### **Links and Contact**

Feel free to contact me if you have any questions

- Youngsu Kim, <u>youngsu.kim@csusb.edu</u>
- https://www.csusb.edu/high-performance-computing
- (Server) <a href="https://csusb-jupyter.nrp-nautilus.io/">https://csusb-jupyter.nrp-nautilus.io/</a>

# High Performance Computing Program A Brief Introduction to Machine Learning

### Youngsu Kim

High Performance Computing Faculty Fellow
Assistant Professor of Mathematics

11/30/2023

## Agenda

- ☐ High Performance Computing Program
- RStudio and JupyterLab on HPC
- ☐ Introduction to Machine Learning: linear regression and classification
- Demo of using GPU

### What Do HPC Program Offer?

- ☐ A gateway to HPC systems
- ☐ Test your software and project on HPC
- Provide training for faculty and students
- ☐ Guide you writing proposal regarding computing power specifications
- ☐ Consult the benefits of a project when run HPC

I am interested in working with faculty members who wants to explore or try out the HPC for current or future projects, especially from non-STEM disciplines

### **HPCP Classroom and Workshop Support**



Ready-to-go Platform for Python and RStudio

### RStudio/Python on HPC

#### Connect to

- https://csusb-jupyter.nrp-nautilus.io/ no registration required
- https://csusb-hpc.nrp-nautilus.io/ requires adding your account

Select "Stack RStudio." After a few minutes, you will be prompted to the screen that contains a link to the RStudio

The rest is pretty much the same as the one on your PC.

### **RStudio on HPC**





### Python, TensorFlow, Machine Learning



### Python, TensorFlow, Machine Learning



### **Machine Learning?**



Made wih miro.com

# Cats vs. Dogs; Hidden Driving Force in Machine Learning



### CNN/DNN (Convolutional/Deep Neural Network)



Image sources: https://cdn-images-1.medium.com/v2/resize:fit:800/1\*5eqrX--WuyrLA7qBEXdq5A.pnq https://github.com/HarisIqbal88/PlotNeuralNet

### Linear Regression; Best Approximation by Line

Given a collection of points

find the line that best approximates them





### Line

Line:  $y = \mathbf{w}^* \mathbf{x} + \mathbf{b}$ 

x: input

y: output

w: slope; angle

b: y-int; ver. shift



### **Linear Regression Formula**

$$w = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n}(x_i - ar{x})^2}$$

$$b=ar{y}-war{x}$$

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$



### **Linear Regression in Neural Networks**



### **Linear Regression in Neural Networks**

Goal: Fit a line (determine w & b in y = wx + b) that best approximates the given points in the following steps.

- ☐ Minimize L, the loss/error by
- Optimizing L using calculus
- ☐ Gradient descent

### **Linear Regression with Simple Newral Network**



https://colab.research.google.com/drive/10nzTmJeZ9F1RzwkHg12ROZYe47dTWMUS?usp=sharing

### **Linear Regression Hands-on Example**



https://colab.research.google.com/drive/1fy0FGKoGfjFxdfp1agUKlRsj5YL16RfX?usp=sharing

### **Seek to Support More Projects**

- Machine-learning
- Scientific Computing
- ☐ Actively Seeking for Additional Projects from non-STEM Disciplines
  - Data Collection
  - Large Language Models such as ChapGPT
  - Image hosting
- Student Oriented Projects

### **Questions & Thank you!**

Feel free to contact us if you have any questions

- ☐ Youngsu Kim, <u>youngsu.kim@csusb.edu</u>
- https://www.csusb.edu/high-performance-computing