

Advanced Topics in NLP Introduction

Dr. Paul Buitelaar & Dr. Omnia Zayed Data Science Institute University of Galway

University of Galway.ie

Learning Objectives of this Course

- Gain insights into knowledge extraction from text, in particular around entities and relations
- Gain insights into opinion mining, in particular on emotion analysis, dynamic identification of aspect and analysis of figurative language
- Gain insights into language generation, in particular in the context of machine translation and chatbot development

Administrative Issues

Lecturers

Dr. Paul Buitelaar & Dr. Omnia Zayed

Lecture Plan

Date	Lecture
9/1/23	Introduction
16/1/23	Knowledge Extraction I: Entities
23/1/23	Knowledge Extraction II: Relations
30/1/23	Opinion Mining I: Emotions
6/2/23	bank holiday
13/2/23	Opinion Mining II: Aspect
20/2/23	Opinion Mining III: Figurative Language
27/2/23	Language Generation I: Machine Translation I
6/3/23	Language Generation II: Machine Translation II + NLG
13/3/23	Language Generation III: Dialog Systems
20/3/23	Summary
27/3/23	Industry Talk

Labs

Time & Venue: Fridays 11am-1pm, IT102

Practical exercises covering the course content

Prerequisites are basic knowledge of Python, see:

https://docs.python.org/3/tutorial/

We will use Google colab Jupyter notebook, see:

https://colab.research.google.com

Dhairya Dalal

Ali Hatami

Lab Exercises

Date	Lab
13/1/23	intro to base NLP tools and methods
20/1/23	Named Entity Recognition
27/1/23	relation prediction
3/2/23	emotion classification
10/2/23	no lab - bank holiday
17/2/23	aspect-based sentiment analysis
24/2/23	metaphor classification
3/3/23	build a machine translation model step by step
10/3/23	machine translation evaluation
17/3/23	no lab - bank holiday
24/3/23	chatbot development with RASA

Assignments

Two assignments

- Assignment 1: Released Jan 30th, Due Feb 20th
- Assignment 2: Released Mar 6th, Due Apr 3rd

Assignments count for 50% of final grade

Recommended Reading

Lectures

- Jurafsky and Martin, SPEECH and LANGUAGE PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 3rd edition: https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
- Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language
 Processing, MIT Press. Cambridge, MA: May 1999: https://nlp.stanford.edu/fsnlp/

Labs

Dive into Deep Learning: https://d2l.ai/

Summary of Intro NLP "What we learned so far"

Buzz Groups

What have we learned in the Intro NLP course?

Natural Language Processing

Linguistics

text text text

Linguistic Structure & Levels of Analysis

- Morphology: tokenization (MWEs), inflection, derivation, stemming, lemmatization
- Syntax: part-of-speech, grammar (constituency vs. dependency)
- **Semantics**: word sense, semantic roles, coreference

Language Data

- **Lexicon**: WordNet, FrameNet
- Corpora: annotation (data labeling), multilingual, domain-specific

Syntax: Part of Speech

PoS labeled data

text text text

Knowledge

PoS tagged text

Syntax: Constituency / Dependency Parsing

Semantics: Word Sense Disambiguation

Probability

$$P(B|A) = P(A|B)\frac{P(B)}{P(A)}$$
 $TF-IDF = f_w \times \left(\log\left(\frac{N}{N_w}\right) + 1\right)$

estimate word probability using Naive Bayes, TF-IDF

Text Classification

Decisions

classifier

text text text

NLP

Knowledge

probability model

$$P(B|A) = P(A|B)\frac{P(B)}{P(A)}$$
 $TF-IDF = f_w \times \left(\log\left(\frac{N}{N_w}\right) + 1\right)$

estimate word probability using Naive Bayes, TF-IDF

Language Modeling

estimate the probability of a sentence using n-gram model

Vector Space

Cosine similarity

text text text NLP

Knowledge

distributional model

co-occurrence matrix

Word Embeddings

Cosine similarity

text text text

Knowledge

word embeddings

neural network architecture

RNNs: Text Classification

neural network architecture

Deep Learning: Transformers

Transformer with self-attention

Transformers: Text Classification

Set of Classes

Decisions

 Classifier with fine-tuning for transfer learning

text text text

Knowledge

Pretrained model

Transformer with self-attention

Applications: Sentiment Analysis

Transformer with self-attention

Ethics

Explainable Al

Knowledge

Data privacy (GDPR)

• Ethical, bias-aware NLP

Trustworthy Al

- Data Protection Impact Assessment
- Data Statement

Buzz Groups

What is missing?

NLP tasks missing "Focus of this course"

Knowledge Extraction Tasks

Symbolic Knowledge

- Named Entity Recognition & Entity Linking
- Relation Extraction

text text text

Entities, Relations

Knowledge Extraction - Definition

Creation of knowledge from unstructured (textual, language) data Extracted knowledge must facilitate inferencing Requires reuse and/or generation of formal knowledge

Knowledge Extraction - Example

"Naomi Carey, who is the director of Hutchinson Care Homes said she is currently only able to operate at 85% capacity."

"Galway GP Martin Daley, former president of the Irish Medical Organisation, gave a statement today to this effect."

PERSON: Martin Daley, Naomi Carey

ORGANISATION: Irish Medical Organisation, Hutchinson Care Homes

CITY: Galway

Martin Daley at-organisation Irish Medical Organisation

Naomi Carey — at-organisation — Hutchinson Care Homes

Martin Daley → has-occupation ← GP

Naomi Carey has-occupation former president

Entities

Relations

Opinion Mining Tasks

Emotion Analysis

Aspect Mining

Figurative Language Processing

Emotion Analysis

Emotion Analysis

Emotion Analysis

Deep neural network

Aspect Mining

"The camera's focus was bad, but has a great size and is easy-to-use."

Aspect Mining

Figurative Language Processing

Idiom (noun): a group of words established by usage as having a meaning not deducible from those of the individual words

Figurative Language Processing

Language Generation Tasks

Machine Translation

Data-to-Text Generation

Dialog System Development

Language Generation: Machine Translation

English text

NLP

Nederlandse tekst ...

Machine Translation

```
gerade zu diesem Stamm gehören ||| belong just to these families ||| 0.390442 2.9025e gerade zu diesem Stamm gehören ||| belong just to these ||| 0.390442 2.9025e-15 0.2 gerade zu diesem Stamm gehören ||| them belong just to these ||| 0.390442 1.5563e-11 0.2 gerade zu diesem Stamm ||| belong just to these families ||| 0.390442 1.5563e-11 0.2 gerade zu diesem Stamm ||| belong just to these ||| 0.390442 1.5563e-11 0.260295 9. gerade zu diesem Stamm ||| them belong just to these ||| 0.390442 1.5563e-11 0.260 gerade zu diesem ||| belong just to ||| 0.390442 1.33531e-08 0.260295 4.9937e-09 2. gerade zu diesem ||| of them belong just to ||| 0.390442 1.33531e-08 0.260295 4.79 gerade zu diesem ||| them belong just to ||| 0.390442 1.33531e-08 0.260295 4.6096 gerade zu ||| belong just to ||| 0.390442 1.8515e-05 0.260295 4.9937e-09 2.718 ||| gerade zu ||| of them belong just to ||| 0.390442 1.8515e-05 0.260295 4.60968e-12 2.7
```

Statistical Machine Translation

Neural Machine Translation

Language Generation: Data-to-Text

Data-to-Text Generation

Language Generation: Dialog Systems

Dialog System Development

NLP in industry

How Google uses NLP to better understand search queries, content

Learn the role that natural language processing plays in making Google search even more semantic and context-based.

Olaf Kopp on August 23, 2022 at 6:00 am | Reading time: 10 minutes

Natural language processing opened the door for semantic search on Google.

SEOs need to understand the switch to entity-based search because this is the future of Google search.

Google Index & Knowledge Graph

"Use of NLP in Google Search"

According to Olaf Kopp of Aufgesang GmbH (article in Search Engine Land), Google Search uses NLP for the following:

- Interpretation of search queries.
- Classification of subject and purpose of documents.
- Entity analysis in documents, search queries and social media posts.
- Generating featured snippets and answers in voice search.
- Interpretation of video and audio content.
- Expansion and improvement of the Knowledge Graph.

Buzz Groups

Which NLP tasks are needed for each of these steps?

Interpretation of search queries

"calories in bar of chocolat"

• Relation Extraction, Parsing, Part-of-Speech, WSD

"Biden"

Entity Linking

"great movies" "scary movie"

Sentiment / Emotion Analysis

Classification of subject, purpose of documents

legal, health, ... documents

- Text Classification, Probability, Language Modeling, Word Embeddings documents about concept XYZ
- Concept Extraction

Entity analysis in documents, queries and posts

identify names of people, locations, things

- NER, Entity Linking, Concept/Taxonomy Extraction identify relations between people, locations, things
- Relation Extraction, Parsing, Semantic Role Labeling resolution of pronouns
- Coreference Resolution

Generating featured snippets and answers

summarize one or more retrieved documents

Text Summarization

generate a specific answer

Natural Language Generation, Dialog

translate a text

Machine Translation

Interpretation of video and audio content

retrieve relevant videos for a search query

Multimodal Analysis

speech interaction

Speech-to-Text, Dialog

Expansion/improvement of Knowledge Graph

include new entities

- Entity Linking, Concept Extraction, Taxonomy Extraction/Extension include new or update existing relations
- Relation Extraction, Knowledge Graph Completion

Lab of this week

Intro to base NLP tools and methods

Tools:

- pandas
- Hugging Face Datasets
- scikit-learn
- Hugging Face Transformers

Dataset:

• IMDB reviews: https://huggingface.co/datasets/imdb

