

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Banco de Dados AP1 1° semestre de 2017

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1 (3,5 pontos)

Faça um diagrama Entidade-Relacionamento que modela um sistema que armazena dados sobre pessoas. Para cada pessoa, o banco de dados deve armazenar um endereço de correio eletrônico, que a identifica, e o nome da pessoa. Uma pessoa pode ser um estudante. Nesse caso, o sistema deve armazenar também o número de matrícula do estudante. O sistema também deve armazenar os relacionamentos da pessoa. Cada relacionamento é feito com uma outra pessoa cadastrada no banco de dados. Para um relacionamento, além da pessoa relacionada, deve-se armazenar a data na qual o relacionamento foi cadastrado e uma descrição do relacionamento (algo como "colega no curso de Computação do CEDERJ").

As pessoas podem participar de grupos. Cada grupo é identificado por uma sigla e tem um nome. Um grupo pode reunir várias pessoas e uma pessoa pode participar de vários grupos. Grupos vazios são apagados da base de dados, isto é, todo grupo deve ter ao menos um participante. Além disso, o banco de dados deve armazenar um histórico profissional de cada pessoa, caso ela o tenha. Para cada posição ocupada pela pessoa, ele armazena o ano de início e de fim, bem como uma descrição da posição, em formato livre. O banco de dados deve guardar também a posição corrente da pessoa (se houver).

(a) Desenhe um diagrama ER que captura as informações acima. Indique todos os identificadores e cardinalidades. Se houver alguma informação que não pode ser concluída a partir da lista acima, indique explicitamente o que você assumiu e como isso

foi refletido na modelagem (ex: a cardinalidade mínima da entidade X no relacionamento Y foi definida como 1, pois assumi que X era obrigatório no relacionamento Y). [3,0 pontos]

Resposta:

(b) Como o seu diagrama mudaria se cada pessoa tivesse que obrigatoriamente participar de pelo menos um grupo? [0,5 ponto]

Resposta: A cardinalidade mínima do relacionamento entre pessoa e grupo mudaria de 0 para 1.

Questão 2 (3,5 pontos)

Considere o esquema relacional abaixo. Ele modela uma base de dados sobre publicações. Pessoas podem ser autoras de publicações, e cada publicação pode ser classificada em uma área. Cada publicação pode ter um ou mais autores. Nesse caso, autores do mesmo artigo são chamados de co-autores (esse conceito será importante na questão (d)).

Pessoa(CodPessoa, Nome, DataNasc)
Publicacao(CodPublicacao, Titulo, CodArea)

```
CodArea referencia Area (CodArea)

Autor(CodPessoa, CodPublicacao)
CodPessoa referencia Pessoa (CodPessoa),
CodPublicacao referencia Publicacao (CodPublicacao)

Area(CodArea, Nome, CodAreaGenerica)
CodAreaGenerica referencia Area (CodArea)
```

Sobre a base de dados correspondente a esse esquema, resolver as consultas a seguir usando álgebra relacional. Não usar mais tabelas que o estritamente necessário.

(a) Faça uma consulta que retorna os nomes das pessoas que nasceram após 31/12/1990. [0,5 ponto]

$$\pi_{Nome} \left(\sigma_{DataNasc} > "31/12/1990" Pessoa \right)$$

(b) Faça uma consulta que retorna os nomes dos autores e os títulos de cada publicação. [0,5 ponto]

$$\pi_{Nome,Titulo}$$
 (Pessoa \bowtie Autor \bowtie Publicacao)

(c) Faça uma consulta que retorna o título das publicações da área chamada "Computação". [0,5 ponto]

$$\pi_{T ext{itulo}}\left(\left(\sigma_{Area="Computa ext{c} ilde{a}o"}Area
ight)\bowtie Publicacao
ight)$$

(d) Faça uma consulta que retorna o título das publicações do autor "João" que não têm "Pedro" como co-autor. [1 ponto]

```
\rho\left(PubJoao, \pi_{CodPublicacao, TItulo}\left(Pessoa \bowtie (\sigma_{Nome="João"})Autor \bowtie Publicacao)\right)
\rho\left(PubPedro, \pi_{CodPublicacao, TItulo}\left(Pessoa \bowtie (\sigma_{Nome="Pedro"})Autor \bowtie Publicacao)\right)
\bowtie Publicacao)
\pi_{Titulo}(PubJoao - PubPedro)
```

(e) Escreva uma consulta que obtenha o nome das áreas e o nome da área genérica a que elas pertencem, sempre duas a duas. Por exemplo, suponha que na tabela de área estivessem armazenados os registros abaixo:

CodArea	Nome	CodAreaGenerica
1	Computação	NULL
2	Banco de Dados	1
3	Engenharia de Software	1
4	Banco de Dados Distribuídos	2

A consulta deve retornar os seguintes registros [1,0 ponto]:

NomeArea	NomeAreaGenerica
Banco de Dados	Computação
Engenharia de Software	Computação
Banco de Dados Distribuído	Banco de Dados

 $\begin{array}{l} \rho(A1, Area) \\ \rho(A2, Area) \\ \pi_{A1.Nome, A2.Nome}(A1 \bowtie_{CodArea=CodAreaGenerica} A2) \end{array}$

Questão 3 (2 pontos)

Assuma uma base de dados que tem o mesmo esquema descrito na questão anterior, e o seguinte conteúdo:

Pessoa

CodPessoa	Nome	DataNasc
1	Aline	01/01/1998
2	Juca	03/02/1975
3	Jonas	05/07/1990
4	Silvana	28/07/1996

Area

CodArea	Nome	CodAreaGenerica
1	Computação	NULL
2	Banco de Dados	1
3	Engenharia de Software	1
4	Banco de Dados Distribuídos	2

Publicacao

CodPublicacao	Titulo	CodArea
1	Arquiteturas Móveis	1
2	Bancos de Dados Ativos	2
3	Projeto de Banco de Dados	2
4	Bancos de dados na Nuvem	4

Autor

CodPessoa	CodPublicacao
1	1
2	1
2	2
3	2
3	3
3	4

4	4

Para cada uma das consultas abaixo, desenhe a tabela resultante (cabeçalho e conteúdo).

(a) $\sigma_{CodAreaGenerica=1}$ (Area)

CodArea	Nome	CodAreaGenerica
2	Banco de Dados	1
3	Engenharia de Software	1

(b)
$$\pi_{Nome,Titulo} \left(\left(\sigma_{Area="Computação"} Area \right) \bowtie Publicação \bowtie Autor \bowtie Pessoa \right)$$

Nome	Título
Aline	Arquiteturas Móveis
Juca	Arquiteturas Móveis

Questão 4 (1 ponto)

Quais são os níveis de abstração de modelos de dados? Descreva cada um deles evidenciando suas diferenças.

Semântico (alto nível):

Conceitos que representam dados de forma semelhante à concepção de diversos usuários.

(Baseado em entidades ou objetos)

Lógico (ou Conceitual, dependente do SGBD):

Conceitos que representam dados de forma próxima às estruturas do SGBD

(baseado em tabelas no modelo relacional)

Físico (baixo nível, interno ao SGBD):

Conceitos que representam dados sobre o armazenamento físico da base de dados no computador.

(Baseado em índices e agrupamento no disco)