- 1. Two players, 1 and 2, simultaneously chooses a positive integer up to 3, that is, $s_i \in \{1, 2, 3\}$. Let $i, j \in \{1, 2\}$ and $i \neq j$. If $s_i + s_j \leq 4$ and $s_i \neq s_j$, each player receives the numbers of dollars she names, i.e., s_i dollars. If $s_i = s_j$ or if $s_i + s_j > 4$, then each player receives 0.
 - (a) Write down the strategical form of the game; (3 points)
 - (b) Identify all strictly dominated and weakly dominated strategies of the players. (1 points)
 - (c) Identify all NE of this game. (1 points)

Answer: The strategic form

Player 2

	1	2	3
1	(0, 0)	(1, 2)	$(\underline{1},\underline{3})$
2	(2, 1)	(0, 0)	(0, 0)
3	$(\underline{3},\underline{1})$	(0, 0)	(0, 0)

Player 1

"2" is a strictly dominated strategy for player i by a mixed strategy, for example, by $\sigma_i = (\frac{1}{4}, 0, \frac{3}{4}), i = 1, 2.$

There are 2 pure strategy NE, (3,1) and (1,3), and 1 mixed NE:

$$\left(\frac{1}{4},0,\frac{3}{4};\frac{1}{4},0,\frac{3}{4}\right)$$
.

$1.\ \,$ For the extensive-form game given below

- (a) Write down the normal-form of the game.
- (b) Find all pure strategy NE of the game.
- (c) Find all subgame perfect NE of the game.

Answer:

(a) The normal-form

	UU	UV	VU	VV
L	3, 3, <mark>2</mark>	3, 3, 2	0, <mark>4,</mark> -2	0, <mark>4</mark> , -2
R	5 , -1 , -1	4 , -1 , -1	<mark>5</mark> , -1, -1	4 , - 1 , -1

l

	UU	UV	VU	VV
L	3, 3, 2	<mark>3</mark> , 3, 2	0, 4, -2	0, 4, -2
R	1, <mark>3</mark> , 0	-2, 2, 1	1, 3, 0	-2, 2, 1

γ

(b) Pure NE

$$(R, VU, r), \quad (L, VV, r)$$

(c) SPNE

$$(R, VU, r)$$
.

To see this, note that in the subgame after L, player 2's optimal choice is V. In the subgame after R, the NE is (U, r).

	1	r
U	-1, -1	3, 0
V	-1, -1	2, 1

2. Two players, 1 and 2, simultaneously choose a number between 0 and 3, that is, $s_i \in \{0, 1, 2, 3\}$. If the sum of numbers they choose is less than or equal to 3, $s_1 + s_2 \le 3$, each player i gets s_i dollars. However, if the sum they report is greater than 3, $s_1 + s_2 > 3$, each player gets 0 dollars. Identify all pure NE.

Answer. The strategic form

player 2 0 1 2 3 0, 2 0, 00, 1 0, 3 Player 1 1, 0 1, 1 1, 2 0, 02 2, 0 2, 1 0, 00, 03 3, 0 0, 00, 00, 0

Four pure NE:

1. Consider the Bayesian game with two players 1 and 2. The set of actions for player 1 is $\{U, D\}$, the set of actions for player 2 is $\{L, M, R\}$. They may play one of the two games given below:

2

M

3, 3

0, 9

R

3, 0

0, 0

G2

 \mathbf{L}

3, 2

6, 6

U

D

		2				
		L	M	R		
1	U	3, 2	3, 0	3, 3	1	
	D	6, 6	0, 0	0, 9		
			C	1 1	,	

- (a) Suppose both players are fully informed as to which game they are playing, find the NE.(2 points)
- (b) Suppose now that G1 and G2 may be played with probability 0.5. Player 1 knows whether they are playing G1 or G2, but player 2 does not. Find the BNE of the Bayesian game. (3 points)

Answer:

- (a) Unique NE if G1 is played (U,R). Unique NE if G2 is played (U, M).
- (b) The strategic form

2					
	L	M	R		
UU	3, 2	3, 1.5	3, 1.5		
UD	4.5, 4	1.5, 4.5	1.5, 1.5		
DU	4.5, 4	1.5, 1.5	1.5, 4.5		
DD	6, 6	0, 4.5	0, 4.5		

The unique BNE is (DD, L)

- 1. In an exchange economy, two consumers, Alan and Beck have utility functions $U^A(X,Y) = X^2 + 2XY + Y^2$, and $U^B(X,Y) = \ln X + 2\ln Y$, respectively. Alan is endowed with 3 units of good X and 3 units of good Y, while Beck is endowed with 15 units of X and 15 units of Y.
 - (a) Draw the contract curve in the Edgeworth box. (2 points)
 - (b) Solve the general equilibrium, and clearly state the equilibrium price and allocations. (3 points)

Answer:

- (a) Note
 - When Alan consumers both consumption goods, it is true that

$$MRS_{x,y}^{A} = 1 = MRS_{x,y}^{B} = \frac{Y_{B}}{2X_{B}} \Longrightarrow$$

$$2X_{B} = Y_{B}.$$

This happens only when $X_B \leq 9$.

• When $X_B > 9$, $Y_B = 18$ and $MRS^B < 1$, and so Alan consumes only Y.

Hence, the contract curve

(b) Given equilibrium price (P_x, P_y) , the income of the two consumers are respectively,

$$m_A = 3P_x + 3P_y, \qquad m_B = 15P_x + 15P_y.$$

We can solve Beck's problem to get

$$X_B = \frac{m_B}{3P_x} = 5 + \frac{5P_y}{P_x}, \qquad Y_B = \frac{2m_B}{3P_y} = \frac{10P_x}{P_y} + 10.$$

Let $P_x = 1$. Alan's optimal consumption includes both goods when $P_y = 1$. This is impossible since $P_y = 1$ leads to $Y_B = 20$. So we conclude the only possibility is $P_y > 1$, in which case Alan consumes only X.

Note $Y_B = 18$ only when $P_y = \frac{5}{4}$. Hence, the competitive equilibrium:

$$P_x = 1,$$
 $P_y = \frac{5}{4};$ $X_A = \frac{27}{4},$ $Y_A = 0;$ $X_B = \frac{45}{4},$ $Y_B = 18.$

Answer:

1. Utility-maximization gives Alfred's demand:

$$x_{1A} = \frac{10P_1}{2P_1} = 5, \quad x_{2A} = \frac{10P_1}{2P_2} = \frac{5P_1}{P_2}$$

Bob's demand:

$$x_{1B} = \frac{10P_1 + 10P_2}{P_1 + P_2} = 10, \qquad x_{2B} = \frac{10P_1 + 10P_2}{P_1 + P_2} = 10.$$

Carl's demand:

$$x_{1C} = \frac{10P_2^2}{P_1(P_2 + P_2)}, \qquad x_{2C} = \frac{10P_1}{(P_1 + P_2)}.$$

The excess demand function is

$$Z(P) = \begin{bmatrix} \frac{10P_2^2}{P_1(P_1 + P_2)} - 5\\ \frac{5P_1}{P_2} + \frac{10P_1}{P_1 + P_2} - 10. \end{bmatrix}$$

2.
$$Z(tP) = \begin{bmatrix} \frac{10t^2P_2^2}{tP_1(tP_1+tP_2)} - 5\\ \frac{5tP_1}{tP_2} + \frac{10tP_1}{tP_1+tP_2} - 10. \end{bmatrix} = \begin{bmatrix} \frac{10P_2^2}{P_1(P_1+P_2)} - 5\\ \frac{5P_1}{P_2} + \frac{10P_1}{P_1+P_2} - 10. \end{bmatrix} = Z(P)$$

Thus Z(P) is homogeneous of degree zero

3. Walras' Law

$$PZ(P) = \frac{10P_2^2}{P_1 + P_2} - 5P_1 + 5P_1 + \frac{10P_1P_2}{P_1 + P_2} - 10P_2 = 0.$$

Z(P) satisfy Walras' Law.

4. The equilibrium price P^* clears the market,

$$Z_1(P) = 0 \Longrightarrow 10P_2^2 - 5P_1^2 + 5P_1P_2.$$

Normalize $P_1 = 1$, so $P^* = (1,1)$. The equilibrium allocation is

$$X^* = \left[\begin{array}{ccc} 5 & 10 & 5 \\ 5 & 10 & 5 \end{array} \right]$$