Mandrov Coherent Gravity

A Subjective Coherence-Based Framework for Emergent Quantum Gravity

Dmitry A. Mandrov

Independent Researcher, Russia

2025

Abstract

This paper proposes an extension of the Mandrov Coherent Field Theory (MCFT) toward a model of quantum gravity. We hypothesize that gravitational geometry emerges from gradients in a scalar coherence field $\mathcal{C}(x^{\mu})$, which represents the subjective coherence of an observer across quantum branches. The dynamics of spacetime and gravity arise not from mass—energy alone, but from the optimization of observer-centric coherence. The resulting framework connects general relativity, quantum decoherence, and information-based action principles.

Keywords: quantum gravity, subjective coherence, emergent spacetime, observer, modified Einstein equations

Contents

1	Introduction	2
2	Coherence as a Field	2
3	Field Equations	2
4	Extended Formalism4.1 Coherence Field Dynamics4.2 Modified Energy-Momentum Tensor4.3 Conservation Law	2 2 2 3
5	Interpretation of Gravity as Coherence Geometry	3
6	Subjective Action Principle	3
7	Conclusion and Outlook	3

1 Introduction

Mandrov Coherent Field Theory postulates that the observer's conscious trajectory preferentially follows quantum branches that maximize a functional of subjective coherence \mathcal{C} . We extend this idea to spacetime by proposing that coherence acts as a gravitational source, such that the geometry of spacetime reflects a statistical average over coherent observer paths.

2 Coherence as a Field

Let $C(x^{\mu})$ be a scalar field defined over spacetime, representing the local density of subjective coherence. Regions with higher coherence correspond to stable, causally consistent experiences for the observer.

We propose a Lagrangian density of the form:

$$\mathcal{L} = \frac{1}{2}R - \lambda \nabla_{\mu} \mathcal{C} \nabla^{\mu} \mathcal{C} - V(\mathcal{C})$$

where:

- R is the Ricci scalar,
- λ is a coupling constant,
- $V(\mathcal{C})$ is a potential function.

3 Field Equations

Varying the action with respect to the metric $g_{\mu\nu}$, we obtain modified Einstein equations:

$$G_{\mu\nu} = 8\pi T_{\mu\nu}^{(\mathcal{C})}$$

where $T_{\mu\nu}^{(\mathcal{C})}$ includes contributions from the coherence field.

4 Extended Formalism

4.1 Coherence Field Dynamics

The scalar field $C(x^{\mu})$ evolves according to a Klein–Gordon-like equation derived from the action:

$$\Box \mathcal{C} - \frac{dV}{d\mathcal{C}} = 0$$

where $\Box = g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}$ is the d'Alembert operator.

4.2 Modified Energy-Momentum Tensor

$$T_{\mu\nu}^{(\mathcal{C})} = \lambda \left(\nabla_{\mu} \mathcal{C} \nabla_{\nu} \mathcal{C} - \frac{1}{2} g_{\mu\nu} \nabla^{\alpha} \mathcal{C} \nabla_{\alpha} \mathcal{C} \right) - g_{\mu\nu} V(\mathcal{C})$$

4.3 Conservation Law

$$\nabla^{\mu} T_{\mu\nu}^{(\mathcal{C})} = 0$$

5 Interpretation of Gravity as Coherence Geometry

Gravity arises as a manifestation of optimal coherence structure. That is, the observed spacetime curvature encodes regions where observer trajectories converge under maximum subjective coherence.

6 Subjective Action Principle

We propose a coherence-optimized action:

$$\delta \int \mathcal{C}(x^{\mu})\sqrt{-g}\,d^4x = 0$$

This yields dynamics that select spacetime configurations maximizing coherent continuity of observer identity.

7 Conclusion and Outlook

This approach opens the door to:

- A subjective interpretation of gravitational fields,
- Coherence-based emergent spacetime,
- New approaches to the problem of quantum gravity,
- Compatibility with quantum information theory.

Author Contributions

Dmitry A. Mandrov is the sole author of this work. All theoretical development, mathematical formulations, and conceptual ideas were independently developed by the author. GPT-4 (OpenAI) was used as a language assistant for formatting and phrasing.

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgements

The author acknowledges GPT-4 (OpenAI) for mathematical and editorial assistance.