

Exercícios propostos com cargas pontuais

Formulário

$\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \hat{r}$	$V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} + C$
$\overrightarrow{F_{12}} = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 \ q_2}{r_{12}^2} \hat{r}_{12}$	$U_{12} = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 q_2}{r_{12}} + C$

1. Uma carga pontual $Q_1 = 7.0 \,\mu C$ encontra-se na posição $x_1 = 0.0 \,cm$ e uma carga pontual $Q_2 = 5.0 \,\mu C$ encontra-se na posição $x_2 = 85.0 \,cm$. O campo elétrico no ponto $x = 40.0 \,cm$ é

A: $\vec{E} = 2,64 \times 10^4 \ \hat{x} \frac{V}{m}$	B: $\vec{E} = -2,99 \times 10^4 \ \hat{x} \frac{V}{m}$
C: $\vec{E} = 1,72 \times 10^5 \ \hat{x} \frac{V}{m}$	D: $\vec{E} = -2.33 \times 10^5 \ \hat{x} \frac{V}{m}$

- 2. Coloca-se uma carga pontual 1 de carga $Q_1 = 2 \mu C$ na origem das coordenadas e uma carga pontual 2 de carga $Q_2 = -3 \mu C$ sobre o eixo dos XX, no ponto X = 100 cm. O potencial elétrico no infinito é nulo.
- a) Calcule a energia eletrostática das cargas.
- b) Em que ponto (ou pontos) sobre o eixo dos XX será nulo o potencial?
- 3. Considere num sistema de eixos ortonormado $\{\hat{x}, \hat{y}, \hat{z}\}$ a presença de uma carga pontual de valor $q_1=12~nC$ no ponto $\vec{P}_1=(0~\hat{x}+0~\hat{y}-5~\hat{z})~cm$ e de outra carga pontual de valor $q_2=-q_1=-12~nC$ no ponto $\vec{P}_2=(0~\hat{x}+0~\hat{y}+5~\hat{z})~cm$. Chama-se a este sistema de duas cargas de valor simétrico um dipolo elétrico¹.
 - a) Mostre que o campo elétrico no ponto $\vec{P}_{\beta} = (0 \hat{x} + 0 \hat{y} + 1 \hat{z}) cm$ é de: $\vec{E}_{\beta} = (0 \hat{x} + 0 \hat{y} + 9.8 \times 10^4 \hat{z}) V/m$.
 - b) Mostre que o campo elétrico no ponto $\vec{P}_4 = (0 \hat{x} + 0 \hat{y} 9 \hat{z}) cm$ é de: $\vec{E}_4 = (0 \hat{x} + 0 \hat{y} 6.2 \times 10^4 \hat{z}) V/m$.
 - c) Mostre que o campo elétrico no ponto $\vec{P}_5 = (0 \, \hat{x} + 12 \, \hat{y} + 0 \, \hat{z}) \, cm$ é de: $\vec{E}_5 = (0 \, \hat{x} + 0 \, \hat{y} + 4.9 \times 10^3 \, \hat{z}) \, V/m$.
 - d) Se o potencial elétrico for nulo no infinito mostre que o valor do potencial criado pela carga q_1 na posição da carga q_2 é de V_2 =1080 V e use este resultado para mostrar que a energia de ligação do dipolo de U=-13 μJ .

¹ Muitos sistemas físicos, tais como átomos e moléculas ou mesmo antenas emissoras de rádio podem ser estudados em primeira aproximação como se fossem dipolos.

4. Considere o sistema de duas cargas pontuais representadas na figura, com $Q_1 = 1 \, nC$ e $Q_2 = 9 \, nC$. A distância entre as duas cargas é de $a = 3 \, cm$. Os pontos A e B encontram-se nas posições $x = 5 \, cm$ e $y = 4 \, cm$, respetivamente.

- a) Calcule o vetor campo elétrico no ponto B.
- b) Coloca-se uma carga $Q_3 = -2 nC$ no ponto A. A que força elétrica fica sujeita?
- 5. Considere o sistema de duas cargas pontuais com $Q_1 = 1nC$ que se encontra na posição $\vec{r_1} = 0\hat{i} + 0\hat{j} + 0\hat{k}$ cm e $Q_2 = -4nC$ que se encontra na posição $\vec{r_2} = 1\hat{i} + 0\hat{j} + 0\hat{k}$ cm.
 - a) O campo elétrico na posição $\vec{r}_P = 0\hat{i} + 2\hat{j} + 0\hat{k}$ cm é:

A: $\overrightarrow{E_P} = 32, 2\hat{i} - 41, 9\hat{j} + 0\hat{k} kV/m$	B: $\overrightarrow{E_P} = 64, 3\hat{i} - 106\hat{j} + 0\hat{k} kV/m$
C: $\overrightarrow{E_p} = 86.9\hat{i} - 41.9\hat{j} + 32.2\hat{k} V/m$	D: $\overrightarrow{E_P} = 16,1\hat{i} - 9,69\hat{j} + 0\hat{k} kV/m$

b) Em que posição se pode colocar uma terceira carga pontual de modo a que fique sujeita a uma força elétrica nula:

A: $\vec{r} = -1,00\hat{i} + 0\hat{j} + 0\hat{k}$ cm	B: $\vec{r} = -0.547\hat{i} + 0\hat{j} + 0\hat{k}$ cm
C: $\vec{r} = -2.41\hat{i} + 0\hat{j} + 0\hat{k}$ cm	D: Não há nenhuma posição possível.

- **6.** Uma carga $q_1 = 6$ nC encontra-se na origem e uma carga $q_2 = 8$ nC encontra-se na posição 3 cm sobre o eixo dos XX.
- a) A força exercida sobre a carga q_1 é de

A: $\vec{F} = -4.8 \times 10^{-4} \hat{x} (N)$	B: $\vec{F} = 8.0 \times 10^{-4} \hat{x} (N)$
C: $\vec{F} = -1.6 \times 10^{-4} \hat{x} (N)$	D: $\vec{F} = 6.4 \times 10^{-4} \hat{x} (N)$

b) O vetor campo elétrico criado pelas cargas na posição 2 cm sobre o eixo dos XX é de:

A: $\vec{E} = -5.85 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$	B: $\vec{E} = 4.95 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$
C: $\vec{E} = 5,42 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$	D: $\vec{E} = -6.75 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$

c) Onde se deve colocar uma terceira carga de modo a que fique sujeita a uma força eléctrica nula?

A: Na posição 1,50 cm sobre o eixo dos X	B: Na posição 1,00 cm sobre o eixo dos X
C: Na posição 1,58 cm sobre o eixo dos X	D: Na posição 1,39 cm sobre o eixo dos X

7. Uma carga pontual $Q_1 = 5.0 \,\mu\text{C}$ encontra-se na posição $x_1 = 0.0 \,c\text{m}$ e uma carga pontual $Q_2 = 7.0 \,\mu\text{C}$ encontra-se na posição $x_2 = 85.0 \,c\text{m}$. Onde se deve colocar uma terceira carga, Q_3 , de modo a que a força elétrica sobre ela seja nula?

- **8.** Uma carga $q_1 = 2$ nC encontra-se na origem e uma carga $q_2 = -8$ nC encontra-se na posição $\vec{r_2} = 1,00 \,\hat{x}$ (m).
- a) O vetor campo elétrico gerado pelas duas cargas no ponto P, que se encontra na posição $\vec{r_p} = -2,00 \, y$ (m) é:

A: $\overrightarrow{E_P} = 2.41 \hat{x} + 0.33 \hat{y}$ (V/m)	B: $\overrightarrow{E_P} = 6,44 \hat{x} + 8,38 \hat{y} (V/m)$
C: $\overrightarrow{E_P} = 4,83 \hat{x} + 7,41 \hat{y}$ (V/m)	D: $\overrightarrow{E_P} = 2,41\hat{x} + 2,58\hat{y}$ (V/m)

b) Ao longo do eixo dos XX, o potencial criado pelas cargas q_1 e q_2 é nulo na(s) posição(ões):

A: -0,33 (m) e 0,20 (m)	B: -2,00 (m) e 0,40 (m)
C: 0,20 (m)	D: 0,40 (m)

c) Para que uma carga $q_3 = -2$ nC fique sujeita a uma força eléctrica nula, deve ser colocada na(s) posição(ões):

A: $\vec{r_3} = 1,37 \hat{x}$ (m) ou $\vec{r_3} = -0,69 \hat{x}$ (m)	B: $\vec{r_3} = -1,00 \hat{x}$ (m) ou $\vec{r_3} = -1,37 \hat{x}$ (m)
C: $\vec{r_3} = -1,00\hat{x}$ (m)	D: $\vec{r_3} = 4,45 \hat{x}$ (m)

- 9. Nos vértices de um triângulo equilátero de 3 cm de lado estão colocadas as cargas $q_1=q_2=4\times 10^{-7}~C$ e $q_3=1\times 10^{-7}~C$. Considere que o potencial é nulo no infinito.
- a) Dentro do triângulo

リ	Deniro do triangulo	
	A: não há nenhum ponto em que se anule o campo elétrico.	
	B: há um único ponto em que se anula o potencial elétrico.	
	C: o potencial elétrico é nulo.	
	D: há um único ponto em que se anula o campo elétrico.	

b) Calcule a intensidade da força resultante que atua sobre a carga q_3 .

	A: 0,40 N	B: 0,80 N	C: 0,69 N	D: 0,37 N		
c)	c) Calcule a energia eletrostática das 3 cargas.					
	A: 25 mJ	B: 137 mJ	C: 16 mJ	D: 72 mJ		

- 10. Três cargas, uma positiva e duas negativas, estão dispostas nos vértices de um quadrado com 3 cm de lado como indica a figura. O módulo de cada carga é igual a 2 nC. Admita que o potencial é nulo no infinito.
- a) Calcule o campo elétrico gerado pelas três cargas no centro do quadrado (ponto O). (Indique a sua resposta em termos vetoriais, de acordo com o sistema de eixos representado na figura.)

- b) Calcule a força elétrica sobre a carga que se encontra no ponto P. (Indique a sua resposta em termos vetoriais, de acordo com o sistema de eixos representado na figura.)
- c) Calcule o potencial elétrico gerado pelas três cargas no centro do quadrado (ponto O).
- d) Calcule a energia eletrostática das três cargas.

11. Três cargas pontuais, Q_1 , Q_2 e Q_3 , estão dispostas nos vértices de um quadrado como indica a figura. Sabendo que $Q_1 = Q_3 = 1,0 \ \mu C$, indique o valor da carga Q_2 de modo que o campo elétrico seja nulo no ponto P.

A: $Q_2 = -2,83 \ \mu C$	B: $Q_2 = -3.39 \ \mu C$
C: $Q_2 = -3,96 \ \mu C$	D: $Q_2 = -4,53 \ \mu C$

12. Três cargas pontuais, Q_1 , Q_2 e Q_3 , estão dispostas nos vértices de um quadrado como indica a figura. Sabendo que $Q_1 = Q_3 = 3.0 \ \mu C$, indique o valor da carga Q_2 de modo a que a energia eletrostática do conjunto das três cargas seja nula.

A: $Q_2 = -1,06 \ \mu C$	B: $Q_2 = -1,24 \ \mu C$
C: $Q_2 = -1,41 \mu C$	D: $Q_2 = -1,59 \ \mu C$

13. Três cargas pontuais de 2 nC estão colocadas em três vértices de um quadrado de 30 cm de lado. Admita que o potencial elétrico no infinito é nulo.

a) O potencial elétrico no centro do quadrado é...

A: 255 V	B: 382 V	C: 191 <i>V</i>	D: 286 V
b) A energia eletrostática das três cargas é			
A: $7.31 \times 10^{-7} J$	B: $2,44 \times 10^{-7} J$	C: $5,48 \times 10^{-7} J$	D: $3,25 \times 10^{-7} J$

14. Três **cargas pontuais** estão dispostas nos vértices de um triângulo equilátero, tal como está indicado na figura.

a) Qual a direção e sentido da **força** que atua sobre a carga +q? A: \hat{x} B: $-\hat{x}$ C: \hat{y} D: $-\hat{y}$

b) Qual a intensidade da **força** que atua sobre a carga se q=1 nC, $\pm Q=\pm 3$ nC, a=1 mm e o meio tiver uma constante dielétrica relativa igual a 2?

A: F=5,40 mN	B: F=9,00 mN
C: F=6,75 mN	D: F=13,5 mN

15. Três cargas estão dispostas nos vértices de um triângulo equilátero, tal como está indicado na figura. Admita que o potencial é nulo no infinito. Para efeitos de cálculo considere $+Q=2~\mu C$, $-Q=-2~\mu C$, q=50~nC e a=3~cm. Referencie as grandezas vetoriais de acordo com o sistema de eixos indicado na figura.

b) Calcule o campo elétrico criado pelas cargas +Q e -Q na posição em que se encontra a carga +q e a força elétrica a que está sujeita a carga +q.

- **16.** Quatro cargas, duas positivas e duas negativas, estão dispostas no vértice de um quadrado com 3 cm de lado como indica a figura. O módulo de cada carga é igual a 2 nC. Admita que o potencial é nulo no infinito.
- a) O vetor campo elétrico gerado pelas quatro cargas no centro do quadrado (ponto O) é de:

A: $\overline{E_o} = \vec{0}$ (kV/m)	B: $\overrightarrow{E_o} = -113,1\hat{y}$ (kV/m)
C: $\overrightarrow{E_o} = 70.7 \hat{y} (\text{kV/m})$	D: $\overrightarrow{E_o} = -95.5 \hat{y} \left(\text{kV/m} \right)$

b) A força elétrica sobre a carga que se encontra no ponto P é de:

A: $\overrightarrow{F_p} = -25,9 \hat{x} + 54,1 \hat{y} (\mu N)$	B: $\overrightarrow{F_P} = -37,2 \hat{x} + 78,0 \hat{y} (\mu N)$
C: $\overrightarrow{F_P} = 32.7 \hat{x} - 68.5 \hat{y} (\mu N)$	D: $\overrightarrow{F_p} = 40,4 \hat{x} - 84,6 \hat{y} (\mu N)$

c) O potencial elétrico gerado pelas quatro cargas no centro do quadrado (ponto O) é de:

· / · I		6	6	A
A: - 3	84 V	B: - 16 V	C: 41 V	D: 0 V

d) A energia eletrostática das quatro cargas é de:

A: $-2.9 \mu J$	B: 4,1 μJ	C: -1,7 μJ	D: 5,3 μJ

- 17. Cinco cargas pontuais iguais, cada uma com uma carga $Q=2\,nC$, encontram-se igualmente espaçadas na periferia de uma circunferência de raio $R=3\,cm$, tal como se esquematiza na figura.
- a) O campo elétrico no centro da circunferência é de:

A: $\vec{E} = 20 \hat{x} + kV/m$	B: $\vec{E} = 48 \hat{x} + kV/m$
C: $\vec{E} = 100 \hat{x} kV/m$	D: $\vec{E} = 70 \hat{x} + kV/m$

b) O potencial elétrico no centro da circunferência, tomando como nulo o potencial no infinito, é de:

tomo nuro o potementa no minimo, t uti		
A: $V = 600 V$	B: V = 1800 V	
C: $V = 1200 V$	D: $V = 3000 V$	

- **18.** Cinco cargas pontuais iguais, cada uma com uma carga $Q = 2 \, nC$, encontram-se na periferia de uma circunferência de raio $R = 3 \, cm$, tal como se esquematiza na figura. Considere que o potencial elétrico no infinito é nulo.
- a) O campo elétrico no centro da circunferência é de:

A: $\vec{E} = 60 \hat{x} kV/m$	B: $\vec{E} = 48 \hat{x} + kV/m$
C: $\vec{E} = 100 \hat{x} kV/m$	D: $\vec{E} = 8,3 \hat{x} + kV/m$

b) Que carga pontual se deve colocar na posição $\vec{r} = -3,0 \ \hat{x} \ cm$ para que o potencial elétrico no centro da circunferência seja nulo?

A: -10 nC	B: -2 nC
C: -6 nC	D: -3,4 nC

19. Quatro cargas com a mesma intensidade, mas sinais alternados, são colocadas em quatro vértices de um pentágono regular tal como se representa na figura. No 5° e último vértice do pentágono é colocada uma carga de prova q0 > 0, que sofrerá a ação de todas as outras. Indique qual das forças apresentadas representa a força exercida sobre q0.

	12	Q-Q
_{F3} ◀	$q_0 \rightarrow \vec{F}_1$	
		+0
	F ₄	

A: \overrightarrow{F}_1	B: \overrightarrow{F}_2	C: \overrightarrow{F}_2	D: \overrightarrow{F}_{4}
1	2	3	4

- **20.** Duas pequenas esferas, de massa m=10~g e carga Q, estão penduradas por fios de comprimento L=50~cm, presos num ponto comum, como se representa na figura. O ângulo que cada fio faz com a direção vertical é $\theta=20~^{\circ}$.
- a) A intensidade da força eléctrica sentida por cada carga é de:

A: $F = 46 mN$	B: $F = 98 mN$
C: $F = 67 \ mN$	D: $F = 36 mN$

b) A carga Q de cada esfera é:

A: $Q = 0.24 \ \mu C$	B: $Q = 1,65 \ \mu C$
C: $Q = 0.68 \ \mu C$	D: $Q = 0.82 \ \mu C$

Soluções

1. C

2. a) -0,054 J

2. b) X=40 cm e X=-200 cm

4. a) $\vec{E} = -19.4 \hat{x} + 31.5 \hat{y} + kV/m$

4. b) $\vec{F} = -4.12 \times 10^{-4} \hat{x}$ N

5. a) A

5. b) A

6. a) A

6. b) A

6. c) D

7. C

8. a) B

8. b) A

8. c) C

9. a) D

9. b) C

9. c) D

10. a) $\overrightarrow{E_o} = 28284 \ \hat{x} - 84853 \ \hat{y} \ V/m$

10. b) $\overrightarrow{F_P} = -40.0 \ \hat{x} + 40.0 \ \hat{y} \ \mu N$

10. c) V = -848,5 V

10. d) $U = -8,485 \times 10^{-7} J$

11. A

12. A

13. a) A

13. b) D

14. a) A

14. b) D

15. a) V = 0 V; U = -1, 2 J

15. b) $\vec{E} = 20 \hat{x} \quad MV/m$; $\vec{F} = 1,0 \hat{x} \quad N$

16. a) B

16. b) A

16. c) D

16. d) C

17. a) B

17. b) D

18. a) D

18. b) A

19. D

20. a) D

20. b) C