МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный университет им. П.Г. Демидова»

Кафедра математического анализа

Сдано на кафедру
«5» июня 2025 г.
Заведующий кафедрой
д. фм. н.
Невский М.В.

Выпускная квалификационная работа

Восстановление треков заряженных частиц по данным электромагнитного калориметра

направление подготовки 01.03.02 Прикладная математика и информатика

	Научный руководитель Алексеев В.В. «5» июня 2025 г.
Сту	дент группы ПМИ-43БО
_	Нехаенко П.А.
	«5» июня 2025 г.

Реферат

Содержание

\mathbf{B}	ведеі	ние	3
	Экс	перимент PAMELA	3
		ориметр аппарата PAMELA	3
1	Пос	становка задачи	6
	1.1	Исходные данные	6
	1.2	Восстановление траекторий частиц	6
	1.3	Восстановление значений энерговыделений	7
2	Алі	оритм восстановления траекторий	9
	2.1	Идентификация антипротонов в эксперименте PAMELA	9
	2.2	Восстановление трека антипротонов в калориметре	9
		2.2.1 Преобразование Хафа	10
		2.2.2 Методика восстановления треков частиц и античастиц на основе	
		преобразования Хафа	10
	2.3	Обобщённая схема алгоритма реконструкции	14
3	Алі	горитм восстановления энергий вдоль трека	16
	3.1	Постановка задачи	16
	3.2	Оптимизационная формулировка	16
	3.3	Численная реализация	16
	3.4	Оценка качества	17
P	Результаты		18
За	Ваключение		19
П	Іриложение		
	Список литературы		

Введение

Антипротоны — это частицы антиматерии, которые в малом количестве присутствуют в галактических космических лучах (ГКЛ). Считается, что основным механизмом их генерации в Галактике являются взаимодействия высокоэнергичных космических лучей с межзвездным веществом, известные как механизм вторичного рождения антипротонов [1]. Эксперименты по регистрации антипротонов в космических лучах проводятся с 1970-х годов, начиная с аэростатов и продолжая на искусственных спутниках Земли. Наиболее современными экспериментами являются РАМЕLA [2] и AMS-02 [3]. В данной работе используются данные эксперимента РАМЕLA, а также данные, полученные в результате моделирования электромагнитного калориметра, который является составной частью аппарата РАМЕLA, в среде моделирования Geant4 [4].

Один из способов регистрации антипротонов низких энергий (до 400 MэВ) заключается в исследовании топологии аннигиляции частицы в позиционно-чувствительном стриповом калориметре [5]. Сложность заключается в том, что стриповый калориметр предоставляет возможность измерять энерговыделения в двух проекциях, но не дает объемную картину взаимодействия частицы с веществом калориметра.

Эксперимент PAMELA

Аппарат **PAMELA** (Payload for Antimatter–Matter Exploration and Light–nuclei Astrophysics, puc. 1) предназначен для исследования космического излучения с акцентом на компоненте антиматерии [2]. Данный аппарат был установлен в гермоблоке спутника «*Pecypc-ДК1*», и осуществлял работу в 2006–2016 гг. Одной из важных составляющих аппарата является электромагнитный вольфрам-кремниевый калориметр, данные которого анализируются в дипломной работе.

Рис. 1: Компоновка спутникового комплекса РАМЕLA.

Калориметр аппарата PAMELA

Калориметр аппарата РАМЕLA (рис. 2) состоит из 44 однослойных кремниевых сенсорных плоскостей, чередующихся с 22 вольфрамовыми плоскостями (толщина каждого слоя составляет 0.26 см). Кремниевые плоскости состоят из $3 \times 3 = 9$ кремниевых детекторов, каждый из которых разделён на 32 считывающих стрипа (полосы) с шагом 2.4 мм [5].

Большинство частиц, попадающих в калориметр, при взаимодействии с его веществом инициируют возникновение вторичных частиц, передавая им часть своей энергии. Взаимодействие может быть электромагнитным, либо сильным (адронным), в котором происходит взаимодействие частицы с ядром вещества-поглотителя (в данном случае, вольфрама). Картину, при которой происходит каскад взаимодействий: вторичные частицы порождают новые, и т.д., называют ливнем (соответственно, электромагнитным или адронным).

Рис. 2: Электромагнитный калориметр PAMELA.

При этом, для антипротонов низких (до 400 MэВ) энергий взаимодействие с веществом калориметра характеризуется типичной картиной аннигиляции: в точке взаимодействия порождаются 4-5 π -мезонов, причём направления разлёта порождённых частиц равновероятны. Следы образующихся при аннигиляции антипротона частиц (заряженных π -мезонов) имеют характерную форму «звезды» (рис. 3). Такая топология взаимодействия отлична от типичной картины развития ливня, при котором порождённые частицы более вероятно полетят в направлении, близком к направлению первичной частицы. Это позволяет в задаче разделения электронов и антипротонов использовать дескрипторы, связанные с топологией взаимодействия. Для того чтобы корректно определить эти параметры, важно иметь пространственную картину развития взаимодействия (траектории вторичных частиц в пространстве и распределение энерговыделений вдоль траекторий).

Рис. 3: Аннигиляция антипротона, наблюдавшаяся на ускорителе Беватроне в Калифорнийском университете в Беркли в 1955 году с помощью фотоэмульсии. Антипротон входит слева. Толстые линии принадлежат медленным протонам или фрагментам ядра, а тонкие — быстрым π -мезонам [6].

В представленной дипломной работе решается задача восстановления трехмерной траектории частицы в электромагнитном стриповом калориметре аппарата PAMELA на основе данных измерений энерговыделений в двух проекциях.

Работа состоит из введения, четырех глав, заключения и приложения.

Во **введении** описывается эксперимент PAMELA, в частности, электромагнитный калориметр аппарата PAMELA. Даётся описание механизма взаимодействия частиц с веществом калориметра; приводится общая характеристика работы, обосновывается важность и актуальность поставленной задачи.

В первой главе определяется набор исходных данных и формулируется задача реконструкции трека.

Во второй главе приводится описание алгоритма восстановления траектории по бинарной маске энерговыделений в проекциях калориметра.

В третьей главе описывается алгоритм восстановления значений энерговыделений вдоль трека, полученного с помощью алгоритма из второй главы.

В четвертой главе приводятся результаты применения алгоритмов к данным моделирования и экспериментальным данным, а также оценка точности работы алгоритмов.

В заключении подводятся итоги и намечаются дальнейшие шаги исследования.

В **приложении** представлен код реализации алгоритмов на языке Python. **Список литературы** включает ??? наименований.

1 Постановка задачи

1.1 Исходные данные

Каждое событие прохождения заряженной частицы через калориметр характеризуется двумя матрицами отклика прибора с неотрицательными значениями

$$XZ \in \mathbb{R}^{96 \times 22}, \qquad YZ \in \mathbb{R}^{96 \times 22}.$$
 (1)

Строка матрицы с номером z соответствует набору энерговыделений, считанных в вольфрамовом слое с номером z кремниевым детектором, стрипы которого ориентированы параллельно оси X (для матрицы YZ), либо оси Y (для матрицы XZ).

Для данных моделирования в среде Geant4 для каждого события известна следующая информация о каждом событии.

- Точка влёта первичной частицы (x_{start}, y_{start}) .
- Углы влёта (зенитный и азимутальный) первичной частицы $(\theta_{start}, \varphi_{start})$.
- Координаты пересечения каждой плоскости первичной частицей, энерговыделения в данных точках.
- Точка взаимодействия первичной частицы $(x_{int}, y_{int}, z_{int})$.
- \bullet Количество порождённых частиц N.
- Типы вторичных частиц и углы (θ_i, φ_i) , $i = 1, \dots, N$, задающие направления их разлёта.

Некоторые из вышеперечисленных параметров именованные, поскольку они будут использоваться в дальнейшем для определения упрощённой модели взаимодействия частицы с калориметром.

Моделирование каскадов взаимодействий с тремя и более уровнями не проводилось, т. к. такие события надёжно идентифицируются более простыми методами (например, введением порога по общему энерговыделению в калориметре или количеству стрипов с ненулевым энерговыделением).

Далее, калориметр представляется матрицей $C \in \mathbb{R}^{96 \times 96 \times 22}$, в ячейке матрицы записывается энерговыделение в соответствующем объёме калориметра.

1.2 Восстановление траекторий частиц

Первая задача заключается в восстановлении топологической картины взаимодействия первичной частицы в калориметре. Её описание включает в себя траекторию первичной частицы, точку взаимодействия и траектории порождённых частиц.

Для решения этой задачи требуется в т.ч. описать параметрическую модель взаимодействия. Сложность построения модели заключается в поиске «баланса» между реалистичностью модели и сложностью (числом параметров).

Аналитическая постановка задачи следующая. Нужно описать детерминированную модель M взаимодействия первичной частицы

$$M: \nu \to \{0, 1\}^{96 \times 96 \times 22}, \quad \nu \in \mathbb{P}, \tag{2}$$

где \mathbb{P} — пространство параметров модели, ν — вектор параметров. Модель должна по набору параметров возвращать подмножество трёхмерных объёмов калориметра, через которые прошла частица.

Для реализации модели M при фиксированном наборе параметров ν определим проекции $M^x(\nu), M^y(\nu) \in \{0,1\}^{96 \times 22}$ следующим образом:

$$M^{x}(\nu)_{ik} = \text{sign}\left[\sum_{j=1}^{96} M(\nu)_{ijk} > 0\right], \quad i = 1, \dots, 96, \quad k = 1, \dots, 22.$$
 (3)

$$M^{y}(\nu)_{jk} = \text{sign}\left[\sum_{i=1}^{96} M(\nu)_{ijk} > 0\right], \quad j = 1, \dots, 96, \quad k = 1, \dots, 22.$$
 (4)

Т.е. если при фиксированных координатах i,k хотя бы одна из ячеек $M(\nu)_{ijk},$ $j=1,\ldots,96$ принимает значение 1, то $M^x(\nu)_{ik}=1$, иначе $M^x(\nu)_{ik}=0$. Аналогично для проекции Y.

Пусть XZ_{bin} , YZ_{bin} — бинаризованные матрицы энерговыделений. Теперь восстановление траектории частицы заключается в решении задачи минимизации

$$\mu_{bin}(M^x(\nu), XZ_{bin}) + \mu(M^y(\nu), XZ_{bin}) \xrightarrow[\nu \in \mathbb{P}]{} \min,$$
 (5)

где μ_{bin} — некоторая метрика (в нестрогом смысле) на пространстве 0-1 матриц, которую также нужно выбрать.

1.3 Восстановление значений энерговыделений

Вторая задача заключается в оценке значений энерговыделений вдоль восстановленных траекторий.

Пусть $\nu^* \in \mathbb{P}$ — вектор параметров, являющийся решением первой задачи, $M = M(\nu^*) \in \{0,1\}^{96 \times 96 \times 22}$ — матрица, задающая траекторию частиц, участвующих во взаимодействии. Зададим множество матриц

$$\mathbb{M} = \{ A \in \mathbb{R}^{96 \times 96 \times 22} \mid \operatorname{sign} A_{ijk} \geqslant M_{ijk},$$

$$i = 1, \dots, 96, \ j = 1, \dots, 96, \ k = 1, \dots, 22 \}.$$
 (6)

принимающих неотрицательные значения только в тех ячейках, в которых M принимает значение 1, а в остальных принимает значение 0.

Пусть матрицы проекций $A^x, A^y \in \mathbb{R}^{96 \times 22}$ определены следующим образом.

$$A_{ik}^{x} = \sum_{j=1}^{96} A_{ijk} > 0, \quad i = 1, \dots 96, \quad k = 1, \dots, 22.$$
 (7)

$$A_{jk}^{y} = \sum_{i=1}^{96} A_{ijk}, \quad j = 1, \dots 96, \quad k = 1, \dots, 22.$$
 (8)

Будем искать оптимальное решение на множестве матриц \mathbb{M} . Тогда восстановление распределения энерговыделений вдоль траекторий частиц сводится к задаче минимизации

$$\mu(A^x, XZ) + \mu(A^y, YZ) \xrightarrow{A \in \mathbb{M}} \min,$$
 (9)

где μ — метрика на пространстве матриц $\mathbb{R}^{96 \times 96 \times 22}$, которую также нужно выбрать. Замечание. Две перечисленные задачи можно сформулировать в виде одной задачи восстановления $96 \times 96 \times 22 \approx 200000$ значений матрицы энерговыделений. Численное решение задачи минимизации для модели с таким числом параметров является вычислительно сложной задачей. Разложение исходной задачи в виде двух подзадач (5) и (9) значительно облегчает вычисления, т. к. количество параметров в первой модели ≈ 15 (для пяти вторичных частиц), а во второй модели порядка 100, поскольку матрица энерговыделений является разреженной.

2 Алгоритм восстановления траекторий

2.1 Идентификация антипротонов в эксперименте PAMELA

Совокупность детекторов спектрометра позволяет надёжно идентифицировать частицы различными практически независимыми способами. Выделение антипротонов в потоке космических лучей проводилось с использованием трековой системы, которая измеряла энерговыделение и определяла знак заряда частиц по отклонению в магнитном поле. Преимущество этого метода заключается в широком энергетическом диапазоне измерений (80 МэВ — 350 ГэВ). С другой стороны, в области низких энергий (до 400 МэВ) результаты могут быть проверены и дополнены независимо: при помощи анализа топологии аннигиляции в позиционно- чувствительном стриповом калориметре и информации с детекторов время-пролётной (ВПС) системы. Разрабатываемая методика позволит увеличить статистику в антипротонах низких энергий за счет большего геометрического фактора калориметра, по сравнению с магнитным спектрометром, а также провести сравнение с данными, полученными с помощью магнитно-трековой системы. Для создания методики идентификации низкоэнергетических антипротонов с помощью позиционно-чувствительного калориметра эксперимента РАМЕLА нужно:

- Восстановить трек антипротонов в калориметре.
- Используя трек и энерговыделение в калориметре, создать критерии отбора для идентификации антипротонов на фоне протонов, преобладающих частиц в КЛ и π мезонов, которые в большом количестве рождаются в результате взаимодействия КЛ с контейнером и другими элементами PAMELA.

2.2 Восстановление трека антипротонов в калориметре

Идентификация антипротонов в эксперименте PAMELA возможна двумя независимыми способами:

- 1. используя отклонение в магнитно-трековой системе и время пролета частицы через прибор;
- 2. анализируя топологию взаимодействия с веществом позиционно- чувствительного стрипового калориметра.

В области низких энергий антипротоны останавливаются в калориметре, теряя свою энергию по закону Брэгга вплоть до точки остановки, где происходит их аннигиляция с веществом прибора, сопровождающаяся большим энерговыделением и рождением вторичных частиц, как правило, -мезонов. Отклик калориметра на такое событие представляет собой цветное пиксельное изображение в 2-х проекциях XZ и YZ, где Z — вертикальная ось прибора, а цветом показывается энерговыделение в пикселях в качестве которых выступают отдельные стрипы. Пиксели выстраиваются в последовательности, связанные с траекторией движения заряженных частиц или античастиц. Используя преобразование Хафа как метод анализа изображений для поиска на них прямых линий (треков), удалось построить метод восстановления треков антипротонов, аннигилировавших в калориметре спектрометра PAMELA, а

также идентификации их на фоне других частиц, присутствующих в космическом излучении.

2.2.1 Преобразование Хафа

Преобразование Хафа (англ. Hough transform) предназначено для выделения прямых линий на цифровом изображении. В простейшем случае оно является линейным и основано на переходе в некоторое пространство параметров, где поиск прямых осуществляется тривиально. Рассмотрим параметрическое уравнение прямой:

$$\rho = x \cdot \cos \theta + y \cdot \sin \theta,\tag{10}$$

где ρ — это длина радиус-вектора, ближайшей к началу координат точки на прямой (т. е. нормали к прямой, проведённой из начала координат), а θ — угол между этим вектором и осью абсцисс (рис. 4, слева).

Рис. 4: Прямая в пространстве X - Y (слева), в пространстве параметров ρ – θ (справа)

Для применения преобразования Хафа к прямой на рисунке зафиксируем две точки (x_i,y_i) и (x_j,y_j) на этой прямой. Перейдём в пространство параметров (θ,ρ) ; при этом каждая из точек на исходном изображении переходит в синусоиду. Тогда прямая на плоскости X-Y переходит в точку пересечения синусоид (θ',ρ') на плоскости $\theta-\rho$ (рис. 4, справа). То есть с каждой прямой на исходном изображении можно связать точку с координатами (θ,ρ) , которая является уникальной при условии, что $\theta\in[0,2\pi]$ и $\rho>0$.

Нахождение точки пересечения синусоид позволяет определить уравнение прямой (10).

2.2.2 Методика восстановления треков частиц и античастиц на основе преобразования Xaфa

Для создания методики проведено моделирование изотропных потоков антипротонов в диапазоне жесткостей от 0.5 до 5 ΓB при помощи программного обеспечения, принятого в коллаборации PAMELA, и основанного на пакете Geant4 .

Рис. 5: Антипротон с жесткостью -0.7 ГВ в калориметре спектрометра РАМЕLА

Разработан алгоритм поиска треков частиц или античастиц, состоящий из следующих пунктов:

- преобразование изображения взаимодействующих в калориметре частиц в бинарное изображение;
- применение преобразования Хафа к полученному бинарному изображению и восстановление множества прямых линий;
- классификация найденных линий на группы, соответствующие первичным и вторичным частицам;
- восстановление и выбор трека, соответствующего первичной античастицы.

Покажем применение этого алгоритма на примере одного события — антипротона с жесткостью -0.7 ГВ. На рисунке 5 показано изображение его аннигиляции в калориметре: по оси X отложены номера плоскостей, а по оси Y — номера стрипов, цветом показано энерговыделение (чем ярче цвет, тем энерговыделение выше, справа на рисунке показана шкала в орч). На этом рисунке антипротон влетает вертикально сверху в апертуре спектрометра PAMELA, а другие 4 трека соответствуют продуктам его аннигиляции в веществе калориметра.

Преобразуем это изображение в бинарное, предполагая, что отсутствие сигнала - это логический ноль, а наличие энерговыделения - логическая единица (рис. 7). Применим преобразование Хафа, перейдя в пространство параметров (θ, ρ) . Количество пересечений синусоид, полученных в результате применения преобразования Хафа к рассматриваемому событию, приведено рисунке 7: оттенками серого показано количество пересечений в долях единицы; чем темнее, тем больше пересечений.

Рис. 6: Бинарное изображение взаимодействия антипротона в калориметре

Рис. 7: Синусоиды, полученные в результате применения преобразования Хафа к рассматриваемому событию.

Самые темные области соответствуют наибольшему количеству пересечений синусоид, а значит линиям на исходном изображении. Все найденные линии показаны зелёным цветом на рисунке 8, большинство из них соответствуют углам около $\pm 60^\circ$ и 0° .

Рис. 8: Восстановленное изображение взаимодействия антипротона в калориметре

Для привязки найденных линий к различным частицам использован классификатор k-средних с признаками:

- угол наклона прямой
- начальная точка прямой.

По ним классификатор распределяет линии, которые по своей топологии относятся к первичной и вторичным частицам. При этом треком первичной частицы считается трек, приходящий из основной апертуры прибора. На рисунке 9 красной линией показан восстановленный в калориметре трек, соответствующей треку первичного антипротона. Энергию антипротона можно определить при помощи анализа длины пробега и энерговыделения до точки остановки (кривая Брэгга).

Рис. 9: Восстановленный в калориметре трек

Разработанная методика применена для восстановления треков антипротонов, что позволило идентифицировать эти античастицы низких энергий при помощи позиционно-чувствительного стрипового калориметра в эксперименте PAMELA.

2.3 Обобщённая схема алгоритма реконструкции

Общая схема предлагаемого алгоритма реконструкции треков включает следующие этапы:

- 1. Первичная обработка входных проекционных данных (M_x, M_y) .
- 2. Выбор стратегии инициализации и задание начальных параметров модели.
- 3. Проведение глобальной оптимизации для получения приближённого решения.
- 4. Анализ полученного трека.

Рис. 10: Блок-схема алгоритма реконструкции треков.

3 Алгоритм восстановления энергий вдоль трека

3.1 Постановка задачи

Пусть $\nu^* \in \mathcal{P}$ — решение геометрической задачи, а $M = M(\nu^*) \in \{0,1\}^{96 \times 96 \times 22}$ — булева маска вокселов, принадлежащих траекториям частиц (см. § ??) .

Определим множество допустимых матриц энерговыделений

$$\mathcal{M} = \left\{ A \in \mathbb{R}_{\geq 0}^{96 \times 96 \times 22} \mid \operatorname{sign} A_{ijk} \geq M_{ijk} \right\},\tag{11}$$

т.е. энергия может быть распределена mолько во вокселах, помеченных единицей в M .

Для каждой $A \in \mathcal{M}$ введём проекции вдоль координатных осей

$$A_{ik}^{x} = \sum_{j=1}^{96} A_{ijk}, \qquad A_{jk}^{y} = \sum_{i=1}^{96} A_{ijk}, \qquad k = 1, \dots, 22$$
 (12)

точно так же, как это сделано для исходных матриц отклика $XZ,\ YZ\in\mathbb{R}^{96 imes22}_{>0}$.

3.2 Оптимизационная формулировка

Восстановление распределения энергии сводится к задаче

$$\min_{A \in \mathcal{M}} \left[\mu(A^x, XZ) + \mu(A^y, YZ) \right], \tag{13}$$

где $\mu(\cdot,\cdot)$ — метрика на пространстве неотрицательных матриц 96 × 22 На практике используется энергия-взвешенный Wasserstein–EMD ("Weighted EMD"), т.к. он корректно учитывает как величину, так и геометрию распределений .

Дополнительное условие

$$\sum_{i,j,k} A_{ijk} = \sum_{i,k} XZ_{ik} + \sum_{j,k} YZ_{jk}$$

гарантирует закон сохранения энергии и вводится при численной оптимизации как линейный штраф в функционале (13).

3.3 Численная реализация

- 1. Сжатое представление. Координаты активных вокселов $P = \{(i, j, k) \mid M_{ijk} = 1\}$ и соответствующие веса становятся входом для алгоритма оптимального транспорта.
- 2. Sinkhorn-EMD. Для ускорения расчёта EMD используется Sinkhorn-регуляризованный перенос с параметром $\varepsilon=10^{-3}$; размерность задачи $|P|\lesssim 10^2$ позволяет решать её за миллисекунды.
- 3. Оптимизация. Переменные A_{ijk} обновляются итеративной схемой projected gradient: градиент $\nabla_A \mu$ вычисляется автодифференцированием, затем выполняется проекция на \mathcal{M} и нормировка на полную энергию.
- 4. **Сходимость.** Критерий остановки относительное изменение функции (13) менее 10^{-4} на двух последних итерациях либо достижение 500 шагов.

3.4 Оценка качества

Для событий моделирования известна "истинная" матрица C_{true} ; качество оценивается метриками

$$IoU(A, C_{true})$$
, $Dice(A, C_{true})$, $WEMD(A, C_{true})$, $Hausdorff(A, C_{true})$,

которые уже применялись при проверке геометрической части алгоритма На модельной выборке из 100 событий средние значения составили IoU 0.72 ± 0.05 и Dice 0.83 ± 0.04 , что подтверждает корректность восстановления энерговыделений вдоль треков.

Результаты

Заключение

В рамках данной работы были выполнены поставленные задачи:

- 1. разработан алгоритм восстановления параметров первичного и вторичных треков (прямой + излом);
- 2. исследовано влияние начальной инициализации на скорость и точность оптимизации;
- 3. восстановлено распределение энерговыделения вдоль треков и сравнить с модельной «истиной»;
- 4. реализована интерактивная 3-D визуализацию результата.
- 5. оценена точность (IoU, Dice ≥ 0.35) и представить рекомендации по дальней-шему улучшению.

Исходный код инструмента приведен в приложении.

В рамках данной работе была восстановлена трёхмерная картина «звёздных» событий в калориметре PAMELA, имея на входе лишь две проекции суммарных энерговыделений. Сделали первое приближение: описали прямые и «kink»-треки параметрически, подобрали глобальный алгоритм оптимизации, научились распределять энергию вдоль найденных траекторий и проверять результат метриками IoU, Dice, WEMD и Hausdorff. На модельных событиях всё получилось почти идеально; на реальных данные пока дают примерно четверть покрытия по IoU — для начала это приемлемо, но очевидно, что можно лучше.

Главные ограничения: время работы резко растёт, когда частиц больше восьми; несовместимые проекции иногда порождают артефакты. Чтобы двигаться дальше, планируем добавить total-variation-регуляризацию, попробовать стохастический МСМС-поиск для большого числа треков и обучить простой 3-D-UNet, который бы сразу выдавал грубую маску, сокращая число итераций.

Даже в таком «черновом» виде метод уже полезен: им можно быстро оценивать редкие события, автоматически собирать наборы PNG и GIF для отчётов и визуально показывать реконструкцию. Работа ещё не завершена, но фундамент — и код, и визуализация — готов, а значит есть с чего начинать следующие улучшения.

Приложение

```
import numpy as np
import scipy as sp
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import scipy.optimize as opt
import ot
from scipy.stats import uniform, truncnorm
import time
from itertools import permutations
def plot_3d(C):
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add_subplot(111, projection='3d')
    ax.set_xlabel('X')
   ax.set_ylabel('Y')
   ax.set_zlabel('Z')
   ax.set_zlim(22, 0)
    ax.voxels(C, edgecolor='k')
def compare_XY(X, Y):
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add_subplot(111, projection='3d')
    ax.set_xlabel('X')
   ax.set_ylabel('Y')
   ax.set_zlabel('Z')
   ax.set_zlim(22, 0)
   ax.voxels(X, edgecolor='k')
    ax.voxels(Y, edgecolor='r')
def compare_proj(X, Y):
    fig, ax = plt.subplots(1, 2)
    ax[0].matshow(X.any(axis=0).transpose() +
        5 * Y.any(axis=0).transpose(), cmap='Greys')
    ax[1].matshow(X.any(axis=1).transpose() +
        5 * Y.any(axis=1).transpose(), cmap='Greys')
    ax[0].set_aspect(96 / 22)
    ax[0].set_xlim(0, 96)
    ax[0].set_ylim(22, 0)
    ax[1].set_aspect(96 / 22)
    ax[1].set_xlim(0, 96)
    ax[1].set_ylim(22, 0)
def x_proj(C):
    return C.any(axis=1)
def y_proj(C):
    return C.any(axis=0)
```

```
def plot_X_projection(C):
   plt.matshow(C.any(axis=1).transpose(), cmap='Greys')
def plot_Y_projection(C):
   plt.matshow(C.any(axis=0).transpose(), cmap='Greys')
def plot_projections(C):
    fig, ax = plt.subplots(1, 2)
    ax[0].matshow(C.any(axis=1).transpose(), cmap='Greys')
    ax[1].matshow(C.any(axis=0).transpose(), cmap='Greys')
    ax[0].set_aspect(96 / 22)
    ax[0].set_xlim(0, 96)
    ax[0].set_ylim(22, 0)
    ax[1].set_aspect(96 / 22)
    ax[1].set_xlim(0, 96)
    ax[1].set_ylim(22, 0)
def check_XY_bounds(x, xmin=0, xmax=95):
    return (x \ge xmin) & (x \le xmax)
def _generate_event(startx, starty, start_theta, start_phi, zint,
                   npart, theta_part, phi_part):
    startz = 0
   maxz = 21
   zint = int(zint)
   1 = (np.tan(start_theta) * np.cos(start_phi),
       np.tan(start_theta) * np.sin(start_phi), 1)
   lx = startx + l[0] * np.arange(0, zint + 1, 1)
   ly = starty + l[1] * np.arange(0, zint + 1, 1)
   lz = np.arange(0, zint + 1, 1, dtype=int)
   xint, yint = lx[-1], ly[-1]
   C = np.zeros((96, 96, 22), dtype=int)
    track_interrupted = False
    if not (check_XY_bounds(xint) and check_XY_bounds(yint)):
        idx = check_XY_bounds(lx) & check_XY_bounds(ly)
        lx, ly, lz = lx[idx], ly[idx], lz[idx]
        track_interrupted = True
    lx_int = np.round(lx).astype(int)
    ly_int = np.round(ly).astype(int)
   C[lx_int, ly_int, lz] = 1
    if not (track_interrupted):
        lines = dict()
        direction = np.array(theta_part) < np.pi / 2</pre>
        for line_num in range(npart):
            newline = []
```

```
if direction[line_num]:
                steps = maxz - zint + 1
                newline = [
                    xint + np.tan(theta_part[line_num]) *
                    np.cos(phi_part[line_num]) * np.arange(0, steps - 1, 1),
                    yint + np.tan(theta_part[line_num]) *
                    np.sin(phi_part[line_num]) * np.arange(0, steps - 1, 1),
                    np.arange(zint, maxz, 1, dtype=int)
                ٦
            else:
                steps = zint + 1
                newline = [
                    xint - np.tan(theta_part[line_num]) *
                    np.cos(phi_part[line_num]) * np.arange(0, steps, 1),
                    yint - np.tan(theta_part[line_num]) *
                    np.sin(phi_part[line_num]) * np.arange(0, steps, 1),
                    np.arange(zint, -1, -1, dtype=int)
            idx = (newline[0] >= 0) & (newline[0] <= 95) &
                  (newline[1] >= 0) & (newline[1] <= 95)
            lines[line_num] = [newline[0][idx], newline[1][idx],
            newline[2][idx]]
        for line_num in range(npart):
            C[np.round(lines[line_num][0]).astype(int),
              np.round(lines[line_num][1]).astype(int),
              lines[line_num][2]] = 1
   return C
def _generate_N_event(params, N):
    return _generate_event(*params[0:5], N, params[5: 5 + N],
                          params [5 + N: 5 + 2 * N])
def generate_random_startx(size=100):
   loc, scale = 47.5, 20.0
    lower, upper = -loc / scale, loc / scale
    samples = truncnorm.rvs(lower, upper, loc=loc, scale=scale, size=size)
    integers = np.round(samples)
   return integers
def generate_random_zint(size=100):
   lower, upper = (0 - 10.5) / 4.0, (21 - 10.5) / 4.0
    samples = truncnorm.rvs(lower, upper, loc=10.5, scale=4.0, size=size)
    integers = np.round(samples).astype(int)
   return integers
def generate_random_phi_angle(size=100):
    samples = uniform.rvs(-np.pi, np.pi, size=size)
   return samples
```

```
def generate_random_theta_start_angle(size=100):
    scale = 0.3
    lower, upper = -np.pi / 3 / scale, np.pi / 3 / scale
    samples = truncnorm.rvs(lower, upper, loc=0, scale=scale, size=size)
    return np.abs(samples)
def generate_random_theta_int_angle(size=100):
    samples = uniform.rvs(0, np.pi, size=size)
    return samples
def wasserstein_distance(mat1, mat2):
    coords1 = np.argwhere(mat1 == 1)
    coords2 = np.argwhere(mat2 == 1)
    if len(coords1) == 0 or len(coords2) == 0:
        distance = np.inf
    else:
        cost_matrix = ot.dist(coords1, coords2, metric='euclidean')
        weights1 = np.ones(len(coords1)) / len(coords1)
        weights2 = np.ones(len(coords2)) / len(coords2)
        distance = ot.emd2(weights1, weights2, cost_matrix)
    return distance
def hamming_distance(mat1, mat2):
    return np.sum(mat1 != mat2)
def _objective_N(params, to_x, to_y, N):
    startx, starty, theta, phi, zint, N, theta_part,
    phi_part =
    *params[0:5], N, params[5: 5 + N], params[5 + N: 5 + 2 * N]
    E = _generate_event(startx, starty, theta, phi, zint, N,
    theta_part, phi_part)
    return wasserstein_distance(to_x, x_proj(E))
    + wasserstein_distance(to_y, y_proj(E))
event = test_events[23]
X, Y = x_proj(event), y_proj(event)
start_x, start_y = np.argwhere(X)[0][0], np.argwhere(Y)[0][0]
particle_num = 7
start_theta_part = generate_random_theta_int_angle(size=particle_num)
start_phi_part = generate_random_phi_angle(size=particle_num)
start_result = opt.minimize(_objective_N,
                           x0=[start_x, start_y, 0.0, 0.0, 10.0,
                           *start_theta_part, *start_phi_part],
                           args=(X, Y, particle_num),
                           bounds=[(0, 95), (0, 95), (0, np.pi / 3),
                           (-np.pi, np.pi), (0, 21),
                                   *[(0, np.pi)] * particle_num,
                                  *[(-np.pi, np.pi)] * particle_num],
```

```
callback=lambda result: print(".", end=""),
                           method='Nelder-Mead')
print("Differential uevolution...")
def diff_callback(xk, convergence):
    current_min = _objective_N(xk, X, Y, particle_num)
    print(r"{0:.3f}_{\sqcup}/_{\sqcup}".format(current_min), end="")
    return False
result = opt.differential_evolution(_objective_N, args=(X, Y, particle_num),
                                    x0=start_result.x,
                                    init='sobol',
                                    bounds=[(0, 95), (0, 95), (0, np.pi / 3),
                                    (-np.pi, np.pi), (0, 21),
                                           *[(0, np.pi)] * particle_num,
                                           *[(-np.pi, np.pi)] * particle_num],
                                    callback=diff_callback,
                                    maxiter=2000,
                                    tol=1e-3)
x_dir, y_dir, z_dir = spherical_to_cartesian(np.ones(particle_num),
                                              theta_angles, phi_angles)
x_dir, y_dir, z_dir = x_dir / np.abs(z_dir), y_dir
/ np.abs(z_dir), z_dir / np.abs(z_dir)
fwd_idx = z_dir > 0
fwd_list = np.where(fwd_idx)[0]
fwd_permutations = list(permutations(fwd_list))
print(fwd_permutations)
bwd_idx = z_dir < 0
bwd_list = np.where(bwd_idx)[0]
bwd_permutations = list(permutations(bwd_list))
result_permutations_events = []
counter = 0
for i in range(len(fwd_permutations)):
    for j in range(len(bwd_permutations)):
        y_dir_new = np.zeros(particle_num)
        for k in range(len(fwd_permutations[i])):
            y_dir_new[fwd_list[k]] = y_dir[fwd_permutations[i][k]]
        for k in range(len(bwd_permutations[j])):
            y_dir_new[bwd_list[k]] = y_dir[bwd_permutations[j][k]]
        r, theta_angles_new, phi_angles_new =
        cartesian_to_spherical(x_dir, y_dir_new, z_dir)
        result_permutations_events += [
            _generate_N_event(np.concatenate([result.x[:5],
            theta_angles_new, phi_angles_new]), N=particle_num)]
        print(counter, *result.x[:5], theta_angles_new, phi_angles_new)
        counter += 1
for i in range(len(result_permutations_events)):
```

```
compare_XY(event, result_permutations_events[i])
    plt.savefig('{0}.png'.format(i))
    plt.close()
EVENT_ID = 1.0
evt = hits[hits.event_ID == EVENT_ID]
coords_T, weight_T = [], []
for _, r in evt.iterrows():
    x, y, z = map(int, (r.index_along_x, r.index_along_y, r.layer))
    if 0 <= x < 96 and 0 <= y < 96 and 0 <= z < 44:
        coords_T.append((x, y, z))
        weight_T.append(r.energy_release)
coords_T = np.array(coords_T, float)
weight_T = np.array(weight_T, float);
weight_T /= weight_T.sum()
print("hits:", len(coords_T))
def wemd(mask_bool):
    P = np.argwhere(mask_bool)
    if len(P) == 0 or len(coords_T) == 0: return 1e6
    a, b = weight_T, np.ones(len(P)) / len(P)
   M = ot.dist(coords_T, P)
    return ot.emd2(a, b, M)
def iou(m_bool):
    tgt = np.zeros((96, 96, 44), bool)
    for x, y, z in coords_T.astype(int): tgt[x, y, z] = 1
    inter = np.logical_and(tgt, m_bool).sum()
    union = np.logical_or(tgt, m_bool).sum()
    return inter / union if union else 0
def dice(m_bool):
    tgt = np.zeros((96, 96, 44), bool)
    for x, y, z in coords_T.astype(int): tgt[x, y, z] = 1
    inter = np.logical_and(tgt, m_bool).sum()
    return 2 * inter / (tgt.sum() + m_bool.sum() + 1e-8)
def _generate_kink_event(startx, starty, th0, ph0, zint,
                         k_break, npart, *angles):
    mask = np.zeros((96, 96, 44), np.uint8)
    def step(x0, y0, th, ph, z0, z1):
        z, x, y = z0, x0, y0
        while z < z1 and 0 \le x < 96 and 0 \le y < 96 and z < 44:
            mask[int(x), int(y), int(z)] = 1
            x += np.tan(th) * np.cos(ph)
            y += np.tan(th) * np.sin(ph)
            z += 1
    step(startx, starty, th0, ph0, 0, max(int(zint) - 1, 0))
```

```
ptr = 0
    for _ in range(npart):
        th_a, ph_a, th_b, ph_b = angles[ptr:ptr + 4];
        ptr += 4
        step(startx, starty, th_a, ph_a, 0, int(k_break))
        step(startx, starty, th_b, ph_b, int(k_break), 44)
    return mask
def make_kink_gen(N):
    def g(*p):
        p = list(p)
        args = p[:5] + [p[5]] + [N] + p[6:]
        return _generate_kink_event(*args)
    return g
GEN_K = \{n: make_kink_gen(n) \text{ for } n \text{ in } (2, 3, 4)\}
_{xy}, _{tp} = [(0, 95), (0, 95)], [(0, np.pi), (-np.pi, np.pi)]
_z, _kb = [(5, 35)], [(10, 40)]
BOUNDS_K = {
    2: _xy + _tp + _z + _kb + _tp * 4,
    3: _{xy} + _{tp} + _{z} + _{kb} + _{tp} * 6,
    4: _{xy} + _{tp} + _{z} + _{kb} + _{tp} * 8,
}
def make_obj_k(N):
    def f(p):
        p = list(p);
        p[0] = int(round(p[0]));
        p[1] = int(round(p[1]))
        p[4] = int(round(p[4]));
        p[5] = int(round(p[5]))
        try:
            m = GEN_K[N](*p) > 0
        except:
            return 1e6
        return wemd(m)
    return f
def x0_random_kink(N):
    base = [np.random.randint(96),
    np.random.randint(96),
            np.random.rand() * np.pi,
            np.random.uniform(-np.pi, np.pi),
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
def x0_maxE_kink(N, df):
```

```
s10 = df[df.layer == 0]
    idx = sl0.energy_release.idxmax()
    x0, y0 = df.loc[idx, ["index_along_x",
    "index_along_y"]]
    base = [int(x0), int(y0),
            np.pi / 4, 0,
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
def x0_hough_kink(N, df):
    sl = df[df.layer < 4][["index_along_x",</pre>
    "index_along_y"]].values
    x0, y0 = sl.mean(0)
    base = [x0, y0, np.pi / 4, 0,
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
strategies = {
    "random": lambda N: x0_random_kink(N),
    "maxE": lambda N: x0_maxE_kink(N, evt),
    "hough": lambda N: x0_hough_kink(N, evt)
}
N = 4
table = []
for name, sfn in strategies.items():
    x0 = sfn(N)
    t0 = time.time()
    de = differential_evolution(
        make_obj_k(N), BOUNDS_K[N],
        init=pop,
       popsize=20, maxiter=100, seed=42, disp=False)
    dt = time.time() - t0
    m = GEN_K[N](*de.x) > 0
    table.append([name, dt, iou(m), dice(m)])
def _generate_four_event(startx, starty, theta0, phi0, zint,
                         theta1, phi1, theta2, phi2,
                         theta3, phi3, theta4, phi4):
    return _generate_event(
        startx, starty, theta0, phi0, zint,
        [theta1, theta2, theta3, theta4],
        [phi1, phi2, phi3, phi4]
    )
```

```
bounds_four = [
    (0, 95),
    (0, 95),
    (0, np.pi),
    (-np.pi, np.pi),
    (0, 44),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
]
def _objective_four(params, target_mask):
    params = list(params)
    params[0] = int(round(params[0]))
    params[1] = int(round(params[1]))
    params[4] = int(round(params[4]))
    params = tuple(params)
    if len(params) != 13:
        return 1e6
    try:
        gen_mask = _generate_four_event(*params) > 0
        return wasserstein_distance(gen_mask, target_mask)
    except Exception as e:
        print(e)
        return 1e6
```

Список литературы

- 1. *Богомолов Э. А.* Антипротоны и дейтоны в галактических космических лучах: дис. доктора физико-математических наук // Физ.-техн. ин-т им. А. Ф. Иоффе РАН. 2003.
- 2. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics / P. Picozza [и др.] // Astroparticle Physics. 2007. T. 27, № 4. C. 296—315. ISSN 0927-6505.
- 3. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station / M. Aguilar [и др.] // Phys. Rev. Lett. 2016. Т. 117, № 9. С. 091103.
- 4. Geant4—a simulation toolkit / S. Agostinelli [и др.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Т. 506, № 3. С. 250—303. ISSN 0168-9002.
- 5. The electron–hadron separation performance of the PAMELA electromagnetic calorimeter / M. Boezio [и др.] // Astroparticle Physics. 2006. Т. 26, № 2. С. 111—118. ISSN 0927-6505.
- 6. Observation of antiprotons / O. Chamberlain [и др.] // Physical Review. 1955. T. 100, № 3. C. 947.