

වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව තෙවන වාර පරීකුෂණය 2020 ගණිතය I

11 ශුේණිය

කාලය පැය 2 යි.

නම/ විභාග අංකය:

- පුශ්න සියල්ලට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.
- Å කොටසේ සියලුම පුශ්නවල නිවැරදි පිළිතුරු සඳහා ලකුණු 02 බැගින් ද, B කොටසේ එක් පුශ්නයක නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් ද හිමිවේ.

A කොටස

- 01. පළාත් පාලන ආයතනයක් තම බල පුදේශයේ ඇති නිවසක් වාර්ෂිකව රු. 48 000 ලෙස තක්සේරු කර ඇත. මෙම නිවසට වර්ෂයකට රු. 1 080 ක වරිපනම් බද්දක් අයකරයි. වරිපනම් බදු පුතිශතය සොයන්න.
- 02. පංතියක සිටින සිසුන් සමූහයක් එක්තරා විභාගයක් සමත් වූ ආකාරය දක්වීමට අඳින ලද වෙන් රූපයක් පහත දක්වේ. එහි විභාගය අසමත් ගැහැණු ළමුන් අයත් පුදේශය අඳුරුකර දක්වන්න.

- 03. දර්ශක අංකනයෙන් දක්වන්න. $log_3 243 = 5$
- 04. රූපයේ \mathbf{ABCD} යනු සරල රේඛා ඛණ්ඩයකි. දී ඇති තොරතුරු අනුව $\mathbf{x}^{\mathbf{0}}$ හි අගය සොයන්න.

- 05. සාධක සොයන්න. $2x^2 x 3$
- 06. නලයකින් මිනිත්තු 10 ක දී ජලය ලීටර් 600 ක් ගලායයි. එම නලයෙන් ජලය ගලායාමේ සීඝුතාවය තත්පරයට ලීටර් වලින් සොයන්න.

07. කේන්දුය \mathbf{O} වන වෘත්තයේ \mathbf{AB} විෂ්කම්භයකි. $\mathbf{ABC} = \mathbf{65}^0$ කි. \mathbf{BDC} කෝණයේ අගය සොයන්න.

08. පතුලේ පරිධිය $22 {
m cm}$ වන රූපයේ දක්වෙන සෘජු සිලින්ඩරයේ වකුපෘෂ්ඨ වර්ගඵලය $220 {
m cm}^2$ නම් h හි අගය සොයන්න.

- 09. රූපයේ දක්වෙන AB සරල රේඛාවකි. එහි,
 - (i) අනුකුමණය සොයන්න.
 - (ii) සමීකරණය ලියන්න.

10. සුළු කරන්න.

$$\frac{3x}{2}$$
 $\frac{3}{4x}$

11. රූපයේ $\stackrel{\wedge}{ABC}$ ය. $\stackrel{\wedge}{BD}$ මගින් සමච්ඡේදනය වන අතර $\stackrel{\wedge}{AD}$ = $\stackrel{\wedge}{EC}$ වේ. දී ඇති තොරතුරු අනුව අංග සම තිකෝණ යුගලක් නම් කර එම තිකෝණ අංගසම වන අවස්ථාව ලියන්න.

12. විසඳන්න. $2x^2 - 32 = 0$

13. AB නම් මහල් ගොඩනැගිල්ලක ඉහළ මාලය A ද, පාමුල B ද වේ. A සිට නිරීකුණය කළ විට තිරස් පොළොවේ C ස්ථානයේ නවතා ඇති මෝටර් රථය 42^{0} ක අවරෝහණ කෝණයකින් නිරීකුණය වේ.

- (i) මෙම තොරතුරු දළ රූපයේ දක්වන්න.
- (ii) $an 42^{\circ}$ පාද ඇසුරින් ලියන්න.
- 14. රූපයේ \mathbf{ABCD} යනු වෘත්ත චතුරසුයකි. \mathbf{AD} පාදය \mathbf{E} තෙක් දික්කර ඇත. දී ඇති තොරතුරු අනුව $\mathbf{a^o}$ හා $\mathbf{b^o}$ හි අගය සොයන්න.

- 15. කුඩා පොදු ගුණාකාරය සොයන්න. $4a^2, 2ab, 3b^2$
- 16. මුල් පදය සහ පොදු අනුපාතය 2 වන ගුණෝත්තර ශේඪියේ 15 වැනි පදය 2 හි බලයක් ලෙස දක්වන්න.
- 17. කේන්දුය O වන වෘත්තයේ අරය 13cm වේ. AB යනු ජාායක් වන අතර OX _____AB වේ. OX = 5cm නම් AB ජාායේ දිග සොයන්න.

- 18. ${f A} = \left({3 \atop 4} \right)$, ${f B} = ({f 2},{f 1})$ ${f A}{f B}$ මගින් දැක්වෙන නාහසයේ අගය සොයන්න.
- 19. කේන්දුය ${f O}$ වන වෘත්තයේ ${f AC}$ යනු ස්පර්ශකයකි. ${f CBD}={f 50}^0$ නම් ${f x}^0$ හා ${f y}^0$ හි අගය සොයන්න.

- 20. පෙට්ටියක එකම තරමේ පැන්සල් 28 ක් ඇත. ඉන් කිසියම් සංඛාාවක් රතු පාට වන අතර ඉතිරි ඒවා කහ පාට වේ. ඉන් අහඹු ලෙස ඉවතට ගත් පැන්සල කහ පාට එකක් වීමේ සම්භාවිතාවය $\frac{3}{7}$ කි. පෙට්ටියේ ඇති රතුපාට පැන්සල් ගණන සොයන්න.
- 21. අරය **21cm** වන වෘත්තයේ අඳුරු කළ කොටසේ චාප දිග සොයන්න.

- 22. මිනිසුන් $\mathbf{4}$ ක් දින $\mathbf{7}$ කදී, කරන වැඩ පුමාණය මෙන් දෙගුණයක වැඩ පුමාණයක් නිම කිරීමට මිනිසුන් $\mathbf{8}$ කට අවශා දින ගණන සොයන්න.
- 23. පහත පුකාශ හරි නම් '✔' ලකුණ ද, වැරදි නම් 'ႊ' ලකුණ ද ඉදිරියෙන් ඇති වරහන තුළ සටහන් කරන්න.
 - (1) සමාන්තරාසුයක විකර්ණ එකිනෙකට ලම්භකව සමච්ඡේදනය වේ. (......
 - (2) චතුරසුයක සම්මුඛපාද සමාන හා සමාන්තර නම් එම චතුරසුය සමාන්තරාසුයක් වේ. (.........)
 - (3) රොම්බසයක විකර්ණයක් මගින් එහි වර්ගඵලය සමච්ඡේදනය කරයි. (........)
- 24. AB ට සමදුරින් පිහිටි ලක්ෂාක පථය CD වේ. CD මත පිහිටන්නා වූ ද, A ට හා C ට සමදුරින් පිහිටියා වූ ද M නම් ලක්ෂාය, පථය පිළිබඳ දැනුම භාවිතයෙන් පහත දළ රූපයේ දක්වන්න.

25. පහත රූපයේ දක්වෙන ජාල රේඛය මත සංඛානත බහු අසුය අඳින්න.

- (01) (a) එක්තරා පුාදේශීය සභාවක් වෙත ලැබෙන අරමුදලින් $\frac{3}{7}$ ක් පුාදේශීය සභාවේ සංවර්ධන කටයුතු සඳහා වෙන්කර, ඉතිරිය ගුාම නිලධාරී වසම් 3 ක් සඳහා සමව බෙදා දෙන ලදී.
 - (i) ගුාම නිලධාරී වසමක් සඳහා වෙන් කළ මුදල මුළු අරමුදලින් කවර භාගයක් ද?
 - (ii) එක් ගුාම නිලධාරී වසමක් සඳහා රු. $800\ 000$ ක් සංවර්ධන කටයුතු සඳහා ලැබුණි නම් පුාදේශීය සභාවේ සංවර්ධනය සඳහා වෙන් වූ මුදල සොයන්න.
 - (b) රෝහණ මහතා තම යතුරු පැදියෙන් නගරයට ගමන් කළ ආකාරය දක්වෙන දුර - කාල පුස්තාරයක් පහත දක්වේ.
 - (i) රෝහණ මහතා පළමු මිනිත්තු 15 තුළ ගමන්කළ වේගය kmh⁻¹ වලින් සොයන්න.

(ii) රෝහණ මහතා අවසාන $10 {
m km}$ ක දුර, $60 {
m kmh}^{-1}$ වේගයෙන් ගමන් කළේ නම් එම දුර යාමට ගත වූ කාලය සොයා ඉහත පුස්ථාරයේ A හි අගය ලියන්න.

- (02) රූපයේ ABCD යනු වර්ගඵලය $196 {
 m cm}^2$ වන සමචතුරසුාකාර තහඩුවකි. එයින් අරය $7 {
 m cm}$ සහ කේන්දු කෝණය 45° වන කේන්දික ඛණ්ඩ උපරිම සංඛ්‍යාවක් කැපීමට අදහස් කරයි.
 - (i) සමචතුරසුාකාර තහඩුවේ එක් පැත්තක දිග සොයන්න.
 - (ii) කපා ඉවත් කිරීම අදහස් කරන කේන්දික ඛණ්ඩයේ කේන්දු කෝණය D ශීර්ෂය මත පිහිටන සේ ද, DC එක් මායිමක් වන සේ කේන්දික ඛණ්ඩය ඉහත දළ රූපයේ මිනුම් සහිතව දක්වන්න.

	(iii)	ඉහත ලෙස කපා ඉවත් කරන කේන්දික ඛණ්ඩයේ,
		(a) චාප දිග සොයන්න.
		(b) වර්ගඵලය සොයන්න.
	(iv)	කේන්දික ඛණ්ඩයක් කපා ඉවත්කිරීමෙන් අනතුරුව ඉතිරිවන තහඩු කොටසේ පරිමිතිය සොයන්න.
	(v)	ABCD සමවතුරසුයෙන් ඉහත කේන්දික ඛණ්ඩ උපරිම වශයෙන් කොපමණ සංඛ්‍යාවක් කැපිය හැකි දයි නිමාණය කරන්න.
(03)	(a)	කොටසකට රු. 6 බැගින් ලාභාංශය ගෙවන සීමාසහිත පොදු සමාගමක රු. 50 000 ක් ආයෝජනය කළ පිුයංජන මහතාට රු. 15 000 ක ලාභාංශ ආදායමක් ලැබිණ.
		(i) පිුයංජන මහතා ඉහත සමාගමෙන් මිලට ගෙන ඇති කොටස් ගණන සොයන්න.
		(ii) සමාගමේ කොටසක විකුණූ මිල සොයන්න.
		(iii) ලාභාංශය ලබාගැනීමෙන් පසුව ප්‍රියංජන මහතා ඉහත කොටස් සියල්ල රු. 60 000 ට විකුණන ලදී. කොටස විකිණීමෙන් ඔහු ලබන ප්‍රාග්ධන ලාභය ආයෝජනය කළ මුදලේ ප්‍රතිශතයක් ලෙස දක්වන්න.
	(b)	එක්තරා පලාත් පාලන ආයතනයක් තම බල පුදේශයේ පිහිටි නිවසක් වාර්ෂික රු. $80\ 000\ ක්$ ලෙස තක්සේරු කර ඇත. මෙම නිවස සඳහා 6% වරිපනම් බද්දක් අය කරයි.
		(i) නිවස සඳහා වසරකට ගෙවිය යුතු වරිපනම් බදු මුදල සොයන්න.
		(ii) කාර්තුවකට ගෙවිය යුතු බදු මුදල සොයන්න.

(04) (a) පාසල් වෑන් රථ වලින් පාසල් පැමිණෙන සිසුන් පිරිසක් එක් මාසක දී වෑන් රථ සඳහා ගෙවූ මුදල් පුමාණය පහත වගුවේ දක්වා ඇත.

මුදල් පුමාණය	සිසුන්	සමුචිත
රු.	ගණන	සංඛානය
0 - 1000	4	
1000 - 2000	3	
2000 - 3000	5	
3000 - 4000	7	
4000 - 5000	3	
5000 - 6000	2	

- (i) මෙම වගුවේ සමුච්චිත සංඛන තීරය සම්පූර්ණ කරන්න.
- (ii) සුදුසු පරිමාණය ගෙන සමුචිත සංඛාා වකුය අඳින්න.
- (iii) සමුචිත සංඛාන වක්‍ය ඇසුරින් එක් සිසුවකු වෑන් රථය සඳහා ගෙවූ මධා‍යස්ථ මුදල සොයන්න.

- (b) මෙම පාසලේ සිසුන් කණ්ඩායමක් පාසල් පැමිණෙන ආකාරය පහත වට පුස්තාරයෙන් දක්වා ඇත.
 - (i) වටපුස්ථාරයේ දී ඇති තොරතුරු අනුව වෑන් රථ වලින් පැමිණෙන පිරිස 24 නම් පා ගමනින් පැමිණි පිරිස සොයන්න.
 - (ii) පොදු පුවාහන බස්රථ වලින් පැමිණෙන සිසුන් පිරිස මුළු සිසුන්ගෙන් කවර භාගයක් ද?

- (05) (a) පෙට්ටියක එකම තරමේ සහ එකම හැඩයේ සුදු පැහැති කොන්ඩ කටු 3 ක් සහ රෝස පාට කොන්ඩ කටුවක් ද ඇත. නාමලී ඉන් අහඹු ලෙස කොන්ඩ කටුවක් ගෙන නංගීට දී අනතුරුව ඇයද අහඹු ලෙස කොන්ඩ කටුවක් ඉවතට ගන්නා ලදී.
 - (i) මෙම සිද්ධියට අදාල විය හැකි අවස්ථා සියල්ල දක්වෙන නියැඳි අවකාශය පහත කොටු දලෙහි ලකුණු කරන්න.

- (ii) ඉවතට ගත් කොන්ඩ කටු දෙක වෙනස් වර්ණවලින් යුක්ත වීමේ සිද්ධියට අදාල ලඤ වටකර දක්වා එහි සම්භාවිතාවය ලියන්න.
- (iii) නාමලී පළමු ගත් කොන්ඩ කටුව ආපසු දමා නැවතත් එකක් ඉවතට ගන්නා ලද්දේ නම් ඉහත (ii) හි සිද්ධියට අදාල සම්භාවිතාවය 37.5% බව පෙන්වන්න.
- (b) A නම් පෙට්ටියේ රතු පෑන් 2 හා නිල් පෑනක් ද, B නම් තවත් පෙට්ටියක රතු පෑන් 3 සහ නිල් පෑන් දෙකක් ද ඇත. ශිෂායෙක් අංක 1 සිට 6 සඳහන් කළ සමබර දාදු කැටයක් උඩ දමා 4 හෝ 4 ට අගයක් වැටුන හොත් A පෙට්යෙන් ද 4 ට වැඩි අගයක් ලැබුණහොත් B පෙට්ටියෙන් ද පෑනක් ඉවතට ගනිමින් කීඩාවක යෙදෙයි.
 - (i) දාදු කැටයේ 4 හෝ 4 අඩු සංඛ්‍යාවක් හෝ 4 වැඩි සංඛ්‍යාවක් ලැබීමේ සම්භාවිතවය පහත රුක් සටහනේ ලකුණු කරන්න.

දාදු කැටය

- (ii) සිසුවා A පෙට්ටියෙන් හෝ B පෙට්ටියෙන් පැනක් ඉවතට ගැනීමට සිදුවීම් දක්වීම ඉහත රුක් සටහන දීර්ඝ කරන්න.
- (iii) සිසුවා රතු පැනක් ලැබීමේ සම්භාවිතාවය සොයන්න.

වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව

තෙවන වාර පරීකෂණය 2020

11 ශුේණිය

ගණිතය II

කාලය පැය 03 යි. මිනිත්තු 10 යි.

නම/ විභාග අංකය:

උපදෙස් :

- ullet $oldsymbol{A}$ කොටසින් පුශ්න පහක්ද තෝරාගෙන පුශ්න දහයකට පිළිතුරු සපයන්න.
- සෑම පුශ්නයකම නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් හිමිවේ.
- ullet පතුලේ අරය ${f r}$ සහ උස ${f h}$ වූ සිලින්ඩරයක පරිමාව ${f V}={f r}^2{f h}$ වේ.

A කොටස

(01) y = x (x - 4) - 1 ශිතයේ පුස්තාරය ඇඳීමට සකස්කළ අසම්පූර්ණ අගය වගුවක් පහත දී ඇත.

x	-1	0	1	2	3	4	5
y	4	-1	-4		-4	-1	4

- (a) (i) x=2 වන විට y හි අගය සොයන්න.
 - (ii) සුදුසු පරිමාණයක් ගෙන ඉහත ශිුතයේ පුස්තාරය අඳින්න.
- (b) පුස්තාරය ඇසුරින්,
 - (i) වර්තන ලඎයේ ඛණ්ඩාංක ලියන්න.
 - (ii) ශීතයේ අගය සෘණ වන x හි අගය පුාන්තරය ලියන්න.
- (c) (i) පුස්තාරය ඇසුරින් $x^2 4x 1 = 0$ සමීකරණයේ මුල සොයන්න.
 - (ii) ඉහත පුස්තාරය ඒකක එකක් ඉහලට විස්තාපනය කළ විට ලැබෙන පුස්තාරයේ ශුිතයේ සමීකරණය $y = (x a)^2 + b$ ආකාරයෙන් ලියන්න.
- (02) විදුලි උපකරණ එකලස් කරන ආයතනයක සේවය කරන සේවකයින් 50 ක් ඇසුරින් කළ සමීඤණයට අනුව එක් විදුලි උපකරණයක් එකලස් කිරීම සඳහා ගතවන කාලය ඇසුරින් සකස් කළ වගුවක් පහත දුක්වේ.

එක් උපකරණයක් එකලස් කිරීමට ගතවන කාලය මිනිත්තු	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
සේවකයින් ගණන	4	7	18	12	06	03

- (i) මාත පංතිය ලියන්න.
- (ii) එක් විදුලි උපකරණයක් එකලස් කිරීමට ගතවන මධාෘනා3ය කාලය ආසන්න පූර්ණ සංඛාාවට සෙවීමෙන් පැය 8 ක සේවා මුරයක් තුළ විදුලි උපකරණ 1440 ක් නිපදවීමට අවශා සේවකයින් ගණන 100 ට වැඩි බව පෙන්වන්න.

(03) A සහ B නම් වෙළඳසැල් දෙකක එකම වර්ගයේ විදුලි උපකරණයක් පහසු ගෙවීමේ කුමයට ලබාගත හැකි ආකාරය පහත වගුවේ දක්වා ඇත.

වෙළඳසැල	විකුණුම් මිල	මූලික ගෙවීම	මාසික වාරික ගණන	මාසිකව ගෙවිය යුතු ණය මුදලේ කොටස
A	35 000	7 000	10	
В	34 500	6 500		2 800

- (i) ඉහත වගුව ඔබේ පිළිතුරු පතුයේ පිටපත් කරගෙන හිස්තැන් සම්පූර්ණ කරන්න.
- (ii) A වෙළඳ සැලෙන් ගෙවීමේ කුමයට මෙම විදුලි උපකරණයක් මිලට ගත් අයකු පොළිය ගෙවන මාස ඒකක ගණන සොයන්න.
- (iii) A ආයතනය මාස ඒකකයට රු. 35 පොළියක් අය කරයි නම් මාසිකව ගෙවිය යුතු වාරිකයක වටිනාකම සොයන්න.
- (iv) B ආයතනය මාස ඒකකයට රු. 42 අයකරයිනම් එම ආයතනය අයකරන වාර්ෂික පොළී අනුපාතිකය සොයන්න.
- (04) A රූපයේ දක්වෙන පැත්තක දිග x cm වන සමචතුරසු හැඩති ලෝහ තහඩුවේ එක් පැත්තකින් 2cm පළල පටියක් කපා ඉවත් කිරීමෙන් පසු ඉතිරිවන කොටසට 4cm දිග වෙනත් සෘජුකෝණාසාකාර ලෝහ පටියක් B රූපයේ පරිදි සම්බන්ධ කර ඇත.

- (i) සෘජුකෝණාසු ලෝහ තහඩුවේ දිග හා පළල වෙන වෙනම ලියන්න.
- (ii) B සෘජුකෝණාසු තහඩුවේ වර්ගඵලය $41 {
 m cm}^2$ නම් x ඇතුළත් වර්ගජ සමීකරණයක් $ax^2 + bx + c = 0$ ආකාරයෙන් දක්වන්න.
- (iii) වර්ග පූර්ණයෙන් හෝ අන්කුමයකින් විසඳා සමචතුරසුයේ පැත්තක දිග $5\sqrt{2}$ 1බව පෙන්වන්න.
- (iv) $\sqrt{2} = 1.41$ ලෙස ගෙන ඍජුකෝණාසුයේ දිග සොයන්න.
- (05) (a) සුළුකරන්න.

$$\frac{1}{4x+4} - \frac{1}{5x+5}$$

- (b) ළමා ඇඳුම් අළෙවි කරන සුජාතා රු. 2~940 මුදලකට ළමා කම්සයක් රු. 180~බැගින් ද, ළමා කළිසමක් රු. 150~බැගින් ද මිලට ගෙන, ළමා කමිසයක් රු. 280~බැගින් ද ළමා කළිසමක් රු. 300~බැගින් ද විකිණීමෙන් රු. 2~300~ක ලාභයක් ලබයි.
 - (i) සුජාතා මිලට ගත් ළමා කමිස ගණන a ලෙසත්, ළමා කළිසම් ගණන b ලෙසත් ගෙන සමගාමී සමීකරණ යුගලක් ලියන්න.
 - (ii) එය විසදීමෙන් සුජාතා මිලට ගත් ළමා කමිස ගණන හා ළමා කළිසම් ගණන වෙනවෙනම සොයන්න.

- (06) A නම් වරායෙන් පිටත් වූ නැවක් 035° ක දිගංශයකින් $50 \mathrm{km}$ යාතුා කොට B වරායට පැමිණෙයි. B වරායේ සිට 180° ක දිගංශයකින් යාතුාකොට C වරායට පැමිණ නවතියි.
 - (i) ඉහත තොරතුරු මෙම දළ සටහනෙහි දක්වන්න.
 - (ii) A වරායේ සිට BC නැව ගමන් කළ මාර්ගයට ඇති ඍජු දුර AD තිුකෝණමිතික අනුපාත භාවිතයෙන් සොයන්න.
 - (iii) DC දුර 20 km නම් $\stackrel{\wedge}{ACD}$ හි අගය සොයන්න.
 - (iv) $\stackrel{\wedge}{ACD}$ අගය ආසන්න අංශකයට ගෙන එය ඇසුරින් $\stackrel{\wedge}{C}$ වරායේ සිට නිරීක්ෂණය කළ විට $\stackrel{\wedge}{A}$ වරාය පෙනෙන දිගංශය සොයන්න.

B කොටස

- (07) (a) මිරිස් පාත්තියක මිරිස් පැල සිටුවා ඇත්තේ පහත රූපයේ ආකාරයට සමචතුරසුාකාර කව වල පිහිටන පරිදි වේ.
 - (i) පළමු, දෙවන හා තෙවන කව වල ඇති මිරිස් පැළ ගණන පිළිවෙලින් ලියා එය කුමන වර්ගයේ ශ්‍රේඪයක අනුයාත පද ලෙස පිහිටයි ද?

- (ii) මෙම මිරිස් පාත්තියේ මිරිස් පැළ 48 ක් ඇත්තේ කී වැනි කවයේ ද?
- (iii) කව 12 ක ඇති මුළු මිරිස් පැළ ගණන සොයන්න.
- (b) 3, -6, 12, ගුණෝත්තර ශේඪියේ 192 වන්නේ කී වැනි පදය ද?
- (08) (a) රූපයේ දැක්වෙන හරස්කඩ $8 \, {
 m cm} \ {
 m x} \ 8 \, {
 m cm}$ වන ඝනකාභ හැඩති ලෝහ කුට්ටියේ දිග $18 \, {
 m cm} \ {
 m a}$. මෙම ලෝහ කුට්ටිය උණු කොට ලෝහ අපතේ නොයන සේ අරය a ද උස $7 \, {
 m cm} \ 2 \, {
 m m}$ කුඩා සිලින්ඩර 9 ක් සාදනු ලැබේ. සාදන ලද සිලින්ඩරයක අරය $a=\frac{8}{\sqrt{11}}$ වන බව පෙන්වන්න.

- (b) ලසු ගණක වගුව භාවිතයෙන් a හි අගය ආසන්න දශමස්ථාන දෙකකට සොයන්න.
- (09) සරල දාරය, කවකටුව cm/mm පරිමාණයත් භාවිත කර නිර්මාණ රේඛා පැහැදිලිව දක්වමින් පහත නිර්මාණය කරන්න.
 - (i) $AB = 7 \mathrm{cm}$ ද, $A\hat{B}C = 60^{\circ}$ ද සහ $BC = 5.5 \mathrm{cm}$ වන $A\hat{B}C$ තිුකෝණය නිර්මාණය කරන්න.
 - (ii) AB පාදය E තෙක් දික්කර, BE ට සහ BC සමදුරින් පිහිටි ලක්ෂායක පථය නිර්මාණය කරන්න.
 - (iii) ඉහත පථය සහ $B\hat{A}C$ සමච්ඡේදකය හමුවන ලක්ෂා O ලෙස නම් කර, O සිට BE ට ලම්භකය වන OD නිර්මාණය කරන්න.
 - (iv) BE පාදය D හි දී ද, BC පාදය ද ස්පර්ශකරන වෘත්තය නිර්මාණය කරන්න.
 - (v) දික්කල AC, කේන්දුය O වන වෘත්තයට ස්පර්ශයක් වීමට හේතුව ලියන්න.

(10) ABC තිකෝණයේ AB=AC වන අතර AB හි මධා ලස්ෂාය D වේ. AC පාදය E තෙක් දික්කර ඇත්තේ AD=CE වන ලෙසට වේ. CE // DF වන අතර දික්කළ EF රේඛාව S හි දී AB පාදය හමුවේ.

- (i) CEFD චතුරසුය සමාන්තරාසුයක් බව පෙන්වන්න.
- (ii) 4BS = AB බව සාධනය කරන්න.
- (11) පැයක කාලයක් තුළ සුපිරි වෙළඳසැලකට පැමිණි පාරිභෝගිකයින් පිරිසක් මාළු, සහල් සහ එලවළු මිලට ගත් සංඛ්‍යාව පහත අසම්පූර්ණ වෙන් රූපයෙන් දක්වා ඇත. ඉහත කිසිවක් මිලට නොගත් පිරිස 3 කි.
 - (i) මෙම වෙන් සටහන ඔබේ පිළිතුරු පතුයේ පිටපත්කරගෙන පහත තොරතුරු ඇතුළත් කරමින් සම්පූර්ණ කරන්න.

- ullet සහල් මිලට ගත් පිරිස 20 වන අතර එලවළු පමණක් මිලට ගත් පිරිස 04 කි.
- ullet සහල් පමණක් මිලට ගත් පිරිස 06 වන අතර සහල් සහ මාළු මිලට ගත් 12 ගෙන් 04 ක් එලවළු මිලට ගෙන නැත.
- 16 ක් මාළු මිලට ගෙන ඇති අතර මාළු පමණක් මිලට ගෙන ඇත්තේ එක් අයකු පමණි.
- (ii) සුපිරි වෙළඳ සැලට පැමිණි අය අතරින් එලවඑ මිලට ගෙන ඇති සංඛාාව කීයද?
- (iii) සුමිත් මහතා සහල් හා මාළු පමණක් මිලට ගත් අයකු නම් ඔහු අයත් පුදේශය අඳුරු කරන්න.
- (iv) පැයක කාලය තුළ මෙම වෙළඳ සැලට පැමිණි මුළු පිරිස කීයද?
- (v) මාළු මිලට ගත් සියලු දෙනාම සහල් මිලට ගත්තේ නම් තොරතුරු දක්වීමට නැවත අඳින ලද මෙම වෙන් රූපයේ A හා B නම් කරන්න.

(12) රූපයේ ABCD වෘත්ත චතුරසුයකි. C හි දී වෘත්තයට ඇඳි ස්පර්ශකය සහ දික්කල AB රේඛා E හි දී හමුවේ. ADC කෝණයේ සමච්ඡේදකය DB වන අතර AC හා DB රේඛා F හි දී ඡේදනය වේ.

- (අ) (i) මෙම රූපය පිළිතුරු පතුයේ පිටපත් කරගෙන ඉහත තොරතුරු ඇතුළත් කර සම්පූර්ණ කරන්න.
 - (ii) $\stackrel{\frown}{\mathrm{CBE}} = a$ නම් හේතු දක්වමින් පහත කෝණ වල අගය a ඇසුරින් සොයන්න.

- (a) BDC
- (ආ) (i) ADF තිකෝණය සහ BCF තිකෝණය සම කෝණී තිකෝණ බව සාධනය කරන්න.
 - (ii) $5 \, \text{BC} = 4 \, \text{AD}$ ද, $\text{DF} = 4 \, \text{cm}$ ද නම් CF දිග සොයන්න.

සියලුම හිමිකම් ඇවිරියි. / All Rights Reserved, ucation වනම් පළාත් අධ්යාපන වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අවස්ථා artiment of Provided කි පළාත් අව වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අධ්යාපත් අධ්යාප	p දෙපාර්තමේන්තුව Department of Provincial Education වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව	
විෂයය Subject	විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහනම. Not to be removed from the Exa	mination Hall.	

I කොටස - A

	1 Ownow - A		
01.	5%		02
	2 400 48 000 x 100%	01	
02.			02
	පිරිමි		
0.2	සමත් පිරිස 5 ³ = 243		0.2
03.	$x = 130^{\circ}$		02
04.	x = 130 BCE = 50 ⁰ ලබා ගැනීම	01	02
05.	$2x^2 - 3x + 2x - 3$	01	
	x(x-3) + 1(2x-3) (2x - 3) (x - 1)	01	02
	, , , ,	01	
06.	$1 ls^{-1}$		02
	<u>600</u> ලබා ගැනීම	01	
07.	$\stackrel{\wedge}{\mathrm{BDC}} = 25^{\circ}$		02
	$A\hat{C}B = 90^{\circ}$ මෙන් $B\hat{A}C = 25^{\circ}$	01	
	ලබා ගැනීම		
08.	h = 10 cm	01	02
	2 rh = 220 හෝ <u>220</u> ලබා ගැනීම	01	
09.		01	
	y = x + 2	01	02
10.	$2x^2$		02
	$\frac{3x}{2}$ x $\frac{4x}{3}$	01	
11.	ABD BCE	01	
	කෝ.කෝ.පා.	01	02
12.	$2x^2 = 32$		
	$x^2 = 16$ $x = +4$	01 01	
13.		01	02
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	C	01	
	$\tan 42^{\circ} = \frac{AB}{BC}$	01	02
14.	$b=70^{\circ}$	01	
	$a=45^{0}$	01	02

15.	$12\;a^2b^2$, සාධක ලිවීමට	01	02
16.	$T_{15} = 2 \times 2^{(15-1)}$		
	$= 2 \times 2^{14}$	01	
	$=2^{15}$	01	02
17.	AB = 24cm		02
	AX = 12cm ලබා ගැනීම	01	
18.	(8 -4)		02
19.	$x = 50^{\circ}$	01	
	$y = 100^{\circ}$	01	02
20.			02
	4 x 28 මහර 3 x 28	01	
21.	16.5cm		02
	$2 \times \frac{22}{7} \times 21 \times \frac{45}{360}$	01	
22.	දින 7		02
	4 x 7 = 28 මහර් 56 ලබා ගැනීම	01	
23.	*		
	✓ ✓		02
24.	D M C		
	AC ලම්භ සමච්ඡේදකය	01	
	M ලකුණු කිරීම	01	02
25.	නිවැරදි සංඛාාත බහුඅසුය ඇඳීම		02
			50
	I කොටස - B		
01.	(a) (i) ගුාම නිලධාරී වසම් සඳහා වෙන් කළ කොටස = $1 - \frac{3}{7}$		
	$=\frac{4}{7}$	01	
	(ii) එක් ගුාම නිලධාරී වසමක් සඳහා කොටස = $\frac{4}{7} \times \frac{1}{3}$	01	
	$=\frac{4}{21}$	01	

	මුළු මුදල $=\frac{4}{21}$ 80 000	01	
	$=\frac{80\ 000}{4} \times 21$	01	
	= \emptyset_7 . 420 000		
	පුාදේශීය සභාවේ සංවර්ධනය		
	සඳහා මුළු මුදල		
	$= 420\ 000\ x \frac{4}{7}$		
	= o _t . 240 000	01	06
	(b) (i) වේගය = $\frac{10}{15}$ km h	01	
	$= 10 \text{ x} \cdot \frac{60}{15} \text{ kmh}^{-1}$		
	$=40 \text{ kmh}^{-1}$	01	
	(ii) කාලය = $\frac{10}{60}$ x 60 මිනිත්තු	01	
	= 10		
	m A මත 25 ලකුණු කිරීම	01	04
			10
02.	(i) පැත්තක දිග $=\sqrt{196}$		
	= 14cm	01	
	(ii) A B	02	
	450		
	D 1cm C		
	(ii) (a) චාප දිග = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$		
	$= 5.5 \mathrm{cm}$	02	
	(b) වර්ගඵලය = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$	_	
	$7 + 7 + 8 = 19.25 \text{ cm}^2$	02	
	(iv) පරිමිතිය = $14 + 14 + 14 + 7 +$	02	
	7 + 5.5 = 61.5cm	02	
	(v) කැබලි = 9	01	
			10
03.	(a) (i) කොටස් ගණන = $\frac{15000}{6}$		
	= 2 500	02	
		~-	
	(ii) විකුණුම් මිල = $\frac{50\ 000}{2\ 500}$		
	= $\sigma_{\bar{l}}$. 20	02	

	(iii) පුාග්ධන ලාභය		
	= 60 000 - 50 000		
	= 10 000	01	
	පුතිශතය = $\frac{10\ 000}{50\ 000}\ \mathrm{x}\ 100$		
	50 000 = 20%	01	06
	(b) (i) වර්ෂයකට වරිපනම්	01	
	මදු = $\frac{6}{100}$ x 80 000		
	_ · ·		
	= 4 800	02	
	(ii) කාර්තුවකට බදු = $\frac{4800}{4}$		
	= 0.200	02	04
	3(. 200	02	$\frac{10}{10}$
04.	(i) සමුචිත සංඛානතය		
	4		
	7 12		
	19		
	22		
	24	01	
	(ii) 25		
	20		
	, 15		
	din		
	\$ 10		
	(2)		
	5-		
	0 6 9 9 4 0 6	03	
	\$ 5000		
	22 300 dry 05		
	මධාස්ථය = $\frac{1}{2}$ x 24		
	2 = 12 වැති අය ගණන	01	
	$= \emptyset_7. \ 3 \ 000$	01	06
	(b) (i) කේන්දු කෝණය		
	= 360 - (100 + 125 + 45)		
	= 360 - 270		
	= 90°	01	

පා ගමනින් පැමිණි පිරිස $= \frac{24}{90} \times 45$ 01 $= 12$ 01 01 (ii) බස් රථ වලින් පැමිණි පිරිස $= \frac{5}{18}$ 01 04 10 $= 12$ 02 $= 10$ 05. (a) (i) $= 10$ $= 10$ 02 $= 10$ $= 10$ 05. (a) (i) $= 10$ $= 10$ $= 10$ 05. (a) (i) $= 10$				
(ii) නස් රථ වලින් පැමිණි පිරිස = \frac{5}{18} \ 01 \ \frac{04}{10} \ \end{bmatrix} 05. (a) (i) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, ,		
මස් රථ වලින් පැමිණි පිරිස $=\frac{5}{18}$ 01 04 10 05 . (a) (i) W_3 W_4 W_2 W_3 W_4			01	
05. (a) (i)		(ii)		
05. (a) (i)		බස් රථ වලින් පැමිණි පිරිස $=rac{5}{18}$	01	04
ලක්ෂා පුස්තාරයට තිවැරදිව වටකර දක්වීම 01 සම්භාවිතාව $\frac{6}{12}$ ගෝ $\frac{1}{2}$ 01 $\frac{2}{3}$ ගෝ $\frac{1}{3}$ ග්තු විය දාදුකැටය $\frac{2}{3}$ ග්තු $\frac{2}{3}$ ග්තු $\frac{1}{3}$ ග්තු පැතක් ලැබීම $\frac{2}{3}$ ගිල් $\frac{1}{3}$ ග්තු $\frac{2}{3}$ ගිල් $\frac{1}{3}$ ග්තු $\frac{2}{3}$ ගිල් $\frac{1}{3}$ ග්තු $\frac{2}{3}$ ග්තු $\frac{2}{3$		-		10
ලක්ෂා පුස්තාරයට තිවැරදිව වටකර දක්වීම 01 සම්භාවිතාව $\frac{6}{12}$ ගෝ $\frac{1}{2}$ 01 $\frac{2}{3}$ ගෝ $\frac{2}{3}$ ගත ගි ලැසුකැටය දාදුකැටය $\frac{2}{3}$ ගත $\frac{4}{3}$ හත් $\frac{2}{3}$ ගත $\frac{2}{3}$ ගත $\frac{2}{3}$ ගත $\frac{1}{3}$ ගත $\frac{2}{3}$ ගත $\frac{2}{$		() ()		=
නිවැරදිව වටකර දක්වීම 01 සමභාවිතාව $\frac{6}{12}$ හෝ $\frac{1}{2}$ 01 01 (ii) සමභාවිතාව $=\frac{6}{16}$ x 100 01 05 $=37.5\%$ (b) (i) A පෙට්ටිය දාදුකැටය $\frac{2}{3}$ 4 හෝ $\frac{2}{3}$ 5ල් B පෙට්ටිය දාදුකැටය $\frac{2}{3}$ 4 හෝ $\frac{2}{3}$ 5ල් B පෙට්ටිය $\frac{1}{3}$ 4 වැඩි $\frac{3}{3}$ 5ල් $\frac{1}{3}$ 4 වැඩි $\frac{3}{3}$ 5ල් $\frac{2}{5}$ 5ල් 01 $\frac{2}{3}$ 7 ගු $\frac{4}{9} + \frac{1}{5}$ 01 02 $\frac{20+9}{45} = \frac{29}{45}$ 01 02 $\frac{11}{3}$ 8වැරදි දක්ෂ කුමාංකය 01 නිවැරදි දක්ෂ කුමාංකය 01 නිවැරදි ලක්ෂ ලකුණු කිරීම 01 සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01	05.	$\overset{\cdot}{\mathrm{R}_{1}}\overset{\cdot}{\mathrm{W}_{2}}\overset{\cdot}{\mathrm{W}_{3}}\overset{\cdot}{\mathrm{W}_{4}}$ පළමු ගැනීම	02	
සම්භාවිතාව $\frac{6}{12}$ හෝ $\frac{1}{2}$ 01 (ii) සම්භාවිතාව = $\frac{6}{16}$ x 100 01 05 = 37.5% (b) (i) A පෙට්ටිය දාදුකැටය $\frac{2}{3}$ රතු $\frac{2}{3}$ 4 හෝ $\frac{2}{3}$ නිල් $\frac{1}{3}$ 4 ට වැඩි $\frac{3}{3}$ රතු (ii) රතු පැනක් ලැබීම 01 $\left(\frac{2}{3} \times \frac{2}{3}\right) + \left(\frac{1}{3} \times \frac{3}{5}\right)$ 01 $\frac{4}{9} + \frac{1}{5}$ 01 02 II කොටස 01. (a) (i) $y = -5$ 01 (ii) නිවැරදි අක්ෂ කුමාංකය 01 නිවැරදි ලකු ලකුණු කිරීම 01 සුමට වතුය ඇඳීම 01 04 (b) (i) (2, -5) 01		-		
(ii) සම්භාවිතාව = $\frac{6}{16} \times 100$		නිවැරදිව වටකර දැක්වීම	01	
$= 37.5\%$ (b) (i) A පෙට්ටිය දාදිකැටය $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{1}{3}$ 4 වැඩි $\frac{3}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{2}{5}$ තිල් $\frac{1}{3}$ $\frac{1}{3}$ රතු $\frac{2}{5}$ තිල් $\frac{1}{3}$ $\frac{20}{5}$ තිල් $\frac{20+9}{45} = \frac{29}{45}$ 01 02 II කොටස 01. (a) (i) $y = -5$ 01 $\frac{20}{5}$ $\frac{20+9}{45}$ $\frac{20}{5}$ $$		සම්භාවිතාව $\frac{6}{12}$ හෝ $\frac{1}{2}$	01	
(b) (i) A පෙට්ටිය දාදුකැටය $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{1}{3}$ 4 ට වැඩි $\frac{3}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{2}{5}$ නිල් $\frac{1}{3}$ $\frac{2}{5}$ නිල් $\frac{2}{5}$ නිල් $\frac{2}{5}$ නිල් $\frac{2}{5}$ නිල් $\frac{4}{9} + \frac{1}{5}$ $\frac{20+9}{45} = \frac{29}{45}$ 01 02 II කොටස 01 $\frac{20}{5}$ 01 02 $\frac{11}{5}$ 01 04 05 05 05 05 01 01 04 05 05 05 05 01 01 04		10	01	05
දාදුකැටය $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{2}{5}$ නිල් $\frac{1}{3}$ රතු $\frac{2}{5}$ නිල් $\frac{2}{5}$ $\frac{2}{5}$ නිල් $\frac{2}{5}$ $\frac{2}{5}$ නිල් $\frac{2}{5}$ $\frac{2}{5}$ නිල් $\frac{2}{5}$ $\frac{2}{5$				
		දාදුකැටය $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ රතු $\frac{2}{3}$ නිල් $\frac{1}{3}$ හිල් $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{1}{3}$ රතු $\frac{2}{3}$ රතු		03
II කොටස 01. (a) (i) $y = -5$ 01 (ii) නිවැරදි අක්ෂ කුමාංකය 01 01 නිවැරදි ලකු ලකුණු කිරීම 01 01 සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01		$\left(\frac{2}{3} \times \frac{2}{3}\right) + \left(\frac{1}{3} \times \frac{3}{5}\right)$ $\frac{4}{9} + \frac{1}{5}$	01	
01. (a) (i) $y=-5$ 01 (ii) නිවැරදි අක්ෂ කුමාංකය 01 නිවැරදි ලකු ලකුණු කිරීම 01 සුමට වකුය ඇඳීම 01 04 (b) (i) $(2,-5)$ 01		45 45	01	02
(ii) නිවැරදි අක්ෂ කුමාංකය 01 නිවැරදි ලකු ලකුණු කිරීම 01 සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01		II කොටස		
(ii) නිවැරදි අක්ෂ කුමාංකය 01 නිවැරදි ලකු ලකුණු කිරීම 01 සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01	01.	(a) (i) $y = -5$	01	
නිවැරදි ලකෘ ලකුණු කිරීම 01 සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01		•		
සුමට වකුය ඇඳීම 01 04 (b) (i) (2, -5) 01				
(b) (i) (2, -5) 01		-		04
		` ' '		02
		$(\Pi) -3.3 \times \lambda \vee 0.5$	UZ	(0

	(c) (i) $y =$	0 ලබා	ගැනීම		01	
		01				
	x = -5.3 $x = 0.3(ii) y = (x - 2)^2 - 4$					
	(11) y =	(x - 2)	- 4		01	03
						10
02.	පංති පුාත්තර	මධානය	සංඛ්‍යාතය	fx		
	20-24	22	4	88		
	25-29	27	7	189		
	30-34	32	18	576		
	35-39	37	12	444		
	40-44	42	6	252		
	45-49	47	3	141	_	
			f = 50	fx = 1690	_	01
	(') 20 20				01	
	(i) 30 - 29					
	නිවැරදි මධා අගය කී්රයට					
	නිවැරදි <i>fx</i> තීරයට					
	$fx = 1690 \odot$					
	මධානාපය කාලය = <i>fx</i>					
	$=\frac{1690}{50}$					
	=					
	= මිනිත්තු					
	අවශා සේවකයින්					
	ගුණු $=\frac{1440 \times 34}{60 \times 8}$				01	
	= 102				01	
	= 102 > 100				01	09
						10
03.	(i) o ₇ . 280	00			01	
05.	වාරික 1				01	02
	(ii) මාස ඒක		_ 10	(10 ± 1)		
	(11) මාස වකා	ක ගමාර	_	-(10 + 1)		
			= 55		01	02
	(iii) මුළු පෙ		55 x 35 1925		0.1	
		01				
	මුළු මුද					
	1 925					
	29 925					
	මාසික වාරිකය = $\frac{29925}{10}$					
	$= \phi_{\overline{l}}. \ 2.992.50$					03
	(iv) B ආයතනයේ පොළී අනුපාතිකය					
	$= \frac{42}{2800} \times 100 \times 12$					
					02	
		= 18%	o		01	03
1						10

04.	(i) x - 2		
	x+4		
	පළල = (x - 2) cm	01	
	$\xi \omega = (x+4) \text{ cm}$	01	02
	(ii) වර්ගඵලය = දිග x පළල		
	41 = (x + 4) (x - 2)	01	
	$41 = x^2 - 2x + 4x - 8$	01	
	$41 = x^2 + 2x - 8$	0.1	
	$0 = x^2 + 2x - 8 - 41$		
	$0 = x^2 + 2x - 49$	01	03
	$(iii) x^2 + 2x = 49$		
	$(11)x + 2x - 49$ $x^2 + 2x + 1 = 49 + 1$		
	$(x+1)^2 = 50$		
	(x+1) = 50 $x+1 = +\sqrt{50}$	01	
	$x+1=\pm 5\sqrt{2}$	01	
	$x = \pm 5\sqrt{2} - 1$		
	– · දිග සෑණ විය නොහැක		
	සමචතුරසු පැත්තක දිග		
	$= 5\sqrt{2} - 1$	01	
	සෘජුකෝණාසුයේ දිග $=x+4$		
	$=5\sqrt{2}-1+4$	01	
	$= 5 \times 1.41 + 3$	01	
	= 10.05cm	01	05
			10
05.	(a) $\frac{1}{4x+4} - \frac{1}{5x+5}$		
	$\frac{5x + 5 - 4x - 4}{(4x + 4)(5x + 5)}$	02	
	$\frac{x+1}{(4x+4)(5x+5)}$	01	03
	(b) (i) ළමා කමිස ගණන = a ළමා කළිසම් ගණන = b		
	180a + 150b = 2940 — ①	01	
	100a + 150b = 2300 - 2	01	02
	(ii) $180a + 150b = 2940 - 0$	0.1	"-
	100a + 150b = 2300 - 2		
	② - ①		
	80a = 640	01	
	a = 8	01	
	$a=8$ \odot හි ආලේශය		

	180a + 150b = 2940	0.1	
	$180 \times 8 + 150b = 2940$	01	
	1440 + 150b = 2940 $150b = 2940 - 1440$		
	150b = 2540 - 1440 $150b = 1500$		
	b = 10	01	
	ළමා කමිස ගණුන = 8		
	ළමා කළිසම් ගණන = 10	01	05
			10
06.	(i)		
00.	B 180°		
	^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	a deta		
	035 × 50km		
	$A \overline{\qquad} D$		
	C		
	035°, 180°, 50km ලකුණු කිරීම		02
	(ii) $\sin 35 = \frac{AD}{50}$	01	
	$0.5738 = \frac{AD}{50}$	01	
	50 $28.69 km = AD$	01	03
	(iii) $\tan A\hat{C}D = \frac{28.69}{20}$		03
	20	01	
	$\tan A\hat{C}D = 1.4345$	01	
	$A\hat{C}D = 55^{\circ} 7'$	01	03
	(iv) දිගංශය = 360 - 55	01	
	$= 305^{\circ}$	01	02
			10
07.	(a) (i) 4, 8, 12,		
	සමාන්තර ලේඪීයක	01	01
	(ii) $Tn = a + (n - 1)d$		
	48 = 4 + (n - 1) 4	01	
	44 = (n - 1) 4		
	11 = n - 1	01	
	11 + 1 = n		
	12 = n	01	03
			l

10

	(ii) $\operatorname{Sn} = \frac{\mathrm{n}}{2} (a+l)$		
	$=\frac{12}{2}(4+48)$	01	
	$= 6 \times 52$	01	
	= 312	01	03
	(b) $\operatorname{Tn} = ar^{n-1}$		
	$192 = 3 \times (-2)^{n-1}$	01	
	$64 = (-2)^{n-1}$		
	$-2^6 = -2^{n-1}$	01	
	6 = n - 1		
	6+1=n		
	7 = n	01	03
			10
09.	(i) AB නිර්මාණය	01	
	$\mathrm{ABC}=60^{\mathrm{o}}$ නිර්මාණය	01	
	1DC C 1		
	ABC තිුකෝණය ඇඳීම	01	03
	(ii) BE ඇ復®	01	03
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය	"	03
	(ii) BE ඇ復®	01	
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය (iii)ABC සමච්ඡේදකය ඇඳීම O ලකුණු කිරීම	01 01 01 01	02
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය (iii)ABC සමච්ඡේදකය ඇඳීම O ලකුණු කිරීම OD නිර්මාණය	01 01 01	02
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය (iii)ABC සමච්ඡේදකය ඇඳීම O ලකුණු කිරීම	01 01 01 01	02
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය (iii) ABC සමච්ඡේදකය ඇඳීම O ලකුණු කිරීම OD නිර්මාණය (iv) OD අරය වෘත්තය නිර්මාණය	01 01 01 01	02
	(ii) BE ඇඳීම EBA සමච්ඡේදකය නිර්මාණය (iii) ABC සමච්ඡේදකය ඇඳීම O ලකුණු කිරීම OD නිර්මාණය (iv) OD අරය වෘත්තය නිර්මාණය කිරීම	01 01 01 01	02 03 01

08.	(a) ඝනකාභයේ පරිමාව $= 8 \ { m x} \ 8 \ { m x} \ 18$	01	
	සිලින්ඩර 9 ක පරිමාව $= r^2 h \times 9$		
	$= \frac{22}{7} \times a^2 \times 7 \times 9$	01	
	$\frac{22}{7} \times a^2 \times 7 \times 9 = 8 \times 8 \times 18$	01	
	$a^2 = \frac{8 \times 8 \times 18}{22 \times 9}$	01	
	$a^2 = \frac{64}{11}$		
	$a = \sqrt{\frac{64}{11}}$	01	05
	$a = \frac{8}{\sqrt{11}}$		
	(b) $a = \frac{8}{\sqrt{11}}$		
	$= lg \ 8 - \frac{1}{2} lg \ 11$	01	
	$= 0.9031 - \frac{1}{2} \times 1.0414$	02	
	= 0.9031 - 0.5207	01	
	= 0.3824		
	= <i>antilog</i> 0.3824		
	= 2.418	01	05
			10

				1
10.	(i) සා.ක.යු. :- CEFD සමාන්තරාසුයක් බව			
	සාධනය $: D\mathbf{\hat{B}}F=\mathbf{A\hat{C}}F$ (\mathbf{AB} = \mathbf{AC} නිසා)	01		
	$ \overset{\wedge}{\mathrm{DFB}} = \overset{\wedge}{\mathrm{ACF}} (AE /\!\!/ DF $ නිසා)	01		
	$\overrightarrow{DBF} = \overrightarrow{DFB}$			
	$\mathrm{BD} = \mathrm{DFB}$ (සම ද්විපාද නිකෝණ)	01		
	BD = AD (D මධා ලක්ෂා	-		
	DF = AD	,		
	CE = AD (දක්කය)	01		
	DF = CE			
	DF = CE (දක්තය)			
	DF // CE (ඉහත සාධිතයි)	01	05	
	CEFD සමාන්තරාසුය			
	(ii) සා.ක.යු. :- 4BS = AB බව			
	සාධනය :- AC // DF AD = BD (දක්තය)			
		0.1		
	F යනු BC හි මධා ලක්ෂායයි.	01		
	DC // FS (DCEF සමාන්තරාසුයක් නිසා) BC හි මධාපලක්ෂාය F			
	BD හි මධාලකුෂා S වේ. (ම.පු.	වී.) 01		
	$\mathrm{BS}=\mathrm{DS}$ ඉව්.			
	2BS = BD	01		
	$\mathrm{AD} = \mathrm{BD} \; (\mathrm{D} \; @$ ධා ලක්ෂා)	01		
	AB = 2BD			
	$AB = 2 \times 2BS$	01	05	
	AB = 4BS			
			10	
11.	(i) 16			
111	12 20	_ සහල්		
	1 4 6	මුලට මෙලට	ාත්	
	© 1	පිරිස		
	මිලටගත්			
	පිරිස 3			
	/ එලවළු මිලටගත් පිරිස			
	නිවැරදි වෙන් රූපයට	04		
		L	((1

	(ii) = 8 + 2 + 3 + 4	01	
	= 17 (iii) නිවැරදි අඳුරු කිරීම	02	
	(iv) 31	02	
	(v) A - සහල් මිලට ගත් පිරිස	01	
	B - මාළු මිලට ගත් පිරිස		10
			10
12.	(eq) (i) A B E		
	රූපය සම්පූර්ණ කිරීමට	02	
	(ii) (a) $\stackrel{\triangle}{ADC} = a$ (වෘත්ත	01	
	චතුරසුයක පාදයක් දික් කිරීමෙන් සෑදෙ බාහිර ∢ි අභාන්තර සම්මුඛ ∢ිට සමාන		
	$\stackrel{\frown}{\mathrm{BDC}} = \frac{a}{2}$ (සමච්ඡේදනය නිසා)		04
	2		04
	(b) $\mathbf{BCF} = \frac{a}{2}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ $\frac{1}{2}$)	01	
	(අා)(i) ADF සහ BFC AFD = BFC (පුතිමුඛ දී) DÂF= FBC (ප්තම ඛණඩයේ කෝණ) ADF = FCB (එකම ඛණඩයේ කෝණ) ADF හා BFC සමකෝණ (ii) $\frac{CF}{DF} = \frac{BC}{AD}$ $\frac{CF}{4} = \frac{4}{5}$		02
	$CF = \frac{16}{5}$		
	CF = 3.2cm	01	03
			10

අපොස සා/පෙළ පසුගිය විහාග පුශ්නෝන්නර වට්ටම් සහිනව ගෙදරටම ගෙන්වාගැනීමට

www.lol.lk **Learn Ordinary Level**

G.C.E.O/L PAST PAPERS

අ.නො.ස. සා/පෙළ

පසුගිය

විතාග පුශ්නෝත්තර

අ.පො.ස. සා/පෙළ

පසුගිය

පුශ්නෝත්තර

විනාග

2010 so 2019

භූගෝල

විදනව

GEOGRAPHY

්කතෝලික

සම්ප්ධ

CATHOLICISM

2010 m 2019

පළාත් පුශ්ත පතු **නැ**ග පිළිතුර් පතු පොත්

වට්ටම් සහිතව ගෙදරටම ගෙන්වාගැනීමට www.lol.lk

Learn Ordinary Level മയമായിച്ച - 071 777 4440/0756999990/071 8540371

පුශ්නපතු පොත් ගෙදරටම ගෙන්ව ගන්න ඔන්ලයින් ඔඩර් කරන්න WWW.LOL.LK වෙත යන්න

ONLINE BOOK STORE

