Example 1

Find (a) $\overrightarrow{u} + \overrightarrow{v}$ and (b) $\overrightarrow{u} - \overrightarrow{v}$ if $\overrightarrow{u} = \langle 2, 1 \rangle$ and $\overrightarrow{v} = \langle 3, -4 \rangle$.

Example 2

Subtract \vec{k} = (6, 3) from \vec{v} = (-4, 1).

Example 3

Add the vectors $\vec{a}=(15,9)$ and $\vec{b}=(32,6)$.

Example 4

Add the vectors $\vec{a}=$ (-11, 23) and $\vec{b}=$ (14, 8).

Example 5

Subtract \vec{k} = (13, 3) from \vec{v} = (-10, 11).

Answer 1

Substitute the given values of u1, u2, v1 and v2 into the definition of vector addition.

$$\vec{u} + \vec{v} = \langle u1 + v1, u2 + v2 \rangle = \langle 3 + 2, 1 + (-4) \rangle = \langle 5, -3 \rangle$$

Rewrite the difference $\vec{u} - \vec{v}$ as a sum $\vec{u} + (-\vec{v})$. We will need to determine the components of $-\vec{v}$

Recall that $-\vec{v}$ is a scalar multiple of -1 times v. From the definition of scalar multiplication, we have: $-\vec{v} = -1 \cdot \langle v1, v2 \rangle = -1 \cdot \langle 5, -3 \rangle = \langle -5, 3 \rangle$

Now add the components of \vec{u} and $-\vec{v}$.

$$\vec{u} + (-\vec{v}) = (2 + (-3), 4+3) = (-1, 7).$$

Answer 2

$$\vec{a} = \vec{v} + (-\vec{k})$$

$$\vec{a} = (6 + 4, 3 - 1) = (10, 2).$$

Answer 3

$$\vec{c} = \vec{a} + \vec{b}$$

$$\vec{c}$$
 = (15 + 32, 9+6) = (47, 15).

Answer 4

$$\vec{c} = \vec{a} + \vec{b}$$

$$\vec{c} = ((-11) + 14, 14+8) = (3, 22).$$

Answer 5

$$\vec{a} = \vec{v} + (-\vec{k})$$

$$\vec{a} = (13 + 10, 3 - 11) = (23, -8).$$