

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
20 January 2005 (20.01.2005)

PCT

(10) International Publication Number
WO 2005/004791 A2

(51) International Patent Classification⁷: **A61K** 513 Crestview, OK, Edmond, OK 73003 (US). **MOUREZ, Michael** [FR/—]; -.

(21) International Application Number:
PCT/US2003/035733

(74) Agent: **BIEKER-BRADY, Kristina**; Clark & Elbing LLP, 101 Federal Street, Boston, MA 02110 (US).

(22) International Filing Date:
10 November 2003 (10.11.2003)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/424,987 8 November 2002 (08.11.2002) US

(84) Designated States (*regional*): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants (*for all designated States except US*): **PRESIDENT AND FELLOWS OF HARVARD COLLEGE** [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US). **THE BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA** [US/US]; 660 Parrington Oval, Evans Hall, Norman, OK 73019 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/004791 A2

(54) Title: COMPOUNDS AND METHODS FOR THE TREATMENT AND PREVENTION OF BACTERIAL INFECTION

(57) Abstract: The invention provides mutant forms of pore-forming toxins. These mutant toxins may be used in vaccines for the prevention of bacterial infection. Additionally, dominant negative mutants may be administered as therapeutics for the treatment of bacterial infection.

**COMPOUNDS AND METHODS FOR THE TREATMENT AND
5 PREVENTION OF BACTERIAL INFECTION**

Statement as to Federally Sponsored Research

This invention was funded by grants R37-AI22021 and 2T32-AI07410 from the National Institute of Health. The government may have
10 certain rights in the invention.

Background of the Invention

In general, the invention features compounds and methods for the treatment of bacterial infections, such as anthrax infection.

15 The etiologic agent of anthrax (*Bacillus anthracis*) is a potential threat as an agent of biowarfare or bioterrorism because exposure to aerosolized *B. anthracis* spores can be lethal to mammals, such as humans. The major virulence factors produced by this organism are the poly-D-glutamic acid capsule and anthrax toxin (ATx). Both the capsule and the toxin assist in
20 colonization and immune evasion by the bacterium. ATx alone can cause death of the host. Vaccination against the toxin protects the host against infection.

Anthrax toxin is a member of the class of bacterial toxins termed A-B toxins. A-B toxins are composed of two moieties; the A moiety is the
25 enzymic portion of the toxin that catalyzes the toxic effect upon a cytoplasmic target within a target cell. The B moiety binds to a cellular receptor and facilitates the translocation of the A moiety across the cell membrane into the cytoplasm of the cell.

The B moieties of A-B toxins from tetanus, botulinum, diphtheria
30 and anthrax all form channels in membranes. It has been hypothesized that these channels might act as the conduit for the membrane translocation of the A moiety. The A and B moieties of anthrax toxin are secreted from the bacterial

cell as distinct polypeptides. The A and B subunits of other A-B toxins are produced as single chain polypeptides or as separate chains that are assembled into oligomeric toxins before release from the bacteria. There are two alternative A subunits of anthrax toxin called edema factor (EF) and lethal factor (LF). Noncovalent complexes of EF or LF and the B subunit, protective antigen (PA), are called edema toxin and lethal toxin, respectively. PA facilitates the translocation of both EF and LF across membranes.

PA is secreted as an 83 kDa monomeric polypeptide. Monomeric PA binds to a mammalian cell surface receptor and is proteolytically cleaved. The C-terminal 63 kDa fragment (PA63) remains bound to the cell and the N-terminal 20 kDa (PA20) dissociates from PA63. This proteolytic cleavage and subsequent dissociation of PA20 confer two new properties on PA63: (1) the ability to oligomerize into a ring-shaped heptameric SDS-dissociable structure termed prepore and (2) the ability to bind EF and LF. Oligomers containing PA63-EF, PA63-LF, or a combination of PA63-EF and PA63-LF are endocytosed and trafficked to an acidic compartment, where the PA63 prepore inserts into the membrane and forms a pore. During or after pore formation, EF and LF are translocated across the endosomal membrane into the cytoplasm. EF is a calmodulin-dependent adenylate cyclase which may protect the bacteria from destruction by phagocytes. LF is a metalloprotease that can kill macrophages or, at lower concentrations, induce macrophages to overproduce cytokines, possibly resulting in death of the host.

A crucial step in this intoxication pathway is pore formation by PA. Low pH serves as the trigger for conversion of the PA63 prepore to the pore. This conversion is accompanied by a transformation of the oligomer from an SDS-dissociable to an SDS-resistant state and formation of a transmembrane 14-strand β -barrel. These steps are believed to be necessary for translocation of EF and LF across the endosomal membrane and, thus, toxin action.

Summary of the Invention

By screening a library of mutated forms of PA where residues have been changed one after the other to a cysteine residue, we identified new mutated forms of PA having dominant negative inhibitory (DNI) activity.

5 These PA mutants have been purified and tested for DNI activity in a cell culture assay.

Accordingly, the invention features a B moiety of a pore-forming binary A-B toxin. The B moiety has a mutation that results in inhibition of its pore-forming ability and is selected from the group of mutations of PA
10 consisting of S382, N399, and N422. In a desirable embodiment, the amino acid mutation is to cysteine.

In yet another desirable embodiment, the PA mutant has an amino acid sequence that is at least 80%, 90%, 95% or 98% identical to a naturally-
15 occurring PA protein (such as SEQ ID No.: 21; Fig. 13) and that has one of the following alterations: S382, N399, and N422.

In yet another desirable embodiment, mutant B moieties include *Clostridium difficile*, *C. perfringens*, *C. spiroforme*, *C. botulinum*, *Bacillus cereus*, and *B. thuringiensis* toxins that have an alteration in an amino acid that corresponds to S382, N399, and N422. Corresponding amino acids are shown
20 in the alignments shown in Figures 15 and 16 and are also provided in Table 6.

In a second aspect, the invention features a vaccine composition having a mutant B moiety of the first aspect, or a fragment thereof, in a pharmaceutically acceptable carrier. In a desirable embodiment, the vaccine can be inactivated by chemical or physical means.

25 In a third aspect, the invention features a method of preventing or treating bacterial infection in a mammal, such as a human. This method includes administering the vaccine of the second aspect to the mammal. In one desirable embodiment, the vaccine is administered with a pharmaceutically suitable carrier or an adjuvant. The vaccine can be administered orally,
30 intramuscularly, intravenously, subcutaneously, by inhalation, or by any other

route sufficient to provide a dose adequate to prevent or treat a bacterial infection. In another desirable embodiment, a vaccine that includes a mutant anthrax protective antigen is administered for the prevention or treatment of anthrax infection.

5 In a fourth aspect, the invention features a mutant B moiety of a pore-forming binary A-B toxin. The mutant B moiety has a mutation at amino acid residues S382, N399, and N422, resulting in inhibition of its pore-forming ability. The mutant B moiety also inhibits the pore-forming ability of a naturally occurring B moiety of the corresponding toxin *in vitro* and/or *in vivo*.

10 In one desirable embodiment, this mutation results in inhibition of the pore-forming ability of the protein *in vivo*. In another desirable embodiment, the mutant B moiety lacks pore-forming ability *in vitro* and/or *in vivo*. In yet another desirable embodiment, the B moiety is anthrax protective antigen (PA). The mutant B moiety may bind the A moiety of the corresponding toxin. For example, a PA mutant may bind lethal factor (LF) or edema factor (EF) A moieties. The mutant B moiety may compete with a naturally occurring B moiety for binding to a receptor on the surface of a mammalian cell. The mutant B moiety may also bind a naturally occurring B moiety of the corresponding toxin. Such a mutant may oligomerize with a naturally occurring B moiety to form a complex that has reduced ability to form a pore. In one desirable embodiment, the complex lacks the ability to form a pore and to translocate an A moiety (e.g., EF or LF) across the membrane into the host cell cytoplasm.

15 In a fifth aspect, the invention features a method of preventing or treating bacterial infection in a mammal, such as a human. This method includes administering a mutant B moiety of the fourth aspect, or a fragment thereof, that inhibits the pore-forming ability of a naturally-occurring B moiety to the mammal. In one embodiment, a PA mutant of the fourth aspect or a fragment thereof is administered to prevent or treat anthrax infection in mammals that have been exposed to *B. anthracis* spores. In another

embodiment, the protein is administered prophylactically. In one desirable embodiment, the mutant B moiety is administered with a pharmaceutically suitable carrier. The mutant may be administered orally, intramuscularly, intravenously, subcutaneously, by inhalation, or by any other route sufficient to 5 provide a dose adequate to prevent or treat an anthrax infection. In one embodiment, the method also includes administering an anti-B moiety antibody, such as an antibody that binds a naturally-occurring B moiety, but not the dominant negative mutant B moiety, to the mammal. In one particular embodiment, the antibody binds a naturally-occurring PA but not the dominant 10 negative PA mutant.

In a sixth aspect, the invention features a nucleic acid encoding a mutant B moiety (e.g., a PA mutant) of the first or fourth aspects.

In a seventh aspect, the invention features a vector having the nucleic acid of the sixth aspect.

15 In an eighth aspect, the invention features a purified antibody that specifically binds a PA mutant protein of the foregoing aspects. The antibody may be a monoclonal or polyclonal antibody.

It should be understood that other pore-forming toxins, in addition to anthrax toxin, may be used in the compounds and methods of the invention.

20 For example, pore-forming toxins, such as other A-B toxins, having mutations (e.g., point mutations or deletion mutations) that inhibit the pore-forming ability of the toxin or that inhibit the pore-forming ability of the naturally occurring toxin are included in the invention. The pore-forming toxins with these mutants can be used in the vaccine compositions or methods of the 25 invention to prevent or treat infection by the etiologic agent of the toxin. While not meant to limit the invention in any way, other A-B binary toxins; hetero-oligomeric toxins (AB5 toxins), such as cholera toxin; or single polypeptide A-B toxins, such as tetanus, botulinum, or diphtheria toxin can be used. Other toxins that can be used include α -hemolysin from *Staphylococcus aureus*, 30 aerolysin from *Aeromonas hydrophila*, α -toxin from *Clostridium septicum*, and

cytotoxin from *Pseudomonas aeruginosa*. The invention is also relevant to any other pore-forming toxin such as cholesterol dependent cytolsins, hexameric toxins, or heptameric toxins. Examples of hexameric and heptameric toxins include toxins that are related to the Staphylococcal α -toxin. In one embodiment, a deletion mutant of the VacA toxin from *Helicobacter pylori* is specifically excluded.

“Mutation” means an alteration in the nucleic acid sequence such that the amino acid sequence encoded by the nucleic acid sequence has at least one amino acid alteration from a naturally occurring sequence. The mutation may, without limitation, be an insertion, deletion, frameshift mutation, or missense mutation.

“Pore-forming toxin” means a toxin which forms a transmembrane aqueous pore.

“Pore-forming A-B toxin” means a pore-forming toxin with two functional moieties; one moiety (B) which forms a pore in a host cell barrier membrane, and the other (A) traverses the membrane barrier and enzymatically modifies specific intracellular substrates of a host cell.

“Pore-forming binary A-B toxin” means a pore-forming A-B toxin in which the A and B moieties of the pore-forming toxin inhabit separate proteins, and interact during the intoxication of host cells. An example of a binary toxin is anthrax toxin.

“B moiety” means the component of a pore-forming A-B toxin which binds a specific host cell-surface receptor, interacts with the A moiety of the toxin, and aids in internalization of the A moiety into the cell. Many B moieties, such as PA, also form transmembrane pores.

“Protective antigen (PA)” means a polypeptide having at least 60%, 70%, 80%, or 90%, of at least one of the biological activities of the anthrax PA polypeptide described herein. The polypeptide may be encoded by the PA gene that was reported by Vodkin *et al.* (Cell 34:693-697, 1983). The polypeptide can be identical to wild-type PA characterized by Miller *et al.*

(Biochemistry 38(32):10432-10441, 1999) (SEQ ID No.: 21) or any naturally occurring PA polypeptide from a strain of *Bacillus anthracis*. The PA polypeptide may be cloned and expressed in a heterologous host, such as *Escherichia coli* or *Bacillus subtilis*. It is understood that homologs and 5 analogs have the characteristics of the anthrax PA described herein and may be used in the methods of the invention.

"PA63" means the carboxy-terminal portion that results from proteolytic cleavage of a 20 kDa N-terminal segment from the PA polypeptide. PA63 forms a heptameric prepore and binds the two alternative A moieties, 10 edema factor (EF) and lethal factor (LF). The entire complex is trafficked to the endosome, where PA63 inserts into the membrane, forms a transmembrane pore, and translocates EF and LF into the host cell cytoplasm.

"Transmembrane pore" means a transmembrane aqueous channel. For example, the transmembrane pore can be a β -barrel channel formed by 15 alternating hydrophilic and hydrophobic residues of PA63 such that the hydrophobic residues form an exterior membrane-contiguous surface of the barrel, and the hydrophilic residues face an aqueous lumen of a pore that spans across the host cell membrane.

"Hydrophilic face of a transmembrane pore" means the amino acids 20 of PA that face the aqueous lumen of a pore that spans across the host cell membrane.

"An amino acid that forms the transmembrane pore" means an amino acid of PA that is located in a β -barrel channel of a transmembrane pore.

"D2L2 loop" means the amphipathic loop which connects strands 25 $2\beta 2$ and $2\beta 3$ of PA polypeptide and PA63 polypeptide as described herein.

"Inhibits the pore-forming ability" means reduces the amount of pores formed in membranes or reduces the rate or amount of an A moiety (e.g., EF or LF) that is translocated into the host cell cytoplasm. This decrease in pore formation or toxin translocation is positively correlated with, and could be 30 predicted by, a decrease in activity in the cell surface translocation, LFnDTA.

toxicity, or rubidium release assays described herein. This decreased activity can be correlated with a decrease in the amount of a radiolabeled ligand that is translocated into cells in the cell surface translocation assay, a decrease in the inhibition of protein synthesis due to the translocation of a ligand into cells in the LFnDTA toxicity assay, or a decrease in the release of radiolabeled ions from cells in the rubidium release assay. Additionally, this decreased activity can be correlated with a decrease in toxicity due to the translocation of a toxic ligand into cells. In one desirable embodiment, the decrease in pore formation or translocation of an A moiety is at least 20%, more desirably at least 40%, and most desirably at least 80% relative to a naturally-occurring B moiety of the corresponding toxin. In another desirable embodiment, the decrease in pore formation or translocation of EF or LF by a PA mutant is at least 20%, more desirably at least 40%, and most desirably at least 80% relative to naturally occurring PA63

“Lacks pore-forming ability” means does not form a significant amount of pores in membranes or does not transfer a significant amount of EF or LF into the host cell cytoplasm. This lack of significant pore-forming or toxin translocating activity is positively correlated with, and could be predicted by, a lack of significant activity in the cell surface translocation, LFnDTA toxicity, or rubidium release assays described herein. In one desirable embodiment, the amount of pores formed or the amount of toxin translocated is less than 5 times the amount detected in a control assay without PA. More desirably, the amount is less than 2 times the amount in a control assay without PA.

“Fragment” means polypeptide having a region of consecutive amino acids that is identical to the corresponding region in a PA mutant. The fragment has either a reduced ability to form pores or translocate toxins compared to naturally-occurring PA. The fragment may also inhibit the pore-forming ability of naturally-occurring PA. This decrease in pore formation or toxin translocation is positively correlated with, and could be predicted by, a

decrease in activity in the cell surface translocation, LFnDTA toxicity, or rubidium release assays described herein. This decreased activity can be correlated with a decrease in the amount of a radiolabeled ligand that is translocated into cells in the cell surface translocation assay, a decrease in the 5 inhibition of protein synthesis due to the translocation of a ligand into cells in the LFnDTA toxicity assay, or a decrease in the release of radiolabeled ions from cells in the rubidium release assay. In one desirable embodiment, the decrease in pore formation or translocation of EF or LF is at least 20% relative to naturally-occurring PA63. More desirably, the decrease is at least 40%, and 10 most desirably, the decrease is at least 80%. The inhibition of the pore-forming ability of naturally-occurring PA is positively correlated with, and could be predicted by, a decrease in activity in an assay described above using an equimolar mixture of naturally-occurring PA and a PA fragment compared to using naturally-occurring PA alone. In one desirable embodiment, the 15 decrease is at least 20, 40, 60, 80, or 99% compared to the activity using only naturally-occurring PA. Desirably, the fragment is immunogenic and induces the production of protective antibodies against naturally-occurring PA. In another desirable embodiment, the administration of the fragment to a mammal, as described in Example 9, prevents or diminishes an anthrax 20 infection for a period of at least 1 month, more desirably 3 months, or most desirably 6 months. Examples of possible fragments include the C-terminal 63 kDa tryptic fragment of a PA mutant or a PA mutant having a deletion of amino acids that form the transmembrane pore.

By "purified antibody" is meant an antibody which is at least 60%, 25 by weight, free from proteins and naturally-occurring organic molecules with which it is naturally associated. Desirably, the preparation is at least 75%, more desirably 90%, and most desirably at least 99%, by weight, antibody. A purified antibody may be obtained, for example, by affinity chromatography using recombinantly-produced protein or conserved motif peptides and 30 standard techniques.

By "competes with a naturally occurring B moiety" is meant binds to a cellular receptor and displaces a naturally-occurring B moiety. In one embodiment, an alteration that inhibits the pore-forming ability of a mutant B moiety does not alter, relative to wild-type, the B moiety's ability to bind a 5 cellular receptor.

By "specifically binds" is meant an antibody that recognizes and binds to, for example, wild-type PA or a PA mutant but does not substantially recognize and bind to other non-PA molecules in a sample, e.g., a biological sample, that naturally includes protein. A desirable antibody specifically binds 10 any of the PA mutants of the invention (i.e., S382C, N399C, and N422C). Other desirable antibodies bind wild-type PA with at least 2, 5, 10, or 20 fold greater affinity than they bind one or more of the PA mutants of the invention.

Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis 15 Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: 20 glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

Other features and advantages of the invention will be apparent from the following detailed description.

25

Brief Description of the Drawings

Fig. 1 is a schematic illustration of the intoxication pathway for ATx toxin. The PA component of ATx binds to a receptor on the surface of mammalian cells and delivers the enzymic A moieties of the toxin, edema 30 factor (EF) and lethal factor (LF), to the cytosol, as described above.

Fig. 2A is a picture of SDS-PAGE gels showing the formation of nicked PA mutant proteins and the formation of SDS-resistant oligomers by wild-type, K397Q, and Δ D2L2 PA. Fig. 2B is a picture of a native gel showing the formation of pre pores by wild-type, K397A, and D425A PA.

5 Fig. 3 is a bar graph showing the amount of 86 Rb released from 86 RB loaded cells after incubation with wild-type, K397A, or D425A PA compared to the no PA control.

Fig. 4A is a bar graph showing the similar level of 35 S-LFn (N-terminal 1-255 amino acid PA binding domain of LF) binding by cells that 10 have been incubated with wild-type, K397A, or D425A PA. Fig. 4B is a graph showing the reduction in translocation of 35 S-LFn into cells that is mediated by K397A or D425A PA compared to wild-type PA.

15 Fig. 5 is a graph showing the percent of 3 H-Leu in the TCA insoluble fraction (protein fraction) after incubation of cells with wild-type, K397A, or D425A PA in the LFnDTA toxicity assay. Translocation of LFnDTA, which contains LFn fused to the A-chain of diphtheria toxin, into the cell leads to ribosylation of EF-2, resulting in the inhibition of protein synthesis and a decrease in the amount of 3 H-Leu in the protein fraction.

Fig. 6A is a bar graph showing the similar binding of 35 S-LFn to 20 cells incubated with wild-type, Δ D2L2, the double mutant K397D + D425K, or a mixture of wild-type and Δ D2L2 or K397D + D425K PA. Fig. 6B is a bar graph showing the reduction of wild-type PA-mediated translocation of 35 S-LFn by Δ D2L2 or K397D + D425K PA.

25 Fig. 7 is a graph showing the higher percent of 3 H-Leu in the TCA insoluble fraction after incubation of Δ D2L2 or K397D + D425K PA and wild-type PA compared to wild-type PA alone. This result corresponds to a decrease in wild-type PA-mediated inhibition of protein synthesis in the LFnDTA toxicity assay.

Fig. 8A is a graph showing the decrease in wild-type PA-mediated inhibition of protein synthesis in the LFnDTA toxicity assay. Increasing concentrations of mutant PA proteins relieve the wild-type PA-mediated inhibition of ³H-Leu uptake into the TCA insoluble fraction. Fig. 8B is a graph showing that much higher amounts of PA-SSR relative to wild-type PA are required to relieve the wild-type PA-mediated inhibition of ³H-Leu uptake compared to the amounts required for the mutants listed in Fig. 8A.

Fig. 9 is a graph showing the decrease in wild-type PA-mediated inhibition of protein synthesis in the LFnDTA toxicity assay due to the presence of increasing concentrations of a dominant negative PA mutant. The effect of the dominant negative mutants K397D + D425K (□), ΔD2L2 (■), F427A (○), D425K (Δ), and K397D (◇) and the control mutant SSSR (◆) are shown in this figure.

Fig. 10 is a graph showing the decrease in wild-type PA-mediated inhibition of protein synthesis in the LFnDTA toxicity assay due to the presence of increasing concentrations of one of the following dominant negative PA mutants: K397D + D425K (■), F427A + ΔD2L2 (□), K397D + D425K + F427A (○), and K397D + F427A + ΔD2L2 (▲).

Fig. 11 is a bar graph showing the inhibition of protein synthesis by a hetero-heptamer formed by mixing wild-type PA with a mutant PA (K397D + D425K, ΔD2L2, F427A, or D425K) and then cleaving the PA molecules with trypsin. Inhibition of protein synthesis by an equivalent amount of a 1:1 mixture of the corresponding mutant and wild-type homo-heptamers was also measured.

Fig. 12 is a bar graph showing the effect of the dominant negative mutants K397D + D425K, ΔD2L2, F427A, and D425K on the low-pH triggered translocation of ³⁵S LFN across the plasma membrane. The results presented are the mean of three experiments ± SEM.

Fig. 13 is the amino acid sequence of wild-type PA protein used for the assays described herein (SEQ ID No.: 21). The PA mutant proteins described herein are based on this wild-type sequence.

Fig. 14 is the polynucleotide sequence encoding the wild-type PA
5 protein used for the assays described herein (SEQ ID No.: 22).

Fig. 15 is an alignment of the amino acid sequence of PA (SEQ ID No.: 24) with other binary A-B toxins that have ADP ribosyltransferase activity. The amino acid sequences of toxins from *Clostridium difficile* ("AcdADPRT"; SEQ ID No.: 25), *C. perfringens* ("Acpiota"; SEQ ID No.: 26), *C. spiroforme* 10 ("Acsiota"; SEQ ID No.: 27), and *C. botulinum* ("Acbc2"; SEQ ID No.: 28) are listed. The *C. perfringens* and *C. spiroforme* toxins are frequently referred to as iota toxins while the botulinum toxin is referred to as C2. Additionally, the alignment includes the sequence of the toxin produced by *Bacillus cereus* ("AVIP1"; SEQ ID No.: 29), which is frequently referred to as VIP for 15 vegetative insecticidal protein. Corresponding amino acids are aligned between PA and the other toxins shown.

Fig. 16 is an alignment of the amino acid sequence of PA (SEQ ID No.: 30) with the amino acid sequences of toxins from *Clostridium difficile* ("AcdADPRT"; SEQ ID No.: 31), *C. perfringens* ("Acpiota"; SEQ ID No.: 32), 20 *C. spiroforme* ("Acsiota"; SEQ ID No.: 33), *C. botulinum* ("Acbc2"; SEQ ID No.: 34), and *Bacillus cereus* ("AVIP1"; SEQ ID No.: 35). Corresponding amino acids are aligned between PA and the other toxins shown. This alignment shows the complete sequences of the toxins.

25

Detailed Description

We have found a means by which infection by A-B toxin producing bacteria can be halted. Thus, the invention provides a composition for use as an antidote to particular bacterial infections, including anthrax and gangrene. Because the composition is safe and immunogenic, it may also be 30 used as a vaccine.

The multiple mutants of anthrax PA were constructed, expressed, purified, and assayed to determine whether they have reduced activity compared to wild-type PA. In particular, these mutants were assayed for the ability to bind PA ligands and receptors; to form pre pores, SDS-resistant 5 oligomers, and pores; and to translocate ligands across membranes as wild-type PA does (Figure 1). Based on the x-ray structure of PA, the mutated residues are predicted to project into the lumen of the PA prepore. PA mutants, or fragments thereof, with reduced or no detectable ability to form pores in membranes can be used as vaccines for the induction of protective antibodies to 10 prevent anthrax infection. In addition, these mutants might be more effective than wild-type PA in treating anthrax infection because of their reduced ability to translocate EF and LF secreted by *Bacillus anthracis* in the infected mammal.

These point mutants and the previously reported deletion mutant 15 lacking residues 302-325 of putative membrane spanning loop 2 of domain 2 (Δ D2L2) (Miller *et al.*, Biochemistry 38:10432-10441, 1999) were further characterized to determine whether they could act as dominant negative inhibitors by reducing the pore formation of wild-type PA. This inhibition could result from the binding of ligands or receptors by the mutants so that 20 fewer molecules were available for wild-type PA to bind. The mutants could also form oligomers with wild-type PA that have reduced or no detectable ability to form pores and translocate ligands. Dominant negative PA mutants, and fragments thereof, could be used as vaccines to elicit protective antibodies for the prevention or treatment of anthrax infection, as described above.

25 Additionally, mutants or fragments with dominant negative activity could be used as therapeutics to treat anthrax infection by inhibiting the activity of PA secreted by *Bacillus anthracis* in the infected mammal. Because dominant negative mutants can induce the production of protective antibodies and inhibit the activity of PA produced by the infecting bacteria, they can be used as a 30 combination vaccine/therapeutic that is particularly effective in treating

individuals suffering from, or at risk of developing, anthrax infection. Besides the need to abrogate toxin action as quickly as possible, it is also important to vaccinate individuals who have been exposed to aerosolized *B. anthracis* spores. This vaccination is essential to guard against delayed contraction of 5 anthrax by germination of spores that can remain in the body for prolonged periods (at least a month).

Several mutants of PA were identified that lack the ability to form pores in membranes and translocate ligands and, thus, are potential vaccines for the prevention or treatment of anthrax infection (Table 1). Mutants # 1-12 were 10 able to be proteolytically activated, to form the SDS-dissociable PA63 prepore state, and to bind a cellular receptor, EF, and LF. Some of the mutations prevented the conversion of the prepore to an SDS-resistant state (Table 1). These mutants (K397A, K397C, K397D, D425A, D425N, D425K D425E, 15 D425K, K397D + D425K, and K395D + K397D + D425K + D426K) are also defective in pore formation and membrane translocation. The other class of mutants (Δ D2L2 PA, K397Q, and F427A) forms SDS-resistant oligomers but does not undergo membrane insertion and pore formation. These results were unexpected.

In this study, several mutants of PA were identified (S382C, N399C, 20 and N422C) that lack the ability to form pores in membranes and translocate ligands and, thus, are potential vaccines for the prevention or treatment of anthrax infection. These mutants were able to be proteolytically activated, to form the SDS-dissociable PA63 prepore state, and to bind a cellular receptor, EF, and LF.

Table 1: PA Mutants and Phenotypes

Mutant #	Mutation	Forms SDS-resistant oligomer?	Forms channels?	Dominant negative?
1	K397A	No	No	No
2	K397D	No	No	No
3	K397C	No	No	No
4	K397Q	Yes	No	No
5	D425A	No	No	No
6	D425N	No	No	Not determined
7	D425E	No	No	Not determined
8	D425K	No	No	No
9	F427A	Yes	No	Not determined
10	K397D + D425K	No	No	Yes
11	K395D + K397D + D425K + D426K	No	No	Yes
12	ΔD2L2	Yes	No	Yes
13	S382C			Yes
14	N399C			Yes
15	N422C			Yes

Several of the mutants (for example, ΔD2L2, K397D + D425K double mutant, K395D+ K397D + D425K + D426K quadruple mutant, D425K, 5 F427A, K397D +D425K + F427A triple mutant, F427A + ΔD2L2 double mutant, K397D + F427A + ΔD2L2 triple mutant, K397D + D425K + F427A +ΔD2L2 quadruple mutant, F427D, and F427K) inhibit the wild-type PA-mediated translocation of ligands across membranes. The ΔD2L2 and K397D + D425K PA mutants were shown to form oligomers with wild-type PA that are unable to translocate ligands. These results were unexpected. The presence of a single molecule of these mutants within a heptameric prepore may be sufficient to block conversion to the pore. This ability to block the pore formation by wild-type PA, coupled with the ability to compete with wild-type

PA for the binding of cellular receptors and to remove EF and LF from circulation, makes these mutants particularly attractive for use in the treatment and prevention of anthrax infection.

Mutation of other residues in PA could also inhibit pore formation or 5 produce dominant negative activity. For example, residues that electrostatically interact with the charged side-chains of Lys397 or Asp425 may also be required for pore formation by PA, and the mutation of one or a combination of these residues may inhibit pore formation and result in dominant negative activity. Additionally, the deletion of smaller portions of 10 the 302-325 D2L2 loop or the deletion of amino acids flanking the loop and part or all of the 302-325 region could produce these results.

The ability to obtain mutants of PA with no detectable ability to form pores or translocate ligands and mutants that serve as dominant negative inhibitors of wild-type PA suggests that similar mutants could be obtained in 15 other toxins, such as α -hemolysin from *Staphylococcus aureus*, aerolysin from *Aeromonas hydrophila*, α -toxin from *Clostridium septicum*, cytotoxin from *Pseudomonas aeruginosa*, hetero-oligomeric toxins (AB5 toxins), or in the B moieties of tetanus, botulinum, or diphtheria toxins. Additionally, these 20 results underscore the possibility of identifying dominant negative forms of a number of other oligomeric virulence factors, ranging from toxins to adhesins.

In anthrax toxin and other oligomeric systems in which the assembly process occurs in contact with the extracellular milieu, exogenously added mutant subunits can in principle be incorporated into the final structure, raising the possibility that such subunits could be used therapeutically. Systemic 25 anthrax, although rare as a natural disease, is feared as an agent of biological warfare and terrorism, and dominant negative PA would seem to be a worthy candidate for a therapeutic. Assuming that administered dominant negative PA intermixes freely with wild-type PA produced in the body by *B. anthracis*, the proteins should co-assemble on cells to form inactive, dead-end complexes, 30 thereby blocking the actions of both LF and EF. Besides preventing overt

symptoms, dominant negative mutants may also protect professional phagocytes from destruction, thereby aiding the host in eradicating the infection. No significant side effects have been observed following injection of wild-type PA into humans, and thus a mutant inactive form of the protein
5 should pose no hazard.

Dominant negative PA may also be useful as a basis for a new vaccine against anthrax. As its name connotes, PA induces protective antibodies against anthrax, and indeed is the major immunogen of the vaccine currently licensed in the United States. The S382C, N399C, and N422C
10 mutants described herein exhibit little or no diminution in immunogenicity relative to wild-type PA in Fisher rats. We have also found mutants that are unexpectedly dominant negative, such that administration of a 0.25:1 ratio of mutant to wild-type PA did not result in any detectable symptoms of anthrax infection in a rat model. Purified wild-type PA is under consideration as a
15 replacement for the currently licensed vaccine, and if a dominant negative form of PA proves efficacious therapeutically, it might fulfill this role as well, eliminating the need to develop two almost identical pharmaceuticals.

The following examples are to illustrate the invention. They are not meant to limit the invention in any way. Unless otherwise noted, the data for
20 the K397A and D425A PA mutants is representative of the data obtained for the PA mutants listed in Table 1 or other mutants described herein (e.g., S382, N399, and N422).

Example 1: General methods

25 *Cell culture, media and chemicals*

Chinese hamster ovary-K1 (CHO-K1) cells were obtained from the American Type Culture Collection (ATCC). The cells were grown in HAM's F-12 supplemented with 10% calf serum, 500 units/mL penicillin G, 2 mM L-glutamine and 500 units/mL streptomycin sulfate and maintained at 5% CO₂ in
30 a humidified atmosphere. Cells were seeded into 24- or 96-well microtiter

plates (Costar, Cambridge, MA) 16-18 hours prior to the experiment. All media for cell culture was obtained from Gibco BRL unless noted otherwise. All chemicals were obtained from Sigma Chemical Co. unless specified.

5 *Construction and purification of PA proteins*

The Δ D2L2 PA mutant, which does not contain amino acids 302-325 of PA (SEQ ID NO:21, Figure 13), was expressed and purified as described previously (Miller *et al.*, Biochemistry 38:10432-10441, 1999). The nucleic acid sequence encoding SEQ ID NO:21 is shown in Figure 14 (SEQ ID 10 NO:22). The point mutations from Table 1 were constructed using the QuickChange method of site directed mutagenesis, following the manufacturer's protocol (Stratagene, La Jolla, CA). The plasmid of Miller *et al.* (*supra*) encoding wild-type PA was used as the template. The point mutants were cloned into a pET22-b(+) (Novagen) expression vector and transformed 15 into BL21(DE3) (Novagen) for expression. The point mutants were expressed and purified as previously described (Miller, 1999). Briefly, cultures were grown in LB at 37 °C to an A_{600} of 1.0. Expression of the recombinant protein was induced by the addition of β -D-isopropylthiogalactopyranoside to 1 mM. Following induction, the cells were grown for an additional 3 hours at 30 °C 20 and harvested by centrifugation for 10 minutes at 8000 x g.

The proteins were released from the periplasm by osmotic shock. The cells were resuspended in 20 mM Tris-HCl, pH 8.0, 30% glucose and 1 mM EDTA and incubated at room temperature for 10 minutes with continuous stirring. The cells were harvested again by centrifugation, resuspended in 5 25 mM MgSO₄ containing 20 mM Benzamidine, and incubated at 4 °C for 10 minutes with constant stirring. After the cells were again pelleted by centrifugation at 8000 x g, the periplasmic extract was decanted. Tris-HCL pH 8.0 was added to a final concentration of 20 mM, and the entire sample was loaded onto a Q-sepharose HP column. The unbound protein was washed off 30 the column with buffer A (20 mM Tris, pH 8.0). The bound protein was eluted

with a 0% - 25% buffer B linear gradient (20 mM Tris, pH 8.0, 1 M NaCl). The PA containing fractions were concentrated, and the buffer was exchanged using a pd-10 column (Amersham-Pharmacia) containing buffer A. The PA-containing eluate was loaded onto a Mono-Q column and eluted with a 0 - 25% 5 buffer B gradient. PA containing fractions were analyzed by SDS-PAGE and stored at -80 °C. Proteins concentrations were determined using the Bio-Rad protein assay kit based on the manufacturer's protocol. All liquid chromatography was performed using an AKTA-purifier liquid chromatography system (Amersham-Pharmacia).

10

Proteolytic activation of PA

Trypsin was used to proteolytically cleave PA83 to nicked PA (nPA). PA was diluted to a concentration of 0.5 mg/ml for the prepore-forming assay or 0.2 mg/ml for the other assays. Trypsin was added to a final trypsin to 15 PA ratio of 1:1000 (w/w), and the mixture was incubated at room temperature for 20 minutes, followed by inhibition of the trypsin with a 10 molar excess of soybean trypsin inhibitor.

Cell surface translocation assay

20 A cell surface translocation assay to measure the PA-mediated translocation of radiolabeled LFn (N-terminal 1-255 amino acid PA binding domain of LF) was performed as previously described (Wesche *et al.*, Biochemistry 37:15737, 1998). Briefly, nPA (2×10^{-8} M) was first bound to CHO cells, followed by 35 S LFn which binds to the PA63 on the cell surface. 25 Excess LFn was removed, and the cells were washed and subjected to a pH 5.0 pulse at 37°C. The low pH pulse mimics the acidification of the endosome and results in the PA-mediated translocation of LFn across the plasma membrane and into the cell. The samples were treated with pronase which proteolytically degrades extracellular 35 S-LFn, but not 35 S-LFn that has been translocated into 30 the cell. The cells were then washed and lysed. To determine the total amount

of ^{35}S -LFn that bound to the cells, some of the cells were not treated with pronase. Following lysis, the amount of ^{35}S -LFn in the supernatant was determined using a scintillation counter. The percent translocation was calculated as follows:

5 (DPM protected from pronase)/(DPM bound to cells) x 100 = % translocated.

To determine if mutant PA proteins inhibit the translocation of LFn by wild-type PA, this assay was also performed using equimolar amounts of mutant and wild-type PA that were combined prior to trypsinization and diluted to 2×10^{-8} M PA (1×10^{-8} M of each protein) before being added to cells. When
10 PA at a concentration of 1×10^{-8} M was used as a control, the translocation efficiency was only slightly affected by the drop in PA compared to the assay above with 2×10^{-8} M wild-type PA, suggesting that any decrease in translocation and binding was not the result of the drop in the concentration of wild-type PA (Figure 12).

15

Inhibition of protein synthesis

LFnDTA inhibition of protein synthesis was used as another method to measure PA-mediated translocation of ligands into cells (Milne *et al.*, Mol. Microbiol. 15:66, 1995). For assaying PA mutants in Table 1, CHO-K1 cells
20 were plated at 2.5×10^4 cells/well in a 96 well plate 16 hours prior to the addition of PA protein. PA83 (1×10^{-12} M to 1×10^{-7} M) was incubated with cells in the presence of 1×10^{-8} M LFnDTA for 4 hours. The media was then removed and replaced with leucine free HAM's F-12 media supplemented with
25 ^3H -Leu at 1 mCi/ml. After a one hour incubation, the cells were washed with ice cold PBS followed by ice-cold trichloro acetic acid (10%) to precipitate proteins. The quantity of ^3H -leu incorporated into the TCA insoluble material was determined using a scintillation counter and was used as a measure of the amount of newly synthesized protein.

Mutant PA proteins were also tested in this assay to see if they relieved the wild-type PA-mediated inhibition of ^3H -Leu uptake. Wild-type PA was added to CHO cells at a concentration of 1×10^{-9} M with 1×10^{-8} M LFnDTA. Increasing amounts of one of the mutants were also added. The 5 cells were incubated with the toxin for 4 hours and the samples were processed as described above.

The PA mutants listed in Fig. 9 were tested similarly. CHO-K1 cells (2.5×10^4 cells/well) in a 96-well plate were incubated for 18 hours at 37°C with wild-type PA (100 pM) in the presence of LFN-DTA (100 pM) and 10 various amounts of individual PA mutants (K397D + D425K, Δ D2L2, F427A, D425K, K397D, or SSSR). The medium was then removed and replaced with leucine-free HAM F-12 supplemented ^3H -Leu at 1 $\mu\text{Ci}/\text{ml}$. After incubation for one hour at 37°C , the cells were washed with ice-cold PBS followed by ice-cold 10% trichloroacetic acid (TCA). The quantity of ^3H -Leu incorporated 15 into the TCA-precipitable material was measured and is expressed as percent of that incorporated in the absence of PA. At the concentrations of wild-type PA and LFnDTA chosen, protein synthesis was inhibited by about 90% in the absence of mutant PA (dotted line). The mean of three experiments \pm SEM is reported. Similar results were seen when the initial incubation was four hours, 20 instead of 18 hours. The K397D + D425K + F427A, F427A + Δ D2L2, and K397D + F427A + Δ D2L2 PA mutants listed in Fig. 10 were tested similarly.

The PA-mediated inhibition of protein synthesis by hetero-heptamers of wild-type and mutant PA was compared to that of mixtures of the corresponding homo-heptamers. Homo-heptamers of wild-type PA63 and 25 K397D + D425K, Δ D2L2, F427A, K397D, and D425K mutants, were prepared as described above. Putative hetero-heptamers were prepared by mixing each mutant PA with wild-type PA in a 1:1 ratio before trypsinization and column chromatography (Fig. 11). Wild-type PA (1 nM), hetero-heptamer (H) (final concentration 2 nM), or an equimolar mixture (M) (1 nM each) of the 30 corresponding mutant homo-heptamer and wild-type-heptamer, was incubated

with CHO-K1 cells in the presence of LFnDTA (100 pM) for 18 hours, and inhibition of protein synthesis was measured as described above for Fig. 9. Heptamer concentrations are expressed in terms of monomeric PA63 subunits. Protein synthesis is expressed as the percent of a control without PA. The 5 mean of three experiments \pm SEM is reported. Similar results were seen after a four hour incubation.

Prepore and SDS-resistant oligomer formation

The formation of prepores and SDS-resistant oligomers was 10 measured by incubating nPA with an equimolar amount of LFn for 30 minutes at room temperature. To determine whether prepores had formed, the samples were subjected to electrophoresis in a 4-12% native gradient gel (FMC) using 50 mM CHES, pH 9.0, 2 mg/ml CHAPS as the running buffer. To determine whether low pH induced the formation of SDS-resistant heptamers, 100 mM 15 sodium acetate, pH 4.5 was added until the pH of the solution reached 5.0, and then the sample was incubated at room temperature for 30 minutes. The sample was then dissolved in SDS-PAGE sample buffer and run on a 4-12% SDS-PAGE gradient gel. Proteins in the gels were visualized with Coomassie brilliant blue.

20

Rubidium release

CHO-K1 cells were plated at a density of 2×10^5 cells/well and 25 incubated at 37 °C for 24 hours. The media was then aspirated and replaced with media containing 1 μ Ci/ml $^{86}\text{RbCl}$ and incubated for 16 hours. The cells were chilled on ice for 20 minutes, and the media was removed. The cells were washed, and nPA ($2 \times 10^{-8}\text{M}$) in HEPES buffered media was added. The cells were incubated with nPA for 2 hours on ice, followed by the addition of ice cold pH 5.0 buffer. After 30 minutes, samples from the supernatant were collected and counted in a scintillation counter to determine the amount of 30 released ^{86}Rb .

This standard assay may also be used to determine the effect of other pore-forming toxins on the amount of released ^{86}Rb . Thus, other mutant toxins of the present invention may be tested in this assay to determine whether they have a reduced ability to form transmembrane pores.

5

Example 2: Failure of most mutants to form SDS-resistant oligomers

All PA mutants in Table 1 and wild type PA proteins were proteolytically nicked with trypsin as described above, forming nicked PA (nPA) proteins that migrated as lower molecular species when analyzed by 10 SDS-PAGE (Figure 2A). Formation of SDS-dissociable pre pores by PA mutants in Table 1 was detected by the decreased mobility in native gels of heptameric PA63 complexed with LFn compared to monomeric nPA (Figure 2B). The formation of pre pores by the K397A and D425A PA mutants was further supported by the elution of the pre pores from a MonoQ column at a 15 higher salt concentration than that which elutes monomeric PA. The nPA mutants were also analyzed for the formation of SDS-resistant oligomers. As a positive control, wild-type PA was treated with LFn. The low pH pulse converted wild-type PA into SDS-resistant oligomers, which migrated as high molecular weight complexes when analyzed by SDS-PAGE. ΔD2L2 (PA lacking residues 302-325) and K397Q (Figure 2B). Wild-type, K397Q, F427A, and ΔD2L2 PA formed SDS-resistant oligomers when treated with low 20 pH (Figure 2A and Table 1).

Example 3: Failure of PA mutants to form pores in membranes

25

The failure of most of the PA mutants to form SDS-resistant oligomers suggested that pore formation in cell membranes would also be inhibited. Pore formation was assayed by binding nPA proteins to cells loaded with the radioactive potassium analogue, ^{86}Rb , pulsing with low pH, and measuring the release of ^{86}Rb into the surrounding media, as described in 30 Example 1. Wild-type nPA induced the release of ^{86}Rb due to the insertion of

nPA into the membrane forming ion permeable pores. In contrast, none of the mutants in Table 1 induced ^{86}Rb release (Figure 3 and Table 1). Thus, the inability of most PA mutants to form SDS-resistant oligomers (Example 2) correlates with an inability of these mutants to form pores in cell membranes.

5

Example 4: Failure of PA mutants to translocate LFn across membranes

Pore formation is a requisite step in the PA dependent translocation of ligands (i.e., LF, EF or LFn) across membranes. A cell surface translocation assay was used to directly measure the translocation of PA ligands into the cytoplasm of the cell (Example 1). None of the PA mutants in Table 1 had a significantly decreased ability to bind LFn (Fig. 4A); however, all of the assayed mutants had a significantly reduced ability to translocate LFn in this assay (Figs. 4B and 12). The SSSR control mutant caused little inhibition under these conditions. These data suggest that the mutants retain structural integrity and the ability to bind to the cellular receptor and LFn but are not able to form pores or translocate ligands across membranes.

Example 5: Failure of PA mutants to translocate LFnDTA across membranes

Another method used to measure translocation of PA ligands across membranes is the LFnDTA toxicity assay (Example 1). In this assay, CHO cells are treated with PA and a ligand containing LFn fused to the A-chain of diphtheria toxin DTA (LFnDTA). The translocated A-chain of diphtheria toxin ADP ribosylates the cytoplasmic protein EF-2, resulting in the inhibition of protein synthesis and the induction of cell death. This assay is a measure of translocation of a ligand from an endosomal compartment as opposed to a cell surface, as measured in Example 4. After incubation with LFnDTA and wild-type or mutant PA, cells were washed and incubated in leucine-free media supplemented with ^3H -leucine. If protein synthesis is not inhibited, ^3H -leucine will be incorporated into newly synthesized proteins. If protein synthesis is

inhibited by LFnDTA, little ^3H will be incorporated. All of the mutants tested did not significantly inhibit protein synthesis in this assay (Figure 5). This result further supports the hypothesis that the lack of significant pore formation by PA mutants results in decreased membrane translocation of PA ligands by 5 these mutants.

Example 6: Inhibition of wild-type PA pore formation by PA mutants

Since the PA mutants in Table 1 were defective in pore formation, they were tested to determine whether they could form inactive 10 hetero-oligomers with wild-type PA thus inhibiting PA-mediated translocation of ligands across membranes. ΔD2L2 , K397D + D425K, and K395D + K397D + D425K + D426K PA inhibited wild-type PA in this manner. When mixed with an equimolar amount of wild-type PA, each of these three mutants markedly inhibited translocation of ^{35}S -LFn into the cells in the cell surface 15 translocation assay (Figure 6). ^{35}S -LFn binding to cells was not inhibited (Figure. 6).

Example 7: Inhibition of wild-type PA pore formation by PA mutants

The effect of these mutant proteins on PA mediated LFnDTA 20 toxicity was also measured. When the ΔD2L2 , K397D + D425K double mutant, or K395D + K397D + D425K + D426K quadruple mutant PA was mixed with an equimolar amount of wild-type PA in the LFnDTA assay, there was an approximately 2-log decrease in the wild-type PA-mediated inhibition of ^3H -Leu (Fig. 7). Thus, the mutants inhibited PA-mediated translocation by 25 99%. The activity retained in the presence of the mutant proteins is probably the result of heptamers containing 7 wild-type PA molecules and 0 mutant PA molecules (WT_7Mut_0). Using Pascal's triangle, 1% of the heptamers formed from the equimolar mixture of wild-type and mutant PA are expected to be 100% wild-type (WT_7Mut_0) (Table 2). This calculated result agrees with the 30 1% experimentally measured residual activity present in the mixture.

Inhibition studies in which various ratios of wild-type to Δ D2L2 or K397D + D425K mutant PA were tested in the LFnDTA assay indicate that the only active species in the mix is probably WT₇Mut₀. Thus, the majority of heptamers containing one molecule of Δ D2L2 or K397D + D425K PA are 5 inactive (Table 2), further supporting the dominant negative nature of these inhibitors.

Table 2. Predicted and Measured Compositions of PA Oligomers Formed from Various Ratios of Mutant to Wild-type PA

10

Mutant:WT (mole:mole)	WT ₇ Mut ₀	WT ₆ Mut ₁	WT ₅ Mut ₂	Predicted % of the total heptamer population	Activity Retained
1:1	0.78%	6%	22%	0.7% \pm .2	0.9% \pm .06
0.75:1	2	10.4	23.5%	3.8% \pm 2	1.2% \pm .2
0.5:1	5.8	25.8	56.8	13.5% \pm .5	5.8% \pm 3.6
0.25:1	21	57	85	14.3% \pm 2	10% \pm 2

15 N.B. The predicted values represent the percent of the total heptamers that are expected to have at least the indicated number of wild-type molecules in the mixtures containing varying ratios of mutant and wild-type PA. The WT₇Mut₀ column represents the percent of the total heptamers that are expected to contain seven wild-type PA molecules. The WT₆Mut₁ column represents the percent of the total heptamers that are expected to contain at least six wild-type PA molecules (*i.e.*, the heptamers that either contain six wild-type PA molecules and one mutant PA molecule or contain seven wild-type PA molecules and zero mutant PA molecules. Similarly, the WT₅Mut₂ column represents the percent of the total heptamers that are expected to contain at least five wild-type PA molecules. These values were calculated using Pascal's triangle. The values listed under "Activity Retained" are the actual experimental values seen in these mixtures.

20

25 A titration of mutant with wild-type PA in the LFnDTA assay was performed to further characterize the inhibition of wild-type PA. Increasing amounts of one of the mutants was added to incubations of cells with wild-type PA and LFnDTA (Fig. 8A). The mutant PA-SSSR, which has the furin 30 recognition site mutated from ¹⁶⁴RKKR¹⁶⁷ to ¹⁶⁴SSSR¹⁶⁷, was included as a control. Since this mutant cannot be nicked by furin or other furin-like proteases and thus can not form pores, the mutant can only inhibit PA by

competing for the receptor. Both Δ D2L2 and K397D + D425K greatly inhibited PA mediated translocation. Most importantly these mutants do not inhibit solely by competing for the receptor since far less protein is required by these mutants to see 50% inhibition than is required by PA-SSSR (Fig. 7B).

5 The single mutant constituents of K397D + D425K do not inhibit as well as the double mutant but inhibit better than PA-SSSR. Taken together these data suggest that Δ D2L2, K397D + D425K, and K395D + K397D + D425K + D426K PA are dominant negative inhibitors of wild-type PA.

The dominant negative inhibitory activity of the F427A, D425K,
10 K397D + D425K + F427A, F427A + Δ D2L2, K397D + F427A + Δ D2L2 PA mutants was also measured. For this assay, increasing amounts of the mutant forms of PA were mixed with a constant amount of wild-type PA as described above. The most potent member of this group, the K397D + D425K + F427A triple mutant, almost completely blocked toxin action at a 1:1 ratio of
15 mutant:wild-type PA. The D2L2, K397D + D425K, F427A, F427A + Δ D2L2, and K397D + F427A + Δ D2L2 PA mutants also had inhibitory activity. The K397D + D425K + F427A + Δ D2L2, F427D, and F427K PA mutants also exhibited dominant negative activity in the LFnDTA toxicity assay. In contrast, another translocation-deficient mutant, K397D, caused virtually no
20 inhibition at a 1:1 ratio, showing that not all mutants of this type are strongly inhibitory (Fig. 9). The SSSR control mutant caused no detectable inhibition of toxin action, even in 10-fold excess over wild-type PA, implying that competition for receptors did not contribute significantly to the inhibitory activities of the other mutants.

25 The hypothesis that inhibition by the dominant negative mutants depends upon the ability of their PA63 moieties to form hybrid complexes with wild-type PA63 was tested using purified homo- and hetero-heptamers. PA in solution can be cleaved at the furin site by mild trypsinization, and the resulting fragments can be separated by chromatography of the trypsin-nicked molecule
30 on an anion-exchange column (Miller *et al.*, Biochemistry 38, 10432, 1999).

Purified PA63 isolated by this method is heptameric, indicating that the oligomerization equilibrium is greatly in favor of this form, and may be structurally similar or identical to the prepore. Purified homo-heptamers were prepared from wild-type PA and each of the K397D + D425K, ΔD2L2, F427A, 5 D425K, and K397D translocation-deficient PA mutants. Putative hetero-heptamers were prepared by mixing each mutant PA 1:1 with wild-type PA, followed by trypsinization of the mixture and chromatography of the products on an anion-exchange column.

The LFnDTA-dependent inhibition of protein synthesis by each 10 hetero-heptamer and by an equivalent amount of a 1:1 mixture of the corresponding mutant and wild-type homo-heptamers was measured. Hetero-heptamers containing the K397D + D425K, ΔD2L2, F427A and D425K mutants did not mediate the action of LFnDTA, whereas the corresponding mixtures of homo-heptamers were highly active (Fig. 11). In contrast, the 15 putative hetero-heptamer formed by mixing K397D with wild-type PA was as active as the mixture of homo-K397D PA and homo-wild-type PA. These results are consistent with the properties of these mutants in the experiment of Fig. 9 and support the notion that PA63 from the dominant negative mutants inactivates the wild-type protein by co-oligomerizing with it. The absence of 20 inhibitory activity of K397D in the hetero-heptamer preparation may reflect a defect either in ability to co-oligomerize with the wild-type protein or in ability to inhibit its activity within a heptamer. The finding that mutant homo-heptamers did not inhibit the activity of the wild-type indicates that little 25 competition for receptors and little or no subunit exchange among heptamers occurred under the conditions of the experiment.

As described above, the fact that the K397D + D425K double mutant almost completely blocked activity in these LFnDTA toxicity assays suggests both that a single molecule of the mutant inactivates a heptamer and that oligomerization is stochastic. The ΔD2L2, D425K, and F427A mutants appear 30 to be slightly less inhibitory, implying that more than one molecule of these

mutants per heptamer may be required for inactivation and/or that their co-oligomerization with wild-type PA may not be purely stochastic. Other factors, such as the order of addition of B moieties to a growing heptamer complex (e.g., the B moiety that is added first or last) may also effect
5 inactivation. It is not intended that the invention be limited by any proposed mechanism for inhibition set forth in the specification.

Example 8: Formation of SDS-resistant oligomers containing mutant and wild-type PA

10 To examine the interaction of ΔD2L2 and K397D + D425K mutants with wild-type PA, an equimolar ratio of mutant to wild-type PA was mixed, nicked with trypsin, and analyzed by SDS-PAGE for SDS-resistant oligomer formation. When either mutant was mixed with wild-type PA, a new species of SDS-resistant PA was formed. In contrast to wild-type PA alone which
15 produces a diffuse high molecular weight smear in the gel, the mixture of mutant and wild-type PA results in the formation of a sharp high molecular weight band. This sharp band also differs from what is seen for either of the mutants alone: K397D + D425K alone does not form an SDS-resistant oligomer, and ΔD2L2 PA alone forms an oligomer which migrates farther in
20 the gel than the band formed when wild-type PA is also present. Although the exact composition or nature of this band has not been determined, this band further suggests that the mutants interact with wild-type PA in SDS-resistant oligomers resulting in a change in the mobility of the oligomer in the gel.

25 **Example 9: Toxin inhibition *in vivo***

The properties displayed by the dominant negative mutants *in vitro* imply that they should inhibit toxin action *in vivo*. To test this hypothesis, activities of three of these mutants (K397D + D425K, ΔD2L2, and F427A) were measured in a classical *in vivo* model for anthrax toxin action, the Fisher
30 344 rat (Ivins *et al.*, Appl. Environ. Microbiol. 55:2098, 1989). Male rats

(250-300 g) injected intravenously with a mixture of 8 µg LF and 40 µg PA (approximately 10 times the minimal lethal dose) become moribund after about 90 minutes (Table 3). When wild-type PA was replaced with any of the dominant negatives mutants, the animals showed no symptoms of intoxication 5 during the two week time period before the animals were sacrificed. When a dominant negative PA was added to the wild-type PA/LF mixture before injection, either at a 1:1 ratio relative to wild-type PA (40 µg dominant negative PA) or at a 0.25:1 ratio (10 µg dominant negative PA), the injected animals also survived without symptoms. The SSSR mutant had little effect on 10 the activity of the toxin. These results are consistent with our *in vitro* results and demonstrate that the dominant negative mutants can ablate anthrax toxin action *in vivo*, even at a sub-stoichiometric (0.25:1) ratio to wild-type PA.

Table 3: Inhibition of wild-type PA by PA mutants *in vivo*

Quantity of protein (μg)					
WT	ΔD2L2	K397D + D425K	F427A	SSR	TTM
40	-	-	-	-	90 ± 11 min
-	40	-	-	-	Survived
-	-	40	-	-	Survived
-	-	-	40	-	Survived
40	40	-	-	-	Survived
40	-	40	-	-	Survived
40	-	-	40	-	Survived
40	-	-	-	40	100 ± 3 min
40	10	-	-	-	Survived
40	-	10	-	-	Survived
40	-	-	10	-	Survived

The ability of the K397D + D425K + F427A triple mutant ("Triple") to inhibit the activity of wild-type PA *in vivo* was compared to that of the 5 K397D + D425K double mutant ("Double") (Table 4). This experiment was performed as described above using rats injected with a mixture of 40 μg wild-type PA, 10 μg LF, and either PBS or a dominant negative PA mutant.

Table 4: Inhibition of wild-type PA by PA mutants *in vivo*

	Animals	amount of mutant PA	TTM
PBS	2	-	~100 minutes
Double	2	40 µg	Survived
Triple	2	40 µg	Survived
Double	4	4 µg	Survived
Triple	4	4 µg	Survived

The anti-PA and the neutralizing antibody titer generated by vaccination of rats with K397D + D425K, Δ D2L2, or F427A PA was also measured. For this determination, groups of six animals were vaccinated three times each at 0, 3, and 6 weeks with 50 µg of protein in 200 µl of Ribi Tri-Mix adjuvant (Sigma) by intramuscular injection into the hind-quarters. Two days prior to the first injection and 14 days following each injection, blood was drawn from each animal and the serum was collected. Sixteen days following the final injection the rats were challenged with a lethal dose of LF (30 µg PA + 6 µg LF) by IV injection as described in Table 5. The mean anti-PA antibody titers in the serum were determined in a standard ELISA assay against PA. The titers are reported as the reciprocal of the geometric mean of the dilution at which the reactivity of the serum ends. Neutralizing antibodies were titered in an LFnDTA assay at 1×10^{-10} M PA and 1×10^{-10} M LFnDTA. Antibody dilutions were incubated with PA at 37°C for one hour prior to starting the assay. Protein synthesis inhibition was measured using the LFnDTA toxicity assay as described above. The neutralizing titers are represented as the reciprocal of the geometric mean dilution required to inhibit PA activity by 50%. As illustrated in Table 5, the K397D + D425K, Δ D2L2, and F427A PA mutants exhibited little or no diminution in immunogenicity relative to wild-

type PA in Fisher rats. The neutralizing and anti-PA antibody titers after three injections were similar, regardless of immunogen employed, and all vaccinated animals survived challenge with a lethal dose of wild-type PA plus LF administered 16 days after the last injection.

5

Table 5: Anti-PA and the neutralizing antibody titer generated by vaccination of rats with PA mutants

	Animals	Anti-PA Titer	Neutralizing Titer	TTM
PBS	6	< 10	< 10	74.2 ± 1.5
WT	5	43,300	2,490	Survived
ΔD2L2	6	47,500	3,350	Survived
K397D + D425K	6	65,500	2,260	Survived
F427A	6	132,000	6,090	Survived

Example 10: Antibodies to PA

Antibodies to a PA protein may be used as therapeutics and/or diagnostics. Antibodies may be produced using standard methods by immunologically challenging a B-cell-containing biological system, e.g., an animal such as a mouse or rabbit, with a PA protein or a fragment thereof to stimulate production of an anti-PA antibody by the B-cells, followed by isolation of the antibody from the biological system. For the generation of monoclonal antibodies, the spleen may be harvested from the animal with the highest ELISA-determined immune response to the PA protein, and the B-cells fused to NS-1 myeloma cells to generate hybridomas. Hybridomas that secrete antibodies which bind PA may be selected using a standard ELISA assay or by western blotting. Monoclonal cell lines producing a high antibody titer and specifically recognizing a PA protein are saved.

The cell lines may also be screened to identify lines that produce antibodies which bind naturally-occurring PA with greater affinity than a mutant PA protein. These antibodies may be generated by administering to animals fragments of naturally-occurring PA that contain residues such as K397, D425, D426, or F427. The resulting antibodies may then be screened to determine which antibodies bind naturally-occurring PA but do not bind a mutant PA protein in which one or more of residues K397, D425, D426, or F427 is mutated or deleted. For example, the antibodies may be applied to a column containing an immobilized mutant PA protein, and the antibodies that do not bind the mutant PA protein may be selected. Antibodies may also be generated that are reactive with residues in the D2L2 loop; these antibodies may be produced by administering a fragment of PA containing the D2L2 loop to an animal, as described above. Antibodies that are reactive with residues in the D2L2 loop of naturally-occurring PA may also be screened to select the antibodies that do not bind a mutant PA protein in which one or more residues in the D2L2 loop are deleted. Alternatively, antibodies may be generated that bind a mutant PA with greater affinity than a naturally-occurring PA molecule

by administering a fragment of a mutant PA to an animal as described above and selecting the antibodies with greater affinity for the mutant PA form. These antibodies may bind a residue in a mutant PA that is not present in a naturally-occurring PA.

5 Anti-PA antibodies may be used to measure PA protein in a biological sample such as serum, by contacting the sample with the antibody and then measuring immune complexes as a measure of the PA protein in the sample. Thus, these antibodies may be used in kits to determine whether a subject has been exposed to anthrax toxin.

10 Antibodies to PA can also be used as therapeutics for the treatment or prevention of anthrax infection. If a anti-PA antibody that binds wild-type PA but does not bind a dominant negative PA mutant is administered to a subject for passive immunization against anthrax infection, a dominant negative PA mutant may also be administered to the same subject as a therapeutic to inhibit the activity of wild-type PA. Because the administered anti-PA antibody does not react with the therapeutic dominant negative PA mutant, the anti-PA antibody should not reduce the ability of the dominant negative PA mutant to inhibit wild-type PA. Additionally, an anti-PA antibody that does not react with a therapeutic dominant negative PA mutant may be 15 used to determine the amount of wild-type PA present in a sample from a subject who has been treated with the dominant negative PA mutant.

20

Similar antibodies may be generated for other mutant B moieties of the present invention.

25 **Example 11: Administration of PA proteins and fragments**

It is not intended that the administration of the PA proteins or fragments of the invention be limited to a particular mode of administration, dosage, or frequency of dosing; the present mode contemplates all modes of administration, including oral, intramuscular, intravenous, subcutaneous, by 30 inhalation, or any other route sufficient to provide a dose adequate to prevent or

treat an anthrax infection. One or more of the mutant PA proteins or fragments may be administered to a mammal in a single dose or multiple doses. When multiple doses are administered, the doses can be separated from one another by, for example, one week to one month. It is to be understood that for any 5 particular subject, specific dosage regimes should be adjusted over time according to the individual need and the professional judgement of the person administering or supervising the administration of the compositions.

The pharmaceutical compositions containing one or more PA proteins or fragments of the invention can be prepared as described previously 10 in Remington's Pharmaceutical Sciences by E. W. Martin. Pharmaceutical stabilizing compounds, delivery vehicles, carrier vehicles, or adjuvants may be used. For example, human serum albumin or other human or animal proteins can be used. Phospholipid vesicles or liposomal suspensions are possible pharmaceutically acceptable carriers or delivery vehicles. Adjuvants that can 15 be used in the invention include aluminum compounds, such as aluminum hydroxide, aluminum phosphate, and aluminum hydroxy phosphate. These compositions can be prepared according to methods known to those skilled in the art.

Other mutant B moieties or fragments of the invention may be 20 administered similarly.

Example 12: Other pore-forming mutants

The crystal structure of PA identified four domains of PA (Petosa *et al.*, Nature 385(6619): 833-838, 1997). Domain 2 (residues 259-487) contains 25 a large flexible loop that may undergo a major conformational change during conversion from the prepore to the pore. Mutation, deletion, or insertion of one or more amino acids in this region may result in inhibition of the pore-forming ability of the protein *in vivo* and/or result in the ability of the PA mutant to inhibit the pore-forming ability of naturally-occurring PA. For example, 30 residues in domain 2 of PA that are identical to the corresponding residues in

one or more other pore-forming toxins (such as toxins from *Clostridium difficile*, *C. perfringens*, *C. spiroforme*, *C. botulinum*, *Bacillus cereus*, or *B. thuringiensis*; Figs. 15 and 16) may be mutated. These residues may be mutated or deleted in PA to generate dominant negative PA mutants. The 5 following residues of domain 2 in PA are invariant among the binary A-B toxins listed in Figs. 15 and 16: A259, P260, V262, V264, M266, E267, S272 E275 T298, N353, N361, N363 R365, Y366, N368, G370, T371, Y375, V377, P389, T380, T381, V384, T393, I394, P407, Y411, P412, A420, D425, F427, I432, N435, Q438, L450, T452, Q454, G457, G474, W477, and I484.

10 These residues may be mutated to any other amino acid. For example, the residues may be changed to an amino acid with a smaller side chain such as glycine or alanine, or the residues may be changed to an amino acid with a larger or branched side chain such as tryptophan, leucine, or methionine. Additionally, charged residues may be changed to residues with a 15 neutral side chain or residues with a side chain of the opposite charge. Other examples of residues that may be used to replace a naturally-occurring residue are listed in Table 1.

In addition to anthrax toxin, the present invention is relevant to other 20 pore-forming toxins. These toxins may also be mutated to generate toxins with reduced or negligible ability to oligomerize, to form transmembrane channels, or to translocate a ligand. Additionally, dominant negative mutants of other 25 pore-forming mutants may be generated. For example, mutations that correspond to the PA mutations described herein may be made in other toxins that are homologous to PA (such as toxins from *Clostridium difficile*, *C. perfringens*, *C. spiroforme*, *C. botulinum*, *Bacillus cereus*, or *B. thuringiensis*) (Figs. 15 and 16 and Table 6). Residues in other toxins that correspond to residues in domain 2 of PA may be mutated as described above. Additionally, at least 1, 3, 5, 8, 10, 15, 20, or 24 of the amino acids in the region that corresponds to the D2L2 loop of PA may be deleted in other pore-forming 30 toxins. Also, one or more point mutations may be made at residues that

correspond to the mutated PA residues described herein. Exemplary corresponding residues are shown in Table 6, below.

5 **Table 6:** Mutations in other pore-forming toxins that correspond to the mutations in anthrax PA are described herein. The residues in the other pore-forming toxins that correspond to the residues that were mutated in PA may also be mutated to any other amino acid.

anthrax PA	<i>C. difficile</i> toxin	<i>C. perfringens</i> toxin	<i>C. spiroforme</i> toxin	<i>C. botulinum</i> toxin	<i>B. cereus</i> toxin
K397A	Q425A	Q424A	Q428A	Q398A	K879A
K397D	Q425D	Q424D	Q428D	Q398D	K879D
K397C	Q425C	Q424C	Q428C	Q398C	K879C
K397Q	Q425Q	Q424Q	Q428Q	Q398Q	K879Q
D425A	D453A	D452A	D456A	D426A	D907A
D425N	D453N	D452N	D456N	D426N	D907N
D425E	D453E	D452E	D456E	D426E	D907E
D425K	D453K	D452K	D456K	D426K	D907K
F427A	F455A	F454A	F458A	F428A	F909A
K397D + D425K	Q425D + D453K	Q424D + D452K	Q428D + D456K	Q398D + D426K	K879D + D907K
K395D + K397D + D425K + D426K	K423D + Q425D + D453K + Q454K	K422D + Q424D + D452K + Q453K	K426D + Q428D + D456K + Q457K	K396D + Q398D + D426K + Q427K	T877D K879D + D907K + D908K
ΔD2L2	Δ340–358	Δ339–357	Δ343–361	Δ307–331	Δ797–816
K397D + D425K + F427A	Q425D + D453K + F455A	Q424D + D452K + F454A	Q428D + D456K + F458A	Q398D + D426K + F428A	K879D + D907K + F909A
F427A + ΔD2L2	F455A + Δ340–358	F454A + Δ339–357	F458A + Δ343–361	F428A + Δ307–331	F909A + Δ797–816
K397D + F427A + ΔD2L2	Q425D + F455A + Δ340–358	Q424D + F454A + Δ339–357	Q428D + F458A + Δ343–361	Q398D + F428A + Δ307–331	K879D + F909A + Δ797–816
K397D + D425K + F427A + ΔD2L2	Q425D + D453K + F455A + Δ340–358	Q424D + D452K + F454A + Δ339–357	Q428D + D456K + F458A + Δ343–361	Q398D + D426K + F428A + Δ307–331	K879D + D907K + F909A + Δ797–816
F427D	F455D	F454D	F458D	F428D	F909D
F427K	F455K	F454K	F458K	F428K	F909K
N399C	N427C	N426C	N430C	S400C	N881C
N422C	N450C	N449C	N453C	N423C	T904C
S382C	N411C	N410C	N414C	T384C	S865C

Any of these mutant forms of pore-forming toxins may be administered to a mammal for the treatment or prevention of infection by the pathogens (e.g., bacteria) that produce the corresponding toxin.

Alternatively, random mutagenesis may be performed on nucleic acids encoding pore-forming mutants (such as cholesterol dependent cytolysins or hexameric or heptameric toxins related to the Staphylococcal α -toxin) using standard molecular biology methods. The encoded mutant toxins may be expressed and optionally purified using standard methods. The rubidium release assay described herein may be used to identify mutant toxins with a reduced ability to form a transmembrane channel. Additionally, animal models may be used to identify dominant negative toxin mutants that reduce the toxicity of the corresponding wild-type toxin when both the mutant and wild-type toxins are administered to the animal.

15

Other Embodiments

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each independent publication or patent application was specifically and individually indicated to be incorporated by reference. U.S. utility application 09/848,909 and U.S. provisional application 60/424,987 is incorporated in its entirety.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure that come within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth, and follows in the scope of the appended claims.

Claims

1. A B moiety of a pore-forming binary A-B toxin, or a fragment thereof, wherein said B moiety has a mutation that inhibits said B moiety's pore-forming ability and is selected from the group consisting of S382, N399, and N422 of SEQ ID NO:21, or a corresponding amino acid of a bacterial toxin.

2. The B moiety of claim 1, wherein any one of said amino acids is mutated to cysteine.

3. The B moiety of claim 1, wherein said B moiety has an amino acid sequence that is at least 80% identical to SEQ ID NO:21 and that has an alteration selected from the group consisting of S382, N399, and N422.

4. The B moiety of claim 1, wherein said B moiety is selected from the group consisting of *Clostridium difficile*, *C. perfringens*, *C. spiroforme*, *C. botulinum*, and *Bacillus cereus*, wherein said B moiety has an alteration in an amino acid that corresponds to S382, N399, or N422.

5. A vaccine composition comprising a mutant B moiety of claim 1, or a fragment thereof, in a pharmaceutically acceptable carrier.

6. The vaccine composition of claim 5, wherein said vaccine is inactivated by chemical or physical means.

7. The vaccine composition of claim 5, wherein said vaccine is administered with a pharmaceutically suitable carrier or an adjuvant.

8. A method of preventing or treating a bacterial infection in a mammal by administering to said mammal the vaccine of claim 5.

9. The method of claim 8, wherein said mammal is a human.

10. A B moiety of a pore-forming binary A-B toxin, wherein said B moiety comprises an alteration in an amino acid selected from the group consisting of S382, N399, and N422 of SEQ ID NO:21, or a corresponding amino acid of a bacterial toxin, wherein said alteration inhibits the pore-forming ability of said B moiety and inhibits the pore-forming ability of a naturally-occurring B moiety.

11. The B moiety of claim 10, wherein said mutation inhibits the pore-forming ability of said toxin *in vivo*.

12. The B moiety of claim 10, wherein said B moiety lacks pore-forming ability *in vitro* or *in vivo*.

13. The B moiety of claim 10, wherein said B moiety is anthrax protective antigen (PA).

14. The B moiety of claim 10, wherein said B moiety binds the A moiety of anthrax protective antigen.

15. The B moiety of claim 10, wherein said B moiety binds lethal factor (LF) or edema factor (EF) A moieties.

16. The B moiety of claim 10, wherein said B moiety competes with a naturally-occurring B moiety for binding to a receptor on the surface of a mammalian cell.

17. The B moiety of claim 10, wherein said B moiety binds a naturally occurring B moiety of anthrax protective antigen.

18. The B moiety of claim 10, wherein said B moiety oligomerizes with a naturally-occurring B moiety to form a complex that has reduced ability to form a pore.

19. The B moiety of claim 10, wherein said B moiety fails to form a pore and fails to translocate an A moiety across the membrane into the host cell cytoplasm.

20. A method of preventing or treating bacterial infection in a mammal, said method comprising administering a B moiety of claim 1 or 10, or a fragment thereof, that inhibits the pore-forming ability of a naturally-occurring B moiety to said mammal.

21. The method of claim 20, wherein said mammal is a human.

22. The method of claim 20, wherein said method comprises administering the B moiety of claim 1 or 10, or a fragment thereof to a mammal that has been exposed to *B. anthracis* spores.

23. The method of claim 20, wherein said method comprises administering said B moiety prophylactically.

24. The method of claim 20, wherein said mutant B moiety is administered in a pharmaceutically suitable carrier.

25. The method of claim 20, wherein said method further comprises administering to said mammal an anti-B moiety antibody, wherein said antibody binds a naturally-occurring B moiety, but fails to bind a B moiety having an alteration.
26. A nucleic acid encoding the mutant B moiety of claim 1 or 10.
27. A vector comprising the nucleic acid of claim 26.
28. A purified antibody that specifically binds a B moiety of claim 1 or 10, but fails to bind a naturally-occurring B moiety.
29. The antibody of claim 28, wherein said antibody is a monoclonal antibody.
30. The antibody of claim 28, wherein said antibody is a polyclonal antibody.

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4
A)

FIG. 5

FIG. 6

B
D

FIG. 7

FIG. 8A

FIG. 8B

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

Figure 13: SEQ ID No.: 21

EVKQENRLLNESESSSQGLLGYYFSDLNMQAPMVVTSSSTTGDLSSPSSELENIPSEN
 QYFQSAIWSGFIKVKKSKSDEYTFAT
 TSADNHVTMWVDDQEVINKASNNSNKIRLEKGRLYQIKIQYQRENPTEKGLDFKL
 YWTIDSQNKKKEVISSDNLQLPELKQKS
 SNSRKKRSTSAGPTVPDRNDGPDSELVEGYTVDVKNKRTFELSPWISNHEKKKG
 LTKYKSSPEKWSTASDPYSDFEKVT
 GRDKNVSPPEARHPLVAAYPIVHDMENTILSKNEDQSTQNTDSETRTISKNTSTS
 RTHTSEVHGNAEVHASFFDIGGSV
 SAGFNSNSNSSTVAIDHSLSLAGERTWAETMGLNTADTARLNANIRYVNNTGTAPIY
 NVLPPTSLVLGKRNQTLATKAKENQ
 LSQILAPNNYPSKNNLAPIALNAQDDFSSTPITMNYNQFLLELETKQLRLDIDQV
 YGNLATYNFENGVRVDTGSNTWSEV
 LPQIQTETRARJFNGKDLNLVERRIAAVNPSPDPLETTKPDMLTKEALKLAFGFNEPN
 GNLQYQGKDITEDFNFQDQTSQ
 NIKNQLAELNATNYTVLDKIKLNAKMNLIRDKRFHYDRNNIAVGADESVVKEA
 HREVNSSTEGLLNNDKDIRKJLS
 GYIVIEDTEGLKKEVINDRYDMINISSLRQDGKTFDFKKYNDKLPLYISNPNNKYV
 NVYAVTKENTHINPSENGETSTNG
 IKKILFSKKGYEIGZ

FIG. 14

Figure 14: SEQ ID No.: 22

GAAGTTAACAGGAGAACCGGTTATTAAATGAATCAGAATCAAGTTCCCAGG
 GGTTACTAGGATACTATTITAGTGATT
 GAATTTCAAGCACCCATGGTGGTTACCTCTTACTACAGGGGATTATCTA
 TTCTAGTCTGAGTTAGAAAATATTC
 CATCGGAAAACCAATATTCAACTGTCTATTGGTCAGGATTATCAAAGTT
 AAGAAGAGTGATGAATATACATTGCT
 ACTTCCGCTGATAATCATGTAACAATGTGGTAGATGACCAAGAAGTGATTA
 ATAAAGCTTCTAATTCTAACAAAATCAG
 ATTAGAAAAAGGAAGATTATATCAAATAAAATTCAATATCAACGAGAAAAT
 CCTACTGAAAAAGGATTGGATTCAAGT
 TGTACTGGACCGATTCTAAAATAAAAAGAAGTGATTCTAGTGATAACTT
 ACAATTGCCAGAATTAAAACAAAATCT
 TCGAACTCAAGAAAAAGCGAAGTACAAGTGCTGGACCTACGGTTCCAGACC
 GTGACAATGATGGAATCCCTGATTCT
 AGAGGTAGAAGGATATACGGTTGATGTCAAAATAAAAGAACACTTTCTTCA
 CCATGGATTCTAATATTGAAAGA
 AAGGATTAACCAAATATAATCATCTCTGAAAAATGGAGCACGGCTCTGA
 TCCGTACAGTGATTGAAAAGGTTACA
 GGACGGATTGATAAGAATGTATCACCAGAGGCAAGACACCCCCCTGTGGCAG
 CTTATCCGATTGTACATGTAGATATGGA
 GAATATTATTCTCTAAAAATGAGGATCAATCCACACAGAACACTGATAGT
 GAAACGAGAACAAATAAGTAAAATACTT
 CTACAAGTAGGACACATACTAGTGAAAGTACATGGAAATGCAGAAGTGCATGC
 GTCGTTCTTGTATATTGGTGGAGTGTA
 TCTGCAGGATTAGTAATTGAACTCAAGTACGGTCGCAATTGATCATTCACT
 ATCTCTAGCAGGGAAAGAACTTGGC
 TGAAACAAATGGTTAAATACCGCTGATACAGCAAGATTAAATGCCAATATT
 AGATATGTAATACTGGACGGCTCCAA
 TCTACAACGTGTTACCAACGACTTCGTTAGTGTAGGAAAAAATCAAACACT
 CGCGACAATTAAAGCTAAGGAAAACCAA
 TTAAGTCAAATACCTGCACCTAATAATTATTATCCTTCTAAAAACTTGGCGCC
 AATCGCATTAAATGCACAAGACGGATT
 CAGTTCTACTCCAATTACAATGAATTACAATCAATTCTTGAGTTAGAAAAAA
 CGAAACAAATTAGATTAGATAACGGATC
 AAGTATATGGGAATATAGCAACACATAACATTGAAAATGGAAGAGTGAGGGT
 GGATACAGGCTCGAACTGGAGTGAAAGTG
 TTACCGAAATTCAAGAAACAACGTACCGTATCATTTAATGGAAAAGATT
 AAATCTGGTAGAAAGGCGGATAGCGGC
 GGTTAATCCTAGTGATCCATTAGAAACGACTAAACCGGATATGACATTAAA
 GAAGCCCTAAATAGCATTGGATT
 ACGAACCGAATGGAAACTTACAATATCAAGGGAAAGACATAACCGAATTG
 ATTTAATTGATCAACAAACATCTCAA
 AATATCAAGAACAGTTAGCGGAATTAAACGCAACTAACATATACTGTAT
 TAGATAAAATCAAATTAAATGCAAAAAT

FIG. 14 (CONTINUED)

GAATATTAAAGAGATAAACGTTTCATTATGATAGAAATAACATAGCA
GTGGGGCGGATGAGTCAGTAGTTAAGG
AGGCCTCATAGAGAAGTAATTAAATTCTCAACAGAGGGATTATTGTAAATAT
TGATAAGGGATATAAGAAAAATATTATCA
GGTTATATGTAGAAAATTGAAGATACTGAAGGGCTTAAAGAAAGTTATAAATG
ACAGATATGATATGTTGAAATATTCTAG
TTIACGGCAAGATGGAAAAACATTATAGATTTTAAAGATAAA
TTACCGTTATATAAGTAATCCCAATT
ATAAGGTAATGTATATGCCGTTACTAAAGAAAACACTATTAAATCCTAGT
GAGGAATGGGGATACTAGTACCAACGGG
ATCAAGAAAATTAAATCTTCTTAAAGGGCTATGAGATAGGATAA

FIG. 15

PA 137 PEGIONKKEEVTSISDYLADLFBLRQPSBISKINJASTSAGFTNFLX. DEDGCPDSELOVE
cxDADPRT 172 BULWIGN.UKUZPKRBDLTYLDSXKREQUFPEFHNUZEFDRPLMS. DEDGDEDLDIDDNGCUSKCV
cripts 170 ELLJUN.KKUVPPKBDLTYLDSXKREQUFPEFHNUZEFDRPLMS. DEDGDEDLDIDDNGCUSKCV
cripts 168 ELLJUN.XTLEPPEKBDLTYLDSXKREQUFPEFHNUZEFDRPLMS. DEDGDEDLDIDDNGCUSKCV
scripts 160 ELLJUN.XTLEPPEKBDLTYLDSXKREQUFPEFHNUZEFDRPLMS. DEDGDEDLDIDDNGCUSKCV
VDP-1 181 DEDGDEDLDIDDNGCUSKCV

	$\beta 12$	$\beta 13$	$\alpha 7$	$\alpha 3$	$\eta 4$
PA			RRRRR	TT TT	RRRRR TT RRRR TT
PA	191	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
c-ADPRT	234	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
epiota	293	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
sciota	237	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
abc2	201	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
VIP-1	694	GIVVQDVKHAKTEFLSEWRSPFHSFVFRQLTFRKSSPFRWNSRNSDPYDFPFRVTRKDFGIVSPRKAQFLVAN			
sec		-----	-----	-----	-----

64 **B14** **65**

PA	261	THE VENOMOUS INSECTICIDE FOR THE FISHES IS SEVERAL VARIOUS FISHES. SALADPRT 299 SPOTS 298 SCOTS 302 SC2 266 VIP1 760	THE VENOMOUS INSECTICIDE FOR THE FISHES IS SEVERAL VARIOUS FISHES. SALADPRT 299 SPOTS 298 SCOTS 302 SC2 266 VIP1 760
ACC		THE VENOMOUS INSECTICIDE FOR THE FISHES IS SEVERAL VARIOUS FISHES. SALADPRT 299 SPOTS 298 SCOTS 302 SC2 266 VIP1 760	

PA → **b16** → **TT** → **b17** → **TT** → **b18** → **TTT** → **b19** → **TT**
PA 330 STV RIZH SIS LINGERIE WAS T H E G N D A T T A R D M A T T R T G O F P H Y U D P T S L V U K H C T A T T O N A R I S
SAADPRT 363 DIST A N O U S H O B S . . . W H T C L S L P Q C S A Y S H A W V N T S A P M H V Y T E T T T L V D G . D T L S A A C P
optate 362 HIST A N O U S H P I C K S . . . W H T C L S L P Q C S A Y S H A W V N T S A P M H V Y T E T T T L V D G . D T L S A A C P
calote 366 HIST A N O U S H O X E . . . W H T C L S L P Q C S A Y S H A W V N T S A P M H V Y T E T T T L V D G . D T L S A A C P
chee 394 HIST A N O U S H L I P O X . . . E S O G L S I D P C S A Y S H A W V N T S A P M H V Y T E T T T L V D G . D T L S A A C P
VIBI 521 V A C O N G T S E B I T . . . S O G N U S A G Y L D A N V U M G E M A N V U M V T T T T T V I T T E K . O V A T T E G O
ccc

PA → P20 → TT → P21 → TT → P22 → ~~P23~~ → P24
 PA 600 628 628 627 631 631 691 582
 cdADPRT 628 628 627 631 631 691 582
 cpiota 627 627 631 631 631 691 582
 cpiota 631 631 631 631 631 691 582
 cbcl 691 691 691 691 691 691 582
 VIP1 582 582 582 582 582 582 582
 ACC

PA	832	833	834	835	836	837
PA	.T	TT	→	ДДДДД	→	TT
PA	595	...КЕ НДРН...	БАУГАДЕСУМЕАННПЕВИ	ЕСЛЛУИЕКЛКИЛЕОЯ ИУЕЕДТНГЛКЕВЕИДР		
ADDPBT	626	ИИИ РСТНШ...	ИИИИ НОДЛСЕПННЛННФРНХИЕ	ЛНФ УРЧИСЕКГ БРЛПТНСН ЕКНННКА		
epito	625	ИИИ РАКИИ...	ИИИИ НОДЛСЕПННЛННФРНХИЕ	ЛНФ УРЧИСЕКГ БРЛПТНСН ЕКНННКА		
selecte	629	ИИИ РСЕННШ...	ИИИИ НОДЛСЕПННЛННФРНХИЕ	ЛНФ УРЧИСЕКГ БРЛПТНСН ЕКНННКА		
abc2	630	ИИИ РСЕННШ...	ИИИИ НОДЛСЕПННЛННФРНХИЕ	ЛНФ УРЧИСЕКГ БРЛПТНСН ЕКНННКА		
VIP1	1086	ИИИ РСЕННШ...	ИИИИ НОДЛСЕПННЛННФРНХИЕ	ЛНФ УРЧИСЕКГ БРЛПТНСН ЕКНННКА		
acc		СССССССС	СССССССС	СССССССС	СССССССС	

FIG. 15 (CONTINUED)

FIG. 16

FIG. 16 (CONTINUED)

FIG. 16 (CONTINUED)

PA TT → **β40** → **γ3** → **δ40** → **γ10** → **TT**
 esp 730 710 720
 PA VNDKLFVLTSHFNTKVNL VVAVTKENPILINFSSEJGDTISNG.
 cdADPRT DAKKIVYADLJNIPSTGTYTNGMYFPTOTIKKEALDVIQKVRVEATLOVSGERDITGTRIKEKMRVXLGDF
 espito DAKKIVYADLJNIPSTGTYTNGMYFPTOTIKKEALDVIQKVRVEATLOVSGERDITGTRIKEKMRVXLGDF
 esicta DAKKIVYADLJNIPSTGTYTNGMYFPTOTIKKEALDVIQKVRVEATLOVSGERDITGTRIKEKMRVXLGDF
 chd2 DAKKIVYADLJNIPSTGTYTNGMYFPTOTIKKEALDVIQKVRVEATLOVSGERDITGTRIKEKMRVXLGDF
 VIP1 LF HLLITY S SISF LKGTYLDEFFY FTYNGSRSFPIESCDIENSIR.
 SRYGKLEGGDILILKKGGLHYGETHEASYJIEFLOQHVTKYEWYSSSLGFJMSNTLESKIVYRNDGTIK

PA **β41** → **γ10** → **δ40**
 esp 730

PA INKKIIE SKKGKGEVQ
 cdADPRT HQFKTNYVHLRSYFYGGENIMTYKANLPIAITEPPDDELLVLSWD
 espito HQFKTNYVHLRSYFYGGENIMTYKANLPIAITEPPDDELLVLSWD
 esicta HQFKTNYVHLRSYFYGGENIMTYKANLPIAITEPPDDELLVLSWD
 chd2 HQFKTNYVHLRSYFYGGENIMTYKANLPIAITEPPDDELLVLSWD
 VIP1 LSGVFEELBLKLM
 EDEIINYSKKEDOG LND SG LQHNTDEKINHATIYDGEERKNUVZBRYK

SEQUENCE LISTING

<110> President and Fellows of Harvard College et al.

<120> Compounds and Methods for the Treatment
and Prevention of Bacterial Infection

<130> 00742/072003

<150> US 60/424,987

<151> 2002-11-08

<160> 38

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 1

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
1				5					10					15	
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
					20			25					30		
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
							35	40				45			
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
						50		55			60				
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
					65		70			75			80		
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
						85			90				95		
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
						100		105			110				
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
						115		120			125				
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
					130		135				140				
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser
						145		150			155			160	
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
						165			170			175			
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
						180			185			190			
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
						195		200			205				
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
						210		215			220				
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
						225		230			235			240	
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
						245			250			255			
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
						260			265			270			
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
						275			280			285			
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Glu	Val	His
						290			295			300			
Gly	Asn	Ala	Glu	Val	His	Ala	Ser	Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val

305	310	315	320
Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser	Thr Val Ala Ile Asp His		
325	330	335	
Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu			
340	345	350	
Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn			
355	360	365	
Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val			
370	375	380	
Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Ala Glu Asn Gln			
385	390	395	400
Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu			
405	410	415	
Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile			
420	425	430	
Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu			
435	440	445	
Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe			
450	455	460	
Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val			
465	470	475	480
Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys			
485	490	495	
Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp			
500	505	510	
Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys			
515	520	525	
Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly			
530	535	540	
Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln			
545	550	555	560
Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr			
565	570	575	
Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg			
580	585	590	
Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp			
595	600	605	
Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr			
610	615	620	
Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser			
625	630	635	640
Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile			
645	650	655	
Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly			
660	665	670	
Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr			
675	680	685	
Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu			
690	695	700	
Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly			
705	710	715	720
Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly			
725	730	735	

<210> 2

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 2

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser		
1	5	10
		15

Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Asp Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys

515	520	525
Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly		
530	535	540
Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln		
545	550	555
Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr		
565	570	575
Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg		
580	585	590
Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp		
595	600	605
Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr		
610	615	620
Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser		
625	630	635
Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile		
645	650	655
Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly		
660	665	670
Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr		
675	680	685
Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu		
690	695	700
Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly		
705	710	715
Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly		
725	730	735

<210> 3

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 3			
Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser			
1	5	10	15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro			
20	25	30	
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser			
35	40	45	
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile			
50	55	60	
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala			
65	70	75	80
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val			
85	90	95	
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg			
100	105	110	
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys			
115	120	125	
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu			
130	135	140	
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser			
145	150	155	160
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro			
165	170	175	
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr			
180	185	190	
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser			
195	200	205	
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu			
210	215	220	

Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Cys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly

725

730

735

<210> 4

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 4

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Gln Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430

Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu	Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu
	435					440					445				
Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr	Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe
	450					455					460				
Glu	Asn	Gly	Arg	Val	Arg	Val	Asp	Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val
	465					470				475					480
Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr	Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys
						485				490				495	
Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg	Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp
						500			505					510	
Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp	Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys
						515			520			525			
Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro	Asn	Gly	Asn	Leu	Gln	Tyr	Gln	Gly
	530					535					540				
Lys	Asp	Ile	Thr	Glu	Phe	Asp	Phe	Asn	Phe	Asp	Gln	Gln	Thr	Ser	Gln
	545					550					555				560
Asn	Ile	Lys	Asn	Gln	Leu	Ala	Glu	Leu	Asn	Ala	Thr	Asn	Ile	Tyr	Thr
						565			570			575			
Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn	Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg
						580			585			590			
Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg	Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp
						595			600			605			
Glu	Ser	Val	Val	Lys	Glu	Ala	His	Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr
						610			615			620			
Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp	Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser
	625					630				635					640
Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
						645			650			655			
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
						660			665			670			
Lys	Thr	Phe	Ile	Asp	Phe	Lys	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr
						675			680			685			
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
	690					695					700				
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
	705					710				715					720
Ile	Lys	Lys	Ile	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly		
						725			730			735			

<210> 5

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 5

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
	1			5					10				15		
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
					20			25					30		
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
						35		40				45			
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
						50		55			60				
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
	65				70				75			80			
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
						85			90			95			
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
						100			105			110			
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
						115			120			125			
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu

130	135	140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser		
145	150	155
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro		160
165	170	175
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr		
180	185	190
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser		
195	200	205
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu		
210	215	220
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr		
225	230	235
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val		240
245	250	255
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser		
260	265	270
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr		
275	280	285
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His		
290	295	300
Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val		
305	310	315
Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His		320
325	330	335
Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu		
340	345	350
Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn		
355	360	365
Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val		
370	375	380
Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln		
385	390	395
Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu		400
405	410	415
Ala Pro Ile Ala Leu Asn Ala Gln Ala Asp Phe Ser Ser Thr Pro Ile		
420	425	430
Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu		
435	440	445
Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe		
450	455	460
Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val		
465	470	475
Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys		480
485	490	495
Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp		
500	505	510
Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys		
515	520	525
Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly		
530	535	540
Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln		
545	550	555
Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr		560
565	570	575
Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg		
580	585	590
Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp		
595	600	605
Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr		
610	615	620
Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser		
625	630	640

Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
				645					650						655
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
				660					665						670
Lys	Thr	Phe	Ile	Asp	Phe	Lys	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr
				675					680						685
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
				690					695						700
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
				705					710						720
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
				725					730						735

<210> 6

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 6

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
				1			5			10					15
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
				20				25							30
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
				35				40							45
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
				50				55							60
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
				65				70							80
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
				85				90							95
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
				100				105							110
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
				115				120							125
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
				130				135							140
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser
				145				150							160
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
				165				170							175
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
				180				185							190
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
				195				200							205
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
				210				215							220
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
				225				230							240
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
				245				250							255
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
				260				265							270
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
				275				280							285
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Glu	Val	His
				290				295							300
Gly	Asn	Ala	Glu	Val	His	Ala	Ser	Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val
				305				310							320
Ser	Ala	Gly	Phe	Ser	Asn	Ser	Asn	Ser	Ser	Thr	Val	Ala	Ile	Asp	His
				325				330							335
Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg	Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu

	340	345	350
Asn	Thr Ala Asp Thr Ala Arg	Leu Asn Ala Asn Ile Arg	Tyr Val Asn
	355	360	365
Thr	Gly Thr Ala Pro Ile Tyr	Asn Val Leu Pro Thr	Thr Ser Leu Val
	370	375	380
Leu	Gly Lys Asn Gln Thr	Leu Ala Thr Ile Lys	Ala Lys Glu Asn Gln
	385	390	395
Leu	Ser Gln Ile Leu Ala Pro Asn Asn	Tyr Tyr Pro Ser Lys	Asn Leu
	405	410	415
Ala	Pro Ile Ala Leu Asn Ala Gln	Asn Asp Phe Ser	Ser Thr Pro Ile
	420	425	430
Thr	Met Asn Tyr Asn Gln Phe	Leu Glu Leu Glu Lys	Thr Lys Gln Leu
	435	440	445
Arg	Leu Asp Thr Asp Gln Val	Tyr Gly Asn Ile Ala	Thr Tyr Asn Phe
	450	455	460
Glu	Asn Gly Arg Val Arg Val	Asp Thr Gly Ser Asn	Trp Ser Glu Val
	465	470	475
Leu	Pro Gln Ile Gln Glu Thr	Thr Ala Arg Ile Ile	Phe Asn Gly Lys
	485	490	495
Asp	Leu Asn Leu Val Glu Arg Arg	Ile Ala Ala Val Asn	Pro Ser Asp
	500	505	510
Pro	Leu Glu Thr Thr Lys Pro	Asp Met Thr Leu Lys	Glu Ala Leu Lys
	515	520	525
Ile	Ala Phe Gly Phe Asn Glu	Pro Asn Gly Asn Leu	Gln Tyr Gln Gly
	530	535	540
Lys	Asp Ile Thr Glu Phe Asp	Phe Asp Gln Gln	Thr Ser Gln
	545	550	555
Asn	Ile Lys Asn Gln Leu Ala	Glu Leu Asn Ala	Thr Asn Ile Tyr Thr
	565	570	575
Val	Leu Asp Lys Ile Lys Leu Asn	Ala Lys Met Asn Ile	Leu Ile Arg
	580	585	590
Asp	Lys Arg Phe His Tyr Asp	Arg Asn Asn Ile Ala	Val Gly Ala Asp
	595	600	605
Glu	Ser Val Val Lys Glu Ala	His Arg Glu Val	Ile Asn Ser Ser Thr
	610	615	620
Glu	Gly Leu Leu Leu Asn Ile	Asp Lys Asp	Ile Arg Lys Ile Leu Ser
	625	630	635
Gly	Tyr Ile Val Glu Ile Glu Asp	Thr Glu Gly Leu Lys	Glu Val Ile
	645	650	655
Asn	Asp Arg Tyr Asp Met Leu Asn	Ile Ser Ser Leu Arg	Gln Asp Gly
	660	665	670
Lys	Thr Phe Ile Asp Phe Lys	Lys Tyr Asn Asp Lys	Leu Pro Leu Tyr
	675	680	685
Ile	Ser Asn Pro Asn Tyr Lys	Val Asn Val Tyr	Ala Val Thr Lys Glu
	690	695	700
Asn	Thr Ile Ile Asn Pro Ser	Glu Asn Gly Asp	Thr Ser Thr Asn Gly
	705	710	715
Ile	Lys Lys Ile Leu Ile	Phe Ser Lys Lys	Gly Tyr Glu Ile Gly
	725	730	735

<210> 7
<211> 735
<212> PRT
<213> *Bacillus anthracis*

```

<400> 7
Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
      1           5           10          15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
      20          25          30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
      35          40          45

```

Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Glu Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asp Gln Gln Thr Ser Gln

545	550	555	560
Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr			
565	570	575	
Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg			
580	585	590	
Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp			
595	600	605	
Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr			
610	615	620	
Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser			
625	630	635	640
Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile			
645	650	655	
Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly			
660	665	670	
Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr			
675	680	685	
Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu			
690	695	700	
Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly			
705	710	715	720
Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly			
725	730	735	

<210> 8

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 8

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser			
1	5	10	15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro			
20	25	30	
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser			
35	40	45	
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile			
50	55	60	
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala			
65	70	75	80
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val			
85	90	95	
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg			
100	105	110	
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys			
115	120	125	
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu			
130	135	140	
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser			
145	150	155	160
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro			
165	170	175	
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr			
180	185	190	
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser			
195	200	205	
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu			
210	215	220	
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr			
225	230	235	240
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val			
245	250	255	

Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Lys Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<211> 735
<212> PRT
<213> Bacillus anthracis

<400> 9
Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
1 5 10 15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
20 25 30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
35 40 45
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
50 55 60
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
65 70 75 80
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
85 90 95
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
100 105 110
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
115 120 125
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
130 135 140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
145 150 155 160
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
165 170 175
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
180 185 190
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
195 200 205
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
210 215 220
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
225 230 235 240
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
245 250 255
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
260 265 270
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
275 280 285
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
290 295 300
Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
305 310 315 320
Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
325 330 335
Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
340 345 350
Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
355 360 365
Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
370 375 380
Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
385 390 395 400
Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
405 410 415
Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Ala Ser Ser Thr Pro Ile
420 425 430
Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
435 440 445
Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
450 455 460

Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<210> 10
 <211> 735
 <212> PRT
 <213> Bacillus anthracis

<400> 10
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro

	165		170		175										
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
			180					185					190		
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
			195				200					205			
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
			210				215				220				
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
			225			230			235				240		
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
			245				250				255				
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
			260				265				270				
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
			275			280			285						
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Glu	Val	His
			290			295			300						
Gly	Asn	Ala	Glu	Val	His	Ala	Ser	Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val
			305			310			315				320		
Ser	Ala	Gly	Phe	Ser	Asn	Ser	Asn	Ser	Ser	Thr	Val	Ala	Ile	Asp	His
			325				330				335				
Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg	Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu
			340				345				350				
Asn	Thr	Ala	Asp	Thr	Ala	Arg	Leu	Asn	Ala	Asn	Ile	Arg	Tyr	Val	Asn
			355			360			365						
Thr	Gly	Thr	Ala	Pro	Ile	Tyr	Asn	Val	Leu	Pro	Thr	Thr	Ser	Leu	Val
			370			375			380						
Leu	Gly	Lys	Asn	Gln	Thr	Leu	Ala	Thr	Ile	Lys	Ala	Asp	Glu	Asn	Gln
			385			390			395				400		
Leu	Ser	Gln	Ile	Leu	Ala	Pro	Asn	Asn	Tyr	Tyr	Pro	Ser	Lys	Asn	Leu
			405				410				415				
Ala	Pro	Ile	Ala	Leu	Asn	Ala	Gln	Lys	Asp	Phe	Ser	Ser	Thr	Pro	Ile
			420				425				430				
Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu	Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu
			435			440				445					
Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr	Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe
			450			455				460					
Glu	Asn	Gly	Arg	Val	Arg	Val	Asp	Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val
			465			470			475				480		
Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr	Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys
			485				490				495				
Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg	Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp
			500				505				510				
Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp	Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys
			515				520				525				
Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro	Asn	Gly	Asn	Leu	Gln	Tyr	Gln	Gly
			530			535				540					
Lys	Asp	Ile	Thr	Glu	Phe	Asp	Phe	Asp	Gln	Gln	Gln	Thr	Ser	Gln	
			545			550			555			560			
Asn	Ile	Lys	Asn	Gln	Leu	Ala	Glu	Leu	Asn	Ala	Thr	Asn	Ile	Tyr	Thr
			565				570				575				
Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn	Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg
			580				585				590				
Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg	Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp
			595				600				605				
Glu	Ser	Val	Val	Lys	Glu	Ala	His	Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr
			610				615				620				
Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp	Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser
			625				630				635			640	
Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
			645				650				655				
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
			660				665				670				

Lys	Thr	Phe	Ile	Asp	Phe	Lys	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr
675						680						685			
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
690						695						700			
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
705						710				715					720
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
						725			730						735

<210> 11

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 11

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
1				5					10				15		
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
					20			25					30		
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
					35			40					45		
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
					50			55				60			
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
					65			70			75				80
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
					85				90				95		
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
					100			105					110		
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
					115			120					125		
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
					130			135				140			
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser.
					145			150			155				160
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
					165				170				175		
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
					180			185					190		
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
					195			200				205			
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
					210			215				220			
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
					225			230			235			240	
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
					245				250				255		
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
					260			265				270			
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
					275			280				285			
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Glu	Val	His
					290			295				300			
Gly	Asn	Ala	Glu	Val	His	Ala	Ser	Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val
					305			310			315			320	
Ser	Ala	Gly	Phe	Ser	Asn	Ser	Asn	Ser	Ser	Thr	Val	Ala	Ile	Asp	His
					325				330				335		
Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg	Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu
					340			345				350			
Asn	Thr	Ala	Asp	Thr	Ala	Arg	Leu	Asn	Ala	Asn	Ile	Arg	Tyr	Val	Asn
					355			360				365			
Thr	Gly	Thr	Ala	Pro	Ile	Tyr	Asn	Val	Leu	Pro	Thr	Thr	Ser	Leu	Val

370	375	380													
Leu	Gly	Lys	Asn	Gln	Thr	Leu	Ala	Thr	Ile	Asp	Ala	Asp	Glu	Asn	Gln
385					390				395						400
Leu	Ser	Gln	Ile	Leu	Ala	Pro	Asn	Asn	Tyr	Tyr	Pro	Ser	Lys	Asn	Leu
									405			410			415
Ala	Pro	Ile	Ala	Leu	Asn	Ala	Gln	Lys	Lys	Phe	Ser	Ser	Thr	Pro	Ile
								420		425				430	
Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu	Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu
							435		440				445		
Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr	Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe
							450		455				460		
Glu	Asn	Gly	Arg	Val	Arg	Val	Asp	Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val
							465		470		475			480	
Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr	Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys
								485		490				495	
Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg	Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp
							500		505				510		
Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp	Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys
							515		520				525		
Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro	Asn	Gly	Asn	Leu	Gln	Tyr	Gln	Gly
							530		535				540		
Lys	Asp	Ile	Thr	Glu	Phe	Asp	Phe	Asn	Phe	Asp	Gln	Gln	Thr	Ser	Gln
							545		550		555			560	
Asn	Ile	Lys	Asn	Gln	Leu	Ala	Glu	Leu	Asn	Ala	Thr	Asn	Ile	Tyr	Thr
							565		570					575	
Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn	Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg
							580		585				590		
Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg	Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp
							595		600				605		
Glu	Ser	Val	Val	Lys	Glu	Ala	His	Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr
							610		615				620		
Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp	Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser
							625		630		635			640	
Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
							645		650				655		
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
							660		665				670		
Lys	Thr	Phe	Ile	Asp	Phe	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr	
							675		680				685		
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
							690		695				700		
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
							705		710		715			720	
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
							725		730				735		

<210> 12

<211> 711

<212> PRT

<213> Bacillus anthracis

<400> 12

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
1							5			10				15	
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
							20		25					30	
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
							35		40				45		
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
							50		55				60		
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
							65		70		75			80	

Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Asn Ser Asn
 290 295 300
 Ser Ser Thr Val Ala Ile Asp His Ser Leu Ser Leu Ala Gly Glu Arg
 305 310 315 320
 Thr Trp Ala Glu Thr Met Gly Leu Asn Thr Ala Asp Thr Ala Arg Leu
 325 330 335
 Asn Ala Asn Ile Arg Tyr Val Asn Thr Gly Thr Ala Pro Ile Tyr Asn
 340 345 350
 Val Leu Pro Thr Thr Ser Leu Val Leu Gly Lys Asn Gln Thr Leu Ala
 355 360 365
 Thr Ile Lys Ala Lys Glu Asn Gln Leu Ser Gln Ile Leu Ala Pro Asn
 370 375 380
 Asn Tyr Tyr Pro Ser Lys Asn Leu Ala Pro Ile Ala Leu Asn Ala Gln
 385 390 395 400
 Asp Asp Phe Ser Ser Thr Pro Ile Thr Met Asn Tyr Asn Gln Phe Leu
 405 410 415
 Glu Leu Glu Lys Thr Lys Gln Leu Arg Leu Asp Thr Asp Gln Val Tyr
 420 425 430
 Gly Asn Ile Ala Thr Tyr Asn Phe Glu Asn Gly Arg Val Arg Val Asp
 435 440 445
 Thr Gly Ser Asn Trp Ser Glu Val Leu Pro Gln Ile Gln Glu Thr Thr
 450 455 460
 Ala Arg Ile Ile Phe Asn Gly Lys Asp Leu Asn Leu Val Glu Arg Arg
 465 470 475 480
 Ile Ala Ala Val Asn Pro Ser Asp Pro Leu Glu Thr Thr Lys Pro Asp
 485 490 495
 Met Thr Leu Lys Glu Ala Leu Lys Ile Ala Phe Gly Phe Asn Glu Pro
 500 505 510
 Asn Gly Asn Leu Gln Tyr Gln Gly Lys Asp Ile Thr Glu Phe Asp Phe
 515 520 525
 Asn Phe Asp Gln Gln Thr Ser Gln Asn Ile Lys Asn Gln Leu Ala Glu
 530 535 540
 Leu Asn Ala Thr Asn Ile Tyr Thr Val Leu Asp Lys Ile Lys Leu Asn
 545 550 555 560
 Ala Lys Met Asn Ile Leu Ile Arg Asp Lys Arg Phe His Tyr Asp Arg
 565 570 575
 Asn Asn Ile Ala Val Gly Ala Asp Glu Ser Val Val Lys Glu Ala His

580	585	590
Arg Glu Val Ile Asn Ser Ser Thr Glu Gly Leu Leu Leu Asn Ile Asp		
595	600	605
Lys Asp Ile Arg Lys Ile Leu Ser Gly Tyr Ile Val Glu Ile Glu Asp		
610	615	620
Thr Glu Gly Leu Lys Glu Val Ile Asn Asp Arg Tyr Asp Met Leu Asn		
625	630	640
Ile Ser Ser Leu Arg Gln Asp Gly Lys Thr Phe Ile Asp Phe Lys Lys		
645	650	655
Tyr Asn Asp Lys Leu Pro Leu Tyr Ile Ser Asn Pro Asn Tyr Lys Val		
660	665	670
Asn Val Tyr Ala Val Thr Lys Glu Asn Thr Ile Ile Asn Pro Ser Glu		
675	680	685
Asn Gly Asp Thr Ser Thr Asn Gly Ile Lys Lys Ile Leu Ile Phe Ser		
690	695	700
Lys Lys Gly Tyr Glu Ile Gly		
705	710	

<210> 13

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 13	1	15
Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser	5	10
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro	20	25
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser	35	40
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile	50	55
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala	65	70
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val	85	90
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg	100	105
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys	115	120
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu	130	135
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser	145	150
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro	165	170
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr	180	185
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser	195	200
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu	210	215
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr	225	230
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val	245	250
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser	260	265
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr	275	280
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His	290	295
		300

Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Asp Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Lys Asp Ala Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<210> 14
 <211> 711
 <212> PRT
 <213> Bacillus anthracis

<400> 14
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser

1	5	10	15												
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
		20						25					30		
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
		35					40					45			
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
		50				55				60					
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
		65			70			75				80			
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
		85					90						95		
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
		100					105					110			
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
		115					120					125			
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
		130				135					140				
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser
		145				150				155			160		
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
			165					170					175		
Asp	Arg	Asp	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr	
		180				185						190			
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
		195					200					205			
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
		210					215					220			
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
		225				230					235			240	
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
			245					250				255			
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
		260					265					270			
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
		275					280					285			
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Asn	Ser	Asn
		290					295					300			
Ser	Ser	Thr	Val	Ala	Ile	Asp	His	Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg
		305				310				315			320		
Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu	Asn	Thr	Ala	Asp	Thr	Ala	Arg	Leu
			325					330					335		
Asn	Ala	Asn	Ile	Arg	Tyr	Val	Asn	Thr	Gly	Thr	Ala	Pro	Ile	Tyr	Asn
		340					345					350			
Val	Leu	Pro	Thr	Thr	Ser	Leu	Val	Leu	Gly	Lys	Asn	Gln	Thr	Leu	Ala
		355					360					365			
Thr	Ile	Lys	Ala	Lys	Glu	Asn	Gln	Leu	Ser	Gln	Ile	Leu	Ala	Pro	Asn
		370					375					380			
Asn	Tyr	Tyr	Pro	Ser	Lys	Asn	Leu	Ala	Pro	Ile	Ala	Leu	Asn	Ala	Gln
		385					390				395			400	
Asp	Asp	Ala	Ser	Ser	Thr	Pro	Ile	Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu
			405					410					415		
Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu	Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr
		420						425					430		
Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe	Glu	Asn	Gly	Arg	Val	Arg	Val	Asp
		435					440					445			
Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val	Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr
		450					455					460			
Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys	Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg
		465					470					475			480
Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp	Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp
			485					490					495		
Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys	Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro
		500						505					510		

Asn Gly Asn Leu Gln Tyr Gln Gly Lys Asp Ile Thr Glu Phe Asp Phe
 515 520 525
 Asn Phe Asp Gln Gln Thr Ser Gln Asn Ile Lys Asn Gln Leu Ala Glu
 530 535 540
 Leu Asn Ala Thr Asn Ile Tyr Thr Val Leu Asp Lys Ile Lys Leu Asn
 545 550 555 560
 Ala Lys Met Asn Ile Leu Ile Arg Asp Lys Arg Phe His Tyr Asp Arg
 565 570 575
 Asn Asn Ile Ala Val Gly Ala Asp Glu Ser Val Val Lys Glu Ala His
 580 585 590
 Arg Glu Val Ile Asn Ser Ser Thr Glu Gly Leu Leu Leu Asn Ile Asp
 595 600 605
 Lys Asp Ile Arg Lys Ile Leu Ser Gly Tyr Ile Val Glu Ile Glu Asp
 610 615 620
 Thr Glu Gly Leu Lys Glu Val Ile Asn Asp Arg Tyr Asp Met Leu Asn
 625 630 635 640
 Ile Ser Ser Leu Arg Gln Asp Gly Lys Thr Phe Ile Asp Phe Lys Lys
 645 650 655
 Tyr Asn Asp Lys Leu Pro Leu Tyr Ile Ser Asn Pro Asn Tyr Lys Val
 660 665 670
 Asn Val Tyr Ala Val Thr Lys Glu Asn Thr Ile Ile Asn Pro Ser Glu
 675 680 685
 Asn Gly Asp Thr Ser Thr Asn Gly Ile Lys Lys Ile Leu Ile Phe Ser
 690 695 700
 Lys Lys Gly Tyr Glu Ile Gly
 705 710

<210> 15
 <211> 711
 <212> PRT
 <213> Bacillus anthracis

<400> 15
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr

225	230	235	240
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val			
245	250	255	
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser			
260	265	270	
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr			
275	280	285	
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Asn Ser Asn			
290	295	300	
Ser Ser Thr Val Ala Ile Asp His Ser Leu Ser Leu Ala Gly Glu Arg			
305	310	315	320
Thr Trp Ala Glu Thr Met Gly Leu Asn Thr Ala Asp Thr Ala Arg Leu			
325	330	335	
Asn Ala Asn Ile Arg Tyr Val Asn Thr Gly Thr Ala Pro Ile Tyr Asn			
340	345	350	
Val Leu Pro Thr Thr Ser Leu Val Leu Gly Lys Asn Gln Thr Leu Ala			
355	360	365	
Thr Ile Lys Ala Asp Glu Asn Gln Leu Ser Gln Ile Leu Ala Pro Asn			
370	375	380	
Asn Tyr Tyr Pro Ser Lys Asn Leu Ala Pro Ile Ala Leu Asn Ala Gln			
385	390	395	400
Asp Asp Ala Ser Ser Thr Pro Ile Thr Met Asn Tyr Asn Gln Phe Leu			
405	410	415	
Glu Leu Glu Lys Thr Lys Gln Leu Arg Leu Asp Thr Asp Gln Val Tyr			
420	425	430	
Gly Asn Ile Ala Thr Tyr Asn Phe Glu Asn Gly Arg Val Arg Val Asp			
435	440	445	
Thr Gly Ser Asn Trp Ser Glu Val Leu Pro Gln Ile Gln Glu Thr Thr			
450	455	460	
Ala Arg Ile Ile Phe Asn Gly Lys Asp Leu Asn Leu Val Glu Arg Arg			
465	470	475	480
Ile Ala Ala Val Asn Pro Ser Asp Pro Leu Glu Thr Thr Lys Pro Asp			
485	490	495	
Met Thr Leu Lys Glu Ala Leu Lys Ile Ala Phe Gly Phe Asn Glu Pro			
500	505	510	
Asn Gly Asn Leu Gln Tyr Gln Gly Lys Asp Ile Thr Glu Phe Asp Phe			
515	520	525	
Asn Phe Asp Gln Gln Thr Ser Gln Asn Ile Lys Asn Gln Leu Ala Glu			
530	535	540	
Leu Asn Ala Thr Asn Ile Tyr Thr Val Leu Asp Lys Ile Lys Leu Asn			
545	550	555	560
Ala Lys Met Asn Ile Leu Ile Arg Asp Lys Arg Phe His Tyr Asp Arg			
565	570	575	
Asn Asn Ile Ala Val Gly Ala Asp Glu Ser Val Val Lys Glu Ala His			
580	585	590	
Arg Glu Val Ile Asn Ser Ser Thr Glu Gly Leu Leu Leu Asn Ile Asp			
595	600	605	
Lys Asp Ile Arg Lys Ile Leu Ser Gly Tyr Ile Val Glu Ile Glu Asp			
610	615	620	
Thr Glu Gly Leu Lys Glu Val Ile Asn Asp Arg Tyr Asp Met Leu Asn			
625	630	635	640
Ile Ser Ser Leu Arg Gln Asp Gly Lys Thr Phe Ile Asp Phe Lys Lys			
645	650	655	
Tyr Asn Asp Lys Leu Pro Leu Tyr Ile Ser Asn Pro Asn Tyr Lys Val			
660	665	670	
Asn Val Tyr Ala Val Thr Lys Glu Asn Thr Ile Ile Asn Pro Ser Glu			
675	680	685	
Asn Gly Asp Thr Ser Thr Asn Gly Ile Lys Lys Ile Leu Ile Phe Ser			
690	695	700	
Lys Lys Gly Tyr Glu Ile Gly			
705	710		

<210> 16
<211> 711
<212> PRT
<213> *Bacillus anthracis*

<400> 16
Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
1 5 10 15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
20 25 30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
35 40 45
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
50 55 60
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
65 70 75 80
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
85 90 95
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
100 105 110
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
115 120 125
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
130 135 140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
145 150 155 160
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
165 170 175
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
180 185 190
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
195 200 205
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
210 215 220
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
225 230 235 240
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
245 250 255
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
260 265 270
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
275 280 285
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Asn Ser Asn
290 295 300
Ser Ser Thr Val Ala Ile Asp His Ser Leu Ser Leu Ala Gly Glu Arg
305 310 315 320
Thr Trp Ala Glu Thr Met Gly Leu Asn Thr Ala Asp Thr Ala Arg Leu
325 330 335
Asn Ala Asn Ile Arg Tyr Val Asn Thr Gly Thr Ala Pro Ile Tyr Asn
340 345 350
Val Leu Pro Thr Thr Ser Leu Val Leu Gly Lys Asn Gln Thr Leu Ala
355 360 365
Thr Ile Lys Ala Asp Glu Asn Gln Leu Ser Gln Ile Leu Ala Pro Asn
370 375 380
Asn Tyr Tyr Pro Ser Lys Asn Leu Ala Pro Ile Ala Leu Asn Ala Gln
385 390 395 400
Lys Asp Ala Ser Ser Thr Pro Ile Thr Met Asn Tyr Asn Gln Phe Leu
405 410 415
Glu Leu Glu Lys Thr Lys Gln Leu Arg Leu Asp Thr Asp Gln Val Tyr
420 425 430
Gly Asn Ile Ala Thr Tyr Asn Phe Glu Asn Gly Arg Val Arg Val Asp
435 440 445
Thr Gly Ser Asn Trp Ser Glu Val Leu Pro Gln Ile Gln Glu Thr Thr

450	455	460
Ala Arg Ile Ile Phe Asn Gly Lys Asp Leu Asn Leu Val Glu Arg Arg		
465	470	475
Ile Ala Ala Val Asn Pro Ser Asp Pro Leu Glu Thr Thr Lys Pro Asp		480
485	490	495
Met Thr Leu Lys Glu Ala Leu Lys Ile Ala Phe Gly Phe Asn Glu Pro		
500	505	510
Asn Gly Asn Leu Gln Tyr Gln Gly Lys Asp Ile Thr Glu Phe Asp Phe		
515	520	525
Asn Phe Asp Gln Gln Thr Ser Gln Asn Ile Lys Asn Gln Leu Ala Glu		
530	535	540
Leu Asn Ala Thr Asn Ile Tyr Thr Val Leu Asp Lys Ile Lys Leu Asn		
545	550	555
Ala Lys Met Asn Ile Leu Ile Arg Asp Lys Arg Phe His Tyr Asp Arg		560
565	570	575
Asn Asn Ile Ala Val Gly Ala Asp Glu Ser Val Val Lys Glu Ala His		
580	585	590
Arg Glu Val Ile Asn Ser Ser Thr Glu Gly Leu Leu Leu Asn Ile Asp		
595	600	605
Lys Asp Ile Arg Lys Ile Leu Ser Gly Tyr Ile Val Glu Ile Glu Asp		
610	615	620
Thr Glu Gly Leu Lys Glu Val Ile Asn Asp Arg Tyr Asp Met Leu Asn		
625	630	635
Ile Ser Ser Leu Arg Gln Asp Gly Lys Thr Phe Ile Asp Phe Lys Lys		640
645	650	655
Tyr Asn Asp Lys Leu Pro Leu Tyr Ile Ser Asn Pro Asn Tyr Lys Val		
660	665	670
Asn Val Tyr Ala Val Thr Lys Glu Asn Thr Ile Ile Asn Pro Ser Glu		
675	680	685
Asn Gly Asp Thr Ser Thr Asn Gly Ile Lys Lys Ile Leu Ile Phe Ser		
690	695	700
Lys Lys Gly Tyr Glu Ile Gly		
705	710	

<210> 17

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 17

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser		
1	5	10
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro		15
20	25	30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser		
35	40	45
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile		
50	55	60
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala		
65	70	75
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val		80
85	90	95
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg		
100	105	110
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys		
115	120	125
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu		
130	135	140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser		
145	150	155
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro		160
165	170	175

Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Asp Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr

675	680	685
Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu		
690	695	700
Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly		
705	710	715
Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly		
725	730	735

<210> 18

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 18

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser		
1	5	10
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro		
20	25	30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser		
35	40	45
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile		
50	55	60
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala		
65	70	75
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val		
85	90	95
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg		
100	105	110
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys		
115	120	125
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu		
130	135	140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser		
145	150	155
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro		
165	170	175
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr		
180	185	190
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser		
195	200	205
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu		
210	215	220
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr		
225	230	235
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val		
245	250	255
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser		
260	265	270
Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr		
275	280	285
Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His		
290	295	300
Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val		
305	310	315
Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His		
325	330	335
Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu		
340	345	350
Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn		
355	360	365
Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val		
370	375	380

Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Lys Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<210> 19
 <211> 735
 <212> PRT
 <213> Bacillus anthracis

<220>
 <221> VARIANT
 <222> 397
 <223> Xaa = any amino acid except Lys

<400> 19
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45

Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Xaa Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln

545	550	555	560
Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr			
565	570	575	
Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg			
580	585	590	
Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp			
595	600	605	
Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr			
610	615	620	
Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser			
625	630	635	640
Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile			
645	650	655	
Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly			
660	665	670	
Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr			
675	680	685	
Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu			
690	695	700	
Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly			
705	710	715	720
Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly			
725	730	735	

<210> 20

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 20

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser			
1	5	10	15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro			
20	25	30	
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser			
35	40	45	
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile			
50	55	60	
Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala			
65	70	75	80
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val			
85	90	95	
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg			
100	105	110	
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys			
115	120	125	
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu			
130	135	140	
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser			
145	150	155	160
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro			
165	170	175	
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr			
180	185	190	
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser			
195	200	205	
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu			
210	215	220	
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr			
225	230	235	240
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val			
245	250	255	

Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<211> 735
<212> PRT
<213> *Bacillus anthracis*

<400> 21

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
1				5					10					15	
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
					20			25						30	
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
					35			40				45			
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
					50			55			60				
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala
					65			70			75			80	
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
					85				90				95		
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
					100			105				110			
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
					115			120				125			
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
					130			135			140				
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser
					145			150			155			160	
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
					165				170				175		
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
					180			185				190			
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
					195			200				205			
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
					210			215			220				
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
					225			230			235			240	
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
					245				250			255			
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
					260			265				270			
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr
					275			280				285			
Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser	Arg	Thr	His	Thr	Ser	Glu	Val	His
					290			295			300				
Gly	Asn	Ala	Glu	Val	His	Ala	Ser	Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val
					305			310			315			320	
Ser	Ala	Gly	Phe	Ser	Asn	Ser	Asn	Ser	Ser	Thr	Val	Ala	Ile	Asp	His
					325				330			335			
Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg	Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu
					340			345				350			
Asn	Thr	Ala	Asp	Thr	Ala	Arg	Leu	Asn	Ala	Asn	Ile	Arg	Tyr	Val	Asn
					355			360			365				
Thr	Gly	Thr	Ala	Pro	Ile	Tyr	Asn	Val	Leu	Pro	Thr	Thr	Ser	Leu	Val
					370			375			380				
Leu	Gly	Lys	Asn	Gln	Thr	Leu	Ala	Thr	Ile	Lys	Ala	Lys	Glu	Asn	Gln
					385			390			395			400	
Leu	Ser	Gln	Ile	Leu	Ala	Pro	Asn	Asn	Tyr	Tyr	Pro	Ser	Lys	Asn	Leu
					405				410				415		
Ala	Pro	Ile	Ala	Leu	Asn	Ala	Gln	Asp	Asp	Phe	Ser	Ser	Thr	Pro	Ile
					420			425				430			
Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu	Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu
					435			440				445			
Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr	Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe
					450			455			460				

Glu	Asn	Gly	Arg	Val	Arg	Val	Asp	Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val
465						470					475				480
Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr	Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys
						485					490				495
Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg	Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp
						500					505				510
Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp	Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys
						515					520				525
Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro	Asn	Gly	Asn	Leu	Gln	Tyr	Gln	Gly
						530					535				540
Lys	Asp	Ile	Thr	Glu	Phe	Asp	Phe	Asn	Phe	Asp	Gln	Gln	Thr	Ser	Gln
						545					550				560
Asn	Ile	Lys	Asn	Gln	Leu	Ala	Glu	Leu	Asn	Ala	Thr	Asn	Ile	Tyr	Thr
						565					570				575
Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn	Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg
						580					585				590
Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg	Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp
						595					600				605
Glu	Ser	Val	Val	Lys	Glu	Ala	His	Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr
						610					615				620
Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp	Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser
						625					630				640
Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
						645					650				655
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
						660					665				670
Lys	Thr	Phe	Ile	Asp	Phe	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr	
						675					680				685
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
						690					695				700
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
						705					710				720
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
						725					730				735

<210> 22
<211> 2208
<212> DNA
<213> *Bacillus anthracis*

<400> 22

```

gaagttaaac aggagaaccg gttattaaat gaatcagaat caagttccca ggggttacta 60
ggatactatt ttagtgattt gaattttcaa gcaccatgg tggcaccc 120
ggggatttat ctattccatgg ttctgagttt gaaaatatttc catcgaaaaa ccaatatttt 180
caatctgcta tttggtcagg atttatcaaa gttaagaaga gtgatgaata tacatggct 240
acttccgctg ataatcatgt aacaatgtgg gtagatgacc aagaagtgtat taataaagct 300
tctaattcta acaaaaatcg attagaaaaa ggaagattat atcaaataaaa aattcaatat 360
caacgagaaa atcctactga aaaaggattt gatttcaagt tgtactggac cgattctcaa 420
aataaaaaaag aagtgatttc tagtgataac ttacaattgc cagaattaaaa acaaaaatct 480
tcgaactcaa gaaaaaagcg aagtacaagt gctggaccta cggttccaga ccgtgacaat 540
gatggaatcc ctgatttcatt agaggtgaa ggtatatacggt ttgatgtcaa aaataaaaaga 600
acttttcttt caccatggat ttctaatattt catggaaaaga aaggattaac caaatataaa 660
tcatctccatgg aaaaatgggg cacggcttctt gatccgtaca gtgatggatca aaagggttaca 720
ggacggattt gataagaatgtt atcaccagag gcaagacacc cccttggc agcttaccc 780
attgtacatg tagatatggaa gaatattttt ctctcaaaaa atgaggatca atccacacag 840
aataactgata gtgaaacgag aacaataagt aaaaatactt ctacaagtag gacacatact 900
agtgaagtac atggaaatgc agaagtgcatt gcgtcgatcc ttgatattgg tggagtgta 960
tctgcaggat ttagtaattt gattcaagt acggtcgcaat ttgatcatcc actatctcta 1020
gcagggaaaaa gaaacttgggc tggaaacaatgg ggtttaaataa ccgctgatc agcaagat 1080
aatggcaataa ttagatatgtt aaaaacttgggg acggctccaa tctacaacgtt gttaccaacg 1140
acttcgttag tggtagaaaaaa aatcaaaca ctcgogacaa ttaaagctaa ggaaaaccaa 1200
ttaagtcaaa tacttgacc taataattat tattcctcta aaaacttggc gccaatcgca 1260

```

ttaaatgcac aagacgattt cagttctact ccaattacaa tgaattacaa tcaatttctt 1320
 gagttagaaa aaacgaaaaca attaagatta gatacggatc aagtatatgg gaatatacgca 1380
 acatacaatt ttgaaaatgg aagagtgagg gtggatacag gctcgaactg gagtgaaatgg 1440
 ttaccgcaaa ttcaagaaac aactgcacgt atcattttt atggaaaaga tttaaatctg 1500
 gtagaaaggc ggatagcggc ggttaatcc agtgatccat tagaaacgac taaaccggat 1560
 atgacattaa aagaaggccct taaaatagca tttggattt acgaaccgaa tgaaaactta 1620
 caatatcaag ggaaaagacat aaccgaattt gattttatt tcgatcaaca aacatctcaa 1680
 aatatcaaga atcagttagc ggaattaaac gcaactaaca tatatactgt attagataaa 1740
 atcaaattaa atgcaaaaat gaatattttt ataagagata aacgtttca ttatgataga 1800
 aataacatag cagttggggc ggatgagtca gtagttaagg aggctcatag agaagtaatt 1860
 aattcgtcaa cagaggatt attgttaaat attgataagg atataagaaa aatattatca 1920
 ggttatattg tagaaattga agatactgaa gggcttaaag aagttataaa tgacagat 1980
 gatatgttga atatttcttag ttacggcaa gatggaaaaa catttataga tttaaaaaaaa 2040
 tataatgata aattaccgtt atatataagt aatcccaatt ataaggtaaa tgtatatgct 2100
 gttactaaag aaaacactat tattaatcc agtgagaatg gggatactag taccaacggg 2160
 atcaagaaaaa ttttaatctt ttctaaaaaaaaa ggctatgaga taggataa 2208

<210> 23

<211> 735

<212> PRT

<213> *Bacillus anthracis*

<220>

<221> VARIANT

<222> 427

<223> Xaa = any amino acid except Phe

<400> 23

Glu	Val	Lys	Gln	Glu	Asn	Arg	Leu	Leu	Asn	Glu	Ser	Glu	Ser	Ser	Ser
1				5					10					15	
Gln	Gly	Leu	Leu	Gly	Tyr	Tyr	Phe	Ser	Asp	Leu	Asn	Phe	Gln	Ala	Pro
					20			25					30		
Met	Val	Val	Thr	Ser	Ser	Thr	Thr	Gly	Asp	Leu	Ser	Ile	Pro	Ser	Ser
						35		40				45			
Glu	Leu	Glu	Asn	Ile	Pro	Ser	Glu	Asn	Gln	Tyr	Phe	Gln	Ser	Ala	Ile
						50		55			60				
Trp	Ser	Gly	Phe	Ile	Lys	Val	Lys	Ser	Asp	Glu	Tyr	Thr	Phe	Ala	
					65		70			75			80		
Thr	Ser	Ala	Asp	Asn	His	Val	Thr	Met	Trp	Val	Asp	Asp	Gln	Glu	Val
						85			90				95		
Ile	Asn	Lys	Ala	Ser	Asn	Ser	Asn	Lys	Ile	Arg	Leu	Glu	Lys	Gly	Arg
						100		105					110		
Leu	Tyr	Gln	Ile	Lys	Ile	Gln	Tyr	Gln	Arg	Glu	Asn	Pro	Thr	Glu	Lys
						115		120				125			
Gly	Leu	Asp	Phe	Lys	Leu	Tyr	Trp	Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu
					130		135				140				
Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln	Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser
						145		150			155			160	
Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser	Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro
						165			170			175			
Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro	Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr
						180		185				190			
Thr	Val	Asp	Val	Lys	Asn	Lys	Arg	Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser
						195		200				205			
Asn	Ile	His	Glu	Lys	Lys	Gly	Leu	Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu
						210		215			220				
Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro	Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr
						225		230			235			240	
Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser	Pro	Glu	Ala	Arg	His	Pro	Leu	Val
						245			250			255			
Ala	Ala	Tyr	Pro	Ile	Val	His	Val	Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser
						260		265				270			
Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln	Asn	Thr	Asp	Ser	Glu	Thr	Arg	Thr

	275	280		285
Ile Ser Lys Asn Thr Ser Thr	290	Ser Arg Thr His	295	Thr Ser Glu Val His
				300
Gly Asn Ala Glu Val His	305	Ala Ser Phe Phe Asp	310	Ile Gly Gly Ser Val
			315	320
Ser Ala Gly Phe Ser Asn Ser	325	Ser Thr Val Ala Ile	330	Asp His
			335	
Ser Leu Ser Leu Ala Gly Glu Arg	340	Thr Trp Ala Glu Thr Met	345	Gly Leu
				350
Asn Thr Ala Asp Thr Ala Arg	355	Leu Asn Ala Asn Ile	360	Arg Tyr Val Asn
				365
Thr Gly Thr Ala Pro Ile Tyr	370	Asn Val Leu Pro	375	Thr Thr Ser Leu Val
				380
Leu Gly Lys Asn Gln Thr	385	Leu Ala Thr Ile Lys	390	Ala Lys Glu Asn Gln
				400
Leu Ser Gln Ile Leu Ala Pro	405	Asn Asn Tyr Tyr Pro	410	Ser Lys Asn Leu
				415
Ala Pro Ile Ala Leu Asn Ala	420	Gln Asp Asp Xaa Ser	425	Ser Thr Pro Ile
				430
Thr Met Asn Tyr Asn Gln Phe	435	Leu Glu Leu Glu Lys	440	Thr Lys Gln Leu
				445
Arg Leu Asp Thr Asp Gln Val	450	Tyr Gly Asn Ile	455	Ala Thr Tyr Asn Phe
				460
Glu Asn Gly Arg Val Arg	465	Val Asp Thr Gly	470	Ser Asn Trp Ser Glu Val
				480
Leu Pro Gln Ile Gln Glu Thr	485	Thr Ala Arg Ile	490	Ile Phe Asn Gly Lys
				495
Asp Leu Asn Leu Val Glu Arg	500	Arg Ile Ala Ala Val	505	Asn Pro Ser Asp
				510
Pro Leu Glu Thr Thr Lys	515	Pro Asp Met Thr	520	Leu Lys Glu Ala Leu Lys
				525
Ile Ala Phe Gly Phe Asn	530	Glu Pro Asn Gly	535	Asn Leu Gln Tyr Gln Gly
				540
Lys Asp Ile Thr Glu Phe Asp	545	Phe Asn Phe Asp	550	Gln Gln Thr Ser Gln
				560
Asn Ile Lys Asn Gln Leu	565	Ala Glu Leu Asn	570	Ile Tyr Thr
				575
Val Leu Asp Lys Ile Lys	580	Ala Lys Met Asn Ile	585	Ile Leu Ile Arg
				590
Asp Lys Arg Phe His Tyr	595	Asp Arg Asn Asn	600	Ile Val Gly Ala Asp
				605
Glu Ser Val Val Lys Glu	610	Ala His Arg Glu Val	615	Ile Asn Ser Ser Thr
				620
Glu Gly Leu Leu Leu Asn	625	Ile Asp Lys Asp	630	Ile Arg Lys Ile Leu Ser
				640
Gly Tyr Ile Val Glu Ile	645	Glu Asp Thr Glu	650	Gly Leu Lys Glu Val Ile
				655
Asn Asp Arg Tyr Asp Met	660	Leu Asn Ser Ser	665	Leu Arg Gln Asp Gly
				670
Lys Thr Phe Ile Asp Phe	675	Leu Asn Asp Lys	680	Leu Pro Leu Tyr
				685
Ile Ser Asn Pro Asn Tyr	690	Lys Val Asn Val	695	Tyr Ala Val Thr Lys Glu
				700
Asn Thr Ile Ile Asn Pro	705	Ser Glu Asn Gly	710	Asp Thr Ser Thr Asn Gly
				720
Ile Lys Lys Ile Leu Ile	725	Phe Ser Lys Lys	730	Gly Tyr Glu Ile Gly
				735

<210> 24

<211> 599

<212> PRT

<213> Bacillus anthracis

<400> 24

Thr	Asp	Ser	Gln	Asn	Lys	Lys	Glu	Val	Ile	Ser	Ser	Asp	Asn	Leu	Gln
1					5					10					15
Leu	Pro	Glu	Leu	Lys	Gln	Lys	Ser	Ser	Asn	Ser	Arg	Lys	Lys	Arg	Ser
					20					25					30
Thr	Ser	Ala	Gly	Pro	Thr	Val	Pro	Asp	Arg	Asp	Asn	Asp	Gly	Ile	Pro
					35					40					45
Asp	Ser	Leu	Glu	Val	Glu	Gly	Tyr	Thr	Val	Asp	Val	Lys	Asn	Lys	Arg
					50					55					60
Thr	Phe	Leu	Ser	Pro	Trp	Ile	Ser	Asn	Ile	His	Glu	Lys	Lys	Gly	Leu
					65					70					80
Thr	Lys	Tyr	Lys	Ser	Ser	Pro	Glu	Lys	Trp	Ser	Thr	Ala	Ser	Asp	Pro
					85					90					95
Tyr	Ser	Asp	Phe	Glu	Lys	Val	Thr	Gly	Arg	Ile	Asp	Lys	Asn	Val	Ser
					100					105					110
Pro	Glu	Ala	Arg	His	Pro	Leu	Val	Ala	Ala	Tyr	Pro	Ile	Val	His	Val
					115					120					125
Asp	Met	Glu	Asn	Ile	Ile	Leu	Ser	Lys	Asn	Glu	Asp	Gln	Ser	Thr	Gln
					130					135					140
Asn	Thr	Asp	Ser	Gln	Thr	Arg	Thr	Ile	Ser	Lys	Asn	Thr	Ser	Thr	Ser
					145					150					160
Arg	Thr	His	Thr	Ser	Glu	Val	His	Gly	Asn	Ala	Glu	Val	His	Ala	Ser
					165					170					175
Phe	Phe	Asp	Ile	Gly	Gly	Ser	Val	Ser	Ala	Gly	Phe	Ser	Asn	Ser	Asn
					180					185					190
Ser	Ser	Thr	Val	Ala	Ile	Asp	His	Ser	Leu	Ser	Leu	Ala	Gly	Glu	Arg
					195					200					205
Thr	Trp	Ala	Glu	Thr	Met	Gly	Leu	Asn	Thr	Ala	Asp	Thr	Ala	Arg	Leu
					210					215					220
Asn	Ala	Asn	Ile	Arg	Tyr	Val	Asn	Thr	Gly	Thr	Ala	Pro	Ile	Tyr	Asn
					225					230					240
Val	Leu	Pro	Thr	Thr	Ser	Leu	Val	Leu	Gly	Lys	Asn	Gln	Thr	Leu	Ala
					245					250					255
Thr	Ile	Lys	Ala	Lys	Glu	Asn	Gln	Leu	Ser	Gln	Ile	Leu	Ala	Pro	Asn
					260					265					270
Asn	Tyr	Tyr	Pro	Ser	Lys	Asn	Leu	Ala	Pro	Ile	Ala	Leu	Asn	Ala	Gln
					275					280					285
Asp	Asp	Phe	Ser	Ser	Thr	Pro	Ile	Thr	Met	Asn	Tyr	Asn	Gln	Phe	Leu
					290					295					300
Glu	Leu	Glu	Lys	Thr	Lys	Gln	Leu	Arg	Leu	Asp	Thr	Asp	Gln	Val	Tyr
					305					310					320
Gly	Asn	Ile	Ala	Thr	Tyr	Asn	Phe	Glu	Asn	Gly	Arg	Val	Arg	Val	Asp
					325					330					335
Thr	Gly	Ser	Asn	Trp	Ser	Glu	Val	Leu	Pro	Gln	Ile	Gln	Glu	Thr	Thr
					340					345					350
Ala	Arg	Ile	Ile	Phe	Asn	Gly	Lys	Asp	Leu	Asn	Leu	Val	Glu	Arg	Arg
					355					360					365
Ile	Ala	Ala	Val	Asn	Pro	Ser	Asp	Pro	Leu	Glu	Thr	Thr	Lys	Pro	Asp
					370					375					380
Met	Thr	Leu	Lys	Glu	Ala	Leu	Lys	Ile	Ala	Phe	Gly	Phe	Asn	Glu	Pro
					385					390					400
Asn	Gly	Asn	Leu	Gln	Tyr	Gln	Gly	Lys	Asp	Ile	Thr	Glu	Phe	Asp	Phe
					405					410					415
Asn	Phe	Asp	Gln	Gln	Thr	Ser	Gln	Asn	Ile	Lys	Asn	Gln	Leu	Ala	Glu
					420					425					430
Leu	Asn	Val	Thr	Asn	Ile	Tyr	Thr	Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn
					435					440					445
Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg	Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg
					450					455					460
Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp	Glu	Ser	Val	Val	Lys	Glu	Ala	His
					465					470					480
Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr	Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp
					485					490					495

Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser	Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp
				500				505				510			
Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile	Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn
				515				520				525			
Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly	Lys	Thr	Phe	Ile	Asp	Phe	Lys	Lys
				530				535				540			
Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr	Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val
				545				550				555			560
Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu	Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu
				565				570				575			
Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly	Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser
				580				585				590			
Lys	Lys	Gly	Tyr	Glu	Ile	Gly									
				595											

<210> 25

<211> 705

<212> PRT

<213> Clostridium difficile

<400> 25

Glu	Leu	Asp	Gly	Met	Lys	Ile	Ile	Pro	Glu	Glu	Asn	Leu	Phe	Leu	
				1	5			10				15			
Arg	Asp	Tyr	Ser	Asn	Ile	Glu	Lys	Asp	Asp	Pro	Phe	Ile	Pro	Asn	Asn
					20			25				30			
Asn	Phe	Phe	Asp	Pro	Lys	Leu	Met	Ser	Asp	Trp	Glu	Asp	Glu	Asp	Leu
					35			40			45				
Asp	Thr	Asp	Asn	Asp	Asn	Ile	Pro	Asp	Ser	Tyr	Glu	Arg	Asn	Gly	Tyr
					50			55			60				
Thr	Ile	Lys	Asp	Leu	Ile	Ala	Val	Lys	Trp	Glu	Asp	Ser	Phe	Ala	Glu
					65			70			75			80	
Gln	Gly	Tyr	Lys	Lys	Tyr	Val	Ser	Asn	Tyr	Leu	Glu	Ser	Asn	Thr	Ala
					85			90			95				
Gly	Asp	Pro	Tyr	Thr	Asp	Tyr	Glu	Lys	Ala	Ser	Gly	Ser	Phe	Asp	Lys
					100			105			110				
Ala	Ile	Lys	Thr	Glu	Ala	Arg	Asp	Pro	Leu	Val	Ala	Ala	Tyr	Pro	Ile
					115			120			125				
Val	Gly	Val	Gly	Met	Glu	Lys	Leu	Ile	Ile	Ser	Thr	Asn	Glu	His	Ala
					130			135			140				
Ser	Thr	Asp	Gln	Gly	Lys	Thr	Val	Ser	Arg	Ala	Thr	Thr	Asn	Ser	Lys
					145			150			155			160	
Thr	Glu	Ser	Asn	Thr	Ala	Gly	Val	Ser	Val	Asn	Val	Gly	Tyr	Gln	Asn
					165			170			175				
Gly	Phe	Thr	Ala	Asn	Val	Thr	Thr	Asn	Tyr	Ser	His	Thr	Thr	Asp	Asn
					180			185			190				
Ser	Thr	Ala	Val	Gln	Asp	Ser	Asn	Gly	Glu	Ser	Trp	Asn	Thr	Gly	Leu
					195			200			205				
Ser	Ile	Asn	Lys	Gly	Glu	Ser	Ala	Tyr	Ile	Asn	Ala	Asn	Val	Arg	Tyr
					210			215			220				
Tyr	Asn	Thr	Gly	Thr	Ala	Pro	Met	Tyr	Lys	Val	Thr	Pro	Thr	Thr	Asn
					225			230			235			240	
Leu	Val	Leu	Asp	Gly	Asp	Thr	Leu	Ser	Thr	Ile	Lys	Ala	Gln	Glu	Asn
					245			250			255				
Gln	Ile	Gly	Asn	Asn	Leu	Ser	Pro	Gly	Asp	Thr	Tyr	Pro	Lys	Lys	Gly
					260			265			270				
Leu	Ser	Pro	Leu	Ala	Leu	Asn	Thr	Met	Asp	Gln	Phe	Ser	Ser	Arg	Leu
					275			280			285				
Ile	Pro	Ile	Asn	Tyr	Asp	Gln	Leu	Lys	Lys	Leu	Asp	Ala	Gly	Lys	Gln
					290			295			300				
Ile	Lys	Leu	Glu	Thr	Thr	Gln	Val	Ser	Gly	Asn	Phe	Gly	Thr	Lys	Asn
					305			310			315			320	
Ser	Ser	Gly	Gln	Ile	Val	Thr	Glu	Gly	Asn	Ser	Trp	Ser	Asp	Tyr	Ile

	325	330	335
Ser Gln Ile Asp Ser Ile Ser Ala Ser	Ile Ile Leu Asp Thr Glu Asn		
340	345	350	
Glu Ser Tyr Glu Arg Arg Val Thr Ala Lys Asn Leu Gln Asp Pro Glu			
355	360	365	
Asp Lys Thr Pro Glu Leu Thr Ile Gly Glu Ala Ile Glu Lys Ala Phe			
370	375	380	
Gly Ala Thr Lys Lys Asp Gly Leu Leu Tyr Phe Asn Asp Ile Pro Ile			
385	390	395	400
Asp Glu Ser Cys Val Glu Leu Ile Phe Asp Asp Asn Thr Ala Asn Lys			
405	410	415	
Ile Lys Asp Ser Leu Lys Thr Leu Ser Asp Lys Lys Ile Tyr Asn Val			
420	425	430	
Lys Leu Glu Arg Gly Met Asn Ile Leu Ile Lys Thr Pro Thr Tyr Phe			
435	440	445	
Thr Asn Phe Asp Asp Tyr Asn Asn Tyr Pro Ser Thr Trp Ser Asn Val			
450	455	460	
Asn Thr Thr Asn Gln Asp Gly Leu Gln Gly Ser Ala Asn Lys Leu Asn			
465	470	475	480
Gly Glu Thr Lys Ile Lys Ile Pro Met Ser Glu Leu Lys Pro Tyr Lys			
485	490	495	
Arg Tyr Val Phe Ser Gly Tyr Ser Lys Asp Pro Leu Thr Ser Asn Ser			
500	505	510	
Ile Ile Val Lys Ile Lys Ala Lys Glu Glu Lys Thr Asp Tyr Leu Val			
515	520	525	
Pro Glu Gln Gly Tyr Thr Lys Phe Ser Tyr Glu Phe Glu Thr Thr Glu			
530	535	540	
Lys Asp Ser Ser Asn Ile Glu Ile Thr Leu Ile Gly Ser Gly Thr Thr			
545	550	555	560
Tyr Leu Asp Asn Leu Ser Ile Thr Glu Leu Asn Ser Thr Pro Glu Ile			
565	570	575	
Leu Asp Glu Pro Glu Val Lys Ile Pro Thr Asp Gln Glu Ile Met Asp			
580	585	590	
Ala His Lys Ile Tyr Phe Ala Asp Leu Asn Phe Asn Pro Ser Thr Gly			
595	600	605	
Asn Thr Tyr Ile Asn Gly Met Tyr Phe Ala Pro Thr Gln Thr Asn Lys			
610	615	620	
Glu Ala Leu Asp Tyr Ile Gln Lys Tyr Arg Val Glu Ala Thr Leu Gln			
625	630	635	640
Tyr Ser Gly Phe Lys Asp Ile Gly Thr Lys Asp Lys Glu Met Arg Asn			
645	650	655	
Tyr Leu Gly Asp Pro Asn Gln Pro Lys Thr Asn Tyr Val Asn Leu Arg			
660	665	670	
Ser Tyr Phe Thr Gly Gly Glu Asn Ile Met Thr Tyr Lys Lys Leu Arg			
675	680	685	
Ile Tyr Ala Ile Thr Pro Asp Asp Arg Glu Leu Leu Val Leu Ser Val			
690	695	700	
Asp			
705			

<210> 26

<211> 706

<212> PRT

<213> Clostridium perfringens

<400> 26

Glu Leu Asn Gly Asn Lys Thr Val Ile Pro Glu Glu Asn Leu Phe Phe			
1	5	10	15
Arg Asp Tyr Ser Lys Ile Asp Glu Asn Asp Pro Phe Ile Pro Asn Asn			
20	25	30	
Asn Phe Phe Asp Val Arg Phe Phe Ser Ala Ala Trp Glu Asp Glu Asp			
35	40	45	

Leu Asp Thr Asp Asn Asp Asn Ile Pro Asp Ala Tyr Glu Lys Asn Gly
 50 55 60
 Tyr Thr Ile Lys Asp Ser Ile Ala Val Lys Trp Asn Asp Ser Phe Ala
 65 70 75 80
 Glu Gln Gly Tyr Lys Lys Tyr Val Ser Ser Tyr Leu Glu Ser Asn Thr
 85 90 95
 Ala Gly Asp Pro Tyr Thr Asp Tyr Gln Lys Ala Ser Gly Ser Ile Asp
 100 105 110
 Lys Ala Ile Lys Leu Glu Ala Arg Asp Pro Leu Val Ala Ala Tyr Pro
 115 120 125
 Val Val Gly Val Gly Met Glu Asn Leu Ile Ile Ser Thr Asn Glu His
 130 135 140
 Ala Ser Ser Asp Gln Gly Lys Thr Val Ser Arg Ala Thr Thr Asn Ser
 145 150 155 160
 Lys Thr Asp Ala Asn Thr Val Gly Val Ser Ile Ser Ala Gly Tyr Gln
 165 170 175
 Asn Gly Phe Thr Gly Asn Ile Thr Ser Tyr Ser His Thr Thr Asp
 180 185 190
 Asn Ser Thr Ala Val Gln Asp Ser Asn Gly Glu Ser Trp Asn Thr Gly
 195 200 205
 Leu Ser Ile Asn Lys Gly Glu Ser Ala Tyr Ile Asn Ala Asn Val Arg
 210 215 220
 Tyr Tyr Asn Thr Gly Thr Ala Pro Met Tyr Lys Val Thr Pro Thr Thr
 225 230 235 240
 Asn Leu Val Leu Asp Gly Glu Thr Leu Ala Thr Ile Lys Ala Gln Asp
 245 250 255
 Asn Gln Ile Gly Asn Asn Leu Ser Pro Asn Glu Thr Tyr Pro Lys Lys
 260 265 270
 Gly Leu Ser Pro Leu Ala Leu Asn Thr Met Asp Gln Phe Asn Ala Arg
 275 280 285
 Leu Ile Pro Ile Asn Tyr Asp Gln Leu Lys Lys Leu Asp Ser Gly Lys
 290 295 300
 Gln Ile Lys Leu Glu Thr Thr Gln Val Ser Gly Asn Tyr Gly Thr Lys
 305 310 315 320
 Asn Ser Gln Gly Gln Ile Ile Thr Glu Gly Asn Ser Trp Ser Asn Tyr
 325 330 335
 Ile Ser Gln Ile Asp Ser Val Ser Ala Ser Ile Ile Leu Asp Thr Gly
 340 345 350
 Ser Gln Thr Phe Glu Arg Arg Val Ala Ala Lys Glu Gln Gly Asn Pro
 355 360 365
 Glu Asp Lys Thr Pro Glu Ile Thr Ile Gly Glu Ala Ile Lys Lys Ala
 370 375 380
 Phe Ser Ala Thr Lys Asn Gly Glu Leu Leu Tyr Phe Asn Gly Ile Pro
 385 390 395 400
 Ile Asp Glu Ser Cys Val Glu Leu Ile Phe Asp Asp Asn Thr Ser Glu
 405 410 415
 Ile Ile Lys Glu Gln Leu Lys Tyr Leu Asp Asp Lys Lys Ile Tyr Asn
 420 425 430
 Val Lys Leu Glu Arg Gly Met Asn Ile Leu Ile Lys Val Pro Ser Tyr
 435 440 445
 Phe Thr Asn Phe Asp Glu Tyr Asn Asn Phe Pro Ala Ser Trp Ser Asn
 450 455 460
 Ile Asp Thr Lys Asn Gln Asp Gly Leu Gln Ser Val Ala Asn Lys Leu
 465 470 475 480
 Ser Gly Glu Thr Lys Ile Ile Ile Pro Met Ser Lys Leu Lys Pro Tyr
 485 490 495
 Lys Arg Tyr Val Phe Ser Gly Tyr Ser Lys Asp Pro Ser Thr Ser Asn
 500 505 510
 Ser Ile Thr Val Asn Ile Lys Ser Lys Glu Gln Lys Thr Asp Tyr Leu
 515 520 525
 Val Pro Glu Lys Asp Tyr Thr Lys Phe Ser Tyr Glu Phe Glu Thr Thr
 530 535 540
 Gly Lys Asp Ser Ser Asp Ile Glu Ile Thr Leu Thr Ser Ser Gly Val

545	550	555	560
Ile Phe Leu Asp Asn Leu Ser Ile Thr Glu Leu Asn Ser Thr Pro Glu			
565	570	575	
Ile Leu Lys Glu Pro Glu Ile Lys Val Pro Ser Asp Gln Glu Ile Leu			
580	585	590	
Asp Ala His Asn Lys Tyr Tyr Ala Asp Ile Lys Leu Asp Thr Asn Thr			
595	600	605	
Gly Asn Thr Tyr Ile Asp Gly Ile Tyr Phe Glu Pro Thr Gln Thr Asn			
610	615	620	
Lys Glu Ala Leu Asp Tyr Ile Gln Lys Tyr Arg Val Glu Ala Thr Leu			
625	630	635	640
Gln Tyr Ser Gly Phe Lys Asp Ile Gly Thr Lys Asp Lys Glu Ile Arg			
645	650	655	
Asn Tyr Leu Gly Asp Gln Asn Gln Pro Lys Thr Asn Tyr Ile Asn Phe			
660	665	670	
Arg Ser Tyr Phe Thr Ser Gly Glu Asn Val Met Thr Tyr Lys Lys Leu			
675	680	685	
Arg Ile Tyr Ala Val Thr Pro Asp Asn Arg Glu Leu Leu Val Leu Ser			
690	695	700	
Val Asn			
705			

<210> 27
<211> 712
<212> PRT
<213> Clostridium spiroforme

<400> 27			
Glu Leu Asn Gly Asp Lys Thr Leu Ile Pro Glu Lys Asn Leu Phe Leu			
1	5	10	15
Arg Asp Tyr Ser Lys Ile Asp Glu Asn Asp Pro Phe Ile Pro Lys Asp			
20	25	30	
Asn Phe Phe Asp Leu Lys Leu Lys Ser Arg Ser Ala Arg Leu Ala Ser			
35	40	45	
Gly Trp Gly Asp Glu Asp Leu Asp Thr Asp Asn Asp Asn Ile Pro Asp			
50	55	60	
Ala Tyr Glu Lys Asn Gly Tyr Thr Ile Lys Asp Ser Ile Ala Val Lys			
65	70	75	80
Trp Glu Asp Ser Phe Ala Gln Gln Gly Tyr Lys Lys Tyr Leu Ser Ser			
85	90	95	
Tyr Leu Glu Ser Asn Thr Ala Gly Asp Pro Tyr Thr Asp Tyr Gln Lys			
100	105	110	
Ala Ser Gly Ser Phe Asp Lys Ala Ile Lys Ala Glu Ala Arg Asp Pro			
115	120	125	
Leu Val Ala Ala Tyr Pro Val Val Gly Val Gly Met Glu Lys Leu Ile			
130	135	140	
Ile Ser Thr Asn Glu His Ala Ser Thr Asp Gln Gly Lys Thr Val Ser			
145	150	155	160
Arg Asn Thr Thr Asn Ser Lys Thr Asp Ala Asn Thr Ala Gly Val Ala			
165	170	175	
Ile Asn Ile Ala Tyr Gln Asn Gly Phe Thr Gly Ser Ile Thr Thr Asn			
180	185	190	
Tyr Ser His Thr Thr Glu Asn Ser Thr Ala Val Gln Asn Ser Asn Gly			
195	200	205	
Glu Ser Trp Asn Thr Ser Leu Ser Ile Asn Lys Gly Glu Ser Ala Tyr			
210	215	220	
Ile Asn Ala Asn Val Arg Tyr Tyr Asn Thr Gly Thr Ala Pro Met Tyr			
225	230	235	240
Lys Val Thr Pro Thr Thr Asn Leu Val Leu Asp Gly Asp Thr Leu Thr			
245	250	255	
Thr Ile Lys Ala Gln Asp Asn Gln Ile Gly Asn Asn Leu Ser Pro Asn			
260	265	270	

Glu Thr Tyr Pro Lys Lys Gly Leu Ser Pro Leu Ala Leu Asn Thr Met
 275 280 285
 Asp Gln Phe Ser Ser Arg Leu Ile Pro Ile Asn Tyr Asp Gln Leu Lys
 290 295 300
 Lys Leu Asp Ala Gly Lys Gln Ile Lys Leu Glu Thr Thr Gln Val Ser
 305 310 315 320
 Gly Asn Tyr Gly Ile Lys Asn Ser Gln Gly Gln Ile Ile Thr Glu Gly
 325 330 335
 Asn Ser Trp Ser Asp Tyr Ile Ser Gln Ile Asp Ser Leu Ser Ala Ser
 340 345 350
 Ile Ile Leu Asp Thr Gly Ser Asp Val Phe Glu Arg Arg Val Thr Ala
 355 360 365
 Lys Asp Ser Ser Asn Pro Glu Asp Lys Thr Pro Val Leu Thr Ile Gly
 370 375 380
 Glu Ala Ile Glu Lys Ala Phe Gly Ala Thr Lys Asn Gly Glu Ile Leu
 385 390 395 400
 Tyr Phe Asn Gly Met Pro Ile Asp Glu Ser Cys Val Glu Leu Ile Phe
 405 410 415
 Asp Gly Asn Thr Ala Asn Leu Ile Lys Glu Arg Leu Asn Ala Leu Asn
 420 425 430
 Asp Lys Lys Ile Tyr Asn Val Gln Leu Glu Arg Gly Met Lys Ile Leu
 435 440 445
 Ile Lys Thr Ser Thr Tyr Phe Asn Asn Phe Asp Gly Tyr Asn Asn Phe
 450 455 460
 Pro Ser Ser Trp Ser Asn Val Asp Ser Asn Asn Gln Asp Gly Leu Gln
 465 470 475 480
 Asn Ala Ala Asn Lys Leu Ser Gly Glu Thr Lys Ile Val Ile Pro Met
 485 490 495
 Ser Lys Leu Asn Pro Tyr Lys Arg Tyr Val Phe Ser Gly Tyr Leu Lys
 500 505 510
 Asn Ser Ser Thr Ser Asn Pro Ile Thr Val Asn Ile Lys Ala Lys Glu
 515 520 525
 Gln Lys Thr Tyr Asn Leu Val Ser Glu Asn Asp Tyr Lys Lys Phe Ser
 530 535 540
 Tyr Glu Phe Glu Thr Ile Gly Arg Asp Ala Ser Asn Ile Glu Ile Thr
 545 550 555 560
 Leu Thr Ser Ser Gly Thr Ile Phe Leu Asp Asn Leu Ser Ile Thr Glu
 565 570 575
 Leu Asn Ser Thr Pro Glu Ile Leu Lys Glu Pro Asp Ile Lys Val Pro
 580 585 590
 Ser Asp Gln Glu Ile Ile Asp Ala His Lys Lys Tyr Tyr Ala Asp Leu
 595 600 605
 Ser Phe Asn Gln Ser Thr Ala Asn Tyr Tyr Leu Asp Gly Leu Tyr Phe
 610 615 620
 Glu Pro Thr Gln Thr Asn Lys Glu Val Leu Asp Tyr Ile Gln Lys Tyr
 625 630 635 640
 Lys Val Glu Ala Thr Leu Glu Tyr Ser Gly Phe Lys Asp Ile Gly Thr
 645 650 655
 Lys Asp Lys Glu Leu Arg Asn Tyr Thr Gly Asp Ser Asn Gln Pro Lys
 660 665 670
 Thr Asn Tyr Val Asn Phe Arg Ser Tyr Phe Thr Ser Gly Glu Asn Val
 675 680 685
 Met Pro Tyr Lys Lys Leu Arg Ile Tyr Ala Ile Thr Pro Glu Asn Lys
 690 695 700
 Glu Leu Leu Val Leu Ser Ile Asn
 705 710

<210> 28
 <211> 582
 <212> PRT
 <213> Clostridium botulinum

<400> 28
 Glu Thr Ser Asp Ile Ile Lys Glu Ile Ile Pro Ser Glu Val Leu Leu
 1 5 10 15
 Lys Pro Asn Tyr Ser Asn Thr Asn Glu Lys Ser Lys Phe Ile Pro Asn
 20 25 30
 Asn Thr Leu Phe Ser Asn Ala Lys Leu Lys Ala Asn Ala Asn Arg Asp
 35 40 45
 Thr Asp Arg Asp Gly Ile Pro Asp Glu Trp Glu Ile Asn Gly Tyr Thr
 50 55 60
 Val Met Asn Gln Lys Ala Val Ala Trp Asp Asp Lys Phe Ala Ala Asn
 65 70 75 80
 Gly Tyr Lys Tyr Val Ser Asn Pro Phe Lys Pro Cys Thr Ala Asn
 85 90 95
 Asp Pro Tyr Thr Asp Phe Glu Lys Val Ser Gly Gln Ile Asp Pro Ser
 100 105 110
 Val Ser Met Val Ala Arg Asp Pro Met Ile Ser Ala Tyr Pro Ile Val
 115 120 125
 Gly Val Gln Met Glu Arg Leu Val Val Ser Lys Ser Glu Thr Ile Thr
 130 135 140
 Gly Asp Ser Thr Lys Ser Met Ser Lys Ser Thr Ser His Ser Ser Thr
 145 150 155 160
 Asn Ile Asn Thr Val Gly Ala Glu Val Ser Gly Ser Leu Gln Leu Ala
 165 170 175
 Gly Gly Ile Phe Pro Val Phe Ser Met Ser Ala Ser Ala Asn Tyr Ser
 180 185 190
 His Thr Trp Gln Asn Thr Ser Thr Val Asp Asp Thr Thr Gly Glu Ser
 195 200 205
 Phe Ser Gln Gly Leu Ser Ile Asn Thr Gly Glu Ser Ala Tyr Ile Asn
 210 215 220
 Pro Asn Ile Arg Tyr Tyr Asn Thr Gly Thr Ala Pro Val Tyr Asn Val
 225 230 235 240
 Thr Pro Thr Thr Ile Val Ile Asp Lys Gln Ser Val Ala Thr Ile
 245 250 255
 Lys Gly Gln Glu Ser Leu Ile Gly Asp Tyr Leu Asn Pro Gly Gly Thr
 260 265 270
 Tyr Pro Ile Ile Gly Glu Pro Pro Met Ala Leu Asn Thr Met Asp Gln
 275 280 285
 Phe Ser Ser Arg Leu Ile Pro Ile Asn Tyr Asn Gln Leu Lys Ser Ile
 290 295 300
 Asp Asn Gly Gly Thr Val Met Leu Ser Thr Ser Gln Phe Thr Gly Asn
 305 310 315 320
 Phe Ala Lys Tyr Asn Ser Asn Gly Asn Leu Val Thr Asp Gly Asn Asn
 325 330 335
 Trp Gly Pro Tyr Leu Gly Thr Ile Lys Ser Thr Thr Ala Ser Leu Thr
 340 345 350
 Leu Ser Phe Ser Gly Gln Thr Thr Gln Val Ala Val Val Ala Pro Asn
 355 360 365
 Phe Ser Asp Pro Glu Asp Lys Thr Pro Lys Leu Thr Leu Glu Gln Ala
 370 375 380
 Leu Val Lys Ala Phe Ala Leu Glu Lys Lys Asn Gly Lys Phe Tyr Phe
 385 390 395 400
 His Gly Leu Glu Ile Ser Lys Asn Glu Lys Ile Gln Val Phe Leu Asp
 405 410 415
 Ser Asn Thr Asn Asn Asp Phe Glu Asn Gln Leu Lys Asn Thr Ala Asp
 420 425 430
 Lys Asp Ile Met His Cys Ile Ile Lys Arg Asn Met Asn Ile Leu Val
 435 440 445
 Lys Val Ile Thr Phe Lys Glu Asn Ile Ser Ser Ile Asn Ile Ile Asn
 450 455 460
 Asp Thr Asn Phe Gly Val Gln Ser Met Thr Gly Leu Ser Asn Arg Ser
 465 470 475 480
 Lys Gly Gln Asp Gly Ile Tyr Arg Ala Ala Thr Thr Ala Phe Ser Phe
 485 490 495

Lys Ser Lys Glu Leu Lys Tyr Pro Glu Gly Arg Tyr Arg Met Arg Phe
 500 505 510
 Val Ile Gln Ser Tyr Glu Pro Phe Thr Cys Asn Phe Lys Leu Phe Asn
 515 520 525
 Asn Leu Ile Tyr Ser Ser Phe Asp Lys Gly Tyr Tyr Asp Glu Phe
 530 535 540
 Phe Tyr Phe Tyr Tyr Asn Gly Ser Lys Ser Phe Phe Asn Ile Ser Cys
 545 550 555 560
 Asp Ile Ile Asn Ser Ile Asn Arg Leu Ser Gly Val Phe Leu Ile Glu
 565 570 575
 Leu Asp Lys Leu Ile Ile
 580

<210> 29
 <211> 708
 <212> PRT
 <213> *Bacillus cereus*

<400> 29
 Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg
 1 5 10 15
 Asn Pro Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro
 20 25 30
 Ser Lys Ile Asn Leu Phe Thr Gln Gln Met Lys Arg Glu Ile Asp Glu
 35 40 45
 Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn
 50 55 60
 Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu
 65 70 75 80
 Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His
 85 90 95
 Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu
 100 105 110
 Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe
 115 120 125
 Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu
 130 135 140
 Asn Leu Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr
 145 150 155 160
 Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly
 165 170 175
 Ile Ser Phe Gly Val Ser Val Asn Tyr Gln His Ser Glu Thr Val Ala
 180 185 190
 Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala
 195 200 205
 Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr
 210 215 220
 Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asn
 225 230 235 240
 Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn
 245 250 255
 Ile Ser Pro Gly Glu Ser Tyr Pro Lys Lys Gly Gln Asn Gly Ile Ala
 260 265 270
 Ile Thr Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys
 275 280 285
 Lys Gln Val Asp Asn Leu Leu Asn Asn Lys Pro Met Met Leu Glu Thr
 290 295 300
 Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile
 305 310 315 320
 Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys
 325 330 335
 Thr Ala Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg

	340	345	350
Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu			
355	360	365	
Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu			
370	375	380	
Ile Glu Gly Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser			
385	390	395	400
Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Gln			
405	410	415	
Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp			
420	425	430	
Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu			
435	440	445	
Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn			
450	455	460	
Thr Asn Ile Val Ser Gly Gly Asn Asn Gly Lys Lys Gln Tyr Ser Ser			
465	470	475	480
Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys			
485	490	495	
Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu			
500	505	510	
Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile			
515	520	525	
Thr Thr Lys Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg Leu Asp			
530	535	540	
Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile			
545	550	555	560
Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr			
565	570	575	
Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys			
580	585	590	
Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile			
595	600	605	
Asp Lys Lys Gly Gly Ile His Tyr Gly Glu Phe Ile Asn Glu Ala Ser			
610	615	620	
Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Glu Val Thr			
625	630	635	640
Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu Ser Asp			
645	650	655	
Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser			
660	665	670	
Lys Asn Glu Gln Gly Leu Phe Tyr Asp Ser Gly Leu Asn Trp Asp Phe			
675	680	685	
Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His			
690	695	700	
Arg Tyr Asn Lys			
705			

<210> 30

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 30

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser			
1	5	10	15
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro			
20	25	30	
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser			
35	40	45	
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile			
50	55	60	

Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Gln Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Val Thr Asn Ile Tyr Thr

	565	570	575												
Val	Leu	Asp	Lys	Ile	Lys	Leu	Asn	Ala	Lys	Met	Asn	Ile	Leu	Ile	Arg
			580		585									590	
Asp	Lys	Arg	Phe	His	Tyr	Asp	Arg	Asn	Asn	Ile	Ala	Val	Gly	Ala	Asp
			595		600									605	
Glu	Ser	Val	Val	Lys	Glu	Ala	His	Arg	Glu	Val	Ile	Asn	Ser	Ser	Thr
			610		615									620	
Glu	Gly	Leu	Leu	Leu	Asn	Ile	Asp	Lys	Asp	Ile	Arg	Lys	Ile	Leu	Ser
			625		630									640	
Gly	Tyr	Ile	Val	Glu	Ile	Glu	Asp	Thr	Glu	Gly	Leu	Lys	Glu	Val	Ile
			645		650									655	
Asn	Asp	Arg	Tyr	Asp	Met	Leu	Asn	Ile	Ser	Ser	Leu	Arg	Gln	Asp	Gly
			660		665									670	
Lys	Thr	Phe	Ile	Asp	Phe	Lys	Lys	Tyr	Asn	Asp	Lys	Leu	Pro	Leu	Tyr
			675		680									685	
Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
			690		695									700	
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
			705		710									720	
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
			725											730	
															735

<210> 31

<211> 876

<212> PRT

<213> Clostridium difficile

<400> 31

Met	Lys	Ile	Gln	Met	Arg	Asn	Lys	Val	Leu	Ser	Phe	Leu	Thr	Leu	
				1	5			10						15	
Thr	Ala	Ile	Val	Ser	Gln	Ala	Leu	Val	Tyr	Pro	Val	Tyr	Ala	Gln	Thr
						20		25						30	
Ser	Thr	Ser	Asn	His	Ser	Asn	Lys	Lys	Lys	Glu	Ile	Val	Asn	Glu	Asp
						35		40						45	
Ile	Leu	Pro	Asn	Asn	Gly	Leu	Met	Gly	Tyr	Tyr	Phe	Ser	Asp	Glu	His
						50		55						60	
Phe	Lys	Asp	Leu	Lys	Leu	Met	Ala	Pro	Ile	Lys	Asp	Gly	Asn	Leu	Lys
						65		70		75				80	
Phe	Glu	Glu	Lys	Lys	Val	Asp	Lys	Leu	Leu	Asp	Lys	Asp	Lys	Ser	Asp
						85			90					95	
Val	Lys	Ser	Ile	Arg	Trp	Thr	Gly	Arg	Ile	Ile	Pro	Ser	Lys	Asp	Gly
									100		105				110
Glu	Tyr	Thr	Leu	Ser	Thr	Asp	Arg	Asp	Asp	Val	Leu	Met	Gln	Val	Asn
							115		120				125		
Thr	Glu	Ser	Thr	Ile	Ser	Asn	Thr	Leu	Lys	Val	Asn	Met	Lys	Lys	Gly
						130		135				140			
Lys	Glu	Tyr	Lys	Val	Arg	Ile	Glu	Leu	Gln	Asp	Lys	Asn	Leu	Gly	Ser
						145		150		155				160	
Ile	Asp	Asn	Leu	Ser	Ser	Pro	Asn	Leu	Tyr	Trp	Glu	Leu	Asp	Gly	Met
						165			170					175	
Lys	Lys	Ile	Ile	Pro	Glu	Glu	Asn	Leu	Phe	Leu	Arg	Asp	Tyr	Ser	Asn
						180		185					190		
Ile	Glu	Lys	Asp	Asp	Pro	Phe	Ile	Pro	Asn	Asn	Phe	Phe	Asp	Pro	
						195		200				205			
Lys	Leu	Met	Ser	Asp	Trp	Glu	Asp	Glu	Asp	Leu	Asp	Thr	Asp	Asn	Asp
						210		215				220			
Asn	Ile	Pro	Asp	Ser	Tyr	Glu	Arg	Asn	Gly	Tyr	Thr	Ile	Lys	Asp	Leu
						225		230		235				240	
Ile	Ala	Val	Lys	Trp	Glu	Asp	Ser	Phe	Ala	Glu	Gln	Gly	Tyr	Lys	Lys
						245			250					255	
Tyr	Val	Ser	Asn	Tyr	Leu	Glu	Ser	Asn	Thr	Ala	Gly	Asp	Pro	Tyr	Thr
						260			265					270	

Asp Tyr Glu Lys Ala Ser Gly Ser Phe Asp Lys Ala Ile Lys Thr Glu
 275 280 285
 Ala Arg Asp Pro Leu Val Ala Ala Tyr Pro Ile Val Gly Val Gly Met
 290 295 300
 Glu Lys Leu Ile Ile Ser Thr Asn Glu His Ala Ser Thr Asp Gln Gly
 305 310 315 320
 Lys Thr Val Ser Arg Ala Thr Thr Asn Ser Lys Thr Glu Ser Asn Thr
 325 330 335
 Ala Gly Val Ser Val Asn Val Gly Tyr Gln Asn Gly Phe Thr Ala Asn
 340 345 350
 Val Thr Thr Asn Tyr Ser His Thr Thr Asp Asn Ser Thr Ala Val Gln
 355 360 365
 Asp Ser Asn Gly Glu Ser Trp Asn Thr Gly Leu Ser Ile Asn Lys Gly
 370 375 380
 Glu Ser Ala Tyr Ile Asn Ala Asn Val Arg Tyr Tyr Asn Thr Gly Thr
 385 390 395 400
 Ala Pro Met Tyr Lys Val Thr Pro Thr Thr Asn Leu Val Leu Asp Gly
 405 410 415
 Asp Thr Leu Ser Thr Ile Lys Ala Gln Glu Asn Gln Ile Gly Asn Asn
 420 425 430
 Leu Ser Pro Gly Asp Thr Tyr Pro Lys Lys Gly Leu Ser Pro Leu Ala
 435 440 445
 Leu Asn Thr Met Asp Gln Phe Ser Ser Arg Leu Ile Pro Ile Asn Tyr
 450 455 460
 Asp Gln Leu Lys Lys Leu Asp Ala Gly Lys Gln Ile Lys Leu Glu Thr
 465 470 475 480
 Thr Gln Val Ser Gly Asn Phe Gly Thr Lys Asn Ser Ser Gly Gln Ile
 485 490 495
 Val Thr Glu Gly Asn Ser Trp Ser Asp Tyr Ile Ser Gln Ile Asp Ser
 500 505 510
 Ile Ser Ala Ser Ile Ile Leu Asp Thr Glu Asn Glu Ser Tyr Glu Arg
 515 520 525
 Arg Val Thr Ala Lys Asn Leu Gln Asp Pro Glu Asp Lys Thr Pro Glu
 530 535 540
 Leu Thr Ile Gly Glu Ala Ile Glu Lys Ala Phe Gly Ala Thr Lys Lys
 545 550 555 560
 Asp Gly Leu Leu Tyr Phe Asn Asp Ile Pro Ile Asp Glu Ser Cys Val
 565 570 575
 Glu Leu Ile Phe Asp Asp Asn Thr Ala Asn Lys Ile Lys Asp Ser Leu
 580 585 590
 Lys Thr Leu Ser Asp Lys Lys Ile Tyr Asn Val Lys Leu Glu Arg Gly
 595 600 605
 Met Asn Ile Leu Ile Lys Thr Pro Thr Tyr Phe Thr Asn Phe Asp Asp
 610 615 620
 Tyr Asn Asn Tyr Pro Ser Thr Trp Ser Asn Val Asn Thr Thr Asn Gln
 625 630 635 640
 Asp Gly Leu Gln Gly Ser Ala Asn Lys Leu Asn Gly Glu Thr Lys Ile
 645 650 655
 Lys Ile Pro Met Ser Glu Leu Lys Pro Tyr Lys Arg Tyr Val Phe Ser
 660 665 670
 Gly Tyr Ser Lys Asp Pro Leu Thr Ser Asn Ser Ile Ile Val Lys Ile
 675 680 685
 Lys Ala Lys Glu Glu Lys Thr Asp Tyr Leu Val Pro Glu Gln Gly Tyr
 690 695 700
 Thr Lys Phe Ser Tyr Glu Phe Glu Thr Thr Glu Lys Asp Ser Ser Asn
 705 710 715 720
 Ile Glu Ile Thr Leu Ile Gly Ser Gly Thr Thr Tyr Leu Asp Asn Leu
 725 730 735
 Ser Ile Thr Glu Leu Asn Ser Thr Pro Glu Ile Leu Asp Glu Pro Glu
 740 745 750
 Val Lys Ile Pro Thr Asp Gln Glu Ile Met Asp Ala His Lys Ile Tyr
 755 760 765
 Phe Ala Asp Leu Asn Phe Asn Pro Ser Thr Gly Asn Thr Tyr Ile Asn

770	775	780													
Gly	Met	Tyr	Phe	Ala	Pro	Thr	Gln	Thr	Asn	Lys	Glu	Ala	Leu	Asp	Tyr
785					790					795					800
Ile	Gln	Lys	Tyr	Arg	Val	Glu	Ala	Thr	Leu	Gln	Tyr	Ser	Gly	Phe	Lys
						805			810						815
Asp	Ile	Gly	Thr	Lys	Asp	Lys	Glu	Met	Arg	Asn	Tyr	Leu	Gly	Asp	Pro
						820			825						830
Asn	Gln	Pro	Lys	Thr	Asn	Tyr	Val	Asn	Leu	Arg	Ser	Tyr	Phe	Thr	Gly
						835			840						845
Gly	Glu	Asn	Ile	Met	Thr	Tyr	Lys	Lys	Leu	Arg	Ile	Tyr	Ala	Ile	Thr
						850			855						860
Pro	Asp	Asp	Arg	Glu	Leu	Leu	Val	Leu	Ser	Val	Asp				
					865			870			875				

<210> 32

<211> 875

<212> PRT

<213> Clostridium perfringens

<400> 32

Met	Asn	Ile	Gln	Ile	Lys	Asn	Val	Phe	Ser	Phe	Leu	Thr	Leu	Thr	Ala
1					5				10						15
Met	Ile	Ser	Gln	Thr	Leu	Ser	Tyr	Asn	Val	Tyr	Ala	Gln	Thr	Thr	Thr
					20				25						30
Gln	Asn	Asp	Thr	Asn	Gln	Lys	Glu	Glu	Ile	Thr	Asn	Glu	Asn	Thr	Leu
					35				40						45
Ser	Ser	Asn	Gly	Leu	Met	Gly	Tyr	Tyr	Phe	Ala	Asp	Glu	His	Phe	Lys
					50				55						60
Asp	Leu	Glu	Leu	Met	Ala	Pro	Ile	Lys	Asn	Gly	Asp	Leu	Lys	Phe	Glu
					65				70						80
Glu	Lys	Lys	Val	Asp	Lys	Leu	Leu	Thr	Glu	Asp	Asn	Ser	Ser	Ile	Lys
					85				90						95
Ser	Ile	Arg	Trp	Thr	Gly	Arg	Ile	Ile	Pro	Ser	Glu	Asp	Gly	Glu	Tyr
					100				105						110
Ile	Leu	Ser	Thr	Asp	Arg	Asn	Asp	Val	Leu	Met	Gln	Ile	Asn	Ala	Lys
					115				120						125
Gly	Asp	Ile	Ala	Lys	Thr	Leu	Lys	Val	Asn	Met	Lys	Lys	Gly	Gln	Ala
					130				135						140
Tyr	Asn	Ile	Arg	Ile	Glu	Ile	Gln	Asp	Lys	Asn	Leu	Gly	Ser	Ile	Asp
					145				150						160
Asn	Leu	Ser	Val	Pro	Lys	Leu	Tyr	Trp	Glu	Leu	Asn	Gly	Asn	Lys	Thr
					165				170						175
Val	Ile	Pro	Glu	Glu	Asn	Leu	Phe	Phe	Arg	Asp	Tyr	Ser	Lys	Ile	Asp
					180				185						190
Glu	Asn	Asp	Pro	Phe	Ile	Pro	Asn	Asn	Asn	Phe	Phe	Asp	Val	Arg	Phe
					195				200						205
Phe	Ser	Ala	Ala	Trp	Glu	Asp	Glu	Asp	Leu	Asp	Thr	Asp	Asn	Asp	Asn
					210				215						220
Ile	Pro	Asp	Ala	Tyr	Glu	Lys	Asn	Gly	Tyr	Thr	Ile	Lys	Asp	Ser	Ile
					225				230						240
Ala	Val	Lys	Trp	Asn	Asp	Ser	Phe	Ala	Glu	Gln	Gly	Tyr	Lys	Tyr	
					245				250						255
Val	Ser	Ser	Tyr	Leu	Glu	Ser	Asn	Thr	Ala	Gly	Asp	Pro	Tyr	Thr	Asp
					260				265						270
Tyr	Gln	Lys	Ala	Ser	Gly	Ser	Ile	Asp	Lys	Ala	Ile	Lys	Leu	Glu	Ala
					275				280						285
Arg	Asp	Pro	Leu	Val	Ala	Ala	Tyr	Pro	Val	Val	Gly	Val	Gly	Met	Glu
					290				295						300
Asn	Leu	Ile	Ile	Ser	Thr	Asn	Glu	His	Ala	Ser	Ser	Asp	Gln	Gly	Lys
					305				310						320
Thr	Val	Ser	Arg	Ala	Thr	Thr	Asn	Ser	Lys	Thr	Asp	Ala	Asn	Thr	Val
					325				330						335

Gly Val Ser Ile Ser Ala Gly Tyr Gln Asn Gly Phe Thr Gly Asn Ile
 340 345 350
 Thr Thr Ser Tyr Ser His Thr Thr Asp Asn Ser Thr Ala Val Gln Asp
 355 360 365
 Ser Asn Gly Glu Ser Trp Asn Thr Gly Leu Ser Ile Asn Lys Gly Glu
 370 375 380
 Ser Ala Tyr Ile Asn Ala Asn Val Arg Tyr Tyr Asn Thr Gly Thr Ala
 385 390 395 400
 Pro Met Tyr Lys Val Thr Pro Thr Thr Asn Leu Val Leu Asp Gly Glu
 405 410 415
 Thr Leu Ala Thr Ile Lys Ala Gln Asp Asn Gln Ile Gly Asn Asn Leu
 420 425 430
 Ser Pro Asn Glu Thr Tyr Pro Lys Lys Gly Leu Ser Pro Leu Ala Leu
 435 440 445
 Asn Thr Met Asp Gln Phe Asn Ala Arg Leu Ile Pro Ile Asn Tyr Asp
 450 455 460
 Gln Leu Lys Lys Leu Asp Ser Gly Lys Gln Ile Lys Leu Glu Thr Thr
 465 470 475 480
 Gln Val Ser Gly Asn Tyr Gly Thr Lys Asn Ser Gln Gly Gln Ile Ile
 485 490 495
 Thr Glu Gly Asn Ser Trp Ser Asn Tyr Ile Ser Gln Ile Asp Ser Val
 500 505 510
 Ser Ala Ser Ile Ile Leu Asp Thr Gly Ser Gln Thr Phe Glu Arg Arg
 515 520 525
 Val Ala Ala Lys Glu Gln Gly Asn Pro Glu Asp Lys Thr Pro Glu Ile
 530 535 540
 Thr Ile Gly Glu Ala Ile Lys Lys Ala Phe Ser Ala Thr Lys Asn Gly
 545 550 555 560
 Glu Leu Leu Tyr Phe Asn Gly Ile Pro Ile Asp Glu Ser Cys Val Glu
 565 570 575
 Leu Ile Phe Asp Asp Asn Thr Ser Glu Ile Ile Lys Glu Gln Leu Lys
 580 585 590
 Tyr Leu Asp Asp Lys Lys Ile Tyr Asn Val Lys Leu Glu Arg Gly Met
 595 600 605
 Asn Ile Leu Ile Lys Val Pro Ser Tyr Phe Thr Asn Phe Asp Glu Tyr
 610 615 620
 Asn Asn Phe Pro Ala Ser Trp Ser Asn Ile Asp Thr Lys Asn Gln Asp
 625 630 635 640
 Gly Leu Gln Ser Val Ala Asn Lys Leu Ser Gly Glu Thr Lys Ile Ile
 645 650 655
 Ile Pro Met Ser Lys Leu Lys Pro Tyr Lys Arg Tyr Val Phe Ser Gly
 660 665 670
 Tyr Ser Lys Asp Pro Ser Thr Ser Asn Ser Ile Thr Val Asn Ile Lys
 675 680 685
 Ser Lys Glu Gln Lys Thr Asp Tyr Leu Val Pro Glu Lys Asp Tyr Thr
 690 695 700
 Lys Phe Ser Tyr Glu Phe Glu Thr Thr Gly Lys Asp Ser Ser Asp Ile
 705 710 715 720
 Glu Ile Thr Leu Thr Ser Ser Gly Val Ile Phe Leu Asp Asn Leu Ser
 725 730 735
 Ile Thr Glu Leu Asn Ser Thr Pro Glu Ile Leu Lys Glu Pro Glu Ile
 740 745 750
 Lys Val Pro Ser Asp Gln Glu Ile Leu Asp Ala His Asn Lys Tyr Tyr
 755 760 765
 Ala Asp Ile Lys Leu Asp Thr Asn Thr Gly Asn Thr Tyr Ile Asp Gly
 770 775 780
 Ile Tyr Phe Glu Pro Thr Gln Thr Asn Lys Glu Ala Leu Asp Tyr Ile
 785 790 795 800
 Gln Lys Tyr Arg Val Glu Ala Thr Leu Gln Tyr Ser Gly Phe Lys Asp
 805 810 815
 Ile Gly Thr Lys Asp Lys Glu Ile Arg Asn Tyr Leu Gly Asp Gln Asn
 820 825 830
 Gln Pro Lys Thr Asn Tyr Ile Asn Phe Arg Ser Tyr Phe Thr Ser Gly

835	840	845
Glu Asn Val Met Thr Tyr Lys Lys Leu Arg Ile Tyr Ala Val Thr Pro		
850	855	860
Asp Asn Arg Glu Leu Leu Val Leu Ser Val Asn		
865	870	875

<210> 33
<211> 879
<212> PRT
<213> Clostridium spiroforme

<400> 33

Met Lys Asn Lys Lys Ile Leu Gly Leu Leu Thr Cys Thr Val Leu Val			
1	5	10	15
Gly Gln Met Met Thr Tyr Pro Val Tyr Ala Lys Thr Ile Thr Gln Asn			
20	25	30	
Tyr Asp Asn Gln Glu Val Glu Thr Thr Asn Glu Lys Thr Val Ser Ser			
35	40	45	
Asn Gly Leu Met Gly Tyr Tyr Phe Ala Asp Glu His Phe Lys Asp Leu			
50	55	60	
Glu Leu Met Ala Pro Val Lys Asn Gly Glu Leu Lys Phe Glu Lys Asn			
65	70	75	80
Lys Val Glu Lys Leu Leu Thr Glu Glu Lys Thr Asn Ile Lys Ser Ile			
85	90	95	
Arg Trp Thr Gly Arg Ile Ile Pro Ser Lys Asp Gly Glu Tyr Thr Leu			
100	105	110	
Ser Thr Asp Lys Asp Asn Val Leu Met Gln Ile Asn Ala Glu Gly Glu			
115	120	125	
Ile Ala Asn Thr Leu Lys Val Asn Met Ile Lys Gly Gln Glu Tyr Ser			
130	135	140	
Ile Arg Ile Glu Ile Gln Asp Lys Asp Ile Gly Tyr Val Asp Asp Leu			
145	150	155	160
Ser Ser Pro Lys Leu Tyr Trp Glu Leu Asn Gly Asp Lys Thr Leu Ile			
165	170	175	
Pro Glu Lys Asn Leu Phe Leu Arg Asp Tyr Ser Lys Ile Asp Glu Asn			
180	185	190	
Asp Pro Phe Ile Pro Lys Asp Asn Phe Phe Asp Leu Lys Leu Lys Ser			
195	200	205	
Arg Ser Ala Arg Leu Ala Ser Gly Trp Gly Asp Glu Asp Leu Asp Thr			
210	215	220	
Asp Asn Asp Asn Ile Pro Asp Ala Tyr Glu Lys Asn Gly Tyr Thr Ile			
225	230	235	240
Lys Asp Ser Ile Ala Val Lys Trp Glu Asp Ser Phe Ala Gln Gln Gly			
245	250	255	
Tyr Lys Lys Tyr Leu Ser Ser Tyr Leu Glu Ser Asn Thr Ala Gly Asp			
260	265	270	
Pro Tyr Thr Asp Tyr Gln Lys Ala Ser Gly Ser Phe Asp Lys Ala Ile			
275	280	285	
Lys Ala Glu Ala Arg Asp Pro Leu Val Ala Ala Tyr Pro Val Val Gly			
290	295	300	
Val Gly Met Glu Lys Leu Ile Ile Ser Thr Asn Glu His Ala Ser Thr			
305	310	315	320
Asp Gln Gly Lys Thr Val Ser Arg Asn Thr Thr Asn Ser Lys Thr Asp			
325	330	335	
Ala Asn Thr Ala Gly Val Ala Ile Asn Ile Ala Tyr Gln Asn Gly Phe			
340	345	350	
Thr Gly Ser Ile Thr Thr Asn Tyr Ser His Thr Thr Glu Asn Ser Thr			
355	360	365	
Ala Val Gln Asn Ser Asn Gly Glu Ser Trp Asn Thr Ser Leu Ser Ile			
370	375	380	
Asn Lys Gly Glu Ser Ala Tyr Ile Asn Ala Asn Val Arg Tyr Tyr Asn			
385	390	395	400

Thr Gly Thr Ala Pro Met Tyr Lys Val Thr Pro Thr Thr Asn Leu Val
 405 410 415
 Leu Asp Gly Asp Thr Leu Thr Thr Ile Lys Ala Gln Asp Asn Gln Ile
 420 425 430
 Gly Asn Asn Leu Ser Pro Asn Glu Thr Tyr Pro Lys Lys Gly Leu Ser
 435 440 445
 Pro Leu Ala Leu Asn Thr Met Asp Gln Phe Ser Ser Arg Leu Ile Pro
 450 455 460
 Ile Asn Tyr Asp Gln Leu Lys Lys Leu Asp Ala Gly Lys Gln Ile Lys
 465 470 475 480
 Leu Glu Thr Thr Gln Val Ser Gly Asn Tyr Gly Ile Lys Asn Ser Gln
 485 490 495
 Gly Gln Ile Ile Thr Glu Gly Asn Ser Trp Ser Asp Tyr Ile Ser Gln
 500 505 510
 Ile Asp Ser Leu Ser Ala Ser Ile Ile Leu Asp Thr Gly Ser Asp Val
 515 520 525
 Phe Glu Arg Arg Val Thr Ala Lys Asp Ser Ser Asn Pro Glu Asp Lys
 530 535 540
 Thr Pro Val Leu Thr Ile Gly Glu Ala Ile Glu Lys Ala Phe Gly Ala
 545 550 555 560
 Thr Lys Asn Gly Glu Ile Leu Tyr Phe Asn Gly Met Pro Ile Asp Glu
 565 570 575
 Ser Cys Val Glu Leu Ile Phe Asp Gly Asn Thr Ala Asn Leu Ile Lys
 580 585 590
 Glu Arg Leu Asn Ala Leu Asn Asp Lys Lys Ile Tyr Asn Val Gln Leu
 595 600 605
 Glu Arg Gly Met Lys Ile Leu Ile Lys Thr Ser Thr Tyr Phe Asn Asn
 610 615 620
 Phe Asp Gly Tyr Asn Asn Phe Pro Ser Ser Trp Ser Asn Val Asp Ser
 625 630 635 640
 Asn Asn Gln Asp Gly Leu Gln Asn Ala Ala Asn Lys Leu Ser Gly Glu
 645 650 655
 Thr Lys Ile Val Ile Pro Met Ser Lys Leu Asn Pro Tyr Lys Arg Tyr
 660 665 670
 Val Phe Ser Gly Tyr Leu Lys Asn Ser Ser Thr Ser Asn Pro Ile Thr
 675 680 685
 Val Asn Ile Lys Ala Lys Glu Gln Lys Thr Tyr Asn Leu Val Ser Glu
 690 695 700
 Asn Asp Tyr Lys Lys Phe Ser Tyr Glu Phe Glu Thr Ile Gly Arg Asp
 705 710 715 720
 Ala Ser Asn Ile Glu Ile Thr Leu Thr Ser Ser Gly Thr Ile Phe Leu
 725 730 735
 Asp Asn Leu Ser Ile Thr Glu Leu Asn Ser Thr Pro Glu Ile Leu Lys
 740 745 750
 Glu Pro Asp Ile Lys Val Pro Ser Asp Gln Glu Ile Ile Asp Ala His
 755 760 765
 Lys Lys Tyr Tyr Ala Asp Leu Ser Phe Asn Gln Ser Thr Ala Asn Tyr
 770 775 780
 Tyr Leu Asp Gly Leu Tyr Phe Glu Pro Thr Gln Thr Asn Lys Glu Val
 785 790 795 800
 Leu Asp Tyr Ile Gln Lys Tyr Lys Val Glu Ala Thr Leu Glu Tyr Ser
 805 810 815
 Gly Phe Lys Asp Ile Gly Thr Lys Asp Lys Glu Leu Arg Asn Tyr Thr
 820 825 830
 Gly Asp Ser Asn Gln Pro Lys Thr Asn Tyr Val Asn Phe Arg Ser Tyr
 835 840 845
 Phe Thr Ser Gly Glu Asn Val Met Pro Tyr Lys Lys Leu Arg Ile Tyr
 850 855 860
 Ala Ile Thr Pro Glu Asn Lys Glu Leu Leu Val Leu Ser Ile Asn
 865 870 875

<211> 721
<212> PRT
<213> Clostridium botulinum

<400> 34

Met	Leu	Val	Ser	Lys	Phe	Glu	Asn	Ser	Val	Lys	Asn	Ser	Asn	Lys	Asn
1				5						10					15
Tyr	Phe	Thr	Ile	Asn	Gly	Leu	Met	Gly	Tyr	Tyr	Phe	Glu	Asn	Asp	Phe
							20			25					30
Phe	Asn	Leu	Asn	Ile	Ile	Ser	Pro	Thr	Leu	Asp	Gly	Asn	Leu	Thr	Phe
						35			40			45			
Ser	Lys	Glu	Asp	Ile	Asn	Ser	Ile	Leu	Gly	Asn	Lys	Ile	Ile	Lys	Ser
						50			55			60			
Ala	Arg	Trp	Ile	Gly	Leu	Ile	Lys	Pro	Ser	Ile	Thr	Gly	Glu	Tyr	Ile
						65			70			75			80
Leu	Ser	Thr	Asn	Ser	Pro	Asn	Cys	Arg	Val	Glu	Leu	Asn	Gly	Glu	Ile
						85			90					95	
Phe	Asn	Leu	Ser	Leu	Asn	Thr	Ser	Asn	Thr	Val	Asn	Leu	Ile	Gln	Gly
						100			105					110	
Asn	Val	Tyr	Asp	Ile	Arg	Ile	Glu	Gln	Leu	Met	Ser	Glu	Asn	Gln	Leu
						115			120			125			
Leu	Lys	Asn	Tyr	Glu	Gly	Ile	Lys	Leu	Tyr	Trp	Glu	Thr	Ser	Asp	Ile
						130			135			140			
Ile	Lys	Glu	Ile	Ile	Pro	Ser	Glu	Val	Leu	Leu	Lys	Pro	Asn	Tyr	Ser
						145			150			155			160
Asn	Thr	Asn	Glu	Lys	Ser	Lys	Phe	Ile	Pro	Asn	Asn	Thr	Leu	Phe	Ser
						165			170					175	
Asn	Ala	Lys	Leu	Lys	Ala	Asn	Ala	Asn	Arg	Asp	Thr	Asp	Arg	Asp	Gly
						180			185			190			
Ile	Pro	Asp	Glu	Trp	Glu	Ile	Asn	Gly	Tyr	Thr	Val	Met	Asn	Gln	Lys
						195			200			205			
Ala	Val	Ala	Trp	Asp	Asp	Lys	Phe	Ala	Ala	Asn	Gly	Tyr	Lys	Lys	Tyr
						210			215			220			
Val	Ser	Asn	Pro	Phe	Lys	Pro	Cys	Thr	Ala	Asn	Asp	Pro	Tyr	Thr	Asp
						225			230			235			240
Phe	Glu	Lys	Val	Ser	Gly	Gln	Ile	Asp	Pro	Ser	Val	Ser	Met	Val	Ala
						245			250			255			
Arg	Asp	Pro	Met	Ile	Ser	Ala	Tyr	Pro	Ile	Val	Gly	Val	Gln	Met	Glu
						260			265			270			
Arg	Leu	Val	Val	Ser	Lys	Ser	Glu	Thr	Ile	Thr	Gly	Asp	Ser	Thr	Lys
						275			280			285			
Ser	Met	Ser	Lys	Ser	Thr	Ser	His	Ser	Ser	Thr	Asn	Ile	Asn	Thr	Val
						290			295			300			
Gly	Ala	Glu	Val	Ser	Gly	Ser	Leu	Gln	Leu	Ala	Gly	Gly	Ile	Phe	Pro
						305			310			315			320
Val	Phe	Ser	Met	Ser	Ala	Ser	Ala	Asn	Tyr	Ser	His	Thr	Trp	Gln	Asn
						325			330			335			
Thr	Ser	Thr	Val	Asp	Asp	Thr	Thr	Gly	Glu	Ser	Phe	Ser	Gln	Gly	Leu
						340			345			350			
Ser	Ile	Asn	Thr	Gly	Glu	Ser	Ala	Tyr	Ile	Asn	Pro	Asn	Ile	Arg	Tyr
						355			360			365			
Tyr	Asn	Thr	Gly	Thr	Ala	Pro	Val	Tyr	Asn	Val	Thr	Pro	Thr	Thr	Thr
						370			375			380			
Ile	Val	Ile	Asp	Lys	Gln	Ser	Val	Ala	Thr	Ile	Lys	Gly	Gln	Glu	Ser
						385			390			395			400
Leu	Ile	Gly	Asp	Tyr	Leu	Asn	Pro	Gly	Gly	Thr	Tyr	Pro	Ile	Ile	Gly
						405			410			415			
Glu	Pro	Pro	Met	Ala	Leu	Asn	Thr	Met	Asp	Gln	Phe	Ser	Ser	Arg	Leu
						420			425			430			
Ile	Pro	Ile	Asn	Tyr	Asn	Gln	Leu	Lys	Ser	Ile	Asp	Asn	Gly	Gly	Thr
						435			440			445			
Val	Met	Leu	Ser	Thr	Ser	Gln	Phe	Thr	Gly	Asn	Phe	Ala	Lys	Tyr	Asn
						450			455			460			

Ser Asn Gly Asn Leu Val Thr Asp Gly Asn Asn Trp Gly Pro Tyr Leu
 465 470 475 480
 Gly Thr Ile Lys Ser Thr Thr Ala Ser Leu Thr Leu Ser Phe Ser Gly
 485 490 495
 Gln Thr Thr Gln Val Ala Val Val Ala Pro Asn Phe Ser Asp Pro Glu
 500 505 510
 Asp Lys Thr Pro Lys Leu Thr Leu Glu Gln Ala Leu Val Lys Ala Phe
 515 520 525
 Ala Leu Glu Lys Lys Asn Gly Lys Phe Tyr Phe His Gly Leu Glu Ile
 530 535 540
 Ser Lys Asn Glu Lys Ile Gln Val Phe Leu Asp Ser Asn Thr Asn Asn
 545 550 555 560
 Asp Phe Glu Asn Gln Leu Lys Asn Thr Ala Asp Lys Asp Ile Met His
 565 570 575
 Cys Ile Ile Lys Arg Asn Met Asn Ile Leu Val Lys Val Ile Thr Phe
 580 585 590
 Lys Glu Asn Ile Ser Ser Ile Asn Ile Ile Asn Asp Thr Asn Phe Gly
 595 600 605
 Val Gln Ser Met Thr Gly Leu Ser Asn Arg Ser Lys Gly Gln Asp Gly
 610 615 620
 Ile Tyr Arg Ala Ala Thr Thr Ala Phe Ser Phe Lys Ser Lys Glu Leu
 625 630 635 640
 Lys Tyr Pro Glu Gly Arg Tyr Arg Met Arg Phe Val Ile Gln Ser Tyr
 645 650 655
 Glu Pro Phe Thr Cys Asn Phe Lys Leu Phe Asn Asn Leu Ile Tyr Ser
 660 665 670
 Ser Ser Phe Asp Lys Gly Tyr Tyr Asp Glu Phe Phe Tyr Phe Tyr Tyr
 675 680 685
 Asn Gly Ser Lys Ser Phe Phe Asn Ile Ser Cys Asp Ile Ile Asn Ser
 690 695 700
 Ile Asn Arg Leu Ser Gly Val Phe Leu Ile Glu Leu Asp Lys Leu Ile
 705 710 715 720
 Ile

<210> 35
 <211> 1338
 <212> PRT
 <213> Bacillus cereus

<400> 35

Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu Gln
 1 5 10 15
 Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu
 20 25 30
 Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln
 35 40 45
 Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu
 50 55 60
 Asp Phe Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu Lys
 65 70 75 80
 Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn
 85 90 95
 Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr
 100 105 110
 Phe Ser Ile Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu
 115 120 125
 Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr
 130 135 140
 Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr
 145 150 155 160
 Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln

	165	170	175												
Phe	Leu	Asp	Arg	Asp	Ile	Lys	Phe	Asp	Ser	Tyr	Leu	Asp	Thr	His	Leu
					180			185				190			
Thr	Ala	Gln	Gln	Val	Ser	Ser	Lys	Glu	Arg	Val	Ile	Leu	Lys	Val	Thr
					195			200			205				
Val	Pro	Ser	Gly	Lys	Gly	Ser	Thr	Thr	Pro	Thr	Lys	Ala	Gly	Val	Ile
					210			215			220				
Leu	Asn	Asn	Ser	Glu	Tyr	Lys	Met	Leu	Ile	Asp	Asn	Gly	Tyr	Met	Val
					225			230			235			240	
His	Val	Asp	Lys	Val	Ser	Lys	Val	Val	Lys	Lys	Gly	Val	Glu	Cys	Leu
					245			250			255				
Gln	Ile	Glu	Gly	Thr	Leu	Lys	Ser	Leu	Asp	Phe	Lys	Asn	Asp	Ile	
					260			265			270				
Asn	Ala	Glu	Ala	His	Ser	Trp	Gly	Met	Lys	Asn	Tyr	Glu	Glu	Trp	Ala
					275			280			285				
Lys	Asp	Leu	Thr	Asp	Ser	Gln	Arg	Glu	Ala	Leu	Asp	Gly	Tyr	Ala	Arg
					290			295			300				
Gln	Asp	Tyr	Lys	Glu	Ile	Asn	Asn	Tyr	Leu	Arg	Asn	Gln	Gly	Gly	Ser
					305			310			315			320	
Gly	Asn	Glu	Lys	Leu	Asp	Ala	Gln	Ile	Lys	Asn	Ile	Ser	Asp	Ala	Leu
					325			330			335				
Gly	Lys	Lys	Pro	Ile	Pro	Glu	Asn	Ile	Thr	Val	Tyr	Arg	Trp	Cys	Gly
					340			345			350				
Met	Pro	Glu	Phe	Gly	Tyr	Gln	Ile	Ser	Asp	Pro	Leu	Pro	Ser	Leu	Lys
					355			360			365				
Asp	Phe	Glu	Gln	Phe	Leu	Asn	Thr	Ile	Lys	Glu	Asp	Lys	Gly	Tyr	
					370			375			380				
Met	Ser	Thr	Ser	Leu	Ser	Ser	Glu	Arg	Leu	Ala	Ala	Phe	Gly	Ser	Arg
					385			390			395			400	
Lys	Ile	Ile	Leu	Arg	Leu	Gln	Val	Pro	Lys	Gly	Ser	Thr	Gly	Ala	Tyr
					405			410			415				
Leu	Ser	Ala	Ile	Gly	Gly	Phe	Ala	Ser	Glu	Lys	Glu	Ile	Leu	Leu	Asp
					420			425			430				
Lys	Asp	Ser	Lys	Tyr	His	Ile	Asp	Lys	Val	Thr	Glu	Val	Ile	Ile	Lys
					435			440			445				
Gly	Val	Lys	Arg	Tyr	Val	Val	Asp	Ala	Thr	Leu	Leu	Thr	Asn	Ser	Arg
					450			455			460				
Gly	Pro	Ser	Thr	Pro	Pro	Thr	Pro	Ser	Pro	Ser	Thr	Pro	Pro	Thr	Pro
					465			470			475			480	
Ser	Asp	Ile	Gly	Ser	Thr	Met	Lys	Thr	Asn	Gln	Ile	Ser	Thr	Thr	Gln
					485			490			495				
Lys	Asn	Gln	Gln	Lys	Glu	Met	Asp	Arg	Lys	Gly	Leu	Leu	Gly	Tyr	Tyr
					500			505			510				
Phe	Lys	Gly	Lys	Asp	Phe	Ser	Asn	Leu	Thr	Met	Phe	Ala	Pro	Thr	Arg
					515			520			525				
Asp	Ser	Thr	Leu	Ile	Tyr	Asp	Gln	Gln	Thr	Ala	Asn	Lys	Leu	Leu	Asp
					530			535			540				
Lys	Lys	Gln	Gln	Glu	Tyr	Gln	Ser	Ile	Arg	Trp	Ile	Gly	Leu	Ile	Gln
					545			550			555			560	
Ser	Lys	Glu	Thr	Gly	Asp	Phe	Thr	Phe	Asn	Leu	Ser	Glu	Asp	Glu	Gln
					565			570			575				
Ala	Ile	Ile	Glu	Ile	Asn	Gly	Lys	Ile	Ile	Ser	Asn	Lys	Gly	Lys	Glu
					580			585			590				
Lys	Gln	Val	Val	His	Leu	Glu	Lys	Gly	Lys	Leu	Val	Pro	Ile	Lys	Ile
					595			600			605				
Glu	Tyr	Gln	Ser	Asp	Thr	Lys	Phe	Asn	Ile	Asp	Ser	Lys	Thr	Phe	Lys
					610			615			620				
Glu	Leu	Lys	Leu	Phe	Lys	Ile	Asp	Ser	Gln	Asn	Gln	Pro	Gln	Gln	Val
					625			630			635			640	
Gln	Gln	Asp	Glu	Leu	Arg	Asn	Pro	Glu	Phe	Asn	Lys	Lys	Glu	Ser	Gln
					645			650			655				
Glu	Phe	Leu	Ala	Lys	Pro	Ser	Lys	Ile	Asn	Leu	Phe	Thr	Gln	Gln	Met
					660			665			670				

Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro
 675 680 685
 Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val
 690 695 700
 Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser
 705 710 715 720
 Asn Pro Leu Glu Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu
 725 730 735
 Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn
 740 745 750
 Pro Leu Val Ala Ala Phe Pro Ser Val Asn Val Ser Met Glu Lys Val
 755 760 765
 Ile Leu Ser Pro Asn Glu Asn Leu Ser Asn Ser Val Glu Ser His Ser
 770 775 780
 Ser Thr Asn Trp Ser Tyr Thr Asn Thr Glu Gly Ala Ser Val Glu Ala
 785 790 795 800
 Gly Ile Gly Pro Lys Gly Ile Ser Phe Gly Val Ser Val Asn Tyr Gln
 805 810 815
 His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr
 820 825 830
 Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg
 835 840 845
 Tyr Asn Asn Val Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr
 850 855 860
 Ser Phe Val Leu Asn Asn Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser
 865 870 875 880
 Asn Ser Thr Ala Leu Asn Ile Ser Pro Gly Glu Ser Tyr Pro Lys Lys
 885 890 895
 Gly Gln Asn Gly Ile Ala Ile Thr Ser Met Asp Asp Phe Asn Ser His
 900 905 910
 Pro Ile Thr Leu Asn Lys Lys Gln Val Asp Asn Leu Leu Asn Asn Lys
 915 920 925
 Pro Met Met Leu Glu Thr Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys
 930 935 940
 Asp Thr His Gly Asn Ile Val Thr Gly Gly Glu Trp Asn Gly Val Ile
 945 950 955 960
 Gln Gln Ile Lys Ala Lys Thr Ala Ser Ile Ile Val Asp Asp Gly Glu
 965 970 975
 Arg Val Ala Glu Lys Arg Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu
 980 985 990
 Asp Lys Thr Pro Ser Leu Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr
 995 1000 1005
 Pro Asp Glu Ile Lys Glu Ile Glu Gly Leu Leu Tyr Tyr Lys Asn Lys
 1010 1015 1020
 Pro Ile Tyr Glu Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr Ala
 1025 1030 1035 1040
 Lys Glu Val Thr Lys Gln Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp
 1045 1050 1055
 Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val Thr
 1060 1065 1070
 Ile Lys Leu Ser Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser
 1075 1080 1085
 Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Asn Gly
 1090 1095 1100
 Lys Lys Gln Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn
 1105 1110 1115 1120
 Thr Asp Ala Gln Glu Lys Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser
 1125 1130 1135
 Leu Tyr Met Lys Ser Glu Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp
 1140 1145 1150
 Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys Asp
 1155 1160 1165
 Asn Tyr Lys Arg Leu Asp Ile Ile Ala His Asn Ile Lys Ser Asn Pro

1170	1175	1180
Ile Ser Ser Leu His Ile Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp		
1185	1190	1195
Asp Asp Ile Ser Ile Thr Asp Val Ala Ser Ile Lys Pro Glu Asn Leu		1200
1205	1210	1215
Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu		
1220	1225	1230
Glu Asp Gly Ile Leu Ile Asp Lys Lys Gly Gly Ile His Tyr Gly Glu		
1235	1240	1245
Phe Ile Asn Glu Ala Ser Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val		
1250	1255	1260
Thr Lys Tyr Glu Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser		
1265	1270	1275
Asp Thr Leu Glu Ser Asp Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe		1280
1285	1290	1295
Asp Phe Thr Lys Tyr Ser Lys Asn Glu Gln Gly Leu Phe Tyr Asp Ser		
1300	1305	1310
Gly Leu Asn Trp Asp Phe Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys		
1315	1320	1325
Glu Met Asn Val Phe His Arg Tyr Asn Lys		
1330	1335	

<210> 36

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 36

Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Ser Ser		
1	5	10
Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro		
20	25	30
Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser		
35	40	45
Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile		
50	55	60
Trp Ser Gly Phe Ile Lys Val Lys Ser Asp Glu Tyr Thr Phe Ala		
65	70	75
80		
Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val		
85	90	95
Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg		
100	105	110
Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys		
115	120	125
Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu		
130	135	140
Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser		
145	150	155
160		
Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro		
165	170	175
Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr		
180	185	190
Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser		
195	200	205
Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu		
210	215	220
Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr		
225	230	235
240		
Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val		
245	250	255
Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser		
260	265	270

Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Cys Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Asn Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480
 Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<210> 37

<211> 735

<212> PRT

<213> Bacillus anthracis

<400> 37
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr
 180 185 190
 Thr Val Asp Val Lys Asn Lys Arg Thr Phe Leu Ser Pro Trp Ile Ser
 195 200 205
 Asn Ile His Glu Lys Lys Gly Leu Thr Lys Tyr Lys Ser Ser Pro Glu
 210 215 220
 Lys Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp Phe Glu Lys Val Thr
 225 230 235 240
 Gly Arg Ile Asp Lys Asn Val Ser Pro Glu Ala Arg His Pro Leu Val
 245 250 255
 Ala Ala Tyr Pro Ile Val His Val Asp Met Glu Asn Ile Ile Leu Ser
 260 265 270
 Lys Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp Ser Glu Thr Arg Thr
 275 280 285
 Ile Ser Lys Asn Thr Ser Thr Ser Arg Thr His Thr Ser Glu Val His
 290 295 300
 Gly Asn Ala Glu Val His Ala Ser Phe Phe Asp Ile Gly Gly Ser Val
 305 310 315 320
 Ser Ala Gly Phe Ser Asn Ser Asn Ser Ser Thr Val Ala Ile Asp His
 325 330 335
 Ser Leu Ser Leu Ala Gly Glu Arg Thr Trp Ala Glu Thr Met Gly Leu
 340 345 350
 Asn Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn Ile Arg Tyr Val Asn
 355 360 365
 Thr Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro Thr Thr Ser Leu Val
 370 375 380
 Leu Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys Ala Lys Glu Cys Gln
 385 390 395 400
 Leu Ser Gln Ile Leu Ala Pro Asn Asn Tyr Tyr Pro Ser Lys Asn Leu
 405 410 415
 Ala Pro Ile Ala Leu Asn Ala Gln Asp Asp Phe Ser Ser Thr Pro Ile
 420 425 430
 Thr Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu Lys Thr Lys Gln Leu
 435 440 445
 Arg Leu Asp Thr Asp Gln Val Tyr Gly Asn Ile Ala Thr Tyr Asn Phe
 450 455 460
 Glu Asn Gly Arg Val Arg Val Asp Thr Gly Ser Asn Trp Ser Glu Val
 465 470 475 480

Leu Pro Gln Ile Gln Glu Thr Thr Ala Arg Ile Ile Phe Asn Gly Lys
 485 490 495
 Asp Leu Asn Leu Val Glu Arg Arg Ile Ala Ala Val Asn Pro Ser Asp
 500 505 510
 Pro Leu Glu Thr Thr Lys Pro Asp Met Thr Leu Lys Glu Ala Leu Lys
 515 520 525
 Ile Ala Phe Gly Phe Asn Glu Pro Asn Gly Asn Leu Gln Tyr Gln Gly
 530 535 540
 Lys Asp Ile Thr Glu Phe Asp Phe Asn Phe Asp Gln Gln Thr Ser Gln
 545 550 555 560
 Asn Ile Lys Asn Gln Leu Ala Glu Leu Asn Ala Thr Asn Ile Tyr Thr
 565 570 575
 Val Leu Asp Lys Ile Lys Leu Asn Ala Lys Met Asn Ile Leu Ile Arg
 580 585 590
 Asp Lys Arg Phe His Tyr Asp Arg Asn Asn Ile Ala Val Gly Ala Asp
 595 600 605
 Glu Ser Val Val Lys Glu Ala His Arg Glu Val Ile Asn Ser Ser Thr
 610 615 620
 Glu Gly Leu Leu Leu Asn Ile Asp Lys Asp Ile Arg Lys Ile Leu Ser
 625 630 635 640
 Gly Tyr Ile Val Glu Ile Glu Asp Thr Glu Gly Leu Lys Glu Val Ile
 645 650 655
 Asn Asp Arg Tyr Asp Met Leu Asn Ile Ser Ser Leu Arg Gln Asp Gly
 660 665 670
 Lys Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp Lys Leu Pro Leu Tyr
 675 680 685
 Ile Ser Asn Pro Asn Tyr Lys Val Asn Val Tyr Ala Val Thr Lys Glu
 690 695 700
 Asn Thr Ile Ile Asn Pro Ser Glu Asn Gly Asp Thr Ser Thr Asn Gly
 705 710 715 720
 Ile Lys Lys Ile Leu Ile Phe Ser Lys Lys Gly Tyr Glu Ile Gly
 725 730 735

<210> 38
 <211> 735
 <212> PRT
 <213> *Bacillus anthracis*

<400> 38
 Glu Val Lys Gln Glu Asn Arg Leu Leu Asn Glu Ser Glu Ser Ser Ser
 1 5 10 15
 Gln Gly Leu Leu Gly Tyr Tyr Phe Ser Asp Leu Asn Phe Gln Ala Pro
 20 25 30
 Met Val Val Thr Ser Ser Thr Thr Gly Asp Leu Ser Ile Pro Ser Ser
 35 40 45
 Glu Leu Glu Asn Ile Pro Ser Glu Asn Gln Tyr Phe Gln Ser Ala Ile
 50 55 60
 Trp Ser Gly Phe Ile Lys Val Lys Ser Asp Glu Tyr Thr Phe Ala
 65 70 75 80
 Thr Ser Ala Asp Asn His Val Thr Met Trp Val Asp Asp Gln Glu Val
 85 90 95
 Ile Asn Lys Ala Ser Asn Ser Asn Lys Ile Arg Leu Glu Lys Gly Arg
 100 105 110
 Leu Tyr Gln Ile Lys Ile Gln Tyr Gln Arg Glu Asn Pro Thr Glu Lys
 115 120 125
 Gly Leu Asp Phe Lys Leu Tyr Trp Thr Asp Ser Gln Asn Lys Lys Glu
 130 135 140
 Val Ile Ser Ser Asp Asn Leu Gln Leu Pro Glu Leu Lys Gln Lys Ser
 145 150 155 160
 Ser Asn Ser Arg Lys Lys Arg Ser Thr Ser Ala Gly Pro Thr Val Pro
 165 170 175
 Asp Arg Asp Asn Asp Gly Ile Pro Asp Ser Leu Glu Val Glu Gly Tyr

	180	185	190
Thr	Val Asp Val Lys Asn Lys Arg	Thr Phe Leu Ser Pro	Trp Ile Ser
	195	200	205
Asn	Ile His Glu Lys Lys Gly Leu Thr Lys Tyr	Lys Ser Ser Pro	Glu
	210	215	220
Lys	Trp Ser Thr Ala Ser Asp Pro Tyr Ser Asp	Phe Glu Lys Val	Thr
	225	230	235
Gly	Arg Ile Asp Lys Asn Val Ser Pro	Glu Ala Arg His	Pro Leu Val
	245	250	255
Ala	Ala Tyr Pro Ile Val His Val Asp Met	Glu Asn Ile	Ile Leu Ser
	260	265	270
Lys	Asn Glu Asp Gln Ser Thr Gln Asn Thr Asp	Ser Glu Thr	Arg Thr
	275	280	285
Ile	Ser Lys Asn Thr Ser Thr Ser Arg Thr	His Thr Ser	Glu Val His
	290	295	300
Gly	Asn Ala Glu Val His Ala Ser Phe Phe	Asp Ile Gly	Gly Ser Val
	305	310	315
Ser	Ala Gly Phe Ser Asn Ser Asn Ser	Thr Val Ala	Ile Asp His
	325	330	335
Ser	Leu Ser Leu Ala Gly Glu Arg	Thr Trp Ala Glu	Thr Met Gly Leu
	340	345	350
Asn	Thr Ala Asp Thr Ala Arg Leu Asn Ala Asn	Ile Arg Tyr	Val Asn
	355	360	365
Thr	Gly Thr Ala Pro Ile Tyr Asn Val Leu Pro	Thr Thr Ser	Leu Val
	370	375	380
Leu	Gly Lys Asn Gln Thr Leu Ala Thr Ile Lys	Ala Lys Glu Asn	Gln
	385	390	395
Leu	Ser Gln Ile Leu Ala Pro Asn Asn	Tyr Tyr Pro Ser	Lys Asn Leu
	405	410	415
Ala	Pro Ile Ala Leu Cys Ala Gln Asp Asp	Phe Ser Ser	Thr Pro Ile
	420	425	430
Thr	Met Asn Tyr Asn Gln Phe Leu Glu Leu Glu	Lys Thr Lys Gln	Leu
	435	440	445
Arg	Leu Asp Thr Asp Gln Val Tyr Gly Asn	Ile Ala Thr Tyr	Asn Phe
	450	455	460
Glu	Asn Gly Arg Val Arg Val Asp Thr Gly	Ser Asn Trp	Ser Glu Val
	465	470	475
Leu	Pro Gln Ile Gln Glu Thr Thr Ala Arg	Ile Ile Phe Asn	Gly Lys
	485	490	495
Asp	Leu Asn Leu Val Glu Arg Arg	Ile Ala Ala Val Asn	Pro Ser Asp
	500	505	510
Pro	Leu Glu Thr Thr Lys Pro Asp Met	Thr Leu Lys Glu	Ala Leu Lys
	515	520	525
Ile	Ala Phe Gly Phe Asn Glu Pro Asn Gly	Asn Leu Gln	Tyr Gln Gly
	530	535	540
Lys	Asp Ile Thr Glu Phe Asp Phe Asn Phe	Asp Gln Gln	Thr Ser Gln
	545	550	555
Asn	Ile Lys Asn Gln Leu Ala Glu Leu Asn	Ala Thr Asn Ile	Tyr Thr
	565	570	575
Val	Leu Asp Lys Ile Lys Leu Asn Ala Lys	Met Asn Ile	Leu Ile Arg
	580	585	590
Asp	Lys Arg Phe His Tyr Asp Arg Asn Asn	Ile Ala Val	Gly Ala Asp
	595	600	605
Glu	Ser Val Val Lys Glu Ala His Arg Glu	Val Ile Asn	Ser Ser Thr
	610	615	620
Glu	Gly Leu Leu Leu Asn Ile Asp Lys Asp	Ile Arg Lys	Ile Leu Ser
	625	630	635
Gly	Tyr Ile Val Glu Ile Glu Asp Thr Glu	Gly Leu Lys Glu	Val Ile
	645	650	655
Asn	Asp Arg Tyr Asp Met Leu Asn Ile Ser	Ser Leu Arg	Gln Asp Gly
	660	665	670
Lys	Thr Phe Ile Asp Phe Lys Lys Tyr Asn Asp	Lys Leu Pro	Leu Tyr
	675	680	685

Ile	Ser	Asn	Pro	Asn	Tyr	Lys	Val	Asn	Val	Tyr	Ala	Val	Thr	Lys	Glu
690					695					700					
Asn	Thr	Ile	Ile	Asn	Pro	Ser	Glu	Asn	Gly	Asp	Thr	Ser	Thr	Asn	Gly
705					710					715					720
Ile	Lys	Lys	Ile	Leu	Ile	Phe	Ser	Lys	Lys	Gly	Tyr	Glu	Ile	Gly	
725									730						735