ML/DL for Everyone with PYTERCH Lecture 6:

Logistic Regression

Call for Comments

Please feel free to add comments directly on these slides.

Other slides: http://bit.ly/PyTorchZeroAll

ML/DL for Everyone with PYTERCH Lecture 6:

Logistic Regression

Linear model

Hours (x)	Points
1	2
2	4
3	6
4	?

Binary prediction (0 or 1) is very useful!

- Spent N hours for study, pass or fail?
- GPA and GRE scores for the HKUST PHD program, admit or not?
- Soccer game against Japan, win or lose?
- She/he looks good, propose or not?
- . . .

Linear to binary (pass/fail, 0/1)

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Logistic regression: pass/fail (0 or 1)

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Meet Sigmoid

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Meet Sigmoid

 $1: \hat{y} > 0.5$

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Meet sigmoid

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Meet Cross Entropy Loss

$$loss = \frac{1}{N} \sum_{n=1}^{N} (\hat{y_n} - y_n)^2$$

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

(Binary) Cross Entropy Loss

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

у	y_pred	loss
1	0.2	
1	0.8	
0	0.1	
0	0.9	

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{y} = \sigma(x * w + b)$$

torch.nn.functional.sigmoid(input)

Applies the element-wise function f(x) = 1/(1 + exp(-x))

```
import torch.nn.functional as F

class Model(torch.nn.Module):

    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
```


$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{y} = \sigma(x * w + b)$$

class torch.nn.Sigmoid [source]

Applies the element-wise function f(x) = 1/(1 + exp(-x))

```
import torch.nn.functional as F

class Model(torch.nn.Module):

    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
```

class torch.nn.BCELoss(weight=None, size_average=True)

Creates a criterion that measures the Binary Cross Entropy between the target and the output:

$$loss(o, t) = -1/n \sum_{i} (t[i] * log(o[i]) + (1 - t[i]) * log(1 - o[i]))$$

criterion = torch.nn.BCELoss(size_average=True)

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

```
x data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
v data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
class Model(torch.nn.Module):
   def init (self):
       super(Model, self). init ()
       self.linear = torch.nn.Linear(1, 1) # One in and one out
   def forward(self, x):
       y pred = F.sigmoid(self.linear(x))
       return y_pred
# our model
model = Model()
criterion = torch.nn.BCELoss(size average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training Loop
for epoch in range(1000):
       # Forward pass: Compute predicted y by passing x to the model
  v pred = model(x data)
   # Compute and print loss
   loss = criterion(y pred, y data)
   print(epoch, loss.data[0])
   # Zero gradients, perform a backward pass, and update the weights.
   optimizer.zero grad()
   loss.backward()
   optimizer.step()
# After training
hour var = Variable(torch.Tensor([[1.0]]))
print("predict 1 hour ", 1.0, model(hour var).data[0][0] > 0.5)
hour var = Variable(torch.Tensor([[7.0]]))
print("predict 7 hours", 7.0, model(hour var).data[0][0] > 0.5)
```



```
x data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
v data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
class Model(torch.nn.Module):
   def init (self):
       super(Model, self). init ()
       self.linear = torch.nn.Linear(1, 1) # One in and one out
                                                           Design your model using class
   def forward(self, x):
       y pred = F.sigmoid(self.linear(x))
       return y pred
# our model
model = Model()
criterion = torch.nn.BCELoss(size average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training Loop
for epoch in range(1000):
       # Forward pass: Compute predicted v by passing x to the model
  y pred = model(x data)
  # Compute and print loss
  loss = criterion(y pred, y data)
   print(epoch, loss.data[0])
   # Zero gradients, perform a backward pass, and update the weights.
   optimizer.zero grad()
  loss.backward()
   optimizer.step()
# After training
hour var = Variable(torch.Tensor([[1.0]]))
print("predict 1 hour ", 1.0, model(hour var).data[0][0] > 0.5)
hour var = Variable(torch.Tensor([[7.0]]))
print("predict 7 hours", 7.0, model(hour var).data[0][0] > 0.5)
```


Sigmoid

Linear

```
x data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
v data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
class Model(torch.nn.Module):
   def init (self):
       super(Model, self). init ()
       self.linear = torch.nn.Linear(1, 1) # One in and one out
                                                           Design your model using class
   def forward(self, x):
       y pred = F.sigmoid(self.linear(x))
       return y_pred
# our model
model = Model()
criterion = torch.nn.BCELoss(size average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training Loop
for epoch in range(1000):
       # Forward pass: Compute predicted v by passing x to the model
  v pred = model(x data)
  # Compute and print loss
  loss = criterion(v pred, v data)
   print(epoch, loss.data[0])
   # Zero gradients, perform a backward pass, and update the weights.
   optimizer.zero grad()
  loss.backward()
   optimizer.step()
# After training
hour var = Variable(torch.Tensor([[1.0]]))
print("predict 1 hour ", 1.0, model(hour var).data[0][0] > 0.5)
hour var = Variable(torch.Tensor([[7.0]]))
print("predict 7 hours", 7.0, model(hour var).data[0][0] > 0.5)
```

Sigmoid

Construct loss and optimizer

(forward, backward, update)

(select from PyTorch API)

Linear

Training cycle

```
v data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
class Model(torch.nn.Module):
   def init (self):
       super(Model, self). init ()
       self.linear = torch.nn.Linear(1, 1) # One in and one out
   def forward(self, x):
       y pred = F.sigmoid(self.linear(x))
       return y pred
# our model
model = Model()
criterion = torch.nn.BCELoss(size average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training Loop
for epoch in range(1000):
       # Forward pass: Compute predicted y by passing x to the model
  y pred = model(x data)
   # Compute and print Loss
   loss = criterion(y pred, y data)
   print(epoch, loss.data[0])
   # Zero gradients, perform a backward pass, and update the weights.
   optimizer.zero grad()
   loss.backward()
   optimizer.step()
# After training
hour var = Variable(torch.Tensor([[1.0]]))
print("predict 1 hour ", 1.0, model(hour var).data[0][0] > 0.5)
hour var = Variable(torch.Tensor([[7.0]]))
print("predict 7 hours", 7.0, model(hour var).data[0][0] > 0.5)
```

x data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))

Logistic regression

Exercise 6-1: Try other activation functions

Lecture 7: Wide and Deep

Backup slides

Building fun models

- Neural Net components
 - -CNN
 - -RNN
 - -Activations
- Losses
- Optimizers

□ Convolution Layers Conv1d Conv2d Conv3d ConvTranspose1d ConvTranspose2d

ConvTranspose3d

RNN LSTM GRU RNNCell LSTMCell GRUCell

torch.nn

⊕ Containers
⊕ Convolution Layers
⊕ Pooling Layers
⊕ Padding Layers
⊕ Non-linear Activations
⊕ Normalization layers
⊕ Recurrent layers
⊕ Linear layers
⊕ Dropout layers
⊕ Sparse layers
⊕ Distance functions
⊕ Loss functions
⊕ Vision layers

□ Non-linear Activations ReLU ReLU6 ELU SELU PReLU LeakyReLU Threshold Hardtanh Sigmoid Tanh LogSigmoid Softplus Softshrink Softsign Tanhshrink Softmin Softmax Softmax2d LogSoftmax

http://pytorch.org/docs/master/nn.html

□ Loss functions

L1Loss

MSELoss

CrossEntropyLoss

NLLLoss

PoissonNLLLoss

NLLLoss2d

KLDivLoss

BCELoss

BCEWithLogitsLoss

MarginRankingLoss

HingeEmbeddingLoss

MultiLabelMarginLoss

SmoothL1Loss

SoftMarginLoss

MultiLabelSoftMarginLoss

CosineEmbeddingLoss

MultiMarginLoss

TripletMarginLoss

Loss functions

Table 1: List of losses analysed in this paper. \mathbf{y} is true label as one-hot encoding, $\hat{\mathbf{y}}$ is true label as +1/-1 encoding, \mathbf{o} is the output of the last layer of the network, $\cdot^{(j)}$ denotes jth dimension of a given vector, and $\sigma(\cdot)$ denotes probability estimate.

symbol	name	equation
\mathcal{L}_1	L_1 loss	$\ {\bf y} - {\bf o}\ _1$
\mathcal{L}_2	L_2 loss	$\ \mathbf{y} - \mathbf{o}\ _2^2$
$\mathcal{L}_1\circ\sigma$	expectation loss	$\ \mathbf{y} - \sigma(\mathbf{o})\ _1$
$\mathcal{L}_2\circ\sigma$	regularised expectation loss ¹	$\ \mathbf{y} - \sigma(\mathbf{o})\ _2^2$
$\mathcal{L}_{\infty}\circ\sigma$	Chebyshev loss	$\max_j \sigma(\mathbf{o})^{(j)} - \mathbf{y}^{(j)} $
hinge	hinge [13] (margin) loss	$\sum_{j} \max(0, \frac{1}{2} - \mathbf{\hat{y}}^{(j)} \mathbf{o}^{(j)})$
${ m hinge}^2$	squared hinge (margin) loss	$\sum_{j}^{j} \max(0, rac{ar{1}}{2} - \mathbf{\hat{y}}^{(j)} \mathbf{o}^{(j)})^2$
${ m hinge}^3$	cubed hinge (margin) loss	$\sum_{j}^{j} \max(0, rac{ar{1}}{2} - \mathbf{\hat{y}}^{(j)} \mathbf{o}^{(j)})^3$
\log	log (cross entropy) loss	$-\sum_{i}\mathbf{y}^{(j)}\log\sigma(\mathbf{o})^{(j)}$
\log^2	squared log loss	$-\sum_{j}^{j} [\mathbf{y}^{(j)} \log \sigma(\mathbf{o})^{(j)}]^2$
tan	Tanimoto loss	$\frac{-\sum_{j}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}}{\ \sigma(\mathbf{o})\ _{2}^{2}+\ \mathbf{y}\ _{2}^{2}-\sum_{j}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}}$
D_{CS}	Cauchy-Schwarz Divergence [3]	$-\lograc{\sum_{j}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}}{\ \sigma(\mathbf{o})\ _{2}\ \mathbf{y}\ _{2}}$

https://arxiv.org/pdf/1702.05659.pdf

torch.optim

- classtorch.optim.Adadelta
- classtorch.optim.Adagrad
- classtorch.optim.Adam
- classtorch.optim.Adamax
- classtorch.optim.ASGD
- classtorch.optim.RMSprop
- classtorch.optim.Rprop
- classtorch.optim.SGD

Three simple steps

1 Design your model using class

- Construct loss and optimizer (select from PyTorch API)
- Training cycle (forward, backward, update)

Exercise 6-1

• Try different optimizers

Lecture 7: Wide and Deep