

Mining Massive Datasets

B. Ravindran

Reconfigurable and Intelligent Systems Engineering (RISE) Group

Department of Computer Science and Engineering

Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI)
Indian Institute of Technology Madras

Ensembles

Problem Setting

$$X^{(1)} = \langle 0.15, 0.25 \rangle, Y^{(1)} = -1$$
$$X^{(2)} = \langle 0.4, 0.45 \rangle, Y^{(2)} = +1$$
$$\vdots$$

The input can be thought of as $X = (X_1, X_2, \dots, X_p)$

The X_i are the features that describe the input.

The output is either a categorical variable, typically denoted by G or a continuous variable denoted by Y

The *i*-th instance of the input is denoted as x_i and output is denoted as y_i . We loosely state the learning problem as given a value of input X make a good prediction \hat{Y} of Y or \hat{G} of G

Problem Setting

 $\chi \subseteq \Re^p$ is the input space

 $X = (X_1, X_2, \dots X_p)$ is a random variable describing the input

 $\Upsilon \subseteq \Re$ or Γ is the output space

Y is a random variable describing the output

p(X,Y) is the data distribution

$$p(X,Y) = p(Y|X)p(X)$$

p(Y|x) is the predicted output probabilities given an input x

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, $M_{l}, M_{2}, ..., M_{k}$, with the aim of creating an improved model M^{*}
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Bootstrap Aggregation

Training

- Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
- A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M^{*} counts the votes and assigns the class with the most votes to X

Accuracy

- Often significantly better than a single classifier derived from D
- For noisy data: not considerably worse, more robust
- Proved improved accuracy in prediction
- More Stable

Bagging: Example

Random Forests

Bagging Decision Trees

- 1. If the number of cases in the training set is N, sample N cases at random but with replacement, from the original data. This sample will be the training set for growing the tree.
- 2. If there are M input variables, a number m << M is specified such that at each node, m variables are selected at random out of the M and the best split on these m is used to split the node. The value of m is held constant during the forest growing.
- 3. Each tree is grown to the largest extent possible. There is no pruning.

Why Random Forests Work?

- The correlation between any two trees in the forest needs to be low. Increasing the correlation increases the forest error rate.
- A tree with a low error rate is a strong classifier. Increasing the strength of the individual trees decreases the forest error rate.
- Reducing *m* reduces both the correlation and the strength. Increasing it increases both.
- Somewhere in between is an "optimal" range of m usually quite wide.

Features of Random Forest

- Excellent accuracy among current algorithms.
- Runs efficiently on large data bases.
- Can handle thousands of input variables without variable deletion.
- Gives estimates of what variables are important in the classification.
- Generates an internal unbiased estimate of the generalization error as the forest building progresses.

Error Estimates

- Out-of-Bag Error Estimates
 - We know that about 27% of the data is not sampled in bootstrap
 - This is true for each tree
 - Hence each data point is not used in about a third of the trees.
- Measure average error on each data point from the trees not using them
 - All these trees vote on the class of this data point
 - If the predicted majority class doesn't match the true class then error
- Shown to be unbiased sample of the error

Committee Methods

- Takes a simple unweighted average of the predictions from each model
- Assigns equal probability to each model.
- Applicable in cases where the different models arise from the same parametric model, with different parameter values.

Stacking

 $\hat{y}_1 = f_1(x_1, x_2, ...)$

 $\hat{y}_2 = f_2(x_1, x_2,...)$ => $\hat{y}_e = f_e(\hat{y}_1, \hat{y}_2, ...)$

- Learning methods are "stacked" on top of one another.
- Combines multiple models' output with estimated optimal weights.
- Leads to better prediction.
- Train a "predictor of predictors"
 - Treat individual predictors as features
 - Similar to multi-layer perceptron idea
 - Special case: binary, f_{ρ} linear => weighted vote

Boosting

- Focus new learners on examples that others get wrong
- Train learners sequentially
- Errors of early predictions indicate the "hard" examples
- Focus later predictions on getting these examples right
- Combine the whole set in the end
- Convert many "weak" learners into a complex predictor

Boosting

- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - The final M^* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Comparing with bagging: boosting tends to achieve greater accuracy, but it also risks overfitting the model to misclassified data
 - Can be shown to maximize margin of classifier

AdaBoost (Freund and Schapire, 1997)

The current linear combination of classifiers is

$$C_{(m-1)}(x_i) = \alpha_1 k_1(x_i) + \alpha_2 k_2(x_i) + \dots + \alpha_{m-1} k_{m-1}(x_i)$$

• Extend it to,

$$C_m(x_i) = C_{(m-1)}(x_i) + \alpha_m k_m(x_i)$$

•Total cost, or total error, of the extended classifier as the exponential loss

$$E = \sum_{i=1}^{N} e^{-y_i (C_{(m-1)}(x_i) + \alpha_m k_m(x_i))}$$

Source: AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction to Adaptive Boosting -Ra´ul Rojas

AdaBoost

ullet Since our intention is to draft $k_{_{\it m}}$ we rewrite the above expression as,

$$E = \sum_{i=1}^{N} w_i^{(m)} e^{-y_i \alpha_m k_m(x_i)}$$

where

$$w_i^{(m)} = e^{-y_i C_{(m-1)}(x_i)}$$

Split the sum into two sums

$$E = \sum_{y_i = k_m(x_i)} w_i^{(m)} e^{-\alpha_m} + \sum_{y_i \neq k_m(x_i)} w_i^{(m)} e^{\alpha_m}$$

• Simplify the notation to

$$E = W_c e^{-\alpha_m} + W_e e^{\alpha_m}$$

Source: AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction to Adaptive Boosting -Ra´ul Rojas

AdaBoost - Weighting

To determine weight of mth classifier,

$$\frac{\mathrm{d}E}{\mathrm{d}\alpha_m} = -W_c \mathrm{e}^{-\alpha_m} + W_e \mathrm{e}^{\alpha_m}$$

Equating it to zero,

$$\alpha_m = \frac{1}{2} \ln \left(\frac{W_c}{W_e} \right)$$

• Rewriting, with W as the total sum of weights,

$$\alpha_m = \frac{1}{2} \ln \left(\frac{W - W_e}{W_e} \right) = \frac{1}{2} \ln \left(\frac{1 - e_m}{e_m} \right)$$

Where
$$e_m = W_e/W$$

Source: AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction to Adaptive Boosting -Ra´ul Rojas

AdaBoost - Algorithm

AdaBoost

For m = 1 to M

1. Select and extract from the pool of classifiers the classifier k_m which minimizes

$$W_e = \sum_{y_i \neq k_m(x_i)} w_i^{(m)}$$

2. Set the weight α_m of the classifier to

$$\alpha_m = \frac{1}{2} \ln \left(\frac{1 - e_{\rm m}}{e_{\rm m}} \right)$$

where $e_m = W_e/W$

 Update the weights of the data points for the next iteration. If k_m(x_i) is a miss, set

$$w_i^{(m+1)} = w_i^{(m)} e^{\alpha_m} = w_i^{(m)} \sqrt{\frac{1 - e_m}{e_m}}$$

otherwise

$$w_i^{(m+1)} = w_i^{(m)} e^{-\alpha_m} = w_i^{(m)} \sqrt{\frac{e_m}{1 - e_m}}$$

Credits: ESL

AdaBoost - Example

Source: Slides from Dr.Kalev Kask's (UCI) lecture on Ensembles of Learners

AdaBoost - Example

Weight each classifier and combine them:

Combined classifier

Source: Slides from Dr.Kalev Kask's (UCI) lecture on Ensembles of Learners

Adaboost

Simulated data test error rate for boosting with stumps, as a function of the number of iterations.

Also shown are the test error rate for a single stump, and a 244-node classification tree.

Simulated data, boosting with stumps

Credits: ESL

Gradient Boosting

- Learn sequence of predictors
- Subsequent models predict the error residual of the previous predictions
- Sum of predictions is increasingly accurate
- Predictive function is increasingly complex

Gradient Boosting - Example

Learn a simple predictor...

$$f_1(x^{(i)}) \approx y^{(i)}$$

Then try to correct its errors

$$\epsilon^{(i)} = y^{(i)} - f_1(x^{(i)})$$

Source: Slides from Dr.Kalev Kask's (UCI) lecture on Ensembles of Learners

Gradient Boosting - Example

Combining gives a better predictor...

$$\Rightarrow f_1(x^{(i)}) + f_2(x^{(i)}) \approx y^{(i)}$$

Can try to correct its errors also, & repeat

$$\epsilon_2^{(i)} = y^{(i)} - f_1(x^{(i)} - f_2(x^{(i)}) \dots$$

Gradient Boosting - Example

Source: Slides from Dr.Kalev Kask's (UCI) lecture on Ensembles of Learners

Gradient Boosted Trees

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Credits: ESL

Summary

- Ensembles yield powerful classifiers
- Random forest is one of the best performing classifiers
- Bagging results in more stable classifiers
 - Can be parallelized
- Boosting gives better performance
 - Can overfit
- Gradient Boosted Decision Trees are very powerful