Module 3.3: Learning Parameters: (Infeasible) guess work

 With this setup in mind, we will now focus on this model and discuss an algorithm for learning the parameters of this model from some given data

- With this setup in mind, we will now focus on this **model** and discuss an **algorithm** for learning the **parameters** of this model from some given **data**
- σ stands for the sigmoid function (logistic function in this case)

- With this setup in mind, we will now focus on this **model** and discuss an **algorithm** for learning the **parameters** of this model from some given **data**
- σ stands for the sigmoid function (logistic function in this case)
- For ease of explanation, we will consider a very simplified version of the model having just 1 input

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- With this setup in mind, we will now focus on this model and discuss an algorithm for learning the parameters of this model from some given data
- σ stands for the sigmoid function (logistic function in this case)
- For ease of explanation, we will consider a very simplified version of the model having just 1 input
- Further to be consistent with the literature, from now on, we will refer to w_0 as b (bias)

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- With this setup in mind, we will now focus on this **model** and discuss an **algorithm** for learning the **parameters** of this model from some given **data**
- σ stands for the sigmoid function (logistic function in this case)
- For ease of explanation, we will consider a very simplified version of the model having just 1 input
- Further to be consistent with the literature, from now on, we will refer to w_0 as b (bias)
- Lastly, instead of considering the problem of predicting like/dislike, we will assume that we want to predict criticsRating(y) given imdbRating(x) (for no particular reason)

$$x \xrightarrow{w} \sigma \longrightarrow \hat{y} = f(x)$$

$$x \xrightarrow{w} \hat{g} = f(x)$$

$$1 \xrightarrow{b}$$

Input for training

$$\{x_i, y_i\}_{i=1}^N \to N \text{ pairs of } (x, y)$$

$$x \xrightarrow{w} \hat{\sigma} \longrightarrow \hat{y} = f(x)$$

Input for training

$$\{x_i, y_i\}_{i=1}^N \to N \text{ pairs of } (x, y)$$

Training objective

Find w and b such that:

$$\underset{w,b}{\text{minimize}} \mathcal{L}(w,b) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$x \xrightarrow{w} \widehat{\sigma} \longrightarrow \widehat{y} = f(x)$$

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Input for training

$$\{x_i, y_i\}_{i=1}^N \to N \text{ pairs of } (x, y)$$

Training objective

Find w and b such that:

$$\underset{w,b}{\text{minimize}} \mathcal{L}(w,b) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$x \xrightarrow{w} \hat{g} = f(x)$$

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

• Suppose we train the network with (x,y) = (0.5,0.2) and (2.5,0.9)

$$x \xrightarrow{w} \hat{\sigma} \longrightarrow \hat{y} = f(x)$$

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- Suppose we train the network with (x,y) = (0.5,0.2) and (2.5,0.9)
- At the end of training we expect to find w*, b* such that:

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- Suppose we train the network with (x,y) = (0.5,0.2) and (2.5,0.9)
- At the end of training we expect to find w*, b* such that:
- $f(0.5) \to 0.2$ and $f(2.5) \to 0.9$

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- Suppose we train the network with (x,y) = (0.5,0.2) and (2.5,0.9)
- At the end of training we expect to find w*, b* such that:
- $f(0.5) \to 0.2$ and $f(2.5) \to 0.9$

In other words...

• We hope to find a sigmoid function such that (0.5, 0.2) and (2.5, 0.9) lie on this sigmoid

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- Suppose we train the network with (x,y) = (0.5,0.2) and (2.5,0.9)
- At the end of training we expect to find w*, b* such that:
- $f(0.5) \to 0.2$ and $f(2.5) \to 0.9$

In other words...

• We hope to find a sigmoid function such that (0.5, 0.2) and (2.5, 0.9) lie on this sigmoid

Let us see this in more detail....

• Can we try to find such a w*, b* manually

- Can we try to find such a w*, b* manually
- \bullet Let us try a random guess.. (say, w=0.5, b=0)

- Can we try to find such a w*, b* manually
- \bullet Let us try a random guess.. (say, w=0.5, b=0)
- Clearly not good, but how bad is it?

- Can we try to find such a w*, b* manually
- \bullet Let us try a random guess.. (say, w=0.5, b=0)
- Clearly not good, but how bad is it?
- Let us revisit $\mathcal{L}(w,b)$ to see how bad it is ...

$$\mathscr{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$\mathcal{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$\mathcal{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$\mathcal{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$= 0.073$$

$$\mathcal{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$= 0.073$$

We want $\mathcal{L}(w,b)$ to be as close to 0 as possible

Let us try some other values of w, b

\overline{w}	b	$\mathscr{L}(w,b)$
0.50	0.00	0.0730

Let us try some other values of w, b

b	$\mathscr{L}(w,b)$
0.00	0.0730
0.00	0.1481
	0.00

Oops!! this made things even worse...

Let us try some other values of w, b

0.50	0.00	0.0730
	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214

Perhaps it would help to push w and b in the other direction...

Let us try some other values of w, b

0.50	0.00	0.0-00
0.00	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028

Let us keep going in this direction, i.e., increase w and decrease b

Let us try some other values of w, b

w	b	$\mathscr{L}(w,b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003

Let us keep going in this direction, i.e., increase w and decrease b

Let us try some other values of w, b

\overline{w}	b	$\mathscr{L}(w,b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003
1.78	-2.27	0.0000

With some guess work and intuition we were able to find the right values for w and b

Let us look at something better than our "guess work" algorithm...

• Since we have only 2 points and 2 parameters (w, b) we can easily plot $\mathcal{L}(w, b)$ for different values of (w, b) and pick the one where $\mathcal{L}(w, b)$ is minimum

• Since we have only 2 points and 2 parameters (w, b) we can easily plot $\mathcal{L}(w, b)$ for different values of (w, b) and pick the one where $\mathcal{L}(w, b)$ is minimum

- Since we have only 2 points and 2 parameters (w, b) we can easily plot $\mathcal{L}(w, b)$ for different values of (w, b) and pick the one where $\mathcal{L}(w, b)$ is minimum
- But of course this becomes intractable once you have many more data points and many more parameters!!

- Since we have only 2 points and 2 parameters (w, b) we can easily plot $\mathcal{L}(w, b)$ for different values of (w, b) and pick the one where $\mathcal{L}(w, b)$ is minimum
- But of course this becomes intractable once you have many more data points and many more parameters!!
- Further, even here we have plotted the error surface only for a small range of (w, b) [from (-6, 6) and not from $(-\inf, \inf)$]

Let us look at the geometric interpretation of our "guess work" algorithm in terms of this error surface

