

Introduction

- A probabilistic approach to classification problems.
- The theory enables optimal decision making in a probabilistic setting.
- Idea: Select the class for which the expected risk is the least.
 - Generally, the risk incorporates the costs linked with different decisions.
- Problem needs to formulated in a probabilistic framework, and all relevant probabilities are assumed to be known.

Bayes rule in classification problems

• Enables computation of the posterior probability as

$$P(y|\mathbf{x}) = \frac{p(\mathbf{x}|y) \times P(y)}{p(\mathbf{x})}$$

- $-P(y|\mathbf{x})$: Probability of the output given a particular input.
- $-p(\mathbf{x}|y)$: Probability of the input data given a particular output.
- -P(y): Prior probability of the output (class), without observing the data.
- $-p(\mathbf{x})$: Probability of the input observation.

Example

• Classification of public transport.

- Features:
 - Length (x_1)
 - Width (x_2)
 - Height (x_3)
 - Weight (x_4)

Class-conditional probability density

- It is the probability density function for feature \mathbf{x} given a particular class, e.g. $p(\mathbf{x}|c_2)$.
- This is the class likelihood.
- Example: Hypothetical class-conditional probability density for the first feature, length (x_1) , of the four classes.

Prior

• Prior probability reflects the a priori knowledge of the outputs (classes) before the feature observations are taken into account.

Prior probabilities

Auto:
$$P(c_1) = \frac{5}{23}$$

Taxi:
$$P(c_2) = \frac{4}{23}$$

Bus:
$$P(c_3) = \frac{8}{23}$$

Auto:
$$P(c_1) = \frac{5}{23}$$
 Taxi: $P(c_2) = \frac{4}{23}$ Bus: $P(c_3) = \frac{8}{23}$ Tram: $P(c_4) = \frac{6}{23}$

For J classes the priors must satisfy

$$\sum_{j=1}^{J} P(c_j) = 1$$

Posterior

• Posterior probability is the probability of an output (say the jth class) given some input \mathbf{x} :

$$P(c_j|\mathbf{x}) = \frac{p(\mathbf{x}|c_j)P(c_j)}{p(\mathbf{x})}$$

- The term $p(\mathbf{x})$ is constant for all classes and as such can be ignored.
- Thus, the class-conditional probability density $p(\mathbf{x}|c_j)$ and the prior $P(c_j)$ govern the posterior probability $P(c_j|\mathbf{x})$.

Decision boundary

Output classes $c_1 \quad \mathbf{c}_2$

- Consider a simple dataset:
 - 1D feature space
 - Two classes
- In this case there are two ways in which data can be misclassified:
 - x belongs to c_1 , but is located in decision region \mathcal{R}_2 .
 - x belongs to c_2 , but is located in decision region \mathcal{R}_1 .
- The probability of error given x:

$$P(\text{error}|x) = \begin{cases} P(c_2|x) & \text{if } x \text{ is assigned to } c_1 \\ P(c_1|x) & \text{if } x \text{ is assigned to } c_2 \end{cases}$$

Bayes Error

• Average probability of error: $P(\text{error}) = \int_{-\infty}^{\infty} P(\text{error}|x)p(x)dx$ $= \int_{\mathcal{R}_1} P(c_2|x)p(x)dx + \int_{\mathcal{R}_2} P(c_1|x)p(x)dx$ $= \int_{\mathcal{R}_2} p(x|c_2)P(c_2)dx + \int_{\mathcal{R}_2} p(x|c_1)P(c_1)dx$

Bayes decision theory

Reducible Error

• Reducible Error: Error produced due to suboptimal choice of decision boundary.

Bayes decision theory 10

Bayes decision rule

• Probability of misclassification is the least when each data point is assigned to the class with maximum posterior probability $P(c_j|x)$.

Bayes decision theory 1

General theory

- A risk function (more general form of error function) is derived from the losses incurred from all the errors.
- Suppose there are J output classes $\{c_1, c_2, ..., c_J\}$.
- The loss function computes the cost of taking an action.
- Let $L(\alpha_i|c_j)$ the cost of taking action α_i when the actual class is c_j .
- In the simplest case, actions could be same as the classes, i.e. $\alpha_i = c_i$.
- Let $R(\alpha_i|\mathbf{x})$ be the expected loss or conditional risk of taking action α_i for a particular input \mathbf{x} , and is defined as

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{J} L(\alpha_i|c_j)P(c_j|\mathbf{x})$$

General theory

- $R(\alpha_i|\mathbf{x})$ is expected (average) loss for taking an action for a particular input and loss function.
- If actions and classes are the same, then $\alpha_i = c_i$.
- The overall risk of a decision rule is the expected loss associated with a given decision rule:

$$\mathbf{R} = \int R(\alpha_i | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

- In order to minimize the overall risk, we need a rule that minimizes $R(\alpha_i|\mathbf{x})$ for all \mathbf{x} .
- The Bayes decision rule minimizes the overall risk by selecting the action that minimizes the conditional risk:

$$\alpha^* = \arg\min_{\alpha_i} R(\alpha_i | \mathbf{x})$$

$$= \arg\min_{\alpha_i} \sum_{j=1}^{J} L(\alpha_i | c_j) P(c_j | \mathbf{x})$$

Zero-one loss function

• The Zero-One Loss function is widely used and is defined as

$$L(\alpha_i|c_j) = \begin{cases} 0 & i=j\\ 1 & i \neq j \end{cases}$$

where i, j = 1, 2,, J.

- There is no loss for taking correct decision.
- Incorrect decisions incur uniform unit loss.
- The conditional risk in this case becomes

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{J} L(\alpha_i|c_j)P(c_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(c_j|\mathbf{x})$$
$$= 1 - P(c_i|\mathbf{x})$$

• Therefore, for a particular \mathbf{x} , the conditional risk is minimized by taking the action α_i that maximizes $P(c_i|\mathbf{x})$.