Technische Universität Berlin

Fakultät II – Institut für Mathematik

Doz.: Bärwolff, Mehl, Penn-Karras Ass.: Altmann, Meiner, Wassmuss WS 12/13 02. Apr 2013

April – Klausur Analysis I für Ingenieure

Name: Vorname: MatrNr.: Studiengang:				
Geben Sie im Rechenteil immer den vollständigen Rewenn nichts anderes gesagt ist, immer eine kurze, aber Insbesondere soll immer klar werden, welche Säwurden! Ohne Begründung bzw. Rechenweg gibt es keiten der vollständigen Rechenweg sie verben von der vo	er vollständ ätze oder T	ige Be	gründu	ing an.
Die Bearbeitungszeit beträgt 90 Minuten.				
Die Gesamtklausur ist mit 30 Punkten bestanden, wobei i mindestens 10 Punkte erreicht werden müssen.	n jedem der be	eiden Te	ile der I	Klausur
Korrektur				
	1	2	3	Σ
	4	5	6	Σ

Rechenteil

1. Aufgabe 10 Punkte

Die Funktion $f:]3,7] \to \mathbb{R}$ sei gegeben durch $f(x) = \frac{e^x}{x-3}$.

- a) Bestimmen Sie das Monotonieverhalten von f.
- b) Untersuchen Sie die Funktion f auf globale Extrema. Bestimmen Sie ggf. die Extremstellen.
- c) Stellen Sie zu f das Taylorpolynom 2. Ordnung mit Entwicklungsstelle $x_0 = 4$ auf.

Lösung:

a) Monotonieverhalten:

$$f'(x) = \frac{e^x(x-3) - e^x}{(x-3)^2} = \frac{e^x(x-4)}{(x-3)^2}$$

Da e^x , $(x-3)^3 > 0$ im Def.bereich: f'(x) > 0 für x > 4 und f'(x) < 0 für x < 4 . Also fällt f auf [3,4[und steigt auf [4,7[.

b) Wg. a) gibt es ein (globales) Minimum und x=4 ist globale Minimalstelle . Um ggf. eine Maximalstelle zu finden, untersuchen wir den Rand: $f(7)=\frac{e^7}{4}$ und

$$\lim_{x \to 3, x > 3} f(x) = \lim_{x \to 3, x > 3} \frac{e^x}{x - 3} = \infty$$

Denn x=3 ist Nullstelle des Nenners und der Zähler ist $e^3 \in \mathbb{R}$ also endlich. (Untersucht man zuerst den linken Rand, braucht der rechte nicht mehr betrachtet zu werden.) Ein Maximum existiert also nicht.

c) Taylorpolynom aufstellen mit Entwicklungsstelle $x_0=4$. Dazu benötigen wir die 2. Ableitung in x=4

$$f''(x) = \left(e^x \frac{x-4}{(x-3)^2}\right)' = e^x \frac{x-4}{(x-3)^2} + e^x \left(\frac{x-4}{(x-3)^2}\right)'$$

$$= e^x \underbrace{\frac{x-4}{(x-3)^2}}_{=0 \text{ für } x=4} + e^x \underbrace{\frac{(x-3)^2 - (x-4) \cdot 2 \cdot (x-3)}{(x-3)^4}}_{=\frac{1-5}{2} = 1 \text{ für } x=4}$$

mit $f''(4) = e^4$.

Alternativ zuerst mit Quotientenregel

$$f''(x) = \left(\frac{e^x(x-4)}{(x-3)^2}\right)' = \frac{(e^x(x-4))'(x-3)^2 - e^x(x-4)\left((x-3)^2\right)'}{((x-3)^2)^2}$$

$$= \frac{(e^x(x-4) + e^x)(x-3)^2 - e^x(x-4)2(x-3)}{(x-3)^4}$$

$$f''(4) = \frac{(e^4 \cdot 0 + e^4) \cdot 1^2 - e^4 \cdot 0 \cdot 2 \cdot 1}{1^4} = e^4$$

Damit

$$T_2(x) = f(4) + f'(4)(x - 4) + \frac{f''(4)}{2!}(x - 4)^2 = e^4 + 0 + \frac{1}{2}e^4(x - 4)^2$$
$$= e^4 \left(1 + \frac{1}{2}(x - 4)^2\right)$$

2. Aufgabe 11 Punkte

a) Bestimmen Sie alle **komplexen** Lösungen der Gleichung $z^3 = 1 + i\sqrt{3}$. Die Lösungen dürfen in Polarkoordinaten angegeben werden.

- b) Berechnen Sie alle **reellen** Lösungen x der Gleichung: |x-2|=3x.
- c) Berechnen Sie alle **reellen** Lösungen $x \in [0, 2\pi]$ der Gleichung: $\sin(2x) = \cos(x)$.

Lösung:

a) [4 Punkte] $1+i\sqrt{3}$ mit Polarkoordinaten darstellen: Betrag $r=\sqrt{1+3}=2$ und Winkel $\phi=\arctan(\sqrt{3})=\frac{\pi}{3}$. Ansatz $z=\sqrt[3]{2}e^{i\frac{1}{3}(\pi/3+2k\pi)}$ ergibt

$$z_0 = \sqrt[3]{2}e^{i\pi/9} \qquad z_1 = \sqrt[3]{2}e^{i\frac{1}{3}(\pi/3 + 2\pi)} = \sqrt[3]{2}e^{i7\pi/9} \qquad z_2 = \sqrt[3]{2}e^{i\frac{1}{3}(\pi/3 + 4\pi)} = \sqrt[3]{2}e^{i13\pi/9}$$

b) [3 Punkte] 1. Fall x > 2: |x - 2| = x - 2

$$x - 2 = 3x \qquad -2 = 2x \qquad -1 = x$$

Wg. x=-1<2 ist die Lösungsmenge für diesen Fall leer: $\mathbb{L}_1=\emptyset$ 2. Fall $x\leq 2$: |x-2|=2-x

$$2 - x = 3x$$
 $2 = 4x$ $\frac{1}{2} = x$

Also
$$\mathbb{L}_2 = \{\frac{1}{2}\} = \mathbb{L}$$

c) [4 Punkte] Additions theorem anwenden: $2\sin x\cos x=\cos x$. Gleichung wird gelöst durch $\cos x=0,$ also $x=\frac{\pi}{2}$ oder $x=\frac{3\pi}{2}$. Bleibt $2\sin x=1,$ also $x=\arcsin\left(\frac{1}{2}\right)=\frac{\pi}{6}$ oder $x=\pi-\frac{\pi}{6}=\frac{5\pi}{6}$. Insgesamt $\mathbb{L}=\left\{\frac{\pi}{6},\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{6}\right\}.$ 3. Aufgabe 9 Punkte

Sei $f : \mathbb{R} \to \mathbb{R}$ eine 4-periodische, gerade Funktion. Auf [0,2] ist f gegeben durch f(t) = 2 - t. Skizzieren Sie die Funktion f auf [-2,2] und bestimmen Sie die Fourierkoeffizienten von f.

Lösung:

Skizze: f(t)=2-t auf [0,2], korrekte Fortsetzung auf [-2,0]. Da f gerade ist, sind alle Sinus-Koeffizienten $b_k=0$. Es ist T=4 und $\omega=\frac{2\pi}{T}=\frac{\pi}{2}$.

$$a_0 = \frac{2}{T} \int_0^T f(t) dt = \frac{2}{4} \int_0^4 f(t) dt = \frac{1}{2} 2 \int_0^2 f(t) dt$$

$$= \int_0^2 2 - t dt$$

$$= \left[2t - \frac{1}{2} t^2 \right]_0^2$$

$$= \left(4 - \frac{1}{2} 4 \right) = 2$$

$$a_{k} = \frac{2}{T} \int_{0}^{T} f(t) \cos(k\omega t) dt = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos(k\omega t) dt$$

$$= \int_{0}^{2} f(t) \cos(k\omega t) dt$$

$$= \int_{0}^{2} \underbrace{(2-t)}_{\downarrow} \underbrace{\cos\left(\frac{k\pi}{2}t\right)}_{\uparrow} dt$$

$$= \left((2-t)\frac{2}{k\pi} \sin\left(\frac{k\pi}{2}t\right)\Big|_{0}^{2} - \int_{0}^{2} (-1)\frac{2}{k\pi} \sin\left(\frac{k\pi}{2}t\right) dt\right)$$

$$= \underbrace{\left((2-2)\frac{2}{k\pi} \sin(k\pi) - 2\frac{2}{k\pi} \sin(0) + \int_{0}^{2} \frac{2}{k\pi} \sin\left(\frac{k\pi}{2}t\right) dt\right)}_{=0}$$

$$= \frac{2}{k\pi} \int_{0}^{2} \sin\left(\frac{k\pi}{2}t\right) dt$$

$$= \frac{2}{k\pi} \frac{2}{k\pi} \left(-\cos\left(\frac{k\pi}{2}t\right)\right)\Big|_{0}^{2}$$

$$= \left(\frac{2}{k\pi}\right)^{2} (-\cos(k\pi) + \cos(0))$$

$$= \left(\frac{2}{k\pi}\right)^{2} \left(1 - (-1)^{k}\right)$$

4. Aufgabe 8 Punkte

a) Zeigen Sie mit vollständiger Induktion, dass für alle $n \in \mathbb{N}, n \ge 1$ gilt

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

- b) Geben Sie Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ an mit $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\infty$, für die gilt:
 - i) $\lim_{n \to \infty} (n a_n) = \infty$,
 - ii) $\lim_{n \to \infty} (n b_n) = 3$.

Lösung: a) [5 Punkte] Induktionsanfang für
$$n=1$$
. L.S.
$$\sum_{k=1}^{n}\frac{1}{k(k+1)}=\frac{1}{1\cdot 2}=\frac{1}{2}$$

R.S.
$$\frac{n}{n+1} = \frac{1}{1+1} = \frac{1}{2}$$

Induktionsschritt. Induktionsvoraussetzung (I.V.): Die Aussage gilt für ein beliebiges aber festes $n \in \mathbb{N}$.

Induktionsbehauptung (I.Beh.): Die Aussage gilt auch für das auf n folgende n + 1:

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{n+2}.$$

L.S der I.Beh.
$$= \sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)}$$

$$\stackrel{I.V.}{=} \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2} = \text{R.S. der I.Beh}$$

b) [3 Punkte]
$$a_n = \frac{n}{2}$$
 erfüllt $\lim_{n \to \infty} a_n = \infty$ und $\lim_{n \to \infty} \left(n - \frac{n}{2}\right) = \frac{n}{2} = \infty$. $b_n = n - 3$ erfüllt $\lim_{n \to \infty} b_n = \infty$ und $\lim_{n \to \infty} (n - (n - 3)) = \lim_{n \to \infty} 3 = 3$.

5. Aufgabe

- a) Bestimmen Sie $\int \frac{e^x}{1 + (e^x)^2} dx$ und berechnen Sie, wenn möglich, $\int_0^\infty \frac{e^x}{1 + e^{2x}} dx$.
- b) Gegeben sind die Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ mit

$$f(0) = 1$$
, $f'(x) = -g(x)$, $g(2x) = 2f(x)g(x)$.

Zeigen Sie mit dem Konstanzkriterium, dass gilt: $2f^2(x) - f(2x) = 1$.

Lösung:

a) [4+3=7 Punkte] Substitution $t = e^x \text{ mit } dt = e^x dx$ ergibt

$$\int \frac{e^x}{1 + (e^x)^2} \, dx = \int \frac{1}{1 + t^2} \, dt = \arctan(t) + c = \arctan(e^x) + c$$

Damit

$$\int_0^\infty \frac{e^x}{1 + e^{2x}} dx = \lim_{z \to \infty} \int_0^z \frac{e^x}{1 + (e^x)^2} dx = \lim_{z \to \infty} \arctan(e^x) \Big|_0^z$$

$$= \lim_{z \to \infty} \arctan(e^z) - \arctan(e^z) = \frac{\pi}{4}$$

$$= \lim_{z \to \infty} \arctan(z) = \frac{\pi}{2}$$

$$= \arctan(1) = \frac{\pi}{4}$$

b) [5 Punkte] Ableiten, Ansatz fürs Konstanzkriterium

$$(2f^{2}(x) - f(2x))' = 2 \cdot \underbrace{2f(x)f'(x)}_{f'=-g} - 2f'(2x)$$

$$\stackrel{f'=-g}{=} -4f(x)g(x) + 2g(2x)$$

$$\stackrel{g(2x)=\dots}{=} -4f(x)g(x) + 2 \cdot 2f(x)g(x)$$

$$= 0$$

Einen Wert (x=0) einsetzen: $2f^2(0)-f(0)=2\cdot 1^2-1=1$

6. Aufgabe 10 Punkte

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit den Parametern $a, b \in \mathbb{R}$ als

$$f(x) = \begin{cases} \sin(ax) &, x > 0\\ (x-1)^2 + b &, x \le 0. \end{cases}$$

- a) Für welche Parameter $a, b \in \mathbb{R}$ ist f stetig in x = 0?
- b) Für welche Parameter $a, b \in \mathbb{R}$ ist f differenzierbar in x = 0? Benutzen Sie die Definition der Differenzierbarkeit.
- c) Für welche Parameter $a \in \mathbb{R}$ existiert $\lim_{x\to\infty} f(x)$?

Lösung:

- a) [2 Punkte] Stetigkeit: $\lim_{x\to 0, x>0} f(x) = \lim_{x\to 0, x>0} \sin(ax) = 0$ und f(0) = 1+b ergibt Stetigkeit für b=-1 und alle $a\in\mathbb{R}$.
- b) [5 Punkte] Differenzierbarkeit: b=-1 wird übernommen, da Stetigkeit Voraussetzung für Differenzierbarkeit ist. Ansatz mit einseitigen Differenzenquotienten , $f(0)=(-1)^2-1=0$:

$$\lim_{x \to 0, x > 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0, x > 0} \frac{\sin(ax) - 0}{x} = \lim_{x \to 0, x > 0} \frac{\sin(ax)}{x}$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0, x > 0} \frac{a\cos(ax)}{1} = a\cos(0) = a$$

$$\lim_{x \to 0, x < 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0, x < 0} \frac{(x - 1)^2 - 1 - 0}{x} = \lim_{x \to 0, x < 0} \frac{x^2 - 2x}{x}$$

$$= \lim_{x \to 0, x < 0} x - 2 = -2$$

Also a = -2.

c) [3 Punkte] Für a=0 ist f(x)=0 für x>0, also existiert auch der Grenzwert $\lim_{x\to\infty}f(x)=0$. Für $a\neq 0$ existiert der Grenzwert nicht. Begründung: Für die Folge $x_k=\frac{k\frac{\pi}{2}}{a}$ mit $\lim_{k\to\infty}x_k=\infty$ ist $\sin(ax_k)=\sin(k\frac{\pi}{2})=(1,-1,1,-1,\dots)=(-1)^{k+1}$ eine alternierende Folge und nicht konvergent.