EK 'Risikoanalysen in der IT'

Fehlerbaumanalyse

Ralf Mock, 2. November 2015

Lernziele

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Die Teilnehmenden können

- einen qualitativen Fehlerbaum erstellen
- die Grundlagen der Booleschen Systemanalyse skizzieren
- einen quantitativen Fehlerbaum erstellen und berechnen
- einfache Fehlerbaumanalysen konzipieren und die Ergebnisse einschätzen.

Uscher Fachbochschule 2/25

Lernziele

andere Bezeichnungen: Fault Tree Analusis, FTA

Fehlerbaum Problematik

Begriffe und Symbole Boolesche Algebra qualitatives Beispiel Quantifizierung quantitatives Beispiel Algorithmus

Tools

Literatur

Problematik

- ► In komplexen Systemen lassen sich (Fehler-)Ursachen, die zu unerwünschten Ereignissen (Ausfälle) führen können, nicht über "Brainstorming" erkennen.
- ➤ Für hochzuverlässige oder "einzigartige" Systeme (z.B. Prototypen) gibt es kaum Zuverlässigkeits- oder andere statistischen Daten (Analyse als "black box" nicht möglich).

Uscher Fachbochschule 3/25

Lernziele

Fehlerbaum Problematik

Begriffe und Symbole Boolesche Algebra qualitatives Beispiel Quantifizierung quantitatives Beispiel Algorithmus

Tools

Literatur

Top-event

- ► Allgemein: Systemausfall
- speziell: Ausfall bestimmter Funktionen, die einem Systemausfall gleichkommen, z.B. Bersten eines Gastanks.

Ereigniskombinationen

Verknüpfungen bilden die logische Struktur des betrachteten Systems bzw. des daraus abgeleiteten Modells (Fehlerbaum) mit:

- ► Ereigniseingängen:Art der Ereignisse
- ▶ logischen Verknüpfungen: UND, ODER, NICHT
- **Ereignisausgängen:** Ereignisfolgen.

Die Regeln der Verknüpfungen sind durch Boolesche Algebra festgelegt.

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Symbole für die logischen Verknüpfungen

Symbol (dt. Sprachraum)		Symbol (angelsäch. Sprachraum)	Benennung
≥ 1 DIN 25 424		a o	ODER-Verknüpfung logische Vereinigung ■ Mengealgebra: a ∪ b ■ Logik: a ∨ b
& DIN 25 424		AND	UND-Verknüpfung logischer Durchschnitt • Mengealgebra: a ∩ b • Logik: a ∧ b

Literatur: [1, 4, 5]

20cm f sathodoshda

Lernziele

Fehlerbaum

Problematik

Begriffe und Symbole

Boolesche Algebra

qualitatives Beispiel

Quantifizierung

quantitatives Beispiel

Algorithmus Tools

Literatur

Symbole zur Beschriftung

Symbol Benennun		Symbol	Benennung
T Text	Bezeichnung des "top event"	\Diamond	nicht weiter entwickeltes Ereignis
Text	Kommentar, Beschreibung		Transfer zu einem separaten Fehlerbaum
	Basisereignis		Transfer von einem separaten Fehlerbaum

20x1xx Fathbounthis

Lernziele

Fehlerbaum

Problematik

Begriffe und Symbole

Boolesche Algebra

qualitatives Beispiel

Quantifizierung

quantitatives Beispiel

Algorithmus

Literatur

Wahrheitsbedingungen

- ► UND: Ein Ereignis ist wahr, wenn alle Eingangsereignisse wahr sind (zutreffen)
- ➤ ODER: Ein Ereignis ist wahr, wenn mindestens eines der Eingangsereignisse wahr ist (zutrifft)

Boolesche Logik im Fehlerbaum

Ein Fehlerbaum

- ▶ ist die grafische Darstellung einer Booleschen Gleichung
- zeigt nur Ausfälle (Fehler)
- zeigt keine Ereignisreihenfolge
- ist zeitlos
- wird quantitativ, indem jedem Basisereignis eine Ausfallwahrscheinlichkeit zugeordnet wird
- kann nur über die Boolesche Algebra korrekt berechnet werden!

7/25

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Theorie und Berechnung eines Fehlerbaumes

Gesucht:

Vorgehensweise, um mit einem Fehlerbaum die Ausfallwahrscheinlichkeit eines Systems zu berechnen.

▶ Einsetzen:

Ausfallwahrscheinlichkeiten der Basisereignisse

▶ Problem

- Die Booleschen UND- und ODER-Operatoren lassen sich nicht direkt durch die Multiplikations- und Additionsoperatoren · und + ersetzen.
- Eine Boolesche Funktion muss (oft) erst in eine Form überführt werden, die dieses Ersetzen erlaubt.

Unified Flashborholdule 8 / 25

Lernziele

Fehlerbaum

Problematik Begriffe und Symbole Boolesche Algebra qualitatives Beispiel

Quantifizierung quantitatives Beispiel Algorithmus

Tools

Literatur

Boolesche Logik Boolesche Variable

 $X = \begin{cases} L : \text{ Zustand erfüllt} \\ O : \text{ Zustand } nicht \text{ erfüllt} \end{cases}$

Boolesche Operatoren

- ▶ UND: \land , \cap (Anm.: Wird in Funktionen oft weggelassen, z.B. $X \land Y \equiv XY$)
- ▶ ODER: ∨, ∪

Boolesche Axiome (Schaltalgebra)

symbolisch	Beschreibung	symbolisch	Beschreibung
$ \begin{array}{l} X \wedge Y = Y \wedge X \\ X \vee Y = Y \vee X \end{array} $	kommutative Gesetze	$\frac{\overline{\overline{X}}}{\overline{O}} = X$ $\overline{\overline{O}} = 1; \overline{L} = 0$	Verneinungsgesetze
$X \wedge Y \wedge Z = (X \wedge Y) \wedge Z$ $X \vee Y \vee Z = (X \vee Y) \vee Z$	assoziative Gesetze	$ \begin{pmatrix} \overline{X} \wedge \overline{Y} \\ \overline{X} \vee \overline{Y} \end{pmatrix} = \overline{X} \vee \overline{Y} \\ \overline{X} \vee \overline{Y} $	de-Morgansches Gesetz
$X \land (Y \lor Z) = (X \land Y) \lor (X \land Z)$ $X \lor (Y \land Z) = (X \lor Y) \land (X \lor Z)$	distributive Gesetze	$ \begin{array}{l} O \land X = O \\ L \lor X = L \end{array} $	Extremalgesetze
$ \begin{array}{c} X \wedge X = X \\ X \vee X = X \end{array} $	Idempotenzgesetze	$ L \land X = X \\ O \lor X = X $	Neutralitätsgesetze
$X \wedge (X \vee Y) = X$ $X \vee (X \wedge Y) = X$	Absorptionsgesetze	$X \lor \left(\overline{X} \land Y\right) = X \lor Y$ $X \land \left(\overline{X} \lor Y\right) = X \land Y$	
$ \begin{array}{c} X \wedge \overline{X} = O \\ X \vee \overline{X} = L \end{array} $	Komplementärgesetze		

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel

Algorithmus

Literatur

Vorgehensweise: Kanonische Darstellung einer Booleschen Funktion

- ▶ **Problem 1:** Vom Zustand $X = x_i$ zur Wahrscheinlichkeit $Pr(X = x_i)$
- Problem 2: ODER-Verknüpfung: $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ und damit gilt $Pr(A \cup B) \neq Pr(A) + Pr(B)$
- ► Ansatz: gegebene Boolesche Funktion ⇒ Erweiterung in Normalform ⇒ lineare Systemfunktion
- ➤ Vorgehensweise: Erweiterung einer Booleschen Funktion mit ODER-Verknüpfung, dass eine Summe von sog. Mintermen entsteht.

uniter Fashbohishule 10 / 25

Lernziele

Fehlerbaum

Problematik Begriffe und Symbole

Boolesche Algebra

qualitatives Beispiel

Quantifizierung quantitatives Beispiel

Algorithmus

Literatur

Kanonische Darstellung Boolescher Funktionen

Disjunktive Normalform (DN)

$$K_0 \vee K_1 \vee \cdots \vee K_{n-1} = \bigvee_{i=0}^{n-1} K_i$$

 K_i : Konjunktionsterm, z.B. $x \wedge y$ aus einfachen oder negierten Booleschen Variablen

Beispiel 1: Exklusiv-ODER

$$f(x_0, x_1) = (x_0 \wedge \overline{x}_1) \vee (\overline{x}_0 \wedge x_1)$$

▶ Ausgezeichnete DN (ADN): in jedem K_i kommt jede Variable genau einmal vor (einfach oder negiert). Eine solche Konjunktion wird Minterm MI genannt.

Beispiel 2: Erweiterung mit "1": $X \vee \overline{X} = L$

$$\begin{array}{lcl} x_0 \vee \overline{x}_1 & = & x_0(x_1 \vee \overline{x}_1) \vee \overline{x}_1(x_0 \vee \overline{x}_0) \\ & = & x_0 x_1 \vee x_0 \overline{x}_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1 \, | \text{Idempotenzgesetz} \\ & = & x_0 x_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1 \end{array}$$

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel

Algorithmus

Literatur

Vertiefung des Beispiels $x_0 \vee \overline{x}_1$

- ▶ Überführung der Booleschen Gleichung in die ADN $x_0 \vee \overline{x}_1 = x_0 x_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1$
- ▶ Die ADN enhält drei Minterme MI $MI_1 = x_0x_1$; $MI_2 = x_0\overline{x}_1$; $MI_3 = \overline{x}_0\overline{x}_1$
- "Summenproblem" ist gelöst, denn die paarweise Verknüpfung von Mintermen ergibt null, d.h.

$$MI_1 \wedge MI_2 = x_0 x_0 x_1 \overline{x}_1 = 0$$

$$MI_1 \wedge MI_3 = x_0 \overline{x}_0 x_1 \overline{x}_1 = 0$$

$$MI_2 \wedge MI_3 = x_0 \overline{x}_0 \overline{x}_1 \overline{x}_1 = 0$$

$$\Rightarrow x_0 \mathbf{1} \vee \overline{x}_1 = x_0 x_1 + x_0 \overline{x}_1 + \overline{x}_0 \overline{x}_1$$

Quelle: [6]

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Verfahren der Quantifizierung

Es gibt viele Verfahren, um den Umgang mit Booleschen Systemfunktionen zu vereinfachen. Beispiele sind:

- ► Fehlerbäume
- ► Zuverlässigkeitsblockdiagramme ZBD
- ► Minimalschnitte und -pfade
- ► Funktionstabellen

20cher Fachbochschale 13/2

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Einfaches qualitatives Beispiel

Dr. M. möchte um Mitternacht in seinem Büro einen Bericht lesen. Er benötigt eine Lesebrille; eine Ersatzbrille ist im Schreibtisch eingeschlossen.

0ucher Fashbohishule

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Einführung über das Zuverlässigkeitsblockdiagramm (ZBD)

- ▶ Ein ZBD zeigt das *Funktionieren* eines Systems
- Es ist, wie der Fehlerbaum, eine grafische Darstellung einer Booleschen Gleichung
- ► Es besteht aus Modulen (Teilsystemen)
 - Seriensystem: Das Teilsystem funktioniert, wenn alle Elemente funktionieren (≡ fällt aus, wenn eines der Elemente ausfällt)
 - Parallelsystem: Das Teilsystem funktioniert, wenn eins der Elemente funktioniert ≡ fällt aus, wenn alle Elemente ausfallen)
- \blacktriangleright Ein ZBD hat einen Eingang E und einen Ausgang A

Literatur: [3]

refer Fishhoorishile 15/25

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Beispiel eines ZBD

Das System funktioniert, wenn Komponenten (1 ODER 4) funktionieren UND (1 ODER 5) UND ...(6 UND 7)

Anmerkung

- ► Im ZBD darf dieselbe Komponente (Element) mehrfach vorkommen
- ...: irgendwelche anderen Komponenten (hier nicht aufgeführt)

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

mathematische Notation

bisher:

$$X_i = \begin{cases} 1 & : & \text{Komponente } i \text{ funktioniert} \\ 0 & : & \text{Komponente } i \text{ funktioniert nicht (Ausfall)} \end{cases}$$

▶ neu Kurzform: $(X_i = 1) = x_i$; $(X_i = 0) = \overline{x}_i$, d.h.

$$X_i = \begin{cases} 1 : & \text{Komponente } i \text{ funktioniert } \equiv x_i \\ 0 : & \text{Komponente } i \text{ funktioniert nicht } \equiv \overline{x}_i \end{cases}$$

- ightharpoonup Überlebenswahrscheinlichkeit: $P(X_i = 1) = P(x_i) = p_i$
- ▶ Ausfallwahrscheinlichkeit: $P(X_i = 0) = P(\overline{x}_i) = q_i$

$$\Rightarrow p_i + q_i = 1$$
 bzw. $p_i = 1 - q_i$

Lernziele

Fehlerbaum Problematik

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel

Algorithmus

Literatur

Vergleich: Serien- und Parallelsystem mit 2 Komponenten

- Überleben: $X_S = x_1 \wedge x_2$
- Ausfall: $\overline{X}_{S} = \overline{x}_{1} \vee \overline{x}_{2}$

Seriensystem

- System-Überlebenswahrsch.:

$$R_{S} = P(X_{S}) = P(x_{1} \land x_{2})$$

$$= p_{1} \cdot p_{2}$$

$$= (1 - q_{1}) \cdot (1 - q_{2})$$

$$= 1 - q_{1} - q_{2} + q_{1} \cdot q_{2}$$

- System-Ausfallwahrsch.:

$$F_S = P(\overline{X}_S) = P(\overline{x}_1 \vee \overline{x}_2)$$

$$= P(\overline{x}_1) + P(\overline{x}_2) - P(\overline{x}_1 \wedge \overline{x}_2)$$

$$= q_1 + q_2 - q_1 \cdot q_2$$

$$\equiv 1 - p_1 \cdot p_2 = 1 - R_S$$

Parallelsystem

- Überleben: $X_P = x_1 \lor x_2$
- Ausfall: $\overline{X}_P = \overline{x}_1 \wedge \overline{x}_2$
- System-Ausfallwahrsch.:

$$F_P = P(\overline{X}_P) = P(\overline{x}_1 \wedge \overline{x}_2)$$

$$= q_1 \cdot q_2$$

$$= (1 - p_1) \cdot (1 - p_2)$$

$$= 1 - p_1 - p_2 + p_1 \cdot p_2$$

- System-Überlebenswahrsch.:

$$R_P = P(X_P) = P(x_1 \lor x_2)$$

$$= P(x_1) + P(x_2) - P(x_1 \land x_2)$$

$$= p_1 + p_2 - p_1 \cdot p_2$$

$$\equiv 1 - q_1 \cdot q_2 = 1 - F_P$$

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Fazit: von Boolescher Funktion zu linearer Arithmetik

- ▶ Die Zustände in einer Booleschen Funktion (und damit in einem Fehlerbaum!) lassen sich nicht 1:1 durch Wahrscheinlichkeiten ersetzen.
- Der Ubergang gelingt durch die konsequente Anwendung der Booleschen Algebra. Die Vorgehensweise ist formal richtig, aber umständlich
- ► **Gesucht:** Praxisnahe Näherungen und Vereinfachungen

Literatur: [2]

uniter Fashbohishule 19/25

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel

Algorithmus Tools

Literatur

Vereinfachungen

Kommt jedes Basisereignis im Fehlerbaum nur einmal vor, dann – und nur dann – lassen sich die Ausfallwahrscheinlichkeiten der Basisereignisse direkt einsetzen.

UND

2 Einheiten A_i ; i = 1,2

ODER

2 Einheiten
$$A_i$$
; $i = 1,2$

$$P(A_1 \wedge A_2) = P(A_1) \cdot P(A_2)$$

$$\begin{split} P(A_1 \lor A_2) &= P(A_1) + P(A_2) - P(A_1 \land A_2) \\ &\approx P(A_1) + P(A_2); \text{ falls } \approx P(A_i) \leq 10^{-2} \end{split}$$

n Einheiten
$$A_i$$
; $i = 1, 2, ..., n$

für $n \ge 3$ Einheiten $A_i; i = 1, 2, ..., n_i$ gilt nach Poincaré

$$P\left(\bigwedge_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P(A_{i})$$

$$P\left(\bigvee_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{\substack{i_{1},i_{2} \\ i_{1} < i_{2}}}^{n} P(A_{i1} \wedge A_{i2})$$

$$+ \sum_{\substack{i_{1},i_{2},i_{3} \\ i_{1} < i_{2} < i_{3}}}^{n} P(A_{i1} \wedge A_{i2} \wedge A_{i3}) + \dots$$

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel
Algorithmus

Tools

Literatur

Beispiel: Fehlerbaum Virenangriff auf PCD

Ein Internet-PC enhält wichtige Daten. Ein Ausfall, z.B. durch einen Virus, hat schwerwiegende Folgen für den Betrieb. Zur Kontrolle und Behebung einer Störung stehen ein SysAdmin sowie ein Pikett-Dienst zur Verfügung.

- ▶ Der folgende Fehlerbaum gibt im Ansatz einen Fehlerbaum wieder.
- ▶ Die verwendeten Ausfallwahrscheinlichkeiten sind fiktiv.

Uncher Fachbochschule 21/25

Lernziele

Fehlerbaum

Problematik Begriffe und Symbole Boolesche Algebra qualitatives Beispiel

Quantifizierung

quantitatives Beispiel Algorithmus

Tools

Literatur

Beispiel: Fehlerbaum Virenangriff auf PC

Vereinfacht nach $Pr(A \cup B) \approx Pr(A) + Pr(B)$: Ergebnis: $F = 4.175 \cdot 10^{-3}$

Boolesche Gleichung

$$\overline{y} = \left[\left(\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3 \right) \wedge \left(\overline{X}_4 \vee \overline{X}_5 \right) \right] \vee \left(\overline{X}_6 \vee \overline{X}_7 \right)$$
ausmultiplizieren

$$\boxed{ \overline{y} = \overline{X}_1 \overline{X}_4 \vee \overline{X}_1 \overline{X}_5 \vee \overline{X}_2 \overline{X}_4 \vee \overline{X}_2 \overline{X}_5 \vee \overline{X}_3 \overline{X}_4 \vee \overline{X}_3 \overline{X}_5 \vee \overline{X}_6 \vee \overline{X}_7}$$

ZBD: Serien-Parallel (SP)- und Seriensystem (S)

Berechnung über Module

$$R_{SP} = \prod_{i=1}^{6} (1 - q_{1i}q_{2i}) = [(1 - q_{1}q_{4})(1 - q_{1}q_{5})....etc]$$

$$R_s = (1 - q_6)(1 - q_7)$$

Ergebnis: $F = 1 - R_{SP} \cdot R_s = ... = 4.113 \cdot 10^{-3}$

Lernziele

Fehlerbaum

Problematik
Begriffe und Symbole
Boolesche Algebra
qualitatives Beispiel
Quantifizierung
quantitatives Beispiel

Algorithmus Tools

Literatur

Algorithmus: Vom Fehlerbaum zu Minimal-Schnitten

Beginnend beim Top Event werden die Eingänge notiert: beim UND werden alle Eingänge nebeneinander, beim ODER untereinander. Hier gibt es dann für jeden neuen Eingang eine neue Zeile, wobei der Rest erhalten bleibt. Beachte innerhalb einer

- Zeile: Idempotenzgesetz
- Spalte: Absorptionsgesetz $Z_1 \lor (Z_1 \land Z_2) = Z_1$

Beispiel

- ▶ 1. Schritt: (eine Zeile) $\{A, \overline{x}_3\}$
- ▶ 2. Schritt: ersetze ODER-Gatter A $\{\overline{x}_1, \overline{x}_3\}$ $\{\overline{x}_2, \overline{x}_3\}$ q.e.d.

inher Fachbothschile 23 / 25

Lernziele

Fehlerbaum Problematik

Begriffe und Symbole Boolesche Algebra qualitatives Beispiel Quantifizierung quantitatives Beispiel Algorithmus

Tools

Literatur

Tools (Auswahl)

- Microsoft Visio Professional; FTA Flow Chart (AND, OR Gates etc.; keine Berechnungen)
 - OpenFTA (open source)
- ► Windchill FTA (ehemals Relex Fault Tree)
- ▶ isograph: FaultTree+
- ▶ item: ITEM ToolKit
- ▶ BQR: FTA
- ▶ RiskSpectrum
- ► ALD Fault Tree Analyzer; browser-basiert
- ► LOGAN, Fault and Event Tree Analysis
- ▶ Bright Hub PM; EXCEL-Template; qualitativ

Outher Fashborischule 24 / 25

Literatur I

Lernziele

Fehlerbaum Problematik

Begriffe und Symbole Boolesche Algebra qualitatives Beispiel Quantifizierung quantitatives Beispiel

Algorithmus

Literatur

- DIN-25424T1: Fehlerbaumanalyse: Methode und Bildzeichen (DIN 25 424 Teil 1). Beuth Verlag, September 1981.
- DIN-25424Tz: Fehlerbaumanalyse: Handrechenverfahren zur Auswertung eines Fehlerbaumes (DIN 25 424 Teil 2).
 Beuth Verlag, April 1990.
- [3] DIN-EN61078: Techniken für die Analyse der Zuverlässigkeit: Verfahren mit dem Zuverlässigkeitsblockdiagramm (DIN EN 61078: 1994-10).
 Beuth Verlag, Oktober 1994.
- [4] ROBERTS, N. H., W. E. VESELY, D. F. HAASL and F. F. GOLDBERG: Fault Tree Handbook (NUREG-0492). U.S. Nuclear Regulatory Commission, Washington, D.C., 1981. http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf; visited: Feb. 9, 2012.
- [5] STAMATELATOS, M. and J. CARABALLO: Fault Tree Handbook with Aerospace Applications. Technical Report V. 1.1, NASA, Aug., 2002. http://www.hq.nasa.qov/office/codeg/doctree/fthb.pdf; visited: Sept. 2014.
- VDI-4008: Strukturfunktion und ihre Anwendung.
 Technical Report VDI-4008-Blatt 7, Beuth Verlag, Berlin, 1986.

25 / 25