FUDAN SOE SUMMER SCHOOL INTRODUCTION TO AI

Probabilistic Reasoning and Decision Making
Day 8 – Maximum Likelihood Learning

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

Data set:
$$\{(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})\}_{t=1}^T$$

$$\mathcal{L} = \log P(data) = \log \prod_{i=0}^T P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L}$$

$$= \lim_{t \to 1} \log \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \log \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \log \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \log \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right) \mathcal{L}$$

$$= \lim_{t \to 1} \left(P(X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}) \mathcal{L} \right$$

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

Data set:
$$\{(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})\}_{t=1}^T$$
Log-likelihood
$$\mathcal{L} = \sum_{i=1}^n \sum_{t=1}^T \log P(x_i^{(t)}|pa_i^{(t)})$$

Where do we go from here?

Reminder: Single node Bayes Net example:

$$\mathcal{L} = \sum_{t=1}^{T} \log P(X = x^{(t)})$$
 How did we simplify this expression?
$$\mathcal{L} = \sum_{t=1}^{T} \log P(X = x^{(t)})$$
 How did we simplify this expression?
$$\mathcal{L} = \sum_{t=1}^{T} \log P(X = x^{(t)})$$

$$P = \frac{N_c}{N_c + N_J} = \frac{N_c}{T}$$

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

Data set:
$$\left\{\left(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}\right)\right\}_{t=1}^T$$
Log-likelihood $\mathcal{L} = \sum_{i=1}^n \sum_{t=1}^T \log P\left(x_i^{(t)} | pa_i^{(t)}\right)$

Where do we go from here? (example)

A)

O)

O)

Olefine: Count (
$$X_i = X_i$$
, $P_a(X_i) = P_{a_i}$)

O)

Count ($A = 0$, $P_a(A) = 00$) = | Count ($A = 1$.

Count ($A = 0$, $P_a(A) = 11$) = | $P_a(A) = 11$) = 0

Let count (Xi = Xi(1), Pa(Xi)= Pai) be # of samples where Xi is Xi(1), and paperts of Xi is Pai (TL) $\frac{1}{\sum_{i=1}^{k}} \left| \frac{1}{\sum_{i=1}^{k}} \left(\frac{1}{\sum_{i=1}^{k}} \frac{1}$ finite # 4 Valves Zx Z count (X; = X; Pa(x;)=2) les P(x;=x) Over the value of Pa(xi)=70)

Ouer the value of Pa(xi)=70)

Axi

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

$$P(X_i = x | Pa(X_i) = \pi)$$

Data set:
$$\{(x_1^{(t)}, x_2^{(t)}, ..., x_n^{(t)})\}_{t=1}^T$$

Log-likelihood Explain this in your own words

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{t=1}^{T} \log P(x_i^{(t)} | pa_i^{(t)})$$

Can take the derivative to maximize. Which term are we optimizing over?

A.
$$count(X_i = x, pa_i = \pi)$$

$$P(X_i = x | pa_i = \pi)$$

$$C. X_i = x$$

D.
$$pa_i = \pi$$

$$= \sum_{i=1}^{n} \sum_{x} \sum_{\pi} \operatorname{count}(X_i = x, pa_i = \pi) \log P(X_i = x | pa_i = \pi)$$

ML Parameters for Bayes Nets:

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

$$P_{ML}(X_i = x | pa_i = \pi) = \frac{\text{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)} = \frac{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi$$

$$(A: 0)$$
 $(B: 0)$
 $(A=(|EB=11))$
 $(A=(|EB=11))$

T: 12 h.3

$D \left(Y_{i} - y n a_{i} - \pi \right) = 0$	$count(X_i = x, pa_i = \pi)$
$P_{ML}(\Lambda_i - x pu_i - n) -$	$\frac{\operatorname{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \operatorname{count}(X_i = x', pa_i = \pi)}$

X, Y and Z are Boolean variables

-(X

X	Υ	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1		

Which of the following is a parameter we would like to estimate?

$$(A) P(X=1)$$

B.
$$P(Y=1)$$

C.
$$P(X=1|Y=1)$$

X, Y and Z are Boolean variables

	X	Y	Z
	ò	0	1
	Ó	1	0
N	O,	1	1
0	Ó	1	0
	1	0	0
	1	0	0
/	Ó	1	1
	1	0	0
	Ò	1	1
	Ó	0	1
J	0	1	1
	1	0	0

$$P_{ML}(X_i = x | pa_i = \pi) = \frac{\operatorname{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \operatorname{count}(X_i = x', pa_i = \pi)}$$

Not including complements (e.g. P(X=1) and P(X=0)), how many different parameters are there to estimate?

$$= P(X=1)V - P(X=1)X=0$$

$$= P(X=1)X=0, Y=0) P(Z=1|X=0,X=1)$$

$$= P(Z=1|X=0,Y=0) P(Z=1|X=0,X=1)$$

$$= P(Z=1|X=0,X=0) P(Z=1|X=0,X=1)$$

$$= P(Z=1|X=0,X=0)$$

X, Y and Z are Boolean variables

X	Υ	Z
0	0	
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	0	0
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

Observed data:
$$P_{ML}(X_i = x | pa_i = \pi) = \frac{\operatorname{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \operatorname{count}(X_i = x', pa_i = \pi)}$$

What is the ML estimate for P(Z=1|X=0, Y=0)?

E. None of the above

	JCI V	cu ·
χ	Х	Υ
+	0	0
\mathcal{Y} \mathcal{Y}	0	1
\overline{z}	0	1
	0	1

X, Y and Z are Boolean variables

X	Υ	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

$$P_{ML}(X_i = x | pa_i = \pi) = \frac{\operatorname{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \operatorname{count}(X_i = x', pa_i = \pi)}$$

Which parameter has an undefined ML estimate?

A.
$$P(X=1)$$

B.
$$P(Y=1|X=0)$$

C.
$$P(Z=1|X=0, Y=0)$$

$$(D) P(Z=1|X=1, Y=1) =$$

E. More than one of the above

Summary: Estimating Parameters of a Bayes Net

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

Data set:
$$\{(x_1^{(t)}, x_2^{(t)}, ..., x_n^{(t)})\}_{t=1}^T$$

Log-likelihood

Explain this in your own words

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{t=1}^{T} \log P(x_i^{(t)} | pa_i^{(t)})$$

$$= \sum_{i=1}^{n} \sum_{t=1}^{T} \sum_{t=1}^{T} \operatorname{count}(X_i = x, pa_i = \pi) \log P(X_i = x | pa_i = \pi)$$

Review: ML Parameters for Bayes Nets

Parameters to estimate (CPTs of the network): $P(X_i = x | Pa(X_i) = \pi)$

$$P_{ML}(X_i = x | pa_i = \pi) = \frac{\text{count}(X_i = x, pa_i = \pi)}{\sum_{x'} \text{count}(X_i = x', pa_i = \pi)}$$

$$= \frac{\text{count}(X_i = x', pa_i = \pi)}{\text{count}(Pa_i = \pi)} \quad \text{where } P_{ML}(X_i = x', pa_i = \pi)$$

$$= \frac{\text{count}(X_i = x', pa_i = \pi)}{\text{count}(X_i = x', pa_i = \pi)} \quad \text{where } P_{ML}(X_i = x', pa_i = \pi)$$

Using the Indicator function I

$$T(x,y) = \begin{cases} 1 & \text{if } x = = y \\ 0 & \text{otherwise.} \end{cases}$$

Which of the following correctly expresses the ML estimate

$$P_{ML}(X_i = x)? = \frac{Count(X_i = x)}{T} = \frac{1}{T} \left(\frac{1}{X_i}, x\right)$$

$$A. I(x_i, x) \times T$$

$$B. \sum_{i=1}^{n} I(x_i, x)$$

$$Count(X_i = x)$$

$$Count(X_i = x)$$

$$C \frac{1}{T} \sum_{t=1}^{T} I(x_i^{(t)}, x)$$

D.
$$\frac{1}{T} \sum_{t=1}^{T} I(x_i^{(t)}, x) P(X_i = x_i^{(t)})$$

E. None of these

Suppose we have a belief network with nodes X_1, \ldots, X_n , and let $Pa(X_i)$ denote the parents of node X_i . A fully-observed dataset for this model can be written as

$$data = \{(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})\}_{t=1}^T$$

The log-likelihood of this model is $\mathcal{L} = \log P(\text{data})$. Show that the log-likelihood can be written as

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{x} \sum_{\pi} \operatorname{count}(X_i = x, \operatorname{Pa}(X_i) = \pi) \log P(X_i = x | \operatorname{Pa}(X_i) = \pi)$$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

(b)
$$P(B=b|A=a)$$

$$= \frac{\text{count}(A=a, B=b)}{\text{count}(A=a)}$$

$$= \frac{1}{2} \left[(\alpha_{t}, \alpha_{t}) \cdot \frac{1}{2} (b_{t}=b) \right]$$

$$= \frac{1}{2} \left[(\alpha_{t}, \alpha_{t}) \cdot \frac{1}{2} (b_{t}=b) \right]$$

$$= \frac{1}{2} \left[(\alpha_{t}, \alpha_{t}) \cdot \frac{1}{2} (b_{t}=b) \right]$$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

(d)
$$P(D = d|B = b)$$

$$= \underbrace{\frac{1}{2} \left(d_{t}, d \right) \left(b_{t}, b \right)}_{\underbrace{1}}$$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

(e)
$$P(E = e|B = b)$$

 $= \frac{1}{2} (b_1, b_1) 1(e_1, e_2)$
 $= \frac{1}{2} (b_1, b_2) 1(e_2, e_3)$

Nodes: A, B, C, D, E, F

Edges: $A \to B$, $A \to C$, $B \to D$, $B \to E$, $E \to C$, $C \to F$, $D \to F$

(f)
$$P(F = f | C = c, D = d)$$

$$= \underbrace{7 \left(f_{+}, f \right) \left(c_{+}, c \right) \left(d_{+}, d \right)}_{f}$$

$$= \underbrace{1 \left(c_{+}, c \right) \left(d_{+}, d \right)}_{f}$$

Naïve Bayes and Markov Models: Two kinds of Bayes Nets

■ A Naïve Bayes model is a Bayes net with a single parent and many

children.

 $Y \in \{1, 2, 3, ..., k\}$ Where 1=sports, 2=fashion, 3=politics, ..., etc. $X_i \in \{0, 1\}$ for i=1...n, where 0 means ith word in dictionary does not appear in document and

Naïve Bayes: Learning and Classification

Learning:
$$P(Y = y) = \frac{\frac{1}{2} \frac{1}{1} (f_t, g_t)}{T}$$

$$P(X_i = 1 | Y = y) = \frac{\frac{1}{2} \frac{1}{1} (f_t, g_t) \frac{1}{2} (f_t, g_t)}{\frac{1}{2} \frac{1}{1} (f_t, g_t)}$$

 $\underline{\text{Classification}}$

$$P\left(\begin{array}{c} Y=Y\mid \chi_{1}=\chi_{1}^{(new)}, \chi_{2}=\chi_{2}^{(new)}, \ldots, \chi_{n}=\chi_{n}^{(new)} \right)$$

$$=\frac{P\left(\begin{array}{c} Y=Y\mid \chi_{1}=\chi_{1}^{(n)}, \chi_{2}=\chi_{2}^{(n)}, \ldots, \chi_{n}=\chi_{n}^{(new)} \right)}{\chi_{1}=\chi_{1}^{(n)}, \chi_{2}=\chi_{2}^{(n)}, \ldots, \chi_{n}=\chi_{n}^{(n)} \right)}$$

$$=\frac{P\left(\begin{array}{c} Y=Y\mid \chi_{1}=\chi_{1}^{(n)}, \chi_{2}=\chi_{2}^{(n)}, \ldots, \chi_{n}=\chi_{n}^{(n)} \right)}{\chi_{1}=\chi_{1}^{(n)}, \chi_{2}=\chi_{2}^{(n)}, \ldots, \chi_{n}=\chi_{n}^{(n)} \right)}$$

Naïve Bayes: Learning and Classification

Learning:

P(Y = y): Proportion of documents labeled as category y

 $P(X_i = 1 | Y = y)$: Proportion of category y documents where word X_i occurs.

Classification

$$\frac{P(Y = y) \prod_{i=1}^{n} P(X_i = x_i | Y = y)}{\sum_{y'} P(Y = y') \prod_{i=1}^{n} P(X_i = x_i | Y = y')}$$

Strengths and weaknesses?

label: best probability:

y politics: (5

fashion: ,2

Markov Models: Sequential models where each element depends on only elements before it

Example: Language

Let W_i denote the i^{th} word in a sentence. $P(w_1, w_2, w_3, ..., w_L) = \prod_{i=1}^n P(w_i | w_1, ..., w_{i-1})$

Two simplifying assumptions:

1. Finite Context

2. Position Invariance