Allstate Purchase Prediction Challenge

Kevin Markham May 19, 2014

Class Project: General Assembly Data Science DC

Agenda

- What is the competition goal?
- Why is this difficult?
- What data do we have?
- What can we learn from the data?
- Can machine learning help?
- What worked?
- What did I learn?
- Most importantly: Did I profit? (\$25K prize!)

What is the competition goal?

- Machine learning competition run by Kaggle
 - "Machine learning" = computers learning patterns from data
- Sponsored by Allstate (insurance company)
- Goal: Predict which car insurance options a customer will buy

Problem context

- There are 7 car insurance options, each with 2 to 4 possible values
- Values are identified by number (0, 1, 2, etc.)
- A "quote" consists of a single combination of those 7 options
- Customers review one or more quotes before making their purchase

Example

One customer's quote history (in order):

```
A B C D E F G
Quote 1 0 0 1 1 0 0 2
Quote 2 1 0 3 3 1 0 1
Quote 3 1 0 1 1 1 0 1
Quote 4 2 0 1 1 1 0 1
Quote 5 2 0 1 1 1 0 1
Quote 6 2 0 1 1 1 0 1
Quote 7 2 0 1 1 1 0 2
```

What did they purchase?

```
Purchase 2 0 1 1 1 0 2
```

Another example

This one should be easy:

```
A B C D E F G
Quote 1 1 1 3 3 0 2 2
Quote 2 1 1 4 3 0 2 2
Quote 3 1 1 4 3 0 2 2
Quote 4 1 1 4 3 0 2 2
Quote 5 1 1 4 3 0 2 2
Quote 6 1 1 4 3 0 2 2
```

What did they purchase?

```
Purchase 2 1 4 3 0 1 2
```

How does the competition work?

- "Training data":
 - 97,009 customers
 - Complete quote history plus purchase
- "Test data":
 - 55,716 customers
 - Partial quote history
 - Goal is to predict the purchase
 - Evaluation metric is prediction accuracy

Why is this difficult?

- 2,304 possible combinations of options
- Your prediction is only "correct" if you get all 7 options right!
 - No "partial credit"
 - No feedback given on which options were wrong
- Options are not identified as to their meaning

Start with a naïve approach

- For every customer, simply predict that they will purchase the last set of options they were quoted
 - Public leaderboard score: 0.53793
- Good news: Works pretty well, and much better than random guessing (0.00043)
- Bad news: Everyone figured out this strategy (46% of competitors have that identical score)

Data to the rescue!

- Customer data
 - State, location ID, group size, homeowner?, married?, risk factor, oldest person covered, youngest person covered, years covered by previous issuer, previous C option
- Car data
 - Age, value
- Additional quote data
 - Day, time, cost

 There are 2,304 possible option combinations, but perhaps only a small subset are ever actually purchased?

Nope:

- 1,878 unique combinations appear in training or test data
- 1,522 unique combinations are purchased in training data

 The more quotes you have for a customer, the better the naïve strategy will work.

Test set has been significantly truncated

Behavior can vary based upon time of day

Option selections affect other options

Predict based on option interactions

- Use the naïve approach to make the "baseline" predictions
- Create a list of "rules" about pairs of options, and use these rules to "fix" the baseline predictions
 - Example: If C=3 or C=4, choose D=3
- Result: Worse than naïve approach!

Why didn't this approach work?

- These "rules" are based on strong patterns in the data, but patterns are not always correct
- You don't know how many of the 7 options need to be changed from the baseline
- Key insight: There is a huge risk when changing any baseline prediction:
 - There is a 53.793% chance you will "break" a prediction that is already correct.
 - Balance that against the 0.043% chance that you will change an incorrect prediction to be correct!

New strategy: Model stacking

- It is very important to only change a baseline prediction if you're sure it's wrong.
- Use a "stacked model" approach:
 - First, predict which customers are likely to change options after their final quote.
 - Then, fix the baseline predictions only for those customers.

Step 1: Predict who will change

- Model with logistic regression, random forests
- Evaluate using ROC curve
 - Reference ROC curve (left) vs. my curve (right)

Feature engineering to the rescue!

- Create new features by transforming or combining existing features
- Perhaps less noisy than the raw features (and less likely to overfit the training data?)
- Examples:
 - "family" (yes/no): married, group size > 2, youngest covered individual < 25 years old</p>
 - "timeofday" (day/evening/night): 6am-3pm, 4pm-6pm, 7pm-5am

Feature engineering

- Examples:
 - "stategroup": cluster states based upon observed likelihood of changing from last quote

Clustering of States Based on Customer Likelihood of Changing from Last Quote

Feature engineering

Examples:

- "stability": calculation of how much a customer changed their plan options during the quoting process (low stability = more likely to change?)
- "planfreq": calculated frequency with which a given plan appears in the data (low planfreq = more likely to change?)

Step 1 (redux): Predict who will change

- Redo model, except with new features!
- Evaluate using ROC curve
 - My old curve (left) vs. my new curve (right)

New strategy: Precision not accuracy

- Key insight: When predicting which customers will change, it's much more important to optimize for precision than accuracy
 - Thus: minimize false positives by setting a high probability threshold

Example:

- In test set, about 25,000 customers will change options after their final quote
- Don't try to find all 25,000; instead find 100 customers you are sure will change (and fix their baseline predictions)

Optimizing for precision

- Created a cross-validation framework to predict the test set precision of my model
- Tuned the probability threshold for predicting change to 0.85 (rather than 0.50)
 - Obtained 91% cross-validated precision on training set
 - Also validated (somewhat) on test set

Step 2: Predict new plans

- Option 1: Build a single model to predict the entire combination of 7 options at once
- Option 2: Build 7 models to predict each option one at a time, and then combine the results
 - Chose this option, and used random forests and single-hidden-layer neural networks

Poor prediction results

- In order for the 7-model approach to produce a correct combination of options at least 50% of the time, each model needs to be at least 90% accurate (since 0.90^7 = 0.50)
- Instead, models performed with 60-80%
 accuracy and thus rarely predicted a
 completely correct combination of options

Backup plan: Human learning!

- Chose 9 customers in test set that had a very high probability of change
- Revise option combinations by hand using my list of "rules" about unlikely combinations
 - Example: If C=3 or C=4, choose D=3
- Completely non-scalable, but perhaps generates more nuanced predictions?
- Result: No improvement over the baseline

New strategy: Locate unlikely plans

- Based on a tip from the Kaggle forums:
 - Locate plans (combinations of all 7 options) that were "rarely" purchased
 - If those plans were predicted by the baseline approach, replace them with "more likely" alternatives
- These are probably combinations of options that "don't make sense" to most people
- Note: This approach ignores all customer data!

Locating and replacing unlikely plans

- Determine which plans are "unlikely"
 - Calculate view count and purchase likelihood for every plan and set threshold values
- Determine the best replacement plan for each unlikely plan
 - Tally which plans were actually purchased by those who viewed them
 - Calculate replacement plan commonality and set threshold value

It worked!

Improved upon baseline approach

- Tuned threshold values by submitting many different combinations to Kaggle
- My best submission beat baseline by 0.06%
 - Top competitor beat baseline by only 0.78%

What does this approach look like?

 If the plan on the left is predicted by the naïve approach, change it to the plan on the right:

Α	В	С	D	Ε	F	G	Α	В	С	D	Ε	F	G
0	0	1	1	0	0	4	0	0	1	1	0	0	2
1	1	3	1	1	2	2	1	1	3	3	1	2	1
1	0	1	1	0	0	4	1	0	1	1	0	0	2
0	0	2	2	0	0	4	0	0	2	2	0	0	2
0	0	3	1	0	0	2	0	0	3	3	0	0	2

That's all you have to do!

Improving this approach

- Stack this approach with one of my models
 - Did not succeed in improving test set accuracy
- Other ideas (didn't have time to try them):
 - Don't always replace an unlikely plan
 - Don't always choose the same replacement plan for an unlikely plan
- Top competitors are likely using an ensemble of models that incorporates this approach

Lessons Learned

- Early in the competition, try many different approaches
- Smarter strategies trump more modeling and more data
- Real-world data is hard to work with
- Algorithms and processes that allow for rapid iteration are priceless
- Learn from others around you

Thank You!

GitHub repository with paper and code:

https://github.com/justmarkham/kaggle-allstate