Statistical Inference for Entropy

Karina Marks

October 25, 2016

1 Introduction

2 Entropies and Properties

Entropy can be thought of as a representation of the average information content of an observation; sometimes referred to as a measure of unpredictability or disorder.

2.1 Shannon Entropy

The Shannon entropy of a random vector X with density function f is given by;

$$H = -\mathbb{E}\{log(f(x))\} = -\int_{x:f(x)>0} f(x)log(f(x))dx \tag{1}$$

2.2 Rényi and Tsallis Entropy

These entropies are for the order $q \neq 1$ and the construction of them relies upon the generalisation of the Shannon entropy 1. For a random vector $X \in \mathbb{R}^d$ with density function f, we define;

Rényi entropy

$$H_q^* = \frac{1}{1 - q} log \left(\int_{\mathbb{R}^d} f^q(x) dx \right) \qquad (q \neq 1)$$
 (2)

Tsallis entropy

$$H_q = \frac{1}{q-1} \left(1 - \int_{\mathbb{R}^d} f^q(x) dx \right) \qquad (q \neq 1)$$
 (3)

When the order of the entropy $q \to 1$, both the Renyi, (2), and Tsallis, (3), entropies tend to the Shannon entropy, (1).

3 Estimation of Entropy

3.1 Kozachenko-Leonenko Estimator

We now wish to introduce the Kozachenko-Leonenko estimator of the entropy H. Let $X_1, X_2, ..., X_n, N \ge 1$ be independent and identically distributed random vectors in \mathbb{R}^d , and denote $\|.\|$ the Euclidean norm on \mathbb{R}^d .

• For i = 1, 2, ..., n, let $X_{(1),i}, X_{(2),i}, ..., X_{(n-1),i}$ denote an order of the X_k for $k = \{1, 2, ..., n\} \setminus \{i\}$, such that $||X_{(1),i} - X_i|| \le \cdots \le ||X_{(n-1),i} - X_i||$. Let the metric ρ , defined as;

$$\rho_{(k),i} = \|X_{(k),i} - X_i\| \tag{4}$$

denote the kth nearest neighbour or X_i .

• For dimension d, the volume of the unit d-dimensional Euclidean ball is defined as;

$$V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma(1+\frac{d}{2})}\tag{5}$$

• For the kth nearest neighbour, the digamma function is defined as;

$$\Psi(k) = -\gamma + \sum_{i=1}^{k-1} \frac{1}{i}$$
 (6)

where $\gamma=0.577216$ is the Euler-Mascheroni constant (where the digamma function is chosen so that $\frac{e^{\Psi(k)}}{k}\to 1$ as $k\to\infty$).

Then the Kozachenko-Leonenko estimator for entropy, H, is given by;

$$\hat{H}_n = \frac{1}{n} \sum_{i=1}^n \log \left[\frac{\rho_{(k),i}^d V_d(n-1)}{e^{\Psi(k)}} \right]$$
 (7)

This estimator for entropy, when $d \leq 3$, under a wide range of k and some regularity conditions, this estimator satisfies;

$$n\mathbb{E}(\hat{H}_n - H)^2 \to 0 \quad (n \to \infty)$$
 (8)

so \hat{H}_n is efficient in the sense that the asymptotic variance is the best attainable; $n^{\frac{1}{2}}(\hat{H}_n - H) \xrightarrow{d} N(0, Var[log(f(x))]).$

Later, I will further discuss this estimator for the specific dimensions d=1 and d=2; however, it is important to note that for larger dimensions this estimator is not accurate. When d=4, equation 8 no longer holds but the estimator \hat{H}_n , defined by 7, is still root-n consistent, provided k is bounded. Also, when $d \geq 5$ there is a non trivial bias, regardless of the choice of k.

There is a new proposed estimator, formed as a weighted average of \hat{H}_n for different values of k, explored in Moreover, as this paper only considers d = 1, 2, this will not be examined here.

3.2 Bias of the K-L estimator

 \hat{H}_n is approximately an unbiased estimator for H; we wish to explore how approximate this is, by considering the bias of the estimator for entropy;

$$Bias(\hat{H}_n) = \mathbb{E}(\hat{H}_n) - H = \mathbb{E}(\hat{H}_n - H) \tag{9}$$

4 Monte-Carlo Simulations

In this section I will explore simulations of the bias of estimator (7) in comparison to the size of the sample estimated from, with respect to different values of k; firstly exploring 1-dimensional distributions and then progressing onto 2-dimensional.

I will begin by exploring entropy of samples from the normal distribution $N(0, \sigma^2)$, where without loss of generality we can use the mean $\mu = 0$ and change the variance σ^2 as needed. The normal distribution has an exact formula to work out the entropy, given the variance σ^2 . Using equation (1) and the density function for the normal distribution $f(x) = \frac{1}{\sqrt{(2\pi)}\sigma} \exp\left(\frac{-x^2}{2\sigma^2}\right)$ for $x \in \mathbb{R}$, given $\mu = 0$, we can write the exact entropy for the normal distribution;

$$H = \log(\sqrt{(2\pi e)}\sigma) \tag{10}$$

The motivation for these simulations is to explore the consistency of this estimator for different values of k; the relationship between the size of the bias of the estimator $\hat{H}_{N,k}$, $Bias(\hat{H}_{N,k})$, and the sample size, N. We believe this relationship is of the form;

$$|Bias(\hat{H}_{N,k})| = \frac{c}{N^a} \tag{11}$$

for a,c>0. By taking the logarithm of this, we can see that this relationship is infact linear;

$$log(|Bias(\hat{H}_{N,k})|) = log(c) - a[log(N)]$$
(12)

We will investigate the consistency of this estimator for a sample from the normal distribution, dependent on the value of k.

4.1 1-dimensional Normal Distribution

- 4.1.1 k=1
- 4.1.2 k=2