HG101 5 LECTURE 5

## 5 Lecture 5

**Lemma 5.0.1.** The orientation preserving isometries of H are given by  $Isom^+(\mathbb{H}) = PSL_2(\mathbb{R})$ .

*Proof.* We know that  $PSL_2(\mathbb{R}) \subseteq Isom^+(\mathbb{H})$ . Now to prove  $Isom^+(\mathbb{H}) \subseteq PSL_2(\mathbb{R})$ . If  $f \in Isom^+(\mathbb{H})$  we can consider f as an isometry of  $\mathbb{D}$ . Isometries are conformal (angle preserving). It is enough now to prove that all conformal automorphisms of  $\mathbb{D}$  are in  $PSL_2(\mathbb{R})$ .

**Fact:** Conformal maps are also biholomorphisms and  $Aut(\mathbb{D}) = PSL_2(\mathbb{R})$  (use Schwarz lemma).

**Lemma 5.0.2.** The hyperbolic metric is the unique metric (upto scaling) invariant under  $Aut(\mathbb{D})$ .

## 5.1 Area and Curvature

The area form on  $\mathbb H$  is given by  $\frac{dx.dy}{y^2}$ . The area form on  $\mathbb D$  is given by  $\frac{4rdr.d\theta}{(1-r^2)^2}$ . In general if the metric is  $Edx^2+2Fdx.dy+Gdy^2$  the area form is  $\sqrt{EG-F^2}dx.dy$ .

## 5.1.1 Triangles

Geodesic triangles are triangles with geodesic sides.



An ideal triangles is a triangles with "vertices" on the boundary  $\partial \mathbb{D}$ .

HG101 5 LECTURE 5



There are other triangles too



Proposition 5.1.1. Ideal triangles are unique upto isometry.

*Proof.* First note that given any two points on the boundary  $\partial \mathbb{D}$  there is a unique geodesic such that the end points of the geodesics are the given points.

So given three points on  $\partial \mathbb{D}$ , there is a unique ideal triangle determined. Similarly every ideal triangle gives three boundary points. All ideal triangles can be identified by a triple of  $\partial \mathbb{D}$  ( $\cong \mathbb{H}$ ).

We know that  $Isom^+(\mathbb{H}) = PSL_2(\mathbb{R})$  acts triply transitively on  $\partial \mathbb{H}$ . SO we can find a map in  $Isom^+(\mathbb{H})$  taking any triple to any triple. Hence any ideal triangle can be taken to any other by isometries.

Isometries preserve area, hence all ideal triangles have the same (hyperbolic) area.

**Proposition 5.1.2.** Ideal triangles have are  $\pi$ 

HG101 5 LECTURE 5



*Proof.* Area of an ideal triangle =

$$\iint_D \frac{dx.dy}{y^2} = \int_{-1}^1 \int_{\sqrt{1-x^2}}^\infty \frac{dy}{y^2} dx = \pi$$

**Theorem 5.1.1.** The area of a hyperbolic triangle with angles  $\alpha_1, \alpha_2, \alpha_3$  is  $\pi - \alpha_1 - \alpha_2 - \alpha_3$ .

**Note:** We can take  $\alpha_i = 0$  to make it an ideal triangle. Also for and triangle  $\alpha_1 + \alpha_2 + \alpha_3 < \pi$  (this is strongly related to the fifth postulate).

**Note:** Any two similar triangles are congruent as they will have the same area.

**Theorem 5.1.2.** For any conformal metric  $\rho(z)|dz|$  or  $\rho^2(x,y)(dx^2+dy^2)$  the Gaussian curvature is given by

$$K(z) = -\frac{\Delta ln\rho}{\rho^2}(z)$$

where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ .

Lemma 5.1.3. The hyperbolic metric has curvature -1 everywhere.

This is the defining property of hyperbolic geometry

**Theorem 5.1.4.** Any simply connected Riemannian 2- manifold with -1 Gaussian curvature everywhere and which is complete with respect to the metric is isometric to  $\mathbb{H}$ .