Aerodynamic Characteristics

Aniruddha Sinha

Aerodynamic characteristics of airfoils & wings

Aerodynamic characteristics refer to variation of A/D coefficients:

- Lift, drag and pitching moment coefficients (for airfoils and wings)
- Other 3 coefficients (relevant for wings/aircraft) are of secondary importance

These force/moment coefficients depend on

- Shape of airfoil
- Angle of attack
- Reynolds number (in freestream)
- Mach number (in freestream)
- Aspect ratio (for wings)

Flow over airfoils

Lift Characteristics of Airfoils

Aerodynamic Characteristics

Pressure distribution on an airfoil

Pressure coefficient,
$$C_p = \frac{p - p_{\infty}}{q_{\infty}}$$

- Length of arrows proportional to \mathcal{C}_p
- S denotes \mathcal{C}_p at stagnation point (where $\mathcal{C}_p=1$)
- Outward arrows indicate suction
- Inward arrows indicate pressure

Conventional C_p plot

NACA 4412 at 11° AoA

Pressure vector plot

 C_p vs. x (chord location) plot

Lift coefficient of symmetric airfoils

Consider a symmetric airfoil in a high-Re flow c_l increases linearly with α over a large range

- The slope of this linear regime is called lift slope
- Linearity is imperfect at lower ReThis is followed by a nonlinear regime
- Max $(c_{l_{\max}})$ is reached at α_s , called stall angle
- Stalling is due to (viscous) flow separation Linear regime corresponds to attached flow Lift curve of symmetric airfoil is odd function of α

Symmetric airfoil

Lift coefficient of cambered airfoils

Consider an airfoil with same thickness but with slight camber

- Shape of curve remains same, including lift slope
- For a given α , (positive) camber increases c_l
- Positive camber yields negative "0-lift AoA", $\alpha_{L=0}$
- $c_{l_{ ext{max}}}$ remains almost same, but $lpha_{s}$ decreases
- Stalling behaviour may not be as symmetric
 Increasing the camber further amplifies the effects

Symmetric airfoil Slightly cambered airfoil More cambered airfoil

 $c_{l_{\max}}$

lacksquare

Reynolds number (in)dependence of lift coeff.

 c_l is essentially independent of Re, as long as it is sufficiently high, and flow is attached

- General flight regime indeed has high Re
- Viscous effects irrelevant in attached flow
 Separation (& stalling) are viscous effects
- $c_{l_{
 m max}}$ increases with Re
- Boundary layer energy increases with *Re*Use inviscid theory to predict lift & moment for attached flow on airfoils (and wings)
- The straight lines result from this theory

Abbott and Doenhoff, Theory of Wing Sections, 1959

Airfoil stall and maximum lift

Aerodynamics Characteristics

Pressure distribution on an airfoil: revisited

Pressure coefficient,
$$C_p = \frac{p - p_{\infty}}{q_{\infty}}$$

- Length of arrows proportional to \mathcal{C}_p
- S denotes C_p at stagnation point (where $C_p=1$)
- Outward arrows indicate suction
- Inward arrows indicate pressure

Leading edge stall (e.g. NACA 4412 @ Re=2.1e5)

- Separation initiated at LE; rapid decrease of lift in post-stall
- Occurs for thin airfoils (typically < 16% thick)

Trailing edge stall (e.g. NACA 4421 @ Re=2.1e5)

- Occurs for thicker airfoils
- Separation initiated at TE; gradual decrease of lift in post-stall

 Thickness doesn't affect lift if flow is attached

Thin airfoil stall (e.g. flat plate)

Flow separation occurs on suction surface even at $\alpha=3^{\circ}$, but the flow reattaches to form a separation bubble

- Separation region increases with α , until it covers entire suction surface
- Further increase of α leads to massive separation and stall

Recall: Lift slope is same as in cambered airfoil!

Maximum lift coefficient $c_{l_{\max}}$ vs. thickness

In attached flow, c_l is a very weak function of thickness

• Thin plate is sufficient for lift (impractical structure!)

However, thickness affects stalling characteristics

• Optimum thickness needed for high $c_{l_{\mathrm{max}}}$

We have already seen that Re affects $\max c_{l_{\max}}$ too

Abbott and Doenhoff, Theory of Wing Sections, 1959

Flaps and high-lift devices

- Some portions of wing have reconfigurable airfoils made of several separate sections
- Sections change their relative position to change their aerodynamic characteristics or act as aerodynamic controls
- Effective chord and/or camber is changed

Cruise configuration minimum drag

Take-off configuration max lift/drag ratio (L'/D')

Landing configuration maximum lift

Effect of flaps

- Flaps increase lift for same angle of attack
- This can be considered as the effective increase in camber of airfoil
- \bullet However, unlike increasing camber, flaps also increase $c_{l_{\rm max}}$

Drag Characteristics of Airfoils

Aerodynamic Characteristics

Airfoil drag characteristics

For airfoil sections in low speed flow, origin of drag are

- a) Skin friction
- b) Pressure drag due to flow separation (also called 'form drag')
- Together they constitute 'profile drag'

Typical drag coefficients on immersed bodies

- We previously looked at relative drag forces on some typical bodies
- Now we study the more relevant drag coefficients in the same cases
- N.B.: cases 2 & 4 of cylinder flows have same c_d , though their Re are separated by 1 order of magnitude
- Although drag force increases at the much higher Re, c_d decreases
- Streamlined airfoil has least c_d

Airfoil drag characteristics

 c_d is a strong function of Re

- Both sources of profile drag depend on Re
- Also depends strongly on α

Drag polar

It is a plot of $c_l(\alpha)$ vs. $c_d(\alpha)$, or vice versa

- More useful than c_l vs. α and c_d vs. α for evaluating performance
- How much drag penalty has to be paid for a given amount of lift (to offset some weight)?
- It directly gives the important $c_{l_{
 m max}}$ & $c_{d_{
 m min}}$
- To obtain a specific c_l/c_d (efficiency), we find the two operating points by drawing the line with this slope passing through the origin
- In the tangential limit, we find the maximum achievable efficiency, $(c_l/c_d)_{\rm max}$, from airfoil

Compressibility (Mach) Effects

Aerodynamic Characteristics

Mach number dependence of lift coefficient

At low Mach numbers, c_l is essentially independent of Mach number

• Hence *incompressible aerodynamics*

At higher Mach nos., c_l first increases slightly, before decreasing drastically

• Higher the AoA, lower the *M* at which Mach no. dependence sets in

Airfoil designs for subsonic, transonic and supersonic flight differ greatly from each other

Abbott and Doenhoff, Theory of Wing Sections, 1959

Mach number dependence of drag coefficient

- At low Mach numbers, c_d (like c_l) is essentially independent of Mach number
- Approaching sonic speed, c_d increases greatly
- This is called "drag divergence"
- Mach no. dependence of c_d (like c_l) sets in at lower Mach nos. for higher AoA's
- Airfoils have to be specifically designed for crossing the so-called "sound barrier"
- Propulsion also must be much more powerful to overcome the high drag

Wave drag

This is an additional drag mechanism in transonic/supersonic flows

These flows have local shock waves that cause increase of entropy

Drastic increase of pressure behind shock waves leads to suction loss

• The suction loss can be estimated with *inviscid* theory!

The adverse pressure gradient also causes flow separation (form drag)

This isn't predicted by inviscid theory

Aerodynamic Characteristics of Wings

Aerodynamic Characteristics

Vortex system trailing an aircraft

https://www.youtube.com/watch?v=BaRb46vv_bQ

Lift coefficient of wings

- As $AR \rightarrow \infty$, wing tends to airfoil section
- For same AoA, \mathcal{C}_L is a strong function of aspect ratio
- Lift slope decreases with decrease of AR
- $\alpha_{L=0}$ remains same

Houghton et al., Aerodynamics for Engineering Students, 2013

29

Drag coefficient of wings – (lift) induced drag

• Lift-induced drag (also called induced drag) is a by-product of the lifting mechanism (pressure difference across wing)

Creates vortices in the vicinity of the wing that don't contribute to

lift but take away energy – drag

• Lower the aspect ratio, greater the three-dimensionality of the flow, greater is the induced drag

Drag polar for various aspect ratios

Shown here is Prandtl's classic rectangular wing data for aspect ratios from 1 to 7 (1:1 to 1:7)

• It presents the dramatic dependence of lift & drag on AR

Increasing AR beyond 6 or 7 doesn't appear to affect behaviour

• 3D effects are low for high-AR wings – i.e., essentially 2D airfoil!

Prandtl was able to model these variations from *inviscid theory*!

Conclusion

- Inviscid theory is appropriate for lift and pitching moment prediction
 - This is not only true for airfoils but approximately so for wings too
 - Theoretical predictions rarely use viscous theory
 - Computations may use viscous models, but not always
- Incompressible theory is appropriate for low subsonic speeds
- Wings with high aspect ratio can be modelled as airfoil sections
- Inviscid theory also yields "lift-induced drag" and "wave drag"
- Of course, viscous theory needed for predicting "profile drag", i.e.
 - Skin friction drag, and
 - Form drag

End of Topic

Aerodynamic Characteristics

