LSTAT2130BayesianProject

Adrien Kinart

5/5/2021

Contents

Introduction	1
Question 1 (a) Theoretical probability	
First analyses	2
library(kableExtra)	

Introduction

[1] 0.05892352

Question 1

Let $\theta_k := (\mu_k, \phi_k)$ be the set of parameters for a HNI with respect to region k.

(a) Theoretical probability

Let X be the monthly net income of 1123 Belgian households net income (HNI) older than 30 years. Regardless the 2 regions ($k = \{1, 2\}$ wrt Flanders and Wallonnia, respectively), is assumed it follows a Gamma distribution. It can be reparametrised in terms of its mean μ and dispersion parameter ϕ with the following trick:

$$\kappa = \frac{1}{\phi}$$

$$\lambda = \frac{1}{\phi \,\mu} \tag{1}$$

For both regions $k = \{1, 2\}$: This gives

$$f(x_k) = \frac{1}{\Gamma(\phi_k^{-1})} \left(\phi_k \mu\right)^{\phi_k} x_k^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_k}{\phi_k \mu}\right)$$
 (2)

Then, the probability to fall into a certain HNI interval is:

$$P(x_{j_1} < x < x_{j_2}) = \int_{x_{j_1}}^{x_{j_2}} \frac{1}{\Gamma(\phi_k^{-1})} (\phi_k \mu)^{\phi_k} x_k^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_k}{\phi_k \mu}\right)$$
(3)

(b) Theoretical expression for the likelihood

$$L(\theta_k, D_k) = P(D_k | \theta_k) \propto \tag{4}$$

First analyses