# 7장 시계열 분석

🖶 WEEK 10주차

## 7.1 시계열 문제

### 시계열 분석이란?

시간에 따라 변하는 데이터를 사용하여 추이를 분석하는 것 추세를 파악하거나 향후 전망 등을 예측하기 위한 용도로 사용 e.g.) 주가/환율 변동 및 기온/습도 변화 등

## 시계열 형태(the components of time-series) 데이터 변동 유형에 따른 구분

#### • 불규칙 변동(irregular variation)

시계열 자료에서 시간에 따른 규칙적인 움직임과 달리 어떤 규칙성이 없어 예측 불가능하고 우연적으로 발생하는 변동

#### • 추세 변동(trend variation)

시계열 자료가 갖는 장기적인 변화 추세

추세: 장기간에 걸쳐 지속적으로 증가, 감소하거나 또는 일정한 상태(stationary)를 유지하려는 성향

→ 짧은 기간 동안에는 추세 변동을 찾기 어려운 단점

#### • 순환 변동(cyclical variation)

대체로 2~3년 정도의 일정한 기간을 주기로 순환적으로 나타나는 변동 1년 이내 주기로 곡선을 그리며 추세 변동에 따라 변동

#### • 계절 변동(seasonal variation)

시계열 자료에서 보통 계절적 영향과 사회적 관습에 따라 1년 주기로 발생하는 것을 의미

→ 시계열 데이터는 결국 **규칙적 시계열**과 **불규칙적 시계열**로 나눌 수 있음

규칙적 시계열 - 트렌드와 분산이 불변하는 데이터

불규칙적 시계열 - 트렌드 혹은 분산이 변화하는 시계열 데이터

시계열 데이터를 잘 분석한다 = 불규칙성을 갖는 시계열 데이터에 특정한 기법이나 모델을 적용하여 규칙적 패턴을 찾거나 예측하는 것 불규칙적 시계열 데이터에 규칙성을 부여하는 방법: AR, MA, ARMA, ARIMA 모델 적용

△ 최근에는 딥러닝을 이용하여 시계열 데이터의 연속성을 기계 스스로 찾아내도록 하는 방법이 더 좋은 성능을 내고 있음

## 7.2 AR, MA, ARMA, ARIMA

#### 시계열 분석 특징

: 독립 변수(independent variable)를 사용하여 종속 변수(dependent variable)를 예측하는 일반적인 머신 러닝에서 **시간**을 **독립 변수**로 사용 → 분석하는 데 있어 일반적인 방법론들과 차이

## 7.2.1 AR 모델

#### AR(AutoRegressive)(자기 회귀) 모델

: 이전 관측 값이 관측 값에 영향을 준다는 아이디어에 대한 모형

$$\underline{Z_t} = \underline{\boldsymbol{\Phi}_1 Z_{t-1} + \boldsymbol{\Phi}_2 Z_{t-2} + \dots + \boldsymbol{\Phi}_p Z_{t-p}}_{\text{(2)}} + \underline{a_t}$$

- 1) 시계열 데이터에서 현재 시점을 의미
- 2) 과거가 현재에 미치는 영향을 나타내는 모수에 시계열 데이터의 과거 시점을 곱한 것
- 3) 오차 항 (= 백색 잡음)
- ightarrow 수식은 m p 시점을 기준으로 그 이전의 데이터에 의해 현재 시점의 데이터가 영향을 받는 모형

#### 7.2.2 MA 모델

## MA(Moving Average)(이동 평균) 모델

: 트렌드(평균 혹은 시계열 그래프에서 y값)가 변화하는 상황에 적합한 회귀 모델

'윈도우' 개념 사용 - 시계열에 따라 윈도우 크기만큼 슬라이딩(moving)된다고 하여 이동 평균 모델이라고 함

$$\underline{Z_t} = \underbrace{\frac{\theta_1 a_{t-1} + \theta_2 a_{t-2} + \dots + \theta_p a_{t-p}}{\textcircled{2}}}_{\textcircled{3}} + \underbrace{\frac{a_t}{\textcircled{3}}}$$

- 1) 시계열 데이터에서 현재 시점을 의미
- 2) 매개변수에서 과거 시점의 오차를 곱한 것
- 3) 오차 형

→ 수식은 AR 모델처럼 이전 데이터의 '상태'에서 현재 데이터의 상태를 추론하는 것이 아닌, 이전 데이터의 오차에서 현재 데이터의 상태를 추론하겠다는 의미

## 7.2.3 ARMA 모델

## ARMA(AutoRegressive Moving Average)(자기 회귀 이동 평균) 모델

: AR, MA 두 가지 관점에서 과거의 데이터를 사용하는 모델로 연구 기관에서 주로 사용

$$Z_{t} = a + \Phi_{1}Z_{t-1} + \dots + \Phi_{p}Z_{t-p} + \theta_{1}a_{t-1} + \dots + \theta_{q}a_{t-q} + a_{t}$$

#### 7.2.4 ARIMA 모델

#### ARIMA(AutoRegressive Integrated Moving Average)(자기 회귀 누적 이동 평균) 모델

: 자기 회귀와 이동 평균을 둘 다 고려하는 모형  $\triangle$  ARMA와 달리 과거 데이터의 선형 관계뿐만 아니라 추세(cointegration)까지 고려한 모델 statsmodels 라이브러리를 이용한 ARIMA 모델 구현 절차

- 1. ARIMA() 함수를 호출하여 사용하는데, ARIMA(p,d,q) 함수에서 쓰는 파라미터는 다음과 같음
  - p: 자기 회귀 차수
  - d: 차분 차수
  - q: 이동 평균 차수
- 2. fit() 메서드를 호출하고 모델에 데이터를 적용하여 훈련시킴
- 3. predict() 메서드를 호출하여 미래의 추세 및 동향에 대해 예측

#### NOTE ) statsmodels 라이브러리

statsmodels는 다음 통계 분석 기능을 제공하는 파이썬 패키지

- 검정 및 추정(test and estimation)
- 회귀 분석(regression analysis)
- 시계열 분석(time-series analysis)

파이썬에서 사용하려면 pip install statsmodels 명령으로 사전 설치 작업 필요

## 7.3 순환 신경망(RNN)

## RNN(Recurrent Neural Network)

: 시간적으로 연속성이 있는 데이터를 처리하려고 고안된 인공 신경망

'Reccurent(반복되는)' : 이전 은닉층이 현재 은닉청의 입력이 되면서 '반복되는 순환 구조를 갖는다'는 의미

RNN이 기존 네트워크와 다른 점 - '**기억(memory)**'을 갖는다는 것

기억: 현재까지 입력 데이터를 요약한 정보

- → 새로운 입력이 네트워크로 들어올 때마다 기억은 조금씩 수정됨
- → 최종적으로 남겨진 기억은 모든 입력 전체를 요약한 정보가 됨



그림 7-4 순환 신경망(RNN)

첫 번째 입력( $x_1$ )이 들어오면 첫 번째 기억( $h_1$ )이 만들어지고, 두 번째 입력( $x_2$ )이 들어오면 기존 기억( $h_1$ )과 새로운 입력을 참고하여 새 기억( $h_2$ )을 만 듦  $\rightarrow$  입력 길이만큼 과정 반복

= RNN은 외부 입력과 자신의 이전 상태를 입력 받아 현재 상태를 갱신

#### 입력과 출력에 따른 RNN 유형

## 1. 일대일

순환이 없기 때문에 RNN이라고 말하기 어려움 e.g.) 순방향 네트워크

#### 2. 일대다

입력이 하나이고, 출력이 다수인 구조 e.g.) 이미지 캡션(image captioning): 이미지를 입력해서 이미지에 대한 설명을 문장으로 출력

#### 3. 다대일

입력이 다수이고, 출력이 하나인 구조 e.g.) 감성 분석기: 문장을 입력해서 긍정/부정 출력

```
self.em = nn.Embedding(len(TEXT.vocab.stoi), embedding_dim) # 임베딩 처리
self.rnn = nn.RNNCell(input_dim, hidden_size) # RNN 적용
self.fc1 = nn.Linear(hidden_size, 256) # 완전연결층
self.fc2 = nn.Linear(256, 3) # 출력층
```



## 4. 다대다

입력과 출력이 다수인 구조 e.g.) 자동 번역기

• 텐서플로 구현

```
keras.layers.SimpleRNN(100, return_sequences=True, name='RNN')
→
return_sequences = True 옵션으로 시퀀스를 리턴하도록 쉽게 구현 가능
```

• 🛆 파이토치 구현

문장 번역에서 많이 사용되는 시퀀스-투-시퀀스(seq2seq)를 이용하는 방식으로 사용됨

```
Seq2Seq(
    (encoder): Encoder(
        (embedding): Embedding(7855, 256)
        (rnn): LSTM(256, 512, num_layers=2, dropout=0.5)
        (dropout): Dropout(p=0.5, inplace=False)
)
(decoder): Decoder(
        (embedding): Embedding(5893, 256)
        (rnn): LSTM(256, 512, num_layers=2, dropout=0.5)
        (fc_out): Linear(in_features=512, out_features=5893, bias=True)
        (dropout): Dropout(p=0.5, inplace=False)
)
```



그림 7-7 다대다 모델

#### 5. **동기화 다대다**

- 4 처럼 입력과 출력이 다수인 구조
- e.g.) 문장에서 다음에 나올 단어를 예측하는 언어 모델, 프레임 수준의 비디오 분류 등



그림 7-8 RNN 모델 유형

## 7.3.1 RNN 계층과 셀

RNN의 구성 - RNN 계층(layer), RNN 셀(cell)

RNN은 내장된(built-in) 계층, 셀 레벨의 API 제공

- RNN 계층: 입력된 배치 순서대로 모두 처리
- RNN 셀: 오직 하나의 단계 처리
- → RNN 셀은 RNN 계층의 for loop 구문을 갖는 구조



그림 7-9 RNN 계층과 RNN 셀

RNN 계층은 셀을 래핑하여 동일한 셀을 여러 단계에 적용

그림 7-9에서도 X1, X2, ..., Xn 등이 전체 RNN 셀에서 사용되고 있음

- = 셀은 실제 계산에 사용되는 RNN 계층의 구성 요소로, 단일 입력과 과거 상태를 가져와서 출력과 새로운 상태를 생성 셀 유형
- nn.RNNCell: SimpleRNN 계층에 대응되는 RNN 셀
- nn.GRUCell: GRU 계층에 대응되는 GRU 셀
- nn.LSTMCell: LSTM 계층에 대응되는 LSTM 셀

RNN의 계층과 셀을 분리해서 설명하는 이유

: 파이토치에서 이 둘을 분리해서 구현이 가능하기 떄문

RNN 활용 분야

- **자연어 처리** : 연속적 단어들의 나열인 언어(자연어) 처리는 음성 인식, 단어 의미 판단 및 대화 등에 대한 처리 가능
- 손글씨, 센서 데이터 등 시계열 데이터 처리

## 7.4 RNN 구조

RNN - 은닉층 노드들이 연결되어 이전 단계 정보를 은닉층 노드에 저장할 수 있도록 구성한 신경망



그림 7-10 RNN 구조

 $x_{t-1}$ 에서  $h_{t-1}$ 을 얻음

→ 다음 단계에서

 $h_{t-1}$ 과  $x_t$  사용해서 과거 정보와 현재 정보를 모두 반영

 $\rightarrow$ 

 $h_t$ 와  $x_{t+1}$ 의 정보 이용해서 과거와 현재 정보를 반복해서 반영

#### RNN의 가중치

•  $W_{xh}$  : 입력층 ightarrow 은닉층

•  $W_{hh}$  : t 시점의 은닉층 ightarrow t+1 시점의 은닉층

•  $W_{hy}$  : 은닉층 → 출력층

주의) 세 가중치가 모든 시점에 동일 = 가중치를 공유

#### t단계에서의 RNN 계산

1. **은닉층** 계산을 위해  $x_t$ ,  $h_{t-1}$  필요

= (이전 은닉층 x 은닉층 → 은닉층 가중치 + 입력층 → 은닉층 가중치 x (현재) 입력 값)

RNN에서 은닉층은 일반적으로 하이퍼볼릭 탄젠트 활성화 함수 사용

$$h_{t} = \tanh(\hat{y}_{t})$$

$$\hat{y}_{t} = W_{hh} \times h_{t-1} + W_{xh} \times x_{t}$$

2. 출력층은 심층 신경망과 계산 방법이 동일

= (은닉층 → 출력층 가중치 x 현재 은닉층) 에 소프트맥스 함수 적용

$$\hat{y_t} = \text{softmax}(W_{hy} \times h_t)$$

3. RNN의 **오차**(E)는 심층 신경망에서 전방향 학습과 달리 각 단계(t)마다 오차를 측정

= 각 단계마다 실제 값(

 $y_t$ )과 예측 값 $(\hat{y}_t)$ 으로 오차(평균 제곱 오차 적용)를 이용하여 측정



그림 7-11 RNN의 순방향 학습

4. RNN에서 **역전파**는 BPTT(BackPropagation Through Time)를 이용해서 모든 단계마다 처음부터 끝까지 역전파 함

오차는 각 단계(t)마다 오차를 측정하고 이전 단계로 전달: BPTT

3에서 구한 오차를 이용해서  $W_{xh}$ ,  $W_{hh}$ ,  $W_{hh}$  및 바이어스를 업데이트 - 이 때 BPTT는 오차가 멀리 전파될 때(왼쪽으로 전파) 계산량이 많아지고 전파되는 양이 점차 적어지는 문제점(기울기 소멸 문제)이 발생

→ 기울기 소멸 문제 보완 : 오차를 몇 단계 까지만 전파시키는 생략된\_BPTT(truncated BPTT) 사용, LSTM 및 GRU 사용

#### NOTE) 생략된-BPTT

계산량을 줄이기 위해 현재 단계에서 일정 시점까지만(보통 5단계 이전까지만) 오류를 역전파 하는 것



#### NOTE ) IMDB 데이터셋

영화 리뷰에 대한 데이터 5만 개 훈련 데이터 2만 5000개, 테스트 데이터 2만 5000개 각각 50%씩 긍정 리뷰와 부정 리뷰 이미 전처리 되어있어 각 리뷰가 숫자로 변환되어 있음

## **7.5 LSTM**

RNN의 결정적 단점 - 기울기 소멸 문제 → 해결 - LSTM, GRU 같은 확장된 RNN 방식 사용

## 7.5.1 LSTM 구조

## LSTM 순전파

LSTM은 기울기 소멸 문제를 해결하기 위해 **망각 게이트, 입력 게이트, 출력 게이트**라는 새로운 요소를 은닉층의 각 뉴런에 추가함

• 망각 게이트 forget gate

#### 과거 정보를 어느 정도 기억할지 결정

- → 과거 정보와 현재 데이터를 입력 받아 시그모이드를 취한 후 그 값을 과거 정보에 곱해 줌
- ightarrow 시그모이드의 출력이 0이면 과거 정보는 버리고, 1이면 과거 정보는 온전히 보존

0과 1 사이의 출력 값을 가지는  $h_{t-1}$ 과  $x_t$ 를 입력 값으로 받음

 $x_t$ : 새로운 입력 값

ωι.

 $h_{t-1}$ : 이전 은닉층에서 입력되는 값

 $\rightarrow$ 

 $h_{t-1}$ 과  $x_t$ 를 이용하여 이전 상태 정보를 현재 메모리에 반영할지 결정하는 역할

- 。 계산한 값이 1이면 바로 직전의 정보를 메모리에 유지
- 。 계산한 값이 0이면 초기화



그림 7-16 망각 게이트

## • 입력 게이트 input gate

#### 현재 정보를 기억하기 위해 만들어짐

- → 과거 정보와 현재 데이터를 입력 받아 시그모이드와 하이퍼볼릭 탄젠트 함수를 기반으로 현재 정보에 대한 보존량을 결정
- → 현재 메모리에 새로운 정보를 반영할지 결정하는 역할
- 。 계산한 값이 1이면 입력  $x_t$ 가 들어올 수 있도록 허용(open)

## 。 계산한 값이 0이면 차단



그림 7-17 입력 게이트

#### 셀

## 각 단계에 대한 은닉 노드(hidden node) = 메모리 셀 총합(sum)을 사용하여 셀 값을 반영 → 기울기 소멸 문제 해결

셀 업데이트 방법

: 망각 게이트와 입력 게이트의 이전 단계 셀 정보를 계산하여 현재 단계의 셀 상태를 업데이트





그림 7-18 셀

## • 출력 게이트 output gate

## 과거 정보와 현재 데이터를 사용하여 뉴런의 출력을 결정

이전 은닉 상태와 t번째 입력을 고려해서 다음 은닉 상태를 계산 LSTM에서는 이 은닉 상태가 그 시점에서의 출력이 됨

- → 출력 게아트는 갱신된 메모리의 출력 값을 제어하는 역할을 함
- 。 계산한 값이 1이면 의미 있는 결과로 최종 출력
- 。 계산한 값이 0이면 해당 연산 출력을 하지 않음

$$o_t = \sigma(w_o[h_{t-1}, x_t])$$
  
$$h_t = o_t \cdot \tanh(c_{t-1})$$



그림 7-19 출력 게이트



그림 7-20 LSTM 전체 게이트

## LSTM 역전파

LSTM은 셀을 통해서 역전파를 수행  $\rightarrow$  중단 없는 기울기(uninterrupted gradient flow)라고도 함 = 최종 오차는 모든 노드에 전파되는데, 이때 셀을 통해서 중단 없이 전파



$$t_{t} = \tanh(w_{hh}h_{t-1} + w_{xh}x_{t})$$

$$= \tanh((w_{hh} \quad w_{xh})\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix})$$

$$= \tanh(w\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix})$$

주의) 셀 단위로 오차가 전파된다고 해서 입력 방향으로 오차가 전파되지 않는 것은 아님 셀 내부적으로 오차가 입력( $x_t$ )으로 전파됨



그림 7-22 입력층으로의 역전파

## 7.6 게이트 순환 신경망(GRU)

## **GRU(Gated Recurrent Unit)**

- 게이트 메커니즘이 적용된 RNN 프레임워크의 한 종류
- LSTM보다 간단한 구조

## 7.6.1 GRU 구조

GRU는 LSTM에서 사용하는 망각 게이트와 입력 게이트를 하나로 합친 것이며, 별도의 업데이트 게이트로 구성되어 있음

하나의 게이트 컨트롤러(gate controller)가 망각 게이트와 입력 게이트를 모두 제어

- → 게이트 컨트롤러가 1을 출력 → 망각 게이트는 열리고 입력 게이트는 닫힘
- → 게이트 컨트롤러가 0을 출력 → 망각 게이트는 닫히고 입력 게이트는 열림
- → 이전 기억이 저장될 때마다 단계 별 입력은 삭제

GRU는 출력 게이트가 없어 전체 상태 벡터가 매 단계마다 출력 됨 이전 상태의 어느 부분이 출력될지 제어하는 새로운 게이트 컨트롤러가 별도로 존재

• 망각 게이트 reset gate

## 과거 정보를 적당히 초기화 시키려는 목적

시그모이드 함수를 출력으로 이용하여 (0,1) 값을 이전 은닉층에 곱함 이전 시점의 은닉층 값에 현시점의 정보에 대한 가중치를 곱한 것

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$



그림 7-26 망각 게이트

## • 업데이트 게이트 update gate

## 과거와 현재 정보의 최신화 비율을 결정하는 역할

시그모이드로 출력된 결과 $(z_t)$ 는 현시점의 정보량을 결정하고 1에서 뺀 값 $(1-z_t)$ 을 직전 시점의 은닉층 정보와 곱함





그림 7-27 업데이트 게이트

#### 후보군 candidate

#### 현시점의 정보에 대한 후보군을 계산

과거 은닉층의 정보를 그대로 이용하지 않고 망각 게이트의 결과를 이용하여 후보군을 계산

$$\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t])$$

(\*는 점 단위 연산(pointwise operation)입니다. 예를 들어 벡터를 더할 때 각각의 차원(dimension)에 맞게 곱하거나 더하는 것이 가능해집니다)

#### • 은닉층 계산

## 업데이트 게이트 결과와 후보군 결과를 결합하여 현시점의 은닉층 계산

- 시그모이드 함수의 결과는 현시점에서 결과에 대한 정보량을 결정
- 1-시그모이드 함수의 결과는 과거의 정보량을 결정

$$h_t = (1 - z_t) * h_{t-1} + z_t \times \tilde{h}_t$$



그림 7-28 GRU 내부 구조

## 7.7 양방향 RNN

RNN은 이전 시점의 데이터들을 참고해서 정답 예측  $\Delta$  실제 문제에서는 과거 시점이 아닌 미래 시점의 데이터에 힌트가 있는 경우 多

→ 양방향 RNN(bidirectional RNN)은 이전 시점의 데이터 뿐만 아니라 이후 시점의 데이터도 함께 활용하여 출력 값을 예측하고자 함

## 7.7.1 양방향 RNN 구조

## 하나의 출력 값을 예측하는 데 메모리 셀 두 개 사용



그림 7-30 양방향 RNN

- 첫 번째 메모리 셀(초록색 메모리 셀) 이전 시점의 은닉 상태를 전달 받아 현재의 은닉 상태 계산
- 두 번째 메모리 셀(노란색 메모리 셀) 다음 시점의 은닉 상태를 전달 받아 현재의 은닉 상태 계산
- → 이 값 두 개를 모두 출력층에서 출력 값을 예측하는 데 사용 양방향 RNN에 대한 개념은 RNN뿐만 아니라 LSTM이나 GRU에도 적용