## NATURAL LANGUAGE PROCESSING

## المعالجة اللغوية الطبيعية



# المحتويات

|                 |                          |                 |                       | التطبيقات   | العقبات و التحديات     | تاریخ NLP  | ما هو NLP         | المحتويات         | 1) مقدمة            |
|-----------------|--------------------------|-----------------|-----------------------|-------------|------------------------|------------|-------------------|-------------------|---------------------|
|                 |                          |                 |                       |             | البحث في النصوص        | ملفات pdf  | الملفات النصية    | المكتبات          | 2) أساسيات NLP      |
| T.Visualization | Syntactic Struc.         | Matchers        | Stopwords             | NER         | Stem & Lemm            | POS        | Sent. Segm.       | Tokenization      | 3) أدوات NLP        |
|                 | Dist. Similarity         | Text Similarity | TF-IDF                | BOW         | Word2Vec               | T. Vectors | Word embed        | Word Meaning      | 4)المعالجة البسيطة  |
| T. Generation   | L. Modeling              | NGrams          | Lexicons              | GloVe       | NMF                    | LDA        | T. Clustering     | T. Classification | 5)المعاجلة المتقدمة |
|                 | Summarization & Snippets |                 | Ans. Questions        |             | Auto Correct           | Vader      | Vader Naïve Bayes | Sent. Analysis    |                     |
| Search Engine   | Relative Extraction      |                 | Information Retrieval |             | Information Extraction |            | Data Scraping     | Tweet Collecting  | 6) تجميع البيانات   |
|                 |                          |                 |                       |             | Rec NN\TNN             | GRU        | LSTM              | RNN               | RNN (7              |
| Chat Bot        | Gensim                   | FastText        | Bert                  | Transformer | Attention Model        | T. Forcing | CNN               | Word Cloud        | 8 ) تكنيكات حديثة   |

## القسم السابع: الشبكات العصبية المتكررة

الجزء الثاني: LSTM

\_\_\_\_\_\_

#### وهي اختصار Long Short-Term Memory



وهي تستخدم بشكل اساسي لمساعدة الموديل علي تذكر الكلمات الهامة في النصوص, والتركيز عليها بعيدا عن باقي الكلمات ذات الأهمية الأقل:

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

## الفارق الأساسي بين دالة sigmoid, tanh هو المدي





في الجزء الأول نري علامة السيجما σ (للدلالة علي سيجمويد) وهي تمثل البوابات التي تتحكم في تدفق البيانات, وهي تتحكم في كمية البيانات الداخلة من الذاكرة القديمة, اي التي تأتي من ال Output السابق, واذا كانت بقيمة 0 او 1 او 0.5 فهي تتحكم في هذا المقدار من البيانات



أما الخلية التالية فهي تتحكم في مقدار البيانات التي سيتم اضافتها للخلية التالية , ولها قيم بقيمة 0 او 1 او 0.5 تدل علي مقدار الاضافة



#### و هنا نصل للخلية الثالثة: و هي التي تتناول البيانات الداخلة لها و تقوم بصناعة الذاكرة الجديدة



### ثم نقوم بتصميم الذاكرة الجديدة للخلية بهذه المعادلة



### الخطوة التالية التحكم في كمية ال output من الخلية



## ثم معالجة و انتاج ال output نفسه بمعادلة الـ tanh



و هناك بدائل للتصميم السابق, حيث يختلف الهيكل مما يسمح للشبكة ان تقوم بأداء مختلف مع الداتا المختلفة بهذا الشكل



$$f_t = \sigma \left( W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left( W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left( W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

و هذا الشكل



$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

