At Tutorial 2 – Marked Question (15th March 2019)

Chapter 5, Ex 45: Thévenin equivalent (use nodal analysis)

For the network below:

a) find the Thévenin equivalent seen at terminals a and b.

b) find the Thévenin equivalent seen at terminals b and c.

At Tutorial 2 – Unmarked Questions (15th March 2019)

Chapter 4, Ex 16: Nodal analysis

Use nodal analysis to find v_4 in the circuit below.

Tuts: 10 of 16

Chapter 5, Ex 63: Thévenin equivalent

a) Determine the Thévenin equivalent of the network shown below.

Extra Questions for Tutorial 2 (no worked solutions just final answer given)

Ch 3, Ex 74: Current divider [Ans: $i_x = 2.837 \text{ A}$, $i_y = 2.853 \text{ A}$, P = 51.59 W]

For the circuit below, find i_x , i_y and the power dissipated/ absorbed by the 3 Ω resistor.

Ch 4, Ex 9: Nodal analysis [Ans: $v_1 = 58.5 \text{ V}$, $v_2 = 64.4 \text{ V}$, P = 543.4 W]

For the circuit below: (a) Use nodal analysis to determine v_1 and v_2 . (b) Compute the power absorbed by the 6 Ω resistor.

Chapter 5, Ex 49: Thévenin equivalent [Ans: see worked solutions]

Find the Thévenin equivalent of the two-terminal network shown below.

Tuts: 12 of 16