PONOVLJENI ZAVRŠNI ISPIT IZ VJEROJATNOSTI I STATISTIKE 02.07.2008.

1. (3 boda)

Uzorak $x_1, x_2,...,x_n$ izvučen je iz populacije koja ima gustoću razdiobe

$$f(x) = \lambda x^{\lambda - 1}, \ x \in \langle 0, 1 \rangle.$$

Pomoću kriterija najveće izglednosti odredite procjenu za parametar λ .

2. (3 boda)

Koliko velik uzorak normalne populacije s disperzijom $\sigma^2=0.0025$ treba uzeti da duljina 95%-tnog intervala povjerenja za očekivanje ne bude veća od 0.02.

3. (4 boda)

Iz populacije koja se podvrgava normalnoj razdiobi izvučen je sljedeći uzorak:

x_j	20	22	24	26	28	30
n_{j}	3	2	5	7	3	2

- a) Izračunajte točkaste procjene za očekivanje i disperziju.
- **b)** Izračunajte 80%-tni interval za očekivanje i 80%-tni jednostrani interval za disperziju.

4. (3 boda)

Kontrolom 100 žarulja iz određene velike pošiljke ustanovljeno je da su 3 žarulje loše.

- a) Odredite 95%-tni interval povjerenja za postotak loših žarulja.
- **b)** Koliki broj n žarulja treba kontrolirati da bi se s pouzdanošću 0.95 moglo tvrditi da u čitavoj pošiljci nema više od 5% loših žarulja?

5. (**3** boda)

Izmjerena je težina 60 djece određene dobi i dobiveno je $\bar{x}=34$ kg, s=4.8 kg. Težina od 32 kg se smatra normalnom za djecu te dobi. Uz nivo značajnosti $\alpha=0.01$ testirate hipotezu $H_0...\mu=32$ prema alternativnoj hipotezi $H_1...\mu\neq32$, pri čemu se pretpostavlja da je promatrana težina X slučajna varijabla normalne razdiobe $\mathcal{N}(\mu,\sigma^2)$, uz σ^2 nepoznat.

6. (4 boda)

Kocka je bačena 120 puta i dobiveni su sljedeći rezultati:

broj	1	2	3	4	5	6
n_{j}	20	14	23	12	26	25

Pomoću χ^2 testa provjerite uz koji nivo značajnosti α se može tvrditi da se ovi podaci ravnaju po jednolikoj razdiobi $(p_j = \frac{1}{6}, j = 1, ..., 6)$.

PITANJA IZ CJELOKUPNOG GRADIVA

7. (4 boda)

U bubnju se nalaze 4 bijele i 1 crvena kuglica. Slučajna varijabla X označava u kojem je pokušaju izvučena crvena kuglica. Odredite zakon razdiobe za X i njeno očekivanje u svakom od sljedeća dva načina izvlačenja:

- a) nakon izvlačenja kuglica se ne vraća u bubanj,
- b) nakon izvlačenja kuglica se vraća u bubanj.

8. (3 boda)

Slučajna varijabla X zadana je gustoćom

$$f(x) = \frac{1}{2}x + \frac{1}{2}, x \in \langle -1, 1 \rangle$$
.

Odredite gustoću slučajne varijable Y = |2X + 1|.

9. (4 boda)

Dana je gustoća slučajnog vektora (X, Y)

$$f(x,y) = Cx, (x,y) \in [0,1] \times [0,2].$$

- a) Odredite konstantu C.
- b) Izračunajte marginalne gustoće slučajnih varijabli X i Y.
- c) Izračunajte $P\{X < Y\}$.

10. (4 boda)

Iz intervala $[\alpha, 1]$, gdje je α nepoznat odabrano je na sreću n brojeva: x_1 , $x_2,...,x_n$. Da bismo procijenili duljinu tog intervala odaberimo statistiku

$$Z = 1 - \min\{x_1, x_2, ..., x_n\}$$
.

- a) Dokažite da statistika Z nije nepristrana.
- **b)** S kojim faktorom treba pomnožiti Z kako bismo dobili nepristranu statistiku?

Ispit se piše 150 minuta. Dozvoljena je upotreba kalkulatora i knjige N. Elezović: "Statistika i procesi".