

Exercícios

1) Uma palavra foi codificada usando o código de Huffman, tendo-se obtido a sequência binária

 $1\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 0$

O alfabeto original era constituído pelas letras A, B, C, D, E, I, L, R e T e a letra I foi codificada como "00". Supondo que estas letras ocorriam com as probabilidades

P(A) = 0.26	P(D) = 0.01	P(L) = 0.01
P(B) = 0.09	P(E) = 0.07	P(R) = 0.23
P(C) = 0.08	P(I) = 0.22	P(T) = 0.03

- a) Qual terá sido a palavra codificada?
- b) Considerando que o texto tem 50000 caracteres, quantos bits são necessários para armazenar este texto usando a codificação ASCII?
- c) Quantos bits são necessários para armazenar este mesmo texto, usando a codificação de Huffman que você encontrou?

2)

a) Construa a árvore de Huffman, com a respectiva codificação dos caracteres, para os caracteres a seguir com as frequências dadas:

Caractere	c	d	G	m	r	Z
Frequência	27	25	6	21	3	18

- b) Considerando que o texto original tem $5x10^4$ caracteres, suponha que nesse texto a letra 'm' foi substituida por 'rz'. Construa a nova árvore de Huffman e diga se houve diferença no consumo de bits no texto.
- 3) Considere a seguinte imagem de 3 bits:

1	1	5	2	5	2	5	1	1	5
6	7	7	0	5	7	7	2	7	1
5	2	5	3	7	1	4	5	3	5
7	7	7	2	1	6	1	5	3	1
5	5	7	1	7	2	1	2	5	5
1	0	1	2	5	1	3	1	0	7
0	5	7	5	0	7	1	3	0	5
5	5	4	0	7	1	5	5	4	4
0	5	1	3	4	2	7	1	2	7
5	7	5	1	0	1	7	1	0	5

- a) Obtenha o código de Huffman associado.
- b) Calcule o número de bits gastos nessa imagem, para uma codificação fixa de 3 bits.
- c) Calcule o número de bits gastos nessa imagem, usando o código de Huffman.