データマイニング

Data Mining

15:ニューラルネットワーク③ Neural Network 講義のまとめ Conclusion

土居 裕和 Hirokazu Doi

長岡技術科学大学 Nagaoka University of Technology

Bag of Words

形態素解析をした後、各単語の出現頻度によりテキストの特徴量ベクトルを 生成する

Generate feature vector of a text by counting frequency of each morpheme after morphological analysis

Term Frequency-Inverse Document Frequency (TF-IDF)

ある文書における特定の単語の重要度を評価する Measure of importance of a certain word in document

$$TF - IDF(t,d) = TF(t,d) * IDF(t,d)$$

$$TF(t,d) = \frac{number\ of\ t\ in\ document\ d}{total\ number\ of\ words\ in\ document\ d}$$

$$IDF(t,d) = log\left(\frac{N}{1+df}\right) \begin{array}{l} N: Total\ number\ of\ documents \\ df: Number\ of\ documents\ containing\ word\ t \end{array}$$

分布仮説と分散表現

Distributional Hypothesis and Distributed Representation

One-Hot Encodingによる 単語表現

Representation of words by onehot encoding

 $V > 10^4$

apple 00.

https://qiita.com/kouhara/item s/e895f6350aa1ebe77133 分布仮説に基づく低次元ベクトルでの単語 の意味表現

Representation of word meaning by low dimensional vector based on "Distributional Hypothesis"

※分布仮説 Distributional Hypothesis

類似の文脈に登場する単語は似た意味を持つ

Words occurring in similar contexts have similar meanings

分散表現の獲得 Acquisition of Distributed Representation

#語埋め込み Word Embedding

#論ベースの手法
Count-based Method

#論ベースの手法
Count-based Method

潜在意味解析 Latent Semantic Analysis

共起行列 Co-occurrence Matrix

contexts for cat

	bird	sitting	wall	cat	fence
bird	1	1	1	0	0
sitting	1	1	1	1	0
wall	1	1	1	0	0
cat	0	1	0	1	1
fence	0	1	0	1	1

https://medium.com/@imamitsehgal/nlp-series-distributional-semantics-co-occurrence-matrix-31283629951e

相互情報量行列

Point-wise Mutual Information (PMI) Matrix

$$PMI(w_1, w_2) = \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

 $P(w_i)$: 文書に単語 w_i が登場する確率

 $P(w_i, w_j)$: 文書に単語 w_i と w_j ($i \neq j$)が同時に登場する確率

潜在意味解析 Latent Semantic Analysis

PMI行列を特異値分解で次元削減

Dimension reduction by singular value decomposition of PMI matrix

Word2vec

分布仮説に基づき単語埋め込みを行うニューラルネットワークモデル

Neural network models that conduct word embedding based on distributional hypothesis

https://cvml-expertguide.net/terms/nlp/word2vec/

Continuous Bag of Words (CBOW)

"cat"を予測 Predict the word "cat"

One-hot Encodingされた文脈単語の入力

前後の単語から中心にくる単語を推測する

Train the network so that it can predict a target word flanked by context words preceding or following the target word

Continuous Bag of Words (CBOW)

重み行列Wに単語の意味が低次元で表現される

Low-dimensional representation of word meaning is stored in weight matrix \it{W}

Skip-gram

CBOWとは逆に、入力後の前後の 文脈単語を予測する

In contrast to CBOW, a network is trained so that it predicts context words flanking the input word

Word2Vecの損失関数 Loss Function of Word2Vec

出力層ではソフトマックス関数により, ネットワークの活性が確率に変換される

Activation of network is converted into probability by softmax function in the output layer

$$P(w_k) = \frac{exp(y(w_k))}{\sum_{|V|} exp(y(w_i))}$$

損失関数は交差エントロピー Loss function is cross entropy

$$L = -\sum_{i=1}^{i=|V|} t_i log[P(w_i)] \qquad t = (t_1, t_2 \cdots t_{|V|})$$

$$t_k \in \{0, 1\}$$

負例サンプリング Negative Sampling

コーパスデータを用いた学習では|V|が巨大な数値になる The value of |V| is huge in training based on corpus data

$$P(w_k) = \frac{exp(y(w_k))}{\sum_{|V|} exp(y(w_i))} \qquad L = -\sum_{i=1}^{|V|} t_i log[P(w_i)]$$

二値分類問題に置き換えることで計算を高速化

Accelerate computation by replacing the multiclass classification with binary classification

データマイニングの流れ Steps in Data Mining

- 1. 目標設定 Goal Setting
- 2. データ収集 Data collection
- 3. 前処理 Preprocessing
- 4. 特徴量選択 Feature Selection (必要ないケースもある; can be skipped in some cases)
- 5. データ分析 Data Analysis・モデリング Modeling
- 6. 性能評価 Performance Evaluation
- 7. (ディプロイメント Deployment)

データ収集 Data collection

機密性

Integrity

完全性

Availability

可用性

ユーザーID	性別	年齢	年収
sanapon	男	26	411万円
oggi1985	女	33	536万円
murachan	女	39	681万円
shozan.s	男	23	309万円

性別	年齢	年収	
男	[20-29]	[300-499]	万円
女	[30-39]	[500-699]	万円
女	[30-39]	[500-699]	万円
男	[20-29]	[300-499]	万円

特徴量選択 Feature Selection

前処理 Pre-processing

次元削減 Dimension Reduction

Gene 1

Gene 2

スケーリング Scaling

$$x' = \frac{x - \mu}{\sigma}$$
$$x' = \frac{x - median}{NIQR}$$

One-hot Encoding

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1
	1			

データ分析・モデリング

Supervised Learning versus Unsupervised Learning (Mathworks, n.d.)

多項式回帰 Polynomial Regression

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_n x_1^n$$

https://medium.com/analytics-vidhya/understanding-polynomial-regression-5ac25b970e18

性能評価 Performance Evaluation

観測されたデータはノイズを含む Observed data contains random noise

単純すぎてはダメ Should not be too simplistic 複雑すぎてはダメ Should not be too complex

性能評価 Performance Evaluation

調整できるパラメータ:選択された変数、ハイパーパラメータ等 Adjustable Parameter Selected variable, hyperparameter etc

線型判別分析 Linear Discriminant Analysis (LDA)

よい決定境界は、下の二つの条件を満たす A good decision boundary meets the two conditions below

- 1.2 クラスの中心が離れている
 Centers of the two classes are distant from each other
- 2.各クラスのクラス内分散が小さい
 Within-class variance of each class is small

k最近傍法 k Nearest Neighbor Method

データxのクラスを最近傍にあるk個のデータの多数決投票により決定する

Class of data x is determined by majority voting of k data points closest to x

ナイーブベイズ Naive Bayes

メールに"秘密""技術""大当たり"という3つの単語が含まれていた。 An e-mail contains three words, "Secret", "Technology" and "Jackpot"

$$\frac{P_3(H_s|W_3)}{P_3(H_a|W_3)} = \frac{P(W_3|H_s)P(W_2|H_s)P(W_1|H_s)P_1(H_s)}{P(W_3|H_a)P(W_2|H_a)P(W_1|H_a)P_1(H_a)} = \frac{628 \times 10^{-4}}{128 \times 10^{-4}}$$

Probability of being a spam =
$$\frac{628}{628 + 128} = 0.83$$

スパムメールと判定するかどうかは閾値による It depends on the threshold whether the e-mail is judged to be a spam or not

閾値と偽陽性 Threshold and False Positives

正解 Answer

判定 Judgment

	スパムメール Spam Mail	普通のメール Authentic Mail
スパムメール Spam Mail	真陽性 True Positive	偽陽性 False Positive
普通のメール Authentic Mail	偽陰性 False Negative	真陰性 True Negative

スパムと判定する閾値を下げる

Lowering threshold for judging to be a spam

偽陽性率が上がる Higher false positive rate

ROC曲線 ROC(Receiver-Operator Characteristics) Curve

AUC: Area Under Curve

AUCが大きいほど、分類器の性能が良い

Larger AUC indicates better performance of classifier

AUC	
0.9 - 1.0	High accuracy
0.9 - 0.7	Moderate accuracy
0.5 - 0.7	Low accuracy

サポートベクターマシン Support Vector Machine

カーネル法 Kernel Methods

データを高次元空間に写像することで、線型分離不可能な 問題を線型分離可能にする

Transforming linearly inseparable problem to linearly separable one by mapping data to higher-dimensional space

決定木 Decision Tree

バギングとブースティング Bagging and Boosting

https://pub.towardsai.net/bagging-vs-boosting-the-power-of-ensemble-methods-in-machine-learning-6404e33524e6

クラスタリングの種類 Types of Clustering

非階層的クラスタリング Non-Hierarchical Clustering

階層的クラスタリング Hierarchical Clustering

モデル・ベース・クラスタリング Model-Based Clustering

データの統計的分布についての仮定をおく Make presumptions about statistical distribution of data

K平均クラスタリング k-means clustering

クラスターの数を指定しなくては いけない

You have to specify the number of clusters, k.

凝集性階層的クラスタリング Agglomerative Hierarchical Clustering

	$\{x_{1,}x_{2}, x_{3,}x_{4}\}$	x_5
$\{x_{1}, x_{2}, x_{3}, x_{4}\}$	0	
x_5	<mark>4</mark>	0

x_1	x_2	x_3	x_4	x_5
1	2	5	7	11
			<u>t</u>	

混合ガウス分布 Gaussian Mixture Distribution

M個の正規分布の重ね合わせにより確率分布を表現する

Represent probability distribution as weighted mixture of M normal distributions

$$p(x) = \sum_{m=1}^M \pi_m \, N ig(x ig| \mu_{m,} \, \sigma_m ig) \, \, 0 \leq \pi_m \leq 1 \, \, \sum_{m=1}^M \pi_m = 1 \, \, \, \pi_m : 混合比 Mixing Ratio$$

https://work-inprogress.hatenablog.com/entry/2018/11/0 8/224826

EM アルゴリズム Expectation-Maximizing Algorithm

潜在変数を含むモデルの代表的なパラメータ推定法

Algorithm for parameter estimation of models including latent variables

χ: 観測 Observations

確率密度関数のパラメータセット
 Parameter set of probability distribution functions

Z: 潜在変数 Latent Variables

神経細胞の興奮 Neuronal Excitation

神経系の活動 = 神経細胞が電気活動を発生させ、神経細胞間で 伝えていくこと Inter-neuronal transmission of electrical activity

多層パーセプトロン Multi-layered Perceptron

w_{ji} : 入力層から隠れ層へ の重み Weights from input to hidden layer

 $w_{kj}^{(2)}$: 隠れ層から出力層へ の重み Weights from hidden to output layer

$$i = 0, 1, 2 \cdots d$$

$$j = 0, 1, 2 \cdots M$$

$$k = 1, 2 \cdots C$$

重みの更新 Weight Updating

CNNと脳の類似性 Similarity between CNN and Brain

プーリングの効果で受容野が広くなる Receptive field gets broader as a result of pooling

畳み込み層で複雑な情報を表現する More complex information is represented at convolution layers

フィルターの学習 Acquisition of Filters

誤差逆伝搬法による学習の結果、Alex Netの第一の畳み込み層で ガボールフィルターが獲得された

Weight updating by backpropagation led to acquisition of Gabor filter at the first convolution layer of Alex Net

データマイニング ≒ 金鉱の採掘 Data Mining ≒ Gold Mining

Data Mining Information/Knowledge

https://www.legendsofamerica.com/mining/