Plan für Übungsstunde 7.

Lineare Unabhängigkeit, Basis, Dimension

Wichtige Definitionen

Definition 1. Lineare Unabhängigkeit: Eine endliche Menge $\{v_1, \ldots, v_n\} \subseteq V$ ist *linear unabhängig*, falls aus $a_1v_1 + \cdots + a_nv_n = 0$ für $a_1, \ldots, a_n \in K$ stets folgt, dass $a_1 = \cdots = a_n = 0$. Genauer: $\forall a_1, \ldots, a_n \in K : a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = \cdots = a_n = 0$ Gilt dies nicht, so heisst die Menge *liner abhängig*.

Definition 2. Erzeugnis (nur Wiederholung, da wir es für Basis brauchen): Gegeben sei eine nicht-leere Teilmenge $S \subseteq V$ eines K-Vektorraums V. Das Erzeugnis/der Span von S ist

$$Sp(S) = \{a_1v_1 + \dots + a_nv_n | n \in \mathbb{N}, a_i \in K, v_i \in S \ \forall \ 1 \le i \le n\}$$
$$= \{\text{alle Linearkombinationen von Vektoren aus } S\}$$

Definition 3. Basis: Eine Menge $S \subseteq V$ heisst eine Basis für V falls S linear unabhängig ist und $\operatorname{Sp}(S) = V$. Eine äquivalente Definition für die Basis: Eine Menge $S \subseteq V$ ist eine Basis von V genau dann, wenn jedes $v \in V$ in einer eindeutigen Weise als Linearkombination von Vektoren aus S geschrieben werden kann.

Definition 4. Erzeugendensystem: Eine Teilmenge $S \subseteq V$ mit $\operatorname{Sp}(S) = V$ ist ein *Erzeugendensystem* von V.

Aufgaben

1. Lineare Unabhängigkeit mit dem Gauss-Verfahren : Gegeben seien folgende Vektoren aus dem \mathbb{R}^3 :

$$u=(1,2,1)$$
, $v=(-2,1,3)$, $w=(4,3,-1)$

(a) Stelle den Vektor x = (-3, 4, 7) als Linearkombination von u, v und w dar.

Lösung:

Dies können wir mit dem Gauss-Verfahren lösen. Wir suchen α, β, γ so dass $x = \alpha u + \beta v + \gamma w$. Das ist nun ein lineares Gleichungssystem in den Unbekannten α, β, γ , das wir mit dem Gauss Verfahren lösen können:

$$\begin{pmatrix}
1 & -2 & 4 & | & -3 \\
2 & 1 & 3 & | & 4 \\
1 & 3 & -1 & | & 7
\end{pmatrix}
\xrightarrow{-2L_1 + L_2 \to L_2}
\begin{pmatrix}
1 & -2 & 4 & | & -3 \\
0 & 5 & -5 & | & 10 \\
1 & 3 & -1 & | & 7
\end{pmatrix}$$

$$\xrightarrow{-1L_1 + L_3 \to L_3}
\begin{pmatrix}
1 & -2 & 4 & | & -3 \\
0 & 5 & -5 & | & 10 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{5}L_2 \to L_2}
\begin{pmatrix}
1 & -2 & 4 & | & -3 \\
0 & 1 & -1 & | & 2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Wir können nun die Lösung ablesen: Aus L_2 entnehmen wir mit $\gamma := t$ dass $\beta = 2 + t$ und somit aus L_1 dass $\alpha = -3 - 4t + 2(2 + t) = 1 - 2t$. Also $(\alpha, \beta, \gamma) = (1 - 2t, 2 + t, t)$. Wir haben unendlich viele Möglichkeiten gefunden, x als Linearkombination von u,v,w zu schreiben.

(b) Sind u,v,w linear unabhängig?

Lösung:

Dazu müssen wir das homogene LGS

$$\left(\begin{array}{ccc|c}
1 & -2 & 4 & 0 \\
2 & 1 & 3 & 0 \\
1 & 3 & -1 & 0
\end{array}\right)$$

lösen.

$$\frac{-2L_1 + L_2 \to L_2}{\longrightarrow} \begin{pmatrix}
1 & -2 & 4 & 0 \\
0 & 5 & -5 & 0 \\
1 & 3 & -1 & 0
\end{pmatrix}$$

$$\frac{-1L_1 + L_3 \to L_3}{\longrightarrow} \begin{pmatrix}
1 & -2 & 4 & 0 \\
0 & 5 & -5 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{\frac{1}{5}L_2 \to L_2}{\longrightarrow} \begin{pmatrix}
1 & -2 & 4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Mit $\gamma := t$ erhalten wir auch $\beta = t$ und somit $\alpha = -4t + 2t = -2t$ und die Lösung des LGS ist also $(\alpha, \beta, \gamma) = (-2t, t, t)$. Insbesondere existieren also $(\alpha, \beta, \gamma) \in \mathbb{R} \setminus \{0\}$. Nach der Definition der linearen Unabhängigkeit folgt also, dass die Vektoren u,v,w linear

Proposition 1. Eine Menge $S \subseteq V$ ist eine Basis von V genau dann, wenn jedes $v \in V$ in einer

(c) Bilden $\{u, v, w\}$ eine Basis von \mathbb{R}^3 ?

Lösung:

abhängig sind.

Wir haben in a) gesehen, dass $x \in \mathbb{R}^3$ nicht <u>eindeutig</u> als Linearkombination geschrieben werden kann. Somit folgt mit der Proposition, dass $\{u, v, w\}$ keine Basis ist von \mathbb{R}^3 .

2. Sei V ein Vektorraum über einem Körper K. Zeigen oder widerlegen Sie die folgende Aussage. Seien $v_1, \ldots, v_n \in V$ linear unabhängig und sei $w \in V$. Falls $v_1 + w_1, \ldots, v_n + w$ linear abhängig sind, dann ist $w \in \operatorname{Sp}(v_1, \ldots, v_n)$.

eindeutigen Weise als Linearkombination von Vektoren aus S geschrieben werden kann.

Lösung:

Da $v_1 + w_1, \ldots, v_n + w$ linear abhängig sind, existieren $a_1, \ldots, a_n \in K$ (nicht alle 0) so dass

$$a_1(v_1 + w) + \dots + a_n(v_n + w) = 0.$$

Also

$$a_1v_1 + \cdots + a_nv_n + (a_1 + \cdots + a_n)w = 0$$

Ist nun $a_1 + \cdots + a_n = 0$, dann haben wir $a_1v_1 + \cdots + a_nv_n = 0$ woraus folgt dass $a_i = 0$, da v_1, \ldots, v_n linear unabhängig sind. Also gilt $a_1 + \cdots + a_n \neq 0$ und es folgt, dass

$$w = -\frac{1}{a_1 + \dots + a_n} (a_1 v_1 + \dots + a_n v_n) \in \operatorname{Sp}(v_1, \dots, v_n).$$

3. Seien folgende Vektoren aus dem \mathbb{R}^5 gegeben:

$$v_1 = (1, 2, 3, 4, 0), v_2 = (-1, 1, -2, -3, 3), v_3 = (1, -1, 2, 3, -3), v_4 = (2, 10, 14, 10, 10)$$

Wähle aus v_1, v_2, v_3, v_4 bzw. w_1, w_2, w_3, w_4 Vektoren aus, die eine Basis von $Sp(v_1, v_2, v_3, v_4)$ bilden.

Lösung:

Wir bemerken zuerst, dass $v_2 = -v_3$. Mit dem Gauss Verfahren kann man auch hier überprüfen, dass v_1, v_3, v_4 linear unabhängig sind. Da nun $\operatorname{Sp}(v_1, v_2, v_3, v_4) = \operatorname{Sp}(v_1, v_3, v_4)$ gilt, folgt mit der Definition einer Basis, dass v_1, v_3, v_4 eine Basis von $\operatorname{Sp}(v_1, v_2, v_3, v_4)$ sind.

4. Bestimmen Sie eine Basis und die Dimension des folgenden Vektorraums: Der lineare Untervektorraum des \mathbb{R}^5 , aufgespannt durch die Vektoren

$$(1,3,4,0,1),(2,5,6,-2,1),(1,5,8,4,3),$$

Lösung:

Durch Nachrechnen ergibt sich, dass die Vektoren $v_1 := (1, 3, 4, 0, 1)$ und $v_2 := (2, 5, 6, -2, 1)$ linear unabhängig sind und $v_3 := (1, 5, 8, 4, 3) = 5v_1 - 2v_2$ eine Linearkombination von v_1 und v_2 ist. Somit haben wir einen zweidimensionalen Vektorraum mit Basis (v_1, v_2) .

5. Sei K ein Körper. Zeigen oder widerlegen Sie die folgende Aussage: Es gibt eine Basis p_0, p_1, p_2, p_3 von

$$K[x]_3 = \{ p \in K[x] \mid \deg(p) \le 3 \},$$

sodass keines der Polynome p_0, p_1, p_2, p_3 Grad 2 hat.

Lösung:

(Siehe Buch LinAlgDoneRight 2B, 5. Lösungen siehe https://linearalgebras.com/)

1. Lösungsweg (mit der Aufgabe 6)

Es gilt, dass $\{1, x, x^2, x^3\}$ die Monombasis von $K[x]_3$ ist. Mit der Behauptung aus der vorherigen Aufgabe gilt somit auch, dass $\{1 + x^3, x + x^3, x^2 + x^3, x^3\}$ eine Basis von $K[x]_3$ ist. Jedoch hat keines dieser Polynome Grad 2.

2. Lösungsweg (Menny und ich bevorzugen diesen)

Wir behaupten, dass $\{1, x, x^2 + x^3, x^3\}$ eine Basis von $K[x]_3$ bilden.

Es gilt zunächst, dass $\{1, x, x^2 + x^3, x^3\}$ linear unabhängig ist, denn $a_1 + a_2x + a_3(x^2 + x^3) + a_4x^3 = 0$

```
falls a_1+a_2x+a_3x^2+(a_3+a_4)x^3=0 und da die Monombasis \{1,x,x^2,x^3\} linear unabhängig ist, ist auch somit a_1+a_2x+a_3x^2+(a_3+a_4)x^3=0 nur erfüllt, falls a_1=a_2=a_3=a_3+a_4=0. Nun behaupten wir, dass \mathrm{span}(1,x,x^2,x^3)=\mathrm{span}(1,x,x^2+x^3,x^3). \mathrm{span}(1,x,x^2+x^3,x^3)\subseteq \mathrm{span}(1,x,x^2+x^3,x^3)\subseteq \mathrm{span}(1,x,x^2+x^3,x^3) folgt aus: x^2=(x^2+x^3)-x^3 Somit ist \{1,x,x^2+x^3,x^3\} eine Basis von K[x]_3 und insbesondere hat keines dieser Polynome Grad 2.
```

Wiederholungs Kahoot: https://create.kahoot.it/share/ubungsstunde-7/7bc78a27-60e3-4a07-ae3f-0356d335bdfd

```
Ubung setunda /
(x) Palyrom in REXI
NST end in R
(xx) = (x+4) (x+3) (x+4x)
(x+6x) (x+6x)
(x+6x) (x+6
                                                                                      E-reagnis of the Telmange, SEV
The Freugnis of definier als Sp(S) (a.v. ... 10, M) (e.v. )

- falle linearisotherm on Yettorn aus SY
                                                                                      aus & darswon
Erseugendensysten
Eine Teimanga. Sc v mit
Sp(S)=V.
R2
                                                                          Sook 2 355

V REHOTRALITY ATE
(Jun VI) + T, AR SV105

For ear Elde V., "VARV

day langer is sed againstell
(1) V<sub>1</sub>, ..., is and are egand
(2) V<sub>1</sub>, ..., is and are egand
(3) V<sub>1</sub>, ..., is a cond are egand
(3) V<sub>2</sub>, ..., is a cond are egand
(4) V<sub>2</sub>, ..., is a cond are egand
(4) V<sub>2</sub>, ..., is a cond are egand
(5) V<sub>2</sub>, ..., is a cond are egand
(6) V<sub>2</sub>, ..., is a cond are egand
(6) V<sub>2</sub>, ..., is a cond are egand
(7) V<sub>2</sub>, ..., is a cond are egand
(8) V<sub>2</sub>, ..., is a cond

                                                                                                                                                    (1 -2 4 -3
2 1 3 -4 7
                                                                                                   \begin{pmatrix} 4 & 3 & 3 & 1 \\ -21 & 41 & -21 & 4 & -3 \\ 0 & 5 & -5 & -5 \\ 0 & 5 & -5 & -5 \\ 0 & 5 & -6 & -7 \\ 0 & 5 & -6 & -7 \\ 0 & 5 & -6 & -7 \\ 0 & 5 & -6 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 \\ 0 & 6 & -7 & -7 \\ 0 & 6 & -7 \\ 0 & 6 & -7 \\ 0 & 6 & -7 \\ 0 &
                                                             The second property of the second property o
                        \begin{array}{lll} & \text{Dig}_{A}^{A} + \alpha_{A}^{A} + \alpha_
```