1.2	inference goals of MLE's (the frequentist model)
	O point estimation for 0: find ême itself
	@ confidence sets for 0: confidence intervals CI
	(region of values) Bernoulli Model inference via samples
	$CI_{P, 1-\alpha} = \hat{\rho} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}} \qquad CI_{\theta, 1-\alpha} := \left[\hat{\theta}_{\text{MLE}} \pm Z_{\frac{\alpha}{2}} \text{SE}\left[\hat{\theta}_{\text{MLE}}\right]\right]$
	1 1
	perameter level of standard normal
	3 Testing theories about 0: Hypothesis testing
	$H_0: \mathcal{O} = \mathcal{O}_0$
	fetention Region := [0 + 7 SE (ÎNLE)] Ha: 0 + 0
•	* Observe Data -> Pick J -> do inference via MLE
	* Model can only tell as to reject to not how to adjust
	FRET. Reg. of 1
Lecture 3	
	issues of iid Beroulli model / frequentism
	OC. II to be cate
	one outcome implies exclusion of other result which isn't true ex: <0,0,0>
	D of 0+(0,1) ex.0=[02,02]; doesn't account for restricted parameter space
	hard state
	3 independent of confidence interval
	over repeated experiments 1- & of CI will cover 0
	before you do experiments $p(O \in CI) = 1 - \alpha$
	for given CI, frequentism doesn't work
Was in North	
	[10/11/0/12

	1 testing : Que & Retain Reg. => don't Reject Ho
	The testing; Brite & Retain. Reg. => don't Reject Ho MLE Retain. Reg. => Reject Ho
	MLE
	1 0/4 1 1 1 1 2 2 4 2 2 1 2
	Ho: 0 = 00 we want P(Ho / data) which isn't possible
	Ha: 0 + 0. P(Hx/data)
	$ex: x = \langle 0, 0, 1, 0, 1, 0 \rangle$
	Ô _{MLE} = X = 1/3
	$CI_{0,95\%} = \begin{bmatrix} 1/3 \pm Z_{\infty} & SE(\hat{O}_{MLE}) \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \pm 2 & \frac{1}{3}[1-\frac{1}{3}] \end{bmatrix} = [-0.60, 1.26]$ $\hat{O}_{MLE} = \begin{bmatrix} 1/3 \pm Z_{\infty} & SE(\hat{O}_{MLE}) \end{bmatrix} = \begin{bmatrix} -0.60, 1.26 \end{bmatrix}$ $\frac{N}{2} = 2.5\%$
	CI = 13 - Z & SE (OMLE) = 3 - Z (3(1-3)) = 2-0.00, 1.26]
	MLE ALTER
	$\mathbb{Z}_{2.5\%} = 2$ $SE(\hat{0}) = \sqrt{9(1-6)}$
	= 2.5 /o (NLE)
	$X_{n} = \operatorname{Bern}(\theta) = \theta \in \Theta = (0,1)$
	$\chi_{n} = \sum_{i=1}^{n} (v_{i}) = (0,1)$
	* the sample is not large enough for $\hat{\theta}_{MLE} \rightarrow N$
	tor ên > N
CONTRACTOR OF THE SECOND	

