I dont know yet

Faustmann Christian

Faculty of Physics
Technical University of Vienna

This thesis is submitted for the degree of *Bachelor of Science*

TU Vienna July 2017

Abstract

This is where you write your abstract...

Table of contents

Li	st of f	figures	vii
Li	st of t	ables	ix
1	The	ory	1
	1.1	Rubidium	2
	1.2	D2 line	3
	1.3	Two-level atom	4
	1.4	Laser absorbtion	5
	1.5	Doppler shifts	6
	1.6	Behavior of absorbtion coefficient	7
	1.7	Non-linear differential equation	8
2	Exp	eriment	9
	2.1	Setup & Tools	9
	2.2	Laser diameter measurement	9
	2.3	Power / intensity measurement	9
	2.4	Doppler-free measurement	9
3	Eval	luation	11
	3.1	Data processing	11
	3.2	Temperature & saturation intensity	11
	3.3	Comparison with theory	11
	3.4	Compare Doppler-free measurement with theoretical values	11
Re	eferen	ices	13
Δı	nend	lix A Theory	15

vi	Table of contents
Appendix B Experiment	17
Appendix C Evaluation	19

List of figures

1.1	Rubidium Atom	2
1.2	$5^2S_{1/2} \rightarrow 6^2P_{3/2}$ transition of ⁸⁵ Rb and ⁸⁷ Rb with corresponding hyperfine	
	structure	3
1.3	Doppler spectrum of D2 line	3
1.4	Relative energy gaps of the groundstates between both isotopes	4
1.5	Two-level atom model	4

List of tables

1.1 Properties of	f rubidium isotopes	2
-------------------	---------------------	---

Chapter 1

Theory

1.1 Rubidium

Fig. 1.1 Schematical representation of ⁸⁵Rb

Rubidium is a chemical element with symbol Rb and atomic number 37. It is a soft, silvery-white metallic element of the alkali metal group, with an atomic mass of 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other alkali metals.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. Because of the bright red lines in its emission spectrum, they chose a name derived from the Latin word rubidus, meaning "deep red". [1]

Although rubidium is monoisotopic, rubidium in the Earth's crust is composed of two isotopes: the stable ⁸⁵Rb and the radioactive ⁸⁷Rb. [2]

	Rubidium			
Isotope	85	87		
Atomic mass	84.911794	86.909187		
in 10^{-25} kg	1.40999	1.44316		
Abundance	72.17%	27.83%		
Spin I	5/2	3/2		

Table 1.1 Properties of rubidium isotopes

1.2 D2 line 3

1.2 **D2** line

Fig. 1.2 $5^2S_{1/2} \rightarrow 6^2P_{3/2}$ transition of ⁸⁵Rb and ⁸⁷Rb with corresponding hyperfine structure

As we can see both isotopes have the same transition energy, but due to the different spin I (see table: 1.1) we get different energy levels for the groundstate [3]. This is the reason why we wittness four doppler peaks in our spectrum.

Caution: Both figures below show the correct correlation between energy and isotopes. The explanation of this is that higher energy levels need lesser transition energy to reach the same excited state.

Fig. 1.3 Doppler spectrum of D2 line

Fig. 1.4 Relative energy gaps of the groundstates between both isotopes

1.3 Two-level atom

In the upcomming sections we will derive an expression for the absorbtion or to be precise the intensity of the laser beam, but first we have to discuss the model on which basis we will do this.

The simplest model is the two-level atom with a groundstate $|g\rangle$ and one excited state $|e\rangle$. There are three possible transitions:

- (1) absorbtion
- (2) stimulated emission
- (3) spontaneous emission

Fig. 1.5 Two-level atom model

In our case we will only consider the photon absorbtion.

1.4 Laser absorbtion 5

1.4 Laser absorbtion

1.5 Doppler shifts

1.6 Behavior of absorbtion coefficient

1.7 Non-linear differential equation

Chapter 2

Experiment

- 2.1 Setup & Tools
- 2.2 Laser diameter measurement
- 2.3 Power / intensity measurement
- 2.4 Doppler-free measurement

Chapter 3

Evaluation

- 3.1 Data processing
- 3.2 Temperature & saturation intensity
- 3.3 Comparison with theory
- 3.4 Compare Doppler-free measurement with theoretical values

References

- [1] G. Kirchhoff and R. Bunsen. Chemische Analyse durch Spectralbeobachtungen. *Annalen der Physik*, 189:337–381, 1861.
- [2] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra. The NUBASE evaluation of nuclear and decay properties. *Nuclear Physics A*, 729:3–128, December 2003.
- [3] J. Reader A. Kramida, Yu. Ralchenko and NIST ASD Team (2015). NIST atomic spectra database (ver. 5.3). *National Institute of Standards and Technology*, 2015.

Appendix A

Theory

Appendix B

Experiment

Appendix C

Evaluation