KING SAUD UNIVERSITY COLLEGE OF COMPUTER AND INFORMATION SCIENCES Computer Science Department

CSC 339 Theory of Computation

Tutorial # 1Deterministic Finite Automata (DFA)

2nd Semester 1443-2022

Exercise 1

Find a possible alphabet Σ for the following languages:

- 1. The language L = {oh, ouch, ugh}.
- 2. The language L = {apple, pear, 4711}.
- 3. The language of all binary strings.

Note: a word *foobar* should be interpreted as a string of characters *f*, *o*, *o*, *b*, *a*, *and r*.

Exercise 2

Describe the result of applying the Kleene star operation * over the following alphabets:

- 1. $\Sigma = \{0, 1\}$
- 2. $\Sigma = \{a\}$
- 3. $\Sigma = \emptyset$ (the empty alphabet)

Exercise 3

Let *M* be the following DFA:

- 1. Write down four string accepted by M and the sequence of configurations that shows them.
- 2. Write down four strings not accepted by M.

Exercise 4

Let $\Sigma = \{0,1\}$; construct a DFA which accepts the following language:

1. $L = \{w \mid w \in \Sigma^* \land w \text{ contains the substring } 0101\}$. That is, w = x0101y for two arbitrary strings x and y.

Exercise 5

Which languages are accepted by the following automata?

Exercise 6

Consider the alphabet $\Sigma = \{a,b\}$; give a DFA for each of the following languages:

- 1. All strings that end with *aa*.
- 2. All strings that have **three** consecutives a's (i.e. contains the substring aaa).
- 3. All strings without aaa as a substring.
- 4. All strings over the alphabet, where each string of length 5 contains at least two a's.
- 5. The strings λ , aab and aaabab.