Redes Neuronales Profundas

Lucas C. Uzal Guillermo L. Grinblat

Unidad 1: Intro Machine Learning

Unidad 2: Artificial Neural Networks

Unidad 3: Técnicas de Regularización

Unidad 4: Convolutional Neural Networks

Unidad 5: Aprendizaje de Representaciones

Unidad 6: Recurrent Neural Networks

Herramientas y Aplicaciones:

Práctica

Bibliografía

Deep Learning

An MIT Press book

Ian Goodfellow, Yoshua Bengio and Aaron Courville

http://www.deeplearningbook.org/

Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). *Natural Image Statistics: A Probabilistic Approach to Early Computational Vision* (Vol. 39). Springer Science & Business Media.

Christopher M. Bishop (2006) *Pattern Recognition and Machine Learning*. Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

J. Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, Volume 61, January 2015, Pages 85-117 (DOI: 10.1016/j.neunet.2014.09.003)

Theano Documentation. http://deeplearning.net/software/theano/

TensorFlow Documentation. https://www.tensorflow.org/

Keras Documentation. http://keras.io/

Caffe Documentation. http://caffe.berkeleyvision.org/

Unidad 1: Introducción al Aprendizaje Automatizado

Curso: Redes Neuronales Profundas

¿Qué es Machine Learning?

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**." [Mitchell 1997]

Machine Learning Mitchell, T.M. 1997 McGraw-Hill

"Se dice que un programa de computadora <u>aprende</u> de la experiencia **E** sobre un tipo de tareas **T** y medida de desempeño **P**, si su desempeño en la tareas de tipo **T** medido en términos de **P**, mejora con la experiencia **E**" [Mitchell 1997]

EXPERIENCE /

TASK /

PERFORMANCE MEASURE /

Machine Learning Tasks

Machine Learning Tasks

Clasificación y Regresión

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.

¿Qué se distingue acá?

¿Qué se distingue acá?

¿Qué se distingue acá?

Cuándo pensar en Deep Learning

Muchas entradas

Complejidad

Variables de alto nivel de abstracción

Muchos datos

Regresión: coordenadas del recuadro

bounding box

Transcripción y traducción simultáneas

Microsoft 2012

Detección de anomalías

Generación de datos sintéticos. GAN

TASK /

PERFORMANCE MEASURE

Experiencia: Dataset

Un dataset es una colección de ejemplos de la tarea que se quiere aprender.

Cada ejemplo es una colección de mediciones.

Usualmente vectores

Experiencia: Dataset

Representación One hot

Bag of words

www.lanacion.com.ar Río 2016: Del Potro: "Dejé hasta mi última uña dentro de la cancha, no me quedaron uñas de los pies"

https://www.jasondavies.com/wordcloud/

Design Matrix

Object	Weight (g)	Colour (0=Green, 1=Red)	
Red Apple 1	147	0.90	
Red Apple 2	159	0.70	
Red Apple 3	170	0.77	
Green Apple 1	163	0.17	
Green Apple 2	151	0.13	
Banana 1	104	0.10	
Banana 2	119	0.15	Data point
Banana 3	113	0.34	Jane point
Banana 4	122	0.23	
Banana 5	125	0.30	

Lo que queremos aprender

Tipos de aprendizaje

NO SUPERVISADO

Datasets. Características deseables

- Que los ejemplos sean iid (independientes e idénticamente distribuidos)
- Que tengan la misma distribución que en el uso normal (posterior). Esto puede no ser trivial.
- Que tengan las mediciones relevantes para el problema, sin mediciones sin importancia.
- Suficientes datos

Datasets. Posibles problemas

Qué pasa cuando no se cumplen estas cosas.

- Datos sesgados: comportamiento muy diferente en test.
- Pocos datos. Lo mismo. No se pueden capturar los detalles del sistema (real) que los genera.
- El sistema (real) genera datos con ruido. Se puede solucionar con más datos.

Datasets. Problema de la alta dimensionalidad

- La cantidad de datos necesaria para cubrir razonablemente bien un espacio crece exponencialmente con la cantidad de dimensiones.
- Las distancias (euclideas) se empiezan a comportar de manera contraintuitiva

Beyer, Kevin, et al. "When is "nearest neighbor" meaningful?." *International conference on database theory*. Springer Berlin Heidelberg, 1999.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.

Ejemplo: Aproximación de una PDF

Modelo simple: una distribución normal.

Modelo más complejo: 2 gaussianas

Más todavía: 3 gaussianas.

10 gaussianas

10 gaussianas: Overfitting

Underfitting y overfitting

Bias - Variance

Capacidad y subreajuste.

Capacidad y sobreajuste

