

Verfahren zum Herstellen von Difluoracetessigsäurealkylestern

Die vorliegende Erfindung betrifft ein neues Verfahren zum Herstellen von 4,4-Difluoracetessigsäurealkylestern (4,4-Difluor-3-oxobutansäurealkylestern) aus 4-Chlor-4,4-difluoracetessigsäurealkylestern, welche wiederum aus 2-Chlordifluoressigsäurealkylestern erhalten werden.

Es ist bereits bekannt, dass man 4,4-Difluoracetessigsäureethylester durch Umsetzung von Difluoressigsäureethylester mit Ethylacetat in Gegenwart von Natriumhydrid erhalten kann (vgl. *Tetrahedron* 2001, 57, 2689-2700). Die Ausbeute dieser Reaktion ist mit 25 % allerdings sehr unbefriedigend. Zudem ist der als Nebenprodukt erhaltene Acetessigsäureethylester nur schwer vom gewünschten Produkt abzutrennen.

Außerdem ist bekannt, dass sich 4,4-Difluoracetessigsäureethylester durch die Reaktion von Difluoressigsäureethylester mit Bromessigsäureethylester in Gegenwart von Zink herstellen lässt (vgl. *Tetrahedron* 1996, 52, 119-130). Auch bei diesem Verfahren lassen die Ausbeuten stark zu wünschen übrig.

Beiden genannten Verfahren ist darüber hinaus der Nachteil gemeinsam, dass der eingesetzte Difluoressigsäureethylester sehr teuer und somit für die großtechnische Produktion als Edukt unattraktiv ist.

Weiterhin ist bekannt, dass man eine Chlordifluoracetylgruppe als Substituent eines Aromaten unter Verwendung von Natrium-formaldehydsulfoxylat-Dihydrat reduzieren kann (vgl. *Tetrahedron Lett.* 2001, 42, 4811-4814). Jedoch lässt sich diese Reaktion nicht auf den 4-Chlor-4,4-difluoracetessigsäureethylester übertragen.

Die Aufgabe der vorliegenden Erfindung bestand also in der Bereitstellung eines neuen, wirtschaftlichen Verfahrens, durch welches 4,4-Difluoracetessigsäurealkylester mit hoher Gesamtausbeute und hoher Reinheit erhalten werden können.

Gegenstand der vorliegenden Erfindung ist also ein Verfahren zum Herstellen von 4,4-Difluoracetessigsäurealkylestern der Formel (I)

in welcher R für Alkyl steht,

dadurch gekennzeichnet, dass man

a) in einem ersten Schritt 4-Chlor-4,4-difluoracetessäurealkylester der Formel (II)

in welcher R die oben angegebene Bedeutung hat,
5 mit Trialkylphosphiten der Formel (III)

in welcher
R¹ für C₁-C₄-Alkyl steht, wobei die Reste R¹ jeweils gleich oder verschieden sein
können,
10 umsetzt,

die so erhaltenen Alkylphosphonsäureester der Formel (IV)

in welcher R und R¹ die oben angegebenen Bedeutungen haben,
15

in einem zweiten Schritt mit einem Amin der Formel (V)

in welcher
R² und R³ unabhängig voneinander für Wasserstoff oder C₁-C₈-Alkyl oder gemeinsam für
20 -CH₂-CH₂-O-CH₂-CH₂- , -CH₂-CH₂-S-CH₂-CH₂- oder -CH₂-CH₂-N(R⁴)-CH₂-CH₂-
stehen,
R⁴ für Wasserstoff oder C₁-C₈-Alkyl steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

25 und die so erhaltenen Enamine der Formel (VI)

in welcher R, R² und R³ die oben angegebenen Bedeutungen haben,
in einem dritten Schritt in Gegenwart einer Säure hydrolysiert.

5 Überraschenderweise lassen sich die Alkylphosphonsäureester der Formel (IV) nicht direkt durch
saure Hydrolyse in das gewünschte Endprodukt überführen, vielmehr wird unter diesen Bedingungen
Zersetzung beobachtet. Ebenfalls überraschend wird im zweiten Schritt des erfindungsgemäßen Ver-
fahrens aus den Alkylphosphonsäureestern der Formel (IV) und einem Amin der Formel (V) nicht der
gewünschte 4,4-Difluoracetessigsäurealkylester und das entsprechende Phosphorsäureamid erhalten,
10 sondern das Enamin der Formel (VI) und das Ammoniumsalz des Phosphorsäurediesters. Dieses
Enamin wiederum lässt sich überraschend leicht durch saure Hydrolyse in die 4,4-Difluoracetessig-
säureester der Formel (I) überführen. Dazu ist eine Isolierung des Enamins nicht einmal erforderlich.

Das erfindungsgemäße Verfahren überkommt also die oben genannten Nachteile bekannter Herstel-
15 lungenverfahren und liefert 4,4-Difluoracetessigsäurealkylester in hoher Ausbeute und hoher Reinheit.
Außerdem besitzt das Verfahren den Vorteil, dass sich Acetessigsäureester, welcher als Verunreini-
gung in 4-Chlor-4,4-difluoracetessigsäurealkylestern der Formel (II) enthalten sein kann, leicht aus
dem Reaktionsgemisch entfernen lässt. Acetessigsäureester reagieren bei der Umsetzung mit Tri-
20 alkylphosphiten der Formel (III) nicht und lassen sich von den Alkylphosphonsäureestern der Formel
(IV) somit destillativ entfernen.

Ausgehend von 4-Chlor-4,4-difluoracetessigsäureethylester, Trimethylphosphit und Diisopropylamin
kann das erfindungsgemäße Verfahren durch das folgende Formelschema veranschaulicht werden.

Die nach dem erfindungsgemäßen Verfahren erhältlichen 4,4-Difluoracetessigsäurealkylester können neben der in Formel (I) gezeigten Keto-Form auch in der Enol-Form vorliegen:

5

Neben den 4,4-Difluoracetessigsäurealkylestern werden nach dem erfindungsgemäßen Verfahren auch die Hydrate der Verbindungen erhalten:

10 Als Produkt des erfindungsgemäßen Verfahrens wird daher neben 4,4-Difluoracetessigsäurealkylestern (in Keto- und Enol-Form) auch das jeweilige Hydrat verstanden. In Abhängigkeit von der Folgechemie können entweder alle drei Formen des Produktes oder jeweils nur bestimmte Formen weiter umgesetzt werden (vgl. unten).

15 Die im ersten Schritt des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe verwendeten 4-Chlor-4,4-difluoracetessigsäurealkylester der Formel (II) sind bekannt (vgl. Journal of Fluorine Chemistry 1992, 56, 271-284; Huaxue Xuebao 1983, 41, 729-729 und Chemical Abstracts 1984, 100, Abstract No. 22308; EP-A 0 082 252). Sie lassen sich beispielsweise herstellen, indem man

20 b) Chlordifluoressigsäurealkylester der Formel (VII)

in welcher R die oben angegebene Bedeutung hat,
mit Essigsäurealkylestern der Formel (VIII)

25 in welcher R die oben angegebene Bedeutung hat,
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

Die Alkylphosphonsäureester der Formel (IV) und die Enamine der Formel (VI) sind neu. Sie lassen sich gemäß dem erfundungsgemäßen Verfahren (a) herstellen.

Trialkylphosphite der Formel (III), Amine der Formel (V), Chlordifluoressigsäurealkylester der 5 Formel (VII) (mögliche Herstellung siehe Herstellungsbeispiele) und der Essigsäurealkylester der Formel (VIII) sind bekannte Synthesekomplexe.

Im ersten Schritt des erfundungsgemäßen Verfahrens (a) werden 4-Chlor-4,4-difluoracetessigsäure-alkylester der Formel (II) eingesetzt, in welcher R bevorzugt für C₁-C₆-Alkyl, besonders bevorzugt für 10 C₁-C₆-Alkyl, ganz besonders bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sek-, tert-Butyl, und insbesondere ganz besonders bevorzugt für Methyl oder Ethyl steht.

Im ersten Schritt des erfundungsgemäßen Verfahrens (a) werden Trialkylphosphite der Formel (III) eingesetzt, in welcher R¹ jeweils gleich oder verschieden sein kann. R¹ steht bevorzugt für Methyl, 15 Ethyl, n-, iso-Propyl, n-, iso-, sek-, tert-Butyl, besonders bevorzugt für Methyl oder Ethyl steht.

Bevorzugte Alkylphosphonsäureester sind solcher Verbindungen der Formel (IV), in welcher R die oben als bevorzugt, besonders bevorzugt, ganz besonders bevorzugt bzw. insbesondere ganz besonders bevorzugt angegebenen Bedeutungen hat, und in welcher R¹ jeweils gleich oder verschieden sein kann und die oben als bevorzugt bzw. besonders bevorzugt angegebenen Bedeutungen hat. 20

Im zweiten Schritt des erfundungsgemäßen Verfahrens (a) werden Amine der Formel (V) eingesetzt, in welcher R² und R³ unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₆-Alkyl oder gemeinsam für -CH₂-CH₂-O-CH₂-CH₂-, -CH₂-CH₂-S-CH₂-CH₂- oder -CH₂-CH₂-N(R⁴)-CH₂-CH₂-, besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sek-, tert-Butyl oder gemeinsam für 25 -CH₂-CH₂-O-CH₂-CH₂-, ganz besonders bevorzugt unabhängig voneinander für iso-Propyl, iso-, sek-, tert-Butyl oder gemeinsam für -CH₂-CH₂-O-CH₂-CH₂-, insbesondere ganz besonders bevorzugt jeweils für iso-Propyl stehen. In Formel (V) steht R⁴ bevorzugt für Wasserstoff oder C₁-C₆-Alkyl, besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sek- oder tert-Butyl.

30 Bevorzugte Enamine sind solcher Verbindungen der Formel (VI), in welcher R die oben als bevorzugt, besonders bevorzugt, ganz besonders bevorzugt bzw. insbesondere ganz besonders bevorzugt angegebenen Bedeutungen hat, und in welcher R² und R³ die oben als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegebenen Bedeutungen haben.

Erster Schritt des erfindungsgemäßen Verfahrens (a)

Der erste Schritt des erfindungsgemäßen Verfahrens (a) wird in der Regel ohne weitere Verdünnungsmittel durchgeführt. Es ist aber auch möglich, zusätzlich ein Verdünnungsmittel zu verwenden (z.B. Methylenechlorid).

5

Der erste Schritt des erfindungsgemäßen Verfahrens (a) kann innerhalb eines relativ großen Temperaturbereichs durchgeführt werden. Im Allgemeinen arbeitet man bei Temperaturen von 10°C bis 50°C, bevorzugt von 20°C bis 40°C, besonders bevorzugt von 25°C bis 30°C. Ganz besonders bevorzugt werden die Reaktionskomponenten im ersten Schritt bei 25°C bis 30°C zur Reaktion gebracht. Anschließend lässt man zunächst bei 40°C bis 45°C nachreagieren und auf Raumtemperatur abkühlen.

10

Die Reaktionszeit ist nicht kritisch und kann in Abhängigkeit von der Ansatzgröße in einem größeren Bereich gewählt werden. Im Allgemeinen werden die Reaktanden über einen Zeitraum von bis zu 150 min, bevorzugt bis zu 120 min, besonders bevorzugt bis zu 90 min zusammen gebracht. Die Zeit für das Nachreagieren beträgt in der Regel 3 Stunden, während über Nacht (d.h. in ca. 16 Stunden) abgekühlt wird.

15

Die Aufarbeitung erfolgt nach üblichen Methoden. Im ersten Schritt wird in der Regel zunächst unter verminderter Druck eingeengt und anschließend das Produkt dieses Schrittes durch Destillation gewonnen.

20

Bei der Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol 4-Chlor-4,4-difluoracetessigsäurealkylester der Formel (II) im Allgemeinen zwischen 0,5 Mol und 5 Mol, vorzugsweise zwischen 0,5 Mol und 3 Mol, besonders bevorzugt zwischen 1 Mol und 2 Mol, ganz besonders bevorzugt zwischen 1,2 Mol und 1,7 Mol eines Trialkylphosphites der Formel (III) ein.

Zweiter Schritt des erfindungsgemäßen Verfahrens (a)

Der zweite Schritt des erfindungsgemäßen Verfahrens (a) wird gegebenenfalls in der Gegenwart eines Verdünnungsmittels durchgeführt. Als Verdünnungsmittel kommen alle für solche Reaktionen üblichen inerten organischen Solventien infrage. Vorzugsweise verwendbar sind gegebenenfalls halogenierte, aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol, Decalin, Chlorbenzol, Dichlorbenzol oder Dichlormethan; Ether, wie z.B. Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie z.B. Acetonitril, Propionitril, n- oder iso-Butyronitril oder Benzonitril; Amide,

35

wie z.B. N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie z.B. Dimethylsulfoxid; oder Sulfone, wie z.B. Sulfolan.

5 Der zweite Schritt des erfindungsgemäßen Verfahrens (a) kann innerhalb eines größeren Temperaturbereichs durchgeführt werden. Im Allgemeinen arbeitet man bei Temperaturen von 10°C bis 100°C, bevorzugt werden die Reaktionskomponenten bei Temperaturen von 20°C bis 30°C vermischt und anschließend bei 30 °C bis 100°C, bevorzugt bei 50°C bis 75°C zur Reaktion gebracht.

10 Die Reaktionszeit ist nicht kritisch und kann in Abhängigkeit von der Ansatzgröße in einem größeren Bereich gewählt werden. Im Allgemeinen werden die Reaktanden über einen Zeitraum von wenigen Minuten bis zu 60 min, bevorzugt innerhalb von 10 min bis zu 30 min zusammen gebracht. Anschließend wird für mehrere Stunden, bevorzugt für bis zu 24 Stunden, besonders bevorzugt bis 20 Stunden reagieren gelassen.

15 Die Aufarbeitung erfolgt nach üblichen Methoden. Im zweiten Schritt wird in der Regel zunächst auf Raumtemperatur abgekühlt, mit Natriumchloridlösung und Wasser gewaschen, das Rohprodukt getrocknet und unter verminderter Druck eingeengt. Das Enamin der Formel (VI) wird dann durch Destillation von weiteren Verunreinigungen befreit.

20 Bei der Durchführung des zweiten Schrittes des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol Alkylphosphonsäureester der Formel (IV) im Allgemeinen zwischen 2,5 Mol und 5 Mol, vorzugsweise zwischen 3 Mol und 5 Mol, besonders bevorzugt zwischen 2 Mol und 4 Mol eines Amins der Formel (V) ein.

25 Dritter Schritt des erfindungsgemäßen Verfahrens (a)
Die Hydrolyse im dritten Schritt des erfindungsgemäßen Verfahrens (a) wird in Anwesenheit einer Säure, bevorzugt von Schwefelsäure, Phosphorsäure oder Salzsäure, welche jeweils gegebenenfalls mit Wasser verdünnt werden, besonders bevorzugt von Salzsäure, ganz besonders bevorzugt von 30 Mischungen aus Salzsäure und Wasser durchgeführt.

Der dritte Schritt des erfindungsgemäßen Verfahrens (a) kann innerhalb eines größeren Temperaturbereichs durchgeführt werden. Im Allgemeinen arbeitet man bei Temperaturen von 10°C bis 50°C, bevorzugt bei 20°C bis 30°C.

Die Reaktionszeit ist nicht kritisch und kann in Abhängigkeit von der Ansatzgröße in einem größeren Bereich gewählt werden. Im Allgemeinen werden die Reaktanden über einen Zeitraum von wenigen Minuten bis zu 60 min, bevorzugt innerhalb von 10 min bis zu 30 min zusammen gebracht. Anschließend wird für mehrere Stunden, bevorzugt für bis zu 24 Stunden, besonders bevorzugt bis 20 Stunden
5 reagieren gelassen.

Die Aufarbeitung erfolgt nach üblichen Methoden. Im dritten Schritt wird in der Regel zunächst mit einem geeigneten Lösungsmittel extrahiert, mit Natriumchloridlösung und Natriumhydrogencarbonatlösung gewaschen, das Rohprodukt getrocknet und unter verminderter Druck eingeengt. Die 4,4-
10 Difluoracetessigsäurealkylester der Formel (I) werden dann durch Destillation von weiteren Verunreinigungen befreit.

Bei der Durchführung des dritten Schrittes des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol Enamin der Formel (VI) im Allgemeinen zwischen 0,5 Mol und 5 Mol, vorzugsweise zwischen 1
15 Mol und 5 Mol, besonders bevorzugt zwischen 1 Mol und 2,5 Mol an Säure ein.

Erfindungsgemäßes Verfahren (b)

Im erfundungsgemäßen Verfahren (b) werden Chlordifluoressigsäurealkylester der Formel (VII) und Essigsäurealkylester der Formel (VIII) eingesetzt, in welchen R jeweils bevorzugt für C₁-C₈-Alkyl,
20 besonders bevorzugt für C₁-C₆-Alkyl, ganz besonders bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sek-, tert-Butyl, und insbesondere ganz besonders bevorzugt für Methyl oder Ethyl steht.

Das erfundungsgemäße Verfahren (b) wird in Gegenwart einer geeigneten Base durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -amide, -alkoholate, wie beispielsweise Natriumhydrid, Natriumamid, Lithium-diisopropylamid (LDA), Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, besonders bevorzugt wird Lithium-diisopropylamid (LDA) und Natriumhydrid.
25

Das erfundungsgemäße Verfahren (b) wird in der Gegenwart eines Verdünnungsmittels durchgeführt.
30 Als Verdünnungsmittel kommen alle für solche Reaktionen üblichen inerten organischen Solventien infrage. Vorzugsweise verwendbar sind gegebenenfalls halogenierte, aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool, Decalin, Chlorbenzol, Dichlorbenzol oder Dichlormethan; Ether, wie z.B. Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie z.B. Acetonitril, Propionitril, n- oder iso-Butyronitril oder Benzonitril; Amide, wie z.B. N,N-Dimethylformamid, N,N-Di-

methylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie z.B. Dimethylsulfoxid; oder Sulfone, wie z.B. Sulfolan.

Das erfindungsgemäße Verfahren (b) kann innerhalb eines größeren Temperaturbereichs durchgeführt werden. Im Allgemeinen arbeitet man bei Temperaturen von -80°C bis +100°C, bevorzugt bei -70°C bis 0°C.

Die Reaktionszeit ist nicht kritisch und kann in Abhängigkeit von der Ansatzgröße in einem größeren Bereich gewählt werden. Im Allgemeinen werden die Reaktanden über einen Zeitraum von wenigen Minuten bis zu 180 min, bevorzugt innerhalb von 10 min bis zu 90 min zusammen gebracht. Anschließend wird für mehrere Stunden, bevorzugt für bis zu 24 Stunden, besonders bevorzugt bis 16 Stunden reagieren gelassen.

Die Aufarbeitung erfolgt nach üblichen Methoden. In der Regel zunächst neutralisiert, die Phasen getrennt, mit Natriumchloridlösung gewaschen, das Rohprodukt getrocknet und unter verminderter Druck eingeengt. Die 4-Chlor-4,4-difluoracetessigsäurealkylester der Formel (II) werden dann durch Destillation von weiteren Verunreinigungen befreit.

Bei der Durchführung des erfindungsgemäßen Verfahrens (b) setzt man auf 1 Mol Chlordifluoressigsäurealkylester der Formel (VII) im Allgemeinen zwischen 0,5 Mol und 5 Mol, vorzugsweise zwischen 1 Mol und 5 Mol, besonders bevorzugt zwischen 1 Mol und 2,5 Mol an Essigsäurealkylester der Formel (VIII) ein.

Alle Schritte der erfindungsgemäßen Verfahren (a) und (b) werden im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, einzelne oder alle Schritte des erfindungsgemäßen Verfahrens unter erhöhtem oder vermindertem Druck – im Allgemeinen zwischen 0,1 bar und 50 bar, bevorzugt zwischen 1 bar und 10 bar – durchzuführen.

Die nach dem erfindungsgemäßen Verfahren (a) erhältlichen 4,4-Difluoracetessigsäurealkylester sind wertvolle Zwischenprodukte für die Herstellung von Difluormethyl-substituierte Pyrazolylcarbonsäure- bzw. Thiazolylcarbonsäure-Derivaten, welche wiederum Vorstufen von fungiziden Wirkstoffen darstellen (vgl. z.B. WO 02/08197 und DE-A 102 15 292).

Beispielsweise können 4,4-Difluoracetessigsäurealkylester zunächst mit Essigsäureanhydrid und Ortho-ameisensäuretrialkylester mit sehr guten Ausbeuten (bei Verwendung des Ethylester von über 90 %, vgl. Herstellungsbeispiele) zum Alkyl-2-(difluoracetyl)-3-alkoxyacrylat umgesetzt werden. Die

Cyclisierung mit Methylhydrazin liefert 1-Methyl-3-difluormethyl-pyrazol-4-carbonsäure (im Falle des Ethylester in einer Ausbeute von über 65 %). Das falsche Isomer (1-Methyl-5-difluormethyl-pyrazol-4-carbonsäure) kann durch Kristallisation abgetrennt werden. Diese Umsetzung kann durch das folgende Formelschema veranschaulicht werden:

Außerdem können die 4,4-Difluoracetessigsäurealkylester zunächst chloriert werden, wodurch man das mono- und das dichlorierte Produkt (Alkyl-2,2-dichlor-4,4-difluor-3-oxobutanoat und Alkyl-2-chlor-4,4-difluor-3-oxobutanoat) erhält, welche beide mit Thioacetamid fast quantitativ zum 3-Methyl-4-difluormethyl-thiazol-5-carbonsäurealkylester umgesetzt werden können (vgl. folgendes Schema):

Das erfindungsgemäße Herstellen von 4,4-Difluoracetessigsäurealkylestern, sowie dessen Verwendung zum Herstellen von Difluormethyl-substituierten Heterocyclen wird in den nachstehenden Beispielen beschrieben, welche die obige Beschreibung weiter illustrieren. Die Beispiele sind jedoch nicht in einschränkender Weise zu interpretieren.

HerstellungsbeispieleBeispiel 1:Schritt 1:

5 Herstellung von Ethyl 3-[(dimethoxyphosphoryl)oxy]-4,4-difluorbut-3-enoat (IV-1)

Zu 4-Chlor-4,4-difluoracetessigsäureethylester (305.1 g, Gehalt 77.0 %, 1.17 mol) tropft man bei 25°C bis 30°C unter Eisswasserkühlung und Gasentwicklung innerhalb von 90 min Trimethylphosphit (232.0 g, 1.87 mol). Anschließend röhrt man zuerst 1 h bei 30°C, dann 3 h bei 40°C bis 45°C nach.

10 Zur Aufarbeitung wird auf Raumtemperatur abgekühlt (ca. 16 h) und unter verminderter Druck eingeengt. Das Rohprodukt wird durch Destillation weiter gereinigt.
Man erhält 302.0 g (97%ig, 91 % der Theorie) an Ethyl 3-[(dimethoxyphosphoryl)oxy]-4,4-difluorbut-3-enoat (Siedepunkt 92-95°C bei 0.4 hPa).

15 Schritt 2:

Herstellung von Ethyl 3-(diisopropylamino)-4,4-difluorbut-3-enoat (VI-1)

Zu einer Lösung von Ethyl 3-[(dimethoxyphosphoryl)oxy]-4,4-difluorbut-3-enoat (IV-1) (14.2 g, 97%ig, 0.05 mol) in 100 ml Methyl-tert-butyl-ether tropft man innerhalb von 10 min Diisopropylamin (15.2 g, 0.15 mol). Nach 19 h Kochen unter Rückfluss kühlt man auf Raumtemperatur ab, wäscht zweimal mit je 10 ml 10%iger Natriumchloridlösung, trocknet über Natriumsulfat, filtriert und engt unter verminderter Druck ein. Der Rückstand wird zur weiteren Aufarbeitung destilliert.
Man erhält 8.8 g (95%ig, 67.4% der Theorie) an Ethyl 3-(diisopropylamino)-4,4-difluorbut-3-enoat (Siedepunkt 55-57°C bei 0.5 hPa).

Schritt 2 und 3:

Herstellung von 4,4-Difluoracetessigsäureethylester (I) ohne Isolierung des Ethyl 3-(diisopropylamino)-4,4-difluorbut-3-enoats (VI-1)

5 Zu einer Lösung von Ethyl 3-[(dimethoxyphosphoryl)oxy]-4,4-difluorbut-3-enoat (IV-1) (2570 g, 98.8%ig, 9.26 mol) in Methyl-tert-butyl-ether (18.5 l) tropft man bei 20°C innerhalb von 10 min Diisopropylamin (2811.6 g, 27.8 mol). Man röhrt 20 h unter Rückfluss (57°C). Anschließend tropft man bei 20°C bis 25°C unter Kühlung eine Lösung von 2037 g konzentrierter Salzsäure in 4080 ml Wasser und röhrt für 20 h nach. Es bilden sich zwei Phasen, die man trennt. Die wässrige Phase wird
10 zweimal mit je 2.3 l Methyl-tert-butyl-ether extrahiert. Die vereinigten organischen Phasen werden jeweils 2.8 l 10%iger Natriumchloridlösung, 10%iger Natriumhydrogencarbonatlösung und nochmals 10%iger Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet, filtriert und unter verminderterem Druck eingeengt. Das Rohprodukt wird durch Destillation aufgereinigt.

Man erhält 1179 g (92%ig, 76.6 % der Theorie) an 4,4-Difluoracetessigsäureethylester.

15

Beispiel 2:

Herstellung von 4-Chlor-4,4-difluoracetessigsäureethylester (II)

312.6 g (3.09 mol) Diisopropylamin werden in 1.55 l Tetrahydrofuran gelöst und auf -70°C gekühlt.
20 Zu dieser Lösung tropft man bei -60°C innerhalb von 80 min 852.9 g (3.08 mol) n-Butyllithium (2.5 molar in n-Hexan) und röhrt für 45 min bei -70°C nach. Man lässt kurz auf -20°C kommen und kühlt sofort wieder auf -70°C ab. Bei -60°C tropft man innerhalb von 50 Min anschließend 264.3 g (3.0 mol) Essigsäureethylester. Dann tropft man innerhalb von 30 min bei derselben Temperatur 242.7 g Chlordifluoressigsäureethylester zu, röhrt für 3 h bei -65°C bis -70°C nach und lässt dann auf Raumtemperatur kommen. Ab Erreichen von -5°C gibt man 1500 ml 4 N HCl zu und lässt dann für 16 h stehen. Die wässrige Phase (pH 6-7) wird abgetrennt, die organische Phase mit 750 ml 2 N HCl und 1200 ml gesättigter Natriumchloridlösung gewaschen. Die organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter verminderterem Druck eingeengt. Zur weiteren Aufreinigung wird das Rohprodukt destilliert.
25
30 Man erhält 282.9 g (92%ig, 86.3 % der Theorie) an 4-Chlor-4,4-difluoracetessigsäureethylester.

Beispiel 3:Herstellung von Chlordifluoressigsäureethylester (VII)

504.3 g (3.87 mol) Chlordifluoressigsäure und 5.0 g p-Toluolsulfonsäure werden in 775 ml

5 Methylenchlorid gelöst und bei Raumtemperatur innerhalb von 30 min mit 311.6 g (6.76 mol) Ethanol versetzt (Temperaturanstieg auf 33°C). Man röhrt 38 h unter Rückfluss am Wasserabscheider nach und kühlt auf Raumtemperatur ab. Zur Aufarbeitung wäscht man mit Wasser (200 ml), gesättigter Natriumhydrogencarbonatlösung (200 ml) und erneut mit Wasser (200 ml), trocknet über Natriumsulfat, filtriert und destilliert das Lösungsmittel ab. Anschließend wird durch fraktionierte

10 Destillation weiter aufgereinigt.

Man erhält 488.9 g (98%ig, 78.5 % der Theorie) an Chlordifluoressigsäureethylester (Siedepunkt 94-96°C).

Beispiel 4:Herstellung von 1-Methyl-5-difluormethyl-pyrazol-4-carbonsäure

Zu einer Lösung aus 2394 g (10.35 mol) Ethyl-2-(difluoracetyl)-3-ethoxyacrylat in 5.4 l Ethanol tropft man bei -15°C bis -5°C innerhalb von 3.5 h eine Lösung von 527.8 g (11.45 mol) Methylhydrazin in 0.7 l Ethanol und röhrt für 16 Stunden nach. Anschließend gibt man 560 g (14 mol) Natriumhydroxid und 3.5 l Wasser zu und röhrt 7 h bei 50°C. Das Reaktionsgemisch wird abgekühlt und

20 unter verminderter Druck eingeengt. Der Rückstand wird in 6 l Wasser und 7 kg Eis aufgenommen und mit Dichlormethan gewaschen (einmal 3 l, einmal 2 l). Die eiskalte Wasserphase wird mit konzentrierter Salzsäure auf pH 2 eingestellt, das ausgefallene Produkt abgesaugt und im Vaküumschrank getrocknet. Das Rohprodukt wird in 8 l Isopropanol (heiß) unter Rückfluss gelöst, anschließend abgekühlt, 30 min bei 0°C bis 5°C gerührt, abgesaugt, mit 1.4 l Isopropanol (5°C) nachgewaschen und bei 40°C im Vaküumschrank getrocknet.

Man erhält 1226.4 g (99.8%ig, 67.1 % der Theorie) an 1-Methyl-5-difluormethyl-pyrazol-4-carbonsäure [Log P (pH 2.3) = 0.52].

Beispiel 5:Herstellung von 3-Methyl-4-difluormethyl-thiazol-5-carbonsäureethylester

Zu einem Gemisch aus Ethyl-2-chlor-4,4-difluor-3-oxobutanoat (50.4 %) und Ethyl-2,2-dichlor-4,4-difluor-3-oxobutanoat (68.2 g, 0.2 mol, 50.4 % Monochlorverbindung, 19.2 % Dichlorverbindung) in 500 ml 1,2-Dichlorethan gibt man 28 g (0.27 mol) Thioacetamid, kocht anschließend für 2 h unter Rückfluss und lässt dann 16 h stehen. Anschließend versetzt man langsam unter Röhren mit 300 ml

gesättigter Natriumhydrogencarbonatlösung und trennt die Phasen. Die organische Lösung wird mit Natriumsulfat getrocknet und unter verminderter Druck eingeengt. Die verbleibende Lösung wird filtriert, mit 20 ml Methylchlorid nachgewaschen und unter verminderter Druck eingeengt. Man erhält 53.4 g (72%ig, 86.7 % der Theorie) an 3-Methyl-4-difluormethyl-thiazol-5-carbonsäureethylester [Log P (pH 2.3) = 2.18].

Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.

15 Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).

Patentansprüche

1. Verfahren zum Herstellen von 4,4-Difluoracetessäurealkylestern der Formel (I)

5 in welcher R für Alkyl steht,
dadurch gekennzeichnet, dass man

in einem ersten Schritt 4-Chlor-4,4-difluoracetessäurealkylester der Formel (II)

10 in welcher R die oben angegebene Bedeutung hat,
mit Trialkylphosphiten der Formel (III)

in welcher

15 R^1 für $\text{C}_1\text{-C}_4$ -Alkyl steht, wobei die Reste R^1 jeweils gleich oder verschieden sein
können,

umsetzt,

die so erhaltenen Alkylphosphonsäureester der Formel (IV)

20 in welcher R und R^1 die oben angegebenen Bedeutungen haben,

in einem zweiten Schritt mit einem Amin der Formel (V)

in welcher

R^2 und R^3 unabhängig voneinander für Wasserstoff oder C₁-C₈-Alkyl oder gemeinsam für -CH₂-CH₂-O-CH₂-CH₂-, -CH₂-CH₂-S-CH₂-CH₂- oder -CH₂-CH₂-N(R⁴)-CH₂-CH₂- stehen,

R^4 für Wasserstoff oder C₁-C₈-Alkyl steht,

5 gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,
und die so erhaltenen Enamine der Formel (VI)

in welcher R, R² und R³ die oben angegebenen Bedeutungen haben,
in einem dritten Schritt in Gegenwart einer Säure hydrolysiert.

10

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die im ersten Schritt als Ausgangsstoffe verwendeten 4-Chlor-4,4-difluoracetessigsäurealkylester der Formel (II) hergestellt werden, indem man

15

Chlordifluoressigsäurealkylester der Formel (VII)

in welcher R die oben angegebene Bedeutung hat,
mit Essigsäurealkylestern der Formel (VIII)

20

in welcher R die oben angegebene Bedeutung hat,
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass man Verbindungen der Formel (II) gemäß Anspruch 1 einsetzt, in welcher R für C₁-C₈-Alkyl steht.

25

4. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass man Verbindungen der Formel (II) gemäß Anspruch 1 einsetzt, in welcher R für C₁-C₈-Alkyl steht.

5. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass man
 Verbindungen der Formel (II) gemäß Anspruch 1 einsetzt, in welcher R für Methyl, Ethyl, n-,
 iso-Propyl, n-, iso-, sek-, tert-Butyl steht und
 Verbindungen der Formel (III) gemäß Anspruch 1 einsetzt, in welcher R¹ für Methyl, Ethyl,
 n-, iso-Propyl, n-, iso-, sek-, tert-Butyl steht und
 Verbindungen der Formel (V) gemäß Anspruch 1 einsetzt, in welcher R² und R³ unabhängig
 voneinander Wasserstoff, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sek-, tert-Butyl oder
 gemeinsam für -CH₂-CH₂-O-CH₂-CH₂- stehen.

10 6. Verfahren gemäß Anspruch 1, 2, 3, 4 oder 5, dadurch gekennzeichnet, dass der erste Schritt
 ohne Verdünnungsmittel durchgeführt wird.
 7. Verfahren gemäß Anspruch 1, 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, dass die Hydrolyse
 im dritten Schritt in Anwesenheit von Schwefelsäure, Phosphorsäure oder Salzsäure, welche
 15 jeweils gegebenenfalls mit Wasser verdünnt werden, durchgeführt wird.
 8. Verwendung von 4,4-Difluoracetessigsäurealkylestern der Formel (I)

in welcher R für Alkyl steht,
 20 zum Herstellen von difluormethyl-substituierten Pyrazolycarbonsäure- bzw. Thiazo-
 lycarbonsäure-Derivaten.

9. Alkylphosphonsäureester der Formel (IV)

25 in welcher
 R für Alkyl steht,
 R¹ für C₁-C₄-Alkyl steht, wobei die Reste R¹ jeweils gleich oder verschieden sein
 können.

10. Enamine der Formel (VI)

in welcher

R für Alkyl steht,

5 R² und R³ unabhängig voneinander für Wasserstoff oder C₁-C₈-Alkyl

oder gemeinsam für -CH₂-CH₂-O-CH₂-CH₂-, -CH₂-CH₂-S-CH₂-CH₂- oder
-CH₂-CH₂-N(R⁴)-CH₂-CH₂- stehen,

R⁴ für Wasserstoff oder C₁-C₈-Alkyl steht.

10

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C69/716 C07C67/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DOLENCE J M ET AL: "Synthesis of Analogs of Farnesyl Diphosphate" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 52, no. 1, 1996, pages 119-130, XP004104589 ISSN: 0040-4020 Seite 121, Schema 2, Schritt a); Seite 125, Absatz 3, Herstellung von Ethyl 4,4-difluoracetatoacetat;</p>	1-10
A	<p>PATENT ABSTRACTS OF JAPAN vol. 0134, no. 27 (C-639), 22 September 1989 (1989-09-22) & JP 1 163143 A (KASHIMA SEKIYU KK), 27 June 1989 (1989-06-27) abstract -</p>	1-10.

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

26 October 2004

Date of mailing of the international search report

04/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kleidernigg, O

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/006607

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 1163143	A 27-06-1989	JP 2509282 B2	19-06-1996

BEST AVAILABLE COPY

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/006607

BEST AVAILABLE COPY

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07C69/716 C07C67/30

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, BEILSTEIN Data, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DOLENCE J M ET AL: "Synthesis of Analogs of Farnesyl Diphosphate" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 52, Nr. 1, 1996, Seiten 119-130, XP004104589 ISSN: 0040-4020 Seite 121, Schema 2, Schritt a); Seite 125, Absatz 3, Herstellung von Ethyl 4,4-difluoracetoacetat;	1-10
A	PATENT ABSTRACTS OF JAPAN Bd. 0134, Nr. 27 (C-639), 22. September 1989 (1989-09-22) & JP 1 163143 A (KASHIMA SEKIYU KK), 27. Juni -1989. (1989-06-27) Zusammenfassung	1-10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

26. Oktober 2004

04/11/2004

Name und Postanschrift der Internationalen Recherchenbehörde

Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Kleidernigg, O

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/006607

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
JP 1163143	A 27-06-1989	JP 2509282 B2	19-06-1996

BEST AVAILABLE COPY