Bandwidth Bandwidth Bandwidth Bandwidth Bandwidth Bandwidth Bandwidth separate type Direction Direction Direction Down Down Harvard type Data separate Transferred IO address Memory address Control data data type Prior art Fig. 1 Demultiplexer Address Data type Neumann type Address, Data Multiplexer type

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

Fig. 4

ċ

Fig. 7

71g. 8

Instruction processing analysis

Concurrent instruction density

			Single cross bar bus(DMA)			Double cross bar bus(DMA)			←Processing time (response speed)
100	80	80	20	40	70	ည	10	20	-
Library APPLI_A 100	APPLI_B 80	APPLI_C 80	APPLI_A 50	APPLI_B 40	APPLI_C 20	APPLI_A 5	APPLI_B 10	APPLI_C 20	
Bus structure	Neumann (demultiplexer) type			Harvard (data separate) type			Direction separate type		

Fig. 9

Analysis index (weighted index)

$\operatorname{Fig.}\ 11(a)$ Basis for determining performance index

Response time: R

Performance affecting coefficient of response time: lx

Bus transaction: T

Performance affecting coefficient of bus transaction: mx

Processing quantity: E

Performance affecting coefficient of processing quantity:nx

Rlx×Tmx×En=Performance index:x

Example) 1x = 1/1 sec., mx = 1/10 times, nx = 1/10 MIPS

$extsf{Fig.}$ 11 (b)Basis for determining power index

Average (maximum) processing quantity: Eav (Emx)

Power affecting coefficient of processing quantity: ly

Hardware ratio: H

Power affecting coefficient of hardware ratio: my

Average (maximum) concurrent active ratio: Anv (Amx)

Power affecting coefficient of concurrent active ratio: ny or Eav ly×Hmy×Aavny=Average power index

Emx ly×Hmy×Amxny=Maximum power index

Example) ly = 1/10 MIPS, my = 1/20%, ny = 1/25%

Fig. 11 (C) Basis for determining area index

Memory quantity: M

Area affecting coefficient of memory quantity: lz FIFO quantity: F

Area affecting coefficient of FIFO quantity: mz

Bus width: B

Area affecting coefficient of bus width: nz

Mlz×Fmz×Bnz=Area index:z

Example) lz = 1/1 kByte, mz = 1/128 bytes, nz = 1/16 bits

Fig. 11(d)

Basis for determining analysis index

Coefficient affecting performance index: a Performance index (performance) Power index (power)

Coefficient affecting power index: b

Area index (area)

Coefficient affecting area index: ax+by+cz=Optimal index

Example) a=0.5, b=0.3, c=0.

Fig. 12

Verify HW/SW coordination

Fig. 13