EP<u>ITA-ING1</u> M. REGRAGUI

PARTIEL ALGEBRE LINEAIRE

Notes de cours ne sont pas autorisées Calculatrice autorisée

Exercice 1:

Soit la matrice
$$A = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix}$$

- 1. Calculer les valeurs propres de A
- 2. Déterminer le polynôme minimal de A
- 3. La matrice A est –elle diagonalisable?
- 4. Déterminer les sous espaces propres de A

Exercice2:

Soit le système linéaire
$$Ax = b$$
 où $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 5 \\ 4 & 21 & 6 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 9 \\ -5 \end{pmatrix}$

- 1. Résoudre le système linéaire Ax = b par l'algorithme de Gauss (on explicitera les matrices $\widetilde{A}^{(k)}$ et $G^{(k)}$ $\forall k = 1,2,3$)
- 2. Donner la factorisation de Gauss A = LU
- 3. En déduire le déterminant de A

Exercice 3:

On considère la méthode itérative : $x^{(k+1)} = x^{(k)} - \theta (Ax^{(k)} - b)$

Où θ est un paramètre réel strictement positive.

On suppose que A est une matrice symétrique définie positive.

Le vecteur $x^{(k)}$ est une approximation de la solution x du système Ax = b

On note λ_1 la plus grande valeur propre de A et λ_n la plus petite valeur propre de A

- 1. Montrer que la méthode itérative est convergente si $0 < \theta < \frac{2}{\lambda_1}$
- 2. Montrer que le rayon spectral $\rho(I \theta A) = \max(|1 \theta \lambda_1|, |1 \theta \lambda_n|)$
- 3. On pose $Y(\theta) = |1 \theta \lambda_1|$ et $Z(\theta) = |1 \theta \lambda_n|$ Tracer les graphes les fonctions $Y(\theta)$ et $Z(\theta)$
- 4. Montrer que le coefficient θ qui assure la convergence la plus rapide est donné par :

$$\theta_0 = \frac{2}{\lambda_1 + \lambda_n}$$