Distributionally Robust Co-Optimization of Energy and Reserve Dispatch of Integrated Electricity and Heat System - Online Appendix

Mikhail Skalyga
Center for Electric Power and Energy
Technical University of Denmark
Kgs. Lyngby, Denmark
mikska@elektro.dtu.dk

Quiwei Wu Center for Electric Power and Energy Technical University of Denmark Kgs. Lyngby, Denmark qw@elektro.dtu.dk

	Nomenclature	$ ho_s^H,/ ho_s^E$	Heat/Electricity-to-fuel ratio of the extraction CHP
A. Indexes ar	nd Sets	$ ho_s$	Heat-to-Electricity output ratio of the ex-
n	Index of nodes		traction CHP
l	Index of thermal loads	η^{WP}	Water pump efficiency
s	Index of heat stations	COP_s	Coefficient of performance of the heat
p	Index of pipes		pump
Λ^N	Set of nodes	\overline{F}_s	Maximum fuel consumption of CHP unit
Λ^P	Set of pipes	****	[MW]
Λ^{N-}	Set of nodes with a single pipe ending	$\underline{P}_{s}^{WP}, \overline{P}_{s}^{WP}$	Technical limits of the water pump at the
Λ^{N+}	Set of nodes with a single pipe starting		heat station
Θ_n^{HS}	Set of heat sources (HS) at node n	$\underline{m}_p^S, \overline{m}_p^S$	Lower and upper limits of mass flow rate
Θ_n^{CHP}	Set of CHPs at node n , $\Theta_n^{CHP} \in \Theta_n^{HS}$	F F	of the pipeline p in supply network [kg/s]
Θ_n^{HP}	Set of CHPs at node n , $\Theta_n^{CHP} \in \Theta_n^{HS}$ Set of heat pumps at node n , $\Theta_n^{HP} \in \Theta_n^{HS}$	$\underline{m}_p^R, \overline{m}_p^R$	Lower and upper limit of mass flow rate
Θ_n^{HL}	Set of heat demands at node n	r r	of the pipeline p in return network [kg/s]
$ \begin{array}{l} \Omega \\ \Theta^{HS}_{n} \\ \Theta^{CHP}_{n} \\ \Theta^{HP}_{n} \\ \Theta^{HL}_{n} \\ \Theta^{P,OUT}_{n} \\ \Theta^{P,IN}_{n} \end{array} $	Set of indices of pipes starting at node n	$\underline{m}_s^{HS}, \overline{m}_s^{HS}$	Lower and upper limit of mass flow rate
$\Theta_n^{P,IN}$	Set of indices of pipes ending at node n		of the HS s [kg/s]
		$\underline{m}_l^{HL}, \overline{m}_l^{HL}$	Lower and upper limit of mass flow rate
B. Parameter	S		of the heat load l [kg/s]
$\underline{P}^G, \overline{P}^G$	Vector of the minimum and maximum real	$\underline{T}_n^S, \overline{T}_n^S$	Minimum/maximum temperature at node
<u> </u>	power output of generators [MW]		n in the supply network [°C]
$\underline{P}^{CHP}, \overline{P}^{C}$	Vector of the minimum and maximum	$\underline{T}_n^R, \overline{T}_n^R$	Minimum/maximum temperature at node
<u>r</u> , r	power supply from CHP unit [MW]	~	n in the return network [°C]
\overline{R}^G		$\underline{T}_p^S, \overline{T}_p^S$	Minimum/maximum temperature at pipe
κ	Vector of the generators reserve limits	1 1	p in the supply network [${}^{\circ}$ C]
\overline{R}^{CHP}	[MW]	$\underline{T}_p^R, \overline{T}_p^R$	Minimum/maximum temperature at pipe
	Vector of the CHP reserve limits [MW] Wind power forecast vector [MW]	—p · p	p in the return network [${}^{\circ}$ C]
$P_W^f \ P^D$	Electric demand vector [MW]	$\underline{pr}_{n}^{S}, \overline{pr}_{n}^{S}$	Minimum/maximum pressure at node n in
P^l	Line transmission capacity vector [MW]		the supply network [kPa]
$\underline{H}_{s}^{HS}, \overline{H}_{s}^{HS}$	Minimum and maximum heat supply from	$\underline{pr}_{n}^{R}, \overline{pr}_{n}^{R}$	Minimum/maximum pressure at node n in
\underline{n}_s , n_s	HS unit [MW]		the return network [kPa]
H_l^L	Heat demand [MW]	\underline{pr}_{l}^{HL}	Minimum pressure difference at the heat
c_2, c_1, c_0	Cost coefficients of generators [\$/MWh]		load [kPa]
c_2,c_1,c_0 c_e,c_h	Cost coefficients for CHP [\$/MWh]	$C_p \ \lambda$	Specific water capacity [J/kg°C]
$\frac{c_e, c_h}{\overline{c_G}, \underline{c_G}}$	Cost coefficients of generators for provid-	λ	Heat transfer coefficient per unit length
~G, <u>~G</u>	ing reserves [\$/MWh]	T.5	[W/m°C] [MW]
$\overline{c_c}, \underline{c_c}$	Cost coefficients of CHP for providing	K_p	Pipe resistance coefficient $[m^{-1}kg^{-1}]$
~6, <u>~6</u>	reserves [\$/MWh]	L_p	Length of pipe p [m]
	£. 3		

D_p	Diameter of a pipe $p[m]$
$ u_p$	Absolute roughness of a pipe $p[m]$

C. Decision Variables

m_p^S, m_p^R	Mass flow rate of pipeline p [kg/s]
m_s^{HS}	Mass flow rate of HS s [kg/s]
m_l^{HL}	Mass flow rate of heat load l [kg/s]
$T_p^{\check{S},start}$	Temperature at the start node of pipe p in the supply network [°C]
$T_p^{S,end}$	Temperature at the end node of pipe p in the
^{1}p	
mR start	supply network [°C]
$T_p^{R,start}$	Temperature at the start node of pipe p in the
D 1	return network [°C]
$T_p^{R,end}$	Temperature at the end node of pipe p in the
	return network [°C]
T_n^S	Temperature of node n in the supply network [°C]
T_n^R H_s^{HS} P^{CHP}	Temperature of node n in the return network [°C]
H_s^{HS}	Heat supply from HS unit s
P^{CHP}	Day-ahead power dispatch from CHP unit [MW]
P^G	Day-ahead power dispatch of generators [MW]
P_{\circ}^{HP}	Power consumption of heat pump [MW]
P_s^{HP} P_s^{WP}	Power consumption of circulation pump [MW]
$R^{up/dn}$	Upward/Downward reserves for the generators
10	[MW]
$R^{uc/dc}$	
-	Upward/Downward reserve for the CHPs [MW]
Y	Generation participation factor

Notation: Index denotes an element of the vector with the corresponding dimension.

DISTRIBUTIONALLY ROBUST REFORMULATION

Stochastic constraints that involve random variable could be written as one-side chance-constraints

$$\begin{split} \mathbb{P}(A[C(P+R) + C_W(P^f + \Delta W) - C_D P^D \\ - C_P P^{WP} - C_{HP} P^{HP}] &\geq -P^l) \geq 1 - \epsilon \\ \\ \mathbb{P}(A[C(P+R) + C_W(P^f + \Delta W) - C_D P^D \\ - C_P P^{WP} - C_{HP} P^{HP}] &\leq P^l) \geq 1 - \epsilon \\ \\ \mathbb{P}(P+R \geq \underline{P}) \geq 1 - \epsilon \\ \\ \mathbb{P}(P+R \leq \overline{P}) \geq 1 - \epsilon \\ \\ \mathbb{P}(R \leq R T^{up}) \geq 1 - \epsilon \\ \\ \mathbb{P}(R \geq -R T^{dn}) \geq 1 - \epsilon \end{split}$$

where ϵ - is the violation probability. By substituting $R = -Y \sum_w \Delta W_w$ and the summation into $\sum_w = \mathbf{1}_{1\times N_W}^T$ we can fraction out the uncertain part. Then the inner part of the above mentioned constraints can be reformulated as

$$(A_i^x)^T \xi \leq b_i^x, \forall i = 1, \dots m$$

where random variable ξ is wind forecast error ΔW , m - is a number of chance-constraints, matrices A_i^x and b_i^x - deterministic parts of the constraints which depend only on the

decision variables. The DR variants of the chance-constraints are formulated as follows

$$\inf_{\mathbb{P}_{\epsilon} \in \mathcal{D}_{\epsilon}} \mathbb{P}((A_i^x)^T \xi \le b_i^x) \ge 1 - \epsilon_i, \forall i = 1 \dots m$$

In our case:

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}(A(CY\mathbf{1}_{1 \times N_{W}}^{T} - C_{W})\Delta W \leq A(CP + C_{W}P^{f} - C_{D}P^{D} - C_{p}P^{WP} - C_{HP}P^{HP}) + P_{l}) \geq 1 - \epsilon$$

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}(A(-CY\mathbf{1}_{1 \times N_{W}}^{T} + C_{W})\Delta W \leq A(-CP - C_{W}P^{f} + C_{D}P^{D} + C_{p}P^{WP} + C_{HP}P^{HP}) + P_{l}) \geq 1 - \epsilon$$

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}((Y\mathbf{1}_{1 \times N_{W}}^{T})\Delta W \leq P - \underline{P}) \geq 1 - \epsilon$$

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}((-Y\mathbf{1}_{1 \times N_{W}}^{T})\Delta W \leq -P + \overline{P}) \geq 1 - \epsilon$$

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}((-Y\mathbf{1}_{1 \times N_{W}}^{T})\Delta W \leq RT^{up}) \geq 1 - \epsilon$$

$$\inf_{\mathbb{P}_{\xi} \in \mathcal{D}_{\xi}} \mathbb{P}((Y\mathbf{1}_{1 \times N_{W}}^{T})\Delta W \leq RT^{dn}) \geq 1 - \epsilon$$

After calculating from the data samples $\{\xi^l\}_{l=1}^N$ the empirical mean vector $\mu_{N_W \times 1} = \frac{1}{N} \sum_{l=1}^N \xi^l$ and covariance matrix $\sum_{N_W \times N_W} = \frac{1}{N} \sum_{l=1}^N (\xi^l - \mu)(\xi^l - \mu)^T$ we can build moment-based ambiguity set $\mathcal{D}_{\mathcal{E}}$

$$\mathcal{D}_{\xi} := \{ \mathbb{P}_{\xi} \in \mathcal{P}' : \mathbb{E}_{\mathbb{P}_{\xi}}[\xi] = \mu, \mathbb{E}_{\mathbb{P}_{\xi}}[(\xi - \mu)(\xi - \mu)^T] = \Sigma \}$$

which requires that the true mean and covariance matrix of ξ , given by any distribution in set \mathcal{D}_{ξ} , be exactly the empirical mean μ and covariance Σ . General DR chance-constraints can be reformulated as follows

$$\sqrt{\left(\frac{1-\epsilon}{\epsilon}\right)(A_i^x)^T(\Sigma)A_i^x} \le b_i^x - (A_i^x)^T \mu, \ \forall i = 1\dots m$$

which is a second-order cone constraint:

$$K_{\epsilon}||(\Sigma)^{\frac{1}{2}}A_i^x||_2 \le b_i^x - (A_i^x)^T \mu, \ \forall i = 1\dots m$$
where $K_{\epsilon} = \sqrt{\left(\frac{1-\epsilon}{\epsilon}\right)}$.

CASE STUDY DATA

Electrical demand is 200 MW and 100 MW at buses 4 and 5. We assume that reserves from generator are more expensive than CHP reserves $\overline{c_G} = \underline{c_G} = 1.2c_1$, $\overline{c_c} = \underline{c_c} = 1.1c_e$ In this study water density is $\rho = 1000 \text{ kg/m}^3$ and kinematic viscosity of water is $\mu = 0.4736 \times 10^{-6} \text{ m/s}^2$. Darcy friction factor $f_D = 0.0118$ that is computed as in [1]. The characteristics of the generation units, transmission lines parameters and DHN parameters are presented in Table I,II,III and IV.

REFERENCES

[1] D. Clamond, "Efficient resolution of the colebrook equation," *Industrial & Engineering Chemistry Research*, vol. 48, no. 7, pp. 3665–3671, 2009.

Fig. 1. Configuration of the six-bus and seven-node integrated system.

TABLE I GENERATION UNITS

		G_1	CHP_1	HP_1
\overline{P}	MW	230	208.3	-
$\frac{\underline{P}}{\overline{R}}$	MW	10	15	-
\overline{R}	MW	92	41.66	-
\underline{R}	MW	0	0	-
$rac{\underline{H}}{\overline{H}}$	MW	-	0	5
	MW	-	250	100
\underline{m}_s^{HS}	kg/s	-	300	300
\overline{m}_s^{HS}	kg/s	-	700	700
\overline{F}	MW	-	500	-
COP	-	-	-	2.5
r	-	-	0.5	-
$ ho^E$	-	-	2.4	-
$ ho^H$	-	-	0.25	-
η	-	-	0.9	0.9
\overline{P}_{WP}	MW	-	20	20
\underline{P}_{WP}	MW	-	0	0
c_2	MWh^2	0.00125	-	-
c_1	\$/ MWh	40.622	-	-
c_0	\$	0	-	-
c_e	\$/ MWh	-	3.6	-
c_h	\$/ MWh	-	0.06	-

TABLE II ELECTRICAL TRANSMISSION LINES

		l_{12}	l_{14}	l_{23}	l_{24}	l_{36}	l_{45}	l_{56}
\overline{P}_l	MW	200	250	250	200	250	250	250
X	p.u.	0.17	0.0586	0.1	0.072	0.0625	0.16	0.085

TABLE III DISTRICT HEATING PIPES

		$p_{12,24,46}$	p_{23}	$p_{45,47}$
L_p	m	800	600	500
D_p	m	0.8	0.8	0.8
λ	W/m°C	0.2	0.2	0.2
$ u_p$	$m \times 10^{-3}$	0.045	0.045	0.045
K_p	$1/[m \times kg]$	0.0233	0.0175	0.0146
$\underline{m}_p^S, \underline{m}_p^R$	kg/s	300	300	300
$\overline{m}_p^S, \overline{m}_p^R$	kg/s	700	700	700
\overline{T}_p^R	°C	45	45	45
\underline{T}_{n}^{R}	$^{\circ}\mathrm{C}$	25	25	25
$\frac{\underline{T}_p^R}{\overline{T}_p^S}$	°C	65	65	65
\underline{T}_{p}^{S}	°C	50	50	50

TABLE IV
DISTRICT HEATING NETWORK PARAMETERS

		$N_{1,2,4,6}$	$N_3(L)$	$N_5(L)$	$N_7(L)$
\underline{m}_l^{HL}	kg/s	-	300	300	300
\overline{m}_l^{HL}	kg/s	-	700	700	700
H_l^L	MW	-	45	40	50
\underline{T}_n^S	°C	50	50	50	50
$\frac{T_n^S}{\overline{T}_n^S}$	°C	65	65	65	65
$\frac{T_n^R}{\overline{T}_n^R}$	$^{\circ}\mathrm{C}$	25	25	25	25
\overline{T}_n^R	°C	45	45	45	45
$\underline{pr}_{n}^{S}, \underline{pr}_{n}^{R}$	kPa	0	0	0	0
$\overline{pr}_n^S, \overline{pr}_n^R$	kPa	30000	30000	30000	30000
\underline{pr}_{l}^{HL}	kPa	=	50	50	50