Homework 5

Due: April 13, 2022

- 1. Cost-constrained binary channels. Consider a cost-constrained binary input channel with cost function b(x) = x for $x \in \{0,1\}$. Find the capacity-cost function C(B) (a) for the binary symmetric channel and (b) for the binary erasure channel.
- 2. Parallel Gaussian channels. Consider 3 parallel Gaussian channels with noise variances given by

$$N_1 = 1, \qquad N_2 = 4, \qquad N_3 = 10.$$

Find the capacity as a function of total power P. Make sure your answer is in completely closed form (i.e., solve for α^* as a function of P).

3. Parallel binary erasure channels. Consider k parallel binary erasure channels with an overall cost constraint. That is, the input is $X = (X_1, X_2, \ldots, X_k)$ where $X_j \in \{0, 1\}$. The output is $Y = (Y_1, Y_2, \ldots, Y_k)$, where Y_j is the output of a binary erasure channel with X_j as the input and erasure probability p_j . There is a joint cost constraint on the input codeword $x^n = (x_1^n, x_2^n, \ldots, x_k^n)$ given by

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} x_{ji} \le B.$$

Find the capacity of this channel. You may give your answer in parametric form (similar to the water filling solution, in which the capacity is written in terms of a Lagrange variable).

4. Problem 10.5 from Cover-Thomas: Rate distortion for uniform source with Hamming distortion. Consider a source X uniformly distributed on the set $\{1, 2, ..., m\}$. Find the rate distortion function for this source with Hamming distortion; that is,

$$d(x,\hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x}, \\ 1 & \text{if } x \neq \hat{x}. \end{cases}$$

5. Problem 10.7 from Cover-Thomas: Erasure distortion. Consider $X \sim \text{Bernoulli}(\frac{1}{2})$, and let the distortion measure be given by a matrix (each row is a letter of \mathcal{X} , each columns is a letter of $\hat{\mathcal{X}}$)

$$d(x,\hat{x}) = \left[\begin{array}{ccc} 0 & 1 & \infty \\ \infty & 1 & 0 \end{array} \right].$$

Calculate the rate distortion function for this source. Can you suggest a simple scheme to achieve any value of the rate distortion function for this source?

6. Rate-distortion for exponential random variable. Let X be an exponential random variable with expectation μ ; i.e., $f_X(x) = \frac{1}{\mu}e^{-x/\mu}$ for $x \ge 0$. Define a distortion function for $x, \hat{x} \in \mathbb{R}$ as

$$d(x, \hat{x}) = \begin{cases} x - \hat{x}, & \hat{x} \le x \\ \infty, & \hat{x} > x. \end{cases}$$

Find the rate-distortion function. *Hint:* Remember the results from problems 7 and 8 from Homework 4.

7. Problem 10.17 from Cover-Thomas: Source-channel separation theorem with distortion. Let V_1, V_2, \ldots, V_n be a finite alphabet i.i.d. source with is encoded as a sequence of n input symbols X^n of a discrete memoryless channel. The output of the channel Y^n is mapped onto the reconstruction alphabet $\hat{V} = g(Y^n)$. Let $D = \mathbb{E}d(V^n, \hat{V}^n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}d(V_i, \hat{V}_i)$ be the average distortion achieved by this combined source and channel coding scheme.

- (a) Show that if C > R(D), where R(D) is the rate distortion function for V, it is possible to find encoders and decoders that achieve an average distortion arbitrarily close to D.
- (b) (Converse) Show that if the average distortion is equal to D, the capacity of the channel C must be greater than R(D).
- 8. Source-channel separation for a Gaussian source with a Gaussian channel. Consider a special case of the setup from problem 7 where $V \sim \mathcal{N}(0, \sigma^2)$, the channel is a Gaussian noise channel with power constraint P and noise variance N, and the distortion function is the squared error distortion; i.e., $d(v, \hat{v}) = (v \hat{v})^2$.
 - (a) Using the result from problem 7, find the smallest possible expected distortion D given the other parameters.
 - (b) Now consider the following simple approach without coding. For each $i=1,\ldots,n$, the encoder sends $X_i=\alpha V_i$, and the decoder estimates the source using $\hat{V}_i=\beta Y_i$. Here, α and β are constants that must be determined. What is the minimum expected distortion D achievable using this scheme? Be sure to choose α to satisfy the power constraint of the channel, and β to minimize the expected distortion. Compare your to answer to that from part (a).