Фамилия, имя и номер группы (печатными буквами):	Задача	1	2	3	4	5
	Балл					

Информация о контрольной работе

- 1. Эту работу (листы) нельзя открывать до объявления преподавателем о начале контрольной работы. В противном случае оценка за работу будет обнулена.
- 2. На контрольной работе можно пользоваться простым калькулятором, ручками, линейкой и карандашом. Кроме того, можно использовать один лист А4, содержащий (по обеим сторонам) любую информацию, написанную от руки (самим студентом).
- 3. Контрольная выполняется индивидуально. Общение или взаимодействие с кем-либо или чемлибо (за исключением обозначенных выше разрешенных предметов) помимо преподавателей и ассистентов по курсу приведет к обнулению оценки за работу. Кроме того, нельзя иметь при себе электронные средства коммуникации, включая телефон, электронные часы и наушники.
- 4. Продолжительность контрольной работы составляет 150 минут (2 часа, 30 минут). После объявления об окончании времени конторольной работы необходимо прекратить вносить какие-либо правки в работу. В противном случае оценка за работу будет обнулена.
- 5. Досрочно покидать аудиторию можно лишь в течение первых 135 минут контрольной.
- 6. По окончанию работы необходимо дождаться, пока преподаватели соберут **все** работы в аудитории и пересчитают их количество, сопоставив с числом находящихся в аудитории студентов.
- 7. Необходимо иметь с собой студенческий пропуск, который позволит преподавателям и ассистентам идентифицировать вашу личность.
- 8. Условия из предыдущих пунктов не распространяются на условия из последующих, если в тексте задачи или пункта непосредственно не указано иное.
- 9. Таблица стандартного нормального распределения расположена на странице, следующей за текстом задания.
- 10. Писать ответы можно как на передней, так и на задней частях листа.

- 1. Дана выборка $X = (X_1, ..., X_5)$ и ее реализация x = (2, 1, 1, 0, 1). Используя статистику, включающую все наблюдения в выборке¹, найдите реализацию:
 - а) Пятого выборочного начального момента. (2 балла)
 - б) Скорректированной (исправленной) выборочной дисперсии. (2 балла)
 - в) Выборочной функции распределения. (3 балла)
 - г) Несмещенной оценки вероятности $P(2>X_2>0)$. Предварительно покажите, что используемая вами оценка будет несмещенной. (3 балла)
 - д) Несмещенной оценки вероятности $P((X_1-1)X_2>0)$. Предварительно покажите, что используемая вами оценка будет несмещенной. (5 баллов)
- 2. Имеется последовательность случайных величин $X_1, X_2, ...,$ такая, что:

$$f_{X_n}(x) = egin{cases} (1-k_n)e^{-(1-k_n)x}, \ ext{если} \ x \geq 0 \ 0, \ ext{в противном случае} \end{cases}$$

Определите:

- а) К чему сходится по распределению данная последовательность, если $k_n = \frac{1}{n}$. (5 баллов)
- б) К чему сходится по распределению данная последовательность, если $k_n=1-n.$ (5 баллов)
- в) К чему сходится по распределению последовательность $X_1\sqrt{(X_2+1)}, X_3\sqrt{(X_4+1)}, ...,$ если (5 баллов):

$$k_n = egin{cases} rac{1}{n}, \ ext{ecли} \ n \ ext{heчетноe} \ 1-n, \ ext{ecли} \ n \ ext{четноe} \end{cases}$$

- 3. Каждый день Лаврентий и ученый кот играют в баскетбол. Каждый из них бросает мяч в корзину до первого (своего) промаха. При каждом броске независимо ни от каких факторов Лаврентий забрасывает мяч в корзину с вероятностью 0.6, а ученый кот с вероятностью 0.8. При помощи центральной предельной теоремы рассчитайте, приблизительно, вероятность, с которой по результатам 100 игр:
 - а) Лаврентий забросит более 130 мячей. (10 баллов)
 - б) Ученый кот забросит хотя бы на 200 мячей больше, чем Лаврентий. (10 баллов)
 - в) Число заброшенных Лаврентием мячей окажется по крайней мере в 2.48 раз больше, чем число игр, в которых он забросил хотя бы один мяч. **(10 баллов)**
- 4. Имеется выборка из распределения со следующей функцией плотности:

$$f_{X_1}(t)=rac{1}{t\sqrt{2\pi}}e^{-rac{(\ln(t)-\mu)^2}{2}}$$
, где $t\in R$

Известно, что $E(X_1) = e^{\mu + 0.5}$.

а) Оцените параметр μ при помощи метода максимального правдоподобия. **(5 баллов)**

¹Например, для получения несмещенной оценки некоторой вероятности может быть достаточно одного наблюдения. Однако, по условию задачи требуется задействовать все наблюдения в выборке (по аналогии с тем, как это делалось на лекциях и семинарах), что повысит эффективность соответствующих оценок.

- б) Запишите асимптотическую дисперсию найденной в предыдущем пункте ММП оценки. (5 баллов)
- в) Найдите асимптотическую дисперсию ММП оценки математического ожидания наблюдения. **(5 баллов)**
- г) По выборке из n=100 наблюдений рассчитайте, приблизительно, вероятность, с которой найденная вами ММП оценка математического ожидания отклонится (по абсолютному значению) от истинного значения более, чем на 0.1, если известно, что $\mu=0.5$. (5 баллов)
- 5. Имеется выборка из распределения со следующей функцией плотности:

$$f_{X_1}(t)=egin{cases} rac{3t^2}{2 heta^3},$$
 при $t\in[- heta, heta] \ 0,$ в противном случае , где $heta>0$

- а) Найдите функцию плотности и математическое ожидание $|X_1|$. (2 балла)
- б) Найдите оценку параметра θ при помощи метода моментов. (2 балла)
- в) Рассчитайте эффективность любой оценки, найденной при помощи метода моментов. **(3 балла)**

Подсказка: рассмотрите новую выборку, состоящую из модулей наблюдений изначальной выборки.

- Γ) Найдите оценку параметра θ при помощи метода максимального правдоподобия. (3 балла)
- д) Рассчитайте информацию Фишера или обоснуйте, почему в данном случае она не определена. (1 балл)
- е) Проверьте, является ли найденная вами оценка несмещенной. Если нет, то попытайтесь скорректировать ее таким образом, чтобы она стала несмещенной. (3 балла)
- ж) Вычислите эффективность ММП оценки. (3 балла)
- з) Найдите оценку, которая будет более эффективна, чем ММП оценка. Покажите, что она действительно является более эффективной. (3 балла)

Таблица стандартного нормального распределения

				Aub 11101	P		, bb.	7701111		
$\parallel x \mid$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$\mid\mid 0.1\mid$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
\parallel 2.2 \mid	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999