

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14137625
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS EMMANUEL MORALES MENUIOLA		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 9 + 4j, B = 5 + 2j and C = 5 + 6j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 4}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 9 m. The resistance of the metal frame used for the cube is $9 \Omega \,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=90\,\Omega,\,L=0.8\,\mathrm{H},\,C=30\,\mu\mathrm{F}$ and $V_{AC}=60\,\mathrm{V}$ at $60\,\mathrm{Hz}.$ (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14121732
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	$JOEL\ GERARDO\ AGUERO\ LLANAS$		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 2 + 5j, B = 7 + 8j and C = 2 + 5j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 5}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 3 m. The resistance of the metal frame used for the cube is $3 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=30\,\Omega,\,L=0.4\,\mathrm{H},\,C=90\,\mu\mathrm{F}$ and $V_{AC}=50\,\mathrm{V}$ at $60\,\mathrm{Hz}.$ (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14124427
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JERSON CHAVEZ ORTIZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 7 + 8j, B = 3 + 9j and C = 2 + 9j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 8}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 5 m. The resistance of the metal frame used for the cube is $3 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=30\,\Omega,\,L=0.2\,\mathrm{H},\,C=90\,\mu\mathrm{F}$ and $V_{AC}=40\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14156040
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS ANTNONIO FERNENDEZ CARRASCO		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=5+8{\rm j},\,B=4+5{\rm j}$ and $C=5+6{\rm j},$ simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 8}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 4 m. The resistance of the metal frame used for the cube is $3 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=30\,\Omega,\,L=0.5\,\mathrm{H},\,C=30\,\mu\mathrm{F}$ and $V_{AC}=30\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14156037
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	MICHAEL MURILLO MENDEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 6 + 6j, B = 9 + 2j and C = 4 + 6j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 6}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 2 m. The resistance of the metal frame used for the cube is $5 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=50\,\Omega,\,L=0.7\,\mathrm{H},\,C=70\,\mu\mathrm{F}$ and $V_{AC}=80\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	11073892
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSUE AMADOR SIFUENTES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 6 + 4j, B = 5 + 2j and C = 2 + 4j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 4}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 4 m. The resistance of the metal frame used for the cube is $8 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=80\,\Omega,\,L=0.5\,\mathrm{H},\,C=90\,\mu\mathrm{F}$ and $V_{AC}=40\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	11268436
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDUARDO ZALDIVAR MARTINEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 6 + 8j, B = 8 + 5j and C = 7 + 4j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 8}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 6 m. The resistance of the metal frame used for the cube is $7 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=70\,\Omega,\,L=0.5\,\mathrm{H},\,C=20\,\mu\mathrm{F}$ and $V_{AC}=20\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14140390
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS DAVID MARENTES REYES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=7+3{\rm j},\,B=5+3{\rm j}$ and $C=5+7{\rm j},$ simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 3}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 2 m. The resistance of the metal frame used for the cube is $7 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=70\,\Omega,\,L=0.5\,\mathrm{H},\,C=70\,\mu\mathrm{F}$ and $V_{AC}=40\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	12068799
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS ANTONIO ROBLESREYES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=6+8\mathrm{j},\,B=2+6\mathrm{j}$ and $C=3+8\mathrm{j},\,\mathrm{simplify}$ the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 8}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 5 m. The resistance of the metal frame used for the cube is $3 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=30\,\Omega,\,L=0.3\,\mathrm{H},\,C=70\,\mathrm{\mu F}$ and $V_{AC}=60\,\mathrm{V}$ at $60\,\mathrm{Hz}.$ (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14150725
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LILIANA VERA GLZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=3+5{\rm j},\,B=6+9{\rm j}$ and $C=2+7{\rm j},$ simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 5}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 9 m. The resistance of the metal frame used for the cube is $2 \Omega \,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1 Figure 2

Figure 3

Figure 4

3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)

- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=20\,\Omega,\,L=0.4\,\mathrm{H},\,C=20\,\mu\mathrm{F}$ and $V_{AC}=60\,\mathrm{V}$ at $60\,\mathrm{Hz}.$ (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	14125016
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	DAVID OTHONIEL SALDIVAR PEREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 3 + 7j, B = 8 + 7j and C = 8 + 6j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 7}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 8 m. The resistance of the metal frame used for the cube is $5 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=50\,\Omega,\,L=0.3\,\mathrm{H},\,C=30\,\mu\mathrm{F}$ and $V_{AC}=20\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	1205596
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ALBERTO VAZQUEZ MEDINA		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 4 + 9j, B = 2 + 4j and C = 5 + 9j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 9}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 5 m. The resistance of the metal frame used for the cube is $5 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=50\,\Omega,\,L=0.7\,\mathrm{H},\,C=40\,\mu\mathrm{F}$ and $V_{AC}=30\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	12666518
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	SAMUEL ROSAS GONZALEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let A = 4 + 5j, B = 2 + 8j and C = 2 + 6j, simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 5}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 8 m. The resistance of the metal frame used for the cube is $7 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=70\,\Omega,\,L=0.7\,\mathrm{H},\,C=20\,\mu\mathrm{F}$ and $V_{AC}=60\,\mathrm{V}$ at $60\,\mathrm{Hz}$. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	12064655
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDSON ORLANDONAVARRO RAMIREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=5+5{\rm j},\,B=9+6{\rm j}$ and $C=4+7{\rm j},$ simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 5}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 3 m. The resistance of the metal frame used for the cube is $2 \Omega \,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=20\,\Omega,\,L=0.3\,\mathrm{H},\,C=30\,\mathrm{\mu F}$ and $V_{AC}=90\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Basics of DC and AC circuits	Registration #	11126870
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JUAN GAEL GONZALEZ RODRIGUEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Let $A=5+8\mathrm{j},\,B=4+5\mathrm{j}$ and $C=5+6\mathrm{j},$ simplify the following expressions. (2 points)

(a)
$$A^3$$
 (b) $\frac{A^2B}{C}$ (c) $\frac{A}{B} + C$ (d) $\frac{A}{\frac{B}{C} + 8}$

2. The side of the cube-shaped metal frame shown in Figure 1 is 4 m. The resistance of the metal frame used for the cube is $3 \,\Omega\,\mathrm{m}^{-1}$. Calculate the resistance between two opposite corners. (2 points)

Figure 1

Figure 2

Figure 3

Figure 4

- 3. Find the equivalent resistance of the circuit shown in Figure 2. (2 points)
- 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4. The values are $R=R_1=R_2=30\,\Omega,\,L=0.5\,\mathrm{H},\,C=30\,\mu\mathrm{F}$ and $V_{AC}=30\,\mathrm{V}$ at 60 Hz. (2 points)
- 5. Find the resonant frequency for the circuit shown in Figure 3 and Figure 4. Calculate current, voltage and power across each element of the circuit shown in Figure 3 and Figure 4 at the resonant frequency. Use the values given the above problem. (2 points)