

GNNBuilder **

An Automated Framework for Generic Graph Neural Network Accelerator Generation, Simulation, and Optimization

Stefan Abi-Karam^{1,2}, Cong Hao¹

¹Georgia Institute of Technology, ²Georgia Tech Research Institute stefanabikaram@gatech.edu, callie.hao@ece.gatech.edu

Background

DL for Graphs GNNs Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations
Ongoing Work
Documentation and
Open Source

Background DL for Graphs

GNNs

Accelerators

GNNBuilder

Generic Compute

Architecture

Design Space Exploration

Performance Results

Framework API

Limitations

Ongoing Work

Documentation and Open Source

Deep Learning for Graphs

What "Deep Learning for Graphs" applications benefit most from hardware acceleration?

Deep Learning for Graphs

Point Cloud Processing

High Energy Physics!

Deep Learning for Graphs

Background

DL for Graphs

GNNs

Accelerators

GNNBuilder

Generic Compute

Architecture

Design Space Exploration

Performance Results

Framework API

Limitations

Ongoing Work

Documentation and Open Source

Graph Neural Networks (GNNs)

- 1. Graph Convolutions
- 2. Node-Level Embedding *
- 3. Pool Nodes **
- 4. Graph Prediction Head
- 5. Graph-Level Embedding

- * Or compute edge embeddings
- ** Stop here for node-level and edge-level tasks

Graph Neural Networks (GNNs)

- 1. Graph Convolutions
- 2. Node-Level Embedding *
- 3. Pool Nodes **
- 4. Graph Prediction Head
- 5. Graph-Level Embedding

- * Or compute edge embeddings
- ** Stop here for node-level and edge-level tasks

This part is the challenge!

Background

DL for Graphs GNNs

Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations

Ongoing Work

Documentation and
Open Source

GNN Hardware Acceleration Landscape

X General Computation

X End-To-End Automation

✓ Hardware Acceleration

☑ General Computation

X End-To-End Automation

✓ Hardware Acceleration

General GNN Computation

✓ End-To-End Automation

GNNBuilder Overview

Generic Compute: wide range of GNN model support

Architecture: Parameterizable SW and HW model architecture

Design Space Exploration: ML-based DSE models

Performance Results: Better performance against CPU and GPU

Framework API: Open-source Python API with end-to-end workflow

Extensibility: Interoperability with PyTorch and extendable by anyone

Background

DL for Graphs GNNs Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations

Ongoing Work

Documentation and
Open Source

"SpMM is All You Need"

"SpMM is **Not** All You Need"

Non-Sum Aggregation PNA + GraphSAGE

Anisotropic Message PassingGraph Attention Networks

Edge Embeddings

Almost all other cases...

Sum-Multiply Reductions

GCN + GIN+ GraphSAGE

"SpMM is All You Need"

EnGN
HyGCN
AWB-GCN
GRIP
Auten et al.
Zhang et al.
Rubik
GCNAX
GraphACT
BoostGCN
I-GCN

Hardware Acceleration

X General Computation

"SpMM is **Not** All You Need"

FlowGNN

GNNBuilder

✓ Hardware Acceleration

✓ General Computation

Generic Compute

Model	Representativeness		
GCN [22]	GNN family that can be represented as sparse matrix-matrix multiplications (SpMM)		
GraphSage [19]	GNN family with flexible / non-sum aggregation		
	methods		
GIN [42]	GNN family with edge embeddings, SpMM does		
	not apply		
PNA [9]	A popular Anisotropic GNN family arbitrarily		
	using multiple aggregation methods and sophis-		
	ticated message function, SpMM does not apply		
0.017			

GCN: graph convolutional network; **GIN:** graph isomorphism network; **GraphSAGE:** graph sample and aggregate; **PNA:** principal neighbourhood aggregation.

Generic Compute

	HP-GNN [28]	DeepBurning-GL [25]	GNNBuilder
Acceleration Goal	Training	Inference	Inference
Programming Language	Self-defined	PyTorch and DGL	PyTorch 📫
Anisotropic GNN Family	No	No	Yes 🕩
Extensibility	Low	Low	Very High 👍
Arbitrary Quantization	No	No	Yes 🖒
Arbitrary Aggregation	No	No	Yes 🖒
Arbitrary Activation	Fixed	Fixed	Arbitrary 🖒
Skip Connections	No	No	Yes 🖒
Arbitrary Global Pooling	No	No	Yes 🖒
Arbitrary MLP Head	No	No	Yes 🖒
Fixed / Floaing Point Testbench	No	No	Yes 🖒
Open Source	No	No	Yes 🖒

Model Architecture

Support a parameterized model architecture for **node-level** and **graph-level tasks**.

Model Architecture

Fully parameterized GNN model using PyTorch Geometric.

```
model = gnnb.GNNModel(
    graph input feature dim=dataset.num features,
    graph input edge dim=dataset.num edge features,
    gnn hidden dim=16,
    gnn num layers=2,
    gnn output dim=8,
    gnn conv=gnnb.SAGEConv GNNB,
    gnn activation=nn.ReLU,
    gnn skip connection=True,
    global pooling=gnnb.GlobalPooling(["add", "mean", "max"]),
    mlp head=gnnb.MLP(
        in dim=8 * 3,
        out dim=dataset.num classes,
        hidden dim=8,
        hidden layers=3,
        activation=nn.ReLU,
        p in=8,
        p hidden=4,
        p out=1,
    output activation=None,
    gnn p in=1,
    gnn p hidden=8,
    gnn p out=4,
```


Hardware Architecture

We use an **explicit message passing** hardware kernel architecture for each graph convolution.

Hardware Architecture

The entire GNN Backbone is an "HLS DATAFLOW" region allowing for higher data throughput between layers without stalling.

Graph Representation in Memory

We support COO (edge list) format for graph input.

We process the graph to create a degree table and neighbor table.

All this processing is done once on the device during inference.

Neighbor Offset Table 0 0 2 4 1 4 2 4 Neighbor Table

GNNBuilder comes with a modular C++ HLS header library for GNN compute!

∨ OUTLINE

- relu<T>(T)
- sigmoid<T>(T)
- gelu_1<T>(T)
- gelu_2<T>(T)
- gelu_3<T>(T)
- tanh<T>(T)
- mean < SIZE, BLOCK_SIZE_, T>(T [
- > \$\infty\$ mean_incremental_data<T>

 - ∀ variance < SIZE, BLOCK_SIZE_, T > (
- > = variance_incremental_data<T>

 - ∀ variance_incremental_finalize<T>
 - sum < SIZE, BLOCK_SIZE_, T>(T [SI
- > \$\infty\$ sum_incremental_data<T>
 - sum_incremental_update<T>(sur

- > \$\infty\$ max_incremental_data<T>
 - max_incremental_update<T>(max_incremer
 - max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T)<(max_incremental_finalize<T>(max_incremental_finalize<T>(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_finalize<T)<(max_incremental_fina
- > == min_incremental_data<T>
 - min_incremental_update<T>(min_increment
 - min_incremental_finalize<T>(min_increment

 - inear_simple < in_size, out_size, T > (T [in_size]
 - compute_degree_tables<MAX_NODES, MAX
 - compute_neighbor_tables<MAX_NODES, M
 - gather_node_neighbors<MAX_NODES, MAX
 - gcn_conv<MAX_NODES, MAX_EDGES, EMB_
 - gin_conv<MAX_NODES, MAX_EDGES, EMB_
 - pna_conv<MAX_NODES, MAX_EDGES, EMB_

 - global_add_pool<MAX_NODES, MAX_EDGE
 - global_mean_pool<MAX_NODES, MAX_EDG
 - global_max_pool<MAX_NODES, MAX_EDGE

Break down key details of a GCN convolution layer.

Note how model parameters are passed down to the hardware.

```
template <int MAX NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
          int EMB SIZE OUT,
          typename T,
          int NUM_NODES_GUESS = MAX_NODES,
          int NUM_EDGES_GUESS = MAX_EDGES,
          int DEGREE_GUESS = MAX_NODES,
         int P_{IN} = 1,
          int P OUT = 1>
void gcn conv(
    int num_nodes,
    int num edges,
    T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
    T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
    T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
   T apply_lin_bias[EMB_SIZE_OUT]) {
```


Used for static array / memory sizing.

Set by user at design time based on dataset / workload.

```
template kint MAX_NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
          int EMB_SIZE_OUT,
          typename T,
          int NUM_NODES_GUESS = MAX_NODES,
          int NUM_EDGES_GUESS = MAX_EDGES,
          int DEGREE_GUESS = MAX_NODES,
          int P_IN = 1,
          int P OUT = 1>
void gcn conv(
    int num_nodes,
    int num edges.
   T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
   T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
   T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
   T apply_lin_bias[EMB_SIZE_OUT]) {
```


Used for static array / memory sizing.

Used for passing in "ap_fixed" typedef as user-defined fixed-point datatype.

Set by user at design time based on task accuracy tradeoff.

```
template <int MAX NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
         int EMB SIZE OUT,
          typename T,
          int NUM_NODES_GUESS = MAX_NODES,
          int NUM_EDGES_GUESS = MAX_EDGES,
          int DEGREE_GUESS = MAX_NODES,
          int P_IN = 1,
          int P OUT = 1>
void gcn conv(
    int num_nodes,
    int num edges.
   T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
    T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
   T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
   T apply_lin_bias[EMB_SIZE_OUT]) {
```


Used for static array / memory sizing.

Used for passing in "ap_fixed" typedef.

Used for "#pragma HLS tripcount" to improve latency estimation.

Estimated from dataset / workload at design time.

```
template <int MAX NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
          int EMB SIZE OUT,
         typename T,
          int NUM_NODES_GUESS = MAX_NODES,
          int NUM_EDGES_GUESS = MAX_EDGES,
          int DEGREE_GUESS = MAX_NODES,
          int P IN = 1,
          int P OUT = 1>
void gcn_conv(
    int num_nodes,
    int num edges,
   T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
    T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
   T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
   T apply_lin_bias[EMB_SIZE_OUT]) {
```


Used for static array / memory sizing.

Used for passing in "ap_fixed" typedef.

Used for "#pragma HLS tripcount" to improve latency estimation.

Used to parallelize intra-layer operations such as node transformations.

Set by the user at design time based on perf. requirements and DSE exploration.

```
template <int MAX NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
          int EMB SIZE OUT,
         typename T,
          int NUM_NODES_GUESS = MAX_NODES,
          int NUM_EDGES_GUESS = MAX_EDGES,
         int DEGREE_GUESS = MAX_NODES,
         int P IN = 1,
          int P_OUT = 1>
        conv(
    int num_nodes,
    int num_edges,
   T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
    T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
   T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
   T apply_lin_bias[EMB_SIZE_OUT]) {
```


Used for static array / memory sizing.

Used for passing in "ap_fixed" typedef.

Used for "#pragma HLS tripcount" to improve latency estimation.

Used to parallelize intra-layer operations such as node transformations.

More details in the code repo. and documentation.

```
template <int MAX NODES,
          int MAX EDGES,
          int EMB_SIZE_IN,
          int EMB SIZE OUT,
          typename T,
          int NUM_NODES_GUESS = MAX_NODES,
         int NUM_EDGES_GUESS = MAX_EDGES,
          int DEGREE_GUESS = MAX_NODES,
        _{\mathbf{z}} int P_IN = 1,
        __ int P OUT = 1>
     gcn conv(
    int num_nodes,
    int num edges,
    T node_embedding_table_in[MAX_NODES][EMB_SIZE_IN],
    T node_embedding_table_out[MAX_NODES][EMB_SIZE_OUT],
    int edge_list[MAX_EDGES][2],
    int neightbor_table_offsets[MAX_NODES],
    int neighbor_table[MAX_EDGES],
    int in_degree_table[MAX_NODES],
    int out_degree_table[MAX_NODES],
    T apply_lin_weight[EMB_SIZE_OUT][EMB_SIZE_IN],
    T apply_lin_bias[EMB_SIZE_OUT]) {
```


Compiler and Code Generation

GNNBuilder implements a **template-based compiler** that lowers PyTorch models, down to a structured model IR, and then down to HLS C++ source code.

Compiler and Code Generation

We extract model and hardware architecture logic into individual compiler template components.

Extra Features

- User specified fixed-point data type for features and weights
 - Uses ap_fixed format Xilinx HLS library
 - Also uses hls::math library
- Auto build and run of C++ testbench using Clang
 - Can export PyTorch Geometric dataset to testbench files
 - Can use testbench as a correct model to explore quantization loss
- Auto synthesis using Vitis HLS
 - Runs synthesis flow for a user-specified device and clock speed
 - Extracts synthesis results: latency + resource usage
- Auto deploy to FPGA with host code (work in progress)
 - Run Vitis + Vivado build flow to generate .xclbin
 - Generate OpenCL host code to evaluate dataset (like testbench)
 - Looking into using XRT support in the PYNQ library to keep everything in Python

DL for Graphs GNNs Accelerators

GNNBuilder

Generic Compute
Architecture

Design Space Exploration

Performance Results Framework API

Limitations

Ongoing Work

Documentation and Open Source

Design Space Exploration

Predicting Latency and Resource Usage

Analytical Model

Complete Failure!
Too Much Complexity

ML-Based Model

Success!

Generalizes Across Accelerator Configs.

Design Space Exploration

MAPE: Mean Absolute Percent Error

Design Space Exploration

Single DSE Model - 1.7 ms.

Single HLS Synthesis - 9.5 min.

DL for Graphs GNNs Accelerators

GNNBuilder

Generic Compute Architecture Design Space Exploration

Performance Results

Framework API

Limitations

Ongoing Work

Documentation and Open Source

- **PyG-CPU**: A PyTorch Geometric CPU model
- **PyG-GPU**: A PyTorch Geometric GPU model
- **CPP-CPU**: A C++ floating point CPU model
- **FPGA-Base**: Proposed HW model with no parallelism
- **FPGA-Parallel**: Proposed HW model with parallelism

CPU: Intel Xeon Gold 6226R

GPU: Nvidia RTX A6000

FPGA: Xilinx Alveo U280 @ 300 MHz.

We use a **batch_size=1**across all evaluations for **real-time inference applications**.

- PyG-CPU: A PyTorch Geometric CPU model
- PyG-GPU: A PyTorch Geometric GPU model
- **CPP-CPU**: A C++ floating point CPU model
- **FPGA-Base**: Proposed HW model with no parallelism
- **FPGA-Parallel**: Proposed HW model with parallelism

	PyG-CPU	PyG-GPU	CPP-CPU
GCN	6.46x	7.66x	3.04x
GIN	5.81x	6.08x	4.24x
PNA	6.48x	6.70x	22.14x
SAGE	6.58x	7.16x	8.84x
Geo. Mean	6.33x	6.87x	7.08x
Geo. Mean	6.33x	6.87x	7.08x

We achieve consistent speedups overs CPU and GPU implementations!

- **PyG-CPU**: A PyTorch Geometric CPU model
- **PyG-GPU**: A PyTorch Geometric GPU model
- **CPP-CPU**: A C++ floating point CPU model
- **FPGA-Base**: Proposed HW model with no parallelism
- **FPGA-Parallel**: Proposed HW model with parallelism

	PyG-CPU	PyG-GPU	CPP-CPU
GCN	6.46x	7.66x	3.04x
GIN	5.81x	6.08x	4.24x
PNA	6.48x	6.70x	22.14x
SAGE	6.58x	7.16x	8.84x
Geo. Mean	6.33x	6.87x	7.08x
Geo. Mean	6.33x	6.87x	7.08x

Resource usage is dominated by on-chip memory (BRAM / URAM)

DL for Graphs GNNs Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results

Framework API

Limitations
Ongoing Work
Documentation and
Open Source

Framework API

USER APIS FOR THE GNN_BUILDER PYTHON LIBRARY.

API Functions	Description	
model.GNNModel(nn.Module)	PyTorch Model for GNNBuilder Arch.	
<pre>model.GCNConv_GNNB(nn.Module)</pre>	GCN Conv. Layer	
<pre>model.GINConv_GNNB(nn.Module)</pre>	GIN Conv. Layer	
<pre>model.PNAConv_GNNB(nn.Module)</pre>	PNA Conv. Layer	
<pre>model.SAGEConv_GNNB(nn.Module)</pre>	GraphSAGE Conv. Layer	
<pre>model.GlobalPooling(nn.Module)</pre>	Global Graph Pooling Layer	
model.MLP(nn.Module)	MLP Prediction Head	
code_gen.Project()	GNNBuilder Project Class	
Project.gen_hw_model()	Code Gen. For HW Kernel	
Project.gen_testbench()	Code Gen. For Testbench	
Project.gen_makefile()	Code Gen. For Testbench Makefile	
Project.gen_vitis_hls_tcl_script()	Code Gen. For Vitis HLS Synth. Script	
Project.build_and_run_testbench()	Build and Run Testbench	
Project.run_vitis_hls_synthesis()	Launch Vitis HLS Synthesis Run	


```
import torch.nn as nn
from torch geometric.datasets import
    MoleculeNet
import gnnbuilder as gnnb
dataset = MoleculeNet(root="./tmp/MoleculeNet
    ", name="hiv")
model = gnnb.GNNModel(
    graph_input_feature_dim=dataset.
    num features,
    graph input edge dim=dataset.
    num edge features,
    gnn hidden dim=16,
    gnn num layers=2,
    gnn output dim=8,
    gnn_conv=gnnb.SAGEConv_GNNB,
    gnn activation=nn.ReLU,
    gnn skip connection=True,
    global_pooling=gnnb.GlobalPooling(["add",
     "mean", "max"]),
    mlp head=gnnb.MLP(in dim=8 * 3, out dim=
    dataset.num classes, hidden dim=8,
    hidden layers=3, activation=nn.ReLU, p in
    =8, p_hidden=4, p_out=1),
    output_activation=None,
    gnn p in=1,
    gnn p hidden=8,
    gnn p out=4
MAX NODES = 600
MAX EDGES = 600
num_nodes_avg, num_edges_avg = gnnb.
    compute average nodes and edges (dataset)
degree_avg = gnnb.utils.
    compute_average_degree (dataset)
```

```
proj = qnnb.Project(
    "ann model",
    model,
    "classification_integer",
    VITIS HLS PATH,
    BUILD DIR,
    dataset=dataset,
    max nodes=MAX NODES,
    max edges=MAX EDGES,
    num_nodes_quess=num_nodes_avg,
    num edges quess=num edges avg,
    degree_quess=degree_avg,
    float_or_fixed="fixed",
    fpx=FPX(32, 16),
    fpga_part="xcu280-fsvh2892-2L-e".
    n_{jobs=32}
proj.gen_hw_model()
proj.gen testbench()
proj.gen makefile()
proj.gen_vitis_hls_tcl_script()
proj.gen makefile vitis()
tb_data = proj.build_and_run_testbench()
print (tb data)
synth_data = proj.run_vitis_hls_synthesis()
print(synth data)
```

Minimum working example to generate, testbench, and synth a GNN accelerator.

Import GNNBuilder

Specify Dataset / Workload

Specific GNN PyTorch Model (can be used for training) (or load a pre-trained model)

Characterize Dataset / Workload Graph
Properties

Specify GNNBuilder Accelerator Project (Define build path, device, tools, and fixed-point spec.)

fpga_part="xcu280-fsvh2892-2L-e",

assification_integer",

"gnn model",

Compile Down to HLS Design, Testbench, and Build Files

Call Tools to Run Hardware Testbench,
Synthesis, and Implementation

Minimum working example to generate, testbench, and synth a GNN accelerator.

DL for Graphs GNNs

Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations

Ongoing Work

Documentation and
Open Source

Limitations

GNNBuilder \Rightarrow 7x speedup vs. **FlowGNN** \Rightarrow up to 400x speedup

No Node-Level Parallelism in GNNBuilder

Each node is evaluated sequentially, nodes are not processed in parallel.

Limitations

GNNBuilder \Rightarrow 7x speedup vs. **FlowGNN** \Rightarrow up to 400x speedup

No Node-Level Parallelism in GNNBuilder

Each node is evaluated sequentially, nodes are not processed in parallel.

Adapt dataflow pipelining and parallelism from previous GNN accelerator publications.

GenGNN and FlowGNN

FlowGNN

DL for Graphs GNNs

Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations

Ongoing Work

Documentation and Open Source

Ongoing Work

Large Graph Support via Efficient Off-Chip HBM Access

Irregular unknown memory access patterns at runtime

Automated XRT and PYNQ On-Device Deployment and Evaluation

Expand Support for Novel GNN and NN Features

GAT, SimpleConv, Graph Sampling, Embedding Lookup Layers, Complex Edge Convs, ...

Multi-Tiered Accelerator Evaluation API

Fitted Models → LightningSim Co-Simulation → Vitis HW Emulation → On-Device Evaluation

Application Demos and Deployment

High Energy Physics Triggers and Reconstruction, Real Time Point Cloud Processing, ...

DL for Graphs GNNs

Accelerators

GNNBuilder

Generic Compute
Architecture
Design Space Exploration
Performance Results
Framework API

Limitations

Ongoing Work

Documentation and Open Source

Source Code + Documentation + Setup

pip install git+https://github.com/sharc-lab/gnn-builder.git

conda install --channel https://sharc-lab.github.io/gnn-builder/repo gnn-builder

Source Code

Documentation + Tutorials

github.com/sharc-lab/gnn-builder

sharc-lab.github.io/gnn-builder/

How to Add a New Graph Convolution Layer

- 1. Clone the repo...
- 2. Add HW kernel to header library...
- 3. Add associated layer wrapper to Python library...
- 4. Add the relevant compiler template unit...
- 5. Run testbench and synth...
- 6. Submit pull request...

See documentation for detailed walkthroughs and tutorials.

GNNBuilder **

An Automated Framework for Generic Graph Neural Network Accelerator Generation, Simulation, and Optimization

Research Faculty
Ph.D. Student
stefanabikaram@gatech.edu
stefanabikaram.com

INR-Arch

A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing

Stefan Abi-Karam*1,2, <u>Rishov</u> Sarkar*1, <u>Dejia</u> Xu³, Zhiwen Fan³, <u>Zhangyang</u> Wang³, Cong Hao¹ ¹Georgia Institute of Technology, ²Georgia Tech Research Institute, ³University of Texas at Austin {stefanabikaram, rishov.sarkar|@gatech.edu, {dejia, zhiwenfan, atlaswang}@utexas.edu, callie.hao@ece.gatech.edu

Sharc Lab @ Georgia Tech sharclab.ece.gatech.edu

External Collaborations

Raised \$60K Internal Research Funding

Sharc Lab @ Georgia Tech

Prof. Callie Hao

Deep Learning on Graphs

Physics Modeling

Scene Graph Understanding

Source Code Analysis

NLP

HW/SW Co-Design Smart EDA Tools Hardware Security Weather Forecasting

Social Network Analysis

Recommender Systems

Drug Discovery

Fraud Detection

Many more...

Point Cloud Processing

High Energy Physics!

ERA5 T850 [K] t=0h

280

Complex A-B

Benefits From Inference Acceleration

- **PyG-CPU**: A PyTorch Geometric CPU model
- **PyG-GPU**: A PyTorch Geometric GPU model
- **CPP-CPU**: A C++ floating point CPU model
- **FPGA-Base**: Proposed HW model with no parallelism
- **FPGA-Parallel**: Proposed HW model with parallelism

We use a batch size of 1 across all evaluations.

For real time inference applications such as high energy physics triggers or autonomous vehicles, this is a reasonable assumption to make. We are unable to batch data in these cases.

If batching is needed, multiple graphs can be treated as one disconnected graph.

All benchmarks share the following model parameters:

GNN Hidden Dim	128	
GNN Hidden Layers	6	
GNN Output Dim	64	
GNN Activation	ReLU	
GNN Skip Connections	True	
Global Pooling	[add, mean, max]	
MLP Head Input Dim	64 x 3	
MLP Hidden Dim	64	
MLP Hidden Layers	4	
MLP Activation	ReLU	

• **PyG-CPU**: A PyTorch Geometric CPU model

• **PyG-GPU**: A PyTorch Geometric GPU model

• **CPP-CPU**: A C++ floating point CPU model

• FPGA-Base: Proposed HW model with no parallelism

• **FPGA-Parallel**: Proposed HW model with parallelism

CPU: Intel Xeon Gold 6226R

GPU: Nvidia RTX A6000

FPGA: Xilinx Alveo U280 @ 300 MHz.

Evaluated Fixed Point Types

Model Type	Fixed-Point Type	
FPGA-Parallel: GCN, SAGE, GIN	ap_fixed<16, 10>	
FPGA-Parallel: PNA	ap_fixed<16, 10>	
FPGA-Base	ap_fixed<16, 32>	

Evaluated Parallelism Factors

Model Type	Input Parallelism	Hidden Parallelism	Output Parallelism
FPGA-Parallel: GCN, SAGE, GIN	gnn_p_in=1, p_in=8	gnn_p_hidden=16, p_hidden=8	gnn_p_out=8, p_out=1
FPGA-Parallel: PNA	gnn_p_in=1, p_in=8	gnn_p_hidden=8	gnn_p_out=8, p_out=1
FPGA-Base	1	1	1

- **PyG-CPU**: A PyTorch Geometric CPU model
- **PyG-GPU**: A PyTorch Geometric GPU model
- **CPP-CPU**: A C++ floating point CPU model
- **FPGA-Base**: Proposed HW model with no parallelism
- **FPGA-Parallel**: Proposed HW model with parallelism

	PyG-CPU	PyG-GPU	CPP-CPU
GCN	6.46x	7.66x	3.04x
GIN	5.81x	6.08x	4.24x
PNA	6.48x	6.70x	22.14x
SAGE	6.58x	7.16x	8.84x
Geo. Mean	6.33x	6.87x	7.08x
Geo. Mean	6.33x	6.87x	7.08x

We achieve consistent speedups overs CPU and GPU implementations!

Based on results from FlowGNN we can roughly estimate power efficiency.

Approximate FPGA power: ~30W Approximate GPU power: ~70W

This results in a ~2.33x approximate power efficiency margin for the same throughput between devices.

Memory efficiency has yet to be profiled.

This is under the current work to support large graphs, HBM support, and graph sampling.

Compiler and Code Generation

We extract model and hardware architecture logic into individual compiler template components.

```
{% if (loop.index - 1) == 0 and (loop.length == 1) %}
{% set emb_buf_in = 'node_emb_first' %}
{% set emb_buf_out = 'node_emb_last' %}
{% elif (loop.index - 1) == 0 and (loop.length != 1) %}
{% set emb_buf_in = 'node_emb_first' %}
{% set emb_buf_out = 'node_emb_buffer_hidden_0' %}
{% elif (loop.index - 1) == (loop.length-1) %}
{% set emb_buf_in = ( 'node_emb_buffer_hidden_' + ((loop.index%2)|string) ) %}
{% set emb_buf_out = 'node_emb_last' %}
{% else %}
{% set emb_buf_in = ( 'node_emb_buffer_hidden_' + ((loop.index%2)|string) ) %}
{% set emb_buf_out = ( 'node_emb_buffer_hidden_' + (((loop.index*2)|string) ) %}
{% set emb_buf_out = ( 'node_emb_buffer_hidden_' + (((loop.index*1)%2)|string) ) %}
{% endif %}
```

```
{% if conv. class . name == "GCNConv AGNN" %}
gcn conv≺
    {{max nodes}},
    {{max edges}},
    {{sw_model.gnn_layer_sizes()[loop.index - 1][0]}},
    {{sw model.gnn layer sizes()[loop.index - 1][1]}},
    F TYPE,
    {{num nodes guess}},
                                    n nodes,
    {{num edges guess}},
                                    n_edges,
    {{degree guess}},
                                    {{emb buf in}},
    {{conv.p in}},
                                    {{emb buf out}},
    {{conv.p out}}
                                    edge list,
                                    neightbor_table_offsets,
                                    neighbor_table,
                                    in degree table,
                                    out degree table,
                                    gnn_convs_{{(loop.index - 1)}}_conv_lin_weight_fixed,
                                    gnn_convs_{{(loop.index - 1)}}_conv_bias_fixed
```

Figure out which double buffer or input / output buffer to use for each layer.

Mapping PyTorch layers and parameters to hardware kernels.