Министерство образования и науки РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Прикладная математика и информатика

Кафедра прикладной математики и искусственного интеллекта

Теоретические модели вычисления

Домашнее задание №1 Регулярные языки и конечные автоматы

Преподаватель: Ивлиев С.А. Студент: Соколова А.С.

Содержание

1	Задание №1. Построить конечный автомат, распознающий языык.	3
2	Задание №2. Построить конечный автомат, используя прямое произведение.	6
3	Задание №3. Построить минимальные ДКА по регулярному выражению.	14
4	Задание №4.Определить является ли язык регулярным или нет.	23

1 Задание №1. Построить конечный автомат, распознающий языык.

1.
$$L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$$

2. $L = \{w \in \{a, b\}^* \mid |w|_a \le 2, |w|_b \ge 2\}$

У нас может быть 1 или 2 буквы а и бесконечное число букв b, начиная с двух

Примерные варианты: bb..aa; bab..ba; bab..ab; ab..ab; ab..bb; и т д

Проверим через прямое произведение

Построим сначала автомат: $L_{11} = \{w \in \{a, b\} \mid |w|_a \le 2\}$

Потом автомат:

$$L_{12} = \{ w \in \{a, b\} \mid |w|_b \ge 2 \}$$

Найдем ппрямое произведение $L_{11} \cap L_{12}$. где $A_{11} = (\sum_1, Q_1, s_1, T_1, \delta_1)$ и $A_{12} = (\sum_2, Q_2, s_2, T_2, \delta_2)$:

$$\begin{split} \sum &= \sum_1 \bigcup \sum_2 = \{a,b\} \\ Q &= Q_1 \times Q_2 = \{q0p0,q0p1,q0p2,q1p0,q1p1,q1p2,q2p0,q2p1,q2p2\} \\ s &= < s_1, s_2 >= q0p0 \\ T &= T_1 \times T_2 = q2p2,q1p2,q0p2 \\ \delta(< q1,q2>,c) &= < \delta_1(q_1,c),\delta_2(q_2,c) > \\ \text{Распишем все } \delta \\ \delta(q0p0,a) &= q1p0 \quad \delta(q0p0,b) = q0p1 \\ \delta(q0p1,a) &= q1p1 \quad \delta(q0p1,b) = q0p2 \\ \delta(q0p2,a) &= q1p2 \quad \delta(q0p2,b) = q0p2 \\ \delta(q1p0,a) &= q2p0 \quad \delta(q1p0,b) = q1p1 \\ \delta(q1p1,a) &= q2p1 \quad \delta(q1p1,b) = q1p2 \\ \delta(q1p2,a) &= q2p2 \quad \delta(q1p2,b) = q1p2 \\ \delta(q2p0,a) &= - \quad \delta(q2p0,b) = q2p1 \\ \delta(q2p1,a) &= - \quad \delta(q2p1,b) = q2p2 \\ \delta(q2p2,a) &= - \quad \delta(q2p2,b) = q2p2 \end{split}$$

Построем автомат:

Заметим, что автоматы не совпадают. Ответом является второй автомат, построенный через прямое произведение

- 3. $L=\{w\in\{a,b\}^*\mid |w|_a\neq |w|_b\}$ $|w|_a\neq |w|_b$ условно можно заменить на $|w|_a>|w|_b$ ог $|w|_a<|w|_b$ В случае мы не сможем построить конечный автомат
- 4. $L = \{w \in \{a,b\}^* \mid ww = www\}$ Здесь могут быть только пустые слова

2 Задание №2. Построить конечный автомат, используя прямое произведение.

1. $L_1 = \{w \in \{a, b\} \mid |w|_a \ge 2 \land |w|_b \ge 2\}$ Построим сначала автомат: $L_{11} = \{w \in \{a, b\} \mid |w|_a \ge 2\}$

Потом автомат: $L_{12} = \{w \in \{a, b\} \mid |w|_b \ge 2\}$

Найдем ппрямое произведение $L_{11}\cap L_{12}$. где $A_{11}=(\sum_1,Q_1,s_1,T_1,\delta_1)$ и $A_{12}=(\sum_2,Q_2,s_2,T_2,\delta_2)$:

$$\begin{split} \sum &= \sum_1 \bigcup \sum_2 = \{a,b\} \\ Q &= Q_1 \times Q_2 = \{q0p0,q0p1,q0p2,q1p0,q1p1,q1p2,q2p0,q2p1,q2p2\} \\ s &= < s_1, s_2 >= q0p0 \\ T &= T_1 \times T_2 = q2p2 \\ \delta(< q1,q2>,c) = < \delta_1(q_1,c), \delta_2(q_2,c) > \\ \text{Распишем все } \delta \\ \delta(q0p0,a) &= q1p0 \quad \delta(q0p0,b) = q0p1 \\ \delta(q0p1,a) &= q1p1 \quad \delta(q0p1,b) = q0p2 \\ \delta(q0p2,a) &= q1p2 \quad \delta(q0p2,b) = q0p2 \\ \delta(q1p0,a) &= q2p0 \quad \delta(q1p0,b) = q1p1 \\ \delta(q1p1,a) &= q2p1 \quad \delta(q1p1,b) = q1p2 \end{split}$$

$$\delta(q1p2,a)=q2p2$$
 $\delta(q1p2,b)=q1p2$ $\delta(q2p0,a)=q2p0$ $\delta(q2p0,b)=q2p1$ $\delta(q2p1,a)=q2p1$ $\delta(q2p1,b)=q2p2$ $\delta(q2p2,a)=q2p2$ $\delta(q2p2,b)=q2p2$ Построим автомат:

2.
$$L_2 = \{w \in \{a, b\}^* \mid |w| \ge 3 \land |w|$$
 нечётное $\}$

Построим сначала автомат: $L_{11} = \{w \in \{a,b\}^* | |w| \geq 3 \}$

Потом автомат: $L_{12} = \{w \in \{a,b\}^* | |w| \text{ нечётное }\}$ Количество вхождений а или b в слово w должно быть нечетным.

Найдем прямое произведение
$$L_{11} \cap L_{12}$$
.
где $A_{11} = (\sum_1, Q_1, s_1, T_1, \delta_1)$ и $A_{12} = (\sum_2, Q_2, s_2, T_2, \delta_2)$:

$$\begin{split} \sum &= \sum_1 \bigcup \sum_2 = \{a,b\} \\ Q &= Q_1 \times Q_2 = \{q0p0,q0p1,q1p0,q1p1,q2p0,q2p1,q3p0,q3p1\} \\ s &= < s_1, s_2 >= q0p0 \\ T &= T_1 \times T_2 = q3p1 \\ \delta(< q1,q2>,c) &= < \delta_1(q_1,c), \delta_2(q_2,c) > \\ \text{Распишем все } \delta \\ \delta(q0p0,a) &= q1p1 \quad \delta(q0p0,b) = q1p1 \\ \delta(q0p1,a) &= q1p0 \quad \delta(q0p1,b) = q1p0 \\ \delta(q1p0,a) &= q2p1 \quad \delta(q1p0,b) = q2p1 \\ \delta(q1p1,a) &= q2p0 \quad \delta(q1p1,b) = q2p0 \\ \delta(q2p0,a) &= q3p1 \quad \delta(q2p0,b) = q3p1 \\ \delta(q3p1,a) &= q3p0 \quad \delta(q3p1,b) = q3p0 \\ \delta(q3p1,a) &= q3p0 \quad \delta(q3p1,b) = q3p0 \end{split}$$

Построим автомат:

3.
$$L_3 = \{ w \in \{a,b\}^* | |w|_a$$
 чётно $\wedge |w|_b$ кратно трём $\}$ Построим сначала автомат: $L_{11} = \{ w \in \{a,b\} * | |w|_a$ чётно $\}$

Потом автомат: $L_{12} = \{w \in \{a,b\}*||w|_b$ кратно трём $\}$

Найдем прямое произведение $L_{11}\cap L_{12}$. где $A_{11}=(\sum_1,Q_1,s_1,T_1,\delta_1)$ и $A_{12}=(\sum_2,Q_2,s_2,T_2,\delta_2)$:

$$\begin{split} &\sum = \sum_1 \bigcup \sum_2 = \{a,b\} \\ &Q = Q_1 \times Q_2 = \{q0p0,q0p1,q0p2,q1p0,q1p1,q1p2\} \\ &s = < s_1, s_2 > = q0p0 \\ &T = T_1 \times T_2 = q0p0 \\ &\delta(< q1,q2 >, c) = < \delta_1(q_1,c), \delta_2(q_2,c) > \end{split}$$

Распишем все δ

$$\begin{array}{ll} \delta(q0p0,a) = q1p0 & \delta(q0p0,b) = q0p1 \\ \delta(q0p1,a) = q1p1 & \delta(q0p1,b) = q0p2 \\ \delta(q0p2,a) = q1p2 & \delta(q0p2,b) = q0p0 \\ \delta(q1p0,a) = q0p0 & \delta(q1p0,b) = q1p1 \\ \delta(q1p1,a) = q0p1 & \delta(q1p1,b) = q1p2 \\ \delta(q1p2,a) = q0p2 & \delta(q1p2,b) = q1p0 \end{array}$$

Построим автомат:

4.
$$L_4 = \overline{L_3}$$

$$\begin{split} &\sum = \sum_1 \bigcup \sum_2 = \{a,b\} \\ &Q = Q_1 \times Q_2 = \{q0p0, q0p1, q0p2, q1p0, q1p1, q1p2\} \\ &s = < s_1, s_2 > = q0p0 \\ &T = T_1 \times T_2 = q0p1, q0p2, q1p0, q1p1, q1p2 \\ &\delta(< q1, q2 >, c) = < \delta_1(q_1, c), \delta_2(q_2, c) > \end{split}$$

5.
$$L_5=L_2\setminus L_3$$
 $L_5=L_2\setminus L_3=L_2\cap \overline{L_3}=L_2 imes \overline{L_3}=L_2 imes L_4$ Переименуем автомат L_2 и L_4 L_2

Не будем упрощать автомат и оставим как есть

 L_4


```
Тогда: \sum = \sum_{1} \bigcup \sum_{2} = \{a,b\} Q = Q_{1} \times Q_{2} = \{q0p0, q0p1, q0p2, q0p3, q0p4, q1p5, q1p0, q1p1, q1p2, q1p3, q1p4, q1p5, q2p0, q2p1, q2p2, q2p3, q2p4, q2p5, q3p0, q3p1, q3p2, q3p3, q3p4, q3p5, q4p0, q4p1, q4p2, q4p3, q4p4, q4p5, q5p0, q5p1, q5p2, q5p3, q5p4, q5p5, q0p0, q6p1, q6p2, q6p3, q6p4, q6p5, q7p0, q7p1, q7p2, q7p3, q7p4, q7p5, }  s = \langle s_{1}, s_{2} \rangle = q0p0 T = T_{1} \times T_{2} = q3p5, q3p2, q3p3, q3p4, q3p1 \delta(\langle q1, q2 \rangle, c) = \langle \delta_{1}(q_{1}, c), \delta_{2}(q_{2}, c) \rangle
```

Распишем все δ

$$\delta(q0p0, a) = q1p1 \quad \delta(q0p0, b) = q1p5 \\ \delta(q0p1, a) = q1p0 \quad \delta(q0p1, b) = q1p4 \\ \delta(q0p2, a) = q1p3 \quad \delta(q0p2, b) = q1p0 \\ \delta(q0p3, a) = q1p2 \quad \delta(q0p3, b) = q1p1 \\ \delta(q0p4, a) = q1p5 \quad \delta(q0p4, b) = q1p3 \\ \delta(q0p5, a) = q1p4 \quad \delta(q0p5, b) = q1p2 \\ \delta(q1p0, a) = q2p1 \quad \delta(q1p0, b) = q2p5 \\ \delta(q1p1, a) = q2p0 \quad \delta(q1p1, b) = q2p4 \\ \delta(q1p2, a) = q2p3 \quad \delta(q1p2, b) = q2p0 \\ \delta(q1p3, a) = q2p2 \quad \delta(q1p3, b) = q2p1 \\ \delta(q1p4, a) = q2p5 \quad \delta(q1p4, b) = q2p3 \\ \delta(q2p0, a) = q3p1 \quad \delta(q2p0, b) = q3p5 \\ \delta(q2p1, a) = q3p0 \quad \delta(q2p1, b) = q3p4 \\ \delta(q2p2, a) = q3p3 \quad \delta(q2p2, b) = q3p0 \\ \delta(q2p3, a) = q3p2 \quad \delta(q2p3, b) = q3p1 \\ \delta(q2p4, a) = q3p5 \quad \delta(q2p4, b) = q3p3 \\ \delta(q2p5, a) = q3p4 \quad \delta(q2p5, b) = q3p2 \\ \delta(q3p0, a) = q4p1 \quad \delta(q3p0, b) = q4p5 \\ \delta(q3p1, a) = q4p0 \quad \delta(q3p1, b) = q4p4 \\ \delta(q3p2, a) = q4p3 \quad \delta(q3p2, b) = q4p1 \\ \delta(q3p3, a) = q4p2 \quad \delta(q3p3, b) = q4p1 \\ \delta(q3p4, a) = q4p5 \quad \delta(q3p4, b) = q4p2 \\ \delta(q4p0, a) = q4p1 \quad \delta(q3p4, b) = q4p3 \\ \delta(q4p4, a) = q3p5 \quad \delta(q4p0, b) = q3p5 \\ \delta(q4p1, a) = q4p5 \quad \delta(q3p4, b) = q4p1 \\ \delta(q3p4, a) = q4p5 \quad \delta(q3p4, b) = q4p1 \\ \delta(q3p4, a) = q4p5 \quad \delta(q3p4, b) = q4p3 \\ \delta(q4p5, a) = q3p1 \quad \delta(q4p0, b) = q3p5 \\ \delta(q4p1, a) = q3p0 \quad \delta(q4p1, b) = q3p4 \\ \delta(q4p2, a) = q3p3 \quad \delta(q4p2, b) = q3p0 \\ \delta(q4p3, a) = q3p2 \quad \delta(q4p3, b) = q3p1 \\ \delta(q4p4, a) = q3p5 \quad \delta(q4p4, b) = q3p3 \\ \delta(q4p5, a) = q3p4 \quad \delta(q5p2, b) = q4p0 \\ \delta(q5p3, a) = q4p4 \quad \delta(q5p2, b) = q4p0 \\ \delta(q5p3, a) = q4p5 \quad \delta(q5p3, b) = q4p1 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p3, b) = q4p1 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p5 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p5 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p4 \\ \delta(q5$$

$$\delta(q5p5, a) = q4p4 \ \delta(q5p5, b) = q4p2$$

$$\delta(q5p0, a) = q4p1 \quad \delta(q5p0, b) = q4p5$$

$$\delta(q5p1, a) = q4p0 \quad \delta(q5p1, b) = q4p4$$

$$\delta(q5p2, a) = q4p3 \quad \delta(q5p2, b) = q4p0$$

$$\delta(q5p3, a) = q4p2 \quad \delta(q5p3, b) = q4p1$$

$$\delta(q5p4, a) = q4p5 \quad \delta(q5p4, b) = q4p3$$

$$\delta(q5p5, a) = q4p4 \quad \delta(q5p5, b) = q4p2$$

$$\delta(q6p0, a) = q5p1 \quad \delta(q6p0, b) = q5p5$$

$$\delta(q6p1, a) = q5p0 \quad \delta(q6p1, b) = q5p4$$

$$\delta(q6p2, a) = q5p3 \quad \delta(q6p2, b) = q5p0$$

$$\delta(q6p3, a) = q5p2 \quad \delta(q6p3, b) = q5p1$$

$$\delta(q6p4, a) = q5p5 \quad \delta(q6p4, b) = q5p3$$

$$\delta(q6p5, a) = q5p4 \quad \delta(q6p5, b) = q5p2$$

$$\begin{array}{ll} \delta(q7p0,a) = q6p1 & \delta(q7p0,b) = q6p5 \\ \delta(q7p1,a) = q6p0 & \delta(q7p1,b) = q6p4 \\ \delta(q7p2,a) = q6p3 & \delta(q7p2,b) = q6p0 \\ \delta(q7p3,a) = q6p2 & \delta(q7p3,b) = q6p1 \\ \delta(q7p4,a) = q6p5 & \delta(q7p4,b) = q6p3 \\ \delta(q7p5,a) = q6p4 & \delta(q7p5,b) = q6p2 \end{array}$$

3 Задание №3. Построить минимальные ДКА по регулярному выражению.

1. $(ab + aba)^*a$

У нас есть объединение(+) ab и aba, а затем итерация.

К сожалению, у меня почему-то не получилось построить красивый автомат, всё съехало.

	a	b
q0	q2,q7,q5	-
q2,q7,q5	-	q8,q3
q8,q3	q9,q5,q2,q7	_
$\boxed{q9,q5,q2,q7}$	q2,q7,q5	q8,q3

Тогда построим минимальный ДКА

2. $a(a(ab)^*b)^*(ab)^*$

	a	b
q0	q1	-
q1	q2	_
q2	q3	q4
q3	-	q2
q4	q2	_

Объединим эквивалентные вершины

3. $(a + (a + b)(a + b)b)^*$

1		
	a	b
q0	q0q1	q5
q0q1	q0q1q2	q4q5
q0q1q2	q0q1q2	q0q4q5
q5	q6	q7
q4q5	q6	q0q7
q0q4q5	q0q1q6	q0q5q7
q6	-	q0
q7	-	q0
q0q7	q0q1	q0q5
q0q5	q0q1q6	q5q7
q5q7	q6	q0q7
q0q1q6	q0q1q6	q0q4q5
q0q5q7	q0q1q6	q0q5q7

Если заменить исходный автомат на эквивалентный, тогда:

	a	b
q0	q0q1	q1
q0q1	q0q1q2	q1q2
q0q1q2	q0q1q2	q0q1q2
q1	q2	q2
q2	-	q0
q1q2	q2	q0q2
q0q2	q0q1	q0q1

Тогда получим минимальный ДКА

4. $(b+c)((ab)^*c+(ba)^*)^*$

	a	b	c
q0	-	q1	q1
q1	q2	q3	_
q2	-	q5	-
q3	q4	-	1
q4	q2	q3	-
q5	q2	-	q6
q6	q2	q3	-

Вершины q4 и q6 эквивалентны, объединим их

5.
$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$

	a	b
q0	q1	q1
q1	q0q2	q0q3
q0q2	q1q6	q1q4
q0q3	q1q8	q1q10
q1q6	q0q2q7	q0q3q7
q1q4	q0q2q5	q0q3
q1q8	q0q2	q0q3q9
q1q10	q0q2q7	q0q3q7
q0q2q7	q1q6q7	q1q4q7
q0q3q7	q1q7q8	q1q7q10
q0q2q5	q1q6	q1q4q6
q0q3q9	q1q8q10	q1q10
q1q6q7	q0q2q7	q0q3q7
q1q4q7	q0q2q5q7	q0q3q7
q1q7q8	q0q2q7	q0q3q7q9
q1q7q10	q0q2q7	q0q3q7
q1q4q6	q0q2q7	q0q3q7
q1q8q10	q0q2q7	q0q3q9q7
q0q2q5q7	q1q6q7	q1q4q6q7
q0q3q7q9	q1q8q7q10	q1q10q7
q1q4q6q7	q0q2q5q7	q0q3q7
q1q8q7q10	q0q2q7	q0q3q7q9

Найдем эквивалентные вершины

Все конечные вершины эквивалентны - т е вершины q0q2,q1q4q7,q0q2q5q7,q1q6q7, q1q4q6q,q0q3q7 ,q1q7q8,q0q3q7q9,q1q7q8q10,q1q7q10 эквиваленты

Объединим их в одну и обозначим р1

Заметим, что вершины q1q8q10, q1q10 являются эквивалентными, объединим их и обозначим как p2 q1q6 и q1q4q6 являются также эквивалентными, объединим их и обозначим как p3

Не уверена, что так можно, но теперь эквивалентными являются вершины р2 и р3

Обозначим их объединение как р4

4 Задание №4.Определить является ли язык регулярным или нет.

1.
$$L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$$

	a	b
q0	q1	q4
q1	q2	-
q2	-	q3
q3	q1	q4
q4	q5	_
q5	-	q6
q6	q7	-
q7	q5	_

2. $L = \{uaav | u \in \{a, b\}^*, v \in \{a, b\}^* | u|_b \ge |u|_a\}$

Используем лемму о разрастании

Предположим, что язык регулярен. Тогда должна существовать константа

 п, удовлетворяющая условиям леммы о накачке. Рассмотрим некоторое слово
 $\boldsymbol{w} =$

 $b^n aaa^n, |w| = 2n+2 \ge n.$ $w = xyz, |y| \ne 0, |xy| \le n:$ $x = b^i, y = b^j, z = b^{n-i-j}aaa^n$ $i+j \le n, j \ne 0$ $w = xy^kz = b^ib^{lj}b^{n-i-j}aaa^n$ Пусть l = 0, тогда: $w = b^{n-j}aaa^n \notin L, j \ne 0$ Лемма не выполняется => язык не регулярный

3. $L = \{a^m w | w \in \{a, b\}^*, 1 \le |w|_b \le m\}$

Используем лемму о разрастании

Предположим, что язык регулярен. Тогда должна существовать константа n, удовлетворяющая условиям леммы о накачке. Рассмотрим некоторое слово $w=a^nb^n, |w|=2n\geq n.$

$$w=xyz, |y| \neq 0, |xy| \leq n:$$
 $x=a^i, y=a^j, z=a^{n-i-j}b^n$ $i+j \leq n, j \neq 0$ $w=xy^kz=a^ia^{lj}a^{n-i-j}b^n$ Пусть $l=0$, тогда: $w=a^{n-j}b^n \notin L, j \neq 0$

Лемма не выполняется => язык не регулярный

4.
$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

Используем лемму о разрастании

Предположим, что язык регулярен. Тогда должна существовать константа n, удовлетворяющая условиям леммы о накачке. Рассмотрим некоторое слово $w = a^n b a^n$, $|w| = 2n + 1 \ge n$.

$$w=xyz, |y| \neq 0, |xy| \leq n:$$
 $x=a^i, y=a^j, z=a^{n-i-j}ba^n$ $i+j \leq n, j \neq 0$ $w=xy^kz=a^ia^{lj}a^{n-i-j}ba^n$ Пусть $l=2$, тогда: $w=a^{n+j}ba^n \notin L, j \neq 0$

Лемма не выполняется => язык не регулярный

5. $L = \{ucv | u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Используем лемму о разрастании

Предположим, что язык регулярен. Тогда должна существовать константа n, удовлетворяющая условиям леммы о накачке.

Рассмотрим некоторое слово

$$w = (ab)^{n} c(ab)^{n} = \alpha_{1} \alpha_{2} ... \alpha_{n} ... \alpha_{2n} ... \alpha_{4n} \alpha_{4n+1}, |w| = 4n + 1 \ge n.$$

$$w = xyz, |y| \ne 0, |xy| \le n:$$

$$x = \alpha_{1} \alpha_{2} ... \alpha_{i}, y = \alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j}, z = \alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{4n+1} c(ab)^{n}$$

$$i + j \le n, j \ne 0$$

$$w = xy^{l} z = (\alpha_{1} \alpha_{2} ... \alpha_{i})(\alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j})^{l} (\alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{4n+1} c(ab)^{n})$$

Пусть l=2, тогда: $w=(\alpha_1\alpha_2...\alpha_i)(\alpha_{i+1}\alpha_{i+2}...\alpha_{i+j})^2(\alpha_{i+j+1}\alpha_{i+j+2}...\alpha_{4n+1}c(ab)^n)\notin L, j\neq 0$

Лемма не выполняется => язык не регулярный