_		
Ca		
		speedup
E		
		$S_n = 1$
		1-P+P=# processors.
	4.1)	S=0.4, P=0.6
70	1011	
-3		$S_n = Lim = (0.4)^{-1} = 2.5$
-3	B	$S_n = Lim = (0.4)^{-1} = 2.5$
-3		$n \to \infty$ $1 - 0.6 + 0.670$
-0		There is a max of 250% speedup.
-0		
-3	4.2)	$S' = \frac{0.2}{k}$ $P' = 1 - \frac{0.2}{k}$
-3		- (e) = (D) + (5)
- 3		Sn' = 9 (3) (3) (=10) (1)
-	1 7	$1 - p' + \frac{p'}{n} = \frac{0.2}{k} + \frac{1 - 0.2/k}{n} = \frac{(0.2n + k - 0.2)}{nk}$
-8	<u>1</u>	
		$= hk Sn' = 2 \cdot Sn$
		0.2n+k-0.2
La		\rightarrow $nk = 2 = 2n$
La		$0.2n+k-0.2$ $0.2+\frac{0.8}{0}$ $0.2n+0.8$
		nk(0.2n+0.8) = 2n(0.2n+k-0.2)
		0.2nk - 1.2k = 0.4n - 0.4
		0. Zh R = 1. ZR = 0. 111 0. 1
		k = 0.4n - 0.4, n > 6
	1 - 82	8.2n-1-2
	10	In order to double speed need n ≥ 7.
		Say n=7, then k = 0.4.6 = 12.
		0.2
		i. Then to double speed, you need $k=12$ if there are 7 cores. $k=0.4(n-1)$
		IT mere are / cores. K- U.I(N-1)
- 30	1	0.2 n - 1.2
-(0)		
(0)		
1		
-0		
13		