Deep Learning for medical image recognition

Chen DANG & Hippolyte DEBERNARDI

Supervised by Ronan SICRE

- > Introduction
 - Description of a convolutional neural network
 - Presentation of the CNN chosen
 - Data sets we used

- Overview of Transfer Learning
 - Fixed Feature Extraction
 - Pre-trained models
 - Fine-tuning
 - Histogram equalization & Data augmentation

- > Final results
- Conclusion

Convolutional Neural Network

3 major parts that compose a CNN

Convolution

3 major parts that compose a CNN

> Pooling

3 major parts that compose a CNN

Fully connected layer

Data sets used

	# of classes	# of images for train, test, val	size & resemblance to imagenet	image size
Chest X-ray (Pneumonia)	2	5221, 624, 16	decent, very far	variable (smallest value is 640)
Cancer cells	2	72, 26, 26	very little, far	4000, 3000
Kvasir v2	8	4800, 1600, 1600	decent, far	720, 576
Mini MIT Etus	3	120, 120, 0	very little, very close	variable (some are close to 128)

Transfert Learning

Fixed Feature Extraction

> CNN codes

Fully connected layer to fully convolutional layer

> VGG-19 + SVM

➤ VGG-19 + VLAD + SVM

CNN codes

Assumption : more convolutional layers lead the network to be able to represent more complicated/specified features

Fully connected layer to fully convolutional layer

- VGG-19 image size : (224, 224)
- Wanted image size : (224 + 320n, 224 + 320n), where n = 0, 1, 2

Initial VGG-19

Transformed VGG-19

VGG-19 + SVM

Increasing size of input image given to the network matters!

n = 1 (224 + 320) seems to be
 the best parameter nearly always

	mean pooling			max pooling		
	block5_pool	fc1	fc2	block5_pool	fc1	fc2
N=0	0.78	0.83	0.82	0.78	0.83	0.82
N=1	0.82	0.74	0.82	0.78	0.82	0.87
N=2	0.78	0.75	0.79	0.75	0.82	0.81

Table 1: Accuracy scores of miniMIT

	mean pooling			max pooling		
	block5_pool	fc1	fc2	block5_pool	fc1	fc2
N=0	0.80	0.80	0.81	0.78	0.80	0.81
N=1	0.81	0.78	0.82	0.80	0.78	0.81
N=2	0.75	0.78	0.78	0.78	0.77	0.80

Table 2: Accuracy scores of chest_xray

	mean pooling			max pooling		
	block5_pool fc1 fc2		block5_pool	fc1	fc2	
N=0	0.87	0.88	0.86	0.86	0.86	0.86
N=1	0.88	0.88	0.87	0.85	0.88	0.87
N=2	0.86	0.87	0.86	0.81	0.86	0.87

Table 3: Accuracy scores of kvasir_v2

	mean pooling			max pooling		
	block5_pool	fc1	fc2	block5_pool	fc1	fc2
N=0	0.67	0.62	0.59	0.69	0.63	0.59
N=1	0.88	0.78	0.78	0.59	0.88	0.78
N=2	0.61	0.51	0.51	0.71	0.78	0.76

Table 4: Accuracy scores of cancer_cells

VLAD (Vector of Locally Aggregated Descriptors)

- Learning: k-means
 - output: k centroids: $c_1, ..., c_i, ..., c_k$
- VLAD computation:

$$\bigoplus c(x) = \arg\min_{c_i} ||c_i - x||^2$$

23
$$v_i = \sum_{x \in (x) = x} x - c_i$$

$$v = [v_1, \dots, v_i, \dots, v_k], v_i \in \mathbb{R}^{128}$$

$$\Rightarrow$$
 dimension $D = k *128$

- L2-normalized
- Typical parameter: k=64 (D=8192)

VGG19 + VLAD + SVM

Layer	Dataset	Accuracy(k=64)	Accuracy(k=128)	Previous best
block5_pool	miniMIT_Etus	0.82	0.84	0.82
block3_poor	cancer_cells	0.77	0.74	0.88
fc1	miniMIT_Etus	0.71	0.84	0.83
	cancer_cells	0.77	0.71	0.88
fc2	miniMIT_Etus	0.82	0.82	0.87
	cancer_cells	0.79	0.74	0.78

VLAD doesn't really increase the performance or slightly

Fine-tuning VGG-19 network

Take a pre-trained model and try to find the best layers to train again

Training parameters

- > 300 epochs with an early stopping callback fixed at 20
- Optimize Adam with initial learning rate 1e-6

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

Note

- M number of classes (dog, cat, fish)
- log the natural log
- y binary indicator (0 or 1) if class label c is the correct classification for observation o
- p predicted probability observation o is of class c

Baseline on Chest X-ray

Frozen layers	Accuracy, Recall	Epochs	Trainable parameters
-	0.892, 0.953	1	139.578.434
blocks	0.878, 0.979	2	119.545.856
blocks, fc1	0.902 , 0.964	19	16.781.312
blocks, fc2	0.851, 0.969	2	102.764.544
fc1	0.829, 0.992	2	36.813.544
fc2	0.816, 0.995	1	122.797.122

> Train the last two layers makes sense!

Let's try to visualize what we predict

VGG 19 GradCAM for layer : block5 pool

Explanation for: NORMAL 0.83

Ground truth is : NORMAL

VGG 19 GradCAM for layer : block5_pool

Explanation for : PNEUMONIA 0.99

Ground truth is : PNEUMONIA

GradCAM comparison : MIT data set (block5_pool)

What we can conclude at this point

Data set	Accuracy
Chest X-ray	0.902
Kvasir (version 2)	0.82
Mini MIT	0.77
Cancer cells	0.78

- Pre-trained models perform better on larger data sets
- Pre-trained models, even on larger data sets, are overfitted
- A network is strong or weak if it can motivate its output

Thus, we decide to explore a way to improve our network in terms of interpretation along to get better metrics results.

Prediction visualisation for each pool layer

Xception network and depthwise convolutions

- Xception network by François Chollet (creator of Keras)
- Depthwise convolution decrease the computing time with nearly the same result as a normal convolution
 - Main difference is that we transform an image once then elongate it to the number of channels desired
- Based on VGG-19 first 3 blocks, we construct 2 blocks of Depthwise convolution followed by a normalization to prevent overfitting

Depthwise convolution

CNN architecture

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 224, 224, 3)	θ
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	

block4_sepconv1 (SeparableCo	(None,	28, 28, 512)	133888
block4_conv1_bn (BatchNormal	(None,	28, 28, 512)	2048
block4_sepconv2 (SeparableCo	(None,	28, 28, 512)	267264
block4_conv2_bn (BatchNormal	(None,	28, 28, 512)	2048
block4_sepconv3 (SeparableCo	(None,	28, 28, 512)	267264
block4_pool (MaxPooling2D)	(None,	14, 14, 512)	
block5_sepconv1 (SeparableCo	(None,	14, 14, 512)	267264
block5_conv1_bn (BatchNormal	(None,	14, 14, 512)	2048
block5_sepconv2 (SeparableCo	(None,	14, 14, 512)	267264
block5_conv2_bn (BatchNormal	(None,	14, 14, 512)	2048
block5_sepconv3 (SeparableCo	(None,	14, 14, 512)	267264
block5_pool (MaxPooling2D)	(None,	7, 7, 512)	
flatten (Flatten)	(None,	25088)	
fc1 (Dense)	(None,	1024)	25691136
dropout1 (Dropout)	(None,	1024)	
fc2 (Dense)	(None,	512)	524800
dropout2 (Dropout)	(None,	512)	
predictions (Dense)	(None,	2)	1026

Trainable params: 27,691,266 Non-trainable params: 2,329,664

Results obtained with that CNN

Data set	Accuracy with custom CNN	Accuracy with VGG-19
Chest X-ray	0.94	0.902
Kvasir (version 2)	0.94	0.82
Mini MIT	0.86	0.77
Cancer cells	0.84	0.78

Prediction visualisation for last conv layer

VGG 19 GradCAM for layer : block5_pool Explanation for : PNEUMONIA 0.69

Original image

Ground truth is : PNEUMONIA

Custom CNN GradCAM for layer : block5_pool

Explanation for : PNEUMONIA 0.98

Ground truth is : PNEUMONIA

Other tricks we used

- Pixel regularization
 - no improvement
 - may be combined with raw image

> Data augmentation

 good improvement for smaller datasets (5~10%)

Figure 33: Difference between a raw and normalized image from Chest X-ray data set

Final results

Dataset	Dataset shape	Best method name	Accuracy, Recall	Previous best
miniMIT_Etus	train(120,3) test(120,3)	Feature extraction with max pooling on layer fc2 with image scale (864, 864) + linear SVM	0.87, -	0.84, -
cancer_cells	train(72,2) test(26,2) val(26,2)	Feature extraction with max pooling on layer fc1 with image scale (544, 544) + linear SVM	0.88, 0.8	-
Kvasir_v2	train(4800,8) test(1600,8) val(1600,8)	Our custom CNN	0.94, 0.90	0.88, -
Chest_xray Pneumonia	train(5221,2) test(624,2) val(16,2)	Our custom CNN	0.94, 0.97	0.78, -

Conclusion

- 4 data sets of various properties
 - Transfer Learning scenarios to use for a image classification project
- Size of the data set and its similarity to the original data set matters
 - Large ⇒ fine-tuning of a pre-trained network
 - Small ⇒ linear classifier on fully connected layers from a pre-trained network.
 - VLAD ⇒ not so relevant but could improve the accuracy from the last convolutional layer
- In case the data set you use is very similar to the ImageNet data set, you should just use the best pre-trained network available nowadays
- Excellent neural network in regards of metrics NOT always useful
 - Output should be relevant for humans.