

Overview of selected topics in computational catalysis that are helpful

Neeraj Rai

neerajrai@che.msstate.edu

Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, USA

Exchange-correlation functional

 Write down total kinetic energy functional as the sum of noninteracting particle density (n) and the one that represents rest of the kinetic energy functional

$$T[n] = T_s[n] + T_c[n]$$

where,

$$T_s[n] = -\frac{\hbar^2}{2m} \sum_{i}^{N} \int d^3r \, \phi_i^*(\mathbf{r}) \nabla^2 \phi_i(\mathbf{r})$$

We rewrite the exact energy functional as:

$$E[n] = T[n] + U[n] + V[n] = T_s[\{\phi_i[n]\}] + U_H[n] + E_{xc}[n] + V[n]$$

Local density approximation (LDA)

Exchange Functional (based on the exact exchange energy of homogeneous electron system):

$$E_x^{LDA}[n] = -\frac{3q^2}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d^3r \, n(\mathbf{r})^{4/3}$$

The correlation functionals are parameterized against quantum Monte Carlo results for uniform electron gas. The overall exchange-correlation functional is of the form:

$$E_{xc}[n] \approx E_{xc}^{LDA}[n] = \int d^3r \, e_{xc}^{hom}(n)|_{n \to n(\mathbf{r})} = \int d^3r \, e_{xc}^{hom}(n(\mathbf{r}))$$

Success of LDA is primarily due to the cancellation of errors (E_X is overestimated while the E_C is underestimated]

Semilocal functionals

Gradient expansion approximations (GEA, $|\nabla n(r)|$, $|\nabla n(r)|^2$, $|\nabla^2 n(r)|$)

$$T_s[n] \approx T_s^W[n] = T_s^{LDA}[n] + \frac{\hbar^2}{8m} \int d^3r \, \frac{|\nabla n(\mathbf{r})|^2}{n(\mathbf{r})}$$
$$E_x[n] \approx E_x^{GEA(2)}[n] = E_x^{LDA}[n] - \frac{10q^2}{432\pi (3\pi^2)^{1/3}} \int d^3r \, \frac{|\nabla n(\mathbf{r})|^2}{n(\mathbf{r})^{4/3}}$$

Generalized gradient approximation (GGA)

$$E_{xc}^{GGA}[n] = \int d^3r \, f(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

Different choices for $f(n(r), \nabla n(r))$ lead to different GGA density functionals such as PBE (used extensively in physics community) and LYP (used extensively in chemistry community)

GGA: improved molecular structure and energetics; can not account for weak interactions such as van der Waals.

Perdew's Jacob's ladder

Comparison of different LDA and GGA functions

method	-E/a.u.	
Thomas-Fermi	625.7	
Hartree-Fock	526.818	
OEP (exchange only)	526.812	
LDA (exchange only)	524.517	Ground state energy of the argon
LDA (VWN)	525.946	atom in atomic units (Hartree)
LDA (PW92)	525.940	
LDA- $SIC(PZ)$	528.393	
ADA	527.322	
WDA	528.957	
GGA (B88LYP)	527.551	
experiment	527.6	

Meta-GGA functionals

Exchange-correlation functional depends not only on the density, gradient of the density but also on the Kohn-Sham kinetic energy density

$$\tau(\mathbf{r}) = \frac{\hbar^2}{2m} \sum_{i} |\nabla \phi_i(\mathbf{r})|^2$$

$$E_{xc}[n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r})]$$

The additional degree of freedom is used to satisfy:

- self-interaction corrected correlation functional
- recovery of fourth order gradient expansion for the exchange
- finite exchange potential at the nucleus

Hybrid GGA, meta GGA

General form of global hybrid functionals is:

$$E_{xc}^{\text{GH}} = c_x E_x^{\text{HF}} + (1 - c_x) E_x^{\text{DFT}} + E_c^{\text{DFT}}$$

$$E_{xc}^{B3PW91} = c_x E_x^{HF} + (1 - c_x - a_x) E_x^S + a_x E_x^{B88} + (1 - a_c) E_c^{PW92} + a_c E_c^{PW91}$$

where $c_x = 0.20$, $a_x = 0.72$, and $a_c = 0.81$

Burke, J. Chem. Phys., 136, 150901, 2018

Other common hybrid functionals are B3LYP, PBE0, etc.

Range separated functionals

Range separated functionals attempt to address self-interaction error and are given

by the following form:

$$E_{xc}^{\text{RSH}} = c_{x,\text{sr}} E_{x,\text{sr}}^{\text{HF}} + c_{x,lr} E_{x,\text{lr}}^{\text{HF}} + (1 - c_{x,\text{sr}}) E_{x,\text{sr}}^{\text{DFT}} + (1 - c_{x,\text{lr}}) E_{x,\text{lr}}^{\text{DFT}} + E_{c}^{\text{DFT}}$$

Common examples include: ωB97, ωB97X, LRC-ωPBE, etc.

Another short coming of DFT functionals is the inability to capture vdW interactions

Grimme, Comput. Mol. Sci., 1, 211-228, 2011

Dispersion-corrected/nonlocal density functionals

Grimme's dispersion correction model:

$$E_{\text{disp}}^{\text{DFT}-D} = -\sum_{A < B} \sum_{n=6,8,...} s_n \frac{C_n^{AB}}{R_{AB}^n} f_{\text{damp},n} (R_{AB})$$

Nonlocal density functionals

$$E_{\text{disp}}^{\text{VV10}} = \int d\mathbf{r} \rho \left(\mathbf{r}\right) \left[\frac{1}{32} \left(\frac{3}{b^2} \right)^{\frac{3}{4}} + \frac{1}{2} \int d\mathbf{r}' \rho \left(\mathbf{r}' \right) \Phi \left(\mathbf{r}, \mathbf{r}' \right) \right]$$

Accuracy of different dispersion correction models

General accuracy for selected MN functionals for atomization energies bond dissociation

Number of parameters in different density functionals

Accuracy of functionals for bond lengths and binding energies

Functional	NCED	NCEC	NCD	IE	ID	TCE	TCD	ВН	EBL	EBE
SPW92	2.14	37.77	7.60	2.22	6.76	42.23	65.35	19.55	0.195	2.81
PBE	1.96	4.08	3.26	1.15	6.53	9.22	15.58	9.17	0.327	2.16
TPSS	2.58	8.90	2.63	1.39	8.44	5.94	10.45	8.03	0.398	2.80
B3LYP	2.86	8.91	1.77	1.49	11.10	5.24	11.97	5.96	0.643	3.04
PBE-D3(BJ)	0.46	5.78	3.67	0.71	5.19	9.67	17.20	9.99	0.049	0.42
revPBE-D3(BJ)	0.49	6.60	2.54	0.77	5.21	6.60	9.91	8.30	0.053	0.44
BLYP-D3(BJ)	0.34	2.18	2.82	0.68	11.40	6.63	11.11	9.91	0.031	0.25
B97-D3(BJ)	0.47	4.82	2.52	0.78	9.15	4.66	7.92	8.32	0.045	0.42
TPSS-D3(BJ)	0.38	2.28	3.06	0.69	6.47	5.88	8.86	8.72	0.070	0.33
SCAN-D3(BJ)	0.54	9.18	3.41	0.55	4.46	5.25	6.39	7.83	0.037	0.60
M06-L	0.55	2.20	1.87	0.71	10.16	5.44	12.97	6.85	0.043	0.60
B97M-rV	0.22	0.67	2.04	0.28	6.45	3.57	4.78	4.36	0.025	0.17
PBE0-D3(BJ)	0.44	4.45	2.28	0.58	3.47	4.76	8.72	4.91	0.043	0.46
B3LYP-D3(BJ)	0.31	3.02	1.88	0.49	8.51	3.72	5.97	5.65	0.022	0.37
ωB97X-D	0.37	1.01	1.46	0.67	3.11	3.44	5.79	2.34	0.038	0.42
ωB97X-V	0.24	0.64	1.23	0.27	2.72	3.41	5.01	2.44	0.042	0.15
TPSSh-D3(BJ)	0.36	1.73	2.49	0.62	5.29	5.55	5.92	6.63	0.068	0.33
M06-2X	0.43	2.52	0.99	0.50	5.56	3.29	7.23	2.57	0.077	0.33
MN15	0.47	1.83	0.96	0.71	4.06	3.76	6.44	1.98	0.042	0.60
ωB97M-V	0.18	0.48	1.13	0.28	2.05	2.48	4.30	1.68	0.014	0.15
Minimum	0.18	0.48	0.91	0.27	2.05	2.48	4.30	1.68	0.014	0.15
Best	ωB97M-V	ωB97M-V	M08-SO	B97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97X-V

Open-shell non-covalent or dimers characterized by significant electron delocalization

Functional	TA13	XB18	Bauza30	CT20	XB51
SPW92	11.49	4.47	9.63	1.32	5.34
PBE	6.22	0.80	3.59	0.42	1.88
TPSS	5.06	0.80	2.76	0.64	1.65
B3LYP	3.37	1.26	1.66	0.70	1.28
PBE-D3(BJ)	6.54	1.36	4.20	0.49	2.43
revPBE-D3(BJ)	5.06	0.45	2.55	0.39	1.63
BLYP-D3(BJ)	6.10	0.87	2.32	0.43	1.86
B97-D3(BJ)	5.31	0.38	2.31	0.43	1.50
TPSS-D3(BJ)	5.46	1.02	3.49	0.34	2.13
SCAN-D3(BJ)	4.89	1.57	4.57	0.41	2.25
M06-L	3.78	0.39	1.95	0.40	0.89
B97M-rV	4.15	0.63	2.12	0.32	0.91
PBE0-D3(BJ)	3.31	0.38	3.19	0.25	1.12
B3LYP-D3(BJ)	3.85	0.37	1.87	0.28	1.04
ωB97X-D	2.91	0.98	1.34	0.50	0.89
ωB97X-V	2.88	0.51	0.81	0.11	0.63
TPSSh-D3(BJ)	4.20	0.62	3.06	0.28	1.59
M06-2X	1.38	0.58	1.30	0.23	0.69
MN15	2.12	0.28	0.81	0.19	0.52
ωB97M-V	2.75	0.42	0.60	0.11	0.54
Minimum	1.38	0.09	0.60	0.10	0.44
Best	M06-2X	ωB97X	ωB97M-V	PW6B95-D3(0)	M05-D3(0)

Barrier heights

Functional	BHPERI26	CRBH20	DBH24	CR20	НТВН38	NHTBH38	PX13	WCPT27
SPW92	13.24	3.45	16.63	14.26	18.59	15.81	42.96	24.79
PBE	4.38	7.97	9.99	3.13	10.08	10.30	13.56	9.98
TPSS	2.88	10.14	9.21	5.69	8.38	10.06	8.37	5.75
B3LYP	5.10	8.49	4.79	10.83	4.89	5.52	3.38	1.78
PBE-D3(BJ)	6.87	7.91	10.36	1.83	10.63	10.62	15.77	11.56
revPBE-D3(BJ)	6.54	10.95	8.74	4.09	8.63	9.14	7.31	8.19
BLYP-D3(BJ)	4.29	16.62	9.56	9.77	9.42	10.61	9.12	7.20
B97-D3(BJ)	4.24	14.16	7.63	9.53	8.28	7.58	6.46	6.72
TPSS-D3(BJ)	5.70	10.08	9.67	2.68	8.99	10.46	10.95	7.70
SCAN-D3(BJ)	5.74	6.21	8.00	1.97	7.98	8.61	12.64	8.75
M06-L	2.18	13.73	5.24	12.70	4.66	4.86	1.66	2.24
B97M-rV	1.44	7.55	4.97	2.03	4.62	5.33	1.50	2.19
PBE0-D3(BJ)	3.49	1.29	4.68	2.53	5.03	4.68	9.00	6.42
B3LYP-D3(BJ)	1.55	8.29	5.39	6.48	5.62	6.00	6.40	4.29
ωB97X-D	2.40	1.66	2.03	3.68	2.69	1.86	1.62	2.05
ωB97X-V	2.75	3.16	1.75	2.90	2.36	1.69	3.38	2.12
TPSSh-D3(BJ)	4.21	6.44	7.60	1.90	7.21	8.11	8.42	5.82
M06-2X	1.81	1.58	1.08	2.07	1.29	1.67	6.94	3.42
MN15	1.77	1.09	1.82	1.72	1.38	2.55	2.87	2.24
ωB97M-V	1.44	1.23	1.46	0.56	1.72	1.98	2.55	1.82
Minimum	1.21	0.80	1.08	0.56	1.25	1.48	1.04	1.39
Best	PW6B95-D3(0)	ωM05-D	M06-2X	ωB97M-V	M08-HX	M11-D3(BJ)	M06-L-D2	M08-SO

Molecular Dynamics, Born-Oppenheimer MD, Metadynamics

Reference books

Understanding Molecular Simulations, Smit and Frenkel

Computer Simulation of Liquids, Allen and Tildesley

Ab initio Molecular Dynamics, Marx and Hutter

Particle based simulations (molecular simulations)

Molecular motion (Microscopic)

Statistical Mechanics

Thermodynamic and transport properties (Macroscopic)

Force fields

Bonded interactions

Nonbond interactions

$$U_{ ext{total}} = U_{ ext{bond}} + U_{ ext{angle}} + U_{ ext{dihedral}} + U_{ ext{vdW}} + U_{ ext{Coulomb}}$$

$$U_{\mathrm{bond}} = \sum_{\mathrm{bonds } i} k_i^{\mathrm{bond}} (r_i - r_{0i})^2,$$

$$U_{\text{angle}} = \sum_{\text{angles } i} k_i^{\text{angle}} (\theta_i - \theta_{0i})^2,$$

$$U_{\text{dihedral}} = \sum_{\text{dihedral } i} \begin{cases} k_i^{\text{dihe}} [1 + \cos(n_i \phi_i - \gamma_i)], n_i \neq 0 \\ k_i^{\text{dihe}} (0_i - \gamma_i)^2 n = 0, \end{cases}$$

Phillips et al., J. Comp. Chem. 26, 1781--1802, 2005

Force fields

$$U_{
m total} = U_{
m bond} + U_{
m angle} + U_{
m dihedral} + U_{
m vdW} + U_{
m Coulomb}$$

$$U_{ ext{vdW}} = \sum_{i} \sum_{j > i} 4 arepsilon_{ij} igg[igg(rac{\sigma_{ij}}{r_{ij}} igg)^{12} - igg(rac{\sigma_{ij}}{r_{ij}} igg)^6 igg],$$

$$U_{ ext{Coulomb}} = \sum_i \sum_{j>i} rac{q_i q_j}{4\pi arepsilon_0 r_{ij}},$$

Phillips et al., J. Comp. Chem. 26, 1781--1802, 2005

Computing electrostatic interactions

Toukmaji and Board Jr., Comput. Phys. Commun. 95, 73--92, 1996

Molecular dynamics (MD)

Phillips et al., J. Comp. Chem. 26, 1781--1802, 2005

Different ensembles

Microcanonical (NVE)

Canonical (NVT)

Grand canonical (μVT)

Isothermal isobaric (NPT)

Constant stress (NST)

Constant enthalpy (NPH)

Lagrangian and Hamiltonian equations of motion (EOM)

Kinetic (K) and potential energy (U) of an N particle system is given by:

$$K(\dot{\mathbf{r}}_1, ..., \dot{\mathbf{r}}_N) = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i^2$$
 $U(\mathbf{r}_1, ..., \mathbf{r}_N)$

then the Lagrangian and Lagrangian EOM are:

$$\mathcal{L}(\mathbf{r}_1, ..., \mathbf{r}_N, \dot{\mathbf{r}}_1, ..., \dot{\mathbf{r}}_N) = K(\dot{\mathbf{r}}_1, ..., \dot{\mathbf{r}}_N) - U(\mathbf{r}_1, ..., \mathbf{r}_N)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_i} \right) - \frac{\partial \mathcal{L}}{\partial \mathbf{r}_i} = 0$$

and the Hamiltonian and Hamiltonian EOM are:

$$\mathcal{H}(\mathbf{r}_1, ..., \mathbf{r}_N, \mathbf{p}_1, ..., \mathbf{p}_N) = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m_i} + U(\mathbf{r}_1, ..., \mathbf{r}_N)$$

$$\dot{q}_{\alpha} = \frac{\partial \mathcal{H}}{\partial p_{\alpha}}, \qquad \dot{p}_{\alpha} = -\frac{\partial \mathcal{H}}{\partial q_{\alpha}}$$

Integrating EOM: velocity Verlet

$$\mathbf{r}_i(t + \Delta t) \approx \mathbf{r}_i(t) + \Delta t \mathbf{v}_i(t) + \frac{\Delta t^2}{2m_i} \mathbf{F}_i(t)$$

$$\mathbf{v}_{i}(t + \Delta t) = \mathbf{v}_{i}(t) + \frac{\Delta t}{2m_{i}} \left[\mathbf{F}_{i}(t) + \mathbf{F}_{i}(t + \Delta t) \right]$$

Estimating Free energy landscape: Metadynamics

Metadynamics: the concept

Laio et al., *Rep. Prog. Phys.*, 71, 12601 (2008) -6 -4 -2 0 2 4

Metadynamics

The external potential added to the system at any given time:

$$V_{G}(S(x), t) = w \sum_{\substack{t' = \tau_{G}, 2\tau_{G}, \dots \\ t' < t}} \exp\left(-\frac{(S(x) - s(t'))^{2}}{2\delta s^{2}}\right)$$

S(x) is the collective variable. There are three parameters that governs the external potential:

- 1. Gaussian height (w)
- 2. Gaussian width (δ s)
- 3. Frequency ($\tau_{\rm G}$) at which Gaussians are added

The underlying free energy is given by:

$$\lim_{t\to\infty}V_{\rm G}(s,t)\sim -F(s)$$

Laio et al., Rep. Prog. Phys., 71, 12601 (2008)

Different flavors of molecular dynamics

The nomenclature

<u>Type</u> <u>intermolecular Potential</u> <u>nuclear coordinate time evolution</u>

MD analytic form (FF) classical (Newton's EOM)

AIMD DFT/WFT classical

CPMD DFT classical, wave function (WFN) evolves

along with nuclear coordinates

BOMD DFT/WFT classical, SCF cycle for the WFN at new

nuclear coordinates

PIMD DFT/WFT/FF quantum

Born-Oppenheimer Molecular Dynamics

BOMD

The concept: solve the static electronic structure problem for each MD step

$$M_{I} \ddot{\mathbf{R}}_{I}(t) = -\nabla_{I} \min_{\Psi_{0}} \left\{ \langle \Psi_{0} | \mathcal{H}_{e} | \Psi_{0} \rangle \right\}$$
$$E_{0} \Psi_{0} = \mathcal{H}_{e} \Psi_{0}$$

Ab initio Molecular Dynamics, Marx and Hutter

Relevant sections in CP2K for molecular dynamics

Questions?

How to keep temperature constant in NVT ensemble?

<u>Thermostats</u> attempt to mimic the effect of coupling system to thermal reservoir or bath

How to keep temperature constant in NVT ensemble?

Extended Hamiltonian approach due to Nosé introduces a new variable s that controls the temperature

$$\mathcal{H}_{N} = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m_{i}s^{2}} + U(\mathbf{r}_{1}, ..., \mathbf{r}_{N}) + \frac{p_{s}^{2}}{2Q} + gkT \ln s$$

Nosé-Hoover formulation is used extensively in molecular dynamics

$$\mathbf{p}'_i = \frac{\mathbf{p}_i}{s}, \qquad \mathrm{d}t' = \frac{\mathrm{d}t}{s}, \qquad \frac{1}{s}\frac{\mathrm{d}s}{\mathrm{d}t'} = \frac{\mathrm{d}\eta}{\mathrm{d}t'}, \qquad p_s = p_\eta$$

How to keep temperature constant in *NVT* ensemble?

Nosé-Hoover formulation is used extensively in molecular dynamics

$$\mathbf{p}'_i = \frac{\mathbf{p}_i}{s}, \qquad \mathrm{d}t' = \frac{\mathrm{d}t}{s}, \qquad \frac{1}{s}\frac{\mathrm{d}s}{\mathrm{d}t'} = \frac{\mathrm{d}\eta}{\mathrm{d}t'}, \qquad p_s = p_\eta$$

New EOM are:

$$\dot{\mathbf{r}}_i = \frac{\mathbf{p}_i}{m_i}$$

$$\dot{\mathbf{p}}_i = \mathbf{F}_i - \frac{p_{\eta}}{Q}\mathbf{p}_i$$

$$\dot{\eta} = \frac{p_{\eta}}{Q}$$

$$\dot{p}_{\eta} = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{m_{i}} - dNkT$$

How to keep pressure constant in NPT ensemble?

We can use pressure bath (piston) to maintain and use scaled coordinates:

$$\mathbf{s}_i = V^{-1/3} \mathbf{r}_i, \qquad \qquad \boldsymbol{\pi}_i = V^{1/3} \mathbf{p}_i$$

The Hamiltonian:

$$\mathcal{H} = \sum_{i} \frac{V^{-2/3} \pi_i^2}{2m_i} + U(V^{1/3} \mathbf{s}_1, ..., V^{1/3} \mathbf{s}_N) + \frac{p_V^2}{2W} + PV \quad ; \quad W = (3N+1)kT\tau_b^2$$

New EOM are:

$$\dot{\mathbf{r}}_i = \frac{\mathbf{p}_i}{m_i} + \frac{1}{3} \frac{\dot{V}}{V} \mathbf{r}_i$$

$$\dot{\mathbf{p}}_i = -\frac{\partial U}{\partial \mathbf{r}_i} - \frac{1}{3} \frac{\dot{V}}{V} \mathbf{p}_i$$

$$\dot{V} = \frac{p_V}{W}$$

$$\dot{p}_V = \frac{1}{3V} \sum_{i} \left[\frac{\mathbf{p}_i^2}{m_i} - \frac{\partial U}{\partial \mathbf{r}_i} \cdot \mathbf{r}_i \right] - P$$

Computing electrostatic interactions

$$E_{\text{Ewald}} = E_{\text{dir}} + E_{\text{rec}} + E_{\text{self}} + E_{\text{surface}},$$

$$E_{\text{dir}} = \frac{1}{2} \sum_{i,j=1}^{N} q_i q_j \sum_{\vec{n}_r} \frac{\text{erfc}(\beta | \vec{r}_i - \vec{r}_j + \vec{n}_r |)}{| \vec{r}_i - \vec{r}_j + \vec{n}_r |}$$

$$-\sum_{(i,j)\in ext{Excluded}}rac{q_iq_j}{\left|ec{r}_i-ec{r}_j+ec{
u}_{ij}
ight|}$$
 ,

$$E_{\text{rec}} = \frac{1}{2\pi V} \sum_{\vec{m} \neq 0} \frac{\exp(-\pi^2 |\vec{m}|^2 / \beta^2)}{|\vec{m}|^2} \left| \sum_{i=1}^{N} q_i \exp(2\pi i \vec{m} \cdot \vec{r}_i) \right|^2,$$

$$E_{
m self} = - \; rac{eta}{\sqrt{\pi}} \sum_{i=1}^N q_i^2,$$

$$E_{
m surface} = rac{2\pi}{(2arepsilon_s+1)V} \left| \sum_{i=1}^N q_i ec{r}_i
ight|^2.$$

Phillips et al., J. Comp. Chem. 26, 1781--1802, 2005

Questions?