

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10308149 A

(43) Date of publication of application: 17.11.98

(51) Int. CI

H01H 36/00

B60J 5/00

G01B 7/00

G01V 3/08

G08B 13/26

// B60R 25/10

(21) Application number: 09116880

(71) Applicant:

HONDA LOCK MFG CO LTD

(22) Date of filing: 07.05.97

(72) Inventor:

MATSUSHITA MUNEMASA

(54) HUMAN BODY APPROACH DETECTION SENSOR FOR AUTOMOBILE

(57) Abstract:

PROBLEM TO BE SOLVED. To reduce the cost of a human body approach discrimination circuit for an automobile.

SOLUTION: An outer handle 2 of a door handle is formed hollow, and a parallel cable 5 as a non-contact sensor is extended on its hollow part in the longitudinal direction of a holding part. A wire 5b grounded through. a resistor R1 is respectively connected to comparators CP1, CP2 of a nearby approach detection circuit 3a and a direct neighborhood detection circuit 3b provided in parallel to each other through a capacitor C1. The threshold capable of detecting the sensor output level when a user is located nearby, is set by a variable resistor VR1 of the comparator CP1, while the threshold when a user is located in the direct neighborhood thereto (when the outer handle is held) is set by a variable resistor VR2 of the comparator CP2. Two conditions of the nearby approach and the direct neighborhood of a human body can be discriminated only by one sensor, and the number of parts is reduced, and

the cost of the whole device can be reduced.

COPYRIGHT: (C)1998, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-308149

(43)公開日 平成10年(1998)11月17日

(51) Int.Cl. ⁶		識別記号	F I	
H01H	36/00	•	H01H 36/00 D	
B60J	5/00		B 6 0 J 5/00 N	
G 0 1 B	7/00		G 0 1 B 7/00 K	
G 0 1 V	3/08		G 0 1 V 3/08 D	
G08B	13/26		G 0 8 B 13/26	
			審査請求 未請求 請求項の数1 OL (全4頁) 最終頁に続く	.

(21)出願番号

特願平9-116880

(22)出顧日

平成9年(1997)5月7日

(71)出願人 000155067

株式会社ホンダロック

宮崎県宮崎郡佐土原町大字下那珂字和田山

3700番地

(72)発明者 松下 宗正

宫崎県宮崎郡佐土原町大字下那珂字和田山

3700番地 株式会社ホンダロック内

(74)代理人 弁理士 大島 陽一

(54) 【発明の名称】 自動車用人体接近検出センサ

(57)【要約】

【課題】 自動車用人体接近検出センサを低廉化する。

【解決手段】 ドアハンドルのアウタハンドル2を中空形状に形成し、その中空部分に非接触センサとしての平行ケーブル5を把持部の長手方向に沿って延在させて設ける。その抵抗R1を介して接地した線5bをコンデンサC1を介して、互いに並列に設けられた近傍検出回路3a及び直近検出回路3bの各比較器CP1・CP2にそれぞれ接続する。ユーザが近傍に位置する時のセンサ出力レベルを検出可能なしきい値を比較器CP1の調整抵抗VR1により設定し、直近に位置した(アウタハンドルを把持した)時のしきい値を比較器CP2の調整抵抗VR2により設定する。

【効果】 1つのセンサのみで、人体の近傍と直近との 2状態を弁別することができるため、部品点数が減り、 装置全体を低廉化し得る。

【特許請求の範囲】

【請求項1】 自動車に近付く人体を非接触で検出するセンサを用いた人体接近弁別用センサであって、

前記センサが、ドアハンドルの中空形状に形成した把持 部内に長手方向に延在するように受容された平行ケーブ ルからなり、前記把持部に対する前記人体の距離の違い に応じて変化する前記平行ケーブルの静電容量の変化に より前記人体の接近を検出することを特徴とする自動車 用人体接近検出センサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車に近付く人 体を検出するための自動車用人体接近検出センサに関す るものである。

[0002]

【従来の技術】従来、自動車のセキュリティーシステムとして、ユーザが携帯するキー装置と車両側との間のユーザ認識コードの送受信により、ユーザの認識を行うシステムが知られており、このユーザ認識処理を実行させるトリガ手段として近接センサを設けたものがある。

【0003】上記システムにより、例えば、ユーザが近付いてきたことを近接センサで検出したらユーザ認識コードの送受信による確認を行い、正規ユーザであると確認したら、ドアロックを解錠させることにより、ドア開扉の際の操作性を向上することができる。

【0004】ところで、この種のセンサとして用いられる近接センサとしては、焦電形赤外線式センサによるものや、赤外線反射式センサによるものや、超音波反射式センサによるものなどがあり、また接触センサとしては、薄型のメカ式スイッチによるものや、圧電素子による圧力検出によるものなどがある。

[0005]

【発明が解決しようとする課題】しかしながら、センサの取り付けスペースを必要とするためスペース効率が悪く、また上記したように圧電素子や超音波素子などを用いたセンサが高価であるなど問題や、センサ構造が複雑化するという問題がある。

[0006]

【課題を解決するための手段】このような課題を解決して、自動車用人体接近検出センサの低廉化を実現するために、本発明に於いては、自動車に近付く人体を非接触で検出するセンサを用いた人体接近弁別用センサであって、前記センサが、ドアハンドルの中空形状に形成した把持部内に長手方向に延在するように受容された平行ケーブルからなり、前記把持部に対する前記人体の距離の違いに応じて変化する前記平行ケーブルの静電容量の変化により前記人体の接近を検出するものとした。

【0007】このように、人体との距離の違いを非接触 にて検出するためのセンサとして平行ケーブルを用い、 その平行ケーブルをドアハンドルの中空形状に形成した 把持部内に受容することにより、ユーザがドアを開けようとしてドアハンドルに近付いたことを検出する近接センサとしての機能を平行ケーブルの静電容量の変化により発揮可能である。

[8000]

【発明の実施の形態】以下に添付の図面に示された具体 例に基づいて本発明の実施の形態について詳細に説明する。

【0009】図1は、本発明が適用された自動車用ドアハンドルを破断して示す図である。図において、図示されないドアにドアハンドルのベース1がねじ止めされており、そのベース1にアウタハンドル2の長手方向一端部が枢支されて、それによりドアに対して傾動して出没するようにアウタハンドル2が設けられている。

【0010】上記ベース1の取り付け状態におけるドア内面側には、本装置の制御の要部を行うための回路基板3が、ベース1にビス止めされたケース4内にウレタン樹脂で保護されるようにして設けられている。なお、図示例ではケース4を、ベース1とは別個に形成したが、ベース1と一体に形成しても良い。

【0011】アウタハンドル2は、例えばガスインジェ クション成形にて図に示されるように中空形状に形成さ れており、その中空部分には非接触センサとしての静電 容量形センサを構成する平行ケーブル5がアウタハンド ル2の把持部の長手方向に沿って延在するように受容さ れている。その平行ケーブル5の一端(基端)部が、ア ウタハンドル2の枢支部の近傍に設けられた開口を介し て外部に延出するように設けられたシールド線6と連結 されている。そのシールド線6の他端は回路基板3に接 続されている。なお、上記開口にはガスインジェクショ ン成型時のガス流入口を利用すると良く、配線を極めて 好適に処理し得る。また、その開口部には、アウタハン ドル2内に対する防水のためのシール部材7が取り付け られているが、そのシール部材7には、Oリングを用い たり、または接着剤により封止する構造にしても良い。 【0012】回路基板3には外部接続ケーブル8が接続 されており、その外部接続ケーブル8の延出端に取り付 けられたカプラ9が外部制御ユニット10に結合されて いる。外部制御ユニット10には送受信アンテナ11が 接続されており、ユーザ所有のキー装置12に内蔵され た送受信装置との間でユーザ認識信号の授受が行われる ようになっている。なお、外部制御ユニット10にユー ザ認識データを予め記憶しておき、その記憶データとキ ー装置12からの信号データとが一致したら、正規のユ ーザであると認識し、後の処理を行う。

【0013】次に、本発明に基づく人体接近弁別回路を図2の概略図を参照して以下に示す。図2に示されるように、車載バッテリBTから電源回路VCを介して本装置の回路基板3に電源電圧が供給されるようになっており、その電源ラインに、前記平行ケーブル5の一方の線

5 aが接続されている。平行ケーブル5の他方の線5 b は回路基板3に設けられた抵抗R1を介して接地されており、上記他方の線5 b と抵抗R1とのノードが、コンデンサC1を介して、互いに並列に設けられた近傍検出回路3 a 及び直近検出回路3 b の各比較器CP1・CP2にそれぞれ接続されている。

【0014】上記したように接続された平行ケーブル5の両線5a・5b間には人体の接近に応じて静電容量の変化が起こり、その変化を接地側の線5bに生じる電圧変化を各比較器CP1・CP2にて検出する。人(手)が近付いて近傍に位置した状態と、アウタハンドル2に触れたり把持した場合における直近に位置した状態との各状態において各比較器CP1・CP2への入力段における電圧レベルが異なるため、各状態における電圧レベルを弁別して検出するべく、第1及び第2の各しきい値としての各比較器CP1・CP2の各検出レベルを、それぞれのしきい値調整抵抗VR1・VR2により調整しておく。したがって、各しきい値を、車種毎のアウタハンドルの形状違いに応じて、車種別に設定変更できるため、異なる車種に容易に対応可能である。

【0015】なお、近傍検出用のしきい値としては、ユーザ所有のキー装置12との間で認識データの信号の送受信が可能な範囲内に人が入ったことを検出する程度であって良い。また、直近検出用のしきい値としては、アウタハンドル2を手で把持した状態を検出するようにすると良い。

【0016】そして、各比較器CP1・CP2にて上記各状態が検出されたら、各比較器CP1・CP2から信号がそれぞれ対応する各波形整形回路WC1・WC2に出力され、さらに対応して設けられた各増幅器AP1・AP2により増幅された信号が、近傍判定出力端子Nと直近判定出力端子Tとからそれぞれ出力される。

【0017】例えば本図示例の自動車の場合には、人が近付いてきたことを検出したら、近傍判定出力端子Nから近傍検出信号が出力され、その近傍検出信号に応じて外部制御ユニット10により、キー装置12に向けてリクエスト信号が発せられ、それに応答してキー装置12より発せられるユーザ認識信号を判別し、正規ユーザと認識すると、図示されない車両のルームランプを点灯させて、近付いてきた人に、本装置による制御が可能な状態になったことを知らせる。これにより、不法にアクセス使用する人間に対しては警告を発することができる。【0018】次に、開扉のためにアウタハンドル2が握られたことを検出したら、直近判定出力端子Tから直近検出信号が出力され、ドアロックを解除する制御を行

【0019】このようにして、人が車両に近付いてきたことの検出と、アウタハンドル2に触れたことの検出とを1つのセンサ(平行ケーブル5による静電容量形センサ)により検出することができ、従来のように近接セン

サと接触センサとをそれぞれ別個に設ける必要が無く、 装置を低廉化し得る。

【0020】また、全体の制御として、ユーザ認識を直 近検出時に行うようにしても良く、また近傍検出により ルームランプを点灯状態した場合において、その近付い た者がそのまま立ち去った場合には、図示されないタイ マやCPUのタイマ処理により、所定時間経過後にルー ムランプ点灯出力を停止し、初期状態に復帰させると良 い。そして、その場合にはユーザ認識をリセットするこ とが望ましい。

【0021】上記図示例では回路基板3をドアハンドルに一体的に設けたが、図3に示されるように回路基板を設けたコントロールユニット13をドアハンドルとは分離して配置するようにしても良い。なお、図3において前記図示例と同様の部分には同一の符号を付してその詳しい説明を省略する。この図3の場合には、センサである平行ケーブル5とコントロールユニット13との間を連結する伝送ケーブル14にはシールド線を用いる。それにより、金属製ボディによるセンサ(平行ケーブル5)の静電容量の変化に対する影響をなくすことができる。また、本実施の形態においては、平行ケーブルを近接センサ及び接触センサとして用いた例を示したが、近接センサのみあるいは接触センサのみとして利用することも可能である。

[0022]

【発明の効果】このように本発明によれば、中空形状に 形成したアウタハンドル内に平行ケーブルを延在させて 設けたことにより、特別にセンサ用の設置スペースを設 ける必要が無いと共に、センサ構造の簡素化を達成で き、装置全体を低廉化し得る。

【図面の簡単な説明】

【図1】本発明が適用された自動車用ドアハンドルを破断して示す図。

【図2】 本発明に基づく人体接近弁別回路の概略を示す 図.

【図3】別の実施の形態を示す自動車用ドアハンドル及 びコントロールユニットを示す図。

【符号の説明】

- 1 ベース
- 2 アウタハンドル
- 3 回路基板、3 a 近傍検出回路、3 b 直近検出回路
- 4 ケース
- 5 平行ケーブル、5a・5b 線
- 6 シールド線
- 7 シール部材
- 8 外部接続ケーブル
- 9 カプラ
- 10 外部制御ユニット
- 11 送受信アンテナ

12 キー装置

13 コントロールユニット

14 伝送ケーブル

フロントページの続き

(51) Int.Cl.⁶
// B60R 25/10

識別記号

621

FΙ

B 6 0 R 25/10

621