

MA4016 - Engineering Mathematics 6

Problem Sheet 11: Maximal Flow and Turing machines (April 23, 2010)

1. Find a maximal flow and a minimal cut in the following pumping network.

Find a maximal flow after changing the following labels: $(v_6, v_{11}) = 4$, $(v_4, v_7) = 8$.

2. We want to maximise the flow from v_0 to v_8 . The flow between two vertices, neither of which is v_0 or v_8 , can be in either direction. Model this as system as a network and find a maximal flow and a minimal cut.

- **3.** Five students, V, W, X, Y, and Z, are members of four committees, C_1 , C_2 , C_3 , and C_4 . The members of C_1 are V, X, and Y; the members of C_2 are X and Z; the members of C_3 are V, Y, and Z; and the members of C_4 are V, W, X, and Z. Each committee is to send a representative to the administration. No student can represent more than one committee.
 - Model this situation in a matching network and find a maximal matching. Is this a complete matching?
- **4.** Construct a Turing machine with tape symbols 0, 1, and B, when given a bit string as input, adds a 1 to the end of the bit string and does not change any of the other symbols on the tape.

- **5.** Construct a Turing machine with tape symbols 0, 1, and B, when given a bit string as input, replaces the first 0 with a 1 and does not change any of the other symbols on the tape.
- **6.** Construct a Turing machine that recognises the set of all bit strings that end with a 0.
- 7. Construct a Turing machine that computes the function f(n) = n + 2 for all nonnegative integers n.
- 8. Construct a Modulo-4 Machine, i.e. a *Turing* Machine which takes as tape input a string of symbols representing an integer and produces as tape output the string of symbols representing the remainder after division by 4 of the integer. Illustrate the operation of the Modulo-4 Machine on the input string representing the number *seven*.