Lecture11. Matrix Spaces; Rank 1; Small World Graphs

▼ 목차

- 1. 행렬공간 (matrix spaces)
- 2. 행렬공간의 기저(basis), 차원(dimension), 부분공간(subspace)
 - 1) Basis of M
 - 2) Symmetric matrix as a subspace of M
 - 3) Upper triangular matrix as a subspace of M
 - 4) Diagonal matrix as a subspace of M
- 3. 벡터 공간의 예시
- 4. Rank 1 행렬 (rank 1 matrices)
- 5. Rank 1행렬에 대한 부분 공간 (subspaces for rank 1 matrices)
 - 1) In R4 cases

1. 행렬공간 (matrix spaces)

• <u>행렬공간</u>은 어떤 의미에서 새로운 <u>벡터 공간</u>이라고 할 수 있다. 행렬 공간은 3x3크기의 모 든 정방행렬(square matrix)을 의미한다.

A new vector space
$$M = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 all 3x3 matirces

• <u>행렬공간을 벡터공간이라고 할 수 있는 이유</u>는 벡터공간에 대한 조건을 만족하기 때문이다. 이 행렬들끼리 선형결합을 해도 같은 공간에 위치한다.

행렬 M_1, M_2 가 있다고 할때, 임의의 상수 c1, c2를 각각 곱하여 더해도 결과 행렬은 원래의 M과 같은 차원의 공간에 위치한다.

some Matrix space case with M_1 :

$$c1M_1+c2M_2=c1egin{bmatrix} a_{11} & a_{12} & a_{13}\ a_{21} & a_{22} & a_{23}\ a_{31} & a_{32} & a_{33} \end{bmatrix}+c2egin{bmatrix} b_{11} & b_{12} & b_{13}\ b_{21} & b_{22} & b_{23}\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

• 행렬끼리 곱하게 되면 공간은 달라진다. 행렬끼리의 곱셈은 다른 공간을 만들게 된다.

 $Different\ Matrix\ space\ case\ with\ M_1:$

$$M_1M_2 = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} egin{bmatrix} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

2. 행렬공간의 기저(basis), 차원(dimension), 부분공간 (subspace)

- 3x3 크기의 행렬M은 <u>부분공간(subspace)</u>을 가진다. M의 부분 공간은 아래와 같은 행렬 들을 가질 수 있다.
 - 3x3 대칭 행렬(Symmetric Matrix)
 - 3x3 상삼각행렬(Upper triangular Matrix)
 - 3x3 대각 행렬(Diagonal Matrix)

위의 부분 공간 행렬들의 기저(basis)는 어떤 것인지, 차원(demension)은 무엇인지, 원래 행렬M의 차원은 무엇인지 알아보자

1) Basis of M

- 기저(basis)에 대한 정의를 다시 살펴보자
 - 기저 벡터들은 선형 독립(Linearly independent)이어야한다.
 - 기저 벡터들의 조합을 통해 해당 공간내에 어떠한 벡터라도 만들 수 있어야한다.
- 이전 강의에서 <u>차원은 행렬의 rank와 같다</u>고 배웠지만 rank는 행렬 안의 벡터들이 정의할수 있는 차원을 의미한다. 즉, M이 3x3일 때 rank가 3이라면 M의 row나 column vector들 끼리의 조합으로 표현할수 있는 공간의 차원을 의미하는 것이다.
- 여기서 말하는 행렬 공간의 차원은 3x3 크기로 한정된 행렬 M을 하나의 벡터로 간주하고 그 행렬이 표현할 수 있는 공간을 알고자 하는 것이다. 따라서 3x3크기의 M에 대한 차원 은 M을 구성하고 있는 원소의 개수가 될 것이다. 그러므로 M의 차원은 9가 된다.
- M의 차원이 9이므로 M의 기저 역시 9개가 될 것이다. M의 기저는 다음과 같다. Standard basis for M :

demension of M:9

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

총 9개의 기저 행렬이 위와 같이 나왔다. 1과0으로만 구성된 기저를 Standard basis라고한다. 3x3 크기 행렬의 어떠한 형태라도 만들 수 있다. 결국 행렬 M은 실질적으로 9차원 공간이라고 할 수 있다.

9차원의 숫자들을 column vector 대신 행렬로 표현했다고 생각하면 편할 것 같다.

2) Symmetric matrix as a subspace of M

- 대칭 행렬(Symmetric matrix)은 M의 부분 공간이고 S라고 하자.
- 대칭 행렬은 아래와 같이 대각선 원소들을 기준으로 아래와 위의 원소들이 같은 값을 가지는 형태이다.

Symmetric matirx
$$S:S=egin{bmatrix} a & b & c \ b & d & e \ c & e & f \end{bmatrix}$$

• 대칭 행렬 S에 M의 standard basis중 아래의 3개가 포함된다.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• S의 나머지 기저 행렬은 다음과 같다.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

위의 S에서 b, c, e는 각각 같은 값을 가지고 있기 때문에 위와 같은 기저가 존재한다.

• 기저가 6개라는 것은 **대칭행렬 S의 차원은 6**이라는 뜻이다. 위의 기저들의 조합을 통해 대 칭 행렬 공간에 존재하는 어떠한 행렬도 만들 수 있다.

3) Upper triangular matrix as a subspace of M

- 상삼각행렬(Upper triangular matrix)은 M의 부분 공간이고 U라고 하자.
- 아래와 같이 대각 원소들을 기준으로 위쪽에만 원소들이 존재하는 형태를 띈다.

$$\text{Upper triangular matirx } S: S = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$

• 상삼각행렬 U에 M의 standard basis중 아래의 6개가 포함된다.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

• 6개의 기저를 가지고 있다는 것은 상삼각행렬의 차원이 6임을 의미한다. 위의 기저들의 조합을 통해 상삼각행렬 공간에 존재하는 어떠한 행렬도 만들 수 있다.

4) Diagonal matrix as a subspace of M

- <u>대각 행렬(Diagonal matrix)</u>은 M의 부분 공간이고 D라고 하자.
- 대각 행렬은 위에서 살펴봤던 S와U로 정의할 수 있다. 이들의 교집합을 보는 것이다. 아래 와 같이 대각행렬의 원소인 a,d,f만 남게 된다.

Symmetric and Upper triangular o Diagonal dimension of D=3

$$S\cap U=D\Rightarrowegin{bmatrix}a&b&c\b&d&e\c&e&f\end{bmatrix}\capegin{bmatrix}a&b&c\0&d&e\0&0&f\end{bmatrix}=egin{bmatrix}a&0&0\0&d&0\0&0&f\end{bmatrix}$$

- 대각행렬은 3개의 원소만 있기 때문에 차원이 3이다.
- ▼ S와 U의 합집합은 어떨까?
 - Symmetric or Upper triangular \rightarrow ?

$$S \cup U = ? \Rightarrow egin{bmatrix} a & b & c \ b & d & e \ c & e & f \end{bmatrix} \cup egin{bmatrix} a & b & c \ 0 & d & e \ 0 & 0 & f \end{bmatrix} = egin{bmatrix} a^{\prime} & b^{\prime} & c^{\prime} \ d^{\prime} & e^{\prime} & f^{\prime} \ g^{\prime} & h^{\prime} & i^{\prime} \end{bmatrix}$$

- 위의 식과 같이 두 행렬의 합집합은 성립이 될까? 정답은 성립이 되지 않는다. 이는 9 차원의 공간에 존재하는 6차원의 Line(column이 아닌 row vector로 간주)으로 생각해 볼 수 있는데, 이 둘은 다른 방향으로 존재한다. 따라서 애초에 이 둘을 함께 놓을 수가 없다. 따라서 이 합집합은 부분 공간이 아니다.
- 따라서 S와U를 이용하여 부분공간을 정의하려면 둘을 더하면 된다. Symmetric + Upper triangular \to M dimension of S+U=9

$$S+U=M\Rightarrow egin{bmatrix} a&b&c\b&d&e\c&e&f \end{bmatrix}+egin{bmatrix} a&b&c\0&d&e\0&0&f \end{bmatrix}=egin{bmatrix} a'&b'&c'\d'&e'&f'\g'&h'&i' \end{bmatrix}$$

- 위의 식은 S의 원소들과 U의 원소들을 더해 조합을 한 것이다. 이렇게 대칭행렬과 상 삼각행렬의 조합을 통해 모든 3x3 크기의 모든 행렬 M을 만들 수 있다. 따라서 두 행렬의 조합은 M의 부분 공간이 되며 S와 U의 조합의 차원은 9가 된다.
- 3x3크기의 행렬 M에 대한 부분 공간(subspace)을 차원(Dimension)의 측면에서 정리해 보면 다음과 같다.

dim(S) = 6 dim(U) = 6 $dim(S \cap U) = 3$ dim(S + U) = 9 $dim(S)+dim(U) = dim(S \cap U) + dim(S + U)$

• 대칭 행렬의 차원은 6, 상삼각행렬의 차원은 6이다. S와 U의 교집합, 즉 대각 행렬의 차원은 3이고 S와 U의 조합에 대한 차원은 9다. 여기서 대칭 행렬S와 상삼각행렬 U의 차원의 합은 6+6=12이다.

3. 벡터 공간의 예시

• 미분 방정식(Differential Equation) $rac{d^2y}{dx^2}+y=0$ 의 해는 다음과 같은 것들이 될 수 있 $y=cos(x),\,y=sin(x),\,y=e^{ix}$ $\text{ I. } y' = -sin(x), \, y' = cos(x), \, \, y' = ie^{ix}$ $y'' = -cos(x), y'' = -sin(x), y'' = -e^{ix}$

• 해를 대입해서 풀어보면 다음과 같다.

$$egin{aligned} rac{d^2y}{dx^2} + y &= 0 \ y'' + y &= 0 & \cdots (2) \ -cos(x) + cos(x) &= 0 \ -sin(x) + sin(x) &= 0 \ -e^{ix} + e^{ix} &= 0 \cdots \end{aligned}$$

- 식 (1)은 식 (2)의 해 공간(solution space)를 나타낸다. 이는 다시말하면 식 (1)의 해들은 식 (2)의 미분방정식(Differential equation)의 영공간(Null space)을 나타내는 것이다. 식 (1)의 각 해들(cos, sin, e, ...)은 null space의 각각의 해에 해당한다.
- 미분방정식의 null space의 완전해(complete solution)은 sin과 cos만을 가지고 다음과 같이 정의할 수 있다.

$$y=c_1cos(x)+c_2sin(x)$$
 $\cdots(3)$ sin과 cos은 기저(basis)이다. 위의 식의 cos과 sin의 선형 조합은 미분방정식의 해공간 (solution space)인 null space를 형성(span)하며 이들은 독립(independent)이다.

• 결과적으로 우리는 미분방정식를 Ax=0으로 볼 수 있으며, 식 (3)를 null space를 정의하 기 위한 special solution이라고 할 수 있다. Special solution은 두 개이다. 따라서 차 원(dimension)도 역시 2이다. 사실 차원이 2일 수밖에 없는 이유는 미분방정식이 2차 (second order)이기 때문이다.

 $e^{ix}.e^{-ix}$ 도 기저가 될 수 있다. 기저는 무수히 많이 존재한다. 여기서 우리는 선형미분방 정식(Linear differential equation)과 선형대수(Linear algebra)사이의 연결점을 찾을 수 있다.

🧼 선형미분방정식(Linear differential equation)을 푼다는 것은 방정식의 해공간 (solution space)에 대한 기저(basis)를 찾는 것이다.

한 가지 중요한 것은 미분방정식의 sin, cos과 같은 기저들을 벡터라고 부를 수 있 다는 것이다. 이것이 가능한 것은 이 기저들 각각에 상수를 곱하고 더한 선형 조합 (Linear combination)이 가능하기 때문이다.

결국 선형 대수(Linear algebra)의 기저(basis), 차원(dimension), span 등과 같은 개념들이 m by n 행렬들에서 쓰이는 것 보다 더 넓은 역할을 하는 것이다.

4. Rank 1 행렬 (rank 1 matrices)

• 아래의 행렬 A는 rank가 1인 행렬이다.

$$A = egin{bmatrix} 1 & 4 & 5 \ 2 & 8 & 10 \end{bmatrix}$$

- row1이 [1 4 5]이고, row2가 row1의 두 배인 [2 8 10]이다. 이렇게 되면 row1과 row2는 서로 <u>종속(dependent)</u>이며 같은 선상에 위치한다. col1, col2, col3도 마찬가지이다. col2 와 col3는 col1에 상수 4, 5를 곱한 것과 같기 때문에 col1과 일직선상에 위치해있다. 따라 서 rank 1인 행렬이 표현할 수 있는 공간은 1차원이며 직선이다.
- A의 row space의 기저(basis)는 row1이다. column space의 기저는 col1이다. 따라서 A의 row space와 column space의 차원(dimension)은 1로 같다.

$$egin{aligned} ext{basis of } C(A) : egin{bmatrix} 1 \ 2 \end{bmatrix} \ ext{basis of } C(A^T) : egin{bmatrix} 1 & 4 & 5 \end{bmatrix} \ ext{dim } C(A) = ext{rank} = ext{dim } C(A^T) \end{aligned}$$

• 이 기저들의 곱으로 원래의 rank 1 행렬 A를 만들어낼 수 있다.

Rank 1 matrix:
$$A = uv^T$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 8 & 10 \end{bmatrix} = A$$

column space의 기저와 row space의 기저 순으로 곱했더니 원래의 rank 1 행렬 A가 만들어졌다.

어떤 column vector와 어떤 row vector를 column x row순으로 곱하면 반드시 rank 1행렬 A가 만들어진다.

- rank 1행렬은 벽돌 건물로 치자면 집짓기블록(building block)과 같은 것이다. 즉 모든 행렬에 있어서 가장 작은 기본 단위의 요소와 같다는 것이다.
- 예를 들면 5 x 14크기의 행렬을 얻었다고 했을 때, 이 행렬의 rank가 4라면 4개의 rank 1 행렬의 조합으로 이를 표현할 수 있다. 즉, 원래의 행렬을 5 x 14크기의 A라고 했을 때, A 의 rank는 4이기 때문에 5 x 14크기의 rank 1행렬 4개의 조합으로 A를 표현할 수 있는 것이다. 이렇게 원래의 행렬을 rank 1행렬들로 분해하여 표현할 수 있기때문에 rank 1행렬들을 building block이라 표현하는 것이다.

A is a matrix of rank 4

U11-U4 are matrices of rank 1

$$A_{5\times14} = U1_{5\times14} + U2_{5\times14} + U3_{5\times14} + U4_{5\times14}$$

5. Rank 1행렬에 대한 부분 공간 (subspaces for rank 1 matrices)

- 위에서 예를 들었던 5x14크기의 행렬 A에 대해 생각해보자. 5 x 14크기의 rank 4인 행렬 A는 부분 공간을 가지는가? 5 x 14크기의 모든 행렬을 M이라고 가정해보자. M = all 5x14 matrices
- 전체집합 M중에서 rank가 4인 행렬들을 생각해봤을 때, 이들은 M의 부분 공간이 아니다.
- M과 같은 크기(5 x 14)를 가지며 rank가 4인 행렬들을 더했을 때, 이들은 rank가 4가 안 될 수 있다. 부분 공간이 되려면 스칼라곱(scalar multiplication)과 행렬 끼리의 덧셈 연 산에 닫혀있어야(closed) 하며 영벡터를 포함해야한다.

즉, 어떤 rank 4 행렬 U와 또 다른 rank 4행렬 K를 선형 조합(Linear combination)연산을 했을 때 그 결과가 같은 공간에 있지 않을 수 있다는 말이다.

$$A = egin{bmatrix} 1 & 4 & 5 \ 2 & 8 & 10 \ 3 & 7 & 6 \end{bmatrix} rank \ A = 2$$

• 아래의 3x3 크기의 행렬 A와 B를 보자. $B=egin{bmatrix}1&4&5\\2&8&10\\3&7&6\end{bmatrix}rank\ A=2$ • 아래의 3x3 크기의 행렬 A와 B를 보자. $B=egin{bmatrix}3&6&9\\2&4&8\\1&2&8\end{bmatrix}rank\ B=2$ $A+B=egin{bmatrix}4&10&14\\4&12&18\\4&9&14\end{bmatrix}rank\ A+B=3$

$$A+B = egin{bmatrix} 4 & 10 & 14 \ 4 & 12 & 18 \ 4 & 9 & 14 \end{bmatrix} rank \ A+B = 3$$

A와 B 행렬의 rank는 각각 2이다. 그러나 A+B의 rank는 3이 되어 원래의 rank 2의 차원 에서 벗어나게 된다. 따라서 부분공간(subspaces)이 아니다.

1) In R4 cases

 4차원 공간인 R4의 경우를 생각해보자. R4 공간상의 모든 벡터는 아래와 같이 4개의 component를 가지는 벡터로 표현할 수 있다.

$$v = egin{bmatrix} v_1 \ v_2 \ v_3 \ v_4 \end{bmatrix}$$

- R4의 부분 공간을 위의 식과 연관지어 다음과 같이 정의해보자. $S = all \ v \ in \ R^4 \ with \ v_1 + v_2 + v_3 + v_4 = 0$ 위의 식에서 S는 R4의 부분공간이다. 스칼라곱(scalar multiplication)과 덧셈 연산 (addition)에 닫혀(closed)있기 때문이다. 즉 벡터 v 에 어떤 상수를 곱해도 0이 되고, 혹은 같은 공간에 존재하는 v 와 w에 임의의 상수를 곱하여 더해도 여전히 같은 공간에 존재한다. 이때의 v는 어떤 행렬
- R2의 경우로 예를 들어보자. $S=all\ v\ in\ R^2\ with\ v_1+v_2=0$

A의 null space이다.

$$v=egin{bmatrix} 2 \ -2 \end{bmatrix},\ w=egin{bmatrix} -1 \ 1 \end{bmatrix},\ z=egin{bmatrix} 1 \ -1 \end{bmatrix}$$

• v, w, z의 각 벡터의 원소들의 합은 0이다. 이들을 좌표평면위에 표현하면 아래와 같다.

- R2의 경우에서 각 벡터들의 원소들의 합이 0인 경우를 그래프로 표현한 것이다. v, w, z의 벡터들이 하나의 라인을 형성하는 것을 볼 수 있다. 이 벡터들이 이와 같이 하나의 라인을 형성하는 것은 이들이 <u>행렬 A=[1 1]의 null space이기 때문</u>이다. 즉 위 그림의 v, w, z는 A=[1 1]행렬의 null space의 해(solution)인 것이다. (A는 rank 1인 행렬이고 따라서 1차 원 행렬이다.)
- 주요 부분공간에 대한 차원과 기저(basis)는 다음과 같다.
 - o 차원(dimension) in R2

• row space: r=1

• null space: n-r = 2-1 = 1

column space: r=1

■ left null space: m-r = 1-1 = 0

。 기저(basis) in R2

row space: [1 1]

■ null space: [1 -1], [-1 1], ...

column space: R1

left null space: [0], empty

• 다시 R4의 경우를 보자. R4의 경우도 마찬가지다. 처음 두식에서 얘기하는 벡터들은 R4에서 어떤 행렬A의 null space이고 그 A는 다음과 같다.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ Av = 0 & & & \end{bmatrix}$$

- R4에서의 rank 1인 행렬과 Ax=0의 null space를 연결시킬 수 있다. R4일때의 차원은 rank와 밀접한 관련이 있다. row space와 column space는 rank의 수인 1과 같고, null space와 left null space의 경우엔 각각 n-r, m-r과 같다. (Lecture10참고)
- row space의 기저는 첫 번째 row인 [1 1 1 1]그대로이다.
- null space의 기저를 알아보자. 무수히 많은 null space에 대한 기저가 존재하겠지
 만 <u>lecture 7</u>에서 다뤘던 special solution을 구할 수 있다. R4에서 null space의 special solution은 아래와 같다.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

special solutions of null space:

$$\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- 위의 식에서 pivot을 제외한 나머지 column의 component들이 free variable이다. 이 free variable들을 하나씩 1로 설정하고 나머지 component들을 0으로 설정한 뒤, Ax=0 에 대해서 풀면 null space의 special solution을 구할 수 있다.
- <u>column space의 기저</u>는 어떨까? 그저 R1이다. [1] [1] [1] [1]의 선형 조합으로 정의되는데, 어떤 상수들을 곱하고 이들을 더해도 단지 상수값이 나올뿐이다. 즉 c1[1]+c2[1]+c3[1]+c4[1]=c 결국 R1의 값으로 정의할 수 있다.
- <u>Left null space</u>의 경우엔 어떨까? A의 전치 행렬에 대한 null space이므로 그 형태는 아래와 같을 것이다.

$$N(A^T)$$
:

$$egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} egin{bmatrix} x \ \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

위의 식을 만족시키는 x는 0밖에 없다. 따라서 Left null space는 0밖에 존재하지않는 0차 원의 공간이다.

- 지금까지의 내용을 정리해보면 다음과 같다.
 - ∘ 차원(dimension) in R4

row space: r=1

null space: n-r = 4-1 = 3

column space: r=1

• left null space: m-r = 1-1 = 0

∘ 기저(basis) in R4

• row space: [1 1 1 1]

• null space: [-1 1 0 0], [-1 0 1 0], [-1 0 0 1]...

column space: R1

• left null space: [0], empty

- R4에서의 주요 부분공간들의 차원을 살펴보면 row space의 차원은 rank 인 1이고 null space의 차원은 column의 수 n에서 rank를 뺀 n-r=3이 된다. 따라서 <u>row space와 null space의 차원의 합은 1+3=4이다.</u>
- column space의 차원도 역시 rank인 1이고, left null space의 경우엔 row의 수 m에서 rank를 뺀 m-r=1-1=0이다. 따라서 column space와 left null space의 차원의 합은 1+0=1이다.
- 이렇게 부분 공간의 각 차원들은 결과적으로 원래의 행렬 A의 차원을 나타낸다.

$$egin{aligned} A &= egin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \ m &= 1 imes n = 4 \ &= dim(C(A)) + dim(N(A^T)) imes dim(C(A^T)) + dim(N(A)) \ &1 + 0 imes 1 + 3 \end{aligned}$$