

# Trabajo de Fin de Grado

Creación de un laboratorio virtual para la enseñanza de Sistemas Operativos usando Android

Autor: Aitor Ardila Bellés Director: Enric Morancho Llena



- 1. Contexto
- 2. Estado del arte
- 3. Alcance
- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio
- 6. Demo
- 7. Conclusiones



### 1. Contexto

- 2. Estado del arte
- 3. Alcance
- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio
- 6. Demo
- 7. Conclusiones



**Objetivo** → Formar a los estudiantes en los SO de dispositivos móviles

¿Cómo? → Creando un lab. virtual para poder trabajar con el código fuente de Android + proponiendo prácticas de laboratorio.





Android es un Sistema Operativo basado en el kernel de Linux.

- Adaptado para ser usado en sistemas móviles (ej. Smartphones)
- Ofrece:
  - Fácil instalación/desinstalación de aplicaciones
  - o Comunicación inalámbrica: GSMA, CDMA, LTE, Bluetooth, WiFi, NFC
  - Wakelocks API
  - Seguridad adicional
  - 0 ...







Esquema general





Esquema básico de comunicación Android - HOST (PC)







1. Contexto

### 2. Estado del arte

- 3. Alcance
- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio
- 6. Demo
- 7. Conclusiones





#### 2. Estado del arte

En la FIB: FIB UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

Asignaturas: IDI, CASO, IM ← estudio de Android

#### En el resto de universidades:



← misma idea conceptual

#### Otros proyectos similares:









- 1. Contexto
- 2. Estado del arte

#### 3. Alcance

- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio
- 6. Demo
- 7. Conclusiones



### 3. Alcance

#### Implementación laboratorio virtual

- Análisis de requisitos (HW, SW)
- Estudio de emuladores
- Descarga y compilación Android
- Adición de mejoras
- Empaquetado final

#### Prácticas de laboratorio

- Instalación del entorno virtual
- Governor de Android
- 3. Añadir aplicación de sistema
- 4. Crear módulo de kernel
- 5. Sistema de ficheros F2FS



- 1. Contexto
- 2. Estado del arte
- 3. Alcance

### 4. Implementación laboratorio virtual

- 5. Prácticas de laboratorio
- 6. Demo
- 7. Conclusiones



Cable USB

#### Análisis de requisitos

#### Característica Mínimo Recomendado Comentarios Ordenador Para versiones de Android inferiores a la 2.3 Arquitectura 64 bits 64 bits procesador es posible usar arquitectura de 32 bits. Espacio disponible En caso de compilar para múltiples dispositivos 100 GB 150 GB Hardware disco duro o usar ccache se recomiendan 150 GB. Contra más RAM más rápida la compilación. Memoria RAM 2 GB<8GB En caso de usar Linux virtualizado, se recomiendan 16 GB de RAM/SWAP. Teléfono móvil Android Android Todo el proyecto está basado en Android. Tipo Otros Dependiendo del dispositivo será tipo microUSB o

miniUSB.



Software (compilación código fuente)

| Android 6.0 (Marshmallow   | v)                                          |                                     |  |
|----------------------------|---------------------------------------------|-------------------------------------|--|
| Característica             | Versión                                     | Comentarios                         |  |
| Sistema Operativo          | Ubuntu 14.04 LTS                            | No es posible compilar Android      |  |
|                            | Mac OS v10.10 (Yosemite)                    | en sistemas Windows.                |  |
| Java Development Kit (JDK) | OpenJDK 8 (Ubuntu)                          | La versión para Mac OS puede        |  |
|                            | jdk 8u45 (Mac OS)                           | ser la especificada o una superior. |  |
| Python                     | 2.6, 2.7                                    | De pythong.org                      |  |
| GNU Make                   | 3.81, 3.82                                  | De gnu.org                          |  |
| Git                        | 1.7 mínima                                  | De git-scm.com                      |  |
|                            | bison build-essential curl flex             |                                     |  |
|                            | gnupggperf libesd0-dev liblz4-tool          |                                     |  |
| Librerías y paquetes       | libncurses5-devlibsdl1.2-dev                |                                     |  |
|                            | libwxgtk2.8-dev libxml2libxml2-utils        | Necesarios para la compilación de   |  |
|                            | lzop maven pngcrushschedtool                | código fuente en arquitectura x64.  |  |
|                            | squashfs-tools xsltproc zipzlib1g-dev       |                                     |  |
|                            | g++-multilib gcc-multilib lib32ncurses5-dev |                                     |  |
|                            | lib32readline-gplv2-dev lib32z1-dev         |                                     |  |



#### Preparación del dispositivo físico



- 1. Desbl. bootloader
- 2. Instalación recovery
- 3. Instalación ROM







#### Emuladores de Android: Características

| Característica / Emulador                     | AVD                       | Genymotion                                         | BlueStacks            | Android-x86                 | YouWave                                      |
|-----------------------------------------------|---------------------------|----------------------------------------------------|-----------------------|-----------------------------|----------------------------------------------|
| Plataformas                                   | -Windows -Linux -Mac OS X | -Windows<br>-Linux<br>-Mac OS X                    | -Windows<br>-Mac OS X | -Windows<br>-Linux          | Windows                                      |
| Arquitectura                                  | emulación<br>ARM          | x86                                                | x86                   | x86                         | x86                                          |
| Precio                                        | Gratis                    | Gratis<br>(disponible versión<br>business de pago) | Gratis                | Gratis                      | -Gratis (Android 4.0)<br>-Pago (Android 5.1) |
| Licencia                                      | Freeware                  | -Freeware<br>-De pago                              | Freeware              | Open Source<br>(Apache 2.0) | -Freeware<br>-De pago                        |
| Permite otro kernel?                          | Sí                        | No                                                 | No                    | Sí                          | Sí                                           |
| Permite Android 6.0?                          | Sí                        | Sí                                                 | Sí                    | Sí                          | No                                           |
| Compatible Android SDK?                       | Sí                        | Sí                                                 | No                    | Sí                          | No                                           |
| Compatible Android Studio?                    | Sí                        | Sí                                                 | No                    | No                          | No                                           |
| Compatible Eclipse?                           | Sí                        | Sí                                                 | No                    | No                          | No                                           |
| Modo debug?                                   | Sí                        | Sí                                                 | No                    | Sí                          | No                                           |
| Comunicación dispositivo                      | -GUI<br>-Comandos         | -GUI<br>-Comandos                                  | GUI                   | -GUI<br>-Comandos           | GUI                                          |
| Cambiar variables estado (batería, GPS, etc.) | Sí                        | Sí                                                 | No                    | Sí                          | No                                           |
| Recomendado para                              | -Desarrollador<br>-Tester | -Desarrollador<br>-Tester                          | -No profesional       | -Desarrollador<br>-Tester   | -No profesional                              |



#### Emuladores de Android: Comparativa







#### Emuladores de Android: Comparativa







CIOSCUD



open source project

### 4. Implementación lab. virtual

#### **Descarga Android**

- Fuente oficial: Android Open Source Project (AOSP)
  - Dispositivos oficiales de Google
- Diversas ROMS (ej. CyanogenMod)
  - Dispositivos finales predefinidos







Tamaño: 14,2 GB

Ubicación: /home/rioardila/android/system



#### Compilación Android

- Jack toolchain → reduce el tiempo de compilación
  - Compilación incremental
  - Librería .jack con código precompilado
  - Servidor Jack
- Compilación de N threads en paralelo (recomendado: N= 2\*threads)
- Opcional: uso de la caché para próximas compilaciones





#### Código fuente: Resultado compilación

```
rioardila@marenostrum2:~/android/system/out/target/product/surnia$ ls
android-info.txt
                                                                               ramdisk.img
                                                cm_surnia-ota-d46c020717.zip
                                                data
boot.img
                                                                               ramdisk-recovery.cpic
cache
                                                dt.img
                                                                               ramdisk-recovery.img
cache.img
                                                fake_packages
                                                                               recovery
clean_steps.mk
                                                                               recovery.id
cm-13.0-20160928-UNOFFICIAL-surnia.zip
                                                install
                                                                               recovery.img
cm-13.0-20160928-UNOFFICIAL-surnia.zip.md5sum
                                                installed-files.txt
                                                                               root
cm-13.0-20161002-UNOFFICIAL-surnia.zip
                                                kernel
                                                                               symbols
cm-13.0-20161002-UNOFFICIAL-surnia.zip.md5sum
                                                ob i
                                                                               system
  13.0-20161104-UNOFFICIAL-surnia.zip
                                                ota override device
                                                                               system.img
cm-13.0-20161104-UNOFFICIAL-surnia.zip.md5sum
                                                ota_script_path
                                                                               userdata.img
                                                previous build config.mk
  surnia-ota-3fbb1d8f22.zip
```



#### **Ejecución**

- En el dispositivo físico:
  - Modo recovery → Factory reset → Flasheado nueva imagen

En el emulador (AVD):

\$ emulator -avd MyPhone -system out/target/product/surnia/
system.img -ramdisk out/target/product/surnia/ramdisk.img &





#### Mejoras implementadas

- Herramientas Cross-Compiling: inclusión de librerías para permitir compilación a arquitectura ARM
- Compilación ARM, PUSH al disp., ejecución (+ comprobación resultados parciales)

Script de automatización:

```
#Choose architecture and compile programm
echo "Choose architecture (1. ARM / 2. x86)."
read -r arc
if [$arc -eq 1]; then
    arm-linux-gnueabi-gcc -static "$1" -o "$2"
else if [$arc -eq 2]; then
    gcc "$1" -o "$2"
else
    echo "$(tput setaf 1)Chosen option is not correct"
    tput sgr0
    exit 1
fi
#Check if compilation succeeded
if [ $? -ne 0 ]; then
    echo "$(tput setaf 1)Compilation failed"
    tput sgr0
    exit 1
else
    echo "$(tput setaf 2)Compilation OK"
    tput sgr0
fi
```



#### Implementación final del lab. virtual

#### 3 sugerencias:

Creación de imagen de
 Ubuntu: rápida instalación
 pero requiere constante
 actualización.





#### Implementación final del lab. virtual

#### 3 sugerencias:

- 2. Guía de instalación: pasos necesarios para instalar y configurar todas las herramientas
- Guía de instalación con código fuente: ya descargado y precompilado ← Opción más viable



- 1. Contexto
- 2. Estado del arte
- 3. Alcance
- 4. Implementación laboratorio virtual

### 5. Prácticas de laboratorio

- 6. Demo
- 7. Conclusiones





#### Instalación del laboratorio virtual

Guión con todos los pasos necesarios para su instalación y configuración.

- Basado en la última sugerencia de implementación:
  - Guión con las herramientas necesarias
  - Código fuente ya descargado y precompilado



#### 2. Governor de Android

Cambiar el perfil de comportamiento de la CPU.





#### 3. Añadir aplicación de sistema

Crear una aplicación de Android y un programa en C y añadirlos en la partición de sistema.





#### 3. Añadir aplicación de sistema

```
> 2 maneras diferentes:

$ adb remount
$ adb push file.apk /system/app/
$ adb shell chmod 644 /system/app/file.apk
$ adb reboot
```

+ interesante: añadirla como parte del código





#### 4. Crear un módulo de Kernel

Creación de un módulo de kernel, compilación, ejecución de la nueva imagen de sistema e instalación del módulo.

```
$ adb push my_module.ko /data/local
```

- \$ adb shell
- \$ cd data/local
- \$ insmod my\_module.ko
- \$ rmmod my\_module
- \$ dmesg

```
[ 38.604699] init: vmware-t
[ 45.222545] eth0: no IPv6
[ 185.561846] Hello world
[ 2457.382993] Hel<u>l</u>o world
```



#### 5. <u>Sistema de ficheros F2FS</u>

- Formateo de /data y /cache con el sistema de ficheros F2F2,
   optimizado para memorias flash
- 2. Tests de benchmark *ext4* vs *F2FS*

| Benchmark / Formato | EXT4          | F2FS              |
|---------------------|---------------|-------------------|
| RL Bench            | 21,4  s       | $14.4 \mathrm{s}$ |
| CF Bench            | 33478 puntos  | 34172 puntos      |
| 0xBenchmark         | 1147 puntos   | 1168 puntos       |
| AnTuTu Benchmark    | 30134  puntos | 31306 puntos      |
| Quadrant Benchmark  | 9588 puntos   | 10736 puntos      |



#### Análisis valorativo

- Instalación lab.
- 2. Governor
- 3. App de sistema
- 4. Módulo kernel
- Sistema de ficherosF2F2

| Práctica | Dedicación (h) | Dificultad | Curso recomendado |
|----------|----------------|------------|-------------------|
| 1        | 4              | Media      | 2°, 3°            |
| 2        | 2              | Alta       | $4^{\rm o}$       |
| 3        | 2              | Media      | 2°, 3°            |
| 4        | 2              | Media      | 2°, 3°            |
| 5        | 2              | Baja       | 2°                |



- 1. Contexto
- 2. Estado del arte
- 3. Alcance
- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio

#### 6. Demo

7. Conclusiones





- 1. Contexto
- 2. Estado del arte
- 3. Alcance
- 4. Implementación laboratorio virtual
- 5. Prácticas de laboratorio
- 6. Planificación y gestión económica

### 7. Conclusiones



#### 7. Conclusiones

- Es interesante usar Android para enseñar Sistemas Operativos
- Es viable de ser usado en un entorno académico
- Simplifica y facilita el trabajo del profesor
- Puede ser usado con cualquier distribución fuente y dispositivo
- Ninguna desviación temporal ni económica

"Android es uno de lo sistemas más abiertos que he visto jamás. Lo que hace a Android especial es que está literalmente diseñado desde el principio para ser personalizado de una manera muy poderosa."

Sundar Pichai - Director Ejecutivo de Google Inc.





# 6. Planificación y gestión económica

#### Fase inicial

Búsqueda de información + curso de GEP

Fase de implementación (metodología Scrum)

Lab. virtual + prácticas de laboratorio

#### Fase final

Redacción Memoria + presentación final



# 6. Planificación y gestión económica

- Costes directos
- Costes indirectos
- Contingencia: 13% del CD y Cl
- Imprevistos\*

#### = PRESUPUESTO:

| Concepto          | Coste (euros) |
|-------------------|---------------|
| Costes directos   | 4630          |
| Costes indirectos | 129           |
| Contingencia      | 618,67        |
| Imprevistos       | 216,70        |
| Total             | 5594,37       |

#### \* Imprevistos

- Avería del ordenador
- Avería del móvil
- Retraso de 2 semanas

| Imprevisto            | Unidades | Probabilidad | Precio (euros) | Coste (euros) |
|-----------------------|----------|--------------|----------------|---------------|
| Avería ordenador      | 1        | 2 %          | 560            | 11,20         |
| Avería teléfono móvil | 1        | 5%           | 0              | 0             |
| Retraso 2 semanas     | 75 h     | 20 %         | 1027,50        | 205,50        |
| Total                 |          |              | 1587,50        | 216,70        |