Giảng viên ra đề: (Ngày ra đề)	Người phê duyệt:	(Ngày duyệt đề)
(Chữ ký và Họ tên)	(Chữ ký, Chức vụ và Họ tên)	

(phần phía trên cần che đi khi in sao đề thi)

BK
TRƯỜNG ĐH BÁCH KHOA – ĐHQG-HCM
KHOA ĐIÊN – ĐIÊN TỬ

KIỂM TRA GIỮA KỲ		Học kỳ/năm học		1	2023-2024
		Ngày	Ngày thi 20/10		0/10/2023
Môn học KỸ T	HUẬT SỐ				
Mã môn học EE10	09				
Thời lượng 60 ph	nút	Mã đề			

Ghi chú: -Sinh viên KHÔNG được phép sử dụng tài liệu

PHẦN I – TRẮC NGHIỆM (3.0đ)

Câu 1: Mã Led 7 đoạn (cathod chung) nào có giá trị không chia hết cho 3:

- a. 1011111 b. 1111001 c. 1111011 d. 1011011 Câu 2: Số nhi phân theo mã Gray: 01100110 có giá tri là:
- a. 68
- b. 74
- c. 85
- d. 59
- Câu 3: Số BCD quá 3: **01011001B** có giá tri là:
- a. 59
- b. 26
- c. 84
- d. 56
- Câu 4: Bài toán cộng 2 số có dấu bù 2 nào bị tràn:
- a. 100100 + 010101
- b. 101010 + 101100
- c. 010101 + 111100
- d. 010010 + 001011

Câu 5: Cho F1(a,b,c,d)= $\Sigma(0,6,14)$. Biểu thức của hàm F2(a,b,c,d) có được từ F1 bằng cách lấy bù từng phần tử trong các tích chuẩn của biểu thức F1. Xác định hàm F2?

- a. $F2(a,b,c,d)=\Sigma(1,2,15)$
- b. $F2(a,b,c,d)=\Sigma(1,9,15)$
- c. $F2(a,b,c,d)=\Sigma(2,8,12)$
- d. $F2(a,b,c,d)=\Sigma(2,8,15)$

Câu 6: Có bao nhiều tích chuẩn xuất hiện trong biểu thức của hàm $f(x3,x2,x1,x0) = x2 + \overline{x1} x0$

- b. 10
- c. 12

<u>Câu 7</u>: Gọi **n1** là số lượng cổng NOR 2 ngõ vào dùng để thực hiện hàm $y1 = \overline{x1 + x2 + x3 + x4}$ và **n2** là số cổng NAND 2 ngõ vào để thực hiện hàm y2 = $\overline{x1} \ x2 \ x3 \ x4$. Xác định giá trị của **n1** và **n2**?

- a. n1 = n2 = 3
- b. n1 = n2 = 4
- c. n1 = n2 = 5
- d. n1 = n2 = 6

Câu 8: Cho các hàm Boole: $f1(x,y,z)=\Sigma(0,1,7)$, $f2(w,x,y)=\Sigma(4,5,7), f3(w,x,y,z)=f1(x,y,z).f2(w,x,y). Xác$ định biểu thức của hàm f3?

- a. $w(\bar{x}\bar{y} + xyz)$
- b. $\overline{w}(xy + \overline{x}\overline{y}z)$
- c. $w(\bar{x}+y)$
- d. $w(\bar{x} + yz)$

Câu 9: Cho sơ đồ mạch logic như hình sau:

- b. Q, R a. P, Q
- c. R, S d. P.S

Câu 10: Cho sơ đồ mạch logic như hình sau. Xác định mức logic tác động ở các ngõ vào a,b và c làm cho LED ở trạng thái sáng đèn.

- a. a = b = c = 1
- b. a = b = 1 và c = 0
- c. a = b = c = 0
- d. a = 0 và b = c = 1

<u>Câu 11:</u> Biểu diễn số thập phân 789 dưới dạng số BCD quá 3 là:

- a. 1010 1011 1100
- b. 0111 1000 1001
- c. 0011 0001 0101
- d. Không biểu diễn được

Câu 12: Cho sơ đồ mạch logic sau. Giả sử tín hiệu ở ngõ vào b bị treo ở mức logic 0. Hãy cho biết mối quan hệ nào sau đây là đúng?

- a. $y_1+y_2=0$
- b. $y_1y_2 = 1$
- c. $y_1y_2 = \overline{a \oplus b}$
- d. $y_1y_2 = a \oplus b$

<u>Câu 13:</u> Hàm Boole $y(S_1,S_0)$ có sơ đồ logic và bảng hoạt động như hình:

Xác định giá trị của hàm **y** tương ứng với tổ hợp của các biến trong bảng hoạt động?

- a. a = x', b = x, c = 1, d = 0
- b. a = 0, b = 1, c = x, d = x
- c. a = 1, b = 0, c = x', d = x
- d. a = x, b = 0, c = x', d = 1

<u>Câu 14:</u> Xét các phát biểu sau:

- a. Nếu $\overline{x1 \oplus x2} = x3$ thì $\overline{x2 \oplus x3} = x1$
- b. Nếu x1x2=x3 thì $\overline{(\overline{x1}\oplus\overline{x2})\overline{x3}}$ = x1 + x2 + x3

Hãy chọn kết luận đúng nhất về các phát biểu trên

- a. a đúng, b sai
- b. b đúng, a sai
- c. Cả 2 phát biểu đều đúng
- d. Cả 2 phát biểu đều sai

<u>Câu 15:</u> Xác định biểu thức Boole của các hàm $\mathbf{f_1}(\mathbf{a,b})$ và $\mathbf{f_2}(\mathbf{x,y})$ được thiết kế bởi sơ đồ mạch logic sau:

- a. $f_1(a,b)=0$, $f_2(x,y)=1$
- b. $f_1(a,b)=a\oplus b, f_2(x,y)=1$
- c. $f_1(a,b) = \overline{a \oplus b}$, $f_2(x,y) = x \oplus y$
- d. $f_1(a,b)=1$, $f_2(x,y)=0$

PHẦN II – TỰ LUẬN (7.0đ)

Câu 1: (1.0đ) Dùng tiên đề và định lý chứng minh đẳng thức sau (chỉ được biến đổi 1 vế)

$$a (ab' + e)' + c'(ab + e) + b'c'de = abe' + c'e$$

<u>Câu 2:</u> (2.0đ) Cho hàm F (A,B,C,D) có giản đồ xung như hình. Chú ý tại các tổ hợp các biến A,B,C,D không có trên hình thì hàm F có giá trị tùy định.

a. Tìm hàm F(A,B,C,D) theo dạng Π .

b. Rút gọn hàm F bằng bìa K theo dạng SOP (chú thích các liên kết)

F _A	B 0	0	1	1
0				
0				
1				
1				

<u>Câu 3:</u> (3.0đ) Cho hệ tổ hợp kiểm soát nhiệt độ của các tầng trong tòa nhà:

mode	$D_2 D_1 D_0$	$A_1 A_0$
0	0 0 0	
0	0 0 1	
0	0 1 0	
0	0 1 1	
0	1 0 0	
0	101	
0	1 1 0	
0	1 1 1	
1	0 0 0	
1	0 0 1	
1	0 1 0	
1	0 1 1	
1	100	
1	101	
1	1 1 0	
1	111	

Các tín hiệu D_2,D_1,D_0 là ngõ ra của mạch cảm biến ánh sáng : $D_i=1$ nếu cường độ sáng yếu, cần được điều chỉnh; ngược lại $D_i=0$.

Hệ hoạt động theo hai chế độ (mode):

Khi Mode = 0: Ngõ ra A_1A_0 xác định tầng cao nhất cần phải điều chỉnh cường độ ánh sáng. Nếu các tầng đều có cường độ sáng phù hợp, ngõ ra A_1A_0 mang giá trị tùy định.

Ví dụ: Nếu $D_2D_1D_0 = 110 \Rightarrow A_1A_0 = 10$, là mã nhị phân của chỉ số 2.

Khi Mode = 1: Ngõ ra A_1A_0 thể hiện số lượng tầng cần phải điều chỉnh cường độ sáng.

Ví dụ : Nếu $D_2D_1D_0 = 101 \rightarrow A_1A_0 = 10$, thể hiện có 2 tầng cần phải điều chỉnh nhiệt độ.

- a. Hoàn tất bảng chân trị và vẽ sơ đồ logic của hệ.
- b. Thực hiện lại hàm A1 dùng toàn cổng NOR.

<u>Câu 4:</u> (1.0đ) Dùng tiên đề và định lý xác định dạng Π của hàm F(x,y,z) có sơ đồ logic sau:

MSSV: Họ và tên SV: Trang 4/4

--HÉT--