Cheat Sheets: Insiemi

associatività	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
unità	$A \cup \varnothing = A$	$A \cap \mathcal{U} = A$
commutatività	$A \cup B = B \cup A$	$A \cap B = B \cap A$
idempotenza	$A \cup A = A$	$A \cap A = A$
assorbimento	$A \cup \mathcal{U} = \mathcal{U}$	$A\cap\varnothing=\varnothing$

Leggi per \cup e \cap

distributività di \cup su \cap	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
distributività di \cap su \cup	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
assorbimento di \cup su \cap	$A \cup (A \cap B) = A$
assorbimento di \cap su \cup	$A \cap (A \cup B) = A$
complemento per \cup	$A\cup\overline{A}=\mathcal{U}$
complemento per \cap	$A\cap \overline{A}=\varnothing$

Leggi che collegano \cup , \cap e $\overline{(\)}$

distributività di \cup su \cap	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
distributività di \cap su \cup	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
assorbimento di \cup su \cap	$A \cup (A \cap B) = A$
assorbimento di \cap su \cup	$A \cap (A \cup B) = A$
complemento per \cup	$A\cup\overline{A}=\mathcal{U}$
complemento per \cap	$A\cap \overline{A}=\varnothing$

Leggi che collegano \cup , \cap e $\overline{(\)}$

$$\begin{array}{c|c} \text{differenza} & A \setminus B = A \cap \overline{B} \\ \\ \text{Legge per } \setminus \end{array}$$

complemento-1	$A \cup (\overline{A} \cap B) = A \cup B$	$A \cap (\overline{A} \cup B) = A \cap B$
complemento-2	$\overline{A} \cup (A \cap B) = \overline{A} \cup B$	$\overline{A} \cap (A \cup B) = \overline{A} \cap B$
convoluzione	$\overline{(\overline{A})} = A$	
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$
$\mathcal{U}: arnothing$	$\overline{arnothing}=\mathcal{U}$	$\overline{\mathcal{U}}=arnothing$

Altre leggi importanti

Cheat Sheets: Relazioni

associatività	$A \cup (S \cup T) = (A \cup S) \cup T$	$R\cap (S\cap T)=(R\cap S)\cap T$
unità	$R \cup \varnothing = R$	$R \cap (A \times B) = R$
commutatività	$R \cup S = S \cup R$	$R\cap S=S\cap R$
idempotenza	$R \cup R = R$	$R \cap R = R$
assorbimento	$R \cup (A \times B) = (A \times B)$	$R\cap\varnothing=\varnothing$

Leggi per le operazioni insiemistiche

distributività di \cup su \cap	$R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$
distributività di \cap su \cup	$R\cap (S\cup T)=(R\cap S)\cup (R\cap T)$
assorbimento di \cup su \cap	$R \cup (R \cap S) = R$
assorbimento di \cap su \cup	$R\cap (R\cup S)=R$
complemento per \cup	$R \cup \overline{R} = (A \times B)$
complemento per \cap	$R\cap \overline{R}=\varnothing$

Leggi per le operazioni insiemistiche (2)

differenza $R \setminus S = R \cap \overline{S}$

Leggi per le operazioni insiemistiche (3)

associatività	R;(S;T) = (R;S);T
unità	$Id_A; R = R = R; Id_B$
assorbimento	$R;\varnothing_{B,C}=\varnothing_{A,C}=\varnothing_{A,B};S$
Leggi per composizione di relazioni	

convoluzione	$(R^{op})^{op} = R$
op-id	$Id_A^{op} = Id_A$
op-compl	$(A \times B)^{op} = B \times A$
op-vuoto	$\varnothing_{A,B}^{op}=\varnothing_{B,A}$

Leggi per relazione opposta

riflessività	$id_A \subseteq R^{\star}$
transività	$R^{\star}; R^{\star} \subseteq R^{\star}$
chiusura	$R\subseteq R^\star$
idempotenza	$(R^{\star})^{\star} = R^{\star}$
⋆-id	$id_A^{\star} = id_A$
-compl	$(A \times A)^ = A \times A$
*-vuoto	$\varnothing_{A,A}^{\star} = id_A$
distributività di \star su \cup	$R^{\star} \cup S^{\star} \subseteq (R \cup S)^{\star}$
distributività di \star su \cap	$(R\cap S)^\star\subseteq R^\star\cap S^\star$
distributività di \star su \cdot^{op}	$(R^\star)^{op} = (R^{op})^\star$

Leggi della stella di Kleene.

```
distributività di ; su ∪ (sinistra)
                                                  R; (S \cup T) = (R; S) \cup (R; T)
distributività di ; su ∪ (destra)
                                                  (S \cup T); U = (S; U) \cup (T; U)
                                                         (R;S)^{op} = S^{op}; R^{op}
      distributività di \cdot^{op} su ;
     distributività di \cdot^{op} su \cup
                                                       (S \cup T)^{op} = S^{op} \cup T^{op}
     distributività di \cdot^{op} su \cap
                                                       (S \cap T)^{op} = S^{op} \cap T^{op}
                                                             (\overline{R})^{op} = \overline{(R^{op})}
      distributività di\cdot^{op} su \bar{\cdot}
```

Leggi di distributività

Cheat Sheets: Logica

unità	$P \lor F \iff P$	$P \wedge T \iff P$
assorbimento	$P \lor T \iff T$	$P \wedge F \iff F$
idempotenza	$P \lor P \Leftrightarrow P$	$P \wedge P \iff P$
commutatività	$P \lor Q \iff Q \lor P$	$P \wedge Q \iff Q \wedge P$
associatività	$P \vee (Q \vee R) \iff (P \vee Q) \vee R$	$P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R$
distributività	$P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R)$	$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$

Leggi per disgiunzione e congiunzione

```
T : F
                                                                            \neg T \Leftrightarrow F
                                                                        \neg (\neg P) \Leftrightarrow P
doppia negazione
                                                                        P \vee \neg P \Leftrightarrow \mathsf{T}
    terzo escluso
                                                                        P \wedge \neg P \Leftrightarrow \mathsf{F}
  contraddizione
                                     \neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q \qquad \neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q
     De Morgan
```

Leggi per negazione

```
riflessività
                                                                                                 P \Leftrightarrow P
                                                                                     (P \Leftrightarrow Q) \Leftrightarrow (Q \Leftrightarrow P)
                         simmetria
                                                                                        P \Rightarrow Q \Leftrightarrow \neg P \lor Q
         eliminazione dell'implicazione
                                                                                     \neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q
   eliminazione dell'implicazione negata
                                                                            (P \Leftrightarrow Q) \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)
eliminazione della doppia implicazione (1)
                                                                           (P \Leftrightarrow Q) \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)
eliminazione della doppia implicazione (2)
```

Leggi di altri connettivi e di eliminazione

```
P \lor (\neg P \land Q) \Leftrightarrow P \lor Q
                                                                                P \wedge (\neg P \vee Q) \Leftrightarrow P \wedge Q
complemento
                                   P \lor (P \land Q) \Leftrightarrow P
                                                                                    P \wedge (P \vee Q) \Leftrightarrow P
assorbimento\\
```

Leggi di Complemento e Assorbimento

```
(\exists x \, . \, (\exists y \, . \, P)) \Leftrightarrow (\exists y \, . \, (\exists x \, . \, P)) \qquad (\forall x \, . \, (\forall y \, . \, P)) \Leftrightarrow (\forall y \, . \, (\forall x \, . \, P))
commutatività
                                        (\exists x . (P \lor B)) \Leftrightarrow ((\exists x . P) \lor (\exists x . B)) \quad (\forall x . (P \land B)) \Leftrightarrow ((\forall x . P) \land (\forall x . B))
 distributività
                                                                        \neg(\exists x \,.\, P) \Leftrightarrow (\forall x \,.\, \neg P)
                                                                                                                                        \neg(\forall x . P) \Leftrightarrow (\exists x . \neg P)
   De Morgan
```

Leggi per quantificatori