Shakib Irslan High School

Physics Department

Name:

PHYSICS EXTRA SHEET 4 LINEAR MOMENTUM

Academic Year: 2023-2024

Date: 11-12-2023

Class and Section: 12 LS & GS

Exercise 1:

A solid (S_1), taken as a particle of mass $m_1 = 0.5$ kg, is connected to the free end of a spring (R) of negligible mass and stiffness k = 200N/m. The other end of (R) is fixed to a support. (R) and (S_1) are placed on the horizontal part of a frictionless track. The inclined part of the track makes an angle $\alpha = 30^{\circ}$ with the horizontal. The horizontal plane containing the horizontal part of the track is taken as a gravitational potential energy reference. Take g = 10m/s².

 (S_1) is shifted from its equilibrium position by $x_0 = 20$ cm and then released from rest at the instant $t_0 = 0$ s.

- **1-** Determine the speed V_1 of (S_1) when it leaves the spring.
- 2- (S_1) enters in a perfectly elastic head-on collision with a stationary particle (S_2) of mass $m_2 = 1.5$ kg.
 - **2.1-** Determine, just after collision, the algebraic value V_1 ' and V_2 ' of the velocities of (S_1) and (S_2) respectively.
 - **2.2-** After collision, (S_2) moves up the inclined rail. Determine the maximum distance covered by (S_2) .
 - **2.3-** (S₁) compresses the spring by a distance $x_{\rm m}$ where it stops. Determine $x_{\rm m}$.

Exercise 2:

A bullet (B), of mass m = 20g, moving with a horizontal velocity $\vec{V}_0 = V_0 \vec{i}$, enters in a head-on collision with a solid (A), of center of inertia G and mass M = 5.6kg, and rests on a smooth horizontal plane. (A) is connected to the free end of an un-stretched spring (R) of negligible mass and stiffness k = 1000N/m. The other end of (A) is fixed to a vertical support as shown in the document below.

Just after collision, (B) and (A) from one body (S) and acquire a velocity $\vec{V} = V\vec{\imath}$. The horizontal plane passing G is taken as a gravitational potential energy reference.

- 1- Show that the expression of the algebraic velocity of (S) just after collision is $V = \frac{mV_0}{m+M}$
- 2- Determine, by applying the principle of conservation of mechanical energy, the value of V knowing that the spring undergoes a maximum compression of $x_m = 15cm$.
- **3-** Deduce the value of V_0 .

4.1- Show that the collision between (B) and (A) is not elastic.

4.2- In what form does the kinetic energy lost appear?

Exercise 3:

A truck (T), of mass $m_T = 3000kg$, moves with a speed of 54km/h on a horizontal and rectilinear road. A car (C), of mass $m_C = 1200kg$, moves with a speed of 72km/h in the opposite direction. (T) and (C) enter in a head-on collision. (C) rebounds with a speed of 36km/h.

- **1-** Determine the speed of the truck after collision.
- 2- Is the collision elastic? Deduce the energy lost during collision.
- **3-** The collision lasts for 10ms. Calculate the average force exerted by the truck on the car.

Exercise 4:

Consider a horizontal air table and two pucks (C) and (D) of respective masses $m_C = 100$ g and $m_D = 300$ g.

Puck (C), moving with a velocity \vec{V}_C , enters in a head-on collision with puck (D) moving in the opposite direction with a velocity \vec{V}_D .

The positions of the center of mass of each puck are registered at successive instants separated by a constant time interval $\tau = 50$ ms.

The document below represents, on the axis x'x, the dot-prints of the positions of the centers of masses of the two pucks before collision.

- 1- Show, referring to the above document, that the motion of the two pucks is uniform rectilinear.
- **2-** Calculate, before collision, the magnitudes V_C and V_D of the velocities of (C) and (D) respectively.
- 3- After collision, (C) rebounds with a velocity $\vec{V}'_C = -3.25\vec{\iota}$ (m/s). Determine the velocity \vec{V}'_D of (D) after collision.
- **4-** Specify the nature of collision between (C) and (D).

Exercise 5:

A solid (S), of center of inertia G and mass m = 1.25kg, is launched at the instant $t_0 = 0$ s with an initial velocity vector $\vec{V}_0 = V_0 \vec{i}$ from the top O of a rough inclined plane that makes an angle $\alpha = 30^\circ$ with the horizontal. Thus, G moves along an axis x'Ox parallel to the inclined plane as shown in document 1.

Document 2 represents the registrations of G during a constant time interval $\tau = 100$ ms.

The force of friction \vec{f} between the inclined plane and (S) opposes its motion and assumed constant of magnitude \vec{f} .

1- Complete the table below:

Dot	G_0	G_1	G_2	G ₃	G ₄
Instant: t [ms]	0	τ	2τ	3τ	4τ
Position: $x = \overline{OG}$ [cm]	0		80		176
Speed: V [m/s]	V_0		4.4		5.2
Linear momentum: P [kgm/s]	P_0		5.5		6.5

2- Trace the graph that represents the variation of P as function of time t.

Scale: horizontal axis: $1 \text{div} \rightarrow 100 \text{ms}$; Vertical axis: $1 \text{div} \rightarrow 1 \text{kgm/s}$.

- **3-** Find the equation of the obtained graph.
- **4-** Deduce the values of P_0 and V_0 .

5-

- **5.1-** Name and represent the external forces acting on (S).
- **5.2-** Show that the sum of external forces acting on (S) is $\sum \vec{F}_{ext} = (mg \sin \alpha f)\vec{\iota}$.
- **5.3-** Deduce the value of f.

Exercise 1:

Part	Answer key	Mark	
1	The non-conservative force (friction) is neglected; then, the mechanical energy is conserved.		
	$M.E_i = M.E_f \Longrightarrow K.E_i + G.P.E_i + E.P.E_i = K.E_f + G.P.E_f + E.P.E_f.$		
	$0 + 0 + \frac{1}{2}kx_0^2 = \frac{1}{2}m_1V_1^2 + 0 + 0 \Longrightarrow V_1 = \sqrt{\frac{k}{m_1}}x_0 = \sqrt{\frac{200}{0.5}} \times 0.2 = 4m/s.$		
2.1	During collision, the system $[(S_1); (S_2)]$ is isolated.		
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \implies \vec{P} = constant.$		
	The linear momentum is conserved: $\vec{P}_i = \vec{P}_f \Longrightarrow m_1 \vec{V}_1 + m_2 \vec{V}_2 = m_1 \vec{V}_1' + m_2 \vec{V}_2'$.		
	The collision is head on; then, the above expression can be written in its algebraic form.		
	$m_1V_1 + m_2V_2 = m_1V_1' + m_2V_2'$ with $V_2 = 0$.		
	$m_1(V_1-V_1)=m_2V_2(1).$		
	The collision is elastic; then, the kinetic energy is conserved: $K.E_i = K.E_f$.		
	$\left \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 \right = \frac{1}{2} m_1 V_1^{'2} + \frac{1}{2} m_2 V_2^{'2} \Longrightarrow m_1 \left(V_1^2 - V_1^{'2} \right) = m_2 V_2^{'2}.$		
	$m_1(V_1 + V_1')(V_1 - V_1') = m_2V_2'^2 \dots (2).$		
	Divide (2) by (1): $V_1 + V_1' = V_2' \dots (3)$.		
	Replace (3) in (1): $m_1(V_1 - V_1') = m_2(V_1 + V_1') \Longrightarrow V_1' = \frac{m_1 - m_2}{m_1 + m_2} V_1$.		
	$V_1' = \frac{0.5-1.5}{0.5+1.5} \times 4 = -2m/s$ (the minus sign indicates that (S_1) rebounds back).		
	Using equation (3): $V_2' = V_1 + V_1' = 4 - 2 = 2m/s$.		
2.2	The non-conservative force (friction) is neglected; then, the mechanical energy is conserved.		
	$M.E_i = M.E_f \Longrightarrow K.E_i + G.P.E_i = K.E_f + G.P.E_f.$		
	$\frac{1}{2}m_2{V_2'}^2 + 0 = 0 + m_2gd\sin\alpha \implies d = \frac{{V_2'}^2}{2g\sin\alpha} = \frac{4}{2\times10\times0.5} = 0.4m = 40cm.$		
2.3	The non-conservative force (friction) is neglected; then, the mechanical energy is conserved.		
	$M.E_i = M.E_f \Longrightarrow K.E_i + G.P.E_i + E.P.E_i = K.E_f + G.P.E_f + E.P.E_f.$		
	$\left \frac{1}{2} m_1 V_1^{'2} + 0 + 0 = 0 + 0 + \frac{1}{2} k x_m^2 \Longrightarrow x_m = \sqrt{\frac{m_1}{k}} V_1^{'} = \sqrt{\frac{0.5}{200}} \times 2 = 0.1 m. \right $		

Exercise 2:

Exercis	U M .	1
Part	Answer key	Mark
1	During collision, the system $(S) = [(A); (B)]$ is isolated.	
	$\sum \vec{F}_{ext} = \frac{d\vec{P}_S}{dt} = \vec{0} \Longrightarrow \vec{P}_S = constant.$	
	Law of conservation of linear momentum: $\vec{P}_{bc} = \vec{P}_{ac} \implies m\vec{V}_0 + \vec{0} = (m+M)\vec{V}$.	
	$mV_0 = (m+M)V \Longrightarrow V = \frac{mV_0}{m+M}$.	
2	The non-conservative force (friction) is neglected; then, the mechanical energy is conserved.	
	$M.E_i = M.E_f \implies K.E_i + G.P.E_i + E.P.E_i = K.E_f + G.P.E_f + E.P.E_f.$	
	$\frac{1}{2}(m+M)V^2 + 0 + 0 = 0 + 0 + \frac{1}{2}kx_m^2 \implies V = \sqrt{\frac{k}{m+M}}x_m = \sqrt{\frac{1000}{5.6 + 0.02}} \times 0.15 = 2m/s.$	
3	$V_0 = \frac{m+M}{m}V = \frac{0.02+5.6}{0.02} \times 2 = 562m/s.$	
4.1	$K.E_{bc} = \frac{1}{2}mV_0^2 = \frac{1}{2}(0.02)(562)^2 = 3,158.44J.$	
	$K.E_{ac} = \frac{1}{2}(m+M)V^2 = \frac{1}{2}(5.62)(2)^2 = 11.24J.$	
	$K.E_b \neq K.E_a \Longrightarrow$ The kinetic energy of the system (S) is not conserved.	
4.2	Heat or thermal energy	

Exercise 3:

Part	Answer key	Mark			
1	Before collision, the velocity of (T) is $V_T = 54km/h = 15m/s$ and that of (C) is				
	$V_C = -72km/h = -20m/s \left(km/h \xrightarrow{\div 3.6} m/s\right).$				
	After collision, the velocity of (T) is V_T' and that of (C) is $V_C' = 36km/h = 10m/s$. During collision, the system [(T); (C)] is isolated.				
	$\sum \vec{F}_{ext} = \frac{d\vec{P}_s}{dt} = \vec{0} \implies \vec{P}_S = constant.$				
	Principle of conservation of linear momentum: $\vec{P}_b = \vec{P}_a$.				
	$m_T \vec{V}_T + m_C \vec{V}_C = m_T \vec{V}_T' + m_C \vec{V}_C'.$				
	The collision is head-on and the velocities are collinear:				
	$m_{T}V_{T} + m_{C}V_{C} = m_{T}V_{T}^{'} + m_{C}V_{C}^{'}.$				
	$(3000)(15) + (1200)(-20) = (3000)V_T' + (1200)(10) \Rightarrow V_T' = 3m/s.$				
2	$K.E_b = \frac{1}{2}m_TV_T^2 + \frac{1}{2}m_CV_C^2 = \frac{1}{2}(3000)(15)^2 + \frac{1}{2}(1200)(20)^2 = 577,500J.$				
	$K.E_a = \frac{1}{2}m_T V_T^{'2} + \frac{1}{2}m_C V_C^{'2} = \frac{1}{2}(3000)(3)^2 + \frac{1}{2}(1200)(10)^2 = 73,500J.$				
	$K.E_b \neq K.E_a \implies$ The kinetic energy of the system [(T); (C)] is not conserved; then, collision				
	is not elastic.				
	$Energy\ lost = \Delta K.E = 577,500J - 73,500J = 504,000J.$				
3	$\vec{F}_{T/C} = \frac{\Delta \vec{P}_c}{\Delta t} = \frac{\vec{P}_c' - \vec{P}_C}{\Delta t} = \frac{m_C \vec{V}_C' - m_C \vec{V}_C}{\Delta t} = \frac{m_C (\vec{V}_C' - \vec{V}_C)}{\Delta t} = \frac{(1200)(10\vec{\imath} + 20\vec{\imath})}{0.01} = 3,600,000\vec{\imath} [N].$				

Exercise 4:

Exercis	se 4:	
Part	Answer key	Mark
1	The dots are collinear and the distance separating two consecutive dots is constant.	
2	$V_C = \frac{C_0 C_4}{4\tau} = \frac{40 \times 10^{-2}}{4 \times 50 \times 10^{-3}} = 2m/s.$	
	$V_D = \frac{D_0 D_4}{4\tau} = \frac{30 \times 10^{-2}}{4 \times 50 \times 10^{-3}} = 1.5 m/s.$	
3	During collision, the system [(C); (D)] is isolated.	
	$\sum \vec{F}_{ext} = \frac{d\vec{P}_S}{dt} = \vec{0} \Longrightarrow \vec{P}_S = constant.$	
	Principle of conservation of linear momentum: $\vec{P}_{S(bc)} = \vec{P}_{S(ac)}$.	
	$m_C \vec{V}_C + m_D \vec{V}_D = m_C \vec{V}_C' + m_D \vec{V}_D'.$	
	$(0.1)(2\vec{t}) + (0.3)(-1.5\vec{t}) = (0.1)(-3.25\vec{t}) + 0.3\vec{V}_D' \Longrightarrow \vec{V}_D' = -0.25\vec{t} \ (m/s).$	
4	$K.E_{S(bc)} = \frac{1}{2}m_CV_C^2 + \frac{1}{2}m_DV_D^2 = \frac{1}{2}(0.1)(2)^2 + \frac{1}{2}(0.3)(1.5)^2 = 0.5375J.$	
	$K.E_{S(ac)} = \frac{1}{2}m_CV_C^{'2} + \frac{1}{2}m_DV_D^{'2} = \frac{1}{2}(0.1)(3.25)^2 + \frac{1}{2}(0.3)(0.25)^2 = 0.5375J.$	
	$K.E_{S(bc)} = K.E_{S(ac)} \Longrightarrow$ The kinetic energy of the system [(C); (D)] is conserved.	
	Therefore, the collision is elastic.	

Exercis	se 5:				
Part	Answer key			Mark	
1	$x_1 = \overline{OG}_1 = 38cm.$				
	$x_3 = \overline{OG}_3 = 38cm + 42cm + 46cm = 126cm.$				
	$V_1 = \frac{x_2 - x_0}{2\tau} = \frac{(80 - 0) \times 10^{-2}}{2 \times 100 \times 10^{-3}} = 4m/s.$				
	$V_1 = \frac{1}{2\tau} = \frac{2\times 100 \times 10^{-3}}{2\times 100 \times 10^{-2}} = 4m/s.$				
	$V_3 = \frac{x_4 - x_2}{2\tau} = \frac{(176 - 80) \times 10^{-2}}{2 \times 100 \times 10^{-3}} = 4.8 m/s.$				
	$P_1 = mV_1 = 1.25 \times 4 = 5kgm/s.$				
	$P_3 = mV_3 = 1.25 \times 4.8 = 6kgm/s.$		T.		
2	↑ P [kgm/s]	3	The general equation of a straight line is:		
	7		P = kt + b.		
			$k = \frac{\Delta P}{\Delta t} = \frac{6.5 - 5}{0.4 - 0.1} = 5kgm/s^2$.		
	6		P = 5t + b.		
			For $t = 100ms = 0.1s$; $P = 5kgm/s$.		
	5		$5 = 5 \times 0.1 + b \Longrightarrow b = 4.5 kgm/s.$		
			Therefore, $P = 5t + 4.5$.		
	4	4	$P_0 = b = 4.5 kgm/s$.		
			$V_0 = \frac{P_0}{m} = \frac{4.5}{1.25} = 3.6 m/s.$		
	3		ν		
	2				
			\vec{N}_{\bullet}		
	1		(S)		
	t [ms]		f		
			\overrightarrow{W} $\overrightarrow{\alpha}$ x		
	100 200 300 400		$\overrightarrow{W}^{\dagger}$ $\alpha \wedge x$		
5.1	The external forces acting on (S):				
	\overrightarrow{W} : Weight.				
	\vec{N} : Normal reaction of a support.				
	\vec{f} : Friction.				
5.2	$\sum \vec{F}_{ext} = \vec{W} + \vec{N} + \vec{f} = \vec{W}_x + \vec{W}_y + \vec{N}$	$+\vec{f}=$	$mg \sin \alpha \vec{i} - f\vec{i} = (mg \sin \alpha - f)\vec{i}$.		
	$\overrightarrow{W}_{v} + \overrightarrow{N} = \overrightarrow{0}$ (no motion along the y-axis).				
5.2	$\vec{P} = P\vec{i} \Longrightarrow \frac{d\vec{P}}{dt} = \frac{dP}{dt}\vec{i}$.	•			
	at at	I.D.			
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \frac{dP}{dt} \vec{i} \Longrightarrow (mg \sin \alpha - f)\vec{i} = \frac{dP}{dt} \vec{i}.$				
	$mg \sin \alpha - f = \frac{dP}{dt} \Longrightarrow 1.25 \times 10 \times \sin 30^{\circ} - f = 5 \Longrightarrow f = 1.25N.$				
	dt 1.23 7. 10 7. 511		, , -:		