11 Force Sensing Fitness Metrics

Table 1: Variable Definitions

Variable	Variable description			
max	maximum value of a set	-		
min	minimum value of a set	-		
$ ilde{\mathbf{F}}$	measured force vector	N		
\mathbf{F}_{r}	actual force vector (based on $F = mg$)	N		
t	measured time	S		
t_0	first time stamp of a measurement row	S		
$t_{ m x}$	timestamps for drift evaluation	\mathbf{S}		

Table 2: Metric Definitions

Metric	name	description	eq.	unit	best ¹
$A_{ m F}$	Force Sensing Accuracy	deviation between actual force and maximum values of 3 s measurement	$\max_{N} \left(\max_{t} \mid \ ar{\mathbf{F}} \ - \ \mathbf{F}_{\mathrm{r}} \ \mid ight)$	N	0.1
$P_{ m F}$	Force Sensing Precision	repeatability of the maximum values of 3 s measurements in 30 trials	$\mu_{\mathbf{l}} + 3\sigma_{\mathbf{l}},$ $l_{\mathbf{i}} = \max_{N} \ \bar{\mathbf{F}}\ - \frac{1}{N} \sum_{i=1}^{N} \max_{t} \ \bar{\mathbf{F}}\ $	N	0.01
$RS_{ m F}$	Force Sensing Resolution	measurement fluctuation within one measurement	$\max_N \left(\max_t \lVert \mathbf{\bar{F}} \rVert - \min_t \lVert \mathbf{\bar{F}} \rVert \right)$	N	0.01
SD_1	Sensing Drift	force sensing drift within 1 s after force is applied	$\mid \lVert ar{\mathbf{F}}(t_1) Vert - \lVert ar{\mathbf{F}}(t_0) Vert \mid$	N	0.001
SD_2	Sensing Drift 2	force sensing drift between 1 s -10 min	$\mid \ ar{\mathbf{F}}(t_2)\ - \ ar{\mathbf{F}}(t_1)\ \mid$	N	0.001
SD_3	Sensing Drift 3	force sensing drift between $10 \min$ - $90 \min$	$\mid \ ar{\mathbf{F}}(t_3)\ - \ ar{\mathbf{F}}(t_2)\ \mid$	N	0.001
SD_4	Sensing Drift 4	force sensing drift between $1.5\mathrm{h}$ - $8\mathrm{h}$	$\mid \ ar{\mathbf{F}}(t_4)\ - \ ar{\mathbf{F}}(t_3)\ \mid$	N	0.001

Figure 1: Reference system for measuring force sensing metrics with real world example.

Table 3: Setup definitions

component	considered quantity	value	accuracy requirements
reference weight	mass $m_{ m L}$ [kg]	0.8	± 0.005
hooked adaptor	mass $m_{ m H}$ [kg]	0.182	± 0.01
robot sensing interface	output frequency f [Hz] timestamp t [s]	300-1000	adequate to f

Figure 2: Measurement Procedure for $A_{\rm F}, P_{\rm F},$ and $RS_{\rm F}.$

Figure 3: Measurement Procedure for SD_{1-4} .