Estimation in High Dimensions: A Geometric Perspective. Part 1

Jiapeng Liu

Department of Statistics Purdue University

April 20, 2016

(Work by Roman Vershynin)

High dimensional estimation problems:

Parameters: $x \in \mathbb{R}^n$. Unknown.

Map: $\Phi: \mathbb{R}^n \longrightarrow \mathbb{R}$. Known.

Measurement vector: $y = \Phi(x) \in \mathbb{R}^m$. Known.

Goal: Estimate x from y.

Prior information (model): $x \in \mathbf{K}$, where $\mathbf{K} \subset \mathbb{R}^n$ is a known feasible set.

Example of K

```
{s-sparse vectors in \mathbb{R}^n}; {low-rank matrix in \mathbb{R}^{n_1 \times n_2}} etc.
```

Linear Model: y = Ax, where A is a $m \times n$ matrix.

 \triangleright In principle, it should be possible to estimate \mathbf{x} from \mathbf{y} with

$$m = O(n)$$

observations.

▶ If K happens to be low-dimensional, with algebraic dimension $dim(K)=d\ll n$. Then in this case, the estimation should be possible with fewer observations.

$$m = O(d) = o(n).$$

► However, it rarely happens that feasible sets of interest have small algebraic dimension.

For example, $\{s\text{-sparse vectors in }\mathbb{R}^n\}$ has full dimension n but tend to have low-complexity.

Question

How to estimate \mathbf{x} when K is high-dimensional while has $low\ complexity$?

Goal:

- 1. develop geometric intuition about high dimensional sets;
- ▶ 2. explain results of asymptotic convex geometry which validate this intuition;
- ▶ 3. demonstrate connections between high dimensional geometry and high dimensional estimation problems.

High dimensional convex geometry Convexity

The set K may be non-convex. Then convexity: $K \longmapsto \operatorname{conv}(K)$.

Question: What do convex sets look like in high dimensions?

This is the main question of Asymptotic Convex Geometry = Geometric Functional Analysis.

High dimensional convex geometry

Intuition about convex sets

Main message of asymptotic convex geometry:

$$K \approx Bulk + Outliers$$
.

Bulk = small diameter, round ball, makes up most volume of K. Outliers = few long tentacles, contain little volume..

V. Milman's heuristic picture of a convex body in high dimensions.

Example: The l_1 and l_2 ball

l_1 ball:

The volume of a unit l_1 ball is

$$Vol_n(B_1^n) = \frac{2^n}{n!}, \qquad Vol_n(B_1^n)^{1/n} \approx \frac{2e}{n}$$

l₂ ball:

The volume of a unit l_2 ball is

$$Vol_n(B_2^n) = \left(\sqrt{\frac{2\pi e}{n}}\right)^n, \qquad Vol_n(B_2^n)^{1/n} = \sqrt{\frac{2\pi e}{n}}$$

Example: The l_1 ball

$$K = \text{conv}(\pm e_i) = \{ x : ||x||_1 \le 1 \} = B_1^n \text{ is the unit } l_1 \text{ ball.}$$

The left figure is the standard figure, but the right figure is more accurate.

$$Vol(K)^{1/n} \simeq Vol(B)^{1/n} \simeq \frac{1}{n}$$

Here B is the Euclidean ball in K, with diameter $2/\sqrt{n}$.

Rigorous results for this intuition

Concentration of volume

Definition (Isotropic)

A set K is isotropic if the random vector X distributed uniformly in K (according to the Lebesgue measure) and satisfy:

$$\mathbb{E}X = 0, \quad \mathbb{E}XX^T = I_n.$$

- Isotropy means the geometry on the manifold is the same regardless of direction;
- Isotropy is just an assumption of proper scaling one can always make a convex body K isotropic by applying a suitable invertible linear transformation.
- ▶ With this scaling, most of the volume of K is located around the Euclidean sphere of radius \sqrt{n} .

Rigorous results for this intuition

Concentration of volume

Isotropy assumption: $X \sim \text{Unif}(K)$ satisfies $\mathbb{E}X = 0$, $\mathbb{E}XX^T = I_n$. $\mathbb{E}\|X\|_2^2 = n$, so the **radius** of that ball is \sqrt{n} .

Theorem (concentration of volume) [Paouris '06]

$$\mathbb{P}\{\|X\|_2 > t\sqrt{n}\} \le \exp(-ct\sqrt{n}), \ t \ge 1.$$

Theorem (thin shell) [Klartag '07]

$$\mathbb{P}\{\left|\|X\|_2 - \sqrt{n}\right| > \epsilon \sqrt{n}\} \le C \exp\left(-c\epsilon^3 n^{1/2}\right). \quad \forall \ \epsilon \in (0,1)$$

C and c denote positive absolute constants.

Low dimensional random sections

Question

What the $random\ sections$ of a high dimensional convex set K look like?

Suppose E is a random subspace of \mathbb{R}^n with fixed dimension d.

If d is sufficiently small and the bulk of K is a round ball, then we should expect the section $K \cap E$ to be a round ball as well. i.e. E misses the outliers, passes through the bulk of K.

Low dimensional random sections

Theorem (Dvoretzky's theorem)

Let K be an origin-symmetric convex body in \mathbb{R}^n such that the ellipsoid of maximal volume contained in K is the unit Euclidean ball B_2^n . Fix $\epsilon \in (0,1)$. Let E be a random subspace of dimension $d=c\epsilon^{-2}log\ n$ drawn from the Grassmanian $G_{n,d}$ according to the Haar measure. Then there exists $R\geq 0$ such that with high probability (say, 0.99) we have

$$(1 - \epsilon)B(R) \subseteq K \cap E \subseteq (1 + \epsilon)B(R)$$

Here B(R) is the centered Euclidean ball of radius R in the subspace E.

High dimensional random sections

Question

What the $random\ sections$ of a high dimensional convex set K look like when d is large?

- ightharpoonup If d is large, we can no longer expect such sections to be round.
- ► As the *codimension* decreases, the random subspace E becomes larger and it will probably pick more and more of the outliers (tentacles) of K.
- ▶ The shape of such sections $K \cap E$ is difficult to describe.
- Nevertheless, we can accurately predict the diameter of $K \cap E$. A bound on the diameter is known in Asymptotic Convex Geometry as the low M^* estimate, or M^* bound.

Mean width

Before we move on, we need a new concept called $Mean\ Width$.

Definition(Gaussian Mean Width)

$$w(K) := \mathbb{E} \sup_{x \in K - K} \langle g, x \rangle$$
, where $g \sim N(0, I_n)$,

K is a bounded set and $K - K = \{\mathbf{u} - \mathbf{v} : \mathbf{u} - \mathbf{v} \in K\}.$

Mean width

Remark:

- ▶ The concept of mean width captures important geometric characteristics of sets in \mathbb{R}^n .
- One can mentally place it in the same category as other classical geometric quantities like volume and surface area.
- ▶ By the χ^2 distribution, $\mathbb{E}\|g\|_2 \asymp \sqrt{n}$, so $w(K) \approx \sqrt{n} \cdot \text{width of K in a random direction}$
- ► The mean width is invariant under translations, orthogonal transformations, and taking convex hulls, especially:

$$w(conv(K)) = w(K)$$

Example: Some useful mean width

Unit l_2 ball:

$$w(K) = 2\mathbb{E}||g||_2 \asymp \sqrt{n}$$

 $s-sparse\ vectors$: Let K consist of all unit s-sparse vectors in \mathbb{R}^n those with at most s non-zero coordinates:

$$K = \{x \in \mathbb{R}^n : ||x||_2 = 1; ||x||_0 \le s\} :$$

Then,

$$w(K) \simeq \sqrt{s \log(2n/s)}$$

Example: Some useful mean width

Unit l_1 ball:

Hence Mean Width sees the bulk, ignores the outliers.

Computing Mean Width algorithmically

Question

How to estimate of a given set K fast and accurately?

 Gaussian concentration of measure implies that, with high probability, the random variable

$$w(K,g) = \sup_{x \in K - K} \langle g, x \rangle$$

is close to its expectation w(K).

- It is enough to generate a single realization of a random vector $g \sim N(0, I_n)$ and compute w(K, g), this should produce a good estimator of w(K).
- Since we can convexify K without changing the mean width, computing this estimator is a *convex optimization problem* (and often even a linear problem if K is a polytope).

Computing Mean Width theoretically

Definition (Metric Entropy)

Let N(K,t) denote the smallest number of Euclidean balls of radius t whose union covers K. Usually N(K,t) is referred to as a $covering\ number$ of K, and logN(K,t) is called the $metric\ entropy$.

The mean width is related to the *metric entropy*.

Theorem (Sudakov's and Dudley's inequities)

For any bounded subset K of \mathbb{R}^n , we have

$$c \sup_{t>0} t \sqrt{logN(K,t)} \le w(K) \le C \int_0^\infty \sqrt{logN(K,t)} dt.$$

- ► The lower bound is Sudakov's inequality and the upper bound is Dudley's inequality.
- Neither Sudakov's nor Dudley's inequality are tight for all sets K.

Random sections of small codimension: M^* bound

Theorem (M^* estimate) [Mendelson-Pajor-Tomczak '07]

Let K be a bounded subset of \mathbb{R}^n . Let E be a random subspace of \mathbb{R}^n of a fixed codimension m, drawn from the Grassmanian $G_{n,n-m}$ according to the Haar measure. Then

$$\mathbb{E} \operatorname{\mathsf{diam}}(\mathsf{K} \cap \mathsf{E}) \leq \frac{Cw(K)}{\sqrt{m}}$$

Here w(K) is the mean width of K.

- For subspaces E of not very high dimension, where m=O(n), the M^* bound states that the size of the random section $K\cap E$ is bounded by the spherical mean width of K.
- ▶ When the dimension of the subspace E grows toward n (so the codimension m becomes small), the diameter of $K \cap E$ also grows by a factor of $\sqrt{n/m}$.

Application: Estimation of Linear Observations

Recover $x \in K \subset \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^n$.

If $m \leq n$, problem is ill $-\mathbf{posed}$.

What do we know? x belongs to both K and the affine subspace

$$E_x := \{x' : Ax' = y\} = x + ker(A)$$

Both K and E_x are known.

If $\operatorname{diam}(K \cap E_x) \leq \epsilon$, then x can be recovered with error ϵ .

When
$$\operatorname{diam}(K \cap E_x) \leq \epsilon$$
?

Assume K is convex and origin-symmetric, then K - K is 2K. Let E=ker(A).

For any $x' \in K$ such that Ax' = y,

$$x - x' \in 2K$$
 and $x - x' \in E$

Conclusion: If $\operatorname{diam}(K \cap E) \leq \epsilon$, then any $x \in K$ can be recovered from y=Ax with error ϵ .

Remaining question :When is $diam(K \cap E) \leq \epsilon$?

If A is an random matrix then E is a ${\bf random\ subspace}$. Another version of ${\bf M}^*$ estimate is

$$\operatorname{diam}(K \cap E) \leq \frac{Cw(K)}{\sqrt{m}}$$
 with high probability.

Equate with ϵ and obtain the sample size (# of measurements):

$$m \simeq \epsilon^{-2} w(K)^2$$

Conclusion

Let K be a convex and origin-symmetric set in \mathbb{R}^n .

Let A be an $m \times n$ random matrix.

If $m \asymp w(K)^2$ then one can accurately recover any signal $x \in K$ from m random linear measurements given as $y = Ax \in \mathbb{R}^m$

The recovery is done by the convex program

Find
$$x' \in K$$
 such that $Ax' = y$

i.e. find x' consistent with the model (K) and measurements (y).

Remark:

▶ 1. If the signal set K is not convex, then convexify;

$$w(conv(K)) = w(K)$$

▶ 2. If the signal set K is not origin-symmetric, then symmetrize;

$$w(K - K) \le 2w(K)$$

3. Mean width can be efficiently estimated. Randomized linear program:

$$w(K) \approx \sup_{x \in K - K} \langle g, x \rangle, \quad g \sim N(0, I_n)$$

Information theory viewpoint

The sample size $m = w(K)^2$ is an effective dimension of K, the amount of information in K.

 ${f Conclusion}$: One can effectively recover any signal in K from $w(K)^2$ random linear measurements.

Example 1. $K = B_1^n = conv(\pm e_i)$. $w(K)^2 \sim log \ n$. So, one can effectively recover any signal in B_1^n from $log \ n$ random linear measurements.

Information theory viewpoint

Example 2.

$$K = \{s - \text{sparse unit vectors in } \mathbb{R}^n\}. \ w(K)^2 \approx slog \ n.$$

Conclusion: One can effectively recover any s-sparse signal from slog n random linear measurements.

This is a well-known result in **compressed sensing**. (Warning: exact recovery is not explained by this geometric reasoning.)

Remark. $log\binom{n}{s} \approx slog\ n$. bits are required to specify the sparsity pattern.

Assume $\epsilon \geq 0$, we have:

$$y = Ax + \mu, \quad \frac{1}{m} \|\mu\|_1 = \frac{1}{m} \sum_{i=1}^{m} |\mu_i| \le \epsilon$$

Here A is an $m \times n$ Gaussian matrix as before, the noise vector μ may be unknown and have arbitrary structure.

K is any bounded set in \mathbb{R}^n .

Theorem (Feasibility program)

Choose \hat{x} to be any vector satisfying

$$\hat{x} \in K$$
 and $\frac{1}{m} ||A\hat{x} - y||_1 \le \epsilon$

Then

$$\mathbb{E} \sup_{x \in K} \|\hat{x} - x\|_2 \le \sqrt{8\pi} \left(\frac{Cw(K)}{\sqrt{n}} + \epsilon \right).$$

Question

How to find such a x satisfy the Feasibility program?

▶ **Assumption**: K is a star-shaped bounded set in \mathbb{R}^n with nonempty interior, which means:

$$tK \subseteq K \ for \ all \ t \in [0,1]$$

► For each point $x \in \mathbb{R}^n$, the Minkowski functional of K, $||x||_K$ is defined by:

$$||x||_K = \inf\{\lambda > 0 : \lambda^{-1}x \in K\}$$

▶ It is easy to see that

$$K = \{x : ||x||_K \le 1\}$$

Theorem (Optimization program)

Choose \hat{x} to be a solution to the program

minimize
$$\|\hat{x}\|_{K}$$
 subject to $\frac{1}{m}\|A\hat{x}-y\|_{1} \leq \epsilon$

Then

$$\mathbb{E} \sup_{x \in K} \|\hat{x} - x\|_2 \le \sqrt{8\pi} \left(\frac{Cw(K)}{\sqrt{n}} + \epsilon \right).$$

References

- K. Ball (1997), An elementary introduction to modern convex geometry. Math. Sci. Res. Inst. Publ.,, 31, Cambridge Univ. Press, Cambridge 1–58.
- ► S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, (2007) Reconstruction and subgaussian operators in asymptotic geometric analysis, *Geom. Funct. Anal.*, 17, 1248–1282.
- ▶ B. Klartag,(2007) Power-law estimates for the central limit theorem for convex sets, *J. Funct. Anal.*, **245**, 284–310.
- ► G. Paouris, (2006) Concentration of mass on convex bodies, *Geom. Funct. Anal*, **16**, 1021–1049.