Wiederholung Formale Sprachen Konkatenation Konkatenationsabschluss Beweisführung

GBI Tutorium NR: 3

Tristan Schnell

10. November 2011

Inhaltsverzeichnis

- Wiederholung
- 2 Formale Sprachen
 - Mengen
 - Definition
- Konkatenation
 - Konkatenation formaler Sprachen
- Monkatenationsabschluss
 - Der Konkatenationsabschluss
- Beweisführung
 - Beweise

Letztes Übungsblatt

Vollständige Induktion

- Insgesamt sehr gut
- Reihenfolge bei Vollständiger Induktion von rekursiv zu geschlossen
- Induktionsanfang

Sonstiges

- Prädikatenlogik naja
- Aufg. 2 insgesamt gut
- Abschreiben (Drache)
- Sorgfalt...

Mengenoperationen

Definition

- $M_1 \cup M_2 = \{x \mid x \in M_1 \lor x \in M_2\}$: Vereinigung
- $M_1 \cap M_2 = \{x \mid x \in M_1 \land x \in M_2\}$:Schnitt
- $M_1 \setminus M_2 = \{x \mid x \in M_1 \land x \notin M_2\}$: Differenz

Beispiele, Aufgaben

Beispiele

$$\bullet \ \{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$$

Beispiele, Aufgaben

Beispiele

- $\{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$ Kein Element kann in einer Menge "doppelt" vorkommen
- $\{1,2,3\}\setminus\{2,3,4\}=\{1\}$

Beispiele, Aufgaben

Beispiele

- $\{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$ Kein Element kann in einer Menge "doppelt" vorkommen
- $\{1,2,3\}\setminus\{2,3,4\}=\{1\}$

Aufgaben

- $M \cup \{\} = ?$
- $M \cap \{\} = ?$
- $\{1,2,3\} \cap \{5,6,7\} = ?$

formale Definition

Formale Sprachen

Eine formale Sprache L (Über einem Alphabet A) ist eine Teilmenge : $L \subseteq A^*$

Das heisst: Eine Sprache über einem Alphabet ist eine Teilmenge der Menge aller möglicher Wörter aus Zeichen des Alphabetes

Wichtig!

abb ist ein Wort

formale Definition

Formale Sprachen

Eine formale Sprache L (Über einem Alphabet A) ist eine Teilmenge : $L \subseteq A^*$

Das heisst: Eine Sprache über einem Alphabet ist eine Teilmenge der Menge aller möglicher Wörter aus Zeichen des Alphabetes

Wichtig!

- abb ist ein Wort
- {abb} ist eine formale Sprache die nur aus dem Wort abb besteht

formale Definition

Formale Sprachen

Eine formale Sprache L (Über einem Alphabet A) ist eine Teilmenge : $L \subseteq A^*$

Das heisst: Eine Sprache über einem Alphabet ist eine Teilmenge der Menge aller möglicher Wörter aus Zeichen des Alphabetes

Wichtig!

- abb ist ein Wort
- {abb} ist eine formale Sprache die nur aus dem Wort abb besteht
- daraus folgt: {abb}* gibt es, abb* (noch) nicht

Example

Sprache aller gültigen Java-Schlüsselwörter

• Alphabet: $A = \{a, b, c \dots, z\}$

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

Example

• Alphabet: $A = \{a, b\}$

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

- Alphabet: $A = \{a, b\}$
- Sei L die Sprache über A in denen das Teilwort "ab" nirgends vorkommt

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

- Alphabet: $A = \{a, b\}$
- Sei L die Sprache über A in denen das Teilwort "ab" nirgends vorkommt
- $L = \{a, b\}^* \setminus \{w_1 a b w_2 | w_1, w_2 \in \{a, b\}^*$

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

- Alphabet: $A = \{a, b\}$
- Sei L die Sprache über A in denen das Teilwort "ab" nirgends vorkommt
- $L = \{a, b\}^* \setminus \{w_1 a b w_2 | w_1, w_2 \in \{a, b\}^*$
- Vereinfacht:

Example

Sprache aller gültigen Java-Schlüsselwörter

- Alphabet: $A = \{a, b, c \dots, z\}$
- Sprache: $L = \{class, if, else, int, public, ...\}$

- Alphabet: $A = \{a, b\}$
- Sei L die Sprache über A in denen das Teilwort "ab" nirgends vorkommt
- $L = \{a, b\}^* \setminus \{w_1 a b w_2 | w_1, w_2 \in \{a, b\}^*$
- Vereinfacht:
- $L = \{w_1w_2|w_1 \in \{b\}^*, w_2 \in \{a\}^*\}$

Produkt von Sprachen

Definition

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2 \}$$

Example

Von gerade eben: formale Sprache aller Wörter über $A = \{a, b\}$ in denen das Teilwort $\ddot{a}b$ " nirgends vorkommt:

Kann man jetzt auch so schreiben: $L = \{b\}^*\{a\}^*$

Example

• Sei $L_1 = \{KARTOFFEL, NUDEL\}$

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- $\bullet \ \mathsf{Sei} \ \mathit{L}_{2} = \{\mathit{SALAT}, \mathit{AUFLAUF}\}$

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist $L_1 \cdot L_2$?

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist L₁ · L₂? {KARTOFFELSALAT, NUDELSALAT, KARTOFFELAUFLAUF, NUDELAUFLAUF}

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist L₁ · L₂? {KARTOFFELSALAT, NUDELSALAT, KARTOFFELAUFLAUF, NUDELAUFLAUF}

Example

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist L₁ · L₂? {KARTOFFELSALAT, NUDELSALAT, KARTOFFELAUFLAUF, NUDELAUFLAUF}

Example

- Alphabet: $A = \{0, 1, \dots, 9\}$
- $L_G = A \cdot A^*$
- Was fehlt?

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist L₁ · L₂? {KARTOFFELSALAT, NUDELSALAT, KARTOFFELAUFLAUF, NUDELAUFLAUF}

Example

- Alphabet: $A = \{0, 1, \dots, 9\}$
- $L_G = A \cdot A^*$
- Was fehlt?
- die negativen Zahlen!

Example

- Sei $L_1 = \{KARTOFFEL, NUDEL\}$
- Sei $L_2 = \{SALAT, AUFLAUF\}$
- Was ist L₁ · L₂? {KARTOFFELSALAT, NUDELSALAT, KARTOFFELAUFLAUF, NUDELAUFLAUF}

Example

- Alphabet: $A = \{0, 1, \dots, 9\}$
- $L_G = A \cdot A^*$
- Was fehlt?
- die negativen Zahlen!
 - hesser: $I_c I_c I$. A.

$$ullet$$
 Sei $L_1=\{a^n|n\in\mathbb{N}_0\}$

• Sei
$$L_1 = \{a^n | n \in \mathbb{N}_0\}$$

• Sei
$$L_2 = \{b^n | n \in \mathbb{N}_0\}$$

• Sei
$$L_1 = \{a^n | n \in \mathbb{N}_0\}$$

$$ullet$$
 Sei $L_2=\{b^n|n\in\mathbb{N}_0\}$

•
$$L_1 \cdot L_2 = ?$$

• Sei
$$L_1 = \{a^n | n \in \mathbb{N}_0\}$$

• Sei
$$L_2 = \{b^n | n \in \mathbb{N}_0\}$$

•
$$L_1 \cdot L_2 = ?$$

•
$$L_1L_2 = \{a^k b^m \mid k \in \mathbb{N}_0 \land m \in \mathbb{N}_0\} = \{a\}^* \{b\}^*$$

Definition

- $L^0 = \{\epsilon\}$
- $\bullet \ L^{i+1} = L^i \cdot L$

Sei
$$L = \{a\}^*\{b\}^*$$

•
$$L^0 = \{\epsilon\}$$

Definition

- $L^0 = \{\epsilon\}$
- $\bullet \ L^{i+1} = L^i \cdot L$

Sei
$$L = \{a\} * \{b\} *$$

- $L^0 = \{\epsilon\}$
- $L^1 = \{\epsilon, a, b, aa, ab, bb, aaa ...\}$

Definition

- $L^0 = \{\epsilon\}$
- $\bullet \ L^{i+1} = L^i \cdot L$

Sei
$$L = \{a\} * \{b\} *$$

- $L^0 = \{\epsilon\}$
- $L^1 = \{\epsilon, a, b, aa, ab, bb, aaa ...\}$
- $L^2 = \{\epsilon, aabbbaaaaabb, aaabbab, aaaaa, bbbbbb . . . \}$

Definition

- $L^0 = \{\epsilon\}$
- $\bullet \ L^{i+1} = L^i \cdot L$

Sei
$$L = \{a\} * \{b\} *$$

- $L^0 = \{\epsilon\}$
- $L^1 = \{\epsilon, a, b, aa, ab, bb, aaa...\}$
- $L^2 = \{\epsilon, aabbbaaaaabb, aaabbab, aaaaa, bbbbbb . . . \}$
- usw.

Definition

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Definition

- $L^* = \bigcup_{i=0}^{\infty} L^i$

Definition

- $L^+ = \bigcup_{i=1}^{\infty} L^i$
- $L^* = \bigcup_{i=0}^{\infty} L^i$

•
$$L = \{a\} * \{b\} *$$

Definition

- $L^+ = \bigcup_{i=1}^{\infty} L^i$
- $L^* = \bigcup_{i=0}^{\infty} L^i$

- $L = \{a\}^*\{b\}^*$
- L* ?

Definition

- $L^+ = \bigcup_{i=1}^{\infty} L^i$
- $L^* = \bigcup_{i=0}^{\infty} L^i$

- $L = \{a\}^*\{b\}^*$
- L^* ? = $\{a, b\}^*$

Definition

- $L^+ = \bigcup_{i=1}^{\infty} L^i$
- $L^* = \bigcup_{i=0}^{\infty} L^i$

- $L = \{a\}^*\{b\}^*$
- L^* ? = $\{a, b\}^*$
- "Beweis": Zerhacke beliebiges aber festes $w \in \{a, b\}^*$ an allen Stellen an denen auf ein b ein a folgt. Die entstehenden Teilworte sind aus L

Übung

Beweise

Beweise: $L^* \cdot L = L^+$

Hinweis

Seien A und B zwei Mengen

$$A \subseteq B \land B \subseteq A \Rightarrow A = B$$

Beweis

$L^* \cdot L \subseteq L^+$

Wenn $w \in L^* \cdot L$, dann $w = w_1 w_2$ mit $w_1 \in L^*$ und $w_2 \in L$ Also existiert ein $i \in \mathbb{N}_0$ mit $w_1 \in L^i$ Also $w = w_1 w_2 \in L^i \cdot L = L^{i+1}$ Da $i+1 \in \mathbb{N}_+$, ist $L^{i+1} \subseteq L^+$, also $w \in L^+$

$L^* \cdot L \supseteq L^+$

Wenn $w \in L^+$, dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$ Da $i \in \mathbb{N}_+$ ist i = j + 1 für ein $j \in \mathbb{N}_0$ Also ist für ein $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$ Also $w = w_1w_2$ mit $w_1 \in L^j$ und $w_2 \in L$ Wegen $L^j \subseteq L^*$ ist $w = w_1w_2 \in L^* \cdot L$

Zusammenfassung

2 Sprachen

- $L_1 = \{a^k b^m | k, m \in \mathbb{N}_0 \land k \mod 2 = 0 \land m \mod 3 = 1\}$
- $L_2 = \{a^k b^m | k, m \in \mathbb{N}_0 \land k \mod 2 = 1 \land m \mod 3 = 0\}$

Aufgabe

Was ist?

- $\bullet \ L = L_1 \cdot L_2$
- $L = L_1 \cap L_2$

Ende

Fragen?!

Unnützes Wissen

Folgendes Gesetz gilt in Texas: Wenn sich zwei Züge an einem Bahnübergang begegnen, müssen beide Züge halten. Jeder der beiden Züge muss so lange stehen bleiben, bis der jeweils andere vorbeigefahren ist.