Multiple and logistic regression

MULTIPLE AND LOGISTIC REGRESSION

Ben Baumer Instructor

Fuel efficiency by engine size

```
ggplot(data = mpg_manuals, aes(x = displ, y = hwy)) +
  geom_point()
```


Fuel efficiency over time

```
ggplot(data = mpg_manuals, aes(x = factor(year), y = hwy)) +
  geom_boxplot()
```


A parallel slopes model

Adding a new variable

Consider:

$$hwy = eta_0 + eta_1 \cdot displ + eta_2 \cdot year + \epsilon$$

Adding a new variable in R

```
lm(hwy \sim displ + factor(year), data = mpg)
```

Let's practice!

MULTIPLE AND LOGISTIC REGRESSION

Visualizing parallel slopes models

MULTIPLE AND LOGISTIC REGRESSION

Ben Baumer Instructor

Three variables, one plot

data_space

Setting up the model

Define

$$newer = egin{cases} 1 & ext{if } year = 2008, \ 0 & ext{if } year = 1999 \end{cases}$$

• Our model is:

$$\hat{hwy} = \hat{eta}_0 + \hat{eta}_1 \cdot displ + \hat{eta}_2 \cdot newer$$

Two vintages of cars

```
mod <- lm(hwy ~ displ + factor(year), data = mpg)
mod

## Coefficients:
## (Intercept) displ factor(year)2008
## 35.276 -3.611 1.402</pre>
```

For year = 2008 , we have
$$\hat{hwy} = 35.276 - 3.611 \cdot displ + 1.402 \cdot (1) =$$
 $= (35.276 + 1.402) - 3.611 \cdot displ$

For
$$year$$
 = 1999 , we have $\hat{hwy} = 35.276 - 3.611 \cdot displ + 1.402 \cdot (0) =$ $= 35.276 - 3.611 \cdot displ$

Two parallel lines

$$egin{aligned} \hat{hwy} &= (\hat{eta}_0 + \hat{eta}_2) + \hat{eta}_1 \cdot displ \ &= (35.276 + 1.402) - 3.611 \cdot displ \ &= 36.678 - 3.611 \cdot displ \end{aligned} \ \hat{hwy} &= \hat{eta}_0 + \hat{eta}_1 \cdot displ \ &= 35.276 - 3.611 \cdot displ \ &= 35.276 - 3.611 \cdot displ \end{aligned}$$

Retrieving the coefficients

```
library(broom)
augment(mod)
```

```
hwy displ factor.year. .fitted
                                        .se.fit
                                                     .resid
                                                                    .hat
##
            1.8
                        1999 28.77593 0.4522966 0.22406921 0.014314273
## 1
            1.8
                        1999 28.77593 0.4522966 0.22406921 0.014314273
## 2
                        2008 29.45587 0.4753645 1.54412984 0.015811613
## 3
       31
            2.0
       30 2.0
                        2008 29.45587 0.4753645 0.54412984 0.015811613
## 4
## 5
       26 2.8
                        1999 25.16494 0.3617297 0.83505537 0.009155689
## 6
       26 2.8
                        1999 25.16494 0.3617297 0.83505537 0.009155689
## 7
       27
            3.1
                        2008 25.48379 0.3661035 1.51621462 0.009378436
## 8
       26
            1.8
                        1999 28.77593 0.4522966 -2.77593079 0.014314273
                        1999 28.77593 0.4522966 -3.77593079 0.014314273
## 9
       25
           1.8
                        2008 29.45587 0.4753645 -1.45587016 0.015811613
## 10
       28
            2.0
```


Parallel lines on the scatterplot

```
data_space +
  geom_line(data = augment(mod), aes(y = .fitted, color = factor.yea
```


Let's practice!

MULTIPLE AND LOGISTIC REGRESSION

Interpreting parallel slopes coefficients

MULTIPLE AND LOGISTIC REGRESSION

Ben Baumer Instructor

Intercept interpretation

```
lm(hwy ~ displ + factor(year), data = mpg)
```

```
##
## Call:
## lm(formula = hwy ~ displ + factor(year), data = mpg)
##
## Coefficients:
## (Intercept) displ factor(year)2008
## 35.276 -3.611 1.402
```


Slope interpretation

```
lm(hwy ~ displ + factor(year), data = mpg)
```

```
##
## Call:
## lm(formula = hwy ~ displ + factor(year), data = mpg)
##
## Coefficients:
## (Intercept) displ factor(year)2008
## 35.276 -3.611 1.402
```


Avoiding misunderstandings

- There is only one slope
- Which is the reference level?
- What are the units?
- After controlling for...

Let's practice!

MULTIPLE AND LOGISTIC REGRESSION

Three ways to describe a model

MULTIPLE AND LOGISTIC REGRESSION

Ben Baumer Instructor

Three ways to describe a model

- Mathematical
- Geometric
- Syntactic

Mathematical

- Equation: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$
- ullet Residuals: $\epsilon \sim N(0,\sigma_\epsilon)$
- Coefficients: $\beta_0, \beta_1, \beta_2$

Geometric

Syntactic

```
lm(hwy ~ displ + factor(year), data = mpg)
```

```
##
## Call:
## lm(formula = hwy ~ displ + factor(year), data = mpg)
##
## Coefficients:
## (Intercept) displ factor(year)2008
## 35.276 -3.611 1.402
```

Multiple regression

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

- $y \sim x1 + x2 + x3$
- one line becomes multiple lines or a plane, or even multiple planes

Let's practice!

MULTIPLE AND LOGISTIC REGRESSION

