Docket No.: 80154(302728)

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Takashi Yamaguchi et al.

Application No.: 10/539,884

71ppii cation 110.: 10/357,00

Filed: June 16, 2005

For: COMPOSITE OF ALUMINUM MATERIAL AND SYNTHETIC RESIN MOLDING AND PROCESS FOR PRODUCING THE SAME

Confirmation No.: 6471

Art Unit: 1791

Examiner: D. N. Bodawala

DECLARATION PURSUANT TO 37 C.F.R. 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

- I, Masao Yamaguchi, hereby declare and state as follows:
- I am one of the inventors of the invention as claimed in the above-identified application, and accordingly, I am familiar with the specification and claims which comprise this application.
- Currently, I am employed at Corona International Corporation as a Vice President of development. I have worked at Corona International Corporation since 2000.
- I received my higher education at Tamagawa University, obtaining a bachelor degree in technology.
- 4. There is an error in the units of tensile strength in the specification. Specifically in [0019], [0073], and [0083] of the published specification, the units of tensile strength are

recited as Kgf. The units in the corresponding priority document were also recited in error.

- 5. The standard unit of measurement of tensile strength is units of force per unit area. In the SI system the units are properly Kilogram (force) per square centimeter, Kgf/cm².
- 6. The attached document shows the standard unit of measurement.
- In this application the units should have been recited as Kgf/cm² because force per unit 7. of area was being measured.
- In conclusion, the art skilled person would have recognized that that the units recited in 8. the instant specification was an obvious error.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: April 12. 2010

By: Man Jh.

Masao Yamaguchi

JAPANESE INDUSTRIAL STANDARD

Testing methods for tensile strength of adhesive bonds

JIS K 6849-1994

(Reaffirmed 1999)

Revised 1994-02-01

Investigated by

Japanese Industrial Standards Committee

Published by

Japanese Standards Association 1–24, Akasaka 4-chome, Minato-ku Tokyo, 107-8440 JAPAN

Printed in Japan

定価 472 円 (本体 450 円)

接着剤の引張り接着強さ試験方法

JIS K 6849-1994

(2008 確認)

平成 6 年 2 月 1 日 改正

日本工業標準調査会 審議

(日本規格協会 発行)

主 務 大 臣:通商産業大臣 制定:昭和 47.4.1 改正:平成 6.2.1 確認:平成 11.8.20

官報公示:平成11.8.20

原案作成協力者:接着剤・接着評価技術研究会

審議部会:日本工業標準調査会高分子部会(部会長 三田達)

この規格についての意見又は質問は、工業技術院標準部標準業務課 産業基盤標準化推進室 (100-8921 東京都千代田区霞が関1丁目3-1) にご連絡ください。

なお,日本工業規格は,工業標準化法第15条の規定によって,少なくとも5年を経過する日までに日本工業標準調査会の審議に付され,速やかに,確認,改正又は廃止されます。

接着剤の引張り接着強さ試験方法

K 6849-1994 (1999 確認)

Testing methods for tensile strength of adhesive bonds

- 1. 適用範囲 この規格は、接着剤の引張り接着強さの試験方法について規定する。
 - 備考1. この規格の引用規格を,次に示す。
 - JIS K 6800 接着剤・接着用語
 - JIS K 6848 接着剤の接着強さ試験方法通則
 - JIS K 6900 プラスチック-用語
 - 2. この規格の対応国際規格を、次に示す。
 - ISO 6922: 1987 Adhesives—Determination of tensile strength of butt joints
 - 3. この規格の中で { } を付けて示してある単位及び数値は、従来単位によるものであって参考値である。
- 2. **用語の定義** この規格で用いる主な用語の定義は, JIS K 6800及びJIS K 6900による。
- 3. **試験の一般条件** 試験の一般条件は, JIS K 6848の3.(試験の一般条件)による。
- 4. 接着剤の採取方法及び取扱方法 接着剤の採取方法及び取扱方法は, JIS K 6848の4.(接着剤の採り方及び取扱い方)による。
- 5. **試験機** 試験機は、破壊荷重が引張試験機の容量の15~85 %に当たるもので、その標準荷重に対し許容差±1 %のものを用いる。荷重速度は毎分3.92 kN{400 kgf}以下、又はクロスヘッドの移動速度を毎分50 mm以下に調整する。

試験片取付け具は、試験片を装着し、荷重を掛けると同時に自動的に位置が調整され、荷重方向が接着面に垂直になる構造のものとする。その一例を図1に示す。

6. 試験片

- **6.1 被着材の種類** 被着材の種類は**, JIS K 6848**の**5.**(被着材及びその表面処理)に規定する金属**,** プラスチック**,** 強化プラスチック及びゴムとする。
- 6.2 試験片の形状及び寸法 試験片の形状及び寸法は、被着材の種類によって図 $2\sim4$ に示すとおりとする。

図1 試験片取付け具

図3 丸棒形引張り接着強さ試験片(金属)

単位 mm

図4 変形角棒引張り接着強さ試験片(強化プラスチック)

- **6.3 被着材の表面処理** 被着材の表面処理は, JIS K 6848の5. による。
- 6.4 試験片の作製
- (1) 被着材は板、角棒又は丸棒素材を機械加工したものを接着する。 ゴムは、図5に示すように丸棒試験片の先端に適切な接着剤ではり付ける。

図5 ゴム引張り接着強さ試験片

単位 mm

- (2) 接着剤は、変動の最も少ない最適接着が得られるように、製造業者の指示によって取り扱うものとする。当事者間で合意した場合には、他の条件を使用してもよい。
- (3) 接着剤の硬化過程中に試験片の突合せがうまくいくように適当な固定ジグを用いる。各種の形の試験片を固定 ジグで突き合わせた場合,試験片の端部にある試験片保持用あなは,試験片の軸に直角であり,また,各あな は互いに直角になるように保持する。(図6参照)

図6 試験片の接合許容差

単位 mm

- 6.5 試験片の状態調節 試験片は、接着剤硬化後JIS K 6848の3.1(試験室の状態)の平衡状態になった後、試験を行う。
- 6.6 試験片の数 試験片の数は、5個以上とする。
- 6.7 試験片の再使用 金属試験片は、接着剤を完全に取り除けば、接着面を清浄再使用することができる。
- 7. 操作 試験片を試験片取付け具によって試験機に装着し、荷重を掛けて試験を行い、試験片の破壊するときの最 大荷重を記録する。

なお、このとき破壊の状態を調べる。

8. 測定結果の処理

8.1 引張り接着強さ 7.で得られた最大荷重と実測した接着面積から次の式によって、個々の試験片についての接着剤の引張り接着強さを求め、全測定値の平均を整数位に丸めて引張り接着強さとする。

$$S = \frac{P}{A}$$

ここに、S:引張り接着強さ (N/mm^2) {kgf/cm²}

P:最大荷重(N){kgf}

A:試験片の接着面積(mm²){cm²}

8.2 破壊の状態 試験片の破壊の状態は、表1に従いその種類を区別する。

 表1
 破壊の種類

 記号
 破壊の種類

 AF
 接着破壊

 CF
 凝集破壊

 MF
 被着材破壊

- 9. 報告 報告には、次の事項を記録する。
- (1) 接着剤の種類及び配合
- (2) 被着材の種類及び表面処理方法
- (3) 試験片の種類,作製方法及び接着条件(個々の試験片の寸法,圧締方法,圧力と時間,加熱方法,温度と時間,保持時間),接着剤の塗布量と塗布方法
- (4) 試験片の個数
- (5) 試験時の荷重速度又はクロスヘッドの移動速度
- (6) 個々の試験片の引張り接着強さの平均値及び最大・最小値
- (7) 破壊の状態
- (8) その他特記すべき事項

JIS K 6849-1994

接着剤の引張り接着強さ試験方法 解 説

この解説は、本体に規定した事柄及びこれに関連した事柄を説明するもので、規格の一部ではない。

制定・改正の趣旨 この規格は、前回改正後10年以上経過しており、その間に試験片材料は多様化し、かつ、関連するISOの制定が見られた。

また、昭和62年(1987年)に**JIS K 6848**(接着剤の接着強さ試験方法通則)が改正されたが、改正前のこの規格は、通則に合致しないところが多く、相互に不整合が見られた。

以上のことから、ISO及び通則との整合性を図ることが必要となった。

なお、この規格に規定すべき事項等は、次の各項のとおりである。

- ① この試験方法に対応する被着材の種類の改正
- ② 被着材の表面処理方法
- ③ 用語の統一
- ④ 試験条件の適正化

審議中特に問題となった事項

- (1) 荷重速度が適正かどうか、また、速度の表示をどうするか。
- (2) 適用できる被着材の種類をどうするか。
- (3) 測定結果の処理方法及び接着破壊の種類等。
- 1. **適用範囲 備考1.** に引用規格の**JIS K 6800**(接着剤・接着用語), **JIS K 6848**及び**JIS K 6900**(プラスチック—用語)を示した。

備考2. 対応国際規格**ISO 6922**:1987 (Adhesives—Determination of tensile strength of butt joints) を示した。 **備考3.** { }をつけて示した単位及び数値は、従来単位で参考値とした。

- 2. 用語の定義 この項目を新たに定め、JIS K 6800及びJIS K 6900の引用を定めた。
- 5. 試験機 改正前は、試験片の形状が角棒形と丸棒及び変形角棒で荷重速度を変えるように定めていたが、この規格では荷重速度は毎分3.92 kN{400 kgf} 以下、又はクロスヘッドの移動速度毎分50 mm以下だけと定めた。
- 6. 試験片
- **6.1 被着材の種類** 被着材の種類は**, JIS K 6848**の**5.**(被着材及びその表面処理)に規定する金属**,** プラスチック、強化プラスチック及びゴムとした。

なお,ガラス及びタイルの接着も実用上増加しているので種々討議されたが,一般的な引張接着強さ試験方法として規定し難い技術的な問題があり,今回は見送ることとした。

- 6.6 試験片の数 5個以上とすることを規定した。
- 8. 測定結果の処理 改正前の7.(計算)を,この項目に改めた。
- 8.1 引張り接着強さ 接着強さを求めるための式を定めた。
- 8.2 破壊の状態 破壊の状態を3種類に分類し、記号化して表1に示した。

K 6849-1994 解説

(事務局)

岡崎

JIS K 6849改正原案作成委員会 構成表

氏名 所属 小野昌孝 実践女子大学 (委員長) 宮 入裕 夫 東京医科歯科大学 天 野 晋 武 工学院大学 長 沢 長八郎 工業技術院製品科学研究所 本 橋 健 建設省建築研究所 司 大 黒 昭 夫 農林水産省林業試験場 高 島 米 司 財団法人接着剤研究所 夫 工業技術院標準部繊維化学規格課 細]][幹 原 栄 株式会社日立製作所 柳 原憲 日新製鋼株式会社 増 株式会社東洋精機製作所 斎 藤 満 鶴 田康 彦 大成建設株式会社 田立 ヤマハ株式会社 岩 男 沢 誠 横浜ゴム株式会社 柳 宏 二 セメダイン株式会社 永 田 永 沢 滋 コニシ株式会社 沢 稔 ヘキスト合成株式会社 淹 夫 豊年製油株式会社 田 村靖 日立化成ポリマー株式会社 池 田 修 ノガワケミカル株式会社 若 林一 民 池 田順 財団法人日本規格協会

久

日本接着剤工業会

JIS 規格票の正誤票が発行された場合は、下記の要領でご案内いたします。

- (1) 当協会発行の月刊誌"標準化ジャーナル"に,正・誤の内容を掲載いたします。
- (2) 毎月第3火曜日に, "日経産業新聞"及び"日刊工業新聞"のJIS 発行の広告欄で,正誤票 が発行された JIS 規格番号及び規格名称をお知らせいたします。

正誤票をご希望の方は、下記(普及)へご連絡頂ければご送付いたします。

なお、当協会の JIS 予約者の方には、予約されている部門で正誤票が発行された場合は自動的に お送り致します。

JIS K 6849

接着剤の引張り接着強さ試験方法

平成 6 年 4 月 30 日 第1 刷発行 平成 12 年 2 月 5 日 第2刷発行(宝文社)

^{編 集 兼} 平 河 喜 美 男

発 行 所

財団法人 日 本 規 格 協 会 ●107-8440 東京都港区赤坂4丁目1-24

電話 東京(03)3583-8071 FAX 東京(03)3582-3372 (規格出版)

電話 東京(03)3583-8002 FAX. 東京 (03) 3583-0462 (普

振替口座 00160-2-195146

札幌支部	₩060 - 0003	札幌市中央区北3条西3丁目1 札幌大同生命ビル内 電話 札幌(011)261-0045 FAX 札幌(011)221-4020 振替:02760-7-4351
東北支部	5 980 − 0014	仙台市青葉区本町 3 丁目 5-22 宮城県管工事会館内 電話 仙台(022)227-8336(代表) FAX 仙台(022)266-0905 振替: 02200-4-8166
名古屋支部	5 460 − 0008	名古屋市中区栄 2 丁目 6-12 白川ビル内 電話 名古屋(052)221-8316(代表) FAX 名古屋(052)203-4806 振替: 00800-2-23283
関西支部	5 41 - 0053	大阪市中央区本町 3 丁目 4 - 10 本町野村ビル内 電話 大阪(06)6261-8086(代表) FAX 大阪(06)6261-9114 振替:00910-2-2636
広島支部	₹ 730 − 0011	広島市中区基町 5-44 広島商工会議所ビル内 電話 広島(082)221-7023, 7035, 7036 FAX 広島(082)223-7568 振替: 01340-9-9479
四国支部	5 760 - 0023	高松市寿町2丁目2-10 住友生命高松寿町ビル内 電話 高松(087)821-7851 FAX 高松(087)821-3261 振替: 01680-2-3359
福 岡 支 部	5 812 - 0025	福岡市博多区店屋町1-31 東京生命福岡ビル内 電話 福岡(092)282-9080 FAX 福岡(092)282-9118 振替: 01790-5-21632