

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Variable Compleja I

Resumen

Autor: Jesús Muñoz Velasco

Teorema 1.1. Sea A un subconjunto no vacío de \mathbb{C} y $f \in \mathcal{F}(A)$. Como $A \subset \mathbb{R}^2$, podemos considerar las funciones $u, v : A \to \mathbb{R}$ definidas, para todo $(x, y) \in A$ por

$$u(x,y) = Re \ f(x+iy)$$
 y $v(x,y) = Im \ f(x+iy)$

Para $z_0 = (x_0, y_0) \in A^{\circ}$, las siguientes afirmaciones son equivalentes:

- 1. La función f es derivable en el punto z_0 .
- 2. Las funciones u y v son diferenciables en el punto (x_0, y_0) verificando que

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \qquad y \qquad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Estas ecuaciones reciben el nombre de ecuaciones de Cauchy-Riemann.

Caso de que se cumplan 1. y 2., se tiene:

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Teorema 2.1 (**Test de Weierstrass**). Sea $\sum_{n\geqslant 0} f_n$ una serie de funciones complejas definidas en un conjunto $A\subset \mathbb{C}$, y sea $B\subset A$. Supongamos que, para cada $n\in \mathbb{N}\cup\{0\}$, existe una constante $M_n\in\mathbb{R}$ tal que:

$$|f_n(z)| \leqslant M_n \qquad \forall z \in B$$

Si la serie de números reales $\sum_{n\geq 0} M_n$ es convergente, entonces la serie de funciones $\sum_{n\geq 0} f_n$ converge absoluta y uniformemente en B.

Lema 2.2 (Lema de Abel). Dado $\rho \in \mathbb{R}^+$, supongamos que la sucesión $\{|\alpha_n|\rho^n\}$ está mayorada. Entonces la serie de potencias $\sum_{n\geqslant 0} \alpha_n (z-a)^n$ converge absolutamente en el disco abierto $D(a,\rho)$ y uniformemente en cada compacto K que esté contenido en dicho disco.

Proposición 2.3 (Fórmula de Cauchy-Hadamard). Sea R el radio de convergencia de la serie $\sum_{n\geq 0} \alpha_n z^n$

- 1. Si la suceción $\{\sqrt[n]{|\alpha_n|}\}$ no está mayorada, entonces R=0.
- 2. Si $\{\sqrt[n]{|\alpha_n|}\} \to 0$, entonces $R = \infty$.
- 3. En otro caso se tiene: $R = \frac{1}{\lim \sup \{\sqrt[n]{|\alpha_n|}\}}$

Corolario 2.3.1. Supongamos que $\alpha_n \in \mathbb{C}^*$ para todo $n \in \mathbb{N}$ y sea R el radio de convergencia de la serie de potencias $\sum_{n \geq 0} \alpha_n z^n$.

- 1. Si $\{\alpha_{n+1}/\alpha_n\} \to \infty$, entonces R = 0.
- 2. Si $\{\alpha_{n+1}/\alpha_n\} \to 0$, entonces $R = \infty$.
- 3. Si $\{\alpha_{n+1}/\alpha_n\} \to \lambda \in \mathbb{R}^+$, entonces $R = 1/\lambda$.

Teorema 3.1 (Caracterización de la existencia de primitiva). Sea Ω un abierto no vacío de \mathbb{C} y $f \in \mathcal{C}(\Omega)$. Las siguientes afirmaciones son equivalentes:

- 1. Existe $F \in \mathcal{H}(\Omega)$ tal que F'(z) = f(z) para todo $z \in \Omega$.
- 2. Para todo camino cerrado γ en Ω se tiene que $\int_{\gamma} f(z)dz = 0$.

Teorema 4.1 (Teorema local de Cauchy). Si Ω es un dominio estrellado, entonces toda función admite una primitiva en Ω , es decir, existe $F \in \mathcal{H}(\Omega)$ tal que F'(z) = f(z) para todo $z \in \Omega$. Equivalentemente se tiene

$$\int_{\gamma} f(z)dz = 0$$

Para toda función $f \in \mathcal{H}(\Omega)$ y todo camino cerrado γ en Ω .

Proposición 4.2 (**Fórmula de Cauchy**). Sean Ω un abierto de \mathbb{C} y $f \in \mathcal{H}(\Omega)$. Dado $a \in \Omega$, sea $r \in \mathbb{R}^+$ tal que $\overline{D}(a,r) \subset \Omega$. Se tiene entonces:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw$$
 $\forall z \in D(a,r)$

Teorema 5.1 (Desarrollo en serie de Taylor). Si Ω es un abierto no vacío de \mathbb{C} y $f \in \mathcal{H}(\Omega)$, entonces f es analítica en Ω y, en particular, f es indefinidamente derivable en Ω . Además:

1. Si $\Omega = \mathbb{C}$, para todo $a \in \mathbb{C}$, la serie $\sum_{n \geq 0} \frac{f^{(n)}(a)}{n!} (z-a)^n$ tiene radio de convergencia infinito y se verifica que:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in \mathbb{C}$$

2. Si $\Omega \neq \mathbb{C}$ y para cada $a \in \Omega$ tomamos $R_a = d(a, \mathbb{C} \setminus \Omega)$, la serie $\sum_{n \geq 0} \frac{f^{(n)}(a)}{n!} (z - a)^n$ tiene radio de convergencia mayor o igual que R_a y se verifica que

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \qquad \forall z \in D(a, R_a)$$

Proposición 5.2 (Teorema de Cauchy para las derivadas). Sean Ω un abierto de \mathbb{C} y $f \in \mathcal{H}(\Omega)$. Dado $a \in \Omega$, sea $r \in \mathbb{R}^+$ tal que $\overline{D}(a,r) \subset \Omega$. Se tiene entonces:

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{C(a,r)} \frac{f(w)}{(w-z)^{k+1}} dw \qquad \forall z \in D(a,r), \ \forall k \in \mathbb{N} \cup \{0\}$$

Teorema 5.3 (Teorema de extensión de Riemann). Sean Ω un abierto de \mathbb{C} , $z_0 \in \Omega$ y $f \in \mathcal{H}(\Omega \setminus \{z_0\})$. Las siguientes afirmaciones son equivalentes:

- 1. Existe $g \in \mathcal{H}(\Omega)$ tal que g(z) = f(z) para todo $z \in \Omega \setminus \{z_0\}$.
- 2. f tiene límite en el punto z_0 .
- 3. Existen $\delta, M > 0$ tales que $|f(z)| \leq M$ para todo $z \in \Omega$ que verifique $0 < |z z_0| < \delta$.
- 4. $\lim_{z \to z_0} (z z_0) f(z) = 0.$

Proposición 6.1 (Desigualdades de Cauchy). Sean Ω un abierto de \mathbb{C} , $f \in \mathcal{H}(\Omega)$ y $a \in \Omega$. Dado $r \in \mathbb{R}^+$ tal que $\overline{D}(a,r) \subset \Omega$, sea $M(f,a,r) = \max\{|f(z)| : z \in C(a,r)^*\}$. Se tiene entonces:

$$\frac{|f^{(n)}(a)|}{n!} \leqslant \frac{M(f, a, r)}{r^n} \qquad \forall n \in \mathbb{N} \cup \{0\}$$

Teorema 6.2 (**Teorema de Liouville**). Toda función entera y acotada es constante. De hecho, la imagen de cualquier función entera no constante es un conjunto denso en \mathbb{C} , es decir, para $f \in \mathcal{H}(\mathbb{C})$ tal que $\exists M \in \mathbb{R}^+$ de forma que $|f(z)| \leq M$ $\forall z \in \mathbb{C}$, entonces se tiene que $\overline{Im(f)} = \mathbb{C}$.

Teorema 6.3 (Teorema fundamental de Álgebra). El cuerpo \mathbb{C} es algebraicamente cerrado, es decir, si P es un polinomio con coeficientes complejos, no constante, existe $z \in \mathbb{C}$ tal que P(z) = 0.

Proposición 6.4 (Principio de identidad para funciones holomorfas). Sea Ω un dominio y $f, g \in \mathcal{H}(\Omega)$. Si A es un subconjunto de Ω tal que f(a) = g(a) para todo $a \in A$, y $A' \cap \Omega \neq \emptyset$, entonces f y g son idénticas: f(z) = g(z) para todo $z \in \Omega$.

Teorema 7.1 (Teorema de convergencia de Weierstrass). Sea Ω un abierto no vacío de \mathbb{C} y, para cada $n \in \mathbb{N}$, sea $f_n \in \mathcal{H}(\Omega)$. Supongamos que la sucesión $\{f_n\}$ converge uniformemente en cada subconjunto compacto de Ω a una función $f: \Omega \to \mathbb{C}$, en particular:

$$f(z) = \lim_{n \to \infty} f_n(z) \qquad \forall z \in \Omega$$

Entonces $f \in \mathcal{H}(\Omega)$ y, para cada $k \in \mathbb{N}$, se tiene que la sucesión $\{f_n^{(k)}\}$ de las k-ésimas derivadas, converge a la derivada k-ésima $f^{(k)}$, uniformemente en cada subconjunto compacto de Ω , en particular:

$$f^{(k)}(z) = \lim_{n \to \infty} f_n^{(k)}(z) \qquad \forall z \in \Omega, \ \forall k \in \mathbb{N}$$

Este resultado también se puede usar para series

Teorema 7.2 (Holomorfía de la integral dependiente de un parámetro). Sea γ u ncamino, Ω un abierto del plano $y \Phi : \gamma^* \times \Omega \to \mathbb{C}$ una función continua. Supongamos que, para cada $w \in \gamma^*$, la función $\Phi_w : \Omega \to \mathbb{C}$ definida por $\Phi_w(z) = \Phi(w, z)$ para todo $z \in \Omega$, es holomorfa en Ω . Entonces, definiendo

$$f(z) = \int_{\gamma} \Phi(w, z) dw \qquad \forall z \in \Omega$$

se obtiene una función holomorfa: $f \in \mathcal{H}(\Omega)$. Además, para cada $k \in \mathbb{N}$ y cada $z \in \Omega$, la función $w \mapsto \Phi_w^{(k)}(z)$, de γ^* en \mathbb{C} , es continua y se verifica que

$$f^{(k)}(z) = \int_{\gamma} \Phi_w^{(k)} dw = \int_{\gamma} \frac{\partial^k \Phi}{\partial z^k}(w, z) \qquad \forall z \in \Omega, \forall k \in \mathbb{N}$$

Proposición 8.1 (Propiedad de la media). Sea Γ un abierto de \mathbb{C} y $f \in \mathcal{H}(\mathbb{C})$. Para $a \in \Omega$ y $r \in \mathbb{R}^+$ tales que $\overline{D}(a,r) \subset \Omega$, se tiene:

$$f(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + re^{it}) dt$$

Teorema 8.2 (Principio del módulo máximo). Sea Ω un dominio $y f \in \mathcal{H}(\Omega)$. Supongamos que |f| tiene un máximo relativo en un punto $a \in \Omega$, es decir, existe $\delta > 0$ tal que $D(a, \delta) \subset \Omega$ y $|f(z)| \leq |f(a)|$ para todo $z \in D(a, \delta)$. Entonces f es constante.

Teorema 8.3 (Principio del módulo mínimo). Sea Ω un dominio $y \ f \in \mathcal{H}(\Omega)$. Supongamos que |f| tiene un mínimo relativo en un punto $a \in \Omega$ es decir, existe $\delta > 0$ tal que $D(a, \delta) \subset \Omega$ y $|f(z)| \ge |f(a)|$ para todo $z \in D(a, \delta)$. Entonces, o bien f(a) = 0, o bien f es constante.

Teorema 8.4 (Teorema de la función inversa global). Sea U un dominio y $f \in \mathcal{H}(U)$ una función inyectiva. Entonces V = f(U) es un dominio y $f^{-1} \in \mathcal{H}(V)$ con

$$(f^{-1})'(f(z)) = \frac{1}{f'(z)} \qquad \forall z \in U$$

Teorema 9.1 (Forma general del teorema de Cauchy y la fórmula integral de Cauchy). Sea Ω un abierto del plano y Γ un ciclo en Ω , nul-homólogo con respecto a Ω . Para toda función $f \in \mathcal{H}(\Omega)$ se tiene:

1.
$$Ind_{\Gamma}(z)f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w-z} dw$$
 $\forall z \in \Omega \setminus \Gamma^*$

$$2. \int_{\Gamma} f(w)dw = 0$$

Teorema 10.1 (Desarrolo en serie de Laurent). Sea $\Gamma = A(a; r, R)$ un anillo abierto arbitrario y $f \in \mathcal{H}(\Omega)$. Entonces exite una única serie de Laurent no trivial $\sum_{n \in \mathbb{Z}} c_n(z-a)^n$, cuyo anillo de convergencia contiene a Ω , que verifica:

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \quad \forall z \in \Omega$$

De hecho, para cualquier $\rho \in \mathbb{R}^+$ que verifique $r < \rho < R$, se tiene;

$$c_n = \frac{1}{2\pi i} \int_{C(a,\rho)} \frac{f(w)}{(w-a)^{n+1}} dw \qquad \forall n \in \mathbb{Z}$$

Proposición 10.2 (Caracterización de los puntos regulares). Las siguientes afirmaciones son equivalentes:

- 1. a es un punto regular de f.
- 2. $c_{-n} = 0$ para todo $n \in \mathbb{N}$.
- 3. Existe $g \in \mathcal{H}(\Omega)$ tal que f(z) = g(z) para todo $z \in \Omega \setminus \{a\}$.
- 4. f tiene límite en a: $\lim_{z \to a} f(z) = w \in \mathbb{C}$.
- 5. Existen $M, \delta \in \mathbb{R}^+$ tales que $D(a, \delta) \subset \Omega$ y $|f(z)| \leq M$ para todo $z \in D(a, \delta) \setminus \{a\}$.
- 6. $\lim_{z \to a} (z a) f(z) = 0$

Proposición 10.3 (Caracterización de los polos teniendo en cuenta su orden). Dado $k \in \mathbb{N}$, las siguientes afirmaciones son equivalentes:

- 1. a es un polo de orden k de f.
- 2. $c_{-k} \neq 0$ y $c_{-n} = 0$ para n > k.
- 3. $\lim_{z \to a} (z a)^k f(z) = \alpha \in \mathbb{C}^*$.
- 4. Existe una función $\psi \in \mathcal{H}(\Omega)$ con $\psi(a) \neq 0$ tal que:

$$f(z) = \frac{\psi(z)}{(z-a)^k}$$
 $\forall z \in \Omega \setminus \{a\}$

Proposición 10.4 (Caracterización de los polos). La función f tiene un polo en a si y solo si diverge en a.

Teorema 10.5 (Teorema de Casorati). Las siguientes afirmaciones son equivalentes:

1. La función f tiene una singularidad esencial en el punto a

- 2. Para cada $\delta \in \mathbb{R}^+$ con $D(a, \delta) \subset \Omega$, el conjunto $f(D(a, \delta) \setminus \{a\})$ es denso en \mathbb{C} .
- 3. Para cada $w \in \mathbb{C}$ existe una sucesión $\{z_n\}$ de puntos de $\Omega \setminus \{a\}$ tal que $\{z_n\} \to a$ y $\{f(z_n)\} \to w$. También existe una sucesión $\{u_n\}$ de puntos de $\Omega \setminus \{a\}$ tal que $\{u_n\} \to a$ y $\{f(u_n)\} \to \infty$.

Corolario 10.5.1. Si g es una función entera no polinómica, entonces $\exists \{z_n\} \to \infty$ donde $z_n \in \mathbb{C} \setminus D(z, \delta), \ \delta > 0 \ \forall n \in \mathbb{N} \ y$ tal que $g(z_n) \to z \in \mathbb{C}$ o $g(z_n) \to \infty$.

Teorema 11.1 (Teorema de los residuos). Sea Ω un abierto del plano, A un subconjunto de Ω tal que $A' \cap \Omega = \emptyset$, $y \in \mathcal{H}(\Omega \setminus A)$. Sea Γ un ciclo en $\Gamma \setminus A$, nul-homólogo con respecto a Ω . Entonces, el conjunto $\{a \in A : Ind_{\Gamma}(a) \neq 0\}$ es finito y se verifica que

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{a \in A} Ind_{\Gamma}(a)Res(f(z), a)$$

Teorema 11.2 (Teorema de l'Hôpital para funciones holomorfas). Sean $a \in \mathbb{C}$, $R \in \mathbb{R}^+$ y $f, g \in \mathcal{H}(D(a, R))$. Supongamos que f(a) = g(a) = 0 y que g no es idénticamente nula. Entonces existe un $\delta \in]0, R[$, tal que $g(z) \neq 0$ y $g'(z) \neq 0$ para todo $z \in D(a, \delta) \setminus \{a\}$. Además, se verifica una de las dos afirmaciones siguientes:

1.
$$\lim_{z \to a} \frac{f(z)}{g(z)} = \lim_{z \to a} \frac{f'(z)}{g'(z)} = \alpha \in \mathbb{C}.$$

2.
$$\frac{f(z)}{g(z)} \to \infty \ (z \to a) \ y \ \frac{f'(z)}{g'(z)} \to \infty \ (z \to a).$$

12. Ejercicios tutoria

Ejercicio 12.1.

$$\int_{-\infty}^{\infty} \frac{x \operatorname{sen}(\pi x)}{x^2 - 5x + 6} dx \qquad f(z) = \frac{z e^{i\pi z}}{z^2 - 5z + 6} \qquad f \in \mathcal{H}(\mathbb{C} \setminus \{2, 3\})$$

Fijamos R > 3 y $\varepsilon > 0$ tal que $2 + \varepsilon < 3 - \varepsilon$ y $3 + \varepsilon < R$. Por el teorema de los residuos tenemos que

$$\int_{\Gamma_{R,\varepsilon}} f(z)dz = 0 =$$

$$\int_{\gamma_R} f(z)dz + \int_{-R}^{2-\varepsilon} f(x)dx + \int_{2^{\circ}\varepsilon}^{3-\varepsilon} f(x)dx + \int_{3+\varepsilon}^{R} f(x)dx + \int_{\sigma_{\varepsilon}} f(z)dz + \int_{\xi\varepsilon} f(z)dz$$

Tomando límite con $R \to \infty$ y $\varepsilon \to 0$ obtenemos

$$\int_{-\infty}^{+\infty} f(x) dx = -\lim_{\varepsilon \to 0} \int_{\sigma_{\varepsilon}} f(z) dz - \lim_{\varepsilon \to 0} \int_{\xi \varepsilon} f(z) dz$$

Proposición 12.1. Sea $f \in \mathcal{H}(\Omega \setminus \{a\})$ abierto, a un polo de orden 1 de f, $\gamma_{\varepsilon} : [\alpha, \beta] \to \mathbb{C}$, $(\alpha < \beta)$. Tenemos que $\gamma_{\varepsilon}(t) = a + \varepsilon e^{it}$ es la circunferencia de centro a y radio ε . Entonces

$$\lim_{\varepsilon \to 0} \int_{\gamma \varepsilon} f(z) dz = i(\beta - \alpha) Res(f(z), a)$$

Demostración. f tiene un polo en a. Entonces $\exists \psi \in \mathcal{H}(\mathbb{C})$ con $\psi(a) \neq 0$ y $f(z) = \frac{\psi(z)}{(z-a)} \ \forall z \in \Omega \setminus \{a\}.$

$$\int_{\gamma_{\varepsilon}} f(z)dz = \int_{\gamma_{\varepsilon}} \frac{\psi(z)}{(z-a)}dz = \int_{\alpha}^{\beta} \frac{\psi(a+\varepsilon e^{it})}{\varkappa + \varepsilon e^{it} - \varkappa} i\varepsilon e^{it}dz = \int_{\alpha}^{\beta} \frac{\psi(a+\varepsilon e^{it})}{\varkappa e^{it}} i\varkappa e^{it}dz$$

$$\lim_{\varepsilon \to 0} i \int_{\alpha}^{\beta} \psi(a + \varepsilon e^{it}) dt = \lim_{z \to a} i(\beta - \alpha) \psi(z) = \lim_{z \to a} i(\beta - \alpha) f(z)(z - a) = i(\beta - \alpha) Res(f(z), a)$$

f no es entera pol. Entonces existe sucesión $\{w_n\}$ de $\mathbb{C} \setminus D(0,n)$ tal que $\{w_n\} \to \infty$ $\{f(w_n)\} \to 0$. Existe una sucesión $\{g(v_n)\}$ tal que $g(v_n) = w_n$. Entonces $\{f(g(v_n))\} \to v^3 = \infty$.

A es denso en $X \iff \overline{A} = X$