Derivation del Conónico (Revisidado)

> Clase and Non Clase 5, 2025

* Como cada uno de esos estados es equiposobable \Rightarrow La probabilidad }

debe complir $P \propto \Lambda'(E'_{n}) = \Lambda'(E^{(n)} - E_{n})$ (3)

Revisemus por que p ~ 1/(E')

* Suponemos 6 estados (simboligados por el dado)

* Micro canónico > cada estado es equipobable

* Probabilidad de 1 estado Pr ("" lota de estado)

* Supongamos que dos de esos estados tienes energia En

- P = 2 > Pr es proponcional al número de estados con E'

r = 6

es deun à REI

En general P & I(E'r)

E + E'

Ensemble Cononico: Conexión termodismica $\begin{cases} F = -h_0 T |_{\Gamma}(Z_c) \\ F = F(N, V, T) \end{cases}$ Diducción de $\langle E \rangle = -\frac{3}{3} \frac{1}{6} (2c)$

Pr = distribución de Boltzman para un sistema a temperatura T

Energia media -> (E) = ErPr con Pr= 1 [epen $\langle E \rangle = \frac{\sum_{r} E_{r} e^{\beta E_{r}}}{\sum_{r} e^{\beta E_{r}}} = -\frac{2 \ln \left(\sum_{i} e^{\beta E_{i}}\right)}{2 \beta}$ $= \sum_{r} g^{(E_{r})} e^{\beta E_{r}}$ $= \sum_{r} g^{(E_{r})} e^{\beta E_{r}}$ $= \sum_{r} g^{(E_{r})} e^{\beta E_{r}}$

 $\beta = \frac{1}{K_6T}$

VEAMOS:

$$-\frac{\partial \ln \left(\sum_{c} e^{\beta E L} \right)}{2 \beta} = -\frac{1}{2} \sum_{c} \frac{\beta E L}{(E_{b})} = \frac{E_{c}}{2} \frac{e^{\beta E L}}{2} = (E_{c}) \frac{m}{2}$$
 $\frac{1}{2} \ln \left(\sum_{c} e^{\beta E L} \right) = -\frac{1}{2} \sum_{c} \frac{e^{\beta E L}}{2} = (E_{c}) \frac{m}{2}$
 $\frac{1}{2} \ln \left(\sum_{c} e^{\beta E L} \right) = -\frac{1}{2} \ln \left(\sum_{c} e^{\beta E L} \right) = \frac{1}{2} \ln \left(\sum_{c} e^{\beta E L} \right) = (E_{c}) = (E_{c}) \frac{m}{2}$

Conexión termodiadnica del carónico a la representada F

Usamos (1)

 $1 + \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} = -\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = -\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = -\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = -\frac{1}{2} = -\frac{1}$

Igualando las expresions para (E) de (1)
$$\gamma(2)$$
.

NOTIFICAMOS V duvidimos para 1/40

(E) = $-\frac{\partial}{\partial p} \ln(2) = \frac{\partial}{\partial p} \frac{|F|}{|F|} = \frac{1}{2} \frac{\partial (F/T)}{|F|} = \frac{1}{2} \frac{\partial ($

Resumn ensemble Esotérnico-Isobórico * presión y temperatura constantes Representación G (Enry12 libre de Gibbs): G=G(N,T,p) ZII (NIP) = SS 1(N,V,E) e PE -BPV Conexión termodinómico: G = - KBT / (EII) dG = -SdT + Vdp + polN de Legendre correspondientes S= KB In (ZIJ) + KBT DIN(ZIJ) NIP $V = -N_0 I \partial \left| \Lambda \left(\mathcal{Z}_{CI} \right) \right|_{N_{II}}$ $h = -k_n T \frac{\partial \ln (Z_{II})}{\partial N}$

	Fluctuaciones Bib: Mc Quarrie,
	Fluctuaciones Bib: Mc Quarrie, Statistical Mechanica
*	Los promedios son primeros nombros de una función destribución:
	$\langle \times \rangle = \int_{i}^{\infty} x_{i} P_{i}$
	· · · · · · · · · · · · · · · · · · ·
	→ hzy strol momertos: Por ejemplo, el segundo momerto de una distribución es la varianza:
	distribución es la variangu:
	* Varianga: $Var(x) \equiv (x - \bar{x})^2 = (x - (x - (x))^2)$
	-> desvisión cuadrática media de una variable respecto de su valor medio
	* dispersion o desvisción standard: $\alpha \equiv \sqrt{v_{in}(x)}$
	respecto de su volor medio
	respecto de su valor medio
	gue no sea el volor medio es muy baja (¿ Por que?)
	que no sea el volor medio es muy baja (; Por que?)
	Ej: ensemble canónico: Se fija N,V,T 2 podemos ver expresiones para la fluctuaciones de presión o enegía.
	2 podemos ver expresiones para la fluctuaciones de presión o enegía.
	Fluctuaciones de energia
	$VAM(E) = \sigma_{E}^{2} = \left\langle \left(E - \langle E \rangle\right)^{2} \right\rangle = \left\langle E^{2} \right\rangle - \left\langle E^{2} \right\rangle$
	E \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

t

(Ensemble Canonius) (E2) = \(\int_{j}^{2} \begin{pignships} P_{j} & = \(\) \((E) Ec $\langle E^2 \rangle = \frac{\sum_{i=1}^{2} e^{-\beta E_{i}}}{\sum_{i=1}^{2} (N_{i} N_{i} T)} = \frac{-1}{\sum_{i=1}^{2} \sum_{j=1}^{2} e^{\beta E_{i}}}$ $= -\frac{1}{\xi_{c}} \frac{\partial}{\partial \beta} \left(\langle E \rangle \frac{\partial}{\partial c} \right) = \frac{-1}{\xi_{c}} \frac{\partial \langle E \rangle}{\partial \beta} \frac{\partial}{\partial c} - \frac{1}{\xi_{c}} \frac{\partial}{\partial \beta} \frac{\partial}{\partial c} \frac{$ = - g(E) - (E) 3 In(Z) > $\Rightarrow (E^{2}) = -\frac{\partial}{\partial T} (E) \frac{\partial T}{\partial \beta} + (E)^{2} = \kappa_{B}T^{2} \frac{\partial}{\partial (E)} + (E)^{2} = -\frac{\partial}{\partial T} \frac{\partial}{\partial T}$ $(E^{2}) - (E)^{2} - \kappa_{B}T^{2} \frac{\partial}{\partial (E)} = -\frac{1}{\sqrt{\kappa_{B}T^{2}}}$ $\frac{\partial}{\partial T} = -\frac{1}{\sqrt{\kappa_{B}T^{2}}}$ Ahara: Cv = 2(E) (Termodirámica) NB T ZE) = (E2) -(E) = V2n(E) = 02 Q2 = KBT2 CV * La varianza de E ~ Cv! * Las floodudiones tienen significants Order de magnitud de las Fluctuariores Cy es extensivo => C, ~ V~ N~ 0= > 0= ~ VN Simulation NXXX Ntermo EN VN Relación señal-nuido ~ 1 ~ 0 err(E)= EIN