Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Organizacion Computacional, Sección B Ing. Otto René Escobar Leiva Auxiliar: Carlos Rangel Javier Gutierrez

Práctica 3 - Empacadora de Tortrix

Carné	Nombre	Participación
202000774	Gerson David Otoniel González Morales	100%
202102338	Jimena Alejandra Cabrera Rosito	100%
202001851	Kevin Orlando Cámbara García	100%
201807499	Johnny Whillman Aldana Osorio	100%
202000277	Diana Estefania Berducido Domingo	100%

INTRODUCCIÓN

El proyecto propuesto por Tortrix busca desarrollar un sistema de automatización de una cinta transportadora para el proceso de empaquetado de su producto. El sistema utilizará lógica combinacional y secuencial, así como componentes electromecánicos como motores stepper y sensores, para asegurar un proceso eficiente y seguro. Además, se implementará un mecanismo de seguridad con notificación o alarma, y se contarán las unidades en las cajas de distribución, así como un teclado para el registro de contraseña. Este proyecto permitirá aplicar conocimientos de electrónica digital y optimización de diseño en un contexto real de automatización industrial.

OBJETIVOS

General

Aplicar los conocimientos teóricos aprendidos en clase magistral y laboratorio para
 La construcción de circuitos combinacionales y secuenciales.

Específicos

- Construcción de un sistema que una la lógica combinacional junto a la lógica secuencial.
- Poner en práctica los conocimientos de Lógica Combinacional y Mapas de Karnaugh.
- Aprender el funcionamiento de diferentes elementos electromecánicos.
 Construir un diseño óptimo, logrando utilizar la menor cantidad de dispositivos.
- Resolución de problemas mediante Electrónica Digital.
- Aprender diferentes usos para la lógica secuencial.

CONTENIDO

FUNCIONES BOOLEANAS

• CAJAS DE ENTREGA

Para el flip-flop D Para el flip-flop C $JD = QA \cdot QB \cdot QC$ $JC = QA \cdot QB$ $KC = QA \cdot QB$

Para el flip-flop B Para el flip-flop A

JB = QA JA = QA'

KB = QA KA = QB' + QC' + QD'

MAPAS DE KARNAUGH

• CAJAS DE ENTREGA

1) Blackbox:

2) Diagrama de estado:

3) Número y tipo de flip-flop's:

Cantidad de flip-flop's (n): $2^n = 16 \rightarrow n = \log(16)/\log(2) \rightarrow 4$ Tipo de flip-flop: JK

4) Asignación de valores binarios a los estados:

Estado		Valores Binarios					
Sn	QD	QC	QB	QA			
S0	0	0	0	0			
S1	0	0	0	1			
S2	0	0	1	0			
S3	0	0	1	1			
S4	0	1	0	0			
S5	0	1	0	1			
S6	0	1	1	0			
S7	0	1	1	1			
S8	1	0	0	0			
S9	1	0	0	1			
S10	1	0	1	0			
S11	1	0	1	1			
S12	1	1	0	0			
S13	1	1	0	1			
S14	1	1	1	0			
S15	1	1	1	1			

5) Tabla de excitación:

L			(t)				t+1)		Flip-flop's							
Estado		Estados presentes			Estados siguientes					ı ııp-	nop s					
Г	QD	QC	QB	QA	QD	QC	QB	QA	JD	KD	JC	KC	JB	KB	JA	K#
0	0	0	0	0	0	0	0	1	0	8	0	×	0	×	1	8
1	0	0	0	1	1	1	1	1	1	×	1	×	1	×	×	0
2	0	0	1	0	1	1	1	0	1	*	1	*	*	0	0	8
3	0	0	1	1	1	1	0	1	1	×	1	×	×	1	×	0
4	0	1	0	0	1	1	0	0	1	×	*	0	0	×	0	*
5	0	1	0	1	1	0	1	1	1	×	*	1	1	×	×	0
6	0	1	1	0	1	0	1	0	1	×	*	1	×	0	0	8
7	0	1	1	1	1	0	0	1	1	×	*	1	*	1	×	0
8	1	0	0	0	1	0	0	0	×	0	0	*	0	×	0	8
9	1	0	0	1	0	1	1	1	Ж	1	1	8	1	8	×	0
10	1	0	1	0	0	1	1	0	*	1	1	*	*	0	0	*
11	1	0	1	1	0	1	0	1	Ж	1	1	8	*	1	×	0
12	1	1	0	0	0	1	0	0	*	1	8	0	0	×	0	н
13	1	1	0	1	0	0	1	1	Ж	1	8	1	1	8	×	0
14	1	1	1	0	0	0	1	0	×	1	*	1	×	0	0	8
15	1	1	1	1	0	0	0	1	н	1	8	1	0	1	*	0

• PUENTE H

Un puente H es un circuito utilizado para controlar la dirección de un motor de corriente continua (DC) mediante la inversión de la polaridad de la corriente que fluye a través del motor. Este tipo de circuito es fundamental en aplicaciones donde se necesita controlar la velocidad y la dirección de un motor DC, como en vehículos eléctricos, robots y otros sistemas electromecánicos.

El puente H utiliza cuatro interruptores controlados electrónicamente (transistores) dispuestos en una configuración que permite controlar la dirección del flujo de corriente a través del motor. Los cuatro interruptores están dispuestos en dos ramales, cada uno con dos transistores, y forman una estructura que se asemeja a la letra "H", de ahí su nombre.

Tabla base

BOTÓN 1	BOTÓN 2	BOTÓN 3	BOTÓN 4	F
1	0	0	1	AVANZA
0	1	1	0	RETROCEDE
0	0	0	0	SE DETIENE
1	0	1	0	FRENA

• DRIVER STEPPER

Tabla de verdad para el flip-flop tipo D

RELOJ	D	Q	qbar
0	0	NINGÚN CAMBIO	NINGÚN CAMBIO
0	1	NINGÚN CAMBIO	NINGÚN CAMBIO
1	0	0	1
1	1	1	0

DIAGRAMAS DEL DISEÑO DEL CIRCUITO

• CAJAS DE ENTREGA

TECLADO

• Puente H

• Driver

• Semáforo

EQUIPO UTILIZADO

Circuito	Equipo utilizado
Motor stepper	 Flip-flop tipo D 2 m cable protoboard 3 resistencias 1k Micro switch 4 pines 2 leds 1 protoboard
Teclado	 26 Led's rojos 3 Dip Switch de 4 posiciones 2 Compuerta Not 2 Comparador 7485 6 Flip Flip D 1 Led Verde 1 Compuerta AND Cable de cobre para Circuitos 2 Protoboard
Puente H	 1 Protoboard 5 resistencias (2 sólo para probar los leds) 4 transistores 2 push buttons 2 motores 2 leds para prueba y cable
Contador ascendente	 2 Placa de cobre 4"x 6" 6 dual flip-flop tipo J-K 74LS73 10 resistencias de 1k Ω

	 2 botón 2 cloruro férrico 3 metros de estaño 2 bornera 8 Led rojas 2 impresiones laser Cable para protoboard 3 Brocas de 1mm
Contador descendente	 Led verde Flip flop J-K 74LS76 Compuerta AND 74LS08 Timer LM555N Placa de cobre 10x15cm Resistencias 200k Ω Resistencias 430 Ω Resistencias 1k Ω Capacitor 1uF Capacitor 3.3uF Impresión Laser

PRESUPUESTO

202001851 - Teclado Protoboard, Kevin Cámbara

Producto	Cantidad	Precio	Total
LED's	26	1.00	26.00
Protoboard galleta	3	30.00	90.00
Resistencia de ¼ W Varios Valores	19	0.50	9.50
Comparador 7485	2	16.00	32.00
Flip Flop D	6	12.00	72.00
Compuerta 7404	2	6.50	13.00
Cable de Protoboard #24	7 metros	2.50	17.50
DIP Switch de 4 Posiciones	3	5.00	15.00
Compuerta 7432	1	7.00	7.00
Total			282.00

202000277 - Puente H, Diana Berducido

Producto	Cantidad	Precio	Total
LED's	2	1.00	2.00
Protoboard galleta	1	0.00	0.00
Resistencia de 1K	4	0.50	2.00
Transistor	5	0.75	3.75
push buttons	4	1.00	4.00
Motor dc	2	7.00	14.00
Total			25.75

202102338 - Contador Ascendente, Alejandra Cabrera

Producto	Cantidad	Precio	Total
Led roja	8	1.00	8.00
Flip flop J-K 7473	6	9.00	54.00
Resistencias 1k Ω	10	1.00	10.00
Botón	2	2.00	4.00
Bornera	2	2.00	4.00
Placa de cobre 4" x 6"	2 (se repitió la placa)	30.00	60.00
Cloruro férrico	2	14.00	28.00
Broca de 1mm	3	2.25	6.75
Impresión láser	2	9.00	18.00
Total			192.25

202000774 -Gerson David Otoniel González Morales

Producto	Cantidad	Precio	Total
Flip-flop tipo D	1	5.00	5.00
Resistencias 1k Ω	3	1.00	3.00
Micro switch 4 pines	1	2.00	2.00
LED'S	2	1.00	2.00
Protoboard	1	30.00	30.00
Cable protoboard	2	2.50	5.00
Total			47.00

201807499 - Contador Descendente, Johnny Aldana

Producto	Cantidad	Precio	Total
Led verde	4	1.00	4.00
Flip flop J-K 74LS76	2	15.00	30.00
Compuerta AND 74LS08	1	5.00	5.00
Timer LM555N	1	4.00	4.00
Placa de cobre 10x15cm	2 (se repitió la placa)	15.00	30.00
Resistencias 200k Ω	1	0.75	0.75
Resistencias 430 Ω	1	0.75	0.75
Resistencias 1k Ω	4	1.00	4.00
Capacitor 1uF	1	1.00	1.00
Capacitor 3.3uF	1	1.00	1.00
Impresión láser	2	6.00	12.00
Total			92.5

APORTE INDIVIDUAL

Gasto total: 639.00Q

Estudiante	Aporte
Gerson David Otoniel González Morales	Q47.00, Driver para motor stepper
Jimena Alejandra Cabrera Rosito	Q192.25, Contador ascendente en físico y proteus
Diana Estefania Berducido Domingo	Q25.75, puente H para simular cinta transportadora
Jhonny Aldana	Q92.5 Contador descendente
Kevin Orlando Cámbara Garcia	Q282.00 Teclado en Protoboard

CONCLUSIONES

- La construcción de circuitos combinacionales y secuenciales implicó la aplicación práctica de los conocimientos teóricos adquiridos en la clase magistral y laboratorio; esta experiencia práctica reforzó la comprensión de conceptos clave en electrónica digital.
- La aplicación de Mapas de Karnaugh en la construcción de circuitos evidencia la habilidad para simplificar y optimizar lógica combinacional, lo que es esencial para minimizar el uso de recursos y mejorar la eficiencia.
- Aprender el funcionamiento de diferentes elementos electromecánicos amplía el conocimiento sobre dispositivos reales y su interacción con la electrónica digital.
- La capacidad para utilizar la menor cantidad de dispositivos en un diseño demuestra la habilidad para optimizar soluciones, reducir costos y consumir menos recursos, lo cual es un aspecto crítico en el diseño de sistemas electrónicos.
- La electrónica digital es fundamental para la resolución de problemas en una amplia gama de aplicaciones, desde la automatización industrial hasta la informática. La experiencia en resolución de problemas mediante electrónica digital es muy importante

ANEXOS

DIAGRAMA DEL CIRCUITO IMPRESO

• Contador Ascendente

• Contador Descendente

FOTOGRAFÍAS DE LOS CIRCUITOS FÍSICOS

• Motor Stepper

Teclado

Puente H

• Contador ascendente

• Contador descendente

VIDEO

https://youtu.be/Zqlfid4y8vk