STA2002 Assignment 2

Chen Ang (118010009)

1

(a)

	x^D	x^S	y^D	y^S
Sample mean	54.26	54.27	47.83	47.84
Sample variance	281.07	281.20	725.52	725.24

(b)

$$\hat{\alpha} = 47.83, \hat{\beta} = -0.10$$

 $\hat{a} = 47.84, \hat{b} = -0.10$

(c)

For Dinosaur, we have

$$\hat{lpha}=47.83, n^D=142, t_{0.025}(140)pprox z_{0.025}=1.96 \ \hat{eta}=-0.10, S_R^D=35.68 \ \sum_i (x_i^D-ar{x}^D)^2=39630.87$$

Therefore a 95% C.I. for α is

$$\hat{lpha} \pm t_{0.025} (n-2) S_R^D \sqrt{1/n^D} = \boxed{47.83 \pm 5.87}$$

For β it is

$$\hat{eta} \pm t_{0.025} (n-2) S^D_R \sqrt{rac{1}{\sum_i (x^D_i - ar{x}^D)^2}} = \boxed{-0.10 \pm 0.35}$$

For Star, we have

$$\hat{a}=47.84, n^S=142, t_{0.025}(140)pprox z_{0.025}=1.96 \ \hat{eta}=-0.10, S_R^S=35.50 \ \sum_j (x_j^S-ar{x}^S)^2=39648.92$$

Therefore a 95% C.I. for a is

$$\hat{a} \pm t_{0.025} (n-2) S_R^S \sqrt{1/n^S} = \boxed{47.84 \pm 5.84}$$

For b it is

$$\hat{b} \pm t_{0.025} (n-2) S_R^S \sqrt{rac{1}{\sum_i (x_i^S - ar{x}^S)^2}} = \boxed{-0.10 \pm 0.35}$$

(d)

They are almost identical in terms of those statistics.

(e)

(f)

Simple linear regression model is indeed simple in that it fails to capture the complicated geometries of two datasets (that is, it cannot distinguish a dinosaur from a star, or even from a genuine straight line). This is because the simple linear regression model is based on the a-prior assumption that the samples are linearly distributed with some gaussian noise - we didn't do anything to validate this assumption! The example tells us we should not blindly apply the regression. Rather, we should always look at the scatter plot first for a gut feeling of what the distribution might be (or carry out some statistical tests for linearity).

Python Code:

```
import csv
import os, sys
import matplotlib.pyplot as plt
import numpy as np
class LinReg:
    def __init__(self, name=None, file=None, reg=True):
        self.name = name
        self.xs = self.ys = []
        self.size = 0
        self.x_mean = self.y_mean = None
        self.x_S2 = self.y_S2 = None
        self.a = self.b = self.sigma2 = self.SR2 = None
        self.a_max_err = self.b_max_err = None
        if file:
            self.load_data(file)
            if reg: self.regress()
```

```
def load_data(self, file):
        self.__init__(self.name)
        with open(file, newline='') as f:
            reader = csv.reader(f)
            data = list(reader)[1::]
            self.size = len(data)
            self.xs = [float(x) for [x, y] in data]
            self.ys = [float(y) for [x, y] in data]
            self.x_mean = sum(self.xs) / self.size
            self.y_mean = sum(self.ys) / self.size
            self.x_S2 = sum((x - self.x_mean) ** 2 for x in self.xs) /
(self.size - 1)
           self.y_S2 = sum((y - self.y_mean) ** 2 for y in self.ys) /
(self.size - 1)
    def regress(self, confidence=0.95):
        xy\_sum = sum(x * y for x, y in zip(self.xs, self.ys))
        x2\_sum = sum(x ** 2 for x in self.xs)
        y2\_sum = sum(y ** 2 for y in self.ys)
        num = xy_sum - self.size * self.x_mean * self.y_mean
        den = x2_sum - self.size * self.x_mean ** 2
        x_SE = (self.size - 1) * self.x_S2
        t = 1.96 # should ideally be a t-quantile function, estimated by z_0.025
        self.a = self.y_mean
        self.b = num / den
        self.sigma2 = y2_sum / self.size - self.y_mean ** 2 - \
                      self.b * (xy_sum / self.size + self.x_mean * self.y_mean)
        self.SR2 = self.sigma2 * self.size / (self.size - 2)
        self.a_max_err = t * (self.SR2 / self.size) ** .5
        self.b_max_err = t * (self.SR2 / x_SE) ** .5
        self.print_stat()
    def plot(self):
        plt.scatter(self.xs, self.ys)
        if (self.a and self.b):
            X = np.arange(min(self.xs), max(self.xs), 0.01)
            Y = self.a + self.b * (X - self.x_mean)
            plt.plot(X, Y, 'r')
        plt.show()
    def print_stat(self):
        print("{} (n = {})".format(self.name, self.size))
        print("{:-^60}".format(" statistics"))
        print("{:<13}{:<13}{:<13}".format("", "x", "y"))</pre>
        print("{:<13}{:<13.2f}{:<13.2f}".format("mean", self.x_mean,</pre>
self.y_mean))
        print("{:<13}{:<13.2f}\n".format("sample var", self.x_S2,</pre>
self.y_S2))
        print("{:-^60}".format(" regression "))
        print("\{:<\!\!13\}\{:<\!\!13\}\{:<\!\!13\}\{:<\!\!13\}".format("", "a^", "b^", "\sigma2^",
"SR2"))
        print("{:<13}{:<13.2f}{:<13.2f}{:<13.2f}".format("estimator",</pre>
self.a, self.b, self.sigma2, self.SR2))
        print("{:<13}{:<13.2f}{:<13.2}\n".format("max error",</pre>
self.a_max_err, self.b_max_err, "", ""))
```

```
dinosaur = LinReg("Dinosaur", os.path.join(sys.path[0], 'D.csv'))
star = LinReg("Star", os.path.join(sys.path[0], 'S.csv'))
dinosaur.plot()
star.plot()
```

Output

2

Denote the outcome of each coin flip by $X_1, \dots X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.

(a)

If n is large enough by CLT we have

$$\hat{p} = ar{X} = rac{\sum_{i=1}^{n} X_i}{n} \stackrel{ ext{approx}}{\sim} N\left(p, rac{p(1-p)}{n}
ight) pprox N\left(p, rac{\hat{p}(1-\hat{p})}{n}
ight)$$

Hence a 90% C.I. for p can be approximated by

$$\hat{p}\pm z_{0.05}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

In our example

$$\hat{p} = \frac{159}{314} = 0.5064, n = 314$$

Plugging in $z_{0.05}=1.645$, we obtain the approximated 90% C.I. for p:

Keeping $\hat{p}=50.64\%,$ we want the maximum error at

$$z_{0.05}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}=0.01$$

Therefore

$$n = \hat{p}(1 - \hat{p}) \left(\frac{0.01}{z_{0.05}}\right)^{-2} = 6764$$

(c)

That is

$$\hat{p}\pm z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{314}}=0.445\pm0.055$$

Therefore

$$\hat{p} = 0.445$$
 $z_{\alpha/2} = 0.055 \sqrt{\frac{314}{0.445(1 - 0.445)}}$
 $= 1.9411$
 $\implies \alpha = 0.0524$

Thus (s)he is using $100(1-\alpha)\% \approx 95\%$ confidence level.

3

(a)

We have

$$egin{aligned} ar{X} &= rac{\sum_{i=1}^n X_i}{n} \sim N(\mu_X, \sigma_X^2/n) \ ar{Y} &= rac{\sum_{j=1}^m Y_j}{m} \sim N(\mu_Y, \sigma_Y^2/m) \end{aligned}$$

which are independent. Hence

$$egin{split} ar{X} - ar{Y} &\sim N(\mu_X - \mu_Y, \sigma_X^2/n + \sigma_Y^2/m) \ &rac{ar{X} - ar{Y} - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} &\sim N(0,1) \end{split}$$

It follows that

$$egin{aligned} 1-lpha &= P\left(-z_{lpha/2} \leq rac{ar{X}-ar{Y}-(\mu_X-\mu_Y)}{\sqrt{\sigma_X^2/n+\sigma_Y^2/m}} \leq z_{lpha/2}
ight) \ &= P\left(ar{X}-ar{Y}-\epsilon \leq \mu_X-\mu_Y \leq ar{X}-ar{Y}+\epsilon
ight) \end{aligned}$$

where
$$\epsilon=z_{lpha/2}\sqrt{\sigma_X^2/n+\sigma_Y^2/m}$$

Therefore a two-sided $100(1-\alpha)\%$ C.I. for $\mu_X-\mu_Y$ is given by

$$ar{x}-ar{y}\pm z_{lpha/2}\sqrt{\sigma_X^2/n+\sigma_Y^2/m}$$

(b)

We need

$$\begin{split} n &= \arg\min_{n,m \in \mathbb{N}^2} \ \epsilon \quad \text{s.t.} \quad n+m = 6000 \\ &= \arg\min_{n,m \in \mathbb{N}^2} \ z_{\alpha/2} \sqrt{\sigma_X^2/n + \sigma_Y^2/m} \quad \text{s.t.} \quad n+m = 6000 \\ &= \arg\min_{n,m \in \mathbb{N}^2} \ \sigma_X^2/n + \sigma_Y^2/m \quad \text{s.t.} \quad n+m = 6000 \\ &= \arg\min_{n \in \{0,1,\cdots,6000\}} \ \sigma_X^2/n + \sigma_Y^2/(6000-n) \\ &= \arg\min_{n \in \{0,1,\cdots,6000\}} \ 2500/n + 900/(6000-n) \\ &= 3750 \end{split}$$

samples from Company X.

4

Sample size n=12.

(a)

A 100(1-lpha)% C.I. for μ is given by

$$egin{aligned} ar{x} \pm z_{lpha/2}(\sigma/\sqrt{n}) &= 41.83 \pm z_{lpha/2}(11/\sqrt{12}) \ &= 41.83 \pm z_{lpha/2} \cdot 3.175 \end{aligned}$$

To obtain a 90% C.I., we set $lpha=0.1,\,z_{lpha/2}=1.645,$ which gives

$$41.83 \pm 5.22$$

(b)

Set $lpha=0.05, z_{lpha/2}=1.96.$ Thus a 95% C.I. for μ is given by

$$41.83 \pm 6.22$$

Set instead $lpha=0.01, z_{lpha/2}=2.576.$ This yields a 99% C.I. for $\mu:$

$$41.83 \pm 8.18$$

(c)

Without the knowledge of σ^2 , we estimate it by S^2 and reach a $100(1-\alpha)\%$ C.I.:

$$egin{aligned} ar{x} \pm t_{lpha/2}(n-1)(s/\sqrt{n}) &= 41.83 \pm t_{lpha/2}(11)(11.8/\sqrt{12}) \ &= 41.83 \pm t_{lpha/2}(11) \cdot 3.406 \end{aligned}$$

Set $\alpha=0.1, t_{\alpha/2}(11)=1.796$. The $100(1-\alpha)\%$ C.I. is given by

$$41.83 \pm 6.12$$

(a)

Consider

$$U := \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} C_i$$

where $Z_i \overset{\mathrm{i.i.d}}{\sim} N(0,1), C_i \overset{\mathrm{i.i.d}}{\sim} \chi^2(1).$

Due to additivity of i.i.d. Chi-square RVs,

$$U\sim \chi^2(n)$$

Hence

$$\begin{aligned} 1 - \alpha &= P\left(\chi_{1-\alpha/2}^{2}(n) \le U \le \chi_{\alpha/2}^{2}(n)\right) \\ &= P\left(\chi_{1-\alpha/2}^{2}(n) \le \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma}\right)^{2} \le \chi_{\alpha/2}^{2}(n)\right) \\ &= P\left(\chi_{1-\alpha/2}^{2}(n) \le \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \le \chi_{\alpha/2}^{2}(n)\right) \\ &= P\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)} \le \sigma^{2} \le \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right) \end{aligned}$$

(b)

Consider

$$W:=\sum_{i=1}^n \left(rac{X_i-ar{X}}{\sigma}
ight)^2 = rac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Similarly

$$\begin{split} 1 - \alpha &= P\left(\chi_{1-\alpha/2}^2(n-1) \le W \le \chi_{\alpha/2}^2(n-1)\right) \\ &= P\left(\chi_{1-\alpha/2}^2(n-1) \le \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \le \chi_{\alpha/2}^2(n-1)\right) \\ &= P\left(\chi_{1-\alpha/2}^2(n-1) \le \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \le \chi_{\alpha/2}^2(n-1)\right) \\ &= P\left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\chi_{1-\alpha/2}^2(n-1)}\right) \end{split}$$

(c)

By (b),

$$\begin{aligned} 1 - \alpha &= P\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha/2}^2(n-1)}\right) \\ &= P\left(\sqrt{\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha/2}^2(n-1)}} \le \sigma \le \sqrt{\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha/2}^2(n-1)}}\right) \end{aligned}$$

Let

$$f(lpha,eta):=\sum_{i=1}^n w_i(y_i-lpha-eta x_i)^2$$

FONC:

$$egin{aligned}
abla_lpha f(lpha,eta) &= \sum_{i=1}^n 2w_i(y_i-lpha-eta x_i)(-1) = 0 \
abla_eta f(lpha,eta) &= \sum_{i=1}^n 2w_i(y_i-lpha-eta x_i)(-x_i) = 0 \end{aligned}$$

Hence

$$egin{split} \sum_i w_i (y_i - lpha - eta x_i) &= \sum_i w_i y_i - lpha \sum_i w_i - eta \sum_i w_i x_i = 0 \ \sum_i w_i x_i (y_i - lpha - eta x_i) &= \sum_i w_i y_i x_i - lpha \sum_i w_i x_i - eta \sum_i w_i x_i^2 = 0 \end{split}$$

Denote $A:=\sum_i w_iy_i, B:=\sum_i w_i, C:=\sum_i w_ix_i, D:=\sum_i w_iy_ix_i, E:=\sum_i w_ix_i^2.$ We then have

$$A - B\alpha - C\beta = 0$$
$$D - C\alpha - E\beta = 0$$

which yields

$$lpha = lpha^* = rac{A}{B} - rac{C}{B}eta$$
 $eta = eta^* = rac{BD - AC}{BE - C^2}$

the suggested answer. To validate optimality we further calculate the Hessian at $(lpha^*,eta^*)$

$$H(lpha^*,eta^*)=2egin{bmatrix} B & C \ C & E \end{bmatrix}$$

with eigenvalues λ_1,λ_2 satisfying

$$egin{aligned} (\lambda_1+\lambda_2)/2&=B+E>0\ \lambda_1\lambda_2/4&=BE-C^2\ &=\sum_i w_i\sum_j w_jx_j^2-\left(\sum_k w_kx_k
ight)^2\ &\Longrightarrow\ \lambda_1,\lambda_2>0\ \Longrightarrow\ H\succ0\ &=\sum_{i
eq j} w_iw_jx_i(x_i-x_j)\ &=\sum_{i
eq j} w_iw_j(x_i-x_j)^2>0 \end{aligned}$$

Hence by SOSC, (α^*, β^*) is the unique minimizer.

7

(a)

$$\bar{x} = 3055.91, \bar{y} = 3317.91$$

(b)

A 100(1-lpha)% C.I. for $\mu_X-\mu_Y$ is

$$ar{X}-ar{Y}\pm t_{lpha/2}(n+m-2)S_p\sqrt{rac{1}{n}+rac{1}{m}}$$

where

$$S_p^2 = rac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

is the pooled estimator of σ^2 .

Since n + m is large, we may use the approximation

$$ar{X}-ar{Y}\pm z_{lpha/2}S_p\sqrt{rac{1}{n}+rac{1}{m}}$$

With $\alpha = 0.05$, plug in

$$\begin{split} n &= 13391, m = 5672\\ \bar{X} &= \bar{x} = 3055.91, \bar{Y} = \bar{y} = 3317.91\\ z_{\alpha/2} &= 1.96, S_p = 1985.65 \end{split}$$

we have the pooled t-interval

$$-262.00 \pm 61.66$$

(c)

A 100(1-lpha)% Welch's t-interval for $\mu_X-\mu_Y$ is

$$ar{X}-ar{Y}\pm t_{lpha/2}(r)\sqrt{rac{S_X^2}{n}+rac{S_Y^2}{m}}$$

where

$$r=\left[rac{\left(rac{S_X^2}{n}+rac{S_Y^2}{m}
ight)^2}{rac{1}{n-1}\left(rac{S_X^2}{n}
ight)^2+rac{1}{m-1}\left(rac{S_Y^2}{m}
ight)^2}
ight]$$

Since n, m are both large, r is also large. Hence we may use the approximation

$$ar{X}-ar{Y}\pm z_{lpha/2}\sqrt{rac{S_X^2}{n}+rac{S_Y^2}{m}}$$

Plugging in the data, we obtain

$$-262.00 \pm 61.60$$

(d)

No. Instead, the data shows at 95% confidence level that there are *more* cars when the weather is "Rain".

Python Code

```
import csv
import os, sys
import matplotlib.pyplot as plt
import numpy as np
class Traffic:
    def __init__(self, file=None):
        self.xs = [] # traffic when clear
        self.n = 0
        self.x_mean = None
        self.x_S2 = None
        self.ys = [] # traffic when rain
        self.m = 0
        self.y_mean = None
        self.y_S2 = None
        self.Sp2 = None
        self.pooled_max_err = None
        self.welch_max_err = None
        if file:
            self.load_data(file)
    def load_data(self, file):
        self.__init__()
        with open(file, newline='') as f:
            reader = csv.reader(f)
            data = list(reader)[1::]
            self.xs = [float(d[-1]) for d in data if d[5] == 'Clear']
            self.ys = [float(d[-1]) for d in data if d[5] == 'Rain']
            self.n, self.m = len(self.xs), len(self.ys)
            self.x_mean = sum(self.xs) / self.n
            self.y_mean = sum(self.ys) / self.m
            self.x_S2 = sum((x - self.x_mean) ** 2 for x in self.xs) / (self.n -
1)
            self.y_S2 = sum((y - self.y_mean) ** 2 for y in self.ys) / (self.m -
1)
            num = (self.n - 1) * self.x_S2 + (self.m - 1) * self.y_S2
            den = self.n + self.m - 2
            self.Sp2 = num / den
            self.pooled_max_err = 1.96 * self.Sp2 ** .5 * (1 / self.n + 1 /
self.m) ** .5
            self.welch_max_err = 1.96 * (self.x_S2 / self.n + self.y_S2 /
self.m) ** .5
    def plot(self):
        plt.scatter(self.xs, self.ys)
        if (self.a and self.b):
            X = np.arange(min(self.xs), max(self.xs), 0.01)
            Y = self.a + self.b * (X - self.x_mean)
            plt.plot(X, Y, 'r')
        plt.show()
    def print_stat(self):
        print("{:-^60}".format(" statistics"))
        print("{:<13}{:<13}{:<13}".format("", "x (clear)", "y (rain)"))</pre>
```

```
print("{:<13}{:<13}{:<13}".format("size", self.n, self.m))
    print("{:<13}{:<13.2f}{:<13.2f}".format("mean", self.x_mean,
    self.y_mean))
        print("{:<13}{:<13.2f}{:<13.2f}".format("sample var", self.x_S2,
    self.y_S2))
        print("{:<13}{:<13.2f}({:<.2f})".format("Sp2 (Sp)", self.Sp2, self.Sp2
** .5))
        print("{:<13}{:<13.2f}".format("pooled error", self.pooled_max_err))
        print("{:<13}{:<13.2f}\n".format("welch error", self.welch_max_err))

traffic = Traffic(os.path.join(sys.path[0], 'traffic.csv'))
traffic.print_stat()</pre>
```

Output

```
x (clear) y (rain)

size 13391 5672

mean 3055.91 3317.91

sample var 3948572.02 3929230.64

Sp2 (Sp) 3942817.60 (1985.65)

pooled error 61.66

welch error 61.60
```