# Randomized Dimensionality Reduction for k-Means Clustering

Andrew Ma Chris Tang

### Randomized Dimensionality Reduction for k-means Clustering

- Authors
  - o Christos Boutsidis
  - Anastasios Zouzias
  - Michael W. Mahoney
  - Petros Drineas
- Date
  - 13 October 2011 (4 November 2014)
- Venue of publication
  - IEEE Transactions on Information Theory

#### Problem & Motivation

- Dimensionality Reduction
  - Reduce the number of features (random variables) considered
  - Union of two approaches
    - Feature selection
    - Feature extraction
- Motivation
  - Reduce space and time complexity

### Feature Selection

- Reduces R<sup>p</sup> to R<sup>d</sup>
- d << p



#### Feature Extraction

- Again, reduces R<sup>p</sup> to R<sup>d</sup> where d << p
- Construct smaller set of new features from current ones
- Restricts the dataset of features to linear transformations of the input dataset to output our dataset



### k-means Clustering (Intuitive)

- Goal
  - Minimize the averaged distances between the center points and points within each cluster K = 3
- Input
  - m (data points/sets of features)
  - k (number of clusters)
- Output
  - k clusters centered on k center points
- NP-complete
- Commonly solved with Lloyd's Algorithm



### k-means Clustering (Nitty-gritty)

- Indicator matrix
  - iff point i is in cluster j —
  - $\circ$   $X_{ii} = 1 / \sqrt{number of points in cluster j}$
- Given
  - Dataset  $A \in \mathbb{R}^{m \times n}$  (m data points wrt n features)
  - k clusters
- Output
  - Indicator matrix  $X_{OPT} \in \mathbb{R}^{mxk}$  which satisfies  $X_{OPT} = argmin \|A XX^TA\|_F^2$ .
  - Strange formatting!
    - $\mathbf{X} \in \mathcal{X}$
    - Viewed from a linear algebraic standpoint for later ease of manipulation

### V-approximate k-means

$$\min_{\mathbf{X} \in \mathcal{X}} \|\mathbf{A} - \mathbf{X} \mathbf{X}^T \mathbf{A}\|_F^2 = F_{\mathrm{opt}}$$

- Given
  - $\circ$  A  $\in$  R<sup>mxn</sup> (*m* data points with *n* features)
  - $\circ$  k clusters
- Goal
  - Indicator matrix  $X_{\gamma} \in \mathbb{R}^{mxk}$  with probability at least 1  $\delta_{\gamma}$ ,

$$\|\mathbf{A} - \mathbf{X}_{\gamma} \mathbf{X}_{\gamma}^{\mathsf{T}} \mathbf{A}\|_{\mathrm{F}}^{2} \leq \gamma \cdot \mathbf{F}_{\mathrm{opt}}$$

#### Focus

- Dimensionality reduction via
  - o Feature selection
  - Feature extraction
- Focus Feature Extraction
- Extends JLS by bypassing preserving pairwise (Euclidean) distances, and instead proving that after dimensionality reduction, the optimal clustering of the data is still preserved

### Algorithm

- Input
  - Dataset  $\mathbf{A} \in \mathbf{R}^{m \times n}$
  - $\circ$  k number of clusters
  - $\circ$  0 <  $\epsilon$  < ½
- Output
  - $\circ$   $\mathbf{C} \in \mathbf{R}^{m \times r}$ ,  $r = O(k/\varepsilon^2)$
- Algorithm
  - Set  $r = c_2 * k/\epsilon^2$ , for a sufficiently large constant  $c_2$  (theory vs practice)
  - Compute a random  $n \times r$  matrix **R** like for all i = 1,...,n, j = 1,...,r (iid)
    - $\mathbf{R}_{ii} = \{+1/\sqrt{r} \text{ w.p. } \frac{1}{2}\Box, -1/\sqrt{r} \text{ w.p. } \frac{1}{2}\}$
  - $\circ$  Compute C = AR (using the Mailman Algorithm)
  - $\circ$  Return  $\mathbf{C} \in \mathbf{R}^{m\mathbf{x}r}$

### Cost Comparisons

- Paper
  - Space  $O(k/\varepsilon^2)$  dimensions (features)
  - $\circ \quad \text{Time} \longrightarrow O(mn \lceil k/\varepsilon^2 \log(n) \rceil)$
  - $\circ$  Approximation ratio  $-2 + \varepsilon$
- Exact SVD (1)
  - $\circ$  Space k dimensions (features)
  - $\circ$  Time  $O(mn \min\{m, n\})$
  - Approximation ratio 2
- Exact SVD (2)
  - Space  $O(k/\varepsilon^2)$  dimensions (features)
  - $\circ$  Time  $O(mn \min\{m, n\})$
  - $\circ$  Approximation ratio  $-1 + \varepsilon$
- (1) P. Drineas, A.Frieze, R. Kannan, S.Vempala, V.Vinay. Clustering in large graphs and matrices, Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999
- (2) P. Drineas, R. Kannan, and M. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM Journal of Computing, 2006

#### Theorem

• Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and k be the inputs for the k-means clustering problem. Let  $\varepsilon \in (0, \frac{1}{3})$ , and construct features  $\mathbf{C} \in \mathbb{R}^{m \times r}$  with  $r = O(k/\varepsilon^2)$ . Run any k-means  $\gamma$ -approximation algorithm with failure probability  $\Delta_{\gamma}$  on  $\mathbf{C}$ , k to construct  $\mathbf{X}_{\gamma}$ , then with probability  $0.96 - \Delta_{\gamma}$ 

$$||A - X_{\gamma} X_{\gamma}^{T} A||_{F}^{2} \le (1 + (1 + \epsilon)\gamma) ||A - X_{opt} X_{opt}^{T} A||_{F}^{2}$$

### Theorem (Intuitive)

- Given any set of points in n-dimensional space and k number of clusters, it suffices to create roughly O(k) new features via random projections and then run some k-means algorithm on the new input.
- The clustering obtained in the low-dimensional space will be close to the clustering it would have been obtained after running the *k*-means method on the original high-dimensional data.
- $(2+\varepsilon)$ -error

### Supporting Lemma 1 (Lemma 9)

- Argues that the Frobenius norm squared of matrix Y is comparable to the Frobenius norm squared of matrix YR
- Given
  - $\circ \quad \text{Matrix } \mathbf{V} \in \mathbf{R}^{m \times n}$
  - $\circ$  k > 1
  - $\circ$   $\varepsilon > 0$
- $P(|||\mathbf{Y}\mathbf{R}||_{F}^{2} \ge (1+\epsilon)||\mathbf{Y}||_{F}^{2}) \le 0.01$

### Supporting Lemma 2 (Lemma 10)

- Given
  - Matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  with rank  $p \ (k < p)$
  - $\circ$  SVD of  $\mathbf{A}_{\mathbf{k}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$
  - $\circ$  0 <  $\epsilon$  < ½
  - $\circ$  **R**  $\in \mathbb{R}^{n \times r}$  be the rescaled sign matrix
- With  $P \ge 0.97$  (failure rate of 0.03)
  - $\circ$  For all i = 1,...,k:
    - $1 \varepsilon \leq \sigma_{k}^{2} (\mathbf{V}_{\mathbf{K}}^{\mathbf{T}} \mathbf{R}) \leq 1 + \varepsilon$
  - $\circ$  There exists an mxn matrix **E** such that

    - $\blacksquare \quad ||\mathbf{E}||_{\mathbf{F}} \leq 3\epsilon ||\mathbf{A} \mathbf{A}_{\mathbf{k}}||_{\mathbf{F}}$

### Failure Probability (Theoretically)

- Union bound on Lemmata 1 and 2, along with the failure probability  $\Delta_{\gamma}$  of the  $\gamma$ -approximation k-means algorithm
- Failure probability  $-0.04 + \Delta_{\gamma}$

#### Dataset

- 1. Generate 5 centers uniformly random in a n-dimensional hypercube of range of [0, 2000]. (centers will not be part of the data set)
- 2. From those 5 centers have each generate 200 data points using a Gaussian distribution with a variance of one (1) centered at that center.

N = 2:



### Kmeans Experiment

Recall the goal of LLoyd's algorithm is to split points into k clusters such that the total sum of the squared Euclidean distances of each point to its nearest cluster center is minimized.

- 1. Run Lloyd's algorithm 5 times on the dataset. We stop either when max iterations are reached or improvements can no longer be made.
- 2. Take the best result from Lloyd's algorithm to get our cluster centers.

## Algorithm 2 Experiment

Recall the goal of LLoyd's algorithm is to split points into k clusters such that the total sum of the squared Euclidean distances of each point to its nearest cluster center is minimized.

- 1. Use algorithm time to generate a Matrix  $C \in \mathbb{R}^{m \times r}$
- 2. Run Lloyd's algorithm 5 times on C. We stop either when max iterations are reached or improvements can no longer be made.
- 3. Take the best result from Lloyd's algorithm to get our cluster centers.

## **Empirical Evaluation**



# Questions?