

Figure 5.5 Schematic illustration of the joint probabilities $p(x,\mathcal{C}_k)$ for each of two classes plotted against x, together with the decision boundary $x=\widehat{x}$. Values of $x\geqslant\widehat{x}$ are classified as class \mathcal{C}_2 and hence belong to decision region \mathcal{R}_2 , whereas points $x<\widehat{x}$ are classified as \mathcal{C}_1 and belong to \mathcal{R}_1 . Errors arise from the blue, green, and red regions, so that for $x<\widehat{x}$, the errors are due to points from class \mathcal{C}_2 being misclassified as \mathcal{C}_1 (represented by the sum of the red and green regions). Conversely for points in the region $x\geqslant\widehat{x}$, the errors are due to points from class \mathcal{C}_1 being misclassified as \mathcal{C}_2 (represented by the blue region). By varying the location \widehat{x} of the decision boundary, as indicated by the red double-headed arrow in (a), the combined areas of the blue and green regions remains constant, whereas the size of the red region varies. The optimal choice for \widehat{x} is where the curves for $p(x,\mathcal{C}_1)$ and $p(x,\mathcal{C}_2)$ cross, as shown in (b) and corresponding to $\widehat{x}=x_0$, because in this case the red region disappears. This is equivalent to the minimum misclassification rate decision rule, which assigns each value of x to the class having the higher posterior probability $p(\mathcal{C}_k|x)$.