Data Frame

DataFrame is a two-dimensional labeled data structure with columns of which can be of different types.

DataFrame is the most important data stucture in the field Data analytics and Data Science.

Data can be collected from various source like Database, Cloud, CSV, etc, but is ultimately stored in a dataframe.

Creating data frames from scratch

Data frame can be created using data.frame() function

```
In [1]: v1 <- 1:5
In [1]: # Letter is an inbuilt list
letters
    'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'I' 'm' 'n' 'o' 'p' 'q' 'r' 's' 't' 'u' 'v' 'w'
    'x' 'y' 'z'
In [3]: v2 <- letters[1:5]
In [4]: df <- data.frame(v1,v2)
In [5]: df
    v1 v2
    1    a
    2    b
    3    c
    4    d
    5    e</pre>
```

Creating dataframe with column name

```
In [6]: c1 <- c('Tendulkar','Kohli','Dohni','Bumrah','Chahal')
    c2 <- c(10000,7100,5800,890,870)
    c3 <- c(11,0,0,370,420)</pre>
```

```
In [7]: cricket <- data.frame(players=c1,runs=c2,wickets=c3)</pre>
```

In [8]: cricket

players	runs	wickets
Tendulkar	10000	11
Kohli	7100	0
Dohni	5800	0
Bumrah	890	370
Chahal	870	420

Inbuilt data frames

View inbuilt data frames using data() function

In [10]: state.x77

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Alabama	3615	3624	2.1	69.05	15.1	41.3	20	50708
Alaska	365	6315	1.5	69.31	11.3	66.7	152	566432
Arizona	2212	4530	1.8	70.55	7.8	58.1	15	113417
Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	51945
California	21198	5114	1.1	71.71	10.3	62.6	20	156361
Colorado	2541	4884	0.7	72.06	6.8	63.9	166	103766
Connecticut	3100	5348	1.1	72.48	3.1	56.0	139	4862
Delaware	579	4809	0.9	70.06	6.2	54.6	103	1982
Florida	8277	4815	1.3	70.66	10.7	52.6	11	54090
Georgia	4931	4091	2.0	68.54	13.9	40.6	60	58073
Hawaii	868	4963	1.9	73.60	6.2	61.9	0	6425
ldaho	813	4119	0.6	71.87	5.3	59.5	126	82677
Illinois	11197	5107	0.9	70.14	10.3	52.6	127	55748
Indiana	5313	4458	0.7	70.88	7.1	52.9	122	36097
Iowa	2861	4628	0.5	72.56	2.3	59.0	140	55941
Kansas	2280	4669	0.6	72.58	4.5	59.9	114	81787
Kentucky	3387	3712	1.6	70.10	10.6	38.5	95	39650
Louisiana	3806	3545	2.8	68.76	13.2	42.2	12	44930
Maine	1058	3694	0.7	70.39	2.7	54.7	161	30920
Maryland	4122	5299	0.9	70.22	8.5	52.3	101	9891
Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103	7826
Michigan	9111	4751	0.9	70.63	11.1	52.8	125	56817
Minnesota	3921	4675	0.6	72.96	2.3	57.6	160	79289
Mississippi	2341	3098	2.4	68.09	12.5	41.0	50	47296
Missouri	4767	4254	8.0	70.69	9.3	48.8	108	68995
Montana	746	4347	0.6	70.56	5.0	59.2	155	145587
Nebraska	1544	4508	0.6	72.60	2.9	59.3	139	76483
Nevada	590	5149	0.5	69.03	11.5	65.2	188	109889
New Hampshire	812	4281	0.7	71.23	3.3	57.6	174	9027
New Jersey	7333	5237	1.1	70.93	5.2	52.5	115	7521
New Mexico	1144	3601	2.2	70.32	9.7	55.2	120	121412
New York	18076	4903	1.4	70.55	10.9	52.7	82	47831
North Carolina	5441	3875	1.8	69.21	11.1	38.5	80	48798
North Dakota	637	5087	8.0	72.78	1.4	50.3	186	69273

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Ohio	10735	4561	0.8	70.82	7.4	53.2	124	40975
Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82	68782
Oregon	2284	4660	0.6	72.13	4.2	60.0	44	96184
Pennsylvania	11860	4449	1.0	70.43	6.1	50.2	126	44966
Rhode Island	931	4558	1.3	71.90	2.4	46.4	127	1049
South Carolina	2816	3635	2.3	67.96	11.6	37.8	65	30225
South Dakota	681	4167	0.5	72.08	1.7	53.3	172	75955
Tennessee	4173	3821	1.7	70.11	11.0	41.8	70	41328
Texas	12237	4188	2.2	70.90	12.2	47.4	35	262134
Utah	1203	4022	0.6	72.90	4.5	67.3	137	82096
Vermont	472	3907	0.6	71.64	5.5	57.1	168	9267
Virginia	4981	4701	1.4	70.08	9.5	47.8	85	39780
Washington	3559	4864	0.6	71.72	4.3	63.5	32	66570
West Virginia	1799	3617	1.4	69.48	6.7	41.6	100	24070
Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149	54464
Wyoming	376	4566	0.6	70.29	6.9	62.9	173	97203

Understanding data

Use head() & tail() function to see first 6 and last 6 rows respectively

In [11]: head(state.x77)

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Alabama	3615	3624	2.1	69.05	15.1	41.3	20	50708
Alaska	365	6315	1.5	69.31	11.3	66.7	152	566432
Arizona	2212	4530	1.8	70.55	7.8	58.1	15	113417
Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	51945
California	21198	5114	1.1	71.71	10.3	62.6	20	156361
Colorado	2541	4884	0.7	72.06	6.8	63.9	166	103766

```
In [12]: tail(state.x77)
```

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Vermont	472	3907	0.6	71.64	5.5	57.1	168	9267
Virginia	4981	4701	1.4	70.08	9.5	47.8	85	39780
Washington	3559	4864	0.6	71.72	4.3	63.5	32	66570
West Virginia	1799	3617	1.4	69.48	6.7	41.6	100	24070
Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149	54464
Wyoming	376	4566	0.6	70.29	6.9	62.9	173	97203

Use summary() and str() function to get basic description of data like mean, median, quartiles etc

```
In [13]:
         summary(state.x77)
            Population
                               Income
                                            Illiteracy
                                                              Life Exp
          Min.
                 : 365
                           Min.
                                  :3098
                                                 :0.500
                                                                  :67.96
                                          Min.
                                                          Min.
          1st Qu.: 1080
                           1st Qu.:3993
                                          1st Qu.:0.625
                                                           1st Qu.:70.12
          Median : 2838
                           Median :4519
                                          Median :0.950
                                                          Median :70.67
          Mean
                 : 4246
                           Mean
                                  :4436
                                          Mean
                                                 :1.170
                                                           Mean
                                                                  :70.88
          3rd Qu.: 4968
                           3rd Qu.:4814
                                          3rd Qu.:1.575
                                                           3rd Qu.:71.89
          Max.
                  :21198
                           Max.
                                  :6315
                                          Max.
                                                 :2.800
                                                           Max.
                                                                  :73.60
              Murder
                               HS Grad
                                                Frost
                                                                   Area
                                                   : 0.00
          Min.
                  : 1.400
                            Min.
                                   :37.80
                                            Min.
                                                              Min.
                                                                     : 1049
          1st Qu.: 4.350
                            1st Qu.:48.05
                                            1st Qu.: 66.25
                                                              1st Qu.: 36985
          Median : 6.850
                            Median :53.25
                                            Median :114.50
                                                              Median : 54277
                                   :53.11
                 : 7.378
                                                   :104.46
                                                                     : 70736
          Mean
                            Mean
                                            Mean
                                                              Mean
          3rd Qu.:10.675
                            3rd Qu.:59.15
                                            3rd Qu.:139.75
                                                              3rd Qu.: 81163
          Max.
                  :15.100
                            Max.
                                   :67.30
                                            Max.
                                                   :188.00
                                                              Max.
                                                                     :566432
In [14]: str(state.x77)
          num [1:50, 1:8] 3615 365 2212 2110 21198 ...
          - attr(*, "dimnames")=List of 2
           ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
           ..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...
In [15]: | nrow(state.x77)
         50
In [16]: ncol(state.x77)
```

8

```
In [17]: rownames(state.x77)
```

'Alabama' 'Alaska' 'Arizona' 'Arkansas' 'California' 'Colorado' 'Connecticut' 'Delaware' 'Florida' 'Georgia' 'Hawaii' 'Idaho' 'Illinois' 'Indiana' 'Iowa' 'Kansas' 'Kentucky' 'Louisiana' 'Maine' 'Maryland' 'Massachusetts' 'Michigan' 'Minnesota' 'Mississippi' 'Missouri' 'Montana' 'Nebraska' 'Nevada' 'New Hampshire' 'New Jersey' 'New Mexico' 'New York' 'North Carolina' 'North Dakota' 'Ohio' 'Oklahoma' 'Oregon' 'Pennsylvania' 'Rhode Island' 'South Carolina' 'South Dakota' 'Tennessee' 'Texas' 'Utah' 'Vermont' 'Virginia' 'Washington' 'West Virginia' 'Wisconsin' 'Wyoming'

```
In [18]: colnames(state.x77)
```

'Population' 'Income' 'Illiteracy' 'Life Exp' 'Murder' 'HS Grad' 'Frost' 'Area'

Indexing and slicing

1) Selecting cells

```
In [19]: cricket[1,2]
```

10000

```
In [20]: cricket[1:3,1:2]
```

players	runs
Tendulkar	10000
Kohli	7100
Dohni	5800

```
In [21]: cricket[c(1,4),c(1,3)]
```

	players	wickets
1	Tendulkar	11
4	Bumrah	370

```
In [22]: cricket[1:3,'wickets']
```

11 0 0

2) Selecting rows

```
In [23]: cricket[1,]
```

players	runs	wickets
Tendulkar	10000	11

In [24]: cricket[1:3,]

players	runs	wickets
Tendulkar	10000	11
Kohli	7100	0
Dohni	5800	0

In [25]: cricket[c(1,3),]

	players	runs	wickets
1	Tendulkar	10000	11
3	Dohni	5800	0

3) Selecting columns

In [26]: cricket[,3]

11 0 0 370 420

In [27]: cricket[,1:2]

players	runs
Tendulkar	10000
Kohli	7100
Dohni	5800
Bumrah	890
Chahal	870

```
In [28]: cricket[,c(1,3)]
            players wickets
           Tendulkar
                         11
               Kohli
                         0
              Dohni
                         0
            Bumrah
                        370
             Chahal
                        420
          cricket[,'runs']
In [29]:
          10000 7100 5800 890 870
In [30]: cricket[,c('players','wickets')]
            players wickets
           Tendulkar
                         11
               Kohli
                         0
              Dohni
                         0
            Bumrah
                        370
             Chahal
                        420
In [31]: cricket[['wickets']]
          11 0 0 370 420
In [32]: cricket$players
          Tendulkar Kohli Dohni Bumrah Chahal
          ▶ Levels:
          Conditional selection with subset() function
In [33]:
          subset(cricket, subset=runs>5000)
            players
                     runs wickets
           Tendulkar
                    10000
                               11
```

7100

5800

0

0

Kohli

Dohni

```
In [34]: subset(cricket, subset=wickets>300)
```

	players	runs	wickets
4	Bumrah	890	370
5	Chahal	870	420

Ordering dataframe

Ordering is done with order() function

	players	runs	wickets		
5	Chahal	870	420		
4	Bumrah	890	370		
3	Dohni	5800	0		
2	Kohli	7100	0		
1	Tendulkar	10000	11		

players	runs	wickets
Tendulkar	10000	11
Kohli	7100	0
Dohni	5800	0
Bumrah	890	370
Chahal	870	420

Renaming Names

```
In [38]: mat <- matrix(1:20,nrow=5)</pre>
```

```
In [39]: print(mat)
               [,1] [,2] [,3] [,4]
          [1,]
                  1
                           11
                  2
                       7
          [2,]
                           12
                                17
          [3,]
                  3
                       8
                           13
                                18
          [4,]
                  4
                       9
                                19
                           14
          [5,]
                  5
                      10
                           15
                                20
In [40]: df <- data.frame(mat)</pre>
In [41]:
          X1 X2 X3 X4
               6 11 16
              7 12 17
               8 13 18
               9 14 19
           5 10 15 20
In [42]: # renaming single column
          colnames(df)[1] <- 'index'</pre>
In [43]: df
          index X2 X3 X4
              1
                 6
                    11 16
              2
                 7 12 17
              3
                   13 18
                    14 19
              5 10 15 20
In [44]: # renaming multiple column
          colnames(df) <- c('A','B','C','D')</pre>
```

```
In [45]: df
```

```
    A
    B
    C
    D

    1
    6
    11
    16

    2
    7
    12
    17

    3
    8
    13
    18

    4
    9
    14
    19

    5
    10
    15
    20
```

Adding new rows and columns

```
In [46]: # Adding row

df2 <- data.frame(A=20,B=34,C=67,D=56)

df <- rbind(df,df2)</pre>
```

In [47]: df

```
1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20
20 34 67 56
```

A B C D

```
In [48]: # adding columns using replicate function

df$E <- rep(NA,nrow(df))</pre>
```

```
In [49]: df
              B C D
                         Ε
              6 11 16 NA
              7 12 17 NA
                13
                    18 NA
              9 14 19 NA
              10 15 20 NA
                 67 56 NA
In [50]: df$F <- 10:15
In [51]: df
                   D
              В
                 С
                         Ε
                           F
              6 11
                    16 NA
                            10
              7 12 17 NA
                           11
                13 18 NA 12
                 14
                    19 NA
                           13
              10 15 20 NA
             34 67 56 NA 15
In [52]: #copying another column
         df$G = df$E
In [53]: df
              \mathsf{B} \ \mathsf{C} \ \mathsf{D}
                                G
                         Ε
                            F
              6 11 16 NA
                           10 NA
           2
              7 12 17 NA
                           11 NA
                13
                    18 NA
                            12 NA
              9 14 19 NA 13 NA
                15 20 NA
                               NA
              34 67 56 NA 15 NA
In [54]: # cbind function
         V <- c(10,20,30,40,50,60)
         df <- cbind(df,V)</pre>
```

```
In [55]: df
```

V	G	F	Ε	D	С	В	Α
10	NA	10	NA	16	11	6	1
20	NA	11	NA	17	12	7	2
30	NA	12	NA	18	13	8	3
40	NA	13	NA	19	14	9	4
50	NA	14	NA	20	15	10	5
60	NA	15	NA	56	67	34	20

Handling missing values

check presence of missing values with any() and is.na() function

```
In [60]: df
             В
                C D
                        Ε
                           F G
                                 ٧
              6 11 16 NA 10
                              0 10
           2
              7
                                 20
                12
                   17 NA
                           11
                              0
           3
                13
                    18 NA
                           12
                                 30
               14 19 NA 13
                              0
                                40
                15 20 NA
                67 56 NA 15
In [61]: df[is.na(df)] <- -1</pre>
In [62]: df
                          F G
                С
                    D E
                                ٧
              В
              6 11
                    16 -1 10
           2
                             0 20
              7 12 17 -1
                          11
                13 18 -1
                          12
                   19 -1
                          13
                             0
                                40
                15 20 -1
                                50
                          14
             34 67 56 -1 15 0 60
```

Missing data must be replaced with mean, median or mode.