Contents

ntroduction	2
Results	3
Gradient Edge Detection	3
1. Using Roberts	3
2. Using Sobel	4
3. Using Prewitt	4
Gaussian Edge Detection	4
Using Laplacian	5
Canny Edge Detection	
Comparisons	
Roberts vs Sobel vs Prewitt	6
Observations:	6
Laplacian vs Canny	7
Observations:	
	₇

Edge Detection

Introduction

Edge detection is when the edges or boundaries of objects in an image are found by determining where the image brightness changes drastically. It can be used to determine the object's structure in an image.

Edge detection can be done by gradient edge detection, Gaussian edge detection, or Canny edge detection.

Gradient-based Edge Detection Techniques:

- Robert's Operator
- Sobel Operator
- Prewitt Operator

Gaussian Edge Detection Technique:

Laplacian of Gaussian

The following sections are the results of the python program created to implement the aforementioned techniques and comparisons between them.

Figure 1 is the original image on which the edge detection methods where implemented.

Code can be found here:

https://github.com/yaraamrsalah/Edge-Detection-Image-Processing

Figure 1: Original Image

Results

Gradient Edge Detection

1. Using Roberts

2. Using Sobel

3. Using Prewitt

Gaussian Edge Detection

Using Laplacian

Canny Edge Detection

Comparisons

Roberts vs Sobel vs Prewitt

Gradient Edge Detection Techniques				
Technique	Advantages	Limitations		
		Very Noise-sensitive		
Robert's	Simplest technique			
		Frequent inaccurate edge detection		
		Noise-sensitive		
Sobel	Simple			
		Less frequent inaccurate edge detection		
		Noise-sensitive		
Prewitt	Simple			
		Less frequent inaccurate edge detection		

Observations:

Robert's Sobel Prewitt

According to the above results, the following observations can be conducted:

- Robert's operator detects less edges than Sobel and Prewitt.
- Robert's operator has the most noise and is the darkest of them all.
- Sobel and Prewitt provided almost identical results, with Prewitt seemingly slightly sharper.

Laplacian vs Canny

LoG vs Canny				
Technique	Advantages	Limitations		
Laplacian of Gaussian	Easy edge detection			
	Fixed characteristics in all directions	Very Noise-sensitive		
Canny	Best edge detection Minimal poise sensitivity	Complicated Time-consuming		
	Minimal noise sensitivity	False zero crossing		

Observations:

Canny

According to the above results, the following observations can be conducted:

- Laplacian of Gaussian is very unclear, the picture can barely be seen.
- Canny detected most of the edges accurately.