Exercise 1

Yuval Paz

Saturday 2nd November, 2024

Exercise 1.

Part 1.1.

We need to show that \mathcal{A} is closed under finite unions, it is enough to show that \mathcal{A} is closed under union of size 2.

Let
$$Z, Y \in \mathcal{A}$$
, then $Z \cup Y = X \setminus ((X \setminus Y) \setminus Z) \in \mathcal{A}$

Part 1.2.

First let's note that $X \in \mathcal{A}_0$ hence $X \in \mathcal{A}$.

Now given $Z, Y \in \mathcal{A}$ there exists some n such that $Z, Y \in \mathcal{A}_n$ hence $Z \setminus Y \in \mathcal{A}_n$ and so $Z \setminus Y \in \mathcal{A}$ and we are done.

Part 1.3.

Note that given a set X and a finite family F over X, $\sigma(F)$ is finite. So let $X = \mathbb{N}$, and recursively define:

- $\mathcal{A}_0 = \sigma(\emptyset)$
- $\mathcal{A}_{n+1} = \sigma(\mathcal{A}_n \cup \{n\})$
- $A = \bigcup A_n$

Because \mathcal{A} contains all of the singletons, if it was a σ -algebra it would contains the set of even numbers, but clearly no \mathcal{A}_n contains that set, so \mathcal{A} is not a σ -algebra

Exercise 2.

Part 2.1.

For every $x \in U$ let I_x be an interval containing x and a subset of U (such interval exists by definition).

Given $x, y \in U$, we say $x \sim y$ if there exists $\{x, y\} \subseteq J \subseteq U$ such that $\bigcup_{z \in J} I_z$ is an interval.

This is clearly a equivalence relation, furthermore $\forall x \forall z \in I_x \ (x \sim z)$. Let I be an equivalent class, and $z \in I$, then $I_z \subseteq I$, hence I is open.

Furthermore, if $x \sim y$ and $J \subseteq U$ witness that, then $x \sim w$ for every w in $\bigcup_{z \in J} I_z$. If I is not an interval it means that there exists a < b < c such that $a, c \in I$ but $b \notin I$, but that is impossible, from the previous sentence.

Part 2.2.

Every family of disjoint intervals in \mathbb{R} is at most countable, indeed every interval contains some rational number and there are only countably many rational numbers.

Part 2.3.

Let \mathcal{I} be the collection of open intervals and τ the collection of open sets, then from the previous 2 parts we have that

$$\mathcal{I} \subset \tau \subset \sigma(\mathcal{I}) \implies \sigma(\mathcal{I}) \subset \sigma(\tau) = \mathcal{B}(\mathbb{R}) \subset \sigma(\sigma(\mathcal{I})) = \sigma(\mathcal{I})$$

Exercise 3.

- $(a) \implies (b)$: trivial.
- $(b) \Longrightarrow (c)$: assume (b), and let (A_n) be an \subseteq -increasing sequence of sets in \mathcal{M} , then $B_n = A_n \setminus (\bigcup_{k < n} A_k)$ is a sequence of disjoint subsets in \mathcal{M} (it is in \mathcal{M} because \mathcal{M} is an algebra), from the assumption $\bigcup A_n = \bigcup B_n \in \mathcal{M}$
- $(c) \Longrightarrow (a)$: assume (c) and let (A_n) be arbitrary sequence of elements from \mathcal{M} , then $B_n = \bigcup_{k < n} A_k$ is an increasing sequence of elements from \mathcal{M} (it is in \mathcal{M} because \mathcal{M} is an algebra), from the assumption $\bigcup A_n = \bigcup B_n \in \mathcal{M}$

Exercise 4.

Given $Z, Y \in \mathcal{M}_1$, then $Z = f^{-1}(r), Y = f^{-1}(t)$ for $r, t \in \mathcal{M}_2$.

- $\bullet \ X_1 = f^{-1}(X_2) \in \mathcal{M}_1$
- $Z \setminus Y = f^{-1}(r) \setminus f^{-1}(t) = f^{-1}(r \setminus t) \in \mathcal{M}_1.$
- Let $(A_n) = (f^{-1}(B_n))$ be a sequence of elements from \mathcal{M}_1 , then $\bigcup A_n = f^{-1}(\bigcup B_n) \in \mathcal{M}_1$

Exercise 5.

Part 5.1.

Let A be the set of atoms in \mathcal{M} (the set of non-empty sets that are \subseteq -minimal).

Every element in \mathcal{M} is either disjoint or a superset of every atom, in particular all of the atoms are disjoint.

If A is infinite we are done. Otherwise $X \setminus \bigcup A \in \mathcal{M}$. Because \mathcal{M} is infinite and 2^A is finite, then $X \setminus \bigcup A \neq \emptyset$.

Define the following binary tree:

- Define $\Re_{\Lambda} = X \setminus \bigcup A$ (Λ is the empty sequence)
- Given a finite binary sequence τ for which \mathfrak{F}_{τ} is already defined, let $\emptyset \neq A \subsetneq \mathfrak{F}_{\tau}$ be an element of \mathcal{M} (it exists because \mathfrak{F}_{τ} is not an atom), then define $\mathfrak{F}_{\tau \cap \{0\}} = A$, $\mathfrak{F}_{\tau \cap \{1\}} = \mathfrak{F}_{\tau} \setminus A$
- \bullet Define $\mbox{\em @}$ be the tree ({ $\mbox{\em @}_{\tau} \mid \tau \in 2^{<\mathbb{N}} \}, \subseteq)$

Notice that given $\tau, \sigma \in 2^{<\mathbb{N}}$, if τ is not an initial segment of σ and vice versa, then $\mathfrak{F}_{\tau} \cap \mathfrak{F}_{\sigma} = \emptyset$.

So $\{ \overset{\circ}{\otimes}_{\tau} \mid \tau \in 1^{<\mathbb{N}} \times \{1\} \}$ $(1^{<\mathbb{N}} \times \{1\} = \{1,01,001,0001,\ldots\})$ is an infinite set of disjoint elements from \mathcal{M} .

Part 5.2.

If A is infinite set of disjoint elements from \mathcal{M} then it contains a countable infinite subset B, so $\{\bigcup J \mid J \subseteq B\} \subseteq \mathcal{M}$ but the former has cardinality $2^{\aleph_0} = \mathfrak{c} > \aleph_0$