Problem A. Грузовики

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 512 мебибайт

Необходимо поместить несколько ящиков в грузовики. Для этого планируется разделить имеющиеся ящики на две одинаковые группы (в случае нечетного количества получаются две группы, в одной из которых на один ящик больше), потом разделить каждую из этих групп аналогичным образом, и так далее, пока мы не получим группы, которые влезают в грузовик. Как только какая-то из получившихся групп влезает в грузовик, производится загрузка ящиков этой группы, и грузовик уезжает. Требуется определить, сколько грузовиков потребуется, чтобы увезти все ящики.

Input

Во входном файле два числа n и k $(2 \le n \le 10\,000, 1 \le k \le n-1)$ — количество ящиков и емкость грузовика.

Output

Выведите требуемое количество грузовиков.

standard input	standard output
14 3	6
15 1	15
1024 5	256

Problem B. Сгенерируйте перестановки

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 512 мебибайт

По случаю проведения апрельских интенсивов организаторы решили подарить всем участникам перестановки. В связи с эпидемиологической обстановкой числа в перестановках обязаны соблюдать социальную дистанцию. Это обозначает, что любые два соседних числа должны различаться не менее чем на k. Помогите организаторам сгенерировать все подходящие перестановки.

Input

В единственной строке входных данных содержатся два целых числа $n, k \ (0 \le k \le n \le 10)$ — длина перестановок и максимальная разность между соседними числами.

Output

Выведите все перестановки в возрастающем лексикографическом порядке. Каждую перестановку следует выводить в отдельной строке. Гарантируется, что размер выходного файла не превосходит 10-и мегабайт.

standard input	standard output
4 2	2 4 1 3 3 1 4 2
10 5	5 10 4 9 3 8 2 7 1 6 6 1 7 2 8 3 9 4 10 5
5 2	1 3 5 2 4 1 4 2 5 3 2 4 1 3 5 2 4 1 5 3 2 5 3 1 4 3 1 4 2 5 3 1 5 2 4 3 5 1 4 2 3 5 2 4 1 4 1 3 5 2 4 2 5 1 3 4 2 5 3 1 5 2 4 1 3 5 3 1 4 2

Problem C. Генерация скобочных последовательностей

Input file: standard input
Output file: standard output

Time limit: 2 секунды Memory limit: 512 мебибайт

С незапамятных времен хорошей традицией апрельских интенсивов является сжигание правильных скобочных последовательностей. К сожалению, в этом году сборы проходят в онлайн-формате, поэтому было принято решение всего лишь их сгенерировать. Эта обязанность легла на ваши плечи.

Input

Во входных данных записано единственное целое число $n\ (1 \le n \le 14)$ — количество отрывающих скобок в требуемых правильных скобочных последовательностях.

Output

Выведите несколько строк длины $2 \cdot n$, каждая должна быть правильной скобочной последовательностью. Выводить их требуется в лексикографическом порядке. Считайте, что открывающая скобка лексикографически меньше закрывающей.

standard output
()
(())
()()
((()))
(()())
(())()
()(())
()()()

Problem D. Различные разбиения

Input file: standard input
Output file: standard output

Time limit: 2 секунды Memory limit: 512 мебибайт

Найдите количество различных разбиений натурального числа n на натуральные слагаемые таких, что для любых двух различных чисел $a \neq b$, входящих в разбиение, верно, что количества чисел a и b в разбиении различны. Разбиения, отличающиеся только порядком слагаемых, различными не считаются.

Например, если n=4, то из пяти возможных разбиений этому условию удовлетворяют все, кроме разбиения на слагаемые 1 и 3: в этом разбиении количество единиц равно количеству троек.

4	=	1 + 1 + 1 + 1	4 единицы
4	=	1 + 1 + 2	3 единицы, 1 тройка
4	=	1 + 3	1 единица и 1 тройка!
4	=	2 + 2	2 двойки
4	=	4	1 четвёрка

Input

В первой строке входного файла записано натуральное число $n \ (1 \le n \le 100)$.

Output

В первой строке выходного файла выведите количество разбиений числа n, удовлетворяющих заданным ограничениям.

standard input	standard output
4	4
6	7

Problem E. Разбиение на слагаемые

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 512 мебибайт

Требуется разложить заданное число n на натуральные слагаемые **всеми** возможными способами.

Input

В первой строке входных данных записано единственное целое число $n\ (1 \le n \le 50)$ — число, которое вам требуется разложить.

Output

Выведите все возможные разложения числа n на натуральные слагаемые, каждое в отдельной строке. Чтобы не запутаться, каждое разложение должно быть отсортировано по неубыванию слагаемых, а сами разложения требуется выводить в лексикографическом порядке.

standard input	standard output
3	1 1 1
	1 2
	3
4	1 1 1 1
	1 1 2
	1 3
	2 2
	4
5	1 1 1 1 1
	1 1 1 2
	1 1 3
	1 2 2
	1 4
	2 3
	5

Problem F. Куча камней

Input file: standard input
Output file: standard output

Time limit: 2 секунды Memory limit: 512 мебибайт

У вас есть несколько камней известного веса w_1, \ldots, w_n . Напишите программу, которая распределит камни в две кучи так, что разность весов этих двух куч будет минимальной.

Input

Ввод содержит количество камней $n\ (1 \le n \le 20)$ и веса камней $w_1, \ldots, w_n\ (1 \le w_i \le 100\,000)$ – целые, разделённые пробельными символами.

Output

Ваша программа должна вывести одно число – минимальную разность весов двух куч.

standard input	standard output
5	3
5 8 13 27 14	

Problem G. Devil's Hell deLivery

Input file: standard input
Output file: standard output

Time limit: 2 секунды Memory limit: 512 мебибайт

Komпaния Devil's Hell deLivery доставляет буквально всё: ящики, коробки, пакеты, датаграммы и так далее.

Процесс доставки из города A в город B устроен следующим образом. Пусть нужно доставить K предметов, используя N грузовиков. Вместимость грузовика с номером i равна c_i . Вес предмета с номером j равен w_i . Грузовики доставляют предметы за несколько шагов.

За один шаг некоторые предметы целиком загружаются в грузовики. Все предметы можно перевозить только целиком. Вместимость каждого грузовика должна быть не меньше суммарного веса предметов, которые в него загружены. Все грузовики отправляются одновременно.

По окончании шага все грузовики отправляются на исходную позицию. Если какие-то предметы остались не доставленными, предпринимается очередной шаг.

Ваша задача "— распределить предметы по шагам и грузовикам так, чтобы минимизировать количество шагов.

Input

Во вводе задано не более ста тестовых случаев.

Каждый тестовый случай начинается со строки с двумя целыми числами N и K ($1 \le N \le 5$, $1 \le K \le 9$): количеством грузовиков и количеством предметов, соответственно. В следующей строке записано N целых чисел c_1, \ldots, c_N ($1 \le c_i \le 10^8$): вместимости грузовиков. В следующей строке записано K целых чисел w_1, \ldots, w_K ($1 \le w_i \le 10^8$): веса предметов.

Output

Для каждого тестового случая, если доставка невозможна, выведите единственную строку с числом -1.

В остальных случаях сначала выведите строку с целым числом S "— необходимым количеством шагов. Это число нужно минимизировать. Затем выведите S строк, по одной на каждый шаг. Описание шага должно начинаться с целого числа I_i "— количества предметов, которые перевозятся на этом шаге. Далее запишите I_i пар a_j b_j . Каждая пара a_j b_j означает, что предмет a_j перевозится на грузовике b_j .

Если возможных оптимальных ответов несколько, выведите любой из них.

standard input	standard output
2 4	1
10 20	4 1 1 2 1 3 2 4 2
5 5 5 5	-1
2 1	
10 10	
20	