Univariate + Multivariate Time Series Analysis + Forecasting

```
import numpy as np
import pandas as pd
import seaborn as sb
from sklearn.impute import SimpleImputer
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['figure.figsize'] = (15, 5)
import seaborn as sn
import statsmodels.api as sm
import math
from statsmodels.tsa.stattools import kpss, adfuller
from pmdarima import auto_arima
from statsmodels.tsa.vector_ar.var_model import VAR
```

Understanding Data + Imputing for NO₂

```
df = pd.read_csv ('./AirQualityUCI.csv', sep = ';', na_values = -200)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 9471 entries, 0 to 9470
    Data columns (total 17 columns):
                   Non-Null Count Dtype
     # Column
     0 Date
                      9357 non-null object
        Time
                      9357 non-null object
         CO(GT)
                        7765 non-null
         PT08.S1(CO) 8991 non-null float64
         NMHC(GT) 914 non-null float6
C6H6(GT) 9357 non-null object
         PT08.S2(NMHC) 8991 non-null
                                       float64
                                       float64
                        7718 non-null
         NOx (GT)
         PT08.S3(NOx) 8991 non-null
                                       float.64
                                       float64
                        7715 non-null
        NO2 (GT)
     10 PT08.S4(NO2) 8991 non-null
11 PT08.S5(O3) 8991 non-null
                                       float64
                                       float64
     12 T
                        8991 non-null
                                       object
     13 RH
                        8991 non-null
     14 AH
                        8991 non-null object
     15 Unnamed: 15
                       0 non-null
                                        float64
     16 Unnamed: 16
                      0 non-null
                                       float64
    dtypes: float64(10), object(7)
    memory usage: 1.2+ MB
# pip list --outdated --format=freeze | grep -v '^\-e' | cut -d = -f 1 | xargs -n1 pip install -U
```

Completing Univariate Analysis First on NO2(GT) (already float)

Date and Time are objects, need to combine them first and then convert them into date-time objects

```
sb.heatmap(df.isnull(), cbar = False);
# Conclusions
# - Remove the last 2 columns and NMHC (GT) [for multivariate analysis done later]
# - Imputing the data for NO2 since this is time series forecasting and ACF won't work properly if simply removed
```


df = df.drop (['Unnamed: 15', 'Unnamed: 16', 'NMHC(GT)'], axis = 1)
sb.heatmap(df.isnull(), cbar = False);


```
df['TimeStamp'] = pd.to_datetime(df['Date'] + ' ' + df['Time'], format = '%d/%m/%Y %H.%M.%S')
timestamp = df['TimeStamp']
no2_level = df['NO2(GT)']
```

df.head()

	Date	Time	CO(GT)	PT08.S1(CO)	C6H6(GT)	PT08.S2(NMHC)	NOx (GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(03
0	10/03/2004	18.00.00	2,6	1360.0	11,9	1046.0	166.0	1056.0	113.0	1692.0	1268
1	10/03/2004	19.00.00	2	1292.0	9,4	955.0	103.0	1174.0	92.0	1559.0	972
2	10/03/2004	20.00.00	2,2	1402.0	9,0	939.0	131.0	1140.0	114.0	1555.0	1074
-						~					

df.describe()
NO2 varies a lot min(2) to max(340)

	PT08.S1(CO)	PT08.S2(NMHC)	NOx (GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(03)
count	8991.000000	8991.000000	7718.000000	8991.000000	7715.000000	8991.000000	8991.000000
mean	1099.833166	939.153376	246.896735	835.493605	113.091251	1456.264598	1022.906128
std	217.080037	266.831429	212.979168	256.817320	48.370108	346.206794	398.484288
min	647.000000	383.000000	2.000000	322.000000	2.000000	551.000000	221.000000
25%	937.000000	734.500000	98.000000	658.000000	78.000000	1227.000000	731.500000
50%	1063.000000	909.000000	180.000000	806.000000	109.000000	1463.000000	963.000000
75%	1231.000000	1116.000000	326.000000	969.500000	142.000000	1674.000000	1273.500000
max	2040.000000	2214.000000	1479.000000	2683.000000	340.000000	2775.000000	2523.000000

```
df = df[df['TimeStamp'].notna()]
```

```
df['index_col'] = df.index
df = df.set_index('TimeStamp')
```

Analyzing for July 2004 to see a pattern

```
levels\_2004\_July = df.drop(['index\_col'], axis = 1).loc['2004-07'] \\ levels\_2004\_July.plot();
```


Shows that concentrations of different gases are definitely correlated, some that don't make sense in the first go (such as NO2 and O3). Looking at only NO_2

```
no2_levels_2004_July = df.loc['2004-07']['NO2(GT)']
no2_levels_2004_July.plot(figsize = (15,5));
```


Within a day, the NO2 level peaks and then returns back to a value close to ~ 50

NO2 levels go down during the weekends (Example: 10-11th July, 17-18th July 2004)

Overall there is a weekly cyclic nature

```
no2_levels_2004 = df.loc['2004']['NO2(GT)']
no2_levels_2004.plot(figsize = (15,5));
```



```
# Correlation for NO2 data with different lag values (this was used for imputing)
df_no_na = df.dropna()
ax = pd.plotting.autocorrelation_plot(df_no_na['NO2(GT)'])
ax.set_xlim([0, 300]);
```


For NO₂ levels, there is a repeating trend at a lag of every 24, 48,.. hours -> Highly seasonal time series

But the data needs to be imputed. Possible strategies for imputing values for NO2:

- Remove those records where values are missing [Can't do this since it will break the series]
- · Impute with:
 - this day's last hour concentration (lag = 1)
 - o the last day's concentration for the same hour (lag = 24)
 - o last week same day, same hour concentration

Last strategy for imputing looks good, from the July concentration graph above. But it is possible that the data is unavailable for that specific hour, so taking an average of multiple values to be on the safer side. So check the last week, or the week before that and so on; until a value is found. Since 24 hour lag seems to be the best, followed by 48 hour lag and so on..

```
lst = list(range(1, 26, 4)) + [24*7] # list for lagplots
lst, len(lst)
     ([1, 5, 9, 13, 17, 21, 25, 168], 8)
# Checking for lag 1 through 24 hours and for 1 week
fig, ax = plt.subplots(nrows = 2, ncols = 4, figsize = (15,5))
for n, lag in enumerate(lst):
    ax = plt.subplot(2, 4, n + 1)
    pd.plotting.lag_plot(df['NO2(GT)'], lag = lag)
       300
                                                                 300
     ⊋ 200
       100
                                    100
                                                                 100
        300
     200
     ± 100
                 100
                     200
y(t)
                                                    200
                                                          300
                                                                                200
                                                                                       300
                                                                                                                   300
                                                  v(t)
```

sm.tsa.acf(df['NO2(GT)'].dropna().to_list(), nlags = 100, fft = False)

Observations:

- 24 hour lag doesn't seem to be good correlation
- 1 hour is good, but would fail multiple times because there are too many consecutive nans
- 1 week lag is not bad
- · Trying a combination of these to fill in as many nans as possible

```
df_imputed = df[['NO2(GT)']]

k = df[['NO2(GT)']]
for i in range(30):
    k[f'NO2_shifted_{i}'] = df[['NO2(GT)']].shift(periods = i*24)
```

```
k = k.reset_index()
# df.index - pd.offsets.DateOffset(days = 7)
    /Users/utkarshtripathi/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-v
      This is separate from the ipykernel package so we can avoid doing imports until
def helper (row, value):
   index = row['index_col']
   val = np.nan
    for i in range(30):
       if math.isnan(k.loc[index][f'NO2_shifted_{i}']):
           val = k.loc[index][f'NO2 shifted {i}']
           break
    # IF still nan, try taking the interpolation
    if math.isnan(value):
        avg = (k.loc[index-1]['NO2(GT)'] + k.loc[index+1]['NO2(GT)'])/2
       return avg
   else:
       return value
# k['NO2_shifted_1'].head(25)
# Try to fill with previous week same hour data as much as possible
df['imputed NO2'] = df.apply (lambda row: helper(row, row['NO2(GT)']), axis = 1)
\# NA values was decreased, but not by the number I was expecting it to
# Better to take those months that have lower NaNs available [this is still hourly analysis]
# df['imputed_NO2'] = df['imputed_NO2'].fillna(method='ffill')
# df['imputed NO2'] = df['imputed NO2'].rolling(window = 24, min periods = 1).mean()
df['imputed NO2'].isna().sum()
    1322
```

Stationarity Check & quick ARIMA

```
# no2 levels 2004 July = df.loc['2004']['imputed NO2']
# no2_levels_2004_July.plot(figsize = (15,5));
lst = []
def return_lowNA (r1, r2, string):
    for i in range(r1,r2):
        if df.loc[string + f'{i}']['imputed_NO2'].isna().sum() < 50:</pre>
            lst.append (string + f'{i}')
return_lowNA (4, 10, '2004-0')
return_lowNA (10, 13, '2004-')
return lowNA (1, 5, '2005-0')
print(lst)
    ['2004-06', '2004-07', '2004-11', '2005-01', '2005-02', '2005-03', '2005-04']
dfx = pd.concat([df.loc[month]['NO2(GT)'] for month in lst])
dfx
    TimeStamp
    2004-06-01 00:00:00
                             45.0
    2004-06-01 01:00:00
                             23.0
    2004-06-01 02:00:00
                             26.0
    2004-06-01 03:00:00
                             NaN
    2004-06-01 04:00:00
                            24.0
    2005-04-04 10:00:00
                            190.0
    2005-04-04 11:00:00
                            179.0
    2005-04-04 12:00:00
                            175.0
    2005-04-04 13:00:00
                            156.0
```

```
dfx = dfx.reset_index()['NO2(GT)']
dfx = dfx.interpolate(limit direction = "both")
p1 = kpss(dfx, 'ct')[1] # ct passed if a distinctly visible trend avaialable
print(p1) # less than 0.05 implies non-stationarity
     /Users/utkarshtripathi/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/stattools.py:2019: InterpolationWarning:
     look-up table. The actual p-value is smaller than the p-value returned.
       warn msg.format(direction="smaller"), InterpolationWarning
df.loc['2005']['imputed_NO2'].plot()
     <AxesSubplot:xlabel='TimeStamp'>
     350
      300
      250
      200
     150
     100
      50
                                           Feb
       Jan
2005
                                                           TimeStamp
df 2005 = df.loc['2005']['imputed NO2'].interpolate(limit direction = "both") # for just those 3 NaNs remaining
from statsmodels.tsa.stattools import kpss, acf
p1 = kpss(df_2005, 'c')[1] \# ct passed if a distinctly visible trend available
print(p1) # less than 0.05 implies non-stationarity
\# p2 = adfuller(df 2005)
# print(p1, p2)
     0.025261656555949398
# roly-moly (rolling sorry PJ) stats shows it's not faily constant for daily data, but there is no trend as such
   so will do ARIMA first then AR, ARMA, MA etc. ADFuller test shows it's stationary. It's a borderline case :(
# df_2005.rolling(window = 24).mean().plot()
# df 2005.rolling(window = 24).std().plot()
decomposed = sm.tsa.seasonal_decompose(df_2005, model = 'additive')
df_2005_ = decomposed.observed - decomposed.trend
decomposed.plot();
                                                                       imputed NO2
       300
       200
       2005-01-01
                           2005-01-15
                                                  2005-02-01
                                                                      2005-02-15
                                                                                          2005-03-01
                                                                                                             2005-03-15
       200
       100
                           2005-01-15
                                                                      2005-02-15
                                                                                                             2005-03-15
       2005-01-01
                                                  2005-02-01
                                                                                          2005-03-01
                                                                                                                                     20
      Seasonal 10
       0.5
                           2005-01-15
                                                  2005-02-01
                                                                      2005-02-15
                                                                                          2005-03-01
                                                                                                             2005-03-15
```

2005-04-04 14:00:00

2005-01-01

2005-01-15

2005-02-01

2005-02-15

2005-03-01

2005-03-15

168.0 Name: NO2(GT), Length: 4431, dtype: float64

```
(df_2005_[12:-12]).isna().sum()
df_2005_ = df_2005_[12:-12] # for arima, we dont need to feed in the non-stationary data (isnt that great)

train = df_2005_.loc['2005-01-01':'2005-04-01']
test = df_2005_.loc['2005-04-02':]

forecast = model.fit(train)
forecast = model.predict(n_periods = len(test))

forecast_X = pd.DataFrame(forecast, index = test.index, columns = ['Next_vals'])

pd.concat([test, forecast_X],axis=1).plot()
```

<AxesSubplot:xlabel='TimeStamp'> 60 Prediction ΔN 20 0 -20 -40 -60 12:00 12:00 06:00 18:00 06:00 02-Apr 2005 TimeStamp

```
:)
# model = pm.auto_arima(df_2005_, m=12, seasonal = True, test = 'adf',error_action='ignore',\
# stepwise = False, trace = True)
```

▼ Modeling for Daily

```
df_ = df.resample('D').mean() # take a mean for daily data
print (df_['NO2(GT)'].isna().sum())
df_2 = df_['NO2(GT)'].interpolate(limit_direction = "both")
df_2.plot()
```



```
p1 = kpss(df_2, 'ct')[1] # ct passed if a distinctly visible trend avaiable
print(p1) # < 0.05 implies non-stationarity

dftest = adfuller(df_2, autolag = 'AIC')
print (dftest[1]) # >0.05 implies non stationarity

0.01
    0.17921936347881295
```

/Users/utkarshtripathi/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/stattools.py:2019: InterpolationWarning: look-up table. The actual p-value is smaller than the p-value returned.

```
# Removing Trend
rolling_mean = df_2.rolling(window = 7).mean()
df_2_noTrend = df_2 - rolling_mean

plt.subplot(121)
df_2_noTrend.plot(title="Rolling Average Taken");
plt.subplot(122)
df_2.plot(title="Unchanged");
```



```
df_2_noTrend = df_2_noTrend['2004-03-21':]
decomposed = sm.tsa.seasonal_decompose(df_2_noTrend, model = 'additive')
# df_2_ = decomposed.observed - decomposed.trend
decomposed.plot();
```


1.091756720911131e-09

Show hidden output

df_2_noTrend

```
TimeStamp
2004-03-21
             -23.192547
2004-03-22
             -17.813665
2004-03-23
              -8.310559
2004-03-24
              -5.440994
              -7.540373
2004-03-25
             -11.476190
2005-03-31
2005-04-01
              -0.571429
2005-04-02
              -6.827381
2005-04-03
               1.482143
```

```
2005-04-04
                   9.648810
    Freq: D, Name: NO2(GT), Length: 380, dtype: float64
train = df_2_noTrend.loc['2004-03-21':'2005-03-20']
test = df_2_noTrend.loc['2005-03-21':]
len(train), len(test)
    (365, 15)
forecast = model.fit(train)
forecast = model.predict(n_periods = len(test))
forecast X = pd.DataFrame(forecast, index = test.index, columns = ['Next vals'])
pd.concat([test, forecast X], axis=1).plot()
    <AxesSubplot:xlabel='TimeStamp'>
                                                                                                        NO2(GT)
                                                                                                        Next_vals
      10
       0
     -10
     -20
     -30
```

▼ Multivariate Analyzzizz

22

23

25

26

27

TimeStamp

30

01 Apr 2005 02

03

Correlation Matrix

```
df['NO2(GT)']
     TimeStamp
     2004-03-10 18:00:00
                             113.0
     2004-03-10 19:00:00
     2004-03-10 20:00:00
                              114.0
    2004-03-10 21:00:00
2004-03-10 22:00:00
                              122.0
                              116.0
     NaT
                                NaN
     NaT
                                NaN
     NaT
                                NaN
                                NaN
                                NaN
    Name: NO2(GT), Length: 9471, dtype: float64
corrMatrix = df.corr()
fig, ax = plt.subplots(figsize = (6,6))
sn.heatmap(corrMatrix, annot = False);
```


Observations: Since we are interested in predicting NO₂, all except NOx, tungsten oxide look good predictors (not taking temperature, relative humidity etc for now)

df multi = df.resample('D').mean()

df multi

	PT08.S1(CO)	PT08.S2(NMHC)	NOx (GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(03)	index_col	imputed_NO
TimeStamp									
2004-03-10	1316.500000	912.333333	132.000000	1167.333333	108.833333	1545.500000	1096.000000	2.5	108.83333
2004-03-11	1244.166667	851.958333	144.391304	1277.250000	99.869565	1522.833333	885.250000	17.5	97.66666
2004-03-12	1281.666667	1008.291667	173.727273	1101.875000	116.272727	1627.291667	1084.375000	41.5	114.62500
2004-03-13	1330.666667	992.833333	184.434783	993.208333	118.869565	1595.791667	1245.916667	65.5	117.35416
2004-03-14	1361.125000	943.916667	146.608696	1001.291667	110.391304	1602.375000	1234.208333	89.5	109.66666
2005-03-31	1008.125000	749.416667	185.083333	795.666667	100.708333	1176.541667	763.833333	9257.5	100.70833
2005-04-01	903.291667	663.000000	161.833333	946.875000	107.333333	943.250000	523.958333	9281.5	107.33333
2005-04-02	890.958333	616.291667	142.375000	991.750000	100.166667	864.333333	481.750000	9305.5	100.16666
2005-04-03	981.375000	714.708333	167.666667	856.166667	111.125000	985.166667	717.083333	9329.5	111.12500
2005-04-04	1090.533333	862.266667	263.333333	745.266667	122.000000	1195.066667	995.266667	9349.0	122.00000

391 rows \times 9 columns

```
df_multi.isna().sum()
     PT08.S1(CO)
    PT08.S2(NMHC)
                       8
     NOx (GT)
                      34
    PT08.S3(NOx)
                       8
    NO2(GT)
                      34
    PT08.S4(NO2)
                       8
     PT08.S5(03)
                       8
     index_col
                       0
     imputed_NO2
                      34
     dtype: int64
df_multi = df_multi.interpolate(limit_direction = "both")
for i, col in enumerate(x_vars):
   print(col, adfuller(df_multi[col])[1]) # <0.05 implies stationarity</pre>
     PT08.S1(CO) 8.30828998149498e-17
     PT08.S2(NMHC) 0.0015732324845519293
     NOx(GT) 0.3568268381846265
    NO2(GT) 0.17921936347881295
```

```
PT08.S4(NO2) 0.3657985143254272
PT08.S5(O3) 0.0003992170933603379
```

Need to make NOx, NO2, tungsten oxide data series stationary

```
df multi stationary = df multi.diff().dropna()
for i, col in enumerate(x_vars):
   print(col, adfuller(df_multi_stationary[col])[1]) # <0.05 implies stationarity</pre>
    PT08.S1(CO) 1.8237226910900484e-11
    PT08.S2(NMHC) 3.370591060929868e-10
    NOx(GT) 4.960123831236301e-11
    NO2(GT) 3.6068503137062234e-09
    PT08.S4(NO2) 3.3357168159110093e-09
    PT08.S5(O3) 2.7415013882869992e-11
```

Transformed variables look good to go

```
df_multi_stationary = df_multi.drop(['index_col', 'imputed_NO2'], axis = 1)
```

grangers causality matrix(dataset, variables = dataset.columns)

df_multi_stationary

	PT08.S1(CO)	PT08.S2(NMHC)	NOx (GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(03)
TimeStamp							
2004-03-10	1316.500000	912.333333	132.000000	1167.333333	108.833333	1545.500000	1096.000000
2004-03-11	1244.166667	851.958333	144.391304	1277.250000	99.869565	1522.833333	885.250000
2004-03-12	1281.666667	1008.291667	173.727273	1101.875000	116.272727	1627.291667	1084.375000
2004-03-13	1330.666667	992.833333	184.434783	993.208333	118.869565	1595.791667	1245.916667
2004-03-14	1361.125000	943.916667	146.608696	1001.291667	110.391304	1602.375000	1234.208333
2005-03-31	1008.125000	749.416667	185.083333	795.666667	100.708333	1176.541667	763.833333
2005-04-01	903.291667	663.000000	161.833333	946.875000	107.333333	943.250000	523.958333
2005-04-02	890.958333	616.291667	142.375000	991.750000	100.166667	864.333333	481.750000
2005-04-03	981.375000	714.708333	167.666667	856.166667	111.125000	985.166667	717.083333
2005-04-04	1090.533333	862.266667	263.333333	745.266667	122.000000	1195.066667	995.266667

391 rows × 7 columns

```
# Source for this function:
# https://stackoverflow.com/questions/58005681/is-it-possible-to-run-a-vector-autoregression-analysis-on-a-large-gdp-data-with
dataset = df_multi_stationary
maxlag=12
test = 'ssr-chi2test'
def grangers_causality_matrix(data, variables, test = 'ssr_chi2test', verbose=False):
   dataset = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables, index=variables)
    for c in dataset.columns:
       for r in dataset.index:
           test result = grangercausalitytests(data[[r,c]], maxlag=maxlag, verbose=False)
            p_values = [round(test_result[i+1][0][test][1],4) for i in range(maxlag)]
           if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}')
           min_p_value = np.min(p_values)
            dataset.loc[r,c] = min_p_value
   dataset.columns = [var + '_x' for var in variables]
    dataset.index = [var + '_y' for var in variables]
   return dataset
```

```
PT08.S1(CO) x PT08.S2(NMHC) x NOx(GT) x PT08.S3(NOx) x NO2(GT) x PT08.S4(NO2) x PT08.S5(O3) x
       PT08.S1(CO)_y
                               1 0000
                                                0.0000
                                                           0.0037
                                                                            0.0036
                                                                                        0.0003
                                                                                                        0.0001
                                                                                                                       0.0000
     PT08.S2(NMHC) v
                               0.0004
                                                1.0000
                                                           0.1505
                                                                            0.0009
                                                                                        0.0338
                                                                                                        0.0072
                                                                                                                       0.0001
Looking at the NO2(GT)-y row: PT08.S1(CO), PT08.S2(NMHC), PT08.S3(NOx), PT08.S4(NO2), PT08.S5(O3) can be taken as features.
      PT08.S3(NOx) v
                               0.0000
                                                                            1.0000
                                                                                       0.0000
                                                                                                                       0.0000
                                                0.0000
                                                           0.0000
                                                                                                        0.0000
# df multi = df multi stationary[['PT08.S1(CO)','PT08.S2(NMHC)','PT08.S5(O3)', 'NO2(GT)', 'PT08.S3(NOx)']]
df_multi_ = df_multi[['PT08.S1(CO)','PT08.S2(NMHC)','PT08.S5(O3)', 'NO2(GT)', 'PT08.S3(NOx)']]
# taking non-stationary data is easier (there is a nice parameter that enforces stionarity)
# otherwise retransform the transformed data into original for comparison
df_train = df_multi_[:-10]
df test = df multi [-10:]
model = VAR(df train)
model.select_order(10).summary()
     VAR Order Selection (* highlights the
               minimums)
        AIC BIC
                     FPF
                            HOIC
     0 43 70 43 76 9 554e+18 43 72
     1 39.59 39.91* 1.560e+17 39.71*
     2 39.55 40.13 1.507e+17 39.78
     3 39.47 40.31 1.382e+17 39.80
     4 39.51 40.62 1.450e+17 39.95
     5 39.55 40.92 1.501e+17 40.09
     6 39.54 41.18 1.492e+17 40.19
     7 39.47 41.37 1.388e+17 40.22
     8 39.36* 41.53 1.252e+17* 40.22
     9 39.39 41.82 1.288e+17 40.35
     10 39.45 42.14 1.366e+17 40.52
Should try 1 and 8 lags
var_model = sm.tsa.VARMAX (df_train, enforce_stationarity = True)
modelFit = var_model.fit (disp=False)
trainingSize = len(df_train)
model_predictions = modelFit.get_prediction (start = trainingSize, end = trainingSize + 5).predicted_mean
     /Users/utkarshtripathi/opt/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:606: ConvergenceWarning: Maxim
       ConvergenceWarning)
model_predictions['NO2(GT)']
     2005-03-26
                   121.700914
     2005-03-27
                   114.828126
     Freq: D, Name: NO2(GT), dtype: float64
df multi['2005-03-26':'2005-03-27']['NO2(GT)']
     TimeStamp
     2005-03-26
                   106.541667
     2005-03-27
                    92.583333
     Freq: D, Name: NO2(GT), dtype: float64
# list (df_multi['2005-03-26':'2005-04-15'].index)
# pd.DatetimeIndex ['2005-03-26':'2005-04-15']
x = list (df multi['2005-03-26':'2005-03-31'].index)
```

 ${\tt plt.plot} \ \, (x, \, {\tt model_predictions['NO2(GT)']}, \, x, \, {\tt df_multi['2005-03-26':'2005-03-31']['NO2(GT)']}) \, \, (x, \, {\tt model_predictions['NO2(GT)']}) \, \, (x, \, {\tt model_predictions['NO2$

120 -

▼ Approach 2

0 1 2 3 TimeStamp **2005-03-26** 1193.144342 879.338299 1033.029544 115.328066 699.952999 **2005-03-27** 1131.017946 830.711632 945.650321 105.454243 758.647108 **2005-03-28** 1167.425444 914.607167 1048.220435 119.074566 721.081722 **2005-03-29** 1181.721465 938.522693 1099.964894 121.406158 730.186917 **2005-03-30** 1163.541391 934.532336 1093.682526 121.659631 726.371623 **2005-03-31** 1153.358861 902.903036 1053.729150 118.619798 745.214044 **2005-04-01** 1154.155471 914.310214 1065.862065 121.117370 750.659696 **2005-04-02** 1118.325620 855.300204 980.995680 113.607098 809.717148 **2005-04-03** 1112.063990 848.998221 961.360294 111.087358 812.077818 **2005-04-04** 1137.547174 901.932949 1027.344685 117.236633 775.158061

df test

PT08.S1(CO) PT08	3.S2(NMHC)	PT08.S5(03)	NO2(GT)	PT08.S3(NOx)
------------------	------------	-------------	---------	--------------

TimeStamp					
2005-03-26	1216.541667	910.541667	1185.875000	106.541667	590.041667
2005-03-27	1106.333333	723.166667	884.750000	92.583333	726.041667
2005-03-28	1079.666667	745.166667	829.583333	103.041667	748.125000
2005-03-29	1163.333333	943.416667	1133.333333	123.000000	632.083333
2005-03-30	1106.000000	908.791667	1067.416667	122.125000	665.833333
2005-03-31	1008.125000	749.416667	763.833333	100.708333	795.666667
2005-04-01	903.291667	663.000000	523.958333	107.333333	946.875000
2005-04-02	890.958333	616.291667	481.750000	100.166667	991.750000
2005-04-03	981.375000	714.708333	717.083333	111.125000	856.166667
2005-04-04	1090.533333	862.266667	995.266667	122.000000	745.266667

```
x = list (df_test['2005-03-26':'2005-04-04'].index)
plt.plot (x, pred[3], x, df_test['2005-03-26':'2005-04-04']['NO2(GT)'])
```

