Introduction to Data Science 2

Overview

- Classification
 - k-Nearest Neighbour classifier
 - Decision boundaries
- Decision Trees
- Trump versus Clinton

Classification

- Things are represented by feature vectors (points)
- Each thing (point) has a class label, which we represent by colours
- Examples of classification tasks:
 - Stock Market features —> BUY/SELL?
 - BLOGpost features —> MALE/FEMALE?
 - Fruit features —> ORANGE/APPLE/KIWI?
 - Image features —> INDOOR/OUTDOOR?

Strongly idealised! We almost never see such clear separation in real datasets.

Scatterplots (WEKA Visualise - Titanic.arff)

Please note that we can have two types of scatterplots:

- feature against feature (e.g., age against fare)
- feature against label (e.g., survived against fare)

2 classes (blue and red) defined by 2 features

What are the class labels assigned to the grey instances?

Decision Boundaries

- Classifiers are trained on the dataset (labelled data points) and automatically "draw" a decision boundary between the two classes
- The decision boundary can be a straight line ("stiff") or a wiggly line ("flexible")
- The decision boundary is considered to be a model of the separation between the two classes
- The model is induced from the data

Decision Boundaries: linear decision boundary

Decision Boundaries: nonlinear decision boundary

PLEASE NOTE!

Classification versus Regression (related to 2 types of scatterplots)

 In classification, the model induced from the data defines a decision boundary that separates the data described by 2 features into 2 classes (e.g., cats versus dogs) or more.

In regression, the model induced from the data **fits** the data to describe the relation between 2 feature or between W feature (e.g., furriness) and the label (e.g., cuteness)

fits the data

k-Nearest Neigbour classifier

IBk ("lazy learner")

Two Classes (blue & red)

What are the class labels of the white dots?

Nearest-neighbour classifier

 Given a set of labeled instances (training set), new instances (test set) are classified according to their nearest labeled neighbour

Nearest Neighbour ("estimates")

Evaluating 1-NN performance

or actually: evaluating classifier performance

Two evaluation measures

Accuracy: (number of 1's)/10 x 100%=60%

	ab	
Confusion I	au	$II \subset$

	estimate = Red	estimate = Blue
actual = Red	3	2
actual = Blue	2	3

Decision Boundary in 1-NN classifier

k-NN

• In the *k*-NN classifier, the parameter *k* represents the number of labeled neighbours considered

k = 3: test examples are assigned the labelsof the (majority of the) 3 nearest neighbours

k = N: test examples are assigned the labelsof the (majority of the) N nearest neighbours

For even N in case of an equal number of nearest neighboring labels of two classes: flip a coin

Toy dataset: spirals

Decreasing number of neighbours

Decision Tree

Classification Problem (blue or green?)

- Train instances
 - blue and green
- Test instance
 - gray
- Classifier induced from the data defines decision boundaries

Decision Trees

Decision Trees take one feature at a time and test a binary condition
For instance: is the feature larger than 0.5?
If the answer is YES, grow a node to the left
If the answer is NOW grow a node to the right

This results in the following decision Boundary

Decision Tree grows with each level of questions

- Each node (box) of the decision tree tests a condition on a feature
- The order of features is important
- It is like playing "20 questions"
 - "Guess the person": it is better to start with the question "Is he male?", rather than with "Is it Chris?"
 - The reason is that the answer to the first question maximises the information ("entropy") gained from the answer.*
- In decision trees the order of features to be tested is determined by means of information theory (ID3 algorithm)

Decision Tree

test instance

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Each test (box) adds a decision boundary

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Adding another decision boundary

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Complexity of the induced model

- The complexity of the model induced by a decision tree is determined by the depth of the tree
- Increasing the depth of the tree increases the number of decision boundaries
- All decision boundaries are perpendicular to the feature axes, because at each node a decision is made about a single feature

Summary

We have introduced two classifiers

- nearest neighbour classifier
- decision tree classifier

We know what decision boundaries are

We know how they relate to the complexity of induced models in the classifiers

We have introduced two evaluation measures

Required Reading

WEKA book:

Chapter 2

Section 3.5 Instance-based representation

50 years of Data Science

David Donoho

Sept. 18, 2015 Version 1.00

A "data science = statistics" overview

