1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

DESCRIPTION

The M5M51008BP,FP,VP,RV,KV,KR are a 1048576-bit CMOS static RAM organized as 131072 word by 8-bit which are fabricated using high-performance triple polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery result in a high density and low power static RAM.

They are low standby current and low operation current and ideal for the battery back-up application.

The M5M51008BVP,RV,KV,KR are packaged in a 32-pin thin small outline package which is a high reliability and high density surface mount device(SMD).Two types of devices are available. VP,KV(normal lead bend type package),RV,KR(reverse lead bend type package). Using both types of devices, it becomes very easy to design a printed circuit board.

FEATURES

		Power supply current				
Type name	Access time (max)	Active (1MHz) (max)	stand-by (max)			
M5M51008BP,FP,VP,RV,KV,KR-55L	55ns					
M5M51008BP,FP,VP,RV,KV,KR-70L	70ns	15mA	100µA			
M5M51008BP,FP,VP,RV,KV,KR-10L	100ns		(Vcc=5.5V)			
M5M51008BP,FP,VP,RV,KV,KR-55LL	55ns		20µA			
M5M51008BP,FP,VP,RV,KV,KR-70LL	70ns	15mA	(Vcc=5.5V) 0.3µA			
M5M51008BP,FP,VP,RV,KV,KR-10LL	100ns]	(Vcc=3.0V,typ)			

- Single +5V power supply
- Low stand-by current 0.3µA (typ.)
- Directly TTL compatible : All inputs and outputs
- Easy memory expansion and power down by S1,S2
- Data hold on +2V power supply
- ◆ Three-state outputs : OR tie capability
- OE prevents data contention in the I/O bus
- Common data I/O
- Package

M5M51008BP	32pin	600mil	DIP
M5M51008BFP			
M5M51008BVP,RV	/ 32pin	8 X 20 r	nm ² TSOP
M5M51008BKV KB	32nin	8 X 13 4	1 mm ² TSOP

APPLICATION

Small capacity memory units

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

FUNCTION

The operation mode of the M5M51008B series are determined by a combination of the device control inputs $\overline{S}_1,S_2,\overline{W}$ and \overline{OE} .

Each mode is summarized in the function table.

A write cycle is executed whenever the low level \overline{W} overlaps with the low level \overline{S}_1 and the high level S_2 . The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of $\overline{W}, \overline{S}_1$ or S_2 ,whichever occurs first,requiring the set-up and hold time relative to these edge to be maintained. The output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting \overline{W} at a high level and \overline{OE} at a low level while \overline{S}_1 and S_2 are in an active state(\overline{S}_1 =L,S₂=H).

When setting \overline{S}_1 at a high level or S_2 at a low level, the chip are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high- impedance state, allowing OR-tie with other chips and memory expansion by \overline{S}_1 and S_2 . The power supply current is reduced as low as the stand-by current which is specified as Icc3 or Icc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

	S ₂	\overline{W}	ŌĒ	Mode	DQ	Icc
Х	L	Χ	Χ	Non selection	High-impedance	Stand-by
Н	Х	Χ	Χ	Non selection	High-impedance	Stand-by
L	Н	L	Χ	Write	Din	Active
L	Н	Н	L	Read	Dout	Active
L	Н	Н	Н		High-impedance	Active

MITSUBISHI LSIs

M5M51008BP,FP,VP,RV,KV,KR -55L,-70L,-10L, -55LL,-70LL,-10LL

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		- 0.3*~7	V
Vı	Input voltage	With respect to GND	- 0.3*~Vcc + 0.3	V
Vo	Output voltage		0~Vcc	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature		0~70	°C
Tstg	Storage temperature		- 65~150	°C

^{* -3.0}V in case of AC (Pulse width 30ns)

DC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, Vcc=5V±10%, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
2,111001	1 didiliotoi			Min	Тур	Max	Jt
VIH	High-level input voltage			2.2		Vcc +0.3V	V
VIL	Low-level input voltage			-0.3*		0.8	V
Voн1	High-level output voltage 1	Iон= −0.5mA		2.4			V
Voн2	High-level output voltage 2	Iон= -0.05mA		Vcc -0.5V			V
Vol	Low-level output voltage	IoL=2mA				0.4	V
lı	Input current	V _I =0~Vcc				±1	μΑ
lo	Output current in off-state	S1=VIH or S2=VIL or OE=VIH VI/O=0~VCC				±1	μΑ
Icc1	Active supply current (AC, MOS level)	S ₁ 0.2V,S ₂ Vcc–0.2V, other inputs 0.2V or Vcc–0.2V	Min cycle		35 (40)**	70 (80)**	mA
	(7to, Woo level)	Output-open(duty 100%)	1MHz		4	15	
	A.C	S1=VIL,S2=VIH,	Min		38	70	
ICC2	Active supply current (AC, TTL level)	other inputs=VIH or VIL	cycle		(43)**	(85)**	mA
	(10, 112 10 00)	Output-open(duty 100%)	1MHz		5	15	
loos		1) S ₂ 0.2V 2) S ₁ Vcc–0.2V,	-L			100	
Iccs Stand-by current	Stand-by current	S2 Vcc-0.2V other inputs=0~Vcc	-LL			20	μΑ
ICC4	Stand-by current	S ₁ =V _{IH} or S ₂ =V _{IL} , other inputs=0~Vcc				3	mA

^{* -3.0}V in case of AC (Pulse width 30ns)
** inside () is a value of -55L,-55LL

CAPACITANCE (Ta=0~70°C, Vcc=5V±10%, unless otherwise noted)

Symbol	Parameter	T		11.3		
		Test conditions	Min	Тур	Max	Unit
Cı	Input capacitance	Vi=GND, Vi=25mVrms, f=1MHz			6	pF
Со	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			8	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

^{2:} Typical value is Vcc = 5V, Ta = 25°C

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, Vcc=5V±10%, unless otherwise noted)

(1) MEASUREMENT CONDITIONS

Input pulse level VIH=2.4V, VIL=0.6V (-70L,-10L,-70LL,-10LL)

VIH=3.0V,VIL=0.0V (-55L,-55LL)

Input rise and fall time 5ns

Reference level ······ VoH=VoL=1.5V

Output loads Fig.1,CL=100pF (-10L,-10LL,)

CL=30pF (-55L,-70L,-55LL,-70LL)

CL=5pF (for ten,tdis)

Transition is measured ± 500mV from steady

state voltage. (for ten,tdis)

Fig.1 Output load

(2) READ CYCLE

Symbol	Parameter		Limits						
		-55	-55L,LL		L,LL	-10L,LL		Unit	
		Min	Max	Min	Max	Min	Max	0	
tcr	Read cycle time	55		70		100		ns	
ta(A)	Address access time		55		70		100	ns	
ta(S1)	Chip select 1 access time		55		70		100	ns	
ta(S2)	Chip select 2 access time		55		70		100	ns	
ta(OE)	Output enable access time		30		35		50	ns	
tdis(S1)	Output disable time after \$\overline{S}_1\$ high		20		25		35	ns	
tdis(S2)	Output disable time after S2 low		20		25		35	ns	
tdis(OE)	Output disable time after OE high		20		25		35	ns	
ten(S1)	Output enable time after \$\overline{S}_1\$ low	5		10		10		ns	
ten(S2)	Output enable time after S ₂ high	5		10		10		ns	
ten(OE)	Output enable time after OE low	5		5		5		ns	
tv(A)	Data valid time after address	5		10		10		ns	

(3) WRITE CYCLE

	Parameter		Limits						
Symbol		-55	L,LL	-70L,LL		-10L,LL		Unit	
		Min	Max	Min	Max	Min	Max		
tcw	Write cycle time	55		70		100		ns	
tw(W)	Write pulse width	45		55		75		ns	
tsu(A)	Address setup time	0		0		0		ns	
tsu(A-WH)	Address setup time with respect to W	50		65		85		ns	
tsu(S1)	Chip select 1 setup time	50		65		85		ns	
tsu(S2)	Chip select 2 setup time	50		65		85		ns	
tsu(D)	Data setup time	25		30		40		ns	
th(D)	Data hold time	0		0		0		ns	
trec(W)	Write recovery time	0		0		0		ns	
tdis(W)	Output disable time from W low		20		25		35	ns	
tdis(OE)	Output disable time from OE high		20		25		35	ns	
ten(W)	Output enable time from W high	5		5		5		ns	
ten(OE)	Output enable time from OE low	5		5		5		ns	

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

(4) TIMING DIAGRAMS Read cycle

Write cycle (W control mode)

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

Write cycle (S1 control mode)

Write cycle (S2 control mode)

- Note 3: Hatching indicates the state is "don't care". 4: Writing is executed while \underline{S}_2 high overlaps \overline{S}_1 and \overline{W} low.
 - 5: When the falling edge of \overline{W} is simultaneously or prior to the falling edge of \overline{S}_1 or rising edge of S_2 , the outputs are maintained in the high impedance state.
 - 6: Don't apply inverted phase signal externally when DQ pin is output mode.

1048576-BIT(131072-WORD BY 8-BIT)CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS (Ta = 0~70°C, unless otherwise noted)

Cumbal	Dozomatez	To do o o Prima		Limits			1.1
Symbol	Parameter Test conditions		Min	Тур	Max	Unit	
VCC (PD)	Power down supply voltage			2			V
VI (S1)	Chin coloct innut C	2.2V Vcc(PD)					V
VI (S1) Chip select input \$\overline{S}_1\$		2V Vcc(PD) 2.2V		Vcc(PD)		V	
V. (00)	Ohim and antinount On	4.5V Vcc(PD)				0.8	V
VI (S2)	Chip select input S2	Vcc(PD) < 4.5V				0.2	V
ICC (PD)	Power down supply current	11) S2	-L			50	
100 (12)	Towns down dappy dament	2) \$\overline{S}_1\$ Vcc - 0.2V,\$\overline{S}_2\$ Vcc - 0.2V other inputs = 0~3V	-LL		0.3	10 (Note 7)	μA

Note7: Icc (PD) = 1μ A in case of Ta = 25° C

(2) TIMING REQUIREMENTS (Ta = 0~70°C, unless otherwise noted)

Cumbal	Symbol Parameter	Test conditions		1.114		
Symbol			Min	Тур	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms

(3) POWER DOWN CHARACTERISTICS

S₁ control mode

S₂ control mode

