Title

Abstract

Table of Contents

1 Section 1	
1.1 Subsection 1.1	
2 Section 2	
2.1 Subsection 2.1	
2.2 Subsection 2.2	
3 Section 3	
3.1 Subsection 3.1	
3.2 Subsection 3.2	
4 Section 4	
4.1 Subsection 4.1	
4.2 Subsection 4.2	
5 Section 5	
5.1 Subsection 5.1	
5.2 Subsection 5.2	
References	
6 Example	
6.1 Enumerate	
6.2 Table	
6.2.1 Tables side by side	
6.2.2 General table	
6.3 Picture	
6.3.1 Pictures side by side	
6.3.2 picture name adjust	
6.4 Equation	

1 Section 1

1.1 Subsection 1.1

2 Section 2

- 2.1 Subsection 2.1
- 2.2 Subsection 2.2

3 Section 3

- 3.1 Subsection 3.1
- 3.2 Subsection 3.2

4 Section 4

- 4.1 Subsection 4.1
- 4.2 Subsection 4.2

5 Section 5

- 5.1 Subsection 5.1
- 5.2 Subsection 5.2

References

- [1] book
- [2] WEBSITE

6 Example

This section includes some examples that are not commonly used

6.1 Enumerate

- 1. 1
- 2. 2
- 3. 3
- 4. 4

itemize

- 1
- 2
- 3
- 4

6.2 Table

6.2 Tables side by side

Table 6.1 Difference of Mild Steel

 Loading
 Difference
 Difference rate

 50N
 0.01906 mm
 16.5681%

 100N
 0.03803 mm
 16.5298%

 150N
 0.05709 mm
 16.5426%

 Average
 16.55%

Table 6.2 Difference of Alminium

Loading	Difference	Difference rate
50N	0.03944 mm	12.1856%
100N	0.07887 mm	12.1839%
150N	0.11831 mm	12.1845%
Average		12.18%

6.2 General table

Table 6.3 The value of C_L

Value\Degree	0	5	10	15	17.5	20	22.5	25
$\overline{C_L}$	0.034	-0.378	-0.658	-0.892	-0.954	-0.747	-0.717	-0.702

6.3 Picture

6.3 Pictures side by side

Images side-by-side, each with its own subheading but sharing large headings and tags

Figure 6.1 Results of experiments with Steel and Aluminium

6.3 picture name adjust

Table 2.1 Result of the maximum bending displacements

Bending Displacement	Mild Steel	Aluminium
$\delta_{AN_{-1}}$ (P = 50 N)	0.1341 mm	0.3631 mm
$\delta_{AN_2} (P = 100 N)$	0.2681 mm	0.7262 mm
$\delta_{AN_{-3}} (P = 150 N)$	0.4022 mm	1.0893 mm

6.4 Equation

Editing by Axmath or python pix2tex (cmd input latexocr if you have been install pix2tex in your system)

$$\begin{cases}
\delta_{An_{-1}} = \frac{P_{50N}L^3}{48E_sI} = \frac{50\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.1341\times10^{-3}m \\
\delta_{An_{-2}} = \frac{P_{100N}L^3}{48E_sI} = \frac{100\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.2681\times10^{-3}m \\
\delta_{An_{-3}} = \frac{P_{150N}L^3}{48E_sI} = \frac{150\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.4022\times10^{-3}m
\end{cases}$$