Math 324 Homework 6

For problems 1-2, use Green's theorem to evaluate $\int_C F \cdot dr$ for the given F and C.

- 1. $F(x,y) = \langle x-y, x+y \rangle$, C is the triangle with vertices (0,1), (1,0), (1,
- 2. $F(x,y) = \langle x+y, x^2-y \rangle$, C is the boundary of the region enclosed by $y=x^2$ and $y=\sqrt{x}$ for $x \in (0,1)$, oriented counter-clockwise.
- 3. Let $f:[0,1]\to[0,1]$ be a differentiable function.
 - a. Suppose f(0) = f(1) = 0. Let C be the graph of f oriented from (1,0) to (0,0). Use Green's theorem to show that

$$\int_C x dy = \int_0^1 f(x) dx.$$

(Hint: draw a picture.)

b. Suppose instead that f(0) = 0, f(1) = 1, and let C be the graph of f, oriented from (0,0) to (1,1). Use Green's theorem to show that

$$\int_C y dx = \int_0^1 f(x) dx.$$

4. Use Green's theorem to show that for any curve C enclosing the origin,

$$\int_C \frac{xdy - ydx}{x^2 + y^2} \cdot dr = 2\pi.$$

[Hint: recall that we verified this in chapter 16.2 for C = any circle centered at the origin. For an arbitrary C, apply Green's theorem to the region between C and a small circle centered at the origin.]

For problems 4-6, compute the curl and divergence of the given vector field.

- 5. $F(x,y,z) = \langle x+yz, y+xz, z+xy \rangle$
- 6. $F(x, y, z) = \langle y/x, y/z, z/x \rangle$
- 7. $F(x, y, z) = \langle \frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}, 0 \rangle$
- 8. Show that for a vector field $F = \langle P, Q, R \rangle$ and a function f, $\operatorname{div}(fF) = f \operatorname{div}(F) + F \cdot \nabla f$. Here fF is the vector field $\langle fP, fQ, fR \rangle$.

For problems 6-7, determine whether or not the vector field is conservative, and if it is, find a potential function.

- 9. $F(x, y, z) = \langle xyz^2, x^2yz^2, x^2y^2z \rangle$.
- 10. $F(x, y, z) = \langle 1, \sin z, y \cos z \rangle$.
- 11. Is there a vector field G on \mathbb{R}^3 such that $\operatorname{curl}(G) = \langle x \sin y, \cos y, z xy \rangle$? Explain.