

Porto e x a'

dilatação

Oscilador harmónico

oscilador armotecido

La sistema que, quando deslocado de suc posição de equilíbrio, sofre uma forço restauradora F proporcional oc

destocamento:

F=-K. 2, em que K representa a constante dástica.

R e o destocamento

oscilador harmónico simples (repete-se em intervalos regulares)

Apresent amplitude e frequencia constantes

· Casa reje tom. mme força de amarfecimento proporcional à velocidade, a caciladar harmónica é descrita como

· Se houver uma força externa, dependente do tempo, a aluar no sistema, o oscilador harmónico, e dito forçado.

Oscilador harmónico simples

consiste num sistema que conteín mme mosse, sobre a qual atua uma força É, que empurra a mosse em diverção ao ponto 2000 (posição inicial (de equilibrio) e que depende apenas de posição inicial (de equilibrio) constante k.

Segundo a 2º lei de Newton: F = - K.z.

U (ver préxime pégine)

Seja $\omega_o^2 = \frac{k}{m}$ $\omega = \frac{k}{\chi} + \omega_o^2, \chi = 0$

Integrando esta equação (e após algumas igualdades),

, sendo A = amplitude (m) $F = -k \cdot (x - x_0) + m \cdot g$ $\varphi = \text{fase inicial (rad)}$ $\varphi = \text{posição de equilibrio}$

(x(t) = A. sen (w.t + 4)) - Le a qui considerada

, no entanto 9 está deslocado 2 em relação à

O período, o tempo para mmo mico oscilorac, e

· O período e a frequência são determinados pelo

valor da massa e pela constante da força k,

A frequência des oscilações será dada pela

seguinte forma: f= wo = 1 x 1 km

obtido da seguinte formo:

T= 1 = 22 WO

w = velocidade angular (rad/s)

Do mesmo modo poderíamos escrever:

equação anterior

teremos a solução geral para 2: 10ta:

[2(t) = A. cos (w.t + P)] Para o oscilador vertical sob

pelos condições iniciais.

Do se o comprimento inicial

da mola aumerta, o período

Toumenta

Oscilador harmónico amortecido

As oscilações harmónicas simples ocorrem em sistemas conservativos, no entanto, na prática existe sempre dissipação de energia (decaimento na amplitude de oscilação ao longo do tempo).

A resistência de um fluido, como o ar, ao deslocamento de um dostáculo, é proporcional a velocidade (para velocidades suficientemente pequenos), o que se aplica a pequenas oscilações.

Quando o movimento de um oscilador é reduzido por uma força externa, dizemos que o oscilador e o seu movimento, são amortecidos.

Em vários sistemas, a força de atrito Fa pade ser modelada como sendo propercional à velocidade à do dojeto: Fa = -b. à, onde b é uma constante de amortecimento.

Assim, pela Segonda Lei de Newton:

$$F = -b.\hat{n} - K.x \iff m.\hat{n} = -b.\hat{n} - K.x \iff$$

$$\iff m.\hat{n} + b.\hat{n} + K.x = 0 \iff$$

 (\Rightarrow) $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}$ Dessa forma, a equação de um oscilador amorteciolo 4

pode ser reescrita: $\sqrt{\frac{1}{2.0}} = \frac{b}{2.m}$ $2 + \frac{1}{C} \cdot 2 + \omega^2 \cdot 2 = 0$ relaxação

, sendo & = coeficiente de amortecimento

wo = velocidade angular do osc. harmónico A solução desta equação é dada pela amplitude em função do tempo, e pode ser escrita como:

 $z(t) = A \cdot e \cdot sen (\omega \cdot t + 4)$

A velocidade angular, w, ob oscilador harmônico amortecido depende da frequência natural e é $|\omega^2 = \omega_0^2 - \chi^2|_{C} = |\omega^2 - \chi^2|_{C}$ Jada por:

Em termos de energía, para um oscilador não

amortecido, esta é constante. Se o oscilador é amortecido, a energia mecânica não é constante e diminui com o tempo.

O cálculo da energia mecânica pode ser feito utilizando a seguinte expressão: $E(t) = \frac{1}{2} \cdot K \cdot A^2 \cdot e^{-2N \cdot t}$

Oscilador harmónico forçado

Até aqui consideramos apenas oscilações livres, em que o oscilodor recebe uma certa energia inicial (através do seu deslocamento e velocidade iniciais) e depois é solto, evolvirido livremente. O período de oscilação é determinado pela própria notureza do oscilodor, ou seja, pela sua inércia e pelas forças restauradoras que atuam sobre ele. A oscilação é amortecida pelas forças discipativas

atuantes. Agora será estudado o efeito produzido sobre o oscilador por uma força externa periódica. O período desta força não coincidirá com o período proprio do oscilador, de modo que as oscilações por ela produzidas chamain-se oscilações foiçadas.

· Para manter as oscilações num sistema harmônico amortecido é preciso fornecer energia ao sistema Dit-se então que o sistema está a ser forçado ou excitada (corre os oscilações de uma pessoa sentada num baloiço sob a ação de empuriões periodices).

A força que é atuada no sistema é uma força diretriz, de variação temporal e é do forma: ao = to

Fex = Fo sen(we.f)

, onde Fo = mádulo inicial da força (costumo ser máxima) 6. we = frequência angular da força diretriz A força resultante será a soma das forças diretriz periódica, restauradora elástica e de atrito. Assim, pela Segunda Lei de Newton: $f_{ext} - K.x - b.\hat{x} = m.\hat{x}$ reescrita na $\hat{x} + \frac{1}{c}\hat{x} + \omega_0^2.x = \frac{f_{ext}}{m}$ É importante : ressattar que We + Wo. O oscilador oscila com a frequência do frequência aplicada (we) e não com a sua frequência rotural (wo). A solução estacionária, que consiste em 26 variar periodicamente, com o mesmo período de excitação mas, eventualmente, com um desfasamento, é representada de seguinte forma: $\chi(t) = \frac{1}{(\omega_0^2 - \omega_e^2)^2 + \frac{\omega_e^2}{T^2}} \cdot \text{sen} \quad \omega_e.t + \tan^{-1}\left(\frac{\omega_e}{\tau} - \frac{\omega_e}{\omega_e^2 - \frac{\omega_e^2}{\tau}}\right)$ 1 sendo .. We = \w2 - (1/2)

Energias e

Oscilador harmónico simples

Ec = 1 . m. x2

$$\langle E_c \rangle = \frac{1}{4} \cdot \text{M} \cdot \omega_0^2 \cdot \text{A}^2$$

*
$$\langle E_p \rangle = \frac{1}{4}$$
. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

* Energia total $\Rightarrow \frac{1}{2}$. M. ω_0^2 . A²

8= 1

· Talathe que a força de atrito realiza por unidade de tempo

 $\left(\frac{\text{olw}}{\text{dt}}\right)_{\text{advide}} = \langle F_{\text{ol.}} \times \tilde{n} \rangle = -\frac{m}{2 \cdot \text{T}} \times \omega_{\text{o}}^2 \times \chi_{\text{c}}^2 \times e^{-\frac{E}{2}}$ $\left(T\right) = -\frac{E(t)}{2 \cdot \text{T}}$

· Fator de qualidade de um oscillador

Q = 2.7. Evergia aimozerada Erevoir dissipade por período

$$= 2\pi \times E = \frac{2\pi}{4} \times E = \frac{\omega \times E}{P}$$

Pava provenes dissipações: <P>= + <E>(3)

Oscilador harmónico forcado

· Cakulemos a potência que é absorvida pelo oscilador. Esta potencia corresponde ao trabalho realizado por

unidade de tempo pela força externa lhormónica).

code de tempo pela força externa l'hannonia
$$\langle P \rangle = -\frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{a} \cdot \mathbf{a}^2 \cdot \mathbf{7} \cdot \left[1 + \left(\frac{\omega_0^2 - \omega_0^2}{\tau} \right)^2 \right]^{-1}$$

. Na ressorancia (W=Wo), <P>res = -1. m. Fréx. T

A absorção de potência reduz-se quando w se afasta de wo.