

Facultad de Ciencia y Tecnología

Carrera: Licenciatura en Sistemas Informáticos - Fecha....../...../......

Cátedra: Calculo Diferencial e Integral

EXAMEN FINAL

Nombre y apellido del alumno:

E-1: Dadas la siguiente función: $f(x) = \begin{cases} 2 & \text{si } x < -1 \\ x^2 & \text{si } -1 \le x < 2; \text{ a)} \end{cases}$ Representar gráficamente; b) Indicar Dominio y $x + 2 \quad \text{si } x > 2$

Rango de f(x); c) Encuentre los límites que se indican a continuación:

c.1)
$$\lim_{x \to -1^{-}} f(x) = \dots$$
;c.2) $\lim_{x \to -1^{-}} f(x) = \dots$;c.3) $\lim_{x \to -1} f(x) = \dots$;c.4) $\lim_{x \to 2^{-}} f(x) = \dots$

- d) Estudiar la continuidad de la función, en caso de ser discontinua clasificarla. Justificar el estudio.
- **E-2:** Calcular las derivadas pedidas: a) $f(x) = \ln (3 x + 4)$, $f^{(47)}(x)$; b) $x^2 y x y^2 + 3 x y = 3 x$, y'(x).
- **E-3:** a) Graficar la función: $f(x) = x^3 6x^2 + 8x$. Dar Dominio y Rango de f(x); b) Encontrar el área de la región acotada por la curva $f(x) = x^3 6x^2 + 8x$ y la recta y = 8x.

PARA ALUMNOS LIBRES

E-4: a) Interpretar geométricamente $\int_{-1}^{+\infty} \frac{1}{x+1} dx$; b) Calcular $\int_{-1}^{+\infty} \frac{1}{x+1} dx$, determinar si la integral converge o no.

TEORÍA

- E-1: Definir Diferencial de una función. Interpretación Geométrica. Diferencia con el incremento.
- E-2: Regla de Barrow. Demostración.
- **E-3:** Función continua en un punto. a) Definición; b) continuidad de una función en un intervalo cerrado [a, b]; c) continuidad de una función en un intervalo abierto (a, b).