Nome: Gabriel Henrique Vieira de Oliveira

Data: 17/03/2024

Matéria: Exercício Prático 02, Prof. Romanelli – PUC MINAS MG

RESPOSTAS

1) Considere a Unidade Lógica e Aritmética de 1 bit ilustrada na Figura 1 a seguir:

2) Procure entender o esquema, principalmente a subtração.

4) Teste a sua ULA de acordo com o seguinte roteiro:

A) A=0; B=1; AND(A,B);

B) A=1; B=1; OR(A,B);

C) SOMA(A,B);

D) NOT(A);

E) SOMA (A,-B);

5) Usando essa ULA de 1 bit, construa essa ULA para 4 bits no Logisim e verifique o seu funcionamento. Veja como funciona o barramento de instruções (operation) e o barramento de dados (a e b). Observe a ligação do Binvert ao Carry_in da primeira ULA.

6) Teste a sua ULA de acordo com o seguinte roteiro (considerando os números de 4 bits):

a) A=2; (ou A=0010) B=1; (ou B=0001) AND(A,B);

b) B=3; (ou B=0011) OR(A,B);

c) SOMA(A,B);

d) A=12; (ou A=1100) NOT(A);

e) B=13; (ou B=1101) AND(B,A);

7) Para o programa de teste acima, preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução (a primeira linha já foi realizada, observe que a palavra deverá conter 10bits, para escrevermos em hexa completamos os dois bits à esquerda com zero):

INSTRUÇÃO REALIZADA	BINÁRIO (A, B, Op.Code)	VALOR EM HEXA (Ox)	RESULTADO EM BINÁRIO
AND (A,B)	0010 0001 00	$(0000\ 1000\ 0100) = 0x084$	0000
OR (A,B)	0010 0011 01	$(0000 \ 1000 \ 1101) = 0x08D$	0011
SOMA (A,B)	0010 0011 11	$(0000\ 1000\ 1111) = 0$ x08F	0101
NOT (A)	1100 0000 10	$(0011\ 0000\ 0010) = 0x302$	0011
AND (B,A)	1100 1101 00	$(0011\ 0011\ 0100) = 0x334$	1100

Parte 2

Nesta experiência você irá projetar no logisim o circuito 74181, que foi inicialmente utilizado para a construção de computadores de 8 e 16 bits (conforme as figuras abaixo). Posteriormente iremos implementar uma ULA semelhante dentro do Arduino, por isso é importante conhecê-la.

1) A tabela de teste com as funções da ULA completamente preenchida:

Instruções	Binário	Resultado da operação
450	0100 0101 0000	1011 →> B
CB1	1100 1011 0001	0010> 2
A32	1010 0011 0010	0001> 1
C43	1100 0100 0011	0000> 0
124	0001 0010 0100	0100> 4
785	0111 1000 0101	0111> 7
9B6	1001 1011 0110	0010> 2
CD7	1100 1101 0111	0000> 0
FE8	1111 1110 1000	1110 —> E
649	0110 0100 1001	1101 —> D
D9A	1101 1001 1010	1001> 9
FCB	1111 1100 1011	1100 —> C
63C	0110 0011 1100	0001> 1

98D	1001 1000 1101	1111 —> F
76E	0111 0110 1110	0111> 7
23F	0010 0011 1111	0010> 2

O projeto da ULA no Logisim com um printscreen de alguma instrução da tabela sendo executada.

Responder: Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

→ Essa tabela na verdade deveria ter 2^12 linhas, ou seja, 4096.