Computational Quantum Mechanics Prof. Gerson J. Ferreira INFIS/UFU 2020/1

Using Jupyter Notebooks and Markdown

Python with Jupyter Notebooks + Markdown

Jupyter Notebook vs JupyterLab

- → Jupyter Notebook: one document on each browser tab
- → JupyterLab: single tab, multiple documents within sub-tabs

Also: JupyterLab has better visualization for CSV files, allows for plugins, etc...

Jupyter: writing and running codes

```
[1]: # import the Libs
     import numpy as np
     import matplotlib.pyplot as plt
[2]: # calculate something
     x = np.linspace(0, 2*np.pi, 100)
     y = np.sin(x)
[3]: # plot the results
     plt.plot(x, y)
     plt.show()
      1.00
      0.75
      0.50
      0.25
      0.00
      -0.25
      -0.50
     -0.75
     -1.00
```

Organize the code in cells by its content

- → import all neeeded libs in single cell
- → run blocks of calculations
- → plot the results

To run each cell: **SHIFT+ENTER**

To delete a cell:

Jupyter: autocomplete and docstrings

```
[1]: # import the libs
     import numpy as np
     import matplotlib.pyplot as plt
[2]: def integrate(x, f):
             Calculates the integral of f within the x domain.
             TNPUT:
                 x: array of size N
                 f: array of size N
             OUTPUT:
                 scalar: the result of the integral
         1.1.1
         if len(x) != len(f):
             raise Exception('x and f must have same size')
         dx = np.diff(x)
         return np.sum(f[0:-1]*dx)
[3]: x = np.linspace(0, 2*np.pi, 100)
     y = np.sin(x)**2
     integrate(x, y)
     3.1415926535897927
```

Organization:

- → Use a cell to define each function
- → Use docstrings to describe the function, and its input & output quantities

Autocomplete: press TAB

Show docstring: press SHIFT+TAB with the cursor within the function call

```
x: arrav of size N
            f. array of size N
        OUTPUT Signature: integrate(x, f)
            sc Docstring:
               Calculates the integral of f within the x domain.
    1.1.1
    if len(x)
       raise INPUT:
                   x: array of size N
    dx = np.di
                   f: array of size N
    return np.
               OUTPUT:
                   scalar: the result of the integral
x = np.linspac
               File:
                          ~/tmp/<ipvthon-input-2-8d40b32eb915>
y = np.sin(x)^{3}
                          function
               Type:
integrate(x, y)
```

3.1415926535897927

Markdown + Latex

Let's use Markdown to document the math and physics behind the codes

Markdown examples

Check these links: [https://commonmark.org/help/] [https://www.markdownguide.org/cheat-sheet/]

Туре	Or	to Get
Italic	_Italic_	Italic
Bold	Bold	Bold
# Heading 1	Heading 1 =======	Heading 1
## Heading 2	Heading 2	Heading 2
[Link](http://a.com)	[Link][1] : [1]: http://b.org	<u>Link</u>
![Image](http://url/a.png)	![Image][1] : [1]: http://url/b.jpg	M+

Markdown examples

> Blockquote		Blockquote
* List * List * List	- List - List - List	ListListList
1. One 2. Two 3. Three	1) One 2) Two 3) Three	1. One 2. Two 3. Three
Horizontal Rule	Horizontal Rule	Horizontal Rule
`Inline code` with backticks	***	Inline code with backticks
# code block print '3 backticks or' print 'indent 4 spaces'	····# code block ····print '3 backticks or' ····print 'indent 4 spaces'	<pre># code block print '3 backticks or' print 'indent 4 spaces'</pre>