

## T-TESTS FOR BUSINESS IMPACT - DEMO NOTES

1. Create a new worksheet, including the PivotTables with the records of the two categories you want to compare.



On the ribbon, go to Data -> Data Analysis -> t-Test: Two-Sample Assuming Unequal Variances



3. Select your variable ranges, and set the output range to somewhere on the same worksheet.





- 4. This gives you the p-value. Return to slides for explanation of confidence interval.
- 5. To calculate the confidence interval, follow with the formulas used below.

|    | F | G                                             | Н           | 1            | J           | K |
|----|---|-----------------------------------------------|-------------|--------------|-------------|---|
|    |   | Ho: μ1 - μ2 = 0                               |             |              |             |   |
| 1  |   | Ha: μ1 - μ2 ≠ 0                               |             |              |             |   |
| 2  |   |                                               |             |              |             |   |
| 3  |   | t-Test: Two-Sample Assuming Unequal Variances |             |              |             |   |
| 4  |   |                                               |             |              |             |   |
| 5  |   |                                               | yes         | no           |             |   |
| 6  |   | Mean                                          | 85880.5896  | 59884.85255  |             |   |
| 7  |   | Variance                                      | 810167352.2 | 455341801    |             |   |
| 8  |   | Observations                                  | 173         | 373          |             |   |
| 9  |   | Hypothesized Mean Difference                  | 0           |              |             |   |
| 10 |   | df                                            | 265         |              |             |   |
| 11 |   | t Stat                                        | 10.69882732 |              |             |   |
| 12 |   | P(T<=t) one-tail                              | 9.6667E-23  |              |             |   |
| 13 |   | t Critical one-tail                           | 1.650623976 |              |             |   |
| 14 |   | P(T<=t) two-tail                              | 1.93334E-22 |              |             |   |
| 15 |   | t Critical two-tail                           | 1.968956281 |              |             |   |
| 16 |   |                                               |             |              |             |   |
| 17 |   | total sample size                             | 546         | =SUM(H8:18)  |             |   |
| 18 |   | mean difference                               | 25995.73705 | =H6-I6       |             |   |
| 19 |   | standard error of difference                  | 2429.774429 | =SQRT((H7/H8 | 3)+(17/18)) |   |
| 20 |   |                                               |             |              |             |   |
| 21 |   | Margin of error                               | 4784.119625 | =H19*H15     |             |   |
| 22 |   | Lower limit                                   | 21211.61742 | =H18-H21     |             |   |
| 23 |   | Upper limit                                   | 30779.85667 | =H18+H21     |             |   |
| 24 |   |                                               |             |              |             |   |



## Return to slides for explanation of visualizing t-test results

6. To visualize t-test results, first set up the below formulas.

|    | J | K              | L           | М           | N | 0                  | Р                  | Q |
|----|---|----------------|-------------|-------------|---|--------------------|--------------------|---|
|    |   |                |             |             |   |                    |                    |   |
| 1  |   |                |             |             |   |                    |                    |   |
| 2  |   |                |             |             |   |                    |                    |   |
| 3  |   |                |             |             |   |                    |                    |   |
| 4  |   |                |             |             |   |                    |                    |   |
| 5  |   |                | yes         | no          |   | yes                | no                 |   |
| 6  |   | Mean           | 85880.5896  | 59884.85255 |   | =H6                | =16                |   |
| 7  |   | Variance       | 810167352.2 | 455341801   |   | =H7                | =17                |   |
| 8  |   | Observations   | 173         | 373         |   | =H8                | =18                |   |
| 9  |   | Standard error | 2164.035184 | 1104.878047 |   | =SQRT(L7)/SQRT(L8) | =SQRT(M7)/SQRT(M8) |   |
| 10 |   | m.e. upper     | 4260.890669 | 2175.456571 |   | =L\$9*\$H\$15      | =M\$9*\$H\$15      |   |
| 11 |   | m.e. lower     | 4260.890669 | 2175.456571 |   | =L\$9*\$H\$15      | =M\$9*\$H\$15      |   |
| 12 |   |                |             |             |   |                    |                    |   |
| 13 |   |                |             |             |   |                    |                    |   |
| 14 |   |                |             |             |   |                    |                    |   |

## 7. Create a bar chart based on the means of each category





- 8. Click on the plus-sign next to the bar chart and select Error Bars, hit the right arrow next to it and select More Options.
- 9. Go to Custom and the bottom and set the error bars to be the margin of error values.
- 10. The bar chart now has error bars representing the 95% confidence interval for each sample. If the bars intersect between the two charts, there is no significant difference in means.



11. Adjust the y axis depending on the circumstances, with the knowledge that it is the best practice to start a y axis at zero.

## Demo: margin-of-error.xlsx

| Column position | Column label            | Formula                                      |
|-----------------|-------------------------|----------------------------------------------|
| С               | Sample mean             | =AVERAGE(\$B\$3:INDEX(\$B\$3:\$B\$548,\$A4)) |
| D               | Variance                | =VAR.S(\$B\$3:INDEX(\$B\$3:\$B\$548,\$A4))   |
| E               | Standard Error          | =SQRT(D4)/SQRT(A4)                           |
| F               | Critical value          | =VLOOKUP(\$A4,'critical-                     |
|                 |                         | value'!\$A\$1:\$B\$34,2)                     |
| G               | Margin of error         | =E4*F4                                       |
| Н               | Margin of error as % of | =G4/C4                                       |
|                 | mean                    |                                              |

Plot column H as a line chart.

