

Final Design Review

ME #4 - MAXQ

ME 4496 Project Design II

29 April 2020

Derrick Likes, Shishir Khanal, Derek Anderson Advisors: Dr. Marco Schoen, Kellie Wilson

Problem Statement

- Spaceport America Cup
 - Altitude: 10,000 ft
 - Solid Engine Class
 - Recoverable

Fulfil all requirements for ME 4496A/B

Launch Components

Launch Rail

Launch Lugs

Propulsion

- Objectives
 - Select a solid propellant motor
 - specific impulse of 9208 lbf-s
 - Select components and build the propulsion system
 - Motor
 - Thrust Plate
 - Centering Rings
 - Retainers
 - Rods and nuts

Motor

- Propellent
 - N-10000-VM-P
 - Weight: 7338 grams
 - Cost: \$899.99(Aerotech N3300)

Hardware

- Supplier: Aerotech
- Weight: 6804 grams
- Cost: \$520

Fig: Aerotech Motor Hardware

Thrust Plate

Supplier: SC Precision

Weight: 266 grams

• Diameter: 6"

For: 98 mm motor

• Cost: \$67.45

Fig: Thrust Plate

Centering Ring

Supplier: Proline Composites

• Weight: 63.9 grams

• Diameter: 6"

For: 98 mm motor

• Cost: \$39.9(for 2)

Fig: Centering Rings

Bulkhead Disc

Supplier: Proline Composites

• Weight: 135 grams

Diameter: 6"

• Cost: \$9.80

Fig: Bulkhead

Flanged Retainer

Supplier: Aero Pack

• Weight: 230 grams

• For: 98 mm motor

• Cost: \$98.89

Fig: Flanged Retainer

Threaded Rods

- Product #: LC.03401012.HD.DAR
- Diameter ¾"
- Cost: \$67.5
- Nuts
 - Product #: 842176125206
 - Diameter ¾"
 - Cost: \$48.45 (for 3)

Fig: Threaded Rods

Exploded View of Propulsion system

Fig: Exploded view of Propulsion system

6.16 IN OD 108.41 IN DETAIL C SCALE 1 / 4 DETAIL D SCALE 1/4

Structural Overview

Bubble	Name	Material	Mass (LBM)
1	Fuselage	Carbon Fiber	7.5
2	Nose Cone	Nylon 6 (3DP)	0.968
3	Fins	Carbon Fiber	0.519
4	Coupler	Fiberglass	0.063
5	Motor coupler	Phenolic	6.016
6	Bulkhead	Aluminum	0.684
7	Parachute 1	Nylon	3.87
8	Parachute 2	Nylon	2.36
9	Electronics Bay	Various	15.6
10	Motor	Propellent	21.875
			59.455

Structural Constraints

Competition constraints

- PVC, PML, and stainless steel Prohibited for load bearing parts
- Joints must be "stiff"
- Joint must extend two body calibers past edge of adjoined sections
- Payload must be removable at weigh in and designed in units of CubeSat (10cmX10cmX10cm)

Rocketry club constraints

 Design "legacy" rocket that can be re-implemented next year

Changes

- Fiberglass Coupler
- 3D printed nosecone finish Aerojet
- Through the wall fin design

Final Specifications

Competition Requirements						
	Target Apogee	Velocity off stand (Min)			total impulse (Max)	Stability (Range)
	10,000	100 ft/s			9208 lbf-s	1.5-2 cal
Current Simulation Results						
Motor	Apogee	velocity off stand	time to apogee	max acceleration	total impulse	Stability
N-10000-VM-P	11203 ft	224 ft/s	23.7 s	26.8 ft/s^2	2320 lbf-s	1.71 cal

Simulation Results

Simulation Results

University Final Structure Specifications

- 3-d printed, Nylon 6, tangent ogive nose cone, 16" height
- Aerojet finish on nose cone
- 6" ID, 96" long carbon fiber fuselage, wall thickness 0.08"
- Total price \$875.49
- Clipped Delta wings

Component	Pressure C _D	Base C _D	Friction C _D	Total C _D
Nose cone	0.00 (0%)	0.00 (0%)	0.03 (6%)	0.03 (6%)
Body tube	0.00 (0%)	0.00 (0%)	0.09 (20%)	0.09 (20%)
Body tube	0.00 (0%)	0.13 (29%)	0.09 (20%)	0.23 (49%)
Trapezoidal fin set	0.06 (13%)	0.00 (0%)	0.05 (11%)	0.11 (24%)
Total	0.06 (13%)	0.13 (29%)	0.26 (58%)	0.46 (100%)

Thrust Plate FEA Analysis

- Max thrust force = 2600 LBF
- Material: 6061 Aluminum plate ¼ IN
- Safety Factor: 15

Nosecone FEA Analysis

- Maximum Drag force = 202 LBF = 1.25 PSIG
- Material: Nylon 6, min thickness = .125 IN
- Safety Factor: 15

Fuselage FEA Analysis

- Max thrust force = 2600 LBF
- Material: Carbon Fiber .080 in Wall Thickness
- Safety Factor: 15

- Purpose:
 - Track the altitude and position of the Rocket
 - Achieve predictable height

- Avionics & System Controls
 - Ignition Control
 - Parachute Deployment Control

- Avionics
 - Controllers
 - Main Avionics
 - Backup Avionics
 - Power

Controller

- BeagleBoard
 - Cost: \$125
 - Weight: 48 gms
 - Power: Max Power (P) = I*V = 3A*5V = 15 W
 - Power Camera

• Camera

- Arducam Sony
 - Cost: \$64.99
 - Clairity: 8 MP
 - Weight: 54 gms
 - Power: Max Power (P) = I*V = 0.02 A* 5V = 0.1 W

Fig: BeagleBoard

Fig: Arducam

- Main Avionics
 - GPS/RTx System
 - Cost: \$259.95
 - Power: Max Power (P) = I*V = 0.07 A*9V = 0.00047 W
 - Telemetry using receiver in the LCD Screen
 - Real Time-flight parameters in the DAQ software

Fig: GPS & Altimeter System

Fig: Receiver System

Power

Component	Battery Type	МАН	Volts
GPS Transmitter	Li-Po	750	3.7
GPS Receiver	Li-Po	950	3.7
Altimeter (MissileWorks)	Li-Po	400	9
Altimeter Stratologger	Li-Po	400	9

Controls

- Ignition Control
 - \$58.13
 - Connected externally to the rocket
 - Detaches during launch

Fig: Block Diagram Ignition Control

Controls

- Parachute Deployment Control
 - Black Powder
 - \$5.64/2 oz
 - The ignition of black powder can be induced by a charge

Fig: Black Powder Mechanism

Recovery

Drogue Parachute

• Weight: 7.7 oz

• Descent rate: ~90 ft/sec

Main Parachute

• Weight: 32 oz oz

• Descent rate: 17 ft/sec

Project Timeline

MAXQ PROJECT TIMELINE

ROJECT TITLE MAXQ Rocket Project

COVID-19 Complications

- Because of the virus, the 2020 competition was cancelled.
- Certification flights were also cancelled.
- The organizers let teams reserve their spots for next year.
- Our grant is still in place.
- We are stocking up supplies for next year's team and the rocketry club.

Questions?

References

- Launch Lugs: apogeerockets.com
- Launch Rail: 2019 MAXQ Design Team, mcmastercarr.com
- Descent Control: https://the-rocketman.com/chutes-html/
- Blue Tube: https://www.apogeerockets.com/Building-Supplies/Body-Tubes/Blue-Tubes/6in Blue Tube?cPath=42 43 56&
- Competition Rules: http://www.soundingrocket.org/uploads/9/0/6/4/9064598/sa_cup_irec-design_test__evaluation_guide_20191118_rev_c_final_.pdf
- Radax Joint: http://www.patentbuddy.com/Patent/8607705
- Cubesat Image:
 - https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj9olXjgPflAhUjCjQIHQyxDQEQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.isispace.nl%2Fproducts%2Fcubesat-structures%2F&psig=AOvVaw3I9cKNqorp4VwGq3_ajAJa&ust=1574278011007606
- Igniter Idea: https://www.youtube.com/watch?v=tSRbmpiaQKY
- PID Controller Picture:
 - https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwja3u33jfflAhXoITQIHS9SC4sQjRx6BAgBEAQ&url=https%3A%2 F%2Fen.wikipedia.org%2Fwiki%2FPID_controller&psig=AOvVaw0Df5OvzvnEPpAHiMnbafbJ&ust=1574281553395060
- ANFIS
 - Picture: <a href="https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjG9frJj_flAhU1Ln0KHbKNDecQjRx6BAgBEAQ&url=https://www.researchgate.net%2Ffigure%2FAdaptive-Neuro-Fuzzy-Inference-System-ANFIS-structure-with-two-inputs-and-three_fig2_334398541&psig=A0vVaw2Kj10DpjSeu8zkBVCIEZ2V&ust=1574281986924675
- Fuzzy
 - Picture: <a href="https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwihkajuj_flAhX2JTQIHcl6BslQjRx6BAgBEAQ&url=http%3-A%2F%2Flipas.uwasa.fi%2F~TAU%2FlCAT3080%2Fslides.php%3FMode%3DNoFrame%26File%3D9000Links.txt%26Page%3D-1%26MicroExam%3D0ff%26Images%3D0n%26Menu%3D0ff%26Brother%3DBig%26Whiteboard%3D0ff%26TRACE%3D0ff&psig=A0vVaw1d80eQ-1l1wrJGY_GjAeuZ&ust=157428-2070344997

References

- Servo Motor: https://www.adafruit.com/product/2307?gclid=EAlalQobChMlzta3mJT35QlVkgDsCh1Hnw0FEAkYBiABEgJMP_D_BwE
- Fin Control Image: https://www.youtube.com/watch?v=lb3gqGsuEHI
- Solid Rocket Motor: https://www.researchgate.net/figure/A-typical-solid-propellant-rocket-motor-Whitfield-and-Keller-1970_fig1_270703058
- Aerospike Nozzle: https://en.wikipedia.org/wiki/Aerospike_engine#/media/File:Aerospikeprinciplediagram.svg
- Bell Shaped Nozzle Image: https://en.wikipedia.org/wiki/Bell_nozzle
- Open Rocket: http://openrocket.info/