Quadratische Funktionen

D-Klasse Thema I

Wiederholung Lineare Funktionen

Quadratische Funktion

$$f(x) = x^2$$

• Erstelle eine Wertetabelle zu der Funktion $f(x) = x^2$ für die Werte x = -3 bis x = 3.

x	-3	-2	-1	0	1	2	3
$f(x) = x^2$							

- Zeichne den Graphen in ein Koordinatensystem. (1 Einheit = 1cm)
- Was fällt dir auf?

Die Normalparabel

Die einfachste quadratische Funktion hat die Gleichung $f(x) = x^2$. Ihr Graph heißt **Normalparabel**. Die Normalparabel ist nach oben geöffnet. Ihr tiefster Punkt (0|0) wird **Scheitelpunkt** genannt. Die y-Achse ist **Symmetrieachse**. Im Gegensatz zu Geraden nehmen die Werte der Parabel nicht gleichmäßig zu.

Gruppenaufgabe

Erstelle eine Wertetabelle zu folgenden Funktionen und zeichne sie in das Koordinatensystem der Normalparabel.

Gruppe A: $f(x) = 2x^2$

Gruppe B: $f(x) = 0.5x^2$

Gruppe C: $f(x) = -2x^2$

Gruppe D: $f(x) = -0.5x^2$

Der Öffnungsfaktor a

Ist die **Parabel** schmaler als eine Normalparabel, so bezeichnet man sie als **gestreckt**.

Verläuft die **Parabel** jedoch flacher als eine Normalparabel, bzw. ist sie weiter oder breiter als eine Normalparabel

Übung "Öffnungsfaktor a"

Faktor	Beispiel	Öffnung	Form der Parabel
a > 1	$f(x) = 3 x^2$		
a = 1			
0 < a < 1			
-1 < a < 0			
a = -1			
a = -1 a < -1			

a) Schätze jeweils den Wert des Faktors a.

Welche Parabeln sind gestreckt, welche gestaucht?

Tipp: Gibt es eine Normalparabel?

Es ist die Parabel $f(x) = 0.009 \cdot x^2$ gegeben.

• Beschreibe den Verlauf der Parabel.

•	x	-80	-70	-60	-50	-40	-30	-20	-10	0	
	f(x)										

Welche der folgenden Punkte liegen auf der Parabel?
 Berechne im Heft.

P1 (25 | 5,625)

P2 (25 I 5)

P3 (18 I 2,83)

P4 (18 I 2,916)

P3 (-6 I 0,324)

P3 (-6 I 0,432)

Es ist die Parabel $f(x) = 0,009 \cdot x^2$ gegeben.

• Beschreibe den Verlauf der Parabel.

•	x	-80	-70	-60	-50	-40	-30	-20	-10	0	
	f(x)										

• Berechne die x-Werte im Heft.

Eine typische Brückenaufgabe

Bei einer Spannweite w = 100 m sollen die Hauptkabel einer Brücke in 25 m Höhe an dem Pylonen befestigt werden.

- a) Ein Architekt plant eine
 Hängebrücke nach der
 Funktionsvorschrift f(x) = 0,01 x².
 Passt das?
- b) Kann man das Hauptkabel noch anfassen, wenn man 18 m neben dem Scheitelpunkt am Punkt C steht?

Wie lautet die Funktionsgleichung der quadratischen Funktion?

a berechnen, wenn Punkt gegeben ist

Vom Graphen zur Funktionsgleichung

Wenn man zu einer Parabel die Funktionsgleichung bestimmen möchte, kann man folgendermaßen vorgehen.

- 1. Wähle einen gut ablesbaren Punkt auf dem Graphen.
- 2. Setze den x-Wert und den y-Wert des Punktes in die Funktionsgleichung ein.
- 3. Löse die Gleichung nach a auf.
- 4. Formuliere die Funktionsgleichung.

Beispiel

- 1. P(4|2) liegt auf dem Graphen.
- 2. P(4|2) in $f(x) = ax^2$ einsetzen $2 = a \cdot 4^2$
- 3. Nach a umformen $a = \frac{1}{8}$
- 4. Funktionsgleichung formulieren

$$f(x) = \frac{1}{8}x^2$$

9er AH Seite 38

Vom Graphen zur Funktionsgleichung

- 1 Bestimme zu der Parabel die Funktionsgleichung.
- 1. Schritt:

Schreibe zu einem gut ablesbaren Punkt

die Koordinaten auf. P()

2. Schritt: Setze die Werte des Punktes in die Funktionsgleichung $f(x) = a x^2$ ein.

= a· 2

3. Schritt: Löse die Gleichung nach a auf.

.....

4. Schritt: Formuliere die Funktionsgleichung.

.....

9er AH Seite 38

2 a)	e des folgenden Parabelpunktes. b) B(3 6,75)

9er AH Seite 38

3 a) Gib zu dem Parabelbogen der Hängebrücke eine	passende Funktionsgleichung an.
Koordinaten von Punkt A oder B ()	Skizze:
	Höhe h = 40 m
	11111111111111111111111111111111111111
	Spannweite w = 80 m
h) Wann du dia Cräffa yan a in dar Funktionserlaishung	vordennelet wie heeb lägen dann die Dunkte A und D'
b) Wenn du die Größe von a in der Funktionsgleichung	verdoppeist, wie noch lagen dann die Punkte A und B: