Worksheet 5 Bitwise manipulationData types

Worksheet 5 Bitwise manipulation and masks

Task 1

1.	Figure 1 shows a byte contain unknown.	igure ${f 1}$ shows a byte containing a signed integer. The value of the carry bit inknown.							
	0 1	0 1 1 0 0 1 carr							
	[0 1]	V Dit							
	Figure 1 Show the result of performing the following shifts, starting each time with byte given in Figure 1 .								
	(a) a logical right shift:								
	(b) a logical left shift:								
	(b) an arithmetic left	shift:							
	(c) an arithmetic right	shift:							
2.	Using a combination of shifts a	and addition, multiply 13 by 6							
3.		Carr							
	$\begin{bmatrix} 0 & 1 \end{bmatrix}$	1 1 0 0 0 1 0 v bit							
		Figure 2							
	Show the result of performing the following consecutive shifts on the byte.								
	(a) a circular right shift:								
	(b) a circular right shift:								
	(c) an arithmetic left	shift:							

Worksheet 5 Bitwise manipulationData types

~			
101	PG	ONI	INE

(d) an arithmetic right											shift:
-------------------------	--	--	--	--	--	--	--	--	--	--	--------

Worksheet 5 Bitwise manipulationData types

Task 2

- 4. A system has 8 switches which are controlled by a binary code. Switches 1, 4 and 8 are currently ON.
 - (a) It is desired to set switch 7 to a '1' without altering the other switches. Show how this can be done with a mask and a logical operator.

Switch number 1 2 3 4 5 6 7 8 Current state 1 0 0 1 0 0 0 1

(b) It is now desired to set bits 1 to 4 to 0 without altering bits 5 to 8. Show how this can be done with a mask and a logical operator.

Switch number 1 2 3 4 5 6 7 8 Current state 1 0 0 1 0 0 0 1

5. The ASCII codes for the numbers 0 to 9 are from 0011 0000 to 0011 1001. Using the ASCII code for "1" as an example, show how these can be translated into pure binary using an XOR mask and a logical operator.

1 2 3 4 5 6 7 8 code for 1 0 0 1 1 0 0 0 1

Show an alternative solution using a different mask.

1 2 3 4 5 6 7 8 code for 1 0 0 1 1 0 0 0 1