Задача 2-1.

Даны две строки — P и T, длины не более $100\,000$. Строка T состоит только из строчных латинских букв. Строка P тоже состоит из строчных латинских букв, но еще может содержать от 0 до 10 символов ?, каждый из которых может заменять собой одну любую букву. Вам нужно найти все позиции i в строке T, начиная с которых возможно вхождение P в T, если каким-то образом заменить символы ? на буквы.

В первой строке входа — строка P, во второй — строка T. Длины обеих строк не превосходят $100\,000$, при этом они обе непустые.

В первой строке выведите число k — количество таких позиций i, что строка P может входить в строку T, начиная с позиции i. Во второй строке перечислите все возможные позиции в возрастающем порядке. Позиции нумеруются с нуля. Разделяйте две последовательные позиции одним пробелом.

Пример входа	Пример выхода
ab?	3
ababcabc	0 2 5
???	6
ababcabc	0 1 2 3 4 5

Задача 2-2.

Дан набор строк S_1, S_2, \ldots, S_k и число n. Нужно найти количество различных строк длины n, не содержащих в себе в качестве подстроки ни одной из строк S_1, S_2, \ldots, S_k .

В первой строке входа — числа n, k и l, разделенные пробелом. В следующих k строках перечислены S_1, S_2, \ldots, S_k , состоящие из первых l маленьких латинских букв. $1 \le n \le 1\,000$, суммарная длина строк S_i не превышает $1\,000, 1 \le l \le 26$, строки S_i — непустые.

Выведите количество различных строк длины n, состоящих только из первых l маленьких латинских букв, никакая из которых не содержит в себе ни одной из строк S_1, S_2, \ldots, S_k в качестве подстроки. Таких строк может быть очень много, поэтому выведите ответ по модулю $1\,000\,000\,007$.

Пример входа	Пример выхода
5 1 2	1
a	
5 2 1	0
a	
aa	
5 1 2	6
ab	
5 0 2	32

Задача 2-3.

Вам даны два детерминированных конечных автомата A и B. Необходимо определить, эквивалентны ли они.

На входе сначала идет описание автомата A, а потом в том же формате описание автомата B.

Каждое описание начинается с трех целых чисел n,k и l. n — количество состояний автомата. k — количество терминальных состояний. l — количество букв в используемом алфавите. Всегда будут использоваться первые l маленьких латинских букв.

Справедливы ограничения $1 \le n \le 1\,000, \, 0 \le k \le n, \, 1 \le l \le 26.$

В следующей строке k различных целых чисел от 0 до n-1 — номера терминальных состояний автомата. Все состояния занумерованы от 0 до n-1.

Начальным состоянием автомата считается нулевое состояние. Оно может быть терминальным.

В следующих nl строках перечислены все переходы автомата. Переход записывается в виде $a\ b\ c$, где a — начальное состояние перехода, b — символ для перехода, c — конечное состояние перехода. Переходы могут быть перечислены в произвольном порядке.

Выведите строку EQUIVALENT, если автоматы эквивалентны и строку NOT EQUIVALENT, если они не эквивалентны.

Автоматы используют общий алфавит, то есть число l будет одно и то же у обоих автоматов.

Пример входа	Пример выхода
4 1 2	NOT EQUIVALENT
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
2 1 2	
1	
0 a 1	
0 b 1	
1 a 1	
1 b 1	
4 3 1	EQUIVALENT
1 2 3	
0 a 1	
1 a 2	
2 a 3	
3 a 3	
2 1 1	
1	
0 a 1	
1 a 1	
4 1 2	NOT EQUIVALENT
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
3 1 2	
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 1	
2 b 0	

Задача 2-4.

Дан детерминированный конечный автомат A. Необходимо найти минимально возможное количество состояний в ДКА, который ему эквивалентен.

На входе — описание автомата A. См. описание формата описания автомата в первой задаче. Ограничения на параметры автомата — те же, что и в первой задаче.

Выведите количество состояний в минимальном по количеству состояний ДКА, эквивалентном автомату A.

Пример входа	Пример выхода
4 1 2	4
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
4 1 2	3
3	
0 a 1	
0 b 2	
1 a 1	
1 b 3	
2 a 2	
2 b 3	
3 a 3	
3 b 3	
2 1 1	1
1	
0 a 0	
1 a 1	