FINAL PROJECT RESULTS

Team B0:

Philipp Eberstaller Dominik Heindl Carson Wittwer

CONTENTS

- Implementation Overview
 - □ Anomaly Detection
 - □ Post Processing
 - □ Bounding Boxes
- Results

CONTENTS

- Implementation Overview
 - □ Anomaly Detection
 - □ Post Processing
 - □ Bounding Boxes
- Results

■ Given Solution: ■ Our Implementation: Given Algorithm New Algorithm Data Capture and Usage **Data Capture and Usage** Perspective Warp with Given Homography Perspective Warp with Given Homography **Background Subtraction Pixel Integration Pixel Integration** Reed Xiaoli Anomaly Detection Anomaly Detection in Noise **Anomaly Image Post-Processing Bounding Boxes Identification** Bounding Box Identification **Evaluation Evaluation**

ANOMALY DETECTION

A. Davy, T. Ehret, J. Morel and M. Delbracio, "Reducing Anomaly Detection in Images to Detection in Noise" 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 1058-1062

- 1. Divide Image into 5x5 patches with stride of 3
- 2. Train knn-algorithm to find most similar patches
- 3. Average similar patches to create "self-similar" image
- 4. Compute residual image
 - 1. self-similar minus original image
- 5. Apply Gaussian Blur

ANOMALY DETECTION

A. Davy, T. Ehret, J. Morel and M. Delbracio, "Reducing Anomaly Detection in Images to Detection in Noise" 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 1058-1062

Original (unoptimized)
Anomaly Mask

Residual Image (self-similar - original image)

Cropped Anomaly Mask (Residual Image + Blur)

ANOMALY DETECTION - HYPERPARAMETER SEARCH

ANOMALY POST-PROCESSING

Blur image and cut off small values

Take the pairwise difference between all time-steps

Keep the highest values

BOUNDING BOXES

- Combine close islands of pixels together
- Check that the anomaly is not just a few pixels / random noise
- Create a rectangle around the island
- Calculate improved center and size of the bounding box

CONTENTS

- Implementation Overview
 - ☐ Anomaly Detection
 - □ Post Processing
 - □ Bounding Boxes
- Results

RESULTS

Evaluation Set:

57.7%

Green: Our bounding boxes **Red**: Ground Truth Boxes

RESULTS

Evaluation Set:

57.7%

Green: Our bounding boxes **Red**: Ground Truth Boxes

RESULTS

Pros:

- Fully unsupervised
- Limited input data needed
- Simple concept, yet we believe effective Cons:
- Runtime complexity scales quickly on image size - O(n³)
- Unsure of generalization of chosen parameters
- Issues with second human detection in some images

Evaluation Set:

57.7%

THANK YOU

QUESTIONS?