1	1.	A bladder for an expansion tank, comprising:
2		a non-flexible diaphragm having a peripheral edge and an aperture adapted and
3		constructed to receive a flow-through connector; and
4		a flexible diaphragm having a peripheral edge,
5		wherein the peripheral edges of the non-flexible diaphragm and the flexible
6		diaphragm are sealed to one another to form a circumferential seam.
7	2.	The bladder of claim 1, wherein the peripheral edges of the non-flexible
8		diaphragm and the flexible diaphragm are heat sealed to each other.
9	3.	The bladder of claim 1, further comprising a clench ring, wherein the peripheral
10		edge of the non-flexible diaphragm comprises a circumferential recess and the
11		peripheral edge of the flexible diaphragm comprises a circumferential rib, and
12		wherein the circumferential recess meshes with the circumferential rib and the
13		peripheral edges of the non-flexible diaphragm and the flexible diaphragm are
14		clamped together by the clench ring.
15	4.	An expansion tank, comprising:
16		an outer shell comprising a side wall and opposite end walls;
17		a flow-through connector; and
18		a bladder disposed within the outer shell, the bladder comprising:
19		a non-flexible diaphragm having a peripheral edge and a flexible diaphragm
20		having a peripheral edge, the non-flexible diaphragm being positioned
21		between the flow-through connector and the flexible diaphragm and which
22		is connected to one of the outer shell and the flow-through connector such
23		that the flow-through connector provides fluidic communication between
24		an exterior of the tank and an interior of the bladder, wherein the
25		peripheral edges of the non-flexible diaphragm and the flexible diaphragm
26		are sealed to one another to form a circumferential seam, and wherein a
27		space within the bladder is fluidically isolated from a space between the
28		bladder and the outer shell.

1	5.	The expansion tank of claim 4, wherein the flow-through connector comprises:
2		a nipple having first and second ends, the first end comprising a plurality of tabs,
3		wherein the tabs are manipulable between an insertion position and a securing
4		position to secure the nipple to the bladder.
5	6.	The expansion tank of claim 5, wherein the flow-through connector further
6		comprises:
7		a first retainer ring fixedly attached to the nipple and disposed between the
8		bladder and the outer shell;
9		a second retainer ring disposed about the nipple and within the bladder;
10		a first o-ring disposed between the first retainer ring and the bladder; and
11		a second o-ring disposed between the second retainer ring and the bladder,
12		wherein, in the securing position, the tabs press the second retainer ring towards
13		the first retainer ring to create a seal preventing fluidic communication
14		between an interior of the bladder and a space between the bladder and the
15		outer shell.
16	7.	The expansion tank of claim 4, wherein the flow-through connector comprises:
17		a central high pressure inflow channel defined by a non-rotating flow guidance
18		element;
19		at least one low pressure outflow channel disposed circumferentially about the
20		flow guidance element; and
21		a contoured cap through which water passes out of the central high pressure
22		inflow channel into the bladder and containing a plurality of inlets into the
23		low pressure outflow channel having a total cross sectional area less than
24		or equal to the total cross sectional area of the inflow channel,
25		wherein, when the flexible diaphragm rests against the cap, the bladder is
26		essentially empty, and the tank is adapted and constructed to circulate
27		water such that a first portion of water entering the tank leaves the tank
28		before a second portion of water entering the tank after the first portion of
29		water leaves the tank.

- 1 8. The expansion tank of claim 7, wherein the plane of an inlet opening of the inflow
- 2 channel is oriented perpendicular to the plane of an outlet opening of the inflow
- 3 channel.