	MAE	MSE	RMSE	RRMSE	ED	R2
$\overline{\mathrm{NOZS}_{BR}}$						
$NOZS_{RC}$						
$NOZS_{STA}$						
$NOZS_{DBR}$						
$\overline{\mathrm{MTZS}_{SRE,BR}}$		9.2(5)				9.5(5)
$MTZS_{SRE,RC}$						
$MTZS_{SRE,STA}$						
$MTZS_{SRE,DBR}$						
$\overline{\mathrm{MTZS}_{SRM,BR}}$		3.0(2)	3.5(3)	3.8(3)	3.4(3)	3.4(2)
$MTZS_{SRM,RC}$						
$MTZS_{SRM,STA}$		6.1(4)	7.4(4)			8.4(3)
$MTZS_{SRM,DBR}$						
$ZSMT_{SRE,BR}$	3.3(3)	9.2(5)				9.5(5)
$ZSMT_{SRE,RC}$						
$ZSMT_{SRE,STA}$						
$ZSMT_{SRE,DBR}$	8.3(4)			8.2(4)		8.8(4)
$\overline{\mathrm{ZSMT}_{SRM,BR}}$	3.3(3)	3.0(2)	3.5(3)	3.8(3)	3.4(3)	3.4(2)
$ZSMT_{SRM,RC}$	2.7(2)	2.9(1)	2.4(2)	3.1(2)	2.4(2)	3.4(2)
$ZSMT_{SRM,STA}$	3.3(3)	3.0(2)	3.5(3)	3.8(3)	3.7(4)	3.4(2)
$ZSMT_{SRM,DBR}$	2.4(1)	3.1(3)	2.1(1)	1.8(1)	2.1(1)	2.8(1)

Table 1: Summary of the the first five pairs of multi-target and SR methods which provides the best performance according to the different quality measures for the pollutant dataset