

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

TOPICWISE: COMPILER DESIGN-1 (GATE - 2019) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT

ALL(17) CORRECT(6) INCORRECT(10) SKIPPED(1)

Q. 1

In a compiler the module that checks the token arrangement against the source code grammar is called

Have any Doubt?

Α

Lexical analyzer

Е

Syntax analyzer

Correct Option

Solution:

(b)

- Lexical analyzer scan the source code as a stream of characters and counts it into meaning full lexemes
- Syntax analyzer checks the token arrangement against the source code grammar.
- Semantic analyzer check whether the parse tree constructed follows the rules of language.
- · Code optimizer do code optimization of the intermediate code.

C

Semantic analyzer

Your answer is Wrong

D

Code optimizer

QUESTION ANALYTICS

Q. 2

Consider the following grammar:

 $S \rightarrow S \times E \mid E$

 $E \rightarrow F + E \mid F$

 $F \rightarrow id$

Which of the following is true?

Have any Doubt?

Α

'x' is right associative but '+' is left associative

В

'+' is right associative but 'x' is left associative

Your answer is Correct

Solution:

(b)

$$S \rightarrow S \times E \mid E$$

$$E \rightarrow F + E \mid F$$

$$F \to id$$

1. For expression "id × id × id".

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES 2. For expression "id + id + id".

So, '+' is left associative.

С

Both '+' and 'x' are right associative

D

Both '+' and 'x' re left associative

QUESTION ANALYTICS

Q. 3

Which of the following is false?

Have any Doubt?

Α

Live variable analysis used in control flow graph for register allocation.

Your answer is Wrong

В

Basic block does not contain jump into the middle of the block.

С

Three address code is linear representation of syntax tree.

D

With triples representation optimization can change the execution order.

Correct Option

Solution:

(d)

- With triple, optimization cannot change the execution order but with indirect triple we can.
- Live variable analysis needed in register allocation and deallocation.
- Basic block does not contain jump into middle of the block i.e. sequence of instruction where control enter the sequence at begin and exist at end.
- Three address code is linear representation of syntax tree.

QUESTION ANALYTICS

Q. 4

Consider the following grammar:

 $S \rightarrow ZZ$

 $Z \rightarrow xZ \mid y$

Which of the following is represent "handle" in the generation of string "xxxyxy"?

Have any Doubt?

Δ

ZxZ

Your answer is **Wrong**

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

xZxy

D

xZ

Correct Option

Solution:

(d)

String given: "xxxyxy"

Handle
$$\{Z \rightarrow xZ\}$$

$$\begin{array}{c} \text{Handle } \{Z \to xZ\} \\ \text{S} \to ZZ \to ZxZ \to Zxy \to xZxy \to xxzZxy \to xxxyxy \end{array}$$

- ZxZ is not handle i.e. cannot reduce to any variable.
- Zxy is not handle i.e. cannot reduce to any variable.
- xZxy is not handle i.e. cannot reduce to any variable.
- xZ is handle since xZ reduce to Z in next step.

QUESTION ANALYTICS

Q. 5

Consider the following statements:

 S_1 : Grammar parsed by LL(1) parser must be parsed by SLR(1) parser.

 S_2 : Grammar parsed by LL(1) parser must be parsed by CLR(1) parser.

 S_3 : Grammar which is not parsed by LALR(1) parser cannot be parsed by LL(1) parser.

Which of the following is true?

FAQ Have any Doubt?

Only S₁

Only S_1 and S_2

Only S₂ and S₃

Your answer is Wrong

Only S₂

Correct Option

Solution:

Relation between LL(1), SLR(1) and CLR(1) and LALR(1) given below:

 S_1 is false, S_2 is true and S_3 is false.

QUESTION ANALYTICS

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

```
int main()
   int m = 10;
   int n, n1;
   n = ++m;
   n1 = m++;
   n --;
   -- n1;
   n - = n1;
   printf("%d", n);
   return 0;
```

FAQ Have any Doubt?

Correct Option

46

Solution:

46

```
int main ( )
1 2 3 4
    \underline{int} \ \underline{m} = \underline{10} \ ;
    6 7891
    <u>int n , n1 ;</u>
     1112131415
     @@@@
     2923
     -- <u>n1</u> ;
     29 30 31
     \underline{n} = \underline{n1};
     32 33 34 35
30 33 34 35
     printf ( "%d" , n ) ;
       39 39 39 40 41 42
     return0 ;
       43 44 45
```

Number of tokens are 46.

Your Answer is 47

QUESTION ANALYTICS

Q. 7

Consider the following grammar which is not LL(1) because LL(1) table contain multiple entry for same production.

```
S \rightarrow aAbB \mid bAaB \mid \in
A \rightarrow S
```

 $B \rightarrow S$ The number of entries have multiple productions in LL(1) table are ______.

Have any Doubt?

2

Your answer is Correct2

Solution:

Ashima Garg

Sign out

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

LL(1) Parsing table:

	а	b	\$
S	$\begin{bmatrix} S \to aAbB \\ S \to \in \end{bmatrix}$	$\begin{bmatrix} S \to bAbB \\ S \to \in \end{bmatrix}$	S → ∈
A	$A \rightarrow S$	$A \rightarrow S$	
В	$\mathcal{B} \to \mathcal{S}$	$B \rightarrow S$	$B \rightarrow S$

[10] [10] [10]

QUESTION ANALYTICS

Q. 8

Assume ×, -, + and/are operators. Precedences and associativity given for those operators as following:

1. × has highest precedence among all operators and it is left associative

2. -, + and/are having equal precedence and they are right associative.

Using × as Multiplication, – as Subtraction, + as Addition and/as Division.

The output of the given expression $3 \times 2 - 10 + 5 - 7 \times 6 / 3$ is _

Have any Doubt?

5

Your answer is Correct5

Solution:

Given expression:
$$((3 \times 2) - (10 + (5 - ((7 \times 6) / 3))))$$

= $(6 - (10 + (5 - (42/3))))$
= $(6 - (10 + (5 - 14)))$
= $(6 - (10 - 9))$
= $(6 - (1))$
= $(6 - (1))$

QUESTION ANALYTICS

Q. 9

The minimum number of temporary variables are created in 3-address code for the following expression

$$a+b\times c+d-e-a+b\times c$$

Assume order of precedence from highest to lowest as: x, + and -. Consider associativity for + and x are not important but - is left associative.

Have any Doubt?

2

Correct Option

Solution:

Here × is highest and + is next highest.

Associativity does not matter.

Select the best way so that less number of temporary variables will be created.

$$a + b \times c + d - e - a + b \times c$$

$$= ((a + (b \times c)) + d) - e - (a + (b \times c))$$

= (((a + (b \times c)) + d) - e) - (a + (b \times c))

Equivalent 3-address code is:

$$t_1 = b \times c$$

$$t_2 = a + t_1$$

$$t_1 = t_2 + d$$

$$t_1 = t_1 - e$$

$$t_1 = t_1 - t_2$$

Only two temporary variables are used

Your Answer is 5

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

QUESTION ANALYTICS

Q. 10

Consider the following grammar:

```
C \rightarrow PF class id XY
```

```
P → public | ∈
```

 $F \rightarrow final \in$

X → extends id | ∈

 $Y \rightarrow implements I \in$

 $I \rightarrow id J$

 $J \rightarrow , I \in$

Which of the following is true?

```
Have any Doubt?
```

```
FIRST (C) = {public, final}
FOLLOW (X) = {implements}
```

```
FIRST (Y) = {implements, \in}
```

 $FOLLOW(P) = \{final\}$

```
FIRST (C) = {public, final, class}
FOLLOW (X) = {implements, $}
```

Your answer is Correct

Solution:

(c)

```
FIRST(C) = FIRST(PF class id XY)
```

= {public} ∪ FIRST (F class id XY)

= $\{public\} \cup \{final\} \cup FIRST (class id XY)$

 $= \{public\} \cup \{final\} \cup \{class\}$

= {public, final, class}

FIRST(X) = FIRST(Y)

= {implements} ∪ FOLLOW (C)

= $\{implements\} \cup \{\$\}$

= {implements, \$}

FIRST (Y) = FIRST (implements I) \cup FIRST (\in)

= {implements, ∈}

FOLLOW(P) = FIRST(F)

= {final} ∪ FIRST (class) = {final, class}

FIRST (Y) = {implements}
FOLLOW (P) = {final, class}

QUESTION ANALYTICS

Q. 11

Consider the following expression grammar 'G':

 $A \rightarrow B \mid a \mid CBD$

 $B \to C \mid b$

 $C \to A \mid c$

 $D \rightarrow d$

Which of the following grammar is non-left recursive but is equivalent to G?

FAQ Have any Doubt?

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

☆ HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

```
B \rightarrow C \mid b
C \rightarrow A \mid c
D \rightarrow d
```

```
A \rightarrow aA' |bA'| cA'
A' \rightarrow cBDA' | BDA' | \in
B \rightarrow C \mid b
C \rightarrow A \mid c
D \rightarrow d
```

Your answer is Wrong

 $A \rightarrow aA' |bA'| cA'$ $A' \rightarrow BDA' \in$ $B \rightarrow C \mid b$ $C \rightarrow A \mid c$ $D \rightarrow d$

```
A \rightarrow aA' | bA' | cA' | cBDA'
A' \rightarrow BDA' \in
B \rightarrow C \mid b
C \rightarrow A \mid c
D \rightarrow d
```

Correct Option

Solution:

Given grammar:

$$\begin{array}{lll} A \rightarrow B & |a| CBD & A \rightarrow A & |a| ABD & |c| b & |cBD| \\ B \rightarrow C & |b| & \equiv & B \rightarrow C & |b| \\ C \rightarrow A & |c| & C \rightarrow A & |c| \\ D \rightarrow d & D \rightarrow d \\ Removing \ left \ recursion \ from \ A \rightarrow A & |a| b & |c| ABD & |cBD| \end{array}$$

$$A \rightarrow aA' |bA'| cA' |cBDA'$$

 $A' \rightarrow BDA' | \in$

$$B \rightarrow C \mid b$$

$$C \rightarrow A \mid c$$

 $D \rightarrow d$

QUESTION ANALYTICS

Q. 12

Consider the following SDT:

$$C \rightarrow C + S \qquad \left\{ C.val = \xrightarrow{(1)} \right\}$$

$$C \rightarrow S \qquad \left\{ C.val = S.val \right\}$$

$$S \rightarrow S \times E \qquad \left\{ S.val = \xrightarrow{(2)} \right\}$$

$$S \rightarrow E \qquad \left\{ S.val = E.val \right\}$$

$$E \rightarrow id \qquad \left\{ E.val = id.num \right\}$$

What is the missing translation (1) and (2), if the string " $2 \times 3 + 5 \times 3 + 1 \times 3$ " produces 160 instead of 24?

Have any Doubt?

(1): C₁.val + S.val and (2): S₁.val - E.val

(1): C1.val * S.val and (2): S1.val + E.val

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

С

(1): C₁.val * S.val and (2): S₁.val - E.val

D

 C_1 .val + S.val and (2): S_1 .val * E.val

QUESTION ANALYTICS

Q. 13

Consider the following grammar to generate binary fractions:

$$F \rightarrow 0.B$$
 {F.val = B.val}

$$B_0 \rightarrow 0B_1 \{S_1\}$$

$$B_0 \rightarrow 1B_1 \ \{S_2\}$$

$$B \rightarrow 0$$
 {B.val = 0}

$$B \rightarrow 1$$
 {S₃

If the above grammar with semantic rules calculate $\sum_{i=1}^{n} bi2^{-i}$ and each non-terminal has synthesized attribute 'val' to store its value. Then the missing semantic rules will be _____.

Have any Doubt?

Δ

 $S_1: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2\}$

 $S_2: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2^{B_1 \cdot \text{val}}\}$

 $S_3: \{B \cdot \text{val} = 1\}$

Your answer is Wrong

В

 $S_1: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2\}$

 $S_2: \{B_0 \cdot \text{val} = B_1 \cdot \text{val} + 1 / 2\}$

 $S_3: \{B \cdot \text{val} = 1/2\}$

С

 $S_1: \{B_0 \cdot \text{val} = B \cdot \text{val}\}$

 $S_2: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2 + 1/2\}$

 $S_3: \{B \cdot \text{val} = 1/2\}$

D

 $S_1: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2\}$

 $S_2: \{B_0 \cdot \text{val} = B_1 \cdot \text{val}/2 + 1/2\}$

 $S_3: \{B \cdot \text{val} = 1 / 2\}$

Correct Option

Solution:

(d)

Since for every 1 after fractional point represented by $1/2^i$. So, $\{B.val = 1/2\}$, then, for B_0 : lower bit from fractional side added to B.val i.e., $\{B_0.val = B_1.val/2+1/2\}$.

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Q. 14

Consider the intermediate code given below:

- 1. i = 1
- 2. j = 1
- 3. $t_1 = 10 \times i$
- 4. $t_2 = t_1 + j$
- 5. $t_3 = 8 \times t_2$
- 6. $t_4 = t_3 88$
- 7. $a[t_4] = 0.0$
- 8. i = j + 1
- 9. If j < = 10 goto (3)
- 10. i = i + 1
- 11. If i < = 10 goto (2)
- 12. i = 1
- 13. $t_5 = i 1$
- 14. $t_6 = 88 \times t_5$
- 15. $a[t_6] = 1.0$
- 16. i = i + 1
- 17. If i < = 10 goto (13)

How many nodes and edges in the control flow graph constructed for above three address code?

FAQ Have any Doubt?

Α

8 and 8

В

8 and 10

Your answer is **Correct**

Solution:

(b)

Control flow graph will be:

C

7 and 10

D

7 and 9

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

Q. 15

Consider the following code segment:

a = b + c;

c = a + x;

d = b + c;

b = a + x;

The minimum number of total variables required to convert the above code segment to static single assignment form is _____.

Have any Doubt?

6

Correct Option

Solution:

6

$$a = b + c;$$
 $r_1 = b + c;$
 $c = a + x;$ $r_2 = r_1 + x;$
 $d = b + c;$ \Rightarrow $r_3 = b + r_2;$
 $b = a + x;$ $r_2 = r_1 + x;$

It can be verified by making DAG:

Total number of nodes = 6

Your Answer is 4

QUESTION ANALYTICS

Q. 16

A shift reduce parser carries out the actions. Specified within braces immediately after reducing with the corresponding rule of grammar:

$$S_1 \rightarrow S_2 a \{S_1 \cdot nA_1 = S_2 \cdot nA_1 + 1; S_1 \cdot nA_2 = S_2 \cdot nA_2; S_1 \cdot \text{total} = S_2 \cdot \text{total}; \}$$

$$S_1 \to S_2 \ b \ \{S_1 \ . \ nA_1 = S_2 \ . \ nA_1; \ S_1 \ . \ nA_2 = S_2 \ . \ nA_2; \ S_1 \ . \ \text{total} = S_2 \ . \ \text{total} + S_2 \ . \ nA_2; \}$$

$$S_1 \rightarrow S_2 \, c \, \left\{ S_1 \, . \, \, nA_1 = 0; \, S_1 \, . \, \, nA_2 = S_2 \, . \, \, nA_1; \, S_1 \, . \, \, \text{total} = S_2 \, . \, \, \text{total}; \right\}$$

$$S_1 \rightarrow a \{S_1 . nA_1 = 1; S_1 . nA_2 = 0; S_1 . \text{total} = 0; \}$$

$$S_1 \rightarrow b \ \{S_1 \ . \ nA_1 = 0; \ S_1 \ . \ nA_2 = 0; \ S_1 \ . \ {\sf total} = 0; \}$$

$$S_1 \rightarrow c \ \{S_1 \ . \ nA_1 = 0; \ S_1 \ . \ nA_2 = 0; \ S_1 \ . \ \text{total} = 0; \}$$

The final output $(S_1 \text{ total for})$ input string "abbcabcabab" that corresponds to the pattern $(a(a \mid b)^* c + (a \mid b)^* b)^*$ is _____.

FAQ Have any Doubt?

3

Correct Option

Solution:

3

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

So final value of S_1 . total is 3.

QUESTION ANALYTICS

Q. 17

The following program uses six temporary variables p, q, r, s, t and u. The code is:

$$p = 6$$

$$q = 7$$

$$t = p * q$$

$$s = t + p$$

$$u = 8$$

$$u = s * p$$

$$s = p + u$$

$$r = r * q$$

$$t = t + p$$

return *t*Assuming that all operations take their operands from registers. The minimum number of registers needed to execute this program without spilling is ______.

FAQ Have any Doubt?

5

Correct Option

Solution :

5

$$r_2 = 7$$

 $r_3 = r_1 * r_2$
 $r_4 = r_3 + r_1$
 $r_5 = 8$
 $r_4 = r_4 * r_1$

 $r_1 = 6$

$$r_4 = r_1 + r_4$$

$$r_4 = r_4 * r_2$$

$$r_3 = r_3 + r_1$$

return r_3

So, total 5 registers are required to execute this program without spilling.

Your Answer is 3

QUESTION ANALYTICS