18	Wolf 359 is a red dwarf star. The distance of the star from Earth was first determined from parallax measurements made by the astronomer Max Wolf.								
	(a) (i)								
		Calculate the distance, in metres, of Wolf 359 from Earth.							
		mean distance from Earth to Sun = 1.50×10^{11} m							
			(2)						
		Distance of Wolf 359 from Earth =	n						
	(ii)	nces							
			(2)						

(b) The graph shows how the intensity of radiation from the star Wolf 359 varies with wavelength.

(i) Show that the surface temperature of Wolf 359 is about 2700 K.

(ii)	The radius	of the	Sun	is	$R_{\rm Sun}$.	The	radius	of	Wolf 3	59	is	0.16	$\delta R_{\rm S}$
------	------------	--------	-----	----	-----------------	-----	--------	----	--------	----	----	------	--------------------

It is claimed that the luminosity of Wolf 359 is less than 0.1% of the luminosity of the Sun, $L_{\rm Sun}$.

Deduce whether this claim is correct.

$$R_{\text{Sun}} = 6.96 \times 10^8 \,\text{m}$$

 $L_{\text{Sun}} = 3.83 \times 10^{26} \,\text{W}$
 $T = 2700 \,\text{K}$

1 - 2700 K