MIT 1^{ère} année Module LOG

TD 2 : Machines de Turing

1. On considère la machine de Turing $M = (Q, \Gamma, \Sigma, \delta, q_0, B, F)$, avec

$$\begin{cases}
Q = \{q_0, q_1, q_2, q_3\} \\
\Gamma = \{g, d, X, S, \#\} \\
\Sigma = \{g, d, S\} \\
B = \# \\
F = \{q_3\}
\end{cases}$$

et la fonction de transition δ définie par

	g	d	X	S	#
q_0	(q_0, g, D)	(q_1, X, G)	(q_0, X, D)	(q_0, S, D)	$(q_2, \#, G)$
q_1	(q_0, X, D)	(q_1,d,G)	(q_1, X, G)	_	_
q_2	_	_	(q_2, X, G)	(q_3, S, D)	_
q_3	_	_	_	_	_

- 1.1 Indiquer si les mots suivants sont acceptés par M
- Sqqddq
- Sgdggdd
- qqdd
- **1.2** Quel est le langage reconnu par M?

2. Constructions de machines de Turing

- **2.1** Construire une machine de Turing déterministe acceptant le langage des mots de $\{a, b\}^*$ dont la longueur est une puissance de 2.
- **2.2** Construire une machine de Turing déterministe acceptant le langage des mots de $\{a, b\}^*$ qui comportent autant de a que de b.
- **3.3** Construire une machine de Turing calculant n+1 pour un entier n donné en notation binaire inversée sur le ruban d'entrée.

3. Extensions des machines de Turing

- **3.1** Montrez que tout langage accepté ou décidé par une machine de Turing dont la tête peut rester sur place, l'est aussi par une machine classique.
- **3.2** Montrer que tout langage accepté ou décidé par une machine de Turing avec un ruban bi-infini, l'est aussi par une machine classique.