Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Lecture #2

Outline

- Basic data analysis
 - data for the Movie recommendation task
 - data for the Verb Pattern Recognition task
- Clustering
 - USArrest data set

Movie recommendation task (MOV)

Predict the user's rating for a given movie

	Toy	Star	Some	
	Story	Wars	Like It Hot	
	(1995)	(1977)	(1959)	
Peter	?	5	4	
Paul	2	5	?	
Mary	2	4	?	

E.g., predict Mary's rating for the *Some Like it Hot* movie

MOV – **Getting examples**

- Create a database of movies to be rated by users
- Set up a rating scale allowing users to rate movies
- Record users' ratings
- Typically, the dataset of ratings is sparse.
 So do some pruning, like require a minimum of twenty ratings per user.

MOV – Available Data

Basic statistics

number of votes	100,000
number of movies	1,682
number of users	943

- Data comes from the MovieLens datasets
 - $\boldsymbol{\mathsf{-}}$ for more details, go to the course web page

MOV - Available data

About users

	age	gender	occupation	zip code
Peter	19	М	student	58644
Mary	50	F	healthcare	60657

About movies

title	action	 IMDb rating	director
Toy Story	0	 8.3	John Lasseter
Some Like It Hot	0	 8.3	Billy Wilder
Star Wars	1	 8.7	George Lucas

MOV - Available data

Data representation

	1	2	3	4	5-8	9-33
vote	MOVIE	USER	RATING	TIMESTAMP	user	movie
id					features	features
1	1	1	5	1997-09-23	24	Toy Story
				00:02:38	М	(1995)
					technician	
					85711	
100,000	1682	916	3			

See the feature description mov.pdf at https://ufal.mff.cuni.cz/courses/npfl054/materials

Data analysis

Machine learning process

- 1 Formulating the task (e.g., predict user's rating for a given movie)
- 2 Getting data (e.g., MOV data)
 - Data analysis
- 8 Building predictor
- 4 Evaluation

Data analysis

Deeper understanding the task by statistical view on the data We exploit the data in order to make prediction of the target value.

- Build intuition and understanding for both the task and the data
- Ask questions and search for answers in the data
 - What values do we see?
 - What associations do we see?
- Do plotting and summarizing

Data analysis

We focus on

- Recap of methods for basic data exploration
- Analyzing distributions of values
- Analyzing association between features
- Analyzing association between features and target value

Frequency tables display the frequency of categorical feature values.

```
# frequency of voting men and women
> source("load-mov-data.R") # see the course web page
> table(examples$gender)
    F     M
25740 74260
```

Bar plots visualize frequency tables

Histograms visualize distribution of feature values.

Add a new feature **VOTES** for the number of votes of the users

```
# get the number of votes for each user
> v <- as.data.frame(table(examples$user))
> users$votes <- v$Freq
> min(users$votes)
[1] 20
> max(users$votes)
[1] 737
```

Histogram (histogram-votes.R)

Cumulative histograms visualize cumulative frequencies.

Cumulative histogram (cumulative-histogram-votes.R)

Contingency tables display the frequency of values for combination of two categorical features.

```
> # Star Wars ratings
> movie <- subset(examples, movie == 50); nrow(movie) # 583
> # construct contingency table for gender and rating
> ct <- table(movie$gender, movie$rating)</pre>
> margin.table(ct)
                               # total sum
[1] 583
> addmargins(ct)
                                      # adds marginal sums by default
                        5 S11m
        3 4 23 44 77 151
        6 12 34 132 248 432
        9 16 57 176 325 583
  Sum
  round(prop.table(ct),3)  # prop.table generates proportions
  F 0.005 0.007 0.039 0.075 0.132
  M 0.010 0.021 0.058 0.226 0.425
```

Mosaic plots visualize contingency tables.

Measures of center and variation

```
> min(users$votes);max(users$votes)
[1] 20
[1] 737
> mean(users$votes)
[1] 106.4
> median(users$votes)
[1] 65
 summary(users$votes) # five-number summary
   Min. 1st Qu. Median Mean 3rd Qu.
                                           Max.
     20
             33
                     65
                            106
                                    148
                                            737
> sd(users$votes) # standard deviation
   100.93
```

NPFL054, 2019 Hladká & Holub Lecture 2, page 18/76

Box-and-whiskers plots

- the sample of 122 ratings
 1 2 3 4 5
 2 7 35 45 33
- median(x) = 4
- $\bar{x} = 3.82$
- sd(x) = 0.95
- the bottom whisker is much longer than the top whisker
- Peter's rating is in green and Mary's rating in orange

- Boxplots are of a great importance to detect outliers and extreme values
- Outlier (Extreme value) is an observation that is distant from other observations, typically if it falls more than 1.5 (3)*($Q_3 Q_1$) above Q_3 or below Q_1 .

Boxplots are of a great importance to detect outliers and extreme values

```
boxplot <- boxplot(tapply(votes$rating, votes$movie, sd))</pre>
# analyze outliers
 boxplot$out[1:2]
    247
            314
1.788854 0.000000
 subset(votes, movie == 247) # Turbo: A Power Rangers Movie
     user movie rating
                               timestamp
            247
38147
       38
                    5 1998-04-13 03:04:20
38148 1 247
                    1 1997-09-26 04:40:19
38149 374 247 1 1997-12-01 01:35:22
38150 222 247
                    1 1997-11-05 08:29:58
38151 782 247
                    1 1998-04-02 08:48:20
> movies[movies$movie == 247.]
247 Turbo: A Power Rangers Movie (1997) 28-Mar-1997 ...
```

Scatter plots display values of two numerical features.

Analyzing distributions of values

Analyzing imdb_rating

 What kind of probability distribution characterizes the IMDb ratings?

Analyzing distributions of values

Analyzing imdb_rating

Does imdb_rating follow a normal distribution?

- Visualize the distribution using a quantile-quantile plot (Q-Q plot)
- Use a distribution test

Visualize the distribution using a quantile-quantile plot

Draw a conclusion: imdb_rating does not follow a normal distribution.

Association between feature and target value Numerical features

Covariance cov(X, Y) is a measure of the joint variability of two random variables X and Y

$$cov(X, Y) = E[(X - EX)(Y - EY)]$$

The magnitude of the covariance is not easy to interpret because it is not normalized and hence depends on the magnitudes of the variables. Therefore

Normalize the covariance \rightarrow correlation coefficient

Association between feature and target value Numerical features

Pearson correlation coefficient is a measure of the linear relationship between two variables

For a population

$$-1 \le \rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} \le +1$$

- perfect negative correlation if $\rho = -1$
- perfect positive correlation if $\rho = +1$
- not linear relationship if $\rho = 0$
- For a sample

$$-1 \le r_{X,Y} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{s_X s_Y} \le +1$$

Association between feature and target value Numerical features

r(Peter's rating, imdb_rating)	0,51
r(Paul's rating, imdb_rating)	0,44
r(Mary's rating, imdb_rating)	0,37
r(Peter's rating, Mary's rating)	0,29
r(Peter's rating, Paul's rating)	0,29
r(Paul's rating, Mary's rating)	0,24

Association between feature and target value Categorical features

Pearson's χ^2 test

This test compares observed frequencies O_{ij} with theoretical frequencies E_{ij} that we would expect in case of statistical independence of X and Y. Test statistic $\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$ follows a χ^2 distribution with (r-1)(s-1) degrees of freedom when the null hypothesis is true (r/s) is the number of rows/columns in the contingency table).

Pearson contingency coefficient

$$0<\sqrt{\frac{\chi^2}{n+\chi^2}}<1$$

- ullet perfect correlation if ightarrow 1
- no correlation if $\rightarrow 0$

Note: Correction such that the <u>coe</u>fficient can take values between 0 and 1 (which is not true if $r \neq s$): $\sqrt{\frac{\chi^2}{n+\chi^2}} / \sqrt{\frac{\min(r;s)-1}{\min(r;s)}}$

NPFL054, 2019 Hladká & Holub Lecture 2, page 29/76

Association between feature and target value Categorical features

rating (pearson-contingency-coefficient-mov.R)

Association between features Categorical features

western

western

Analyzing values Feature frequency

Feature frequency

$$fr(A_i) = \#\{\mathbf{x}_i \,|\, x_i^j > 0\}$$

where A_j is the *j*-th feature (binary), \mathbf{x}_i is the feature vector of the *i*-th instance, and \mathbf{x}_i^j is the value of A_j in \mathbf{x}_i .

```
> examples <- read.csv("cry.development.csv", sep="\t")</pre>
> c <- examples[,-c(1,ncol(examples))]</pre>
> nrow(examples)
Γ17 250
> length(names(c)) # get the number of features
[1] 363
# compute feature frequency using the fr function (see feature-frequency-cry.R)
> ff <- apply(c, 2, fr) # apply fr to columns ('2') of c</p>
> table(sort(ff))
181 47
        26 12 9 3 5 6 4 4 7
                       31
                           32
               29 30
                               34 35
                                        39
   1 1 2 1
                        5
                            92
                            1
247 248 249
```


Filter out uneffective features from the CRY data

```
> examples <- read.csv("cry.development.csv", sep="\t")</pre>
> n <- nrow(examples)</pre>
> ## remove id and target class tp
> c <- examples[,-c(1,ncol(examples))]</pre>
> ## remove features with 0s only
> c.1 <- c[, !lapply(c,fr) == 0 ]
> ## remove features with 1s only
> c.2 <- c.1[, !lapply(c.1,fr) == n ]
> ## remove column duplicates
> c.effective <- data.frame(t(unique(t(as.matrix(c.2)))))</pre>
> ncol(c)
                       # get the number of input features
[1] 363
> ncol(c.effective) # get the number of effective features
[1] 168
```

Analyzing values Entropy – VPR data (cry)

Entropy is a measure of the uncertainty in a random variable

$$H(X) = -\sum_{x \in X} \Pr(x) \log_2 \Pr(x)$$

Analyzing values Entropy – VPR data (cry)

Analyzing values Entropy – VPR data (cry)

Association between feature and target value Conditional entropy – VPR data (cry)

$$H(Y|X) = -\sum_{x \in X, y \in Y} \Pr(x, y) \log_2 \Pr(y|x)$$

NPFL054, 2019 Hladká & Holub Lecture 2, page 40/76

Association between feature and target value Conditional entropy – VPR data (cry)

Association between feature and target value Conditional entropy – VPR data (cry)

Association between feature and target value Pearson contingency coefficient – VPR data (cry)

Clustering Supervised vs. Unsupervised learning

Supervised learning

$$\textit{Data} = \{ \langle \mathbf{x}, y \rangle : \mathbf{x} \in X, y \in Y \}$$

Unsupervised learning

$$Data = \{ \mathbf{x} : \mathbf{x} \in X \}$$

Clustering

Clustering finds homogenous subgroups among the instances in the unlabeled data.

Clustering

Discovering structure

The most common criteria

- Homogenity
 Objects within a same cluster should be similar each other
 - Separation
 Objects in different clusters should be dissimilar from each other

Clustering algorithms

Credits: (Kononenko, Kukar, 2007)

Clustering Similarity metrics

The most common one

Cosine similarity

$$\mathrm{sim}(\textbf{u},\textbf{v}) = \frac{\textbf{u} \cdot \textbf{v}}{\sqrt{||\textbf{u}||^2 \cdot ||\textbf{v}||^2}}$$

Clustering Dissimilarity metrics

Dissimilarity can be thought of as distance. The most common ones:

• Euclidean distance – continuous features

$$d(\mathbf{u},\mathbf{v}) = \sqrt{\sum_{i=1}^{m} (u_i - v_i)^2}$$

• Manhattan distance – continuous features

$$d(\mathbf{u},\mathbf{v}) = \sum_{i=1}^{m} |u_i - v_i|$$

• Hamming distance - categorical features

$$d(\mathbf{u},\mathbf{v})=\sum_{i=1}^m(u_i\neq v_i)$$

Clustering algorithms Notation

- $Data = \{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \}$
- A set of k clusters $C = \{C_1, C_2, \dots, C_k\}$ containing the indeces of the instances
- $C_1 \cup \cdots \cup C_k = \{1, 2, \ldots, n\}$
- $C_j \cap C_i = \emptyset, \forall i \neq j$
- *i*-th cluster centroid $\mu(C_i) = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$

Clustering algorithms Loss functions

Within-cluster variation L(C_i)

$$L(C_i) = 2\sum_{\mathbf{x}_I \in C_i} d(\mathbf{x}_I, \mu(C_i))^2$$

(originally
$$L(C_i) = \frac{1}{|C_i|} \sum_{\mathbf{x}_i, \mathbf{x}_j \in C_i} d(\mathbf{x}_i, \mathbf{x}_j)^2$$
)

• Total within-cluster variation $L(C_1, \ldots, C_k)$

$$L(C_1,\ldots,C_K)=\sum_{i=1}^K L(C_i)$$

The most common choice of d involves Euclidean distance.

K-means algorithm Optimization problem

$$\operatorname{argmin}_{C_1,\dots,C_K} L(C_1,\dots,C_K) = \operatorname{argmin}_{C_1,\dots,C_K} \sum_{i=1}^K L(C_i) \tag{1}$$

NPFL054, 2019 Hladká & Holub Lecture 2, page 52/76

K-means algorithm

- **1** Create clusters C_1^0, \ldots, C_K^0
 - randomly assign a number, from 1 to K, to each of the instance so that each cluster contains at least one instance
- 2 while a stopping criteria is not met do
 - a) centroid update: for all clusters C_i^t , i = 1, ..., K do

$$\mu(C_i^t) = \frac{1}{|C_i^t|} \sum_{\mathbf{x} \in C_i^t} \mathbf{x}$$

b) data assignment: for all clusters C_i^t , i = 1, ..., K do

$$C_i^{t+1} = \{\mathbf{x}; d(\mathbf{x}, \mu(C_i^t))^2 \leq d(\mathbf{x}, \mu(C_i^t))^2, \forall l \neq i\}$$

Stopping criteria: no data points change clusters, the sum of the distances is minimized, or some maximum number of iterations is reached

K-means

Convergence animation

Dataset USArrests from the base R distribution

- statistics in arrests per 100,000 residents in each of the 50 US states in 1973

```
> attributes(USArrests)
$names
 [1] "Murder" "Assault" "UrbanPop" "Rape"
# UrbanPop is the percent of the population living in urban areas
$class
 [1] "data.frame"
$row.names
  [1] "Alabama"
                        "Alaska"
                                          "Arizona"
                                                            "Arkansas"
  [5] "California"
                        "Colorado"
                                          "Connecticut"
                                                            "Delaware"
  [9] "Florida"
                        "Georgia"
                                          "Hawaii"
                                                            "Idaho"
 [13] "Illinois"
                        "Indiana"
                                          "Iowa"
                                                            "Kansas"
 [17] "Kentucky"
                        "Louisiana"
                                          "Maine"
                                                            "Maryland"
 [21] "Massachusetts"
                        "Michigan"
                                          "Minnesota"
                                                            "Mississippi"
 [25] "Missouri"
                        "Montana"
                                          "Nebraska"
                                                            "Nevada"
 [29] "New Hampshire"
                        "New Jersey"
                                          "New Mexico"
                                                            "New York"
 [33] "North Carolina"
                        "North Dakota"
                                          "Ohio"
                                                            "Oklahoma"
 [37] "Oregon"
                        "Pennsylvania"
                                          "Rhode Island"
                                                            "South Carolina'
 [41] "South Dakota"
                        "Tennessee"
                                          "Texas"
                                                            "Utah"
 [45] "Vermont"
                        "Virginia"
                                          "Washington"
                                                            "West Virginia"
                        "Wvoming"
      "Wisconsin"
NPFL054, 2019
                                                                 Lecture 2, page 55/76
```

```
> str(USArrests)
'data.frame':
             50 obs. of 4 variables:
 $ Murder: num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
 $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
 $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
 $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 ...
> d <- USArrests
> examples <- d[,c(2,4)]</pre>
> km.3 <- kmeans(examples, 3, nstart=20)</pre>
> km.3$tot.withinss
[1] 38435.53
> km.3$withinss
[1] 15847.167 7109.191 15479.168
```


Multiple initial cluster assignments (nstart)

```
> km.1 <- kmeans(examples, 6, nstart=1)
> km.1$tot.withinss
[1] 13711.87
>
> km.20 <- kmeans(examples, 6, nstart=20)
> km.20$tot.withinss
[1] 10282.92
```

Which K to choose? Use e.g. Elbow method

K-means algorithm

Remarks

- The results depend on the initial clusters. The standard solution is to try a number of different starting points (see nstart in R).
 This is an annoyance that must be handled in an implementation.
- The results depend on the metric used to measure similarity.
- The results depend on the value of *K*.

Hierarchical clustering methods

- do not require specification of the number of clusters.
- do produce tree-based representation of the instances, called dendrogram

Dendrogram

is a rooted binary tree where

- the root node represents an input data set Data, |Data| = n
- the internal nodes represent the groups of instances
- each non-terminal node has two daughter nodes
- each terminal node represents one of the input instances (n terminal nodes)

Dendrogram

 $\mathsf{height} = \mathsf{distance}$

How to read a dendrogram

- location of instances on the horizontal axis says nothing about the similarity
- location on the vertical axis: dissimilarity between the clusters when they were merged
- ullet cutting the dendrogram \sim getting clusters

Hierarchical clustering methods

Agglomerative (bottom-up) clustering

- 1 Start with each instance in its own singleton cluster
- 2 At each step, greedily merge 2 most similar clusters
- 3 Stop when there is a single cluster of all examples, else go to 2

Divisive (top-down) clustering

- 1 Start with all instances in the same cluster
- 2 At each step, remove the "outsiders" from the least cohesive cluster
- 3 Stop when each example is in its own singleton cluster, else go to 2

Agglomerative (bottom-up) hierarchical methods

- 1 for i := 1 to n do $C_i := \{\mathbf{x}_i\}$ end
- **2** $C := \{C_1, C_2, \dots, C_n\}$
- **3** i := n + 1
- **4** while |C| > 1

 - $C_i = C_{n_1} \cup C_{n_2}$
 - 3 $C := C \setminus \{C_{n_1}, C_{n_2}\} \cup C_i$
 - **4** i := i + 1

Agglomerative hierarchical methods

Work with distance (dissimilarity) measures

- dissimilarity between instances $d(x_i, x_j)$
- dissimilarity between clusters $d(C_u, C_v)$
 - then 4.1 in the algorithm is

$$(\mathit{C}_{\mathit{n}_{1}},\mathit{C}_{\mathit{n}_{2}}) := \mathrm{argmin}_{\mathit{C}_{\mathit{u}},\mathit{C}_{\mathit{v}} \in \mathit{C} \times \mathit{C}} \, d(\mathit{C}_{\mathit{u}},\mathit{C}_{\mathit{v}})$$

where $d(C_u, C_v)$ is a linkage function

The choice of linkage function determines how we measure dissimilarity between clusters.

Dissimilarity between clusters Single linkage clustering

The minimum dissimilarity between instances of each cluster

$$d(C_u, C_v) = \min_{\mathbf{x}_i \in C_u, \mathbf{x}_j \in C_v} d(\mathbf{x}_i, \mathbf{x}_j)$$

Dissimilarity between clusters Complete linkage clustering

The maximum dissimilarity between instances of each cluster

$$d(C_u, C_v) = \max_{\mathbf{x}_i \in C_u, \mathbf{x}_j \in C_v} d(\mathbf{x}_i, \mathbf{x}_j)$$

Dissimilarity between clusters Average linkage clustering

The mean dissimilarity between instances of each cluster

$$d(C_u, C_v) = \frac{1}{|C_u||C_v|} \sum_{\mathbf{x}_i \in C_u} \sum_{\mathbf{x}_j \in C_v} d(\mathbf{x}_i, \mathbf{x}_j)$$

USArrest and the linkage methods

NPFL054, 2019 Hladká & Holub Lecture 2, page 71/76

Cutting the dendrogram

> hc.complete <- hclust(dist(d), method = "complete")
draw dendogram with red borders around the 3 clusters
> rect.hclust(hc.complete, k=3, border="red")

USArrests data, hclust with complete linkage, k=3

Cutting the dendrogram

Cut the dendrogram at height h. The interpretation of h is

- complete linkage: for each instance \mathbf{x}_i , EVERY other instance \mathbf{x}_j in its cluster satisfies $d(\mathbf{x}_i, \mathbf{x}_i) \leq h$
- single linkage: for each instance \mathbf{x}_i , there is ANOTHER instance \mathbf{x}_j in its cluster satisfies $d(\mathbf{x}_i, \mathbf{x}_i) \leq h$
- average linkage: no interpretation

Agglomerative hierarchical methods

Stopping criteria

- Distance criterion
 When the clusters are too far apart to be merged
- Number criterion
 When there is sufficiently small number of clusters

Key takeaways

- Examine the data before diving into the building predictor.
- Spot issues with data range, units, data type, and missing or invalid values.
- Visualization gives a sense of data distribution and relationships among variables.
- Visualization helps answer questions about the data.
- The goal of clustering is to discover or draw out similarities among subsets of your data.
- Different units cause different distances and potentially different clusterings.
- Different clustering algorithms will give different results. Consider different approaches, with different numbers of clusters.
- Consider the results from different heuristics for estimating the best number of clusters and explore various numbers of clusters.

Summary of Lecture #2 Examination Requirements

- Methods for basic data exploration plotting and summarizing
- Association between features
- Clustering algorithms: K-means, hierarchical agglomerative