玻色-爱因斯坦凝聚的蒙特卡洛模拟

南京大学物理学院

孙泽维 131220096

摘要

本文通过蒙特卡洛法,模拟在临界温度以下,玻色-爱因斯坦凝聚的玻色子分布以及处在能级为0的粒子比例。

1 引言

由玻色分布可得,处在能级ει的粒子数为

$$a_{l} = \frac{\omega_{l}}{\frac{\varepsilon_{l} - \mu}{\varepsilon_{k} T - 1}} \tag{1}$$

其中 μ 为化学势,随温度的降低而升高。当温度降低到某一临界温度 T_c 时, μ 将趋于-0。这时 $e^{-\frac{\mu}{kT_c}}$ 趋于 1。粒子分布改为

$$a_{l} = \frac{\omega_{l}}{\frac{\varepsilon_{l}}{\varepsilon_{k} \Gamma_{-1}}} \tag{2}$$

对于总粒子数为 N, 体积为 V 的系统, 有

$$\frac{1}{v} \sum_{l} \frac{\omega_{l}}{\frac{\epsilon_{l}}{e^{kT} - 1}} = \frac{N}{v} = n \tag{3}$$

对于热力学极限或能级间距远小于 kT 的情形, (3) 式可化为

$$\frac{2\pi}{h^3}(2m)^{3/2} \int_0^\infty \frac{\epsilon d\epsilon}{e^{\overline{kT}}-1} = n \tag{4}$$

进行近似积分后[1]可得

$$n_{\varepsilon > 0} = n(\frac{T}{T_c})^{3/2} \tag{5}$$

故有

$$n_0(T) = n[1 - (\frac{T}{T_c})^{\frac{3}{2}}]$$
 (6)

2 蒙特卡洛模拟

取 N=10000 个粒子,利用随机数在 x, y, z 三个方向上产生随机分布的速度,计算动量 p,利用周期性边界条件,有

$$p_{\alpha} = \frac{h}{L} n_{\alpha} \quad (\alpha = x, y, z)$$
 (7)

故有

$$\frac{\omega}{v} = n_x n_y n_z = p_x p_y p_z \tag{8}$$

计算动能

$$\varepsilon = \frac{1}{2m} (p_x^2 + p_y^2 + p_z^2)$$
 (9)

将(8)(9)式代入(3)式计算总密度数 n,将 $T=T_c$ 时的最低能量设为 ϵ_0 ,将低于 ϵ_0 的能量视为 $\epsilon=0$,计算 $\epsilon=0$ 的粒子数占比随温度的关系。

注:

- 1、由于速度无法取到无穷大,以 $\sqrt{\frac{kT}{m}}$ 的 10 倍为最大速度,数量级即可保持一致。
- 2、该模拟取 Na 原子的临界温度 2 μ K, 原子相对质量 22.989768。[2]

3 代码实现

程序语言为 C++, 己附上相关注释

```
#include <iostream>
#include <math.h>
using namespace std;
#define N 10000
const double h=6.62607e-34;//普朗克常数
const double k=1.38065e-23;//玻尔兹曼常数
const double NA=6.02214e23;//阿伏伽德罗常数
const double pi=3.1415926;//π

int main()
{
    double px,py,pz,nx,ny,nz;
    double en,a,m,Tc=2e-6,dT=2e-8,T,v;
    double nsum,n0;//nsum为总粒子密度,n0为零能级粒子密度
```

```
m=22.989768*1000/NA;//钠原子的原子质量
   for(T=dT;T<=Tc;T+=dT)</pre>
   {
      nsum=0;n0=0;//清空总粒子密度与0能级粒子密度
      for(int i=1;i<=N;i++)</pre>
      {
         v=10*sqrt(k*T/m);//速度最大值,数量级相等
         px=m*v*double(rand())/RAND_MAX;
         py=m*v*double(rand())/RAND_MAX;
         pz=m*v*double(rand())/RAND_MAX;//三个维度产生随机速度
         nx=px/h;ny=py/h;nz=pz/h;//三个维度的状态数,设V=L*L*L=1
         en=(px*px+py*py+pz*pz)/(2*m);//计算动能
         a=nx*ny*nz/(exp(en/(k*T))-1);//该温度下的粒子密度
         nsum+=a;
         if(en<3.2e-29) n0+=a;//经计算,将3.2*10^(-29)作为零能级
      }
      cout<<T/Tc<<' '<<n0/nsum<<endl;</pre>
   }
   return 0;
}
```

4 模拟结果

产生的数据见附表。

以温度与临界温度的比值 T/Tc 为横轴, 以零能级粒子数与总粒子数比例为纵轴, 绘制曲线, 如下图

各点分布与理论推导的 y=1-x3/2 符合得较好。

附表

T/Tc	n0/n	T/Tc	n0/n	T/Tc	n0/n	T/Tc	n0/n
0.01	1	0. 26	0.864451	0.51	0. 582805	0.76	0. 336632
0.02	1	0. 27	0.843344	0. 52	0. 552344	0.77	0. 268335
0.03	1	0. 28	0.839069	0. 53	0. 560149	0.78	0. 241367
0.04	1	0. 29	0.803642	0. 54	0. 530217	0. 79	0. 224467
0.05	1	0.3	0. 784667	0. 55	0. 519401	0.8	0. 316238
0.06	0. 999999	0. 31	0. 737713	0. 56	0. 458983	0.81	0. 200568
0.07	0. 999992	0. 32	0.810753	0. 57	0. 551964	0.82	0. 227043
0.08	0. 99995	0. 33	0. 722864	0. 58	0. 389096	0.83	0. 277983
0.09	0. 999771	0. 34	0.693044	0. 59	0. 427913	0.84	0. 17519
0. 1	0. 99941	0. 35	0. 789407	0.6	0. 393647	0.85	0. 243651
0.11	0. 998686	0. 36	0. 694255	0.61	0. 433939	0.86	0. 185136
0. 12	0. 99765	0. 37	0. 715242	0. 62	0. 370864	0.87	0. 23365
0. 13	0. 995336	0. 38	0. 64093	0.63	0. 482619	0.88	0. 218858
0.14	0. 989497	0. 39	0. 690698	0.64	0. 365004	0.89	0. 193204
0. 15	0. 98037	0. 4	0.659087	0.65	0. 379403	0.9	0. 08402
0. 16	0. 978739	0. 41	0. 688757	0.66	0. 421929	0. 91	0. 082516
0. 17	0. 973856	0. 42	0. 654451	0.67	0. 379873	0. 92	0. 150546
0.18	0. 969291	0. 43	0. 66546	0. 68	0. 394003	0. 93	0. 031669
0. 19	0. 939334	0. 44	0. 593462	0.69	0. 40258	0.94	0. 133939
0.2	0. 94777	0. 45	0. 640751	0. 7	0. 229107	0.95	0. 055574
0. 21	0. 92042	0.46	0. 595397	0.71	0. 286331	0. 96	0. 145597
0. 22	0. 918771	0. 47	0. 686769	0.72	0. 321054	0. 97	0. 118319
0. 23	0.8909	0. 48	0. 567242	0. 73	0. 30124	0. 98	0. 038809
0. 24	0.849921	0. 49	0. 619729	0.74	0. 295931	0. 99	0. 065019
0. 25	0.866095	0. 5	0. 586804	0. 75	0. 306035	1	0

参考文献

[1]汪志诚.热力学·统计物理[M].北京:高等教育出版社,2013: 230-232

[2] Anderson M H, et al. Science[J], 1995, 269:198; Davis K B, et al. Phys. Rev. Lett. [J] 1995, 75:3969; Bradley C C. ibid 1995, 75: 1687; 1997, 78:985.