FOREIGN TECHNOLOGY DIVISION

NEW ELECTROPLATED BLACK COATING -- BLACK CHROMIUM

Hsu, Hsiao-feng

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

EDITED TRANSLATION

NEW ELECTROPLATED BLACK COATING -- BLACK CHROMIUM

By: Hsu, Hsiao-feng

English pages: 8

Source: Shang Hai Chi Hsieh, No. 2, 1965,

pp., 12-13.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL POREIGN TEXT WITHOUT ANY ANALYTICAL OR EPITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REPLECT THE POSITION OR OPIMON OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY

TRANSLATION DIVISION
POREIGN TECHNOLOGY DIVISION
WP-APB, ONIO.

DATA HANDLING PAGE 01-ACCESSION NO. 39-TOPIC TAGS 98-DOCUMENT LOC TP90000296 09-TITLE NEW ELECTROPLATED BLACK electroplating, chromium plating, COATING -- BLACK CHROMIUM metal coating 47-SUBJECT AREA 11 10-DATE OF INFO 42-AUTHOR/CO-AUTHORS HSU, HSIAO-FENG (1776/1321/1496) ----65 43-SOURCE 68-DOCUMENT NO. 1-HT-23-626-68 SHANG HAI CHI HSIEH (CHINESE) 69-PROJECT NO. 72301-78 64-CONTROL MARKINGS 97-HEADER CLASH 63-SECURITY AND DOWNGRADING INFORMATION UNCL. 0 NONE UNCL 77-SUPERSEDES 76-REEL FRAME NO. 78-CHANGES 40-GEOGRAPHICAL NO OF PAGES 1888 0495 REVISION FREQ X REF ACC. NO. PUBLISHING DATE TYPE PRODUCT CONTRACT NO. **TRANSLATION** NONE 65-AP8006306 94-00 ACCESSION NO. STEP NO. 02-CH/0107/65/000/002/0012/0013

ABSTRACT ,

The author describes electropla in or black chromium coating adopted by the Shanghai Electric Meter want for use on instrument components to eliminate glare and to prevent corrosion. Plating is conducted in a solution of chromic anhydride and sodium nitrate for a period of 20 minutes at a current density of 30-60 amp/dm (to the second power) and a temperature of 1 -400. The temperature is maintained by a cooling water jacket enveloping a plating bath made of welded aluminum sheets 2 mm thick. Distilled water is used in the solution, with barium carbonate added to remove sulfate radical. A lead-tin alloy (7 percent tin) is used as the anode, and the chromium oxide content in the solution is regularly checked by the Hull cell test for replenishment. Coating thickness determined by metallographic method is 4.8 microns at a 20 min period and current density of 60 amp dm (to the second power). The coating, containing a mixture of 75 percent chromium and 25 percent chromium oxide can be directly plated on aluminum and stainless steel components, and on iron components with undercoats of low tin-containing bronze. Results from humid heat tests and salt rog tests showed that the black chromium coating exhibits a better quality than the black nickel coating or bluing. Defects likely to occur in plating and their remedies are also given. in a table. Orig. art. has: 2 tables.

Best Available Copy

BLACK CHROME---A NEW TYPE OF BLACK-COLORED PLATING Hsu Hsiao-feng

I. Introduction

To prevent diffuse reflection and to increase their corrosion-resistant capacity, optical components of light-beam instrument are plated with black nickel or developing blue which serves as a working protective coating. Observation has shown that black nickel and developing blue do not perform ideally in corrosion resistance and generally develop white spots and rust when subject to a 24 hr himidheat test. Besides, black nickel plating is not wearproof and often rubs off alorg the edges and surface during transportation and installation, exposing the base metal, spoiling appearance and and affecting the corrosion-resistance characteristic.

After a year or more of searching and experimentation, we succeeded in using black chrome for plating, and satisfactory results have been obtained through a long period of application in actual production.

II. Corrosion-Resistant Performance of Black Chrome Plating

Black chrome plating contains a mixture of 75% chromium and 25% chrome oxide. It is wear-resistant and can be polished. It

has been proved by actual application to be able to withstand 150°C temperatures for long periods in vacuum without changing color and peeling off. The plating has a satisfactory corrosion-resistant property, and is suitable for application on components made of steel, iron, stainless steel, and other metals.

Results of comparative tests on corrosion-resistant performance of black chrome with black nickel and developing blue are as follows:

1) Humid-heat test (temperature 40°C, humidity 98%):

Steel with a black chrome coating 2 μ in thickness retained its original luster after 6 hr and even after 48 hr. Steel with a 6 μ thick zinc coating followed by black nickel plating developed a few white spots occupying 10% of the area after 6 hr and a large amount of white spots occupying 90% of the area after 48 hr. Iron with a 16 μ thick low tin coating followed by black chrome plating showed no change in luster after 6 hr or even after 48 hr. Iron with a 15 μ thick zinc coating followed by black nickel plating showed no change after 6 hr but produced white spots and complete corrosion after 48 hr. Developing blue or iron components showed rust spots around the holes after 6 hr and serious corrosion after 48 hr. Iron with a 2 μ thick low tin coating followed by black chrome plating showed no change after 6 hr and no apparent change even after 48 hr.

2) Brine-fog test (sea water solution; temperature, 35°C; humidity, 95%; fog sprayed 15 min every hour):

Steel with a 2 μ thick black chrome coating showed no change after 6 hr \times 48 hr. Steel with a 6 μ thick zinc coating followed by black nickel plating produced a few white spots after 6 hr and showed complete corrosion after 48 hr. Iron with a 16 μ thick low tin coating followed by black chrome plating showed no change after 6 hr and no apparent change after 48 hr. Iron with a 15 μ thick zinc coating followed by black nickel plating produced a large amount of white spots after 6 hr and showed serious corrosion after 48 hr. Iron with a 2 μ thick low tin coating followed by black chrome plating showed no change after 6 hr and no apparent change

after 48 hr. Developing blue on iron components produced a large amount of rust spots after 6 hr and showed serious corrosion throughout after 48 hr.

As observed from the above two sets of comparative tests, the quality of black chrome plating is superior to black mickel plating and developing blue coating.

III. Formula and Operating Conditions

Formula: Chromic anhydride (CrO $_3$), 250 \sim 300 g/l; sodium nitrate (NaNO $_3$), 7 \sim 11 g/l.

Operating conditions: Temperature, 15 \sim 40°C; cathode current density, 30 \sim 60 amp/dm²; plating time, 20 min.

The solution must be prepared with distilled water, and the sulfate radical (SO $_4^-$) must be removed with barium carbonate (BaCO $_3$).

Items to be noted:

- 1) Variation of the chromic anhydride content in the electrolyte has a rather great effect on plating thickness. A high chromic anhydride content produces thicker plating with fine crystals. Hence, chromic anhydride is maintained in a rather high range (or $250 \sim 300 \text{ g/l}$) in the working formula.
- 2) Variation of the sodium nitrate content has a great effect on plating. The lower the sodium nitrate content, the higher the electrolytic electric resistance and the higher the bath voltage will be. No black plating can be obtained in a normal current density range. When sodium nitrate content reaches 40 g/l or higher, the electrolytic electric resistance is reduced, thus affecting the plating depth. In a normal current density range, only the edges of a component receive black-colored plating. Therefore, care should be taken not to add sodium nitrate in excess amounts.

- 3) The solution temperature will spontaneously rise during electrolysis. The temperature cannot be higher than 40°C, otherwise the plating will not have a black color and will contain suspended ashes. Therefore, the plating tank must be provided with a water cooling jacket.
- 4) Effect of current density on the luster of plating: Plating becomes dark gray (burned) at a current density higher than 70 amp/dm², normal black at $30 \sim 60$ amp/dm², yellowish brown at 30 amp/dm² or lower, and a dark rainbow color at 15 amp/dm² or lower. No plating is obtained at a value lower than 10 amp/dm².
- 5) When the solution contains sulfate radicals, plating becomes bean gray. Plating is light gray when sulfate radicals reach a concentration of 1.5 g/ ℓ .
- 6) When the solution contains chlorine radicals, plating is yellowish brown with suspended ashes, and has a poor protection capacity, causing the base metal to rust.
- 7) Barium carbonate and solution turbidity have no great effects on plating.
- 8) Poor quality black chrome plating can be removed by concentrated hydrochloric acid treatment.

IV. Anode and Electroplating Bath

Lead used as anode in all black chrome electroplating baths has a short life and dissolves easily. We used lead-cadmium alloy (containing 7% Cd) as the anode with satisfactory results. It has good conductivity and will not dissolve.

It is rather difficult to select materials for tank constructions. A lead tank will dissolve chemically, and it is not easy to cool a tank made of polyvinyl chloride. After many tests, we selected

a tank made of 2 mm aluminum sheet by welding, with low cost and satisfactory results. The tank was protected outside with [illegible] and cooled by running water.

V. Solution Preservation

The composition of chromic anhydride in the solution can be determined by a ladranter or a conventional method for analyzing the chromic acid content in a electrolyte. At present there is no simple and accurate method to determine sodium nitrate content. In our plant, we determine the required amount of sodium nitrate to be added by Hull tank experimentation.

We clean the tank once a month by draining, and it is not necessary to remove the sediment completely.

VI. Thickness of Black Chrome Plating

At present neither the spot-out method nor the liquid flow method can be applied to determine the thickness of black chrome plating. The metallographic method has been employed many times at out plant to determine electroplating at a cathode current density of 60 amp/dm². The results are shown in Table 1.

Table 1.			·	
Time (min)	5	10	15	20
Thickness (µ)	2.5	3.3	3.9	4.3

VII. Scheme for Black Chrome Plating

- 1) Silver components can be black chrome plated directly for 20 min.
 - 2) Iron components are first plated with low tin bronze 16 \sim 20 μ

- 3) Iron components to meet high dimensional requirements are first plated with low tin bronze 2 μ thick as a base layer, follower by black chrome plating for 30 min.
- 4) Stainless steel components can be black chrome plated directly for 20 min.

Black chrome plating can be preserved with wax or oil [illegible].

VIII. Various Technological Processes for Black Chrome Plating of Metals

- l) Iron and steel components for black plating: Gasoline degreasing + chemical degreasing + water cleaning + rust removal in HCl + water cleaning + cathodic + electrolytic degreasing + water cleaning + dilute acid cleaning + water cleaning + low tin bronze plating (Formula: Cu, 30 g/l; Sn, 9 g/l; Na₂O, 18 g/l; and water, 1 l. Temperature, 60 \sim 70°C; D_E = 1 \sim 2 amp/dm²) + water cleaning + black chrome plating + water cleaning + drying + oiling (spindle oil) + inspection.
- 2) Technological process for black chrome plating of steel and steel alloy components: Gasoline degreasing water cleaning chemical degreasing water cleaning cathodic electrolytic degreasing water cleaning oxidic film removal by pickling in acid water cleaning acid washing for luster (1 part nitric acid, 1 part sulfuric acid, and 10 ml hydrochloric acid) water cleaning black chrome plating water cleaning drying oiling inspection.
- 3) Technological process for black chrome plating of stainless steel components: chemical degreasing \rightarrow water cleaning \rightarrow acid cleaning (hydrochloric acid, 270 ml; sulfuric acid, 230 ml; and water, 500 ml. Temperature, $40 \sim 50^{\circ}\text{C}$) \rightarrow activation (1 part hydrochloric acid and 1 part water) \rightarrow black chrome plating \rightarrow water cleaning \rightarrow drying \rightarrow oiling inspection.

IX. Possible Defects Discovered During Operation and Remedial Action (See Table 2)

Table 2. Part 1

Cause	Remedial action	
 1) Current density to low. 2) NaNO₃ insufficient. 3) Temperature too high. 	1) Adjust to specified value 2) Add 2 4 g/l NaNO3. 3) Reduce temperature to 40°C or lower.	
1) Excess NaNO ₃ . 2) Temperature too high.	1) Dilute solution. 2) Reduce temperature.	
Sodium nitrate insuf- ficient.	Add NaNO3.	
Current density too low.	Adjust current density.	
	1) Current density to low. 2) NaNO ₃ insufficient. 3) Temperature too high. 1) Excess NaNO ₃ . 2) Temperature too high. Sodium nitrate insufficient.	

Table 2. Part 2

Table L. Tare L			
Defect discovered	Cause	Remedial action	
Plating contains ashes and very white, poor protection.	Presence of sulfate radical in solution.	Remove with barium carbonate.	
Plating yellowish brown throughout, poor protection, appearance of cor- rosion on steel components.	Presence of chlorine radical.	Treat with silver nitrate.	
Electrolyte has small electric resistance, plating shows brown streaks.	Copper content 0.5 g/l. or higher.		
Appearance of large steel-wire streaks, no plating on some areas or on hollow places.	 Pcor contact. No auxiliary anode. 	1) Change to hook 2) Instal an auxi- liary anode.	
Surface with sus- pended ashes, plat- ing not black but slightly brown.	 Solution temperature too high. Solution turbid. 	1) Reduce tempers- ture. 2) Clean electrolyte.	
Plating not black and seemingly transparent.	Plating time too short.	Increase plating time.	