Math Tutor USING LOGARITHMS AND PH

When you work with acids and bases, you often need to state the hydronium ion concentration, $[H_3O^+]$, of a solution. One simple way is to use the negative logarithm of $[H_3O^+]$. This quantity is called pH. For example, pure water has a $[H_3O^+]$ of 1.00×10^{-7} M. So, the pH of pure water is $-\log(1.00 \times 10^{-7} \text{ M}) = 7.00$. A solution of 0.1 M HCl has a pH of 1.00 or pH = $-\log(1 \times 10^{-1}) = 1.00$. The term pOH is also used for the negative logarithm of the hydroxide ion concentration, $[OH^-]$. The pOH of pure water is also 7.00.

Problem-Solving TIPS

- For pure water at 25°C, $[H_3O^+] = [OH^-] = 1.00 \times 10^{-7} M$.
- The ionization constant of water, K_w , is the product of [H₃O⁺] and [OH⁻], so $K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = (1.00 \times 10^{-7})(1.00 \times 10^{-7}) = 1.00 \times 10^{-14} \text{ at } 25^{\circ}\text{C}.$
- If you know either [H₃O⁺] or [OH⁻], you can determine the other concentration.
- In terms of pH and pOH, pH + pOH = 14.00 for an aqueous solution at 25° C.
- Because pH calculations involve scientific notation and changes in signs, you should always check to see if answers make sense.

SAMPLE 1

What is the pH of a 0.0046 M solution of KOH?

KOH is completely dissociated into equal numbers of K⁺(aq) and OH⁻(aq). The concentration of OH⁻ is the same as the concentration of dissolved KOH, 0.0046 M. So, [OH⁻] = 4.6 × 10⁻³ M, and pOH = $-\log (4.6 \times 10^{-3} \text{ M}) = 2.34$.

For an aqueous solution at 25° C, pH + pOH = 14.00, so pH + 2.34 = 14.00.

Therefore, the pH of 0.0046 M KOH solution = 14.00 - 2.3 = 11.66.

SAMPLE 2

What is the hydronium ion concentration, $[H_3O^+]$, of a solution with a pH of 4.08? What is the pOH of the solution?

In this solution,

$$\log [H_3O^+] = -4.08$$

$$[H_3O^+] = \text{antilog } (-4.08) = 0.000 \ 083 \ \text{M} = 8.3 \times 10^{-5} \ \text{M}$$

The pOH of the solution is 14.00 - pH = 14.00 - 4.08 = 9.92.

PRACTICE PROBLEMS

- **1.** What is the pH of a 0.000 85 M solution of nitric acid, HNO₃, which is a strong acid?
- **2.** What is the hydroxide ion concentration of an aqueous solution that has a pH of 9.95?