Recitation 10: Characteristic Functions and Weak Convergence

Lecturer: Chenlin Gu

Exercise 1. Prove that random variable X is symmetric (X and -X have the same law) if and only if its characteristic function φ_X takes real value.

Exercise 2. Calculate the characteristic function for the random variable X if

- 1. X follows Bernoulli distribution of parameter $p \in (0,1)$;
- 2. X follows Binominal distribution of parameter (n, p);
- 3. X follows Poisson distribution of parameter λ ;
- 4. X follows exponential distribution of parameter θ ;
- 5. X follows symmetric exponential distribution of density $f(y) = \frac{\lambda}{2} e^{-\lambda |y|}$;
- 6. X follows Cauchy distribution of density $f(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)}$.

Exercise 3. Let $X \sim \mathcal{N}(0, \sigma^2)$ and Φ its characteristic function.

- 1. Prove that $\Phi'(t) = -t\sigma^2\Phi(t)$;
- 2. Calculate $\Phi(t)$.

Exercise 4. Prove that the sum of independent Gaussian (Poisson, Cauchy) random variables are Gaussian (Poisson, Cauchy).

Exercise 5 (Total variation convergence). We define the total variation distance between two random discrete random variables X and Y that

$$d_{TV}(X,Y) = \sup_{A \in \mathbb{Z}} |\mathbb{P}[X \in A] - \mathbb{P}[Y \in A]|.$$

1. Prove an equivalent definition that

$$d_{TV}(X,Y) = \frac{1}{2} \sum_{z \in \mathbb{Z}} |\mathbb{P}[X=z] - \mathbb{P}[Y=z]|.$$

- 2. Prove that if $d_{TV}(X_n, X) \xrightarrow{n \to \infty} 0$, then $X_n \xrightarrow{d} X$.
- 3. Prove that for X_1, X_2 independent, Y_1, Y_2 independent, then

$$d_{TV}(X_1 + X_2, Y_1 + Y_2) \leq d_{TV}(X_1, Y_1) + d_{TV}(X_2, Y_2).$$

- 4. Use total variation distance to prove that, for independent Bernoulli random variables $X_{n,i}$ of parameter $p_{n,i}$, if
 - $\sum_{i} p_{n,i} \xrightarrow{n \to \infty} \lambda$;
 - $\max_i p_{n,i} \xrightarrow{n \to \infty} 0$;

then we have $\sum_{i} X_{n,i} \xrightarrow[n \to \infty]{d} Poisson(\lambda)$.