

Seismic Tomography: solving inverse problems to estimate model parameter(s)

Ashim Rijal

Department of Earth and Environment Sciences, LMU Munich

November 15, 2017

Forward and Inverse problem

The process of predicting data based on some mathematical (or physical) model with a given set of model parameters. eg: travel time based on reference velocity structure.

The process of predicting (or estimating) the numerical values of a set of model parameters of an assumed model based on observation. eg: invert travel time to determine the velocity structure.

Inverse problem

- We want to find a velocity structure of the Earth from observed seismic data. Given the observed arrival times, find a model that fits them.

$$d = Am$$

 d_i is a data vector (arrival times) and m_j is assumed model vector (eg. slowness or 1/velocity)

- Start with the initial model \mathbf{m}^0 (a guess, eg. 1D Earth velocity model).
- Predictions from starting model

$$d_i^0 = A(m_j^0)$$

$$d_i^0 = A(m_j^0)$$

- This doesn't predict the actual observation. Hence, we seek to change the initial model by $\Delta \boldsymbol{m}$ amount.

$$m_j^1 = m_j^0 + \Delta m_j^0$$

- Further, our data do not depend linearly on the model parameters.
- Linearize the problem by expanding the data in a Taylor series about the starting model

$$d_i \approx d_i^0 + \sum_j \frac{\partial d}{\partial m}|_{m^0}.\Delta m_j^0$$

$$d_i \approx d_i^0 + \sum_j \frac{\partial d}{\partial m}|_{m^0}.\Delta m_j^0$$

- Let's write this in terms of the difference between the observed data and those predicted,

$$\Delta d_i^0 \equiv d_i - d_i^0 \approx \sum_j \frac{\partial d_i}{\partial m_j}|_{m^0}.\Delta m_j^0$$

 $\Delta \mathbf{d} = \mathbf{G} \Delta \mathbf{m}$

- Where, $\mathbf{G}=G_{ij}=\frac{\partial d_i}{\partial m_j}$ is the partial derivative matrix. This is a linear algebra problem.

- In our seismic tomography example, this matrix would be

$$G_{ij}=rac{\partial T_i}{\partial s_j}$$

 T_i being the travel-time perturbation- i^{th} ray and u_j is the slowness perturbation- j^{th} box

Source: Stein ands Wysession

$$\Delta d = G\Delta m$$

- Because there are many more equations (ray paths) than unknowns (model parameters), the system of equations is overdetermined.
- Also inconsistent because our data contain noise (instrument, measurement related, or unknown velocity structures in earthquake location problem)
- The least-squares problem

$$arg_{min}||\Delta \mathbf{d} - \mathbf{G}\Delta \mathbf{m}||_2$$

has a unique minimum $||\mathbf{r}||_2$ and a unique residual $\mathbf{r} = \Delta \mathbf{d} - \mathbf{G} \Delta \mathbf{m}^*$ iff $\Delta \mathbf{m}^*$ solves the normal equation

$$\mathbf{G}^{\mathsf{T}}\mathbf{G}\Delta\mathbf{m} = \mathbf{G}^{\mathsf{T}}\Delta\mathbf{d}$$

-Then in the second iteration, we use

$$m_{j}^{1} = m_{j}^{0} + \Delta m_{j}^{0}$$
.....
 $m_{j}^{n} = m_{j}^{n-1} + \Delta m_{j}^{n-1}$

- Define a tolerance level and stop iterating.
- In finite precision arithmetics **G**^T**G** may become singular.
- If **G** is dense LAPACK routines (eg. DGELS)
- If **G** is sparse iterative LSQR algorithm

Jupyter notebook

