Goals of experiments:

- Eliminate Bias
 - Controls
 - Random Assignment to Treatment
 - Blinding
- Reduce Sampling Error
 - Replication
 - Balance
 - Blocking
 - Extreme Treatments

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - How to detect treatment effects against a background of variation between individuals
 - Increasing signal to noise ratio

$$t = \frac{\overline{Y_1} - \overline{Y_2}}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 noise

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - How to detect treatment effects against a background of variation between individuals
 - Increasing signal to noise ratio
 - If the 'noise' $\sqrt{s_p^2(\frac{1}{n_1}+\frac{1}{n_2})}$ is smaller, it is easier to detect a given 'signal'
 - » Can be achieved with small s or larger n

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - Replication:
 - Carry out study on multiple independent experimental units
 - Experimental units -the independent unit to which treatments are assigned
 - A 'give away' of a replicated design is the interspersion of experimental units assigned to different treatments

Goals of experiments:

determine how explanatory variable (treatment) affects response variable

- Eliminate Bias
- Reduce Sampling Error
 - Replicated or not?

Two pots

Eight replicates

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - Balance:
 - All treatments have (nearly) the same sample size
 - See this by looking at the formula:

$$\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$$

- Balance increases precision by decreasing SE
- When $n_1 \approx n_2$, this is smallest because $(1/n_1 + 1/n_2)$ is smallest for any n_{total}

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - Blocking:
 - Grouping of experimental units with similar properties
 - Strategy that accounts for extraneous variation
 - Method:
 - Within blocks, treatments are randomly assigned to experimental units
 - Differences between treatments are evaluated only within blocks so that any differences that are due to blocks rather than treatments can be discarded
 - Randomized block design like a paired design but for > 2 treatments

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - Blocking:

Goals of experiments:

- Eliminate Bias
- Reduce Sampling Error
 - Extreme Treatments:
 - Good first step to determine if a treatment is worthy further study
 - Beware that treatment effects do not always scale linearly
 - An extreme does may be qualitatively different from a smaller dose