"2º Testinho" - GAAL

02 de Maio de 2019

Em todas as questões abaixo, sempre que encontrar uma solução você deve mostrar que ela é, de fato, uma solução.

Questão 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $f(x,y) = \frac{1}{2}(x+y,x+y)$.

- a) Mostre que f é linear.
- b) Calcule $\operatorname{Ker} f \in \operatorname{Im} f$.
- c) Exiba um conjunto de geradores l.i. para $\operatorname{Ker} f$ e $\operatorname{Im} f$.
- d) Calcule o produto interno de qualquer gerador de Kerf com qualquer gerador de Imf escolhidos acima.
- e) Conclua que Ker $f \perp \text{Im } f$, isto é, qualquer elemento de Ker f é ortogonal a qualquer elemento de Im f.

Questão 2. Considere o conjunto de vetores $\{(1,1),(2,3),(3,5),(-1,5)\}$ em \mathbb{R}^2 .

- a) Mostre que esse conjunto é l.d.
- b) Mostre que os vetores (1,0) e (0,1) são gerado por esse conjunto.
- c) Calcule o subespaço de \mathbb{R}^2 gerado por esse conjunto.
- d) É possível encontrar uma subcoleção desses vetores com dois elementos e que seja l.i.? Se sim, exiba tal subcoleção, se não, prove que é impossível.

Questão 3. Considere os vetores v = (1, 1, 1), u = (1, 0, -1) e w = (-1, -2, 3) em \mathbb{R}^3 .

- a) Calcule os produtos internos $\langle v, u \rangle$, $\langle v, w \rangle$ e $\langle u, w \rangle$.
- b) Usando o item acima, conclua que existe um plano π que é gerado por dois dos vetores acima e é ortogonal ao terceiro. Explicite quais são os vetores que geram o plano e qual é o vetor ortogonal ao plano.
- c) Calcule o produto vetorial dos vetores que geram o plano e compare o resultado com o vetor ortogonal ao plano.

Questão 4. Considere os planos

$$\pi_1 = \{ v \in \mathbb{R}^3 \mid v = \lambda(1, 1, 1) + \mu(1, 0, -1) + (0, 0, 3), \text{ com } \lambda \text{ } e \text{ } \mu \in \mathbb{R} \}$$
$$\pi_2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x - 2y + 7z = 5 \}.$$

- a) Calcule a interseção desses planos.
- b) Explicite um conjunto de geradores l.i. dessa interseção.