TP: Diffusion de charge le long d'une ligne électrique (R,C)

Matériel:

- Une plaquette LAB sur laquelle sont implantées 20 cellules (RC);
- Une boîte de composants RADIO;
- Un générateur BF arbitraire de signaux (permettant la génération d'impulsions fines);
- Un oscilloscope numérique interfaçable;
- Une alimentation stabilisée continue;
- Une carte SySam, un ordinateur muni des logiciels Latispro et Regressi;
- Des fils courts,
- Un multimètre numérique.

Figure 1 – La ligne électrique de diffusion de charge.

Introduction:

Le but de ce TP est l'étude de la diffusion de charge électrique sur une ligne électrique de 20 cellules (R,C). Cette expérience est analogue à celle de la diffusion thermique le long d'une barre solide calorifugée, placée hors d'équilibre thermique par des conditions aux limites constantes ou variables.

La ligne est constituée de 20 cellules (R,C) régulièrement espacées d'une distance a. Elle se caractérise par des constantes $R = 1 k\Omega$, C = 100nF et a = 7 mm.

vide	$\varepsilon_0 = 8.84 \times 10^{-12} \text{F.m}^{-1}$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H} \cdot \mathrm{m}^{-1}$
résistance interne du générateur	$R_g = 50\Omega$	

I. Analyse théorique :

1. Établir les équations satisfaites par $U_p(t)$ et le courant $I_p(t)$:

Appliquer les lois des nœuds et des mailles pour établir deux équations différentielles de récurrence liant U_p , U_{p+1} , I_p et I_{p+1} .

2.	Passer au modèle continu :
	Pour passer d'un modèle discontinu à un modèle continu, on définit l'abscisse $x = pa$ et fonctions $(x,t) \mapsto U(x,t)$, $(x,t) \mapsto Q(x,t)$ et $(x,t) \mapsto I(x,t)$ de $\mathscr{D}^2(\mathbb{R}^2,\mathbb{R})$:
	$\forall p \in [0, 20] : U(x, t) = U(p a, t) = U_p(t)$
	$\forall p \in [0, 20]$: $Q(x, t) = Q(p a, t) = Q_p(t)$
	$\forall p \in [0, 20]$: $I(x, t) = I(p a, t) = I_p(t)$
	Dans l'approximation des milieux continus, écrire le développement de Taylor permettant de relier $U_{p+1}(t) = U(x+a,t)$ à $U_p(t) = U(x,t)$, a et $\frac{\partial U}{\partial x}(x,t)$.
	Tener $\mathcal{O}_{p+1}(t) = \mathcal{O}(x + u, t)$ at $\mathcal{O}_p(t) = \mathcal{O}(x, t)$, at $\mathcal{O}_{\partial x}(x, t)$.
	Procéder de même pour relier $I_{p+1}(t)$ à $I_p(t)$, a et $\frac{\partial I}{\partial x}(x,t)$.
	Troccuer de meme pour rener $i_{p+1}(i)$ d $i_p(i)$, d et $\partial_x(x,i)$.
3.	Établir l'équation d'onde : En déduire les équations :
	$a \frac{\partial U}{\partial x}(x,t) = -R I(x,t) \text{ et } a \frac{\partial I}{\partial x}(x,t) = -C \frac{\partial U}{\partial t}(x,t).$
	Établir enfin :
	∂U $\partial^2 U$

$$\frac{\partial U}{\partial t}(x,t) = D \, \frac{\partial^2 U}{\partial x^2}(x,t)$$

Exprimer et calculer le coefficient D de diffusion de charge sur cette ligne ; calculer le coefficient $\tau = RC$.

	On rappelle l'équation de la diffusion thermique à une dimension, qui régit la loi de température $T(x,t)$ au sein d'un barreau cylindrique homogène de métal, calorifugé sur son manchon :
	$\frac{\partial T}{\partial t}(x,t) = D_{th} \frac{\partial^2 T}{\partial x^2}(x,t)$
	où D_{th} est le coefficient de diffusion thermique du milieu.
II. EXI	PERIENCE en régime stationnaire :
On a	applique à l'entrée de la ligne, une tension continue $U_0 = 10.0 \text{ V}$ à l'aide d'une alimentation disée. La sortie de la ligne est mise en court-circuit (par un petit fil positionné en p=20)
1.	Représenter le schéma équivalent de la ligne. Établir l'expression de U_p en fonction de p et de U_0 (ponts diviseurs).
2.	Mesurer précisément U_0 avec un multimètre. Mesurer au minimum 5 valeurs de U_p réparties su la ligne. En faisant une régression linéaire, vérifier la relation établie au 1. On pourra propose de valider le modèle linéaire fonction de p grâce à un programme Python.
3.	Mesurer le courant I_0 . En déduire la résistance de la ligne de cellules, vue de l'entrée. Commenter.
4.	Quelle serait la situation analogue si l'on étudiait la température le long d'un barreau cylindrique homogène de métal, calorifugé sur son manchon?
III. EXI	PERIENCE en régime sinusoïdal établi :
	mpose une tension $U_0(t) = E \cos(\omega t)$ et on laisse la sortie ouverte (aucune résistance et aucun fil n'est placé en parallèle, en p=20).
Rem	arque : la sortie étant ouverte, l'onde de charge envoyée par la source se réfléchit sur la sortie e réflexion n'est sensible que si l'on s'approche de p=20.
	The second of th
Cett	Théorie:
Cett	

- Montrer que :

$$u(x,t) = E \exp\left(-\sqrt{\frac{\omega}{2a}}x\right)\cos\left(\omega t - \sqrt{\frac{\omega}{2a}}x\right)$$

- En repassant au modèle discret, établir la loi :

$$U_p(t) = \underbrace{E \exp\left(\sqrt{\frac{\omega \tau}{2}} p\right)}_{A_p} \cos\left(\omega t - \sqrt{\frac{\omega \tau}{2}} p\right)$$

On pose $U_p(t) = A_p \cos\left(\omega \left[t - \frac{pa}{v_a}\right]\right)$.

Exprimer l'amplitude A_p et la vitesse de phase $v_{\varphi}(\omega)$ à l'aide de E, p, a, τ et ω .

2. Mesures:

- i. Appliquer la tension sinusoïdale de fréquence $f=100~{\rm Hz}$ et d'amplitude $E=7.5~{\rm V}$ à l'entrée de la ligne, *la sortie étant ouverte*.
- ii. Observer $U_1(t)$ et $U_0(t)$ à l'oscilloscope. Mesurer l'amplitude A_1 et le retard Δt_1 de $U_1(t)$ sur $U_0(t)$.
- iii. Mesurer A_p et le retard Δt_p de $U_p(t)$ sur $U_0(t)$, pour 4 autres valeurs de p inférieures à 10. Valider les résultats en comparant les développements théoriques et les résultats expérimentaux en ayant le souci permanent de présenter de façon rigoureuse les résultats avec leurs incertitudes.

3. Interprétation :

- i. Tracer le graphe de $\ln\left(\frac{A_p}{E}\right)$ en fonction de p. En déduire une mesure de τ et de son incertitude-type par une méthode utilisant chaque mesure effectuée à l'aide d'un programme Python. Commenter en comparant à la valeur attendue.
- ii. Tracer le graphe de Δt_p en fonction de p. En déduire une mesure de τ et de son incertitudetype par une méthode utilisant chaque mesure effectuée à l'aide d'un programme Python.
- iii. Comparer les deux mesures en étudiant leur compatibilité (ou leur non compatibilité) par un calcul d'écart normalisé ou de Zscore que l'on peut effectuer à la main ou en utilisant un programme Python. Commenter.
- iv. Décrire une situation analogue en diffusion thermique et en électromagnétisme (pour 5/2).

IV. Réponse à une impulsion :

- 1. À l'aide du générateur arbitraire, créer une impulsion de tension située entre 0V et 10V (on ajoute un offset de 5V), de largeur $100\mu s$ (avec duty) et de fréquence f = 100 Hz. La sortie est ouverte (en p=20).
- **2.** Observer la tension $U_5(t)$. Expliquer l'observation. Qu'est-ce que le phénomène de dispersion? La forme de l'impulse se modifie-t-elle (élargissement, tassement du maximum, adoucissement de la forme)?

Une impulse peut être écrite comme un groupe (paquet) d'ondes de type OPPS* :

$$U(x,t) = \int_{\omega - \frac{\Delta\omega}{2}}^{\omega + \frac{\Delta\omega}{2}} E(\omega) \exp\left(j\left[\omega t - \underline{k}x + \varphi(\omega)\right]\right) d\omega$$

On appelle vitesse de groupe $v_g(\omega)$, la vitesse de déplacement de l'enveloppe d'un groupe (paquet) d'ondes, de spectre en amplitude groupé autour de la pulsation ω .

FIGURE 2 – Le spectre d'amplitude d'un paquet d'ondes groupé.

FIGURE 3 – Impulsion générée par le GBF et impulsion se propageant sur la ligne.

On montre, dans un milieu très peu absorbant, dont la relation de dispersion possède de bonnes propriétés de régularité, que la vitesse de groupe est donnée par :

$$v_g(\omega) = \left[\frac{\partial \omega}{\partial k_1}\right](\omega)$$

où $k_1(\omega)$ est la partie réelle de \underline{k} .

Estimer la vitesse de groupe sur cette chaîne pour ces impulsions. Commenter.