Chap4: Models for stationary time series (4.1-4.3)

- **4.4** Show that when θ is replaced by $1/\theta$, the autocorrelation function for an MA(1) process does not change.
- 4.2 Sketch the autocorrelation functions for the following MA(2) models with parameters as specified:
 - (a) $\theta_1 = 0.5$ and $\theta_2 = 0.4$.
 - **(b)** $\theta_1 = 1.2$ and $\theta_2 = -0.7$.
 - (c) $\theta_1 = -1$ and $\theta_2 = -0.6$.
- **4.24** Let $\{e_t\}$ be a zero-mean, unit-variance white noise process. Consider a process that begins at time t = 0 and is defined recursively as follows. Let $Y_0 = c_1 e_0$ and $Y_1 = c_2 Y_0 + e_1$. Then let $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$ for t > 1 as in an AR(2) process.
 - (a) Show that the process mean is zero.
 - (b) For particular values of φ₁ and φ₂ within the stationarity region for an AR(2) model, show how to choose c₁ and c₂ so that both Var(Y₀) = Var(Y₁) and the lag 1 autocorrelation between Y₁ and Y₀ match that of a stationary AR(2) process with parameters φ₁ and φ₂.
 - (c) Once the process {Y_t} is generated, show how to transform it to a new process that has any desired mean and variance. (This exercise suggests a convenient method for simulating stationary AR(2) processes.)
 - **4.25** Consider an "AR(1)" process satisfying $Y_t = \phi Y_{t-1} + e_t$, where ϕ can be **any** number and $\{e_t\}$ is a white noise process such that e_t is independent of the past $\{Y_{t-1}, Y_{t-2}, \ldots\}$. Let Y_0 be a random variable with mean μ_0 and variance σ_0^2 .

(a) Show that for
$$t > 0$$
 we can write

- $Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \phi^3 e_{t-3} + \dots + \phi^{t-1} e_1 + \phi^t Y_0.$
- **(b)** Show that for t > 0 we have $E(Y_t) = \phi^t \mu_0$. **(c)** Show that for t > 0

$$Var(Y_t) = \begin{cases} \frac{1 - \phi^{2t}}{1 - \phi^2} \sigma_e^2 + \phi^{2t} \sigma_0^2 \text{ for } \phi \neq 1 \\ t \sigma_e^2 + \sigma_0^2 \text{ for } \phi = 1 \end{cases}$$

- (d) Suppose now that $\mu_0 = 0$. Argue that, if $\{Y_t\}$ is stationary, we must have $\phi \neq 1$.
- (e) Continuing to suppose that $\mu_0 = 0$, show that, if $\{Y_t\}$ is stationary, then $Var(Y_t) = \sigma_e^2/(1 \phi^2)$ and so we must have $|\phi| < 1$.

Deadline for submission: 23:00, 29 Sep