ამოცანათა კრებული მათემატიკურ ანალიზში

ზ. კუჭავა, ⊮T_EX 11.2.2025

§ 3. ფუნქციები.

0.1

სამეულს f=(F,X,Y), სადაც X და Y სიმრავლეებია, ხოლო $F\subset X\times Y$ ეწოდება f შესაბამისობა. F-ს ეწოდება f შესაბამისობის გრაფიკი. X სიმრავლეს ეწოდება საწყისი სიმრავლე, ხოლო Y-ს საბოლოო. სიმრავლეს $\left\{x:(\exists y)\Big((x,y)\in F\Big)\right\}$ ეწოდება F გრაფიკის პირველი პროექცია და აღინიშნება " pr_1F " სიმბოლოთი. შესაბამისად მეორე პროექცია არის $pr_2F=\left\{y:(\exists x)\Big((x,y)\in F\Big)\right\}$.

f=(F,X,Y) ჩანაწერის მაგივრად ხშირად გამოიყენება ჩანაწერები $f:X\to Y$ და $X\stackrel{f}{\to}Y$. ასეთ შემთხვევაში, აგრეთვე, ამბობენ, რომ "შესაბამისობა f ასახავს X სიმრავლეს Y სიმრავლეში".

ვთქვათ $f:X\to Y$ შესაბამისობაა. განვიხილოთ $A\subset X$ და $B\subset Y$. სიმრავლეს $\{y:(\exists x)\big(x\in A\ \&\ (x,y)\in F)\}$ ეწოდება A სიმრავლის სახე f შესაბამისობის დროს და აღინიშნება სიმბოლოთი "f(A)". სიმრავლეს $\{x:(\exists y)\big(y\in B\ \&\ (x,y)\in F)\}$ ეწოდება B სიმრავლის წინასახე f შესაბამისობის დროს და აღინიშნება სიმბოლოთი " $f^{-1}(B)$ " (აქ არ იგულისხმება სიმბოლოს f^{-1} დამოუ-კიდებლად გამოყენება).

```
ამგვარად f(A)=\{y:(\exists x)ig(x\in A\ \&\ (x,y)\in Fig)\} f^{-1}(B)=\{x:(\exists y)ig(y\in B\ \&\ (x,y)\in Fig)\}.
```

შესაბამისობას f=(F,X,Y) ეწოდება **ფუნქცია** თუ სრულდება ორი პირობა

1.
$$pr_1F = X$$

2.
$$(\forall y)(\forall z) ((x,y) \in F \& (x,z) \in F) \Rightarrow y = z$$

ამ შემთხვევაში X კიდევ უწოდებენ ფუნქციის **განსაზღვის არეს** და, ჩვეულებრივ, აღნიშნავენ D(f) სიმბოლოთი, ხოლო pr_2F -ს უწოდებენ ფუნქციის **მნიშვნელობათა სიმრავლეს** (ცვლილების არეს) და აღნიშნავენ E(f) სიმბოლოთი.

თუ f=(F,X,Y) ფუნქციაა და $(x,y)\in F$, მაშინ $f(\{x\})=\{y\}$ შეიცავს მხოლოდ ერთ ელემენტს და ასოსთვის y გამოიყენება სპეციალური აღნიშვნა f(x) და წერენ y=f(x). ამგვარად სამართლიანია $(x,y)\in F\Leftrightarrow y=f(x)\Leftrightarrow (x,f(x))\in F$.

ფუნქციისთვის სახის და წინასახის ჩანაწერები შემდეგნაირად გამარტივდება

$$f(A) = \{y : (\exists x) \big(x \in A \& y = f(x) \big) \}$$

$$f^{-1}(B) = \{x : f(x) \in B \}.$$

ვთქვათ $X \xrightarrow{f} Y$ და $Y \xrightarrow{g} Z$ ფუნქციებია. მაშინ ფუნქციას $X \xrightarrow{h} Z$, რომლისთვისაც სამართლიანია h(x) = g(f(x)), ეწოდება f ფუნქცი-ის **კომპოზიცია** g ფუნქციასთან და აღინიშნება " $g \circ f$ " სიმბოლოთი. h ფუნქციას ეწოდება კიდევ **რთული ფუნქცია**.

f:X o Y ფუნქციას ეწოდება **ინექცია** თუ $(orall x)(orall y)\Big(x
eq y\Rightarrow f(x)
eq f(y)\Big).$

თუ $X\stackrel{f}{\to} Y$ ინექციაა და $B=pr_2F$, მაშინ განიმარტება f ფუნქცი-ის **შექცეული** ფუნქცია, რომლის აღსანიშნავად გამოიყენება f^{-1} სიმბოლო და სამართლიანია $f^{-1}:B\to X$ და $(\forall x\in X)\ f^{-1}(f(x))=x$.

 $f:X \to Y$ ფუნქციას ეწოდება **სურექცია** თუ f(X)=Y. თუ f ერთდროულად არის ინექცია და სურექცია, მაშინ მას ეწოდება **ბი-**ექცია.

მოვიყვანოთ მაგალითების გამოყვანის ნიმუში. განვიზილოთ №17 მაგალითი:

$$f$$
 ინექციაა $\Leftrightarrow orall A, B \subset D(f), f(A \cap B) = f(A) \cap f(B)$

დავუშვათ ჯერ, რომ f ინექციაა და ვაჩვენოთ ტოლობა $f(A\cap B)=f(A)\cap f(B)$. ტოლობის ჩვენებისთვის საჭიროა ვაჩვენოთ ორი საფე-ზური $f(A\cap B)\subset f(A)\cap f(B)$ და $f(A)\cap f(B)\subset f(A\cap B)$ $\forall A,B\subset D(f)$ -ის.

ჯერ დავამტკიცოთ პირველი საფეხური. დავუშვათ $y \in f(A \cap B) \Leftrightarrow (\exists x) \big(x \in A \cap B \& y = f(x)\big) \Leftrightarrow (\exists x) \big(x \in A \& x \in B \& y = f(x)\big)$ უკანასკნელ გამოსახულებას მივუყენოთ §2 №8, ანუ დავუნაწილოთ არსებობის ქვანტორი ცალცალკე კონიუქციის წევრებს. გვექნება

$$(\exists x)\bigg(x\in A\ \&\ x\in B\ \&\ y=f(x)\bigg)\Rightarrow (\exists x)\bigg(x\in A\ \&\ y=f(x)\bigg)\ \&\ (\exists x)\bigg(x\in B\ \&\ y=f(x)\bigg)$$

მიღებული გამოსახულება წარმოადგენს $y\in f(A)$ & $y\in f(B)$ რაც ექვივალენტურია $y\in f(A)\cap f(B)$.

მეორე საფეხურის $f(A)\cap f(B)\subset f(A\cap B)$ დამტკიცებისთვის დავუშვათ $y\in f(A)\cap f(B)$. განმარტებით მივიღებთ $y\in f(A)$ & $y\in f(B)$

ანუ $(\exists x)\Big(x\in A\ \&\ y=f(x)\Big)\ \&\ (\exists t)\Big(t\in A\ \&\ y=f(t)\Big).$ გამოვიყენოთ, რომ f ინექციაა. ეს ნიშნავს, რომ $f(x)=f(t)\Rightarrow x=t.$ ამდენად შეიძლება დავწეროთ $(\exists x)\Big(x\in A\ \&\ x\in B\ \&\ y=f(x)\Big)\Leftrightarrow y\in f(A\cap B).$

ახლა დაგვრჩა იმის დამტკიცება, რომ თუ სრულდება $\forall A,B \subset D(f), f(A\cap B) = f(A)\cap f(B)$ -ის მაშინ f ინექციაა. ამისათვის საგმარისია დავატკიცოთ $(\forall x_1)(\forall x_2), f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. თუ $D(f) = \varnothing$ ან თუ ის შედგება ერთადერთი ელემენტისგან, მაშინ დასკვნა ტრი-ვიალურია. ამიტომ განვიხილოთ შემთხვევა, როდესაც $\exists x_1 \in D(f)$ და $\exists x_2 \in D(f)$. რადგან $\{x_1\} \subset D(f)$ და $\{x_2\} \subset D(f)$, ამიტომ ჩვენი დაშვება გადავწეროთ შემთხვევისთვის $A = \{x_1\}$ და $B = \{x_2\}$. გვექნება $f\left(\{x_1\}\cap\{x_2\}\right) = f(\{x_1\})\cap f(\{x_2\}) = \{f(x_1)\}\cap \{f(x_2)\}$ სადაც ბოლო ტოლობაში გამოვიყენეთ მაგალითი №4. დავუშვათ $f(x_1) = f(x_2)$. მაშინ $f(\{x_1\})\cap f(\{x_2\}) = \{f(x_1)\} = \{f(x_2)\} \neq \varnothing$ და ამიტომ აგრეთვე $f\left(\{x_1\}\cap\{x_2\}\right) \neq \varnothing$. თუ სრულდება $x_1 \neq x_2$ მაშინ $\{x_1\}\cap\{x_2\} = \varnothing$ და მივიღებთ წინააღმდეგობას №1 მაგალითთან, რომლის მიხედვით $f(\varnothing) = \varnothing$. ამიტომ $x_1 = x_2$ რ.დ.გ.

0.2 მაგალითები და ამოცანები

დავუშვათ გვაქვს ფუნქცია f=(F,X,Y). დაამტკიცეთ შემდეგი წინადადებები

1.
$$f(\emptyset) = \emptyset$$

2.
$$f^{-1}(\varnothing) = \varnothing$$

3.
$$f^{-1}(E(f)) = D(f)$$

4.
$$\forall x \in D(f), f(\{x\}) = \{f(x)\}$$

5.
$$\forall A \subset D(f), f(A) = pr_2\{F \cap (A \times Y)\}\$$

6.
$$\forall B \subset E(f), f^{-1}(B) = pr_1\{F \cap (X \times B)\}\$$

7.
$$\forall B \subset E(f), f^{-1}(B) = f^{-1}(B \cap f(X))$$

8.
$$\forall A, B \subset E(f), f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

9.
$$\forall A, B \subset E(f), f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

10.
$$\forall A, B \subset E(f), f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

11.
$$\forall A, B \subset E(f), A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$$

12.
$$\forall A, B \subset D(f), f(A \cup B) = f(A) \cup f(B)$$

13.
$$\forall B \subset Y, f(f^{-1}(B)) = B \cap f(X)$$

14.
$$f$$
 სურექცია $\Leftrightarrow \forall B \subset Y, f(f^{-1}(B)) = B$

- 15. $\forall A \subset D(f), A \subset f^{-1}(f(A))$
- 16. f ინექცია $\Leftrightarrow \forall A \subset X, f^{-1}(f(A)) = A$
- 17. f ინექცია $\Leftrightarrow \forall A, B \subset D(f), f(A \cap B) = f(A) \cap f(B)$
- 18. f ດຽກປ່າຄວ $\Leftrightarrow \forall A, B \subset D(f), f(A \setminus B) = f(A) \setminus f(B)$
- 19. f ინექცია $\Leftrightarrow \forall A, B \subset D(f), f(A) \cap f(B) = \emptyset \Leftrightarrow A \cap B = \emptyset$
- 20. f ინექცია $\Leftrightarrow \exists g: E(f) \to D(f), \forall x \in D(f), \ g \circ f(x) = x$ & $\forall y \in E(f), \ f \circ g(y) = y$
- 21. დაგუშვათ E(f)=D(f), მაშინ $\bigg(\forall x\in D(f),\ f\circ f\circ f(x)=x\bigg)\Rightarrow f$ ინექცია
- 22. $E(g) \subset D(f) \Rightarrow D(f \circ g) = D(f)$
- 23. $E(g) = D(f) \Rightarrow \left(D(f \circ g) = D(f) \& E(f \circ g) = E(g) \right)$
- **24.** $(f \circ g) \circ h = f \circ (g \circ h)$
- **25.** $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$
- 26. f ბიექცია $(f^{-1})^{-1} = f$
- 27. დავუშვათ $D(g)=D(h)\subset E(f)$ მაშინ $g\circ f=h\circ f\Rightarrow g=h$
- 28. დავუშვათ f ინექციაა და $D(g)=D(h), E(g)\subset D(f), E(h)\subset D(f)$ მაშინ $f\circ g=f\circ h\Rightarrow g=h$
- 29. f^{-1} ფუნქციაა $\Leftrightarrow f$ ბიექციაა
- 30. არის თუ არა ფუნქცია შემდეგი სამეული: $(\varnothing,\varnothing,\varnothing)$?

დავუშვათ $f:A \to B$ და $g:B \to C$ და $h=g\circ f$, მაშინ:

- 31. f,g ინექციაა $\Rightarrow h$ ინექციაა
- 32. f, g სურექციაა $\Rightarrow h$ სურექციაა
- 33. h ინექციაა $\Rightarrow f$ ინექციაა
- 34. h სურექციაა $\Rightarrow g$ სურექციაა
- 35. h სურექციაა და g ინექციაა $\Rightarrow f$ სურექციაა
- 36. h ინექციაა და f სურექციაა $\Rightarrow g$ ინექციაა
- 37. დავუშვათ f:A o B და g:A o C, მაშინ $\bigg(\exists h:C o B$ ისეთი, რომ $f=h\circ g\bigg)\Leftrightarrow (\forall x\in A)(\forall y\in A)\bigg(g(x)=g(y)\Rightarrow f(x)=f(y)\bigg)$

- 38. დაგუშვათ f:A o B და g:B o C ბიექციაა, მაშინ $\Big(\exists h:A o C)$ ისეთი, რომ $f=h\circ g\Big)\Leftrightarrow f(A)\subset g(C)$
- 39. დავუშვათ $f:A\to B$, $g:B\to C$ და $h:C\to D$. $g\circ h$ და $h\circ g$ ბიექციებია $\Rightarrow f,g,h$ ბიექციებია
- 40. დაგუშვათ $f:A\to B$, $g:B\to C$ და $h:C\to A$. თუ $h\circ g\circ f$, $g\circ f\circ h$, $f\circ h\circ g$ ფუნქციებიდან ან ნებისმიერი ორი სურექციაა და მესამე ინექციაა ან ნებისმიერი ორი ინექციაა და მესამე სურექციაა, მაშინ f,g,h ბიექციებია.