

Комплекснозначная волновая функция. 2d-графика в MATLAB

$$\frac{1}{\sqrt{2}}(|\mathbf{b}\rangle + |\mathbf{b}\rangle)$$

Упражнение

В момент времени t=0 волновая функция, описывающая квантовое состояние микрочастицы, движущейся вдоль оси x, имеет вид:

$$\Psi(x,0) = A \exp\left(-\frac{x^2}{a^2} + ibx\right)$$

здесь: A, a, b - известные действительные константы.

Определить зависимости от координаты x:

- а) действительной части волновой функции;
- b) квадрата модуля волновой функции.

Построить эти зависимости.

Функции: real, imag, conj, abs, plot, subplot

Справочно:

$$\Psi(x,0) = A \exp\left(-\frac{x^2}{a^2} + ibx\right)$$

- функция Габора (#Вейвлет-анализ) = гармонический сигнал, модулированный функцией Гаусса:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Параметры функции Габора:

- 1) положение центра окна (x = 0)
- 2) ширина окна (равна 7)
- 3) частота осцилляций (четыре λ в x = [0,5])

Амплитуда осцилляций: A.

Размытие: 6σ =ширина окна. $a^2=2\sigma^2$

Волновое число: $b=k=2\pi/\lambda$.

Функции: real, imag, conj, abs, plot, subplot

en: real [ˈriːəl], imaginary [ɪˈmædʒɪneri], conjugate [ˈkɑːn.dʒʊ.geɪt], absolute [ˈæbsəluɪt]

Self-control: Мартинсон Л.К. Задача 3.2, стр. 122

5. Квантовая теория атома	249
5.1. Квантовые свойства атомов	
5.2. Теория Бора атома водорода	
5.3. Квантово-механическое описание	
водородоподобных атомов	264
5.4. Квантовые числа и их физический смысл	
5.5. Опыт Штерна — Герлаха. Гипотеза о спине электрона	
5.6. Атом в магнитном поле	290
5.7. Вынужденное излучение атомов	300

