

14.11: The Solubility Product

In the section on precipitation reactions, we saw that there are some salts which dissolve in water to only a very limited extent. For example, if BaSO₄ crystals are shaken with water, so little dissolves that it is impossible to see that anything has happened, as you will see in the video below. Nevertheless, the few $Ba^{2+}(aq)$ and $SO_4^{2-}(aq)$ ions that do go into solution increase the conductivity of the water, allowing us to measure their concentration. The video below shows the creation of Barium Sulfate in a precipitation reaction between barium chloride and sodium sulfate. Notice the white precipitate that forms, which is barium sulfate.

We find that at 25°C

$$[\mathrm{Ba}^{2+}] = 0.97 \times 10^{-5} \; \mathrm{mol} \; \mathrm{L}^{-1} = [\mathrm{SO}_4^{2-}] \tag{14.11.1}$$

that we would describe the solubility of BaSO₄ as 0.97×10^{-5} mol L⁻¹ at this temperature. The solid salt and its ions are in dynamic equilibrium, and so we can write the equation

$$BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$$

$$(14.11.2)$$

As in other dynamic equilibria we have discussed, a particular Ba^{2+} ion will sometimes find itself part of a crystal and at other times find itself hydrated and in solution.

Since the concentration of BaSO₄ has a constant value, it can be incorporated into K_c for Equation 14.11.2 This gives a special equilibrium constant called the solubility product K_{sp} :

$$K_{sp} = K_c[\text{BaSO}_4] = [\text{Ba}^{2+}][\text{SO}_4^{2-}]$$
 (14.11.3)

For BaSO₄, $K_{\rm sp}$ is easily calculated from the solubility by substituting Equation 14.11.1into 14.11.3

$$K_{sp} = (0.97 \times 10^{-5} \text{ mol L}^{-1})(0.97 \times 10^{-5} \text{ mol L}^{-1})$$

$$= 0.94 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$$
(14.11.4)

$$= 0.94 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2} \tag{14.11.5}$$

In the general case of an ionic compound whose formula is $A_x B_y$, the equilibrium can be written

$$\mathrm{A}_x\mathrm{B}_y(s)
ightleftharpoons x\mathrm{A}^{m+}(aq) + y\mathrm{A}^{n+}(aq)$$

The solubility product is then

$$\mathbf{K}_{sp} = [\mathbf{A}^{m+}]^x [\mathbf{B}^{n+}]^y$$

Solubility products for some of the more common sparingly soluble compounds are given in the table below.

Table 14.11.1 Solubility Product Constants for Some Inorganic Compounds at 25 °C1

Substance	$K_{\rm s}$	Substance	K_{sp}		
Aluminum Compounds		Barium Compounds			
AlAsO ₄	1.6×10^{-16}	Ba ₃ (AsO ₄) ₂	8.0×10^{-15}		
Al(OH) ₃ amorphous	1.3 × 10 ⁻³³	BaCO ₃	5.1 × 10 ⁻⁹		

Substance	K _s	Substance	$K_{ m sp}$
AlPO ₄	6.3×10^{-19}	BaC ₂ O ₄	1.6×10^{-7}
Bismuth Compounds		BaCrO ₄	1.2 × 10 ⁻¹⁰
BiAsO ₄	4.4 ×10 ⁻¹⁰	BaF ₂	1.0×10^{-6}
BiOCl ²	7.0×10^{-9}	Ba(OH) ₂	5 × 10 ⁻³
BiO(OH)	4 × 10 ⁻¹⁰	Ba ₃ (PO ₄) ₂	3.4×10^{-23}
Bi(OH) ₃	4×10 ⁻³¹	BaSeO ₄	3.5×10^{-8}
Bil ₃	8.1 ×10 ⁻¹⁹	BaSO ₄	1.1×10^{-10}
BiPO ₄	1.3 ×10 ⁻²³	BaSO ₃	8 × 10 ⁻⁷
Cadmium Compounds	Cadmium Compounds		1.6×10^{-5}
Cd ₃ (AsO ₄) ₂	2.2 ×10 ⁻³³	Calcium Compounds	
CdCO ₃	5.2 ×10 ⁻¹²	Ca ₃ (AsO ₄) ₂	6.8 ×10 ⁻¹⁹
Cd(CN) ₂	1.0 ×10 ⁻⁸	CaCO ₃	2.8 ×10 ⁻⁹
Cd ₂ [Fe(CN) ₆]	3.2 ×10 ⁻¹⁷	CaCrO ₄	7.1 ×10 ⁻⁴
Cd(OH) ₂ fresh	2.5 ×10 ⁻¹⁴	$CaC_2O_4 \cdot H_2O^3$	4 × 10 ⁻⁹
Chromium Compounds	Chromium Compounds		5.3 ×10 ⁻⁹
CrAsO ₄	7.7×10^{-21}	Ca(OH) ₂	5.5 ×10 ⁻⁶
Cr(OH) ₂	2 × 10 ⁻¹⁶	CaHPO ₄	1 × 10 ⁻⁷
Cr(OH) ₃	6.3×10^{-31}	Ca ₃ (PO ₄) ₂	2.0×10^{-29}
CrPO ₄ • 4H ₂ O green	2.4×10^{-23}	CaSeO ₄	8.1 × 10 ⁻⁴
CrPO ₄ • 4H ₂ O violet	1.0 × 10-17	CaSO ₄	9.1×10^{-6}
Cobalt Compounds		CaSO ₃	6.8×10^{-8}
Co ₃ (AsO ₄) ₂	7.6×10^{-29}	Copper Compounds	
CoCO ₃	1.4×10^{-13}	CuBr	5.3×10^{-9}
Co(OH) ₂ fresh	1.6 × 10 ⁻¹⁵	CuCl	1.2×10^{-6}
Co(OH) ₃	1.6 × 10 ⁻⁴⁴	CuCN	3.2×10^{-20}
CoHPO ₄	2 × 10 ⁻⁷	CuI	1.1×10^{-12}
CO ₃ (PO ₄) ₂	2 × 10 ⁻³⁵	CuOH	1 × 10 ⁻¹⁴
Gold Compounds		CuSCN	4.8×10^{-15}
AuCl	2.0×10^{-13}	Cu ₃ (AsO ₄) ₂	7.6×10^{-36}
AuI	1.6 × 10 ⁻²³	CuCO ₃	1.4×10^{-10}
AuCl ₃	3.2×10^{-25}	Cu ₂ [Fe(CN) ₆]	1.3×10^{-16}
Au(OH) ₃	5.5 × 10 ⁻⁴⁶	Cu(OH) ₂	2.2×10^{-20}
AuI ₃	1 × 10 ⁻⁴⁶	Cu ₃ (PO ₄) ₂	1.3 × 10 ⁻³⁷
Iron Compounds		Lead Compounds	
FeCO ₃	3.2 × 10 ⁻¹¹	Pb ₃ (AsO ₄) ₂	4.0×10^{-36}
Fe(OH) ₂	8.0×10^{-16}	PbBr ₂	4.0 × 10 ⁻⁵
FeC ₂ O ₄ • 2H ₂ O ³	3.2×10^{-7}	PbCO ₃	7.4×10^{-14}
FeAsO ₄	5.7 × 10 ⁻²¹	PbCl ₂	1.6×10^{-5}

Substance	K_{s}	Substance	$K_{ m sp}$
Fe ₄ [Fe(CN) ₆] ₃	3.3 × 10 ⁻⁴¹	PbCrO ₄	2.8 × 10 ⁻¹³
Fe(OH) ₃	4 × 10 ⁻³⁸	PbF ₂	2.7 × 10 ⁻⁸
FePO ₄	1.3 × 10 ⁻²²	Pb(OH) ₂	1.2 × 10 ⁻¹⁵
Magnesium Compounds		PbI ₂	7.1 × 10 ⁻⁹
Mg ₃ (AsO ₄) ₂	2.1 × 10 ⁻²⁰	PbC ₂ O ₄	4.8×10^{-10}
MgCO ₃	3.5×10^{-8}	РЬНРО4	1.3 × 10 ⁻¹⁰
$MgCO_3 \cdot 3H_2O^3$	2.1 × 10 ⁻⁵	Pb ₃ (PO ₄) ₂	8.0×10^{-43}
$MgC_2O_4 \cdot 2H_2O^3$	1 × 10 ⁻⁸	PbSeO ₄	1.4 × 10 ⁻⁷
MgF_2	6.5 × 10 ⁻⁹	PbSO ₄	1.6 × 10 ⁻⁸
Mg(OH) ₂	1.8 × 10 ⁻¹¹	Pb(SCN) ₂	2.0 × 10 ⁻⁵
Mg ₃ (PO ₄) ₂	10 ⁻²³ to 10 ⁻²⁷	Manganese Compounds	
$MgSeO_3$	1.3 × 10 ⁻⁵	Mn ₃ (AsO ₄) ₂	1.9 × 10 ⁻²⁹
MgSO ₃	3.2×10^{-3}	MnCO ₃	1.8 × 10 ⁻¹¹
MgNH ₄ PO ₄	2.5 × 10 ⁻¹³	Mn ₂ [Fe(CN) ₆]	8.0×10^{-13}
Mercury Compounds		Mn(OH) ₂	1.9 × 10 ⁻¹³
Hg_2Br_2	5.6 × 10 ⁻²³	$MnC_2O_4 \cdot 2H_2O^3$	1.1 × 10 ⁻¹⁵
Hg ₂ CO ₃	8.9 × 10 ⁻¹⁷	Nickel Compounds	
Hg ₂ (CN) ₂	5 × 10 ⁻⁴⁰	Ni ₃ (AsO ₄) ₂	3.1×10^{-26}
Hg ₂ Cl ₂	1.3 × 10 ⁻¹⁸	NiCO ₃	6.6 × 10 ⁻⁹
Hg ₂ CrO ₄	2.0 × 10 ⁻⁹	$2 \operatorname{Ni}(\operatorname{CN})_2 \to \operatorname{Ni}^{2+} + \operatorname{Ni}(\operatorname{CN})_4^{20}$	1.7 × 10 ⁻⁹
Hg ₂ (OH) ₂	2.0 × 10 ⁻²⁴	Ni ₂ [Fe(CN) ₆]	1.3 × 10 ⁻¹⁵
Hg_2l_2	4.5×10^{-29}	Ni(OH) ₂ fresh	2.0×10^{-15}
Hg ₂ SO ₄	7.4×10^{-7}	NiC ₂ O ₄	4 × 10 ⁻¹⁰
Hg ₂ SO ₃	1.0 × 10 ⁻²⁷	Ni ₃ (PO ₄) ₂	5 × 10 ⁻³¹
Hg(OH) ₂	3.0×10^{-26}	Silver Compounds	
Strontium Compounds		Ag ₃ AsO ₄	1.0 × 10 ⁻²²
$Sr_3(AsO_4)_2$	8.1 × 10 ⁻¹⁹	AgBr	5.0×10^{-13}
SrCO ₃	1.1×10^{-10}	Ag ₂ CO ₃	8.1×10^{-12}
SrCrO ₄	2.2 × 10 ⁻⁵	AgCl	1.8×10^{-10}
$SrC_2O_4 \cdot H_2O^3$	1.6×10^{-7}	Ag ₂ CrO ₄	1.1 × 10 ⁻¹²
$Sr_3(PO_4)_2$	4.0×10^{-28}	AgCN	1.2 × 10 ⁻¹⁶
SrSO ₃	4 × 10 ⁻⁸	Ag ₂ Cr ₂ O ₇	2.0 × 10 ⁻⁷
SrSO ₄	3.2×10^{-7}	Ag ₄ [Fe(CN) ₆]	1.6 × 10 ⁻⁴¹
Tin Compounds		AgOH	2.0 × 10 ⁻⁸
Sn(OH) ₂	1.4×10^{-28}	AgI	8.3 × 10 ⁻¹⁷
Sn(OH) ₄	1 × 10 ⁻⁵⁶	Ag ₃ PO ₄	1.4×10^{-16}
Zinc Compounds		Ag ₂ SO ₄	1.4 × 10 ⁻⁵
$Zn_3(AsO_4)_2$	1.3×10^{-28}	Ag ₂ SO ₃	1.5×10^{-14}

Substance	K_{s}	Substance	K_{sp}
ZnCO ₃	1.4 × 10 ⁻¹¹	AgSCN	1.0 × 10 ⁻¹²
Zn ₂ [Fe(CN) ₆]	4.0×10^{-16}		
Zn(OH) ₂	1.2 × 10 ⁻¹⁷		
ZnC ₂ O ₄	2.7×10^{-8}		
Zn ₃ (PO ₄) ₂	9.0 × 10 ⁻³³		

- 1. Taken from Patnaik, Pradyot, Dean's Analytical Chemistry Handbook, 2nd ed., New York: McGraw-Hill, 2004, Table 4.2 (published on the Web by Knovel, http://www.knovel.com).
- 2. Taken from Meites, L. ed., Handbook of Analytical Chemistry, 1st ed., New York: McGraw-Hill, 1963.
- 3. Because $[H_2O]$ does not appear in equilibrium constants for equilibria in aqueous solution in general, it does not appear in the K_{sp} expressions for hydrated solids.

No metal sulfides are listed in this table because sulfide ion is such a strong base that the usual solubility product equilibrium equation does not apply. See Myers, R. J. *Journal of Chemical Education*, Vol. 63, 1986; pp. 687-690.

✓ Example 14.11.1: Equilibrium

When crystals of PbCl₂ are shaken with water at 25°C, it is found that 1.62×10^{-2} mol PbCl₂ dissolves per cubic decimeter of solution. Find the value of K_{sp} at this temperature.

Solution

We first write out the equation for the equilibrium:

$$\mathrm{PbCl}_2(s) \rightleftharpoons \mathrm{Pb}^{2+}(aq) = 2\mathrm{Cl}^{-}(aq)$$

so that

$$\mathbf{K}_{sp}\mathbf{PbCl}_2 = [\mathbf{Pb}^{2+}][\mathbf{Cl}^-]^2$$

Since 1.62×10^{-2} mol PbCl₂ dissolves per cubic decimeter, we have

$$[Pb^{2+}] = 1.62 \times 10^{-2} mol \ L^{-1}$$

while

$$[\mathrm{Cl}^-] = 2 imes 1.62 imes 10^{-2} \mathrm{mol} \ \mathrm{L}^{-1}$$

since 2 mol Cl⁻ ions are produced for each mol PbCl₂ which dissolves. Thus

$$K_{sp} = (1.62 \times 10^{-2} \,\mathrm{mol}\,\mathrm{L}^{-1})(2 \times 1.62 \times 10^{-2} \,\mathrm{mol}\,\mathrm{L}^{-1})^{\,2}$$
 (14.11.6)

$$=1.70\times10^{-5}\ \mathrm{mol}^{3}\mathrm{L}^{-3}\tag{14.11.7}$$

✓ Example 14.11.2: Solubility

The solubility product of silver chromate, Ag_2CrO_4 , is 1.0×10^{-12} mol³ L⁻³. Find the solubility of this salt.

Solution

Again we start by writing the equation

$$\mathrm{Ag_2CrO}\left(s
ight)
ightleftharpoons 2\mathrm{Ag}^{2+}(aq) + \mathrm{CrO}_4^{2-}(aq)$$

from which

$$K_{sp}({\rm Ag_2CrO_4}) = [{\rm Ag^+}]^2[{\rm CrO_4^{2-}}] = 1.0 \times 10^{-12} {\rm mol^3L^{-3}}$$

Let the solubility be x mol L⁻¹. Then

 $[\mathrm{CrO}_4^{2-}] = x \; \mathrm{mol} \; \mathrm{L}^{-1}$

and

 $[\mathrm{Ag}^+] = 2x \mathrm{mol} \ \mathrm{L}^{-1}$

Thus

$$K_{sp} = (2x \text{ mol } \text{L}^{-1})^2 x \text{ mol } \text{L}^{-1}$$
 (14.11.8)
= $(2x)^2 x \text{ mol}^3 \text{L}^{-3} = 1.0 \times 10^{-12} \text{ mol}^3 \text{L}^{-3}$ (14.11.9)

$$= (2x)^2 x \text{ mol}^3 \text{ L}^{-3} = 1.0 \times 10^{-12} \text{ mol}^3 \text{ L}^{-3}$$
(14.11.9)

 $4x^3 = 1.0 \times 10^{-12}$

and

$$x^3 = \frac{1.0}{4} \, \times \, 10^{12} = 2.5 \, \times \, 10^{-13} = 250 \, \times \, 10^{-15}$$

so that

$$x = \sqrt[3]{250} imes \sqrt[3]{10^{-15}} = 6.30 imes 10^{-5}$$

Thus the solubility is 6.30×10^{-5} mol L⁻¹.

This page titled 14.11: The Solubility Product is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.