南京	大当	之数	学i	果和	呈试	岩
	ノヽ゠	ロメス	\ /	УIN 11.	エル	ك `

2017-2018 学年度第 二 学期 考试形式: 开卷 课程名称: 数值计算与试验 I

考试时间: 2018年9月8日 考试成绩: ______

题号	_	 111	四	总分
得分				

- 一、填空与简述题(每题6分,计30分)

- 圖 3. 插值型数值积分公式 $I_n(f) = \sum_{i=0}^n A_i f(x_i)$ 的求积系数表达式为 $A_i = \int_a^b l_i(x) dx$,则 $\sum_{i=0}^n A_i = \underline{\qquad}$.
- 4. 设区间大小为 $h, \frac{h}{2}$ 时复合梯形公式的计算结果分别为 $T^{(1)}, T^{(2)}$,且具有截断误差 $O(h^4)$,则通过外推技巧可以得到 精度更高的结果为 ______。
- - 二、求解题(每题10分,共40分)
 - (1) 在 $-4 \le x \le 4$ 上给出 $f(x) = e^x$ 的等距节点函数表,若用二次插值求 e^x 的近似值,要使截断误差不超过 $\frac{\sqrt{3}e^4}{216}$ 问使用函数表的步长 h 应满足什么条件?

(2) 求一个次数不高于 4 次的多项式 P(x),使它满足 P(0) = P'(0) = 0, P(1) = P'(1) = 1, P(2) = 1.

(3)
$$\exists x_0 = \frac{1}{4}, x_1 = \frac{1}{2}, x_2 = \frac{3}{4}.$$

推导以这三个点为求积节点在[0,1]上地插值型求积公式,并分析求积公式的代数精度。

求上述求积公式的代数精度,并利用求积公式给出计算 $\int_a^b f(x) dx$ 的一个复化求积公式。

三、分析证明题(8+12=20分)

(1)设 x_0, x_1, \cdots, x_n 为n+1个互异的插值基点, $l_i(x)(i=0,1,\cdots,n)$ 为 Lagrange 基本多项式,证明:

$$\sum_{i=0}^{n} (x_i - x)^{j} l_i(x) = 0, j = 1, 2, \dots, n$$

四、(本题 10 分) 设 $p_n(x)$ 为不高于 n 次的多项式, $T_n(x)$ 为 n 次第一类 Chebyshev 多项式,y 为大于 1 的常数,

 $\diamondsuit M = \max_{-1 \le x \le 1} |p_n(x)|$.证明:

(1)
$$T_n(y) > 1$$
;

(2)
$$|p_n(y)| \le M |T_n(y)|$$
.