Lecture 1:

Entropy and Information

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem	
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP	
	Module 3	Model selection: Comparing Distributions vs Frequentist Methods	
	Module 4	Model Selection: Bayesian Signal Detection	
	Module 5	Variational Bayes, Expectation Maximization	
	Module 6	Stochastic Processes	
	Module 7	Monte Carlo Methods	
	Module 8	Markov Models, Graphs	
	Module 9	Machine Learning Overview, Supervised Methods	
	Module 10	Unsupervised Methods	
	Module 11	ANN: Perceptron, Backpropagation	
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again	
	Module 13	Convolution and Image Classification and Segmentation	
	Module 14	TBD (GNNs)	
	Module 15	TBD (RNNs and LSTMs)	
	Module 16	TBD (Transformer and LLMs)	

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	Model selection: Comparing Distributions vs Frequentist Methods
	Module 4	Model Selection: Bayesian Signal Detection
	Module 5	Variational Bayes, Expectation Maximization
	Module 6	Stochastic Processes
	Module 7	Monte Carlo Methods
	Module 8	Markov Models, Graphs
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	TBD (GNNs)
	Module 15	TBD (RNNs and LSTMs)
	Module 16	TBD (Transformer and LLMs)

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

idea:

gain of information = "degree of surprise"

if something happens that we expected already

→ no surprise→ no information

definition

conditional Entropy KL divergence connection to TD

 $p(x_i)$: probability of event x_i

 $h(x_i)$:

function that measures "information"

$$\log[p(x_i) p(x_j)] = \log[p(x_i)] + \log[p(x_j)]$$

1) $h(x_i)$ should be additive

$$h(x_i, x_j) = h(x_i) + h(x_j)$$

2) $h(x_i)$ should be monotonic

$$p(x_i, x_j) = p(x_i)p(x_j)$$

3) if x_i and x_j are independent, then

idea: gain of information = "degree of surprise"

if something happens that we expected already → no surprise

 \rightarrow no information

definition

conditional Entropy (L divergence connection to TD

- $p(x_i)$: probability of event x_i
- $h(x_i)$: function that measures "information"
- 1) $h(x_i)$ should be additive

$$h(x_i, x_j) = h(x_i) + h(x_j)$$

- 2) $h(x_i)$ should be monotonic
- 3) if x_i and x_j are independent, then $p(x_i, x_j) = p(x_i)p(x_j)$

$$\log[p(x_i) p(x_j)] = \log[p(x_i)] + \log[p(x_j)] \qquad p(x_i) \le 1$$

$$h(x_i) = -\log[p(x_i)]$$
 information is **positive** low $p(x_i) \rightarrow$ "great surprise"

idea: gain of information = "degree of surprise"

if something happens that we expected already

 \rightarrow no information

→ no surprise

definition

conditional Entropy KL divergence

 $p(x_i)$: probability of event x_i

 $h(x_i) = -\log[p(x_i)]$

The event x_i is randomly drawn from $p(x_i)$

→ average amount of information

Entropy S

$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$
 (discrete)

$$S = -\int p(x) \log[p(x)] dx$$
 (continuous or differential)

note: - the **base** of log is **arbitrary** (often 2 or *e*)

$$-\lim_{p\to 0}(p\log p)=0$$

- S is large \rightarrow no information

- S is zero → all information

- continuous entropy can be negative

 continuous entropy is **not** exactly equivalent to discrete entropy (see LDDP)

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

Entropy S

$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$
 (discrete)

$$S = -\int p(x) \log[p(x)] dx \qquad \text{(continuous)}$$

joint distribution p(x, y), what is

S(y|x): entropy of y, "given" x (we know x already)

"given"

conditional Entropy
KL divergence
connection to TD

 $p(x_i)$: probability of event x_i

Entropy S

$$S = -\int p(x) \log[p(x)] dx$$

joint distribution p(x, y), what is

S(y|x): entropy of y, "given" x (we know x already)

$$S[p(x,y)] = -\iint p(x,y) \log[p(x,y)] dxdy$$

$$= - \iint p(x,y) \log[p(y|x)p(x)] dxdy$$

$$= -\iint p(x,y) \left\{ log[\mathbf{p}(\mathbf{y}|\mathbf{x})] + log[\mathbf{p}(\mathbf{x})] \right\} dxdy$$

$$= -\iint p(x,y) \log[p(y|x)] dx dy - \iint p(x,y) \log[p(x)] dx dy$$
we still sample from $p(x,y)$

conditional probabilities

(see later)

definition
conditional Entropy
KL divergence

 $p(x_i)$: probability of event x_i

Entropy S

$$S = -\int p(x) \log[p(x)] dx$$

joint distribution p(x, y), what is

S(y|x): entropy of y, "given" x (we know x already)

$$S[p(x,y)] = -\iint p(x,y) \log[\mathbf{p}(\mathbf{y}|\mathbf{x})] dx dy - \iint p(x,y) \log[\mathbf{p}(\mathbf{x})] dx dy$$

$$S[p(x,y)] = S[p(y|x)] + S[p(x)]$$

 $\begin{array}{cccc} \text{differential} & \text{conditional} & \text{differential} \\ \text{entropy of} & \text{entropy} & \text{entropy of} \\ p(x,y) & p(x) \end{array}$

We can learn about p(x, y) when we have information about x first and then y, given x

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

often, we (need to) approximate p(x) by some other distribution q(x)

How much is our information "off" if we work with the approximation q(x)?

$$-\int p(x)\log[q(x)]\,dx - \left[-\int p(x)\log[p(x)]\,dx\right] = -\int p(x)\log\left[\frac{q(x)}{p(x)}\right]dx = KL(p||q)$$

KL or Kullback-Leiber divergence

It is **not** a distance! $KL(p||q) \neq KL(q||p)$

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

Entropy and Information

"Shannon"
$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$

connection to TD

$$I = 2$$
 states

N: number of indistinguishable particles number of particles in micro state i n_i : number of states I:

multiplicity Ω : number of macro states

$$\Omega = \frac{N!}{n_1! (N - n_1)!} = \frac{N!}{n_1! n_2!}$$

for
$$l$$
 states $\Omega = \frac{N!}{\prod_{i=1}^{l} n_i}$

for large N:
$$\lim_{N\to\infty}\left(\frac{n_i}{N}\right)=p_i$$

probability of a particle p_i : being in micro state i

"Shannon"
$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$

$$\Omega = \frac{N!}{\prod_{i=1}^{I} n_i}$$
 for large N: $\lim_{N \to \infty} \left(\frac{n_i}{N}\right) = p_i$

Stirling's approximation
$$\left(\frac{n}{k}\right)^k \le {n \choose k} \le \left(\frac{en}{k}\right)^k$$

$$N! \approx \left(\frac{N}{e}\right)^N$$

N: number of indistinguishable particles number of particles in micro state i n_i : I: number of states p_i : probability of a particle

being in micro state i

 $\Omega = \frac{N!}{n_1! \, n_2! \dots n_I!} \approx \frac{N^N}{n_1^{n_1} n_2^{n_2} \dots n_I^{n_I}} \frac{e^{n_1} e^{n_2} \dots e^{n_I}}{e^N}$ $\Omega = \frac{N^N}{(Np_1)^{n_1}(Np_2)^{n_2} \dots (Np_I)^{n_I}} = \frac{N^N}{N^{\sum_{i=1}^{I} n_i}} \frac{1}{p_1^{n_1} p_2^{n_2} \dots p_I^{n_I}}$

"Shannon"
$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$

$$\Omega = \frac{N!}{\prod_{i=1}^{I} n_i}$$

$$\Omega = \frac{N!}{\prod_{i=1}^{I} n_i}$$
 for large N: $\lim_{N \to \infty} \left(\frac{n_i}{N}\right) = p_i$

Stirling's approximation
$$\left(\frac{n}{k}\right)^k \le {n \choose k} \le \left(\frac{en}{k}\right)^k$$

$$N! \approx \left(\frac{N}{e}\right)^N$$

$$\Omega = \frac{N^N}{(Np_1)^{n_1}(Np_2)^{n_2} \dots (Np_I)^{n_I}} = \frac{N^N}{N^{\sum_{i=1}^{I} n_i}} \frac{1}{p_1^{n_1} p_2^{n_2} \dots p_I^{n_I}}$$

$$log\Omega = -\sum_{i}^{I} n_{i} log(p_{i})$$
 $\frac{log\Omega}{N} = -\sum_{i}^{I} p_{i} log(p_{i})$

connection to TD

N: number of indistinguishable particles

number of particles in micro state i n_i :

I: number of states

 p_i : probability of a particle

being in micro state i

Entropy and Information

"Shannon"
$$S = -\sum_{i=1}^{I} p(x_i) \log[p(x_i)]$$

$$\frac{\log \Omega}{N} = -\sum_{i}^{I} p_i \log(p_i)$$
 entropy per particle

$$S = -N \sum_{i}^{I} p_{i} \log(p_{i})$$
 total entropy

connection to TD

N: number of indistinguishable particles number of particles in micro state i n_i :

I: number of states

probability of a particle p_i :

being in micro state i

- using $\log \Omega$ vs Ω is **arbitrary**, but more **convenient** when calculating TD potentials note:

- We used $\lim_{N\to\infty}\left(\frac{n_i}{N}\right)=p_i$ and Stirling's approximation for large N. Therefore, $\lim_{t\to\infty}S(t)=S_{max}$

does **not** hold for small *N* in closed systems! see HW assignment

- interpreting S as order/disorder is **not** a good concept

Often people explain entropy with an ordered vs messy office...

conditional Entropy KL divergence connection to TD

...and then say, that entropy (disorder) grows with time (in closed systems).

- But how is it possible, that an office can do that, just by itself?
- What if my office just looks messy,
 but I can still pull any file you are asking me for?

order/disorder is not a physical quantity!

Those examples have nothing to do with entropy conceptionally!

actually, the idea of entropy is more like that:

definition conditional Entropy KL divergence connection to TD

- data analysis:
- image processing
- noise reduction
- feature detection

Cryo-EM image of ribosomes

definition conditional Entropy KL divergence connection to TD

biophysics:

- molecular driving forces
- formation of macromolecules
- "ordering forces"

AI:

- optimization
- cross entropy

Entropy and Information

entropy S is a measure of information we have about a system

$$S = -\sum_{i=1}^{I} p_i \ln(p_i)$$

two states \uparrow or \downarrow

definition conditional Entropy KL divergence connection to TD

and three entities → system

possible states of the system

all three up	t <mark>wo</mark> up	one up	all three down
↑ ↑↑	↑↑↓	$\uparrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$
	↑↓↑	$\downarrow\uparrow\downarrow$	
	$\downarrow \uparrow \uparrow \uparrow$	$\downarrow\downarrow\uparrow\uparrow$	

eight possible states

$$S = -\sum_{i=1}^{8} \frac{1}{8} \ln \left(\frac{1}{8} \right) = \sum_{i=1}^{8} \frac{1}{8} \ln(8) = \ln(8) \approx 2.08$$

Entropy and Information

entropy S is a measure of information we have about a system

$$S = -\sum_{i=1}^{I} p_i \ln(p_i)$$

two states \uparrow or \downarrow

definition conditional Entropy KL divergence connection to TD

and three entities → system

possible states of the system

all three up	t <mark>wo</mark> up	one up	all three down	
↑↑↑	1 1	$\uparrow\downarrow\downarrow$	>	one m → at I
	↑ ↓↑	$\downarrow\uparrow\downarrow$		
	$\downarrow \uparrow \uparrow \uparrow$	$\downarrow\downarrow\uparrow\uparrow$		seven

one measurement

→ at least one arrow up

seven possible states

$$S = \sum_{i=1}^{7} \frac{1}{7} \ln(7) + 0 \ln(0) = \ln(7) \approx 1.95$$

entropy S is a measure of information we have about a system

$$S = -\sum_{i=1}^{I} p_i \ln(p_i)$$

two states \uparrow or \downarrow

definition conditional Entropy KL divergence connection to TD

and three entities → system

possible states of the system

all three up	t <mark>wo</mark> up	one up	all three down	
↑ ↑↑	↑ ↑↓	>	>	second measurement → another arrow up
	$\uparrow\downarrow\uparrow$	> <		
	$\downarrow \uparrow \uparrow$	$\Rightarrow <$		four possible states

$$S = \sum_{i=1}^{4} \frac{1}{4} \ln(4) = \ln(4) \approx 1.39$$

entropy S is a measure of information we have about a system

$$S = -\sum_{i=1}^{I} p_i \ln(p_i)$$

two states \uparrow or \downarrow

definition conditional Entropy KL divergence connection to TD

and three entities → system

possible states of the system

all three up	t <mark>wo</mark> up	one up	all three down	
**	↑ ↑↓	**	>	third measurement one arrow down
	$\uparrow\downarrow\uparrow$	**		
	$\downarrow \uparrow \uparrow \uparrow$	$\Rightarrow \leftarrow$		three possible states

$$S = ln(3) \approx 1.10$$

The lower the entropy, the more information!

entropy S is a measure of information we have about a system

$$S = -\sum_{i=1}^{I} p_i \ln(p_i)$$

two states \uparrow or \downarrow

and three entities → system

definition conditional Entropy KL divergence connection to TD

note: - since the base is **arbitrary**, we use **base two** if there are only **two** micro states

- unit is one bit (binary digit)

$$-S = -\sum_{i=1}^{8} \frac{1}{8} lg\left(\frac{1}{8}\right) = lg(8) = 3$$

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

maximum of the function

Lagrangian Multiplier

Example

$$f(x,y) = z = -(x-2)^2 - (y-1)^2 + 10$$

level lines f(x, y) = const

$$df(x,y) = \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy = 0$$
$$= gradf \ d\vec{r} = 0$$

level lines g(x, y) = const

$$dg(x,y) = \frac{\partial g(x,y)}{\partial x} dx + \frac{\partial g(x,y)}{\partial y} dy = 0$$
$$= gradg \ d\vec{r} = 0$$

$$z = 10$$
 at $x = 2$ $y = 1$

constrain g(x, y) = x - y = 0

maximum of the function, subject to g(x, y)

the maximum of f(x, y) subject to g(x, y) located where:

$$df(x,y) = dg(x,y)$$

$$gradf d\vec{r} = gradg d\vec{r}$$

$$gradf = gradg$$

Both gradients need to point in the same direction (hence, can be multiplied with a constant, say λ)!

$$gradf = \lambda gradg$$

 λ Lagrangian Multiplier

the maximum of f(x, y) subject to g(x, y)

Lagrangian Multiplier

$$grad f = \lambda grad g$$

$$f(x,y) - \lambda g(x,y) = const$$

the Lagrangian

 $L(x, y, \lambda)$

more general:

$$L(x_1, x_2, ..., x_i, x_N, \lambda_1, \lambda_2, ..., \lambda_k, \lambda_K) = f(x_1, x_2, ..., x_i, x_N) - \sum_{k=1}^{K} \lambda_k g_k(x_1, x_2, ..., x_i, x_N)$$

note: - *N* dimensions and $K \leq N$ constrains

- we need to solve N (from the gradient) + K equations by using the constrains
- optimization: more robust results (most common L1 and L2 regularization, see later)
- machine learning: including constrains in loss function (see later)

the maximum of f(x, y) subject to g(x, y)

maximum of the function

Lagrangian Multiplier

$$f(x,y) = z = -(x-2)^2 - (y-1)^2 + 10$$

constrain
$$g(x, y) = x - y = 0$$

constrain
$$x = y$$
 $x = 1.5$ $y = 1.5$

$$f(1.5, 1.5) = 9.5$$

$$grad f = \lambda grad g$$

$$\frac{\partial f(x,y)}{\partial x} = \lambda \frac{\partial g(x,y)}{\partial x} \qquad -2(x-2) = \lambda$$

$$\frac{\partial f(x,y)}{\partial y} = \lambda \frac{\partial g(x,y)}{\partial y} \qquad -2(y-1) = -\lambda$$

$$-2(x-2)=2$$

$$-2(y-1) = -\lambda$$

$$y = -x + 3$$

$$y = -x + 3$$

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

maximum entropy of flipping a coin:

$$f(p_1, p_2) = -p_1 \ln p_1 - p_2 \ln p_2$$

subject to

$$g(p_1, p_2) = p_1 + p_2 = 1$$

absolute maximum:

$$\frac{\partial f(p_1, p_2)}{\partial p_1} = 0$$

$$\frac{\partial f(p_1, p_2)}{\partial p_2} = 0$$

$$-\ln p_1 - 1 = 0 \qquad -\ln p_2 - 1 = 0$$

$$-\ln p_2 - 1 = 0$$

$$p_1 = p_2 = \frac{1}{e}$$

$$f\left(\frac{1}{e}, \frac{1}{e}\right) = \frac{2}{e} \approx 0.74$$

maximum entropy of flipping a coin:

$$f(p_1, p_2) = -p_1 \ln p_1 - p_2 \ln p_2$$

subject to

$$g(p_1, p_2) = p_1 + p_2 = 1$$

Examples

maximum subject to $g(p_1, p_2)$:

$$\frac{\partial f(p_1, p_2)}{\partial p_1} = \lambda \frac{\partial g(p_1, p_2)}{\partial p_1}$$

$$\frac{\partial f(p_1, p_2)}{\partial p_2} = \lambda \frac{\partial g(p_1, p_2)}{\partial p_2}$$

$$-\ln p_1 - 1 = \lambda \qquad \qquad -\ln p_2 - 1 = \lambda$$

$$p_1 = p_2$$

constrain:
$$p_1 + p_2 = 1$$

$$p_1 = p_2 = \frac{1}{2}$$

$$f\left(\frac{1}{2}, \frac{1}{2}\right) = ln2 \approx 0.69$$

maximum entropy for I states:

$$f(p_1,...,p_i,...p_I) = -\sum_{i=1}^{I} p_i \ln p_i$$

subject to

$$g(p_1,...,p_i,...p_I) = \sum_{i=1}^{I} p_i = 1$$

Lagrangian Multiplier **Examples**

maximum subject to $g(p_1,...,p_i,...p_I)$:

$$\frac{\partial f(p_1, \dots, p_i, \dots p_I)}{\partial p_i} = \lambda \frac{\partial g(p_1, \dots, p_i, \dots p_I)}{\partial p_i}$$

$$-\ln p_i - 1 = \lambda \qquad p_i = e^{-(1+\lambda)}$$

constrain: $\sum_{i=1}^{I} e^{-(1+\lambda)} = 1$

$$Ie^{-(1+\lambda)}=1$$

$$e^{-(1+\lambda)} = \frac{1}{I}$$

probabilities are constant!
→ flat distribution!

$$p_i = \frac{1}{I}$$

maximum entropy for I states:

$$f(p_1,...,p_i,...p_I) = -\sum_{i=1}^{I} p_i \, lnp_i$$

subject to

$$g_1(p_1,...,p_i,...p_I) = \sum_{i=1}^{I} p_i = 1$$

if N and total energy is conserved

$$g_2(p_1,...,p_i,...p_I) = \sum_{i=1}^{I} p_i \varepsilon_i = \frac{E_{tot}}{N} = \frac{1}{N} \sum_{i=1}^{I} n_i \varepsilon_i$$

$$\frac{\partial f(p_1, \dots, p_i, \dots p_I)}{\partial p_i} = \lambda_1 \frac{\partial g_1(p_1, \dots, p_i, \dots p_I)}{\partial p_i} + \lambda_2 \frac{\partial g_2(p_1, \dots, p_i, \dots p_I)}{\partial p_i}$$

$$-\ln p_i - 1 = \lambda_1 + \lambda_2 \frac{\partial \sum_{j=1}^{I} p_j \varepsilon_j}{\partial p_i}$$

Examples

N: number of indistinguishable particles
n_i: number of particles in micro state i
l: number of states
p_i: probability of a particle being in micro state I

energy in state i

 ε_i :

Lagrangian Multiplier
Examples

maximum entropy for ${\it I}$ states:

$$f(p_1,...,p_i,...p_I) = -\sum_{i=1}^{I} p_i \, lnp_i$$

subject to

$$g_1(p_1,...,p_i,...p_I) = \sum_{i=1}^{I} p_i = 1$$

if N and total energy is conserved

$$g_2(p_1,...,p_i,...p_I) = \sum_{i=1}^{I} p_i \varepsilon_i$$

$$-\ln p_i - 1 = \lambda_1 + \lambda_2 \frac{\partial \sum_{j=1}^{I} p_j \varepsilon_j}{\partial p_i}$$

$$-\ln p_i - 1 = \lambda_1 + \lambda_2 \varepsilon_i$$

$$p_i = e^{-(1+\lambda_1)} e^{-\lambda_2 \varepsilon_i}$$

 p_i : $arepsilon_i$:

N:

 n_i :

from
$$g_1$$
:

number of indistinguishable particles

$$p_i = \frac{1}{\sum_{i=1}^{I} e^{-\lambda_2 \varepsilon_i}} e^{-\lambda_2 \varepsilon_i}$$

$$Z = \sum_{i=1}^{I} e^{-\lambda_2 \varepsilon_i}$$

$$p_i = \frac{1}{Z} e^{-\lambda_2 \varepsilon_i}$$

partition function Z

$$Z = \sum_{i=1}^{I} e^{-\lambda_2 \varepsilon_i}$$

Boltzmann distribution

$$p_i = \frac{1}{Z} e^{-\lambda_2 \varepsilon_i}$$

one can show:

$$\lambda_2 = \frac{1}{kT}$$

Lagrangian Multiplier Examples

N: number of indistinguishable particles

 n_i : number of particles in micro state i

I: number of states

 p_i : probability of a particle

being in micro state I

 ε_i : energy in state i

note: - for $T \to \infty$, $Z \to I$, i. e. higher states

become more accessible and $p_i
ightarrow rac{1}{I}$

- we used maximum entropy:

equilibrium state for large *N*

- N and E_{tot} are constant

- ANN: **softmax layer** for classification

probabilities (see later)

$$f(x) = \int_{-\infty}^{+\infty} p(x) \ln[p(x)] dx$$
 continuous distribution with support $(-\infty, +\infty)$

Lagrangian Multiplier **Examples**

$$g_1(x) = \int_{-\infty}^{+\infty} p(x) dx = 1$$

$$g_2(x) = \int_{-\infty}^{+\infty} x \, p(x) dx = \mu$$
 mean μ

$$g_3(x) = \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx = \sigma^2$$
 standard deviation σ^2

$$\int_{-\infty}^{+\infty} p(x) \ln[p(x)] dx = \lambda_1 \int_{-\infty}^{+\infty} p(x) dx + \lambda_2 \int_{-\infty}^{+\infty} x p(x) dx + \lambda_3 \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx$$

$$p(x) = \exp[-\lambda_1 - \lambda_2 x - \lambda_3 (x - \mu)^2 - 1]$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Normal (Gauss) $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ distribution

Lagrangian Multiplie **Examples**

note: $-S[p(x)] = \ln(2\pi\sigma) + 1/2$ (which can be negative)

- constrains where very generic → normal distribution is **often a good approximation**

- often: $N(\mu, \sigma^2)$

maximum entropy distributions

Examples

Distribution name	Probability density / mass function	Maximum entropy constraint	Support
Uniform (discrete)	$f(k) = \frac{1}{b-a+1}$	None	$\{a,a+1,\ldots,b-1,b\}$
Uniform (continuous)	$f(x)=rac{1}{b-a}$	None	[a,b]
Bernoulli	$f(k) = p^k (1-p)^{1-k}$	$\mathrm{E}[K]=p$	{0,1}
Normal	$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\Biggl(-rac{(x-\mu)^2}{2\sigma^2}\Biggr)$	$egin{aligned} \mathrm{E}[X] &= \mu, \ \mathrm{E}ig[X^2ig] &= \sigma^2 + \mu^2 \end{aligned}$	\mathbb{R}
Gamma	$f(x) = rac{x^{k-1}e^{-x/ heta}}{ heta^k\Gamma(k)}$	$egin{aligned} \mathrm{E}[X] &= k heta , \ \mathrm{E}[\ln X] &= \psi(k) + \ln heta \end{aligned}$	$[0,\infty)$
Binomial	$f(k) = inom{n}{k} p^k (1-p)^{n-k}$	$\mathrm{E}[X] = \mu ,$ $f \in ext{n-generalized binomial}$ distribution $^{[11]}$	$\{0,\ldots,n\}$
Poisson	$f(k)=rac{\lambda^k e^{-\lambda}}{k!}$	$\mathrm{E}[X] = \lambda, \ f \in \infty ext{-generalized binomial} \ \mathrm{distribution}^{[11]}$	$\mathbb{N} = \{0,1,\ldots\}$
Logistic	$f(x) = rac{e^{-x}}{\left(1 + e^{-x} ight)^2} = rac{e^{+x}}{\left(e^{+x} + 1 ight)^2}$	$egin{aligned} \mathrm{E}[X] &= 0, \ \mathrm{E}ig[\lnig(1+e^{-X}ig)ig] &= 1 \end{aligned}$	$\{-\infty,\infty\}$

maximum entropy distributions

Examples

Distribution name		Probability density / mass function	Maximum entropy constraint	Support
Uniform (discrete)		$(k)=rac{1}{b-a+1}$	None	$\{a,a+1,\ldots,b-1,b\}$
Uniform (continuous)		$(x)=rac{1}{b-a}$	None	[a,b]
Romoulli,	£	(L) _ ~k/1 ~\1-k	$\mathbf{E}[V] = n$	∫ Ո ₁ 1 ໄ
ultivariate rmal	$f_X(\mathbf{x})$	$)=rac{\exp \left[-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{T}\Sigma^{-1}\left(\mathbf{x}-oldsymbol{\mu} ight) ight] }{\sqrt{\left(2\pi ight) ^{N}\left \Sigma ight }}$	$egin{aligned} \mathbf{E}[\mathbf{x}] &= oldsymbol{\mu}, \ \mathbf{E}ig[(\mathbf{x} - oldsymbol{\mu})(\mathbf{x} - oldsymbol{\mu})^{T}ig] &= \Sigma \end{aligned}$	\mathbb{R}^n
Gamma	f	$f(x)=rac{x^{k-1}e^{-x/ heta}}{ heta^k\Gamma(k)}$	$egin{aligned} \mathrm{E}[X] &= k heta , \ \mathrm{E}[\ln X] &= \psi(k) + \ln heta \end{aligned}$	$[0,\infty)$
Binomial	f	$p^k(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$\mathrm{E}[X] = \mu,$ $f \in ext{n-generalized binomial}$ distribution $^{[11]}$	$\{0,\ldots,n\}$
Poisson	f	$\lambda^k e^{-\lambda} rac{\lambda^k e^{-\lambda}}{k!}$	$\mathrm{E}[X] = \lambda, \ f \in \infty ext{-generalized binomial} \ \mathrm{distribution}^{[11]}$	$\mathbb{N}=\{0,1,\ldots\}$
Logistic	f	$F(x) = rac{e^{-x}}{\left(1 + e^{-x} ight)^2} = rac{e^{+x}}{\left(e^{+x} + 1 ight)^2}$	$egin{aligned} \mathrm{E}[X] &= 0, \ \mathrm{E}ig[\lnig(1+e^{-X}ig)ig] &= 1 \end{aligned}$	$\{-\infty,\infty\}$

<u>Outline</u>

Entropy and Information

- definition
- conditional Entropy
- KL divergence
- connection to TD

Maximum Entropy Distributions

- Lagrangian Multiplier
- examples

Bayes Theorem

 $P(A \cap B)$ probability **P** that the events **A** and **B** occur

so far: A and B were independent $P(A \cap B) = P(A)P(B) = P(B)P(A)$

now: conditional probabilities | "given" or "under the condition"

Thomas Bayes (1701 - 1761)

$$P(A \cap B) = P(A|B)P(B)$$

$$= P(B|A)P(A)$$

$$= P(B|A)P(A)$$

Bayes Theorem

posterior
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 prior

posterior
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 prior

Bayes Theorem

$$P(B) = \sum_{n=1}^{N} P(B|X_n)P(X_n)$$

$$P(B) = \int P(B|X)P(X) dX$$

Thomas Bayes (1701 - 1761)

for a normal distribution $M = \mathcal{N}(\mu, \sigma)$

$$P(D|\mathcal{N}) = \int P(D|\mathcal{N}(\mu, \sigma)) P(\mu, \sigma|\mathcal{N}(\mu, \sigma)) d\Omega_{\mu, \sigma}$$

marginalization

model: M data:

$$\sigma = 2, \mu = 3.5$$

 $\sigma = 2, \mu = 5.0$

$$\sigma = 2$$
, $\mu = 5.0$

$$\sigma = 1.5$$
, $\mu = 3.5$

$$\sigma = 7.0, \mu = 1.0$$

....and so on

example: cancer diagnosis from blood test

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

: positive test result

: diseased

: health

Marginalization

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(B) = \sum_{n=1}^{N} P(B|X_n)P(X_n)$$

example: cancer diagnosis from blood test

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

: positive test result

: diseased

: health

Marginalization

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $P(B) = \sum_{n=1}^{N} P(B|X_n)P(X_n)$

statement 1: If a person is **diseased**, there is a **95% probability** that the test is **positive**.

statement 2: The **prevalence** for the disease in the average **population** is **0.001%**.

statement 3: 5% of healthy patients have a positive result (aka p-value).

A person takes the test and gets a positive test result. What is the probability that the person is sick?

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{\textbf{0.95} P(D)}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+|D)P(D) + P(+|H)P(H)}$$
statement 1 statement 2 marginalization

example: cancer diagnosis from blood test

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

+ : positive test result

D : diseased

i : health

Marginalization

$$P(B) = \sum_{n=1}^{N} P(B|X_n)P(X_n)$$

statement 1: If a person is diseased, there is a 95% probability that the test is positive.

statement 2: The **prevalence** for the disease in the average **population** is **0.001%**.

statement 3: 5% of healthy patients have a positive result (aka p-value).

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{\textbf{0.95} P(D)}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+)} = \frac{\textbf{0.95} \cdot \textbf{0.00001}}{P(+|D)P(D) + P(+|H)P(H)}$$
statement 1 statement 2 marginalization

$$= \frac{\mathbf{0.95 \cdot 0.00001}}{P(+|D)P(D) + P(+|H)[\mathbf{1} - P(D)]}$$

complement probability

example: cancer diagnosis from blood test

Bayes Theorem

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

+ : positive test result

D : diseased

l : health

Marginalization

 $P(B) = \sum_{n=1}^{N} P(B|X_n)P(X_n)$

statement 1: If a person is diseased, there is a 95% probability that the test is positive.

statement 2: The **prevalence** for the disease in the average **population** is **0.001%**.

statement 3: 5% of healthy patients have a positive result (aka p-value).

$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|H)[1 - P(D)]}$$

$$= \frac{1}{1 + \frac{P(+|H)[1 - P(D)]}{P(+|D)P(D)}} = \frac{1}{1 + \frac{0.05[1 - 0.00001]}{0.95 \cdot 0.00001}} = \frac{1}{1 + \frac{0.05[1 - 0.00001]}{0.95 \cdot 0.00001}}$$

example: cancer diagnosis from blood test

+ : positive test result

D : diseased H : health

$$P(D|+) = \frac{1}{1 + \frac{P(+|H)[1 - P(D)]}{P(+|D)P(D)}}$$

statement 1: sensitivity P(D|+) = 95%statement 2: prior P(D) = 0.001%statement 3: p-value or false positive rate P(+|H) = 5%

check: PlotPD_Plus.py

example: cancer diagnosis from blood test

+ : positive test result

D : diseased H : health

$$P(D|+) = \frac{1}{1 + \frac{P(+|H)[1 - P(D)]}{P(+|D)P(D)}}$$

statement 1: sensitivity P(D|+) = 95%statement 2: prior P(D) = 0.001%statement 3: p-value or false positive rate P(+|H) = 5%

check: PlotPD_Plus.py

statement 1: sensitivity P(D|+) = 95%statement 2: prior P(D) = 0.001%statement 3: p-value or false positive rate P(+|H) = 5%

odds ratios:

$$\rho_1 = \frac{P(+|H)}{P(+|D)}$$

$$\rho_2 = \frac{1 - P(D)}{P(D)}$$

$$P(D|+) = \frac{1}{1 + \frac{P(+|H)[1 - P(D)]}{P(+|D)P(D)}}$$

log odds ratios: $r_1 = \log \left[\frac{P(+|H)}{P(+|D)} \right]$

$$r_2 = \log \left[\frac{1 - P(D)}{P(D)} \right]$$

$$P(D|+) = \frac{1}{1 + e^{r_1}e^{r_2}}$$

log odds ratios:
$$r_1 = \log \left[\frac{P(+|H)}{P(+|D)} \right]$$

$$r_2 = \log\left[\frac{1 - P(D)}{P(D)}\right]$$

$$P(D|+) = \frac{1}{1 + e^{r_1}e^{r_2}}$$

note: - logistic (or logit or sigmoid) function

- transfer function ANN (see later)
- bound growth (Verhulst equation)

Thank you very much for your attention!

