Chapter 6: Symmetric Matrices and Quadratic Forms

ENSIA, May 2024

Contents

- Diagonalization of Symmetric Matrices
- Quadratic Forms
- Constrained Optimization
- The Singular Value Decomposition
- Applications to Image Processing and Statistics

Symmetric Matrices

Definition 1

A symmetric matrix is a (square) matrix A such that ${}^tA = A$.

Example 1

The matrices
$$\begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & 4 \\ 0 & 4 & 3 \end{pmatrix}$ are symmetric.

The matrices
$$\begin{pmatrix} 1 & -3 \\ 3 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & 4 \\ 0 & -4 & 3 \end{pmatrix}$ are not symmetric.

Orthogonality of Eigenvectors

Theorem 1

If A is symmetric, then any two eigenvectors from different eigenspaces of A are orthogonal.

Example 2

The matrix

$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

has two distinct eigenvalues $\lambda_1=-2$ and $\lambda_2=0$ with respective corresponding eigenvectors of the form $v_1=(\alpha,-\alpha)$ and $v_2=(\beta,\beta)$. Obviously, v_1 and v_2 are orthogonal.

Orthogonally Diagonalizable Matrix

Definition 2

An $n \times n$ matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P (with $P^{-1} = {}^tP$) and a diagonal matrix P such that

$$A = PD^t P = PDP^{-1} \tag{1}$$

Theorem 2

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

The Spectral Theorem

Theorem 3 (The Spectral Theorem for Symmetric Matrices)

An $n \times n$ symmetric matrix A has the following properties :

- a) A has n real eigenvalues, counting multiplicities.
- b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic polynomial.
- c) The eigenspaces are mutually orthogonal, that is, the eigenvectors corresponding to different eigenvalues are orthogonal.
- d) A is orthogonally diagonalizable.

Spectral Decomposition

Proposition 1

Suppose $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors u_1, \dots, u_n of A and the corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ are in the diagonal matrix D. Then we have

$$A = \lambda_1 u_1^t u_1 + \dots + \lambda_n u_n^t u_n. \tag{2}$$

Definition 3

- 1) The decomposition (2) of A is called a spectral decomposition of A.
- 2) Each matrix $u_j^t u_j$ is called a projection matrix.

Remark 1

For all x in \mathbb{R}^n , the vector $(u_j^t u_j)x$ is the orthogonal projection of x onto the subspace spanned by u_j .

Example 4

The matrix

$$A = \begin{pmatrix} 7 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

has the spectral decomposition

$$A = 8u_1^{t}u_1 + 3u_2^{t}u_2,$$

where

$$u_1 = \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}$$
 and $u_2 = \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$,

So

$$A = 8 \begin{pmatrix} 4/5 & 2/5 \\ 2/5 & 1/5 \end{pmatrix} + 3 \begin{pmatrix} 1/5 & -2/5 \\ -2/5 & 4/5 \end{pmatrix}.$$

Quadratic Forms

Definition 4

A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector x in \mathbb{R}^n can be computed by an expression of the form

$$Q(x) = {}^t x A x,$$

where A is an $n \times n$ symmetric matrix. The matrix A is called the matrix of the quadratic form.

Example 5

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 and $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Then we have

$${}^{t}xAx = (x_{1} \quad x_{2})\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = (x_{1} \quad x_{2})\begin{pmatrix} ax_{1} \\ bx_{2} \end{pmatrix} = ax_{1}^{2} + bx_{2}^{2}$$

Example 6

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 and $A = \begin{pmatrix} 3 & -2 \\ -2 & 7 \end{pmatrix}$. Then we have

$${}^{t}xAx = (x_{1} \quad x_{2}) \begin{pmatrix} 3 & -2 \\ -2 & 7 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = (x_{1} \quad x_{2}) \begin{pmatrix} 3x_{1} - 2x_{2} \\ -2x_{1} + 7x_{2} \end{pmatrix}$$

$$= x_{1}(3x_{1} - 2x_{2}) + x_{2}(-2x_{1} + 7x_{2})$$

$$= 3x_{1}^{2} - 4x_{1}x_{2} + 7x_{2}^{2}$$

The term x_1x_2 is called cross-product term.

Change of Variable

If x represents a variable vector in \mathbb{R}^n , then a change of variable is an equation of the form

$$x = Py$$
, or equivalently, $y = P^{-1}x$, (1)

where P is an invertible matrix and y is a new variable vector in \mathbb{R}^n . If the change of variable (1) is made in a quadratic form ${}^t x A x$, then

$${}^{t}xAx = {}^{t}(Py)A(Py) = {}^{t}y({}^{t}PAP)y \tag{2}$$

and the new matrix of the quadratic form is tPAP . Since A is symmetric, by Theorem 2, there exists an *orthogonal* matrix P such that tPAP is a diagonal matrix D, and the quadratic form in (2) becomes tyDy .

The Principal Axes Theorem

Theorem 4 (The Principal Axes Theorem)

Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix P so that the change of variable x = Py transforms the quadratic form ${}^t x A x$ into a quadratic form ${}^t y D y$ with no cross-product term, where $D = {}^t P A P$ is diagonal.

Definition 5

The columns of P in Theorem 4 are called the principal axes of the quadratic form ${}^t x A x$.

Example 7

The quadratic form corresponding to the matrix $A = \begin{pmatrix} 1 & -4 \\ -4 & -5 \end{pmatrix}$ is given by

$$Q(x) = {}^{t}xAx = x_1^2 - 8x_1x_2 - 5x_2^2.$$

The matrix A has eigenvalues 3 and -7 with respective unit eigenvectors $\begin{pmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{pmatrix}$ and $\begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$. Let

$$P = \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \text{ and } D = \begin{pmatrix} 3 & 0 \\ 0 & -7 \end{pmatrix}.$$

Now, by setting x = Py, we obtain

$$Q(x) = {}^{t}y({}^{t}PAP)y = {}^{t}yDy = 3y_1^2 - 7y_2^2.$$

Positive and Negative Definite Quadratic Forms

Definition 6

A quadratic form Q is :

- a) positive definite if Q(x) > 0 for all $x \neq 0$.
- b) positive semidefinite if $Q(x) \ge 0$ for all $x \in \mathbb{R}^n$.
- c) negative definite if Q(x) < 0 for all $x \neq 0$.
- d) negative semidefinite if $Q(x) \leq 0$ for all $x \in \mathbb{R}^n$.
- e) indefinite if Q(x) has both positive and negative values.

Positive and Negative Definite Quadratic Forms

Theorem 5 (Quadratic Forms and Eigenvalues)

Let A be an $n \times n$ symmetric matrix. Then a quadratic form txAx is :

- a) positive definite if and only if the eigenvalues of A are all positive,
- b) negative definite if and only if the eigenvalues of A are all negative, or
- c) indefinite if and only if A has both positive and negative eigenvalues.

Example 8

Let the quadratic form

$$Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3.$$

Its matrix is given by

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

The eigenvalues of A are 5, 2, and -1. It follows that Q is an indefinite quadratic form.

Constrained Optimization

Theorem 6

Let A be a symmetric matrix, and let $M = \max_{t \in A} (t_{t}, t_{t}, t_{t}) = 1$

$$m = min\{^t x A x : ||x|| = 1\}, \qquad M = max\{^t x A x : ||x|| = 1\}.$$

Then M is the greatest eigenvalue λ_1 of A and m is the least eigenvalue of A. The value of txAx is M when x is a unit eigenvector u_1 corresponding to M. The value of txAx is m when x is a unit eigenvector corresponding to m.

Example 9

We have seen in Example 8 that the matrix

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

of the quadratic form

$$Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$$

has eigenvalues 5, 2, and -1. Then the maximum value of Q(x) subject to the

constraint ||x|| = 1 is 5, and this constrained maximum is attained when $x = \begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix}$.

Maximum with Two Constraints

Theorem 7

Let A, λ_1 and u_1 be as in Theorem 6. Then the maximum value of Q(x) subject to the constraints

$$||x|| = 1$$
, $tx u_1 = 0$

is the second greatest eigenvalue, λ_2 , and this maximum is attained when x is an eigenvector u_2 corresponding to λ_2 .

Example 10

We determine the maximum value of

$$Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

subject to the constraints

$$||x|| = 1$$
 and $^t x u_1 = 0$, where $u_1 = (1, 0, 0)$.

Note that u_1 is a unit eigenvector corresponding to the greatest eigenvalue $\lambda_1 = 9$ of the matrix of Q(x). Thus the constrained maximum of the quadratic form is attained for x = (0, 1, 0), which is an eigenvector for the second greatest eigenvalue $\lambda_2 = 4$ of the matrix of the quadratic form. Therefore, the constrained maximum value is Q(0, 1, 0) = 4.

Maximum with Several Constraints

Theorem 8

Let A be a symmetric $n \times n$ matrix with an orthogonal diagonalization $A = PDP^{-1}$, where the entries on the diagonal of D are arranged so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and where the columns of P are corresponding unit eigenvectors u_1, u_2, \cdots, u_n . Then for $k = 2, \cdots, n$, the maximum value of Q(x) subject to the constraints $\|x\| = 1, {}^t x \ u_1 = 0, \cdots, {}^t x \ u_{k-1} = 0$

is the eigenvalue λ_k , and this maximum is attained at $x=u_k$.

The Singular Values of a Matrix

Proposition 2

Let A be an $m \times n$ matrix. Then the matrix tA A is symmetric and all its eigenvalues are nonnegative.

Definition 7

Let A be an $m \times n$ matrix and denote by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ the eigenvalues of tA A. Then the singular values of A are given by

$$\sigma_i = \sqrt{\lambda_i}$$
 for $1 \le i \le n$.

Remark 2

From the proof of Proposition 2, we can see that the singular values of A are the lengths of the vectors Av_1, \dots, Av_n , where v_1, \dots, v_n are unit eigenvectors corresponding to $\lambda_1, \dots, \lambda_n$.

Example 11

Let

$$A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}.$$

Then

$${}^{t}A A = \begin{pmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{pmatrix}.$$

The eigenvalues of tA A are $\lambda_1=360$, $\lambda_2=90$ and $\lambda_3=0$, so the singular values of A are

$$\sigma_1 = 6\sqrt{10}$$
, $\sigma_2 = 3\sqrt{10}$ and $\sigma_3 = 0$.

Singular Values and Orthogonal Basis for Col A

Theorem 9

Let A be an $m \times n$ matrix. Suppose $\{v_1, \cdots, v_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of the matrix A, arranged so that the corresponding eigenvalues of A a satisfy A satisfy A and suppose A has A nonzero singular values. Then A satisfy A is an orthogonal basis for A and A and A satisfy A is an orthogonal basis for A and A and A satisfy A is an orthogonal basis for A and A an orthogonal basis for A and A an

The Singular Value Decomposition

Theorem 10 (The Singular Value Decomposition)

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix of the form

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix},$$

where D is an $r \times r$ diagonal matrix whose diagonal entries are the first r singular values of A, $\sigma_1 \ge \cdots \ge \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Sigma^t V$$
.

Definition 8

The factorization given in Theorem 10 is called a singular value decomposition (or SVD) of A. The columns of U in such a decomposition are called left singular vectors of A, and the columns of V are called right singular vectors of A.

Example 12

Consider again the matrix

$$A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}.$$

Step 1 Find an orthogonal diagonalization of tA A.

That is, find the eigenvalues of tA A and a corresponding orthonormal set of eigenvectors.

Example 12 (continued)

Step 2. Set up V and Σ

Arrange the eigenvalues of tAA in decreasing order : $\lambda_1=360,\ \lambda_2=90$ and $\lambda_3=0$, then the corresponding unit eigenvectors v_1,v_2 and v_3 are the columns of the matrix

$$V = (v_1 \ v_2 \ v_3) = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}.$$

The singular nonzero values of A are $\sigma_1 = 6\sqrt{10}$ and $\sigma_2 = 3\sqrt{10}$, so

$$\Sigma = \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix}.$$

Example 12 (continued)

Step 3. Construct U.

The first two columns of U are the normalized vectors obtained from Av_1 and Av_2 .

Since $||Av_i|| = \sigma_i$ for $1 \le i \le 2$, then we have

$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{6\sqrt{10}} {18 \choose 6} = {3/\sqrt{10} \choose 1/\sqrt{10}},$$

$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{3\sqrt{10}} {3 \choose -9} = {1/\sqrt{10} \choose -3/\sqrt{10}}.$$

Example 12 (continued)

Note that $\{u_1, u_2\}$ is a basis of \mathbb{R}^2 , so no additional vectors are needed for U and $U = (u_1 \ u_2)$.

Finally, the singular value decomposition of A is

$$A = \begin{pmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{pmatrix} \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix} \begin{pmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{pmatrix}.$$

Exercises

Exercise 1

- 1) Let $Q(x) = 3x_1^2 + 3x_2^2 + 2x_1x_2$. Find a change of variable that transforms Q into a quadratic form with no cross-product term, and give the new quadratic form.
- 2) Find the maximum value of Q(x) subject to the constraint ${}^t xx = 1$, and find a unit vector at which the maximum is attained.

Exercise 2

Let λ be any eigenvalue of a symmetric matrix A. Show that $m \leq \lambda \leq M$.

Exercises

Exercise 3

Show that in the SVD of A, the columns of V are eigenvectors of tAA , the columns of U are eigenvectors of A^tA , and the diagonal entries of Σ are the singular values of A.

Exercise 4

- 1) Given a singular value decomposition, $A = U\Sigma^t V$, find an SVD of A. How are the singular values of A and $A^t A$ related?
- 2) For any $n \times n$ matrix A, use the SVD to show that there is an $n \times n$ orthogonal matrix Q such that $A^tA = {}^tQ({}^tAA)Q$.

Exercise 5

Show that if A is square, then $|\det(A)|$ is the product of the singular values of A.