Number Theory MATH3431 UNSW

Jeremy Le

2024T1

Definitions: Purple, Theorems: Blue, Properties/Lemmas: Green

Contents

1	$Th\epsilon$	e Ring of Integers	2	
	1.1	The Set of All Integers	2	
	1.2	Ring	2	
	1.3	Divisibility in Commutative Rings	3	
	1.4	Ideals	4	
2	Diophantine Equations and Congruences 5			
	2.1	Congruences	١	
	2.2	Arithmetic Functions		
3	Introduction to Groups			
	3.1	Fields	(
	3.2	Units of a Ring	6	
	3.3	Groups	7	
	3.4	Group Isomorphism	7	
	3.5	Wilson's Theorem	8	
4	The Structure of \mathbb{U}_m and \mathbb{Z}_m			
	4.1	Subgroups and Cyclic Groups	8	
	4.2	Direct Product of Groups	Ć	
	4.3	Decomposition of \mathbb{U}_m	10	
	4.4	Primitive Roots	11	
5	Qua	adratic Reciprocity	12	
	5.1	Quadratic Congruences	12	
	5.2	Quadratic Residues	12	
	5.3	Euler's Criterion	12	
	5.4		12	
	5.5		13	
	5.6		14	
6	Gai	issian Integers	1⊿	

1 The Ring of Integers

1.1 The Set of All Integers

Divisor Let a and b be integers. We say that a is a divisor of b if there exists an integer k such that b = ka. If a is a divisor not equal to b we call it a proper divisor.

Divisibility Properties Let $a, b, c \in \mathbb{Z}$. Then

- a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
- b) $a \mid a$.
- c) If $a \mid b$ and $b \mid a$ then $b = \pm a$.
- d) If $a \mid b$ and $a \mid c$ then $a \mid (xb + yc)$ for any $x, y \in \mathbb{Z}$.

Euclid's Theorem There are infinitely many primes in \mathbb{Z} .

1.2 Ring

Ring A ring consist of a non-empty set R together with two operations defined on elements of R, addition (+) and multiplication (denoted by juxtaposition, or sometimes by \star or \times) where all the following properties hold:

- 1. Closure under addition: if $a, b \in R$ then $a + b \in R$.
- 2. Commutativity of addition: for all $a, b \in R, a + b = b + a$.
- 3. Associativity of addition: for all $a, b, c \in R, (a + b) + c = a + (b + c)$.
- 4. Zero element: There is an element 0 of R such that if $a \in R$ then a + 0 = a/a
- 5. Negatives. $\forall a \in R$ there is $-a \in R$ such that a + (-a) = 0.
- 6. Closure under multiplication: if $a, b \in R$ then $ab \in R$.
- 7. Associativity of multiplication: $\forall a, b, c \in R, (ab)c = a(bc)$.
- 8. Distributive laws: for all $a, b, c \in R$, a(b+c) = ab + ac and (a+b)c = ac + bc.

Subtraction For any a, b in a ring R, we define a - b = a + (-b)

Ring Properities Let R be a ring and $a, b, c \in R$. Then the following hold:

- 1. if a + b = a + c then b = c;
- 2. 0 is unique and 0a = a0 = 0;
- 3. for each a, -a is unique;

- 4. a b = 0 if and only if a = b;
- 5. -(ab) = (-a)b = a(-b);
- 6. ab ac = a(b c) and ac bc = (a b)c.

Commutative Ring A commutative ring is a ring R in which multiplication is commutative, that is, ab = ba for all $a, b \in R$.

Identity Element An identity element in the ring R is an element, usually denoted by 1, with the property that 1a = a1 = a for all $a \in R$. Sometimes we are more explicit and call 1 the multiplicative identity.

Divisors of Zero In a ring R, if a and b are non-zero elements such that ab = 0, then a and b are called divisors of zero.

Integral Domain An integeral domain is a commutative ring with identity in which there are no divisors of zero. Explicitly, an integral domain is a non-empty set R together with operations of addition and multiplication, such that the ring axioms (1) - (8) hold as well as the following:

- 9. Commutativity of multiplication. If $a, b \in R$ then ab = ba.
- 10. Identity element. There exists an element 1 of R such that if $a \in R$ then 1a = a.
- 11. No divisors of zero. For all $a, b \in R$, if ab = 0 then either a = 0 or b = 0.

Cancellation Law for Integral Domains Let R be an integral domain and $a, b, c \in R$ and suppose $a \neq 0$. If ab = ac then b = c.

1.3 Divisibility in Commutative Rings

Divisors in Rings Let α, β be elements in a commutative ring R. We say that α is a divisor of β , denoted by $\alpha \mid \beta$, if there exists an element κ of R usch that $\beta = \kappa \alpha$.

Unit of Rings Let R be a commutative ring with identity. An element of R having a multiplicative increase is called a unit of R.

Associates, Irreducibles and Primes

- Elements a and b of an integral domain R are called associates if a = ub, for some unit u of R.
- An element ρ of the integral domain R is said to be irreducible if it has the property

$$\forall \alpha, \beta \in R$$
, if $\rho = \alpha\beta$ then α or β is a unit.

• A non-zero, non-unit element ρ of the integral domain R is said to be prime if it has the property

$$\forall \alpha, \beta \in R$$
, if $\rho \mid \alpha\beta$ then $\rho \mid \alpha$ or $\rho \mid \beta$.

Primes are Irreducible In an integral domain every prime is irreducible.

Greatest Common Divisor Let a, b be integers, not both zero. Then a positive integer g is the greatest common divisor of a and b if and only if g is a common divisor and every common divisor is a factor of g.

GCD in Rings Let a, b be elements in a commutative ring R. An element $g \in R$ is a greatest common divisor of a and b in R if $g \mid a, g \mid b$ and every common divisor of a and b is a factor of g.

1.4 Ideals

Ideal Let R be a commutative ring with identity. A subset I of R is called an ideal of R if it has the following three proprties:

- 0 is in I.
- If a, b are in I then a + b is in I.
- If $a \in I$ and $x \in R$ then $ax \in I$.

Smallest Ideal Let R be a commutative ring with identity, and $\{a_1, \ldots, a_n\} \subset R$. Then the set

$$\{r_1a_1 + \dots + r_na_n : r_1, \dots, r_n \in R\}$$

is the smallest ideal of R containing $\{a_1, \ldots, a_n\}$.

Principal Ideal An ideal I of a ring R is said to be principal if there exists $a \in R$ such that $I = \langle a \rangle = \{ax : x \in R\}.$

Every Ideal is Principal Every ideal in \mathbb{Z} is principal. In particular, if a, b are not both zero then $\langle a, b \rangle = \langle \gcd(a, b) \rangle$.

Principal Ideal Domain A principal ideal domain is an integral domain in which every ideal is principal.

Integral and Principal Ideal Domains Let R be an integral domain.

- a. If R has a division algorithm then R is a principal ideal domain.
- b. If R is a principal ideal domain, then every non-zero element of R which is not a unit has

a unique (up to associates and order) factorisation into irreducibles.

Big-Oh and Little-Oh Notations For two functions f(x), $f: \mathbb{R} \to \mathbb{C}$, and g(x), $g: \mathbb{R} \to \mathbb{R}^+$, we say that

- f(x) = O(g(x)) iff $\limsup_{x\to\infty} |f(x)|/g(x) < \infty$ or, alternatively iff there is a constant c>0 such that $|f(x)| \le cg(x)$ for all sufficiently large x.
- f(x) = o(g(x)) iff $\lim_{x\to\infty} |f(x)|/g(x) = 0$ or, alternatively, iff for any $\epsilon > 0$ we have $|f(x)| \le \epsilon g(x)$ for all sufficiently large x.

Prime Number Theorem (PNT) For $x \to \infty$, we have

$$\pi(x) = \frac{x}{\log x} + o\left(\frac{x}{\log x}\right) = (1 + o(1))\frac{x}{\log x}.$$

2 Diophantine Equations and Congruences

2.1 Congruences

Cancelling in Congruences Let a, b, c and m be integers, with $c \neq 0$.

- a) The congruences $cax \equiv cb \pmod{cm}$ and $ax \equiv b \pmod{m}$ have the same solutions.
- b) If $\gcd(c,m)=1$ then the congruences $cax\equiv cb\pmod m$ and $ax\equiv b\pmod m$ have the same solutions.

Multiplicative Inverse Let $a \in \mathbb{Z}_m$ and $m \in \mathbb{Z}^+$. If $ax \equiv 1 \pmod{m}$, we call x the multiplicative inverse of a modulo m, or the multiplicative inverse of a in \mathbb{Z}_m .

2.2 Arithmetic Functions

Notation of Factors For any positive integer n we define d(n) to be the number of (positive) factors of n, and $\sigma(n)$ to be the sum of all (positive) factors of n.

Formula for $\mathbf{d}(\mathbf{n})$ If $n \in \mathbb{Z}^+$ has canonical factorisation into prime powers $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$ then

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_s + 1) = \prod_{k=1}^{s} (\alpha_k + 1)$$

Formula for $\sigma(\mathbf{n})$ If $n \in \mathbb{Z}^+$ has canonical factorisation into prime powers

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s} \text{ then}$$

$$\sigma(n) = (1 + p_1 + p_1^2 + \dots + p_1^{\alpha_1}) \dots (1 + p_s + p_s^2 + \dots + p_s^{\alpha_s})$$

$$= \prod_{k=1}^s \frac{p_k^{a_k+1} - 1}{p_k - 1}$$

Multiplicative Functions Suppose that f is a function with domain \mathbb{Z}^+ . We call f multiplicative if

$$f(mn) = f(m)f(n),$$

whenever gcd(m, n) = 1.

 \mathbf{d}, σ Multiplicative Both d and σ are multiplicative.

Perfect Numbers A number n is called perfect if $\sigma(n) = 2n$.

Euclid-Euler Let n be even. Then n is perfect if and only if there is an integer k > 1 such that $n = 2^{k-1}(2^k - 1)$ and $2^k - 1$ is prime.

3 Introduction to Groups

3.1 Fields

Field A field K is a commutative ring with identity in which every non-zero element has a multiplicative inverse.

No Divisors of Zero in Fields A field contains no divisors of zero.

All fields are Integral Domains A field is an integral domain.

Inverse and GCD An element $n \in \mathbb{Z}_m^*$ has an inverse if and only if $\gcd(m,n) = 1$.

Rings and Fields The ring Z_m is a field if and only if m is prime.

3.2 Units of a Ring

Notation for Set of Units In \mathbb{Z}_m , we denote the set of units by \mathbb{U}_m .

Units in Commutative Rings with Identity Let R be a commutative ring with identity.

- a) 1 is a unit of R
- b) If a and b are units in R, then so is their product ab.
- c) If a is a unit in R then so is a^{-1}

Units are Closed in Commutative Rings with Identity In any commutative ring with identity, the set of all units is closed under multiplication and inverse.

3.3 Groups

Groups A group is a non-empty set G on which an operation \star is defined, such that the following properties hold:

- 1. Closure: if $a, b \in G$ then $a \star b \in G$.
- 2. Associativity: if $a, b, c \in G$ then $(a \star b) \star c = a \star (b \star c)$.
- 3. Identity element: there is an element e of G such that for all $a \in G$ we have $a \star e = e \star a = a$
- 4. Inverses: for each a in G there is an element b of G such that $a \star b = b \star a = e$. This element is usually denoted a^{-1} .

Abelian Groups If the operation is commutative, i.e. $a \star b = b \star a$, for all $a, b \in G$, the group is called commutative, or Abelian.

Properties of Groups In any group G the following properties hold.

- a There is only one identity element in G.
- b Each x in G has only one inverse.
- c If $x, y \in G$ then $(xy)^{-1} = y^{-1}x^{-1}$.
- d If $x, y, z \in G$ and xy = xz then y = z.

3.4 Group Isomorphism

Group Isomorphism Let G and H be groups with operations \star and \bullet respectively. An isomorphism for G to H is a bijective function $\psi: G \to H$ with the property that

$$\psi(a \star b) = \psi(a) \bullet \psi(b)$$
 for all elements $a, b \in G$.

The groups G and H are said to be isomorphic if there exists such a function. We write $G \cong H$ to indicate that G and H are isomorphic.

Identities and Inverses in Isomorphic Groups Suppose that G and H are groups with identities e_G and e_H , respectively. Let $\psi: G \to H$ be a group isomorphism. Then

- 1. $\psi(e_G) = e_H$,
- 2. $\psi(a^{-1}) = (\psi(a))^{-1}$ for all $a \in G$,
- 3. $\psi(a^n) = \psi(a)^n$ for all $n \in \mathbb{Z}$,
- 4. If $\psi: G \to H, \theta: H \to K$ homomorphic then $\theta \circ \psi: G \to K$ is also homomorphic,
- 5. If $\psi: G \to H$ is a isomorphic then $\psi^{-1}: H \to H$ is also isomorphic.

3.5 Wilson's Theorem

Wilson's Theorem Let $p \ge 2$. Then p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

4 The Structure of \mathbb{U}_m and \mathbb{Z}_m

4.1 Subgroups and Cyclic Groups

Subgroup Let G be a group, and let H be a subset of G which is itself a group under the same operations as G. Then we say that H is a subgroup of G.

The Subgroup Lemma Let G be a group and H a non-empty subset of G. Then H is a subgroup of G if and only if it is closed under the group operation and inverse.

Cyclic Groups A group G is said to be cyclic if there exists an element $g \in G$ such that $G = \langle g \rangle$, i.e. G is generated by a single element.

Order of a Group and Element The order of a finite group G is the number of elements in G, |G|.

The order of an element g in a group G is the smallest positive integer n (if any) such that $g^n = e$. We write o(q) for the order of the element q.

Distinct Powers of Elements If $g \in G$ has order n, then the elements $e, g, g^2, \ldots, g^{n-1}$ are all distinct.

Isomorphic Cyclic Groups Two finite cyclic groups are isomorphic if and only if they have the same order.

Prime Order is Isomorphic is Cycle Group Any group of prime order p is isomorphic to the cyclic group C_p .

Groups of Prime Order are Abelian Any group of prime order is abelian.

All Subsets Closed under Operation are Subgroups Let G be a group with operation \star . If H is a non-empty finite subset of G that is closed under \star , then H is a subgroup of G.

Lagrange's Theorem If G is a finite group and H is a subgroup of G, then |H| is a factor of |G|.

Left Coset Let G be a group and H a subgroup of G. For any $g \in G$ we define the left coset of H by g to be

$$gH = \{gh \mid h \in H\}.$$

If we used additive notation we would write a coset of H as g + H.

Order of Elements in a Group is a Divisor of the Group Suppose G is a group of finite order and $g \in G$. Then $g^{|G|} = e$.

Fermat's Little Theorem If p is a prime and a is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary of Fermat's Little Theorem If p is prime and a is any integer, then $a^p \equiv a \pmod{p}$.

Euler's Theorem Let n be a positive integer, and let a be an integer relatively prime to n. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$

4.2 Direct Product of Groups

Cartesian Product Let A and B be two sets. The Cartesian production of the two sets is defined by

$$A \times B = \{(a,b) : a \in A, b \in B\}.$$

Cartesian Proudct of Any Sets is a Group Let H and K groups with operation \star and \times , respectively. The set $H \times K$ with the operation \bullet defined by

$$(h_1, k_1) \bullet (h_2, k_2) = (h_1 \star h_2, k_1 \star k_2)$$

is a group.

Cartesian Product of Groups The group in the above Lemma is called the direct product of H and K and it is denoted by $H \otimes K$.

Condition of Isomorphism for Cartesian Products Let G be a finite abelian group. If H and K are subgroups of G such that |H||K| = |G| and $H \cap K = \{e\}$, then the mapping

$$\psi: H \otimes K \to G$$
, where $\psi((h,k)) = h, k$

is an isomorphism.

Direct Sum The direct sum of two additive abelian subgroups H and K is

$$H \oplus K = \{(h, k) \mid h \in H \text{ and } k \in K\},\$$

with operation defined by

$$(h_1, k_1) + (h_2, k_2) = (h_1 + h_2, k_1 + k_2).$$

Decomposition of \mathbb{Z}_n Suppose positive integer n factorises as n = st.

If s and t are relatively prime, then $\mathbb{Z}_n \cong \mathbb{Z}_s \oplus \mathbb{Z}_t$.

Conversly, if s and t are not relatively prime, then $\mathbb{Z}_n \ncong \mathbb{Z}_s \oplus \mathbb{Z}_t$.

Direct Sum Cyclic if Pairwise Relatively Prime Let s_1, s_2, \ldots, s_k be positive integers. Then the direct sum $\mathbb{Z}_{s_1} \oplus \mathbb{Z}_{s_2} \oplus \cdots \oplus \mathbb{Z}_{s_k}$ is cyclic if and only if s_1, s_2, \ldots, s_k are pairwise relatively prime.

The Chinese Remainder Theorem Suppose that the integers m_1, m_2, \ldots, m_t are pairwise coprime, and let b_1, b_2, \ldots, b_t be any intergers. Then the simulataneous congruences

$$x \equiv b_1 \pmod{m_1}, \quad x \equiv b_2 \pmod{m_2}, \quad \dots \quad x \equiv b_t \pmod{m_t}$$

have a unique solution modulo $m_1m_2\cdots m_t$.

4.3 Decomposition of \mathbb{U}_m

Decomposition of \mathbb{U}_m If n = st is a positive integer, $\mathbb{U}_n \cong \mathbb{U}_s \otimes \mathbb{U}_t$ if and only if s and t are coprime.

Euler Function Multiplicative The Euler's function φ is multiplicative.

Formula for $\varphi(n)$ Let n be a positive integer with canonical factorisation $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$. Then

$$\varphi(n) = \prod_{k=1}^{s} \left(p_k^{a_k} - p_k^{a_k - 1} \right) = \prod_{k=1}^{s} \left(p_k - 1 \right) p_k^{a_k - 1} = n \prod_{p|n} \left(1 - \frac{1}{p} \right).$$

Quotient Depends on Prime Factors The quotient $\varphi(n)/n$ depends on the prime factors of n, but not on their multiplicity.

GCD involving Phi Suppose that gcd(s, t) = g. Then

$$\varphi(g)\varphi(st) = g\varphi(s)\varphi(t).$$

Cyclic Sets of Units Let p be a prime, $p \neq 2$. Then $\mathbb{U}_{p^{\alpha}}$ is cyclic,

$$\mathbb{U}_{p^{\alpha}} \cong C_{(p-1)p^{\alpha-1}}.$$

For powers of 2 we have $\mathbb{U}_2 \cong C_1, \mathbb{U}_4 \cong C_2$ and

$$\mathbb{U}_{2^{\alpha}} \cong C_2 \otimes C_{2^{\alpha-2}}$$
 for $a \geq 3$.

Condition for Cyclic Units Let $n \geq 2$. Then \mathbb{U}_n is cyclic if and only if $n = 2, n = 4, n = p^{\alpha}$ or $n = 2p^{\alpha}$, where p is an odd prime and α is a positive integer.

Generator Implies Order and Relatively Primes Suppose that G is a cyclic group of order n and that g is a generator of G. Then

- a) for any integer α , the order of g^{α} is $n/\gcd(\alpha, n)$;
- b) g^{α} generates G if and only if α is relatively prime to n.

4.4 Primitive Roots

Primitive Root Modulo A generator of \mathbb{U}_m is called a primitive root of modulo m.

Existence of Primitive Root A primitive root modulo m will exist if and only if $m = 2, m = 4, m = p^{\alpha}$ or $m = 2p^{\alpha}$, where p is an odd prime.

Powers are Primitive Roots if Co-prime to Order Let g be a primitive root modulo m. Then g^{α} is a primitive root modulo m iff α is relatively prime to φm , that is iff $a \in U_{\varphi(m)}$.

Number of Primitive Roots If there are any primitive roots modulo m then there are $\varphi(\varphi(m))$ of them.

Discrete Logarithm The exponent α above is called the discrete logarithm of a modulo m to the base g, or the index of a modulo m, relative to g. We write

$$\alpha = \log_g a$$
 or $\alpha = \operatorname{ind}_g a$.

Addition and Multiplication of Discrete Logarithm Let g be a primitive root in \mathbb{U}_m .

- a) If $a, b \in \mathbb{U}_m$ then $\operatorname{ind}_g(ab) = \operatorname{ind}_g a + \operatorname{ind}_g b \pmod{\varphi(m)}$.
- b) If $a \in \mathbb{U}_m$ and $k \in \mathbb{Z}$ then $\operatorname{ind}_g(a^k) = k \operatorname{ind}_g a \pmod{\varphi(m)}$.

5 Quadratic Reciprocity

5.1 Quadratic Congruences

Number of Solutions If p is an odd prime and gcd(a, p) = 1 (so $a \neq 0 \mod p$), then $x^2 \equiv a \mod p$ has exactly 2 solutions or it has no solutions.

5.2 Quadratic Residues

Quadratic Residue An integer $a \neq 0$ is a quadratic residue if $x^2 \equiv a \mod p$ has a solution; otherwise, a is a quadratic non-residue.

Half are Quadratic Residues If p is an odd prime, then exactly half of the integers $1, 2, \ldots, p-1$ are quadratic residues modulo p; furthermore, these are the even powers of any primitive root modulo p.

5.3 Euler's Criterion

Euler's Criterion If p is an odd prime that does not divide a, then

$$x^2 \equiv a \mod p$$
 has a solution $\iff a^{\frac{p-1}{2}} \equiv 1 \mod p$;

equivalently

 $x^2 \equiv a \mod p$ has no solution $\iff a^{\frac{p-1}{2}} \equiv -1 \mod p$.

5.4 Legendre's Symbol

Legendre Symbol The Legendre symbol $\left(\frac{a}{p}\right)$ is given by

$$\frac{a}{p} = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue} \mod p; \\ -1 & \text{if } a \text{ is a quadratic non-residue} \mod p; \\ 0 & \text{if } a \text{ is neither (i.e., if } a \equiv 0 \mod p). \end{cases}$$

Equivalent Statements Let p be an odd prime and let a be an integer with gcd(a, p) = 1. Then the following statements are equivalent:

- $x^2 \equiv a \mod p$ has a solution;
- $x^2 \equiv a \mod p$ has precisely two solutions;
- a is a quadratic residue modulo p;
- a is an even power of some primitive root modulo p;
- a is not an odd power of any primitive root modulo p;
- $a^{\frac{p-1}{2}} \not\equiv -1 \mod p$;
- $a^{\frac{p-1}{2}} \equiv 1 \mod p$;
- $\left(\frac{a}{p}\right) \neq -1;$
- $\bullet \left(\frac{a}{p}\right) = 1.$

Properties of Legendre Symbol Let p be an odd prime and let a and b be any integers. Then

- if $a \equiv b \mod p$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$;
- $\left(\frac{a^2}{p}\right) = 1 \text{ unless } a \equiv 0 \mod p;$
- $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ multiplicatively;
- $\bullet \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$

Arithmetic Series - Legendre Symbol If p is an odd prime, then $\left(\frac{1}{p}\right) + \left(\frac{2}{p}\right) + \cdots + \left(\frac{p-1}{p}\right) = 0$.

Solutions to Quadratic Congruence $x^2 \equiv -1 \mod p$ has a solutions iff $p \equiv 1 \mod 4$ or p = 2; if $p \equiv 1 \mod 4$, then $\pm \left(\frac{p-1}{2}\right)!$ are the solutions.

5.5 Gauss' Lemma

Gauss' Lemma For $S = \{a, 2a, \dots, \frac{p-1}{2}a \mod p,$

$$\left(\frac{a}{p}\right) = (-1)^k \text{ where } k = \left|\left\{s \in S : s > \frac{p-1}{2}\right\}\right|.$$

Formula for $\left(\frac{2}{p}\right)$ If p is an odd prime, then $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.

Corolloary Formula for $\left(\frac{2}{p}\right)$ For odd primes p,

5.6 Quadratic Reciprocity

Equivlance between Legendre's For $a \in \mathbb{N}$ and primes p, q with $p \equiv \pm q \mod 4a$, we have

$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right).$$

The Law of Quadratic Reciprocity If p and q are odd primes, then

 $\left(\frac{a}{p}\right)$ for Small Integers If p is an odd prime, then

- $\bullet \ \left(\frac{0}{p}\right) = 0; \left(\frac{1}{p}\right) = 1;$
- $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \mod 4$;
- $\left(\frac{2}{p}\right) = 1$ if and only if $p \equiv \pm 1 \mod 8$;
- $\left(\frac{3}{p}\right) = 1$ if and only if $p \equiv \pm 1 \mod 12$.

6 Gaussian Integers

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\},\$$

where i is the square root of -1.

Gaussian Integers is an Integral Domain $\mathbb{Z}[i]$ is an integral domain.

Norm The norm $\alpha = a + ib \in \mathbb{C}$ is $N(\alpha) = \alpha \bar{\alpha} = (a + ib)(a - ib) = a^2 + b^2$.

Properties of the Norm Let $\alpha, \beta \in \mathbb{Z}[i]$ and $c \in \mathbb{Z}$ be given. Then

- $N(\alpha) \ge 0$ and $N(\alpha) \in \mathbb{Z}$;
- $\sqrt{N(\alpha+\beta)} \le \sqrt{N(\alpha)} + \sqrt{N(\beta)};$
- $N(\alpha\beta) = N(\alpha) + N(\beta)$
- $N(\alpha) \le N(\alpha\beta)$ for $\beta \ne 0$
- $N(c\alpha) = c^2 N(\alpha), N(c) = c^2$, and $N(N(\alpha)) = (N(\alpha))^2$;
- $N(\alpha) = 1$ if and only if $\alpha \in \{\pm 1, \pm i\}$;
- $N(\alpha) = 0$ if and only if $\alpha = 0$.

Properties of the Identity Norm The following are equivalent for $a \in \mathbb{Z}[i]$:

- α is a unit;
- $N(\alpha) = 1$;
- $\alpha \in \{\pm 1, \pm i\}$.

Division Algorithm for Gaussian Integers For all Gaussian integers $\alpha, \beta \neq 0$, there exist, $q, r \in \mathbb{Z}[i]$ for which

$$\alpha = q\beta + r$$
 and $0 \le N(r) < N(\beta)$.

GCD for Gaussian Integers A greatest common divisor of Gaussian integes α and β is an element $\gamma \in \mathbb{Z}[i]$ that is

- a factor of both α and β ;
- $\bullet\,$ a multiple of every such common factor.

Let $\gcd(\alpha, \beta)$ be the set of all greatest common divisors α and β .

Euclidean Algorithm for Gaussian Integers For $\alpha, \beta \neq 0$, write $r_0 = \beta$ and use the division algorithm to find $q_1, r_1 \in \mathbb{Z}[i]$ for which

$$\alpha = q_1 \beta + r_1$$
 and $0 \le N(r_1) < N(\beta)$.

If $r_1 \neq 0$, then we write similarly,

$$\beta = q_2 r_1 + r_2$$
 and $0 \le N(r_2) < N(r_1)$.

Continuing like this while $r_k \neq 0$, we find $q_{k+1}, r_{k+1} \in \mathbb{Z}[i]$ so that

$$r_{k-1} = q_{k+1}r_k + r_{k+1}$$
 and $0 \le N(r_{k+1}) < N(r_k)$.

Then $r_{n+1} = 0$ for some $n \ge 0$, and $gcd(\alpha, \beta) = \{\pm r_n, \pm r_n i\}$.

Ideals in Gaussian Integers Every ideal in the Gaussian integers is principal.

Generators for Gaussian Integers For any element $\alpha, \beta \in \mathbb{Z}[i]$, suppose that $\gamma \in \gcd(\alpha, \beta)$. Then $|\alpha, \beta|$ and so $\gamma = m\alpha + n\beta$ for some $m, n \in \mathbb{Z}[i]$.

Gaussian Primes The primes of $\mathbb{Z}[i]$ are called Gaussian primes.

Every Prime is Irreducible in Integral Domains Every prime elements of an integral domain is irreducible.

Primes are Irreducible A Gaussian integer is a prime if and only if it is irreducible.

Factorising Gaussian Integers Each Gaussian integers factors uniquely into Gaussian primes up to order and multiplication by units.

Integer and Gaussian Primes An integer prime $p \in \mathbb{N}$ is a Gaussian prime iff $p \equiv 3 \mod 4$.

Conditions for Gaussian Primes A Gaussian interger $a \in \mathbb{Z}[i]$ is prime if and only if

- either $N(\alpha)$ is a prime integer;
- or $\alpha = \epsilon p$ for a unit $\epsilon \in \mathbb{Z}[i]$ and a prime $p \in \mathbb{N}$ with $p \equiv 3 \mod 4$.

Sum of Two Squares If m and n are both sum of two squares, then so is mn.

Sum of Integer Squares is not Gaussian Prime For an odd prime p, the following statements are equivalent:

- p is the sum of two integer squares;
- \bullet p is not a Gaussian prime;
- $p \equiv 1 \mod 4$.

Solutions if p is a Sum of Two Squares For each odd prime $p, x^2 \equiv -1 \mod p$ has a solution if and only if p is the sum of two squares.

Expressed as Sum of Two Integer Squares A positive number n is the sum of two squares if and only if $p \equiv 1 \mod 4$ for all odd primes p that divide n an odd number of times.

Sum of Three Squares A positive integer n is the sum of three integer squares if and only if $n \neq 4^k(8m+7)$ for all non-negative integers of n and k.

Sum of Four Squares Every positive integer is the sum of four integer squares.

Waring Problem Is it true for any integer $k \geq 1$ there is a number g(k) such that every positive integer is the sum of g(k) integer k-th powers?

David Hilbert For any integer $k \geq 1$ the number g(k) exists.