Protonation-Induced Chirality Drives Separation by Differential Mobility Spectrometry

Angew. Chem. Int. Ed. 2022, 61, e202116794

Christian Ieritano, J. C. Yves Le Blanc, Bradley Schneider, Alexander Haack, Justine Bissonnette, W. Scott Hopkins

June 6, 2022

What is Differential Mobility Spectrometry (DMS)?

Differential mobility spectrometry (DMS) is a non-linear form of ion-mobility spectrometry

Above the low field limit, ion mobility *K* varies non-linearly with the field strength

$$\alpha(E) = \frac{K(E)}{K(0)} - 1$$

Scanning CV at a fixed SV gives an ionogram

For a specific SV, every analyte will elute from the DMS cell at a characteristic CV

The SV/CV pair is an intrinsic ion property

The CV in which an analyte elutes from the DMS cell is analyte specific, and orthogonal to LC

~ 15 years ago, SCIEX was looking at performing drug metabolite quantitation without LC

Nefazodone

Ketoconazole

...and Verapamil?

Why does Verapamil have two peaks?

This isn't the first time we've seen strange DMS behaviour...

More than one feature in an ionogram **usually** indicates the presence of prototropic isomers

4-aminobenzoic acid

Phys. Chem. Chem. Phys. 2021, 23, 20607 Anal. Chem. 2012, 84, 7857-7864.

N-prot.

O-prot.

Dr. Neville Coughlan

N-Prot

OH

Dr. Weiqiang Fu

O-Prot

Rivaroxaban

J. Phys. Chem. A. 2021, 125, 8159-8344

Nour Mashmoushi

Normalized Intensity

Are we seeing a prototropic isomer of Verapamil?

Amino-protonated

o kJ mol⁻¹

Methoxy-protonated

110 kJ mol⁻¹

Cyano-protonated

130 kJ mol⁻¹

Verapamil is sold as a **racemate**, so perhaps **chirality** has something to do with it?

(R)-Verapamil

(S)-Verapamil

Enantiomers (mirror images of one another)

Enantiomers exhibit the opposite stereochemistry at **all** chiral centers

Enantiomers cannot be resolved by DMS without chiral derivatization

Perhaps looking at the DMS behaviour of Verapamil derivatives will provide some insight?

(R)-Norverapamil

The **amino** moiety is the key

$$NH_3$$
 $k = \sim 10^{10} \text{ s}^{-1}$

$$RNH_2$$
 $k = \sim 10^8 \text{ s}^{-1}$

$$R_2NH$$

 $k = 10^5 - 10^7 S^{-1}$

$$R_3N$$
 $k = 100 - 10000 \text{ s}^{-1}$

Amines are **not** stereogenic centers, but...

Verapamil exists as a **desolvated**, **protonated** ion in the gas-phase

Diastereomers differ in the configuration of at least one, but not all stereocenters

What happens with a **racemic** mixture of Verapamil?

(R)-Verapamil

(S)-Verapamil

(R,R) and (S,R) Verapamil diastereomers

(S,S) and (R,S) Verapamil diastereomers

Diastereomers differ in the configuration of at least one, but not all stereocenters

Of the 4 possible stereoisomers, 2 pairs are enantiomeric

Protonation-induced chirality drives the separation

(±)-Verapamil Protonation yields an additional stereocenter $SV = 4500 V T_{bath} = 50^{\circ}C$ (R,R)(R,S) Resolving gas on (10 psi) **OMe OMe** OMe MeO **OMe** MeO (R,R)/(S,S)(R,S)/(S,R)MeO MeO NC iPr *(S,S)* (S,R)**OMe** OMe OMe MeO OMe MeC *(S)* MeO MeO iPr CN 18 20 12 14 16 CV / V Diastereomers

How else can we justify the hypothesis?

Experimentally

Protonation-induced diastereomers exhibit different DMS behaviour, implying that their low-field mobility is also different

Experimentally measure the low-field ion mobility by linear IMS (Synapt G2-Si)

TRAVELLING WAVE IMS

$$K(0) = \frac{\sqrt{18\pi}}{16} \frac{ze}{\sqrt{\mu k_b T}} \frac{1}{\Omega} \frac{1}{N}$$

 Ω – Collision Cross Section

Computationally

Map the PES of *N*-protonated verapamil

Modified AMBER forcefield

$$(S,S)$$
 (S,R)

(R,R)

Refine low-energy structures from PES search with high-level DFT calculations

ωB97X-D/def2-TZVPP

Use DFT structures and partial charges to calculate CCSs via MobCal-MPI

Verapamil "separates" by linear IMS

TWIMS suggests that verapamil's ATD consists of more than one configuration (based on peak FWHM)

(±)-Norverapamil

Protonation does not affect chirality. ATD is "1 compound"

(±)-Verapamil

Protonation-induced diastereomers form upon protonation

In Silico modelling of DMS behaviour

In silico models of Differential Mobility Using Higher Order Two-Temperature Theory

Dr. Alex Haack

🥑 @ahaack91

J. Am. Soc. Mass Spectrom., 2022, 33, 535-547

ThP 261

On the Conformational Changes of Tripeptides in Differential Mobility Spectrometry

Is protonation-induced chirality a general phenomenon?

We tested 12 additional compounds that were commercially available and susceptible to protonation-induced chirality

Why are there intensity differences between the two peaks?

- 1) Energy differences between the protonation induced diastereomers
- 2) Does steric hindrance impede nitrogen inversion in the solution phase?
- 3) Does a more stable solution-phase diastereomer get kinetically trapped during the droplet evaporation portion of ESI?

How complicated can protonation-induced chirality get?

Verapamil Impurity *N*

Internal plane of symmetry, so no chirality Or so we thought

Expected single peak (2 enantiomers)

But then we learned about pseudo-asymmetric centers! Or what I like to call "conditional chirality"

Where can we go with this?

Three criteria need to be met to observe protonation-induced chirality:

- 1. The molecule must possess a **permanent stereocenter**
- 2. The molecule must possess a **stereogenic precursor** susceptible to protonation (e.g., tertiary amine)
- 3. Once protonated, the diastereomers must not interconvert and must preserve structural

differences

Crazy chirality!

Experimental considerations

Verapamil is a standard for calibrating CCSs

Synapt G2 $R_p \sim 60$ SLIMS, Cyclic-IMS $R_p > 150$

Acknowledgements

PhD Committee

Prof. W. Scott Hopkins

Prof. Terry B. McMahon

Adj. Prof. J. Larry Campbell

Hopkins Lab

Dr. Alexander Haack Justine Bissonnette

Dr. Neville Coughlan Nour Mashmoushi Dan Rickert Arthur Lee Courtney Kates

SCIEX Gurus

Dr. J. C. Yves Le Blanc Dr. Brad Schneider Dr. Mircea Guna

Collaborators, Resources, and Funding

In silico DMS modelling reproduces verapamil separation

Calculation of the ensemble mobility (K) using 2T theory (first-order)

$$T_{eff} = T_{bath} + \frac{m_{bath} \cdot v_D^2}{3k_h} \qquad v_D = K \cdot E$$

$$K = \frac{\sqrt{18\pi}}{16} \frac{ze}{\sqrt{\mu k_b T_{eff}}} \frac{1}{\Omega} \frac{1}{N} \qquad \langle K \rangle_{ens} = \sum_{i} K_i \cdot p_i$$

2. Calculation of optimal CV at a given SV

$$\alpha(E) = \frac{\langle K(E) \rangle_{ens}}{\langle K(0) \rangle_{ens}} - 1$$

$$E(t) = \frac{SV}{d} \left(\frac{2}{3} \sin(\omega t) + \frac{1}{3} \sin\left(2\omega t - \frac{\pi}{2}\right) \right)$$

$$CV = -rac{\left\langle lphaig(E(t)ig)\cdot E(t)
ight
angle_{wf}}{1+\left\langle lphaig(E(t)ig)
ight
angle_{wf}+\left\langle lpha'ig(E(t)ig)\cdot E(t)
ight
angle_{wf}}\cdot CV$$

Is protonation-induced chirality a general phenomenon?

6 other molecules susceptible to protonation-induced chirality are separable by DMS

Seeding the DMS carrier gas with IPA was required to fully resolve some compounds

Protonation-induced chirality drives the separation

A (±)-Norverapamil

SV =
$$4500 \text{ V}$$
 T_{bath} = 50° C
Resolving gas **on** (10 psi)

B Protonation does not affect stereochemistry

