Matematica del Quinto anno

Funzioni Limiti

Leonardo Barone

_ INDICE

Fun	zioni	4
1.1	Dominio	4
1.2	Zero di una funzione	5
1.3	Segno di una funzione	5
1.4	Proprietà	6
	1.4.1 Iniettiva	6
	1.4.2 Suriettiva	6
	1.4.3 Biettiva o Biunivoca	6
1.5	Crescente e descrescente	6
1.6	Funzione monotona	7
1.7	Pari o dispari	7
	1.7.1 Pari	7
	1.7.2 Dispari	7
1.8	Funzione inversa	7
1.9	Funzione composta	7
Lim	iti	8
2.1	Intervallo	8
2.2	Intorno	8
2.3	Insiemi	9
	2.3.1 Minimo e Massimo	9
	2.3.2 Funzione limitata superiormente o inferiormente	9
2.4	Punto di accumulazione	9
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Lim 2.1 2.2 2.3	1.1 Dominio 1.2 Zero di una funzione 1.3 Segno di una funzione 1.4 Proprietà 1.4.1 Iniettiva 1.4.2 Suriettiva 1.4.3 Biettiva o Biunivoca 1.5 Crescente e descrescente 1.6 Funzione monotona 1.7 Pari o dispari 1.7.1 Pari 1.7.2 Dispari 1.8 Funzione inversa 1.9 Funzione composta Limiti 2.1 Intervallo 2.2 Intorno 2.3 Insiemi 2.3.1 Minimo e Massimo 2.3.2 Funzione limitata superiormente o inferiormente

	2.5	Introduzione ai limiti
	2.6	Definizione di limite
		2.6.1 Verificare veridicità limite
	2.7	Limite destro e sinistro
	2.8	Limiti $\pm \infty$
	2.9	Limite di $x \to \pm \infty$ uguale a $\pm \infty$
	2.10	Introduzione al calcolo dei limiti
	2.11	Forme indeterminate
	2.12	Teorema dell'unicità
	2.13	Teorema della permanenza del segno
		Teorema del confronto / dei carabinieri
	2.15	Limiti notevoli
	2.16	Cambio variabile
	2.17	Asintoti obliqui
	2.18	Gerarchia infiniti
	2.19	Funzioni continue
		2.19.1 Punti di discontinuità o singolarità
		2.19.2 Teorema di Weierstrass
		2.19.3 Teorema dei valori intermedi $\dots \dots \dots$
		2.19.4 Teorema dell'esistenza degli zeri
3	Der	ivate 18
	3.1	Rapporto incrementale
	3.2	Derivata
	3.3	Derivata destra e sinistra
		3.3.1 Derivata sinistra
		3.3.2 Derivata destra
	3.4	Funzione derivabile
	3.5	Funzione derivabile in un intervallo
	3.6	Rapporto tra continuità e derivabilità
	3.7	Derivate fondamentali
	3.8	Derivata somma di funzioni
	3.9	Derivata del prodotto di una costante per una funzione
	3.10	Derivata del prodotto di funzioni
	3.11	Derivata del rapporto tra funzioni
	3.12	Derivata di una funzione composta

3.13	Punti di non derivabilità	21
	3.13.1 Punto angoloso	21
	3.13.2 Cuspide	21
	3.13.3 Flesso a tangente verticale	22
3.14	Teorema di Rolle	22
3.15	Teorema di Cauchy	23
3.16	Teorema di Lagrange	23
3.17	Punti di estremo relativo	23

Dati due sottoinsiemi A e B dell'insieme R. si chiama funzione (f) da A a B, una relazione che associa ad ogni elemento di A uno ed un solo elemento di B. y = f(x), dove "y" è la variabile dipendente e "x" quella indipendente.

L'insieme A e' detto **Dominio** della funzione, e l'insieme B viene chiamato **Codominio** della funzione

Dato un'elemento $a \in A$ del dominio della funzione, il corrispondente elemento $f(a) \in B$ si dice **immagine** di a.

Si dividono in funzioni algebriche (con +, -, *, ...) e funzioni trascendenti($y = \sin(x)$).

Funzioni algebriche:

- Polinomiali
- Razionali intere
- Razionali fratte
- Irrazionali

1.1 Dominio

Il dominio di una funzione è l'insieme su cui è definita la funzione, ossia l'insieme di partenza sui cui elementi ha senso valutare la funzione. Quindi l'insieme dei valori che si possono assegnare alla variabile "x" a cui corrisponde un valore reale di "y". Il dominio per:

• Funzione polinomiale:

$$D = \mathbf{R}$$

• Funzione razionale fratta:

 $D = denominatore \neq 0$

- Funzione irrazionale:
 - 1. se indice radice **dispari**:

$$D = \mathbf{R}$$

(solo del radicando, se dentro c'è una fratta va comunque impostata diversa da 0)

2. se indice radice **pari**:

$$D = Radicando \ge 0$$

• Funzione esponenziale:

$$D = \mathbf{R}$$

• Funzione logaritmica:

$$D = argomento > 0$$

oppure se x nella base:

$$D=x>0 \lor x\neq 1$$

1.2 Zero di una funzione

Un numero reale "n" è uno zero di funzione se f(n) = 0.

Per trovare gli zeri di funzione quindi porre la x=0 nella funzione.

1.3 Segno di una funzione

Studiare il segno di una funzione del tipo y = f(x) significa cercare per quali valori di $x \in \mathbf{D}$ il corrispondente valore di y è positivo o negativo.

Per trovare i segni si imposta la funzione > di 0.

1.4 Proprietà

1.4.1 Iniettiva

Una funzione $fA \to B$ e' iniettiva se ogni elemento di B è immagine di al massimo un elemento di A.

$$x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
 (1.1)

Ad elementi diversi del Dominio la funzione associa elementi diversi del Codominio. Non e' iniettiva se due elementi distinti del dominio hanno la stessa immagine; ad esempio immagine di x_1 coincide con l'immagine di x_2

1.4.2 Suriettiva

Una funzione $fA \to B$ e' suriettiva se ogni elemento di B è immagine di almeno un elemento di A.

Tutti gli elementi del codominio sono immagine di almeno un elemento del dominio. Ossia il Codominio deve essere uguale all'immagine.

1.4.3 Biettiva o Biunivoca

Se è sia Iniettiva che Suriettiva

1.5 Crescente e descrescente

Una funzione y = f(x) con $D \in \mathbf{R}$ è una funzione crescente [decrescente] in senso stretto in un'intervallo $I \in D$ se comunque scelti due valori $x_1, x_2 \in I$:

$$x_1 < x_2 \to f(x_1) < f(x_2).$$

Decrescente: $x_1 < x_2 \rightarrow f(x_1) > f(x_2)$

In senso lato: $x_1 < x_2 \rightarrow f(x_1) \ge f(x_2)$

1.6 Funzione monotona

Si dice monotona se è sempre crescente o decrescente in un certo intervallo.

Non è monotona se è costante.

Una funzione monotona è sempre iniettiva.

1.7 Pari o dispari

1.7.1 Pari

Una funzione si dice pari se

$$\forall x \in D \ \exists -x \in D : f(-x) = f(x)$$

Il grafico di una funzione pari è sempre simmetrico all'asse y.

1.7.2 Dispari

Una funzione si dice dispari se

$$\forall x \in D \ \exists -x \in D : f(-x) = -f(x)$$

Il grafico di una funzione dispari è sempre simmetrico all'origine degli assi O(0,0).

1.8 Funzione inversa

Per essere invertibile deve essere necessariamente biunivoca.

Data la funzione biunivoca y=f(x) da A a B, la funzione inversa biunivoca sarà $x=f^{-}1(y)$ da B ad A

Per trovare la funzione inversa di f(x) bisogna sostituire le x con le y o viceversa, e isolarsi la y per scriverla in modo corretto.

1.9 Funzione composta

La funzione composta $f \circ g$ è f(g(x)). Si sostituisce la x di f(x) con tutta la funzione g(x)

2.1 Intervallo

Insieme dei numeri reali visto come segmento limitato o illimitato.

2.2 Intorno

Dato un numero reale x_0 , un intorno completo di x_0 è un qualunque intervallo aperto che contiene x_0 .

$$I(x_0) =]x_0 - d_1; x_+ d_2[$$
(2.1)

esempio: I(-1) =]-2;0[

- intorno circolare: Se x_0 è il punto medio
- intorno sinistro: Se x_0 è l'estremo sinistro: $I^-(x_0) =]x_0 d; x_0[$
- intorno destro: Se x_0 è l'estremo destro: $I^+(x_0) =]x_0; x_0 + d[$
- intorno di $-\infty/+\infty$: Se è ha il $-\infty$ o il $+\infty$ nell'intervallo.

2.3 Insiemi

1. Superiormente limitato:

Un'insieme A $(A \in \mathbf{R})$ si dice superiormente limitato se è possibile determinare un numero reale α dove tale che $x \leq \alpha \quad \forall x \in A$

 $\alpha = \sup(A)$, dove gli α sono i maggioranti, ed il più grande tra questi viene chiamato $\sup(A)$

2. Inferiormente limitato:

Un'insieme A $(A \in \mathbf{R})$ si dice inferiormente limitato se è possibile determinare un numero reale β dove tale che $x \geq \beta \quad \forall x \in A$

 $\beta = \sup(A)$, dove i β sono i minoranti, ed il più piccolo tra questi viene chiamato $\inf(A)$

3. Insieme limitato:

Un'insieme si dice limitato se lo è inferiormente e superiormente.

2.3.1 Minimo e Massimo

- Se $inf(A) \in A$, allora si chiama **minimo**
- Se $sup(A) \in A$, allora si chiama **massimo**

2.3.2 Funzione limitata superiormente o inferiormente

Una funzione si dice superiormente o inferiormente limitata se lo è il suo Insieme Immagine (I_{im}) .

2.4 Punto di accumulazione

Un punto di accumulazione di un insieme reale E è un punto x_0 per il quale, comunque si scelga un intorno completo del punto stesso, esiste almeno un punto y dell'insieme E diverso da x_0 e tale da appartenere all'intorno considerato.

2.5 Introduzione ai limiti

Il limite:

$$\lim_{x \to 3} (x+2) \tag{2.2}$$

Si legge limite di x tendente a 3 della funzione f(x) = x + 2

Per trovare il limite sostituiamo la "x che tende" alla funzione f(x). Se però quel valore può essere sia a destra che a sinistra allora il valore non è definito, dovremo calcolare il valore da entrambi i lati.

2.6 Definizione di limite

Data una funzione $f: A \subseteq \mathbf{R} \to \mathbf{R}$, x_0 un punto di accumulazione di A: Si scrive

$$\lim_{x \to x_0} f(x) = l \tag{2.3}$$

se:

$$\forall x \in \mathbf{R}^+ \ \exists \ I(l) \lor J(x_0) : \ |f(x) - l| < \epsilon \ \forall x \in J(x_0), \ x \neq x_0$$
 (2.4)

ossia: Per qualsiasi epsilon positivo che esiste all'intorno di "l" tale che il valore assoluto di f(x)-l è minore di epsilon per ogni x appartenente all'intorno J di x_0 , con x diverso da x_0 .

2.6.1 Verificare veridicità limite

Si pone il limite $|f(x) - l| < \epsilon$

Verrà quindi $-\epsilon + l < f(x) < \epsilon + l$

Il risultato dovrà essere un intorno di x_0 .

2.7 Limite destro e sinistro

$$\lim_{x \to x_0^{\pm}} f(x) = l \tag{2.5}$$

Definizione uguale a quella di limite, però effettuando la verifica dovrà venire un intorno destro o sinistro di x_0 , ossia assicurarsi che sia la parte destra o sinistra.

Se invece è il risultato ad essere destro o sinistro, nella verifica prendiamo solo la parte destra o sinistra, esempio:

Con il limite

$$\lim_{x \to 1} (-x^2 + 2x) = 1^- \tag{2.6}$$

La veridicità si calcola con $1-\epsilon < -x^2 + 2x < 1$, quindi considerando solo la sinistra Se fosse stato di destra, allora $1 < -x^2 + 2x < 1 + \epsilon$

2.8 Limiti $\pm \infty$

Limite +infinito:

$$\forall M > 0 \ \exists \ I(x_0) : f(x) > M \ \forall x \in I(x_0), x \neq x_0$$
 (2.7)

 $x = x_0$ è un asintoto verticale.

Quindi per verificare: se $+\infty$: f(x) > M

Limite -infinito:

$$\forall M > 0 \ \exists \ I(x_0) : f(x) < -M \ \forall x \in I(x_0), x \neq x_0$$
 (2.8)

Quindi per verificare: se $-\infty$: f(x) < -M

2.9 Limite di $x \to \pm \infty$ uguale a $\pm \infty$

Un limite

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \tag{2.9}$$

Se è uguale a $+\infty$, si verifica con f(x) > M, prendendo un intorno di $\pm \infty$ Se è uguale a $-\infty$, si verifica con f(x) < -M, prendendo un intorno di $\pm \infty$

2.10 Introduzione al calcolo dei limiti

Se la funzione è continua, sostituisci x_0 nella funzione.

Si applicano le stesse regole delle moltiplicazioni e divisioni, quindi se si moltiplica $+\infty$ con $-\infty$ fa $-\infty$ e così via.

- $0^+ * 0^- = 0^-$, (si applica la regola che + per fa -).
- un numero fratto infinito fa un intorno di 0. Esempio:

$$1) \ \frac{1}{+\infty} = 0^+$$

2)
$$\frac{4}{-\infty} = 0^-$$

 $\bullet\,$ un numero fratto un intorno di 0 tende a $\pm\infty$

esempio:
$$-\frac{1}{0^+} = +\infty$$
.

Se fosse stato 0^- allora il risultato sarebbe stato $-\infty$

• quando abbiamo un limite di un logaritmo di un intorno di 0, fare il grafico e vedere a cosa tende.

esempio:
$$\ln 0^+ = -\infty$$

• 0 fratto infinito fa 0 e vale al regola dei segni.

esempio:
$$\frac{0^+}{-\infty} = 0^-$$

2.11 Forme indeterminate

Forma $\frac{\infty}{\infty}$

Si raccoglie da numeratore e denominatore la x dalla più grande alla più piccola.

Forma $\frac{0}{0}$

Scomporre numeratore e denominatore e semplificare. Ricordare binomi speciali, Ruffini e regole generali per semplificazioni.

Forma
$$+\infty - \infty$$

Raccogliere la x con grado maggiore e semplificare.

Se è presente una funzione irrazionale allora provare a razionalizzare al contrario.

Oppure portare x^2 fuori dalla radice con il valore assoluto, e toglier
lo cambiando segno in base se x tende a $\pm \infty$

Forma
$$0*\pm\infty$$

Ricordare gli angoli associati

Forma 0^0

Se abbiamo $a = e^{\ln a}$

Ossia: $f(x)^{g(x)} = e^{\ln[f(x)]g(x)}$. Per la regola degli esponenti lasci la stessa base e moltiplichi gli esponenti.

Forma $\pm \infty^0$

Forma $1^{\pm \infty}$

2.12 Teorema dell'unicità

Sia f(x) una funzione con limite finito l per $x \to x_0$, allora tale limite è unico.

2.13 Teorema della permanenza del segno

Se il limite

$$\lim_{x \to x_0} f(x) = l$$

con $l \neq 0$, allora esiste un intorno di x_0 in cui f(x) e l sono entrambi positivi o entrambi negativi.

2.14 Teorema del confronto / dei carabinieri

Date le funzioni f(x) < g(x) < h(x) definite in uno stesso intorno di x_0 $(x \neq x_0)$, se $\lim_{x\to x_0} f(x) = l$ e $\lim_{x\to x_0} h(x) = l$, allora $\lim_{x\to x_0} g(x) = l$. Come due carabinieri che tengono il detenuto a braccetto.

2.15 Limiti notevoli

1. Primo limite notevole:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \tag{2.10}$$

Da cui ne consegue:

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

2. Secondo limite notevole:

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \tag{2.11}$$

3. Terzo limite notevole:

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} \tag{2.12}$$

4. Quarto limite notevole:

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e \tag{2.13}$$

5. Quinto limite notevole:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{2.14}$$

6. Sesto limite notevole:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \tag{2.15}$$

7. Settimo limite notevole:

$$\lim_{x \to 0} \frac{(1+x)^k - 1}{x} = k \tag{2.16}$$

Tutti i limiti notevoli funzionano anche se al posto della x è presente una funzione f(x).

Valgono sempre anche i loro reciproci.

2.16 Cambio variabile

Se necessario, sopratutto per ricondurci ad alcuni limiti notevoli come il 5, 6, 7, si effettua il cambio variabile.

Si imposta $y = \frac{1}{x}$ o altro per fare in modo che y tenda a 0, oppure per ricondursi ai limiti notevoli.

Per ricondursi al limite 4, si imposta y =al reciproco di $\frac{n}{x}$

Per ricondursi al limite 6, si imposta y uguale al numeratore.

2.17 Asintoti obliqui

Un asintoto obliquo è una retta che approssima l'andamento del grafico di una funzione all'infinito, vale a dire ad uno dei due estremi illimitati del dominio o a entrambi gli estremi infiniti. Un asintoto obliquo può approssimare il grafico da sotto o da sopra.

Se il limite di x tendente a $\pm \infty$ è uguale a $\pm \infty$:

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

I valori della retta y = mx + q sono calcolabili:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$q = \lim_{x \to \pm \infty} f(x) - mx$$

2.18 Gerarchia infiniti

Una funzione f(x) è un infinito per $x \to \alpha$ quando $\lim_{x \to \alpha} f(x) = \pm \infty$

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$$

si chiamano Infiniti simultanei.

• Se

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = l \neq 0$$

sono infiniti dello stesso ordine.

• Se

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = 0$$

f(x) è un infinito di ordine inferiore a g(x).

• Se

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = non \ esiste$$

infiniti $\mathbf{f}(\mathbf{x})$ e $\mathbf{g}(\mathbf{x})$ non sono confrontabili.

Quindi l'ordine di infiniti è:

$$(\log_a x)^{\alpha} < x^{\beta} < b^x$$

Gli esponenziali andranno all'infinito più velocemente, seguiti dalle rette/parabole, seguiti dalle logaritmiche.

2.19 Funzioni continue

Una funzione continua in un punto è una funzione reale di variabile reale in cui i due limiti sinistro e destro calcolati nel punto coincidono con la valutazione della funzione nel punto. Una funzione continua su un insieme è una funzione continua in ogni punto dell'insieme.

Una funzione è continua in un punto di accumulazione se:

- i due limiti sinistro e destro esistono finiti ed hanno lo stesso valore
- il comune valore dei due limiti sinistro e destro coincide con la valutazione della funzione nel punto

Se abbiamo dei valori da calcolare per i quali la nostra funzione è continua, eguagliamo il limite destro e sinistro di un punto e troviamo la/le incognita/e.

2.19.1 Punti di discontinuità o singolarità

I punti di discontinuità di una funzione sono i punti in cui una funzione non è continua. Vi sono tre tipi di punti di discontinuità che vengono classificati con la nomenclatura di prima specie, di seconda specie e eliminabili (o di terza specie).

Se il punto $\in D$, allora è un punto di discontinuità, se $\notin D$, allora è un punto di singolarità.

• 1° specie

Dato un punto $x_0 \in D$ di una funzione f(x), si dice che x_0 è un punto di discontinuità di 1° specie se

$$\lim_{x \to x_0^-} f(x) = l_1$$

$$\lim_{x \to x_0^+} f(x) = l_2$$

$$l_1 \neq l_2$$

• 2° specie

Dato un punto $x_0 \in D$ di una funzione f(x), si dice che x_0 è un punto di discontinuità di 2° specie se alemno uno dei due limiti destro o sinistro tende a infinito oppure non esiste.

esempio:

$$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$$

• Eliminabile / 3° specie

Dato un punto $x_0 \in D$ di una funzione f(x), si dice che x_0 è un punto di discontinuità eliminabile se

$$\lim_{x \to x_0} f(x) = l$$

ma

$$f(x_0) \neq l$$

2.19.2 Teorema di Weierstrass

Data una funzione "f" continua in un intervallo chiuso e limitato [a, b], allora la funzione in tale intervallo assume il massimo assoluto e il minimo assoluto.

2.19.3 Teorema dei valori intermedi

Data una funzione "f" continua in un intervallo chiuso e limitato [a, b], allora f assume alemno un avolta tutti i valori compresi tra il massimo e il minimo.

2.19.4 Teorema dell'esistenza degli zeri

Data una funzione "f" continua in un intervallo chiuso e limitato [a, b] e negli estremi assume valori di segno opposto, allora esiste almeno un punto $C \in [a, b]$: f(c) = 0.

3.1 Rapporto incrementale

Considero una funzione y = f(x) e considero un punto A(c, f(c)), dove $c \in]a, b[$, in cui la funzione è definita.

Consideriamo un incremento B(c+h, f(c+h)).

$$\Delta x = x_B - x_A = h$$

$$\Delta y = y_B - y_A = f(c+h) - f(c)$$

Il rapporto incrementale si definisce come

$$\frac{\Delta y}{\Delta x} = \frac{f(c+h) - f(c)}{h}$$

Geometricamente il rapporto incrementale è la "m" (coefficiente angolare) della retta secante.

3.2 Derivata

Data una funzione y = f(x) definita in un intervallo [a, b], la derivata della funzione in un punto $C \in]a, b[$ è il limite, se esiste ed è finito, quando h tende a 0 del rapporto incrementale della funzione nel punto C.

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$
 (3.1)

Geometricamente la derivata è il coefficiente angolare della tangente (m_{tan})

3.3 Derivata destra e sinistra

3.3.1 Derivata sinistra

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} = f'_{-}(c)$$

3.3.2 Derivata destra

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = f'_+(c)$$

3.4 Funzione derivabile

Una funzione derivabile in un punto è una funzione per cui esiste la derivata prima nel punto considerato: una funzione è derivabile in un punto se esistono finiti e coincidono il limite sinistro e destro del rapporto incrementale calcolato nel punto.

3.5 Funzione derivabile in un intervallo

Una funzione è derivabile in un intervallo [a,b] in cui è definita, se è derivabile in ogni suo punto interno, e se esiste la derivata sinistra di "a" e derivata destra di "b".

3.6 Rapporto tra continuità e derivabilità

La continuità non implica necessariamente la derivabilità.

Data una funzione y = f(x), se è una derivabile in un punto C allora sarà anche continua.

3.7 Derivate fondamentali

- Funzione costante $f(x) = k \rightarrow f'(x) = 0$
- Funzione lineare $f(x) = x \rightarrow f'(x) = 1$
- Funzione potenza $f(x) = x^n \rightarrow f'(x) = n * x^{n-1}$
- Funzione seno f(x) = sin(x) \rightarrow f'(x) = cos(x)

- Funzione coseno f(x) = cos(x) \rightarrow f'(x) = -sin(x)
- Funzione esponenziale $f(x) = a^x \rightarrow f'(x) = a^x * \ln a$
 - Funzione e^x : $f(x) = e^x$ \rightarrow $f'(x) = e^x$
- Funzione logaritmica $f(x) = \log_a x$ \rightarrow $f'(x) = \frac{1}{x} * \log_a e$
 - Funzione logaritmo naturale: $f(x) = \ln x$ \rightarrow $f'(x) = \frac{1}{x}$

3.8 Derivata somma di funzioni

La derivata di una somma/differenza di funzioni è uguale alla somma/differenza delle singole derivate.

$$f(x) + g(x) \rightarrow f'(x) + g'(x)$$

3.9 Derivata del prodotto di una costante per una funzione

La derivata del prodotto di una costante per una funzione è uguale al prodotto della costante per la derivata della funzione.

$$k * f(x) \rightarrow k * f'(x)$$

3.10 Derivata del prodotto di funzioni

La derivata del prodotto di due funzioni derivabili è uguale alla derivata della prima funzione per la seconda più la prima funzione per la derivata della seconda.

$$f(x) * g(x) \rightarrow f'(x) * g'(x)$$

3.11 Derivata del rapporto tra funzioni

Per la regola del quoziente la derivata del rapporto fra due funzioni è un rapporto avente come numeratore la derivata del numeratore per il denominatore meno la derivata del denominatore per il numeratore, e come denominatore il quadrato del denominatore originario.

$$\frac{f(x)}{g(x)} \longrightarrow \frac{f'(x) * g(x) - g'(x) * f(x)}{[g(x)]^2}$$

3.12 Derivata di una funzione composta

$$f(g(x)) \rightarrow f'(g(x)) * g'(x)$$

3.13 Punti di non derivabilità

I punti di non derivabilità di una funzione sono i punti del dominio in cui non è definita la derivata prima della funzione, e possono essere di tre tipi: punto angoloso, punto di cuspide, punto di flesso a tangente verticale.

3.13.1 Punto angoloso

Quando i due limiti sinistro e destro esistono con almeno un valore finito, ma assumono valori diversi.

$$f'_{-}(x) \neq f'_{+}(x)$$

$$m_1 \neq m_2$$

Figura 3.1: y = |x|

3.13.2 Cuspide

Quando i due limiti sinistro e destro sono infiniti e di segno opposto.

$$f'_{-}(x) = \pm \infty \quad \land \quad f' + -(x) = \mp \infty$$

Figura 3.2: $y = \sqrt{|x|}$

3.13.3 Flesso a tangente verticale

Quando limite sinistro e destro sono infiniti e dello stesso segno.

$$f'_{-}(x) = \pm \infty \quad \land \quad f' + -(x) = \pm \infty$$

Figura 3.3: $y = \sqrt[3]{x}$

3.14 Teorema di Rolle

Data una funzione f(x) definita in un intervallo chiuso e limitato [a, b] tale che:

- f(x) è continua in [a, b]
- f(x) è derivabile in]a,b[
- f(a) = f(b)

allora esiste almeno un punto "c" interno all'intervallo per il quale risulta f'(c) = 0 (punto stazionario).

3.15 Teorema di Cauchy

Se le funzioni f(x) e g(x) sono tali che

- $\bullet \ f(x)$ e g(x) sono continue nell'intervallo [a,b]
- $\bullet \ f(x)$ e g(x) sono derivabili in]a,b[
- $g'(x) \neq 0 \quad \forall x \in [a, b]$

allora esiste almeno un punto c interno ad [a,b] in cui si ha:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

3.16 Teorema di Lagrange

Se una funzione f(x) è

- continua in un intervallo chiuso e limitato [a,b]
- derivabile in]a,b[

allora esiste almeno un punto stazionario " x_0 " per il quale vale:

$$\frac{f(b) - f(a)}{b - a} = f'(x_0)$$

3.17 Punti di estremo relativo

Si dice che