

Adventures in Translational Bioinformatics: Metadata, Annotation, and Integration:

Harry Hochheiser
University of Pittsburgh
Department of Biomedical Informatics

harryh@pitt.edu +1 410 648 9300

The "Big Data" story that I seem to hear so often.

Assumptions behind this story?

- Assume that you know
 - what the data are what they represent
 - how they were collected
 - how they can be cleaned
 - how they can be integrated

Metadata is key

Metadata

- Data about the data
- How was it collected?
- What were the sources?
- What has been done to it?

- Vitally important
- Often not available.
- Implications: Garbage In -> Garbage Out
- Why does this happen, and what can be done about it?

Outline

- Discussion of metadata challenges in biomedical research
- Metadata challenges
 - case study: FaceBase
- Ontologies to the rescue?
 - maybe..
- Computation with structured metadata via ontologies
- Challenges...

My perspective: Biomedical Informatics

 The use of computer systems for the improvement of biomedical research and clinical care

Shortliffe & Blois "The Computer Meets Medicine and Biology: Emergence of a Discipline" in Shortliffe & Cimino, eds., "Biomedical Informatics: Computer Applications in Health Care and Biomedicine

Translational Research

Applying basic biological research to the generation of interventions that improve human health.

Model Systems

Genetics/Genomics

Human Disease

Grand Canyon NPS http://www.fotopedia.com/items/flickr-7553734530

Gulf(s) of Informatics: Translating across...

communities of practice - clinical vs. research mouse vs. worm

data types

- images, gene expression, clinical data, etc.

Metadata is key for translational research

- In some fields, data may appear to be straightforward
 - (although, of course, appearances may be deceiving)
- Translational research
 - varied data formats
 - data sources
 - complex protocols
 - detailed analytics...

FaceBase

http://www.facebase.org, Hochheiser 2011

National Institute of Dental and Craniofacial Research

Five-year initial phase 2009-2014

"...systematically compile the biological instructions to construct the middle region of the human face and precisely define the genetics underlying its common developmental disorders, such as cleft lip and palate"

10 Projects + Data Management and Coordination Hub

- "One-stop access to craniofacial research data"
- "Allow scientists to more rapidly and effectively generate hypotheses and accelerate the pace of their research"
- Our task build a site to present this data to the community.
- Can we develop tools that will help identify opportunities for data integration and sharing across projects, organisms, and modalities?
- Can we use these tools to promote data reuse and translational application of model system data?

FaceBase Data

Data Diversity

Anatomy

miRNA

Phenotype Images

Genotypes microarrays RNA-Seq Facial Images

Models

Human

Mouse

Zebrafish

Developmental Stages

Embryos -> adults

Goal: greater insight through data integration

Gene Atlas

- Genes displayed on timeline, indicating when active
- Images display expression localization
- Large image for detailed views.
- Mouse-over coordinated links
- Integrate data from different groups, modalities, etc. to provide a comprehensive picture of gene expression localization through development of craniofacial region in mouse.

A translational Example

- LCM microarray identifies interesting gene expression in developing mouse snout
- What are the implications for humans
- Humans don't have snouts
- · Genes may or may not be homologous
- How to map gene expression in developing mouse snout to relevant structures in developing/developed human???
 - · Tests and therapeutic intervention.

What will it take to realize this vision?

- Gene expression data sets (microarray or RNA-Seq)
 - each from a specific
 - mouse strain
 - anatomic location
 - developmental time point
 - data collection platform
 - analysis pipeline
- What if you don't have one of these? What can you do?

Developmental Timeline Viewer

https://www.facebase.org/timeline

- Datasets on developmental timeline
- roughly aligned across organisms
- Lanes for different data modalities
- Filter by stage, data type...

Data Explorer

https://www.facebase.org/visualization

Support identification of data sets that might be "comparable"

- differing in at most one critical dimension

Challenges: Metadata

- Ideally, well-defined metadata fields/attributes
- Controlled vocabularies provide consistent terminology for each field
- Link to appropriate resources as needed: NCBI, MGI, etc..
- Additional attributes specific to each data type
- Consistent metadata supports search, navigation

Metadata in practice

- Ad-hoc formats, semantics
- Little or no agreement between projects
- Inconsistent terminology
- Why is this?

The most widely-used biomedical research data management software tool?

82	Calibri			*	11 -	B / J		3 11		.4 10 1			≥ - A	No. 10						
E27	1		'n	Ξ=	109															
	A	8		с	D	£	F	c		H	-1-	J	K	L	м	N	0	P	Q	
1	Race	Sex			Marijuana		ViralLoad		Н			division and	prefixee		prefev1pp		prefef25p*Pr	200	000	ø
2		0	0	1		430					141.5366		0.999517		0.939186		0.80982	0.758	28.03	
3		1	0	0		37					175.0468		1.252552		1.454121		2.570884	0.921	19.78	
4	_	1	0	0		25			-		163.1419		1.298754		1.367601		1.570464	0.894	34.79	
5		0	0	1		92			-		210.1003		1.137878		1.046793		0.877874	0.705	26.08	
6	_	0	0	0		184					180.3379		0.770465		0.779766		0.908559	0.796	29.43	
7	_	0	0	1		48					141.5366		1.148069		1.107942		1.076587	0.781	29.23	
8	_	0	0	1		385					195.5498	6.86			0.845359		0.616909	0.611	30.65	
9	_	0	1	1		48					114.8607		1.025023		0.817534		0.573855	0.638	17.13	
10	_	1	1	0		814			-	62.59846	8441188		1.181617		1.260108	2111	1.336675	0.88	18.69	
11	_	0	0	1		296			-		151.2369		1.05846		0.995361		0.871915	0.751	24.95	
12		1	0	0		286					159.1736		0.986895		0.990787		0.95065	0.856	31.25	
13	_	0	0	1		308					126.1043		0.794584	2.85			0.697208	0.783	13.89	
14	_	0	0	1		188					204.1478		0.97857		1.006332		1.148208	0.808	33.56	
15	_	0	0	1		649			-		121.4746		1.292561		1.173181	2.82		0.718	18.78	
16	_	1	0	0		296					143.3003		1.080225		0.918685		0.641645	0.723	29.01	
17	_	0	0	1		174					146.6072		1.000935				1.223517	0.84	18	
18	_	0	0	0		440	2.11.00				149.0323		1.091237		1.067788		1.042407	0.785	0	
19	_	0	0	1		278			-		177.6924		1.056328	5.15	2000000		0.909021	0.77	28.5	-
20		0	1	2	1	411					136.6864		1.390223		0.921208		0.45261	0.585	19.1	
21		0	0	1	_	4					184.0858		0.991991		0.917673		0.746807	0.733	24.3	
22		0	0	1		109			-		135.1432		0.878369		0.770449		0.623103	0.703	16.5	
23	_	1	0	2		372					215.3914		0.902944		0.806292		0.656288	0.739	4.33	
24	_	1	1	1		464			0		215.8323				0.693152		0.968452	0.824	16.4	
25	_	0	0	1		362			0		152.1188		0.882759		0.912105		0.884778	0.85	33.8	
26	_	0	0	2		9			-	67.2835					0.804655		0.651591	0.659	24.8	
27	_	1	1	1		182			-	64.17326		8.70	0.679485		0.677214	8144	0.635402	0.806	9.5	
28	_	0	0	0		32					177.2514	5.64		4.75			1.342423	0.842	28.2	
10	She	erl Shae	C 300	med //will		225	*/10/1/11			30.00410	466 8363	4.00	0.030004	9.00	0.103433	9.9	A 730677	A 713		

I've made this claim to many groups... haven't had any disagreement yet.

What does this mean for the data pipeline?

	· P'P				Control of the Contro				
_ A	В	С	D	E	F	G	Н	I	
Subject ID	File name	species	(embryonic	stag e- other		mutation	genotype	phenotype	litter
2 s1_6Feb13	s1_6Feb13.nii	mus muscululs:mouse	E18.5	null	C57BI/6J	none	N/A	Normal	
3 s2_6Feb13	s2_6Feb13.nii	mus muscululs:mouse	E18.5	null	C57BI/6J	Smad4 conditional	Myf5-Cre;Smad4fl/fl	Small tongue	JIL02
4 s3_6Feb13	s3_6Feb13.nii	mus muscululs:mouse	E18.5	null	C57BI/6J	none	N/A	Normal	
5 s4_6Feb13	s4_6Feb13.nii	mus muscululs:mouse	E18.5	null	129/SvJ;C57B6J	Alk5 and Tgfbr2 conditional	Wnt1-Cre;Alk5fl/fl;Tgfbr2fl/+	Craniofacial abnormalities	JIL01
6 s5_6Feb13	s5_6Feb13.nii	mus muscululs:mouse	E18.5	null	C57BI/6J	none	N/A	Normal	JIL02
7 s6_6Feb13	s6_6Feb13.nii	mus muscululs:mouse	E18.5	null	129/SvJ;C57B6J	Tgfbr2 conditional	K14-Cre;Tgfbr2fl/fl	Submucosal cleft palate, Cleft s	JIL01
0 a7 0Eab12	e7 CEob12 oil	muse museously decreases	E10 E	mu di	CE701/0 I	0000	NI/A	Mormal	III 04

"What's the difference between mutation and genotype?"

"Uhh.... I'll have to get back to you on that."

"Strain name? Is "C57B6J" the same as "C57B1/6J?"

"We're lucky to have any information at all when it comes to these mice..."

"The official name of the strain is $\underline{\hspace{1cm}}$, but everybody calls it

The problem is widespread

C57BL/6N Mutation in *Cytoplasmic FMRP interacting protein 2* Regulates Cocaine Response

Vivek Kumar,^{1,2} Kyungin Kim,¹ Chryshanthi Joseph,¹ Saïd Kourrich,³* Seung-Hee Yoo,¹* Hung Chung Huang,¹ Martha H. Vitaterna,⁴ Fernando Pardo-Manuel de Villena,⁵ Gary Churchill,⁶ Antonello Bonci,^{3,7} Joseph S. Takahashi^{1,2}‡

Science, 20 December 2013

Relative to C57BL/6J ...

"We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine." - single variant difference

How easy would it be for two variants to be confused?

Research Reproducibility

On the reproducibility of science: unique identification of research resources in the biomedical literature

238 articles from top journals in 5 fields

Nicole A. Vasilevsky¹, Matthew H. Brush¹, Holly Paddock², Laura Ponting³, Shreejoy J. Tripathy⁴, Gregory M. LaRocca⁴, Melissa A. Haendel¹ Peer |:e|48 54% of resources are not uniquely identifiable

Policy: NIH plans to enhance reproducibility

Francis S. Collins & Lawrence A. Tabak Nature, 27 January 2014

OPEN & ACCESS Freely available online

Quantifying Reproducibility in Computational Biology: The Case of the Tuberculosis Drugome

November 2013

Daniel Garijo¹, Sarah Kinnings², Li Xie³, Lei Xie⁴, Yinliang Zhang⁵, Philip E. Bourne^{3*}, Yolanda Gil^{6*}

aka "I cannot reproduce the work from my own laboratory" by Phil Bourne, now NIH Directory for Data Science http://www.slideshare.net/pebourne/ebi121102013

Analytic metadata

- Well-curated metadata + unspecified analytics = ?
- Interpretation depends on analysis
 - normalizing microarrays
 - assembling genome sequences
- How to interpret results of unknown analysis?
- Gronenschild, et al. "The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements" DOI: 10.1371/journal.pone.0038234
 - Analytic results differ from OS 10.5 10.6

Where can things go wrong?

Biomedical Ontologies

Ontology: A set of categories, connected by meaningful relations: "is part of", "connected to", etc. Def. thanks to Gary Merrill

- Nose is part of face
- Human nose is analogous to mouse snout.
- Knowledge representation
- Search/retrieval
- Contextualization
- Computation
 - Calculation
 - Inference

Ontological annotations

Metadata needed for translational science

The Gene Ontology (GO)

http://www.geneontology.org/GO.doc.shtml

- 3 domains of gene product properties
 - Cellular component
 - Molecular function
 - Biological process
- How are they organized?
- Recurrent Theme: is a vs. part of
- Browse at AmiGO
 - http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

Foundational Model of Anatomy

Rosse & Mejino 2003

http://sig.biostr.washington.edu/projects/fm/

Human anatomy >75K classes, 168 relationship types
 120K terms, 2.1 million relationships

All anatomy is not equal...

Adult	Human	Mouse	Zebrafish
	FMA	Mouse Anatomy (MA)	Zebrafish Anatomy (ZFA)
Developmental	Human	Mouse	Zebrafish
	EHDAA Human Developmental Anatomy	EMAPA	

How to discuss analogous structures across organisms?

Necessary for using ontologies for translational comparisons...

Two approaches for bridging the gap

Mapping: inter-ontology links

Unifying ontology: super structure with subclasses linking related items.

Uberon, an integrative multi-species anatomy ontology

Mungal, et al. 2012

UBERON

Mungall, et al. 2012

Combination of automated and manual effort

Mapping: the Ontology of Craniofacial Development and Malformation

http://xiphoid.biostr.washington.edu/ocdm/index.html Brinkley, et al. 2013

Comparing the Methods

Mappings

- · Potentially more lightweight
 - No higher-structure required
- More flexible
- No semantics all structural

Unifying

- Clarity of structure
- Homology vs. other similarity? judgment call
- Multiple information sources required?

Curation Required!

 Human "extensor retinaculum of wrist" does not correspond to mouse retina!

Objections

 "Canonical"/expected anatomy is not all that we need to understand the genetics of development and disease we need malformations and disease to link to genetic variation

... more on this in a minute

3.5.5.5

(this one is up to you to figure out..)

Beyond Anatomy

- Anatomy ontologies describe canonical organisms
 - Or, at least their parts. May not describe appearance, etc.
- Translational bioinformatics is often interested in specific characteristics
 - Mendelian traits
 - Malformations/abnormalities
 - FaceBase cleft lip/palate
 - Absence of Structures

Phenotypes

- "observed" properties
 - Physical
 - Behavioral, etc.

- Characterization of phenotypes is key to translation from model organism → human
 - Phenotype in model organism, might be a model for comparable phenotype in human ..
 - · ..particularly if there is a homologous gene

Phenotype-genotype linkages

Washington, et al. 2009

Comparable phenotypes across organisms with homologous genes -> translational research

Phenotype Ontologies

Human Phenotype Ontology

(Köhler, et al. 2014, www.human-phenotype-ontology.org)

- Strict is_a hierarchy
- · Mode of inheritance: autosomal dominant, somatic mutation, etc.
- Onset and clinical course age of onset speed, pace of progression, variability
- Phenotypic Abnormality abnormality by anatomic region
- Also, Disease ontology (DO) Schriml et al. 2011

Human Phenotype Ontology

M. Haendel, used with permission

Used to annotate:

- Patients
- Disorders
- Genotypes
- Genes
- Sequence variants

In human

beta-cell adenomas

Mammalian Phenotype Ontology

Smith, et al. 2004

 Heavily biased towards mouse

Uberpheno: cross-species phenotype ontology

Köhler, et al. 2013

Mapping between anatomy and phenotype

Mungall, et al. 2010

"Logical equivalences"

- Define Phenotypes as intersection of
 - Anatomic entities (FMA,MA. Etc..)
 - · Phenotypic Qualities

<Q> that inheres_in some <E>

MP: 008152 decreased diameter of femur is equivalent to

Decreased diameter that inheres_in some femur

So what does all of this give us?

Rich anatomy ontologies

+

Phenotype ontologies

+

cross-species links..

serious ability to create rich models of relationships between translational data types – animal models, human diseases, etc.

OWL and Reasoning

Representation of biomedical ontologies - OWL

OWL reasoners - consistency checks Inference.

A part_of B & B part_of C -> A part_of C

Ability to ask some interesting questions:

Which genes are differentially expressed in developmental anatomic regions that develop into the palate?

Reasoning via transitivity

C. Mungall, with permission

tooth SubClassOf develops_from some tooth bud
tooth bud SubClassOf develops_from some tooth placode
develops_from is transitive

->tooth SubClassOf develops_from some tooth placode

... as does any subclass of tooth.

Computational methods for extracting insight from ontologically-annotated data

Use structure of ontologies and related data to compute, generate new hypotheses, etc.

PAX6 example - human, mouse, fish phenotypes linked by knowledge of common orthologous gene...

Can we use phenotypic annotations to find models of human diseases, even when a gene is not known?

Broad idea

- Use relationships in ontologies to infer relationships/ develop new theories
- Probabilistic and similarity measures
- Start with one ontology...
- Then combine...

Graph Similarity for the Identification of Candidate Genes

C. Mungall, with permission

Information Content

C. Mungall, with permission

$$IC(t) = -log(p(t))$$

$$p(t) = |annot(t)|/|annot|$$

$$MaxIC(Phox2a,Sox10) = 6.8$$

 $MaxIC(Phox2a,Phox2b) = 8.8$

Cross-species comparison

C. Mungall, with permission

OWLsim: Phenotype similarity across patients or organisms

abnormal sterotypic Resting tremors motor function behavior sleep abnormal **REM** disorder **EEG** disturbance decreased abnormal Shuffling gait stride length locomotion Unstable poor rotarod abnormal coordination performance posture Neuronal loss in **CNS** neuron axon Substantia Nigra degeneration degeneration abnormal decreased gut Constipation digestive peristalsis physiology abnormal failure to find Hyposmia food olfaction

https://code.google.com/p/owltools/wiki/OwlSim

Experimental data: Ontology for Biomedical Investigations

96 Y 96

Brinkman, et al. 2010

Vaccine Protection Investigation

Objections

 "Canonical"/expected anatomy is not all that we need to understand the genetics of development and disease we need malformations and disease to link to genetic variation

... more on this in a minute

2. ?????

(this one is up to you to figure out..)

Usability!

Usability of biomedical ontologies for effective biomedical data science

To realize the potential of this vision, we must develop tools that both

increase the quantity, quality, and variety of ontologically annotated data..

and

help biomedical researchers leverage the power of this data to generate novel insights.

Annotating data

- Extraction of terms from text
 - Textpresso, BioPortal annotator, etc.

- Support for structured experimental data models
 - Investigation-study-assay (ISA) tools
- Ontomaton spreadsheet-integrated ontology annotation

Manual curation - accurate, but expensive

Data Interpretation: The Monarch Initiative

DIMI DIMI

OHSU, UCSD, LBNL, U. Pitt

Phenotypes

Pathogenicity, frequency, protein interactions, gene expression, gene networks, epigenomics, metabolomics....

Prioritized Candidates, Models, functional validation

 M_1 M_2 M_3 M_4

- What's in the box?
- How are candidates identified?
- How do they compare?

 G_4

The Monarch System

Monarch phenotype data

Species	Source	Unique	Disease/
Mouse	MGI	53,573	406,618
Zebrafish	ZFIN	14,703	75,698
C. elegans	Wormbase	116,106	411,154
Fruit fly	Flybase	98,596	265,329
Human	ОМІМ	26,372	27,798
Human	Orphanet	2,872	5,095
Human	ClinVar	62,437	178,424

Also in the system: Rat; IMPC; GO annotations; Coriell cell lines; OMIA; MPD;

Yeast; CTD; GWAS; Panther, Homologene orthologs; BioGrid interactions;

Drugbank; AutDB; Allen Brain ...157 sources to date

Coming soon: Animal QTLs for pig, cattle, chicken, sheep, trout, dog, horse

Interpretation challenges

How to make sense of the OWLSim calculation results?

Why are phenotypic profiles similar?

When are small local differences important or not?

Multiple phenotypes, multiple models

NIH Intramural Undiagnosed Disease Program - comparison of phenotype profiles

UDP phenotype profile comparison...

Monarch Model Viewer

Schwartz-Jampel Syndrome (OMIM 255800) a genetic disorder associated with the HSPG2 gene

HSPG2 is not the most similar model......

Monarch Model Viewer

Integrating Biological Pathways

Late-onset Parkinson's Phenotypes (subset)

Bradykinesia

Lewy bodies

Dysphagia

Depression

e Data Pipeline, April 2014

Late-onset
Parkinson's
Phenotypes
(subset)

Bradykinesia

Lewy bodies

Dysphagia

Depression

What I did not talk about...

Metadata for analysis

Open provenance model (OPM), PROV ontology, workflows, etc.. Garijo & Gil 2011

Generalizing

High-quality metadata annotations can increase clarity and utility at all stages in pipeline.

May not be easy, but value is high.

Undoubtedly examples exist in other domains.

Can good practices and clear descriptions help generalize your data pipeline work?

Acknowledgments

FaceBase:

U. Pittsburgh: Mike Becich, Becky Boes, Chuck Borromeo, Lance Kennelty, Annette Krag-Jensen, Tom Maher, Johnson Paul, Linda Schmandt, Shiyi Shen, Bill Shirey, Cristy Spino, Mike Stefanko, Justin Stickel, Mary Marazita

U. Iowa: Jeff Murray

OCDM :James Brinkley; Jose Leonardo Mejino; Landon Detwiler; Ravensara Travillian; Melissa Clarkson; Timothy Cox; Carrie Heike; Michael Cunningham; Linda Shapiro

Support: NIH Grants U01 DE020057, 3U01DE020050-03S1

Monarch:

Pittsburgh: Chuck Borromeo, Jeremy Espino

OHSU: Melissa Haendel, Nicole Vasilevky, Matt Brush

NIH-UDP: Murat Sincan, David Adams, Neal Boerkel, Amanda Links, Bill Gahl

LBNL: Nicole Washington, Suzanna Lewis, Chris Mungall

+ colleagues at Sanger, Charite, Toronto, and JAX

Support: NIH Office of Director: 1R24OD011883, NIH-UDP: HHSN2682013