CORSO DI OTTIMIZZAZIONE

Prova scritta dell'11 Gennaio 2013

Tempo a disposizione: ore 2:30.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- $\bullet\,$ Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 3, la risposta occupi al massimo 10 righe)

Si dia una definizione del concetto di *preflusso*, spiegandone brevemente il ruolo negli algoritmi per problemi di flusso visti durante il corso.

Esercizio 2. (Punti 8)

Un'azienda ha a disposizione n operai e ha bisogno di svolgere m attività diverse. Basta che un operaio si dedichi ad un'attività perché quest'ultima possa ritenersi completata. Diversi operai impiegano tempi diversi per svolgere la stessa attività; indichiamo quindi con c_{ij} il costo che l'azienda sostiene nel far svolgere l'attività j all'operaio i, dove $i \in \{1, \ldots, n\}$ e $j \in \{1, \ldots, m\}$. Occorre ovviamente che tutte le attività siano svolte. Inoltre, l'operaio i non può svolgere più di b_i attività diverse, per ragioni contrattuali. Si formuli il problema di minimizzare il costo complessivo sostenuto dall'azienda come problema PLI.

Esercizio 3. (Punti 8)

Si risolva tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\max x_1 - 2x_2$$

$$x_2 \ge x_1 - 2$$

$$x_2 \le 6 - x_1$$

$$x_2 \le x_1 + 2$$

$$x_1 \ge 1$$

$$x_2 \ge 1$$

Si parta dalla base ammissimile $B = \{4, 5\}.$

Esercizio 4. (Punti 8)

Si determini il flusso massimo tra s e t nel seguente grafo, utilizzando l'Algoritmo di Edmonds e Karp.

Esercizio 5. (Punti 3, la risposta occupi al massimo 15 righe)

Si enunci il Teorema di decomposizione dei poliedri (o Teorema di Motzkin) e se ne descriva il ruolo nella geometria della programmazione lineare.