VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

Machine Learning (23CS6PCMAL)

Submitted by

PRIYANSHU KUMAR (1BM22CS210)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Priyanshu Kumar (1BM22CS210),** who is a bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Lab Faculty Incharge

Sneha S Bagalkot Assistant Professor Department of CSE, BMSCE Dr. Kavitha Sooda Professor & HOD Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	21-2-2025	Write a python program to import and export data using Pandas library functions	1
2	3-3-2025	Demonstrate various data pre-processing techniques for a given dataset	5
3	10-7-202.) 1	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	10
4	17-3-2025	Build Logistic Regression Model for a given dataset	15
5		Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample	20
6	7-4-2025	Build KNN Classification model for a given dataset	25
7	21-4-2025	Build Support vector machine model for a given dataset	30
8	5-5-2025	Implement Random forest ensemble method on a given dataset	35
9	5-5-2025	Implement Boosting ensemble method on a given dataset	40
10	12-5-2025	Build k-Means algorithm to cluster a set of data stored in a .CSV file	45
11	1 4)-4(14.)	Implement Dimensionality reduction using Principal Component Analysis (PCA) method	60

Github Link:

https://github.com/pkcs210/6thSem-ML-Lab/tree/main

▼ LAB 1: Using Pandas

Code

```
import pandas as pd
import matplotlib.pyplot as plt
# Assuming 'data' is a DataFrame with stock data
reliance_data = data["RELIANCE.NS"]
print("Summary Statistics for Reliance Industries:")
print(reliance_data.describe())
# Calculate daily returns
reliance_data["Daily Return"] = reliance_data["Close"].pct_change()
plt.figure(figsize=(12, 6))
# Plot Closing Price
plt.subplot(2, 1, 1)
reliance_data["Close"].plot(title="Reliance Industries Closing Price")
# Plot Daily Return
plt.subplot(2, 1, 2)
reliance_data["Daily Return"].plot(
  title="Reliance Industries Daily Return", color="orange"
)
plt.tight_layout()
plt.show()
import pandas as pd
import yfinance as yf
```

```
import matplotlib.pyplot as plt
tickers = ["HDFCBANK.NS", "ICICIBANK.NS", "KOTAKBANK.NS"]
data = yf.download(
  tickers,
  start="2021-01-01",
  end="2021-12-30",
  group_by="ticker"
)
for ticker in tickers:
  try:
     bank_data = data[ticker]
     bank_data["Daily Return"] = bank_data["Close"].pct_change()
     plt.figure(figsize=(12, 6))
     # Plot Closing Price
     plt.subplot(2, 1, 1)
     bank_data["Close"].plot(title=f"{ticker} - Closing Price")
     # Plot Daily Return
     plt.subplot(2, 1, 2)
     bank_data["Daily Return"].plot(
       title=f"{ticker} - Daily Return", color="orange"
     )
     plt.tight_layout()
     plt.show()
  except KeyError:
     print(f"Data not found for {ticker}")
```

Record Book

LAB-1	
03 03 2 LAB-1 DATE PAGE	DATE: PAGE:
Complete the exerces for the following	Method - 3: Importing dataset lian
Method-1: Enitalizing values directly	specific iss filed
-> umpert pandas as pd	> import pandar as pd
If = pd. road	df = pd. read_csv (/content/Date of
data = 2 (USN): [10], 102, 103, 104, 105]	print(df)
"Name": ['Alica, 'Bob', 'Charlie', 'David', 'Eve']	Stock Eachange
"Marko" [85, 92, 78, 88, 35]}	import yfinance as yf import pandas as pd import mathiplotlib pyplot as pl
df = pd . Data Frame (data)	tickers = [KRELIANCE.NS", "TCS:NS"
fount (df)	"INFY. NSV]
Method - 2. Importing dataset from skilears dataset	data = yf. download (tickers)
- from sklearm datasets import load single diabetes = load diabetes ()	Stast = "2022-10-01", ond = "2023-to-01", grant by = tricker)
frint (diabete)	print ("First 5 row of the * defend:") print (date. head ())

▼ LAB 2: Data Preprocessing

Code

```
import pandas as pd

# i) Read CSV File into DataFrame
df = pd.read_csv("housing.csv")

# ii) Display information about all columns
print(df.info())

# iii) Display statistical details of numerical columns
print(df.describe())

# iv) Count unique labels in 'Ocean Proximity'
print(df["Ocean Proximity"].value_counts())
```

v) Find columns with missing values
missing_values = df.isnull().sum()
print("Missing values:\n", missing_values[missing_values > 0])

Record Book

DATE PAGE	
1) Which columns in the dataset had musting values? How did you handle hum? > Dates Diabetes Datased! There were no missing values unplicitly found in the datast.	a) which categorical advances did you sindentify in the dataset? How did you encode thom? I thatety dataset: • Categorical columns: Gender, CLASS
However if missing values were spresent, they sould to handled wing mean mode winguitation of by removing rours with missing values. Alult Income Datast:	· Emcodeng: · Geordes: M→1, F→0 · CLASS: Y→1, N→0
· Columns with missing values: workclass, occupation, native-country • randling:	Adult Imorro Datact: • Categorial columns, workcless, education, market Hatus, occupation, gulationship, sace, guder, motive-country
· Reflace "?" values with NaN. · Clad mode (most frequent value) To fill missing entries un aughirel columns	encodera: ordera: ordera: ordera: for cat porical columns, dropping the first category to avoid multicolinewity.

▼ LAB 3: ID3

Code

```
import math

def find_entropy(x, y):
    if x != 0 and y != 0:
        entropy = -1 * (x * math.log2(x) + y * math.log2(y))
        return entropy
    if x == 1:
        return 1
    if y == 1:
        return 0
    return 0

def find_max_gain(data, rows, columns):
```

```
max_gain = 0
retidx = -1
entropy_ans = find_entropy(data, rows)
if entropy_ans == 0:
  return max_gain, retidx, entropy_ans
for j in columns:
  mydict = {}
  ddd = 1
  for i in rows:
     key = data[i][j]
    if key not in mydict:
       mydict[key] = 1
     else:
       mydict[key] += 1
  gain = entropy_ans
  for key in mydict:
    yes = 0
     no = 0
    for k in rows:
       if data[k][j] == key:
          if data[k][-1] == 1: # Assuming last column is the label
            yes += 1
          else:
            no += 1
    x = yes / (yes + no)
    y = no / (yes + no)
    if x != 0 and y != 0:
       gain += (mydict[key] * (x * math.log2(x) + y * math.log2(y))) / 14 # '
  if gain > max_gain:
     max_gain = gain
     retidx = j
return max_gain, retidx, entropy_ans
```

```
def build_tree(X, rows, columns):
    max_gain, best_col, entropy = find_max_gain(X, rows, columns)
    if best_col == -1 or entropy == 0:
        return
```

Record Book

▼ LAB 4: Linear Regression, Multiple Regression, Logical Regression

Code

```
import numpy as np
import pandas as pd

# Sample data
data = {
  "Temp": [30, 28, 25, 27, 32],
  "Humidity": [70, 65, 80, 85, 75],
  "Windspeed": [5, 10, 12, 8, 7],
  "Rain": [1, 0, 1, 0, 1]
}
```

```
df = pd.DataFrame(data)
# Features and target
X = df[["Temp", "Humidity", "Windspeed"]].values
y = df["Rain"].values
# Feature scaling (Standardization)
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
# Add bias (intercept) term
X = np.c_{[np.ones(X.shape[0]), X]}
# Sigmoid function
def sigmoid(z):
  return 1/(1 + np.exp(-z))
# Cost function
def compute_cost(X, y, weights):
  m = len(y)
  h = sigmoid(np.dot(X, weights))
  cost = -(1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
  return cost
# Gradient Descent
def gradient_descent(X, y, weights, alpha, iterations):
  m = len(y)
  cost_history = []
  for i in range(iterations):
     h = sigmoid(np.dot(X, weights))
     gradient = np.dot(X.T, (h - y)) / m
     weights -= alpha * gradient
     cost_history.append(compute_cost(X, y, weights))
  return weights, cost_history
# Initialize weights, learning rate, and iterations
```

```
weights = np.zeros(X.shape[1])
alpha = 0.1
iterations = 1000
# Train model
weights, cost_history = gradient_descent(X, y, weights, alpha, iterations)
print("Final parameters:", weights)
# Prediction function
def predict(X, weights):
  return sigmoid(np.dot(X, weights)) >= 0.5
# Make predictions
predictions = predict(X, weights).astype(int)
print("Predicted labels:", predictions)
# Calculate accuracy
accuracy = np.mean(predictions == y)
print("Accuracy:", accuracy * 100, "%")
import numpy as np
import pandas as pd
# Example data
data = {
  "Area": [2104, 1600, 2400, 1416, 3000],
  "Bedrooms": [3, 3, 3, 2, 4],
  "Price": [399900, 329900, 369000, 232000, 539900]
}
df = pd.DataFrame(data)
X = df[["Area", "Bedrooms"]].values
y = df["Price"].values
# Feature scaling
```

```
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
X = np.c_{[np.ones(X.shape[0]), X]} # Add bias
theta = np.zeros(X.shape[1])
alpha = 0.01
iterations = 1000
def compute_cost(X, y, theta):
  m = len(y)
  predictions = X.dot(theta)
  cost = (1/(2*m)) * np.sum((predictions - y) ** 2)
  return cost
def gradient_descent(X, y, theta, alpha, iterations):
  m = len(y)
  cost_history = []
  for i in range(iterations):
     predictions = X.dot(theta)
     gradient = (1/m) * X.T.dot(predictions - y)
     theta -= alpha * gradient
     cost_history.append(compute_cost(X, y, theta))
  return theta, cost_history
theta, cost_history = gradient_descent(X, y, theta, alpha, iterations)
print("Final parameters:", theta)
import numpy as np
import pandas as pd
# Sample data
data = {
  "Temp": [30, 28, 25, 27, 32],
  "Humidity": [70, 65, 80, 85, 75],
  "Windspeed": [5, 10, 12, 8, 7],
```

```
"Rain": [1, 0, 1, 0, 1]
}
df = pd.DataFrame(data)
# Features and target
X = df[["Temp", "Humidity", "Windspeed"]].values
y = df["Rain"].values
# Feature scaling (Standardization)
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
# Add bias (intercept) term
X = np.c_{np.ones}(X.shape[0]), X
# Sigmoid function
def sigmoid(z):
  return 1/(1 + np.exp(-z))
# Cost function
def compute_cost(X, y, weights):
  m = len(y)
  h = sigmoid(np.dot(X, weights))
  cost = -(1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
  return cost
# Gradient Descent
def gradient_descent(X, y, weights, alpha, iterations):
  m = len(y)
  cost_history = []
  for i in range(iterations):
     h = sigmoid(np.dot(X, weights))
     gradient = np.dot(X.T, (h - y)) / m
    weights -= alpha * gradient
     cost_history.append(compute_cost(X, y, weights))
  return weights, cost_history
```

```
# Initialize weights, learning rate, and iterations
weights = np.zeros(X.shape[1])
alpha = 0.1
iterations = 1000
# Train model
weights, cost_history = gradient_descent(X, y, weights, alpha, iterations)
print("Final parameters:", weights)
# Prediction function
def predict(X, weights):
  return sigmoid(np.dot(X, weights)) >= 0.5
# Make predictions
predictions = predict(X, weights).astype(int)
print("Predicted labels:", predictions)
# Calculate accuracy
accuracy = np.mean(predictions == y)
print("Accuracy:", accuracy * 100, "%")
```

Record Book

LAB-Y DATE PAGE	DATE: PAGE.
1 Linear & Multi-Linear Regression	y-pred = X-b @ thata
-> import number as no	pll-scatter (x, y, label = 'Actual')
import pandal as pel import matplotlib.pyflot as kelt	plt plat (x) y prod, color='red, label = Producted)
and = "http://archive ico/iris data" cdo = sepal langth' sepal width',	plt. title ("dinar Regression")
cdo = [sepal length 'sepal width',	fit xlooked ("lotal Length")
df = pd sead csv (uzl, header = Nora, names = cels)	plt. ylabel ("Sepal songth")
df ['doer] = df ['class] astype ('catgo	felt-show()
X = of [['potal_longth']]. Values	# Multi-linear Place petal longth total a
y = of ['sepal length]. value	X_mults = df [['petal_kength', 'petal_wordth']] values
Xb = np.c.[np. ones ((X. shake[o], 1))	X b = mp. c [mp. ords ((X meetted 1)) X multi-
Muta = np. linalg. in (X-6.7 @ X-6) @ X-6-7 @ g	theta mult = mp. windly wind (X-b. T @ X-b) @ X-b. T @ X
	450

y pred multi = X b @ -theter multi	del mormo DATE PAGE etd = onp. wid (x, alio = 2)
print X	seturn (x - min)) stead, man
	X = np. hstack (np. ones ((x. shape [2]
Multiple Unear regionion	that = np. Zero (x. alpha (2] 1)) alpha = 0.01 Iterations = 1000
import numby as 7/2 port	Lef hypotheas (x, thota):
df = pd. Potoframe (data) d = of [['Temperation', 'Humidely', 'Windspeed']]. Values	def compute cost (X, y shela): fred Lin (y) fred Line = hypothees (X, the
y = of ['Remfall']. values. restage	cost = (1/2 × m) × m/ sum / productions - y xx
df normalize feature (x): mean- np. man (x, adio =0)	PRETARILLY VANU.

DATE PAGE:	DATE: PAGE:
def gadient descent (x, y, theta,	do
alpla, watow)	Final farameters
m=len(y) poot = hidding = [1	LF-0.676 521791
	[0.48426521] [-0.4230392]]
for immentations)	[-0.42.80 3 91]]
for immerges attentions; gradient = (m) rnp. det (x.) (hypothies (x, this) - y))	Logistic, Regression
(hypothiele (x) than) gill	acquarter dispersion
thouse the to alpha & gradient	import mumby as no
cost history append (compute our	import number as ap
thater the facility affects (compute our (x, y, thela))	
if wip coosis.	data = f
I want E "Strate mas 1 41	"Jemp": [30, 20, 5, 27, 32], "Humsidity" [70, 65, 80, 85]
Cost front pertoy (-1)	Windopakal 5, 10, 12, 8]
return thetay over history	"Rayort. [1,0,1,1]
	3
theta cost history = gradient devent (xxy) - theta alpha, iterations)	1 16 = 1 1 Datalam (for a)
thata () alpha, Eterations)	df = pd. Datafame (date)
"frent ("Final parameters:"), print (the te))	X = df StTemberones "Humidate + "Windowses
puni (mas parameers , print (the tes)	X = of { ['Temperatus', 'Humidity', 'Wordspee
la anh	
	y = of [Rain] values

X = (x -nb. mean(x axis = a)/nb etd/ X = (x -nb. mean(x axis = a)/nb etd/ X = axis = a) X = mb · c - (nb one (x : shake[o] x) def signoid (2) Let signoid (2) Let comfute cost (x, y, weight) m · len(y) Lest history = [] Let u en sang (iteratory):	weight = np. sero (x shake [s]) alpha = 0.1 uterations = 1000 exeights, cost nistry = gradient discont (x) y, weights alpha, etirations) by fredect (x) weights (np. dot (x, weights) where significat (x, weights)
gradient into det (X) gradient into det (X) (h-y)/m queigts = alpha x gradient cost histry append (compute out) (x) y, weigts) tellum weights, cost-history	occuracy = nb. mean (predictions print ("Indies takes", predictions print ("I documery:", occuracy * 100," >0") of p: bradicted labels [2 012 0121 00] Accuracy: 100 %

▼ LAB 5: SVM & KNN

Code

```
import numpy as np

# Data: [Temp, Humidity, Label]
data = [
    [30, 80, 1], [25, 70, 1], [27, 65, 1], [20, 90, 1],
    [25, 40, 0], [35, 30, 0]
]

def distance(a, b):
    return sum((x - y) ** 2 for x, y in zip(a, b)) ** 0.5

def KNN_predict(test_point, k=3):
    # Compute distances
```

```
dists = sorted(data, key=lambda row: distance(row[:2], test_point))
  # Get labels of k nearest neighbors
  labels = [row[2] for row in dists[:k]]
  # Majority vote
  return 1 if labels.count(1) > labels.count(0) else 0
test_point = [26, 60]
prediction = KNN_predict(test_point)
weather = "Rain" if prediction == 1 else "No Rain"
print(f"Test input: Temperature = {test_point[0]}°C, Humidity = {test_point[1]}
print(f"Predicted weather: {weather}")
import numpy as np
# Data: [Temp, Humidity, Label]
data = [
  [30, 80, 1], [25, 70, 1], [27, 65, 1], [20, 90, 1],
  [25, 40, 0], [35, 30, 0]
1
def distance(a, b):
  return sum((x - y) ** 2 for x, y in zip(a, b)) ** 0.5
def KNN_predict(test_point, k=3):
  # Compute distances
  dists = sorted(data, key=lambda row: distance(row[:2], test_point))
  # Get labels of k nearest neighbors
  labels = [row[2] for row in dists[:k]]
  # Majority vote
  return 1 if labels.count(1) > labels.count(0) else 0
test_point = [26, 60]
prediction = KNN_predict(test_point)
weather = "Rain" if prediction == 1 else "No Rain"
print(f"Test input: Temperature = {test_point[0]}°C, Humidity = {test_point[1]}
```

print(f"Predicted weather: {weather}")

Record Book

	LAB-6
DATE PAGE	DATE PAGE
def distance (a, b): seturm sum ((1-4) + 2. for 2, y un def (a, b))** 0.5	Random Forest Character
8 return pum ((1-4) + 2	Color IVII
for 2, 4 up th (a, b))** 0.5	Code -
6 7	from sklaarn datast import load isis
	from skleary model-selection import
dif KNN (predict, K=3):	train-test ablit
diob contid (data, key: lambda row distance (12), prediot)	form sklearn unsemble import
sow distance (12), predict)	Kand mitthest Classifier
lakeb. [sow [2] for now under diata[:k] to lakeb)	from skleary metrics import actively soon
distat KJP	
Jehim max (set (lakelo),	ires - Mad irid
key = lakels, count	x = ihis.data
0	y = ous. farget
lect - foint = [25, 40]	
	x hain x test y train! y test =
frediction = KNN/clust_found)	x having x ted y Fram! y test = 03 train test sput [x] y, test size = 03 nandom state = 42)
weather = "Rain" if prediction = 3 else "No rain	nandom stell 42)
Smoot (f " gest Imput Temperature:	1 5 15 15 100
forest (f" gest Input Temperature:	of model - Random tous campus (
Humiary J +Cor-pourt /1 11	nestimater 100, random tato
print of "Predicted elegther: (weather 3)	1 1 1 1 1 1 1 1 to the total
	y prod = nf model · fredert (1 text)
O/Pi	orange (1) test 21 - tro
Lest input: Temperature = 26°C, Humidily	accuracy = accuracy socore (y-test) y-for
-60°R	prior ("Random Forest Accuracy,") accura
Predicted coeather: No Pain .	sprint ("Kanain Power Harring")

▼ LAB 6: Random Forest, AdaBoost, K-Means Clustering

Code

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# Load data
iris = load_iris()
X = iris.data
y = iris.target

# Split data
```

```
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
)
# Train Random Forest
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
# Predict
y_pred = rf_model.predict(X_test)
# Accuracy
accuracy = accuracy_score(y_test, y_pred)
print("Random Forest Accuracy:", accuracy)
import numpy as np
class DecisionStump:
  def __init__(self):
     self.feature_index = None
     self.threshold = None
     self.polarity = 1
  def predict(self, X):
     n_samples = X.shape[0]
     predictions = np.ones(n_samples)
     if self.polarity == 1:
       predictions[X[:, self.feature_index] < self.threshold] = -1</pre>
     else:
       predictions[X[:, self.feature_index] > self.threshold] = -1
     return predictions
def adaboost(X, y, n_clf=5):
  n_samples, n_features = X.shape
  w = np.full(n_samples, (1 / n_samples))
  models = []
```

```
alphas = []
  for _ in range(n_clf):
    clf = DecisionStump()
    min_error = float('inf')
    # Find best stump
    for feature_i in range(n_features):
       feature_values = np.unique(X[:, feature_i])
       for threshold in feature_values:
         for polarity in [1, -1]:
            predictions = np.ones(n_samples)
            if polarity == 1:
              predictions[X[:, feature_i] < threshold] = -1</pre>
            else:
               predictions[X[:, feature_i] > threshold] = -1
            error = np.sum(w[y != predictions])
            if error < min_error:
              min_error = error
              clf.polarity = polarity
              clf.threshold = threshold
              clf.feature_index = feature_i
    # Compute alpha
    EPS = 1e-10
    alpha = 0.5 * np.log((1 - min_error + EPS) / (min_error + EPS))
    predictions = clf.predict(X)
    w *= np.exp(-alpha * y * predictions)
    w /= np.sum(w)
    models.append(clf)
    alphas.append(alpha)
  return models, alphas
def predict(X, models, alphas):
```

```
clf_preds = [alpha * clf.predict(X) for clf, alpha in zip(models, alphas)]
y_pred = np.sign(np.sum(clf_preds, axis=0))
return y_pred

# Example usage:
# X = np.array([[...], ...]) # shape (n_samples, n_features)
# y = np.array([...]) # shape (n_samples,), labels must be -1 or 1

# models, alphas = adaboost(X, y, n_clf=5)
# y_pred = predict(X, models, alphas)
```

Record Book

DATE: PAGE	LAB-6
del distance (a, b): jeturn sum ((1-4) + 2 for 2, y in tel (a, b)) ** 0.5	Roads Fem + Ct o
D returns sum (17-4) x x 2	Random Forest Classifier
for 2, 4 you tel (9, 5) ** 0.5	Code, :
* "	from whitern datest import load iris
	from skleary model selection import
dy KNN predict, K=9:	Donate deal all I
diot = contid (dota, key = lambda	form sklopen ensemble import
now distance (12.], predict)	(Mama Impolitati Valoritili)
lakeb [sow [2] for now und	from skleary metrics import activory son
distal KJ (0 11)	71 10 1 1
when max (st (lakely)	irio-liad iriol
key = lakels. count	1 - Mis dua
lest- point - [25, 40]	y = one target
ren-from to	x train x ted y trainly y test = 03 train ket spect 1x y, test size = 03 nandom state = 42)
prediction - KNN (text point)	traintest spit to 4, test size = 03
weather "Rain" if prediction = 3 clee "No rain"	nandom state 42)
downt (& 11 gest Embut: Temberature:	
forest (f" gest Imput: Jemperature:	In model = Random Fourt Carifier (30
Humidity = Steet-point [1] 3° p "	nestinator les random sato-
print of "Predicted weather: (weather?)	
	y pred = Inf model · frederit (1 feet)
0/P:	occuracy = accuracy socore (y test) y po
Test input : Temperature = 26°C, Humidily	prior ("Random Forest Accuracy.") accura

X SMA	
DATE PAGE	And the second second
K-means clustering	plt scatter Conters [:0] contex [:1]
import numbey as mp	fit draw countried, markey = 100
def kmeans (X, K, iters = (00): centroid = X for nandom choice	
centroid = X [orp random. choice	Ada, boost
for an range (stop)	umfort numby as no
(x[None] control of axis = 2) and =1)	de gump adapted (x) y, T-D.
	on, m= x. shape
new-controids - np-array (x [labob il	a) = mb. one, (n)/n made []
mean(au = 0) foli in ranges)	modus []
af a sep till dese (emtroid, mew_mus centroid) break	for for pange (D)
mew_mews centroid)	dest = & Verser 13
cantroido = new-centroido	for the time of the table (XE)
seturn lakely controids	for p un [1,1]
X = make_blob (n_samble = 300)	bed = 1 pa +1; ils
labelo, antimenter - 3, randon state (1)	fred = [pa x[]] * thereof 1
Cakelo, Centero = Kameano (X,3)	EN SWILLIAM STATE OF THE STATE

