Introduction to Machine Learning

Advanced Risk Minimization Risk Minimization Basics

Learning goals

- Risk minimization and ERM recap
- Bayes optimal model, Bayes risk
- Bayes regret, estimation and approximation error
- Optimal constant model
- Consistency

EMPIRICAL RISK MINIMIZATION

To learn a model, we usually do ERM:

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

- ullet observations $\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathcal{X} imes \mathcal{Y}$
- model $f_{\mathcal{H}}: \mathcal{X} \to \mathbb{R}^g$, from hypothesis space \mathcal{H} ; maps a feature vector to output score; often we omit \mathcal{H} in index
- ullet loss $L:\mathcal{Y} imes\mathbb{R}^g o\mathbb{R}$, measures error between label and prediction
- data generating process (DGP) \mathbb{P}_{xy} , we assume $(\mathbf{x}^{(i)}, y^{(i)}) \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}_{xy}$

Minimizing theoretical risk, so expected loss over DGP, is major goal:

$$\mathcal{R}(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}$$

TWO SHORT EXAMPLES

Regression with linear model:

- Model: $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0$
- Squared loss: $L(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
- Hypothesis space:

$$\mathcal{H}_{\mathsf{lin}} = \left\{ \mathbf{x} \mapsto oldsymbol{ heta}^{ op} \mathbf{x} + heta_0 : oldsymbol{ heta} \in \mathbb{R}^d, heta_0 \in \mathbb{R}
ight\}$$

Binary classification with shallow MLP:

- Model: $f(\mathbf{x}) = \pi(\mathbf{x}) = \sigma(\mathbf{w}_2^{\top} \text{ReLU}(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$
- Bernoulli / Log / Cross-Entropy loss:

$$L(y, \pi(\mathbf{x})) = -(y \log(\pi(\mathbf{x})) + (1 - y) \log(1 - \pi(\mathbf{x})))$$

Hypothesis space:

$$\mathcal{H}_{\mathsf{MLP}} = \left\{ \mathbf{x} \mapsto \sigma(\mathbf{\textit{w}}_{2}^{\top} \mathsf{ReLU}(\mathbf{\textit{W}}_{1}\mathbf{x} + \mathbf{\textit{b}}_{1}) + b_{2}) : \mathbf{W}_{1} \in \mathbb{R}^{h \times d}, \mathbf{b}_{1} \in \mathbb{R}^{h}, \mathbf{w}_{2} \in \mathbb{R}^{h}, b_{2} \in \mathbb{R} \right\}$$

Introduction to Machine Learning - 2 / 13

HYPOTHESIS SPACES AND PARAMETRIZATION

We often write $\mathcal{R}(f)$, but finding an optimal f is operationalized as finding optimal $\theta \in \Theta$ among a family of parametrized curves:

 $\mathcal{H} = \{ f_{\boldsymbol{\theta}} : f_{\boldsymbol{\theta}} \text{ from functional family parametrized by } {\boldsymbol{\theta}} \}$

- Optimizing numeric vectors is more convenient than functions
- For some model classes, some parameters encode the same function (non-injective mapping, non-identifiability).
 We don't care here, now.

OPTIMAL LOSS VALUES – M-ESTIMATORS

- ullet Assume some RV $z\sim \mathit{Q},z\in\mathcal{Y}$ as target
- z not the same as y, as we want to fiddle with its distribution
- We now consider $\arg\min_c \mathbb{E}_{z \sim Q}[L(z,c)]$ What is the constant that approximates z with minimal loss?

3 cases for Q

- $Q = P_y$, distribution of labels y, marginal of \mathbb{P}_{xy} optimal theoretical constant prediction
- $Q = P_n$, the empirical product distribution for data $y^{(1)}, \dots, y^{(n)}$ optimal empirical constant prediction
- $Q = P_{y|\mathbf{x} = \tilde{\mathbf{x}}}$, conditional label distribution at point $\mathbf{x} = \tilde{\mathbf{x}}$ Bayes optimal pointwise prediction / theoretical risk minimizer

OPTIMAL UNCONDITIONAL VALUES

Associating such a

$$c = \operatorname*{arg\,min}_{c \in \mathbb{R}} \mathbb{E}_{z \sim Q}[L(z,c)]$$

with a distribution is called a "statistical functional"

- Such a loss-minimizing version, and especially its empirical version below, is called an M-estimator
- "M" can be read as "max-likelihood type", or "minimizing",
 I prefer the latter
- If we look at the empirical counterpart, with the empirical distribution, this is the so-called "plug-in" estimator

$$\arg\min_{c\in\mathbb{R}}\sum_{i=1}^n L(y^{(i)},c)$$

OPTIMAL CONSTANT MODEL

- Goal: loss optimal, constant baseline predictor
- "constant": featureless ML model, always predicts same value
- "baseline": more complex model has to be better
- Also useful as optimal intercept

$$f_c^* = \operatorname*{arg\,min}_{c \in \mathbb{R}} \mathbb{E}_{xy} \left[L(y,c) \right] = \operatorname*{arg\,min}_{c \in \mathbb{R}} \mathbb{E}_y \left[L(y,c) \right]$$

• Estimation via ERM: $\hat{f}_c = \arg\min_{c \in \mathbb{R}} \sum_{i=1}^n L(y^{(i)}, c)$

RISK MINIMIZER

- Assume, hypothesis space $\mathcal{H}=\mathcal{H}_{\textit{all}}$ is unrestricted; contains any measurable $f:\mathcal{X}\to\mathbb{R}^g$
- We know \mathbb{P}_{xy}
- f with minimal risk across H_{all} is called
 risk minimizer, population minimizer or Bayes optimal model

$$\begin{aligned} f_{\mathcal{H}_{all}}^* &= & \arg\min_{f \in \mathcal{H}_{all}} \mathcal{R}\left(f\right) = \arg\min_{f \in \mathcal{H}_{all}} \mathbb{E}_{xy}\left[L\left(y, f(\mathbf{x})\right)\right] \\ &= & \arg\min_{f \in \mathcal{H}_{all}} \int L\left(y, f(\mathbf{x})\right) d\mathbb{P}_{xy} \end{aligned}$$

- ullet The resulting risk is called **Bayes risk**: $\mathcal{R}^* = \mathcal{R}(f^*_{\mathcal{H}_{\mathit{all}}})$
- Risk minimizer within $\mathcal{H} \subset \mathcal{H}_{\textit{all}}$ is $f_{\mathcal{H}}^* = \arg\min_{f \in \mathcal{H}} \mathcal{R}(f)$

OPTIMAL POINT-WISE PREDICTIONS

• To derive the RM, by law of total expectation

$$\mathcal{R}(f) = \mathbb{E}_{xy} \left[L(y, f(\mathbf{x})) \right] = \mathbb{E}_{x} \left[\mathbb{E}_{y|x} \left[L(y, f(\mathbf{x})) \mid \mathbf{x} \right] \right]$$

- We can choose $f(\mathbf{x})$ as we want from \mathcal{H}_{all}
- Hence, for fixed feature vector $\tilde{\mathbf{x}}$ we can select **any** value c to predict. So we construct the **point-wise optimizer**

$$f^*(\tilde{\mathbf{x}}) = \operatorname*{arg\,min}_{c} \mathbb{E}_{y|x} \left[L(y,c) \mid \mathbf{x} = \tilde{\mathbf{x}} \right]$$

THEORETICAL AND EMPIRICAL RISK

- Bayes risk minimizer is mainly a theoretical tool
- ullet In practice, need to restrict ${\cal H}$ for efficient search
- We don't normally know \mathbb{P}_{xy} . Instead, use ERM.

$$\hat{f}_{\mathcal{H}} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{\mathsf{emp}}(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

 Due to law of large numbers, empirical risk for fixed model converges to true risk, so consistent estimator

$$\bar{\mathcal{R}}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \stackrel{n \to \infty}{\longrightarrow} \mathcal{R}(f)$$

- Still, that does not imply that the selected ERM minimizer converges to f*, due to overfitting or lack of uniform convergence
- Would need more assumptions / math. machinery for this, will not pursue this here

ESTIMATION AND APPROXIMATION ERROR

- ullet Goal: Train model $\hat{\mathit{f}}_{\mathcal{H}}$ with risk $\mathcal{R}\left(\hat{\mathit{f}}_{\mathcal{H}}\right)$ close to Bayes risk \mathcal{R}^*
- Minimize Bayes regret or excess risk

$$\mathcal{R}\left(\hat{\mathit{f}}_{\mathcal{H}}\right)-\mathcal{R}^{*}$$

Decompose:

$$\mathcal{R}\left(\hat{f}_{\mathcal{H}}\right) - \mathcal{R}^{*} = \underbrace{\left[\mathcal{R}\left(\hat{f}_{\mathcal{H}}\right) - \inf_{f \in \mathcal{H}} \mathcal{R}(f)\right]}_{\text{estimation error}} + \underbrace{\left[\inf_{f \in \mathcal{H}} \mathcal{R}(f) - \mathcal{R}^{*}\right]}_{\text{approximation error}}$$
$$= \left[\mathcal{R}(\hat{f}_{\mathcal{H}}) - \mathcal{R}(f_{\mathcal{H}}^{*})\right] + \left[\mathcal{R}(f_{\mathcal{H}}^{*}) - \mathcal{R}(f_{\mathcal{H}_{all}}^{*})\right]$$

ESTIMATION AND APPROXIMATION ERROR

$$\mathcal{R}\left(\hat{\mathit{f}}_{\mathcal{H}}\right) - \mathcal{R}^* = \underbrace{\left[\mathcal{R}\left(\hat{\mathit{f}}_{\mathcal{H}}\right) - \inf_{\mathit{f} \in \mathcal{H}} \mathcal{R}(\mathit{f})\right]}_{\text{estimation error}} + \underbrace{\left[\inf_{\mathit{f} \in \mathcal{H}} \mathcal{R}(\mathit{f}) - \mathcal{R}^*\right]}_{\text{approximation error}}$$

- Estimation error: We fit $\hat{f}_{\mathcal{H}}$ via ERM on finite data, so we don't find best $f \in \mathcal{H}$.
- Approximation error: \mathcal{H} will often not contain Bayes optimal f^*

(UNIVERSALLY) CONSISTENT LEARNERS Stone 1977

Consistency is an asymptotic property of a learning algorithm, which ensures the algorithm returns the correct model when given unlimited data.

Let $\mathcal{I}: \mathbb{D} \to \mathcal{H}$ be a learning algorithm that takes a training set $\mathcal{D}_{\text{train}} \sim \mathbb{P}_{xy}$ of size n_{train} and estimates a model $\hat{f}: \mathcal{X} \to \mathbb{R}^g$.

The learning method \mathcal{I} is said to be **consistent** w.r.t. a certain distribution \mathbb{P}_{xv} if the risk of the estimated model \hat{f} converges in probability (" $\stackrel{\rho}{\longrightarrow}$ ") to the Bayes risk \mathcal{R}^* when n_{train} goes to ∞ :

$$\mathcal{R}\left(\mathcal{I}\left(\mathcal{D}_{\mathsf{train}}
ight)
ight)\overset{
ho}{\longrightarrow}\mathcal{R}^{*}\quad\mathsf{for}\;n_{\mathsf{train}}
ightarrow\infty$$

(UNIVERSALLY) CONSISTENT LEARNERS Stone 1977

Consistency is defined w.r.t. a particular distribution \mathbb{P}_{xv} . But since we usually don't know \mathbb{P}_{xv} , consistency does not offer much help to choose an algorithm for a specific task.

More interesting is the stronger concept of **universal consistency**: An algorithm is universally consistent if it is consistent for **any** distribution.

In Stone's famous consistency theorem (1977), the universal consistency of a weighted average estimator such as KNN was proven. Many other ML models have since then been proven to be universally consistent (SVMs, ANNs, etc.).

