Part I

CIRCLE PROPERTIES

CIRCUMFERENCE

Length of the outer edge of a circle

DIAMETER

The distance from edge to edge passing through the center

CHORD

A straight line joining any two points on the circumference

SEGMENT

The area inside a circle enclosed by an arc and a chord

RADIUS

The distance from the center to the edge; half the diameter.

SECTOR

The area enclosed by an arc and two radii

ARC

A part of the circumference

TANGENT

A straight line that touches a circle at two coincident points

Area =
$$\pi r^2$$

$$\frac{\text{Area of}}{\text{Sector}} = \pi r^2 \cdot \frac{\theta}{360^{\circ}}$$

$${\sf Circumference} \!=\! 2\pi r$$

$$\frac{\text{Length}}{\text{of Arc}} = 2\pi \mathbf{r} \cdot \frac{\theta}{360^{\circ}}$$

 $\theta \rightarrow$ in degrees

STANDARD EQUATION OF THE CIRCLE

1. Central Form:

$$(x - h)^2 + (y - k)^2 = r^2$$

$$(h,k)$$

$$(r)$$

$$(r$$

2. General equation of circle:

$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$
 $(-g,-1)$
 $r = \sqrt{g^{2} + f^{2} - c}$

3. When circle touches x-axis

4. When circle touches v-axis

$$(x - h^2) + (y - k)^2 = h^2$$

$$(x - h^2) + (y - k)^2 = h^2$$

5. When circle touches both the axis

$$(x - h^2) + (y - h)^2 = h^2$$
Touching x-axis and y-axis

6. Intercepts cut by the circle on axes:

7. Diametrical form of circle:

$$(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$$

8. The parametric forms of the circle:

Circle	Parametric forms
$x^2 + y^2 = r^2$	$x = r\cos\theta, y = r\sin\theta$
$(x - h)^2 + (y - k)^2 = r^2$	$x = h + r\cos\theta$, $y = k + r\sin\theta$

where θ is the parameter $\theta \in [0, 2\pi)$

CIRCLE THEOREMS

Angle in the same segment and standing on the same chord are always equal.

If QRN is a secant & QM is tangent then QR.QN=(QM)²
If PBA & PDC are secant to circle then PA.PB=PC.PD

The angle at the centre of a circle is twice the angle at the circumference.

ABCD is a cyclic Quadrilateral, Diagonally opposite angles add up to 180°.

6 CD \perp AB, BD = DA, \angle BDC = 90°

Angle between tangent and radius is always 90°. Perpendicular bisector of any chord, pass through center.

$\mathbf{8}$ $\angle PCA = \angle ABC, \angle QCB = \angle BAC$

The angle between the tangent and the side of the triangle is equal to the interior opposite angle.

CIRCLE'S TANGENTS

Condition of Tangency:

- p = perpendicular distance from center to line
- r = radius to circle

Common tangents of two circles

d=distance between centers

⇒ 4 common tangents (2DCT,2TCT)

⇒3 common tangents (2DCT,1TCT)

If two circles intersect

 $|r_1 - r_2| < d < r_1 + r_2$

⇒2 common tangents (2DCT)

 $d = |r_1 - r_2|$

⇒1 common tangent (1DCT)

If one circles is completely contained in another circle

 $d < | r_1 - r_2 |$

⇒ No common tangent

Orthogonality of two circles

 $x^2+y^2+2g_1x+2f_1y+d_1=0$

 $x^2+y^2+2g_2x+2f_2y+d_2=0$

Condition: $2g_1g_2 + 2f_1f_2 = d_1+d_2$

* DCT = Direct Common Tangent, TCT = Transverse Common Tangent

Position of a point P(x1,y1) w.r.t. circle:

 $x^2+y^2+2gx+2fy+c = 0$

deponds on

 $S_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$

S₁>0