

PoPL-03

CS40032: Principles of Programming Languages Module 03: λ -Calculus: Semantics

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur ppd@cse.iitkgp.ac.in

Jan 13. 18: 2021

Table of Contents

PoPL-03

Partha Prati Das

Semantic

Free and Boun Variables Substitution Reduction

 α -Reduction β -Reduction n-Reduction

 δ -Reduction
Order of Evaluation

Semantics

- Free and Bound Variables
- Substitution
- Reduction
 - \bullet α -Reduction
 - ullet β -Reduction
 - η -Reduction
 - δ -Reduction
- Order of Evaluation
 - Normal and Applicative Order

PoPL-03

Partha Pratii Das

Semantics

Free and Bound Variables Substitution Reduction lpha-Reduction eta-Reduction η -Reduction

 η -Reduction δ -Reduction Order of Evaluation

Semantics of λ -Expressions

Source:

 $\lambda \text{- Calculus Overview}$ Operational Semantics of Pure Functional Languages

Free and Bound Variable

PoPL-03

Free and Bound

- An occurrence of a variable x is said to be bound when it occurs in the body M of an abstraction $\lambda x.M$
- We say that λx is a binder whose scope is M
- An occurrence of x is *free* if it appears in a position where it is not bound by an enclosing abstraction on x
- For example,
 - Occurrences of x in xy and $\lambda y.xy$ are free
 - Occurrences of x in $\lambda x.x$ and $\lambda z.\lambda x.\lambda y.x(yz)$ are bound
 - In $(\lambda x.x)x$ the first occurrence of x is bound and the second is free
- In a loose parallel to C functions, consider the bound variables as *local* (including *parameters*) and *free* variables as global or non-local

Free and Bound Variable

PoPL-03

Partha Pratin Das

Semantics

Free and Bound Variables

Substitution

Reduction α -Reduction β -Reduction β -Reduction δ -Reduction

Order of Evaluat

Normal and

- In an abstraction, the variable named is referred to as the **bound** variable and the associated λ -expression is the **body** of the abstraction
- In an expression of the form:

$$\lambda v. e$$

occurrences of variable v in expression e are bound

- All occurrences of other variables are free
- Example:

$$((\lambda x. \lambda y. (xy))(yw))$$

- x, and y are **bound** in first part
- y, and w are **free** in second part

Free and Bound Variable: Other Contexts

PoPL-03

Partha Pratir Das

Semantio

Free and Bound Variables

Substitution

Reduction

α-Reductio

p-Reductio

δ-Reduction

Order of Evaluation

• $\int_0^1 x^2 dx$; $\int_0^1 A * x^2 dx$

• $\sum_{x=1}^{10} \frac{1}{x}$; $\sum_{x=1}^{10} K * \frac{1}{x}$

• $\lim_{x\to\infty} e^{-x}$; $\lim_{x\to\infty} (M+e^{-x})$

• int succ(int x) { return x + 1; }

• $\forall x \in \mathbb{R}, x > 1 \Rightarrow \frac{1}{x} < 1$

Free and Bound Variable

PoPL-03

Partha Pratii Das

Semantic

Free and Bound Variables

Substitution Reduction

 α -Reduction

 β -Reductio

 η -Reductio

 δ -Reduction

Order of Evaluatio

- Definition: An occurrence of a variable v in a λ -expression is called **bound** if it is within the scope of a λv ; otherwise it is called **free**
 - A variable may occur both bound and free in the same λ -expression for example, in λx . $y \lambda y$. y x the first occurrence of y is free and the other two are bound

Set of Free Variables

PoPL-03

Partha Pratir Das

Semantic

Free and Bound Variables Substitution

Reduction lpha-Reduction eta-Reduction

 η -Reduction δ -Reduction Order of Evaluation Normal and

• Definition: The set of free variables in an expression E, denoted by FV(E), is defined as follows:

- $FV(c) = \Phi$ for any constant c
- $FV(E1 E2) = FV(E1) \cup FV(E2)$
- A λ -expression E with no free variables $(FV(E) = \Phi)$ is called **closed**

8

Substitution

PoPL-03

Partha Pratii Das

Semantics
Free and Bou
Variables
Substitution

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

δ-Reduction
Order of Evaluation
Normal and
Applicative Order

• The notation $E[v \to E1]$ refers to the λ -expression obtained by replacing each free occurrence of the variable v in E by the λ -expression E1

- Naive Rules of Substitution:
 - $v[v \rightarrow E_1] = E_1$ for any variable v

 - $(\lambda v. E)[v \rightarrow E_1] = \lambda v. (E[v \rightarrow E_1])$
 - $(E_{rator} E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$
- Does it work?

$$(\lambda y.x)[x \to (\lambda z.zw)] = \lambda y.\lambda z.zw$$

YES!

Unsafe Substitution: Example

PoPL-03

Partha Prati Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

Consider:

$$(\lambda x. x)[x \rightarrow y] = \lambda x. (x[x \rightarrow y]) = \lambda x. y$$

conflicts with a basic understanding that the names of bound variables (that is, parameters) do not matter.

- The identity function is the same whether we write it as $\lambda x.x$ or $\lambda z.z$ or $\lambda fred.fred$.
- If these do not behave the same way under substitution they would not behave the same way under evaluation and that seems wrong
- The mistake is that the substitution should only apply to free variables and not bound ones
- Here x is bound in the term so we should not substitute it
- That seems to give us what we want:

$$(\lambda x.x)[x \to y] = \lambda x.x$$

10

Unsafe Substitution: Example

PoPL-03

Partha Pratir Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

Again, the naive substitution

$$(\lambda x. (mul \ y \ x))[y \rightarrow x] \Rightarrow (\lambda x. (mul \ x \ x))$$

is unsafe since the result represents a squaring operation whereas the original lambda expression does not

- A substitution is **valid** or **safe** if no free variable in E1 becomes bound as a result of the substitution $E[v \rightarrow E1]$
- An invalid substitution involves a variable capture or name clash
- Correct way would be:

$$(\lambda x. (mul\ y\ x))[y \to x] \Rightarrow (\lambda z. (mul\ y\ z))[y \to x]$$

 $(\lambda z. (mul\ y\ z))[y \to x] \Rightarrow (\lambda z. (mul\ x\ z))$

• Unsafe substitutions change in semantics!

Substitution

PoPL-03

Partha Pratir Das

Free and Bou Variables Substitution

Reduction α -Reduction β -Reduction

 ρ -Reduction η -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

- Definition: The **substitution** of an expression for a (free) variable in a λ -expression is denoted by $E[v \rightarrow E_1]$ and is defined as follows:
 - $v[v \rightarrow E_1] = E_1$ for any variable v

 - $(E_{rator} \ E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$
 - (\(\lambda v. E\)[v \rightarrow E_1] = (\(\lambda v. E\) // v is not free in E
 - ($\lambda x. \ E)[v \to E_1] = \lambda x. \ (E[v \to E_1]) \text{ when } x \neq v \text{ and } x \notin FV(E_1)$
 - ($\lambda x.\ E)[v \to E_1] = \lambda z.\ (E[x \to z][v \to E_1]) \text{ when } x \neq v \text{ and } x \in FV(E_1), \text{ where } z \neq v \text{ and } z \notin FV(E_1)$
- In part (g), the first substitution E[x → z] replaces the bound variable x that will capture the free x's in E₁ by an entirely new bound variable z. Then the intended substitution can be performed safely.

Substitution Example

 $\lambda z. (\lambda g. g (f v)) z$

PoPL-03

Partha Pratin Das

Semantics
Free and Bou

Variables Substitution

Reduction lpha-Reduction eta-Reduction η -Reduction

 δ -Reduction
Order of Evaluation
Normal and

```
 \begin{array}{lll} (\lambda y. \ (\lambda f. \ f \ x) \ y) \ [x \to f \ y] & \Rightarrow_{\alpha} \\ \lambda z. \ ((\lambda f. \ f \ x) \ z) \ [x \to f \ y] & \Rightarrow & \text{by g) since } y \in FV(f \ y) \\ \lambda z. \ ((\lambda f. \ f \ x) \ [x \to f \ y] \ z[x \to f \ y]) & \Rightarrow & \text{by d)} \\ \lambda z. \ ((\lambda f. \ f \ x) \ [x \to f \ y] \ z) & \Rightarrow & \text{by b)} \\ \lambda z. \ (\lambda g. \ (g \ x) \ [x \to f \ y]) \ z & \Rightarrow & \text{by g) since } f \in FV(f \ y) \\ \end{array}
```

 \Rightarrow

by d), b), and a)

Rules

- $x[v \rightarrow E_1] = x$ for any variable $x \neq v$
- $c[v \rightarrow E_1] = c$ for any constant c
- $(E_{rator} E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$
- $(\lambda v. E)[v \rightarrow E_1] = (\lambda v. E)$
- (1) $(\lambda x. E)[v \to E_1] = \lambda x. (E[v \to E_1])$ when $x \neq v$ and $x \notin FV(E_1)$
- (λx . E)[$v \to E_1$] = λz . ($E[x \to z][v \to E_1]$) when $x \neq v$ and $x \in FV(E_1)$, where $z \neq v$ and $z \notin FV(E_1)$

Reduction

PoPL-03

Partha Pratir Das

Free and Boun Variables Substitution Reduction \(\alpha\)-Reduction

 α -Reduction β -Reduction η -Reduction δ -Reduction Order of Evalua

- A λ -expression has as its meaning the λ -expression that results after all its function applications (combinations) are carried out
- ullet Evaluating a λ -expression is called **reduction**
- Four rules of reduction

ullet α -Reduction: Renaming rule

• β -Reduction: Substitution rule

• η -Reduction: Function Equality rule

 \bullet δ -Reduction: Pre-defined Constants' rule

14

α -Reduction

PoPL-03

Partha Pratii Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

• Definition: If v and w are variables and E is a λ -expression,

$$\lambda v. E \Rightarrow_{\alpha} \lambda w. E[v \rightarrow w]$$

provided that w does not occur at all in E, which makes the substitution $E[v \rightarrow w]$ safe

- The equivalence of expressions under α -reduction is what makes part g) of the definition of substitution correct
- ullet The lpha-reduction rule simply allows the changing of bound variables as long as there is no capture of a free variable occurrence
- The two sides of the rule can be thought of as variants of each other, both members of an equivalence class of congruent λ -expressions

α -Reduction

PoPL-03

Partha Pratin Das

Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction Order of Evaluation

• The last example contains two α -reductions:

$$\lambda y. (\lambda f. f x) y \Rightarrow_{\alpha} \lambda y. ((\lambda f. f x) y)[y \to z] \Rightarrow_{\alpha} \lambda z. (\lambda f. f x) z$$

 $\lambda z. (\lambda f. f x) z \Rightarrow_{\alpha} \lambda z. ((\lambda f. f x) z)[f \to g] \Rightarrow_{\alpha} \lambda z. (\lambda g. g x) z$

 Now that we have a justification of the substitution mechanism, the main simplification rule can be formally defined

β -Reduction

PoPL-03

Partha Pratir Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction β -Reduction δ -Reduction δ -Reduction Order of Evaluation Normal and

• Definition: If v is a variable and E and E_1 are λ -expressions,

$$(\lambda v. E) E_1 \Rightarrow_{\beta} E[v \rightarrow E_1]$$

provided that the substitution $E[v \rightarrow E_1]$ is carried out according to the rules for a safe substitution

• This β -reduction rule describes the function application rule in which the actual parameter or argument E_1 is passed to the function $(\lambda v. E)$ by substituting the argument for the formal parameter v in the function

β -Reduction

PoPL-03

Partha Pratir Das

Free and Bound Variables Substitution Reduction α -Reduction η -Reduction η -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

• Definition: If v is a variable and E and E_1 are λ -expressions,

$$(\lambda v. E) E_1 \Rightarrow_{\beta} E[v \rightarrow E_1]$$

provided that the substitution $E[v \rightarrow E_1]$ is carried out according to the rules for a safe substitution

- The left side $(\lambda v. E)$ E_1 of a β -reduction is called a β -redex derived from reduction expression and meaning an expression that can be β -reduced
- β -reduction is the main rule of evaluation in the λ -calculus
- ullet lpha-reduction makes the substitutions for variables valid

β -Reduction

PoPL-03

Partha Pratii Das

Semantics

Free and Bound Variables
Substitution
Reduction α -Reduction β -Reduction δ -Reduction
Order of Evaluation
Normal and
Applicative Orde

- The evaluation of a λ -expression consists of a series of β -reductions, possibly interspersed with α -reductions to change bound variables to avoid confusion
- Take $E \Rightarrow F$ to mean $E \Rightarrow_{\beta} F$ or $E \Rightarrow_{\alpha} F$ and let \Rightarrow^* be the reflexive and transitive closure of \Rightarrow
- Hence:
 - For any expression E, $E \Rightarrow^* E$ and
 - For any three expressions, $(E_1 \Rightarrow^* E_2 \text{ and } E_2 \Rightarrow^* E_3)$ implies $E_1 \Rightarrow^* E_3$
- The goal of evaluation in the λ -calculus is to reduce a λ -expression via \Rightarrow until it contains no more β -redexes
- To define an *equality* relation on λ -expressions, we also allow a β -reduction rule to work backward

β -Abstraction

PoPL-03

Partha Pratir Das

Free and Bound Variables Substitution Reduction C: Reduction β -Reduction η -Reduction δ -Reduction Normal and Applicative Order of Evaluation

• *Definition*: Reversing β -reduction produces the β -abstraction rule,

$$E[v \rightarrow E_1] \Rightarrow_{\beta} (\lambda v. E) E_1$$

and the two rules taken together give β -conversion, denoted by \Leftrightarrow_{β}

- Therefore $E \Leftrightarrow_{\beta} F$ if $E \Rightarrow_{\beta} F$ or $F \Rightarrow_{\beta} E$
- Take $E \Leftrightarrow F$ to mean $E \Leftrightarrow_{\beta} F$, $E \Rightarrow_{\alpha} F$ or $F \Rightarrow_{\alpha} E$ and let \Leftrightarrow^* be the reflexive and transitive closure of \Leftrightarrow
- Two λ-expressions E and F are equivalent or equal if E ⇔* F

β -Abstraction

PoPL-03

Partha Pratir Das

Semantic

Free and Bou Variables

Reduction

lpha-Reduct

 β -Reduction

n Poducti

δ Paduction

Order of Evaluati

Normal and Applicative Orde • Reductions (both α and β) are allowed to sub-expressions in a λ -expression by three rules:

η -Reduction

PoPL-03

Partha Pratin Das

Semantics
Free and Bound Variables
Substitution
Reduction α -Reduction β -Reduction η -Reduction

• Definition: If v is a variable and E is a λ -expression (denoting a function), and v has no free occurrence in E,

$$\lambda v. (E \ v) \Rightarrow_{\eta} E$$

• Example:

$$\lambda x. (sqr \ x) \Rightarrow_{\eta} sqr$$

 $\lambda x. (add 5 \ x) \Rightarrow_{\eta} (add 5)$

Note: $(add \ 5 \ x)$ abbreviates $(add \ 5)$

• Take $E \Leftrightarrow_{\eta} F$ to mean $E \Rightarrow_{\eta} F$ or $F \Rightarrow_{\eta} E$

η -Reduction

PoPL-03

Partha Pratir Das

Semantics
Free and Bound Variables
Substitution
Reduction α -Reduction β -Reduction δ -Reduction
Order of Evaluation
Normal and
Applicative Order

 The requirement that x should have no free occurrences in E is necessary to avoid an invalid reduction such as

$$\lambda x. (add x x) \Rightarrow (add x)$$

- This rule fails when E represents some constants; for example, if 5 is a predefined constant numeral, λx . (5 x) and 5 are not equivalent or even related
- η -reduction, justifies an extensional view of functions; that is, two functions are equal if they produce the same values when given the same arguments

$$\forall x, f(x) = g(x) \Rightarrow f = g$$

η -Reduction

PoPL-03

Partha Pratir Das

Semantics
Free and Bound
Variables
Substitution
Reduction
α-Reduction
β-Reduction
δ-Reduction
Order of Evaluation
Normal and
Annificative Order

• Extensionality Theorem: If $F_1 \times \Rightarrow^* E$ and $F_2 \times \Rightarrow^* E$ where $x \notin FV(F_1 F_2)$, then $F_1 \Leftrightarrow^* F_2$ where \Leftrightarrow^* includes η -reductions.

$$F_1 \Leftrightarrow_{\eta} \lambda x. (F_1 x) \Leftrightarrow_{\eta} \lambda x. E \Leftrightarrow_{\eta} \lambda x. (F_2 x) \Leftrightarrow_{\eta} F_2$$

ullet The rule is not strictly necessary for reducing λ -expressions and may cause problems in the presence of constants, but included for completeness

δ -Reduction

PoPL-03

Partha Pratir Das

Semantics
Free and Bound
Variables
Substitution
Reduction

α-Reduction
β-Reduction
η-Reduction
δ-Reduction
Order of Evaluation
Normal and
Applicative Order

• Definition: If the λ -calculus has predefined constants (that is, if it is not pure), rules associated with those predefined values and functions are called *delta* rules:

Example:

$$(add \ 3 \ 5) \Rightarrow_{\delta} 8$$

and

(not true)
$$\Rightarrow_{\delta}$$
 false

• Example:

```
 \begin{array}{l} \textit{twice} = \lambda f. \ \lambda x. \ f \ (f \ x) \\ \textit{twice} \ (\lambda n. \ (add \ n \ 1)) \ 5 \Rightarrow_{\beta} \\ (\lambda f. \ \lambda x. \ (f \ (f \ x)))(\lambda n. \ (add \ n \ 1)) \ 5 \Rightarrow_{\beta} \\ (\lambda x. \ ((\lambda n. \ (add \ n \ 1))((\lambda n. \ (add \ n \ 1)) \ 5) \Rightarrow_{\beta} \\ (\lambda n. \ (add \ n \ 1)) \ ((\lambda n. \ (add \ n \ 1)) \ 5) \ ) \Rightarrow_{\beta} \\ (add \ ((\lambda n. \ (add \ n \ 1)) \ 5) \ 1) \Rightarrow_{\beta} \\ (add \ (add \ 5 \ 1) \ 1) \Rightarrow_{\delta} 7 \end{array}
```


Evaluation Strategies

PoPL-03

Partha Pratii Das

Semantics
Free and Bound Variables
Substitution
Reduction

α-Reduction
β-Reduction
η-Reduction
δ-Reduction
Order of Evaluation
Normal and
Applicative Order

Call-by-Value (CBV)

- C / C++: the argument expression is evaluated, and the resulting value is bound to the corresponding variable in the function (frequently by copying the value into a new memory region)
- Call-by-Reference (CBR)
 - C++: a function receives an implicit reference to a variable used as argument, rather than a copy of its value
 - CBR may be simulated in languages that use CBV by making use of references, such as pointers (Call-by-Address or CBA)
- Call-by-Copy-Restore (CBCR) / Value-Result
 - Fortran (old): a special case of call by reference where the provided reference is unique to the caller (Copy-in-Copy-out)
- Call-by-Name (CBN)
 - C / C++ Macro: the arguments to a function are not evaluated before the function is called – rather, they are substituted directly into the function body
 - Lazy Evaluation
 - Call-by-Need: a memorized variant of CBN where, if the function argument is evaluated, that value is stored for subsequent uses

26

Evaluation Strategies

PoPL-03

Partha Pratii Das

Free and Bound Variables Substitution Reduction &-Reduction

 δ -Reduction

Order of Evaluation
Normal and
Applicative Order

```
#include <iostream>
using namespace std;
void f(int a, int b) { a++; b--; return; }
                                                        // CBV
void g(int& a, int& b) { a++; b--; return; }
                                                        // CBR
void h(int* pa, int* pb) { (*pa)++; (*pb)--; return; } // CBA
#define m_f(a, b) ( a * b )
                                                        // CBN
int main() {
    int x = 3, y = 4, z = 5;
   f(x, y);
    cout << x << " " << y << endl;
                                          // CBV = 3.4
   g(x, y);
    cout << x << " " << y << endl;
                                          // CBR = 4.3
   h(&x, &y);
    cout << x << " " << y << endl;
                                          // CBA = 5.2
   g(z, z);
    cout << z << endl;
                                          // CBR = 5, CBCR = 6 or 4
    cout << m_f(x + 1, y + 1) << endl; // CBN = x + y + 1 = 8
   return 0:
}
```


PoPL-03

Partha Prati Das

Semantics
Free and Boun
Variables
Substitution
Reduction

 β -Reduction η -Reduction

 δ -Reduction

Normal and

Definition: A λ -expression is in **normal form** if it contains no β -redexes (and no δ -rules in an applied λ calculus), so that it cannot be further reduced using the β -rule or the δ -rule.

An expression in normal form has no more function applications to evaluate.

PoPL-03

Partha Prati Das

Variables Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction δ -Reduction Order of Evaluation Normal and

Questions:

- **①** Can every λ -expression be reduced to a normal form?
- 2 Is there more than one way to reduce a particular λ -expression?
- If there is more than one reduction strategy, does each one lead to the same normal form expression?
- Is there a reduction strategy that will guarantee that a normal form expression will be produced?

PoPL-03

Partha Pratir Das

Semantic

Free and Bour Variables Substitution

Reduction α -Reduc

β-Reductio

 δ -Reduction

Order of Evaluatio

1. Can every λ -expression be reduced to a normal form?

No. Consider:

$$(\lambda x. x x)(\lambda x. x x) \Rightarrow$$

$$(\lambda x. \ x \ x)(\lambda x. \ x \ x) \Rightarrow (\lambda x. \ x \ x)(\lambda x. \ x \ x) \Rightarrow$$

$$(\lambda x. \ x \ x)(\lambda x. \ x \ x) =$$

• • •

PoPL-03

Partha Pratin Das

Variables Substitution Reduction α -Reduction β -Reduction η -Reduction δ -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

2. Is there more than one way to reduce a particular λ -expression?

Yes. Consider:

$$(\lambda x. \ \lambda y. \ (add \ y \ ((\lambda z. \ (mul \ x \ z)) \ 3))) \ 7 \ 5$$

Path 1: OUTERMOST

 $\begin{array}{l} (\lambda x. \ \lambda y. \ (\text{add} \ y \ ((\lambda z. \ (\text{mul} \ x \ z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} \\ (\lambda y. \ (\text{add} \ y \ ((\lambda z. \ (\text{mul} \ 7 \ z)) \ 3))) \ 5 \Rightarrow_{\beta} \\ (\text{add} \ 5 \ ((\lambda z. \ (\text{mul} \ 7 \ z)) \ 3)) \Rightarrow_{\beta} \ (\text{add} \ 5 \ (\text{mul} \ 7 \ 3)) \Rightarrow_{\delta} \ (\text{add} \ 5 \ 21) \Rightarrow_{\delta} \ 26 \end{array}$

Path 2: INNERMOST

 $(\lambda x. \ \lambda y. \ (add \ y((\lambda z. \ (mul \ x \ z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. \ \lambda y. \ (add \ y \ (mul \ x \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. \ (add \ 5 \ (mul \ x \ 3))) \ 7 \Rightarrow_{\beta} (add \ 5 \ (mul \ 7 \ 3)) \Rightarrow_{\delta} (add \ 5 \ 21) \Rightarrow_{\delta} 26$

Path 3: MIXED

 $(\lambda x. \ \lambda y. \ (add \ y((\lambda z. \ (mul \ x \ z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. \ \lambda y. \ (add \ y \ (mul \ x \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda y. \ (add \ y \ (mul \ 7 \ 3))) \ 5 \Rightarrow_{\delta} (\lambda y. \ (add \ y \ 21)) \ 5 \Rightarrow_{\beta} (add \ 5 \ 21) \Rightarrow_{\delta} 26$

PoPL-03

Partha Pratir Das

Free and Bour Variables Substitution Reduction \alpha - Reduction

eta-Reduction η -Reduction δ -Reduction

Order of Evaluation

3. If there is more than one reduction strategy, does each one lead to the same normal form expression?

No. Consider:

$$(\lambda y. 5)((\lambda x. \times x)(\lambda x. \times x))$$

Path 1:

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow 5$$

Path 2:

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow (\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow$$

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow$$

...

PoPL-03

Partha Pratir Das

Free and Bound Variables Substitution Reduction C:Reduction β -Reduction η -Reduction δ -Reduction δ -Reduction Normal and Applicative Order of

4. Is there a reduction strategy that will guarantee that a normal form expression will be produced?

Mathematician Curry proved that if an expression has a normal form, then it can be found by leftmost reduction.

A normal order reduction can have either of the following outcomes:

- It reaches a unique (up to α -conversion) normal form λ -expression
- 2 It never terminates

Unfortunately, there is no algorithmic way to determine for an arbitrary λ -expression which of these two outcomes will occur

Reduction Strategies: Normal and Applicative Order

PoPL-03

Partha Pratir Das

Semantics
Free and Bound Variables
Substitution
Reduction
α:Reduction
β-Reduction
η-Reduction
η-Reduction
Order of Evaluation
Normal and
Applicative Order

Two important orders of rewriting:

- **Normal Order** rewrite the outermost (leftmost) occurrence of a function application.
 - This is equivalent to call by name.
- **Applicative Order** rewrite the innermost (leftmost) occurrence of a function application first.
 - This is equivalent to call by value.

Normal order evaluation always gives the same results as lazy evaluation, but may end up evaluating an expression more times.

PoPL-03

Partha Pratir Das

Semantio

Free and Boun
Variables
Substitution
Reduction

\alpha - Reduction
\begin{align*}
\begin{align*}
\alpha - Reduction
\end{align*}

lpha-Reduction eta-Reduction η -Reduction

δ-Reduction
Order of Evaluation
Normal and
Applicative Order

Example:

double
$$x = x + x$$

average $x y = (x + y)/2$

Using prefix notation:

$$double x = plus x x$$

 $average x y = divide (plus x y) 2$

Evaluate:

PoPL-03

Partha Pratir Das

Semantics

Free and Bound Variables

Substitution

Reduction α -Reduction β -Reduction β -Reduction δ -Reduction

Order of Evaluation

Normal and

Applicative Order

Evaluate:

double (average 2 4)

- Using normal order of evaluation: double (average 2 4) \Rightarrow plus (average 2 4) (average 2 4) \Rightarrow plus (divide (plus 2 4) 2) (average 2 4) \Rightarrow plus (divide 6 2) (average 2 4) \Rightarrow plus 3 (average 2 4) \Rightarrow plus 3 (divide (plus 2 4) 2) \Rightarrow plus 3 (divide 6 2) \Rightarrow plus 3 3 \Rightarrow 6
 - Notice that (average 2 4) was evaluated twice ... lazy evaluation would cache the results of the first evaluation
- Using applicative order of evaluation:
 double (average 2 4) ⇒ double (divide (plus 2 4) 2) ⇒
 double (divide 6 2) ⇒ double 3 ⇒ plus 3 3 ⇒ 6

PoPL-03

Partha Pratir Das

Nemantics
Free and Bound
Variables
Substitution
Reduction α -Reduction η -Reduction δ -Reduction δ -Reduction
Order of Evaluation
Normal and
Applicative Order

Consider:

$$my_{if}$$
 True $x y = x$
 my_{if} False $x y = y$

Evaluate:

```
my_if (less 3 4) (plus 5 5) (divide 1 0)
```

- Using normal order of evaluation: my_if (less 3 4) (plus 5 5) (divide 1 0) \Rightarrow my_if True (plus 5 5) (divide 1 0) \Rightarrow (plus 5 5) \Rightarrow 10
- Using applicative order of evaluation:
 my_if (less 3 4) (plus 5 5) (divide 1 0) ⇒
 my_if True (plus 5 5) (divide 1 0) ⇒
 my_if True 10 (divide 1 0) ⇒
 DIVIDE BY ZERO ERROR

Properties of Order of Evaluation: Strictness

PoPL-03

Partha Pratii Das

Semantics
Free and Bound Variables
Substitution
Reduction
α-Reduction
η-Reduction
δ-Reduction
δ-Reduction
δ-Reduction
Λοrder of Evaluation
Applicative Order

Two important properties of evaluation order:

- If there is any evaluation order that will terminate and that will not generate an error, normal order evaluation will terminate and will not generate an error.
- ANY evaluation order that terminates without error will give the same result as any other evaluation order that terminates without error.

Definition: A function f is *strict* in an argument if that argument is always evaluated whenever an application of f is evaluated.

If a function is strict in an argument, we can safely evaluate the argument first if we need the value of applying the function.

Lazy Evaluation and Strictness Analysis

PoPL-03

Partha Prati Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction δ -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

We can use lazy evaluation on an ad-hoc basis (e.g. for *if*), for all arguments.

For all arguments, for some implementations of functional languages we can improve efficiency using strictness analysis.

plus a b is strict in both arguments if x y z is strict in x, but not in y and z

We can do some analysis and sometimes decide if a user-defined function is strict in some of its arguments:

Lazy Evaluation and Strictness Analysis

PoPL-03

Partha Pratii Das

Free and Bound Variables Substitution Reduction α -Reduction β -Reduction δ -Reduction δ -Reduction Order of Evaluation Normal and Applicative Order

Examples:

- double x is strict in x
- squid $n \times = if \ n = 0 \ then \ x + 1 \ else \ x n$ is strict in n and x
- $crab \ n \ x = if \ n = 0 \ then \ x + 1 \ else \ n$ is strict in n but not x

If a function is strict in an argument x, it is correct to pass x by value, even with normal order evaluation semantics.

It is not always decidable whether a function is strict in an argument – if we do not know, pass using lazy evaluation.

Reduction Strategies: Normal and Applicative Order

PoPL-03

Partha Pratii Das

Semantics
Free and Bound
Variables
Substitution
Reduction
α-Reduction
η-Reduction
η-Reduction
δ-Reduction
Order of Evaluation
Normal and
Applicative Order

Definition:

A **normal order reduction** always reduces the *leftmost* outermost β -redex (or δ -redex) first.

An **applicative order reduction** always reduces the *leftmost innermost* β -redex (or δ -redex) first.

Definition:

For any λ -expression of the form $E = ((\lambda x. B) A)$, we say that β -redex E is outside any β -redex that occurs in B or A and that these are inside E.

A β -redex in a λ -expression is outermost if there is no β -redex outside of it, and it is innermost if there is no β -redex inside of it.

Use AST for detection

AST of λ -expression

PoPL-03

Partha Prati Das

Semantic

Eron and Ro

Substitution

Substituti

Reduction

α-Redu

p recour

 η -Reduct

 δ -Reduction

Normal and Applicative Order

 β -redexes in ((($\lambda x. \lambda y. (add \times y)$) (($\lambda z. (succ z)$) 5)) (($\lambda w. (sqr w)$) 7))

PoPL-03

Partha Pratir Das

- Applicative Order (leftmost innermost) $((\lambda n. (add 5 n)) 8) \Rightarrow ((\lambda n. (add5 n)) 8) \Rightarrow -add5 : N \rightarrow N \text{ is curried } (add5 8) \Rightarrow 13$
 - Eager Evaluation
 - Call-by-Value (CBV)
 - Curried functions $(f \times y \times z)$ use eager reduction
- Normal Order (leftmost outermost) $((\lambda n. (add 5 n)) 8) \Rightarrow (add 5 8) \Rightarrow 13$
 - Lazy Evaluation
 - Call-by-Name (CBN)
 - Function f(x, y, z) use lazy reduction

PoPL-03

Partha Pratir Das

Semantic

Free and Bour

Variables

Substitution

Reduction

€ Reduc

β-Reduct

7/-Reduction

∂-Reduction

Normal and Applicative Order