

Hypergraph Partitioning using Tensor Eigenvalue Decomposition

NA OR TECHNOLOGY MADA SALES AND SALE

Deepak Maurya, Balaraman Ravindran, Shankar Narasimhan

Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras, India

Objective

For **k-uniform undirected weighted hy pergraph** G = (V, E), remove a subset of ∂E hyperedges, such that resulting partitions have minimum ratio-cut value.

Hyperedge Reduction

A hypergraph G = (V, E) can be represented by vertexedge incidence matrix \mathbf{H} of dimension $|V| \times |E|$ whose entry h(i,j) = 1 if $v_i \in e_j$ and 0 otherwise. The adjacency matrix for reduced hypergraph using clique expansion:

$$\mathbf{A}_r = \mathbf{H}\mathbf{W}\mathbf{H}^T - \mathbf{D}$$

where \mathbf{D} is a diagonal matrix containing degrees.

Multiple hypergraphs may reduce to same graph.

Hypergraph Representation

A natural representation of hypergraphs is a k-order n-dimensional tensor \mathcal{A} [1], which consists of n^k entries:

$$a_{i_1 i_2 \dots i_k} = \begin{cases} w_{e_j} \frac{1}{(k-1)!} & \text{if } (i_1, i_2, \dots, i_k) = \{e_j\} & e_j \in E \\ 0 & \text{otherwise} \end{cases}$$

It should be noted that \mathcal{A} is a "super-symmetric" tensor. The degree of a vertex v_i is given by

$$d(v_i) = \sum_{i_k=1}^n \dots \sum_{i_3=1}^n \sum_{i_2=1}^n a_{ii_2i_3\dots i_k}$$

The Laplacian tensor \mathcal{L} is defined as:

$$\mathcal{L} = \mathcal{D} - \mathcal{A}$$

Spectral decomposition [2] using

$$\mathcal{L}\mathbf{x}^{k-1} = \lambda\mathbf{x}, \quad \mathbf{x}^T\mathbf{x} = 1$$

where $(\lambda, \mathbf{x}) \in (\mathbb{R}, \mathbb{R}^n \setminus \{0\}^n)$ satisfying above is called the Z-eigenpair and $\mathcal{L}\mathbf{x}^{k-1} \in \mathbb{R}^n$, whose i^{th} component is defined

$$\left[\mathcal{L}\mathbf{x}^{k-1}\right]_i = \sum_{i_k=1}^n \dots \sum_{i_3=1}^n \sum_{i_2=1}^n l_{ii_2i_3\dots i_k} x_{i_2} x_{i_3} \dots x_{i_k}$$

Relaxation of min Ratio-cut

For disjoint partitions C_i and \bar{C}_i : $\operatorname{cut}(C_i, \bar{C}_i) = \sum_{e_j \in \partial E} w_{e_j} |C_i \cap e_j|$ $\min_{C_i \in C} \sum_{i=1}^p \frac{\operatorname{cut}(C_i, \bar{C}_i)}{k|C_i|k/2}$

Equivalent to:

$$egin{aligned} \min_{\mathbf{f}_1, ..., \mathbf{f}_p} & \sum_{i=1}^p \mathcal{L} \mathbf{f}_i^k \ \mathcal{L} & = \mathcal{D} - \mathcal{A}, & f_{i,j} = egin{cases} rac{1}{\sqrt{|C_j|}} & v_i \in C_j \ 0 & ext{otherwise} \end{cases} \end{aligned}$$

Relaxation:

Solution:

$$\min_{\{\mathbf{f}_1, \dots, \mathbf{f}_p\} \in \mathbb{R}^{|V|}} \quad \sum_{i=1}^p \mathcal{L}\mathbf{f}_i^k, \quad \text{s.t.} \quad \mathbf{f}_i^T \mathbf{f}_i = 1$$

Construction Cost

Theorem: The hypergraph Laplacian objective function for a k-uniform hypergraph can be expressed as

$$\mathcal{L}\mathbf{x}^k = \sum_{e_j \in E} l_{e_j}(\mathbf{x})$$

$$l_{e_j}(\mathbf{x}) = w_{e_j} \left(\sum_{i_k \in e_j} x_{i_k}^k - k \prod_{i_k \in e_j} x_{i_k} \right)$$

$$= w_{e_j} k \left(A.M \left(x_{i_k}^k \right) - G.M \left(|x_{i_k}|^k \right) (-1)^{n_s} \right)$$

$$i_j \in e_j$$

where $n_s = |\{i_j : x_{i_j} < 0\}|$, A.M and G.M stand for the arithmetic and geometric means, respectively.

Example: Consider a hypergraph G = (V, E) with $V = \{1, 2, 3\}$ and $E = \{\{1, 2, 3\}\}$. The score corresponding to the hyperedge $\{1, 2, 3\}$ is given by:

$$l_{e_j}(\mathbf{x}) = x_1^3 + x_2^3 + x_3^3 - 3x_1x_2x_3$$

Represent Hypergraph as Tensor Spectral Analysis of Laplacian Compute hyperedge hyperedge score using Fiedler vector Remove hyperedges with higher score

Spectral Analysis

Tensor eigenvalue decomposition arises from:

$$\min_{\mathbf{x}} \quad \mathcal{L}\mathbf{x}^k = \sum_{i_k=1}^n \dots \sum_{i_2=1}^n \sum_{i_1=1}^n l_{i_1 i_2 \dots i_k} x_{i_1} x_{i_2} \dots x_{i_k}$$
such that $\mathbf{x}^T \mathbf{x} = 1$

The eigenvector with minimum positive λ satisfying above equation is termed as Fiedler eigenvector and can be computed by following optimization problem

$$\mathbf{v}_{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \mathcal{L}\mathbf{x}^{k} > 0,$$
s. t. $\mathbf{x}^{T}\mathbf{x} = 1$

The corresponding eigenvalue can be computed as $\lambda_{\star} = \mathcal{L}\mathbf{v}_{\star}^{k}$.

Challenges

- Eigenvectors may not be orthogonal for symmetric tensors.
- Odd order tensor have negative eigenvalues.

Ex 1: 3-uniform hypergraph

For given hypergraph, compute min ratio cut partitions.

\mathbf{f}_{11}	\mathbf{f}_{21}	${\bf f}_{31}$	\mathbf{f}_{41}						
-0.05	0.06	0.47	0.47		hyperedges	$l_{e_j}(\mathbf{f}_{11})$	$l_{e_j}(\mathbf{f}_{21})$	$l_{e_j}(\mathbf{f}_{31})$	l_{ϵ}
0.03	0.03	0.46	0.46		$\overline{\{1,2,3\}}$	0.0004	0.0004	0	
0.06	-0.05	0.47	0.47		$\{1, 2, 4\}$	0.0127	0.0111	0.0025	$\mid 0$
0.23	0.23	0.42	0.42		$\{2, 3, 4\}$	0.0111	0.0127	0.0025	$\mid 0$
0.34	0.34	0.34	0.34		$\{4, 5, 6\}$	0.0278	0.0278	0.0278	0
0.42	0.42	0.23	0.23		$\{6, 7, 8\}$	0.0025	0.0025	0.0127	$\mid 0$
0.47	0.47	-0.05	0.06		$\{7, 8, 9\}$	0	0	0.0004	0
0.46	0.46	0.03	0.03		$\{6, 8, 9\}$	0.0025	0.0025	0.0111	0
0.47	0.47	0.06	-0.05						
Fiedler Eigenvectors				Hyperedge Score					

Remove hyperedge $\{v_4, v_5, v_6\}$ (higher score)

Ex 2: 4-uniform hypergraph

Consider the 4-uniform hypergraph

Remove the	hyperedges	$l_{e_j}(\mathbf{x})$
hyperedge	$\{1, 3, 4, 9\}$	0.0355
$\{v_3, v_4, v_5, v_6\}$	$\{1, 2, 3, 4\}$	0.0355
(higher score)	${3,4,5,6}$	0.3785
	$\{5, 6, 7, 8\}$	0.3670
	$\{6, 7, 8, 10\}$	0.1577

Ex 3: 2-uniform hypergraph

Ratio-cut =
$$\frac{3}{5} + \frac{3}{5} = 1.2$$
, Existing Method
Ratio-cut = $\frac{2}{4} + \frac{2}{6} = 0.83$, Proposed Approach (Optimal)

Conclusions & Future Work

- 1 Partitioning of hypergraphs without reduction is proposed. Also demonstrated the improvement for graphs.
- 2 Scalability of tensor eigenvalue decomposition to apply on real datasets.
- 3 Theoretical analysis of the proposed algorithm.

References

- [1] A. Banerjee, A. Char, and B. Mondal, "Spectra of general hypergraphs," *Linear Algebra and its Applications*, vol. 518, pp. 14–30, 2017.
- [2] L. Qi and Z. Luo, Tensor analysis: spectral theory and special tensors, vol. 151, Siam 2017.

Contact Information

- Email: maurya@cse.iitm.ac.in, ravi@cse.iitm.ac.in, naras@iitm.ac.in
- Web: d-maurya.github.io/, www.cse.iitm.ac.in/ ravi/, www.che.iitm.ac.in/ naras/