Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture # 13

Continuous RVs - Part III

Figure: The Normal Distribution and Friends.

$http://ditraglia.com/Econ103 Public/Rtutorials/friends_of_normal.html \\$

Source Code on my Github Page

Functions of Independent RVs are Independent

If X and Y are independent random variables and g and h are functions, then the random variables g(X) and h(Y) are also independent.

Figure: PDF for χ^2 -Distribution

χ^2 Random Variable

Let $X_1, \ldots, X_{\nu} \sim \mathsf{iid} \ \mathcal{N}(0,1)$. Then,

$$\left(X_1^2+\ldots+X_{\nu}^2\right)\sim\chi^2(\nu)$$

where the parameter ν is the degrees of freedom

$$\mathsf{Support} = (0, \infty)$$

χ^2 PDFs

Figure: PDF for Student-t Distribution

Student-t Random Variable

Let $X \sim N(0,1)$ independent of $Y \sim \chi^2(\nu)$. Then,

$$\frac{X}{\sqrt{Y/
u}} \sim t(
u)$$

where the parameter ν is the degrees of freedom.

- Support = $(-\infty, \infty)$
- ▶ As $\nu \to \infty$, $t \to \mathsf{Standard}$ Normal.
- Symmetric around zero, but mean and variance may not exist!
- ▶ Degrees of freedom ν control "thickness of tails"

Student-t PDFs

F Random Variable

Suppose $X \sim \chi^2(\nu)$ independent of $Y \sim \chi^2(\omega)$. Then,

$$\frac{X/\nu}{Y/\omega} \sim F(\nu,\omega)$$

where ν is the numerator degrees of freedom and ω is the denominator degrees of freedom.

$$\mathsf{Support} = (0, \infty)$$

F PDFs

R Commands – CDFs and Quantile Functions

$$F(x) = P(X \le x)$$
 is the CDF, $Q(p) = F^{-1}(p)$ the Quantile Function

	<i>F</i> (<i>x</i>)	Q(p)
$N(\mu, \sigma^2)$	$pnorm(x, mean = \mu, sd = \sigma)$	qnorm(p, mean = μ , sd = σ)
$\chi^2(\nu)$	pchisq(x, df = ν)	qchisq(p, df = ν)
t(u)	$pt(x, df = \nu)$	$qt(p, df = \nu)$
${\sf F}(u,\omega)$	$pf(x, df1 = \nu, df2 = \omega)$	qf(p, df1 = ν , df2 = ω)

Mnemonic: "p" is for Probability, "q" is for Quantile.

R Commands - PDFs and Random Draws

	f(x)	Make n iid Random Draws
	$dnorm(x, mean = \mu, sd = \sigma)$	$rnorm(n, mean = \mu, sd = \sigma)$
$\chi^2(\nu)$	$dchisq(x, df = \nu)$	$rchisq(n, df = \nu)$
	$dt(x, df = \nu)$	$rt(n, df = \nu)$
${\sf F}(u,\omega)$	$df(x, df1 = \nu, df2 = \omega)$	rf(n, df1 = ν , df2 = ω)

Mnemonic: "d" is for Density, "r" is for Random.

Example: $X_1, X_2, X_3 \sim \text{iid } N(0, 1)$

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

$$Y_1 \sim \chi^2(2) \text{ and } X_3^2 \sim \chi^2(1)$$

Hence $Y_2=$ ratio of two indep. χ^2 RVs, each divided by its degrees of freedom $\Rightarrow Y_2 \sim F(2,1)$

What is the distribution of $Z = X_3/\sqrt{Y_1/2}$?

Ratio of standard normal and square root of independent χ^2 RV divided by its degrees of freedom \Rightarrow Z \sim t(2)

Suppose $X_1, X_2, \sim \text{iid } N(\mu, \sigma^2)$

Let
$$Y = (X_1 - \mu)^2 + (X_2 - \mu)^2$$
. What is the distribution of Y/σ^2 ?

- (a) F(2,1)
- (b) $\chi^2(2)$
- (c) t(2)
- (d) $N(\mu, \sigma)$
- (e) None of the above

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of
$$Y_1$$
? $qchisq(0.5, df = 2) \approx 1.4$ What is $P(Y_2 \le 5)$? $pf(5, df1 = 2, df2 = 1) \approx 0.7$ What value of c gives $P(-c \le Z \le c) = 0.5$? Use Symmetry (like normal) $c = qt(0.75, df = 2) \approx 0.8$ or equivalently $-c = qt(0.25, df = 2) \approx -0.8$