6 Cálculo Integral (Soluções)

1. (a) Seja $d = \{0 = t_0, ..., t_n = 2\}$ uma decomposição de [0, 2]. Podemos assumir que $1 \in d$ (caso contrário, toma-se $d' = d \cup \{1\}$, e tem-se $S_{d'}(f) \leq S_d(f)$, $S_{d'}(f) \geq S_d(f)$). Seja $1 = t_k$, para algum $k \in \{1, ..., n-1\}$. Tem-se então, escrevendo $M_i = \sup_{x \in [t_{i-1}, t_i]} f(x)$, $m_i = \inf_{x \in [t_{i-1}, t_i]} f(x)$,

$$M_i = 1, \ 1 \le i \le k - 1, \quad M_k = 2, \quad , M_i = 3, \ k + 1 \le i \le n,$$
 $m_i = 0, \ 1 \le i \le k, \quad m_{k+1} = 2, \quad , m_i = 3, \ k + 2 \le i \le n.$

As somas superior e inferior ficam:

$$S_d(f) = 1(t_1 - t_0 + \dots + t_{k-1} - t_{k-2}) + 2(t_k - t_{k-1}) + 3(t_{k+1} - t_k + \dots + t_n - t_{n-1})$$

$$= 1(t_{k-1} - t_0) + 2(t_k - t_{k-1}) + 3(t_n - t_k)$$

$$= t_{k-1} + 2(1 - t_{k-1}) + 3(2 - 1) = 5 - t_{k-1},$$

$$s_d(f) = 1(t_1 - t_0 + \dots + t_k - t_{k-1}) + 2(t_{k+1} - t_k) + 3(t_{k+2} - t_{k+1} + \dots + t_n - t_{n-1})$$

$$= 1(t_k - t_0) + 2(t_{k+1} - t_k) + 3(t_n - t_{k+1})$$

$$= t_k + 2(t_{k+1} - 1) + 3(2 - t_{k+1}) = 5 - t_{k+1}.$$

Como $1 = t_k \in [t_{k-1}, t_{k+1}]$, escrevendo $t_{k-1} = 1 - \epsilon_1$, $t_{k+1} = 1 + \epsilon_2$, com $1 > \epsilon_1$, $\epsilon_2 > 0$ arbitrários, temos

$$S_d(f) = 5 - t_{k-1} = 4 + \epsilon_1 \ge 4$$
, $S_d(f) = 5 - t_{k+1} = 4 - \epsilon_2 \le 4$.

(b) Na alínea anterior vimos que dados $1 > \epsilon_1, \epsilon_2 > 0$ arbitrários, existe d tal que

$$S_d(f) = 4 + \epsilon_1, \qquad s_d(f) = 4 - \epsilon_2.$$

Conclui-se então que

$$\overline{\int}_{0}^{2} f = \inf\{S_d(f) : d \text{ decomposição de } [0,2]\} \le \inf_{1>\epsilon_1>0} (4+\epsilon_1) = 4,$$

$$\underline{\int_{0}^{2}} f = \sup\{S_d(f) : d \text{ decomposição de } [0,2]\} \ge \sup_{1>\epsilon_2>0} (4-\epsilon_2) = 4.$$

Logo, temos $4 \le \underline{\int}_0^2 f \le \overline{\int}_0^2 f \le 4$, ou seja, $\underline{\int}_0^2 f = \overline{\int}_0^2 f = 4$. Assim, f é integrável com $\int_0^2 f = 4$.

2. (a) Seja $f \ge 0$. Para cada decomposição $d = \{a = t_0, t_1, ..., t_n = b\}$, tem-se neste caso

$$M_i(f^2) = \sup_{x \in [t_{i-1}, t_i]} f^2(x) = \left(\sup_{x \in [t_{i-1}, t_i]} f(x)\right)^2 = M_i(f)^2,$$

$$m_i(f^2) = \inf_{x \in [t_{i-1}, t_i]} f^2(x) = \left(\inf_{x \in [t_{i-1}, t_i]} f(x)\right)^2 = m_i(f)^2.$$

Temos então

$$S_{d}(f^{2}) - s_{d}(f^{2}) = \sum_{i=1}^{n} (M_{i}(f^{2}) - m_{i}(f^{2}))(t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} (M_{i}(f)^{2} - m_{i}(f)^{2})(t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} (M_{i}(f) - m_{i}(f))(M_{i}(f) + m_{i}(f))(t_{i} - t_{i-1})$$

$$\leq 2M \sum_{i=1}^{n} (M_{i}(f) - m_{i}(f))(t_{i} - t_{i-1}) = 2M(S_{d}(f) - S_{d}(f)),$$

onde $M=\sup_{x\in[a,b]}f(x)$. Dado $\epsilon>0$ arbitrário, como f é integrável, podemos escolher a decomposição d tal que $S_d(f)-s_d(f)<\frac{\epsilon}{2M}$, e portanto tal que

$$S_d(f^2) - s_d(f^2) < \epsilon.$$

Conclui-se que f^2 é integrável para $f \ge 0$ integrável.

Para f arbitrária, como f integrável \Rightarrow |f| integrável e portanto, como vimos acima, $|f|^2 = f^2$ é integrável.

- (b) De $fg = \frac{1}{2}((f+g)^2 f^2 g^2)$, temos que fg é uma soma de funções integráveis, e portanto integrável.
- 3. Como f é contínua em [a,b], pelo Teorema de Weierstrass será limitada em [a,b], ou seja, existem m e M tais que $m \le f(x) \le M$ em [a,b]. Pela monotonia do integral:

$$m\int_a^b g(x)dx \le \int_a^b f(x)g(x)dx \le M\int_a^b g(x)dx.$$

Por outro lado, se $g \ge 0$, temos $\int_a^b g(x)dx \ge 0$. Se $\int_a^b g(x)dx = 0$, o resultado é válido para qualquer $c \in]a,b[$; para $\int_a^b g(x)dx > 0$ temos:

$$m \le \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \le M.$$

Pelo Teorema do Valor Intermédio, de novo porque f é contínua, f assume em [a,b] todos os valores entre m e M, logo existe $c \in [a,b]$ tal que

$$\frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} = f(c) \Leftrightarrow \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

- 4. Se, por contradição, f(x) = 0 não tivesse raizes, segue da continuidade de f e do Teorema do Valor Intermédio que f não muda de sinal em [a,b]. Mas se f>0 em [a,b], da monotonia do integral tem-se $\int_a^b f(x)dx>0$, o que é impossível. Da mesma forma, não pode ser f<0 em [a,b]. Conclui-se que f(x)=0 tem pelo menos uma raiz.
- 5. Se, por contradição, fosse f(a) > 0 para algum a, como f é contínua, seria f(x) > 0 em $|a \epsilon, a + \epsilon|$, para algum $\epsilon > 0$. Da monotonia do integral, $\int_{|a \epsilon, a + \epsilon|} f(t) \, dt > 0$, o que contradiz a hipótese. Da mesma forma, também não pode ser f(a) < 0. Logo, f(x) = 0 para qualquer $x \in \mathbb{R}$.

Alternativamente, tem-se por hipótese $\int_0^x f(t) dt = 0$ para qualquer $x \in \mathbb{R}$. Derivando ambos os membros (usando o Teorema Fundamental do Cálculo), temos

$$\left(\int_0^x f(t) \, dt\right)' = 0 \Leftrightarrow f(x) = 0.$$

6. Como $e^{\sin t}$ é uma função contínua, do Teorema Fundamental do Cálculo, $\int_x^3 e^{\sin t} dt$ é diferenciável, logo $\phi(x) = x^2 \int_x^3 e^{\sin t} dt$ também será e

$$\phi'(x) = \left(\int_x^3 x^2 e^{\operatorname{sen} t} dt\right)' = \left(-x^2 \int_3^x e^{\operatorname{sen} t} dt\right)'$$
$$= 2x \int_x^3 e^{\operatorname{sen} t} dt - x^2 e^{\operatorname{sen} x}.$$

7. a)
$$\operatorname{sen} x^2$$
. b) $-\cos x^2$. c) $2e^{4x^2} - e^{x^2}$. d) $2xe^{-x^4} - e^{-x^2}$. e) $4x^3 \operatorname{sen}(x^2) - 2x \operatorname{sen}(|x|)$.

8. Como f é contínua e $t\mapsto x-t$ é contínua, (x-t)f(t) é contínua e do Teorema Fundamental do Cálculo, ψ é diferenciável com

$$\psi'(x) = \left(x \int_0^x f(t)dt - \int_0^x t f(t)dt\right)' = \int_0^x f(t)dt + x f(x) - x f(x) = \int_0^x f(t)dt.$$

De novo porque f é contínua e do Teorema Fundamental do Cálculo, $\psi^{'}$ é diferenciável, ou seja, ψ é duas vezes diferenciável, e

$$\psi^{''}(x)=f(x).$$

9. Como *f* é diferenciável, e portanto contínua, podemos derivar ambos os membros (usando o Teorema Fundamental do Cálculo):

$$\left(\int_0^x f(t) dt\right)' = (xf(x))' \Leftrightarrow f(x) = f(x) + xf'(x) \Leftrightarrow xf'(x) = 0, \forall x \in \mathbb{R}.$$

Conclui-se que f'(x) = 0, para $x \neq 0$, ou seja, f é constante em $]0, +\infty[$ e em $]-\infty, 0[$. Como é contínua, tem-se que f é constante em \mathbb{R} .

10.

$$\left(\int_{-\cos x}^{\sec x} \frac{1}{\sqrt{1 - t^2}} dt\right)' = \left(\int_{0}^{\sec x} \frac{1}{\sqrt{1 - t^2}} dt - \int_{0}^{-\cos x} \frac{1}{\sqrt{1 - t^2}} dt\right)'$$

$$= \frac{1}{\sqrt{1 - \sec^2 x}} \cos x - \frac{1}{\sqrt{1 - \cos^2 x}} \sec x$$

$$= \frac{\cos x}{|\cos x|} - \frac{\sec x}{|\sec x|} = 0.$$

11. Temos uma indeterminação $\frac{0}{0}$ a que se pode aplicar a Regra de Cauchy. Do Teorema Fundamental do Cálculo,

$$\lim_{x \to 0} \frac{\int_0^x \sin t^3 dt}{x^4} = \lim_{x \to 0} \frac{\sin(x^3)}{4x^3} = \frac{1}{4}.$$

12. a) O limite é uma indeterminação que pode ser levantada usando a regra de Cauchy. O cálculo da derivada da função que envolve um integral é consequência do teorema de derivação da função composta e do teorema fundamental do cálculo.

$$\lim_{x \to +\infty} x \int_{\pi/2}^{\arctan x} \operatorname{sen}(t^2) dt = \lim_{x \to +\infty} \frac{\int_{\pi/2}^{\arctan x} \operatorname{sen}(t^2) dt}{1/x}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{1+x^2} \operatorname{sen}(\operatorname{arctg}^2 x)}{-1/x^2}$$

$$= \lim_{x \to +\infty} -\frac{x^2}{1+x^2} \operatorname{sen}(\operatorname{arctg}^2 x) = -\operatorname{sen}\left(\frac{\pi^2}{4}\right).$$

b) Da mesma forma

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} t e^{\sqrt{t}} dt}{\int_0^{x^3} (e^{\sqrt[3]{t}} - 1) dt} = \lim_{x \to 0^+} \frac{2x \cdot x^2 e^x}{3x^2 (e^x - 1)} = \lim_{x \to 0^+} \frac{2x}{3(e^x - 1)} = \frac{2}{3}.$$

- 13. (a) Directamente do Teorema Fundamental do Cálculo; F'(x) = f(x).
 - (b) Como F'(x) = f(x) > 0, para $x \in \mathbb{R}$, F é estritamente crescente. Temos então F(x) > F(0) = 0, para x > 0, e F(x) < F(0) = 0, para x < 0, ou seja, xF(x) > 0 para qualquer $x \in \mathbb{R} \setminus \{0\}$.
 - (c) Seja $\lim_{x\to +\infty} f(x) = L \in \mathbb{R}^+$ e $M \in \mathbb{R}$ tal que, para x > M, tem-se $f(x) > \frac{L}{2}$. Então, para x > M,

$$F(x) = \int_0^x f(t) dt = \int_0^M f(t) dt + \int_M^x f(t) dt$$

> $\int_0^M f(t) dt + \frac{L}{2} \int_M^x 1 dt = \int_0^M f(t) dt + \frac{L}{2} (x - M).$

Como $\int_0^M f(t) dt$ é constante e $\lim_{x \to +\infty} \frac{L}{2}(x-M) = +\infty$, conclui-se que $\lim_{x \to +\infty} F(x) = +\infty$.

Considere:

$$F(x) = \begin{cases} \frac{1}{|x|} & \text{se } |x| > 1\\ 1 & \text{se } |x| \le 1. \end{cases}$$

Neste caso $\lim_{x\to +\infty} f(x) = 0$ e $\lim_{x\to +\infty} F(x) = +\infty$. Se

$$F(x) = \begin{cases} \frac{1}{x^2} & \text{se } |x| > 1\\ 1 & \text{se } |x| \le 1 \end{cases}$$

temos $\lim_{x\to+\infty} f(x) = 0$ e $\lim_{x\to+\infty} F(x) = 2$.

14. F é contínua e diferenciável em $\mathbb{R} \setminus \{0\}$ uma vez que é o produto de duas funções contínuas e diferenciáveis em $\mathbb{R} \setminus \{0\}$: $\frac{1}{x}$ e $\int_0^x f(t) dt$ (pelo Teorema Fundamental do Cálculo). Em x = 0:

$$\lim_{x \to 0} \frac{1}{x} \int_0^x f(t) \, dt = \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = F(0)$$

uma vez que f é contínua em 0 (onde se usou a Regra de Cauchy e o Teorema Fundamental do Cálculo). Logo, F é contínua em 0. Em relação à diferenciabilidade:

$$\lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} \frac{\int_0^x f(t) - x f(0)}{x^2} = \lim_{x \to 0} \frac{f(x) - f(0)}{2x}$$

onde se usou de novo a Regra de Cauchy e o Teorema Fundamental do Cálculo. O limite acima existe sse f é diferenciável em 0 (e neste caso teríamos $F'(0) = \frac{f'(0)}{2}$).

15. Da continuidade de *u* e *v*, podemos usar o Teorema Fundamental do Cálculo para derivar os seus integrais indefinidos e temos então

$$\int_{a}^{x} u(t) dt = \int_{b}^{x} v(t) dt \Rightarrow \left(\int_{a}^{x} u(t) dt \right)' = \left(\int_{b}^{x} v(t) dt \right)' \Leftrightarrow u(x) = v(x).$$

Por outro lado, fazendo x = b, tem-se

$$\int_a^b u(t) dt = \int_b^b v(t) dt = 0.$$

- 17. a) log 2. b) log(1/2). c) 0 d) 0
- 18. a) $\log \sqrt{\frac{2}{e}}$. b) $\frac{\log 2}{4}$. c) $\frac{1}{2}$. d) $\arctan(3/4)$. e) $\frac{1}{8}(\pi + \log 4)$ (subst. $t = \lg x$). f) $\frac{\pi}{4}$ (note que $\frac{1}{x^2 + 4x + 5} = \frac{1}{(x+2)^2 + 1}$).

19. a)
$$\int_{1}^{\pi} x \arctan x \, dx = \left[\frac{x^{2}}{2} \arctan x \right]_{1}^{\pi} - \int_{1}^{\pi} \frac{x^{2}}{2(1+x^{2})} \, dx = \frac{\pi^{2}}{2} \arctan \pi - \frac{\pi}{8}$$
$$-\frac{1}{2} \int_{1}^{\pi} (1 - \frac{1}{1+x^{2}}) \, dx = \frac{\pi^{2}}{2} \arctan \pi - \frac{\pi}{8} - \frac{1}{2} \left[x - \arctan x \right]_{1}^{\pi}$$

$$=\frac{\pi^2+1}{2} \arctan \pi - \frac{3\pi}{4} + \frac{1}{2}.$$

b)
$$\int_0^1 \frac{\arctan x}{1+x^2} dx = \left[\frac{1}{2}\arctan x^2\right]_0^1 = \frac{\pi^2}{32}.$$

c)
$$\int_0^{\pi} \sin^3 x \, dx = \int_0^{\pi} (1 - \cos^2 x) \sin x \, dx = \left[-\cos x + \frac{1}{3} \cos^3 x \right]_0^{\pi}$$

$$= -\cos\pi + \frac{1}{3}\cos^3\pi + \cos0 - \frac{1}{3}\cos^30 = \frac{4}{3}.$$

d)
$$\int_0^1 \frac{1}{x-3} dx = [\log|x-3|]_0^1 = \log 2 - \log 3 = \log \frac{2}{3}.$$

e)
$$\int_{2}^{4} \frac{x^{3}}{x-1} dx = \int_{2}^{4} \left(x^{2} + x + 1 + \frac{1}{x-1}\right) dx$$

$$= \left[\frac{x^3}{3} + \frac{x^2}{2} + x + \log|x - 1| \right]_2^4 = \frac{80}{3} + \log 3.$$

f)
$$\int_0^1 \frac{1}{e^t + e^{2t}} dt = \int_1^e \frac{1}{x + x^2} \frac{1}{x} dx = \int_1^e \frac{1}{x^2 (1 + x)} dx$$
, fazendo a mudança de variável $x = e^t \Leftrightarrow t = \log x$. Tem-se

$$\frac{1}{x^2(1+x)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{1}{1+x}$$

(verifique) e portanto

$$\int_{1}^{e} \frac{1}{x^{2}(1+x)} dx = -1 - \frac{1}{e} + \log(1+e) + 0 + 1 - \log 2 = -\frac{1}{e} + \log\left(\frac{1+e}{2}\right).$$

20. $F\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{1}{t} e^{\frac{t^2+1}{t}} dt = \int_{1}^{\frac{1}{x}} \frac{1}{t} e^{\left(t+\frac{1}{t}\right)} dt$. Fazendo a mundança de variável $u = \frac{1}{t}$, tem-se

$$\int_{1}^{\frac{1}{x}} \frac{1}{t} e^{\left(t + \frac{1}{t}\right)} dt = \int_{1}^{x} u e^{\left(\frac{1}{u} + u\right)} \left(-\frac{1}{u^{2}}\right) du = -\int_{1}^{x} \frac{1}{u} e^{\frac{1}{u} + u} du = -F(x).$$

21. Considerando a mudança de variável sugerida

$$F(x) = \int_{\frac{1}{x}}^{\frac{1}{x^2}} f(tx) dt = \frac{1}{x} \int_{1}^{\frac{1}{x}} f(y) dy.$$

que se pode diferenciar usando o teorema fundamental do cálculo e o teorema de derivação da função composta.

- 22. Use a mudança de variável y = 1/x.
- 23. Uma vez que, pelo Teorema Fundamental do Cálculo, $F'(x) = e^{-x^2}$, usando integração por partes temos

$$\int_0^1 F(x) dx = [xF(x)]_0^1 - \int_0^1 xe^{-x^2} dx = F(1) + \left[-\frac{1}{2}e^{-x^2} \right]_0^1$$
$$= F(1) - \frac{1}{2} + \frac{1}{2e}.$$

24. a) Usando a continuidade da função integranda para justificar a diferenciabilidade de $G(x) = \int_x^{x+T} f(t) dt$ pode derivar-se o integral e usar a periodicidade da função para mostrar que o integral tem derivada nula, pelo que é constante. Com efeito:

$$G'(x) = \left(\int_{x}^{x+T} f(t) \, dt\right)' = f(x+T) - f(x) = 0$$

(Note-se que a justificação anterior não é possível se não se supuser que f é contínua. No entanto a conclusão continua a ser verdadeira! É necessário nesse caso usar mudança de variável e a aditividade do integral relativamente ao intervalo de integração - verifique!).

b) Se F é uma primitiva de f e é periódica de período T, temos

$$\int_0^T f(t) \, dt = F(T) - F(0) = 0.$$

Reciprocamente, se $\int_0^T f(t) dt = 0$ então da alíena anterior, temos

$$G(x) = G(0) = 0 \Leftrightarrow \int_{x}^{x+T} f(t) dt = 0 \Leftrightarrow F(x+T) - F(x) = 0.$$

Logo F é periódica de período T.

- 25. a) Como a função integranda $\mathbb{R} \ni t \mapsto e^{t^2}$ é contínua o integral existe qualquer que seja $x \in \mathbb{R}$. Como a função integranda é positiva e $x \mapsto x^2$ é estritamente crescente para x > 0 o integral é estritamente crescente para $x \ge 0$. Como a função é par é estritamente decrescente para $x \le 0$. (Alternativamente, justifique os resultados de monotonia derivando o integral usando o teorema fundamental do cálculo e o teorema de derivação da função composta; obtém-se $f'(x) = 2xe^{x^4}$ e as mesmas conclusões seguem com facilidade.)
 - b) Como $\mathbb{R}^+ \setminus \{1\} \ni t \mapsto \frac{1}{\log t}$ é ilimitada numa qualquer vizinhança direita de 1 o integral não está definido se $e^x \le 1 \Leftrightarrow x \le 0$. O integral está definido para $e^x > 1 \Leftrightarrow x > 0$ pois a função integranda é nesse caso contínua no intervalo fechado definido pelos extremos do intervalo de integração. Para x > 0:

$$g'(x) = e^x \frac{1}{\log e^x} = \frac{e^x}{x} > 0$$

pelo que a função g é estritamente crescente. Um zero óbvio de g corresponde aos extremos de integração serem iguais, isto é $x = \log 2$, sendo portanto g(x) < 0 se $x < \log 2$ e g(x) > 0 se $x > \log 2$.

c) Temos $h(x) = x \int_1^x e^{t^2} dt - \int_1^x t e^{t^2} dt$. As funções integrandas $t \mapsto e^{t^2}$ e $t \mapsto t e^{t^2}$ são contínuas logo podemos derivar h usando o Teorema Fundamental do Cálculo e a regra de derivação do produto:

$$h'(x) = \int_1^x e^{t^2} dt + xe^{x^2} - xe^{x^2} = \int_1^x e^{t^2} dt.$$

Como $e^{t^2} > 0$, para qualquer $t \in \mathbb{R}$, temos h'(x) > 0 para x > 1 e h'(x) < 0 para x < 1, ou seja, h é crescente em $]1, +\infty[$ e decrescente em $]-\infty, 1[$, tendo um mínimo no ponto 1.

26. a) Note-se que

$$\lim_{x \to 0} \frac{e^{2x} - e^x}{x} = 1$$

pelo que a função integranda $n\tilde{a}o$ é contínua. No entanto só difere em 0 da função contínua \tilde{f} definida por

$$\tilde{f}(x) = \begin{cases} \frac{e^{2x} - e^x}{x}, & \text{se } x \neq 0, \\ 1 & \text{se } x = 0. \end{cases}$$

Como alterar uma função num ponto não altera a sua integrabilidade nem o valor do seu integral, a integrabilidade de \tilde{f} implica a integrabilidade de f em qualquer intervalo limitado sendo os integrais de \tilde{f} e f iguais.

b) $\frac{d\psi}{dx} = \frac{d}{dx} \int_0^x f = \frac{d}{dx} \int_0^x \tilde{f} = \tilde{f}(x).$

Note-se que a não continuidade de f não permite aplicar o teorema fundamental do cálculo para calcular a derivada do integral indefinido de f e tivemos que recorrer à igualdade com o integral de \tilde{f} .

- 27. a) Note-se que a função integranda é não negativa e contínua. Tal acarreta que o integral vai ser positivo se $x > x^2$ (isto é $x \in]0,1[$), negativo se $x < x^2$ (isto é $x \in]-\infty,0[\cup]1,+\infty[$), e nulo se $x = x^2$ (isto é $x \in \{0,1\}$).
 - b) Da alínea anterior decorre que basta estimar integral para]0,1[.Para tal note-se que se *x* \in]0,1[o intervalo de integração está contido no intervalo [0, 1] e aí a função integranda pode ser majorada por $\frac{t}{1+t^2}$. O cálculo do integral desta última função entre x^2 e x conduz então à majoração pretendida.
- 28. (a) Uma vez que f é uma função diferenciável em \mathbb{R} , logo contínua, segue do Teorema Fundamental do Cálculo e da derivada da função composta que g é diferenciável em \mathbb{R} e

$$g'(x) = f(x^2 - 4x + 3)(2x - 4).$$

Como f < 0 em \mathbb{R} , tem-se $g'(x) > 0 \Leftrightarrow 2x < 4 \Leftrightarrow x < 2$. Logo, g é crescente para x < 2, decrescente para x > 2 e assim g terá um ponto de máximo em 2. Não tem mais pontos de extremo uma vez que é diferenciável em \mathbb{R} e a derivada só se anula em 2.

Dado que f < 0, tem-se

$$g(x) = 0 \Leftrightarrow x^2 - 4x + 3 = 0 \Leftrightarrow x = 1 \land x = 3,$$

$$g(x) > 0 \Leftrightarrow x^2 - 4x + 3 < 0 \Leftrightarrow 1 < x < 3$$

e

$$g(x) < 0 \Leftrightarrow x^2 - 4x + 3 > 0 \Leftrightarrow x < 1 \land x > 3.$$

Para a concavidade:

$$g''(x) = f'(x^2 - 4x + 3)(2x - 4)^2 + 2f(x^2 - 4x + 3) < 0,$$

- para qualquer $x \in \mathbb{R}$, uma vez que f e f' são negativas. Conclui-se que o gráfico de g tem a concavidade voltada para baixo.
- (b) Há dois aspectos a verificar. Por um lado, g é majorada porque é contínua e tem um único ponto de máximo em 2, logo $g(x) \le g(2)$, para qualquer $x \in \mathbb{R}$. Por outro lado, para qualquer x > 3 temos $x^2 4x + 3 > 0$. Segue da monotonia do integral e de f ser decrescente, uma vez que f' < 0, que $f(t) \le f(0)$, para $0 < t < x^2 4x + 3$ e que

$$g(x) = \int_0^{x^2 - 4x + 3} f(t) \, dt \le \int_0^{x^2 - 4x + 3} f(0) \, dt = f(0)(x^2 - 4x + 3).$$

Logo, como f(0) < 0,

$$\lim_{x \to +\infty} g(x) \le \lim_{x \to +\infty} f(0)(x^2 - 4x + 3) = -\infty,$$

e g não é minorada.

29. (a) Como a função integranda $t\mapsto \frac{\cos t}{t}$ tem domínio $\mathbb{R}\setminus\{0\}$ e é contínua no seu domínio, será integrável em qualquer intervalo limitado que não contenha 0. Como x e 3x têm sempre o mesmo sinal, temos $D_f=\mathbb{R}\setminus\{0\}$.

Fazendo a mudança de variável u = -t temos

$$f(-x) = \int_{-x}^{-3x} \frac{\cos t}{t} dt = \int_{x}^{3x} \frac{\cos(-u)}{-u} (-1) du$$
$$= \int_{x}^{3x} \frac{\cos u}{u} du = f(x).$$

Logo f é par,

(b) f é diferenciável uma vez que $t\mapsto \frac{\cos t}{t}$ é contínua (pelo Teorema Fundamental do Cálculo). Temos

$$f'(x) = \left(\int_a^{3x} \frac{\cos t}{t} dt - \int_a^x \frac{\cos t}{t} dt\right)' = 3\frac{\cos 3x}{3x} - \frac{\cos x}{x}$$
$$= \frac{\cos 3x - \cos x}{x},$$

em que tomamos a > 0, para x > 0, e a < 0, para x < 0.

(c) Como cos é decrescente em $]0,\pi[$, temos que para $0 < 3x < \pi$, $\cos(3x) < \cos x$, $\log o f'(x) = \frac{\cos 3x - \cos x}{x} < 0$ para $0 < x < \frac{\pi}{3}$, ou seja f é monótona decrescente em $]0,\frac{\pi}{3}[$. Por outro lado, para x > 0,

$$\left| \int_{x}^{3x} \frac{\cos t}{t} \, dt \right| \le \int_{x}^{3x} \frac{|\cos t|}{|t|} \, dt \le \int_{x}^{3x} \frac{1}{t} \, dt = [\log t]_{x}^{3x} = \log 3.$$

Logo f é limitada em $]0, \frac{\pi}{3}[\subset]0, +\infty[$.

Conclui-se que existe $f(0^+) = \lim_{x \to 0^+} f(x)$. Como f é par, existe também $f(0^-) = f(0^+)$, logo existe $\lim_{x \to 0} f(x)$.

- 30. (a) $g(-x) = \int_0^{-x} \phi(t) dt = \int_0^x \phi(-u)(-1) du = -g(x)$, notando que ϕ é par.
 - (b) Para $x \neq 0$ temos do Teorema Fundamental do Cálculo

$$g'(x) = \frac{1 - \cos x}{x^2}$$

Em x = 0:

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{\int_0^x \phi(t) \, dt}{x} = \lim_{x \to 0} \frac{\frac{1 - \cos x}{x^2}}{1} = \frac{1}{2}.$$

(Alternativamente, poderiamos considerar a função $\tilde{\phi}(x) = \phi(x)$, para $x \neq 0$ e $\tilde{\phi}(0) = \lim_{x \to 0} \phi(x) = \frac{1}{2}$, que é contínua em \mathbb{R} , e aplicar o Teorema Fundamental do Cálculo a $\tilde{\phi}$ em \mathbb{R} - ver Ex. 26.)

(c) $g'(x) \ge 0$ para qualquer $x \in \mathbb{R}$ e

$$g'(x) = 0 \Leftrightarrow \cos x = 1 \land x \neq 0 \Leftrightarrow x = 2k\pi, k \in \mathbb{Z} \setminus \{0\}.$$

(d) Como g é ímpar, é suficente considerar $x \ge 0$. Temos que g é limitada em qualquer intervalo [0,a], a > 0, uma vez que é contínua (decorre da continuidade do integral indefinido de qualquer função integrável). Para $x \in [a, +\infty[$ podemos majorar g(x) por

$$g(a) + \int_a^x \frac{2}{x^2} = g(a) - \frac{2}{x} + \frac{2}{a} \le g(a) + \frac{2}{a}.$$

31. a)
$$\phi(2) = \int_{1}^{2} \frac{t}{(1+t^{2})^{2}} \log t \, dt = \left[-\frac{1}{2(1+t^{2})} \log t \right]_{1}^{2} + \int_{1}^{2} \frac{1}{2t(1+t^{2})} \, dt$$

$$= -\frac{\log 2}{10} + \frac{1}{2} \int_{1}^{2} \left(\frac{1}{t} - \frac{t}{1+t^{2}} \right) dt = \frac{13}{20} \log 2 - \frac{1}{4} \log 5.$$

- b) $\phi'(x) = \frac{x}{(1+x^2)^2} \log x$, para x > 0.
- c) Tem-se $\frac{x}{(1+x^2)^2} > 0$ para qualquer x > 0, logo $\phi'(x) > 0 \Leftrightarrow x > 1$, ou seja, ϕ é crescente em]1, $+\infty$ [e decrescente em]0, 1[.

Tem-se $\phi(1) = 0$. Se existisse $c \neq 1$ tal que $\phi(c) = 0$, então, do Teorema de Rolle, existiria um zero de ϕ' entre 1 e c. Como $\phi'(x) \neq 0$ para $x \neq 1$, temos que 1 é o único 0 de ϕ .

32. a)
$$\frac{1}{3}$$

b)
$$\int_0^1 (4x - x) dx + \int_1^2 (4x - x^3) dx = \frac{15}{4}$$
.

c)
$$a(\log a - 1) + 1$$

33. a)
$$A = 2 \int_0^{\frac{3\sqrt{2}}{2}} (9 - x^2 - x^2) dx = 18\sqrt{2}$$
,
b) $A = 2 \int_0^1 \left(\sqrt{2(2 - x)} - \sqrt{4(1 - x)}\right) dx + 2 \int_1^2 \sqrt{2(2 - x)} dx$

$$= 2 \int_0^2 \sqrt{2(2 - x)} dx - 2 \int_0^1 \sqrt{4(1 - x)} dx = \frac{8}{3}$$
c) $A = \int_{-2}^{-\frac{1}{3}} \left(\frac{1}{x^2} - \frac{-x}{8}\right) dx + \int_{-\frac{1}{3}}^0 \left(-27x - \frac{-x}{8}\right) dx = \frac{15}{4}$,
d) $A = \int_0^1 \left(\sqrt[3]{x} - \sqrt{x}\right) dx = \frac{1}{12}$,
e) $A = \int_0^{\frac{1}{2}} \left(x - \frac{x}{2}\right) dx + \int_{\frac{1}{2}}^1 (x - x^2) dx = \frac{7}{48}$,
f) $A = \int_0^1 e^x - (1 - x) dx = e - \frac{3}{2}$.

34. De $\frac{x^2}{4} + y^2 = 1$ temos $y = \pm \sqrt{1 - \frac{x^2}{4}}$. A área fica (fazendo a substituição $x = 2 \operatorname{sen} t$):

$$A = 4 \int_0^2 \sqrt{1 - \frac{x^2}{4}} \, dx = 4 \int_0^{\frac{\pi}{2}} 2 \cos^2 t \, dt$$
$$= 4 \int_0^{\frac{\pi}{2}} (\cos 2t + 1) \, dt = 4 \left[\frac{1}{2} \sin 2t + t \right]_0^{\frac{\pi}{2}} = 2\pi.$$

35. As duas curvas intersectam-se em $(-1, \sqrt{3})$ e $(-1, \sqrt{3})$ (verifique). Temos

$$A = \int_{-1}^{1} \left(\sqrt{4 - x^2} - \sqrt{3}x^2 \right) dx = \frac{\sqrt{3}}{2} + \frac{2\pi}{6} - \frac{2\sqrt{3}}{3}.$$

(Faça a substituição $x = 2 \operatorname{sen} t$ para primitivar $\sqrt{4 - x^2}$).

36.
$$A = \int_0^1 \arctan x = \frac{\pi}{4} - \frac{1}{2} \log 2$$
 (verifique!)

37.
$$A = \int_0^1 \left(\operatorname{arctg} x - \frac{\pi}{16} x^2 \right) dx + \int_1^2 \left(\frac{\pi}{4} - \frac{\pi}{16} x^2 \right) dx = -\frac{1}{2} \log 2 + \frac{\pi}{3}.$$

38. As curvas intersectam-se nos pontos (1,0) e (e,1), e para $x \in [1,e]$, $\log x \ge \log^2 x$. Temos

$$A = \int_{1}^{e} (\log x - \log^{2} x) dx = \left[x \left(\log x - \log^{2} x \right) \right]_{1}^{e} - \int_{1}^{e} x \left(\frac{1}{x} - \frac{2}{x} \log x \right) dx$$
$$= e(1 - 1) - 1(0 - 0) - \left[x \right]_{1}^{e} + \int_{1}^{e} 2 \log x dx$$
$$= -e + 1 + \left[2x \log x \right]_{1}^{e} - \int_{1}^{e} 2 dx = 3 - e.$$