串口转 HID 键盘芯片 CH9328

中文手册 版本: V1.6 http://wch.cn

1、概述

CH9328 是一款串口转 HID 键盘芯片,在电脑上识别为标准的 USB HID 类键盘设备。CH9328 用于单向数据传输,可以接收串口发送过来的数据(如 ASCII 码),并按照 HID 类键盘设备规范,将数据打包成标准的键盘码值通过 USB 口上传给计算机。通过提供的上位机软件,用户也可自行配置芯片的VID、PID,以及各种字符串描述符。下图为其一般应用框图。

2、特点

- 支持 12Mbps 全速 USB 传输, 兼容 USB V2.0, 内置晶振。
- 默认串口通信波特率为 9600bps, 支持多种串口通讯格式以及各种常见波特率的设置。
- 支持 5V 电源电压和 3.3V 电源电压。
- 可自行配置芯片的 VID、PID, 以及芯片各种字符串描述符。
- 可自行配置芯片的默认波特率。
- 符合 USB 相关规范,符合 HID 类设备相关规范。
- 多种工作模式,应用不同需求,可模拟全键盘功能。
- 采用小体积的 SOP-16 无铅封装, 兼容 RoHS。

3、封装

封装形式	塑体宽度		引脚间距		封装说明	订货型号	
S0P16	3. 9mm	150mil	1. 27mm	50mil	标准 16 脚贴片	CH9328	

4、引脚

引脚号	引脚名称	类型	引脚说明				
15	VCC	 电源	正电源输入端,需要外接 0.1uF 电源退耦电容				
8	GND	电源 电源	公共接地端,直接连到 USB 总线的地线				
0	V3	电源					
5		电源	在 3. 3V 电源电压时连接 VCC 输入外部电源,				
5,			在 5V 电源电压时外接容量为 0. 1uF 退耦电容				
6	UD+	USB 信号	直接连到 USB 总线的 D+数据线				
7	UD-	USB 信号	直接连到 USB 总线的 D-数据线				
1	RSTI	输入	外部复位输入,低电平有效,内置上拉电阻				
2	TXD	输出	无效引脚,实际未使用				
3	RXD	输入	串行数据输入,内置上拉电阻				
4	T_LED	输出	串口发送状态输出,高电平有效				
			原 V1.4 以下版本晶体振荡的输入端,需要外接晶体及				
9	ΧI	输入	振荡电容; V1.4 及以后版本已采用内置晶振, 该引脚				
			悬空				
	XO	输出	原 V1. 4 以下版本晶体振荡的反相输出端,需要外接晶				
10			体及振荡电容; V1.4 及以后版本已采用内置晶振, 该				
			引脚悬空				
	14 I03 双向 默认上电后 配置芯片的工作	用户可自行配置引脚及工作模式配置引脚					
		双向	默认上电后芯片自动检测该引脚电平状态,用于				
14			配置芯片的工作模式,USB配置完成后,可根据需要配				
			置成普通 10 口使用				
			用户可自行配置引脚及工作模式配置引脚				
		双向					
13	104						
			配置芯片的工作模式,USB 配置完成后,可根据需要配				
			置成普通 10 口使用				
	101	双向	用户可自行配置引脚及速度配置引脚				
			默认上电后芯片自动检测该引脚电平状态,用于				
12			配置芯片的上传速度(上电时该引脚为高电平则速度				
			配置为普通模式,上电时该引脚为低电平则速度配置				
			为高速模式,高速模式的速度大概为普通模式的1倍),				
			USB 配置完成后,可根据需要配置成普通 10 口使用				
	102	双向	用户可自行配置引脚及工作模式配置引脚				
11			默认上电后芯片自动检测该引脚电平状态,用于				
''			配置芯片的工作模式,USB 配置完成后,可根据需要配				
			置成普通 10 口使用				
16	ACT#	输出	USB 配置完成状态输出,低电平有效				

5、功能说明

CH9328芯片内置了电源上电复位电路。

CH9328芯片使用5V电源电压时,V3引脚应该外接容量为0.1uF左右的电源退耦电容。使用3.3V电源电压时,V3引脚应该与VCC引脚相连接,同时输入外部的3.3V电源。

CH9328芯片的ACT#引脚是USB设备配置完成状态输出,用于指示USB设备已经成功连接到计算机。CH9328内置了独立的收发缓冲区,支持单工、半双工或者全双工异步串行通讯。串行数据包括1

个低电平起始位,5、6、7或8个数据位,1个或2个高电平停止位,支持奇校验/偶校验/标志校验/空白校验。CH9328默认波特率为9600bps,支持常用通讯波特率:50、75、100、110、134.5、150、300、600、900、1200、1800、2400、3600、4800、9600、14400、19200、28800、33600、38400、56000、57600、76800、115200。串口发送信号的波特率误差小于0.3%,串口接收信号的允许波特率误差不小于2%。

CH9328芯片内置了串口转USB HID类通讯的相关固件,是串口转HID类设备简单快捷的解决方案。此外它还内置了USB总线所需的所有外围电路,包括PLL和24MHz的USB时钟、D+和D-信号线的串联匹配电阻、Device设备的1.5KΩ上拉电阻等,并且内置了晶振,外围电路非常简单。

CH9328芯片符合相关技术规范,支持即插即用,计算机端的Windows/Linux/Android/MAC等操作系统已经内置相应的驱动程序,配合相应的软件,连接后即可使用。

I01为用户可自行配置引脚及速度配置引脚,默认上电后芯片自动检测该引脚电平状态,用于配置芯片的上传速度。如果上电时该引脚为高电平,则配置芯片上传速度为普通模式;如果上电时该引脚为低电平,则配置芯片上传速度为高速模式。高速模式的键值上传速度大概为普通模式的1倍。一般应用建议采用普通速度模式,特殊应用时可采用高速模式。USB配置完成后,可根据需要通过PC软件配置成普通I0口使用,用于电平的输入检测或输出控制。

I02、I03、I04为用户可自行配置引脚及工作模式配置引脚,默认上电后芯片自动检测该引脚电平状态,用于配置芯片的工作模式,USB配置完成后,可根据需要通过PC软件配置成普通I0口使用,用于电平的输入检测或输出控制。

工作模式配置及说明:

工作模式能量工作模式	102电平	103电平	104电平	功能说明
模式0	1	1	1	该模式仅支持将可见ASCII码(如a-z、0-9、@、#、\$等)对应的字符转成标准的USB键值。特殊功能:接收到的串口数据包如果遇到0x1B时,则丢弃当前包中0x1B之后的数据,并将0x1B转换成回车键。
模式1	1	0	1	该模式仅支持将可见ASCII码(如a-z、0-9、@、 #、\$等)对应的字符转成标准的USB键值。
模式2	1	1	0	该模式仅支持将可见ASCII码(如a-z、0-9、@、 #、\$等)对应的字符转成标准的USB键值。 特殊功能:接收到的串口数据包如果遇到 0x28时,将0x28转换成回车键。
模式3	0	1	1	该模式为透传模式,不仅仅用于传输可见ASCII码字符。该模式下可以实现标准的USB全键盘功能。 串口数据每8个字节组成一包,芯片每接收到8个字节后,直接打包通过USB口上传。即芯片为透传模式,不分析转换串口数据,直接按8个字节一包上传。故串口数据必须按照标准的USB键盘数据包进行发送。比如模拟"A"按下,则串口发送数据包为:0x00、0x00、0x00、0x00、0x00、0x00、0x00、0x0

比如模拟 "A+SHIFT"同时释放,则串口
发送数据包为: 0x00、0x00、0x00、0x00、
0x00、0x00、0x00、0x00;

通过提供的上位机软件,用户可自定义芯片的 VID、PID 和各种字符串描述符。也可以设置芯片上电后的默认串口通信波特率。这些信息配置后,将永久保存在芯片内部,除非重新配置,断电不丢失。如果没有设置过,则启用芯片默认的 VID、PID 和字符串描述符。

具体默认串口波特率、VID、PID 和各种字符串描述符的设置,以及预留 IO 口的使用,可参考提供的测试软件。

6、参数

6.1. 绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TS	储存时的环境温度	-55	100	°C
VCC	电源电压(VCC 接电源,GND 接地)	-0.5	5. 5	٧
VIO	输入或者输出引脚上的电压	-0.5	VCC+0. 5	V

6.2. 电气参数

(测试条件: TA=25℃, VCC=5V, 不包括连接 USB 总线的引脚)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	3. 0	5	5. 3	٧
ICC	静态电源电流		15	30	mA
VIL	低电平输入电压	-0.5		0.8	٧
VIH	高电平输入电压	2. 0		VCC+0. 5	٧
VOL	低电平输出电压(8mA 吸入电流)			0.5	٧
VOH	高电平输出电压(8mA 输出电流)	VCC-0.5			٧
IUPrxd	RXD 引脚内置上拉电阻的输入电流	40	80	160	uA
IDNrst	RSTI 引脚内置下拉电阻的输入电流	-10	-150	-240	uA

7、应用

7.1. 串口转 HID 键盘(下图)

下图是由CH9328实现的串口转HID键盘相关原理图。

P1是USB端口,USB总线包括一对5V电源线和一对数据信号线,通常,+5V电源线是红色,接地线是黑色,D+信号线是绿色,D-信号线是白色。USB总线提供的电源电流最大可以达到500mA,一般情况下,CH9328芯片和低功耗的USB产品可以直接使用USB总线提供的5V电源。如果USB产品通过其它供电方式提供常备电源,那么CH9328也应该使用该常备电源,如果需要同时使用USB总线的电源,那么可以通过阻值约为1Ω的电阻连接USB总线的5V电源线与USB产品的5V常备电源,并且两者的接地线直接相连接。

P2是TTL串口, RXD是CH9328的串行接收引脚; TXD实际未使用。

P3是预留的用户可自行配置使用的4个普通10引脚。

C3容量为0.1 μ F,用于CH9328内部电源节点退耦,C2容量为0.1 μ F,用于外部电源退耦。晶体X1、电阻R1和电容C4用于时钟振荡电路。X1是频率为12MHz的石英晶体或者陶瓷晶体,C4和C5是容量为20pF~47pF的独石或高频瓷片电容。如果X1选用低成本的陶瓷晶体,那么C4和C5的容量必须用该晶体厂家的推荐值,一般情况下是47pF。

注: V1.4及以后版本已采用内部晶振,故下图中的X1、C4和C5不需要焊接,建议预留位置。

电容C1是可选的,仅用于延长电源上电时CH9328芯片的复位时间。

电阻R2和发光管L1是可选的,仅用于USB连接状态的指示。

在设计印刷线路板PCB时,需要注意: 退耦电容C2和C3尽量靠近CH9328的相连引脚; 使D+和D-信号线贴近平行布线, 尽量在两侧提供地线或者覆铜, 减少来自外界的信号干扰; 尽量缩短XI和X0引脚相关信号线的长度, 为了减少高频干扰, 可以在相关元器件周边环绕地线或者覆铜。

