

Relationship Degree

Relationship Degree

- Indicates number of associated entities or participants
- Unary relationship
 - Association is maintained within a single entity
- Binary relationship
 - Two entities are associated
- Ternary relationship
 - Three entities are associated

Three Types of Relationships

Recursive / Self-referencing Relationships

- Relationship can exist between occurrences of the same entity
- Naturally found within a unary relationship

Recursive / Self-referencing Relationships

More examples:

 An employee may supervise many other employees. An employee may be supervised by only one employee.

 A course may be a pre-requisite of many other courses. A course may have only one prerequisite.

Unary Relationship

- More example

ERD example from Week 2

Business rule:

- A man may marry only one woman and
- A woman may marry only one man

Let's see how data could be in database tables winds

Logical ERD:

MarriedTo foreign key in Woman table holds marriage data

- Let's consider 3 marriages so far happened
- So, two database tables may look like

Man				Woman				
<u>ManID</u>	Man_FName	Man_LName	Man_DoB	WomanID	Woman_FName	Woman_LName	Woman_DoB	MarriedTo
	1 John	Patrick	31/12/1970	11	L Angela	Julie	31/12/1975	2
	2 Sachin	Deb	3/05/1972	12	? Fatima	Nasrin	3/05/1974	NULL
	3 Ramesh	Ram	10/10/1980	13	3 Anushka	Debi	10/10/1983	5
	4 Mohammad	Emri	12/04/1985	14	l Mariam	Ahmed	12/04/1995	3
	5 Michael	Jackson	11/11/1991	15	i Ying	Liu	11/11/1981	NULL
	6 Noam	Chomsky	5/05/1995					

Do we need TWO separate tables?

First 4 columns are same in both tables, so Man & Woman can be one table!

Man			
ManID	Man_FName	Man_LName	Man_DoB
	1 John	Patrick	31/12/1970
	2 Sachin	Deb	3/05/1972
	3 Ramesh	Ram	10/10/1980
	4 Mohammad	Emri	12/04/1985
	5 Michael	Jackson	11/11/1991
	6 Noam	Chomsky	5/05/1995

	Woman				
1	WomanID	Woman_FName	Woman_LName	Woman_DoB	MarriedTo
i	11	Angela	Julie	31/12/1975	2
1	12	Fatima	Nasrin	3/05/1974	NULL
i	13	Anushka	Debi	10/10/1983	5
	14	Mariam	Ahmed	12/04/1995	3
1	15	Ying	Liu	11/11/1981	NULL

- In practice, in any business we have tables like Staff & Employee
- But not separate tables for Male & Female employees
- If necessary, an attribute Gender can specify male/female/other.

	Employee
PK	Emp_ID
	Emp_FName
	Emp_LName
	Emp_DoB
	Gender

What about if only ONE table is used?

- So, the use of ONE table is practical!
- Marriage can still be shown using the foreign key MarriedTo
- Everything else is the same, except use ONE table!
- This is called a UNARY or self-referencing relationship!
- So, the table would look like now:

Employe	e				
Emp ID	Emp_FName	Emp_LName	Emp_DoB	Gender	MarriedTo
	1 John	Patrick	31/12/1970	M	NULL
	2 Sachin	Deb	3/05/1972	M	11
	3 Ramesh	Ram	10/10/1980	M	14
	4 Mohammad	Emri	12/04/1985	M	NULL
	5 Michael	Jackson	11/11/1991	M	13
	6 Noam	Chomsky	5/05/1995	M	NULL
	11 Angela	Julie	31/12/1975	F	2
	12 Fatima	Nasrin	3/05/1974	F	NULL
	13 Anushka	Debi	10/10/1983	F	5
	14 Mariam	Ahmed	12/04/1995	F	3
	15 Ying	Liu	11/11/1981	F	NULL

Recursive / Self-referencing Relationships

- Relationship can exist between occurrences of the same entity
- Naturally found when an entity has relationship with itself!

Unary can be recursive!

Business rules:

- A course may be a pre-requisite of many other courses.
- A course may have only one pre-requisite.

Course			
<u>CourseID</u>	CourseName	CourseCredit	Pre-requisite
1008ICT	Business Informatics	10	NULL
1803ICT	Foundation of Information Systems	10	NULL
2806ICT	IT Services Management	10	1803ICT -
1804ICT	Data Management	10	1803ICT -
3809ICT	Advanced Database	10	1804ICT ←
3222ICT	Business Analytics	20	2806ICT ←

- Students can take courses in orders like:
 - 1008ICT
 - 1803ICT
 - 1803ICT > 2806ICT > 3222ICT
 - 1803ICT > 1804ICT > 3809ICT

Thank you