## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

## ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

## Отчет

## по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Хемчан А. Т.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.



Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 12 вариантом задания были определены:
  - $U_{MAX} = 1,5 B$  и  $U_{MIN}$ : -1,5 B;
  - в соотвествии с заданием  $U_{\text{огр}} = U_{\text{MAX}} = 1,5 \text{ B};$
  - в соотвествии с вариантом 12  $f_{MIN} = 0.3$  к $\Gamma$ ц и  $f_{MAX} = 3.2$  к $\Gamma$ ц;
  - в соответсвии с заданием  $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования  $N_{MIN}$  по формуле  $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$ .  $N_{MIN}=3$  / 0.25=12.

Было определено число уровней  $N_{KB}$  из условия  $N_{KB} > N_{MIN}$ .  $N_{KB} = 16$ .

Было определено количество разрядов n в коде.  $n = log_2 16 = 4$  бит.

Было расчитан шаг квантования по формуле  $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$  В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой FB, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени  $T_{\rm A} \!\!\!\! \leq \!\! 1/2F_{\rm B}$ ) должна удовлетворять условию  $F_{\rm A} \!\!\!\! \geq \!\! 2F_{\rm B}$ ).  $F_{\rm A} = F_{\rm MAX} * 2 = 6,4$  к $\Gamma$ ц

3.2 При частоте дескритизации 6,4кГц длина одного отсчета будет равна 1000 мс / 6400 гц = 0,16мс  $\rightarrow$  количесвто отсчетов за 1мс будет равно 1мс / 0,16мс  $\approx$  6 отсчетов, для 6мс количество отсчетов равняется 36. Были отмечены точки Ubx(t). Это показано на рисунке 2. Было определено Ubx(t), Uкв(t),  $\Delta$ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

| Отсчет сигнала | UBX(t), B | UKB(t),B | ΔKB(t) | N  | Двоичный код |
|----------------|-----------|----------|--------|----|--------------|
| 1              | 1,40      | 1,41     | -0,01  | 15 | 1111         |
| 2              | 1,06      | 1,13     | -0,07  | 12 | 1100         |
| 3              | 0,57      | 0,66     | -0,09  | 7  | 0111         |
| 4              | 0,05      | 0,09     | -0,04  | 1  | 0001         |
| 5              | 0,41      | 0,47     | -0,06  | 5  | 0101         |
| 6              | 0,68      | 0,75     | -0,07  | 8  | 1000         |
| 7              | 0,70      | 0,75     | -0,05  | 8  | 1000         |
| 8              | 0,49      | 0,56     | -0,07  | 6  | 0110         |
| 9              | 0,12      | 0,19     | -0,06  | 2  | 0010         |
| 10             | 0,28      | 0,28     | -0,01  | 3  | 0011         |
| 11             | 0,60      | 0,66     | -0,05  | 7  | 0111         |
| 12             | 0,76      | 0,84     | -0,08  | 9  | 1001         |
| 13             | 0,73      | 0,75     | -0,02  | 8  | 1000         |
| 14             | 0,47      | 0,56     | -0,09  | 6  | 0110         |
| 15             | 0,04      | 0,09     | -0,06  | 1  | 0001         |
| 16             | 0,52      | 0,56     | -0,04  | 6  | 0110         |
| 17             | 0,99      | 1,03     | -0,04  | 11 | 1011         |
| 18             | 1,36      | 1,41     | -0,05  | 15 | 1111         |
| 19             | 1,46      | 1,50     | -0,04  | 16 | 1111         |
| 20             | 1,30      | 1,31     | -0,02  | 14 | 1110         |
| 21             | 0,87      | 0,94     | -0,07  | 10 | 1010         |
| 22             | 0,36      | 0,38     | -0,02  | 4  | 0100         |
| 23             | 0,16      | 0,19     | -0,03  | 2  | 0010         |

| 24 | 0,55 | 0,56 | -0,01 | 6  | 0110 |
|----|------|------|-------|----|------|
| 25 | 0,76 | 0,84 | -0,08 | 9  | 1001 |
| 26 | 0,75 | 0,75 | 0,00  | 8  | 1000 |
| 27 | 0,55 | 0,56 | -0,02 | 6  | 0110 |
| 28 | 0,17 | 0,19 | -0,02 | 2  | 0010 |
| 29 | 0,23 | 0,28 | -0,05 | 3  | 0011 |
| 30 | 0,57 | 0,66 | -0,09 | 7  | 0111 |
| 31 | 0,73 | 0,75 | -0,02 | 8  | 1000 |
| 32 | 0,64 | 0,66 | -0,02 | 7  | 0111 |
| 33 | 0,31 | 0,38 | -0,07 | 4  | 0100 |
| 34 | 0,17 | 0,19 | -0,02 | 2  | 0010 |
| 35 | 0,70 | 0,75 | -0,05 | 8  | 1000 |
| 36 | 1,15 | 1,22 | -0,07 | 13 | 1101 |



3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью АМІ. Результат приведен на рисунке 3 — 7.



Рисунок 3 — Коды с 1 по 8



Рисунок 4 — Коды с 9 по 16



Рисунок 5 — Коды с 17 по 24



Рисунок 6 — Коды с 25 по 32



Рисунок 7 — Коды с 33 по 36

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.