Chapter 11 Wall paper Groups

<u>Definition</u> A wall paper group is a subgroup W of I no that $W \cap J = \langle T_1, T_2 \rangle$ where T_1 and T_2 are non-identity translations with non parallel directions

Let W be a wall paper group with Wn J = < I, I2>

(1) Let P & R2 and consider

 $\mathcal{L} = \{ \tau_1^m \tau_2^m(P) \mid n, m \in \mathbb{Z}^{\frac{n}{2}} . \mathcal{L} \text{ is called} \}$ the <u>translation lattice</u> of W (determined by P)

 $T_i T_2(P)$ $T_i T_2(P)$ is called a Each of T_1 T_2 T_1 T_2 T_2 T_3 T_4 T_2 T_3 T_4 T_4 T_5 T_4 T_5 T_6 T_7 T_8 T_8

(2) A point P is called an n-centre of W if $C_{\rm M} = \langle P_{\rm p}, \frac{360}{360} \rangle \subset W$ where $M \in \mathbb{Z}^+$.

3	Let P be a p-centre and Q be a q-centre of W,
	P + Q (Assume p > 2 and Q is closest to P)
	This means p and p are elements of W
	This means P , $\frac{360}{P}$ and Q , $\frac{360}{q}$

l = PQ. Let a, b be lines so that

 $P_{1,360} = 0,360$ $P_{2,360} = 0,360$ $P_{360} = 0,360$ $P_{360} = 0,360$ This means, R is an r-centre of W and $\frac{1}{P} + \frac{1}{9} + \frac{1}{r} = 1$ $(p, q, r \in \mathbb{Z}^+)$

Thus the only possibilities are (assuming p > 3, 9 > 3 p = q = r = 3

=3, q=6, r=2

or q = 3, p = 6, r = 2

Thus

1 If P is an n-centre for W then n = 2,3 or 6

5 If P is an n-centre for W and d∈ W
then $d(P)$ is an n -centre for W .
This is because $x \neq p$, $\frac{360}{n} = p$.
If ℓ is a line of reflection for W ($\sigma_{\ell} \in W$)
and $\alpha \in \mathbb{W}$ then $\alpha(\ell)$ is a line of reflection for \mathbb{W}
This is because $\alpha = \alpha' = \alpha' = \alpha'$
Theorem @ If W has a reflection of them the
unit cell of W is rhombic or rectangular,
where I is parallel to a diagonal of the
volombus, or the rides of the rectangles.
(7) If W has a glide reflection of them the translation
lattice of W is shombic or rectangular.
(8) If W has a glide reflection of that fixes a
translation lattice of W then W contains a
reflection.
1 Let 5 = R 10 that W = Os and P be
an n-centre of W. Then P is called
a centre of symmetry for S, and P
is a point of symmetry for S iff n is even.
(i) Let P and Q be n-centres for W, and $P \neq Q$, $T \in W$. Then $PQ \neq Q T(Q)$.
(1) Let $W = S_S$. A base of \widetilde{W} is a smallest
B that is 2 is concered by
polygonal region B so that IR2 is covered by
[d(B) d∈W } A motif for W is a subset
M of a base B so that $9_{M} = 5i3$.

POSSIBILITIES	FOR	W = 95	
$W_1 = \langle \tau_1, \tau_2 \rangle$	•	In this case, the unit cell is	base

(1)

base and motif

unit cell

(3)
$$W_3 = \langle P_{P,120}, P_{Q,120} \rangle = \langle T_1, T_2, P_{P,120} \rangle$$

Assume P and Q closest possible 3 - centres. Thus, there is no 3 - centre inside \triangle PQR Then for all $A \in W_3$, A(P), A(Q), A(R) are 3 - centres

and $\triangle d(P) \alpha(Q) \alpha(R) \cong \triangle PQR$ and contains mo 3 centre inside. Thus, we obtain the centre lattice for W_3

We want to determine τ_1 and τ_2 . Let $\tau \in W_3$. We want τ to be the shortest translations that maps 3-centres to 3-centres.

If $\zeta(P) = Q$ then $\rho = \zeta(P) = Q$, $\rho = \zeta(Q) = R$

and Q = T(R) = P and so Q = T = Q where $Q_1120 = Q_2120$

 \times is the curtivoid of $\triangle PQR$. This contradicts the fact that there are no 3-centre in $\triangle PQR$.

Thus, $\tau(P) \neq Q$. Similarly, $\tau(P) \neq R$.

Assuming T(P) is a 3-centre closest to P, we conclude that T(P) = S or T(P) = T.

Put $T_1 = T_{PS}$ and $T_2 = T_{PT}$ Then it is easy to see that $T_1 = T_{Q,120} = T_{Q,120}$

and no $T_1 = P_{5,120} P_{9,-120}$. Similarly, $T_2 = P_{5,120} P_{9,120}$

unit cell base

Assume that P and Q are closest 4-centres. Note that this is the case $\frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1 \cdot 50$, there are 2-centres.

Suppose T is a translation in W_A and T(P) = Q. Put $Q_i = P_{P,Q_0}(Q)$ and $P_i = e_{Q,Q_0}(P)$, i = 1, 2, 3.

Then

$$\begin{cases} P_{Q,90} & T(P) = Q \\ P_{Q,90} & T(Q_1) = P \end{cases} \Rightarrow P_{Q,90} & T = P_{X,90} \\ P_{Q,90} & T(X) = X \end{cases}$$

where X is the mid point of QQ, and X is a 4-centre. This contradicts the assumption that P and Q are donest 4-centres. Thus, $T_1 = T_{PP_1}$ and $T_2 = T_{PP_3}$. Note that $\rho_{P,Q0} \rho_{Q,Q0} = \rho_{X,180} = \sigma_{X}$, so X is a 2-centre.

• are 4-centres are 2 centres.

base

This is the case $\frac{1}{6} + \frac{1}{3} + \frac{1}{2} = 1$

Suppose P and & are donest, we get P = S Q,60 P,120

So R is a 2-centre. $\sigma \sigma_{R} = \sigma_{R} (\rho_{R,60}^{3}) = \tau_{R,60}$

and $\sigma_{R_1} \sigma_{Q_2} = \sigma_{R_1} (P_{Q_1} G_{Q_2}) = \overline{Q}_{Q_2}$

(Note: R_4 is a 2-centre because $R_1 = P_{P_1 120}(R)$)

Thus, we can have $T_1 = T_{Q_2Q}$ and $T_2 = T_{QQ_1}$. unit cell base

POSSIBILITIES FOR W

(1) Expanding W,

1.1 $W_1 = \langle T_1, T_2, \sigma_e \rangle$ where the unit cells vare rhombie and ℓ is parallel to a diagonal of \mathcal{U} .

 $X = \overline{L}_1 \overline{O_2}$ is a glide reflection with axis m and $X^2 = \overline{L}_1 = \overline{L}_1 \overline{L}_2$.

2.4 $W_2^+ = \langle \tau_1, \tau_2, \sigma_p, 8 \rangle$ with unit cell W rectangular S is a glide reflection with $S^2 = T_2$ and with axis S which does not contain any S - centre S =

so S is a glide reflection with axis m and $S^2 = T_1$

Expanding $W_c = \langle \tau_1, \tau_2, \varrho \rangle$
It can be shown that only one choice
of reflection can work: of with
· 6-centre · 3-centre · 2-centre.
6.1 W' = < Z, , Z, PQ, 60, 50 >
base