Hypothesis Testing

Tests of hypotheses

Confidence interval: Form an interval (on the basis of data)

of plausible values for a population pa-

rameter.

Test of hypothesis: Answer a yes or no question regarding

a population parameter.

Examples:

- → Do the two strains have the same average response?
- Is the concentration of substance X in the water supply above the safe limit?
- Does the treatment have an effect?

Example

We have a quantitative assay for the concentration of antibodies against a certain virus in blood from a mouse.

We apply our assay to a set of ten mice before and after the injection of a vaccine. (This is called a "paired" experiment.)

Let X_i denote the differences between the measurements ("after" minus "before") for mouse i.

We imagine that the X_i are independent and identically distributed Normal(μ , σ).

 \longrightarrow Does the vaccine have an effect? In other words: Is $\mu \neq 0$?

The data

Hypothesis testing

We consider two hypotheses:

Null hypothesis, H_0 : $\mu = 0$ Alternative hypothesis, H_a : $\mu \neq 0$

Type I error: Reject H_0 when it is true (false positive)

Type II error: Fail to reject H₀ when it is false (false negative)

We set things up so that a Type I error is a worse error (and so that we are seeking to prove the alternative hypothesis). We want to control the rate (the significance level, α) of such errors.

- \longrightarrow Test statistic: $T = (\overline{X} 0)/(S/\sqrt{10})$
- We reject H₀ if $|T| > t^*$, where t^* is chosen so that $Pr(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = Pr(|T| > t^* \mid \mu = 0) = \alpha$. (generally $\alpha = 5\%$)

Example (continued)

Under H_0 (i.e., when $\mu = 0$),

$$T = (\overline{X} - 0)/(S/\sqrt{10}) \sim t(\text{df} = 9)$$

We reject H_0 if |T| > 2.26.

As a result, if H₀ is true, there's a 5% chance that you'll reject it!

For the observed data:

$$\bar{x}$$
 = 1.93, s = 2.24, n = 10 T = (1.93 - 0) / (2.24/ $\sqrt{10}$) = 2.72

 \longrightarrow Thus we reject H₀.

The goal

- → We seek to prove the alternative hypothesis.
- \longrightarrow We are happy if we reject H₀.
- \longrightarrow In the case that we reject H₀, we might say: Either H₀ is false, or a rare event occurred.

Another example

Question: is the concentration of substance X in the water supply above the safe level?

$$X_1, X_2, \ldots, X_4 \sim \text{iid Normal}(\mu, \sigma).$$

 \longrightarrow We want to test H₀: $\mu \ge 6$ (unsafe) versus H_a: $\mu < 6$ (safe).

Test statistic:
$$T = \frac{\overline{X} - 6}{S/\sqrt{4}}$$

If we wish to have the significance level α = 5%, the rejection region is $T < t^* = -2.35$.

One-tailed vs two-tailed tests

If you are trying to prove that a treatment improves things, you want a one-tailed (or one-sided) test.

You'll reject H_0 only if $T < t^*$.

If you are just looking for a difference, use a two-tailed (or two-sided) test.

You'll reject H_0 if $T < t^*$ or $T > t^*$.

P-values

P-value: \longrightarrow the smallest significance level (α) for which you would fail to reject H₀ with the observed data.

> the probability, if H₀ was true, of receiving data as extreme as what was observed.

$$X_1, \ldots, X_{10} \sim \text{iid Normal}(\mu, \sigma), \qquad H_0: \mu = 0; H_a: \mu \neq 0.$$

$$H_0$$
: $\mu = 0$; H_a : $\mu \neq 0$.

$$\bar{x}$$
 = 1.93; s = 2.24

$$T_{obs} = \frac{1.93 - 0}{2.24/\sqrt{10}} = 2.72$$

P-value =
$$Pr(|T| > T_{obs}) = 2.4\%$$
.

$$2*pt(-2.72,9)$$

Another example

$$X_1, \ldots, X_4 \sim \text{Normal}(\mu, \sigma)$$
 $H_0: \mu \geq 6; H_a: \mu < 6.$

$$H_0$$
: $\mu \ge 6$; H_a : $\mu < 6$.

$$\bar{x}$$
 = 5.51; s = 0.43

$$T_{obs} = \frac{5.51 - 6}{0.43/\sqrt{4}} = -2.28$$

P-value = Pr(T <
$$T_{obs} \mid \mu = 6$$
) = 5.4%.

$$pt(-2.28, 3)$$

→ The P-value quantifies how likely it is to get data as extreme as the data observed, assuming the null hypothesis was true.

Recall: We want to prove the alternative hypothesis (i.e., reject H₀, receive a small P-value)

Hypothesis tests and confidence intervals

 \rightarrow The 95% confidence interval for μ is the set of values, μ_0 , such that the null hypothesis $H_0: \mu = \mu_0$ would not be rejected by a two-sided test with $\alpha = 5\%$.

The 95% CI for μ is the set of plausible values of μ . If a value of μ is plausible, then as a null hypothesis, it would not be rejected.

For example:

$$9.98 \ 9.87 \ 10.05 \ 10.08 \ 9.99 \ 9.90$$
 assumed to be iid Normal(μ, σ)

$$\bar{x} = 9.98$$
; $s = 0.082$; $n = 6$; $qt(0.975, 5) = 2.57$

The 95% CI for μ is

$$9.98 \pm 2.57 \times 0.082 / \sqrt{6} = 9.98 \pm 0.086 = (9.89,10.06)$$

Power

The power of a test = $Pr(reject H_0 | H_0 is false)$.

The power depends on:

- The null hypothesis and test statistic
- The sample size
- ullet The true value of μ
- \bullet The true value of σ

Why "fail to reject"?

If the data are insufficient to reject H_0 , we say,

The data are insufficient to reject H_0 .

We shouldn't say, We have proven H_0 .

- We may only have low power to detect anything but extreme differences.
- We control the rate of type I errors ("false positives") at 5% (or whatever), but we may have little or no control over the rate of type II errors.

The effect of sample size

Let X_1, \ldots, X_n be iid Normal(μ, σ).

We wish to test $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$.

Imagine $\mu = \mu_a$.

n = 4

n = 16

Testing the difference between two means

Strain A: $X_1, \ldots, X_n \sim \text{iid Normal}(\mu_A, \sigma_A)$

Strain B: $Y_1, \ldots, Y_m \sim iid Normal(\mu_B, \sigma_B)$

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$

Test statistic:
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}}$$

Reject H₀ if $|T| > t_{\alpha/2}$

If H₀ is true, then T follows (approximately) a t distr'n with k d.f.

k according to the nasty formula from a previous lecture.

Example

Strain A: n = 12, sample mean = 103.7, sample SD = 7.2

Strain B: n = 9, sample mean = 97.0, sample SD = 4.5

$$\widehat{SD}(\overline{X} - \overline{Y}) = \sqrt{\frac{7.2^2}{12} + \frac{4.5^2}{9}} = 1.80$$

$$T = (103.7 - 97.0)/1.80 = 2.60.$$

k = ... = 18.48, so C = 2.10. Thus we reject H₀ at $\alpha = 0.05$.

What to say

When rejecting H₀:

- The difference is statistically significant.
- The observed difference can not reasonably be explained by chance variation.

When failing to reject H_0 :

- There is insufficient evidence to conclude that $\mu_A \neq \mu_B$.
- The difference is not statistically significant.
- The observed difference could reasonably be the result of chance variation.

What about a different significance level?

Recall T =
$$2.60$$
 k = 18.48

If
$$\alpha = 0.10$$
, $C = 1.73 \implies \text{Reject H}_0$

If
$$\alpha = 0.05$$
, $C = 2.10 \implies \text{Reject H}_0$

If
$$\alpha = 0.01$$
, $C = 2.87 \Longrightarrow Fail to reject $H_0$$

If
$$\alpha = 0.001$$
, $C = 3.90 \implies \text{Fail to reject H}_0$

P-value: the smallest α for which you would still reject H₀ with the observed data.

With these data, P = 2 * (1-pt(2.60, 18.48)) = 0.018.

Another example

Suppose I measure the blood pressure of 6 mice on a low salt diet and 6 mice on a high salt diet. We wish to prove that the high salt diet causes an increase in blood pressure.

We imagine
$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu_L, \sigma_L)$$
 low salt $Y_1, \ldots, Y_m \sim \text{iid Normal}(\mu_H, \sigma_H)$ high salt

We want to test H_0 : $\mu_L = \mu_H$ versus H_a : $\mu_L < \mu_H$

 \rightarrow Are the data compatible with H₀?

A one-tailed test

Test statistic:
$$T = \frac{\overline{X} - \overline{Y}}{\widehat{SD}(\overline{X} - \overline{Y})}$$

Since we seek to prove that μ_L is smaller than μ_H , only large negative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr(T < C | $\mu_L = \mu_H$) = α .

VS

The example

Low salt: n = 6; sample mean = 51.0, sample SD = 10.0

High salt: n = 6; sample mean = 69.1, sample SD = 15.1

$$\bar{x} - \bar{y} = -18.1$$
 $\widehat{SD}(\overline{X} - \overline{Y}) = 7.40$ $T = -18.1 / 7.40 = -2.44$

k = 8.69. If $\alpha = 0.05$, then C = -1.84.

Since T < C, we reject H₀ and conclude that $\mu_L < \mu_H$.

Note: P-value = pt (-2.44, 8.69) = 0.019.

Always give a confidence interval!

$$P = 0.019$$

$$P = 0.019$$

→ Make a statistician happy: draw a picture of the data.

Example

Suppose I do some pre/post measurements.

I make some measurement on each of 5 mice before and after some treatment.

Question: Does the treatment have any effect?

Mouse	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0

Pre/post example

In this sort of pre/post measurement example, study the differences as a single sample.

Why? The pre/post measurements are likely associated, and as a result one can more precisely learn about the effect of the treatment.

Mouse	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0
Difference	-0.8	9.8	10.5	9.3	16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = \dots = (1.4, 16.5)

P-value for test of $\mu_{\text{before}} = \mu_{\text{after}}$: 0.03.

Summary

- ullet Tests of hypotheses o answering yes/no questions regarding population parameters.
- There are two kinds of errors:
 - ∘ Type I: Reject H₀ when it is true.
 - ∘ Type II: Fail to reject H₀ when it is false.
- We seek to reject the null hypothesis.
- If we fail to reject H₀, we do not "accept H₀".
- ullet P-value \to the probability, if H_0 is true, of obtaining data as extreme as was observed. Pr(data | no effect) rather than Pr(no effect | data).
- ullet Power \to the probability of rejecting H_0 when it is false.

Was the result important?

- Statistically significant is not the same as important.
- A difference is "statistically significant" if it cannot reasonably be ascribed to chance variation.
- With lots of data, small (and unimportant) differences can be statistically significant.
- With very little data, quite important differences will fail to be significant.
- Always look at the confidence interval as well as the P-value.

Does the difference prove the point?

- A test of significance does not check the design of the study.
- With observational studies or poorly controlled experiments, the proof of statistical significance may not prove what you want.
- Example: consider the tick/deer leg experiment. It may be that ticks are not attracted to deer-gland-substance but rather despise the scent of latex gloves and deer-gland-substance masks it.
- Example: In a study of gene expression, if cancer tissue samples were always processed first, while normal tissue samples were kept on ice, the observed differences might not have to do with normal/cancer as with iced/not iced.
- Don't forget the science in the cloud of data and statistics.