WA 123679

AD____

XM-198 GENERATED SHOCK WAVE AND LOVELACE EXPERIMENTS

Final Report

Mr. Henry C. Evans Jr. Dr. Steve Slinker Mr. Larry Roelofs

January 1983

Supported by

US Army Medical Research and Development Command Fort Detrick Frederick, Maryland 21701

Contract No. DAMD17-78-C-8062

JAYCOR 1401 Camino Del Mar Del Mar, CA 92014

E

ELE COP

DOD Distribution Statement: Approved for public Release; Distribution Unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. $83 \ 01 \ 24 \ 14$

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1	3. RECIPIENT'S CATALOG NUMBER
AD-A12:	3 6 7 9
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
XM-198 Generated Shock Waves and Lovelace Experiments	Final Report Aug 78-Apr 79
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Mr. Henry Evans Jr. Dr. Steve Slinker	DAMD17-78-C-8062
Mr. Larry Loelofs	UAMU17-78-C-8062
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
JAYCOR 1401 Camino Del Mar	62773A.3E162773A818.00.062
Del Mar, CA 92014	02773A.3E.102773A010.00.002
11. ርባኒያ ማራኒ ከህ ዓይሮ፣ ርቼ ተ ተርድ ድቼ ት ርክ ምቼ፣ ስ Development Command	12. REPORT DATE
Ft. Detrick	January 1983
Frederick, Maryland 21701	13. NUMBER OF PAGES 113
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for Public Release; Distribution Unlimite	ed.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different izo	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Blast Overpressures	
M198 Howitzer, M203 Charge Lovelace Shock Tube	
Cross Correlation of Blast Wave Forms	:
Cross Correlation of Howitzer and Shock Tube Pressu	ıres
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	

An anlysis was performed between the Blast wave forms generated by the M198, 155mm howitzer using the M203 charge and the shock tube of the Lovelace Center for Health Sciences. A cross correlation of data indicated a degree of correlation was posslible when the total waveform ensemble was investigated. Some questions were raised as to the consistency of Lovelace shock data and its reproducibility. However, the analysis provided a greater data base and an insight of pressure -- time histories from blast overpressures.

TABLE OF CONTENTS

PAGE SUMMARY1	•
INTRODUCTION - Explanation of Data Contained in the Appendix2-1	.0
APPENDIX11	
SECTION A - Introduction and Calibration Data12-	-15
SECTION B - 5-Day Summaries of Peak Pressures16-	-22
SECTION C - Correlation Studies23-	-32
M-198 Reproducibility (30 Nov. 78 Test) Shock Tube Reproducibility Correlations Between Shock Tube and M-198	
SECTION D - Dynamic Pressure Study33-	-38
SECTION E - 1-Day Shot Summaries39-	-59
Miscellaneous Pressure Plots Daily Peak Variations	
SECTION F - Graphs60-	-108
Contract Publication and Personnel109	9
District Link	0

SUMMARY

In an effort to describe the shock waves produced by firings of the M-203 charge from the XM-198 howitzer (155mm), simulated shock waves were generated in the shock tube of the Lovelace Center for Health Science in Albuquerque, NM. This research project was initiated to determine if the shock tube generated blasts were indeed similar to the howitzer firings. The major areas of investigation centered about the shot-to-shot and day-to-day reproducibility of the pressure fields from the shock tube, and the similarity of peak pressures, rise times and ouration of the shock waves.

Data was collected from the XM-198 firings and the Lovelace shock tube. Correlation comparisons were made using statistical analyses. Comparison of data collecting methods, peak pressures, pressure time histories and reproducibility criteria were made.

The major findings indicate that there was a degree of cross correlation between the various shots. There is a question as to the consistency of the shock tube waveforms and its reproducibility. Calibration methods of the instrumentation raised some questions as to effect on the generated recordings. It also appears that more sophisticated methods need to be applied to the pressure time histories for definitive percentages of correlation.

NTIS DTIC Unan	GRA&I TAB nounced	× C	
By Dist:	ribution	2/	OTAG GG A.
Ava	llabili	y Codes	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Dist	Avail Spec		
A			

XM-198 GENERATED SHOCK WAVES AND LOVELACE EXPERIMENTS

CONTRACT DAMD17-78-C-8062

1. INTRODUCTION

This report addresses the issue of simulated howitzer blast shockwaves produced from shock tubes as well as an analysis of data collected from actual howitzer firings. Presently the Lovelace Center for Health Science at Albuquerque, New Mexico is performing experiments to simulate howitzer blasts with their shock tube. The purpose of the shock tube test is two-fold: first, to determine the shot-to-shot and day-to-day reproducibility of the pressure fields generated by the shock tube; and second, to investigate how closely the shock tube pressure simulate those produced from the M-198 howitzer with the M-203 charge. The exact waveforms to be simulated are configured after those generated by the howitzer and measured at station C-22. See Figure 1 for station location and Figure 2 for a display of the waveform.

STUDY RESULTS

- Blast overpressures simulations were conducted with an eight foot diameter shock tube at the Lovelace Center for Health Sciences, from March 22 to April 2, 1979. The tests consisted of a series of rapidly fired explosions (25 shots, one every 20 seconds) in the shock tube using primer cord. The resulting explosions when propogated through the shock tube are intended to simulate a howitzer blast as measured from the C-22 position. Pressure measurements were taken during the tests to characterize the blast wave on axis and off axis to the shock tube (see Figure 2). Due to the extremely high intensity blast from the shock tube it was felt necessary to measure not only static pressure but also dynamic pressure. Static pressure was measured at each location with a sensor face oriented normal to the shock tube axis; while dynamic pressure was measured with a sensor head-on. The test plan, execution and pressure data collection was performed by personnel from the Lovelace Laboratory.
- 2.2 The data collected on the shock tube test was dubbed by JAYCOR personnel at Lovelace Laboratory and digitized by Triadic Research of California.

The second of th

DAY4 TRANS2 LOVELACE ENSEMBLE

C-22 4' 0,267

The data was digitized at an 800KHZ rate with a two pole bessel maximum flat cutoff filter set at 20KHZ. After the data was digitized it was sent to JAYCOR's East Coast laboratory for data reduction and analysis on the company's VAX 11/780 computer. In addition to the shock tube data reduction and analysis, some actual howitzer firing data and associated analysis has been included in this report such as: the reproducibility of the M-198 gur test performed in November 1978, at Aberdeen Proving Grounds, correlation between the shock tube and the M-198 howitzer and dynamic pressure resulting from the shock tube test. The results of the data reduction and analysis are contained in the Appendix to this report.

- Section A of the Appendix contains a short description of the reduction and analysis of the data. The calibration data is also discussed. Although Lovelace Laboratory and the U.S. Army Aeromedical Research Laboratory (USAARL) use the same type of transducers to record the overpressure data, their means of calibrating are different. On the whole the USAARL calibration factor leads to peak pressures about 10% below the Lovelace results. Though this difference in scaling does not affect the correlation and reproducibility studies, care was taken in comparing parameters involving units of pressure when examining data from both groups.
- 2.4 Section B of the Appendix contains the five-day summaries of the recorded peak overpressures, B-durations and positive impulses of each transducer location. The daily averages and standard deviations are also included.
- 2.5 Section C of the Appendix is divided into three parts. The first part is a reproducibility study of the M-198 howitzer. The data used in this study was obtained during the November 30 December 1, 1978 firings of the M-198 at Aberdeen Proving Grounds. Included are shot to shot comparisons at single locations. The statistics used for comparison are the cross correlation coefficient, the skewness and the kurtosis. These terms are defined in Section C.
- 2.5.1 The second part of Section C contains a reproducibility study of the shock tube firings similar to those studied for the howitzer.
- 2.5.2 The last part of Section C is a comparison between the howitzer and the shock tube. Since it is not known what characteristics of the overpressure time history are most important in causing auditory and/or internal damage to a human or animal, the greatest measure of comparison of waveforms was used, i.e., the

total waveform duration. In the future, when dose response data is available, more sophisticated correlation studies can be employed to ascertain the critical parameters.

- 2.6 Section D of the Appendix is a study of the dynamic pressures at the shock tube.
- 2.7 Section E of the Appendix contains a more detailed recording of each shot at Lovelace.
- 2.8 The last section of the Appendix (Section F) contains representative pressure time histories of the shock tube and howitzer firings. Also included are graphs of the shot to shot changes in peak pressures from the shock tube. This section of the report is scheduled to be expanded in the near future when a more precise graphics capability becomes available.

3. CONCLUSIONS

- 3.1 Conclusions from the analysis of the Lovelace shock tube experiments as well as the other data included in this report fall into two categories:
 - o General (i.e., over all conclusions)
 - o Specific (i.e., specific comments about various phenomenon recorded in the analysis)
- 3.2 Of the two categories of conclusions, the first is more difficult to quantify because the method for collection and analysis of data is still being tested and studied. In addition, the protocol for performing data analyses has not been fully established, nor for that matter has it been determined what information is clearly relevant and required in the analysis. Therefore, given the above parameters, the general conclusions that can be made are:
 - o Calibration is an important issue to the program especially since it is not known which phenomena in a howitzer blast/shock are important. In addition, because this program is likely to receive high visibility, data accuracy is essential.
 - o Correlation between the shot data of Lovelace appear satisfactory (i.e., > .7). However, because the initial impulses so dominate the correlation analysis due to their magnitude, the time history after

the impulses has a lesser correlation, while the total correlation is still high. Thus, a conclusion that considers the total time history of a waveform as well as correlation could be misleading.

- o Cross correlation of total waveforms of the type being measured may not be an accurate method of determining whether the waveforms are the same.
- o It appears that further correlation analysis of the data should focus on very specific characteristics relating to the waveform, such as the first 20 ms, or the rise time or total peak pressure.
- o It would appear that it is more important to determine a causeeffect relationship between blast-overpressure and human injury than
 it is to collect data on howitzers with little understanding of what
 are the important parameters. Thus the theoretical aspects of the
 physics and physiology of the problem must be characterized and
 understood in detail so that a proper data collection and analysis
 protocol can be developed. Analytical tools such as fluid dynamic
 codes as well as physiological codes of the human chest must be
 developed to gain a proper insight into the important parameters.
- 3.3 Conclusions and observations of a specific nature are as follows:

3.3.1 Calibration

- 3.3.1.1 In the Lovelace tests two different means of calibrating the ST-2 transducers (sensors) were used. The method used by Lovelace Laboratory consists basically of two chambers connected together; a large chamber which is pumped to approximately 5 psi overpressure and a smaller chamber in which the transducer is located. A valve on the large chamber is released and a positive pulse enters the other chamber. After traveling through the system a negative pulse is reflected back. Consequently the transducer record shows a positive pulse which returns to zero followed by a negative pulse. The difference in volts between the ambient and the peak of the negative pulse corresponds to 5 psi.
- 3.3.1.2 USAARL favors an oscillating (90hz) source with a peak pressure of 153db (0.1296 psi). The difference in volts between the average positive peak and the average negative peak corresponds to 0.2592 psi.
- 3.3.1.3 The calibration factor (psi/volt) generally is 10-15% lower for the oscillator calibration.

- 3.3.1.4 At first it would appear the calibration by pulses would be preferred as the transducers are being used to measure pressure pulses from the shock tube. However, the rise times on the pulse calibration records are much slower than in the pressure fronts from the shock tube or the howitzer. This may be due to inadequate release values on the major chamber. If this is the case, then it may be that the pulse in the smaller chamber is not reaching a full 5 psi. Consequently the calibration factor from the pulse will be higher.
- 3.3.1.5 Based on the data available a decision as to which method is superior cannot be made. It is suggested that tests be run on a laboratory shock tube where the actual pressures are theoretically known to see which calibration method is more accurate.
- 3.3.1.6 Calibration were conducted before and after the firings. Although the firings lasted approximately 8 minutes the preshot and postshot calibration factors differed for both calibration systems. Except for transducer 1, the difference amounted to generally no more than 2-3%. This corresponds to about 0.1 psi for a total peak value of 4 psi or a few tenths of a dB. This range appears to be acceptable. However, if the firings are to last a considerable period of time, it appears prudent to make calibration tests more frequently.

3.3.2 Five Day Shock Tube Series

- 3.3.2.1 As can be seen from the data in the Appendix (Section B) there is considerable variation in the shot-to-shot peak recorded overpressures, particularly on the head-on gages #1 and #3. Because of the reflection off the face of these gages the peak recorded pressure should be on the order of 8-9 psi. The use of the 20KHz analog filters flattened these sharp spikes down to the 5-7 psi range as shown in the tables. Nevertheless, enough of the spike was recorded that considerable shot-to-shot peak variation was present at a sampling rate of 80KHz.
- 3.3.2.2 The grazing gages #2 and #4 varied less in shot-to-shot peak values. The daily deviation was around 10-15% of the daily average peak value. The variation appears large enough to assume there is significant difference in the shot-to-shot tube firings. For example, the first few shots in each day tend to be louder; 84% of the time either the first or second shot was among the top

three in maximum overpressure. At the other extreme shot #18 on day 3 had the lowest recorded maximum on three of the four transducers and was second lowest on the fourth shot for that day.

- 3.3.2.3 The daily averages on gages 1, 2 and 4 were fairly steady with the exception of day 2 on gage 4.
- 3.3.2.4 In the majority of cases the daily standard deviation in the positive impulses was under 10% of the average value. Surprisingly, the daily averages differed considerably.10v
- 3.3.2.5 This difference would tend to indicate a day-to-day change in some type of conditions. The large difference between and within group variances would tend to support this conclusion.
- 3.3.2.6 The B-durations were widely scattered. Part of this is due to the sensitivity of the B-duration to the peak pressure. A small change in peak pressure can lead to a large change in B-duration. This was noted in the previous analysis of the Aberdeen M-198 howitzer data. In numerous cases B-duration of 100-200 ms were recorded, especially on day 3 for gages 1 and 2. Sometimes the long B-duration is accompained by a very low peak pressure. This may be due to the digitizer missing the peak or to electronic problems in the transducer or other equipment. Other long B-duration records contain considerable noise. This may be due to a ringing in the shock tube or to electronic problems. This was particularly noticeable on day 3 where some of the gage 2 recordings were unusable for analysis.

3.3.3 Correlation <e ults

The correlation coefficient between shots at Aberdeen and between shots at Lovelace were in the neighborhood of 0.9. When comparing Aberdeen records to Lovelace records the correlation dropped to 0.8. This correlation coefficient seems quite high. It may be that the correlation coefficient is too insensitive to differences in the pressure time histories when long record lengths are used (in this report 75 and 150 ms were used). Recommend further study be made to find the record length which best differentiates between two pressure time histories.

3.3.4 Dynamic Pressure

As explained in Appendix (Section D), the sampling rate was insufficient to obtain an accurate measure to the peak dynamic pressure to compare with theoretical values. However, as the graphs in Section D show, there was more dynamic pressure present at the shock tube than at the howitzer, as was expected.

3.3.5 One Day Summaries

- 3.3.5.1 In addition to several other parameters two different estimated maxima are presented. The first one (labeled EI) is an attempt to correct for sampling errors. Using sampling theory it attempts to predict the actual maximum occuring on the analog record. The other estimation (labeled LST SQ MAX) is an attempt to correct for the finite rise time and/or overshot of the transducers. The reliability and accuracy of these estimations can be determined only a study of the peaks at very high sampling rates is made.
- 3.3.5.2 Included in the One Day Summaries are three base line checks. The first one called DRIFT is the slope of a least squares line fitted through the preshot record. In all cases except one, the value of the slope was zero to two decimal places. A nonzero value would give an indication that there was some problem in the electronics. The parameter SD is the standard deviation of the preshot record. Its value gives an estimation in the error at each point. The parameter BASE gives the time interval before pulse arrival of the last point at which the preshot record exceeded 5% of the difference between the maximum and minimum recorded levels. It is an indication of preshot noise. A value of 0 for BASE means that no preshot point exceeded the 5% criteria.

APPENDIX

REPORT ON THE LOVELACE SHOCK TUBE TESTS

CONTENTS:

INTRODUCTION AND CALIBRATION DATA	5-DAY SUMMARIES OF PEAK PRESSURES, B-DURATIONS AND IMPULSES	CORRELATION STUDIES:	M-198 REPRODUCIBILITY (30 NOV TEST)	SHOCK TUBE REPRODUCIBILITY	CORRELATIONS BETWEEN SHOCK TUBE AND M-198	DYNAMIC PRESSURE STUDY	1-DAY SHOT SUMMARIES	GRAPHS:
SECTION A	SECTION B	SECTION C				SECTION D	SECTION E .	SECTION F

MIS. PRESSURE PLOTS DAILY PEAK VARIATIONS SECTION A

INTRODUCTION AND CALIBRATION DATA

REPORT ON THE LOVELACE SHOCK TUBE OVERPRESSURE DATA.

TESTS OF 23 MARCH - 2 APRIL 1979 ANALYSIS PERFORMED BY JAYCOR

1. DATA REDUCTION.

Ä BY JAYCOR PERSONNEL ORIGINAL ANALOG TAPE WAS DUBBED THE RECORDED BY LOVELACE LABORATORY. THE DATA WAS ALBUQUERQUE.

THE DUBBED ANALOG TAPES WERE SENT TO TRIADIC RESEARCH IN LA JOLLA TO BE DIGITIZED. THE TAPES WERE DIGITIZED A SAMPLING RATE OF BO KHZ WITH A 2-POLE BESSEL PREFILTER. THE PREFILTER WAS SET AT 20 KHZ.

THE DIGITIZED TAPES WERE PROCESSED AT THE JAYCOR FACILITIES IN ALEXANDRIA ON A VAX 11/780 COMPUTER.

II. DATA ANALYSIS

THE DATA WAS FIRST PROCESSED BY DECIMATING THE 80 KHZ RECORDS TO 40 KHZ, I.E., EVERY OTHER POINT WAS USED. IT WAS NOTICED THAT ON THE RECORDS OF THE FACE-ON GAGES (TRANSDUCERS I AND 3) THE SHARP PEAK FROM THE REFLECTION OF THE SHOCK WAVE OFF THE FACE OF THE TRANSDUCER WAS NOT COMPLETELY REMOVED BY THE PREFILTER. CONSEQUENTLY THE RECORDED MAXIMUM OVERPRESSURES FOR THESE GAGES VARIED CONSIDERABLY FROM SHOT TO SHOT. THIS IS BECAUSE SOMETIMES THE MAXIMUM POINT CATCHES THE PEAK NEAR THE MAXIMUM AND SOMETIMES IT MISSES IT.

TO TRY AND GET A MORE UNIFORM PEAK RECORDED LEVEL IT WAS DECIDED TO GO BACK TO THE 80 KHZ RECORDS AND RECOMPUTE THE MAXIMUM LEVELS. THIS WAS DONE NOT ONLY ON THE FACE-ON GAGES BUT ALSO ON THE GRAZING GAGES (TRANSDUCERS 2 AND 4). THE RESULTING OVERPRESSURES ARE REPORTED ON THE 5 DAY SUMMARY ANALYSES. ALL OTHER DATA ON THE 5 DAY SUMMARY ANALYSES AND ALL THE DATA ON THE 1 DAY SUMMARY SANALYSES AND ALL THE DATA ON THE 1 DAY SUMMARIES ARE TAKEN FROM THE 40 KHZ RECORDS.

ALTHOUGH USING THE FULL SET OF DATA LESSENED THE VARIANCE OF THE PEAK PRESSURE LEVELS, THE PEAK PRESSURES FOR GAGES I AND 3 STILL CONTAIN A COMPONENT OF THE TRANSDUCER FACE REFLECTED PULSE AND SHOULD NOT BE INTERPRETED AS THE GRAZING PRESSURE PLUS THE DYNAMIC PRESSURE. THE ESTIMATED PEAK PRESSURES REPORTED ON THE 1 DAY SUMMARIES IS PERHAPS A BETTER INDICATION OF THE ACTUAL PEAK LEVELS, ALTHOUGH AGAIN THE SHAPES OF THE CURVES VARIED SO MUCH THAT SOME OF THE ESTIMATES GIVE MISLEADING RESULTS.

THERE IS LITTL' IF ANY REFLECTION OFF THE FACE ON THE SIDE CY GAGES. THE RECORDED VALUES SHOULD BE QUITE ACCURATE.

CL IPPED. WAS NOT OF DIGITIZATION THE PEAKS OF THE PULSES ON TRANSDUCERS 3 AND 4 FOR DAY 1 ONLY WERE BEEN REDIGITIZED AND THE RESULTS ARE INCLUDED IN THIS REPORT. CHANNEL 3 DAY 1 IN THE PROCESS CHANNEL 4 HAS REDIGITIZED.

1

١

ON SOME OF THE SHOTS, ESPECIALLY ON TRANSMULKS I AND 2 FOR YOY 3 FHERE WAS A LOT OF NOISE AND A CORRESPONDINGLY LONG 6-BUNCALLON, THE RECORDS WITH LONG (OVER 100 MS.) B-BURATIONS WILL OF FORE OF IN DEFAIL.

III. CALIBRATION INFORMATION.

FRIDK TO AND FULLOWING EACH DAYS SET OF 25 SHOTS FIELD CALIFRATIONS OF NE HADY. LACH FRANSDUCER DAS CALIFORATED USING LOVELACE'S FULSE CALIFORATOR AND USAAKL'S HIGH INTENSIFY CALIFORATOR.

******OLL THE KESULIS PRESENTED USE THE PULSE CALIBRATION****

TO FIND WHAT THE PRESSURE LEVELS WOULD BE IF THE USARR. CALLIBRATION WAS USED AULTIFLY THE PRESSURES BY THE FULLOWING FACTORS:

FACTUR 0.970 0.939 0.826 0.890	0.801 0.906 0.874 0.878	0.849 0.889 0.890 0.891	0.899 0.899 0.892 0.895	0.864 0.909 0.896 0.871
1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-ಬಣಕ	ପଅଟ	– ೧೪೯	ਜ਼ਹਾਤਵ
I I I	: :	wș	~	לני

NESTHES ALL THE FRESSURED, THE IMPULSES CAN BE CONVERTED TO THE USAAR CALIDKATION BY HULTIPLYING BY THESE FACTORS, THE A AND DEBUKATIONS AND ANY OTHER TIME MEASUREMENTS WILL NOT BE AFFECTED BY THESE SCALING FACTORS.

CALTHRATOR BELLT.

THE TRUBERS GIVEN AND CHASHOT CAL FAC - FOST SHOT CAL FACT/FRESHOT CAL \$100%.

Ful SE 05C11.LA10K -15.52 5.32 - 1.92 -6.12 ***** -4.62 - 2.32 0.52	***** 5.62 1.12 -0.22 ***** *****	***** 10.92 1.32 3.92 2.02 2.12 2.32 1.22	***** 7.52 2.42 0.02 - 1.12 -4.62 5.32 2.52	***** 6.9% 3.2% 2.4% ***** 1.1% 5.1% 3.6%
GAGE 1 GAGE 2 GAGE 3 GAGE 4	11AY2: GAGE 1 GAGE 3 GAGE 4	IIAY3 GAGE 1 GAGE 3 GAGE 4		HAYS GAGE 1 GAGE 2 GAGE 3 GAGE 4

SECTION B

5-DAY SUMMARIES OF PEAK PRESSURES, B-DURATIONS AND IMPULSES

S HAY SURRINKY HAIA

The second secon

JE DATA FOINT IN GROUP (HERE SHOT NUMBER) X(17.1) - JIH DATA FOINT IN THE ITH GROUP N-NUMBER OF GROUPS NCD) = NUMBER OF BATA FOINTS IN ITH GROUP I= TOTAL RUMBER OF BATA FOINTS I = GROUF TRUEX (HERE DAY) *********************************** 141

AVEC(1) =AVEKAUE OF THE TH GROWP=(1/N(I)) * SUB X(I,J)
VAKIANGE*** K**IIO II.Y AULKAUE***

INILY VAKIANCE

N(I) VOR(I)::VARIANCE OF THE ITH GROUP=(1/(N(I)-1)* SUH(X(I,J)-AVE(I))**2

VARIANCE HEIWEEN GRUHFS

UHG=(1/(h-1))+SUM N(I)*(AVE(I)-GAVE)**2 1-1 4

***UNGINGE WITHIN GROUPS**

IT IS THE SUM OF THE PRESSURES IEE. FROM FULSE ARRIVAL TO THE FIRST TIME THE PRESSURE BECOMES NEGATIVE OR TO THE FIRST TIME THE PRESSURE BECOMES NEGATIVE OR TO THE ARRIVAL OF THE REFLECTED PULSE (WHICHEVER IS SOUNER) FLUS THE SUM OF THE PRESSURES FROM THE ARRIVAL OF KETLECTED FULSE TO THE MEXT TIME IT BECOMES NEGATIVE. ***.JHI 50.J4**

.																	
•	வ்		HAXIHA I	ARE FROM	3H 80K	RECORDS POS	z	AX RE		3	ì	X RE		20		¥	
RES	BDUR WS. D	1 M P	ST (1VE	OVERPRES	BOUR	14p	ST OV	ERPRES	LIDUR	NAP NAP	ST OVE	KPRES	HOUR IN	XP X	81 0	VERPRE	80 B
5 1H7.R			1 7.1	187	69	7.	. ~	1 107	157.3	~		185,81	: =	5	. ~	186	5 69
185.8	0.1		2 6.8	189	30.	•	3 0 /	331 0	43.3	ä,	۲,	186.3	C: 5:	~	C !	. 47 3 4	3 53
1 186.1	68.1 1		ໝູα ທີ່ທ		- C - C - C - C - C - C - C - C - C - C	•	- v	737 7			o d	26.5.4.	* * * * * * * * * * * * * * * * * * *		a r	S	79 O
186.4	, æ		; ;	186	67.		, v	6 185	207		; ;	165.2		•	•		176
186.7	0.9		9	186	67.	_	9	1 186	0.0	7	+	182.9		10	_	38	5 65
187.8	4	13.6	۲,	187	46	.	٠.	5 186	67.0	٠,	9,	185,61	4 13	م د	~ /	192	1136
. 5 186.3	J. 4	7.5		381	6170.19	12.6		~ ~ » ɔ	132.9	2.21	a d	184.0	7.6 13.	.	~ 4	2 2	6.7
1 B 6 . 0		13,5	•	7 3	9	. ~	~	0 187	39.0	. ~	Š	7 . V . T	2	-	•	=	2 2
185,7	.5	13.5	11 6.5	9 R I	52.	•	7	3 187	8	•	4	182,4	0 13	w	•	8.8	3 67
187.2	٠.	2,8	ċ	186	45	•	₹:	1 162	3		'n.	184.0	- ·	۳,	.	6	- T
.5 186.3		72.7	20	20.00	67	•	n v	C	• c	•	. -	***	12 T	٠,	n v	7 4	19 6
186,9		50.		186	17		, 4		=	•		184.9	6.		9 0	5	\$ 6 2 2
.7 186.6	٥	13,0	'n	185	67.	•	9 9	5 186	Ġ		7	186,6	. 8 12	—	9	283	1 67
1 187.1	9	•	•	186	67.		9 _	1 186	201.	•	7 6.	185,9	6 13	•	7	581	3 67
188,0	3.4		S,	184	5	•	* '	0 182	•	•		165.31	9 12	- (00 (R3 (e :	7 67
B 4 2 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66.4 6.4 6.4	• ·	200	4.0	-	•	9 r	1		•		200	7	5 , r	9 4 9 6	4 4	
4 183	• •	~ ~	; ~	1 3		•	·	3 2 3	3	•	, <u>.</u>	184.41	1)	7	67
186.5	• •	4	2	184	4 .		. K	185	201	• •		184.9	-		•	-	~
7 186.5	S	~	. +	183	70.		9	5 186	=		. S. W	184,41	6 12	٠	M M	9 184	6 67
8 186.8	67.6 1		24 5.3	184	138.	12.6	4 5	5 165	•	9.6	÷ 2	183,41	5 12	<u>.</u>	ب ا	<u>.</u>	•
6 1 H 6 4 9	,	5.1	t S	184,5	120.		ง รถ	9	ġ	1.6	56.	185.2	7 13	0	KG VG	9 184	170
ERPRESSURE SUMMAR DAILY AVERAGE	RE SUMM Average	> -	_	6,1		•		ce s									
STD, DEV	, ,			٦٠٠ ١٠٠	•	~	.	-									
CANNO AUFRACE	VARIANCE	_ GZ	ZNV	1,21	- -	٥		*									
	;	3 3	nups ups	16.0 0.91	•	•											
DAILY H	AX. AND		NO.	7.4		œ	Œ	•	•	<u> </u>	•	11					
	HIN, AND		ž	0	₹.	3.8 21	*	.0 19	•	7 11	4.2	10					
POSITIVE IMPULSE S DAILY AVERAGE STD. DEV, DAILY VARIANCE GRAND AVENAGE	IMPULSE X AVERAGE DEV.	I OHA	PS1	31-H5) 12.8 0.92 0.85 NCE 12	12.1 0.87 0.75	13.1 0.60 0.36	2 - 1	642 0 m 2r									
VAHIANCE VAHIANCE	E BETHE	BETWEEN GROUP WITHIN GROUPS	nups ups	"													
DATEY	MAX. AND	D SHOT	. ON	5.1	25	4.6	£ 1	6 24	14.	- K	14.2	22					
	- A - A - A - A - A - A - A - A - A - A	10116 0	٠	7 . 3		۳. د		~	,	`	•	٥					

LUVELACE TEST, MARCH 1979

LOVELACE TEST, MARCH 1979

	202	• 🕶	10.											, 0			3,	•	,		6	Ġ.	æ														
	<u>a</u>		•	•	•	• ~	•	•	•	٠-	. ~	7	'n	•	, 10	٥.	æ :	٠,	9 ~		7	=	~														
¥1	5	ž	69	S ·	۰ م	¥ 5	•	17	•	2 =	5	67	79		7	6	37 (38		2	9	5	65	3														
DAY	7 ×	3 3	4:1	÷.	• v	n -	+	-	'n.		Ś		~	<u>.</u> ,	•	~	_;	÷.	٠,	; ;	7	÷.															
	<i>5</i> . 0	٠.	~	- 3	-		-	E	3 •	= G		=	3	= a	. =	3	~	3	-		-	#	-														
	MAX	31	4.7		~ ·	2 . 4	4	7.	· ·			4.7	6.6		7	4.0	J. J.	4.		•	3.9	4.5	3,5														
	,		-	~ ·	٠,	e vo	•	~	•	٠ -		12	C I	₽ ¥	2 2	11	4	5	- c	2:	33	24	25														
		12																																			
	9 4		•	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •		•	•														
		م	~		٠.		-	~		-		-		٠.	-	-			~ •	•	-	~															
•	9	A.S.	*	ກໍ.	٠,	- 0	,	9	,	, a	. ,	6				-	•	。,	• a		. ~	8	 B														
DAY	at .		_	~ (,	, o	4	_	۰ د		٠,	va.	_	.	4 23	S	9	0 1	٠,	• 4	m	~	بو														
-	REC	90	83.	~	Α:	2 0	~	~	~	"	• =	87	7	6		~	~	Μ.		4 6	d	Ŕ	82							4	2						25
	XY	٠	S.	ص د م	- 1	7 0		7	بر د د	7 -	s va	6	~	~ ·	. .	~	~	~ ·	.			•	0							<u>.</u>	_						4 00
	x a		+	4	٠,	• •	_	*	~ (<u> </u>	•	.		4	4	4 (~ ^	7 4	~	~	4							8							0 0
	9	-	_		•, •	♥ ¥n	•		-	~ =	? =	- 2	7	-	9	=	-	C	7 (2 5	7	2	7														_
		P.A.S.		•			_	_	_				_	••		_						_	_							T :							21 6
	P03	21	•	0.2	•	20,0	• •	•	<u>.</u>	•	. 6			•		2.	•	4.	•	•	•	0.0	6							~							~ .
	9	ىد 	•	-	ء ہ	-0	~	0			•	0	-	٠,	و ۽	~	_	<u>م</u> ا	- :	, v	· vi	s.	~							S	•						===
m		N N		33 (€ ;	- 0	5	÷	01	~ '	9	-	6	C .	3	•	9	7 (• •	8 3	Œ	G	~														
DAY	ည်ရှိ သူ) E	•	•	ů,	× =	• •	•	•	•	•	• •	0	•	• 5	•	•	•	•	•	• •	•								~	3						~ 5
	2 3	4	_		30 (3 0	18		•	33 J	• @	•	8	9 0		*	7	œ	20 0	2 -	3	8	=		ci .	.	۵				.	,	~ ø	10			9 %
	HA)	Psc	9		٠ •	7 0				7 :	9	7	. 7	8	•	4	5.8	3	n .		4	3.7	=			٠ و	•			Ś	•		• ~	-			G 6
	ŧ	-	_					_										φ,	٠.			+	S			_	_										
	10												-												٠.	6	9			~	71		202	3			23
	CORDS	1-HS	s.	4	٠.		7	B	7	•		1 15		.	n -	5	9	<u>ب</u>	9	,	, ~	9	•		4	0	· .	9		₩.		- 0		0:	2		ss en
	ж ж с.	- d	2	3 0		2 5	2	đ) 1	O	20	•	-		2 0	•	đ			7 0	י סי	On on	3					5		vi.	<u>.</u>				•		9.
~	BOK	A SA	7.6	67.2	67.0	# 0 . 7	67.8	67.5	67.8	80.2	7 4	67.0	67.1	67.2	7 · / O	-	7.2	67.2	ر د د	•	5.5	7.	9		*	٠	٣.					•	,	-			
DAY	Ŧ		•	4	9	- T	. 9	9 ~	9	33 T	9 40	1 C	•		* 0				•	" :	•	•	•			C	• •	•		8	7		3	• • • • • • • • •	7.		25
٥	E FINDA REC	2 =	8.1.	S	~			*		<u>.</u>		;	H 2.	•	7	£ 7.		•			; :	7	-		3	_	~	IANCE N 23	.26		ហ	~ c			. u.	60.	4 4
×	ARE	UVEKPRES PSI DB	7	-	- -	 	· -	-	-	~ .	-	. ~	-	-	-	-	-	-	-		. ~	7	9		~	5.0	<u>ر</u> د	ء س	•	4	, ~	7	, ,	0.12	~	Ċ	11.
nce	¥ ;		4	S	4	~	, ~	-	*	~ ^	7	. 4	4	₹.		4	~	~	~ ′	7	, M	~	~				:	ARC	, _	•	•	(PS1			ANCE		••
TRANSDUCER	HAXIHA	2	-		~	∢ ₹	, œ	_	3	.	2 -	12	1.3	₹:	2	1.1	=	6	200	7 ?	77	24	25	(PSI)			60.0	1 H C	ups		Ş		10.9	0.46	ERAGE AND VARI RETWEFR GROUP	UPS	. GS.
TRA		1 F								_																.	3	?	GROUP	SHOF	SHOT	SUNHARY		9	2 5	WITHIN GROUP	SHOT
	NG. POS	E ==	_	-	ċ	7.0	\circ	0	6.0	• ·		, 0	3	C) c	0	H. 0	0.7	•) -		•	-	ARX			હ્ય	¥ 5	THIN	AND S	<i>∝</i>	as,		<u>.</u>	EF	2	AND S
ULT	GRAZING Po	<u>۔</u> خ	و				. ~	-	~	.	 0		_		- 4		~	-	- .	~ ·		~		SUHHARY	AGE		AN	1 A GE	11 T			38.	ž ≤	VNV	KETP	ITI	
RES		1000 H S	70.	74.	B2.	د. (۵	B 2	67.	67.	67	7 2	6.6	67.	6.8 ·		7	37.	68.	67.	35	- 4	-	Œ			· >	VAHIANCE	VER	įμ	HAX.	ž	14201.38	د د	VARIANCE	AVERAGE AND VARI CE HETWEFR GRUUP	3	HAX.
OF RESULTS:	1 2	ES DB	6	₹.	4,	æ ₹	2	0	3.	٠,	4.		-	٠,	7 6		Ĭ.	3.	6		•		•	SUR	DAILY AVERAGE	STO. DEV	بر	GRAND AVERAGE AND VARI	AHIANCE				DAILY AVEHAGE Sto. Dev.			ARIANCE	
	AXIS	₹	183	162	182	182	183	3	7	33 0	7 8 7	8	\Rightarrow		2 2 2		184	33	œ :	S 0	9 00	33	33	3 H E. S	3416	STD.) A I I	SEA	VARI	DAILY	DAIL	TIVE	OALI STO.	DAILY	GRAND Vahian	VARI	DAILY
SURMARY	— — — •	DVEH PSI	5	3,6	3,	.	7	5	0.1	7.	3 K	. ~	6.	\$.	7 4		4.7	4.4	0.	•	. 0	•		OVEHPRE.SSURE	_	-4			_	_	_	P0517	_ •			_	
51	0) =				4 4												2	0	 ,	777	•	Ś	0								ā.					
	,	~ •								•	_		_	•		_			. • '	•	• •	• •	• •														

1979
HARCH
TEST,
LOVELACE

DAY 5	MAX REC	PSI UB MS PSI-	6.0 187.3 71.4 13	5.8 186.0 39.7 12.0	5.4 185.4 41.0 13.	6,5 186,9 39,7 12,	990	6.0 186.3 68.4 12.	4,3 183,4 82,8 12,	6.1 186.4 39.6 12.	2 6.7 187,3 39.5 13.	3 7.4 188.1 40.0 12.	6.0 186.3 67.7 12	6 4.2 183,2 81,9 12.	7.0 187.6 39.4 12.	# 5.4 186.2 39.4 12.	5.4 105.4 39.4 12.		0,0 0,0 0,0	0.0									
DAY 4	AX REC	SI UB MS PSI	.9 187.6 71.2 15.	.a. 186.8 40.3 14.	7 187,3 62,8 15.	.0 186,3 41,8 14,	7.1 187.6 39.8 14.3 6.0 186.4 68.9 15.2	0 186.4 65.8 14.	7 187,3 39.0 14.	9 187.6 39.6 14.	0 186.3 41.0 14.	.9 187.6 40.1 15.	.7 187.4 40.2 14.	.0 187.7 49.1 14.	6 187,2 39,3 14,	2 146.6 39.4 15.	. 4 185.5 66.0 14.	1 186.6 40,1 14.	,2 186.6 46,5 14.	.5 187.0 39.9 13.	A						7.4 13 4.2 16		2.5 10 2.0 10
DAY 3	C HOUSE AT	MS PSI-HS	70.9 13.2	69.2 13.1	39,2 13,2	6 60,3 12,2	2 66.4 13.4	5 81.7 13,0	0 40.0 12.9	3 76.3 13.0 x	0169.9 11.2	5 39.0 13.2	68.1 12.6	3 40.2 12.9	7 40.0 13.1	1 72.0 12.4	45.0 11.0	9 39.H 13.1 2	39.7 12,2 2	67.9 13.1 2	2 13.1 13.1 C	7 0 77 0 10					4 7.1 6 7		3 15,3 4 13 5 13,4 23 12
	CORDS MAX RE	1-46 1 PSI D	1 7.3 1	.0 2 4.8 18	3 4 6,9 187	.6 5 5,6 1H5	9 6 6.2 126	6 8 6,2 186	.2 9 6.6 107	6 10 % 4 165	9 12 4.6 184	.5 13 0.2 186	781 6.4 141 B. C.	.5 16 b. 8 187	17 7,1 187	.5 18 4.2 183	CB1 1 9 60 C	3 21 6,5 186	.1 22 6,5 187	.3 23 6.9 187	24 C 4 C 1	1 7°C C7 C	6.4 6.	0.47 0.83	57		5 1 7.3 1 7 5 7 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	14.6 12.8 0.44 9.34 0.19 0.12 96	.8 1 14.4 .5 1H 12.0 2
THANSDUCER 3 DAY 2	HAXINA ARE FROM BOK RE MAX ARC or ductions and the	PBI DB HS P	187.1 45.2 1	0 71.1 2	184.4 67.5 1	4,7 183,3 40,2 1	3 6B	6,3 180,8 39,2 1	9 6.1 186,5 39.5 1	6.3 186.8 39.7 1 5 6 186 2 68 2 3	1 185,8 39,7 1	6,2 186,5 39,0 1	0.07	5,5 185,6 68,1	7 6.0 186.3 67.1 1	1 5.6 1 KD 1 39.5 N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 2 9 C 8 H B .	5,5 185,6 67,0 1	.3 185,3 39,9 1	5.00 1.00.00 0.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1	7 7 10 5 500 5 50 0	5.5	0.55 0.6	ANCE 6.0	105 0.47	NO. 4.9 20 6.	(PSI-HS) 13.0 0 12.3 13.0 10 0.45 0.52 0 0.20 0.27 0.11PS 24.00 1PS 0.20	ND. 14.5 25 13 NO. 13.1 7 11
SUMMARY OF RESULTS! THAN DAY !	DEF AXIS FACE-ON. HAX REC.	HS P	4.9 184.5 74.6 13.	4.8 184.4 69.9 14	4.8 184.5 67.7 14.	4,9 184,5 70,8 13.	9 184,5 68,6 14	4.9 184.5 68.3 14	4.8 184.5 68.6 1	9 0°0 0°0 0°0 °	6 184,4 39,7	4.8 184.5 39.7 13	184	4.9 184.5 40.1 13	4.8 184.5 71.3 13.	8 4.8 184.4 75.8 14.	7 4.1 161.0 /6.7 14. 6 4 9 164 5 55 4 14.	1 4.9 184.5 70.6 13.	2 4.9 184.5 67.8 14.	.9 184.5 73.8 13	4 4.7 184.5 58.7 14. 6 4 0 184 6 67 0 14		SSURE SUNHARY LY AVERAGE	STD, DEV, 0.00	AVERAGE AND	ARIANCE	DAILY HAX, AND SHOF DAILY HIN, AND SHOT	PUBITIVE IMPULSE SUMMARY (DAILY AVERAGE 0.0 STD. DEV. 0.00 DAILY VARIANCE 0.00 GRAND AVERAGE AND VARI VAHIANCE HETHEEN GRUUPS	DAILY HAX, AND SHOF DAILY HIN, AND SHOT

		81	= =	0	0	5	2				9	<u>.</u>		10.	<u>.</u>	<u>.</u>		9	10.	6		•														
	6	S	ů x	7	~	-	'n	٠,	-	-	•	•	2 ~	~	4	.	~ ،	2	•	-	•	•														
10	90	# 4	→	1 7	52	~ ~		m :	2	1	~	"	۱ 🕶	~	(4)	0 (> <	9	9	~ () (3)															
DAY	ပ္ပရ	Œ	•	• •		•	• •	•	•	• •	•	•	• •	•	•	•	•	• •	•	•	• •	•														
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			182	•		•	182	- 3		30 (3 4	•	3	9 (200	D Q	. 08	8	182																
	MAX	=	n ~		•	4				*	AS C			۳.	~		٠	. ~	~	-	-															
	~ a	<u> </u>	• •	۳.	4	• ~	•	~ (N M	"	•	• ~	•	~	~ /	•	~ ~	. ~	4	•	•	,														
	-			• • •	•	•		_ `	~ ~	=			- =	=	-	= :		- ~	7	55	7															
		¥																																		
	PO PO P	23	* -	•	1.3	, o			7.0	1 474 1 470 1 470			9.0	•		~ °	•	-		7.0	9	•														
	œ	٠ ـ	-	-		~ -	-		-	-	•		٠	-	-	٠.	~ -	-	-		-	•														
•	noa	HS.	• 0		2	, ·	7		;;	5	ä.	• 4	7	7	<u>.</u> ,	÷.	; ,	. ~	2	m' c	;	•														
DAY					55		•		n =	0	٦.				•	-																				
_	REC	0		•	€.		: :	•	; ;	;	ċ,	÷.	: -	.;	₽.	∴ ,	; =	: -	7	83	: .								m @							5
	P X		-	•	-	~ -	-	٠,		-		-	•				-	• ~	~	٠.		1							•						•	-
	3 70	S	•	• •	-	• •	•	•	•	•	•	•	• •	•	•	•	•	• •	•	4	• •								••							•
	TS	•	٠ -	-	•	n •	~	a	٥ د	-	2:	2 3	2	16	_:		2 6	7 .	22	23	25								40						= 7	•
		*7																																		
	S O X	x	7.0	~	9		~	0 0	ے تر		5 , 0	٠, ٥	9	9	~	.	9		0	۳,	2 ~								25							B →
	<u>a</u> a	P31	2 2	2	σ :	2 2	0	9	2 0	2	σ;	<u> </u>		3	2 9	9 0	0	2	œ.	2	3								4 %						ᡇ.	.
	RUCK	٠, ١	, =		-:		-	3 (- ~	~	-;	<u>.</u> =	۳,		ď,		- 4		۳.	۳,	· -	•							÷~						= :	
~ >	3	Z :	2 *	. C	3	7 5	7	.u.	ەر. ق	-	α.	~ Œ	33	9	9	u c	4 4	~	33	~	* *															
DAY	EC		7	• •		• •	• •	2.7	• •	•		•	• •	•	•	•	•		•	•	-								m ru						~ 9	
			, d		3			8		33	~ •	3) OS	•	® †	- •			œ	a	**															4
	HAX	SI	20	~	~	• ~	9	٥.	- ~	5	٦.			•	~:	د	•	-	~	•	•			س	25.	•			4.3			` =			7.0	•
	С Н		- ~	, 4 , M		າ ∢ ດ			7 M								7 ~ 7 =			4	n m r va			•	9 0	,				•	→ <	: 0			-	
	ω σ				◆ 、				-	-			•	-	-	٠.	٠,	. ~	~	~ .	4 (4		,	•	.						.					-
	CORD:	H.S		_						_				_				_						₹′	70	•					<u>;</u> ~					•
	REC POS 1 N P	SIS	•		5.	, 0	,						• •	Š.		, ,	•		3					•	3 0	٦.			2.8	•	- <		۳.		7	•
	# 0 %	٠ ـ	- -	- 6	- :	- -		~.	٠,٥	-	٠.		· vo	-	~ c	• • •	-	. 0	S	17 -	- 0			3 0 (.				4 %		-	• 3	0		0	N
~		H.S	76.	56.	~	81.	,	(E 2.		31 (റാ	26.	S	œ (• 3	• • • • • • • • • • • • • • • • • • •	• 0	8	999	90	•		<u>, </u>	ה ה ס	•					; T		_			
DAY	3 3 3		- ·	. ~			-	10 6			. 0	, <u>-</u>	• 🛶		-	•	n -			0,4	-				_	7			22 19		_		•		25	-
	HA ARE FROM HAX REC OVEHPRES BO	80	7 3	0	82	~ &		æ :	= =	Ŧ	33 (- S	80	8	8	~ ·	- G	• •	8	æ :	;		,	~ \	o 6	,	EB.	-	พุฒ	<u> </u>	٥ ٦	٠ ٨	7 *	-	S 4	,
∓ ≃	AXA	,			= :											 				~ .			•	-	0.12		င် င	•	4,	-HS)			ے م		=:	•
UCE	3 2 3	93			<u>~</u> ;	, w	7	<u>.</u>		<u></u>	<u>.</u>	•	<u></u>	4	٠.	,	٠,	0	~	~ ~	, 5	٠				ANC	43		• •	P S 1			ž	,		
(3)	MAX I	**	~ ~	~	₹' (ი •	_	33 (2	=			5	16		B 0	200	0	22	5			<u>.</u>	39 :	17	3	OP.		3 3	~	2 3	60	VARIA	25	2 2	2
TRANSDUCER	_	S.																					(PS)	•		VAR	BETWEEN GROUP	5	SHOT	SUMMARY	7.0 0.0		RAGE AND VARI	GROUP	SHOF	5
	PUS PUS IHP	¥:	• "		•		0.0	6	7.7		3 , 4		3	₹.	•	, ·	• ~	-	•	ъ.		,	AHY			AND	EN S			2 2			A G			
LTS	•	<u>a</u> ,	= =	10	-		-					3 0	-	-			3 9			0:	: =		K K K	E E	MCE	3	TMEE	Ī	AND	•	4	NCE	35. 7.5. 8.5.	ITHIN	224	
OF RESULTS! DAY 1	GR	A.S.		, .	.5	, ,	•	E . 1	. o	8,	7.6			5.0	5	•		2.1	•	7.7			KKIN O	AVERAGE	DEV. VARIANCE					IMPULSE	AVEKAGE	DAILY VARIANCE	AVERAGE ARD CE BETWEEK			
DF RE			~ Œ	S	32 (- 4		-33 F	~ 33	9	4 :	2	3	3	30 (- 0	3 03	7	~	₹ :	9 09	1	<u>ਜ਼ੂ</u>	7	VEV.	7	ANCE	֝֝֝֝֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝	XX	P P	× ×	Š	ID AVE	ANCE	X X X	-
	XIS - REC PRES	3	4.6	. ~		200		\sim	2.7	7		1 7 E	2.0	ζ,	\sim $^{\circ}$,			~	÷:		•	_	<u> </u>	<u>~</u>	GRAND	VARIANCE	4		۳,	1.4 AV	֡֝֟֝֟֝֟֝ <u>֚</u>	22.2	N V	Y I I Y	
ARX	FF AXI	•	2 7	-						•	⊸ .	~ ~	•	-	~ -	-		. –	-	37 -			3 .	DAILY	DAILY	GRA	VARI	C	DAILY		STO	140	GRAND	VARI	DAI	•
SUHHARY	OFF A	PSI	•		4,		•	3,6	• •	•	3.0	•	• •	•	•	•	•		•	3,0	• •		>			-				31		-				
o3	0 18	-	<u>-</u> م					33 0			a -		. ن	9	~ <	ים ממ	.		~		ר ער		Ó							PO						
	٠,												_			•	• • •		• •	• • •																

LOVELACE TEST, MARCH 1979 TRAMSDUCER 1

иесинр
40 K
THE
FHOM
TAKEN FH
ARE
DAY 1 MAXIMA ARE TAKEN FROM THE 40K RECURDS ON AX1S FACE-UN

CK8	****	•	BASE+		0000	\$00°0	0000	*00°0	\$00°0	•00•0	0,000	•00.0	•00.0	0.00	\$00 *0	•0000	•00•0	0000	*00°0	0,000	*00 *0	•00°9	•00.0	•00.0	+00.0	•00•0	*00.0	0,000	+00.0
INE CHECKS	******		8		0,01	0.03	0	0.01	0000	0.03	0.01	0.01	0.02	00.0	000	C0 0	0.04	0.01	0.03	0.02	0,02	0.02	0,02	0.04	0.03	000	0.04	0,02	0.01
HASE LINE	****		DRIFT		0000	0000	00.0	0000	00.0	0000	0000	00.0	00.0	00.0	00.0	0000	00.0	00.0	00.0	00.0	00.0	00.0	0000	00.0	0000	00.0	00.0	0000	00.0
LSES		•	PUS *	HO	12,75+	14.16*	13,424	13,82*	13,50+	13.92.	13.604	14.18*	13.740	13,49+	13,531	12,77+	12,69*	13,25+	12.93+	13.011	12,724	12,260	0.00	13,214	13,854	14.81*	13,914	14,32+	15.064
IMPULSES	2444444444		TOTAL	-1 23 d	69.9-	-1,55	2.14	-1,82	-1.02	-3,84	2,28	2,37	-2,23	-1.74	06.0-	-6.79	-2.70	-3,36	_	-3.20	-8.79	-7.76	-2.11	-0.26	0.28	-1.35	-1,38	8,25	2,03
	*	•	•	٠	•	•	•	*	*	*	•	•	•	•	*	•	•	•	*	•	•	*	•	•	•	*	*	•	•
			ADUR	¥ S	₽Н.2	71.0	68.1	67.4	0 fo A	66.0	37.4	67.0	4.1.9	72.6	55,5	68.6	6н.	64.3	68,1	10.6	67.0	41.4	68.3	67.5	67.0	9009	67.5	67.6	67.8
			ADUR	HS	7.1	7.6	1.1	7.4	2,5	7.5	G. H	9.1	7,2	3.8	C.	8.1	Э. Э	о • я	7.2	0.	7.4	7.3	0.0	8.1	7.5	7.1	7.4	7,5	9.1
			IJ	S	0.03	0,05	0.03	0.03	0.03	0.05	0.03	0,05	0.05	0.05	0.03	0.05	0.05	0.05	0.03	0.03	0.03	0.03	0,65	0,05	0.03	0.03	0.03	0,05	0.03
			HAXI	PSI	6.5	5.2	5.4	ŋ•9	5.6	S. B	9	5.4	5,7	5,3	5,2	30	5,3	5.0	5,7	5.7	6.1	6.7	5.2	₽.¢	4.9	5.7	5.7	5.0	0.9
HAXIHA	****	STO *	♦ A30	•	0.18*	0.28*	0,28*	0,28*	* 8 1 ° 0	0,28	0,184	0,284	0,28	0.28*	0.284	0.18+	0.38	+60°0.	0.184	0.18¢	0.184	0.18	•60°0	0.28+	0.28	0,28*	0.184	0.28	0,184
		LST S0	A V.E.	PS.I	4.4	3.7	4,1	4.0	B.	t .3	3.	4.1	-	0.4	3,3	4.4	7:	3.6	4.2	2,9	0.4	4.5	.	1.	4.5	3.7	4.1	4.3	4,3
ESTINATED	:	L6T L	O MAX	PSI	4.7	0.4	4.3	4.	4,1	4.7	5.1	4.	4.3	4.3	3,7	4.	4.4	3.6	4.5	4.1	4.3	¥.	4.4	4.4	4.8	2.0	4.3	4.7	÷.
	******		EI S		•	•	5.0	•	S. S.	•	•	5,6	•	•	•	5.9	•	•	•	0.9	6.4	•	9°5	4.1	8.9	0.9	6.1	5.2	6.3
	•	*	THING		•	•	•	•	13,934	•	•	14.98+	14.404	15,57#	15,134	15,24	13,530	14,901	14.930	15,931	27,554	15,030	15,60+	13,95*	13,85+	14.80*	15.054	15,000	14,80+
				1Sd	-1.2		-1.1	-1:1			~1.0	0		9		ď		~	2	-	_	۳.	7	-1,1	0	0	٦.	0	
		KAX	REC	PSI	6.5	5.2	5.4	0.9	5.6	S. 8	9.9	5.4	5.7	5,3	5.2	S. 8	5.3	5.0	2.1	5,7	6.1	6.7	5,2	5,8	6.4	5.7	5.7	5.0	0.9
			SHUT		-	~	~	~	S	9	~	Œ	o,	30	=	1.3	13	14	15	16	17	9	61	30	71	22	23	24	25

SECTION C

CORRELATION STUDIES:

M-198 REPRODUCIBILITY (30 NOV 78 TEST) SHOCK TUBE REPRODUCIBILITY CORRELATIONS BETWEEN SHOCK TUBE AND M-198

COEST OF DIE STUBY.

(UN II. N I S :

11. AN KULIN COLKTATONS.
11.1. GHOT-SHOT COKKELATIONS AT THE SAME LOCATION.
11.2. CONFAKTSONS OF ENSCHILE AVERAGES AT DIFFERENT

CORRELAI JOHE. 111. 1001.1 ACE

1 OCA LONG.

BIDI - SHOT COKKELATIONS. (11.1.

LINILHIE CORRELATIONS. STOOT OF RECORD DURATIONS. 11.2.

IV. FOULFACE-AUGINER CORRELATIONS.
19.1. LIFETS OF DECIMATION.

CONFACTSONS.

IN F END I LONG.

NORMALIZED SKEWHESS IS SKEW=(17N)SUM(X(I)-AVE)##3/SD##(3/2), NORMALIZED KUKIOSIS IS KUKI=(17N)SUM(X(I)-AVE)##4/SD##2, X(I), 1-1, H M. A KECHRO, THE AVERAGE IS AVE-(1/N)SHH(X(1)) STANDAGE HEVLATION IS SH- (1/N)SUB(X(1)-AVE)) ##2>##1/2. == Ξ

COUCLE ATTOM COCFFICIENT BETWEEN FUR RECOKES OF EQUAL LENGTH IS (174)50H.(X(I)-XAVL)*(Y(I)-YAVE)>/(XSD*YSD).

11.1 SHOT SHOT CONMINATION AT BANE LOCATION.

HEFORE THE PURSE. (EXCEPT FOR THE C-22 AZ33B-0E000 KECORDS WHICH REGIR LONS BEFORE FOLSE AND LAST 150MS). FOINT WHERE THE KECORDS LINE UP FOR MAX. CURRELATION. THE KLEDKING AKE CHILTAKED FOR 150HS STARTING APPR. 2.5HS HATCH IS UR

CON LEGIS THE CONNELATION COLFFICIENT NETWEEN THE SHOT NUMBERS LISTED. LOC GIVES FOCATION-HEIGHLAZIONIHARMANT ELEVALION. SELB ES THE HORMAN LYEB GREWHESB OF THE RECORD. NUMBERS OF THE REGIONALIZED AURITORIS OF THE RECORD. AVE 15 THE AVERAGE CHEAD OF THE RECORD. SU IS THE STANDARD DEVIALION OF THE RECORD.

THE SHOTE MEET GRAZING.

PIGHTZEP AT UN, 100 FILME.

LUC C-22,3',0,00 130-32 TRANS 1	C-22,37,0,247	C-22/3//33B/267 151-53 TRANS 1	C-22,3',330,800	U-22,4',0,00	C-22,4',0,267 #14-17 TRANS 2	C-22,47,338,267 \$51-53 TRANS 2	C-22,4',330,800 148-50 TRANS 2	6-22,5',0,800 430-32 TRANS 3	C-22,5',0'267 +14-17 TKANS 3 TKANS, QUESTION	C-22,5',330,267 451-53 FRANS 3	C-22,5',330,000 440-50 16ANS 3	6-22,4/,0/000 \$30-32 FANE 4	G-22,6',0,267	C-22,6%,530,247 451-53 TRABS 4
518, 908. 100.	.947 .947	. 919 . 910 . 917	. 921 . 898 . 906	.910 .902 .921	. 930 . 935	.916 .922 .922	.906 .800 .895	.922 .915	. 839 . 834 . 855	. 913 . 913	. 000 . 000 . 000	.907 .913	.920 .920	. 922 . 903
507.311 307.311 307.321 317.321	14,151	51,52 51,53 52,53	40,491	30,321	14,151 14,171 15,171	61,522 62,532 62,532	48,491	30,321	14,121	51,521 52,531	40,49: 40,50:	30,311	14,151	91,021
NUKT 17.22 18.53 10.23	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	15.0 16.2 15.6	16.9 14.7 17.7	19.1 12.3 17.0	18.2 20.0 18.4	15.4	16.2 16.7 17.2	20.22	19.3 17.5 10.1	15.9 15.9	16.0 16.3 17.7	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17.1 10.5 18.9	18.4 13.9 14.3
5.45 2.45 2.45 2.45 2.45	2.83 2.90 3.00	51 51 51 10 51 10 51 10 51	5	0.00 0.00 0.00 0.00	2.19	2.11	2.06 2.01 2.20	2.35 2.35 2.17	1.41	20.5 1.96 1.96	1.94 1.84 2.37	31 (1 (1) 12 (2) 13 (4) 14 (3)	2.03	2.20 4.63 4.64
56 .416 .421 .321	. 363 . 363 . 361	. 419 . 404	.351	294 205 299	.341	.414	. 445 . 428 . 425	.407 .294 .401	.406 .411 .410	. 306 . 396 . 305	.408	.273 .273 .267	295 295 495	.374
00.127 00438 00438	.00191	.00016.5 00:48	.0227 .0153 0125	.0195 .0220 .0122		0163 0137 00387		.00124 .00126 .00310	.00398 00682 0578	.00001 .0293	.00044 .00059 00740	.00113	-,000259 -,00024 -,00048	.00640
87.8 147 147	186 323 506	402 420 416	585 978 878	979 161 112	184 504	399 318 411	482 41.4 392	267 156 302	102 310 302	498 315 409	327 308 387	263 151 302	161 31.7 30.1	194 312 400

(1.2 COMMINION AF DIFFERENT LOCAFIONS.

6, .831 .890 .046	
5' ,702 ,830	?
	•
. 202	
	,
	;
	:
न र प्र	
3	
::	(
(333,0,36/	

C22,0,267,4' WITH C22,0,800,4'1 .763 C22,0,267,4' WITH C22,338,267,4'1 .873 C22,0,800,4' WITH C22,338,267,4'1 .697

HIF. LOVELACE CORRELATIONS.

111.1 SHOT-SHUT CORRELATIONS.

BIGHTZER AT BON WITH 20N PREFILLER.

ET CORD PUBLIS I HS DELOKE FULSE AND LASTS 150 HS.

HAY 1. TRANSHULLE 2. DRAZING, PIRECTLY IN FRONT OF THE SHOCK TUDE

NURI	26.1	21.0	27.4	25.7	::0:	30.5	#1 1000	29.3	25.4	26.9	25.4	23.1	24.4	25.2	0.23	26.8	27.72	24.0	36.0
51×E.U	5.68	3.31	3.97	3.85	4.16	4.01	3.73	4.25	3.60	3.91	3.77	3.40	3,53	3.00	.8.49	3.91	4 . 2.5	3.75	3.87
SHOL		e i	٦,	~	ڊو	9	c	6	1.3	2	71	~	31	÷	0::	: :	ç:	3.5	

:																			26	1
ş																			₹,	1
23.																			2.5	3
ä																	423		,	1
15																	•		•	7
20																			Š	2
61																	i	. 7.37		10 17
3																. 11955		•	•	2
17												010	:			•			Ç	1
16											0.50	}	•					916.	,	77
12										006	}	•		.924				•		2
~										•	•			6					,	4
13												010			.904		.667			13
Ç													•		•		•		1	7
																				11
01																				01
60																				<u>ې</u>
70					.903			. 7 : 4						٠٧١٥						90
9					•			•						•						07
70										/1/								. 9.35		90
30										•								•		:
6				.95.3					:	٠٧.٦٥								.951		€0
6.3				•				. 924		•								•		0.3
:: 0	.075	1 2 2						•							160	. 1179	0/0			110
ō	200																			5
Silur			90	ء ة ة	60	10	11	<u>:</u> =	<u> </u>	<u>.</u>	91	^	=	<u> </u>	2	::	~	:	e:	191191

uay 4. Thanspurk 2.

	14 15 21 22		.932
	05 13	90%	9.35
2000	0 +0	.944	506. 156. (16.
SNEE 3.96 3.96 4.96 4.01 4.26 3.97 3.97	50 50	903 . 920 903 . 946 909.	106

IV. 2 CUHI'METSON OF ENSEHINE AVERAGES.

FOR EACH 1EST DAY AF LOVELAGE THREE SHOTS WERE CHUSEN FROM FHE TRANSHUCK 2 IS CORDS. FOR DAYS 1 AND 4 THE THREE SHOTS WERE, CHUSEN TO HAVE HIGH CORRELATION WITH LACH OTHER (SEE AHOVE). FOR THE OTHER DAYS THE THREE SHOTS WERE CHUSEN BY FICKING THRY WERE THEN CORRELATED TO FIND THE HEST WASHING FORMS.

THE SHOTS CHOSE, WERET DAY 1 04-15-24

DAY 2 03-13-20

DAY 3 10-21-25

DAY 4 03-15-22

DAY 5 05-15-21

CORRELATION IN ORNAFIONS

.072 .002 .927 .1134 CUKRELATION .914 03,131 10,211 06,141 MUKE 129.13 129.13 100 mm 23.13 23.10 SNEW 3.94 3.65 3.39 3.4E 4.05 3.60 Ξ, <u>~</u>: :: 1111111 Lυ FIN Y 0.5 258 90 9 7

II. ENSENDE AVERAGE OF THE FUREE SHOTS WAS FAKEN BY LINING THEN UI' FOR HIGHEST COKKELATION. THE ENSEMILE AVERAGE BEGINS ALFROXIMALIZY I HS REFORE HE PULSE AND LASTS ISO HS. THE OOK RECORDS WERE USED.

CONVELATION BETWEEN ENSEMBLE AVERABES OF THE DIFFERENT DAYS.

10AY SMEU NUEL 1 4.04 27.7 2 3.87 28.7 3 4.12 30.7 4 5.23 29.2 5 4.26 32.5

.7

CORRELATION OF SHORE 04.15.24 OF DAY I AND THE ENSEMBLE AVE. OF DAY I.

04, AVE: .911 15, AVE: .929 24, AVE: .984 111.3 KECOKO LENDTH CONFARISON.

NON THE PREPRET OF RECORD LENGTHS 15049,7549,37,548.

10Y 1 TKANS 2 SHUIS 04.15,24

COR GIVES COMPARISON OF 4.15 4.24 15.24 IN THAT DRUCK.

		896.	.978	.977
37.545	KUKT	7.72	61.36	7.03
	SKEW			
1	COR	. 94в	.965	. 936
75HB	NUKT	14.3	15.1	14.4
! ! !	SKEH	2.93	3,03	2,92
1	COR	.936	.951	
15005	NUKL	25.7	26.9	36.0
į	SKEU	3.05	3.91	3.07
	-	0.4	2	ī.

IV. LOVELAGE - AUGNDEEN COHFARISON

IV.1 EFFECIS OF PECTNATION.

HIL LOVELAGE DATA OF THE HARCH 1979 TEST WAS DIDITIZED AT NO NIZ WITH A 20KHZ FREFILTER.

THE ABERHERN BATA OF NOV 30 - BEC 1 1970 TEST WAS PIGITIZED AT 0 NH2 WITH NO FREFILTER. CONSCIONALLY, THE LOVELAGE DATA HUST BE DECIMALED FOR COMPARISON.

THE EAST HOLE AVENAGE OF DAY I TRANSBUCER 2 WAS DECIMATED FROM BO AUZ TO B AUZ DY TANING EVERY 10TH FOINT. THERE ARE THUS 10 DITLICALAL RECORDS DEFENDING OR UNION FOINT IS USED AS THE STANITH FOINT.

	400	Zans kec.	S10615	2.5AS PREPULSE	HOD	150HS RECO	Kr, 2, 548	f.KE
S1.F1.	JOE	-1:5	BKCH	KURT	AVE	15	SKEU	KURT
01	3.07	24.3	3.08	15.4	3.49	17.5	4.05	28.0
03	3.03	24.2	3.06	15.2	3.45	17.5	4.01	27.6
50	3.11	27.3	3.02	14.7	3.50	17.7	3,97	26.8
0.4	3.17	24.9	.4.14	15.7	3.54	16.0	4.14	20.7
0:0	3.14	24.8	C	15.4	3.52	17.9	1.11	20.4
90	3.06	24.55	3.05	15.0	3.48	17.7	4.02	27.3
02	3.09	.4.4	3.03	14.8	3.50	17.6	3.90	27.0
110	5.11	24.4	3.05	15.0	3.51	17.6	4.01	27.3
60	3.11	24. E	3.07	15.2	3.52	17.6	4.04	27.7
01	3.09	24.4	3.09	13.4	3.52	17.6 4.06	4.06	20.0

EACH BON KELCOKN FRUVINES 10 BN BUBRECOKDS TO CONFARE WITH THE BK AM KNEEN WAIA. BY COKKELATING EACH OF THESE TEN RECORDS WITH HIT AMERICEN KECOKD A TIME HISHATCH OF NO HORE THAN 4.25 HICKOSHCONDS CAN BE ACHDEVED.

THE TEN KEEGKINS OF THE ENSEMBLE AVE. OF DAY I FRANSHICER 2 WERE COR-

KECHKI I CHBIH 150AS. BIAKITHO 2.5 AB PREFULSE.

	.801 .786 .017		.003 .003 .028
9.77.	. 1002 . 707 . 017		.803 .820 .836
.747	.801 787 .017		.818 .804 .829 .U36
7.766	.801 707 .017		.003 .003 .029
	.001 707 710	=	.816 .804 .829
5,779	. 788 . 788		.019 .005 .029
477.	.002 .789 .016	INU 2.2HB	.019 .005 .030
3,773	799 784	E DN1	.803 .829 .829
2,762	. 207 207 815	SIAKE	
1.756	. 2000 2007.	75.MS.	. 810 . 803 . 829 . 835
78.679.0.000	C22,0,367,47 C22,0,800,4 C30,0,267,47	KECORD LENGTH	C22,0,267,47 C22,0,800,47 E30,0,800,47 C30,0,267,47

IV.2 CONKELATIONS OF LOVELACE AND ADERDEEN.

THE HIGHEST CONKELATION IS LISTED. THIS IS OBTAINED BY
CHOUSIND THE DEST OF THE TO HOK DECIMATED RECOKES. IN SOME
CASTS OHLY THKEE OF THE TOTAL OF TO WEKE LOONED AT AS THE
COKKELATION POES NOT VAKY HUCH.

THE SNEW AND NOKY HUCH.

THE SNEW AND NOKE OF THE LOVELACE ENSEMPLES IS THE NECTION DESCRIPTION.

TOO NG KECOKING STONTING 2.5 NS FREPULSE.

		COK	SKCU	MIKE
LOY I TRANS.	٠,		4.0	.a.
(22.1.0.262.37		97.	ci ci	16.
C23.0.767.47		011.	4:5	19.
C22, 0, 800, 4°		67.	* ::	19.
F 40 : 0 : 0 : 0 : 4		.	۲.	10.
C.50 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		::::	2.3	17.
10Y 2 188.15.	cı		3.9	39.
CHE 0 267 4		.79	3.6	1%.
DAY 3 1KANS.	:1		4.3	31.
C22,0,267,4°		10.	3.6	19.
1.30,0,000,4		. 11.5	€.	16.
030,0,347,47		:::	۳. ت	16.
HAY 4 TRANS.	71		4.2	29.
C22,0,267,47		10.	7.0	19.
022,0,000,4		1111	4.0	19.
HAY 5 IKONS.	ĊI		4.3	33.
C22, 0, 267, 4'			3.6	19.
PAY S IKANS.	~		4.9	
C22,0,247,4°		011.	2.6	19.
C22,0,800,4°		.75	۲.	19.
E30.0.800.4		. 77	۲: ۲	10.
C30,0,247,4		.62	m .c.	16.

25 HS KLEWED STAKLING 2,5 HS PREPULBE.

NUKT.	10.	10.	9.0	8.4	12.	11.	6.7	17.	12.	10.	9.0	B. 4	19.	12.	10.	9.0	8.4	15.	10.	10.	9.6	6.4
SKEW. 3.1	2.0	1.0	1.0	1.7	E : 2	3.0	1.7	3.2	2.3	1.0	1.0	1.7	3.4		1.0	1.1	1.7		5.0	1.4	1.6	1.7
cok.	.63	00.	.0.3	١.	٥/.	.74	. 62		17.	10.		.0.5		11.	. e.	7117	.04		.03	. 78	00.	.64
-	C22,0,267,4°	C111,0,000,4	H30,0,000,4	C.30 - 0 - 16 / 1 4	C2240+347+37	1332-0-267-57	(32,0,26/,6"	INY 3 IRANS. 2	022,0,267,37	133,0,000,4	1.36,0,000,4	0.30 + 0 + 24 / + 4 /	PAY 5 TRANS.2	(22,0,26/,3/	C2240,00004	и.50 г. 0. 000 г. 4	030,0,267,47	EAY 5 HEANS. 4	9	022,0,800,4	B.30,0,000,1	030,0,267,47

DYNAMIC PRESSURE STUDY

HYMANIC I'MLSSUME.

The second secon

Charles

ACCOMPING TO THEORY (THE EFFECTS OF NUCLEAR WEAFONS, S. OLASSTONE ED., AFRIT 1942, SEC. 4.42-4.101) WHEN A SHOCK WAVE HITS A FLAT SURFACE HEAD-ON A REFLECTED WAVE IS FROMDED. THIS WAVE LASTS ON THE SURFACE FROM THE EDGES OF THE SURFACE FROM THE EDGES OF THE SURFACE FROM THE EDGES OF THE SURFACE. FOR THE SHOULD LAST ANGULT 25 HICKOSECONES, AFTER 118 PASSAGE THE FRESSURE AT THE SURFACE (AUAY FROM THE EDGES) IS SUFFOSED TO DE AFFROXIMATELY THE GRAZIND FRESSURE FILE DYNAMIC PRESSURE.

SINDE THE LUVELACE DAIA WAS FILTERED THE REFLECTED SPINE ON THE HEAL-ON TRANSHUEFKS (11 1 3) IS REDUCED SO THE PEAK RECORDED PRESSURE. IS NOT THE REFLECTED PRESSURE. SINCE NOT ALL OF THE FEAN WAS FILTERED OUT AN EXTRAPOLATION PROCEDURE. HUST DE USED TO RECOVER THE PEAN DYNAMIC PRESSURE.

THE VARIABLEATY OF THE RECORDS HARES THIS DIFFICULT. IT IS RECONDEMED THAT THE RECORDS DE DIGITIZED AT A HIGHER RATE FUR A HORE ACCURATE EXTRAPOLATION.

FOR AN AFFRONTHALE REBULT THE LEAST BOUARES HAXINA (BEE THE 1 DAY SUBBARLES) WERE USED FOR THE HEAD-ON GUAGE 1 AND THE CORRESPONDING GRAZING GUAGE 2.

OIL KESHI IS OKE AS FOLLOWS!

AVERAGE LEAST SOUNKES HAXIMA (FSI).

1.5 3.7	0.8
6074 4.4 3.9	0.5
60 Y 3	0.7
8072 4.4 3.6	0.0
4.4 4.4	6.4
	1.EAK 0.4
→ c1	nyn.
GUAGE	es fx.

A HONE ACCURATE ESTINATION OF THE PYNAMIC FRESSUKE WOULD DE ITS INCO SE OVEATNED DY SOUTRACTION OF THE FOSITIVE INPOLSES OF THE CORRESPONDING GOAGES.

AVERAGE MAILY FOSTFIVE IMPULSES (FSI-HS).

10.9 10.9 11.6	m ci	11.3 9.3	2.0
11.8 9.6	ci ci	12.0 10.1	2.2
0.4 10.4 9.4	2.0	13.3	.:
11.1 11.1 8.8	e. 1	10.9 11.6	£.
Inny1 11.6 9.5	 -:	6.6	:
	IHF.		1111.
- त	LYM.	ش د	LYM.
GUNGE	AFFX. LYH.	GUNGL	MTX. LYU.

CHICLE SELTS OF EMSEMBLE AVERABES WERE MANE. DAY 4 GAGES 1 & 2 WERE CHOSEN.

ENSEMBLE 11 SHOTS 2,3,4

ENSEMBLE 12 SHOTS 5,4,7

ENSEMBLE 13 SHOTS 0,9,10

METH DIFFERENCES WERE TANEN TO GIVE PLOTS OF THE DYNAMIC PRESOURES.

SECTION E

1 DAY SUMMARY DATA

DAY SHMHARY DAIA.

(PSI) AND THE TIME ***HIN, IMIN*** ARE THE MINIMUM RECORDED PRESSURE (PSI) AND UNION IT OCCURS AFILE THE ARRIVAL OF THE PULSE (HS) IS THE HAXIMIM RECURBLE HVERPRESSURE (PSI).

FSTUDDILL HAXINA

POINTST AND THE SUMMANTON AND SEARCHES A S POINT REGION IN 100 STEPS IS HANDLINITED AND SANCLED AT FUICE THE CUTOFF FRED (OR HIGHER) **** 15 * 15 ESTIMATION OF THE ACTUAL ANALOG MAXIMUM AT THE HIGH THE EXACT ANALOR THE-HISTORY CAN BE RECOVERED VIA INTITION FULSE (EI) . IF THE BIGNAL

***! GE SO NAX, LSE SU AVE, STO DEV** ARE ESTINATES UNION ATTEMPE TO CORRECT FOR THE FIRSTS RISE TIME OF THE TRANSPUCER AND/OR OVER-SHOOT, WHIE DIFFERENT LINES OF VARYING LENGTH AND STARTING FULNI AKL FIL TO THE BEGAY OF THE INITIAL PULSE. THE LARGEST FRESHIRE RESULTING 18 LST BO HAXE THE AVERAGE OF THE NINE IS IST SU AVE AND STD DEV IS THE STANDARD DEVIATION.

********* ANG THE LAKBLES RECORDED PRESSURE IN THE FIRST HILLI-SEC AFTER PULSE ARRIVAL

11 IS HIE RESPECTIVE THE RELATIVE

TO INITIAL AKKIVAL

***ADUK, FOUK** AKE 1116 A FOUKATION AND B-DUKATION (AFTEK PROFOBED MIL-5TD)

I WITH SES

IDIAL,FUS (FSI-NS), TOTAL IS THE SUM OF THE PRESSURES IN THE LECOXIL, FOS IS THE SUM OF THE PRESSURES FROM THE ARRIVAL. OF THE FULSE UNTIL THE FIRST TIME THE RECORD REACHES ZERO AFTER THE "REFLECTED FULSE",

HASE I INE CHECKS

SU IS THE SAMPLE BYANDARD BEVIATION OF THE PRE-PULSE RECORD. ***POSL*** IS THE THE INTERVAL IN HS FROM THE PULSE ARRIVAL TO THE ***EKTIT*** THE FASE LINE IS FITTED WITH A LEAST STUARES LINE FOR ONE HS PET ONE THE GLOPE OF THE FITTED LAST FOINT NCFORE ARGIVAL WHERE THE FRESSONE EXCEEDED 5% OF THE ALLENGE SCIENCE SETWING THE NAX, PRESSONE AND THE HINTHUM, BASSONE INFOLES NO FRESSONE EXCEEDED THE CRITEKION, BASSONE HILLES THE FRONKAH HADE A WAD CHOICE FOR THE ARRIVAL POINT.

LOVELACE TEST, MARCH 1979 THANSDUCER 1 DAY 2

	XS	•	BASE		.18.	*00°	<u>.</u>	*00*	•	•	•00•	÷00°	•00•	•00•	•	*00°	•	•	•		٩	•	*00°	•	•	•	0,00	•	
	LINE CHECK		30		80	*0	50	92	*0	60	05	20	† 0	60	67	0.5	52	*0	05	03	50	70	50	10	26	55	900	.	_
	BASE LINE CHECKS		DRIFT		00	00	00		00	00	00		00	9	00	00	00	00	O O		00	00	00	9	00	00	0	00	00.0
	-		P05 + 1	*****	4,420	2,640	9	3,324	-	•	~	2,634	3	•	1.39*	æ	3.51+	3.02#	2.81*	3,13*	3,534	2,92*	4.32*	3,114	3.02+	Φ	2,370	2,62	40
	IMPULSES		TOTAL	#= [Sd===	1 -4.09		•	1 -5,73	•	•	1-18,45 1	1-11.27 1	1-21,37 1	0	1-15,78 1	•	•		•	1 -5,29 1	•	•	•	1,24 1	•	•	1,18	0.92	0.26 1
		•	BOOR	HS	~ 5° fi	~ vo	~	۔ ع		67.7	46.6	-	176.7		_		67.0	66.8	47.7	67,5	67.2	07.1	67.2	67.2	168.8	134.1	9.07	138.1	120.4
			ADOR	AS	•	7.5	•	7.5	7.5	7.5	7.0	7.3	7.3	7.6	7.3	•	8.1	3.8	7.7	7.6	8.1	•	9.1	8.1	8.1	7.6	B.1		8 .1
			11	HS	•	0.03	•	•	0.0	•	0.03	0,03		•	0.03	6.05	0.05	0.03	•	0.03	•	•	0.03	•	•	•	9,05	•	0
			HAXI	PSI	7,1	35 69		•	•		7.3	6.9	4.7	4.7	6.5	•	6.2	7.8	6,3	5,3	•		5,3	•	3.6	4.7	4.7	4.7	4.7
	HAXINA	STD +	DEV +	•	0.22*	0,33*	0.224	0,114	0.114	0,224	0,22*	0,224	0.11	0.11*	0.224	0,22	0.224	0,224	0,324	0.114	0,22*	0,234	0.334	0.22	0.11	٠٦,	0,110	۳.	0.11.
DRDS	ESTINATED NAXINA	LST SO	AVE	hSI	5.1	5.7	4.7	4,3	4.6	3.B	4.7	4.6	3.8	3.)	4.2	4.2	4.6	2.0	4.1	3.8	4.5	A.C	0.4	3.9	3.1	3.4	3.4	•	
OK RECORDS	ESTINATED	LBT L	SO HAX] S d	5.4	6.3	6.4	4.5	4.9	4.2	5.1	4 . H	0.4	3.6	4.5	4.5	4.8	5.4	4.3	4.1	4.7	4.1	4.3	4.2	3,3		3.6	8.	7.
THE 4	* * * *		£1 3	18d	7.3	6.3	5.6	in S	e. 5	6.3	7.8	7,3	J. 4	5.0	# 9	•	6.2	E. B	9.9	5.1	•	•	•	0,3	3.E	4.7	4.9	4.7	4.7
TAKEN FROM	÷	÷	THIRP	HS &	13,806	15,554	14.800	14.704	14,904	14.933	15,034	15,054	15,071	15,804	15,000	15,300	15,750	•	15,43+	14,32*	14,754	15.78*	14.380	27,704	16.40+	15.30+	14,20+	٩.	14.901
TAKE			NIA	hS I	-1.3	~	-1.2	-1,2	-1.4	-1.3	-1.4	-1.4	.1.3	-1.3	-1.5	-1.3	-1.2	•	•	-1.3	-1.2	7,	.1.3	-1.2		-1,2	•	-1.0	-1,3
MAXINA ARE TAKEN FHOU THE UN AXIB FACE-ON		MAX	HEC	P.S.1	7.1	8.8	4 • B	5,3	6.5	6.3	•	6*9	•	4.7	6.5	6.7	6,2	3.8	6.3	5,3	6.5	5.4	5.3	0.9	3.7	4.7	4.7	4.7	4.7
X Y X			SHOT			7	m	▼	S	9	~	33	σ	01		2.5	7	-	15	16	17	# **	5	20	21	22	23	24	25

LOVELACE TEST, HARCH 1979 Thansducer 1 Day 3

	CKS	****	•	BASE		0.95	\$00°0	•00.0	0.000	0.98*	1.80.	2,00	2,55+	0.00.	0.78+	0.000	1.437	+00.0	1.05	+00.0	2.631	2,135	*00 *6	*00 *0	•00.0	100.0	*00°0	*00°0	*00*0	2.409
	NASE LINE CHECKS	*********		30		03	60	90				0,12							60.0				2						0.07	30
	NASE LI	*********		DRIFT		0.00	00.0	00.0	00.0	00.0	0000	00.0	0000	00.0	00.0	00.0	00.0	00.0	00.0	0000	0000	00.0	00.0	00.0	00,00	00.0	00.0	•	00.00	00.0
		*	•	POS &	******	13.35#	13,000	13,55*	12.664	12.21	12.17*	12.541	12,201	11.57+	12,42*	11.37*	13,304	11,380	10.645	11.164	10.40+	12,384	12,310	11.65*	11,32*	11,55*	11.41*	11.904	13,59+	11,56+
	IHPULSES	*********	•	+ TOTAL	H-15d	e -8.79	-3.05	10.01-+	5.50	• -9.95	4 -1,65	19.6- *	+ -8.44	•-10.50	+ -9.59	4-16.48	4-12.49	4-23.68	*-21.47	*-20.96	4-25.93	4-10.19	4-14.47	-9.25	4-18.48	4-23.07	1-18.71	+-13,05	4-16.69	+-12,34
				BEER	S.	157.3	43.3	6.65	171.0	207.3	0.0	67.0	67.1	132.9	39.0	H1.2	3	3	0.0	0.0	0.0	201.9	0.0	118.7	46.7	59.1	201.6	64.5	208.7	76.8
				ADOR	XX	7.3	7.4	3	7.4	7.3	7.6	7.4	7.5	7.2	7.7	7.2	7.5	7.4	7.2	7.5	7,5	1.1	7.5	7.6	S	+	~	~	S	52
				1,1	S)	0.05	0,05	0.03	0.03	0.03	0.05	0.05	0.05	0.03	0.03	0.05	0.23	0.05	60.0	0.05	0,05	0.05	0.10	0.03	\$0.0	0.03	0.03	0.03		0.03
				HAX1	156	۴.1	3°E	7.3	S, C	5. h	3 7	6. 5.	3,0	= 9	٥, ر	6.3	3.7	2.0	5.3	4.7	9°5	5.4	3.6	0.9	7.0	7.6	9.6	6.5	5.5	5.6
	I HA	****	e ors	DEV *	•	0.214	0,214	0.214	0.11*	0.214	0.11.	0.215	0.11*	0,21*	6,214	0.114	0.21#	0.11+	0.214	0.114	0.114	0.114	0,000	0.214	0.21*	0,210	0.214	0.21*	0.114	0,110
ROS	ED MAX		ust sa	AVE	184	9.4	2.0	5,2		1.1	4.1	3	4.2	3,4	*.	4,3	9.6	3.9	•	3,6	4.2	4.4	3.1	3.6	9,4	4.7). (4.1	4.4
OK RECURDS	ESTIMATED MAXIMA	**********	S'I J.S'I	SO HAX	PSI	4.9	5. 4	5,5	4.3	6.1	4.2	A.	4.	ے ۔	4.0	4	7.	4.0	4	=,	4.4	4.4	3.2	7.7	4.5	0,4	4.3	4.2	4.2	4.3
4	-	******	~	EI S	hS I	0	ж. Э	6.7	5,4	2,0	5.1	6.7	0.9	6,9	4.	6.3	3.9	9.0	5.5	•	£.¢	6.3	9,0	† • 9	7,1	3	0.9	•	9°S	
FROM		-	•	JEJN.	# 57 H	15.70+	14,000	4.30	14.604	28,146	7.35+	14.74.	4.334	•	0.05	14,500	27.63+	3.701	15,641	12,954	15,439	4.054	3,854	5,324	5.38*	5,354	24,700	5,054	3,20*	
RE TAKEN FR FACE-ON				z I H		-1,3	_		~			3	~	c	*	9	~		Ţ.	4	~	و	~		~	-1.3	~	~	-1.4	
HAXIHA ARE TAKEN FROM THE			XYX	REC	154	6.1	0.8	7.3	2.0	5.6	8.4	6.5	3.5	9	7.0	6.2	4.1	5.0	5.2	4.7	S.B	5.4	3.6	0,0	7.0	7.6	5,6	6.5	5,5	5.6
HAX				SHUT		-	7	~	~	Ω	4	~	3	on	01		12	~	-	1 5	16	11	3.8	51	20	21	22	7.3	24	25

LOVELACE TEST, HANCH 1979
THAMSDUCER 1
DAY 4

HAXIMA ARE TAKEN FROM THE 40K RECORDS ON AXIS --- FACE-ON

		_							-						_					_		_			_	-		-	
FCKS	*****	-	BASE		2,42	4999,000	0000	1.19	1.52	0.38	0.40	2,28	000	2,35	2,60	1.98	0,75	0000	0000	0.08	1.454	0.73	0000	2,30	0000	0.28	0000	0000	2.17
LINE CHECKS	****		30		0.14	0.145	0,12	0.14	0,13	0.13	0,13	0,13	0.11	0.12	0.11	0.12	0.14	0,12	0.11	0,11	0,13	0,12	0,11	0.12	0,12	0.13	0,11	0,09	0,12
BASE L	*****		DRIFT		00.0	0000	00.0	0.00	00.0	0000	0000	00.0	00.0	00.0	0000	000	0,01	00.0	0000	00.0	000	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.00
12	***	*	*	*	+64	73+	12+	+69	* B O	214	.274	• 1 8	* 70	* 8 0	3,504	12+	++9	20+	3,730	35+	+ 00	*0*	*06	71.	274	95.	56+	416	024
Ixpulses	***		POS	- HS	7	13.	14.	13.	13.	7	7	12,81	13.	13.08	13.	13.	12.	12.	13.	12.	13.	12,40	12.	13.	13.	12.	12.	12.	12,
1 × P	****	•	* TOTAL	#PSI	4-13.13	* -5.46	*-11.70	4-13.43	4-14.08	+-12,33	1-15,34	W -8.27	13,27	1-14.91	F-15,25	• -5.83	1-14.03	4-24,33	f-10,27	1-15.97	# ~6.42	+-13,56	1-14.15	4-14.80	4-16,36	68°8~ +	4-19,65	4-18.57	+-17,45
			BDUR	K S	147.6	20,5	171.2	67.3	C C	0.0	116,4	0,0	67.6	0.0	e. e	H 1 . A	85.5	67.4	61.9	67.8	67.6	119.9	67.9	85°3	175.0	68.7	153,6	171.5	В1.2
			ADUR	N S	0.	0.0	7.2	7.B	7.9	7.5	7,2	0.8	7.5	7.5	7.5	7.3	7,3	7,3	7.3	7.5	J	7.2	0.8	7.2	7.7	7.6	7.5	7.5	7.2
			I	S H	0.05	0.17	0.05	\$0.0	80.0	(0.0	0.03	0.05	0.03	0.03	0.03	0.03	0,03	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.03	0.05	0.03	0.03	0,05
			HAX1	μSΙ	4.7	4.0	5.4	6.3	4.7	4.2	6.5	3.	6,3	5,0	4.7	5.4	6.7	7.4	0.9	4.7	5.5	5.4	6.5	5.3	5,2	5.4	5.7	2.0	5.4
HAXIHA	*****	STD .	DEV *	•	0.24+	0.24	6,24	0.24	0.124	0.244	0.124	0.124	0.24	0.12*	0.24	0,124	0.24	0,24	0,24	0,124	0.124	0.24	0,24	0,12	0.244	0,124	0,124	0,12+	0,124
	*****	LST SO	AVE	154	4.6	4.7	3.9	o. 1	4.2	4.1	4.6	١,١	3.7	3.9	3.6	3.7	4.5	5.2	4,3	٥ ٠ ς	4.3	4.2	~·	3.9	4.0	3° E	3.7	3.5	4.1
ESTIMATED	****	1 J.E1	O HA	PSI	2,0	S.3	4.1	2.3	4.4	4.3	4 . E	Э. М	4.2	4.1	æ. (۳. د	9,4	5,4	4.9	5.2	4.5	4.5	4.6	4.1	4.)	9.4	3.9	3.6	4.3
	******		_	-	~	۲.	•	•	5.5	•	٥.	5.2	9.9	5.6	2,0	5.7	7.1	7.4	6.2	6.7	5. B	5.5	6.9	5.8	5.7	5.4	0.9	5.5	5.6
	•	>	THIA	F. 27	14,153	15.659	15,439	28,057	13,661	14.781	15,354	15,651	15,701	28,251	15,631	14,801	15,801	14,151	14.801	15.551	15,25	15.034	13.786	28,18♦	15,050	28,934	15.75+	13,850	14,75#
			ZIX	P.S.1	-1.6		-1.3	•	•	•	-1.3	•	•	•	•	•	-1.6	4.1.4	-1.3	-1.3	-1.2	-1,2		-1.2	-1.3	-1.2	~	-1.2	+1.4
		HAX	HEC	PSI	6.7	6.1	5.4	6.3	4.7	4.5	6.5	4.8	6,3	5.0	4	5.4	6.1	7.4	0.9	6.7	5.5	5,4	6.9	5.3	5.2	5.4	5.7	9,0	5.4
			SHOT			3	M	4	43	9	~	33	σ	01		12	13	4	15	91	1.7	æ ~	19	20	21	22	23	24	25

LUVELACE TEST, MARCH 1974 TRAMSDUCER 1 DAY 5

HAXIMA AHE TAKEN FROM THE 40K RECONDS ON AXIS --- FACE-ON

_	* * 1	-	HABE		•00	•00	*00	•00	* * *	+ 00	* 00	• 00	• 00	*00	•00	* 01	• 00	• 00	*00	•00	•00	* 00	*00	*00	*00	•00	•00	•00	\$00
CHECKS	*****		HAC		•	•	0	•	0	<u>.</u>	•	•	•	0	0	•	•	•	0	•	0	0	0	0000	•	0	•	•	•
LINE CI	****		30		60.0	0.08	60.0	0,09	60.0	0.08	90.0	0,08	0.07	0.08	0.08	800	0,08	0.09	0,07	0,08	0,08	0.08	0,08	0.08	٦,	0.10	۳.	0	0,10
BASE L	******		DRIFT		00.0	00.0	00.0	00.0	00.0	00.0		00.0		00.0		00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0		0000	00.0
RPULSES	*****	•	Pus +	H3+	11,45+	66.6	12,264	10.11*	12,25*	8.64	12,97	8,94	11,124	11,63#	11,21+	12,750	13.74	12,164	11.91	12,H6*	12,140	12,344	10,934	13,41*	12,911	14,184	12,87\$	13,56+	12,484
JAPI	********		* TOTAL	Ľ	1-12,27	4-14,16	1 -6.72	4-16.03	11.6- +	*-17,45	+ -8,53	4-70.49	* -7.29	4-12,64	1-13,29	4-13.68	+ -3.88	*-13.72	4 -8.74	*-10.53	6.52	4 -6.81	1-14.71	4 -0.89	4-10,26	4-15.40	*-12,58	80°2- +	t-15,84
			BUUR	M S	9.69	53.4	81.B	46.9	176.2	65,3	1.36.2	46.3	67.5	61.3	67.7	38.9	66.2	67.7	9,99	67.0	61.9	67.1	39 c B	38,7	67.5	124.3	67.4	43.7	170.8
			ADOR	H.S	7.0	6.1	o•8	7.1	7.4	3.9	7.2	6.4	7.1	7.3	7.8	7.2	7.5	7.4	7.5	7.3	7,9	7.2	•••		H . H	9.6	7.3	1,0	7.5
			T.	ΗS	0.05	0,05	0.03	0.05	0,05	0.05	0.03	0.03	0.03	0,23	0.03	0.03	0.05	0.03	0.05	0.03	0.03	0.05	90.0	0.05	0.03	0.05	0,05	0.05	0.05
			HAXI	PSI	4.9	6.7	5.9	7.0	3.6	°.	4.2	7.4	4.9	3.4	A. 6	6.7	5.1	5.4	5.5	0.9	4.4	4.2	39. 9	:T	5,3	5.3	5.9	9.9	4 · 8
HAXIHA	*****	STD .	* 430	•	0,234	0.23*	0,124	0.23	00°0	0.23*	0,124	0.234	0.12*	0.12*	0,34	0,234	0,124	0,124	0,124	0.12+	0,12*	0.12*	0,234	0.12	0,12*	0,120	0.124	0.12*	0.12+
TED HAD	*****	LST SO	AVE	PSI	4.6	4.5	0,4	8.	3.4	4.5	3,3	4.2	3,8	3°F	5.5	5.0	3.9	3,9	4.2	6.4	4.2	3.5	4.6	3.9	0.4	4.2	4.2	4.7	4.1
ESTIMATED	*****	LST L	SO HAX	P.S.1	4.9	4 ° E	4.	5.1	3,5	4.8	3.5	4.7	9.0	1,7	0.0	5.5	+.1	*.	4.4	o* 5	4.5	3.6	4 B	4.1	4.2	÷.5	4,5	4.9	4.3
				188	6.4	3. S	6.3	7.0	4.4	۲.۶	4.5	7.6	5,3	3,5	9.2	1.0	5.4	9.0	6.4	6.5	6.5	4.8	7.2	5.4	5.9	6.3	6.1	6.7	5.1
	-	•	THIN	HS +	15,900	15,78*	13,700	15,48+	15,500	19,65	14.654	15,40+	15,82*	15,184	15,48*	15,800	15.014	14.60*	14.634	12,93*	15,254	14.75+	14,880	15,50+	15,55	27,300	14,25*	15,45+	15,90*
			2 K	P.S.1	-1.4	-1.4	-:-	-1.4	-1.2	1.1	-1.2	7	~	~	4	~		7	7			~	۲.	-1:-	۳.		~	~	
		M A.X	REC		_	_	.	2							B.6	6.7	5.1	5.4	5.5	0.9	6.1	4 · B	в. 9	5,1	5.3	5.3	5.9	9.9	4.8
			SHUT		-	7	~	4	ភ	9	7	33	œ	3.0	11	12	1.3	14	15	91	1.7	18	19	20	21	22	23	34	25

i

LOVELACE TEST, MARCH 1979 TRANSDUCER 2 DAY 1

MAXIMA ARE TAKEN FROM THE 40K RECURDS
ON AXIS --- GHAZING

CHECKS	*****		BASE		•	•	0	•	•	•	•	ó	•	•	•	•	0	•	ċ	0	•	•	o	•	•	•	000	0	o
LINE CH	*****		S		0,02	0,02	0.03	0,02	0,02	0.04	0.03	0.03	0.04	0.02	0.02	0,02	0.02	0,02	0,02	0.04	0.03	0.02	0,03	0.02	0.02	0.03	0,02	0.02	0.02
BASE L	*****		DRIFT		0.00	0.00	00.0	00.0	00.0	000	000	00.0	00.0	00.0	0000	000	00.0	00.0	00.0	0.00	00.0	00.0	00.0	0.00	00.0	0.00	00.0	0000	00.0
1.56.5	******	•	Pus +	+HUSH-	11,154	11,22*	10,624	10.704	10.704	10.91	10.71*	10,91*	*86.01	10,951	10,514	+68.01	10.46*	10.86*	10,864	10.40*	10.674	10,77	10,724	10.74	10.91*	11.14*	11,024	11,27*	11.38+
IMPULSES	*******	•	* TOTAL	+P31-	7 2.41	4-10.82	4-15.47	4-23,22	-19.60	4-17.94	4-19.05	4-16.52	1-17.71	*-10,66	4-24.69	W-10.78	+ -4.35	*~12.71	83.1- +	~	11.9- +	5.5	# -8,38	1 -9.33	4-11.17	*-14.84	1-16,67	67.6- +	4 -9.10
			ROOR	ЯS	70.6	74.3	82.0	67.7	174.3	82°5	67,5	67.7	67.7	72.6	6.58	68.7	67.9	68.4	68.1	70.t	74.0	137.2	68.3	67.6	67.6	67.4	55.6	173.7	18.1
			ADOR	S) X	0.8	7.6	1.6	7.3	7.4	7.3	7.8	7.6	7.2	7.6	7.7	7.6	7.9	7.7	7.3	7.5	7.4	7.7	7.6	7.6	7.3	7.2	7.5	7.4	7.9
			Ţ	X SS	0.05	0.05	0.23	0.05	0.03	0.05	0,23	0.23	90.0	0.05	0.05	0.05	0.05	0,23	0,05	0.05	0.05	0,05	0.05	0.05	0,05	0.05	0.05	0.23	0.05
			MAX1	188	4.4	3,6	3.E	÷.	3.7	7.7	4.1	1.7	4.2	æ. æ	3.4	4.2	۵. د	3,5	0.	3.8	₹	4.7	4.4	3.7	4.4	3.9	0.4	3° E	7
HAXIHA	*****	3T0 *	DEV +	*	0.20	0,20	0.10	0,201	0.104	0.30+	0.00	0.104	101.0	0.20+	0.20	0.104	0.204	0.10*	0.70	0.10*	0.00	0.10	0.10	0,20	0.20	0.20*	0.10	0.10	0.10
	*****	1.ST S0	AVE	PSI	4.2	3.4	4.1	3,7	3,6	7	4.3	4.1	5	3.7	7.5	0.4	3.7	3.5	3,9	3.5	3.6	4.0	0.4	3.7) • • •	7.4	3.7	4.3	3,6
ESFIMATED	*****	LST L	SU MAX	PSI	4.4	3,7	4.1	9.0	1.7	4,3	4.3	4.3	4.0	4.0	4.4	4.2	£.	3.6		3.6	3,7	4,2	4.1	o.	4,3	3,7	3.9	4.4	3.9
				PSI	4.4	4.0	7. C	4.0	4 , 3	4.4	4.2	3,8	4.5	4.0	7.5	4.2	1.1	3.5	4.1	4.1	7.4	0.4	4.6	4.0	4.7	٠. د.	7.7	5° C	4.0
	•	•	JA (N.		16.15*	15.07+	15,661	14.93#	13.80+	15.184	27.884	20.134	19.58+	15.50+	15,15+	15.30+	15.534	15.054	15, 324	28,30*	15,354	15.10*	15,300	20,73*	14.80+	14.930	15,000	15,201	14.40+
			Z	PSI	-1.0	6.0-	o.0-	-1.0	6.0-	= -	0.1-	6.0-	6.0-	6.0-	-1.0		6.0-	-1.0	0.1-	6.0-	0.1.	-1.0	-1.0	6.0-	6.0-	1.0	0.1.	-1.0	6.0-
		XYW	REC	PSI	4.4	3.E	3. B	٠ ۲	3,7	4.2	4.1	3.7	4.2	3.8	3.5	4.2	3.9	3.5	4.0	3.8	4.0	4.7	4.4	3.7	*.	4.2	4.0	3.9	0,4
			SHOT			2	~	4	S	9	~	33	G,	1 و	11	12	13	14	15	1.6	1.7	1 H	61	20	21	22	23	24	25

LOVELACE TEST, MARCH 1979 TRAUSDUCER 2 DAY 2

,,,	
RECURDS	
40K	
THE	
FROR	NG.
TAKEN	GRAZING
ARE	-
HAXIMA	N AXIS
x	ŏ

CKS	•	BASE		.00.0	0000	0.00	0000	00.00	•0000	*00°0	\$00°0	2.080	•00.0	•00.0	*00°0	*00.0	1,27	*00°0	*00*0	0,824	1,23#	*00°0	0,00	1.704	0.00	\$00°0	\$00°0	* 00°0
NE CHE		30		60.0	90.0	90	90	07	07		90	80	07	0.07	0.1	90	07		90	03		90	90		07		07	0.03
BASE LINE CHECKS		DRIFT		0000	00.0	0000	00.0	00.0	00.0	00.0	0000	00.0	0000	00.0	0000	00.0	0000	00.0	00.0	00.0	0000	00,0	00.0	0000	00.0	0000	00.0	00.0
		Pus + p	****	10.52+	3.38+	0.14	*60.0	*96*	334	.77+	1,164	.41*	106.0	10,30*	.544	134	.37*	1.49*	.10*	.89*	.57	3.29*	1,964	.94	9.61*	3.35	*11.	*6B*
IMPULSES	• • • • • • • • •	TOTAL	PS (-M3	-0.50 1	-1.29	-3.54 1		72		17		9 6		3 6		9		9		95	~	8	2,54	σ	20	-8.87	-3.41	-4.16
•	• •	→	•	+ L	*	•	1	*	* 8	• s	*	2 *	•	• 8	•	*	* *	* 7	*	*	* ~	2 *	*	* *	*	*	*	٠ ـ
		HDDH	H.S	6.9	67	. 6 43	0 æ	0,9	67.	67.	67.	.08	63	B . 99	67.	67.1	67.2	67.2	• я 9	84.1	67.2	67.	67.	142.	* S =	10.7	67.	49
		ADUR	K S	7.4	7.5	7.3	7.2	7.3	7.3	7.4	7.5	7.3	7.4	7.5	7.9	7.8	7.5	7.2	7.6	1.6	7.6	7.0	7.6	0.8	9.6	7.7	7.5	7.2
		I	S: X	0.00	0°0	0.03	91.0	C. 05	0.05	0,05	0.03	0.33	0.13	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0.20	0,05	0,23	0.05	0.05	0.05	0.05
		MAXI	PS:	4.7	5.4	٥ .	3,5	۵,۰	3,8	4.7	4.3	3.0	3,4	3.8	4.3	4.1	4.5	3,8	3.5	3.7	3,3	3.4	3.6	2,6	3.0	3,3	7.4	3.3
HAXIMA	8T0 ¢	•	•	0.20	0.10	0.109	0.104	0.10	0.10	0.10	0.10	0.10	0.00	0.10	0,10	0.10	0.10	0.10	1010	0,100	0.10	~	0.10*	0,204	0,104	0.100	0,10	0.10
FED MAX	LST SU	AVE	184	4.4	7.7	3,9	3.5	3.6	7.1	⊅	3 . E	3.2	3,2	3.6	3.6	3,9	Э. В.	3,2	0,4	3.6	3,1	3.7	3,2	2°B	3.8	7.9	3.1	2.9
ESTIMATED	LST	~	PSI	4.6	4.6	7.7	3,7	1.1	7.5	7.7	4 0	3.4 4.8	7,3	3.7	7.7	4.0	0.7	3,3	3.2	7.7	3,3	7.7	 	3.2) ° (5.9	3.2	3,6
	• • • •	_	184	5.1	9°5	4.4	5.5	5°C	3.8	5. c	4.7	3.0	.S.		4.4	4.1	4.6	9,9	3.5	н . г	3,4	3.4	4.0	2.8	7.7	3.3	3.5	3.4
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	• •	THIN	AS +	13,7H+	15.95+	27.834	14.98.	14.70+	13,854	14.934	14.734	27,880	15,284	13,23+	13.60+	15.754	15, 15#	19.524	27,17#	14.924	15.404	14.354	14,754	15,20+	15,324	28.08¢	15.434	14.804
		NIH	PSI	-1.1	6.0-	-1.0	-: -:	-1.0	-1.0	-1.0			-1.0	6.0-	-1.0	-1.0	-1.0	6.0-	-1-	-1.0	-1,0	-: -:		6.0-	-1.0	0.0-	5,0-	-1.1
2144	XXX	REC	PSI	4.7	5.4	4.0	3,5	9.0	3.8	4.7	4.3	3.2	3.4	3, E	Ţ	4.1	4.5	3.8	3.5	3.1	3.4	у. В.	3.8	3.1	3.1	3,3	3.4	7.7
5		SHOT		-	~	~	4	S	9	7	0	6	10	=	13	13	14	15	16	13	1 R	61	20	21	7.7	23	24	25

LOVELACE TEST, MANCH 1979 THANSDUCER 2 DAY 3

HAXIMA ARE TAKEN FHUN FUE 40K RECURDS ON AXIS --- GHAZING

					ESTIMATED	TED MA	HAXIHA					IMP	IMPULSES	BASE L	LINE CHI	CHECKS
			*	*****	+++++	*****	*****					******	******	******	*****	*****
	H A X		•		LST L	LST SO	STD .						•			•
SHOT	REC		THINA	E 1 3	SO HAX	AVE	DEV +	HAX1	Ţ	ADOK	2003	* TUTAL	PU8 +	DRIFT	30	RABET
	PS1			PS 1	PSI	1 S d	•	PSI	R	AS	MS	*	*******			
9	0.0			0.0	0.0	9 0	0.00	0 0	00.0	0.0	0.0	00.00	0.00	0000		+00.0
7	5.1			5.3	4.6	4.5	0.10	5,1	0.05	7.1	6 H . K	10.9- +	10.23#	00.0		•00.0
~	6.4	-1.2	18.64*	5.0	4.4	4.4	0.10	4.9	0.05	1.1	15,6	4-17.44	10.584	00.0	0.04	•00.0
4	3.6			3,9	3,8	3.5	00000	3,6	0.15	1.6	201.7	4-20.03	9.76	0000	0,07	1.600
0	0 0			0	P 0	0	.00.0	o • o	0.00	0.0	0.0	00.00	0.00	00.0	0000	•00.0
9	3.9			7	3.6	3.1	0.10	3.9	0.13	7.6	201,2	4-14.44	9.70*	0.00	0.08	0000
0	0.0			0.0	0.0	0.0	* 00°0	0.0	0.00	0.0	0.0	00.00	0.00	0000	0000	0000
3	3.7			4.2	3.7	3.7	•00.0	3.7	0.05	7.5	0.0	4-13,75	9.77	0000	0,03	0,000
σ	4,3		13.38+	4.3	3.4	3,1	0.10	4.3	0.05	7.8	67.8	5,80	10,14	00,0	10.0	0.00
01	4.1		19.501	4.7	3.9	¥.	0.00	4.1	0.03	7.5	67.3	+-18,73	10.164	00"0	90.0	0.004
=	4.5		15.20*	4.6	4.0	3.9	0.10*	4.5	0,05	7.2	9.08	1-16,63	9.50	0000	0,08	2,70*
13	3,2		15,90+	7.7	3,3	3.2	0.10	7.7	0.30	7.4	201.9	1-19.13	9.634	0000	0,05	0.784
13	3.7		15,234	3.6	3.6	3,4	0.10+	3,7	0.13	7.3	103.7	+-23,39	499.6	00.0	90.0	*00.0
14	3.5		27,480	3.5	3.8	3,7	0.10	3,1	0.23	7.6	80.7	+ -8.78	9.19	00.0	90.0	1.58*
<u>;</u>	3.4		14,054	3.6	3.4	3.2	0.104	7.7	0.03	7.5	201.4	* -6.46	9.45*	00.0	0.05	2,17#
9 1	4.1		19,35*	4.1	3.6	3.6	0.10	-:	0,05	7.6	H4.6	* -7.29	*06.6	00.0	0.04	*00.0
7	4.4		14,824	4.6	9° (3,7	-	4.4	0.05	7.6	56,3	4 -9.68	9.92#	00.0	0,05	*00.0
2	5,9		19, 115+	2.9	2.7	2.7	0.10+	5.9	0.0E	7.4	но. 7	1-10.42	6	00.0	0.04	0.00
7	3.B		15,25+	3,6	3,4	3,3	0.00	3.8	0.05	1:1	14.9	4 -8,18	9.404	00.0	0,05	Q.00+
20	4 , 5		15,230	4.8	3.6	3,4	0.10*	4.5	0.05	7.8	67.7	* -8.36	6	00.0	0.04	0.000
21	4.6		15.68*	4.9	4.1	4.0	0,10	4.5	0.05	7.3	0.89	# -8.0A	9.7B*	00.0	0,05	*00°0
22	3.6		28,55+	3.7	3,9	3.7	0.10	3.6	0.10	7.3	40.5	+ -8.56	Ġ	00.0	0.02	•00.0
23	1.1	6.0-	18.00+	4.2	3.5	3.4	0.104	4.1	0,05	7.3	68.5	* -9.5B	9.81¢	00.00	0,03	•0000
24	3.7		19,000	3.E	3.6	3,5	00.0	3.7	0.15	7.3	69.5	+-16.36	10.04	00.0	0,05	*00"0
25.			15,20*	4.2	3.7	3,7	0.00	4.1	0.05	7.6	67.3	+ -9.93	9,36	00.0	0,05	2,55*

LOVELACE TEST, MARCH 1979 TRANSDUCER 2 DAY 4

MAXIMA ARE TAKEN FROM THE 40K RECURDS ON AXIS --- GRAZING

CHECKS	*****	•	BASE		2,150	0.00	3,130	0.00	*00.0	0.00	0000	0.00	0.00	0000	0000	1.750	0.00	0.00	0.004	*00°0	0.00	00.0	00.0	\$00°0	0.00	00.00	00.0	*00.0	00.0
LINE CHE	******		Q.	•	0.0	0.04	0.07	0.08	0.07	0.07	0.05	0.05	0.07	0.07	90.0	70	90	90	90	20	9	9	*	50	80	*		2	0.04
HASE L	*****		DRIFT		00.0	00.0	00.0	00.0	00.0	0000	00.0	00.0	0000	00.0	00.0	00.0	00.0	00.0	0.00	0000	00.0	00.0	00.0	00.0	00.00	00.0	00.0	00.0	00.0
1888	******	*	POS +	******	11.19*	10.70	10.73*	10.91	10.914	10.64	10,894	10.54*	10.524	10.81*	11.09*	10.84*	0.88	1.07#	0.97	5 10,664	0.57	0.58*	1.09	0.80	1.224	1.084	0.824	11,000	0.814
IMPULSES	*******		* TOTAL		32	1-23.95	10.6-	+-24.04	-9.65	1-15,20	1-20,94	6.9	F-17,15	4 -9.05	4 -8.69 1		=	~	_	• 0,66	_	===	\simeq	~	\simeq	1 3,89 1		1 3,10 1	9
			8008	SK	BH.4	15.2	67.7	67.3	70.4	92.3	0.9H	9.19	8°6#	1.89	96.0	6.69	6H.2	40.0	12.1	68.0	67.5	0,89	82.2	H6.1	64.1	2,65	67.7	68.4	68,3
			ADOR	R.S.	7.7	7.7	7.0	7.6	7.8	7.5	7.2	7.9	7.B	7.6	7.6	7.4	7,6	7.6	7.5	7,5	7.4	7.3	1.9	7.3	7.B	7.5	1.1	7,3	7.3
			Į	H G	0.05	•	0.05	0.03	0,05	0.23	0,23	3	0	_	0,20	0	0,05	C	•		0.05	_	0.05	-	0	0	0		0
			HAX1	ЬSІ	4.5	4.3	J. E	4.2	3.9	3,5	4.0	3.7	9°C	٠. د	3.3	3.6	4.2	5.2	4.2	4.9	4.4	3.6	4.2	3.5	B.	1.7	3,7	3,3	3,8
HAXIMA	*****	STD +	• A30	•	0,204	0.10*	•	•	0.10	0.10	0.10	0,10	0.10	0.10	0.204	0.104	0.104	0.10	0.10	0.10	0.104	0.204	0,200	0,10	0.20	•01.0	0.00	0.20+	0.10+
	*****	LST SU	A V E.	PSI	4,2	0.	3.4	+	3,7	3.9	4.1	~	2,0	ა ო	3.5	7°4	6.7	4.6	1.1	4.4	3.6	a. c	3°E	7.6	2.5	3,5	3.4	3,4	3.7
ESTINATED	******	7.5	SO HAX	lsd	4.5	4.2	3.6	4,3	¥.	4.1	4,2	'S	۳,۳	9.6	7.7	٠. د.	4.1	4.7	4.3	4.5	٦. د	4.1	4.1	3°E	я•с	3.6	3.5	3.6	3.9
	*****					4.5														۶. ٥									
	•	•	THIN	* SH	27,054	16,05	15,35+	28.18.	14.85+	28,214	15.48#	13.28*	27.98*	36.08¢	15. 54	15,88*	15.55+	15,00*	14.74*	28.834	28.384	15.201	28,180	28,521	15,100	15.001	16.0HP	28.851	13.381
			Z I X	PSI	-1.2	0,1-	-: -:	0.1-	-1.0	9.0-	0:	0,1	-	o. -	6.0-	6.0	3.0	6.0-	6.0-	6.0-	B 0 -	6.0-	5 0 -	6.0-		6.0-	4.0-	6.0-	6.0-
		XYX	REC	P31	4.5	4.3	7.5	4.2	5 ° C	æ •	·		7	٠, د د	ج د	9	7 . 7	2,2	4.2	4.9	*	33 °	4.2	3.	3.8	3.7	3.7	7.	3.8
			SHOT			~														91	_	.		.	_	~	~	4	'n

LOVELACE TEST, MANCH 1979 TRAMSDUCER 2 DAY 5

HAXIHA ARE TAKEN FROM THE 40K RECORDS ON AXIS --- GRAZING

ECKS		•	BASE		0.00	•00•0	•00•0	00.00	00.0	•00.0	0.00+	00000	00.00	\$00°0	0000	•00.0	*00.0	•00•0	•00°0	+00*0	\$00 °0	\$00°0	•00.0	* 00°0	\$00°0	\$00.0	• 00 • 0	* 00°0	\$00°G
LINE CHECKS			80		0	0	0	0																				0.07	
HASE L	****		DRIFT		00.0	000	00.0	0000	0000	000	00.0	00.0	00.0	0,00	00'0	0000	00.0	00.0	00.0	00.00	0.00	00.0	00.0	00.0	0000	00.0	000	00°a	0000
LSES	191161	•	P(18 +	48SH	10,424	9.64	68.6	10.26*	9.834	9.77*	10,124	9.67*	9.634	9.234	9.884	6.68	10,324	9.824	9,334	9.89*	9,524	9.454	9.90	9,61*	9.37	\$00°6	9,32	9.45+	8,894
INPULSES	4444444444	•	* TOTAL	Ŀ		_	~	_	~		+ -6.73								+ -8.85	+ -4.94	+ -4.44	06.6- +	1 -1.92	1 -8.4)	13,80	1-12,42	+-12,24	. 55	1-18,20
			111111111111111111111111111111111111111	N.S.	9.69	53.2	67.8	46.8	44.2	65.4	177.1	45.7	47.6	1.13	67.7	67.2	68,5	85.3	89.3	38.5	67.9	H 9. E	67.0		67.7				۲.
			ADOA	IJ	7.8	7.8	7.7	7.6	7.6	7.8	1.2	7.3	7.2	7.5	9.6	7.2	7.6	7.3	7.3	7.3	7.4	7.2	7.2	7.7	7.7	5.9	7.3	7.6	7,3
			ī	X G	0.05	0.05	0.03	0.03	0.05	0.05	0.05	0.03	0.05	0,23	0.05	0.05	c)•0	0,23	e, 05	0.05	0.03	0.05	0.03	0.05	0.05	90°0	0.05	0.05	90.0
			HAXI	ps1	4.7	5.1	9.4	4.9	3,5	4.7	5.9	5.1	4.1	2.5	5.4	4:1	7.0	3.4	7	4.3	3.9	3.3	4.1	3.6	3.5	3.7	3.E	4.5	3.5
HAXIHA	•••••	STD .	+ A30	*	0.104	0.104	0.10*	0.101	0,000	0.10	0.10	0.10	0.10	0.100	0,100	0.10	0.10	0.10+	0.104	0.00	0.104	0.10+	0.104	0.00	0.00	0.100	0,10+	0.10	0,10
TED MA	******	LST SU	AVE	PSI	4.1	4.1	3,6	7.	3.1	4.1	2.8	9,6	5.5	٥,٠	4.5	4.0	3,2	3.6	3,5	4.1	٠. د	5.9	3,9	7.5	3.4	3,5	3.5	3.8	3,2
ESTIMATED	****	rs.r	IC HAX	681	4.5	4.2	3.7	S	3.1	4.2	3.0	4.2	3.6	3,1	4.7	4.2	7.4). B	3.6	~.	3.6	3.0	n. +	3.3	3.2	3,5	3,6	3.9	3.4
	*****		2.1.3	184	4 · B		₹.	5.6	3.6	æ. 7	3.2	5.6	4.2	7.5	5.7	4.7	0.4	3.5	4.7		4.3	£.	4.0	3.6	3,5	я. «	B.K	4.6	3.5
	*	•	THIND	HS •	14.684	.204	15,240	19.73+	•	•	14,730	13,25*	15,551	16, 15.	15,400	27,754	14,651	28,58*	28,100	28,024	15,404	28.02+	28,20+	15.53*	28,20+	26,270	14,200	15,430	15,400
			Z H	ps1	-1.0	-1.0	6.0-	0.1-	6.0-	-1.2						0.1-												0	
		HAX	HEC	PS1	4.7	5.1) ,	4.9	3.5	4.7	3.4	5,3	4	7.7	5.4	4.7	3.5	3.5	4.1	4.)	3,9	3,3	4.1	3.6	3,5	3.7	3,6	4.5	3.5
			SHOT		-	~	~	4	\$	9	7	33	Φ	10	1.1	12	~ 1	1.4	15	16	17	18	61	20	21	22	23	24	25

5

LUVELACE TEST, MARCH 1979 TRANSDUCER 3 DAY 1

MAXIMA AHE TAKEN FHON THE 40K RECORDS OFF AXIS --- FACE-ON

CKB	•	•	BASE		*00°0	0.00	•00.0	*00.0	0.00	•00.0	*00° 0	0,000	•00 0	+00.0	•0000	•0000	0000	\$90°0	0000	0.00	•00°0	•00•0	\$00°0	*00*0	\$00°0	.00.0	0.00	*00.0	*00°0
LINE CHECKS			30		0.03	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	00.0	0.02	0.02	0.02	0.03	0,03	0.02	0,02	0.03	0,02	0.02	0.04	0.03	0.02	0.03	0.02
BASE			DRIFT		00.0	00.0	00.0	00.0	00.0	00.0	0.00	0000	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	0.00	0.00	00.0	000	00.0	00.0	00.0	00.0	00.00
IXPULAES		*	P05 +	********	13,94	14.149	13,50*	14.210	13,37*	14,27#	13,110	14.160	14,220	*00°0	13,64*	13,584	13,210	13,77*	13,80#	13,550	13.64	14.54*	14,294	13,984	13,68*	14.32*	13,944	14,314	14.54*
JAKI		•	* TOTAL	-Isd+	¥ 2.57	4 -9,92	86°6- *	1-12,65	69.6- +	+ -6.17	0 -8.30	* -8.52	4-14,65	00.00	1-11,86	4-11.53	9-11,58	# -9.36	1-14,20	4,02	1-10,43 1	# -B.54	F-13,81	m	4-13,66	à	4-13,67	4-13,99	1-11,15
			E011#	H.SS	74.6	60.69	10.2	67.7	10.8	68.6	70.0	68.3	68.6	0.0	64.3	39.7	39.7	5 H . 4	~		71.3	æ	~	56.4	30.6	67.8	73.8	68.7	61.9
			ADUR	A.S	10.1	9.7	9.8	9.3	 E	6.6	9.5	10.0	6.0	0.0	10.0	9.6	æ••	9.3	٠,	9.1	8°6	9.2	6.6	9.4	9	7.7	9.1	9.1	3
			TI	X 2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0.05	00.0	0.05	0.05	0.03	40.0	0.05	0,05	0.05	0.05	0.03	0.05	0.05	0.05	0.05	0.05	0.03
			HAXI	ISd	4.9	4.8	7	¥.	5.4	7.	a. +	٧.	я. Т	o.e	6.4	₹.	7.6	+ •	4.6	2.5	A . A	₹.	0.4	4.9	4.9	4.9	4.9	6.4	4.6
XHX		aru •	DEV +	•	0.104	0.10	0.10	0.10	0.20*	0.10	0010	0.104	0,10*	0.00	0.10	0.10	0.104	0.10*	0,10	0,10	0,10	0.10+	0,10*	0,10*	0,10	0, 30	•0.0	0.11	0.10
ESTINATED MAXIM		LST SO	AVE	PS1	3,	4.1	4.2	J. ★	4.0	4.5	4.3	•	4.1	0.0		+.	7.0	3.7	3°E	4.2	4.1	¥.	3,3	4,3	4,3	4.5	4.3	4.0	3.6
ESCIAN		is r	Y W	1sd	4.7	4.2	4.4	4.2	7.7	4.7	4.4	4.2	4.3	0.0	4.7	7	4.2	5. T	4.0	4.3	4.2	4.6	3,4	4.4	4.6	4.8	4.4	4.2	5.4
			8 13	PS1	5,0	4° E	9.6		5.1	5,3	7.	4	5.1	≎	5.4	5.6	S. 4	5,0	5.3	5.7	2.	5.5	4.4	5.7	5,5	5.1	3.0	5,5	5.3
	ξ,	*	THINA	KS.	16.501	14.901	14.621	185,72	14.821	14.601	15.401	14.60 +	26,35#	0.00	14.251	14.38+	14.286	13,884	14.489	14.65+	27.654	15,25	27,931	15.4B+	14.600	15.00+	14.454	14.25	27,334
			z	ps1	6.0-	-0.9		0.0-	6.0-	6.0-	6.0-	6.0-	H . O .	0.0	6 0 -	6.0-	6.0-	# 0 ·	6.0-	6.0-	8·0-	3.0-	8°0-	B.0.	0.1.	6.0-	5,0-	6.0-	6.0-
	2	X Y E	KEC	P.S.1	4.9	4.0	4.8	4.8	4.9	4.9	4 · B	4.	4.8	0.0	6.4	4 · B	æ. •	4. B	4.8	6.4	₩.	4. F	0.4	6.4	4.9	4.9	6.4	4.9	4.6
			SHOT		-	8	~	4	ςΩ	y	_	30	Ĵ	0		12	2	¥	15	16	13	B .	7.0	20	21	22	23	24	25

LOVELACE TEST, MANCH 1979 TRANSDUCER 3 DAY 2

	10	****	•	922Y8		00.00	•	0.00	•	•	•	•	•	•	0000	* 00°0	0.00	00.00	0000	0.00	\$00°0	0.00	00.0	00.0	0000	0.00	00.	•	0000	
	BASE LINE CHECK	*********		9		•	•	•	•	•	•	•	•	•	•	•	•	•	-			•	•	•	•	•	•	•	90.0	•
				DRIFT		00.0	00.0	00.0	0000	000	0.00	0000	0000	00.0	00.0	000	000	0000	00.0	0000	0000	000	00.0	000	00.00	00.0	000	00.0	000	00.0
		*****	*	P08 •	1	-	•	•	13.27	•	•	•	•	•	•	. 49	68.	•	•	•	•	•	۲.	8	∹	٦.	٩	٣.		٣.
		*****	•	. TOTAL	199	٣.	۰	1 -5.61	* 2.58	* -0.43	v -3.84	4 -4,23	+ -2.92	98"6- 4	90.9- +	+ -7.93	15.57	60.8-	• -2.06	+ -3.76	4 -9.86	•	3	~	۲.	3.6	1-10.27	٠.	7.47	
				BDUR	AS.	45,2	71.1	67.8	67.5	40.2	Ę.	•	•	6	6	æ	÷.	•	•	0.99	8	.	ċ	-	÷.	ŝ	7.	٤.	66.5	7
				ADOR	×	•	٠	8.8	6.8	0.6	6.8	9.3	6 .	•	•	•	•	•	•	9.2	•	9.3	•	•	·	•	•	•	9.1	
				T	H.S	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.05	•
				MAXI	-	•	•	•	A, B		•	•	•	•	•		•		•	•	•	•		•	5.	•	4 · E	•	5.6	•
	HAXIHA	*****	STO *	• A30	*	•	0.20	0,10	۳.	0.104	0.20	0,10	0,204		0.204	0,204	0,204	•	0.10	0.10	0.204	0.20*	•	0.10	1010	-			~	
зкоѕ	X	•	LST SU	AVE	(C)	•	•	9.6	•	•	3,8	•	•	•		•	•	•	•	•	•		•	•			•	•	3.7	•
40K RECURDS	ž	*****	LST L	ž	PSI	5.2	3.6	+	3.9	3.6	4.3	7,7	4.6	4.2	4.7	4.2	4.2	4.2	4.0	3.5	4.0	4.4	7	4.0	4.2	3.7	B. K	4.2	4.1	4.1
THE 4				E13	PSI	9.9	5.5	5.3	5.1	5.0	6.3	4.1	3.0	5.4	6.7	9°5	5.9	S	*		S. H	6.3	5.0	5.4	5.7	5.1	# . H	5,7	5.8	5.5
EN FROM		•	•	THIU	H.S.	14.751	14.68 F	27,271	5.0	27,35+	15,001	14,251	26,831	27,051	27,501	14,821	14.601	16,859	14,189	14,607	27,109	15,559	'n	26,850	•	14,239	14,380	9	30	8
HAXIHA AHE TAKEN FROM OFF AXIS FACE-ON	•			H C N	PSI	6.0-	9°0-					9 O-				H 0-	6.0-	6.0-	3.0-	-0.7		8.0-					6 0-	-1.0	6.0-	
INA ARI Axis			XYX	REC	PSI	6.5	5,2	4.9	3.	1.1	0.9	4.1	6,3	5,2	6.3	5.6	5.7	5,2	4.7	4.5	5.5	0.9	5.6	4.7	4.9	9	4.8	5,3	5.6	5.4
MAXI	;			3.40.1		-	7	~	•	S	9	7	.	3·	10	11	13	13	1.4	15	91	1.7	1.8	19	20	21	22	23	24	25

LOVELACE TEST, MANCH 1979 TRANSDUCER 3 DAY 3 HAXIHA ARE TAKEN FROM THE 40K RECURDS OFF AXIS --- FACE-ON

CHECKS	*******	*	BASE		•00.0	•00•0	•0000	•00.0	*00*0	.00.0	*00*0	*00.0	•00•0	*00*0	•00°0	.00.0	0.000	*00*0	*00°0	•00°0	*00*0	*00°0	*00.0	.00.0	0.004	•00.0	*00 *0	*00*0	00°0
LINE CHE			30		80.0	90.0	0.07	0,07	90.0	90.0	9000	0,05	0.07	0.07	0.05	90.0	90.0	0.05	0,05	90.0	0,05	0.05	0,05	0.07	90.0	0.05	90.0	0.07	90 0
BASE L	******		DRIFT		00.0	00.0	00.0	00.0	00.0	00.0	000	000	00.0	0000	00.0	00.0	00.0	0000	0000	00.0	0000		00.0	00.0	0,00	0000	00.0	00°3	00°0
IAPULSES	+ 3 + + + + +	•		HBBH	13.16*	13.07*	14.38*	13,23#	12.19+	12.71*	13.36*	13.03*	12,88*	13.76*	12,931	13,184	13.19*	12,504	12.61#	12,92*	13,07*	12,42+	12,55#	13,10*	13.13#	12,190	13.134	13,660	12,034
1HPC	******	•	* TOTAL	*PSI	5.00	4-13.82	4.08	4-11,28	1-11,43	111,50	# -B.50	4-12,69	4-16.71	+-18,02	4-12.47	4-19.24	4-17.44	* -8,34	11.6- +	4 -4.99	4 -6.76	1-13.17	* -7.44	4-16.64	* -7,22	*-12.07	* -6.37	4-10,93	+-12,36
			HUUH	H.S	70.9	69.2	36.6	39.2	6.8.3	19.0	66.9	H13.7	40,0	76.3	H. 87	169.9	19.0	19.3	08.1	40.2	40.0	72.0	48.2	45.0	39.8	39.7	6.7.9	40.4	81.6
			ANUR	K.S	.	8.5	9.1	o. 0	8.2	S	8.7	9,2	9.4	0.6	B.7	9,2	9.2	5°5	9.3	9.5	9·9	9.4	6.6	9.2	1.6	4.8	9,6	0.6	8.5
			I	H.S	0.03	0.03	0.05	0.05	0.05	0.03	0,05	0.03	0.03	0.05	0.05	0.03	0.05	0.03	0,03	0.05	0.05	0.23	0.05	0.03	0.05	0,05	0.05	0.05	0.05
			HAXI	P51	7.3	4.6	3.0	0 9	5.6	6,2	5,5	5.4	9.9	4.4	4.7	4.5	6.2	7.3	5.8	3° E	٠ ٩	3.b	5,1	6.9	6.5	5.8	6.2	5.5	5.2
HAXIMA	*****	STD +	♦ ∧30	•	0.30+	0.10*	0,204	0,10*	0.100	0,20*	0.10+	0.20	0,10*	0,000	0.104	0.200	0.20*	0.204	0.204	0,104	0.10	0,100	0.00	0.20	0.20	0.20*	0.10	0.104	0,10
	*****	LST SO	AVE	ts.	4.5	3.6	5.4	₹.	4.0	7:	4.1	÷.5	8	3,9	=,	5.9	1.1	4.5	4.1	4.7	o. S	۲,٠	4.6	4.4	4.0	4.4	4.7	4.6	3,7
ESTIMATED	*****	LST LA	SQ HAX	psi	χ) Υ	4.0	2.5	5.0	4,3	5.1	4,3	6.1.	5.0	0.4	4.2	۳.۳	4.6	5.4	5.1	2.	5.3	9.6	4.7	4.9	4.9	4.8	4.9	4.7	3.9
	******		~	1 S d	J . U	2.1	7.0	0.4	э°с	8.0	5.6	6.2	٥,٠	3.6	3.	2.	6.3	J. B	6.7	0.9	6.3	3.9	5.1	7.2	6.1	3°C	6,2	5. S	5.4
	*	*	THIND	# SX	14.25	28,35+	18,25+	27.001	14,851	26.77 8	26.430	14.930	16,359	18.000	27,200	14.780	14,250	14,850	27,130	14,300	14.100	14.531	14.054	14.321	23.900	28,254	27.134	18,18*	14,951
			z I	PS1																									9.0-
		HAX	REC	hSI	7.3	4.6	8.9	0.9	5.6	6.2	5.5	Y. C.	6. 6	4.4	4.1	4.6	6.2	7,3	9°5	3°5	0.9	3.9	5,1	6.9	6.5	9°5	6.3	5,5	5.2
			SHOT		-	7	m	~	sc.	9	۲,	33	5	10	Ξ	13	2	-	15	9.	-	18	19	20	21	22	23	24	15

LOVELACE TEST, HARCH 1979 TRAMSDUCER 3 DAY 4

HAXIMA ARE TAKEN FRUH THE 40K RECORDS OFF AXIS --- FACE-ON

ESTIMATED MAXIMA	********	t LST SU GTO *	THINF EI 60 HAK AVE DEV # MAXI II ADUR BDUR #	AN WOLL DISTRIBUTION OF AN	15,15+ 7,3 5,5 5,1 0,20+ 6,9 0,08 8,7 71,2 + 0,73 15,05+ 0,00 0,09	28,13° 6,6 4,7 4,4 0,20° 6,3 0,03 9,3 40,3 ° -7,82 14,85° 0,00 0,05	27,231 6,1 4,5 4,4 0,104 5,3 0,05 8,7 68,5 4-12,20 15,054 0,00 0,07	27,651 7,3 5,2 4,9 0,204 6,7 0,03 6,9 62.8 #-10,95 15,34# 0,00 0,06	15,13 5,1 4,3 4,2 0,10 4,9 0,05 9,2 41,8 4 -9,82 14,33 4,00 0,0	27,487 6,1 5,1 4,9 0,10+ 6,1 0,05 6,2 39,8 +-13,31 14,32+ 0,00 0,08	15,607 5,8 4,4 4,3 0,10+ 4,9 0,05 8,8 68.9 + ~9,15 15,21 0,00 0,07	14,959 6,2 4,7 4,3 0,20* 6,0 0,05 9,6 65.8 * -6,91 14,36* 0,00 0,06	27,137 7,1 5,3 4,8 0,204 6,7 0,05 9,7 39,0 +-12,70 14,204 0,00 0,06	27,600 7,4 5,3 4,8 0,20+ 6,9 0.03 9.7 39.6 *-10.64 14,67* 0,00 0,08	27,40° 5,7 4,5 4,4 0,10° 5,3 0,05 9,3 68,9 °-10,86 14,87° 0,00 0,06	14,00° 5,7 4,6 4,3 0,10+ 5,4 0,05 10,0 41,0 + -3,64 14,74 0,00 0,06	27,77° 6,2 5,0 4,9 0,10* 6,0 0,05 9,6 40,1 * -0,94 15,01* 0,00 0,07	27,50° 6,0 5,0 4,9 0,10+ 6,6 0,05 8.8 42.2 * ~4,13 14,93* 0,00 0,07	15,250 6,8 5,4 5,1 0,10+ 6,0 0,03 8,7 40,2 + -2,49 14,81+ 0,00 0,07	16.00% 6.2 4.8 4.7 0.10* 5.5 0.05 8.8 45.1 * ~8.78 14.10* 0.00 0.07	27,30t 6,7 5,2 4,9 0,10t 5,8 0,03 8,9 39,3 t -1,46 14,39t 0,00 0,C7	28,40: 6,6 4,7 4.4 0,20* 6,2 0,03 9,2 39.4 * -8,82 13,80* 0,00 0,0	27,55: 6.4 4.8 4.6 0,10+ 6.2 0.05 9.1 71.3 + -6.10 14.48* 0.00 0.09 (27,701 5,0 4,0 3,8 0,10+ 4,9 0,05 9,0 66,0 +11,54 14,46* 0,00 0,08	15,80c 6,5 4,7 4,4 0,20* 6,1 0,05 9,0 40,1 * -8,26 14,61* 0,00 0,07 (27,52* 6,7 5,2 4,9 0,10* 6,0 0,03 8,7 46,5 * ~3,09 14,74* 0,00 0,07	27,70* 6.8 5,1 4.8 0,10* 6,5 0,03 6.8 39.9 * ~4,74 13,42* 0,00 0,06	26,73+ 5,3 4,5 4,4 0,10+ 5,3 0,00 9,5 66,4 +-10,51 14,41+ 0,00 0,07	
మ	٠	\$7 •	THING EI 60	NS # 951	15,151	28,130 6	27,231 6	27,651 7	S	27.481 6	15,601 5	14,950 0	27,137 7	27,600 7	27,40 5	14,000	27,770 6	27,500 6	15,25 €	16.00% 6	27,300 6	28,401 6	27,551 6	27,701 5,0	15,80¢ 6,5	27,524 6,7	27,70¢ 6.8	28,734 5	
OFF AXIS		XXX	ย	PSI	5	5,3	5,3	6.7	5 4.9	6.1	4.	0.9	6,3	6.9 0	1 5.3	2 5,6	0.9	0.9	0,0	8°5 9	9.5	8 6.2	9 6.2	6.4 0	1 6.1	2 6.0	3 6,5	4 5,3	

LOVELACE TEST, HARCH 1979 Transducer 3 Day 5

LOVELACE TEST, MARCH 1979 THANSDUCER 4 DAY 1

HECORDS	
40K	
FROM THE	9
TAKEN FI	GRAZING
ARE	IIS
HAXIHA	OFF AXIS

																-												
15CK 5	•	BASE		•00•0	• 00°0	0.00	0.00	0.000	0,000	\$00°0	\$00°0	0.003	0000	*00°0	•00•0	*00°0	\$00°0	*00°	• 00 • 0	* 00°0	* 00°0	0.00	•0000	0000	* 00°0	0000	0000	0000
ANE CI	•	30		0.0	0.04	0.03	0.04	0.03	6.03	0,03	0,02	0.0	0.04	0.03	0.04	0.05	0.04	0.04	0.03	0.07	0.03	0.04	0.02	0.03	0.04	0.03	0,03	0,02
BASE LINE CHECKS		DRIFT		0000	00.0	00.0	00.0	0000	00 0	000	000	0000	000	0000	00.0	0000	00,0	0000	000	0.00	000	000	000	00,0	000	0.00	0.00	00.00
1,55.5	•	P03 +	HS*	10.87	11,25*	10.49*	10.91	10,750	10,95*	10,55*	10.884	11,240	11.27*	10,69*	10°00*	10.52+	10.66*	10.79*	10,37*	10,37*	10.864	10.64	10,71+	11.07*	11,23	10,95	11.144	11,50
1 APULSES ************	•	* TOTAL	\$1.	# 0°38	9 2	22	65	42	29	*	55	60	8 5	80	14	5	80	12	36		7.	63	99	2	56	70	21	23
		30CH	H.S	19.3	H3,2	54.4	£3	13.1	4.0.4	10.4	u1.3	79.5	80°8	69.8	47.6	42.1	H4.6	H 1 . A	45.0	¥2.5	17.0	9°08	80°0	72.1	75,0	47.7	80°8	81°9
		ADOA	N S	8 5	B.7	7.5	7.5	7,6	7.5	9 · B	0.8	7.7	9.3	4.6	4.6	*.0	H. 1	1.6	8.9	9.1	6.7	9.5	1.0	8.7	7.6	Œ. 39	8.1	8.7
		Ţ	ЖS	90,0	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0.05	0.05	0.05	0,05	0,05	0.0	0.03	0.05	0,05	0,05	0,05	0.05	0,05	0,05	0,05	0.05	0,05
		HAX1	PSI	4.3	3.5	3.9	3.4	3,5	4.2	4.0	Ŧ.	3,7	3.6	4.2	4.0	3,7	3°C	3,3	3,5	3.9	7.0	2 · B	3.5	4.0	•	3.8	3.8	3.1
X 1 M A	STU #	DEV .	*	0.000	*00.0	0.10	0.00	0.10	*00°0	0000	0,000	0.10	•00.0	0.10	0.10	0.10	0.104	0.00	0,104	*01.0	0.10	* 00° 0	•0000	0.00	0,204	•00.0	0000	*00°0
ESTIMATED MAXIM	LST 50	AVE	PSI	3,7	3.4	3.4	3,3	3,3	3.6	3.5	3.3	3.5	3.5	3.6	3.4	(4°E)	3 .	3,4	3.4	3.3	3.5	2.1	3.5	3.5	3.6	3.5	3.3	5.9
ESTIMA	1 1811 L	BO MAX	PSI	3.8	3.4	3.5	1,3	7.4	3,7	3.6	3.4	3,5	3.5	3.7	3.5	3,3	3.0	7.	3.5	3.4	3.6	2.B	3.5	9.6	3.9	3,5	7.4	2.9
****	•			4.4	4.0	4.1	3.4	4.0	4.2	4.2	3. ~	*	ጣ	4	7	ግ	_	~	~	*	4	~	~	~	4	~	~	
•	**	THIN	HS +	16,520	14,700	14,65*	14.23+	14,600	14,3114	14,354	14.70#	14,101	14.57#	14,300	14,364	14,554	13,824	14.57#	14.53+	27,50*	14.406	14,820	14,64	14.65+	14.780	14,50#	14,300	26.98
		¥1×	PSI	6.0-	-1.0	-:-	6.0-	6.0-	0.1.	6.6-										.0-								6.0-
	H A X	HEC	PSI	4.3	3.5	3.9	3.4	ب. ده	4.2	5.	3,8	1.1	3.6	4.2	0.4	3.7	3.0	3.4	3,5	3,9	0.4	2.B	3,5	4.0	4.3	3.8	3,8	7.
		SHOT			~	~	₹	S	9	1	33	3 1	01	=	13	£ 1	1.4	15	16	17	# 1	1.9	20	21	22	23	24	35

LOVELACE TEST, MARCH 1979 THANSDUCER 4 DAY 2

CK8	*	BASE		* 00°0	0000	•00°ó	•00.0	•00.0	•0000	•00.0	0000	•00.0	0.00	0000	•00.0	0.00	0,004	00.0	0.00	\$00°0	Š	0°00	0.00	0.00	0°00	\$00°0	0.00
LINE CHECKS		30		0.03	0,02	00.0	0000	0.07	0.02	0000	0°03	0,03	0,02	0.01	0000	0.00	0.04	0,03	0,03	63	0.0499	0,01	0000	0000	0.03	0.03	0 0
846E		DRIFT		00.0	000	00.0	00.0	0000	0000	00.0	0000	00.0	å	0.0	•	•	•	•	3		oʻ	ď	00.0	00.0	00.0	00.0	9
LSES	•	POS *	TO				9.50*						9.67*		9.304	9,38+	# 66°#	9.41#	9.94	9,78*	9,34	10.01	9,76	0000	ď	9,124	٦
TAPULSES ***********	•		t		S	~	* 3,43	_	~	~	3	_	_	+ -2,11	200	_	3			0	70	3		00		9	9
		BDUB	S.	70.5	76.7	56.9	72,1	82.7	41.7	137,8	81°1	67.3	0.29	H2.4	44.0	15.4	129.1	12h.5	95.4	H.B. 3	12.9	78.3	81.1	0.0	64.5	86.5	•
		ADUR	S.		•		0.33	8.2	•	9 * R	•	9 ° B	4.6	•	6.8	•	o* 8	B • B	•	6.9	1.1	y•39	8 · FI	2.0	0.6		
		11	3.5	਼	٠.	0.05	0.15	0,05	e.	0.15	0.05	0.05	0.03	0,05	0.05	0.05	0.13	0.05	0.05	0.05	0.03	0.05	0.05	00.0	•	0,05	
		HAX1	PSI		•	•	5.9	•	•	•	•	3°E	•	3.3	•		•	3°B		3.3	•	•	3.5	•	7.4	•	
*******	STD *	• 430	•	0.00	0.104	0.10*	0.104	0.10	0.00	0.10	0.00	0.10	0.104	0.00	0.00	0.10	•	0.10	0.10	*0000	0.10*	0.10	•	0.00	0.10	0.10	
	LST SO	AVE	PSI		•	2,8	3.0		3,6			3.2	3,2	0.1	3.6	3.0	3,0	2.1	2.1	3.1	2.8	5,9	3.1	0		3.0	,
ESTIMATED	7 J.S7	XYK 1	1Set	7.1	2,7	5.9	3.2	2.8	٦.,	2.5	3.4	3,3	7.7	3,0	3,0	3.2	7.	2 · B	7.E	•	7,0	•	•	•	0.7	•	•
****		E.I. Su	154	4.2	3.0	3.0	5.9	2,4		2.6	3.E	7.7	4.0	3.4	7.4		2,9	0,		3°E	3.6	3.5	3.5	0.0	3.6	7,1	
\$	\$	THINO	HS C	14.930	14.750	13.850	14,180	14,456	13.651	14,354	16.104	16,000	27,52+	14,450	14.480	14,400	14,340	13,804	14, 12+	14,57	15.61	14.454	15.461	0.00	14,480	14.57#	
		Z	PSI	6.0-	-0 · B	H .0.	H .0-	6.0-	5.0-	B.0-	H 0-				6.0-	6.0-	0.1-	H 0	9 °0-	5.0	6.0-	6.0-	B .0-	0	0.1-	6.0-	•
	XYX	HEC	PSI	3.8	2.8	3.0	3.8	2.9	3.2	7.6	3.5	H.	3.5	3.3	3.4	3.6	2.9	2.8	٠ ٣	1.3	3.4	3.4	5.5	0.0	3.4	3,3	
		SHUT			7	~	~	S	£		3	6	10	=	13	1	14	13	16	~	18	6 7	20	0	22	23	

LOVELACE TEST, HARCH 1979 TRANSDUCER 4 DAY 3

HAXIMA ARE TAKEN FRUM THE 40K RECONDS OFF AXIS --- GRAZING

CHECKS	*****	•	BASE*		0000	0000	0000	*00*0	0000	0,00	0.00	±00 0	0.00	00.00	\$00°0	*00.0	*00*0	•00•0	0.00	0,000	•00 0	0,000	0,00	00.00	•00•0	00.00	•0000	0000	* 30 ° 0
LINE CH			80		0.0																			0.04		0.0			0,02
BASE	******		DRIFT		00.0	00.0	00.0	00.0	00.0	00.0	000	000	0000	0000	0000	00.0	0.00	0000	00.0	00.0	00.0	0000	000	000	00.0	0000	00.0	00.0	
IMPULSES	*****	•	POS *	******	10,25+	10,60	10,750	9.62+	10,101	10.01	10.164	10.004	*68.6	10,67*	10.01	+06° ō	10,18*	9.03	9,914	9,964	10,22*	10.01	9.51*	9,924	10,064	8,974	10.29+	10.534	9.71#
IMPU	****	•	* TOTAL	+PSI-	+ 5.64	06.0- *	1,59	-10.6B	4 -4,50	* -4.75	7	1-10.11	1 -7.87	*-13.53	10.5- +	*-15,54	1-10,72	* -1.92	4 -3.74	# -0.37	+ -1,38	# -8.98	+ -6.76	# -9.47	+ -4.85	4-11.84	1 -2,53	# -4.29	1 -9.24
			BOOR	N N	70.9	74.0	0,04	81.1	82.7	55.4	67.1	55.8	46.7	185,3	61,2	193.1	51.5	0.84	78.3	76.7	76.5	75,7	H2,1	16,8	H2.1	68,3	82.3	72.2	84.4
			AUUR	z. A)	8.2	9.2	7.9	6.7	o•	B.2	# #	8.1	0.8	6°	7.9	S	9.1	8.9	1.0	8 .4	8.6	8,3	8 .4	8.7	7.9	6 • 9	7.8	8.1	8.2
			Ţ	E S	0.05		0.05	0.05	0.03	0.05	0.05	0.05	0,05	0,05	0.05	0.03	0.05	•	0.03	0	0.05	۲,	0.05	٩.	0.05	0,05	0.05	0,05	0.05
			HAXL	PS1	4.3	3.6	3.9	4.0	3.4	4.3	3.6	S .) ,	۳.	~.	2.3	7.7	4.2	3.9	3.6	4.2	5.9	3.7	3,9	1.4.	4.2	• 0	3.5	2.9
KIHA	*****	STD +	DEV *	•	0.00	0000	0.10	0°00*	0.10*	0.10	0.104	000.0	0.10	0,000	0.00	00000	0.100	0.10	0.10+	0.10	00.00	0.10	0.000	+0000	0.10	0.10	0.10*	0.10	0.104
STIMATED MAXIMA	*****	LST 50	AVE	PS1	3,7	5. 9	9°E	3,6	3,1	3.6	ان وسر	7 M	3.6	3,0	3.1	7.1	٠, د د	3.7	3,5	۳,	ë.	3.6	7,5	3,4	7,4	7.7	3.5	3.5	2.7
1.3	****	LST	SO HAX	184	3,8	3.0	3.8	7.7	3.2	3,6	3.2	7.	3.7	7.1	7.	2.2	7.4	3.8	3.6	3.6	3.8	3.1	3.5	3.5	3,5	3.5	3.5	3.6	2.9
			3	P.S. I	* *	3.0	4.2	4.3	3.7	4.4	3.7	*	4	3.2	7.7	2.5	4.	4.6	4.4	4.0				3,9					
	-	-	THING EL SO	HS. 4	14.954	٥		۳.	14.384	•	14,600	13.600	14.400	14,451		14.780	•	3	14,380	٦.	14.300	14.081	18.600	14,454	13,980	14,530	15,630	19,550	14.57
			Z	PSI	5.0-	8.0-	-1.1	6.0-	6.0-	6.0-	·0-	B.0-	0.1-	6.0-	8.0-	0.1-	5.0-	-0.7	9.0-	0.1-	6.0-	6.0-	-0.B	B*0-	9°0-	6 0 0 -	8 °0 =	6.0-	6.0-
		HAX	REC	Ps 1	4.3	3.0	3.9	٥. د	3.4	4,3	3.6	3.5	4.0	3.2	3,3	2.1	1.1	4.2	٥.۲	3.6	4.2	5.9	3.7	3,9	4.1	4.2	0.4	3.5	2.9
			SHOT			7	~	₹	s	9	~	3	œ	01	7.	1.3	13	4	15	9 8	13	1.8	19	26	21	33	23	24	25

1

LOVELACE TEST, MARCH 1979 Thamsducer 4 Day 4

The second of th

LINE CHECKS

BASE

30

			•				HAXIHA						1 MPULSES	BASE
	X		•		LST	1.8T S0	8.TD •						•	
J.OH8	REC	2 7	THEN	EI	₹	_	0EV +	HAXI	11	ADUR	RDUR	* TOTAL	P05 •	DRIFT
	ps1	154	#S#	P.S.I	PSC	PSI	•	PSI	SI	XS	E S	184+	Ŧ	
-	4.0		46,634	4.4	3.6	1.7	0.00	4.0	0.05	8.1	94.8	. 11.11	11.419	0.0
~	3.8	-1.0	14.684	3.8	3,3		0.00	3.8	•		80.2	* 0.47	11.31+	00.0
~	3.4		24,130	3.8	3.3	7,3	*00°0	*	. O	0.8	79.3	+ -0.93	11.38*	00.0
4	4.0		15.68	D * #	1.1	•	0.10	•	•	8,3	52.1	* -1.17	11.27*	
S	3.4	9.0	15,956	3.6	3.3	3.2	0.10	3.4	0.03	4.0	H 7.1	. 0.81	10.47*	0.00
•	75° C		15,48*	4.2	1,1	J.	•0000	•	c	0.0	56.0	+ -6.74		00'0
_	3.6		15.8U*	3.8	3,3	3.2	0.10	3.6	•	B.0	82.4	* -6.54	11,01*	•
39	3.5		14.70.	3,6	3,3	3.2	*00.0	3,5	0.05	9.2	74.1	+ -1.72		00.0
Э	o• +	6.0-	14.55+	*	3.5	7.4	0.10	••0			67.1	+ -7.25		•
10	4.1	-1.0	37,65*	4.4	~		0,10+	4.1	0.05	Ð.4	85°8	+ -7.67		0
-	3.7	6.0-	14,554	4.0	,		0.10	3.7	0,05	9.6	52,0	+ -3.76		•
12	3.5	6.0-	14,150	э°г	3,3	3,2	•00.0	•	0.05	7.8	82,7	# -1.22		00.0
7	0.4	6.0-	15.75#	4.2	3.6	3,6	0.10	→	0.05	0.2	17.5	4 2,06		•
7.4	3.7	B . 0-	27,400	*	3.7	3.6	0000	3.7	0.03	7.8	76.5	1,66		00.0
15	0.4	B.O.	14,004	~	•	3.8	0.00	•	0.03	6.8	82.5	. 3.94		0.0
9 1	4.0	9,0~	27,80*	4.3	3.6	3.6	•00°0	3.9	0.05	6.5	H2.5	• 0.82	10.78*	00.0
	~.	3.0-	27.30+	*		7.6	0.00	•	0.03	9.9	81.7	4.17		o o
A 4	3.5	# 0 -	15,730	~	•	3.2	0.004	•	0.0	9.9	143.3	+ 2,48		•
19	3.6	4.U.	27.68*	~	3.5	J. 4	0.10	•	•	6,3	52.7	* 0.26		•
20	3.1	0.1.	27,654	3,1	•	2,8	0.10	3,1	0,05	8,2	83,3	4 -1,35		000
21	3.6	-1.0	15,754	~	•	3.2	0.10	•	9	B. 4	83,2	+ -0.44		
22	○.	# O -	27,854	4	•	3,6	0.10	o.	0.05		82°6	* 3,84	10.78	00.0
23	o• ₹	6.0-	27.83+	4	3.6	3.6	0.00	4.0	0.05	6.1	B3.0	* -4.76	•	0000
24	3,5	9.0-	16,35*	~	•	3.2	0.10		9		C #	* * 1 05	Œ	0
•			•		•		٠	•	•				•	•

LOVELACE TEST, MARCH 1979 THANSDUCER 4 DAY 5

	CKS	*******	•	BASE		•00•0	00.0	*00*0	0000	0.00	0000	\$00°0	0.00	•00.0	0.000	0.00	00000	*00.0	0000	\$00°0	0.00	0.00	•00°0	\$00°0	0.00	0000	0.00	0.00	0.000	400
	BASE LINE CHECK			30		00.0	0000	00.0	. 10.0	00.0	000	0000	0.03	0.01	00.00	00.0	0.07	0,02	0.01	0,03	0.01	0000	0000	0.01	0.02	0.01	0.04	0.02	0.01	
	BASE L	*********		DRIFT		0000	0	000	0000	00.0	000	0000	0000	00.0	00.0	0000	00.0	00.0	00.0	0000	00.0	0000	0000	0.00	00.0	0000	00.0	000	00.0	•
	IHPULSES		•	POS •	HSeres	11,02*	10,570	0.1	10.894	10.37*	10,57	10,410	10,34	9.914	9,41+	10,360	10,360	0	•	9.94	10,314	10,194	496.6	10.044	10.40*	10,46#	10.464	9.79*	10,36*	
	IMPU	**********	_	TOTAL	-ISd+	7.96	•		1-7.41	F -0.97	10.94	•		_	~	-2.82	-1.13	~	1 -4.55	-10.40	-4.45	6	٤.	4,10	9	•	•	4-11.10	Э,	•
		•	•	BDUR	_	73.5	52,5	72.4	52.2	47.8	17.8	71.5	1.68	-	H2.1	H3.1	67.8	39.0	73.0	~	82,3	82.8	75.8	10.6	_	~	_	_	80.2	
				ADOA	OX.	# T - B	9.1	8,3	9.0	7.7	9,3	6.8	7.8	8.7	7.1	9.1	7.6		•	8.3	•	•	•	•	•		•	-	2,3	. •
				I	E H	•	0.03		0.03	•	•	•	•	•	•	•	•	•		0.05		•	•	•	•	•		•		
				HAX1	PSI	6. 5	4,3	3,6	3,3	7.7	•	3.8	•	•	3,9	•	4.5	4,8	•	3.7	•	•	•	•	3.5	7.0	4,1	4.1	7.4	ر د
	XIHA	*****	STD +	• AGO	*	0,10+	0.10+	0,10	0,10	0.10	0,104	0,104	•	0.10	0.10	0.00	0.10	0.10	0.10	0.10	•00•0	• 00 • 0	0.104	0,10	0000	00.0	0.10	0.10	0,10	400
RECORDS	ESTIMATED MAXIMA	************	LST 50	AVE	PSI	3.9	7.4	7.4	3.1	3.7	2,7	3,5	3.2	2.3	7.7	2.9	3.7	9,4	3,3	3,3	2,5	3.4	3.2	3.5	~	~	~	~	3,2	~
OK REC	ESTIMA	******	LST	××	PSI	٥.	9	s.	3,2	8	6	9	~	*	7	٥.	æ.	~	3.	٦.4	'n	s.	٣.	۲.	7	∹ .	٠.	9.	٣.	
7.HE 4		****		61.5	PSI	4.6	. S.	3°	3.7	4.4	3.4	4,1	3,7	٥. ٣	4.0	3,5		5,2	4.2			•	3.8	•	·	~	5.5	4.3	3,6	3
MAXIMA ARE TAKEN FRUM OFF AXIS GRAZING		•	•	THIND	* 32.5	14.801	14,204	16,000	14.034	14,754	14,204	13,681	14.454	14.631	28,024	14,434	15,381	27,886	15,680	28,00¢	15,536	14,206	15,554	13.680	14.570	14.630	22,180	14.730	13.980	14.550
E TAKEN FRU				N I N	ISd	-1.0	9.0-	6.0-	6.0-	8,0-	6.0-	6.0-	# 0 .	-1.0		6.0-				H .0 -						6.0-	5.0-	6.0-	8.0-	B.0~
HAXINA AR			HAX	REC	PS I	4.5	•	3.8		4.4	3.3	3.8	3.7	2.8	0,0	3.1	4.5	æ.	3,9	3.7	-:	3.0	æ,	4 • 6	3.5	7.7	4.1	4.1	7.7	3.7
MAX				SHOT		-	~	~	₹	S	•	7	œ	o,	2	=	7.7	2	14	15	16	13	B	61	50	51	23	53	24	25

SECTION F

GRAPHS:

9 ms RECORDS PLOTTED. DATA DECIMATED TO 8 KHZ SAMPLING RATE GAGE 2 DAY 4 SHOTS 1-25 USED FOR PLOTS LOVELACE:

ABERDEEN: MISCELLANEOUS M-198 INDIVIDUAL SHOTS
INDICATED BY STATION LOCATION, HEIGHT OF TRANSDUCER
IN FEET, AZIMUTH OF FIRE, ELEYATION OF TUBE IN MILS,
AND THE SHOT NUMBER

VARIATION OF PEAK OYERPRESSURES FROM SHOT-TO-SHOT FOR THE SHOCK TUBE

The second secon

i

ľ

٢

MAXIMUM RECORDED OVERPRESSURE
Taken From 80K Records with Pulse Calibration

GAGE 2 GAGE 4 • • • •

MAXIMUM RECORDED OVERPRESSURE

Taken From 80K Records With Pulse Calibration

GAGE 2 GAGE 4

MAXIMUM RECORDED OVERPRESSURE
Taken From 80K Records With Pulse Calibration

MAXIMUM RECORDED OVERPRESSURE
Taken From 80K Records With Pulse Calibration

GAGE 2 GAGE 4 • • • •

MAXIMUM RECORDED OVERPRESSURE

Taken From 80K Records With Pulse Calibration

GAGE 2
GAGE 4 • • • •

CONTRACT PUBLICATION AND PERSONNEL

Publications and personnel supported by this contract.

Mr. Henry C. Evans, Jr.

Dr. Steve Slinker

Mr. Larry Roelofs

DISTRIBUTION LIST

12 Copies

Director (ATTN: SGRD-UWZ-C)

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

Washington, D.C. 20012

4 Copies

USAMRDC (SGRD-RMS)

Fort Detrick

Frederick, MD 21701

12 Copies

Defense Technical Information Center (DTIC)

ATTN: DTIC-DDA
Cameron Station

Alexandria, VA 22314

1 Copy

Dean

School of Medicine

Uniformed Services University

of the Health Sciences 4301 Jones Bridge Road

Bethesda, MD 20014

1 Copy

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234