

SEQUENCE LISTING

<110> Max-Delbrück-Centrum für Molekulare Medizin
<120> Neuronally expressed tryptophane hydroxylase and its use
<130> M30317PCT
<160> 14
<170> PatentIn version 3.2
<210> 1
<211> 2350
<212> DNA
<213> homo sapiens
<400> 1
cattgctttt cagcaccagg gttctggaca gcgcggcaag caggcagctg atcgacgccc 60
ccttccttc aatctccgcc agcgctgcta ctgccccctt agtacccccc gctgcagaga 120
aagaatatta caccggatc catgcagcca gcaatgtga tgtttccag taaatactgg 180
gcacggagag ggttttccct ggattcagca gtgcggcaag agcatcagct acttggcagc 240
tcaacactaa ataaaccaa ctctggcaaa aatgacgaca aaggcaacaa gggaaagcagc 300
aaacgtgaag ctgctaccga aagtggcaag acagcagttt ttttcttc tttaatggaa 360
gttggat tggtaaaagc actgaggctc tttcaggaaa aacgtgtcaa catggttcat 420
attgaatcca ggaaatctcg gcgaagaagt tctgaggttg aaatctttgt ggactgtgag 480
tgtggaaaaa cagaattcaa tgagctcatt cagttgctga aatttcaaac cactatttg 540
acgctgaatc ctccagagaa catttggaca gaggaagaag agcttagagga tgtgcctgg 600
ttccctcgga agatctctga gttagacaaa tgctctcaca gagttctcat gtatggttct 660
gagcttgatg ctgaccaccc aggatttaag gacaatgtct atcgacagag aagaaagttat 720
tttggatg tggccatggg ttataaatat ggtcagccca ttcccagggt ggagtataact 780
gaagaagaaa ctaaaacttg ggggtttgtt ttcggggage tctccaaact ctatcccact 840
catgcttgcg gagagtat tttt gaaaaacttc cctctgctga ctaaatactg tggctacaga 900
gaggacaatg tgcctcaact cgaagatgtc tccatgtttc tgaaagaaa gtctggcttc 960
acggtgaggc cggtggctgg atacctgagc ccacgagact ttctggcagg actggcctac 1020
agagtgttcc actgtacccca gtacatccgg catggctcag atccctctta caccccaaaaa 1080
ccagacacat gccatgaact cttggacat gttccactac ttgcggatcc taagtttgc 1140
cagttttcac aagaaatagg tctggcgtct ctgggagcat cagatgaaga tggtcagaaa 1200
ctagccacgt gctatttctt cacaatcgag ttggccttt gcaagcaaga agggcaactg 1260
cgggcatatg gagcaggact cttttctcc attggagaat taaagcacgc ctttctgac 1320
aaggcatgtg tgaaagcctt tgacccaaag acaacttgct tacaggaatg ctttatcacc 1380

accttccagg aagcctactt tgtttcagaa agtttgaaag aagccaaaga aaagatgagg	1440
gactttgcaa agtcaattac ccgtcccttc tcagtatact tcaatcccta cacacagagt	1500
atggaaattc tgaaagacac cagaagtatt gaaaatgtgg tgcaggacct tcgcagcgac	1560
ttgaatacacag tgtgtgatgc tttaaacaaa atgaaccaat atctggggat ttgatgcctg	1620
gaactatgtt gttgccagca tgatctttt gggcttagc agcagttcag tcaatgtcat	1680
ataacgc当地 taacccctcg tgtcatggct tggctaataa gcatgcaatt ccatatatct	1740
ataccatctt gtaactcaact gtgttagtat ataaagcacc ataagaatc caatggcaga	1800
taacctgaaa taacgtatta tgtttaaaca tcttaaaaag atttgacatt cctgcttagt	1860
gtccttaacc aaactgc当地 tagttaaaat ttgtacaaa tagccctctt atgagtctca	1920
tttatgccct tttttttc agatctaagc ct当地ctctg tgttcattag ataaaatgaa	1980
aaaaaggcagt gaagctgttt ccatttcaa tagtacgt gtttcacgc attatttgag	2040
ataaaacccag aattgttagga aacttcccat cacaataaca aaggttcaat attctatttc	2100
aaaaattgtt gaggtAACAC agcagttgga atgatttttta gggttagtat ttacacaatg	2160
caagaaaaca ctttttaca aatggaattt tgtaggtgc gttgaccttg tagaacctga	2220
gttatgacaa gttccctgaa gtattttgga agatagttact tccggaaagg acatttagaa	2280
agactaaaca gtggacaatc aatcttggga ctatgaattt tatgctggaa taaagtaaat	2340
tatcatgttc	2350

<210> 2
<211> 490
<212> PRT
<213> homo sapiens

<400> 2

Met Gln Pro Ala Met Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg			
1	5	10	15

Gly Phe Ser Leu Asp Ser Ala Val Pro Glu Glu His Gln Leu Leu Gly		
20	25	30

Ser Ser Thr Leu Asn Lys Pro Asn Ser Gly Lys Asn Asp Asp Lys Gly		
35	40	45

Asn Lys Gly Ser Ser Lys Arg Glu Ala Ala Thr Glu Ser Gly Lys Thr		
50	55	60

Ala Val Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala			
65	70	75	80

3/12

Leu Arg Leu Phe Gln Glu Lys Arg Val Asn Met Val His Ile Glu Ser
85 90 95

Arg Lys Ser Arg Arg Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys
100 105 110

Glu Cys Gly Lys Thr Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe
115 120 125

Gln Thr Thr Ile Val Thr Leu Asn Pro Pro Glu Asn Ile Trp Thr Glu
130 135 140

Glu Glu Glu Leu Glu Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu
145 150 155 160

Leu Asp Lys Cys Ser His Arg Val Leu Met Tyr Gly Ser Glu Leu Asp
165 170 175

Ala Asp His Pro Gly Phe Lys Asp Asn Val Tyr Arg Gln Arg Arg Lys
180 185 190

Tyr Phe Val Asp Val Ala Met Gly Tyr Lys Tyr Gly Gln Pro Ile Pro
195 200 205

Arg Val Glu Tyr Thr Glu Glu Thr Lys Thr Trp Gly Val Val Phe
210 215 220

Arg Glu Leu Ser Lys Leu Tyr Pro Thr His Ala Cys Arg Glu Tyr Leu
225 230 235 240

Lys Asn Phe Pro Leu Leu Thr Lys Tyr Cys Gly Tyr Arg Glu Asp Asn
245 250 255

Val Pro Gln Leu Glu Asp Val Ser Met Phe Leu Lys Glu Arg Ser Gly
260 265 270

Phe Thr Val Arg Pro Val Ala Gly Tyr Leu Ser Pro Arg Asp Phe Leu
275 280 285

Ala Gly Leu Ala Tyr Arg Val Phe His Cys Thr Gln Tyr Ile Arg His
290 295 300

Gly Ser Asp Pro Leu Tyr Thr Pro Glu Pro Asp Thr Cys His Glu Leu
305 310 315 320

Leu Gly His Val Pro Leu Leu Ala Asp Pro Lys Phe Ala Gln Phe Ser
325 330 335

Gln Glu Ile Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Asp Val Gln
 340 345 350

Lys Leu Ala Thr Cys Tyr Phe Phe Thr Ile Glu Phe Gly Leu Cys Lys
 355 360 365

Gln Glu Gly Gln Leu Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile
 370 375 380

Gly Glu Leu Lys His Ala Leu Ser Asp Lys Ala Cys Val Lys Ala Phe
 385 390 395 400

Asp Pro Lys Thr Thr Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln
 405 410 415

Glu Ala Tyr Phe Val Ser Glu Ser Phe Glu Glu Ala Lys Glu Lys Met
 420 425 430

Arg Asp Phe Ala Lys Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn
 435 440 445

Pro Tyr Thr Gln Ser Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu
 450 455 460

Asn Val Val Gln Asp Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala
 465 470 475 480

Leu Asn Lys Met Asn Gln Tyr Leu Gly Ile
 485 490

<210> 3

<211> 2638

<212> DNA

<213> mus musculus

<400> 3

cactgctctt cagcaccagg gttctggaca gcgcggcgag caggcagctg ccactgcagt 60

tcctccctca tctctgccaa ggccgcgcct ctgggtcccc ctgctgctga gaaagaaaat 120

tacatcggga gccatgcagc ccgcaatgat gatgtttcc agtaaatact gggccaggag 180

agggttgtcc ttggattctg ctgtgccaga agatcatcag ctacttggca gcttaacaca 240

aaataaggct atcaaaagcg aggacaagaa aagcggcaaa gagcccgca aaggcgacac 300

cacagagagc agcaagacag cagttgtgtt ctccttgaag aatgaagttt gtgggcttgt 360

gaaagcactt agactattcc agaaaaaca tgtcaacatg cttcatatcg aatccaggcg 420

gtcccccggcga agaagttctg aagtcgaaat cttcgtggac tgcaaatgtg gcaaaacgg 480

attcaatgag ctcatccagt tgctgaaatt tcagaccacc attgtgaccc tgaatccgcc	540
tgagagcatt tggacggagg aagaagatct cgaggatgtg ccgtggttcc ctcggaagat	600
ctctgagttt gacagatgct ctcaccgagt cctcatgtac ggcaccgagc ttgatgccga	660
ccatccagga tttaaggaca atgtctatcg acagaggagg aagtattttg tggatgtggc	720
catggctat aaatatggtc agcccattcc cagggtcgag tacacagaag aagagactaa	780
aacttggggt gttgtgttcc gggagcttc caaactctac ccgactcatg ctggccggga	840
gtacctgaaa aacccccc tgctgaccaa gtactgtggc tacagggaa acaacgtgcc	900
gcaactggaa gacgtctcca tgtttctgaa agagcgatct ggcttcacag tgagaccagt	960
ggctggctac ctgagccaa gagacttcct ggccggcctg gcctacagag tattccactg	1020
cacccagtac gtgcggcatg gctccgaccc cctctacacc ccggaaccag atacatgcca	1080
tgaactcttg ggacacgtgc cactgcttgc ggatcccaag tttgctcagt tttcccaaga	1140
gataggctta gcgtctctgg gagcctcaga tgaggacgtt cagaaactag ccacgtgcta	1200
tttcttcaca atcgagttcg gccttgc当地 gcaagagggt caactgc当地 cgtatggagc	1260
agggttactt tcgtccatcg gagaattgaa gcatgctt tccgacaagg cgtgtgtgaa	1320
atccttgc当地 ccaaagacga cctgcttgc当地 ggaatgc当地 atcaccaccc ttcaggacgc	1380
ttactttgtt tcggacagtt ttgaagaagc caaagaaaag atgagggact ttgcaaagtc	1440
aattaccctt cccttctcg当地 tatacttcaa ccgctacacg cagagcattt当地 aaattctgaa	1500
agacaccaga agtattgaga atgtggtgca ggacctgc当地 agtattt当地 acacagtgtg	1560
tgatgc当地 aataaaatga accaatatct qgggattt当地 tgcctagaac cagagttt当地	1620
gtcagcatga gctcttgggg ggtgttagcaa caatgc当地 aatgttatcc aacatcaaca	1680
actttctgtg tcatgggtgg ctagtaagca tgcaattctg tatgtccata cctctgtgta	1740
acttaataac acaaaaatgc tctaaagaac ccatgc当地 aaccactcac cattt当地aaag	1800
attgtgatcc tatttggaca tctcaagtag agtgacatt tctgattt当地 gaacaaaactg	1860
ttaacttaag caaactgtga cttt当地aaatc tgttagcaaac attcctcgca caattccagg	1920
cggtgagttt tggaactttt cttccttgg当地 cctgagactt tcctctgtgt tcatttagata	1980
aaatgaaaat agttggagg tggtttctat tttcaatagt atccgtgtta tttgagataa	2040
actagagttt ctccacgctt tgcatcacag caacaaagga ttaatattt当地 tactt当地agaa	2100
gctgtt当地 caga aacacagc当地 ttgggatgga tgttagactga gtgtt当地agac aatgcaagca	2160
aagaaaagtt ttgataaaca ggatataatag gttgtactga cctcgtt当地 accaattt当地gt	2220
ggcaagcttc ctgaagagct tctggaagga aacactt当地 gaa caaagaatat tc当地gggaaagct	2280
taaacagaag ggatgaaaat cttggaactg tgaatgtatt gtttagatag agtgaattat	2340
cactgc当地aggc tttt当地actcc tttt当地ctt当地actg actgagaacc tcaaatccca cagggatgta	2400

aataccatct ctgattccaa agagttggag acggagtcgt agagaaacaa agggatttgc 2460
ttcagttagg tctgatgaga tgtgccatgg tcataagcca ctgccccttt atgttggaca 2520
tctgacaagt ctactgttgt gtacatgcgt gtttatgtat tgacacagaa agaaaattat 2580
tgcttataaa atgaatgctt ctaataaac agaatcttgc ccccaaaaaa aaaaaaaaa 2638

<210> 4
<211> 488
<212> PRT
<213> mus musculus

<400> 4

Met Gln Pro Ala Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg
1 5 10 15

Gly Leu Ser Leu Asp Ser Ala Val Pro Glu Asp His Gln Leu Leu Gly
20 25 30

Ser Leu Thr Gln Asn Lys Ala Ile Lys Ser Glu Asp Lys Lys Ser Gly
35 40 45

Lys Glu Pro Gly Lys Gly Asp Thr Thr Glu Ser Ser Lys Thr Ala Val
50 55 60

Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala Leu Arg
65 70 75 80

Leu Phe Gln Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg
85 90 95

Ser Arg Arg Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys
100 105 110

Gly Lys Thr Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe Gln Thr
115 120 125

Thr Ile Val Thr Leu Asn Pro Pro Glu Ser Ile Trp Thr Glu Glu Glu
130 135 140

Asp Leu Glu Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu Leu Asp
145 150 155 160

Arg Cys Ser His Arg Val Leu Met Tyr Gly Thr Glu Leu Asp Ala Asp
165 170 175

His Pro Gly Phe Lys Asp Asn Val Tyr Arg Gln Arg Arg Lys Tyr Phe
180 185 190

Val Asp Val Ala Met Gly Tyr Lys Tyr Gly Gln Pro Ile Pro Arg Val
195 200 205

Glu Tyr Thr Glu Glu Glu Thr Lys Thr Trp Gly Val Val Phe Arg Glu
210 215 220

Leu Ser Lys Leu Tyr Pro Thr His Ala Cys Arg Glu Tyr Leu Lys Asn
225 230 235 240

Leu Pro Leu Leu Thr Lys Tyr Cys Gly Tyr Arg Glu Asp Asn Val Pro
245 250 255

Gln Leu Glu Asp Val Ser Met Phe Leu Lys Glu Arg Ser Gly Phe Thr
260 265 270

Val Arg Pro Val Ala Gly Tyr Leu Ser Pro Arg Asp Phe Leu Ala Gly
275 280 285

Leu Ala Tyr Arg Val Phe His Cys Thr Gln Tyr Val Arg His Gly Ser
290 295 300

Asp Pro Leu Tyr Thr Pro Glu Pro Asp Thr Cys His Glu Leu Leu Gly
305 310 315 320

His Val Pro Leu Leu Ala Asp Pro Lys Phe Ala Gln Phe Ser Gln Glu
325 330 335

Ile Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Asp Val Gln Lys Leu
340 345 350

Ala Thr Cys Tyr Phe Phe Thr Ile Glu Phe Gly Leu Cys Lys Gln Glu
355 360 365

Gly Gln Leu Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile Gly Glu
370 375 380

Leu Lys His Ala Leu Ser Asp Lys Ala Cys Val Lys Ser Phe Asp Pro
385 390 395 400

Lys Thr Thr Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln Asp Ala
405 410 415

Tyr Phe Val Ser Asp Ser Phe Glu Glu Ala Lys Glu Lys Met Arg Asp
420 425 430

Phe Ala Lys Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn Arg Tyr

435

440

445

Thr Gln Ser Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu Asn Val
450 455 460

Val Gln Asp Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala Leu Asn
465 470 475 480

Lys Met Asn Gln Tyr Leu Gly Ile
485

<210> 5
<211> 2581
<212> DNA
<213> *rattus norvegicus*

<400> 5
cagggttctg gacagcgccct cgagcagccca gctgccgctc accttcctcc tacatctctg . 60
ccaaggctgc ccctctgate cccccctgctg ctgagaaaaga aaattacatc gggatccatg 120
cagcccccaa ttagatgttt ttccagtaaa tactgggcca ggagagggtt gtccttggat 180
tcagcgggtgc cagaagagca tcagatactt ggccgcttaa cacaaaataa ggctaccgct 240
agcaaaaagcg aggacaagag aagcggcaaa gacacttcgg agagcagcaa gactgcgggt 300
gtgttctccc tgaagaatga atgtggcgaa ctgggtgagag cactgagact cttccaggaa 360
aaacacgtca acatgctcca tattgaatcc aggaggccc ggcgaagaag ttctgaagtc 420
gaaatcttcg tggactgtga atgtggcaaa acagaattca acgagctcat tcagttgctc 480
aagtttcaga ccaccattgt gacgctgaat ccacctgaca acattttggac ggagggaaagaa 540
gaactagagg atgtgccgtg gttccctcgg aagatctctg atgttagacag atgctctcac 600
agagtcctca tgtacggcac cgagcttgac gccgaccacc caggattcaa ggacaacgac 660
tatcgacaga ggaggaagta ttttgtggat gtggccatgg gttataaata tggccagccc 720
attcccgagg tggaatacac agaagaagag actaaaactt ggggtgttgt gtttcggag 780
ctctccaaac tctaccccac tcattgcttc cgagagtacc tgaaaaactt cccccctgctg 840
accaagtact gcggctacag ggaagacaac gtcccgac gttttttttt gttttttttt 900
ctgaaagagc gatctggctt cacagtgaga ccagtggctg gctacctgag cccaaagagac 960
ttctggctg ggctggcta cagagtattc cactgcactc agtacgtgcg gcatggctcc 1020
gacccctct acaccccgga accagacaca tgccatgagc tcctggaca tgtgccactg 1080
ctggcggatc ccaagttcgc tcagtttct caagaaaatag gcttagcctc tctggagcc 1140
tcagatgaag acgttcagaa actggccacg tgctatttct tcacaatcga gttcggcatt 1200
tgcaagcaag aaggtcaact gcgggcgtac ggagcagggt tactttcctc catcggagaa 1260

9/12

ttgaagcatg	ctcttctga	caaggcgtgt	gtaaaagcct	ttgaccgaa	gacaacctgc	1320
ttgcaggaat	gcctaattcac	caccccaa	gatgttact	ttgtttctga	aagttttgaa	1380
gaagccaaag	agaagatgag	ggattttgca	aagtcaatta	cccgccctt	ctcagtatat	1440
ttcaacccct	acacacagag	cattgaaatt	ctgaaagaca	ccagaagtat	tgagaatgtg	1500
gtgcaggacc	tgcgcagtga	tttgaacacc	gtgtgcgacg	ccttgaataa	aatgaaccaa	1560
tatttgggaa	ttttagccta	ttgtcagcac	gagctttgg	gggcttagca	acaatgcagt	1620
caatgttatac	caacatcaac	aactttctgt	gtcatggctg	gctagtaagc	atgcaattcc	1680
atgtgtctat	acctctatgt	aacttaacat	acaaaaatga	tctaagaaac	ccaggcagat	1740
gaccattcag	cattttaaag	attgtgatct	atttgaacat	ctcaagtaga	tttgacattt	1800
ctgatttagtg	agcaaactgt	aacttaagca	aactgtgtct	ttaaaatttg	tagccaacat	1860
tcctcacaca	attccagctg	ctgagtcctt	gacctttct	tccttggacc	tgagtctttc	1920
ctctgtgttc	attagataaa	atgaaaacag	ttgggaggtg	gtttctactt	tcaatagtat	1980
tggtgttctc	ttagataaac	tagagttct	ccaaagctcg	catcacagta	acaaaagatt	2040
taatatttta	cttcagaagc	tgttcagaaa	cacagcgatt	ggaatgaatc	tggactgagt	2100
gttttagacaa	tgcaagaaaa	gaaaaatttt	gataaacagg	atataatagat	tgcactgacc	2160
ttgttgaac	caatttgtgg	tacgcttcct	gaagtgcctt	tggaaaggaaa	cactttgaca	2220
aagaatattt	ggaaaggta	aacagaaggg	aagaaaatct	tggaaactgtg	aatgtgtcat	2280
tagaataaaag	tgaatttatca	gtcaggtgt	gactccttcc	tcttacactg	agaaccccaa	2340
atccctgcagg	gatgtgagta	ccatctctga	ttccgaagat	ttggaaaccg	agtcacagag	2400
aaacaaaggg	atttgctca	gttaggtctg	ttggctgggg	gtgcagtcat	aatccccccc	2460
cccccctatg	ttggacttct	ggcaagtcta	ctgttagtga	catgcggggtt	tatgtatgga	2520
aaaaaaaaaga	aaactaatgc	gtataaaaact	aatgcttctc	aataaacaga	aacttgcccc	2580
c						2581

<210> 6
<211> 485
<212> PRT
<213> *rattus norvegicus*

<400> 6

Met	Gln	Pro	Ala	Met	Met	Phe	Ser	Ser	Lys	Tyr	Trp	Ala	Arg	Arg
1				5				10				15		

Gly	Leu	Ser	Leu	Asp	Ser	Ala	Val	Pro	Glu	Glu	His	Gln	Ile	Leu	Gly
20					25							30			

Gly Leu Thr Gln Asn Lys Ala Thr Ala Ser Lys Ser Glu Asp Lys Arg

10/12

35

40

45

Ser Gly Lys Asp Thr Ser Glu Ser Ser Lys Thr Ala Val Val Phe Ser
50 55 60

Leu Lys Asn Glu Val Gly Gly Leu Val Arg Ala Leu Arg Leu Phe Gln
65 70 75 80

Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg Ser Arg Arg
85 90 95

Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys Gly Lys Thr
100 105 110

Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe Gln Thr Thr Ile Val
115 120 125

Thr Leu Asn Pro Pro Asp Asn Ile Trp Thr Glu Glu Glu Leu Glu
130 135 140

Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu Leu Asp Arg Cys Ser
145 150 155 160

His Arg Val Leu Met Tyr Gly Thr Glu Leu Asp Ala Asp His Pro Gly
165 170 175

Phe Lys Asp Asn Val Tyr Arg Gln Arg Arg Lys Tyr Phe Val Asp Val
180 185 190

Ala Met Gly Tyr Lys Tyr Gly Gln Pro Ile Pro Arg Val Glu Tyr Thr
195 200 205

Glu Glu Glu Thr Lys Thr Trp Gly Val Val Phe Arg Glu Leu Ser Lys
210 215 220

Leu Tyr Pro Thr His Ala Cys Arg Glu Tyr Leu Lys Asn Phe Pro Leu
225 230 235 240

Leu Thr Lys Tyr Cys Gly Tyr Arg Glu Asp Asn Val Pro Gln Leu Glu
245 250 255

Asp Val Ser Met Phe Leu Lys Glu Arg Ser Gly Phe Thr Val Arg Pro
260 265 270

Val Ala Gly Tyr Leu Ser Pro Arg Asp Phe Leu Ala Gly Leu Ala Tyr
275 280 285

11/12

Arg Val Phe His Cys Thr Gln Tyr Val Arg His Gly Ser Asp Pro Leu
290 295 300

Tyr Thr Pro Glu Pro Asp Thr Cys His Glu Leu Leu Gly His Val Pro
305 310 315 320

Leu Leu Ala Asp Pro Lys Phe Ala Gln Phe Ser Gln Glu Ile Gly Leu
325 330 335

Ala Ser Leu Gly Ala Ser Asp Glu Asp Val Gln Lys Leu Ala Thr Cys
340 345 350

Tyr Phe Phe Thr Ile Glu Phe Gly Leu Cys Lys Gln Glu Gly Gln Leu
355 360 365

Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile Gly Glu Leu Lys His
370 375 380

Ala Leu Ser Asp Lys Ala Cys Val Lys Ala Phe Asp Pro Lys Thr Thr
385 390 395 400

Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln Asp Ala Tyr Phe Val
405 410 415

Ser Glu Ser Phe Glu Glu Ala Lys Glu Lys Met Arg Asp Phe Ala Lys
420 425 430

Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn Pro Tyr Thr Gln Ser
435 440 445

Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu Asn Val Val Gln Asp
450 455 460

Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala Leu Asn Lys Met Asn
465 470 475 480

Gln Tyr Leu Gly Ile
485

<210> 7
<211> 22
<212> DNA
<213> mus musculus

<400> 7
gacatcgat cagaagactc cc

22

<210> 8
<211> 21

<212> DNA
<213> mus musculus

<400> 8
ctccctcttt cggaggaatg g 21

<210> 9
<211> 23
<212> DNA
<213> mus musculus

<400> 9
caccatgatt gaagacaaca agg 23

<210> 10
<211> 23
<212> DNA
<213> mus musculus

<400> 10
cgtgaattca atcttggaa tgg 23

<210> 11
<211> 30
<212> DNA
<213> mus musculus

<400> 11
ggttccctcg gaagatctct gagttagaca 30

<210> 12
<211> 28
<212> DNA
<213> mus musculus

<400> 12
agagctccccg gaataacaaca ccccaagt 28

<210> 13
<211> 26
<212> DNA
<213> mus musculus

<400> 13
tgctcttcag caccagggtt ctggac 26

<210> 14
<211> 25
<212> DNA
<213> mus musculus

<400> 14
agaattgcat gcttactagc caacc 25