Recurrences, Master Theorem, tree and table method, induction.

- 1. Given the recurrences
 - a. T(N) = 3*T(N/5) + N + IgN
 - b. $T(N) = 4*T(N/2) + \sqrt{N}$
 - c. $T(N) = 6*T(N/5) + N^3$
 - d. T(N) = 6*T(N/5) + 7

Find their Θ time complexity with the tree method. You must show the tree and fill out the table like we did in class.

Find their Θ time complexity with the Master Theorem method.

For a. since N+lgN = $\Theta(N)$, solve for T(N) = 3*T(N/5) + N

When applying the master theorem, make sure you give a value for ϵ and check all the conditions (especially for case 3).

2. Use the substitution method (induction) to show that $T(N) = 2T(N/2) + N^3$ is $O(N^3)$. Let T(0)=4.

Need to find c and N_0 s.t. $T(N) \le cN^3$ for all $N \ge N_0$.

Base cases:

T(0) = 4 fails: (we need $4 \le c^*0 = 0$)

 $T(1) = 2T(1/2)+1^3 = 2*4+1 = 9$ need: $9 \le c1^3 = 0$ holds for all $c \ge 9$.

T(2), T(3), T(4)... use T(1) or higher in their recurrence. Try to prove them using the recursive case.

Recursive case:

 $T(N) = 2T(N/2) + N^3 \le 2*c*(N/2)^3 + N^3 = N^3[1+(c/4)]$

Need $T(N) \le cN^3 => need: N^3[1+(c/4)] \le cN^3 => N^3[c-1-(c/4)] \ge 0$

Since $N^3 \ge 0$ for all $N \ge 0 \Rightarrow$ need $[c-1-(c/4)] \ge 0 \Rightarrow (3/4)c-1 \ge 0 \Rightarrow c \ge 1/(3/4) \Rightarrow c \ge 4/3$.

Keep the larger of the c (from base case and recursive case)=> $c = max\{9, 4/3\} => c = 9$ (or any value larger than 9). $N_0 = 1$ (first value of N for which the inequality T(N) $\le cN^3$ holds.

- 3. CLRS 3rd edition (textbook)
 - a. Reminder: The book calls 'substitution method' what we called 'induction method'.
 - b. Page 87: 4.3-1 Consider every one of the three methods. Can you apply it? If yes, solve with that method, if no, explain why.
 - c. Page 87, 4.3-7
 - d. page 92, 4.4-1, 4.4-2, 4.4-3 (NOT with the tree on the given recurrence. Instead, use a similar but easier recursion, and guess it with the Master theorem or the tree and prove it with induction).
 - e. page 96, 4.5-1

41. (6 points) A recursive algorithm for processing arrays works as follows: it first does some processing which takes N^2 and allows it to split the array in 3 equal parts. Next the algorithm applies itself again to each one of those smaller arrays.

If the array has 0, 1, or 2 elements the algorithm executes 5 instructions and finishes. Give the recurrence formula (including the base case) for this algorithm.

```
T(0) = T(1) = T(2) = 5 (Also ok to use c instead of 5)

T(N) = 3T(N/3) + cN^2
```

P5. (Exam 1, Fall 15, 002)

a) (5 points) Is anything wrong with the following recurrence definition?
 g(0) = N Yes. g(0) cannot be N. Incorrect even from a pure mathematical point of view.

```
g(N) = g(N-1) + c
```

```
P6. (Exam 1, Fall 15, 002)
```

```
int foo(int * array, int N)
{
  if (N == 0) return 0;
  int result = 0;
  int b, c;
  for (b = 0; b < N/4; b++)
    for (c = N; c > 1; c = c/2)
      result = result + array[b] * array[c];
  return result + foo(array, N-1);
}
```

Give the recurrence formula (including the base case).

```
T(0) = d
```

$$T(N) = T(N-1) + d(N/4)IgN$$