课程内容

- **岩**数制与码制(第一章)
- ₩逻辑代数(第二章)
- ₩组合逻辑电路(第四章)
- **岩**触发器 (第五章)
- **岩**时序逻辑电路(第六章)
- 器集成门电路(第三章)-

问题1: 低电平---0; 高电平---1

几伏为高电平? 几伏为低电平?

问题2: 理想情况,一个门能驱动无数个负载,实际上不能,为什么?

第三章 门电路

- ◎ 基本逻辑门电路
- ◎ TTL 集成逻辑门电路
- CMOS 集成逻辑门电路

3.1 概论

高电平和低电平的含义

由门电路种类等决定

高电平和低电平为某规定范围的电位值,而非一固定值。

3.2 半导体二极管门电路

3.2.1 二极管的开关特性

当输入 v_I 为低电平 V_{IL} 时,二极管反向截止。

当输入 v_I 为高电平 V_{IH} 时,二极管正向导通。

3.2.2 二极管与门

	$A \longrightarrow Y$
А —	Y
В —	

A	В	Y
OV	OV	
OV	3V	
3V	OV	
3V	3V	

规定3V以上为1

0.7V以下为0

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

3.2.3 二极管或门

设V_{cc} = 5V 加到A,B的 V_{IH}=3V V_{IL}=0V 二极管导通时

A =	7	17
B-		— <i>Y</i>

A	В	Y
OV	OV	OV
OV	3V	2. 3V
3V	OV	2. 3V
3V	3V	2. 3V

 $V_D = 0.7V$

规定2.3V以上为1

0V以下为0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

3.5 TTL 集成逻辑门

主要要求:

- □ 了解 三极管的开关特性。
- 掌握 TTL 基本门的逻辑功能和主要外特性。
- 了解其他类型TTL门电路的逻辑功能和应用。

3.5.1三极管的开关特性

(一) 三极管的开关特性

三极管为什么能用作开关? 怎样控制它的开和关?

三极管关断的条件和等效电路

当输入 V_I 为低电平,使 $V_{BE} < V_{ON}$ 时,三极管截止。

 $i_{\rm B} \approx 0$, $i_{\rm C} \approx 0$,C、E 间相当于开关断开。

三极管 截止状态 等效电路

S为放大和饱和的交界点,这时的 $i_{
m R}$ 称临界饱和基极电流,用 $I_{
m RS}$ 表示; 相应地, I_{CS} 为临界饱和集电极电流; $V_{\rm BE(sat)}$ 为饱和基极电压; $V_{\mathrm{CE(sat)}}$ 为饱和集电极电压。对硅管, $V_{\text{BE(sat)}} \approx 0.7 \text{V}$, $V_{\text{CE(sat)}} \approx 0.3 \text{V}$ 。在临界饱和点三极管仍然具有放大作用。

态。

 $v_{\rm I}$ 增大使 $i_{\rm R}$ 增大, 从而工作点上移,ic增 大,v_{CE}减小。

三极管工作于开关状态的条件

截止条件

 $v_{\rm BE} < V_{
m ON}$

可靠截止条件为 $v_{RE} \leq 0$

饱和条件

由于 $V_{\text{CE(Sat)}} \approx 0$,因此饱和后 i_{C} 基本上为恒值,

$$i_{\rm C} \approx I_{\rm CS} = \frac{V_{\rm CC} - V_{\rm CE(sat)}}{R_{\rm C}} \approx \frac{V_{\rm CC}}{R_{\rm C}}$$

$$I_{\rm BS} = \frac{I_{\rm CS}}{\beta} \approx \frac{V_{\rm CC}}{\beta R_{\rm C}}$$

3.5.2 TTL反相器的电路结构和工作原理

一、电路结构

 $V_{\rm CC} = 5 \rm V$ $V_{\rm IH} = 3.4 \mathrm{V}$ $V_{\rm IL} = 0.2 \mathrm{V}$ PN 结导通压降 $V_{ON} = 0.7V$ v_{B1} $v_{\rm C2}$ I D_2 (1) $V_{\rm I} = V_{\rm IL} = 0.2 \text{V} \quad (\mathbf{A} = 0)^{(v_{\rm I})}$ T_2 v_{E2} $V_{\rm O} = V_{\rm OH} \quad (Y = 1)$ (2) $V_1 = V_{111} = 3.4 \text{V} \quad (A = 1)$ 推拉式输出电路 $V_{\rm O} = V_{\rm OL} \quad (Y = 0)$ 输出级

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \text{V}$$

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \text{V}$$

TTL非门电压传输特性曲线

0~0.8V V_{II}>1.4V时,T2,T5导通 实际要求V_{II}>2.0V

 $V_{IH(min)}=2.0V$

三、输入端噪声容限

输入信号上叠加的噪声电压只要不超过允许值,就不会影响电路的正常逻辑功能,这个允许值称为噪声容限。

● 输入低电平噪声容限 V_{NL}

$$V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)}$$

● 输入高电平噪声容限 V_{NH}

$$V_{\rm NH} = V_{\rm OH(min)} - V_{\rm IH(min)}$$

噪声容限大好还是小好?

噪声容限越大,抗干扰能力越强。74系列门电路 $V_{
m NH}=V_{
m NL}=0.4{
m V}$

3.5.3 TTL反相器的静态输入特性

一、输入特性

1. 输入伏安特性

输入端等效电路

2. 输入负载特性

输入负载特性测试电路

 $V_{\rm i} = \frac{R_{\rm P}}{R_{\rm i} + R_{\rm p}} (V_{\rm CC} - V_{\rm BE1})$

 $R_{\rm I} < R_{\rm OFF}$ 时,相应输入端相当于输入低电平。对 TTL 系列, R_{OFF} ≈ 700 Ω。

 $R_{\rm I} > R_{\rm ON}$ 时,相应输入端相当于输入高电平。对 TTL 系列, $R_{ON} \approx 2.5 \text{ k}\Omega$ 。

TTL逻辑门,已知, $R_{OFF} \approx 700 \Omega$, $R_{ON} \approx 2.5 \text{ k}\Omega$

2. TTL电路扇出系数的计算

扇出系数: 是指一个门电路可以同时驱动某一种门电路的最大数目。

▶输出特性

1. 输出为低电平时

$$(U_0 = U_{0L} \leq 0.4V)$$

- * 输出端带负载的情形如图:
- 低电平输出电流:IoL=N1·IIL ≈ N1·IIS

N1是输出低电平时负载门的数目。

$$N_{O} = I_{OLmax} / I_{IL}$$

$$I_{IL} = \frac{5V - 0.7V - 0.3V}{4K\Omega} = 1mA$$

$$No. = \frac{I_{OL \max}}{I_{IL}} = \frac{16mA}{1mA} = 16$$

2. 输出端为高电平时

$$(U_0 = U_{OH})$$

- *输出端带负载的情形如图:
- * 高电平输出电流:

$$IOH = N2 \cdot IIH$$

N2是输出高电平时负载门的数目。

$$V_{OH} = V_{CC} - V_{R2} - V_{BE4} - V_{D3} = 3.6 - V_{R2}$$

$$No. = \frac{I_{OH \max}}{I_{IH}} = \frac{0.4mA}{40\mu A} = 10$$

No越大,说明门的负载能力越强。

$$I_{OH \max} = 0.4 mA$$

3. 传输延迟时间

- \bullet 输入电压波形上升沿 $0.5~V_{\rm Im}$ 处到输出电压下降沿 $0.5~V_{\rm om}$ 处间隔的时间称导通延迟时间 $t_{\rm PHL}$ 。
- ullet 输入电压波形下降沿 $0.5~V_{
 m Im}$ 处到输出电压上升沿 $0.5~V_{
 m om}$ 处间隔的时间称截止延迟时间 $t_{
 m PLH}$ 。
- P均传输延迟时间 t_{pd} $t_{pd} = \frac{t_{PHL} + t_{PLH}}{2}$

 t_{pd} 越小,则门电路开关速度越高,工作频率越高。

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \rm V$$

其他类型的TTL门电路

其他类型的TTL门电路

其他类型的TTL门电路

其他类型的TTL门电路

3.1.7 集电极开路TTL门—OC门(Open collector gate)

3.1.7 集电极开路TTL门--OC门:

- 输入都为高电平时, T_2 和 T_5 饱和导通,输出为低电平 $V_{\rm OL}\approx 0.3~\rm V$ 。输入有低电平时, T_2 和 T_5 截止, 输出为高电平 $V_{\rm OH}\approx V'_{\rm CC}$, 因此具有与非功能。

3.1.7 集电极开路TTL门—OC门(Open collector gate)

 $\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

VCC

输出为高时, R_L不能太大, 否则使Vo<3.4V 破坏高逻辑

理想: R_L=0, V_O=5V

输出为低时, R_L不能太小, 否则使V_O>0.3V 破坏低逻辑

要保证 V_0 ,高 \geqslant 3.4V,低 \le 0.3VRL的值不能太大也不能太小。通过计算选择合适的值。

3.1.8 OC门应用

1) 线与功能 (节省与门)

R_L取值合适,就可<mark>线与</mark> Y=Y₁·Y₂ = (AB)'·(CD)'

2) 电平转换

3.1.5 TTL门电路 三态门(Tri-State)

双向传输应用需求

3.1.5 TTL门电路 三态门(Tri-State)

例2 分析下面逻辑门功能, 当EN=H时. Y=?

3.1.5 TTL 三态门

三、三态输出门

输出有三个状态: $V_{\rm OL}$, $V_{\rm OH}$, 高阻 (Z)

 $EN'=0, P=1, \mathbf{D}$ 截止,为"工作状态" $\Rightarrow Y=AB$ $EN'=1, P=0, \mathbf{D}$ 导通,为"高阻状态" $\Rightarrow Y=Z$

(1)构成单向总线

任何时刻 EN_1 、 EN_2 、 EN_3 中只能有一个为有效电平,

使相应三态门工作,而其他三 态输出门处于高阻状态,从而 实现了总线的复用。

(2)构成双向总线

例: 分析下面双向总线, EN=1时, EN=0时的信号方向

例2 分析下面双向总线, EN=1时, EN=0时的信号方向

* [例] 欲用下列电路实现非运算,试改错。

