Angewandte Mathematik Zufallszahlen

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Motivation

Zufallszahlen im Path Tracing für Global Illumination

@igs

Angewandte Mathematik für die Informatik – SS2022

Motivation

Zufallszahlen für Schlüssel in der Kryptographie

Inhalt

- Einführung und Beispiele
- Arten von Zufallszahlen
- Pseudozufallszahlengeneratoren
- Umrechung gleichverteilter Zufallszahlen

universite innsbruck

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung und Beispiele
- Arten von Zufallszahlen
- Pseudozufallszahlengeneratoren
- Umrechung gleichverteilter Zufallszahlen

Angewandte Mathematik für die Informatik – SS2022

Zufallszahlen

- Eine Zufallszahl ist eine Zahl, die zufällig gemäß z.B. einer Vorschrift oder einem Experiment erzeugt wird
- (Echte) Zufallszahlen folgen dabei einer bestimmten Verteilung
- Zum Beispiel tritt jedes Ergebnis eines (fairen) Münzoder Würfelwurfs mit gleicher Wahrscheinlichkeit auf
- Zufallszahlen werden benötigt u.a. in numerischen Berechnungen, in der Kryptographie, zur Simulation physikalischer Phänomene, zum Testen von Algorithmen, in künstlicher Intelligenz, etc.

Angewandte Mathematik für die Informatik – SS2022

Würfe mit (fairem) sechsseitigen Würfel (N groß)

■ Schuhgrößen (w (154): ■ / m (158): ■), US-Maße

Beispiel – Annäherung von π

lacktriangle Zufällige Tupel in \mathbb{R}^2 als Annährung von Flächen

$$\frac{A_{Kreis}}{A_{Quadrat}} = \frac{\pi}{4} \Rightarrow \pi = 4 \frac{A_{Kreis}}{A_{Quadrat}}$$

$$\pi = 4 \frac{A_{\mathit{Kreis}}}{A_{\mathit{square}}} = 4 \frac{4 A_{\mathit{Viertelkreis}}}{4 A_{\mathit{Viertelquadrat}}}$$

$$\pi \approx \frac{4 \cdot n_{innen}}{n_{gesamt}} = \frac{4 \cdot 18}{23} = 3.1304...$$

Angewandte Mathematik für die Informatik – SS2022

5 inns

Beispiel – Berechnung eines Integrals

Zufallszahlen für Monte-Carlo Integration

$$I = \int_{0}^{1} e^{x} dx = e^{x} \Big|_{0}^{1} = e - 1 \approx 2.718281... - 1 \approx 1.718...$$

Angewandte Mathematik für die Informatik – SS2022

Beispiel - Berechnung eines Integrals

Zufallszahlen für Monte-Carlo Integration

$$I = \int_{0}^{1} e^{x} dx \approx \frac{1}{N} \sum_{i=1}^{N} e^{\xi_{i}} = \hat{I}$$
 (gleichverteilte Zufallszahlen)

Angewandte Mathematik für die Informatik – SS2022

universit innsbrud

Beispiel – Berechnung eines Integrals Resultat einer zufälligen Auswertung: (Standardabweichung) Nσ 10 1.5490 0.1353 100 1.6995 0.0540 1 000 1.7254 0.0163 10 000 1.7245 0.0049 100 000 1.7214 0.0015 1 000 000 1.7185 0.0004 $\log(N)$ **@igs** Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung und Beispiele
- Arten von Zufallszahlen
- Pseudozufallszahlengeneratoren
- Umrechung gleichverteilter Zufallszahlen

universit

Angewandte Mathematik für die Informatik – SS2022

Arten von Zufallszahlen

- Echte Zufallszahlen resultieren aus realen, nicht (bzw. schwer) vorhersagbaren physikalischen Prozessen
- Beispiele: Würfel-/Münzwürfe, radioaktiver Zerfall, Lottoziehungen, quantenphysikalische Effekte, etc.
- Für viele Anwendungen sind diese nicht praktikabel (Kosten, Zeitaufwand, Komplexität)
- Im Computer werden statt dessen Pseudozufallszahlen verwendet, die deterministisch berechnet werden
- Je nach Algorithmus erfüllen die erzeugten Zahlen nur zum Teil die Eigenschaften echter Zufallszahlen

Angewandte Mathematik für die Informatik - SS2022

9

Echte Zufallszahlen

- Bespiele:
 - <u>hotbits</u>:

Verwendet eine eigene Hardware bestehend aus Geigerzähler und Strahlungsquelle Cæsium-137.

- <u>random.org</u>:
 - Mehrere Radios liefern Rauschen aus der Atmosphäre
- <u>Lavarand</u>:
 Bilder von Lavalampen erzeugen eine Zufallszahl
- Gut für Abbildung echter Zufallsprozesse
- Anzahl an Zufallszahlen pro Sekunde limitiert

Angewandte Mathematik für die Informatik – SS2022

Historisches Beispiel – Buch mit Zufallszahlen

 "A Million Random Digits with 100,000 Normal Deviates" (RAND Cooperation 1955)

TABLE OF RANDOM DIGITS

		,		
93716	16894	66083	24653	84609
32886	59780	08355	60860	29735
92052	46215	55121	29281	59076
95819	06831	00911	98936	76355
39510	35905	14060	40619	29549
	••••			
27699	06494	14845	46672	61958
92962	61773	41839	55382	17267
10274	12202	39685	23309	10061
75867	20717	74416	53166	35208
85783	47619	53152	67433	35663
35075	33949	42614	29297	01918
56623	34442	34994	41374	70071
36409	83232	99385	41600	11133
57620	52606	66497	68646	78138
07399	37408	48509	23929	27482
	0.200			

Angewandte Mathematik für die Informatik – SS2022

12

Beispiel - Schattenberechnung im Ray Tracing

- Monte Carlo Sampling → sehr viele Zufallszahlen möglichst schnell
- Visuelle Qualität der Schatten abhängig von der Wahl der Methode zur Erzeugung der Zufallszahlen

36 Halton-Sequenz Samples

Angewandte Mathematik für die Informatik – SS2022

Pseudozufallszahlengeneratoren

- Ziel: Erzeugen einer Zahlenfolge, üblicherweise im Intervall [0,1], die möglichst genau den idealen Eigenschaften von echten Zufallszahlen entspricht
- Zufallszahlen meistens gleichverteilt; andere Verteilungen und/oder Intervalle durch Transformation
- Erzeugung sollte möglichst schnell/effizient sein
- Manchmal ist es von Interesse (z.B. für Tests), dass diese reproduzierbar sind
- Oft ist ein Startwert (engl. "seed") erforderlich, von welchem Zahlen deterministisch erzeugt werden

Angewandte Mathematik für die Informatik - SS2022

12

Inhalt

- Einführung und Beispiele
- Arten von Zufallszahlen
- Pseudozufallszahlengeneratoren
- Umrechung gleichverteilter Zufallszahlen

MASSFORK VALUE

Angewandte Mathematik für die Informatik – SS2022

Mittquadratmethode

- Erstes Beispiel eines Zufallszahlengenerators (von Neumann und Metropolis, 1940er Jahre)
- Algorithmus:
 - Start mit vierstelliger, positiver ganzer Zahl z_0
 - Berechne $z_i \cdot z_i$ (Zahl mit bis zu acht Ziffern)
 - Mittlere vier Ziffern ergeben Zufallszahl r_i im Intervall [0,1] (als Nachkommastellen), sowie die neue vierstellige Zahl z_{i+1}

i	z_i	$z_i \cdot z_i$	r_i
0	1234	01 5227 56	0.5227
1	5227	27 3215 29	0.3215
2	3215	09 7656 25	0.7656

Angewandte Mathematik für die Informatik – SS2022

4.4

Mittquadratmethode - Nachteile

Zahlenfolgen haben evtl. Fixwerte oder kurze Zyklen

i	z_i	$z_i \cdot z_i$
0	2176	04734976
1	7349	54007801
2	0078	00006084
3	0060	00003600
4	0036	00001296
5	0012	00000144
6	0001	00000001
7	0000	00000000

i	z_i	$z_i \cdot z_i$
0	3792	14379264
1	3792	

i	z_i	$z_i \cdot z_i$
0	5030	25300900
1	3009	09054081
2	0540	00291600
3	2916	08503056
4	5030	

Angewandte Mathematik für die Informatik – SS2022

Lineare Kongruenzgeneratoren

• Erzeugen rekursiv eine Folge ganzer Zahlen z_1, z_2, \ldots im Intervall [0,m-1] mittels

$$z_{i+1} = (a \cdot z_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

mit Modulus m=2,3,4,..., Startwert $z_0 \in \{0,1,...,m-1\}$, Faktor a und Inkrement c, mit $a,c \in \{1,2,...,m-1\}$

- Zufallszahlen in [0, (m-1)/m] ergeben sich dann als $r_i = \frac{z_i}{m}$
- Wahl der Werte z_0 , a, c, m hat großen Einfluss auf die statistischen Eigenschaften der Zahlenfolge

Lineare Kongruenzgeneratoren

- Je nach Wahl der Parameter ergeben sich evtl.
 niedrige Periodenlängen (maximal möglich: m)
- Beispiel: a = 13, c = 0, m = 64 (mit verschiedenen z_0)

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
z_i	1	13	41	21	17	29	57	37	33	45	9	53	49	61	25	5	1
z_i	2	26	18	42	34	58	50	10	2								
z_i	3	39	59	63	51	23	43	47	35	7	27	31	19	55	11	15	3
z_i	4	52	36	20	4												

Angewandte Mathematik für die Informatik – SS2022

Periodenlängen

- Ein Linearer Kongruenzgenerator besitzt die volle Periodenlänge *m*, wenn gilt:
 - -m und c sind teilerfremd (d.h. der einzige positive ganze Teiler ist 1)
 - Wenn 4 ein Teiler von m ist, dann auch von a-1
 - Wenn Primzahl q ein Teiler von m ist, dann dividiert q auch a–1
- Sind diese Bedingungen erfüllt, ist die Periodenlänge auch unabhängig vom Startwert

Angewandte Mathematik für die Informatik – SS2022

Maximale Periodenlänge – Beispiel

- Zahlenfolge für a = 41, c = 23, m = 32, $z_0 = 0$ $z_{i+1} = (41 \cdot z_i + 23) \mod 32$, i = 0,1,2,...

universita innsbruck

Satz von Marsaglia

- Weist man die durch einen Linearen Kongruenzgenerator erzeugten Zufallszahlen Tupeln in \mathbb{R}^k zu, dann liegen diese auf maximal $\sqrt[k]{m \cdot k}$! parallelen Hyperebenen
- Beispiel in R² (mit Werten der vorherigen Folie)

z.B.:
$$(z_2, z_3) = (6,13)$$

$$\left(z_4, z_5\right) = \left(12, 3\right)$$

Angewandte Mathematik für die Informatik - SS2022

Halton-Sequenzen

- lacktriangle Zufällig erscheinende Punkte in \mathbb{R}^2 , die einen Bereich gleichmäßig abdecken, können deterministisch über Halton-Sequenzen erzeugt werden
- Startpunkt sind dabei van-der-Corput Sequenzen, gegeben zur Basis b
- Eine natürliche Zahl $n \ge 1$ ist gegeben, für Basis b mit L Ziffern d_k , als:

$$n = \sum_{k=0}^{L-1} d_k(n)b^k \qquad 0 \le d_k(n) < b$$

■ Beispiel (L = 4): $13_{10} = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1101_2$

Angewandte Mathematik für die Informatik – SS2022

Halton-Sequenzen

 Die n-te Zahl der van-der-Corput Sequenz zur Basis b ist damit gegeben als:

$$g_b(n) = \sum_{k=0}^{L-1} d_k(n)b^{-(1+k)}$$

- Es werden somit die Ziffern der Zahl n, in Basis b, invertiert nach dem Dezimalpunkt geschrieben
- Durch Kombination von Zahlen aus solchen Sequenzen, jeweils erzeugt mit teilerfremden Basen, ergeben sich pseudozufällige Tupel (die sogenannten Halton-Sequenzen)

Angewandte Mathematik für die Informatik – SS2022

22

Halton-Sequenzen

Beispiel: van-der-Corput Sequenz zur Basis 2

n Dezimal	0	1	2	3	4	5	6	7
n Binär	0000	0001	0010	0011	0100	0101	0110	0111
Invertiert	0000	1000	0100	1100	0010	1010	0110	1110
Kommazahl	0.0000	0.1000	0.0100	0.1100	0.0010	0.1010	0.0110	0.1110
Dezimal	0	1/2	1/4	3/4	1/8	5/8	3/8	7/8

Beispiel: van-der-Corput Sequenz zur Basis 3

$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{1}{9}$, $\frac{4}{9}$, $\frac{7}{9}$, $\frac{2}{9}$, $\frac{5}{9}$, $\frac{8}{9}$, $\frac{1}{27}$, ...

Angewandte Mathematik für die Informatik – SS202

Halton-Sequenzen

• Halton-Sequenz in \mathbb{R}^2 mit Basis 2 und 3 $(\frac{1}{2}, \frac{1}{3}), (\frac{1}{4}, \frac{2}{3}), (\frac{3}{4}, \frac{1}{9}), \dots$

(Pseudozufalls-Tupel)

(Halton-Sequenz)

Angewandte Mathematik für die Informatik – SS2022

Generieren von (Pseudo) Zufallszahlen

- Betriebssystem oder Bibliotheken, zum Beispiel
- Linux:
 - dev/urand
- Julia:
 - Random.rand(), .bitrand(), .randexp()
- <u>C++11 random</u>:
 - uniform_real_distribution, normal_distribution, chi_squared...
- Python:
 - random.uniform(), .gauss(), .expovariate(), .

Generieren von (Pseudo) Zufallszahlen

- Kann mit einem spezifischen ,seed' initialisiert werden
- Man erhält dann immer die gleiche Abfolge

```
      using Random

      Random.seed!(1234)

      rand(1) ←
      0.5908446386657102

      Random.seed!(666)

      rand(1) ←
      0.013871894106960436
```


Angewandte Mathematik für die Informatik – SS2022

inns

Inhalt

- Einführung und Beispiele
- Arten von Zufallszahlen
- Pseudozufallszahlengeneratoren
- Umrechung gleichverteilter Zufallszahlen

univers

Angewandte Mathematik für die Informatik – SS2022

Wahrscheinlichkeitsdichtefunktion

WDF (PDF) beschreibt die Wahrscheinlichkeit einer Zufallsvariable X sich in einem Intervall [a,b] zu befinden:

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

Normiert, sodass

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

Angewandte Mathematik für die Informatik – SS2022

27

Inversionsmethode

 Gleichverteilten Zahlen können mit bekannter WDF umgerechnet werden

$$\frac{1}{b-a}$$

- Zahlengeneratoren für Gleichverteilungen können verwendet werden andere Verteilungen zu erreichen
 - Generatoren oft normiert auf das Intervall [a = 0, b = 1]

Angewandte Mathematik für die Informatik – SS202

Inversionsmethode

- Methode:
 - 1. Berechnung der kumulierten WDF (Verteilung):

$$P(X) = \int_{-\infty}^{X} p(x) dx$$

- 2. Inverse Funktion finden (nicht immer möglich)
- 3. Generieren einer Gleichverteilen Zahl ξ
- 4. Transformation in Bezug auf die Verteilung

$$X = P^{-1}(\xi)$$

Angewandte Mathematik für die Informatik – SS2022

29

Inversionsmethode

Kumulierte WDF:

$$P(X) = \int_{-\infty}^{X} p(x) dx$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Inversionsmethode

Umrechnung graphisch:

Inversionsmethode

Beispiel:

@igs

– Zufallszahlen im Intervall $[0,\pi]$ und Verlauf: $\sin(x)/2$

$$P(X) = \int_0^X \frac{\sin(x)}{2} dx = \frac{-\cos(x)}{2} \Big|_0^X = \frac{-\cos(X) + 1}{2}$$

$$Y = (-\cos(X) + 1)/2$$

$$X = (-\cos(Y) + 1)/2$$

$$\cos(Y) = 1 - 2X$$

$$Y = \underbrace{\cos^{-1}(1 - 2X)}_{}$$

$$P^{-1}(\xi)$$

Angewandte Mathematik für die Informatik – SS2022

Zweidimensionale Verteilung

- Wahrscheinlichkeitsverteilungen können multivariat erweitert werden
- Verteilungsfunktion einer 2D Zufallsvariable

$$P(X,Y) = \int_{-\infty}^{Y} \int_{-\infty}^{X} p(x,y) \, dx \, dy$$

Angewandte Mathematik für die Informatik – SS2022

Bedingte Dichte und Randdichte

Randdichten:

$$p(x) = \int p(x, y) dy$$
$$p(y) = \int p(x, y) dx$$

 $\underline{https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Multivariate_normal.pdf.}$ sample.svg/1019px-Multivariate normal sample.svg.png

Bedingte WDF:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Angewandte Mathematik für die Informatik - SS2022

- Problembeispiel:
 - Homogenes Sampling eines Dreiecks in Baryzentrischen Koordinaten

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \lambda_2 \mathbf{p}_2$$

$$\lambda_0 + \lambda_1 + \lambda_2 = 1$$

 $-\lambda_i$ als unabhängige Zufallszahlen (normiert durch Summe)

Verteilung nicht gleichförmig!

@igs

Angewandte Mathematik für die Informatik – SS2022

Homogenes Sampling in Baryzentr. Koord.

- Methode:
 - Berechne zwei abhängige Koordinaten (λ_0,λ_1) über bedingte Verteilungen und $\lambda_2=1-\lambda_0-\lambda_1$
 - Berechne Randdichte

$$p(x) = \int p(x, y) \, dx$$

2. Berechne bedingte Dichte

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

- 3. Samplen der Randdichteverteilung für λ_0
- 4. Samplen der bedingten Verteilung für λ_1

Angewandte Mathematik für die Informatik – SS2022

- Annahme Einheitsdreieck mit Flächeninhalt $A = \frac{1}{2}$
- Verallgemeinert durch Baryzentrische Koordinaten

Angewandte Mathematik für die Informatik – SS2022

39

Homogenes Sampling in Baryzentr. Koord.

- Aufstellen der 2D Verteilung
 - Konstante Dichte
 - Normiertes Integral

$$\int_{A} p(x,y) dA = p(x,y) \int_{A} dA = 1$$

ngewandte Mathematik für die Informatik – SS2022

Berechnen der Randdichte:

$$p(x) = \int p(x,y) \, dy = \int_0^{1-x} p(x,y) \, dy =$$
$$= 2 \int_0^{1-x} dy = 2 - 2x$$
 1

Randverteilung:

$$P(X) = \int_0^X p(x) dx = 2X - X^2$$

Angewandte Mathematik für die Informatik – SS2022

41

Homogenes Sampling in Baryzentr. Koord.

Berechnen der bedingten WDF:

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{2}{2 - 2x} = \frac{1}{1 - x}$$

Bedingte Verteilung:

$$P(Y) = \int_0^Y p(y|x)dy = \frac{Y}{1 - X}$$

Angewandte Mathematik für die Informatik – SS202

 Inversion der Verteilungsfunktion zum Steuern der Samplinghäufigkeit

$$\xi_0 = 2X - X^2$$

$$1 - \xi_0 = 2X - X^2$$

$$\xi_0 = 1 - 2X + X^2$$

$$\xi_0 = (1 - X)^2$$

$$\sqrt{\xi_0} = 1 - X$$

$$X = 1 - \sqrt{\xi_0}$$

Angewandte Mathematik für die Informatik – SS2022

43

Homogenes Sampling in Baryzentr. Koord.

 Inversion der Verteilungsfunktion zum Steuern der Samplinghäufigkweit

$$\xi_1 = \frac{Y}{1 - X}$$

$$\xi_1 = \frac{Y}{\sqrt{\xi_0}}$$

$$Y = \xi_1 \sqrt{\xi_0}$$

Angewandte Mathematik für die Informatik – SS202

■ Zufallspunkte im Dreieck mittels zweier gleichförmig verteilten Zufallszahlen ξ_0 und ξ_1 ϵ [0,1]

$$\lambda_0 = 1 - \sqrt{\xi_0} \qquad \lambda_2 = 1 - \lambda_0 - \lambda_1 = \sqrt{\xi_0} (1 - \xi_1)$$

$$\lambda_1 = \xi_1 \sqrt{\xi_0} \qquad \mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \lambda_2 \mathbf{p}_2$$

$$0.8 \qquad 0.8 \qquad 0.6 \qquad 0.8 \qquad 1.0 \qquad 0.0 \qquad$$

Homogenes Sampling in Polarkoordinaten

• Kreisscheibe mit Radius r=1

$$A_{disk} = r^{2}\pi = \pi$$

$$\int_{A} p(x, y)dA = 1$$

$$\to p(x, y) = 1/\pi$$

Polarkoordinaten

$$p(x,y) = p(r,\varphi)/r$$
$$p(r,\varphi) = r p(x,y) = \frac{r}{\pi}$$

Angewandte Mathematik für die Informatik – SS202

Homogenes Sampling in Polarkoordinaten

Randdichte:

$$p(r) = \int_0^{2\pi} p(r, \varphi) d\varphi = \int_0^{2\pi} \frac{r}{\pi} d\varphi = 2r$$

Randverteilung:

$$P(R) = \int p(r)dr = 2\frac{R^2}{2} = R^2$$

Inversion:

$$\hat{\xi}_0 = R^2 \qquad \to R = \sqrt{\hat{\xi}_0}$$

Angewandte Mathematik für die Informatik – SS2022

47

Homogenes Sampling in Polarkoordinaten

Bedingte WDF:

$$p(\varphi|r) = \frac{p(r,\varphi)}{p(r)} = \frac{r/\pi}{2r} = \frac{1}{2\pi}$$

Verteilung:

$$P(\Phi|r) = \int p(r,\varphi) d\varphi = \frac{\Phi}{2\pi}$$

Inversion:

$$\hat{\xi}_1 = \frac{\Phi}{2\pi} \longrightarrow \Phi = \hat{\xi}_1 \ 2\pi$$

ngewandte Mathematik für die Informatik – SS202

Homogenes Sampling in Polarkoordinaten

Einige Hilfreiche Weblinks

- Interaktive Beispiele zu Halton-Sequenzen https://observablehq.com/@jrus/halton
- Multidimensionales Sampling
 https://www.pbr-book.org/3ed 2018/Monte Carlo Integration/2D Sampling with
 Multidimensional Transformations

universita innsbruck

Angewandte Mathematik für die Informatik – SS2022

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
	Osterferien	
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022