

Global Optimization with Active Learning

Thomas Moreau¹ Nicolas Vayatis¹

¹CMLA, ENS Cachan, CNRS, Université Paris Saclay, 94235 Cachan, France

Abstract

We introduce a random search algorithm for non-convex optimization. The algorithm is based on the estimation of a confidence set that contains the maximum of the function. The main steps of the estimation procedure are described and numerical experiments are presented to show how the algorithm works practically.

Keywords Optimization – Convolutational Sparse Coding – Time Series representation

1. Motivations and Problem Statement

Examples of High-dimensional Optimization Problems

- Optimization in Air Traffic Management
- Risk Minimization in Machine Learning
- Optimization of Energy Networks

Derivative-free Optimization

Let $f^\star:\mathcal{X} \to \mathbb{R}$ where $\mathcal{X} \subset \mathbb{R}^d$ is a closed set

Estimating

$$\arg\max_{x\in\mathcal{X}} f^{\star}(x) = \{x\in\mathcal{X}: \forall x'\in\mathcal{X}, f^{\star}(x')\leq f^{\star}(x)\}$$

- Sequential queries $(x_1, f^*(x_1)), (x_2, f^*(x_2)), \ldots$
- Choosing x_{n+1} using the previous observations $\mathcal{D}_n = \{(x_i, f^{\star}(x_i))\}_{i \le n}$

Main Objectives

- Design a non-greedy algorithm for non-convex optimization
- ightharpoonup Keep the computational cost low for large dimensions (d \gg 10)
- Confirm the performance empirically
- Provide theoretical guarantees

Hypothesis and Assumptions

5. Selective Algorithm

If $X_m \in \text{ArgMax}(\mathcal{F}_t)$

Output: Any $x \in ARGMax(\mathcal{F}_n)$

- ▶ The unknown function f^* is continuous
- ► The unkown function has no flat parts
- ► The unkown function has reasonable variations

Init: $t, m \leftarrow 0, \mathcal{F}_0 \leftarrow \mathcal{F}, X_1, X_2, \dots \stackrel{\text{iid}}{\sim} \mathcal{U}(\mathcal{X})$

Request $f^{\star}(X_m)$, $t \leftarrow t+1$

 $\mathcal{F}_t \leftarrow \{ f \in \mathcal{F}_{t-1} : f(X_m) = f^*(X_m) \}$

2. Controlling the Smoothness

Bounding the variations

To enforce near-by locations to have close associated values, we assume that f^* belongs to a carefully chosen set of functions \mathcal{F} . We consider the following sets of functions:

- Lipschitzian functions: $|f(x) f(x')| \le k ||x x'||_2$
- Gaussian RKHS balls: $|f(x) f(x')| \le M \left(1 \exp\left(-\frac{\|x x'\|_2^2}{2\sigma^2}\right)\right)^{1/2}$

Placeholder Image

Figure: Upper and lower bounds for lipschizian functions (left) and gaussian RKHS (right)

6. Illustrations

Input: \mathcal{F} , \mathcal{X} , n

 $m \leftarrow m + 1$

While t < n

Placeholder

Image

Placeholder

Image

Placeholder

Image

Figure: Selective Algortihm on four synthetic functions

3. Concepts of Active Learning

Active learning for binary classification

Let $h^* \in \mathcal{H}$ and $\mathcal{H}_n = \{ h \in \mathcal{H} : \sum_{i=1}^n 1\{ h(X_i) \neq h^*(X_i) \} = 0 \}$

- $DIS(\mathcal{H}_n) = \{ x \in \mathcal{X} : \exists (h, h') \in \mathcal{H}_n^2, \ h(x) \neq h'(x) \}$
- $SUP(\mathcal{H}_n) = \{ x \in \mathcal{X} : \forall h \in \mathcal{H}_n, \ h(x) = 1 \}$
- $INF(\mathcal{H}_n) = \{ x \in \mathcal{X} : \forall h \in \mathcal{H}_n, \ h(x) = 0 \}$

Placeholder Image

Placeholder Image

Figure: Computation of the disagreement area for linear classifiers

4. Estimating the Maximum with Active Learning

Set of candidates

Given a set of mpoints $\{(X_i, f^*(X_i))\}_{i \leq n}$ and a functional space \mathcal{F} , we define the set of functions that are still consistent with the datas:

$$\mathcal{F}_n = \{ f \in \mathcal{F} : \forall i \in \{1 \dots n \}, \ f(X_i) = f^*(X_i) \}.$$

Query procedure

To keep the consistency of the optimization procedure, we propose a query policy that consists in selecting points uniformely from:

$$ARGMax(\mathcal{F}_n) = \{x \in \mathcal{X} : \exists f \in \mathcal{F}_n \text{ s.t. } x \in \arg\max_{x \in \mathcal{X}} f(x)\}.$$

Lipschitzian case

If $\mathcal{F} = \text{Lip}(k)$, we have that

 $x \in \operatorname{ArgMax}(\mathcal{F}_n)$ i.f.f. $\min_{i < n} f^*(X_i) + k \|x - X_i\|_2 \ge \max_{i \le n} f^*(X_i)$.

7. Open Questions and Discussion

- Theoretical performance of the algorithm
- Comparison with natural competitors
- Robustness to noise

References

- [1] J. Doe and J. Smith. A random citation? arXiv preprint arXiv:xxx.xxxx, (1):1–9, 2015.
- [2] J. Doe, J. Smith, and J. Average. Yet another convolutional neural net. In *Advances in Neural Information Processing Systems (NIPS)*, pages 577—585, 2025.

NIPS 2015 Montreal, Canada thomas.moreau@ens-cachan.fr