Computer Organization and Architecture Laboratory

Assignment-3

Group members (Group - 56):

- 1. Utsav Mehta (20CS10069)
- 2. Vibhu (20CS10072)

Design of an Ripple Carry Adder (RCA) :-

A. Half - adder:

- a. Takes two input bits 'a' and 'b'
- b. Produces two output bits 'sum' and 'carry'
- c. Values of the output bits can be derived from the input bits as
 - i. sum (or s) = a ^ b (bitwise xor operation)
 - ii. carry (or c) = a & b (bitwise and operation)
- d. The logic circuit for half adder is:

e. The truth table for half - adder is as shown -

Truth Table (for half adder)				
Input		Output		
Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

e. The graph observed is as shown -

Relevant files: half_adder.v, tb_half_adder.v

B. Full - adder:

- a. Takes three input bits 'a', 'b' and 'carry0'
- b. Produces two output bits 'sum' and 'carry1'
- c. Values of the output bits can be derived from the input bits as
 - i. temp_sum = a ^ b
 - ii. temp carry0 = a & b
 - iii. sum = temp_sum ^ carry0
 - iv. temp_carry1 = temp_sum & carry0
 - v. carry1 = temp_carry0 | temp_carry1
- d. The logic circuit for full adder is as shown:

e. The truth table for full - adder is as shown -

Truth Table (for Full Adder)					
Inputs			Outputs		
А	В	Carry0	Sum	Carry1	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

f. The graph observed is as shown -

Relevant Files: full_adder.v, tb_full_adder.v

- C. Ripple Carry Adders:
 - a. 8-bit adder Take 8 full adders and connect them in cascading fashion

The graph observed for 8-bit ripple carry adder is as shown -

b. 16-bit adder - Take 2 eight bit adders and connect them in cascading fashion

The graph observed for 16-bit ripple carry adder is as shown -

0 ns		100 ns	200 ns	300 ns	400 ns	500 ns	600 ns
0001)\00001.			11110	00001100111		
(0000	\00001	00011		00000	00001111010		
(0000)\00000			11101	1111101101		

c. 32-bit adder - Take 2 sixteen bit adders and connect them in cascading fashion

The graph observed for 32-bit ripple carry adder is as shown -

0 ns	200 ns		400 ns	600 ns	800 ns
(00)(00)	00	000000000000	000000000000000000001100	00000100111101000001000	110111
(00)(00)(00)	00	00000000000	000000000000000000000000000000000000000	0000000000000010110001100	011101
(00)(00)(00)	00	000000000000	0000000000000000000001100	00000100111010001111100	011010

d. 64-bit adder - Take 2 thirty two bit adders and connect them in cascading fashion

The graph observed for 64-bit ripple carry adder is as shown -

0 ns	200 ns	400 ns	600 ns	800 ns
(00)(00)		11110000011	00111	
(00)(00)		0000000011	11010	
(00)(00)		11101111111	01101	

The synthesis report (denoting the longest delays in the circuits is):-

Synthesis report				
Ripple carry adder	Longest delay			
Half bit adder	1.066			
Full bit adder	1.246			
8-bit RCA	3.471			
16-bit RCA	6.167			
32-bit RCA	11.559			
64-bit RCA	22.343			

Relevant Files:

```
s16_bit_adder.v, tb_16_bit_adder.v
s32_bit_adder.v, tb_32_bit_adder.v
s64_bit_adder.v, tb_64_bit_adder.v
```

D. Using the above circuit for calculating differences:

Let the input integers be A and B, and we want to calculate the value of A-B using the ripple carry adders generated above.

The equation can be re-interpreted as A + (-B).

The value of -B can be computed from B by the following steps:

- 1. Take the two's complement of B
- 2. Add 1 to the value computed above

Thus, we can add the generated value and A to compute the difference between A and B.

The graph observed for 64-bit ripple carry adder (used as a subtractor) is as shown -

Relevant Files:

substractor.v, s64_bit_adder.v