## The McGraw-Hill Companies

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

# Lec.03 System Engineering

Jackeycheung@HKMU

#### **Key Takeaway Points**

- System engineering is a multidisciplinary approach to systems development.
- System engineering defines the system requirements and constraints, allocates the requirements to the hardware, software, and human subsystems, and integrates these subsystems to form the system.
- Software engineering is a part of system engineering.

#### What Is a System?

- A system is a set of interrelated components.
- A system can be big or small, complex or simple, natural or man-made, and exist physically or only conceptually.
- Examples:
  - the universe
  - an ant
  - mathematical logic, measurement systems
  - a sprinkler system, a telephone system

#### Main Characteristics of a System



A system consists of interacting components.



Each system exists in an environment and interacts with the environment.



A system exists in a hierarchy of systems – a system may be a subsystem of another system.



Systems are ever evolving.

#### What Is System Engineering?

System engineering is characterized by:

- A system engineering process that covers the entire system life cycle.
- A top-down divide-and-conquer approach.
- An interdisciplinary approach to system development.

### Characteristics of System Engineering



Emphasize an engineering process.



A top-down, divide-and-conquer approach.



Multidisciplinary teamwork is required.

### System Engineering Process



#### System Requirements Definition



- Collecting information about business goals and current situation.
- Deriving business needs from the discrepancies between the current situation and business goals.
- System requirements are capabilities that must be delivered.
- Only a subset of needs is satisfied by the system due to budget and schedule constraints.

#### Example of System Requirements

- **R1.** ABHS shall check in and transport luggage to departure gates and baggage claim areas according to the destinations of the passengers.
- **R2.** ABHS shall allowairline agents to inquire about luggage status and to locate luggage.
- **R3.** ABHS shall check all baggage and detect items that are prohibited.
- **R4.** ABHS shall be able to serve 20,000 passengers per day.

#### Information Collection Techniques

- 1. Customer presentation.
- 2. Study of current business operation.
- 3. User survey.
- 4. User interview.
- 5. Literature survey.

#### Focus of Information Collection Activity

- **1.** What is the business that the system will automate?
- **2.** What is the system's environment or context?
- 3. What are the business goals or product goals?
- **4.** What is the current business situation, and how does it operate?
- **5.** What are the existing business processes, and how do they relate to each other?
- **6.** What are the problems with the current system?
- **7.** Who are the users of the current system and the future system, respectively?
- **8.** What do the customer and users want from the future system, and what are their business priorities?
- **9.** What are the quality, performance, and security considerations?

#### System Architectural Design



• Decomposing the system into a hierarchy of functional cohesive, loosely coupled subsystems, which partition the system requirements and facilitate reuse of COTS components.

• System requirements are assigned to the subsystems.

• The system architecture is depicted using a certain diagramming technique.

#### Guidelines for System Decomposition

- 1. The result should enable separate engineering teams to develop the subsystems.
- 2. The result should facilitate the use of commercial off-the-shelf (COTS) parts.
- 3. The result should partition or nearly partition the system requirements.
- **4.** Each subsystem should have a well-defined functionality.
- **5.** The subsystems should be relatively independent.
- 6. The subsystems should be easy to integrate.

## System Decomposition Strategies

- **1.** Decompose the system according to system functions.
- 2. Decompose the system according to engineering disciplines.
- **3.** Decompose the system according to existing architecture.
- **4.** Decompose the system according to the functional units of the organization.
- **5.** Decompose the system according to models of the application.

#### Partition According to Major Functionality



#### Partition According to HW, SW & Human Subsystems



#### Requirements Allocation Example

Requirements of an Airport Baggage Handling System:

- R1.1. ABHS shall allow airline agents to check in luggage.
- R1.2. ABHS shall transport luggage to their destinations within the airport.
  - R1.2.1. ABHS shall transport luggage from check-in areas to departure gates.
  - R1.2.2. ABHS shall transport luggage from arrival gates to baggage claim areas.
  - R1.2.3. ABHS shall transport luggage from arrival gates to departure gates for transfer passengers.
  - R1.2.4. ABHS shall transport luggage within a terminal using conveyors.
  - R1.2.5. ABHS shall transport luggage between terminals using DCVs running on high-speed tracks.
- R1.3. ABSH shall control the transportation of the luggage within and between the terminals.

#### Requirements Allocation Example (continued)

- **R4.1.** Each check-in area shall handle 1,150 pieces of check-in luggage per day.
- **R4.2.** Each check-in agent shall check in an average three passengers per minute.
- **R4.3.** Each conveyor hardware shall scan and transport 500 check-in pieces of luggage per hour.
- **R4.4.** ABHS control software shall process 2,300 check-in bags per day and 1,000 bar code scan requests per hour.

## Requirements Allocation

| Functional | Functional Description           | System          | Functional |
|------------|----------------------------------|-----------------|------------|
| Cluster    |                                  | Requirements    | Subsystem  |
|            |                                  | _               | Identified |
| Luggage    | This functional cluster          | R1.1, R4.1,     | Luggage    |
| check-in   | processes luggage check-in.      | R4.2            | check-in   |
|            |                                  |                 | subsystem  |
| Conveyor   | This functional cluster is       | R1.2.1, R1.2.2, | Conveyor   |
|            | responsible for moving luggage   | R1.2.3, and     | subsystem  |
|            | within a terminal.               | R1.2.4, R4.3    |            |
| High-speed | This functional cluster          | R1.2.3 and      | High-speed |
| track      | transports luggage between       | R1.2.5          | track      |
|            | terminals.                       |                 | subsystem  |
| Software   | This functional cluster controls | R1.3, R4.4      | Software   |
| control    | the hardware to transport        |                 | control    |
|            | luggage within and between the   |                 | subsystem  |
|            | terminals.                       |                 |            |

#### Architectural Design Diagrams

- Block diagram
- UML component diagram
- SysML diagrams
- Data flow diagram
- and more ...

#### Block Diagram



#### **UML** Component Diagram



#### SysML Block Definition Diagram



Legend:





## SysML Internal Block Diagram



#### Data Flow Diagram with Material Flows



## Other System Engineering Activities

- Development of subsystems
  - The subsystems are developed by different engineering teams.
  - The engineering teams collaborate to jointly solve interdisciplinary problems.
- System integration, testing, and deployment
  - The subsystems and components are integrated and tested for interoperability.
  - The system is tested to ensure that it satisfies the system requirements and constraints.
  - The system is then installed and tested in the target environment.

#### System Configuration Management

- System configuration management ensures that the system components are updated consistently.
- System configuration management is needed because
  - a system may have different versions and releases to satisfy the needs of different customers,
  - the engineering teams may update the system configuration concurrently.
- It is performed during the development phase as well as the maintenance phase.
- Its functions include configuration identification, configuration change control, configuration auditing, and configuration status reporting.

#### Class Discussion

- Why system engineering is a multidisciplinary effort?
- What is the relationship between system engineering and software engineering?
- Provide examples of systems that require a system engineering approach.