Processamento de Imagens e Computação Gráfica

Operações Pontuais II

Profa. Beatriz Trinchão Andrade

Departamento de Computação · UFS beatriz@dcomp.ufs.br

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

Introdução

- ► Considere uma imagem digital com níveis de cinza no intervalo [0, L-1]
- ▶ Histograma: função discreta $h(r_k) = n_k$
 - $ightharpoonup r_k$ é um nível de cinza
 - $ightharpoonup n_k$ é o número de pixels na imagem com cor r_k

Introdução

$$ightharpoonup p(r_k) = n_k/n$$

- Normalização do histograma
- Divisão dos valores pelo número de pixels na imagem
- ightharpoonup Estimativa da probabilidade de ocorrência da cor r_k
- ▶ Soma de p para todos os k é 1

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

- Histogramas são a base de muitas técnicas de processamento no domínio espacial
- ▶ Realce, compressão e segmentação de imagens
- Adequados pra processamento em tempo real

- Imagens cujos pixels ocupam todo o intervalo de tons possíveis e são uniformemente distribuídos
 - Alto contraste e variedade de tons
 - ► Consequência: imagem com detalhes e maior faixa dinâmica

Exercício: escreva um pseudocódigo para calcular o histograma de uma imagem.

Algoritmo 1 Calcula o histograma (vetor H) de uma imagem $\mathbf{f}(x, y)$

- 1: atribuir valor zero a todos os elementos do vetor
- 2: **for** i = 0 até Lmax **do**
- 3: H[i] = 0
- 4: end for
- 5: calcular distribuição dos níveis de cinza para cada pixel da imagem
- 6: for x = 0 até M 1 do
- 7: **for** y = 0 até N 1 **do**
- 8: H[f(x,y)] = H[f(x,y)] + 1
- 9: end for
- 10: end for

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

- ► Função contínua onde r são os níveis de cinza da imagem
- ▶ Inicialmente, assume-se r normalizado em [0,1]
 - ▶ 0 é preto e 1 é branco
- ► Formulação discreta considerará [0, L-1]

- ▶ Transformação na forma s = T(r), $0 \le r \le 1$
- Produz um nível s para cada r
- ► T(r) tem valores únicos
 - Garante que a inversa existe
- ▶ T(r) é monotonicamente crescente no intervalo $0 \le r \le 1$
 - Preserva ordem das cores
- ▶ $0 \le T(r) \le 1$ para $0 \le r \le 1$
 - ► Saída no mesmo intervalo da entrada

- Usar uma função de transformação que torne o histograma o mais uniforme possível
 - Função de transformação: histograma cumulativo
- Passos
 - 1. Calcular o histograma normalizado
 - 2. Calcular o histograma cumulativo
 - 3. Equalizar a imagem com o histograma cumulativo

Equalização Histogrâmica - Caso Discreto

Versão discreta da função de transformação:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$

= $\sum_{j=0}^k \frac{n_j}{n}$ $k = 0, 1, 2, ..., L - 1.$

Equalização Histogrâmica - Caso Discreto

Algoritmo 2 Equalização de histograma

- 1: calcular o histograma da imagem a ser transformada
- 2: normalizar o histograma, tal que $0 \le f_k \le 1$
- 3: for k=0 até L-1 do
- 4: calcular função distribuição acumulada de probabilidade

5:
$$g_k = \sum_{i=0}^k p_f(f_i)$$

- 6: arredondar valor para nível de cinza mais próximo
- 7: $g_k = \text{round}(g_k \times L_{\text{max}})$
- 8: end for
- 9: agrupar valores f_k para formar g_k

Exemplo:

Ilustração da equalização de histograma de uma imagem com oito níveis de cinza, conforme distribuição mostrada a seguir.

Níveis d	le cinza (<i>k</i>)	0	1	2	3	4	5	6	7
Número	de pixels (n_k)	1314	3837	5820	4110	2374	921	629	516

Tabela: Histograma a ser equalizado.

Inicialmente, deve-se encontrar a probabilidade p_f com que cada nível de cinza k aparece na imagem \mathbf{f} , ou seja

$$p_f(f_0) = 1314/19521 \approx 0.067$$

 $p_f(f_1) = 3837/19521 \approx 0.197$
 $p_f(f_2) = 5820/19521 \approx 0.298$
 $p_f(f_3) = 4110/19521 \approx 0.211$
 $p_f(f_4) = 2374/19521 \approx 0.122$
 $p_f(f_5) = 921/19521 \approx 0.047$
 $p_f(f_6) = 629/19521 \approx 0.032$
 $p_f(f_7) = 516/19521 \approx 0.026$

Calculando a função distribuição acumulada de probabilidade, obtém-se

$$g_0 = T(f_0) = \sum_{i=0}^{0} p_f(f_0) = 0.067$$

 $g_1 = T(f_1) = \sum_{i=0}^{1} p_f(f_1) = 0.264$

De forma similar

$$g_2 = 0.562$$
 $g_3 = 0.773$ $g_4 = 0.895$ $g_5 = 0.942$ $g_6 = 0.974$ $g_7 = 1$

Como a imagem foi quantizada com oito níveis de cinza, cada valor g_k deverá ser substituído pelo nível de cinza mais próximo, ou seja

$$g_0 = g_0 \times 7 = 0.067 \times 7 = 0.469 \approx 0$$

Analogamente para os outros valores de g_k , tem-se

$$g_1 = 0.264 \times 7 = 1.848 \approx 2$$

$$g_2 = 0.562 \times 7 = 3.934 \approx 4$$

$$g_3 = 0.773 \times 7 = 5.411 \approx 5$$

$$g_4 = 0.895 \times 7 = 6.265 \approx 6$$

$$g_5 = 0.942 \times 7 = 6.594 \approx 7$$

$$g_6 = 0.974 \times 7 = 6.818 \approx 7$$

$$g_7 = 1 \times 7 = 7$$

O nível original $f_0 = 0$ é mapeado para o nível $g_0 = 0$, ou seja, os 1314 pixels que apresentavam nível de cinza 0 permanecem inalterados.

De forma similar, os pixels com nível de cinza $1 \ {\rm s\~{a}o} \ {\rm mape}$ ados para o nível $2 \ {\rm e} \ {\rm assim} \ {\rm por} \ {\rm diante}.$

Os resultados da equalização estão mostrados a seguir.

k	0	1	2	3	4	5	6	7
f_k	0	1/7	2/7	3/7	4/7	5/7	6/7	7/7
n_{f_k}	1314	3837	5820	4110	2374	921	629	516
$p_f(f_k) = n_{f_k}/n$	0.067	0.197	0.298	0.211	0.122	0.047	0.032	0.026
g _k	0.067	0.264	0.562	0.773	0.895	0.942	0.974	1
$round(g_k \times 7)$	0	2	4	5	6	7	7	7
n_{g_k}	1314	0	3837	0	5820	4110	2374	2066

A função round(x) aproxima o argumento x para seu valor inteiro mais próximo.

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

Equalização Histogrâmica - Prática

Arquivo guia-op-2.pdf

Introdução

Histograma

Equalização Histogrâmica Exemplo

Prática

- Capítulo 4 do Pedrini e Schwartz. Análise de Imagens Digitais.
- Hélio Pedrini. Material de aula. Análise de Imagens (MO445). IC-Unicamp, 2014.
- Capítulo 3 do Gonzalez e Woods. Digital Image Processing, 2a edição.
- Capítulo 4 do Gonzalez e Woods. Processamento Digital de Imagens, 1a edição.