III. kolo kategorie Z9

Z9-III-1

Paní učitelka potřebovala vymyslet příklady na rovnice do písemky. Proto si vypsala všechny rovnice tvaru

$$a \cdot x + b = 13$$
,

kde a a b jsou jednomístná přirozená čísla. Ze všech vybrala ty rovnice, jejichž kořen x byl 3. Do každé skupiny dala jednu rovnici. Kolik skupin mohlo být nejvíce?

(K. Pazourek)

Možné řešení. Víme, že x=3 je řešením uvedené rovnice, proto platí rovnost

$$a \cdot 3 + b = 13.$$

Aby a, b byla přirozená čísla, musí a být buď 1, 2, 3, nebo 4 (pro a=5 dostáváme $5 \cdot 3 = 15 > 13$ a b by muselo být záporné, což nelze). Nyní dosadíme jednotlivé hodnoty a do rovnice a dopočítáme příslušná b:

- a = 1, b = 10,
- a = 2, b = 7,
- a = 3, b = 4,
- a = 4, b = 1.

Vidíme, že podmínkám ze zadání nevyhovuje případ a=1, b=10. Existují tak právě tři dvojice (a,b), které řeší úlohu: (2,7), (3,4) a (4,1). Paní učitelka tak mohla utvořit nejvýše tři skupiny.

Hodnocení. 1 bod za dosazení kořene do rovnice; 2 body za nalezení všech tří řešení; 3 body za zdůvodnění, proč řešení není více.

Z9-III-2

Do naší školy se žáci dopravují různě. Domácí chodí pěšky. Počet domácích a dojíždějících žáků je v poměru 3:1. U dojíždějících je poměr počtu těch, kteří využívají veřejnou dopravu, a těch, kteří jezdí sami na kole nebo s rodiči autem, 3:2. U veřejné dopravy je poměr počtu těch, kteří jezdí vlakem, a těch, kteří jezdí autobusem, 7:5. Dále víme, že poměr počtu těch, kteří dojíždějí na kole, k počtu těch, kteřé vozí rodiče autem, je 5:3. O kolik více žáků dojíždí vlakem oproti těm, které vozí rodiče, když veřejnou dopravou jich jezdí 24? Kolik žáků má naše škola?

(M. Volfová)

Možné řešení. Těch, kteří jezdí veřejnou dopravou, je 24 a tvoří 3 díly z počtu dojíždějících. Zbylé 2 díly, které přísluší neveřejné dopravě, tedy odpovídají 16 žákům ($\frac{2}{3}$ z 24 je 16). Všech dojíždějících je 24 + 16 = 40. Dojíždějící tvoří 1 díl ze všech žáků školy, domácích je třikrát více, tj. 120. Všech žáků je tedy 40 + 120 = 160.

24 dětí dojíždějících veřejnou dopravou je rozděleno na cestující vlakem (7 dílů) a autobusem (5 dílů); vlakem tedy jezdí 14 dětí ($\frac{7}{12}$ z 24 je 14) a autobusem 10 ($\frac{5}{12}$ z 24 je 10). 16 žáků, kteří jezdí neveřejnou dopravou, se dělí na ty, kteří jezdí na kole (5 dílů), a ty vožené rodiči (3 díly); na kole tedy dojíždí 10 dětí ($\frac{5}{8}$ z 16 je 10), s rodiči autem 6 ($\frac{3}{8}$ z 16 je 6).

 $Z\acute{a}v\check{e}r$: škola má celkem 160 žáků, z nichž vlakem dojíždí o 8 žáků víc, než kolik jich vozí rodiče autem (14-6=8).

Jiné řešení. Načrtneme úsečku představující všechny žáky školy a budeme ji rozdělovat podle zadaných poměrů, viz obrázek.

Kromě poměrů je v zadání jediný číselný údaj, a to že vlakem a autobusem jezdí celkem 24 žáků. Z obrázku vyvodíme, že dojíždějících žáků je $\frac{5}{3} \cdot 24 = 40$ a všech žáků je $4 \cdot 40 = 160$.

Nejmenší dílky, na které je rozdělena část úsečky odpovídající veřejné dopravě, představují 24:12=2 žáky. I část úsečky odpovídající neveřejné dopravě je rozdělena na takto velké dílky — dílky jsou stejné, protože jednou znázorňují dvanáctinu tří dílů, jednou osminu dvou dílů a $\frac{3}{12}=\frac{2}{8}$. Část úsečky odpovídající vlaku je o 4 takové dílky větší než ta odpovídající autu. Vlakem se tedy do školy dopravuje o $4\cdot 2=8$ žáků více než autem.

Hodnocení. 3 body za celkový počet žáků; 3 body za rozdíl mezi počty žáků dojíždějících vlakem a autem.

Z9-III-3

Dostali jsme krychli, která měla délku hrany vyjádřenou v centimetrech celým číslem větším než 2. Všechny její stěny jsme obarvili na žluto a poté jsme ji rozřezali beze zbytku na krychličky o hraně délky 1 cm. Tyto krychličky jsme roztřídili do čtyř hromádek. V první byly krychličky s jednou žlutou stěnou, ve druhé se dvěma žlutými stěnami a ve třetí se třemi. Ve čtvrté hromádce pak byly krychličky bez žluté stěny. Určete délku hrany původní krychle, pokud víte, že aspoň jedno z následujících tvrzení je pravdivé:

- Počty kostek v první a čtvrté hromádce byly v poměru 4:9.
- V první hromádce bylo třikrát více kostek než ve druhé. (L. Šimůnek)

Možné řešení. Délku hrany původní krychle v centimetrech označíme a+2, kde a je přirozené číslo. Každé stěně původní krychle odpovídá a^2 krychliček s právě jednou obarvenou stěnou, proto je takových krychliček celkem $6a^2$. Na každé hraně původní krychle jsme dostali a krychliček s právě dvěma obarvenými stěnami. Původní krychle měla 12 hran, proto je takových krychliček celkem 12a. Krychliček, které nemají žádnou obarvenou stěnu, je a^3 .

První tvrzení v zadání vyjadřuje tato rovnice:

$$\frac{6a^2}{a^3} = \frac{4}{9}.$$

Po zkrácení zlomku nenulovým výrazem a^2 dostaneme

$$\frac{6}{a} = \frac{4}{9},$$

tedy a=13,5. Zadání úlohy předpokládá celočíselnou délku hrany krychle, zde však délka hrany vychází 13,5+2=15,5 (cm). Vidíme, že uvedený poměr počtu krychliček nemůžeme po rozřezání žádné krychle nikdy dostat.

První tvrzení ze zadání není pravdivé, musí tedy platit druhé, jež je vyjádřeno rovnicí

$$\frac{6a^2}{12a} = \frac{3}{1}.$$

Po zkrácení zlomku nenulovým výrazem 6a dostaneme

$$\frac{a}{2} = \frac{3}{1},$$

tedy a=6. Délka hrany původní krychle byla 6+2=8 (cm).

Hodnocení. 3 body za vyjádření počtu krychliček v první, druhé a čtvrté hromádce; 2 body za délky hran podle prvního a druhého tvrzení; 1 bod za správný závěr.

Z9-III-4

Do rovnostranného trojúhelníku ABC je vepsán pravidelný šestiúhelník KLMNOP tak, že body $K,\ M,\ O$ leží po řadě ve středech stran $AB,\ BC$ a AC. Vypočtěte obsah šestiúhelníku KLMNOP, jestliže obsah trojúhelníku ABC je $60\ \mathrm{cm}^2$. ($K.\ Pazourek$)

Možné řešení. Vepišme šestiúhelník KLMNOP do trojúhelníku ABC předepsaným způsobem.

Vzhledem k tomu, že oba útvary jako celek jsou osově souměrné podle tří os souměrnosti, leží těžiště šestiúhelníku a těžiště trojúhelníku v jednom bodě, který označíme T. Střední příčky trojúhelníku ABC spolu s úsečkami KT, MT a OT rozdělí šestiúhelník KLMNOP na šest shodných rovnoramenných trojúhelníků — pro zdůvodnění tohoto tvrzení si stačí uvědomit shodnost příslušných stran těchto trojúhelníků.

Dále i zbývající části trojúhelníku ABC můžeme rozdělit na šest trojúhelníků shodných s předchozími šesti trojúhelníky. Jako možné zdůvodnění tohoto tvrzení dokážeme shodnost trojúhelníků PKO a PKA podle věty sus: Stranu PK mají oba trojúhelníky společnou. Strany KO a KA mají stejnou délku, protože jde o střední příčku rovnostranného trojúhelníku ABC a o polovinu jeho strany. Úhel PKO je čtvrtinou vnitřního úhlu PKL pravidelného šestiúhelníku KLMNOP, a tak měří 30° . Úhel PKA je spolu s úhlem LKB doplňkem úhlu PKL do přímého úhlu, a proto měří také 30° .

Díky rozdělení trojúhelníku ABC na těchto dvanáct shodných trojúhelníků vidíme, že poměr obsahů šestiúhelníku KLMNOP a trojúhelníku ABC je 6:12=1:2, tudíž obsah šestiúhelníku KLMNOP je

$$S = \frac{1}{2} \cdot 60 = 30 \,(\text{cm}^2).$$

Hodnocení. 1 bod za rozdělení šestiúhelníku na výše uvedené trojúhelníky a zdůvodnění jejich vzájemné shodnosti; 3 body za jakékoli zdůvodnění, že zbývající trojúhelníky tvořící trojúhelník ABC jsou s předchozími shodné; 1 bod za porovnání obsahů obou zadaných útvarů; 1 bod za výsledek.

Jiné řešení. Vepišme šestiúhelník KLMNOP do trojúhelníku ABC předepsaným způsobem.

Vzhledem k tomu, že oba útvary jako celek jsou osově souměrné podle tří os souměrnosti, leží těžiště šestiúhelníku a těžiště trojúhelníku v jednom bodě, který označíme T. Na obrázku pak vidíme, že se pravidelný šestiúhelník KLMNOP skládá z šesti shodných trojúhelníků a zbylá část trojúhelníku ABC se skládá z šesti jiných shodných trojúhelníků. Dokážeme, že tyto trojúhelníky mají s předchozími stejný obsah, a to na příkladě trojúhelníků NTO a CNO:

Úsečka KC je těžnice trojúhelníku ABC. Z vlastností těžiště a těžnic vyplývá, že $|TC|=2\cdot |KT|$. Dále v pravidelném šestiúhelníku KLMNOP platí |NT|=|KT|. Teď je již zřejmé, že |CN|=|NT|. Trojúhelníky NTO a CNO mají tedy stejně velké strany NT a CN a shodují se i v příslušné výšce, proto musí mít stejný obsah.

Díky rozdělení trojúhelníku ABC na dvanáct trojúhelníků o stejném obsahu vidíme, že poměr obsahů šestiúhelníku KLMNOP a trojúhelníku ABC je 6 : 12=1:2, tudíž obsah šestiúhelníku KLMNOP je

$$S = \frac{1}{2} \cdot 60 = 30 \,(\text{cm}^2).$$

Hodnocení. 2 body za vysvětlení, že |CN| = |NT|; 2 body za vysvětlení, že trojúhelníky NTO a CNO mají stejné obsahy; 1 bod za porovnání obsahů obou zadaných útvarů; 1 bod za výsledek.

Ještě jiné řešení. Vzhledem k tomu, že oba útvary jako celek jsou osově souměrné podle tří os souměrnosti, leží těžiště šestiúhelníku a těžiště trojúhelníku v jednom bodě, který označíme T. Úsečka KC je těžnice trojúhelníku ABC a KT její třetina. Označme b délku strany trojúhelníku ABC. Z Pythagorovy věty uplatněné na pravoúhlý trojúhelník KBC pak plyne

 $|KT| = \frac{1}{3}\sqrt{b^2 - \frac{b^2}{4}} = \frac{\sqrt{3}}{6}b.$

Protože šestiúhelník KLMNOP se skládá ze šesti shodných rovnostranných trojúhelníků s délkou strany |KT|, je jeho obsah

$$S_1 = 6 \cdot \frac{\sqrt{3}}{4} \left(\frac{\sqrt{3}}{6}b\right)^2 = \frac{3\sqrt{3}}{2} \cdot \frac{3}{36}b^2 = \frac{\sqrt{3}}{8}b^2.$$

Obsah trojúhelníku ABC je $S_2 = \frac{1}{4}\sqrt{3}b^2$. Porovnáním S_1 a S_2 dostaneme, že obsah šestiúhelníku KLMNOP je poloviční oproti obsahu trojúhelníku ABC, tudíž je roven $30\,\mathrm{cm}^2$.

Hodnocení. 1 bod za vysvětlení, že KT je třetina KC; 1 bod za vyjádření obsahu trojúhelníku ABC; 2 body za vyjádření obsahu šestiúhelníku pomocí stejné neznámé; 1 bod za poměr obsahů obou útvarů nebo analogický poznatek; 1 bod za výsledek.

Poznámka. Na základě posledně uvedeného řešení a díky zadanému obsahu trojúhelníku ABC mohou žáci postupně vypočítat $b \doteq 11.8 \, \mathrm{cm}, |KT| \doteq 3.4 \, \mathrm{cm}$ a $S_2 \doteq 30.0 \, \mathrm{cm}^2$. I takové řešení lze ohodnotit plným počtem bodů, pokud je i zdůvodnění v pořádku.