     |  |  |  |  |  |  |  |
| Data rate                           |                         | 11n: MCS0-7, 72.2 Mbps (Max)               |  |  |  |  |  |  |  |
|                                     | 40 MHz                  | 11n: MCS0-7, 150 Mbps (Max)                |  |  |  |  |  |  |  |
| Antenna type                        |                         | PCB antenna and external antenna connector |  |  |  |  |  |  |  |

Slika 3.3: Wi-Fi RF standardi [7]

ESP32 nudi nekoliko načina rada pri korištenju Wi-Fi tehnologije [16]:

- 1. način rada stanice (engl. station mode) ESP32 spaja se na točku pristupa,
- 2. način rada pristupne točke (engl. *SoftAP mode*) druge se stanice spajaju na ESP32.
- 3. miješani ESP32 radi kao stanica i pristupna točka spojena na drugu pristupnu točku.

U nastavku su opisani scenariji Wi-Fi povezivanja modula ESP32-C3 u načinu rada stanice i pristupne točke.

Na slici 3.4 prikazan je sekvencijski dijagram zadataka koje ESP32 obavlja u cijelom ciklusu spajanja i komunikacije s pristupnom točkom. Iz slike je vidljivo da se ciklus sastoji od osam faza. Prva faza služi za inicijalizaciju upravljačkih programa i pokretanje zadataka odnosno dretvi koje će obavljati zadatke vezane uz svoju dužnost. Glavni zadatak pokreće četiri različite dretve izvršavanja: aplikacijski zadatak, zadatak za događaje, zadatak za IP protokol, te zadatak za Wi-Fi. U drugoj fazi konfigurira se upravljački program za Wi-Fi. U sljedećoj se fazi pokreće upravljački program, nakon koje slijedi faza pretraživanja mreže i povezivanja na usmjerivač ili pristupnu točku. Nakon inicijalizacije DHCP klijenta, započinje faza dohvata IP adrese. Šesta faza odvija se nakon prekida Wi-Fi veze, čime se također uklanjaju i sve UDP i TCP konekcije. U aplikaciji se može omogućiti radno čekanje na ponovno uspostavljanje veze. Sedma faza pokreće se pri detekciji promjene IP adrese. Posljednja faza služi za programsko odspajanje s mreže i zaustavljanje upravljačkog programa za Wi-Fi.

Slika 3.5 modelira slučaj u kojem ESP32 ima ulogu pristupne točke. Scenarij je vrlo sličan ranije opisanom slijedu događaja, no razlikuje se u dvije faze i događajima

koji su pohranjeni u sustavu. Ovaj način rada nema fazu detekcije promjene IP adrese, jer je u ovom načinu ESP32 upravo taj uređaj čija se IP adresa može promijeniti. Isto tako, ne postoji faza dohvata IP adrese.



**Slika 3.4:** Primjer scenarija Wi-Fi povezivanja u načinu rada stanice [8]



**Slika 3.5:** Primjer scenarija Wi-Fi povezivanja u načinu rada pristupne točke [8]

U modulu ESP32 stavljen je veliki naglasak na mehanizme uštede energije, što se također preslikava na korištenje Wi-Fi veze. Modul pruža načine uštede energije i pri radu kao stanica i pristupna točka, no neke značajke nisu podržane u pristupnoj točki. Modul pri neaktivnosti može otići u stanje mirovanja (engl. *sleep mode*). Postoje dva načina uštede energije u načinu rada stanice: minimalna i maksimalna ušteda. Pri minimalnoj uštedi stanica se budi iz stanja mirovanja nakon svakog DTIM intervala (engl. *Delivery Traffic Indication Message*). Ovim se načinom ne gube globalno emitirane poruke (engl. *broadcast*) jer se one prenose nakon DTIM intervala. Međutim, ova metoda ne štedi puno energije ako je pristupna točka na koju je spojen modul postavila

malen interval. Pri maksimalnoj uštedi moguće je znatno produžiti vrijeme mirovanja u odnosu na DTIM interval, no ovime se riskira gubitak globalno emitiranih poruka.

## 4. Amazon Web Services (AWS)

Amazon usluge za web (engl. *Amazon Web Services - AWS*) sveobuhvatna je platforma za računarstvo u oblaku koju pruža Amazon te sadrži brojne usluge u oblaku, uključujući infrastrukturu (engl. *Infrastructure as a Service - IaaS*), platformu (engl. *Platform as a Service - PaaS*) i softver (engl. *Software as a Service - SaaS*). AWS usluge nude organizacijske alate kao što su računalna snaga, baza podataka i usluge isporuke sadržaja [13].

AWS je podijeljen u više različitih usluga koje se mogu pojedinačno konfigurirati na temelju korisnikovih potreba. Neke od usluga koje nudi AWS su: pohrana, baze podataka, migracija, povezivanje, monitoriranje, sigurnost, analitika, umjetna inteligencija te razvoj mobilnih aplikacija.

AWS pruža usluge iz mnogo podatkovnih centara (engl. *data center - DC*) koji su raspodijeljeni po zonama dostupnosti (engl. *availability zone - AZ*) diljem regija cijelog svijeta. Jedna regija obuhvaća nekoliko fizički bliskih zona povezanih mrežom niske latencije.

Također, nude se brojne mogućnosti za razvojne inženjere u sklopu AWS-a. Nudi alate naredbenog retka (engl. *command-line tools*) i pakete za razvoj programa (engl. *Software Development Kit - SDK*) za puštanje aplikacija u produkciju (engl. *deployment*) i upravljanje vlastitim uslugama i aplikacijama. Paketi za razvoj programa dostupni su u raznim programskim jezicima, uključujući programske jezike C++, Android, iOS, Java, Node.js, Python i Ruby.

## 4.1. Usluge AWS-a za IoT sustave

AWS isto tako nudi brojne usluge za razvoj IoT sustava. Usluga AWS-a za IoT pruža platformu za upravljanje IoT uređajima te obradu podataka i njihovu pohranu na druge AWS usluge, poput baze podataka. AWS IoT pruža usluge u oblaku koje povezuju IoT uređaje s drugim uređajima i uslugama AWS-a u oblaku. Također pruža software za uređaje, poput paketa za razvoj programa, za jednostavniju integraciju s uslugama

AWS-a za IoT. Na slici 4.1 nalazi se prikaz arhitekture usluga koje AWS nudi za razvoj IoT sustava.



Slika 4.1: Arhitektura usluga AWS-a za IoT [2]

AWS IoT podržava sljedeće komunikacijske protokole:

- MQTT (engl. Message Queuing Telemetry Transport),
- HTTPS.
- LoRaWAN (engl. Long Range Wide Area Network),
- TLS.

U nastavku su opisane usluge za razvoj IoT sustava u sklopu AWS-a.

#### 4.2. AWS IoT Core

AWS IoT Core ključna je komponenta za integraciju oblaka i fizičkih uređaja. Omogućava povezivanje uređaja i preusmjeravanje poruka na usluge AWS-a. Koristi MQTT koji je standardni protokol za razmjenu poruka u IoT sustavima. To je lagan (engl. *lightweight*) protokol za prijenos poruka temeljen na objavi/pretplati sustavu, te je pogodan za povezivanje udaljenih uređaja uz minimalnu potrošnju [12]. AWS IoT Core pruža paletu značajki za razmjenu poruka temeljenih na protokolu MQTT, koje pomažu pri izradi prilagodljive i skalabilne IoT arhitekture [2]. Na slici 4.2 nalazi se pregled rada usluge AWS IoT Core.



Slika 4.2: Princip rada usluge AWS IoT Core [2]

AWS IoT Core pruža usluge koje povezuju oblak AWS-a s IoT uređajima kako bi se ostale usluge u oblaku i aplikacije mogle međusobno komunicirati s tim uređajima. Na slici 4.3 nalaze se svi segmenti usluge AWS IoT Core te kako oni komuniciraju s vanjskim dijelovima. Zelenom bojom označena je sama usluga, narančastom bojom fizički uređaji, odnosno stvari (engl. *Things*), sivom bojom druge IoT aplikacije unutar AWS-a, dok su plavom bojom označene ostale usluge koje se nude u ekosustavu AWS.



Slika 4.3: Komponente usluge AWS IoT Core [2]

U nastavku su navedene ključne usluge koje pokriva AWS IoT Core.

#### Usluge za slanje poruka

AWS IoT Core usluge za povezivanje pružaju sigurnu komunikaciju s IoT uređajima i upravlja porukama koje prolaze između uređaja i oblaka.

Prilazni uređaj omogućuje uređajima sigurnu i efikasnu komunikaciju sa sustavom AWS. Komunikacija je osigurana sigurnosnim protokolima koji koriste X.509 certifikate.

Broker za poruke pruža mehanizam uređajima i aplikacijama slanje i primanje po-

ruka. Moguće je koristiti protokol MQTT ili direktno WebSocket za objavu i pretplatu na teme. Uređaji i klijenti koriste HTTP REST sučelje za objavu poruka brokeru. Broker zatim distribuira podatke na uređaje koji su se pretplatili na određene teme kao i na druge AWS aplikacije te usluge koje prate teme na brokeru.

AWS IoT Core za protokol LoRaWAN omogućava postavljanje privatne LoRaWAN mreže tako što poveže LoRaWAN te prilazne uređaje na AWS bez potrebe za razvojem mrežnog servera za LoRaWAN (engl. *LoRaWAN Network Server - LNS*). Poruke primljene od LoRaWAN uređaja šalju se na stroj za pravila (engl. *rules engine*) gdje se formatiraju i prosljeđuju ostalim AWS uslugama.

Stroj za pravila povezuje podatke iz brokera s drugim AWS IoT uslugama za pohranu i dodatnu obradu. Primjerice, moguće je umetati ili pretraživati po podatkovnim tablicama ili pozvati određene definirane funkcije na temelju izraza definiranog u stroju. Isto tako, moguće je obraditi te podatke i proslijediti novostvoreni format poruka drugim uslugama ili bazama podataka.

#### Upravljačke usluge

Upravljačke usluge AWS IoT Core komponente pružaju sigurnost uređaja te značajke za upravljanje i registraciju novih uređaja.

Moguće je definirati vlastite autorizatore radi upravljanja autentifikacijskim i autorizacijskim strategijama koristeći vlastiti servis za autentifikaciju i Lambda funkcije za računanje koje AWS nudi.

Usluga za postavljanje (engl. *provisioning*) uređaja omogućava konfiguriranje i prijavu uređaja u AWS koristeći predložak koji opisuje resurse potrebne uređaju: *stvar*, certifikat i nekoliko politika. *Stvar* je unos u registar koji sadrži atribute opisa uređaja. Uređaji koriste certifikate za autentifikaciju s AWS IoT sustavom. Politike određuju koje operacije uređaj može izvršiti.

Isto tako, moguće je definirati grupe za lakšu kategorizaciju i upravljanje uređajima. Grupe također mogu imati podgrupe, i tako graditi hijerarhiju grupa. Sve akcije izvršene na roditeljima propagiraju se do najdubljih podgrupa. Dozvole dodijeljene grupi primjenjuju se na sve uređaje u toj grupi i svim njihovim podgrupama.

Usluga za poslove (engl. *jobs*) omogućava definiranje udaljenih operacija koje se pošalju i izvrše na fizičkim uređajima spojenih u oblak. Posao se može odnositi preuzimanje i instalaciju aplikacija, ažuriranje sustava, ponovno pokretanje, obnova certifikata i slično.

Registar organizira resurse pridružene uređajima u oblaku. Moguće je registrirati

uređaje i pridružiti im maksimalno po tri atributa. Isto tako, uređajima se mogu pridružiti certifikati i klijentski ID za MQTT komunikaciju kako bi se olakšalo otklanjanje budućih grešaka.

Usluga za sigurnost i identitet pruža dijeljenu odgovornost za sigurnost unutar AWS oblaka. Fizički uređaji moraju držati vjerodajnice na sigurnom kako bi se podaci mogli slati brokeru na siguran način. Značajke za sigurnost koriste i stroj za pravila kao i broker za poruke radi sigurnog prijenosa podataka drugim uslugama unutar AWS ekosustava.

#### Usluge za uređaje

AWS IoT Core osigurava pouzdano aplikacijsko iskustvo iako uređaji nisu uvijek povezani.

Sjena uređaja (engl. *Device Shadow*) dokument je u JSON formatu koji se koristi za pohranu i dohvat trenutnog stanja i informacija o uređaju. AWS nudi uslugu koja održava stanje uređaja (engl. *Device Shadow service*) kako bi aplikacije mogle komunicirati s uređajem bez obzira je li uređaj na mreži ili ne. Kada uređaj nije priključen na mrežu, usluga sjene uređaja upravlja podacima za povezane uređaje. Kada se uređaj ponovno spoji na mrežu, sinkronizira stanje sa sjenom uređaja koja se nalazi u oblaku. Uređaji također mogu objavi svoje stanje usluzi u bilo kojem trenutku kako bi bilo na raspolaganju drugim aplikacijama i uređajima.

#### **4.2.1.** AWS IoT Fleet Provisioning

#### **4.2.2. AWS IOT OTA**

#### 4.2.3. AWS IoT Device Shadow

#### 4.2.4. AWS IoT Jobs

#### 4.2.5. AWS IoT Device Defender

#### 4.2.6. Ostale dostupne IoT usluge u sustavu AWS

Uz ranije opisanu glavnu komponentu IoT Core koju nudi AWS za stvaranje IoT aplikacija, u samom ekosustavu nalazi se još mogućnosti za jednostavniju integraciju oblaka i fizičkih uređaja. U nastavku su ukratko opisane ostale usluge koje se mogu integrirati uz jezgrenu uslugu AWS IoT Core.

Važno je napomenuti kako nisu sve usluge dostupne u svim regijama unutar platforme AWS.

#### **IoT Analytics**

AWS IoT Analytics automatizira korake potrebne za analizu podataka prikupljenih od IoT uređajima. Filtrira, transformira i obogaćuje podatke prije nego ih pohrani u vremensku bazu podataka za daljnju analizu. Moguće je postaviti uslugu da prikuplja podatke s uređaja samo koji su potrebni, vrši matematičke operacije i dopunjava podatke raznim metapodacima, primjerice o lokaciji. Zatim se podaci mogu analizirati koristeći ugrađeni sustav za pretraživanje koji koristi SQL sintaksu ili pak vršiti kompleksniju analizu koristeći usluge umjetne inteligencije. Isto tako, ova usluga nudi vizualizaciju podataka integracijom s dodatnom uslugom Amazon QuickSight.

#### **IoT Device Defender**

AWS IoT Device Defender potpuna je usluga koja pomaže pri osiguranju IoT uređaja. Kontinuirano revidira IoT konfiguracije radi provjere jesu li sve u skladu s najboljim sigurnosnim praksama. Također pruža kontinuirano monitoriranje sigurnosnih metrika s uređaja i AWS IoT Core kako bi se detektirale anomalije u ponašanju pojedinih uređaja.

Ova usluga također omogućuje slanje alarma na konzolu AWS IoT sustava i na uslugu za monitoriranje Amazon CloudWatch. Koriste se ugrađene mitigacijske akcije kako bi se izolirali nesigurni uređaji.

#### **IoT Events**

AWS IoT Events usluga služi za praćenje događaja u sustavu. Ova usluga prati ulazne podatke s više IoT uređaja i aplikacija radi prepoznavanja uzoraka i pokretanja prikladnih operacija na određene događaje. Moguće je pratiti ne samo fizičke uređaje, nego i druge AWS aplikacije integrirane u IoT sustav.

#### IoT FleetWise

AWS IoT FleetWise jest usluga koja se koristi za prikupljanje podataka od vozila i njihovu organizaciju u oblaku. Prikupljeni se podaci mogu koristiti za poboljšanje kvalitete, performansa i autonomije vozila. Također podržava više različitih protokola i podatkovnih formata. Ova usluga pomaže pri transformaciji poruka niske razine

(engl. *low-level*) u oblik čitljiv čovjeku i standardizira podatke radi lakše analize u oblaku. Moguće je također definirati vrstu podataka i trenutak u kojem se ti podaci šalju u oblak.

Kada su podaci o vozilu u oblaku, mogu se koristiti u aplikacijama koje analiziraju zdravlje vozila. Ove informacije mogu pomoći pri identifikaciji potencijalnih problema u održavanju i pri unapređenju naprednih tehnologija poput autonomne i asistirane vožnje integracijom strojnog učenja.

#### **IoT Greengrass**

AWS IoT Greengrass jest usluga otvorenog koda (engl. *open source*) za računarstvo na rubu (engl. *edge computing*) i u oblaku koja pomaže pri izradi, objavi i upravljanju IoT aplikacija na uređajima. Može se koristiti za omogućavanje uređajima lokalno reagiranje na podatke koje generiraju, pokretanje modela strojnog učenja za predikciju, te filtriranje i agregaciju podataka s uređaja. Omogućava uređajima da prikupljaju i analiziraju podatke ne u oblaku, nego ili na samom uređaju ili drugom mjestu koje je bliže izvorištu tih podataka. Također može komunicirati na siguran način s uslugom AWS IoT Core i izvoziti podatke u oblak. Karakteristika računarstva u rubu, koje omogućava ova komponenta, jest približavanje računanja izvorišnim uređajima, čime se poboljšava vrijeme odziva i štedi propusnost [3].

#### **IoT Roborunner**

AWS IoT RoboRunner nova je usluga koja pruža infrastrukturu za optimizaciju robota iz jedne točke gledišta. Uz pomoć ove usluge moguće je izgraditi aplikacije za jednostavniji međusobni rad robota. Namijenjena je za industrijske robote i automatizirane sustave za olakšano upravljanje opremom. Pruža centralne repozitorije podataka za pohranu te podržava različite podatkovne formate od raznih robota i autonomnih sustava.

#### IoT TwinMaker

AWS IoT TwinMaker usluga je za kreiranje operativnih digitalnih dvojnika fizičkih i digitalnih sustava. Stvara digitalne vizualizacije koristeći mjerenja i analize iz raznih senzora i kamera radi praćenja stvarnog stanja i uvjeta u kojima se objekt, zgrada ili kompleks nalazi. Podaci iz stvarnog svijeta se mogu koristiti za dijagnostiku i ispravljanje pogrešaka ili pak optimizaciju operacija.

Digitalni dvojnik (engl. *digital twin*) digitalna je reprezentacija sustava i svih njegovih fizičkih i digitalnih komponenti. Dinamički se ažurira primitkom novih podataka kako bi simulirao stvarno stanje i ponašanje sustava.

#### **IoT SiteWise**

AWS IoT SiteWise jest usluga koja skalabilno prikuplja, modelira, analizira i vizualizira podatke iz industrijske opreme. Usluga pruža kreiranje web aplikacija za operativne korisnike radi prikaza i analize industrijskih podataka u stvarnom vremenu. Moguće je dobiti uvide u podatke i operacije konfiguriranjem i praćenjem raznih metrika, primjerice efektivnost i efikasnost opreme. Ovu je uslugu moguće koristiti jedino uz ranije opisan IoT TwinMaker.

# 5. Povezivanje razvojnog sustava i oblaka

Oblak koju pruža platforma AWS i razvojni sustav ESP32-C3 dva su odvojena sustava koja moraju međusobno komunicirati i razmjenjivati podatke. Za ostvarenje njihove veze razvijena su dva programska rješenja:

- 1. programska potpora za mikrokontroler, koja će omogućiti dinamičko povezivanje na Wi-Fi, spajanje na platformu AWS te slanje podataka u oblak,
- programska potpora za platformu AWS, koja će ostvariti umrežavanje uređaja u sustav, ažuriranje softvera na uređaju, pohranu primljenih podataka s uređaja te prikaz tih podataka u web aplikaciji.

#### 5.1. Programska potpora za mikrokontroler

Programska potpora za uređaj ESP32-C3 sastoji se od nekoliko komponenti:

- dinamičko povezivanje na bežičnu mrežu,
- spajanje na platformu AWS,
- učitavanje novog softvera,
- očitavanje senzorskih mjerenja,
- slanje podataka u oblak protokolom MQTT.

Neke od navedenih komponenti izvršavaju se slijedno, dok se druge izvršavaju paralelno. Spajanje na Wi-Fi i povezivanje s platformom AWS ključni su koraci koji prethode bilo kakvom pokušaju slanja podataka u oblak. Isto tako, praćenje ažuriranja softvera i očitavanje mjerenja izvršavaju se paralelno u posebnim procesima budući da nisu sekvencijalni niti međusobno isključivi zadaci. U nastavku je pobliže opisan svaki navedeni segment programske potpore.

#### 5.1.1. Dinamičko povezivanje mikrokontrolera na Wi-Fi

Radni okvir ESP-IDF nudi dinamičko spajanje na Wi-Fi mrežu pomoću zasebne komponente. Ovaj se postupak naziva provizioniranje (engl. *provisioning*). Ova komponenta pruža aplikacijska programska sučelja (engl. *Application Programming Interface - API*) koja kontroliraju pružanje usluge za primanje i konfiguriranje Wi-Fi vjerodajnica putem sigurnih komunikacijskih protokola. Sigurnosni protokoli definirani su u komponenti protokolne komunikacije (engl. *protocomm*) koja upravlja sigurnim sjednicama (engl. *sessions*) i pruža radni okvir za višestruki prijenos podataka. Također je moguće direktno koristiti sloj *protocomm* radi implementacije specifične za aplikaciju. [5]

Sloj *protocomm* interno koristi mehanizam protokolnih međuspremnika (engl. *protocol buffers - protobuf*) za sigurno uspostavljanje sjednice. Protokolni međuspremnici namijenjeni su za serijalizaciju strukturiranih podataka neovisno o programskom jeziku i platformi. Koristan je pri izradi programa i sustava koji međusobno komuniciraju putem mreže zbog kompaktnosti i niske latencije. [9]

Sloj *protocomm* pruža radni okvir za različite načine komunikacije:

- 1. protokol BLE,
- 2. Wi-Fi (SoftAP u kombinaciji s HTTP serverom).

Pružajući korisnicima okvir za ostvarivanje usluge dinamičkog povezivanja u mrežu, neovisno o načinu komunikacije, ovakva vrsta podrške naziva se unificirano provizioniranje (engl. *unified provisioning*). Ovakav način prijave uređaja na mrežu zahtijeva interakciju korisnika putem vanjskog uređaja za slanje vjerodajnica na mikrokontroler. Tvrtka *Espressif* pruža jednostavna mobilna rješenja koja se mogu koristiti gotova ili pak uklopiti u vlastitu mobilnu aplikaciju. Na slici 5.1 prikazana je arhitektura usluge.

Kao što je ranije opisano, arhitektura je bazirana na sloju *protocomm* koji je odgovoran za prijenos podataka i sigurnost. Služi za jednostavne povratne pozive aplikaciji (engl. *callbacks*) i dobivanje Wi-Fi statusa. Sama aplikacija ima kontrolu nad implementacijom povratnih poziva.

Aplikacija stvara instancu *protocomm* koja se preslikava na određeni prijenosni protokol i sigurnosnu shemu. Svaki prijenos podataka u sloju *protocomm* ima koncept krajnje točke (engl. *endpoint*) koji odgovara logičkom komunikacijskom kanalu za određenu vrstu informacija. Primjerice, sigurnosno rukovanje (engl. *handshake*) odvija se na različitoj krajnjoj točki u odnosu na točku za Wi-Fi konfiguraciju. Svaka



Slika 5.1: Arhitektura unificiranog provizioniranja [5]

se krajnja točka identificira nizom znakova i mijenja se ovisno o internom prikazu krajnje točke. U slučaju prijenosa pomoću Wi-Fi veze odnosno SoftAP funkcionalnosti, krajnja točka prikazuje se kao URI, dok u slučaju prijenosa podataka putem protokola BLE odgovara GATT karakteristici sa specifičnim UUID-om.

Oglašavanje i otkrivanje uređaja prepušteno je aplikaciji i ovisno o odabranom protokolu, vanjske aplikacije mogu odabrati odgovarajuću metodu za oglašavanje i otkrivanje. Za Wi-Fi prijenos obično se koristi ime mreže pristupne točke. Za prijenos putem protokola BLE može se koristiti ime samog uređaja.

Kao što je opisano, podržano je korištenje protokola BLE kao i Wi-Fi usluge za prijenos vjerodajnica. Pri odabiru prijenosnog kanala za spajanje uređaja u mrežu, potrebno je razmotriti nekoliko točaka. Za početak, prijenos temeljen na protokolu BLE prednost održavanja netaknutog komunikacijskog kanala između uređaja i klijenta tijekom prijenosa podataka, što osigurava pouzdanu povratnu informaciju. S druge strane, prijenos putem Bluetootha troši oko 110 KB memorije tijekom rada, što je na uređajima niskih resursa velika potrošnja. Korisno je što se korištena memorija može vratiti na hrpu (engl. *heap*) po završetku umrežavanja uređaja ukoliko se BLE funkcionalnosti više ne koriste. Prijenos temeljen na Wi-Fi mreži, odnosno SoftAP funkcionalnosti, vrlo je interoperabilan i ne troši dodatnu memoriju. Međutim, mikrokontroler koristi isti radio za emitiranje pristupne točke i za spajanje na željenu mrežu. Budući da se te akcije mogu odvijati na različitim kanalima, postoji mogućnost da se ažuriranja statusa veze ne dostave na mobilni uređaj. Također, mobilni se uređaj mora odspojiti s izvorne

Wi-Fi mreže radi privremenog spajanja na pristupnu točku mikrokontrolera. Uređaj će se spojiti na izvornu mrežu tak kada mikrokontroler ugasi pristupnu točku.

Za razvoj predloženog rješenja korišteno je slanje vjerodajnica pomoću Wi-Fi mreže, odnosno privremene pristupne točke. Kao što je ranije opisano, protokol BLE troši značajnu količinu *heap* memorije, a razvojni sustav ESP32-C3 nema dovoljno radne memorije koja bi pokrila prijavu u mrežu uz ostale radne procese. Mikrokontroler najprije stvori privremenu pristupnu točku na koju se mobilni uređaj spaja pomoću mobilne aplikacije. Zatim, nakon skeniranja dostupnih Wi-Fi mreža u blizini, u mobilnoj aplikaciji odabire se željena mreža i unese lozinka. Vjerodajnice se zatim pošalju putem Wi-Fi mreže, i mobilni uređaj može se odspojiti s privremene pristupne točke. Vjerodajnice se pohrane u memoriju tipa NVS (engl. *non-volatile storage*) koja ne zahtijeva konstantno napajanje kako bi se zadržala na uređaju. Ovime je omogućeno povezivanje uređaja u sustav čak i kada dođe do prekida napajanja. [14] Memorija tipa NVS može se jedino programski obrisati, te bi u idealnom izvedbenom rješenju postojao vanjski gumb spojen na mikrokontroler koji bi pokretao brisanje te memorije i tako omogućio ponovno spajanje na željenu mrežu. Sljedeći programski isječak prikazuje inicijalizaciju memorije NVS, mrežnog sučelja te stvaranje pristupne točke.

```
/* Init NVS partition */
esp_err_t ret = nvs_flash_init();
/* Init TCP/IP */
ESP_ERROR_CHECK(esp_netif_init());
/* Init the event loop */
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_event_group = xEventGroupCreate();
/* Init Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
esp netif create default wifi ap();
wifi_prov_mgr_config_t config = {
  .scheme = wifi_prov_scheme_softap,
  .scheme event handler = WIFI PROV EVENT HANDLER NONE
};
  /* Init provisioning manager with above config */
ESP_ERROR_CHECK(wifi_prov_mgr_init(config));
ESP_ERROR_CHECK(wifi_prov_mgr_start_provisioning(
security, (const void *) sec_params, service_name,
```

```
service_key));
wifi_prov_print_qr(service_name, username, pop,
PROV_TRANSPORT_SOFTAP, disp);
```

Isječak koda 5.1: Stvaranje pristupne točke

#### LCD zaslon

Za povezivanje mobilnog uređaja na privremenu pristupnu točku koju emitira razvojni sustav, potrebno je skenirati QR kod koji mikrokontroler generira. Budući da ESP32-C3 nema vlastito sučelje, na sustav je spojen zaslon OLED SSD1306 veličine 128×64 piksela. Uređaj sa zaslonom komunicira putem I2C sučelja, a za prikaz sadržaja na zaslonu korištena je biblioteka LVGL (engl. *Light and Versatile Graphics Library*). To je grafička biblioteka otvorenog koda namijenjena izradi GUI aplikacija za ugradbene sustave. Pruža radni okvir s mnogim značajkama, temama i paletama boja. Isto tako, biblioteka troši vrlo malo resursa, što je čini pogodnom za uređaje poput razvojnog sustava ESP32-C3. [1] Generiranje QR koda obavlja se pomoću biblioteke *QR-Code-Generator* koja je prilagođena ESP32 uređajima.

```
static void wifi_prov_print_qr(const char *name, const
    char *usrname, const char *pop, const char *transport,
    lv_disp_t *disp) {
    char payload[150] = {0};
    snprintf(payload, sizeof(payload),
        "{\"ver\":\"%s\",\"name\":\"%s\",\"username\":\"%s
\",\"pop\":\"%s\",\"transport\":\"%s\"}",
        PROV_QR_VERSION, name, usrname, pop, transport);
    esp_qrcode_config_t cfg = {
        .display_func = generate_qr_code_lcd,
        .max_qrcode_version = 10,
        .qrcode_ecc_level = ESP_QRCODE_ECC_LOW
    };
    esp_qrcode_generate(&cfg, payload);
}
```

Isječak koda 5.2: Generiranje QR koda iz pristupne točke

Prethodna funkcija povezuje pristupnu točku s QR kodom. Podaci o samoj pristupnoj točki učitaju se u privremenu varijablu, čiji se sadržaj prosljeđuje biblioteci za

generiranje QR koda. Dobiveni se podaci zatim prosljeđuju funkciji za prikaz koda na zaslonu. QR kod prikazuje se na zaslonu piksel po piksel, skalirajući veličinu koda na temelju širine i duljine samog zaslona.

```
void generate_qr_code_lcd(esp_qrcode_handle_t qrcode)
 ESP_LOGI(TAG, "%s", "Started generate_gr_code_lcd...");
 int size = grcodegen_getSize(grcode);
  // Calculate the scale factor
  int scale = (int) fmin(EXAMPLE_LCD_H_RES / size,
  EXAMPLE_LCD_V_RES / size);
  // Calculate horizontal shift
 int shift_x = (EXAMPLE_LCD_H_RES - size * scale)/2;
  // Calculate vertical shift
  int shift_y = (EXAMPLE_LCD_V_RES - size * scale)/2;
 if (lvgl_port_lock(0)) {
   lv_obj_t *screen = lv_scr_act();
   lv_obj_clean(screen); // Clear the screen to ensure
  it's dark
   // Create a canvas object
   lv_obj_t *canvas = lv_canvas_create(screen);
   static lv_color_t cbuf[LV_CANVAS_BUF_SIZE_TRUE_COLOR(
  EXAMPLE_LCD_H_RES, EXAMPLE_LCD_V_RES)];
    lv_canvas_set_buffer(canvas, cbuf, EXAMPLE_LCD_H_RES,
   EXAMPLE_LCD_V_RES, LV_IMG_CF_TRUE_COLOR);
    lv_canvas_fill_bg(canvas, lv_color_white(),
  LV_OPA_COVER);
    // Draw the QR code on the canvas
   for (uint8_t y = 0; y < size; y++) {</pre>
```

Isječak koda 5.3: Funkcija za prikaz QR koda na zaslonu

Na slici 5.2 prikazan je razvojni sustav ESP32-C3 sa spojenim LCD zaslonom na kojem je prikazan generirani QR kod.

#### 5.1.2. Registracija u sustav AWS

#### 5.2. Programska potpora za oblak

Ovdje će trebati dosta toga navesti, odnosno koji su koraci napravljeni u samom AWS sustavu da bi se mikrokontroler uspješno spojio s AWS-om. Vjerojatno opisati korake kreiranja računa, stvaranja certifikata koji će se zatim posijati u uređaj itd.

#### 5.2.1. Povezivanje s mikrokontrolerom

Ovdje će trebati opisati cijeli flow kojim se mikrokontroler spaja na AWS.



Slika 5.2: Razvojni sustav spojen s LCD zaslonom

## 6. Web aplikacija

Ovdje opisati ukratko koja je svrha same web aplikacije i gdje je deployana.

## 6.1. Grafana

Gotovo sigurno ću koristiti Grafanu budući da ima gotove vizualizacije koje su meni potrebne. Isto tako, malo opisati funkcionalnosti koje se nude u samoj Grafani, kako funkcionira alerting sustav. Napraviti nekoliko dashboarda, povezati s datasourceom, kreirati par alerta i pokazati kak su došli u obliku maila. Ponuditi proširenja za to - PagerDuty aplikacija recimo. Istražiti postoje li gotova rješenja koje nudi AWS po tom pitanju - nekakav alerting možda? (Mada sumnjam).

## 7. Zaključak

Moj zaključak.

### LITERATURA

- [1] LVGL, 2024. URL https://lvgl.io/.
- [2] AWS Documentation. Amazon.com, Inc., 2024. URL https://docs.aws.amazon.com/index.html.
- [3] Stephen J. Bigelow. What is edge computing? everything you need to know. 2021. URL https://www.techtarget.com/searchdatacenter/definition/edge-computing.
- [4] Marshall Brain i Talon Homer. How wifi works. 2021. URL https://computer.howstuffworks.com/wireless-network.htm.
- [5] Espressif. *Provisioning API*, 2024. URL https://docs.espressif.com/projects/esp-idf/en/v5.1/esp32/api-reference/provisioning/provisioning.html.
- [6] ESP32-C3 Series Datasheet. Espressif Systems, 2023. URL https://www.espressif.com/sites/default/files/documentation/esp32-c3\_datasheet\_en.pdf.
- [7] ESP32-C3-Mini 1 Datasheet. Espressif Systems, 2023. URL https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1\_datasheet\_en.pdf.
- [8] ESP-IDF Programming Guide. Espressif Systems, 2023. URL https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32c3/index.html.
- [9] Google. Protocol Buffers Google's data interchange format, 2024. URL https://protobuf.dev/.
- [10] Microsoft. Wi-fi problems in your home. . URL https://support.microsoft.com/hr-hr/windows/problemi-s-wi-

- fijem-i-raspored-va%C5%A1ega-doma-e1ed42e7-a3c5-d1be-2abb-e8fad00ad32a.
- [11] Microsoft. What is softap? . URL https://answers.microsoft.com/en-us/windows/forum/all/what-is-softap-what-does-it-do-where-do-i-get-it/e9e0385b-ad1a-446f-8b75-7973326c2629.
- [12] MQTT. MQTT.org, 2022.
- [13] A. S. Gillis N. Barney. Amazon web services (aws). URL https://www.techtarget.com/searchaws/definition/Amazon-Web-Services.
- [14] Carol Sliwa Robert Sheldon. Non-volatile storage (nvs). 2021. URL https://www.techtarget.com/searchstorage/definition/nonvolatile-storage.
- [15] *IEEE 802.11 Wireless Local Area Networks*. The Working Group for WLAN Standards, 2023. URL https://www.ieee802.org/11/.
- [16] Random Nerd Tutorials. Esp32 useful wi-fi library functions. 2021. URL https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/.

# Sustav za udaljeni nadzor u poljoprivredi temeljen na platformi ESP32-C3 i AWS-uslugama

#### Sažetak

Ovo je moj hrvatski sažetak.

Ključne riječi: prva, druga, treća, ključna, riječ

# System For Remote Monitoring In Agriculture Based On ESP32-C3 Platform and AWS Services

#### **Abstract**

This is my english abstract.

Keywords: first, second, third, key, word