TD de Logique, feuille 5

Les exercices marqués d'une flèche sont à chercher en priorité. Je recommande d'y réfléchir à l'avance. Ceux qu'on aura pu corriger en TD sont à connaître. Les corrections seront concentrées sur ceux-là, mais vous pouvez toujours me demander des précisions concernant les autres exercices. Les questions ou exercices marqués d'une étoile sont plus difficiles.

→ Exercice 1 (Graphe aléatoire) :

Soient \mathcal{M} et \mathcal{N} deux \mathcal{L} -structures. Un isomorphisme partiel de \mathcal{M} dans \mathcal{N} est un plongement d'une sousstructure $A \subseteq \mathcal{M}$ (son domaine) dans \mathcal{N} . Soit K un ensemble d'isomorphismes partiels de \mathcal{M} dans \mathcal{N} . On dit que K a la propriété du va et vient si :

- K est non vide.
- Pour tout $f \in K$ et tout $a \in M$ il existe $g \in K$ qui étend f et dont le domaine contient a.
- Pour tout $f \in K$ et tout $b \in N$ il existe $g \in K$ qui étend f et dont l'image contient b.

On appelle graphe non orienté un ensemble de points appelés sommets munis d'une relation binaire R qui est antiréflexive, c'est-à-dire pour tout sommet s, on n'a pas sRs et symétrique, c'est-à-dire pour tous sommets s et t on a sRt si et seulement si tRs. Quand deux sommets sont en relation par R, on dit qu'ils sont reliés par une arête.

Un graphe $\mathcal{G} = (G, R^{\mathcal{G}})$ est dit *aléatoire* si pour tous ensembles finis de sommets S_1 et S_2 disjoints, il existe une infinité de $s \in G$ qui sont reliés à tous les points de S_1 et à aucun point de S_2 .

- 1. Montrer que les graphes aléatoires sont axiomatisables au premier ordre dans le langage $\{R\}$ (on notera T leur théorie).
- 2. Montrer que si \mathcal{G} est un graphe non orienté, il existe un graphe $\mathcal{G}' \supseteq \mathcal{G}$ tel que pour toutes parties finies S_1 et S_2 de G disjointes, il existe une infinité de $s \in G'$ qui sont reliés à tous les points de S_1 et à aucun point de S_2 .

En déduire que T est consistante et admet des modèles infinis dénombrables.

- 3. Soient \mathcal{G} et \mathcal{H} deux graphes aléatoires, montrer que l'ensemble des isomorphismes partiels de domaine fini de \mathcal{G} dans \mathcal{H} a la propriété du va et vient.
- 4. En déduire que T élimine les quantificateurs (utiliser un critère du cours), et est complète.
- 5. En déduire aussi que T est \aleph_0 -catégorique : si \mathcal{M} et \mathcal{N} sont deux modèles dénombrables de T, alors \mathcal{M} et \mathcal{N} sont isomorphes.
- 6. Soit $\mathcal{G} \models T$. Montrer qu'il existe une extension élémentaire \mathcal{H} de \mathcal{G} satisfaisant aux propriétés suivantes :
 - a) pour toute partie $P \subseteq G$ il existe $h_P \in H$ tel que $\{g \in G : \mathcal{H} \models h_P R g\} = P$;
 - b) $|H| = 2^{|G|}$.
- 7. Soit $\mathcal{G} \models T$, montrer que tout graphe fini se plonge dans \mathcal{G} .
- 8. Bonus : En utilisant le lemme de Borel-Cantelli, construire un modèle "explicite" de T.

\longrightarrow Exercice 2 (Espaces de types):

Soient \mathcal{L} un langage, M une \mathcal{L} -structure, et $C \subseteq M$. Un n-type complet sur C est un ultrafiltre sur l'algèbre de Boole $Def_C(M^n)$. On note $S_n^M(C)$, ou $S_n(C)$, l'espace de ces ultrafiltres, qui est aussi le spectre $Spec(Def_C(M^n))$. On rappelle qu'un tel espace est profini, i.e. compact et avec une base d'ouverts constituée d'ouverts-fermés.

- 1. Démontrer que les types complets sont réalisables dans des extensions élémentaires, i.e., pour tout $U \in S_n(C)$, il existe une extension élémentaire N de M et un n-uplet $\alpha \in N^n$ tel que, pour tout $X \in U$, on a $\alpha \in X(N)$. On pourra utiliser la méthode des diagrammes.
- 2. Soit $N \geq M$. Construire un homéomorphisme $S_n^M(C) \to S_n^N(C)$.
- 3. Pour $\alpha \in M^n$, on définit $tp(\alpha/C) = \{X \in Def_C(M^n) \mid \alpha \in X(M)\}.$
 - a) Montrer que $tp(\alpha/C)$ est un n-type complet sur C.
 - b) En déduire que $S_n(C) = \{tp(\alpha/C) \mid N \geq M, \alpha \in \mathbb{N}^n\}.$
- 4. Montrer que, si M est isomorphe, comme \mathcal{L} -structure, à N, alors $\{tp(a/\varnothing) \mid a \in M^n\} = \{tp(a/\varnothing) \mid a \in N^n\}$ pour tout entier n.

Montrer que la réciproque est fausse.

- 5. Décrire $S_1(\mathbb{R})$, pour la structure $(\mathbb{R},<)$.
- 6. Soit \mathcal{G} un graphe aléatoire, décrire $S_1(G)$.

Exercice 3 (Plongements élémentaires):

Soient \mathcal{L} un langage, (I, <) un ensemble totalement ordonné non vide, $(S_i)_{i \in I}$ une famille de \mathcal{L} -structures. Soit $(f_{i,j}: S_i \to S_j)_{i < j}$ une famille cohérente de plongements élémentaires, i.e. $f_{j,k} \circ f_{i,j} = f_{i,k}$ pour tous i < j < k. En utilisant la méthode des diagrammes, montrer qu'il existe une \mathcal{L} -structure S et une famille $(g_i: S_i \to S)_{i \in I}$ de plongements élémentaires telle que, pour tous i < j, on ait $g_j \circ f_{i,j} = g_i$.

Exercice 4 (Modèles de la théorie de \mathbb{R}):

Soit RCF la théorie de $(\mathbb{R}, 0, 1, +, \cdot, <)$. Notons $\mathcal{L} = \{0, 1, +, \cdot, <\}$.

1. Montrer qu'il existe un modèle M de RCF qui est en bijection avec $2^{\mathbb{N}}$, mais qui n'est pas isomorphe à $(\mathbb{R}, 0, 1, +, \cdot, <)$.

En fait, on peut montrer qu'il y a $2^{(2^{\mathbb{N}})}$ modèles de RCF de cardinal $2^{\mathbb{N}}$ à isomorphisme près.

- 2. On veut montrer qu'il existe une famille $(M_i)_{i\in\mathbb{N}}$ de modèles dénombrables de RCF, deux à deux non isomorphes. Soit M un modèle de RCF.
 - a) Montrer que le corps \mathbb{Q} se plonge de manière unique dans M. Pour $a \in M$, montrer que $r(a) := \sup\{x \in \mathbb{Q} \mid x <^M a\} \in \mathbb{R} \cup \{\pm \infty\}$ (où le sup de l'ensemble vide est, par convention, $-\infty$) est bien défini.
 - b) Montrer que l'ensemble $r(M) = \{r(a) | a \in M\}$ est invariant par isomorphismes. Autrement dit, montrer que, si N est isomorphe à M comme \mathcal{L} -structure, alors r(N) = r(M). On pourra utiliser l'exercice 2.
 - c) Conclure qu'il existe une famille $(M_i)_{i\in\mathbb{N}}$ de modèles dénombrables de RCF, deux à deux non isomorphes. On pourra chercher à rendre la suite des $r(M_i)$ strictement croissante pour l'inclusion.

En fait, on peut montrer qu'il y a $2^{\mathbb{N}}$ modèles de RCF de cardinal \mathbb{N} à isomorphisme près.

¹Plus précisément, décrire l'ensemble sous-jacent et, pour chaque point, donner une base de voisinages aussi explicite que possible.