Proving identities: $A\Delta B = (A \cup B) - (A \cap B)$

Prove for YAB it A and B are sets dun AB= (AUB)-(Ans) 5-poor that x is a particular but arbitrary chosen

Carl X4 A, X4 B

By del. of AAB, X4 AAB

By lef. of U, n we have X4 AUB

X4 AND

Hence X4 (AUB) - (ADB)

Proof continues

Carl X+A, X+B By def of unron, XE AJB By def. of intersection, XY ANB So xe (AUB) - (AAB)

Cary XEA, XEB Dy det. of A, X& ADO XEAUB XEANB x & (AUB) - (AMB)

The algebra of sets

The algebra of sets (1)

Suppose that A, B, C, U are sets with $A \subseteq U$, $B \subseteq U$, $C \subseteq U$

Commutative laws (a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

Associative laws (a)
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 and

(b)
$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

Distributive laws (a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 and

(b)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Identity laws (a)
$$A \cup \emptyset = A$$
 and (b) $A \cap U = A$

Complement laws (a)
$$A \cup \sim A = U$$
 and (b) $A \cap \sim A = \emptyset$.

The algebra of sets (2)

Double complement law $\sim (\sim A) = A$.

(a) $A \cup A = A$ and (b) $A \cap A = A$. **Idempotent laws**

(a) $A \cup U = U$ and (b) $A \cap \emptyset = \emptyset$. Universal bound laws

(a) \sim $(A \cup B) = \sim A \cap \sim B$ and (b) \sim $(A \cap B) = \sim A \cup \sim B$ De Morgan's law

(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$ **Absorption laws**

Complement of *U* and \emptyset (a) $\sim U = \emptyset$ and (b) $\sim \emptyset = U$

Set difference law $A - B = A \cap \sim B$

Proving the commutative law $A \cup B = B \cup A$

Definition: $A \cup B = \{x \mid x \in A \text{ or } x \in B\} \ B \cup A = \{x \mid x \in B \text{ or } x \in A\}.$

These are the same set. To see this, check all possible cases.

Case 1: Suppose $x \in A$ and $x \in B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

Case 2: Suppose $x \in A$ and $x \notin B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

Case 3: Suppose $x \notin A$ and $x \in B$. Since $x \in B$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

Case 4: Suppose $x \notin A$ and $x \notin B$. The definitions above show that x is not in $A \cup B$ and x is not in $B \cup A$.

So, for all possible x, either x is in both $A \cup B$ and $B \cup A$, or it is in neither. We conclude that the sets $A \cup B$ and $B \cup A$ are the same.

De Morgan's laws

$$\sim (A \cap B) = \sim A \cup \sim B.$$

A proof of De Morgan's law $\sim (A \cap B) = \sim A \cup \sim B$

Case 1: Suppose $x \in A$ and $x \in B$. From the definition of \cap , $x \in A \cap B$. So from the definition of \sim , $x \notin \sim (A \cap B)$. From the definition of \sim , $x \notin \sim A$ and also $x \notin \sim B$. So from the definition of \cup , $x \notin \sim A \cup \sim B$.

Case 2: Suppose $x \in A$ and $x \notin B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \in \sim (A \cap B)$. From the definition of \sim , $x \notin \sim A$ but $x \in \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

Case 3: Suppose $x \notin A$ and $x \in B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \in \sim (A \cap B)$. From the definition of \sim , $x \in \sim A$ but $x \notin \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

Case 4: Suppose $x \notin A$ and $x \notin B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \in \sim (A \cap B)$. From the definition of \sim , $x \in \sim A$ and $x \in \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

Using the algebra of sets

Algebraic proof

$$(\underline{A \cup B}) \cap \sim (\underline{A \cap B}) = (\underline{A \cup B}) \cap (\sim \underline{A \cup \sim B}) \text{ De Morgan}$$

$$= ((\underline{A \cup B}) \cap \sim \underline{A}) \cup ((\underline{A \cup B}) \cap \sim \underline{B}) \text{ distributive}$$

$$= (\sim \underline{A \cap (\underline{A \cup B})}) \cup (\sim \underline{B \cap (\underline{A \cup B})}) \text{ commutative}$$

$$= ((\sim \underline{A \cap A}) \cup (\sim \underline{A \cap B})) \cup ((\sim \underline{B \cap A}) \cup (\sim \underline{B \cap B})) \text{ distributive}$$

$$= ((\underline{A \cap \sim A}) \cup (\underline{B \cap \sim A})) \cup ((\underline{A \cap \sim B}) \cup (\underline{B \cap \sim B})) \text{ commutative}$$

$$= (\emptyset \cup (\underline{B \cap \sim A})) \cup ((\underline{A \cap \sim B}) \cup \emptyset) \text{ complement}$$

$$= (\underline{A \cap \sim B}) \cup (\underline{B \cap \sim A}) \text{ commutative and identity}$$

Cardinality of sets

Cardinality of sets

Definition The cardinality of a *finite* set A is the number of distinct elements in A, and is denoted by |A|.

$$|\{4,2,5\}| = 3$$

 $|\{4,1,2,5\}| = 3$

$$A = \{1, 2, 3\}$$
 $\{1, 2\}, \{2\}, \{3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{2, 1\}, \emptyset$

| Pow (A) \= 2 |A|

2A = 2 A

Example: The cardinality of the set of all subsets

Definition The **power set** Pow(A) of a set A is the set of all subsets of A. In other words,

$$Pow(A) = \{C \mid C \subseteq A\}.$$

For all $n \in \mathbb{Z}^+$ and all sets A: if |A| = n, then $|Pow(A)| = 2^n$.

Power set and bit vectors

We use the correspondence between bit vectors and subsets: |Pow(A)| is the number of bit vectors of length n.

The number of *n*-bit vectors is 2^n

The number of *n*-bit vectors is 2^n

Inductive Step: Assume that the property holds for n = m, so the number of m-bit vectors is 2^m . Now consider the set B of all (m+1)-bit vectors. We must show that $|B| = 2^{m+1}$.

Computing the cardinality of a union of two sets

If A and B are sets then

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Example

Suppose there are 100 third-year students. 40 of them take the module "Sequential Algorithms" and 80 of them take the module "Multi-Agent Systems". 25 of them took both modules. How many students took neither modules?

Computing the cardinality of a union of three sets

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Proof (optional)

We need lots of notation.

$$|A - (B \cup C)| = n_a, |B - (A \cup C)| = n_b, |C - (A \cup B)| = n_c,$$

$$|(A \cap B) - C| = n_{ab}, |(A \cap C) - B| = n_{ac}, |(B \cap C) - A| = n_{bc},$$

 $|A \cap B \cap C| = n_{abc}.$

Then

$$|A \cup B \cup C| = n_a + n_b + n_c + n_{ab} + n_{ac} + n_{bc} + n_{abc}$$

$$= (n_a + n_{ab} + n_{ac} + n_{abc}) + (n_b + n_{ab} + n_{bc} + n_{abc})$$

$$+ (n_c + n_{ac} + n_{bc} + n_{abc}) - (n_{ab} + n_{abc})$$

$$- (n_{ac} + n_{abc}) - (n_{bc} + n_{abc}) + n_{abc}$$

These are special cases of the principle of inclusion and exclusion

Principle of inclusion and exclusion

Let A_1, A_2, \ldots, A_n be sets.

Then

$$|A_1 \cup \dots \cup A_n| = \sum_{1 \le k \le n} |A_i|$$

$$- \sum_{1 \le j < k \le n} |A_j \cap A_k|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$- \dots$$

$$+ (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$