The Coarse Scattering Method

Pablo A. Vaquer

22 October 2018

../graphic/TAMUlogo.png

The coarse scattering method

The coarse scattering method

In the coarse scattering (CS) method, we make the following substitution to the MG transport equation to reduce the size of the scattering matrices

$$\sum_{g'} \Sigma_{s,\ell,g' \to g} \phi_{\ell,g'} \quad \to \quad S_{\ell,e \to g} \sum_{e'} \Sigma_{s,\ell,e' \to e} \phi_{\ell,e'}$$

where each fine-group g is a subset of a coarse-element e and

$$\begin{split} \mathcal{S}_{\ell,e \to g} &= \frac{\sum_{g'} \sum_{s,\ell,g' \to g} \phi_{\ell,g'}}{\sum_{e'} \sum_{s,\ell,e' \to e} \phi_{\ell,e'}} \\ \sum_{s,\ell,e' \to e} &= \sum_{g \in e} \sum_{g' \in e'} \sum_{s,\ell,g' \to g} \\ \phi_{\ell,e} &= \sum_{g \in e} \phi_{\ell,g} \end{split}$$

The CS method can also be applied to the fission matrix

For fission, we make the following substitution

$$\sum_{g'} \Sigma_{f,g' \to g} \phi_{g'} \quad \to \quad F_{e \to g} \sum_{e'} \Sigma_{f,e' \to e} \phi_{e'}$$

where

$$F_{e \to g} = \frac{\sum_{g'} \sum_{f,g' \to g} \phi_{g'}}{\sum_{e'} \sum_{f,e' \to e} \phi_{e'}}$$

$$\sum_{f,e' \to e} = \sum_{g \in e} \sum_{g' \in e'} \sum_{f,g' \to g} \phi_{f}$$

$$\phi_{e} = \sum_{g \in e} \phi_{g}$$

Example of fine transfer matrix being decomposed into a coarse transfer matrix and mapping operator

 $../{\tt graphic/matrix_decomposition.png}$

Recomputing the scattering and fission spectra

ullet Not necessary to recompute both $S_{\ell,e o g}$ and $F_{e o g}$ every iteration

$$\begin{split} \left[\frac{1}{v_g}\frac{\partial}{\partial t} + \mu \frac{\partial}{\partial x} + \Sigma_{t,g}(\vec{r},t)\right] \psi_g^{(i+1)}(\vec{r},\mu,t) &= q_g(\vec{r},\hat{\Omega},t) + \\ S_{\ell,e\to g}^{(i-s)} \sum_{\ell=0}^{L} \frac{2\ell+1}{2} \sum_{e'} \Sigma_{s,\ell,e'\to e}(\vec{r},t) \phi_{\ell,e'}^{(i)}(\vec{r},t) + \\ \frac{F_{e\to g}^{(i-f)}}{2} \sum_{e'} \Sigma_{f,e'\to e}(\vec{r},t) \phi_{e'}^{(i)m}(\vec{r},t) \end{split}$$

- Asymptotic computational cost of solving the MG transport equation is order G^2
- Asymptotic computational cost of the CS method is order G in iterations when $S_{\ell,e\to g}$ and $F_{e\to g}$ are not recomputed and order G^2 only in iterations where $S_{\ell,e\to g}$ and $F_{e\to g}$ are recomputed

Particle balance can be maintained

Particle balance is maintained if following residual ρ is less than machine epsilon in the last iteration,

$$\rho = \left[\sum_{g'} \left(\Sigma_{s,0,g' \to g} + \Sigma_{f,g' \to g} \right) \phi_{g'} \right] - \left[S_{0,e \to g} \sum_{e'} \Sigma_{s,0,e' \to e} \phi_{e'} + F_{e \to g} \sum_{e'} \Sigma_{f,e' \to e} \phi_{e'} \right]$$

Futhermore, it may be possible to perserve particle balance every iteration if the CS method is only applied to Legendre moments greater than $\boldsymbol{0}$

Preliminary CS Results for a 1D slab of uranium (20% enriched)

Simulation	MG	CS	CS	CS
Number of Groups	200	200 / 25	200 / 5	200 / 1
Recomputations $(S_{e o g}\ /\ F_{e o g})$		2 / 4	2 / 4	2 / 4
k _{eff}	1.15420	1.15420	1.15420	1.15420
RHS Cost	3.26×10^{8}	1.89×10^{8}	2.03×10^{8}	$2.34{ imes}10^{8}$
Total Cost	3.32×10^{8}	1.95×10^{8}	2.11×10^{8}	2.44×10^{8}

Properties of Spherical Harmonics

$$egin{split} \int_{4\pi} d\Omega \, Y_\ell^m(\hat{\Omega}) Y_{\ell'}^{m'}(\hat{\Omega}) &= rac{4\pi}{2\ell+1} \delta_{\ell\ell'} \delta_{mm'} \ &\int_{4\pi} d\Omega \, Y_\ell^m(\hat{\Omega}) Y_0^0(\hat{\Omega}) &= 4\pi \ &\int_{4\pi} d\Omega \, Y_\ell^m(\hat{\Omega}) &= 4\pi \end{split}$$

Properties of Spherical Harmonics

$$\int_{4\pi} d\Omega \sum_{\ell=0}^L \sum_{m=-\ell}^\ell \frac{2\ell+1}{4\pi} Y_\ell^m(\hat{\Omega}) \sum_{g'}^G \Sigma_{s,\ell,g' \to g} \phi_{\ell,g'}^m = \Sigma_{s,0,g' \to g} \phi_{0,g'}$$

$$\begin{split} \int_{4\pi} d\Omega \left\{ \sum_{g'}^G \Sigma_{s,0,g' \to g} \phi_{0,g'} + \right. \\ \left. \sum_{\ell=1}^L \sum_{m=-\ell}^\ell \frac{2\ell+1}{4\pi} Y_\ell^m(\hat{\Omega}) \sum_{e'}^E \Sigma_{s,\ell,e' \to e} \phi_{\ell,e'}^m \right\} = \Sigma_{s,0,g' \to g} \phi_{0,g'} \end{split}$$

Thank you

Questions?