EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2004352960

PUBLICATION DATE

16-12-04

APPLICATION DATE

30-05-03

APPLICATION NUMBER

2003155658

APPLICANT: CHUGALRO CO LTD:

INVENTOR :

SASAUCHI KENICHI;

INT.CL.

: C10B 53/00 B09B 3/00 C10B 53/02

C10L 5/40

TITLE

: SYSTEM FOR GASIFYING BIOMASS

AND ITS OPERATION METHOD

ABSTRACT: PROBLEM TO BE SOLVED: To provide a system for gasifying a biomass and its operation process, wherein cyclic use of a biomass energy in the system is performed efficiently to decrease an amount of fossil fuel and the like used in the outside of the system and also to reduce the discarding treatment of residues.

> SOLUTION: The system 1 for gasifying a biomass comprises a gasifying furnace 2, which produces a fuel gas by treating a biomass with heat from a hot air generating furnace 3, wherein the system1 is equipped with a residue supplier 52 which supplies residues generated in the gasifying furnace 2 to the hot air generating furnace 3 as a fuel. During the start-up period of the gasifying furnace 2 for operation, the residues generated in the gasifying furnace 2 is used as a fuel for the hot air generating furnace 3.

COPYRIGHT: (C)2005.JPO&NCIPI

(19) **日本国特許庁 (JP)**

(12)公開特許公報(A) (11)特許出版公開書号

##W2004-352980 (P2004-352960A)

(43) 公開日 平成16年12月16日(2004, 12, 18)

(51) Int. C1. 7	Fi			デーマコード (参考)					
C108 53/00	CIOB	53/00	ZABA	4 DOO 4					
8098 3/00	BO9B 3/00 302Z				4H012 4H015				
C10B 53/02	C108	C1OB 53/02							
C10L 5/40	CIOL	5/40							
	B09B	3/00	303Z						
		:	審查請求 有	語求項	の数 9	OL	(全	10 夏)	
(21) 出願書号	特爾2003-155658 (P2003-155658)	(71) 出層	人 000211	123					
(22) 出版日	平成15年5月30日 (2003.5.30)	中外炉工業株式会社							
			大阪府	大阪市选	区京町	爆2丁	日4番	7号	
(出願人による申告)	平成14年度、新エネルギー・産 (74)代理人 100094042								
类技術総合開発機構、	ハイオマス等未活性エネルギー実		弁理士	鈴木	知				
征試験事業委託研究。	産業活力再生特別措置法第30条	(72) 発句	一种 一种	秀選					
の適用を受けるもの		大阪府大阪市西区京町堀2丁目4番7号							
				工業株式	会社内				
		(72) 発明	者 笹内	***					
		大阪府大阪市西区京町堀2丁目4番7号							
		中外炉工業株式会社內							
		F & 2	。(参考) 4000		AA12	AA50	BA03	CA27	
				CA28	CB36	C842	CB43	DA02	
				DA06	DA12				
				2 HA01	JA02				
·			4HO.	5 AA01	AA12	AA13			

(64) 【発明の名称】バイオマスガス化システムおよびその運転方法

(57)【要約】

【課題】システム内でのパイオマスエネルギの循環利用 をさらに促進するようにして、これによりシステム外部 の化石燃料等の使用量を削減できるとともに、残さの廃 棄処理も軽減できるようにしたバイオマスガス化システ ムおよびその運転方法を提供する。

【解決手段】熱風発生炉3の熱によりバイオマスを処理 して燃料ガスを生成するガス化炉2を有するバイオマス ガス化システム1において、ガス化炉2で発生した発生 残さを燃料として熱風発生炉3に供給する残さ供給系5 2を備えた。そして、ガス化炉2の運転立ち上げ期間中 は、熱風発生炉3の燃料に、ガス化炉2で発生した発生 残さを使用するようにした。

【選択図】

【特許請求の範囲】

【請求項1】

熱源の熱によりパイオマスを処理して燃料ガスを生成するガス化炉を有するパイオマスガス化システムにおいて、上記ガス化炉で発生した発生残さを燃料として上記熱源に供給する残さ供給系を備えたことを特徴とするパイオマスガス化システム。

【請求項2】

前記ガス化炉で生成された生成燃料ガスを前記熱源に供給する生成燃料ガス供給系を備えたことを特徴とする請求項1に記載のバイオマスガス化システム。

【請求項3】

前記熱源への発生残さの供給および生成燃料ガスの供給を調節する燃料供給調節手段を備えたことを特徴とする請求項2に記載のバイオマスガス化システム。

【請求項4】

前記熱源に化石燃料を供給する化石燃料供給系を備えたことを特徴とする請求項1~3いずれかの項に記載のバイオマスガス化システム。

【請求項5】

熱源の熱によりバイオマスを処理して燃料ガスを生成するガス化炉を有するバイオマスガス化システムの運転方法において、上記ガス化炉の運転立ち上げ期間中は、上記熱源の燃料に、該ガス化炉で発生した発生残さを使用するようにしたことを特徴とするバイオマスガス化システムの運転方法。

【請求項6】

前記ガス化炉の運転立ち上げ完了後は、前記熱源の燃料に、発生残さと該ガス化炉で生成された生成燃料ガスを併用するようにしたことを特徴とする請求項5に記載のバイオマスガス化システムの運転方法。

【滴求填7】

前記ガス化炉の運転立ち上げ完了後は、前記熱源の燃料に、該ガス化炉で生成された生成 燃料ガスのみを使用するようにしたことを特徴とする請求項5に記載のバイオマスガス化 システムの運転方法。

【請求項8】

前記ガス化炉の運転状態に応じて、発生残さの使用、発生残さと生成燃料ガスの併用、並びに生成燃料ガスのみの使用を切り換えるようにしたことを特徴とする請求項5~7いずれかの項に記載のバイオマスガス化システムの運転方法。

【請求項9】

前記ガス化炉の運転立ち上げ期間中は、前記熱源の燃料に、発生残さと化石燃料を併用するようにしたことを特徴とする請求項5~8いずれかの項に記載のバイオマスガス化システムの運転方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、システム内でのバイオマスエネルギの循環利用をさらに促進するようにして、 これによりシステム外部の化石燃料等の使用量を削減できるとともに、残さの廃棄処理も 軽減できるようにしたバイオマスガス化システムおよびその運転方法に関する。

[0002]

【従来の技術】

従来、図4に示すように、木材チップや牛糞、鶏糞などの各種バイオマスを原料とし、熱 類から供給される熱を利用してガス化炉で当該バイオマスを加熱処理して燃料ガスを生成 し、この燃料ガスをガスエンジンに供給して、例えば発電などを行うバイオマスガス化シ ステムが知られている。ガス化炉の構成としては、例えば特許文献1に示されている外熱 ロータリキルンが知られていて、燃料と乾留ガスを燃焼させる燃焼器を熱源とし、これに よって生成される熱風をキルンに供給して鶏糞などのバイオマスを加熱処理するようにし ている。 20

10

30

1925

100031

特に、従来のバイオマスガス化システムおよびその運転方法にあっては、ガス化炉でバイオマスを完全に燃料ガス化し、ガスエンジンへ供給される燃料ガスの一部を熱源に供給するようにしていて、バイオマスエネルギをシステムの中で循環利用することで当該システムの運転を行うようにしていた。他方、このシステムでは、バイオマスの加熱処理で発生した残さは、そのまま廃棄していた。

[0004]

【特許文献1】

特别2002-356319号公報

[0005]

【発明が解決しようとする課題】

ところで、従来のバイオマスガス化システムおよびその運転方法にあっては、ガス化炉の 運転立ち上げ期間中には、システム外部から別途、相当量の燃料を熱源に供給しなければ ならないとともに、残さは廃棄物として廃棄処理しなければならないという課題があった

[0006]

前者について具体的に説明すると、ガス化炉を、パイオマスから相当量の燃料ガスの生成が開始される温度まで、常温から昇温させる運転立ち上げ期間中では、パイオマスは十分な量までガス化されないため、上述した燃料ガスの熱源での利用は行えない。このため、ガス化炉の運転立ち上げ期間中には、昇温のためにシステム外部からLPGや重油などの化石燃料を相当量熱源に供給し、これにより運転の立ち上げを行わなければならなかった。殊に、環境保全に適合しつつエネルギを創出するパイオマスガス化システムにおいて、このような化石燃料の使用は避けることが好ましいものの、相当量の化石燃料を使用せざるを得なかった。

[0007]

本発明は上記従来の課題に鑑みて創業されたものであって、システム内でのバイオマスエネルギの循環利用をさらに促進するようにして、これによりシステム外部の化石燃料等の使用量を削減できるとともに、残さの廃業処理も軽減できるようにしたバイオマスガス化システムおよびその運転方法を提供することを目的とする。

[0008]

【課題を解決するための手段】

本発明にかかるバイオマスガス化システムは、熱源の熱によりバイオマスを処理して燃料ガスを生成するガス化炉を有するバイオマスガス化システムにおいて、上記ガス化炉で発生した発生残さを燃料として上記熱源に供給する残さ供給系を備えたことを特徴とする。

[00009]

ガス化炉で発生する残さは主として炭化物であって、後述するように相当の発熱量を有している。この残さを残さ供給系によってガス化炉から熱源に燃料として供給するようにしていて、当該残さを熱源において燃焼させることで熱エネルギを取り出すことができ、バイオマス超源の残さが有しているエネルギを有効に利用することができて、バイオマスガス化システム内でのバイオマスエネルギの効率的な循環的利用を促進することが可能となる。そしてこれにより、システム外部からの化石燃料等の使用量を削減し得るとともに、併せて、従来廃棄物として廃棄処理が必要であった残さをシステム内において焼却処理することができて、当該残さの最終的な廃棄処理も軽減し得る。

[0010]

また、前記ガス化炉で生成された生成燃料ガスを前記熱源に供給する生成燃料ガス供給系を備えたことを特徴とする。バイオマスガス化システム内のガス化炉で生成された燃料ガスを生成燃料ガス供給系によって熱源に供給するようにしていて、この燃料ガスを利用して熱源を稼働することができ、上記残さが有する熱エネルギの利用と相俟って、システム内でのバイオマスエネルギの効率的な循環的利用をさらに促進することができる

また、前記熱源への発生残さの供給および生成燃料ガスの供給を調節する燃料供給調節手

10

20

30

段を備えたことを特徴とする。発生残さ量および生成燃料ガス量は、ガス化炉の運転状態に応じて変動する。このような発生残さ量および生成燃料ガス量の変動を考慮し、燃料供給調節手段によって発生残さおよび生成燃料ガスの熱源への供給を調節するようにしていて、バイオマスガス化システムを効率よく運転することが可能となる。

100111

さらに、前記熱源に化石燃料を供給する化石燃料供給系を備えたことを特徴とする。化石燃料供給系によって熱源に化石燃料を供給するようにしていて、熱源を発生残さや生成燃料ガスで稼働させながら、燃料の不足分については化石燃料で賄うことが可能となり、化石燃料の使用量を抑えつつ、必要に応じて化石燃料を供給して、熱源を安定的に稼働させ得る。

[0012]

また、本発明にかかるバイオマスガス化システムの運転方法は、熱源の熱によりバイオマスを処理して燃料ガスを生成するガス化炉を有するバイオマスガス化システムの運転方法において、上記ガス化炉の運転立ち上げ期間中は、上記熱源の燃料に、該ガス化炉で発生した発生残さを使用するようにしたことを特徴とする。

100131

燃料ガスの生成量が少ないガス化炉の運転立ち上げ期間中に、発生残さを熱源の燃料として使用するようにしていて、当該残さを熱源において燃焼させることで得られるバイオマス起源の残さの熱エネルギを、ガス化炉の運転立ち上げに有効利用することができ、バイオマスガス化システム内でのバイオマスエネルギの効率的な循環的利用を促進することが可能である一方で、従来相当量の使用を余儀なくされていたシステム外部からの化石燃料の使用量を削減し得る。また、従来廃棄物として廃棄処理が必要であった残さをシステム内において焼類処理することができて、当該残さの最終的な廃棄処理も軽減し得る。

100141

また、前記ガス化炉の運転立ち上げ完了後は、前記熱源の燃料に、発生残さと該ガス化炉で生成された生成燃料ガスを併用するようにしたことを特徴とする。相当量の生成燃料ガスが得られるガス化炉の運転立ち上げ完了後には、発生残さに加えて、燃料ガスを併用するようにしていて、これによりバイオマスガス化システム内でのバイオマスエネルギの効率的な循環的利用をさらに促進しつつ、熱源を安定的に稼働し得る。

[0015]

また、前紀ガス化炉の運転立ち上げ完了後は、前記熱源の燃料に、該ガス化炉で生成された生成燃料ガスのみを使用するようにしたことを特徴とする。ガス化炉の運転立ち上げ完了後には、生成燃料ガス 最が十分にあることから、生成燃料ガスのみを利用して熱源を稼働するようにしてもよく、これにより発生残さ量が減少した場合であっても、安定的に熱源を稼働させ得る。

[0016]

また、前記ガス化炉の運転状態に応じて、発生残さの使用、発生残さと生成燃料ガスの併用、並びに生成燃料ガスのみの使用を切り換えるようにしたことを特徴とする。ガス化炉の運転状態に応じて変動する発生残さ量および生成燃料ガス量を考慮し、発生残さの使用、発生残さと生成燃料ガスのみの使用を切り換えるようにしていて、バイオマスガス化システムを効率よく運転することが可能となる。

[0017]

さらに、生成燃料ガス量が少ない前記ガス化炉の運転立ち上げ期間中は、前記熱源の燃料に、発生残さと化石燃料を併用するようにしたことを特徴とする。ガス化炉の運転立ち上げ期間中、発生残さと化石燃料を併用するようにしていて、発生残さ量では足りない燃料の不足分を化石燃料で補うことが可能となり、化石燃料の使用量は抑えつつ、必要に応じて化石燃料を供給して、熱源を安定的に稼働させ得る。

[0018]

【発明の実施の形態】

以下に、本発明にかかるパイオマスガス化システムおよびその運転方法の好適な一実施形

10

30

態を、添付図面を参照して詳細に説明する。本実施形態にかかるバイオマスガス化システム1は図1に示すように、バイオマス、例えば本質バイオマスを加熱処理して燃料ガスを 生成するガス化炉2と、このガス化炉2に付設され、当該ガス化炉2に加熱処理のための 熱を供給する熱源としての熱風発生炉3とを主体として構成される。

[0019]

図示例にあっては、このバイオマスガス化システム1にはさらに、ガス化炉2の前段に設けられ、バイオマスをガス化炉2へ供給するためのバイオマス供給設備4と、ガス化炉2の後段に設けられ、ガス化炉2から供給される燃料ガスを燃焼させて動力を発生するガスエンジン設備5と、これらガスエンジン設備5およびガス化炉2からの排気から熱を回収する熱圏収設備6とが備えられている。

[0020]

ガス化炉2とこれに熱を供給する熱風発生炉3について詳述する。ガス化炉2には、バイオマスの加熱処理で発生した炭化物である残さを排出する残さ排出部2cが設けられる。また熱風発生炉3には、燃焼燃料となる残さをその内部へ投入する残さ投入部3bが設けられる。そしてこれらガス化炉2と熱風発生炉3との間には、残さ排出部2cから排出される残さを搬送する排出フィーダ52aや、排出フィーグ52a側から送り込まれる残さを残さ投入部3bへ搬送する投入フィーダ52bなどを備えた残さ供給系52が設けられる。

[0021]

また、熱風発生炉3には、これを始動させるために燃焼動作される始動バーナ23と、ガス化炉2およびガスエンジン設備5間から分岐させた生成燃料供給系39の第2系統39 bと接続され(図中、※D参照)、この第2系統39bより供給される燃料ガスを熱風発生炉3内に直接吹き込む燃料ガス吹き込み部3cと、燃焼空気ブロア20と接続され(図中、※B参照)、この燃烧空気ブロア20から燃焼空気が供給される燃焼空気取り入れ部3aと、上配生成燃料ガス供給系39の第1系統39aと接続される(図中、※C参照)とともに、燃焼空気取り入れ部3aと同一系統を介して燃焼空気ブロア20に接続され、燃料ガスに燃焼空気を混合して燃焼動作される発生ガスバーナ21と、ガス化炉2に流量計53を介して接続され、加熱処理に利用される熱風をガス化炉2へ供給する熱風供給系54と、ガス化炉2に、循環排気ファン55およびガス化炉2は関節弁56を介して接続され、ガス化炉2に、循環排気ファン55およびガス化炉温度調節弁56を介して接続され、ガス化炉2に、循環排気ファン55およびガス化炉温度調節弁56を介して接続され、ガス化炉2を流通した熱風が戻される環流系57とが設けられる。そしてこの熱風発生炉3は、適宜に残さを燃焼させつつ、熱風を生成するようになっている。

[0022]

始動バーナ23には、主燃焼を行う主バーナ部23aと、主バーナ部23aに点火するバイロットバーナ部23bとが備えられる、パイロットバーナ部23bには、LPGタンク58および各種調節弁額59を有するLPG供給系60が接続され、パイロットバーナ部23bは、このLPG供給系60から供給されるLPGに、上述した燃焼空気ブロア20からの燃焼空気を混合して点火動作を行うようになっている。

100231

また、主バーナ部23aには、A重油貯槽61、A重油の供給ポンプ62、流量計63、 並びに各種調節弁類64を備えたA重油供給系65が接続され、主バーナ部23aは、このA重油供給系65から供給されるA重油に、上述した燃焼空気ブロア20からの燃焼空気を混合して、熱風発生炉3の始動期間中に燃烧動作を行うようになっている。本実施形態にあっては、これらA重油供給系65およびLPG供給系60によって化石燃料供給系が構成されている。

[0024]

そして、本実施形態にあっては、残さ供給系52を構成する排出フィーダ52aや投入フィーダ52b、そしてまた発生ガスバーナ21上液側に設けた各種調節弁類40が、熱風発生炉3への発生残さの供給および生成燃料ガスの供給を調節する燃料供給器節手段として機能される。

[0025]

40

10

20

また、環流系57には、これより分岐した系67が熱回収設備6に接続され(図申、※A参照)、この熱回収設備6にガス化炉2から戻される熱風の一部を排気として排出するようになっている。熱回収設備6には、ガスエンジン設備5からも排気が送り込まれるようになっている。

[0026]

次に、本実施形態にかかるバイオマスガス化システム1の運転方法について説明する。上記バイオマスガス化システム1では基本的には、熱風発生炉3で熱風を生成し、これをガス化炉2に供給してバイオマスを加熱処理することで燃料ガスを生成し、この生成燃料ガスをガスエンジン設備5に供給してこれから出力を取り出し、その後ガスエンジン設備5やガス化炉2から排出される排気を熱回収設備6に供給して熱回収するようになっている

[0027]

そして特に本実施形態にあっては、このシステム運転中において、ガス化炉2で発生する 炭化物である発生機さを、残さ供給系52を介して熱風発生炉3に燃料として供給するようにし、またこれに加えて、生成燃料ガスを生成燃料ガス供給系39を介して熱風発生炉 3に供給するようになっている。そしてこれら発生機さおよび生成燃料ガスの熱風発生炉 3への供給を、上配燃料供給調節手段によって調節するようになっている。また、熱風発 生炉3の運転に不足する燃料は、上配化石燃料供給系を介して熱風発生炉3に化石燃料を 供給するようになっている。

[0028]

さらに辞述すると、熱風発生炉8の燃料として、ガス化炉2の運転立ち上げ期間中は発生残さを使用し、ガス化炉2の運転立ち上げ完了後は、発生残さと生成燃料ガスを併用し、あるいは生成燃料ガスのみを使用する。すなわち、ガス化炉2の運転状態に応じて、発生残さの使用、発生残さと生成燃料ガスの併用、並びに生成燃料ガスのみの使用を切り換える。さらに、熱風発生炉3の燃料が不足する場合には、発生残さと化石燃料を併用する。このように本実施形態にかかるバイオマスガス化システム1の運転方法にあっては、熱風発生炉3への燃料供給の切り換えを行うようにして、これによりシステム1を効率よく運転できるようになっている。

[0029]

ガス化炉2の一般的な特性については図2に示すように、ガス化炉温度は、熱風発生炉3の起動から相当量の燃料ガスが生成されるようになるまでの運転立ち上げ期間中、徐々に昇温していく(図2(a)参照)。この運転立ち上げ期間中において、ガス化炉温度が低いうちは、生成燃料ガス量が少ない一方で、発生残さ量は多く、その後、ガス化炉温度が高まっていくに従って生成燃料ガス量が増加していき、他方で、発生残さ量は減少する傾向を示す(図2(b)および(c)参照)。

100301

本発明者が実験した結果によれば、例えば木材チップを原料バイオマスとして使用した場合、ガス化炉温度が600℃では、投入量に対して約30%の残さが発生し、850℃では約3%の残さが発生した。この残さの成分分析を行ったところ、その90%以上が炭素で構成されている炭化物であり、34MJ/kg程度の高い発熱量を有していた。

[0031]

このようなガス化炉2の性能特性および残さの組成に基づき、運転立ち上げ期間中は、発生残さを使用して熱風発生炉3を稼働させる。残さは、前回の運転時にガス化炉2から回収したものでもよいし、あるいは今回の運転に伴って発生したものをガス化炉2から回収して使用してもよい。

[0.032]

運転立ち上げ時は、LPG供給系60およびA重油供給系65からそれぞれLPGおよびA重油を供給するとともに、燃焼空気ブロア20から燃焼空気を供給し、超動バーナ23を着火燃焼させて熱風発生炉3での熱風の生成を開始してガス化炉2に供給するとともに、適宜にバイオマス供給設備4からガス化炉2へバイオマスを供給する。この運転立ち上

20

げ期間中に発生した発生残さは、残さ供給系52を介して熱風発生炉3へ供給し、起動バーナ23の熱で燃焼させる燃料として使用する (図3中、ステップ1)。

[0033]

本発明者による試算によれば、日盤5ton/hrの木質バイオマスを原料としてガス化するガス化炉2において、600℃まで昇温させる運転立ち上げ期間中に要する熱量は、約1.3GJであり、A重油に換算して346キロリットルである。これに対し、発生残さを主たる熱風発生炉3の燃料として使用することで、A重油の使用量はおおよそ着火に必要なエネルギのみとなるため、202キロリットルとなり、発生残さを使用しない場合に比べて、ガス化炉2の一回の立ち上げでA重油の使用量を約42%節減することができる。このように運転立ち上げ期間中は、基本的に発生残さの熱量で立ち上げを行うようにし、化石燃料は必要最小限で発生残さと併用することが好ましい。

[0034]

次いで、ガス化炉2の運転立ち上げ完了後は、発生残さと生成燃料ガスとを併用して熱風発生炉3を稼働させる(図3中、ステップ2)。例えば、ガス化炉2は650℃以上に昇温されると、相当量の燃料ガスが得られるようになるとともに、残さとしても相当量が継続的に発生している。この段階では、熱風発生炉3に、残さ供給系52を介して発生残さを供給するとともに、生成燃料ガス供給系39から燃料ガスを供給してこれらを燃料として併用する。

[0035]

このように残さを併用することにより、従来のように燃料ガスのみを使用する場合に比べて、バイオマスガス化システム1内で消費する燃料ガス量を削減することができる。例えば、ガス化炉2が600℃において、ガスエンジン設備5に供給できるガス量が従来の2、3倍に当たる、86m³N/hとなる。

[0036]

あるいは、ガス化炉2の運転立ち上げ完了後は、残さ供給蒸52を利用した熱風発生炉3 への残さ供給は停止し、生成燃料ガス供給系39のみから燃料ガスを熱風発生炉3へ供給 して、当該生成燃料ガスのみを使用して熱風発生炉3を稼働させるようにしてもよいこと はもちろんである(図3中、ステップ3)。

[0037]

ところで、上述したようにガス化炉温度が上昇するに従って、残さの発生量が低下する一方で、燃料ガスの生成量が増加していく。このようなガス化炉2の高温状態では、熱風発生炉3での熱風生成によって消費される燃料ガス量が増加する。このような燃料ガスの消費を、ガスエンジン設備5等も考慮に入れた全体で検討すると、燃料ガスエネルギは熱風発生炉3での消費だけでなく、ガスエンジン設備における出力、その他付属設備における熱消費、熱風収設備6での熱囲収などを含めて評価される。

[0038]

上述した目量5 ton/hrの木質バイオマスを原料とするバイオマスガス化システム1で、残さを燃料として使用する場合、総合エネルギ効率はガス化炉温度が750℃で最大となり、ガスエンジン設備5に供給される燃料ガス量は140m³/hr、蒸気発生量は409MJ/hrであり、そのときの発生残さ量は25kg/hrである。これに対し、ガス化炉温度を900℃とすると、ほぼ完全に燃料ガス化し、発生残さ量は7kg/hrとなる一方で、熱風発生炉3の運転に必要な燃料ガス量が増大し、これによってガスエンシン設備5へ供給できる燃料ガス量は125m³/hrに減少してしまうとともに、蒸気発生量も382MJ/hrに減少してしまい、総合エネルギ効率としては15%の低下が見られる。

[0039]

したがって、ガス化炉2を単に高温に昇温させて、完全燃料ガス化し、これのみを熱風発生炉3の燃料として利用するよりも、発生残さと燃料ガスとを併用することにより、最も効率のよいガス化炉温度でシステム1を運転することができる。

[0040]

40

10

以上のことから、バイオマスガス化システム1にあっては図3に示すように、ガス化炉2 の運転状態に応じて、発生残さの使用、発生残さと生成燃料ガスとの併用、もしくは生成 燃料ガスのみの使用を切り終えるようにすることが好ましい。

100411

以上説明したように、本実施形態のバイオマスガス化システム1にあっては、ガス化炉2で発生する残さを、残さ供給系52によってガス化炉2から熱風発生炉3に燃料として供給するようにしたので、当該残さを熱風発生炉3において燃焼させることで熱エネルギを取り出すことができ、バイオマス起源の残さが有しているエネルギを有効に利用することができて、バイオマスガス化システム1内でのバイオマスエネルギの効率的な循環的利用を促進することができる。そしてこれにより、システム1外部からの化石燃料等の使用量を削減し得るとともに、併せて、従来廃棄物として廃棄処理が必要であった残さをシステム1内において焼却処理することができて、当該残さの最終的な廃棄処理も軽減し得る。

100421

また、バイオマスガス化システム1内のガス化炉2で生成された燃料ガスを生成燃料ガス 供給系39によって熱風発生炉3に供給するようにしたので、この燃料ガスを利用して熱 風発生炉3を稼働することができ、上記残さが有する熱エネルギの利用と相俟って、シス テム1内でのバイオマスエネルギの効率的な循環的利用をさらに促進することができる。

100431

また、発生残さ量および生成燃料ガス量の変動を考慮し、上配燃料供給調節手段によって発生残さおよび生成燃料ガスの熱風発生炉3への供給を調節するようにしたので、バイオマスガス化システム1を効率よく運転することができる。

100441

さらに、上記化石燃料供給系によって熱風発生炉3に化石燃料を供給するようにしたので、熱風発生炉3を発生機さや生成燃料ガスで稼働させることを基本としながら、燃料の不足分については化石燃料で賄うことができ、化石燃料の使用量を抑えつつ、必要に応じて化石燃料を供給して、熱風発生炉3を安定的に稼働させることができる。

[0045]

また、本実施形態のバイオマスガス化システム1の運転方法は、燃料ガスの生成量が少ないガス化炉2の運転立ち上げ期間中に、発生残さを熱風発生炉3の燃料として使用するようにしたので、当該残さを熱感発生炉3において燃焼させることで得られるバイオマス起版の残さの熱エネルギを、ガス化炉2の運転立ち上げに有効利用することができ、バイオマスガス化システム1内でのバイオマスエネルギの効率的な循環的利用を促進することができる一方で、従来相当量の使用を余儀なくされていたシステム1外部からの化石燃料の使用量を削減することができる。また、従来廃棄物として廃棄処理が必要であった残さをシステム1内において焼却処理することができて、当該残さの最終的な廃棄処理も軽減できる。

[0046]

また、相当量の生成燃料ガスが得られるガス化炉2の運転立ち上げ完了後には、発生残さに加えて、燃料ガスを併用するようにしたので、これによりバイオマスガス化システム1内でのバイオマスエネルギの効率的な循環的利用をさらに促進しつつ、熱風発生炉3を安定的に稼働することができる。

[0047]

また、ガス化炉2の運転立ち上げ完了後には、生成燃料ガスのみを利用して熱風発生炉3を稼働するようにしてもよく、これにより発生残さ量が減少した場合であっても、安定的に熱風発生炉3を稼働させることができる。

[0048]

また、ガス化炉2の運転状態に応じて変動する発生残さ量および生成燃料ガス量を考慮し、発生残さの使用、発生残さと生成燃料ガスの併用、並びに生成燃料ガスのみの使用を切り換えるようにしていて、バイオマスガス化システム1を効率よく運転することができる

40

20.

[0049]

さらに、ガス化炉2の運転立ち上げ期間中、発生機さと化石燃料を併用するようにしたので、発生残さ量では足りない燃料の不足分を化石燃料で補うことができ、化石燃料の使用量は抑えつつ、必要に応じて化石燃料を供給して、熱風発生炉3を安定的に稼働させることができる。

100501

【発明の効果】

以上要するに、本発明にかかるバイオマスガス化システムおよびその運転方法にあっては、システム内でのバイオマスエネルギの循環利用をさらに促進することができて、これによりシステム外部の化石燃料等の使用量を削減することができるとともに、残さの廃棄処理も軽減することができる。

10

【図面の簡単な説明】

【図1】本発明にかかるバイオマスガス化システムの好適な一実施形態を示す概略系統図である。

【図2】バイオマスガス化システムに採用されるガス化炉におけるガス化炉温度の一般的な立ち上がり状態、並びにガス化炉温度と生成燃料ガス量および発生残さ量の一般的な関係を、定性的に示す説明図である。

【図3】本発明にかかるパイオマスガス化システムの運転方法を機略的に説明する説明図である。

【図4】従来のバイオマスガス化システムの構成を概略的に示す系統図である。

20

【符号の説明】

- 1 バイオマスガス化システム
- 2 ガス化炉
- 3 熱風発生炉
- 39 生成燃料ガス供給系
- 40 各種調節弁類
- 52 残さ供給系
- 52a 排出フィーダ
- 526 投入フィーダ
- 60 LPG供給系
- 6 5 A重油供給系

ガス化炉機器

[3]

[🗵 4]

