

<u>Gameboard</u>

Maths

Radians-problems involving area 5ii

Radians-problems involving area 5ii

Figure 1 shows a sector OAB of a circle, centre O and radius $8\,\mathrm{cm}$. The angle AOB is $46\,^\circ$.

Figure 1: Sector *AOB*.

Part A Convert angle to radians

Express $46\,^\circ$ in radians, correct to 3 significant figures.

Part B Arc length

Find the length of the arc AB.

Part C Area of sector

Find the area of the sector OAB.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>Pure Maths Practice: Radians - Problems Involving Area</u>

<u>Gameboard</u>

Maths

Radians-problems involving area 3ii

Radians-problems involving area 3ii

Figure 1 shows a sector AOB of a circle, centre O and radius $r\,\mathrm{cm}$. Angle $AOB=72\,^\circ$.

Figure 1: Sector AOB.

The area of the sector AOB is $45\pi \, \mathrm{cm}^2$.

Part A Convert angle to radians

Express $72\,^\circ$ exactly in radians, simplifying your answer.

The following symbols may be useful: pi

Part B Value of r

Find the value of r in cm.

Part C Area of segment

Find the area of the segment bounded by the arc AB and the chord AB, giving your answer in ${
m cm}^2$ correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>Pure Maths Practice: Radians - Problems Involving Area</u>

<u>Gameboard</u>

Maths

Radians-problems involving area 2ii

Radians-problems involving area 2ii

Figure 1 shows two congruent triangles, BCD and BAE, where ABC is a straight line. In triangle BCD, $BD=8\,\mathrm{cm}$, $CD=11\,\mathrm{cm}$ and angle $CBD=65\,^\circ$. The points E and D are joined by an arc of a circle with centre B and radius $8\,\mathrm{cm}$.

Figure 1: Diagram of the triangles.

Part A Angle BCD

Find angle BCD. Give your answer in radians, correct to 3 significant figures.

Part B Angle EBD

Find the angle EBD, giving your answer in radians correct to 3 significant figures.

Part C Area of shaded segment

Hence find the area (in ${
m cm}^2$) of the shaded segment bounded by the chord ED and the arc ED, giving your answer correct to 3 significant figures.

Gameboard:

<u>Pure Maths Practice: Radians - Problems Involving Area</u>

<u>Gameboard</u>

Maths

Radians-problems involving area 1ii

Radians-problems involving area 1ii

Figure 1: The sector OAB.

A sector OAB of a circle of radius r cm has angle θ radians. The length of the arc of the sector is 12 cm and the area of the sector is 36 cm 2 (see **Figure 1**).

Part A First equation

By considering the length of the arc of the sector, write down an equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Part B Second equation

By considering the area of the sector, write down another equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Part C Values of r and θ

Hence show that $r=6\,\mathrm{cm}$ and find the value of θ .

Part D Area of segment

Find the area of the segment bounded by the arc AB and the chord AB. Answer to 3 sf.

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Radians and Trig Functions 2i

Radians and Trig Functions 2i

Figure 1 shows part of the curve $y = \cos 2x$, where x is in radians. The point A is the minimum point of this part of the curve.

Figure 1: The graph of $y = \cos 2x$.

Part A Period

State the period of $y = \cos 2x$.

The following symbols may be useful: pi, t

Part B Coordinates of A

What is the x coordinate of A?

The following symbols may be useful: pi, x

What is the y-coordinate of A?

The following symbols may be useful: pi, y

Part C The inequality $\cos 2x \leqslant rac{1}{2}$

Solve the inequality $\cos 2x \leqslant \frac{1}{2}$ for $0 \leqslant x \leqslant \pi$, giving your answer as a range of angles x.

Give the exact lower bound, in the form x > a or $x \ge a$.

The following symbols may be useful: <, <=, >, >=, pi, \times

Give the exact upper bound, in the form x < b or $x \le b$.

The following symbols may be useful: <, <=, >, >=, pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Radians and Trig Functions 2ii

Radians and Trig Functions 2ii

Part A The equation $2\cos x = \tan 2x$

Write down the exact values of $\cos\frac{\pi}{6}$ and $\tan\frac{\pi}{3}$ (where the angles are in radians). Hence verify that $x=\frac{\pi}{6}$ is a solution of the equation

 $2\cos x = \tan 2x$.

More practice questions?

Part B Sketch

Sketch, on a single diagram, the graphs of $y=2\cos x$ and $y=\tan 2x$, for x (radians) such that $0\leqslant x\leqslant \pi$.

More practice questions?

Part C Other solutions

Hence state, in terms of π , the other values of x between 0 and π satisfying the equation.

Give the exact x-coordinate of the root of the equation furthest from the y-axis.

The following symbols may be useful: pi, x

Give the x-value of the central point of intersection of the graphs $y=2\cos x$ and $y=\tan 2x$ for $0\leqslant x\leqslant \pi.$

The following symbols may be useful: pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Pure Maths Practice: Radians and Trig Functions

<u>Gameboard</u>

Maths

Radians and Trig Functions 1i

Radians and Trig Functions 1i

A curve has equation $y = \sin(ax)$, where a is a positive constant and x is in radians.

Part A Time Period

State the period of $y = \sin(ax)$, giving your answer in an exact form in terms of a.

The following symbols may be useful: a, pi, t

Part B $\sin(ax) = k$

Given that $x=\frac{1}{5}\pi$ and $x=\frac{2}{5}\pi$ are the two smallest positive solutions of $\sin(ax)=k$, where k is a positive constant. Find the values of a and k.

Find the value of a.

The following symbols may be useful: a

Find the value of k.

The following symbols may be useful: k

Part C $\sin(ax) = \sqrt{3}\cos(ax)$

Given instead that $\sin(ax) = \sqrt{3}\cos(ax)$, find the two smallest positive solutions for x, giving your answers in an exact form in terms of a.

Give the smallest positive solution.

The following symbols may be useful: a, pi, x

Give the second smallest positive solution.

The following symbols may be useful: a, pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Pure Maths Practice: Radians and Trig Functions

<u>Home</u> <u>Gameboard</u> Maths

Radians 3i

Figure 1 shows a triangle ABC, in which $AB=3\,\mathrm{cm}$, $AC=5\,\mathrm{cm}$ and angle $ABC=2.1\,\mathrm{radians}$.

Figure 1: A triangle ABC.

Calculate angle ACB, giving your answer in radians.

Radians 3i

Part B Area

Calculate the area of the triangle.

Part C Perimeter of a sector

An arc of a circle with centre A and radius $3 \, \mathrm{cm}$ is drawn, cutting AC at the point D.

Calculate the perimeter of the sector ADB.

Part D Area of a sector

An arc of a circle with centre A and radius $3\,\mathrm{cm}$ is drawn, cutting AC at the point D.

Calculate the area of the sector ADB.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Pure Maths Practice: Radians - Problems Involving Area

<u>Gameboard</u>

Maths

Small Angle Approximations 1ii

Small Angle Approximations 1ii

$$f(x) = rac{\sin(x) + an(2x)}{ an(x) + 2}$$

Part A Small angle approximation

Use the small angle approximation to write an approximate expression to second order for f(x), valid when x is small.

The following symbols may be useful: f, x

Part B Estimation

Use your expression to estimate the value of f(0.1) to 4 significant figures.

Part C Percentage error

What is the percentage error in this estimate? Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Small Angle Approximations 1i

Small Angle Approximations 1i

The small angle approximation is used when measuring distances in astronomy.

The two stars Alpha Centauri A and Alpha Centauri B are in a binary pair (they orbit one another). The distance between them is an average of 11 Astronomical Units, and they are an average of 4.4 light years from Earth.

$$1\,\mathrm{AU} = 1\,\mathrm{Astronomical\ Unit} = 149\,597\,870\,700\,\mathrm{m}$$

 $1\,\mathrm{ly} = 1\,\mathrm{Light\ Year} = 9.4607 \times 10^{15}\,\mathrm{m}$

Assume that a telescope is pointing straight at Alpha Centauri A with the geometry shown in Figure 1.

Figure 1: A telescope pointing straight at Alpha Centauri A

Use the small angle approximation to estimate θ , the angular separation between the stars as seen by the telescope. Give your answer to 2 significant figures.

Part A Radians

Give the answer in radians.

Part B Degrees

Give the answer in degrees.

Part C Arc Seconds

Give the answer in Arc Seconds. (Where 1 arc second is one $(\frac{1}{3600})^{th}$ of a degree.)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Pure Maths Practice: Small Angle Approximations