# PROGETTO DATA SCIENCE LAB

MATTIA VENTOLA ALESSANDRO MOTTA

Previsione della domanda di energia nel mercato italiano



#### **ANALISI DEL PROBLEMA**

Introduzione al tema e presentazione del problema di business al quale si è voluto rispondere 01

02

#### **EDA E FEATURES ENGINEERING**

Exploratory Data Analysis e analisi della features

CONTENUTI

04

#### **MODELLI**

Presentazione di tutti i modelli applicati

05

#### **CONCLUSIONI**

Qualità dei modelli e analisi di MAPF e MAF

06

#### **SVILUPPI FUTURI**

Possibili implementazioni al lavoro effettuato









- TEMA: DOMANDA DI ENERGIA DEL MERCATO ITALIANO (GME)
- **PERIODO**: DAL 2016 AL 2019
- GRANULARITÀ: DATI A LIVELLO ORARIO

#### **OBIETTIVO:**

IMPLEMENTAZIONE DI MODELLI PREDITTIVI PER LA DOMANDA DI ENERGIA PER ULTIMA SETTIMANA DEL 2019







### SEASONAL DECOMPOSITION













# SEASONAL DECOMPOSITION (DAILY)

Dalle 8 AM alle 11 PM c'è un uso molto intenso di energia





# SEASONAL DECOMPOSITION (WEEKLY)



Nel weekend c'è un minor utilizzo di energia



BICOCCA



## SEASONAL DECOMPOSITION (MONTHLY)



Si può notare che durante Luglio e Gennaio c'è un maggior utilizzo di energia



Uso di riscaldamento d'inverno e dell'aria condizionata d'estate



#### **TEST STATISTICI**

| TEST             | IPOTESI NULLA                | IPOTESI<br>ALTERNATIVA   |
|------------------|------------------------------|--------------------------|
| DICKEY<br>FULLER | Dati non<br>stazionari       | Dati stazionari          |
| BREUSH<br>PAGAN  | Dati non<br>eteroschedastici | Dati<br>eteroschedastici |
| P-VALUE          | Maggiore di 0.05             | Minore di 0.05           |

#### **RISULTATI**









#### **PREPROCESSING**



COLONNA
DELL'ORA
AGGIUNTA
ALLA DATA

ORA
ORA
OATA
OATA



GIORNO DELLA SETTIMANA



GIORNO DI VACANZA



ELIMINATA LA 25-ESIMA ORA

**PROBLEMA** 

**ORA** 

**LEGALE E** 

**SOLARE** 



REPLICATA LA 23-ESIMA ORA ALLA 24-ESIMA (MANCANTE)



Acquisizione dei dati orari della domanda di energia dal 2016 al 2019









#### **BASELINE**

PERFORMANCE

TRAIN MAE: 6087,64 TRAIN MAPE: 19,26%

TEST MAE: 7381,29 TEST MAPE: 25,35%









#### PERFORMANCE

TRAIN MAE: 3288,9 TRAIN MAPE: 5,53% TEST MAE: 5258,04 TEST MAPE: 19.56%

#### **MSTL**









**IMPOSTATO CON H = 24\*7** 

**TEMPO DI APPRENDIMENTO: 35 MIN** 



#### PERFORMANCE

**TRAIN MAE: 3957,75 TRAIN MAPE: 15,26%** TEST MAE: 5742.88 **TEST MAPE: 21.55%** 

#### **TBATS**





#### **XGBOOST**



#### **PARAMETRI**

MAX DEPHT = 6 ETA = 0,3 STOPPING ROUNDS = 100 BOOSTER = 'GBTREE' TEMPO DI APPRENDIMENTO: 60 MIN



#### **PERFORMANCE**

TRAIN MAE: 1012,14 TRAIN MAPE: 4,32% TEST MAE: 1597,77 TEST MAPE: 6,66%





#### **PROPHET**



**PARAMETRI** 

25 CHANGEPOINTS SEASONALITY = 'ADDITIVE' I.C. = 0,8





**PERFORMANCE** 

TRAIN MAE: 1943,52 TRAIN MAPE: 5,25% TEST MAE: 2148,21 TEST MAPE: 6.13%







#### **SARIMA**





◆ DEGLI STUDI



#### SUPPORT VECTOR REGRESSION



PARAMETRI

**KERNEL = 'LINEARE'** 

C = 5

 $GAMMA = 1E^-7$ 

**EPSILON = 1,5** 

**TEMPO DI** 

**APPRENDIMENTO: 40 MIN** 



**PERFORMANCE** 

TRAIN MAE: 1014,27 TRAIN MAPE: 4,12% TEST MAE: 1861,64 TEST MAPE: 7,83%







#### **ELASTIC NET**



**PARAMETRI** 

ALPHA = 0,6 L1\_RATIO = 0,4 TEMPO DI APPRENDIMENTO: 45 MIN





#### PERFORMANCE

TRAIN MAE: 1440,86 TRAIN MAPE: 4,01% TEST MAE: 2080,74 TEST MAPE: 8,36%







#### CONCLUSIONI

PER POTER COMPARARE I RISULTATI È STATO EFFETTUATO UN CONFRONTO TRA I RISPETTIVI MAPE:

#### **DALL'ANALISI EMERGE CHE:**

- TUTTI I METODI RISULTANO AVERE UN MAPE INFERIORE ALLA BASELINE
- XGBOOST E PROPHET HANNO EFFETTUATO
   PREVISIONI PIÙ ACCURATE
- MODELLI COME SARIMA, MSTL E TBATS SI SONO DIMOSTRATI POCO PERFORMANTI

MAPE Prophet: 6.13 %
MAPE XGBoost: 6,66 %
MAPE SVR: 7,83 %

MAPE Elastic Net: 8,36 % MAPE SARIMA: 14.83 % MAPE MSTL: 19.56% MAPE TBATS: 21.55%

MAPE Baseline: 25,35%









AVENDO A DISPOSIZIONE ANCHE I DATI ORARI SULLE TEMPERATURE E CONDIZIONI METEOROLOGICHE ITALIANE, SAREBBE INTERESSANTE POTER INSERIRE QUESTO TIPO DI VARIABILI NEI MODELLI PER RENDERE PIÙ ACCURATE LE PREVISIONI.



INFATTI DALL'ANALISI SI È NOTATO CHE I MAGGIORI CONSUMI DI



### GRAZIE PER L'ATTENZIONE

