DM optionnel 2: valeurs propres d'une matrice aléatoire 2×2 .

Cours de Probas 1A - Groupe 3

4 Décembre 2024

Énoncé

On se donne $(\Omega,\mathcal{F},\mathbb{P})$ un espace de probabilités, et on considère la matrice symétrique

$$\mathcal{A} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{12} & \mathcal{A}_{22} \end{pmatrix},$$

où \mathcal{A}_{11} , $\mathcal{A}_{22} \sim \mathcal{N}(0,2)$ et $\mathcal{A}_{12} \sim \mathcal{N}(0,1)$ sont des variables aléatoires gaussiennes indépendantes. Noter que la valeur de la matrice aléatoire A est déterminée par celle d'un vecteur aléatoire, $Z = (\mathcal{A}_{11}, \mathcal{A}_{12}, \mathcal{A}_{22})$. On notera

$$A(z) = A(z_1, z_2, z_3) = \frac{1}{\sqrt{2}} \begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}.$$

Question 1

Justifier que Z est un vecteur gaussien, et montrer que pour toute $f: \mathbb{R}^3 \to \mathbb{R}$ mesurable bornée,

$$\mathbb{E}\left[f(Z)\right] = C \int f(z) e^{-\frac{1}{2}\operatorname{Tr}\left(A(z)^2\right)} dz_1 dz_2 dz_3,$$

où C > 0 est une constante à déterminer.

Le vecteur Z a des composantes gaussiennes indépendantes. C'est donc un vecteur gaussien. L'indépendance de ses composantes implique que sa densité est donnée par le produit de ses densités marginales:

$$p(z_1, z_2, z_3) = \left(\frac{1}{2\sqrt{\pi}} e^{-\frac{1}{4}z_1^2}\right) \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z_2^2}\right) \left(\frac{1}{2\sqrt{\pi}} e^{-\frac{1}{4}z_3^2}\right).$$

En simplifiant, on trouve

$$p(z_1, z_2, z_3) = \frac{1}{4\sqrt{2}\pi^{\frac{3}{2}}} e^{-\frac{1}{4}(z_1^2 + 2z_2^2 + z_3^2)}.$$

En notant que

$$A(z)^2 = \frac{1}{2} \begin{pmatrix} z_1^2 + z_2^2 & z_1 z_2 + z_2 z_3 \\ z_1 z_2 + z_2 z_3 & z_2^2 + z_3^2 \end{pmatrix},$$

on retrouve

$$p(z_1, z_2, z_3) = \frac{1}{4\sqrt{2}\pi^{\frac{3}{2}}} e^{-\frac{1}{2}\text{Tr}(A(z)^2)}.$$

Le résultat suit d'une application directe du théorème de la fonction muette.

On s'intéresse maintenant aux éventuelles valeurs propres de A.

Question 2

Rappeler pourquoi $\mathbb{P}(A \text{ est diagonalisable sur } \mathbb{R}) = 1$. Montrer que l'ensemble $\{z \in \mathbb{R}^3 : A(z) \text{ a une valeur propre double}\}$ est négligeable pour la mesure de Lebesgue. On note $\lambda_1(z) \leq \lambda_2(z)$ les valeurs propres de A(z). En déduire que $\mathbb{P}(\lambda_1(Z) \neq \lambda_2(Z)) = 1$.

Par le théorème spectral, toutes les matrices symétriques sont diagonalisables sur \mathbb{R} . Donc,

 $1 = \mathbb{P}(\mathcal{A} \text{ est symétrique}) \leq \mathbb{P}(\mathcal{A} \text{ est diagonalisable sur } \mathbb{R}) \leq 1.$

Les valeurs propres de A(z) sont les racines de son polynôme caractéristique

$$\lambda \mapsto \lambda^2 - (z_1 + z_3)\lambda + z_1 z_3 - z_2^2$$
.

Donc, $\lambda_1(z) = \lambda_2(z)$ si et seulement si le discriminant

$$\Delta(z) = (z_1 + z_3)^2 - 4(z_1 z_3 - z_2^2) = (z_1 - z_3)^2 + 4z_2^2$$

s'annule. Notons $D=\left\{z\in\mathbb{R}^3:\Delta(z)=0\right\}$. On a $D=\left\{z_1=z_3\text{ et }z_2=0\right\}\subset\left\{z_2=0\right\}$. Or, $\left|\left\{z_2=0\right\}\right|$ est de mesure nulle dans \mathbb{R}^3 , et D également. Comme Z est un vecteur à densité, on a

$$\mathbb{P}(\lambda_1(Z) \neq \lambda_2(Z)) = 1 - \mathbb{P}(Z \in D) = 1 - \int_D p_Z(z) \, \mathrm{d}z = 1.$$

A présent, on diagonalise:

$$A(z) = \frac{1}{\sqrt{2}} O(z)^{\top} \Lambda(z) O(z),$$

avec O(z) est une matrice orthogonale paramétrisée par un angle de rotation $\theta(z)$, et $\Lambda(z)$ est une matrice diagonale:

$$O(z) = \begin{pmatrix} \cos \theta(z) & -\sin \theta(z) \\ \sin \theta(z) & \cos \theta(z) \end{pmatrix}, \qquad \Lambda(z) = \operatorname{diag}(\lambda_1(z), \lambda_2(z)).$$

Question 3

Montrer que le changement de variables $(z_1, z_2, z_3) = \varphi(\lambda_1, \lambda_2, \theta)$ associé à cette diagonalisation, donné par

$$\begin{cases} z_1 = \lambda_1 \cos^2 \theta + \lambda_2 \sin^2 \theta \\ z_2 = (\lambda_2 - \lambda_1) \cos \theta \sin \theta \\ z_3 = \lambda_1 \sin^2 \theta + \lambda_2 \cos^2 \theta \end{cases}$$

(vérifier ces expressions) est un C¹-difféomorphisme de

$$\mathcal{O} = \left\{ (\lambda_1, \lambda_2) \in \mathbb{R}^2 : \lambda_1 < \lambda_2 \right\} \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[$$

sur son image à déterminer. Pour quoi est-ce suffisant de considérer $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$? Par un calcul direct, $A(z_1,z_2,z_3)$ admet la décomposition spectrale

$$A(z_1, z_2, z_3) = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{\top} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Autrement dit, (λ_1, λ_2) sont les valeurs propres de $\sqrt{2}A(z_1, z_2, z_3)$, et $\mathcal{B} = \{(\cos \theta, -\sin \theta)^\top, (\sin \theta, \cos \theta)^\top\}$ est une base orthonormée de vecteurs propres pour $A(z_1, z_2, z_3)$.

La fonction φ est clairement \mathcal{C}^1 sur \mathcal{O} . Pour toute matrice symétrique $M \in \mathbb{R}^{2\times 2}$, il existe par le théorème spectral deux nombres réels $\lambda_1 \leq \lambda_2$ et des vecteurs propres respectifs u, v associés, de norme 1, avec $u^\top v = 0$. Comme |u| = 1, il existe $\theta \in [-\pi, \pi]$ tel que $u = (\cos \theta, \sin \theta)^\top$ est un vecteur propre de M pour la valeur λ_1 , et $v = \pm (-\sin \theta, \cos \theta)$ engendre l'orthogonal de u, qui est un espace propre pour la valeur propre λ_2 . Comme -u et -v sont aussi des vecteurs propres, il existe en fait $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, tel que $(u, v) = \left((\cos \theta, \sin \theta)^\top, (-\sin \theta, \cos \theta)^\top\right)$ est une base orthonormée de vecteurs propres pour M, avec $Mu = \lambda_1 u$ et $Mv = \lambda_2 v$.

Cet argument montre que φ est surjective de $\widetilde{\mathcal{O}} := \{(\lambda_1, \lambda_2) \in \mathbb{R}^2 : \lambda_1 \leq \lambda_2\} \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \{z \in \mathbb{R}^3 : A(z) \in \mathbb{R}^{2 \times 2} \text{ est symétrique}\} = \mathbb{R}^3$. Par une propriété élémentaire des applications surjectives $(f: X \to Y \text{ est surjective} \Longrightarrow f: X \setminus Z \to Y \setminus f(Z)$ est surjective pour tout $Z \subset X$), on donc aussi que φ est surjective de \mathcal{O} dans $\varphi(\mathcal{O}) = \mathbb{R}^3 \setminus \varphi\left(\widetilde{\mathcal{O}} \setminus \mathcal{O}\right)$. Calculons cet ensemble. On a:

$$\widetilde{\mathcal{O}} \backslash \mathcal{O} = \left(\left\{ (\lambda_1, \lambda_2, \theta) \in \mathbb{R}^3 : \, \lambda_1 = \lambda_2 \right\} \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right) \cup \left(\left\{ (\lambda_1, \lambda_2) \in \mathbb{R}^3 : \, \lambda_1 \leq \lambda_2 \right\} \times \left\{ \pm \frac{\pi}{2} \right\} \right).$$

Pour tout $\theta \in \mathbb{R}$, on a, par un calcul direct, $\varphi(\lambda_1, \lambda_1, \theta) = (\lambda_1, 0, \lambda_1)$, et pour tous $\lambda_1 \leq \lambda_2$, $\varphi(\lambda_1, \lambda_2, \pm \frac{\pi}{2}) = (\lambda_2, 0, \lambda_1)$. On a donc que φ est surjective de \mathcal{O} dans l'ouvert

$$\varphi(\mathcal{O}) = \mathbb{R}^3 \setminus \left\{ z \in \mathbb{R}^3 : z_2 = 0 \text{ et } z_1 \ge z_3 \right\}.$$

Calculons maintenant l'inverse de φ sur $\varphi(\mathcal{O})$. Il s'agit, étant donné $z \in \varphi(\mathcal{O})$, de montrer que problème au valeurs propres associé à $\sqrt{2}A(z)$ a une

unique solution $(\lambda_1(z), \lambda_2(z), \theta(z)) \in \mathcal{O}$. Les contraintes $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $\lambda_1 < \lambda_2$ servent précisément à garantir l'unicité de la solution. En reprenant le calcul du discriminant de la Question 2, les valeurs propres sont:

$$\lambda_1(z) = \frac{z_1 + z_3 - \sqrt{(z_1 - z_3)^2 + 4z_2^2}}{2}, \qquad \lambda_2(z) = \frac{z_1 + z_3 + \sqrt{(z_1 - z_3)^2 + 4z_2^2}}{2}.$$

Comme le discriminant $\Delta(z)$ est strictement positif sur $\varphi(\mathcal{O})$, les valeurs propres satisfont la contrainte $\lambda_1(z) < \lambda_2(z)$, et λ_1, λ_2 sont \mathcal{C}^{∞} sur $\varphi(\mathcal{O})$.

Reste à résoudre $\theta(z) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. On sait que tout vecteur propre $(\cos \theta(z), \sin \theta(z))^{\top}$ est solution de l'équation aux valeurs propres:

$$\begin{cases} z_1 \cos \theta(z) + z_2 \sin \theta(z) = \lambda_1(z) \cos \theta(z), \\ z_2 \cos \theta(z) + z_3 \sin \theta(z) = \lambda_1(z) \sin \theta(z). \end{cases}$$

On distingue deux cas.

• Si $z_2 \neq 0$, la matrice $A(z_1, z_2, z_3)$ est non-diagonale, et en particulier $\theta(z) \notin \{-\frac{\pi}{2}, 0, \frac{\pi}{2}\}$. En divisant la première équation par $\cos \theta(z) \in]0, 1[$, on trouve

$$\tan\theta(z) = \frac{\lambda_1(z) - z_1}{z_2} \implies \theta(z) = \arctan\frac{\lambda_1(z) - z_1}{z_2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

On vérifie facilement qu'en travaillant sur la deuxième équation, on obtient plutôt

$$\theta(z) = \arctan \frac{z_2}{\lambda_1(z) - z_3},$$

(avec $z_2 \neq 0 \implies \lambda_1(z) \neq z_3$) ce qui donne la même solution puisque $(\lambda_1(z) - z_1)/z_2 = z_2/(\lambda_1(z) - z_3)$ du fait que $\lambda_1(z)$ est une racine du polynôme caractéristique. De même en travaillant avec l'équation sur $\lambda_2(z)$.

• Si $z_2 = 0$, on a nécessairement $z_1 < z_3$ (autrement $z \notin \varphi(\mathcal{O})$), et il s'ensuit que $\lambda_1 = z_1$, $\lambda_2 = z_3$, donc $(1,0)^{\top}$ est un vecteur propre pour λ_1 , et nécessairement $\theta = 0$.

Notons que la solution $\theta(z) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ est déterminée de manière unique par la valeur de z et la contrainte $(\lambda_1(z), \lambda_2(z), \theta(z)) \in \mathcal{O}$. On a donc bien une bijection φ de classe \mathcal{C}^1 de \mathcal{O} dans $\varphi(\mathcal{O})$, avec la bijection réciproque $\varphi^{-1}(z) = (\lambda_1(z), \lambda_2(z), \theta(z))$, où

$$\theta(z) = \mathbb{1}_{z_2 \neq 0} \arctan\left(\frac{\lambda_1 - z_1}{z_2}\right) = \arctan\left(\mathbb{1}_{z_2 \neq 0} \frac{z_3 - z_1 - \sqrt{(z_1 - z_3)^2 + 4z_2^2}}{2z_2}\right).$$

Vérifions que φ^{-1} est de classe \mathcal{C}^1 sur $\varphi(\mathcal{O})$. Ici, on pouvait éviter un calcul douloureux en utilisant le théorème d'inversion globale: comme φ est bijective et \mathcal{C}^1 de \mathcal{O} vers $\varphi(\mathcal{O})$, il suffit de vérifier que la différentielle $D\varphi$ est inversible sur \mathcal{O} . Pour ce faire, on pouvait vérifier que le Jacobien det $D\varphi$ ne s'annule pas sur \mathcal{O} , ce qui suit facilement du calcul effectué à la Question 4.

Faisons ce calcul: le seul point délicat est de s'assurer que $\theta(z)$ est bien de classe \mathcal{C}^1 sur $\varphi(\mathcal{O})$. Posons $f(z) = \mathbbm{1}_{z_2 \neq 0} \frac{z_3 - z_1 - \sqrt{(z_1 - z_3)^2 + 4z_2^2}}{2z_2}$. Par composition (la fonction arctan étant \mathcal{C}^{∞} sur \mathbb{R}), il suffit de vérifier que les dérivées partielles définies pour $z_2 \neq 0$ par

$$\begin{split} \frac{\partial f}{\partial z_1} &= \frac{1}{2} z_2^{-1} \left(-1 - \frac{(z_1 - z_3)}{|z_1 - z_3|} \left(1 + \frac{4z^2}{(z_1 - z_3)^2} \right)^{-\frac{1}{2}} \right), \\ \frac{\partial f}{\partial z_2} &= \frac{1}{2} z_2^{-1} |z_1 - z_3| \left(\left(1 + \frac{4z_2^2}{(z_1 - z_3)^2} \right)^{\frac{1}{2}} + \frac{z_1 - z_3}{|z_1 - z_3|} \right) - 2 \left((z_3 - z_1)^2 + 4z_2^2 \right)^{-\frac{1}{2}}, \\ \frac{\partial f}{\partial z_3} &= \frac{1}{2} z_2^{-1} \left(1 + \frac{(z_1 - z_3)}{|z_1 - z_3|} \left(1 + \frac{4z^2}{(z_1 - z_3)^2} \right)^{-\frac{1}{2}} \right), \end{split}$$

sont continues sur $\varphi(\mathcal{O})$. Remarquons d'abord que θ est clairement \mathcal{C}^{∞} sur $\varphi(\mathcal{O}) \cap \{z_2 \neq 0\}$. On vérifie donc que les dérivées partielles sont définies et continues sur $\varphi(\mathcal{O}) \cap \{z_2 = 0\}$.

Soit $z \in \varphi(\mathcal{O}) \cap \{z_2 = 0\}$, ce qui implique en particulier que $z_3 > z_1$. On a d'abord que $f(z_1 + h, 0, z_3) = f(z_1, 0, z_3 + h) = 0$ pour h suffisamment petit, et donc $\frac{\partial f}{\partial z_1}(z) = \frac{\partial f}{\partial z_3}(z) = 0$. De plus,

$$\lim_{h \to 0} \frac{1}{h} (f(z_1, h, z_3) - f(z_1, 0, z_3)) = \frac{1}{h} \frac{z_3 - z_1 - \sqrt{(z_1 - z_3)^2 + 4h^2}}{2h}$$

$$= \lim_{h \to 0} |z_3 - z_1| 2h^{-2} \left(1 - \left[1 + \frac{4h^2}{(z_1 - z_3)^2} \right]^{\frac{1}{2}} \right)$$

$$= \lim_{h \to 0} |z_3 - z_1| 2h^{-2} \left(1 - \left[1 + \frac{2h^2}{(z_3 - z_1)^2} \right] \right)$$

$$= -|z_3 - z_1|^{-1},$$

et donc $\frac{\partial f}{\partial z_2}(z) = -|z_3 - z_1|^{-1}$. Les dérivées partielles sont bien définies. Montrons qu'elles sont continues sur $\varphi(\mathcal{O})$.

On fixe maintenant une suite $z_n \to z$ avec $z_n \in \varphi(\mathcal{O})$ pour tout n. On peut supposer $z_{2,n} \neq 0$ pour tout n, car le long de $\{z_2 = 0\}$, la convergence des dérivées partielles a bien lieu par le calcul ci-dessus. On a $z_{2,n} \to 0$, et $z_{3,n} - z_{1,n} \to z_3 - z_1 > 0$. Ceci implique $(z_{1,n} - z_{3,n})/|z_{1,n} - z_{3,n}| = -1$ pour tout n suffisamment grand.

• Cette observation donne l'équivalent:

$$\frac{\partial f}{\partial z_1}(z_n) \underset{n \to \infty}{\sim} \frac{1}{2} z_{2,n}^{-1} \left(-1 + \left[1 + \frac{4z_{2,n}^2}{(z_{1,n} - z_{3,n})^2} \right]^{-\frac{1}{2}} \right) \sim \frac{-z_{2,n}}{(z_{1,n} - z_{3,n})^2} \to 0.$$

 \bullet Un calcul similaire traite $\frac{\partial f}{\partial z_3},\;z_1$ et z_3 jouant des rôles symétriques.

• Comme

$$2((z_{3,n}-z_{1,n})^2+4z_{2,n}^2)^{-\frac{1}{2}}\xrightarrow{n\to\infty}2|z_3-z_1|^{-1},$$

il suffit de calculer l'équivalent

$$\frac{\partial f}{\partial z_2}(z_n) \underset{n \to \infty}{\sim} \frac{1}{2} |z_{3,n} - z_{1,n}| z_{2,n}^{-2} \left(\left[1 + \frac{4z_{2,n}^2}{(z_{1,n} - z_{3,n})^2} \right]^{\frac{1}{2}} - 1 \right) \sim |z_{3,n} - z_{1,n}|^{-1} \to |z_1 - z_3|^{-1}$$

pour conclure
$$-\frac{\partial f}{\partial z_2}(z_n) \to -|z_3-z_1|^{-1}$$
.

On en déduit que chacune des dérivées partielles de f est continue sur l'ouvert $\varphi(\mathcal{O})$, puis que φ^{-1} est de classe \mathcal{C}^1 sur $\varphi(\mathcal{O})$.

Question 4

En déduire que la densité du vecteur aléatoire $(\lambda_1(Z), \lambda_2(Z), \theta(Z))$ est donnée par

$$q(\lambda_1,\lambda_2,\theta) = C\mathbb{1}_{\lambda_1<\lambda_2}\mathbb{1}_{-\frac{\pi}{2}<\theta<\frac{\pi}{2}}\mathrm{e}^{-\frac{1}{4}(\lambda_1^2+\lambda_2^2)}(\lambda_2-\lambda_1).$$

Quelle est la loi de $\theta(Z)$? Justifier que les valeurs propres de \mathcal{A} sont indépendantes de ses vecteurs propres, et donner la densité du couple $(\lambda_1(Z), \lambda_2(Z))$. On calcule le Jacobien de φ . La matrice jacobienne de φ au point $(\lambda_1, \lambda_2, \theta)$ est donnée par

$$D\varphi(\lambda_1, \lambda_2, \theta) = \begin{pmatrix} \cos^2 \theta & \sin^2 \theta & 2(\lambda_2 - \lambda_1)\cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos \theta \sin \theta & (\lambda_2 - \lambda_1)(\cos^2 \theta - \sin^2 \theta) \\ \sin^2 \theta & \cos^2 \theta & -2(\lambda_2 - \lambda_1)\cos \theta \sin \theta \end{pmatrix}$$

Puis, en utilisant les propriétés du déterminant:

$$\det D\varphi(\lambda_1, \lambda_2, \theta) = (\lambda_2 - \lambda_1) \begin{vmatrix} \cos^2 \theta & \sin^2 \theta & 2\cos\theta \sin\theta \\ -\cos\theta \sin\theta & \cos\theta \sin\theta & \cos^2 \theta - \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta & -2\cos\theta \sin\theta \end{vmatrix}$$
(Linéarité par rapport à C_3)
$$= (\lambda_2 - \lambda_1) \begin{vmatrix} \cos^2 \theta & \sin^2 \theta & \sin 2\theta \\ -\cos\theta \sin\theta & \cos\theta \sin\theta & \cos 2\theta \\ \sin^2 \theta & \cos^2 \theta & -\sin 2\theta \end{vmatrix}$$
(Identités trigonométriques)
$$= (\lambda_2 - \lambda_1) \begin{vmatrix} 1 & \sin^2 \theta & \sin 2\theta \\ 0 & \cos\theta \sin\theta & \cos 2\theta \\ 1 & \cos^2 \theta & -\sin 2\theta \end{vmatrix}$$
(Identités trigonométriques)
$$= (\lambda_2 - \lambda_1) \begin{vmatrix} 2 & 1 & 0 \\ 0 & \cos\theta \sin\theta & \cos 2\theta \\ 1 & \cos^2 \theta & -\sin 2\theta \end{vmatrix}$$
($C_1 \rightarrow C_1 + C_2$)
$$= (\lambda_2 - \lambda_1) \begin{vmatrix} 2 & 1 & 0 \\ 0 & \cos\theta \sin\theta & \cos 2\theta \\ 1 & \cos^2 \theta & -\sin 2\theta \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ \cos\theta \sin\theta & \cos 2\theta \end{vmatrix}$$
(Développement en C_1)
$$= (\lambda_2 - \lambda_1) (-2\cos\theta \sin\theta \sin 2\theta - 2\cos^2\theta \cos 2\theta + \cos 2\theta)$$

$$= (\lambda_2 - \lambda_1) (-\sin^2 2\theta + \cos 2\theta (1 - 2\cos^2\theta))$$

$$= (\lambda_2 - \lambda_1) (-\sin^2 2\theta - \cos^2 2\theta)$$

$$= (\lambda_2 - \lambda_1) (-\sin^2 2\theta - \cos^2 2\theta)$$

Notons que cette quantité ne s'annule pas sur \mathcal{O} , ce qui assure aussi le fait que φ est un \mathcal{C}^1 -difféomorphisme de \mathcal{O} dans $\varphi(\mathcal{O})$ par le théorème d'inversion globale.

D'autre part, les valeurs propres de $2A(z)^2$ sont données par $\lambda_1(z)^2, \lambda_2(z)^2$, ce qui implique $\text{Tr}(A(z)^2) = \frac{\lambda_1(z)^2 + \lambda_2(z)^2}{2}$, et on a

$$\mathbb{P}(Z \in \varphi(\mathcal{O})) = 1,$$

l'ensemble $\mathbb{R}^3 \setminus \varphi(\mathcal{O})$ étant de mesure nulle. La densité de Z est donc donnée presque partout par

$$C \mathbb{1}_{z \in \varphi(\mathcal{O})} e^{-\frac{1}{4} \left(\lambda_1(z)^2 + \lambda_2(z)^2\right)}.$$

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ mesurable bornée. On a

$$\begin{split} \mathbb{E}\left[f(\lambda_{1}(Z),\lambda_{2}(Z),\theta(Z))\right] &= \mathbb{E}\left[f\circ\varphi^{-1}(Z)\right] \\ &= C\int_{\mathbb{R}^{3}}f\circ\varphi^{-1}(z)\mathbb{1}_{z\in\varphi(\mathcal{O})}\mathrm{e}^{-\frac{1}{4}(\lambda_{1}(z)^{2}+\lambda_{2}(z)^{2})} \\ &= C\int_{\mathbb{R}^{3}}f(\lambda_{1},\lambda_{2},\theta)\mathbb{1}_{(\lambda_{1},\lambda_{2},\theta)\in\mathcal{O}}\mathrm{e}^{-\frac{1}{4}(\lambda_{1}^{2}+\lambda_{2}^{2})}\left|\det D\varphi(\lambda_{1},\lambda_{2},\theta)\right|\,\mathrm{d}\lambda_{1}\mathrm{d}\lambda_{2}\,\mathrm{d}\theta \\ &= C\int_{\mathbb{R}^{3}}f\mathbb{1}_{\lambda_{1}<\lambda_{1}}\mathbb{1}_{-\frac{\pi}{2}<\theta<\frac{\pi}{2}}\mathrm{e}^{-\frac{1}{4}(\lambda_{1}^{2}+\lambda_{2}^{2})}|\lambda_{2}-\lambda_{1}|. \end{split}$$

On a utilisé le théorème de la fonction muette pour écrire l'égalité à la deuxième ligne, puis la formule de changement de variable appliquée à φ^{-1} , et enfin le

calcul du Jacobien à la dernière ligne. On conclut avec une nouvelle application du théorème de la fonction muette que la densité q a bien la forme recherchée.

Par la formule des densités marginales, la densité de θ est donnée par $q_{\Theta}(\theta) = \int_{\mathbb{R}^2} q(\lambda_1, \lambda_2, \theta) \mathrm{d}\lambda_1 \, \mathrm{d}\lambda_2 = C' \mathbb{1}_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(\theta)$ pour une certaine constante C'. Comme c'est une densité de probabilités, on a en fait $C' = 1/(\int_{\mathbb{R}} q_{\Theta}(\theta)) \, \mathrm{d}\theta = \pi^{-1}$, et donc $\theta \sim \mathcal{U}(]-\frac{\pi}{2}, \frac{\pi}{2}[)$. D'autre part, on remarque que q s'écrit sous la forme produit

$$q(\lambda_1, \lambda_2, \theta) = q_{\Theta}(\theta)g(\lambda_1, \lambda_2),$$

οù

$$g(\lambda_1, \lambda_2) = \int_{\mathbb{R}} q(\lambda_1, \lambda_2, \theta) d\theta = \pi C \mathbb{1}_{\lambda_1 < \lambda_2} e^{-\frac{1}{4}(\lambda_1^2 + \lambda_2^2)} (\lambda_2 - \lambda_1)$$

est la densité du couple $(\lambda_1(Z), \lambda_2(Z))$. Ceci implique que ce dernier est indépendant de $\theta(Z)$: les valeurs propres de \mathcal{A} sont indépendantes de ses vecteurs propres, qui sont des fonctions de $\theta(Z)$.

Question 5

En considérant le changement de variable $(u,v) = (\lambda_1(z), \lambda_2(z) - \lambda_1(z))$, (à justifier avec précaution), calculer la loi du trou spectral $V = \frac{1}{\sqrt{2}}(\lambda_2(Z) - \lambda_1(Z))$. La reconnaissez-vous ?

Le changement de variable

$$\begin{cases} u = \lambda_1 \\ v = \lambda_2 - \lambda_1 \\ \lambda_1 < \lambda_2 \end{cases} \iff \begin{cases} \lambda_1 = u \\ \lambda_2 = u + v \\ v > 0 \end{cases}$$

est un \mathcal{C}^1 -difféomorphisme de $\{(\lambda_1, \lambda_2) \in \mathbb{R}^d : \lambda_1 < \lambda_2\}$ vers $\mathbb{R} \times \mathbb{R}_+^*$, de Jacobien $1 = \det \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.

La densité du couple $(\lambda_1(Z), \lambda_2(Z) - \lambda_1(Z))$ est donc donnée par

$$h(u,v) = \pi C \mathbb{1}_{v>0} e^{-\frac{1}{4}(u^2 + (u+v)^2)} v = \pi C \mathbb{1}_{v>0} v e^{-\frac{1}{4}v^2} e^{-\frac{1}{4}\left(2u^2 + 2uv\right)}.$$

Par la formule des densités marginales, on en déduit que $\lambda_2(Z) - \lambda_1(Z)$ admet la densité

$$\int_{-\infty}^{+\infty} h(u, v) du = \pi C \mathbb{1}_{v > 0} v e^{-\frac{1}{4}v^2} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(u^2 + uv)} du.$$

En complétant le carré dans l'intégrale, on trouve que

$$\int_{-\infty}^{+\infty} e^{-\frac{1}{2}(u^2 + uv)} = e^{\frac{v^2}{8}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(u + \frac{v}{2})^2} du = \sqrt{2\pi} e^{\frac{v^2}{8}},$$

puis que $\lambda_2(Z) - \lambda_1(Z)$ a la densité

$$\pi C \sqrt{2\pi} \mathbb{1}_{v>0} v e^{-\frac{v^2}{8}} = \frac{1}{4} \mathbb{1}_{v>0} v e^{-\frac{v^2}{8}}.$$

En considérant $R=\frac{\lambda_2(Z)-\lambda_1(Z)}{2}$, on voit facilement que R suit une loi de Rayleigh standard (voir DM1), et le trou spectral a la même loi que $\sqrt{2}R$. C'est une Rayleigh de paramètre $\sigma^2=2$.