LAPORAN PRAKTIKUM ALGORITMA DAN PEMROGRAMAN 1

MODUL IV

I/O, TIPE DATA & VARIABEL

Disusun oleh:

BENING PUTRI NARESWARI SUKARNO

109082500211

S1IF-13-02

Asisten Praktikum

Adithana dharma putra

Alfin Ilham Berlianto

PROGRAM STUDI S1 INFORMATIKA

FAKULTAS INFORMATIKA

TELKOM UNIVERSITY PURWOKERTO

2025

LATIHAN KELAS – GUIDED

1. Guided 1 Source Code

```
package main
import (
    "fmt"
func main() {
    var time, jam, menit, detik int
    fmt.Println("waktu")
    fmt.Scan(&time)
    jam = time / 3600
    menit = time / 60 % 60
    detik = time % 60
    fmt.Println(jam, "jam", menit, "menit", detik, "detik")
}
```

```
Welcome
                                                               ▶ Ш …
                <sup>™</sup> latihan1.go X
 🕶 latihan1.go 🗦 ...
            "fmt'
       func main() {
           var time, jam, menit, detik int
            fmt.Println("waktu")
           fmt.Scan(&time)
            jam = time / 3600
            menit = time / 60 % 60
            detik = time % 60
            fmt.Println(jam, "jam", menit, "menit", detik, "det
                                     ∑ powershell + ∨ ∏ ÎÎÎ ··· | [] ×
                    TERMINAL
 PS C:\Users\vero0\OneDrive\latihan prt 4> go run latihan1.go
 6590
 1 jam 49 menit 50 detik
 PS C:\Users\vero0\OneDrive\latihan prt 4>
                                                              X
                                      NA ▶
                                                                     ($)
                           File
                                  Edit
                                         View
                           NAMA : BENING PUTRI NARESWARI SUKARNO
                           NIM: 109082500211
                           KELAS : IF-13-02
```

Deskripsi program

Program tersebut adalah konverter waktu yang berfungsi untuk mengubah total waktu dalam satuan detik yang dimasukkan pengguna menjadi waktu dalam jam, menit, dan detik.

Cara Kerja:

- 1. Program menampilkan "waktu" dan kemudian menunggu pengguna memasukkan nilai total detik. Nilai ini disimpan dalam variabel time.
- 2. Perhitungan dilakukan berdasarkan fakta bahwa 1 jam adalah 3600 detik dan 1 menit adalah 60 detik.
- 3. Program menampilkan hasil perhitungan (jam, menit, dan detik) ke konsol dengan format yang jelas (misalnya: 1 jam 49 menit 50 detik).

Contoh input:

- 1. Ketika program meminta waktu, pengguna memasukkan 6590
- 2. Kemudian program akan mengkonversi jam: 6590/3600 = 1
- 3. Konversi menit: (6590/60) (mod 60)=109 (mod 60)=49
- 4. Detik: 6590 (mod 60)=60
- 5. Hasil konversi 1 jam 49 menit 50 detik.

2. Guided 2

Source Code

```
package main
import (
     "fmt"
func main() {
     var nilai, nilai2, nilai3 int
     var hasil bool
     fmt.Println("Masukkan angka (100-999): ")
     fmt.Scanln(&nilai)
     nilai1 = nilai / 100
     nilai2 = (nilai % 100) / 10
     nilai3 = nilai % 10
     hasil = nilai1 <= nilai2 && nilai2 <= nilai3
     fmt.Println("Apakah digitnya berurutan?", hasil)
}
```


Deskripsi program

Program tersebut akan memecah angka tersebut menjadi tiga digit terpisah, kemudian memeriksa apakah digit-digitnya berurutan naik atau sama.

Cara Kerja:

- 1. Program memisahkan angka yang Anda masukkan menjadi tiga digit, yaitu digit ratusan, puluhan, dan satuan.
- 2. Kemudian memeriksa apakah setiap digit berikutnya lebih besar dari atau sama dengan digit sebelumnya (misalnya, digit ratusan ≤ puluhan dan puluhan ≤ satuan).
- 3. Hasil pemeriksaan urutan tersebut akan ditampilkan sebagai true (Benar) jika urutannya naik/sama, atau false (Salah) jika urutannya melompat turun.

Contoh Masukkan 1:

- 1. Program meminta pengguna memasukkan angka (100-199)
- 2. Pengguna memasukkan angka 134
- 3. Program akan memproses digit 1≤3≤4
- 4. Maka hasilnya **True**, karena digitnya berurutan naik.

Contoh Masukkan 2:

- 1. Program meminta pengguna memasukkan angka (100-199)
- 2. Pengguna memasukkan angka 163
- 3. Program akan memproses digit 1≤6≥3
- 4. Maka hasilnya False, karena digitnya tidak berurutan naik.

3. Guided 3

Source Code

```
package main

import (
    "fmt"
)

func main() {
    var berat, tinggi float64

    fmt.Print("Masukkan berat (kg): ")
    fmt.Scan(&berat)
    fmt.Print("Masukkan tinggi (m): ")
    fmt.Scan(&tinggi)

BMI := berat / (tinggi * tinggi)

fmt.Printf("Hasil BMI Anda adalah: %.2f\n", BMI)
}
```

```
Welcome
                <sup>™</sup> latihann3.go ×
                                                               ▶ Ⅲ …
 🗝 latihann3.go 🗦 ...
       package main
       import (
            "fmt"
       func main() {
           var berat, tinggi float64
           fmt.Print("Masukkan berat (kg): ")
           fmt.Scan(&berat)
           fmt.Print("Masukkan tinggi (m): ")
           fmt.Scan(&tinggi)
           RMT ·= herat / (tinggi * tinggi)

    Dowershell + ∨ □ □ □ ··· □ □ ×

           OUTPUT
                    TERMINAL
 PS C:\Users\vero0\OneDrive\latihan pertemuan 4> go run latihann3.go
Masukkan berat (kg): 55
Masukkan tinggi (m): 1.55
Hasil BMI Anda adalah: 22.89
PS C:\Users\vero0\OneDrive\latihan pertemuan 4>
                                                     X
                                                       •
                                                           £
                        Edit
                 File
                               View
                 NAMA : BENING PUTRI NARESWARI SUKARNO
                 NIM: 109082500211
                 KELAS : IF-13-02
```

Deskripsi program

Program tersebut adalah kalkulator sederhana untuk menghitung Indeks Massa Tubuh (BMI).

Cara Kerja:

- 1. Mendeklarasikan dua variabel dengan tipe data float64 yaitu berat (kg) dan tinggi (meter).
- 2. Mencetak pesan "Masukkan berat (kg): " ke terminal, kemudian menunggu dan membaca input angka dari pengguna untuk variabel berat.
- 3. Mencetak pesan "Masukkan tinggi (m): " ke terminal, kemudian menunggu dan membaca input angka dari pengguna untuk variabel tinggi.
- Perhitungan BMI: Menghitung nilai BMI menggunakan rumus: BMI = berat / (tinggi * tinggi). Hasil perhitungan disimpan dalam variabel BMI.
- 5. Output mencetak hasil perhitungan BMI ke terminal dengan pesan "Hasil BMI Anda adalah: ".

TUGAS

1. Tugas 1

Source code

```
package main
import "fmt"
func main() {
   var totalBelanja float64
   var diskonPersen float64
    fmt.Print("Masukkan totalBelanja: ")
   fmt.Scan(&totalBelanja)
    fmt.Print("Masukkan diskonPersen: ")
    fmt.Scan(&diskonPersen)
   potonganHarga := totalBelanja * (diskonPersen / 100)
   hargaAkhir := totalBelanja - potonganHarga
    fmt.Println(int(hargaAkhir))
```


Deskripsi program

Program tersebut adalah sebuah kalkulator untuk menghitung harga akhir suatu belanjaan setelah dipotong diskon.

Cara Kerja:

- 1. Program meminta pengguna memasukkan total belanja dan disimpan dalam variabel totalBelanja.
- 2. Program kemudian meminta pengguna memasukkan persentase diskon dan disimpan dalam variabel diskonPersen.
- 3. Program kemudian memghitung jumlah potongam harga dengan rumus: potonganHarga = totalBelanja * (diskonPersen / 100)
- 4. Program memghitung harga akhir dengan mengurangi total belanka dengan potongan harga: *hargaAkhir* = *totalBelanja potonganHarga*
- 5. Output program menampilkan nilai hargaAkhir ke terminal.

Contoh Masukkan:

- 1. Program meminta pengguna memasukkan totalBelanja, kemudian pengguna memasukkan 265000
- 2. Program meminta pengguna memasukkan persentase diskon, kemudian pengguna memasukkan 30
- 3. Program akan menghitung potongan harga dengan rumus: potonganHarga = 265000 * (30 / 100) = 265000 * 0.3 = 79500 dan menghitung harga akhir dengan rumus: hargaAkhir = 265000 79500 = 185500
- 4. Outputnya hargaAkhir 185500.

2. Tugas 2

Source code

```
package main
import (
    "fmt"
    "math"
)
func main() {
   var BMI float64
   var tinggi float64
    fmt.Print("Masukkan BMI: ")
    fmt.Scan(&BMI)
    fmt.Print("Masukkan tinggi: ")
    fmt.Scan(&tinggi)
    var berat = BMI * (tinggi * tinggi)
    fmt.Println(math.Round(berat))
}
```


Deskripsi program

program tersebut digunakan untuk menentukan berat badan seseorang dengan memasukkan BMI dan tinggi badan.

Cara Kerja:

- 1. Program meminta pengguna memasukkan nilai BMI ("Masukkan BMI: ") dan menyimpannya.
- 2. Program meminta pengguna memasukkan tinggi badan dalam meter ("Masukkan tinggi: ") dan menyimpannya.
- 3. Variabel berat dihitung menggunakan rumus: berat = BMI * (tinggi * tinggi)
- 4. Nilai berat yang telah dihitung kemudian dibulatkan ke bilangan bulat terdekat menggunakan math.Round(berat).
- 5. Hasil pembulatan tersebut kemudian dicetak (fmt.Println) ke terminal.

Contoh Masukkan:

- 1. Pengguna memasukkan BMI = 22.89
- 2. Pengguna memasukkan tinggi badan(m) = 1.55
- 3. Program akan menghitung dengan rumus:

```
berat = BMI * (tinggi * tinggi)
berat = 22.89 x (1.55 x 1.55)
berat = 22.89 x 2.4025
berat = 54.998025
```

- 4. Nilai berat (54.998025) kemudian dibulatkan menggunakan math.Round() menjadi 55.
- 5. output 55.

3. Tugas 3

Source code

```
package main
import (
    "fmt"
    "math"
func hitungJarak(x1, y1, x2, y2 float64) float64 {
    jarakKuadrat := math.Pow(x2-x1, 2) + math.Pow(y2-y1, 2)
    return math.Sqrt(jarakKuadrat)
func main() {
    var x1, y1, x2, y2, x3, y3 float64
    fmt.Println("Masukkan koordinat Titik A (x y):")
    fmt.Scan(&x1, &y1)
    fmt.Println("Masukkan koordinat Titik B (x y):")
    fmt.Scan(&x2, &y2)
    fmt.Println("Masukkan koordinat Titik C (x y):")
    fmt.Scan(&x3, &y3)
    sisiAB := hitungJarak(x1, y1, x2, y2)
    sisiBC := hitungJarak(x2, y2, x3, y3)
    sisiCA := hitungJarak(x3, y3, x1, y1)
    sisiTerpanjangSementara := math.Max(sisiAB, sisiBC)
    sisiTerpanjang := math.Max(sisiTerpanjangSementara,
sisiCA)
    fmt.Printf("\nPanjang sisi terpanjang adalah: %.2f\n",
sisiTerpanjang)
```


Deskripsi program

Program berfungsi sebagai kalkulator untuk menentukan panjang sisi terpanjang dari sebuah segitiga yang dibentuk oleh tiga titik koordinat A, B, dan C dalam sistem Kartesius 2 dimensi.

Cara Kerja:

- 1. Program meminta pengguna memasukkan enam nilai (koordinat x dan y untuk Titik A, B, dan C) dan menyimpannya dalam variabel.
- 2. Program menggunakan fungsi pembantu hitungJarak yang didasarkan pada Teorema Pythagoras untuk menghitung panjang ketiga sisi segitiga: Sisi AB, Sisi BC, dan Sisi CA.
- 3. Program menggunakan fungsi math.Max secara berulang untuk membandingkan ketiga panjang sisi tersebut, lalu memilih nilai yang terbesar sebagai sisi terpanjang, dan menampilkan hasilnya dengan dua angka di belakang koma.

Contoh Masukkan:

1. Input yang diberikan pengguna adalah koordinat untuk tiga titik: A (1, 2), B (3, 4), dan C (5, 6).

- 2. Perhitungan menggunakan koordinat tersebut menghasilkan panjang sisi CA sebagai yang terbesar 5.66.
- 3. Output yang ditampilkan program adalah 5.66, yang merupakan jarak lurus antara Titik C dan Titik A.