

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA INTERROGACIÓN 1

Pregunta 1

Sea

$$\beta(p_1,\ldots,p_n) = \bigvee_{i: \alpha(v_1^i,\ldots,v_n^i)} \left(\left(\bigwedge_{j: v_j^i = 1} p_j \right) \wedge \left(\bigwedge_{j: v_j^i = 1} \neg p_j \right) \right)$$

Primero, era necesario identificar lo que se estaba demostrando, es decir, que si $\varphi(\alpha(v_1^i,\ldots,v_n^i))$ es 1, entonces $\beta(\alpha(v_1^i,\ldots,v_n^i))$ también es 1. [1pt]

Luego, si φ es contradicción la proposición se vuelve trivialmente cierta, por lo que nos enfocamos en el caso donde φ es satisfacible. Por lo tanto, sea i una fila cualquiera de la tabla de verdad tal que $\alpha(v_1^i, \ldots, v_n^i)$ corresponde a su valuación y $\varphi(\alpha(v_1^i, \ldots, v_n^i)) = 1$. [1pt]

Por construcción de la formula β , sabemos que existe la claúsula β_i en β tal que

$$\beta_i(p_1,\ldots,p_n) = \bigwedge_{j \ : \ v_j^i = 1} p_j \wedge \bigwedge_{j \ : \ v_j^i = 1} \neg p_j \quad [\mathbf{1pt}]$$

Teniendo todo esto, se debía demostrar que por construcción de la formula, $\beta_i(\alpha(v_1^i,\ldots,v_n^i))=1$. [2pt]

Finalmente, se debía argumentar que como la formula original β era una disyunción de claúsulas, si β_i es verdadera entonces la formula completa también lo es, y como $\alpha(v_1^i, \ldots, v_n^i)$ era una valuación cualquiera, entonces se cumple para todas las valuaciones y por lo tanto queda demostrado lo pedido. [1pt]

Pregunta 2

Damos dos alternativas a la pregunta, pero pueden haber más formas de resolverla.

Alternativa 1

- a) $\varphi_0(x) := \forall y. \ O(x,y)$ [2pt]
- b) Primero definimos el sucesor de la siguiente forma:

$$S(x,y) := O(x,y) \land \forall z. (O(x,z) \land O(z,y)) \rightarrow (E(x,z) \lor E(z,y)) \quad [\mathbf{1pt}]$$

Por lo tanto la fórmula seria:

$$\varphi_2(x) := \forall y \ \forall z. \ (\varphi_0(z) \land S(z,y)) \to S(y,x) \quad [\mathbf{1pt}]$$

c) Suponga que ya tenemos la formula $\varphi_{n-1}(x)$ para n-1 partiendo desde $\varphi_0(x)$. Entonces la formula para n se define como:

$$\varphi_n(x) := \forall y \ (\varphi_{n-1}(y) \to S(x,y)) \ [\mathbf{2pt}]$$

Alternativa 2

- a) $\varphi_0(x) := \forall y. \ O(x,y)$ [2pt]
- b) Primero definimos para 1:

$$\varphi_1(x) := \neg \varphi_0(x) \land (\forall y. \ \neg \varphi_0(y) \rightarrow O(x, y))$$
 [1pt]

Luego la formula pedida es:

$$\varphi_2(x) := \neg \varphi_0(x) \land \neg \varphi_1(x) \land (\forall y. (\neg \varphi_0(y) \land \neg \varphi_1(y)) \rightarrow O(x,y))$$
 [1pt]

c) Suponga que ya tenemos las formulas $\varphi_0(x), \varphi_1(x), \dots, \varphi_{n-1}(x)$ para $0, 1, \dots, n-1$, respectivamente. Entonces:

$$\varphi_n(x) := \bigwedge_{i=0}^{n-1} \neg \varphi_i(x) \land \forall y. \left(\left(\bigwedge_{i=0}^{n-1} \neg \varphi_i(y) \right) \to O(x,y) \right) \quad [\mathbf{2pt}]$$

Pregunta 3

(a)
$$\{\varphi_1, ..., \varphi_n, \psi\} \vdash \varphi$$
 entonces $\{\varphi_1, ..., \varphi_n\} \vdash \varphi$.

Esta afirmación es verdadera. La intuición es que, al quitar una fórmula, el conjunto de valuaciones que hacen verdadera a alguna de las fórmulas, disminuye.

Se procede entonces a la demostración. Sea $\Sigma = \{\varphi_1, ..., \varphi_n\}$. Supongamos que $\Sigma \cup \{\psi\} \vdash \varphi$ y tomemos una valuación v tal que exista una fórmula $\varphi_i \in \Sigma$ tal que $\varphi_i(v) = 1$. Notar que en el caso de que no exista dicha valuación (es decir que Σ esté compuesto solo de contradicciones), se cumple trivialmente la consecuencia lógica débil. [1 pt]

Por demostrar: $\varphi(v) = 1$. Como $\varphi_i \in \Sigma$, entonces $\varphi_i \in \Sigma \cup \{\psi\}$, de modo que existe $\varphi_j \in \Sigma \cup \{\psi\}$ tal que $\varphi_j(v) = 1$ (en particular, $\varphi_i = \varphi_j$) [1 pt]. Por lo tanto, como asumimos que $\Sigma \cup \{\psi\} \vdash \varphi$, se concluye que $\varphi(v) = 1$, con lo que concluye la demostración [1 pt].

(b) $\Sigma \vdash \varphi$ si, y sólo si, $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Esta afirmación es falsa: veamos que la implicancia de derecha a izquierda no se cumple con el siguiente contraejemplo. Tomamos $\Sigma = \{p, \neg p\}$ y $\varphi = p \land \neg p$ (de modo que $\neg \phi = \neg p \lor p$). Es claro que $\{p, \neg p, \neg p \lor p\}$ es insatisfacible, pero no se cumple que $\{p, \neg p\} \vdash p \land \neg p$ pues basta tomar la valuación v tal que p(v) = 1 y $p \land \neg p(v) = 0$.

Los puntajes son otorgados de la siguiente manera en este item:

- Se muestra un contraejemplo y se explica brevemente por qué funciona [3 pts.]
- Se explica por qué la afirmación es falsa pero el contraejemplo que se muestra no es correcto [2 pts.]
- Se explica por qué la afirmación es falsa, sin embargo, no se presenta un contraejemplo [1 pt.]

Pregunta 4

Tenemos las fórmulas:

$$\alpha_n := p_1 \to (p_2 \to (p_3 \to \cdots \to (p_{n-1} \to p_n) \cdots))$$

$$\beta_n := (\cdots ((p_1 \to p_2) \to p_3) \to \cdots \to p_{n-1}) \to p_n$$

$$\gamma_n := (p_1 \to p_2) \land (p_2 \to p_3) \land (p_3 \to p_4) \land \cdots \land (p_{n-1} \to p_n)$$

A continuación se presenta una posible solución:

1. ¿Para cuáles n se cumple $\alpha_n \equiv \gamma_n$?

Trivialmente si n=1 o n=2 tendremos que $\alpha_n \equiv \gamma_n$. Ahora, para $n \geq 3$ consideremos la valuación para p_1, p_2, \ldots, p_n :

$$\bar{v} := 1, 0, \underbrace{1, ..., 1}_{\text{solo 1's}}$$

Definamos $\alpha := (p_2 \to (\cdots))$ tal que $\alpha_n := p_1 \to \alpha$. Como $p_2 = 0$ en \bar{v} entonces $\alpha(\bar{v}) = 1$, y entonces $\alpha_n(\bar{v}) = 1$. Ahora, como $(p_1 \to p_2)(\bar{v}) = 0$ entonces necesariamente $\gamma_n(\bar{v}) = 0$. Esto implica que \bar{v} es una valuación que hace cierta a una fórmula y no a la otra, por lo tanto, $\alpha_n \not\equiv \gamma_n$ para todo $n \ge 3$.

2. ¿Para cuáles n se cumple $\beta_n \equiv \gamma_n$?

Nuevamente de manera trivial, con n=1 y n=2 se cumple que $\beta_n \equiv \gamma_n$. Ahora, para $n \geq 3$ consideremos la misma valuación \bar{v} descrita anteriormente. La estructura de β_n es tal que $\beta_n := \beta_{n-1} \to p_n$ para todo $n \geq 2$. Como $\beta_2(\bar{v}) = (p_1 \to p_2)(\bar{v}) = 0$ entonces $\beta_3(\bar{v}) = (\beta_2 \to p_3)(\bar{v}) = 1$, como $\beta_3(\bar{v}) = 1$ entonces $\beta_4(\bar{v}) = (\beta_3 \to p_4)(\bar{v}) = 1$ (ya que $p_4 = 1$ en \bar{v}), y así sucesivamente. Usando este argumento inductivo se deduce que $\beta_n(\bar{v}) = 1$.

Ya sabemos que $\gamma_n(\bar{v}) = 0$ por lo que \bar{v} es una valuación que hace cierta a una fórmula y no a la otra, por lo tanto, $\beta_n \not\equiv \gamma_n$ para $n \ge 3$.

Dado lo anterior, el puntaje asignado por cada ítem es el siguiente:

- (0.5 puntos) Por decir el caso trivial y mencionar que se demostrará para $n \geq 3$.
- (1.5 puntos) Por encontrar una valuación \bar{v} que hace cierta a una fórmula y falsa a otra.
- (0.5 puntos) Por demostrar correctamente que \bar{v} hace cierta (o falsa) a α_n/β_n .
- (0.5 puntos) Por demostrar correctamente que \bar{v} hace falsa (o cierta) a γ_n .

Al ser 2 ítems con 3 puntos cada uno, el total de puntos de la pregunta es 6.