Types	Noms	Domaines de définition	Valeurs	Propriétés	Graphes	Limites	Dérivées	Primitives
Polynômes	P(x)	\mathbb{R}	\mathbb{R}	Les limites à l'infini sont les limites des termes de plus haut degré. Les limites en 0 sont les limites des termes de plus bas degré			$(x^n)' = nx^{n-1}$	$\int x^n = \frac{x^{n+1}}{n+1}$
	x^2	\mathbb{R}	\mathbb{R}_+	$(A+B)^2 = A^2 + 2AB + B^2$ $(A.B)^2 = A^2.B^2$ $\left(\frac{A}{B}\right)^2 = \frac{A^2}{B^2}$ $\sqrt{A^2} = A \qquad (\sqrt{A})^2 = A$	s de plus bas degre	$\lim_{x \to -\infty} x^2 = +\infty$ $\lim_{x \to +\infty} x^2 = +\infty$	2x	$\frac{x^3}{3}$
	x^3	\mathbb{R}	\mathbb{R}	$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$ $(A.B)^3 = A^3.B^3$		$\lim_{x \to -\infty} x^3 = -\infty$ $\lim_{x \to +\infty} x^3 = +\infty$	$3x^2$	$\frac{x^4}{4}$
	x	\mathbb{R}	\mathbb{R}_+	$ A + B = ????$ $ A.B = A . B $ $\left \frac{A}{B}\right = \frac{ A }{ B }$		$\lim_{x \to +\infty} x = +\infty$ $\lim_{x \to -\infty} x = +\infty$	$ \cdot $ n'est pas dérivable en 0 si $x \neq 0$, $(\cdot)'(x) =$ sign (x)	sans intérêt
Fractions	$ \begin{array}{c} \frac{1}{x} \\ \text{ou} \\ x^{-1} \end{array} $	R*	\mathbb{R}^*	$\frac{A+B}{C} = \frac{A}{C} + \frac{B}{C}$ $\frac{1}{A+B} = ???$ $\frac{A}{B} \cdot \frac{C}{D} = \frac{AC}{BD}$ $\frac{A}{B} = \frac{A}{B} \cdot \frac{D}{C}$		$\lim_{x \to 0^+} \frac{1}{x} = +\infty$ $\lim_{x \to 0^-} \frac{1}{x} = -\infty$ $\lim_{x \to +\infty} \frac{1}{x} = 0$ $\lim_{x \to -\infty} \frac{1}{x} = 0$	$-\frac{1}{x^2}$	$\ln x$
	$F = \frac{N}{D}$	$D_N \cap \{x \in D_D,$	$D(x) \neq 0\}$	Si F est une fraction rationnelle, <i>i.e.</i> si N et D sont des polynômes, alors les limites à l'in limites des termes de plus haut degré			îni de F sont les	
Trigonométriques	$\cos x$	\mathbb{R}	$\boxed{[-1;1]}$	paire et 2π -périodique		pas de limite en l'infini	$-\sin x$	$\sin x$
	$\sin x$	\mathbb{R}	[-1;1]	impaire et 2π -périodique		pas de limite en l'infini	$\cos x$	$-\cos x$
	$\tan x$	$\mathbb{R} - \left\{ \begin{array}{l} \frac{\pi}{2} + k\pi \\ (k \in \mathbb{Z}) \end{array} \right\}$	\mathbb{R}	impaire et π -périodique		$\lim_{x \to -\pi/2^+} \tan x = -\infty$ $\lim_{x \to \pi/2^-} \tan x = +\infty$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$-\ln \cos x $

Types	Noms	Domaines de définition	Valeurs	Propriétés	Graphes	Limites	Dérivées	Primitives
Radicales	$x^{\frac{1}{n}}$ $(n \in \mathbb{N}^*)$	R ₊	\mathbb{R}_{+}	n paire: réciproque de $x \mapsto x^n \text{ sur } \mathbb{R}_+$ $(A+B)^{\frac{1}{n}} = ???$ $(A,B)^{\frac{1}{n}} = A^{\frac{1}{n}}.B^{\frac{1}{n}}$ $\left(\frac{A}{B}\right)^{\frac{1}{n}} = \frac{A^{\frac{1}{n}}}{B^{\frac{1}{n}}}$		$\lim_{x \to +\infty} x^{1/n} = +\infty$	$\frac{x^{\frac{1}{n}-1}}{n}$	$\frac{n}{n+1}x^{\frac{1}{n}+1}$
		\mathbb{R}	\mathbb{R}	n impaire : réciproque de $x\mapsto x^n$ sur $\mathbb R$		$\lim_{x \to -\infty} x^{1/n} = -\infty$		
	\sqrt{x} ou $x^{rac{1}{2}}$	\mathbb{R}_+	\mathbb{R}_+	$\sqrt{A+B} = ????$ $\sqrt{A.B} = \sqrt{A}.\sqrt{B}$ $\sqrt{\frac{A}{B}} = \frac{\sqrt{A}}{\sqrt{B}}$	<u></u>	$\lim_{x \to +\infty} \sqrt{x} = +\infty$	$\frac{1}{2\sqrt{x}}$	$\frac{2}{3}x^{\frac{3}{2}}$
	$\sqrt[3]{x}$ ou $x^{rac{1}{3}}$	\mathbb{R}	\mathbb{R}	$\sqrt[3]{A+B} = ????$ $\sqrt[3]{A.B} = \sqrt[3]{A}.\sqrt[3]{B}$ $\sqrt[3]{\frac{A}{B}} = \frac{\sqrt[3]{A}}{\sqrt[3]{B}}$		$\lim_{x \to -\infty} \sqrt[3]{x} = -\infty$ $\lim_{x \to +\infty} \sqrt[3]{x} = +\infty$	$\frac{x^{-\frac{2}{3}}}{3}$	$\frac{3}{4}x^{\frac{4}{3}}$
Exponentielles-Logarithmes	$\exp(x)$	\mathbb{R}	\mathbb{R}_+^*	$e^{0} = 1, e \simeq 2,71$ $e^{a+b} = e^{a}e^{b}$ $e^{a-b} = \frac{e^{a}}{e^{b}}$ $(e^{a})^{b} = e^{ab}$		$\lim_{x \to -\infty} e^x = 0$ $\lim_{x \to +\infty} e^x = +\infty$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ $\lim_{x \to -\infty} x e^x = 0$	$\exp(x)$	$\exp(x)$
	$\ln x$	\mathbb{R}_+^*	\mathbb{R}	$\ln 1 = 0, \ln e = 1, \ln 2 \simeq 0,69$ $\ln(ab) = \ln a + \ln b$ $\ln(a/b) = \ln a - \ln b$ $\ln(a^n) = n \ln a$	<u></u>	$\lim_{x \to 0} \ln x = -\infty$ $\lim_{x \to +\infty} \ln x = +\infty$ $\lim_{x \to +\infty} x \ln x = 0$ $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$	$\frac{1}{x}$	$x \ln x - x$
	$x^a \\ (a \neq 0)$	\mathbb{R}_+^*	\mathbb{R}_+^*	si a est un réel non nul, $x^a=\exp(a\ln x)$ $x^ax^b=x^{a+b}, \frac{x^a}{x^b}=x^{a-b}, (x^a)^b=x^{ab}$		$ \begin{array}{c c} \bigcirc & \lim_{x\to 0^+} x^a = 0 \\ \wedge & \lim_{x\to +\infty} x^a = +\infty \\ \hline \bigcirc & \lim_{x\to +\infty} x^a = +\infty \\ \vee & \vee & \vee \\ \otimes & \lim_{x\to +\infty} x^a = 0 \\ \hline & \lim_{x\to +\infty} x^a = 0 \\ \end{array} $	$-ax^{a-1}$	$\frac{x^{a+1}}{a+1}$
	a^x	\mathbb{R}	\mathbb{R}_+^*			$ \begin{array}{c c} - & \lim\limits_{x \to -\infty} a^x = +\infty \\ \text{g} & \lim\limits_{x \to +\infty} a^x = 0 \\ \hline - & \lim\limits_{x \to +\infty} a^x = 0 \\ \wedge & \lim\limits_{x \to +\infty} a^x = +\infty \\ \end{array} $	$-\ln(a).a^x$	$\frac{a^x}{\ln a}$