التطورات الرتيبة

الكتاب الأول

تطور جملة كيميائية نحو حالة التوازن

الوحدة 04

GUEZOURI Aek – Lycée Maraval - Oran

حلول تمارين الكتاب المدرسي

التمرين 23

$$\begin{split} CH_{3}COOH_{(aq)} \ + \ & H_{2}O_{(l)} = \ CH_{3}COO^{-}_{(aq)} \ + \ & H_{3}O^{+}_{(aq)} \\ CH_{2}ClCOOH_{(aq)} \ + \ & H_{2}O_{(l)} = \ & CH_{2}ClCOO^{-}_{(aq)} \ + \ & H_{3}O^{+}_{(aq)} \end{split} \qquad \textbf{-1}$$

جدول تقدم تفاعل حمض الإيثانويك مع الماء:

	CH ₃ COOH _(aq) +	$ H_2O_{(l)}$ =	CH ₃ COO ⁻ _(aq)) +	$H_3O^+_{(aq)}$
t = 0	10^{-3}	زيادة	0	0
الحالة الانتقالية	$10^{-3} - x$	زيادة	x	x
الحالة النهائية	$10^{-3} - x_{\rm \acute{e}q}$	زيادة	$x_{ m \acute{e}q}$	$x_{ m \acute{e}q}$

جدول تقدم تفاعل حمض أحادي كلور الإيثانويك مع الماء:

$CH_2CICOOH_{(aq)} + H_2O_{(l)} = CH_2CICOO^{(aq)} + H_3O^+_{(aq)}$				
t = 0	10^{-3}	زيادة	0	0
الحالة الانتقالية	$10^{-3} - x$	زيادة	X	х
الحالة النهائية	$10^{-3} - x_{\text{éq}}$	زيادة	$x_{ m \acute{e}q}$	$\chi_{ m \acute{e}q}$

 $pH_{_2}$ = 2,7 ' $pH_{_1}$ = 3,55 هي $pH_{_2}$ القيم الصحيحة لـ $pH_{_2}$

2 - بالنسبة لمحلول حمض الإيثانويك :

$$\left[OH^{-}\right] = 10^{pH_{1}-14} \ 10^{3,55-14} \approx 3,55 \times 10^{-11} \ mol/L \quad \cdot \quad \left[H_{3}O^{+}\right] = 10^{-pH_{1}} = 10^{-3,55} = 2,82 \times 10^{-4} \ mol/L$$

$$\left[CH_{3}COO^{-}
ight] = rac{x_{\acute{e}q}}{V_{1}} = rac{\left[H_{3}O^{+}
ight]V_{1}}{V_{1}} = \left[H_{3}O^{+}
ight] = 2,82 imes 10^{-4} \, mol\,/\,L$$
 : من جدول النقدّم

$$[CH_3COOH] = \frac{C_1V_1 - x_{\acute{e}q}}{V_1} = C_1 - [H_3O^+] = 5 \times 10^{-3} - 2,82 \times 10^{-4} = 4,72 \times 10^{-3} \, mol/L$$

بالنسبة لمحلول حمض أحادي كلور الإيثانويك:

$$\left[OH^{-}\right] = 10^{pH_{2}-14} = 10^{2,7-14} \approx 5,0 \times 10^{-12} \ mol/L \quad \cdot \quad \left[H_{3}O^{+}\right] = 10^{-pH_{2}} = 10^{-2,7} = 2 \times 10^{-3} \ mol/L$$

$$\left[CH_2 ClCOO^- \right] = \frac{x_{\acute{e}q}}{V_2} = \frac{\left[H_3 O^+ \right] V_2}{V_2} = \left[H_3 O^+ \right] = 2 \times 10^{-3} \, mol \, / \, L \, : \,$$
من جدول الثقدّم

$$[CH_2ClCOOH] = \frac{C_2V_2 - x_{\acute{e}q}}{V_2} = C_2 - [H_3O^+] = 5 \times 10^{-3} - 2 \times 10^{-3} = 3 \times 10^{-3} \, mol/L$$

$$K_{a_1} = \frac{\left[H_3O^+\right]_f \times \left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_f} = \frac{\left(2,82 \times 10^{-4}\right)^2}{4,72 \times 10^{-3}} = 1,68 \times 10^{-5}$$
 - 3

$$K_{a_2} = \frac{\left[H_3O^+\right]_f \times \left[CH_2ClCOO^-\right]_f}{\left[CH_2ClCOOH\right]_f} = \frac{\left(2 \times 10^{-3}\right)^2}{3 \times 10^{-3}} = 1,33 \times 10^{-3}$$

ملاحظة: نعلم أن قيمة ثابت الحموضة تتعلق فقط بدرجة الحرارة. حيث أن القيمتين المحسوبتين توافقان درجة الحرارة 25°C.

 K_a أكبر يكون الحمض أقوى من حمض الإيثانويك (كلما كانت قيمة K_a أكبر يكون الحمض أقوى) .

ملاحظة : هذه المقارنة صحيحة حتى لو كان تركيزا الحمضين C_1 و C_2 مختلفين .

التمرين 24

(1)
$$C_a = \frac{n}{V}$$
 : (S) التركيز المولي للمحلول — 1

: (1) العلاقة
$$n$$
 في العلاقة n في العلاقة $n = \frac{m}{M} = \frac{0,305}{122} = 2,5 \times 10^{-3}$ في العلاقة (1)

$$C_a = \frac{2,5 \times 10^{-3}}{0,5} = 5,0 \times 10^{-3} \ mol/L$$

 $C_a \ V_a = C_b \ V_{bE}$ نحسب حجم المحلول الأساسي اللازم للتكافؤ ، وذلك من العلاقة -2

$$V_{bE} = \frac{C_a V_a}{C_b} = \frac{5 \times 10^{-3} \times 10}{5 \times 10^{-3}} = 10 \ mL$$

البيان الموافق هو البيان (I).

رفضنا البيانات الأخرى لأن:

البيان (II):

رغم أن الحمض المعاير عبارة عن حمض ضعيف لأن pH الابتدائي يساوي 3,3 ، معناه :

. C وهي قيمة أصغر من $[{\rm H_3O}^+] = 10^{-3,3} \; {
m mol/L}$ لكن حجم المحلول الأساسي المضاف عند التكافؤ

 $V_{bE} = 10 \; mL$ ، وهذا لا يوافق لأن $20 \; mL$ هو

البيانان (III) و (IV) خاصان بمعايرة أساسين وليس بمعايرة حمضين لأن pH الابتدائي في كليهما أكبر من 7 .

التمرين 25

1 – في نقطة تقاطع البيانين تكون النسبة المئوية لـ [-HCOO] مساوية لـ [HCOOH]

في العلاقة
$$[HCOO^-] = [HCOOH]$$
 ، نضع $pH = pK_A + Log \frac{\left[HCOO^-\right]}{\left[HCOOH\right]}$ ، وبالتالي يكون

 $pH = pK_A$ ومنه $pH = pK_A + Log 1$

 $pK_A=3.8$ بإسقاط نقطة تقاطع البيانين على محور الـ pH نجد القيمة 3.8 ، أي

(انظر الشكل) [HCOO $^-$] = 93 % و $^+$ (HCOOH) = 7 % نجد $^+$ pH = 5 من أجل - 2

3 - بما أن [HCOOH] = 2 [HCOOT] ، ونعلم أن مجوع النسبتين المئويتين للفردين هو % 100 ، أي :

3[HCOO⁻] = 100 : ومنه ، 2 [HCOO⁻] + [HCOO⁻] = 100 : إذن ، [HCOOH] + [HCOO⁻] = 100

[HCOOH] = 66,6 % ، ونستنتج $[HCOO^{-}] = 33,3 %$: وبالتالي

الـ pH الموافق لهاتين النسبتين هو 3,5.

$$pH=pK_A+Lograc{\left[HCOO^-
ight]}{2\left[HCOO^-
ight]}=pK_A+Lograc{1}{2}$$
: نكتب $pH=pK_A+Lograc{\left[HCOO^-
ight]}{\left[HCOOH
ight]}$ يمكن استعمال العلاقة $pH=pK_A+Lograc{1}{2}=3,8-0,3=3,5$

التمرين 26

1 - مثلنا كل ألوان الكواشف باللون الأسود ، ومثلنا اللون الشفاف بالرمادي .

المحلول C له pH محصور بين القيمتين 10 و 11.6

2 - لا يمكن إجراء أي اختبار إضافي بواسطة هذه الكواشف ، لأن حدود صفاتها الأساسية كلها أقل من القيمة 10 .

لكي نضيّق المجال الذي يشمل pH المحلول C يجب أن نبحث عن كاشف ملون تكون فيه الصفة الحمضية محدودة بقيمة أقل من 11,6 .

التمرين 27

$$HCOOH_{(aq)} + H_2O_{(l)} = HCOO^-_{(aq)} + H_3O^+_{(aq)}$$
: معادلة النفاعل – 1

: ومنه ، $C_1 \ V_a = C_b \ V_{b_F}$: وبالتالي . ومنه ، ومنه تكون كمية مادة كل متفاعل قد انتهت . وبالتالي

$$V_{b_E} = \frac{C_1 V_a}{C_b} = \frac{0.1 \times 80}{0.25} = 32 \ mL$$

$$\lceil H_3O^+ \rceil = 10^{-pH} = 10^{-3.8} = 1,6 \times 10^{-4} \ mol/L$$
 ومنه , pH = 3,8 جـ) لدينا

$$\left[OH^{-}\right] = \frac{10^{-14}}{\left[H_{3}O^{+}\right]} = \frac{10^{-14}}{1,6\times10^{-4}} = 6,25\times10^{-11} \ mol/L$$
 نستنتج 25°C من الجداء الشاردي للماء في الدرجة

$$n\!\left(OH^-\right)\!=\!\left[OH^-\right]\!\times\!\left(\frac{1}{2}V_{b_E}+V_a\right)\!=\!6,25\times10^{-11}\times96\times10^{-3}=6,0\times10^{-12}\ mol\,/\,L\ :$$
 أما كمية مادة OH^-

جدول التقدّم: نحسب أو لا كمية مادة الحمض والأساس الابتدائيتان.

$$n \text{ (HCOOH)} = C_1 V_a = 0.1 \times 0.08 = 8.0 \times 10^{-3} \text{ mol/ L}$$

عند عند ،
$$n(OH^-) = C_b \times \frac{1}{2} V_{b_E} = 0,25 \times 0,016 = 4 \times 10^{-3} \ mol/L$$

(équilibre معناه eq) معناه التكافؤ ب $x_{
m \acute{e}q}$

 $x_{
m max} = 4 imes 10^{-3} \; {
m mol} \; \; \; \;$ نعلم أن المتفاعل المحدّ هو $m OH^-$ ، وبالتالي

$HCOOH_{(aq)} + OH^{-}_{(aq)} = HCOO^{-}_{(aq)} + H_2O_{(l)}$				
t = 0	8×10^{-3}	4×10^{-3}	0	زيادة
الحالة الانتقالية	$8\times10^{-3}-x$	$4\times10^{-3}-x$	х	زيادة
الحالة النهائية	$8\times10^{-3}-x_{\rm \acute{e}q}$	$4\times10^{-3}-x_{\rm \acute{e}q}$	$\chi_{ m \acute{e}q}$	زيادة

$: x_{\text{\'eq}} \rightarrow x_{\text{\'eq}}$

$$4 \times 10^{-3} - x_{
m eq}$$
 عند نصف التكافؤ كان لدينا $n(OH^-) = 6,0 \times 10^{-12} \ mol/L$ ، وهذه الكمية من جدول التقدم هي نفسها

$$x_{\rm \acute{e}q} = 4 \times 10^{-3} - 6 \times 10^{-12} \approx 4 \times 10^{-3} \; {\rm mol} \; :$$

$$(4 \times 10^{-3})$$
 أمام 6×10^{-12}

. ومنه نستنتج أن تفاعل المعايرة
$$au=rac{x_{eq}}{4 imes 10^{-3}}=rac{4 imes 10^{-3}}{4 imes 10^{-3}}=1$$
 . ومنه نستنتج أن تفاعل المعايرة هو تفاعل تام

ملاحظة: يمكن أن نحسب التقدم النهائي بواسطة أي حجم مضاف من المحلول الأساسي ، أقصد ليس فقط في نقطة نصف التكافؤ ، معناه يكفى أن نعرف حجم المحلول الأساسى المضاف وقيمة pH المزيج عند إضافة هذا الحجم).

 $C_6H_5COOH_{(aq)} + H_2O_{(l)} = C_6H_5COO^-_{(aq)} + H_3O^+_{(aq)}$: معادلة التفاعل – 1

 $m V_{bE} = 8 \; mL$ كأن قيمة هذا الحجم هي فاصلة النهاية العظمي - $m V_{bE} = 8 \; mL$

$$C_b=1 imes10^{-1}\,mol.L^{-1}$$
 هي المحلول الأساسي المعطاة هي ، $g\left(V_B
ight)=rac{dpH}{dV_B}$ لبيان الدالة

 $pH_{E}=8,4$ ، $V_{bE}=8~\mathrm{mL}$ ، و المرسوم في الكتاب غير دقيق ، وقد رسمنا البيان الدقيق والذي يكون فيه

: وبالتالي ، $n (C_6H_5COOH) = n (OH^-)$ عند نقطة التكافؤ تكون كميّة مادة الحمض مساوية لكميّة مادة الأساس

$$C_a = \frac{C_b \ V_{b_E}}{V_o} = \frac{0.1 \times 8}{10} = 8.0 \times 10^{-2} \ mol \ / \ L$$
 : ومنه ، $C_a \ V_a = C_b \ V_{bE}$

 $[{\rm H_3O}^+] = 10^{-4.2} = 6.31 \times 10^{-5} \ {
m mol/} \ {
m L}$ وبالتالي 4.2 ، وبالتالي $V_b = 4 \ {
m mL}$ يكون $V_b = 4 \ {
m mL}$ من أجل الحجم $V_b = 4 \ {
m mL}$

$$n~(\mathrm{OH^-}) = [\mathrm{OH^-}] \times (\mathrm{V_a} + \mathrm{V_b})$$
 فهي $\mathrm{OH^-}$ فهي أما كميّة مادة $\mathrm{OH^-}$ أما كميّة مادة $\mathrm{OH^-}$ أما كميّة مادة $\mathrm{OH^-}$

$$n \text{ (OH^-)} = 1.6 \times 10^{-10} \times (10 + 4) \times 10^{-3} = 2.24 \times 10^{-12} \text{ mol/ L}$$

 $C_a \ V_a = 0.08 \times 10 \times 10^{-3} = 8.0 \times 10^{-4} \ mol$ هي البنزويك هي حمض البنزويك على - 5

$$C_b~V_b = 0.1 \times 4 \times 10^{-3} = 4.0 \times 10^{-4}~mol$$
 هي مادة الأساس هي

	C ₆ H ₅ COOH _(aq)	+ OH ⁻ (aq) =	$C_6H_5COO^{(aq)}$	$+$ $H_2O_{(l)}$
الحالة الابتدائية	8×10^{-4}	4×10^{-4}	0	زيادة
الحالة الانتقالية	$8 \times 10^{-4} - x$	$4 \times 10^{-4} - x$	х	زيادة
الحالة النهائية	$8\times10^{-4}-x_{\rm \acute{e}q}$	$4\times10^{-4}-x_{\rm \acute{e}q}$	$\chi_{ m \acute{e}q}$	زيادة

عندما أضفنا الحجم $v_b = 4 \, \mathrm{mL}$ عندما أضفنا الحجم عندما أضفنا الحجم $v_b = 4 \times 10^{-12} \, \mathrm{mol}$ عندما أضفنا الحجم $v_b = 4 \times 10^{-4} \, \mathrm{mol}$ عندما أوي شوارد $v_b = 4 \times 10^{-4} \, \mathrm{mol}$ عندما المتفاعل المحدّ هو الأساس ، أي شوارد $v_b = 4 \times 10^{-4} \, \mathrm{mol}$ وبالتالي $v_b = 4 \times 10^{-4} \, \mathrm{mol}$

. النسبة النهائية لتقدّم تفاعل المعايرة هي : $au=rac{x_{\acute{e}q}}{x_{max}}=rac{4 imes10^{-4}}{4 imes10^{-4}}=1$ النسبة النهائية لتقدّم تفاعل المعايرة هو تفاعل تــام .

التمرين 29

. C_1 والتركيز المولي للحمض البنزويك (حمض البنزين) هو حمض ضعيف نقارن بين $[H_3O^+]$ والتركيز المولي للحمض -1 الحمض $[H_3O^+] < C_1$ ، ومنه -1 ومنه -1 ومنه -1 الدينا -1 الدينا -1 ومنه -1 ومنه -1 ومنه -1 الحمض المعرف الم

ومن هذا نستنتج أن حمض البنزويك لم يتشرد كليا في الماء ، وبالتالي هو حمض ضعيف.

 $C_6H_5COOH_{(aq)} + H_2O_{(l)} = C_6H_5COO^-_{(aq)} + H_3O^+_{(aq)}$: معادلة التفاعل مع الماء - 2

 $K_A = \frac{\left[H_3O^+\right]_f \times \left[C_6H_5COO^-\right]_f}{\left[C_6H_5COOH\right]_f} : C_6H_5COOH / C_6H_5COO^-$ عبارة ثابت الحموضة للثنائية

 ${
m OH}^-$ ، ${
m H}_3{
m O}^+$ ، ${
m C}_6{
m H}_5{
m COO}^-$ ، ${
m Na}^+$ ، ${
m Im}_6{
m Im}_6{$

(1) $C_6H_5COO^-_{(aq)} + H_2O_{(l)} = C_6H_5COOH_{(aq)} + OH^-_{(aq)}$: فيتفاعلها هذا مع الماء تضيف للمحلول شوارد $OH^-_{(aq)}$ مما يجعل هذا المحلول ذا طبيعة أساسية .

لكي نبيّن أن شاردة البنزوات هي أساس ضعيف فيالماء نقارن بين التركيز المولي لبنزوات الصوديوم الذي هو نفسه التركيز المولى للبنزوات (لأن بنزوات الصوديوم تتحلّل كليا في الماء) والتركيز المولى لشوارد OH^- .

لدينا H_3O^+ التركيز المولي لشوارد H_3O^+ المولي الم

$$\left[OH^{-}\right] = \frac{10^{-14}}{\left[H_{3}O^{+}\right]} = \frac{10^{-14}}{7.9 \times 10^{-9}} = 1,26 \times 10^{-6} \ mol/L$$
: الهيدروكسيد

لدينا $m C_2 = 10^{-2}~mol/~L$ وهذه القيمة أكبر بكثير من $m [OH^-]$ ، وبالتالي شاردة البنزوات أساس ضعيف

4 - كتبنا معادلة تفاعل البنزوات مع الماء (انظر المعادلة 1)

$$K = rac{\left[OH^-
ight]_f imes \left[C_6 H_5 COOH
ight]_f}{\left[C_6 H_5 COO^-
ight]_f}$$
: ثابت التوازن لهذا التفاعل

- 5

$$pH = pK_A + Log rac{\left[C_6 H_5 COO^-
ight]}{\left[C_6 H_5 COOH
ight]}$$
 من العلاقة

نستنتج أنه لما يكون للمحلول $pH=pK_A$ ، يكون تركيزا الفردين الكيميائيين في هذه الثنائية متساويين .

أما لما يصبح
$$pH$$
 أكبر من pK_A يصبح pK_A يصبح ولا أما لما يصبح والمقام في النسبة pK_A أما لما يصبح والمقام في النسبة أما لما يصبح والمقام في النسبة المقام في المقام في النسبة المقام في ال

مو
$$C_6H_5COO^-$$
 ، أي الصفة المتغلبة هي الصفة $pH=5,2$ ، وبالتالي يكون الفرد المتغلبة هي الصفة $[C_6H_5COO^-]$

الأساسية.

pK_A الـ - 6

 S_1 مع هيدروكسيد الصوديوم S_1

$$C_6H_5COOH_{(aq)} + (Na^+, OH^-)_{(aq)} = (C_6H_5COO^-, Na^+)_{(aq)} + H_2O_{(l)}$$
 $C_6H_5COOH_{(aq)} + OH^-_{(aq)} = C_6H_5COO^-_{(aq)} + H_2O_{(l)}$ أو اختصارا عمض 2 أساس 1 مصن 2 مصن 2

ثابت التوازن:

$$K = \frac{\left[C_{6}H_{5}COO^{-}\right]}{\left[C_{6}H_{5}COOH\right] \times \left[OH^{-}\right]} = \frac{\left[C_{6}H_{5}COO^{-}\right]}{\left[C_{6}H_{5}COOH\right] \times \left[OH^{-}\right]} \times \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{A1}}{K_{e}} = 10^{pK_{e}-pK_{A1}} = 6.31 \times 10^{9}$$

. الذينا $K>10^4$ لدينا ، $K>10^4$

التمرين 30

(4.18) pH = 4,2

$${
m HIn}_{\,(aq)} \, + \, {
m H}_2{
m O}_{(l)} \, = \, {
m H}_3{
m O}^+_{\,(aq)} \, + \, {
m In}^-_{\,(aq)}$$
 : معادلة النفاعل $-\, 1$

$$[H_3O^+]_f = 10^{-pH} = 10^{-4.2} = 6.3 \times 10^{-5} \ mol/L$$
 - 2

$$n ext{ (HIn)} = C_0 ext{ V} = 2.9 \times 10^{-4} \times 0.1 = 2.9 \times 10^{-5} ext{ mol}$$
 هي أمادة الحمض الابتدائية هي -3

$$ext{HIn}_{(aq)} + ext{H}_2 ext{O}_{(l)} = ext{H}_3 ext{O}^+_{(aq)} + ext{In}^-_{(aq)}$$
 ننشئ جدول النقدّم $0 ext{O} ext{O}$

$$2.9 imes 10^{-5} - x_{
m \acute{e}q}$$
 زیادة $x_{
m \acute{e}q}$

 $x_{
m f} = n \ ({
m H_3O}^+)$ و $x_{
m max} = {
m C_0 \ V}$: من جدول التقدم لدينا

$$au = rac{x_f}{x_{max}} = rac{\left[H_3O^+
ight] imes V}{C_0 imes V} = rac{\left[H_3O^+
ight]}{C_0} = rac{6.3 imes 10^{-5}}{2.9 imes 10^{-4}} = 0.22$$
 النسبة النهائية للتقدّم هي

لدينا نسبة التقدم النهائي au < au ، وبالتالي الحمض (الكاشف الملوّن) لا يتشرّد كليا في الماء .

(1)
$$K_a = \frac{\left[H_3O^+\right] \times \left[In^-\right]}{\left[HIn\right]}$$
 so $\left(\text{HIn / In}^-\right)$ conditions a function of 4

 $K=K_{a}$ في حالة حمض ضعيف في الماء - 5

$$\left[OH^{-}\right] = \frac{10^{-14}}{6.3 \times 10^{-5}} = 1.6 \times 10^{-10} \ mol/L \quad \cdot \quad \left[H_{3}O^{+}\right] = \left[In^{-}\right] = 6.3 \times 10^{-5} \ mol/L$$

$$[HIn] = C_0 - [H_3O^+] = 2.9 \times 10^{-4} - 6.3 \times 10^{-5} = 2.27 \times 10^{-4} \text{ mol/ } L$$

(pH = 4,18 وليس pH = 4,2 واليس pH = 4,2 (هذه القيمة توافق
$$K_a = \frac{\left(6.3 \times 10^{-5}\right)^2}{2.27 \times 10^{-4}} = 1.75 \times 10^{-5}$$
 (1) بالتعويض في العلاقة

. ونستنتج من الجدول أن الكاشف الملوّن هو أخضر بروموكريزول ، $pK_a = -Log \, K_a = -Log \, 1,75 \times 10^{-5} = 4,7$

التمرين 31

.... ، يُسكب تدريجيا محلول (وليس محلولا)

$$NH_{3(aq)} \, + \, (H_3O^+ \, , \, Cl^-)_{(aq)} \, = \, (NH_4^+ \, , \, Cl^-)_{(aq)} \, + \, H_2O_{(l)} \, \, \, :$$
 معادلة تفاعل المعايرة -1

$$K = \frac{\left[NH_4^+\right]_f}{\left[H_3O^+\right]_f \times \left[NH_3\right]_f} = \frac{1}{K_a} = \frac{1}{10^{-9.2}} = 10^{9.2} = 1.6 \times 10^9 \quad : \text{ ثابت التوازن } : -2$$

3 - نقطة التكافؤ (انظر للشكل في الصفحة الموالية)

 NH_4^+/NH_3 الأنواع الكيميائية التي تشكل أغلبية : إذا كان المقصود هو الأفراد الكيميائية المتغلبة في الثنائية +4التي قيمة pK_a لها هو 9.2 (من البيان) ، يكون الجواب كما يلي :

$$pH = pK_A + Log rac{\left\lceil N{H_4}^+
ight
ceil}{\left\lceil N{H_3}
ight
ceil}$$
: حسب العلاقة

$$pH = 5.2$$
 و $pH = 2$ د من أجل $pH < pK_a$ لاينا $pH < pK_a$ ، إذن المتغلب هو الحمض NH_4^+

:
$$pH = 9,2$$
 من أجل باذن ، $pH = pK_a$ لدينا $NH_4^+ = [NH_3]$

لكن المقصود ليس هذا ، والدليل على ذلك هو إعطاء قيمتين لـ pH كلاهما أقل من pK_a (ذكرنا هذه الملاحظات حتى لا يتقيّد التلميذ بالحل المقترح في الكتاب)

المقصود في هذا السؤال هو التغلب بالنسبة لكل الأفراد الكيميائية في المزيج .

• من أجل pH = 2

 $pH = - \ Log \ C_A = 2$ وبالتالي ، $C_A = 0.01 \ mol/\ L$ هو نعلم أن التركيز المولي للمحلول الحمضي هو

. البيان pH=2 خطا مقاربا $pH=f\left(V_{B}\right)$ البيان

ما معنى هذا ؟

معناه أننا لكي نحصل على pH=2 للمزيج يجب أن نواصل إضافة المحلول الحمضي من السحاحة بعد نقطة التكافؤ إلى أن يصبح حجم المزيج يساوي تقريبا حجم المحلول الحمضي ، أي أن حجم المحلول الأساسي الذي كان موجودا في البيشر يصبح مهملا أمام حجم المزيج ، وكأن المزيج هو نفسه الحمض ، وبالتالي يكون لهذا المزيج قيمة لـ pH قريبة جدا من 2 .

 $\mathbf{C}\mathbf{I}^-$ ، $\mathbf{H_3}\mathbf{O}^+$ هي تشكل الأغلبية هي الكيميائية التي تشكل الأغلبية

• من أجل 5,2 = pH = 5,7 (أغلب الظن أن التمرين يقصد pH = 5,7 ، أي نقطة التكافؤ) ، نعتبر pH = 5,7 الفرق بين القيمتين لا يؤثر كثيرا ، ما دامت القيمتان تجاور ان نقطة التكافؤ .

. NH_3 ، CI^- ، NH_4^+ ، OH^- ، H_3O^+ : هي تقطة التكافؤ هي نقطة التكافؤ عند التكافؤ عند نقطة التكافؤ عند التكافؤ عند

 $[H_3O^+] = 10^{-pH} = 10^{-5,7} = 2,0 \times 10^{-6} \text{ mol/ L}$

$$\left[OH^{-}\right] = \frac{10^{-14}}{\left[H_{3}O^{+}\right]} = \frac{10^{-14}}{2 \times 10^{-6}} = 5.0 \times 10^{-9} \ mol/L$$

$$[Cl^{-}] = \frac{C_A V_{A_E}}{V_B + V_{A_E}} = \frac{0.01 \times 18.4}{38.4} = 4.8 \times 10^{-3} \text{ mol} / L$$

(الرجع الدرس – الجزء الثالث) . $[NH_4^+] \approx [Cl^-] = 4.8 \times 10^{-3} \; mol/\; L$

$$[NH_3] = [H_3O^+] = 2.0 \times 10^{-6} \text{ mol/ L}$$

المتغلبتان ب NH_4 و NH_4 هما المتغلبتان الشاردتان $C\Gamma$

. 9,2 هو NH_4^+/NH_3 الثنائية pK_a الأن pK_a هو pH=9,2 •

 $[NH_3] = [NH_4^+]$ عند نقطة نصف التكافؤ يكون

$$[OH^-] = \frac{10^{-14}}{6.3 \times 10^{-10}} = 1.6 \times 10^{-5} \ mol/L$$
 ، $[H_3O^+] = 10^{-9.2} = 6.3 \times 10^{-10} \ mol/L$: لدينا

. عند نصف عند نصف التكافؤ .
$$\left[Cl^{-}\right] = \frac{C_a \ V'}{V_b + V'} = \frac{0.01 \times 9.2}{29.2} = 3.15 \times 10^{-3} \ mol \ / \ L$$

$$[NH_4^+] \approx [Cl^-] = 3.15 \times 10^{-3} \text{ mol/ } L = [NH_3]$$

. NH_3 ، NH_4^+ ، $C\Gamma^-$: الأنواع الكيميائية التي تشكل أغلبية عند نصف التكافؤ هي

ملاحظة: بإمكانك الإجابة عن هذا السؤال بدون حساب وذلك بالاستعانة بالخلاصة التالية:

خلاصة عامة (بإمكانك الاستعانة بها في بيانات أخرى)

التمرين 32

حمض السولفاميك هو حمض قوي ، يتشرد كليا في الماء صيغته المفصلة كتلته الجزيئية المولية g/ mol .

1 - معادلة تفاعل الحمض مع الماء:

$$HA_{(l)} + H_2O_{(l)} = H_3O^+_{(aq)} + A^-_{(aq)}$$
 ، $HA_{(aq)}$ ، $HA_{(aq)}$ ، $HA_{(aq)}$. (1) المثل الحمض بالرمز $(H_3O^+, A^-)_{(aq)} + (Na^+, OH^-)_{(aq)} = 2 H_2O_{(l)} + (Na^+, A^-)_{(aq)}$

$$(15,3 \ \text{mL} \ , 7) \ \text{E}$$
 نقطة التكافؤ $C_A \ V_A = C_B \ V_{B_E} \$ حجم المحلول الحمضي الذي عايرناه هو $V_A = 20 + 80 = 100 \ \text{mL}$ (أضفنا الماء المقطر للمحلول الحمضي قبل الشروع في إضافة المحلول الأساسي) .

$$C_A = \frac{C_B \ V_{B_E}}{V_A}$$

$$C_A = \frac{0.1 \times 15.3}{100} = 1.53 \times 10^{-2} \ mol/L$$

 $V_{\rm B}$ (mL)

$$p=82\,\%$$
 ، $p=rac{1.48}{1.8}=0.82$ د) نسبة النقاوة في الحمض هي

هـ) الكاشف الملون الأنسب لهذه المعايرة هو أزرق البروموتيمول لأن مجال تغير لونه يشمل نقطة التكافؤ.

التمرين 33

NaOH من 20 g لا يحتوي إلا على g 20 معناه g 100 g معناه g 20 معناه g 100 من هذا المحلول لا يحتوي إلا على $V = \frac{m}{\rho}$ هذه الـ g 100 من المحلول غير النقي تشغل حجما معيّنا لأن هذه المادة سائلة g هذا الحجم نحسبه بقانون الكتلة الحجمية g

.
$$n = \frac{m}{M} = \frac{20}{40} = 0,5 \; mol$$
 ه هيدروكسيد الصوديوم ه $V = \frac{100}{1230} = 0,0813L$

.
$$[NaOH]$$
 = $C'_B = \frac{n}{V} = \frac{0.5}{0.0813} = 6.15 \; mol \, / \, L$ أما التركيز المولي فهو

$$d = \frac{\rho}{\rho_e} = \frac{1,23}{1} = 1,23$$
 أو نطبّق العلاقة : $C = 10 \frac{P}{M} \times d = 10 \times \frac{20}{40} \times 1,23 = 6,15 mol/L$ أو نطبّق العلاقة : $C = 10 \frac{P}{M} \times d = 10 \times \frac{20}{40} \times 1,23 = 6,15 mol/L$

. عيث $\rho_e=1kg/L$ عيث مي الكتلة الحجمية للماء

- 2

الطريقة هي : نأخذ بواسطة مصاصة حجما $V' = 10 \, \text{mL}$ مثلا ونصبه في حوجلة سعتها $1000 \, \text{mL}$ ونكمل الحجم بالماء المقطر ونكون بذلك قد ضاعفنا الحجم $1000 \, \text{n}$ مرة ، أي $\frac{1000}{10}$. في هذه الحالة يصبح التركيز المولي للمحلول S هو :

$$C_B = \frac{6.15}{100} = 6.15 \times 10^{-2} \ mol/L$$

$$(H_3O^+,Cl^-)_{(aq)} + (Na^+,OH^-)_{(aq)} = 2 H_2O_{(l)} + (Na^+,Cl^-)_{(aq)}$$
 : معادلة تفاعل المعايرة - 3

 $pH=f\left(V_{A}
ight)$ بالبيان (ب+ ج+ إحداثي نقطة التكافؤ + E + (13 mL + 7)

$$C'_{B}=rac{C_{A}\ V_{A_{E}}}{V_{B}}=rac{0.1 imes13}{20}=0.065\ mol/L$$
 هو C' $_{
m B}$ هو S التركيز المولي للمحلول (c'

أما التركيز المولي للمحلول المركز فيُضرب بـ $100~6,5~\mathrm{mol/L}$.

هـ) المقارنة : تقتضي منا المقارنة أن نحسب الإرتياب النسبي في التركيز المولي

. معقولة ، و هي دقة جدّ معقولة ،
$$\frac{\Delta C_B}{C_B} = \frac{\left|C'_B - C''_B\right|}{C'_B} = \frac{\left|6,2-6,5\right|}{6,2} = 0,05$$

إذن يمكن أن نقول أن النتيجة التجريبية والمحسوبة في السؤال -1 متطابقتان.