Binary Matrix

You are given a matrix of size $\mathbf{r} \times \mathbf{c}$. Each of the elements can be either 0 or 1. In each operation you can flip any element of this matrix, i.e. convert 0 to 1 or convert 1 to 0. Your goal is to convert the matrix such that -

- 1. Each of the rows will have the same number of 1s and
- 2. Each of the columns will have the same number of 1s.

What is the minimum number of operations required to achieve this?

Input

Input starts with a positive integer **T** (~1000) which indicates the number of inputs.

Each case starts with two integers \mathbf{m} and \mathbf{n} (1 <= \mathbf{r} , \mathbf{c} <= 40), here \mathbf{r} is the number of rows and \mathbf{c} is the number of columns of the matrix. Each of the next \mathbf{m} lines will have \mathbf{n} integers each, either 0 or 1.

Output

For each test case, output "Case #: R" in a single line, where # will be replaced by case number and **R** will be replaced by the minimum number of steps required to achieve the target matrix. Replace **R** by -1 if it is not possible to reach target matrix.

Example

Sample Input:

3 2 3

111

111

33

011

011

011 23

001

000

Sample Output:

Case 1: 0

Case 2: 3

Case 3: 1