Lecture 9 - Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P) given by

(P)
$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

- ightharpoonup C closed convex subset of \mathbb{R}^n .
- ightharpoonup f continuously differentiable over C. Not necessarily convex.

Definition of Stationarity. Let f be a continuously differentiable function over a closed and convex set C. Then \mathbf{x}^* is called a stationary point of (P) if

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0$$
 for any $\mathbf{x} \in C$

 $^{^{1}}$ We use the convention that a function is differentiable over a given set D if it is differentiable over an open set containing D

Stationarity as a Necessary Optimality Condition

Theorem. Let f be a continuously differentiable function over a nonempty closed convex set C, and let \mathbf{x}^* be a local minimum of (P). Then \mathbf{x}^* is a stationary point of (P).

Proof.

- Let \mathbf{x}^* be a local minimum of (P), and assume in contradiction that \mathbf{x}^* is not a stationary point of (P) \Rightarrow there exists $\mathbf{x} \in C$ such that $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) < 0$.
- ▶ Thus, $f'(\mathbf{x}^*; \mathbf{d}) < 0$ where $\mathbf{d} = \mathbf{x} \mathbf{x}^*$.
- ▶ Therefore $\exists \varepsilon \in (0,1)$ s.t. $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*) \forall t \in (0,\varepsilon)$.
- ▶ Since $\mathbf{x}^* + t\mathbf{d} = (1 t)\mathbf{x}^* + t\mathbf{x} \in C \forall t \in (0, \varepsilon)$, we conclude that \mathbf{x}^* is *not* a local optimum point of (P). Contradiction.

Examples

- $ightharpoonup C = \mathbb{R}^n$.
 - x* is a stationary point of (P) iff

$$(*) \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- We will show that the above condition is equivalent to $\nabla f(\mathbf{x}^*) = \mathbf{0}$. Indeed, if $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then obviously (*) is satisfied.
- Suppose that (*) holds.
- ▶ Plugging $\mathbf{x} = \mathbf{x}^* \nabla f(\mathbf{x}^*)$ in the above implies $-\|\nabla f(\mathbf{x}^*)\|^2 \ge 0$.
- ► Thus, $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- $ightharpoonup C = \mathbb{R}^n_+$.
 - $\mathbf{x}^* \in \mathbb{R}^n_+$ is a stationary point iff $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \geq 0$ for all $\mathbf{x} \geq \mathbf{0}$.
 - $ightharpoonup \Leftrightarrow \nabla f(\mathbf{x}^*)^T \mathbf{x} \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \geq 0 \text{ for all } \mathbf{x} \geq \mathbf{0}.$
 - $ightharpoonup \Leftrightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \leq 0.$
 - $ightharpoonup \Leftrightarrow
 abla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, n.$
 - ightharpoonup

Amir Beck

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{ \begin{array}{ll} = 0 & x_i^* > 0, \\ \geq 0 & x_i^* = 0. \end{array} \right.$$

Explicit Stationarity Condition

feasible set	explicit stationarity condition
\mathbb{R}^n	$ abla f(\mathbf{x}^*) = 0$
\mathbb{R}^n_+	$rac{\partial f}{\partial x_i}(\mathbf{x}^*)\left\{egin{array}{ll} = 0 & x_i^* > 0 \ \geq 0 & x_i^* = 0 \end{array} ight.$
	$rac{\partial f}{\partial x_1}(\mathbf{x}^*) = \ldots = rac{\partial f}{\partial x_n}(\mathbf{x}^*)$
B[0 ,1]	$oxed{ abla} f(\mathbf{x}^*) = 0 ext{ or } \ \mathbf{x}^*\ = 1 ext{ and } \exists \lambda \leq 0 : abla} f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

Stationarity in Convex Optimization

For convex problems, stationarity is a necessary and sufficient condition

Theorem. Let f be a continuously differentiable convex function over a nonempty closed and convex set $C \subseteq \mathbb{R}^n$. Then \mathbf{x}^* is a stationary point of

(P)
$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

iff \mathbf{x}^* is an optimal solution of (P).

Proof.

- ightharpoonup If \mathbf{x}^* is an optimal solution of (P), then we already showed that it is a stationary point of (P).
- \triangleright Assume that \mathbf{x}^* is a stationary point of (P).
- ▶ Let $\mathbf{x} \in C$. Then

Amir Beck

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*),$$

establishing the optimality of \mathbf{x}^* .

The Second Projection Theorem

Theorem. Let C be a nonempty closed convex set and let $\mathbf{x} \in \mathbb{R}^n$. Then $\mathbf{z} = P_C(\mathbf{x})$ if and only if

$$(\mathbf{x} - \mathbf{z})^T (\mathbf{y} - \mathbf{z}) \le 0 \text{ for any } \mathbf{y} \in C.$$
 (1)

Proof.

 $\mathbf{z} = P_C(\mathbf{x})$ iff it is the optimal solution of the problem

min
$$g(\mathbf{y}) \equiv \|\mathbf{y} - \mathbf{x}\|^2$$

s.t. $\mathbf{y} \in C$.

▶ By the previous theorem, $\mathbf{z} = P_{\mathcal{C}}(\mathbf{x})$ if and only if

$$\nabla g(\mathbf{z})^T(\mathbf{y} - \mathbf{z}) \geq 0$$
 for all $\mathbf{y} \in C$,

which is the same as (1).

Properties of the Orthogonal Projection: (Firm) Nonexpansivness

Theorem. Let C be a nonempty closed and convex set. Then

1. For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \ge ||P_C(\mathbf{v}) - P_C(\mathbf{w})||^2.$$
 (2)

2. (non-expansiveness) For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \le ||\mathbf{v} - \mathbf{w}||. \tag{3}$$

Proof.

▶ For any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$:

$$(\mathbf{x} - P_C(\mathbf{x}))^T (\mathbf{y} - P_C(\mathbf{x})) \le 0 \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in C$$
 (4)

Substituting $\mathbf{x} = \mathbf{v}, \mathbf{y} = P_C(\mathbf{w})$, we have

$$(\mathbf{v} - P_C(\mathbf{v}))^T (P_C(\mathbf{w}) - P_C(\mathbf{v})) \le 0.$$
 (5)

Proof Contd.

Now, by substituting $\mathbf{x} = \mathbf{w}, \mathbf{y} = P_C(\mathbf{v})$, we obtain

$$(\mathbf{w} - P_C(\mathbf{w}))^T (P_C(\mathbf{v}) - P_C(\mathbf{w})) \le 0.$$
 (6)

Adding the two inequalities (5) and (6),

$$(P_C(\mathbf{w}) - P_C(\mathbf{v}))^T(\mathbf{v} - \mathbf{w} + P_C(\mathbf{w}) - P_C(\mathbf{v})) \leq 0,$$

and hence,

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \ge \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$$

▶ To prove (3), note that if $P_C(\mathbf{v}) = P_C(\mathbf{w})$, the inequality is trivial. Assume then that $P_C(\mathbf{w}) \neq P_C(\mathbf{w})$. By the Cauchy-Schwarz inequality we have

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T(\mathbf{v} - \mathbf{w}) \le \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \cdot \|\mathbf{v} - \mathbf{w}\|,$$

which combined with (2) yields the inequality

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \cdot ||\mathbf{v} - \mathbf{w}|| \ge ||P_C(\mathbf{w}) - P_C(\mathbf{w})||^2.$$

Dividing by $||P_C(\mathbf{v}) - P_C(\mathbf{w})||$, implies (3).

Representation of Stationarity via the Orthogonal Projection Operator

Theorem. Let f be a continuously differentiable function over the nonempty closed convex set C, and let s > 0. Then \mathbf{x}^* is a stationary point of

(P)
$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

Proof.

▶ By the second projection theorem, $\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*))$ iff $(\mathbf{x}^* - s\nabla f(\mathbf{x}^*) - \mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \leq 0$ for any $\mathbf{x} \in C$.

Equivalent to

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \geq 0$$
 for any $\mathbf{x} \in C$,

namely to stationarity.

The Gradient Mapping

► It is convenient to define the gradient mapping as

$$G_L(\mathbf{x}) = L\left[\mathbf{x} - P_C\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right)\right],$$

where L > 0.

- ▶ In the unconstrained case $G_L(\mathbf{x}) = \nabla f(\mathbf{x})$.
- ▶ $G_L(\mathbf{x}) = \mathbf{0}$ if and only if \mathbf{x} is a stationary point of (P). This means that we can consider $||G_L(\mathbf{x})||^2$ to be optimality measure.

The Gradient Projection Method

The Gradient Projection Method

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily.

General step: for any k = 0, 1, 2, ... execute the following steps:

- (a) pick a stepsize t_k by a line search procedure.
- (b) set $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k t_k \nabla f(\mathbf{x}_k))$.
- (c) if $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- ▶ There are several strategies for choosing the stepsizes t_k .
- ▶ When $f \in C_L^{1,1}$, we can choose t_k to be constant and equal to $\frac{1}{L}$.

The Gradient Projection Method with Constant Stepsize

The Gradient Projection Method with Constant Stepsize

Input: $\varepsilon > 0$ - tolerance parameter. L > 0 - an upper bound on the Lipschitz constant of ∇f .

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily. $\overline{t} > 0$ - constant stepsize. **General step:** for any $k = 0, 1, 2, \ldots$ execute the following steps:

- (a) set $\mathbf{x}_{k+1} = P_C (\mathbf{x}_k \overline{t} \nabla f(\mathbf{x}_k))$.
- (b) if $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

GPM with Backtracking

Gradient Projection Method with Backtracking

Initialization. Take $\mathbf{x}_0 \in C$ and $s > 0, \alpha \in (0,1), \beta \in (0,1)$. General Step $(k \ge 1)$

ightharpoonup Pick $t_k = s$. Then, while

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))) < \alpha t_k \|G_{\frac{1}{t_k}}(\mathbf{x}_k)\|^2$$

set
$$t_k := \beta t_k$$
.

 $\blacktriangleright \text{ Set } \mathbf{x}_{k+1} = P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))$

Stopping Criteria $\|\mathbf{x}_k - \mathbf{x}_{k+1}\| \leq \varepsilon$.

Amir Beck

Convergence of the Gradient Projection Method

Theorem Let $\{\mathbf{x}_k\}$ be the sequence generated by the gradient projection method for solving problem (P) with either a constant stepsize $\overline{t} \in (0, \frac{2}{L})$, where L is a Lipschitz constant of ∇f or a backtracking stepsize strategy. Assume that f is bounded below. Then

- 1. The sequence $\{f(\mathbf{x}_k)\}$ is nonincreasing.
- 2. $G_d(\mathbf{x}_k) \to 0$ as $k \to \infty$, where

$$d = \left\{ egin{array}{ll} 1/ar{t} & ext{constant stepsize}, \ 1/s & ext{backtracking}. \end{array}
ight.$$

See the proof of Theorem 9.14 in the book

- ▶ It is easy to see that this result implies that any limit point of the sequence is a stationary point of the problem.
- ▶ When f is convex, it is possible to show that the sequence converges to a global optimal solution.

Amir Beck

Sparsity Constrained Problems

The sparsity constrained problem is given by

(S):
$$\min_{\mathbf{s.t.}} \frac{f(\mathbf{x})}{\|\mathbf{x}\|_0 \leq s}$$

- $ightharpoonup f: \mathbb{R}^n o \mathbb{R}$ is a lower-bounded continuously differentiable function.
- ightharpoonup s > 0 is an integer smaller than n.
- $\|\mathbf{x}\|_0$ is the ℓ_0 norm of \mathbf{x} , which counts the number of nonzero components in \mathbf{x} .
- ▶ We do not assume that *f* is a convex function. The constraint set is of course not convex.

Notation.

- ▶ $I_1(\mathbf{x}) \equiv \{i : x_i \neq 0\}$ the support set.
- ▶ $I_0(\mathbf{x}) \equiv \{i : x_i = 0\}$ the off-support set.
- ► $C_s = \{\mathbf{x} : \|\mathbf{x}\|_0 \le s\}.$
- For a vector $\mathbf{x} \in \mathbb{R}^n$ and $i \in \{1, 2, ..., n\}$, the *i*th largest absolute value component in \mathbf{x} is denoted by $M_i(\mathbf{x})$.