Модуль сдвига и крутильные колебания

Роман Ухоботов, Николай Грузинов

Используемое оборудование

- 1. динамометр (max 1 H, цена деления 0.02 H);
- 2. 8 стержней разных длин, масс, диаметров и материалов;
- 3. крутящаяся платформа с встроенным транспортиром;
- 4. 2 груза для изменения момента инерции платформы;
- 5. оптические ворота (для измерения периода, погрешность: 0.01 с);

Характеристики восьми стержней:

2	Torsion rod, steel, I = 500 mm, d = 2 mm	
3	Torsion rod, Al, I = 500 mm, d = 2 mm	
4	Torsion rod, Al, I = 400 mm, d = 2 mm	
5	Torsion rod, Al, I = 300 mm, d = 2 mm	
6	Torsion rod, Al, I = 500 mm, d = 3 mm	
7	Torsion rod, Al, l = 500 mm, d = 4 mm	
8	Torsion rod, brass, I = 500 mm, d = 2 mm	
9	Torsion rod, Cu, I = 500 mm, d = 2 mm	

Цели и задачи

Цель: изучить крутильные колебания различных стержней, измеряя период колебаний и крутильный коэффициент жесткости. Задачи:

- 1. измерить момент инерции крутящейся платформы без грузов
- 2. измерить диаметры стержней (проверить значения из методички) и массы грузов
- 3. для каждого из восьми стержней измерить динамометром крутильный коэффициент жесткости в статике.

- 4. для каждого стержня измерить период колебаний оптическими воротами
- 5. среди стержней есть 3 стержня из одного материала и одного диаметра, но разной длины посмотреть на зависимость периода колебаний и крутильного коэффициента жесткости от длины;
- 6. есть два стержня из одного материала и одинаковой длины, но разных диаметров посмотреть на зависимость от диаметра;
- 7. вычислить модуль сдвига (или модуль Юнга) стали, алюминия, меди и латуни; сравнить с табличными значениями.

Теоретическая модель

В первом приближении для крутильных колебаний работает "закон Гука": момент силы M пропорционален углу поворота платформы α с крутильным коэффициентом жесткости k. Колебания платформы на стержне описываются вторым законом Ньютона для вращательного движения, что позволяет легко связать период колебаний T, момент инерции платформы (с грузами или без) I и крутильный коэффициент жесткости k:

$$M = I\beta \implies -k\alpha = I\ddot{\alpha}.$$

Крутильный коэффициент жесткости k связан с модулем сдвига G уравнением

$$k = \frac{\pi d^4 G}{32l}$$
. (d — диаметр, l — длина стержня)

Также известна связь модуля сдвига G с модулем Юнга E и коэффициеентом Пуассона ν :

$$G = \frac{E}{2(1+\nu)}.$$

Моменты инерции при добавлении грузов складываются: если момент инерции платформы без дополнительных грузов I_0 , масса одного груза m, продольная длина груза b, а расстояние от оси до центра груза a, то суммарный момент инерции составит

$$I = I_0 + 2\frac{m}{b} \int_{a-\frac{b}{2}}^{a+\frac{b}{2}} r^2 dr = I_0 + \frac{2m}{3b} \left(\left(a + \frac{b}{2} \right)^3 - \left(a - \frac{b}{2} \right)^3 \right) = I_0 + 2m \left(a^2 + \frac{b^2}{12} \right).$$

Методика измерений

Диаметр d стержней измеряли микрометром, параметры a и b для грузов — линейкой. Коэффициент k в статике получали косвенно измерением 5–6 точек зависимости силы от угла, тянув динамометром за плечо платформы. Период колебаний измерялся в соответствующем режиме оптическими воротами.

Результаты

Массы грузов $m_1=152.75$ г, $m_2=151.95$ г, $\Delta m=0.01$ г. Будем считать, что в формуле для момента инерции $2m=m_1+m_2=304.70\pm0.02$ г. Продольная длина груза $b=3.0\pm0.1$ см. Расстояние от оси до центра груза $a=15\pm0.3$ см. Диаметры стержней отличаются от паспортных значений меньше, чем на 2%, поэтому мы будем пользоваться паспортными значениями.

По этим графикам можно посчитать коэффициент k:

Таблица 1: Измерения динамометром для стержней 1-8, слева направо, снизу вверх. Плечо, за которое тянули — a.

Сила, Н	Угол, °	0 11	
0.00	1	Сила, Н	Угол, °
0.30	10	0.00	0
0.50	17	0.30	29
0.60	19	0.50	48
		0.80	80
0.90	30	1.00	100
1.00	34		
Сила, Н	Угол, °	Сила, Н	Угол, °
0.00	0	0.00	0
0.30	23	0.30	18
0.50	40	0.60	36
0.70	58	0.90	55
0.90	79	1.00	61
Сила, Н	Угол, °	Сила, Н	Угол, °
0.00	0	0.00	0
0.30	6	1.00	6
0.60	12	1.40	9
0.90	19	1.60	10
1.00	21	2.00	13
Сила, Н	Угол, °	Сила, Н	Угол, °
0.00	0	0.00	0
0.20	14	0.20	10
0.40	30	0.40	21
0.60	44	0.60	34
0.80	63	0.80	48