Practical Solutions

Two approaches

- Monte Carlo methods
- Finite element methods

Classic radiosity

- Diffuse, polygonal surfaces
 View independent solution
 Polygonal mesh
- Form factors
- Solving linear equations

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Examples

Goral

Nishita, Computer room

Cohen, Vermeer

Cohen, Museum

Wallace, Engine room

Lightscape

CS348B Lecture 16

The Radiosity Equation

Assume diffuse reflection only Solve for radiosity (2d function)

$$B(x) = B_e(x) + \mathbf{r}(x)E(x)$$

$$B(x) = B_e(x) + \mathbf{r}(x) \int_{M^2} F(x, x') B(x') dA'$$

$$\cos q \cos q'$$

 $F(x,x') = \frac{G(x,x')}{p} = \frac{\cos q \cos q'}{p \|x - x'\|^2} V(x,x')$

CS348B Lecture 16

Simple Room Scene

Example from John Wallace

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Derivation

Radiosity integral equation

$$B(x) = B_e(x) + \mathbf{r}(x) \int_{M^2} B(x') F(x, x') dA'$$

Piecewise constant basis functions

$$B(x) = \sum_{i} B_{i} N_{i}(x)$$
$$B_{e}(x) = \sum_{i} E_{i} N_{i}(x)$$

$$\sum_{i} B_i N_i(x) = \sum_{i} E_i N_i(x) + \mathbf{r}_i \int_{M^2} F(x, x') \sum_{i} B_i N_i(x') dA'$$

CS348B Lecture 16

Derivation

Radiosity integral equation

$$\sum_{i} B_{i} N_{i}(x) = \sum_{i} E_{i} N_{i}(x) + \mathbf{r}_{i} \int_{M^{2}} F(x, x') \sum_{i} B_{j} N_{j}(x') dA'$$

$$\int \left(\sum_{i} B_{i} N_{i}(x) = \sum_{i} E_{i} N_{i}(x) + \mathbf{r}_{i} \int_{M^{2}} F(x, x') \sum_{i} B_{j} N_{j}(x') dA'\right) N_{j}(x) dA$$

$$B_i A_i = E_i A_i + r_i \sum_j B_j \int_{M^2} \int_{M^2} F(x, x') N_i(x) N_j(x') dA dA'$$

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Form Factor

Throughput

$$T_{ij} = T_{ji} = \int_{A_i A_j} \frac{\cos \boldsymbol{q}_o' \cos \boldsymbol{q}_i}{\boldsymbol{p} \|x - x'\|^2} V(x, x') dA' dA$$

Reciprocity

$$T_{ij} = A_i F_{ij}$$

$$T_{ji} = A_j F_{ji}$$

$$A_i F_{ii} = A_i F_{ji}$$

CS348B Lecture 16

Classic Radiosity

Power Balance

$$B_i A_i = E_i A_i + \mathbf{r}_i \sum_j B_j A_j F_j$$

$$B_i A_i = E_i A_i + \boldsymbol{r}_i \sum_j B_j A_j F_{ji}$$
 Reciprocity
$$A_i F_{ij} = A_j F_{ji} \Longrightarrow B_i = E_i + \boldsymbol{r}_i \sum_j F_{ij} B_j$$
 Radiosity System

$$\begin{pmatrix} 1 - \boldsymbol{r}_{1} F_{11} & -\boldsymbol{r}_{1} F_{12} & \cdots & -\boldsymbol{r}_{1} F_{1n} \\ -\boldsymbol{r}_{2} F_{21} & 1 - \boldsymbol{r}_{2} F_{22} & \cdots & -\boldsymbol{r}_{2} F_{21} \\ \vdots & \vdots & \ddots & \vdots \\ -\boldsymbol{r}_{n} F_{n1} & -\boldsymbol{r}_{n} F_{n2} & \cdots & 1 - \boldsymbol{r}_{n} F_{nn} \end{pmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{pmatrix} = \begin{pmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{pmatrix}$$

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Form Factor Properties

Summation

$$\sum_{j} F_{ij} = \sum_{i} F_{ji} = 1$$

Form factor is the percentage of light...

CS348B Lecture 16

Form Factors

Differential-differential

$$F_{dA_i,dA_j} = \frac{\cos \boldsymbol{q}_o' \cos \boldsymbol{q}_i}{\boldsymbol{p} \|x - x'\|^2} V(x,x') dA_j$$
al-finite

Differential-finite

$$F_{dA_i,A_j} = \int_{A_j} \frac{\cos \boldsymbol{q}_o' \cos \boldsymbol{q}_i}{\boldsymbol{p} \|x - x'\|^2} V(x, x') dA'$$

Finite-finite

$$F_{A_{i},A_{j}} = \frac{1}{A_{i}} \int_{A_{i}} \frac{\cos \mathbf{q}_{o}' \cos \mathbf{q}_{i}}{\mathbf{p} \|x - x'\|^{2}} V(x, x') dA' dA$$

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Analytical Form Factors

$$X = \frac{a}{c}$$

$$Y = \frac{b}{c}$$

$$F_{A_{1},A_{2}} = \frac{2}{\mathbf{p}XY} \begin{cases} \ln \left[\frac{(1+X^{2})(1+Y^{2})}{(1+X^{2}+Y^{2})} \right]^{1/2} + X\sqrt{1+Y^{2}} \tan^{-1} \frac{X}{\sqrt{1+Y^{2}}} + Y\sqrt{1+X^{2}} \tan^{-1} \frac{Y}{\sqrt{1+X^{2}}} - X \tan^{-1} X - Y \tan^{-1} Y \right] \end{cases}$$

CS348B Lecture 16

Hemicube Algorithm

First radiosity algorithm to deal with occlusion

Render source elements from POV of receiving element

$$F_{dA_i,A_j} = \sum_{p \in A_j} \Delta F_p$$

Typical resolution: 32x32

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Hemicube Delta Form Factors

$$r = \sqrt{x^2 + y^2 + 1}$$

$$\cos \mathbf{f} = \frac{1}{\sqrt{x^2 + y^2 + 1}}$$

$$\Delta F = \frac{\Delta A}{\mathbf{p} (x^2 + y^2 + 1)^2}$$

 $r = \sqrt{1 + y^2 + z^2}$ $r = \sqrt{1 + y^2 + z^2}$ $r = \sqrt{1 + y^2 + z^2}$

$$\cos \mathbf{f} = \frac{1}{\sqrt{1 + v^2 + z^2}}$$

$$\Delta F = \frac{\Delta A}{\boldsymbol{p} \left(1 + y^2 + z^2\right)^2}$$

CS348B Lecture 16

Hemicube Algorithms

Advantages

- + First practical method -> Patent!
- + Use existing rendering systems; Hardware!
- + Computes all form factors in O(n)

Disadvantages

- Computes differential-finite form factor
- Aliasing errors due to sampling Randomly rotate/shear hemicube
- Proximity errors
- Visibility errors
- Expensive to compute a single form factor

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Solve [F][B] = [E]

Direct methods: $O(n^3)$

■ Gaussian elimination

Goral, Torrance, Greenberg, Battaile, 1984

Iterative methods: $O(n^2)$

Convergence

Energy conservation -> diagonally dominant -> converge

■ Gauss-Seidel, Jacobi: <u>Gathering</u>
Nishita, Nakamae, 1985
Cohen, Greenberg, 1985

■ Southwell: Shooting

Cohen, Chen, Wallace, Greenberg, 1988

CS348B Lecture 16

Iterative Solvers

Iteration

$$B^0 = E$$

$$(I-F)^{-1}B=E$$

$$B^1 = E + FB^0$$

$$B = (I + B + B^2 + \cdots)E$$

$$B^n = E + FB^{n-1}$$

Relaxation

Residual
$$r^n = E - (I - F)B^n$$

Iteration
$$r_i^{k+1} = 0 \Rightarrow B_i^{k+1} = B_i^k + r_i^k = E_i + \mathbf{r}_i \sum_{i \neq j} F_{ij} B_j^k$$

If residual is 0, solution has been reached

CS348B Lecture 16

Pat Hanrahan, Spring 2000

Gathering


```
for(i=0; i<n; i++)
  B[i] = Be[i];

while( !converged ) {
  for(i=0; i<n; i++) {
    E[i] = 0;
    for(j=0; j<n; j++)
       E[i] += F[i][j] * B[j];
    B[i] = rho[i]*E[i];
}</pre>
```

Scan through elements in "model" order

Row of F times B

Successively set residual to 0

May update radiosities at end (Jacobi), or during (GS)

Calculate one row of F and discard

CS348B Lecture 16

Shooting

Brightness order

Column of F times B

In terms of residuals

- for(i=0; i<n; i++)
 B[i] = dB[i] = Be[i];

 while(!converged) {
 set i st dB[i] is the largest;
 for(j=0;j<n;j++)
 if(i!=j) {
 dB[j] = rho[j]*F[j][i]*dB[i];
 dB[j] += dBj;
 B[j] += dBj;
 }
 dB[i]=0;
 }</pre>
- Choose element with maximum residual
- Relax such that that elements residual is 0
- Incrementally update other residuals

CS348B Lecture 16

