Conjuntos

Hirch, Juan Manuel

CONTENTS

Nociones primitivas
Definición por extensión
Definición por comprensión
Conjunto universal
El conjunto vacío
Existencia del conjunto vacío
Unicidad del conjunto vacío
Lema
Comparación de conjuntos
Igualdad de conjuntos
Contención de conjuntos
Contención estricta
Diagramas de Venn
Cardinalidad
Cardinalidad de conjuntos finitos
Cardinalidad de conjuntos infinitos
Conjunto de partes
Operaciones con conjuntos
Union
Intersección
Diferencia
Complemento
Leves de teoría de conjuntos

Nociones primitivas

Un conjunto puede tener un elemento y decimos que el elemento pertenece al conjunto o puede no tenerlo entonces decimos que el elemento **no** pertenece al conjunto. Si al conjunto lo llamamos A (letras mayúsculas) y al elemento x (letras minúsculas), "x pertenece a A" se nota $x \in A$ y "x no pertenece a A" se nota $x \notin A$.

Definición por extensión

Sea A un conjunto, entonces si a, b, c pertenecen a A y son los únicos elementos de A podemos definir al conjunto como $A = \{a, b, c\}$ así queda explícito entre llaves la lista de los elementos de A.

Definición por comprensión

Sea p(x) una proposición abierta y A un conjunto, el nuevo conjunto B que contiene todos los elementos x de A tal que p(x) es verdadera es por $B=\{x\in A:p(x)\}.$

ACLARACIÓN:

- Se cumplen: $\{x \in A: p(x)\} = \{x \in \mathcal{U}: x \in A \land p(x)\}$ $*x \in B \Leftrightarrow x \in A \land p(x)$

Conjunto universal

Un conjunto universal \mathcal{U} es aquel del cual tomamos los elementos para determinar la veracidad o falsedad de proposiciones abiertas cuantificadas.

EL CONJUNTO VACÍO

Existencia del conjunto vacío.

Existe el conjunto vacío \varnothing y es aquel que no tiene elementos. $\exists \varnothing [\forall x[x \notin \varnothing]].$

Unicidad del conjunto vacío.

Existe un único conjunto vacío. Sea A un conjunto, si no existe ningún x tal que $x \in A$ se da que $A = \emptyset$.

Lema

Sea A un conjunto, entonces $\varnothing \subseteq A$ y si A tiene al menos un elemento se cumple $\varnothing \subset A$.

Comparación de conjuntos

Igualdad de conjuntos

Se dice que dos conjuntos A y B son iguales y se nota A=B si $x\in A \Leftrightarrow x\in B$.

Contención de conjuntos

Decimos que un conjunto A esta contenido en el conjunto B o que A es subconjunto de B y notamos $A \subseteq B$ si se cumple $x \in A \Rightarrow x \in B$. Si A no esta contenido en B, osea $\neg(A \subseteq B)$ entonces $A \nsubseteq B$.

Contención estricta

Se dice que A esta contenido estrictamente en B y se nota $A\subset B$ si se cumple $A\subseteq B\land A\neq B.$

PROPIEDADES:

Para los conjuntos A, B y C siempre se cumple

- 1. $A \subseteq A$
- 2. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
- 3. $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
- $4. \ A \subset B \land B \subset C \Rightarrow A \subset C$

DIAGRAMAS DE VENN

[TODO: Alta fiaca]

CARDINALIDAD

Cardinalidad de conjuntos finitos

La cardinalidad de un conjunto finito es igual a la cantidad de elementos que contiene. Si A es un conjunto entonces |A| es la cardinalidad de A. Un conjunto finito informalmente es aquel que tiene una cantidad contable de elementos.

PROPIEDADES:

- $A \subseteq B \Rightarrow |A| \le |B|$
- $A \subset B \Rightarrow |A| < |B|$
- $|\varnothing| = 0$

CARDINALIDAD DE CONJUNTOS INFINITOS

[TODO: No es prioridad]

CONJUNTO DE PARTES

Sea A un conjunto, el conjunto de partes de A es $\mathcal{P}(A) = \{X \in \mathcal{U} : X \subseteq A\}$

PROPIEDADES:

•
$$|A| = n \Rightarrow |\mathcal{P}(A)| = 2^n = 2^{|A|}$$

OPERACIONES CON CONJUNTOS

Dados los conjuntos A, B y C se definen las siguientes operaciones.

Union

La union de A y B es $A \cup B$ tal que $x \in A \cup B \Rightarrow x \in A \vee x \in B$

PROPIEDADES:

- 1. $A = A \cup A$
- $2. \ A \cup B = B \cup A$
- 3. $A \subseteq A \cup B$
- 4. $A \subseteq B \Leftrightarrow A \cup B = B$
- 5. $A \cup (B \cup C) = (A \cup B) \cup C$

Intersección

La union de A y B es $A \cap B = \{x \in A : x \in B\}$

PROPIEDADES:

- 1. $A = A \cap A$
- $2. \ A \cap B = B \cap A$
- 3. $A \cap B \subseteq A$
- 4. $A \subseteq B \Leftrightarrow A \cap B = A$
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$

Diferencia

El conjunto diferencia de A y B es $A-B=\{x\in A:x\notin B\}$

PROPIEDADES:

- 1. $A A = \emptyset$
- $A \emptyset = A$
- 3. $B A \subseteq B$
 - $\varnothing A = \varnothing$
- 4. $A B = B A \Rightarrow A = B$
- 5. $(A-B)-C\subseteq A-(B-C)$

Complemento

Al complemento de A es $\overline{A} = \mathcal{U} - A = \{x \in \mathcal{U} : x \notin A\}$

PROPIEDADES:

Para algún $A\subseteq\mathcal{U}$

- 1. $A \cap \overline{A} = \emptyset$
- 2. $A \cup \overline{A} = \mathcal{U}$

Leyes de teoría de conjuntos

Dados A,By C incluidos en $\mathcal{U}\colon$

• $\overline{\overline{A}} = A$	Ley de doble negación
• $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	Leyes de De Morgan
• $A \cup B = B \cup A$ $A \cap B = B \cap A$	Leyes Conmutativas
• $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cup (B \cup C) = (A \cup B) \cup C$	Leyes Asociativas
• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Leyes Distributivas
• $A \cup A = A$ $A \cap A = A$	Leyes Idempotentes
• $A \cup \emptyset = A$ $A \cap \mathcal{U} = A$	Leyes de Identidad
• $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Leyes de Absorción