

SEQUENCE LISTING

<110> MUNROE, Donald G.
KAMBOJ, Rajender
PETERS, Diana
KOOSHESH, Fatemeh
VYAS, Tejal B.
GUPTA, Ashwani K.

<120> IDENTIFICATION OF LYSOLIPID RECEPTORS INVOLVED IN INFLAMMATORY RESPONSE

<130> 8074-8021

<140> 09/222,995

<141> 1998-12-30

<150> 60/109,885

<151> 1998-11-25

<150> 60/080,610

<151> 1998-04-03

<150> 60/070,185

<151> 1997-12-30

<160> 25

<170> PatentIn Ver. 2.1

<210> 1

<211> 35

<212> DNA

<213> Rattus sp.

<400> 1

gagaagggttc aggaacacta caattacacc aagga

35

<210> 2

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic primer

J. COEFFIELD LIBRARY

<400> 2
attataccaa ggagacgctg gaaac

25

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 3
agagagcaag gtattggcta cgaag

25

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 4
tcctctcctc gtcacatssc cc

22

<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 5
gcattcacaa gaaaattactc tgaggc

26

<210> 6
<211> 26
<212> DNA
<213> Artificial Sequence

DNA Sequence Database

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 6
gagccccacc atgggcagct tgtact

26

<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 7
gcattcacaa gaaattactc tgaggc

26

<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 8
tttaaaaagc ttcccaccat gggcagcttg tact

34

<210> 9
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer

<400> 9
tatatatcta gacattcaca agaaattact ctgaggc

37

<210> 10

<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic primer

<400> 10
tatatatcta gaggaaatgt gacgaggaga gg 32

<210> 11
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic primer

<400> 11
tttaaaggta ccgccaccat gggcagctt tac 33

<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic primer

<400> 12
tatatatcta gagaccaccc tgttgcctc cag 33

<210> 13
<211> 445
<212> DNA
<213> Homo sapiens

<400> 13
aaagccccat ggccccagca ggcctctgag ccccaccatg ggcagcttgt actcgagta 60
cctgaacccc aacaagggtcc aggaacacta taattatacc aaggagacgc tggaaacgca 120
ggagacgacc tcccgccagg tggcctcgcc attcatcgtc atccctgtt gcgcattgt 180
ggtgaaaaac cttctggtgc tcattgcgtt ggcccgaaac agcaagttcc actcggaat 240

gtacctgttt ctggcaacc tggccgcctc cgatctactg gcagggcgtgg cttcgtagc 300
caataccttgc tctcttgct ctgtcacgct gaggctgacg cctgtcagt gtttgccc 360
ggacggctcg cttcatcac gctctcgcc tctgtcttca gcctcctggc catgccatt 420
gagcgcacg tggccatgc aaagg 445

<210> 14
<211> 364
<212> DNA
<213> Homo sapiens

<400> 14
aaagccccat ggccccagca ggcctctgag ccccaccatg ggcagcttgt actcgagta 60
cctgaacccc aacaagggtcc aggaacacta taattatacc aaggagacgc tggaaacgca 120
ggagacgacc tcccggcagg tggcctcgcc ttcatcgtc atcctctgtt ggcattgt 180
ggtgaaaac ctctggtgc tcattgcgtt ggcggaaac agcaagttcc actcggaat 240
gtacctgttt ctggcaacc tggccgcctc cgatctactg gcagggcgtgg cttcgtagc 300
caataccttgc tctcttgct ctgtcacgct gaggctgacg cctgtcagt gtttgccc 360
ggac 364

<210> 15
<211> 369
<212> DNA
<213> Homo sapiens

<400> 15
agttctgaaa gccccatggc cccagcagggc ctctgagccc caccatggc agcttgtact 60
cgaggatctt gaaccccaac aagggtccagg aacactataa ttataccaag gagacgctgg 120
aaacgcagga gacgacccctcc cgccaggtgg gtcggcctt catcgatc ctctgttgcg 180
ccattgttgtt ggaaaacccctt ctggtgctca ttgcgggtggc ccgaaacagc aagttccact 240
cgccaatgtt cctgtttctg ggcaacctgg ccgcctccga tctactggca ggcgtggctt 300
cgttagccaat accttgctct ctggctctgt cacgctgagg ctgacgcctg tgcagtggtt 360
tgcccgaaa 369

<210> 16
<211> 1170
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (38)..(1096)

<400> 16
aaagccccat ggccccagca ggcctctgag ccccaccatg ggc agc ttg tac tcg 55
Met Gly Ser Leu Tyr Ser

gag tac ctg aac ccc aac aag gtc cag gaa cac tat aat tat acc aag 103
 Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu His Tyr Asn Tyr Thr Lys
 10 15 20

gag acg ctg gaa acg cag gag acg acc tcc cgc cag gtg gcc tcg gcc 151
 Glu Thr Leu Glu Thr Gln Glu Thr Ser Arg Gln Val Ala Ser Ala
 25 30 35

ttc atc gtc atc ctc tgt tgc gcc att gtg gtg gaa aac ctt ctg gtg 199
 Phe Ile Val Ile Leu Cys Cys Ala Ile Val Val Glu Asn Leu Leu Val
 40 45 50

ctc att gcg gtg gcc cga aac agc aag ttc cac tcg gca atg tac ctg 247
 Leu Ile Ala Val Ala Arg Asn Ser Lys Phe His Ser Ala Met Tyr Leu
 55 60 65 70

ttt ctg ggc aac ctg gcc tcc gat cta ctg gca ggc gtg gcc ttc 295
 Phe Leu Gly Asn Leu Ala Ser Asp Leu Leu Ala Gly Val Ala Phe
 75 80 85

gta gcc aat acc ttg ctc tct ggc tct gtc acg ctg agg ctg acg cct 343
 Val Ala Asn Thr Leu Leu Ser Gly Ser Val Thr Leu Arg Leu Thr Pro
 90 95 100

gtg cag tgg ttt gcc cgg gag ggc tct gcc ttc atc acg ctc tcg gcc 391
 Val Gln Trp Phe Ala Arg Glu Gly Ser Ala Phe Ile Thr Leu Ser Ala
 105 110 115

tct gtc ttc agc ctc ctg gcc atc gcc att gag cgc cac gtg gcc att 439
 Ser Val Phe Ser Leu Leu Ala Ile Ala Ile Glu Arg His Val Ala Ile
 120 125 130

gcc aag gtc aag ctg tat ggc agc gac aag agc tgc cgc atg ctt ctg 487
 Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys Ser Cys Arg Met Leu Leu
 135 140 145 150

ctc atc ggg gcc tcg tgg ctc atc tcg ctg gtc ctc ggt ggc ctg ccc 535
 Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu Val Leu Gly Gly Leu Pro
 155 160 165

atc ctt ggc tgg aac tgc ctg ggc cac ctc gag gcc tgc tcc act gtc 583
 Ile Leu Gly Trp Asn Cys Leu Gly His Leu Glu Ala Cys Ser Thr Val
 170 175 180

ctg cct ctc tac gcc aag cat tat gtg ctg tgc gtg gtg acc atc ttc 631
 Leu Pro Leu Tyr Ala Lys His Tyr Val Leu Cys Val Val Thr Ile Phe

185

190

195

tcc atc atc ctg ttg gcc atc gtg gcc ctg tac gtg cgc atc tac tgc 679
 Ser Ile Ile Leu Leu Ala Ile Val Ala Leu Tyr Val Arg Ile Tyr Cys
 200 205 210

gtg gtc cgc tca agc cac gct gac atg gcc gcc ccg cag acg cta gcc 727
 Val Val Arg Ser Ser His Ala Asp Met Ala Ala Pro Gln Thr Leu Ala
 215 220 225 230

ctg ctc aag acg gtc acc atc gtg cta ggc gtc ttt atc gtc tgc tgg 775
 Leu Leu Lys Thr Val Thr Ile Val Leu Gly Val Phe Ile Val Cys Trp
 235 240 245

ctg ccc gcc ttc agc atc ctc ctt ctg gac tat gcc tgt ccc gtc cac 823
 Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp Tyr Ala Cys Pro Val His
 250 255 260

tcc tgc ccg atc ctc tac aaa gcc cac tac ytt ttc gcc gtc tcc acc 871
 Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr Xaa Phe Ala Val Ser Thr
 265 270 275

ctg aat tcc ctg ctc aac ccc gtc atc tac acg tgg cgc agc cgg gac 919
 Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr Thr Trp Arg Ser Arg Asp
 280 285 290

ctg cgg cgg gag gtg ctt cgg ccg ctg cag tgc tgg cgg ccg ggg gtg 967
 Leu Arg Arg Glu Val Leu Arg Pro Leu Gln Cys Trp Arg Pro Gly Val
 295 300 305 310

ggg gtg caa gga cgg agg cgg ggc ggg acc ccg ggc cac cac ctc ctg 1015
 Gly Val Gln Gly Arg Arg Arg Gly Gly Thr Pro Gly His His Leu Leu
 315 320 325

cca ctc cgc agc tcc agc tcc ctg gag agg ggc atg cac atg ccc acg 1063
 Pro Leu Arg Ser Ser Ser Leu Glu Arg Gly Met His Met Pro Thr
 330 335 340

tca ccc acg ttt ctg gag ggc aac acg gtg gtc tgagggtggg ggtggaccaa 1116
 Ser Pro Thr Phe Leu Glu Gly Asn Thr Val Val
 345 350

caaccaggcc agggcatagg ggttcatgga aaggccactg ggtgacccca aata 1170

<210> 17

<211> 353

<212> PRT

<213> Homo sapiens

<400> 17

Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser
20 25 30

Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val
35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu
65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val
85 90 95

Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala
100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile
115 120 125

Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys
130 135 140

Ser Cys Arg Met Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu
145 150 155 160

Val Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Gly His Leu
165 170 175

Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu
180 185 190

Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Ile Val Ala Leu
195 200 205

Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala
210 215 220

Ala Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly
225 230 235 240

Val Phe Ile Val Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp
245 250 255

Tyr Ala Cys Pro Val His Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr
260 265 270

Xaa Phe Ala Val Ser Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr
275 280 285

Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Gln
290 295 300

Cys Trp Arg Pro Gly Val Gly Val Gln Gly Arg Arg Arg Gly Gly Thr
305 310 315 320

Pro Gly His His Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg
325 330 335

Gly Met His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val
340 345 350

Val

<210> 18
<211> 1170
<212> DNA
<213> Homo sapiens

<400> 18
tttcgggtta ccgggtcggt cccgagactc ggggtggta cccgtcaaca tgagcctcat 60
ggacttgggg ttgttcagg tccttgtat attaatatgg ttcctctgcg acctttgcgt 120
cctctgctgg agggcggtcc accggagccg gaagtagcag taggagacaa cgcggttaaca 180
ccaccttttgcg agaacccacg agtaacgcca ccgggtttgcg tggtcaagg tgagccgtta 240
catggacaaa gaccgttgg accggcgag gctagatgac ctggccgcacc ggaagcatcg 300
gttatggAAC gagagaccga gacagtgcga ctccgactgc ggacacgtca ccaaacgggc 360
cctcccgaga cgaaagttagt gcgagagccg gagacagaag tcggaggacc ggtacggta 420
actcgccgtg caccgttaac gttccagtt cgacataccg tcgctttct cgacggcgta 480
cgaagacgag tagccccggta gcaccgtta gagcgtaccgg gagccaccgg acgggttagga 540
accgaccttgcg acggacccgg tgtagtccg gacgaggta caggacggag agatgcgtt 600
cgtaatacac gacacgcacc actggtagaa gaggttagtag gacaaccggt agcaccggga 660
catgcacgcg tagatgacgc accaggcgag ttccgtgcga ctgtaccggc gggcgctctg 720
cgatcggtac gagttctgcc agtggtagca cgatccgcag aaatagcaga cgaccgacgg 780
gccaaggatcg taggaggaag acctgatacg gacaggcgag gtgaggacgg gcttaggat 840
gttcgggtg atgraaaaagc ggcagaggta ggacttaagg gacgagttgg ggcagtagat 900
gtgcaccgcg tcggccctgg acggcccccct ccacgaagcc ggcgacgtta cgaccggccgg 960

cccccacccc cacgttctg cctccgcccc gccctggggc ccgggtggagg aggacggta 1020
ggcgtcgagg tcgagggacc tctccccgt a cgtgtacggg tgca gttgggt gaaaagacct 1080
cccggtgtgc caccagactc ccacccac ctgggttgg gtccggtccc gtatccccaa 1140
gtacccccc ggtgaccac tggggttat 1170

<210> 19
<211> 1062
<212> DNA
<213> Homo sapiens

<400> 19
atggcagct tgtactcgga gtaccta ac cccaaacaagg tccaggaaca ctataattat 60
accaaggaga cgctggaaac gcaggagacg acctccgc aggtggcc tc ggccttc atc 120
gtcatccctct gttgc cccat tttgggtggaa aaccccttctgg tgctcattgc ggtggcccg 180
aacagcaagt tccactcgac aatgtacctg tttctggca acctggccgc ctccgatcta 240
ctggcaggcg tggccttcgt agccaatacc ttgctctctg gctctgtcac gctgaggctg 300
acgcctgtgc agtggtttgc cggggaggc tc tgc cttca tc acgc tctc ggcctctgtc 360
ttcagcctcc tggccatcgc cattgagcgc cacgtggca ttgccaaggta caagctgtat 420
ggcagc gaca agagctgccc catgcttctg ctcatcgggg cctcgtggct catctcgctg 480
gtcctcggtg gcctgccc at cttggctgg aactgcctgg gacaccc tgc gctcc 540
actgtcctgc ctctctacgc caagcattat gtgctgtcgc tttgtgaccat ct tccatc 600
atccctgttgg cctgtacgtg cgc atctact gctgtggcc tc aaggccac 660
gctgacatgg cccggccca gacgctagcc ctgctcaaga cggta cccat cgtgcttaggc 720
gtctttatcg tctgctggct gcccgccttc agcatcctcc ttctggacta tgcctgtccc 780
gtccactctt gcccgcattt ctacaaagcc cactacctt tc gccgtctc caccctgaat 840
tccctgctca accccgtcat ctacacgtgg cgcagccggg acctgcggcg ggagggtgtt 900
cgccgcgtgc agtgctggcg gcccgggtg ggggtgcaag gacggaggcg gggccggacc 960
ccggccacc acctcctgcc actccgcagc tccagctccc tggagagggg catgcacatg 1020
cccacgtcac ccacgttctt ggaggcaac acgggtgtct ga 1062

<210> 20
<211> 1062
<212> DNA
<213> Homo sapiens

<400> 20
tacccgtcga acatgagcct catggacttg gggttttcc aggtccttgc gatattaata 60
tggttcctct gcgacctttg cgtccctctgc tggagggcgg tccaccggag ccggaaatgg 120
cagtaggaga caacgcggta acaccacctt ttggaaagacc acgagtaacg ccaccggct 180
ttgtcgttca aggtgagccg ttacatggac aaagacccgt tggaccggcg gaggcttagat 240
gaccgtccgc accggaagca tcggatgg aacgagagac cgagacagt cgactccgac 300
tgccgacacg tcaccaaacg gcccctcccg agacggaaatg tggcgagag ccggagacag 360
aagtccggagg accggtagcg gtaactcgcg gtgcacccgt aacggttcca gttcgacata 420
ccgtcgctgt tctcgacggc gtacgaagac gagtagcccc ggagcaccga gttagagcgac 480
caggagccac cggacgggtta ggaaccgacc ttgacggacc cgggtggagct ccggacgagg 540
tgacaggacg gagagatgcg gttcgtaata cacgacacgc accactggta gaagaggttag 600

taggacaacc ggcagcaccc ggacatgcac gcgttagatga cgaccaggc gagttcggtg 660
cgactgtacc ggcggggcgt ctgcgatcg gacgagttct gccagtggta gcacgatccg 720
cagaaatagc agacgaccga cggcggaag tcgttaggagg aagacctgat acggacaggg 780
caggtgagga cgggctagga gatgttcgg gtgatggaaa agccgcagag gtgggactta 840
agggacgagt tggggcagta gatgtgcacc gcgtcgcccc tggacgcccgc cctccacgaa 900
gccggcgacg tcacgaccgc cggcccccac ccccacgttc ctgcctccgc cccgcctgg 960
ggcccggtgg tggaggacgg tgaggcgtcg aggtcgaggg acctctcccc gtacgtgtac 1020
gggtgcagtg ggtgcaaaga cctccgttg tgccaccaga ct 1062

<210> 21
<211> 352
<212> PRT
<213> Rattus sp.

<400> 21
Met Gly Gly Leu Tyr Ser Glu Tyr Leu Asn Pro Glu Lys Val Gln Glu
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Asp Met Gln Glu Thr Pro Ser
20 25 30

Arg Lys Val Ala Ser Ala Phe Ile Ile Ile Leu Cys Cys Ala Ile Val
35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu
65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Pro Val
85 90 95

Thr Leu Ser Leu Thr Pro Leu Gln Trp Phe Ala Arg Glu Gly Ser Ala
100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile
115 120 125

Glu Arg Gln Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys
130 135 140

Ser Cys Arg Met Leu Met Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu
145 150 155 160

Ile Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Asp His Leu
165 170 175

Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu
180 185 190

Cys Val Val Thr Ile Phe Ser Val Ile Leu Leu Ala Ile Val Ala Leu
195 200 205

Tyr Val Arg Ile Tyr Phe Val Val Arg Ser Ser His Ala Asp Val Ala
210 215 220

Gly Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly
225 230 235 240

Val Phe Ile Ile Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp
245 250 255

Ser Thr Cys Pro Val Arg Ala Cys Pro Val Leu Tyr Lys Ala His Tyr
260 265 270

Phe Phe Ala Phe Ala Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr
275 280 285

Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Leu
290 295 300

Cys Trp Arg Gln Gly Lys Gly Ala Thr Gly Arg Arg Gly Gly Asn Pro
305 310 315 320

Gly His Arg Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg Gly
325 330 335

Leu His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val Val
340 345 350

<210> 22
<211> 353
<212> PRT
<213> Homo sapiens

<400> 22
Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser

20

25

30

Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val
 35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
 50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu
 65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val
 85 90 95

Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala
 100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile
 115 120 125

Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys
 130 135 140

Ser Cys Arg Met Leu Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu
 145 150 155 160

Val Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Gly His Leu
 165 170 175

Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu
 180 185 190

Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Val Val Ala Leu
 195 200 205

Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala
 210 215 220

Ala Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly
 225 230 235 240

Val Phe Ile Val Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp
 245 250 255

Tyr Ala Cys Pro Val His Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr
 260 265 270

Leu Phe Ala Val Ser Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr

275

280

285

Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Gln
 290 295 300

Cys Trp Arg Pro Gly Val Gly Val Gln Gly Arg Arg Arg Gly Thr
 305 310 315 320

Pro Gly His His Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg
 325 330 335

Gly Met His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val
 340 345 350

Val

1000845607 - PRELIMINARY

<210> 23
<211> 351
<212> PRT
<213> Homo sapiens

<400> 23

Met Val Ile Met Gly Gln Cys Tyr Tyr Asn Glu Thr Ile Gly Phe Phe
 1 5 10 15

Tyr Asn Asn Ser Gly Lys Glu Leu Ser Ser His Trp Arg Pro Lys Asp
 20 25 30

Val Val Val Val Ala Leu Gly Leu Thr Val Ser Val Leu Val Leu Leu
 35 40 45

Thr Asn Leu Leu Val Ile Ala Ala Ile Ala Ser Asn Arg Arg Phe His
 50 55 60

Gln Pro Ile Tyr Tyr Leu Leu Gly Asn Leu Ala Ala Ala Asp Leu Phe
 65 70 75 80

Ala Gly Val Ala Tyr Leu Phe Leu Met Phe His Thr Gly Pro Arg Thr
 85 90 95

Ala Arg Leu Ser Leu Glu Gly Trp Phe Leu Arg Gln Gly Leu Leu Asp
 100 105 110

Thr Ser Leu Thr Ala Ser Val Ala Thr Leu Leu Ala Ile Ala Val Glu
 115 120 125

Arg His Arg Ser Val Met Ala Val Gln Leu His Ser Arg Leu Pro Arg
130 135 140

Gly Arg Val Val Met Leu Ile Val Gly Val Trp Val Ala Ala Leu Gly
145 150 155 160

Leu Gly Leu Leu Pro Ala His Ser Trp His Cys Leu Cys Ala Leu Asp
165 170 175

Arg Cys Ser Arg Met Ala Pro Leu Leu Ser Arg Ser Tyr Leu Ala Val
180 185 190

Trp Ala Leu Ser Ser Leu Leu Val Phe Leu Leu Met Val Ala Val Tyr
195 200 205

Thr Arg Ile Phe Phe Tyr Val Arg Arg Arg Val Gln Arg Met Ala Glu
210 215 220

His Val Ser Cys His Pro Arg Tyr Arg Glu Thr Thr Leu Ser Leu Val
225 230 235 240

Lys Thr Val Val Ile Ile Leu Gly Ala Phe Val Val Cys Trp Thr Pro
245 250 255

Gly Gln Val Val Leu Leu Asp Gly Leu Gly Cys Glu Ser Cys Asn
260 265 270

Val Leu Ala Val Glu Lys Tyr Phe Leu Leu Leu Ala Glu Ala Asn Ser
275 280 285

Leu Val Asn Ala Ala Val Tyr Ser Cys Arg Asp Ala Glu Met Arg Arg
290 295 300

Thr Phe Arg Arg Leu Leu Cys Cys Ala Cys Leu Arg Gln Ser Thr Arg
305 310 315 320

Glu Ser Val His Tyr Thr Ser Ser Ala Gln Gly Gly Ala Ser Thr Arg
325 330 335

Ile Met Leu Pro Glu Asn Gly His Pro Leu Met Asp Ser Thr Leu
340 345 350

<210> 24
<211> 1056
<212> DNA
<213> Homo sapiens

1001345037 6223882
<400> 24

atggtcatca tgggccagt ctactacaac gagaccatcg gcttcttcta taacaacagt 60
ggcaaagagc tcagctcca ctggcgccc aaggatgtgg tcgtggtggc actgggctg 120
accgtcagcg tgctggtgct gctgaccaat ctgctggtca tagcagccat cgcctccaac 180
cgccgcttcc accagcccat ctactacctg ctcggcaatc tggcccgccc tgaccttcc 240
gcgggctgtgg cctacctt cctcatgttc cacactggtc cccgacacgc cggactttca 300
cttggggct ggttcctgcg gcagggcttg ctggacacaa gcctcaactgc gtcggtggcc 360
acactgctgg ccacatcgccgt ggagcggcac cgcaatgtga tggccgtgca gctgcacacgc 420
cgccctgcccc gtggcccggt ggtcatgctc attgtggcg tgggggtggc tgccctggc 480
ctggggctgc tgccctgcca ctccctggcac tgcctctgtg ccctggaccg ctgctcacgc 540
atggcaccaccc tgctcagccg ctccatttg gccgtctggg ctctgtcgag cctgctgtc 600
ttcctgctca tggtggtgt gtacacccgc attttcttct acgtgcggcg gcgagtgca 660
cgcatggcag agcatgtcag ctgccacccc cgctaccgag agaccacgct cagcctggc 720
aagactgttgc tcatcatcct gggggcggtc gtggctgtct ggacaccagg ccaggtggta 780
ctgctcctgg atggtttagg ctgtgagtcc tgcaatgtcc tggctgtaga aaagtacttc 840
ctactgctgg ccgaggccaa ctcaactggc aatgctgtg tggactcttg ccgagatgct 900
gagatgcgcc gcaccttccg ccgccttctc tgctgcgtg gcctccgcca gtccacccgc 960
gagtctgtcc actatacatac ctctgcccag ggaggtgcca gcactcgcat catgcttccc 1020
gagaacggcc acccactgat ggactccacc cttag 1056

<210> 25

<211> 1056

<212> DNA

<213> Homo sapiens

<400> 25

taccagtagt acccggtcac gatgatgttg ctctggtagc cgaagaagat attgttgtca 60
ccgtttctcg agtcgagggt gaccgcggg ttcctacacc agcaccaccc tgaccccgac 120
tggcagtcgc acgaccacga cgactggta gacgaccagt atcgtcggtc gcggagggtt 180
gcggcgaagg tggtcggta gatgatggac gagccgttag accggcgccg actggagaag 240
cgcccgccacc ggatggagaa ggagtacaag gtgtgaccag gggcggtcg ggctgaaagt 300
gaactcccga ccaaggacgc cgtcccgaac gacctgtgtt cggagtgacg cagccacccg 360
tgtgacgacc ggtagcgca cctcgccgtc gcgtcacact accggcacgt cgacgtgtcg 420
gcggacgggg caccggcgca ccagtagcgg taacacccgc acacccaccc acgggacccg 480
gaccggacg acggacgggt gaggaccgtg acggagacac gggacctggc gacgagtgcg 540
taccgtgggg acgagtcggc gaggataaac cggcagaccc gagacagctc ggacgaacag 600
aaggacgagt accacccgaca catgtggcg taaaagaaga tgcacgcgc cgctcacgtc 660
gcgtaccgtc tcgtacagtc gacgggtggg gcgatggctc tctgggtcg gtcggaccag 720
ttctgacaac agtagtagga ccccccgaag caccagacga cctgtgttcc ggtccaccat 780
gacgaggacc taccaaattcc gacactcagg acgttacagg accgacatct tttcatgaag 840
gatgacgacc ggctccgggtt gagtgaccag ttacgacgac acatgagaac ggctctacga 900
ctctacgcgg cgtggaaggc ggcggaaagag acgacgcgc cggaggcggt caggtggcg 960
ctcagacagg tgatatgttag gagacgggtc cctccacggt cgtgagcgta gtacgaagg 1020
ctctgcccgg tgggtgacta cctgaggtgg gaaatc 1056