Summary Document: FWA Time Series Forecasting Model

1. Overview:

- The FWA Time Series Forecasting (TSF) model helps to predict how much internet data a user will use in the future on Fixed Wireless Access (FWA) devices.
- It uses a smart built-in forecasting method called ARIMA+, available directly in Google BigQuery. This means we can do all the predictions using simple SQL queries.
- The model predicts daily data usage for each user (IMSI) and helps to identify early signs of slow internet speed, especially when the user's connection changes from high-speed (QCI 8) to lower-speed (QCI 9) which usually happens when users use too much data.

2. Why Forecasting is Needed?

- To predict monthly data usage trends.
- Identify network throttling risks.
- Help the AIOps Insight Platform manage resources and alert potential performance drops.
- Specifically detect when a user's QoS shifts from high priority (QCI 8) to low priority (QCI 9).

3. Model Use Case

The model forecasts future daily traffic for each FWA device (IMSI) to:

- Detect QCI transitions.
- Improve customer experience by avoiding unexpected slowdowns.
- Enable better capacity planning and network optimization.

4. Methodology - End-to-End Flow

Step 1: Raw Data Aggregation

- Pull from from mobile bytes and to mobile bytes fields from SDR logs.
- Aggregate daily total traffic for each user (IMSI).

Step 2: Cycle Start & Cumulative Calculation

- Identify plan cycle start and end dates.
- Calculate cumulative usage per cycle and per QCI level.

Step 3: Model Training (ARIMA+)

- Train model using 120 days of historical traffic.
- Model built in SQL using BigQuery's ML.FORECAST function.

Step 4: Forecast Generation

• Predict 30 days of future traffic per IMSI.

Step 5: Post-Processing & QCI Throttling Detection

- Merge historical + forecasted data.
- Calculate cumulative usage in future month.
- Compare with historical QCI threshold to predict throttling day.

Flow diagram:

Raw Traffic Data (from GCP SDR) (Fields:

from_mobile_bytes, to_mobile_bytes)

Daily Aggregation Process

(IMSI-wise Total Traffic per Day)

Feature Engineering using SQL

- Identify Monthly Plan Cycle
- Calculate Cumulative Traffic

Create Forecasting Model (ARIMA+)

- tsfModel in BigQuery
- Forecast Horizon: 30 Days

Generate Forecast using ML.FORECAST

- Daily Forecasted Usage per IMSI

Combine Historical + Forecast Data

- Create Continuous Usage

Calculate Monthly Cumulative Usage

(Historical + Forecasted Traffic)

Compare with Throttling Threshold

- Derived from Previous QCI Change

Predict QCI 8 → QCI 9 Switch Date

- Identify When Throttling May Happen

5. Model Architecture and Key Parameters

Parameter	Value
Model Type	ARIMA_PLUS (in BigQuery)
Forecast Horizon	30 Days
Confidence Level	95%
Data Frequency	Daily
Max Time Series Length	60 Days
Clean Spikes/Dips	Yes
Holiday Region	US
Decompose Time Series	Yes

6. Input & Output Parameters

• Input Table (Aggregated Data):

Name	Description
servedimsi	User Identifier (IMSI)
date	Daily Data Timestamp
totalTraffic	Sum of data usage (upload + download)

• Output Table (Forecasted Data):

Column Name	Description
forecast_timestamp	Date of Forecast
forecast_value	Predicted Data Usage
standard_error	Error in Forecast
prediction_interval_lower_bound	Lower bound of forecast range
prediction_interval_upper_bound	Upper bound of forecast range
confidence_interval_lower_bound	Lower bound of confidence interval
confidence_interval_upper_bound	Upper bound of confidence interval

7. Model Training and Forecasting

Create Model SQL:

```
CREATE OR REPLACE MODEL 'tsfModel'
OPTIONS (
model type='ARIMA PLUS',
time series timestamp col='date',
time series data col='totalTraffic',
time series id col=['servedimsi'],
auto arima=True,
data frequency='DAILY',
max time series length=60,
horizon=30,
auto arima max order=5,
clean spikes and dips=True,
holiday region='US',
adjust step changes=True,
decompose time series=True
)
AS
SELECT servedimsi, date, totalTraffic FROM
`aggregatedTable`;
```

Forecast SQL:

SELECT * FROM ML.FORECAST(MODEL `tsfModel`, STRUCT(30 AS horizon, 0.95 AS = confidence level));

Post-Processing – Predict QCI Change

Step 1: Detect Historical QCI Threshold

- Analyze when QCI changed from $8 \rightarrow 9$ in past cycles.
- Identify cumulative traffic at that point (threshold).

Step 2: Merge Historical + Forecast Data

• Create a single table with both real and forecasted values.

Step 3: Calculate Monthly Cumulative Forecast

- Calculate total monthly usage (historical + predicted).
- Compare it with the historical QCI threshold to predict the next throttling event.

**----