Introducción a Pandas

Rolando Salazar

February 28, 2019

n la actividad que corresponde a este reporte, se realiza una introducción a la biblioteca de python "pandas" la cual es de gran utilidad para el análisis de datos.

1 Introducción

En esta actividad (act. 3) se llevó a cabo la exploración de funciones de pandas para el análisis estadístico de un conjunto de datos. Se proporcionaron algunas funciones y algunas otras fueron buscadas personalmente. Esta vez se utilizaron datos metereológicos de la ciudad de Navojoa encontrados en el sitio web oficial del Servicio Metereológico Nacional.

2 Funciones de Pandas

Tras haber importado las librerias Pandas y Matplotlib, se ejecutaron los siguientes comandos en un archivo de Jupyter Notebooks y se obtuvieron los distintos resultados mostrados a continuación.

FECHA	PRECIP	EVAP	TMAX	TMIN
17/12/1967	0.0	Nulo	19.0	Nulo
18/12/1967	0.0	2	21.0	6
19/12/1967	0.0	2.7	20.0	9
20/12/1967	0.0	7.7	23.0	12
21/12/1967	0.0	3.4	21.0	11
	17/12/1967 18/12/1967 19/12/1967 20/12/1967	17/12/1967 0.0 18/12/1967 0.0 19/12/1967 0.0 20/12/1967 0.0	17/12/1967 0.0 Nulo 18/12/1967 0.0 2 19/12/1967 0.0 2.7 20/12/1967 0.0 7.7	17/12/1967 0.0 Nulo 19.0 18/12/1967 0.0 2 21.0 19/12/1967 0.0 2.7 20.0 20/12/1967 0.0 7.7 23.0

Figure 1: Resultado de la función head.

	FECHA	PRECIP	EVAP	TMAX	TMIN
369	23/05/1969	0.0	10.2	38.0	17
370	24/05/1969	0.0	10.4	36.0	16
371	25/05/1969	0.0	4.4	36.0	16.5
372	26/05/1969	0.0	11.8	37.0	15
373	27/05/1969	0.0	9.8	37.5	15

Figure 2: Resultado de la función tail.

2.1 Función read_csv

Esta función sirve para que nuestro conjunto de datos quede en una sola variable que almacena a todos en un marco.

2.2 head

df.head()

Muestra las primeras 5 filas del entorno de datos.

2.3 tail

Muestra las últimas cinco filas de los datos.

2.4 dtypes

df.dtypes

Simplemente nos dice que tipo de variable es cada una de las columnas del marco de datos.

¹ Universidad de Sonora, Hermosillo, Sonora.

2.5 mean

df.mean()

Arroja una lista con las medias de las columnos de datos.

2.6 std

df.std()

Cálcula y muestra la variación estándar de cada columna.

2.7 median

df.median()

Obtiene las medianas de cada columna.

2.8 max

df.max()

Cálcula el valor máximo de cada columna.

2.9 min

df.min()

Lo contrario al anterior.

2.10 describe

df.describe()

Esta función realiza un análisis exploratorio de datos más detallado, el cual incluye muchas de las funciones anteriores.

2.11 dropna

df.dropna()

Esta función elimina todas las filas que contengan datos nulos o NA.

2.12 plot.hist

df.plot.hist()

Con este comando creamos un histograma por cada columna.

2.13 value_counts

df.["TMAX"].value_counts()

Cuenta el número de filas con cada valor único de la variable TMAX.

	PRECIP	TMAX
count	374.000000	374.000000
mean	0.310963	29.438503
std	2.239066	6.348373
min	0.000000	15.000000
25%	0.000000	24.000000
50%	0.000000	29.000000
75%	0.000000	34.375000
max	27.000000	41.500000

Figure 3: Resultado de la función describe.

Figure 4: Resultado de la función plot.hist.

	FECHA	PRECIP	EVAP	TMAX	TMIN
364	18/05/1969	0.0	9.6	36.0	14
361	15/05/1969	0.0	6.3	31.0	12.5
261	04/02/1969	0.0	1	25.0	4
287	02/03/1969	0.0	6.9	25.0	6
69	24/02/1968	0.0	2.8	29.0	11
31	17/01/1968	0.0	2.8	25.0	8
304	19/03/1969	0.0	5.7	30.0	5.5
163	28/09/1968	0.0	7.7	40.0	22
111	07/05/1968	0.0	9.3	34.5	11
197	02/12/1968	0.0	2.6	26.0	Nulo
127	23/05/1968	0.0	11.4	34.0	16
295	10/03/1969	0.0	2.7	22.5	8.5
172	07/10/1968	0.0	7.7	39.0	22
64	19/02/1968	0.0	4.4	29.0	10
348	02/05/1969	0.0	9.1	29.5	15
23	09/01/1968	0.0	1.5	23.0	5.5

Figure 5: Resultado de la función sample(frac=0.5).

	FECHA	PRECIP	EVAP	TMAX	TMIN
230	04/01/1969	0.0	1.8	24.5	7
28	14/01/1968	0.0	3.5	22.0	8
340	24/04/1969	0.0	9.7	35.5	8.5
351	05/05/1969	0.0	6.2	25.0	13
84	10/04/1968	0.0	6.8	30.0	11
337	21/04/1969	0.0	9.6	35.0	9
209	14/12/1968	0.0	4.5	18.0	7
27	13/01/1968	0.0	3.3	23.0	10
322	06/04/1969	0.0	8.1	33.5	8
63	18/02/1968	0.0	4.2	27.0	9

Figure 6: Resultado de la función sample (n=10).

2.14 len

len(df)

Muestra la cantidad de filas.

2.15 nunique

df["TMAX"].nunique()

Numero de valores distintos en la columna.

2.16 sample con el atributo frac

df.sample(frac=0.5)

Fracción de filas seleccionadas al azar.

2.17 sample con atributo n

df.sample(n=10)

Selecciona n filas al azar.

2.18 iloc

df.iloc(40:45)

Selecciona las filas indicadas.

	FECHA	PRECIP	EVAP	TMAX	TMIN
40	26/01/1968	8.0	2.1	24.0	13
41	27/01/1968	0.0	1.1	26.0	15
42	28/01/1968	0.0	1.9	25.0	14
43	29/01/1968	0.0	0.9	23.0	13
44	30/01/1968	0.0	0.9	26.0	14

Figure 7: Resultado de la función iloc.

	FECHA	PRECIP	EVAP	TMAX	TMIN
198	03/12/1968	0.0	6.1	15.0	5
21	07/01/1968	0.0	1	17.0	11
270	13/02/1969	27.0	2	17.5	7
209	14/12/1968	0.0	4.5	18.0	7
255	29/01/1969	0.0	2.1	18.0	13
265	08/02/1969	0.0	1.1	18.0	6
215	20/12/1968	0.0	4	18.5	2.5
256	30/01/1969	0.0	1.8	18.5	8
0	17/12/1967	0.0	Nulo	19.0	Nulo
299	14/03/1969	0.0	4.8	19.5	5.5
262	05/02/1969	0.4	1.9	19.5	10
276	19/02/1969	0.0	3.5	20.0	8

Figure 8: Resultado de la función sort_values.

2.19 sort_values

df.sort_values('TMAX')

Ordena los valores de las filas de menor a mayor de la columna seleccionada.

2.20 rename

df.rename(columns={"PRECIP":"PREC"})

Reescribe el nombre de una columna.

3 Conclusiones

Se pueden combinar estos comandos para manipular los datos como