

A IMPORTÂNCIA DA INFRAESTRUTURA

POR QUE SE PREOCUPAR COM A INFRAESTRUTURA?

- É muito comum os usuários da rede ou de aplicações que "rodam" na nuvem se queixarem de lentidão, de queda do link de comunicação, de falhas de segurança, etc
- O que está mais próximo do usuário é resultado da sua manipulação com ferramentas, programas, conectividade
- É muito complexo para um usuário ter que saber que a lentidão na sua conexão pode ser, por exemplo:
 - devido a rompimento de uma cabo de fibra ótica
 - de discos de armazenamentos queimados
 - de servidores de DNS offline, etc.

A IMPORTÂNCIA DA INFRAESTRUTURA

No contexto atual, em que grande parte das aplicações executam em algum tipo de nuvem computacional, muitos pontos precisam ser considerados:

- Como garantir a conectividade até o data center?
- Como garantir a operacionalização dos servidores disponíveis para os usuários?
- E a segurança de acesso?
- E se eu quiser escalar a minha aplicação para atender uma demanda de acesso que tende a crescer exponencialmente?

A IMPORTÂNCIA DA INFRAESTRUTURA

Continua...

Outras questões não menos importantes também se destacam:

- Custo energético para manter um data center
- Autonomia pós-desastre da estrutura ou de componentes da mesma
- Disco, placa mãe, processadores com problemas
- Conectividade limitada (por conta de falha em dispositivos como switch, roteadores)

COMPONENTES

GRANULARIDADE GROSSA

Servidores (banco de dados, firewalls, storage, autenticação, réplicas), switches, roteadores, nobreaks e bancos de baterias, rack, ventilação (sistema de refrigeração com ar-condicionados), sistemas de alarme do ambiente, controle de acesso ao local onde ficam armazenados os servidores no data center, barramento de energia elétrica, geradores, etc.

COMPONENTES

GRANULARIDADE FINA

- Os componentes dos servidores em tipos e quantidades
- Placas de redes, discos (mecânicos ou SSD), placas mãe com 1 ou N processadores, placas gráficas para processamento de alto desempenho (CUDA ou OpenCL), fontes (em geral reduntantes) → caso uma apresente problema a outra mantem o hardware ligado

COMPONENTES

Já imagino um um Data Center dentro de um A350?

Assista a este vídeo curto para ter a ideia de uma pequena estrutura distribuída que ajuda no controle da aeronave

https://www.aeroin.net/piloto-airbus-a350mostra-compartimento-secreto/

INFRAESTRUTURA EXEMPLO

Laboratório de Sistemas Distribuídos e Programação Concorrente

> lasdpc.icmc.usp.br

4 clusters independentes que formam uma nuvem privada (andromeda, halley, cosmos, taurus)

- Total de 60 servidores
- Intel e AMD
- http://infra.lasdpc.icmc.usp.br/

INFRAESTRUTURA EXEMPLO

Esta infraestrutura é atualmente desenvolvida sob as seguintes distribuições:

- Ubuntu 22.04 LTS
- Freenas (Storages)
- ClearOS (Firewall e Autenticação)
- Virutalizadores como KVM/Qemu e HyperV (Microsoft)

INFRAESTRUTURA EXEMPLO

 Estrutura de virtualização baseada no KVM (Kernel Virtual Machine)

318 máquinas virtuais

 Utilizamos somente ferramentas de código fonte aberto para gerenciar as VMS

Open Nebula, Open Stack

OPEN COMPUTER PROJECT

 O Open Compute Project (OCP) é uma comunidade global de líderes em tecnologia que trabalha em conjunto para liberar infraestruturas de TI proprietárias para tornar o hardware mais eficiente, flexível e escalável, facilitando a personalização

- Redução de Custos
- https://www.opencompute.org/

OPEN COMPUTE PROJECT

O PROJETO EM LINHAS GERAIS PROMOVE:

- Um ecossistema dinâmico do setor para a implantação global de datacenters na nuvem
- Compartilhamento do mesmo servidor e os mesmos projetos de datacenter que capacitam a nuvem em hiperescala
- Organizações de todos os portes podem melhorar o desempenho, a eficiência, o consumo de energia e os custos de seus datacenters.

OPEN COMPUTE PROJECT

NO PROJETO DE HARDWARE PARA NUVEM EM GRANDE ESCALA:

- Todas as especificações de projeto em software livre
- Os operadores de datacenters e de TI aproveitam a inovação desenvolvida pela comunidade para escalar os projetos de hardware

OPEN COMPUTE PROJECT

BIBLIOGRAFIA

- 1. https://www.opencompute.org/
- 2. https://en.wikipedia.org/wiki/Open_Compute_Project
- 3. https://www.se.com/br/pt/work/solutions/for-business/data-centers-and-networks/open-compute/
- 4. https://azure.microsoft.com/pt-br/global-infrastructure/hardware-innovation/
- 5. https://azure.microsoft.com/pt-br/blog/microsofts-project-olympus-delivers-cloud-hardware-innovation-at-scale
- 6. https://www.opencompute.org/wiki/Server/ProjectOlympus
- 7. https://www.aeroin.net/piloto-airbus-a350-mostra-compartimento-secreto/