Homework10

Qi'ao Chen 21210160025

December 8, 2021

Exercise 1. Let M be a κ -saturated structure for some $\kappa > \aleph_0$. Let X_i be a definable subset of M^n for i=1,2,... Suppose that $X_0 \subseteq \bigcup_{i=1}^\infty X_i$. Show that there is an n s.t. $X_0 \subseteq \bigcup_{i=0}^n X_i$

Proof. Suppose for each X_i , $X_i = \varphi_i(M^n)$.

Suppose there is no such n, then for any $n\in\mathbb{N}$, there is $c_n\in M$ s.t. $\varphi_0(c_n)\wedge\neg\bigvee_{i=1}^n\varphi_i(c_n)$. Hence consider

$$\Gamma(x) = \{\varphi_0(x)\} \cup \{\neg \varphi_i(x) \mid i = 1, 2, \dots\}$$

This is finitely satisfiable by our discussion and hence realised by $a \in M$ since M is κ -saturated. Thus $X_0 \nsubseteq \bigcup_{i=1}^\infty X_i$, a contradiction

Exercise 2. Consider the structure $(\mathbb{C},+,\cdot)$. Let \mathcal{F} be a family of definable subsets of \mathbb{C}^1 . Suppose \mathcal{F} has the finite intersection property. If $|\mathcal{F}|<|\mathbb{C}|$, show that $\bigcap \mathcal{F} \neq \emptyset$

Proof. Suppose $|\mathcal{F}| = \lambda$, then $\mathcal{F} = \{\varphi_{\alpha}(\mathbb{C}) \mid \alpha < \lambda\}$.

If all of $|\varphi_{\alpha}(\mathbb{C})|$ are cofinite, then each $\varphi_{\alpha}(x) \leftrightarrow \bigwedge_{i=1}^{n_{\alpha}} x \neq c_{\alpha,i}$ where $|\neg \varphi_{\alpha}(\mathbb{C})| = n_{\alpha}$ and $\mathbb{C} \models \neg \varphi(c_{\alpha,i})$. But as $\omega \cdot \lambda = \max\{\omega, \lambda\} < |\mathbb{C}|$, there is $c \in \bigcap \mathcal{F}$.

Otherwise, since $\mathcal F$ has the finite intersection property, $F=\{\varphi_\alpha(x)\mid \alpha<\lambda\}$ is finitely satisfiable. Add a new constant distinct constant c to $L(\mathbb C)$ and then

$$\Gamma = \mathrm{Diag}_{\mathrm{el}}(\mathbb{C}) \cup \{\varphi_{\alpha}(c) \mid \alpha < \lambda\}$$

is satisfiable and let $\mathfrak{M} \models \Gamma$. Note that $|\varphi_{\alpha}(\mathfrak{M})| = |\varphi_{\alpha}(\mathbb{C})|$ for all $\alpha < \lambda$ by the fact as $|\varphi(\mathbb{C})| = n$ is definable. By the assumption, there is $\alpha < \lambda$ s.t. $|\varphi_{\alpha}(\mathbb{C})| = n < \omega$, then $\mathfrak{M} \models \bigvee_{i=1}^n c = c_i$ where $c_i \neq c_j$ for $i \neq j$ and $c_i, c_j \in \varphi_{\alpha}(\mathbb{C})$. Hence $c \in \mathbb{C}$.

Exercise 3. Show that \mathbb{C} is $|\mathbb{C}|$ -saturated

Proof. For any $A\subseteq \mathbb{C}$ with $|A|<|\mathbb{C}|$ and $p\in S_n(A)$. Then $|p|=\max\{|A|,\aleph_0\}<|\mathbb{C}|$. Let $\mathcal{F}=\{\varphi(\mathbb{C})\mid \varphi\in p\}$. Then \mathcal{F} has the finite intersection property since p is finitely satisfiable. Then $\bigcap \mathcal{F}\neq \emptyset$ and hence p is realised by $c\in \bigcap \mathcal{F}$. Thus \mathbb{C} is $|\mathbb{C}|$ -saturated

Exercise 4. Show that \mathbb{R} is not $|\mathbb{R}|$ -saturated

Proof. Consider

$$\Gamma(x) = \{x > q : q \in \mathbb{Q}\}\$$

then $\Gamma(x)$ is finitely satisfiable but it is not realised in $\mathbb R$ since there is no such element in $\mathbb R$. Thus $\mathbb R$ is not \aleph_1 -saturated

Exercise 5. Let $f: \mathbb{C} \to \mathbb{C}$ be the complex conjugation map

$$f(x+iy) = x - iy$$
 for $x, y \in \mathbb{R}$

Show that the structure $(\mathbb{C}, +, \cdot, f)$ is not $|\mathbb{C}|$ -saturated

Proof. Let $\varphi(x) := f(x) = x$. Then $\mathbb{R} = \varphi(\mathbb{C})$. Thus consider

$$\Gamma(x) = \{x > q \land \varphi(x) : q \in \mathbb{Q}\}\$$

This is finitely satisfiable in $\mathbb C$ but not realised in $\mathbb C$

Exercise 6. Let M be an infinite structure. Show that M is not $\left|M\right|^+$ -saturated.

Proof. Consider

$$\Gamma(x) = \{ x \neq a : a \in M \}$$

Since it is finitely satisfiable, we can extend it to $p(x) \in S(M)$, which is obviously not realised in M. Thus M is not $|M|^+$ -saturated \square