

Vanguard Astra - Petascale ARM Platform for U.S. DOE/ASC Supercomputing

PRESENTED BY Andrew J. Younge

PIs: James H. Laros III, Kevin Pedretti, Si Hammond Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DENA0003525.

- Overview of Vanguard
 - Prototype HPC Architectures
- Astra Petascale ARM platform
- ATSE Advanced Tri-lab Software Environment
- R&D Opportunities
- Conclusion

Vanguard Overview

Vanguard Program: Advanced Architecture Prototype Systems

- Prove viability of advanced technologies for NNSA integrated codes, at scale
- Expand the HPC-ecosystem by developing emerging unproven technologies
 - Is it viable for future ATS/CTS platforms?
 - Increase technology AND integrator choices
- Buy down risk and increase technology and vendor choices for future platforms
 - Ability to accept higher risk allows for more/faster technology advancement
 - Lowers/eliminates mission risk and significantly reduces investment
- Jointly address hardware and software challenges

First prototype platform targeting ARM

Test Beds

Vanguard

ATS/CTS Platforms

Greater Stability, Larger Scale

Higher Risk, Greater Architectural Choices

Test Beds

- Small testbeds $(\sim 10-100 \text{ nodes})$
- Breadth of architectures
- **Brave users**

Vanguard

- Larger-scale experimental systems
- Focused efforts to mature new technologies
- Broader user-base
- **Demonstrate viability** for production use
- NNSA Tri-lab resource

ATS/CTS Platforms

- Leadership-class systems (Petascale, Exascale, ...)
- Advanced technologies, sometimes first-of-kind
- Broad user-base
- Production use

Vanguard Phase 1: Astra

Sandia's NNSA/ASC ARM Platforms

per aspera ad astra

through difficulties to the stars

Demonstrate viability of ARM for U.S. DOE Supercomputing

- Dual socket Cavium Thunder-X2
 - CN99xx
 - 28 cores @ 2.0 GHz
- *8 DDR4 controllers per socket
- One 8 GB DDR4-2666 dual-rank DIMM per controller
- Mellanox EDR InfiniBand ConnectX-5 VPI OCP
- Tri-Lab Operating System Stack based on RedHat 7.5+

10 Vanguard-Astra Compute Node


```
8 GB DDR4-2666
```

11 Vanguard-Astra System Packaging

HPE Apollo 70 Rack

Enterprise

18 chassis/rack

72 nodes/rack

3 IB switches/rack (one 36-port switch per 6 chassis)

36 compute racks (9 scalable units, each 4 racks)

Vanguard-Astra Infrastructure

Login & Service Nodes	4 login/compilation nodes 3 Lustre routers to connect to external Sandia filesystem(s) 2 general service nodes					
Interconnect	EDR InfiniBand in fat tree topology 2:1 oversubscribed for compute nodes 1:1 full bandwidth for in-platform Lustre storage					
System Management	Dual HA management nodes running HPE Performance Software – Cluster Manager (HPCM) Ethernet management network, connects to all nodes One boot server per scalable unit (288 nodes)					
In-platform Storage	All-flash Lustre storage system 403 TB usable capacity 244 GB/s throughput					

Network Topology

Mellanox Switch-IB2 EDR, Radix 36 switches, 3 level fat tree, 2:1 taper at L1

108 L1 switches * 24 nodes/switch = 2592 compute nodes

Extreme Efficiency:

- Total 1.2 MW in the 36 compute racks are cooled by only 12 fan coils
- These coils are cooled without compressors year round. No evaporative water at all almost 6000 hours a year
- 99% of the compute racks heat never leaves the cabinet, yet the system doesn't require the internal plumbing of liquid disconnects and cold plates running across all CPUs and DIMMs
- Builds on work by NREL and Sandia:
 https://www.nrel.gov/esif/partnerships-jc.html

Projected power of the system by component												
per consttuent rack type (W)					total (kW)							
	wall	peak	nominal (linpack)	idle		racks	wall	peak	nominal (linpack)	idle		
Node racks	39888	35993	33805	6761		36	1436.0	1295.8	1217.0	243.4		
MCS300	10500	7400	7400	170		12	126.0	88.8	88.8	2.0		
Network	12624	10023	9021	9021		3	37.9	30.1	27.1	27.1		
Storage	11520	10000	10000	1000		2	23.0	20.0	20.0	2.0		
utlity	8640	5625	4500	450		1	8.6	5.6	4.5	0.5		
							1631.5	1440.3	1357.3	274.9		

ATSE – Advanced Tri-lab Software Environment

Advanced Tri-lab Software Environment Goals

- Build an open, modular, extensible, community-inspired, and vendor-adaptable ecosystem
- Prototype new technologies that may improve the DOE ASC computing environment (e.g., ML frameworks, containers, VMs, etc)
- Leverage existing efforts
 - Tri-lab OS (TOSS)
 - OpenHPC & other programming environments
 - Exascale Computing Project (ECP) software technologies

Aug'17 Dec'17 Sep'18 Tri-lab Arm software Initial First Use on ATSE Vanguard-Astra **Design Doc** Release Target team formed

Tri-Lab Software Effort for ARM

Accelerate ARM ecosystem for ASC computing

- Prove viability for ASC integrated codes running at scale
- Harden compilers, math libraries, tools, communication libraries
 - Heavily templated C++, Fortran 2003/2008, Gigabyte+ binaries, long compiles
- Optimize performance, verify expected results

Build integrated software stack

- Programming environment (compilers, math libs, tools, MPI, OMP, SHMEM, I/O, ...)
- Low-level OS (optimized Linux, network, filesystems, containers/VMs, ...)
- Job scheduling and management (WLM, app launcher, user tools, ...)
- System management (boot, system monitoring, image management, ...)

Improve 0 to 60 time... ARM system arrival to useful work done

ARM Tri-lab Software Environment (ATSE)

1

User-facing Programming Env

ATSE Packaging

Cluster Middleware e.g. Lustre, SLURM

Base OS Layer

Integrate Components from Many Sources

✓ March

- ✓ Continue software stack explorations and gap analysis on testbeds
- ✓ Setup OpenBuild server and replicate OHPC package builds for aarch64

✓April – May

- Develop ATSE Packager framework, ability to pull packages from TOSS, RHEL, OpenHPC OBS, vendor, and other sources
- ✓ Identify initial component list

√July

- ✓Initial ATSE release 2018.0 on Mayer
 - ✓ Lab-distribution version: TOSS BaseOS + (ATSE-GCC | ATSE-ARM | ATSE-*)
 - Open-distribution version: SUSE and/or CentOS BaseOS + ATSE-GCC

Q3 2018

- Linux kernel optimization and HPC patches
- Basic VM & container support

Q4 2018

- ATSE 2018.1 release
- Initial upstream to OpenHPC push

Astra Status and Research

Stack

Open Network

racalling circ

Cavium Arm64 Providing Best-of-Class Memory Bandwidth

Network Bandwidth on ThunderX2 + Mellanox MLX5 EDR with Socket Direct

Network Bandwidth (GB/s)

Socket Direct - Each socket has dedicated path to the

Socket 2 Socket 1 Pair 2 Pair 1 MLX5 3 MLX5 0 MLX5 EDR 1 Network Link MLX5 EDR MLX5 0 MLX5 3 Socket 1 Socket 2 Pair 2 Pair 1 Node 2

OSU MPI Multi-Network Bandwidth

Mini-App Performance on Cavium ThunderX2

- ThunderX2 providing high memory bandwidth
 - 6 channels (Skylake) vs.8 in ThunderX2
 - See this in MiniFE SpMV and STREAM Triad
- Slower compute reflects less optimization in software stack
 - Examples Non-SpMV kernels in MiniFE and LULESH
 - GCC and ARM versus Intel compiler

R&D Areas

- Leverage containers and virtual machines
 - Support for machine learning frameworks
 - ARMv8.1 includes new virtualization extensions, SR-IOV
 - Working with Singularity on full container solution
- Evaluating parallel filesystems + I/O systems @ scale
 - GlusterFS, Ceph, BeeGFS, Sandia Data Warehouse, ...
- Resilience studies over Astra lifetime
- Improved MPI thread support, matching acceleration
- OS optimizations for HPC @ scale
 - Exploring HPC-tuned Linux kernels to non-Linux lightweight kernels and multi-kernels
 - Arm-specific optimizations

- Vanguard allows the DOE to take necessary risks to ensure a healthy HPC ecosystem for future production mission platforms
 - Increase technology choices
 - Prove ability to run multi-physics production applications at scale
- Tri-lab software stack effort to mature ARM for ASC computing
 - Harden compilers, math libs, and tools
 - Optimize performance, verify expected results
 - Increase modularity and openness of software stack
 - Support traditional HPC and emerging AI + ML workloads
- Sandia now a member of Linaro HPC SIG!

Questions?

ajyoung@sandia.gov

through difficulties to the stars

- What opportunities and challenges do we face when moving from an x86 world to an ARM world?
 - Virtual Machines
 - Near-native HPC performance with VMs possible in x86
 - Type1 & Type2 hypervisors
 - Hobbes / Palacios VM
 - Avoid legacy issues with x86?
 - Anything new we can do with ARM?
 - Containers
 - How do I build containers on my x86 laptop that run on Astra?
 - Focus on ABI compatibility
 - Leverage industry/enterprise without losing HPC focus