In the claims:

For the Examiner's convenience, all pending claims are presented below with changes shown in accordance with the new mandatory amendment format.

- 1 1-20 Cancelled
- 1 21. (Previously Presented) A method comprising:
- 2 generating a first test program to test the functionality of an integrated circuit
- 3 (IC), the first test program including a test program population having a first set of
- 4 instructions and data;
- 5 executing the first test program;
- evaluating a first set of coverage data from the first test program to determine if
- 7 the IC has been sufficiently tested, wherein evaluating the first set of coverage data
- 8 comprises comparing the coverage data to a predetermined coverage requirement; and
- generating a second program if the IC has not been sufficiently tested by the first
- test program, the second test program including an updated test program population
- having a second set of instructions and data being a mutation of the original population.
- 1 22. (Previously Presented) The method of claim 21, further comprising:
- 2 executing the second test program.
- 1 23. (Previously Presented) The method of claim 22, wherein generating the
- 2 first test program comprises:
- generating a first abstract syntax tree (AST);
- 4 generating the first set of instructions and data for the first AST; and
- 5 translating the first AST into a first executable test program.
- 1 24. (Previously Presented) The method of claim 23, wherein generating the
- 2 second test program comprises:

Docket No.: 042390.P6602 Application No.: 09/475,526

3	generating a second abstract syntax tree (AST);
3	generating a second abstract syntax tree (AST);

- 4 generating the second set of instructions and data for the second AST; and
- translating the second AST into a second executable test program.
- 1 25. (Previously Presented) The method of claim 24, further comprising
- 2 mutating a selected AST.
- 1 26. (Previously Presented) The method of claim 25, wherein mutating a
- 2 selected AST comprises:
- 3 selecting an AST;
- 4 removing a segment of the selected AST; and
- inserting a replacement segment into the selected AST to form a mutated AST.
- 1 27. (Previously Presented) The method of claim 26, further comprising:
- 2 generating a third set of instructions and data for the mutated AST; and
- translating the mutated AST into a third executable test program.
- 1 28. (Previously Presented) The method of claim 25, wherein mutating a
- 2 selected AST comprises:
- 3 selecting the first AST and the second AST; and
- 4 combining a segment of the first AST with a segment of the second AST to form
- 5 a mutated AST.
- 1 29. (Previously Presented) The method of claim 28, further comprising:
- 2 generating a third set of instructions and data for the mutated AST; and
- translating the mutated AST into a third executable test program.
- 1 30. (Previously Presented) The method of claim 23, further comprising:
- adding the first AST and the first set of coverage data into test program
- population after the first test program has been executed.

Docket No.: 042390.P6602 Application No.: 09/475,526

1	31. (Previously Presented) A computer system comprising:
2	a storage device coupled to a processor and having stored therein at least one
3	routine, which when executed by the processor, causes the processor to generate data, the
4	routine causing the processor to,
5	generate a first test program to test the functionality of an integrated circuit (IC),
6	the first test program including a test program population having a first set of instructions
7	and data;
8	execute the first test program;
9	evaluate a first set of coverage data from the first test program to determine if the
10	IC has been sufficiently tested, wherein evaluating the first set of coverage data
11	comprises comparing the coverage data to a predetermined coverage requirement; and
12	generate a second program if the IC has not been sufficiently tested by the first
13	test program, the second test program including an updated test program population
14	having a second set of instructions and data being a mutation of the original population.
1	32. (Previously Presented) The computer system of claim 31, wherein the
2	routine further causes the processor to,
3	execute the second test program.
J	encoure the second test programm
1	33. (Previously Presented) The computer system of claim 32, wherein
2	generating the first test program comprises:
3	generating a first abstract syntax tree (AST);
4	generating the first set of instructions and data for the first AST; and
5	translating the first AST into a first executable test program.
1	34. (Previously Presented) The computer system of claim 33, wherein
2	generating the second test program comprises:
3	generating a second abstract syntax tree (AST);
J	Docket No.: 042390.P6602 Application No.: 09/475,526

- generating the second set of instructions and data for the second AST; and
- translating the second AST into a second executable test program.
- 1 35. (Previously Presented) The computer system of claim 34, wherein the
- 2 routine further causes the processor to mutate a selected AST.
- 1 36. (Previously Presented) The computer system of claim 35, wherein mutating
- 2 a selected AST comprises:
- 3 selecting an AST;
- 4 removing a segment of the selected AST; and
- inserting a replacement segment into the selected AST to form a mutated AST.
- 1 37. (Previously Presented) The computer system of claim 36, wherein the
- 2 routine further causes the processor to,
- generate a third set of instructions and data for the mutated AST; and
- 4 translate the mutated AST into a third executable test program.
- 1 38. (Previously Presented) The computer system of claim 35, wherein mutating
- 2 a selected AST comprises:
- 3 selecting the first AST and the second AST; and
- 4 combining a segment of the first AST with a segment of the second AST to form
- 5 a mutated AST.
- 1 39. (Previously Presented) The computer system of claim 38, wherein the
- 2 routine further causes the processor to,
- 3 generating a third set of instructions and data for the mutated AST; and
- 4 translating the mutated AST into a third executable test program.
- 1 40. (Previously Presented) The computer system of claim 33, wherein the
- 2 routine further causes the processor to,

Docket No.: 042390.P6602 Application No.: 09/475,526

- add the first AST the first set of coverage data into test program population after
- 4 the first test program has been executed.
- 1 41. (Previously Presented) A validation test system comprising:
- a test builder to generate test programs to test the functionality of an integrated
- 3 circuit (IC);
- a test generator to translate the test programs into an executable test;
- a test analyzer to execute the test programs; and
- a feedback engine to build and update a population of test programs by generating
- 7 an abstract syntax tree (AST) for each test program.
- 1 42. (Previously Presented) The system of claim 41, wherein the feedback
- 2 engine determines whether a predetermined test program population threshold has been
- 3 reached after a test program has been executed.
- 1 43. (Previously Presented) The system of claim 42, wherein the feedback
- 2 engine generates one or more mutated ASTs if it is determined that the predetermined test
- 3 program population threshold has been reached.
- 1 44. (Previously Presented) The system of claim 43, wherein the feedback
- 2 engine generates a mutated AST by selecting a first AST, removing a segment of the first
- 3 AST and inserting a replacement segment into the first AST.
- 1 45. (Previously Presented) The system of claim 43, wherein the feedback
- 2 engine generates a mutated AST by selecting a first AST and a second AST and
- 3 combining a segment of the first AST with a segment of the second AST to form.

Docket No.: 042390.P6602 Application No.: 09/475,526

1