Haces. ¿Por qué?

Santiago Pareja Pérez 3 de abril de 2024

Motivación y definición

El problema de Mittag-Leffler

Definición

Sea X una superficie de Riemann y $p \in X$. Una parte principal en p es la parte negativa de una serie de Laurent finita:

$$\sum_{k=1}^N \frac{a_k}{(z-p)^k}.$$

Es un elemento del cociente $\mathcal{M}_p/\mathcal{O}_p$ (meromorfas/holomorfas).

Dados puntos $\{p_n\} \subset X$ y partes principales $f_n \in \mathcal{M}_{p_n}/\mathcal{O}_{p_n}$, ¿existe una $f \in \mathcal{M}(X)$ con polos $\{p_n\}$ y partes principales f_n ?

¿Cuándo podemos pegar funciones meromorfas definidas localmente para obtener algo global?

Dos enfoques para caracterizar las obstrucciones

Cohomología de Čech.
 Cohomología de Dolbeault.

El problema de Mittag-Leffler

Definición

Sea X una superficie de Riemann y $p \in X$. Una parte principal en p es la parte negativa de una serie de Laurent finita:

$$\sum_{k=1}^N \frac{a_k}{(z-p)^k}.$$

Es un elemento del cociente $\mathcal{M}_p/\mathcal{O}_p$ (meromorfas/holomorfas).

Dados puntos $\{p_n\} \subset X$ y partes principales $f_n \in \mathcal{M}_{p_n}/\mathcal{O}_{p_n}$, ¿existe una $f \in \mathcal{M}(X)$ con polos $\{p_n\}$ y partes principales f_n ?

¿Cuándo podemos pegar funciones meromorfas definidas localmente para obtener algo global?

Dos enfoques para caracterizar las obstrucciones

Cohomología de Čech.

Cohomología de Dolbeault.

El problema de Mittag-Leffler

Definición

Sea X una superficie de Riemann y $p \in X$. Una parte principal en p es la parte negativa de una serie de Laurent finita:

$$\sum_{k=1}^N \frac{a_k}{(z-p)^k}.$$

Es un elemento del cociente $\mathcal{M}_p/\mathcal{O}_p$ (meromorfas/holomorfas).

Dados puntos $\{p_n\} \subset X$ y partes principales $f_n \in \mathcal{M}_{p_n}/\mathcal{O}_{p_n}$, ¿existe una $f \in \mathcal{M}(X)$ con polos $\{p_n\}$ y partes principales f_n ?

¿Cuándo podemos pegar funciones meromorfas definidas localmente para obtener algo global?

Dos enfoques para caracterizar las obstrucciones:

Cohomología de Čech.

■ Cohomología de Dolbeault.

Motivación

Necesitamos un modo de organizar información local y global.

Y también queremos tener modos de relacionar lo local con lo global:

- global → local: información sobre la restricción de datos.
- local → global: axiomas de pegado de datos.

Ejemplo modelo: funciones continuas/diferenciables/meromorfas...

Idea de haz

Es una colección de datos subordinada a un orden parcial.

Lo habitual: abiertos de un espacio topológico X ordenados por la inclusión \subset , que llamaremos **Open**(X).

(Se pueden definir sobre grafos, complejos simpliciales y celulares...)

Organizan una cantidad masiva de información. Esto es bueno y malo.

Ejemplo: haces de funciones continuas/diferenciables/meromorfas.

Un haz \mathcal{F} en un e.t. X es una colección de datos

- ı) Para cada $U \in \mathbf{Open}(X)$, un conjunto de secciones $\mathcal{F}(U) \in \mathbf{Set}$.
- II) Para cada $V \subset U$, una aplicación restricción $\rho_{V,U} \colon \mathcal{F}(U) \to \mathcal{F}(V)$.

Ejemplo: haces de funciones continuas/diferenciables/meromorfas.

Un haz \mathcal{F} en un e.t. X es una colección de datos:

- ı) Para cada $U \in \mathbf{Open}(X)$, un conjunto de secciones $\mathcal{F}(U) \in \mathbf{Set}$.
- II) Para cada $V \subset U$, una aplicación restricción $\rho_{V,U} \colon \mathcal{F}(U) \to \mathcal{F}(V)$

Satisfaciendo ciertos axiomas.

Ejemplo: haces de funciones continuas/diferenciables/meromorfas. Un haz \mathcal{F} en un e.t. X es una colección de datos:

- ı) Para cada $U \in \mathbf{Open}(X)$, un conjunto de secciones $\mathcal{F}(U) \in \mathbf{Set}$.
- II) Para cada $V \subset U$, una aplicación restricción $\rho_{V,U} \colon \mathcal{F}(U) \to \mathcal{F}(V)$.

Satisfaciendo ciertos axiomas.

Ejemplo: haces de funciones continuas/diferenciables/meromorfas. Un haz \mathcal{F} en un e.t. X es una colección de datos:

- 1) Para cada $U \in \mathbf{Open}(X)$, un conjunto de secciones $\mathcal{F}(U) \in \mathbf{Set}$.
- II) Para cada $V \subset U$, una aplicación restricción $\rho_{V,U} \colon \mathcal{F}(U) \to \mathcal{F}(V)$.

Satisfaciendo ciertos axiomas.

Restricción de secciones

Axiomas de las restricciones:

- ı) $\rho_{U,U}$ es la identidad.
- II) No importa el orden en el que restrinjamos:

$$W\subset V\subset U\Rightarrow \rho_{W,\,V}\circ\rho_{V,\,U}=\rho_{W,\,U}.$$

Por lo tanto, podemos escribir $f|_{V} = \rho_{V,-}(f)$ sin ambigüedad.

Hasta aquí, es un prehaz: un funtor contravariante $Open(X) \rightarrow Set$.

Un haz satisface dos condiciones más.

Restricción de secciones

Axiomas de las restricciones:

- 1) $\rho_{IJ,IJ}$ es la identidad.
- II) No importa el orden en el que restrinjamos:

$$W\subset V\subset U\Rightarrow \rho_{W,\,V}\circ\rho_{V,\,U}=\rho_{W,\,U}.$$

Por lo tanto, podemos escribir $f|_{V} = \rho_{V,-}(f)$ sin ambigüedad.

Hasta aquí, es un prehaz: un funtor contravariante **Open**(X) \rightarrow **Set**.

Un haz satisface dos condiciones más.

De prehaces a haces

Sea $\mathcal{U} = \{U_i\}$ un recubrimiento de U.

Condición de localidad/identidad:

III) Dos secciones en U que coinciden al restringirlas a cada U_i son la misma.

$$s, t \in \mathcal{F}(U)$$
 tales que $s|_{U_i} = t|_{U_i} \ \forall \ U_i \in \mathcal{U} \Longrightarrow s = t$.

Condición de pegado

IV) Dadas secciones en cada U_i compatibles dos a dos, existe una (única) sección en U que restringe a las dadas.

$$s_i \in \mathcal{F}(U_i) \text{ tales que } s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \Longrightarrow \exists s \in \mathcal{F}(U) \text{ con } s|_{U_i} = s_i$$

De prehaces a haces

Sea $\mathcal{U} = \{U_i\}$ un recubrimiento de U.

Condición de localidad/identidad:

III) Dos secciones en U que coinciden al restringirlas a cada U_i son la misma.

$$s, t \in \mathcal{F}(U)$$
 tales que $s|_{U_i} = t|_{U_i} \ \forall \ U_i \in \mathcal{U} \Longrightarrow s = t$.

Condición de pegado:

IV) Dadas secciones en cada U_i compatibles dos a dos, existe una (única) sección en U que restringe a las dadas.

$$s_i \in \mathcal{F}(U_i) \text{ tales que } s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \Longrightarrow \exists s \in \mathcal{F}(U) \text{ con } s|_{U_i} = s_i.$$

Secciones compatibles

Haces con valores en otras categorías

Apenas hemos usado propiedades de **Set**. Podemos cambiarla por otra categoría sin problemas.

Es interesante el caso de grupos abelianos.

Aquí los haces forman una categoría abeliana Sh(X): se pueden tomar núcleos y conúcleos, y se puede hablar de sucesiones exactas.

Es el lugar adecuado para una teoría de cohomología.

Cohomología de Čech

Hay ambigüedad inherente al dibujo: la distancia de cada punto al observador.

$$d_{ij} = \frac{\text{distancia del punto } A_{ij} \in O_i \text{ a } E}{\text{distancia del punto } A_{ji} \in O_j \text{ a } E}$$

¿Existen
$$\lambda_1$$
, λ_2 , λ_3 tales que $d_{ij} = \lambda_i/\lambda_j$? (No).

Hay ambigüedad inherente al dibujo: la distancia de cada punto al observador.

$$d_{ij} = \frac{\text{distancia del punto } A_{ij} \in O_i \text{ a } E}{\text{distancia del punto } A_{ji} \in O_j \text{ a } E}$$

¿Existen
$$\lambda_1$$
, λ_2 , λ_3 tales que $d_{ij} = \lambda_i/\lambda_j$? (No).

Hay ambigüedad inherente al dibujo: la distancia de cada punto al observador.

$$d_{ij} = \frac{\text{distancia del punto } A_{ij} \in O_i \text{ a } E}{\text{distancia del punto } A_{ji} \in O_j \text{ a } E}$$

¿Existen
$$\lambda_1$$
, λ_2 , λ_3 tales que $d_{ij} = \lambda_i/\lambda_j$? (No).

Hay ambigüedad inherente al dibujo: la distancia de cada punto al observador.

$$d_{ij} = \frac{\text{distancia del punto } A_{ij} \in O_i \text{ a } E}{\text{distancia del punto } A_{ji} \in O_j \text{ a } E}$$

¿Existen
$$\lambda_1$$
, λ_2 , λ_3 tales que $d_{ij} = \lambda_i/\lambda_j$? (No).

Hay ambigüedad inherente al dibujo: la distancia de cada punto al observador.

$$d_{ij} = \frac{\text{distancia del punto } A_{ij} \in O_i \text{ a } E}{\text{distancia del punto } A_{ji} \in O_j \text{ a } E}$$

¿Existen
$$\lambda_1$$
, λ_2 , λ_3 tales que $d_{ij} = \lambda_i/\lambda_j$? (No).

El triángulo de Penrose es un cociclo en la cohomología de Čech

El triángulo de Penrose es un problema de pegado imposible: es localmente trivial, pero no admite solución global.

Es un cociclo no trivial de $\check{H}^1(\mathcal{U}, \mathbb{R}^+)$.

- $m \ \mathcal U$ es el recubrimiento por 3 abiertos de la corona circular.
- \mathbb{R}^+ es el grupo multiplicativo de reales positivos. Contiene los d_{ij} . (En realidad, es un haz con valor constante \mathbb{R}^+).
- $\check{\mathsf{H}}^1(\mathcal{U},\,\underline{\mathbb{R}}^+)$ es el primer grupo de cohomología de Čech.

El triángulo de Penrose es un cociclo en la cohomología de Čech

El triángulo de Penrose es un problema de pegado imposible: es localmente trivial, pero no admite solución global.

Es un cociclo no trivial de $\check{H}^1(\mathcal{U}, \mathbb{R}^+)$.

- ullet $\mathcal U$ es el recubrimiento por 3 abiertos de la corona circular.
- \mathbb{R}^+ es el grupo multiplicativo de reales positivos. Contiene los d_{ij} . (En realidad, es un haz con valor constante \mathbb{R}^+).
- $\check{H}^1(\mathcal{U}, \mathbb{R}^+)$ es el primer grupo de cohomología de Čech.

Complejo de Čech

Sea X e.t., $\mathcal{U} = \{U_i\}$ recubrimiento y \mathcal{T} haz sobre X. Sean $\mathcal{U}_J = \bigcap_{i \in J} U_i$.

El **complejo de Čech** del recubrimiento ${\mathcal U}$ viene dado por

$$\check{C}^{0}(\mathcal{U}, \mathcal{F}) = \prod_{|\mathcal{I}|=1} \mathcal{F}(\mathcal{U}_{\mathcal{I}})$$

$$\check{C}^{1}(\mathcal{U}, \mathcal{F}) = \prod_{|\mathcal{I}|=2} \mathcal{F}(\mathcal{U}_{\mathcal{I}})$$

$$\vdots$$

$$\check{C}^{k}(\mathcal{U}, \mathcal{F}) = \prod_{|\mathcal{I}|=k+1} \mathcal{F}(\mathcal{U}_{\mathcal{I}})$$

$$\vdots$$

Es decir, $\check{\mathsf{C}}^k(\mathcal{U}, \mathcal{F}) = \prod_{|\mathcal{I}|=k+1} \mathcal{F}(\mathcal{U}_{i_1} \cap \cdots \cap \mathcal{U}_{i_k}).$

Operador coborde

La inclusión

$$U_{i_0} \cap \cdots \cap U_{i_{k+1}} \longrightarrow U_{i_0} \cap \cdots \cap \hat{U}_{i_i} \cap \cdots \cap U_{i_{k+1}}$$

induce un morfismo restricción

$$\mathcal{F}(U_{i_0}\cap\cdots\cap\hat{U}_{i_i}\cap\cdots\cap U_{i_{k+1}})\longrightarrow\mathcal{F}(U_{i_0}\cap\cdots\cap U_{i_{k+1}}).$$

El operador coborde δ es suma alternada de estos morfismos.

$$\begin{split} \delta \colon \check{\mathsf{C}}^k(\mathcal{U},\mathcal{F}) &\longrightarrow \check{\mathsf{C}}^{k+1}(\mathcal{U},\mathcal{F}) \\ \sigma &\longmapsto (\delta\sigma)_{i_0,\dots,i_{k+1}} \coloneqq \sum_{j=0}^{k+1} (-1)^k \sigma_{i_0,\dots,\hat{i}_j,\dots,i_{k+1}} \big|_{U_{i_0},\dots,U_{i_{k+1}}}. \end{split}$$

La **cohomología de Čech** es la cohomología de este complejo

$$\check{\mathsf{Z}}^k(\mathcal{U},\,\mathcal{F}) = \mathsf{Ker}\,\delta_k, \qquad \check{\mathsf{B}}^k(\mathcal{U},\,\mathcal{F}) = \mathsf{Im}\,\delta_{k-1}, \qquad \check{\mathsf{H}}^k(\mathcal{U},\,\mathcal{F}) = \frac{\check{\mathsf{Z}}^k(\mathcal{U},\,\mathcal{F})}{\check{\mathsf{B}}^k(\mathcal{U},\,\mathcal{F})}$$

Operador coborde

La inclusión

$$U_{i_0} \cap \cdots \cap U_{i_{k+1}} \longrightarrow U_{i_0} \cap \cdots \cap \hat{U}_{i_i} \cap \cdots \cap U_{i_{k+1}}$$

induce un morfismo restricción

$$\mathcal{F}(U_{i_0} \cap \cdots \cap \hat{U}_{i_i} \cap \cdots \cap U_{i_{k+1}}) \longrightarrow \mathcal{F}(U_{i_0} \cap \cdots \cap U_{i_{k+1}}).$$

El operador coborde δ es suma alternada de estos morfismos.

$$\delta \colon \check{\mathsf{C}}^{k}(\mathcal{U}, \mathcal{F}) \longrightarrow \check{\mathsf{C}}^{k+1}(\mathcal{U}, \mathcal{F})$$

$$\sigma \longmapsto (\delta \sigma)_{i_0, \dots, i_{k+1}} \coloneqq \sum_{i=0}^{k+1} (-1)^k \sigma_{i_0, \dots, \hat{i}_j, \dots, i_{k+1}} |_{U_{i_0}, \dots, U_{i_{k+1}}}.$$

La *cohomología de Čech* es la cohomología de este complejo:

$$\check{\mathsf{Z}}^k(\mathcal{U},\mathcal{F}) = \mathsf{Ker}\,\delta_k, \qquad \check{\mathsf{B}}^k(\mathcal{U},\mathcal{F}) = \mathsf{Im}\,\delta_{k-1}, \qquad \check{\mathsf{H}}^k(\mathcal{U},\mathcal{F}) = \frac{\check{\mathsf{Z}}^k(\mathcal{U},\mathcal{F})}{\check{\mathsf{B}}^k(\mathcal{U},\mathcal{F})}.$$

Relación con otras cohomologías

A partir de un recubrimiento \mathcal{U} , podemos construir un complejo simplicial llamado el **nervio** $\mathcal{N}(\mathcal{U})$.

- Vértices: abiertos $U_i \in \check{C}^1(\mathcal{U}, \mathcal{F})$.
- Aristas: intersecciones de dos abiertos $U_i \cap U_i \in \check{C}^2(\mathcal{U}, \mathcal{F})$.
- Caras: intersecciones de tres abiertos $U_i \cap U_i \cap U_k \in \check{C}^3(\mathcal{U}, \mathcal{F})$.

= :

Dado un recubrimiento suficientemente fino, parece razonable que la cohomología de Čech coincida con las usuales. Y así es:

- X CW-complejo: $\check{H}^*(X, \underline{\mathbb{Z}})$ es la singular.
- X variedad diferenciable: $\check{H}^*(X, \mathbb{R})$ es la de de Rham.

Para espacios más raros, no siempre. Ej: círculo polaco.

Relación con otras cohomologías

A partir de un recubrimiento \mathcal{U} , podemos construir un complejo simplicial llamado el **nervio** $\mathcal{N}(\mathcal{U})$.

- Vértices: abiertos $U_i \in \check{C}^1(\mathcal{U}, \mathcal{F})$.
- Aristas: intersecciones de dos abiertos $U_i \cap U_i \in \check{C}^2(\mathcal{U}, \mathcal{F})$.
- Caras: intersecciones de tres abiertos $U_i \cap U_j \cap U_k \in \check{C}^3(\mathcal{U}, \mathcal{F})$.

= :

Dado un recubrimiento suficientemente fino, parece razonable que la cohomología de Čech coincida con las usuales. Y así es:

- X CW-complejo: $\check{H}^*(X, \underline{\mathbb{Z}})$ es la singular.
- X variedad diferenciable: $\check{H}^*(X, \mathbb{R})$ es la de de Rham.

Para espacios más raros, no siempre. Ej: círculo polaco.

El problema de Mittag-Leffler, de nuevo

¿Existe una $f \in \mathcal{M}(S)$ con polos $\{p_n\}$ y partes principales f_n ?

Reescribimos el problema en términos de cohomología de Čech.

X superficie de Riemann. \mathcal{O}_X haz de funciones holomorfas. \mathcal{K}_X haz de funciones meromorfas. Tomamos un recubrimiento $\mathcal{U} = \{U_i\}$ tal que cada U_i contiene a lo sumo un único polo p_n .

Definición

Una distribución de Mittag-Leffler es una $\mu = (f_i) \in \check{\mathbb{C}}^0(\mathcal{U}, \mathcal{K}_X)$ tal que las diferencias $f_{ij} = f_i - f_j$ son holomorfas en $U_i \cap U_j$. Es decir, $\delta \mu = (f_{ij}) \in \check{\mathbb{Z}}^1(\mathcal{U}, \mathcal{O}_X)$.

Dar una distribución de Mittag-Leffler es lo mismo que dar un problema de Mittag-Leffler.

El problema de Mittag-Leffler, de nuevo

¿Existe una $f \in \mathcal{M}(S)$ con polos $\{p_n\}$ y partes principales f_n ?

Reescribimos el problema en términos de cohomología de Čech.

X superficie de Riemann. \mathcal{O}_X haz de funciones holomorfas. \mathcal{K}_X haz de funciones meromorfas. Tomamos un recubrimiento $\mathcal{U} = \{U_i\}$ tal que cada U_i contiene a lo sumo un único polo p_n .

Definición

Una distribución de Mittag-Leffler es una $\mu \coloneqq (f_i) \in \check{\mathsf{C}}^0(\mathcal{U}, \mathcal{K}_\chi)$ tal que las diferencias $f_{ij} \coloneqq f_i - f_j$ son holomorfas en $U_i \cap U_j$. Es decir, $\delta \mu = (f_{ij}) \in \check{\mathsf{Z}}^1(\mathcal{U}, \mathcal{O}_\chi)$.

Dar una distribución de Mittag–Leffler es lo mismo que dar un problema de Mittag–Leffler.

Resolviendo el problema de Mittag-Leffler

Tenemos
$$\mu \coloneqq (f_i) \in \check{\mathsf{C}}^0(\mathcal{U}, \mathcal{K}_{\chi}), \qquad (\delta \mu)_{ij} = f_{ij} \coloneqq f_i - f_j \in \mathcal{O}(U_i \cap U_j).$$

Tomando intersecciones $U_i \cap U_j \cap U_k$ de tres abiertos, $f_{ij} + f_{jk} + f_{ki} = 0$.

Buscamos $(g_i \in \mathcal{O}(U_i))$ tales que $f_{ij} = g_j - g_i$.

Entonces, $f = f_i + g_i \in \mathcal{M}(X)$ es solución global bien definida.

Notar que

$$\{(f_{ij})\mid f_{ij}+f_{jk}+f_{ki}=0\}=\operatorname{Ker}\delta_1=\check{\mathsf{Z}}^1(\mathcal{U},\,\mathcal{O}_\chi)$$

$$\{(f_{ij})\mid f_{ij}=g_j-g_i\text{ para algún }g_i\in\mathcal{O}(U_i)\}=\operatorname{Im}\delta_0=\check{\mathsf{B}}^1(\mathcal{U},\,\mathcal{O}_\chi)$$

El problema tiene solución si y solo si $[\delta \mu] = 0 \in \check{H}^1(\mathcal{U}, \mathcal{O}_X) = \frac{\check{Z}^1(\mathcal{U}, \mathcal{O}_X)}{\check{B}^1(\mathcal{U}, \mathcal{O}_X)}$

Resolviendo el problema de Mittag-Leffler

Tenemos
$$\mu \coloneqq (f_i) \in \check{\mathsf{C}}^0(\mathcal{U}, \mathcal{K}_{\chi}), \qquad (\delta \mu)_{ij} = f_{ij} \coloneqq f_i - f_j \in \mathcal{O}(U_i \cap U_j).$$

Tomando intersecciones $U_i \cap U_j \cap U_k$ de tres abiertos, $f_{ij} + f_{ik} + f_{ki} = 0$.

Buscamos $(g_i \in \mathcal{O}(U_i))$ tales que $f_{ij} = g_j - g_i$.

Entonces, $f = f_i + g_i \in \mathcal{M}(X)$ es solución global bien definida.

Notar que

$$\{(f_{ij})\mid f_{ij}+f_{jk}+f_{ki}=0\}=\operatorname{Ker}\delta_1=\check{\mathsf{Z}}^1(\mathcal{U},\,\mathcal{O}_{\mathsf{X}}),$$

$$\{(f_{ij})\mid f_{ij}=g_j-g_i\text{ para algún }g_i\in\mathcal{O}(U_i)\}=\operatorname{Im}\delta_0=\check{\mathsf{B}}^1(\mathcal{U},\,\mathcal{O}_{\mathsf{X}}).$$

El problema tiene solución si y solo si $[\delta \mu] = 0 \in \check{H}^1(\mathcal{U}, \mathcal{O}_\chi) = \frac{\check{Z}^1(\mathcal{U}, \mathcal{O}_\chi)}{\check{B}^1(\mathcal{U}, \mathcal{O}_\chi)}$.

El Teorema de Mittag-Leffler

Teorema

Una distribución de Mittag-Leffler μ tiene solución si y solo si su clase de cohomología es cerrada: $[\delta \mu] = 0 \in \check{H}^1(X, \mathcal{O}_X)$.

La obstrucción al problema está en la primera clase de cohomología:

Corolario

Si $\check{\mathsf{H}}^1(X,\,\mathcal{O}_X)$ = 0, todo problema de Mittag–Leffler admite solución.

Utilizando maquinaria pesada (dualidad de Serre), se puede probar:

Proposición

Para cada $\xi \in \check{H}^1(X, \mathcal{O}_X)$, existe una distribución M–L μ con $[\delta \mu] = \xi$.

Corolario

Si X es compacta, existen problemas de Mittag–Leffler sin solución.

El Teorema de Mittag-Leffler

Teorema

Una distribución de Mittag-Leffler μ tiene solución si y solo si su clase de cohomología es cerrada: $[\delta\mu] = 0 \in \check{H}^1(X, \mathcal{O}_X)$.

La obstrucción al problema está en la primera clase de cohomología:

Corolario

Si $\check{\mathsf{H}}^1(X,\,\mathcal{O}_X)$ = 0, todo problema de Mittag–Leffler admite solución.

Utilizando maquinaria pesada (dualidad de Serre), se puede probar:

Proposición

Para cada $\xi \in \check{H}^1(X, \mathcal{O}_X)$, existe una distribución M–L μ con $[\delta \mu] = \xi$.

Corolario

Si X es compacta, existen problemas de Mittag-Leffler sin solución.

¡Gracias por vuestra atención!

Bibliografía

Bibliografía

- [Agr22] M. Agrios. A Very Elementary Introduction to Sheaves. 2022. arXiv: 2202.01379 [math.AG].
- [GH94] P. Griffiths y J. Harris. *Principles of Algebraic Geometry*. Wiley, 1994. DOI: 10.1002/9781118032527.
- [Pen92] R. Penrose. **«On the Cohomology of Impossible Figures».** En: Leonardo 25.3/4 (1992), págs. 245-247. DOI: https://doi.org/10.2307/1575844.
- [Phi14] T. Phillips. *The Topology of Impossible Spaces*. AMS Feature Column. 2014. URL: https://www.ams.org/publicoutreach/feature-column/fc-2014-10.
- [Sch20] M. Schmidt. *Cohomological Obstructions for Mittag-Leffler Problems*. 2020. arXiv: 2010.11812 [math.CV].