Program Guided Agent

Shoa-Hua Sun et al. (2019)

Motivation

- Learning from scratch is inefficient
 - Using program as an instruction
- Hierarchical Approach
 - learning to deal with subtasks
- Multitask learning

learn generalizable knowledge from multiple tasks

Program

```
def run():
    if is_there[River]:
        mine(Wood)
        build_bridge()
        if agent[Iron]<3:
            mine(Iron)
        place(Iron, 1, 1)
    else:
        goto(4, 2)
    while env[Gold]>0:
        mine(Gold)
```


Similar Approaches

Expert demonstrations

Learning from video / expert trajectories

Natural language instructions

wide range of applications; but ambiguous

Hierarchical approaches

provide set of symbolically represented subtasks

-> not function of states

Utilize *program instructions*

- -> framework must...
 - Comprehend program well
 - Perceive and interact with Env well

Program guided agent

Modular architecture (instead of End-to-End model)

[Component Modules]

- 1_ program interpreter : Execute program (query perception module and instruct policy with subtasks)
- 2_ perception modules : deal with queries (e.g. is_there[River] / env[gold] > 0)
- 3_ policy (multi task policy) : solve subtasks (e.g. mine(Gold) / build_bridge() ..)

Program Interpreter

- A rule-based algorithm; <u>Not a model</u>
- Defined based on domain-specific language (DSL)

```
Program p \coloneqq \operatorname{def}\operatorname{run}():s

Statement s \coloneqq \operatorname{while}(c):(s) \mid b \mid \operatorname{loop}(i):(s) \mid \operatorname{if}(c):(s) \mid \operatorname{elseif}(c):(s) \mid \operatorname{else}:(s)

Item t \coloneqq \operatorname{Gold} \mid \operatorname{Wood} \mid \operatorname{Iron}

Terrain u \coloneqq \operatorname{Bridge} \mid \operatorname{River} \mid \operatorname{Merchant} \mid \operatorname{Wall} \mid \operatorname{Flat}

Operators o \coloneqq > \geq = = < \leq

Numbers i \coloneqq \operatorname{A}\operatorname{positive}\operatorname{integer}\operatorname{or}\operatorname{zero}

Perception h \coloneqq \operatorname{agent}[t] \mid \operatorname{env}[t] \mid \operatorname{is\_there}[t] \mid \operatorname{is\_there}[u]

Behavior b \coloneqq \operatorname{mine}(t) \mid \operatorname{goto}(i, i) \mid \operatorname{place}(t, i, i) \mid \operatorname{build\_bridge}() \mid \operatorname{sell}(t)

Conditions c \coloneqq h[t] \circ i \mid h[u] \circ i
```

<- perception / action primitives can be defined by user

- Composed of :
 - Subtasks, Perceptions, Control Flows

Perception Module

Receive query and state observation and predict response

 $h = \Phi(q, s)$; Φ is perception module, h is response

- Pretrained; Supervised-Learning methodWith cross-entropy loss
- Queries are fed after encoding program tokens

Policy Module

- Multitask policy
 - perform multiple subtasks by taking low-level actions (e.g. moveUp, moveLeft)
 - goal is instructed by interpreter, and **network take encoded goal as input** *i.e.* $a \sim \pi(s, g)$
- A2C (Advantage Actor-Critic) algorithm used with entropy term
- Modulation mechanism used in receiving goal
 Affine transforming state observation rather than concate nating

Experiments

- 1. Can *program guided agent* learn well?
- 2. **Effectiveness of modular** architecture (vs. end-to-end models)
- 3. Analysis on the performance of end-to-end models
- 4. Is *modulation mechanism* more efficient to learn multitasking?

[environment]

[end-to-end learning models]

- LSTM, Transformers, Tree-RNN with A2C
- Tree-RNN?

: Rnns for tree-structured inputs

: program -> tree structure

[training sets]

- 4500 programs sampled using DSL
 - Test (4000 programs), train (500 programs)
- + Test-complex
 - twice longer programs, more condition branches
 - check generalization to more complex tasks

■ Reward +1 when instruction achieved, otherwise 0 (instruction i.e. entire program or natural language instruction)

Results

- Can *program guided agent* learn well?
- *Effectiveness of modular* architecture (vs. end-to-end models)

Instruction Method		Natural language descriptions Seq-LSTM Transformer		Seq-LSTM	Tree-RNN	Programs Transformer	Ours (concat)	Ours
Dataset	test test-complex	54.9±1.8% 32.4±4.9%	52.5±2.6% 38.2±2.6%	56.7±1.9% 38.8±1.2%	50.1±1.2% 42.2±2.4%	49.4±1.6% 40.9±1.5%	88.6±0.8% 85.2±0.8%	94.0±0.5% 91.8±0.2%
Generalization gap		40.9%	27.2%	31.6%	15.8%	17.2%	3.8%	2.3%
(average task completion rate ± std.)								

- Program guided agent does learns to solve multiple tasks
- Program guided agent does generalize well compared to end-to-end models
 - Smaller performance drop in test-complex
- Transformer generalize better than LSTM
- Tree-RNN generalizes best among end-to-end models

Results

- Analysis on **end-to-end models**

Instruction Diversity: number of control flows

[Instruction length]

- Transformer performance is similar across task and complex-task
- Tree-RNN achieves best performance on programs

[Instruction diversity]

- Transformer more robust with diversity
 - -> Transformer learns semantics well
- Tree-RNN achieves best performance on programs

Results

- Modulation mechanism for learning multi-task policy

Instruction Method		Natural language descriptions Seq-LSTM Transformer Seq-LST		Seq-LSTM	Programs 1 Tree-RNN Transformer Ours (concat)			Ours
Dataset	test test-complex	54.9±1.8% 32.4±4.9%	52.5±2.6% 38.2±2.6%	56.7±1.9% 38.8±1.2%	50.1±1.2% 42.2±2.4%	49.4±1.6% 40.9±1.5%	88.6±0.8% 85.2±0.8%	94.0±0.5% 91.8±0.2%
Generalization gap		40.9%	27.2%	31.6%	15.8%	17.2%	3.8%	2.3%

- Modulation mechanism is more sample efficient
- Using Modulation mechanism help achieving better performance in learning multitask policy

Conclusion

- Modular framework *Program guided agent* learn program based instructions well
- Modulation mechanism is efficient; sample efficiency, task completion
- Can generalize to more complex tasks without additional learning
 - : Zero shot learning !