Optical Methods in Diagnosis

2ne semester, 2015-2016

Homework #5

We will develop a grid structure to store photon absorption information in space. Given $\mu_a = 6 \text{ cm}^{-1}$, $\mu_s = 414 \text{ cm}^{-1}$, g = 0.91, Henyey-Greenstein phase function, $n_1(\text{air}) = 1$, $n_2(\text{tissue}) = 1.37$, tissue thickness = 1.5 mm.

Develop a grid (3 mm wide, 1.5 mm deep) for your model. Let $\Delta r = \Delta z = 0.1$ mm. Use an infinitely narrow beam with normal incidence at the origin as the source and variable weight photons for 5 sets of 10,000 photons. Calculate reflectance R and transmittance T. R should be about 0.22 ± 0.002 and T should be 0.0145 ± 0.0004 . Plot the <u>fluence rate</u> (1/cm²) of <u>scattered photons</u> as a function of r and z. It is necessary to separate the absorption due to the first photon-tissue interaction from that of subsequently scattered photons.