Stat 4202: Mathematical Statistics II

Homework 2

Spring 2025

Question 1. Show that the estimator of $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$ is consistent.

Question 2. To show that an estimator can be consistent without being unbiased or even asymptotically unbiased, consider the following estimation procedure: To estimate the mean of a population with the finite variance σ^2 , we first take a random sample of size n. Then we randomly draw one of n slips of paper numbered from 1 through n, and if the number we draw is 2, 3, ..., or n, we use as our estimator the mean of the random sample; otherwise, we use the estimate n^2 . Show that this estimation procedure is

- (a) consistent;
- (b) neither unbiased nor asymptotically unbiased;

Question 3. If $X_1, X_2, ..., X_n$ constitute a random sample of size n from an exponential population, show that \overline{X} is a sufficient estimator of the parameter θ .

Question 4. If X_1 and X_2 constitute a random sample of size n=2 from a Poisson population, show that the mean of the sample is a sufficient estimator of the parameter of λ .

Question 5. Show that the mean of a random sample of size n from an exponential population is a minimum variance unbiased estimator of the parameter θ .

Question 6. Given a random sample of size n from a uniform population with $\alpha = 0$, find an estimator of β by the method of moments.

Question 7. If X_1, X_2, \ldots, X_n constitute a random sampmle of size n from a population given by

$$g(x; \theta, \delta) = \begin{cases} \frac{1}{\theta} \cdot e^{-\frac{x-\delta}{\theta}} & \text{for } x > \delta \\ 0 & \text{elsewhere} \end{cases}$$

Question 8. Given a random sample of size n from a continous uniform population , use the method of moments to find formulas for the parameters α , and beta.