

Math Methods for Political Science

Lecture 13: Midterm recap & Integral Calculus II

Outline

1 About the midterm

2 Integral calculus II

Reminder

How to succeed:

- Attend lectures AND exercise sessions.
- Work on your own and only seek help when stuck.
- Stay on top of things.
- Practice.

Solutions set and cardinality

Definition 1 (Solutions to system of linear equations)

 (s_1, \dots, s_n) is a **solution** of a linear system in $n \in \mathbb{N}_+$ variables if it makes every equation in the system true when s_1, \dots, s_n are substituted for x_1, \dots, x_n respectively.

Lemma 1 (Cardinality of the solution set)

Let S be the solution set of a linear system, then $|S| \in \{0,1,\infty\}$.

Example 1 (Solutions set and cardinality)

$$x_1$$
 $-2x_2 = -1$ \Longrightarrow $(s_1, s_2) = (3, 2)$ is the unique solution.
 $-x_1$ $+3x_2 = 3$ \Longrightarrow the cardinality of the solution set is 1.

Null space and column space

Let A be a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Definition 2 (Null space and column space)

- The **null space** is Nul $A = \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}\}.$
- The **column space** is Col A = $\{\mathbf{b} \in \mathbb{R}^m \mid \exists \mathbf{x} \in \mathbb{R}^n \text{ with } A\mathbf{x} = \mathbf{b}\} = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}.$

Nul A:

- \blacksquare a subspace of \mathbb{R}^n ,
- implicitly characterized by $A\mathbf{x} = \mathbf{0}$ & needs the RREF of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to find its vectors,
- $\mathbf{v} \in \mathsf{Nul}\,A \iff A\mathbf{v} = \mathbf{0}.$
- lacksquare easy to know if $oldsymbol{v} \in \mathbb{R}^n$ is in it by computing $A\mathbf{v}$,
- Nul $A = \{0\} \iff 0$ is the unique solution of $A\mathbf{x} = \mathbf{0}$.

Col A:

- \blacksquare a subspace of \mathbb{R}^m ,
- explicitly defined by Span $\{a_1, \dots, a_n\}$ & does not need intermediate steps,
- $\mathbf{v} \in \mathsf{Col}\,A \Leftrightarrow \exists \mathbf{x} \;\mathsf{s.t.}\; A\mathbf{x} = \mathbf{v},$
- to know if $\mathbf{v} \in \mathbb{R}^m$ is in it. needs the RREF of $\begin{bmatrix} A & \mathbf{v} \end{bmatrix}$,
- \blacksquare Col $A = \mathbb{R}^m \iff A\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$.

Necessary and sufficient conditions

Definition 3 (Necessary and sufficient conditions)

- **•** x is **necessary** for y if $y \Rightarrow x$.
- **•** x is **sufficient** for y if $x \Rightarrow y$.
- x is necessary and sufficient for y if $x \Leftrightarrow y$ (i.e., x and y are logically equivalent).

Example 2 (Necessary and sufficient conditions)

"An $n \times n$ matrix **needs** to have n distinct eigenvalues to be diagonalizable."

- Lecture 5, Thm 7-8-9
- Is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ diagonalizable?

Local extrema

- 1. $\forall x \in \partial D_f$, check whether f decreases/increases if you move slightly to the interior to determine whether it is a local maximum/minimum.
- 2. Let $S_f = \{x \mid x \in D_f \text{ and } f'(x) = 0\}$, and compute $f''(x) \forall x \in S_f$.
 - 2.1 If f''(x) > 0, then x is a local minimum.
 - 2.2 If f''(x) < 0, then x is a local maximum.
 - 2.3 If f''(x) = 0, then x is a stationary point.

How about $f(x) = 2x^3 + 3x^2 - 12x + 4$ and $D_f = [-3, 2]$?

Be creative!

Prove that $\cos x = x$ has at least one solution.

 \implies The two curves intersect, so $\cos x = x$ must have a solution.

Outline

1 About the midterm

2 Integral calculus II

Even and odd functions

Definition 4 (Even and odd functions)

■ An **odd function** o(x) satisfies

$$o(x) = -o(-x) \implies \int_{-t}^{t} o(x) dx = 0.$$

An even function e(x) satisfies $e(x) = e(-x) \implies \int_{-t}^{t} e(x) dx = 2 \int_{0}^{t} e(x) dx$.

Example 3 (Even and odd functions)

Change of variables

Theorem 1 (Change of variables)

Let g be a differentiable function and f be continuous, then

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy.$$

The idea: let y = g(x), then dy/dx = g'(x) and dy = g'(x)dx.

Example 4 (Change of variables)

- $\int_0^2 x \cos(x^2 + 1) dx$
- $\int_2^3 \sqrt{7x+9} dx$

Note: this works for antiderivatives too!

Multiple integral

Let $f : \mathbb{R}^2 \to \mathbb{R}$, $a_1 < b_1$, $a_2 < b_2$ and $T = [a_1, b_1) \times [a_2, b_2)$.

Definition 5 (Multiple integral)

The **multiple integral** over *S* is written $\int \int_{\mathcal{T}} f(x,y) dx dy$.

Multiple integral cont'd

Let $f : \mathbb{R}^2 \to \mathbb{R}$, $a_1 < b_1$, $a_2 < b_2$ and $S = [a_1, b_1) \times [a_2, b_2)$.

Theorem 2 (Fubini's theorem)

$$\int \int_{T} f(x,y) dx dy = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x,y) dx \right) dy = \int_{a_{2}}^{b_{2}} \left(\int_{a_{1}}^{b_{1}} f(x,y) dy \right) dx$$

Example 5 (Multiple integral and Fubini's theorem)

Let $a_1 = a_2 = 0$ and $b_1 = b_2 = 1$.

- f(x, y) = x + y
- $f(x,y) = xy^2$