Øvelse 1 – Snorbølger

Rasmus Klitgaard*

Rene Czepluch[†]

Laurits N. Stokholm[‡]

18. april 2017

1 Introduktion

I dette forsøg, undersøges stående bølger på en streng. Specielt undersøges, sammenhængen mellem

2 Teori

I laboratoriet genereres stående bølger på en snor. Hertil bruges begreber som harmonier, toner, frekvens (her skelnes mellem fundamental– drivningsfrekvens), interferens, som også leder ud i to begreber – nemlig konstruktiv og destruktiv interferens. Frekvensen af en stående bølge, er givet ved

$$f_g = \frac{1}{2L} \sqrt{\frac{F}{\mu}} \tag{1}$$

Hvor F er snor spændingen, μ er masse pr. længdenhed og L er længden på snoren.

Dette er lige en lille test, til at se om det hele virker! endnu en test

Fig. 1: Resultater af fit, teoretisk værdier og observation af grundfekvensen som funktion af snorspændingen.

3 Eksperimentel Opstilling

4 Databehandling

Grundfrekvensens afhængighed af snorspænding

Her foretages varibel kontrol. μ og L i INDSÆT FORMEL ????. Observationerne kan ses i figur 1.

Grundfrekvensens afhængighed af masse/længde

Igen foretages varibel kontrol af samme formel INDSÆT FORMEL ????? Hvor snorspændingen F og længden L holdes konstant.

^{*}Rasmus.Klitgaard@post.au.dk

[†]rene.czepluch@post.au.dk

[‡]laurits.stokholm@post.au.dk

Fig. 2: Resultater af observationer og teoretiske værdier, af grundfrekvensen som funktion af snorspændingen.

5 Diskussion

6 Konklusion