FISEVIER

Contents lists available at SciVerse ScienceDirect

### Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour



#### Short communication

# Synthesis and cathode properties of a cubic rocksalt-type Si-doped Li<sub>2</sub>NiTiO<sub>4</sub> for lithium-ion batteries



Yusuke Kawano a, Ayuko Kitajou b, Shigeto Okada c,\*

- <sup>a</sup> Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan
- <sup>b</sup> Research and Education Center of Carbon Resources, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan
- <sup>c</sup> Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan

#### HIGHLIGHTS

- Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> could be obtained by sol-gel method in the whole  $0 \le x \le 0.2$  regions.
- The energy densities at a low rate of obtained Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> were equivalent to that of LiCoO<sub>2</sub>.
- The framework of obtained products was stable enough to maintain the charge-discharge processes.

#### ARTICLE INFO

#### Article history: Received 22 January 2013 Received in revised form 21 May 2013 Accepted 24 May 2013 Available online 5 June 2013

Keywords: Lithium-ion battery Si-doped titanates Cubic rocksalt Li<sub>2</sub>NiTiO<sub>4</sub>

#### ABSTRACT

 $\begin{array}{l} \text{Li}_2\text{NiSi}_a\text{Ti}_{1-x}\text{O}_4 \text{ was obtained by the sol}\_\text{gel method under ambient pressure in the whole } 0 \leq x \leq 0.2 \text{ regions.} \\ \text{The lattice constant did not change, but the crystallinity decreased by increasing the Si doping level.} \\ \text{The discharge capacities at the rate of } 0.32 \text{ mA g}^{-1} \text{ for the obtained Li}_2\text{NiTiO}_4 \text{ and Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4 \text{ were } 153.4 \text{ mAh g}^{-1} \text{ and } 145.5 \text{ mAh g}^{-1}, \text{ respectively.} \\ \text{The energy densities of the Li}_2\text{NiTiO}_4 \text{ (598 mWh g}^{-1}) \text{ and Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4 \text{ (567 mWh g}^{-1}) \text{ obtained at the rate of } 0.32 \text{ mA g}^{-1} \text{ were equivalent to that of LiCoO}_2. \\ \text{Moreover, the discharge capacities of Li}_2\text{NiTiO}_4 \text{ and Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{TiO}_4 \text{ remained at } 57.1 \text{ mAh g}^{-1} \text{ and } 75.6 \text{ mAh g}^{-1} \text{ even after } 20 \text{ cycles, respectively. In addition, the framework of Li}_2\text{NiTiO}_4 \text{ and Li}_2\text{NiSi}_x\text{Ti}_{1-x}\text{O}_4 \\ \text{was stable enough to maintain its charge} - \text{discharge processes at the first cycle by expansion and contraction of the lattice accompanying the extraction/insertion of lithium.} \\ \\ \end{array}$ 

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

In recent years, the need for a lithium ion battery with high voltage and high energy density has become more urgent because of the proliferation of advanced portable electronic devices and hybrid vehicles. Li-ion batteries constitute the current state of the art in high-energy-density rechargeable energy storage cells. Further advances in energy density have been limited by the energy density of their cathode electrodes. Commercially available Li-ion batteries generally consist of layered rocksalt type transition metal oxides like LiCoO<sub>2</sub> andLiNiO<sub>2</sub> as the cathode material, graphite carbon as the anode material and non-aqueous organic solvents containing Li salts as the electrolyte solution. Although LiCoO<sub>2</sub>has an acceptable capacity of 140 mAh g<sup>-1</sup> at 3.9 V, LiNiO<sub>2</sub> shows the larger capacity of 200 mAh g<sup>-1</sup>. However, this compound

has some problem that is poor cyclability and low thermal stability [1-3]. In contrast,  $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$  has a layered structure with a space group of R-3m, and contains divalent nickel and tetravalent manganese. Because  $\text{Mn}^{4+}$  is more stable than that of  $\text{Ni}^{4+}$ , this compound has higher thermal stability than that of  $\text{LiCoO}_2$  and  $\text{LiNiO}_2$ , and performs extremely well as a cathode active material for rechargeable lithium batteries, providing over 30 cycles with a capacity of 200 mAh g<sup>-1</sup> [4,5].

In the same way, we focused on  $\text{Li}_2\text{NiTiO}_4$  ( $\text{LiNi}_{0.5}\text{Ti}_{0.5}\text{O}_2$ ) as the other cathode candidate with divalent nickel and tetravalent transition metal, titanium, because  $\text{Ti}^{4+}$  is more stable and light weight than  $\text{Mn}^{4+}$  [6].  $\text{Li}_2\text{NiTiO}_4$  has 3 kinds of crystal structure with R-3m [7], C2/c[8] and Fm-3m space group. Among them, cubic rocksalt  $\text{Li}_2\text{NiTiO}_4$  with Fm-3m space group showed the largest discharge capacity of about 100 mAh g $^{-1}$ , although Li coexists with transition metals at the 4b octahedral site. Moreover, the reported discharge capacities of cubic rocksalt  $\text{Li}_2\text{MTiO}_4$  (M = Co, Mn) are about 144 mAh g $^{-1}$  ( $\text{Li}_2\text{CoTiO}_4$ ) and 190 mAh g $^{-1}$  at 60 °C ( $\text{Li}_2\text{Mn-TiO}_4$ ), respectively [9,10]. In addition, the cubic rocksalt structure

<sup>\*</sup> Corresponding author. Tel./fax: +81 92 583 7841.

E-mail addresses: s-okada@cm.kyushu-u.ac.jp, s-okada@mx3.canvas.ne.jp
(\$ Okada)



Fig. 1. Crystal structure of (a) cubic racksalt-type Li<sub>2</sub>NiTiO<sub>4</sub> and (b) Li<sub>2</sub>NiSiO<sub>4</sub>.



Fig. 2. X-ray diffraction patterns for the obtained  $\text{Li}_2\text{NiSi}_x\text{Ti}_{1-x}\text{O}_4$  (x=0 ~ 0.5).



Fig. 3. Observed (dot) and calculated (solid line) X-ray diffraction profiles of (a)  $\text{Li}_2\text{NiTiO}_4$  and (b)  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$ . The difference between the observed and calculated profiles is plotted below.

has a rigid framework without Van der Waals gap, because all oxygen is shared with four MO<sub>6</sub> cluster, as shown Fig. 1(a). The lithium ion for rocksalt Li<sub>2</sub>NiTiO<sub>4</sub> in charge process migrates from pristine 4b octahedral to tetrahedral 8c sites [11]. In addition, the oxygen atoms located out of sequence in the disorder matrix could easily escape during the charging process [12, 13]. Therefore, it has a large irreversible capacity of over 80 mAh  $\rm g^{-1}$  at the first cycle [12]. In order to reduce the large irreversible capacity, we tried to decrease the crystallinity and the particle size of Li<sub>2</sub>NiTiO<sub>4</sub> by substituting smaller  $Si^{4+}$  (0.400 Å) for  $Ti^{4+}$  (0.605 Å). As far as we know, the previous report about the end member Li<sub>2</sub>NiSiO<sub>4</sub> as shown Fig. 1(b) is only one. It described the Li intercalated potential computed with the GGA+U method [14]. We are interested in the electrochemical properties of Li<sub>2</sub>NiTiO<sub>4</sub>, which has same composition as Li<sub>2</sub>NiSiO<sub>4</sub>, by substituting Si<sup>4+</sup> for Ti<sup>4+</sup>. Moreover, we also expected that the theoretical capacity of Li<sub>2</sub>NiTiO<sub>4</sub> increases with the substituting of titanium by lighter weight Si (28.08 g mol<sup>-1</sup>) than Ti (47.88 g mol<sup>-1</sup>). To improve the cathode properties, the amount of Si doping to Li<sub>2</sub>NiTiO<sub>4</sub> was optimized, and the doped cathode performances were evaluated. In addition, the crystal structure changes during the charge and discharge reaction were measured by X-ray diffraction method.

#### 2. Experiment

Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> were synthesized using the methods previously described [12]. Stoichiometric ratios of LiNO<sub>3</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O. titanium(IV) butoxide and tetraethylorthosilicate (TEOS) required to produce Si-doped Li<sub>2</sub>NiTiO<sub>4</sub> were dissolved in water. Here, Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> was prepared by using TEOS or SiO<sub>2</sub> nano-powder as a Si source. To the above solution, the required quantity of citric acid crystals was added and mixed thoroughly for 30 min at 70 °C in a heating mantle; then the temperature was increased to 110 °C to evaporate the solvents and water. Evaporation was continued in the mantle itself to obtain a dry mass. The precursor was sintered at 300 °C for 3 h with an electric oven. After cooling in the oven, the sintered mixture was mixed and ground, then sintered again at 600 °C for 14 h. Hereinafter, the obtained Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> samples prepared with TEOS and SiO<sub>2</sub> nanopowder are referred to as Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (TEOS as a Si source) and Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source), respectively, and Li<sub>2</sub>Ni-Ti<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> refers to the both samples except as otherwise noted.

The 70 wt. % powder that was obtained was dry-ball-milled with 25 wt. % acetylene black (Denki Kagaku Co., Ltd.). Cathodes for electrochemical performance were prepared by mixing the Li<sub>2</sub>Ni-Si<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub>/C composite powder with a 5 wt. % PVDF binder (KurehaCorp.) in N-methylpyrrolidione. The slurry was coated on aluminum foil and dried at 80  $^{\circ}$ C until the solvent had evaporated completely. Cathode pellets for structure change during the charge-discharge cycle were fabricated by mixing the Li<sub>2</sub>Ni-Si<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub>/C composite powder with 5% polytetrafluoroethylene (PTFE) Teflon binder (Polyflon PTFE F-103, Daikin Industry, Ltd.) and punched in the form of disks (ca. 30 mg weight and 10 mm diameter). The electrochemical performance of the obtained products was evaluated with a 2032 coin-type cell using a nonaqueous electrolyte (1 M LiPF<sub>6</sub>/EC:DMC = 1:1 in volume, Kishida Chemical Co., Ltd.) and a polypropylene separator (Celgard 3501) against lithium metal (Honjo Metal Co., Ltd.). All the cells were assembled in an Ar-filled glove box. The charge-discharge measurement was performed in galvanostatic mode at a rate of 16 mA  $g^{-1}$ . The test temperature was 25 °C. The electrodes were carefully taken out from the cells in the Ar-filled glove box, washed, and immersed with DMC for one night to remove the electrolyte, and dried prior to being set in an Ar-filled cell for XRD.

The XRD data for the pellet samples was taken under Ar because of the instability of the transition metal valence in air. Characterization of the obtained powder and pellets after the charge or discharge processes was carried out with an X-ray powder diffractometer (XRD, 50 kV and 300 mA, CuKα, Rigaku Corp., TTRIII).

Surface observation and chemical species mapping of obtained products were performed with a TOF-SIMS apparatus [15]. This apparatus features single-particle analysis with high lateral resolution (down to 40 nm) [15]. The apparatus has two beams: a focused ion beam (FIB) and an electron beam (EB). The FIB was used to section a particle, observe the surface, and obtain the chemical mapping. The EB was used for the observation during the FIB sectioning. A 30-keV Ga+ focused ion beam was rastered over a sample area of  $10~\mu m \times 10~\mu m$  to obtain the SIM image. The Ga+ ion current was approximately 150 pA. Pulsed Ga+ was used as the primary ion beam for elemental mapping.

The composition of  $\text{Li}_2 \text{NiSi}_x \text{Ti}_{1-x} \text{O}_4$  ( $x=0,\ 0.1$ ) powder and pellets was determined by means of an Atomic Absorption Spectrometry (AAS, Z-2300, Hitachi Ltd.) following the pretreatment with the conc.

#### 3. Results and discussion

#### 3.1. Characterization of obtained Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub>

The crystal structure of the obtained  $\text{Li}_2\text{NiSi}_x\text{Ti}_{1-x}\text{O}_4$  ( $x=0\sim0.5$ ) was characterized with XRD, as shown in Fig. 2.  $\text{Li}_2\text{NiSi}_x\text{Ti}_{1-x}\text{O}_4$  (x=0,0.1,0.2) obtained from the liquid phase could be indexed as a cubic system with the space group Fm-3m as we expected.



Fig. 4. SEM images of the obtained (a)  $\text{Li}_2\text{NiTiO}_4$  and (b)  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$ .

However, it was difficult to obtain single-phase for  $\text{Li}_2 \text{NiSi}_x \text{Ti}_{1-x} \text{O}_4$  ( $x \geq 0.3$ ), and a small amount of  $\text{SiO}_2$  and/or  $\text{Li}_2 \text{SiO}_3$  were included as the impurities. The calculated and experimental diffraction pattern for  $\text{Li}_2 \text{NiTiO}_4$  is shown in Fig. 3(a) [16]. The peaks are quite sharp, indicating the good crystallinity of the material. The lattice constant of a = 4.1406 (7) Å and the cell volume V = 70.9924 ų obtained from the refined  $\text{Li}_2 \text{NiTiO}_4$  were in good agreement with previously reported values [12]. The lattice constant obtained from the refined  $\text{Li}_2 \text{NiSi}_0.1 \text{Ti}_0.904$  was a = 4.1394(0) and the cell volume V = 70.9270 ų (Fig. 3(b)). These lattice constant of  $\text{Li}_2 \text{NiSi}_x \text{Ti}_{1-x} O_4$  did not change, while the XRD peak width expanded as the Si doping level increased. It suggests that the crystallinity was reduced with only a small amount of Si doping. The structure of cubic rocksalt-type  $\text{Li}_2 \text{NiSi}_x \text{Ti}_{1-x} O_4$  consists of  $\text{Li}^+$  (0.76 Å),  $\text{Ni}^{2+}$  (0.69 Å) and  $\text{Ti}^{4+}$  (0.605 Å) ions residing in 4b sites, and  $\text{O}^2-$  ions

distributed in the 4a sites. Therefore, it is considered that the doped  $\mathrm{Si}^{4+}$  (0.400 Å) occupied the 4b site. Although the relatively smaller  $\mathrm{Si}^{4+}$  was substituted for the  $\mathrm{Ti}^{4+}$ , the cell volume and the crystal structure of  $\mathrm{Li}_2\mathrm{NiSi}_x\mathrm{Ti}_{1-x}\mathrm{O}_4$  was maintained due to the larger ion radii of Li, Ni and Ti than that of Si. However,  $\mathrm{Si}^{4+}$  is usually in the tetrahedral site, not in the octahedral site. Therefore, the formation of  $\mathrm{SiO}_2$  in the grain boundary might reduce the particle size and contribute the better cathode performances, because the lattice constant of  $\mathrm{Li}_2\mathrm{NiSi}_x\mathrm{Ti}_{1-x}\mathrm{O}_4$  did not change by Si doping level increased. We observed the particle surfaces of  $\mathrm{Li}_2\mathrm{NiTiO}_4$  and  $\mathrm{Li}_2\mathrm{NiTi}_{0.9}\mathrm{Si}_{0.1}\mathrm{O}_4$  (TEOS as a Si source) by SEM (Fig. 4), and compared the dispersion state of Si for the particle surfaces and the cross section in  $\mathrm{Li}_2\mathrm{NiTi}_{0.9}\mathrm{Si}_{0.1}\mathrm{O}_4$  (TEOS as a Si source) and  $\mathrm{Li}_2\mathrm{NiTi}_{0.9}\mathrm{Si}_{0.1}\mathrm{O}_4$  (SiO<sub>2</sub> as a Si source) by TOF-SIMES (Fig. 5). Si on the particle surfaces was hardly observed in  $\mathrm{Li}_2\mathrm{NiTi}_{0.9}\mathrm{Si}_{0.1}\mathrm{O}_4$  (TEOS as a Si source,

## (a) Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (TEOS as a Si source) Particle surface m/z = 7 Lim/z = 28 Sim/z = 48 Tim/z = 58 NiCross section m/z = 7 Lim/z = 28 Sim/z = 48 Tim/z = 58 Ni(b) Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source) Particle surface 2 µm m/z = 28 Sim/z = 7 Lim/z = 58 Nim/z = 48 TiCross section m/z = 7 Lim/z = 28 Sim/z = 48 Tim/z = 58 Ni

Fig. 5. TOF-SIMS elemental maps for the obtained (a) Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (TEOS as a Si source) and (b) Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source).



**Fig. 6.** Initial charge and discharge curves for  $\text{Li}_2\text{NiSi}_x\text{Ti}_{1-x}\text{O}_4$  ( $x=0\sim0.5$ ) and  $\text{Li}_2\text{Ni-Si}_{0.1}\text{Ti}_{0.9}\text{O}_4$  (SiO<sub>2</sub> as a Si source) against an Li anode at a rate of 16 mA g<sup>-1</sup>. Electrochemical measurements were carried out with a potential window between 2.0 and 4.7 V. The symbols ( $\bullet$ ) represent the sampling points for the *ex-situ* XRD measurement (Figs. 8 and 9).

Fig. 5(a)) and Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source, Fig. 5(b)). On the other hand, the ununiform deposit of Si particles were observed in the cross section of Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source), while Si seems to be dispersed uniformly in the cross section of Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (TEOS as a Si source). It suggested that most of dopant Si in Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> (TEOS as a Si source) was substituted for Ti. Moreover, the crystallinity of Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> was lower than that of Li<sub>2</sub>NiTiO<sub>4</sub>. It also suggests that the crystal growth of Li<sub>2</sub>NiTi<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub> was inhibited by Si doping.

#### 3.2. Cathode properties for obtained $Li_2NiSi_xTi_{1-x}O_4$ vs. Li cell

Fig. 6 shows the initial charge (Li<sup>+</sup> extraction) and discharge (Li<sup>+</sup> insertion) curves of the obtained Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> at rate of 16 mA g<sup>-1</sup>. The electrochemical measurements were carried out with a potential window between 2.0 and 4.7 V. The initial charge and discharge capacities of Li<sub>2</sub>NiTiO<sub>4</sub> were 186 mAh g<sup>-1</sup> and 120 mAh g<sup>-1</sup> with a 65% discharge/charge efficiency. The charge

**Table 1** The initial charge and discharge capacity of  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$  ( $0 \le x \le 0.4$ ) at rate of 16 mA g<sup>-1</sup>.

| Si doping level                                 | x = 0 | <i>x</i> = 0.1 | <i>x</i> = 0.2 | <i>x</i> = 0.3 | <i>x</i> = 0.4 |
|-------------------------------------------------|-------|----------------|----------------|----------------|----------------|
| Initial charge capacity [mAh g <sup>-1</sup> ]  | 186.1 | 221.1          | 234.3          | 252.3          | 230.0          |
| First discharge capacity [mAh g <sup>-1</sup> ] | 120.4 | 123.3          | 121.4          | 112.6          | 113.8          |

**Table 2**Correlation between the amount of electron transfer and the detected Li content by AAS measurement.

| Sample state                   | LiNiTiO <sub>4</sub>                                                         |                                                                            | Li <sub>2</sub> NiSi <sub>0.1</sub> Ti <sub>0.9</sub> O <sub>4</sub>         |                                                                            |  |
|--------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                | Amount of<br>electron<br>transfer<br>[e <sup>-</sup> ]/[NiTiO <sub>4</sub> ] | Detected Li<br>content by AAS<br>measurement<br>[Li]/[NiTiO <sub>4</sub> ] | Amount of<br>electron<br>transfer<br>[e <sup>-</sup> ]/[NiTiO <sub>4</sub> ] | Detected Li<br>content by AAS<br>measurement<br>[Li]/[NiTiO <sub>4</sub> ] |  |
| Initial state                  | _                                                                            | _                                                                          | _                                                                            | _                                                                          |  |
| After charge<br>until 4.7 V    | 1.28                                                                         | 1.06                                                                       | 1.51                                                                         | 1.50                                                                       |  |
| After discharge<br>until 2.0 V | 0.82                                                                         | 0.77                                                                       | 0.85                                                                         | 0.77                                                                       |  |

capacity of Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> increased compared with Li<sub>2</sub>NiTiO<sub>4</sub> until x = 0.3 in Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub>, and the discharge capacity was largest at x = 0.1 in Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub>, as shown in Table 1. On the other hand, the charge and discharge capacity of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source) was 128 mAh  $g^{-1}$  and 51 mAh  $g^{-1}$ , respectively. The poor cathode performances must have been caused by the ununiform deposit of SiO<sub>2</sub> particle in Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (SiO<sub>2</sub> as a Si source) as shown in Fig. 5(b). Moreover, Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> had two discharge plateaus of 3.9 V and 2.0 V. According to the result, we supposed that the charge-discharge reaction around 3.9 V was generated by Ni<sup>2+</sup>/Ni<sup>3+</sup> redox and that around 2.0 V was by Ti<sup>3+</sup>/ Ti<sup>4+</sup>. In addition, the results of the AAS measurement suggest that this charge-discharge reaction has occurred with extraction/ insertion of lithium, and that the charge reaction does not include other side reactions such as electrolyte decomposition, as shown in Table 2. Fig. 7 shows the cyclability of the obtained Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>TiO<sub>4</sub>. The discharge capacities of Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>Ni- $Si_{0.1}Ti_{0.9}TiO_4$  remained at 57 mAh g<sup>-1</sup> and 76 mAh g<sup>-1</sup> even after 20 cycles, respectively. In addition, the cubic rocksalt-type cathode materials had a large irreversible capacity at the first cycle of ca. 60 mAh  $g^{-1}$ . To solve this problem, electrochemical measurements of Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> were carried out at rate of 7.8 mA  $\rm g^{-1}$  (charge process) and 0.38 mA  $\rm g^{-1}$  (discharge process). The initial charge and discharge capacities of Li<sub>2</sub>NiTiO<sub>4</sub> were 174 mAh g<sup>-1</sup> and 153 mAh g<sup>-1</sup> with a 88% discharge/charge efficiency (Fig. 8). On the other hand, the initial charge and discharge



**Fig. 7.** Cyclabilities for  $\text{Li}_2\text{NiTiO}_4$  and  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$  against an Li anode in the potential window between 2.0 and 4.7 V at the rate of 16 mA  $\text{g}^{-1}$ .



**Fig. 8.** The initial charge and discharge curves for  $\text{Li}_2\text{NiTiO}_4$  and  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$  against an Li anode at the rate of 16 mA  $\text{g}^{-1}$  (charge) and 0.32 mA  $\text{g}^{-1}$  (discharge).

capacities of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> were 202 mAh g<sup>-1</sup> and 146 mAh g<sup>-1</sup> with a 72% discharge/charge efficiency. The irreversible capacity of Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> was improved by inserting Li<sup>+</sup> into the Li<sub>2-y</sub>NiTiO<sub>4</sub> or Li<sub>2-y</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> (0 < y < 2) structure at a low rate. The energy densities at the rate of 0.32 mA g<sup>-1</sup> of the obtained Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> were equivalent to that of LiCoO<sub>2</sub>.

### 3.3. Structural changes to LiNiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> during the first charge and discharge process

We investigated the structural change of LiNiTiO<sub>4</sub> and Li<sub>2</sub>Ni-Si<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> for the initial charge and discharge cycle by *ex-situ* XRD measurements. The XRD measurements were performed on three samples of LiNiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> pellets during the charge and discharge cycle, as shown in Fig. 6, under an Ar atmosphere. Fig. 9 compares the XRD profiles of electrode pellets of LiNiTiO<sub>4</sub> at (a) the initial state, (b) the charge endpoint, and (c) the discharge



**Fig. 9.** Ex-situ XRD profiles of a  $\text{Li}_2\text{NiTiO}_4$  against an Li anode during the initial charge—discharge cycle; (a) initial  $\text{Li}_2\text{NiTiO}_4$  state, and (b) electrode pellet for the charge endpoint and (c) discharge endpoint, respectively.



**Fig. 10.** Ex-situ XRD profiles of  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$  against an Li anode during the initial charge—discharge cycle; (a) initial  $\text{Li}_2\text{NiSi}_{0.1}\text{Ti}_{0.9}\text{O}_4$  state, and (b) electrode pellet for the charge endpoint and (c) discharge endpoint, respectively.

endpoint. All XRD diffraction peaks shifted to a higher  $2\theta$  angle from that of the initial state on the initial charge process, and moved back to almost the original position after the first discharge process. The change of the a axis of Li<sub>2</sub>NiTiO<sub>4</sub> during the first charge—discharge process was 4.14 Å (initial state) → 4.12 Å (charge endpoint)  $\rightarrow$  4.14 Å (discharge endpoint). Meanwhile, the unit cell volumes were 71.0 Å<sup>3</sup> (initial state), 69.9 Å<sup>3</sup> (charge endpoint), and 71.0 Å<sup>3</sup> (discharge endpoint), respectively. Fig. 10 shows the XRD profiles of electrode pellets of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> at (a) the initial state, (b) the charge endpoint and (c) the discharge endpoint. All XRD diffraction peaks of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> moved to a higher  $2\theta$  angle, and moved back to almost the original position during the first charge-discharge process. No generation of impurities was found on XRD profiles during the charge-discharge process. The lattice constant of the initial state of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> was a = 4.15 Å and the unit cell volume was 71.5 Å<sup>3</sup>, while a = 4.13 Å and the unit cell volume was 70.4 Å<sup>3</sup> at the charge endpoint. In particular, the unit cell volume change of Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> accompanying the extraction/insertion of lithium was only -1.5%, which was same as that of Li<sub>2</sub>NiTiO<sub>4</sub> (-1.5%), although the many Li in charge process was extracted from Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> than that from Li<sub>2</sub>NiTiO<sub>4</sub> as shown in Table 2. The unit cell volume change for cubic rocksalt-type materials accompanying the extraction/insertion of lithium was hardly changed even if Ti in Li<sub>2</sub>NiTiO<sub>4</sub> was substituted to Si with a smaller ionic radius. These results suggest that the framework of Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> is stable enough to maintain the charge-discharge processes at the first cycle by the expansion and contraction of the lattice accompanying the extraction/insertion of lithium.

#### 4. Conclusion

Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> cathode materials were obtained by a sol-gel method under ambient pressure in the whole  $0 \le x \le 0.2$  regions. The crystallinity of the obtained Li<sub>2</sub>NiSi<sub>x</sub>Ti<sub>1-x</sub>O<sub>4</sub> was less than that of Li<sub>2</sub>NiTiO<sub>4</sub>. At a low rate condition (0.32 mA g<sup>-1</sup>), the first discharge capacity of Li<sub>2</sub>NiTiO<sub>4</sub> and Li<sub>2</sub>NiSi<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> were 153 mAh g<sup>-1</sup> and 146 mAh g<sup>-1</sup>, respectively. However, the initial rechargeable capacities were improved by Si doping at a relatively

high rate condition. XRD measurement proved that the volume change ratio during cycling is only 1.5%. Although rigid framework without van der Waals gap such as cubic rocksalt Li<sub>2</sub>NiTiO<sub>4</sub> is not actually suitable for high rate Li kinetics, it seems to be an advantageous structure, in the case of low rate cycle such as load leveling.

#### Acknowledgments

The authors are grateful to Ms. Mariko Komoto, Mr. Yoshihiro Yamamoto and Mr. Tokuo Inamasu of GS Yuasa Corporation for their experimental assistance. TOF-SIMS measurements were conducted with help of Dr. Takeharu Ishikawa of Toyama Co., Ltd.

#### References

- [1] W. Li, J.C. Currie, J. Wolstenholme, J. Power Sources 68 (1997) 565.
- [2] G. Dutta, A. Manthiram, J.B. Goodenough, J. Solid State Chem. 96 (1992) 123.

- [3] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamamura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi, Solid State Ionics 78 (1995) 123.
- [4] Y. Makimura, T. Ohzuku, J. Power Sources 119-121 (2003) 156.
- [5] W.S. Yoon, C.P. Grey, M. Balasubramanian, X.Q. Yang, J. McBreen, Chem. Mater. 15 (2003) 3161.
- [6] T.A. Sasaki, T. Soga, Physica 111B (1981) 304.
- [7] M. Tsuda, H. Arai, M. Takahashi, H. Ohtsuka, Y. Sakurai, K. Sumitomo, H. Kageshima, J. Power Sources 144 (2005) 183.
- [8] L. Sebastian, J. Gopalakrishnan, J. Solid State Chem. 172 (2003) 171.
- [9] M. Yang, X. Zhao, Y. Bian, L. Ma, L. Ma, Y. Ding, X. Shen, J. Mater. Chem. 22 (2012) 6200.
- [10] M. Kuzma, R. Dominko, A. Medan, D. Makovec, M. Bele, J. Jamnlk, M. Gaberscek, J. Power Sources 189 (2009) 81.
- [11] R. Trocoli, M. Crus-Yusta, J. Morales, J. Santos-Pena, Electrochim. Acta 100 (2013) 93.
- [12] S.R.S. Prabaharan, M.S. Michael, H. Ikuta, Y. Uchimoto, M. Wakihara, Solid State Ionics 172 (2004) 39.
- [13] Z. Lu, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A815.
- [14] M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, Electrochem. Commun. 8 (2006) 1292.
- [15] T. Sakamoto, M. Koizumi, J. Kawasaki, J. Yamaguchi, Appl. Surf. Sci. 225 (2008) 1617
- [16] F. Izumi, K. Momma, Solid State Phenom. 130 (2007) 15.