Introduction

- What is a natural experiment?
 - "...any event [or intervention] not under the control of the researcher that divides a population into exposed and unexposed groups." Craig et al., 2017, MRC
 - Combines features of RCT and observational studies
 Albers et al., 2023
- Under-utilized in behavioral sciences
 - Most literature focuses on shorter time frames and individual outcomes_{Crane et al., 2020}
 - Complex policy/systems/environment interventions cannot always be evaluated with an RCT_{Albers et al., 2023}
- Study design and outcomes can be difficult.

Introduction

Advantages

- Ability to evaluate large-scale implications of policies, systems, and environments – RCT designs are not always possible
- Generalizability of interventions is high

Disadvantages

- Lack of control with intervention implementation
- Comparison groups
- Recruitment and retention
- Length of exposure

Presentations

- A Natural Experiment in Active Transportation: Lessons Learned from the Houston Travel-Related Activity In Neighborhoods (TRAIN) Project
 - Abiodun Oluyomi, PhD, Baylor College of Medicine
- Lessons Learned from Conducting a Natural Experiment of the Effects of Urban Cycling Infrastructure Expansion on Active Travel Behaviors in Mexico City: The Good, The Bad, and The Ugly
 - Deborah Salvo, PhD, The University of Texas at Austin
- Taking it to the STREETS: Lessons Learned from Evaluating Infrastructure to Increase Active Commuting to Schools
 - Leigh Ann Ganzar, DrPH, MPH, Professional Data Analysts

A Natural Experiment in Active Transportation: Lessons Learned from the Houston Travel-Related Activity In Neighborhoods (TRAIN) Project.

Abiodun Oluyomi, PhD

Baylor College of Medicine, USA

The TRAIN Study

The TRAIN Study

Can we leverage this for physical activity research?

The Rationale/Significance

Literature/Gap

- Suboptimal physical activity in US adults
- Mass transit use correlated with increased physical activity
- Promoting mass transit may help incorporate physical activity into daily life
- Much remains unknown about the transit use-physical activity association

What We Proposed

Conduct a <u>natural experiment</u> to answer these questions:

- 1. Will light rail availability influence transit use?
- 2. Will transit use influence overall physical activity?
- 3. What will make transit-related physical activity likely?
- **4.** Will there be differences by population subgroups?

The Study Area

Harris County, TX

Population: 4.455 million (2014)

Study AreaStudy Area (zoomed in; 3-mile buffer)

Harris County, TX

Most populous county in Texas and the third-most populous county in the United States

Harris County: more population than 26 states

O Three new light rail lines:

- 15 miles of track and
- 27 new stations

Methods

- Longitudinal cohort design, with four measurement waves over four years
- Participants recruited via telephone, print media ads, community outreach, doorto-door
- Adults (18+) residing within 3 miles of one of the new lines
- Survey administered via snail mail (proposed)

TRAIN Study Measures		
Level	Instrument	Measurement Purpose
Individual	Self-report questionnaire	 Perceived neighborhood characteristics Transportation attitudes Demographics Physical activity
	7-day travel diary	Usual travel patterns and travel-related behavior
	Accelerometer	Physical activity
Environment	Neighborhood Audit (St. Louis Audit Tool; Analytic Version)	Micro-scale environmental attributes
	Geographic Information Systems (GIS)	Macro-scale environmental attributes

PART 2

Lessons Learned

Lessons Learned: 7-Stage Research Lifecycle

Lessons Learned: Conception & Planning

- 1. Ideas tethered to the real-world processes
- 2. Limited options: collaborations/partners
- 3. Limited control over schedules: networking

Lessons Learned: Proposal & The "Experiment"

- 1. Extra attention: partners' different norms and processes
- 2. Recruitment plans versus what is feasible (too creative?)
- 3. Policy/govt. timeline | Natural / Human-made Hazards (Force majeure?)

Lessons Learned: Dissemination & Preservation (Data)

- **1. Sharing:** mindful of partners' policies, best practices
- **2. Publishing:** permission or clearance may be needed
- 3. Report back considerations

PRESERVE

- Format
- Storage / Archive

Manuscript / Presentation

Lessons Learned: Re-Use (Impact)

Lessons Learned: 7-Stage Research Lifecycle

Acknowledgments

Houston TRAIN Study Team

- Harold "Bill" Kohl, PhD (PI)
- Casey P. Durand, PhD
- Kelley Pettee Gabriel, PhD
- Ipek Sener, PhD
- Deanna Hoelscher, PhD
- Deborah Salvo, PhD
- Anna Porter, PhD
- Xioahui Tang, PhD
- Marlon Armstrong
- Sam Kreis, MPH
- o Ho Han, PhD
- Michael Robertson, MPH
- And so on...

Funding and Support

- o R01; NIDDK (Kohl, PI)
- UTHealth Houston Michael & Susan Dell Center for Healthy Living

Lesson from a natural experiment of urban cycling infrastructure expansion on active travel behaviors in Mexico City: the good, the bad, & the ugly

<u>DEBORAH SALVO</u>, EUGEN RESENDIZ, ALEJANDRA JAUREGUI

OUR TEAM & FUNDERS

Deborah Salvo

People, Health & Place Lab

Eugen Resendiz

Alejandra Jauregui

This project was funded by Drexel University's Urban Health Collaborative, through the SALURBAL (Salud Urbana en America Latina) Collaborative — sponsored by The Wellcome Trust (UK).

BACKGROUND

- Most research examining urban design elements linked with active travel behaviors has focused on walking behaviors; and stems from high-income countries.
- Cycling for transport is a promising source of physical activity as it provides a healthy and sustainable travel option that enables longer trips than walking.

MEXICO CITY'S PUBLIC BICYCLING-SHARING PROGRAM: *ECOBICI*

- Launched in 2009
- Originally ran by the Ministry of the Environment
 - → now by the **Ministry of Urban Mobility**.
- **>**2019:
 - >480 stations
 - >4500 bicycles
 - >30,000 average daily trips

Plan A: The Ecobici Expansion Evaluation Study in Mexico City

Aim:

To assess the effect of EcoBici program expansions on cycling for transportation, total active transport, & overall physical activity.

Plan A: The Ecobici Expansion Evaluation Study in Mexico City

Component

Area-level quasi-experimental study

• To measure longitudinal trends in <u>bicycle ridership</u> across three areas of the city (original EcoBici service area, EcoBici expansion area, and control area), before and after the implementation of Ecobici expansions.

Component

Individual cross-sectional study

- To investigate which transportation modes are substituted when transitioning to Ecobici
- To test differences in overall and <u>transport-related physical activity</u> between Ecobici users, other cases of bicycle riders and non-bicycle users.

Component

Secondary data analysis

• To explore longitudinal variations in the demographics of Ecobici users, travel information and the contribution of Ecobici to meeting the PA recommendations among users.

I. Area-level quasiexperimental study

To measure longitudinal trends in bicycle ridership across three areas of the city

- 1. Ecobici area
- 2. Priority areas for Ecobici expansion
- 3. Comparison areas (i.e. where Ecobici expansions are not being considered).

Plan A: Sampling

- Using GIS shapefiles for the road and cycle networks, we selected aerial clusters of road segments for direct observation:
 - ✓ In existing EcoBici service area
 - ✓ In priority areas for expansion
 - ✓ In control neighborhoods
- ➤ We developed & validated a new direct observation tool (SOTRAVEL) adapted from SOPARC

Plan B: Timeline

A natural experiment within a natural experiment (COVID-19)

- > In March 2020, the EcoBici expansion plans were halted due to the COVID-19 pandemic
- ➤ In June 2020, the City announced that the expansion plans would continue in June 2021
- >60% of all trips in Mexico City are not by car; during the pandemic...
 - ✓ Mass transit operations were heavily reduced
 - ✓ The City announced a plan to roll out temporary, high quality bicycle lanes throughout the city, with priority for high capacity roads

1. Temporary bike lanes

- 1. High-capacity roads
- 2. Neighborhood roads

2. Regular bikelanes

- 1. High-capacity roads
- 2. Neighborhood roads

3. No bikelanes

- 1. High-capacity roads
- 2. Neighborhood roads

Things got a little complicated...

Plan B: Timeline

Preliminary results and other outcomes

- Preliminary results suggest that temporary cycle lanes:
 - Prevented declines in cycling during COVID-19 among pre-pandemic cyclists.
 - Possibly attracted new urban cyclists (substituting public transit use)

Temporary bicycle lanes in high-capacity roads became so popular that the public organized to request this infrastructure to become permanent (post-pandemic).

THE LANCET This journal Journals Publish Clinical Global health Multimedia Events COMMENT | VOLUME 398, ISSUE 10298, P370-372, JULY 31, 2021 Scaling up urban infrastructure for physical activity in the COVID-19 pandemic and beyond Alejandra Jáuregui • Estelle Victoria Lambert • Jenna Panter • Clover Moore • Deborah Salvo Published: July 21, 2021 • DOI: https://doi.org/10.1016/S0140-6736(21)01599-3 • © Check for updates

Key Lessons

- ➤ Working with **funders** that support work assessing the general research topic, but who can be flexible in modifying the specifics, is key.
- ➤ Planning for "the unexpected" and adding sufficient time (and some more!) for post-evaluation measures is recommended.
- ➤ Building and maintaining close partnerships with key city actors that can provide accurate and timely information of moving targets, priorities, and build dates is critical.
- > Scientific rigor must prevail! However...our definition of rigor should be adapted for natural experiments.

i GRACIAS!

Taking it to the STREETS: Lessons Learned from Evaluating Infrastructure to Increase Active Commuting to Schools

Leigh Ann Ganzar, DrPH MPH

Deborah Salvo, PhD; Sarah Bentley, MPH; Deanna Hoelscher, PhD, RDN, LN, CNS, FISBNPA

- 1) STREETS study overview
- 2) Strengths and challenges of study
- 3 Lessons learned

STREETS Study Aims

To evaluate the effects of \$27.5 million USD allocated to Safe Routes to School infrastructure in Austin, Texas, USA.

Aim 1

Determine effects of SRTS infrastructure changes on child physical activity.

Aim 2

Determine effects of SRTS infrastructure changes on active commuting to school.

Aim 3

Examine the **cost effectiveness** of SRTS infrastructure changes on child physical activity levels.

Overview of quasi-experimental study design

Serial cross-sectional study

Sample

70 Austin schools with SRTS improvements 30 comparison schools

Measurements

- ✓ Active commuting to school tally
- ✓ School policy survey
- ✓ School demographics
- ✓ GIS measures of built environment

Cohort study

Sample

Subset of 30 Austin schools (3 schools per city council district)
Subset of 15 comparison schools

Measurements

- ✓ Accelerometer and GPS
- ✓ Child survey
- ✓ Parent survey
- ✓ MAPS-SRTS environmental audit

STREETS strengths, challenges, and lessons learned

Based on four basic design elements of research studies.¹

- Intervention
- Observations/measurements
- Groups
- Time

Intervention

Strengths

Close partnership with the City of Austin Safe Routes to School

- Communication
- Access to intervention data
 - Walk audits
 - Cost
 - Project dates and details

Challenges

Assessing exposure

- Variation in SRTS infrastructure projects
- Range of costs per school = [\$4,123 - \$2,765,412]
- Implementation score

Multiple interventions occurring at the same time

Observations/measurements

Strengths

Working with schools allowed for measurement of all children at school

Multiple pre/post measures to control for secular changes

Measurement of multiple potential confounders and combinations of methods to address different sources of bias

Observations/measurements

Challenges

Working with schools required principal and district approval

COVID school closures impacted measurement methods and timeline

Construction timeline impacted measurements

Proposed measurements

Year 4 Year 1 Year 3 Year 2 Year 5 (2021 - 2022)(2020 - 2021)(2022 - 2023)(2018 - 2019)(2019 - 2020)**Serial cross-**Wave Wave 3 Wave 1 Wave 2 Wave 8 Wave 9 Wave 4 Wave 5 Wave 7 Wave 6 sectional study 10

Cohort study

3rd Grade

4th grade 5th grade

5th grade

Actual measurements

Year 1 (2018 – 2019) Year 2 (2019 – 2020)

Year 3 (2020 – 2021) Year 4 (2021 – 2022)

Year 5 (2022 – 2023)

Year 6 (2023 – 2024)

Serial crosssectional study

Wave 1

Wave 2

Wave 3 Wave 4 Wave 5 Wave 6

Wave 7 Wave 8 Wave 9 Wave 10 Wave 11

Missed due to COVID

Cohort study

Schools in council districts 1 & 10

3rd Grade

le

4th grade Biased by COVID

5th grade 5th grade

Schools in council districts 2 – 9 and comparison

Re-recruit and schools missed due to COVID

3rd Grade

4th grade 5th grade

5th grade

3rd Grade

4th grade

5th grade 5th grade

Groups

Challenges

Original proposal had San Antonio schools as comparison groups

 Recruitment challenges required that we use Austin-area schools as original schools didn't see benefit of participating

Ongoing recruitment of schools

Attrition over time of schools

Time

Strengths

Flexibility in funding

6 years of data with a no-cost extension

Challenges

Generational effects of built environment intervention

Construction delays and timelines

Austin SRTS infrastructure school status

Next steps

- Measurements are complete
- Analysis

School-level Active Commuting to School in Central Texas, 2019-2024

Summary of lessons learned

Importance of partners (COA, school districts)

Importance of shared data with partners

Flexibility in study design

Flexibility in research questions

COVID

Flexibility in funding and timeline

Measuring dose

Graded implementation score

Preparing for intervention timing issues

- Construction delays
- Delayed effects

Acknowledgements

STREETS Principal Investigator: Dr. Deanna Hoelscher

STREETS co-investigators

- Dr. Deborah Salvo
- Dr. Adriana Perez
- Dr. Shelton Brown
- Dr. Bill Kohl
- Dr. Kevin Lanza
- Dr. Casey Durand

Study Staff

Sarah Bentley, Dr. Yuzi Zhang, Dr. Katie Burford, Brooklyn Baker, Martha Diaz

School district, campus, and study participants

Thank you!

Leigh Ann Ganzar, DrPH MPH

Email: lganzar@pdastats.com

msdcenter.org