

Introdução ao Cálculo Diferencial e Integral

Funções

Prof. Dani Prestini

Definição de Função e Notação

DEFINIÇÃO Função, conjunto domínio (ou simplesmente domínio) e conjunto imagem (ou simplesmente imagem)

Uma função de um conjunto A em um conjunto B é uma lei, isto é, uma regra de formação que associa todo elemento em A a um único elemento em B. Sendo assim, o conjunto A é o **domínio** da função, e o conjunto B, formado por todos os valores produzidos por essa associação, é o conjunto **imagem**. Essa mesma função pode ser definida para um conjunto A em um conjunto C, de modo que esse conjunto C não seja o conjunto imagem, e sim um conjunto que contém os elementos do conjunto imagem. Esse conjunto C é então conhecido como **contradomínio**. Neste texto, falaremos da função definida por um conjunto em outro, sendo o segundo considerado o conjunto imagem.

Definição de Função e Notação

Definição de Função e Notação

Definição de Função e Notação

Exemplo 1 – A fórmula $y = x^2$ define y como uma função de x?

Definição de Função e Notação

Exemplo 2 – Dos três gráficos mostrados na figura abaixo, qual deles não é

gráfico de uma função? Como podemos explicar?

Domínio e Imagem

Exemplo 3 – Encontre o domínio de cada função:

(a)
$$f(x) = \sqrt{x+3}$$

(b)
$$g(x) = \frac{\sqrt{x}}{x-5}$$

(c)
$$A(s) = \frac{\sqrt{3}}{4} s^2$$
, onde $A(s)$ é a área de um triângulo equilátero com lados de comprimento s

(c)
$$A(s) = \frac{\sqrt{3}}{4}s^2$$
, onde $A(s)$ é a área de um triângulo equilátero com lados de comprimento s .

a) $u+37,0$

$$u-5\neq 0$$

$$u+5=0$$

$$u+5=$$

Domínio e Imagem

Exemplo 3 – Encontre o domínio de cada função:

Domínio e Imagem

Exemplo 4 – Encontre a imagem da função $f(x) = \frac{2}{x}$

$$\frac{2}{n} = k$$

$$\mathcal{N} = \frac{2}{k}$$

Continuidade de uma função

Graficamente falando, diz-se que uma função é contínua em um ponto se o gráfico não apresenta falha (do tipo "quebra", "pulo" etc.). Essa é uma das mais importantes propriedades da maioria das funções. Podemos ilustrar o conceito com exemplos de gráficos.

Continuidade de uma função

Continuidade em todos os valores x

Descontinuidade removível

Descontinuidade removível

Descontinuidade de pulo (ou salto)

Descontinuidade infinita

Continuidade de uma função

Exemplo 5 – Analise os gráficos e verifique qual das seguintes figuras mostra funções descontínuas em x=2. Indique se a descontinuidade apresentada é do tipo removível.

Figura 7.7 $f(x) = \frac{x+3}{x-2}$.

Figura 7.8 g(x) = (x + 3)(x - 2).

[-9,4; 9,4] por [-6,2; 6,2]

Figura 7.9
$$h(x) = \frac{x^2 - 4}{x - 2}$$
.

Continuidade de uma função

Figura 7.7
$$f(x) = \frac{x+3}{x-2}$$
.

Figura 7.8 g(x) = (x+3)(x-2).

Figura 7.9 $h(x) = \frac{x^2 - 4}{x - 2}$.

A Figura 7.7 mostra uma função que não está definida em x = 2 e, portanto, não é contínua para esse valor. A descontinuidade em x = 2 não é removível, sendo do tipo descontinuidade infinita.

O gráfico da Figura 7.8 é de uma função do segundo grau cuja representação é uma parábola, ou seja, é um gráfico que não tem "quebra" porque seu domínio inclui todos os números reais. É contínua para todo x.

O gráfico da Figura 7.9 é de uma função que não está definida em x=2 e, consequentemente, não é contínua para esse valor. O gráfico parece uma reta, que é a representação de uma função do primeiro grau, dada por y=x+2, com exceção de um "buraco" no local do ponto (2,4). Essa é uma descontinuidade removível.

Funções Crescentes e Decrescentes

Outro conceito de função, fácil de entender graficamente, é a propriedade de ser crescente, decrescente ou constante sobre um intervalo. Ilustramos o conceito com alguns exemplos de gráficos:

Funções Crescentes e Decrescentes

Exemplo 6 – Das três tabelas de dados numéricos abaixo, qual poderia ser modelada por uma função que seja (a) <u>crescente</u>, (b) <u>decrescente</u> ou (c) constante?

х	y1
-2	-12
-1	-12
0	12
1	- 12
3	12
7	12

X	<i>y</i> 2
-2)	3
-1	1
0	0 {
1	-2 <
3	-6
7	-12

X	y3
-2	-5)
-1	-3
0	-1
1	1
3	4
7	10

Funções Crescentes e Decrescentes

DEFINIÇÃO Funções crescente, decrescente e constante sobre um intervalo

Uma função f é **crescente** sobre um intervalo se, para quaisquer dois valores de x no intervalo, uma variação positiva em x resulta em uma variação positiva em f(x). Isto é, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ (ou seja, $x_2 - x_1 > 0 \Rightarrow f(x_2) - f(x_1) > 0$). Quando isso ocorre para todos os valores x do domínio f, dizemos que a função é estritamente crescente.

Uma função f é **decrescente** sobre um intervalo se, para quaisquer dois valores de x no intervalo, uma variação positiva em x resulta em uma variação negativa em f(x). Isto é, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ (ou seja, $x_2 - x_1 > 0 \Rightarrow f(x_2) - f(x_1) < 0$). Quando isso ocorre para todos os valores x do domínio f, dizemos que a função é estritamente decrescente.

Uma função f é **constante** sobre um intervalo se, para quaisquer dois valores de x no intervalo, uma variação positiva em x resulta em uma variação nula em f(x). Isto é, $x_1 < x_2 \Rightarrow f(x_1) = f(x_2)$ (ou seja, $x_2 - x_1 > 0 \Rightarrow f(x_2) - f(x_1) = 0$).

Funções Crescentes e Decrescentes

Exemplo 8 – Para cada caso, verifique se a função é crescente ou decrescente em cada um dos seus intervalos.

(a)
$$f(x) = (x+2)^2$$

(b)
$$g(x) = \frac{x^2}{x^2 - 1}$$

[-4,7;4,7] por [-3,1;3,1]

Funções Limitadas

O conceito de função limitada é simples de entender, tanto gráfica como algebricamente. Veremos a definição algébrica após introduzirmos o conceito com alguns gráficos típicos.

Funções Limitadas

DEFINIÇÃO Limite inferior e limite superior da função e da função limitada

Uma função f é **limitada inferiormente** se existe algum número b que seja menor ou igual a todos os números da imagem de f. Qualquer que seja o número b, ele é chamado **limite inferior** de f. Uma função f é **limitada superiormente** se existe algum número B que seja maior ou igual a todos os números da imagem de f. Qualquer que seja o número B, ele é chamado **limite superior** de f.

Uma função f é **limitada** quando ela é limitada das duas formas, superior e inferiormente.

Funções Limitadas

Exemplo 9 – Identifique se cada função é limitada inferiormente, limitada superiormente ou limitada.

(a)
$$w(x) = 3x^2 - 4$$

(b)
$$p(x) = \frac{x}{1 + x^2}$$

initade in feriormente

Extremo Local e Extremo Absoluto

Extremo Local e Extremo Absoluto

DEFINIÇÃO Extremo local e extremo absoluto

Um **máximo local** de uma função f é o valor f(c) que é maior ou igual a todos os valores da imagem de f sobre algum intervalo aberto contendo c. Se f(c) é maior ou igual a todos os valores da imagem de f, então f(c) é o **valor máximo, também chamado máximo absoluto** de f.

Um **mínimo local** de uma função f é o valor f(c) que é menor ou igual a todos os valores da imagem de f sobre algum intervalo aberto contendo c. Se f(c) é menor ou igual a todos os valores da imagem de f, então f(c) é o **valor mínimo** ou **mínimo absoluto** de f. Extremos locais são chamados também de **extremos relativos**.

Extremo Local e Extremo Absoluto

Exemplo 10 – Verifique se $f(x) = x^4 - 7x^2 + 6x$ tem máximo local ou mínimo local. Caso isso se confirme, encontre cada valor máximo ou mínimo local, e o respectivo valor de x.

$$[-5, 5]$$
 por $[-35, 15]$

Simetria

Em matemática, a simetria pode ser caracterizada numérica e algebricamente. Veremos três tipos particulares de simetria e analisaremos cada tipo a partir de um gráfico, de uma tabela de valores e de uma fórmula algébrica, uma vez conhecido o que se deve observar.

Simetria com relação ao eixo vertical y

EXEMPLO: $f(x) = x^2$

Graficamente

Figura 7.17 O gráfico parece o mesmo quando olhamos do lado esquerdo e do lado direito do eixo vertical y.

Numericamente

x	f(x)
-3	9
-2	4
-1	1
1	1
2	4
3	9

Algebricamente

Para todos os valores x do domínio de f temos f(-x) = f(x). Funções com essa propriedade (por exemplo, x^n com n sendo um número par) são funções **pares**.

Simetria com relação ao eixo vertical x

EXEMPLO: $x = y^2$

Graficamente

Figura 7.18 O gráfico parece o mesmo quando olhamos acima e abaixo do eixo horizontal *x*.

Numericamente

X	у
9	-3
4	-2
1	-1
1	1
4	2
9	3

Algebricamente

Gráficos com esse tipo de simetria não são de funções, mas podemos dizer que (x, -y) está sobre o gráfico quando (x, y) também está.

Simetria com relação à origem

EXEMPLO: $f(x) = x^3$

Graficamente

Figura 7.19 O gráfico parece o mesmo quando olhamos tanto seu lado esquerdo inferior, como seu lado direito superior.

Numericamente

x	у
-3	-27
-2	-8
-1	-1
1	1
2	8
3	27

Algebricamente

Para todos os valores x do domínio de f, temos f(-x) = -f(x). Funções com essa propriedade (por exemplo, x^n com n sendo um número ímpar) são funções **ímpares**.

Exercícios

1) Livro Texto: páginas 88 à 92 – Exercícios do 1 ao 54

Exercícios do 73 ao 83

Obrigado