

Log Ingestor

A Logs Ingestion and Analysis System for Distributed Systems

Project - IT214 - Database Management System Prof. P M Jat

Group Members

- 1. Dhruv Jain 202301272
- 2. Jevik Rakholiya 202301276
- 3. Rujal Jiyani 202301277

- 1. 202301276 Jevik Rakholiya
- 2. 202301272 Dhruv Jain

 TimestampALl timestamp *Client IP AddressALl varchar •HTTP Method varchar •Event TypeALl int •End PointALl varchar •Status CodeAL1 int Startup timestamp

•Startup

timestamp

°MessageSCL2

Startup

varchar

timestamp

Projected and Minimal Functional Dependency

Cluster_Table(Server_ID, IP_Address, Log_Format, Location)

Projected Functional Dependency Set:

- Server_ID → IP_Address, Log_Format, Location

Minimal Functional Dependency Set:

- Server_ID \rightarrow IP_Address
- Server_ID → Log_Format
- Server_ID → Location

Server_ID_X_Logs(Startup, Shutdown, Cost, Server_ID) (X = 1,2,3,...)

Projected Functional Dependency Set:

- Startup → Shutdown, Cost, Server_ID

Minimal Functional Dependency Set:

- Startup → Shutdown
- Startup \rightarrow Cost
- Startup → Server_ID

Server_ID_X_Server_Logs(TimestampSLX, Temperature, Disk_Space_Usage, Memory_Space_Usage, CPU_Utilization, Startup)

Projected Functional Dependency Set:

 TimestampSLX → Temperature, Disk_Space_Usage, Memory_Space_Usage, CPU_Utilization, Startup

Minimal Functional Dependency Set:

- TimestampSLX → Temperature
- TimestampSLX → Disk_Space_Usage
- TimestampSLX → Memory_Space_Usage
- TimestampSLX → CPU_Utilization
- Timestamp $SLX \rightarrow Startup$

Server_ID_X_Production_Logs(TimestampPLX, Status_codePLX, MessagePLX, Developer ID, Process ID, Startup)

Projected Functional Dependency Set:

 TimestampPLX → Status_codePLX, MessagePLX, Developer_ID, Process_ID, Startup

Minimal Functional Dependency Set:

- TimestampPLX → Status_codePLX
- TimestampPLX → MessagePLX
- TimestampPLX → Developer ID
- TimestampPLX → Process_ID
- TimestampPLX → Startup

Server_ID_X_Security_Logs(TimestampSCLX, Client_IP_AddressSCLX, Security_Level, End_PointSCLX, Event_TypeSCLX, MessageSCLX, Startup)

Projected Functional Dependency Set:

 TimestampSCLX → Client_IP_AddressSCLX, Security_Level, End_PointSCLX, Event_TypeSCLX, MessageSCLX, Startup

Minimal Functional Dependency Set:

- TimestampSCLX → Client_IP_AddressSCLX
- TimestampSCLX → Security_Level
- TimestampSCLX → End PointSCLX
- TimestampSCLX → Event_TypeSCLX
- TimestampSCLX → MessageSCLX
- TimestampSCLX → Startup

Server_ID_X_Application_Logs(TimestampALX, Client_IP_AddressALX, HTTP_Method, Event_TypeALX, End_PointALX, Status_CodeALX, Startup)

Projected Functional Dependency Set:

 TimestampALX → Client_IP_AddressALX, HTTP_Method, Event_TypeALX, End_PointALX, Status_CodeALX, Startup

Minimal Functional Dependency Set:

- TimestampALX → Client_IP_AddressALX
- TimestampALX → HTTP_Method
- TimestampALX → Event_TypeALX
- TimestampALX → End_PointALX
- TimestampALX → Status CodeALX
- TimestampALX → Startup

BCNF Proof for Relational Schema

To prove that the given relational schema is in Boyce-Codd Normal Form (BCNF), we verify that for every relation, all non-trivial functional dependencies (FDs) have a superkey as their left-hand side (LHS).

Cluster_Table(Server_ID, IP_Address, Log_Format, Location)

- Primary Key: Server_ID
- FDs: Server_ID → IP_Address, Log_Format, Location

Since Server_ID is a candidate key, BCNF condition is satisfied.

Server_ID_X_Logs(Startup, Shutdown, Cost, Server_ID) (X = 1,2,3,...)

- Composite Primary Key: Startup
- FDs: Startup → Server_ID, Shutdown, Cost

LHS is a candidate key, so BCNF condition is satisfied.

Server_ID_X_Server_Logs(TimestampSLX, Temperature, Disk_Space_Usage, Memory_Space_Usage, CPU_Utilization, Startup)

- Primary Key: TimestampSLX
- FDs: TimestampSLX \rightarrow All other attributes

TimestampSLX is a candidate key, satisfying BCNF.

Server_ID_X_Production_Logs(TimestampPLX, Status_codePLX, MessagePLX, Developer_ID, Process_ID, Startup)

- Primary Key: TimestampPLX
- FDs: TimestampPLX \rightarrow All other attributes

BCNF condition is satisfied.

Server_ID_X_Security_Logs(TimestampSCLX, Client_IP_AddressSCLX, Security_Level, End_PointSCLX, Event_TypeSCLX, MessageSCLX, Startup)

- Primary Key: TimestampSCLX
- FDs: TimestampSCLX \rightarrow All other attributes

BCNF condition is satisfied.

Server_ID_X_Application_Logs(TimestampALX, Client_IP_AddressALX, HTTP_Method, Event_TypeALX, End_PointALX, Status_CodeALX, Startup)

- Primary Key: TimestampALX
- FDs: TimestampALX → All other attributes

TimestampALX is a candidate key, so BCNF is satisfied.

Conclusion:

All relations in the schema have functional dependencies where the left-hand side is a superkey. Therefore, the schema is in Boyce-Codd Normal Form (BCNF).