CS 188 Introduction to Spring 2019 Artificial Intelligence

Written HW 4

Due: Monday 2/25/2019 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 3/4/2019 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). Do not reorder, split, combine, or add extra pages. The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	Vedaank
Last name	Tiwari
SID	3031842607
Collaborators	

Q1. Reinforcement Learning

Imagine an unknown game which has only two states $\{A, B\}$ and in each state the agent has two actions to choose from: $\{\text{Up, Down}\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

t	s_t	a_t	s_{t+1}	r_t
0	A	Down	В	2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

Unless specified otherwise, assume a discount factor $\gamma = 0.5$ and a learning rate $\alpha = 0.5$

(a) Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = _1 _ Q(B, Up) = _7/4$$

(b) In model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = \underline{\qquad 1 \qquad}, \quad \hat{T}(A, Up, B) = \underline{\qquad 0 \qquad}, \quad \hat{T}(B, Up, A) = \underline{\qquad 1/2 \qquad}, \quad \hat{T}(B, Up, B) = \underline{\qquad 1/2 \qquad}$$

$$\hat{R}(A, Up, A) = \underline{\qquad -1 \qquad}, \quad \hat{R}(A, Up, B) = \underline{\qquad n/a \qquad}, \quad \hat{R}(B, Up, A) = \underline{\qquad 3 \qquad}, \quad \hat{R}(B, Up, B) = \underline{\qquad 0 \qquad}$$

elf assessment	
your answer was correct, write "correct" above. Other	wise, write and explain the correct answer.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s, a, s')$	$\hat{R}(s, a, s')$
A	Up	A	1	10
A	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	A	1	-5
В	Down	В	1	8

(i) Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} . Hint: for any $x \in \mathbb{R}$, |x| < 1, we have $1 + x + x^2 + x^3 + x^4 + \cdots = 1/(1-x)$.

$$\hat{\pi}^*(A) = \underline{\quad \text{up} \quad}, \qquad \hat{\pi}^*(B) = \underline{\quad \text{down} \quad}, \qquad \hat{V}^*(A) = \underline{\quad 20 \quad}, \qquad \hat{V}^*(B) = \underline{\quad 16 \quad}.$$

- (ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.
 - \bigcirc the values found above, \hat{V}^*
 - \bigcirc the optimal values, V^*
 - \bigcirc neither \hat{V}^* nor V^*
 - \bigcirc not enough information to determine

Self assessment	
If your answer was correct, write "correct" above. Otherwise, write and explain	n the correct answer.

Q2. Policy Evaluation

In this question, you will be working in an MDP with states S, actions A, discount factor γ , transition function T, and reward function R.

We have some fixed policy $\pi: S \to A$, which returns an action $a = \pi(s)$ for each state $s \in S$. We want to learn the Q function $Q^{\pi}(s,a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act according to $\pi: Q^{\pi}(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma Q^{\pi}(s',\pi(s'))]$. The policy π will not change while running any of the algorithms below.

(;	a) Can we guarantee anything	about how the values C	0^{π} compare to the values C)* for an optimal policy π^*
10	ii Can we guarantee anvining	about now the values 6	compare to the values 6	ioi an opumai poncy n

- $\bigcirc Q^{\pi}(s,a) \leq Q^{*}(s,a)$ for all s,a
- $\bigcirc Q^{\pi}(s,a) = Q^*(s,a)$ for all s,a
- $\bigcirc Q^{\pi}(s,a) \geq Q^{*}(s,a)$ for all s,a
- O None of the above are guaranteed

Self assessment
If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

- (b) Suppose T and R are unknown. You will develop sample-based methods to estimate Q^{π} . You obtain a series of samples $(s_1, a_1, r_1), (s_2, a_2, r_2), \dots (s_T, a_T, r_T)$ from acting according to this policy (where $a_t = \pi(s_t)$, for all t).
 - (i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α .

Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms $Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi$ in your equation, as well as \sum and max with any index variables (i.e. you could write \max_a , or \sum_a and then use a somewhere else), but no other terms.

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha [\underline{\hspace{1cm}}$$

(ii) Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights w_1, \ldots, w_d and feature functions $f_1(s,a), \ldots, f_d(s,a)$.

To decouple this part from the previous part, use Q_{samp} for the value in the blank in part (i) (i.e. $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp}$).

Which of the following is the correct sample-based update for each w_i ?

- $\bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) Q_{samp}]$
- $\bigcirc w_i \leftarrow w_i \alpha[Q(s_t, a_t) Q_{samp}]$

$ \bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t) $ $ \bigcirc w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t) $ $ \bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) - Q_{samp}] w_i $ $ \bigcirc w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}] w_i $
(iii) The algorithms in the previous parts (part i and ii) are: □ model-based □ model-free
Self assessment
If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.