Los números Reales, Axiomas de Cuerpo

Análisis Real

Los números Reales

Consideremos un conjunto no vacío, el cual denotaremos por $\mathbb R$ y llamaremos el conjunto de los números y el cual satisface un conjunto de axiomas, los cuales hemos separado de forma natural en tres grupos:

- 1. Axiomas de Cuerpo
- 2. Axiomas de Orden
- 3. Axioma de Completitud

Los elementos de $\mathbb R$ se denominan números reales

Axiomas de Cuerpo

Junto con el conjunto $\mathbb R$ de los números reales admitimos la existencia de dos operaciones operaciones binarias llamadas suma y multiplicación, denotadas por $+ y \cdot respectivamente tales que :$

$$\begin{array}{cccc} +: & \mathbb{R} \times \mathbb{R} & \to & \mathbb{R} \\ & (x,y) & \leadsto & +(x,y) = x+y \\ \\ & \cdot: & \mathbb{R} \times \mathbb{R} & \to & \mathbb{R} \\ & (x,y) & \leadsto & \cdot (x,y) = x \cdot y \end{array}$$

 \mathbb{R} junto con las operaciones + y \cdot satisface los siguientes axiomas para a, b, c números reales cualesquiera

 $\begin{array}{rcl} a+b & = & b+a \\ a\cdot b & = & b\cdot a \end{array}$ 1. Propiedad Conmutativa:

3. Propiedad Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$

- 3. Propiedad Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Existencia de neutro: Existe un número real el cual se denomina cero y se denota por 0, el cual satisface: a+0=0+a=a para todo número real a

- 3. Propiedad Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Existencia de neutro: Existe un número real el cual se denomina cero y se denota por 0, el cual satisface: a+0=0+a=a para todo número real a
- 5. Existencia de opuesto: Para todo número real a existe un número real y tal que a+y=y+a=0. El número real y se denomina opuesto de a y se denota por -a

- 3. Propiedad Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Existencia de neutro: Existe un número real el cual se denomina cero y se denota por 0, el cual satisface: a+0=0+a=a para todo número real a
- 5. Existencia de opuesto: Para todo número real a existe un número real y tal que a+y=y+a=0. El número real y se denomina opuesto de a y se denota por -a
- 6. Existencia de identidad: Existe un número real, distinto de cero, el cual se denomina uno y se denota por 1, el cual satisface: $a\cdot 1=1\cdot a=a$ para todo número real a

- 3. Propiedad Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Existencia de neutro: Existe un número real el cual se denomina cero y se denota por 0, el cual satisface: a+0=0+a=a para todo número real a
- 5. Existencia de opuesto: Para todo número real a existe un número real y tal que a+y=y+a=0. El número real y se denomina opuesto de a y se denota por -a
- 6. Existencia de identidad: Existe un número real, distinto de cero, el cual se denomina uno y se denota por 1, el cual satisface: $a\cdot 1=1\cdot a=a$ para todo número real a
- 7. Existencia de inverso: Para todo número real a, distinto de cero, existe un número real y tal que $a \cdot y = y \cdot a = 1$. El número real y se denomina inverso de a y se denota por $\frac{1}{a}$

Teorema (Unicidad del neutro y de la identidad)

Sean a, b, x números reales

- 1. Si x + a = a entonces x = 0
- 2. Si $x \cdot b = b$ y $b \neq 0$ entonces x = 1

Teorema (Unicidad del neutro y de la identidad)

Sean a, b, x números reales

- 1. Si x + a = a entonces x = 0
- 2. Si $x \cdot b = b$ y $b \neq 0$ entonces x = 1

Teorema

Sean a, b números reales

- 1. $a \cdot 0 = 0$
- 2. Si $a \cdot b = 0$ entonces a = 0 o b = 0

Teorema (Unicidad del opuesto y del inverso)

Sean a, b, x números reales

- 1. Si x + a = 0 entonces x = -a
- 2. Si $x \cdot b = 1$ y $b \neq 0$ entonces $x = \frac{1}{b}$

¿Cómo se define la resta o sustracción de números Reales? Sea a,b números reales, la resta o sustracción se define de la siguiente manera:

$$a - b = a + (-b)$$

¿Cómo se define la resta o sustracción de números Reales? Sea a,b números reales, la resta o sustracción se define de la siguiente manera:

$$a - b = a + (-b)$$

¿Cómo se define la división o el cociente de números Reales? Sea a,b números reales, $b \neq 0$, división o el cociente se define de la siguiente manera:

$$\frac{a}{b} = a \cdot \frac{1}{b}$$

Ejercicio: Demuestre las siguientes "leyes del álgebra" para \mathbb{R} usando los axiomas. x, y, z representan números reales

- 1. -0 = 0
- 2. -(-x) = x
- 3. $x \cdot (-y) = -(x \cdot y) = (-x) \cdot y$
- 4. $(-1) \cdot x = -x$
- 5. Si $x \neq 0$ entonces $x^{-1} \neq 0$
- 6. Si $x \neq 0$ y $y \neq 0$ entonces $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$.

Sea A un subconjunto no vacío de \mathbb{R} , se dice que A es inductivo si satisface las siguientes condiciones

- 1. $1 \in A$
- 2. Si $x \in A$ entonces $x + 1 \in A$

Sea A un subconjunto no vacío de \mathbb{R} , se dice que A es inductivo si satisface las siguientes condiciones

- 1. $1 \in A$
- 2. Si $x \in A$ entonces $x + 1 \in A$

Sea \mathcal{A} la familia de todos los subconjuntos inductivos de \mathbb{R} , entonces el conjunto \mathbb{Z}_+ de los Enteros Positivos, se define como:

$$\mathbb{Z}_+ = \bigcap_{A \in \mathcal{A}} A$$

Sea A un subconjunto no vacío de \mathbb{R} , se dice que A es inductivo si satisface las siguientes condiciones

- 1. $1 \in A$
- 2. Si $x \in A$ entonces $x + 1 \in A$

Sea \mathcal{A} la familia de todos los subconjuntos inductivos de \mathbb{R} , entonces el conjunto \mathbb{Z}_+ de los Enteros Positivos, se define como:

$$\mathbb{Z}_+ = \bigcap_{A \in \mathcal{A}} A$$

es decir, \mathbb{Z}_+ es la intersección de todos los subconjuntos inductivos de \mathbb{R}

Sea A un subconjunto no vacío de \mathbb{R} , se dice que A es inductivo si satisface las siguientes condiciones

- 1. $1 \in A$
- 2. Si $x \in A$ entonces $x + 1 \in A$

Sea $\mathcal A$ la familia de todos los subconjuntos inductivos de $\mathbb R$, entonces el conjunto $\mathbb Z_+$ de los Enteros Positivos, se define como:

$$\mathbb{Z}_+ = \bigcap_{A \in \mathcal{A}} A$$

es decir, \mathbb{Z}_+ es la intersección de todos los subconjuntos inductivos de \mathbb{R}

El conjunto $\mathbb Z$ de los Enteros se define como la unión de los enteros positivos, los opuestos de éstos y el cero

Sea A un subconjunto no vacío de \mathbb{R} , se dice que A es inductivo si satisface las siguientes condiciones

- 1. $1 \in A$
- 2. Si $x \in A$ entonces $x + 1 \in A$

Sea $\mathcal A$ la familia de todos los subconjuntos inductivos de $\mathbb R$, entonces el conjunto $\mathbb Z_+$ de los Enteros Positivos, se define como:

$$\mathbb{Z}_+ = \bigcap_{A \in \mathcal{A}} A$$

es decir, \mathbb{Z}_+ es la intersección de todos los subconjuntos inductivos de \mathbb{R}

El conjunto \mathbb{Z} de los Enteros se define como la unión de los enteros positivos, los opuestos de éstos y el cero

Ejercicio: Muestre que \mathbb{Z}_+ es el subconjunto inductivo más pequeño de \mathbb{R}

Teorema (Principio de Inducción)

Si A es un conjunto inductivo de Enteros Positivos entonces $A=\mathbb{Z}_+$

Teorema (Principio de Inducción)

Si A es un conjunto inductivo de Enteros Positivos entonces $A = \mathbb{Z}_+$ Ejercicios: Muestre que:

- 1. La suma de enteros positivos es un entero positivo
- 2. El producto de enteros positivos es un entero positivo
- 3. La suma de enteros es un entero
- 4. El producto de enteros es un entero

Teorema (Principio de Inducción)

Si A es un conjunto inductivo de Enteros Positivos entonces $A = \mathbb{Z}_+$ Ejercicios: Muestre que:

- 1. La suma de enteros positivos es un entero positivo
- 2. El producto de enteros positivos es un entero positivo
- 3. La suma de enteros es un entero
- 4. El producto de enteros es un entero

¿Cómo se definen potencias enteras de números Reales? Sea a un número real, $n\in\mathbb{Z}_+$ entonces:

1.
$$a^1 := a$$

2.
$$a^2 := a \cdot a$$

3.
$$a^{n+1} := a^n \cdot a$$

4.
$$a^0 := 1$$

5.
$$a^{-1} := \frac{1}{a}$$

6.
$$\mathbf{o}^{-n} := \begin{pmatrix} 1 \\ - \\ q \end{pmatrix}^n$$

Los Números Racionales

El conjunto de los Números Racionales Q se define como:

$$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}; \ b \neq 0 \right\}$$

Los Números Racionales

El conjunto de los Números Racionales Q se define como:

$$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}; \ b \neq 0 \right\}$$

Ejercicio: Muestre que:

- 1. La suma de racionales es un racional
- 2. El producto de racionales es un racional
- Los racionales son inductivos.

Teorema

No existe un número racional r tal que $r^2=2$

MACC Matemáticas Aplicadas y Ciencias de la Computación

