Indian Institute of Technology- Jodhpur

GRAPH THEORY AND APPLICATIONS(GTA) COURSE CODE: CSL7410

Lecture Scribing Assignment:Week 13

Done by: Aditya Mishra M20MA201

April 10, 2022

Week 13

Planner Graph and it's Properties*

In this section we will discuss about the Planner graph and it's properties and will know about some conditions, theorems and some terms used in graph theory.

13.1 Planner Graph

Planner Graph is a graph that has a drawing without crossing.

Above Two images are the example of the Planner Graph.

13.1.1 Properties of Planner Graph

- They are Sparse Graph for Large Graph.
- They are 4-colourable.
- Efficient operation.

^{*}Lecturer: Anand Mishra. Scribe: Aditya Mishra (M20MA201).

13.2 Face

Face is the regions in the Graph.

By the above images we can understand the definitions of face of a particular graph more clearly.

13.3 Euiler's Condition

For any connected Planner Graph ,

$$v - e + f = 2$$
 $v = \text{number of vertices}$
 $e = \text{number of edges}$

f = number of faces

Example:

Proof: By induction on no. of edges, Base Case:

$$e = 0$$

 $v = 1$
 $f = 1$

now here we can clearly see that v - e + f = 1 - 0 + 1 = 2

Induction : Assign upto n edges in a planner connected graph , this is true : v-e+f=2 Let G be a graph with n+1 edges.

Case 1: G does not contain a cycle.

number of vertices in
$$G(v) = n+2$$

number of edges in $G(e) = n+1$
number of faces in $G(v) = 1$

$$n+2-(n+1)+1=2$$

Case 2: G contains at least one cycle say we remove P from a cycle and call the result graph G'. In G'

number of vertices in G(v) = vnumber of edges in G(e) = e-1number of faces in G(v) = f-1

$$\begin{array}{l} \text{v-(e-1)+(f-1)} = 2 \\ \Longrightarrow \text{v-e+1+f-1=2} \\ \Longrightarrow \text{v-e+f=2} \end{array}$$

13.4 Dual Graph:

The Dual Graph G^* of a planner graph is also a planner graph whose vertices corresponds to the faces of G . the edges of G^* corresponds to the edges of G as fallows

ullet if e is an edges where one side is face-X and another side is face-Y then in G* , there is an edges between vertex corresponding to face-X and face-Y

13.5 Length of a Face

Statement : If $l(f_i)$ denotes length of face f_i in a planner graph.

$$2e = \sum_{i} l(f_i)$$

in the dual graph

$$l(f_i) = degree(f_i)$$
$$e = e$$

Handshaking Lemma in G*

$$2e = \sum_{i} degree(f_i)$$

$$2e = \sum_{i} l(f_i)$$

 $\textbf{Statement}: \;\; \text{Suppose G is a connected planner graph with } v \; \text{nodes} \;, \; e \; \text{edged} \;, \; f \; \text{faces} \;$ and $v \geq 3$, then

$$e \le 3v - 6$$

$$v \ge 3 \implies \text{In } G^*$$

$$2e = \sum_{i=1}^{f} l(f_i)$$

$$2e \ge 3 + 3 + 3 + \dots \dots f \text{ times}$$

$$2e \ge 3f$$

$$v - e + f = 2$$

 $f = e - v + 2$ and $3f \le 2e$
 $3f = 3e - 3v + 6 \le 2e$
 $\implies e - 3v + 6 \le 0$

$$e \le 3v - 6$$

13.6 Planarity Test Algorithm:

- Remove all self loops.
- Remove parallel edges.
- \bullet Remove vertex having degree v = 2 and merge the edges incident on that vertex

 $\textbf{Statement}: \ \ G \rightarrow H$, G is planner if H is planner if

- H has one edge. Or
- $H \equiv K_4 \text{ Or}$
- \bullet e \leq 3v 6

13.7 Theorem

Statement: The fallowing statements are equivalent for a planner graph:-

- 1. G is a Bipartite Graph
- 2. Every face of G has even Length
- 3. the dual graph G^* is Eulerian

Proof: $(1) \implies (2)$ G contains only even length cycle.

We know that cycles make faces

 \implies Every face of G has even length.

Every face has even length in G

- \implies degree of each node in G^* is even.
- \implies G* is Eulerian.

13.8 Theorem

Statement: Every Simple Planner Graph has "a" vertex of degree at most 5.

Proof : We know that every simple planner graph with v vertices has at most 3v - 6 edges , for $v \ge 3$

Hence the sum of degree is at most 6v - 12

There is surely a vertex whose degree less than 6.