Unit 4: Pipeline Scheduling and Speculative Execution

- A. Compiler Techniques to Explore Instruction Level Parallelism (ILP)
- 1. Types of approaches to achieve ILP
 - a. Compiler-based Static (brief)
 - b. H/W based Dynamic (brief)
- 2. Formula to calculate Pipeline CPI
- 3. Parallelism limitations within basic block
 - a. Definition of basic block
- 4. Data dependence
 - a. Name dependence
 - b. Antidependence
 - c. Output dependence
 - d. Control dependence
- 5. Compiler techniques for exposing ILP
 - a. Pipeline Stalls
 - b. Pipeline Scheduling
 - c. Loop Unrolling (steps, limitations)
 - d. Strip Mining
- B. Dynamic Scheduling to explore ILP
 - 1. Dynamic scheduling: Definition, advantages, disadvantages
 - 2. Working process of dynamic scheduling
 - 3. Register renaming to solve WAR and WAW hazards
 - 4. Tomasulo's Algorithm
 - a. Steps
 - b. Framework:
 - i. Components
 - ii. Reservation stations
 - iii. Register Status Indicator (RSI)
 - iv. Common Data Bus
 - c. Examples
 - d. Illustration
 - e. Tomasulo's algorithm with loop-example
 - 5. Load-store order conflict
- C. Speculative execution
 - 1. Techniques to overcome control hazards in Tomasulo's approach
 - a. Speculate
 - b. Instruction commit
 - c. Reorder Buffer (ROB)
 - d. Modify reservation stations
 - 2. Hardware based speculation
 - a. Dynamic branch prediction
 - b. Speculation
 - c. Dynamic Scheduling
 - 3. Reorder Buffer (ROB)

- a. Structure of ROB (Fields)
- b. Comparison of Tomasulo's algo and Tomasulo's algo with ROB (comparison through figure)
- c. Operations with ROB
 - i. Issue
 - ii. Execute
 - iii. Write result (complete)
 - iv. Commit

Unit 5: Superscalar Processor and GPU Architectures

- A. Advanced Pipelining and Superscalar Processor
- 1. Advanced Pipelining
 - a. Superpipelining
 - b. Multiple Issue (Super scalar)
 - i. Statically scheduled scalar processor
 - ii. VLIW (Very Large Instruction Word) processor
 - iii. Dynamically scheduled superscalar processor
 - c. VLIW
 - i. Detail
 - ii. Disadvantages
 - iii. Example
 - d. Extreme optimization- through combination of dynamic scheduling + multiple issues + speculation
 - e. Handling multiple issues
 - i. Example without speculation
 - ii. Example with speculation
- 2. Superscalar processor
- 3. Multithreading
 - a. Types of multithreading
 - b. Hyperthreading
 - c. Comparison of resource utilization
- B. GPU Architectures
 - 1. What is a GPU?
 - 2. Requirement of GPU
 - 3. Shader programs
 - 4. CPU-GPU Interaction
 - 5. CPU vs GPU
 - 6. Flyn's Classification
 - a. SISD/ Uniprocessor (Single Instruction, Single Data stream)
 - b. SIMD/ Vector processing, Parallel Processing (Single instruction, multiple data)
 - c. MISD/ Pipelined computers
 - d. MIMD/ Multi-computers, Multi-processor
 - 7. Exploiting parallelism/ Vectorization

- a. Vectorization
 - i. Vector machine/ SIMD
- b. Programming and execution model
 - i. Model 1: Sequential (SISD)
 - ii. Model 2: Data Parallel (SIMD)
 - iii. Model 3: Multithreaded
- c. GPU as SIMT machine
 - i. Definition
 - ii. SIMT illustration
 - 1. Warps
 - 2. Multithreaded warps
 - 3. Warp-level FGMT
 - 4. SIMD execution unit
 - 5. Warp instruction level parallelism
 - 6. SIMT memory access
- C. Case study of GPU architectures
 - 1. GPU concepts
 - a. CPU-GPU interactions
 - b. GPU Kernels
 - i. Grid
 - ii. Block
 - iii. Thread
 - c. Thread scheduling
 - d. Memory hierarchy in GPU
 - 2. CUDA
 - a. Defining CUDA
 - b. Processing flow in CUDA with flow architecture
 - c. Indexing and memory access
 - i. Indexing and memory access: 1D grid
 - ii. Indexing and memory access: 2D grid
 - 3. Case study: NVIDIA Tesla- Architecture
 - 4. Case study: NVIDIA Fermi- Architecture
 - 5. Case study: NVIDIA GPU Series
 - 6. Performance parameters
 - a. Memory access
 - i. Latency hiding
 - 1. Occupancy
 - ii. Memory coalescing
 - 1. Uncoalesced memory access
 - 2. Coalesced memory access
 - 3. Choice of data structures used
 - iii. Data reuse-Tiling
 - iv. Shared memory back conflicts
 - 1. Resolving bank conflicts
 - b. SIMD warp utilization: Divergence
 - i. Vector reduction: Naïve mapping
 - ii. Divergence free mapping

- c. Data transfer between CPU and GPU
 - i. Asynchronous transfers
 - 1. Define
 - 2. Overlap communication and computation

Unit 6: Cache Memory Principles

- 1. Introduction to Cache memory
 - a. Basics of memory
 - i. Pipelined RISC data path
 - ii. Processor memory performance gap
 - iii. Relationship of Caches and Pipeline
 - iv. Role of memory
 - v. Memory hierarchy
 - b. Cache Memory
 - i. Introduction, Principal of locality, Access patterns
 - ii. Cache fundamentals
 - 1. Block/line
 - 2. Hit
 - 3. Miss
 - 4. Hit time
 - 5. Hit rate/miss rate
 - 6. Miss penalty
 - iii. CPU-cache interaction
 - iv. General organization of a Cache
 - 1. Organization diagram
 - 2. Addressing Caches
 - 3. Index and offset calculation
 - v. Four Cache memory design choices
 - 1. Block Placement/ Cache Mapping
 - a. Direct mapped
 - i. Accessing direct-mapped Caches
 - b. Set associative
 - i. Accessing set-associative Caches
 - c. Fully associative- brief
 - 2. Block Identification
 - a. Block Identification- Direct mapped
 - b. Block Identification- Set associative
 - c. Block Identification- Fully associative
 - d. Cache Indexing
 - 3. Block Replacement
 - 4. Write Strategy
- 2. Block replacement and write strategy
 - a. Block replacement
 - i. Block replacement algorithms

- 1. Random policy
- 2. First In First Out (FIFO)
- 3. Last In First Out (LIFO)
- 4. Least Recently Used (LRU)
- 5. Pseudo-LRU (PLRU)
- 6. Not Recently Used (NRU)
- 7. Least Frequently Used (LFU)
- 8. Re-Reference Interval Prediction (RRIP)
- 9. Optimal
- ii. Look-aside vs look-through caches
- b. Write strategy
 - i. Write hits
 - 1. Write through
 - 2. Write back
 - ii. Write miss
 - 1. Write allocate
 - 2. No-Write allocate
 - iii. Write through Cache with No-Write allocation
 - iv. Write back Cache with Write allocation
- c. Types of Cache misses
 - i. Compulsory
 - ii. Capacity
 - iii. Conflict
- 3. Numerical on Design Concepts in Cache Memory
 - a. Cache block concepts
 - b. Index and offset calculations
 - c. Tag and data array Access
 - d. MPKI- miss rate relation
 - e. Block replacement algorithm example
 - i. Through Pseudo LRU block replacement policy
 - ii. LIFO block replacement policy
 - f. Cache mapping