compiler

· AST, DAGO, Three address Code (Ruadtingles, Triples) AST (Abstreact syntax tree)

arce more compact than a parise tree and can be easily used by complete.

Example: a b+c

Parise tree

AST AST respresented on:

Three address code

- 1. 9t is an interemediate code. 9t is used by optimizing complier .
- 2. 9in three address cote, the given expression is breaken town into several separate instructions. These instructions can easily translate into assembly language.
- 3. Each three address code instruction has at most three operands. It is a combination of amignment and a binarry operator.

In The, there is at most one operator on the reight side of an instruction.

Example;
$$x+y+2$$

$$t_1 = y+2$$

$$t_2 = x+t_1$$

There are two tata strengthere for TAC.

Example: Quadriples

The:
$$a:=-b \cdot e + d$$
 $t_1 = -b$
 $t_2 = c + d$
 $t_3 = t_1 \cdot t_2$
 $a:=t_3$

avad triples								
oper atun	Sounce	Sounce	result					
(0) unimus	6 10 - 7	_	4					
(1)	[] C	4	42					
(2) *	41	+2	† 3					
(3) := /	1 43	~ <u>_</u>	a					

" need to take help of avadtingles

Example:		Tripus			
	a = - b = c + d	0.1	ercatore	source 1	source 2
TAC:	+= = b	(0)	-	Ь	•
	t2 = c+d	ω	+	c	9
	43 = 4, 64 2	(3)	W .	(0)	(1)
	m; = +3	(31	! =	(2)	•
		}			

DAG (Directed Acyclic Greath)

$$a = b \cdot c$$
 $d = b$
 $e = d \cdot c$
 $b = e$
 $f = b + c$
 $s + ep_2$;

