Universidade Federal de Itajubá

Programa de Pós-Graduação em Meio Ambiente e Recursos Hídricos

Monitoramento e alerta de inundação no município de Itajubá (MG) através de modelos matemáticos

João Bosco Coura dos Reis

Orientadora: Profa, Dra, Nívea Adriana Dias Pons

Coorientador: Dr. Eymar Silva Sampaio Lopes

Defesa de Dissertação de Mestrado

21/02/2014 - Itajubá (MG)

CONTEÚDO

INTRODUÇÃO

Objetivos

FUNDAMENTAÇÃO TEÓRICA

MATERIAL E MÉTODOS

RESULTADOS E DISCUSSÕES

CONCLUSÕES

REFERÊNCIAS

INTRODUÇÃO

INTRODUÇÃO

Brasil -----

Eventos ou perigos

hidrometeorológicos

- Inundações e enchentes

- Movimentos de massa

INTRODUÇÃO

Objetivos

O objetivo desta pesquisa é criar um sistema de monitoramento e alerta com antecedência para o município de Itajubá, utilizando somente dados de nível fluviométrico.

- 1. Selecionar e analisar séries históricas de dados de nível do rio;
- 2. Ajustar modelos de regressão polinomial;
- 3. Extrair a rede de drenagem do trecho do Alto Sapucaí;
- 4. Delimitar as sub-bacias do trecho do Alto Sapucaí;
- 5. Desenvolver o Sistema de Monitoramento e Alerta na plataforma tecnológica TerraMA².

Definições

Inundações ocorrem quando a precipitação é intensa ao ponto de que a quantidade de água que chega ao canal é superior a sua capacidade de drenagem (TUCCI, 2002).

Mudanças climáticas e população

Aumento populacional

Aumento das atividades econômicas e industriais

Aumento do processo

de urbanização

- As atividades antrópicas assumem responsabilidade nas mudanças vistas no sistema terrestre (STEFFEN et al., 2005).

- Mudanças na composição da atmosfera faz com que o ciclo da água fique mais intenso, com um consequente aumento de risco de grandes inundações (Milly et al., 2002).

Mudanças climáticas e população

Países com maior número de mortalidade por desastres em 2011.

Country	Disaster distribution	No. of deaths
Japan		19 975
Philippines		1 933
Brazil		978
Thailand		896
India	6	852
United States		809
China P Rep		746
Turkey		655
Pakistan		511
Colombia		313

Climatological

Geophysical

Países com maior número de vítimas por desastres em 2011.

	Country	Disaster distribution	No.victims (millions)				
	China P Rep		159.3				
	India		12.8				
	Philippines		11.7				
	Thailand		11.2				
	Pakistan		5.4				
	Ethiopia		4.8				
	Kenya		4.4				
	Somalia		4.0				
	Brazil		3.7				
	Mexico		3.7				
■ Hyd	Hydrological Meteorological						

Fonte: (GUHA-SAPIR et al., 2012)

Prevenção e mitigação dos efeitos das inundações

As medidas não estruturais podem minimizar significativamente os prejuízos com custo menor (TUCCI, 2002, p. 629).

Os sistemas de monitoramento e alerta com antecedência são fundamentais para a redução dos riscos (UN-ISDR, 2004).

Adoção de medidas não estruturais, exemplo: ampliação do sistema de monitoramento hidrológico (KOBIYAMA *et al.*, 2001; KOBIYAMA *et al.*, 2006; GIGLIO e KOBIYAMA, 2011).

Prevenção e mitigação dos efeitos das inundações

FIGURE 1 Flood warning response benefits pathway model.

Prevenção e mitigação dos efeitos das inundações

O Vale do Rio Taquari, no Rio Grande do Sul, conta com o Sistema de Previsão e Alerta de Enchentes (SPAE) (FERREIRA et al., 2007).

O Sistema de Monitoramento de Enchentes (SME) monitora e faz a previsão de cheias em um trecho da bacia hidrográfica do Rio Sapucaí, no sul do Estado de Minas Gerais (LIH, 2013).

Modelos hidrológicos

Servem para simular e representar o movimento da água na natureza, sendo um conjunto de equações, técnicas e procedimentos que descrevem os fenômenos hidrológicos (OLIVO, 2004).

- Entender melhor o comportamento hidrológico de uma bacia;
- Analisar a consistência da série de vazões e preenchimento de falhas;
- Prever vazão em tempo real;
- Dimensionar e prever cenários de planejamento;
- Simular os efeitos resultantes na modificação do uso do solo.

Fonte: Tucci (1998)

Modelos hidrológicos

Estocásticos / Determinísticos

Conceituais / Empíricos

Discretos / Contínuos

Pontuais / Distribuídos

Estáticos / Dinâmicos

Fonte: Rennó e Soares (2000).

Estes modelos exigem uma grande quantidade de dados e informações da bacia e de recursos humanos e computacionais.

Modelos hidrológicos

Olivo (2004) desenvolveu um modelo empírico, utilizando técnicas como regressão múltipla por mínimos quadrados, modelos autoregressivos e Modelos de Composição de Especialistas Locais para serem utilizados em sistemas de alerta-resposta em tempo real.

Utilização de modelo linear de propagação para criar um sistema de previsão hidrológica de vazões para a cidade de Governador Valadares (MG) (CASTILHO e OLIVEIRA, 2001).

Geotecnologia – TerraMA²

A plataforma TerraMA² suporte para o monitoramento, análise e alerta de parâmetros ambientais (INPE, 2012).

Implantação de um sistema automático de alerta da qualidade da água (LOPES, MAGINA e ALVES, 2011).

Utilização para monitoramento de áreas susceptíveis a escorregamentos (RODRIGUES, 2013; LOPES, NAMIKAWA e REIS, 2011; REIS, CORDEIRO e LOPES, 2011).

Monitoramento e alertas com antecedência para eventos extremos com potencial de causar inundações (REIS, SANTOS e LOPES, 2011).

Geotecnologia – TerraMA²

Fonte: INPE (2012).

MATERIAL E MÉTODOS Área de estudo // Descrição da bacia

Localização do município de Itajubá (MG)

O município de Itajubá

Rio Sapucaí cortando a área urbana de Itajubá (MG)

O município de Itajubá

Fonte: Pinheiro (2005).

Material

Para execução deste trabalho, utilizou-se dos seguintes recursos:

- ✓ Microsoft Office Excel® 2007;
- ✓ TerraHidro Versão 0.3.3-x86;
- ✓ TerraMA² Versão 3.0.2 para Windows;
- ✓ Base de dados hidrológicos;
- ✓ Dados de nível fluviométrico.

Dados de nível fluviométrico

Localização das estações de coleta de dados do SME.

Metodologia

Organização da série temporal de nível fluviométrico

Etapas:

- 1. Eliminação dos períodos com dados falhos de cada estação;
- 2. Separação das leituras com rodadas horárias;
- 3. Transformação de cota altimétrica em nível do rio;
- 4. Seleção das fases de ascensão do nível na estação Sta. Rosa;
- 5. Busca dos dados das outras seis estações a montante, defasados com 1 a 11 horas em relação à Sta. Rosa;
- 6. Construção de vetor único com todos os eventos selecionados para cada estação.

Data	Cota		Data	Cota
07/01/2009 20:10	1195.52078		07/01/2009 21:00	1195.52729
07/01/2009 20:20	1195.52078	\rightarrow	07/01/2009 22:00	1195.52468
07/01/2009 20:30	1195.52729		07/01/2009 23:00	1195.53379
07/01/2009 20:40	1195.52729	1		
07/01/2009 21:00	1195.52729			
07/01/2009 21:10	1195.52468			
07/01/2009 21:20	1195.53119			
07/01/2009 21:30	1195.52729			
07/01/2009 21:50	1195.52208			
07/01/2009 22:00	1195.52468			
07/01/2009 22:10	1195.52468			
07/01/2009 22:20	1195.52859			
07/01/2009 22:30	1195.52729			
07/01/2009 22:40	1195.53119			
07/01/2009 22:50	1195.52859			
07/01/2009 23:00	1195.53379			
07/01/2009 23:10	1195.52859	1		

Aceitação da relação de causa e efeito.

Buscar variáveis explicativas

NSR(t+H) =
$$A_0 + A_1^*NX(t) + A_2^*[NX(t)]^2 + A_3^*[NX(t)]^3$$

Identificar as melhores variáveis explicativas para o nível em SR.

Valores de R² para definição das variáveis explicativas em relação a seção de controle.

		Quantidade de horas defasadas em relação à Santa Rosa									
Estações	1h	2h	3h	4h	5h	6h	7 h	8h	9h	10h	11h
Água Limpa	0,68	0,74	0,78	0,79	0,76	0,72	0,68	-	-	-	-
Borges	-	-	-	0,67	0,69	0,69	0,67	0,64	0,61	0,57	-
Cantagalo	0,89	0,86	0,81	0,74	-	-	-	-	-	-	-
Delfim Moreira	-	-	-	-	0,74	0,72	0,68	0,64	0,61	0,59	0,58
Santana	-	0,82	0,86	0,87	0,85	0,81	0,77	1	-	1	-
São Pedro	-	-	0,88	0,86	0,80	0,72	0,64	0,55	-	-	-

Santa Rosa versus Água Limpa

Prev. 3h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+3h)	0,819	0,816	0,839	0,195	0,2581
NAL(t)					1,6529
NAL ² (t)					-0,241
NAL ³ (t)					0,0098

 $NSR(t+3h) = 0.2581 + 1.6529 * NAL(t) - 0.241 * [NAL(t)]^2 + 0.0098 * [NAL(t)]^3$

Prev. 4h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+4h)	0,82	0,817	0,833	0,194	0,2991
NAL(t)					1,7474
NAL ² (t)					-0,3077
NAL³(t)					0,023

Santa Rosa versus Santana

Prev. 3h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+3h)	0,846	0,847	0,825	0,136	0,5016
NS(t)					1,9573
NS ² (t)					-0,2031
NS³(t)					-0,0004

 $NSR(t+3h) = 0.5016 + 1.9573 * NS(t) - 0.2031 * [NS(t)]^2 - 0.0004 * [NS(t)]^3$

Prev. 4h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+4h)	0,854	0,527	0,824	0,126	0,5381
NS(t)					2,0045
NS ² (t)					-0,2080
NS³(t)					-0,0033

Santa Rosa versus São Pedro

Prev. 3h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+3h)	0,911	0,909	0,699	0,064	-0,9054
NSP(t)					1,868
NSP ² (t)					-0,1823
NSP³(t)					-0,0068

 $NSR(t+3h) = -0.9054 + 1.868 * NSP(t) - 0.1823 * [NSP(t)]^2 - 0.0068 * [NSP(t)]^3$

Prev. 4h

	R²	R² ajustado	MAD (m)	RMSE	Beta
NSR(t+4h)	0,892	0,89	0,689	0,078	-0,8146
NSP(t)					1,7982
NSP ² (t)					-0,127
NSP³(t)					-0,0177

Elaboração da base de dados hidrológicos

Etapas para geração dos dados no TerraHidro:

- 1. Importação de recorte do MDE;
- 2. Geração dos fluxos locais;
- 3. Determinação da área de contribuição;
- 4. Extração da drenagem;
- 5. Segmentação da rede de drenagem;
- 6. Delimitação de bacias;
- 7. Transformação matriz → vetor.

Desenvolvimento do Sistema de Monitoramento e Alerta – TerraMA²

Resultados da organização dos dados de nível do rio

Número de eventos de cheia.

Estações	Nº de eventos
Santa Rosa	15
Delfim Moreira	5
Água Limpa	10
Borges	15
São Pedro	7
Santana	10
Cantagalo	10

Tempo (1h)

Validação e resultados do modelo de regressão polinomial

Santa Rosa versus Água Limpa

Resultados dos testes estatísticos: prev. 3h

	RMSE	MAD (m)	R²
Evento 1	0,2873	0,9057	0,8439
Evento 2	0,0726	0,5474	0,8125
Média	0,1799	0,7265	0,8282

Resultados dos testes estatísticos: prev. 4h

	RMSE	MAD (m)	R²
Evento 1	0,2873	0,9372	0,8476
Evento 2	0,0759	0,5667	0,8619
Média	0,1816	0,752	0,8548

Validação e resultados do modelo de regressão polinomial

Santa Rosa versus Santana

Resultados dos testes estatísticos: prev. 3h

	RMSE	MAD (m)	R²
Evento 1	0,174	0,8767	0,8728
Evento 2	0,1172	0,6274	0,9009
Média	0,1456	0,752	0,8869

Resultados dos testes estatísticos: prev. 4h

	RMSE	MAD (m)	R²
Evento 1	0,1469	0,898	0,8982
Evento 2	0,0871	0,6384	0,9604
Média	0,117	0,7682	0,9293

Validação e resultados do modelo de regressão polinomial

Santa Rosa versus São Pedro

Resultados dos testes estatísticos: prev. 3h

	RMSE	MAD (m)	R²
Evento 1	0,0569	0,663	0,9665
Evento 2	0,0336	1,073	0,9772
Média	0,0452	0,868	0,9719

Resultados dos testes estatísticos: prev. 4h

	RMSE	MAD (m)	R²
Evento 1	0,0613	0,6651	0,9858
Evento 2	0,0676	1,0494	0,9582
Média	0,0644	0,8573	0,972

Sistema de Monitoramento e Alerta de Inundações

Evolução dos alertas gerados pela execução do modelo de análise Analises_PCDs

Sistema de Monitoramento e Alerta de Inundações

Analise_SantaRosa(AguaLimpa_prev4h)

Sistema de Monitoramento e Alerta de Inundações

✓ Para um efetivo controle de inundações em áreas urbanizadas, é preciso envolver um conjunto de ações e medidas, tanto estruturais, como não estruturais.

✓ Para um efetivo controle de inundações em áreas urbanizadas, é preciso envolver um conjunto de ações e medidas, tanto estruturais, como não estruturais.

✓ Os resultados encontrados demonstram a característica do modelo adotado, que é de gerar uma previsão média de crescimento de nível do rio.

✓ Para um efetivo controle de inundações em áreas urbanizadas, é preciso envolver um conjunto de ações e medidas, tanto estruturais, como não estruturais.

✓ Os resultados encontrados demonstram a característica do modelo adotado, que é de gerar uma previsão média de crescimento de nível do rio.

✓ Modelo para previsão de nível não é tão eficiente e confiável quanto um modelo para previsão de vazão.

✓ Para um efetivo controle de inundações em áreas urbanizadas, é preciso envolver um conjunto de ações e medidas, tanto estruturais, como não estruturais.

✓ Os resultados encontrados demonstram a característica do modelo adotado, que é de gerar uma previsão média de crescimento de nível do rio.

✓ Modelo para previsão de nível não é tão eficiente e confiável quanto um modelo para previsão de vazão.

✓ O TerraMA² cumpre as necessidades gerais para construção de sistemas de monitoramento e alerta.

✓ TerraHidro apresentou bons resultados, otimizando o trabalho de geração da rede de drenagem e delimitação de bacias.

✓ TerraHidro apresentou bons resultados, otimizando o trabalho de geração da rede de drenagem e delimitação de bacias.

✓ Uso de métodos de correção por resíduos, combinação de especialistas locais e as Redes Neurais Artificiais (RNA).

✓ TerraHidro apresentou bons resultados, otimizando o trabalho de geração da rede de drenagem e delimitação de bacias.

✓ Uso de métodos de correção por resíduos, combinação de especialistas locais e as Redes Neurais Artificiais (RNA).

✓ Utilização de sensoriamento remoto aplicado à hidrologia.

✓ TerraHidro apresentou bons resultados, otimizando o trabalho de geração da rede de drenagem e delimitação de bacias.

✓ Uso de métodos de correção por resíduos, combinação de especialistas locais e as Redes Neurais Artificiais (RNA).

✓ Utilização de sensoriamento remoto aplicado à hidrologia.

✓ Buscar formas para prever eventos de inundações com uma maior confiabilidade, mas que, ao mesmo tempo, sejam capazes de serem aplicados e implementados em outras bacias hidrográficas pelo País.

CASTILHO, A. S.; OLIVEIRA, L. M. Previsão Hidrológica de Vazões para a cidade de Governador Valadares utilizando modelo linear de propagação. In: XIV Simpósio Brasileiro de Recursos Hídricos, 2001, Aracaju. **Anais do XIV Simpósio Brasileiro de Recursos Hídricos** - ABRH, 2001.

FERREIRA, E. R.; ECHKARDT, R. R.; HAETINGER, C.; BOTH, G.; SILVA, J. F. E.; DIEDRICH, V. L.; AZAMBUJA, J. L. F. Sistema de Previsão de Alerta de Enchentes da Região do Vale do Taquari - RS - Brasil. In: II Simpósio Brasileiro de Desastres Naturais e Tecnológicos, 2007, Santos. **Anais II Simpósio Brasileiro de Desastres Naturais e Tecnológicos**., 2007.

GIGLIO, J. N.; KOBIYAMA, M. Uso de registros históricos para análise de inundações: estudo de caso do município de Rio Negrinho. In XIX Simpósio Brasileiro de Recursos Hídricos - Maceió: ABRH, **Anais**, 17p., 2011.

GUHA-SAPIR, D.; VOS F.; BELOW R.; PONSERRE S. **Annual Disaster Statistical Review 2011**: The Numbers and Trends. Brussels: CRED; 2012.

INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. **Terra Monitoramento Análise e Alerta – TerraMA**². 2012. Disponível em: http://www.dpi.inpe.br/terrama2/>. Acesso em: fev. 2014.

KOBIYAMA, M.; FRUET, D.; SAGARA, F.T.; MINELLA, J.P.G.; ZILIOTTO, M.A.B. Monitoramento e modelagem de uma pequena bacia hidrográfica experimental no município de general Carneiro - PR, Brasil. In: XIV Simpósio Brasileiro de Recursos Hídricos, Aracajú, 2001: ABRH, **Anais**, 2001

KOBIYAMA, M.; MENDONÇA, M.; MORENO, D. A.; MARCELINO, I. P. V. O.; MARCELINO, E. V.; GONÇALVES, E. F.; BRAZETTI, L. L. P.; GOERL, R. F.; MOLLERI, G. S. F.; RUDORFF, F. M.; **Prevenção de desastres naturais:** conceitos básicos. Florianópolis: Ed. Organic Trading, 2006. 109p. p 30-47

LIH – Laboratório de Informações Hídricas. **Sistema de Monitoramento de Enchentes**. Disponível em: http://www.enchentes.unifei.edu.br/ Acesso em: fev. 2014.

LOPES, E. S. S.; MAGINA, F. C.; ALVES, M. L. Sistema automático de alerta da qualidade da água do rio Paraíba do Sul - uma aplicação do SISMADEN. In: XV Simpósio Brasileiro de Sensoriamento Remoto, 2011, Curitiba - PR. **Anais II SBSR**., 2011.

LOPES, E. S. S.; NAMIKAWA, L. M.; REIS, J. B. C. Risco de escorregamento: monitoramento e alerta de áreas urbanas nos municípios no entorno de Angra dos Reis - Rio de Janeiro. In: 13° Congresso Brasileiro de Geologia de Engenharia e Ambiental, 2011, São Paulo. Anais. 2011.

MILLY, P.C.D.; WETHERALD, R.T.; DUNNE, K.A.; DELWORTH, T.L. Increasing risk of great floods in a changing climate. 2002. Nature 415:514–517

MINISTÉRIO DAS CIDADES, INSTITUTO DE PESQUISAS TECNOLÓGICAS – IPT. **Mapeamento de riscos de encostas e margens de rios**. Brasília: Ministério das Cidades; Instituto de Pesquisas Tecnológicas – IPT, 2007.

OLIVO, A. A. **Modelos matemáticos para a previsão de cheias fluviais**. 2004. 151 p. Tese de Doutorado. Instituto Tecnológico de Aeronáutica. São José dos Campos. 2004.

PINHEIRO, V. M. 2005. **Avaliação Técnica e Histórica das Enchentes em Itajubá – MG**. Dissertação de Mestrado em Engenharia da Energia, UNIFEI. Concluída em 2005.

PRIEST, S. J., PARKER, D. J., TAPSELL, S. M. Modelling the potential damage-reducing benefits of flood warnings using European Cases. **Environmental Hazards**: Human and Policy Dimensions. London, UK. v. 10, issue 2, p. 101-120. 2011. ISSN: 1747-7891.

REIS, J. B. C.; CORDEIRO, T. L.; LOPES, E. S. S. **Utilização do Sistema de Monitoramento e Alerta de Desastres Naturais aplicado a situações de escorregamento - caso de Angra dos Reis.** In: 14° SIMPÓSIO BRASILEIRO DE GEOGRAFIA FÍSICA APLICADA, 2011, Dourados, MS. Anais. 2011.

REIS, J. B. C.; SANTOS, T. B.; LOPES, E. S. S. Monitoramento em tempo real de eventos extremos na Região Metropolitana de São Paulo – uma aplicação com o SISMADEN. In: 14° SIMPÓSIO BRASILEIRO DE GEOGRAFIA FÍSICA APLICADA, 2011, Dourados, MS. Anais. 2011.

RENNÓ, C. D.; SOARES, V. J. **Modelos Hidrológicos para Gestão Ambiental**. Relatório Técnico Parcial "Métodos, modelos e geoinformação para a gestão ambiental". [Brasília]: Ministério da Ciência e Tecnologia, Instituto Nacional de Pesquisas Espaciais, 2000.

50

RODRIGUES, S. C. Mapeamento de suscetibilidade a escorregamentos de Nova Friburgo-RJ por meio de inferência fuzzy e elaboração de cenários de alerta com uso do TerraMA2. Dissertação de Mestrado em Sensoriamento Remoto - INPE, 2013.

STEFFEN, W.; et al. Global Change and the Earth System: A Planet Under Pressure. Springer. Germany, 2005. p. 336. ISBN-10 3-540-26594-5.

TUCCI, C. E. M (Org.). **Hidrologia**: ciência e aplicação. 3º ed. – Porto Alegre: Editora da UFRGS / ABRH, 2002.

TUCCI, C. E. M. Modelos hidrológicos. Porto Alegre: Editora da Universidade, 1998.

UN-ISDR - United Nations International Strategy for Disaster Reduction. **Living with Risk**: a global review of disaster reduction initiatives. Inter-Agency Secretariat International Strategy for Disaster Reduction (ISDR), Genebra, Suiça, 2004. Disponível em: http://www.unisdr.org. Acesso em: fev. 2014.

Agradeço!