Parcial2

Subtítulo

Nombres y Apellidos del autor

Julián David Quintero Marín

Informática II

Despartamento de Ingeniería Electrónica y
Telecomunicaciones
Universidad de Antioquia
Medellín
September de 2021

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Análisis del problema y busqueda de soluciones para el programa.	2
2.	Esquema de tareas para el desarrollo del algoritmo	3
3.	Diseño del Algoritmo	3
4.	Consideraciones a tener en cuenta en la implementación del algoritmo	3

1. Análisis del problema y busqueda de soluciones para el programa.

En este trabajo se busca la forma de mostrar la bandera de cualquier pais del mundo, usando una matriz de led RGB. Para la solucion del problema, en mi caso reconstruí el código que habían explicado los profesores en clase. En parte si entendí cómo usar los leds y cómo obtener la informacion de cada uno de estos en un punto específico. Ahora el reto es cómo hacer el sobremuestreo y el submuestreo. En este momento no tengo certeza de cómo hacer estas funciones, pero una idea que vi investigando por internet decía que obtener el cociente de la división del ancho de la imagen entre el número de columnas de la matriz de Neopixeles o de LEDs, y de forma similar el alto entre el número de filas, para, posteriormente, usar estos dos valores, para hallar el promedio de un número de valores (Teniendo en cuenta que pueden ser diferentes dependiendo de cúal de los 3 colores RGB esté analizando matricialmente) y así reducir ese número a 1, y unir todas los valores resultantes hasta crear la versión submuestreada de la matriz.

Figura 1: Construcción de matriz 16x16 de Neopixeles

2. Esquema de tareas para el desarrollo del algoritmo

1. Para empezar, debemos analizar la lista de tareas que se deben ejecutar para desarrollar el algoritmo de solución del desafío de manera funcional y efectiva. Analizando objetivos de forma secuencial, considero que, primero, es fundamental establecer el método de interacción con el usuario para solicitar la imagen a procesar, por lo cual, una parte de ello, consta de la creación del manual de uso del programa., que debe abordar a su vez, lo que debe hacer el usuario con el archivo de texto resultante del submuestreo o sobremuestreo de la imagen (En caso de que sea alguno de los 2 necesario), incluyendo cómo y dónde debe usarlo, pues dicho archivo contiene la información necesaria para que funcione correctamente la solución implementada en Tinkercad (Primera impresión de cómo debe conectarse Tinkercad y Qt). Una vez hechas las partes de interacción con el usuario, la siguiente tarea corresponde a crear un método de lectura de la información de la imagen y proveer una forma, mediante código, de guardar dicha información de modo que resulte cómoda de usar al procesarla para la cuestión de submuestreo o sobremuestreo de la imagen. Posterior a ello, debo definir métodos que me permitan manipular la información almacenada. Después, es necesario definir métodos, ciclos y ejecuciones necesarias para el caso en que se requiera realizar submuestreo de la imagen, en paralelo con aquellos necesarios para el caso de sobremuestreo de la imagen. Es necesario, después, garantizar métodos así para guardar la nueva información procesada de la imagen en conjunto con la manipulación del archivo de texto. Asimismo, otra tarea fundamental, la cual puede hacerse en paralelo con el proceso anteriormente descrito, radica en la construcción de la matriz de Neopixeles de modo que sea funcional, en primera instancia, y posterior a que ésto se garantice, priorizar la efectividad en la representación matricial de la información procesada de la imagen obtenida por vía del archivo de texto creado y modificado. Esta última tarea, se debe subdividir en la garantización de la representación matricial para cada uno de los colores RGB por separado como primer objetivo y, después, en conjunto.

3. Diseño del Algoritmo

1.

4. Consideraciones a tener en cuenta en la implementación del algoritmo

1.

Figura 2: Esquema de tareas

Referencias