20000727248

MAY 1978

Reproduced From Best Available Copy

Annual de public release, displicative militaries

BAPANTMENT OF THE NAVI MET, STATION BAY ST. LOUIS, NG. 37322

80 6 12 2 138

AD A 085000

THE ICAPS WATER MASS HISTORY FILE.

(9) Final copt.;)
(10) ALVAN FISHER, JEST

Approved for public release, distribution unlimited.

NAVAL OCEANOGRAPHIC OFFICE

NSTL STATION

BAY 5.T. LOUIS, MS 39522

250450

FOREWORD

The emergence of on-scene sonar prediction systems provides tactical support to Antisubmarine Warfare (ASW) forces far superior to that previously available. However, the usefulness of such systems is limited if they do not produce products representative of the environment. A shortcoming of previous systems is the failure to allow for dynamic changes in the deep oceanographic environment. This publication describes a historical oceanographic data file which provides for oceanographic variability. This file, which has undergone considerable testing, is presently a part of the ICAPS software developed at the Naval Oceanographic Office (NAVOCEANO).

J. R. McDONNELL
Captain, U.S. Navy
Commander

Accus	sion For	
	Girli	U
DDC T		
1	mnced Sicution	u
Ry		
Distr	hution/	·
Ave 5	inhillty (Codes
	Avall and	/or
Dist	special	
1	,	
H		

ACKNOWLEDGMENTS

Space does not permit recognition of all those who contributed to the creation of the water mass file since its inception several years ago. Among those providing substantial assistance were A. W. Ortolano and L. Riley (data processing); W. H. Beatty, III (evaluation); and I. Pelaez, D. L. Nicholson, and A. G. Voorheis (manuscript preparation). The task was funded as part of the ICAPS program under the control of the Naval Oceanographic Office.

CONTENTS

												Page
I. II. IV. V. VI.	INTRODUCTION PROCEDURE EVALUATION FILE DESCRIPTION TYPICAL BT FILE REFERENCES		• •	• •			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		•	1 2 4 10 12 13
		•	FIG	URES			1					÷
Figure							٠	:				
1.	Distribution of 1 45-50°N, 40-50°W			e ver			inity	• •		•	•	3
2.	Temperature and s Slope Water	salini	ty a	t sta	ndar	rd de	epths	in			•	5
3.	Seasonal plots of 10-20°N, 45-61°W			ure v				lty,	• •	• •		6
			T	ABLES								
Table								1				
1.	Mean and root mea							en of	serv	ved • •	•	7
2.	Mean and root mea										•	. 8
3.	Mean and root mea											. 9
			APP	ENDIX	ES					•		
Append.	ix							,				
. A.	Salinity Adjustme	ent	• •			.• •	• •		• •	• •	•	15
В.	Water Mass Criter Mediterranean Sca		Norti	h Atl	anti • •	. O	ean/	• •	• •	• •	•	17
C.	Water Mass Criter	ia -	Norti	h Pac	ific	0ce	aņ.	• •		• •	•	33
D.	Water Mass Criter	ia -	India	an Oc	ean	•	. •	• •			•	5,1

INTRODUCTION -

Sound speed profiles extending from sea surface to ocean floor are a necessary input to sonar range prediction models. Because synoptic sound speed profiles rarely are available to fleet operating units, synthetic profiles are constructed either by combining a synoptic bathythermograph trace with deep historical oceanographic data (Mendenhall; Faucher, et al; Hanssen and Tucker), or by historical data slone (Russell, Podeszwa). Each of the several techniques available relies on a different method of generating the surface-to-bottom sound speed profiles. They agree, however, in that they provide a single seasonal profile for each region; with each region having fixed boundaries. Unfortunately, real-world occanographic features are constrained only by bathymetric boundaries, and their position may vary rapidly as in the case of a Gulf Stream meander or cyclonic eddy. Thus historic files based upon a single regional history frequently provide misleading sonar range predictions. The purpose of this report is to describe a historic oceanographic data file for the Northern Hemisphere and Indian Ocean based on water mass concepts-in which the computer program uses the characteristics of the input bathythermograph trace to automatically select one of several possible histories. The file was designed to be incorporated into the Integrated Command Antisubmarine Warfare Prediction System (ICAPS).

Two assumptions were made while developing the new file: (1) that near surface water masses can be uniquely identified by thermohaline characteristics and (2) the thermal characteristics of neighboring water masses are sufficiently different as to permit reliable identification from an expendable bathythermograph (XBT) trace alone. After identification of the applicable deep history, temperature values of the input trace are merged with deep temperatures using an equation of the form

$$T_{i} = TH_{i} + K_{i} (K_{i-1} \Delta T)$$
 (1)

where T_1 and TH_1 are, respectively, estimated and historical temperatures at depth i, K a weighting factor, and ΔT the difference between temperature at the bottom of the XBT trace and interpolated historical temperature at the same depth. The weighting factor*, developed from empirical solution for a set of historical data, is determined as a function of the depth increment between points $(Di^{-D}i^{-1}i^{-1})$.

$$K_i = 0.835^{(D_i - D_{i-1})/100}$$
 (2)

At the first synthesized temperature value (i = 1), K_{i-1} equals unity.

^{*}Later evaluation of the merge showed that a constant of 0.700 created a more realistic merge in the Mediterranean Sea. The value of 0.835 was retained for all other areas.

PROCEDURE

Because few guidelines for water mass identification are available in classical oceanographic literature, it was decided that the most objective method of determining water mass characteristics within a given area was to review original oceanographic data. Two NAVOCEANO data files were available for this purpose: (1) an oceanographic station data file of approximately 491 thousand observations compiled by the National Oceanographic Data Center (NONC) provided temperature and salinity data at each of 32 standard depths between the sea surface and 7,000 meters (m), and (2) an XBT file of approximately 218 thousand observations compiled from three sources (NAVOCEANO, NODC, and the Fleet Numerical Weather Central) provided temperature data at each flexure point over the depth range of the instrument (as deep as 760 m). The following procedure was used to determine water mass characteristics in the near-surface layer (0-400 m):

- a. The classical literature was searched for applicable descriptive papers. For example, the northern edge of the Gulf Stream is frequently delineated by the 15° C isotherm at 200 m.
- b. The ocean station data file was used to provide annual composite statistical data (mean, standard deviation, number of observations) at each standard depth using all available data within the area of interest. A plot of the distribution of temperature versus salinity, plotted at both 200 and 400 m, provided insight as to the number of water masses present and thermohaline variability within each water mass. Figure 1 shows a plot of temperature versus salinity at 200 m in the rectangle 45 to 50°N, 40 to 50°W--an area where the cold Labrador Current meets with the warmer North Atlantic Drift. The presence of water masses with specific thermohaline characteristics is clearly recognizable, and tentative water mass classification has been made. The 200-m level was found to be a good depth for classification in that it is generally well below the level of both diurnal and seasonal changes while being within the depth range of XBT probes. The XBT file provided statistical data and histograms for temperature and temperature gradients at preselected depths to supplement the ocean station data when necessary.
- c. Flexure points in the temperature-versus-salinity (T-S) plot shown in figure 1 clearly defined water mass criteria in areas where different water masses exist in close proximity. Considerable temperature variability also occurs in areas occupied by a single water mass, probably a result of dynamic events such as upwelling. Where variability of this nature was observed, two classifications ("warm" and "cold") were made to provide a better merge between XBT trace and history.
- d. Temperature ranges (filters) at 200 m were developed to distinguish adjacent water masses based on information provided in the previous steps. Where adjacent water masses had similar temperature range at 200 m, they were differentiated by examination of the temperature

FIGURE 1. DISTRIBUTION OF TEMPERATURE VERSUS SALINITY 45° - 50°N, 40° - 50°W.

gradient between the 200 and 300-m levels. For example, both the Gulf Stream and the Sargasso Sea are characterized by a temperature range of from 15 to 25° C at 200 m. A near-isothermal layer of 18° C water that extends from the bottom of the seasonal thermocline to depths exceeding 300 m in the Sargasso water in a region well removed from the Gulf Stream (30 to 35° N, 60 to 65° W), showed that 95 percent of the observations had a temperature gradient between 0.0° C/100 m and -1.6° C/100 m. Thus the gradient -1.6° /100 m at the 200-300 m level is used in the region of the Gulf Stream to differentiate Sargasso Water from Gulf Stream Water.

- e. Mean seasonal temperature and salinity values were then determined for each depth and water mass (fig. 2). Where the data are not deep enough, temperature and salinity were extrapolated to the bottom by comparison with neighboring profiles. Inconsistencies in the data—such as a temperature inversion at depths below 200 m—were examined to determine if they are a result of statistical processing, data distribution, or bad data.
- f. A quality control check was made by plotting the seasonal data on a single plot of temperature versus salinity (fig. 3). Inconsistencies in the data are immediately apparent; temperature errors by a vertical spike, salinity errors by a horizontal spike, and depth errors by a skewed spike. Where data were obviously incorrect, the plot was smoothed to conform with surrounding data. A second quality control check was made by visual inspection of seasonal traces of temperature and salinity versus depth. Discrepancies again were smoothed after comparison with neighboring traces.

EVALUATION

The file was evaluated by comparing the merged profile generated . by both the new water mass file and the old file--which is based on a single seasonal profile for each 5-degree ocean rectangle--with new oceanographic data. Test data typical of each water mass within the test areas were selected from salinity-temperature-depth (STD) observations on file at either NODC or the Coast Guard Oceanographic Unit. Six observations per season, divided equally among water masses, were selected for each area. The uppermost portion (0-400 m) of the STD cast was treated as an XBT and the temperature trace extended to 1.500 m by merging with both old and new history files. Salinity was estimated and sound speed computed for all depths between the surface and 1.500 m. In the surface layer, estimated salinity and sound speed values were compared with observed values from the STD traces for each depth on the simulated XBT trace. In the deep layer (400-1,500 m) estimated temperature, salinity, and sound speed values were compared with observed values at 6 depths: 500, 600, 800, 1,000, 1,200, and 1,500 m.

The first test was designed to test the premise that quality controlled data from a large area—in this case, a 5 x 10-degree rectangle—would compare favorably with the smaller area without quality

DEPTH	1	EMPE. RATU	RE	S	ALINITY	
	MEAN	5.0.	NUM	MEAN	S.D.	NUY
		•			•	
0	23.77	2.28	676	34.34	1.10	684
10	23.10	2.65	682	34.55	•97	68n
20	21.72	3.70	682	34.84	•83	680
. 30	19.42	4.36	683	34.96	•83	679
50	15.87	4.17	583	35.14	.76	678
75	14.49	2.86	683	35.41	•55	678
100	13.78	2.04	683	35.54	•38	679
125	13.10	1.57	684	35,54	•28	679
150	12.54	1.34	684	35.51	•22	67A
200	11.21	1.24	684	35,38	.17	676
250	9.86	1.23	684	35.24	•15	674
300	8.68	1.25	682	35.14	•13	. 674
400	6.87	1.10	582	35.03	•10	575
500	5.67	•79	551	34.99	.06	545
600	5.03	•52	529 ·	34.98	.05	525
7 00	4.67	•32	518	34.98	.04	514
800	4.43	•24	473	34.97	•03	471
900	4.27	•20	438	34.97	•03	436
1000	4.13	• • 17	393	34.96	•03	385
1100	4.02	•15	350	34.96	•n4	345
1200	3.92	•13	330	34.96	•04	324
1300	3.85	•12	322	34.96	• 04	316
1400	3.78	•12	319	34.95	• 04	-313
1500	3.72	•12	315	34.95	.04	311
1750	3.56	•09	270	34.95	•04	264
2000	3.41	•09	239	34.95	• 04	233
2500	3.00	•11	160	34,94	•63	154
3000	2.59	•16	8 9 ,	34.92	•03	84
4000	2.26	•07	- 41	34.90	.12	37

SLOPE WATER (35-42N+60-76W) - SUMMER

TEMP RANGE = 9.00 - 15.00, SAL RANGE = 30.0 - 40.0

FIGURE 2 TEMPERATURE AND SALINITY AT STANDARD DEPTHS IN SLOPE WATER.

FIGURE 3. SEASONAL PLOTS OF TEMPERATURE VERSUS SALINITY.

	<i>: '</i>		TEMPERATURE (°C)	URE (°C)				SALINITY (0/00)	• (6	SOI	UND SPI	SOUND SPEED (m/s)	(B)
LAYER/SEASON	z !	MEAN	RWS	MEAN	RMS	MEAN	RMS	MEAN	RMS	OLD MEAN 1	RAG	MEAN	RWS
Surface						• •		,		•			
Winter	8/3					0.22	0.22	0.22	0.22	0.3	0.3	0.3	0.3
Spring	. 8					0.33	0.25	0.24	0.21	0.5	0.4	0.4	0.3
Summer	79			,		0.39	0.50	0.36	0.42	9.0	0.8	0.5	9.0
Autum	67					0.27	0.10	0.24	0.16	0.4	0.1	0.3	0.2
Annual	328					0.30	0.31	0.26	0.28	0.4	0.5	0.4	0.4
			1	•		r	;						,
Deep	•										,		
Winter	36	0.63	0.63	0.75	99.0	0.21	0.20	0.22	0.20	2.5	2.5	3.0	2.6
Spring	36	0.63	0.62	0.56	0.56	0.17	0.16	0.15	0.14	5.4	2.4	2.2	2.2
Summir	36	0.83	0.61	6.63	0.50	0.23	0.17	0,14	0.11	3.1	2,3	2.4	1.9
Aut.mm.	36	0.76	0.70	69*0	69.0	0.16	0.16	0.17	0.16	8.9	2.7	7.6	2

Table 1. Mean and root mean square difference between observed values and estimated values. using former history (old) and water mass history (new), at OWS ECHO

3. 6

0,16

0.17

0.19 0.18

0.61

99.0

0.65

0.71

144

Annual

			TEMPERAT	ERATURE (°C)		SALINI	SALINITY (0/00)	_	SOC	SOUND SPEED (m/s)	(m/s)	
		OLD	_	NEW	OLD	9	NEW		Ö	orp	NEW	38
LAYER/SEASON	z!	MEAN	RASS	MEAN RMS	MEAN RMS	RMS	MEAN RWS	RMS	MEAN	RMS	MEAN RHS	RATS
Surface											•	
Winter	83	,			1.90 1.66	3.66	0.72	0.50	2.2 1.9	1.9	0.8 0.6	9.0
Spring	7.4				2.34	2.41	0.54	0.48	2.6 2.7	2.7	0.7	9.0
Summer	83				2.52	3.20	0.74 0.32	0.32	2.8 3.7	3.7	c.3	0.2
Autum	98				1.53 1.09	1.09	0.42	0.36	1.8 1.3	1.3	0.5	0.4
Annual	334		•		2.05	2.83	0:60 0.44	0.44	2.3 2.6	2.6	0.7	0.5
		•					•					

	40	,	01 0 00 0	
1.10 1.02	3,50 0.45	3,50, 0,45	550 0.4527 0.19 6.0	.50 0.45 .27 0.19 6.0 5.8
1.80 1.70 0.	.32 0.32	0.32 0.32 0.28	.32 0.32 0.28 0.25 6.0	.32 0.32 0.28 0.25 6.0 5.7
1.40 1.19 0.1	7 0.16	0.17 0.16 0.17	7 0.16 0.17 0.16 5.1	7 0.16 0.17 0.16 5.1 4.0
0.75 0.64 0.4	4 0.42	0.44 0.42 0.17	4 0.42 0.17 0.17 5.1	
1.26 1.26 0.36 0.38	6 0.38	6 0.38 0.21	6 0.38 0.21 0.20 5.6	16 0.38 0.21 0.20 5.6 5.2

Table 2. Mean and root mean square difference between observed values and estimated values, using former history (mid) and water mass history (new), in the Virginia Capes area.

•		SALINITY (0/00)	(ov/o)	SOUND SPEED (m/8)	(m/s)
•	21	METAN	KWS	MEAN	HAMS
Mjusted	57	0.58 0.49	0.49	0.8	0.7
madjusted	57	0.87	0.61	1.1	6.0

Table 3. Mean and root mean square difference between observed and estimated values with and without salinity adjustment in temperature inversions.

controlled data as used to compile the old history. Should this premise prove correct, then considerable reduction could be made in the file size. The area including Ocean Weather Station (OWS) ECHO (44°N, 48°W) was selected because considerable STD data were available from an area of relatively little oceanographic variability. The results of the test at OWS ECHO are given in table 1. The new water mass file provides slightly better results in both the surface and deep layers.

The second test was designed to document the ability of the new file to differentiate among water masses, thereby providing a merged profile superior to that produced by the old file. An area of high oceanographic variability seaward of the Virginia Capes (VACAPES) was selected because of the presence of three water masses: Slope Water, Gulf Stream Water, and Sargasso Water. Results of this test (table 2) show that the water mass file estimates salinity significantly better in the surface layer with a corresponding increase in the accuracy of sound speed computations. The deep data again are slightly better when estimated by the water mass file than with the old file.

The final test evaluated the ability of the water mass file to adjust salinity values in a near-surface temperature inversion (sound channel). Persistence of inversions for months at a time show that they are stable oceanographic features. However, use of unadjusted historical salinities must be reduced by the method given in Appendix A if they are to be realistic.

Salinity adjustment was evaluated in Slope Water in the VACAPES area where well-defined inversions occur from April through October. Salinity was estimated in an inversion using the water mass history first with and then without the adjustment routine and compared with observed values from 20 STD drops. Results of that evaluation—given in table 3—indicate that adjusted salinity values are more accurate than unadjusted values in temperature inversions.

FILE DESCRIPTION

The water mass file has been segmented to permit installation in computers of various storage capacity such as the (UNIVAC 1108, NOVA 800, and IBM 360). For example, the North Atlantic is divided into areas A through E, the North Pacific A through G, and the Indian Ocean A through D. Each area is further divided into regions of similar oceanographic properties, with the lowest denominator being a one-degree rectangle. A region may have as many as five water masses, but normally is limited to two or three. Historical data are provided by season, with winter consisting of January through March, et cetera. An exception to these seasons is found in the Indian Ocean, where the summer monsoon season is April through September, and the winter monsoon is October through March. Given the geographic position, data from an XBT trace, and season, the program will automatically select the proper water mass history for the merge.

The file order and temperature characteristics (temperature filter at 200 m, temperature difference between 200 and 300 m) of each water mass are given in Appendixes B through D. In the absence of real-time data, the user may want to make an ICAPS run on the basis of history alone. Therefore, the last column of each table provides the frequency of observance of each water mass within a region. The file is arranged so that water masses are listed by order of ascending temperatures; i.e., the coldest water at 200 m is in the first position of each region and the warmest is in the last position. The first position (coldest water) will automatically be selected by the computer when making a run using historical data unless the user specifies otherwise during the run setup.

In certain instances, the use of the most frequently observed water mass may provide misleading results. Atlantic Area A (Appendix B) shows that slope water is the most frequently observed (58 percent) water mass in region A20. However, a task unit operating south of the Gulf Stream would require sonar range predictions based on Sargasso water instead of slope water. Although the frequency of slope water in region A20 is twice that of Sargasso water (58 to 28 percent), little or no slope water occurs in the southeastern corner of this region. Therefore, overlays are included for most water mass areas to show the coverage of the most frequently encountered water mass as a function of file position. Using the same example as above, the overlay shows that the most frequent water mass encountered near 37°N, 62°W is found in file position 4, which corresponds to Sargasso water. Because file position may represent different water masses in adjacent regions (file position 3 is slope water in Atlantic region B3 and drift water in region B4) these graphics should not be used to define water mass boundaries. an overlay is not provided, it may be assumed that file position 1 is most common.

Two methods for selecting historical data are described in the preceding paragraphs. To avoid confusion as to which should be used, the following suggestions are offered:

- (1) In the absence of a major oceanic front such as the Gulf Stream in an area of where the frequency of one water mass far surpasses the others, the tabular listings should be used. Example: Atlantic region C5 is both distant from oceanic fronts and has a predominant water mass (Northeast Atlantic, 65 percent).
- (2) In the presence of an oceanic front or where regional differences occur, the overlay should be used. Examples: Sargasso water in the southeastern corner of Atlantic region A20 is separated from slope water by the Gulf Stream; Campeche water hugs the coastline of Cantral America in Atlantic region D11.

TYPICAL XBT FILE

A supplemental file to ICAPS containing XBT traces typical of each water mass by month is in the process of being constructed. The traces, extracted from a historical file of approximately 288 thousand observations, are stored in the file by multiple sets of depth-temperature pairs from which the original XBT trace may be reconstructed. Criteria for the selection of a typical trace are sea surface temperature, sonic layer depth, and shape representative of water conditions existing within the water mass during the month specified. The intended purpose of this file is threefold: (1) to provide detailed information about the near-surface layer to assist planning of future naval operations, (2) to supplement real-time observations in areas where few data are available, and (3) to provide a quality control standard against which real-time data can be compared. Thase data are both more frequent (monthly versus seasonal) and present more detail in the near-surface layer (real features not lost through the averaging process) than the deep historical water mass file described earlier.

Although the quality control function of the typical XBT file is of considerable value, the user should be aware of the fact that the file cannot cover all possibilities. For example, a well-formed temperature inversion persists along the edge of the Continental Shelf of the eastern United States from early spring until late summer. This feature is not shown on the typical XBT traces for that period because it is not typical of the entire region. Thus the user must not eliminate data if the feature in question is feasible or is duplicated by other traces.

REFERENCES

- Faucher, K. A., J. D. Pugh, and D. V. Hardman, Sound velocity profile synthesis techniques for the Acoustic Range Prediction System (ARPS), Naval Undersea Center, Technical Note 976, San Diego, 23p., 1973.
- Hanssen, G. L. and W. B. Tucker, III, Interim Integrated Carrier Antisubmarine Warfaré Prediction System (ICAPS) manual, (CP 642-B Computer System) (U), Naval Oceanographic Office, Reference Publication 10, Washington, DC, 100p., 1975. CONFIDENTIAL
- Mendenhall, B. R., Design of a structure parameterization method for application to the three-dimensional analyses of ocean temperature, Meteorology International Incorporated, <u>Final Report</u>, <u>Project M-156</u>, Monterey, 57p., 1970.
- Podeszwa, E. M., Sound speed profiles for the North Pacific Ocean, Naval Underwater Systems Center, <u>Technical Document 5271</u>, New London, 184p., 1976.
- Russell, J. J., A technique to summarize sound speed data from the sea for application in acoustic propagation loss models, Naval Undersea Center, Technical Note 1553, San Diego, 504p., 1975.

APPENDIX A

SALINITY ADJUSTMENT

Oceanographic stability is a prime requisite for persistence of near-surface temperature inversion (sound channels), since unctable conditions will destroy an inversion through mixing in a relatively short period. In physical oceanography, stability is quantified by the change in density with respect to change in depth; stable conditions being denoted by an increase of density with increasing depth. Because density is a function of both temperature and salinity, it follows, a priori, that a salinity inversion must coincide with a temperature inversion if stability is to be maintained. Historical salinities, by definition, represent mean conditions and thus cannot cope with an anomalous condition such as an inversion. This appendix describes a method of adjusting salinity as estimated from a historical file to provide a stable water column. In order to allow for minor instabilities frequently observed in Arctic waters, the correction is only applied where a temperature inversion exceeds 0.25°C.

The equation used to adjust historical salinity was derived from stepwise regression of density as a function of salinity (30 to 40 o/oo) and constant temperature (10° C).

$$\rho = -1.26584 \times 10^{-1} + 7.72412 \times 10^{-1} + 4.22003 \times 10^{-8} + 8.4$$
 (A-1)

Differentiation of equation (A-1) to give change of density with respect to change in salinity yields, after rearrangement, addition of a correction term to assure stability within the inversion, and conversion of density to the more conventional sigma-t yields:

$$\Delta S_1 = \frac{\Delta \sigma_t - 0.01}{0.7724 + 1.6880 \times 10^{-7} S_0^3}$$
 (A-2)

Where $\Delta \sigma_t$: the difference between σ_t at adjacent points,

So : original historical salinity at point i

The initial step in applying equation (A-2) is the computation of sigma-t as a function of depth and temperature as input from the XBT and interpolated historical salinity. The XBT trace is scanned from bottom to top and salinity values are adjusted for all points within temperature inversions that are more than the temperature maximum minus 0.25°C at the lower boundary of the inversion. An adjustment of 0.01 sigms-t units is added to the numerator to assure stability within the inversion. Adjusted historical salinity (S_i) is now computed using the equation

$$S_1 = S_0 + \Delta S_1 \tag{A-3}$$

APPENDIX B WATER MASS DEFINITION NORTH ATLANTIC OCEAN/MEDITERRANEAN SEA

This appendix presents area definition and the thermal characteristics of each water mass within the file for the North Atlantic Ocean and the Mediterranean Sea. Subsequent appendixes cover the North Pacific and Indian Oceans. Each segment is divided into areas designated by letter (e.g., Atlantic A, Pacific A or Indian A). Within each segment, geographic regions of similar oceanic properties are designated by number (Atlantic All, Pacific A3 or Indian A2). Although as many as five water masses may occur in each region, most regions normally are restricted to one or two. For example, region All includes three water masses: Southern Slope, Stream, and Sargasso. It should be noted that large water masses, such as the Sargasso Sea, may cover several regions. Regions, water mass names, temperature range at 200 m (temperature filter), temperature difference between 200 and 300 m (DT) where applicable, file position, and frequency of observation of each water mass are provided in tabular form for each segment.

Water mass classification should be made initially using temperature at the 200 m level. When two water masses have similar temperature characteristics at this level, the temperature difference between 200 and 300 m (DT) should be used as a tiebreaker. The ICAPS computer will automatically select the appropriate history from season, position, and thermal characteristics of the input XBT trace.

Water mass names represent geographic features associated with the area and may not agree with classical oceanographic terminology. Where more than one water mass is found in a region, the user may wish to make ICAPS runs for only the most frequently observed water mass—therefore, overlays that depict the most frequently observed water mass by file positions are provided. The numbers on these correspond with the numbers in the tabular regional listings. In the absence of an overlay, the user may assume that a majority of observations are represented by the water mass in file position 1.

APPENDIX B

CONTENTS

															•		Page
Locator Char	t												•				19
Atlantic Area	а А				•						٠			•		•	20
Atlantic Area	а В																. 22
Atlantic Are	a C				٠								• '			•	24
Atlantic Area	a D																26
Atlantic Area	a E		• .											•			28
Mediterranea	n Se	а					٠	٠		•						•	30

NORTH ATLANTIC OCEAN/MEDITERRANEAN SEA LOCATOR CHART.

ATLANTIC AREA A

				•					r						
leg ton	Mater Mass Name	1200 CT	O Ž	2	Max Max	Posit ion	Freq. (1)	Region	water Mass Name	T200 (် (၁၂ နှ	Min Max	C)	Position	Freq. (')
₹	E. GUL	2 :	. 2.				53	7 IV	Atlantic Central	=	23			-	100
;		: :	: :			٠.		A15	N.E. LANT	~	70.				001
1	E. 1000	<u> </u>	3 ≈			7 7	£ 15	Alb	N.E. LANT	2	8			~	100
3	SO. SLOPE	• :	. 22			7.		V17	N.E. LANT	=	2			· -	100
•	FLORIDA CURRENT SARCASSO.	:22	: 2: 2:	-8.0	9.5	. ~ .	5 S S	A18	S.W. GIBRALTAR	7	0.			-	100
	S ANTILLES	2	· *	•	7		11	414	S.E. GIBRALTAR	77	0,7			-	100
i	SALCASSO	. 2	22	6.1-	0.0	4 ~4	53	A20	SCOTIAN	£	•			-	-1
3	G. ANTILLES	. 51	25			.	901		SLOPL	• :		0.6-	9	~ ~	ž :
:		:		•	7	-	;		SARCASSO	2	:≎		0.0		. 2
€ .	SARCASSO	2 2	3 2	-1:0	.0	 -•	7.42	A21	SLOPE.	•	15			-	=
									STREAM	. 5		-8.0	-1.6	. ~	. •
¥ 3	AKTILLES C. SARCASSO	22	22	-1.5	0.0	۰۰ -۰	* [6		SARGASSO	15	÷.	-1.6	0.0	~	2
;	To Branch Cabon the					-	9	A22	TRANSITION	20 ;	=		,	y-re 1	٠ سه ٠
3	ALLANIIC CENTRAL	2	;	,		-	8		DRIFT ATLANTIC CENTRAL	==	3 X	- 9.0	9.1.0 0.0	~ ~	~ \$
4	S.E. LANT	:	70				130	164	H. F. LANT	9	2	•			. 6
410	S.E. LANT	21	8 2			-	001			2	:			•	3
	SO. 810PE	•	15		,		•	A24	N.E. LANT	71	8			-	100
į	STREAM	22	: X X	-8.0	4.1.6	· 64 =	29	A25	M.E. LANT	~	18			,	001
;		: :	; ;			٠.	;	97.	N.W. GIBRALTAR	2	2			~	100
Ž	SARCASSO	2 2 ~	3.5	-1.6	0.0	- 7	7 8		N.E. GIBRALTAR	υĪ	82				, 001
£13	SARGASSO	<u>.</u>	8				901	- 924	ATLANTIC	==	===	0.6	-0.2	- ^	11.2
										:					•

ATLANTIC AREA B

		T200 (°C)	0	5	0					T200	•	(0,)	ı		
leg fon	Water Mass Name	u H	Max	Min Mex	ž	Position	Freq. (2)	Region	Vater Mans Name	Ę	Ž	Hin Max Min Mex	Position	Freq. (3)	
=	SCOTIAN	• •	• 2			. ~	6 %	60	N.E. ATLANTIC	o;	2		~	100	
	STREAM	22	22.2		-1.6	i m 👍		62	LAURENTIAN GRAND BANKS	7.0	v a	•	~~	77 23	
2	HODIFIED LAURENTIAN SCOTIAN		•			→ ~	6 82	910	LABRADOR DAVIS STRAIT	7.	~ *		~ (58	
	SLOPE	•	21	<u>-</u>		m			TRANSITION	, ec .	225		• • •	2 .	
2	LAURENTIAN	ņ	æ				11	,	100000		2		•	•	
	SLOPE	• • •	. 21 2			, ń.	202	110	DRIFT	^ =	= e		~ ~	2 22	
1	TABRADOR HTXED	-	•			, _	: 2	812	N.E. ATLANTIC	01	9		-	061	
,	TRANSITION	. • 1	, II %			4 N M	, o. 3	813	N.E. ATLANTIC	•	15		-	1001	
S	TITLE	=	14					914	BISCAY	•	13		-	100	
	N.E. ATLANTIC	1	2			• ~•	\$2	615	LABRADOR	-5	m	•	-	78	
2	N.E. ATLANTIC	=	81		ı	~	100		DAVIS STRAIT	~	77		6	16	
	-	, c				•	;	918	LABRADOR	7	-		-	77	
•	H.B. Allentite	.	7			→	100		DAVIS STRAIT TRANSTION	~ ~	7 51		~ -	2.4	

ITLANTIC AREA C

		Constant	٠ ت	14 / 14 .	رع.		
1 T	Water Mess Valle	413	ź	ž	ž	Posttlon	Freq. (1)
ರ	LA: RE PT LAS	7	•				
	ALKIN BANKS	c	•			~	2.3
3	LANKARIN	ř.	^				91
	DAVIS STRAIT	~	=			7	**
0	LABRATOR	7	_				^
	DAVIS STRAIT	~	,			7	æ
	TRANSTITUM	~.	2			~	=
ಕ	FAST GREENEAND	7	~				=
	TRACAGE	•	::			7	ē
ε	I TOTAL SE	^	•				32
	NOTTHEAST ATLANTED	•	=			~	ş
đ	MUNTHIAST ATLASTIC	«	2			~	0c1
Ç	NORTHEAST ATLANTIC	,	7				001
ŧ	BALTIC OUTFION	4	=				100
5	LABRARY	-7	^				9
	DAVIS STRAIT	_	2			~	4
CO	WEST CRETHLAND	;·	~ :			-4 f	# :
	MAYIS SIRAIT	^	2			~	**
๋ ฮิ	EAST OF ENTAND	-3	~	•	•		Zi
:	INTINCER	^	~	٠		~	₽
77	MIXED	?	~	-8.0	-:		2
	MEST ICELANDIC	~	~	.:	٠.	~	•
	INTEREST	•	~			^	4
5	POLAE PRONT	~	~	0.4	-1.2	-	•
	EAST ICFLANDIC	~	~	-1.5	0.0	~	. 10
•	NORTH ATLANTIC	•	2			•	≈
†	POLAL PLONT	~	•	-8.0	-1.2		. 61
	EAST ICELANDIC	~	•	-1.2	3.0	~	``
	NOTIFICIAN STA	~	2			_	\$3
ŝ	POLAB FRINT	· ~	~	-8.0	-1.2	. ~	10
	EAST TOTLANDIC	7	•	-1.2	3.0	~	=
	MONTACIAN STA	^	~			_	~

ATLANTIC AREA D

		,													
E Ales	Motor Nese Beng	T. 20	7200 C*C)	No.	- 1 H	Post Lion	Fres. (1)	le Lion	20 Meter Mase Name	1700 Mn	TZOO (°C)	Min (°C.)	Position.	티	Freq. (X)
ā	COLUMBIAN WEST CALIBRAN	20.0	23.0 8			-~	1 2	210	ZAST GULF	10.0	15.0				23
2	VERRATION	10.0	30.0			·	8	5	SOUTH SLOPE	0.4	15.0		-	_	~
2	B.E. BRAZIL ANTILLES MINED	. 000	13.0			-~-	-22		COLD WALL FLORIDA CURRENT SARCASSO	17.0	25.0	-8.0 -1	0.0		40,4
1	TROPOLART	•	13.0			٠ ــ	: 5	†ta	CREATER ANTILLES	15.0	25.0				100
. 1	ATLANTIC COSTAL	15.0	23.0			·~ ·	13 1	\$10	S ANTILLES CURRENT SAKCASSO	15.0	25.0	-0.0	40.0		23
8 8	S.E. ATLANTIC	10.0	13.0				8 8	9 10	SATILLES CURRENT SARCASSO	15.0	25.0	1.0 -1.0	9.0		12
*	COLCHBIAN WEST CALIBRA	20.0	23.0			-~	38	011	ANTILLES CUREENT SARCASSO	15.0		-1.6	9.0		78
R '	CARINEAN COL	10.00 20.0	8 8			~ ~	22	# 10 i	•	15.0	22.0				001
x .	CARIBBEAR COC. EAST CARIBBEAR	70.0 20.0	8.8	-		-~	≈\$	# DI #	S.E. ATLANTIC	13.0	%0.0 1				<u>8</u> 8
014	S.E. ATLANTIC	10.0	16.0				5								
ä	CAMPICAT WEST LOOP	10.0	15.0			' N	* 3								

ATLANTIC AREA E

		1290	Ç	5		
100	Mater Pass Name	2	2 c R	Min Man	Posit ton	Freg. (*)
=	EQUALANT	· ·	14.0		-~	2 2
2	THOPOLANT	9.0	16.0		-	90
2	S.E. ATLANTIC	10.0	0.		-	90
2	S.E. ATLANTIC	10.0	16.9		-	8
2	S.E. ATLANTIC	11.0	19.0		-	Š
\$	GILF OF GUINEA	11.0	19.0	•		8
:	TRUPOLANT	÷.	14.0		:	8
3 .,	THUPOLANT	0.0	14.0		-~	**
2	TRUPOLANT	0.0				3

ENTERRAKEAN

		000	ĵ	Ē	£		
P. Lion	Vater Mass Name	-	į	Min Max Min Max	į	Posttion	Freq. (2)
뀰	ATLANTIC GIBRALTAR	==	22	-6.0	6. c	~ ~	- = t
Ā	ATLANTIC ALGERIAN	==	22	-6.0	9.5	N	2.5
2	MALTESE	2	Ë			-	6 0
£	LIBTAN	=	5				100
£	TORTAR	:	. 2			-	ĕ
2	LAST NED	=	۶			~	8
24	AL BORAN	=	15	•		-	901
2	TYBRHENIAN	2	2			~	907
£	SOUTH AEGEAN	::	. =			-	92
MIO	NORTH AEGEAN	=	•			-	100
5	LICERIAN	=	*		•		200
M1.2	ADRIATIC	71	91				8
ć DK	- HARVARA	71	91			-	100
NO.	BLACK SFA	•	ទ			-	8

APPENDIX C NORTH PACIFIC OCEAN (See Appendix B for explanation)

CONTENTS

					. '																	•	Page
Locator	Chart	:					•	•		•						•	•		•				35
Pacific	Area	A	•		•								٠,		٠		•			•		•	36
Pacific	Area	В			4	٠	٠	•					•	•			•					•	38
Pacific	Area	C									٠		••				·	•			•		40
Pacific	Area	D			•			•	•		•									•		•	42
Pacific	Area	E		٠			•		•				•				•			٠	•		44
Pacific	Area	F								•		•	•							•			46
Pacific	Area	G					.•	•		•		•					•	•		٠			48

NORTH PACIFIC OCEAN LOCATOR CHART.

PRECEDING FACE BLANK-NOT FILME

PACIFIC AREA A

le g lon	Water Mass Name	1200 (°C) Hin Max	Min Max	Posttion	Freq. (1)
7	TRANSITION KUROSHIO	7 13	,	- ~	2 S
3	EAST TRANSITION	10 16			100
4	NORPAC EAST TRANSITION	7 12 12 16		- 7	22
4	CALI PORNIAN EAST TRANSITION	s 11		ન્ન લા	99
ş	CALIFORNIAN	2 11		-	100
\$	GULF OF CALIFORNIA	10 18		-	001
3	ALEUTIAN Norpac			~ 7	9 26
99	ALASKAN NORPAC	7 12		- ~	3%
87	ALASKAN	•		~	100
979	ALEUTIAN	• c		-	961

PACIFIC AREA B

	Region	Water Mass Name	T200 (°C)	O ¥	DT (°C) Min Max	() ***	Poste ton	Freq. (1)
	7	MARSHALLS CENTRAL	8 17	17		•	. 4 2	88
	B2	N. FQUAPAC E. CENTRAL	6 7	7,7			7 7	, 1 86
	a ,	E. CENTRAL	8 71	7 0			7 7	22 78
	ă	N.E. EQUAPAC E. CENTRAL S.E. HAWAIIAN	8 112 14	12 24 24			-85	25 20 40
	. 58	N.E. EQUAPAC	•	15				100
	99	N.E. EQUAPAC CULF OUTFLOW	6 41	77		1	~ 7	93
	. 24	N.E. EQUAPAC GULF OUTFLOW	, 6 3	72			77	98
	, 99	CENTIAL	11	21	,		-	100
ı	2	E. TRANSITION S.W. HAWAIIAN	0,32	. 31 22			~ ~	. 18 18
	B 10	E. TRANSITION N.E. HAWAIIAN	= 3	23			7 7	38
	11	E. TRANSITION	9	18			1	100
	B12	BAJA CALIFORNIA	9	=				100
	813	CULF OF CALIFORNIA 10	9	3.8			-	100
1	B14	E. TRANSITION N.W. HAWAIIAN	1 %	16			47	2 %

PACIFIC AREA C

		\$ 250	(3) (6)	3, 1, 16	Ç.				1	•	1 (0.)	1.00		
2 73		ř	į		į	\$ 1716. d	Freda, St.	11.77 sa	Marie Mann Park	<u>.</u>	Win Man Min Man	. .	Post (closs	Est Co
3	S. Bit. As	01	*			-	ā	•	OTANIC	7	•			*
	単行機に対	*	z			~	:		W. TRANSITION	• :	≃ :		~ -	2:
7	13 °C #5	-	2			-	3		and we did not	=	E.		•	Ĩ
!	6:30-1: E	~	7		6.0	- ~	: =	010	I IMAN	7,	1.1			*
	B S. CENTRAL	4	7	01.	9.0	-	;		JAPAN CENTRAL	3.5	-		*	13
7	C1 #5# #5	~	:			-4	٠	15	RUBILE	?	7.5		-	9
	W. Thensippion	=======================================	=		,	~	Ξ		OYAGHTO -	<u>.</u> ب	•		~	11
	C: W1.78.13	2	.#.	•	•	. =			W. TRANSITION	•	77		•	~
	W. Cante	=	7 2		6.0	•	•.							
	-		t		·		•	20	KURITE	~	3.5		-	6
3	W. T. PASSITION	•	:				*		OT ASH ID	7.9	91		~	8
	CONTRACTOR SO	=	~	•	. 7.0	~	:							
	S W. CENTRAL	=	7	·.	0.0	_	7.	3	FURTHE	0	•			23
									OTASHID	•	-		~	11
5	OT 62 4 10	•	2				•							
	That it ion		=			~	*	•	KVRILE	7	•			81
	CONTRIB.	••	2			_	x	•		,	•			;
į				,				?	CALIFOLISIS.	*	•			98
8	Water IT has strained at the s	- 3	= ຂໍ			-~	g . 2.	\$13	KJELE .	7	•		<u></u>	100
t	B. Ecition	7				***	=		٠		.•			
	THE CONTRACT	**	•			~	=							
	P. MONEA	-	2			•	•							
8	EURILE	7	•		•	-	2							
	CY ASE 10	•	2		•	**	*							
	W. Therstrick	20	=			-	2							
	COMPANY.	=	2	9	-).0	•	•							
	B.V. CONTACT	=	R	·	٠. د.	•	=							

PACIFIC AREA B

		,	•	ž	، وَ		
10170	Valer Nose Name	2	Man Man	2	Man Man	Postt ton	Fres. (1)
ã	S. CHIM COLD S. CHIM MAN	==	22			- ~	* •
8	LUDY N. CENTRAL	22	2 %			17	**
6	H.W. MARIANAS W. Central	==	28			~ ≈	88
3	E. MARIANAS W. CENTRAL	9.2	7 %			, re	4 4
\$	MARSHALLS CENTRAL	-:	2.8			7 7	41 6
8	TAIWAN FUNCSHIO H.W. CFNTRAL	<u> </u> 225	282	-3.0	0.0	N. P.	* 2 %
a ·	TAINAM KUROSHIO H.W. CENTRAL	222	222	13.0	-3.0 0.0	-~	28 11 28
8	CENTRAL	~	*				100
2	CDITIAL	2	*			-	100
010	CENTRAL	=	=			-	100

PACIFIC AREA E

		1700	(°C) PT (°C) 0077	G.)		
Per Lon	Maior Mass Name	Mile	N N	N. W.	Postt ton	Position Prog. (1)
ij	ORNOTSK	~	₹,			001
2	KURILE	7	•			901
•	KURILE	7	•	•	-	801
2	ALECTIAN	•	•		-	100
2	ALEUTIAR	oʻ	•		-	8
2	ALASKAN	•	•			61
•	W. BERING	~	•			001
· 1		٩	•		-	901

PACIFIC AREA F

	٠.	1200 (°C)	(a) pri (*c)		
leg ton	Vater Pass Name	e P		Position	Fres. (3)
Ľ	N. EQUAPAC E. CENTIAL	• <u>*</u>	14 20	~ ~	.
2	H.E. PRUAPAC E. CENTRAL	• =	28	~~	19 2
2	. H.E. BQUAPAC	•	51		9
.	H.E. MOUAPAC	•,	13	-	9
٤	CALAPAGOS	01	16	~	130
2	PANAMA	92	13	-	100
£	H. EQUAPAC E. CENTRAL	• ‡	21.	-~	22 25
E	H. EQUAPAC E. CENTRAL	•=	28	~ ~	77
£	H.E. MOUAPAC E. CENTRAL S.E. HAMAIIAN	-22	7. 7. 7.	- N.F.	2 22
91	H.E. EQUAPAC	•	15	-	6
11	H.P. PQUAPAC GULP OUTFLON	• :	72 22	~ ~	÷°
212	H.E. EQUAPAC	•;	*	-	£ '

PACIFIC AREA G

le gion	Vater Mass Name	1200 Min	7200 (°C) Min. Ner.	Hin Max	Position	Freq. (1)
	SULU/CELEBES	13	11			700
	MOLUCCA	77	ដ		-	100
	HUNDANAO N.W. EQUAPAC	8 51	22		7~	22
	CAROLINE H.W. EQUAPAC	8 91	16 26		- 7	3 %
	MELANESIAM M. EQUAPAC	8 23	15	•	4	**
	THOPAC N. EQUAPAC	9 1	**		- ~	35
	N. EQUAPAC E. CENTRAL	8 1	12		- ~	36 24
	S. CHINA COLD	13	61			8
	MUNDANAO N.W. EQUAPAC	. 2	2 2		- ~	191
	MENDANAO Samar W. Central	# \$ 2	282		-~	22 62 23
	S.W. MARIANAS W. CENTRAL	22 2	23.58	,	~ ~	3 %
	E. MARIANAS V. CENTRAL	22	28		- 7	. 23
	MARSHALLS CENTRAL	8 /1	. 28	•	- ~	32
	H. EQUAPAC E. CENTRAL	•:	* =		- ~	28. 28.

APPENDIX C INDIAN OCEAN (See Appendix B for explanation)

CONTENTS

																	Page
Locator	Char	t				٠		•									53
Indian	Area	A									:					•	54
Indian	Area	В															56
Indian	Area	С	•		•			٠									58
Indian															•		

PRECEDIAG FACE BLANK-NOT FILED

INDIAN AREA A

Ş	7	1200 (°C)	9	DI C		
	MELET PASS NAME	۲ ا	¥-	Min Max	Posit fon	Freq. (1)
	RED SEA	19	97		1	100
	Yenen cool Yenen Warm	12 16	16 21			* 4
	ARABIAN	12	19	•		100
	NORTH INDIAN COLD NORTH INDIAN WARM	:: \$1	15		- 0	72 28
	CULF OF OMAN	16	22		-	190
	PAKISTAN I	15	22		-	100

INDIAN AREA B

u . 17.2	HANN SERN ANDER	Con total	ر ا	Man Man	Post te Lou	Pref.
=	N.B. S. MALT. CO.A.	<u> </u>	£ 7;			ž °
'2	1 TAR & 18 A	a	•			100
2	- ANABIAN	:	.		•••	1001
2	MINERAL OF STREET	3.1	£.		·.	70 85
Ę	FAST INDIAN	ů.	:.			50
.2.	NORTH SORGET ONLY NORTH SORGET WARM	2.5	:: ::		~* ^•	25
. 🕳	ABABIAN	=	2			ટ
· ,	SITING	2	ž			100
2	NORTH TABLAS COLD	= 5	: 0	,		£ 7,
- 010	ANT-AMAS	92,	<u>:</u>		_	100
:	STAT APEN	2	<u>.</u>			00 7
7	LAST ACEN	::	ĭ			0 01
=	TEMEN CONT.	~ .	± #		~~	ş 3
:	ALAS TAK		<u>*</u>			8

MAN ARA C

INDIAN AREA C

20174	botot Ness Ness	13.00 1.00		10. 1 to 10.	Pos It for	77. (1)	Reg len	Mater Mans Lane	1300 T	o ž o	TEND CO IN (C)	Position	Freq. (2)	
Ü	S. HOZAMIQUE COLD	=:	<u> </u>	•		٤ ;	=======================================	WEST SOMALI	=	•	•	-	001	
	S. MOZAMBIQUE MARR	2	≈	٠	••	₹ ,	C12	HORTH MASCARENE	=	•		-	001	
8	S. MACARENE	2	2	•	<u>.</u>	8	:	EAST SOMALI	=	=		**	100	
3	MALENTIUS	=	2		-	139	ć	MID INDIAN		=		-	100	
3	SOUTH INDIAM	2	≈	•	. .	100		CAST TABLES COURS	5	7		_	ž	
8	SOUTH BRAKETOR	1	17		-	. 001		LAST INDIAN WARM	*	2			4	
5	H. HOZAMBIUUT COLD	=:	7	٠,		05	3	H.W. SOPALI	01	=		-	100	
	H. HOZANG LOUT WARM	:	~		~•	Ş	(1)	M.H. SIMALI	01	×		-	- ' 001	
5	CENTRAL MASCARDAE COLD 10 CENTRAL MASCAREME WARM 15	5 S S S S S S S S S S S S S S S S S S S	<u>.</u> .		~ ~,	1	613	ABAB I AN	2	=		-	100	
₽,	SOUTH SONAL!	\$	07		-	100	613	MID INDIAN CAID MID: INDIAN CARN	10	14.5			68	
5	SUCTR INDIAN COLD	02	~		-	ş			•	:		•	•	
	SOUTH ENDIAM VAIDI	\$7	~		~	3	020	EAST INDIAN COLD	2 2	<u> </u>		'r.	2 <u>-</u>	
ĉ	SHARTUR COLD SHARTUR GARR	22	2::		an *1	3 8	-							

INDIAN AREA I

,			1300 (-0)	ឡ	(C) IM		
Ne Klon	ξį	Water Nose Name	<u>.</u>	į	. Min Max	Position	Position Freq. (7)
ā		SOUTH WHARTON	2	12			621
		ALSSIE NARM	=	?		-	6
â	_	TIMOR	Ξ	2			130
3	_	WARTON COLD WARTON VAIDA	-2	22		-~	\$ 3
8	_	AUSSIE COLD AUSSIE NARM	• :	2 4		-~	22
4	_	E. INDIAN COLD E. INDIAN SARM	2 1	1 2		-~	E =
Ã	_	SUNDA	•	=			001
2	_	S. JAVA	•	.		-	100
· S		HAKASSAR/TLORES	=	=		,	92
010	o ,	BANDA WADN	22	28		~~	22
	•	E. CHINA COLD E. CHINA WARN	21	± 2		- ~	5 2
710	~	MOLUCIA	~	=		-	001
. 10	_	CERAN	=	~			100

DISTRIBUTION LIST

```
COMSECONDELT
 COMSIXTHFLT
 COMSEVENTHFLT
 CTF 69
 COMSURFWARDEVGRU
 COMSUBDEVGRU ONE
 COMSUBDEVRON TWELVE
 COMNAVINTCOM
 DIRNAVOCEANMET
 CINCLANT
 CINCPACELT
 COMSUBLANT
 COMSUBPAC
 FLENUMWEACEN
 FLETRACEN
 COMASWSUPPTRA DET
 NAVPGSCOL
 COMNAVAIRLANT
 NATC
                             2 copies
 NAVAIRDEVCEN
                             2 copies
 CNO (OP951)
 COMNAVAÍRSYSCOM
 USS SARATOGA (CV-60)
                             2 copies
 USS AMERICA (CV-66)
                             2 copies
 FLEWEACEN ROTA
           NORFOLK
    **
           PEARL HARBOR
    **
           GUAM
TSC BERMUDA
                             2 copies
TSC LAJES
                             2 copies
TSC MOFFETT
                             2 copies
NAVWEASERVFAC ALAMEDA
               GLENVIEW
               JACKSONVILLE
               PENSACOLA
               SAN DIEGO
             YOKOSUKA
NWSED ADAK
      AGANA
      ATSUGI
      BARBERS POINT
      BERMUDA . .
      BRUNSWICK
      CECIL FIELD
      CUBI POINT
      KADENA
      KEFLAVIK
      MISAWA
      MOFFETT FIELD
      NAPLES
      PATUXENT RIVER
      ROOSEVELT ROADS
NORDA
                            2 copies
NUSC
                            2 copies
NWSED SIGONELLA
```

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG HUMBER
NOO RP 19 40-A085 000	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
WIT TOARS IN THE MASS WESTERN TO THE	Final Report
THE ICAPS WATER MASS HISTORY FILE	4. PERFORMING ORG. REPORT NUMBER
	- PERFORMING ONG. REPORT RUBBER
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(*)
Alvan Fisher, Jr.	
	•
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
	AREA & WORK UNIT NUMBERS
U. S. Naval Oceanographic Office NSTL Station	•
Bay St. Louis, MS 39522	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U. S. Naval Oceanographic Office	Apr 1 1978
NSTL Station	12 NUMBER OF PAGES
Bay St. Louis, MS 39522 14. MONITORING AGENCY NAME & ADDRESS// different from Controlling Office)	61 (Incl 4 appendixes)
WOULD COUNT LANGE & WORKESS(II SHISTORI ISSUE CONTINUED OFFICE)	UNCLASSIFIED
•	•
	15a. DECLASSIFICATION/DOWNGRADING
	N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release, distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES	
	/
	/
 	
19. KEY WORDS (Continue on reverse side if necessary and identify by block mamber)	
ICAPS	
	nity correction
Historical oceanographic data Wate Sound speed conversion	r masses
Oceanography	
20. ABSTRACT (Continue on reverse elde if necessary and identify by block mumber)	A new Integrated Command
20. ASSTRACT (Continue on review olds if recessory and identify by block number) A new Integrated Command Antisubmarine Warfare Prediction System (ICAPS) data file based on the near-surface water masses of the Northern Hemisphere and the Indian Ocean is discussed. The most attractive feature of the water mass file is that the	
cussed. The most attractive feature of the water mass file is that the	
CHAIGCLETISTICS OF THE INDUC DEENVINORM Will chiectivaly determine the	
File. A second feature is the adjustment of salinity in the presence of temp-	
proper deep history for computation of the surface-to-bottom sound speed pro- file. A second feature is the adjustment of salinity in the presence of temp- erature inversions (sound channels) to maintain a stable water column. Evalua- tion of the water mass file using salinity-temperature-depth (STD) data shows that it is improved over the file presently used by ICAPS. The new file is described and the temperature criteria used to define water masses in each area	
that it is improved over the file presently used by ICAPS. The new file is	
are given.	
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 18 OBSOLETE UNCLASSIFIED	