Delay

Song Chen

Nov. 12, 2015

http://staff.ustc.edu.cn/~songch/da-ug.htm

Outline

- Delay
 - Gate
 - Wire (Interconnect)

Timing Optimization

- Architecture/Micro-architecture
 - Pipeline stages, number of execution units (parallelism), size of memories
 - Selected Algorithms, Technology, Memory access speed, Wire delay
- Logic level
 - Types of functional blocks (e.g., ripple carry vs. look-ahead adders), number of gate stages in the clock cycle, fan-in/fanout of the gates
- Circuit-level
 - Transistor sizes, CMOS logic styles
- Layout-level
 - Floorplan, cell layouts, routing, etc.

Common Design Practice

- To write RTL code, Simulate
- Synthesize to check if the results are fast enough
 - Timing optimization at Logic, circuit, placement level.
 - If not: recode the RTL with more parallelism or pipelining, or changes the algorithm and repeats until the timing constraints are satisfied.
 - Timing analyzers are used to check the *Timing closure*.
 - Without an understanding of the lower levels of abstraction where the synthesizer is working, a designer may have a difficult time achieving timing closure on a challenging system.

Delay Definitions

- t_{pdr}/t_{pdf}: rising/falling propagation (maximum) delay
 - From input to rising/falling output crossing $V_{DD}/2$
- t_{cdr}/t_{cdf}: rising/falling contamination (minimum) delay
 - From input to falling output crossing $V_{DD}/2$
- t_{pd}/t_{cd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- $\mathbf{t_f}$: fall time
 - From output crossing 0.8 $\rm V_{DD}$ to 0.2 $\rm V_{DD}$

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

Capacitance

- $-C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width in 0.6 μm
- Gradually decline to 1 fF/ μ m in nanometer techs.

Resistance

- − R ≈ 6 KΩ*µm in 0.6 µm process
- Improves with shorter channel lengths

Unit transistors

- May refer to minimum contacted device (4/2 λ)
- Or maybe 1 μ m wide device
- Doesn't matter as long as you are consistent

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

$$d = 6RC$$

Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$\begin{split} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N\right) C_N \end{split}$$

Example: 3-input NAND

Estimate worst-case rising and falling delay of 3-input NAND driving h
identical gates.

$$t_{pdr} = (15 + 5h)RC$$

$$R/3$$
 \downarrow $(9 + 5h)C$
 n_2 \downarrow $3C$
 n_1 \downarrow $3C$
 $R/3$ \downarrow $3C$

$$t_{pdf} = (3C)(R/3) + (3C)(R/3 + R/3) + [(9+5h)C](R/3 + R/3 + R/3)$$

= (12+5h)RC

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 11 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

$$R = \left[(9+5h)C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right)RC$$

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Timing Analysis Delay Models

Slope-Based Linear Model

- delay_rise = intrinsic_rise + rise_resistance x capacitance + slope_risex delay_previous
- delay_fall = intrinsic_fall + fall_resistance x capacitance + slope_fall x delay_previous

Nonlinear Delay Model: Two-dimensional interpolation

Look up the delay from a table based on the load capacitance and the input slope

Current Source Model

- Express the output DC current as a nonlinear function of the input and output voltages of the cell
- Analyzer numerically integrates the output current to find the voltage as a function of time into an arbitrary RC network and to solve for the propagation delay.

Wire/Interconnect

- Introduction
- Interconnect Modeling
 - Wire Resistance
 - Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters

Introduction

- Chips are mostly made of wires called interconnect
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1</p>
 - Modern processes have AR \approx 2
 - Pack in many skinny wires

Layer Stack

- AMI 0.6 μm process has 3 metal layers
 - M1 for within-cell routing
 - M2 for vertical routing between cells
 - M3 for horizontal routing between cells
- Modern processes use 6-10+ metal layers
 - M1: thin, narrow ($< 3\lambda$)
 - High density cells
 - Mid layers
 - Thicker and wider, (density vs. speed)
 - Top layers: thickest
 - For V_{DD}, GND, clk

Example

1 μm

Intel 90 nm Stack

M7
M6
M5
M4
M3
M2
M1
Transistors

Intel 45 nm Stack

[Thompson02]

[Moon08]

Interconnect Modeling

- Current in a wire is analogous to current in a pipe
 - Resistance: narrow size impedes flow
 - Capacitance: trough under the leaky pipe must fill first
 - Inductance: paddle wheel inertia opposes changes in flow rate
 - Negligible for most wires

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

- 3-segment π -model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

Wire Resistance

• $\rho = resistivity (\Omega * m)$

$$R =$$

- $R_{\square} = sheet \ resistance \ (\Omega/\square)$
 - \square is a dimensionless unit(!)
- Count number of squares
 - $R = R_{\square} * (\# \text{ of squares})$

Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Contemporary processes normally use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Contacts Resistance

- Contacts and vias also have 2-20 Ω
 - Depending on the contacted materials and size of the contact
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Copper Issues

- Copper wires diffusion barrier has high resistance
- Copper is also prone to dishing polishing
- Effective resistance is higher

$$R = \frac{\rho}{\left(t - t_{\text{dish}} - t_{\text{barrier}}\right)} \frac{l}{\left(w - 2t_{\text{barrier}}\right)}$$

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $C_{total} = C_{top} + C_{bot} + 2C_{adj}$

Capacitance Trends

- Parallel plate equation: $C = \varepsilon_{ox}A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (w, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon_{ox} = k\varepsilon_0$
 - $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
 - $k = 3.9 \text{ for } SiO_2$
- Processes are starting to use low-k dielectrics
 - $-k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

- Typical dense wires have $\sim 0.2 \text{ fF/}\mu\text{m}$
 - Compare to 1-2 fF/μm for gate capacitance

Capacitance of metal2 (180nm) line as a function of width and spacing

Wire RC Delay

• Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1 mm wire. Assume wire capacitance is 0.2 fF/ μ m and that a unit-sized nMOS transistor has R = 10 K Ω and C = 0.1 fF.

$$-t_{pd} =$$

Interconnect Modeling with RC tree (Elmore Delay)

$$T_{D_3} = R_1 C_1 + (R_1 + R_2)C_2 + (R_1 + R_2 + R_3)C_3 + R_1 C_4$$
$$T_{D_4} = R_1 C_1 + R_1 (C_2 + C_3) + (R_1 + R_4)C_4$$

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- A Switches: Effective C_{adj} depends on behavior of neighbors
 - Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant		_	
Switching with A			
Switching opposite A			

Crosstalk Noise

- Crosstalk causes noise on non-switching wires
- If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{\textit{victim}} = \frac{C_{\textit{adj}}}{C_{\textit{gnd-v}} + C_{\textit{adj}}} \Delta V_{\textit{aggressor}}$$

Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{\textit{victim}} = \frac{C_{\textit{adj}}}{C_{\textit{gnd-v}} + C_{\textit{adj}}} \frac{1}{1+k} \Delta V_{\textit{aggressor}}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Coupling Waveforms

• Simulated coupling for $C_{adj} = C_{victim}$

Noise Implications

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

 a_1 gnd a_2

 $vdd a_0 gnd a_1 vdd a_2 gnd$

Repeaters

- R and C are proportional to I
- RC delay is proportional to I²
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capacitance C_w*I/N, Resistance R_w*I/N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Results

Write equation for Elmore Delay

$$t_{pd} = N \left[\frac{R}{W} \left(C_w \frac{l}{N} + CW \left(1 + p_{inv} \right) \right) + R_w \frac{l}{N} \left(\frac{C_w}{2} \frac{l}{N} + CW \right) \right]$$

- Differentiate with respect to W and N
- Set equal to 0, solve

 $W = \sqrt{\frac{RC_w}{R C'}}$

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{l} = (2 + \sqrt{2})\sqrt{RC'R_w C_w}$$

$$^{\sim 40 \text{ ps/mm}}$$
in 65 nm process

Repeater Energy

- Energy / length $\approx 1.87 C_w V_{DD}^2$
 - 87% premium over unrepeated wires
 - The extra power is consumed in the large repeaters
- If the repeaters are downsized for minimum EDP:
 - Energy premium is only 30%
 - Delay increases by 14% from min delay

Reference

• Reference [4]. Chapter 4.3, Chapter 6