autoNomous, self-Learning, **OPTI**mal and compLete **U**nderwater **S**ystems **NOPTILUS**

FP7-ICT-2009.6: Information and Communication Technologies

1st Project Review

WP6 (Situation Understanding) Progress Report

E. Orfanoudakis and M. G. Lagoudakis Telecommunication Systems Institute (TSI), Greece

November 6, 2012 FEUP, Portugal

Outline

- **▶ WP6: Situation Understanding**
- Probabilistic Context-Free Grammars
- PCFG Event Recognition
 - Proof-of-Concept Example
 - Multiple Experiments
- WP6 Progress and Plans

WP6

Situation Understanding

Situation Understanding

Definition

 cognitive ability of inferring high-level descriptions and representations of the current state of the environment

Abilities

- analysis of timed data
- event recognition

Observations

stream of discrete symbols

Events

patterns in observations

WP6 Tasks

Task 6.1: Probabilistic Context-Free Grammars

- formal models for specifying sequences
- appropriate for recognizing patterns in observations

▶ Task 6.2: Structured Prediction

- step-by-step approach to building structured objects
- appropriate for automatically learning grammars

▶ Task 6.3: Integration

PCFG event recognition using learned grammars

WP6 current status

- significant progress in Task 6.1
- first steps in Task 6.2
- □ no work yet in Task 6.3

PCFG

Probabilistic Context-Free Grammars

Probabilistic CFGs

Context-Free Grammars (CFG)

- formal models for specifying syntax
- components
 - terminal symbols
 - non-terminal symbols
 - production rules
 - start symbol

Probabilistic CFGs (PCFG)

CFG with a probability value to each production rule

A Simple PCFG

Grammar	Prob	Lexicon	
$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$	0.8 0.1 0.1 0.2 0.2 + 1.0	Det \rightarrow the a that this 0.6 0.2 0.1 0.1 Noun \rightarrow book flight meal mone 0.1 0.5 0.2 0.2 Verb \rightarrow book include prefer	Σ=1.(ey Σ=1.(
$NP \rightarrow Det Nominal$ Nominal $\rightarrow Noun$	0.6	$\begin{array}{ccc} 0.5 & 0.2 & 0.3 \\ \text{Pronoun} \rightarrow I & \text{ he } \text{ she } \text{ me} \end{array}$	Σ=1.0
$Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$	0.2 + 1.0	0.5 0.1 0.1 $0.3Proper-Noun \rightarrow Houston NWA$	Σ=1.0
$VP \rightarrow Verb$ $VP \rightarrow Verb NP$	0.2 + 1.0	$0.8 \qquad 0.2$ Aux \rightarrow does	Σ=1.0
$VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.3 1.0	1.0 Prep \rightarrow from to on near throward 0.25 0.25 0.1 0.2 0.2	$\Sigma = 1.0$ Solution $\Sigma = 1.0$

PCFG Parsing

Derivation

- sequential application of rules to the start symbol
- probability: product of the probabilities of the rules used

Sequence

- sequence of terminal symbols derived from start symbol
- probability: sum of the probabilities of all its derivations

Sequence parsing

- given a sequence, find a derivation, if one exists
- useful for uncovering the structure of the sequence

Sequence likelihood

- compute the probability of a derivable sequence
- useful for classifying and ordering sequences

PCFG Benefits

Representation

- compact and hierarchical representation of sequences
- self-explanatory production rules

Algorithms

- a variety of parsers for various types of sequences
- algorithms for learning the probabilities of the rules

Applications

- natural language processing
- visual human activity recognition

Noptilus

- PCFGs for AUV event recognition
- abstract state description, reduction of communication
- causal grammar specification, diagnostic sequence parsing

PCFG Event Recognition

A Proof-of-Concept Example

AUV Mission Log

PCFGs for Noptilus

Goal

- simple event recognition regarding diving behavior
- focus on joint patterns in depth and pitch

Hierarchy

- level 1: independent grammars for depth and pitch events
- □ level 2: grammar for the combination of Level-1 events

Generating Level-1 Observations

Raw data

- depth measurements
- pitch measurements

Abstraction

- depth: compute the rate of change, average over a window
- pitch: average over a window

Level-1 observations

```
□ -: negative ( value<-ε )
```

$$\mathbf{0}$$
: zero (|value|< ϵ) for some ϵ >0

$$\blacksquare$$
 +: positive (value>+ ϵ)

Depth Observation Generation

Depth Sensor Data

Pitch Sensor Data

Level-1 Event Recognition

Level-1 events

depth : **D**own, **U**p, **H**over, **C**hange

□ pitch : **D**own, **U**p, **H**over

Level-1 parsing

- input: observations over a rolling window
- output: most probable depth/pitch event occurred

Grammar for Depth Events

$E \rightarrow C$	[0.10]
$E \to U$	[0.30]
$E \to D$	[0.30]
$E \to H$	[0.30]

$$D \rightarrow D D$$
 [0.50] $D \rightarrow d$ [0.50]

$$U \rightarrow U U$$
 [0.50] $U \rightarrow u$ [0.50]

$$C \rightarrow U H D$$
 [0.50]
 $C \rightarrow D H U$ [0.50]

$$H \to H H$$
 [0.34]
 $H \to U H D$ [0.16]
 $H \to D H U$ [0.16]
 $H \to h$ [0.34]

$$d \rightarrow '+'$$
 [0.85]
 $d \rightarrow '0'$ [0.15]
 $u \rightarrow '-'$ [0.85]
 $u \rightarrow '0'$ [0.15]
 $h \rightarrow '0'$ [1.00]

Recognize event E by choosing the derivation that maximizes production probability

Level-1 Parsing: Depth

Level-1 Annotated Depth

Level-1 Annotated Pitch

Level-2 Event Recognition

Level-2 Observations

- combined events from Level-1
- DD, DU, DH, UD, UU, UH, HD, HU, HH, CD, CU, CH
- Level-2 events
 - □ **OK**, **Co**llision, **UpD**raft, **DownD**raft
- Level-2 parsing
 - input: synchronized Level-1 outputs
 - output: most probable diving event
- Patterns
 - the two Level-1 parsers "disagree" for a significant time period

\longrightarrow	OK	[0.	8.	8	9	
_	_	_	_	_	_		_

$$E \rightarrow Co$$
 [0.001] $E \rightarrow UpD$ [0.050]

$$Co \rightarrow Co co$$
 [0.500]

$$Co \rightarrow co$$

[0.01]

[0.050]

$$CO \rightarrow O$$

$$o \rightarrow 'DD'$$

Level-2 Annotated Depth

PCFG Event Recognition

Multiple Experiments

Mission Data

Data logs

- □ seacon-1, seacon-2, swordfish
- more than 20 hours of mission time

Human expertise

- descriptive annotation of events
- related sensor streams

New Mission #1 Depth Annotation NOPTILUS

New Mission #2 Depth Annotation NOPTILUS

New Mission #3 Depth Annotation NOPTILUS

New Mission #4 Depth Annotation NOPTILUS

Experimental Results

Grammars

- minor refinement of the grammars
- plain tuning of probabilities

Event recognition

- collision is correctly recognized, where present
- collision is correctly not recognized, where absent
- initial grammar not an overfit to the initial log!

Concern

- lateral collisions were not recognized
- current grammar unable to detect such events

Unrecognized Lateral Collision #2 OPTILUS

WP6 Progress and Plans

What's there? What's next?

WP6 Progress

Preprocessing

abstraction from raw data to observations

Event recognition

- events: diving behavior
- technology: probabilistic context-free grammars
- successful recognition on several past mission logs
- demonstration of feasibility and potential

Software

optimized parser for event recognition in Matlab

WP6 Plans

Software

optimized parser for real-time event recognition in Dune

Event recognition

new events: getting caught in net, vehicle faults, ...

Rethinking events

- normal vs. abnormal AUV operation
- □ *idea*: instead of looking for the abnormal and rare, ...
- ... why not look after the normal and frequent?

Structured prediction

- automatic construction of grammars
- learning rules and probabilities from past missions

