🚺 Compléter des égalités 🖈

Pour tous nombres réels **strictement positifs** a et b, et pour tous nombres entiers relatifs n et p:

•
$$a^n > 0$$
; • $(ab)^n = a^n \times b^n$; • $a^n \times a^p = a^{n+p}$;
• $\left(\frac{1}{a}\right)^n = \frac{1}{a^n}$; • $\frac{1}{a^n} = a^{-n}$ et $a^0 = 1$; • $\frac{a^n}{a^p} = a^{n-p}$;
• $\left(\frac{a}{b}\right)^n = \frac{a^n}{a^n}$; • $(a^n)^p = a^{np}$.

Reproduire et compléter chacune des égalités suivantes.

a)
$$10 \cdot \cdot \cdot \times 10^4 = 10^{-2}$$
;

b)
$$10 \cdot \cdot \cdot \times 10^{-3} = 10^5$$
;

c)
$$10^{-4} \times 10^{-1} = 10^{-3}$$
;

d)
$$\frac{10^2}{10\cdots} = 10^{-2}$$
;

e)
$$\frac{10^{-4}}{10\cdots} = 10^4$$
;

f)
$$3x \times ... = 12x^3$$
.

4 Compléter des égalités 🖈

Pour tous nombres réels **strictement positifs** a et b, et pour tous nombres entiers relatifs n et p:

$$\bullet a^{n} > 0; \qquad \bullet (ab)^{n} = a^{n} \times b^{n}; \qquad \bullet a^{n} \times a^{p} = a^{n+p};$$

$$\bullet \left(\frac{1}{a}\right)^{n} = \frac{1}{a^{n}}; \qquad \bullet \frac{1}{a^{n}} = a^{-n} \text{ et } a^{0} = 1; \qquad \bullet \frac{a^{n}}{a^{p}} = a^{n-p};$$

$$\bullet \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}; \qquad \bullet (a^{n})^{p} = a^{np}.$$

Reproduire et compléter chacune des égalités suivantes.

a)
$$10 \cdot \cdot \cdot \times 10^4 = 10^{-2}$$
;

b)
$$10 \cdot \cdot \cdot \times 10^{-3} = 10^5$$
;

c)
$$10^{-4} \times 10^{-4} = 10^{-3}$$
; d) $\frac{10^2}{10^{-4}} = 10^{-2}$;

d)
$$\frac{10^2}{10\cdots} = 10^{-2}$$

e)
$$\frac{10^{-4}}{10\cdots} = 10^4$$
;

f)
$$3x \times ... = 12x^3$$
.

💶 Compléter des égalités 🖈

Pour tous nombres réels **strictement positifs** a et b, et pour tous nombres entiers relatifs n et p:

•
$$a^n > 0$$
;
• $\left(\frac{1}{a}\right)^n = \frac{1}{a^n}$;

$$\bullet (ab)^n = a^n \times b^n; \qquad \bullet a^n \times a^p = a^{n+p};$$

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet \left(\frac{1}{a}\right)^n = \frac{1}{a^n};$$

•
$$a_u \times a_b = a_{u+b}$$

$$\cdot \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n};$$

•
$$\frac{a^n}{a^p} = a^{n-p}$$
;

$$\bullet \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}; \qquad \bullet (a^n)^p = a^{np}.$$

$$\bullet (a^n)^p = a^{np}.$$

Reproduire et compléter chacune des égalités suivantes.

a)
$$10 \cdot \cdot \cdot \times 10^4 = 10^{-2}$$
;

b)
$$10 \cdot \cdot \cdot \times 10^{-3} = 10^5$$
;

c)
$$10^{-4} \times 10^{-4} = 10^{-3}$$
; d) $\frac{10^2}{10^{-4}} = 10^{-2}$;

d)
$$\frac{10^2}{10\cdots} = 10^{-2}$$

e)
$$\frac{10^{-4}}{10\cdots} = 10^4$$
;

f)
$$3x \times ... = 12x^3$$
.

- **a)** $y = (0.85)^{1.2}$.
- **b)** $y = (1,203)^{10}$.
- **c)** $y = -2(0.93)^{11}$.
- **d)** $y = 302(1,22)^{25}$.

62 Exposants de la forme $\frac{1}{n}$

Déterminer la valeur approchée arrondie à 10^{-2} de x.

- **a)** $x = 1,0225^{\frac{1}{2}}$. **b)** $x = 4^{\frac{1}{3}}$.

- **d)** $x = 3.5^{\frac{1}{12}}$.
- **e)** $x = 0.70^{\frac{1}{6}}$.

📵 Vrai ou Faux 🖈

Indiquer sans justification si chacune des égalités suivantes est vraie ou fausse.

- a) $3^2 \times 2^3 = 6^5$;
- **b)** $3^{-3} \times 3^3 = 1$
- c) $\frac{5^6}{5^3} = 5^2$;
- **d)** $(7^2)^3 = 7^5$.

 $\boxed{50}$ \star Déterminer la valeur approchée arrondie à 10^{-2} de y.

- **a)** $y = (0.85)^{1.2}$.
- **b)** $y = (1,203)^{10}$.
- **c)** $y = -2(0.93)^{11}$.
- **d)** $y = 302(1,22)^{25}$.

ⓑ Exposants de la forme $\frac{1}{n}$ ★

Déterminer la valeur approchée arrondie à 10^{-2} de x.

- **a)** $x = 1,0225^{\frac{1}{2}}$. **b)** $x = 4^{\frac{1}{3}}$.
- **d)** $x = 3.5^{\frac{1}{12}}$.
- **e)** $x = 0.70^{\frac{1}{6}}$.

60 Vrai ou Faux ★

Indiquer sans justification si chacune des égalités suivantes est vraie ou fausse.

- a) $3^2 \times 2^3 = 6^5$;
- **b)** $3^{-3} \times 3^3 = 1$
- c) $\frac{5^6}{5^3} = 5^2$;
- **d)** $(7^2)^3 = 7^5$.

- **a)** $y = (0.85)^{1.2}$.
- **b)** $y = (1,203)^{10}$.
- **c)** $y = -2(0.93)^{11}$.
- **d)** $y = 302(1,22)^{25}$.

62 Exposants de la forme $\frac{1}{n}$

Déterminer la valeur approchée arrondie à 10^{-2} de x.

- a) $x = 1.0225^{\frac{1}{2}}$.
- **b)** $x = 4^{\frac{1}{3}}$.
- c) $x = 2.25^{\frac{1}{6}}$.

- **d)** $x = 3.5^{\frac{1}{12}}$.
- **e)** $x = 0.70^{\frac{1}{6}}$.
- **f)** $x = 0.5^{\frac{1}{12}}$

📵 Vrai ou Faux 🖈

Indiquer sans justification si chacune des égalités suivantes est vraie ou fausse.

- a) $3^2 \times 2^3 = 6^5$;
- **b)** $3^{-3} \times 3^3 = 1$
- c) $\frac{5^6}{5^3} = 5^2$;
- **d)** $(7^2)^3 = 7^5$.