Section 2.2 – Trigonometric Functions

Let (x, y) be a point on the terminal side of an angle θ in standard position

The distance from the point to the origin is given by: $r = \sqrt{x^2 + y^2}$

Six Trigonometry Functions

$$\sin \theta = \frac{Opposite}{Hypotenuse} = \frac{opp}{hyp} = \frac{y}{r} = \frac{a}{c} = \cos B$$
 $\csc \theta = \frac{hyp}{opp} = \frac{1}{\sin \theta} = \frac{r}{y} = \frac{c}{a} = \sec B$

$$\cos \theta = \frac{Adjacent}{Hypotenuse} = \frac{adj}{hyp} = \frac{x}{r} = \frac{b}{c} = \sin B$$
 $\sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta} = \frac{r}{x} = \frac{c}{b} = \csc B$

$$\tan \theta = \frac{opp}{adi} = \frac{\sin \theta}{\cos \theta} = \frac{y}{x} = \frac{a}{b} = \cot B$$

$$\csc\theta = \frac{hyp}{opp} = \frac{1}{\sin\theta} = \frac{r}{v} = \frac{c}{a} = \sec B$$

$$\sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta} = \frac{r}{x} = \frac{c}{b} = \csc B$$

$$\cot \theta = \frac{adj}{opp} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} = \frac{x}{y} = \frac{b}{a} = \tan B$$

Example

Find the six trigonometry functions of θ if θ is in the standard position and the point (8, 15) is on the terminal side of θ .

$$\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8^2 + 15^2} = 17$$

$$\sin \theta = \frac{y}{r} = \frac{15}{17} \qquad \cos \theta = \frac{x}{r} = \frac{8}{17} \qquad \tan \theta = \frac{y}{x} = \frac{15}{8}$$

$$\csc \theta = \frac{r}{y} = \frac{17}{15} \qquad \sec \theta = \frac{r}{x} = \frac{17}{8} \qquad \cot \theta = \frac{x}{y} = \frac{8}{15}$$

Example

Which will be greater, $\tan 30^{\circ}$ or $\tan 40^{\circ}$? How large could $\tan \theta$ be?

Solution

$$\tan 30^\circ = \frac{y_1}{x}$$

$$\tan 40^\circ = \frac{y_2}{x}$$

Ratio:
$$\frac{y_2}{x} > \frac{y_1}{x}$$

$$\rightarrow \tan 40^{\circ} > \tan 30^{\circ}$$

No limit as to how large $\tan \theta$ can be.

Example

If $\cos \theta = \frac{\sqrt{3}}{2}$, and θ is \mathbf{Q} IV, find $\sin \theta$ and $\tan \theta$.

Solution

$$\cos\theta = \frac{\sqrt{3}}{2} = \frac{x}{r} \quad \to x = \sqrt{3}, \quad r = 2$$

$$y = \sqrt{r^2 - x^2}$$

$$y = \sqrt{2^2 - \left(\sqrt{3}\right)^2} = \sqrt{4 - 3} = 1$$

Since θ is Q IV $\Rightarrow y = -1$

$$\sin\theta = \frac{y}{r} = -\frac{1}{2}$$

$$\tan \theta = \frac{y}{x} = \frac{-1}{\sqrt{3}}$$

$$= -\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$$

$$=-\frac{\sqrt{3}}{3}$$

Reciprocal Identities

$$csc \theta = \frac{1}{\sin \theta}$$
 $sin \theta = \frac{1}{\csc \theta}$
 $cot \theta = \frac{1}{\tan \theta}$

$$sec \theta = \frac{1}{\cos \theta}$$
 $cos \theta = \frac{1}{\sec \theta}$
 $tan \theta = \frac{1}{\cot \theta}$

Ratio Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$x^{2} + y^{2} = r^{2}$$

$$\frac{x^{2}}{r^{2}} + \frac{y^{2}}{r^{2}} = 1$$

$$\left(\frac{x}{r}\right)^{2} + \left(\frac{y}{r}\right)^{2} = 1$$

$$(\cos\theta)^{2} + (\sin\theta)^{2} = 1 \implies \cos^{2}\theta + \sin^{2}\theta = 1$$

Solving for $\cos \theta$

$$\cos^{2}\theta + \sin^{2}\theta = 1$$
$$\cos^{2}\theta = 1 - \sin^{2}\theta$$
$$\cos\theta = \pm\sqrt{1 - \sin^{2}\theta}$$

Solving for $\sin \theta$

$$\sin^2 \theta = 1 - \cos^2 \theta \implies \sin \theta = \pm \sqrt{1 - \cos^2 \theta}$$

$$\cos^{2}\theta + \sin^{2}\theta = 1$$

$$\frac{\cos^{2}\theta + \sin^{2}\theta}{\cos^{2}\theta} = \frac{1}{\cos^{2}\theta}$$

$$\frac{\cos^{2}\theta}{\cos^{2}\theta} + \frac{\sin^{2}\theta}{\cos^{2}\theta} = \frac{1}{\cos^{2}\theta}$$

$$\left(\frac{\cos\theta}{\cos\theta}\right)^{2} + \left(\frac{\sin\theta}{\cos\theta}\right)^{2} = \left(\frac{1}{\cos\theta}\right)^{2}$$

$$1 + \tan^{2}\theta = \sec^{2}\theta$$

$$\cos^{2}\theta + \sin^{2}\theta = 1$$

$$\cos\theta = \pm\sqrt{1 - \sin^{2}\theta}$$

$$\sin\theta = \pm\sqrt{1 - \cos^{2}\theta}$$

$$1 + \tan^{2}\theta = \sec^{2}\theta$$

$$1 + \cot^{2}\theta = \csc^{2}\theta$$

Example

Write $tan\theta$ in terms of $sin\theta$.

Solution

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\pm \sqrt{1 - \sin^2 \theta}}$$

$$= \pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$$

Example

If $\cos \theta = \frac{1}{2}$ and θ terminated in QIV, find the remaining trigonometric ratios for θ .

Solution

$$\sin \theta = -\sqrt{1 - \cos^2 \theta}$$

$$= -\sqrt{1 - \left(\frac{1}{2}\right)^2}$$

$$= -\sqrt{1 - \frac{1}{4}}$$

$$= -\sqrt{\frac{3}{4}}$$

$$= -\frac{\sqrt{3}}{2}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{1/2} = 2$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\sqrt{3}/2} = -\frac{2}{\sqrt{3}}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\sqrt{3}/2}{1/2} = -\sqrt{3}$$

$$\cot \theta = -\frac{1}{\sqrt{3}}$$

Example

Simplify the expression $\sqrt{x^2+9}$ as much as possible after substituting $3\tan\theta$ for x

$$x = 3\tan\theta$$

$$\sqrt{x^2 + 9} = \sqrt{(3\tan\theta)^2 + 9}$$

$$= \sqrt{9\tan^2\theta + 9}$$

$$= \sqrt{9\left(\tan^2\theta + 1\right)}$$

$$= 3\sqrt{\sec^2\theta}$$

$$= 3\sec\theta$$

Example

Triangle ABC is a right triangle with $C = 90^{\circ}$. If a = 6 and c = 10, find the six trigonometric functions of A.

Solution

$$b = \sqrt{c^2 - a^2} = \sqrt{10^2 - 6^2} = 8$$

$$6,10 \rightarrow 2(3 \quad 5) \rightarrow 2(4)$$

$\sin A = \frac{a}{c} = \frac{6}{10} = \frac{3}{5}$	$\cos A = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$	$\tan A = \frac{a}{b} = \frac{6}{8} = \frac{3}{4}$
$\csc A = \frac{c}{a} = \frac{10}{6} = \frac{5}{3}$	$\sec A = \frac{c}{b} = \frac{10}{8} = \frac{5}{4}$	$\tan 71^{\circ} \cot A = \frac{b}{a} = \frac{8}{6} = \frac{4}{3}$

$$if A + B = 90^{\circ} \Rightarrow \begin{cases} \sin A = \cos B \\ \sec A = \csc B \\ \tan A = \cot B \end{cases}$$

Cofunction Theorem

A trigonometric function of an angle is always equal to the cofunction of the complement of the angle.

Example

Write each function in terms of its cofunction

a) $\cos 52^{\circ}$

Solution

$$\cos 52^\circ = \sin \left(90^\circ - 52^\circ\right) = \sin 38^\circ$$

b) tan 71°

Solution

$$\tan 71^{\circ} = \cot (90^{\circ} - 71^{\circ}) = \cot 19^{\circ}$$

c) sec 24°

$$\sec 24^{\circ} = \csc (90^{\circ} - 24^{\circ}) = \csc 66^{\circ}$$

30° - 60° - 90° *Triangle*

$$t^{2} + h^{2} = (2t)^{2}$$

$$t^{2} + h^{2} = 4t^{2}$$

$$h^{2} = 4t^{2} - t^{2}$$

$$h^{2} = 3t^{2}$$

$$h = t\sqrt{3}$$

$$\Rightarrow \sin 60^\circ = \frac{\sqrt{3}}{2}$$

45° - 45° - 90° *Triangle*

$$hypotenuse^{2} = t^{2} + t^{2}$$
$$hypotenuse = \sqrt{2t^{2}}$$
$$hypotenuse = t\sqrt{2}$$

$$\Rightarrow \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Reference Angle

Definition

The reference angle or related angle for any angle θ in standard position ifs the positive acute angle between the terminal side of θ and the x-axis, and it is denoted $\hat{\theta}$

Example

Find the exact value of sin 240°

$$\hat{\theta} = 240^{\circ} - 180^{\circ} = 60^{\circ} \rightarrow 240^{\circ} \in QIII$$

$$\sin 240^{\circ} = -\sin 60^{\circ}$$

$$= -\frac{\sqrt{3}}{2}$$

Approximation - Simply using calculator

$$\sin 250^{\circ} \approx -0.9397$$

 $\cos 250^{\circ} \approx -0.3420$
 $\tan 250^{\circ} \approx 2.7475$
 $\csc 250^{\circ} = \frac{1}{\sin 250^{\circ}} \approx -1.0642$

To find the angle by using the inverse trigonometry functions, always enter a positive value.

Example

Find θ if $\sin \theta = -0.5592$ and θ terminates in QIII with $0^{\circ} \le \theta < 360^{\circ}$.

Solution

$$\hat{\theta} = \sin^{-1} 0.5592 \approx 34^{\circ}$$

$$\theta \in QIII$$

$$\Rightarrow |\underline{\theta} = 180^{\circ} + 34^{\circ} = 214^{\circ}$$

Example

Find θ to the nearest degree if $\cot \theta = -1.6003$ and θ terminates in QII with $0^{\circ} \le \theta < 360^{\circ}$.

$$\cot \theta = -1.6003 = \frac{1}{\tan \theta}$$

$$\tan \theta = \frac{1}{-1.6003}$$

$$\hat{\theta} = \tan^{-1} \frac{1}{1.6003} = 32^{\circ}$$

$$\theta \in \text{QII} \qquad \Rightarrow \theta = 180^{\circ} - 32^{\circ} = 148^{\circ}$$

Exercise

Section 2.2 – Trigonometric Functions

Find the six trigonometry functions of θ if θ is in the standard position and the given point is on the terminal side of θ .

5.
$$(5, -12)$$

2.
$$(-3, -4)$$

6.
$$(9, -12)$$

$$(-3, -4)$$
 6. $(9, -12)$ **10.** $(-15, 8)$ **14.** $(-7, -24)$ **7.** $(16, -12)$ **11.** $(-7, 24)$ **15.** $(-24, -7)$

8.
$$(15, -8)$$

12.
$$(10, -24)$$

- Find the values of the six trigonometric functions for an angle of 90°. **17.**
- Indicate the two quadrants θ could terminate in if $\cos \theta = \frac{1}{2}$ 18.
- Indicate the two quadrants θ could terminate in if $\csc \theta = -2.45$ 19.

Find the remaining trigonometric function of θ if

20.
$$\sin \theta = \frac{12}{13}$$
 and θ terminates in QI.

21.
$$\cot \theta = -2$$
 and θ terminates in QII.

22.
$$\tan \theta = \frac{3}{4}$$
 and θ terminates in QIII.

23.
$$\cos \theta = \frac{24}{25}$$
 and θ terminates in QIV.

24.
$$\cos \theta = \frac{\sqrt{3}}{2}$$
 and θ is terminates in QIV.

25.
$$\tan \theta = -\frac{1}{2}$$
 and $\cos \theta > 0$

26.
$$\cos \theta = \frac{3}{5}$$
 & $\theta \in QI$

$$27. \quad \cos\theta = -\frac{4}{5} \quad \& \quad \theta \in QII$$

28.
$$\sin \theta = -\frac{3}{5}$$
 & $\theta \in QIII$

29.
$$\sin \theta = -\frac{3}{5}$$
 & $\theta \in QIV$

30.
$$\cos \theta = -\frac{12}{13}$$
 & $\theta \in QIII$

31.
$$\cos \theta = -\frac{5}{13}$$
 & $\theta \in QII$

$$32. \quad \cos\theta = \frac{12}{13} \quad \& \quad \theta \in QIV$$

33.
$$\sin \theta = -\frac{8}{17} \quad \& \quad \theta \in QIII$$

34.
$$\cos \theta = -\frac{15}{17}$$
 & $\theta \in QII$

35.
$$\cos \theta = -\frac{8}{17}$$
 & $\theta \in QII$

36.
$$\cos \theta = -\frac{7}{25}$$
 & $\theta \in QII$

37.
$$\sin \theta = -\frac{7}{25}$$
 & $\theta \in QIII$

38.
$$\sin \theta = -\frac{24}{25} \quad \& \quad \theta \in QIV$$

- **39.** If $\sin \theta = -\frac{5}{13}$, and θ is QIII, find $\cos \theta$ and $\tan \theta$.
- If $\cos \theta = \frac{3}{5}$, and θ is QIV, find $\sin \theta$ and $\tan \theta$.
- Use the reciprocal identities if $\cos \theta = \frac{\sqrt{3}}{2}$ find $\sec \theta$
- **42.** Find $\cos \theta$, given that $\sec \theta = \frac{5}{3}$

- **43.** Find $\sin \theta$, given that $\csc \theta = -\frac{\sqrt{12}}{2}$
- **44.** Use a ratio identity to find $\tan \theta$ if $\sin \theta = \frac{3}{5}$ and $\cos \theta = -\frac{4}{5}$
- **45.** If $\cos \theta = -\frac{1}{2}$ and θ terminates in QII, find $\sin \theta$
- **46.** If $\sin \theta = \frac{3}{5}$ and θ terminated in QII, find $\cos \theta$ and $\tan \theta$.
- **47.** Find $\tan \theta$ if $\sin \theta = \frac{1}{3}$ and θ terminates in QI
- **48.** Find the remaining trigonometric ratios of θ , if $\sec \theta = -3$ and $\theta \in QIII$
- **49.** Using the calculator and rounding your answer to the nearest hundredth, find the remaining trigonometric ratios of θ if $\csc \theta = -2.45$ and $\theta \in QIII$
- **50.** Write $\frac{\sec \theta}{\csc \theta}$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.
- **51.** Write $\cot \theta \csc \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.
- **52.** Write $\frac{\sin \theta}{\cos \theta} + \frac{1}{\sin \theta}$ in terms of $\sin \theta$ and/or $\cos \theta$, and then simplify if possible.
- 53. Write $\sin\theta\cot\theta + \cos\theta$ in terms of $\sin\theta$ and $\cos\theta$, and then simplify if possible.
- **54.** Multiply $(1-\cos\theta)(1+\cos\theta)$
- **55.** Multiply $(\sin \theta + 2)(\sin \theta 5)$
- **56.** Simplify the expression $\sqrt{25-x^2}$ as much as possible after substituting $5\sin\theta$ for x.
- **57.** Simplify the expression $\sqrt{4x^2 + 16}$ as much as possible after substituting $2 \tan \theta$ for x

Simplify by using the table

58.
$$5\sin^2 30^\circ$$

59.
$$\sin^2 60^\circ + \cos^2 60^\circ$$

60.
$$(\tan 45^\circ + \tan 60^\circ)^2$$

- **61.** Find θ if $\sin \theta = -\frac{1}{2}$ and θ terminates in QIII with $0^{\circ} \le \theta \le 360^{\circ}$.
- **62.** Find θ to the nearest degree if $\sec \theta = 3.8637$ and θ terminates in **Q**IV with $0^{\circ} \le \theta < 360^{\circ}$.

Find the exact value of

Use the calculator to find the value of

- 71. Use the calculator to find θ to the nearest degree if $\sin \theta = -0.3090$ with $\theta \in \mathbf{Q}IV$ with $0^{\circ} \le \theta < 360^{\circ}$
- 72. Use the calculator to find θ to the nearest degree if $\cos \theta = -0.7660$ with $\theta \in \mathbf{Q}$ III with $0^{\circ} \le \theta < 360^{\circ}$

- 73. Use the calculator to find θ to the nearest degree if $\sec \theta = -3.4159$ with $\theta \in \mathbf{Q}II$ with $0^{\circ} \le \theta < 360^{\circ}$
- **74.** Find θ to the nearest tenth of a degree if $\tan \theta = -0.8541$ and θ terminates in **Q**IV with $0^{\circ} \le \theta < 360^{\circ}$
- **75.** Use the calculator to find θ to the nearest degree if $\sin \theta = 0.49368329$ with $\theta \in \mathbf{Q}II$ with $0^{\circ} \le \theta < 360^{\circ}$