Introduction

BUPT/QMUL 2021-03-04

Agenda

- What is the Internet?
- How does it work?
- When & how did it come about?
- Who controls it?
- Where is it going?

Refer to Chapter 1 and Chapter 3 of the Textbook

Q1: What is the Internet?

Q1: What is

- So many diff
 - http://www.wl
 - http://www.we
 - http://www.we.
 - http://linux.ab

of <u>linked computers</u> allowing participants to share <u>information</u> on those computers. You should want to be a part of it because the Internet literally puts a world of information and a potential <u>worldwide</u> audience at your

Simply put, the Internet is a network

Internet: A worldwide network of

"The Internet" refers to the worldwide network of interconnected computers, all of which use a common protocol known as TCP/IP to communicate with each other.

http://www.bouten.com

network

computers

interconnected

worldwide

communicate

TCP/IP

Q1: What is the Internet?

- Internet vs. internet
 - Internet
 - internet
- Internet vs. WWW (World Wide Web)
 - Internet
 - WWW
- Internet vs. Intranet
 - Internet
 - Intranet

internet vs. Internet

 internet: a set of computer networks that are connected to each other.

internet vs. Internet

Internet: a worldwide sets of networks that interoperate using TCP/IP protocols.

WWW (An information sharing model on top of the Internet)

Internet

Internet

(a networking infrastructure and the related communication standards)

- How do machines communicate with one another on the Internet?
- What are the components of the Internet?
 - Physical infrastructure
 - Domain Name System
 - Internet protocols
 - Internet applications
- Important design concepts
 - Layered model of networking
 - Client-server paradigm

—— communication on the Internet

- One application produces the data to send
- The software "packetize" the data

- The cables connecting the computers to the network
- The network device receives the data and pushes them out
- The software chooses the path for data delivery

Local Area Network

- The software "depacketize" the data
- The counterpart to the sender application reads the data

See all

— communication on the Internet

—— the minimum requirements for communication on the Internet

Postal Analogy

- A common language
- A letter
- A stamped and addressed envelop
- Physical delivery via the postal stream

Internet counterpart

- Applications speaking a common language
- Digitized data (eg. packet)
- Communication protocols

 Physical connection to the Internet

- Internet applications
 - telnet, ftp, Email, Web browser etc.
- Internet protocols
 - TCP/IP, FTP, SMTP,HTTP etc.
- Internet addresses
 - IPv4, IPv6, Domain Name System
- Physical infrastructure
 - hosts, routers, wiring

Physical infrastructure

Address and Hostname

IPv4

—— the components of the Internet

- Internet addressing
- Machines want identity
- **IP Address**
 - = network interface address
 - Be assigned by IANA
 - E.g., 211.68.71.174
 - E.g., 2001:DB8:0:8::1

Converting between IP

IEEE 802.11

- Humans want names
- Hostname
 - Be assigned to a host for the benefit of humans
 - E.g., www.is.bupt.cn

Modem

LAN

Internet addressing: an example of DNS

- Internet protocols
- Protocol = A set of rules for communicating

<u>Network layer</u>

- Internet Protocol (IP)
 - Basic data transport: the glue of the Internet
 - Unreliable delivery
 - Versions
 - IPv4 with 32 bit/4 Byte address
 - IPv6 with 128 bit/16 Byte address

Transport layer

- Transmission Control Protocol (TCP)
 - Reliable data transmission
 - Connection-oriented
- User Datagram Protocol (UDP)
 - Unreliable data transmission
 - Connectionless-oriented

All Internet Applications
use at least IP, most use
TCP/UDP and IP

- Internet Protocols
- Application protocols
 - File Transfer Protocol (FTP)
 - Used by file exchange applications
 - Simple Mail Transfer Protocol (SMTP)
 - Used by email applications
 - HyperText Transfer Protocol (HTTP)
 - Used by WWW applications

- Internet applications
 - E.g., ftp, telnet, email, www,
 - Most are based on client-server model
 - Different applications use different protocols in addition to TCP/UDP and IP
 - ftp: FTP
 - telnet: TELNET
 - Email: SMTP
 - WWW: HTTP

- Layered networking model
- Client-server paradigm

Layered networking model

Layered networking model

Postal Analogy

Network Counterpart

Layer

Common language

Applications (Telnet, FTP, HTTP etc.)

APPLICATION

Envelop and return address

Reliable delivery (TCP)

TRANSPORT

Address

delivery

Source to destination (IP)

NETWORK

Mail boxes, trucks, planes; physical

Wires, cables, hardwares etc

PHYSICAL

- Layered networking model
 - ISO's 7 layer model

- Client-server paradigm
 - Client the user of the service
 - Initiates interaction through requests
 - Server the provider of the service
 - Must be listening
 - Waits and responds to the incoming requests

Clients and servers need a protocol that defines the interaction between them

— important concepts

- Client-server paradigm
 - The client/server/protocol relationship

client

IP Addr: 152.2.81.103

server

IP Addr: 152.2.81.1

Protocol

Client application

(an program running on this machine)

Server application

(an program running on this machine)

Q3: When and how did the Internet come about?

The history of the Internet

a DARPA (Defense Advanced Research Projects **ARPANET** Agency) research project a NSF (National Science Foundation) -sponsored **NSFNET** research project INTERNET (the most a full global infrastructure important information

source today

- ARPANET a packet switching network
 - 1964 Paul Baran realized packet switching in the military network.
 - 1965 the experiments by MIT showed the packet transmission in the circuit switching network was slow, unreliable and with high cost.
 - 1967 ARPA of USA planned ARPANET.
 - Lawrence Roberts proposed that ARPANET adopted packet switching network based on the queuing theory of Leonard Kleinrock.

Kleinrock and the first node of ARPANET

Q3: When & how did it come about? —the famous persons

Father of the Internet (by the Charles Stark Draper Prize of NAE in 2001)

- Lawrence G. Roberts
 - The creator of ARPANET
- Leonard Kleinrock
 - The creator of the packet switching protocols for network information exchange
- Vinton G. Cerf
- Robert E. Kahn
 - The inventors of TCP/IP
 - The Turing Award in 2004

Q3: When & how did it come about? —the famous persons

Douglas E. Comer

- The internationally recognized expert on computer networking and the TCP/IP protocols
- The Vice President of Research for Cisco System Inc.
- The Distinguished professor of Computer Science in Purdue University

Q3: When & how did it come about? ——the famous persons

The inventor of WWW — Tim Berners Lee

- The Director of the World Wide Web Consortium
- Senior Research Scientist at MIT's CSAIL
- In March 1989, he proposed the idea of sharing information through hypertext
- In the summer of 1989, he developed the first web server and web client in the world
- In December 1989, he named his invention WWW(World Wide Web)
- In May 1991, WWW began to be used in the Internet
- In 1994, he found the WWW Consortium

Q3: When & how did it come about? ——the famous persons

The representative of eCommerce (Electronic Commerce) — Jeff Bezos

- The founder of the famous Amazon
- A great Internet strategist
- In 1994 he began to think about how to create infinite commercial chance in the Internet with surprising high growth speed
- In July 1995, the Amazon Inc. was founded as a network bookshop

Q3: When & how did it come about? ——the famous persons

The founders of IM (Instant Messaging)

- ICQ means "I seek you"
- The first one IM software in the world, and OICQ, QQ etc. later
- Invented by four young Jews without any professional educations or trainings -- Yair Goldfinger (26 years old), Arik Vardi (27), Sefi Vigiser (25), Amnon Amir (24) Only in 3 months
- They found the Mirabilis Inc. at Israel in Nov. 1996.
- Purchased by AOL with \$300,000,000 in 1999.

Q3: When & how did it come about? —the famous persons

The inventor of BT (BitTorrent) — Bram Cohen

- The concept of seed is used for data sharing between users in the network firstly in 1999.
- The Beta version of BT was completed in 2001.
- Bram opened the source codes of BT in 2002 and gained lots of users.
- BT has become the preferred downloading tools
- Still be a disputed topic today

Q3: When & how did it come about? ——Internet today

- How many networks running are there: Active BGP Entries (Forwarding Table: FIB)
- By Geoff Huston, at Tue Mar 2 02:10:11 2021
- URL: http://bgp.potaroo.net/as1221/bgp-active.html

Q3: When & how did it come about? ——Internet today

How many Internet users are there in China?

- By CNNIC, Feb. 2021
- www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/202102/P020210203334633480104.pdf

Q3: When & how did it come about? ——Internet today

- More and more ordinary people can access it
- The speed is faster
- More information
- More applications
- Extended to IoT Internet of Things
- Cloud Computing & Big Data

Q3: When & how did it come about?

——the elicitations from the success of the Internet

- A process full of innovations
- Open standards
- The broad application is the vitality of the Internet

1982: "PC"

2006: "You

Q4: Who controls it?

Q4: Who controls it? —— who is in charge?

- ARPA managed for 15+ years
- 1986: NSF took over
- 1994: NSF ceased direct support
 - Now funded by "the market," government, industry
 - Internationally deployed
- 1998: ICANN
 - Internet Corporation for Assigned Names and Numbers
- 2004: WGIG
 - Working Group on Internet Governance
 - founded at the United Nations in Geneva

- ISOC (Internet Society)
 - Official gatekeeper
 - To promote evolution and growth of Internet
 - http://www.isoc.org
- IAB (Internet Architecture Board)
 - Technical oversight and coordination
 - ~15 international volunteers
 - ISOC oversees IAB
 - http://www.isi.edu/iab
- ARIN/RIPE/APNIC/LacNIC/AfricNIC
 - Regional Internet Registry (RIR) providing allocation and registration services
 - http://www.nro.net/
 - NRO (Number Registration Organizations)

IETF (Internet Engineering Task Force)

- Develops near-term Internet standards
- 9 areas, each with an area director
- Areas are routing and addressing, security, etc.
- Under the IAB
- http://www.ietf.org

IRTF (Internet Research Task Force)

- Focuses on long-term research projects
- Under the IAB
- http://www.irtf.org

IETF & IRTF develop official Internet standards

- Technical working in WGs (Working Group)
- Open to all
- Documents progress through stages: RFCs, drafts

Q4: Who controls it? —— the major organizations

IANA (Internet Assigned Numbers Authority)

- Hands out globally unique Internet addresses
- Supported by NTIA of U.S. government in the past
- http://www.iana.org/

ICANN (Internet Corporation for Assigned Numbers)

- Stop contract with U.S government in Oct.2016
- Replacement organization for IANA
- Not-for-profit organization with international board
- http://www.icann.org/

—— language of Internet growth

Talk about exponential growth...

■ 10 Ten Byte

■ 10³ Thousand Kilobytes

■ 10⁶ million megabytes

■ 10⁹ billion gigabytes

■ 10¹² trillion terabytes

■ 10¹⁵ quadrillion petabytes

10¹⁸ quintillion exabytes

—— are the original assumptions still tenable?

Original assumptions

- End-to-end
- Host-centric
- Best effort service
- Trusty service stream
- Unrelated to commercial application

Tenable today?

- No, maybe Peer-to-peer
- No, data-centric is proposed
- No, QoS is important
- No, security is important
- No, appropriate profitable mode is needed

- Problems of IPv4
 - Insufficient addressing space
 - Real-time application is not provided
 - Short of security support
 - Short of mobility support
- IPv6 is getting more popular around world

research works of Next Generation Internet

- Patching on today's network
 - Resulting in more and more complexity
- Designing new architecture for the next generation network, like SDN and future Internet technologies
 - NewArch
 - GENI
 - FIND
 - Ambient Network
 - ANA
 - HAGGLE

... ...

New progress of Internet applications

- New development of traditional applications
 - HTTP: from HTTP/1.0 to HTTP/3.0
 - Security extensions of DNS
 - Name resolution in ICN
- Innovative applications
 - WeChat
 - Tik Tok
 - Zoom
 - **.....**

Key words

Local definition: A set of computer networks that are

connected to each other (an **internet**)

Global definition: A world-wide set of networks that

interoperate using TCP/IP protocols (the

Internet)

Protocol: A set of rules to control the means by

which information is communicated

between entities

TCP/IP: A suite of protocols for transporting any

data over an internet between access

points

Abbreviations (1)

ARPA	Advanced Research Projects Agency
AS	Autonomous System
BGP	Border Gateway Protocol
CNGI	China Next Generation Internet
DARPA	Defense Advanced Research Projects Agency
DNS	Domain Name System
DSL	Digital Subscriber Line
FTP	File Transfer Protocol
HTML	HyperText Markup Language
HTTP	HyperText Transfer Protocol
IAB	Internet Architecture Board
IANA	Internet Assigned Numbers Authority
ICANN	Internet Corporation for Assigned Numbers

Abbreviations (2)

IE	Internet Explorer
IETF	Internet Engineering Task Force
IP	Internet Protocol
IRTF	Internet Research Task Force
ISDN	Integrated Services Digital Network
ISO	International Organization for Standardization
LAN	Local Area Network
MIME	Multipurpose Internet Mail Extensions
NSF	National Science Foundation
P2P	Peer to Peer
POP3	Post Office Protocol
RFC	Request for Comments

Abbreviations (3)

RTCP	Realtime Control Protocol
RTP	Realtime Transport Protocol
SIP	Session Initiation Protocol
SMTP	Simple Mail Transfer Protocol
SNMP	Simple Network Management Protocol
ТСР	Transmission Control Protocol
UDP	User Datagram Protocol
WGIG	Working Group on Internet Governance
www	World Wide Web