# ▼ 1. 데이터분석 및 시각화 개요

# 1.1. 판다스 라이브러리란?



- 1. 데이터 분석을 위한 Python의 라이브러리
- 2. 특히 시계열 데이터를 다루는 것과 연산이 뛰어나다
- 3. **데이터프레임**과 **시리즈**라는 자료형을 이용해 표데이터를 다룰 수 있게 해준다
- 판다스 = Python의 엑셀

# ▼ 1.2. 데이터프레임과 시리즈

1.2.1. 데이터프레임과 시리즈란 무엇인가?



데이터프레임과 시리즈는 판다스에서 다루는 핵심 자료형이다.

- 2차원 표 데이터가 데이터프레임이고 1차원 표데이터가 시리즈이다
- 표의 데이터부분을 values 라고 한다
- 표에서의 행이름을 index라고 한다

## 1.2.2. 데이터프레임과 시리즈의 특징

• 표 전체에 함수를 적용해 개별요소를 바꾼다.

|     | 국어 | 영어 | 수학 | 과학 |
|-----|----|----|----|----|
| 송중기 | 67 | 93 | 91 | 88 |
| 김나현 | 75 | 69 | 96 | 69 |
| 권보아 | 75 | 81 | 74 | 82 |
| 박효신 | 96 | 65 | 84 | 66 |
| 김범수 | 79 | 70 | 76 | 75 |
| 이효리 | 62 | 99 | 87 | 76 |

|     | 국어    | 영어    | 수학    | 과학    |
|-----|-------|-------|-------|-------|
| 송중기 | False | True  | True  | True  |
| 김나현 | False | False | True  | False |
| 권보아 | False | True  | False | True  |
| 박효신 | True  | False | True  | False |
| 김범수 | False | False | False | False |
| 이효리 | False | True  | True  | False |

df

df > 80

데이터 프레임 전체에 연산을 적용하는 것으로 개별 요소별로 80보다 큰지 여부를 True 또는 False로 반환한다

• 함수를 적용할 때는 전체가 아닌 부분이 필요하다면 키(key)값인 index와 columns를 이용한다

|   |     | 국어 | 영어 | 수학 | 과학 |
|---|-----|----|----|----|----|
| Î | 송중기 | 67 | 93 | 91 | 88 |
|   | 김나현 | 75 | 69 | 96 | 69 |
|   | 권보아 | 75 | 81 | 74 | 82 |
|   | 박효신 | 96 | 65 | 84 | 66 |
|   | 김범수 | 79 | 70 | 76 | 75 |
|   | 이효리 | 62 | 99 | 87 | 76 |

|     | 국어 | 영어 | 수학 | 과학 |
|-----|----|----|----|----|
| 이효리 | 62 | 99 | 87 | 76 |
| 송중기 | 67 | 93 | 91 | 88 |
| 김나현 | 75 | 69 | 96 | 69 |
| 권보아 | 75 | 81 | 74 | 82 |
| 김범수 | 79 | 70 | 76 | 75 |
| 박효신 | 96 | 65 | 84 | 66 |

df

df.sort\_values('국어')

### ▼ 1.3. 실습



위의 학습 목표 세가지를 중점적으로 실습을 해보자.

#### ▼ 1.3.1 데이터프레임 생성하기

|     | 국어 | 영 어 | 수학 | 과학 |
|-----|----|-----|----|----|
| 송중기 | 67 | 93  | 91 | 88 |
| 김나현 | 75 | 69  | 96 | 69 |

# ▼ 1.3.2 각종 속성(attribute)으로 데이터프레임 확인하기

- 속성은 함수와 비슷하게 약속된 데이터를 반환하지만 인자와 인수를 입력받지 않는다.
- 인자와 인수를 입력받지 않기 때문에 소괄호를 쓰지 않는다
- 대표적인 속성(attribute)은 values, columns, index 이다
- 데이터프레임 뿐만 아니라 시리즈도 values, index 속성으로 확인이 가능하다. (시리즈의 경우 columns는 불가능)

#### df1.values

```
array([[67, 93, 91, 88], [75, 69, 96, 69], [75, 81, 74, 82], [96, 65, 84, 66], [79, 70, 76, 75], [62, 99, 87, 76]])
```

#### df1.index

```
Index(['송중기', '김나현', '권보아', '박효신', '김범수', '이효리'], dtype='object')
```

#### df1.columns

```
Index(['국어', '영어', '수학', '과학'], dtype='object')
```

속성을 실행하면 두가지 자료형을 알려준다



### ▼ 1.3.3. 시리즈 생성하기

```
data_k = [67, 75, 75, 96, 79, 62]
s1 = pd.Series(data_k, index=idx1)
s1
```

송중기 67 김나현 75 권보아 75 박효신 96 김범수 79 이효리 62 dtype: int64

### # 시리즈도 벡터화 연산을 한다 s1 > 80

송중기 False 김나현 False 권보아 False 박효신 True 김범수 False 이효리 False dtype: bool

• 시리즈도 index와 values 속성을 사용해 각각의 데이터를 리턴받을 수 있다 (columns 속성은 사용할 수 없다)

#### s1.index

Index(['송중기', '김나현', '권보아', '박효신', '김범수', '이효리'], dtype='object')

#### s1.values

# ▼ 1.4 연습문제

- ▼ 1.4.1 데이터프레임 만들기 연습문제(1)
  - 아래와 같은 데이터프레임을 만들어라

|   | 국어 | 영어 | 수학 |
|---|----|----|----|
| Α | 67 | 93 | 91 |
| В | 75 | 69 | 96 |
| C | 75 | 81 | 74 |
| D | 96 | 65 | 84 |

- ▼ 1.4.2 데이터프레임 만들기 연습문제(2)
  - 아래와 같은 데이터프레임을 만들어라

|   | col1 | co12 | col3 |
|---|------|------|------|
| 0 | 0    | 1    | 2    |
| 1 | 3    | 4    | 5    |
| 2 | 6    | 7    | 8    |

data3 = [[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]] pd.DataFrame(data3, columns=['col1', 'col2', 'col3'])

|   | col1 | col2 | col3 |
|---|------|------|------|
| 0 | 0    | 1    | 2    |
| 1 | 3    | 4    | 5    |
| 2 | 6    | 7    | 8    |
| 3 | 9    | 10   | 11   |

## ▼ 1.4.3 데이터프레임 만들기 연습문제(3)

• 아래와 같은 데이터프레임을 만들어라

|     | 국 어 학 점 | 영 어 학 점 | 수학학점 |
|-----|---------|---------|------|
| 송중기 | А       | В       | С    |
| 김나현 | А       | А       | В    |

## ▼ 1.5 마무리

• 다음 질문에 답해보자.

- 1. 판다스는 무엇인가
- 2. 데이터프레임이란?
- 3. 시리즈란?
- 4. 데이터프레임과 시리즈를 만들수 있는가?
- 5. 데이터프레임과 시리즈의 각 요소를 확인할수 있는가?

### 1.6. 참고문헌

1. 판다스 공식문서 pd.DataFrame

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

2. 판다스 공식문서 pd.Series

https://pandas.pydata.org/docs/reference/api/pandas.Series.html

3. 엑셀투파이썬 유튜브 : 데이터프레임이란?

https://youtu.be/SVjKsvvhWIQ

• X