

ONLINE HACKATHON

Quantum code challenge

Innovative Quantum Algorithms for Smart Cities

22-25 OCTOBER 2024

Objective

Predict rain events using quantum machine learning.

Problem Statement

- Based on data like humidity, atmospheric pressure, temperature etc. Predict if it rains or not.
- Weather code: 5xx means rain. Data from 1st Aug 9th Oct.
- Highly imbalanced dataset

122	(2)		2.152		THE RESERVE OF				4		100
id	hum	pres	rain_1h	wind_speed	wind_deg	clouds_all	ts_get	max_temp	min_temp	ave_temp	cod_weather
42469	73	1016	0.00	1.54	170	0	2024-08-30 22:00:03	26.55	25.81	26.46	800
12861	54	1012	0.00	4.12	330	0	2024-09-16 09:00:02	22.66	21.81	22.23	800
12587	80	1011	1.97	3.60	190	40	2024-09-04 20:00:02	27.66	26.57	27.42	501
11974	79	1017	0.00	3.60	330	20	2024-08-10 06:00:02	24.90	22.81	23.80	801
1867	56	1011	0.00	0.45	126	100	2024-08-05 19:00:02	28.79	28.75	28.76	804
12243	37	1013	0.00	7.72	360	0	2024-08-21 11:00:03	31.81	30.97	30.99	800
13039	67	1014	0.00	4.12	350	0	2024-09-23 19:00:02	23.79	22.81	23.09	800
12715	61	1010	0.00	5.66	350	20	2024-09-10 04:00:02	23.23	22.64	22.91	801
12348	78	1015	0.00	2.06	170	0	2024-08-25 20:00:02	27.10	26.57	27.01	800
12845	42	1014	0.00	6.17	320	0	2024-09-15 16:00:02	23.21	22.81	23.21	800

Models

- Classical Support Vector Classifier
- Quantum Support Vector Classifier [1]
- QBoost [2] with Simulated Annealing
- QBoost with D-Wave's Advantage_system4.1

- [1] Schuld, Maria, and Nathan Killoran. "Quantum machine learning in feature hilbert spaces." Physical review letters 122.4 (2019): 040504.
- [2] Neven, H., Denchev, V. S., Rose, G., and Macready, W. G. Training a Binary Classifier with the Quantum Adiabatic Algorithm, 2008, arXiv:0811.0416v1

Results

Classical SVC

Model	Recall	Precision	F1 Score	Accuracy
Random Oversampling	1.00	0.45	0.63	0.98
Class Weighted	1.00	0.17	0.29	0.90
SMOTE + Tomek	0.90	0.29	0.44	0.95
Baseline	0.50	0.83	0.63	0.99

QSVC

Model	Recall	Precision	F1 Score	Accuracy
Class Weighted	1.00	0.71	0.83	0.99
Random Oversampling	0.80	0.47	0.59	0.98
SMOTE + Tomek	0.80	0.42	0.55	0.97
Baseline	0.60	0.86	0.71	0.99

QBoost (Simulated Annealing)

Model	Recall	Precision	F1 Score	Accuracy
SMOTE + Tomek	0.90	0.69	0.78	0.99
Random Oversampling	0.80	0.67	0.73	0.99
Baseline	0.60	0.60	0.60	0.98

QBoost (Advantage_system4.1)

Model	Recall	Precision	F1 Score	Accuracy
SMOTE + Tomek	1.00	0.56	0.71	0.98
Random Oversampling	0.80	0.67	0.73	0.99
Baseline	0.60	0.60	0.60	0.98

Summary

- Addressed the challenge of rain prediction using quantum ML techniques.
- Demonstrated progress in using quantum algorithms for smart city applications
- Further refinement is needed to fully realize the model.