

Elementary seasonal adjustment of economic data with JDemetra+: Module IV – Quality assessment Dr Karsten Webel / Deutsche Bundesbank, DG Statistics

Virtual Seminar Series, 19-23 October 2020

Aims

Theory

- Basic understanding → Ideas, concepts
- Approach → X-11
- Pretreatment → RegARIMA models

Application

- Software → JDemetra+ (JD+)
- Specification → Options
- Results → Interpretation, quality assessment

Discussion

Your questions → Practical problems

Road map

Deutsche Bundesbank Saprootes chart

Karsten Webel (BBk) Elementary seasonal adjustment with JD+ – 19-23 October 2020 Page 2 / 19

Overview

Questions

- Data → Need for seasonal adjustment?
- SA data → Quality of seasonal adjustment?

Answers

- Dependence measures → Autocorrelations, periodogram
- Tests → Seasonality
- Heuristics $\sim M$ & Q-statistics

Dependence measures (I/III) Autocorrelation function (ACF)

Assumption

Data → Weakly stationary

Dependence measures (II/III) Partial autocorrelation function (PACF)

Dependence measures (III/III) Periodogram: AR (1) process, unit WN variance

500 Standards with 9, a 11	3p	ectral density	1.6 1.4 1.2 1.0 0.8 0.6 0.4
-4	d		

Cycles per year	1	2	3	4	5	6
Duration in months	12	6	4	3	2.4	2
Seasonal frequency	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$	π
Duration in quarters	4	2				
Seasonal frequency	$\frac{\pi}{2}$	π				

Seasonality tests in JD+ (I/VIII)

Name	Variable checked for significance	Short		
Modified QS -test	Autocorrelations at seasonal lags	QS		
Friedman-test	ANOVA with repeated measures on intra-year ranks	FT		
Kruskal-Wallis-test	ANOVA without repeated measures on overall ranks	KW		
Test for spectral peaks	Tukey and AR(30) spectra at seasonal frequencies	SP		
Periodogram-test	Weighted sum of periodogram at seasonal frequencies	PD		
F-test on seasonal dummies	Effects of seasonal dummies in the " $(pdq)(000)$ + mean + seasonal dummies" model*	SD		

^{*} Variant 1: (pdq)=(011), variant 2: (pdq) according to automatic model identification.

Seasonality tests in JD+ (II/VIII)

$$LB_H = \sum_{h=1}^H w(h) \operatorname{ACF}^2(h), \quad \text{with } w(h) = \frac{T(T+2)}{T-h}$$

Hypothesis

Data → Zero autocorrelations (i.e. independence)

Decision

– Rejection if LB_H too large

Seasonality tests in JD+ (III/VIII) Modified QS-test

$$QS = \begin{cases} w(12) \, \mathsf{ACF}^2(12) + w(24) \left[\max\left\{0, \mathsf{ACF}(24)\right\} \right]^2, & \mathsf{ACF}(12) > 0 \\ 0, & \mathsf{ACF}(12) \leqslant 0 \end{cases}$$

Hypothesis

Data
 ~ No positive autocorrelation at seasonal lags (i.e. no stable seasonality)

Decision

- Rejection if QS too large

Seasonality tests in JD+ (IV/VIII)

$$FT = \frac{\text{Variance of month-specific mean ranks}}{\text{Variance of ranks within months}}$$

Rank assignment

– Within each year $\sim 1 \leqslant \text{rank}_{ij} \leqslant \tau$

Hypothesis

Decision

- Rejection if FT-statistics too large

Seasonality tests in JD+ (V/VIII) Kruskal-Wallis-test

$$KW = \frac{\text{Variance of month-specific mean ranks}}{\text{Variance of ranks within months}}$$

Rank assignment

- Within observation period $\sim 1 \leqslant \text{rank}_{ij} \leqslant T$

Hypothesis

Decision

- Rejection if KW-statistics too large

Seasonality tests in JD+ (VI/VIII) Test for spectral peaks

Idea

- Spectral peaks → Visual significance
- Tukey & AR(30) spectra → Combination

Hypothesis

Data
 ~ No visually significant seasonal peaks (i.e. no seasonality)

Decision

- Rejection if too many visually significant seasonal peaks
- Consideration → Location of seasonal peaks

Seasonality tests in JD+ (VII/VIII) Periodogram-test

$$PD = \mathsf{Rescaled}\left[2\sum_{j=1}^{5}I(\mathsf{SF}_j) + I(\mathsf{SF}_6) \times \begin{cases}1, & T \text{ even}\\0, & T \text{ odd}\end{cases}\right]$$

Hypothesis

Data → No seasonal peaks (i.e. no seasonality)

Decision

- Rejection if PD-statistics too large

$$SD = \operatorname{Rescaled}\left(\hat{\boldsymbol{\beta}}^{\top}\,\hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\beta}}}^{-1}\hat{\boldsymbol{\beta}}\right)\operatorname{from\ model}$$

$$\phi_p(B)(1-B)^d\left(\operatorname{Data}_t - \hat{\boldsymbol{\beta}}^{\top}\operatorname{Dummies}_t\right) = \mu + \theta_q(B)\,\varepsilon_t$$

Hypothesis

Decision

- Rejection if SD-statistics too large

Additional
$$F$$
-tests (I/II) Stable seasonality

$$F_S = \frac{\text{Variance of month-specific mean SI ratios}}{\text{Variance of SI ratios within months}}$$

Hypothesis

 Seasonal factors → Same month-specific averages (i.e. no stable seasonality)

Decision

- Rejection if F_S too large

Additional F-tests (II/II) Moving seasonality

$$\left| (\hat{si})_{ij} - 100 \right| = \mathsf{Year}_i + \mathsf{Month}_j + \mathsf{Residual}_{ij}$$

Hypothesis

Decision

– Rejection if F_M -statistic too large

Heuristics (I/III) M-statistics: basic idea

Indication

- Seasonal adjustment → Quality
- Development → Statistics Canada

Construction

- Domain $\sim [0,3]$
- Acceptance region $\sim [0,1]$

Warning

Relevance → Limited

Heuristics (II/III)
$$M$$
-statistics: $M7$

$$M7 = \sqrt{\frac{1}{2}(T_1 + T_2)}, \quad \text{with } T_1 = \min\left\{\frac{7}{F_S}, 9\right\}, T_2 = \min\left\{\frac{3F_M}{F_S}, 9\right\}$$

Interpretation

- "Ratio" \sim Stable (F_S) & moving (evolutive) seasonality (F_M)

Combined test for presence of identifiable seasonality

Source: Ladiray and Quenneville (2001). Deutsche Bundesbank

S3PR0139.Chart