$(a\in\{a_1,\ldots,a_n\})\Longleftrightarrow ((a=a_1)\vee\ldots\vee(a=a_n))$ מתקיים $\{a_1,\ldots,a_n\}$ מתקיים Σ^* אלפבית אזי Σ^* כל המחרוזות הסופיות באלפבית. $F=\{f_i:(\Sigma^*)^{n_i}\to\Sigma^*\mid i\in I\}$ המקיימת ויחידה $S\subseteq\Sigma^*$ המקיימת Σ

- $.B \subseteq S \bullet$
- .F סגורה להפעלת S
- $S\subseteq A$ אזי F סגורה להפעלת אוכן $B\subseteq A$ עבורה $A\subseteq \Sigma^*$ אזי $A\subseteq S$

אינדוקציה מבנית: יהי עולם $X_{B,F}\subseteq \Sigma^*$ אזי $F=\{f_i: (\Sigma^*)^{n_i} o \Sigma^* \mid i\in I\}$ ותהא $B\subseteq \Sigma^*$ מינימלית סגורה מבנית: יהי עולם $B\subseteq X_{B,F}$ מינימלית סגורה $B\subseteq X_{B,F}$ עבורה F

 $X_{B,F}=\bigcap\{Y\subseteq\Sigma^*\mid (B\subseteq Y)\land (F\text{ Derived Results})\land (F)\}$ אזי ותהא $F=\{f_i:(\Sigma^*)^{n_i}\to\Sigma^*\mid i\in I\}$ אזי ותהא $B\subseteq\Sigma^*$ ותהא $Y\subseteq\Sigma^*$ סגורה להפעלת Y עבורה $Y\subseteq\Sigma^*$ אזי $Y\subseteq\Sigma^*$ ותהא $Y\subseteq\Sigma^*$ ותהא $Y\subseteq\Sigma^*$

 $(p\left(0
ight)\wedge\left(\forall n\in\mathbb{N}.p\left(n
ight)\Longrightarrow p\left(n+1
ight)
ight)\Longrightarrow\left(\forall n\in\mathbb{N}.p\left(n
ight)$ אזי עענה על \mathbb{N} אזי עענה על אזי

על ידי הפעלת $a_i) \lor (a_i \in B)$ מתקיים $i \in [n]$ וכן לכל $a_n = a$ וכן עבורה a_1, \ldots, a_n אזי אזי $a \in X_{B,F}$ אזי $a_i \in X_{B,F}$ מתקבל על ידי הפעלת מ־ $\{a_1, \ldots, a_{i-1}\}$.

 $(a \in X_{B,F})$ אזי ($a \in X_{B,F}$) אזי (מיימת סדרת יצירה ל־ $a \in \Sigma^*$ יהי

 $X_{B,F} = igcup_{i=1}^\infty \left\{ a \in \Sigma^* \mid n \;$ מסקנה: $a \in \mathbb{Z}$ בעלת סדרת יצירה באורך

 $\Sigma = \{\wedge, ee, \neg, \Longrightarrow, (,)\} \cup \{p_i \mid i \in \mathbb{N}\}$:עולם תחשיב הפסוקים:

 $a\in \Sigma^*$ יהי תחשיב הפסוקים אזי ביטוי: יהי ביטוי

אזי $\omega_1,\omega_2\in\{p_i\mid i\in\mathbb{N}\}$ אזי הגדרה: יהיו

- $\wedge (\omega_1, \omega_2) = "(\omega_1 \wedge \omega_2)" \bullet$
- $.\lor (\omega_1,\omega_2) = "(\omega_1\lor\omega_2)"$ •
- $:\Longrightarrow (\omega_1,\omega_2) = "(\omega_1 \Longrightarrow \omega_2)" \bullet$
 - $.\neg (\omega_1) = "(\neg \omega_1)" \bullet$

.WFF = $X_{\{p_i|i\in\mathbb{N}\},\{\wedge,\vee,\neg,\Longrightarrow\}}$:פסוקי חוקי/פסוק היטב/ביטוי המוגדרות המוגדרות המוגדרות היטב/ביטוי היטב

 $p \in \{p_i \mid i \in \mathbb{N}\}$ עבורו $p \in \mathrm{WFF}$ פסוק אטומי/יסודי:

.(") ונגמר עם (") ונגמר עם (") ונגמר עם אזי ער $p \in \mathsf{WFF}$ יהי יהי עם אזי ער אזי ונגמר עם "

 $q_1(q_2 \notin \mathsf{WFF}$ אזי $q_1,q_2 \in \mathsf{WFF}$ מסקנה: יהיו

משפט הקריאה היחידה: יהי אזי מתקיים בדיוק אחד מהבאים משפט הקריאה היחידה: משפט משפט מעריאה משפט משפט משפט הקריאה מיחידה:

- . פסוק אטומי lpha
- $\alpha = (\beta \wedge \gamma)$ עבורם $\beta, \gamma \in \mathsf{WFF}$ •
- $lpha=(etaee\gamma)$ עבורם $eta,\gamma\in \mathrm{WFF}$ פיימים ויחידים •
- $.\alpha = (\beta \Longrightarrow \gamma)$ עבורם $\beta, \gamma \in \mathsf{WFF}$ יימים ויחידים
 - $\alpha = (\neg \beta)$ עבורו $\beta \in \text{WFF}$ •

מסקנה אלגוריתם לבדיקת חוקיות: יהי $\mathcal{O}\left(\operatorname{len}\left(\alpha\right)\right)$ ביטוי אזי קיים אלגוריתם לבדיקת חוקיות: יהי תחשיב הפסוקים ויהי $\alpha\in\Sigma^*$ ביטוי אזי קיים אלגוריתם לבדיקת חוקיות: יהי $\alpha\in\mathsf{WFF}$

סדר קדימות של קשרים: נגדיר סדר ביצוע פעולות

- .¬ .1
- $.\wedge, \vee .2$
 - \Longrightarrow .3

T, true :אמת:

.F, false :שקר

טבלת אמת: טבלה אשר מסכמת את אמיתו של פסוק בשינוי ערכם של פסוקי היסוד בו.

 $.TT_\circ$ אזי טבלת האמת של יהינה $(\land,\lor,\lnot,\Longrightarrow)$ הינה סימון: תהא

טענה: יהיו p,q פסוקים אזי

q	p	$q \lor p$
true	true	true
true	false	true
false	true	true
false	false	false

q	p	$q \Longrightarrow p$
true	true	true
true	false	false
false	true	true
false	false	true

q

true

false

 $\neg q$

false

true

q	p	$q \Longrightarrow p$
true	true	true
true	false	false
false	true	true
false	false	true

 $v:\{p_i\} o \{F,T\}$ השמה: פונקציה

המוגדרת $\overline{v}: \mathsf{WFF} o \{F,T\}$ השמה אזי פונקציה השמה לפסוק: תהא

 $q \wedge p$

true

false

false

false

- $\overline{v}(p) = v(p)$ יהי p פסוק אטומי אזי •
- $.\overline{v}(\neg \alpha) = TT_{\neg}(\overline{v}(\alpha))$ אזי פסוק אזי
- $.\overline{v}\left(eta\circ\gamma
 ight)=TT_{\circ}\left(\overline{v}\left(eta
 ight),\overline{v}\left(\gamma
 ight)
 ight)$ איי הייו eta פסוקים ותהא פעולה בינארית איי

 $ar{v}\left(lpha
ight)=T$ עבורה עבורה אזי $lpha\in\mathsf{WFF}$ עבורה עבורה תהא

 $v \models \alpha$ אזי א מסופקת על ידי מסופקת על ידי $\alpha \in \mathsf{WFF}$ השמה ותהא

 $v \not\models \alpha$ אזי v אזי אזי מסופקת על מסופקת על ידי א מימון: תהא $\alpha \in \mathsf{WFF}$

המוגדרת Var : WFF $ightarrow \mathcal{P}\left(\{p_i\}
ight)$ פונקציה פונקציה בפסוק:

- .Var $(p) = \{p\}$ יהי p פסוק אטומי אזי •
- . $Var(\neg \alpha) = Var(\alpha)$ אזי פסוק מיהי •
- . Var $(\beta \circ \gamma) =$ Var $(\beta) \cup$ Var (γ) אזי אזי פעולה פעולה פעולה פעולה β, γ יהיו •

 $.\overline{v_{1}}\left(lpha
ight)=\overline{v_{2}}\left(lpha
ight)$ אזי $\forall p\in\mathrm{Var}\left(lpha
ight).v_{1}\left(p
ight)=v_{2}\left(p
ight)$ עבורה $.TT_{lpha}$ אזי ניתן לייצג את lpha על ידי $lpha\in {
m WFF}$ מסקנה: יהי

 $TT = TT_{\alpha}$ עבורו $\alpha \in \mathsf{WFF}$ קיים שלמה פונקציונלית: עבורה $K \subseteq \{\land, \lor, \lnot, \Longrightarrow\}$ עבורו $\alpha \in \mathsf{WFF}$ קיים שלמה פונקציונלית: טענה: $\{\land, \lor, \neg, \Longrightarrow\}$ שלמה פונקציונלית.

q

true

true

false

false

p

true

false

true

false

. טענה: תהא K מערכת קשרים עבורה עבורה עבורה אזי $T,\wedge,\vee\in K$ מערכת קשרים עבורה

 $v \models \alpha$ עבורו קיימת השמה v המקיימת $\alpha \in \mathsf{WFF}$ פסוק פסוק

 $v \models \alpha$ מתקיים עבורו לכל השמה עבורו מחקיים $\alpha \in \mathsf{WFF}$

 $\perp = \alpha$ טאוטולוגיה אזי $\alpha \in \mathsf{WFF}$ טאוטולוגיה

 $\models (\neg \alpha)$ עבורו $\alpha \in \mathsf{WFF}$ שתירה: פסוק

 $.\overline{v}\left(lpha
ight)=\overline{v}\left(eta
ight)$ מתקיים שקולים: פסוקים $lpha,eta\in\mathsf{WFF}$ עבורם לכל השמה ע

 $\alpha \equiv \beta$ שקולים אזי $\alpha, \beta \in \mathsf{WFF}$ סימון: יהיו

 $.v \models lpha$ מתקיים $lpha \in \Gamma$ עבורה עבורה לכל $\Gamma \subseteq WFF$ מתקיים $lpha \in \Gamma$

 $v \models \Gamma$ אזי אוי השמה על ידי השמה קבוצה קבוצה קבוצה קבוצה קבוצה רהא

 $v \models \alpha$ מתקיים $v \models \Gamma$ מתקיים עבורו לכל השמה v המניימת $v \models \alpha$ מתקיים אזיי $\alpha \in \mathsf{WFF}$ מתקיים

 $\Gamma \models \alpha$ אזי מ־ר מכטית מים פסוק נובע מסוק ויהי ויהי $\Gamma \subseteq \mathsf{WFF}$ אזי $\Gamma \subseteq \mathsf{WFF}$

טענה: יהיו $\alpha, \beta, \gamma \in \mathsf{WFF}$ אזי

- $(\alpha \wedge \beta) \vee \gamma \equiv (\alpha \vee \gamma) \wedge (\beta \vee \gamma) \bullet$
- $(\alpha \vee \beta) \wedge \gamma \equiv (\alpha \wedge \gamma) \vee (\beta \wedge \gamma) \bullet$
 - $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \bullet$
 - $.(\alpha \vee \beta) \equiv (\beta \vee \alpha) \bullet$
 - $(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma) \bullet$
 - $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma) \bullet$
 - $\neg (\neg \alpha) \equiv \alpha \bullet$
 - $\neg (\alpha \land \beta) \equiv (\neg \alpha) \lor (\neg \beta) \bullet$
 - $\neg (\alpha \lor \beta) \equiv (\neg \alpha) \land (\neg \beta) \bullet$
 - $.(\alpha \Longrightarrow \beta) \equiv (\neg \alpha) \lor \beta \bullet$

```
\alpha(\varphi/p) = \neg \beta(\varphi/p) אזי \alpha = \neg \beta עבורו \beta \in \mathsf{WFF}
                                     \alpha\left(\varphi/p\right)=\beta\left(\varphi/p\right)\circ\gamma\left(\varphi/p\right) אזי \alpha=\beta\circ\gamma אם בינארית פעולה בינארית פעולה \beta,\gamma\in\mathsf{WFF} אם קיימים
                                                                                                                  lpha\left(arphi/p
ight)\in\mathsf{WFF} אזי אזי p\in\mathsf{Var}\left(lpha
ight) ויהי lpha,arphi\in\mathsf{WFF} איזי
                                                                             הצבת בסוקים בפסוק: יהיו p_1 \dots p_n ויהיו lpha, arphi_1 \dots arphi_n \in \mathsf{WFF} היהיו יהיו
                                                                                                                 lpha\left(arphi_{1}/p_{1}\ldotsarphi_{n}/p_{n}
ight)=arphi_{i} אזי i\in\left[n
ight] עבור lpha=p_{i}
                                                                                   lpha\left(arphi_{1}/p_{1}\ldotsarphi_{n}/p_{n}
ight)=lpha אז i\in\left[n
ight] לכל לכל lpha
eq p_{i} אם lpha פסוק אטומי וכן
                                                                   lpha \left( arphi_1/p_1 \ldots arphi_n/p_n 
ight) = 
eg eta \left( arphi_1/p_1 \ldots arphi_n/p_n 
ight) אם קיים eta \in \mathsf{WFF} עבורו lpha = \neg eta אזי lpha = \neg eta
lpha\left(arphi_1/p_1\ldotsarphi_n/p_n
ight)=eta\left(arphi_1/p_1\ldotsarphi_n/p_n
ight)\circ אם קיימים eta,\gamma\in שולה בינארית עבורה lpha=eta\circ\gamma אם קיימים eta,\gamma\in
                                                                                                                                                                             \gamma \left( \varphi_1/p_1 \ldots \varphi_n/p_n \right)
             \overline{v}\left(lpha\left(arphi/p
ight)
ight)=\overline{v'}\left(lpha
ight) אזי v'\left(p_{j}
ight)=\left\{egin{array}{ll} v(p_{j}) & i
eq j \ \overline{v}(arphi) & i=j \end{array}
ight. השמה נגדיר השמה v השמה v אומי ותהא v פסוק אטומי ותהא v השמה נגדיר השמה v האיז מענה: יהיו
מסקנה הקשר בין הצבות לעדכוני שמות: טענה: יהיו p_n יהיו יהיו \alpha, \varphi_1 \dots \varphi_n \in \mathsf{WFF} השמה נגדיר השמה עדיר השמה מסקנה הקשר בין הצבות השמה עדיר יהיו
       \overline{v}\left(lpha\left(arphi^{_1}/p_1\ldotsarphi^{_n}/p_n
ight)
ight)=\overline{v'}\left(lpha
ight) אזי v'\left(p_j
ight)=\left\{egin{array}{ll} v(p_j) & j\notin [n] \\ \overline{v}(arphi_j) & j\in [n] \end{array}
ight. טאוטולוגיה. lpha\left(arphi^{_1}/p_1\ldotsarphi^{_n}/p_n
ight) טאוטולוגיה יהי lpha\left(arphi^{_1}/p_1\ldotsarphi^{_n}/p_n
ight) ויהיו lpha\left(arphi^{_1}/p_1\ldotsarphi^{_n}/p_n
ight) טאוטולוגיה.
                                                                                                                   .NNF = X_{\{p_i|i\in\mathbb{N}\}\cup\{(\neg p_i)|i\in\mathbb{N}\},\{\wedge,\vee\}} :NNF הצורה הנורמלית
                                                                                                                             lpha\equiv eta עבורו eta\in \mathrm{NNF} משפט: יהי אזי קיים אזי קיים
                                                                                                                                                  .Conj =X_{\{p_i|i\in\mathbb{N}\}\cup\{(\neg p_i)|i\in\mathbb{N}\},\{\wedge\}} יימון:
                                                                                                                                                   .DNF =X_{	ext{Conj},\{ee{}ullet} :DNF הצורה הנורמלית
                                                                                                                              lpha\equiv eta עבורו eta\in {
m DNF} אזי קיים אזי lpha\in {
m WFF} משפט: יהי
                                                                                                                                                  Disj =X_{\{p_i|i\in\mathbb{N}\}\cup\{(\neg p_i)|i\in\mathbb{N}\},\{\lor\}} יימון:
                                                                                                                                                     .CNF = X_{\mathrm{Disj},\{\wedge\}} :CNF הצורה הנורמלית
                                                                                                                             lpha\equiv eta עבורו eta\in {
m CNF} משפט: יהי lpha\in {
m WFF} אזי קיים
                                A\subseteq N אזי איי איז איז איז איז הירכת הוכחה: יהי \Sigma אלפבית תהא N\subseteq \Sigma^* תהא אלפבית היכחה: יהי \Sigma אלפבית הוכחה
                                                                                                  N מערכת הוכחה אזי (\Sigma,N,A,F) מערכת הוכחה אזי
                                                                                                  A אזי אוכחה מערכת הוכחה (\Sigma, N, A, F) אקסיומת של מערכת הוכחה אזי
                                                                                                F מערכת הוכחה אזי (\Sigma,N,A,F) מערכת הוכחה אזי בללי היסק של מערכת הוכחה:
                                                                                                             .X_{A,F}אזי המשפטים: תרכת מערכת (\Sigma,N,A,F)תהא המשפטים: תהא
                                                                                                                      \vdash \varphi אזי משפט \varphi \in Nויהי הוכחה מערכת מערכת S משפט סימון: תהא
                                                  (\Sigma,N,A,F,\Gamma) אזי אזי \Gamma\subseteq N מערכת הוכחה מערכת (\Sigma,N,A,F) מערכת הנחות: תהא
                                                     X_{A\cup\Gamma,F} איז היכיחות בעלת הנחות מתרכת (\Sigma,N,A,F,\Gamma) מערכת היכיחות מהנחות איז קבוצת הטענות היכיחות מהנחות:
                                                 arphi מערכת איי סדרת יצירה אל ויהי arphi\in N יכיח איי סדרת יצירה של מערכת הוכחה ((\Sigma,N,A,F,\Gamma)
                                                                               \Gamma \vdash_{\mathbf{S}} \varphiיכיח אזי \varphi \in N הנחות ויהי הנכחה תהיינה מערכת מערכת מערכת הוכחה \Gamma \subseteq N
                                                                                                                                           טענה: תהא \varphi \in N ויהי הוכחה מערכת מערכת S
                                                   .\Gamma \vdash_S \varphi אזי \Delta \subseteq \Gamma ותהא A \subseteq C אזי \Delta \subseteq N מונוטוניות: תהא A \subseteq C עבורה A \subseteq C ותהא A \subseteq C אזי קיימת A \subseteq C טופית עבורה C \subseteq C עבורה C \subseteq C אזי קיימת C \subseteq C מתקיים C \subseteq C אזי C \subseteq C אזי C \subseteq C אזי C \subseteq C מתקיים C \subseteq C אזי C \subseteq C סימון: תהא C \subseteq C מערכת הוכחה ויהי C \subseteq C כלל היסק המקיים C \subseteq C אזי C \subseteq C אזי C \subseteq C סימון: תהא C \subseteq C מערכת הוכחה ויהי C \subseteq C כלל היסק המקיים C \subseteq C
                                                                         .MP : \frac{(\alpha\Longrightarrow\beta),\alpha}{\beta} אזי (\Sigma,N,A,F) מערכת הוכחה אזי (Ponens Modus).
                                                                                                                    מערכת ההוכחה של הילברט (HPC): נגדיר מערכת הוכחה כך
```

 $.\gamma \models \alpha$ מתקיים $lpha \in \mathsf{WFF}$ למה: יהי $\gamma \in \mathsf{WFF}$ סתירה אזי לכל

 $(\alpha \models \beta) \Longleftrightarrow (\models (\alpha \Longrightarrow \beta))$ אזי $\alpha, \beta \in \text{WFF}$ טענה: יהיו מענה: יהיו $\alpha, \varphi \in \text{WFF}$ אומי אזי $\alpha, \varphi \in \text{WFF}$ אטומי אזי

 $lpha\left(arphi/p
ight)=lpha$ אזי lpha
eq p אטומי וכן lpha פסוק אטומי וכן

 $\alpha (\varphi/p) = \varphi$ אז $\alpha = p$ אם •

 $\Gamma \models \beta$ אזי $\Gamma \cup \{\neg \alpha\} \models \beta$ וכן $\Gamma \cup \{\alpha\} \models \beta$ עבורם $\alpha, \beta \in \mathsf{WFF}$ אזי $\Gamma \subseteq \mathsf{WFF}$ אזי $\Gamma \models (\neg \alpha)$ אזי $\Gamma \models (\neg \alpha)$ וכן $\{\alpha\} \models \beta$ וכן $\{\alpha\} \models \beta$ אזי $\{\alpha, \beta \in \mathsf{WFF}\}$ טענה: תהא $\Gamma \models (\neg \alpha)$ ויהיו $\Gamma \subseteq \mathsf{WFF}$ אזי $\Gamma \models (\neg \alpha)$

- $\Sigma = \{p_i \mid i \in \mathbb{N}\} \cup \{\neg, \Longrightarrow, (,)\}$ אלפבית:
 - $N = X_{\{p_i | i \in \mathbb{N}\}, \{\neg, \Longrightarrow\}}$:נוסחאות:
- , $A_2=((\alpha\Longrightarrow(\beta\Longrightarrow\gamma))\Longrightarrow((\alpha\Longrightarrow\beta)\Longrightarrow(\alpha\Longrightarrow\gamma)))$, $A_1=(\alpha\Longrightarrow(\beta\Longrightarrow\alpha))$:שקטיומות: $A_3 = (((\neg \alpha) \Longrightarrow (\neg \beta)) \Longrightarrow (\beta \Longrightarrow \alpha))$
 - $F = \{MP\}$ כללי היסק:

אזי HPC־טענה: יהיו lpha,eta נוסחאות ב

- $. \vdash_{\mathsf{HPC}} (\alpha \Longrightarrow \alpha) \bullet$ $. \vdash_{\mathsf{HPC}} ((\neg \alpha) \Longrightarrow (\alpha \Longrightarrow \beta)) \bullet$

 $(\neg \alpha) \vdash_{\mathsf{HPC}} (\alpha \Longrightarrow \beta) \bullet$. $\{\alpha\} \vdash_{\mathsf{HPC}} (\neg \alpha) \vdash_{\mathsf{HPC}} (\neg \alpha)$ מסקנה: יהיו α, β נוסחאות ב־HPC מסקנה: יהיו

הערה: בקורס זה ניתן להניח כי הסימון ⊢ הוא במערכת HPC.

 $(\Gamma \vdash (\alpha \Longrightarrow \beta)) \Longleftrightarrow (\Gamma \cup \{\alpha\} \vdash \beta)$ אזי HPC משפט הדידוקציה: תהיינה העל HPC משפט הדידוקציה: תהיינה .Ded $(\Gamma)=\{lpha\in N\mid\Gamma\vdashlpha\}$ אזי איזי ותהא מערכת הוכחה S ותהא מערכת הוכחה סימון:

 \bot ((¬(¬ α)) $\Longrightarrow \alpha$) אזי HPC טענה: תהא α נוסחא מעל

 $.ig(\Gamma \models lphaig)\Longrightarrow (\Gamma \models lpha)$ מערכת הוכחה מעל S ולכל הנחות מעל הנחות מעל מערכת הוכחה מערכת הוכחה מערכת הוכחה אונה: למה: אקסיומות HPC הינן טאוטולוגיות.

משפט: HPC מערכת נאותה.

אזי HPC אות מעל $lpha,eta,\gamma$ נוחסאות מעל HPC אזי הנחות מעל

 $.((\Gamma \vdash (\alpha \Longrightarrow \beta)) \land (\Gamma \vdash (\beta \Longrightarrow \gamma))) \Longrightarrow (\Gamma \vdash (\alpha \Longrightarrow \gamma))$

אזי HPC משפט הדיכוטומיה: תהיינה lpha,eta ותהיינה HPC משפט הדיכוטומיה: תהיינה

 $((\Gamma \cup \{\alpha\} \vdash \beta) \land (\Gamma \cup \{\neg\alpha\} \vdash \beta)) \Longrightarrow (\Gamma \vdash \beta)$

 $\Gamma \not \models \alpha$ המקיימת S נוסחה מעל עבורה קיימת מעל קבוצת הנחות אזי Γ אזי אזי הוכחה מערכת תהא מערכת הנחות מעל אזי Γ α נוסחה מעל α נוסחה עקבית) אזי (Γ אזי מעל S הנחות ותהיינה ותהיינה תהא מערכת הוכחה אזי ותהיינה ותהיינה ותהיינה ותהיינה ותהיינה והיינה ועל הנחות מעל וותהיינה ותהיינה וותהיינה ו). $\left(\Gamma \not\vdash_S \alpha\right) \wedge \left(\Gamma \vdash_S \alpha\right).$ טענה: תהא מערכת הוכחה S ותהיינה Γ הנחות מעל S אזי ו Γ אזי ותהיינה Δ סופית מתקיים כי Δ עקבית).

קבוצת הנחות עקבית מעל עבורה לכל Δ קבוצת הנחות עקבית אזי Γ קבוצת הנחות עקבית מעלית: תהא מערכת הוכחה אזי Γ $\Gamma = \Delta$ מתקיים $\Gamma \subseteq \Delta$ ממקיימת S מעל

 $.lpha\in\Gamma$ אזי HPC אזי אוי HPC איזי מקסימלית מעל מקסימלית מקסימלית מעל אזי הנחות עקבית מקסימלית מעל

 $(\alpha \in \Gamma) \lor (\neg \alpha \in \Gamma)$ אזי HPC טענה: תהא חבוצת הנחות עקבית מקסימלית מעל HPC טענה: תהא קבוצת הנחות עקבית מקסימלית מעל

אזי HPC אוני α,β נוסחאות עקבית מעל אור אורר עקבית עקבית עקבית עקבית קבוצת הנחות עקבית מעל

 $(\Gamma \vdash (\alpha \Longrightarrow \beta)) \iff ((\neg \alpha \in \Gamma) \lor (\beta \in \Gamma))$

אזי Γ ספיקה. אזי Γ ספיקה אזי Γ ספיקה עלבה: תהא

 $\Gamma\subseteq \Delta$ טענה: תהא Γ קבוצת הנחות עקבית מעל HPC אזי קיימת קבוצת הנחות עקבית מקסימלית Γ

משפט: HPC מערכת שלמה.

 $(\Gamma \vdash \alpha) \Longleftrightarrow (\Gamma \models \alpha)$ אזי HPC מסקנה: תהיינה HPC מסקנה: תהיינה חנחות מעל