Solutions Homework 1 Foundations of Computational Math 1 Fall 2011

Problem 1.1

This problem considers three basic vector norms: $\|.\|_1, \|.\|_2, \|.\|_{\infty}$.

- **1.1.a** Prove that $\|.\|_1$ is a vector norm.
- **1.1.b** Prove that $\|.\|_{\infty}$ is a vector norm.
- **1.1.c** Consider $||.||_2$.
 - i Show that $\|.\|_2$ is definite.
 - ii Show that $\|.\|_2$ is homogeneous.
 - iii Show that for $||.||_2$ the triangle inequality follows from the Cauchy inequality $|x^H y| \le ||x||_2 ||y||_2$.
 - iv Assume you have two vectors x and y such that $||x||_2 = ||y||_2 = 1$ and $x^H y = |x^H y|$, prove the Cauchy inequality holds for x and y.
 - v Assume you have two arbitrary vectors \tilde{x} and \tilde{y} . Show that there exists x and y that satisfy the conditions of part (iv) and $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ where α and β are scalars.
 - vi Show the Cauchy inequality holds for two arbitrary vectors \tilde{x} and \tilde{y} .

Solution: We consider each norm in turn.

One Norm: If $x \neq 0$ then there exists an element $\xi_j \neq 0$. Therefore,

$$||x||_1 = \sum_i |\xi_i|$$

$$\geq |\xi_j|$$

$$\geq 0$$

and x = 0 implies that $||x||_1 = 0$. Since all terms in the sum are nonnegative the only way the sum can be 0 is if all terms are 0 which implies all $\xi_i = 0$. It follows that $||x||_1 = 0$ implies x = 0. Therefore $||x||_1$ is definite.

We have

$$\|\alpha x\|_1 = \sum_i |\alpha \xi_i|$$

$$= \sum_i |\alpha| |\xi_i|$$

$$= |\alpha| \sum_i |\xi_i|$$

$$= |\alpha| \|x\|_1$$

and therefore $||x||_1$ is homogeneous.

We have, given the triangle inequality for magnitude on \mathbb{R} and \mathbb{C} ,

$$||x + y||_{1} = \Sigma_{i}|\xi_{i} + \eta_{i}|$$

$$\leq \Sigma_{i}(|\xi_{i}| + |\eta_{i}|)$$

$$= \Sigma_{i}|\xi_{i}| + \Sigma_{i}|\eta_{i}|$$

$$= ||x||_{1} + ||y||_{1}$$

and therefore $||x||_1$ satisfies the triangle inequality.

Max Norm: If $x \neq 0$ then there exists an element $\xi_j \neq 0$. Therefore,

$$||x||_{\infty} = \max_{i} |\xi_{i}|$$

$$\geq |\xi_{j}|$$

$$\geq 0$$

Therefore $||x||_{\infty}$ is definite.

We have

$$\|\alpha x\|_{\infty} = \max_{i} |\alpha \xi_{i}|$$

$$= \max_{i} (|\alpha||\xi_{i}|)$$

$$= |\alpha| \max_{i} |\xi_{i}|$$

$$= |\alpha| \|x\|_{\infty}$$

and therefore $||x||_{\infty}$ is homogeneous.

We have

$$||x+y||_{\infty} = \max_{i} |\xi_{i} + \eta_{i}|$$

$$\leq \max_{i} (|\xi_{i}| + |\eta_{i}|)$$

$$\leq \max_{i} |\xi_{i}| + \max_{i} |\eta_{i}|$$

$$= ||x||_{\infty} + ||y||_{\infty}$$

and therefore $||x||_{\infty}$ satisfies the triangle inequality.

Two Norm: If $x \neq 0$ then there exists an element $\xi_j \neq 0$. Therefore,

$$||x||_2^2 = \Sigma_i |\xi_i|^2$$

$$\geq |\xi_j|^2$$

$$> 0$$

Therefore $||x||_2$ is definite.

We have

$$\|\alpha x\|_{2}^{2} = \Sigma_{i} |\alpha \xi_{i}|^{2}$$

$$= \Sigma_{i} (|\alpha|^{2} |\xi_{i}|^{2})$$

$$= |\alpha|^{2} \Sigma_{i} |\xi_{i}|^{2}$$

$$= |\alpha|^{2} \|x\|_{2}$$

and therefore $||x||_2$ is homogeneous.

The triangle inequality follows from the Cauchy inequality for the two norm:

$$|x^H y| \le ||x||_2 ||y||_2$$

as follows

$$||x + y||_{2}^{2} = x^{H}x + y^{H}y + 2\mathcal{R}e(x^{H}y)$$

$$= ||x||_{2}^{2} + ||y||_{2}^{2} + 2\mathcal{R}e(x^{H}y)$$

$$\leq ||x||_{2}^{2} + ||y||_{2}^{2} + 2|x^{H}y|$$

$$\leq ||x||_{2}^{2} + ||y||_{2}^{2} + 2||x||_{2}||y||_{2}$$

$$= (||x||_{2} + ||y||_{2})^{2}.$$

So the true problem is to prove the Cauchy inequality. To do so assume that we have two vectors x and y such that $||x||_2 = ||y||_2 = 1$ and $x^H y = |x^H y|$. For any two such vectors we have

$$||x - y||_2^2 = (x - y)^H (x - y)$$

= $2 - 2x^H y$
> 0

Therefore $|x^H y| \le 1 = ||x||_2 ||y||_2$.

To generalize to any two nonzero vectors \tilde{x} and \tilde{y} note that there must exist complex scalars α and β such that $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ where x and y satisfy the conditions above (see Lemma below). We have

$$|\tilde{x}^{H}\tilde{y}| = |\alpha x^{H}y\beta|$$

$$= |\alpha \beta||x^{H}y|$$

$$\leq |\alpha \beta||x||_{2}||y||_{2}$$

$$= |\alpha||x||_{2}|\beta||y||_{2}$$

$$= ||\alpha x||_{2}||\beta y||_{2}$$

$$= ||\tilde{x}||_{2}||\tilde{y}||_{2}$$

Lemma. Let $\tilde{x} \in \mathbb{C}^n$ and $\tilde{y} \in \mathbb{C}^n$ be such that $\tilde{x} \neq 0$ and $\tilde{y} \neq 0$. There exists $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C}$, $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^n$ such that

$$||x||_2 = ||y||_2 = 1$$

$$\tilde{x} = \alpha x$$

$$|x^H y| = x^H y$$

$$\tilde{y} = \beta y$$

Proof. Suppose $\tilde{x}^H \tilde{y} = \gamma e^{i\phi}$ where $\gamma \in \mathbb{R}$ and $\gamma > 0$. Let $\phi_1 \in \mathbb{R}$ and $\phi_2 \in \mathbb{R}$ be such that $\phi = \phi_1 + \phi_2$. The scalars α and β can be set as follows:

$$\alpha = \|\tilde{x}\|e^{-i\phi_1} \qquad \beta = \|\tilde{y}\|e^{i\phi_2}$$

Taking $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ implies that

$$||x||_2^2 = x^H x = \frac{1}{|\alpha|^2} \tilde{x}^H \tilde{x} = \frac{1}{||\tilde{x}||_2^2} \tilde{x}^H \tilde{x} = 1$$

$$||y||_2^2 = y^H y = \frac{1}{|\beta|^2} \tilde{y}^H \tilde{y} = \frac{1}{||\tilde{y}||_2^2} \tilde{y}^H \tilde{y} = 1$$

So $||x||_2 = ||y||_2 = 1$ and we have that

$$\gamma e^{i\phi} = \tilde{x}^H \tilde{y} = \bar{\alpha}\beta \|\tilde{y}\|_2 \|\tilde{x}\|_2 x^H y = e^{i\phi_1} e^{i\phi_2} \|\tilde{y}\|_2 \|\tilde{x}\|_2 x^H y = e^{i(\phi_1 + \phi_2)} \|\tilde{y}\|_2 \|\tilde{x}\|_2 x^H y = e^{i\phi} \|\tilde{y}\|_2 \|\tilde{y}\|_2$$

$$\therefore x^H y = \frac{\gamma}{\|\tilde{y}\|_2 \|\tilde{x}\|_2}$$

Since γ , $\|\tilde{y}\|$ and $\|\tilde{x}\|$ are real and positive it follows that x^Hy is also real and positive. Therefore, $x^Hy=|x^Hy|$ as desired.

Problem 1.2

What is the unit ball in \mathbb{R}^2 for each of the vector norms: $\|.\|_1, \|.\|_2, \|.\|_{\infty}$? Solution:

The unit balls in \mathbb{R}^2 follow immediately from the equations ||x|| = 1 for each norm.

- $||x||_2 = 1 = ||x||_2^2 = \xi_1^2 + \xi_2^2 \rightarrow \text{a circle with radius 1 centered at the origin.}$
- $||x||_{\infty} = 1 = max(|\xi_1|, |\xi_2|) \to \text{a square with corners } (1, 1), (-1, 1), (-1, -1), (1, -1).$
- $||x||_1 = 1 = |\xi_1| + |\xi_2| \to a$ diamond with sides of length 1 and corners (1,0), (0,1), (-1,0), (0,-1).

Problem 1.3

Consider the matrices

$$B_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B_2 = \begin{pmatrix} 0 & 2 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}$$

- **1.3.a**. Show that they have the same range space.
- **1.3.b.** We have $x = B_1c_1 = B_2c_2$ for all x in the range space. Determine the relationship between c_1 and c_2 and express it as a linear transformation.

Solution: The linear independence of the columns of B_1 and B_2 is clear from the zero/nonzero structure. So $\mathcal{R}(B_1)$ and $\mathcal{R}(B_2)$ are each subspaces of \mathbb{R}^3 with dimension 2 and the columns of the respective matrices are bases for the corresponding spaces. To see that the spaces are the same it is sufficient to show that the columns of B_1 can be written as linear combinations of the columns of B_2 and vice versa. This implies that the columns of each matrix are also a basis for the range space of the other matrix.

Specifically, we have

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

So the columns of B_1 are 2 linearly independent vectors in $\mathcal{R}(B_2)$. Since the dimension of $\mathcal{R}(B_2)$ is 2, the columns of B_1 are a basis for $\mathcal{R}(B_2)$ and therefore $\mathcal{R}(B_2) = \mathcal{R}(B_1)$. Alternatively, We have

$$\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

So the columns of B_2 are 2 linearly independent vectors in $\mathcal{R}(B_1)$. Since the dimension of $\mathcal{R}(B_1)$ is 2, the columns of B_2 are a basis for $\mathcal{R}(B_1)$ and therefore $\mathcal{R}(B_2) = \mathcal{R}(B_1)$.

These relationships can all be written in terms of a linear transformation relating B_1 and B_2 to reach the same conclusions. To see this note that

$$B_{1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = B_{2}M$$

$$B_{2} = \begin{pmatrix} 0 & 2 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = B_{1}N$$

Therefore, any linear combination of the columns of B_1 is in S and can be written as a linear combination of the columns of B_1 and vice versa. The columns of M are easily seen to be linearly independent as are the columns of N. It is also easily verified that $N = M^{-1}$.

We then have for any $x \in \mathcal{S} \subset \mathbb{R}^3$ we have unique $c_1 \in \mathbb{R}^2$ and $c_2 \in \mathbb{R}^2$

$$x = B_1c_1 = (B_2M)c_1 = B_2(Mc_1) = B_2c_2$$

and since M is nonsingular it relates all such c_1 and c_2 , i.e. it is an invertible map from \mathbb{R}^2 to itself. The conclusion $\mathcal{R}(B_2) = \mathcal{R}(B_1)$ follows.

Problem 1.4

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function, i.e.,

$$F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$$

- .
- **1.4.a.** Suppose you are given a routine that returns F(x) given any $x \in \mathbb{R}^n$. How would you use this routine to determine a matrix $A \in \mathbb{R}^{m \times n}$ such that F(x) = Ax for all $x \in \mathbb{R}^n$?
- **1.4.b**. Show A is unique.

Solution: For the standard basis e_1, \dots, e_n of \mathbb{R}^n we have uniquely $\forall x \in \mathbb{R}^n$

$$x = \sum_{i=1}^{n} e_i \xi_i.$$

By linearity we have

$$F(x) = F(\sum_{i=1}^{n} e_i \xi_i) = \sum_{i=1}^{n} F(e_i) \xi_i = \sum_{i=1}^{n} a_i \xi_i = Ax$$

where $F(e_i) = a_i = Ae_i$ determines the *i*-th column of A. So evaluating F on the n standard basis vectors yields A.

Suppose we are given two matrices A and B that define $F(\cdot)$. We have by definition

$$\forall x \in \mathbb{R}^n \ y = Ax = Bx$$
$$\therefore Ae_i = Be_i \ 1 \le i \le n$$
$$\therefore A = B$$

Problem 1.5

Consider the matrix

$$L = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ \lambda_{21} & \lambda_{22} & 0 & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix}$$

Suppose that $\lambda_{11} \neq 0$, $\lambda_{33} \neq 0$, $\lambda_{44} \neq 0$ but $\lambda_{22} = 0$

- **1.5.a**. Show that L is singular.
- **1.5.b.** Determine a basis for the nullspace $\mathcal{N}(L)$.

Solution: To show that L is singular and find the nullspace we must determine the structure of the $x \neq 0$ such that Lx = 0. Imposing the λ_{ii} constraints we have, $\lambda_{11} \neq 0 \rightarrow \xi_1 = 0$ and therefore,

$$\begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix} \begin{pmatrix} 0 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

where ξ_2 is arbitrary and

$$\begin{pmatrix} \lambda_{33} & 0 \\ \lambda_{43} & \lambda_{44} \end{pmatrix} \begin{pmatrix} \xi_3 \\ \xi_4 \end{pmatrix} = \begin{pmatrix} -\lambda_{32} \\ -\lambda_{42} \end{pmatrix} \xi_2.$$

Since $\lambda_{33} \neq 0$ and $\lambda_{44} \neq 0$ the 2×2 matrix is nonsingular and therefore, ξ_3 and ξ_4 are uniquely determined given a particular value for ξ_2 , i.e., there are no further degrees of freedom in the null space vectors. It follows that the dimension of $\mathcal{N}(L)$ is 1. So

$$\mathcal{N}(L) = span\begin{bmatrix} 0\\1\\\nu_2\\\nu_3 \end{bmatrix} \text{ where } \begin{pmatrix} \lambda_{33} & 0\\\lambda_{43} & \lambda_{44} \end{pmatrix} \begin{pmatrix} \nu_2\\\nu_3 \end{pmatrix} = \begin{pmatrix} -\lambda_{32}\\-\lambda_{42} \end{pmatrix}$$

Problem 1.6

- **1.6.a** Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be nonsingular matrices. Show $(AB)^{-1} = B^{-1}A^{-1}$.
- **1.6.b** Suppose $A \in \mathbb{R}^{m \times n}$ with m > n and let $M \in \mathbb{R}^{n \times n}$ be a nonsingular square matrix. Show that $\mathcal{R}(A) = \mathcal{R}(AM)$ where $\mathcal{R}(\dot{)}$ denotes the range of a matrix.

Solution:

By assumption, the $n \times n$ nonsingular matrices A^{-1} and B^{-1} exist, are unique and $AA^{-1} = BB^{-1} = A^{-1}A = B^{-1}B = I$. Let $M = B^{-1}A^{-1}$.

We have

$$(AB)M = ABB^{-1}A^{-1}$$

$$= A(BB^{-1})A^{-1}$$

$$= AIA^{-1}$$

$$= AA^{-1}$$

$$= I$$

$$M(AB) = B^{-1}A^{-1}AB$$

$$= B^{-1}(A^{-1}A)B$$

$$= B^{-1}IB$$

$$= B^{-1}B$$

$$= I$$

To see that M is unique, suppose there is another matrix $Q \neq M$ such that ABQ = I. We have

$$Q = IQ = (MAB)Q = M(ABQ) = M$$

Now suppose that $Q \neq M$ such that QAB = I. We have

$$Q = QI = Q(ABM) = (QAB)M = M$$

(Strictly speaking you need only prove one of these to show uniqueness.)

We must show $\mathcal{R}(A) \subseteq \mathcal{R}(AM)$ and $\mathcal{R}(A) \supseteq \mathcal{R}(AM)$.

We have $y \in \mathcal{R}(A) \to \exists x \in \mathbb{R}^n$ such that y = Ax. M nonsingular implies that $\forall x \in \mathbb{R}^n \exists c \in \mathbb{R}^n$ such that x = Mc. Therefore, y = AMc and $y \in \mathcal{R}(AM)$.

We have $y \in \mathcal{R}(AM) \to \exists x \in \mathbb{R}^n$ such that y = AMx. Also $M \in \mathbb{R}^{n \times n} \to b = Mx \in \mathbb{R}^n$. Therefore, $y = AMx = Ab \to y \in \mathcal{R}(A)$.

Problem 1.7

Let $y \in \mathbb{R}^m$ and ||y|| be any vector norm defined on \mathbb{R}^m . Let $x \in \mathbb{R}^n$ and A be an $m \times n$ matrix with m > n.

- **1.7.a.** Show that the function f(x) = ||Ax|| is a vector norm on \mathbb{R}^n if and only if A has full column rank, i.e., rank(A) = n.
- **1.7.b.** Suppose we choose f(x) from part (1.7.a) to be $f(x) = ||Ax||_2$. What condition on A guarantees that $f(x) = ||x||_2$ for any vector $x \in \mathbb{R}^n$?

Solution:

This question essentially asks when can we embed the vector space \mathbb{R}^n in \mathbb{R}^m in order to define a norm on \mathbb{R}^n .

Let $y \in \mathbb{R}^m$ and g(y) = ||y|| be a vector norm on \mathbb{R}^m . We know by the definiteness of norms that if g(y) = 0 only when y = 0. So, since y = Ax, we must consider what x can lead to y = 0. By assumption, f(x) is a vector norm for \mathbb{R}^n . We know by the definiteness of norms that f(x) = 0 only when x = 0.

Now assume that rank(A) < n. This means that there exists an $x \neq 0$ such that Ax = 0. Therefore we have $\exists x \neq 0$ such that f(x) = f(Ax) = f(0) = 0. This contradicts the assumption that f(x) is a vector norm on \mathbb{R}^n . Therefore, rank(A) = n must hold if f(x) is a vector norm on \mathbb{R}^n .

 \leftarrow

Now suppose rank(A) = n. Since g(y) is a norm on \mathbb{R}^n we need only check that f(x) satisfies the properties of a norm by writing it in terms of g(y).

Since A is full rank, $x \neq 0 \rightarrow y = Ax \neq 0$. Therefore,

$$f(x) = g(Ax)$$

$$= g(y)$$

$$= ||y||$$

$$\neq 0$$

and f is definite.

Let $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

$$f(\alpha x) = g(A(\alpha x)) = g(\alpha Ax)$$

$$= g(\alpha y) = ||\alpha y||$$

$$= |\alpha||y|| = |\alpha|g(y)$$

$$= |\alpha|g(Ax) = |\alpha|f(x)$$

Therefore f(x) is homogeneous.

Let $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^n$.

$$f(x_1 + x_2) = g(A(x_1 + x_2)) = g(Ax_1 + Ax_2)$$

$$= g(y_1 + y_2) = ||y_1 + y_2||$$

$$\leq ||y_1|| + ||y_2|| = g(y_1) + g(y_2)$$

$$= g(Ax_1) + g(Ax_2) = f(x_1) + f(x_2)$$

For the second part of the question, if the matrix $A \in \mathbb{R}^{m \times n}$ is an isometry, i.e., it has orthonormal columns, then $A^T A = I_n$. We therefore have

$$f(x)^{2} = ||Ax||_{2}^{2}$$
$$= x^{T}A^{T}Ax$$
$$= x^{T}x$$
$$= ||x||_{2}^{2}$$

and $f(x) = ||x||_2$ on \mathbb{R}^n as desired.