Eg 1. Find the real root of the equation $x^3 - 4x - 9 = 0$ by Bisection method correct. Take a = 2.706, b = 2.707, $\epsilon = 0.0001$

Eg 1. Find the real root of the equation $x^3 - 4x - 9 = 0$ by Bisection method correct. Take a = 2.706, b = 2.707, $\epsilon = 0.0001$

$$f(x) = x^3 - 4x - 9$$

$$f(2.706) = -0.009488 i.e., (-)ve$$
 and

Х	0	1	2	3
f(x)	-9	-12	-9	6

f(2.707) = 0.008487 i.e., (+)ve

Hence, the root lies between 2.706 and 2.707.

а	f(a)	b	f(b)
2.706	- 0.009488	2.707	0.008487

First approximation to the root is

$$c = \frac{(2.706 + 2.707)}{2}$$

$$c = 2.7065$$

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
2.706	- 0.009488	2.707	0.008487	2.7065	- 0.0005025	-

Now
$$f(c) = -0.0005025$$
 i.e., (–)ve and $f(b) = 0.008487$ *i.e.,* (+)ve

Hence, the root lies between 2.7065 and 2.707.

Second approximation to the root is

$$c = \frac{(2.7065 + 2.707)}{2}$$

= 2.70675

Now f(c) = 0.003992 *i.e.,* (+)ve and f(a) = -0.0005025 *i.e.,* (–)ve Hence, the root lies between 2.7065 and 2.70675.

a	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
2.706	- 0.009488	2.707	0.008487	2.7065	- 0.0005025	-
2.7065	- 0.0005025	2.707	0.008487	2.70675	0.003992	0.00025

Third approximation to the root is

$$c = \frac{(2.7065 + 2.70675)}{2}$$

= 2.706625

Now f(c) = 0.001744 i.e., (+)ve and f(a) = -0.0005025 i.e., (-)ve Hence, the root lies between 2.7065 and 2.706625.

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
2.706	- 0.009488	2.707	0.008487	2.7065	- 0.0005025	-
2.7065	- 0.0005025	2.707	0.008487	2.70675	0.003992	0.00025
2.7065	- 0.0005025	2.70675	0.003992	2.706625	0.001744	0.000125

Fourth approximation to the root is

$$c = \frac{(2.7065 + 2.7406625)}{2} = 2.7065625$$

$$\epsilon$$
 = 0.0001, $|c_k - c_{k-1}|$ = 0.0000625 < ϵ

Hence, the root is 2.7065625, correct to three decimal places.

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
2.706	- 0.009488	2.707	0.008487	2.7065	- 0.0005025	ı
2.7065	- 0.0005025	2.707	0.008487	2.70675	0.003992	0.00025
2.7065	- 0.0005025	2.70675	0.003992	2.706625	0.001744	0.000125
2.7065	- 0.0005025	2.706625	0.001744	2.7065625		0.0000625

Example 2

- Eg. 2 The quadratic (x 0.3)(x 0.5) obviously has zeros at 0.3 and 0.5.
- a. Why is the interval [0.1, 0.6] not a satisfactory starting interval for bisection?
- b. What are good starting intervals for each root?
- c. If you start with [0,0.491] which root is reached with bisection? Which root is reached from [0.31, 1.0]?

- Eg. 2 The quadratic (x 0.3)(x 0.5) obviously has zeros at 0.3 and 0.5.
- a. Why is the interval [0.1, 0.6] not a satisfactory starting interval for bisection?
- Ans. Both a and b have same sign
- b. What are good starting intervals for each root?
- Ans. [0.2,0.4] for 0.3 and [0.4, 0.6] for 0.5
- c. If you start with [0,0.491] which root is reached with bisection?
- Which root is reached from [0.31, 1.0]?
- Ans. 0.3, 0.5

Example 3

Eg. 3 This polynomial obviously has roots at x = 2 and at x = 4; one is a double root, the other a triple root:

$$f(x) = (x-2)^3(x-4)^2$$

= $x^5 - 14x^4 + 76x^3 - 200x^2 + 256x - 128$

- a. Which root can you get with bisection? Which root can't you get?
- b. Repeat part (a) with the secant method.
- c. If you begin with the interval [1,5], which root will you get with (1) bisection, (2) the secant method, (3) false position?
- d. Use Newton's method with $x_0 = 3$. Does it converge? To which root?

This polynomial obviously has roots at x = 2 and at x = 4; one is a double root, the other a triple root:

$$f(x) = (x-2)^3(x-4)^2$$

= $x^5 - 14x^4 + 76x^3 - 200x^2 + 256x - 128$

- a. we can get the root 2. Getting Interval for 4 is not possible b.
- c. If you begin with the interval [1,5],
 - (1) Bisection: Converge to 2

d.

Examples

Eg 4. Find the real root of the equation $x^3 - x - 1$ by Bisection method correct to two decimal places.

$$\epsilon$$
 = 0.01, Take a = 1.25, b = 1.5

Eg 5. Find the real root of the equation $f(x) = 3x - e^x$ by Bisection method correct to two decimal places.

$$\epsilon$$
 = 0.01, Take a = 0, b = 1

Example 4

Eg 4. Find the real root of the equation $x^3 - x - 1$ by Bisection method correct to two decimal places.

$$\epsilon$$
 = 0.01, Take a = 1.25, b = 1.5

X	0	1	2
f(x)	-1	-1	5

Eg 4. Find the real root of the equation $x^3 - x - 1$ by Bisection method correct to two decimal places. Take a = 1.25, b = 1.5,

Eg 4. Find the real root of the equation $x^3 - x - 1$ by Bisection method correct to two decimal places. Take a = 1.25, b = 1.5,

$$\epsilon = 0.01$$

$$f(x) = x^3 - x - 1$$

$$f(1.25) = -0.2969$$
 (-)ve

$$f(1.5) = 0.875 (+)ve$$

Hence, the root lies between 1.25 and 1.5.

а	f(a)	b	f(b)
1.25	- 0.2969	1.5	0.875

∴ First approximation to the root is

$$c = \frac{(1.25 + 1.5)}{2}$$

$$c = 1.375$$

a	f(a)	b	f(b)	c = (a+b)/2	f(c)
1.25	- 0.2969	1.5	0.875	1.375	0.2246

Now f(c) = f(1.375) = 0.2246 (+)ve and f(a) = -0.2969 (-)ve

Hence, the root lies between 1.25 and 1.375

Second approximation to the root is

$$c = \frac{(1.25 + 1.375)}{2}$$

= 1.3125

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
1.25	- 0.2969	1.5	0.875	1.375	0.2246	-
1.25	- 0.2969	1.375	0.2246	1.3125	-0.0515	0.0625

Now f(c) = f(1.3125) = -0.0515 (-)ve and f(b) = 0.2246 (+)ve

Hence, the root lies between 1.3125 and 1.375.

Third approximation to the root is

$$c = \frac{(1.3125 + 1.375)}{2} = 1.3438$$

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
1.25	- 0.2969	1.5	0.875	1.375	0.2246	-
1.25	- 0.2969	1.375	0.2246	1.3125	-0.0515	0.0625
1.3125	-0.0515	1.375	0.2246	1.3438	0.0826	0.0313

Now f(c) = f(1.3438) = 0.0826 i.e., (+)ve and f(a) = -0.0515 (-)ve

Hence, the root lies between 1.3125 and 1.3438.

Fourth approximation to the root is

$$c = \frac{(1.3125 + 1.3438)}{2} = 1.3281$$

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k - c_{k-1} $
1.25	- 0.2969	1.5	0.875	1.375	0.2246	-
1.25	- 0.2969	1.375	0.2246	1.3125	-0.0515	0.0625
1.3125	-0.0515	1.375	0.2246	1.3438	0.0826	0.0313
1.3125	-0.0515	1.3438	0.0826	1.3281	0.0146	0.0157

Now f(c) = f(1.3281) = 0.0146 i.e., (+)ve and

f(b) = f(1.3125) = -0.0515 *i.e.,* (-)ve

Hence, the root lies between 1.3125 and 1.3281

Fifth approximation to the root is

$$c = \frac{(1.3125 + 1.3281)}{2} = 1.3203$$

$$\epsilon$$
 = 0.01 | $c_k - c_{k-1}$ | = 0.0078 < ϵ

The approximate real root is 1.3203

а	f(a)	b	f(b)	c = (a+b)/2	f(c)	$ c_k-c_{k-1} $
1.25	- 0.2969	1.5	0.875	1.375	0.2246	-
1.25	- 0.2969	1.375	0.2246	1.3125	-0.0515	0.0625
1.3125	-0.0515	1.375	0.2246	1.3438	0.0826	0.0313
1.3125	-0.0515	1.3438	0.0826	1.3281	0.0146	0.0157
1.3125	-0.0515	1.3281	0.0146	1.3203		0.0078

•
$$f(x) = 3x - e^x$$

а	f(a)	b	f(b)	$c=\frac{a+b}{2}$	f(c)
0	-1	1	0.2817	0.5	-0.1487
0.5	-0.1487	1	0.2817	0.75	0.133
0.5	-0.1487	0.75	0.133	0.625	0.0068
0.5	-0.1487	0.625	0.0068	0.5625	-0.0676
0.5625	-0.0676	0.625	0.0068	0.5938	-0.0295
0.5938	-0.0295	0.625	0.0068	0.6094	-0.0112
0.6094	-0.0112	0.625	0.0068	0.6172	-0.0021
0.6172	-0.0021	0.625	0.0068	0.6211	0.0023
0.6172	-0.0021	0.6211	0.0023	0.6191	0.0001