Лабораторная работа 1.4.5. ИЗУЧЕНИЕ КОЛЕБАНИЙ СТРУНЫ

Попова Софья Б04-401

November 2024

Цель работы

Исследование зависимости частоты колебаний струны от величины нятяжения, а также условий установления стоячей волны, получающейся в результате сложения волн, идущих в противоположных направлениях.

Оборудование

Рейка со струной, звуковой генератор, постоянный магнит, разновесы.

Теоретическая часть

Гибкость струны является следстваием ее большой длины в ставрениии с малыми поперечными размерами. Даже струны, изготовленные из жестких материалов, практически не сопротивляются изгибу, что позволяет пренебречь изгибными напряжениями. За счет натяжения струна вытягивается практически в прямую линию, сила нятяжения значительно первосходит вес струны, что позволяет пренебречь силами тяжести.

По волновому уравнению скорость распространения поперечной волны на струне равна (где F - сила натяжения струны, ρ_l - масса струны на единицу длины):

$$u = \sqrt{\frac{F}{\rho_l}} \tag{1}$$

При заданной частоте ν длина волны равна λ :

$$\lambda = \frac{u}{\nu} \tag{2}$$

Частоты собственных колебаний струны определяются формулой (где l - длина волны, n - число полуволн):

$$\nu_n = n \frac{u}{2l} \tag{3}$$

Эту формулу будем использовать для теоретического рассчета частоты гармоник.

Экспериментальная часть

Проведем предварительные рассчеты:

Сила натяжения нити T=Mg, где ${\bf M}=$ суммарная масса подвеса и изначальных грузиков.

$$M = 1012, 7\Gamma$$

$$ho=568,4$$
 мг/м $=0,5684$ г/м

Тогда:

$$u=\sqrt{rac{M\cdot g}{
ho}}pprox 132,14$$
 м/с

Длина струны L (рекомендованное значение - 50 см) = $50\pm0,05$ см. Рассчитаем частоту основной гармоники по формуле (3):

$$\nu_1 = 1 \cdot \frac{u}{2L} \approx 132 \ \Gamma$$
ц

Включим в сеть звуковой генератор, установим на нём синусоидальный тип сигнала. Установим регистрирующий датчик в центре под струной (в месте пучности). Убедиждаемся, что сигнал с выхода генератора подаётся на возбуждающий датчик. Устанавливаем на генераторе рассчитанную частоту ν_1

Медленно изменяя частоту генератора в пределах $\nu_1 \pm 5$ Γ ц, добиваемся возбуждения стоячей волны с максимальной амплитудой регистрируемого сигнала на осциллографе, записываем значение частоты в табл.1

Увеличим частоту генератора в 2 раза и аналогичным образом определим частоту ν_2 , при которой амлпитуда колебаний достигает максимума. Проведём такое же измерение для 3-9 нечетных гармоник. Результат - в табл.1

Проведем измерения для еще 4 четных гармоник. Теперь посередине струны находится узел волны, поэтому регистрирующий датчик стоит сместить в сторону пучности. Результаты - в табл.1

Гармоника	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9
Частота	136,49	273,28	409,7	549,2	685,1	826,2	967	1105	1250

Таблица 1: масса грузиков = 1012,7 г

Повторим измерения для других значений T. Натяжение нити будем изменять подвешивая дополнительные грузы к нити. Результаты измерений указаны в таблице 2.

Масса груза	Гармоника	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9
1351,7 г	Частота	158,2	315,4	474,3	632,5	789,2	948,2	1110	1266	1427
Масса груза	Гармоника	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9
1844,9 г	Частота	181	364	548,3	731,9	915,5	1098	1284	1469	1651
Масса груза	Гармоника	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9
2327,3 г	Частота	202	408,2	611,6	815,5	1020	1222	1430	1637	1843
Масса груза	Гармоника	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9
2821,7 г	Частота	224	450,5	672,6	899,9	1126	1351	1577	1805	2032

Таблица 2: Данные измерений при разных Т

По полученным данным построим график зависимости частоты резронанса от n (рис.1)

Рис. 1: Графики зависимости $\nu_n(n)$

Определим по наклону графика u скорость волн в струне при каждом T по формуле (3):

$$\nu_n = n \frac{u}{2l} \qquad u = \frac{\nu_n \cdot 2l}{n}$$

 $u_1=137,4\,\mathrm{m/c}$. Теоретическое значение: $132,21\,\mathrm{m/c}$ Разница составляет: $\frac{137,4-132,21}{137,4}\approx0,038(3,8\%)$ $u_2=158,1\,\mathrm{m/c}$. Теоретическое значение: $152,74\,\mathrm{m/c}$ Разница составляет: $\frac{158,1-152,74}{158,1}\approx0,034(3,4\%)$ $u_3=182,8\,\mathrm{m/c}$. Теоретическое значение: $178,44\,\mathrm{m/c}$ Разница составляет: $\frac{182,8-178,44}{182,8}\approx0,024(2,4\%)$ $u_4=203,9\,\mathrm{m/c}$. Теоретическое значение: $200,42\,\mathrm{m/c}$ Разница составляет: $\frac{203,9-200,42}{203,9}\approx0,017(1,7\%)$ $u_5=225\,\mathrm{m/c}$. Теоретическое значение: $220,68\,\mathrm{m/c}$ Разница составляет: $\frac{225-220,68}{225}\approx0,019(1,9\%)$

По полученным данным построен график зависимости квадрата скорости волны от силы натяжения нити (рис.2). По наклону прямой, по формуле (1) определим ρ_l :

$$u^2 = \frac{F}{\rho_l} \quad \rho_l = \frac{F}{u^2}$$

 $ho_l=0,5383$ г/м = 538,3 мг/м — погрешность = $\sqrt{(\frac{0.05}{1012,7})^2+2(\frac{0.038\cdot136,5}{136,5})^2}\approx 0,054$ (5,4%) Значение, указанное на установке: 568,4 мг/м — Разница $\approx 5,3\%$

Рис. 2: График зависимости $u^2(F)$

Вывод

Во время выполнения работы было подтверждено несколько теоретических зависимостей между физическими величинами. Подтверждена формула для определения частот гармоники струны и формула для определения скорости распространения волны в твердом теле под действием внешней силы.

Полученные графики имеют вид, предсказанный теоретически.

С точностью $\varepsilon_{\rho_l}=5,4\%$ определена линейная плотность струны, значение которой, в апределах погрешности, совпало со значением, указанным на установке.