

Frédéric CHIPOT / Florian DAYRE / Louis DUPLANTIER / Alex FOURNIER / Gael HALNAUT

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS

```
DAT terminate process
MOV move from A to B
ADD add A to B, result in B
SUB subtract A from B, result in B
MUL multiply A by B, result in B
DIV divide B by A, result in B if
    A is not zero, else DAT
MOD divide B by A, remainder in B
    if A is not zero, else DAT
JMP execute at A
JMZ execute at A if B is zero
JMN execute at A if B is not zero
DJN decrement B, if B is not zero.
    execute at A
SLT skip if A is less than B
SEQ skip if A is equal to B
CMP
SNE skip if A is not equal to B
NOP no operation
SPL new task at A
```

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS

DAT	terminate process move from A to B								
MOV									
ADD	add A to B, result in B								
SUB	subtract A from B, result in B								
MUL	multiply A by B, result in B								
DIV	divide B by A, result in B if A is not zero, else DAT								
MOD	divide B by A, remainder in B if A is not zero, else DAT								
JMP	execute at A								
JMZ	execute at A if B is zero								
JMN	execute at A if B is not zero								
DJN	decrement B, if B is not zero, execute at A								
SLT	skip if A is less than B								
SEQ CMP	skip if A is equal to B								
SNE	skip if A is not equal to B								
NOP	no operation								
SPL	new task at A								

. A	Instr. read and write A-fields
.в	Instr. read and write B-fields
. AB	<pre>Instr. read A-field of A- instr. and B-field of B-instr. and write B-field</pre>
. BA	<pre>Instr. read B-field of A- instr. and A-field of B-instr. and write A-field</pre>
.F	Instr. read both A&B fields of A&B instr. and write to both A&B fields (Ato A and B to B).
.x	Instr. read both A&B fields of A&B instr. and write to both A&B fields (Ato B and B to A).
.I	<pre>Instr. read and write Instr., Modifier, Modes, A & B fields</pre>

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS

DAT	terminate process								
MOV	move from A to B								
ADD	add A to B, result in B								
SUB	subtract A from B, result in B								
MUL	multiply A by B, result in B								
DIV	divide B by A, result in B if A is not zero, else DAT								
MOD	divide B by A, remainder in B if A is not zero, else DAT								
JMP	execute at A								
JMZ	execute at A if B is zero								
JMN	execute at A if B is not zero								
DJN	decrement B, if B is not zero, execute at A								
SLT	skip if A is less than B								
SEQ CMP	skip if A is equal to B								
SNE	skip if A is not equal to B								
NOP	no operation								
SPI.	new task at A								

. A	Instr. read and write A-fields
.в	Instr. read and write B-fields
. AB	<pre>Instr. read A-field of A- instr. and B-field of B-instr. and write B-field</pre>
.BA	<pre>Instr. read B-field of A- instr. and A-field of B-instr. and write A-field</pre>
.F	Instr. read both A&B fields of A&B instr. and write to both A&B fields (Ato A and B to B).
.x	Instr. read both A&B fields of A&B instr. and write to both A&B fields (Ato B and B to A).
.I	Instr. read and write Instr., Modifier, Modes, A & B fields

#	immediate
\$	direct
a	indirect using B-field
<	predecrement indirect using B-field
>	postincrement indirect using B-field
*	indirect using A-field
{	predecrement indirect using A-field
}	postincrement indirect using A-field

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS
- Un vainqueur ou des ex-aequo

Corewar:

- Jeu de contrôle d'espace mémoire
- "Guerriers" codés en RedCode s'affrontent dans une machine virtuelle MARS
- Un vainqueur ou des ex-aequo

Objectif:

- Développer un algorithme d'évolution permettant de générer des "guerriers"

2) Présentation de l'existant

Article présentant un algorithme d'évolution

An Evolutionary Approach Generates Human Competitive Corewar Programs

Barkley Vowk¹, Alexander (Sasha) Wait², Christian Schmidt³

¹University of Alberta, Department of Mathematical and Statistical Sciences, Edmonton, AB T6G2E1, Canada ²Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA ³Glasower Damm 4R, 15831 Mahlow, Germany

fizmo@corewar.info

2) Présentation de l'existant

Article présentant un algorithme d'évolution

ExMars

- Simulateur de MARS
- Amélioration de Exhaust

2) Présentation de l'existant

Article présentant un algorithme d'évolution

ExMars

- Simulateur de MARS
- Amélioration de Exhaust

Corewin

- Interface graphique
- Facilité à lancer des combats

2) Les besoins principaux

- Algorithme d'évolution
- Interface entre Mars et l'algorithme d'évolution
- Statistiques pour la génération 0
- Convertisseur de RedCode
- Implémentation des combats
- Paramètres d'algorithme d'évolution
- Suivi d'exécution d'algorithme

```
"version": 31,
"generations": 1000,
"battles by generation":
       "gen number": 0,
       "value":
   }, {
       "gen number": 75,
       "value": 25
"num warriors": [{
       "gen number": 0,
       "value": 30
   }, {
       "gen number": 75,
       "value": 25
"A value modifier min": 0,
"A value modifier max": 7999,
"B_value_modifier_min": 0,
"B value modifier max": 7999,
```

```
"old": 0.05,
   "p_mutation_line": 0.1,
   "p_mutation_field": 0.2,
   "breed_length_min": 4,
   "breed_length_max": 10,
   "generator_path":
"../../data/Warriors/Infinite",
   "generator_depth": 2,
   "time_tested": 4,
   "score": 123.68325042724609
}
```

Déroulement de l'algorithme d'évolution


```
C:\Users\Ishigh\Projects\core-war\src\x64\Release\Evolution algorithm.exe
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 795 818 877
***** Generation 43 *****
******************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 795 818 877 898 917
***** Generation 44 *****
****************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 795 818 877 898 917 956
***** Generation 45 *****
******************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 870 893 915 946 962
***** Generation 46 *****
********
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 795 818 877 898 917 956 979
***** Generation 47 *****
*****************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 853 900 918 941 959 989
***** Generation 48 *****
*******************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 870 893 915 946 962 991
***** Generation 49 *****
*****************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 853 900 918 941 959 989 1006 1048
***** Generation 50 *****
*****************
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 853 900 918 941 959 989 1006 1077
***** Generation 51 *****
********
best warrior of this battle : 23 40 121 451 477 560 670 703 745 773 786 824 853 900 918 941 959 989 1006 1038 1060 1090
***** Generation 52 *****
##########
```

Capture d'écran de la génération des guerriers par l'algorithme d'évolution

```
START
      MOV.B @
               -98, >
                         242
      MOV.BA $
               3618, >
                        643
      SPL.BA # -3973, {
                         -293
              -2270, {
                         3415
      JMZ.F
      SPL.BA # -3973, {
                        -293
      SPL.BA # 2899, {
                         -293
               3470, }
      MOV.I @
                         242
               -1452, * -1193
      JMN.BA
      SPL.BA # -3973, {
                         -293
      SPL.BA # -3973, {
                        -293
      MOV.F \} 3470, \} -834
               -1452, * -1193
      JMN.BA
      SPL.BA # -3973, { -293
      SPL.BA # -3973, { -293
      MOV.F
                3470, }
                        -834
      SPL.BA # -3973, {
                         -293
START
      SPL.BA # -3973, { -293
      MOV.I # 3114, }
                         242
      SPL.BA > 3618, * -293
      MOV.B * -1777, * 2299
      SPL.F \# -3973, > -1064
      SPL.BA # -547, #
                        2086
      SPL.BA < 3155, #
                         682
      SPL.I < 971, {
                        1330
      SPL.BA # -3973, {
                         -293
      MOV.I @ 3470, }
                        242
      SPL.A
             } -1036, {
                         -293
      SPL.A
             } -1036, {
                        -293
               START
```

4) L'architecture

Architecture modulaire

4) L'architecture

Architecture modulaire

4 modules:

- ExMars (existant)
- Mars-Interface
- Analyser
- Evolution-Algorithm

4) L'architecture

5) Tests

Test 1 : Comparatif des guerriers de génération 0 contre les guerriers de dernière génération

ID	Warrior	Author	Length	Score	Given	W%	L%	T%2	T%3	T%4	T%5	T%6
1	new4.red		0,99904	1166,6	1172,9	0,3	0,5	10,8	88,4	0,0	0,0	0,0
3	new10.red		0,99904	1139,4	1201,4	0,1	1,9	9,6	88,4	0,0	0,0	0,0
2	new7.red		0,99904	1005,9	1342,6	0,0	9,6	1,9	88,4	0,0	0,0	0,0
6	No Name		0,99904	0,0	3500,0	0,0	100,0	0,0	0,0	0,0	0,0	0,0
5	old8.red		0,99904	0,0	3500,0	0,0	100,0	0,0	0,0	0,0	0,0	0,0
4	old5.red		0,99904	0,0	3500,0	0,0	100,0	0,0	0,0	0,0	0,0	0,0

5) Tests

Test 2 : Modification de la profondeur pour la génération des statistiques

- Profondeur 2 : 101,3
- Profondeur 3 : 103,6
- Profondeur 4 : 101.6
- Profondeur 5 : 111,2
- Profondeur 6 : 96,3
- Profondeur 7: 105,1

Résultat : Valeur optimale à profondeur 5

6) Conclusion

Bilan du projet :

- Algorithme d'évolution fonctionnel
- Génération de statistiques sur un pool de guerriers
- Sauvegarde des résultats des différents paramètrage
- Aucun paramètre intéressant trouvé avec un grand nombre de génération
- Les guerriers ne sont presque pas capable de gagner et se construisent autour de la survie

6) Conclusion

Extensions possibles:

- Algorithmes d'évolution supplémentaire
- Différents pool de guerriers pour les statistiques de la génération 0
- Mise en place d'un principe "d'espèce" de guerrier
- Outil de visualisation des paramètres et résultats amélioré

Bibliographie

Documentation sur Corewar et le Redcode :

- [1] John K. Lewis, Corewars for Dummies, https://corewar.co.uk/lewis/index.htm, (Janvier 2021)
- [2] Ilmari Karonen, Beginner's Guide to Redcode, https://vyznev.net/Corewar/guide.htm, (Janvier 2021)

Simulateurs de MARS

- [3] Joonas Pihlaja, exhaust 1.9.2, 27 Juillet. 2004, https://Corewar.co.uk/pihlaja/exhaust/index.htm, (Février 2021)
- [4] Martin Ankerl, Corewars Simulators Overview, 29 Juilllet 2006, https://martin.ankerl.com/2006/07/29/corwars-simulators-overview, (Accédé en Février/Mars 2021).

Corewar et l'évolution

- [5] John Perry, Core Wars Genetics: The Evolution of Predation, Janvier 1991, https://corewar.co.uk/perry/evolution.htm, (Février 2021)
- [6] Terry Newton, Using Core Wars to Simulate Evolution, 7 avril 2009, http://newton.freehostia.com/cwevol.html, (Février/Mars 2021)
- [7] Linus Thorsell, Evolving warriors, 1 novembre 1999, https://Corewar.co.uk/thorsell/paper.htm, (Février/Mars 2021)

Présentation de l'algorithme d'évolution pour Corewar

- [8] Barkley Vowk, Alexander (Sasha) Wait, Christian Schmidt, An Evolutionary Approach Generates Human Competitive Corewar Programs, 2004, https://corewar.co.uk/vowk/alife9ac.pdf, (Janvier à Avril 2021)