29/29 MARAGRASH KEY

CHMG-141 With Dr. Bailey	GENERAL & ANALYTICAL CHEMISTRY I
·	Group members:
	Recitation Week 2
Key Skills:	(Ch.1)
CalculatConvertConvert	with atomic numbers, mass numbers, and Isotope symbols ing atomic weight ing between Moles and numbers of atoms ing between mass and amount (in Moles) reactions
1). Working with	h the Periodic table:
a) Name the	e third-period noble gas Argon (Ar)
	e 5-th period alkaline earth metal Strowtium (Sr)
c) Name the	Second period halogen Clorine (Cl) Second period - Fluorine (F) Saloger soir of elements do you expect to be most similar? Why?
2). Which of the	second pepioh - Fluorine (F) following pairs of elements do you expect to be most similar? Why?
a) N and Nib) Mo and Sc) Na and Md) Cl and Fe) Si and P	The Same Number (7) of valence
3). What elemen	t is defined by the following information?
a) p+ = 50, n° =	20, e-= 50 a) Tin (Sn), 2 = 50
b) p+ = 13, n° =	20, e-= 50 a) $Tin(Sn)$, $Z = 50$ 14, e-= 10 b) Aluminum Al (Allien) Z = 13

4). Write symbols for the following isotopes:

b)
$$Z = 27$$
 and $A = 60$

5) Given the following nuclear notations:

$$_{9}F^{19}$$
 $_{32}Ge^{73}$ $_{9}F^{18}$ $_{27}Co^{59}$ $_{44}Nb^{93}$

$$\begin{pmatrix}
 3 & 3 & 4 \\
 18 - 9 & 4 \\
 New Head$$

e) Which one has 41 neutrons?
$$326e^{\frac{73}{32}}(73-32=41)$$

6). Rubidium has two naturally occurring isotopes with the following masses and natural abundance:

Isotope	Mass (amu)	Abundance	CONTRIBUTION
Rb-85	84.9118	72.15 <i>O</i> .	7215 x 84. 9118 = 61.26 am4
Rb-87	86.9092		.2485 x 86.9092 = 24.20 amu

Calculate the atomic weight of rubidium

7). Calculate:

a) How many moles of nickel are in 44.03 grams?

b) What is the mass of 9.041X10²⁴ lithium atoms?

9.041×10²⁴
$$_{af.L;}$$
 × $_{b.022\times10^{23}}$ × $_{af.}$ $_{b.022\times10^{23}}$ × $_{b.022\times10^{23}}$

Problem 8: You have a piece of copper that is 9.36 cm long, 7.23 cm wide and 0.95 mm thick. Density of copper is 9.00 g/cm³ How many atoms of copper are in this piece of copper?

The strategy:

12.47

- 1. Find mass of the piece of copper (dimensions→volume→mass)
- 2. Find how many moles of copper are in this sample
- 3. Find how many atoms of copper are in this sample

(1)
$$V = 9.36 \text{ cm} \times 7.23 \text{ cm} \times (0.95 \text{ m/m} \times \frac{10 \text{ cm}}{1 \text{ m/m}}) = 6.43 \text{ cm}^3$$

 $mass = 6.43 \text{ cm}^3 \times 9.00 \frac{9}{\text{cm}^3} = 57.9 \text{ g}$

Problem 6: Recently, there has been concern about pollution in the home from radon, a radioactive gas whose elemental molar mass is 222 g/mol. The Environmental Protection Agency believes that a level of radon of 3.6×10^{-17} g/L of air is unhealthy. At this level,

- 1. How many moles of radon would there be in a living room whose volume is 2455 L?
- 2. How many atoms is this?

males =
$$\left(3.6 \times 10^{-17} \frac{9}{9} \times 2455 \pm\right) \times \frac{1 \text{ mol}}{2229}$$

= 3.98×10^{-16}