Géométrie dans l'espace. Partie 1. Repérage dans l'espace.

I. Vecteurs de l'espace.

a. Dans l'espace comme dans le plan.

La notion de vecteur vue en géométrie plane peut se généraliser dans l'espace.

A tout couple de points (A,B) de l'espace, on associe le vecteur \overrightarrow{AB} , où \overrightarrow{AB} le vecteur associé à la translation qui transforme A en B.

lorsque $A \neq B$, le vecteur \overrightarrow{AB} est caractérisé par :

- une direction : celle de la droite (AB),
- un sens : celui de A vers B
- -une norme (ou longueur) : la distance AB. On note $\|\overrightarrow{AB}\| = AB$.

lorsque A=B, le vecteur \overrightarrow{AA} est le vecteur nul noté $\overrightarrow{0}$.

Théorème : Soient un vecteur \vec{u} et un point A de l'espace. Il existe un unique point M tel que $\overrightarrow{AM} = \vec{u}$. On dit que \overrightarrow{AM} est le représentant du vecteur \vec{u} d'origine A.

b. Les règles de calcul.

Les règles de calcul dans l'espace sont les mêmes, que dans le plan.

Addition de deux vecteurs :

Soient \vec{u} et \vec{v} deux vecteurs de représentants respectifs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. La somme des vecteurs \vec{u} et \vec{v} est le vecteur noté $\vec{u} + \vec{v}$ de représentant \overrightarrow{AD} tel que ABCD soit un parallélogramme.

Relation de Chasles: Soit A, B et C trois points de l'espace,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Exemple 1 : Soit MATHS une pyramide de sommet S dont la base MATH est un parallélogramme.

Démontrer, en utilisant la relation de Chasles, que $\overrightarrow{SM} + \overrightarrow{ST} = \overrightarrow{SA} + \overrightarrow{SH}$

Définition : Soient \vec{u} un vecteur non nul et λ un réel non nul. Le vecteur λ \vec{u} est le vecteur qui a :

- la même direction que le vecteur \vec{u} ,
- le même sens que le vecteur \vec{u} si λ >, le sens contraire de \vec{u} si λ <0
- pour norme $|\lambda| \times ||\vec{u}||$

Règles de calcul : soient \vec{u} et \vec{v} deux vecteurs, et λ et μ deux nombres réels.

$$\lambda (\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$$

$$\lambda \vec{u} + \mu \vec{u} = (\lambda + \mu) \vec{u}$$

Exemple 2 : Réduire les sommes suivantes :

$$3\overrightarrow{AB} + 3\overrightarrow{BC} =$$

$$7\overrightarrow{AB} + 3\overrightarrow{AB} =$$

c. Combinaison linéaire.

Définition : Soient $\vec{u_1}$, $\vec{u_2}$, ..., $\vec{u_n}$ n vecteurs de l'espace. Soit \vec{v} un vecteur. On dit que \vec{v} est un combinaison linéaire de $\vec{u_1}$, $\vec{u_2}$, ..., $\vec{u_n}$ s'il existe n nombres réels a_1 , a_2 , ..., a_n tels que $\vec{v} = a_1 \vec{u_1} + a_2 \vec{u_2} + ... + a_n \vec{u_n}$

On peut alors dire que les vecteur \vec{v} , $\vec{u_1}$, $\vec{u_2}$ et $\vec{u_n}$ sont linéairement dépendants.

II. Vecteurs colinéaires.

a. Définition.

Définition : Deux vecteurs \vec{u} et \vec{v} sont dits colinéaires s'il existe un réel k tel que $\vec{u} = k\vec{v}$.

Propriétés : Soient A, B, C, D quatre points de l'espace.

- (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- Les points A, B et C sont alignés si et seulement si les vecteurs \overline{AB} et \overline{AC} sont colinéaires.

Exemple 3 : Soit ABCEFGH un cube. I est le milieu de [GD], J est le point définie par $\overrightarrow{DJ} = \frac{1}{3} \overrightarrow{DF}$.

- 1. Faire un dessin en plaçant les points I et J.
- 2. Montrer que $\overrightarrow{AJ} = -\frac{2}{3}\overrightarrow{DA} + \frac{1}{3}\overrightarrow{DH} + \frac{1}{3}\overrightarrow{DC}$.
- 3. Exprimer \overrightarrow{AI} en fonction de \overrightarrow{DC} , \overrightarrow{DH} et \overrightarrow{DA} .

4. En déduire une expression de \overrightarrow{AI} en fonction de \overrightarrow{AJ} . Que peut-on en déduire ?

III. Caractérisation d'une droite de l'espace.

Définition : Soient A et B deux points de l'espace.

La droite (AB) est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} = \lambda \overrightarrow{AB}$ où λ est un nombre réel.

AB Est un vecteur directeur de la droite (AB)

D'une manière générale, une droite d est définie par un point A et un vecteur directeur \vec{u} .

IV. Dans le plan.

a. Caractérisation vectorielle d'un plan de l'espace.

Théorème : Soient A, B, C trois points non alignés de l'espace.

Le plan (ABC) est l'ensemble des points M définies par : $\overrightarrow{AM} = x \overrightarrow{AB} + y \overrightarrow{AC}$, x et y étant deux réels quelconques.

Démonstration:

Les points A, B, et C ne sont pas alignés donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires donc (A, \overrightarrow{AB} , \overrightarrow{AC}) est un repère du plan (ABC).

Si M \in (ABC), alors il existe un couple de réels (x;y) tel que $\overline{AM} = x \overline{AB} + y \overline{AC}$. Réciproquement, soit M un point de l'espace tel qu'il existe un couple (x;y) de réels tel que $\overline{AM} = x \overline{AB} + y \overline{AC}$.

(A, \overrightarrow{AB} , \overrightarrow{AC}) étant un repère du plan (ABC), il existe donc dans le plan (ABC) un point N tel que $\overrightarrow{AN} = x \overrightarrow{AB} + y \overrightarrow{AC}$, d'où $\overrightarrow{AM} = \overrightarrow{AN}$, donc M=N. M est donc bien dans le plan (ABC).

On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} dirigent le plan (ABC) ou que ce sont des vecteurs directeurs du plan.

D'une manière générale, un plan est déterminé par un point A, et deux vecteurs \vec{u} et \vec{v} non colinéaires.

Remarque : Deux plans dirigés par le même couple de vecteurs non colinéaires sont parallèles.

b. Vecteurs coplanaires.

Définition : Dire que les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires signifie que lorsqu'on choisit un point O quelconque, on peut déterminer trois points A, B, C tels que $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB}$ et $\vec{w} = \overrightarrow{OC}$, O, A, B et C étant dans le même plan.

Exemple 4: Soit ABCDEFGH un cube.

- 1. \overline{AB} , \overline{CG} et sont coplanaires.
- 2. \overrightarrow{AB} , \overrightarrow{AF} et sont non coplanaires.

Théorème : Soient \vec{u} , \vec{v} , \vec{w} trois vecteurs de l'espace tels que \vec{u} et \vec{v} ne sont pas colinéaires.

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si il existe deux réels a et b tels que $\vec{w} = a \vec{u} + b \vec{v}$.

Preuve : Soit O un point quelconque. Soient A, B et C les points tel que $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB}$ et $\vec{w} = \overrightarrow{OC}$.

 \vec{u} et \vec{v} étant non colinéaires, les points \overrightarrow{OA} et \overrightarrow{OB} caractérisent le plan (OAB). S'il existe deux réels a et b tels que $\overrightarrow{OC} = a \overrightarrow{OA} + b \overrightarrow{OB}$, alors $C \in (OAB)$ et donc les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires.

De même si \vec{u} , \vec{v} et \vec{w} sont coplanaires, alors $C \in (OAB)$ et donc il existe deux réels tels que $\overrightarrow{OC} = a \overrightarrow{OA} + b \overrightarrow{OB}$ soit $\vec{w} = a \vec{u} + b \vec{v}$.

Conséquences:

- dire que quatre points A, B, C, D sont coplanaires équivaut à dire que les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires.
- Dire que les droites (AB) et (CD) sont coplanaires équivaut à dire que les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires.

Exemple 5 : Soit ABCDEFGH un parallélépipède rectangle. Soient I et J les milieux respectifs de [AE] et [CG].

Montrer que \overrightarrow{AB} , \overrightarrow{IJ} et \overrightarrow{EH} sont coplanaires.

V. Repérage dans l'espace.

a. Décomposition d'un vecteur dans une base.

Propriété : Soient \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires de l'espace. Pour tout vecteur \vec{u} , il existe un unique triplet (x;y;z) de réels tels que $\vec{u}=x\vec{i}+y\vec{j}+z\vec{k}$.

Vocabulaire : $(\vec{i}, \vec{j}, \vec{k})$ constitue une base de l'espace.

On dit que $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ sont les coordonnées de \vec{u} dans la base $(\vec{i}, \vec{j}, \vec{k})$.

Preuve:

Existence : soit O et A deux points de l'espace tel que $\vec{u} = \overrightarrow{OA}$.

Puisque \vec{k} n'est pas coplanaire avec \vec{i} et \vec{j} , la droite Δ passant par A et de vecteur directeur \vec{k} coupe le plan P passant par O et dirigé par les vecteurs \vec{i} et \vec{j} en un point S. Puisque \overrightarrow{OS} est un vecteur du plan P, il existe un couple de réels (x;y) tel que $\overrightarrow{OS} = x \vec{i} + y \vec{j}$.

A et S sont deux points de Δ , donc il existe un réel z tel que $\vec{SA} = z\vec{k}$ et $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.

Unicité : si $\vec{u}=x\,\vec{i}+y\,\vec{j}+z\,\vec{k}$ et $\vec{u}=x\,'\,\vec{i}+y\,'\,\vec{j}+z\,'\,\vec{k}$ alors $(x-x\,')\,\vec{i}+(y-y\,')\,\vec{j}+(z-z\,')\,\vec{k}=\vec{0}$ donc $x=x\,'$, $y=y\,'$ et $z=z\,'$ car \vec{i} , \vec{j} , \vec{k} ne sont pas coplanaires.

b. Repére de l'espace.

Définition : Un repère de l'espace est un quadruplet (O ; \vec{i} , \vec{j} , \vec{k}) dans lequel O est un point appelé origine du repère et \vec{i} , \vec{j} , \vec{k} sont trois vecteurs non coplanaires. Soient I, J, K trois points de l'espace tel que $\overrightarrow{OI} = \overrightarrow{i}$, $\overrightarrow{OJ} = \overrightarrow{j}$ et $\overrightarrow{OK} = \overrightarrow{k}$. Le repère (O; \vec{i} , \vec{j} , \vec{k}) est dit orthonormé si (OI), (OJ) et (OK) sont deux à deux perpendiculaires et OI=OJ=OK=1.

Définitions : Soit (O, \vec{i} , \vec{j} , \vec{k}) un repère de l'espace.

• Soit \vec{u} un vecteur de l'espace.

Les réels x, y et z tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ sont les coordonnées du vecteur \vec{u} . On note

Soit M un point de l'espace.

Les coordonnées de M dans $(0, \vec{i}, \vec{j}, \vec{k})$ sont celles du vecteur \overrightarrow{OM} . On note M (x; y; z).

x est l'abscisse de M, y est l'ordonnée de M et z est la côte de M.

Exemple 6: Soit ABCDEFGH un cube.

Considérons le repère (A; \overline{AB} , \overline{AD} , \overline{AE}). Déterminer les coordonnées du vecteur \overline{BF} , du point G et du milieu I du segment [DC] dans ce repère.

c. Calcul des coordonnées.

Tous les résultats de la géométrie plane s'étendent à l'espace par adjonction d'une troisième coordonnée.

Soient \vec{u} et \vec{v} deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, soient A et B deux points de coordonnées respectives $(x_A; y_A; z_A)$ et $(x_B; y_B; z_B)$ dans un repère (O, \vec{i} , \vec{j} , \vec{k}).

- Pour tout réel $k \in \mathbb{R}$, $k \vec{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$.
- $\vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$. \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B x_A \\ y_B y_A \\ z_B z_A \end{pmatrix}$
- Le milieu I du segment [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$.

Dans un repère orthonormé (O,
$$\vec{i}$$
, \vec{j} , \vec{k}), $||u|| = \sqrt{x^2 + y^2 + z^2}$
 $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$.

Exemple 7: L'espace est muni d'un repère $(O, \vec{i}, \vec{j}, \vec{k})$. Soient A(7;-3;0), B(0;4;7), C(0;0;5), D(5;5;0) et G(-7;3;22) cinq points.

- 1. Déterminer les coordonnées de L et K tels que $\overrightarrow{BA} = 7 \overrightarrow{BL}$ et $\overrightarrow{CK} = 0.6 \overrightarrow{CD}$.
- 2. En déduire que G, K et L sont alignés.

VI. Équation paramétrique d'une droite.

a. Caractérisation des points appartenant à une droite.

Soit
$$A(x_A; y_A; z_A)$$
 un point de l'espace et $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur.

Soit D la droite de vecteur directeur \vec{u} passant par A.

$$M \in D \iff \overline{AM}$$
 et \vec{u} sont colinéaires

$$<=>$$
 il existe $t \in \mathbb{R}$ tel que $\overrightarrow{AM} = t \vec{u}$

$$\langle = \rangle$$

$$\begin{cases} x - x_A = ta \\ y - y_A = tb \\ z - z_A = tc \end{cases}$$

$$<=> \begin{cases} x - x_A = ta \\ y - y_A = tb \\ z - z_A = tc \end{cases}$$

$$<=> \begin{cases} x = ta + x_A \\ y = tb + y_A \end{cases}, t \in \mathbb{R}$$

$$z = tc + z_A$$

Propriété : Soit un point
$$A(x_A; y_A; z_A)$$
 et $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur tel que $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Soit D la droite passant par A et de vecteur directeur \vec{u} .

Soit M(x; y; z) un point de l'espace.

Le point M(x; y; z) appartient à D ssi il existe un réel t tel que :

$$\begin{cases} x = x_A + ta \\ y = y_A + tb \\ z = z_A + tc \end{cases}$$

b. Représentation paramétrique d'une droite.

Propriété-définition : L'ensemble des points
$$M(x; y; z)$$
 vérifiant le système
$$\begin{cases} x = x_0 + ta \\ y = y_0 + tb \\ z = z_0 + tc \end{cases}$$

avec $t \in \mathbb{R}$, où a, b, c sont des réels non tous nuls, est la droite passant par le point

$$A(x_0; y_0; z_0)$$
 et de vecteur directeur $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Le système d'équations est appelé une représentation paramétrique de D.

Exemples:

- 1. Soit D la droite passant par A(-2;5;1) et de vecteur directeur (3;-1;4). Déterminer une équation paramétrique de D.
- 2. Les points B(2;1;0) et C(-4;2;1) appartiennent-ils à la droite D' de représentation paramétrique
- 3. Soit Δ la droite dont une représentation paramétrique est $\begin{cases} x = 1 + 3t \\ y = 8 2t \end{cases}, t \in \mathbb{R}$ a. Déterminer les coords z = t
 - a. Déterminer les coordonnées d'un point et d'un vecteur directeur de cette droite.
 - b. La droite Δ est-elle parallèle à la droite Δ' dirigée par le vecteur $\vec{v} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$?

remarque : une droite n'a pas une unique représentation paramétrique. En effet, les choix du point A et du vecteur \vec{u} sont infinis.