Predicting the bug fixing likelihood

Florian Spychiger

University of Zurich

December 9, 2018

Roadmap

- Background
- Problem Formulation & Goal
- Oata
- Solution Approach
- Results

Background Information

The annual cost of software bugs is estimated at \$59.5 billion¹. For the Eclipse project, there are thousands of bugs reported. An efficient bug-triaging can help developers to focus their resources and thus, save companies a lot of money.

¹P Bhattacharya and I Neamtiu, "Fine--grained incremental learning and multi--feature tossing graphs to improve bug triaging", Software Maintenance (ICSM) 2010 (ieeexplore.ieee.org)

Problem Formulation & Goal

Problem

Bug-triaging is an important, but labor-intensive process if done manually.

Goal

Train a bug-triaging machine, which predicts whether a bug is likely to be fixed.

Raw data

The Eclipse data set can be found at https://github.com/ansymo/msr2013-bug_dataset. The raw data set consists of 12 tables:

Eclipse Bug Data Set		
reports	priority	
assigned_to	product	
bug_status	resolution	
cc ²	severity	
component	short_desc	
op_sys	version	

Data preselection

After a visual exploratory analysis, four datasets were excluded:

Eclipse Bug Data Set*		
reports	priority 💶	
assigned_to	product	
bug_status	resolution	
сс	severity 2	
component	short_desc 3	
op_sys	version 4	

^{*}Duplicates are excluded.

- Priority is set by the assignee, but as we want to help them triaging the bug, we exlude it.
- Severity is currently set by the triaging team.
- The descriptions are hard to encode.
- The version dataset is quite messy and sometimes it is not clear which version is being referred to.

Data model

Figure: ER model of data used.

Feature Creation

From the data model, the feature matrix X is constructed with:

$x_1 = OpeningTime$ (Open - Close)	[discrete]
$x_2 = Assignments \ N$	r. of assignees)	[discrete]
$x_3 = CCs$ (Nr. of int	erested parties)	[discrete]
$x_4 = Product$ (Affect	ted product)	[discrete]
$x_5 = OS \; (Major \; OS)$	([discrete]
$x_6 = SuccessAssigne$	e (Success rate of Assignee	e) [proportion
$x_7 = SuccessReporte$	r (Success rate of Reporte	r) [proportion
$x_8 = Component$ (T	he affected subcomponent)	[discrete]
$x_9 = Social$ (Past bu	g collaborations)	[binary]
$x_{10} = \text{Equal (Reporte}$	r equals Assignee)	[binary]

Univariate Analysis

Figure: ER model of data used.

Correlation Analysis

Figure: ER model of data used.

Models

We consider 6 models:

- Naive Bayes
- 2 Logistic Regression
- Random Forest
- Boosting Classifier
- Support Vector Machine
- Neural Network

We split the data set into a training (50%), a cross-validation (25%) and a test (25%) set. The training set is used to train the models and we calibrate the parametes on the cross-validation set. The final accuracy is caculated on the test set.

Accuracy

We achieve the following accuracies on the test set:

Naive Bayes	82.8098%
Logistic Regression	84.9409%
Random Forest	86.1529%
Boosting Classifier	85.4661%
Support Vector Machine	85.9105%
Neural Network ³	86.1125%

³Results are not exactly reproducible, as some randomness with GPU usage cannot be avoided.

ROC-Curves

Figure: ER model of data used.

Thank you!

The code of the project can be found at

https://github.com/Speaker90/BusinessAnalytics_RPIcase