Statistical Machine Learning

3주차

담당:11기 명재성

Regression

$$Y_i \stackrel{ind}{\sim} N(\mu_i(\mathbf{X}_i), \sigma)$$
 where $E[Y_i] = \mu_i(\mathbf{X}_i)$

$$\mu_i(\mathbf{X}_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi}$$
$$= \mathbf{\beta}^T \mathbf{X}_i$$

Logistic Regression

$$Y_i \stackrel{ind}{\sim} \text{Bernoulli}(\pi_i(\mathbf{X}_i)) \text{ where } E[Y_i] = \pi_i(\mathbf{X}_i)$$

$$logit(\pi_i(\mathbf{X}_i)) = \log\left(\frac{\pi_i(\mathbf{X}_i)}{1 - \pi_i(\mathbf{X}_i)}\right) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi}$$
$$= \mathbf{\beta}^T \mathbf{X}_i$$

Estimation

$$\underset{\beta}{argmin} L[\tau(\theta), T(X)] \Leftrightarrow \underset{\beta}{argmax} L(\beta, \sigma)$$

- Regression → SSE
- Logistic Regression → Cross Entropy

Cross Entropy

$$CE_i = -\sum_{k=1}^C y_{ik} \log \pi_i(k)$$

 y_{ik} : the k^{th} value in y_i

 $\pi_i(k)$: the probability for the i^{th} observation to belonging to Class k

For C = 3 (number of Class)

Class 1: $y_i = (1,0,0)$ Class 2: $y_i = (0,1,0)$

Class 3: $y_i = (0,0,1)$

⇒ One-Hot encoding

$$\sum_{i=1}^{n} CE_i = -\sum_{k=1}^{C} \left[y_{i1} \log \pi_i(1) + y_{i2} \log \pi_i(2) + y_{i3} \log \pi_i(3) \right]$$

• IF Class 2,

Class 1:
$$y_i = (1,0,0)$$
 Class 2: $y_i = (0,1,0)$ Class 3: $y_i = (0,0,1)$

$$CE_i = -[\mathbf{0} * \log \pi_i(1) + \mathbf{1} * \log \pi_i(2) + \mathbf{0} * \log \pi_i(3)]$$

$$= -\log \pi_i(2)$$

$$\Rightarrow \text{IF } \pi_i(2) = 1, \text{ then } CE_i = -\log 1 = 0 \text{ (minimum Loss)}$$

Categorical Cross Entropy

$$CE_i = -\sum_{k=1}^C y_{ik} \log \pi_i(k)$$

Likelihood of ?

$$Y_i \stackrel{ind}{\sim} Multi(\pi_1, \cdots, \pi_C)$$

For C = 2 (number of Class)

$$P(Y_i = 1 | \mathbf{X}_i) = \pi_i(\mathbf{X}_i) = \frac{e^{\boldsymbol{\beta}^T \mathbf{X}_i}}{1 + e^{\boldsymbol{\beta}^T \mathbf{X}_i}} = \frac{1}{1 + e^{-\boldsymbol{\beta}^T \mathbf{X}_i}}$$
 (sigmoid function)

For C = 2 (number of Class)

$$P(Y_i = 1 | \mathbf{X}_i) = \pi(\mathbf{X}_i) = \frac{e^{\beta^T \mathbf{X}_i}}{1 + e^{\beta^T \mathbf{X}_i}} = \frac{1}{1 + e^{-\beta^T \mathbf{X}_i}}$$
 (sigmoid function)

For C = K > 2 (number of Class)

$$P(Y_i = l | \mathbf{X}_i) = \pi_l(\mathbf{X}_i) = \frac{e^{\mathbf{\beta}_l^T \mathbf{X}_i}}{\sum_{c=1}^K e^{\mathbf{\beta}_c^T \mathbf{X}_i}}$$
 (softmax function)

One-Vs-Rest

One-Vs-Rest

```
LogisticRegression(solver='sag', multi_class='multinomial')
'ovr'
```


Naïve Bayes Classifier

$$P(Y_i = k | \mathbf{X}_i) = \frac{P(\mathbf{X}_i | k) P(k)}{\sum_k P(\mathbf{X}_i | k) P(k)}$$
 Bayes' Theorem

where
$$P(\mathbf{X}_i|k) = \prod_{j=1}^{p} P(X_{ij}|k)$$

LDA

$$P(Y_i = k | \mathbf{X}_i) = \frac{P(\mathbf{X}_i | k) P(k)}{\sum_k P(\mathbf{X}_i | k) P(k)}$$

Bayes' Theorem

where
$$P(\mathbf{X}_i|k) \sim N_p(\mathbf{\mu}_k, \Sigma)$$

QDA

$$P(Y_i = k | \mathbf{X}_i) = \frac{P(\mathbf{X}_i | k) P(k)}{\sum_k P(\mathbf{X}_i | k) P(k)}$$
 Bayes' Theorem

where
$$P(\mathbf{X}_i|k) \sim N_p(\mathbf{\mu}_k, \Sigma_k)$$

0-1 Loss

$$L[\tau(\theta), T(X)] = \sum I(Y_i \neq \hat{Y}_i)$$

• The Bayes decision rule for minimizing the loss $(P(Y_i \neq \hat{Y}_i))$ is

$$\underset{k}{argmax} \ P(Y = k | \mathbf{X})$$

Loss function

$$L[\tau(\theta), T(X)] = L[Y, \hat{Y}]$$

Regression
$$\Rightarrow$$
 $L[Y, \hat{Y}] = \sum_{i}^{n} (Y_i - \hat{Y}_i)^2$

$$Regression \Rightarrow L[Y, \hat{Y}] = \sum_{i}^{n} (Y_{i} - \hat{Y}_{i})^{2}$$

$$Classification \Rightarrow L[Y, \hat{Y}] = -\sum_{i}^{n} \sum_{k}^{C} Y_{i} \log \hat{\pi}_{i}(k)$$

Machine "Learning"

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \ L[Y, \ \widehat{Y}] = \widehat{\boldsymbol{\theta}}$$

 \Rightarrow Optimization

Logistic Regression

$$L[Y, \hat{Y}] = -\sum_{i=1}^{n} [y_i \log \pi_i + (1 - y_i) \log (1 - \pi_i)]$$
$$= -\sum_{i=1}^{n} [y_i (\boldsymbol{\beta}^T \mathbf{X}_i) - \log (1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

Logistic Regression

$$L[Y, \hat{Y}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} L[Y, \ \widehat{Y}]$$

⇒ Can you solve it?

- Optimization often can be rewritten as solving equations.
 - ex) Normal equation
- Some problems do not have an explicit solution and a numerical approach should be exploited.

Linear approximation (1st order Taylor Expansion)

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) = 0$$

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$\Rightarrow \theta^{(t+1)} = \theta^{(t)} - \frac{f(\theta^{(t)})}{f'(\theta^{(t)})}$$

- 1. Initialize $\theta^{(0)} = \theta_0$ which can be arbitrary on the domain of the function
- 2. Update for $t = 0, 1, 2, 3, \dots$

$$\theta^{(t+1)} = \theta^{(t)} - \frac{f(\theta^{(t)})}{f'(\theta^{(t)})}$$

until

$$|\theta^{(t+1)} - \theta^{(t)}| < \epsilon$$

for small $\epsilon > 0$

Quadratic approximation (2nd order Taylor Expansion)

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

$$\frac{\partial}{\partial x}f(x) \approx f'(x_0) + f''(x_0)(x - x_0) = 0$$

$$x = x_0 - \frac{f'(x_0)}{f''(x_0)} \quad \Rightarrow \quad \theta^{(t+1)} = \theta^{(t)} - \frac{f'(\theta^{(t)})}{f''(\theta^{(t)})}$$

Quadratic approximation (2nd order Taylor Expansion)

$$L(\mathbf{\theta}) \approx L(\mathbf{\theta}_0) + L'(\mathbf{\theta}_0)^T (\mathbf{\theta} - \mathbf{\theta}_0) + \frac{1}{2} (\mathbf{\theta} - \mathbf{\theta}_0)^T L''(\mathbf{\theta}_0) (\mathbf{\theta} - \mathbf{\theta}_0)$$

Quadratic approximation (2nd order Taylor Expansion)

$$L(\mathbf{\theta}) \approx L(\mathbf{\theta}_0) + \nabla L(\mathbf{\theta}_0)^T (\mathbf{\theta} - \mathbf{\theta}_0) + \frac{1}{2} (\mathbf{\theta} - \mathbf{\theta}_0)^T \mathbf{H}(\mathbf{\theta}_0) (\mathbf{\theta} - \mathbf{\theta}_0)$$
where
$$\nabla L(\mathbf{\theta}_0) = \frac{\partial}{\partial \mathbf{\theta}} L(\mathbf{\theta}) \bigg|_{\mathbf{\theta} = \mathbf{\theta}_0}$$

$$\mathbf{H}(\mathbf{\theta}_0) = \frac{\partial^2}{\partial \mathbf{\theta} \partial \mathbf{\theta}^T} L(\mathbf{\theta}) \bigg|_{\mathbf{\theta} = \mathbf{\theta}_0}$$

Updating equation is

$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \nabla L(\mathbf{\theta}^{(t)})$$
$$= \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \frac{\partial}{\partial \mathbf{\theta}^{(t)}} L(\mathbf{\theta}^{(t)})$$

cf.
$$\theta^{(t+1)} = \theta^{(t)} - \frac{f'(\theta^{(t)})}{f''(\theta^{(t)})}$$

$$Loss[\boldsymbol{\beta}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

$$\nabla L(\boldsymbol{\beta}^{(t)}) = \frac{\partial}{\partial \boldsymbol{\beta}^{(t)}} L(\boldsymbol{\beta}^{(t)}) = -\sum_{i=1}^{n} \left[y_i \mathbf{X}_i - \frac{\exp(\boldsymbol{\beta}^{(t)}^T \mathbf{X}_i)}{1 + \exp(\boldsymbol{\beta}^{(t)}^T \mathbf{X}_i)} \mathbf{X}_i \right]$$

$$\mathbf{H}(\boldsymbol{\beta}^{(t)}) = \frac{\partial^2}{\partial \boldsymbol{\beta}^{(t)} \partial \boldsymbol{\beta}^{(t)^T}} L(\boldsymbol{\beta}^{(t)}) = \sum_{i=1}^n \left[\left(\frac{\exp(\boldsymbol{\beta}^{(t)^T} \mathbf{X}_i)}{1 + \exp(\boldsymbol{\beta}^{(t)^T} \mathbf{X}_i)} \right) \left(\frac{1}{1 + \exp(\boldsymbol{\beta}^{(t)^T} \mathbf{X}_i)} \right) \mathbf{X}_i \mathbf{X}_i^T \right]$$

$$Loss[\boldsymbol{\beta}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

Update

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} - \mathbf{H}^{-1} (\boldsymbol{\beta}^{(t)}) \nabla L(\boldsymbol{\beta}^{(t)})$$

until

$$||\mathbf{\beta}^{(t+1)} - \mathbf{\beta}^{(t)}|| < \epsilon$$
 for small $\epsilon > 0$

					Solvers
Penalties	'liblinear'	'lbfgs'	'newton-cg'	'sag'	'saga'
Multinomial + L2 penalty	no	yes	yes	yes	yes
OVR + L2 penalty	yes	yes	yes	yes	yes
Multinomial + L1 penalty	no	no	no	no	yes
OVR + L1 penalty	yes	no	no	no	yes
Behaviors					
Penalize the intercept (bad)	yes	no	no	no	no
Faster for large datasets	no	no	no	yes	yes
Robust to unscaled datasets	yes	yes	yes	no	no

 Newton-Raphson is expensive to compute due to the computation of the inverse of Hessian.

$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \nabla L(\mathbf{\theta}^{(t)})$$

$$\Rightarrow \quad \mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \eta^{(t)} \ \nabla L(\mathbf{\theta}^{(t)})$$

$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \eta^{(t)} \nabla L(\mathbf{\theta}^{(t)})$$

or
$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \eta \nabla L(\mathbf{\theta}^{(t)})$$

```
t0, t1 = 5, 50 # learning schedule hyperparameters

def learning_schedule(t):
    return t0 / (t + t1)
```

```
eta = learning_schedule(epoch * m + i)
theta = theta - eta * gradients
```


Batch Gradient Descent

Regression → SSE

$$\nabla L(\mathbf{\beta}) = \frac{\partial}{\partial \mathbf{\beta}} L(\mathbf{\beta}) = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{\beta})$$

Logistic Regression → Cross Entropy

$$\nabla L(\mathbf{\beta}) = \frac{\partial}{\partial \mathbf{\beta}} L(\mathbf{\beta}) = -\sum_{i=1}^{n} \left[y_i \mathbf{X}_i - \frac{\exp(\mathbf{\beta}^T \mathbf{X}_i)}{1 + \exp(\mathbf{\beta}^T \mathbf{X}_i)} \mathbf{X}_i \right]$$

Steepest Descent

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta \; \frac{\partial}{\partial \boldsymbol{\theta}^{(t)}} L(\boldsymbol{\theta}^{(t)}) \quad \Leftrightarrow \quad (\boldsymbol{\theta}^{(t+1)} - \boldsymbol{\theta}^{(t)}) \propto - \frac{\partial L(\boldsymbol{\theta}^{(t)})}{\partial \boldsymbol{\theta}^{(t)}}$$

$$\frac{L(\boldsymbol{\theta}^{(t+1)})}{\partial \eta} = \left[\frac{\partial L(\boldsymbol{\theta}^{(t+1)})}{\partial \boldsymbol{\theta}^{(t+1)}}\right]^T \frac{\partial \boldsymbol{\theta}^{(t+1)}}{\partial \eta} = -\left[\frac{\partial L(\boldsymbol{\theta}^{(t+1)})}{\partial \boldsymbol{\theta}^{(t+1)}}\right]^T \frac{\partial L(\boldsymbol{\theta}^{(t)})}{\partial \boldsymbol{\theta}^{(t)}} \stackrel{\text{set}}{=} 0$$

 \Rightarrow $\theta^{(t+2)}$ and $\theta^{(t+1)}$ are orthogonal

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic (Randomness) → Shuffle the data

Stochastic Gradient Descent

Mini-Batch Gradient Descent

• k batches have p data \rightarrow n = k x p

Mini-Batch Gradient Descent

■ What about $\eta^{(t)}$? \rightarrow in Deep Learning

reference

자료

19-2 STAT424 통계적 머신러닝 - 박유성 교수님

교재

파이썬을 이용한 통계적 머신러닝 (2020) - 박유성

ISLR (2013) - G. James, D. Witten, T. Hastie, R. Tibshirani

The elements of Statistical Learning (2001) - J. Friedman, T. Hastie, R. Tibshirani

Hands on Machine Learning (2017) - Aurelien Geron

