武汉大学计算机学院2012-2013学年第一学期 2010级《编译原理》参考答案

-, (1)

(2)

$$A = \{0, 2, 3\}$$

$$B = \{1\}$$

$$C = \{1, 2, 3, 4, 5\}$$

状态转换图为:

(3) 最小DFA如下所示:

- (4) 空串或以b结尾且没有连续的a.
- (5) $r = (b \mid ab)^*$.
- 二、(1) 最左推导如下:

$$E \implies E[E]$$

$$\implies id[E]$$

$$\implies id[*E]$$

$$\implies id[*id]$$

(2) 消除左递归后的文法如下:

$$\begin{array}{ccc} E & \to & *ET \mid \mathrm{id}T \\ T & \to & [E]T \mid \varepsilon \end{array}$$

(3) $\operatorname{First}(E) = \{ \operatorname{id}, * \}; \operatorname{First}(T) = \{ [, \varepsilon \}.$ $\operatorname{Follow}(E) = \operatorname{Follow}(T) = \{ [,], \$ \}.$ (4) LL(1)分析表如下所示:

	id	*			\$
E	$E \to idT$	$E \to *ET$			
T			$E \to [E]T, E \to \varepsilon$	$E \to \varepsilon$	$E \to \varepsilon$

(5) 语句"id[*id]"的分析过程如下所示:

剩余串	分析栈	分析动作
id[*id]\$	E\$	$E \to idT$
id[*id]\$	$\mathrm{id}T$ \$	match-advance
[*id]\$	T\$	$T \to [E]T$
[*id]\$	[E]T\$	match-advance
*id]\$	E]T\$	$E \to *ET$
*id]\$	*ET]T\$	match-advance
[id]\$	ET]T\$	$E \to idT$
id]\$	idTT]T\$	match-advance
]\$	TT]T\$	$T \to \varepsilon$
]\$	T]T\$	$T \to \varepsilon$
]\$]T\$	match-advance
\$	<i>T</i> \$	$T \to \varepsilon$
\$	\$	分析成功

三、(1) "*id[id]"的两颗不同的语法树:

语法树1:

语法树2:

(2) 无二义文法:

$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & *T \mid F \\ F & \rightarrow & F[E] \mid \mathrm{id} \end{array}$$

四、(1) 识别活前缀的自动机在吃进 E[** 之后到达状态 I_1 ,其有效项目集为

$$\overline{\{E \to * \bullet E\}}$$
= $\{E \to * \bullet E, E \to \bullet * E, E \to \bullet E[E], E \to \bullet id\}$

识别活前缀的自动机在吃进 *E[*E[之后到达状态 $I_5,$ 其有效项目集为:

$$\overline{\{E \to E[\bullet E]\}}$$
=\{E \to E[\epsilon E], E \to \blue * E, E \to \epsilon E[E], E \to \blue id\}

2

- (2) $First(E) = \{ id, * \}, Follow(T) = \{ [,], \$ \}.$
- (3) SLR分析表如下所示:

	action				goto E	
状态	id	*			\$	E
0	s3	s1				2
1	s3	s1				4
2			s5		acc	
3			r3	r3	r3	
4			s5	r1	r1	
5	s3	s1				6
6			s5	s7		
7			r2	r2	r2	

(4) "*id[id]"的分析过程如下所示:

剩余串	分析栈	分析动作
*id[id]\$	0	shift
id[id]\$	0*1	shift
[id]\$	0*1id3	reduce $E \to id$
[id]\$	0*1E4	shift
id]\$	0*1E4[5]	shift
]\$	0*1E4[5id3]	reduce $E \to id$
]\$	0*1E4[5E6	shift
\$	0*1E4[5E6]7	reduce $E \to E[E]$
\$	0*1E4	reduce $E \to *E$
\$	0E2	分析成功

五、(1)

```
E.type = (int, 4)
                     E.\text{temp} = \text{newtemp}()
                     emit(E.temp+"="+E_1.temp+"+"+E_2.temp)
E \to *E_1
                   if E_1.type \neq (ptr(T), 4)
                     then error("* operates with no pointer")
                   if E_1.type == (ptr(T), 4) and T == (array(T_1), n)
                     then E.\text{type} = (\text{ptr}(T_1), 4); E.\text{temp} = E_1.\text{temp}
                     else E.type = T; E.temp = newtemp()
                        emit(E.temp+"=*"+E_1.temp)
E \to id
                   E.\text{temp} = \text{id.lexeme}
                   T = getsymb(id.lexeme)
                   if T == (char, 1) then E.type = (int, 4)
                   if T == (\operatorname{array}(T_1), n) then E.\operatorname{type} = (\operatorname{ptr}(T_1), 4)
                   else E.type = T
```

(2) 变量a的类型表达式为:

array(array(array(ptr((int, 4), 4), 20), 80), 240)

表达式"*a[x][y][z]"为三地址码:

$$t0 = x * 80$$
 $t4 = z * 4$
 $t1 = a + t0$ $t5 = t3 + t4$
 $t2 = y * 20$ $t6 = *t5$
 $t3 = t1 + t2$

六、

七、程序1中,函数foo()的形参b的类型是指向长度为5的整型数组的指针,子表达式b[1](即*(b + 1))的类型是指向长度为5的整形数组第一个元素的指针,因此其值还是(b + 1),引用运算*并没有起作用。所以foo(a)能正确第访问a[1][3].

但程序2中的子表达式b[1]的类型是指向整形的指针,因此*(b + 1)中的引用运算*将起作用。故对实参a,子表达式*((int **) a + 1)的值为5,类型是指针,这样b[1][3]将访问地址为5 + 3 * 4上的值,超出了程序段的范围,因此报段错误。