Master method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- $b \ge 2$ is the (integer) factor by which the subproblem size decreases.
- f(n) = work to divide and merge subproblems.

Recursion tree.

- $k = \log_b n$ levels.
- a^i = number of subproblems at level i.
- n/b^i = size of subproblem at level i.

Geometric series

Fact 1. For
$$r \neq 1$$
, $1 + r + r^2 + r^3 + \ldots + r^{k-1} = \frac{1 - r^k}{1 - r}$

Fact 2. For
$$r = 1$$
, $1 + r + r^2 + r^3 + \ldots + r^{k-1} = k$

Fact 3. For
$$r < 1$$
, $1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$

$$1 + 1/2 + 1/4 + 1/8 + ... = 2$$

Case 1: total cost dominated by cost of leaves

Ex 1. If T(n) satisfies T(n) = 3 T(n/2) + n, with T(1) = 1, then $T(n) = \Theta(n^{\log_2 3})$.

$$r = 3 / 2 > 1$$
 $T(n) = (1 + r + r^2 + r^3 + \dots + r^{\log_2 n}) n = \frac{r^{1 + \log_2 n} - 1}{r - 1} n = 3n^{\log_2 3} - 2n$

Case 2: total cost evenly distributed among levels

Ex 2. If T(n) satisfies T(n) = 2 T(n/2) + n, with T(1) = 1, then $T(n) = \Theta(n \log n)$.

Case 3: total cost dominated by cost of root

Ex 3. If T(n) satisfies $T(n) = 3 T(n/4) + n^5$, with T(1) = 1, then $T(n) = \Theta(n^5)$.

$$r = 3 / 4^5 < 1$$
 $n^5 \le T(n) \le (1 + r + r^2 + r^3 + \dots) n^5 \le \frac{1}{1 - r} n^5$

Master theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = -\left(n^{\log_b a}\right)$

Ex. T(n) = 3T(n/2) + 5n.

- a = 3, b = 2, f(n) = 5n, k = 1, $\log_b a = 1.58...$
- $T(n) = \Theta(n^{\log_2 3})$.

Master theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Ex. $T(n) = 2T(n/2) + \Theta(n \log n)$.

- a = 2, b = 2, f(n) = 17 n, k = 1, $\log_b a = 1$, p = 1.
- $T(n) = \Theta(n \log^2 n)$.

Master theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $a f(n / b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

"regularity condition" holds if $f(n) = \Theta(n^k)$

- **Ex.** $T(n) = 3 T(n/2) + n^2$.
 - a = 3, b = 2, $f(n) = n^2$, k = 2, $\log_b a = 1.58...$
 - Regularity condition: $3(n/2)^2 \le c n^2$ for c = 3/4.
 - $T(n) = \Theta(n^2)$.

Master theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^k)$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $a f(n / b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Pf sketch.

- Use recursion tree to sum up terms (assuming *n* is an exact power of *b*).
- Three cases for geometric series.
- · Deal with floors and ceilings.

Master theorem need not apply

Gaps in master theorem.

Number of subproblems must be a constant.

$$T(n) = nT(n/2) + n^2$$

• Number of subproblems must be ≥ 1 .

$$T(n) = \frac{1}{2}T(n/2) + n^2$$

• Non-polynomial separation between f(n) and $n^{\log_b a}$.

$$T(n) = 2T(n/2) + \frac{n}{\log n}$$

• f(n) is not positive.

$$T(n) = 2T(n/2) \left(-n^2\right)$$

Regularity condition does not hold.

$$T(n) = T(n/2) + n(2 - \cos n)$$

Akra-Bazzi theorem

Desiderata. Generalizes master theorem to divide-and-conquer algorithms where subproblems have substantially different sizes.

Theorem. [Akra–Bazzi] Given constants $a_i > 0$ and $0 < b_i \le 1$, functions $h_i(n) = O(n / \log^2 n)$ and $g(n) = O(n^c)$, if the function T(n) satisfies the recurrence:

$$T(n) = \sum_{i=1}^k a_i T(b_i n + h_i(n)) + g(n)$$
 $a_i \text{ subproblems of size b}_i n \qquad \text{floors and ceilings}$

Then
$$T(n) = \Theta\left(n^p\left(1 + \int_1^n \frac{g(u)}{u^{p+1}}du\right)\right)$$
 where p satisfies $\sum_{i=1}^k a_i\,b_i^p = 1$.

Ex. $T(n) = 7/4 \ T(\lfloor n/2 \rfloor) + T(\lceil 3/4 \ n \rceil) + n^2$, with T(0) = 0 and T(1) = 1.

- $a_1 = 7/4$, $b_1 = 1/2$, $a_2 = 1$, $b_2 = 3/4 \implies p = 2$.
- $h_1(n) = \lfloor 1/2 \ n \rfloor 1/2 \ n$, $h_2(n) = \lceil 3/4 \ n \rceil 3/4 \ n$.
- $g(n) = n^2 \implies T(n) = \Theta(n^2 \log n)$.