A Graph-Based Search Approach to Planning and Learning

G.S. Groote

Supervisors: C. Pezzato

M. Wisse

C. Smith

Delft University of Technology, The Netherlands

June 28, 2023

Intro: Robot Environment

Intro: Thesis Goal

- Learning System Models
- Navigation Among Movable Objects (NAMO)
- Nonprehensile Pushing

Intro: Overview Proposed Method

Intro: Research Question

How do learned objects' system models improve global task planning for a robot with nonprehensile push manipulation abilities over time?

Research Subquestions:

- 1 How to combine learning and planning for push and drive applications?
- 2 How does the proposed framework compare against the state-of-the-art?

Intro: Task Specification

Intro: Task Specification

① Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.

- Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.
- Perfect Object Sensor Assumption: the robot has full access to the poses and geometry of all objects in the environment at all times.

- Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.
- Perfect Object Sensor Assumption: the robot has full access to the poses and geometry of all objects in the environment at all times.
- **3 Tasks are Commutative Assumption:** Tasks consist of multiple objects with specified target positions. The order in which objects are pushed toward their target position is commutative.

- Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.
- Perfect Object Sensor Assumption: the robot has full access to the poses and geometry of all objects in the environment at all times.
- Tasks are Commutative Assumption: Tasks consist of multiple objects with specified target positions. The order in which objects are pushed toward their target position is commutative.
- Objects do not tip over Assumption: Movable objects slide if pushed.

- Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.
- Perfect Object Sensor Assumption: the robot has full access to the poses and geometry of all objects in the environment at all times.
- Tasks are Commutative Assumption: Tasks consist of multiple objects with specified target positions. The order in which objects are pushed toward their target position is commutative.
- Objects do not tip over Assumption: Movable objects slide if pushed.

State-of-The-Art

		NAMO		Specify object target poses	
Author	Learns object dynamics	Qteltertaile	rangretesile	Qualitatique	rangrehesile
Ellis et al.	✓	Х	✓	Х	X
Sabbagh Novin et al.	✓	✓	×	✓	X
Scholz et al.	✓	✓	×	×	X
Vega-Brown and Roy	×	✓	×	✓	X
Wang et al.	✓	×	✓	×	×
Groote	✓	×	✓	×	✓

Required Background: System identification

Required Background: System identification

gif that shows going toward pushing pose, then push

Required Background: System identification

$$x_{lti-drive-model}(k+1) = \begin{bmatrix} x_{robot}(k+1) \\ y_{robot}(k+1) \end{bmatrix} = \begin{bmatrix} x_{robot}(k) + DTu_{x}(k) \\ y_{robot}(k) + DTu_{y}(k) \end{bmatrix}$$

$$x_{lti-push-model}(k+1) = \begin{bmatrix} x_{robot}(k+1) \\ y_{robot}(k+1) \\ x_{obj}(k+1) \\ y_{obj}(k+1) \end{bmatrix} = \begin{bmatrix} x_{robot}(k+1) + DTu_x(k) \\ y_{robot}(k+1) + DTu_y(k) \\ x_{obj}(k+1) + \frac{1}{2}DTu_x(k) \\ y_{obj}(k+1) + \frac{1}{2}DTu_y(k) \end{bmatrix}$$

Required Background: Control Methods

Both MPC and MPPI use a system model and an objective function. The main difference lies in MPC uses a mathematical solver to obtain the best input, whilst MPPI samples random rollouts into the future to then take the weighted average the results into the lowest cost function

Required Background: Planning a Path

image that has start and target for the robot in an interesting environment

Path Estimation

- Path Estimation
- Path Planning

with the image above, that interesting environment, create an occupancy grid

Required Background: Planning

recap for RRT*

Required Background: Planning

recap for RRT* image of environment and make a video please

Overview Proposed Method

Required Background: Extension to 4 subspaces

Add the unknown and movable space redefine the cost in RRT*

Required Background: Extension to 4 subspaces

Hypothesis Graph

make hgraph definition

make example hgraph

Knowledge Graph

kgraph definition and example

Results: Randomisation Drive Task

Results: Randomisation Drive Task

Results: Randomisation Drive Task

Results

Author	Learning	NAMO	Object to Target	Manipulation
Ellis et al. Sabbagh Novin et al.	√ √	×	X ✓	pushing grasp-push grasp-pull
Scholz et al.	✓	✓	X	graph-push grasp-pull
Vega-Brown et al.	X	✓	✓	gripping
Wang et al. Groote	✓ X / ✓	✓ ✓	×	pushing pushing

More convincing environments

4 Week Planning

Good Scenario

- 50 % Report
- 50 % Presentation

4 Week Planning

Good Scenario

- 50 % Report
- 50 % Presentation

Better Scenario

- 40 % Report
- 40 % Presentation
- 20 % Benchmark Environments