4

概率统计第三章总复习

第三章 小结

- 1. 要理解二维随机变量的联合分布定义及性质并且会用联合分布求概率。
- 2. 要理解二维随机变量的边缘分布以及与联合分布的关系,了解条件分布。
- 3. 掌握二维均匀分布和二维正态分布。
- 4. 要理解随机变量的独立性。
- 5. 要会求二维随机变量的和、商分布及多维随机变量的极值分布。

性质。

要理解二维随机变量的分布函数的定义及

1 二维随机变量(X, Y)的联合分布函数

$$F(x, y) = P\{X \le x, Y \le y\}$$

2 分布函数具有以下的基本性质:

$$F(-\infty, y) = 0;$$
 $F(x, -\infty) = 0;$ $F(-\infty, -\infty) = 0;$ $F(+\infty, +\infty) = 1.$

3 已知联合分布函数求边缘分布函数

$$F_X(x) = F(+\infty, x)$$
 $F_Y(y) = F(+\infty, y)$

二维分布函数的几何意义

二维分布函数的几何 意义是: F(x, y)表示平面上的随机 点(X, Y)落在以 (x, y)为右上顶 点的无穷矩形中的 概率.

二、 二维离散型随机变量

1. 会求二维离散型随机变量(X, Y)的(联合)分布律.

$$p_{ij} = P\{X = x_i, Y = y_j\} (i, j = 1, 2, \cdots)$$

性质
$$\sum_{i, j} p_{ij} = 1$$

2、已知联合分布律, 会求边缘分布律

$$p_{\bullet j} = P\{X = y_j\} = \sum_{j} p_{ij}$$

$$b^{i\bullet} = b\{X = x^i\} = \sum_{j} p_{ij}$$

3、会判断离散型随机变量的独立性;

$$p_{ij} = P\{X = x_i, Y = y_j\} = p_{i\bullet}p_{\bullet j}, \forall i, j = 1, 2, \cdots$$

- 4、已知离散型随机变量X、Y的相互独立以及各 自的(边缘)分布,会求联合分布;
- 三、二维连续型随机变量
 - 1、分布函数F(x,y)与密度函数f(x,y)的关系:

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv,$$

2、概率密度 f(x,y) 具有以下性质:

$$1^0 \quad f(x,y) \ge 0;$$

$$2^{0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = F(\infty,\infty) = 1;$$

 3^{0} 若f(x,y)在点(x,y)连续,则有 $\frac{\partial^{2} F(x,y)}{\partial x \partial y} = f(x,y).$

4°设 G 是平面上的一个区域,点(X,Y)落在

G内的概率为:
$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$
.

返回主目录

3、已知联合密度函数。会求边缘密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

4、会判断连续型随机变量的独立性

对于几乎所有的x, y 有,

$$f(x, y) = f_X(x)f_Y(y)$$

特别地,上式对 f(x, y)的所有连续点(x, y)必须成立.

$$(X,Y) \sim F(x,y), X \sim F_X(x), Y \sim F_Y(y)$$

 $\forall x, y \in (-\infty, \infty)^{\overline{q}}$

$$P\{X \le x, Y \le y\} = P\{X \le x\} \cdot P\{Y \le y\}$$

即

$$F(x,y) = F_X(x) \cdot F_Y(y)$$

则称 r.v X, Y相互独立。

它表明,两个r.v相互独立时,联合分布函数等于两个边缘分布函数的乘积.

(一) 二維高散型 「. V 的独立性 设 (X 的 本 函 数 为

$$P\{X=x_i,Y=y_j\}=p_{ij}$$
 $(i,j=1,2,\cdots)$ X 相互独立等价于 \emptyset $i,j=1,2,\cdots$

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\} \cdot P\{Y = y_j\}$$

 $X \subseteq Y$ 独立 \iff 对一切 i, j 有

$$P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j)$$

即
$$p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$$

连续型

X与Y独立 \Longrightarrow 对任何x,y有

$$f(x,y) = f_X(x)f_Y(y)$$

二维随机变量 (X, Y) 相互独立, 则边缘分布完全确定联合分布

二维离散型随机变量的条件频率函数

设 (X,Y) 的频率函数为

$$P\{X = x_i, Y = y_j\} = p_{ij}$$
 (i, j = 1, 2, ···)
定义 对于固定的 j, 若 $P\{Y = y_j\} = p_{ij} > 0$, 则称

$$p_{X|Y}(x_i | y_j) = P\{X = x_i | Y = y_j\} = \frac{p_{ij}}{p_{\cdot j}} \quad (i = 1, 2, \cdots)$$

为在 $Y = y_i$ 的条件下, r.v X 的条件(conditional)频率多数. 对于固定的 i,若 $P\{X = x_i\} = p_{i.} > 0$,则称

$$p_{Y|X}(y_j \mid x_i) = p\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_i}$$
 $(j = 1, 2, ...)$

为在 $X = x_i$ 的条件下, r.v Y 的条件(conditional)频率函数.

定义 设(X,Y)的概率密度为f(x,y),若对于固定的y,(X,Y)关于 Y 的边际密度 $f_{y}(y) > 0$,则称

$$\frac{f(x,y)}{f_{Y}(y)} \triangleq f_{X|Y}(x|y) \quad (-\infty < x < \infty)$$

$$F_{X|Y}(x \mid y) \triangleq \int_{-\infty}^{x} f_{X|Y}(u \mid y) du \quad (-\infty < x < \infty)$$

为在Y = y的条件下,X的条件分布(函数).

类似地, 可定义

条件密度与条件概率 在形式上很相似!

$$f_{Y|X}(y|x) \triangleq \frac{f(x,y)}{f_X(x)} \quad (-\infty < y < \infty)$$

$$F_{Y|X}(y|x) \equiv \int_{-\infty}^{y} f_{Y|X}(v|x) dv \qquad (-\infty < y < \infty)$$

由

$$f_{Y|X}(y \mid x) \triangleq \frac{f(x,y)}{f_X(x)} \quad (-\infty < y < \infty)$$

因此

$$f(x,y) = f_{Y|X}(y|x)f_X(x)$$

即: 联合密度可以用边际密度和条件密度表示.

两边关于x积分,Y的边际密度可表示为

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx$$

连续情形的全概率公式

$$F_{Z}(z) = P\{Z \le z\} = P\{X + Y \le z\}$$

$$= \iint f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} dy \int_{-\infty}^{z-y} f(x,y) dx$$

$$\stackrel{\Rightarrow x=u-y}{=\!\!\!=\!\!\!=} \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(u-y,y) du dy$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} f(u - y, y) dy \right] du$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f(z - y, y) dy$$
$$= \int_{-\infty}^{\infty} f(x, z - x) dx$$

(一) Z=X+Y 的分布 (先讨论连续型)

$$^{\circ}$$
 $(X,Y) \sim f(x,y)$ 则 $Z = X + Y$ 的分布函数为

$$F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$$

$$f_Z(z) = \int_{-\infty}^{\infty} f(z - y, y) dy = \int_{-\infty}^{\infty} f(x, z - x) dx$$

若X,Y相互独立,则 Z=X+Y的密度函数为

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(z - y) f_{Y}(y) dy$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

称为卷积(convolution)公式,记为

$$f_X * f_Y = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$
$$= \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

(再讨论离散型)

」设X,Y相互独立,其频率函数分别为

$$P\{X = i\} = p_{i} \quad (i = 1, 2, \cdots)$$

$$P\{Y = j\} = q_{j} \quad (j = 1, 2, \cdots)$$

$$Z = X + Y,$$

$$P\{Z = k\} = \sum_{i=1}^{k-1} P\{X = i\} \cdot P\{Y = k - i\}$$

$$= \sum_{i=1}^{k-1} P\{X = k - i\} \cdot P\{Y = i\}$$

$$(k = 1, 2, ...)$$

比较一下连续型卷积公式

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(z - y) f_{Y}(y) dy$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

(二)
$$Z = \frac{x}{y}$$
 的分析
$$D_1$$

$$y = z$$

令
$$\begin{cases} x \mid y = u \end{cases}$$
 , 则变换的Jacobi式为 $y = y$

$$\frac{\partial(x,y)}{\partial(u,y)} = \begin{vmatrix} yu\\01 \end{vmatrix} = y$$

$$\therefore F_Z(z) = \int_{-\infty}^{z} (\int_{-\infty}^{+\infty} f(uy, y) | y | dy) du$$

$$\therefore f_Z(z) = \int_{-\infty}^{+\infty} f(zy, y) |y| dy$$

特别当 独立时,则有

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(zy) f_Y(y) |y| dy$$

(一) 极值 max(X, Y), min(X, Y) 的分布

设
$$X \sim F_X(x), Y \sim F_Y(y)$$
 且 X, Y 相互独立 ,则 $F_{\max}(z) = P\{\max(X,Y) \leq z\}$ $= P\{X \leq z, Y \leq z\}$ $= P\{X \leq z\} \cdot P\{Y \leq z\}$ $= F_X(z) \cdot F_Y(z)$ $F_{\min}(z) = P\{\min(X,Y) \leq z\}$ $= 1 - P\{\min(X,Y) > z\}$ $= 1 - P\{X > z, Y > z\}$ $= 1 - P\{X > z\} \cdot P\{Y > z\}$ $= 1 - [1 - P\{X \leq z\}] \cdot [1 - P\{Y \leq z\}]$

 $= 1 - [1 - F_{\nu}(z)] \cdot [1 - F_{\nu}(z)]$

5、 掌握二维均匀分布和二维正态分布。

$$f(x, y) = \begin{cases} \frac{1}{A} & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

$$(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \rho)$$

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

结论 (一)

上维正态分布的边缘分 布是一维正态分布.

即若 $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 则有,

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$

结论 (二)

- X, Y独立 $\Leftrightarrow \rho_{XY} = \rho = 0 \Leftrightarrow X$, Y不相关。
- 6、 要会求二维随机变量的和及最值分布。

第三章 习题

设随机变量
$$X \sim$$

设随机变量
$$X \sim \begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$
 $,Y \sim \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

$$,Y\sim\begin{bmatrix}0&1\\1&1\\2&2\end{bmatrix}$$

$$P{XY = 0} = 1$$
, (1) 求X与Y的联合分布; (2) X与Y是否独立?

解: (1)
$$P{XY = 0} = 1$$

$$\Rightarrow P\{XY \neq 0\} = 0,$$

$$\Rightarrow P\{X=-1,Y=1\}+$$

$$P{X = 1, Y = 1} = 0,$$

(2)X与Y不独立

$$0 = p_{-11} \neq p_{-1} \cdot p_{-1} = \frac{1}{4} \times \frac{1}{2},$$

	_	Ī	_
X^{Y}	0	1	$p_{i\bullet}$
-1	$\frac{1}{4}$	0	$\frac{1}{4}$
0	0	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{4}$	0	$\frac{1}{4}$
$p_{\bullet j}$	1 2	$\frac{1}{2}$	

设X与Y相互独立,下表给出X,Y的联合分布律及各自的边缘分布律中的部分数值, 求其余数值。

X	y_1	${\cal Y}_2$	y_3	$P\{X=x_i\}=p_{i\cdot}$
\boldsymbol{x}_1	$\frac{1}{24}$	$\frac{1}{8}$	1 12	1/4
\boldsymbol{x}_{2}	1/8	3 8	1/4	<u>3</u>
$P\{Y=y_i\}=p_{.i}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	1

3. 从 1, 2, 3, 4 这 4 个 数 中 随 机 取 出 一 个 , 记 为 X, 再 从 1 到 X 中 随 机 地 取 出 一 个 数 , 记 为 Y , 试 求 (X, Y) 的 联 合 分 布 律 与 X 及 Y 的 边 缘 分 布 律 .

X与Y的取值都是 1, 2, 3, 4, 而且 $Y \le X$, 所以,当i < j时,P(X = i, Y = j) = 0当 $i \ge j$ 时,由乘法公式,得 $P_{ij} = P(X = i, Y = j) = P(X = i)P(Y = j | X = i)$ $= \frac{1}{4} \times \frac{1}{i} = \frac{1}{4i} \qquad p_{i.} = \sum p_{ij} \ \mathcal{D}_{i} \ \mathcal{D}_{i.j} = \sum p_{ij} \ \mathcal{D}_{ij} \ \mathcal{D}_{ij} = \sum p_$

(X, Y)的联合与边缘分布律为

X	1	2	3	4	$p_{i\cdot}$
1	1/4	0	0	0	1/4
2	<u>1</u> 8	1/8	0	0	$\frac{1}{4}$
3	$\frac{1}{12}$	1/12	1/12	0	$\frac{1}{4}$
4	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	$\frac{1}{4}$
$p_{\cdot j}$	<u>25</u> 48	13 48	7 48	3 48	

4. 袋中有3个黑球,2个白球,从中随机取出4个, X表示取到的黑球数,Y表示取到的白球数,求 (X, Y)的联合分布律.

$$X + Y = 4$$
 $X = 2,3$
 $Y = 1,2$
 $P(X = 2, Y = 2) = \frac{C_3^2 C_2^2}{C_5^2} = \frac{3}{5},$
 $P(X = 3, Y = 1) = \frac{C_3^3 C_2^1}{C_5^4} = \frac{2}{5},$
 $P(X = 2, Y = 1) = P(X = 3, Y = 2) = 0.$

(X, Y)的联合分布律为

Y	1	2
2	0	<u>3</u> <u>5</u>
3	<u>2</u> 5	0

5. 设二维随机变量(X, Y)的密度函数为

$$f(x,y) = \begin{cases} Ae^{-(3x+4y)} & x > 0, \ y > 0 \\ 0 & \text{ } \\ \exists \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \end{cases}$$

- (1) 求常数A;
- (2) 求(X, Y)的联合分布函数;

解:(1)由密度函数的性质,得

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = A \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-(3x+4y)} dx dy$$
$$= A \int_{0}^{+\infty} e^{-3x} dx \cdot \int_{0}^{+\infty} e^{-4y} dy = \frac{A}{12}$$
Fig. 4. A = 12.

(2)
$$F(x, y) = P(X \le x, Y \le y)$$

当
$$x \le 0$$
或 $y \le 0$ 时, $F(x, y) = 0$;

当
$$x > 0$$
且 $y > 0$ 时,

$$F(x, y) = \int_{-\infty}^{x} \int_{x^{-\infty}y}^{y} f(u, v) du dv$$

$$= 12 \int_{0}^{x} \int_{0}^{x} e^{-(3u+4v)} du dv = 12 \int_{0}^{x} e^{-3u} du \cdot \int_{0}^{y} e^{-4v} dv$$

$$= (1 - e^{-3x})(1 - e^{-4y})$$

所以,
$$F(x, y) = \begin{cases} (1 - e^{-3x})(1 - e^{-4y}) & x > 0, y > 0 \\ 0 & 其它 \end{cases}$$

(3).
$$P(0 < X < 1, 0 < Y < 2)$$

$$= \iint_{0 < x < 1, \quad 0 < y < 2} f(x, \quad y) dx dy$$

$$=12\int_{0}^{1}\int_{0}^{2}e^{-(3x+4y)}dxdy$$

$$= (1 - e^{-3})(1 - e^{-8})$$

$$P(x_1 < X \le x_2, y_1 < Y \le y_2)$$

$$= F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

6.已知随机变量(X, Y)的分布函数为

$$F(x,y) = A \left(B + \arctan \frac{x}{2} \right) \left(C + \arctan \frac{y}{3} \right)$$

试求A, B, C及(X, Y)的联合密度函数.

联合分布函数的性质
$$A=1/\pi^2, B=\pi/2, C=\pi/2.$$

$$F(+\infty,+\infty) = A(B+\frac{\pi}{2})(C+\frac{\pi}{2}) = 1,$$

$$F(-\infty,+\infty) = A(B-\frac{\pi}{2})(C+\frac{\pi}{2}) = 0,$$

$$F(+\infty,-\infty) = A(B + \frac{\pi}{2})(C - \frac{\pi}{2}) = 0,$$

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y} = \frac{6}{\pi^2 (4 + x^2)(9 + y^2)}$$

7.设随机变量(X, Y)的密度函数为

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy & 0 \le x \le 1, \ 0 \le y \le 2\\ 0 & \text{#} \succeq \end{cases}$$

求X与Y的边缘密度函数.

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{0}^{2} \left(x^2 + \frac{1}{3}xy\right) dy = 2x^2 + \frac{2}{3}x$$

所以,X的密度函数为

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x & 0 \le x \le 1 \\ 0 & \text{其它} \end{cases}$$

当 $0 \le y \le 2$ 时,

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} \left(x^2 + \frac{1}{3}xy\right) dx = \frac{1}{3} + \frac{1}{6}y$$

所以,Y的密度函数为

$$f_{Y}(y) = \begin{cases} \frac{1}{3} + \frac{1}{6}y & 0 \le y \le 2\\ 0 & \sharp \Xi \end{cases}$$

设平面区域D是由抛物线 $y = x^2$ 及直线 y = x 所围, 随机变量(X, Y)服从区域 D上的均匀分布. 试求随 机变量(X, Y)的联合密度 函数及X、Y各自的边缘密 度函数.

解:(1). 区域D的面积为

$$A = \int_{0}^{1} \int_{x^{2}}^{x} dy dx = \left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)\Big|_{0}^{1} = \frac{1}{6}$$

所以,(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} 6 & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

随机变量 X 的边缘密度函数为

当0 < x < 1时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{x^2} f(x, y) dy = \int_{-\infty}^{$$

$$= \int_{x^2}^{x} 6dy = 6(x - x^2)$$

$$f_X(x) = \begin{cases} 6(x - x^2) & 0 < x < 1 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

同理,随机变量Y的边缘密度函数为

当0 < y < 1时,

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\infty}^{y} + \int_{y}^{\sqrt{y}} + \int_{\sqrt{y}}^{+\infty}$$
$$= \int_{y}^{-\infty} 6 dx = 6(\sqrt{y} - y)$$

$$f_{Y}(y) = \begin{cases} 6(\sqrt{y} - y) & 0 < y < 1 \\ 0 & \sharp \Xi \end{cases}$$

9.设随机变量(X, Y)的密度函数为

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, & \text{#th} \end{cases}$$

求
$$f_{X|Y}(x|y)$$
 , $f_{Y|X}(y|x)$

$$f_X(x) = \begin{cases} \int_{-x}^x dy, & 0 < x < 1 \\ 0, & \sharp \text{ the } \end{cases}$$

$$= \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

$$f_{Y}(y) = \begin{cases} \int_{y}^{1} dx, & 0 < y < 1 \\ \int_{-y}^{1} dx, & -1 < y < 0 \\ 0, & \text{#th} \end{cases}$$

$$= \begin{cases} 1 - y, & 0 < y < 1 \\ 1 + y, & -1 < y < 0 \\ 0, & \text{#th} \end{cases}$$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{1-|y|}, & |y| < x < 1\\ 0, & \text{#th} \end{cases}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & |y| < x < 1\\ 0, & \text{#th} \end{cases}$$

10. 已知 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} Axy^2, & 0 < x < 1, 0 < y < 1 \\ 0, & 其他 \end{cases}$$

(1)求A;

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1 \qquad \longrightarrow \qquad A = 6$$

(2)证明 X,Y 相互独立.

(

(2) 由图知边缘密度为

$$f_{X}(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他 \end{cases}$$

$$f_{Y}(y) = \begin{cases} 3y^{3}, & 0 < y < 1, \\ 0, & 其他 \end{cases}$$

显然
$$f(x,y)=f_X(x)f_Y(y)$$

故X,Y相互独立

4

设二维离散型随机变量(X, Y)的联合分布律为

X	1	2	3
1	<u>1</u> 6	<u>1</u> 9	1/18
2	$\frac{1}{3}$	lpha	$oldsymbol{eta}$

试确定常数 α , β 使得随机变量X与Y相互独立. 并求P(X=i|Y=1). \mathbf{m} :由表,可得随机变量X与Y的边缘分布律为

Y	1	2	3	$p_{i\cdot}$
1	<u>1</u> 6	<u>1</u> 9	<u>1</u> 18	$\frac{1}{3}$
2	$\frac{1}{3}$	α	β	$\frac{1}{3} + \alpha + \beta$
$p_{\cdot j}$	$\frac{1}{2}$	$\frac{1}{9} + \alpha$	$\frac{1}{18} + \beta$	

如果随机变量X与Y相互独立,则有

$$p_{ij} = p_{i} \cdot p_{\cdot j}$$
 ($i = 1, 2; j = 1, 2, 3$)

$$\frac{1}{9} = P(X = 1, Y = 2) = P(X = 1)P(Y = 2) = \frac{1}{3} \cdot \left(\frac{1}{9} + \alpha\right)$$

由此得
$$\alpha = \frac{2}{9}$$
;

$$\frac{1}{18} = P(X = 1, Y = 3) = P(X = 1)P(Y = 3) = \frac{1}{3} \cdot \left(\frac{1}{18} + \beta\right)$$

由此得
$$\beta = \frac{1}{9}$$
.

而当 $\alpha = \frac{2}{9}$, $\beta = \frac{1}{9}$ 时,联合分布律及边缘分布律为

X	1	2	3	$p_{i\cdot}$
1	<u>1</u> 6	<u>1</u> 9	<u>1</u> 18	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{9}$	<u>2</u> 3
$p_{\cdot j}$	1/2	<u>1</u> 3	<u>1</u>	

可以验证, $p_{ij} = p_{i}.p_{.j}$ (i = 1, 2; j = 1, 2)

因此当 $\alpha = \frac{2}{9}$, $\beta = \frac{1}{9}$ 时,X与Y相互独立.

因为X与Y相互独立,

所以
$$P(X = i | Y = 1) = P(X = i) = p_{i\bullet}$$

X	1	2
P	1	2
1	3	3

例 设随机变量X和Y相互独立,它们的密度函数分别为

$$f_X(x) = \begin{cases} e^{-x}, x > 0, \\ 0, & x \le 0. \end{cases}$$

$$f_Y(y) = \begin{cases} e^{-y}, y > 0, \\ 0, & y \le 0. \end{cases}$$

求(1)(X, Y)的密度函数;(2) $P(X \le 1 | Y > 0)$.

因为随机变量 X和 Y相互独立

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0; \\ 0, & \sharp \text{ th.} \end{cases}$$

$$P(X \le 1 \mid Y > 0) = \frac{P(X \le 1, Y > 0)}{P(Y > 0)}$$

或者由独立性

$$P(X \le 1 \mid Y > 0) = P(X \le 1) = F_X(1)$$

= $1 - e^{-1}$

13. 设二维随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y \\ 0, & \text{#th} \end{cases}$$

求概率 $P{X+Y\leq 1}$

解
$$P{X+Y\leq 1}$$

$$= \iint_{x+y \le 1} f(x,y) \mathrm{d}x \mathrm{d}y$$

$$= \int_0^{\frac{1}{2}} dx \int_x^{1-x} e^{-y} dy = -\int_0^{\frac{1}{2}} [e^{-(1-x)} - e^{-x}] dx$$

$$=1+e^{-1}-2e^{-\frac{1}{2}}$$

14. 设随机变量 X 与 Y 相互独立, 其密度函数

分别为
$$f_X(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0; \\ 0, & x \le 0, \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, y > 0; \\ 0, y \le 0, \end{cases}$$

求随机变量Z = X + Y的密度函数.

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

$$z \ge 0$$
, $f_Z(z) = \int_0^z \frac{1}{6} e^{-\frac{x}{2}} \cdot e^{-\frac{z-x}{3}} dx$

$$=e^{-\frac{z}{3}}(1-e^{-\frac{z}{6}})$$

$$z < 0, \quad f_z(z) = 0$$

$$f_Z(z) = \begin{cases} e^{-\frac{z}{3}} & -\frac{z}{6} \\ e^{-\frac{z}{3}} & (1 - e^{-\frac{z}{6}}), z \ge 0; \\ 0, & z < 0. \end{cases}$$

15. 设随机变量 X 与 Y 相互独立, X 服从 (0, 1) 上的均匀分布, Y 服从 $\lambda = 1$ 的指数分布,求 随机变量 Z = X + Y 的密度函数.

解:
$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases}$$
$$f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

随机变量Z = X + Y的密度函数

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx,$$

$$0 < x < 1, z - x > 0$$

(1). 若
$$z < 0$$
, $f_z(z) = 0$

$$f_Z(z) = \int_0^z 1 * e^{-(z-x)} dx = e^{-z} \int_0^z e^x dx = 1 - e^{-z}$$

(3). 若 $z \ge 1$,

$$f_Z(z) = \int_0^1 e^{-(z-x)} dx = e^{-z} \int_0^1 e^x dx = e^{-z+1} - e^{-z}$$

综上所述,我们可得Z = X + Y的密度函数为

$$f_{Z}(z) = \begin{cases} 0, & z < 0 \\ 1 - e^{-z}, & 0 \le z < 1 \\ e^{-z+1} - e^{-z}, & z \ge 1 \end{cases}$$

列 7 设随机变量/与Y相互独立, $X\sim N(0, \sigma^2)$, $Y\sim N(0, \sigma^2)$, 令 $Z=\sqrt{X^2+Y^2}$,试求随机变量的密度函数

解:

$$f_X(x) = f_Y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \qquad x \in (-\infty, +\infty)$$

由于X与Y是相互独立的,所以,(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$
 $(-\infty < x, y < +\infty)$

所以, $Z = \sqrt{X^2 + Y^2}$ 的分布函数为

$$F_Z(z) = P\{Z \le z\} = P\{\sqrt{X^2 + Y^2} \le z\}$$

若
$$Z \leq 0$$
,则 $F_z(z) = 0$

若
$$Z > 0$$
,则 $F_Z(z) = P\left\{\sqrt{X^2 + Y^2} \le z\right\}$

$$= \iint_{\sqrt{x^2 + y^2} \le z} f(x, y) dx dy$$

$$= \frac{1}{2\pi\sigma^{2}} \iint_{\sqrt{x^{2}+y^{2}} \leq z} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} dxdy$$

作极坐标变换 $x = r \cos \theta$, $y = r \sin \theta$, 则有

$$F_{Z}(z) = \frac{1}{2\pi\sigma^{2}} \int_{0}^{2\pi} d\theta \int_{0}^{z} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr = \frac{1}{\sigma^{2}} \int_{0}^{z} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr$$

$$F_{Z}(z) = \begin{cases} \frac{1}{\sigma^{2}} \int_{0}^{z} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr & z > 0\\ 0 & z \leq 0 \end{cases}$$

所以, $Z = \sqrt{X^2 + Y^2}$ 的密度函数为

$$f_{z}(z) = \begin{cases} \frac{z}{\sigma^{2}} e^{-\frac{z^{2}}{2\sigma^{2}}} & z > 0\\ 0 & z \leq 0 \end{cases}$$