# The Role of Context in Spatial Region Identification

**Kate Lockwood** CSUMB klockwood@csumb.edu

John Kelleher Dublin Institute of Technology john.d.kelleher@dit.ie

**Matt Klenk** PARC klenk@parc.com

**Nick Hawes** University of Birmingham n.a.hawes@cs.bham.ac.uk

#### The Problem

To collaborate with people in the real world, cognitive systems must be able to represent and reason about *context-dependent spatial regions* (CDSR)







The *front* of the classroom





Behind enemy lines in a battle plan The *kitchen* in a studio apartment

A context-dependent spatial region is not perceivable using geometry alone. Instead, the boundaries of the region are defined by its functional use, implied by nearby objects and their configuration. Understanding these regions requires the integration of geometric and semantic knowledge about the domain.

#### **Human Studies**

We were interested in studying contextually nature of CDSRs by examining the following questions about CDSRs:

- 1. Given a particular context, do people agree on the location and extend of a named CDSR?
- 2. Does the location and extent of a CDSR predictably change in line with the variations in context (e.g., object locations and types)?





Task 1: Region Drawing

Task 2: Rating Points

## Stimuli Used in the Experiments















(g)

Friendly P P P P

Enemy Tanks





#### Task 1 Analysis and Results

Inter-annotator agreement We expected fair to good overall agreement (measured by Cohen's  $\kappa$ ) indicating that subjects share the interpretation of the CDSRs in the given contexts. We expect less agreement in ambiguous/novel contexts.

|              |                 |                   | Less agreement in |                                 |        |     |                   |      |
|--------------|-----------------|-------------------|-------------------|---------------------------------|--------|-----|-------------------|------|
|              |                 | nuli              | ambiguous cases   |                                 |        |     |                   |      |
| Stimulus     | s Ambiguity     | Average           | No                | Stimulus                        | Ambigu | ait | Average           | No   |
| ID           | Expected?       | Pairwise $\kappa$ | Reg.              | ID                              | Expect | ed? | Pairwise $\kappa$ | Reg. |
| (h)          | NT              | 0.5034            | 0                 | $\overline{\text{(f-flipped)}}$ | N      |     | 0.3720            | 2    |
| (g) <b>P</b> | eople generally | 0.4585            | 1                 | (e)                             | N      | V   | 0.3629            | 1    |
|              | agree on CDSRs  | 0.4548            | 0                 | (1)                             | Y      |     | 0.3164            | 0    |
| (f)          |                 | 0.3930            | 0                 | (c)                             | Y      |     | 0.2438            | 2    |
| (i)          | N               | 0.3906            | 0                 | (c-flipped)                     | Y      |     | 0.2414            | 4    |
| (e-flippe    | d) N            | 0.3813            | 2                 | (a)                             | Y      |     | 0.0996            | 10   |
| (j)          | N               | 0.3787            | 1                 |                                 |        |     |                   |      |

Between stimuli feature comparisons We expected that specific changes to the context would result in predictable changes to peoples labeled regions.

| esait in predictable changes to peoples labeled regions. |                 |        |    |         |                             |                   |  |  |
|----------------------------------------------------------|-----------------|--------|----|---------|-----------------------------|-------------------|--|--|
| CDSR                                                     | Changing th     |        |    |         |                             |                   |  |  |
| Expected Re                                              | Human Results   |        |    | _       | Changing th context predict |                   |  |  |
| area(g) >                                                | area(h)         | 291.2  | >  | 276.2*  |                             | changes the C     |  |  |
| $\max X(f) >$                                            | maxX(e)         | 176.1  | >  | 167.1   |                             |                   |  |  |
| minX(e-flipped) >                                        | minX(f-flipped) | 336.1  | >  | 321.3*  |                             |                   |  |  |
| $\max Y(i) >$                                            | maxY(j)         | 304.64 | >  | 265.04* |                             | Ambiguous         |  |  |
| $\max Y(j) >$                                            | maxY(k)         | 265.04 | >  | 251.71  |                             | interpretation de |  |  |
| $\max Y(k) =$                                            | maxY(l)         | 265.04 | != | 290.03  |                             | on domain know    |  |  |
|                                                          |                 |        |    |         | _                           |                   |  |  |

## Task 2 Analysis and Results

Sweetspots One of the three points was expected to score significantly above the other two points. This sweetspot was determined by a pilot study.

|           |        |        | Mean Like                                              | ert Scores |          |               |               |     |  |
|-----------|--------|--------|--------------------------------------------------------|------------|----------|---------------|---------------|-----|--|
| Мар       | g      | h      |                                                        |            |          |               | 1 . 1         |     |  |
| P1        | 1.1707 | 1.1707 |                                                        |            | Sweetspo | ts are the    | highest sco   | ·e  |  |
| P2        | 4.6667 | 4.7561 | D2/2 22                                                |            |          | 4 a la la a a | ana da dia fa | :   |  |
| P3        | 1.85   | 1.585  | P2's scores increase predictably as more desks face it |            |          |               |               |     |  |
| Classroom | a      | c      | c-flipped                                              | e          | apped    | f             | f-flipped     |     |  |
| P1        | 3.5122 | 4.7073 | 1.244                                                  | 4.7561     | 1.2439   | 4.8292        | 1.1463        |     |  |
| P2        | 2.6341 | 2.9024 | 2.9268                                                 | 2.0000     | 1.8500   | 2.0976        | 2.3171        |     |  |
| P3        | 1.9024 | 1.3571 | 4.6429                                                 | 1.2439     | 4.7073   | 1.2750        | 4.6585        |     |  |
| Military  | i      | j      | k                                                      | 1          |          |               |               |     |  |
| P1        | 1.1951 | 1.0952 | 1.0714                                                 | 1.2327     | •        |               | oile tanks to |     |  |
| P2        | 4.3902 | 2.2927 | 2.7804                                                 | 3.1667     | n        |               | y to P2, and  |     |  |
| P3        | 4.9024 | 4.5122 | 4.6585                                                 | 4.7073     |          | turret to     | provide nor   | ie. |  |
|           |        |        |                                                        |            |          |               |               |     |  |

P2 scores higher when behind friendly tanks

Intermediate points between stimuli We also expected the scores of the intermediate points to change predictably as the context changed.

### **Challenge Problem for Cognitive Systems**

- How can an intelligent system integrate geometric and semantic knowledge to account for these results?
  - Is **simulation** or **experience** required, or helpful?
- Cognitive systems are able to quickly learn these regions?
  - Few subjects had experience with real-time strategy games yet were still capable of agreeing upon regions within the scenarios.







