Analízis alkalmazásai vizsgatematika

Dr. Simon Péter jegyzetéből

Tartalom

1	Vizsgakérdés 3				
	1.1	Implicitfüggvény-tétel			
	1.2	Inverzfüggvény-tétel			
	1.3	Hiperkoordinátás parciális deriváltak 6			
2	Vizsgakérdés 8				
	2.1	Elsőrendű szükséges feltétel			
	2.2	Másodrendű elégséges feltétel			
	2.3	Másodrendű szükséges feltétel			
3	Viz	sgakérdés 14			
	3.1	Közönséges differenciálegyenletek			
	3.2	Teljes megoldás			
	3.3	Szeparábilis differenciálegyenlet			
	3.4	Rakéta emelkedési ideje			
	3.5	Egzakt differenciálegyenlet			
	3.6	Multiplikátor módszer			
4	Vizsgakérdés 24				
	4.1	Lineáris differenciálegyenlet			
	4.2	Radioaktív bomlás			
5	Vizsgakérdés 30				
	5.1	Lipschitz-feltétel			
	5.2	Egzisztenciatétel			

6	Vizsgakérdés			
	6.1	Lineáris differenciálegyenlet-rendszer	35	
	6.2	Lineáris differenciálegyenlet-rendszerek alaptétele	36	
7				
	7.1	Alaprendszer, alapmátrix	41	
	7.2	Állandók variálásának módszere	41	
	7.3	Állandó együtthatós diagonalizálható eset	42	
	7.4	Tetszőleges állandó együtthatós mátrix	44	
	7.5	Valós értékű megoldások		
8	Vizsgakérdés			
	8.1	"Új" feladat megfogalmazása	47	
	8.2	Átviteli elv		
	8.3	Állandók variálásának módszere		
9	Vizs	sgakérdés	53	
10	Vizs	sgakérdés	54	
11	Vizsgakérdés			
	11.1	Függvénysorozatok, függvénysorok	55	
		Konvergencia, határfüggvény		
		Trigonometrikus sorok, Fourier-sorok		
		Egyenletes konvergencia		

1 Vizsgakérdés

Az implicitfüggvény fogalma, kapcsolata a feltételes szélsőérték problémával és az inverzfüggvénnyel. Implicitfüggvény-tétel, inverzfüggvény-tétel (a bizonyítás vázlata).

Legyenek $n, m \in \mathbb{N}$ természetes számok, $1 \le m < n$. Ha

$$\xi = (\xi_1, \ldots, \xi_n) \in \mathbf{R}^n,$$

akkor legyen

$$x := (\xi_1, \ldots, \xi_{n-m}) \in \mathbf{R}^{n-m}, y := (\xi_{n-m+1}, \ldots, \xi_n) \in \mathbf{R}^m,$$

és ezt következőképpen fogjuk jelölni:

$$\xi = (x, y).$$

Röviden:

$$\mathbf{R}^n \equiv \mathbf{R}^{n-m} \times \mathbf{R}^m.$$

Ha tehát

$$f = (f_1, \ldots, f_m) \in \mathbf{R}^n \to \mathbf{R}^m,$$

azaz

$$f \in \mathbf{R}^{n-m} \times \mathbf{R}^m \to \mathbf{R}^m$$

akkor az f-et olyan kétváltozós vektorfüggvénynek tekintjük, ahol az f(x, y) helyettesítési értékben az argumentum első változójára $x \in \mathbf{R}^{n-m}$, a második változójára pedig $y \in \mathbf{R}^m$ teljesül.

Tegyük fel, hogy ebben az értelemben valamilyen $(a, b) \in \mathcal{D}_f$ zérushelye az f-nek:

$$f(a, b) = 0.$$

Tételezzük fel továbbá, hogy van az a-nak egy olyan $K(a) \subset \mathbf{R}^{n-m}$ környezete, a b-nek pedig olyan $K(b) \subset \mathbf{R}^m$ környezete, hogy tetszőleges $x \in K(a)$ esetén egyértelműen létezik olyan $y \in K(b)$, amellyel

$$f(x, y) = 0.$$

Definiáljuk ekkor a $\varphi(x) := y$ hozzárendeléssel a

$$\varphi: K(a) \to K(b)$$

függvényt, amikor is

$$f(x, \varphi(x)) = 0 \quad (x \in K(a)).$$

Itt minden $x \in K(a)$ mellett az $y = \varphi(x)$ az egyetlen olyan $y \in K(b)$ hely amelyre

$$f(x, y) = 0.$$

Az előbbi φ függvényt az f által (az (a, b) körül) meghatározott implicitfüggvénynek nevezzük. Tehát az

$$\begin{cases} f_1(x_1, \dots, x_{n-m}, y_1, \dots, y_m) &= 0 \\ \vdots & & \vdots \\ f_m(x_1, \dots, x_{n-m}, y_1, \dots, y_m) &= 0 \end{cases}$$

egyenletrendszernek minden $x=(x_1,\ldots,x_{n-m})\in K(a)$ mellett egyértelműen létezik

$$y = (y_1, \ldots, y_m) = \varphi(x) \in K(b)$$

megoldása. Nyilván $\varphi(a) = b$.

A $\varphi:K(a)\to K(b)$ implicitfüggvényre a következő igaz:

$$(K(a) \times K(b)) \cap \{f = 0\} = \{(x, \varphi(x)) \in \mathbf{R}^n : x \in K(a)\}.$$

Geometriai szóhasználattal élve

$$\operatorname{graf} \varphi := \{(x, \, \varphi(x)) \in \mathbf{R}^n : x \in K(a)\}$$

(a φ függvény "grafikonja", ami a függvény definíciója miatt persze maga a φ függvény), tehát az előbbi egyenlőség így néz ki:

$$(K(a) \times K(b)) \cap \{f = 0\} = \operatorname{graf} \varphi = \varphi.$$

1.1 Implicitfüggvény-tétel

Tétel. Adott $n, m \in \mathbb{N}$, valamint $1 \leq m < n$ mellett az

$$f \in \mathbf{R}^{n-m} \times \mathbf{R}^m \to \mathbf{R}^m$$

függvényről tételezzük fel az alábbiakat: $f \in C^1$, és az $(a, b) \in \operatorname{int} \mathcal{D}_f$ helyen

$$f(a, b) = 0$$
, $\det \partial_2 f(a, b) \neq 0$.

Ekkor alkalmas K(a), K(b) környezetekkel létezik az f által az (a, b) körül meghatározott

$$\varphi: K(a) \to K(b)$$

implicitfüggvény, ami folytonosan differenciálható, és

$$\varphi'(x) = -\partial_2 f(x, \, \varphi(x))^{-1} \cdot \partial_1 f(x, \, \varphi(x)) \quad (x \in K(a)).$$

A tételben $f \in C^1$, $\partial_2 f(a,b) \neq 0$ feltételekből következően a K(a), K(b) környezetekről az is feltehető, hogy

$$\det \partial_2 f(x, y) \neq 0 \quad (x \in K(a), y \in K(b)),$$

egyúttal

$$\det \partial_2 f(x, \varphi(x)) \neq 0 \quad (x \in K(a)).$$

Ezért az $x \in K(a)$ helyeken a $\partial_2 f(x, \varphi(x))$ mátrix valóban invertálható.

1.2 Inverzfüggvény-tétel

Elöljáróban idézzük fel az egyváltozós valós függvényekkel kapcsolatban tanultakat. Ha pl.

$$h \in \mathbf{R} \to \mathbf{R}, h \in C^1\{a\}$$

és $h'(a) \neq 0$, akkor egy alkalmas r > 0 mellett

$$I := (a - r, a + r) \subset \mathcal{D}_h,$$

létezik a $(h_{|_I})^{-1}$ inverzfüggvény, a $g:=(h_{|_I})^{-1}$ függvény differenciálható és

$$g'(x) = \frac{1}{h'(g(x))} \quad (x \in \mathcal{D}_g).$$

A továbbiakban a most megfogalmazott "egyváltozós" állítás megfelelőjét fogjuk vizsgálni többáltozós vektorfüggvényekre.

Legyen ehhez valamilyen $1 \leq n \in \mathbb{N}$ mellett adott az

$$f \in \mathbf{R}^n \to \mathbf{R}^n$$

függvény és az $a \in \text{int } \mathcal{D}_f$ pont. Azt mondjuk, hogy az f függvény lokálisan invertálható az a-ban, ha létezik olyan $K(a) \subset \mathcal{D}_f$ környezet, hogy a $g := f_{|K(a)}$ leszűkítés invertálható függvény. Minden ilyen esetben a g^{-1} inverzfüggvényt az f a-beli lokális inverzének nevezzük.

Tétel. Legyen $1 \leq n \in \mathbb{N}$, és $f \in \mathbb{R}^n \to \mathbb{R}^n$. Tegyük fel, hogy egy $a \in \operatorname{int} \mathcal{D}_f$ pontban $f \in C^1\{a\}$, $\det f'(a) \neq 0$. Ekkor alkalmas $K(a) \subset \mathcal{D}_f$ környezettel az $f_{|_{K(a)}}$ leszűkítés invertálható, a $h := (f_{|_{K(a)}})^{-1}$ lokális inverzfüggvény folytonosan differenciálható, és

$$h'(x) = (f'(h(x)))^{-1} \quad (x \in \mathcal{D}_h).$$

1.3 Hiperkoordinátás parciális deriváltak

Legyen adott $n, m \in \mathbb{N}, 1 \leq m < n \in \mathbb{N}$ mellett

$$f: \mathbf{R}^n \to \mathbf{R}^m$$
.

Az előbbiek alapján most adott $k \in \mathbb{N}$, $1 \leq k < n$ esetén legyen $\mathbb{R}^n \equiv \mathbb{R}^{n-k} \times \mathbb{R}^k$. Ha $\xi \in \mathcal{D}_f$, akkor legyen $(a, b) = \xi$, ahogy eddig. Azaz f-et fel lehet fogni egy kétváltozós függvénynek. Tekintsük az alábbi definíciót:

$$\mathcal{D}_1^{(a,b)} := \{ x \in \mathbf{R}^{n-k} : (x, b) \in \mathcal{D}_f \},$$

$$\mathcal{D}_2^{(a,b)} := \{ y \in \mathbf{R}^k : (a, y) \in \mathcal{D}_f \}.$$

Ekkor analóg módon a szokásos parciális deriváltakhoz

$$f_{(a,b),1} \in \mathbf{R}^{n-k} \to \mathbf{R}^m$$

$$f_{(a,b),2} \in \mathbf{R}^k \to \mathbf{R}^m$$
,

ahol

$$f_{(a,b),1}(x) := f(x, b) \quad (x \in \mathcal{D}_1^{(a,b)}),$$

 $f_{(a,b),2}(y) := f(a, y) \quad (y \in \mathcal{D}_2^{(a,b)}).$

Ebben az esetben a *hiperkoordinátás* alakja a parciális deriváltaknak (amennyiben értelmes a derivált):

$$\partial_{\mathbf{1}} f(a, b) := \partial_{1} f(a, b) := f'_{(a,b),1}(a),$$

 $\partial_{\mathbf{2}} f(a, b) := \partial_{2} f(a, b) := f'_{(a,b),2}(b).$

Azaz egy (a, b) helyen lerögzítjük az első vagy második változók és az így kapott függvénynek vesszük a deriváltját. Ha f egy differenciálható függvény az $(a, b) \in \mathcal{D}_f$ helyen, akkor

$$f'(a, b) = \begin{bmatrix} \partial_1 f(a, b) & \partial_2 f(a, b) \end{bmatrix} = \begin{bmatrix} \partial_1 f_1(a, b) & \partial_2 f_1(a, b) & \cdots & \partial_n f_1(a, b) \\ \partial_1 f_2(a, b) & \partial_2 f_2(a, b) & \cdots & \partial_n f_2(a, b) \\ \vdots & \vdots & \cdots & \vdots \\ \partial_1 f_n(a, b) & \partial_2 f_n(a, b) & \cdots & \partial_n f_n(a, b) \end{bmatrix},$$

ahol a $\partial_1 f(a, b) \in \mathbf{R}^{m \times (n-k)}$, $\partial_2 f(a, b) \in \mathbf{R}^{m \times k}$ mátrixok rendre az $f'(a, b) \in \mathbf{R}^{m \times n}$ mátrix első n - k-adik és utolsó k-adik oszlopvektorai. Pl. legyen $f \in \mathbf{R}^3 \to \mathbf{R}^4$ $(a, b) \in \operatorname{int} \mathcal{D}_f$ -ben differenciálható függvény, k := 2. Ekkor

$$f \in \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}^4$$

és

$$f'(a, b) = \begin{bmatrix} \partial_1 f_1(a, b) & \partial_2 f_1(a, b) & \partial_3 f_1(a, b) \\ \partial_1 f_2(a, b) & \partial_2 f_2(a, b) & \partial_3 f_2(a, b) \\ \partial_1 f_3(a, b) & \partial_2 f_3(a, b) & \partial_3 f_3(a, b) \\ \partial_1 f_4(a, b) & \partial_2 f_4(a, b) & \partial_3 f_4(a, b) \end{bmatrix},$$

$$\partial_{1}f(a, b) = \begin{bmatrix} \partial_{1}f_{1}(a, b) \\ \partial_{1}f_{2}(a, b) \\ \partial_{1}f_{3}(a, b) \\ \partial_{1}f_{4}(a, b) \end{bmatrix}, \partial_{2}f(a, b) = \begin{bmatrix} \partial_{2}f_{1}(a, b) & \partial_{3}f_{1}(a, b) \\ \partial_{2}f_{2}(a, b) & \partial_{3}f_{2}(a, b) \\ \partial_{2}f_{3}(a, b) & \partial_{3}f_{3}(a, b) \\ \partial_{2}f_{4}(a, b) & \partial_{3}f_{4}(a, b) \end{bmatrix}.$$

2 Vizsgakérdés

Feltételes szélsőérték, szükséges, ill. elégséges feltétel (a szükséges feltétel bizonyítása).

Legyen $1 \le n, m \in \mathbb{N}, \emptyset \ne U \subset \mathbb{R}^n$, és

$$f: U \to \mathbf{R}, g = (g_1, \ldots, g_m): U \to \mathbf{R}^m.$$

Azt mondjuk, hogy az f függvénynek a g=0 feltételre vonatkozóan feltételes lokális maximuma (minimuma) van a

$$c \in \{g = 0\} := \{\xi \in U : g(\xi) = 0\}$$

pontban, ha az

$$\tilde{f}(\xi) := f(\xi) \quad (\xi \in \{g = 0\})$$

függvénynek a c-ben lokális maximuma (minimuma) van. Feltesszük, hogy

$$\{g=0\} \neq \emptyset.$$

Használjuk az f(c)-re a feltételes lokális maximum (minimum), ill. szélsőérték, továbbá c-re a feltételes lokális maximumhely (minimumhely), ill. szélsőértékhely elnevezést is.

Ha tehát az f-nek a $c\in\{g=0\}$ helyen feltételes lokális szélsőértéke van a g=0 feltételre nézve, akkor egy alkalmas K(c) környezettel

$$f(\xi) \leq f(c) \quad \left(\xi \in \{g=0\} \cap K(c)\right)$$

(ha maximumról van szó), ill.

$$f(\xi) \ge f(c) \quad (\xi \in \{g = 0\} \cap K(c))$$

(ha minimumról van szó) teljesül.

2.1 Elsőrendű szükséges feltétel

Tétel. Tegyük fel, hogy $1 \le n, m \in \mathbb{N}, m < n, \emptyset \ne U \subset \mathbb{R}^n$ nyílt halmaz, és $f: U \to \mathbb{R}, g: U \to \mathbb{R}^m$. Ha $f \in D, g \in C^1$, az f-nek a $c \in \{g = 0\}$ helyen feltételes lokális szélsőértéke van a g = 0 feltételre vonatkozóan, továbbá a g'(c) Jacobi-mátrix rangja megegyezik m-mel, akkor létezik olyan $\lambda \in \mathbb{R}^m$ vektor, hogy

$$\operatorname{grad}(f + \lambda g)(c) = 0.$$

A tételben szereplő λq függvényen a következőt értjük:

$$(\lambda g)(\xi) := \langle \lambda, g(\xi) \rangle \quad (\xi \in U).$$

Ez tehát ugyanolyan jellegű, mint a feltétel nélküli esetben, csak a szóban forgó f függvény helyett (egy alkalmas $\lambda \in \mathbf{R}^m$ vektorral) az $F := f + \lambda g$ függvényre vonatkozóan.

Ez az analógia megmarad a másodrendű feltételeket illetően is.

Bizonyítás. A rangfeltétel szerint a $g'(c) \in \mathbf{R}^{m \times n}$ Jacobi-mátrixnak van olyan $A \in \mathbf{R}^{m \times m}$ részmátrixa, amelyre det $A \neq 0$. Feltehető, hogy az A-t a g'(c) mátrix utolsó m oszlopa határozza meg, amikor is az $\mathbf{R}^n \equiv \mathbf{R}^{n-m} \times \mathbf{R}^m$ felbontást úgy képzeljük el, hogy a

$$\xi = (\xi_1, \dots, q, \xi_n) = (x, y) \in \mathbf{R}^n$$

vektorokra

$$x := (\xi_1, \ldots, \xi_{n-m}) \in \mathbf{R}^{n-m}, y := (\xi_{n-m+1}, \ldots, \xi_n) \in \mathbf{R}^m.$$

Legyen ennek megfelelően c = (a, b). Ekkor tehát

$$\det \partial_2 g(a, b) = \det A \neq 0.$$

Mivel g(a, b) = 0, ezért alkalmazható az implicitfüggvény tétel: alkalmas

$$K(a) \subset \mathbf{R}^{n-m}, K(b) \subset \mathbf{R}^m$$

környezettel létezik a g függvény által az (a, b) körül meghatározott

$$h: K(a) \to K(b)$$

 $h \in C^1$ implicitfüggvény:

$$(K(a) \times K(b)) \cap \{g = 0\} = \{(x, h(x)) \in U : x \in K(a)\},\$$

és

$$h'(x) = -\left(\partial_2 g(x, h(x))\right)^{-1} \cdot \partial_1 g(x, h(x)) \quad (x \in K(a)).$$

A feltételeink szerint egy alkalmas $K(c) \subset U$ környezettel (pl.)

$$f(\xi) \le f(c) \quad (\xi = (x, y) \in K(c) \cap \{g = 0\}).$$

Nyilván feltehető, hogy

$$K(a) \times K(b) \subset K(c)$$
,

ezért a

$$\Phi(x) := f(x, h(x)) \quad (x \in K(a))$$

függvényre $\Phi \in \mathbf{R}^{n-m} \to \mathbf{R}$ és

$$\Phi(x) \le f(c) = \Phi(a) \quad (x \in K(a)).$$

Más szóval a Φ függvénynek az $a\text{-ban lokális maximuma van. A <math display="inline">\Phi$ differenciálható, ezért

$$\Phi'(a) = \operatorname{grad} \Phi(a) = 0.$$

Α

$$\varphi(x) := (x, h(x)) \quad (x \in K(a))$$

függvénnyel $\Phi=f\circ\varphi$ és $\varphi\in D$, valamint I-vel jelölve az $\mathbf{R}^{(n-m)\times(n-m)}$ -beli egységmátrixot

$$\varphi'(x) = \begin{bmatrix} I \\ h'(x) \end{bmatrix} \in \mathbf{R}^{n \times (n-m)} \quad (x \in K(a)).$$

Következésképpen

$$0 = \Phi'(a) = f'(\varphi(a)) \cdot \varphi'(a) = f'(a, h(a)) \cdot \begin{bmatrix} I \\ h'(a) \end{bmatrix} =$$
$$f'(c) \cdot \begin{bmatrix} I \\ h'(a) \end{bmatrix} = \partial_1 f(c) + \partial_2 f(c) \cdot h'(a) =$$

$$\partial_1 f(c) - \partial_2 f(c) \cdot (\partial_2 f(c))^{-1} \cdot \partial_1 g(c) = \partial_1 f(c) + \lambda \cdot \partial_1 g(c),$$

ahol

$$\lambda := -\partial_2 f(c) \cdot (\partial_2 g(c))^{-1} \in \mathbf{R}^m.$$

Tehát (a ∂_1 értelmezéséből)

$$\partial_k f(c) + \sum_{l=1}^m \lambda_l \cdot \partial_k g_l(c) = 0 \quad (k = 1, \dots, n - m). \tag{1}$$

A λ vektor definíciójából "átszorzással" azt kapjuk, hogy

$$\partial_2 f(c) + \lambda \cdot \partial_2 g(c) = 0,$$

azaz (a ∂_2 definíciójából)

$$\partial_j f(c) + \sum_{l=1}^m \lambda_l \cdot \partial_j g_l(c) = 0 \quad (j = n - m + 1, \dots, n). \tag{2}$$

A (1), (2) formulák együtt nyilván azt jelentik, hogy

$$\partial_k f(c) + \sum_{l=1}^m \lambda_l \cdot \partial_k g_l(c) = 0 \quad (k = 1, \dots, n),$$

más szóval

$$\operatorname{grad}(f + \lambda g)(c) = 0 =$$

$$\left(\partial_1 f(c) + \sum_{l=1}^m \lambda_l \cdot \partial_1 g_l(c), \dots, \partial_n f(c) + \sum_{l=1}^m \lambda_l \cdot \partial_n g_l(c)\right) = 0.$$

A fentiekben az m < n feltételezéssel éltünk. Ha m = n, akkor pl. az $g'(c) \in \mathbf{R}^{n \times n}$, és a rang g'(c) = m = n rangfeltétel jelentése az, hogy a

$$g'(c) = \begin{bmatrix} \operatorname{grad} g_1(a) \\ \vdots \\ \operatorname{grad} g_n(a) \end{bmatrix} \in \mathbf{R}^{n \times n}$$

Jacobi-mátrix invertálható. Tehát a grad $g_k(a) \in \mathbf{R}^n$ (k = 1, ..., n) vektorok lineárisan függetlenek, más szóval bázist alkotnak az \mathbf{R}^n -ben. Így (egyértelműen) léteznek olyan $\lambda_i \in \mathbf{R}$ (j = 1, ..., n) számok, amelyekkel

$$-\operatorname{grad} f(c) = \sum_{j=1}^{n} \lambda_j \operatorname{grad} g_j(c),$$

azaz a $\lambda := (\lambda_1, \ldots, \lambda_n) \in \mathbf{R}^n$ vektorral grad $(f + \lambda g)(c) = 0$. Röviden: ekkor is igaz a tétel, de az állítása triviális.

Legyen adott a

$$Q: \mathbf{R}^n \to \mathbf{R}$$

kvadratikus alak, a $B \in \mathbf{R}^{m \times n}$ mátrix, és tekintsük az alábbi halmazt:

$$\mathcal{A}_B := \{ x \in \mathbf{R}^n : Bx = 0 \}.$$

Feltesszük, hogy m < n, és a B mátrix rangja m. Ekkor azt mondjuk, hogy a Q kvadratikus alak a B-re nézve

- 1. feltételesen pozitív definit, ha $Q(x) > 0 \ (0 \neq x \in \mathcal{A}_B);$
- 2. feltételesen negatív definit, ha $Q(x) > 0 \ (0 \neq x \in \mathcal{A}_B);$
- 3. feltételesen pozitív szemidefinit, ha $Q(x) \ge 0 \ (x \in \mathcal{A}_B);$
- 4. feltételesen negatív szemidefinit, ha $Q(x) \leq 0 \ (x \in \mathcal{A}_B)$.

2.2 Másodrendű elégséges feltétel

Tétel. Az $n, m \in \mathbb{N}, 1 \leq m < n$ paraméterek mellett legyen adott az $\emptyset \neq U \subset \mathbf{R}^n$ nyílt halmaz, és tekintsük az $f: U \to \mathbf{R}, g: U \to \mathbf{R}^m$ függvényeket. Feltesszük, hogy $f, g \in D^2, c \in \{g = 0\}$, a g'(c) Jacobimátrix rangja m, továbbá valamilyen $\lambda \in \mathbf{R}^m$ vektorral az $F := f + \lambda g$ függvényre

- 1. grad F(c) = 0;
- 2. A Q_c^F kvadratikus alak a g'(c) mátrixra nézve feltételesen pozitív (negatív) definit.

Ekkor az f-nek a c-ben a g=0 feltételre vonatkozóan feltételes lokális minimuma (maximuma) van.

Idézzük fel, hogy

$$Q_c^F(x) := \langle F''(c) \cdot x, x \rangle \quad (x \in \mathbf{R}^n).$$

2.3 Másodrendű szükséges feltétel

Tétel. Az $n, m \in \mathbb{N}, 1 \leq m < n$ paraméterek mellett legyen adott az $\emptyset \neq U \subset \mathbf{R}^n$ nyílt halmaz, és $f: U \to \mathbf{R}, g: U \to \mathbf{R}^m, f, g \in D^2$ függvények. Tegyük fel, hogy valamilyen $c \in \{g = 0\}$ helyen f-nek lokális minimuma (maximuma) van a $\{g = 0\}$ feltételre vonatkozóan, a g'(c) Jacobi-mátrix rangja megegyezik m-mel. Ekkor létezik olyan $\lambda \in \mathbf{R}^m$, hogy az $F := f + \lambda g$ függvényre az alábbiak teljesülnek:

- 1. grad F(c) = 0;
- 2. a Q_c^F kvadratikus alak a g'(c) mátrixra nézve feltételesen pozitív (negatív) szemidefinit.

3 Vizsgakérdés

A differenciálegyenlet (rendszer) fogalma. Kezdetiérték-probléma (Cauchy-feladat). Egzakt egyenlet, szeparábilis egyenlet, a rakéta emelkedési idejének a kiszámítása.

3.1 Közönséges differenciálegyenletek

Legyen $0 < n \in \mathbb{N}, I \subset \mathbb{R}, \Omega \subset \mathbb{R}^n$ egy-egy nyílt intervallum. Tegyük fel, hogy az

$$f: I \times \Omega \to \mathbf{R}^n$$

függvény folytonos, és tűzzük ki az alábbi feladat megoldását:

határozzunk meg olyan $\varphi \in I \to \Omega$ függvényt, amelyre igazak a következő állítások:

- 1. \mathcal{D}_{φ} nyílt intervallum;
- $2. \varphi \in D;$
- 3. $\varphi'(x) = f(x, \varphi(x)) \quad (x \in \mathcal{D}_{\varphi}).$

A most megfogalmazott feladatot explicit elsőrendű közönséges differenciálegyenletnek (röviden differenciálegyenletnek) fogjuk nevezni, és a d.e. rövidítéssel idézni.

Ha adottak a $\tau \in I$, $\xi \in \Omega$ elemek, akkor a fenti φ függvény 1. 2. és 3. mellett tegyen eleget a

4.
$$\tau \in \mathcal{D}_{\omega}$$
 és $\varphi(\tau) = \xi$

kikötésnek is. Az így "kibővített" feladatot kezdetiérték-problémának (vagy röviden Cauchy-feladatnak) nevezzük, és a továbbiakban minderre a $k.\acute{e}.p.$ rövidítést fogjuk használni. Az 1., 2., 3. feltételeknek (ill. az 1., 2., 3., 4. feltételeknek) eleget tevő bármelyik φ függvényt a d.e. (ill. a $k.\acute{e}.p.$) megoldásának nevezzük. A fenti definícióban szereplő f függvény az illető d.e. ún. jobb oldala.

3.2 Teljes megoldás

Azt mondjuk, hogy a szóban forgó $k.\acute{e}.p.$ egyértelműen oldható meg, ha tetszőleges φ, ψ megoldásai esetén

$$\varphi(x) = \psi(x) \quad (x \in \mathcal{D}_{\omega} \cap \mathcal{D}_{\psi}).$$

(Mivel $\tau \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}$, ezért $\mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}$ egy (τ -t tartalmazó) nyílt intervallum.) Legyen ekkor \mathcal{M} a szóban forgó $k.\acute{e}.p.$ megoldásainak a halmaza és

$$J:=\bigcup_{\varphi\in\mathcal{M}}\mathcal{D}_{\varphi}.$$

Ez egy τ -t tartalmazó nyílt intervallum és $J\subset I$. Az egyértelmű megoldhatóság értelmezése miatt definiálhatjuk a

$$\Phi: J \to \Omega$$

függvényt az alábbiak szerint:

$$\Phi(x) := \varphi(x) \quad (\varphi \in \mathcal{M}, \, x \in \mathcal{D}_{\omega}).$$

Nyilvánvaló, hogy $\Phi(\tau) = \xi$, $\Phi \in D$ és

$$\Phi'(x) = f(x, \Phi(x)) \quad (x \in J).$$

Ez azt jelenti, hogy $\Phi \in \mathcal{M}$, és (ld. a $\mathcal{D}_{\Phi} = J$ definícióját) bármelyik $\varphi \in \mathcal{M}$ esetén

$$\varphi(x) = \Phi(x) \quad (x \in \mathcal{D}_{\varphi}),$$

röviden $\varphi = \Phi_{|_{\mathcal{D}_{\varphi}}}$.

A Φ függvényt a kezdetiérték-probléma teljes megoldásának nevezzük.

3.3 Szeparábilis differenciálegyenlet

Legyen n:=1, továbbá az $I, J \subset \mathbf{R}$ nyílt intervallumokkal és a

$$g: I \to \mathbf{R}, h: J \to \mathbf{R} \setminus \{0\}$$

folytonos függvényekkel

$$f(x, y) := g(x) \cdot h(y) \quad ((x, y) \in I \times J).$$

A $\varphi \in I \to J$ megoldásra tehát

$$\varphi'(t) = g(t) \cdot h(\varphi(t)) \quad (t \in \mathcal{D}_{\varphi}).$$

Legyenek még adottak a $\tau \in I$, $\xi \in J$ számok, amikor is

$$\tau \in \mathcal{D}_{\varphi}, \ \varphi(\tau) = \xi$$

(kezdetiérték-probléma).

Tétel. Tetszőleges szeparábilis differenciálegyenletre vonatkozó kezdetiérték-probléma megoldható, és bármilyen φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Mivel a h függvény sehol sem nulla, ezért egy φ megoldásra

$$\frac{\varphi'(t)}{h(\varphi(t))} = g(t) \quad (t \in \mathcal{D}_{\varphi}).$$

A $g:I\to \mathbf{R}$ is, és az $1/h:J\to \mathbf{R}$ is egy-egy nyílt intervallumon értelmezett folytonos függvény, így léteznek a

$$G: I \to \mathbf{R}, H: J \to \mathbf{R}$$

primitív függvényeik: G'=g és H'=1/h. Az összetett függvény deriválásával kapcsolatos tétel szerint

$$\frac{\varphi'(t)}{h(\varphi(t))} = (H \circ \varphi)'(t) = g(t) = G'(t) \quad (t \in \mathcal{D}_{\varphi}),$$

azaz

$$(H \circ \varphi - G)'(t) = 0 \quad (t \in \mathcal{D}_{\varphi}).$$

Tehát (mivel a \mathcal{D}_{φ} is egy nyílt intervallum) van olyan $c \in \mathbf{R},$ hogy

$$H(\varphi(t)) - G(t) = c \quad (t \in \mathcal{D}_{\varphi}).$$

Az 1/h függvény nyilván nem vesz fel 0-t a J intervallum egyetlen pontjában sem, így ugyanez igaz a H' függvényre is. A deriváltfüggvény Darbouxtulajdonsága miatt tehát a H' állandó előjelű. Következésképpen a H

függvény szigorúan monoton függvény, amiért invertálható. A H^{-1} inverz függvény segítségével ezért azt kapjuk, hogy

$$\varphi(t) = H^{-1}(G(t) + c) \quad (t \in \mathcal{D}_{\varphi}).$$

Ha $\tau\in I,\,\xi\in J,$ és a φ megoldás eleget tesz a $\varphi(\tau)=\xi$ kezdeti feltételnek is, akkor

$$\xi = H^{-1}(G(\tau) + c),$$

azaz

$$c = H(\xi) - G(\tau).$$

Így

$$\varphi(t) = H^{-1}(G(t) + H(\xi) - G(\tau)) \quad (t \in \mathcal{D}_{\varphi}).$$

Ha a G,H helyett más primitív függvényeket választunk (legyenek ezek \tilde{G},\tilde{H}), akkor alkalmas $\alpha,\beta\in\mathbf{R}$ konstansokkal

$$\tilde{G} = G + \alpha, \ \tilde{H} = H + \beta,$$

és

$$\tilde{H}(\varphi(t)) - \tilde{G}(t) = H(\varphi(t)) - G(t) + \beta - \alpha = \tilde{c} \quad (t \in \mathcal{D}_{\varphi})$$

adódik valamilyen $\tilde{c} \in \mathbf{R}$ konstanssal. Ezért

$$\varphi(t) = H^{-1}(G(t) + \tilde{c} - \beta + \alpha) \quad (t \in \mathcal{D}_{\varphi}),$$

ahol (a $t := \tau$ helyettesítés után)

$$H(\xi) - G(\tau) = \tilde{c} - \beta + \alpha,$$

amiből megint csak

$$\varphi(t) = H^{-1}(G(t) + H(\xi) - G(\tau)) \quad (t \in \mathcal{D}_{\varphi})$$

következik. Ez azt jelenti, hogy a fentiekben mindegy, hogy melyik G,H primitív függvényekből indulunk ki. Más szóval, ha a ψ függvény is megoldása a vizsgált kezdetiérték-problémának, akkor

$$\psi(t) = H^{-1}(G(t) + H(\xi) - G(\tau)) \quad (t \in \mathcal{D}_{\psi}).$$

Mivel a \mathcal{D}_{φ} , \mathcal{D}_{ψ} értelmezési tartományok mindegyike egy-egy τ -t tartalmazó nyílt intervallum, ezért $\mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}$ is ilyen intervallum, és

$$\psi(t) = \varphi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Elegendő már csak azt belátnunk, hogy van megoldás. Tekintsük ehhez azokat aG, H primitív függvényeket, amelyekre

$$H(\xi) = G(\tau) = 0,$$

és legyen

$$F(x, y) := H(y) - G(x) \quad (x \in I, y \in J).$$

Ekkor az

$$F: I \times J \to \mathbf{R}$$

függvényre léteznek és folytonosak a

$$\partial_1 F(x, y) = -G'(x) = -g(x) \quad (x \in I, y \in J),$$

$$\partial_2 F(x, y) = H'(y) = \frac{1}{h(y)} \quad (x \in I, y \in J)$$

parciális deriváltfüggvények. Ez azt jelenti, hogy az F függvény folytonosan differenciálható,

$$F(\tau, \xi) = H(\xi) - G(\tau) = 0,$$

továbbá

$$\partial_2 F(\tau, \xi) = H'(\xi) = \frac{1}{h(\xi)} \neq 0.$$

Ezért az F-re alkalmazható az implicitfüggvény-tétel, miszerint alkalmas $K(\tau)\subset I,\,K(\xi)\subset J$ környezetekkel létezik az F által a $(\tau,\,\xi)$ körül meghatározott

$$\varphi:K(\tau)\to K(\xi)$$

folytonosan differenciálható implicitfüggvény, amire $\varphi(\tau)=\xi$ és

$$\varphi'(t) = -\frac{\partial_1 F(t, \, \varphi(t))}{\partial_2 F(t, \, \varphi(t))} = g(t) \cdot h(\varphi(t)) \quad (t \in K(\tau)).$$

Röviden: a φ implicitfüggvény megoldása a szóban forgó kezdetiértékproblémának.

3.4 Rakéta emelkedési ideje

Egy m tömegű rakétát v_0 kezdősebességgel függőlegesen fellövünk (függőleges hajítás). Tegyük fel, hogy a mozgás során a rakétára mindössze két erő hat: a nehézségi erő (jelöljük α -val a nehézségi gyorsulást) és a pillanatnyi sebesség négyzetével arányos súrlódási erő (az ezzel kapcsolatos arányossági tényező legyen β). Mennyi ideig emelkedik a rakéta?

Ha $v \in \mathbf{R} \to \mathbf{R}$ jelenti a sebesség-idő függvényt, akkor – feltételezve, hogy $v \in D$, \mathcal{D}_v intervallum és $0 \in \mathcal{D}_v$ – a feladat matematikai modellje a következő (ld. a fizika Newton-féle mozgástörvényeit): adott m, α , β pozitív számok mellett olyan differenciálható v függvényt keresünk, amelyre

$$mv'(t) = -m\alpha - \beta v^2(t) \quad (t \in \mathcal{D}_v).$$

Világos, hogy $v(0) = v_0$. Azt a $T \in \mathcal{D}_v$ "pillanatot" kell meghatározni, amikor v(T) = 0.

$$I := J := \mathbf{R}, \ g(x) := -\alpha, \ h(y) := 1 + \frac{\beta y^2}{m\alpha} \quad (x, y \in \mathbf{R})$$

választással egy szeparábilis differenciálegyenlethez jutunk. Legyen $\tau:=0,\,\xi:=v_0,$ ekkor a

$$G(x) := \int_{0}^{x} -\alpha \, dt = -\alpha x \quad (x \in \mathbf{R}),$$

$$H(y) := \int_{v_0}^{y} \frac{1}{1 + \frac{\beta t^2}{m\alpha}} \, dt =$$

$$\sqrt{\frac{m\alpha}{\beta}} \cdot \left(\operatorname{arctg} \sqrt{\frac{\beta}{m\alpha}} \cdot y - \operatorname{arctg} \sqrt{\frac{\beta}{m\alpha}} \cdot v_0 \right) \quad (y \in \mathbf{R})$$

függvények eleget tesznek az előbbi tétel bizonyításában mondottaknak. Következésképpen

$$H(v(t)) = G(t) \quad (t \in \mathcal{D}_v),$$

azaz

$$\arctan\left(\sqrt{\frac{\beta}{m\alpha}} \cdot v(t)\right) = -\sqrt{\frac{\beta\alpha}{m}} \cdot t + \arctan\left(\sqrt{\frac{\beta}{m\alpha}} \cdot v_0\right) \quad (t \in \mathcal{D}_v).$$

A v(T) = 0 egyenlőségből a t := T helyettesítéssel – figyelembe véve, hogy arctg(0) = 0 – az adódik, hogy

$$T = \sqrt{\frac{m}{\beta \alpha}} \cdot \arctan\left(\sqrt{\frac{\beta}{m\alpha}} \cdot v_0\right).$$

3.5 Egzakt differenciálegyenlet

Speciálisan legyen n := 1, és az $I, J \subset \mathbf{R}$ nyílt intervallumok, valamint a

$$g: I \times J \to \mathbf{R} \text{ és } h: I \times J \to \mathbf{R} \setminus \{0\}$$

folytonos függvényekkel

$$f(x, y) := -\frac{g(x, y)}{h(x, y)} \quad ((x, y) \in I \times J).$$

Ekkor a fenti minden φ megoldásra

$$\varphi'(x) = -\frac{g(x, \varphi(x))}{h(x, \varphi(x))} \quad (x \in \mathcal{D}_{\varphi}).$$

Azt mondjuk, hogy az így kapott d.e. egzakt differenciálegyenlet, ha az

$$I \times J \ni (x, y) \mapsto (g(x, y), h(x, y)) \in \mathbf{R}^2$$

leképezésnek van primitív függvénye. Ez utóbbi követelmény azt jelenti, hogy egy alkalmas differenciálható

$$G: I \times J \to \mathbf{R}$$

függvénnyel

$$\operatorname{grad} G = (\partial_1 G, \, \partial_2 G) = (g, \, h).$$

Ha $\tau \in I,\, \xi \in J$ és a φ függvénytől azt is elvárjuk, hogy

$$\tau \in \mathcal{D}_{\varphi}, \ \varphi(\tau) = \xi,$$

akkor igaz az

Tétel. Tetszőleges egzakt differenciálegyenletre vonatkozó minden kezdetiérték-probléma megoldható, és ennek bármilyen φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Valóban, $0 \notin \mathcal{R}_h$ miatt a feltételezett φ megoldásra

$$g(x, \varphi(x)) + h(x, \varphi(x)) \cdot \varphi'(x) = 0 \quad (x \in \mathcal{D}_{\varphi}).$$

Ha van ilyen φ függvény, akkor az

$$F(x) := G(x, \varphi(x)) \quad (x \in \mathcal{D}_{\varphi})$$

egyváltozós valós függvény differenciálható, és tetszőleges $x \in \mathcal{D}_{\varphi}$ helyen

$$F'(x) = \langle \operatorname{grad} G(x, \varphi(x)), (1, \varphi'(x)) \rangle =$$

$$g(x, \varphi(x)) + h(x, \varphi(x)) \cdot \varphi'(x) = 0.$$

A $\mathcal{D}_F=\mathcal{D}_\varphi$ halmaz nyílt intervallum, ezért az F konstans függvény, azaz létezik olyan $c\in\mathbf{R}$, amellyel

$$G(x, \varphi(x)) = c \quad (x \in \mathcal{D}_{\varphi}).$$

Mivel $\varphi(\tau) = \xi$, ezért

$$c = G(\tau, \xi).$$

A G-ről feltehetjük, hogy $G(\tau,\,\xi)=0,$ ezért a szóban forgó k.é.p. φ megoldása eleget tesz a

$$G(x, \varphi(x)) = 0 \quad (x \in \mathcal{D}_{\varphi})$$

egyenletnek.

Világos, hogy a φ nem más, mint egy, a G által meghatározott implicitfüggvény. Más szóval a szóban forgó k.é.p. minden megoldása (ha létezik) a fenti implicitfüggvény-egyenletből határozható meg.

Ugyanakkor a feltételek alapján $G \in C^1, G(\tau, \xi) = 0$, továbbá

$$\partial_2 G(\tau, \xi) = h(\tau, \xi) \neq 0,$$

ezért a G-re (a (τ, ξ) helyen) teljesülnek az implicitfüggvény-tétel feltételei. Következésképpen van olyan differenciálható

$$\psi \in I \to J$$

(implicit)függvény, amelyre $\mathcal{D}_{\psi} \subset I$ nyílt intervallum,

$$\tau \in \mathcal{D}_{\psi}, G(x, \psi(x)) = 0 \quad (x \in \mathcal{D}_{\psi}), \psi(\tau) = \xi,$$

és

$$\psi'(x) = -\frac{\partial_1 G(x, \psi(x))}{\partial_2 G(x, \psi(x))} = -\frac{g(x, \psi(x))}{h(x, \psi(x))} \quad (x \in \mathcal{D}_{\psi}).$$

3.6 Multiplikátor módszer

Az egzakt differenciálegyenlet definíciójában szereplő grad $G=(g,\,h)$ feltételből a

$$\partial_1 G = g, \ \partial_2 G = h$$

egyenlőségek következnek. Ha $g,\,h\in D,$ akkor $G\in D^2,$ így a Young-tétel miatt

$$\partial_{12}G = \partial_2 g = \partial_{21}G = \partial_1 h,$$

azaz ekkor a

$$\partial_2 q = \partial_1 h$$

feltétel teljesülése szükséges az "egzaktsághoz".

Azonban, ha $g, h \in D$, de ez előző

$$\partial_2 g = \partial_1 h$$

feltétel nem teljesül, akkor esetenként alkalmas ekvivalens átalakításokkal a feladat "egzakt alakra hozható". Ezek közül az átalakítások közül az ún. multiplikátor módszer a következőt jelenti. Tegyük fel, hogy a

$$\mu: I \times J \to \mathbf{R}$$

differenciálható függvény (pl.) minden helyen pozitív. Ekkor a

$$\varphi'(x) = -\frac{g(x, \varphi(x))}{h(x, \varphi(x))} \quad (x \in \mathcal{D}_{\varphi})$$

egyenlőség nyilván ekvivalens a

$$\varphi'(x) = -\frac{g(x, \varphi(x)) \cdot \mu(x, \varphi(x))}{h(x, \varphi(x)) \cdot \mu(x, \varphi(x))} \quad (x \in \mathcal{D}_{\varphi})$$

egyenlőséggel, azaz a g, h függvények "kicserélhetők" a $g\mu$, $h\mu$ függvényekre. Ekkor az egzaktságnak az előző megjegyzésben megfogalmazott szükséges feltételéhez a

$$\partial_2(g\mu) = g \cdot \partial_2\mu + \mu \cdot \partial_2g = \partial_1(h\mu) = h \cdot \partial_1\mu + \mu \cdot \partial_1h$$

egyenlőségeknek kell teljesülniük.

4 Vizsgakérdés

Lineáris differenciálegyenlet. Az állandók variálásának módszere. A radioaktív bomlás felezési idejének meghatározása.

4.1 Lineáris differenciálegyenlet

Legyen most n := 1 és az $I \subset \mathbf{R}$ egy nyílt intervallum, valamint a

$$g, h: I \to \mathbf{R}$$

folytonos függvények segítségével

$$f(x, y) := g(x) \cdot y + h(x) \quad ((x, y) \in I \times \mathbf{R}).$$

Ekkor

$$\varphi'(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in \mathcal{D}_{\varphi}).$$

Ezt a feladatot lineáris differenciálegyenletnek nevezzük.

Ha valamilyen $\tau \in I$, $\xi \in \mathbf{R}$ mellett

$$\tau \in \mathcal{D}_{\varphi}, \ \varphi(\tau) = \xi,$$

akkor az illető lineáris differenciálegyenletre vonatkozó kezdetiérték-problémáról beszélünk.

Tegyük fel, hogy a θ függvény is és a ψ függvény is megoldása a lineáris d.e.-nek és $\mathcal{D}_{\theta} \cap \mathcal{D}_{\psi} \neq \emptyset$. Ekkor

$$(\theta - \psi)'(t) = g(t) \cdot (\theta(t) - \psi(t)) \quad (t \in \mathcal{D}_{\theta} \cap \mathcal{D}_{\psi}).$$

Így a $\theta-\psi$ függvény megoldása annak a lineáris d.e.-nek, amelyben $h\equiv 0$:

$$\varphi'(t) = g(t) \cdot \varphi(t) \quad (t \in \mathcal{D}_{\varphi}).$$

Ez utóbbi feladatot homogén lineáris differenciálegyenletnek fogjuk nevezni. (Ennek megfelelően a szóban forgó lineáris differenciálegyenlet inhomogén, ha a benne szereplő h függvény vesz fel 0-tól különböző értéket is.)

Tétel. Minden lineáris differenciálegyenletre vonatkozó kezdetiértékprobléma megoldható, és tetszőleges φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Legyen a

$$G:I\to\mathbf{R}$$

olyan függvény, amelyik differenciálható és G'=g (a g-re tett feltételek miatt ilyen G primitív függvény van). Ekkor a

$$\varphi_0(t) := e^{G(t)} \quad (t \in I)$$

(csak pozitív értékeket felvevő) függvény megoldása az előbb említett homogén lineáris differenciálegyenletnek:

$$\varphi_0'(t) = G'(t) \cdot e^{G(t)} = g(t) \cdot \varphi_0(t) \quad (t \in I).$$

Tegyük fel most azt, hogy a

$$\chi \in I \to \mathbf{R}$$

függvény is megoldása a szóban forgó homogén lineáris differenciálegyenletnek:

$$\chi'(t) = g(t) \cdot \chi(t) \quad (t \in \mathcal{D}_{\chi}).$$

Ekkor a differenciálható

$$\frac{\chi}{\varphi_0}: \mathcal{D}_{\chi} \to \mathbf{R}$$

függvényre azt kapjuk, hogy bármelyik $t \in \mathcal{D}_{\chi}$ helyen

$$\left(\frac{\chi}{\varphi_0}\right)'(t) = \frac{\chi'(t) \cdot \varphi_0(t) - \chi(t) \cdot \varphi_0'(t)}{\varphi_0^2(t)} =$$

$$\frac{g(t) \cdot \chi(t) \cdot \varphi_0(t) - \chi(t) \cdot g(t) \cdot \varphi_0(t)}{\varphi_0^2(t)} = 0,$$

azaz (lévén a \mathcal{D}_{χ} nyílt intervallum) egy alkalmas $c \in \mathbf{R}$ számmal

$$\frac{\chi(t)}{\varphi_0(t)} = c \quad (t \in \mathcal{D}_{\chi}).$$

Más szóval, az illető homogén lineáris differenciálegyenlet bármelyik

$$\chi \in I \to \mathbf{R}$$

megoldása a következő alakú:

$$\chi(t) = c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_{\chi}),$$

ahol $c \in \mathbf{R}$. Nyilván minden ilyen χ függvény – könnyen ellenőrizhető módon – megoldása a mondott homogén lineáris differenciálegyenletnek.

Ha tehát a fenti (inhomogén) lineáris differenciálegyenletnek a θ függvény is és a ψ függvény is megoldása és $\mathcal{D}_{\theta} \cap \mathcal{D}_{\psi} \neq \emptyset$, akkor egy alkalmas $c \in \mathbf{R}$ együtthatóval

$$\theta(t) - \psi(t) = c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_\theta \cap \mathcal{D}_\psi).$$

Mutassuk meg, hogy van olyan differenciálható

$$m: I \to \mathbf{R}$$

függvény, hogy az $m \cdot \varphi_0$ függvény megoldása a most vizsgált (inhomogén) lineáris differenciálegyenletnek (az állandók variálásának módszere). Ehhez azt kell "biztosítani", hogy

$$(m \cdot \varphi_0)' = g \cdot m \cdot \varphi_0 + h,$$

azaz

$$m' \cdot \varphi_0 + m \cdot \varphi'_0 = m' \cdot \varphi_0 + m \cdot g \cdot \varphi_0 = g \cdot m \cdot \varphi_0 + h.$$

Innen szükséges feltételként az adódik az m-re, hogy

$$m' = \frac{h}{\varphi_0}.$$

Ilyen m függvény valóban létezik, mivel a

$$\frac{h}{\varphi_0}:I\to\mathbf{R}$$

folytonos leképezésnek van primitív függvénye. Továbbá – az előbbi rövid számolás "megfordításából" – azt is beláthatjuk, hogy a h/φ_0 függvény bármelyik m primitív függvényét is véve, az $m\cdot\varphi_0$ függvény megoldása a

lineáris differenciálegyenletünknek.

Összefoglalva az eddigieket azt mondhatjuk, hogy a fenti lineáris differenciálegyenletnek van megoldása, és tetszőleges $\varphi \in I \to \mathbf{R}$ megoldása

$$\varphi(t) = m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_{\varphi})$$

alakú, ahol m egy tetszőleges primitív függvénye a h/φ_0 függvénynek. Sőt, az is kiderül, hogy akármilyen $c \in \mathbf{R}$ és $J \subset I$ nyílt intervallum esetén a

$$\varphi(t) := m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (t \in J)$$

függvény megoldás. Ez megint csak egyszerű behelyettesítéssel ellenőrizhető:

$$\varphi'(t) = m'(t) \cdot \varphi_0(t) + (c + m(t)) \cdot \varphi'_0(t) =$$

$$\frac{h(t)}{\varphi_0(t)} \cdot \varphi_0(t) + (c + m(t)) \cdot g(t) \cdot \varphi_0(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in J).$$

Speciálisan az "egész" I intervallumon értelmezett

$$\psi_c(t) := m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (c \in \mathbf{R}, t \in I)$$

megoldások olyanok, hogy bármelyik φ megoldásra egy alkalmas $c \in \mathbf{R}$ mellett

$$\varphi(t) = \psi_c(t) \quad (t \in \mathcal{D}_{\varphi}),$$

azaz a $J := \mathcal{D}_{\varphi}$ jelöléssel $\varphi = \psi_{c_{|_J}}$.

Ha $\tau\in I,\,\xi\in\mathbf{R},$ és a $\varphi(\tau)=\xi$ kezdetiérték-feladatot kell megoldanunk, akkor a

$$c := \frac{\xi - m(\tau) \cdot \varphi_0(\tau)}{\varphi_0(\tau)}$$

választással a szóban forgó kezdetiérték-probléma

$$\psi_c: I \to \mathbf{R}$$

megoldását kapjuk. Mivel a fentiek alapján a szóban forgó k.é.p. minden φ , ψ megoldására $\varphi = \psi_{c_{|_{\mathcal{D}_{\psi}}}}$ és $\psi = \psi_{c_{|_{\mathcal{D}_{\psi}}}}$, ezért egyúttal az is teljesül, hogy

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

A tétel bizonyításából a következők is kiderültek: legyen

$$\mathcal{M} := \{ \varphi : I \to \mathbf{R} : \varphi \in D, \ \varphi'(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in I) \},$$
$$\mathcal{M}_h := \{ \varphi : I \to \mathbf{R} : \varphi \in D, \ \varphi'(t) = g(t) \cdot \varphi(t) \quad (t \in I) \}.$$

Ekkor

$$\mathcal{M}_h = \{c \cdot \varphi_0 : c \in \mathbf{R}\}$$

(azaz algebrai nyelven mondva az \mathcal{M}_h egy 1 dimenziós vektortér), és

$$\mathcal{M} = m \cdot \varphi_0 + \mathcal{M}_h := \{ \varphi + m \cdot \varphi_0 : \varphi \in \mathcal{M}_h \}.$$

Itt $m \cdot \varphi_0$ helyébe bármelyik $\psi \in \mathcal{M}$ (ún. partikuláris megoldás) írható, így

$$\mathcal{M} = \psi + \mathcal{M}_h = \{ \varphi + \psi : \varphi \in \mathcal{M}_h \}.$$

4.2 Radioaktív bomlás

Radioaktív anyag bomlik, a bomlási sebesség egyenesen arányos a még fel nem bomlott anyag mennyiségével. A bomlás kezdetétől számítva mennyi idő alatt bomlik el az anyag fele?

Legyen m_0 az anyag eredeti, $\varphi(t)$ pedig a t ($t \in \mathbf{R}$) időpontban még el nem bomlott anyag mennyisége. A feladatban szereplő arányossági tényező $0 < \alpha \in \mathbf{R}$. Ekkor

$$\varphi'(t) = -\alpha \varphi(t) \quad (t \in \mathbf{R}),$$

ahol $\varphi(0) = m_0$. A T (felezési időt) keressül, amikor is $\varphi(T) = m_0/2$.

Ez egy homogén lineáris differenciálegyenlet, ahol $g \equiv -\alpha$. Ezért (pl.)

$$G(t) = -\alpha t \quad (t \in I).$$

valamint

$$\varphi_0(t) = e^{-\alpha t} \quad (t \in I),$$

ill.

$$\varphi(t) = ce^{-\alpha t} \quad (t \in I, c \in \mathbf{R}).$$

Mivel

$$m_0 = \varphi(0) = c,$$

ezért

$$\varphi(t) = m_0 e^{-\alpha t} \quad (t \in I).$$

A ${\cal T}$ definíciója alapján

$$\varphi(T) = m_0 e^{-\alpha T} = \frac{m_0}{2},$$

azaz $e^{-\alpha T}=1/2.$ Innen

$$T = \frac{\ln 2}{\alpha}.$$

5 Vizsgakérdés

Lipschitz-feltétel. A Picard-Lindelöf-féle egzisztencia-tétel (a fixpont-tétel alkalmazása). A k.é.p. megoldásának az egyértelműsége, unicitási tétel (bizonyítás nélkül).

5.1 Lipschitz-feltétel

Az előzőekben definiáltuk a $k.\acute{e}.p.$ fogalmát: határozzunk meg olyan $\varphi \in I \to \Omega$ függvényt, amelyre (a korábban bevezetett jelölésekkel) igazak a következő állítások:

- 1. \mathcal{D}_{φ} nyílt intervallum;
- $2. \varphi \in D;$
- 3. $\varphi'(x) = f(x, \varphi(x)) \quad (x \in \mathcal{D}_{\omega});$
- 4. adott $\tau \in I$, $\xi \in \Omega$ mellett $\tau \in \mathcal{D}_{\varphi}$ és $\varphi(\tau) = \xi$.

Értelmeztünk a megoldást, az egyértelműen való megoldhatóságot, a teljes megoldást. Speciális esetekben meg is oldottuk a gyakorlat számára is fontos kezdetiérték-problémákat. A továbbiakban megmutatjuk, hogy bizonyos feltételek mellett egy k.é.p. mindig megoldható (egzisztenciatétel).

Legyenek tehát $0 < n \in \mathbb{N}$ mellett az $I \subset \mathbb{R}$, $\Omega \subset \mathbb{R}^n$ nyílt intervallumok, az

$$f: I \times \Omega \to \mathbf{R}^n$$

függvény pedig legyen folytonos. A $\tau \in I$, $\xi \in \Omega$ esetén keressük a fenti differenciálható $\varphi \in I \to \Omega$ függvényt. Az f függvényről feltesszük, hogy minden kompakt $\emptyset \neq Q \subset \Omega$ halmazhoz létezik olyan $L_Q \geq 0$ konstans, amellyel

$$||f(t, y) - f(t, z)||_{\infty} \le L_Q \cdot ||y - z||_{\infty} \quad (t \in I, y, z \in Q).$$

Ekkor azt mondjuk, hogy az f (a d.e. jobb oldala) eleget tesz a Lipschitz-feltételnek.

5.2 Egzisztenciatétel

Tétel (Picard-Lindelöf). Tegyük fel, hogy egy differenciálegyenlet jobb oldala eleget tesz a Lipschitz-feltételnek. Ekkor a szóban forgó differenciálegyenletre vonatkozó tetszőleges kezdetiérték-probléma megoldható.

Bizonyítás (vázlat). Legyenek a δ_1 , $\delta_2 > 0$ olyan számok, hogy

$$I_* := [\tau - \delta_1, \tau + \delta_2] \subset I,$$

és tekintsük az alábbi függvényhalmazt:

$$\mathcal{F} := \{ \psi : I_* \to \Omega : \psi \in C \}.$$

 $Az \mathcal{F} halmaz a$

$$\rho(\phi, \psi) := \max\{\|\phi(x) - \psi(x)\|_{\infty} : x \in I_*\} \quad (\phi, \psi \in \mathcal{F})$$

távolságfüggvénnyel teljes metrikus tér. Ha $\mathcal X$ jelöli a

$$a:I_*\to\mathbf{R}^n$$

függvények összességét, akkor definiáljuk a

$$T: \mathcal{F} \to \mathcal{X}$$

leképezést a következőképpen:

$$T\psi(x) := \xi + \int_{\tau}^{x} f(t, \, \psi(t)) \, dt \in \mathbf{R}^{n} \quad (\psi \in \mathcal{F}, \, x \in I_{*}).$$

Tehát az f függvény koordinátafüggvényeit a "szokásos" f_1, \ldots, f_n szimbólumokkal jelölve, a ψ , f függvények (és egyúttal az f_i -k) folytonossága miatt

$$I_* \ni t \mapsto f_i(t, \psi(t)) \in \mathbf{R} \quad (i = 1, \dots, n)$$

függvények folytonosak. Következőképpen (minden $x \in I_*$ esetén) van értelme a

$$d_i := \int_{\tau}^{x} f_i(t, \psi(t)) dt \quad (i = 1, ..., n)$$

integráloknak, és így a

$$\xi + \int_{\tau}^{x} f(t, \psi(t)) dt := (\xi_1 + d_1, \dots, \xi_n + d_n) \in \mathbf{R}^n$$

"integrálvektoroknak". Továbbá az integrálfüggvények tulajdonságai miatt a $T\psi$ függvény folytonos, minden $x \in (\tau - \delta_1, \tau + \delta_2)$ helyen differenciálható, és

$$(T\psi)'(x) = f(x, \psi(x)).$$

Belátjuk, hogy az I_* alkalmas megválasztásával minden $\psi \in \mathcal{F}$ függvényre $T\psi \in \mathcal{F}$, azaz ekkor

$$T: \mathcal{F} \to \mathcal{F}.$$

Ehhez azt kell biztosítani, hogy

$$\xi + \int_{\tau}^{x} f(t, \psi(t)) dt \in \Omega \quad (x \in I_*)$$

teljesüljön. Válasszuk ehhez először is a $\mu > 0$ számot úgy, hogy a

$$K_{\mu} := \{ y \in \mathbf{R}^n : ||y - \xi||_{\infty} \le \mu \} \subset \Omega$$

tartalmazás fennáljon (ilyen μ az Ω nyíltsága miatt létezik), és legyen

$$M := \max\{\|f(x, y)\|_{\infty} : x \in I_*, y \in K_{\mu}\}$$

(ami meg az f folytonossága és a Weierstrass-tétel miatt létezik, ti. az $I_* \times K_\mu$ halmaz kompakt). A jelzett $T\psi \in \mathcal{F}$ tartalmazás nyilván teljesül, ha

$$\max \left\{ \left| \int_{\tau}^{x} f_i(t, \psi(t)) dt \right| : i = 1, \dots, n \right\} \le \mu \quad (x \in I_*).$$

Módosítsuk most már az \mathcal{F} definícióját úgy, hogy

$$\mathcal{F} := \{ \psi : I_* \to K_\mu : \psi \in C \}.$$

Ekkor az előbbi maximum becsülhető $M \cdot \delta$ -val, ahol

$$\delta := \max\{\delta_1, \, \delta_2\}.$$

Így $M \cdot \delta \leq \mu$ esetén a fenti $T\psi$ is \mathcal{F} -beli. (Ha a kiindulásul választott δ_1 , δ_2 -re $M \cdot \delta > \mu$, akkor írjunk a δ_1 , δ_2 helyébe olyan "új" $0 < \tilde{\delta_1}$, $\tilde{\delta_2}$ -t, hogy

$$[\tau - \tilde{\delta_1}, \, \tau + \tilde{\delta_2}] \subset [\tau - \delta_1, \, \tau + \delta_2]$$

$$M \cdot \max{\{\tilde{\delta_1}, \, \tilde{\delta_2}\}} \le \mu$$

legyen. Az I_* helyett az $\tilde{I}_*:=[\tau-\tilde{\delta_1},\,\tau+\tilde{\delta_2}]$ intervallummal az "új" M az előzőnél legfeljebb kisebb lesz, így az

$$M \cdot \max\{\tilde{\delta_1}, \, \tilde{\delta_2}\} \le \mu$$

becslés nem "romlik" el.) Ezzel értelmeztünk egy $T:\mathcal{F}\to\mathcal{F}$ leképezést, amelyre tetszőleges $\phi,\,\psi\in\mathcal{F}$ mellett

$$\rho(T\psi, T\phi) = \max\{\|T\psi(x) - T\phi(x)\|_{\infty} : x \in I_*\} = \max\left\{ \max\left\{ \left| \int_{\tau}^{x} (f_i(t, \psi(t)) - f_i(t, \phi(t)) dt) \right| : i = 1, \dots, n \right\} : x \in I_* \right\} \le \max\left\{ \left| \int_{\tau}^{x} \max\{|f_i(t, \psi(t)) - f_i(t, \phi(t))| : i = 1, \dots, n \right\} dt \right| : x \in I_* \right\} = \max\left\{ \left| \int_{\tau}^{x} \|f(t, \psi(t)) - f(t, \phi(t))\|_{\infty} dt \right| : x \in I_* \right\}.$$

A Lipschitz-feltétel miatt a $Q:=K_{\mu}$ (nyilván kompakt) halmazhoz van olyan $L_Q\geq 0$ konstans, amellyel

$$||f(t, y) - f(t, z)||_{\infty} \le L_Q \cdot ||y - z||_{\infty} \quad (t \in I, y, z \in Q),$$

speciálisan

$$||f(t, \psi(t)) - f(t, \phi(t))||_{\infty} \le L_{O} \cdot ||\psi(t) - \phi(t)||_{\infty} < L_{O} \cdot \rho(\psi, \phi) \quad (t \in I_{*}).$$

Ezért

$$\rho(T\psi, T\phi) \le L_Q \cdot \delta \cdot \rho(\psi, \phi).$$

Tehát a T leképezés

$$L_Q \cdot \max\{\delta_1, \, \delta_2\} < 1$$

esetén kontrakció. Válasszuk így a δ_1 , δ_2 -t, (ezt - az "eddigi" I_* -ot legfeljebb újra leszűkítve - megtehetjük), és alkalmazzuk a fixpont-tételt, miszerint van olyan $\psi \in \mathcal{F}$, amelyre

$$T\phi = \phi$$
.

Legyen

$$\varphi(x) := \psi(x) \quad (x \in (\tau - \delta_1, \tau + \delta_2)).$$

A T definíciója szerint

$$\varphi(x) = \xi + \int_{\tau}^{x} f(t, \varphi(t)) dt \quad (x \in (\tau - \delta_1, \tau + \delta_2)).$$

Ez azt jelenti, hogy a φ függvény egy folytonos függvény integrálfüggvénye, ezért $\varphi \in D$ és

$$\varphi'(x) = f(x, \varphi(x)) \quad (x \in (\tau - \delta_1, \tau + \delta_2)).$$

Világos, hogy a $\varphi(\tau)=\xi$, más szóval a φ megoldása a szóban forgó kezdetiérték-problémának. \blacksquare

A fenti Picard-Lindelöf-egzisztenciatételben szereplő Lipschitz-feltétel nem csupán a kezdetiérték-problémák megoldhatóságát, hanem azok egyértelmű megoldhatóságát is biztosítja.

Tétel. Az előző tétel feltételei mellett az abban szereplő tetszőleges kezdetiérték-probléma egyértelműen oldható meg, azaz bármely φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Legyen az $f: I \times \Omega \to \mathbf{R}^n$ jobb oldal olyan, hogy $\Omega := \mathbf{R}^n$, és (az előző tétel feltételein kívül) valamilyen α , β pozitív együtthatókkal

$$||f(x, y)||_{\infty} \le \alpha \cdot ||y||_{\infty} + \beta \quad (x \in I, y \in \mathbf{R}^n).$$

Ekkor belátható, hogy az f által meghatározott differenciálegyenletre vonatkozó bármelyik k.é.p. teljes megoldása az I-n van értelmezve.

6 Vizsgakérdés

A lineáris differenciálegyenlet-rendszer vizsgálata: homogén, inhomogén rendszerek. A megoldáshalmaz szerkezete.

6.1 Lineáris differenciálegyenlet-rendszer

Valamilyen $1 \leq n \in \mathbb{N}$ és egy nyílt $I \subset \mathbb{R}$ intervallum esetén adottak a folytonos

$$a_{ik}: I \to \mathbf{R} \quad (i, k = 1, ..., n), b = (b_1, ..., b_n): I \to \mathbf{R}^n$$

függvények, és tekintsük az

$$I \ni x \mapsto A(x) := \left(a_{ik}(x)\right)_{i,k=1}^n \in \mathbf{R}^{n \times n}$$

mátrixfüggvényt. Ha

$$f(x, y) := A(x) \cdot y + b(x) \quad ((x, y) \in I \times \mathbf{K}^n),$$

akkor az f függvény, mint jobb oldal által meghatározott

$$\varphi'(x) = A(x) \cdot \varphi(x) + b(x) \quad (x \in \mathcal{D}_{\varphi})$$

differenciálegyenletet lineáris differenciálegyenletnek (n > 1 esetén lineáris differenciálegyenlet-rendszernek) nevezzük.

Legyenek a fentieken túl adottak még a $\tau \in I$, $\xi \in \mathbf{K}^n$ értékek, és vizsgáljuk a $\varphi(\tau) = \xi$ k.é.p.-t. Ha $I_* \subset I$, $\tau \in \operatorname{int} I_*$, kompakt intervallum, akkor

$$\sup\{|a_{ik}(x)| : x \in I_*\} \in \mathbf{R} \quad (i, k = 1, ..., n),$$

ezért

$$q := \sup\{||A(x)||_{(\infty)} : x \in I_*\} \in \mathbf{R}.$$

Következésképpen

$$||f(x, y) - f(x, z)||_{\infty} = ||A(x) \cdot (y - z)||_{\infty} \le$$

$$||A(x)||_{(\infty)} \cdot ||y - z||_{\infty} \le q \cdot ||y - z||_{\infty} \quad (x \in I_*, y, z \in \mathbf{K}^n).$$

Továbbá a

$$\beta := \sup\{\|b(x)\|_{\infty} : x \in I_*\} \quad (\in \mathbf{R})$$

jelöléssel

$$||f(x, y)||_{\infty} = ||A(x) \cdot y + b(x)||_{\infty} \le ||A(x) \cdot y||_{\infty} + ||b(x)||_{\infty} \le ||A(x) \cdot y||_{\infty} + ||b(x) \cdot y||_{\infty} + ||b(x)$$

$$||A(x)||_{(\infty)} \cdot ||y||_{\infty} + ||b(x)||_{\infty} \le q \cdot ||y||_{\infty} + \beta \quad (x \in I_*, y \in \mathbf{K}^n),$$

ezért minden k.é.p. teljes megoldása az I intervallumon van értelmezve. Azt mondjuk, hogy a szóban forgó d.e. homogén, ha $b \equiv 0$, inhomogén, ha létezik $x \in I$, hogy $b(x) \neq 0$. Legyenek

$$\mathcal{M}_h := \{ \psi : I \to \mathbf{K}^n : \psi \in D, \ \psi' = A \cdot \psi \},\$$

$$\mathcal{M} := \{ \psi : I \to \mathbf{K}^n : \psi \in D, \ \psi' = A \cdot \psi + b \}.$$

6.2 Lineáris differenciálegyenlet-rendszerek alaptétele

Tétel. A bevezetésben mondott feltételek mellett

- 1. az \mathcal{M}_h halmaz n dimenziós lineáris tér a **K**-ra vonatkozóan;
- 2. tetszőleges $\psi \in \mathcal{M}$ esetén

$$\mathcal{M} = \psi + \mathcal{M}_h := \{ \psi + \chi : \chi \in \mathcal{M}_h \};$$

3. ha a $\phi_k = (\phi_{k1}, \ldots, \phi_{kn})$ $(k = 1, \ldots, n)$ függvények bázist alkotnak az \mathcal{M}_h -ban, akkor léteznek olyan $g_k : I \to \mathbf{K}$ $(k = 1, \ldots, n)$ differenciálható függvények, amelyekkel

$$\psi := \sum_{k=1}^{n} g_k \cdot \phi_k \in \mathcal{M}.$$

Bizonyítás. Az 1. állítás bizonyításához mutassuk meg először is azt, hogy bármilyen ψ , $\varphi \in \mathcal{M}_h$ és $c \in \mathbf{K}$ esetén $\psi + c \cdot \varphi \in \mathcal{M}_h$:

$$(\psi + c \cdot \varphi)' = \psi' + c \cdot \varphi' = A \cdot \psi + c \cdot A \cdot \varphi = A(\psi + c \cdot \varphi),$$

amiből a mondott állítás az \mathcal{M}_h definíciója alapján nyilvánvaló. Tehát az \mathcal{M}_h lineáris tér a \mathbf{K} felett.

Most megmutatjuk, hogy ha $m \in \mathbb{N}$, és $\chi_1, \ldots, \chi_m \in \mathcal{M}_h$, tetszőleges függvények, akkor az alábbi ekvivalencia igaz:

a χ_1, \ldots, χ_m függvények akkor és csak akkor alkotnak lineárisan független rendszert az \mathcal{M}_h vektortérben, ha bármilyen $\tau \in I$ esetén a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok lineárisan függetlenek a \mathbf{K}^n -ben.

Az ekvivalencia egyik fele nyilvánvaló: ha a χ_1,\ldots,χ_m -ek lineárisan összefüggnek, akkor alkalmas $c_1,\ldots,c_m\in \mathbf{K},\ |c_1|+\cdots+|c_n|>0$ együtthatókkal

$$\sum_{k=1}^{m} c_k \cdot \chi_k \equiv 0.$$

Speciálisan minden $\tau \in I$ helyen is

$$\sum_{k=1}^{m} c_k \cdot \chi_k(\tau) = 0 \quad (\in \mathbf{K}^n).$$

Így a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok összefüggő rendszert alkotnak a \mathbf{K}^n -ben.

Fordítva, legyen $\tau \in I$, és tegyük fel, hogy a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok összefüggnek. Ekkor az előbbi (nem csupa nulla) $c_1, \ldots, c_m \in \mathbf{K}$ együtthatókkal

$$\sum_{k=1}^{m} c_k \cdot \chi_k(\tau) = 0.$$

Már tudjuk, hogy

$$\phi := \sum_{k=1}^{m} c_k \cdot \chi_k \in \mathcal{M}_h,$$

ezért az így definiált $\phi: I \to \mathbf{K}^n$ függvény megoldása a

$$\varphi' = A \cdot \varphi, \, \varphi(\tau) = 0$$

homogén lineáris differenciálegyenletre vonatkozó kezdetiérték-problémának. Világos ugyanakkor, hogy a $\Psi \equiv 0$ is a most mondott k.é.p. megoldása az

I-n. Azt is tudjuk azonban, hogy (ld. fent) ez a k.é.p. (is) egyértelműen oldható meg, ezért $\phi \equiv \Psi \equiv 0$. Tehát a χ_1, \ldots, χ_m függvények is összefüggnek.

Ezzel egyúttal azt is beláttuk, hogy az \mathcal{M}_h vektortér véges dimenziós és a dim \mathcal{M}_h dimenziója legfeljebb n.

Tekintsük most a

$$\varphi' = A \cdot \varphi, \ \varphi(\tau) = e_i \quad (i = 1, \dots, n)$$

kezdetiérték-problémákat, ahol az $e_i \in \mathbf{K}^n$ (i = 1, ..., n) vektorok a \mathbf{K}^n tér "szokásos" (kanonikus) bázisvektorait jelölik. Ha

$$\chi_i:I\to\mathbf{K}^n$$

jelöli az említett k.é.p. teljes megoldását, akkor a

$$\chi_i(\tau) = e_i \quad (i = 1, \dots, n)$$

vektorok lineárisan függetlenek. Így az előbbiek alapján a χ_1, \ldots, χ_n függvények is azok. Tehát az \mathcal{M}_h dimenziója legalább n, azaz a fentiekre tekintettel dim $\mathcal{M}_h = n$.

A 2. állítás igazolásához legyen $\chi \in \mathcal{M}_h$. Ekkor $\psi + \chi \in D$, és

$$(\psi + \chi)' = \psi' + \chi' = A \cdot \psi + b + A \cdot \chi = A \cdot (\psi + \chi) + b,$$

amiből $\psi + \chi \in \mathcal{M}$ következik. Ha most egy $\varphi \in \mathcal{M}$ függvényből indulunk ki és $\chi := \varphi - \psi$, akkor $\chi \in D$, és

$$\chi' = \varphi' - \psi' = A \cdot \varphi + b - (A \cdot \psi + b) = A \cdot (\varphi - \psi) = A \cdot \chi,$$

amiből $\chi \in \mathcal{M}_h$ adódik. Tehát $\varphi = \psi + \chi$ a 2.-ben mondott előállítása a φ függvénynek.

A tétel 3. részének a bizonyítása érdekében vezessük be az alábbi jelöléseket, ill. fogalmakat. A

$$\phi_k = (\phi_{k1}, \ldots, \phi_{kn}) \quad (k = 1, \ldots, n)$$

bázisfüggvények mint oszlopvektor-függvények segítségével tekintsük a

$$\Phi: I \to \mathbf{K}^{n \times n}$$

mátrixfüggvényt:

$$\Phi := \begin{bmatrix} \phi_1 & \cdots & \phi_n \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{21} & \cdots & \phi_{n1} \\ \phi_{12} & \phi_{22} & \cdots & \phi_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi_{1n} & \phi_{2n} & \cdots & \phi_{nn} \end{bmatrix}.$$

Legyen

$$\Phi' := \begin{bmatrix} \phi'_1 & \cdots & \phi'_n \end{bmatrix} = \begin{bmatrix} \phi'_{11} & \phi'_{21} & \cdots & \phi'_{n1} \\ \phi'_{12} & \phi'_{22} & \cdots & \phi'_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi'_{1n} & \phi'_{2n} & \cdots & \phi'_{nn} \end{bmatrix}$$

a Φ deriváltja. Ekkor könnyen belátható, hogy

$$\Phi' = A \cdot \Phi$$
.

Továbbá tetszőleges $g_1,\,\ldots,\,g_n:I\to\mathbf{K}$ differenciálgató függvényekkel a

$$g := (g_1, \ldots, g_n) : I \to \mathbf{K}^n$$

vektorfüggvény differenciálható,

$$\psi := \sum_{k=1}^{n} g_k \cdot \phi_k = \Phi \cdot g,$$

és

$$\psi' = \Phi' \cdot g + \Phi \cdot g' = (A \cdot \Phi) \cdot g + \Phi \cdot g'.$$

A $\psi \in \mathcal{M}$ tartalmazás nyilván azzal ekvivalens, hogy

$$\psi' = (A \cdot \Phi) \cdot g + \Phi \cdot g' = A \cdot \psi + b = A \cdot (\Phi \cdot g) + b = (A \cdot \Phi) \cdot g + b,$$

következésképpen azzal, hogy

$$\Phi \cdot q' = b.$$

A 2. pont alapján tetszőleges $x \in I$ helyen a $\phi_1(x), \ldots, \phi_n(x)$ vektorok lineárisan függetlenek, azaz a $\Phi(x)$ mátrix nem szinguláris. A mátrixok inverzének a kiszámítása alapján egyszerűen adódik, hogy a

$$\Phi^{-1}(x) := (\Phi(x))^{-1} \quad (x \in I)$$

definícióval értelmezett

$$\Phi^{-1}: I \to \mathbf{K}^{n \times n}$$

mátrixfüggvény komponens-függvényei is folytonosak. Ezért a

$$(h_1, \ldots, h_n) := \Phi^{-1} \cdot b : I \to \mathbf{K}^n$$

függvény is folytonos. Olyan folytonosan differenciálható

$$g:I\to \mathbf{K}^n$$

függvényt keresünk tehát amelyikre $g' = \Phi^{-1} \cdot b,$ azaz

$$g_i' = h_i \quad (i = 1, \dots, n).$$

Ilyen g_i létezik, nevezetesen a (folytonos) h_i $(i=1,\ldots,n)$ függvények bármelyik primitív függvénye ilyen.

Alaprendszer, alapmátrix. Az állandók variálásának a módszere. Alapmátrix előállítása állandó együtthatós diagonalizálható mátrix esetén. Az n=2 eset vizsgálata tetszőleges, állandó együtthatós mátrixra.

7.1 Alaprendszer, alapmátrix

Az \mathcal{M}_h vektortérben minden bázist az illető egyenlet *alaprendszerének* nevezünk. Ha $\phi_1, \ldots, \phi_n \in \mathcal{M}_h$ egy alaprendszer, akkor a

$$\Phi := \begin{bmatrix} \phi_1 & \cdots & \phi_n \end{bmatrix} : I \to \mathbf{K}^{n \times n}$$

mátrixfüggvény a szóban forgó lineáris differenciálegyenlet (egy) ún. alapmátrixa. Tehát

$$\mathcal{M}_h = \left\{ \sum_{k=1}^n c_k \cdot \phi_k : c_1, \dots, c_n \in \mathbf{K} \right\} = \left\{ \Phi \cdot c : c \in \mathbf{K}^n \right\}.$$

Az $\mathcal{M} = \psi + \mathcal{M}_h$ előállításban minden $\psi \in \mathcal{M}$ függvényt partikuláris megoldásként említünk.

7.2 Állandók variálásának módszere

Ld. 6.2 alcímben tárgyalt tétel 3. pontjának bizonyítása. A partikuláris megoldás

$$\psi = \Phi \cdot g$$

alakban való előállítása (alkalmas $g: I \to \mathbf{K}^n$ differenciálható függvénnyel) az 6.2 alcímben tárgyalt tétel bizonyításában bemutatott módszer az állandók variálása. Tetszőleges ϕ_1, \ldots, ϕ_n alaprendszerrel és $\psi \in \mathcal{M}$ partikuláris megoldással

$$\mathcal{M} = \left\{ \psi + \sum_{k=1}^{n} c_k \cdot \phi_k : c_1, \dots, c_n \in \mathbf{K} \right\}.$$

Ha Φ egy alapmátrix, akkor ugyanez a következőképpen írható:

$$\mathcal{M} = \{ \psi + \Phi \cdot c : c \in \mathbf{K}^n \} = \{ \Phi \cdot (g+c) : c \in \mathbf{K}^n \}.$$

7.3 Állandó együtthatós diagonalizálható eset

Legyen most

$$f(x, y) := A \cdot y + b(x) \quad ((x, y) \in I \times \mathbf{K}^n),$$

ahol $1 \leq n \in \mathbb{N}$, $I \subset \mathbb{R}$ nyîlt intervallum mellett

$$A \in \mathbf{R}^{n \times n}, \ b : I \to \mathbf{R}^n, \ b \in C.$$

Tegyük fel, hogy A diagonalizálható, azaz létezik $T \in \mathbf{K}^{n \times n}$, det $T \neq 0$, hogy $T^{-1}AT$ mátrix diagonális: alkalmas $\lambda_1, \ldots, \lambda_n \in \mathbf{K}$ számokkal

$$\Lambda := T^{-1}AT = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

T invertálhatósága miatt a

$$T = [t_1 \cdots t_n]$$

 $t_i \ (i=1,\ldots,n)$ oszlopvektorok lineárisan függetlenek, azaz

$$AT = [At_1 \cdots At_n] = T\Lambda = [\lambda_1 \cdot t_1 \cdots \lambda_n \cdots t_n]$$

miatt

$$A \cdot t_i = \lambda_i \cdot t_i \quad (i = 1, \ldots, n).$$

Mivel

$$t_i \neq 0 \quad (i = 1, \ldots, n),$$

ezért mindez röviden azt jelenti, hogy a $\lambda_1, \ldots, \lambda_n$ számok az A mátrix sajátértékei, a t_1, \ldots, t_n vektorok pedig rendre a megfelelő sajátvektorok. Lévén, a t_i -k lineárisan függetlenek, az A-ra vonatkozó feltételünk úgy fogalmazható, hogy van a \mathbf{K}^n -ben (az A sajátvektoraiból álló) sajátvektorbázis.

A homogén egyenlet tehát a következőképpen írható fel:

$$\varphi' = A \cdot \varphi = T\Lambda T^{-1} \cdot \varphi,$$

amiből

$$(T^{-1}\varphi)' = \Lambda \cdot (T^{-1}\varphi)$$

következik. Vegyük észre, hogy ha $\varphi \in \mathcal{M}_h$, akkor a $\psi := T^{-1}\varphi$ függvény megoldása a Λ diagonális mátrix által meghatározott állandó együtthatós homogén lineáris egyenletnek. Ez utóbbit ez előző tétel alapján nem nehéz megoldani. Legyenek ui. a

$$\psi_i: I \to \mathbf{K}^n \quad (i = 1, \ldots, n)$$

függvények a következők:

$$\psi_i(x) := e^{\lambda_i \cdot x} \cdot e_i \quad (x \in I, \ i = 1, \dots, \ n).$$

Világos, hogy $\psi_i \in D$ és

$$\psi_i'(x) = \lambda_i \cdot e^{\lambda_i \cdot x} \cdot e_i = e^{\lambda_i \cdot x} \cdot (\Lambda \cdot e_i) = \Lambda \cdot (e^{\lambda_i \cdot x} \cdot e_i) = \Lambda \cdot \psi_i(x) \quad (x \in I, i = 1, \dots, n)$$

Más szóval a ψ_i -k valóban megoldásai a Λ által meghatározott homogén lineáris differenciálegyenletnek. Mivel bármely $\tau \in I$ esetén a

$$\psi_i(\tau) = e^{\lambda_i \cdot \tau} \cdot e_i \quad (i = 1, \dots, n)$$

vektorok nyilván lineárisan függetlenek, ezért az előző tétel bizonyításában mondottak szerint a ψ_i ($i=1,\ldots,n$) függvények lineárisan függetlenek. Ha

$$\phi_i := T \cdot \psi_i \quad (i = 1, \dots, n),$$

akkor nyilván a ϕ_i -k is lineárisan függetlenek,

$$\phi_i(x) = e^{\lambda_i \cdot x} \cdot t_i \quad (x \in I, i = 1, \dots, n),$$

és minden $i = 1, \ldots, n$ indexre

$$\phi_i' = A \cdot \phi_i$$
.

Tehát $\phi_i \in \mathcal{M}_h$ (i = 1, ..., n) egy bázis. Ezzel beláttuk az alábbi tételt:

Tétel. Tegyük fel, hogy az $A \in \mathbf{R}^{n \times n}$ mátrix diagonalizálható. Legyenek a sajátértékei $\lambda_1, \ldots, \lambda_n \in \mathbf{K}$, egy-egy megfelelő sajátvektora pedig $t_1, \ldots, t_n \in \mathbf{K}^n$. Ekkor a

$$\varphi' = A \cdot \varphi$$

homogén lineáris differenciálegyenletnek a

$$\phi_i(x) := e^{\lambda_i \cdot x} \cdot t_i \quad (x \in \mathbf{R}, i = 1, \dots, n)$$

függvények lineárisan független megoldásai.

7.4 Tetszőleges állandó együtthatós mátrix

Tekintsük az n=2 esetet, amikor is valamilyen $a, b, c, d \in \mathbf{R}$ számokkal

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{R}^{2 \times 2}.$$

Könnyű meggyőződni arról, hogy ez a mátrix pontosan akkor nem diagonalizálható, ha

$$(a-d)^2 + 4bc = 0$$
 és $|b| + |c| > 0$.

Ekkor egyetlen sajátértéke van az A-nak nevezetesen

$$\lambda := \frac{a+d}{2},$$

legyen a t_1 egy hozzá tartozó sajátvektor:

$$0 \neq t_1 \in \mathbf{R}^2, At_1 = \lambda t_1.$$

Egyszerű számolással igazolható olyan $t_2 \in \mathbf{R}^2$ vektor létezése, amelyik lineárisan független a t_1 -től és

$$At_2 = t_1 + \lambda t_2.$$

Ha mármost a $T \in \mathbf{R}^{2\times 2}$ mátrix oszlopvektorai rendre a t_1, t_2 vektorok: $T := [t_1 \, t_2]$, akkor

$$T^{-1}AT = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}.$$

Ezt felhasználva könnyen belátható, hogy a

$$\phi_1(x) := e^{\lambda x} \cdot t_1, \, \phi_2(x) := e^{\lambda x} \cdot (t_2 + xt_1) \quad (x \in \mathbf{R})$$

függvénypár egy alaprendszer. Valóban, $\phi_i \in \mathcal{M}_h \quad (i=1,\,2),$ mert egyrészt

$$\phi_1'(x) = \lambda e^{\lambda x} \cdot t_1 = e^{\lambda x} A t_1 = A(e^{\lambda x} \cdot t_1) = A\phi_1(x),$$

másrészt

$$\phi_2'(x) = \lambda e^{\lambda x} \cdot t_2 + e^{\lambda x} \cdot t_1 + \lambda e^{\lambda x} x \cdot t_1 = e^{\lambda x} ((t_1 + \lambda \cdot t_2) + \lambda x \cdot t_1) = e^{\lambda x} (At_2 + xAt_1) = A(e^{\lambda x} (t_2 + x \cdot t_1)) = A\phi_2(x) \quad (x \in \mathbf{R}).$$

Mivel a

$$\phi_1(0) = t_1, \, \phi_2(0) = t_2$$

vektorok lineárisan függetlenek, ezért a ϕ_1 , ϕ_2 függvények is lineárisan függetlenek, azaz a ϕ_1 , ϕ_2 egy alaprendszer.

7.5 Valós értékű megoldások

Tegyük fel, hogy a $\lambda \in \mathbf{K}$ szám az $A \in \mathbf{R}^{n \times n}$ (diagonalizálható) együtthatómátrixnak egy sajátértéke, a $t_{\lambda} \in \mathbf{K}^{n}$ vektor pedig egy λ -hoz tartozó sajátvektor. Ha a λ valós, akkor nyilván a t_{λ} sajátvektor is választható "valósnak", azaz feltehető, hogy $t_{\lambda} \in \mathbf{R}^{n}$. Ebben az esetben az \mathcal{M}_{h} -beli

$$\phi_{\lambda}(x) := e^{\lambda x} \cdot t_{\lambda} \quad (x \in \mathbf{R})$$

bázisfüggvény is "valós" tehát $\phi_{\lambda}: \mathbf{R} \to \mathbf{R}^{n}$.

Ha viszont a λ (nem valós) komplex szám, azaz

$$\lambda = u + \imath v \in \mathbf{C} \setminus \mathbf{R}$$

(alkalmas $u \in \mathbf{R}$ és $0 \neq v \in \mathbf{R}$ számokkal), akkor – lévén az A karakterisztikus polinomja valós együtthatós – az A-nak egyúttal a

$$\overline{\lambda} = u + iv$$

(komplex konjugált) is (ugyanannyiszoros) sajátértéke. Hasonlóan, ha a

$$t_{\lambda} = S_{\lambda} + i Y_{\lambda} \in \mathbf{K}^n$$

vektor (alkalmas $S_{\lambda}, Y_{\lambda} \in \mathbf{R}^n$ vektorokkal) az A-nak a λ -hoz tartozó sajátvektora, akkor a

$$\bar{t}_{\lambda} = S_{\lambda} - iY_{\lambda}$$

vektor a $\overline{\lambda}$ -hoz tartozó sajátvektor. Továbbá a megfelelő bázisfüggvények a következők:

$$\phi_{\lambda}(x) := e^{\lambda x} \cdot t_{\lambda}, \ \phi_{\overline{\lambda}}(x) := e^{\overline{\lambda}x} \cdot \overline{t}_{\lambda} \quad (x \in \mathbf{R}).$$

Rövid számolással ellenőrizhető, hogy

$$\phi_{\overline{\lambda}}(x) = \overline{\phi_{\lambda}(x)} \quad (x \in \mathbf{R}).$$

Mivel a homogén egyenlet (teljes) megoldásainak az \mathcal{M}_h halmaza a \mathbf{K} felett vektortér, ezért a

$$\frac{\phi_{\lambda} + \overline{\phi_{\lambda}}}{2} = \operatorname{Re} \phi_{\lambda}, \, \frac{\phi_{\lambda} - \overline{\phi_{\lambda}}}{2} = \operatorname{Im} \phi_{\lambda}$$

függvények is \mathcal{M}_h -beliek. Világos, hogy

$$e^{\lambda x} = e^{ux} \cdot (\cos(vx) + i\sin(vx)) \quad (x \in \mathbf{R})$$

miatt

$$\phi_{\lambda, r}(x) := \operatorname{Re} \phi_{\lambda}(x) = e^{ux} \cdot (\cos(vx) \cdot S_{\lambda} - \sin(vx) \cdot Y_{\lambda}) \quad (x \in \mathbf{R}),$$

$$\phi_{\lambda,i}(x) := \operatorname{Im} \phi_{\lambda}(x) = e^{ux} \cdot \left(\sin(vx) \cdot S_{\lambda} + \cos(vx) \cdot Y_{\lambda}\right) \quad (x \in \mathbf{R}).$$

Továbbá

$$\phi_{\lambda,r}(0) = S_{\lambda} = \frac{t_{\lambda} + \overline{t_{\lambda}}}{2},$$

$$\phi_{\lambda,i}(0) = Y_{\lambda} = \frac{t_{\lambda} - \overline{t_{\lambda}}}{2i}.$$

A t_{λ} , \bar{t}_{λ} sajátvektorok lineárisan függetlenek, ezért az S_{λ} , Y_{λ} vektorok is azok, következésképpen a $\phi_{\lambda,r}$, $\phi_{\lambda,i}$ függvények is lineárisan függetlenek. Így ϕ_{λ} , $\phi_{\overline{\lambda}}$ függvényeket kicserélve az előző függvényekre, továbbra is alaprendszert kapunk.

Magasabb rendű lineáris differenciálegyenlet. Az átviteli elv. A megoldáshalmaz szerkezete. Az állandók variálásának a módszere.

8.1 "Új" feladat megfogalmazása

Legyen $1 \le n \in \mathbb{N}$, $I \subset \mathbb{R}$ nyílt intervallum, az

$$a_k: I \to \mathbf{R} \quad (k = 0, \ldots, n-1), c: I \to \mathbf{R}$$

függvényekről tegyük fel, hogy folytonosak. Olyan $\varphi \in I \to \mathbf{K}$ függvényt keresünk, amelyikre

- 1. $\mathcal{D}_{\varphi} \subset I$ nyílt intervallum;
- 2. $\varphi \in D^n$;

3.
$$\varphi^{(n)}(x) + \sum_{k=0}^{n-1} a_k(x) \cdot \varphi^k(x) = c(x) \quad (x \in \mathcal{D}_{\varphi}).$$

Ezt a feladatot röviden n-edrendű lineáris differenciálegyenletnek nevezzük. Minden olyan φ függvény amelyik eleget tesz az előbbi kívánalmaknak, az illető differenciálegyenlet (egy) megoldása.

Tegyük fel, hogy a fentieken túl adottak még a

$$\tau \in I, \, \xi_0, \, \ldots, \, \xi_{n-1} \in \mathbf{K}$$

számok. Ha az előbbi φ megoldástól azt is elvárjuk, hogy

4.
$$\tau \in \mathcal{D}_{\varphi}, \ \varphi^{(k)} = \xi_k \quad (k = 0, \dots, n-1),$$

akkor a szóban forgó n-edrendű lineáris differenciálegyenletre vonatkozó kezdetiérték-problémáról beszélünk.

Ha n=1, akkor egy lineáris differenciálegyenletről van szó, ezért a továbbiakban nyugodtan feltehetjük már, hogy $n \geq 2$.

Az átviteli elv segítségével a most megfogalmazott feladat visszavezethető a lineáris differenciálegyenlet-rendszerek vizsgálatára. (A későbbiekben szereplő állítások is részben ennek az elvnek a segítségével láthatók majd be.) Vezessük be ui. az alábbi jelöléseket: legyen $2 \le n \in \mathbb{N}$ és

$$b := (b_1, \ldots, b_n) : I \to \mathbf{R}^n, b(x) := \begin{pmatrix} 0 \\ 0 \\ \vdots \\ c(x) \end{pmatrix} \quad (x \in I),$$

$$A := (a_{ik})_{i, k=1}^{n} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & -a_{2} & -a_{3} & \cdots & -a_{n-1} \end{bmatrix} : I \to \mathbf{R}^{n \times n}.$$

Ekkor

$$f(x,y) := A(x) \cdot y + b(x) \quad (x \in I, y \in \mathbf{K}^n).$$

Ha tehát a

$$\psi = (\psi_1, \ldots, \psi_n) \in I \to \mathbf{K}^n$$

differenciálható függvény ez utóbbi lineáris differenciálegyenlet-rendszernek (egy) megoldása, akkor $\mathcal{D}_{\psi} \subset I$ nyílt intervallum, és bármely $x \in \mathcal{D}_{\psi}$ esetén

$$\psi'(x) = A(x) \cdot \psi(x) + b(x) \quad (x \in \mathcal{D}_{\psi}).$$

Azaz

$$\begin{pmatrix} \psi_1' \\ \psi_2' \\ \vdots \\ \vdots \\ \psi_n' \end{pmatrix} = \psi_1 \cdot \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -a_0 \end{pmatrix} + \psi_2 \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -a_1 \end{pmatrix} + \dots + \psi_n \cdot \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ -a_{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ c \end{pmatrix},$$

tehát

$$\begin{pmatrix} \psi_1' \\ \psi_2' \\ \vdots \\ \vdots \\ \psi_n' \end{pmatrix} = \begin{pmatrix} \psi_2 \\ \psi_3 \\ \vdots \\ \vdots \\ \sum_{k=1}^n (-a_{k-1}) \cdot \psi_k + c \end{pmatrix}.$$

Ez azt jelenti, hogy

$$\begin{cases} \psi_i'(x) = \psi_{i+1}(x) & (i = 1, \dots, n-1) \\ \psi_n'(x) = \sum_{k=1}^n (-a_{k-1}(x)) \cdot \psi_k(x) + c(x). \end{cases}$$
 (*)

Ennek alapján eléggé nyilvánvaló az alábbi állítás.

8.2 Átviteli elv

Tétel. Ha a φ függvény megoldása a fenti n-edrendű lineáris differenciálegyenletnek, akkor az

$$I \ni x \mapsto \psi(x) := (\varphi(x), \varphi'(x), \dots, \varphi^{(n-1)}(x)) \in \mathbf{K}^n$$

függvényre igazak a (\star) egyenlőségek. Fordítva, ha a $\psi = (\psi_1, \ldots, \psi_n)$ függvény eleget tesz a (\star) -nak, akkor a $\varphi := \psi_1$ (első) komponensfüggvény megoldása a szóban forgó n-edrendű lineáris differenciálegyenletnek. Ha adottak a $\tau \in I$, $\xi_0, \ldots, \xi_{n-1} \in \mathbf{K}$ kezdeti értékek, és a φ , megoldása a

$$\varphi^{(k)}(\tau) = \xi_k \quad (k = 0, \dots, n-1)$$

k.é.p.-nak, akkor a (\star) lineáris differenciálegyenlet-rendszer előbbi ψ megoldása kielégíti a

$$\psi(\tau) = (\xi_0, \ldots, \xi_{n-1}) \in \mathbf{K}^n$$

kezdeti feltételt.

Legyen most

$$\mathcal{M}_h := \Big\{ \varphi : I \to \mathbf{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = 0 \Big\}.$$

Az \mathcal{M}_h függvényhalmaz tehát nem más, mint a

$$c(x) := 0 \quad (x \in I)$$

esetnek megfelelő homogén n-edrendű lineáris differenciálegyenlet I intervallumon értelmezett megoldásainak a halmaza. Legyen továbbá

$$\mathcal{M} := \left\{ \varphi : I \to \mathbf{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = c \right\}$$

a kiindulási n-edrendű lineáris differenciálegyenlet I-n értelmezett megoldásainak a halmaza. Az utóbbival kapcsolatban már nyilván feltehető, hogy valamilyen $x \in I$ helyen $c(x) \neq 0$, azaz az illető egyenlet inhomogén. Ekkor az átviteli elv alapján a következőket mondhatjuk.

8.3 Állandók variálásának módszere

Tétel. Az n-edrendű lineáris differenciálegyenletet illetően

- 1. az \mathcal{M}_h halmaz n dimenziós lineáris tér a **K**-ra vonatkozóan;
- 2. tetszőleges $\omega \in \mathcal{M}$ esetén

$$\mathcal{M} = \omega + \mathcal{M}_h := \{\omega + \chi : \chi \in \mathcal{M}_h\};$$

3. ha a $\varphi_1, \ldots, \varphi_n$ függvények bázist alkotnak az \mathcal{M}_h -ban, akkor léteznek olyan differenciálható $g_k: I \to \mathbf{K} \quad (k=1,\ldots,n)$ függvények, amelyekkel

$$\omega := \sum_{k=1}^{n} g_k \varphi_k \in \mathcal{M}.$$

Bizonyításképpen elegendő annyit megjegyezni, hogy az \mathcal{M}_h -beli

$$\varphi_1, \ldots, \varphi_m : I \to \mathbf{K} \quad (1 \le m \in \mathbf{N})$$

függvények akkor és csak akkor függetlenek, ha a

$$\hat{\varphi}_j := \left(\varphi_j, \, \varphi'_j, \, \dots, \, \varphi_j^{(n-1)} \right) : I \to \mathbf{K}^n \quad (j = 1, \, \dots, \, m)$$

(vektor)függvények is azok.

Ha $\phi_1, \ldots, \phi_n \in \mathcal{M}_h$ bázis, akkor minden bázist (most is) alaprendszernek, az előző tételben szereplő ω függvényt pedig partikuláris megoldásnak nevezünk. Egy partikuláris megoldásnak az előző tétel szerinti előállítását az állandók variálásaként említjük,

Tegyük fel tehát, hogy $\varphi_1, \ldots, \varphi_n \in \mathcal{M}_h$ alaprendszer, ekkor a

$$\hat{\varphi}_j := \left(\varphi_j, \, \varphi'_j, \, \dots, \, \varphi_j^{(n-1)}\right) \quad (j = 1, \, \dots, \, n)$$

függvények alaprendszert alkotnak az átviteli elvből adódó (\star) lineáris differenciálegyenlet-rendszerre vonatkozóan. Más szóval a

$$\Phi := [\hat{\varphi}_1 \cdots \hat{\varphi}_n] = \begin{bmatrix} \varphi_1 & \varphi_1 & \cdots & \varphi_n \\ \varphi'_1 & \varphi'_1 & \cdots & \varphi'_n \\ \vdots & \vdots & \cdots & \vdots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \cdots & \varphi_n^{(n-1)} \end{bmatrix} : I \to \mathbf{K}^{n \times n}$$

mátrixfüggvény alapmátrixa a (*)-rendszernek. Innen tudjuk, hogy a

$$g = (g_1, \ldots, g_n) : I \to \mathbf{K}^n$$

jelöléssel a $\Phi \cdot g$ függvény pontosan akkor partikuláris megoldása a (\star) -nak (alkalmas differenciálható $g_1, \ldots, g_n: I \to \mathbf{K}$ függvényekkel), ha

$$\Phi \cdot g' = b = (0, \dots, 0, c).$$

Ez azt jelenti, hogy a $\Phi \cdot g$ függvény első komponense, azaz az

$$\omega := \sum_{k=1}^{n} \varphi_k \cdot g_k$$

függvény akkor és csak akkor partikuláris megoldása az n-edrendű lineáris differenciálegyenletnek, ha

Ennek a $(g'_1, \ldots, g'_n$ függvényekre mint "ismeretlenekre" vonatkozó) lineáris (függvény)egyenletrendszernek a determinánsa (determináns-függvénye), azaz a

$$W(x) := \det \left(\varphi_i^{(k-1)}(x) \right)_{k = 1}^n = \det \left(\Phi(x) \right) \quad (x \in I)$$

leképezés (az ún. Wronski-determináns) a $\hat{\varphi}_1, \ldots, \hat{\varphi}_n$ függvények lineáris függetlensége miatt egyetlen $x \in I$ helyen sem tűnik el.

Állandó együtthatós magasabb rendű homogén lineáris differenciálegyenlet egy alaprendszerének az előállítása, a karakterisztikus polinom szerepe (a bizonyítás vázlata).

Partikuláris megoldás kvázi-polinom jobb oldal esetén (a bizonyítás vázlata). A csillapítás nélküli kényszerrezgés vizsgálata, rezonancia.

A függvénysorozat, függvénysor fogalma. Hatványsorok, trigonometrikus sorok, Fourier-sorok. A Dirichlet-féle magfüggvény. Konvergencia, határfüggvény (összegfüggvény), egyenletes konvergencia. A Weierstrass-féle majoráns kritérium.

11.1 Függvénysorozatok, függvénysorok

A függvénysorozatok fogalmával rész találkoztunk már korábban is: az (f_n) sorozatot függvénysorozatnak nevezzük, ha minden $n \in \mathbb{N}$ esetén az f_n függvény. A továbbiakban mindig azzal a feltételezéssel élünk, hogy valamilyen $\neq X$ halmazzal

$$f_n \in X \to \mathbf{K} \quad (n \in N),$$

és egy $\emptyset \neq \mathcal{D} \subset X$ halmazzal

$$\mathcal{D}_{f_n} = \mathcal{D} \quad (n \in \mathbf{N}).$$

Pl. a

$$h_n(t) := t^n \quad (t \in \mathcal{D} := \mathbf{R}, \ n \in N)$$

függvények egy (h_n) függvénysorozatot határoznak meg.

A fenti (f_n) függvénysorozat által meghatározott $\sum (f_n)$ függvénysor:

$$\sum (f_n) := \left(\sum_{k=0}^n f_k\right).$$

A $\sum (f_n)$ függvénysor tehát nem más, mint az

$$F_n := \sum_{k=0}^n f_k \quad (n \in \mathbf{N})$$

részletősszegfüggvények által meghatározott (F_n) függvénysorozat:

$$\sum (f_n) := (F_n).$$

Így pl. az előbbi

$$h_n(t) := t^n \quad (t \in \mathbf{R}, \ n \in \mathbf{N})$$

függvények esetén $\sum (h_n) = (H_n)$, ahol az $n \in \mathbf{N}$ indexekre

$$H_n(t) = \sum_{k=0}^n h_k(t) = \sum_{k=0}^n t^k = \begin{cases} n+1 & (t=1) \\ \frac{1-t^{n+1}}{1-t} & (t \neq 1) \end{cases} \quad (t \in \mathbf{R}).$$

11.2 Konvergencia, határfüggvény

Tekintsük a fenti (f_n) függvénysorozatot. Ha egy $x \in \mathcal{D}$ elem esetén konvergens a helyettesítési értékeknek az $(f_n(x))$ sorozata, akkor azt mondjuk, hogy az (f_n) függvénysorozat konvergens az x helyen. A

$$\mathcal{D}_0 := \left\{ x \in \mathcal{D} : \left(f_n(x) \right) \text{ konvergens} \right\}$$

halmaz az (f_n) függvénysorozat konvergenciatartománya. Ha $\mathcal{D}_0 \neq \emptyset$, akkor az

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (x \in \mathcal{D}_0)$$

definícióval értelmezett

$$f:\mathcal{D}_0\to\mathbf{K}$$

függvény az (f_n) függvénysorozat határfüggvénye. A $\mathcal{D}_0 = \mathcal{D}_f$ esetben azt röviden azt mondjuk, hogy az (f_n) függvénysorozat pontonként konvergens.

Pl. az előbbi (h_n) függvénysorozattal $\mathcal{D}_0 = (-1, 1]$, és

$$h(x) := \begin{cases} 0 & (-1 < x < 1) \\ 1 & (x = 1) \end{cases}$$

a (h_n) sorozat határfüggvénye.

A függvénysorok "nyelvén" a pontonkénti konvergencia a következőképpen fogalmazható meg: legyen $X \neq \emptyset$, és a $\emptyset \neq \mathcal{D} \subset X$ halmazzal adott az

$$f_n: \mathcal{D} \to \mathbf{K} \quad (n \in \mathbf{N})$$

függvénysorozat. Ekkor a $\sum (f_n)$ függvénysor x-beli konvergenciája azt jelenti, hogy a részletösszegek $\left(\sum_{k=0}^n f_k\right)$ sorozata konvergens az x helyen, azaz

a $\left(\sum_{k=0}^{n} f_k(x)\right)$ sorozat konvergens. Nem fog félreértést okozni, ha az ilyen $x \in \mathcal{D}$ elemek összegét fogjuk most \mathcal{D}_0 -val jelölni. Tehát \mathcal{D}_0 most nem más, mint a $\left(\sum_{k=0}^{n} f_k\right)$ függvénysorozat konvergenciatartománya. Ha $\mathcal{D}_0 \neq \emptyset$, akkor legyen

$$F(x) := \sum_{k=0}^{\infty} f_k(x) = \lim_{n \to \infty} \sum_{k=0}^{n} f_k(x) \quad (x \in \mathcal{D}_0)$$

A szóban forgó függvénysor összegfüggvénye. Pl. a

$$h_n(x) := x^n \quad (x \in \mathbf{R}, \, n \in \mathbf{N})$$

függvényekkel

$$\sum_{k=0}^{n} h_k(x) = \sum_{k=0}^{n} x^k = \begin{cases} n+1 & (x=1) \\ \frac{1-x^{n+1}}{1-x} & (x \neq 1) \end{cases} \quad (x \in \mathbf{R}, \ n \in \mathbf{N})$$

miatt a $\sum (h_n)$ függvénysor konvergenciatartománya a (-1, 1) intervallum, a H összegfüggvénye pedig a

$$H(x) := \frac{1}{1-x} \quad (-1 < x < 1)$$

függvény.

Emlékeztetünk a hatványsor fogalmára: legyen valamilyen $a \in \mathbf{K}$ középpont és egy

$$(a_n): \mathbf{N} \to \mathbf{K}$$

együttható-sorozat esetén

$$f_n(x) := a_n(x-a)^n \quad (x \in \mathbf{R}, n \in \mathbf{N}).$$

Ekkor a

$$\sum \left(a_n(x-a)^n\right) := \sum (f_n)$$

függvénysort neveztük *hatványsornak*. A Cauchy-Hadamard-tétel szerint egyértelműen létezik olyan

$$0 \le r \le +\infty$$

 $(konvergenciasug\acute{a}r)$ amellyel a hatványsor \mathcal{D}_0 konvergenciatartományára a $0 < r < +\infty$ esetben

$$K_r(a) \subset \mathcal{D}_0 \subset \overline{K_r(a)}$$
.

Nyilvánvaló, hogy $a \in \mathcal{D}_0$ mindig igaz, és az a helyen a fenti hatványsor összege 0.

11.3 Trigonometrikus sorok, Fourier-sorok

A $\sum (f_n)$ függvénysort *trigonometrikus sornak* nevezzük, ha

$$f_0(x) := \alpha_0, f_n(x) := \alpha_n \cdot \cos(nx) + \beta_n \cdot \sin(nx) \quad (1 \le n \in \mathbf{N}, x \in \mathbf{R}),$$

ahol adottak az $\alpha_k \in \mathbf{R}$ $(k \in \mathbf{N})$ és a β_j $(1 \leq j \in \mathbf{N})$ együtthatók. Használni fogjuk minderre a

$$\sum (\alpha_n \cdot \cos(nx) + \beta_n \cdot \sin(nx))$$

szimbólumot is. Tehát egy adott trigonometrikus sor n-edik részletösszege egy $x \in \mathbf{R}$ helyen az alábbi módon néz ki:

$$\alpha_0 + \alpha_1 \cdot \cos(x) + \beta_1 \cdot \sin(x) + \cdots + \alpha_n \cdot \cos(nx) + \beta_n \cdot \sin(nx).$$

A szóban forgó $\sum (\alpha_n \cdot \cos(nx) + \beta_n \cdot \sin(nx))$ trigonometrikus sor

$$S_n(x) := \alpha_0 + \sum_{k=1}^n \left(\alpha_k \cdot \cos(kx) + \beta_k \cdot \sin(kx) \right) \quad (x \in \mathbf{R}, \ n \in \mathbf{N})$$

részletösszegfüggvényei trigonometrikus polinomok.

Legyen $R_{2\pi}$ az összes olyan 2π szerint periodikus

$$f: \mathbf{R} \to \mathbf{R}$$

függvény halmaza, amelyre

$$f \in R[0, 2\pi]$$

teljesül. A periodicitás miatt nyilvánvaló, hogy ekkor tetszőleges 2π -hosszúságú kompakt $I \subset \mathbf{R}$ intervallumra is (az előbbi értelemben) $f \in R(I)$.

Legyen továbbá $C_{2\pi}$ az olyan 2π szerint periodikus

$$f: \mathbf{R} \to \mathbf{R}$$

függvények halmaza, amelyekre $f \in C$. Ekkor

$$C_{2\pi} \subset R_{2\pi}$$

továbbá $C_{2\pi}$, $R_{2\pi}$ lineáris terek az **R**-re vonatkozóan, a $C_{2\pi}$ altere az $R_{2\pi}$ nek. Továbbá bármely $f \in R_{2\pi}$ függvény az $f \in R[0, 2\pi]$ integrálhatóság miatt korlátos, azaz

$$\sup\{|f(x)| : x \in \mathbf{R}\} = \sup\{|f(x)| : x \in [0, 2\pi]\} < +\infty.$$

Vezessük be az alábbi fogalmakat: $f \in R_{2\pi}$ esetén legyen

$$a_0(f) := a_0 := \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx,$$

$$a_n(f) := a_n := \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \cos(nx) dx \quad (1 \le n \in \mathbf{N}),$$

$$b_n(f) := b_n := \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \sin(nx) dx \quad (1 \le n \in \mathbf{N}),$$

$$Sf := \sum (a_n \cdot \cos(nx) + b_n \cdot \sin(nx)) \quad (n \in \mathbb{N}, x \in \mathbb{R}).$$

Ekkor az Sf trigonometrikus sor az f Fourier-sora, az együtthatói az f Fourier-együtthatói, az S_nf $(n \in \mathbb{N})$ trigonometrikus polinom pedig az f függvény n-edik Fourier-részletösszege.

Ha $f \in R_{2\pi}$, $n \in \mathbb{N}$, akkor a fenti f Fourier-részletösszegei a következők:

$$S_0 f(x) = a_0 \quad (x \in \mathbf{R}),$$

ill. $1 \le n \in \mathbb{N}, x \in \mathbb{R}$ esetén

$$S_n f(x) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt +$$

$$\sum_{k=1}^{n} \left(\frac{1}{\pi} \int_{0}^{2\pi} f(t) \cdot \cos(kt) \, dt \cdot \cos(kx) + \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cdot \sin(kt) \, dt \cdot \sin(kx) \right) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \, dt + \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cdot \sum_{k=1}^{n} \left(\cos(kt) \cdot \cos(kx) + \sin(kt) \cdot \sin(kx) \right) dt = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cdot \left(\frac{1}{2} + \sum_{k=1}^{n} \cos\left(k(x-t)\right) \right) dt.$$

Ha tehát

$$D_0(z) := \frac{1}{2}, D_n(z) := \frac{1}{2} + \sum_{k=1}^n \cos(kz) \quad (1 \le n \in \mathbf{N}, z \in \mathbf{R}),$$

akkor

$$S_n f(x) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cdot D_n(x-t) dt \quad (n \in \mathbf{N}, x \in \mathbf{R}).$$

A most definiált D_n $(n \in \mathbf{N})$ függvény az n-edik Dirichlet-magfüggvény. Világos, hogy minden D_n páros függvény, periodikus 2π szerint, és bármilyen 2π hosszúságú kompakt $I \subset \mathbf{R}$ intervallumra

$$\int_{I} D_{n} = \int_{I} \frac{1}{2} dz + \sum_{k=1}^{n} \int_{I} \cos(kz) dz = \int_{I} \frac{1}{2} dz = \pi \quad (n \in \mathbf{N}).$$

Nem nehéz "zárt" alakra hozni a szóvan forgó magfüggvényeket. Ha ui. $0 < u < 2\pi$ és $n \in \mathbb{N}$, akkor

$$\sin(z/2) \cdot D_n(z) = \frac{\sin(z/2)}{2} + \sum_{k=1}^n \sin(z/2) \cdot \cos(kz) =$$

$$\frac{\sin(z/2)}{2} + \frac{1}{2} \cdot \sum_{k=1}^n \left(\sin\left((k+1/2)z\right) - \sin\left((k-1/2)z\right) \right) =$$

$$\frac{\sin(z/2)}{2} + \frac{\sin\left((n+1/2)z - \sin(z/2)\right)}{2} = \frac{\sin\left((n+1/2)z\right)}{2}.$$

Innen az következik, hogy

$$D_n(z) = \frac{\sin((n+1/2)z)}{2 \cdot \sin(z/2)} \quad (0 < z < 2\pi).$$

Tehát a D_n definíciójából adódóan a

$$\frac{\sin((n+1/2)0)}{2\cdot\sin(0/2)} := D_n(0) = \frac{1}{2} + n$$

megállapodással tetszőleges $f \in R_{2\pi}$ függvényre az alábbi integrál-előállítást kapjuk a Fourier-részletösszegekre:

$$S_n f(x) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cdot D_n(x-t) dt \quad (n \in \mathbf{N}, x \in \mathbf{R}).$$

11.4 Egyenletes konvergencia

Tekintsük az (f_n) függvénysorozatot, ahol

$$f_n \in X \to \mathbf{K} \quad (n \in \mathbf{N})$$

és

$$\mathcal{D}_{f_n} =: \mathcal{D} \quad (n \in \mathbf{N}).$$

Legyen

$$\mathcal{D}_0 := \left\{ t \in \mathcal{D} : \left(f_n(x) \right) \text{ konvergens} \right\} \neq \emptyset$$

az (f_n) konvergenciatartománya, és

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (x \in \mathcal{D}_0)$$

az (f_n) függvénysorozat határfüggvénye. Tehát $f: \mathcal{D}_0 \to \mathbf{K}$ és tetszőleges $x \in \mathcal{D}_0$, valamint $\varepsilon > 0$ esetén van olyan $N_{x,\varepsilon} \in \mathbf{N}$, hogy

$$|f_n(x) - f(x)| < \varepsilon \quad (N_{x,\varepsilon} < n \in \mathbf{N}).$$

Hangsúlyozni kell, hogy az itt szereplő $N_{x,\varepsilon}$ küszöbindex általában függ az x-től is, és az ε -tól is. Elképzelhető ugyanakkor, hogy bizonyos esetekben bármilyen $\varepsilon > 0$ mellett olyan (csak az ε -tól függő)

$$N := N_{\varepsilon} \in \mathbf{N}$$

is megadható, amelyik az előbbi becslésben egy $\emptyset \neq A \subset \mathcal{D}_0$ halmaz mellett független az $x \in A$ elemtől. Ekkor azt mondjuk, hogy az (f_n) függvénysorozat az A halmazon egyenletesen konvergens az f függvényhez, azaz: minden $\varepsilon > 0$ számhoz létezik olyan $N \in \mathbb{N}$, amellyel

$$|f_n(x) - f(x)| < \varepsilon \quad (x \in A, N < n \in \mathbf{N}).$$

Világos, hogy ekkor minden $\emptyset \neq B \subset A$ halmaz esetén is az (f_n) sorozat egyenletesen konvergál a B-n az f-hez. Ha az egyenletes konvergencia definíciójában $A = \mathcal{D}_0$ írható, akkor egyszerűen azt mondjuk, hogy az (f_n) függvénysorozat egyenletesen konvergens.

A $\sum (f_n)$ függvénysor egyenletesen konvergens az $\emptyset \neq A \subset \mathcal{D}_0$ halmazon, ha a részletösszegek $\left(\sum_{k=0}^n f_k\right)$ sorozata egyenletesen konvergens az A-n.

Ez tehát azt jelenti, hogy létezik olyan

$$F: A \to \mathbf{K}$$

függvény és tetszőleges $\varepsilon > 0$ számhoz van olyan $N \in \mathbb{N}$, amellyel

$$\left| F(x) - \sum_{k=0}^{n} f_k(x) \right| < \varepsilon \quad (x \in A, N < n \in \mathbf{N}).$$

A Cauchy-kritérium miatt ez azzal ekvivalens, hogy bármilyen $\varepsilon>0$ esetén egy alkalmas $N\in \mathbb{N}$ természetes számmal

$$\left| \sum_{k=n+1}^{m} f_k(x) \right| < \varepsilon \quad (x \in A, \ N < n, \ m \in \mathbf{N}, \ n < m)$$

(egyenletes Cauchy-kritérium).