Ejemplos variables aleatorias discretas

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Ventas en Taquería Rodríguez

En la Taquería Rodríguez se calcula que la variable aleatoria X = número de tacos vegetarianos vendidos un día cualquiera entre la 3 y las 5 de la tarde sigue la siguiente distribución de probabilidad:

X	$P_X(x) = P(X = x)$
0	0.15
1	0.18
2	0.32
3	0.35

Cada taco tiene un precio de 3 euros.

Ventas en Taquería Rodríguez

- 1 Dibujar la función de probabilidad
- 2 Calcular y dibujar la función de distribución.
- 3 Calcular la probabilidad de vender al menos dos tacos vegetales.

Dibujar la función de probabilidad

Dibujar la función de probabilidad

Dibujar la función de probabilidad

Calcular y dibujar la función de distribución

X	$P_X(x) = P(X = x)$	$F_X(x) = P(X \le x)$
0	0.15	0.15
1	0.18	0.33
2	0.32	0.65
3	0.35	1.00

Calcular y dibujar la función de distribución

$$F_X(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < 0 \\ 0.15 & \text{si } 0 \le x < 1 \\ 0.33 & \text{si } 1 \le x < 2 \\ 0.65 & \text{si } 2 \le x < 3 \\ 1.00 & \text{si } x \ge 3 \end{cases}$$

Calcular y dibujar la función de distribución

Stock patinetes eléctricos.

- Ciclos Lucho es un comercio de venta de bicicletas que tiene un almacén y varias tiendas.
- Desde hace unos años también vende bicicletas y patinetes eléctricos.
- En particular en una de las tiendas el modelo de patinete eléctrico el P37 se está vendiendo muy bien.

Stock patinetes eléctricos.

Por los datos de los últimos meses se estima que la distribución del número de ventas diarias en esa tienda es:

X	$P_X(x) = P(X = x)$
0	0.09
1	0.09
2	0.23
3	0.14
4	0.14
5	0.11
6	0.15
7	0.05

Se pide

- Calcular la función de distribución
- En qué nos puede ayudar estos datos a la hora de pedir stock al almacén principal de Ciclos Lucho.

Stock patinetes eléctricos. Calcular la función de distribución

X	$P_X(x)$	$F_X(x)$
0	0.09	0.09
1	0.09	0.18
2	0.23	0.41
3	0.14	0.55
4	0.14	0.69
5	0.11	0.80
6	0.15	0.95
7	0.05	1.00

Stock patinetes eléctricos. Petición de stocks

X	$P_{x}(x)$	$F_X(x)$	P(X > x)	$F_X(x)$ %	P(X > x) %
0	0.09	0.09	0.91	9.00	91.00
1	0.09	0.18	0.82	18.00	82.00
2	0.23	0.41	0.59	41.00	59.00
3	0.14	0.55	0.45	55.00	45.00
4	0.14	0.69	0.31	69.00	31.00
5	0.11	0.80	0.20	80.00	20.00
6	0.15	0.95	0.05	95.00	5.00
7	0.05	1.00	0.00	100.00	0.00

En la Taquería Rodríguez se calcula que la variable aleatoria X = número de tacos vegetarianos vendidos un día cualquiera entre la 3 y las 5 de la tarde sigue la siguiente distribución de probabilidad:

X	$P_X(x) = P(X = x)$
0	0.15
1	0.18
2	0.32
3	0.35

Cada taco tiene un precio de 3 euros.

- Calcular la esperanza del número de tacos vendidos
- ② Calcular la varianza y la desviación típica del número de tacos vendidos.
- Calcular la esperanza y la varianza del los ingresos en euros por las ventas.

X	$P_X(x)$	$x \cdot P_X(x)$	$(x-\mu)^2$	$(x-\mu)^2 \cdot P_X(x)$
0	0.15	0.00	3.4969	0.524535
1	0.18	0.18	0.7569	0.136242
2	0.32	0.64	0.0169	0.005408
3	0.35	1.05	1.2769	0.446915
Suma	1	$\mu = 1.87$		$\sigma^2 = 1.1131$

$$\mu = E(X) = \sum_{x=0}^{3} x \cdot P_X(x) = 0 \cdot 0.15 + 1 \cdot 0.18 + 2 \cdot 0.32 + 3 \cdot 0.35$$
$$= 0.18 + 0.64 + 1.05 = 1.87.$$

$$\sigma^{2} = Var(X) = \sum_{x=0}^{3} (x - \mu)^{2} \cdot P_{X}(x)$$

$$= (0 - 1.87)^{2} \cdot 0.15 + (1 - 1.87)^{2} \cdot 0.18 + (2 - 1.87)^{2} \cdot 0.32$$

$$+ (3 - 1.87)^{2} \cdot 0.35$$

$$= 3.4969 \cdot 0.15 + 0.7569 \cdot 0.18 + 0.0169 \cdot 0.32 + 1.2769 \cdot 0.35$$

$$= 0.524535 + 0.136242 + 0.005408 + 0.446915 = 1.1131.$$

Ventas en Taquería Rodríguez. Esperanza y varianza de los ingresos

La variable ingreso es $I = 3 \cdot X$ por lo tanto

$$\mu_I = E(I) = E(3 \cdot X) = 3 \cdot E(X) = 3 \cdot 1.87 = 5.61$$
 euros .

$$\sigma_I^2 = Var(I) = Var(3 \cdot X) = 3^2 \cdot Var(X) = 9 \cdot 1.1131 = 10.0179.$$

$$\sigma_I = +\sqrt{\sigma_I^2} = +\sqrt{9 \cdot 1.1131} = 3.1651066.$$

- Ciclos Lucho es un comercio de venta de bicicletas que tiene un almacén y varias tiendas.
- Desde hace unos años también vende bicicletas y patinetes eléctricos.
- En particular una de las tiendas el modelo de patinete eléctrico el P37 se está vendiendo muy bien.
- Denotemos por X= Número de patinentes P37 vendidos en un día.

Por los datos de los últimos meses se estima que la distribución del número de ventas diarias en esa tienda es:

X	$P_X(x) = P(X = x)$
0	0.09
1	0.09
2	0.23
3	0.14
4	0.14
5	0.11
6	0.15
7	0.05

Se pide

- Calcular el número esperado de patinetes vendidos por día.
- O Calcular la varianza del número de patinetes vendidos por día

X	$P_X(x)$	$x \cdot P_X(x)$	$(x - \mu)^2$	$(x-\mu)^2 \cdot P_X(x)$	x^2	$x^2 \cdot P_X(x)$
0	0.09	0.00	11.0889	0.998001	0	0.00
1	0.09	0.09	5.4289	0.488601	1	0.09
2	0.23	0.46	1.7689	0.406847	4	0.92
3	0.14	0.42	0.1089	0.015246	9	1.26
4	0.14	0.56	0.4489	0.062846	16	2.24
5	0.11	0.55	2.7889	0.306779	25	2.75
6	0.15	0.90	7.1289	1.069335	36	5.40
7	0.05	0.35	13.4689	0.673445	49	2.45
Suma	1	$\mu = 3.3300$		$\sigma^2 = 4.0211$		$E(X^2) = 15.1100$

$$\sigma_X^2 = Var(X) = E((X - \mu)^2) = 4.0211.$$
 $\sigma_X^2 = Var(X) = E(X^2) - \mu^2 = 15.1100 - 3.3300^2$
 $= 15.1100 - 11.0889 = 4.0211.$
 $\sigma_X = +\sqrt{\sigma_X^2} = +\sqrt{4.0211} = 2.0052681.$