Bewley-type Models: Huggett & Aiyagari

Macroeconomics 3: TA class #5

Andrea Pasqualini

Bocconi University

8 March 2021

Plan for Today

Objective: Replicate the results in [Huggett, 1993] and [Aiyagari, 1994]

Sub-goals:

- Understand the papers
- Learn about "binning" (a.k.a., non-stochastic simulations)
- ► Learn about transition dynamics (a.k.a., MIT shocks)

Overview

[Huggett, 1993]

- ▶ Tries to address the Equity Premium Puzzle
- Uses a simple exchange economy with incomplete insurance
- Solid numerical approach: guaranteed to converge
- Finds that incomplete cannot account for the EPP

[Aiyagari, 1994]

- Tries to see if precautionary savings explain aggregate savings
- Uses an RBC economy with incomplete insurance
- Tentative numerical approach: converges, maybe, nobody knows why
- Finds that precautionary savings cannot account for aggregate savings

Huggett: Overview

Question How to address the Equity Premium Puzzle (EPP) in macro models?

Approach A heterogeneous-agents model with incomplete insurance

Challenge Need to nail mechanism and quantification

Findings Preventing over-saving does it qualitatively, but not quantitatively

Huggett: Methodology

Equity Premium Puzzle: spread between risk-free rate and risky rate too small in models relative to the data

Two avenues

- Risky rate too small in models
- Risk-free rate too large in models

Huggett

Risk-free rate is too large in models

(at the time, innovative!)

- Can reduce the risk-free rate by reducing the demand for the risk-free asset
- Two alternatives

Prevent lenders from saving too much

(unrealistic assumption)

Prevent borrowers from taking too much debt

(more realistic)

Representative-agent models cannot cut it: requires a zero net financial position in GE

Huggett: Model

Ex-ante identical consumers solve the following

$$\max_{C_t, A_{t+1}} \mathbf{E}_0 \left(\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \right)$$
s.t.
$$\begin{cases} C_t + A_{t+1} \leq Y_t + (1+r_t)A_t & \forall \ t \\ A_{t+1} \geq \underline{A} & \forall \ t \\ \log(Y_{t+1}) = (1-\rho)\mu + \rho \log(Y_t) + \varepsilon_{t+1} & \forall \ t \\ \varepsilon_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) & \forall \ t \end{cases}$$

The borrowing constraint \underline{A} is such that it may bind for some consumers (i.e., \underline{A} is higher than the natural debt limit)

6/1

Huggett: Numerical Approach

- 1. At iteration j, guess an equilibrium interest rate $r^{(j)}$
- 2. Solve for the policy function A'(A, Y)
- 3. Combine A'(A, Y) with Π to obtain the endogenous transition matrix Q
- 4. Compute the ergodic distribution $\lambda(A, Y)$ by iterating Q enough times
- 5. Compute the net excess demand $E^d(r) = \sum_A \sum_Y \lambda(A, Y) A'(A, Y)$
- 6. Use a root-solver to bring the LHS to the RHS (i.e., zero)
 - ► If $E^d(r^{(j)}) > 0$, then $r^{(j)} < r^*$
 - If $E^{d}(r^{(j)}) < 0$, then $r^{(j)} > r^{*}$
 - Set r^(j+1) accordingly and repeat 2–6

Aiyagari: Overview

Question What are the determinants of aggregate savings in the US?

Approach A heterogeneous-agents RBC model

Challenge Lucas' diversification argument: idiosyncrasies average out in the aggregate

Findings

- Precautionary savings do not matter for aggregate savings, quantitatively
- Can generate precautionary savings without prudence
- Model matches the US cross-sectional distribution of household wealth

Aiyagari: Methodology

Fix aggregate (capital) savings *K*

Look at composition of the aggregate

- Thourough exploration of endogenous distribution of agents
- ► Focus on left tail of wealth distribution (constrained, or almost, agents)

Features of the model

- ► Relatability: just an RBC model
- Source of heterogeneity: labor endowments
- No aggregate uncertainty: prices r and w fixed in equilibrium

Aiyagari: Model

Households (demand side)

$$\max_{c_t, k_{t+1}} \mathbf{E}_0 \left(\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma} \right)$$
s.t.
$$\begin{cases} c_t + k_{t+1} \le wl_t + (1+r)k_t & \forall \ t \\ c_t, k_{t+1} \ge 0 & \forall \ t \\ l_{t+1} = (1-\rho)\mu + \rho l_t + \varepsilon_{t+1} & \forall \ t \\ \varepsilon_t \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, \sigma^2) & \forall \ t \end{cases}$$

Firms (supply side)

(note: no time subscripts)

$$\max_{K,L} AK^{\alpha}L^{1-\alpha} - rK - wL$$

Market clearing (recursive notation, ergodic equilibrium)

$$K = \int_{k} \int_{l} \lambda(k, l) \, k'(k, l) dl \, dk$$

Aiyagari: Numerical Approach

- 1. At iteration j, guess an aggregate level of capital holdings $K^{(j)}$
- 2. Use the FOCs of the firm to compute *r* and *w*
- 3. Solve for the households' policy function k'(k, l)
- 4. Combine Π with k'(k, l) to obtain the endogenous transition matrix Q
- 5. Compute the ergodic distribution $\lambda(k, l)$ by iterating Q enough times
- 6. Compute aggregate savings \hat{K} as

$$\hat{K} \equiv \sum_{k} \sum_{l} \lambda(k, l) \ k'(k, l)$$

- 7. Check if \hat{K} is consistent with $K^{(j)}$
 - ▶ If $\hat{K} \neq K^{(j)}$, then set $K^{(j+1)}$ using the dampening scheme for $\theta \in [0, 1]$

$$K^{(j+1)} \equiv \theta \hat{K} + (1-\theta)K^{(j)}$$

Repeat steps 2–7

Are These Bewley-Type Models? Yes!

- Consumers are ex-ante identical
 - One maximization problem describes everybody (ex-ante!)
 - Idiosyncratic uncertainty and policy functions place consumers differently on the distribution of asset holdings
- In equilibrium, consumers are heterogeneous
 - At the "dawn of time," there is a distribution of agents, depending on endowments
 - Based on (different) income, consumers choose (different) savings
- At the *ergodic* equilibrium
 - Consumers are distributed according to an endogenous ergodic distribution
 - ▶ The ergodic distr. does **not** mean that there is no dynamics (i.e., not a deterministic steady s.)
 - Across periods, consumers are "reshuffled" such that the ergodic distribution is maintained
- Technical note (nothing to do with Bewley type-ness)
 - ► There is idiosyncratic uncertainty
 - ► There is **no** aggregate uncertainty

Comparing Huggett & Aiyagari

They look like the same model... They are, almost

	Huggett	Aiyagari
Supply side	Exogenous	Endogenous
Financial market	Asset	Capital
Research question	Equity Premium Puzzle	Composition of aggr. savings
Numerical solution	Net excess demand	Consistency w/ guess

Fundamental difference in numerical algorithm:

- ▶ Aiyagari assumes that K is a sufficient statistic for $\lambda(k, l)$
- ► Assumption is baked-in the optimization problem of firms (i.e., FOC wrt *K*)
- This assumption makes the algorithm unreliable, from a maths/theory point of view
- "It converges, but nobody knows why"
 - Is the convergence point an equilibrium?
 - Is the equilibrium unique?
 - Is this equilibrium cherry-picked?

Practice Time

Moving to a Jupyter Notebook

References

Aiyagari, S. R. (1994). Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics, 109(3):659–684.

Huggett, M. (1993).

The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance Economies. *Journal of Economic Dynamics and Control*, 17(5-6):953–969.