

TPS54302 ZHCSF83B - MAY 2016 - REVISED APRIL 2021

TPS54302 4.5V 至 28V 输入、3A 输出、EMI 友好型 同步降压转换器

1 特性

- 4.5V 至 28V 的宽输入电压范围
- 集成 $85m\Omega$ 和 $40m\Omega$ MOSFET,持续输出电流为
- 关断电流低至 2μA,静态电流为 45 μ A
- 内部 5ms 软启动
- 400kHz 固定开关频率
- 展频频谱可降低 EMI
- 高级 Eco-mode™ 脉冲跳跃
- 峰值电流模式控制
- 内部环路补偿
- 通过间断模式保护为两个 MOSFET 提供过流保护
- 过压保护
- 热关断
- SOT-23 (6) 封装

2 应用

- 12V、24V 分布式总线电源
- 工业应用
 - 白色家电
- 消费类应用
 - 音频
 - 机顶盒 (STB)、数字电视 (DTV)
 - 打印机

简化版原理图

3 说明

TPS54302 器件是一款输入电压范围为 4.5V 至 28V 的 3A 同步降压转换器。该器件包含两个集成式开关 FET 并且具备内部回路补偿和 5ms 内部软启动功能,可减 少元件数量。

通过集成 MOSFET 并采用 SOT-23 封装, TPS54302 器件可实现高功率密度,并且在印刷电路板 (PCB) 上 的占用空间非常小。

高级 Eco-mode 实现可尽可能提高轻负载效率并降低 功率损耗。

在 TPS54302 器件中,引入了展频频谱操作以降低 EMI.

高侧 MOSFET 上的逐周期电流限制功能可在过载条件 下保护转换器并通过防止电流失控的低侧 MOSFET 续 流电流限制功能实现功能增强。当过流持续时间超出预 设时间时,将触发断续模式保护功能。

器件信息

	,,,, , , , , , , , , , , , , , , , , ,			
器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)		
TPS54302	SOT-23-THIN (6)	1.60mm x 2.90mm		

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1) 录

效率与输出电流间的关系

内容

1 特性	1	7.4 器件功能模式	13
2 应用	1	8 应用和实施	
3 说明	1	8.1 应用信息	14
4 修订历史记录	2	8.2 典型应用	14
5 引脚配置和功能		9 电源相关建议	
6 规格		10 布局	
6.1 绝对最大额定值	4	10.1 布局指南	22
6.2 ESD 等级	4	10.2 布局示例	22
6.3 建议的操作条件	4	11 器件和文档支持	23
6.4 热性能信息		11.1 器件支持	
6.5 电气特性		11.2 接收文档更新通知	
6.6 时序要求	5	11.3 支持资源	23
6.7 典型特性		11.4 商标	
7 详细说明		11.5 静电放电警告	
7.1 概述		11.6 术语表	
7.2 功能模块图		12 机械、封装和可订购信息	
7.3 特性说明			
4 修订历史记录			
注:以前版本的页码可能与当前版本的页码	冯不同		
Changes from Revision A (May 2016) to	o Revision B ((April 2021)	Page

更新了整个文档中的表格、图和交叉参考的编号格式......1

Page

5 引脚配置和功能

图 5-1. DDC 封装 6 引脚 SOT-23-THIN 俯视图

表 5-1. 引脚功能

引脚		类型 ⁽¹⁾	חמ אנ
名称	编号	父 堂(1)	说明
воот	6	0	高侧 NFET 栅极驱动电路的电源输入。在 BOOT 和 SW 引脚间连接 0.1 µ F 电容器。
EN 5 I		I	此引脚是使能引脚。悬空 EN 引脚即可启用。
FB	4	1	转换器反馈输入。通过反馈电阻分压器连接到输出电压。
GND	1	_	低侧功率 NFET 的接地引脚源极端子以及控制器电路的接地端子。将敏感 V _{FB} 单点连接至此 GND。
SW	2	0	高侧 NFET 和低侧 NFET 之间的开关节点连接。
VIN	3	_	输入电压电源引脚。高侧功率 NFET 的漏极端子。

(1) O=输出;I=输入

6 规格

6.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

			最小值	最大值	单位
	VIN		-0.3	30	V
输入电压, V _I	EN	EN		7	V
	FB		- 0.3	7	V
	BOOT-SW		- 0.3	7	V
输出电压, V _O	SW		- 0.3	30	V
	SW (20ns 瞬态值)		- 5	30	V
运行结温,T _J				150	°C
贮存温度,T _{stg}			-65	150	$^{\circ}$ C

⁽¹⁾ 应力超出*绝对最大额定值*下所列的值可能会对器件造成永久损坏。这些仅仅是应力额定值,并不表示器件在这些条件下以及在*建议运行 条件*以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。

6.2 ESD 等级

			值	单位
V	热山社山	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	静电放电	充电器件模型 (CDM),符合 JEDEC 规范 JESD22-C101 ⁽²⁾	±1500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

- (1) JEDEC 文档 JEP155 规定: 500V HBM 时能够在标准 ESD 控制流程下安全生产。
- (2) JEDEC 文档 JEP157 规定: 250V CDM 时能够在标准 ESD 控制流程下安全生产。

6.3 建议的操作条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

			最小值	最大值	单位
Vı		VIN	4.5	28	V
	输入电压	EN	- 0.1	7	V
		FB	- 0.1	7	V
	#A 11 31 Hm	BOOT-SW	- 0.1	7	V
Vo	输出引脚	SW	- 0.1	28	V
T_J	工作结温		-40	125	°C

6.4 热性能信息

		TPS54302		
	热指标 ⁽¹⁾	DDC (SOT-23)	单位	
		6 引脚		
R ₀ JA	结至环境热阻	87.1	°C/W	
R _{θ JC(top)}	结至外壳(顶部)热阻	35.5	°C/W	
R ₀ JB	结至电路板热阻	14.4	°C/W	
ψ JT	结至项部特征参数	0.9	°C/W	
^ψ ЈВ	结至电路板特征参数	14.2	°C/W	

(1) 有关新旧热指标的更多信息,请参阅《半导体和IC 封装热指标》应用报告。

Submit Document Feedback

6.5 电气特性

除非另外注明,否则本部分规定的电气额定值适用于本文档的所有规格。这些规格可解释为在该产品的使用寿命范围内,不会导致器件参数或功能规格下降的各项条件。 $T_J = -40^{\circ}C$ 至 $+125^{\circ}C$, $V_{IN} = 4.5V$ 至 28V (除非另有说明)。

	参数	测试条件	最小值	典型值	最大值	单位
输入电源						
V _{IN}	输入电压范围		4.5		28	V
IQ	非开关静态电流	EN = 5V , V _{FB} = 1V		45		μΑ
I _{OFF}	关断电流	EN = GND		2		μΑ
	VINI A T BE C	上升 V _{IN}	3.8	4.1	4.4	V
$V_{IN(UVLO)}$	VIN 欠压锁定	下降 V _{IN}	3.3	3.6	3.9	V
	迟滞		400	480	560	mV
使能(EN 引	脚)				1	
V _{ENrising}	1+ 4k 271 1+	上升		1.21	1.28	V
V _{ENfalling}	一使能阈值	下降	1.1	1.19		V
I _(EN_INPUT)	输入电流	V _{EN} = 1V		0.7		μА
I _(EN_HYS)	迟滞电流	V _{EN} = 1.5V		1.55		μА
反馈和误差的	女大 器				I	
V _{FB}	反馈电压	V _{IN} = 12V	0.581	0.596	0.611	V
脉冲跳跃模式	**************************************				'	
I _(SKIP) (1)	脉冲跳跃模式峰值电感器电流阈值	V_{IN} = 12V , V_{OUT} = 5V , L = 10 μ H		500		mA
功率级					'	
R _(HSD)	高侧 FET 导通电阻	T _A = 25°C , V _{BST} - SW = 6V		85		mΩ
R _(LSD)	低侧 FET 导通电阻	T _A = 25°C , V _{IN} = 12V		40		mΩ
电流限值						
I _(LIM_HS)	高侧电流限值	最大电感器峰值电流	4	5	5.9	Α
I _(LIM_LS)	低侧拉电流限值	最大电感器谷值电流	3.1	4	5.5	Α
振荡器						
f _{SW}	中心开关频率		290	400	510	kHz
过热保护					'	
	温度上升			165		°C
热关断 ⁽¹⁾	迟滞			10		°C
	断续时间			32768		周期

(1) 未经生产测试

6.6 时序要求

		最小值	标称值	最大值	单位
过流保护					
t _{HIC_WAIT}	断续等待时间		512		周期
t _{HIC_RESTART}	重新开始之前的断续时间		16384		
t _{SS}	软启动时间		5		ms
导通时间控制					
t _{MIN_ON} (1)	最短导通时间,在90%至90%和1A负载下测量		110		ns

(1) 未经量产测试

6.7 典型特性

除非另有说明,否则 $V_{IN} = 12V$

7详细说明

7.1 概述

TPS54302 器件是一款具有两个集成式 N 通道 MOSFET 的 28V、3A 同步降压转换器。为了提高线路和负载瞬态性能,该器件实现了恒定频率、峰值电流模式控制,降低了输出电容。经过优化的内部补偿网络更大限度地减少了外部元件数量,并简化了控制环路设计。

器件的开关频率固定为 400kHz。

TPS54302 器件在 VIN 为 4.5V 时开始开关动作。在不进行开关且没有负载的情况下,工作电流典型值为 $45 \, \mu \, A$ 。该器件禁用后,电源电流为 $2 \mu A$ (典型值)。

集成的 $85m\Omega$ 高侧 MOSFET 和 $40m\Omega$ 低侧 MOSFET 有助于进行高效率电源设计,其连续输出电流高达 3A。

TPS54302 器件通过集成自举再充电二极管来减少外部元件数量。BOOT-PH 引脚连接的外部电容为集成高侧 MOSFET 提供偏置电压。UVLO 电路监测自举电容电压,当其降至预设阈值 2.1V(典型值)以下时,高侧 MOSFET 随即关断。

该器件通过利用过压比较器来更大限度地减少过多的输出过压瞬变。当经调节的输出电压高于标称电压的 108%时,过压比较器便会激活,并会关闭并禁止开启高侧 MOSFET,直到输出电压低于标称电压的 104%。

TPS54302 器件具有 5ms 内置软启动时间,从而可最大限度地降低浪涌电流。

Submit Document Feedback

7.2 功能模块图

Copyright © 2017, Texas Instruments Incorporated

7.3 特性说明

7.3.1 固定频率 PWM 控制

该器件采用固定频率峰值电流模式控制。误差放大器通过 FB 引脚的外部电阻将输出电压与内部电压基准进行比较。内部振荡器开启高侧电源开关的接通。将误差放大器输出与高侧开关管的电流进行比较。当开关管电流达到误差放大器的输出电压电平时,高侧开关管会关闭,而低侧开关管会开启。误差放大器输出电压随输出电流的上升或下降而上升或下降。该器件通过将误差放大器的电压钳位到最大电平来实现限流,并且还实现了超小钳位,可改善瞬态响应性能。

7.3.2 脉冲跳跃模式

在轻负载电流条件下,TPS54302 器件旨在以脉冲跳跃模式运行,用于提升轻负载效率。当电感器峰值电流低于500mA(典型值)时,该器件将进入脉冲跳跃模式。当该器件处于脉冲跳跃模式时,误差放大器的输出电压将被钳位,从而阻止高侧集成 MOSFET 的开关。电感器峰值电流必须升至500mA以上,并退出脉冲跳跃模式。集成电流比较器仅捕获电感器峰值电流,因此进入脉冲跳跃模式的平均负载电流会随应用和外部输出滤波器的变化而变化。

7.3.3 误差放大器

该器件将跨导放大器用作误差放大器。误差放大器将 FB 电压与内部软启动电压或内部 0.596V 电压基准二者中的较小者进行比较。误差放大器的跨导典型值为 240µA/V。频率补偿元件在内部位于误差放大器的输出和地之间。

7.3.4 斜坡补偿和输出电流

该器件为开关电流信号加上了补偿斜坡。此斜坡补偿会在占空比升高时避免分谐波振荡。提供的电感器峰值电流在整个占空比范围内保持恒定。

7.3.5 启用并调节欠压锁定

器件的 EN 引脚可提供电气开/关控制功能。当 EN 引脚电压超过阈值电压时,器件便开始工作。如果 EN 引脚电压被拉至阈值电压以下,稳压器停止开关并进入低静态 (IQ) 状态。

EN 引脚具备一个内部上拉电流源,使用户可以悬空 EN 引脚以启用器件。如果应用需要控制 EN 引脚,可采用一个漏极开路或集电极开路输出逻辑与该引脚连接。

该器件可在 VIN 引脚上实现内部欠压锁定 (UVLO) 电路。当 VIN 引脚电压降至内部 VIN UVLO 阈值以下时,该器件被禁用。内部 VIN UVLO 阈值的迟滞为 480mV。

如果应用需要 VIN 引脚上具有更高的 UVLO 阈值,则可以如图 7-1 中所示配置 EN 引脚。使用外部 UVLO 功能时,建议将迟滞值设置为大于 500mV。

EN 引脚具有较小的上拉电流 I_p ,该电流将引脚的默认状态设置为在未连接任何外部元件时启用。上拉电流还用于控制 UVLO 功能的电压迟滞,因为当 EN 引脚超过使能阈值时,上拉电流会增加 I_h 。使用方程式 1 和方程式 2 来计算 R4 和 R5 在指定 UVLO 阈值下的值。

Submit Document Feedback

图 7-1. 可调节 VIN 欠压锁定

$$R4 = \frac{V_{START} \left(\frac{V_{ENfalling}}{V_{ENrising}} \right) - V_{STOP}}{I_p \left(1 - \frac{V_{ENfalling}}{V_{ENrising}} \right) + I_h}$$

$$\tag{1}$$

其中

- I_p = 0.7μA
 I_h = 1.55μA
- V_{ENfalling} = 1.19V
- V_{ENrising} = 1.22V

$$R5 = \frac{R4 \times V_{ENfalling}}{V_{STOP} - V_{ENfalling} + R4 \left(I_p + I_h\right)}$$
(2)

7.3.6 安全启动至预偏置输出电压

此器件旨在防止低侧 MOSFET 使预偏置输出放电。在单调预偏置启动期间,高侧和低侧 MOSFET 直到内部软启 动电压高于 FB 引脚电压时才能导通。

7.3.7 电压基准

电压基准系统针对具有温度稳定性的带隙电路输出进行调节,从而在整个温度范围内生成 ±2.5% 精密电压基准。 典型电压基准设计为 0.596V。

7.3.8 调节输出电压

输出电压可通过输出节点和 FB 引脚间的电阻分压器进行设置。TI 建议使用具有 1% 或更优容差的分压电阻器。 上电阻分压器的起始值为 100kΩ,根据 方程式 3 计算输出电压。为了提高轻载时的效率,请考虑使用具有更大阻 值的电阻。如果值太大,稳压器更容易受到噪声的影响,并且 FB 输入电流产生的电压误差也很明显。

$$V_{OUT} = V_{ref} \times \left[\frac{R2}{R3} + 1 \right]$$
 (3)

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

7.3.9 内部软启动

TPS54302 器件使用内部软启动功能。内部软启动时间设置为 5ms (典型值)。

7.3.10 自举电压 (BOOT)

TPS54302 器件具有一个集成式 BOOT 稳压器,并且需要在 BOOT 和 SW 引脚之间连接一个 0.1µF 的陶瓷电容器来为高侧 MOSFET 提供栅极驱动电压。推荐使用电介质等级为 X7R 或 X5R 的陶瓷电容器,从而保证在温度和电压范围内具有稳定的特性。为了改善压降,TPS54302 器件旨在当 BOOT 至 SW 引脚的电压大于 2.1V 典型值时以 100% 的占空比运行。

7.3.11 过流保护

该器件通过针对高侧和低侧 MOSFET 的逐周期电流限制在过流情况下进行保护。

7.3.11.1 高侧 MOSFET 过流保护

该器件实现了电流模式控制,可使用内部 COMP 电压逐周期控制高侧 MOSFET 的关断和低侧 MOSFET 的导通。在每个周期内,开关电流都会和内部 COMP 电压产生的电流基准进行比较。当峰值开关电流与电流基准相交时,高侧开关会关断。

7.3.11.2 低侧 MOSFET 过流保护

当低侧 MOSFET 开启时,传导电流由内部电路监控。在正常工作期间,低侧 MOSFET 向负载输送电流。在每个时钟周期结束时,都会将低侧 MOSFET 拉电流与内部设置的低侧拉电流限值进行比较。电感器谷值电流超出低侧拉电流限值,高侧 MOSFET 不会开启,并且低侧 MOSFET 会在下一个周期保持开启状态。如果电感器谷值电流在一个周期开始时低于低侧拉电流限值,高侧 MOSFET 会再次开启,如图 7-2 所示。

图 7-2. 针对两个 MOSFET 的过流保护

此外,如果发生输出过载情况的时间超过断续等待时间(已为 512 个开关周期编程),则器件会在 16384 个周期的断续时间后关闭并重新启动。间断模式有助于在严重过流情况下降低器件功耗。

Submit Document Feedback

7.3.12 扩频

为降低 EMI, TPS54302 器件引入了扩频频谱。抖动范围在摆动速率为 1/512 的开关频率的 ±6% 之间。

7.3.13 输出过压保护 (OVP)

TPS54302 整合了过压瞬态保护 (OVTP) 电路,当器件从输出故障状态或强空载瞬态中恢复时,能够更大限度地削弱输出电压过冲。OVTP 电路包括一个过压比较器,用于比较 FB 引脚电压和内部阈值。在 FB 引脚电压高于 108% × V_{ref} 时,高侧 MOSFET 被强制关闭。在 FB 引脚电压低于 104% × V_{ref} 时,高侧 MOSFET 重新启用。

7.3.14 热关断

如果结温超过 165°C(典型值),内部热关断电路会强制器件停止开关。当结温降至 155°C(典型值)以下时,内部热断续计时器会开始计数。内置热关断断续时间(32768 个周期)结束后,器件会重新启动上电序列。

7.4 器件功能模式

7.4.1 正常运行

当输入电压高于 UVLO 阈值时, TPS54302 器件可在其正常开关模式下运行。当电感器峰值电流高于 0A 时,在正常持续导通模式 (CCM) 下运行。在 CCM 中, TPS54302 器件在固定频率下运行。

7.4.2 Eco-mode™ 运行

在轻负载条件下,此器件旨在以高效脉冲跳跃模式运行。在开关电流下降至 500mA (典型值)时开始脉冲跳跃。 在脉冲跳跃期间,当开关电流下降到 0A 时,低侧 FET 关闭。开关节点(SW 引脚)波形具有不连续导通模式 (DCM)运行的特性,并且开关频率明显下降。随着输出电流下降,开关脉冲之间的感知时间增加。

8应用和实施

NOTE

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 应用信息

TPS54302 器件通常用作降压转换器,可将 8V 至 28V 的输入电压转换为 5V 的固定输出电压。

8.2 典型应用

8.2.1 TPS54302 8V 至 28V 输入、5A 输出转换器

Copyright © 2017, Texas Instruments Incorporated

图 8-1.5V、3A 参考设计

8.2.2 设计要求

对于这个设计示例,请使用表 8-1 中列出的参数。

表 8-1. 设计参数

参数	值
输入电压范围	8V 至 28V
输出电压	5V
输出电流	3A
瞬态响应,1.5A 负载阶跃	△ V _{OUT} = ±5%
输入纹波电压	400mV
输出电压纹波	30 mV _{pp}
开关频率	400kHz

Submit Document Feedback

8.2.3 详细设计过程

8.2.3.1 输入电容器选型

该器件需要一个输入去耦电容器,并且根据应用需要一个大容量电容器。去耦电容器建议使用超过 10μF 的陶瓷电容器。从 VIN 引脚到 GND 的额外 0.1μF 电容器 (C2) 是可选的,用于提供额外的高频滤波。额定电容器电压必须大于最大输入电压。

根据方程式 4 计算输入纹波电压 (Δ V_{IN})。

$$\Delta V_{IN} = \frac{I_{OUT(MAX)} \times 0.25}{C_{BULK} \times f_{sw}} + \left(I_{OUT(MAX)} \times ESR_{MAX}\right)$$
(4)

其中

- C_{BULK} 为大容量电容值。
- fsw 为开关频率。
- IOUT(MAX) 为最大负载电流。
- ESR_{MAX} 为大容量电容器的最大串联电阻。

此外,还必须检查最大 RMS(均方根)纹波电流。在最坏的情况下,根据方程式5计算 ICIN(RMS)。

$$I_{CIN(RMS)} = \frac{I_{OUT(MAX)}}{2}$$
 (5)

实际输入电压纹波在很大程度上受到与布局和电压源输出阻抗相关的寄生效应的影响。 # 8.2.2 所示为该电路的实际输入电压纹波,该纹波大于计算值。该测量值仍低于指定输入限值 (400mV)。输入电容器的最大电压为 V_{IN} max + ΔV_{IN} / 2。所选旁路电容器的额定电压为 35V,纹波电流容量大于 2A。这两个值均提供了足够的裕量。在任何情况下都不得超过电压和电流的最大额定值。

8.2.3.2 自举电容器选型

BOOT 和 SW 引脚之间必须连接一个 0.1uF 陶瓷电容器,用于确保正常运行。TI 建议使用陶瓷电容器。

8.2.3.3 输出电压设定点

TPS54302 器件的输出电压通过一个电阻分压器网络从外部调节。在图 8-1 的应用电路中,此分压器网络由 R2 和 R3 组成。使用方程式 6 和方程式 7 可计算输出电压与电阻分压器之间的关系。

$$R3 = \frac{R2 \times V_{ref}}{V_{OUT} - V_{ref}}$$
 (6)

$$V_{OUT} = V_{ref} \times \left[\frac{R2}{R3} + 1 \right]$$
 (7)

选择 R2 的值约为 $100k\Omega$ 。当使用标准值电阻器时,略微增大或减小 R3 的值会导致输出电压更接近匹配值。在此设计中,R2 = $100k\Omega$,R3 = $13.3k\Omega$,可以得到输出电压为 5V。所提供的 49.9Ω 电阻 R1 为断开控制环路以进行稳定性测试指示了一个便利的位置。

8.2.3.4 欠压锁定设定点

欠压锁定 (UVLO) 设定点可通过 R4 和 R5 的外部分压网络来调节。TPS54302 器件的 VIN 和 EN 引脚之间连接 R4 电阻器。EN 和 GND 引脚之间连接 R5 电阻器。UVLO 有两个阈值,一个用于上电期间输入电压由小变大时,另一个用于下电或欠压期间输入电压由大变小时。对于此示例设计,最小输入电压为 8V,因此启动电压阈值设置为 6.74V,而停止电压阈值设置为 5.83V。使用方程式 1 和方程式 2 可计算上电阻器和下电阻器 R4 和 R5 的阻值。

8.2.3.5 输出滤波器元件

必须为输出滤波器选择两个元件:输出电感器 (Lo) 和 Co。

8.2.3.5.1 电感器选型

根据方程式 8 来计算输出电感的最小值 (L_{MIN})。

$$L_{MIN} = \frac{V_{OUT} \times \left(V_{IN(MAX)} - V_{OUT}\right)}{V_{IN(MAX)} \times K_{IND} \times I_{OUT} \times f_{sw}}$$
(8)

其中

• K_{IND} 是一个系数,表示电感纹波电流量与最大输出电流之比。

一般而言,设计人员可以自行决定 K_{IND} 的值,但应遵循以下准则。对于使用低 ESR 输出电容器(例如陶瓷电容器)的设计,可以使用较高的 K_{IND} 。使用更高的 ESR 输出电容器时, K_{IND} = 0.2 可获得更好的结果。

对于此设计示例,使用 K_{IND} = 0.35。计算出的最小电感值为 9.78 μ H。在此设计中,为 L_{MIN} 选择了 10 μ H 的接近标准值。

对于输出滤波电感而言,不得超出额定 RMS 电流和饱和电流。根据方程式 9 计算 RMS 电感器电流 (IL(RMS))。

$$I_{L(MAX)} = \sqrt{I_{OUT(MAX)}^2 + \frac{1}{12} \times \left(\frac{V_{OUT} \times \left(V_{IN(MAX)} - V_{OUT}\right)}{V_{IN(MAX)} \times L_O \times f_{SW} \times 0.8} \right)^2}$$
(9)

根据方程式 10 计算电感器峰值电流 (I_{L(PK)})。

$$I_{L(PK)} = I_{OUT(MAX)} + \frac{V_{OUT} \times \left(V_{IN(MAX)} - V_{OUT}\right)}{1.6 \times V_{IN(MAX)} \times L_O \times f_{SW}}$$
(10)

只要满足其他设计要求,就可以使用更小或更大的电感器值,具体取决于设计人员希望允许的纹波电流大小。较大值的电感器具有较低的交流电流,并会产生较低的输出电压纹波。较小的电感值会增大交流电流和输出电压纹波。

8.2.3.5.2 输出电容器选型

选择输出电容器的容值时,主要考虑三个因素。输出电容器将决定调制器极点、输出电压纹波以及稳压器响应负载电流显著变化的方式。必须按照比上述三项指标更为严苛的标准来选择输出电容。

第一项标准是稳压器针对显著变化的负载电流做出的响应。当稳压器不能为负载供电时,输出电容必须向负载提供电流。如果稳压器存在所需的保持时间,则会发生这种情况。在这种情况下,在断开输入电源后,输出电容器必须在指定的时间内保持输出电压在特定电平以上。如果出现影响负载电流要求的短时间显著提升(例如由空载状态转换至满载状态),稳压器也将暂时无法提供足够的输出电流。稳压器通常需要在不少于两个控制环路时钟周期内观察负载电流和输出电压变化,进而通过调节占空比进行响应。选择输出电容值时应将以下注意事项纳入考量范围:输出电容在控制回路响应负载变化前需要向负载额外提供电流。输出电容必须足够大,从而填补2个时钟周期内的电流差,同时输出电压仅允许下降可容许值。使用方程式11计算所需的最小输出电容。

$$C_{O} > \frac{2 \times \Delta I_{OUT}}{f_{sw} \times \Delta V_{OUT}}$$
(11)

其中

www.ti.com.cn

- · ΔI_{OUT} 为输出电流变化。
- f_{SW} 为稳压器的开关频率。
- ΔV_{OUT}b 为输出电压的允许变化。

对于此示例,瞬态负载响应指定为 5% 的输出电压 V_{OUT} 变化,负载阶跃为 1.5A。对于此示例, ΔI_{OUT} = 1.5A, ΔV_{OUT} = 0.05 × 5 = 0.25V。使用这些值得到的最小电容为 30 μ F。该值未将输出电容器 ESR 纳入输出电压变化的考量范围。对于陶瓷电容器,其 ESR 足够小,在计算过程中可以忽略不计。

使用 方程式 12 计算满足输出电压纹波规格所需的最小输出电容。在本例中,最大输出电压纹波为 30mV。在该要求下,根据方程式 12 得到的值为 10.7 μ F。

$$C_{O} > \frac{1}{8 \times f_{SW}} \times \frac{1}{\frac{V_{OUTripple}}{I_{ripple}}}$$
(12)

其中

- f_{SW} 为开关频率。
- V_{OUTripple} 为允许的最大输出电压纹波。
- I_{ripple} 为电感器纹波电流

根据方程式 13 计算最大 ESR 输出电容,其值必须符合输出电压纹波规格。方程式 13 表明 ESR 应小于 $29.2m\Omega$ 。在本例中,陶瓷电容器的 ESR 远小于 $29.2m\Omega$ 。

$$R_{ESR} < \frac{V_{OUTripple}}{I_{ripple}}$$
 (13)

输出电容器会对交叉频率 f_o 产生影响。考虑到环路稳定性和内部寄生参数的影响,请选择小于 40kHz 的交叉频率,而不考虑前馈电容器。可以根据 方程式 14 简单估算没有前馈电容器 C6 时的交叉频率(假设 C_O 的 ESR 较小)。

$$f_0 = \frac{5.1}{V_{OUT} \times C_O} \tag{14}$$

因老化、温度及直流偏置而产生的附加电容降额应纳入考量范围,它们会使输出电容的最小值增加。在此示例中,使用了 2 个 22 μ F、25V、X7R 类型的陶瓷电容器。电容一般将纹波电流限制在处理电流时不会导致故障或过热的范围内。必须指定一个支持电感纹波电流的输出电容。部分电容数据表指定了最大纹波电流的 RMS 值。使用方程式 15 可以计算输出电容器必须支持的 RMS 纹波电流。对于此应用,方程式 15 为每个电容器得出的值是 296mA。

$$I_{COUT(RMS)} = \frac{1}{\sqrt{12}} \times \left(\frac{V_{OUT} \times \left(V_{IN(MAX)} - V_{OUT}\right)}{V_{IN(MAX)} \times L_O \times f_{SW} \times N_C} \right)$$
(15)

8.2.3.5.3 前馈电容器

对根据方程式 16 计算 C6 进行了测试。

$$C6 = \frac{1}{2\pi f_0} \times \frac{1}{R2} \tag{16}$$

在此设计中,C6 = 75pF。当 C_{OUT} 的 ESR 非常大时,C6 电容器可以不需要,并应使用中等 ESR 来降低根据 方程式 16 计算出的 C6。建议参照使用表 8-2 中的值。

表 8-2 列出了一些建议使用的元件值。

表 8-2. 建议的元件值

V _{OUT} (V)	L (µH)	C _{OUT} (µF)	R2 (kΩ)	R3 (kΩ)	C8 (pF)
1.8	4.7	66	100	49.9	33
2.5	5.6	66	100	31.6	47
3.3	6.8	44	100	22.1	47
5	10	44	100	13.3	75
12	15	44	100	5.23	100

Submit Document Feedback

8.2.4 应用曲线

9 电源相关建议

该器件可在 4.5V 至 28V 的输入电源电压范围内工作。该输入电源必须经过良好调节。如果输入电源距离器件或转换器超过几英寸,那么除了陶瓷旁路电容器之外可能还需要额外的大容量电容。通常,选择电容值为 47μF 的电解电容。

10 布局

10.1 布局指南

请遵循以下布局指南:

- 为减少布线阻抗, VIN 和 GND 布线越宽越好。从散热的角度来看,宽阔的区域也是有利的。
- 输入电容器和输出电容器应放置在尽可能靠近器件的位置,以尽可能减少布线阻抗。
- 为输入电容器和输出电容器提供足够的通孔。
- 从物理角度而言, SW 布线应尽可能短且宽, 从而最大限度地减小辐射发射。
- 不允许开关电流在器件下流过。
- 应将单独的 VOUT 路径连接到上部反馈电阻器。
- 与反馈路径的 GND 引脚建立开尔文连接。
- 电压反馈回路应放置在远离高压开关布线的位置,并且宜具有接地屏蔽。
- 为避免噪声耦合, VFB 节点的布线应尽可能小。
- 输出电容器和 GND 引脚之间的 GND 布线应尽可能宽,从而尽可能减小其布线阻抗。

10.2 布局示例

图 10-1. 电路板布局

Submit Document Feedback

11 器件和文档支持

11.1 器件支持

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.4 商标

Eco-mode[™] and TI E2E[™] are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

11.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 16-Apr-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS54302DDCR	ACTIVE	SOT-23-THIN	DDC	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	4302	Samples
TPS54302DDCT	ACTIVE	SOT-23-THIN	DDC	6	250	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	4302	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Apr-2021

www.ti.com 12-Feb-2023

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS54302DDCR	SOT-23- THIN	DDC	6	3000	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS54302DDCR	SOT-23- THIN	DDC	6	3000	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS54302DDCT	SOT-23- THIN	DDC	6	250	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS54302DDCT	SOT-23- THIN	DDC	6	250	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3

www.ti.com 12-Feb-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS54302DDCR	SOT-23-THIN	DDC	6	3000	184.0	184.0	19.0
TPS54302DDCR	SOT-23-THIN	DDC	6	3000	184.0	184.0	19.0
TPS54302DDCT	SOT-23-THIN	DDC	6	250	184.0	184.0	19.0
TPS54302DDCT	SOT-23-THIN	DDC	6	250	184.0	184.0	19.0

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-193.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 7. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司