Guest Lecture 23: Deep Generative Models: Diffusion Basics

Junming Cao SIST, ShanghaiTech Fall, 2022

Basic Diffusion Model

一、条件概率公式与高斯分布的KL散度

1. 条件概率的一般形式

$$P(A, B, C) = P(C|B, A)P(B, A) = P(C|B, A)P(B|A)P(A)$$

 $P(B, C|A) = P(A, B, C)/P(A) = P(B|A)P(C|A, B)$
 $P(A|B) = P(B|A) \cdot \frac{P(A)}{P(B)}$

2. 基于马尔科夫假设的条件概率

如果满足马尔科夫链关系A→B→C,则有

$$P(A, B, C) = P(C|B, A)P(B|A)P(A) = P(C|B)P(B|A)P(A)$$

 $P(B, C|A) = P(B|A)P(C|B)$

3. 高斯分布的KL散度公式

KL散度:

对于两个单一变量的高斯分布P和Q而言,它们的KL散度为

$$\mathrm{KL}(P,Q) = lograc{\sigma_2}{\sigma_1} + rac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - rac{1}{2}$$

KL-Divergence

4. 参数重整化

若希望从高斯分布 $N(\mu,\sigma)$ 中采样,可以先从标准分布N(0,1)中采样出z,再得到 $\sigma \times z + \mu$ 。这样做的好处是将随机性转移到了z这个常量上,而 μ 与 σ 则当做仿射变换网络的一部分

在VAE和Diffusion中大量运用

二、VAE与多层VAE回顾

0. AE(Auto Encoder)自编码器回顾

Auto Encoder

1. 单层VAE的原理公式与置信下界

训练时通过X生成Z, $Z=q_\phi(X)$, $q_\phi(z|x)$ 为概率编码器推理时通过Z预测X, $X=p_\theta(Z)$, $p_\theta(x|z)$ 为概率解码器

联合概率分布对z进行积分得到边缘分布: $p_{\theta}(x)=\int_{z}p_{\theta}(x,z)=\int_{z}p_{\theta}(x|z)p_{\theta}(z)dz$ 。 对联合概率分布上下同成后验概率分布:

$$\int_z q_\phi(z|x) rac{p_ heta(x|z)p_ heta(z)}{q_\phi(z|x)} dz$$

即 $rac{p_{ heta}(x|z)p_{ heta}(z)}{q_{\phi}(z|x)}$ 在 $q_{\phi}(z|x)$ 下的期望,再两边取 \log :

$$\log(p_{ heta}(x)) = \log(\mathbb{E}_{z \sim q_{\phi}(z|x)}[rac{p_{ heta}(x|z)p_{ heta}(z)}{q_{\phi}(z|x)}])$$

根据Jensen不等式:

$$egin{aligned} \log(p(x)) &\geq \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log rac{p_{ heta}(x|z)p(z)}{q_{\phi}(z|x)}] \ &= \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{ heta}(x|z)] + \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log rac{p_{ heta}(z)}{q_{\phi}(z|x)}] \ &= \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{ heta}(x|z)] - \mathrm{D_{KL}}(q_{\phi}(z|x)||p_{ heta}(z)) \end{aligned}$$

右侧即为置信下界。

第一项为 reconstruction term, 重构项

第二项为 prior matching term

训练目标为最大化 $\log(p(x))$,最大化下界即可最大化 $\log(p(x))$

另一种置信下界推导方式(二者等价)

Basic Diffusion Model

2

展开反向KL散度公式:

$$\begin{split} &\mathrm{D_{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x)) \\ &= \int q_{\phi}(z|x)\log\frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}dz \\ &= \int q_{\phi}(z|x)\log\frac{q_{\phi}(z|x)p_{\theta}(x)}{p_{\theta}(z|x)}dz \\ &= \int q_{\phi}(z|x)[\log p_{\theta}(x) + \log\frac{q_{\phi}(z|x)}{p_{\theta}(z,x)}]dz \\ &= \log p_{\theta}(x) + \int q_{\phi}(z|x)\log\frac{q_{\phi}(z|x)}{p_{\theta}(x|z)p_{\theta}(z)}dz \qquad \qquad \mathrm{Because} \int q(z|x)q(z)dz = 1 \\ &= \log p_{\theta}(x) + \int q_{\phi}(z|x)\log\frac{q_{\phi}(z|x)}{p_{\theta}(z)}dz - \int q_{\phi}(z|x)\log(p_{\theta}(x|z)dz \\ &= \log p_{\theta}(x) + \mathrm{D_{KL}}(q_{\phi}(z|x)||p_{\theta}(z)) - \mathbb{E}_{z \sim q_{\phi}(z|x)}\log(p_{\theta}(x|z)) \end{split}$$

重新排列方程左右:

$$\log p_{ heta}(x) - \mathrm{D}_{\mathrm{KL}}(q_{\phi}(z|x)||p_{ heta}(z|x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log(p_{ heta}(x|z)) - \mathrm{D}_{\mathrm{KL}}(q_{ heta}(z|x)||p_{ heta}(z))$$

等号左侧是学习真实分布时想最大化的东西:产生真实数据的可能性 $p_{ heta}(x)$,同时最小化真实分布和后验分布($q_{\phi}(z|x)$)之间的差距。相对于 q_{ϕ} , $p_{ heta}(x)$ 是固定的。

同时等号左侧的负值即为损失函数。

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

在变分贝叶斯方法中,这个损失函数被称为变分下界。 $-L_{VAE}$ 就是 $\log p_{\theta}(x)$ 的下界。

$$-\mathrm{L}_{\mathrm{VAE}} = \log p_{ heta}(x) - \mathrm{D}_{\mathrm{KL}}(q_{ heta}(z|x)p_{ heta}(z|x) \leq \log p_{ heta}(x)$$

即通过最小化损失可以最大限度地提升生成真实数据样本的概率下界。

2. 多层VAE的原理公式与置信下界

2.1 双层VAE:

Basic Diffusion Model

3

$$egin{aligned} p_{ heta}(x) &= \iint_{z_1,z_2} p_{ heta}(x,z_1,z_2) dz_1, dz_2 \ p_{ heta}(x) &= \iint q_{\phi}(z_1,z_2|x) rac{p_{ heta}(x,z_1,z_2)}{q_{\phi}(z_1,z_2|x)} dz_1 dz_2 \ \log(p_{ heta}(x)) &= \mathbb{E}_{z_1,z_2 \sim q_{\phi}(z_1,z_2|x)} [\log rac{p_{ heta}(x,z_1,z_2)}{q_{\phi}(z_1,z_2|x)}] \end{aligned}$$

利用Jensen不等式

$$\log p(x) \geq \mathbb{E}_{z_1,z_2 \sim q_\phi(z_1,z_2|x)}[\log rac{p_ heta(x,z_1,z_2)}{q_\phi(z_1,z_2|x)}]$$

利用马尔科夫链

$$\mathrm{L}(heta,\phi) = \mathbb{E}_{z_1,z_2 \sim q_\phi(z_1,z_2|x)}[\log p_ heta(x|z_1) + \log p_ heta(z_1|z_2) + \log p_ heta(z_2) - \log q_\phi(z_2|z_1) - \log q_\phi(z_1|x)]$$

2.2 多层VAE

三、Diffusion Model图示

当满足以下三个条件时,可以将Variational Diffusion Models视作马尔科夫条件下的VAE:

- 1. latent层的维度和数据维度完全一致;
- 2. 每个t的latent encoder将不作为一个可学习变量,而是严格的线性高斯模型;
- 3. 最终T时刻的latent是标准正态分布。

与多层VAE类似,层层概率推导,有理由相信最终的cost function形式将类似多层VAE的cost function

扩散过程: Mx_0 逐渐到 X_T 的熵增过程,最终为各向异的高斯分布,训练(正向)过程

逆扩散过程:反向的过程,推理过程

漂移量: $\mathbf{f}_{\mu}(\mathbf{x}^{(t)},t)-\mathbf{x}^{(t)}$,推理和训练过程的状态差

四、扩散过程(Diffusion Process)

1. 给定初始数据分布 $x_0 \sim q(x)$,不断向分布中添加高斯噪声(仿射变换)。 噪声方差: $eta_t \in [0,1]$

均值:固定值 eta_t 和当前时刻t的数据 x_t 共同决定方差和均值都是确定的,不含参,为超参马尔科夫过程

$$Z \sim \mathcal{N}(0,1) \quad X_t = Z imes \sqrt{eta_t} + \sqrt{1-eta_t} X_{t-1}$$

2. 随着t不断增大,最终数据分布 x_T 变为各向独立的高斯分布

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-eta_t} x_{t-1}, eta_t \mathbf{I}) \quad q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

3. 任意时刻的 $q(x_t)$ 推导也可以完全基于 x_0 和 β_t 计算出来,不需要做迭代

设
$$\alpha_t = 1 - \beta_t$$
, $\bar{\alpha}_t = \prod_{i=1}^T \alpha_i$

同时存在定理:若X,Y互相独立且都属于高斯分布, $X\sim\mathcal{N}(\mu_1,\sigma_1),\ Y\sim\mathcal{N}(\mu_2,\sigma_2),\ 则aX+bY\sim\mathcal{N}(a\mu_1+b\mu_2,a^2\mu_1^2+b^2\mu_2^2)$ 。证明 <u>Proof of distribution of aX+bY</u>

則:
$$X_t = \sigma Z_{t-1} + \mu$$

 $= \sqrt{1 - \alpha_t} Z_{t-1} + \sqrt{\alpha_t} X_{t-1}; \quad Z_{t-1}, Z_{t-2}, \dots \sim \mathcal{N}(0, \mathbf{I})$
 $= \sqrt{1 - \alpha_t} Z_{t-1} + \sqrt{\alpha_t} \cdot [\sqrt{1 - \alpha_{t-1}} Z_{t-2} + \sqrt{\alpha_{t-1}} X_{t-2}]$
 $= \sqrt{1 - \alpha_t} Z_{t-1} + \sqrt{\alpha_t (1 - \alpha_{t-1})} Z_{t-2} + \sqrt{\alpha_t \alpha_{t-1}} X_{t-2}$
 $\sigma_1 = \sqrt{1 - \alpha_t}, \quad \sigma_2 = \sqrt{\alpha_t (1 - \alpha_{t-1})}$
 $\bar{\sigma} = \sqrt{\sigma_1^2 + \sigma_2^2} = \sqrt{1 - \alpha_t + \alpha_t - \alpha_t \alpha_{t-1}} = \sqrt{1 - \alpha_t \alpha_{t-1}}$
 $= \bar{\sigma} \bar{Z}_{t-2} + \sqrt{\alpha_t \alpha_{t-1}} X_{t-2}$
 $= \sqrt{1 - \alpha_t \alpha_{t-1}} \bar{Z}_{t-2} + \sqrt{\alpha_t \alpha_{t-1}} X_{t-2}$
 $= \sqrt{1 - \alpha_t \alpha_{t-1}} \bar{Z}_{t-2} + \sqrt{\alpha_t \alpha_{t-1}} \cdot [\sqrt{\alpha_{t-2}} X_{t-3} + \sqrt{1 - \alpha_{t-2}} Z_{t-2}]$
 $= \sqrt{1 - \alpha_t \alpha_{t-1}} \alpha_{t-2} \bar{Z}_{t-3} + \sqrt{\alpha_t \alpha_{t-1}} \alpha_{t-2} X_{t-3}$
 $= \sqrt{1 - \bar{\alpha}_t} \bar{Z}_{t-2} + \sqrt{\bar{\alpha}_t} X_0$

4. β_t 的取值策略:样本(X_t)中的噪声越多, β_t 越大,即:

$$\beta_1 < \beta_2 < \ldots < \beta_T; \quad \bar{\alpha}_1 > \bar{\alpha}_2 > \ldots > \bar{\alpha}_T$$

五、逆扩散过程(Reverse Process)

从噪声中恢复出原始数据的过程。

由第三个限制条件我们可知最终的 $latent概率 p(x_T)$ 是标准正态分布

$$p_{ heta}(X_{t-1}|X_t) \sim \mathcal{N}(X_{t-1}; \mu_{ heta}(X_t, t), \Sigma_{ heta}(X_t, t))$$

六、后验的扩散条件概率

$$q(X_{1:T}|X_0) = \prod_{t=1}^T q(X_t|X_{t-1})$$

Basic Diffusion Model

6

$$p(X_{0:T}) = p(X_T) \prod_{t=1}^T p_{ heta}(X_{t-1}|X_t) \quad p(X_T) = \mathcal{N}(X_T; \mathbf{0}, \mathbf{I})$$

6.1

$$\begin{split} \log p(\mathbf{x}) &= \log \int p(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T} \\ &= \log \int \frac{p(\mathbf{x}_{0:T}) q(\mathbf{x}_{1:T} | \mathbf{x}_{0})}{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} d\mathbf{x}_{1:T} \\ &= \log \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \right] \\ &\geq \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T}) \prod_{t=1}^{T} p\theta(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{\prod_{t=1}^{T} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T}) p(\mathbf{x}_{0} | \mathbf{x}_{1}) \prod_{t=1}^{T} p\theta(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1}) \prod_{t=1}^{T} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T}) p(\mathbf{x}_{0} | \mathbf{x}_{1}) \prod_{t=1}^{T-1} p(\mathbf{x}_{t} | \mathbf{x}_{t-1})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1}) \prod_{t=1}^{T-1} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T}) p(\mathbf{x}_{0} | \mathbf{x}_{1})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1}) \prod_{t=1}^{T-1} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log p(\mathbf{x}_{0} | \mathbf{x}_{1}) \right] + \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T} | \mathbf{x}_{t-1})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1})} \right] + \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{t} | \mathbf{x}_{t+1})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log p(\mathbf{x}_{0} | \mathbf{x}_{1}) \right] + \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1})} \right] + \sum_{t=1}^{T-1} \mathbb{E}_{q(\mathbf{x}_{t-1}, \mathbf{x}_{t}, \mathbf{x}_{t+1} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{t} | \mathbf{x}_{t+1})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1} | \mathbf{x}_{0})} \left[\log p(\mathbf{x}_{0} | \mathbf{x}_{0} | \mathbf{x}_{1}) \right] + \mathbb{E}_{q(\mathbf{x}_{T-1}, \mathbf{x}_{T-1} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T} | \mathbf{x}_{T-1})} \right] + \sum_{t=1}^{T-1} \mathbb{E}_{q(\mathbf{x}_{t-1}, \mathbf{x}_{t}, \mathbf{x}_{t+1} | \mathbf{x}_{0})} \left[\log \frac{p(\mathbf{x}_{t} | \mathbf{x}_{t+1})}{q(\mathbf{x}_{t} | \mathbf{x}_{t+1})} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1} | \mathbf{x}_{0})} \left[\log p(\mathbf{x}_{0} | \mathbf{x}_{0} | \mathbf{x}_{1}) \right] + \mathbb{E}_{q(\mathbf{x}_{T-1}, \mathbf{x}_{T-1})} \left[\mathbb{E}_{p(\mathbf{x}_{T-1}, \mathbf{x}_{T-1})} \left[\mathbb{E}_{p(\mathbf{x}_{T-1}, \mathbf{x}_{T-1})} \left[\mathbb{E}_{p(\mathbf{x}_{T-1}, \mathbf{x}_{T-1})} \right] \right] \right] \\ &$$

- 1. reconstruction term: 预测了逆扩散过程中最后一步到结果的后验概率,训练方法与传统VAE类似;
- 2. prior matching term: 当最终的latent code满足高斯分布时可以最小化。传统VAE中也存在这一项,但是不同的是,diffusion model中的此项没有可训练项,且最后T时刻一定是各向异性的高斯分布,即 $p(x_T)=q(x_T|x_{T-1})=1$,所以此项为0;
- 3. consistency term: 训练使得 为一张噪音更多的照片去噪的一步 与 从一张噪音更少的照片中添加噪音的过程 保持一直。随着训练 $p_{\theta}(x_t|x_{t+1})$ 吻合 $q(x_t|x_{t+1})$,此项的值也在变小。此项为决定项。

6.2

换一个一次一步的算法。

$$q(x_t|x_{t-1}) = q(x_t|x_{t-1},x_0)$$

根据贝叶斯法则,改写为:

$$q(x_t|x_{t-1}, x_0) = \frac{q(x_{t-1}|x_t, x_0)q(x_t|x_0)}{q(x_{t-1}|x_0)}$$

$$\log p(\boldsymbol{x}) \ge \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)}\right]$$

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T) \prod_{t=1}^T p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{\prod_{t=1}^T q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})}\right]$$

从此步开始推导发生变化:

$$\begin{split} &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \prod_{t=2}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0}) \prod_{t=2}^{T} q(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \prod_{t=2}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0}) \prod_{t=2}^{T} q(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})} \right] \end{split}$$

$$\begin{split} &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{\frac{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})}} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} + \log \frac{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} + \sum_{t=2}^{T} \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right] + \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} \right] + \sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right] + \mathbb{E}_{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} \right] + \sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t},\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})} \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right] - D_{\mathrm{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T})) - \sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})) \right] \\ &= \mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right] - D_{\mathrm{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T})) - \sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})) \right] \right] \end{aligned}$$

与上一种推导方式作对比:

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)}\left[\log p_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_1)\right]}_{\text{reconstruction term}} - \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{T-1}|\boldsymbol{x}_0)}\left[D_{\text{KL}}(q(\boldsymbol{x}_T|\boldsymbol{x}_{T-1}) \parallel p(\boldsymbol{x}_T))\right]}_{\text{prior matching term}} \\ - \sum_{t=1}^{T-1} \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{t-1},\boldsymbol{x}_{t+1}|\boldsymbol{x}_0)}\left[D_{\text{KL}}(q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}) \parallel p_{\theta}(\boldsymbol{x}_t|\boldsymbol{x}_{t+1}))\right]}_{\text{consistency term}}$$

 $x_t \sim q(x_t|x_{t-1})$ 可以改写成

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon$$
 with $\epsilon \sim \mathcal{N}(\epsilon; \mathbf{0}, \mathbf{I})$

同样可以推导至

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_0$$

$$\begin{aligned} q(x_{t-1}|x_t, x_0) &= \frac{q(x_t|x_{t-1}, x_0)q(x_{t-1}|x_0)}{q(x_t|x_0)} \\ &= \frac{\mathcal{N}(x_t; \sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)\mathbf{I})\mathcal{N}(x_{t-1}; \sqrt{\alpha_{t-1}}x_0, (1-\bar{\alpha}_{t-1})\mathbf{I})}{\mathcal{N}(x_t; \sqrt{\alpha_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})} \\ &\propto \exp\left\{-\left[\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{2(1-\alpha_t)} + \frac{(x_{t-1} - \sqrt{\alpha_{t-1}}x_0)^2}{2(1-\bar{\alpha}_{t-1})} - \frac{(x_t - \sqrt{\alpha_t}x_0)^2}{2(1-\bar{\alpha}_t)}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{1-\alpha_t} + \frac{(x_{t-1} - \sqrt{\alpha_{t-1}}x_0)^2}{1-\bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\alpha_t}x_0)^2}{1-\bar{\alpha}_t}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{(-2\sqrt{\alpha_t}x_tx_{t-1} + \alpha_tx_{t-1}^2)}{1-\alpha_t} + \frac{(x_{t-1}^2 - 2\sqrt{\alpha_{t-1}}x_{t-1}x_0)}{1-\bar{\alpha}_{t-1}} + C(x_t, x_0)\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left[\frac{-2\sqrt{\alpha_t}x_tx_{t-1}}{1-\alpha_t} + \frac{\alpha_tx_{t-1}^2}{1-\alpha_t} + \frac{x_{t-1}^2}{1-\bar{\alpha}_{t-1}} - \frac{2\sqrt{\alpha_{t-1}}x_{t-1}x_0}{1-\bar{\alpha}_{t-1}}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{\alpha_t}{1-\alpha_t} + \frac{1}{-\bar{\alpha}_{t-1}}\right)x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{\alpha_t(1-\bar{\alpha}_{t-1}) + 1-\alpha_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{\alpha_t(1-\bar{\alpha}_{t-1}) + 1-\alpha_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{1-\bar{\alpha}_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{1-\bar{\alpha}_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left(\frac{1-\bar{\alpha}_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}\right)\left[x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right\right\} \\ &$$

证明了每一步 $X_{t-1}\sim q(x_{t-1}|x_t,x_0)$ 均为正态分布,且均值为 x_t 和 x_0 的函数,方差为lpha的函数令

$$\sigma_q^2(t) = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}$$

我们要最小化这一项:

$$\sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})) \right]}_{\text{denoising matching term}}$$

$$\arg \min_{\boldsymbol{\theta}} D_{\text{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}))
= \arg \min_{\boldsymbol{\theta}} D_{\text{KL}}(\mathcal{N}(\boldsymbol{x}_{t-1};\boldsymbol{\mu}_{q},\boldsymbol{\Sigma}_{q}(t)) \parallel \mathcal{N}(\boldsymbol{x}_{t-1};\boldsymbol{\mu}_{\theta},\boldsymbol{\Sigma}_{q}(t)))
= \arg \min_{\boldsymbol{\theta}} \frac{1}{2} \left[\log \frac{|\boldsymbol{\Sigma}_{q}(t)|}{|\boldsymbol{\Sigma}_{q}(t)|} - d + \text{tr}(\boldsymbol{\Sigma}_{q}(t)^{-1}\boldsymbol{\Sigma}_{q}(t)) + (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q})^{T}\boldsymbol{\Sigma}_{q}(t)^{-1}(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q}) \right]
= \arg \min_{\boldsymbol{\theta}} \frac{1}{2} \left[\log 1 - d + d + (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q})^{T}\boldsymbol{\Sigma}_{q}(t)^{-1}(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q}) \right]
= \arg \min_{\boldsymbol{\theta}} \frac{1}{2} \left[(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q})^{T}\boldsymbol{\Sigma}_{q}(t)^{-1}(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q}) \right]
= \arg \min_{\boldsymbol{\theta}} \frac{1}{2} \left[(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q})^{T} (\sigma_{q}^{2}(t)\mathbf{I})^{-1} (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q}) \right]
= \arg \min_{\boldsymbol{\theta}} \frac{1}{2\sigma_{q}^{2}(t)} \left[\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{q}\|_{2}^{2} \right]$$

 $\mu_q = \mu_q(x_t,x_0), \; \mu_ heta = \mu_ heta(x_t,t)$

$$\boldsymbol{\mu}_q(\boldsymbol{x}_t, \boldsymbol{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})\boldsymbol{x}_t + \sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)\boldsymbol{x}_0}{1 - \bar{\alpha}_t}$$

$$\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t) = \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_t + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)}{1-\bar{\alpha}_t}$$

$$\begin{aligned} & \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})) \\ & = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} D_{\mathrm{KL}}(\mathcal{N}\left(\boldsymbol{x}_{t-1};\boldsymbol{\mu}_{q},\boldsymbol{\Sigma}_{q}\left(t\right)\right) \parallel \mathcal{N}\left(\boldsymbol{x}_{t-1};\boldsymbol{\mu}_{\boldsymbol{\theta}},\boldsymbol{\Sigma}_{q}\left(t\right)\right)) \\ & = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2\sigma_{q}^{2}(t)} \left[\left\| \frac{\sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_{t} + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t)}{1-\bar{\alpha}_{t}} - \frac{\sqrt{\bar{\alpha}_{t}}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_{t} + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})\boldsymbol{x}_{0}}{1-\bar{\alpha}_{t}} \right\|_{2}^{2} \right] \\ & = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2\sigma_{q}^{2}(t)} \left[\left\| \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t)}{1-\bar{\alpha}_{t}} - \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})\boldsymbol{x}_{0}}{1-\bar{\alpha}_{t}} \right\|_{2}^{2} \right] \\ & = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2\sigma_{q}^{2}(t)} \left[\left\| \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})}{1-\bar{\alpha}_{t}} \left(\hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t) - \boldsymbol{x}_{0}\right) \right\|_{2}^{2} \right] \\ & = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2\sigma_{q}^{2}(t)} \frac{\bar{\alpha}_{t-1}(1-\alpha_{t})^{2}}{(1-\bar{\alpha}_{t})^{2}} \left[\left\| \hat{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t) - \boldsymbol{x}_{0} \right\|_{2}^{2} \right] \end{aligned}$$

Summary

- Diffusion Basics
 - □ From VAE to Diffusion
- Next time
 - Diffusion variants and applications

- Quiz9: send to https://www.gradescope.com/courses/454988/assignme nts/2502149/submissions
- Keep working on the projects!