질병부담계산

DISMOD_mr in GBD 2010

김진섭

GSPH, SNU

Oct 24, 2014

Contents

- Introduction
 - DALY, attributable DALY
 - DISMOD, DISMOD II
- DISMOD_mr: Bayesian meta-regression
 - Introduction to bayesian approach
 - Bayesian meta-regression in Dismod_mr
- Practice
 - Install Dismod_mr
 - Data format
 - Developer's example: Parkinson's disease
 - Kim's example: Age-specific RR
- Conclusion

2 / 57

Concept of DALY

YLL(Years of Life Lost): 사망으로 인한 손실.

$$YLL = N \times L$$

(N: number of death, L: standard life expectancy at age of death in years)
YLD(Years Lost due to Disability): 장해로 인한 손실

$$YLD = I \times DW \times L$$

(I: incidence, DW: disability weight, L: average duration of the case until remission or death(years))

 DALY = YLL(years of life lost) + YLD(years lived with disability)

Figure: Concept of DALY

사망으로부터 거꾸로 계산: 성균관의대 박재현교수님 강의록

Figure: Concept of QALY

Life Expectancy(L)

```
http://ghdx.healthdata.org/sites/default/files/
record-attached-files/IHME_GBD_2010_LIFE_EXPECTANCY_AND_
HALE_1970_2010_Y2012M02D23.CSV
```

Disability Weight(DW)

- 원칙적으로는 person trade off(PTO) 등의 방법을 이용해 survey를 해야..[4]
- GBD 2010 결과를 그대로 쓴다면..[7]

Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010

Jimbus A Salemant, Theo Vin, Daniel R Hogan, Michael Gagnon, Mohaen Naghani, Ali Mokidat, Nazma Birgum, Bazibuszamen Shah, Muhammad Kayanai, Soewarta Eisten, Maria Rayna Farje, Giberto Mancada, Anap Dutta, Sonii Sazawal, Andrew Dyer, Jason Seller, Victor Aboyana", Lesley Birker", Amanda Baster", Emilia J Benjamin", Esai Bihalla", And Bin Abdulhak", Fisina Biyth", Bupert Baseria", Tasanee Brathwester", Peter Branks", Traolach S Brogha", Claire Bryan Hancock", Ratchele Bustbeinder", Peter Branks, Traolach S Brogha", Claire Bryan Hancock", Ratchele Bustbeinder", Peter Branks, Louisa Depenhander, Casar Chem., Summet S Chugh", Habera Casari, Marian Orea", Esainthibe Chabhadian", Nathia Dahadandari, Adrian Daniel, Louisa Depenhander, Casar Brance, Tomat', Esainthibe Charati, Casar Brance, Casar Casari, Valery Frigir, Claira P Frent", Abraham D Flasman", Louisa Gward, Mariene France, Rana Fried Brance, Bernard Golder", Barbada Gallarer, Juanta Hangamar, James E Hamboor, Rasamus Harmodiler, Ruderia Dianes, Raderia J Harris, Abdullah Hali Bishadi, Hali Bishadi, Hamada Hangamar, Landa Hangamar, James B Hamboor, Rasaran Harris, Casaran Harris, Casaran Garthikayan", Lina Marie Encoderar, Abdullah Hali Bishadi, Andrew Manari, Rasara Marie, Marie Bishadi, Marie Princer, Jonge B Remath', Anna Gare Mayer', Catherine Michael Parkar', Romad Pourmalish, Martin Princer', Jugent Referer', Gusappe Remuzzi, Katheya Richardson', Robert Brance, Social Shahrar, Wilman A Staki', Lung Shabya', David Singh', Karen Sinat, Keman Sinat, Keman Sinat, Keman Sinat, Naria Brand, David Haliya', Tenstinghar Shabrar, Wilman A Staki', Lung Shabrar, Christopher Sudfeld', Hogher Bergin, Marier Jona & Merji, Wendyl Wastoer', David Westberd', Weintraub', Marier Brand, Robert Weintraub', Marier Brand, Bergin Bergin, Christopher Lung Brand, Brand, Christopher Lung B

Articles

	Estimate (35% uncertainty interval)		
Infectious disease			
Infectious disease; acute spisoile, mild	9-005 (0-002-0-031)		
Michaelman autopinde, moleste	1053 (1403-4401)		
tribution disease acute sphole, severe	9.710/0129-02983		
telection-disease post acute consequences. (folique, remotional lability, morroria)	925410179-0303		
Durhou mid	9 (62 (10) 64 4 4 5 (1)		
Darrhove moderate	9302010319-0298		
Darfore were	9 2011 (9 154-9 209)		
Epichdymur-inchitos	9 097 (9 063 9 137)		
Mergen poster	0-001-0-039-0-0940		
MY symptomatic, por AICS	9 221 (0 146-0 310)		
MICACL moving actions in between	3453 (0494 4479)		
ADS not morning antentroonal features	9547@381-671SI		
intentival remarkable infectious symptomatic	9 dryo presid-e-048)		
Lymphots Riamous symptomatic	911979-979-91571		
types	9 414 (1 009 4 133)		
Tuberculous without HTV infection.	93310-222-0-600		
Tuberculous with HTV infection	93990-257-0547		
Carnet			
Carson diagnosis and primary though	925419399-0400		
Career metastatic	0.454 (0.339-0.543)		
Master, Kerny	9 028 29 027 0 0280		
Storna	9-085 (9-055-0-131)		
Terroral phase with medication (for cancer, and stage killing or fore (foocar)	0.518 (0.348-0.670)		
Terrinal phase without medication (for cancers, and stage littlesy or fore dissess)	952910354-4483		
Cardiovascular and circulatory disease			
Acute represented infection days 1-2	9-622 (9-284-0-586)		
Acute repocardial infection days 3-28	9-056-(9-035-0-082)		
Arigina protoris, mild	年前19年1日408 期		
Angria pictoris moderate	0.065 (0.043-0.095)		
Angre potenti snere	9 167 (0 109-0 754)		
Cardian conduction disorders and cardian dystophenias	0.192 (0.00) 0.305		
Clerification	9 010 (1000 0-015)		
Heart fallure mild:	9407 (9407) 499(8)		
Heart Sallane moderate	9470 (9444 616)		
Interest Sulface; severe	9100151169-360		
Strake long-torm comerguracy, rold	960 (960-445)		

	Extimate (95% uncertainty interval		
Continued have previous column)			
Decompanyated circlesis of the finer	8 154 (8 127-0-273)		
Carrie blending	032310214-0483		
Croher's dismane or skirmative colitica	8175-19152-03140		
beings products hipportrigible symptomatic	0-079 (0-046-0 102)		
United throughouse	014719-094-02940		
Strainteness	0.023 (0.030-0.034)		
infertibly primary	0.001 (0.005-0.021)		
Infertity secondary	4-966 (9-962-6-823)		
Chronic respiratory diseases			
Authora compoled	0.002 (0.004.0 (0.0)		
Authorar partially controlled	000710405-0040		
Authoria uncontrolled	0131 (0400 -0190)		
COPD and other choose, registatory diseases, mild.	0.003, (0.002-0.028)		
COFO and other-Drome regreatory-diseases moderate	0-162 (0-129-0-171)		
COPD and other chronic regisatory-diseases	0.383 (0.259-0.28)		
Namelogical disorders			
Dementa mild	60KL(00SS-01Lf)		
Dementia mulerate	03460203-0479		
Dementia soore	0438 (0295-0584)		
Pitalahe rispare	94019-187-9180		
Toule's trouve type	0-040 (0.035-0-063)		
Multiple silemais, mild	0198 (0132-0139)		
Multiple schroom moderate	9-445 (9-302-9-193)		
Multiple scherois senere	6767 (0522-0857)		
Spitepsy neutral, somer fee-	0001 (0042-0106)		
Epilopsy treated, with recircl account.	033919713-04401		
Epilepsy untreated	943919179-0170		
Epilopsy weeks	0407 (0464-0807)		
Parkinger's donner midd	9911 (9-995-9-021)		
Parkinson's disease medicate	9293 (9179-0384)		
Parkinson's docume source	9549 (9383-9711)		
Mortal, behavioural, and solutions use disords	-343 (-343 -) (11)		
Numbel vier Grander mild	0.259 10-176-0.250		
Alcohol via disorder, moderate	0.000 (0.003-0.029)		
Aliabidise dunder sever	0-549 (0.004-0.708)		
Total alcohol syndrome mild	9017 (0.00B-0-0))		
Fetal skinhol spednome moderate	0457 (0.036-0.087)		

Oct 24, 2014

Population-attributable fraction(PAF)[3]

$$\mathsf{PAF} = \frac{\sum_{i=1}^{n} P_i (RR_i - 1)}{\sum_{i=1}^{n} P_i (RR_i - 1) + 1} : \textbf{Categorical risk factor}$$

(RR_i : RR for exposure category i, P_i : proportion of the population in exposure category i, n: the number of exposure categories)

$$\mathsf{PAF} = \frac{\int_{x=0}^m RR(x)P1(x)dx - \int_{x=0}^m RR(x)P2(x)dx}{\int_{x=0}^m RR(x)P1(x)dx} : \mathbf{Continuous}$$

(RR(x): RR of a specific disease or injury at exposure level x, P1(x): current (or future) population distribution of exposure, <math>P2(x) counterfactual distribution (ie, TMRED), m maximum exposure level)

Joint effect[5]

$$1-{\sf PAF}=\prod_{r=1}^R(1-{\sf PAF}_r)$$

$${\sf PAF}=1-\prod_{r=1}^R(1-{\sf PAF}_r): {\sf Risk \ factor \ clusters}$$

Attributable DALY

Attributable $YLL = PAF \times YLL$

Attributable $YLD = PAF \times YLD$

Attributable DALY = $PAF \times DALY$

알아야 할것??

DW와 Life expectancy를 가져다 쓴다고 해도.. 연령별, 성별

- RR per risk exposure.
- Prevalence : Risk & disease
- Incidence...
- 사망수(mortality)

즉, 연령별 성별(지역별, 나라별) 다양한 역학지표들이 필요하다!!!!!!!

다 알아도 어렵다..

http://www.slideshare.net/IHME/2-rafael-lozano 질병부담계산

13 / 57

Problem

즉, 연령별 성별(지역별, 나라별) 다양한 역학지표들이 필요하다!!!!!!!

- 완벽한 자료는 없다.
- 모르는 부분은 수리적으로 해결해야 한다.

DISMOD(DISease MODelling) 소프트웨어

DISMOD[1]

- GBD 1990
- $i,r,f \rightarrow$ other measure..
- 미분방정식이용

15 / 57

Figure: Conceptual Disease Model[1]

(a: age group, S: 건강한 사람의 수, C: 해당 질병상태인 사람의 수, D: 해당 질병으로 죽은 사람의 수, i: incidence, r: remission, f: fatality)

$$\frac{dS_a}{da} = -i_a S_a + r_a C_a \tag{1}$$

$$\frac{dS_a}{da} = -i_a S_a + r_a C_a$$

$$\frac{dC_a}{da} = -(f_a + r_a)C_a + i_a S_a$$
(1)

$$\frac{dD_a}{da} = f_a C_a \tag{3}$$

$$PY_a = \frac{1}{2} \times (S_a + C_a + S_{a+1} + C_{a+1}) \tag{4}$$

$$c_a = \frac{1}{2} \times \frac{C_a + C_{a+1}}{PY_a} \tag{5}$$

$$b_a = \frac{D_{a+1} - D_a}{PY_a} \tag{6}$$

(PY: age interval person-year at risk, c: prevalence, b: mortality)

- ma: 다른 원인으로 인한 사망률
- $r_a + f_a + m_a$: 질병상태에서 빠져나감
- Disease duration 또한 구할 수 있다.

Incidence, remission, case fatality의 세 가지 지표를 토대로 나머지 지표들을 추정하는 소프트웨어가 DISMOD이다.

DISMOD II

- GBD 2000
- 한국논문은 거의 대부분 이것을 이용[9, 6, 10].
- GUI(Graphical User Interface) 지원

Incidence, remission, fatality의 세 지표만 input으로 받았던 한계를 극복

- Prevalence나 mortailty 등으로 역으로 i, f, r들을 추정 가능.
- No exact solution but, 통계적 기법 활용.
- 최소 3종류는 있어야 됨
- Smoothing

Problem

- Global, super-regional, local estimate...
- Uncertainty: 숫자 하나로 말하면 땡?? parametric assumption
- 잘 예측하는 것이 목적 → 더 flexible한 model필요
- covariate보정??

Meta analysis + Bayesian inference + regression 필요하다.

Example[2]

DALY in GBD 2010[3]

	Mon		Women		Bothseurs	
	1990	2010	1990	2030	1990	2010
Unimproved water and sanitation	365244	171 097	350 629	166 379	715 H73	337-47%
	(18940-662551)	(6841-326 262)	(17531-638 433)	(6690-326 989)	(36 H17-1 179 220)	(13150-648205)
Unimproved water soons	147 RS7	59.463	140 150	56-663	288 007	116126
	(31564-282 R90)	()880-120.264)	(10 043-271 546)	(3604-125704)	(29541-553 293)	(7518-233136)
Unimproved sanitation	252779 (8032-480822)	123.255 (29.14-142.588)	244207 (7348-460913)	120 851 (3104-242 452)	496-986 (15380-927845)	244396 (6027-478186)
Air pollution	+	-	+		-	
Ambient particulate matter	1549-448	1850428	1360712	1373113	2510161	3223540
pollution	(1345894-1752880)	(1664010-2082424)	(1166-992-1559747)	(1187639-1563793)	(2546184-) 286508)	(2828854-3619148)
Household air pollution from solid	7353932	1867043	2221558	1611730	4.473.490	3478773
fuels	(1677785-2743681)	(135)090-2452588)	(1862575-3581337)	(124)3516-2027067)	(3.651.253-5.106.632)	(2638548-4386590)
Ambient azone pollution	77 OB7 (25 256-134 071)	86335 (30551-453776)	66 274 (72 424-116 663)	66 100 (21 362-115 225)	143362	157 434 (57 277-367 431)
Other environmental risks	109 224	426280	100 699	346.751	209 923	773030
	(91 805-131 511)	(341744-541485)	(82 720 - 119 745)	(261.555-413.370)	(177 623-243 565)	(540893-929935)
Residential radion	7.5 T. S.	79/014 (9140-154/460)		28 978 (4098-64 387)		98992 (13133-215237)
Leafesposon	109 224	356266	100 699	317777	209:923	634038
	(91 805-131 511)	(292587-435046)	(82720-119745)	(265722-326-4)11)	(177:673-343565)	(575.858-779.314)
Orlid and maternal undernutrition	1805234 (1479043-2219888)	739.863 (570.560-909.248)	1668 365 (1396 689-1986 532)	698 443 (569 013-832 012)	1473589 (2906896-4175138)	1438305 (1175257-1713103)
Suboptimal Insastfeeding	693103 (427028-972-440)	293.449 (175.623-429.772)	581-921 (370-598-814-551)	251368 (155884-359651)	1275 (024 (802 142-1772 745)	\$44 ft7 (13ft 453-775 ft77)
Non-exclusive breatherding	612059	257771	505 849	218 (17	111790E	425 888
	(3542)6-875230)	(143116-382499)	(302 585-720 858)	(126)83-329-470)	(66)274-15766)3)	(772 49) -684 427)
Discontinued Smarthmoling	81044	35 678	76 073	33.251	157117	68929
	(9643-178237)	(3475-79 940)	(7809-165 395)	(3091-73.804)	(36188-341702)	(6445-15)290)
Childhood underweight	1198176	458 639	1065774	401.479	2363952	\$60117
	(997627-1484105)	(366 866-561 352)	(898859-1299735)	(325.536-484.452)	(1977356-2735#21)	(715742-1033573)
ton deficiency	29-409	32.787	138625	87321	168084	135608
	(30-677-47-10R)	(21.925-37.445)	(92036-156884)	(62505-107021)	(130444-157085)	(93761-135585)

Contents

- Introduction
 - DALY, attributable DALY
 - DISMOD, DISMOD II
- OISMOD_mr: Bayesian meta-regression
 - Introduction to bayesian approach
 - Bayesian meta-regression in Dismod_mr
- Practice
 - Install Dismod_mr
 - Data format
 - Developer's example: Parkinson's disease
 - Kim's example: Age-specific RR
- Conclusion

DISMOD_mr

- GBD 2010
- https://github.com/ihmeuw/dismod_mr
- 파이썬(python) + MCMC application(c++)
- GBD 2013: DISMOD_ode(only c/c++)

DISMOD II + Bayesian inference + Bayesian meta-regression[8]

3줄요약

수식은 무조건 싫다면 밑의 개념만..

- Bayesian : Parametric assumption, expert prior → flexible model
 - 예: Local fit 수행 시 global fit을 prior로: cascade
 - Prevalence: negative binomial distribution, RR: log-normal
 - MCMC로 uncertainty 추정가능
- Meta: Global, Super-regional, regional fit using meta-analysis.
- Regression: covariate보정
 - 예: 나이, 진단방법의 차이 등..

Introduction to bayesian inference

ThinkBayes 슬라이드 참조

Prevalence formula[8]

$$\mathbf{p}(p_i \mid \pi_i, \delta_i, n_i) \propto \frac{\Gamma(\lfloor p_i n_i \rfloor + \delta_i)}{\Gamma(\delta_i)} \left(\frac{\delta_i}{\pi_i + \delta_i}\right)_i^{\delta} \left(\frac{\pi_i}{\pi_i + \delta_i}\right)^{\lfloor p_i n_i \rfloor}$$

 $\pi_i = \int_{a=a_{si}}^{a_{si}} \pi(a)e^{aU_i + \beta X_i + \beta' X_i'} \mathbf{d}w_i(a)$
 $\alpha_j \sim \text{Normal}\left(0, \sigma_{\ell(j)}^2\right)$
 $\delta_i = e^{\eta + \zeta Z_i}$

Where p_i is the prevalence of observation i; π_i is the expected value of this prevalence, δ_i is the dispersion, and n_i is the effective sample size of the observation. Γ denotes the gamma function, $\pi(a)$ is the age-specific piecewise linear spline (defined below), α is a vector of random effects, β and β' are vectors of fixed effects, U_i is a row of the random effect design matrix, X_i and X_i ' are rows from the fixed effect country-prediction and cross-walk design matrices, and $w_i(a)$ is the age-specific population weight structure. σ_i is the standard deviation for random effects at level I of the spatial hierarchy, and l(j) is the level of random effect j. η is the log of the negative binomial dispersion parameter at the reference level, ζ is the generalised negative binomial fixed effect vector and Z_i is a row from the corresponding design matrix.

The age-specific piecewise linear spline $\pi(a)$ has a set of model-specific knots $\{a_1, ..., a_K\}$ and is defined by the equation:

파헤쳐보면..

Generalized negative binomial distribution

- Rate때 많이 쓰는 poisson assumption은 parameter가 1개(λ: 평균= 분산)
- parameter 2개로 확장 → flexible: quasi-poisson, gamma, neg-bin

$\pi(a)$: age-specific piecewise linear spline

- Age 구간 몇개로 쪼갠 후 구간 내에서 linear
- o ex: 0,20,40,80,100 → 4개 구간에서.. + smoothing

X_i, X_i' : fixed effect

일반적인 fixed effect & case definition 차이..

Ui: random effect: Global, Asia, Korea...

 n_i : effective population size, 이거없으면 p_i 의 s.e라도 있어야..

Expert prior

Smoothness

Slightly, moderately...

Age pattern

- 사전에 알고 있는 지식을 prior로...
- Ex: chronic disease- Age에 따라 증가한다.

Heterogeneity

- Dispersion parameter
- $\delta_i = \exp(\eta + \xi Z_i)$
- Slightly, moderately...

Zero remission assumption

완치가능? 재발?

Range: $0 \sim 1(p, i, r, f \dots)$, else($RR, smr \dots$)

Summary: DISMOD_mr

- DISMOD I, II: parameter들 사이의 관계 미분방정식이용
- Expert prior + neg-bin : Posterior inference
- Estimate uncertainty
- Meta-regression : Covariate + Multi-level(region)

Example[8]

Web Figure 2: Empirical prior and posterior estimates for pancreatitis in Eastern Europe, 2005. Dashed line with horizontal bars shows the mean and standard deviation of the empirical priors (with identical age pattern for sexes). Solid line with grey shaded region shows the mean and 95% UI of the posterior distribution. The empirical Bayes approach to hierarchical modeling permits estimation of differing age patterns in the face of differing data.

주의점: Posterior inference

계산한 p값 등은 평균, 표준편차 형태로 나오지 않는다

- 앞서 나온 확률분포에서 샘플링 → 1000개의 후보값?
- 1000개라면 알아서 mean 또는 median, 5% percentile 찿아서 쓴다.
- p × RR 의 uncertainty를 구한다면 1000개 × 1000개의 경우의 수를 다 곱해보고 그것을 기반으로 uncertainty계산하는 것이 원칙.

Example: https://www.dropbox.com/s/ifm5og0o8jhctgv/United% 20States%20of%20America-male-2010_20140711.csv?dl=0

책추천

- NECA 연구방법시리즈 3. 베이지안 메타분석법
- ② 개발자의 책 but 미완성.. https://www.dropbox.com/s/x6r4lb7q2jmw831/book.pdf?dl=0
- Bayesian Data Analysis(BDA) 3rd edition by Andrew Gelman:
 베이지안통계의 교과서
- 파이썬 라이브러리를 활용한 데이터 분석 by Wes Mckinney: 한글번역판 존재

Contents

- Introduction
 - DALY, attributable DALY
 - DISMOD, DISMOD II
- DISMOD_mr: Bayesian meta-regression
 - Introduction to bayesian approach
 - Bayesian meta-regression in Dismod_mr
- Practice
 - Install Dismod_mr
 - Data format
 - Developer's example: Parkinson's disease
 - Kim's example: Age-specific RR
- Conclusion

실습에 들어가기 전에...

- 설치가 매우 어렵다 → 윈도우에서 설치불가!!!!
- 돌리기도 어렵다: 파이썬 기초 + 데이터분석을 위한 파이썬 패키지..
- Open source 임을 감안해도 설명이 매우 부족.
- 개발팀(IHME)이 자신들 외에 다른 팀이 이용할 것을 전혀 고려하지 않음. 데이터를 보내주면 돌려주겠다는 마인드...
- GBD 2013의 DISMOD_ode는 c++ 커맨드라인으로만 실행.
- Cascade: IHME member외에 접근 불가.

Web site

• Institute for Health Metrics and Evaluation:

http://www.healthdata.org/

Github page of DISMOD_mr:

https://github.com/ihmeuw/dismod_mr

설치

어렵다.. & Macbook/Linux에서만 가능.

- 가상머신으로 설치된 우분투리눅스 불러오기
- 가상머신: Oracle VM VirtualBox
 https://www.virtualbox.org/wiki/Downloads
- 우분투리눅스: 발표자 자체 제작
 - http://me2.do/xBy86tQC & http://me2.do/5iUu62xT
 - 파일 2개 다운받아서 7z파일 압축푼다(반디집이용) or 제공되는 usb 이용.

VM VirtualBox 다운로드

가상머신 불러오기

- VirtualBox 실행 → 파일 → 가상 시스템 가져오기 → 압축푼 파일 지정.
- ② dismodmr_jskim_32bit 클릭 → 설정 → 메모리 및 비디오메모리 넉넉하게.
- ③ dismodmr_jskim_32bit 더블클릭 → 비번: dismodmr

Example data

가상머신에서

- 왼쪽 두번째 위에 있는 아이콘(Files) 클릭
- ② dismod_mr-master 폴더 더블클릭
- ◎ examples 폴더 더블클릭
- pd_sim_data 폴더 더블클릭

Input file

input_data.csv 더블클릭

주의점

data_type: p, i, f, r, smr, csmr, rr & value: 값

- Effective population size가 있거나
- ② standard_error가 있거나
- ③ lower_ci, upper_ci가 있거나.. 셋 중 최소 하나는 있어야 한다.

Why?

- p 숫자 딸랑 하나만 가지고는 uncertainty interval계산이 안된다.
- Meta-analysis에서 weight에 해당하는 부분.

Expert prior

parameters.json: 지표 별로 prior information 지정 & age그룹지정은 따로 (age)

- increasing or decreasing: 나이에 따라 증가하는가? age_start, age_end
- level_bounds: 범위(ex: upper 1, lower 0)
- level_value: 미리 값 지정(ex: zero remissionage_after=age_before=100, value=0)
- parameter_age_mesh: Piecewise linear spline에서 knot- 촘촘할수록 변화가 크다.
- heterogeneity: Slightly, Moderately, Very
- smoothness: age_start, age_end, amount: Slightly, Moderately, Very
- fixed effect, random effect

Others: 건들지 말것

Regional information: 한국은 KOR

- hierarchy.json
- nodes_to_fit.json

Output format

output_template.csv

Developer's example: Parkinson's disease

실행방법

- 바탕화면에서 맨 왼쪽 위 아이콘(소용돌이모양) 클릭
- ② 검색창에 terminal 입력
- terminal 실행
- od dismod_mr-master/examples 입력 후 엔터
- ipython notebook −pylab inline 입력 후 엔터(선 2개임)

Oct 24, 2014

49 / 57

발표자 example: 핸드폰 사용과 cancer

여러 논문에서 age범위, RR값과 CI(or s.e), year들로 데이터를 만들고 meta-regression

Age-specific RR

Contents

- Introduction
 - DALY, attributable DALY
 - DISMOD, DISMOD II
- DISMOD_mr: Bayesian meta-regression
 - Introduction to bayesian approach
 - Bayesian meta-regression in Dismod_mr
- Practice
 - Install Dismod_mr
 - Data format
 - Developer's example: Parkinson's disease
 - Kim's example: Age-specific RR
- Conclusion

- GBD 2013에서는 DISMOD_ode(DISMOD_mr 2.0)를 이용하여 계산속도가 비약적으로 향상됨.
- 따라서 cascade 가능(global fit이 super-regional의 prior, super-regional fit이 reginal의 prior)
- DISMOD_mr 설치 및 실행이 매우 어렵다. 전문가 고용 or IHME에 데이터 바쳐야...
- 최신 Methodology 융합의 결정판 종합예술, GBDology???

Summary

```
Bayesian = Uncertainty(neg.bin) + Expert prior
Bayesian meta-regression = Bayesian + Meta-regression
DISMOD_mr = Diff.eq + Bayesian meta-regression
```

Reference I

- Barendregt, J. J., Van Oortmarssen, G. J., Vos, T., and Murray, C. J. (2003). A generic model for the assessment of disease epidemiology: the computational basis of dismod ii. Population health metrics, 1(1):4.
- [2] Chung, S.-E., Cheong, H.-K., Park, J.-H., and Kim, H. J. (2012). Burden of disease of multiple sclerosis in korea. Epidemiology and health, 34.
- [3] Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M. A., Amann, M., Anderson, H. R., Andrews, K. G., et al. (2013). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. The lancet, 380(9859):2224–2260.
- [4] Nord, E. (1995). The person-trade-off approach to valuing health care programs. Medical decision making, 15(3):201-208.
- [5] of Health, M. (2013). Ways and means: A report on methodology from the new zealand burden of disease, injury and risk study, 2006 - 2016.
- [6] Park, J., Yoon, S., Lee, H., Jo, H., Lee, S., Kim, Y., Kim, Y., and Shin, Y. (2006). Burden of disease attributable to obesity and overweight in korea. *International journal of obesity*, 30(11):1661–1669.
- [7] Salomon, J. A., Vos, T., Hogan, D. R., Gagnon, M., Naghavi, M., Mokdad, A., Begum, N., Shah, R., Karyana, M., Kosen, S., et al. (2013). Common values in assessing health outcomes from disease and injury: disability weights measurement study for the global burden of disease study 2010. The Lancet, 380(9859):2129–2143.
- [8] Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., et al. (2013). Years lived with disability (ylds) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. The Lancet, 380(9859):2163–2196.
- [9] Yoon, S.-J., Bae, S.-C., Lee, S.-I., Chang, H., Jo, H. S., Sung, J.-H., Park, J.-H., Lee, J.-Y., and Shin, Y. (2007). Measuring the burden of disease in korea. Journal of Korean medical science, 22(3):518–523.
- [10] Yoon, S.-J., Lee, H., Shin, Y., Kim, Y.-I., Kim, C.-Y., and Chang, H. (2002). Estimation of the burden of major cancers in korea. Journal of Korean medical science, 17(5):604.

END

Email: secondmath85@gmail.com

