4-1 DIGITAL-TO-DIGITAL CONVERSION

In this section, we see how we can represent digital data by using digital signals. The conversion involves three techniques: line coding, block coding, and scrambling. Line coding is always needed; block coding and scrambling may or may not be needed.

Topics discussed in this section:

- Line Coding
- Line Coding Schemes
- Block Coding
- Scrambling

Line Coding

- Converting a string of 1's and 0's (digital data) into a sequence of signals that denote the 1's and 0's.
- For example a high voltage level (+V) could represent a "1" and a low voltage level (0 or -V) could represent a "0".

Figure 4.1 Line coding and decoding

Mapping Data symbols onto Signal levels

- A data symbol (or element) can consist of a number of data bits:
 - 1 , 0 or
 - **1**1, 10, 01,
- A data symbol can be coded into a single signal element or multiple signal elements
 - 1 -> +V, 0 -> -V
 - 1 -> +V and -V, 0 -> -V and +V
- The ratio 'r' is the number of data elements carried by a signal element.

Relationship between data rate and signal

- The data rate defines the number of bits sent per sec bps. It is often referred to the bit rate.
- The signal rate is the number of signal elements sent in a second and is measured in bauds. It is also referred to as the modulation rate.
- Goal is to increase the data rate whilst reducing the baud rate.

Figure 4.2 Signal element versus data element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Data rate and Baud rate

• The baud or signal rate can be expressed as:

```
S = c x N x 1/r bauds
  where N is data rate
c is the case factor (worst, best
  & avg.)
```

r is the ratio between data element & signal element

Example 4.1

A signal is carrying data in which one data element is encoded as one signal element (r = 1). If the bit rate is 100 kbps, what is the average value of the baud rate if c is between 0 and 1?

Solution

We assume that the average value of c is 1/2. The baud rate is then

$$S = c \times N \times \frac{1}{r} = \frac{1}{2} \times 100,000 \times \frac{1}{1} = 50,000 = 50 \text{ kbaud}$$

Example 4.2

The maximum data rate of a channel (see Chapter 3) is $N_{max} = 2 \times B \times \log_2 L$ (defined by the Nyquist formula). Does this agree with the previous formula for N_{max} ?

Solution

A signal with L levels actually can carry log_2L bits per level. If each level corresponds to one signal element and we assume the average case (c = 1/2), then we have

$$N_{\text{max}} = \frac{1}{c} \times B \times r = 2 \times B \times \log_2 L$$

Figure 4.4 *Line coding schemes*

Unipolar

- All signal levels are on one side of the time axis - either above or below
- NRZ Non Return to Zero scheme is an example of this code. The signal level does not return to zero during a symbol transmission.
- Scheme is prone to baseline wandering and DC components. It has no synchronization or any error detection. It is simple but costly in power consumption.

Figure 4.5 Unipolar NRZ scheme

$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

Polar - NRZ

- The voltages are on both sides of the time axis.
- Polar NRZ scheme can be implemented with two voltages. E.g. +V for 1 and -V for 0.
- There are two versions:
 - NZR Level (NRZ-L) positive voltage for one symbol and negative for the other
 - NRZ Inversion (NRZ-I) the change or lack of change in polarity determines the value of a symbol. E.g. a "1" symbol inverts the polarity a "0" does not.

Figure 4.6 Polar NRZ-L and NRZ-I schemes

• Inversion: Next bit is 1

In NRZ-L the level of the voltage determines the value of the bit.

In NRZ-I the inversion or the lack of inversion determines the value of the bit.

NRZ-L and NRZ-I both have an average signal rate of N/2 Bd.

NRZ-L and NRZ-I both have a DC component problem and baseline wandering, it is worse for NRZ-L. Both have no self synchronization &no error detection. Both are relatively simple to implement.

Example 4.4

A system is using NRZ-I to transfer 1-Mbps data. What are the average signal rate and minimum bandwidth?

Solution

The average signal rate is $S = c \times N \times R = 1/2 \times N \times 1 = 500$ kbaud. The minimum bandwidth for this average band rate is $B_{min} = S = 500 \text{ kHz}$.

Note c = 1/2 for the avg. case as worst case is 1 and best case is 0

Polar - RZ

- The Return to Zero (RZ) scheme uses three voltage values. +, 0, -.
- Each symbol has a transition in the middle. Either from high to zero or from low to zero.
- This scheme has more signal transitions (two per symbol) and therefore requires a wider bandwidth.
- No DC components or baseline wandering.
- Self synchronization transition indicates symbol value.
- More complex as it uses three voltage level. It has no error detection capability.

Figure 4.7 Polar RZ scheme

Polar - Biphase: Manchester and

- DMantchesternctding comparts of someining the NRZ-L and RZ schemes.
 - Every symbol has a level transition in the middle: from high to low or low to high. Uses only two voltage levels.
- Differential Manchester coding consists of combining the NRZ-I and RZ schemes.
 - Every symbol has a level transition in the middle. But the level at the beginning of the symbol is determined by the symbol value. One symbol causes a level change the other does not.

Figure 4.8 Polar biphase: Manchester and differential Manchester schemes

In Manchester and differential Manchester encoding, the transition at the middle of the bit is used for synchronization.

The minimum bandwidth of Manchester and differential Manchester is 2 times that of NRZ. The is no DC component and no baseline wandering. None of these codes has error detection.

Bipolar - AMI and

- People Set S'Notable levels: +, 0, -, to represent the symbols (note not transitions to zero as in RZ).
- Voltage level for one symbol is at "0" and the other alternates between + & -.
- Bipolar Alternate Mark Inversion (AMI) - the "0" symbol is represented by zero voltage and the "1" symbol alternates between +V and -V.
- Pseudoternary is the reverse of AMI.

Figure 4.9 Bipolar schemes: AMI and pseudoternary

Bipolar C/Cs

- It is a better alternative to NRZ.
- Has no DC component or baseline wandering.
- Has no self synchronization because long runs of "0"s results in no signal transitions.
- No error detection.

Multilevel Schemes

- In these schemes we increase the number of data bits per symbol thereby increasing the bit rate.
- Since we are dealing with binary data we only have 2 types of data element a 1 or a 0.
- We can combine the 2 data elements into a pattern of "m" elements to create "2m" symbols.
- If we have L signal levels, we can use "n" signal elements to create Lⁿ signal elements.

Code C/Cs

- Now we have 2^m symbols and Lⁿ signals.
- If 2^m > Lⁿ then we cannot represent the data elements, we don't have enough signals.
- If $2^m = L^n$ then we have an exact mapping of one symbol on one signal.
- If 2^m < Lⁿ then we have more signals than symbols and we can choose the signals that are more distinct to represent the symbols and therefore have better noise immunity and error detection as some signals are not valid.

In mBnL schemes, a pattern of m data elements is encoded as a pattern of n signal elements in which $2^m \le L^n$.

Representing Multilevel Codes

- We use the notation mBnL, where m is the length of the binary pattern, B represents binary data, n represents the length of the signal pattern and L the number of levels.
- L = B binary, L = T for 3
 ternary, L = Q for 4 quaternary.

Figure 4.10 Multilevel: 2B1Q scheme

Previous level:	Previous level:
positive	negative

Next bits	Next level	Next level
00	+1	-1
01	+3	-3
10	-1	+1
11	-3	+3

Transition table

Redundancy

- In the 2B1Q scheme we have no redundancy and we see that a DC component is present.
- If we use a code with redundancy we can decide to use only "0" or "+" weighted codes (more +'s than -'s in the signal element) and invert any code that would create a DC component. E.g. '+00++-' -> '-00--+'
- Receiver will know when it receives a "-" weighted code that it should invert it as it doesn't represent any valid symbol.

Figure 4.11 Multilevel: 8B6T scheme

Multilevel using

- Multiple channels ignal transmission up and distribute it over several links.
- The separate segments are transmitted simultaneously. This reduces the signalling rate per link -> lower bandwidth.
- This requires all bits for a code to be stored.
- xD: means that we use 'x' links
- YYYz: We use 'z' levels of modulation where YYY represents the type of modulation (e.g. pulse ampl. mod. PAM).
- Codes are represented as: xD-YYYz

Figure 4.12 Multilevel: 4D-PAM5 scheme

Multitransition Coding

- Because of synchronization requirements we force transitions. This can result in very high bandwidth requirements -> more transitions than are bits (e.g. mid bit transition with inversion).
- Codes can be created that are differential at the bit level forcing transitions at bit boundaries. This results in a bandwidth requirement that is equivalent to the bit rate.
- In some instances, the bandwidth requirement may even be lower, due to repetitive patterns resulting in a periodic signal.

Figure 4.13 *Multitransition: MLT-3 scheme*

a. Typical case

b. Worse case

c. Transition states

MLT-3

- Signal rate is same as NRZ-I
- But because of the resulting bit pattern, we have a periodic signal for worst case bit pattern: 1111
- This can be approximated as an analog signal a frequency 1/4 the bit rate!

Table 4.1 Summary of line coding schemes

Category	Scheme	Bandwidth (average)	Characteristics
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC
Unipolar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC
	Biphase	B = N	Self-synchronization, no DC, high bandwidth
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC
Multilevel	2B1Q	B = N/4	No self-synchronization for long same double bits
	8B6T	B = 3N/4	Self-synchronization, no DC
	4D-PAM5	B = N/8	Self-synchronization, no DC
Multiline	MLT-3	B = N/3	No self-synchronization for long 0s