

Linear models Advanced Machine Learning

Polynomial curve fitting

• 10 points sampled from $\sin(2\pi x)$ + disturbance

Polynomial curve fitting

Polynomial curve

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Performance is measured by

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}) - t_n \}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Overfitting

• Root mean square (RMS) error: $E_{\text{RMS}} = \sqrt{2E(\mathbf{w}^*)/N}$

Overfitting

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
$w_3^{\overline{\star}}$			17.37	48568.31
$\widetilde{w_4^\star}$				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Effect of dataset size

• Polynomial of order 9 and N = 15

Effect of dataset size

• Polynomial of order 9 and N = 100

Penalize large coefficients values

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}) - t_n \}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

• λ becomes a model parameter

• Regularization with $\ln \lambda = -18$

• Regularization with $\ln \lambda = 0$

• E_{RMS} versus $\ln \lambda$

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^\star}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$\bar{w_3^{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

A deeper analysis Advanced Machine Learning

What is the issue?

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots$$

General model is

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x})$$

- φ_i are known are basis functions
- Typically, $\varphi_0(\mathbf{x}) = 1$ so that w_0 acts as bias

General model is

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x})$$

Polynomial basis functions:

$$\varphi_j(\mathbf{x}) = x^j$$

These are global functions

General model is

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x})$$

Gaussian basis functions:

$$\varphi_j(\mathbf{x}) = \exp\left\{-\frac{(x - \mu_j)^2}{2s^2}\right\}$$

- These are local functions
 - > μ_j controls location
 - > s controls scale

General model is

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x})$$

Sigmoidal basis functions:

$$\varphi_j(\mathbf{x}) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

 Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon \mid \beta) = \mathcal{N}(\epsilon \mid 0, \beta^{-1})$

 Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon \mid \beta) = \mathcal{N}(\epsilon \mid 0, \beta^{-1})$

 Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon | \beta) = \mathcal{N}(\epsilon | 0, \beta^{-1})$

This is the same as saying

$$p(t | \mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t | y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

• Recall:
$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x})$$

This is the same as saying

$$p(t \mid \mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

• Given observed inputs $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ and targets $\mathbf{t} = [t_1, ..., t_N]^{\mathsf{T}}$, we obtain the likelihood function:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid \mathbf{w}^{\top} \varphi(\mathbf{x}_n), \beta^{-1})$$

Taking the logarithm, we get

$$\ln p(\mathbf{t} \mid \mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n \mid \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}_n)\}^2$$

• Recall:
$$\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}$$

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}_n)\} \varphi(\mathbf{x}_n)^{\mathsf{T}} = 0$$
The Moore-Penrose

• Solve for
$$\mathbf{w}$$
, we get
$$\mathbf{w}_{\mathsf{ML}} = \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t}$$

with $\boldsymbol{\Phi} = \begin{pmatrix} \varphi_0(\mathbf{x}_1) & \varphi_1(\mathbf{x}_1) & \cdots & \varphi_{M-1}(\mathbf{x}_1) \\ \varphi_0(\mathbf{x}_2) & \varphi_1(\mathbf{x}_2) & \cdots & \varphi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(\mathbf{x}_N) & \varphi_1(\mathbf{x}_N) & \cdots & \varphi_{M-1}(\mathbf{x}_N) \end{pmatrix}$

pseudo-inverse

Interpretation

• Consider $\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathsf{ML}} = [\varphi_1, ..., \varphi_M] \mathbf{w}_{\mathsf{ML}}$

$$\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$$

$$\uparrow \qquad \uparrow \qquad \qquad N\text{-dimensional}$$
 $M\text{-dimensional}$

- \mathcal{S} is spanned by $\varphi_1, ..., \varphi_M$
- \mathbf{w}_{ML} minimizes the distance between \mathbf{t} and its orthogonal projection on \mathcal{S} , i.e., \mathbf{y}

Consider the error function

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

data term + regularization term

 With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

• This is minimized by $\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}$

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Lasso tends to generate sparser solutions than a quadratic regularizer

