UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA

Lista 2 - Módulo 2 - CM311

1. Admita que f(x) > 0 e que

$$\lim_{x\to a} f(x) = 0, \quad \lim_{x\to a} g(x) = 0, \quad \lim_{x\to a} h(x) = 1, \quad \lim_{x\to a} p(x) = +\infty, \quad \lim_{x\to a} q(x) = +\infty;$$

decida quais dos limites abaixo são formas indeterminadas. Para aqueles que não forem, calcule o limite, quando possível.

(a)
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

(b)
$$\lim_{x \to a} \frac{f(x)}{p(x)}$$

(c)
$$\lim_{x \to a} \frac{h(x)}{p(x)}$$

(d)
$$\lim_{x \to a} \frac{p(x)}{f(x)}$$

(e)
$$\lim_{x \to a} \frac{p(x)}{q(x)}$$

(f)
$$\lim_{x \to a} f(x)p(x)$$

(g)
$$\lim_{x \to a} h(x)p(x)$$

(h)
$$\lim_{x \to a} p(x)q(x)$$

(i)
$$\lim_{x \to a} [f(x) - p(x)]$$

(a)
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 (b) $\lim_{x \to a} \frac{f(x)}{p(x)}$ (c) $\lim_{x \to a} \frac{h(x)}{p(x)}$ (d) $\lim_{x \to a} \frac{p(x)}{f(x)}$ (e) $\lim_{x \to a} \frac{p(x)}{q(x)}$ (f) $\lim_{x \to a} f(x)p(x)$ (g) $\lim_{x \to a} h(x)p(x)$ (h) $\lim_{x \to a} p(x)q(x)$ (i) $\lim_{x \to a} \left[f(x) - p(x) \right]$ (j) $\lim_{x \to a} \left[p(x) - q(x) \right]$ (k) $\lim_{x \to a} \left[p(x) + q(x) \right]$ (l) $\lim_{x \to a} \left[f(x) \right]^{g(x)}$ (m) $\lim_{x \to a} \left[f(x) \right]^{p(x)}$ (n) $\lim_{x \to a} \left[h(x) \right]^{p(x)}$ (o) $\lim_{x \to a} \left[p(x) \right]^{f(x)}$ (p) $\lim_{x \to a} \left[p(x) \right]^{q(x)}$ (q) $\lim_{x \to a} q(x) \sqrt{p(x)}$

$$a = a(x) \sqrt{(x)}$$

(n)
$$\lim_{x \to a} [h(x)]^{p(x)}$$

(o)
$$\lim_{x \to a} [p(x)]^{f(x)}$$

(p)
$$\lim_{x \to a} [p(x)]^{q(x)}$$

(q)
$$\lim_{x \to a} \sqrt[q(x)]{p(x)}$$

2. Nos itens abaixo, utilize os gráficos de f e g e suas retas tangentes em (2,0) para determinar o valor $\det \lim_{x \to 2} \frac{f(x)}{g(x)}.$

(a)

(b)

3. Nos itens abaixo, utilize a Regra de l'Hôspital, quando apropriado, para calcular o limite.

(a)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$

(b)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{\text{sen } x}$$

(c)
$$\lim_{x \to \pi/2} \frac{1 - \sin x}{1 + \cos 2x}$$

(d)
$$\lim_{x \to 0^+} \frac{\ln x}{x}$$

Nos itens abaixo, utilize a Regra de *l'Hospital*, quando apropriado, para calcular o limite.

(a)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$
 (b) $\lim_{x \to 0} \frac{e^{2x} - 1}{\sin x}$ (c) $\lim_{x \to \pi/2} \frac{1 - \sin x}{1 + \cos 2x}$ (d) $\lim_{x \to 0^+} \frac{\ln x}{x}$ (e) $\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 4x}}{x}$ (f) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$ (g) $\lim_{x \to 0} \frac{x \, 3^x}{3^x - 1}$ (h) $\lim_{x \to 1} \left[\frac{x}{x - 1} - \frac{1}{\ln x} \right]$ (i) $\lim_{x \to 0^+} \left[\frac{1}{x} - \frac{1}{e^x - 1} \right]$ (j) $\lim_{x \to +\infty} \left[x - \ln x \right]$ (k) $\lim_{x \to 0^+} x^{\sqrt{x}}$ (l) $\lim_{x \to 0} (1 - 2x)^{1/x}$ (m) $\lim_{x \to 0^+} (4x + 1)^{\cot g x}$ (n) $\lim_{x \to 0^+} (\cos x)^{1/x^2}$

(f)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

(g)
$$\lim_{x \to 0} \frac{x \, 3^x}{3^x - 1}$$

(h)
$$\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right]$$

(i)
$$\lim_{x \to 0^+} \left[\frac{1}{x} - \frac{1}{e^x - 1} \right]$$

(j)
$$\lim_{x \to \infty} [x - \ln x]$$

(k)
$$\lim_{x \to 0^+} x^{\sqrt{x}}$$

(1)
$$\lim_{x \to 0} (1 - 2x)^{1/x}$$

(m)
$$\lim_{x\to 0^+} (4x+1)^{\cot x}$$

(n)
$$\lim_{x \to +\infty} (\cos x)^{1/x^2}$$

4. Prove que: (a)
$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$
 $(n \in \mathbb{N})$ (b) $\lim_{x \to +\infty} \frac{\ln x}{x^p} = 0$ $(p > 0)$

(b)
$$\lim_{x \to 0} \frac{\ln x}{x^p} = 0$$
 $(p > 0)$

5. O que ocorre ao usar-se a Regra de l'Hôspital nos casos abaixo? Calcule o limite utilizando outro método.

(a)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}}$$

(b)
$$\lim_{x \to (\pi/2)^{-}} \frac{\sec x}{\operatorname{tg} x}$$

- 6. Nos itens abaixo, utilize a derivação logarítmica para calcular a derivada da função y(x).
 - (a) $y = (2x+1)^5(x^4-3)^6$ (b) $y = \sqrt{\frac{x-1}{x^4+1}}$

(d) $y = x \operatorname{sen} x$

- (e) $y = (\cos x)^x$
- (f) $x^y = y^x$

- 7. Considere o conjunto $A = [0, 2) \cup (2, 4] \cup \{5\}$.
 - (a) Determine o conjunto int(A), dos pontos interiores de A. O conjunto A é aberto? Justifique.
 - (b) Determine o conjunto ∂A , dos pontos de fronteira de A. O conjunto A é fechado? Justifique.
 - (c) O conjunto A é compacto? O conjunto $A \cup \partial A$ é compacto? Justifique.

Definição. Sejam $K \subset \mathbb{R}$ um conjunto compacto não-vazio. Define-se o diâmetro de K (e denota-se por diam(K)) como sendo o número dado pela relação:

$$diam(K) = \max_{x, y \in K} dist(x, y) = \max_{x, y \in K} |x - y|.$$

- 8. (**Teorema dos Compactos Encaixantes**.) Considere a coleção de conjuntos compactos $\left\{K_n\right\}_{n\in\mathbb{N}}$ encaixantes não-vazios, ou seja, $K_1 \supset K_2 \supset ... \supset K_n \supset K_{n+1} \supset \cdots$, para todo $n \in \mathbb{N}$.
 - (a) Prove que $K = \bigcap K_n$ é um conjunto compacto, e que
 - (b) Se $K \neq \emptyset$ e $\lim_{n \to +\infty} diam(K_n) = 0$ então $K = \cap K_n = \{x^*\}$.
- 9. Seja $f:Dom(f)\longrightarrow \mathbb{R}$ a função dada por $f(x)=\sqrt{9-(x-2)^2}$, para todo $x\in Dom(f)$.
 - (a) Determine os conjuntos int(Dom(f)) e $\partial(Dom(f))$.
 - (b) Dom(f) é um conjunto aberto? É um conjunto fechado? É um conjunto compacto?
 - (c) Dom(f') é um conjunto aberto? É um conjunto fechado? É um conjunto compacto?
 - (d) Todos os pontos críticos de f são pontos interiores de Dom(f)?
 - (e) A função f satisfaz todas as hipóteses do Teorema de Weierstrass?
 - (f) Determine os valores máximos/mínimos locais/globais de f.
 - (g) O conjunto Im(f) é aberto? É fechado? É compacto?
 - (h) O conjunto Im(f') é aberto? É fechado? É compacto?
 - (i) Use f''(x) para estudar a concavidade do gráfico de f.
 - (j) Dê esboços detalhados dos gráficos de f e de f'.
- 10. Para cada uma das funções f nos itens a seguir, identifique os seguintes elementos abaixo e dê o seu gráfico:
 - A: Dom(f)
 - \mathbf{B} : Pontos de interseção do gráfico de f com os eixos coordenados
 - C: Aspectos de simetria (função par, função ímpar, função periódica)
 - **D**: Retas assíntotas (horizontais, verticais, oblíquas)
 - E: Intervalos de crescimento ou decrescimento
 - F: Valores máximos e valores mínimos (locais e globais)
 - G: Concavidade e Pontos de Inflexão

(a)
$$f(x) = x(x-4)^3$$

(b)
$$f(x) = \frac{x}{x-1}$$

(c)
$$f(x) = \frac{x^2}{x^2 + 3}$$

(a)
$$f(x) = x(x-4)^3$$
 (b) $f(x) = \frac{x}{x-1}$ (c) $f(x) = \frac{x^2}{x^2+3}$ (d) $f(x) = \frac{\sqrt{1-x^2}}{x}$ (e) $f(x) = \sqrt[3]{x^2-1}$ (f) $f(x) = \frac{1}{1+e^{-x}}$ (g) $f(x) = x - \ln x$ (h) $f(x) = \frac{x^2+1}{x+1}$

(e)
$$f(x) = \sqrt[3]{x^2 - 1}$$

(f)
$$f(x) = \frac{1}{1 + e^{-x}}$$

$$(g) \ f(x) = x - \ln x$$

(h)
$$f(x) = \frac{x^2 + 1}{x + 1}$$

(i)
$$f(x) = 1 + \frac{x}{2} + e^{-x}$$
 (j) $f(x) = \sqrt{x^2 + 4x}$

(j)
$$f(x) = \sqrt{x^2 + 4x}$$

- 11. Seja a função $f(x) = x^2 \ln x$.
 - (a) Faça o gráfico de f.
 - (b) Utilize a Regra de l'Hôspital para explicar o comportamento de f quando $x \to 0$.
 - (c) Estime o valor mínimo de f e os intervalos de mesma concavidade. Então, use o cáculo para encontrar os valores exatos.
- 12. Nos itens abaixo, descreva a mudança no gráfico de f à medida que a constante c varia; investigue como os pontos de máximo e de mínimo e os pontos de inflexão movem-se quando c varia. Identifique o valor de c para o qual o aspecto básico do curva muda.

(a)
$$f(x) = e^x + c e^{-x}$$
 (b) $f(x) = \frac{c x}{1 + c^2 x^2}$

- 13. Investigue a família de curvas dadas for $f(x) = x e^{-cx}$, em que c é uma constante real. Calcule os limites quando $x \to \pm \infty$. Identifique qualquer valor intermediário de c onde mude a forma básica do gráfico. Estude a localização dos pontos de máximo e de mínimo e dos pontos de inflexão conforme c varia.
- 14. (a) Investigue a família de funções polinomiais dada pela equação $f(x) = cx^4 2x^2 + 1$. Para quais valores de c a curva tem pontos de mínimo?
 - (b) Mostre que os pontos de máximo e de mínimo para cada curva da família estão sobre a parábola $y = 1 x^2$. Ilustre fazendo o gráfico dessa parábola e de vários membros da família.

Respostas

1. (a) Indeterminação (do tipo
$$\frac{0}{0}$$
) (b) 0 (c) 0 (d) $+\infty$

(e) Indeterminação (do tipo
$$\frac{\infty}{\infty}$$
) (f) Indeterminação (do tipo $0 \cdot \infty$) (g) $+\infty$

(h)
$$+\infty$$
 (i) $-\infty$ (j) Indeterminação (do tipo $\infty - \infty$) (k) $+\infty$

(l) Indeterminação (do tipo
$$0^0$$
) (m) 0 (Cuidado: 0^∞ não é indeterminação!)

(n) Indeterminação (do tipo
$$1^{\infty}$$
) (o) Indeterminação (do tipo ∞^0) (p) $+\infty$

(q) Indeterminação (do tipo
$$\infty^0$$
)

2. (a)
$$\frac{9}{4}$$
 (b) $-\frac{3}{2}$

3. (a)
$$-\frac{1}{3}$$
 (b) 2 (c) $\frac{1}{4}$ (d) $-\infty$ (e) 3 (f) $\frac{1}{2}$ (g) $1/\ln 3$ (h) $\frac{1}{2}$ (i) $\frac{1}{2}$ (j) $+\infty$ (k) 1 (l) e^{-2} (m) e^4 (n) $1/\sqrt{e}$

4. (a) Aplique a regra de l'Hôspital
$$n$$
 vezes para obter $\lim_{x\to +\infty}\frac{e^x}{n!}=+\infty$

(b) Aplique a regra de l'Hôspital para obter
$$\lim_{x\to +\infty}\frac{1}{x\cdot p\cdot x^{p-1}}=0$$

6. (a)
$$y' = (2x+1)^5(x^4-3)^6\left(\frac{10}{2x+1} + \frac{24x^3}{x^4-3}\right)$$
 (b) $y' = \sqrt{\frac{x-1}{x^4+1}}\left(\frac{1}{2x-2} - \frac{2x^3}{x^4+1}\right)$ (c) $y' = x^x(1+\ln x)$ (d) $y' = x \sec x\left(\frac{\sec x}{x} + \cos x \ln x\right)$ (e) $y' = (\cos x)^x(-x \operatorname{tg} x + \ln \cos x)$ (f) $y' = \frac{y(x \ln y - y)}{x(y \ln x - x)}$

7. (a) $int(A) = (0,2) \cup (2,4)$. A não é aberto pois $A \neq int(A)$ (note que os pontos 0,4 e 5 pertencem a A mas não são pontos interiores de A).

(b) $\partial(A) = \{0, 2, 4, 5\}$; A não é fechado pois não contém todos os seus pontos de fronteira (note que 2 é ponto de fronteira de A mas $2 \notin A$). [Outra forma de mostrar que A não é fechado é notando que seu complementar $A^c = (-\infty, 0) \cup \{2\} \cup (4, 5) \cup (5, +\infty)$ não é um conjunto aberto pois $2 \in A^c$ mas 2 não é ponto interior de A^c .]

(c) A não é compacto pois não é fechado (apesar de ser limitado, já que $A \subset [0,5]$, o qual é um intervalo limitado). Por sua vez, o conjunto $A \cup \partial A = [0,4] \cup \{5\}$ é fechado (pois contém os seus pontos de fronteira 0, 4 e 5) e é limitado (pois está contido no intervalo limitado [0,5]); portanto, $A \cup \partial A$ é um conjunto compacto.

8. (a) Dado que cada K_n é um fechado (pois é compacto) então $K = \cap K_n$ é um conjunto fechado; além disso, $K = \cap K_n \subset K_1$ e K_1 é limitado (pois é compacto). Portanto, $K = \cap K_n$ é fechado e limitado, ou seja, é compacto.

(b) Admita que x^* e x_0 pertençam a $K=\cap K_n$ com $\lim_{n\to +\infty} diam(K_n)=0$; daí, segue que

$$|x^* - x_0| \le diam(K_n), \text{ para todo } n \in \mathbb{N}$$

$$\implies |x^* - x_0| = \lim_{n \to +\infty} |x^* - x_0| \le \lim_{n \to +\infty} diam(K_n) = 0$$

$$\implies |x^* - x_0| = 0 \implies x^* = x_0,$$

ou seja, $K = \bigcap K_n$ resume-se a um único ponto.

- 9. (a) Dom(f) = [-1, 5]; int(Dom(f)) = (-1, 5); $\partial(Dom(f)) = \{-1, 5\}$
 - (b) Dom(f) não é um conjunto aberto porque há pontos em Dom(f) que não são pontos interiores (a saber, os pontos -1 e 5). É um conjunto fechado pois contém seus pontos de fronteira (a saber, -1 e 5). [Outra forma de justificar é notando que o seu complementar é o conjunto $(-\infty, -1) \cup (5, +\infty)$, o qual é aberto por se tratar da união de dois conjuntos abertos.] É um conjunto compacto pois é fechado e limitado.
 - (c) Dom(f') = (-1,5), o qual é um conjunto aberto; não é fechado pois não contém seus pontos de fronteira -1 e 5. Não é compacto por não ser fechado (apesar de ser limitado).
 - (d) Tem-se que f'(2) = 0 (único zero da derivada) e que não existem f'(-1) e f'(5), e assim 2, -1 e 5 são os três pontos críticos de f e apenas x = 2 é ponto interior de Dom(f) (visto que -1 e 5 são pontos de fronteira).
 - (e) Sim, f é uma função contínua e seu domínio é um conjunto compacto.
 - (f) f(2) = 3: valor máximo global; f(-1) = f(5) = 0: valor mínimo global.
 - (g) Im(f) = [0, 3] não é conjunto aberto pois possui pontos não-interiores (a saber, os pontos 0 e 3, os quais são ponto de fronteira de Im(f)). É fechado pois contém seus pontos de fronteira. É compacto, pois além de ser fechado é também limitado.
 - (h) $Im(f') = \mathbb{R}$ é aberto e fechado, mas não é conpacto por não ser limitado.
 - (i) $f''(x) = \frac{-9}{\sqrt{(9-(x-2)^2)^3}} < 0$, para todo $x \in (-1,5)$; portanto, a concavidade do gráfico é sempre voltada para baixo.
 - (j) Gráficos de f e f'

- 10. (a) A. \mathbb{R} B. (0,0) e (4,0) C. Nenhuma D. Nenhuma E. Crescente em $(1,+\infty)$; Decrescente em $(-\infty,1)$ F. Mínimo global: f(1)=-27 G. Concavidade para cima em $(-\infty,2)$ e em $(4,+\infty)$; Concavidade para baixo em (2,4); Pontos de inflexão em (2,-16) e (4,0)
 - (a) (Gráfico)
- (b) (Gráfico)
- (c) (Gráfico)
- (d) (Gráfico)

(b) A. $\{x \in \mathbb{R} : x \neq 1\}$ B. (0,0) C. Nenhuma D. Assíntota vertical: x = 1; Assíntota horizontal: y = 1 E. Decrescente em $(-\infty,1)$ e em $(1,+\infty)$ F. Nenhum G. Concavidade para cima em $(1,+\infty)$; Concavidade para baixo em $(-\infty,1)$

(c) A. \mathbb{R} B. (0,0) C. Simetria em relação ao eixo-y D. Assíntota horizontal: y=1 E. Crescente em $(0,+\infty)$; Decrescente em $(-\infty,0)$ F. Valor mínimo global: f(0)=0 G. Concavidade para cima em (-1,1); Concavidade para baixo em $(-\infty,-1)$ e em $(1,+\infty)$; Pontos de inflexão em $(\pm 1,1/4)$

(d) A. $\{x \in \mathbb{R} : |x| \le 1, x \ne 0\}$ B. (-1,0) e (1,0) C. Simetria em relação à origem D. Assíntota vertical: x = 0 E. Decrescente em (-1,0) e em (0,1) F. Valor mínimo local: f(-1) = 0 = f(1) G. Concavidade para cima em $(-1,-\sqrt{2/3})$ e em $(0,\sqrt{2/3})$; Concavidade para baixo em $(-\sqrt{2/3},0)$ e em $(\sqrt{2/3},1)$; Pontos de inflexão em $(\pm\sqrt{2/3},\pm1/\sqrt{2})$

(e) A. \mathbb{R} B. (-1,0), (0,-1) e (1,0) C. Simetria em relação ao eixo-y D. Nenhuma E. Crescente em $(0,+\infty)$; Decrescente em $(-\infty,0)$ F. Valor mínimo global: f(0)=-1 G. Concavidade para cima em (-1,1); Concavidade para baixo em $(-\infty,-1)$ e em $(1,+\infty)$; Pontos de inflexão em $(\pm 1,0)$

(e) (Gráfico)

(f) (Gráfico)

(g) (Gráfico)

(h) (Gráfico)

(f) A. \mathbb{R} B. (0, 1/2) C. Nenhuma D. Assíntotas horizontais: y = 0 e y = 1 E. Crescente em \mathbb{R} F. Nenhum G. Concavidade para cima em $(-\infty, 0)$; Concavidade para baixo em $(0, +\infty)$; Ponto de inflexão em (0, 1/2)

(g) A. $(0,+\infty)$ B. Nenhum C. Nenhuma D. Assíntota vertical: x=0 E. Crescente em $(1,+\infty)$; Decrescente em (0,1) F. Valor mínimo global: f(1)=1 G. Concavidade para cima em $(0,+\infty)$

(h) A. $\left\{x\in\mathbb{R}\,;\,x\neq-1\right\}$ B. Nenhum C. Nenhuma D. Assíntota vertical: $x=-1\,;$ Assíntota Oblíqua: y=x-1 E. Crescente em $\left(-\infty,-1-\sqrt{2}\right)$ e em $\left(-1+\sqrt{2},+\infty\right)$; Decrescente em $\left(-1-\sqrt{2},-1\right)$ e em $\left(-1,-1+\sqrt{2}\right)$ F. Valor máximo local: $f(-1-\sqrt{2})=-2-2\sqrt{2}$; Valor mínimo local: $f(-1+\sqrt{2})=-2+2\sqrt{2}$ G. Concavidade para cima em $(-1,+\infty)$; Concavidade para baixo em $(-\infty,-1)$

(i) (Gráfico)

(j) (Gráfico)

(i) A. \mathbb{R} B. (0,2) C. Nenhuma D. Assíntota oblíqua: $y=\frac{x}{2}+1$ E. Crescente em $(\ln 2, +\infty)$; Decrescente em $(-\infty, \ln 2)$ F. Valor mínimo global: $f(\ln 2)=\frac{3}{2}+\frac{1}{2}\ln 2$ G. Concavidade para cima em $(-\infty, +\infty)$

(j) A. $(-\infty, -4] \cup [0, +\infty)$ B. (-4, 0) e (0, 0) C. Nenhuma D. Assíntotas oblíquas: y = x + 2 e y = -x - 2 D. Crescente em $[0, +\infty)$; Decrescente em $(-\infty, -4]$ F. Valor mínimo global: f(-4) = 0 = f(0) G. Concavidade para baixo em $(-\infty, -4)$ e em $(0, +\infty)$

11. (a) (Gráfico de f)

- (b) $\lim_{x\to 0^+} f(x)=0$ (c) Valor mínimo global: $f(1/\sqrt{e})=-1/(2\,e)$; Concavidade para cima em $(e^{-3/2},+\infty)$; Concavidade para baixo em $(0,e^{-3/2})$; Ponto de inflexão em $(e^{-3/2},-\frac{3}{2\,e^3})$
- 12. (a) Para c < 0, não há pontos de máximo ou de mínimo, e há um ponto de inflexão, que decresce ao longo do eixo-x. Para c > 0, não há ponto de inflexão, e há um ponto de mínimo global.

Gráfico de (a):

Gráfico de (b):

- (b) Para c > 0, os valores máximo e mínimo são sempre $\pm \frac{1}{2}$, mas os pontos de máximo e de mínimo e os pontos de inflexão aproximam-se do eixo-y à medida que c cresce. c = 0 é um valor de transição: quando c é substituído por -c, a curva é refletida em relação ao eixo-x.
- 13. Para c > 0, $\lim_{x \to +\infty} f(x) = 0$ e $\lim_{x \to -\infty} f(x) = -\infty$. Para c < 0, $\lim_{x \to +\infty} f(x) = +\infty$ e $\lim_{x \to -\infty} f(x) = 0$.

À medida que |c| cresce, os pontos de máximo e de mínimo e os pontos de inflexão se aproximam da origem.

14. (a) Para valores positivos de c

(b) Figura acima à direita.