2. Buk-Tutorium 13.11. 2070

Johannes Lehmann johannes lehmann @ruth-aachen.de

(Christina Gehnen christina. gehnen @ ruth-nachen. de)

X1 X2 X3

Gegeben sei die Turingmaschine $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, B, \underline{q_1}, \underline{q_2}, \delta)$ mit δ wie folgt:

Berechnen Sie die Gödelnummer $\langle M \rangle$ von M wie in der Vorlesung definiert.

$$Q = \frac{2}{3}a_{1}, ..., 19+\frac{3}{3} + \frac{2}{3}$$

$$q_{1} = \frac{2}{3}a_{1} + \frac{2}{3}a_{2} + \frac{2}{3}a_{2} + \frac{2}{3}a_{3} + \frac{2}{3}a_{4} + \frac{2}{3}a_{4} + \frac{2}{3}a_{5} + \frac{2}{3}a_{$$

Gegeben sei die Turingmaschine $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, B, q_1, q_2, \delta)$ mit δ wie folgt:

Berechnen Sie die Gödelnummer $\langle M \rangle$ von M wie in der Vorlesung definiert.

 $X_1 X_2 X_3$

Gegeben sei die Turingmaschine $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, B, q_1, q_2, \delta)$ mit δ wie folgt:

Berechnen Sie die Gödelnummer $\langle M \rangle$ von M wie in der Vorlesung definiert.

(Evinnerums:
$$S(q_i, X_i) = (q_k, X_i, D_m)$$
 $\rightarrow 0.70^{\frac{1}{2}} 10^{\frac{1}{2}} 10^{\frac{1}{2}}$
 $code(1) = 0.11 6.11 0.11 0.12 6.11 0.11 0.12 6.11 0.11 0.12 6.1$

 $X_1 X_2 X_3$

Gegeben sei die Turingmaschine $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, B, q_1, q_2, \delta)$ mit δ wie folgt:

Berechnen Sie die Gödelnummer $\langle M \rangle$ von M wie in der Vorlesung definiert.

Evinnerums:
$$S(q_i, X_i) = (q_{k_i}, X_{\ell_i}, D_m)$$
 $\Rightarrow 0.10^{\frac{1}{2}} 10^{\frac{1}{2}} 10^{\frac{1}{2}}$
 $code(1) = 0.11 6.11 0.31 0.21 0.3$
 $code(2) = 6.11 0.21 0.11 0.11 0.3$
 $code(3) = 0.11 0.31 0.21 0.31 0.31 0.3$
 $code(4) = 0.31 0.11 0.11 0.11 0.31 0.3$
 $code(5) = 0.31 0.31 0.31 0.31 0.3$

(M) = 111 code (1) 11 co de (2) 11

 $X_1 X_2 X_3$

Gegeben sei die Turingmaschine $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, B, q_1, q_2, \delta)$ mit δ wie folgt:

Berechnen Sie die Gödelnummer $\langle M \rangle$ von M wie in der Vorlesung definiert.

(Evinnerums:
$$S(q_i, X_i) = (q_k, X_l, D_m)$$
 $\Rightarrow O(10^{\frac{1}{2}} 10^k 10^l 10^m)$
 $code(1) = O(16^{\frac{1}{2}} 10^3 10^2 10^3$
 $code(2) = G(16^{\frac{1}{2}} 10^3 10^3 10^3$
 $code(3) = O(16^{\frac{1}{2}} 10^3 10^3 10^3$
 $code(4) = O(16^{\frac{1}{2}} 10^3 10^3 10^3$
 $code(5) = O(16^{\frac{1}{2}} 10^3 10^3 10^3$

 $\langle M \rangle = 111 \ code(1) \ 11 \ code(2) \ 11 \dots 11 \ code(6) \ 111$ $= 1110^{1} 10^{1} 10^{3} 10^{2} 10^{2} 110^{1} 10^{1} 10^{1} 10^{3} 110^{1} 10^{3} 10^{2} 10^{3} 10^{1} 110^{3} 10^{1} 10^$

Tutoriumsaufgabe 2 (Palindrome mit 1-Band TM)

Für ein Wort $w = w_1 w_2 \dots w_n$ mit $w_i \in \Sigma$ bezeichnet $w^{-1} = w_n w_{n-1} \dots w_1$ das Wort w rückwärts gelesen. Sei $L = \{ww^{-1} \mid w \in \Sigma^*\}$ über dem Alphabet $\Sigma = \{0, 1\}$ die Sprache der Palindrome gerader Länge.

Beschreiben Sie eine möglichst effiziente 1-Band-TM, die L entscheidet. Analysieren Sie den Zeit- und den Speicherplatzbedarf der von Ihnen entworfenen Maschine.

AC tim -> Terwinier 1. E: - 5 be lee, in Zutand, ensetne es aboutles Symbol 2. Merke durch ein B. rechtebis 7u-3 Larfe 4. Versleirte aktuelles mit generten Zeichen -Ungleicht Terminiere mit NEIN - Glein : Ersetne Zeineu-d last e durch B zum linke-Ru-d Schritt 1 5. Gehe 20 Loufzeit: G(n2) Speicher

Tutoriumsaufgabe 3 (RAM für den Zweierlogarithmus)

Geben Sie ein RAM-Programm zur Berechnung des Zweierlogarithmus $\lfloor \log_2 n \rfloor$ für eine

Tutoriumsaufgabe 4 (Wiederholung reguläre Sprachen)

Reguläre Ausdrücke sind eine einfache Möglichkeit eine Sprache über einem Alphabet Σ zu beschreiben. Sie sind wie folgt definiert.

- Der Ausdruck $r = a \in \Sigma$ beschreibt die Sprache $L(r) = \{a\}$ und der Ausdruck $r = \emptyset$ beschreibt die leere Sprache $L(r) = \emptyset$.
- Sind r_1 und r_2 reguläre Ausdrücke, dann beschreibt der Ausdruck

$$-$$
 - $(r_1 + r_2)$, die Vereinigung $L((r_1 + r_2)) := L(r_1) \cup L(r_2)$

$$-r_1r_2$$
 die Verkettung $L(r_1r_2) := L(r_1)L(r_2) = \{w_1w_2 \mid w_1 \in L(r_1), w_2 \in L(r_2)\}$

$$-(r_1)*$$
 die kleenesche Hülle $L((r_1)*):=L(r_1)^*=\{w_1w_2\dots w_n\mid n\geq 0, w_i\in L(r_1)\}$

$$(L(\varepsilon) = L(\varphi^*))$$

Eine Sprache A heißt regulär, wenn sie durch einen reguären Ausdruck beschrieben werden kann, d.h. es gibt einen regulären Ausdruck r mit L(r) = A. Im Folgenden betrachten wir einige Sprachen und reguläre Ausdrücke:

- a) Die Sprache, die nur aus den Wörtern aa und bac besteht aa + bac
- b) Die Sprache, die aus Wörtern der Form $ba^ib^{2j}c$ besteht ba^* (bb) *
- c) Die Sprache (über $\{a,b\}$) aus allen Wörtern gerader Länge $((\alpha+b)(\alpha+b))^*$
- d) Die Sprache (über {a,b}) aus allen Wörtern ungerader Länge (a+b) ((a+b)(a+b))*
- e) Die Sprache (über $\{a,b,c\}$) aller Wörter der Länge 4 (a+b+c)(a+b+c)
- f) $ab(c^*) + ba(aa^*) + c$ (a+b+c)(a+b+c)

 Die Sprache beutehend and Wolfenn den Formabei abei allen wolfenn, die mit bag bebinnten und danach beliebis viele ars haben, und c.