Normalformen Einstieg

Es seien folgende Relationenschemata mit den jeweiligen Mengen funktionaler Abhängigkeiten gegeben:

```
S_1(P,Q,R) mit F_1 = \{ \{P,Q\} \rightarrow \{R\}, \{P,R\} \rightarrow \{Q\}, \{Q,R\} \rightarrow \{P\}, \} S_2(P,R,S,T) mit F_2 = \{ \{P,S\} \rightarrow \{T\}, \} S_3(P,S,U) mit F_3 = \{ \}
```

(a) Welche der drei Schemata sind in BCNF, welche in 3NF, welche in 2NF? Begründe!

```
S_1: BCNF

S_2: 1NF aber nicht 2NF

S_3: BCNF

(S_1, F_1) und (S_3, F_3) sind offenbar in BCNF und daher auch in 3NF

und 2NF. (S_2, F_2) ist offenbar nicht in 2NF, da der Schlüsselkandidat

PRS ist und T von einem Teil dieser Schlüsselkandidaten, nämlich

PS, abhängig ist und daher auch nicht in 3NF oder BCNF.
```

(b) Wenden Sie auf (S_2, F_2) den Synthesealgorithmus an, und bestimmen Sie auch die Mengen aller nichttrivialen einfachen funktionalen Abhängigkeiten, die über den erhaltenen Teilrelationen gelten. Ihr Lösungsweg muss nachvollziehbar sein.

(i) Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

$$F_2 = \{$$
 $\{P, S\} \rightarrow \{T\},$
 $\}$ (ist schon in der kanonische Überdeckung)

(ii) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

 $R_{21}(P, S, T)$

(iii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —

$$R_{21}(\underline{P,S},T) \text{ mit}$$

$$F_{21} = \{ \{PS\} \rightarrow \{T\}, \}$$

$$R_{22}(\underline{P,S,R}) \text{ mit}$$

$$F_{22} = \{ \{PS\} \rightarrow \{T\}, \}$$

(iv) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha}\subseteq R_{\alpha'}$.

Ø Nichts zu tun