CIRCUITI 5

3. Circuiti $C_n^{(3)}$

3.1. Sottoinsiemi indipendenti. La tabella dei sottoinsiemi indipendenti:

($\mathcal{I}_{n,k}^{(3)}$	k =	0	1		2	3	4					
	0		1										
	1		1	1									
	2		1	2									
	3		1	3						0	1	0	
	4		1	4						\vdash	0	0	
	5		1	5						-	0	0	
	6		1	6						-	$\frac{0}{0}$	1	
	7		1	7								$\frac{1}{k}$	
	8		1	8	4	4				0	0 11	, n	
	9		1	9	9	9							
	10		1	10	1.	5							
11			1	11	2	2							
	12		1	12	30	0	4						
1	$n \mid 0$	1	2	3	4	5	6	7	8	9	10	11	12
RS_{i}	$n \mid 1$	2	3	4	5	6	7	8	13	19	26	34	47
$? d_i$													

3.2. Automa deterministico.

Funzione generatrice ricavata dall'automa:

6 CIRCUITI

$$S(t) = \frac{-1 - t - t^2 - t^3 + t^5 + 2t^6 + 3t^7}{-1 + t + t^4}$$

Espansione in serie di Taylor:

$$1 + 2t + 3t^2 + 4t^3 + 5t^4 + 6t^5 + 7t^6 + 8t^7 + 13t^8 + 19t^9 + 26t^{10} + 34t^{11} + 47t^{12} + O(t^{13})$$

RIFERIMENTI BIBLIOGRAFICI

[CD13] Pietro Codara and Ottavio M. D'Antona. Investigating independent subsets of graphs, with mathematica. CoRR, abs/1307.1335, 2013.