# Статистический анализ спектра акустического сигнала электромеханического устройства

Будакян Я. С., 212 гр. научный руководитель — к.т.н. доц. Грачев Е. А.

2015 г.

## Введение

В моей работе рассматривается задача сегментации акустического сигнала, снимаемого с некоторого устройства. Сегментация - это процесс классификации отсчетов сигнала по некоторому набору категорий, то есть нахождение моментов изменения состояния устройства, что отражается на свойствах снимаемого сигнала. Практические приложения этой задачи возникают в различных областях:

- Обнаружение неисправностей и диагностика
- Анализ человеческой речи
- Прогнозирование природных катастроф(землетрясения, цунами, и т.д.)
- Мониторинг в биомедицине, и т.д.

В качестве математической модели таких акустических сигналов будет использоваться авторегрессионный процесс. Такой подход часто применяется при моделировании различных случайных сигналов, от человеческой речи и шума от устройств [1, 2] до биологических сигналов [3].

## Постановка задачи

Дан авторегрессионный процесс  $x=(x_t)_{t\geqslant 0}$ 

$$x_t = \phi_0(h_t) + \sum_{i=1}^n \phi_i(h_t) x_{t-i} + B(h_t) \xi_t,$$

где  $\xi_t$  - стандартный белый шум.

Параметры процесса могут скачкообразно изменяться, принимая в каждый момент времени  $t \geq 0$  один из m известных наборов значений

 $[\phi_0(h_t),\ldots,\phi_n(h_t),B(h_t)];h_t\in\{0,\ldots,m-1\}.$  Также задана матрица  $Q=\{q(i,j)\}$  вероятностей переходов между наборами параметров(классами):

$$P(h_t|h_{t-1}) = q(h_{t-1},h_t)$$

Под задачей сегментации понимается задача отношения каждого отсчета процесса  $x_t$  некоторому классу  $h_t$ , т.е. восстановление ненаблюдаемой последовательности "переключений" состояний  $h_i \longrightarrow h_j$ .

## Рассмотренные алгоритмы

Для решения этой задачи были рассмотрены 2 алгоритма:

- Алгоритм сегментации на основе метода динамического программирования [4]
- Алгоритм на основе статистики кумулятивных сумм (CUSUM)

Оба алгоритма были реализованы в программном коде на языке Python. Было проведено экспериментальное исследование алгоритмов на модельном сигнале и на реальных данных с электромеханического устройства - вентилятора.

# Алгоритм на основе метода динамического программирования

Ключевая идея алгоритма заключается в последовательной обработке всех отсчетов сигнала путем рекуррентного пересчета вектора

$$d_t(h_t) = \min[d_{t-1}(h_{t-1}) + \beta_t(h_{t-1}, h_t)],$$

и построении матрицы K по правилу

$$k_t(h_t) = \arg\min[d_{t-1}(h_{t-1}) + \beta_t(h_{t-1}, h_t)],$$

где

$$\beta_t(h_{t-1}, h_t) = \frac{1}{2B(h_t)} [x_t - \phi_0(h_t) - \sum_{i=1}^n \phi_i(h_t) x_{t-i}]^2 - \ln q(h_{t-1}, h_t)$$

Построенная матрица K позволяет найти оптимальную сегментацию по рекуррентной формуле

$$\hat{h}_{s-1} = k_s(\hat{h}_s), \ s = N, N-1, \dots, 1$$

# Алгоритм на основе статистики кумулятивных сумм

Ключевая идея алгоритма CUSUM заключается в том, что условное распределение величин  $x_t$   $p(x_t|x_{t-1},\ldots,x_1)$  до и после момента переключения отличается математическим ожиданием. Зафиксируем некоторый переход  $h_i \longrightarrow h_i$ . Возьмем логарифм отношения правдоподобия

$$L_t = \ln \frac{p_j(x_t|x_{t-1},\ldots,x_1)}{p_i(x_t|x_{t-1},\ldots,x_1)} = (x_t - \phi_0(h_i) - \sum_{k=1}^n \phi_k(h_i)x_{t-k})^2 - (x_t - \phi_0(h_j) - \sum_{k=1}^n \phi_k(h_j)x_{t-k})^2$$

и построим кумулятивные суммы по правилу

$$\begin{cases} z_1 = 0, \\ z_t = \max(0, z_{t-1} + L_t), \ t = 2, 3, \dots \end{cases}$$

При отклонении от ожидаемого среднего кумулятивная сумма растет и в какой-то момент превысит заданный порог  $T_{ii}$ ; после этого считается, что произошел переход  $h_i \longrightarrow h_i$ .

Поскольку аналитический способ построения пороговых значений для различных переходов неизвестен, во всех экспериментах примерные значения порогов были выбраны вручную.

#### Модельный сигнал

Ниже приведены графики, на которых изображены сегментации модельного сигнала, построенные обеими программами, наложенные на оригинальную сегментацию.





Рис.: Сигнал 1, t = 1000

Рис.: Сигнал 1, t = 1000

#### Модельный сигнал

Таблица: Параметры модельного сигнала

| h                           | $\phi_{0}$ | $\phi_1$ | $\phi_2$ | В |  |  |  |  |  |
|-----------------------------|------------|----------|----------|---|--|--|--|--|--|
| 0                           | 0          | 1.36     | -0.49    | 1 |  |  |  |  |  |
| 1                           | 0          | 1.02     | -0.40    | 1 |  |  |  |  |  |
| 2                           | 0          | 0.82     | -0.49    | 1 |  |  |  |  |  |
| 3                           | 0          | 0        | -0.49    | 1 |  |  |  |  |  |
| 4                           | 0          | -0.82    | 32 -0.49 |   |  |  |  |  |  |
| $q_{ii} = 0.99$             |            |          |          |   |  |  |  |  |  |
| $q_{ij} = 0.0025, i \neq j$ |            |          |          |   |  |  |  |  |  |

Было проведено исследование качества обоих алгоритмов. В качестве меры точности алгоритма было взято среднее время совпадения построенной сегментации с оригинальной, усредненное по N = 20000 запусков. Были получены следующие результаты:

$$t = 1000, \ Q_B = 0.86795, \ Q_{CUSUM} = 0.76240$$

$$t = 2000, \ Q_B = 0.86408, \ Q_{CUSUM} = 0.75599$$

$$t = 3000, \ Q_B = 0.86235, \ Q_{CUSUM} = 0.75323$$

#### Сигнал с вентилятора

Были произведены 3 записи шума вентилятора в нормальном режиме работы и с разладкой(в работающий вентилятор засовывалась бумажка) в формате [норма|разладка|норма] по 20 секунд на каждый сегмент. Из каждой сегмента записи было вырезано по секундному отрезку и составлены сигналы длиной по 3 секунды. Общее количество отсчетов в каждом сигнале составило 3с · 44100Гц = 132300.



Рис.: Пример анализируемого сигнала

#### Сигнал с вентилятора

Один из сигналов был использован для подбора параметров для алгоритмов. С помощью МНК были определены коэффициенты авторегрессии с глубиной модели P=10. На графиках показаны зависимости коэффициентов авторегрессии для этого сигнала а) до разладки, б) во время разладки от количества отсчетов, анализируемых МНК.





Рис.: Значения коэффициентов авторегрессии до и во время разладки

#### Сигнал с вентилятора

Таблица: Оценки коэффициентов авторегрессий, полученные МНК

| h | $\phi_{0}$ | $\phi_1$ | $\phi_2$ | φз   | $\phi$ 4 | $\phi_{5}$ | $\phi_{6}$ | $\phi_7$ | $\phi_8$ | $\phi$ 9 | $\phi_{10}$ |
|---|------------|----------|----------|------|----------|------------|------------|----------|----------|----------|-------------|
| 0 | 0          | 0.78     | 0        | 0.23 | -0.19    | 0.11       | -0.17      | 0.06     | -0.1     | 0.1      | 0           |
| 1 | 0          | 1.58     | -1.94    | 1.88 | -1.53    | 1.16       | -0.93      | 0.58     | -0.47    | 0.14     | -0.11       |

В таблице  $h_0$  соответствует нормальной работе вентилятора, а  $h_1$  - разладке. Подобранные параметры для алгоритмов составили

$$B(h_i) = 10^5, \ q_{ii} = 0.99999, \ T_{ij} = 4 \cdot 10^6.$$





а) алгоритм Буробина

6) CUSUM

Рис.: Сегментация первого сигнала с вентилятора обоими алгоритмами

#### Сигнал с вентилятора

Найденные для сигнала 1 параметры были использованы для сегментации сигналов 2 и 3:



а) алгоритм Буробина

6) CUSUM

Рис.: Сегментация сигнала 2

#### Сигнал с вентилятора





а) алгоритм Буробина

6) CUSUM

Рис.: Сегментация сигнала 3

## Выводы

Результаты, полученные из экспериментов с модельным сигналом показывают, что

- Алгоритм на основе метода динамического программирования
  - ▶ имеет в среднем на 10% большую точность по сравнению с алгоритмом на основе статистики CUSUM
  - ightharpoonup учитывает вероятности переходов, заданные в матрице Q
- Алгоритм на основе статистики CUSUM:
  - ightharpoonup качество сегментации сильно зависит от выбора пороговых значений  $T_{ij}$  для каждой пары переходов
  - легче в реализации
  - более производителен

Эксперименты на реальном сигнале с электромеханического устройства (вентилятора) показали, что рассматриваемый подход применим к реальным сигналам, однако требует некоторой доработки.

# Список литературы



Kie B. Eom, "Analysis of Acoustic Signatures from Moving Vehicles Using Time-Varying Autoregressive Models", Multidimensional Systems and Signal Processing 10, pp. 357-378, 1999

Akay, Y.M., "Noninvasive acoustical detection of coronary artery disease: a comparative study of signal processing methods", Biomedical Engineering 40, pp. 571-578, 1993

Николай Буробин, Вадим Моттль, Илья Мучник, "Алгоритм определения моментов многократного изменения свойств случайного процесса на основе метода динамического программирования", Статистические проблемы управления 65, стр. 49-57, 1984.

Michèle Basseville, Igor V. Nikiforov, "Detection of Abrupt Changes: Theory and Application", pp. 35-43, 1998