Protein Docking

Peter Mühlbacher

June 23, 2015

What Are Amino Acids?

Figure: Illustration of an amino acid. [Neumaier, 2006]

- amino acids polymerize in a specific sequence to a chain
- ▶ the repeating N, C_{α} , C-pattern is called the protein's backbone

Structures

Primary Structure

amino acid sequence

Secondary Structure

spatial arrangement of amino acid residues that are nearby in the sequence

Tertiary Structure

its three-dimensional structure, as defined by the atomic coordinates

Quaternary Structure

spatial arrangement of multiple folded proteins and the nature of their interactions [Berg, Tymoczko, Stryer, 2002]

What Is Protein Docking And Why Is It Important?

The Problem

- given tertiary structures, find the most likely quaternary structure
- evaluate its affinity

Examples For Quaternary Structures

- hemoglobin
- DNA polymerase
- ion channels

Understanding how proteins interact enables drug design.

▶ bond angle

- ▶ bond angle
- ► dihedral angle

- ▶ bond angle
- ▶ dihedral angle
- internal coordinates

set of bond lenghts, bond angles and dihedral angles; usually only some dihedral angles are allowed to vary though; protein can be seen as a tree-like graph structure

useful to alter a molecule in a chemically meaningful way

- bond angle
- ▶ dihedral angle
- internal coordinates
- absolute coordinates

set of cartesian coordinates of every single atom in a molecule

useful to calculate potentials

Different Approaches

The problem can be casted as a minimization problem: $\operatorname{argmin}_X U(X)$. One can differentiate between several approaches.

Classes of Potential Functions

- ▶ **Force fields:** Typically, the potential *U* is a sum over bond, angle, dihedral angle, electrostatic and van der Waals energies.
- ► Knowledge-based/empirical methods: Compare segments with experimentally determined data.

Choosing a Set of Parameters

- ▶ **Rigid docking:** The parameters X consist of translation and rotation of the smaller protein in \mathbb{R}^3 .
- ▶ Flexible docking: In addition to the 6 parameters of rigid docking, internal parameters (mostly dihedral angles, as bond angles and lengths are relatively stable) are used.

The Potential Function In Use

- ▶ let $X = x, y, z, \alpha, \beta, \gamma, \theta_1, \dots, \theta_n$ free parameters,
- ▶ $M^1(X) = M^1$ be the flexible and M^2 the fixed molecule,
- ▶ LJ_{M_i,M_j} the Lennard-Jones potential, modelling pairwise van der Waals forces, depending on the types of the atoms M_i, M_j and
- ▶ $||M_i M_j||$ the euclidian distance of their cartesian coordinates.

$$U(X) = \underbrace{\sum_{i=1}^{|M^1|} \sum_{j>i}^{|M^1|} LJ_{M_i^1,M_j^1}(\|M_i^1 - M_j^1\|)}_{\text{internal energy of } M^1} + \underbrace{\sum_{i=1}^{|M^1|} \sum_{j=1}^{|M^2|} LJ_{M_i^1,M_j^2}(\|M_i^1 - M_j^2\|)}_{\text{interaction of } M^1 \text{ and } M^2}$$

Physical Interpretation of LJ

Setting

$$LJ_{M_i,M_j}(r) = \frac{A_{M_i,M_j}}{r^{12}} - \frac{B_{M_i,M_j}}{r^6}$$

for $A_{M_i,M_j}, B_{M_i,M_j} \in \mathbb{R}^+$ yields the following with a strong divergence at r=0.

Physical Interpretation of LJ

Setting

$$LJ_{M_i,M_j}(r) = \frac{A_{M_i,M_j}}{r^{12}} - \frac{B_{M_i,M_j}}{r^6}$$

for $A_{M_i,M_i}, B_{M_i,M_i} \in \mathbb{R}^+$ leads to the following interpretation:

- ▶ A corresponds to the strength of the Pauli-repulsion.
- B corresponds to the attractive long-range term.
- $\varepsilon := \min_{r} LJ(r) = \frac{B^2}{4A}$ is the depth of the potential well.
- $ightharpoonup r_m := \underset{r}{\operatorname{argmin}} LJ(r) = \sqrt[6]{2\frac{A}{B}}$ determines the equilibrium distance of the two elements M_i, M_j .

weaknesses

 Various other physical properties are neglected, e.g. dipole-dipole interactions leading to secondary structures like the α-helix.

strengths

weaknesses

 Various other physical properties are neglected, e.g. dipole-dipole interactions leading to secondary structures like the α-helix.

strengths

Speed.

weaknesses

 Various other physical properties are neglected, e.g. dipole-dipole interactions leading to secondary structures like the α-helix.

"strengths"

- Speed.
- ▶ All models are simply fitted mathematical functions \rightarrow treating $C, C_{\alpha}, O, N, \ldots$ as different elements might account for other physical properties to some extent.

weaknesses

 Various other physical properties are neglected, e.g. dipole-dipole interactions leading to secondary structures like the α-helix.

"strengths"

- Speed.
- ▶ All models are simply fitted mathematical functions \rightarrow treating $C, C_{\alpha}, O, N, \ldots$ as different elements might account for other physical properties to some extent.
- It works to a certain extent, i.e. $\nabla_X U(X) \approx 0$ if X describes the initial configuration which should be an equilibrium state.

Finding Optimal Parameters

Observe that "M is in equilibrium" $\Leftrightarrow \nabla_X U_{A,B}(X_M,M)=0$. Thus, it is natural to choose $A,B\in (R^+)^{n\times n}$, where n is the number of different substances one wants to differentiate between, as

$$\underset{A,B}{\operatorname{argmin}} \sum_{M^i \in \operatorname{training set}} \|\nabla_X \mathit{U}_{A,B}(X_{M^i}, M^i)\|.$$

However, this is an overdetermined system \to fix $A_{11}=const$ and express all other parameters in terms of A_{11} , i.e.: $\tilde{A}_{ij}=A_{11}A_{ij}$, $\tilde{B}_{ij}=A_{11}B_{ij}$.

Finding Optimal Parameters

Figure: Projection of the optimization problem in n(n+1)-1 dimensions onto a 1-dimensional subspace (B_{11} is the only non-constant parameter, $A_{ij}=1, B_{ij}=B_{11}$)

Numerical Challenges

Conversion Between Internal And Absolute Coordinates

While we want to write the potential as a function of the internal coordinates, it can only be calculated in terms of absolute coordinates \rightarrow conversion is done often and should thus be implemented efficiently, i.e. minimize rounding errors and duration of computation

Computation of the Gradient

The potential is not simply a sum over rational functions as the distance between two atoms depends on the internal coordinates \rightarrow the above conversion has to be included as well; as a result, computing the gradient explicitly is not only a tedious, but also an unnecessary task because of accumulating rounding errors \rightarrow automatic backwards differentiation

The End

References

Arnold Neumaier (2006)

Molecular Modeling of Proteins

