# Introduction to AI & ML

Created By
The easylearn academy

## What is Artificial Intelligence (AI)?

- Artificial Intelligence (AI) is the simulation of human intelligence in machines.
- These machines are capable of thinking, reasoning, learning, and solving problems very much like humans.
- Al enables machines to perform tasks that typically require human intelligence.
- Examples: Virtual Assistants (like Siri), Chatbots, Self-driving Cars, and Recommendation Engines.

## What is Machine Learning?

- Machine Learning (ML) is a branch of Artificial Intelligence (AI).
- It is the science of getting computers to learn without being explicitly programmed.
- ML systems learn from data, identify patterns, and make decisions with minimal human intervention.
- Machines are trained using large amounts of data to improve over time.
- · Simply put, ML is like teaching computers to learn from experience, just like humans do.

## **Evolution of Machine Learning**

- 1950s: Alan Turing introduced the idea of a "learning machine", laying the foundation for AI.
- 1959: Arthur Samuel, an IBM researcher, coined the term "Machine Learning" while developing a program to play checkers.
- 1980s–1990s: Rise of neural networks and basic ML algorithms like decision trees, SVMs.
- 2010s-Present: ML powers voice assistants, recommendation systems, self-driving cars, medical diagnostics, and more.

### Why is Machine Learning Important?

- It automates repetitive and time-consuming tasks, which helps save time and boost productivity.
- It improves prediction accuracy and is widely used in areas like stock markets, weather forecasting, and healthcare diagnostics.
- It helps in handling and analyzing Big Data efficiently, making it possible to extract valuable insights from large datasets.
- It enables intelligent decision-making by supporting businesses in optimizing operations and delivering personalized experiences.
- It drives innovation in AI technologies and plays a key role in powering self-driving cars, virtual assistants, and more.

### **How Machine Learning Works**

#### **Data Collection**

Gather relevant and high-quality data from various sources.

#### **Data Preparation**

Clean, organize, and format the data to make it usable for training.

### **Choosing a Model**

Select an appropriate algorithm (e.g., linear regression, decision tree, etc.) based on the problem.

#### **Training the Model**

Feed the data into the algorithm so it can learn patterns and relationships.

#### **Evaluating the Model**

Test the model's performance using a separate set of data (test data).

### Improving the Model

Tune parameters, gather more data, or try different algorithms to increase accuracy.

## Let us see few examples

1. Task: Detect spam emails.

**Process**: Train with labeled dataset of spam and non-spam emails, analyzing text patterns.

Outcome: Model classifies emails as spam or not based on content features.

2. Task: Predict house prices.

**Process**: Train with historical data on house features (size, location, bedrooms) and sale prices.

Outcome: Model estimates price based on input property characteristics.

3. Task: Translate text from English to Spanish.

**Process**: Train with parallel corpora of English-Spanish sentence pairs.

Outcome: Model generates accurate translations for new English text.

4. Task: Recommend movies to users.

**Process**: Train with user ratings and viewing history to identify preferences.

Outcome: Model suggests movies aligned with user tastes.

5. Task: Identify fraudulent credit card transactions.

**Process**: Train with transaction data labeled as fraudulent or legitimate, focusing on patterns like amount and location.

Outcome: Model flags suspicious transactions in real-time.

## Types of Machine Learning

Supervised Learning

**Unsupervised Learning** 

Reinforcement Learning

## Supervised Learning

- Supervised Learning is a type of Machine Learning where the model learns from labeled data (input-output pairs).
- Supervised Learning means teaching a computer using examples with correct answers.
- The goal is to predict outcomes for new, unseen data based on what it learned.
- It's like teaching a student using questions (inputs) and correct answers (labels).
- Examples:
  - Email spam detection (Spam or Not Spam)
  - Weather prediction (based on historical weather data)
- Popular Algorithms:
  - 1. Linear Regression
  - 2. Decision Trees
  - 3. Support Vector Machines (SVM)
  - 4. K-Nearest Neighbors (KNN)

#### **How It Works:**

- You give the machine data
   + correct answers (this is called "labeled data").
- 2. It learns patterns.
- 3. Then it can **predict** answers for new data.

# Unsupervised Learning

- Unsupervised Learning means the computer learns from data without correct answers.
- It's like giving a computer a big box of stuff and asking it to organize it by itself.
- Examples
  - Customer Segmentation
    - A business gives customer data (like age, shopping habits).
    - The computer finds groups of similar customers (e.g., young shoppers, budget buyers).
  - Anomaly Detection
    - Used in banks to spot unusual transactions that might be fraud.
- Popular Algorithms:
  - 1. K-Means Clustering
  - 2. Hierarchical Clustering
  - 3. PCA (Principal Component Analysis for data simplification)

### **How It Works:**

- 1. You give only **data**, no labels or answers.
- The computer searches
   for patterns, groupings, or anything that stands out.

## Reinforcement Learning ...

- reinforcement Learning is a type of Machine Learning where a computer learns by doing — like trial and error.
- It interacts with the environment and gets feedback in the form of rewards or penalties.
- The goal is to learn the best actions to take in different situations to get the most rewards.
- Real-Life Example:
- Imagine training a dog:
  - If it does a trick right → you give a treat (reward)
  - If it does something wrong → no treat or a "no" (penalty)
  - Over time, the dog learns what actions give good results.
- Applications:
  - 1. Robotics A robot learns to walk or pick up objects
  - Game AI Computer learns to play chess or video games better over time
  - 3. Self-driving cars Learn how to drive safely through simulated environments

### **How It Works:**

- 1. You give only **data**, no labels or answers.
- The computer searches
   for patterns, groupings, or anything that stands out.

### **Reinforcement Learning Algorithms**

#### 1. Q-Learning

- A popular algorithm where the agent learns a table (Q-table) to decide the best action in each situation.
- Works well for small environments.

#### 2. Deep Q-Network (DQN)

- A more powerful version of Q-Learning that uses neural networks instead of tables.
- Can handle complex environments like video games.

#### 3. SARSA (State-Action-Reward-State-Action)

- Similar to Q-Learning, but updates learning based on the action actually taken, not the best possible action.
- More conservative learning style.

#### 4. Policy Gradient Methods

- These algorithms directly learn a strategy (policy) instead of values.
- Used in more advanced problems and continuous environments.

#### 5. Actor-Critic Methods

- A combination of two parts:
- Actor decides what action to take
- Critic evaluates how good that action was
- Used in deep reinforcement learning and robotics.

# Applications of Machine Learning

#### Healthcare

- Predict diseases early using patient data
- Analyze X-rays, MRIs, and other scans automatically

#### **Finance**

- Detect fraud in credit card transactions
- Decide if a person is eligible for a loan (credit scoring)

#### Marketing

- Group customers based on shopping habits
  Show product or movie recommendations (like Amazon or Flipkart)

#### **Transportation**

- Power self-driving cars (like Tesla)
  Predict traffic and suggest fastest routes (like Google Maps)

#### **Entertainment**

- Suggest shows or movies you might like (Netflix, YouTube, Spotify)
  Personalize what you see based on your past behavior

# **Important Concepts**

#### **Overfitting**

 When the model learns the training data too well and performs poorly on new data.

#### Underfitting

 When the model is too simple to capture patterns in the data.

#### **Training Set vs Testing Set**

 Training data is used to teach the model, and testing data is used to evaluate it.

## Future of Machine Learning

- Automation and human decision enhancement.
- Innovations in medicine, robotics, climate science.
- Ethical concerns: Bias, Privacy, Job displacement.

## What is Deep Learning

#### **Artificial Intelligence:**

Mimicking the intelligence or behavioural pattern of humans or any other living entity.

#### **Machine Learning:**

A technique by which a computer can "learn" from data, without using a complex set of different rules. This approach is mainly based on training a model from datasets.

#### Deep Learning:

A technique to perform machine learning inspired by our brain's own network of neurons.

## What is Natural Language Processing



## What is Computer Vision?

## **How Computer Vision Works**



### Acquiring the image

Images, even large sets, can be acquired in real time through video, photos or 3D technology for analysis.



### Analyzing the image

Deep learning models automate much of this process, but the models are often trained by first being fed thousands of labeled or pre-identified images.



### Applying the insights

The final step is the interpretive step, where the deep learning model is deployed to score new image or video feed.

# What are the career opportunities in Artificial Intelligence?



# Software development career opportunities in Artificial Intelligence





# Data Science & Analytics career opportunities in Artificial Intelligence



Analyze large datasets, extract insights, and make data-driven decisions

Al and machine learning techniques

## R&D career opportunities in Artificial Intelligence





# ML Engineer career opportunities in Artificial Intelligence





## NLP career opportunities in Artificial Intelligence





# Computer vision career opportunities in Artificial Intelligence



Enabling applications such as image recognition, object detection, and autonomous navigation

Analyzing and interpreting visual data

Work on algorithms and systems

# Robotics career opportunities in Artificial Intelligence



Design and build intelligent robots



Capable of performing tasks in various domains



Including manufacturing, healthcare, and service industries

# Ethics and Policy career opportunities in Artificial Intelligence





# Al Consulting and Advisory career opportunities in Artificial Intelligence





# Education and Training career opportunities in Artificial Intelligence





# What are the responsibilities of an Al Excerpt?

- Problem Definition
- Data Collection and Preprocessing
- Algorithm Selection and Development
- Model Training and Evaluation
- Feature Engineering
- Deployment
- Monitoring and Maintenance
- Collaboration
- Research and Innovation
- Ethical Considerations