

Commodore micro-RNAs in breast cancer molecular subtypes: functional regulation by highly connected, non-redundant micro-RNAs.

Guillermo de Anda-Jáuregui^{1,2}, Jesus Espinal-Enriquez^{1,3} and Enrique Hernandez-Lemus^{1,3}
1 Instituto Nacional de Medicina Genómica, México 2 Cátedras CONACYT, México 3 Centro de Ciencias de la Complejidad, UNAM, México

What is a commodore miR?

A commodore micro-RNA (cdre-miR) is a miR that can regulate the expression of a large gene set by itself, and through this regulation, control biological functions. In a miR-gene co-expression network, these nodes have high degree and low redundancy coefficient [1].

What are breast cancer molecular subtypes?

Breast cancer is a heterogeneous disease. Based on gene expression patterns, there are four *molecular subtypes* with different clinical behaviors: **luminal A and B, Basal, and HER2-enriched**. Their coexpression networks have different structures [2].

References:

- 1 https://doi.org/10.1155/2018/9585383
- 2 https://doi.org/10.3389/fphys.2016.00568
- 3 https://doi.org/10.1016/j.cell.2011.02.013.

Contact me:

gdeanda@inmegen.edu.mx Twitter: @gdeandajauregui

Questions:

Are there cdre-miRs for each breast cancer molecular subtype?
Are they the same?
Do they control the same functions?

How to find them?

Get expression data from the Cancer Genome Atlas

Network: Calculate MI for all miR – gene pairs

Select miRs with degree >= 100 & Redundancy =< 0.5

Filter links, keep those with highest MI (0.9999 quantile)

Enrichment analysis of cdre-miR neighborhoods

Validate miR – function association with literature

miR – gene coexpression networks

Do we have cdre-miRs?

We found 5 miRs that act like commodores in at the four subtypes:

mir-150 & mir-139 in LumA mir-99a & mir-708 in LumB Mir-136 & mir-139 in Basal

We found no cdre-miR in the HER2+ subtype

Only mir-139 acted as a cdremiR in two subtypes: LumA and Basal

What functions do they control?

subtype	miR	GO representative term	Pubmed mentions	miR mentions
luma	hsa-mir-139	angiogenesis	3	112
basal	hsa-mir-139	angiogenesis	3	112
lumb	hsa-mir-708	cell adhesion	1	37
basal	hsa-mir-136	cell adhesion	5	39
basal	hsa-mir-139	cell adhesion	2	112
luma	hsa-mir-139	negative regulation of apoptotic process	2	112
luma	hsa-mir-139	positive regulation of gene expression	7	112
basal	hsa-mir-136	regulation of signaling receptor activity	1	39
luma	hsa-mir-150	signal transduction	30	240

We found several biological functions annotated in the Gene Ontology database associated to these cdremiRs.

All of the functions that we were able to validate using an automatic analysis of Pubmed are well-known hallmarks of cancer [3].

What comes next?

The next step for this research is to **experimentally evaluate** the effect of the **perturbation of cdre-miRs** in the **activity of the identified functions**, using an *in vitro model*.

Want to know more?

Check our preprint

https://doi.org/10.1101/652354