EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

27 de janeiro de 2017

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

- 1. (4 valores) Dois condensadores de 1.2 μF e 3.4 μF ligam-se em série a uma fonte de 45 V. (a) Calcule a carga em cada condensador. (b) A fonte é logo desligada, ligando-se entre si os dois condensadores (armadura positiva com positiva e negativa com negativa). Calcule a diferença de potencial e carga final em cada condensador.
- 2. (4 valores) No circuito representado no diagrama, sabendo que no estado estacionário (após muito tempo) a carga no condensador é igual a 40 μC e as correntes na resistência de 50 Ω e em R₂ são ambas 1 A, no sentido indicado, determine os valores de R₁, R₂ e R₃.

PERGUNTAS. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

3. Determine a expressão da impedância equivalente entre os pontos P e Q no diagrama, em unidades SI, sabendo que C=2 F e L=3 H.

- **(D)** $\frac{36 s^2 + 15 s}{18 s^2 + 15 s + 5}$
- **(B)** $\frac{54 s^2 + 15 s}{27 s^2 + 21 s + 1}$
- (E) $\frac{72 s^2 + 15 s}{36 s^2 + 27 s + 1}$
- (C) $\frac{18 s^2 + 15 s}{9 s^2 + 9 s + 5}$

Resposta:

- **4.** Determine o valor da resistência duma lâmpada incandescente de 6 W e 9 V, nas condições normais de operação.
 - (**A**) 10.1 Ω
- (C) 13.5Ω
- $(\mathbf{E}) 40.5 \Omega$

- **(B)** 8.1Ω
- **(D)** 20.3Ω

Resposta:

5. A expressão da voltagem da fonte no circuito do diagrama é $V(t) = \mathrm{e}^{-t}$ (unidades SI e $t \ge 0$) e a expressão da corrente é $I(t) = \frac{\mathrm{e}^{-t} - \mathrm{e}^{-6\,t}}{5}$. Sabendo que o valor da resistência é $R = 6\,\Omega$, encontre o valor da indutância L.

- (A) 4 H
- (**C**) 3 H
- **(E)** 1 H

- **(B)** 5 H
- **(D)** 2 H

Resposta:

- **6.** Uma bobina com 300 espiras quadradas, com arestas de 4 cm, encontra-se numa região onde existe campo magnético uniforme, com módulo de 0.1 T, perpendicular ao plano das espiras. Calcule o fluxo magnético através da bobina.
 - (A) $12.0 \text{ mT} \cdot \text{m}^2$
- (**C**) $16.0 \text{ mT} \cdot \text{m}^2$
- **(E)** $48.0 \text{ mT} \cdot \text{m}^2$

- **(B)** $0.16 \text{ mT} \cdot \text{m}^2$
- **(D)** $4.8 \text{ mT} \cdot \text{m}^2$

Resposta:

Regente: Jaime Villate

FEUP - MIEIC

Resolução do exame de 27 de janeiro de 2017

Problema 1. (a) A figura à direita mostra o diagrama do circuito. Os dois condensadores estão em série e como tal, a carga em cada um deles é a mesma e igual à carga no condensador equivalente:

$$C = \frac{1.2 \times 3.4}{1.2 + 3.4} = 0.88696 \ \mu\text{F}$$

Como a diferença de potencial no condensador equivalente é 45 V, a carga armazenada em cada um dos condensadores é então

$$Q = 0.88696 \times 10^{-6} \times 45 = 39.91 \times 10^{-6} = 39.91 \mu C$$

(b) A figura à direita mostra o diagrama do circuito. Os dois condensadores estão agora em paralelo e como tal, diferença de potencial em cada um deles será a mesma e igual à diferença de potencial no condensador equivalente, entre os pontos A e B. A carga no condensador é a soma das cargas nos dois condensadores, ou seja, será o dobro da carga calculada na alínea a: $Q=79.82~\mu\text{C}$. E a capacidade equivalente é a soma das capacidades dos condensadores: $C=1.2+3.4=4.6~\mu\text{F}$. A diferença de potencial entre A e B é:

$$\Delta V = \frac{79.82 \times 10^{-6}}{4.6 \times 10^{-6}} = 17.35 \text{ V}$$

As cargas em cada um dos dois condensadores são:

$$Q_1 = 1.2 \times 10^{-6} \times 17.35 = 20.8 \,\mu\text{C}$$
 $Q_2 = 3.4 \times 10^{-6} \times 17.35 = 59.0 \,\mu\text{C}$

Problema 2. A voltagem no condensador é:

$$\Delta V_{10} = \frac{40 \times 10^{-6}}{1 \times 10^{-6}} = 40 \text{ V}$$

que é a mesma diferença de potencial na resistência de 10Ω . Como tal, a corrente nessa resistência é I = 40/10 = 4 A. Com essa corrente, e as outras duas correntes dadas no enunciado, determinam-se as outras correntes em todas as partes do circuito, tal como mostra a seguinte figura (todos os valores em unidades SI).

As voltagens nas resistências de 50 Ω e 5 Ω são então:

$$\Delta V_{50} = 1 \times 50 = 50 \text{ V}$$
 $\Delta V_5 = 2 \times 5 = 10 \text{ V}$

e a diferença de potencial entre A e B é a soma das duas, 60 V. A voltagem em R_1 é $\Delta V_1 = 72 - 60 = 12$ V e o valor de R_1 é:

$$R_1 = \frac{12}{5} = 2.4 \,\Omega$$

A diferença de potencial em R_3 é $\Delta V_3 = 60 - \Delta V_{10} = 20$ V e, como tal,

$$R_3 = \frac{20}{3} = 6.67 \,\Omega$$

Finalmente, a voltagem na resistência R_2 é $\Delta V_3 = \Delta V_{50} - \Delta V_{10} = 10 \text{ V}$ e:

$$R_2 = \frac{10}{1} = 10 \,\Omega$$

Perguntas

3. D

6. E

9. D

12. C

15. B

4. C

7. D

10. A

13. A

16. C

5. E

8. B

11. A

14. A

17. C

 $_{-}0.4$

Critérios de avaliação

Problema 1

Cálculo da carga inicial nos condensadores (a)	1.2
Determinação da carga final total nos dois condensadores	1
Cálculo da diferença de potencial final nos condensadores	1
Cálculo das cargas finais nos condensadores	0.8
Problema 2	
Cálculo da diferença de potencial no condensador	0.4
Determinação das correntes em todo o circuito	1.2
• Cálculo da diferença de potencial em R_1 e do valor de R_1	0.8
• Cálculo da diferença de potencial em R_2 e do valor de R_2	0.8
• Cálculo da diferença de potencial em R_3 e do valor de R_3	0.8
Resolução usando o método das malhas:	
• Cálculo da diferença de potencial no condensador e a corrente na resistência de 10 Ω	0.8
Obtenção dos valores das 3 correntes de malha	1.2
Equações das malhas	1.6