ИІТМО

М.В. Никитина

Модуль ЭЛЕКТРОТЕХНИКА

Варианты домашних заданий Варианты параметров к лабораторной работе

Содержание

ДОМАШНЕЕ ЗАДАНИЕ 1. Анализ цепей постоянного тока	3
Требования к оформлению домашних заданий	3
Критерии оценивания домашних заданий	3
Пример титульного листа к домашнему заданию 1	4
Таблица 1	5
ДОМАШНЕЕ ЗАДАНИЕ 2 Анализ цепей синусоидального тока методом комплексных амплитуд	15
Требования к оформлению домашних заданий	15
Критерии оценивания домашних заданий	15
Пример титульного листа к домашнему заданию 2	16
Таблица 2	17
ПАРАМЕТРЫ ЭЛЕМЕНТОВ К ВЫПОЛНЕНИЮ ЛАБОРАТОР- НОЙ РАБОТЫ «Исследование пассивных двухполюсников и явле- ний резонанса в линейных электрических цепях синусоидального тока»	27
Требования к оформлению отчета по лабораторной работе:	27
Защита отчета по лабораторной работе	27
Пример титульного листа отчета по лабораторной работе	28
Таблица 3	29

ДОМАШНЕЕ ЗАДАНИЕ 1. Анализ цепей постоянного тока

На рисунке 1 показаны три варианта структур схем электрической цепи. Для выполнения задания необходимо заменить условные элементы (1...6) схем резистивными элементами и источниками энергии согласно таблице 1 в соответствии с заданным преподавателем вариантом. Индексы значений токов и ЭДС источников в таблицах соответствуют номерам элементов структурных схем, а направление их действия – направлению стрелок.

Рисунок 1

Рассчитать значения всех неизвестных токов, используя: а) законы Кирхгофа, б) метод контурных токов <u>или</u> метод узловых напряжений. в) Рассчитать ток любой ветви, **содержащей источник** ЭДС, методом эквивалентных преобразований <u>или</u> методом эквивалентного генератора. г) Определить напряжение, приложенное к источнику тока. Определить мощность всех источников энергии, всех резистивных элементов, суммарную мощность источников цепи и суммарную мощность потребителей цепи.

Количество баллов БаРС – от 4 до 5.

Требования к оформлению домашних заданий:

- работа должна содержать титульный лист (пример на стр. 4);
- работа должна содержать пункты «Дано:», «Найти:», «Решение:», «Ответ:»;
- округление численных значений должно быть с точностью до тысячных долей;
- работы могут быть оформлены как в рукописном формате, так и с использованием любого редактора;
- работы предоставляются в электронном виде ($\underline{mvnikitina@itmo.ru}$) в формате *.pdf.

Критерии оценивания домашних заданий

Правильно выполненное и сданное до контрольного срока (включительно) домашнее задание оценивается в **макс** баллов. Контрольный срок объявляется преподавателем на первом занятии.

Основания для снижения количества баллов в пределах от **макс** до **мин**: небрежное оформление, нарушение требований к оформлению домаш-

него задания, низкое качество графического материала, несвоевременность сдачи домашнего задания, многократная сдача домашнего задания.

Правильно выполненное и сданное после контрольного срока домашнее задание оценивается в **мин** баллов. В этом случае для повышения баллов за домашнее задание требуется пройти процедуру собеседования по домашнему заданию в консультационные часы.

Домашнее задание не может быть принято и подлежит доработке в случае: отсутствия необходимых разделов и/или графического материала, неверного решения, выполнения задания не своего варианта.

Пример титульного листа к домашнему заданию 1

VİTMO

Электротехника и электроника Модуль Электротехника

Домашнее задание №1 Анализ цепей постоянного тока

Группа *XXXXX* Вариант *XXX*

Выполнил: Иванов Иван Иванович

Дата сдачи: **xx.xx.2023**

Контрольный срок сдачи: хх.хх.2023

Количество баллов:

СПб - 2023

Таблица 1 (начало)

Вари-	Схема	Параметры источников энергии: J [A], E [B]			Π	арам	-	рези м]	стор	ОВ
апт		1 111	и. <i>У</i> [А], <i>Е</i>	נטן	1	2	3	4	5	6
001	1	$\uparrow J_1 = 0,1$	$\rightarrow E_3=11$	↑ E ₄ =29	-	8	5	6	2	9
002	1	$\Psi J_6 = 0,15$	$\rightarrow E_3=12$	$←E_2=28$	6	8	7	4	1	-
003	2	$\psi J_3 = 0,2$	$\rightarrow E_1=13$	$\Psi E_4 = 27$	4	9	-	4	3	
004	2	← <i>J</i> ₁ =0,25	↓E3=14	← <i>E</i> ₂ =26	-	5	3	1	2	
005	1	← <i>J</i> ₃ =0,3	<i>←E</i> ₅ =15	↓E1=25	5	1	ı	3	3	9
006	1	↑ <i>J</i> ₆ =0,35	↑ E_1 =16	$\leftarrow E_3=24$	3	4	7	5	7	-
007	2	→ J_2 =0,4	$\leftarrow E_1=17$	$\Psi E_4 = 23$	1	ı	1	4	2	
008	2	$\rightarrow J_1 = 0,45$	↑ E_3 =18	↑ E ₅ =22	-	5	7	1	8	
009	1	\\\ J _6=0,5	← <i>E</i> ₅ =19	↑ E_1 =21	5	4	7	2	9	-
010	1	$\rightarrow J_3 = 0,55$	↑ E_1 =20	↑ E ₄ =20	9	5	-	5	4	1
011	2	← J ₁ =0,6	$\Psi E_3 = 21$	↓E4=19	-	2	9	3	9	
012	1	$\Psi J_6 = 0,65$	$\Psi E_4 = 22$	$\rightarrow E_3=18$	6	9	3	8	2	-
013	2	← J ₁ =0,7	$\Psi E_3 = 23$	↓ E_4 =17	-	6	8	5	9	
014	1	$\Psi J_6 = 0,75$	← <i>E</i> ₃ =24	↑ E_1 =16	2	6	7	5	9	-
015	3	^ J ₆ =0,8	$\uparrow E_2 = 25$	$\rightarrow E_4=15$	5	7	1	2	4	-
016	1	$\rightarrow J_3 = 0.85$	$\Psi E_1 = 26$	← <i>E</i> ₅ =14	8	6	-	9	5	4
017	1	^ J ₁ =0,9	$\rightarrow E_3=27$	↑ E_4 =13	-	3	4	8	5	6
018	2	$\rightarrow J_2 = 0.95$	↑ E_3 =28	↑ E_5 =12	7	ı	5	4	3	
019	2	$\uparrow J_5=1$	$\rightarrow E_2=29$	↓ E_3 =11	8	4	8	5	-	
020	1	$\uparrow J_6 = 1,1$	$\Psi E_4 = 30$	← E_3 =10	6	7	4	6	1	-
021	1	$\uparrow J_1 = 1,2$	$\uparrow E_4 = 31$	→ E_3 =10,5	-	5	1	4	8	3
022	2	↑ <i>J</i> ₅ =1,3	← <i>E</i> ₂ =32	$\Psi E_4 = 11,5$	8	9	8	5	-	
023	2	↑ <i>J</i> ₅ =1,4	$\rightarrow E_2=33$	$\triangle E_3 = 12,5$	4	3	4	9	-	
024	1	$\Psi J_1 = 1,5$	→ E_3 =34	<i>←E</i> ₅ =13,5	-	8	4	7	4	6
025	1	↑ <i>J</i> ₆ =1,6	← <i>E</i> ₂ =35	→ E_3 =14,5	6	5	8	3	2	-
026	2	← J ₂ =1,7	← <i>E</i> ₁ =36	$\Psi E_5 = 15,5$	3	-	1	3	9	
027	1	$\Psi J_1 = 1,8$	← <i>E</i> ₂ =37	← <i>E</i> ₃ =16,5	-	2	8	6	5	7
028	2	$\psi J_5 = 1,9$		→ E_2 =17,5	5	3	6	2	-	
029	1	$\uparrow J_1 = 2$	← <i>E</i> ₃ =39	→ E_5 =18,5	-	5	4	1	3	7
030	3	$\Psi J_1 = 2,1$	← E ₄ =40	$↑E_6 = 19$	-	2	6	7	4	8

Таблица 1 (продолжение 1)

Вари-	Схема	Параметры источников энергии: J [A], E [B]			П	арам	_	рези	сторо	ЭB
ант		ГИИ	LJ[A], E[DJ	1	2	3	4	5	6
031	1	← <i>J</i> ₃ =0,1	→ E_2 =40	↓E6=10	2	9	-	9	6	1
032	1	← <i>J</i> ₃ =0,15	→ E_2 =39	↑ E_4 =11	7	1	-	8	2	7
033	2	→ J_1 =0,2	↑ E ₅ =38	$\rightarrow E_2=12$	-	2	7	5	4	
034	2	↑ <i>J</i> ₃ =0,25	↑ E ₅ =37	← <i>E</i> ₂ =13	9	6	-	7	3	
035	1	← J ₃ =0,3	$\rightarrow E_2=36$	$\Psi E_6 = 14$	3	9	-	2	7	9
036	1	← <i>J</i> ₃ =0,35	← <i>E</i> ₅ =35	↑ E_1 =15	7	4	-	4	5	1
037	2	^ J ₅ =0,4	$\Psi E_4 = 34$	← E_2 =16	9	3	9	5	-	
038	2	← J ₁ =0,45	→ E_2 =33	$\Psi E_5 = 17$	-	4	6	3	5	
039	1	$\rightarrow J_3 = 0,5$	→ E_5 =32	$\Psi E_4 = 18$	7	2	-	3	9	3
040	1	← <i>J</i> ₃ =0,55	← <i>E</i> ₂ =31	↑ E_1 =19	4	3	-	9	8	4
041	2	$\Psi J_4 = 0,6$	$\Psi E_3 = 30$	$\rightarrow E_1=20$	9	8	1	-	9	
042	1	← J ₃ =0,65	↑ E ₄ =29	↑ E_1 =21	2	9	-	8	6	6
043	2	↑ J ₄ =0,7	$\uparrow E_3 = 28$	← <i>E</i> ₂ =22	9	5	4	-	6	
044	1	$\rightarrow J_3 = 0,75$	↑ E ₄ =27	↑ E ₆ =23	6	4	-	5	7	3
045	3	$\Psi J_1 = 0.8$	$\rightarrow E_3=26$	↑ E ₅ =24	-	6	9	6	8	3
046	1	$\rightarrow J_2 = 0.85$	$\rightarrow E_3=25$	$\Psi E_1 = 25$	5	-	8	8	5	3
047	1	← J ₂ =0,9	← <i>E</i> ₃ =24	$\Psi E_6 = 26$	5	-	1	6	9	1
048	2		← <i>E</i> ₁ =23	← <i>E</i> ₂ =27	3	5	2	-	5	
049	2	$\Psi J_4 = 1$	$\Psi E_3 = 22$	$\rightarrow E_1=28$	6	2	4	-	8	
050	1	$\rightarrow J_2 = 0.95$	← <i>E</i> ₃ =21	→ E_5 =29	1	-	8	8	6	6
051	1	$→ J_2=0,9$	$\rightarrow E_3=20$	$\uparrow E_6 = 30$	8	-	1	3	6	6
052	2	→ J_1 =0,85	$\Psi E_3 = 19$	$\Psi E_4 = 31$	-	7	3	4	8	
053	2	↑ <i>J</i> ₅ =0,8	↑ E_3 =18	← <i>E</i> ₁ =32	8	6	5	9	-	
054	1	<i>←J</i> ₂ =0,75	← <i>E</i> ₅ =17	↓E1=33	4	-	3	9	7	6
055	1	← J ₅ =0,7	$\leftarrow E_2=16$	$\uparrow E_4 = 34$	2	3	4	9	-	7
056	2	$\Psi J_5 = 0,65$	$\rightarrow E_2=15$	↑ E ₄ =35	9	2	7	8	-	
057	1	← J ₂ =0,6	$\rightarrow E_5=14$	↑ E ₆ =36	5	ı	8	7	1	4
058	2	← <i>J</i> ₁ =0,55	← <i>E</i> ₂ =13	$\Psi E_5 = 37$	-	2	7	2	8	
059	1	← J ₂ =0,5	$\Psi E_6 = 12$	$\Psi E_4 = 38$	3	1	3	5	7	9
060	3	$\Psi J_6 = 0,45$	$\Psi E_1=11$	← <i>E</i> ₃ =39	4	8	1	9	5	-

Таблица 1 (продолжение 2)

Вари-	Схема		іков энер-	П	арам	етры [О	-	стор	ОВ	
ант		ГИ	и: <i>J</i> [A], <i>E</i>	[B]	1	2	3	4	5	6
061	1	↑ J ₆ =2	← E ₅ =6	↑ E_1 =35	8	9	1	6	9	-
062	1	↑ <i>J</i> ₆ =1,95	← E ₅ =7	← <i>E</i> ₂ =34,5	8	6	7	2	7	_
063	2	$\psi J_5 = 1,9$	$\rightarrow E_1=8$	← <i>E</i> ₂ =34	9	4	3	4	-	
064	2	↑ <i>J</i> ₅ =1,85	↓E3=9	→ E_1 =33,5	7	3	6	3	-	
065	1	↑ <i>J</i> ₆ =1,8	← <i>E</i> ₅ =10	← <i>E</i> ₃ =33	2	5	9	7	4	_
066	1	$\Psi J_6 = 1,75$	$\Psi E_4 = 11$	<i>←E</i> ₃ =32,5	2	1	3	5	4	_
067	2	$\psi_{J_4=1,7}$	$\Psi E_5 = 12$	← <i>E</i> ₂ =32	2	1	3	-	5	
068	2	← J ₂ =1,65	$\rightarrow E_1=13$	↑ <i>E</i> ₅ =31,5	5	-	2	5	3	
069	1	↑ <i>J</i> ₆ =1,6	$\Psi E_4 = 14$	← <i>E</i> ₂ =31	4	5	9	7	3	-
070	1	$\Psi J_1 = 0,55$	$\Psi E_4 = 15$	$\Psi E_6 = 30,5$	-	9	5	8	9	4
071	2	$\uparrow J_4=1,5$	← E_1 =16	↑ E ₅ =30	2	6	9	-	6	
072	1	↑ <i>J</i> ₆ =1,45	$\rightarrow E_2=17$	→ E_3 =29,5	8	6	7	6	8	_
073	2	↑ J ₄ =1,4	$\leftarrow E_2 = 18$	$\Psi E_5 = 29$	6	8	5	-	9	
074	1	$\Psi J_6 = 1,35$	→ E_2 =19	$\Psi E_1 = 28,5$	6	2	3	7	5	_
075	3	$\uparrow J_1 = 1,3$	$\rightarrow E_4=20$	$\Psi E_5 = 28$	-	5	3	8	6	9
076	1	$\Psi J_1 = 1,25$	← E_3 =21	← <i>E</i> ₂ =27,5	-	8	3	5	8	4
077	1	$\uparrow J_1 = 1,2$	← E_3 =22	$\rightarrow E_5=27$	-	6	1	9	6	3
078	2	$\uparrow J_3 = 1,15$	← <i>E</i> ₂ =23	$\Psi E_4 = 26,5$	7	9	-	5	5	
079	2	$\rightarrow J_1=1,1$	$\rightarrow E_2=24$	↑ E ₅ =26	-	8	1	8	3	
080	1	$\uparrow J_1=1$	← E_3 =25	$\Psi E_4 = 25,5$	-	5	6	7	8	7
081	1	^ J ₁ =0,95	← E ₃ =26	↑ E ₆ =25	-	1	6	6	9	1
082	2	$\psi J_3 = 0,9$	$\Psi E_5 = 27$	$\rightarrow E_2 = 24,5$	4	8	-	8	6	
083	2	$\psi J_3 = 0.85$	← E_1 =28	$\Psi E_5 = 24$	3	4	-	5	9	
084	1	$\Psi J_1 = 0.8$	← <i>E</i> ₂ =29	← <i>E</i> ₅ =23,5	-	6	6	7	3	8
085	1	↑ <i>J</i> ₆ =0,75	→ E_5 =30	$\Psi E_4 = 23$	5	6	7	4	9	-
086	2	$\rightarrow J_1=0,7$	$\uparrow E_3 = 31$	↑ E ₄ =22,5	-	3	1	4	8	
087	1	^ J ₁ =0,65	$\Psi E_6 = 32$	$\rightarrow E_3=22$	-	3	4	1	3	8
088	2	$\rightarrow J_1 = 0.6$	↑ E ₃ =33	↑ <i>E</i> ₅ =21,5	-	5	3	8	2	
089	1	$\Psi J_1 = 0,55$	$\rightarrow E_5=34$	$\Psi E_4 = 21$	-	4	5	7	5	3
090	3	↑ J ₅ =0,5	↑ E ₂ =35	→ E_4 =20,5	2	3	7	5	-	1

Таблица 1 (продолжение 3)

Вари-	Схема		іков энер-	Π	арам		рези м]	стор	ОВ	
ант		ГИЛ	и: <i>J</i> [A], <i>E</i>	[D]	1	2	3	4	5	6
091	1	$\Psi J_1 = 0,25$	↑ E_4 =6	↑ E ₆ =25	-	2	6	5	4	8
092	1	$\Psi J_1 = 0,3$	↑ <i>E</i> ₄ =7	→ E_5 =24,5	-	9	4	7	3	1
093	2	↑ <i>J</i> ₄ =0,35	$\leftarrow E_1 = 8$	$\rightarrow E_2=24$	2	3	4	-	7	
094	2	$\psi J_4 = 0,4$	↑ E_3 =9	<i>←E</i> ₁ =23,5	6	2	1	-	4	
095	1	$\Psi J_1 = 0,45$	↑ E_4 =10	← <i>E</i> ₃ =23	-	3	7	3	7	9
096	1	$\Psi J_1 = 0,5$	$\rightarrow E_2=11$	$\Psi E_6 = 22,5$	-	7	5	7	5	1
097	2	$\rightarrow J_2=0,55$	↑ E_3 =12	↑ E ₅ =22	3	-	4	1	9	
098	2	$\Psi J_4 = 0,6$	↓E3=13	→ E_2 =21,5	4	8	1	-	3	
099	1	$\uparrow J_1 = 0,65$	$\rightarrow E_2=14$	← <i>E</i> ₅ =21	-	9	5	7	8	2
100	1	↑ <i>J</i> ₆ =0,7	$\rightarrow E_5=15$	→ E_3 =20,5	9	4	5	6	5	-
101	2	↑ <i>J</i> ₅ =0,75	↑ E_3 =16	← <i>E</i> ₂ =20	8	9	3	9	-	
102	1	$\Psi J_1 = 0.8$	← <i>E</i> ₅ =17	$\Psi E_6 = 19,5$	-	2	8	3	2	3
103	2	↑ <i>J</i> ₅ =0,85	↑ E_3 =18	$\rightarrow E_1=19$	5	9	5	8	-	
104	1	$\psi J_1 = 0,9$	$\rightarrow E_5=19$	→ E_3 =18,5	-	9	4	7	5	4
105	3	$\Psi J_2 = 0,95$	↑ E ₅ =20	↑ E_6 =18	6	-	2	1	2	3
106	1	↓ J_4 =1	$\rightarrow E_3=21$	<i>←E</i> ₂ =17,5	4	5	9	-	8	9
107	1	↑ <i>J</i> ₄ =1,05	← <i>E</i> ₃ =22	← <i>E</i> ₅ =17	1	5	8	-	8	6
108	2	$\rightarrow J_1=1,1$	$\Psi E_4 = 23$	<i>←E</i> ₂ =16,5	-	3	5	5	9	
109	2	$\Psi J_5 = 1,15$	$\Psi E_4 = 24$	$\rightarrow E_2=16$	2	6	9	8	-	
110	1	$\psi J_4 = 1,2$	← <i>E</i> ₃ =25	$\Psi E_1 = 15,5$	6	1	4	-	1	5
111	1	↑ <i>J</i> ₄ =1,25	$\rightarrow E_3=26$	↑ E_6 =15	3	8	1	-	2	3
112	2	$\Psi J_4 = 1,3$	↓E3=27	<i>←E</i> ₂ =14,5	7	8	5	-	2	
113	2	$\Psi J_4 = 1,35$	← E_1 =28	$\Psi E_5 = 14$	6	8	9	-	5	
114	1	↑ J ₄ =1,4	$\rightarrow E_2=29$	↑ <i>E</i> ₆ =13,5	9	4	7	-	4	5
115	1	$\uparrow J_1 = 1,45$	$\rightarrow E_5=30$	↑ E_6 =13	-	2	3	8	5	9
116	2	$\Psi J_5 = 1,5$	$\Psi E_4 = 31$	← <i>E</i> ₂ =12,5	2	9	3	7	-	
117	1	↑ <i>J</i> ₄ =1,55	$\rightarrow E_2=32$	← E ₅ =12	7	5	8	-	8	6
118	2	^ J ₅ =1,6	↑ E ₄ =33	→ E_1 =11,5	2	7	2	6	-	
119	1	$\rightarrow J_3=1,65$	→ E_5 =34	↑ E_1 =11	1	3	-	7	6	2
120	3	$\Psi J_5 = 1,7$	$\overline{\Psi E_1=35}$	<i>←E</i> ₃ =10,5	8	4	7	6	_	5

Таблица 1 (продолжение 4)

Вари-	Схема		Параметры источников энергии: J [A], E [B]					рези м]	стор	OB
ант		ГИ						4	5	6
121	1	$\Psi J_1 = 0.95$	← <i>E</i> ₃ =26	$\Psi E_6 = 25$	-	1	1	6	6	9
122	2	^ J ₃ =0,9	↑ E ₅ =27	$→E_2=24,5$	6	4	-	8	8	
123	2	^ J ₃ =0,85	$←E_1=28$	↑ E ₅ =24	9	3	-	4	5	
124	1	$\uparrow J_1 = 0.8$	$\rightarrow E_2=29$	<i>←E</i> ₅ =23,5	-	8	6	6	7	3
125	1	$\Psi J_6 = 0.75$	$\rightarrow E_5=30$	↑ E ₄ =23	9	5	6	7	4	-
126	2	← J ₁ =0,7	↓E3=31	↑ <i>E</i> ₄ =22,5	-	8	3	1	4	
127	1	$\Psi J_1 = 0,65$	$\Psi E_6 = 32$	← E ₃ =22	-	8	3	4	1	3
128	2	← J ₁ =0,6	$\Psi E_3 = 33$	↑ <i>E</i> ₅ =21,5	-	2	5	3	8	
129	1	^ J ₁ =0,55	→ E_5 =34	$\uparrow E_4 = 21$	-	3	4	5	7	5
130	3	$\Psi J_5 = 0.5$	$\Psi E_2 = 35$	→ E_4 =20,5	1	2	3	7	-	5
131	1	$\Psi J_1 = 0,25$	$\uparrow E_4 = 6$	$\Psi E_6 = 25$	-	8	2	6	5	4
132	1	$\Psi J_1 = 0,3$	$\Psi E_4 = 7$	→ E_5 =24,5	-	1	9	4	7	3
133	2	$\Psi J_4 = 0,35$	$\leftarrow E_1=8$	← E ₂ =24	7	2	3	-	4	
134	2	^ J ₄ =0,4	$\Psi E_3 = 9$	<i>←E</i> ₁ =23,5	4	6	2	-	1	
135	1	$\uparrow J_1 = 0,45$	$\uparrow E_4 = 10$	$\rightarrow E_3=23$	-	9	3	7	3	7
136	1	^ J ₁ =0,5	← E_2 =11	$\Psi E_6 = 22,5$	-	1	7	5	7	5
137	2	← J ₂ =0,55	↑ E_3 =12	$\Psi E_5 = 22$	9	-	3	4	1	
138	2	^ J ₄ =0,6	↑ E_3 =13	→ E_2 =21,5	3	4	8	-	1	
139	1	$\Psi J_1 = 0,65$	$\rightarrow E_2=14$	$\rightarrow E_5=21$	-	2	9	5	7	8
140	1	$\psi_{J_6=0,7}$	<i>←E</i> ₅ =15	→ E_3 =20,5	5	9	4	5	6	-
141	2	$\Psi J_4 = 1,5$	$\leftarrow E_1=16$	$\Psi E_5 = 30$	6	2	6	-	9	
142	1	$\Psi J_6 = 1,45$	$←E_2=17$	→ E_3 =29,5	8	8	6	7	6	-
143	2	$\psi_{J_4=1,4}$	$←E_2=18$	↑ E ₅ =29	9	6	8	-	5	
144	1	↑ <i>J</i> ₆ =1,35	← <i>E</i> ₂ =19	$\Psi E_1 = 28,5$	5	6	2	3	7	-
145	3	$\Psi J_1 = 1,3$	← E ₄ =20	$\Psi E_5 = 28$	-	9	5	3	8	6
146	1	$\uparrow J_1 = 1,25$	$\rightarrow E_3=21$	← <i>E</i> ₂ =27,5	-	4	8	3	5	8
147	1	$\Psi J_1 = 1,2$	← E ₃ =22	← E ₅ =27	-	3	6	1	9	6
148	2	$\Psi J_3 = 1,15$	$\rightarrow E_2=23$	$\Psi E_4 = 26,5$	5	7	ı	9	5	
149	2	← J_1 =1,1	← E_2 =24	↑ E ₅ =26	-	3	8	1	8	
150	1	$\Psi J_1=1$	$\rightarrow E_3=25$	$\Psi E_4 = 25,5$	-	7	5	6	7	8

Таблица 1 (продолжение 5)

Вари-	Схема	Параметры источников энер- гии: J [A], E [B]				арам		рези м]	стор	ОВ
ann		1 111	1	2	3	4	5	6		
151	1	$\Psi J_1 = 0.95$	$\rightarrow E_3=26$	$\uparrow E_6 = 25$	-	1	1	6	6	9
152	2	$\uparrow J_3 = 0,9$	↓E5=27	← <i>E</i> ₂ =24,5	6	4	-	8	8	
153	2	$\uparrow J_3 = 0.85$	$\rightarrow E_1=28$	↓E5=24	9	3	1	4	5	
154	1	$\uparrow J_1 = 0.8$	← <i>E</i> ₂ =29	→ E_5 =23,5	-	8	6	6	7	3
155	1	$\Psi J_6 = 0.75$	← <i>E</i> ₅ =30	$\Psi E_4 = 23$	9	5	6	7	4	-
156	2	← <i>J</i> ₁ =0,7	↑ E_3 =31	$\Psi E_4 = 22,5$	-	8	3	1	4	
157	1	$\Psi J_1 = 0,65$	↑ E ₆ =32	$\rightarrow E_3=22$	-	8	3	4	1	3
158	2	← J ₁ =0,6	$\triangle E_3 = 33$	$\Psi E_5 = 21,5$	-	2	5	3	8	
159	1	↑ <i>J</i> ₁ =0,55	← <i>E</i> ₅ =34	$\Psi E_4 = 21$	-	3	4	5	7	5
160	3	$\Psi J_5 = 0,5$	$\triangle E_2 = 35$	<i>←E</i> ₄ =20,5	1	2	3	7	-	5
161	1	$\Psi J_1 = 0,1$	← E_3 =11	↑ E ₄ =29	-	9	8	5	6	2
162	1	↑ <i>J</i> ₆ =0,15	$\rightarrow E_3=12$	$\rightarrow E_2=28$	1	6	8	7	4	-
163	2	↑ <i>J</i> ₃ =0,2	← E_1 =13	$\Psi E_4 = 27$	3	4	-	4	9	
164	2	$\rightarrow J_1 = 0.25$	$\Psi E_3 = 14$	$\rightarrow E_2=26$	-	2	5	3	1	
165	1	$\rightarrow J_3 = 0,3$	$\rightarrow E_5=15$	$\Psi E_1 = 25$	9	5	-	1	3	3
166	1	$\Psi J_6 = 0.35$	↑ E_1 =16	$\rightarrow E_3=24$	7	3	4	7	5	-
167	2	← J ₂ =0,4	$\rightarrow E_1=17$	$\Psi E_4 = 23$	2	-	1	1	4	
168	2	← J ₁ =0,45	$\uparrow E_3 = 18$	$\Psi E_5 = 22$	-	8	5	7	1	
169	1	$\Psi J_6 = 0.5$	→ E_5 =19	↑ E_1 =21	9	5	4	7	2	-
170	1	← J ₃ =0,55	$\uparrow E_1 = 20$	$\Psi E_4 = 20$	1	9	-	5	5	4
171	2	$\Psi J_5 = 0.75$	$\Psi E_3 = 16$	$\leftarrow E_2 = 20$	9	8	9	3	-	
172	1	↑ J ₁ =0,8	← <i>E</i> ₅ =17	↑ <i>E</i> ₆ =19,5	-	3	2	8	3	2
173	2	$\Psi J_5 = 0.85$	$\Psi E_3 = 18$	$\rightarrow E_1=19$	8	5	9	5	-	
174	1	^ J ₁ =0,9	$\rightarrow E_5=19$	← <i>E</i> ₃ =18,5	-	4	9	4	7	5
175	3	↑ J ₂ =0,95	$\Psi E_5 = 20$	$\uparrow E_6 = 18$	3	-	6	2	1	2
176	1	$\uparrow J_4=1$	$\rightarrow E_3=21$	→ E_2 =17,5	9	4	5	-	9	8
177	1	$\Psi J_4 = 1,05$	$\rightarrow E_3=22$	← E ₅ =17	6	1	5	-	8	8
178	2	← J_1 =1,1	$\Psi E_4 = 23$	→ E_2 =16,5	-	9	3	5	5	
179	2	$\uparrow J_5 = 1,15$	$\uparrow E_4 = 24$	$\rightarrow E_2=16$	8	2	6	9	-	
180	1	↑ J ₄ =1,2	← <i>E</i> ₃ =25	$\triangle E_1 = 15,5$	5	6	1	-	4	1

Таблица 1 (продолжение 6)

Вари-	Схема		Параметры источников энергии: $J\left[\mathbf{A} ight],E\left[\mathbf{B} ight]$					рези м]	стор	ОВ
ант		J	[A], E[B]		1	2	3	4	5	6
181	1	$\Psi J_4 = 1,25$	$\rightarrow E_3=26$	$\Psi E_6 = 15$	3	3	8	-	1	2
182	2	↑ J ₄ =1,3	$\uparrow E_3 = 27$	<i>←E</i> ₂ =14,5	2	7	8	-	5	
183	2	↑ J ₄ =1,35	← <i>E</i> ₁ =28	↑ <i>E</i> ₅ =14	5	6	8	-	9	
184	1	$\psi J_4 = 1,4$	← <i>E</i> ₂ =29	↑ <i>E</i> ₆ =13,5	5	9	4	-	7	4
185	1	$\Psi J_1 = 1,45$	→ E_5 =30	$\Psi E_6 = 13$	-	9	2	3	8	5
186	2	$\uparrow J_5=1,5$	$\uparrow E_4 = 31$	<i>←E</i> ₂ =12,5	7	2	9	3	-	
187	1	$\Psi J_4 = 1,55$	$\rightarrow E_2=32$	$\rightarrow E_5=12$	6	7	5	-	8	8
188	2	$\Psi J_5 = 1,6$	$\Psi E_4 = 33$	→ E_1 =11,5	6	2	7	2	-	
189	1	← J ₃ =1,65	→ E_5 =34	↓E1=11	2	1	-	3	7	6
190	3	$\uparrow J_5=1,7$	$\triangle E_1 = 35$	<i>←E</i> ₃ =10,5	5	8	4	7	-	6
191	1	→ J_3 =0,1	$\rightarrow E_2=40$	$\uparrow E_6 = 10$	1	2	-	9	9	6
192	1	$\rightarrow J_3 = 0,15$	← <i>E</i> ₂ =39	$\triangle E_4 = 11$	7	7	-	1	8	2
193	2	← J ₁ =0,2	↑ E ₅ =38	← E_2 =12	-	4	2	7	5	
194	2	$\psi J_3 = 0,25$	$\Psi E_5 = 37$	← E_2 =13	3	9	-	6	7	
195	1	← J ₃ =0,3	→ E_2 =36	↑ E_6 =14	9	3	-	9	2	7
196	1	← J ₃ =0,35	→ E_5 =35	↑ E_1 =15	1	7	-	4	4	5
197	2	$\psi_{J_5=0,4}$	$\Psi E_4 = 34$	$\rightarrow E_2=16$	2	9	3	9	-	
198	2	$\rightarrow J_1 = 0,45$	← E ₂ =33	$\Psi E_5 = 17$	-	5	4	6	3	
199	1	→ J_3 =0,5	→ E_5 =32	$\triangle E_4 = 18$	3	7	-	2	3	9
200	1	$\rightarrow J_3 = 0,55$	$\rightarrow E_2=31$	↑ E_1 =19	4	4	-	3	9	8
201	1	$\Psi J_1 = 0,1$	$\rightarrow E_3=11$	$VE_4=29$	-	9	8	5	6	2
202	1	$\uparrow J_6 = 0,15$	← <i>E</i> ₃ =12	← E ₂ =28	1	6	8	7	4	-
203	2	$\uparrow J_3 = 0,2$	$\rightarrow E_1=13$	↑ E ₄ =27	3	4	-	9	4	
204	2	$\rightarrow J_1 = 0.25$	↑ E_3 =14	← E ₂ =26	-	5	5	3	1	
205	1	→ J_3 =0,3	← E ₅ =15	↑ E_1 =25	9	5	ı	1	3	3
206	1	$\Psi J_6 = 0.35$	$\Psi E_1 = 16$	← E ₃ =24	7	3	4	7	5	-
207	2	← J ₂ =0,4	← E_1 =17	↑ E ₄ =23	2	1	1	1	4	
208	2	← J ₁ =0,45	↓E3=18	↑ E ₅ =22	1	8	5	7	1	
209	1	$\psi_{J_6=0,5}$	← E ₅ =19	↓ E_1 =21	9	5	4	7	2	-
210	1	← J ₃ =0,55	↓E1=20	$\uparrow E_4 = 20$	1	9	-	5	5	4

Таблица 1 (продолжение 7)

Вари-	Схема	Параметры источников энер-			Π	арам	_	рези м]	стор	ОВ
ант		ГИЛ	гии: J [A], E [B]					4	5	6
211	1	$\Psi J_1 = 1,2$	$\Psi E_4 = 31$	→ E_3 =10,5	-	3	5	1	4	8
212	2	$\Psi J_5 = 1,3$	← <i>E</i> ₂ =32	<i>↑E</i> ₄ =11,5	1	8	9	8	-	
213	2	$\Psi J_5 = 1,4$	← <i>E</i> ₂ =33	$\triangle E_3 = 12,5$	9	4	3	4	ı	
214	1	$\uparrow J_1 = 1,5$	$\rightarrow E_3=34$	→ E_5 =13,5	-	6	8	4	7	4
215	1	$\Psi J_6 = 1,6$	$\rightarrow E_2=35$	→ E_3 =14,5	2	6	5	8	3	ı
216	2	$\rightarrow J_2=1,7$	← E_1 =36	↑ <i>E</i> ₅ =15,5	9	ı	3	1	3	
217	1	$\Psi J_1 = 1,8$	← <i>E</i> ₂ =37	← <i>E</i> ₃ =16,5	-	2	8	6	5	7
218	2	↑ <i>J</i> ₅ =1,9	$\Psi E_3 = 38$	<i>←E</i> ₂ =17,5	2	5	3	6	-	
219	1	$\Psi J_1 = 2$	→ E_3 =39	→ E_5 =18,5	-	7	5	4	1	3
220	3	$\uparrow J_1 = 2,1$	← E ₄ =40	$\Psi E_6 = 19$	-	8	2	6	7	4
221	1	$\Psi J_6 = 2$	$\rightarrow E_5=6$	$\triangle E_1 = 35$	9	8	9	1	6	-
222	1	$\Psi J_6 = 1,95$	← E ₅ =7	$\rightarrow E_2 = 34,5$	7	8	6	7	2	-
223	2	↑ <i>J</i> ₅ =1,9	$\leftarrow E_1 = 8$	← <i>E</i> ₂ =34	4	9	4	3	-	
224	2	$\Psi J_5 = 1,85$	$\Psi E_3 = 9$	← <i>E</i> ₁ =33,5	3	7	3	6	-	
225	1	$\Psi J_6 = 1.8$	$\rightarrow E_5=10$	← <i>E</i> ₃ =33	4	2	5	9	7	-
226	1	↑ <i>J</i> ₆ =1,75	$\Psi E_4 = 11$	→ E_3 =32,5	4	2	1	3	5	-
227	2	↑ J ₄ =1,7	↑ E_5 =12	← <i>E</i> ₂ =32	5	2	1	-	3	
228	2	$\rightarrow J_2=1,65$	$\rightarrow E_1=13$	$\Psi E_5 = 31,5$	3	-	5	2	5	
229	1	$\Psi J_6 = 1,6$	$\uparrow E_4 = 14$	← <i>E</i> ₂ =31	3	4	5	9	7	-
230	1	↑ <i>J</i> ₁ =0,55	$\Psi E_4 = 15$	↑ <i>E</i> ₆ =30,5	-	4	9	5	8	9
231	2	^ J ₄ =0,6	$\uparrow E_3 = 30$	$\rightarrow E_1=20$	9	9	8	-	1	
232	1	$\rightarrow J_3 = 0,65$	↑ E ₄ =29	↓E1=21	6	2	-	9	8	6
233	2	$\psi_{J_4=0,7}$	$\Psi E_3 = 28$	← <i>E</i> ₂ =22	9	9	5	-	4	
234	1	← <i>J</i> ₃ =0,75	↑ E ₄ =27	$\Psi E_6 = 23$	3	6	-	4	5	7
235	3	$\uparrow J_1 = 0.8$	← <i>E</i> ₃ =26	↑ E ₅ =24	-	3	6	9	6	8
236	1	← J ₂ =0,85	$\rightarrow E_3=25$	↑ E_1 =25	3	-	5	8	8	5
237	1	$\rightarrow J_2=0,9$	→ E_3 =24	$\Psi E_6 = 26$	1	-	5	1	6	9
238	2	^ J ₄ =0,95	← E_1 =23	$\rightarrow E_2=27$	5	3	5	-	2	
239	2	$\uparrow J_4=1$	$\uparrow E_3 = 22$	$\rightarrow E_1=28$	8	6	2	-	4	
240	1	← J ₂ =0,95	← <i>E</i> ₃ =21	← E ₅ =29	6	-	1	8	8	6

Таблица 1 (продолжение 8)

Вари-	Схема	Параметры источников энергии: J [A], E [B]				арам		рези	стор	ОВ
ант		1 111	1. J [A], L	[D]	1	2	3	4	5	6
241	1	$\uparrow J_1 = 0,25$	$\Psi E_4=6$	↑ E ₆ =25	-	6	2	5	4	8
242	1	$\uparrow J_1 = 0,3$	$\Psi E_4=7$	→ E_5 =24,5	-	4	9	7	3	1
243	2	$\Psi J_4 = 0.35$	$\rightarrow E_1=8$	$\rightarrow E_2=24$	3	2	4	-	7	
244	2	$\uparrow J_4=0,4$	↓E3=9	<i>←E</i> ₁ =23,5	2	6	1	-	4	
245	1	$\uparrow J_1 = 0,45$	↓E4=10	← <i>E</i> ₃ =23	-	7	3	3	7	9
246	1	$\uparrow J_1 = 0,5$	$\leftarrow E_2=11$	$\Psi E_6 = 22,5$	-	5	7	7	5	1
247	2	<i>←J</i> ₂ =0,55	↓E3=12	↑ <i>E</i> ₅ =22	4	ı	3	1	9	
248	2	$\uparrow J_4=0,6$	↑ E_3 =13	$\rightarrow E_2 = 21,5$	8	4	1	-	3	
249	1	$\Psi J_1 = 0,65$	← E_2 =14	← <i>E</i> ₅ =21	-	5	9	7	8	2
250	1	$\Psi J_6 = 0.7$	← <i>E</i> ₅ =15	$\rightarrow E_3$ =20,5	4	9	5	6	5	-
251	2	$\psi J_5 = 0.75$	↓E3=16	← <i>E</i> ₂ =20	9	8	3	9	-	
252	1	$\uparrow J_1 = 0.8$	$\rightarrow E_5=17$	$\Psi E_6 = 19,5$	-	8	2	3	2	3
253	2	$\psi J_5 = 0.85$	↓E3=18	$\rightarrow E_1=19$	9	5	5	8	-	
254	1	↑ J₁=0,9	← <i>E</i> ₅ =19	→ E_3 =18,5	-	4	9	7	5	4
255	3	↑ J ₂ =0,95	↓E5=20	↑ E_6 =18	2	-	6	1	2	3
256	1	<i>←J</i> ₂ =0,85	<i>←E</i> ₃ =25	$\Psi E_1 = 25$	8	-	5	8	5	3
257	1	$\rightarrow J_2=0,9$	$\rightarrow E_3=24$	$\Psi E_6 = 26$	1	-	5	6	9	1
258	2	↑ J₄=0,95	$\rightarrow E_1=23$	← E ₂ =27	5	3	2	-	5	
259	2	$\uparrow J_4=1$	$\uparrow E_3 = 22$	$\rightarrow E_1=28$	2	6	4	-	8	
260	1	← J ₂ =0,95	$\rightarrow E_3=21$	→ E_5 =29	8	-	1	8	6	6
261	1	← J ₂ =0,9	← E_3 =20	↑ E ₆ =30	1	-	8	3	6	6
262	2	← J ₁ =0,85	↑ E_3 =19	$\Psi E_4 = 31$	-	3	7	4	8	
263	2	$\Psi J_5 = 0.8$	↓E3=18	← <i>E</i> ₁ =32	6	8	5	9	-	
264	1	$\rightarrow J_2=0,75$	$\rightarrow E_5=17$	↓E1=33	3	-	4	9	7	6
265	1	→ J_5 =0,7	$\rightarrow E_2=16$	↑ E ₄ =34	3	2	4	9	-	7
266	2	↑ <i>J</i> ₅ =0,65	<i>←</i> E_2 =15	↑ E ₄ =35	2	9	7	8	-	
267	1	$\rightarrow J_2=0,6$	← E_5 =14	↑ E ₆ =36	8	ı	5	7	1	4
268	2	$\rightarrow J_1=0,55$	$\rightarrow E_2=13$	$\Psi E_5 = 37$	-	7	2	2	8	
269	1	$\rightarrow J_2=0,5$	↑ E ₆ =12	$\Psi E_4 = 38$	3	ı	9	5	7	3
270	3	$\uparrow J_6 = 0,45$	$\Psi E_1=11$	← E ₃ =39	8	4	1	9	5	-

Таблица 1 (продолжение 9)

Вари-	Схема	Параметры источников энер- гии: J [A], E [B]				арам	_	рези м]	стор	ОВ
ант		ГИЛ	и: <i>J</i> [А], <i>E</i>	[D]	1	2	3	4	5	6
271	1	$\Psi J_1 = 0,1$	$\rightarrow E_3=11$	$\Psi E_4 = 29$	-	8	5	2	6	9
272	1	$\uparrow J_6 = 0,15$	$\rightarrow E_3=12$	$\rightarrow E_2=28$	6	8	4	7	1	ı
273	2	$\uparrow J_3 = 0,2$	$\rightarrow E_1=13$	↑ E ₄ =27	4	4	ı	9	3	
274	2	→ J_1 =0,25	↓E3=14	$\rightarrow E_2=26$	-	5	1	3	2	
275	1	→ J_3 =0,3	← <i>E</i> ₅ =15	↑ E_1 =25	5	3	ı	1	3	9
276	1	$\Psi J_6 = 0.35$	↑ E_1 =16	$\rightarrow E_3=24$	3	4	5	7	7	-
277	2	← J ₂ =0,4	← E_1 =17	↑ E ₄ =23	1	1	4	1	2	
278	2	← J ₁ =0,45	↑ E_3 =18	$\Psi E_5 = 22$	-	5	1	7	8	
279	1	$\Psi J_6 = 0,5$	← <i>E</i> ₅ =19	↓ E_1 =21	5	4	2	7	9	-
280	1	<i>←J</i> ₃ =0,55	$\uparrow E_1 = 20$	$\Psi E_4 = 20$	9	5	-	4	5	1
281	2	$\rightarrow J_1 = 0.6$	$\Psi E_3 = 21$	$\triangle E_4 = 19$	-	2	3	9	9	
282	1	^ J ₆ =0,65	$\Psi E_4 = 22$	← <i>E</i> ₃ =18	6	9	8	3	2	-
283	2	$\rightarrow J_1 = 0,7$	$\Psi E_3 = 23$	↑ <i>E</i> ₄ =17	-	6	5	8	9	
284	1	1 1 1 1 1 1 1 1 1 1	← <i>E</i> ₃ =24	↓ E_1 =16	2	6	5	7	9	-
285	3	$\Psi J_6 = 0.8$	$\uparrow E_2 = 25$	<i>←E</i> ₄ =15	5	7	2	1	4	-
286	1	$\uparrow J_1 = 1,25$	← <i>E</i> ₃ =21	→ E_2 =27,5	-	8	3	8	5	4
287	1	$\Psi J_1 = 1,2$	← E ₃ =22	← E ₅ =27	-	6	1	6	9	3
288	2	$\Psi J_3 = 1,15$	← E2=23	↑ <i>E</i> ₄ =26,5	7	5	-	9	5	
289	2	← J ₁ =1,1	→ E2=24	$\Psi E_5 = 26$	-	8	8	1	3	
290	1	$\psi J_1=1$	← E ₃ =25	↑ <i>E</i> ₄ =25,5	-	5	6	8	7	7
291	1	$\Psi J_1 = 0,95$	← <i>E</i> ₃ =26	$\Psi E_6 = 25$	-	1	6	9	6	1
292	2	1 1 1 1 1 1 1 1 1 1	$\Psi E_5 = 27$	← <i>E</i> ₂ =24,5	6	8	ı	8	4	
293	2	^ J ₃ =0,85	← E_1 =28	↑ E ₅ =24	3	5	-	4	9	
294	1	$\uparrow J_1 = 0.8$	← <i>E</i> ₂ =29	→ E_5 =23,5	-	6	6	3	7	8
295	1	↑ <i>J</i> ₆ =0,75	$\rightarrow E_5=30$	↑ E ₄ =23	5	6	4	7	9	-
296	2	← J ₁ =0,7	↑ E_3 =31	$\Psi E_4 = 22,5$	-	3	4	1	8	
297	1	$\Psi J_1 = 0,65$	$\Psi E_6 = 32$	← E ₃ =22	-	3	4	3	1	8
298	2	← J ₁ =0,6	$\uparrow E_3 = 33$	$\Psi E_5 = 21,5$	-	5	8	3	2	
299	1	↑ J₁=0,55	$\rightarrow E_5=34$	↑ E ₄ =21	-	4	5	5	7	3
300	3	$\Psi J_5 = 0,5$	↑ <i>E</i> ₂ =35	← <i>E</i> ₄ =20,5	2	3	5	7	-	1

ДОМАШНЕЕ ЗАДАНИЕ 2 Анализ цепей синусоидального тока методом комплексных амплитуд

Анализу подлежит электрическая цепь, варианты схем которой формально изображены на трех рисунках 2.1-2.3.

Перед расчетом необходимо составить схему предложенного преподавателем варианта (параметры элементов указаны в таблице 2).

Методом комплексных амплитуд рассчитать мгновенные значения ЭДС источника, токов в ветвях и напряжений на элементах.

Построить векторные диаграммы для любого контура и любого узла.

Осуществить проверку, составив баланс мощностей (определить суммарную активную и реактивную мощности потребителей, комплексную мощность потребителей, комплексную источников).

Количество баллов БаРС – от 2 до 3.

Требования к оформлению домашних заданий:

- работа должна содержать титульный лист (пример на стр. 16);
- работа должна содержать пункты «Дано:», «Найти:», «Решение:», «Ответ:»;
- округление численных значений должно быть с точностью до тысячных долей;
- работы могут быть оформлены как в рукописном формате, так и с использованием любого редактора;
- работы предоставляются в электронном виде ($\underline{mvnikitina@itmo.ru}$) в формате *.pdf.

Критерии оценивания домашних заданий

Правильно выполненное и сданное до контрольного срока (включительно) домашнее задание оценивается в **макс** баллов. Контрольный срок объявляется преподавателем на первом занятии.

Основания для снижения количества баллов в пределах от **макс** до **мин**: небрежное оформление, нарушение требований к оформлению домаш-

него задания, низкое качество графического материала, несвоевременность сдачи домашнего задания, многократная сдача домашнего задания.

Правильно выполненное и сданное после контрольного срока домашнее задание оценивается в **мин** баллов. В этом случае для повышения баллов за домашнее задание требуется пройти процедуру собеседования по домашнему заданию в консультационные часы.

Домашнее задание не может быть принято и подлежит доработке в случае: отсутствия необходимых разделов и/или графического материала, неверного решения, выполнения задания не своего варианта.

Пример титульного листа к домашнему заданию 2

VİTMO

Электротехника и электроника Модуль Электротехника

Домашнее задание №2 Анализ цепей синусоидального тока методом комплексных амплитуд

Группа *XXXXX* Вариант *XXX*

Выполнил: Иванов Иван Иванович

Дата сдачи: **xx.xx.2023**

Контрольный срок сдачи: хх.хх.2023

Количество баллов:

СПб - 2023

Таблица 2 (начало)

1 403111	ца 🖴	(начало)	
Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; e,u [B]
001	2.1	C_1 = 10000, R_3 =2, L_4 =40, R_5 =2	$e = 10\sin(100t)$
002	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_1 = 2,647\sin(200t + 36^\circ)$
003	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_2 = 1,65\sin(400t-45^\circ)$
004	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$i_3 = 1,445\sin(500t-46,2^\circ)$
005	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_1 = 4,472\sin(1000t+63,4^\circ)$
006	2.3	$L_1=40, R_3=4, C_4=5000, R_5=4$	$u_4 = 6,667\sin(100t - 90^\circ)$
007	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$u_5 = 7,172\sin(200t+71^\circ)$
008	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$e = 22\sin(400t)$
009	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_1 = 4,1\sin(500t+27,2^\circ)$
010	2.1	$R_1=6$, $C_2=250$, $L_3=8$, $R_4=6$, $C_5=250$	$i_2 = 1,938\sin(1000t-63,4^\circ)$
011	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$i_3 = 4,174\sin(100t-63,4^\circ)$
012	2.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_3 = 9,864\sin(200t+99,5^\circ)$
013	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_5 = 24\sin(400t - 90^\circ)$
014	2.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_2 = 10,43\sin(500t+71^\circ)$
015	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$e = 32\sin(500t)$
016	2.1	$R_1=8, R_2=8, C_3=1250, R_4=8, L_5=60$	$i_1 = 0.741\sin(100t + 14.5^\circ)$
017	2.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$i_2 = 1,468\sin(200t+49,8^\circ)$
018	2.3	$R_1=9$, $R_2=9$, $C_3=1250$, $R_4=9$, $L_5=12.5$	$i_3 = 0.2502\sin(400t - 101.7^\circ)$
019	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_3 = 11,56\sin(500t+43,7^\circ)$
020	2.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_1 = 42,96\sin(100t-141,7^\circ)$
021	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$u_2 = 5,286\sin(200t+77,3^\circ)$
022	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$e = 30\sin(400t)$
023	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_1 = 12,25\sin(500t+35,8^\circ)$
024	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_2 = 5,153\sin(100t+50^\circ)$
025	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$i_3 = 4,169\sin(200t-76,5^\circ)$
026	2.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_1 = 62,1\sin(400t+168,7^\circ)$
027	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_3 = 11,68\sin(500t-171,8^\circ)$
028	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_1 = 17,24\sin(100t-65,7^\circ)$
029	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$e = 44\sin(200t)$
030	2.3	$R_1=7, L_3=10, C_4=1250, C_5=1250$	$i_1 = 23,18\sin(400t + 29,7^\circ)$

Таблица 2 (продолжение 1)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; <i>e</i> , <i>u</i> [B]			
031	2.1	$R_1=6$, $C_2=250$, $L_3=8$, $R_4=6$, $C_5=250$	$i_3 = 2,15\sin(1000t+60,2^\circ)$			
032	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_3 = 41,74\sin(100t+26,6^\circ)$			
033	2.3	$R_1=6$, $C_2=1000$, $L_3=10$, $R_4=6$, $C_5=1000$	$u_2 = 6.315\sin(200t + 49^\circ)$			
034	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_3 = 24\sin(400t + 90^\circ)$			
035	2.2	$C_1=1000, R_2=5, R_3=5, L_4=8, C_5=1000$	$e = 32\sin(500t)$			
036	2.3	$C_1=1000, R_3=5, L_4=8, C_5=1000$	$i_1 = 43,08\sin(500t-21,8^\circ)$			
037	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_2 = 0.898\sin(100t + 65.5^\circ)$			
038	2.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$i_3 = 2,626\sin(200t + 23,2^\circ)$			
039	2.3	$R_1=9$, $R_2=9$, $C_3=1250$, $R_4=9$, $L_5=12.5$	$u_5 = 1,251\sin(400t-11,7^\circ)$			
040	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_1 = 11,24\sin(500t-77,3^\circ)$			
041	2.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_2 = 7,595\sin(100t - 6,69^\circ)$			
042	2.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$e = 28\sin(200t)$			
043	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_1 = 2,733\sin(400t-2,77^\circ)$			
044	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_2 = 5,942\sin(500t + 21,8^\circ)$			
045	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_3 = 1,767\sin(100t-99^\circ)$			
046	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_5 = 25,01\sin(200t+13,4^\circ)$			
047	2.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_3 = 103,7\sin(400t-11,3^\circ)$			
048	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_2 = 7,295\sin(500t + 137^\circ)$			
049	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_1 = 42\sin(100t)$			
050	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_1 = 5,372\sin(200t-62^\circ)$			
051	2.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$i_2 = 20,125\sin(400t)$			
052	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_1 = 6,324\sin(100t + 18,4^\circ)$			
053	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_2 = 3,65\sin(200t + 49,8^\circ)$			
054	2.3	$C_1=312,5, R_3=4, L_4=10, R_5=4$	$i_1 = 0.8245\sin(400t + 45^\circ)$			
055	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_1 = 14,63\sin(500t + 34,3^\circ)$			
056	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_4 = 2\sin(1000t)$			
057	2.3	$L_1=40, R_3=4, C_4=5000, R_5=4$	$u_3 = 9,428\sin(100t+45^\circ)$			
058	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$u_5 = 22\sin(200t)$			
059	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_1 = 7,18\sin(400t-21,8^\circ)$			
060	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_2 = 2,109\sin(500t - 31,8^\circ)$			

Таблица 2 (продолжение 2)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; e,u [B]			
061	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_4 = 11,57\sin(500t + 43,7^\circ)$			
062	2.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$e = 26\sin(100t)$			
063	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$i_1 = 1,245\sin(200t+32,3^\circ)$			
064	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_2 = 1,8\sin(400t + 46^\circ)$			
065	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_3 = 6,644\sin(500t + 48,4^\circ)$			
066	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_1 = 17,67\sin(100t-9^\circ)$			
067	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_3 = 25\sin(200t + 13,4^\circ)$			
068	2.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$u_2 = 37,26\sin(400t+78,7^\circ)$			
069	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$e = 40\sin(500t)$			
070	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_1 = 2,873\sin(100t-65,7^\circ)$			
071	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_2 = 5,2652\sin(200t-73,3^\circ)$			
072	2.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$i_3 = 11,5\sin(400t+90^\circ)$			
073	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_2 = 5\sin(100t + 36,87^\circ)$			
074	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_3 = 1,247\sin(200t-99^\circ)$			
075	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_4 = 7,376\sin(400t+71,6^\circ)$			
076	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_4 = 2,89\sin(500t - 136^\circ)$			
077	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_3 = 16,48\sin(1000t-14,04^\circ)$			
078	2.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$e = 20\sin(100t)$			
079	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_1 = 1,434\sin(200t-19^\circ)$			
080	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_2 = 4,268\sin(400t - 38,6^\circ)$			
081	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_3 = 3,515\sin(500t + 58,2^\circ)$			
082	2.1	$R_1=6$, $C_2=250$, $L_3=8$, $R_4=6$, $C_5=250$	$u_3 = 15,5\sin(1000t + 26,6^\circ)$			
083	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_2 = 16,7\sin(100t - 153^\circ)$			
084	2.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_1 = 7,5785\sin(200t + 139^\circ)$			
085	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$e = 32\sin(400t)$			
086	2.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_1 = 5,216\sin(500t-19^\circ)$			
087	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 16\sin(500t - 90^\circ)$			
088	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_3 = 0.719\sin(100t - 61.4^\circ)$			
089	2.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$u_5 = 7,878\sin(200t+113^\circ)$			
090	2.3	$R_1=9$, $R_2=9$, $C_3=1250$, $R_4=9$, $L_5=12,5$	$u_3 = 4,508\sin(400t-102^\circ)$			

Таблица 2 (продолжение 3)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; e,u [B]				
091	2.1	$R_2=2, L_3=25, C_4=1000, R_5=2$	$i_2 = 3,862\sin(200t-87,2^\circ)$				
092	2.2	$R_2=5, L_3=5, C_4=625, R_5=5$	$i_3 = 3,333\sin(400t)$				
093	2.3	$R_2=3, L_3=10, C_4=500, R_5=3$	$u_3 = 10,54\sin(500t+58,2^\circ)$				
094	2.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$u_2 = 7,748\sin(1000t - 86,1^\circ)$				
095	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_1 = 12,52\sin(100t-63,4^\circ)$				
096	2.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$e = 30\sin(200t)$				
097	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$i_1 = 10\sin(400t + 53,1^\circ)$				
098	2.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 2,086\sin(500t + 71^\circ)$				
099	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_3 = 40\sin(500t)$				
100	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$u_5 = 4,31\sin(100t + 28,6^\circ)$				
101	2.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$u_3 = 5.87\sin(200t - 40.8^\circ)$				
102	2.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_1 = 2,252\sin(400t-101,7^\circ)$				
103	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$e = 24\sin(500t)$				
104	2.2	$C_1=1000, R_2=5, L_3=60, R_4=5$	$i_1 = 4,296\sin(100t-51,7^\circ)$				
105	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$i_2 = 4,492 sin(200t-91,4^\circ)$				
106	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_3 = 2,057\sin(400t-43,9^\circ)$				
107	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$u_1 = 11,88\sin(500t+111,8^\circ)$				
108	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_3 = 20,61\sin(100t-40^\circ)$				
109	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_2 = 8,335\sin(200t-76,6^\circ)$				
110	2.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$e = 38\sin(400t)$				
111	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$i_1 = 5,158\sin(500t - 88,1^\circ)$				
112	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_2 = 7,659\sin(100t-65,7^\circ)$				
113	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_2 = 1,053\sin(200t+16,7^\circ)$				
114	2.3	$R_1=7, L_3=10, C_4=1250, C_5=1250$	$u_3 = 80,5\sin(400t + 90^\circ)$				
115	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_3 = 2.236\sin(100t-26.5^\circ)$				
116	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$u_4 = 6,235\sin(200t-9^\circ)$				
117	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_1 = 6,596\sin(400t-45^\circ)$				
118	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_4 = 9,14\sin(500t-64,6^\circ)$				
119	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$e = 18\sin(1000t)$				
120	2.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$i_1 = 3,333\sin(100t)$				

Таблица 2 (продолжение 4)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; e,u [B]				
121	2.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$i_3 = 11,5\sin(400t+90^\circ)$				
122	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_2 = 5\sin(100t + 36,835^\circ)$				
123	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_3 = 1,252\sin(200t - 99,236^\circ)$				
124	2.3	$C_1=312,5, R_3=4, L_4=10, R_5=4$	$i_2 = 0.737\sin(400t + 18.435^\circ)$				
125	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_3 = 9,127\sin(500t-64,673^\circ)$				
126	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_5 = 4\sin(1000t + 90^\circ)$				
127	2.3	$L_1=40, R_3=4, C_4=5000, R_5=4$	$u_4 = 6,667\sin(100t - 90^\circ)$				
128	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_3 = 11\sin(200t)$				
129	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_2 = 4,269\sin(400t - 38,658^\circ)$				
130	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_3 = 3,515\sin(500t + 58,2^\circ)$				
131	2.1	$R_2=2, L_3=25, C_4=1000, R_5=2$	$i_3 = 3,586\sin(200t + 71^\circ)$				
132	2.2	$R_2=5, L_3=5, C_4=625, R_5=5$	$i_1 = 7,18\sin(400t-21,801^\circ)$				
133	2.3	$R_2=3, L_3=10, C_4=500, R_5=3$	$u_4 = 16,389\sin(500t-62,764^\circ)$				
134	2.1	$R_1=6$, $C_2=250$, $L_3=8$, $R_4=6$, $C_5=250$	$u_3 = 15,496\sin(1000t + 26,52^\circ)$				
135	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_2 = 16,693\sin(100t - 153,4^\circ)$				
136	2.3	$R_1=6$, $C_2=1000$, $L_3=10$, $R_4=6$, $C_5=1000$	$u_1 = 7,578\sin(200t + 139,268^\circ)$				
137	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$i_2 = 8\sin(400t + 90^\circ)$				
138	2.2	$C_1=1000, R_2=5, R_3=5, L_4=8, C_5=1000$	$i_3 = 5,617\sin(500t-40,801^\circ)$				
139	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_1 = 43,081\sin(500t-21,801^\circ)$				
140	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$e = 18\sin(100t)$				
141	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_3 = 1,053\sin(200t+16,7^\circ)$				
142	2.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$i_1 = 23,179\sin(400t + 29,745^\circ)$				
143	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_3 = 2,236\sin(100t-26,565^\circ)$				
144	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_1 = 2,645\sin(200t + 36^\circ)$				
145	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_5 = 7.376\sin(400t - 18.4^\circ)$				
146	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_5 = 8,67\sin(500t-46^\circ)$				
147	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_4 = 2\sin(1000t)$				
148	2.3	$L_1=40, R_3=4, C_4=5000, R_5=4$	$u_1 = 9,428\sin(100t + 45^\circ)$				
149	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_2 = 3,861\sin(200t - 87,199^\circ)$				
150	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_3 = 3,333\sin(400t)$				

Таблица 2 (продолжение 5)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]			
151	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_1 = 4,099\sin(500t + 27,236^\circ)$			
152	2.1	$R_1=6, C_2=250, L_3=8, R_4=6, C_5=250$	$u_4 = 12,897\sin(1000t+60,29^\circ)$			
153	2.2	$R_1=3, C_2=2500, L_3=50, R_4=3, C_5=2500$	$u_3 = 41,75\sin(100t+27^\circ)$			
154	2.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_2 = 6.315\sin(200t + 49^\circ)$			
155	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_1 = 40\sin(400t - 36,87^\circ)$			
156	2.2	$C_1=1000, R_2=5, R_3=5, L_4=8, C_5=1000$	$i_2 = 2,086\sin(500t + 71^\circ)$			
157	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_3 = 40\sin(500t)$			
158	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_1 = 0.741\sin(100t + 14.564^\circ)$			
159	2.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$e = 20\sin(200t)$			
160	2.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_4 = 20,411\sin(400t-18,34^\circ)$			
161	2.1	$C_1 = 10000, R_3 = 2, L_4 = 40, R_5 = 2$	$u_1 = 6,325\sin(100t-71,565^\circ)$			
162	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_2 = 3,638\sin(200t+50,036^\circ)$			
163	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_3 = 0.825\sin(400t + 45^\circ)$			
164	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$i_1 = 2.93\sin(500t - 55.662^\circ)$			
165	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_3 = 16,492\sin(1000t-14,071^\circ)$			
166	2.3	$L_1=40, R_3=4, C_4=5000, R_5=4$	$u_5 = 13,334\sin(100t)$			
167	2.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$e = 22\sin(200t)$			
168	2.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$u_1 = 21,344\sin(400t - 38,66^\circ)$			
169	2.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_2 = 2,109\sin(500t - 31,836^\circ)$			
170	2.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$i_3 = 2,15\sin(1000t+60,29^\circ)$			
171	2.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$u_4 = 5,79\sin(200t + 39,738^\circ)$			
172	2.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_2 = 2,252\sin(400t-101,7^\circ)$			
173	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_1 = 11,242\sin(500t-77,266^\circ)$			
174	2.2	$C_1=1000, R_2=5, L_3=60, R_4=5$	$i_2 = 1,519\sin(100t - 6,7^\circ)$			
175	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$i_3 = 5,286sin(200t+77,3^\circ)$			
176	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_1 = 2,733\sin(400t-2,7^\circ)$			
177	2.2	L ₁ =4, R ₂ =4, C ₃ =1000, R ₄ =4	$u_2 = 23,76\sin(500t+21,8^\circ)$			
178	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_4 = 22,494\sin(100t+35,964^\circ)$			
179	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_3 = 25\sin(200t + 13,4^\circ)$			
180	2.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$u_1 = 61,195\sin(400t+165,1^\circ)$			

Таблица 2 (продолжение 6)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина i [A]; e,u [B]				
181	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$i_2 = 5.838\sin(500t - 81.76^\circ)$				
182	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_3 = 4,787\sin(100t + 114,3^\circ)$				
183	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_3 = 0.211\sin(200t + 106.7^\circ)$				
184	2.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$u_4 = 46,358\sin(400t-60,255^\circ)$				
185	2.1	$C_1=10000, R_3=2, L_4=40, R_5=2$	$i_1 = 6.3246\sin(100t + 18.5^\circ)$				
186	2.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$u_5 = 3,741\sin(200t - 99^\circ)$				
187	2.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_3 = 6,596\sin(400t - 45^\circ)$				
188	2.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_5 = 27,42\sin(500t+25,4^\circ)$				
189	2.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_1 = 4,472\sin(1000t+63,435^\circ)$				
190	2.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$i_2 = 2,357\sin(100t + 45^\circ)$				
191	2.1	$R_1=6$, $C_2=250$, $L_3=8$, $R_4=6$, $C_5=250$	$i_1 = 1,938\sin(1000t + 3,89^\circ)$				
192	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_4 = 12,522\sin(100t-63,4^\circ)$				
193	2.3	$R_1=6, C_2=1000, L_3=10, R_4=6, C_5=1000$	$u_3 = 9,864\sin(200t + 99,194^\circ)$				
194	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_4 = 48\sin(400t + 90^\circ)$				
195	2.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_1 = 4,173\sin(500t-19,026^\circ)$				
196	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 16\sin(500t - 90^\circ)$				
197	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_3 = 0.718\sin(100t - 61.37^\circ)$				
198	2.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$i_1 = 3,993\sin(200t + 32,662^\circ)$				
199	2.3	$R_1=9$, $R_2=9$, $C_3=1250$, $R_4=9$, $L_5=12.5$	$e = 2,428\sin(400t - 83,538^\circ)$				
200	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_2 = 13,488\sin(500t+12,7^\circ)$				
201	2.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$i_1 = 8,348\sin(100t-63,4^\circ)$				
202	2.3	$R_1=6$, $C_2=1000$, $L_3=10$, $R_4=6$, $C_5=1000$	$u_4 = 25,416\sin(200t+22,741^\circ)$				
203	2.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$e = 32\sin(400t)$				
204	2.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_3 = 26,075\sin(500t-19^\circ)$				
205	2.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$u_1 = 80\sin(500t - 90^\circ)$				
206	2.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_2 = 0.899\sin(100t + 65.406^\circ)$				
207	2.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$i_3 = 2,626\sin(200t + 23,235^\circ)$				
208	2.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$i_1 = 2,266\sin(400t-18,04^\circ)$				
209	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_4 = 11,56\sin(500t+43,7^\circ)$				
210	2.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_2 = 21,48\sin(100t-51,7^\circ)$				

Таблица 2 (продолжение 7)

Вариант	Схема	Элементы ветвей R [Ом], L [мГн], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]				
211	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$u_3 = 26,953\sin(200t-1,39^\circ)$				
212	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$u_2 = 19,13\sin(400t-2,772^\circ)$				
213	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_2 = 5.942\sin(500t + 21.764^\circ)$				
214	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_3 = 1,767\sin(100t-99,036^\circ)$				
215	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$i_1 = 1,668\sin(200t-76,5^\circ)$				
216	2.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_2 = 37,26\sin(400t + 78,7^\circ)$				
217	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_5 = 51,594\sin(500t + 1,86^\circ)$				
218	2.1	$R_1=6, L_3=50, C_4=2500, C_5=2500$	$u_3 = 38,311\sin(100t+24,3^\circ)$				
219	2.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$u_1 = 21,072\sin(200t - 73,301^\circ)$				
220	2.3	$R_1=7, L_3=10, C_4=1250, C_5=1250$	$i_2 = 20,126\sin(400t)$				
221	2.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$e = 24\sin(500t)$				
222	2.2	$C_1=1000, R_2=5, L_3=60, R_4=5$	$u_1 = 15,189\sin(100t - 96,71^\circ)$				
223	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$i_2 = 4,4895\sin(200t - 91,39^\circ)$				
224	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_3 = 2,057\sin(400t-44^\circ)$				
225	2.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_1 = 12,251\sin(500t+35,871^\circ)$				
226	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_2 = 10,602\sin(100t - 99^\circ)$				
227	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_5 = 25\sin(200t + 13,4^\circ)$				
228	2.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$u_3 = 80,26\sin(400t-33,101^\circ)$				
229	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_1 = 9,119\sin(500t-133,152^\circ)$				
230	2.1	$R_1=6, L_3=50, C_4=2500, C_5=2500$	$i_2 = 7,661\sin(100t-65,7^\circ)$				
231	2.2	$C_1=1000, R_2=5, L_3=60, R_4=5$	$u_3 = 25,778\sin(100t + 38,31^\circ)$				
232	2.3	$C_1=1000, R_2=1, L_3=30, R_4=1$	$u_1 = 26,431\sin(200t-12,724^\circ)$				
233	2.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_2 = 1.8\sin(400t + 46.044^\circ)$				
234	2.2	<i>L</i> ₁ =4, <i>R</i> ₂ =4, <i>C</i> ₃ =1000, <i>R</i> ₄ =4	$i_3 = 6,643\sin(500t + 48,365^\circ)$				
235	2.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_1 = 3.748\sin(100t + 36^\circ)$				
236	2.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$e = 36\sin(200t)$				
237	2.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_5 = 72,396\sin(400t + 154,435^\circ)$				
238	2.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_3 = 11,678\sin(500t-171,66^\circ)$				
239	2.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_3 = 93,333\sin(100t+90^\circ)$				
240	2.2	$R_1=4$, $L_3=40$, $C_4=500$, $C_5=500$	$i_2 = 5,268\sin(200t-73,31^\circ)$				

Таблица 2 (продолжение 8)

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]				
241	2.1	$R_2=4, L_3=50, C_4=500, R_5=4$	$i_2 = 3.862\sin(200t - 87.2^\circ)$				
242	2.2	$R_2=10, L_3=10, C_4=312.5, R_5=10$	$i_3 = 3,333\sin(400t)$				
243	2.3	$R_2=6, L_3=20, C_4=250, R_5=6$	$u_3 = 10,54\sin(500t+58,2^\circ)$				
244	2.1	$R_1=12, C_2=125, L_3=16, R_4=12, C_5=125$	$u_2 = 7,748\sin(1000t - 86,1^\circ)$				
245	2.2	R_1 =6, C_2 =1250, L_3 =100, R_4 =6, C_5 =1250	$u_1 = 12,52\sin(100t-63,4^\circ)$				
246	2.3	$R_1=12, C_2=500, L_3=20, R_4=12, C_5=500$	$e = 30\sin(200t)$				
247	2.1	C_1 =312.5, R_3 =6, L_4 =40, C_5 =312.5	$i_1 = 10\sin(400t + 53,1^\circ)$				
248	2.2	$C_1=500, R_2=10, R_3=10, L_4=16, C_5=500$	$i_2 = 2,086\sin(500t + 71^\circ)$				
249	2.3	$C_1=500, R_3=10, L_4=16, C_5=500$	$i_3 = 40\sin(500t)$				
250	2.1	$R_1=16, R_2=16, C_3=625, R_4=16, L_5=120$	$u_5 = 4,31\sin(100t + 28,6^\circ)$				
251	2.2	$R_1=12, R_2=12, C_3=625, R_4=12, L_5=30$	$u_3 = 5.87\sin(200t - 40.8^\circ)$				
252	2.3	$R_1=18, R_2=18, C_3=625, R_4=18, L_5=25$	$u_1 = 2,252\sin(400t-101,7^\circ)$				
253	2.1	C_1 =200, R_2 =12, L_3 =40, R_4 =12	$e = 24\sin(500t)$				
254	2.2	$C_1=500, R_2=10, L_3=30, R_4=10$	$i_1 = 4,296\sin(100t - 51,7^\circ)$				
255	2.3	$C_1=500, R_2=2, L_3=60, R_4=2$	$i_2 = 4,492sin(200t-91,4^\circ)$				
256	2.1	$L_1=60, R_2=10, C_3=250, L_5=60$	$u_5 = 25,01\sin(200t+13,4^\circ)$				
257	2.2	$L_1=25, R_2=6, C_3=312.5, L_5=25$	$u_3 = 103,7\sin(400t-11,3^\circ)$				
258	2.3	L_1 =40, R_2 =16, C_3 =500, L_5 =40	$u_2 = 7,295\sin(500t + 137^\circ)$				
259	2.1	$R_1=12, L_3=100, C_4=1250, C_5=1250$	$u_1 = 42\sin(100t)$				
260	2.2	R_1 =8, L_3 =80, C_4 =250, C_5 =250	$i_1 = 5,372\sin(200t-62^\circ)$				
261	2.3	$R_1=14, L_3=20, C_4=625, C_5=625$	$i_2 = 20,125\sin(400t)$				
262	2.1	C_1 =5000, R_3 =4, L_4 =80, R_5 =4	$i_1 = 6,324\sin(100t + 18,4^\circ)$				
263	2.2	C_1 =1250, R_3 =6, L_4 =50, R_5 =6	$i_2 = 3,65\sin(200t + 49,8^\circ)$				
264	2.3	C_1 =156,25, R_3 =8, L_4 =20, R_5 =8	$i_1 = 0.8245\sin(400t + 45^\circ)$				
265	2.1	$L_1=20, R_3=12, C_4=500, R_5=12$	$u_1 = 14,63\sin(500t + 34,3^\circ)$				
266	2.2	$L_1=4, R_3=16, C_4=125, R_5=16$	$u_4 = 2\sin(1000t)$				
267	2.3	$L_1=80, R_3=8, C_4=2500, R_5=8$	$u_3 = 9,428\sin(100t+45^\circ)$				
268	2.1	R_1 =4, L_3 =50, C_4 =500, R_5 =4	$u_5 = 22\sin(200t)$				
269	2.2	$R_1=10, L_3=10, C_4=312.5, R_5=10$	$i_1 = 7,18\sin(400t-21,8^\circ)$				
270	2.3	R_1 =6, L_3 =20, C_4 =250, R_5 =6	$i_2 = 2,109\sin(500t - 31,8^\circ)$				

Таблица 2 (продолжение 9)

ı							
тан	Схема	Элементы ветвей	Заданная величина				
Вариант	Схе	R [Ом], L [м Γ н], C [мк Φ]	i [A]; e,u [B]				
271	2.1	R_1 =24, C_2 =62,5, L_3 =32, R_4 =24, C_5 =62,5	$i_3 = 2,15\sin(1000t+60,2^\circ)$				
272	2.2	$R_1=12, C_2=625, L_3=200, R_4=12, C_5=625$	$u_3 = 41,74\sin(100t+26,6^\circ)$				
273	2.3	R_1 =24, C_2 =250, L_3 =40, R_4 =24, C_5 =250	$u_2 = 6.315\sin(200t + 49^\circ)$				
274	2.1	$C_1=156,25, R_3=12, L_4=80, C_5=156,25$	$u_3 = 24\sin(400t + 90^\circ)$				
275	2.2	C_1 =250, R_2 =20, R_3 =20, L_4 =32, C_5 =250	$e = 32\sin(500t)$				
276	2.3	$C_1=250, R_3=20, L_4=32, C_5=250$	$i_1 = 43,08\sin(500t-21,8^\circ)$				
277	2.1	$R_1=32, R_2=32, C_3=312,5, R_4=32, L_5=240$	$i_2 = 0.898\sin(100t + 65.5^\circ)$				
278	2.2	$R_1=24, R_2=24, C_3=312,5, R_4=24, L_5=60$	$i_3 = 2,626\sin(200t + 23,2^\circ)$				
279	2.3	$R_1=36, R_2=36, C_3=312,5, R_4=36, L_5=50$	$u_5 = 1,251\sin(400t-11,7^\circ)$				
280	2.1	$C_1=100, R_2=24, L_3=80, R_4=24$	$u_1 = 11,24\sin(500t-77,3^\circ)$				
281	2.2	C_1 =250, R_2 =20, L_3 =240, R_4 =20	$u_2 = 7,595\sin(100t - 6,69^\circ)$				
282	2.3	C_1 =250, R_2 =4, L_3 =120, R_4 =4	$e = 28\sin(200t)$				
283	2.1	L_1 =40, R_2 =28, C_3 =78,125, R_4 =28	$i_1 = 2,733\sin(400t-2,77^\circ)$				
284	2.2	$L_1=16, R_2=16, C_3=250, R_4=16$	$i_2 = 5,942\sin(500t + 21,8^\circ)$				
285	2.3	<i>L</i> ₁ =400, <i>R</i> ₂ =24, <i>C</i> ₃ =625, <i>R</i> ₄ =24	$i_3 = 1,767\sin(100t-99^\circ)$				
286	2.1	L_1 =40, R_3 =24, C_4 =250, R_5 =24	$u_4 = 2.89\sin(500t - 136^\circ)$				
287	2.2	$L_1=8, R_3=32, C_4=62,5, R_5=32$	$u_3 = 16,48\sin(1000t-14,04^\circ)$				
288	2.3	$L_1=160, R_3=16, C_4=1250, R_5=16$	$e = 20\sin(100t)$				
289	2.1	$R_1=8, L_3=100, C_4=250, R_5=8$	$i_1 = 1,434\sin(200t-19^\circ)$				
290	2.2	R_1 =20, L_3 =20, C_4 =156,25, R_5 =20	$i_2 = 4,268\sin(400t - 38,6^\circ)$				
291	2.3	$R_1=12, L_3=40, C_4=125, R_5=12$	$i_3 = 3,515\sin(500t + 58,2^\circ)$				
292	2.1	R_1 =24, C_2 =62,5, L_3 =32, R_4 =24, C_5 =62,5	$u_3 = 15,5\sin(1000t + 26,6^\circ)$				
293	2.2	$R_1=12, C_2=625, L_3=200, R_4=12, C_5=625$	$u_2 = 16,7\sin(100t - 153^\circ)$				
294	2.3	R_1 =24, C_2 =250, L_3 =40, R_4 =24, C_5 =250	$u_1 = 7,5785\sin(200t + 139^\circ)$				
295	2.1	$C_1=156,25, R_3=12, L_4=80, C_5=156,25$	$e = 32\sin(400t)$				
296	2.2	C_1 =250, R_2 =20, R_3 =20, L_4 =32, C_5 =250	$i_1 = 5,216\sin(500t-19^\circ)$				
297	2.3	C_1 =250, R_3 =20, L_4 =32, C_5 =250	$i_2 = 16\sin(500t - 90^\circ)$				
298	2.1	$R_1=32, R_2=32, C_3=312,5, R_4=32, L_5=240$	$i_3 = 0.719\sin(100t - 61.4^\circ)$				
299	2.2	$R_1=24, R_2=24, C_3=312,5, R_4=24, L_5=60$	$u_5 = 7,878\sin(200t+113^\circ)$				
300	2.3	R_1 =36, R_2 =36, C_3 =312,5, R_4 =36, L_5 =25	$u_3 = 4,508\sin(400t-102^\circ)$				

ПАРАМЕТРЫ ЭЛЕМЕНТОВ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ «Исследование пассивных двухполюсников и явлений резонанса в линейных электрических цепях синусоидального тока»

Порядок выполнения лабораторной работы описан в пособии Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А., Никитина М.В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. - Санкт-Петербург: Университет ИТМО, 2019. - 52 с.

Варианты (таблица 3) исходных данных для выполнения лабораторной работы назначаются преподавателем в день проведения лабораторной работы.

Количество баллов БаРС – от 5 до 7.

Требования к оформлению отчета по лабораторной работе:

- отчет должен содержать титульный лист (пример на стр. 28);
- отчет должен содержать все позиции, предусмотренные пунктом «Содержание отчета»;
- округление численных значений должно быть с точностью до тысячных долей;
- весь графический материал отчета должен быть выполнен с обязательной оцифровкой (масштабированием) и обозначением осей и размерностей (при необходимости);
- отчеты могут быть оформлены как в рукописном формате, так и с использованием любого редактора;
- отчеты предоставляются в электронном виде ($\underline{mvnikitina@itmo.ru}$) в формате *.pdf.

Защита отчета по лабораторной работе

К защите допускаются студенты, выполнившие лабораторную работу и представившие отчет по ней. Отчет не может быть принят и подлежит доработке и последующей защите в случае несоответствия всем требованиям к оформлению отчета по лабораторной работе.

За 2 дня до даты защиты отчет по лабораторной работе необходимо выслать на проверку преподавателю на mvnikitina@itmo.ru. Защита отчета по лабораторной работе проходит в форме письменного тестирования (4 вопроса/задания) с последующей устной беседой (собеседованием) по вопросам/заданиям теста.

В случае если оформление отчета соответствует всем требованиям к оформлению отчета по лабораторной работе и студентом даны правильные ответы на все вопросы теста и преподавателя, студент получает макс баллов. Основания для снижения количества баллов за защиту отчета в пределах от макс до мин: небрежное оформление отчета, низкое качество графического материала, несвоевременность защиты, неверные ответы на один или два во-

проса теста и/или преподавателя. В случае если студентом дано меньше двух правильных ответов на вопросы теста, защита лабораторной работы оценивается в 0 баллов и студенту предстоит последующая устная защита в консультационные часы.

Пример титульного листа отчета по лабораторной работе

VİTMO

Электротехника и электроника Модуль Электротехника

ОТЧЕТ

по лабораторной работе Исследование пассивных двухполюсников и явлений резонанса в линейных электрических цепях синусоидального тока

Группа *XXXXX*Вариант *XXX*

Выполнил: Иванов Иван Иванович

Дата сдачи отчета: хх.хх.2023

Дата защиты: **xx.xx.2023**

Контрольный срок защиты: хх.хх.2023

Количество баллов:

 $C\Pi6 - 2023$

Таблица 3 (начало)

	ца э (на				D	O	D		C
№	U, B		радус	<i>f</i> , Гц		Ом	R_k ,	L_k , м Γ н	C,
вар		Часть 1	Часть 2		Часть 1	Часть 2	Ом		мкФ
1	6	0	-150	63,662	25	11	5	10,718	85,745
2	7	0	-120	79,577	25	9	5	5,359	58,235
3	8	0	-60	127,324	25	8	5	3,349	46,631
4	9	0	-45	159,155	25	7	5	2,68	46,188
5	10	0	-30	318,31	25	6	5	1,675	35,01
6	11	0	30	397,887	25	6	5	1,34	33,564
7	12	0	45	636,62	25	5	5	1,072	38,136
8	13	0	60	795,775	25	6	5	0,67	28,563
9	14	0	120	63,662	25	6	5	0,536	27,713
10	15	0	150	79,577	25	5	5	0,335	21,445
11	6	0	-150	127,324	25	18	10	29,118	85,745
12	7	0	-120	159,155	25	15	10	14,559	58,235
13	8	0	-60	318,31	25	13	10	9,099	46,631
14	9	0	-45	397,887	25	12	10	7,279	46,188
15	10	0	-30	636,62	25	11	10	4,55	35,01
16	11	0	30	795,775	25	10	10	3,64	33,564
17	12	0	45	63,662	25	10	10	2,912	38,136
18	13	0	60	79,577	25	9	10	1,82	28,563
19	14	0	120	127,324	25	9	10	1,456	27,713
20	15	0	150	159,155	25	8	10	0,91	21,445
21	6	0	-150	318,31	25	25	15	55,958	85,745
22	7	0	-120	397,887	25	21	15	27,978	58,235
23	8	0	-60	636,62	25	19	15	17,487	46,631
24	9	0	-45	795,775	25	17	15	13,989	46,188
25	10	0	-30	63,662	25	15	15	8,743	35,01
26	11	0	30	79,577	25	16	15	6,995	33,564
27	12	0	45	127,324	25	14	15	5,596	38,136
28	13	0	60	159,155	25	13	15	3,497	28,563
29	14	0	120	318,31	25	12	15	2,798	27,713
30	15	0	150	397,887	25	11	15	1,749	21,445
31	6	0	-150	636,62	30	17	5	23,094	71,454
32	7	0	-120	795,775	30	15	5	11,547	48,529
33	8	0	-60	63,662	30	13	5	7,217	38,859
34	9	0	-45	79,577	30	12	5		38,49
35	10	0	-30		30	11	5	5,774 3,608	
36	11	0		127,324			5		29,175
-			30	159,155	30	10	5	2,887	27,97
37	12	0	45	318,31	30	8		2,309	31,78
38	13	0	60	397,887	30	7	5	1,443	23,802
39	14	0	120	636,62	30	7	5	1,155	23,094
40	15	0	150	795,775	30	6	5	0,722	17,871

Таблица 3 (продолжение 1)

Таблица 3 (продолжение 1)									
$N_{\underline{0}}$	U, B	ψ_u , Γ_1	радус	<i>f</i> , Гц	R_1 ,	Ом	R_k ,	L_k , м Γ н	<i>C</i> ,
вар	O, D	Часть 1	Часть 2	Ј, 1 Ц	Часть 1	Часть 2	Ом	L_k , MI H	мкФ
41	6	0	-150	63,662	30	27	10	56,018	71,454
42	7	0	-120	79,577	30	24	10	28,008	48,529
43	8	0	-60	127,324	30	21	10	17,505	38,859
44	9	0	-45	159,155	30	19	10	14,004	38,49
45	10	0	-30	318,31	30	17	10	8,753	29,175
46	11	0	30	397,887	30	15	10	7,002	27,97
47	12	0	45	636,62	30	13	10	5,602	31,78
48	13	0	60	795,775	30	12	10	3,501	23,802
49	14	0	120	63,662	30	11	10	2,801	23,094
50	15	0	150	79,577	30	11	10	1,751	17,871
51	6	0	-150	127,324	30	37	15	100,694	71,454
52	7	0	-120	159,155	30	32	15	50,346	48,529
53	8	0	-60	318,31	30	28	15	31,466	38,859
54	9	0	-45	397,887	30	25	15	25,173	38,49
55	10	0	-30	636,62	30	23	15	15,733	29,175
56	11	0	30	795,775	30	21	15	12,586	27,97
57	12	0	45	63,662	30	17	15	10,069	31,78
58	13	0	60	79,577	30	16	15	6,293	23,802
59	14	0	120	127,324	30	16	15	5,035	23,094
60	15	0	150	159,155	30	15	15	3,147	17,871
61	6	0	-150	318,31	35	25	5	40,001	61,247
62	7	0	-120	397,887	35	21	5	20	41,596
63	8	0	-60	636,62	35	19	5	12,5	33,308
64	9	0	-45	795,775	35	17	5	10	32,992
65	10	0	-30	63,662	35	15	5	6,25	25,007
66	11	0	30	79,577	35	14	5	5	23,974
67	12	0	45	127,324	35	12	5	4	27,24
68	13	0	60	159,155	35	11	5	2,5	20,402
69	14	0	120	318,31	35	10	5	2	19,795
70	15	0	150	397,887	35	9	5	1,25	15,318
71	6	0	-150	636,62	35	39	10	95,342	61,247
72	7	0	-120	795,775	35	33	10	47,67	41,596
73	8	0	-60	63,662	35	29	10	29,794	33,308
74	9	0	-45	79,577	35	26	10	23,835	32,992
75	10	0	-30	127,324	35	24	10	14,897	25,007
76	11	0	30	159,155	35	22	10	11,918	23,974
77	12	0	45	318,31	35	18	10	9,534	27,24
78	13	0	60	397,887	35	17	10	5,959	20,402
79	14	0	120	636,62	35	15	10	4,767	19,795
80	15	0	150	795,775	35	13	10	2,979	15,73
υυ	1,3	U	150	173,113	رر	13	10	4,717	13,310

Таблица 3 (продолжение 2)

Таблица 3 (продолжение 2)								~	
№	U, B		радус	<i>f</i> , Гц		Ом	R_k ,	L_k , м Γ н	<i>C</i> ,
вар		Часть 1	Часть 2		Часть 1	Часть 2	Ом		мкФ
81	6	0	-150	63,662	35	52	15	171,381	61,247
82	7	0	-120	79,577	35	45	15	85,688	41,596
83	8	0	-60	127,324	35	40	15	53,556	33,308
84	9	0	-45	159,155	35	36	15	42,845	32,992
85	10	0	-30	318,31	35	32	15	26,778	25,007
86	11	0	30	397,887	35	29	15	21,422	23,974
87	12	0	45	636,62	35	25	15	17,138	27,24
88	13	0	60	795,775	35	22	15	10,711	20,402
89	14	0	120	63,662	35	20	15	8,569	19,795
90	15	0	150	79,577	35	18	15	5,356	15,318
91	6	0	-150	127,324	40	35	5	69,283	53,591
92	7	0	-120	159,155	40	30	5	34,641	36,397
93	8	0	-60	318,31	40	27	5	21,651	29,144
94	9	0	-45	397,887	40	24	5	17,321	28,868
95	10	0	-30	636,62	40	22	5	10,825	21,881
96	11	0	30	795,775	40	20	5	8,66	20,977
97	12	0	45	63,662	40	17	5	6,928	23,835
98	13	0	60	79,577	40	15	5	4,33	17,852
99	14	0	120	127,324	40	14	5	3,464	17,321
100	15	0	150	159,155	40	12	5	2,165	13,403
101	6	0	-150	318,31	40	56	10	171,564	53,591
102	7	0	-120	397,887	40	48	10	85,78	36,397
103	8	0	-60	636,62	40	42	10	53,613	29,144
104	9	0	-45	795,775	40	38	10	42,89	28,868
105	10	0	-30	63,662	40	35	10	26,806	21,881
106	11	0	30	79,577	40	31	10	21,445	20,977
107	12	0	45	127,324	40	26	10	17,156	23,835
108	13	0	60	159,155	40	24	10	10,723	17,852
109	14	0	120	318,31	40	22	10	8,578	17,321
110	15	0	150	397,887	40	19	10	5,361	13,403
111	6	0	-150	636,62	40	78	15	329,703	53,591
112	7	0	-120	795,775	40	67	15	164,848	36,397
113	8	0	-60	63,662	40	59	15	103,03	29,144
114	9	0	-45	79,577	40	53	15	82,425	28,868
115	10	0	-30	127,324	40	48	15	51,515	21,881
116	11	0	30	159,155	40	44	15	41,212	20,977
117	12	0	45	318,31	40	37	15	32,97	23,835
117	13	0	60	397,887	40	33	15	20,606	17,852
119	14	0		·	40				
			120	636,62		30	15	16,485	17,321
120	15	0	150	795,775	40	27	15	10,303	13,403

Таблица 3 (продолжение 3)

Таблица 3 (продолжение 3)										
$N_{\overline{0}}$	U, B	ψ_u , градус		<i>f</i> , Гц	R_1 , Om		R_k ,	L_k , м Γ н	<i>C</i> ,	
вар	· , B	Часть 1	Часть 2	<i>J</i> , 1 ±	Часть 1	Часть 2	Ом	25K, 1111 11	мкФ	
121	6	0	-150	63,662	45	55	5	149,285	47,636	
122	7	0	-120	79,577	45	48	5	74,641	32,353	
123	8	0	-60	127,324	45	42	5	46,651	25,906	
124	9	0	-45	159,155	45	38	5	37,321	25,66	
125	10	0	-30	318,31	45	34	5	23,325	19,45	
126	11	0	30	397,887	45	31	5	18,66	18,647	
127	12	0	45	636,62	45	26	5	14,928	21,187	
128	13	0	60	795,775	45	24	5	9,33	15,868	
129	14	0	120	63,662	45	22	5	7,464	15,396	
130	15	0	150	79,577	45	19	5	4,665	11,914	
131	6	0	-150	127,324	45	97	10	453,711	47,636	
132	7	0	-120	159,155	45	83	10	226,85	32,353	
133	8	0	-60	318,31	45	73	10	141,782	25,906	
134	9	0	-45	397,887	45	66	10	113,426	25,66	
135	10	0	-30	636,62	45	60	10	70,891	19,45	
136	11	0	30	795,775	45	55	10	56,713	18,647	
137	12	0	45	63,662	45	46	10	45,37	21,187	
138	13	0	60	79,577	45	42	10	28,356	15,868	
139	14	0	120	127,324	45	38	10	22,685	15,396	
140	15	0	150	159,155	45	34	10	14,178	11,914	
141	6	0	-150	318,31	45	169	15	1371,63	47,636	
142	7	0	-120	397,887	45	145	15	685,799	32,353	
143	8	0	-60	636,62	45	128	15	428,627	25,906	
144	9	0	-45	795,775	45	115	15	342,904	25,66	
145	10	0	-30	63,662	45	104	15	214,313	19,45	
146	11	0	30	79,577	45	95	15	171,451	18,647	
147	12	0	45	127,324	45	80	15	137,16	21,187	
148	13	0	60	159,155	45	73	15	85,725	15,868	
149	14	0	120	318,31	45	66	15	68,58	15,396	
150	15	0	150	397,887	45	59	15	42,863	11,914	
151	6	0	-150	636,62	50	15	5	10,718	42,873	
152	7	0	-120	795,775	50	13	5	5,359	29,117	
153	8	0	-60	63,662	50	11	5	3,349	23,315	
154	9	0	-45	79,577	50	10	5	2,68	23,094	
155	10	0	-30	127,324	50	9	5	1,675	17,505	
156	11	0	30	159,155	50	8	5	1,34	16,782	
157	12	0	45	318,31	50	7	5	1,072	19,068	
158	13	0	60	397,887	50	6	5	0,67	14,281	
159	14	0	120	636,62	50	6	5	0,536	13,856	
160	15	0	150	795,775	50	5	5	0,335	10,723	

Таблица 3 (продолжение 4)

Таблица 3 (продолжение 4)										
$N_{\underline{0}}$	U, B		радус	<i>f</i> , Гц	R_1 , Om		R_k ,	L_k , м Γ н	<i>C</i> ,	
вар	0,2	Часть 1	Часть 2	J, 1 4	Часть 1	Часть 2	Ом		мкФ	
161	6	0	-150	63,662	50	26	10	29,118	42,873	
162	7	0	-120	79,577	50	22	10	14,559	29,117	
163	8	0	-60	127,324	50	19	10	9,099	23,315	
164	9	0	-45	159,155	50	17	10	7,279	23,094	
165	10	0	-30	318,31	50	16	10	4,55	17,505	
166	11	0	30	397,887	50	14	10	3,64	16,782	
167	12	0	45	636,62	50	12	10	2,912	19,068	
168	13	0	60	795,775	50	11	10	1,82	14,281	
169	14	0	120	63,662	50	10	10	1,456	13,856	
170	15	0	150	79,577	50	11	10	0,91	10,723	
171	6	0	-150	127,324	50	36	15	55,958	42,873	
172	7	0	-120	159,155	50	30	15	27,978	29,117	
173	8	0	-60	318,31	50	27	15	17,487	23,315	
174	9	0	-45	397,887	50	24	15	13,989	23,094	
175	10	0	-30	636,62	50	22	15	8,743	17,505	
176	11	0	30	795,775	50	20	15	6,995	16,782	
177	12	0	45	63,662	50	17	15	5,596	19,068	
178	13	0	60	79,577	50	15	15	3,497	14,281	
179	14	0	120	127,324	50	16	15	2,798	13,856	
180	15	0	150	159,155	50	14	15	1,749	10,723	
181	6	0	-150	318,31	55	24	5	23,094	38,975	
182	7	0	-120	397,887	55	20	5	11,547	26,47	
183	8	0	-60	636,62	55	18	5	7,217	21,196	
184	9	0	-45	795,775	55	16	5	5,774	20,995	
185	10	0	-30	63,662	55	15	5	3,608	15,914	
186	11	0	30	79,577	55	13	5	2,887	15,256	
187	12	0	45	127,324	55	11	5	2,309	17,335	
188	13	0	60	159,155	55	10	5	1,443	12,983	
189	14	0	120	318,31	55	9	5	1,155	12,597	
190	15	0	150	397,887	55	8	5	0,722	9,748	
191	6	0	-150	636,62	55	37	10	56,018	38,975	
192	7	0	-120	795,775	55	32	10	28,008	26,47	
193	8	0	-60	63,662	55	28	10	17,505	21,196	
194	9	0	-45	79,577	55	25	10	14,004	20,995	
195	10	0	-30	127,324	55	23	10	8,753	15,914	
196	11	0	30	159,155	55	21	10	7,002	15,256	
197	12	0	45	318,31	55	17	10	5,602	17,335	
198	13	0	60	397,887	55	16	10	3,501	12,983	
199	14	0	120	636,62	55	14	10	2,801	12,597	
200	15	0	150	795,775	55	13	10	1,751	9,748	
200	1.0		150	173,113		13	10	1,/31	7,170	

Таблица 3 (продолжение 5)

Ne	Таблица 3 (продолжение 5)											
Sapp	$N_{\underline{0}}$	II R	ψ_u , Γ_1	радус	<i>f</i> Γπ	R_1 ,	Ом	R_k ,	І, мГн			
202 7 0 -120 79,577 55 43 15 50,346 26,47 203 8 0 -60 127,324 55 38 15 31,466 21,196 204 9 0 -45 159,155 55 34 15 25,173 20,995 205 10 0 -30 318,31 55 31 15 15,733 15,914 206 11 0 30 397,887 55 28 15 12,586 15,256 207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 795,77 55 17 15 3,147<	вар	O, D	Часть 1	Часть 2	Ј, 1 ц	Часть 1	Часть 2	Ом	L_k , MI II	мкФ		
203 8 0 -60 127,324 55 38 15 31,466 21,196 204 9 0 -45 159,155 55 34 15 25,173 20,995 205 10 0 -30 318,31 55 31 15 15,733 15,914 206 11 0 30 397,887 55 28 15 12,586 15,256 207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 795,775 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,00<	201	6	0	-150	63,662	55	50	15	100,694	38,975		
204 9 0 -45 159,155 55 34 15 25,173 20,995 205 10 0 -30 318,31 55 31 15 15,733 15,914 206 11 0 30 397,887 55 28 15 12,586 15,256 207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -45 397,887 60 22 5 10	202		0	-120	79,577	55	43	15	50,346	26,47		
205 10 0 -30 318,31 55 31 15 15,733 15,914 206 11 0 30 397,887 55 28 15 12,586 15,256 207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5	203	8	0	-60	127,324	55	38	15	31,466	21,196		
206 11 0 30 397,887 55 28 15 12,586 15,256 207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10	204	9	0	-45	159,155	55	34	15	25,173	20,995		
207 12 0 45 636,62 55 24 15 10,069 17,335 208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 <th< td=""><td>205</td><td>10</td><td>0</td><td>-30</td><td>318,31</td><td>55</td><td>31</td><td>15</td><td>15,733</td><td>15,914</td></th<>	205	10	0	-30	318,31	55	31	15	15,733	15,914		
208 13 0 60 795,775 55 22 15 6,293 12,983 209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,9	206	11	0	30	397,887	55	28	15	12,586	15,256		
209 14 0 120 63,662 55 19 15 5,035 12,597 210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,889 <td>207</td> <td>12</td> <td>0</td> <td>45</td> <td>636,62</td> <td>55</td> <td>24</td> <td>15</td> <td>10,069</td> <td>17,335</td>	207	12	0	45	636,62	55	24	15	10,069	17,335		
210 15 0 150 79,577 55 17 15 3,147 9,748 211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,889 218 13 0 60 79,577 60 14 5 2,5 11,901	208	13	0	60	795,775	55	22	15	6,293	12,983		
211 6 0 -150 127,324 60 33 5 40,001 35,727 212 7 0 -120 159,155 60 28 5 20 24,265 213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 </td <td>209</td> <td>14</td> <td>0</td> <td>120</td> <td>63,662</td> <td>55</td> <td>19</td> <td>15</td> <td>5,035</td> <td>12,597</td>	209	14	0	120	63,662	55	19	15	5,035	12,597		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	15	0	150	79,577	55	17	15	3,147	9,748		
213 8 0 -60 318,31 60 25 5 12,5 19,429 214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 <	211	6	0	-150	127,324	60	33	5	40,001	35,727		
214 9 0 -45 397,887 60 22 5 10 19,245 215 10 0 -30 636,62 60 20 5 6,25 14,588 216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265	212	7	0	-120	159,155	60	28	5	20	24,265		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213	8	0	-60	318,31	60	25	5	12,5	19,429		
216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245	214	9	0	-45	397,887	60	22	5		19,245		
216 11 0 30 795,775 60 18 5 5 13,985 217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245	215	10	0	-30	636,62	60	20	5	6,25	14,588		
217 12 0 45 63,662 60 15 5 4 15,89 218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897	216	11	0	30	795,775	60	18	5		13,985		
218 13 0 60 79,577 60 14 5 2,5 11,901 219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918	217	12	0	45		60	15	5	4			
219 14 0 120 127,324 60 13 5 2 11,547 220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534	218	13	0	60	79,577	60	14	5	2,5			
220 15 0 150 159,155 60 11 5 1,25 8,935 221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 <td>219</td> <td>14</td> <td>0</td> <td>120</td> <td></td> <td>60</td> <td>13</td> <td>5</td> <td></td> <td></td>	219	14	0	120		60	13	5				
221 6 0 -150 318,31 60 51 10 95,342 35,727 222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 </td <td></td> <td>15</td> <td>0</td> <td>150</td> <td></td> <td>60</td> <td></td> <td></td> <td>1,25</td> <td></td>		15	0	150		60			1,25			
222 7 0 -120 397,887 60 44 10 47,67 24,265 223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 </td <td></td> <td>6</td> <td>0</td> <td>-150</td> <td>*</td> <td>60</td> <td></td> <td></td> <td></td> <td></td>		6	0	-150	*	60						
223 8 0 -60 636,62 60 39 10 29,794 19,429 224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 </td <td></td> <td>7</td> <td>0</td> <td></td> <td></td> <td>60</td> <td></td> <td></td> <td></td> <td></td>		7	0			60						
224 9 0 -45 795,775 60 35 10 23,835 19,245 225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688	223	8	0	-60		60	39	10				
225 10 0 -30 63,662 60 31 10 14,897 14,588 226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556<		9	0		·							
226 11 0 30 79,577 60 29 10 11,918 13,985 227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 </td <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		10										
227 12 0 45 127,324 60 24 10 9,534 15,89 228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778		11	0			60	29	10	·			
228 13 0 60 159,155 60 22 10 5,959 11,901 229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,4	227	12	0	45	2	60	24	10	,	· ·		
229 14 0 120 318,31 60 20 10 4,767 11,547 230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,1	228	13	0	60	*	60	22	10				
230 15 0 150 397,887 60 18 10 2,979 8,935 231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,7	229	14	0	120		60	20	10				
231 6 0 -150 636,62 60 69 15 171,381 35,727 232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,5	230	15	0	150		60	18		2,979			
232 7 0 -120 795,775 60 59 15 85,688 24,265 233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547	231	6	0	-150	*	60	69	15	171,381			
233 8 0 -60 63,662 60 52 15 53,556 19,429 234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547		7	0	-120	,	60	59	15				
234 9 0 -45 79,577 60 47 15 42,845 19,245 235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547		8	0		,					·		
235 10 0 -30 127,324 60 42 15 26,778 14,588 236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547					2							
236 11 0 30 159,155 60 39 15 21,422 13,985 237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547					2							
237 12 0 45 318,31 60 32 15 17,138 15,89 238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547	-				*					· ·		
238 13 0 60 397,887 60 30 15 10,711 11,901 239 14 0 120 636,62 60 27 15 8,569 11,547					*				•			
239 14 0 120 636,62 60 27 15 8,569 11,547	-				,				,			
240 15 0 150 /95.7/5 60 24 15 5.356 8.935	240	15	0	150	795,775	60	24	15	5,356	8,935		

Таблица 3 (продолжение 6)

Таблица 3 (продолжение 6)										
№	U, B		радус	<i>f</i> , Гц	R_1 , Om		R_k ,	L_k , м Γ н	<i>C</i> ,	
вар		Часть 1	Часть 2	<i>J</i> , 1 ±	Часть 1	Часть 2	Ом	2, mi	мкФ	
241	6	0	-150	318,31	65	45	5	69,283	32,979	
242	7	0	-120	397,887	65	39	5	34,641	22,398	
243	8	0	-60	636,62	65	34	5	21,651	17,935	
244	9	0	-45	795,775	65	31	5	17,321	17,765	
245	10	0	-30	63,662	65	28	5	10,825	13,466	
246	11	0	30	79,577	65	25	5	8,66	12,909	
247	12	0	45	127,324	65	21	5	6,928	14,668	
248	13	0	60	159,155	65	19	5	4,33	10,986	
249	14	0	120	318,31	65	18	5	3,464	10,659	
250	15	0	150	397,887	65	16	5	2,165	8,248	
251	6	0	-150	636,62	65	72	10	171,564	32,979	
252	7	0	-120	795,775	65	61	10	85,78	22,398	
253	8	0	-60	63,662	65	54	10	53,613	17,935	
254	9	0	-45	79,577	65	49	10	42,89	17,765	
255	10	0	-30	127,324	65	44	10	26,806	13,466	
256	11	0	30	159,155	65	40	10	21,445	12,909	
257	12	0	45	318,31	65	34	10	17,156	14,668	
258	13	0	60	397,887	65	31	10	10,723	10,986	
259	14	0	120	636,62	65	28	10	8,578	10,659	
260	15	0	150	795,775	65	25	10	5,361	8,248	
261	6	0	-150	63,662	65	99	15	329,703	32,979	
262	7	0	-120	79,577	65	85	15	164,848	22,398	
263	8	0	-60	127,324	65	75	15	103,03	17,935	
264	9	0	-45	159,155	65	68	15	82,425	17,765	
265	10	0	-30	318,31	65	61	15	51,515	13,466	
266	11	0	30	397,887	65	56	15	41,212	12,909	
267	12	0	45	636,62	65	47	15	32,97	14,668	
268	13	0	60	795,775	65	43	15	20,606	10,986	
269	14	0	120	63,662	65	39	15	16,485	10,659	
270	15	0	150	79,577	65	35	15	10,303	8,248	
271	6	0	-150	127,324	70	69	5	149,285	30,623	
272	7	0	-120	159,155	70	59	5	74,641	20,798	
273	8	0	-60	318,31	70	52	5	46,651	16,654	
274	9	0	-45	397,887	70	47	5	37,321	16,496	
275	10	0	-30	636,62	70	43	5	23,325	12,504	
276	11	0	30	795,775	70	39	5	18,66	11,987	
277	12	0	45	63,662	70	33	5	14,928	13,62	
278	13	0	60	79,577	70	30	5	9,33	10,201	
279	14	0	120	127,324	70	27	5	7,464	9,897	
280	15	0	150	159,155	70	24	5	4,665	7,659	

Таблица 3 (продолжение 7)

Таблица 3 (продолжение 7)											
№	U, B	ψ_u , Γ_1^{\dagger}	радус	<i>f</i> , Гц	R_1 ,	Ом	R_k ,	L_k , м Γ н	<i>C</i> ,		
вар	O, D	Часть 1	Часть 2	Ј, 1 Ц	Часть 1	Часть 2	Ом	L_k , MI H	мкФ		
241	6	0	-150	318,31	65	45	5	69,283	32,979		
242	7	0	-120	397,887	65	39	5	34,641	22,398		
243	8	0	-60	636,62	65	34	5	21,651	17,935		
244	9	0	-45	795,775	65	31	5	17,321	17,765		
245	10	0	-30	63,662	65	28	5	10,825	13,466		
246	11	0	30	79,577	65	25	5	8,66	12,909		
247	12	0	45	127,324	65	21	5	6,928	14,668		
248	13	0	60	159,155	65	19	5	4,33	10,986		
249	14	0	120	318,31	65	18	5	3,464	10,659		
250	15	0	150	397,887	65	16	5	2,165	8,248		
251	6	0	-150	636,62	65	72	10	171,564	32,979		
252	7	0	-120	795,775	65	61	10	85,78	22,398		
253	8	0	-60	63,662	65	54	10	53,613	17,935		
254	9	0	-45	79,577	65	49	10	42,89	17,765		
255	10	0	-30	127,324	65	44	10	26,806	13,466		
256	11	0	30	159,155	65	40	10	21,445	12,909		
257	12	0	45	318,31	65	34	10	17,156	14,668		
258	13	0	60	397,887	65	31	10	10,723	10,986		
259	14	0	120	636,62	65	28	10	8,578	10,659		
260	15	0	150	795,775	65	25	10	5,361	8,248		
261	6	0	-150	63,662	65	99	15	329,703	32,979		
262	7	0	-120	79,577	65	85	15	164,848	22,398		
263	8	0	-60	127,324	65	75	15	103,03	17,935		
264	9	0	-45	159,155	65	68	15	82,425	17,765		
265	10	0	-30	318,31	65	61	15	51,515	13,466		
266	11	0	30	397,887	65	56	15	41,212	12,909		
267	12	0	45	636,62	65	47	15	32,97	14,668		
268	13	0	60	795,775	65	43	15	20,606	10,986		
269	14	0	120	63,662	65	39	15	16,485	10,659		
270	15	0	150	79,577	65	35	15	10,303	8,248		
271	6	0	-150	127,324	70	69	5	149,285	30,623		
272	7	0	-120	159,155	70	59	5	74,641	20,798		
273	8	0	-60	318,31	70	52	5	46,651	16,654		
274	9	0	-45	397,887	70	47	5	37,321	16,496		
275	10	0	-30	636,62	70	43	5	23,325	12,504		
276	11	0	30	795,775	70	39	5	18,66	11,987		
277	12	0	45	63,662	70	33	5	14,928	13,62		
278	13	0	60	79,577	70	30	5	9,33	10,201		
279	14	0	120	127,324	70	27	5	7,464	9,897		
280	15	0	150	159,155	70	24	5	4,665	7,659		

Таблица 3 (продолжение 7)

№	U, B	ψ_u , Γ_1	радус	€ Γπ	R_1 ,	Ом	R_k ,	І. мГп	С,
вар	U, \mathbf{B}	Часть 1	Часть 2	<i>f</i> , Гц	Часть 1	Часть 2	Ом	L_k , м Γ н	мкФ
281	6	0	-150	318,31	70	121	10	453,711	30,623
282	7	0	-120	397,887	70	104	10	226,85	20,798
283	8	0	-60	636,62	70	92	10	141,782	16,654
284	9	0	-45	795,775	70	82	10	113,426	16,496
285	10	0	-30	63,662	70	75	10	70,891	12,504
286	11	0	30	79,577	70	68	10	56,713	11,987
287	12	0	45	127,324	70	57	10	45,37	13,62
288	13	0	60	159,155	70	52	10	28,356	10,201
289	14	0	120	318,31	70	47	10	22,685	9,897
290	15	0	150	397,887	70	43	10	14,178	7,659
291	6	0	-150	636,62	70	211	15	1371,63	30,623
292	7	0	-120	795,775	70	181	15	685,799	20,798
293	8	0	-60	63,662	70	160	15	428,627	16,654
294	9	0	-45	79,577	70	144	15	342,904	16,496
295	10	0	-30	127,324	70	130	15	214,313	12,504
296	11	0	30	159,155	70	119	15	171,451	11,987
297	12	0	45	318,31	70	100	15	137,16	13,62
298	13	0	60	397,887	70	91	15	85,725	10,201
299	14	0	120	636,62	70	83	15	68,58	9,897
300	15	0	150	795,775	70	74	15	42,863	7,659