Machine Learning from Data

Lecture 9: Spring 2021

Today's Lecture

- Logistic Regression
- Gradient Descent

Previous Lecture

The linear signal:

$$s = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

Good Features are Important

Before looking at the data, we can reason that symmetry and intensity should be good features based on our knowledge of the problem.

Algorithms

Linear Classification.

Pocket algorithm can tolerate errors Simple and efficient

Linear Regression.

Single step learning:

$$\mathbf{w} = X^{\dagger} \mathbf{y} = (X^{T} X)^{-1} X^{T} \mathbf{y}$$

Very efficient $O(Nd^2)$ exact algorithm.

Predicting a Probability

Will someone have a heart attack over the next year?

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

Classification: Yes/No

Logistic Regression: Likelihood of heart attack

logistic regression $\equiv y \in [0, 1]$

Properties of the Sigmoid

How to get the Probability?

Target function

How to minimize E_{in} ?

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}_n})$$

Ball Phenomena

Ball on a complicated hilly terrain

— rolls down to a *local valley*

this is called a local minimum

Questions:

How to get to the bottom of the deepest valey?

How to do this when we don't have gravity?

In-sample Error, $E_{\rm in}$

Weights, \mathbf{w}

Step Size

$$\eta = 6$$
10 steps
 $N = 10$

$$\eta = 2$$
 30 steps

Thanks!