INFORMATION RETRIEVAL

Dr. Reda M. Hussien

What is information retrieval?

Information Retrieval (IR) is the scientific discipline that studies computer-based search tools.

What is information retrieval?

Mission

• "Organize the world's information and make it universally accessible and useful."

What other organizations have this mission?

- Libraries
- Scopus,
- Web of Science
- Twitter
- Facebook ?
- Netflix?
- Amazon ?
- iTunes
- Spotify
- Medium
- U. Twente Search

- (Google books)
- (Google Scholar)
- (Google Plus)
- (Google's YouTube)
- (Google shopping)
- (Google Play Music)
- (Google Blogger)
- (Google Custom search)

A history of "organizing the world's info"

pre-history of IR

- The Library of Alexandria
 - Built: 3rd century BC by Ptolemy I
 - Over 400,000 Papyrus scrolls
 - Visited by a.o. Euclid, Archimedes, ...
 - Burned down as Romans conquested Greeks/Egypt

A history of "organizing the world's info"

 How did Archimedes find the right (relevant) scroll among 400,000
 Papyrus scrolls ?

A history of "organizing the world's info"

- Callimachus: poet, critic and scholar at the Library of Alexandria
- Made the Pinakes: considered to be the first library catalog.
 - It divided works in:
 - genres & categories:
 - rhetoric, law, epic, tragedy, comedy, lyric poetry, history, medicine, mathematics, natural science, miscellanies, ...
 - each category was alphabetized by author.

Pre-history: standards

- Melvil Dewey's Decimal Classification (1876)
 - Hierarchical numbering scheme made up of ten classes, each divided into ten divisions, each having ten sections.
 - List of Dewey Decimal classes

Pre-history: first machines

Emanuel Goldberg Microfilm Search
 "Statistical Machine" (patent 1931)

Pre-history: first machines

History: first machines

- Calvin Mooers coined the name "Information Retrieval" (1950)
- "The problem under discussion here is machine searching and retrieval of information from storage according to a specification by subject... It should not be necessary to dwell upon the importance of information retrieval before a scientific group such as this for all of us have known frustration from the operation of our libraries - all libraries, without exception."

History: standards

- Mortimer Taube (1952)
- "Unit terms": a proposal to index items by a list of keywords.

History: evaluation

- Cyril Cleverdon (1960s)
- First empirical evaluation of information retrieval systems
 - Measures: Precision & Recall
 - Showed that using all keywords from abstract outperform manual indexing

History: ranking

Hans Peter Luhn (1957) Similarity based in term frequencies (tf)

Karen Sparck-Jones (1972) Specificity based on inverse document frequency (idf)

Gerard Salton (1975) based on tf x idf

Keith van Rijsbergen (1975) Information Retrieval: first popular scholarly book

What is information retrieval?

- General characteristics:
 - Users with an information need
 - Documents
 - provide information, and (units part of bigger sources: sections, videos, scenes)
 - A connection between the two

Graphical representation of IR

The prediction game

Another view

- Information retrieval is search for similarity:
 - between a document and a query
 - between documents in a collection (clustering)
 - between users (collaborative filtering)

More than text

- Texts
 - journal articles, press releases, WWW pages, ...
- Pictures
- Audio
 - music, speeches, sounds for medical or engineering purposes, ...
- Video
- Any combination

IR Research

Research in IR is concerned with the design of better IR systems

Approaches: indexing

- Traditionally, two styles:
 - Manually by trained indexers, taking terms from pre-defined list (thesaurus)
 - Automatically by deriving features like
 - words, word stems, phrases from texts
 - graphical features (colour distribution, texture etc.) from images how about sounds, how about videos, how about smells?

Approaches: query formulation

- Traditionally by hand
- Formulating a good query is difficult!
- Increasing attention to automated aids for query formulation
 - natural-language queries
 - relevance feedback
 - personalization
 - recommender systems

Approaches: query formulation

- Other dimensions:
 - Query in Italian, answer in Dutch
 - Query by example: natural-language fragment, part of a picture
 - Spoken query
 - More expressive query languages (e.g., a description logic)
 - Conversational systems

Approaches: ordering engine

- Two basic approaches:
 - Matching: imposes a dichotomy on the collection
 - Ranking rank-orders the entire collection

■ The set $\{A, B\}$ is a dichotomy of set C iff $A \cap B = \emptyset$ and $A \cup B = C$

Matching

Ranking

Approaches: presentation

- The item as it is found in the collection
- Part of the document: a section, a paragraph, audio fragment A summary
- An answer to the question you posed (question-answering systems)

Measuring performance

- Theory of measurement in IR is difficult, for example:
 - Which queries are a representative sample of the population of all queries?
 - Does a good measurement mean that the user is satisfied?
 - What about queries that can only be answered by combinations of items?

Performance: matching as example

- Match / no match is a system decision
- Relevant / not relevant is a user decision
- Gives rise to familiar quadrant (compare medical tests)

Performance for matching

System says:

Match

No match

User says:

Relevant

Not relevant

True positives (#TP)	False negatives (#FN)
False positives (#FP)	True negatives (#TN)

$$Recall = \frac{\#TP}{\#TP + \#FN}$$

Performance for matching

- "Fact of life":
 - improving recall typically decreases precision.

Measuring performance: TREC

- Yearly competition, held in November
- Idea: demonstrate your system on unknown queries for a known, very large collection
- System with the best recall-precision performance "wins"

Labs

- Instructor: Amany M. Draz
- Python
- Jupiter Notebook
- PyTerrier:
 - A Python Framework for Information Retrieval

