

#### LÓGICA PROPOSICIONAL

Prof. Jonathan Gil Müller



#### Escopo da disciplina:

Unidade 1:
INTRODUÇÃO À
LOSICA

O at en legica?

O at en legica?

Histórico e evolução.

Unidade 2:

#### LÓGICA PROPOSICIONAL

- >> Introdução: proposições, princípios, operadores lógicos;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: (a) tabelas verdade, (b) método da refutação, (c) dedução formal
- >> Formalização de problemas.

Unidade 3:

#### LÓGICA DE PREDICADOS

- >> Introdução;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: dedução formal;
- >> Formalização de Problemas.

Unidade 4:

FORMALIZAÇÃO DE PROGRAMAS E SISTEMAS DE COMPUTAÇÃO SIMPLES

>> PROgramming in LOGic (PROLOG)



Existem **três classificações** para uma fórmula lógica, ou seja, ela pode ser:

a) Tautológica: diz-se que uma fórmula é tautológica (ou uma tautologia) se a interpretação da fórmula for sempre V, quaisquer que sejam as interpretações de suas subfórmulas.

Em outras palavras, uma fórmula  $\alpha$  é uma tautologia (ou é válida) se e somente se, para toda interpretação I,  $I[\alpha] = V$ ;



Exemplo de tautologia:  $(P \land Q) \rightarrow (P \lor Q)$ 

| (P | ٨ | Q) | $\rightarrow$ | (P | V | Q) |  |  |  |  |  |  |
|----|---|----|---------------|----|---|----|--|--|--|--|--|--|
| V  | V | V  | V             | V  | V | V  |  |  |  |  |  |  |
| V  | F | F  | $\vee$        | V  | V | F  |  |  |  |  |  |  |
| F  | F | J  | $\vee$        | F  | V | V  |  |  |  |  |  |  |
| F  | F | F  | V             | F  | F | F  |  |  |  |  |  |  |





 b) Contraditória: diz-se que uma fórmula é contraditória (ou é insatisfatível) se a interpretação da fórmula for sempre F, quaisquer que sejam as interpretações de suas subfórmulas.

Em outras palavras, uma fórmula  $\alpha$  é contraditória se, e somente se, para toda interpretação I,  $I[\alpha] = F$ .



Exemplo de contradição: (P ↔ ~Q) ^ (P ^ Q)

| (P | $\leftrightarrow$ | 4 | Q) | ٨ | (P | ۸ | Q) |  |  |  |  |
|----|-------------------|---|----|---|----|---|----|--|--|--|--|
| V  | Ľ                 | F | V  | F | V  | V | V  |  |  |  |  |
| V  | V                 | V | F  | F | V  | F | F  |  |  |  |  |
| F  | V                 | F | V  | F | F  | F | V  |  |  |  |  |
| F  | F                 | V | F  | F | F  | F | F  |  |  |  |  |
|    |                   |   |    |   |    |   |    |  |  |  |  |



c) Satisfatível: diz-se que uma fórmula é satisfatível (ou contingente ou factível) se a interpretação da fórmula for V para algumas interpretações de suas subfórmulas e F para outras.

Em outras palavras, uma fórmula  $\alpha$  é satisfatível se, e somente se, existir interpretações tais que  $I[\alpha] = V$  e  $I[\alpha] = F$ .







- 1. As fórmulas da lógica proposicional possuem propriedades semânticas. Sendo assim:
  - a) O que significa dizer que uma fórmula é tautológica (ou uma tautologia, ou válida)?
  - b) O que significa dizer que uma fórmula é contraditória (ou insatisfatível)?
  - c) O que significa dizer que uma fórmula é satisfatível (ou contingente, ou factível)?

#### **RESPOSTAS:**

- a) O que significa dizer que uma fórmula é tautológica (ou uma tautologia, ou válida)?
- R.: Uma fórmula é tautológica se a interpretação da fórmula for sempre V, quaisquer que sejam as interpretações das suas sub-fórmulas.
- b) O que significa dizer que uma fórmula é contraditória (ou insatisfatível)?
- R.: Uma fórmula é contraditória se a interpretação da fórmula for sempre F, quaisquer que sejam as interpretações das suas sub-fórmulas.
- c) O que significa dizer que uma fórmula é satisfatível (ou contingente, ou factível)?
- R.: Uma fórmula é satisfatível se a interpretação da fórmula for V para algumas interpretações das suas sub-fórmulas e for F para outras.



2. Considere a tabela verdade das fórmulas abaixo. Para quais fórmulas é possível afirmar: é tautológica, é contraditória, é satisfatível? Justifique sua resposta.

a)

| $\neg$ | Р | $\rightarrow$ | true |
|--------|---|---------------|------|
| F      | V | V             | V    |
| V      | F | V             | V    |

b)

|   | ((P | <b>V</b> | Q) | $\rightarrow$ | (P | $\rightarrow$ | Q)) |
|---|-----|----------|----|---------------|----|---------------|-----|
| F | V   | V        | V  | V             | V  | V             | V   |
| F | F   | F        | F  | V             | F  | V             | F   |
| V | V   | V        | F  | F             | V  | F             | F   |

C)

| (P | ٨ | Q) | $\leftrightarrow$ | (P | $\rightarrow$ | J | (Q | <b>V</b> | J | P)) |
|----|---|----|-------------------|----|---------------|---|----|----------|---|-----|
| V  | V | V  | F                 | V  | F             | F | V  | V        | F | V   |
| F  | F | F  | F                 | F  | V             | F | F  | V        | V | F   |

#### **RESPOSTAS:**

- a) R.: É tautológica, para todas as interpretações das suas sub-fórmulas, a interpretação da fórmula é sempre V.
- b) R.: É satisfatível, para algumas interpretações das suas sub-fórmulas, a interpretação da fórmula é V e para outras a interpretação da fórmula é F.
- R.: Não é possível determinar se a fórmula é contraditória ou satisfatível, pois não se tem determinadas todas as interpretações da fórmula.

Para determinar se uma fórmula é tautológica, contraditória ou satisfatível pode-se usar os seguintes métodos:

- a) tabela-verdade;
- b) método da negação ou da refutação (absurdo).
- Observa-se que esses métodos são equivalentes entre si, mas, dependendo da fórmula, um método pode se mostrar mais eficiente do que outro.



A interpretação de uma fórmula também pode ser descrita através do método da refutação (SOUZA, 2002, p. 51):

- 1º passo: considerar inicialmente a negação daquilo que se pretende demonstrar;
- 2º passo: utilizar um conjunto de deduções para concluir um absurdo, atribuindo valores aos símbolos verdade, símbolos proposicionais e conectivos proposicionais, na ordem "inversa" a da construção da tabela verdade;
- 3º passo: caso se obtenha um **absurdo**, a conclusão é que a suposição inicial é falsa. Caso contrário, nada se pode concluir sobre a suposição inicial.



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

<u>1º passo</u>: negar α, ou seja, considerar que α não é válida atribuindo-se o valor  $\mathbf{F}$  à fórmula;

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

3º passo: caso se obtenha um absurdo, α não pode ter o valor **F**. Ou seja, a suposição inicial é falsa, logo α é uma tautologia. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.





1º passo: negar α, ou seja, considerar que α não é válida atribuindo-se o valor **F** à fórmula;

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \longrightarrow (P \rightarrow R)$$



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Como 
$$I[\alpha] = F$$
, então

• 
$$I[(P \rightarrow Q) \land (Q \rightarrow R)] = V$$

• 
$$I[(P \rightarrow R)] = F$$

| ((P | $\rightarrow$ | Q) | ٨ | (Q | $\rightarrow$ | R)) | $\rightarrow$ | (P | $\rightarrow$ | R) |
|-----|---------------|----|---|----|---------------|-----|---------------|----|---------------|----|
|     |               |    | V |    |               |     | F             |    | F             |    |



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

 A partir desse valores de verdade, podemos obter os valores de verdade das subfórmulas

| ((P | $\rightarrow$ | Q) | ٨ | (Q | $\rightarrow$ | R)) | $\rightarrow$ | (P | $\rightarrow$ | R) |
|-----|---------------|----|---|----|---------------|-----|---------------|----|---------------|----|
|     | V             |    | V |    | V             |     | F             | V  | F             | F  |



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Então podemos concluir que I[P] = V e I[R] = F

| ((P | $\rightarrow$ | Q) | ٨ | (Q | $\rightarrow$ | R)) | $\rightarrow$ | (P | $\rightarrow$ | R) |
|-----|---------------|----|---|----|---------------|-----|---------------|----|---------------|----|
| V   | V             |    | V |    | V             | F   | F             | V  | F             | F  |



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

- A partir da subfórmula (P → Q), concluimos que I[Q] = V
- A partir da subfórmula (Q → R), concluimos que I[Q] = F





| ((P | $\rightarrow$ | Q) | ٨ | (Q | $\rightarrow$ | R)) | $\rightarrow$ | (P | $\rightarrow$ | R) |
|-----|---------------|----|---|----|---------------|-----|---------------|----|---------------|----|
| V   | V             | V  | V | F  | V             | F   | F             | V  | F             | F  |



Para verificar se uma fórmula  $\alpha$  é tautológica, deve-se:

3º passo: caso se obtenha um absurdo, α não pode ter o valor **F**. Ou seja, a suposição inicial é falsa, logo α é uma tautologia. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.

Exemplo: 
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

- A partir da subfórmula (P → Q), concluimos que I[Q] = V
- A partir da subfórmula (Q → R), concluimos que I[Q] = F

LSA!





| ((P | $\rightarrow$ | Q) | ٨ | (Q | $\rightarrow$ | R)) | $\rightarrow$ | (P | $\rightarrow$ | R) |
|-----|---------------|----|---|----|---------------|-----|---------------|----|---------------|----|
| V   | V             | V  | V | F  | V             | F   | F             | V  | F             | F  |





# Mais alguns exercícios!

Questão 03 da Lista 03...





Questão 3:

a) 
$$(P \rightarrow R) \rightarrow (P \rightarrow R)$$
  $\varepsilon$  toutologic



| (P | <b>→</b> | B) | <b>→</b> | (P | <b>→</b> | R)    |  |
|----|----------|----|----------|----|----------|-------|--|
| V  | $\vee$   |    | F        | V  | F        | (F) A |  |
| 6  | 2        | 7  | 4        | 4  | 3        | 5     |  |

b) 
$$(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$$
 E turble

| (P | <b>→</b> | (9) | <b>─&gt;</b> | ((P | <b>→</b> | <b>—</b> |    | <u>_</u> | 一一 | P |
|----|----------|-----|--------------|-----|----------|----------|----|----------|----|---|
| V  | V        |     | Ľ            | V   |          | V        | F  | F        | F  | V |
| 7  | 2        | B   | 4            | 9   | 4        | 1D       | 11 | 3        | 5  | 6 |

FURB

c)  $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ 

| No. 19 |          |      |   | 38-3  |      |      |     | 5.00  |      | 100  |    |
|--------|----------|------|---|-------|------|------|-----|-------|------|------|----|
| 1000   | The same | A 45 | 3 | 77/46 | 15-6 | 1500 | 38% | 19.50 | 1995 | MIN. | 35 |

d) 
$$\neg ((P \rightarrow (Q \land \neg Q)) \land P)$$



| ٦ | ((P | ~ | (Q | ٨ | 7 | Q)) | Λ | P |
|---|-----|---|----|---|---|-----|---|---|
| F | V   | V |    | V | V | E   | V | V |
| 1 | 5   | 4 | 7  | 6 | 8 | 5   | 2 | 3 |

e) 
$$((P \rightarrow (Q \rightarrow R)) \land (P \land \neg R)) \rightarrow \neg Q$$

|      | 100  | THE SE | Takes in | 562 110 | 4178 | N/NES | 4-135 |       |     | I BOY | hairi . |
|------|------|--------|----------|---------|------|-------|-------|-------|-----|-------|---------|
| 1000 | 3.75 |        |          | 100     |      | 7     |       | TAP 8 | 408 |       |         |

f)  $((P \rightarrow Q) \land (R \rightarrow S)) \rightarrow ((P \land R) \rightarrow (Q \land S))$ 

| - 400 | 5 MB |  |  |      | Total S | Tree | WARE | 100 |     |    |
|-------|------|--|--|------|---------|------|------|-----|-----|----|
| 3 4 7 |      |  |  | TYLE |         |      | V    |     | - X | 沙里 |



g) 
$$(P \lor Q) \leftrightarrow (Q \lor P)$$
  $\in$  toutelepus

|         | (P | V   | (Q) | <b>(*)</b> | (Q | V | P) |          |
|---------|----|-----|-----|------------|----|---|----|----------|
| 1° ( 0) | F  | (V) | F   | F          | F  | F | F  |          |
| 1-6020  | 6  | 2   | 7   | 1          | 4  | 3 | 5  | 35.7     |
|         |    | F   | #   | F          | E  |   | F  | 16 sundo |
| 22000   | 3  | 2   | 4   | 1          | 5  | 3 | 6  | 35.5     |

h) 
$$(P \land Q) \leftrightarrow (Q \land P)$$

| 188 |       |        |        |     | 19.3       |
|-----|-------|--------|--------|-----|------------|
|     |       | 8-15   | Resid  |     | The second |
|     | H-105 | 774    | 1 Buch |     |            |
|     | 715   | TITLE. | Part I | 300 | 25.3       |





| 18 18    |     |      |  |      | THE REAL PROPERTY. |
|----------|-----|------|--|------|--------------------|
|          |     |      |  |      |                    |
|          |     |      |  | -    |                    |
| With the | 200 | IL S |  | 35.3 |                    |

$$j) \quad (P \to (Q \to R)) \leftrightarrow ((P \land Q) \to R)$$

|     |     | A Cir. |     | 400 |           |   | No. Pr  |         |       |
|-----|-----|--------|-----|-----|-----------|---|---------|---------|-------|
| TRA |     | Hit    |     | 5   | Treasure. |   | W.      |         | MES I |
|     |     |        |     |     | TEXA      | 4 |         | THE CO. |       |
| 744 | į į |        | 700 | 44  | اجبت      |   | Server. |         |       |

Para verificar se uma fórmula  $\alpha$  é contraditória, deve-se:

1º passo: negar α, ou seja, considerar que α é válida atribuindose o valor  $\mathbf{V}$  à fórmula;

 $2^{\circ}$  passo: fazer deduções sobre  $\alpha$  para concluir um absurdo;

3º passo: caso se obtenha um absurdo, α não pode ter o valor V. Isto é, a suposição inicial é falsa, logo α é contraditória. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.





Questão 4:





b)  $P \wedge (Q \wedge \neg P)$ 



c)  $(P \wedge Q) \wedge \neg P$ 











e)  $\neg ((P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow ((P \lor Q) \rightarrow R)))$ 

| 1000 |      | May 19 |     |      |         | <b>486</b> |      |      | # 15 S | 100 | emi) | 1 |      |
|------|------|--------|-----|------|---------|------------|------|------|--------|-----|------|---|------|
| 1.00 | 1881 | Pas.   | 200 | 28 M | Marine. | 1100       | HALL | HUNT |        | W.  |      |   | 1000 |

f)  $\neg (((P \land Q) \rightarrow R) \rightarrow ((P \rightarrow R) \lor (Q \rightarrow R))) \in Contraction$ 

| つ((( | Р  | Λ   | Q) | 7 | $ R\rangle$ | <b>-</b> |   | <b>→</b> | R) | V | (Q | <b>-</b> | (((3)) |
|------|----|-----|----|---|-------------|----------|---|----------|----|---|----|----------|--------|
| V    | V  | (F) | \_ | V | F           | F        | V | F        | F  | F | V  | F        | F      |
| 4    | 13 | 12  | 14 | 3 | 11          | 2        | F | 5        | 8  | 4 | 9  | 6        | (D)    |

g) 
$$\neg (((P \rightarrow (Q \lor R)) \land (\neg R \land \neg Q)) \rightarrow \neg P)$$



| 400 | 91 | 188 |  | 180  |  |  |     |      | Sec. | Mr. |
|-----|----|-----|--|------|--|--|-----|------|------|-----|
| 1   |    |     |  | 6475 |  |  | 90% | 87.5 | M. C | 376 |

h) 
$$\neg (P \land (Q \land \neg P)) \rightarrow ((P \land Q) \land \neg P)$$

| 4.0  | 1000   | E.         | 580 K | Wit. | 400 | MAG. |          |       | 31//16 | 918° |      | 31.00 |
|------|--------|------------|-------|------|-----|------|----------|-------|--------|------|------|-------|
| 07/5 |        |            |       |      |     |      | The same | 774   | 9.3    |      | NAW) |       |
|      | N 2 18 |            | 46.46 | HIL) |     | 5118 |          | 0.39  |        |      | 610  |       |
|      |        |            | W Y   |      |     |      | wall     |       | JB A   |      | N. H |       |
| 1113 |        | 51.0       |       |      | 377 |      |          | TO LO |        | 1000 |      | A A A |
| Hw   |        | The second |       |      |     |      |          | Dist  |        |      |      |       |





|  | 100 |   |       |   | 1     | TO THE  |     |   |
|--|-----|---|-------|---|-------|---------|-----|---|
|  |     | 1 | Sec.  |   | 965   | 9 19    | 989 |   |
|  |     |   |       | 2 | 11 12 | W.      |     | 2 |
|  |     |   | ILSS. |   |       | Time or |     |   |

$$\mathsf{j)} \ \neg ((\mathsf{P} \to \mathsf{Q}) \to (((\mathsf{P} \land \mathsf{Q}) \leftrightarrow \mathsf{P}) \land ((\mathsf{P} \lor \mathsf{Q}) \leftrightarrow \mathsf{Q})))$$

| 1000 | 100 | 168 | 683   |   | MT F  |      |   |     |        |    |      |      |        |        |       |
|------|-----|-----|-------|---|-------|------|---|-----|--------|----|------|------|--------|--------|-------|
|      | 1   |     |       |   | HAY   | M.A. |   |     |        |    | 72"  |      | 1      |        | 81/11 |
|      |     |     | 11200 |   |       |      |   |     | Seed 6 |    | 3,88 | ALC: | -      | 784    | MAR   |
|      |     |     | 보석    |   | 11.45 |      | + | 35. |        | 70 |      | 1300 | of the | My 4   |       |
|      |     |     |       |   |       |      |   |     |        |    |      |      |        | d vari |       |
|      |     |     |       | - |       |      |   |     |        |    |      |      |        |        | OF P  |



#### Questão 5:





| ı |     |      |         |            |     |   |          |      |     |
|---|-----|------|---------|------------|-----|---|----------|------|-----|
|   | 200 | 4.73 | 3 to 10 | A District | 100 |   | AL SU    |      | SAL |
|   | *   | 200  | 384     |            | 173 | 7 | III-F. A | -3.8 | 168 |

c) c) 
$$\neg(\neg((P \land Q) \land \neg P))$$

| Yell |  |  |     |       |
|------|--|--|-----|-------|
|      |  |  | A E | 15-24 |







e) e) 
$$\neg (((P \land \neg (\neg Q \leftrightarrow R)) \land (\neg R \land (\neg S \to Q))) \to (S \land P))$$



f) f) 
$$((P \rightarrow Q) \land (\neg(\neg Q \leftrightarrow R) \land ((\neg S \rightarrow \neg R) \land ((S \rightarrow (Q \land T)) \land \neg T)))) \rightarrow \neg P$$



g)

| 1    | 476 |      |      |    | 183 h |      |        |  |
|------|-----|------|------|----|-------|------|--------|--|
|      | -   | 4.00 | 485  |    | 1     | 1    |        |  |
| N. H |     | ZE   | T ST |    |       | -    |        |  |
|      |     |      |      | BY | T.E.  | 1000 | Dr. vi |  |

h)





| i)    |                 |     |      |      |     |     |       |   |     |      |       |      |  |
|-------|-----------------|-----|------|------|-----|-----|-------|---|-----|------|-------|------|--|
|       |                 |     |      |      |     |     |       |   |     |      |       |      |  |
| 11.75 |                 | -35 | 0.0  | 1000 |     |     | 700   |   | 950 | 1997 | 1000  |      |  |
| 100   |                 |     | 03/3 |      |     | 450 |       |   |     | 4    |       |      |  |
|       | <b>=</b> 10   N |     | 1990 | 400  | 4   |     | 60 to | - | 477 |      | 100   | 2000 |  |
| 10.0  | 1               |     | AT U | Fig. | RES |     |       |   |     |      | F 100 | WE   |  |