In [21]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: Data = pd.read_csv(r"C:\Users\santh\Downloads\archive (6)\winequality-red.cs
 Data.head()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
4											•

In [4]: Data.shape

Out[4]: (1599, 12)

In [5]: Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

```
Data.describe()
 In [7]:
 Out[7]:
                                                                                          free sulfur
                                                                                                       total s
                                       volatile
                                                                 residual
                    fixed acidity
                                                  citric acid
                                                                              chlorides
                                       acidity
                                                                   sugar
                                                                                             dioxide
                                                                                                           di
                    1599.000000
                                  1599.000000
                                                1599.000000
                                                             1599.000000
                                                                           1599.000000
                                                                                         1599.000000
                                                                                                      1599.00
             count
                       8.319637
                                     0.527821
                                                   0.270976
                                                                 2.538806
                                                                              0.087467
                                                                                           15.874922
             mean
                                                                                                        46.46
                        1.741096
                                     0.179060
                                                   0.194801
                                                                 1.409928
                                                                              0.047065
                                                                                           10.460157
                                                                                                        32.89
               std
                       4.600000
                                     0.120000
                                                   0.000000
                                                                 0.900000
                                                                              0.012000
                                                                                            1.000000
                                                                                                         6.00
              min
              25%
                       7.100000
                                     0.390000
                                                   0.090000
                                                                 1.900000
                                                                              0.070000
                                                                                            7.000000
                                                                                                        22.00
              50%
                       7.900000
                                     0.520000
                                                   0.260000
                                                                 2.200000
                                                                              0.079000
                                                                                           14.000000
                                                                                                        38.00
              75%
                       9.200000
                                     0.640000
                                                   0.420000
                                                                 2.600000
                                                                              0.090000
                                                                                           21.000000
                                                                                                        62.00
                                                                                           72.000000
              max
                      15.900000
                                     1.580000
                                                   1.000000
                                                                15.500000
                                                                              0.611000
                                                                                                       289.00
           Data.duplicated().sum()
 In [8]:
 Out[8]: 240
In [10]:
           df = Data[~Data.duplicated()]
            df.shape
Out[10]:
            (1359, 12)
In [11]:
           df.duplicated().sum()
Out[11]:
In [12]:
           df.describe()
Out[12]:
                                                                                          free sulfur
                                       volatile
                                                                 residual
                                                                                                       total s
                    fixed acidity
                                                  citric acid
                                                                              chlorides
                                       acidity
                                                                   sugar
                                                                                             dioxide
                                                                                                           di
                    1359.000000
                                  1359.000000
                                                1359.000000
                                                             1359.000000
                                                                           1359.000000
                                                                                         1359.000000
                                                                                                      1359.00
             count
                       8.310596
                                     0.529478
                                                   0.272333
                                                                 2.523400
                                                                              0.088124
                                                                                           15.893304
                                                                                                        46.82
             mean
               std
                        1.736990
                                     0.183031
                                                   0.195537
                                                                 1.352314
                                                                              0.049377
                                                                                           10.447270
                                                                                                        33.40
              min
                       4.600000
                                     0.120000
                                                   0.000000
                                                                 0.900000
                                                                              0.012000
                                                                                            1.000000
                                                                                                         6.00
                                                   0.090000
                                                                              0.070000
                                                                                            7.000000
              25%
                       7.100000
                                     0.390000
                                                                 1.900000
                                                                                                        22.00
              50%
                       7.900000
                                     0.520000
                                                   0.260000
                                                                 2.200000
                                                                              0.079000
                                                                                           14.000000
                                                                                                        38.00
              75%
                       9.200000
                                     0.640000
                                                   0.430000
                                                                 2.600000
                                                                              0.091000
                                                                                           21.000000
                                                                                                        63.00
                       15.900000
                                     1.580000
                                                   1.000000
                                                                15.500000
                                                                              0.611000
                                                                                           72.000000
                                                                                                       289.00
              max
In [13]:
            from sklearn.model_selection import train_test_split
```

Identifying the Minority class

```
In [76]: |plt.figure(figsize=(16,8))
          sns.countplot(df["quality"], data=df)
          plt.show()
             500
             400
           300 grit
             200
             100
                                                      quality
In [24]: plt.figure(figsize=(16,8))
          sns.scatterplot(x=df["citric acid"],y=df["pH"] ,data=df)
          plt.show()
             3.8
             3.6
           五 3.4
             3.0
             2.8
                                                     citric acid
In [27]: print(df["quality"].unique())
          df["quality"].value_counts()
          [5 6 7 4 8 3]
Out[27]: 5
                577
                535
           7
                167
                 53
                 17
          8
```

Name: quality, dtype: int64

```
In [66]: plt.figure(figsize=(16,8))
    sns.heatmap(df.corr(), annot=True, cbar=True, fmt = ".1f", cmap="Blues")
    plt.show()
```



```
In [35]: X = df.drop(["quality"], axis=1)
y = df["quality"]
```

SMOTE

```
In [53]: from imblearn.over_sampling import SMOTE

SS = SMOTE()
x_resampled, y_resampled = SS.fit_resample(X,y)
```

Train test split

```
In [54]: x_train, x_test, y_train, y_test = train_test_split(x_resampled, y_resampled)
In [74]: import warnings
warnings.filterwarnings("ignore")
```

Logistic Regression

Decision Tree Classifier

```
In [72]: from sklearn.tree import DecisionTreeClassifier
    dt = DecisionTreeClassifier()
    dt.fit(x_train, y_train)
    dt_pred = dt.predict(x_test)
    print(accuracy_score(y_test, dt_pred))
```

0.7503607503607503

Random Forest Classifier

0.8196248196248196

In [77]: x_test

Out[77]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
480	9.400000	0.430000	0.240000	2.800000	0.092000	14.000000	45.000000	0.998000	3.19
2658	7.370167	0.401283	0.272333	2.336167	0.063171	3.680834	10.319166	0.993630	3.45
2835	8.851812	0.358830	0.424819	2.336491	0.100883	6.000000	10.423394	0.995625	3.15 ⁻
3389	5.884353	0.813810	0.055170	1.516326	0.047585	14.843527	82.442198	0.992629	3.54 ⁻
2243	6.019599	1.102515	0.113011	1.576704	0.161261	7.000000	19.511358	0.994281	3.46
1473	7.016976	0.948802	0.000000	2.302960	0.205524	12.022111	23.575606	0.995393	3.43
9	6.700000	0.580000	0.080000	1.800000	0.097000	15.000000	65.000000	0.995900	3.28
1412	7.474099	1.331346	0.000000	3.453434	0.111820	5.000000	12.147520	0.995918	3.58
2096	9.307931	0.636057	0.365375	2.100000	0.077586	12.374451	44.832602	0.998287	3.30
3312	7.968178	0.532046	0.349090	2.460229	0.075716	7.943185	16.943185	0.992479	3.20

693 rows × 11 columns

```
In [61]: from collections import Counter

print("Before Smoting :", Counter(y))
print("After Smoting :", Counter(y_resampled))
```

```
Before Smoting : Counter({5: 577, 6: 535, 7: 167, 4: 53, 8: 17, 3: 10})
After Smoting : Counter({5: 577, 6: 577, 7: 577, 4: 577, 8: 577, 3: 577})
```

Predictive Modelling

```
In [68]: import numpy as np
input = (9.400000  0.430000  0.240000  2.800000  0.092000  14.00000

# Changing the input data to numpy array
in_as_np = np.asarray(input)

#Reshaping the numpy array as we are predicting only one instance
in_reshaped = in_as_np.reshape(1,-1)

prediction = rf.predict(in_reshaped)

print(prediction)
```

[6]