Лекция 3

SciKit Learn

- Модуль Python в котором содержится большое количество популярных методов машинного обучения
- Имеет открытый исходный код
- Содержит как сами методы для построения моделей машинного обучения, так и вспомогательные алгоритмы
- Может работать с NumPy и Pandas

Предобработка данных

Предобработка данных

- Зачастую, исходные данные непригодны сразу для анализа.
- Стандартные процедуры предобработки данных:
 - Нормировка
 - Стандартизация
 - Устранение отсутствующих значений
 - Преобразование категориальных данных
 - Преобразование транзакционных данных
 - Векторизация текста
 - и много других

Нормировка [0;1]

- Разные признаки могут иметь разный порядок величин, из-за чего затрудняется построение модели и последующий анализ.
- Например, что можно сказать по этой линейной модели: 30x + 0.7y = z

• Самый простой способ, привести все признаки к одному диапазону [0; 1]:

$$\hat{X} = \frac{X - min(X)}{max(X) - min(X)}$$

B sklearn за нормировку отвечает MinMaxScaler

Нормировка по модулю

 Иногда необходимо сохранять знак величины, и в таких случаях MinMaxScaler не подходит.

• Решение, разделить значение каждого признака на максимально значение по модулю и привести признак к диапазон [-1; 1]:

$$\hat{X} = \frac{X}{max(|X|)}$$

• Для этого можно использовать MaxAbsScaler

Устойчивая к выбросам нормировка

• Выбросы в данных могут "испортить" нормировку, и сжать несколько точек в одну.

• Решение, центрировать относительно медианы и разделить на разницу между 1 и 3 квартилью (25 и 75 процентиль):

$$\hat{X} = \frac{X - \tilde{X}}{Q_3 - Q_1}$$

• Для этого можно использовать RobustScaler

Стандартизация

 При нормировке, статистические характеристики признаков различаются. Но некоторые методы и алгоритмы лучше работают, если признаки имеют одинаковое мат. ожидание и стандартное отклонение

 Процедура стандартизации заключается в центрировании по среднему, и деление на стандартное отклонение:

$$\hat{X} = \frac{X - \mathbf{E}X}{\sigma X}$$

• Для этого можно использовать StandardScaler

Кодирование меток классов

- В наборах данных, метки классов часто кодируются в строки. Можно собрать словарь строк, и каждой строке сопоставить порядковый номер.
- B sklearn используется LabelEncoder.

Унитарное кодирование

- LabelEncoder плохо подходит в случае, если классов >2, так как моделям тяжело подстроиться под множество дискретных значений.
- Можно использовать LabelBinarizer, который каждую метку класса кодирует индивидуальным унитарным кодом.

OneHot кодирование

• **OneHotEncoder** позволяет кодировать сразу несколько категориальных меток в виде одного вектора.

 Размер вектора - суммарное количество всех категорий. Для каждой категории сопоставляется свой индекс в векторе.

• В векторе по соответствующему индексу стоит 1, если данная категория есть в наблюдении.

Еще способы предобработки

- FunctionTransformer позволяет применять свобственную функцию преобразования. Например, можно получить модуль каждого признака (np.abs).
- **KBinsDiscretizer** позволяет привести количественный признак к дискретному, разделив диапазон значений на интервалы.
- OrdinalEncoder позволяет преобразовать категориальный признак в порядковый. Например, категории [-2, 3, 10] будут преобразованы в [0, 1, 2].
- **PolynomialFeatures** создает новые признаки за счет комбинаций всех элементов полинома N-й степени. Например, для [a, b] и N = 2 будут получены признаки [1, a, b, a^2, b^2, ab]

Кодирование текста

- 1. Сделать словарь где каждому слову сопоставлено число
- 2. Сделать словарь где каждому слову соответствует индекс в векторе (OneHot)
- 3. Нейросетевая модель с анализом семантики по типу word2vec

Пример текста «Hello World and Machine Learning!».

Кодирование 1-м способом -> [2, 7, 1, 5, 4]

Кодирование 2-м способом -> [0, 1, 1, 0, 1, 1, 0, 1]

Слово	Код	Индекс
#	-1	0
And	1	1
Hello	2	2
Goodbye	3	3
Learning	4	4
Machine	5	5
Not	6	6
World	7	7

word2vec (1)

Кодирует каждое слово вектором определенной размерности таким образом, что семантически близкие слова находятся рядом в кодированном пространстве.

word2vec (2)

Подробнее: https://habr.com/ru/articles/446530/

Понижение размерности

Понижение размерности

• Понижение размерности - такое преобразование данных, при котором уменьшается количество признаков.

• Часто в наборах данных бывает огромное количество признаков (>50), из-за чего обработка и анализ данных усложняются.

- Понижение размерности можно использовать для:
 - Выделение новых значимых признаков
 - Отброс незначимых признаков
 - Устранение шумов
 - Визуализация многомерного пространства

Метод главных компонент - РСА

- РСА наиболее популярный метод понижения размерности
- Идея алгоритма заключается в нахождении таких осей, на долю которых приходятся самый бошьшие величины дисперсии в наборе данных. Такие оси называются главными компонентами (principe components)
- Первая компонента описывает наибольшую дисперсию, вторая следующую по убыванию величину дисперсии, и т.д.

Ковариационная матрица

 При описании многомерной случайной величины, расположение центра (мат. ожидания) определяется как мат. ожидание проекций, но для описания формы, необходимо использовать ковариационную матрицу В общем виде формула і, ј элемента ков. матрицы:

$$Cov(X_i, X_j) = \mathbf{E} [(X_i - \mathbf{E}X_i) \cdot (X_j - \mathbf{E}X_j)] = \mathbf{E} (X_i X_j) - \mathbf{E} (X_i) \mathbf{E} (X_j)$$

ullet При нулевом мат. ожидании каждого признака: $Cov(X_i,X_j)={f E}\left(X_iX_j
ight)$

Нахождение главных компонент

- Так как ковариационная матрица описывает форму набора данных, то ее можно использовать для нахождения компонент.
- Предположим, проекция вектора X на единичный вектор v: $X^* = v^T X$
- Тогда дисперсия вектора при мат. ожидании 0:

$$Var(X) = \mathbf{E}\left(XX^{T}\right)$$

• И можно рассчитать дисперсию проекции как:

$$Var(X^*) = \mathbf{E}\left(X^*X^{*T}\right) = \mathbf{E}\left(\left(v^TX\right)\left(\left(v^TX\right)^T\right) = v^T\mathbf{E}\left(XX^T\right)v = v^TVar(X)v$$

• Согласно отношению Рэлея для ков. матриц. Проекция максимальная, если проекция на собс. вектор, а дисперсия соответствует собс. числу

Матрица преобразования

- Так как дисперсия максимальная при проекции на собственные вектора, то собственные вектора ковариационной матрицы являются главными компонентами.
- Предположим, что были получены собственные вектора v_1 , v_2 , v_3 ... и собственные числа λ_1 , λ_2 , λ_3 ..., причем $\lambda_1 > \lambda_2 > \lambda_3$. То можно составить матрицу W состоящую из n первых собственных векторов-столбцов для проекции набора данных в пространство размерности n.
- Преобразование данных: $X^* = XW$
- Обратное преобразование: $X = X^*W^T$

Пример РСА (1)

Исходные данные Х'

1	0	4.5
2	-0.3	5
3	-0.6	5.5
4	-0.9	6
5	-1.2	6.5

Mean	3	-0.6	5.5
Var	2	0.18	0.5

Стандарт. данные Х

-1.41	1.41	-1.41
-0.70	0.70	-0.70
0	0	0
0.70	-0.7	0.70
1.41	-1.41	1.41

Пример РСА (2)

Несмещенная ков. мат. $CM = X^{T*}X / 4$

Собственные вектора

-0.82	0	0.57
-0.40	0.70	-0.57
0.40	0.70	0.57

Мат. трансформации W

0.57	0
-0.57	0.70
0.57	0.70

Собственные числа

$$(-1.414) \cdot 1.414 + (-0.707) \cdot 0.707 + 0 \cdot 0 + 0.707 \cdot (-0.707) + 1.414 \cdot (-1.414)$$

Пример РСА (3)

Спроецированные данные X*=XW

 $-1.414 \cdot 0.577 + 1.414 \cdot -0.577 - 1.414 \cdot 0.577$

PCA Sklearn

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
Xproj2 = pca.fit_transform(X)
```

Спроецированные данные

2.31	2.1e-16
1.15	-6.6e-17
0	0
-1.15	9e-17
-2.31	1.32e-16

РСА для данных нескольких классов

- РСА часто используется для того, чтобы сделать такую проекцию, в которой точки разных классов будут линейно разделимы.
- Линейная разделимость может не получиться, если данные имеют сложную структуру (например вложенные кольца). Тогда нужно формировать новые признаки или применять ядерный трюк (kernel trick)
- Также проблема, если разделимость не по направлению наибольшей

ДИСПЕРСИИ

Principal components

Dimensionality reduced via PC1 (+jitter)

Dimensionality

Pc2 (17%)

РСА для удаления шумов в данных

• Проводя понижение размерности, а затем восстанавливая данные обратно, можно удалить шумы.

Преобразование данных из размерности 2 в 1 и их восстановление

Коэффициент объясненной дисперсии

 При снижении размерности пространства часть информации, для оценки "количества" сохраненной/потерянной информации необходимо анализировать собственные числа.

• Отношение собственного числа к сумме всех собственных чисел показывает %

дисперсии, который он объясняет

• Остаточная дисперсия:

 $\sum_{l=k+1}^{n} \lambda_l$

• Объясненная дисперсия: $\sum_{l=1}^{N}$

 Отношение объясненной дисперсии ко всей дисперсии показывает % сохраненной информации

t-SNE

- Алгоритм понижения размерности данных для их визуализации.
- Хорошо работает, при очень больших размерностях
- Одностороннее нелинейное преобразование
- Упрощенно, алгоритм можно описать как то, что между каждой парой точек есть пружины. Сила натяжения пружины зависит от вероятности того, что пара точек близкие. Если отпустить пружины, то система придет в состояние равновесия.

2 Dimensional Space dimensionality reduction technique

Более сложно: https://habr.com/ru/articles/267041/

1 Dimensional Space

t-SNE - алгоритм

t-SNE - преобразование расстояний

t-SNE пример на наборе MNIST

t-SNE для текста

