

## ARTIFICIAL INTELLIGENCE FOR VISUAL ART



Anikó Ekárt Computer Science

a.ekart@aston.ac.uk



#### AGENDA

- Early computer art
- Computer art today
- Interactive evolutionary art
- Automatic programming → automatic art?
- Let the computer learn what is "nice" art

#### EARLY COMPUTER ART EXAMPLE

Harold Cohen's (1928-2016) AARON

Created in 1973 Written initially in C and then LISP

#### In Victoria & Albert museum:

1971

1982



1984



2003



- AARON grew out of its creator's need 'to understand what art is'. In the process of designing a program to work with random variables, making its own decisions on colouring and composition, he explored the potential inherent in different programming languages.
- Cohen insisted that display labels and image credits for prints produced by AARON should read "Digital print by AARON, a computer program written by Harold Cohen"

#### COMPUTER ART TODAY

#### The Lumen prize

In its 8th year in 2019

"The Lumen Prize is a visionary undertaking that is helping the world better understand new media art."

Anne Spalter - 2015 Lumen Artist

#### SELECTED LUMEN PRIZE WINNERS

2019
Still image award:
Drawing Operations
by Sougwen Chung





2019 BCS AI award: <u>Lichtsuhende</u>

by Dave Murray-Rust and Rocio von Jungenfeld

#### SELECTED LUMEN PRIZE WINNERS

2018 Still image category: Overload (Consequence) by Mark Lyons





2016 Still image category: Fifty sisters by Jon McCormack

2015
<u>Founder's prize: Electric sheep by Scott Draves</u>

#### 3D PRINTS





Software tools that generate 3D printable objects from mathematical descriptions

#### ART OR NOT ART?

In the *Prints & Multiples* sale at Christie's on 23-25 October 2018, *Portrait of Edmond Belamy* sold for an incredible \$432,500

Created by a generative adversarial network (GAN)



#### EVOLUTIONARY COMPUTER ART

- Based on using some form of evolutionary algorithm to generate images/video
- Pioneered by Karl Sims (1991), exhibition at Pompidou Centre, Paris











• Steve DiPaola and Liane Gabora (2009), Incorporating characteristics of human creativity into an evolutionary art algorithm



#### EVOLUTIONARY INTERACTIVE ART

#### • The process:

- 1. Computer creates a number of images
- 2. User looks at the images
- 3. User selects the nicest images
- 4. Computer creates more images based on those selected by user
- 5. Repeat the above until user is happy with result

#### ANY POTENTIAL PROBLEMS?

User gets tired or bored

- So, wouldn't it be nice if ...
  - the computer generated the pictures that we wanted without us having to do anything

#### THE QUEST FOR AUTOMATIC PROGRAMMING

• Arthur Samuel, late 1950s:

How could computers learn to solve problems without being explicitly programmed?

- A system is capable of automatically creating programs if
  - it starts from a high-level specification of problem requirements
  - it produces an executable program
  - it automatically determines the number of necessary steps that the program should take
  - it produces results that are competitive with those produced by **human** programmers, engineers, mathematicians, and designers

#### GENETIC PROGRAMMING

- The newest evolutionary computation method (earliest reference 1985)
- The key idea is to apply principles of Darwinian evolution on computer code
- Applies the principles of **artificial evolution** on computer programs represented as instruction sequences, trees or graphs
- Various forms of the so-called genetic operators of crossover, mutation can be defined
- Survival of the fittest principle is applied, where fitness is usually assessed as a mathematical function computed on the performance of the computer program

### THE UNDERLYING MECHANISMS OF EVOLUTIONARY ART

#### A TWO DIMENSIONAL IMAGE REPRESENTATION



Each point on the canvas will have a colour calculated from the three component functions for R,G and B (or a single greyscale value)

Each function is encoded as a tree

#### IMAGE AND ASSOCIATED EXPRESSIONS: SPIDER



• Prefix notation expressions:

R:(MIN (COT (CUBRT THETA)) THETA)

G:(MULTIPLY (SEC (LOG (SEC (LOG (LOG (ADD (SEC (SEC (SQRT THETA))) (ADD (SEC (COSH THETA)) R)))))) Y)

B:(COT 0.7418012)

# ROBOT DESIGN ACTIVITY via manual mutation

## WHAT IS "NICE"? 18

#### NICE VS COMPLEX

- Expectation: more complex functions are nicer, generate more "detailed" images
- Circle: simple, yet perfect shape in Ancient Greek culture



R: (MULTIPLY (COSEC X) (MIN (MIN 0.932 (COT THETA)) (MAX R (SIN X))))

G: (AVG (COSEC (HYP X (LOG THETA))) (AVG (ADD (SEC 0.591) (SUBTRACT Y 0.176)) (AVG 0.893 (AVG Y THETA))))

B: (COT (ADD 0.0050 THETA))

#### "NICE" EVO::ART EXAMPLES













#### HOW DOES THE COMPUTER KNOW WHAT IS "NICE"?

- Let the human artist work
- Get the computer to "watch and learn"
- Let the computer generate pictures and hope that the human artist likes the result



User's best

Machine learning followed by Automatic evolution



Computer generated, liked by human

#### CURRENT AI AND ART @ ASTON

- Edward Easton, PhD student, 3D Aesthetics in Virtual Reality (VR)
- Matthew Barlow, BSc final year student, Evolving compositions of patterns found in artist provided images
- Sean Corcoran, BSc final year student, VR interactive art experience
- Li He, BSc final year student, Using deep convolutional generative adversarial networks (DCGAN) to overlap styles, starting from traditional Japanese portrait prints (in the style of Ukio-e)
- Chairing the International Conference on Computational Intelligence in Music, Sound, Art and Design in 2019 & 2020
- Cover of *AI matters* magazine in 2015