Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N . Gli N vettori in questione devono essere linearmente indipendenti.

• Indipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N

 $v_3=\begin{pmatrix}x_3\\y_3\\z_3\end{pmatrix}$ è multiplo scalare di $v_1=\begin{pmatrix}x_1\\y_1\end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$

Esercizio 4

• Dipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0$ oppure la matrice composta dai vettori non ha rango N

 $\begin{pmatrix} \det(R_2R_3) \\ -\det(R_1R_3) \end{pmatrix}, \, R_i \text{ sono le righe dei vettori} \\ \det(R_1R_2) \end{pmatrix}$

Base ortogonale di v,w:

. I vettori v_1,\dots,v_n sono base di R^N se $\operatorname{rk}(M)=N$ con $M=(v_1\dots v_n)$ (M matrice composta dai vettori)

Due vettori v₁ e v₂ sono ortogonali tra loro quando il loro prodotto scalare e' 0, ovvero v₁ · v₂ = v_{1x} · v_{2x} + v_{1y} · v_{2y} + v_{1z} · v_{2z} = 0

Norma vettore $||v|| = \sqrt{v_1^2 + v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v' = L \cdot \frac{1}{||v||} \cdot v$

 $v_2 \notin \langle v_1 \rangle$ significa che v_2 non appartiene allo spazio generato da v_1 e quindi v_2 non deve essere multiplo scalare di v_1

Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica

A invertibile se det $A \neq 0$, $\det(A^{-1}) = \frac{1}{\det A}$

A non invertibile se $A^N = 0$

 $\quad \hbox{ Rouché-Capelli: $\infty \# incognite-rk(A)$}$

• Gauss: $R_i = R_i + \left(\frac{-a_{ij}}{a_{jj}}\right) \cdot R_j$

Teorema di Binét: $\det(AB) = \det A \cdot \det B$

Calcolo matrice inversa: scriviamo (M|I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss
dal basso verso l'alto), otteniamo (I|M−1)

AX = B ammette soluzioni se rk(A|B) = rk(A)

 $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$

b) ν_1,ν_2,ν_3 sono linearmente dipendenti, ma ν_3 non è multiplo scalare di ν_1 né di $\nu_2.$

$$\lambda_{V_{1}} + \lambda_{V_{2}} + \lambda_{V_{3}} = 0 \quad \forall_{V_{1}} \cdot \text{Diversion}$$

$$\lambda_{V_{1}} + \lambda_{V_{2}} + \lambda_{V_{3}} = 0 \quad \forall_{V_{3}} = 0 \quad \forall_{V_{3}} = -V_{4} - V_{2} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_{1}} + \lambda_{V_{2}} + \lambda_{V_{3}} = 0 \quad \forall_{V_{3}} = -V_{4} - V_{2} = 0$$

$$\lambda_{V_{1}} + \lambda_{V_{2}} = 0 \quad \lambda_{V_{3}} = 0 \quad \forall_{V_{3}} = 0 \quad \forall_{V_{3}} = 0 \quad \forall_{V_{3}} = 0$$

$$\lambda_{V_{1}} + \lambda_{V_{2}} = 0 \quad \lambda_{V_{3}} = 0 \quad \forall_{V_{3}} =$$

 $\frac{\sqrt{25} = 5}{\sqrt{100} = 10}$ $\frac{\sqrt{225} = 15}{\sqrt{400} = 20}$ $\frac{\sqrt{625} = 25}{\sqrt{900} = 30}$

 $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$

 $\sqrt{4} = 2$ $\sqrt{49} = 7$ $\sqrt{144} = 12$ $\sqrt{289} = 17$ $\sqrt{484} = 22$ $\sqrt{729} = 27$

 $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$

Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle λ 3 sono quelle che λ 1 tutte le altre λ 2 possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili λ 3 in comune alle λ 3 sono quelle che λ 3 tutte le altre λ 4 in comune alle λ 3 sono quelle che λ 4 in λ 5 in the least λ 6 in λ 7 in the least λ 8 in λ 9
	• Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che $A^n = 0$) allora det $A = 0 \rightarrow N$ ilpotente non invertibile allora det $A = 0$
	• Se A è una matrice simmetrica, allora A^2 è simmetrica $\to M$ simmetrica se $M = M^T \to M^T \cdot M^T = (M \cdot M)^T \Rightarrow M = M^T$, sostituisci M con A^2
	• Sia $A \in M_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare $AX = B$ ammette soluzioni comunque si scelga la matrice B dei termini noti. \rightarrow Se si sceglie B t.c. $rk(A B) = 3$ allora il sistema è impossibile (non ammette soluzioni) per Rouché-Capelli (∞^{2-3})
	• $A^3 - A = I_2 \rightarrow A(A^2 - I) = I \Rightarrow (A^2 - I) = A^{-1}$ quindi $AA^{-1} = I$ (A è invertibile)
	• $A^3 - A = 0 \rightarrow A(A^2 - I) = 0 \Rightarrow A = 0, A^2 - I = 0 \Rightarrow A = 0, A^2 = I$ quindi A è invertibile se $A^2 = I$ altrimenti se $A = 0$ non è invertibile
	• $A^3 - A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \rightarrow A(A^2 - I) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, A^2 - I = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + I = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix}$ poi calcolo il
	determinante delle due A e uso il teorema di Binét: $\det \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = 1$, $\det \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
Esercizio 3	• A è invertibile, allora $\det(A) > 0 \to \text{Falso}$, per Binét A è invertibile se $\det A \neq 0$ (quindi può essere anche negativo).
	• Se $A ilde{b} B$ sono invertibili, AB b invertibile $\rightarrow V$ Vero, AB b invertibile se $det(AB) \neq 0$ e per Binét $det(AB) = det A \cdot det B \neq 0$
	• Se $A^{13} = B \in B$ invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
	• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango n (massimo) e quindi è invertibile
	• Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\mathrm{rk}(A) < 3 \to \mathrm{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\mathrm{rk}(A) < 3$
	• Tre vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \rightarrow Usiamo la regola per essere base di \mathbb{R}^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N , quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti