HLEE 306 : Circuits magnétiques/Energie Lundi 4 novembre 2019

Contrôle Continu sur la partie du cours « Circuits magnétiques » de P. Christol

A rédiger sur une feuille séparée.

Durée conseillée 45mn – 10pts

Tous documents interdits - Calculatrices autorisées

Les vecteurs sont notés par des lettres en caractères gras sans flèche sur les lettres.

On rappelle : Perméabilité magnétique du vide $\mu_0 = 4\pi \ 10^{-7} \ H/m$

Exercice 1 – Spire carrée et fil infini - Forces magnétiques (6 pts)

Soit 2 circuits : C_1 est un fil infini (infiniment fin) parcouru par un courant i_1 = 10A ; C_2 est une spire carrée ABCD parcourue par un courant i_2 = 2A. Ces 2 circuits sont dans le même plan (le plan de la feuille par exemple).

 1° / Soit le circuit C_1 (fil infini). En utilisant le théorème d'Ampère, établir l'expression du champ magnétique B à la distance a d'un fil. Déterminer (sens, direction et norme) le champ magnétique B_1

créé par le circuit C₁ au centre de la spire carrée (circuit C₂).

- 2°/ La spire carré est le siège du champ B₁.
- a) Quelles sont les forces magnétiques **F** (sens, direction, norme) appliquées au 4 cotés de la spire, que l'on représentera au centre des cotés.
 - b) En déduire le sens de déplacement de la spire.
- 3°/ La spire carré créée elle même un champ magnétique B₂. (dans cette question, aucun calcul n'est demandé)
 - Représenter le sens de ce champ au centre de la spire
- Quelle est l'influence du champ total de la spire carrée sur le fil infini du circuit 1 ? En déduire le sens de déplacement du fil infini.

Exercice 2 : Câble électrique et champ magnétique (4 pts) :

Un câble conducteur cylindrique plein de rayon R = 4mm et de longueur pouvant être considérée comme infinie, est parcouru par un courant i de 10A. La densité de courant j est supposée uniforme dans toute la section du conducteur.

A l'aide du théorème d'Ampère, déterminer l'expression du champ magnétique B en fonction du courant i, de μ_0 , du rayon R, de la position r par rapport au centre du câble :

- a) à l'intérieur du conducteur (r < R);
- **b)** à l'extérieur du conducteur (r > R).
- c) Vérifier la continuité du champ B en r = R et représenter B=f(r)
- d) calculer le champ B en r = R.