

Static Timing Analysis (STA)

Lecture #14: Effect of Clock Jitter on Setup & Hold Timing Equations

Video Lecture Link

Setup Equation:

Clk_to_Q [REG1] + Comb Delay <= Clock Period - 2T_{jitter} - T_{setup}[REG2]

Clock Period \geq Clk_to_Q[REG1] + Comb Delay + $T_{\text{setup}}[REG2] + 2T_{\text{jitter}}$

Here, Required Time = Clock Period - $2T_{iitter}$ - T_{setup} [REG2]

Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Setup Slack = Required Time – Arrival Time

Note: Clock Jitter Degrades the Performance (Setup)

Hold Equation:

 $Clk_{o} = Hold_{o} =$

Here, Required Time = Hold_Check[0] + T_{hold} [REG2] + $2T_{jitter}$

Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Hold Slack = Arrival Time – Required Time

Note: Default Hold Check is at 0

Note: Clock Jitter Degrades the performance(Tsetup) and also makes it harder to meet hold requirements

Best Free VLSI Content

- 1. Verilog HDL Crash Course Link
- 2. Static Timing Analysis (STA) Theory Concepts Link
- 3. Static Timing Analysis (STA) Practice/Interview Questions <u>Link</u>
- 4. Low Power VLSI Design Theory Concepts Link
- 5. Low Power VLSI Design (LPVLSI) Practice/Interview Questions Link
- 6. Digital ASIC Design Verilog Projects <u>Link</u>

Please Like, Comment, Share & Subscribe My Channel in Order to Reach Out the Content to a Larger Audience.

Thanks !!