COS324: Introduction To Machine Learning

Prof. Yoram Singer

Topic: Generalization and Regularization I

Thus Far

Definitions of learning problems

Linear and non-linear models

Using differentiable loss for learning

Learning algorithms

Mentioned in passing through examples test loss & error

Should the loss/error on unseen data resemble training loss/error?

Dataset of examples each has two features $\{(\mathbf{x}_i, \mathbf{z}_i)\}_{i=1}^{20}$

Learn a function $f : \mathbb{R} \to \mathbb{R}$

Regression loss: $(f(x) - z)^2$

Choose an order **p** for a polynomial:

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_p x^p$$

Learn coefficients $a_0, a_1, a_2, \ldots, a_p$

Learning Polynomials

Replace
$$\mathbf{x} \mapsto \mathbf{x} = (1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3, ..., \mathbf{x}^p)$$

For example suppose $x_i = 3$ and p = 5 then $x_i \mapsto x_i = (1, 3, 9, 27, 81, 243)$

1	X 1	$(x_1)^2$		 (X ₁) ⁵
1	X 2	$(\mathbf{x}_2)^2$		
1	X 3	(x ₃) ²		
1	X 4	(x ₄) ²	• • •	 (X ₄) ⁵

a ₁		-
a ₂		Z 1
a ₃	\approx	Z 2
a 5		Z 3
a ₄		Z 4
a 5		

 $\min \||\mathbf{X}\mathbf{a} - \mathbf{z}\|^2$

Degree 2 Fit to Training Data

Degree 3 Fit to Training Data

Degree 3 Fit to Training Data

Degree 5 Fit to Training Data

Degree 7 Fit to Training Data

Test Data

Received many more examples

$$\{(x_i, z_i)\}_{i=1}^{200}$$

Tested fit on unseen (during training) examples

Degree 2 Fit to Test Data

Degree 3 Fit to Test Data

Degree 3 Fit to Test Data

Degree 4 Fit to Test Data

Degree 7 Fit to Test Data

Overfitting in Logistic Regression

mislabelled examples

Overfitting in Logistic Regression

Overfitting in Classification

Trained a two-later NN on binary image classification

Thumbnail images: 10x10 (input dimension 100)

Dataset size 10,000

Hidden layer size: 20

Tuned SGD well and ran for many iterations

Early Stopping

- Use a validation set which is not used for training
- Check every k updates/epochs performance on validation set
- Once test-train gap is growing stop training
- Works well in practice when scheme is feasible
 - Requires three sets of examples: Train, Validation, Test
 - Loss of stochastic methods not monotone & gap not easy to monitor

Test-Train Gap

Train-Test Gap (large mini-batch)

Finite Case

Suppose we have only **k** predictors — no weight learning: f_1, \ldots, f_k

One has zero generalization error, rest have generalization error $\geq \epsilon$:

$$\exists j: \forall (x,y): f_j(x) = f^*(x) = y \; ; \; \forall i \neq j: \mathbf{P}[f(x) \neq y] \geq \epsilon$$

Received training set S with only **n** examples sampled independently

Evaluate errors on S:
$$\epsilon_i = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_i(\mathbf{x}) \neq y_i]$$

Choose any f_i for which $\epsilon_i = 0$

Generalization: Finite Case

Probability that $\epsilon_i = 0$ is at most $(1 - \epsilon)^n \le e^{-\epsilon n}$ [independence of sample]

Probability α that $\exists i \neq j \text{ s.t. } \epsilon_i = 0$ is at most $\alpha = (k-1)e^{-\epsilon n}$

If $\alpha \leq \frac{1}{\nu}$ it is unlikely we do not find correct predictor

This means that we need about $O\left(\frac{\log(d)}{\epsilon}\right)$ samples

- I.I.D: Identically Independently Distributed
- Generalization analysis typically assumes ∃D:

- W.L.O.G assume $\mathbf{x} \in \{0, 1\}^d \ \mathbf{y} \in \{-1, 1\}$
- Identically [no dependence on i]:

$$\forall i \in S : D((\mathbf{x}_i, \mathbf{y}_i) = (\mathbf{a}, \mathbf{b})) \text{ is } D(\mathbf{a}, \mathbf{b})$$

Independence:

$$D((x_i, y_i) = (a, b) \land D(x_i, y_i) = (a', b')) = D(a, b) D(a', b')$$

X ₀	X 1	У	D(x,y)
0	0	-1	0.07
0	0	1	0.01
0	1	-1	0.03
• • •	• • •	• • •	• • •
• • •	• • •	• • •	• • •
1	1	1	0.005

"Continuous Case"

Find best model with weights $\mathbf{w} \in \mathbf{R}^d$

For bfloat16: each entry of **w** can take 2¹⁶ different values

Different vectors that can be represented 216 x d

Denote each weight vector as a predictor: $\mathbf{f}_1, \ldots, \mathbf{f}_{2^{16d}}$

If $\exists \mathbf{w}^*$ where $\mathbf{f}_{\mathbf{w}^*}(\mathbf{x}) = \mathbf{y}$ for all \mathbf{x} , \mathbf{y} with $\mathbf{D}(\mathbf{x}, \mathbf{y}) > 0$ (perfect generalization): it would take only $\tilde{O}(d)$ examples to find it!

Caveats?

- (d) hides pretty bad constants
- \blacktriangleright Time of finding \mathbf{w}^* is exponential in \mathbf{d}