IMPLEMENTASI ALGORITMA GENETIKA PADA PERANCANGAN SISTEM PENJADWALAN PERKULIAHAN DI STIKOM BALI

Ni Made Wangi Suryati, Ni Ketut Dewi Ari Jayanti, I Ketut Dedy Suryawan

Sekolah Tinggi Manajemen Informatika dan Teknik Komputer (STMIK) STIKOM Bali Jln. Raya Puputan No. 86 Renon-Denpasar, 0361-244445

email: wangi.suryati@yahoo.com, daj@stikom-bali.ac.id, dedymeng@stikom-bali.ac.id

Abstrak

Penjadwalan perkuliahan dalam sebuah institusi pendidikan seringkali menjadi kendala, sebab dalam penyusunan sebuah jadwal perkuliahan dengan skala besar, membutuhkan waktu yang cukup lama dengan kompleksitas yang tinggi. Untuk menyusun jadwal perkuliahan, harus mempertimbangkan beberapa komponen seperti matakuliah, ruang perkuliahan, waktu berlangsungnya proses perkuliahan, dan karakteristik mata kuliah. Selain itu penjadwalan perkuliahan juga harus mempertimbangkan kebijakan dari institusi pendidikan tersebut. Apabila dalam penjadwalan perkuliahan tidak dilakukan dengan tepat, akan menjadi kendala di kemudian hari, misalnya penumpukan jadwal mata kuliah di ruangan yang sama, hal tersebut dapat berdampak pada proses perkuliahan, sehingga proses perkuliahan menjadi terganggu. Pembuatan sistem penjadwalan perkuliahan dengan menggunakan algoritma genetika ini mempermudah penyusunan jadwal perkuliahan dengan cara menggunakan metode genetika dalam proses penjadwalannya, karena pendekatan yang diambil oleh algoritma ini adalah dengan menggabungkan secara acak berbagai pilihan solusi terbaik di dalam suatu kumpulan untuk mendapatkan generasi solusi terbaik, sehingga proses penjadwalan di STIKOM Bali dapat mengurangi kesalahan dalam proses penjadwalan.

Kata Kunci: Penjadwalan, Algoritma Genetika, Aplikasi

Abstract

Scheduling of lectures in an educational institution is often becoming an obstacle, for the preparation of a large-scale lecture schedules, as it takes a long time with high complexity. For scheduling lecture, should consider some of the components like the course, lecture hall, the duration of the lecture, and the characteristics of the subjects. Besides scheduling lectures should also consider the policies of the educational institution. If in the lecture scheduling is not done properly, it will become on obstacle in the future, such as the buildup of lecture schedule in the same room, it can have an impact on the lecture, so that the lecture could be disturbed. Making lecture scheduling system using a genetic algorithm to facilitate the preparation of the lecture schedule by using genetic methods in the process of scheduling, due to the approach taken by this algorithm is to combine randomly in any kind of the best solution choice in a collection in order to get a best solution generation, so the process of scheduling in STIKOM Bali can reduce errors or mistake in the scheduling process.

Keywords: Scheduling, Genetics Algorithm, Applications

1. Pendahuluan

Penyusunan sebuah jadwal perkuliahan dengan skala besar, membutuhkan waktu yang cukup lama dengan kompleksitas yang tinggi. Selain itu penjadwalan perkuliahan juga harus mempertimbangkan kebijakan dari institusi pendidikan tersebut. Apabila dalam penjadwalan perkuliahan tidak dilakukan dengan tepat, akan menjadi kendala di kemudian hari, misalnya bentrok jadwal mata kuliah di ruangan yang sama, hal tersebut dapat berdampak pada proses perkuliahan, sehingga proses perkuliahan menjadi terganggu.

STIKOM Bali merupakan salah satu sekolah tinggi bidang komputer di Bali. Hingga kini STIKOM Bali mempunyai tiga program studi yaitu Sistem Komputer (S1), Sistem Informasi (S1) dan Manajemen Informatika (D3). Dari data yang diperoleh berdasarkan kurikulum terbaru tahun 2012/2013 pada STIKOM Bali, program studi Sistem Komputer terdapat 52 Mata Kuliah, pada program studi Sistem

Informasi terdapat 70 matakuliah, dan pada program studi Manajemen Informatika terdapat 43 matakuliah. Total kelas matakuliah pada semester ganjil tahun ajaran 2012/2013 mencapai 659 kelas, sehingga proses penjadwalan akan lebih kompleks dan memakan waktu yang lama.

Salah satu cara yang dapat digunakan dalam optimasi penjadwalan adalah dengan menggunakan Algoritma Genetika (*Genetic Algorithms*). Algoritma genetika diadaptasi dari gagasan yang menirukan proses evolusi dalam pemecahan suatu masalah. Dalam proses evolusi, individu secara terus menerus mengalami perubahan gen melalui proses perkembangbiakan. Algoritma ini dapat dipakai untuk mendapatkan solusi yang tepat untuk masalah yang kompleks. Pendekatan yang diambil oleh algoritma ini adalah dengan menggabungkan secara acak berbagai pilihan solusi terbaik di dalam suatu kumpulan untuk mendapatkan generasi solusi terbaik berikutnya.

Maka dirancang sebuah sistem panjadwalan perkuliahan di STIKOM Bali berbasis desktop dengan mengimplementasikan algoritma genetika sebagai metode perancangannya. Pembuatan sistem penjadwalan perkuliahan ini diharapkan dapat mempermudah petugas akademik dalam proses penjadwalan. Sistem penjadwalan ini juga dapat digunakan untuk mempersingkat waktu penjadwalan, sehingga proses penjadwalan dapat berjalan dengan efektif. Selain itu dengan dibuatkannya sebuah sistem penjadwalan, maka dapat mengurangi kesalahan dalam proses penjadwalan.

2. Metode Penelitian

Penelitian (research) merupakan rangkaian kegiatan ilmiah dalam rangka pemecahan suatu masalah. Penelitian itu sendiri bekerja atas dasar asumsi, teknik dan metode. Tujuan dari penelitian adalah memecahkan suatu masalah dengan menggunakan metode yang sesuai.

Sistem penjadwalan perkuliahan di STIKOM Bali dengan menggunakan algoritma genetika ini dilatarbelakangi oleh permasalahan yang muncul pada proses penjadwalan, seperti lamanya proses penjadwalan, penumpukan jadwal mata kuliah di ruangan yang sama, serta banyaknya aturan perkuliahan yang ada di STIKOM Bali. Sehingga diperlukannya sebuah sistem penjadwalan yang efektif dan efisien untuk dapat mengurangi kesalahan dalam proses penjadwalan.Dalam penelitian ini, referensi diperoleh dari jurnal, buku dan artikel laporan yang berhubungan mengenai penelitian ini, sedangkan data yang digunakan, diperoleh langsung dari STIKOM Bali dengan cara observasi dan wawancara. Dalam sistem penjadwalan BAAK akan melakukan pengolahan data master berupa data prodi, ruangan, data paralel kelas, data matakuliah, data matakuliah ditawarkan, inputan kelas seni dan agama dan data sesi.

Sistem penjadwalan perkuliahan di STIKOM Bali dimulai dengan Prodi menentukan matakuliah yang akan ditawarkan pada semester yang akan dilakukan penjadwalan, serta jumlah kelas yang dibuka. Dalam sistem penjadwalan BAAK akan melakukan pengolahan data master berupa data prodi, ruangan, data paralel kelas, data matakuliah, data matakuliah ditawarkan, inputan kelas seni dan agama dan data sesi. BAAK akan menentukan parameter genetika yang akan digunakan dalam proses genetika, seperti jumlah populasi yang akan digunakan. Sistem akan mengecek jadwal perkuliahan satu per satu sesuai dengan aturan-aturan perkuliahan di STIKOM Bali, apabila jadwal perkuliahan belum memenuhi kriteria, maka jadwal perkuliahan akan diproses lagi dengan operator genetika yaitu diproses dengan seleksi, *crossover*, dan mutasi secara berulang hingga jadwal perkuliahan memenuhi aturan aturan yang telah ditetapkan. Dalam proses penjadwalan perkuliahan, yang menjadi tujuan utama adalah mendapatkan jadwal perkuliahan sesuai dengan aturan sehingga tidak terjadi kelas bentrok. Untuk lebih jelasnya, proses penjadwalan perkuliahan di STIKOM Bali digambarkan ke dalam Flowchart dibawah:

Gambar 1. Flowchart Sistem Penjadwalan di STIKOM Bali

3. HASIL DAN PEMBAHASAN

Sistem yang akan dibangun merupakan sistem penjadwalan perkuliahan di STIKOM Bali dengan menggunakan algoritma genetika sebagai metodenya, Berikut ini merupakan analisa dan hasil dari sistem Penjadwalan Perkuliahan di STIKOM Bali :

3.1. Analisa Dan Perancangan

Analisa dan perancangan sistem yang digunakan pada Sistem Penjadwalan Perkuliahan di Stikom Bali yaitu pemodelan sistem dengan menggunakan DFD (*Data Flow Diagram*), Berikut merupakan analisa dan perancangan dari Sistem Penjadwalan Perkuliahan di Stikom Bali :

a. DFD Level Konteks (Data Flow Diagram) Perkuliahan di STIKOM Bali

Dalam DFD (Data Flow Diagram) sistem penjadwalan perkuliahan di STIKOM Bali terbagi kedalam tiga proses utama. Proses pertama adalah login, dalam proses login, yang bisa melakukan proses ini adalah user BAAK dan user Prodi. Dimana di dalam sistem, user BAAK akan melakukan maintenance data, sedangkan user Prodi dapat melihat data penjadwalan dan hasil dari penjadwalan.

Proses kedua adalah maintenance data, pada proses ini akan dilakukan proses maintenance data terhadap data prodi, ruangan, data matakuliah, data paralel kelas, data sesi, dan data matakuliah yang akan dibuka.

Proses ketiga adalah proses penjadwalan, dimana dalam proses ini akan ditentukan parameter genetika yang akan digunakan dalam proses penjadwalan, serta melakukan proses penjadwalan perkuliahan. Berikut ini merupakan DFD Level konteks dari Sistem Penjadwalan Perkuliahan Di STIKOM Bali.

Gambar 2. DFD (Data Flow Diagram) Perkuliahan di STIKOM Bali

Penjelasan sistem pada diagram konteks:

DFD (Data Flow Diagram) level konteks sistem penjadwalan perkuliahan di STIKOM Bali terdapat 2 user yang akan menggunakan sistem penjadwalan yaitu user sebagai BAAK dan user sebagai Prodi. User BAAK akan melakukan proses pengolahan data terhadap data prodi, ruangan, data matakuliah, data paralel kelas, data sesi, data kels ditawarkan dan data matakuliah yang dibuka. BAAK juga menentukan parameter genetika dalam proses penjadwalan menggunakan algoritma genetika. Dari sistem, BAAK dapat melihat informasi prodi ruangan, matakuliah, paralel kelas, sesi, matakuliah yang dibuka dan hasil penjadwalan. User Prodi akan dapat melihat informasi data penjadwalan menerima hasil.

b. Pembentukan slot ruang waktu

Dalam sistem penjadwalan perkuliahan STIKOM Bali, sebelum membentuk kromosom, terlebih dahulu akan dibuat "SLOT RUANG WAKTU". dalam slot ruang waktu terdapat informasi mengenai sesi perkuliahan, ruangan, hari dan indeks dari masing masing sesi.

Tabel 1. Contoh Slot Ruang Waktu

		SENIN											SELASA																									
	RU ANG III.1							LAB MENENGAH					RUANG III.1				LAB MENENGAH																					
	ı	0850-								1530-												T		Т												П		
	0850	0940	1030	1120	1210	1300	1350	1440	1530	1620												\perp		\perp							\perp					Ш		
Index:	0	1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2	1 2	2 2	3 2	25	26	27	28	29	30	31 3	2 3	3 34	35	38	37	38	39

Dalam sistem penjadwalan perkuliahan di STIKOM Bali dapat dihitung jumlah slot ruang waktu yang tersedia, misalkan jumlah ruangan yang efektif sebanyak 25 ruangan, jumlah hari efektif 6 hari dan jumlah sesi perhari 16, maka dapat dihitung jumlah slot ruang waktunya adalah sebagai berikut :

Slot=Hari X Sesi X Ruangan

Keterangan:

Slot : Jumlah slot yang tersedia per minggu

Hari : Jumlah hari efektif Sesi :Jumlah sesi per hari Ruangan: Jumlah ruangan yang bisa digunakan

Slot=6 X 16 X 25=2400 slot

c. Pembentukan Tabel Kelas Matakuliah

Setelah pembentukan "SLOT RUANG WAKTU", dibuatkan kelas perkuliahan ke dalam bentuk tabel, yang perlu diperhatikan dalam pembuatan kelas perkuliahan adalah urutan kelas perkuliahan

dalam tabel tidak boleh berubah, karena tabel tersebut akan dirubah ke dalam kromosom. Kelas perkuliahan nanti akan dimasukkan secara acak ke dalam slot ruang waktu. Nilai indek awal dari indek slot ruang waktu tersebutlah yang akan digunakan sebagai nilai kromosom.

Tabel 2. Kelas Matakuliah

No	Nama matakuliah	Paralel kelas	SKS
1	Statistik	A091	3
2	Komputer Aplikasi	C081	2
3	Etika Profesi	C091	2
4	Pemrograman Visual	D101	4
5	Sistem operasi	J111	3
6	Pemrograman Client Server	F121	4
7	Rekayasa Perangkat Lunak	G091	3
8	Komunikasi Bisnis	M101	2
9	Kalkulus	H111	3
10	Bahasa Indonesia	M091	2

d. Pembentukan Kromosom

Gambar 3. Contoh pembentukan kromosom

Pembentukan kromosom pada contoh *sample* diatas menggunakan 10 *sample* matakuliah sebagai ilustrasi pembentukan kromosom dan besar populasinya adalah 4 yaitu K0, K1, K2, K3. Masingmasing matakuliah memiliki keterangan paralel kelas dan sks. Indeks kromosom diletakkan secara acak oleh sistem ke dalam slot ruang waktu, nilai indeks awal tersebutlah yang akan digunakan ke dalam kromosom.

e. Evaluasi Fitness

Masing-masing kelas perkuliahan mempunyai nilai *fitness* lokal, dimana nilai *fitness* lokal maksimum adalah 3. Selanjutnya semua nilai *fitness* lokal dari dalam satu buah kromosom dijumlahkan dan dibagi dengan jumlah nilai *fitness* lokal maksimum, sehingga menghasilkan nilai *fitness* kromosom.

Tabel 3. Contoh Kromosom pertama (K0)

		Cek Bentrok		Cek							
K0	MK	Ruangan	Cek Batas	Ruangan							
1	Statistik A081		1	1							
2	Komputer aplikasi A091		1								
3	Etika profesi M101		1								
4	Pemrograman visual Lab6	1	1	1							
5	Sistem Operasi D081	1	1								
6	PCS Lab6	1	1								
7	RPL L111										
8	Kombis M091		1	1							
9	Kalkulus H101		1	1							
10	Bahasa Indonesia H102			1							
Tota	Total fitness kromosom 0:										

 $f = \frac{f_{lokal}}{f_{lokalmaksimum}}$ Keterangan:

f : Nilai fitness kromosom

flokal : Total nilai fitness lokal untuk semua kelas perkuliahan

flokalmaksimum : Total nilai fitness lokal maksimum

Misalkan pada contoh kromosom diatas dihasilkan jumlah total nilai fitness lokal untuk semua kelas perkuliahan K0 = 16, total nilai fitness lokal maksimum = 3 x 10 = 30, maka nilai fitness kromosom pertama (K0) adalah :

$$f_0 = \frac{16}{30} = 0.53$$

f. Crossover

Langkah-langkah dari operasi crossover adalah:

- a. Tentukan pasangan kromosom yang akan dilakukan operasi *crossover*, pada *sample* yang akan digunakan, pasangan *sample* dari populasi diatas adalah K0-K1, K2-K3.
- b. Bangkitkan angka acak dari 0-1 untuk pasangan K0-K1 dan tentukan *crossover* rate dari 0-1. *Crossover* rate (rasio *crossover*) digunakan untuk menentukan probabilitas atau peluang suatu pasangan kromosom melakukan *crossover*. Misalkan *crossover* rate = 0,8 dan angka acak untuk pasangan kromosom (K0-K1) = 0,7.
- c. Jika angka acak lebih kecil dari *crossover* rate, maka pasangan kromosom (K0-K1) akan melakukan *crossover*.
- d. Tentukan titik *crossover* secara acak dengan rentang 0 s/d panjang kromosom, misalkan = 5. Panjang gen yang akan di *crossover* adalah panjang kromosom dikurangi dengan titik crossoverPanjang gen = 10 5 = 5.
- e. Lakukan crossover.

Gambar 4.Proses crossover

jumlah populasi baru = populasi awal (induk) + populasi anak seperti pada gambar dibawah :

					In	duk			Anak						
КО] [K1		K2	КЗ	$\overline{}$	K4		K5		K6		K7	$\overline{}$	
2	l l	5	·	1	6		2		5	-	1		6	•	
3		6		5	16		3		6		5		16		
10] [9		6	25]	10		9		6		25		
16] [15		7	2		16		15		2		7		
13		19		29	3		13		19		3		29		
22] [20		18	5		20		22		5		18		
19] [26		21	17		26		19		17		21		
1] [1		19	20		1		1		20		19		
27] [3		7	1		3		27		1		7		
29] [21]	20	5		21		29		5		20		

Gambar 5.populasi setelah di crossover

f. Lakukan kembali pengecekan nilai fitness pada kromosom anak.

Gambar 6.Fitness induk dan anak

g. Mutasi

Proses mutasi akan dilakukan pada setiap kromosom induk. Adapun langkah-langkah dari proses mutasi adalah :

- a. Tentukan mutation rate dari 0-1 dan tentukan angka acak dari 0-1 pada masing-masing kromosom. Misal angka acak 0,09, mutation rate = 0,2. Nilai mutasi harus kecil, apabila nilai mutasi besar maka kromosom yang bagus akan berpeluang melakukan mutasi juga dan menjadi buruk.
- b. Cek angka acak <= mutation rate, apabila kondisinya true maka tentukan i, dimana i merupakan angka acak indeks yang akan dilakukan mutasi dan I bernilai 0 sampai dengan panjang kromosom. Misal i = 3, maka nilai indeks (gen) ke[i] pada kromosom akan diubah dengan angka acak.

Gambar 7.Mutasi

c. Lakukan Pengecekan Nilai Fitness

h. Seleksi

Setelah dilakukan *crossover* dan mutasi ukuran populasi menjadi bertambah besar karena terdapat kromosom baru hasil dari proses *crossover* dan mutasi. Supaya ukuran populasi menjadi ukuran populasi awal, maka diperlukan proses seleksi untuk memilih kromosom terbaik dari populasi yang ada. Berikut adalah langkah-langkah proses seleksi:

- a. Lakukan pengurutan kromosom secara ascending berdasarkan nilai *fitness*nya.
- b. Delete semua kromosom di luar jumlah populasi sebenarnya, pada *sample* yang digunakan, populasi awal adalah 4 sedangkan populasi setelah di *crossover* dan mutasi adalah 9, maka pilih 4 kromosom dengan nilai *fitness* terbesar dan sisanya dihapus.
- c. Setelah mendapatkan 4 kromosom terbesar, acak posisi kromosom dalam populasi untuk menghindari terjadinya *crossover* antar kromosom-kromosom yang bagus.
- d. Tentukan kromosom dengan nilai fitness terbaik dan lakukan evaluasi nilai fitness.
- e. Jika nilai *fitness* kromosom terbaik sama dengan 1, maka proses genetika berhenti. Jika tidak, maka akan dilakukan operasi genetika lagi (*crossover*, mutasi, dan seleksi) untuk iterasi selanjutnya.

3.2. Hasil

Sistem Penjadwalan Perkuliahan di STIKOM Bali yang dikembangkan menggunakan bahasa pemrograman C# 2008 dengan menggunakan IDE Microsoft Visual Studio 2008 dan database yang digunakan adalah Microsoft SQL Management Studio 2008 R2. Hasil dari sistem yang dikembangkan berfungsi untuk mempermudah petugas akademik untuk melakukan proses penjadwalan, mempersingkat waktu penjadwalan, sehingga proses penjadwalan berjalan dengan efektif dan dapat mengurangi kesalahan pada saat proses penjadwalan.

a. Form Penjadwalan

Berikut Merupakan tampilan dari form Sistem Penjadwalan Perkuliahan di STIKOM Bali, dalam form ini akan digunakan untuk melakukan proses penjadwalan dengan menggunakan metode genetika, disini user sebagai BAAK akan melakukan proses penjadwalan sesuai matakuliah yang ditawarkan.

Gambar 8. Tampilan Form Penjadwalan

o. Tampilan Form Hasil Penjadwalan

Setelah proses penjadwalan selesai, data penjadwalan dapat disimpan ke dalam database sistem penjadwalan. Berikut merupakan hasil penjadwalan perkuliahan setelah disimpan :

Gambar 9. Tampilan Form Hasil Penjadwalan

c. Hasil Pengujian Parameter Genetika

Hasil pengujian parameter genetika ini bertujian untuk menganalisa kinerja algoritma genetika pada proses penyusunan penjadwalan perkuliahan di STIKOM Bali. Pengujian dilakukan dengan cara mengubah-ubah parameter pada proses penjadwalan. Pada Tabel dibawah ini menunjukkan hasil dari beberapa *sample* uji yang diujikan. *Sample* uji dilakukan untuk penjadwalan perkuliahan tahun 2012/2013 pada semester genap dengan rentang waktu 15 menit. Pada pengujian pertama, nilai dari Probabilitas *Crossover* (*Crossover* Rate) yang digunakan adalah 0,8 dan nilai dari Probabilitas Mutasi (Mutation Rate)

adalah 0,05 dengan menggunakan 3 nilai populasi yang masing-masing menggunakan jumlah kelas yang berbeda.

Tabel 4. Hasil Pengujian Pertama

Populasi	Probabilitas	Probabilitas	Fitness	Jumlah Kela	- Iterasi			
ropulasi	Crossover	Mutasi	runess	Praktikum	Kelas	Total	Herasi	
30	0.8	0.05	0.97046	33	204	237	6467	
30	0.8	0.05	0.95143	47	266	313	5596	
30	0.8	0.05	0.92162	60	333	393	4356	
70	0.8	0.05	0.97299	33	204	237	3326	
70	0.8	0.05	0.95718	47	266	313	2527	
70	0.8	0.05	0.93025	60	333	393	2056	
150	0.8	0.05	0.98227	33	204	237	1837	
150	0.8	0.05	0.95399	47	266	313	1184	
150	0.8	0.05	0.90127	60	333	393	957	

Hasil pengujian diatas dapat dilihat bahwa pengujian untuk total kelas pertama yang sama pada 3 populasi yang berbeda yaitu populasi 30, 70 dan 150, nilai *fitness* terbesar adalah 0.98227 dalam iterasi 1837. Pada pengujian dengan data kedua nilai *fitness* terbesar ditunjukkan pada populasi 70 dengan nilai *fitness* 0.95718, dan pada pengujian data ketiga nilai *fitness* terbesar ditunjukkan pada populasi 70 dengan nilai *fitness* 0.95718.

Hasil pengujian kedua menggunakan Probabilitas *Crossover* (*Crossover* Rate) yang digunakan adalah 0,75 dan nilai dari Probabilitas Mutasi (Mutation Rate) adalah 0,25 dengan menggunakan 3 nilai populasi yang masing-masing menggunakan jumlah kelas yang berbeda.

Tabel 5. Hasil Pengujian Kedua

Populasi	Probabilitas	Probabilitas	Fitness	Jumlah Kel		Iterasi	
ropulasi	Crossover	Mutasi	runess	Praktikum	Kelas	Total	Herasi
30	0.75	0.25	0.99493	33	204	237	7576
30	0.75	0.25	0.98977	47	266	313	5181
30	0.75	0.25	0.9715	60	333	393	3865
70	0.75	0.25	0.99578	33	204	237	3339
70	0.75	0.25	0.98849	47	266	313	2246
70	0.75	0.25	0.96641	60	333	393	1735
150	0.75	0.25	0.99409	33	204	237	1605
150	0.75	0.25	0.98594	47	266	313	1064
150	0.75	0.25	0.93530	60	333	393	546

Hasil pengujian kedua dapat dilihat bahwa nilai *fitness* terbaik pada jumlah data pertama yaitu pada 70 populasi yaitu 0.99578, pada data kedua ditunjukkan pada 30 populasi. Sedangkan pada data ketiga ditunjukkan pada 30 populasi.

Hasil pengujian ketiga menggunakan Probabilitas *Crossover* (*Crossover* Rate) yang digunakan adalah 0,85 dan nilai dari Probabilitas Mutasi (Mutation Rate) adalah 0,3 dengan menggunakan 3 nilai populasi yang masing-masing menggunakan jumlah kelas yang berbeda.

Tabel 6. Pengujian Ketiga

Populasi	Probabilitas	Probabilitas	Fitness	Jumlah Kelas Pa	Iterasi		
Fopulasi	Crossover	Mutasi	runess	Praktikum	Kelas	Total	Herasi
30	0.85	0.3	0.99578	33	204	237	6618
30	0.85	0.3	0.98466	47	266	313	4536
30	0.85	0.3	0.96844	60	333	393	3413
70	0.85	0.3	0.99662	33	204	237	2847
70	0.85	0.3	0.98594	47	266	313	1978
70	0.85	0.3	0.97099	60	333	393	1584
150	0.85	0.3	0.99409	33	204	237	1316
150	0.85	0.3	0.98146	47	266	313	931
150	0.85	0.3	0.95776	60	333	393	720

Hasil pengujian ketiga menunjukkan nilai *fitness* pada pengujian data pertama menunjukkan nilai *fitness* pada 70 populasi merupakan populasi terbaik yaitu 0.99662. pengujian data kedua nilai *fitness* terbaik ditunjukkan pada 70 populasi dimana nilai *fitness*nya adalah 0.98594. dan pada data ketiga nilai *fitness* terbaik ditunjukkan kembali pada 70 populasi.

Dari ketiga pengujian diatas dapat dilihat bahwa dengan mengubah parameter masukan seperti jumlah kelas dan parameter algoritma genetika seperti jumlah populasi, probabilitas *crossover* (*crossover* rate), probabilitas mutasi (mutation rate) menghasilkan data yang berfariasi dalam rentang waktu 15 menit, baik itu nilai *fitness* maupun iterasinya. Jadi ukuran parameter yang lebih besar, belum tentu menghasilkan jadwal terbaik.

Ukuran populasi mempengaruhi kinerja dan keefektifan algoritma genetika. Populasi yang lebih besar dibutuhkan untuk mempresentasikan keseluruhan ruang persoalan, namun selakin besar ukuran populasi maka kecepatan iterasi program penjadwalan akan semakin lambat, terlihat pada tabel diatas, semakin besar ukuran populasi, semakin kecil iterasi yang ditunjukkan.

4. Kesimpulan

Dari penulisan skripsi yang berjudul "Implementasi Algoritma Genetika pada Penjadwalan Perkuliahan di STIKOM Bali" dapat ditarik kesimpulan sebagai berikut :

- 1. Sistem Penjadwalan Perkuliahan di STIKOM Bali dirancang dengan menggunakan DFD (Data Flow Diagram) dan ERD (Entity Relationshif Diagram) untuk perancangan databasenya.
- 2. Sistem Penjadwalan Perkuliahan di STIKOM Bali dirancang untuk mempermudah petugas akademik dalam proses penjadwalan perkuliahan, sehingga proses penjadwalan dapat berjalan dengan efektif dan efisien.
- 3. Algoritma genetika dalam Sistem Penjadwalan Perkuliahan di STIKOM Bali dirancang dengan pembentukan kromosom berupa urutan kelas perkuliahan yang ditempatkan pada slot ruang waktu.
- 4. Dengan mengubah parameter masukan seperti jumlah kelas dan parameter algoritma genetika seperti jumlah populasi, probabilitas *crossover* (*crossover* rate), probabilitas mutasi (mutation rate) menghasilkan data yang berfariasi.
- 5. Ukuran parameter yang lebih besar, belum tentu menghasilkan jadwal terbaik.
- 6. Ukuran populasi mempengaruhi kinerja dan keefektifan algoritma genetika. Populasi yang lebih besar dibutuhkan untuk mempresentasikan keseluruhan ruang persoalan.
- 7. Semakin besar ukuran populasi maka kecepatan iterasi program penjadwalan akan semakin lambat.

DAFTAR PUSTAKA

- [1] Achmad Basuki, 2003. Algoritma Genetika. Politeknik Elektronika Negeri Surabaya.
- [2] Agus Widyadana, Andree Pamungkas, 2002. Perbandingan Kinerja Algoritma Genetika Dan Simulated Annealing Untuk Masalah Multiple Objective Pada Penjadwalan Flowshop. Universitas Kristen Petra.
- [3] Ahmad Riyad. Algoritma Genetika. Politeknik Batam, Batam
- [4] Anita Desiani & Muhammad Arhami, 2006. Konsep Kecerdasan Buatan, Andi Yogyakarta.

- [5] Annilia Septema, Perancangan Sistem Informasi Akutansi Atas Siklus Pengeluaran Pada Hotel Mutiara Di Boyolali. Universitas Gunadarma
- [6] Fadlisyah, Arnawan, Faizal, 2009. Algoritma Genetika, Graha Ilmu Yogyakarta.
- [7] Nico Saputro dan Erdo Dirgagutama, 2004. Penerapan Algoritma Genetic Pada Permainan Catur, Universitas Katolik Parahyangan, Bandung
- [8] Ragnu Ramakrishnan Johannes Gehrke, 2004. Sistem Managemen Database, Andi Yogyakarta
- [9] Samani, 2012. Rancang Bangun Sistem Penjadwalan Perkuliahan Dan Ujian Akhir Semester Dengan Pendekatan Algoritma Genetika. Universitas Diponegoro, Semarang
- [10] Sarwadi dan Anjar KSW, 2004. Algoritma Genetika Untuk Penyelesaian Masalah Vehicle Routing, Universitas Diponegoro Semarang.
- [11] Suyanto, 2005. Algoritma Genetika Dalam Matlab, Andi Yogyakarta.