

Sistemas de Representação de Conhecimento e Raciocínio

Trabalho Individual

Luís Enes Sousa A89597

Conteúdo

1	Intr	roduçã	o						
2	Dat 2.1		:.py	:					
3	Formulação do Problema								
4	Estratégias de Procura								
	4.1	Procu	ra Não Informada						
		4.1.1	Profundidade (DFS - Depth-First Search)						
		4.1.2	Largura (BFS - Breadth-First Search						
		4.1.3	Busca Iterativa Limitade em Profundidade						
	4.2	Procu	ra Informada						
		4.2.1	Gulosa						
		4.2.2	A* (A estrela)						
5	Res	ultado	os						
6	Cor	Comentários finais e Conclusão							

1 Introdução

No âmbito da unidade curricular de Sistemas de Representação de Conhecimento e Raciocínio, foi-nos proposta a eleboração de um sitema capaz de importar dados relativos aos diferentes circuitos e representá-los numas base de conhecimento e, ainda, recomendar circuitos usando diferentes algoritmos.

Na minha resolução, optei por seguir a versão simplificada do enunciado.

2 Dataset

Numa fase inicial, comecei por decidir a estrutura da base de conhecimento, tendo em conta o *Dataset* fornecido.

Visto que optei pela versão simplificada do enunciado, decidi remover algumas colunas do *Dataset*, pois achei irrelevantes para a minha solução. Sendo assim, o *Dataset* usado contém as seguintes colunas: *Latitude*, *Longitude*, *PONTO_RECOLHA_LOCAL*, *CONTENTOR_RESÍDUO* e *CONTENTOR_TOTAL_LITROS*.

Também tive que filtrar algumas linhas do *Dataset*, pois estas apenas diferenciavam no tipo de contentor. Sendo que essa coluna foi eliminada, iríamos ter linhas repetidas. Após a remoção destas linhas repetidas, o meu *Dataset* possui 137 entradas.

Após esta fase, procedi para o parsing do Dataset, através de um script em python.

2.1 parser.py

Na inicialização do programa, são criados dois dicionários: datasetData que guarda as informações de cada rua; datasetDataByResidues que guarda as informações de cada rua, agrupadas pelo tipo de lixo que estas contém.

Depois, também foram criados dois ficheiros de *output*. O ficheiro *pontos_recolha.pl* guarda as informações relativos a todos os pontos de recolha e o ficheiro *arcos.pl* guarda as informações sobre cada arco.

De seguida, faço o parsing do conteúdo de cada linha do Dataset, guardando nas respetivas variáveis. Com estas variáveis fui capaz de popular os dicionários referidos anteriormente com a informação pertinente. Depois, as colunas de cada linhas são escritas para o ficheiro pontos_recolha.pl, seguindo um dado formato.

Por fim, os arcos do grafo final são escritos para o ficheiro *arcos.pl*, tendo o cuidado de não repetir arcos.

3 Formulação do Problema

O problema exposto no enunciado do projeto consiste no estudo dos dados dos circuitos de recolha de resíduos urbanos do concelho de Lisboa. Neste problema em específico, os estados inicial e objetivo são ruas escolhidas por mim. O objetivo final é determinar os caminhos de recolha de resíduos começados e terminados nas ruas escolhidas, seguindo diferentes algoritmos de procura.

4 Estratégias de Procura

Nestas seção irei abordar as diferentes estretégias de procura usadas ao longo do trabalho.

4.1 Procura Não Informada

4.1.1 Profundidade (DFS - Depth-First Search)

Este algoritmo caracteriza-se por obter o caminho mais comprido de um grafo. Tem uma complexidade temporal de $O(b^d)$ e uma complexidade espacial de O(bm).

Representando um dado grafo numa árvore, b é o fator da ramificação, d a profundidade da solução encontrada e m o tamanho da árvore.

No meu trabalho implementei este algoritmo tendo em conta um nodo incial e final definidos previamente. Também implementei o algoritmo recebendo um tipo de lixo.

4.1.2 Largura (BFS - Breadth-First Search

Este algoritmo é usado quando queremos obter o caminho mais curto de um grafo. Tem uma complexidade temporal de $O(b^d)$ e uma complexidade espacial de $O(b^d)$.

Neste caso não implementei o algoritmo tendo em conta os tipos de lixo, pois iria gastar muita memória e muito mais tempo.

4.1.3 Busca Iterativa Limitade em Profundidade

Este algoritmos é muito parecido com o algoritmos DFS, sendo a única alteração o facto de receber um número, que indica o limite de nodos a ser pesquisados no grafo final.

Este algoritmo foi implementado tendo (e não tendo) em conta os tipos de lixo e tendo em conta os custos dos arcos (e consoante um tipo de lixo).

4.2 Procura Informada

4.2.1 Gulosa

Este algoritmo aplica-se quando queremos obter um resultado, tendo em conta uma heurística. Neste caso escolhi a distância.

Caraxteriza-se por tomar decisões baseadas em estimativas. É um algoritmo rápido e simples, porém, as escolhas que tomas são definitivas, não permitindo voltar atrás e calcular outra solução.

4.2.2 A* (A estrela)

Este algoritmo é uma combinação do algoritmo de *Dijkstra* com uma BFS. É mais fidedigno que o algoritmo anterior.

Em cada nodo é aplicada a função heurística aos nodos vizinhos, sendo escolhido o nodo mais favorável. Depois, o processo é repetido até chegar ao nodo final.

5 Resultados

Para obter os resultados seguintes, escolhi como nodo inicial a 'R do Alecrim' e como nodo final a 'Av 24 de Julho'.

Estratégia	Tempo (segs)	Espaço	Profundidade/Custo	Melhor solução?
DFS	5	O(bm)	25	Sim
BFS	-	$O(b^d)$	-	Ind
BILP	_	-	-	Ind
Gulosa	0.001	-	14	Talvez
A*	0.001	-	14	Sim

Através da análise destes resultados, pode-se concluir que a BFS não é uma solução válida, devido à dimensão do grafo obtido. Em relação à BILP, não será utilizada pois o nosso objetivo é encontrar uma solução entre dois nodos especificados.

Em relação aos algoritmos de procura informada, estes são semelhantes em termos de tempo e custo. O algoritmo A^* é mais fidedigno que o algoritmo Gulosa.

6 Comentários finais e Conclusão

Terminada a implementação dos algorimtos e a análise dos resultados obtidos, posso concluir que, dentro dos algoritmos de procura não informada, aquele que se destaca mais é o DFS.

Em relação aos algoritmos de procura informada, o algoritmo A^* é o que produz resultados mais interessantes.

Posto isto, sinto que este trabalho ajudou a consolidar os temas abordados ao longo do semestre neste unidade curricular, em particular no uso de grafos.

Concluindo, acho que o trabalho cumpre com os objetivo propostos no enunciado.