MILOS-IMA-OCI25

Name: Nishav Kumar

Enrollment No: 450032242512

Study Centre code: 450032

Subject: Mathematics (Subject code-211)

Course: Secondary (10th)

Medium: English

Phone Number: 9148119744

MATHEMATICS (211)

TOR MARKED ASSINGMENT

01 Answer any one of the following questions.

(A) Ankur, a Secondary level mathematics student, initially struggled to defferentiate between rational and irrational numbers. Through an effective explanation utilizing fractions and decimal expansions, his sister Riya successfully clasified the distinction. Describe a possible method Riya might have used and then apply it to classify the following numbers as rational or irrational:

L.125, 7, 1.676767...., 22

Solution: Riva explained that:

- · Rational numbers can be written as p/q, where p and q are integers and qz O. Their decimal form either terminates or repeats
- · Irrational numbers cannot be written as p/q. their decimal form is non-terminating and non-repeating.

Classification:

1) 1.125 - Rational, because it is a terminating decimal.

2) T-Irrational, because it is non-derminating, non-repeating decimal.

3) 1.67676767... - Rational, because it is a repeating decimal.

4) 22/7 -> Rational, because it is in the form of P/q

O2(A) A polygon which has equal sides and equal angle is called a regular polygon. It is found that the interior angle of regular polygon having a sides can be calculated as:

i) Name the simplest regular polygon and writes the value

of its interior angle.

Solution the simplest regular polygon is an equilateral triangle.

It has 3 sides (n=3), Using the formula for interior angle:

Interior angle = (n-2) x 180° = (3-2) x 180°

(3) x 1860 = 60°, So, the value of its interior angle 1s 60°.

Solutions Number of sides of a hexagon (n) = 6

Using the formula for sum of interior angles of a polygon:

Sum of interior angles = (n-2) x 180° = (6-2) x 180° = 4 x 180° = 720°

Hence, the sum of the interior angles of a Hexagon is 720°.

03(B) If ABC is an equilateral triangle and AD is the median. Prove that 3AB2 = 4AD2.

Solution - Given: ABC is an equilateral triangle and AD is the median AB=BC=AC

Prove: 3AB2 = 4AD2 03(B)

In triangle ABD, Using Pythagoras Theorem

 $AB^2 = AD^2 + BD^2$ $AB^2 = AD^2 + \frac{BC}{2}^2$ (Since AD is perpendicular to BC)

AB2 = AD2 + AB2 (AB = BC : Griven)

AB2-AB2 = AD2

4AB2-AB2 = AD2

3AB2 = AD2 = 3AB2 = 4AD2

: 3AB2 = 4AD2 Hence Proved

04(A) (i) If the sum of the exponents of the prime factors in the prime factorisation of 31752 is a and the product of the

exponents of the prime factors in the prime factorisation of 21168 is b. Find a: b

Sum of exponents = a=3+4+2=9

Step 2: Prime factorisation of 21168 21168 = 24 x 33 x 72

04(A)(i)	21168 = 24 × 33 × 72				
	Product of exponents = b= 4x3x2 = 24				
	Step 3: Required ratio				
	Step 3: Required ratio a: b= 9: 24 = 3:8 Ans				
Ø1107 (:-)					
(1) (H) PP	Aman and Neha, donated Rs. x and Rs. y respectively from				
	their pocket money, towards Prime Minister's National Relief Fund (PMNRF). The donation made by them are				
	Compared (PMNRF). The donation made by them are				
	represented by the following equation:				
	3-215 - N-V3Y				
	Find the total donation made by Aman and Neha towards				
	PMNRF.				
Solutions	The given equation is: 3-215 - N-15y				
	3415				
•	To simplify, multiply both sides by the conjugate of the denominators (3:- 15):				
	denominators (3-15):				
	(3-25)(3-15)				
	$(3-2\sqrt{5})(3-\sqrt{5}) = \chi - \sqrt{5}\gamma$ $(3+\sqrt{5})(3-\sqrt{5})$				
	The denominator simplifies as:				
	(3+15)(3-15)=(3)2-(15)2= 9-5=4				
	Simplifying the numerator.				

	Date:				
04(A)(ii)	(3-215)(3-15)=9-315-615+10=19-915				
	So, Now we have:				
	19-915 = N-15y				
	4				
	By Comparing both sides:				
	By Comparing both sides:				
	4 7 9				
	Total donation = nay = 19 + 9 = 28 = 7				
	1 4 4 4				
	The total donation made by Aman and neha is 27.				
/->	1 1 1 2 1 1 0 00 100 -				
05 (B)	In a circle of radius 17cm and centre 0, PO and RS are				
	two parallel chords such that PO = 16cm and RS = 30cm				
1.	Find the distance between chord if				
(9)	The chord are on the same side of the centre of the circle				
(b)	The chord are on the opposite sides of the centre of the				
9 1. 1	Circle.				
901041001;	or: Given: radius = 17cm, PQ = 16cm and RS = 30cm. O is the centre, PQ and RS are parallel				
	O 13 MIE CENTIE, I O and ICS are paramet				
	Construction: Draw perpendiculars from the centre O				
	to the chords.				
(a)	If the chords are on the same side of centre:				
MERSON I					

05(B) (a) In Δ OAR, DR= 17cm ("radius) AR=RS = 30 - 15cm (+ from 5 centre bisect the Using Pythagoras Theorem in DOAR

OR2 = AR2 + OA2 (17)2=(15)2+OA2 (a) 289 = 225 + DA2 289-225=0A2 =) 64=0A2 564=0A =) DA=8 cm Similarly, In DOBP OP= 17cm (Tradius) AR= PO = 16 = 8cm Using pythagoras Theorem in DOBP

OP2 = BP2 + OB2 (17 = 182 + 0B2 289=64+082 289-64=0B2 + 225=0B2 1225 = OB 0B=15cm The distance between the chords when they are on the same side of Centre = OB - OA AB = 15-8

AB = 7cm

Q5(B) (b) If the chord are on opposite side of the centre:

The distance between the chords is the sum of OB and OA

AB=15+8 AB=23cm

06 Prepare any one project as given below.

(B) Shown below is the histogram representing the runs scored by a cricket team in diffrent overs. Answer the following guestion based on the histogram.

(i) In which interval of overs the cricket team scored maximum run

		7			
06(B)(i)	From the histogram, the maximum runs = 70, which lies				
	in the Interval: 30-40	overs.			
	merran 30				
(11)	In which interval of overs the cricket team scored equal				
	number of runs?				
Ans:	From the histogram, the team scored equal number of 50				
	From the histogram, the team scored equal number of 50 runs in the interval: 10-20 and 40-50.				
Ciid	Construct a grouped for	requency table for the data using			
	equal class sizes from the	requency table for the data using ne above histogram.			
Ans:		9			
	Over	Runs Scored			
	0-10	42			
	10-20	50			
	20-30	32			
	30-40	70			
	40-50	50			
(iv)	Also construct a cumul	ative frequency table for the above			
	grouped data.				
Ans 2	,				
	Dyreco Ecentercy	Cumulative Ecoupacy			

Overs	Frequency	Cumulative Frequency	
0-10	42	42	
10-20	50	42+50 = 92	
20-30	32	92+32=124	
30-40	70	124 + 70 = 194	
40-50	50	194 + 50 = 244	

