

Multi-Sensor-Systeme

Grundlagen

Wintersemester 2022/2023

Dr.-Ing. Sören Vogel

"The measurement uncertainty is a measure of the incompleteness of knowledge of the measurand caused by incomplete information." – Weiser (1999)

- Jeder Messwert muss mit einer zugehörigen Messunsicherheit angegeben werden
- Eine zuverlässige und geeignete Quantifizierung des Genauigkeitsmaßes ist insbesondere bei hohen Genauigkeitsanforderungen wie in der industriellen Messtechnik oder bei Kalibrierungen gefordert
- Messunsicherheit ist das Ergebnis der Unvollkommenheit von Messgeräten, Verfahren (und Auswertemethoden)
- Alle Messinstrumente und Erfassungsprozesse sind mit einem gewissen Grad an Ungenauigkeit und Unsicherheit behaftet

Die Messunsicherheit setzt sich zusammen aus

- Ausreißern 异常值
 - Grobe Messfehler, die in der Regel nur selten auftreten und einzelne Messungen betreffen
- 仔细的 → Sorgfältige Kontrolle und Plausibilitätsprüfung erforderlich
- Systematische Abweichungen
 - → Zeigen einen einseitigen Trend
 - 欠缺→ Unzulänglichkeiten, die auf das Verfahren oder das Messsystem zurückzuführen sind
 - Sorgfältige Kalibrierung, anschließende Schätzung/Kompensation, geeignete Messverfahren sind entscheidend
- Zufällige Abweichungen
 - → Allgemeine Annahme einer Gaußschen Normalverteilung
 - → Bedingt durch unkontrollierbare äußere Einflüsse (z.B. Objekt, Umwelt, ...)
 - → Realisierung von redundanten Beobachtungsinformationen empfohlen 冗余的

Übersicht zur Wirkung der Unsicherheiten (nach DIN 1319-1):

Neumann & Alkhatib (2022)

- Genauigkeit als Maß für die Übereinstimmung zwischen den einzelnen Messergebnissen und dem Sollwert / wahren Wert der Messgröße
- Um mit zufälligen Abweichungen umzugehen, wird empfohlen, eine große Anzahl n von wiederholten Messungen durchzuführen $\mu = \frac{1}{n} \sum_{i=1}^n X_i \;, \quad n \longrightarrow \infty$
- Im Allgemeinen werden die systematischen Abweichungen so weit minimiert, dass die verbleibenden systematischen Abweichungen als zufällig angesehen und als Messabweichungen insgesamt betrachtet werden
 - Kleine Messabweichungen sind häufiger als große Messabweichungen
- Maximum Permissible Error (MPE)
 - Wird neben der Standardabweichung häufig für die Messunsicherheiten von Sensoren (im Maschinenbau) verwendet
 - Beschreibt die maximal zulässige Abweichung vom Sollwert / wahren Wert einer Messung und entspricht einem Konfidenzniveau (Vertrauensniveau) von $\alpha = 0\%$
 - Keine Unterscheidung zwischen zufälligen und systematischen Abweichungen
 - Umrechnung in Standardabweichung nach GUM, wenn
 - die Messabweichungen n\u00e4herungsweise als zuf\u00e4llig betrachtet werden k\u00f6nnen, und
 - und eine Irrtumswahrscheinlichkeit von $\alpha = 0.3\%$ für den MPE gilt

$$\sigma = \frac{MPE}{\sqrt{3}}$$
 (unter der Annahme einer Gleichverteilung/Rechteckverteilung)

Guide to the Expression of Uncertainty in Measurement (GUM)

Zielsetzung:

- Ermittlung zuverlässiger Unsicherheitsmaße, bei denen neben zufälligen Abweichungen auch systemische Abweichungen berücksichtigt werden
- International einheitlicher Ansatz für Messunsicherheiten zur besseren Vergleichbarkeit

Der Begriff "Messunsicherheit" ist nach dem GUM wie folgt definiert:

- "Measurement uncertainty is defined as a non-negative parameter that characterizes the dispersion of those values that are associated with a measured quantity based on the information used." [JCGM (104:2009), p. 12]
- → Neben statistisch berechenbaren Informationen werden auch Erfahrungswerte, Herstellerangaben etc. berücksichtigt

Zwei Methoden:

- → Typ A: Komponenten, die mit Hilfe statistischer Methoden berechnet werden
- → Typ B: Komponenten, die mit Hilfe anderer Quellen bestimmt werden

Anwendung auf die Bestimmung der Messunsicherheit von direkt gemessenen Größen sowie von aus gemessenen Größen abgeleiteten Größen

Guide to the Expression of Uncertainty in Measurement (GUM)

Zwei Methoden:

经验的

- → Typ A: z.B. geschätzte (Ko-)Varianzen, empirische Standardabweichungen, ...
- → Typ B: messtechnische oder wissenschaftliche Kenntnisse und Erfahrungen mit dem Messverfahren
 - → Beiträge, die nicht als empirische Standardabweichungen bestimmt werden können
 - → Annäherungen an die entsprechenden Standardabweichungen

Spezifikation der (aggregierten) Messunsicherheit u_c

- beschreibt das Intervall um den Sollwert, in dem alle Werte mit einer Wahrscheinlichkeit von 68,3% liegen
 - \rightarrow erweiterte Messunsicherheit mit bestimmten Regionen $U = k \cdot u_c$

$$Y = y \pm U$$

Beispiel: Abstand d von zwei Punkten $d = (17,282 \pm 0,002)m$ (k = 2)

Schwarz & Hennes (2017)

Guide to the Expression of Uncertainty in Measurement (GUM)

Wissen über Parameter und Einflüsse

Nicht-statistischer Typ

Beispiel: Untere und obere Grenze

Beispiel: Angaben im Kalibrierungszertifikat

$$x = y \approx \mu$$
$$u_x = U/k_p \approx \sigma$$

Statischer Typ

Beispiel: Beobachtungsreihen

Methode: statistische Auswertung

$$\overline{q} = \frac{1}{n} \cdot \sum q_k$$

$$s(q_k) = \sqrt{\frac{1}{n-1} \sum (q_k - \overline{q})^2}$$

$$x = \overline{q} u_x = s(q_k) / \sqrt{n}$$

9

verändert nach Sommer & Siebert (2004)

Einflussfaktoren auf die Qualität einer Messung

- Einfluss vieler verschiedener (teilweise voneinander abhängiger)
 Effekte/Einflüsse auf die Qualität der Messergebnisse
- Wechselwirkungen zwischen den einzelnen Einflussgrößen als große Herausforderung

verändert nach Paffenholz et al. (2017) and Ernst (2021)

Einflussfaktoren auf die Qualität einer Messung

- Einfluss vieler verschiedener (teilweise voneinander abhängiger)
 Effekte/Einflüsse auf die Qualität der Messergebnisse
- Wechselwirkungen zwischen den einzelnen Einflussgrößen als große Herausforderung

Einflussfaktoren auf die Qualität einer Messung

- Qualität beinhaltet viele Aspekte:
 - → Genauigkeit (Richtigkeit und Präzision), Zuverlässigkeit, Integrität, Vollständigkeit, Pünktlichkeit, Empfindlichkeit, Robustheit, usw. 稳固性
- Komplexe und ineinandergreifende Prozesskette beim Betrieb eines kinematischen MSS stellt hohe Anforderungen an die Qualitätsanalyse
- Möglichkeiten und Verfahren zur Erreichung einer hohen Qualität:
 - Kalibrieren der Sensoren
 - Mathematische Kompensation 补偿 von systematischen Abweichungen
 - Auswahl geeigneter Messverfahren je nach Umgebung, Bewegung, Abmessungen usw.
 - Verhalten der Bewegung (Form, Geschwindigkeit usw.)
 - Art der (Geo-)Referenzierung
 - Alt del (Geo-)Nelelelizieldlig

Heinz (2021)

Kinematik Physikalische Grundlagen (1)

- Definition von Kinematik: Beschreibung
 - des aktuellen Zustands und der Bewegung von Punkten oder Körpern ohne Berücksichtigung ihrer
 - physikalischen Eigenschaften oder der Kräfte, die die Bewegung verursachen
- Übliche Messungen:
 - Winkel
 - Strecke (bestimmbar durch Zeitmessung),
- 3D Koordinaten
- Zeit (bei kinematischen Anwendungen zusätzlich zu den drei Positionskoordinaten),
- Geschwindigkeit (Drehrate) und
- Beschleunigung

Kinematik Physikalische Grundlagen (2)

 X_{box}

- Geschwindigkeit:
 - entweder aus Entfernungs- und Zeitmessungen ermittelt $\vec{v} = \frac{x}{t}$
 - oder direkt mit Geschwindigkeitssensoren $\vec{v} = \vec{v}_0 + \int_0^t \vec{a} \, dt$
- Beschleunigung:
 - das Messprinzip basiert auf dem Newton'schen Gesetz $\vec{F} = m \cdot \vec{a}$
 - → Kraftmessung
 - absolut bestimmt im Inertialraum (unbeschleunigt und kräftefrei)
 - da ein erdfestes System kein Inertialsystem ist
 - werden immer zusätzliche Beschleunigungen festgestellt (Schwerkraft)

Beschreibung der Bewegung eines Punktes (1)

- Die Beschreibung der Position eines Punktes im Raum erfolgt in einem Koordinatensystem mit Hilfe von Vektoren
- Der Vektor vom Ursprung des Koordinatensystems zum Punkt \vec{r} wird als Positionsvektor bezeichnet

$$\vec{r} = \begin{bmatrix} x & y & z \end{bmatrix}^T$$

$$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} \, dt = \vec{r}_0 + \vec{v}_0 \cdot t + \iint_0^t \vec{a} \, dt dt$$

- Beschreibung einer Punktbewegung
 - den Positionsvektor $\vec{r}(t)$ zu jeder Zeit t zu bestimmen

Beschreibung der Bewegung eines Punktes (2)

- Geschwindigkeitsvektor:
 - Erste Ableitung des Positionsvektors nach der Zeit
 - Drückt die Geschwindigkeit des Punktes an der Position $\vec{r}(t)$ im Moment t in Richtung und Betrag aus:

$$\vec{v} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}^T$$
 $\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$

- Beschleunigungsvektor:
 - Erste Ableitung des Geschwindigkeitsvektors nach der Zeit
 - Drückt die Beschleunigung des Punktes an der Position $\vec{r}(t)$ im Moment t in Richtung und Betrag aus:

$$\vec{a} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T$$
 $\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t}$

Beschreibung der Bewegung eines starren Körpers (1)

Position und Orientierung können auch durch die Verwendung der drei Positionsvektoren $\vec{r}_1(t)$, $\vec{r}_2(t)$ und $\vec{r}_3(t)$ angegeben werden, die nicht auf einer geraden Linie des Körper liegen

Beschreibung der Bewegung eines starren Körpers (2)

- Gibt die **Position** eines starren Körpers an, wobei der Positionsvektor $\vec{r}(t)$ eines repräsentativen Punktes des Körpers bestimmt wird
- Angabe der Ausrichtung des Körpers:
 - Definition von zwei repräsentativen Richtungen des Körpers $\vec{n}_1(t)$ und $\vec{n}_2(t)$ und Bestimmung dieser beiden Vektoren

Beschreibung der Bewegung eines deformierbaren Körpers

(1)

- Neben der Position und Orientierung ist die Beschreibung der zeitlichen Verformung des K\u00f6rpers erforderlich
- Systeme mit vielen Freiheitsgraden:
 - zum Beispiel kontinuierlich verformbare Objekte wie ein Gletscher oder Hangrutschgebiet
 - \rightarrow Erfordert die Angabe eines Ortsvektors $\vec{r}_1(t, \vec{r}'(t_0))$ für jede Position auf dem Körper zu jedem Zeitpunkt t
- \vec{r} ist der Positionsvektor zu dem Punkt, der zu der Zeit t_0 die Position $\vec{r}'(t_0)$ hatte

Heunecke et al. (2011)

gl-verleih.de

Ritter & Dillinger (2011)

Beschreibung der Bewegung eines deformierbaren Körpers (2)

- Systeme mit wenigen Freiheitsgraden, z.B. Roboterarm, die Schaufel eines Baggers, etc.
- Nicht nur die Position und Ausrichtung des Roboterarms / Baggers ist von Interesse, sondern auch die Position des/r Flansch / Schaufel relativ zum Arm / Bagger

Kann durch die Kombination der Winkel / Gelenke beschrieben werden.

Industrieroboter KUKA AGILUS KR 6 R900 sixx

Kinematische Messtechnik zur Bestimmung einer Bewegung (1)

- Kinematische Messtechniken:
 - liefern kinematische Beobachtungen I(t) oder Beobachtungen in Bezug auf sich bewegende Punkte oder Objekte, von denen aus die Bewegung hinreichend genau beschrieben werden kann
- Aus den Beobachtungen
 - → jederzeit den aktuellen Bewegungsstatus ableiten
- Die Beschreibung der Bewegung erfolgt durch einen zeitvariablen Positionsvektor, dessen Komponenten in einem geeigneten Koordinatensystem bestimmt werden:

$$\vec{r}(t) = [x(t) \quad y(t) \quad z(t)]^T$$

Im Allgemeinen:

$$x(t) = \varphi_1(\mathbf{l}(t)), \qquad y(t) = \varphi_2(\mathbf{l}(t)), \qquad z(t) = \varphi_3(\mathbf{l}(t))$$

Kinematische Messtechnik zur Bestimmung einer Bewegung (2)

- Wenn die Beschreibung des Bewegungsablaufs (des Positionsvektors) als Funktion der Beobachtungen gelingt, dann können
 - durch Differenzierung nach der Zeit auch Beziehungen zur Geschwindigkeit und Beschleunigung hergestellt werden
- Direkte Beobachtung von $\vec{v}(t)$ und $\vec{a}(t)$
 - Der Positionsvektor muss durch Bilden und Lösen von Differentialgleichungen bestimmt werden
- Kinematische Beobachtungen sind <u>nicht</u> kontinuierlich
 - $\rightarrow \vec{r}(t)$ und seine Ableitungen können nicht kontinuierlich gebildet werden

Beispiel für eine kinematische Vermessungsaufgabe: Automatisch nachführende Totalstation (1)

- Eine Punktbewegung wird im Beobachtungsintervall [t₀; t_n] mit einer automatisch verfolgenden Totalstation beobachtet
- Die Totalstation liefert zu jedem Zeitpunkt die Rohmesswerte $\alpha(t_i)$, $\xi(t_i)$ und $S(t_i)$
- Der Positionsvektor zum Zeitpunkt t_i ist gegeben durch:

$$\vec{r}(t_i) = \begin{cases} x(t_i) = S(t_i) \cdot \sin(\xi(t_i)) \cdot \cos(\alpha(t_i)) \\ y(t_i) = S(t_i) \cdot \sin(\xi(t_i)) \cdot \sin(\alpha(t_i)) \\ z(t_i) = S(t_i) \cdot \cos(\xi(t_i)) \end{cases}$$

und ist im Koordinatensystem des Instruments definiert

leica-geosystems.com

Beispiel für eine kinematische Vermessungsaufgabe: Automatisch nachführende Totalstation (2)

Die Gleichung der Geschwindigkeit folgt aus denen des Positionsvektors:

$$\vec{v}(t_i) = \vec{r}'(t_i) = \frac{\partial \vec{r}}{\partial S} \cdot \dot{S} + \frac{\partial \vec{r}}{\partial \alpha} \cdot \dot{\alpha} + \frac{\partial \vec{r}}{\partial \xi} \cdot \dot{\xi}$$

- wobei die Differentialgleichungen sich auf die Messungen an dem Punkt t_i beziehen
- Die Verwendung des Mittelwertsatzes führt zu:

$$\vec{l}'(t_i) = \frac{\vec{l}(t_{i+1}) - \vec{l}(t_i)}{t_{i+1} - t_i}$$

Beispiel für eine kinematische Vermessungsaufgabe: Automatisch nachführende Totalstation (3)

- Analyse des Ansatzes:
 - zu jedem Beobachtungszeitpunkt t_i, muss der Beobachtungsvektor vollständig bestimmt werden
 - zufällige Messfehler werden nicht berücksichtigt
- Die Bedingung der Gleichzeitigkeit der Messelemente ist oft technisch nicht realisierbar
 - → Geeignete Evaluationstechniken verwenden

Beispiel für eine kinematische Vermessungsaufgabe: Automatisch nachführende Totalstation (4)

- Mögliche Lösungen:
 - hohe Messfrequenz, so dass ein gemeinsames Beobachtungsintervall abgedeckt wird
 - Schätzung der gemeinsamen Beobachtungselemente aus den resultierenden Zeitreihen

Beobachtungszeitraum

 Einsatz geeigneter Auswertetechniken, z.B. geeigneter mathematischer Filter

- Beobachtungen:
 - Schrägdistanz S
 - Horizontalwinkel α (bezogen auf die Orientierungsmessungen)
 - Vertikalwinkel ξ
- Lokales Koordinatensystem
 - Mittelpunkt des Koordinatensystems im Instrument (0,0,0)
 - y-Achse in Richtung des Referenzpunktes
- Herstellung einer Verbindung zu einem Referenzkoordinatensystem durch Ähnlichkeitstransformation
- Keine Redundanz → Überprüfung (Zuverlässigkeit) bei einer Messung nicht möglich

- Instrument mit elektronischen und motorisierten Messungen
- Beispiel: Leica TS16, TS60, MS60
- Reichweite: 1,5 m bis zu 3500 m
- Messfrequenz im Trackingmodus: < 20 Hz

Typische Unsicherheiten

Standardabweichung des Winkels : 0,15 mgon (Hz, V)

Typische Distanzgenauigkeit für reflektorloses Messen: 0,5 mm (bis 20 m)

für Reflektor: 0,2 mm (bis 20 m)

Zielpunktgeschwindigkeit (quer in 10 m Entfernung): 3 m/s

(längs): 4 m/s

Einflüsse durch 360°-Prismen beim Totalstation-Tracking

Einflüsse durch 360°-Prismen beim Totalstation-Tracking (2)

- Grundprinzip: Kinematische polare Punktbestimmung auf CCR
- Distanzmessung
 - Absolute Distanzmessung (ADM)
 - Hochpräzises interferometrisches Messen von Entfernungsunterschieden
- Winkelwerte über Encoder an Dreh-Kippspiegel
- Messfrequenz von bis zu 1000 Hz
- Messvolumen von 160 m im Durchmesser
- Genauigkeit (MPE): ±15 μm + 6 μm/m (RRR)
 ±15 μm + 6 μm/m (T-Probe)

leica-geosystems.com