Intermediate Programming Day 12

Outline

- Pointer operations
- Dynamic 2D arrays
- Pointers and const
- Review questions

- A pointer is an unsigned integer value indicating a location in memory.*
 - We can add /subtract integers from a pointer (to get a new pointer):

```
b = a+2;
b -= 3;
b++;
etc.
```

- We can compute the difference between two pointers (to get a signed integer)**:
 ptrdiff_t d = b-α;
- We can print out the value of a pointer:
 printf("Address: %p\n" , (void*)a);

```
#include <stdio.h>
int main( void )
{
   int a[] = { 2 , 4 , 6 , 8 };
   int *b = a+2;

   return 0;
}
```

* The size of a pointer depends on the architecture.
On 64-bit architectures, it is eight bytes long

** ptridiff_t is a predefined type in stddef.h designed to store the difference between pointers

- A pointer is an unsigned integer value indicating a location in memory.
 - We can add /subtract integers from a pointer
 Q: What is the value of b?

```
#include <stdio.h>
int main( void )
{
    int a[] = { 2 , 4 , 6 , 8 };
    int *b = a+2;

    return 0;
}
```

- A pointer is an unsigned integer value indicating a location in memory.
 - We can add /subtract integers from a pointer

Q: What is the value of b?

A: b is the address of the integer two in from the start of the array

Note:

- The int two elements in from the start of the array is 8 bytes away in memory
- Because the type of the pointer is known, the compiler automatically deduces that two int lengths correspond to 8 bytes

```
#include <stdio.h>
int main( void )
{
    int a[] = { 2 , 4 , 6 , 8 };
    int *b = a+2;
    printf( "%d %d\n" , *a , *b );
    return 0;
}

>> ./a.out
2 6
>>
```

- A pointer is an unsigned integer value indicating a location in memory.
 - We can add /subtract integers from a pointer

Q: What is the value of b?

A: b is the address of the integer two in from the start of the array

Note:

- The int two elements in from the start of the array is 8 bytes away in memory
- Because the type of the pointer is known, the compiler automatically deduces that two int lengths correspond to 8 bytes

```
#include <stdio.h>
int main( void )
{
    int a[] = { 2 , 4 , 6 , 8 };
    int *b = a+2;
    printf( "%d %d\n" , (int)(a-b) );
    return 0;
}

>> ./a.out
-2
>>
```

• Similarly, the difference between pointers is measured in units of elements

- A pointer is an unsigned integer value indicating a location in memory.
 - We can add /subtract integers from a pointer

Q: What is the value of b?

A: b is the address of the integer two in from the start of the array

Note:

- The int two elements in from the start of the array is 8 bytes away in memory
- Because the type of the pointer is known, the compiler automatically deduces that two int lengths correspond to 8 bytes

A pointer of type void* is treated as a raw memory address (

```
#include <stdio.h>
int main(void)
   int a[] = \{ 2, 4, 6, 8 \};
   int *b = a+2;
   void *_ a =a , *_ b = b;
   printf( "%d\n", b-a);
   printf( "%d\n" , _b-_a );
   return 0;
                >> ./a.out
```

ormation)

If ip points to int x. Then *ip can be used anywhere that x makes sense:
 printf("%d\n", *ip) ⇔ printf("%d\n", x)

Unary ops & and * bind more tightly than binary arithmetic ops

*ip += 1
$$\Leftrightarrow$$
 x += 1
y = *ip + 1 \Leftrightarrow y = x+1

- [WARNING] unary operators associate from right to left
 - ++*ip is the same as ++x
 - *ip++ means something else

- A pointer is an unsigned integer value indicating a location in memory.
 - We can add /subtract integers from a pointer

Q: So what does *b++ mean?

A: It's a combination of four instruction:

- 1. Increment the pointer b,
- 2. Return the old pointer's value,*
- 3. Dereference that
- 4. Set it to zero

```
#include <stdio.h>
int main(void)
   int a[] = \{ 2, 4, 6, 8 \};
   int* b = a+2:
   b++=0:
   printf( "%d %d %d %d : %d\n" ,
       a[0], a[1], a[2], a[3], *b);
   return 0;
              >> ./a.out
              2 4 0 8 : 8
```

^{*}Recall that post-increment/decrement returns the old value

- We can access a pointer by dereferencing printf("%d\n", *b);
- We can access array elements with [] printf("%d\n" , b[0]);
- Since pointers and arrays are essentially the same, these are the same operations!

```
#include <stdio.h>
int main(void)
   int a[] = \{ 2, 4, 6, 8 \};
   int* b = a+2;
   printf( "%d\n" , *b );
   printf( "%d\n" , b[0] );
   return 0;
              >> ./a.out
```

• More generally *(b+k) is the same as b[k] for any integer k

Though similar, arrays and pointers differ in a couple of ways:

1. The use of size of

```
#include <stdio.h>
int main(void)
   int a[] = \{ 2, 4, 6, 8 \};
   int* b = a;
   printf( "%d\n" , sizeof(a) );
   printf( "%d\n" , sizeof(b) );
   return 0;
              >> ./a.out
```

Though similar, arrays and pointers differ in a couple of ways:

- 1. The use of size of
- 2. Arrays are immutable

```
#include <stdio.h>
int main( void )
{
    int a[] = { 2 , 4 , 6 , 8 };
    int b = 10;
    a = &b;
    return 0;
}
```

Outline

- Pointer operations
- Dynamic 2D arrays
- Pointers and const
- Review questions

Q: How do we <u>dynamically</u> declare a 2x3 grid of **int** values?

A1: Declare an array of 6 int values

A2: Declare an array (of size 2) containing int arrays (of size 3).

Recall:

If we <u>statically</u> declare a 2D array its contents are laid out sequentially in (stack) memory.

```
#include <stdio.h>
#include <stdib.h>
int main( void )
{
    int a2[2][3];
    for( int i=0 ; i<2 ; i++ )
        for( int j=0 ; j<3 ; j++ )
        a2[i][j] = 3*i+j;
    return 0;
}</pre>
```


Recall:

If we <u>statically</u> declare a 2D array its contents are laid out sequentially in (stack) memory.

```
#include <stdio.h>
#include <stdlib.h>
int main( void )
{
    int a2[2][3];
    for( int i=0 ; i<2 ; i++ )
        for( int j=0 ; j<3 ; j++ )
        a2[i][j] = 3*i+j;
    return 0;
}</pre>
```


Recall:

If we <u>statically</u> declare a 2D array its contents are laid out sequentially in (stack) memory.

```
#include <stdio.h>
#include <stdlib.h>
int main( void )
{
    int a2[2][3];
    for( int i=0 ; i<2 ; i++ )
        for( int j=0 ; j<3 ; j++ )
        a2[i][j] = 3*i+j;
    return 0;
}</pre>
```


Recall:

If we <u>statically</u> declare a 2D array its contents are laid out sequentially in (stack) memory.

```
#include <stdio.h>
#include <stdlib.h>
int main( void )
{
    int a2[2][3];
    for( int i=0 ; i<2 ; i++ )
        for( int j=0 ; j<3 ; j++ )
        a2[i][j] = 3*i+j;
    return 0;
}</pre>
```


Declaring a 2x3 grid of int values:

1. Declare a single array of ints

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```

- 1. Declare a single array of ints
 - Need to allocate/deallocate the int array

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```

- 1. Declare a single array of ints
 - Need to allocate/deallocate the int array
 - **✗** Indexing is ugly

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc(sizeof(int) * 2 * 3);
   if(!a2) return 1;
   for(int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for(int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```

memory

Dynamic 2D arrays

stack memory

heap memory*

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int *a2 = malloc( sizeof(int) * 2 * 3 );
   if(!a2) return 1;
   for( int i=0; i<2; i++)
       for(int j=0; j<3; j++)
          a2[3*i+j] = 3*i+j;
   free(a2);
   a2 = NULL;
   return 0;
```

- 1. Declare a single array of ints
- 2. Declare an array of int arrays

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0 ; i<2 ; i++ )
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for( int j=0 ; j<3 ; j++ ) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```

- 1. Declare a single array of ints
- 2. Declare an array of int arrays
 - Need to allocate/deallocate the array of int arrays

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free( a2 );
    a2 = NULL;
    return 0;
```

- 1. Declare a single array of ints
- 2. Declare an array of int arrays
 - Need to allocate/deallocate the array of int arrays
 - Need to allocate/deallocate each int array

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc(sizeof(int) * 3);
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```

- 1. Declare a single array of ints
- 2. Declare an array of int arrays
 - Need to allocate/deallocate the array of int arrays
 - Need to allocate/deallocate each int array
 - ✓ Indexing is clean

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```

- 1. Declare a single array of ints
- 2. Declare an array of int arrays
 - Need to allocate/deallocate the array of int arrays
 - Need to allocate/deallocate each int array
 - ✓ Indexing is clean
- ⇒ With dynamic allocation we can have (jagged/non-uniform) 2D arrays with different rows having different sizes.

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if(!a2[i]) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int **a2 = malloc( sizeof(int*) * 2 );
   if(!a2) return 1;
   for(int i=0; i<2; i++)
       a2[i] = malloc( sizeof(int) * 3 );
        if(!a2[i]) return 1;
       for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
   for( int i=0 ; i<2 ; i++ )
       free( a2[i]);
       a2[i] = NULL;
   free(a2);
   a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if(!a2[i]) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if(!a2[i]) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
       a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
       a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
       a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```



```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
   for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i] );
       a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```

stack memory

heap memory*

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
    int **a2 = malloc( sizeof(int*) * 2 );
    if(!a2) return 1;
    for( int i=0; i<2; i++)
        a2[i] = malloc( sizeof(int) * 3 );
        if( !a2[i] ) return 1;
        for(int j=0; j<3; j++) a2[i][j] = 3*i+j;
    for( int i=0 ; i<2 ; i++ )
        free( a2[i]);
        a2[i] = NULL;
    free(a2);
    a2 = NULL;
    return 0;
```

Outline

- Pointer operations
- Dynamic 2D arrays
- Pointers and const
- Review questions

Recall:

When we use the **const** keyword, we are declaring a variable immutable.

```
#include <stdio.h>
int main( void )
{
    const int a = 5;
    a = 0;
    return 0;
}
```

Q: When we use the **const** keyword with a pointer, who is immutable, the pointer or the pointee?

A: It depends

• If the keyword const precedes the type, then the pointee is immutable.

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    const int *c = a;
    c[0] = b;
    return 0;
}
```

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    const int *c = a;
    c = &b;
    return 0;
}
```

A: It depends

• If the keyword const precedes the type, then the pointee is immutable.

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    const int *c = a;
    c[0] = b;
    return 0;
```

```
#include <stdio.h>
int main(void)
   int a[] = \{1, 2, 3\};
   int b = 0:
   const int *c = a;
   c = &b;
   return 0;
         >> gcc ...
         >>
```

A: It depends

• If the keyword const follows the type, then the pointer is immutable.

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    int * const c = a;
    c[0] = b;
    return 0;
}
```

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    int * const c = a;
    c = &b;
    return 0;
}
```

A: It depends

• If the keyword const follows the type, then the pointer is immutable.

```
#include <stdio.h>
int main(void)
   int a[] = \{1, 2, 3\};
    int b = 0:
    int * const c = a;
   c[0] = b;
   return 0;
         >> gcc ...
```

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    int * const c = a;
    c = &b;
    return 0;
```

A: It depends

• If the keyword const precedes and follows the type, both are immutable.

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    const int * const c = a;
    c[0] = b;
    return 0;
```

```
#include <stdio.h>
int main( void )
{
    int a[] = { 1 , 2 , 3 };
    int b = 0;
    const int * const c = a;
    c = &b;
    return 0;
```

Outline

- Pointer operations
- Dynamic 2D arrays
- Pointers and const
- Review questions

1. What output is printed by the code below?

```
int arr[] = { 94, 69, 35, 72, 9 };
int *p = arr;
int *q = p + 3;
int *r = q - 1;
printf( "%d %d %d\n" , *p , *q , *r );
ptrdiff_t x = q - p;
ptrdiff_t y = r - p;
ptrdiff_t z = q - r;
printf( "%d %d %d\n" , (int)x , (int)y , (int)z );
ptrdiff_t m = p - q;
printf( "%d\n" , (int)m );
int c = (p < q);
int d = ( q<p );
printf( "%d %d\n" , c , d );
```

2. Assume that arr is an array of 4 int elements. Is the code int *p = arr + 5; legal?

3. Assume that arr is an array of 4 int elements. Is the code int *p = arr + 5; printf("%d\n", *p); legal?

4. What output is printed by the code below?

```
#include <stdio.h>
int sum(int a[], int n)
         int x = 0;
         for (int i=0; i<n; i++) \times += \alpha[i];
         return x;
int main(void)
         int data[] = { 23 , 59 , 82 , 42 , 67 , 89 , 76 , 44 , 85 , 81 };
         int result = sum(data + 3, 4);
         printf( "result=%d\n" , result );
         return 0;
```

Exercise 4-3

• Website -> Course Materials -> Ex4-3