60.1 Ableitungsregeln (Differentationsregeln)

Beschreibung:	Funktion:	Ableitung:	Beispiel:
Summenregel ¹ :	$f \pm g$	$(f \pm g)' = f' \pm g'$	$\left(x^2 + 5x\right)' =$
	f und g seien Funktionen		$\left(x^2\right)' + \left(5x\right)' = 2x + 5$
Konstanten- regel:	k	(k)' = 0	(5000)' = 0
Ableitung konstanter Funktionen	k=Konstante		
Faktorregel: Ableitung	$k \cdot f$	$(k \cdot f)' = k \cdot f'$	$(2 \cdot \sin x)' =$
eines konstanten Faktors	k=Konstante f=Funktion		$2 \cdot (\sin x)' = 2 \cdot \cos x$
Produktregel:	$f \cdot g$ f und g seien Funktionen	$(f \cdot g)' = f' \cdot g + f \cdot g'$	$(x^2 \cdot \sin x)' = 2x \cdot \sin(x) + x^2 \cdot \cos(x)$
Quotientenregel	$\frac{f}{g}$ f und g seien Funktionen	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$	$\left(\frac{x^2}{\sin x}\right)' = \frac{2x \cdot \sin x - x^2 \cdot \cos x}{\sin^2 x}$
Kehrwertregel Sonderfall der Quotientenregel: Zähler =1	1/g g sei eine Funktion	$\left(\frac{1}{g}\right)' = \frac{0 \cdot g - 1 \cdot g'}{g^2} = -\frac{g'}{g^2}$	$\left(\frac{1}{\sin x}\right)' = -\frac{\cos x}{\sin^2 x}$
Kettenregel	g (f (x)) g sei eine Funktion der Funktion f(x)	$ [g(f(x))]' = g'(f(x)) \cdot f'(x) $	$\left[\sin\left(x^2\right)\right]' = \cos\left(x^2\right) \cdot 2x$

 $^{^1}$ Die Summenregel gilt natürlich auch für mehr als 2 Summanden: $(f\pm g\pm h\pm ...)'=f'\pm g'\pm h'\pm ...$

60.2 Ableitungen der Potenz und Wurzelfunktion

Beschreibung:	Funktion:	Ableitung:	Beispiel:
Potenzregel	x^n $mit \ n \in \mathbb{R}$	$n \cdot x^{n-1}$	$\left(x^{3}\right)' = 3x^{3-1} = 3x^{2}$
Sonderfall Quadratwurzel	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}}$	Ergibt sich aus der Potenzregel
Sonderfall Wurzel	$\sqrt[b]{x^a}$	$\frac{a}{b} \cdot \sqrt[b]{x^{a-b}}$	Ergibt sich aus der Potenzregel

60.3 Ableitung der Kehrwertfunktion

Achtung: Kehrwertfunktionen nicht mit inversen Funktionen verwechseln!

Beschreibung:	Funktion:	Ableitung:	Beispiel:
Allgemeiner Fall	$\frac{1}{g(x)}$	$-\frac{g'(x)}{\left[g(x)\right]^2}$	Spezialfall der Quotientenregel
Sonderfall: Nenner ist eine lineare Funktion	$\frac{1}{x}$	$-\frac{1}{x^2}$	Ergibt sich aus der Quotientenregel und der Potenzregel, oder auch nur aus der Potenzregel
Sonderfall: Nenner ist eine Potenzfunktion	$\frac{1}{x^n}$	$-\frac{n\cdot x^{n-1}}{x^{2n}}$	Ergibt sich aus der Quotientenregel und der Potenzregel, oder auch nur aus der Potenzregel

60.4 Ableitung der natürlichen Exponentialfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkungen:
Natürliche Exponentialfunktion (Basis = $e \approx 2.71828$)	e^x	e^x	Die natürliche Exponentialfunktion ist die einzige Funktion, bei der Funktion und Ableitung übereinstimmen
Exponent ist eine Funktion von x	$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$	Folgt aus Kettenregel und Ableitung der natürlichen Exponentialfunktion
"	e^{x+c}	e^{x+c}	11
"	$e^{b\cdot x}$	$e^{b\cdot x}\cdot b$	"
"	e^{bx+c}	$e^{bx+c} \cdot b$	"
11	$e^{\frac{x}{b}}$	$e^{rac{x}{b}} \cdot rac{1}{b}$	"
"	$e^{(x^2)}$	$e^{(x^2)} \cdot 2x$	"
"	$e^{\sqrt{x}}$	$e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}$	"
"	$e^{\ln x} = x$	1	"
Produkt aus Konstante b und Exponentialfunktion	$b \cdot e^x$	$b \cdot e^x$	Folgt aus der Faktorregel
Produkt aus Funktion g(x) und Exponentialfunktion	$g(x) \cdot e^x$	$g'(x) \cdot e^x + g(x) \cdot e^x$	Folgt aus der Produktregel
Produkt aus Funktion g(x) und einer Exponentialfunktion mit der Funktion f(x) im Exponenten	$g(x) \cdot e^{f(x)}$	$g'(x) \cdot e^{f(x)} + g(x) \cdot e^{f(x)} \cdot f'(x)$	Folgt aus der Produktregel und der Kettenregel

60.5 Ableitungen der allgemeinen Exponentialfunktion

Für die Basis a gelte: a>0

Beschreibung:	Funktion:	Ableitung:	Anmerkungen:
Allgemeine Exponentialfunktion	a^x	$\ln(a) \cdot a^x$	Beispiel: $(2^x)' = 2^x \cdot \ln 2$
Exponent ist eine Funktion von x	$a^{f(x)}$	$\ln(a) \cdot a^{f(x)} \cdot f'(x)$	Folgt aus Kettenregel und Ableitung der Allgemeinen Exponentialfunktion
"	a^{x+b}	$\ln(a) \cdot a^{x+b}$	"
II.	a^{bx}	$\ln(a) \cdot a^{bx} \cdot b$	11
"	a^{bx+c}	$\ln(a) \cdot a^{bx+c} \cdot b$	"
"	$a^{\frac{x}{b}}$	$\ln(a) \cdot a^{\frac{x}{b}} \cdot \frac{1}{b}$	"
"	$a^{(x^2)}$	$\ln(a) \cdot a^{(x^2)} \cdot 2x$	"
"	$a^{\sqrt{x}}$	$\ln(a) \cdot a^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}$	"
"	$a^{\ln x}$ x>0	$\ln(a) \cdot a^{\ln x} \cdot \frac{1}{x}$	"
Produkt aus Konstante b und Exponentialfunktion	$b \cdot a^x$	$b \cdot \ln(a) \cdot a^x$	Folgt aus der Faktorregel
Produkt aus Funktion g(x) und Exponentialfunktion	$g(x)\cdot a^x$	$g'(x) \cdot a^x + g(x) \cdot \ln(a) \cdot a^x$	Folgt aus der Produktregel
Produkt aus Funktion g(x) und einer Exponentialfunktion mit der Funktion f(x) im Exponenten	$g(x) \cdot a^{f(x)}$	$g'(x) \cdot a^{f(x)} + g(x) \cdot \ln(a) \cdot a^{f(x)} \cdot f'(x)$	Folgt aus der Produktregel und der Kettenregel

60.6 Ableitungen der natürlichen Logarithmusfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkungen:
Natürliche Logarithmusfunktion (Basis = e ≈ 2.71828)	$ \ln x $ $ mit: x > 0 $	$\frac{1}{x}$	Ergibt sich als Spezialfall der Ableitung der allgemeinen Logarithmusfuntion, und der Formel ln(e)=1
	$b \cdot \ln(x)$ $mit: x > 0$	$\frac{b}{x}$	Folgt aus der Faktorregel
Argument ist selbst wieder eine Funktion f von x	$ \ln\left(f(x)\right) $ $ mit: f(x) > 0 $	$\frac{f'(x)}{f(x)}$	Folgt aus der Kettenregel und der Ableitung der natürlichen Logarithmusfunktion
"	$\ln(bx)$ $mit: bx > 0$	$\frac{1}{bx} \cdot b = \frac{b}{bx} = \boxed{\frac{1}{x}}$	n
"	$\ln(bx+c)$ $mit: bx+c>0$	$\frac{b}{bx+c} = \frac{1}{x+\frac{c}{b}}$	11

60.7 Ableitungen der allgemeinen Logarithmusfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkungen:
Allgemeine Logarithmusfunktion	$\log_a(x)$	$\frac{1}{x \cdot \ln a}$	
	$a>0, a \ne 1, x > 0$		
	$b \cdot \log_a(x)$	b	Folgt aus der Faktorregel
		$\sqrt{x \cdot \ln a}$	
	$a>0, a \ne 1, x > 0$		
Argument ist keine Variable x sondern selbst wieder eine	$\log_a(f(x))$	$\frac{f'(x)}{f(x) \cdot \ln a}$	Folgt aus der Kettenregel und der Ableitung der allgemeinen Logarithmusfunktion
Funktion f(x)	$a>0, a \ne 1, f(x) > 0$		Dogartamastanktion
n .	$\log_a(bx)$	$\frac{b}{bx \cdot \ln a} = \boxed{\frac{1}{x \cdot \ln a}}$	"
	$a>0, a \ne 1, bx > 0$	on mu <u>n mu</u>	
"	$\log_a (bx + c)$	<u>b</u>	"
	$a>0, a \ne 1, bx+c > 0$	$(bx+c)\cdot \ln a$	

60.8 Ableitung der Sinusfunktionen

Beschreibung:	Funktion:	Ableitung:	Anmerkung:
Sinusfunktion	sin x	$\cos x$	
	$a \cdot \sin x$	$a \cdot \cos x$	Folgt aus Faktorregel
	$-\sin x$	$-\cos x$	Spezialfall der vorigen Regel: $-\sin x = -1 \cdot \sin x$
	$\sin^2 x = (\sin x)^2$	$2 \cdot \sin x \cdot \cos x$ Wegen der Formel für doppelte Winkel aus der Trigonometrie darf man auch schreiben: $\sin(2x)$	Folgt aus der Kettenregel in Verbindung mit der Potenzregel oder aus Produktregel: (sin²x = sinx·sinx)
	$\sin^3 x = (\sin x)^3$	$3 \cdot \sin^2(x) \cdot \cos(x)$	Folgt aus der Kettenregel in Verbindung mit der Potenzregel
	$\sin^n x = (\sin x)^n$	$n \cdot \sin^{n-1}(x) \cdot \cos(x)$	Folgt aus der Kettenregel in Verbindung mit der Potenzregel
Argument ist keine Variable x sondern selbst wieder eine Funktion f(x)	$\sin(f(x))$	$\cos(f(x))\cdot f'(x)$	Folgt aus Kettenregel
"	$\sin(x+c)$	$\cos(x+c)$	п
11	$\sin(bx)$	$\cos(bx) \cdot b$	11
11	$\sin(bx+c)$	$\cos(bx+c)\cdot b$	11
"	$\sin(x^2)$	$\cos(x^2) \cdot 2x$	"
"	$\sin(x^n)$	$\cos(x^n) \cdot n \cdot x^{n-1}$	"
"	$\sin(\sqrt{x})$	$\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$	"
"	$\sin(e^x)$	$\cos(e^x) \cdot e^x$	0
"	$\sin(a^x)$ a>0	$\cos(a^x)\cdot\ln(a)\cdot a^x$	"
"	$\sin(\ln x)$ x>0	$\cos(\ln x) \cdot \frac{1}{x}$	"

60.9 Ableitung der Kosinusfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkung:
Kosinusfunktion	$\cos x$	$-\sin x$	
	$a \cdot \cos x$	$a \cdot (-\sin x) = -a \cdot \sin x$	Folgt aus Faktorregel
	$-\cos x$	$-(-\sin x) = \sin x$	Spezialfall der vorigen Regel: $-\cos x = -1 \cdot \cos x$
	$\cos^2 x = (\cos x)^2$	$-2 \cdot \sin x \cdot \cos x$ Wegen der Formel für doppelte Winkel aus der Trigonometrie darf man auch schreiben: $-\sin(2x)$	Folgt aus der Kettenregel in Verbindung mit der Potenzregel oder aus Produktregel: $(\cos^2 x = \cos x \cdot \cos x)$
	$\cos^3 x = (\cos x)^3$	$-3\cdot\cos^2(x)\cdot\sin(x)$	Folgt aus der Kettenregel in Verbindung mit der Potenzregel
Argument ist keine Variable x sondern selbst wieder eine Funktion f(x)	$\cos(f(x))$	$-\sin(f(x))\cdot f'(x)$	Folgt aus Kettenregel
"	$\cos(x+c)$	$-\sin(x+c)$	"
"	$\cos(bx)$	$-\sin(bx)\cdot b$	"
"	$\cos(bx+c)$	$-\sin(bx+c)\cdot b$	"
"	$\cos(x^2)$	$-\sin(x^2)\cdot 2x$	"
"	$\cos(x^n)$	$-\sin(x^n)\cdot n\cdot x^{n-1}$	"
11	$\cos\sqrt{x}$	$-\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$	"
"	$\cos(e^x)$	$-\sin(e^x)\cdot e^x$	п
"	$\cos(a^x)$ a>0	$-\sin(a^x)\cdot\ln(a)\cdot a^x$	п
п	$\cos(\ln x)$ x>0	$-\sin(\ln x) \cdot \frac{1}{x}$	п

60.10 Ableitung der Tangensfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkung:
Tangensfunktion	tan x	$\frac{1}{\cos^2 x} = \text{oder: } 1 + \tan^2 (x)$ Zur Umformung von Formel 1 in Formel 2 wurde der trigonometrische Pythagoras benutzt (siehe Trionometrie)	
2.Potenz	$\tan^2 x = \left(\tan x\right)^2$	$2 \cdot \frac{1}{\cos^2 x} \cdot \tan x = 2 \cdot \frac{\sin x}{\cos^3 x}$ oder:	Folgt aus der Produktregel und der Formel: $\tan x = \frac{\sin x}{\cos x}$
		$2[1 + \tan^2(x)]\tan x = 2\tan(x) + 2\tan^3(x)$	Folgt aus der Produktregel
n-te Potenz	$\tan^n x = (\tan x)^n$	$n(\tan x)^{n-1} \cdot \frac{1}{\cos^2 x}$ oder: $n(\tan x)^{n-1} \cdot (1 + \tan^2 x)$	Folgt aus der Kettenregel und der Potenzregel
Argument ist keine Variable x sondern selbst wieder eine Funktion (x)	$\tan(f(x))$	$\frac{f'(x)}{\cos^2(f(x))} \text{ oder: } \left[1 + \tan^2(f(x))\right] \cdot f'(x)$	Folgt aus der Kettenregel
"	$\tan(b+x)$	$\frac{1}{\cos^2(b+x)} \text{oder:} 1 + \tan^2(b+x)$	"
11	tan(bx)	$\frac{b}{\cos^2(bx)} \text{oder: } [1 + \tan^2(bx)] \cdot b = b + b \tan^2(bx)$	"
"	$\tan(bx+c)$	$\frac{b}{\cos^2(bx+c)}$ oder: $[1+\tan^2(bx+c)] \cdot b = b+b\tan^2(bx+c)$	"

60.11 Ableitung der Kotangensfunktion

Beschreibung:	Funktion:	Ableitung:	Anmerkung:
Kotangens- funktion	$\cot x$	$-\frac{1}{\sin^2 x} \text{oder:} -(1+\cot^2 x)$ Zur Umformung von Formel 1 in Formel 2 wurde der trigonometrische Pythagoras benutzt (siehe Trigonometrie)	
2.Potenz	$\cot^2 x = (\cot x)^2$	$-\frac{2 \cdot \cot x}{\sin^2 x} = -2 \cdot \frac{\cos x}{\sin^3 x}$ oder: $-2 \cdot (\cot x) \cdot [1 + \cot^2 (x)] = -2\cot(x) + 2\cot^3(x)$	Folgt aus der Produktregel und der Formel: $\cot x = \frac{\cos x}{\sin x}$ Folgt aus der Produktregel
n-te Potenz	$\cot^n x = (\cot x)^n$	$n(\cot x)^{n-1} \cdot \left(-\frac{1}{\sin^2 x}\right)$ oder: $n(\cot x)^{n-1} \cdot (-1) \cdot (1 + \cot^2 x)$	Folgt aus der Kettenregel und der Potenzregel
Argument ist keine Variable x sondern selbst wieder eine Funktion f(x)	$\cot(f(x))$	$-\frac{f'(x)}{\sin^2(f(x))} \text{oder:} -\left[1+\cot^2(f(x))\right] \cdot f'(x)$	Folgt aus der Kettenregel
"	$\cot(x+b)$	$-\frac{1}{\sin^2(x+b)} \text{oder:} -[1+\cot^2(x+b)]$	"
"	$\cot(bx)$	$-\frac{b}{\sin^2(bx)}$ oder: $-[1+\cot^2(bx)] \cdot b = -b-b \cdot \cot^2(bx)$	"
n	$\cot(bx+c)$	$-\frac{b}{\sin^2(bx+c)}$ oder: $-[1+\cot^2(bx+c)] \cdot b = -b-b \cdot \cot^2(bx+c)$	"