第四节 定积分的近似计算

习题 5-4

1. 用三种近似计算法计算 $\int_0^1 e^{-x^2} dx$. ($\mathbf{N} n = 10$,被积函数值取五位小数). 解 将 [0,1] 10 等分得

$$x_0 = 0$$
, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, $x_4 = 0.4$, $x_5 = 0.5$, $x_6 = 0.6$, $x_7 = 0.7$, $x_8 = 0.8$, $x_9 = 0.9$, $x_{10} = 1$.

令函数 $y = e^{-x^2}$,相应地有

$$y_i = y(x_i) = e^{-x_i^2}$$
, $(i = 0, 1, 2, \dots, 10)$,

于是得

$$y_0 = 1$$
, $y_1 = 0.99004$, $y_2 = 0.96077$, $y_3 = 0.91388$, $y_4 = 0.85206$, $y_5 = 0.77868$, $y_6 = 0.69752$, $y_7 = 0.61244$, $y_8 = 0.52708$, $y_9 = 0.44463$, $y_{10} = 0.36792$.

1° 矩形法:

$$\int_0^1 e^{-x^2} dx \approx \frac{1}{10} (y_1 + y_2 + \dots + y_{10}) = 0.71461.$$

2° 梯形法:

$$\int_0^1 e^{-x^2} dx = \frac{2-1}{10} [(y_0 + y_{10}) \cdot \frac{1}{2} + y_1 + y_2 + \dots + y_9] = 0.74621.$$

3° 抛物线法:

$$\int_0^1 e^{-x^2} dx \approx \frac{2-1}{10} (y_1 + y_2 + \dots + y_{10}) = 0.74683.$$

1. 用三种近似计算法计算 $\int_1^2 \frac{dx}{x}$ 以求 $\ln 2$ 的近似值(取 n=10,被积函数值取四位小数).

解 将[1,2]10等分得

$$x_0 = 1$$
, $x_1 = 1.1$, $x_2 = 1.2$, $x_3 = 1.3$, $x_4 = 1.4$, $x_5 = 1.5$,

$$x_6 = 1.6$$
, $x_7 = 1.7$, $x_8 = 1.8$, $x_9 = 1.9$, $x_{10} = 2$.

令函数 $y = \frac{1}{x}$, 相应地有

$$y_i = y(x_i) = \frac{1}{x_i}$$
, $(i = 0, 1, 2, \dots, 10)$,

于是得

$$y_0 = 1, \ y_1 = 0.9091, \ y_2 = 0.8333, \ y_3 = 0.7692, \ y_4 = 0.7143, \ y_5 = 0.6667,$$

$$y_6 = 0.6250, \ y_7 = 0.5882, \ y_8 = 0.5556, \ y_9 = 0.5263, \ y_{10} = 0.5000.$$

1° 矩形法:

$$\ln 2 = \int_1^2 \frac{\mathrm{d}x}{x} \approx \frac{2-1}{10} (y_1 + y_2 + \dots + y_{10}) = 0.6688.$$

2° 梯形法:

$$\ln 2 \approx \int_{1}^{2} \frac{\mathrm{d}x}{x} = \frac{2-1}{10} [(y_0 + y_{10}) \cdot \frac{1}{2} + y_1 + y_2 + \dots + y_9] = 0.6938.$$

3° 抛物线法:

$$\ln 2 = \int_1^2 \frac{\mathrm{d}x}{x} \approx \frac{2-1}{10} (y_1 + y_2 + \dots + y_{10}) = 0.6688.$$