

Translation: Review

• The context vector (encoding) can be passed to the decoder as initialization of the hidden state (of decoder).

Translation: Review

live

in

India

Encoder:

$$\mathbf{h}_{m}^{E} = \text{RNN}(\text{Embed}(\mathbf{x}_{m}), \mathbf{h}_{m-1}^{E})$$

Masked softmax

- Often input sequences are padded.
- Masked softmax filters out those elements.
 - Need to specify the valid length of each sequence.
- Masked softmax assigns 0 weight to elements outside the valid length.
 - It takes those elements to be large negative, such that after softmax the weights become 0.

Bahdanau's attention

Bahdanau's attention

live

LSTM

GRU

A | +

GRU

India

GRU

ullet The softmax function is then used to obtain the attention weights

$$\beta_{mt} = \frac{\exp(A_{mt})}{\sum_{m} \exp(A_{mt})}$$

where β_{mt} is the weight given to the mth input word at the tth time-step of the decoder.

• The output of attention layer is the weighted sum of the values

$$\mathbf{o}_t = \sum_m \beta_{mt} h_m^E$$

Dot-product attention

live

in

LSTM

A | +

GRU

India

• The score function is defined as the dot-product of the query and a key, and divided by the square-root of the dimension:

$$A(\mathbf{q}, \mathbf{k}) = \frac{\langle \mathbf{q}, \mathbf{k} \rangle}{\sqrt{d}}$$

- Here d is the dimension of the key vector.
- The scaling of the dot products by $1/\sqrt{d}$ is done to facilitate achieving stable gradients.

VISUAL ATTENTION

Image captioning: standard model

- A key aspect of the human visual system is attention.
- The decoder model presented here uses a static representation of the image.
- Attention mechanism enables salient features to play important roles when needed.

CNN feature map

- The feature map from a FC layer represent information in a very compact form.
 - This can lead to loss of useful information.
 - Also spatial information is not properly retained.
- Output is taken from one of the convolutional layers.
 - This is the feature map generated in one of the convolutional layers.

CNN feature map

- Points in a convolutional feature map defines a specially localized feature vectors.
- If the convolutional feature map is of size $8 \times 8 \times 50$, then there would be 64 vectors, each of size 50.

Visual attention model

- Suppose \mathbf{f}_1 , \mathbf{f}_2 ,...., \mathbf{f}_M are the feature vectors derived from a convolutional layer.
- Let $\mathbf{y}^{*(t)}$ be the output of the decoder at time-step t.
- The hidden state at time-step t of the RNN can be computed as

$$\mathbf{h}_t = \text{RNN}(\mathbf{h}_{t-1}, [\mathbf{y}^{*(t-1)}, \mathbf{o}_t])$$

where \mathbf{o}_t is the weighted sum of the CNN feature vectors

$$\mathbf{o}_t = \sum_{m=1}^M \beta_{mt} \mathbf{f}_m$$