# **Grid Crossing**

# **Parameters**

For the Oedometer problem:

| Quantity           | Symbol | Value            | Unit     |
|--------------------|--------|------------------|----------|
| Density            | ρ      | $1 \cdot 10^3$   | $kg/m^3$ |
| Young's modulus    | E      | $1 \cdot 10^{5}$ | Pa       |
| Gravitational acc. | g      | -9.81            | $m/s^2$  |
| Load               | $p_0$  | 0                | Pa       |
| Height             | H      | 1                | m        |

For the vibrating string with free end:

| Quantity           | Symbol | Value | Unit             |
|--------------------|--------|-------|------------------|
| Density            | ρ      | 1     | $kg/m^3$         |
| Young's modulus    | E      | 100   | Pa               |
| Gravitational acc. | g      | 0     | $\mathrm{m/s^2}$ |
| Load               | $p_0$  | 0     | Pa               |
| Height             | Н      | 25    | m                |

For the test problem of Steffen et al.:

| Quantity        | Symbol | Value | Unit     |
|-----------------|--------|-------|----------|
| density         | ρ      | 100   | $kg/m^3$ |
| Young's modulus | E      | 100   | Pa       |
| length          | L      | 1     | m        |
| amplitude force | $\tau$ | 1     | _        |

## Figure: internal force and pulse

The figure was made with 10 elements and 2 PPC. A timestep was chosen of  $\Delta t = 0.001$ .

As an alternative, we can also use the one I used during one of the meetings. (If you want, I will check the parameters/number of elements etc. for that figure.)

### Figure: velocity

#### Vibrating string with free end

Two plots were made. The first one without grid crossing were we defined 30 elements and 4 PPC. The seconde one with grid crossing were we defined 60 elements and 4 PPC. In both cases a time step was used of  $\Delta t = 0.01$  s.

I think that these plots show nicely that grid crossing is a serious issue. (And that our code works)

#### Test problem Steffen et al.

At this moment, there is no plot of the velocity implemented in the code (since it was not given in the paper). If you want I can implement it to obtain plots of the exact and obtained velocity.

#### Oedometer problem

Three plots were made. All of the plots were made with 30 elements and 10 PPC. A time step was used of  $\Delta t = 0.001$  s. We have the following flavours:

- MPM solution and 'exact' solution.
- MPM solution and ULFEM solution, both of node situated halfway.
- MPM solution and ULFEM solution, MPM with particle situated halfway, ULFEM with node situated halfway.



