

# **IE6600 Project Presentation**

Analysis of the Future Evaluation System Based on the "FIFA" World

# Reported by:

Yuxi Chen, Haotian Chen, Junfei Ren, Rundong Xu

## **Overall framework**

Three Part

Reasons and "Data"

Introduction

Dataset

Methods

Results

Conclusion

Q&A

Approaches to "Visualization"



1. Introduction

# Introduction

What is the Topic?

"Analysis of the future **Evaluation system** based on the "FIFA" world"

## "FIFA" World

| Goal                                                                                            | Question                                                                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Helping the club Find top wages player to balance their team cost.                              | 1.What is wage distribution of top 50 player?                                          |
| Find the                                                                                        | What is the wage level and interval of top 50 player in their overall level?           |
| Helping the game player,<br>and club to compare the<br>Play in different condition.             | 2. Compare the different Player's Capability Map                                       |
| Help fans or pre-fans to find the development of Soccer industry in the world and promoting it. | 3.What is the typical distribution of Topathletes' nationality and clubs in the world? |

# **Future Evaluation System**

| Question                                                                                                                       | Goal                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.Top50 wage occupied<br>by members on your<br>dream organization<br>(Company, Soccer Club,<br>Field, Industry, Market<br>etc) | Help the people find who<br>are the Top Ranking<br>person's wages or other<br>Filter dimensions ( Value,<br>Overall, Potential)                           |
| 2.Candidate Competition,<br>Peer Comparation                                                                                   | Help the organization to make optimal choice.                                                                                                             |
| 3. Outstanding Person's distribution from their nationality/degree level/age, and where organization they employed             | Profile of "Outstanding", which help the organization to target person background to modelling, also help the person to find the outstanding organization |

#### Introduction

Why we choose this Topic?

"Analysis of the "Future" Evaluation system based on the "FIFA" world"



#### **Performance**

- Playback analysis from recording
- Optimize the Performance of Player, Coaching and Club
- Select and Arrange Team member



#### **Business Value**

- New Evaluation system for Recruitment
- Managing a Valuable Club
- Balance the cost of buy new Player





**Teamwork** 

# 2.Data

#### **Dataset**

Data: FIFA19(Video Game)

Link: https://sofifa.com / https://www.kaggle.com,

Features: 18000 players, 88 attributes.



#### Feature selection:

Problem1:What is the correlation between player value and salary?

Feature: 'Name', 'Photo', 'Overall', 'Potential', 'Value', 'Wage'

Problem2: How to evaluate a player's ability attributes, and the influence of ability attributes on player value.

Feature: 'Name', 'Photo', 'Age', Ability(Comprehensive ability)

Problem3: What is the typical distribution of high-value athletes nationality and clubs in the world?

Feature: 'Nationality', 'Name', 'Photo', 'Club', 'Wage', 'Overall', 'League'

#### Problem:

(A). There are special characters in the variable, and the parameter cannot be called in the later drawing.

| _ |         |
|---|---------|
| ] | Value   |
|   | €110.5M |
|   | €77M    |
|   | €118.5M |
|   | €72M    |
|   | €102M   |
|   | €93M    |
|   | €67M    |
|   | €80M    |
|   | €51M    |
|   | €68M    |
|   | €77M    |
|   | €76.5M  |
|   | €44M    |
|   | €60M    |
|   | €63M    |
|   | €89M    |

Special characters: €, M

Solution: Use function gsub().

data1\$Value <- as.numeric(gsub("\\€|\\M","",data1\$Value))
data1\$Wage <- as.numeric(gsub("\\€|\\K","",data1\$Wage))</pre>

| Value |     | Wage |    |
|-------|-----|------|----|
|       | 3.2 |      | 24 |
|       | 3   |      | 6  |
|       | 1.9 |      | 15 |
| NA    |     |      | 2  |
|       | 4.6 |      | 12 |
| NA    |     |      | 2  |
|       | 3.9 |      | 16 |
| NA    |     |      | 2  |
| NA    |     |      | 2  |
| NA    |     |      | 1  |
| NA    |     |      | 1  |
| A I A |     |      | ^  |

#### Problem:

(B). There is a duplicate name, after drawing or Rshiny production will appear some error.

| 2372 | 222352  | A. Ajeti      | 21 | https://cdn.  | Switzerland  | https://cdn. | 74 |
|------|---------|---------------|----|---------------|--------------|--------------|----|
| 8492 | 203458  | A. Ajeti      | 24 | https://cdn.  | Albania      | https://cdn. | 67 |
|      |         |               |    |               |              |              |    |
| 34   | 69 2281 | A. Castro     | 23 | https://cdr   | n. Argentina | https://cdn. | 72 |
| 71   | 53 2208 | 305 A. Castro | 24 | https://cdr   | n. Colombia  | https://cdn. | 68 |
| 104  | 64 1585 | 595 A. Castro | 3: | l https://cdr | n. Mexico    | https://cdn. | 65 |

Solution: Rename, number people who have the same name

- Step: 1. Choosing duplicated name. data1 <- datac[duplicated(datac\$Name),]
  - 2. Edit the number after the name. data1\$Name <- paste(data1\$Name,"1",sep = "")
  - 3. Checking if there are still have duplicate name
  - 4. Repeating step2&3
  - 5. Combining new data frame with origin data. data3 <- merge(data1,data2,all=T)

| R. Thomas  | https://cdn. | 76 | 76 | 5.5 | 21 | 30 6'4 | Angers SCO | France     | Ligue 1    | France      |
|------------|--------------|----|----|-----|----|--------|------------|------------|------------|-------------|
| R. Thomas1 | https://cdn. | 75 | 80 | 9   | 13 | 23 5'9 | PSV        | New Zealan | Eredivisie | Netherlands |

| Curve | BallControl | Aggression | Interception | Positioning | Vision | Cor | mposure Crossing | ShortPass | sin Lo | ongPassing Acce | eleration Spr | rintSpeed Agility | Read | tions Bala | nce | Jumping | Stamina | Strength | Finishing | Volleys | Fk | Accuracy ShotPo | ver Long | Shots Pena | alties |
|-------|-------------|------------|--------------|-------------|--------|-----|------------------|-----------|--------|-----------------|---------------|-------------------|------|------------|-----|---------|---------|----------|-----------|---------|----|-----------------|----------|------------|--------|
| 93    |             | 48         |              |             |        | 4   | 96 8             |           | 90     | 87              | 91            | 86                | 91   | 95         | 95  |         | В       |          |           |         | 86 | 94              | 85       | 94         | 75     |
| 81    | 94          | 63         | 29           | 95          | 82     | 2   | 95 8             | 4 8       | 31     | 77              | 89            | 91                | 87   | 96         | 70  | 95      | 5 8     | 38       |           |         | 87 | 76              | 95       | 93         | 85     |
| 88    |             | 56         | 36           | 89          | 8      | 7   | 94               | 9 8       | 34     | 78              | 94            | 90                | 96   | 94         | 84  | 61      |         |          |           |         | 84 | 87              | 80       | 82         | 81     |
| 21    | 42          | 38         | 30           | 12          | 68     | 8   | 68 1             | 7 5       | 50     | 51              | 57            | 58                | 60   | 90         | 43  | 67      | 7 4     | 13       | 64 1      | .3      | 13 | 19              | 31       | 12         | 40     |
| 85    | 91          | 76         |              | 87          | 94     | 4   | 88 9             |           | 92     | 91              | 78            | 76                | 79   | 91         | 77  |         | 3 9     | 90       |           |         | 82 | 83              | 91       | 91         | 79     |
| 83    | 94          | 54         | 41           | 87          | 89     | 9   | 91 8             | 1 8       | 39     | 83              | 94            | 88                | 95   | 90         | 94  | 56      | 6 6     | 33       |           |         | 80 | 79              | 82       | 80         | 86     |
| 85    | 93          | 62         | 83           | 79          | 92     | 2   | 84 8             | 6 9       | 93     | 88              | 80            | 72                | 93   | 90         | 94  | 68      | 8       | 39       | 58 7      | '2      | 76 | 78              | 79       | 82         | 82     |
| 86    |             | 87         |              |             |        |     |                  |           | 32     | 64              | 86            | 75                | 82   | 92         | 83  |         |         |          |           |         | 88 | 84              | 86       | 85         | 85     |
| 74    | 84          | 88         | 90           | 60          | 63     | 3   | 82 6             | 6 7       | 78     | 77              | 76            | 75                | 78   | 85         | 66  | 93      | 3 8     | 34       | 83 6      | 60      | 66 | 72              | 79       | 59         | 75     |
| 13    | 16          | 34         | 19           | 11          | 70     | 0   | 70 1             | 3 2       | 29     | 26              | 43            | 60                | 67   | 86         | 49  | 76      | 6 4     | 11       | 78 1      | .1      | 13 | 14              | 22       | 12         | 11     |
| 77    |             | 80         |              | 91          | 7      | 7   |                  |           | 33     | 65              | 77            | 78                | 78   | 90         | 78  | 84      |         |          |           |         | 89 | 86              | 88       | 84         | 88     |
| 86    |             | 60         | 82           | 79          | 86     | 6   |                  |           | 92     | 93              | 64            | 62                | 70   | 89         | 71  | . 30    | 0       | 75       | 73 7      | '6      | 82 | 84              | 87       | 92         | 73     |
| 49    | 76          | 89         | 88           | 48          | 52     | 2   | 82 5             | 5 7       | 79     | 70              | 68            | 68                | 58   | 85         | 54  | 91      | 1 6     | 66       | 88 4      | 2       | 47 | 51              | 67       | 43         | 50     |
| 82    |             | 57         |              |             |        |     |                  |           | 93     | 87              | 70            | 64                | 92   | 90         | 90  |         |         |          |           |         | 82 | 77              | 72       | 75         | 75     |
| 49    |             | 90         | 92           |             |        | 9   |                  |           | 36     | 81              | 82            | 78                | 82   | 93         | 92  | . 77    | 7 9     |          |           |         | 56 | 49              | 71       | 69         | 54     |
| 88    | 92          | 48         | 32           | 84          | 8      | 7   | 84 8             | 2 8       | 37     | 75              | 87            | 83                | 91   | 86         | 85  | 75      | 5 8     | 30       | 65 8      | 34      | 88 | 88              | 82       | 88         | 86     |
| 78    |             | 76         |              |             | 80     | 0   | 89               | 5 8       | 30     | 82              | 68            | 72                | 71   | 91         | 71  |         | 8       |          |           | )4      | 84 | 68              | 88       | 85         | 90     |
| 84    | 90          | 69         | 35           | 91          | 83     | 3   | 87 8             | 2 8       | 33     | 76              | 88            | 85                | 90   | 90         | 80  | 90      | 3 C     | 33       | 62 9      | 00      | 87 | 78              | 80       | 82         | 79     |
| 18    | 18          | 43         | 22           | 11          | 69     | 9   | 69 1             | 5 3       | 36     | 42              | 38            | 50                | 37   | 85         | 43  | 79      | 9 3     | 35       | 79 1      | .4      | 14 | 12              | 22       | 10         | 25     |
| 19    | 23          | 23         | 15           | 13          | 44     | 4   | 66 1             | 4 3       | 33     | 35              | 46            | 52                | 61   | 84         | 45  | 68      | 3       | 38       | 70 1      | .4      | 12 | 20              | 36       | 17         | 27     |
| 66    | 88          | 85         | 87           | 77          | 8      | 7   | 90 6             | 2 8       | 39     | 82              | 50            | 52                | 66   | 87         | 52  | . 66    | 6       | 36       | 77 6      | 57      | 44 | 68              | 61       | 54         | 60     |
| 77    | 82          | 84         | 48           | 93          | 7      | 7   | 82               | 0 7       | 78     | 52              | 75            | 76                | 77   | 91         | 59  | 88      | 3       | 92       | 78 8      | 39      | 90 | 76              | 87       | 79         | 85     |
| 14    |             | 29         | 30           | 12          | 70     | 0   |                  |           | 55     | 59              | 54            | 60                | 51   | 84         | 35  | 77      | 7 4     | 13       | 80 1      | .3      | 11 | 11              | 25       | 16         | 47     |
| 82    | 89          | 65         | 24           | 92          | 83     | 3   | 90               | 0 8       | 31     | 64              | 88            | 80                | 86   | 90         | 91  | . 81    | 1       | 76       | 73 9      | 3       | 85 | 73              | 88       | 83         | 83     |
| 60    | 57          | 92         | 88           | 28          | 50     | 0   | 84 5             | 8 5       | 59     | 59              | 63            | 75                | 54   | 82         | 55  | 89      | 9 6     | 35       | 89 3      | 33      | 45 | 31              | 78       | 49         | 50     |
| 77    | 91          | 62         |              | 88          | 82     | 2   |                  |           | 32     | 73              | 96            | 96                | 92   | 87         | 83  | 75      | 5 8     | 33       |           |         | 78 | 63              | 79       | 78         | 70     |
| 83    |             | 63         |              |             |        | 2   | 91               |           | 32     | 72              | 94            | 91                | 91   | 91         | 88  |         |         |          |           |         | 73 | 60              | 77       | 83         | 61     |
| 59    | 78          | 87         | 87           | 69          | 7      | 7   | 84 5             | 2 8       | 35     | 82              | 59            | 65                | 62   | 84         | 66  | 88      | 8       | 37       | 89 5      | 59      | 53 | 74              | 86       | 79         | 66     |
| 89    | 90          | 64         | 55           | 80          | 89     | 9   | 87 9             | 0 8       | 39     | 83              | 73            | 67                | 83   | 85         | 76  | 54      | 4       | 70       | 68 8      | 33      | 90 | 86              | 86       | 92         | 81     |
| 87    | 93          | 34         | 26           | 83          | 8      | 7   | 83 8             | 6 8       | 35     | 78              | 94            | 86                | 94   | 83         | 93  | 53      | 3       | 75       | 44 7      | 7       | 74 | 77              | 75       | 84         | 61     |
| 88    | 95          | 58         | 64           | 78          | 89     | 9   | 86               | 5 8       | 39     | 83              | 75            | 69                | 87   | 77         | 90  | 64      | 4 7     | 70       | 59 7      | '9      | 65 | 76              | 69       | 87         | 76     |
| 86    | 91          | 46         | 56           | 83          | 9:     | 1   | 88               | 8 9       | 91     | 88              | 75            | 73                | 79   | 88         | 81  | . 50    | ) (     | 92       | 58 8      | 80      | 77 | 87              | 84       | 89         | 67     |
| 91    | 92          | 59         | 49           | 84          | 90     | 0   | 85               | 9 8       | 38     | 83              | 89            | 75                | 92   | 83         | 93  | 59      | 9       | 79       | 61 7      | '9      | 75 | 86              | 83       | 93         | 70     |
| 80    | 82          | 43         | 48           | 90          | 7      | 7   | 86               | 7 7       | 77     | 64              | 93            | 95                | 76   | 87         | 70  | 79      | 9 7     | 76       | 76 8      | 88      | 86 | 74              | 82       | 79         | 76     |
| 65    | 81          | 69         | 92           | 56          | 79     | 9   | 91 6             | 4 8       | 31     | 85              | 53            | 64                | 63   | 87         | 60  | 68      | 3 6     | 66       | 84 5      | 55      | 60 | 53              | 71       | 51         | 68     |
| 85    | 92          | 84         | 85           | 85          | 82     | 2   | 86 9             | 0 8       | 34     | 76              | 83            | 82                | 86   | 88         | 86  | 76      | 6 9     | 91       | 78 7      | '0      | 54 | 67              | 83       | 70         | 59     |
| 90    | 85          | 65         | 59           | 85          | 79     | 9   | 86 8             | 7 8       | 35     | 80              | 94            | 95                | 82   | 85         | 65  | 87      | 7       | 75       | 80 8      | 86      | 85 | 87              | 92       | 91         | 76     |
| 11    | 34          | 31         | 27           | 10          | 30     | 0   | 65 1             | 3 5       | 50     | 50              | 65            | 62                | 55   | 85         | 54  | 74      | 4 4     | 11       | 43 1      | .0      | 11 | 10              | 23       | 14         | 40     |
| 74    | 85          | 50         | 20           | 92          | 74     | 4   | 86 6             | 8 7       | 75     | 59              | 73            | 73                | 75   | 86         | 69  | 79      | 9       | 70       | 85 9      | 2       | 90 | 62              | 86       | 80         | 70     |
| 61    | 80          | 76         | 89           | 59          | 72     | 2   | 81 6             | 0 8       | 30     | 80              | 70            | 72                | 68   | 82         | 68  | 90      | ) 7     | 74       | 82 3      | 88      | 63 | 64              | 71       | 68         | 60     |
| 12    | 16          | 25         | 22           | 12          | 4:     | 1   | 69 1             | 2 3       | 36     | 34              | 51            | 55                | 47   | 83         | 36  | 78      | 3 4     | 11       | 71 1      | .0      | 12 | 14              | 22       | 19         | 23     |
| 20    |             |            |              |             |        |     |                  |           | 37     | 35              | 49            | 43                | 55   | 79         | 49  |         |         |          |           |         | 17 | 13              | 39       | 13         | 22     |
|       |             |            |              |             |        |     |                  |           | -      |                 |               | '                 |      |            |     |         |         |          |           |         |    |                 |          |            |        |

| Solution:             | Defending  | General | Mental | Passing    | Mobility | Power | Rating | Shooting   |                       |
|-----------------------|------------|---------|--------|------------|----------|-------|--------|------------|-----------------------|
| Solution.             | 29         | 89      | 70.8   | 87         | 90.75    | 73.5  | 94     | 88.1666667 |                       |
| Fusing th             | 27.3333333 | 88      | 72.8   | 80.6666667 | 90.75    | 83    | 94     | 88.3333333 | variable to           |
| •                     | 28         | 85.25   | 72.4   | 80.3333333 | 93.5     | 68.75 | 92.5   | 83.5       |                       |
| evaluate players      | 16.3333333 | 25.5    | 43.2   | 39.3333333 | 66.25    | 54.25 | 92     | 21.3333333 |                       |
| • •                   | 59         | 79.25   | 81.2   | 92         | 81       | 76.25 | 91.5   | 84.6666667 |                       |
|                       | 27.6666667 | 83.25   | 72.4   | 84.3333333 | 91.75    | 74.75 | 91     | 81.8333333 |                       |
| Method:               | 69.6666667 | 80.75   | 80     | 89         | 83.75    | 77.25 | 91     | 78.1666667 |                       |
| Methou.               | 48.3333333 | 85      | 77.8   | 74.3333333 | 83.75    | 81.25 | 91     | 86.8333333 |                       |
| Using fur             | 90         | 78      | 76.6   | 73.6666667 | 78.5     | 81.5  | 91     | 68.5       |                       |
| 031116 141            | 19         | 14      | 40.8   | 22.6666667 | 64       | 61    | 91.5   | 13.8333333 |                       |
|                       | 31.6666667 | 84      | 74.6   | 70         | 80.75    | 81    | 90     | 87.6666667 |                       |
|                       | 73.3333333 | 77.75   | 78.4   | 91         | 71.25    | 62.25 | 90     | 82.3333333 |                       |
| data2\$Defending <- a |            | 67.5    | 71.8   | 68         | 69.75    | 74.75 | 90     | 50         |                       |
| data2\$General <- app | 47         | 79.75   | 76.2   | 88         | 79       | 71    | 90     | 76.1666667 | )                     |
| data2\$Mental <- appl | 88.6666667 | 65.5    | 83.4   | 78.3333333 | 83.75    | 85.25 | 89.5   | 60.6666667 | :')],1,mean)          |
| data2\$Passing <- app | 21         | 85      | 67     | 81.3333333 | 86.75    | 76.25 | 91.5   | 86         |                       |
| data2\$Mobility <- ap | 43.3333333 | 81.75   | 74.6   | 79         | 75.5     | 80.5  | 90     | 84.8333333 | )                     |
| data2\$Power <- apply | 51.3333333 | 86.5    | 73     | 80.3333333 | 88.25    | 78.75 | 89.5   | 82.6666667 |                       |
| data2\$Rating <- appl |            | 16      | 42.8   | 31         | 52.5     | 59    | 90.5   | 16.1666667 |                       |
| data2\$Shooting <- ap | 40         | 17      | 32.2   | 27.3333333 | 60.75    | 55.25 | 89.5   | 21         | 'Penalties")],1,mean) |
| 3                     | 85.3333333 | 75.5    | 85.2   | 77.6666667 | 63.75    | 70.25 | 89     | 59         |                       |
|                       | 45.3333333 | 82      | 76.8   | 66.6666667 | 79.75    | 79.25 | 89     | 84.3333333 |                       |
|                       | 12.6666667 | 29.25   | 42.2   | 43         | 62.25    | 58.75 | 89     | 20.5       |                       |

# 3. Method

#### **Statistical Methods**

# Statistics Methods Support

Descriptive statistics Related analysis



Personal Characteristics VS Social Value Measurement

Comparative Analysis



Ability Index VS External Evaluation System Score

**Distribution Analysis** 



Distribution of Organization Where Outstanding Humans Gather

# **Feature Engineering**

#### Why?

- Removing noise
- Dimension Reduction
- Feature Selection

-----By Using **Data Mining**--PCA, K-means etc.



-----By incoporating **Domain Knowledge** 

#### Anticipation:

- Interpreting data and variable clearly in lowdimension and clustering
- Obtain the Correlation between Variables
- Specify and select the features for our usage





Stop at 5<sup>th</sup> principal component Which could represent the 89.9% information (Variance) The 'Mental', 'Shooting' and 'General' occupy Top 3 high contribution to PC1 and PC2



#### ----Simple But Powerful Data Mining

#### Ability Correlation Analysis





# **K-means Clustering**

#### **Correlation circle**



#### Clustering

We still find the high related variables in clustering by using K-means
3 Clustering to help us knowns the Correlation between Variables

#### Cos2 Value

- Close to the circle: Represent better
- Close to the center : Less important

# 4. Result



#### Personal Characteristics VS Social Value Measurement

**Single Variable Analysis** 

#### **Intelligent Recommendation**

#### **Binary Variable**



The plot shows that who are the Top 50 wages of players; L.Messi is best one In age(25-35). And 70%+ of them occupy wage interval [200-300]





Overall Score Ranking in Top 50 wages of players, L.Messi and C.Ronaldo are the best two In age (25-35).

And 70%+ of them occupy wage interval [200-300]

#### Result

#### Ability Index VS External Evaluation System Score



The Messi and De gega have similar overall score,

but obviously the area of Messi's ability map big than Dega, which help us certain that the overall score evaluating standard and weight are different from all case, and the ability are not the only factor it considered

#### Result

#### Distribution of Organization Where Outstanding Humans Gather



Most High-level player come from hispanic nation, and they usually gathering in Europe to soccering. The Europe occupy high rate of gathering, and culture of soccer are the most famous.

5.Let's Shiny

# Design Framework and Procedure: Difficult Problem: Needing using binary event to plotting two analysis result

| Widget                                     | Server                                                         | Output                                 |
|--------------------------------------------|----------------------------------------------------------------|----------------------------------------|
| selectInput(var iable x/y) (single&binary) | select a x/y - axis variable, can be null                      | -> plot from<br>the filter<br>setting  |
| radioGroupBut<br>tons(principal)           | -> choose x or<br>y variable to be<br>the ordering<br>standard | Change the different axis for plotting |
| TabPanel                                   | -><br>if Evaluation ->                                         | Intelligent<br>Decision<br>System      |

**Solution:** 

Learning from: <a href="https://www.w3schools.com/colors/colors\_picker.asp">https://www.w3schools.com/colors/colors\_picker.asp</a>

# **Design Framework and Procedure:**

| Widget                | Server                               | Output                                 |
|-----------------------|--------------------------------------|----------------------------------------|
| selectInput           | -> indicator input ->                | filter the data by indicator           |
| radioGroupBut<br>tons | -> number of top                     | filter the data<br>by number of<br>top |
| radioGroupBut<br>tons | -> if radar->run function radar plot | output radar<br>chart                  |
| radioGroupBut<br>tons | -> if bar -> run function bar plot   | -> output bar chart                    |

Custom css style

Difficult Problem: Needing Using "Html" to optimize aesthetic

**Solution:** 

```
tags$style(HTML("
pre {
   color: white;
   background-color: #e1849a;
}
.myclass pre {
   color: white;
   background-color: #79acd2;
   }
}"))
```

Learning from: <a href="https://www.w3schools.com/colors/colors\_picker.asp">https://www.w3schools.com/colors/colors\_picker.asp</a>

# **Design Framework and Procedure:**

| Widget                | Server               | Output                                                                                |
|-----------------------|----------------------|---------------------------------------------------------------------------------------|
| selectInput           | > indicator input -> | filter the data by indicator                                                          |
| radioGroupBut<br>tons | -> number of top     | filter the data<br>by number of<br>top                                                |
| radioGroupBut<br>tons | -> type of graph     | plotting the data using nationality function or plotting the data using club function |

Difficult Problem: Needing Use Plot\_ly to draw the Raday plot in Rshiny

```
df_x <- df_part2_5 %>% filter(Name == Namex) %>% select(Defending,General,Mental,Passing,Mobility,Power)
plot_ly(
    type = 'scatterpolar',
    r = as.numeric(df_x[1,]),
    theta = c('Defending','General','Mental','Passing','Mobility','Power'),
    fill = 'toself'
) %>%
    layout(
    polar = list(
        vaiialaxis = list(
        visible = T,
        range = c(0,100)
    ),
    showlegend = F
)
}
```

Learning from: https://plotly.com/r/radar-chart/

5. Conclusion & Summary

# **Conclusion & Summary**



### **Evaluation of Player and Correlation**

Distribution of "Outstanding"

# Ability Index VS External Evaluation System Score

| Objectives                                                                                      | Key Conclusions                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Helping the club Find top wages player to balance their team cost.                              | Overall Score Ranking in Top 50 wages of players, L.Messi and C.Ronaldo are the best two In age (25-35). And 70%+ of them occupy wage interval [200-300]. So if the club manager want to introduce overall interval[>82.5], they need budget not lessan than 200. |
| Helping the game player, and club to compare the Play in different condition.                   | The Messi and De gega have similar overall score, but obviously the area of Messi 's ability map big than Dega, so the club could choose their candidate based different evaluating standard                                                                      |
| Help fans or pre-fans to find the development of Soccer industry in the world and promoting it. | Most High-level player come from hispanic nation, and they usually gathering in Europe to soccering.  The Europe occupy high rate of gathering, and culture of soccer are the most famous.                                                                        |

# Thanks for Everyone to Listening!!

Thanks for Instructor: Professor Lu

# Questions



# **Answers**

Problem Defintion: Rundong Xu(Pricinpal)

Feature Selection: Rundong Xu(Pricinpal)

Data Cleaning: Junfei Ren(Pricinpal)

Data Visualization : Yuxi Chen (Pricinpal), Haotian Chen, Rundong Xu, Junfei Ren

Shiny: Haotian Chen (Pricinpal), Yuxi Chen, Rundong Xu, Junfei Ren