Advanced Algorithms (67824) – Exercise 2

Edan Orzech 322362849, Mike Greenbaum 211747639

November 2021

1. First, notice that in each iteration of the simplex algorithm, we get a set of indices. Notice that each set is of size between $0, \ldots, n$ and therefore there are at most 2^n such sets. Denote this value by M. Notice that the corresponding vectors found by the simplex algorithm in the first M+1 iterations $v_1, \ldots, v_{M+1} \in Vert(\mathcal{P}(A))$ and by the pigeonhole principle $\exists i \neq j$ s.t. $v_i = v_j$. It means that the algorithm cycles between v_i, \ldots, v_j . Denote the sets in this cycle by $I_1, \ldots, I_{k-1}, I_k = I_1$. Let t the maximal index that enters a basis (set) in the cycle, namely the maximal $i \in [n]$ such that $i \in I_j \setminus I_{j-1}$ for some j < k. Because it is a cycle, there is an iteration in the cycle of bases in which t leaves a basis. Because no t' > t enters or leaves a basis in the cycle, we can look at the matrix with only the first t columns, since $Ax = A_{[t]} \cdot x_{[t]} + A_{[n] \setminus [t]} \cdot x_{[n] \setminus [t]} = b \iff A_{[t]} \cdot x_{[t]} = b - A_{[n] \setminus [t]} \cdot x_{[n] \setminus [t]}$, and $A_{[n] \setminus [t]} \cdot x_{[n] \setminus [t]}$ will remain constant according to the algorithm.

For a basis D, define the function $c_D(x) = \left(c^T - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A\right) x$. Then

$$c_D(x - x_{N(D)}) = \left(c^T - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A\right) \left(x - x_{N(D)}\right)$$

$$= c^T \left(x - x_{N(D)}\right) - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A \cdot \left(x - x_{N(D)}\right)$$

$$= c_{B(D)}^T x_{B(D)} - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A_{B(D)} x_{B(D)}$$

$$= c_{B(D)}^T x_{B(D)} - c_{B(D)}^T \cdot x_{B(D)} = 0$$

And

$$\begin{split} c_D(x - x_{B(D)}) &= \left(c^T - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A\right) \left(x - x_{B(D)}\right) \\ &= c^T \left(x - x_{B(D)}\right) - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A \cdot \left(x - x_{B(D)}\right) \\ &= c_{N(D)}^T x_{N(D)} - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A_{N(D)} x_{N(D)} \\ &= \left(c_{N(D)}^T - c_{B(D)}^T \cdot A_{B(D)}^{-1} \cdot A_{N(D)}\right) \cdot x_{N(D)} \end{split}$$

Notice that we got the same objective function as in class up to adding a constant and therefore we can minimize it instead. Therefore, in our algorithm, we will use this as the reduced objective function.

Define E to be the set of indices in the iteration where we choose t to enter the basis.

Notice that as a vector of length t (or n wlog as explained earlier), $\forall i < t$, $[c_E]_i \ge 0$, since if $i \in B(E)$ then the algorithm makes sure that $[c_E]_i = 0$, and if $i \in N(E)$ and $[c_E]_i < 0$, the Bland rule would have chosen i as the pivot instead of t which is a contradiction. Therefore, $[c_E]_i \ge 0$. In addition, $[c_E]_t < 0$ because the algorithm chose t.

Define L to be the set of indices in the iteration where we choose t to leave the basis. Denote with s the entering variable in this iteration, define $u = A_{B(L)}^{-1} \cdot A_s$.

Therefore the pivot column in this iteration is $\binom{[c_L]_s}{\left[A_{B(L)}^{-1}\cdot A\right]_s} = \binom{c_s^T-c_{B(L)}^T\cdot u}{u}$. u is indeed the matching column of A, since $A_{B(L)}^{-1}$ applies Gauss elimination on A so that the columns in B(L) become standard-basis columns. Notice that $c_s-c_{B(L)}^T\cdot u \stackrel{\star}{<} 0$ since the algorithm chooses s in this iteration.

Define f(i) = j if the j'th entry in L is i. Note that |L| = m.

Due to t being chosen as the leaving index, and due to Bland's rule, it means that $\forall i \in L \land i < t$, index i doesn't leave the basis, therefore $u_{f(i)} \leq 0$ (the i'th coordinate of the entering column), else Bland's rule would have chosen i over t.

Define $[d]_i = \mathbbm{1}_{i=s} - u_{f(i)} \cdot \mathbbm{1}_{i \in L}$. By d's definition, $\forall i \neq t$, $[d]_i \geq 0$ and $[d]_t < 0$. Notice that

$$A \cdot d = A_{B(L)} \cdot d_{B(L)} + A_s = A_{B(L)} \cdot -u + A_s = A_{B(L)} \cdot -A_{B(L)}^{-1} \cdot A_s + A_s = -A_s + A_s = 0$$

Notice that $\forall i < t, [c_E]_i \geq 0, [d]_i \geq 0$ and $[d]_t, [c_E]_t < 0$. Therefore, $c_E^T \cdot d \geq 0$. Notice that

$$0 \le c_E^T \cdot d = \left(c^T - c_{B(E)}^T \cdot A_{B(E)}^{-1} \cdot A\right) \cdot d = c^T \cdot d - c_{B(E)}^T \cdot A_{B(E)}^{-1} \cdot A \cdot d = c^T \cdot d - c_{B(E)}^T \cdot A_{B(E)}^{-1} \cdot 0$$

$$= c^T \cdot d = c_{B(L)}^T \cdot d_{B(L)} + c_s = c_{B(L)}^T \cdot -u + c_s = c_s - c_{B(L)}^T \cdot u \stackrel{\star}{<} 0$$

So we got that 0 < 0 and it is a contradiction and therefore there can't be a cycle in the algorithm and therefore it always stops, as required.

2. For convenience we solve the question for the minimization problem, and then plug -c to get the required result. First, denote via x_{opt} the optimal solution to the LP problem and v_{opt} the value of the optimal solution.

We use the Wikipedia algorithm for the Ellipsoid Method and add that if the center of the ellipsoid is in P we add the constraint $c^T \cdot x \leq c^T \cdot x_{center}$ to P. And we return the last feasible solution found by the method.

Let $\varepsilon > 0$. Suppose $c \neq 0$, otherwise the convergence is trivial.

$$\text{Define}\left[t=2n\left(n+1\right)\cdot\left\lceil\ln\left(\frac{2R^2\cdot\|c\|_2}{r\cdot\varepsilon}\right)\right\rceil,\alpha=\frac{\varepsilon}{2R\left\|c\right\|_2}\right]$$

We saw in class that if we run he ellipsoid algorithm with (P,R,r) then algorithm will reach the volume of B(0,r) after $2n(n+1) \cdot \ln\left(\frac{R}{r}\right)$ iterations, therefore we need at most $2n(n+1) \cdot \left[\ln\left(\frac{R}{r}\right)\right]$ iterations.

Now we run the algorithm with $(R = R, P = P, r = r \cdot \alpha)$, therefore we need at most

$$2n\left(n+1\right)\cdot\left\lceil\ln\left(\frac{R}{r\cdot\alpha}\right)\right\rceil=2n\left(n+1\right)\cdot\left\lceil\ln\left(\frac{R}{\frac{r\cdot\varepsilon}{2\cdot R\cdot\|c\|_{2}}}\right)\right\rceil=2n\left(n+1\right)\cdot\left\lceil\ln\left(\frac{2R^{2}\cdot\|c\|_{2}}{r\cdot\varepsilon}\right)\right\rceil=t$$

iterations.

Now, we define $P_* = (1 - \alpha) \cdot x_{opt} + \alpha \cdot P$. Notice that $Vol(P_*) = \alpha^n \cdot Vol(P) \ge \alpha^n \cdot Vol(B(0, r))$. Denote the ellipsoids in the iterations with E_0, \ldots, E_t .

Notice that $Vol(E_t) < Vol(0, r\alpha) = Vol(B(0, r)) \cdot \alpha^n \le Vol(P_*)$. Therefore $P_* \not\subseteq E_t$. Therefore, $\exists y \in P_* \setminus E_t$. Therefore, $\exists z \in P$ s.t. $y = (1 - \alpha) \cdot x_{opt} + \alpha z$. Due to the convexity of P, it follows that $y \in P$. Therefore $y \in P \subseteq E_0 \land y \notin E_t$, therefore $0 \le \exists i \le t$ s.t. $y \in E_{i-1} \land y \notin E_i$. Denote with g_i the cutting hyperplane in the i'th iteration and x_i the i'th center, therefore due to how the algorithm works, $g_i^T \cdot y > g_i^T \cdot x_i$ (as stated in the algorithm's definition in the Wikipedia page on Ellipsoid Method).

If $x_i \notin P$ we can oracle can choose a cutting hyper-plane that doesn't separate P. Therefore, in the case y doesn't remain in the next ellipsoid, which means that P was separated, we know that $x_i \in P$.

Denote f to be the cost function. If $x_i \in P$, then notice that $c^T \cdot x_{opt} \leq c^T \cdot x_i$ and then the oracle can choose $c = g_i = \nabla f$.

Denote $S = E_{i-1} \cap \{x \mid g_i^T \cdot x \leq g_i^T \cdot x_i\}$ therefore, $\forall x \in E_{i-1} \setminus S$, from convexity $f(x) \geq f(x_i) + \nabla f(x_i) \cdot (x - x_i)$, notice that $g_i(x_i) = \nabla f(x_i)^T$ and therefore $f(x) \geq f(x_i) + \nabla f(x_i)^T \cdot (x - x_i) = f(x_i) + g_i^T \cdot (x - x_i) \geq f(x_i)$. Notice that $y \in E_{i-1} \setminus S$ and therefore $f(y) > f(x_i)$.

Therefore, after this step we add the inequality that $f(x) \leq f(x_i)$ and therefore the solution that we will find will satisfy $f(x) \leq f(x_i)$.

Denote the solution of the algorithm with x_E . Notice that

$$f(x_E) \leq f(x_i) \leq f(y) = f((1 - \alpha) \cdot x_{opt} + \alpha z) = c^T \cdot (1 - \alpha) x_{opt} + c^T \cdot \alpha z$$

$$= c^T x_{opt} + \alpha \cdot c^T (z - x_{opt}) = v_{opt} + \alpha \cdot \langle c, z - x_{opt} \rangle$$
Cauchy-Schwarz-inequality
$$\leq v_{opt} + \alpha \cdot ||c||_2 \cdot ||z - x_{opt}||_2 \leq v_{opt} + \alpha \cdot ||c||_2 \cdot 2R \leq v_{opt} + \varepsilon$$

Therefore, we showed that after t iterations that we have a feasible solution that is ε from optimal, as required.

3. For every $i \ge 1$ define $f_i := f(x_i) := f(x_{i-1}) - \frac{1}{L} \nabla f(x_{i-1})$. Similarly to the lecture, by using the Taylor expansion of f at x_{i-1} with the intermediate value theorem, we get for some $z \in [x_{i-1}, x_i]^1$:

$$f_{i} = f_{i-1} + \nabla f_{i-1}(x_{i} - x_{i-1}) + \frac{1}{2} \nabla^{2} f_{i-1}(x_{i} - x_{i-1}, x_{i} - x_{i-1})$$
$$= f_{i-1} - \frac{1}{L} ||\nabla f_{i-1}||^{2} + \frac{1}{2L^{2}} \nabla^{2} f_{i-1}(\nabla f_{i-1}, \nabla f_{i-1})$$

 ∇f is L-Lipschitz, therefore from the lecture

$$\leq f_{i-1} - \frac{1}{L}||\nabla f_{i-1}||^2 + \frac{1}{2L^2}L||\nabla f_{i-1}||^2 = f_{i-1} - \frac{1}{2L}||\nabla f_{i-1}||^2$$

Now, consider $f_i - f_*$:

$$f_{i} - f_{*} = f_{i} - f_{i-1} + f_{i-1} - f_{*} \leq f_{i-1} - f_{*} - \frac{1}{2L} ||\nabla f_{i-1}||^{2}$$

$$\stackrel{\text{convexity}}{\leq} \nabla f_{i-1}(x_{i-1} - x_{*}) - \frac{1}{2L} ||\nabla f_{i-1}||^{2}$$

$$= \pm \frac{L}{2} ||x_{i-1} - x_{*}||^{2} + \frac{L}{2} \cdot \left(2\frac{1}{L} \nabla f_{i-1}(x_{i-1} - x_{*}) - \frac{1}{L^{2}} ||\nabla f_{i-1}||^{2}\right)$$

$$= \frac{L}{2} (||x_{i-1} - x_{*}||^{2} - ||x_{i-1} - \nabla f_{i-1} - x_{*}||^{2})$$

$$= \frac{L}{2} (||x_{i-1} - x_{*}||^{2} - ||x_{i} - x_{*}||^{2})$$

Hence, since the updating rule decreases f in every iteration,

$$i \cdot (f_i - f_*) \le \sum_{t=0}^{i} (f_t - f_*) \le \sum_{t=0}^{i} \frac{L}{2} (||x_{t-1} - x_*||^2 - ||x_t - x_*||^2) = \frac{L}{2} (||x_0 - x_*||^2 - ||x_i - x_*||^2)$$

$$\le \frac{L}{2} ||x_0 - x_*||^2$$

Therefore, $f_i - f_* \leq \frac{L}{2i} ||x_0 - x_*||^2$, as required.

4. (a) In order to show that f is not self-concordant on $[0, \infty)$, we show the opposite inequality, namely $|f'''(x)| > 2|f''(x)|^{3/2}$ for any a > 0 and some matching x > 0.

$$|f'''(x)| = a(a+1)(a+2)x^{-a-3} > 2(a(a+1)x^{-a-2})^{3/2} = 2|f''(x)|^{3/2}$$

$$\iff a+2 > (a(a+1)x^{-a})^{1/2}$$

Lhs is constant and positive, and rhs $\to 0$ as $x \to \infty$. In particular there is x > 0 such that rhs < lhs. This proves that f is not self-concordant for every a > 0.

 $^{^{1}}$ We assume that f is twice-differentiable. Anyway, there is a theorem that states that in this case it is twice-differentiable almost everywhere since its gradient is L-Lipschitz, and we think that the proof should hold here as well.

(b) By definition, $cone(K) = \{\sum_{i \leq N} \alpha_i k_i \mid \alpha_i \geq 0, \ k_i \in K, \ N \in \mathbb{N}\}$, and $K \subseteq cone(K)$. For such α_i, k_i , for all $x \in \mathbb{R}^n$, by their definitions, $\alpha_i \geq 0$ and $x^T k_i x \geq 0$ therefore $x^T \left(\sum_{i \leq N} \alpha_i k_i\right) x = \sum_{i \leq N} \alpha_i x^T k_i x \geq 0$, so $\left(\sum_{i \leq N} \alpha_i k_i\right) \geq 0$. Therefore, $cone(K) \subseteq K$ and it follows that cone(K) = K. Hence K is a cone.

Did you know? There are 24 steps to draw the official Nepal flag, and they can be found here: https://www.mohp.gov.np/downloads/Constitution%20of%20Nepal%202072_full_english.pdf (page 221).