Представления регулярных языков. Критерий регулярности

Теория формальных языков $2022 \ z$.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, (\alpha_i | \epsilon), M_i \rangle$, где $q_i \in Q$, $\alpha_i \in \Sigma$, $M_i \in \mathbb{Z}^Q$;
- $q_0 \in Q$ начальное состояние;
- F ⊆ Q множество конечных состояний.

Сокращаем: $\langle q_1, \alpha, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, \alpha, M \rangle \in \delta \& q_2 \in M$.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A}=\langle Q, \Sigma, \mathfrak{q}_0, \mathsf{F}, \delta \rangle.$

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{l} \bullet \ q \stackrel{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \stackrel{\alpha_1}{\longrightarrow} p_1 \ \& \ p_{k-1} \stackrel{\alpha_k}{\longrightarrow} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \stackrel{\alpha_{i+1}}{\longrightarrow} p_{i+1})). \end{array}$

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$.

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{c} \bullet \ q \overset{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \overset{\alpha_1}{\longrightarrow} p_1 \ \& \ p_{k-1} \overset{\alpha_k}{\longrightarrow} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \overset{\alpha_{i+1}}{\longrightarrow} p_{i+1})). \end{array}$

Определение

Язык \mathscr{L} , распознаваемый НКА \mathscr{A} — это множество слов $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$

- A

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q, \alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

 ϵ -переходов нет \Rightarrow q $\stackrel{\alpha}{\longrightarrow}$ q' \Leftrightarrow \langle q, α , q' \rangle \in δ .

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q, \alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$ начальное состояние;
- F ⊂ Q множество конечных состояний.

$$\epsilon$$
-переходов нет \Rightarrow q $\stackrel{\mathfrak{a}}{\longrightarrow}$ q' \Leftrightarrow \langle q, \mathfrak{a} , q' \rangle \in δ .

Язык \mathscr{L} , распознаваемый \mathscr{A} — это множество слов $\{w\mid \exists \mathsf{q}\in \mathsf{F}(\mathsf{q_0}\stackrel{w}{\longrightarrow}\mathsf{q})\}.$

Sink/trap state (состояние–ловушка)

«Ловушка» — не конечное состояние с переходами лишь в себя. Нужны для корректного задания DFA, но иногда по умолчанию не описываются.

Детерминизация NFA

\mathbf{O} т \mathscr{A} к $\mathsf{D}(\mathscr{A})$

Состояния DFA D(\mathscr{A}) — это состояния $\mathfrak{m}_i \in 2^Q$, где Q — состояния NFA \mathscr{A} .

- $\bullet \ m_0 = \big\{ q_i \mid q_0 \stackrel{\epsilon}{\longrightarrow} q_i \big\};$
- $\bullet \ m_i \in F_D \Leftrightarrow \exists q_i, q_j \big\{ q_i \in m_i \ \& \ q_j \in F(\mathscr{A}) \ \& \ q_i \overset{\epsilon}{\to} q_j \big\};$
- $\bullet \ \langle \mathfrak{m}, \mathfrak{a}, \mathfrak{m}' \rangle \in \delta_D \Leftrightarrow \mathfrak{m}' = \big\{ \mathfrak{q}_\mathfrak{i} \mid \exists \mathfrak{q}_\mathfrak{j} \in \mathfrak{m}(\mathfrak{q}_\mathfrak{j} \overset{\mathfrak{a}}{\longrightarrow} \mathfrak{q}_\mathfrak{i}) \big\}.$

- Один из шагов детерминизации.
- Может пониматься в разных смыслах: удаление только переходов без изменения числа состояний, и построение состояний, замкнутых относительно ε-переходов (то есть аналогично детерминизации, но только по ε-переходам).

Результаты этих преобразований будут различны, причём первое сохраняет недетерминированные переходы, а второе может их детерминизировать.

Рассмотрим следующий автомат.

 ϵ -замыкание q_0 — это $\{q_0, q_1, q_2\}$. ϵ -замыкание q_3 — это $\{q_3, q_5\}$. ϵ -замыкание q_4 — это $\{q_4, q_5\}$. Остальные состояния ϵ -замкнуты собой. Результат первого преобразования:

Результат второго преобразования:

Результат первого преобразования:

Результат второго преобразования:

В первом случае q_3 и q_4 стали финальными, потому что из них есть путь по ϵ -переходам в финальное состояние. Дополнительно добавились переход из q_0 в q_5 по а (поскольку такой путь есть из ϵ -достижимого из q_0 состояния q_1) и аналогичный переход в q_5 по b. После чего все ϵ -переходы были удалены. Для завершения построения, следует ещё удалить недостижимые состояния q_1 и q_2 . Автомат остался недетерминированным.

Результат первого преобразования:

Результат второго преобразования:

Во втором случае ε -замыкания состояний исходного автомата сразу же рассматривались как состояния нового автомата. Это привело к тому, что удалось сэкономить одно состояние, и результат оказался детерминированным.

Пример детерминизации

$$\begin{array}{c} \bullet \ \left\{q_{0}\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_{1}, q_{8}\right\}, \\ \left\{q_{0}\right\} \stackrel{b}{\longrightarrow} \left\{q_{4}, q_{9}\right\}; \end{array}$$

$$\begin{split} \bullet & \left\{q_1, q_8\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ & \left\{q_1, q_8\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_8\right\} \sim m_1. \end{split}$$

$$\begin{split} \bullet & \left\{ \left. q_1, \, q_2 \right\} \stackrel{\alpha}{\longrightarrow} \left\{ q_1, \, q_2 \right\}, \\ & \left\{ q_1, \, q_2 \right\} \stackrel{b}{\longrightarrow} \left\{ q_3 \right\}; \left\{ q_1, \, q_2 \right\} \sim m_2. \end{split}$$

$$\bullet \ \left\{q_3\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1,q_2\right\}, \left\{q_3\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\};$$

$$\begin{split} \bullet & \left\{q_4,q_9\right\} \stackrel{b}{\longrightarrow} \left\{q_4,q_6\right\}, \\ & \left\{q_4,q_9\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}; \left\{q_4,q_9\right\} \sim m_3; \end{split}$$

$$\begin{array}{c} \bullet \ \left\{q_4,\,q_6\right\} \stackrel{b}{\longrightarrow} \left\{q_4,\,q_6\right\}, \\ \left\{q_4,\,q_6\right\} \stackrel{a}{\longrightarrow} \left\{q_5\right\}; \left\{q_4,\,q_6\right\} \sim m_4. \end{array}$$

$$\bullet \ \left\{q_5\right\} \stackrel{b}{\longrightarrow} \left\{q_4,q_6\right\}, \left\{q_5\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}.$$

Пример детерминизации

$$\begin{array}{c} \bullet \ \left\{q_0\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_8\right\}, \\ \left\{q_0\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_9\right\}; \end{array}$$

- $\begin{array}{l} \bullet \ \left\{q_1, q_8\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ \left\{q_1, q_8\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_8\right\} \sim m_1. \end{array}$
- $$\begin{split} \bullet & \left\{ q_1, q_2 \right\} \stackrel{\alpha}{\longrightarrow} \left\{ q_1, q_2 \right\}, \\ & \left\{ q_1, q_2 \right\} \stackrel{b}{\longrightarrow} \left\{ q_3 \right\}; \left\{ q_1, q_2 \right\} \sim m_2. \end{split}$$
- $\bullet \ \left\{q_3\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1,q_2\right\}, \left\{q_3\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\};$
- $\begin{array}{c} \bullet \ \, \left\{q_4, q_9\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_6\right\}, \\ \left\{q_4, q_9\right\} \stackrel{a}{\longrightarrow} \left\{q_5\right\}; \left\{q_4, q_9\right\} \sim m_3; \end{array}$
- $\begin{array}{c} \bullet \ \left\{q_4,\,q_6\right\} \stackrel{b}{\longrightarrow} \left\{q_4,\,q_6\right\}, \\ \left\{q_4,\,q_6\right\} \stackrel{a}{\longrightarrow} \left\{q_5\right\}; \left\{q_4,\,q_6\right\} \sim m_4. \end{array}$
- $\bullet \ \left\{q_5\right\} \stackrel{b}{\longrightarrow} \left\{q_4,q_6\right\}, \left\{q_5\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}.$

Гомоморфизм над свободной полугруппой (множеством слов) полностью определяется значениями на буквах, поскольку по определению $h(a_1 \circ a_2 \circ \cdots \circ a_n) = h(a_1) \circ h(a_2) \circ \cdots \circ h(a_n)$. Здесь \circ —конкатенация.

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- ullet язык $\Sigma^* \setminus \mathscr{L};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\big\{{\mathsf h}(w)\mid w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма ${f h}$ язык $ig\{ w \mid {f h}(w) \in \mathscr{L} ig\}.$

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма ${\mathfrak h}$ язык $\big\{{\mathfrak h}(w)\ |\ w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\{w \mid {\mathsf h}(w) \in {\mathscr L}\}.$

Рассмотрим DFA $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий \mathscr{L} . Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, Q \setminus F, \delta \rangle$. Тогда $w \notin \mathscr{L} \Leftrightarrow w \in \mathscr{L}(\mathscr{A}')$.

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\big\{{\mathsf h}(w)\ |\ w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма ${f h}$ язык ${f w} \mid {f h}(w) \in \mathscr{L} \}.$

Рассмотрим регулярное выражение R такое, что $\mathscr{L}(R) = \mathscr{L}$. Заменим в нём все $\mathfrak{a}_i \in \Sigma$ на $h(\mathfrak{a}_i)$. Полученное таким образом выражение R' также регулярно, причём $\mathscr{L}(R') = h(\mathscr{L})$.

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма h язык $\big\{ \mathtt{h}(w) \mid w \in \mathscr{L} \big\};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\{w \mid {\mathsf h}(w) \in {\mathscr L}\}.$

Рассмотрим DFA $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий $\mathscr{L}.$ Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, F, \delta' \rangle$ такой, что $\langle q_i, \alpha, q_j \rangle \in \delta' \Leftrightarrow q_i \stackrel{h(\alpha)}{\longrightarrow} q_j$ в исходном автомате $\mathscr{A}.$

Примеры

Рассмотрим язык $\mathscr{L}' = \{ \mathfrak{a}^n \mathfrak{b}^m \mid \mathfrak{n} \neq \mathfrak{m} \}.$ Предположим, \mathscr{L}' регулярен. Тогда $\mathfrak{a}^* \mathfrak{b}^* \setminus \mathscr{L}' = \{ \mathfrak{a}^n \mathfrak{b}^n \}$ также регулярен, а мы знаем, что это не так. \bot

Примеры

Рассмотрим язык $\mathscr{L}' = \left\{ a^n b^m \mid n \neq m \right\}$. Предположим, \mathscr{L}' регулярен. Тогда $a^*b^* \setminus \mathscr{L}' = \left\{ a^n b^n \right\}$ также регулярен, а мы знаем, что это не так. \bot

Рассмотрим язык $\mathscr{L}^f = \big\{ (abaabb)^n b^n \big\}.$ Попытка доказать его нерегулярность леммой о накачке породит перебор по накачиваемым строкам $(abaabb)^+$, $(abaabb)^*a$, $(abaabb)^*ab$, $(abaabb)^*aba$, $(abaabb)^*aba$, $(abaabb)^*abaa$, Рассмотрим гомоморфизм h(a) = abaabb, h(b) = b. $h^{-1}(\mathscr{L}^f) = \big\{ a^n b^n \big\}$, который был бы регулярен, если бы L^f был регулярен. \bot

Эквивалентность слов в DFA

Пусть дан DFA \mathscr{A} . Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_\mathfrak{i} (q_0 \xrightarrow{w_1} q_\mathfrak{i} \& q_0 \xrightarrow{w_2} q_\mathfrak{i}).$$

Если
$$w_1 \equiv_{\mathscr{A}} w_2$$
, тогда $\forall z (w_1 z \in \mathscr{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathscr{L}(\mathscr{A})).$

Эквивалентность слов в DFA

Пусть дан DFA A. Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_i (q_0 \xrightarrow{w_1} q_i \& q_0 \xrightarrow{w_2} q_i).$$

Если $w_1 \equiv_{\mathscr{A}} w_2$, тогда $\forall z (w_1 z \in \mathscr{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathscr{L}(\mathscr{A}))$. Рассмотрим более общее отношение. Положим

 $w_1 \equiv_{\mathscr{L}} w_2 \Leftrightarrow \forall z (w_1 z \in \mathscr{L} \Leftrightarrow w_2 z \in \mathscr{L})$. Это отношение разбивает \mathscr{L} на классы эквивалентности.

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество его классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

 \Rightarrow : Пусть $\mathscr L$ регулярен. Тогда он порождается некоторым DFA $\mathscr A$ с конечным числом состояний N. Значит, множество $\left\{q_i\mid q_0\stackrel{w}{\longrightarrow} q_i\right\}$ конечно, а для каждых двух w_1 , w_2 таких, что $q_0\stackrel{w_1}{\longrightarrow} q_i$ и $q_0\stackrel{w_2}{\longrightarrow} q_i$, выполняется $w_1\equiv_{\mathscr L} w_2$.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

 \Leftarrow : Пусть все слова в Σ^* принадлежат N классам эквивалентности A_1, \ldots, A_n по $\equiv_{\mathscr{L}}$. Построим по ним DFA \mathscr{A} , распознающий \mathscr{L} . Классы A_i объявим состояниями.

- Начальным состоянием объявим класс эквивалентности A_0 такой, что $\varepsilon \in A_0$.
- Конечными объявим такие A_j , что $\forall w \in A_j (w \in \mathscr{L})$.
- Если $w \in A_i$, $w \ a_k \in A_j$, тогда добавляем в δ правило $\langle A_i, a_k, A_j \rangle$. $\forall w_1, w_2 \in A_i, w_1 a_k$ и $w_2 a_k$ всегда принадлежат одному и тому же A_j .

Минимизация DFA

- Построим таблицу всех двухэлементных множеств $\{q_i, q_j\}, q_i, q_j \in Q.$
- **2** Пометим все множества $\{q_i, q_j\}$ такие, что одно из q_i, q_j из F, а второе нет.
- \mathbf{g} Пометим все множества $\left\{q_i,q_j\right\}$ такие, что $\exists \mathfrak{a}(q_i \overset{\mathfrak{a}}{\longrightarrow} q_1' \& q_j \overset{\mathfrak{a}}{\longrightarrow} q_2' \& \left\{q_1',q_2'\right\}$ помеченная пара).
- Продолжаем шаг 3, пока не будет появляться новых помеченных пар.

Пары, оставшиеся непомеченными, можно объединить.

m_1						
m_2						
q ₃	√	√	√			
m_3				√		
m_4				\		
q_5	\	\	√		✓	√
	q_0	\mathfrak{m}_1	m_2	q_3	m_3	m_4

Α.

$\overline{m_1}$						
m_2						
q ₃	√	√	√			
m_3				√		
m_4				\checkmark		
q_5	√	√	√		√	√
	q_0	m_1	m_2	q ₃	m ₃	m_4

$$\{\mathfrak{m}_1,\mathfrak{m}_2\} \stackrel{\mathfrak{a}}{\longrightarrow} \mathfrak{m}_2$$

$$\{\mathfrak{m}_1,\mathfrak{m}_2\} \stackrel{\mathfrak{b}}{\longrightarrow} \mathfrak{q}$$

m_1	√					
\mathfrak{m}_2	√					
q_3	✓	✓	√			
m_3				✓		
m ₄				√		
q_5	√	√	√		√	√
	q_0	\mathfrak{m}_1	m_2	q_3	m_3	m_4

$$q_0 \xrightarrow{\alpha} m_1, m_3 \xrightarrow{\alpha} q_5$$
 $q_0 \xrightarrow{\alpha} m_1, m_4 \xrightarrow{\alpha} q_5$ $m_1 \xrightarrow{\alpha} m_2, m_3 \xrightarrow{\alpha} q_5$ $m_2 \xrightarrow{\alpha} m_2 \xrightarrow{\alpha} m_3 \xrightarrow{\alpha} q_5$ $m_3 \xrightarrow{\alpha} q_5$ $m_4 \xrightarrow{\alpha} q_5$ $m_5 \xrightarrow{\alpha} m_5 \xrightarrow{\alpha} q_5$

$$q_0 \xrightarrow{a} m_1, m_4 \xrightarrow{a} q_5$$
 $m_1 \xrightarrow{a} m_2, m_4 \xrightarrow{a} q_5$

m_1	√					
m_2	\checkmark					
q_3	√	√	√			
m_3	√	√	√	√		
m_4	√	√	√	✓		
q_5	√	√	√		✓	√
	q_0	\mathfrak{m}_1	\mathfrak{m}_2	q_3	m_3	m_4

$$\begin{cases}
m_3, m_4 \\ \xrightarrow{a} q_5 \\ q_3 \xrightarrow{a} m_2, q_5 \xrightarrow{a} m_4
\end{cases}
\begin{cases}
m_3, m_4 \\ \xrightarrow{b} m_4
\end{cases}$$

\mathfrak{m}_1	\checkmark					
\mathfrak{m}_2	✓					
q_3	<	✓	√			
m_3	<	√	√	√		
m_4	√	√	√	√		
q_5	√	√	√	√	√	√
	q_0	\mathfrak{m}_1	\mathfrak{m}_2	q_3	m_3	m_4

Можно объединить состояния m_1 и m_2 и состояния m_3 и m_4 .

m_1	√					
\mathfrak{m}_2	√					
q_3	✓	√	√			
m_3	✓	✓	√	\checkmark		
m ₄	√	√	√	√		
$\overline{q_5}$	√	√	√	√	√	√
	q_0	m_1	m_2	q ₃	m ₃	m ₄

Меньше чем пятью состояниями не обойтись. Рассмотрим слова ε , a, b, ab, ba. Каждые два из них различаются по $\equiv_{\mathscr{L}}$ при выборе одного из трёх z: ε , a или b.

Бисимуляция

Скажем, что состояния s_1 , s_2 системы переходов \mathscr{A} находятся в отношении бисимуляции ($s_1 \sim s_2$), если выполняются условия:

•
$$\forall t_1, \alpha(s_1 \xrightarrow{\alpha} t_1 \Rightarrow \exists t_2(s_2 \xrightarrow{\alpha} t_2 \& t_1 \sim t_2));$$

$$\bullet \ \forall t_2 \text{, } \alpha(s_2 \stackrel{\alpha}{\longrightarrow} t_2 \Rightarrow \exists t_1(s_1 \stackrel{\alpha}{\longrightarrow} t_1 \ \& \ t_1 \sim t_2)).$$

Бисимуляция — более сильное свойство, чем эквивалентность!

Связь М.- N. и производных

Пусть $w^{-1}U$ — это производная U по w, т.е. $\{v \mid wv \in U\}$. Тогда выполнено $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$.

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.

Связь М.- N. и производных

Пусть $w^{-1}U$ — это производная U по w, т.е. $\{v \mid wv \in U\}$. Тогда выполнено $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$.

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.

Но проблема с правилами переписывания (АСІ):

- $\bullet \ (w_1 \mid w_2) \mid w_3 = w_1 \mid (w_2 \mid w_3)$
- $w_1 | w_2 = w_2 | w_1$
- $\bullet w \mid w = w$

Применение теоремы М.- N.

Задача

Дан язык \mathscr{L} . Показать, что он не регулярен, пользуясь теоремой Майхилла–Нероуда.

Стандартный подход

- Подобрать бесконечную последовательность префиксов w_1, \ldots, w_n, \ldots
- **②** Подобрать бесконечную последовательность суффиксов z_1, \ldots, z_n, \ldots , такую, что $w_i +\!\!\!\!+ z_i \in \mathscr{L}$.
- **3** Доказать, что в таблице конкатенаций все строки различны (значит, $\forall i, j \exists k (w_i z_k \in \mathscr{L} \& w_i z_k \notin \mathscr{L})$).

Диагональная конструкция

Рассмотрим язык $L = \{a^nb^n\}$. Положим $w_i = a^i, z_i = b^i$. Тогда таблица конкатенаций w_i, z_j будет выглядеть следующим образом. Здесь + — это то же, что « $\in \mathcal{L}$ », — читаем как « $\notin \mathcal{L}$ ».

	$ z_1 = b $	$z_2 = b^2$	$z_3 = b^3$	 $z_n = b^n$	
$w_1 = a$	+	_	_	_	
$w_2 = a^2$	-	+	_	_	
$w_3 = a^3$	-	_	+	_	
$w^n = a^n$	-	_	_	+	

Доказательство минимальности

Так же можно обосновывать минимальность DFA. Рассмотрим минимальный автомат из примера выше. Его язык — слова в $\{a,b\}^*$, начинающиеся и заканчивающиеся одной и той же буквой. Построим таблицу классов эквивалентности по $w_i \in \{\epsilon,a,b,ab,ba\}$.

	ε	a	b
ε	+	+	+
а	+	+	_
b	+	_	+
ab	_	+	_
ab ba	—	_	+

В этой таблице все строчки различны, значит, выбранные w_i действительно лежат в различных классах эквивалентности, и DFA, распознающий язык \mathcal{L} , не может иметь меньше пяти состояний.

При доказательстве минимальности DFA достаточно подобрать $[\log_2 n] + 1$ различающих суффиксов z_i , где n — число состояний автомата.

О порождении новых алгоритмов

Пусть \mathscr{A} — NFA. Тогда $\det(\text{reverse}(\det(\text{reverse}(\mathscr{A}))))$ — минимальный DFA, эквивалентный \mathscr{A} .

Многие алгоритмы для порождения малых (не минимальных) NFA являются комбинациями нескольких базовых операций.

- Обращение автомата
- Детерминизация
- Удаление ε-правил
- Минимизация
- Разметка

Автомат Томпсона

- Единственное начальное состояние
- Единственное конечное состояние
- Не больше двух переходов из каждого состояния

Несколько конструкций

- Автомат Глушкова: rmeps(Th(R));
- Автомат Антимирова: rmeps(deannote(minimize(rmeps(annote_eps(Th(R)))));
- Автомат Илия-Ю: deannote(minimize(rmeps(annote(Th(R))))).