Test Notebook

```
In [1]: import tensorflow as tf
        from tensorflow import keras
        import numpy as np
        import numpy.random as npr
        from PIL import Image
        import cv2
        import random
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.model selection import ParameterGrid
        import warnings
        import json
        import gc
        from sklearn.model selection import ParameterGrid
        from tensorflow.keras.models import load model
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
        warnings.filterwarnings("ignore")
        %matplotlib inline
        plt.style.use('bmh')
In [2]: def plot_learning_curve(history, title):
            key_names = list(history.keys())
            colors = ['-r','--b','-og','-.k']
            plt.figure(figsize=(8,5))
            for i in range(len(key_names)):
                plt.plot(history[key_names[i]], colors[i], label=key_names[i])
            plt.legend(fontsize=15,ncol=2)
            plt.title('Learning Curves for ' + title, size=15);
```

Dataset 1: Flower species classification

```
class_names = ['Roses', 'Magnolias', 'Lilies', 'Sunflowers', 'Orchids',
In [3]:
                       'Marigold', 'Hibiscus', 'Firebush', 'Pentas', 'Bougainvillea']
In [4]: # Loading Training Data
        X test = np.load('flower species classification/data test.npy').T
        t_test = np.load('flower_species_classification/labels_test.npy')
        print(X_test.shape, t_test.shape)
       (415, 270000) (415,)
In [5]: X_test = X_test.reshape(-1, 300, 300, 3) / 255.0
In [6]: # Displaying some random examples per class
        for i in range(0,10):
            rnd_sample = npr.permutation(np.where(t_test==i)[0])
            fig=plt.figure(figsize=(15,15))
            for j in range(5):
                fig.add_subplot(5,5,j+1)
                plt.imshow(X_test[rnd_sample[j],:].reshape((300,300,3)))
                plt.axis('off');plt.title('Class '+str(int(t_test[rnd_sample[j]])),size=15)
            plt.show()
            print('\n\n')
             Class 0
                                     Class 0
                                                              Class 0
                                                                                      Class 0
                                                                                                              Class 0
```


In [7]: # model1 = Load_model("best_model1.h5")

```
2023-12-06 22:18:22.475084: I tensorflow/core/platform/cpu feature guard.cc:151] This TensorFlow binary is optimized w
       ith oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
       ns: SSE4.1 SSE4.2 AVX AVX2 FMA
        To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
        2023-12-06 22:18:25.090375: I tensorflow/core/common runtime/gpu/gpu device.cc:1525] Created device /job:localhost/rep
       lica:0/task:0/device:GPU:0 with 78911 MB memory: -> device: 0, name: NVIDIA A100-SXM4-80GB, pci bus id: 0000:0f:00.0,
        compute capability: 8.0
        2023-12-06 22:18:25.093842: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/rep
       lica:0/task:0/device:GPU:1 with 78911 MB memory: -> device: 1, name: NVIDIA A100-SXM4-80GB, pci bus id: 0000:87:00.0,
        compute capability: 8.0
        2023-12-06 22:18:25.095530: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/rep
       lica:0/task:0/device:GPU:2 with 78911 MB memory: -> device: 2, name: NVIDIA A100-SXM4-80GB, pci bus id: 0000:b7:00.0,
        compute capability: 8.0
        2023-12-06 22:18:25.098574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/rep
       lica:0/task:0/device:GPU:3 with 78911 MB memory: -> device: 3, name: NVIDIA A100-SXM4-80GB, pci bus id: 0000:bd:00.0,
        compute capability: 8.0
In [8]: predictions = model1.predict(X test)
         predicted classes = np.argmax(predictions, axis=1)
        2023-12-06 22:18:28.097814: I tensorflow/stream executor/cuda/cuda dnn.cc:366] Loaded cuDNN version 8201
        2023-12-06 22:18:29.892984: I tensorflow/stream executor/cuda/cuda blas.cc:1774] TensorFloat-32 will be used for the m
       atrix multiplication. This will only be logged once.
In [9]: del model1
In [10]: # Calculate metrics
         accuracy = accuracy_score(t_test, predicted_classes)
         precision = precision_score(t_test, predicted_classes, average='macro')
         recall = recall_score(t_test, predicted_classes, average='macro')
         f1 = f1_score(t_test, predicted_classes, average='macro')
         # Print the metrics
         print(f"Accuracy: {accuracy}")
         print(f"Precision: {precision}")
         print(f"Recall: {recall}")
         print(f"F1 Score: {f1}")
         # Confusion Matrix
         conf_matrix = confusion_matrix(t_test, predicted_classes)
         print("Confusion Matrix:\n", conf matrix)
```

```
Accuracy: 0.7710843373493976
       Precision: 0.7974186899214291
       Recall: 0.7754198780083512
       F1 Score: 0.773455374217114
       Confusion Matrix:
        [[31 1 2 0 0 1 5 1 7 0]
        [042 1 0 0 0 0 1 0 0]
        [0 2 34 0 2 2 1 4 0 1]
        [0 0 1 30 0 4 1 0 0 0]
        [02803400010]
        [0 0 0 1 1 36 0 1 1 0]
        [1 3 5 0 0 1 29 2 1 1]
        [0 0 1 0 0 0 0 36 0 0]
        [0 4 1 0 0 0 0 4 22 1]
        [001101000626]]
In [11]: fig, ax = plt.subplots(figsize=(10, 10))
        im = ax.imshow(conf_matrix, interpolation='nearest')
        ax.figure.colorbar(im, ax=ax)
        # Show all ticks and label them with the respective list entries
        ax.set(xticks=np.arange(conf matrix.shape[1]),
               yticks=np.arange(conf matrix.shape[0]),
               xticklabels=class names, yticklabels=class names,
               title='Confusion Matrix',
               ylabel='True label',
               xlabel='Predicted label')
        # Rotate the tick labels and set their alignment
        plt.setp(ax.get xticklabels(), rotation=45, ha="right", rotation mode="anchor")
        # Loop over data dimensions and create text annotations
        thresh = conf matrix.max() / 2.
        for i in range(conf matrix.shape[0]):
            for j in range(conf matrix.shape[1]):
                ax.text(j, i, format(conf matrix[i, j], 'd'),
                       ha="center", va="center",
                       color="white" if conf matrix[i, j] > thresh else "black")
        fig.tight layout()
        plt.show()
```


Dataset 2: Car Detection Dataset

```
In [12]: bbox = pd.read_csv("test_bounding_boxes.csv")
bbox
```

Out[12]:

	image	xmin	ymin	xmax	ymax
0	vid_5_26580.jpg	156	166	352	266
1	vid_5_26620.jpg	224	167	424	278
2	vid_5_26680.jpg	538	160	673	232
3	vid_5_26700.jpg	302	166	435	244
4	vid_5_26720.jpg	186	165	405	265
5	vid_5_26720.jpg	463	157	646	246
6	vid_5_26720.jpg	69	173	179	241
7	vid_5_26740.jpg	124	173	306	263
8	vid_5_26760.jpg	219	156	424	267
9	vid_5_26760.jpg	510	135	654	231
10	vid_5_26780.jpg	223	130	399	256
11	vid_5_26800.jpg	10	161	161	265
12	vid_5_26800.jpg	364	138	563	259
13	vid_5_26800.jpg	583	157	676	234
14	vid_5_26820.jpg	309	162	471	258
15	vid_5_26820.jpg	18	174	173	266
16	vid_5_26840.jpg	66	176	214	272
17	vid_5_26900.jpg	341	172	469	240
18	vid_5_26900.jpg	493	153	664	241
19	vid_5_26920.jpg	443	168	587	248
20	vid_5_26920.jpg	109	166	283	265
21	vid_5_26940.jpg	204	186	325	257

	image	xmin	ymin	xmax	ymax
22	vid_5_26960.jpg	17	162	144	247
23	vid_5_27360.jpg	496	178	543	207
24	vid_5_27360.jpg	426	179	479	211
25	vid_5_27380.jpg	368	175	408	211
26	vid_5_27380.jpg	455	173	483	206
27	vid_5_27400.jpg	276	179	349	215
28	vid_5_27400.jpg	357	179	390	206
29	vid_5_27400.jpg	402	178	431	208
30	vid_5_27480.jpg	380	144	621	255
31	vid_5_27480.jpg	190	182	250	227
32	vid_5_27500.jpg	38	160	231	272
33	vid_5_27540.jpg	62	186	117	234
34	vid_5_27560.jpg	20	182	81	235
35	vid_5_27620.jpg	255	143	501	269
36	vid_5_27860.jpg	188	159	343	256
37	vid_5_27880.jpg	6	173	124	244
38	vid_5_27900.jpg	474	144	662	252
39	vid_5_27920.jpg	123	163	310	270
40	vid_5_28260.jpg	2	160	150	279
41	vid_5_28420.jpg	109	157	287	263
42	vid_5_28520.jpg	229	146	552	277
43	vid_5_29000.jpg	86	171	254	277

	image	xmin	ymin	xmax	ymax
44	vid_5_29000.jpg	414	148	577	236
45	vid_5_29020.jpg	128	182	261	247
46	vid_5_29440.jpg	136	169	323	266
47	vid_5_29460.jpg	353	174	493	247
48	vid_5_29480.jpg	70	188	195	259
49	vid_5_29560.jpg	121	173	309	271
50	vid_5_29820.jpg	162	160	308	278
51	vid_5_30860.jpg	227	176	281	229
52	vid_5_31020.jpg	148	183	265	238
53	vid_5_31020.jpg	372	176	517	241
54	vid_5_31040.jpg	93	190	213	247
55	vid_5_31060.jpg	255	176	474	266
56	vid_5_31100.jpg	308	166	487	244

```
In [13]: # Select a random sample
    random_index = 31
    sample = bbox.iloc[random_index]

# Load the corresponding image
    filename = 'car_detection_dataset/testing_images/' + sample['image']
    image = cv2.imread(filename)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert from BGR to RGB

# Extract bounding box coordinates and convert them to integers
    x_min, y_min, x_max, y_max = map(int, sample[1:])

# Draw the bounding box on the image
    cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)

# Display the image
```

```
plt.figure(figsize=(8, 8))
plt.imshow(image)
plt.axis('off')
plt.show()
plt.close()
```



```
In [14]: N = len(bbox) # Number of training samples

# Initialize arrays for images and labels
X_test = []
t_test = []

# Load and preprocess images
for i in range(N):
    filename = 'car_detection_dataset/testing_images/' + bbox['image'][i]
    image = np.array(Image.open(filename))
    X_test.append(image)
    t_test.append(bbox.iloc[i, 1:].values)

X_test = np.array(X_test, dtype='float32') / 255.0 # Normalize pixel values
t_test = np.array(t_test, dtype='float32')
print(X_test.shape)

(57, 380, 676, 3)
```

13/16

file:///C:/Users/cools/Downloads/test (1).html

```
In [15]: model2 = load_model("best_model2.h5")
In [16]: predictions = model2.predict(X test)
         predicted classes = np.argmax(predictions, axis=1)
In [17]: # Select a random sample
         random_index = random.randint(0, len(X_test) - 1)
         sample_image = X_test[random_index]
         predicted_bbox = predictions[random_index]
         predicted_bbox = np.round(predicted_bbox).astype(int) # Round to nearest integer
         # Draw the predicted bounding box on the image
         plt.figure(figsize=(8, 8))
         plt.imshow(sample_image)
         plt.gca().add_patch(plt.Rectangle((predicted_bbox[0], predicted_bbox[1]),
                                           predicted_bbox[2] - predicted_bbox[0],
                                           predicted_bbox[3] - predicted_bbox[1],
                                           linewidth=2, edgecolor='red', facecolor='none'))
         plt.axis('off')
         plt.show()
```



```
In [18]: def calculate_iou(boxA, boxB):
    # Determine the coordinates of the intersection rectangle
    xA = max(boxA[0], boxB[0])
```

```
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])

# Compute the area of intersection
intersection_area = max(0, xB - xA + 1) * max(0, yB - yA + 1)

# Compute the area of both bounding boxes
boxA_area = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxB_area = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

# Compute the IoU
iou = intersection_area / float(boxA_area + boxB_area - intersection_area)
return iou
```

```
In [19]: # Calculate IoU for each prediction
ious = [calculate_iou(t_test[i], predictions[i]) for i in range(len(predictions))]

# Calculate the average IoU
average_iou = np.mean(ious)
print("Average IoU:", average_iou)
```

Average IoU: 0.11629960677169661

To study and quantify the performance of the results we need to address the challenge of overlapping Region of Interest (ROI). Addressing overlapping Regions of Interest (ROIs) in classification often involves leveraging the Intersection over Union (IoU) metric. We have used IoU to quantifies the degree of overlap between the predicted bounding box and the ground truth bounding box (manually labelled). Thus, an IoU value of 1 is ideal. In our test set, we have obtained an average IoU value of 0.11.

```
In [20]: # del model1
In [21]: del model2
```

Discussions

• We can perform hyperparameter training using a grid search strategy to find the best model architecture. In the experiments, we have performed hyperparameter tuning on the convolution layers, dense layers, learning rate and dropout.

• We have displayed the learning curves for both the model training and observed that loss on object detection was very high since applying mse on bounding box will give higher values.

- We have used MakeSenseAl to manually label a few of the samples and test our model. In the case when no target labels are provded, we can use the Intersection over Union (IoU) metric to verify the detection performance against the ground truth bounding boxes. Therefore, we were able to perform tests on the given samples using this strategy and identify images with and without cars.
- Addressing the case where no car is present in the image, we can set the bounding boxes of such samples to [0,0,0,0]. If this smaple is predicted by the model with an IoU > 0, we can simply classify this result as a False Positive. This will enable us to predict the performance of the model on the test set quantitatively. Since we can use the misclassification parameter, there is a possibility to sample out the best threshold value from the precision recall curve for the Margin of Error (MoE). The solution is now simple, choose the model with the best balance.
- When the exact bounding box is not the target, we can evaluate performance in the test set using IoU metric discussed in the results.