정보처리기사 실기 기출해설

정규화 Normalization	설계 과정: 개 논 물, 3단계로 나눔 <u>개념: ERD</u> 논리: 정규화, T/I 물리: 성능을 고려한 설계, Index, Clustering			
반정규화 De-Normalization	데이터베이스의 정규화 이후, <u>성능향상</u> 과 개발 편의성 등 <u>정규화 기법에 위배</u> 되는 수행 기법이다. // ex) 컬럼 중복			
이상현상 Anomaly	삽입이상, 삭제이상, 갱신이상			
XML eXtensible Markup Language	웹에서 구조화한 문서를 표현하고 전송하도록 설계한 마크업 언어			
JSON JavaScript Object Notation	javascript 객체 문법으로 구조화된 데이터를 표현하는 문자 기반의 표준 포맷 이름과 값의 쌍으로 이루어짐			
CSV Comma Separated Values	몇 가지 필드를 쉼표(,)로 구분한 텍스트 데이터 및 텍스트 파일			
YAML	사람이 쉽게 읽을 수 있는 데이터 직렬화 양식			
살충제 패러독스	동일한 케이스로 동일한 절차를 반복 수행하면 새로운 결함을 찾을 수 없다.			
오류-부재의 궤변	완벽한 소프트웨어라고 하더라도 <u>사용자</u> 가 만족하지 못하는 서비스는 가치가 없다.			
보안의 3요소	기밀성(아무나 보면 안 돼) 무결성(멋대로 바꾸면 안 돼) <u>가용성(</u> 언제든지 사용해야함)			
Smurf Attack	ICMP를 이용, IP를 주소를 속여서 반환되게 함			
Ping of Death	대규모 패킷			
Teardrop Attack	플러그 넘버, 조립 불가			
LAND Attack	같은 주소 루프			
SQL Injection	웹 프로그램에 <u>SQL구문을 삽입</u> 하여, <u>서버의 데이터베이스를 공격</u> 할 수 있는 공격방식			
XSS Cross Site Scripting	자바스크립트를 삽입하여 공격하는 방식이다.			
Rainbow Table Attack	해시 암호화를 매칭시켜서 복호화함 salt로 대응함			

모듈 결합도 유형 6 데스 제외 <u>공내</u>			
데이터 결합도 Data	모듈 간의 인터페이스로 <u>값</u> 이 전달되는 경우 a(10);		
스탬프 결합도 Stamp	모듈 간의 인터페이스로 <u>배열</u> 이나 오브젝트, 스트럭처 등이 전달되는 경우 a(int *pa);		
제어 결합도 Control	단순 처리할 대상인 값이 아니라 제어 요소가 전달되는 경우 a(x, y) if(x<0) return;		
외부 결합도 External	어떤 모듈에서 선언한 데이터를 외부의 다른 모듈에서 참조하는 경우		
공통 결합도 Common	전역 변수를 참조하고, 전역 변수를 갱신하는 식으로 상호 작용하는 경우		
내용 결합도 <u>Content</u>	다른 모듈 내부에 있에 있는 변수나 기능이 얽혀있음. ~> 스파게티 코드, 외계인 코드, 레거시 시스템		
모듈 응집도 유형 6	우논시절 통순기		
기능적 응집도 Functional	모듈 내부의 모든 기능이 <u>단일 목적</u> 을 위해 수행되는 경우		
순차적 응집도 <u>Sequential</u>	<u>모듈 내에서 활동</u> 으로 나온 <u>출력</u> 값을 다른 활동이 <u>사용</u> 할 경우		
통신적 응집도 Communication	<u>동일한 입력, 동일한 출력이 모여있는</u> 경우		
절차적 응집도 Procedural	모듈 안의 구성 요소들이 기능을 <u>순차적</u> 으로 수행할 경우		
시간적 응집도 <u>Temporal</u>	<u>특정 시간에 실행되어야 하는 활동</u> 들을 모아놓은 경우		
논리적 응집도 Logical	유사한 성격, 특정 형태 등 <u>비슷한 요소들</u> 을 한 모듈에서 처리한다.		
우연적 응집도 Coincidental	각 구성요소들이 연관이 없는 경우		
애플리케이션 성능지표 4	처리량 Throughput 응답 시간 Response Time <u>반환 시간</u> Turn Around Time, 자원 사용률 Resource Usage		
RIP	(응용 계층) UDP/IP상에서 동작하는 라우팅 프로토콜		
OSPF	(링크 계층) 최단 경로 우선 프로토콜		

트랜잭션 Transaction		<u>데이터베이스</u> 의 상태를 변화시키기 위해 수행하는 <u>작업의 단위</u> 이다.			
	원자성 Atomicity	모두 반영되거나 모두 반영되지 않아야 한다. Commit, Rollback의 영향을 받는다.			
A C	일관성 Consistency	일관성 있는 DB상태가 되어야 한다.			
I D	독립적 Isolation	하나의 트랜잭션 수행 중에는 다른 트랜잭션 접근x, 독립적			
	영속성 Durability	지속성이라고도 함. 트랜잭션이 완료되면 결과는 지속적으로 유지되어야 한다.			
	데이터 마이닝	대규모로 저장된 데이터 중에서, 가치 있는 유용한 정보를 찾아내는 것			
	통신 프로토콜 기본요소 3	구문 Syntax, 의미 Semantic, 타이밍 Timing			
Ī	프로세스 스케줄링	비선점 스케줄링: <u>FCFS, SJF, HRN</u> , 기한부, 우선순위 선점 스케줄링: <u>SRT</u> , RR, MLQ, MFQ			
	FCFS First Come First Service	비선점 중요도와 상관없이 선입선출 도착 시간대로 작업을 처리. (반환 시간 = 대기 시간 + 서비스 시간)			
SJF		비선점 서비스시간이 빠른 순서대로 실행, 기아현상이 생김 서비스 시간이 가장 짧은 순서대로 작업을 처리			
HRN		비선점 우선순위(높은 순) = (대기시간+서비스시간) / 서비스시간 ex) (대기시간2+서비스시간4/서비스시간4)=1.5			
SRT		선점 최단 잔여시간을 우선으로 하는 스케줄링 / sleep 평균 반환시간 = (서비스 시간+서비스 시간)서비스 개수			
암호화 알고리즘		대칭키(비밀키) 알고리즘: DES, AES 비대칭(공개키) 알고리즘: RSA, ElGama 해시 알고리즘: SHA, MD5			
두부이결다조 정규화		도메인이 원자값 부분 종속 제거 이행적 종속 제거 결정자가 후보키가 아닌 것 제거 다치 종속 제거 조인 종속 제거			
	UI 설계 원칙 4 직학유유	직관성: 누구나 쉽게 이해하고 사용할 수 있어야 한다. 유효성: 사용자의 <u>목적을 정확하게 달성</u> 하여야 한다. 학습성: 누구나 쉽게 배우고 익힐 수 있어야 한다. 유연성: 사용자의 요구사항을 최대한 수용하며, 오류를 최소화하여야 한다.			
	SELECT문	Select * From Table Where Dept: '전기' AND / OR Group by Dept having Oder by 속성 desc/asc			

OSI 7 참조 모델	응표세(프로그램) - 전 - 네 -	전송계층 - 인터넷계층 -	data head붙여서 head붙여서 head붙여서			
네트워크 계층		IP, ICMP, ARP, RARP(MAC->IP)				
프로토콜	MAC: 컴퓨터의 고유한 주소					
전송 계층 프로토콜	전송계층	TCP 전송계층 (3-ways handshaking, UDP 연결성 보장)				
응용 계층 프로토콜	응용계층	telnet FTP HTTP				
물리 계층 장비	허브, 리피터, Bit	허브, 리피터, Bit				
데이터링크 계층 장비	브릿지, Frame	브릿지, Frame				
네트워크 계층 장비	라우터, Packet 노드들을 거칠 때 라	라우터, Packet 노드들을 거칠 때 라우팅해주는 역할				
전송 계층	Packet <u>양 종단 간</u> 에 신뢰성 있는 정보를 전달한다. 오류 검출과 복구, 흐름 제어를 수행한다.					
데이터링크 계층	두 인접한 노드들 간	두 인접한 노드들 간에 신뢰성 있는 정보를 전달한다.				
나선형 모형 Spiral Model	계획 수립 -> <u>위험 분석</u> -> 공학적 개발 -> 고객 평가					
XP 의피존용담	의사소통, 단순성, 피드백, 용기, 존중 테스트와 우선 개발이 특징이다.					
SCRUM	프로젝트를 30일마다 매일 15분 회의한다.	프로젝트를 30일마다 동작 가능한 제품을 제공하는 스플린트로 분리 매일 15분 회의한다.				
SOAP		웹 서비스에서 XML을 기반으로 데이터를 전송하는 프로토콜. WSDL: 설명서(XML), UDDI에 등록				
형상 관리 절차	형상 식별 -> <u>형상 통</u>	형상 식별 -> <u>형상 통제</u> -> 형상 감사 -> 형상 기록				
버전 관리 도구	공유 폴더 방식: SCCS, RCS, PVCS 클라이언트/서버 방식: CVS, <u>SVN</u> , Clear Case 분산 저장소 방식: Git, GNU arch					
AJAX	비동기 방식 처리 기술 xml, json, yaml, csv					
	프로그램 실행 여	<u>부</u> 정적 테스	<u>LE</u>	동적 테스트		
에플리케이션 테스트 유형 분류	테스트 <u>기법</u>	화이트박스 테:	스트(내부)	블랙박스 테스트(외부)	
	테스트에 대한 <u>시</u>	<u>각</u> 검증 테스트(개발자)	확인 테스트(사용자)		
블랙박스 테스트 동원인비오경	동등 분할 기법: <u>입력 자료(값)에 초점</u> 을 맞춰 테스트 케이스를 만들어 검사 원인-효과 그래프 검사: <u>입력 데이터</u> 간의 관계와 <u>출력에 영향을 분석</u> , 효용성 높은 거 선택 비교 검사: 여러 버전의 프로그램에 동일한 자료 제공 오류 예측 검사: 과거 경험이나 테스터의 감각 경계값 분석: <u>입력 조건의 경계값</u> 을 테스트 케이스로 선정					
테스트 기반	명세 기반 테스트 구조 기반 테스트 경험 기반 테스트					

IPSec	네트워크 계층인 IP계층에서 암호화 기능			
IPSec의 헤더 프로토콜	AH: 인증, 무결성 ESP: 인증, 무결성, 기밀성 / IP페이로드를 암호화			
SSL, SHTTP	응용 계층에서 프로그램이 암호화			
goF 디자인 패턴 생구행	생성: 객체의 생성 구조: 클래스나 객체를 조합 행위 behavioral: 기능의 구체적인 알고리즘과 객체들의 상호작용			
NAT Network Address Translation 네트워크 주소 변환	<u>사설 IP주소를 공인 IP주소</u> 로 바꿔주는 <u>주소 변환</u> 기이다. 인터넷의 공인 IP주소를 절약할 수 있고, 공격자로부터 사설망을 보호할 수 있다.			
chmod 설정	User (owner) Group Other 4 2 1 4 2 1 4 2 1 R: read / W: write / X: execute chmod 751 a.txt Other R: read / W: write / X: execute			
RTO Recovery Time Objective 복구 시간 목표 RPO	서비스 중단 시점과 서비스 복원 시점 간, 허용되는 최대 지연 시간			
Recovery Point Objective 복구 시점 목표	재해 발생 이전의 상태로 돌아가기 위한 목표			
시멘틱 웹	의미론적인 웹, 문서 또는 어플리케이션의 의미에 맞게 구성된 차세대 지능형 웹이다.			
REST	자원을 이름으로 구분하여 해당 자원의 상태를 주고 받는 모든 것 POST GET PUT DELETE			
	REST아키텍처를 구현하는 웹 서비스: RESTful			
형상 통제	<u>형상 변경 요청을 검토하고 승인</u> 하여, 현재 베이스라인에 반영될 수 있도록 통제			
EAI Enterprise Application Integration 기업 응용 프로그램 통합 4	포인트 투 포인트 Point to Point: 미들웨어 두지 않고 통합 허브 & 스포크 Hub & Spoke: 단일 접점이 허브 시스템을 통해 전송, 중앙 집중적 방식 Message Bus(ESB): 미들웨어(버스)를 두고 어플리케이션을 연결, 확장성+대용량 처리 가능 하이브리드 Hybrid: 유연한 통합 작업, 병목현상 최소화			
코드 커버리지 Code Coverage (테스트 커버리지)	구문 커버리지: 모든 구문에 대해 한 번 이상 수행 조건 커버리지: 결정 포인트 내 모든 개별 조건식에 대해 수행 결정 커버리지: 결정 포인트 내 모든 분기문 조건/결정 커버리지: 결정포인트 T/F, 개별조건식 T/F 변경/조건 커버리지: 모든 결정 포인트 내 개별 조건식은 적어도 한 번 T, F 다중 조건 커버리지: 결정 포인트 내 모든 개별 조건식 100% 보장			

스키마	데이터베이스의 전체적인 구조와 제약조건에 대한 명세이다. 외부: 여러 형태로 정의, view 개념: 논리적 독립성 데이터베이스의 구조를 논리적으로 정의 내부: 물리적 독립성을 갖는다. 데이터 베이스의 물리적 저장 형태 기술				
관계 대수 연산자	순수 관계 연산자: SELECT(아톰): 릴레이션에서 조건을 만족하는 튜플을 구함 PROJECT(파이): 릴레이션에서 속성값을 구하는 연산, 원하는 속성만 추출 JOIN(보타이): 두 테이블로부터 조건이 맞는 관련된 튜플을 결합해 테이블 ex) <u>학생</u> □VISION(나누기): A DIVISION B 일반 집합 연산자: 합칩합(u), 교집합(n), 차집합(-), 카티션 프로덕트(x)				
라우팅 프로토콜 Routing Protocol	데이터 전송에 있어 최적의 경로를 판단하는 프로토콜이다.				
라우팅 프로토콜 영역에 따른 분류	IGP, Interior Gateway Protocol AS(Autonomous System) 내부 라우터 간 전송 RIP: 거리 벡터 프로토콜 / 15홉까지만 이동 OSPF: 링크 상태 프로토콜 / 많이 쓰임, 전체적 링크의 상태를 확인해 최적의 경로 EGP, Exterior Gateway Protocol BGP				
RIP Routing Information Protocol 라우팅 정보 프로토콜	<u>거리 벡터 프로토콜</u> (거리!) 경유할 가능성이 있는 라우터를 "홉" 수로 수치화해 경로를 설정한다. UDP				
OSPF Open Shortest Path First	<u>링크 상태 프로토콜</u> (링크!) 자율 시스템에서 동작(내부), 대기업망에서 널리 쓰임				
SOAP Simple Object Access Protocol 단순 객체 접근 프로토콜	다른 언어, 다른 플랫폼 애플리케이션이 통신할 수 있는 최초의 프로토콜, XML기반의 메시지 벨트인 컴플라이언스 제공: ACID 포함 UDDI, universal description, discovery and integration전역 비즈니스 레지스트리: <u>저장소</u> WSDL, web services Description Langauge 웹 서비스 기술 언어: 자료의 접근 형식을 적은 <u>설명서</u>				
생성자	생성자는 <u>객체 생성 시 자동으로 호출</u> 되는 메서드로 멤버를 <u>초기화하는 목적</u> 으로 주로 사용된다.				
구조 다이어그램 Structure Diagram	클래스 다이어그램: <u>클래스 간의 관계</u> 패키지 다이어그램 / 복합체 구조 다이어그램 객체 다이어그램 / 컴포넌트 다이어그램 / 배치 다이어그램				
클래스 관계 Class Relationship	일반화 Generalization 부모자식 상속관계 실체화 Realization 기능을 실제 기능으로 구현 의존 Dependency 클래스가 다른 클래스를 참조하는 것 연관 Association 다른 클래스의 참조를 가지는 필드 집합 Aggregation 전체 whole와 부분 part의 관계를 나타냄 합성 Composition 전체 whole와 부분 part의 강한 집합 관계를 나타냄				
행위 다이어그램 Behavior Diagram	유스케이스 다이어그램: 사용자 관점에서 시스템 행위를 표현 활동 다이어그램 / 콜라보레이션 다이어그램 / 상태 머신 다이어그램 순차 다이어그램 / 통신 다이어그램 / 상호작용 개요 다이어그램 / 타이밍 다이어그램				
유스케이스 다이어그램 Use Case Diagram	연관 관계Association상호작용실선포함 관계Include의존성, 포함관계 실행必점선 화살표 < <include>>확장 관계Extend확장성, 특정 상황에서 실행점선 화살표 <<extend>>일반화 관계Generalization상속 관계, 부모의 모든 관계, 포함+확장 관계를 만족해야실선 삼각 화살표</extend></include>				

테스트 오라클 Test Oracle	결과가 참인지 거짓인지 알기 위해, 미리 정의된 참 값을 정의해 대입해 테스트 한다. 참 오라클: 모두 검사 모두 검출(힘듦) 샘플링 오라클: 특정한 몇 개만 휴리스틱 오라클: 샘플링, 나머지 추정값
	일관성 검사 오라클: 변경사항 검사
SQL 예약어 min(), max() group by having 조건	SELECT 과목, min(점수) as 최소점수, max(점수) as 최대점수 FROM 성적 GROUP BY 과목 HAVING AVG(점수)>=90;
	SELECT 학생, count(*) as 학과별튜플수 FROM 성적 GROUP BY 과목 HAVING count(*) > 1;
회복기법	즉시 갱신 기법: 트랜잭션이 활동 상태에서 변경되는 내용을 그때그때 DB에 적용 Log기록을 토대로 회복 / Redo, Undo 둘 다 수행 지연 갱신 기법: 트랜잭션이 부분완료 될 때까지 지연, 완료 되면 Log내용을 토대로 DB에 적용 Undo없이 Redo만 수행 검사적 회복 기법: Checkpoint Recovery, 세이브 포인트 그림자 페이징 기법: 동일한 크기 단위인 페이지로 나누어 그림자 페이지를 보관한다.
듀얼스택 Dual Stack	IPv4/IPv6를 동시에 지원하며, 패킷을 주고 받을 수 있다.
터널링 Tunneling	두 IPv6 네트워크 간 터널을 이용한다. IPv4 패킷에 캡슐화 하여 전송한다.
주소변환 Address Translation	IPv4와 IPv6간 주소를 변환한다. Class A: 0으로 시작 Class B: 10으로 시작 Class C: 110으로 시작
Hadoop 하둡	오픈 소스 기반 <u>분산 컴퓨팅</u> 기술 현재 정형/비정형 빅 데이터 분석에 가장 선호되는 <u>솔루션</u>
Apache Sqoop 스쿱	Hadoop + SQL
NoSQL	비관계형(비정형) 데이터베이스, 대규모의 유연한 데이터 처리에 적합함
빅데이터 Big Data	데이터웨어 하우스: 기간 시스템에 축적된 데이터를 공통의 형식으로 변환하여 관리하는 DB 데이터 마트: 비교적 작은 규모의 데이터웨어 하우스 OLAP: 통계를 낼 수 있음. 이용자가 직접 검색, 분석 -> 분석형 앱 개념 Mashup
NAT Network Address Translation 네트워크 주소 변환	한정된 공인 IP를 여러 개의 내부 사설 IP로 변환하기 위해 사용하는 기술
데이터 모델 구성 요소3 구연제	구조: 데이터 구조 및 정적 성질을 표현 연산: 데이터베이스를 조작하는 도구 제약조건: 데이터의 논리적인 제약

	MAC: 권한 DAC: 권한(친구)	강제적 임의적			
접근 권한 접근 제어 방식	RBAC: 역할 기반 역할기반				
	벨 라파둘라: <u>기밀성</u> 을 강조 비바모델: <u>무결성</u> 을 강조				
 V-모델	단위 테스트: 정적 테스트, 동적테스트 통합 테스트: 상향식 테스트(드라이버), 하향식 테스트(스텁)				
단통시인	중합 테스트: 영향적 테스트(트타이머), 여향적 테스트(스립) 시스템 테스트: 기능 테스트(사용자요구), 비기능 테스트 인수 테스트: 알파 테스트, 베타 테스트				
		슈퍼키: 유일O, 최소X // 각 행을 유일하게 식별, 속성 집합, 유일성만 만족하면 슈퍼키가 될 수 있다.			
 정규화, 키	# # # # # # # # # # # # # # # # # # #				
	대체키: 유일O, 최소O // 후보키 - 기본키 = 대체키(나머지) 외래키: 다른 테이블의 기본키				
성보보안	인증 Authentication		하기 전, 사용자의 신원을 검증		
3A, AAA	권한 부여 Authoriz 계정 관리 Account		한 수준의 권한과 서비스를 허용한다. 나용 정보를 모아서 관리함.		
소프트웨어 생산성	<u>역</u> 공학 Reverse En	gineering: 자동화된 도구(CASE)의 논리적인 소프트웨어 정	도움으로 물리적 수준의 소프트웨어 정보	 보를	
향상	재공학 Re-enginee	ring: 자동화된 도구로, <u>현</u> 존호	<u>나는 시스템</u> 을 점검 또는 수정하는 프로서	네스	
3R	재사용 Reuse: 이미 개발되어, 기능+성능 및 품질을 인정받은 소프트웨어를 전부 또는 일부분을 다시 사용한다.				
1171.4	인공지능 AI: 컴퓨터가 인간의 지능 활동을 모방할 수 있도록 하는 것				
신기술	사물인터넷 IoT: 생활 속 사물들을 유무선 네트워크로 연결해 정보를 공유하는 환경				
RADIUS	분산 보안 시스템(인 대규모 원격 전속에	인증 프로토콜) 대한 인증용 서버를 지칭한다.			
		1 416 600 Male Model.			
로킹		데이터를 액세스하는 동안, 다른 . 록 하는 병행 제어 기법이다.	트랜잭션이 그 데이터 항목을		
Locking	병행제어 기법 중, 접근한 데이터에 대한 연산을 모두 마칠때까지 상호배제하는 기법				
패킷 교환 방식	데이터를 패킷으로 잘라서 보냄(<->메시지 교환 방식)				
Packet	<u>데이터그램 방식</u> :	UDP / 바로보냄! 3-way handshaking / 연결먼저!	,		
Switching	<u> 기이되면 6극</u> .	5-way nanusnaking / 현실현사:			
	UPDATE	SET	WHERE		
	DELETE	INTO 테이블명(속성, 속성) FROM	VALUES(값, 값) WHERE		
	JOIN	ON	WHERE ~		
	CREATE	INDEX	ON 테이블명(칼럼명)		
			ADD ~		
SQL	ALTER	TABLE	MODIFY ~		
SQL			RENAME COLUMN ~ TO ~		
	TRUNCATE	TABLE	테이블명		
	GRANT	권한 <u>ON</u> 테이블명	TO 계정명 IDENTIFIED BY 암호		
		기타 수요 태신부모	FROM 계정		
	REVOKE	권한 <u>ON</u> 테이블명	(CASCADE CONSTRAINTS 옵션 사용자도 취소)		
	SELECT count(*) GROUP BY 속성명				
			1 22 20 100		