Two-sample t-test

$$X_1, \ldots, X_n$$
 iid Normal (μ_A, σ) Y_1, \ldots, Y_m iid Normal (μ_B, σ)

Test
$$H_0: \mu_A = \mu_B$$
 vs $H_a: \mu_A \neq \mu_B$

$$\text{Test statistic: T} = \frac{\overline{X} - \overline{Y}}{s_p \; \sqrt{\frac{1}{n} + \frac{1}{m}}} \quad \text{ where } \quad s_p = \sqrt{\frac{s_A^2(n-1) + s_B^2(m-1)}{n+m-2}}$$

 \longrightarrow Compare to the t distribution with n + m - 2 d.f.

Two-sample t-test

$$\overline{X} = 47.5$$
 $s_A = 10.5$ $n = 6$

$$\overline{Y} = 74.3$$
 $s_B = 20.6$ $m = 9$

$$s_p = 17.4$$
 $T = -2.93$

$$\rightarrow$$
 P = 2*pt(-2.93,6+9-2) = 0.011.

Technical replicates

Significance level: 0.05

5 biological replicates per group, with 3 technical replicates each. Biological variability (SD) ten times larger than technical variability.

Ignoring dependence

Significance level: 0.01

Accounting for dependence

Significance level: 0.05

Paired data in ten observations. Between subject variability (SD) equal to error.

