MONITORIZACIÓN

INTRODUCCIÓN

Para que una aplicación funcione bien hay que mirar los siguientes aspectos:

- Latencia:
 - o El tiempo necesario para completar una petición.
 - Importante distinguir entre peticiones satisfactorias y fallidas.
- Tráfico:
 - o Demanda de un sistema.
 - Suelen ser específicas de un sistema.
 - o Ejemplos:
 - Peticiones HTTP / segundo.
 - Transacciones / segundo
- Errores:
 - o Resultado de peticiones fallidas.
 - o Pueden ser explícitos o implícitos
 - o Ejemplo: Al solicitar una web a un servidor:
 - Error explícito: error 404.
 - Error implícito: recuperar una web diferente a la esperada.
- Saturación:
 - o Medida de la capacidad de un recurso en uso.
 - o Importante observar los recursos más limitados.
 - o Latencia puede ser un indicador de saturación

MONITORIZACIÓN DE CPU

- Comando top → Uso de recursos del sistema en tiempo real
- Comando ps → Listado de procesos y su uso de recursos
- Comando pstree → Árbol de procesos del sistema

Latencias Tráfico

Errores

Saturación

GESTIÓN DE RECURSOS

GESTIÓN DE PROCESOS

Prioridades de los procesos

- El planificador del SO asigna intervalos de tiempo a los procesos según su prioridad.
- Esto se controla según 2 valores (aparecen en top por ejemplo):
 - o Prioridad (PR): puede tomar valores en el rango -100 a 39.
 - O Valor "nice" (NI): puede tomar valores en el rango -20 a 19.
- Para ambos, cuanto más negativo el valor, mayor prioridad.
- En Linux, los procesos se consideran de 2 tipos:
 - Procesos normales (la mayoría de los lanzados por usuarios).
 - Procesos de tiempo real (generalmente, los esenciales para el SO)
- Prioridades de los procesos normales
 - Se calcula: PR = 20 + NI
 - P.e. si el valor NI de un proceso es -20, su prioridad es 0
 - P.e. si el valor NI es 19, su prioridad es 39.
 - Procesos normales → Rango 0-39 de prioridades.
 - o Por defecto, "nice" (NI) es 0.
 - Un usuario normal puede modificar el valor NI entre 0 y 19.
 - Puede reducir la prioridad sobre el resto de procesos del sistema
 - El usuario root puede modificar el valor NI -20 y 19.
 - Comando nice
 - Lanza un comando con un valor Nice concreto
 - Sintaxis: nice -n valor comando → Valor es relativo (define más o menos)
 - Ejemplo: nice -n 10 ./miScript
 - Comando renice
 - Cambia el valor Nice de un proceso (o grupo) en ejecución
 - Un usuario normal (no root) sólo puede incrementar el valor (irreversible)
 - Sintaxis: renice -n valor -p PID [-g grupo] → Valor es absoluto
 - Ejemplo: renice -n 15 -p 7552
- Prioridades de los procesos en tiempo real
 - Se calcula: PR = 1 prioridad tiempo real.
 - prioridad_tiempo_real toma valores entre 1 y 99.
 - P.e. si prioridad tiempo real es 50, PR vale -51
 - o El valor "nice" no se tiene cuenta
 - En el comando top, si PR=-100, se muestra como 'rt' (real time).
 - Comando chrt → Lanza un proceso con una prioridad de tiempo real
 - Sintaxis: chrt --rr
 - Ejemplo: chrt --rr 20 ./miPrograma
 - Lanzaría ./miPrograma con PR=-21
- Comando ps
 - Puede mostrar datos en diferentes formatos
 - Cada formato puede mostrar una misma prioridad con diferentes valores
- Formato BSD:
- Comando: ps al

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND ... 0 1000 2033 1104 21 1 7208 2708 - SN+. pts/0 0:00 ping www.ehu.eus

- Formato Unix:
 - Comando: ps -u unai -o pid,user,pri,nice,args

PID USER PRI NI COMMAND
...
2033 unai 18 1 ping www.ehu.eus Se muestra un valor de prioridad (PRI)
diferente para un mismo proceso (PID=2033).

Comando kill

- Envía señales a procesos
- Sintaxis: kill PID
- o Opciones:
 - -l Mostrar las señales disponibles
 - señal Mandar una señal al proceso
- 3 formas de in dicar una señal:
 - Número -19
 - Prefijo SIG -SIGSTOP
 - Sin prefijo SIG -STOP
- Señales:
 - -STOP Parar el proceso
 - -CONT Reanudar el proceso (parado con STOP)
 - -KILL Matar el proceso

• Comando ulimit

- Limitar el uso de recursos
- o Los límites sirven para la Shell en uso
- Sintaxis: ulimit [límite]
- Opciones:
 - -a Lista los límites establecidos
 - -f Máximo número de ficheros creados por la Shell
 - m Máxima memoria disponible
 - -t Máximo tiempo de CPU (segundos)

• Fichero /etc/security/limits.conf

- Permite hacer una configuración permanente de límites
- Cada línea tiene el siguiente formato: usuario/grupo tipo-de-límite ítem valor

usuario/grupo
 Nombre del usuario o grupo (comienza con @)

tipo-de-limite soft/hard

itemPuede ser: cpu, nproc, maxlogins, fsize, ...

valor
 Valor para el ítem definido

Comando cpulimit

- o Permite limitar el % de uso constante de CPU de un proceso
- o ulimit y limits.conf sólo permiten limitar el tiempo total de uso CPU
- o nice y renice permiten reducir la prioridad pero no fijar un umbral
- Uso → cpulimit --pid PID --limit
 - Donde <límite> es el límite de % CPU máximo que queremos permitir

PLANIFICACIÓN DE TARFAS

Se pueden programar tareas para que se ejecuten periódicamente (cron) o una única vez (atd). Estos leen periódicamente (por defecto, cada minuto) sus ficheros de configuración para ejecutar tareas programadas. Algunas tareas programables:

- Rotación de logs
- Borrar la carpeta /tmp
- Copias de seguridad
- Actualizar una BBDD

@student hard nproc 20 @faculty soft nproc 20 @faculty hard nproc 50

hard nproc 0

Comando crontab → https://crontab.guru/

- Una línea por tarea programada
- Sintaxis: crontab
- Opciones:
 - I Mostrar las tareas programadas
 - -e Editar las tareas programadas
 - o -r Elimina las tareas programadas
- Ejemplos:
 - 6 17 * * * /scripts/copia.sh

Ejecuta copia.sh los sabados a las 17:00

* * * * * /scripts/miScript.sh Ejecuta miScript.sh cada minuto

GESTIÓN DE MEMORIA

La mayoría de sistemas operativos modernos utilizan memoria virtual y utilizan un espacio de disco como extensión de la memoria principal (espacio de intercambio o Swap). La memoria virtual se organiza en páginas que se intercambian entre memoria y disco.

- Un uso excesivo de Swap puede degradar el rendimiento
- Valores referencia de latencias en una jerarquía de memoria:

Tipo de memoria	Latencia
Caché L1 en CPU	1 ns
Caché L2 en CPU	4 ns
RAM	100 ns
SSD	16.000 ns
HDD	2.000.000 ns

Operating System Swapped Out User Space Swapped In Process P2 Main Memory Backing Store

/path/to/script

Month of year (1-12)

Day of month (1-31)

Hour (0-23)

Minute (0-59)

Day of week (0-7), 0 & 7 are Sun

Monitorizar la memoria

- Comando top → Utilizar Shitf+m (o Shift+f para entrar en el editor de orden) para ordenar por consumo descendente de memoria
- Comando vmstat → Campos relativos a la memoria:

GESTIÓN DE DISCOS Y FICHEROS

Monitorización:

Comando df

- Listado de sistemas de ficheros y espacio disponible
- o Sintaxis: df <opciones>
- Ejemplo: df -h → Muestra los tamaños en kB, MB, ... en lugar de en bytes

Comando du

- Tamaño de una rama del sistema de ficheros (p.e., de un directorio)
- Sintaxis: du <opciones> directorio
- o Ejemplos: du -sh /home → Muestra el tamaño total del directorio /home

Comando Isof

- Muestra los ficheros en uso por los procesos del sistema (list open files)
- o Útil para resolver el error "resource is busy" al desmontar una partición.

Comando iostat

- Muestra estadísticas de uso y tasas de transferencia de los dispositivos de almacenamiento
- Uso: iostat -p <disco>
 - Ejemplo: iostat –p /dev/sda

Device sda	tps 2.26	kB_read/s	kB_wrtn/s 258.30	kB_dscd/s 127.34	kB_read 438959	kB_wrtn 4275565	kB_dscd 2107840
sda1	2.24	26.01	258.30	127.34	430614	4275564	2107840
sda14	0.00	0.02	0.00	0.00	272	0	0
sda15	0.01	0.43	0.00	0.00	7088	1	0

GESTIÓN DE RED

Ante un ataque por red o cualquier otro problema del tipo, se quita el cable de red en última instancia si no podemos solucionarlo, pero nunca el de alimentación.

Monitorización

• Comando netstat

- o Muestra información sobre las conexiones y rutas de red
- o Mostrar conexiones activas: netstat -a | more
- Mostrar tabla de rutas: netstat -r

• Comando nethogs

- Muestra conexiones y ratio de tráfico enviado/recibido
- o Requiere instalar el paquete sysstat

• Comando tcpdump

- o Es un analizador de tráfico para conexiones TCP/IP
- Uso más común: captura de tráfico para posterior análisis.
- o Comenzar a capturar tráfico y guardar en un fichero
 - Sintaxis: tcpdump -i <interfaz> -Z <usuario> -w <ficheroCaptura>
 - Ejemplo: tcpdump -i ens4 -Z unai -w miCaptura
- Las interfaces disponibles se pueden mostrar con: ip link
- Visualizar un fichero de captura de tráfico:
 - Sintaxis: tcpdump -enr <ficheroCaptura>
 - Se puede añadir el parámetro -ttt para incluir la diferencia de tiempo entre cada paquete

Comando telnet

- o Útil para comprobar si un servicio remoto está a la escucha.
- o Sintaxis: telnet <IP> <puerto>

Comando netcat

- Herramienta para leer de y escribir en conexiones de red.
- O Utilidad: Abrir una conexión a la escucha en un puerto.
 - Sintaxis: nc -l <puerto>
- O Utilidad: Conectarse a una IP/puerto y escribir en él.
 - Sintaxis: nc <IP> <puerto>

REGISTROS DEL SISTEMA (LOG)

LOGS

El kernel de Linux, los servicios y las aplicaciones generan eventos constantemente:

- Información sobre su estado
- Información sobre fallos/anomalías
- Errores de arranque
- Acceso a información (seguridad)

Una gestión adecuada de esta información es esencial para descubrir y solucionar problemas. Todos estos eventos suelen estar gestionados por un único servicio → En Unix/Linux es **syslog**

SYSLOG

Recolector de eventos empleado por el kernel, servicios y aplicaciones. Es flexible, seguro y fácil de usar. Está compuesto por los siguientes elementos:

/etc/rsyslogd.conf

- syslogd: Servicio del sistema → Recibe los mensajes del resto de servicios y aplicaciones y los añade al registro.
- openlog: Librerías para usar syslog desde una aplicación.
 - P.e., openlog (C/C++), sys::syslog(openlog(),syslog()) (Perl)
- logger: Comando del sistema para enviar mensajes a syslog.
- rsyslogd.conf: Fichero de configuración.
 - o Listado de acciones a realizar en función de los mensajes recibidos
 - Tiene una línea por acción, con el formato:
 - entidad.nivel acción
 - Entidad: lista de valores definidos por el sistema → Kern, user, daemon (otro servicio), auth (login, su, ssh), mail, cron, ...
 - Nivel: tipo de notificación → emerg, alert, crit, err, warning, notice, info, debug, *
 (todos los niveles)
 - o Acción:
 - <nombre-de-fichero> Escribir el mensaje a ese fichero.
 - <nombre-dominio>/<IP> Enviar el mensaje al syslogd del nodo indicado.
 - <nombre-usuario> Enviar mensaje al usuario, si está conectado.
 - * Enviar mensaje a todo usuario conectado

```
# First some standard log files. Log by facility.
#
auth, authpriv.* /var/log/auth.log
*.*;auth, authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
mail.* -/var/log/mail.log
#user.* -/var/log/user.log

# Logging for the mail system.
# mail.info -/var/log/mail.info
#mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err
...
```

Syslog escribe en ficheros en /var/log:

/syslog Eventos generales, ni críticos ni de depuración

/maillog Información de e-mails/cron Registros del proceso cron

/boot.log
 Mensajes e información de inicio del sistema

Hay ficheros en /var/log/ que no gestiona syslog

/wtmp Registra accesos de los usuarios y reinicios

Está en formato binario

Es utilizado por los comandos last y uptime

o /lastlog Contiene el último acceso de cada usuario

o /dmesg Eventos del inicio del sistema

Es utilizado por el kernel y proceso init

GESTIÓN DE LOGS

Cuanta más información de logs, mayor uso de disco. Los logs pueden llegar a consumir un espacio significativo y puede ser costoso buscar información/datos concretos entre miles de líneas.

Rotación de logs

Periódicamente cambiar el fichero donde se escriben los logs, cambiando a escribir en uno nuevo y borrando el más antiguo. Se puede hacer de manera manual con un script.

```
#!/bin/bash
cd /var/log/
mv messages.2 messages.3
mv messages.1 messages.2
mv messages messages.1
cat /dev/null > messages
chmod 600 messages
#Reiniciar syslog
service rsyslog restart
```

Se puede implementar la rotación con un servicio del sistema. Evita errores humanos al crear scripts:

• Servicio **logrotate** → Se configura con los siguientes ficheros:

/etc/logrotate.conf Por defecto, para todos los servicios

```
# rotate log files weekly, monthly
weekly
# keep 4 weeks worth of backlogs
rotate 4
# send errors to root
errors root
# compressed log files
compress
...
```

/etc/logrotate.d/ Sobrescribe logrotate.conf para un servicio concreto

```
/var/log/dpkg.log {
    monthly
    rotate 12
    compress
    notifempty
    create 0664 root
adm
}
```

Analizando logs

- Para depuración:
 - Útil para obtener más información cuando algo va mal
 - Activar modo verboso de las aplicaciones
 - P.e. activar flag -d, /etc/init.d/ssh sshd -d
 - o Importante: desactivar el modo verboso al volver a producción
- Para monitorización:
 - Problema: abundante información, de la cual mucha puede no ser útil
 - Utilizar herramientas para buscar los mensajes relevantes, p.e.:
 - Swatch: Programa Perl que busca patrones en los logs1
 - LogWatch: Genera resúmenes para su envío por e-mail.
 - Soluciones más complejas, p.e., pila ELK

MONITORIZACIÓN EN GCP

GCP provee un sistema de monitorización para los servicios en uso

- Se accede en la sección "Operaciones"
- Permite obtener métricas en diferentes resoluciones → Minutos, horas, días, ... (La mayor resolución es 1 minuto)
- Tiene un coste asociado
- La capa gratuita incluye monitorización básica

Organiza la información en Dashboards de control. Por defecto, incluye varios para los recursos más comunes (Sección Dashboards de "Monitoring"):

Permite crear Dashboard personalizados (con diferentes tipos de gráficos)

Métricas de una VM:

- Por defecto, se obtienen métricas relativas a uso de recursos y red
- Se visualizan en forma de gráfica

Crear alertas que envíen notificaciones cuando sucedan eventos concretos.

- Se gestionan desde la sección "Alertas"
- Para crear alertas personalizadas:
 - o Crear una política
 - o Elegir la métrica a monitorizar
 - o Elegir el umbral de la métrica
 - Elegir el canal de notificación (p.e. e-mail)
 - Revisar y guardar

RENDIMIENTO

Depende del entorno del trabajo, los usuarios van a utilizar una colección de aplicaciones más o menos variada. Es útil caracterizar las máquinas de nuestro entorno para saber cómo van a responder con estas aplicaciones.

Generalmente, una aplicación está limitada por uno de los siguientes:

- Cómputo
 - o Operaciones para realizar en la CPU > operaciones con la memoria
 - Ejemplos de aplicaciones:
 - Renderizado de gráficos/video, simulaciones químicas, ...
- Memoria
 - o Datos para transferir > capacidad de procesado de la CPU
 - Ejemplos de aplicaciones:
 - Análisis de datos, simulaciones de dinámica de fluidos, ...

BENCHMARKS

Aplicaciones cuyo objetivo es comprobar el rendimiento de un factor concreto (CPU, memoria, discos, red, librerías, BBDDs, ...). Generalmente ejecutan una operación (o pocas) de manera repetida y miden el tiempo necesario. En ocasiones el objetivo es validar que un software es estable.

Características que debe un benchmark debe cumplir:

- Relevante y representativo
- Repetible
- Escalable

SPEC

Standard Performance Evaluation Corporation (SPEC) es un consorcio americano dedicado a desarrollar benchmarks

- SPEC CPU → Software comercial (1.210 US\$), última versión: 2017 (anterior 2006). Diferentes versiones: speed, integer, floating point, ...
- SPEC Cloud → Software comercial (2.420 US\$), última versión: 2018 (anterior 2016)
- Otros: SPEC ACCEL, SPEC MPI,...

FIRESTARTER

Benchmark open-source de stress CPU. Crea y ejecuta diferentes patrones de carga en intervalos configurables por el usuario.

Implementación específica para diferentes arquitecturas:

- Intel: Sandy Bridge, Broadwell, Skylake, Knights Landing, ...
- AMD: Zen, Zen+

Algunos resultados para comparar (se utiliza el tipo de instrucción más apropiado para cada chip):

Modelo de CPU	Arquitectura	Lanzamiento	Capacidad	GFLOP/s
Intel Xeon E5-2620	Sandy Bridge	2012	6 cores @ 2.0 GHz	33.9
Intel Xeon E5-2695 v4	Broadwell	2016	18 cores @ 2.1 GHz	397.5
Intel Xeon Gold 6148	Skylake	2017	20 cores @ 2.4 GHz	1000.9
Intel Xeon Silver 4216	Cascade Lake	2019	16 cores @ 2.1 GHz	398.3

STREAM

Benchmark de evaluación de memoria muy popular. Realiza diferentes operaciones con 2 vectores:

- Copy a(i) = b(i)
- Scale a(i) = s*b(i)
- Add a(i) = b(i)+c(i)
- Triad a(i) = b(i)+s*c(i)

El tamaño de los vectores lo define el usuario.

STREAM mide el tiempo en realizar estas operaciones. Es importante compilar y configurar STREAM correctamente para obtener resultados fiables. Algunos resultados para comparar:

Modelo de CPU	Memoria	GB/s	GFLOP/s
Intel Xeon E5-2620	32 GB DDR3 @ 1333 MHz	23.61	33.9
Intel Xeon E5-2695 v4	128 GB DDR4 @ 2400 MHz	48.10	397.5
Intel Xeon Gold 6148	384 GB DDR4 @ 2666 MHz	74.90	1000.9

Para determinar si nuestra aplicación está limitada por cómputo o memoria Utilizar:

- Herramientas de profiling
- Comerciales: Intel Vtune, ARM MAP, Cray PAT
- Libres: Linux perf, Linux Trace Toolkit, Valgrind, gprof

Modelos de rendimiento

- Descripción matemática que representa una interacción hardware-software
- Generalmente son específicos a una máquina o aplicación
- Requieren de un trabajo de configuración
- A veces, utilizar benchmarks para obtener información del hardware