UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma A - 2025/1

Prova da área I

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

r = r	(x, y, z) e $G = G(x, y, z)$ sao funções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} imes \left(\vec{F} + \vec{G} ight) = \vec{\nabla} imes \vec{F} + \vec{\nabla} imes \vec{G}$
4.	$\vec{\nabla}\left(fg ight) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$ec{ abla} imes \left(f ec{F} ight) = ec{ abla} f imes ec{F} + f ec{ abla} imes ec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$ec{ abla}arphi(r)=arphi'(r)\hat{r}$

Curvatura, torção	e aceleração:		
Nome	Fórmula		
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$		
Vetor binormal	$\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ }$		
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{T}}{dt} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ } = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$		
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$		
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{dt} ight\ = \left\ rac{dec{B}}{dt} ight\ $		
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$		
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$		

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au \vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (2.5 pontos) Um automóvel se desloca no sentido positivo de x sobre uma pista sinuosa dada pela função $y(x)=-x^3+6x^2-9x+7$, onde x é medido em quilômetros, $0 \le x \le 4$. O gráfico ao lado apresenta a pista. As características dos pneus e do asfalto indicam que o automóvel pode derrapar caso a aceleração normal exceda 30.000km/h^2 . A velocidade do automóvel obedece a expressão $v(x)=70-10x,\,0\le x\le 4$.

- a) (0.5 ponto) Calcule os vetores \vec{T} e \vec{N} em x=1 e x=3e esboce no gráfico ao lado.
- b) (1.0 ponto) Calcule a curvatura nos pontos x=1 e x=2.
- c) (0.5 ponto) Calcule a aceleração normal nos pontos x=1 e x=2.
- d) $(0.5~{\rm ponto})$ O automóvel poderá derrapar ao longo do percurso? Justifique a sua resposta.

Questão 2 (1.5 ponto) Suponha agora que o automóvel da questão 1 está numa pista sinuosa, mas também está subindo uma montanha, isto é, $y(x) = -x^3 + 6x^2 - 9x + 7$ e $z = \ln(x+1)$. Calcule a torção em $x = 1$.

Questão 3 (3.0 pontos) Seja $\vec{F} = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{G} \right) - \vec{\nabla}^2 \vec{G}$, onde $\vec{G} = (x^2 + y^2 + z^2)\vec{i} + (x^2 + y + z)\vec{j} + (x^3 + y^2 + z)\vec{k}$ e C a semicircunferência $C: \vec{r} = \operatorname{sen}(\pi t)\vec{i} + \cos(\pi t)\vec{k}$, $0 \le t \le 1$.

- a) (1.0 ponto) Mostre que $\vec{F} = -4\vec{i} 2\vec{j} + (-2 6x)\vec{k}$.
- b) (1.0 ponto) Calcule $\int_C \vec{F} \cdot d\vec{r},$ usando integração direta.
- c) (1.0 ponto) Calcule $\int_C \vec{F} \cdot d\vec{r}$, usando o teorema de Stokes. [Dica: lembre-se que o teorema se aplica a uma curva fechada].

Questão 4 (3.0 pontos) Considere o campo vetorial dado por $\vec{F} = (x+y)\vec{i} + (y-x)\vec{j} + 3z\vec{k}$ e a superfície S limitada inferiormente pelo parabolóide

$$S_1: z = -1 + (x^2 + y^2)$$

e superiormente pelo parabolóide

$$S_2: z = 1 - (x^2 + y^2),$$

orientada para fora.

- a) (1.0) Calcule o fluxo de \vec{F} através da superfície S_1 , orientada para fora, através de uma parametrização direta da superfície.
- b) (1.0) Calcule o fluxo de \vec{F} através da superfície S_2 , orientada para fora, através de uma parametrização direta da superfície.
- c) (1.0) Calcule o fluxo de \vec{F} através da superfície $S = S_1 \cup S_2$, orientada para fora, através do Teorema da Divergência.