EXP3++ Algorithm – review

Yevgeny Seldin, Gabor Lugosi

Institute of Information Science

Academia Sinica

Taiwan

Nov 30, 2018

Multi-armed Bandit Problem

In our multi-armed bandit problem, there are K arms. At round t of the game, we choose an action A_t among K possible arms and observe the corresponding reward $r_t(A_t)$. Note that the rewards of other arms are not observed.

conti

Regret:

$$R(t) = \max_{a} \sum_{s=1}^{t} r_{s}(a) - \sum_{s=1}^{t} r_{s}(A_{s})$$

The goal of the problem is to minimize the (expected) regret.

Loss generation models

Stochastic :

The rewards $\{r_t(a)\}_{t,a}$ are sampled independently from an unknown distribution that depends on a, but not on t.

- We use $\mu(a) = \mathbb{E}[r_t(a)]$ to denote the expected reward of an arm a.
- ▶ Let $a^* = arg \min_a \{\mu(a)\}$ denote some best arm.
- ▶ We define the gap $\Delta(a) = \mu(a) \mu(a^*)$.

Adversarial :

We consider that the reward sequences $\{r_t(a)\}_{t,a}$ are generated by an oblivious adversary.

Known algorithms and results

Usually, we have EXP3 algorithm work for adversarial regime to obtain

$$\mathcal{O}(\sqrt{KT\log K})$$

regret bound.

On the other hand, we have UCB algorithm work for stochastic regime to obtain

$$\mathcal{O}(\frac{\log T}{\Delta(a)})$$

bound for each suboptimal a.

However, is it possible to use a "single" algorithm to reach optimal regret bounds for both regime?

 \Rightarrow best of both world?

Algorithm

At every step, play action A_t according to $\tilde{\rho}_t$, where

$$ilde{
ho}_t(a) = (1 - \sum_{a'} \epsilon_t(a'))
ho_t(a) + \epsilon_t(a)$$

and

$$\epsilon_t(a) = \min\{\frac{1}{K}, \sqrt{\frac{1}{tK}}, \frac{1}{t\hat{\Delta}_t(a)^2}\}$$

conti

Graph for y=1/2, sqrt(log(2)/x/2), 1/x

More info