Intégration sur un segment

Pour s'exercer au calcul de primitives

Déterminer une primitive des fonctions suivantes (sur un intervalle à préciser). Réponses en fin de feuille.

$$1) x \mapsto \frac{1}{x^{2/3}}$$

$$6) x \mapsto \frac{\ln(x)}{x}$$

$$2) x \mapsto \sqrt{1 - 4x}$$

$$7) x \mapsto \ln(x^3)$$

3)
$$x \mapsto \frac{1}{(3x-1)^4}$$

8)
$$x \mapsto \ln(2x)$$

4)
$$x \mapsto x\sqrt{x}$$

9)
$$x \mapsto \frac{1}{x \ln^2(x)}$$

$$5) x \mapsto \frac{4}{r^5}$$

$$10) \ x \mapsto \frac{2}{x \ln(x)}$$

Calculs d'intégrales

Exercice 1 (Intégrales basiques)

(a)
$$\int_0^1 (3x^3 - 2x^2 + x - 1) dx$$

(b)
$$\int_a^b e^{2t} dt$$
 (où $a, b \in \mathbb{R}$) (c) $\int_0^1 \frac{1}{t+1} dt$

(c)
$$\int_0^1 \frac{1}{t+1} dt$$

Exercice 2 (Plus avancé)

(a)
$$\int_{2}^{3} \frac{dt}{t \ln(t)}$$

(b)
$$\int_0^{1/2} \frac{1}{\sqrt{1-x}} dx$$

(c)
$$\int_0^{\frac{\pi}{2}} \sin(x)^3 \cos(x) dx$$
 (d) $\int_0^{1/2} \frac{1}{x^2 - 1} dx$

(d)
$$\int_0^{1/2} \frac{1}{x^2 - 1} dx$$

(Chercher α, β tels que $\frac{1}{x^2-1} = \frac{\alpha}{x+1} + \frac{\beta}{x-1}$)

(e)
$$\int_0^2 t|t^2 - 1|dt$$
.

Exercice 3 (IPP)

(a)
$$\int_{1}^{e} x^{2} \ln(x) dx$$
 (b) $\int_{0}^{1} t^{3} e^{t} dt$.

(b)
$$\int_{0}^{1} t^{3} e^{t} dt$$
.

(c)
$$\int_{-\pi/2}^{\pi/2} x^3 \cos(x) dx$$
. (d) $\int_0^1 \ln(1+t^2) dt$.

(d)
$$\int_0^1 \ln(1+t^2)dt$$

Exercice 4 (Recherche de primitives 1)

Déterminer une primitive sur \mathbb{R} de :

(a)
$$x \mapsto x \cos(2x)$$

Exercice 5 (Changements de variable)

(a)
$$\int_0^2 x\sqrt{2x+1}dx.$$

(b)
$$\int_0^2 \frac{1}{x^2 + 4} dx$$
 (se ramener à $\frac{1}{x^2 + 1}$...)

(c)
$$\int_1^4 e^{\sqrt{t}} dt$$
 (poser $u = \sqrt{t}$).

(d) Plus difficile :
$$\int_{1}^{3} \frac{y}{(y^2+1)(y^2+2)} dy$$

(d) Plus difficile:
$$\int_{1}^{\infty} \frac{1}{(y^2+1)(y^2+2)} dy$$
(poser $u=y^2$)

11)
$$x \mapsto 3^x$$

15)
$$x \mapsto \cos(4x)$$

$$12) \ x \mapsto \frac{e^x}{1 + e^{2x}}$$

$$16) \ x \mapsto \frac{e^x}{\sqrt{1+e^x}}$$

$$13) \ x \mapsto \frac{2x}{1 - x^2}$$

17)
$$x \mapsto (x-1)(x-3)^2$$

14)
$$x \mapsto \frac{1}{\cos^2(2x)}$$

18)
$$x \mapsto \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

Exercice 6 (Recherche de primitives 2)

Déterminer une primitive sur $\mathbb R$ de :

(a)
$$x \mapsto \frac{1}{x^2 + 9}$$
 (b) $x \mapsto \frac{1}{2x^2 + 1}$

(b)
$$x \mapsto \frac{1}{2x^2 + 1}$$
.

(Penser à un changement de variable adéquat)

Exercice 7 (Changement trigonométrique)

1. Montrer que
$$\forall t \in \mathbb{R}$$
, $\cos(t)^2 = \frac{1 + \cos(2t)}{2}$.

2. Calculer
$$\int_0^1 \sqrt{1-u^2} du$$
 en posant $u = \sin(t)$.

Sommes de Riemann

Exercice 8 (Quelques limites de sommes)

Calculer
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n+k}$$
 et $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \cos\left(\frac{k\pi}{2n}\right)$

Exercice 9 ("Produit" de Riemann?!)

Calculer
$$\lim_{n \to +\infty} \frac{1}{n^2} \prod_{k=1}^n \left(n^2 + k^2\right)^{1/n}$$

Suites d'intégrales

Exercice 10 (Une suite)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Calculer I_0, I_1 et I_2 .
- 2. Etudier le sens de variation de $(I_n)_{n\geqslant 0}$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $0 \leqslant I_n \leqslant \frac{1}{n+1}$ et en déduire $\lim_{n\to+\infty} I_n$.

Exercice 11 (Une autre suite)

- 1. (a) Montrer que : $\forall x \ge 0$, $0 \le \ln(1+x) \le x$.
- (b) En déduire $\lim_{n\to+\infty}\int_0^1 \ln(1+x^n)dx$.
- 2. On pose $u_n = \int_0^1 \frac{x^n}{1+x^n} dx$, pour tout $n \in \mathbb{N}^*$.
- (a) Montrer que $u_n = \frac{\ln(2)}{n} \frac{1}{n} \int_0^1 \ln(1+x^n) dx$.
- (b) En déduire $\lim_{n \to +\infty} u_n$ et $\lim_{n \to +\infty} nu_n$.

Exercice 12 (Intégrales de Wallis)

On pose, pour tout $n \in \mathbb{N}$, $W_n = \int_{a}^{\frac{a}{2}} (\sin(t))^n dt$.

- 1. Calculer W_0 et W_1 .
- 2. (a) Montrer que $(W_n)_{n\geq 0}$ est décroissante.
- (b) En déduire qu'elle converge.
- 3. (a) À l'aide d'une intégration par partie, montrer : $\forall n \in \mathbb{N}, \ W_{n+2} = (n+1)(W_n - W_{n+2}).$

et obtenir W_{n+2} en fonction de W_n .

(b) Déduire (rapidement) les formules :

$$\forall n \in \mathbb{N}, \ W_{2n} = \frac{(2n)!}{4^n (n!)^2} \frac{\pi}{2} \text{ et } W_{2n+1} = \frac{4^n (n!)^2}{(2n+1)!}.$$

4. Montrer que $\lim_{n \to +\infty} \frac{W_{n+1}}{W_n} = 1$. (Utiliser la décroissance pour encadrer W_{n+1} .)

- 5. (a) Montrer: $\forall n \in \mathbb{N}^*, \ nW_nW_{n-1} = \frac{\pi}{2}$.
- (b) Déduire $\lim_{n \to +\infty} \sqrt{n} W_n = \sqrt{\frac{\pi}{2}}$ et $\lim_{n \to +\infty} W_n$.

 $(Ecrire\ (W_n)^2 = W_n W_{n-1} \frac{W_n}{W_{n-1}})$

Fonctions définies par une intégrale

Exercice 13 (Dériver une fonction des bornes)

Déterminer le domaine de définition des fonctions suivantes, justifier qu'elles y sont de classe C^1 et calculer leur dérivée.

(a)
$$f(x) = \int_x^1 \sqrt{1-t} \, dt$$
 (b) $g(x) = \int_x^{x^2} \frac{\sin(t)}{t^2} \, dt$.

Exercice 14 (Étude d'une fonction)

Soit f la fonction définie par $f(x) = \int_{x}^{2x} \frac{dt}{\ln(1+t^2)}$

- 1. Déterminer le domaine de définition D_f .
- 2. Etudier la parité de f.
- 3. Montrer que f est de classe C^1 sur D_f , calculer f'.
- 4. À l'aide d'un encadrement, déterminer $\lim_{x \to +\infty} f(x)$. En déduire $\lim_{x \to \infty} f(x)$.

Un peu de théorie

Exercice 15 (Limite de Fourier)

Soit f une fonction de classe C^1 sur [a, b]. A l'aide d'une intégration par parties, montrer que $\lim_{n \to +\infty} \int_a^b f(t) \sin(nt) dt = 0.$

Exercice 16 (Point fixe)

Soit $f \in C([0,1],\mathbb{R})$ telle que $\int_0^1 f(x)dx = \frac{1}{2}$. Montrer qu'il existe $c \in [0,1]$ tel que f(c) = c. (Raisonner par l'absurde).

Exercice 17 (Inégalité de Cauchy-Schwarz)

Soient f et g deux fonctions continues sur [a, b]. On veut montrer l'inégalité :

$$\left(\int_{a}^{b} f(t)g(t)dt\right)^{2} \le \left(\int_{a}^{b} f(t)^{2}dt\right) \left(\int_{a}^{b} g(t)^{2}dt\right)$$

- 1. Traiter le cas où f = 0.
- 2. On pose $\forall x \in \mathbb{R}, \ P(x) = \int_{\mathbb{R}}^{b} (xf(t) + g(t))^{2} dt$.
- (a) Écrire le polynôme P sous forme "développée".
- (b) Que dire du signe de P sur \mathbb{R} ?
- (c) Calculer le discriminant et conclure.
- 3. Application : on suppose f > 0 sur [a, b].

Montrer: $\left(\int_a^b f(t) dt\right) \left(\int_a^b \frac{1}{f(t)} dt\right) \ge (b-a)^2$.

Solutions des calculs de primitives :