Complex Analysis Problems

D. Zack Garza

Wednesday $17^{\rm th}$ June, 2020

1	Integrals and Cauchy's Theorem		5
	1.1 1		. 5
	1.2 2		. 6
	1.3 3		. 6
	1.4 4		. 6
	1.5 5		. 6
	1.6 6		. 6
	1.7 7		. 6
	1.8 8		. 7
	1.9 9		. 7
	1.10 10		. 7
2	Lieuwille's Theorem Davier Sovies		7
2	Liouville's Theorem, Power Series		•
	2.1 1		
			-
			-
	2.10 10	•	. 9
3	Spring 2020 Homework 1		9
	3.1 1		. 9
	3.2 2		. 9
	3.3 3		. 9
	3.4 4		. 9
	3.5 5		. 10
	3.6 6		. 10
	3.7 7		. 10
	3.8 8		. 10
	3.9 9		. 10

4	Spri	ng 2020	Homewo	rk 2												11
	4.1	Stein A	nd Shakar	rchi	 		 		 	 						11
		4.1.1	2.6.1		 		 		 	 						11
		4.1.2	2.6.2		 		 		 	 						12
		4.1.3	$2.6.5 \dots$		 		 		 	 						12
		4.1.4	2.6.6		 		 		 	 						13
		4.1.5	2.6.7		 		 		 	 						13
		4.1.6	2.6.8		 		 		 	 						13
		4.1.7	2.6.9													13
		4.1.8	2.6.10													13
		4.1.9	2.6.13													13
			2.6.14													14
		4.1.11														14
	4.2		nal Proble													14
	1.2	4.2.1	1													14
		4.2.2	2													14
		4.2.3	2 3													14
		4.2.4	4													14
		4.2.4 $4.2.5$	4 5													15
		4.2.6	5 6													15
		4.2.0 $4.2.7$	7													15
		4.2.7	1 8													$\frac{15}{15}$
		4.2.6 $4.2.9$	o 9 (Cauchy													$\frac{15}{15}$
			9 (Cauchy 10				_	,								$\frac{10}{16}$
			10 11													
																16
			12													
		4.2.13	13		 	• •	 		 	 	• •	• •	• •	•	 •	16
5	•	_	Homewo													16
	5.1		nd Shakar	chi	 		 		 	 						
		5.1.1	$3.8.1 \dots$		 		 		 	 						16
		5.1.2	$3.8.2 \dots$		 		 		 	 						17
		5.1.3	$3.8.4 \dots$		 		 		 	 						17
		5.1.4	$3.8.5 \dots$		 		 		 	 						17
		5.1.5	3.8.6.		 		 		 	 						17
		5.1.6	3.8.7		 		 		 	 						17
		5.1.7	3.8.8		 		 		 	 						17
		5.1.8	3.8.9		 		 		 	 						18
		5.1.9	3.8.10		 		 		 	 						18
		5.1.10	3.8.14		 		 		 	 						19
		5.1.11	3.8.15		 		 		 	 						19
		5.1.12	3.8.17		 		 		 	 						20
		5.1.13														20
	5.2		ns From T													
		5.2.1														20

		5.2.2	2 .		 								 										20
		5.2.3	3.																				21
		5.2.4	4 .																				
		5.2.5																					$\frac{1}{21}$
		5.2.6	-			•																	21
		5.2.7	7.			 •	 -							-	 -	 -	-				 -		21
		5.2.1 $5.2.8$		-		 •	 -										 -	-	 -	-	 -	-	$\frac{21}{22}$
		5.2.9		-		 -	 -	-	 -	 -	-			-	 -	 -	 -	-	 -	-	 -	-	
			9.																				22
		5.2.10	10			•																	
		5.2.11	11																				
		5.2.12	12		 																		22
		5.2.13	13																				22
		5.2.14	14		 																		22
6	Extr	a Ques				_																	23
	6.1	Fall 20	009.		 																		23
		6.1.1	? .		 																		23
		6.1.2	? .		 								 										23
		6.1.3	? .																				
		6.1.4	? .		 								 										23
		6.1.5	_																				24
		6.1.6																					
		6.1.7	? .																				24
		6.1.8				•																	$\frac{24}{24}$
		6.1.9					 -							-	 -	 -	-				 -		$\frac{24}{24}$
						•																	
		6.1.10	? .																				
		6.1.11	? .																				_
			? .																				25
		6.1.13																					25
		6.1.14																					25
		6.1.15																					25
		6.1.16	? .																				25
		6.1.17	? .		 																		26
		6.1.18	? .		 																		26
		6.1.19	? .		 								 										26
		6.1.20	? .		 																		26
	6.2	Fall 20	11 .		 								 										26
		6.2.1	? .																				
		6.2.2	? .																				$\frac{1}{27}$
		6.2.3																					27
		6.2.4	? .																				$\frac{27}{27}$
		6.2.4	? .																				
		6.2.6		-		 •		-	 -	 -	-	-		•	 •	 -	 -	-	 -	-	 -	-	27
		6.2.7				•																	28
		6.2.8	? .																				
		6.2.9	? .																				
		6.2.10	? .	•	 			•	 •											•			
		6 2 11	?																				28

	6.2.12 ?	29
	6.2.13 ?	29
	6.2.14 ?	29
	6.2.15 ?	29
	6.2.16 ?	29
	6.2.17 ?	29
	6.2.18 ?	29
	6.2.19 ?	30
	6.2.20 ?	30
6.3	Spring 2014	30
	6.3.1 ?	30
	6.3.2 ?	30
	6.3.3 ?	31
		31
	6.3.5 ?	31
	6.3.6 ?	31
	6.3.7 ?	31
	6.3.8 ?	31
	6.3.9 ?	32
	6.3.10 ?	$\frac{32}{32}$
	6.3.11 ?	$\frac{32}{32}$
	6.3.12 ?	$\frac{32}{32}$
6.4	Fall 2015	$\frac{32}{32}$
0.4	6.4.1 ?	$\frac{32}{32}$
	6.4.2 ?	$\frac{32}{32}$
	6.4.3 ?	33
	6.4.4 ?	33
	6.4.5 ?	34
	6.4.6 ?	34
	6.4.7 ?	$\frac{34}{34}$
	6.4.8 ?	$\frac{34}{34}$
	6.4.9 ?	34
	6.4.10 ?	34
	0.444.0	$\frac{34}{34}$
		$\frac{34}{35}$
		35
		35
	6.4.15 ?	35
		35
		35
c F	6.4.18 ?	35
6.5	Spring 2015	36
	6.5.1 ?	36
	6.5.2 ?	36
	6.5.3 ?	36
	6.5.4 ?	36
	6.5.5 ?	36
	6.5.6 ?	36

	6.5.7 ?		37
	6.5.8 ?	;	37
	6.5.9 ?	:	37
	6.5.10 ?	:	37
	6.5.11 ?	:	37
	6.5.12 ?	:	37
	6.5.13 ?	:	38
	6.5.14 ?	:	38
	$6.5.15 \ ? \dots \dots$:	38
	6.5.16 ?	:	38
	6.5.17 ?	:	38
	6.5.18 ?	:	38
	6.5.19 ?	:	36
	$6.5.20 \ ? \dots \dots$:	36
	$6.5.21 \ ? \dots \dots$:	36
	$6.5.22 \ ? \dots \dots$:	36
	$6.5.23 \ ? \dots \dots$:	36
	$6.5.24 \ ? \dots \dots$:	36
	$6.5.25 \ ? \dots \dots$		4(
	6.5.26 ?		4(
	$6.5.27 \ ? \dots \dots$		4(
	6.5.28 ?		4(
	6.5.29 ?		4(
	$6.5.30 \ ? \dots \dots$		4(
	$6.5.31 \ ? \dots \dots$		4(
	$6.5.32 \ ? \dots \dots$		41
	6.5.33 ?		41
	6.5.34 ?		41
6.6	Fall 2016		41
	6.6.1 ?		41
	6.6.2 ?		41
	6.6.3 ?	4	4^{2}
	6.6.4 ?		4^{2}
	6.6.5 ?		4^{2}
	6.6.6 ?		4^{2}
	6.6.7 ?		43
	6.6.8 ?	4	43

1 Integrals and Cauchy's Theorem

1.1 1

Suppose $f,g:[0,1]\longrightarrow \mathbb{R}$ where f is Riemann integrable and for $x,y\in[0,1],$

$$|g(x) - g(y)| \le |f(x) - f(y)|.$$

Prove that g is Riemann integrable.

1.2 2

State and prove Green's Theorem for rectangles.

Then use it to prove Cauchy's Theory for functions that are analytic in a rectangle.

1.3 3

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of analytic functions on $\mathbb{D}^\circ := \{z \in \mathbb{C} \mid |z| < 1\}$.

Show that if $f_n \longrightarrow g$ for some $g: \mathbb{D}^{\circ} \longrightarrow \mathbb{C}$ uniformly on every compact $K \subset \mathbb{D}^{\circ}$, then g is analytic on \mathbb{D}° .

1.4 4

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of entire functions where

- $f_n \longrightarrow g$ pointwise for some $g: \mathbb{C} \longrightarrow \mathbb{C}$.
- On every line segment in \mathbb{C} , $f_n \longrightarrow g$ uniformly.

Show that

- \bullet g is entire, and
- $f_n \longrightarrow g$ uniformly on every compact subset of \mathbb{C} .

1.5 5

Prove that there is no sequence of polynomials that uniformly converge to $f(z) = \frac{1}{z}$ on S^1 .

1.6 6

Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function that vanishes outside of some finite interval. For each $z \in \mathbb{C}$, define

$$g(z) = \int_{-\infty}^{\infty} f(t)e^{-izt} dt.$$

Show that g is entire.

1.7 7

Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 when $|z| > 10$.

Prove that f is constant.

1.8 8

Let γ be a smooth curve joining two distinct points $a, b \in \mathbb{C}$.

Prove that the function

$$f(z) := \int_{\gamma} \frac{g(w)}{w - z} \, dw$$

is analytic in $\mathbb{C} \setminus \gamma$.

1.9 9

Suppose that $f: \mathbb{C} \longrightarrow \mathbb{C}$ is continuous everywhere and analytic on $\mathbb{C} \setminus \mathbb{R}$ and prove that f is entire.

1.10 10

Prove Liouville's theorem: suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and bounded. Use Cauchy's formula to prove that $f' \equiv 0$ and hence f is constant.

2 Liouville's Theorem, Power Series

2.1 1

Suppose f is analytic on a region Ω such that $\mathbb{D} \subseteq \Omega \subseteq \mathbb{C}$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence exactly 1.

- a. Give an example of such an f that converges at every point of S^1 .
- b. Given an example of such an f which is analytic at 1 but $\sum_{n=0}^{\infty} a_n$ diverges.
- c. Prove that f can not be analytic at *every* point of S^1 .

2.2 2

Suppose f is entire and has Taylor series $\sum a_n z^n$ about 0.

- a. Express a_n as a contour integral along the circle |z| = R.
- b. Apply (a) to show that the above Taylor series converges uniformly on every bounded subset of \mathbb{C} .
- c. Determine those functions f for which the above Taylor series converges uniformly on all of \mathbb{C} .

2.3 3

Suppose D is a domain and f, g are analytic on D.

Prove that if fg = 0 on D, then either $f \equiv 0$ or $g \equiv 0$ on D.

2.4 4

Suppose f is analytic on \mathbb{D}° . Determine with proof which of the following are possible:

a.
$$f\left(\frac{1}{n}\right) = (-1)^n$$
 for each $n > 1$.

b.
$$f\left(\frac{1}{n}\right) = e^{-n}$$
 for each even integer $n > 1$ while $f\left(\frac{1}{n}\right) = 0$ for each odd integer $n > 1$.

c.
$$f\left(\frac{1}{n^2}\right) = \frac{1}{n}$$
 for each integer $n > 1$.

d.
$$f\left(\frac{1}{n}\right) = \frac{n-2}{n-1}$$
 for each integer $n > 1$.

2.5 5

Prove the Fundamental Theorem of Algebra (using complex analysis).

2.6 6

Find all entire functions that satisfy

$$|f(z)| \ge |z| \quad \forall z \in \mathbb{C}.$$

Prove this list is complete.

2.7 7

Suppose $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \neq 0$.

- a. Prove that the series converges absolutely for each z with $|z| < |z|_0$.
- b. Suppose $0 < r < |z_0|$ and show that the series converges uniformly on $|z| \le r$.

2.8 8

Suppose f is entire and suppose that for some integer $n \geq 1$,

$$\lim_{z \to \infty} \frac{f(z)}{z^n} = 0.$$

Prove that f is a polynomial of degree at most n-1.

2.9 9

Find all entire functions satisfying

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 for $|z| > 10$.

2.10 10

Prove that the following series converges uniformly on the set $\{z \mid \Im(z) < \ln 2\}$:

$$\sum_{n=1}^{\infty} \frac{\sin(nz)}{2^n}.$$

3 Spring 2020 Homework 1

3.1 1

Geometrically describe the following subsets of \mathbb{C} :

- a. |z 1| = 1
- b. |z-1| = 2|z-2|
- c. $1/z = \bar{z}$
- d. $\Re(z) = 3$
- e. $\Im(z) = a$ with $a \in \mathbb{R}$.
- f. $\Re(z) > a$ with $a \in \mathbb{R}$.
- g. |z-1| < 2|z-2|

3.2 2

Prove the following inequality, and explain when equality holds:

$$|z + w| \ge ||z| - |w||$$
.

3.3 3

Prove that the following polynomial has its roots outside of the unit circle:

$$p(z) = z^3 + 2z + 4.$$

Hint: What is the maximum value of the modulus of the first two terms if $|z| \leq 1$?

3.4 4

a. Prove that if c > 0,

$$|w_1| = c|w_2| \implies |w_1 - c^2w_2| = c|w_1 - w_2|.$$

b. Prove that if c > 0 and $c \neq 1$, with $z_1 \neq z_2$, then the following equation represents a circle:

$$\left|\frac{z-z_1}{z-z_2}\right| = c.$$

Find its center and radius.

Hint: use part (a)

3.5 5

a. Let $z, w \in \mathbb{C}$ with $\bar{z}w \neq 1$. Prove that

$$\left| \frac{w - z}{1 - \overline{w}z} \right| < 1 \quad \text{if } |z| < 1, \ |w| < 1$$

with equality when |z| = 1 or |w| = 1.

- b. Prove that for a fixed $w \in \mathbb{D}$, the mapping $F: z \mapsto \frac{w-z}{1-\overline{w}z}$ satisfies
 - F maps $\mathbb D$ to itself and is holomorphic.
 - F(0) = w and F(w) = 0.
 - |z| = 1 implies |F(z)| = 1.

3.6 6

Use nth roots of unity to show that

$$2^{n-1}\sin\left(\frac{\pi}{n}\right)\sin\left(\frac{2\pi}{n}\right)\cdots\sin\left(\frac{(n-1)\pi}{n}\right) = n.$$

Hint:

$$1 - \cos(2\theta) = 2\sin^2(\theta)$$
$$2\sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

3.7 7

Prove that $f(z) = |z|^2$ has a derivative at z = 0 and nowhere else.

3.8 8

Let f(z) be analytic in a domain, and prove that f is constant if it satisfies any of the following conditions:

- a. |f(z)| is constant.
- b. $\Re(f(z))$ is constant.
- c. arg(f(z)) is constant.
- d. f(z) is analytic.

How do you generalize (a) and (b)?

3.9 9

Prove that if $z \mapsto f(z)$ is analytic, then $z \mapsto \overline{f(\overline{z})}$ is analytic.

3.10 10

a. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.

b. Use (a) to show that the logarithm function, defined as

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$.

is holomorphic on the region $r > 0, -\pi < \theta < \pi.$

Also show that this function is not continuous in r > 0.

3.11 11

Prove that the distinct complex numbers z_1, z_2, z_3 are the vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

4 Spring 2020 Homework 2

Note on notation: I sometimes use $f_x := \frac{\partial f}{\partial x}$ to denote partial derivatives, and $\partial_z^n f$ as $f^{(n)}(z)$.

4.1 Stein And Shakarchi

4.1.1 2.6.1

Show that

$$\int_0^\infty \sin\left(x^2\right) dx = \int_0^\infty \cos\left(x^2\right) dx = \frac{\sqrt{2\pi}}{4}.$$

Hint: integrate e^{-x^2} over the following contour, using the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$:

4.1.2 2.6.2

Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Hint: use the fact that this integral equals $\frac{1}{2i} \int_{-\infty}^{\infty} \frac{e^{ix} - 1}{x} dx$, and integrate around an indented semicircle.

4.1.3 2.6.5

Suppose $f \in C^1_{\mathbb{C}}(\Omega)$ and $T \subset \Omega$ is a triangle with $T^{\circ} \subset \Omega$. Apply Green's theorem to show that $\int_T f(z) \ dz = 0$.

Assume that f' is continuous and prove Goursat's theorem.

Hint: Green's theorem states

$$\int_T F dx + G dy = \int_{T^{\circ}} \left(\frac{\partial G}{\partial x} - \frac{\partial F}{\partial y} \right) dx dy.$$

4.1.4 2.6.6

Suppose that f is holomorphic on a punctured open set $\Omega \setminus \{w_0\}$ and let $T \subset \Omega$ be a triangle containing w_0 . Prove that if f is bounded near w_0 , then $\int_T f(z) dz = 0$.

4.1.5 2.6.7

Suppose $f: \mathbb{D} \longrightarrow \mathbb{C}$ is holomorphic and let $d := \sup_{z,w \in \mathbb{D}} |f(z) - f(w)|$ be the diameter of the image of f. Show that $2|f'(0)| \leq d$, and that equality holds iff f is linear, so $f(z) = a_1z + a_2$.

Hint:
$$2f'(0) = \frac{1}{2\pi i} \int_{|\xi| = r} \frac{f(\xi) - f(-\xi)}{\xi^2} d\xi$$
 whenever $0 < r < 1$.

4.1.6 2.6.8

Suppose that f is holomorphic on the strip $S = \{x + iy \mid x \in \mathbb{R}, -1 < y < 1\}$ with $|f(z)| \le A(1+|z|)^{\nu}$ for ν some fixed real number. Show that for all $z \in S$, for each integer $n \ge 0$ there exists an $A_n \ge 0$ such that $|f^{(n)}(x)| \le A_n(1+|x|)^{\nu}$ for all $x \in \mathbb{R}$.

Hint: Use the Cauchy inequalities.

4.1.7 2.6.9

Let $\Omega \subset \mathbb{C}$ be open and bounded and $\varphi : \Omega \longrightarrow \Omega$ holomorphic. Prove that if there exists a point $z_0 \in \Omega$ such that $\varphi(z_0) = z_0$ and $\varphi'(z_0) = 1$, then φ is linear.

Hint: assume $z_0 = 0$ (explain why this can be done) and write $\varphi(z) = z + a_n z^n + O(z^{n+1})$ near 0. Let $\varphi_k = \varphi \circ \varphi \circ \cdots \circ \varphi$ and prove that $\varphi_k(z) = z + k a_n z^n + O(z^{n+1})$. Apply Cauchy's inequalities and let $k \longrightarrow \infty$ to conclude.

4.1.8 2.6.10

Can every continuous function on \mathbb{D} be uniformly approximated by polynomials in the variable z?

Hint: compare to Weierstrass for the real interval.

4.1.9 2.6.13

Suppose f is analytic, defined on all of \mathbb{C} , and for each $z_0 \in \mathbb{C}$ there is at least one coefficient in the expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is zero. Prove that f is a polynomial.

Hint: use the fact that $c_n n! = f^{(n)}(z_0)$ and use a countability argument.

4.1.10 2.6.14

Suppose that f is holomorphic in an open set containing \mathbb{D} except for a pole $z_0 \in \partial \mathbb{D}$. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of f in \mathbb{D} , and show that $\lim \frac{a_n}{a_{n+1}} = z_0$.

4.1.11 2.6.15

Suppose f is continuous and nonvanishing on $\overline{\mathbb{D}}$, and holomorphic in \mathbb{D} . Prove that if $|z| = 1 \implies |f(z)| = 1$, then f is constant.

Hint: Extend f to all of \mathbb{C} by $f(z) = 1/\overline{f(1/\overline{z})}$ for any |z| > 1, and argue as in the Schwarz reflection principle.

4.2 Additional Problems

4.2.1 1

Let $a_n \neq 0$ and show that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L \implies \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = L.$$

In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

4.2.2 2

Let f be a power series centered at the origin. Prove that f has a power series expansion about any point in its disc of convergence.

4.2.3 3

Prove the following:

- a. $\sum_{n} nz^{n}$ does not converge at any point of S^{1}
- b. $\sum_{n} \frac{z^n}{n^2}$ converges at every point of S^1 .
- c. $\sum_{n} \frac{z^n}{n}$ converges at every point of S^1 except z = 1.

4.2.4 4

Without using Cauchy's integral formula, show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)} = \frac{2\pi i}{\alpha - \beta}$$

where γ denotes the circle centered at the origin of radius r with positive orientation.

4.2.5 5

Assume f is continuous in the region $\{x+iy \mid x \geq x_0, \ 0 \leq y \leq b\}$, and the following limit exists independent of y:

$$\lim_{x \to +\infty} f(x + iy) = A.$$

Show that if $\gamma_x := \{z = x + it \mid 0 \le t \le b\}$, then

$$\lim_{x \longrightarrow +\infty} \int_{\gamma_x} f(z) \, dz = iAb.$$

4.2.6 6

Show by example that there exists a function f(z) that is holomorphic on $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ and for all r < 1,

$$\int_{|z|=r} f(z) \, dz = 0,$$

but f is not holomorphic at z = 0.

4.2.7 7

Let f be analytic on a region R and suppose $f'(z_0) \neq 0$ for some $z_0 \in R$. Show that if C is a circle of sufficiently small radius centered at z_0 , then

$$\frac{2\pi i}{f'(z_0)} = \int_C \frac{dz}{f(z) - f(z_0)}.$$

Hint: use the inverse function theorem.

4.2.8 8

Assume two functions $u, b : \mathbb{R}^2 \longrightarrow \mathbb{R}$ have continuous partial derivatives at (x_0, y_0) . Show that f := u + iv has derivative $f'(z_0)$ at $z_0 := x_0 + iy_0$ if and only if

$$\lim_{r \to 0} \frac{1}{\pi r^2} \int_{|z-z_0|=r} f(z) dz = 0.$$

4.2.9 9 (Cauchy's Formula for Exterior Regions)

Let γ be a piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f' exists in an open set containing γ and Ω_2 with $\lim_{z \to \infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1 \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}.$$

4.2.10 10

Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists:

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be constant.

4.2.11 11

Suppose f(z) is entire and

$$\lim_{z \to \infty} \frac{f(z)}{z} = 0.$$

Show that f(z) is a constant.

4.2.12 12

Let f be analytic in a domain D and γ be a closed curve in D. For any $z_0 \in D$ not on γ , show that

$$\int_{\gamma} \frac{f'(z)}{(z - z_0)} dz = \int_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$$

Give a generalization of this result.

4.2.13 13

Compute

$$\int_{|z|=1} \left(z + \frac{1}{z}\right)^{2n} \frac{dz}{z}$$

and use it to show that

$$\in_0^{2\pi} \cos^{2n}(\theta) d\theta = 2\pi \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right).$$

5 Spring 2020 Homework 3

5.1 Stein and Shakarchi

5.1.1 3.8.1

Use the following formula to show that the complex zeros of $\sin(\pi z)$ are exactly the integers, and they are each of order 1:

$$\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i}.$$

Calculate the residue of $\frac{1}{\sin(\pi z)}$ at $z = n \in \mathbb{Z}$.

5.1.2 3.8.2

Evaluate the integral

$$\int_{\mathbb{R}} \frac{dx}{1+x^4}.$$

What are the poles of $\frac{1}{1+z^4}$?

5.1.3 3.8.4

Show that

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \pi e^{-a}, \quad \text{for all } a > 0.$$

5.1.4 3.8.5

Show that if $\xi \in \mathbb{R}$, then

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}.$$

5.1.5 3.8.6

Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \pi.$$

5.1.6 3.8.7

Show that

$$\int_0^{2\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{3/2}}, \quad \text{whenever } a > 1.$$

5.1.7 3.8.8

Show that if $a, b \in \mathbb{R}$ with a > |b|, then

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}.$$

5.1.8 3.8.9

Show that

$$\int_0^1 \log(\sin \pi x) dx = -\log 2.$$

5.1.9 3.8.10

Show that if a > 0, then

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi}{2a} \log a.$$

5.1.10 3.8.14

Prove that all entire functions that are injective are of the form f(z) = az + b with $a, b \in \mathbb{C}$ and $a \neq 0$.

Hint: Apply the Casorati-Weierstrass theorem to f(1/z).

5.1.11 3.8.15

Use the Cauchy inequalities or the maximum modulus principle to solve the following problems:

a. Prove that if f is an entire function that satisfies

$$\sup_{|z|=R} |f(z)| \le AR^k + B$$

for all R > 0, some integer $k \ge 0$, and some constants A, B > 0, then f is a polynomial of degree $\le k$.

- b. Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the sector $\theta < \arg(z) < \varphi$ as $|z| \longrightarrow 0$, then $f \equiv 0$.
- c. Let $w_1, \dots w_n$ be points on $S^1 \subset \mathbb{C}$. Prove that there exists a point $z \in S^1$ such that the product of the distances from z to the points w_i is at least 1.

Conclude that there exists a point $w \in S^1$ such that the product of the above distances is exactly 1.

d. Show that if the real part of an entire function is bounded, then f is constant.

5.1.12 3.8.17

Let f be non-constant and holomorphic in an open set containing the closed unit disc.

a. Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

Hint: Show that $f(z) = w_0$ has a root for every $w_0 \in \mathbb{D}$, for which it suffices to show that f(z) = 0 has a root. Conclude using the maximum modulus principle.

b. If $|f(z)| \ge 1$ whenever |z| = 1 and there exists a $z_0 \in \mathbb{D}$ such that $|f(z_0)| < 1$, then the image of f contains the unit disc.

5.1.13 3.8.19

Prove that maximum principle for harmonic functions, i.e.

- a. If u is a non-constant real-valued harmonic function in a region Ω , then u can not attain a maximum or a minimum in Ω .
- b. Suppose Ω is a region with compact closure $\overline{\Omega}$. If u is harmonic in Ω and continuous in $\overline{\Omega}$, then

$$\sup_{z\in\Omega}|u(z)|\leq \sup_{z\in\overline{\Omega}-\Omega}|u(z)|.$$

Hint: to prove (a), assume u attains a local maximum at z_0 . Let f be holomorphic near z_0 with $\Re(f) = u$, and show that f is not an open map. Then (a) implies (b).

5.2 Problems From Tie

5.2.1 1

Prove that if f has two Laurent series expansions,

$$f(z) = \sum c_n(z-a)^n$$
 and $f(z) = \sum c'_n(z-a)^n$

then $c_n = c'_n$.

5.2.2 2

Find Laurent series expansions of

$$\frac{1}{1-z^2}+\frac{1}{3-z}$$

How many such expansions are there? In what domains are each valid?

5.2.3 3

Let P, Q be polynomials with no common zeros. Assume a is a root of Q. Find the principal part of P/Q at z=a in terms of P and Q if a is (1) a simple root, and (2) a double root.

5.2.4 4

Let f be non-constant, analytic in |z| > 0, where $f(z_n) = 0$ for infinitely many points z_n with $\lim_{n \to \infty} z_n = 0.$ Show that z = 0 is an essential singularity for f.

Example: $f(z) = \sin(1/z)$.

5.2.5 5

Show that if f is entire and $\lim_{z \to \infty} f(z) = \infty$, then f is a polynomial.

5.2.6 6

a. Show (without using 3.8.9 in the S&S) that

$$\int_0^{2\pi} \log \left| 1 - e^{i\theta} \right| \, d\theta = 0$$

b. Show that this identity is equivalent to S&S 3.8.9:

$$\int_0^1 \log(\sin(\pi x)) \ dx = -\log 2.$$

5.2.7 7

Let 0 < a < 4 and evaluate

$$\int_0^\infty \frac{x^{\alpha - 1}}{1 + x^3} \ dx$$

5.2.8 8

Prove the fundamental theorem of Algebra using

- a. Rouche's Theorem.
- b. The maximum modulus principle.

5.2.9 9

Let f be analytic in a region D and γ a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \gamma$, then f is constant.

5.2.10 10

For a > 0, evaluate

$$\int_0^{\pi/2} \frac{d\theta}{a + \sin^2 \theta}$$

5.2.11 11

Find the number of roots of $p(z) = 4z^4 - 6z + 3$ in |z| < 1 and 1 < |z| < 2 respectively.

5.2.12 12

Prove that $z^4 + 2z^3 - 2z + 10$ has exactly one root in each open quadrant.

5.2.13 13

Prove that for a > 0, $z \tan z - a$ has only real roots.

5.2.14 14

Let f be nonzero, analytic on a bounded region Ω and continuous on its closure $\overline{\Omega}$. Show that if $|f(z)| \equiv M$ is constant for $z \in \partial \Omega$, then $f(z) \equiv M e^{i\theta}$ for some real constant θ .

6 Extra Questions from Jingzhi Tie

6.1 Fall 2009

6.1.1 ?

(1) Assume $f(z) = \sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1).

6.1.2 ?

Let f be a continuous function in the region

$$D = \{z \mid |z| > R, 0 \le \arg z \le \theta\}$$
 where $1 \le \theta \le 2\pi$.

If there exists k such that $\lim_{z \to \infty} zf(z) = k$ for z in the region D. Show that

$$\lim_{R' \longrightarrow \infty} \int_{L} f(z) dz = i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

6.1.3 ?

Suppose that f is an analytic function in the region D which contains the point a. Let

$$F(z) = z - a - qf(z)$$
, where q is a complex parameter.

- (1) Let $K \subset D$ be a circle with the center at point a and also we assume that $f(z) \neq 0$ for $z \in K$. Prove that the function F has one and only one zero z = w on the closed disc \overline{K} whose boundary is the circle K if $|q| < \min_{z \in K} \frac{|z - a|}{|f(z)|}$.
- (2) Let G(z) be an analytic function on the disk \overline{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)} = \frac{1}{2\pi i} \int_K \frac{G(z)}{F(z)} dz$, where w is the zero from (1).
- (3) If $z \in K$, prove that the function $\frac{1}{F(z)}$ can be represented as a convergent series with respect to q: $\frac{1}{F(z)} = \sum_{n=0}^{\infty} \frac{(qf(z))^n}{(z-a)^{n+1}}$.

6.1.4 ?

Evaluate

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx.$$

6.1.5 ?

Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}$, $r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

6.1.6 ?

Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here n is a positive integer.

6.1.7 ?

For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.

- 1. Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.
- 2. Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need
$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$
 for $t > 0$.

6.1.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in \mathbb{C} .

6.1.9 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that (i) f is a polynomial and (ii) the degree of f is at least N.

6.1.10 ?

Let $f: \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called *univalent*) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.1.11 ?

Let g be analytic for $|z| \le 1$ and |g(z)| < 1 for |z| = 1.

- 1. Show that g has a unique fixed point in |z| < 1.
- 2. What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
- 3. What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \not\equiv z$. Can f have more than one fixed point in |z| < 1?

Hint: The map
$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$$
 may be useful.

6.1.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.

6.1.13 ?

Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.1.14 ?

(1) Assume $f(z) = \sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1).

6.1.15 ?

Let f(z) be entire and assume that $f(z) \leq M|z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .

6.1.16 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on

bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.1.17 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\int_{\Omega} f(z)dz = 0$ for all triangles Δ in Ω .

6.1.18 ?

Assume f is continuous in the region: $0 < |z - a| \le R$, $0 \le \arg(z - a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z - a) f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = iA\beta_0 ,$$

where $\gamma_r := \{ z \mid z = a + re^{it}, \ 0 \le t \le \beta_0 \}.$

6.1.19 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .

6.1.20 ?

(1) Show that the function u = u(x, y) given by

$$u(x,y) = \frac{e^{ny} - e^{-ny}}{2n^2} \sin nx$$
 for $n \in \mathbb{N}$

is the solution on $D = \{(x,y) | x^2 + y^2 < 1\}$ of the Cauchy problem for the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad u(x,0) = 0, \quad \frac{\partial u}{\partial y}(x,0) = \frac{\sin nx}{n}.$$

(2) Show that there exist points $(x,y) \in D$ such that $\limsup_{n \to \infty} |u(x,y)| = \infty$.

6.2 Fall 2011

6.2.1 ?

(1) Assume $f(z) = \sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1).

6.2.2 ?

Let f be a continuous function in the region

$$D = \{z \mid |z| > R, 0 \le \arg Z \le \theta\}$$
 where $0 \le \theta \le 2\pi$.

If there exists k such that $\lim_{z \to \infty} zf(z) = k$ for z in the region D. Show that

$$\lim_{R' \to \infty} \int_L f(z) dz = i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

6.2.3 ?

Suppose that f is an analytic function in the region D which contains the point a. Let

$$F(z) = z - a - qf(z)$$
, where q is a complex parameter.

- (1) Let $K \subset D$ be a circle with the center at point a and also we assume that $f(z) \neq 0$ for $z \in K$. Prove that the function F has one and only one zero z = w on the closed disc \overline{K} whose boundary is the circle K if $|q| < \min_{z \in K} \frac{|z a|}{|f(z)|}$.
- (2) Let G(z) be an analytic function on the disk \overline{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)} = \frac{1}{2\pi i} \int_K \frac{G(z)}{F(z)} dz$, where w is the zero from (1).
- (3) If $z \in K$, prove that the function $\frac{1}{F(z)}$ can be represented as a convergent series with respect to q: $\frac{1}{F(z)} = \sum_{n=0}^{\infty} \frac{(qf(z))^n}{(z-a)^{n+1}}$.

6.2.4 ?

Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx.$

6.2.5 ?

Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}$, $r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

6.2.6 ?

Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here n is a positive integer.

6.2.7 ?

For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.

- 1. Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.
- 2. Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need
$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$
 for $t > 0$.

6.2.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in \mathbb{C} .

6.2.9 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that (i) f is a polynomial and (ii) the degree of f is at least N.

6.2.10 ?

Let $f: \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.2.11 ?

Let g be analytic for $|z| \le 1$ and |g(z)| < 1 for |z| = 1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
- What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \not\equiv z$. Can f have more than one fixed point in |z| < 1?

Hint: The map
$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$$
 may be useful.

6.2.12 ?

Find a conformal map from $D=\{z:\ |z|<1,\ |z-1/2|>1/2\}$ to the unit disk $\Delta=\{z:\ |z|<1\}$.

6.2.13 ?

Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.2.14 ?

Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.2.15 ?

(1) Assume $f(z) = \sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1).

6.2.16 ?

Let f(z) be entire and assume that $f(z) \leq M|z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .

6.2.17 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a_n'(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.2.18 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\int_{\Delta} f(z)dz = 0$ for all triangles Δ in Ω .

6.2.19 ?

Assume f is continuous in the region: $0 < |z - a| \le R$, $0 \le \arg(z - a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z - a) f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = iA\beta_0 ,$$

where $\gamma_r := \{ z \mid z = a + re^{it}, \ 0 \le t \le \beta_0 \}.$

6.2.20 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .

(1) Show that the function u = u(x, y) given by

$$u(x,y) = \frac{e^{ny} - e^{-ny}}{2n^2} \sin nx$$
 for $n \in \mathbb{N}$

is the solution on $D = \{(x,y) | x^2 + y^2 < 1\}$ of the Cauchy problem for the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad u(x,0) = 0, \quad \frac{\partial u}{\partial y}(x,0) = \frac{\sin nx}{n}.$$

(2) Show that there exist points $(x,y) \in D$ such that $\limsup_{n \to \infty} |u(x,y)| = \infty$.

6.3 Spring 2014

6.3.1 ?

The question provides some insight into Cauchy's theorem. Solve the problem without using the Cauchy theorem.

- 1. Evaluate the integral $\int_{\gamma} z^n dz$ for all integers n. Here γ is any circle centered at the origin with the positive (counterclockwise) orientation.
- 2. Same question as (a), but with γ any circle not containing the origin.
- 3. Show that if |a| < r < |b|, then $\int_{\gamma} \frac{dz}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$. Here γ denotes the circle centered at the origin, of radius r, with the positive orientation.

6.3.2 ?

(1) Assume the infinite series $\sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R and let f(z) be the limit. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1). Liouville's theorem: If f(z) is entire and bounded, then f is constant.

6.3.3 ?

Let f be a continuous function in the region

$$D = \{z \mid |z| > R, 0 \le \arg Z \le \theta\}$$
 where $0 \le \theta \le 2\pi$.

If there exists k such that $\lim_{z \to \infty} z f(z) = k$ for z in the region D. Show that

$$\lim_{R'\longrightarrow\infty}\int_L f(z)dz=i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

6.3.4 ?

Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$.

6.3.5 ?

Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}$, $r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

6.3.6 ?

Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here n is a positive integer.

6.3.7 ?

For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.

- Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.
- Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need $\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$ for t > 0.

6.3.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in C.

6.3.9 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that (i) f is a polynomial and (ii) the degree of f is at least N.

6.3.10 ?

Let $f: \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.3.11 ?

Let g be analytic for $|z| \le 1$ and |g(z)| < 1 for |z| = 1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
- What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \not\equiv z$. Can f have more than one fixed point in |z| < 1?

Hint: The map
$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$$
 may be useful.

6.3.12 ?

Find a conformal map from $D = \{z: |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $\Delta = \{z: |z| < 1\}$.

6.4 Fall 2015

6.4.1 ?

Let $a_n \neq 0$ and assume that $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L$. Show that $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$. In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

6.4.2 ?

(a) Let z, w be complex numbers, such that $\bar{z}w \neq 1$. Prove that

$$\left| \frac{w - z}{1 - \overline{w}z} \right| < 1 \quad \text{if } |z| < 1 \text{ and } |w| < 1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right|=1 \text{ if } |z|=1 \text{ or } |w|=1.$$

(b) Prove that for fixed w in the unit disk \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (c) F maps \mathbb{D} to itself and is holomorphic.
- (ii) F interchanges 0 and w, namely, F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F: \mathbb{D} \mapsto \mathbb{D}$ is bijective.

Hint: Calculate $F \circ F$.

6.4.3 ?

Use *n*-th roots of unity (i.e. solutions of $z^n - 1 = 0$) to show that

$$2^{n-1}\sin\frac{\pi}{n}\sin\frac{2\pi}{n}\cdots\sin\frac{(n-1)\pi}{n}=n.$$

Hint: $1 - \cos 2\theta = 2\sin^2 \theta$, $\sin 2\theta = 2\sin \theta \cos \theta$.

(a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

(b) Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is a holomorphic function in the region r > 0, $-\pi < \theta < \pi$. Also show that $\log z$ defined above is not continuous in r > 0.

6.4.4 ?

Assume f is continuous in the region: $x \ge x_0$, $0 \le y \le b$ and the limit

$$\lim_{x \to +\infty} f(x + iy) = A$$

exists uniformly with respect to y (independent of y). Show that

$$\lim_{x \to +\infty} \int_{\gamma_x} f(z) dz = iAb ,$$

where $\gamma_x := \{ z \mid z = x + it, \ 0 \le t \le b \}.$

6.4.5 ?

(Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f'(z) exists in an open set containing γ and Ω_2 and $\lim_{z\to\infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1, \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}$$

6.4.6 ?

Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be a constant (Liouville's theorem).

6.4.7 ?

Prove by justifying all steps that for all $\xi \in \mathbb{C}$ we have $e^{-\pi \xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x \xi} dx$.

Hint: You may use that fact in Example 1 on p. 42 of the textbook without proof, i.e., you may assume the above is true for real values of ξ .

6.4.8 ?

Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_0 on the unit circle. Let denote the power series in the open disc. Show that (1) $c_n \neq 0$ for all large enough n's, and (2) $\lim_{n\to\infty} \frac{c_n}{c_{n+1}} = z_0$.

6.4.9 ?

Let f(z) be a non-constant analytic function in |z| > 0 such that $f(z_n) = 0$ for infinite many points z_n with $\lim_{n \to \infty} z_n = 0$. Show that z = 0 is an essential singularity for f(z). (An example of such a function is $f(z) = \sin(1/z)$.)

6.4.10 ?

Let f be entire and suppose that $\lim_{z\to\infty} f(z) = \infty$. Show that f is a polynomial.

6.4.11 ?

Expand the following functions into Laurent series in the indicated regions:

(a)
$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$
, $2 < |z| < 3$, $3 < |z| < +\infty$.

(b)
$$f(z) = \sin \frac{z}{1-z}$$
, $0 < |z-1| < +\infty$

6.4.12 ?

Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \Gamma$, then f(z) is a constant.

6.4.13 ?

Find the number of roots of $z^4 - 6z + 3 = 0$ in |z| < 1 and 1 < |z| < 2 respectively.

6.4.14 ?

Prove that $z^4 + 2z^3 - 2z + 10 = 0$ has exactly one root in each open quadrant.

6.4.15 ?

(1) Let $f(z) \in H(\mathbb{D})$, $\operatorname{Re}(f(z)) > 0$, f(0) = a > 0. Show that

$$\left| \frac{f(z) - a}{f(z) + a} \right| \le |z|, \quad |f'(0)| \le 2a.$$

(2) Show that the above is still true if Re(f(z)) > 0 is replaced with $Re(f(z)) \ge 0$.

6.4.16 ?

Assume f(z) is analytic in \mathbb{D} and f(0) = 0 and is not a rotation (i.e. $f(z) \neq e^{i\theta}z$). Show that $\sum_{n=1}^{\infty} f^n(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D} , where $f^{n+1}(z) = f(f^n(z))$.

6.4.17 ?

Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic and one-to-one in |z| < 1. For 0 < r < 1, let D_r be the disk |z| < r. Show that the area of $f(D_r)$ is finite and is given by

$$S = \pi \sum_{n=1}^{\infty} n|c_n|^2 r^{2n}.$$

(Note that in general the area of $f(D_1)$ is infinite.)

6.4.18 ?

Let $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$ be analytic and one-to-one in $r_0 < |z| < R_0$. For $r_0 < r < R < R_0$, let D(r,R) be the annulus r < |z| < R. Show that the area of f(D(r,R)) is finite and is given by

$$S = \pi \sum_{n = -\infty}^{\infty} n |c_n|^2 (R^{2n} - r^{2n}).$$

6.5 Spring 2015

6.5.1 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.5.2 ?

Let f_n, f be analytic functions on the unit disk \mathbb{D} . Show that the following are equivalent.

- (i) $f_n(z)$ converges to f(z) uniformly on compact subsets in \mathbb{D} .
- (ii) $\int_{|z|=r} |f_n(z) f(z)| |dz|$ converges to 0 if 0 < r < 1.

6.5.3 ?

Let f and g be non-zero analytic functions on a region Ω . Assume |f(z)| = |g(z)| for all z in Ω . Show that $f(z) = e^{i\theta}g(z)$ in Ω for some $0 \le \theta < 2\pi$.

6.5.4 ?

Suppose f is analytic in an open set containing the unit disc \mathbb{D} and |f(z)|=1 when |z|=1. Show that either $f(z)=e^{i\theta}$ for some $\theta\in\mathbb{R}$ or there are finite number of $z_k\in\mathbb{D},\,k\leq n$ and $\theta\in\mathbb{R}$ such that $f(z)=e^{i\theta}\prod_{k=1}^n\frac{z-z_k}{1-\bar{z}_kz}$.

Also cf. Stein et al, 1.4.7, 3.8.17

6.5.5 ?

- (1) Let p(z) be a polynomial, R > 0 any positive number, and $m \ge 1$ an integer. Let $M_R = \sup\{|z^m p(z) 1| : |z| = R\}$. Show that $M_R > 1$.
- (2) Let $m \ge 1$ be an integer and $K = \{z \in \mathbb{C} : r \le |z| \le R\}$ where r < R. Show (i) using (1) as well as, (ii) without using (1) that there exists a positive number $\varepsilon_0 > 0$ such that for each polynomial p(z),

$$\sup\{|p(z)-z^{-m}|:z\in K\}\geq \varepsilon_0.$$

6.5.6 ?

Let $f(z) = \frac{1}{z} + \frac{1}{z^2 - 1}$. Find all the Laurent series of f and describe the largest annuli in which these series are valid.

6.5.7 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \le A|z|^N$ for $|z| \ge R$. Show that (i) f is a polynomial and (ii) the degree of f is at most N.

6.5.8 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \ge A|z|^N$ for $|z| \ge R$. Show that (i) f is a polynomial and (ii) the degree of f is at least N.

6.5.9 ?

- (1) Explicitly write down an example of a non-zero analytic function in |z| < 1 which has infinitely zeros in |z| < 1.
- (2) Why does not the phenomenon in (1) contradict the uniqueness theorem?

6.5.10 ?

- (1) Assume u is harmonic on open set O and z_n is a sequence in O such that $u(z_n) = 0$ and $\lim z_n \in O$. Prove or disprove that u is identically zero. What if O is a region?
- (2) Assume u is harmonic on open set O and u(z) = 0 on a disc in O. Prove or disprove that u is identically zero. What if O is a region?
- (3) Formulate and prove a Schwarz reflection principle for harmonic functions

cf. Theorem 5.6 on p.60 of Stein et al.

Hint: Verify the mean value property for your new function obtained by Schwarz reflection principle.

6.5.11 ?

Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$||f||_{(\infty,s)} \le c||f||_{(1,r)},$$

where $|f||_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$ and $||f||_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy$.

Note: Exercise 3.8.20 on p.107 in Stein et al is a straightforward consequence of this stronger result using the integral form of the Cauchy-Schwarz inequality in real analysis.

6.5.12 ?

- (1) Let f be analytic in $\Omega: 0 < |z-a| < r$ except at a sequence of poles $a_n \in \Omega$ with $\lim_{n \to \infty} a_n = a$. Show that for any $w \in \mathbb{C}$, there exists a sequence $z_n \in \Omega$ such that $\lim_{n \to \infty} f(z_n) = w$.
- (2) Explain the similarity and difference between the above assertion and the Weierstrass-Casorati theorem.

6.5.13 ?

Compute the following integrals.

$$\text{(i)} \ \int_0^\infty \frac{1}{(1+x^n)^2} \, dx, \ n \geq 1 \ \text{(ii)} \ \int_0^\infty \frac{\cos x}{(x^2+a^2)^2} \, dx, \ a \in \mathbb{R} \ \text{(iii)} \ \int_0^\pi \frac{1}{a+\sin \theta} \, d\theta, \ a > 1$$

(iv)
$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{a + \sin^2 \theta}$$
, $a > 0$. (v) $\int_{|z|=2}^{\frac{\pi}{2}} \frac{1}{(z^5 - 1)(z - 3)} dz$ (v) $\int_{-\infty}^{\infty} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} e^{-ix\xi} dx$, $0 < a < 1$, $\xi \in \mathbb{R}$ (vi) $\int_{|z|=1}^{\frac{\pi}{2}} \cot^2 z dz$.

6.5.14 ?

Compute the following integrals.

(i)
$$\int_0^\infty \frac{\sin x}{x} dx$$
 (ii) $\int_0^\infty (\frac{\sin x}{x})^2 dx$ (iii) $\int_0^\infty \frac{x^{a-1}}{(1+x)^2} dx$, $0 < a < 2$

(i)
$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx$$
, $a, b > 0$ (ii) $\int_0^\infty \frac{x^{a-1}}{1 + x^n} dx$, $0 < a < n$

(iii)
$$\int_0^\infty \frac{\log x}{1+x^n} dx$$
, $n \ge 2$ (iv) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$ (v) $\int_0^\pi \log |1-a\sin\theta| d\theta$, $a \in \mathbb{C}$

6.5.15 ?

Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large n's.

6.5.16 ?

Let f be an analytic function on a region Ω . Show that f is a constant if there is a simple closed curve γ in Ω such that its image $f(\gamma)$ is contained in the real axis.

6.5.17 ?

- (1) Show that $\frac{\pi^2}{\sin^2 \pi z}$ and $g(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ have the same principal part at each integer point.
- (2) Show that $h(z) = \frac{\pi^2}{\sin^2 \pi z} g(z)$ is bounded on \mathbb{C} and conclude that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.

6.5.18 ?

Let f(z) be an analytic function on $\mathbb{C}\setminus\{z_0\}$, where z_0 is a fixed point. Assume that f(z) is bijective from $\mathbb{C}\setminus\{z_0\}$ onto its image, and that f(z) is bounded outside $D_r(z_0)$, where r is some fixed positive number. Show that there exist $a, b, c, d \in \mathbb{C}$ with $ad - bc \neq 0$, $c \neq 0$ such that $f(z) = \frac{az + b}{cz + d}$.

6.5.19 ?

Assume f(z) is analytic in $\mathbb{D}: |z| < 1$ and f(0) = 0 and is not a rotation (i.e. $f(z) \neq e^{i\theta}z$). Show that $\sum_{n=1}^{\infty} f^n(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D} , where $f^{n+1}(z) = f(f^n(z))$.

6.5.20 ?

Let f be a non-constant analytic function on \mathbb{D} with $f(\mathbb{D}) \subseteq \mathbb{D}$. Use $\psi_a(f(z))$ (where a = f(0), $\psi_a(z) = \frac{a-z}{1-\bar{a}z}$) to prove that $\frac{|f(0)|-|z|}{1+|f(0)||z|} \le |f(z)| \le \frac{|f(0)|+|z|}{1-|f(0)||z|}$.

6.5.21 ?

Find a conformal map

- 1. from $\{z: |z-1/2| > 1/2, \operatorname{Re}(z) > 0\}$ to \mathbb{H}
- 2. from $\{z: |z-1/2| > 1/2, |z| < 1\}$ to \mathbb{D}
- 3. from the intersection of the disk $|z+i| < \sqrt{2}$ with $\mathbb H$ to $\mathbb D$.
- 4. from $\mathbb{D}\setminus[a,1)$ to $\mathbb{D}\setminus[0,1)$ (0 < a < 1). [Short solution possible using Blaschke factor]
- 5. from $\{z: |z| < 1, \text{Re}(z) > 0\} \setminus (0, 1/2]$ to \mathbb{H} .

6.5.22 ?

Let C and C' be two circles and let $z_1 \in C$, $z_2 \notin C$, $z_1' \in C'$, $z_2' \notin C'$. Show that there is a unique fractional linear transformation f with f(C) = C' and $f(z_1) = z_1'$, $f(z_2) = z_2'$.

6.5.23 ?

Assume $f_n \in H(\Omega)$ is a sequence of holomorphic functions on the region Ω that are uniformly bounded on compact subsets and $f \in H(\Omega)$ is such that the set $\{z \in \Omega : \lim_{n \to \infty} f_n(z) = f(z)\}$ has a limit point in Ω . Show that f_n converges to f uniformly on compact subsets of Ω .

6.5.24 ?

Let $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ with $|\alpha| < 1$ and $\mathbb{D} = \{z : |z| < 1\}$. Prove that

- $\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'|^2 dx dy = 1.$
- $\frac{1}{\pi} \iint_{\mathbb{D}} |\psi'_{\alpha}| dx dy = \frac{1 |\alpha|^2}{|\alpha|^2} \log \frac{1}{1 |\alpha|^2}.$

6.5.25 ?

Prove that $f(z) = -\frac{1}{2}\left(z + \frac{1}{z}\right)$ is a conformal map from half disc $\{z = x + iy : |z| < 1, y > 0\}$ to upper half plane $\mathbb{H} = \{z = x + iy : y > 0\}$.

6.5.26 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function and $|f(z)| \leq M$ for all $z \in \gamma$. Prove that $|f(z)| \leq M$ for all $z \in U$.

6.5.27 ?

Compute the following integrals. (i) $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx$, 0 < a < n (ii) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$

6.5.28 ?

Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large n's.

6.5.29 ?

Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$||f||_{(\infty,s)} \le c||f||_{(1,r)},$$

where $||f||_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$ and $||f||_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy$.

6.5.30 ?

Let $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ with $|\alpha| < 1$ and $\mathbb{D} = \{z : |z| < 1\}$. Prove that

$$\bullet \ \frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'|^2 dx dy = 1.$$

$$\bullet \ \frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy = \frac{1 - |\alpha|^2}{|\alpha|^2} \log \frac{1}{1 - |\alpha|^2}.$$

Prove that $f(z) = -\frac{1}{2}\left(z + \frac{1}{z}\right)$ is a conformal map from half disc $\{z = x + iy : |z| < 1, y > 0\}$ to upper half plane $\mathbb{H} = \{z = x + iy : y > 0\}$.

6.5.31 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f:\Omega\longrightarrow\mathbb{C}$ be a holomorphic function and $|f(z)|\leq M$ for all $z\in\gamma$. Prove that $|f(z)|\leq M$ for all $z\in U$.

6.5.32 ?

Compute the following integrals. (i) $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx$, 0 < a < n (ii) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$

6.5.33 ?

Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large n's.

6.5.34 ?

Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$||f||_{(\infty,s)} \le c||f||_{(1,r)},$$

where $||f||_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$ and $||f||_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy$.

6.6 Fall 2016

6.6.1 ?

Let u(x,y) be harmonic and have continuous partial derivatives of order three in an open disc of radius R > 0.

(a) Let two points (a, b), (x, y) in this disk be given. Show that the following integral is independent of the path in this disk joining these points:

$$v(x,y) = \int_{a,b}^{x,y} \left(-\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy\right).$$

(b)

- (i) Prove that u(x,y) + iv(x,y) is an analytic function in this disc.
- (ii) Prove that v(x,y) is harmonic in this disc.

6.6.2 ?

- (a) f(z) = u(x,y) + iv(x,y) be analytic in a domain $D \subset \mathbb{C}$. Let $z_0 = (x_0, y_0)$ be a point in D which is in the intersection of the curves $u(x,y) = c_1$ and $v(x,y) = c_2$, where c_1 and c_2 are constants. Suppose that $f'(z_0) \neq 0$. Prove that the lines tangent to these curves at z_0 are perpendicular.
- (b) Let $f(z) = z^2$ be defined in \mathbb{C} .
- (c) Describe the level curves of Re(f) and of Im(f).
- (ii) What are the angles of intersections between the level curves Re(f) = 0 and Im(f)? Is your answer in agreement with part a) of this question?

6.6.3 ?

(a) $f: D \to \mathbb{C}$ be a continuous function, where $D \subset \mathbb{C}$ is a domain.Let $\alpha: [a, b] \to D$ be a smooth curve. Give a precise definition of the *complex line integral*

$$\int_{\alpha} f$$
.

(b) Assume that there exists a constant M such that $|f(\tau)| \leq M$ for all $\tau \in \text{Image}(\alpha)$. Prove that

$$\left| \int_{\Omega} f \right| \leq M \times \operatorname{length}(\alpha).$$

(c) Let C_R be the circle |z| = R, described in the counterclockwise direction, where R > 1. Provide an upper bound for $|\int_{C_R} \frac{\log(z)}{z^2}|$, which depends only on R and other constants.

6.6.4 ?

(a) Let Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Assume the existence of a non-negative integer m, and of positive constants L and R, such that for all z with |z| > R the inequality

$$|f(z)| \le L|z|^m$$

holds. Prove that f is a polynomial of degree $\leq m$.

(b) Let $f:\mathbb{C}\to\mathbb{C}$ be an entire function. Suppose that there exists a real number M such that for all $z\in\mathbb{C}$

$$\operatorname{Re}(f) \leq M.$$

Prove that f must be a constant.

6.6.5 ?

Prove that all the roots of the complex polynomial

$$z^7 - 5z^3 + 12 = 0$$

lie between the circles |z| = 1 and |z| = 2.

6.6.6 ?

(a) Let F be an analytic function inside and on a simple closed curve C, except for a pole of order $m \ge 1$ at z = a inside C. Prove that

$$\frac{1}{2\pi i} \oint_C F(\tau) d\tau = \lim_{\tau \to a} \frac{d^{m-1}}{d\tau^{m-1}} ((\tau - a)^m F(\tau)).$$

(b) Evaluate

$$\oint_C \frac{e^{\tau}}{(\tau^2 + \pi^2)^2} d\tau$$

where C is the circle |z| = 4.

6.6.7 ?

Find the conformal map that takes the upper half-plane comformally onto the half-strip $\{w = x + iy : -\pi/2 < x < \pi/2 \ y > 0\}$.

6.6.8 ?

Compute the integral
$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx$$
 where $\cosh z = \frac{e^z + e^{-z}}{2}$.