Session 2

Session 2-1 인과추론을 위한 연구 디자인

Causal Hierarchy of Research for Causal Inference

Korea Summer Session on Causal Inference 2021

Session 2. Overview of Research Design for Causal Inference

- 피라미드 위로 올라갈수록 인과추론의 수준이 가장 높다.
- 즉, 아래로 갈수록 인과관계의 신뢰도가 낮고 인과관계를 입증하기 어렵다.
- Meta-Analysis : 기존의 여러 인과추론의 결과들을 종합적으로 분석하는 방법론.
- RCT : 단일 인과추론 방법론 중 가장 수준이 높다.
- Quasi-Experiment : 현실상황에서 randomized experiment를 하기는 쉽지 않다. 따라서 실험과 매우 유사한 상황을 찾아서 분석하는 준 실험은 특정 가정하에서는 randomized experiment에 가까울 것.
- Instrumental Variable : 준 실험상황도 어려울 때 인위적 도구를 사용한다. 이는 인과추론을 방해하는 요인(내생성)을 인위적으로 제거하기 위함.
- 'Designed' Regression : 적절한 도구변수도 없을 때 적절한 통제변수의 디자인을 통한 회귀분석도 적절한 인과관계를 추론할 수 있을 것. 이런 상황에서 Causal Diagram 이 매우 유용할 것.

Session 2

Session 2-2 인과추론의 정석: 무작위 통제실험

Random Assignment

- treatment 그룹과 control그룹을 동전던지기로 나눈다고 하면, 랜덤 배정된 샘플 수가 충분하다면, 실험참가자들의 특성이 평균적으로 두 그룹에 균일하게 분포될 것.
 - Relying on the law of large numbers, random assignment ensures that the subjects with various characteristics are distributed evenly across the treatment and control groups, so that they are comparable.

- 여기서 중요한 점은 Random Assignment를 할 때 sample size가 너무 적지 않게 주의 해야한다.
- 또, 다른 요인에 의해서 random성을 유지할 수 없을 때는 두 그룹이 균등하게 나뉘었는
 지 확인해야한다.

Randomized Experiments

Impact of computer use in the classroom on academic performance of college students (Carter et al. 2017)

Fig. 1. Experimental design.

- 이 실험에서 태블릿을 제외한 나머지요인들(성별, 인종, 이전성적 등)은 세 그룹에서 큰 차이가 없어야한다.
 - Impact of computer use in the classroom on academic performance of college students (Carter et al. 2017)

	Control (1)	Treatment 1 (laptops/tablets) (2)	Treatment 2 (tablets, face up) (3)	Both treatments vs. control (4)	Treatment 1 vs. control (5)	Treatment 2 vs. control (6)	
A. Baseline characteristics							
Female	0.17	0.20	0.19	0.03	0.06	0.00	
				(0.03)	(0.04)	(0.04)	
White	0.64	0.67	0.66	0.02	0.02	0.02	
				(0.04)	(0.04)	(0.05)	
Black	0.11	0.10	0.11	-0.02	-0.02	-0.03	
				(0.03)	(0.03)	(0.04)	
Hispanic	0.13	0.13	0.09	0.00	0.02	-0.03	
				(0.03)	(0.03)	(0.03)	
Age	20.12	20.15	20.15	0.03	0.05	0.06	
	[1.06]	[1.00]	[0.96]	(80.0)	(0.09)	(0.10)	
Prior military service	0.19	0.19	0.16	-0.02	0.00	-0.01	
3				(0.03)	(0.04)	(0.04)	
Division I athlete	0.29	0.40	0.35	0.05	0.07*	0.04	
				(0.04)	(0.04)	(0.05)	
GPA at baseline	2.87	2.82	2.89	-0.01	-0.05	0.03	Other confounder
	[0.52]	[0.54]	[0.51]	(0.04)	(0.05)	(0.05)	
Composite ACT	28.78	28.30	28.30	-0.34	-0.37	-0.54	
	[3.21]	[3.46]	[3.27]	(0.26)	(0.31)	(0.33)	
P-Val (Joint x2 Test)				0.610	0.532	0.361	
B. Observed computer (lar	top or tablet) us	e					
any computer use	0.00	0.81	0.39	0.62***	0.79***	0.40***	
				(0.02)	(0.03)	(0.04)	
Average computer use	0.00	0.57	0.22	0.42***	0.56***	0.24***	Main treatment
				(0.02)	(0.02)	(0.03)	
Observations	270	248	208	726	518	478	

Carter, S.P., Greenberg, K. and Walker, M.S., 2017. The impact of computer usage on academic performance: Evidence from a randomized trial at the United States Military Academy. *Economics of Education Review*, 56, pp.118-132.

(Wrong) Example of Randomized Experiments

• Effect of Medicine F on gingival inflammation (Hong et al. 2019) Table 2 Clinical parameters of the control and test groups at

Hong, J.Y., Lee, J.S., Choi, S.H., Shin, H.S., Park, J.C., Shin, S.I. and Chung, J.H., 2019. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients *BMC Oral Health*, 19(1), pp.1-8.

Table 2 Clinical parameters of the control and test groups at baseline, 4 weeks, and 8 weeks (mean \pm SD)

Clinical parameters	Control ($N = 45$)	Test $(N=48)$	p-value*
GI			0.042
	1.00 ± 0.46		
4 weeks	1.01 ± 0.46	1.02 ± 0.44 [†]	
8 weeks	0.90 ± 0.50	$0.95 \pm 0.49^{\dagger}$	
Δ baseline – 4 weeks	0.01 ± 0.38	$-0.18 \pm 0.33^{\ddagger}$	
Δ baseline – 8 weeks	-0.10 ± 0.40	-0.24 ± 0.38	
PI			0.138
	1.50 ± 0.68		
4 weeks	1.45 ± 0.68	1.55 ± 0.58	
8 weeks	1.48 ± 0.61	$1.42 \pm 0.52^{\dagger}$	
Δ baseline – 4 weeks	-0.05 ± 0.40	-0.06 ± 0.48	
Δ baseline – 8 weeks	-0.02 ± 0.39	-0.18 ± 0.52	
PD			0.381
Baseline	2.49 ± 0.39		
4 weeks	2.47 ± 0.37	2.52 ± 0.49 [†]	
8 weeks	2.39 ± 0.36	2.51 ± 0.51 [†]	
△ baseline – 4 weeks	-0.02 ± 0.25	-0.11 ± 0.29	
Δ baseline − 8 weeks	-0.10 ± 0.36	-0.11 ± 0.34	

- 몇명의 sample이 필요한지의 기준은 없지만 적어도 random assignment를 한 후 각 그룹이 균일하게 잘 배정되었는지 확인해야한다.
- 하지만 실험 시작 전부터 애초에 Control 그룹과 treatment 그룹의 염증지수 차이가 크다.
- 이 예시는 비교가능하지 않은 대상의 변화를 비교분석하는 것은 인과적 효과를 충분히 추론하지 못할 것이라는 것을 보여준다.

Session 2-3 실험 아닌, 실험 같은 준실험

What's Your Research Design?

- Randomized Experiment와 Quasi-Experiment의 유일한 차이점은 treatment에 대한 assignment방법.
- Self-Selection: 연구 대상들이 스스로 treatment를 받을지 결정하는 방법.
- Exogenous Shock : 외부요인에 의해서 treatment와 control 그룹이 나뉘는 방법. 보통 자연실험이라고 부른다.
- Discontinuity : 임의의 경계값을 기준으로 treatment와 control 그룹을 나누는 방법.
- 많은 경우에는 treatment와 control 그룹을 명확히 나누기 쉽지않다. 또한 나눌 수 있다 하더라도 전, 후의 데이터를 관찰할 수 없다면 위에서 언급한 방법을 활용하기 힘들다.
- 이럴 경우, treatment를 예측할 수 있고 동시에 오차항(결과에 영향을 줄 수 있지만 관찰할 수 없는 모든 변수)과 연관성이 없는 변수를 찾을 수 있는지의 여부를 판단해야 한다. 만약 찾을 수 있다면 Instrumental Variable을 사용할 수 있을 것.
- Instrumental Variable를 활용하기 어려운 경우, 관찰가능한 변수들만 가지고 선택편향을 통제하자는 접근이 가능. 이러한 방법으로는 Matching과 Regression이 있다.
- 가지고 있는 변수와 결과변수에 대한 관계가 있다고 가정의 접근이 가능하다면
 Regression을 사용. 하지만 가정의 접근이 불가능하다면 Matching방법론을 사용할 수
 있다. Matching은 가지고 있는 변수를 균일한 양 집단으로 나누는 것.

Random Assignment is not Always Feasible

- Randomized experiment와 Quasi-experiment 모두 비교 가능한 control 그룹을 구성하는 것이 목표이다.
- 하지만, Quasi-experiment는 counterfactual에 대한 명시적으로 증명을 해야할 책임이 있다.

Examples of Exogenous Shock for Quasi-Experiments

- Impact of the access to local finance on firm formation
 - 이런 상황은 실험이 불가능하다. 그래서 이 연구에서는 실험 대신 Shale boom(Natural Shock)을 통해 treatment 그룹을 정의했다.
 - shale boom에 의해 정의된 treatment 그룹과 control 그룹이 treatment인 local finance의 접근성을 제외하고 다른 요인은 얼마나 유사한지 확인해야한다.
 - 이런 경우 Exogenous Shock은 아무도 예상하지 못하는 경우이기 때문에 어느정 도 random하게 배정한 것과 유사하다고 인정할 수 있다.

Examples of Self-Selection for Quasi-Experiments

- Effect of customers' social media participation on their visit frequency
 - 。 이 연구의 treatment는 기업 소셜미디어 참여
 - 그렇기 때문에 treatment와 control그룹을 쉽게 나눌 수 있다.
 - 하지만, 소비자들이 어떤 의도를 가지고 참여를 했는지 알수 없기 때문에 두 집단이 비교 가능한지 의구심이 들 수밖에 없다.
- Example : Effect of electronic word of mouth(sns상에서 친구의 입소문이 어떤 역할 을 하는지)
 - treatment : 팔로워 중 해당 기업을 팔로우한 그룹, control : 팔로워 중 해당 기업을 팔로우하지 않은 그룹
 - 이런 경우는 위의 실험보다는 좀 더 안전한 경우. 왜냐하면, 두 그룹 모두 나의 팔로 워이기 때문에 어느정도 특성이 유사할 것이라고 주장하기 용이하기 때문.

Examples of Discontinuity for Quasi-Experiments

- Drinking and public health/death
 - 음주 가능 연령은 임의로 정한 숫자. 하지만 이 숫자를 기준으로 사망률의 차이가 생긴다면 음주가 미치는 인과적 효과라고 인정할 수 있다.

Session 2-4 준실험 분석도구: 이중차분법 & 회귀불연속

Difference-in-Difference (DID)

	Before Treatment	After Treatment
Treatment Group	T_B	T_A (counterfactual: T'_A)
Control Group	C_B	C_A
Counterfactual outcome in the absence of treatment	T_B	$T_B + (T_A' - T_B)$ Change for the treated in the absence of treatment (not observed)
Counterfactual outcome inferred from the control group	T_B	Inferred from the control group unaffected by the treatment Inferred from the group to the treatment group in the absence of the treatment?

- counterfactual은 treatment가 없었다면 있었을 잠재적 결과. 그럼 T_A' 는 $T_B+(T_A'-T_B)$ 로 표현가능하고 이는 시간에 따라 변하지 않는 값과 시간에 따라 변하는 값을 구분할 수 있다.
- 하지만 $(T_A' T_B)$ 는 관찰할 수 없으니 counterfactual과 가까운 control그룹을 찾아서 treatment를 받지 않는 control 그룹의 시간에 따른 변화량과 비슷하다고 가정할 수 있다면 대체하여 counterfactual을 추정할 수 있지 않을까? \Rightarrow DID의 핵심 아이디어.
- DID estimator = $(T_A-T_B)-(C_A-C_B)=T_A-[T_B+(C_A-C_B)]$
- ullet $[T_B+(C_A-C_B)]$: Inferred Counterfactual
- 따라서 control그룹이 treatment가 없을때의 treatment 그룹과 얼마나 비교가능한지 여부가 DID분석의 신빙성을 결정하게 될 것.
- 그럼 왜 Before Period가 필요할까?
 - 。 목표는 $T_A T_A'$ 이고, 이는 $T_A C_A$ 로 대체할 수도 있을 것. 하지만 DID에서는 T_A' 전체를 control그룹으로 치환하는 것이 아니라 시간에 따른 변화량만 control그룹으로 치환한다. 즉, DID는 시간에 따라 변화하는 부분만 비슷하면 된다는 이점이 있다.
 - 또한 시간에 따라 변화하는 양은 데이터를 통해 어느정도 검증을 할 수 있다.

Identification Assumption for DID

• parallel trends assumption : 시간에 따른 변화량이 같아야한다.

6

Figure 1 NBC vs. Non-NBC Piracy Surrounding December 1, 2007

Matching Techniques

- 비교가능한 control 그룹을 찾을 수 없을 때 사용할 수 있는 방법.
- 이는 우리가 가질 수 있는 변수들 중 평균적으로 유사한 샘플들만 서로 matching하는 방법.
- Matching에는 PSM, CEM이라는 두가지 방법이 있다.

Propensity Score Matching(PSM)

- propensity score를 계산하고 이 score가 유사한 샘플들끼리 서로 matching을 하자.
- propensity score : treatment 그룹에 속할 확률
- 모든 샘플을 score 하나로만 matching을 하기때문에 만약에 변수가 굉장히 많다면 경 우에 따라 어떤 변수들은 차이가 많이 날 수 있다. 이를 해결하기 위한 방법이 CEM.

Coarsened Exact Matching(CEM)

• 각 변수별로 구간을 나누고 구간에 따라 일치하는 샘플끼리 매칭하자.

Regression Discontinuity (RD)

- RD는 running variable의 modeling이 핵심.
- 즉, discontinuous jump가 있을 때와 없을 때의 차이를 바탕으로 treatment effect를 구하고자 함.

Identification Assumption for RD

• 모델링을 선형으로 할때와 비선형으로 할 때, jump가 일어날수도 안일어날수도 있다. 즉, 모델링에 굉장히 민감하다는 한계점이 있다.