B.Tech. (Computer Engg.) VIIIth Semester Examination, 2017 Network Security Paper No. CEN-805

Time: Three Hours Maximum Marks: 60

Write your roll no. immediately on receipt of this question paper Note: Attempt all question. All questions carry equal marks. Assume suitable missing data, if any.

Q.No./CO's No.	Statements of the Questions	Marks
1. (a)/ CO1	Find multiplicative inverse of $(x^3 + x + 1)$ in $GF(2^4)$ with the modulus	6
	$(x^4 + x + 1)$ using Extended Euclidean algorithm.	
1. (b)/ CO1	Find the determinant and multiplicative invers of the following residue	6
	matrix over Z ₁₀ .	
	(3 4 6)	
	5 8 3	
	OR	
1'. (a)/ CO1	Solve the following equation to find the value of x, y and z.	6
	$3x + 5y + 7z \equiv 3 \pmod{16}$	
	$x + 4y + 13z \equiv 5 \pmod{16}$	
	$2x + 7y + 3z \equiv 4 \pmod{16}$	
1'. (b)/) Find the results of the following.	6
CO1	(i) $5X^{12} + 6X \equiv 8 \mod 23$ (ii) $320^{23} \mod 461$	
2. (a)/ CO2	What is IDEA? Explain the sub key generation process for each round	6
2. (a)/ CO2	of IDEA.	
2. (b)/ CO2	Show the following hexadecimal data:	6
2. (0)/ CO2	AAAABBBB CCCC DDDD after passing it through initial	
2 ()/ CO2	permutation and inverse initial permutation in DES.	
3. (a)/ CO3	Find the value of RCon [11] and RCon[12] constants for the AES-192	6
	and the value of RCon [13] and RCon[14] for AES-256	
	implementations. Use X^{11-1} mod prime and X^{12-1} mod prime, in which	
	the prime is the irreducible polynomial $(X^8 + X^4 + X^3 + X + 1)$ for	

	AES 192 and use X ¹³⁻¹ mod prime and X ¹⁴⁻¹ mod prime, in which the	
	prime is the irreducible polynomial $(X^8 + X^4 + X^3 + X + 1)$ for AES	
	256	
3. (b)/ CO3	Explain about the functioning of one iteration and compression	6
	function used in SHA-512.	
4. (a)/ CO4	Consider an ElGamal cryptosystem with a common prime q= 71 and a	6
	primitive root $\alpha = 7$.	
	i. If B has public key $Y_B = 3$ and A choose the random	
	integer k= 2, what is the cipher text for M=30?	
	ii. If A now chooses a different value of k so that the	
	encoding of M= 30 is C= (59, C_2), What is the value of C_2 ?	
4. (b)/ CO4	Given the super-increasing tuple b= [7,11,23,43,87,173,357], and	6
	modulus n= 1001, Encrypt and decrypt the letter "b" using the	
	knapsack cryptosystem. Use [7 6 5 1 2 3 4] as the permutation	
	table and 7-bit representation of character "b" as [1, 1, 0, 0, 0, 1, 0].	
	OR	_
4'. (a)/ CO4	In the elliptical curve E(g ⁴ ,1) over the GF(2 ⁴) field, over the irreducible	6
4'. (a)/ CO4	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$.	6
` ′	In the elliptical curve E(g ⁴ ,1) over the GF(2 ⁴) field, over the irreducible	6
` ′	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$.	6
` ′	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve.	6
` ′	In the elliptical curve E(g ⁴ ,1) over the GF(2 ⁴) field, over the irreducible polynomial is x ⁴ + x + 1. i. Find the equation of the curve. ii. Find any six points on the curve.	6
4'. (b)/	 In the elliptical curve E(g⁴,1) over the GF(2⁴) field, over the irreducible polynomial is x⁴ + x + 1. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose e1 	6
CO4	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.)	
4'. (b)/	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.) Suppose that user A has to sign the hash value of the message $H = 99$;	
CO4 4'. (b)/	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.) Suppose that user A has to sign the hash value of the message $H = 99$; with the private key $k = 87$ and the ephemeral key as $x = 101$ and $y = 100$	
4'. (b)/	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.) Suppose that user A has to sign the hash value of the message $H = 99$; with the private key $K = 87$ and the ephemeral key as $K = 101$ and $K = 3$, $K = 119$ as primitive element in $K = 3$. Calculate A's signature and	
4'. (b)/ CO4	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.) Suppose that user A has to sign the hash value of the message $H = 99$; with the private key $K = 87$ and the ephemeral key as $K = 101$ and $K = 3$, $K = 119$ as primitive element in $K = 3$. Calculate A's signature and also verify the signature using DSA digital signature scheme.	6
4'. (b)/ CO4	In the elliptical curve E(g ⁴ ,1) over the GF(2 ⁴) field, over the irreducible polynomial is x ⁴ + x + 1. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose e1 = (g ³ , g ⁸) and d = 2.) Suppose that user A has to sign the hash value of the message H = 99; with the private key k = 87 and the ephemeral key as x = 101 and g = 3, q = 119 as primitive element in Z ₂₃₉ . Calculate A's signature and also verify the signature using DSA digital signature scheme. List the name of all seven types of packet used in PGP. Explain about	6
4'. (b)/ CO4 5. (a)/ CO5	In the elliptical curve $E(g^4,1)$ over the $GF(2^4)$ field, over the irreducible polynomial is $x^4 + x + 1$. i. Find the equation of the curve. ii. Find any six points on the curve. iii. Generate the pair of public key and private key. (Choose $e1 = (g^3, g^8)$ and $d = 2$.) Suppose that user A has to sign the hash value of the message $H = 99$; with the private key $k = 87$ and the ephemeral key as $k = 101$ and $k = 3$, $k = 119$ as primitive element in $k = 12$. Calculate A's signature and also verify the signature using DSA digital signature scheme. List the name of all seven types of packet used in PGP. Explain about any two of them.	6