GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Álgebra Lineal

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	110202	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante de conocimiento y herramientas necesarias que le permitan relacionar el álgebra con la geometría analítica para que pueda modelar y resolver mediante la teoría matricial y vectorial problemas propios del campo de la ingeniería.

TEMAS Y SUBTEMAS

Matrices y Sistemas de Ecuaciones Lineales.

- 1.1. Definición de matriz.
- 1.2. Transpuesta de una matriz.
- 1.3. Álgebra de matrices: suma, producto por escalar y multiplicación.
- 1.4. Matrices especiales: diagonales, triangulares, simétricas, antisimétricas, matrices invertibles.
- 1.5. Sistemas de ecuaciones lineales.
- 1.6. Sistemas homogéneos.1.7. Solución de un sistema de ecuaciones lineales.1.8. Sistemas equivalentes.
- 1.9. Método de Gauss-Jordan.
- 1.10. Problemas de Aplicación.
- 1.11. Determinantes y propiedades.
- 1.12. Regla de Cramer.
- 1.13. Inversa de una matriz (método de Gauss y método de la adjunta).

2. Espacios Vectoriales.

- 2.1. Operaciones y geometría de R^2 v R^3 .
- 2.2. Definición y propiedades básicas.
- 2.3. Subespacios vectoriales.
- 2.4. Combinaciones lineales y espacio generado.
- 2.5. Dependencia e independencia lineal.
- 2.6. Bases y dimensión.
- 2.7. Cambio de base.
- 2.8. Rango, nulidad, espacio de renglones y de columnas de una matriz.

3. Proyecciones en \mathbb{R}^n y Mínimos Cuadrados.

- 3.1 Producto escalar y norma de un vector en \mathbb{R}^n .
- 3.2 Proyecciones.
- 3.3 Bases ortonormales y proceso de Gram-Schmidt.
- 3.4 Aproximación por mínimos cuadrados.

4. Trasformaciones lineales.

- 4.1. Definición y propiedades básicas.
- 4.2. Imagen y núcleo de una transformación lineal.
- 4.3. Representación matricial de una transformación lineal.

5. Diagonalización de matrices.

- 5.1. Valores y vectores propios.
- 5.2. Matrices semejantes y diagonalización.
- 5.3 Matrices simétricas y diagonalización ortogonal.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y el retroproyector. Asimismo se utilizaran programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Álgebra Lineal. Stanley I. Grossman. Editorial McGraw Hill. 5ª edición.
- 2. Álgebra Lineal. Fraleigh Beauregard. Editorial Adisson Wesley Iberoamericana.
- 3. Introducción al Álgebra Lineal Antón, Howard. Editorial Limusa, México 2002. QA184 A57.
- 4. Álgebra Lineal con Aplicaciones. George Nakos David Joyner, Editorial Thompson.

Libros de Consulta:

- 1. Álgebra Lineal con Aplicaciones y Matlab. Bernard Kolman, Editorial Prentice Hall. 6a edición.
- 2. Álgebra Lineal con Aplicaciones. George Nakos David Joyner. Editorial Thompson.
- 3. Álgebra Lineal y sus Aplicaciones. Gilbert Strang. Editorial Thomson. 4ª edición.
- 4. Algebra Lineal Aplicada. Ben Noble James W. Daniel. Editorial Prentice Hall. 3ª edición.

PERFIL PROFESIONAL DEL DOCENTE

Maestro o doctor en ciencias (matemáticas o área afín).

