Temeprature-dependent Seeger's liquid drop energy for nuclei up to Z=118

Bir Bir Bikram Singh* and Manoj K. Sharma^{\dagger} School of Physics and Materials Science, Thapar University, Patiala-147004, India.

Raj Kumar, Manie Bansal, and Raj K. Gupta[‡] Department of Physics, Panjab University, Chandigarh 160014, India. (Dated: January 4, 2011)

Seeger's semi-empirical mass formula is revisited for two of its constants (bulk constant $\alpha(0)$ and neutron-proton asymmetry constant a_a) readjusted to obtain the ground-state (g.s.) binding energies of nuclei within a precision of <1.5 MeV and for nuclei up to Z=118. The aim is to include the temperature T-dependence on experimental binding energies, and not to obtain the new parameter set of Seeger's liquid drop energy V_{LDM} . Our procedure is to define the g.s. binding energy $B = V_{LDM} + \delta U$, as per Strutinsky renormalization procedure, and using the empirical shell corrections δU of Myers and Swiatecki, fit the constants of V_{LDM} to obtain the experimental binding energy B_{expt} or theoretically calculated B_{theo} if data were not available. The T-dependence of the constants of V_{LDM} , is introduced as per the work of Davidson et al., where the pairing energy $\delta(T)$ is modified as per new calculations on compound nucleus decays. The newly fitted constants of V_{LDM} at T=0 are made available here for use of other workers interested in nuclear dynamics of hot and rotating nuclei.

PACS numbers: 21.10.Dr, 21.60.Cs, 25.70.-z

I. INTRODUCTION

Seeger's mass formula [1] was given in 1961, with its constants fitted to ground-state (g.s) binding energies of some 488 nuclei available at that time. The temperature T-dependence of these constants was later introduced by Davidson et al. [2] on the basis of thermodynamical considerations of the nucleus. These constants, however, need be fitted again since a large amount of data on experimental g.s. binding energies [3], and their theoretically calculated values [4] for, not-yet observed, neutron- and proton-rich nuclei have now become available. Furthermore, the T-dependence of the constants, in particular the pairing constant $\delta(T)$, need be looked in to because of their recent un-successful use in calculating the decay properties of some excited compound nuclear systems [5]-[7]. Note that our aim here is not to obtain a new set of constants for Seeger's mass formula, but simply to include the T-dependence on experimental binding energies B_{expt} . For this purpose, a readjustment of only two of the four constants, the bulk constant $\alpha(0)$ and the neutron-proton asymmetry constant a_a , are enough to obtain the B_{expt} within <1.5 MeV. A similar job was first done in [8] for nuclei up to Z=56, and then in [9] up to Z=97, but is redone here with an improved accuracy and up to Z=118. Thus, the domain of the work is extended to neutron-deficient and neutron-excess nuclides where B_{expt} are not available, but theoretical binding energies B_{theo} are available [4]. These re-fitted constants have been successfully used in the number of recent calculations [5]-[24] for studying the decay of hot and rotating compound nucleus (CN) formed in heavy ion reactions over a wide range of incident centre-of-mass (c.m.) energies.

A brief outline of the Seeger's mass formula, and the methodology used to workout the temperature-dependent binding energies, are presented in section II. Possible applications of the liquid drop energy in heavy ion reaction studies are also included in this section. The calculations and results are given in section III, together with the table of fitted constants, which could be of huge importance for people working in the relevant area of nuclear physics. Finally, the results are summarized in section IV.

 $^{{\}bf *Present\ Address:}\ {\bf Institute\ of\ Physics,\ Sachivalaya\ Marg,\ Bhubaneswar-751005,\ India.;\ Electronic\ address:\ birbikram.singh@gmail.com.$

 $^{^\}dagger Electronic address: msharma@thapar.edu$

[‡]Electronic address: rajkgupta.chd@gmail.com

II. TEMPERATURE-DEPENDENT SEEGER'S MASS FORMULA AND APPLICATIONS

According to the Strutinsky renormalization procedure, the binding energy B of a nucleus at temperature T is the sum of liquid drop energy $V_{LDM}(T)$ and shell corrections $\delta U(T)$

$$B(T) = V_{LDM}(T) + \delta U(T), \tag{1}$$

where V_{LDM} is the semi-empirical mass formula of Seeger [1], with T-dependence introduced by Davidson et al. [2], and δU taken as the "empirical" formula of Myers and Swiatecki [25], also made T-dependent to vanish exponentially,

$$\delta U(T) = \delta U \exp(-T^2/T_0^2),\tag{2}$$

with $T_0=1.5$ MeV [26]. Seeger's liquid drop energy V_{LDM} , with its T-dependence due to Davidson et al., is

$$V_{LDM}(A, Z, T) = \alpha(T)A + \beta(T)A^{\frac{2}{3}} + \left(\gamma(T) - \frac{\eta(T)}{A^{\frac{1}{3}}}\right) \left[\frac{I^{2} + 2|I|}{A}\right] + \left(\frac{Z^{2}}{r_{0}(T)A^{\frac{1}{3}}}\right) \left[1 - \frac{0.7636}{Z^{\frac{2}{3}}} - \frac{2.29}{[r_{0}(T)A^{\frac{1}{3}}]^{2}}\right] + \delta(T)\frac{f(Z, A)}{A^{\frac{3}{4}}},$$
(3)

with

$$I = a_a(Z - N), \qquad a_a = 1$$

and, respectively, for even-even, even-odd and odd-odd nuclei,

$$f(Z, A) = (-1, 0, 1).$$

Seeger's constants of 1961 are [1]:

$$\alpha(0) = -16.11$$
, $\beta(0) = 20.21$, $\gamma(0) = 20.65$, $\eta(0) = 48.00$ (all in MeV),

and the pairing energy $\delta(0)=33.0$ MeV from [27]. In the following, the bulk constant $\alpha(0)$, and the neutron-proton asymmetry constant a_a , are found enough to be readjusted/ refitted to obtain the B_{expt} .

The T-dependence of the constants in Eq. (3) were obtained numerically by Davidson *et al.* [2] from the available experimental information on excited states of 313 nuclei in the mass region $22 \le A \le 250$ by determining the partition function $\mathcal{Z}(A, Z, T)$ of each nucleus in the canonical ensemble and making a least squares fit of the excitation energy

$$E_{ex}(A, Z, T) = V_{LDM}(A, Z, T) - V_{LDM}(A, Z, 0)$$
(4)

to the ensemble average

$$E_{ex}(A, Z, T) = T^2 \frac{\partial}{\partial T} ln \mathcal{Z}(A, Z, T).$$
 (5)

The constants $\alpha(T)$, $\beta(T)$, $\gamma(T)$, $\eta(T)$ and $\delta(T)$ are given in Fig. 1 of Ref. [2] for T \leq 4 MeV, extrapolated linearly for higher temperatures. However, $\delta(T)$ is constrained to be positive definite at all temperatures, and with $\delta(T)$ =0 for T \geq 2 MeV. Also, for the bulk constant $\alpha(T)$, instead, an empirically fitted expression using Fermi gas model is obtained, as

$$\alpha(T) = \alpha(0) + \frac{T^2}{15}.\tag{6}$$

For shell effects δU , the empirical formula of Myers and Swiatecki [25] is

$$\delta U = C \left[\frac{F(N) + F(Z)}{(\frac{A}{2})^{\frac{2}{3}}} - cA^{\frac{1}{3}} \right]$$
 (7)

where

$$F(X) = \frac{3}{5} \left(\frac{M_i^{\frac{5}{3}} - M_{i-1}^{\frac{5}{3}}}{M_i - M_{i-1}} \right) (X - M_{i-1}) - \frac{3}{5} \left(X^{\frac{5}{3}} - M_{i-1}^{\frac{5}{3}} \right)$$

FIG. 1: Mass excess ΔM [= $M_A - A = NM_n + ZM_p + B(Z, N) - A$] in MeV as a function of neutron number N for Z=97, calculated by using the experimental data (solid circles) [3], theoretical data (open circles) [4], with newly fitted constants (crosses and down open triangles) and with the 1961 Seeger's constants [1] (hollow squares).

with X=N or Z, and $M_{i-1} < X < M_i$. M_i are the magic numbers 2, 8, 14 (or 20), 28, 50, 82, 126 and 184 for both neutrons and protons. The constants C=5.8 MeV and c=0.26 MeV. Note that the above formula is for spherical shapes, but the missing deformation effects in δU are included here to some extent via the readjusted constants of V_{LDM} since we essentially use the experimental binding energies split in to two contributions, V_{LDM} and δU , for reasons of adding the T-dependence on it.

Finally, as an application of the two components $[V_{LDM}(T)]$ and $\delta U(T)$ of the (T-dependent) experimental binding energy in the field of heavy-ion reactions, we define the collective fragmentation potential

$$V(\eta, R, T) = \sum_{i=1}^{2} [V_{LDM}(A_i, Z_i, T)] + \sum_{i=1}^{2} [\delta U_i] \exp(-T^2/T_0^2) + V_C(R, Z_i, \beta_{\lambda i}, \theta_i, T) + V_P(R, A_i, \beta_{\lambda i}, \theta_i, T) + V_\ell(R, A_i, \beta_{\lambda i}, \theta_i, T),$$
(8)

where the nuclear proximity V_P , Coulomb V_C and the angular-momentum ℓ -dependent V_ℓ potentials are for deformed and oriented nuclei and are also T-dependent. For details, see, e.g., Ref. [5].

Based on $V_{R,T}(\eta)$ at fixed R and T, and the scattering potential $V_{\eta,T}(R)$ at fixed η and T, we calculate the CN decay cross-section by using the dynamical cluster-decay model (DCM) of Gupta and collaborators [5]-[24], worked out in terms of the decoupled collective coordinates of mass (and charge) asymmetry $\eta = \frac{A_1 - A_2}{A_1 + A_2} \left[\eta_Z = \frac{Z_1 - Z_2}{Z_1 + Z_2} \right]$ and

FIG. 2: Fragmentation potential [Eq. (8)] calculated for the decay of 56 Ni* formed in 32 S+ 24 Mg reaction at T=3.60 MeV for ℓ =0 and 36 \hbar , and also at T=0 for ℓ =0 \hbar .

relative separation R. In terms of these coordinates, using ℓ partial waves, the CN decay cross section is defined as

$$\sigma = \frac{\pi}{k^2} \sum_{l=0}^{l_{max}} (2l+1) P_0 P; \qquad k = \sqrt{\frac{2\mu E_{c.m.}}{\hbar^2}}$$
 (9)

where the preformation probability P_0 , refering to η motion, is the solution of stationary Schrödinger equation in η at a fixed R, and P, the WKB penetrability refers to R motion, both quantities carrying the effects of angular momentum ℓ , temperature T, deformations $\beta_{\lambda i}$ and orientations θ_i degrees of freedom of colliding nuclei with c.m. energy $E_{c.m.}$. $\mu = [A_1 A_2/(A_1 + A_2)]m$, is the reduced mass, with m as the nucleon mass.

Eq. (9) is applicable to the decay of CN to light particles (LPs, A \leq 4, Z \leq 2), intermediate mass fragments (IMFs, 2 \leq Z \leq 10), the fusion-fission fragments and the quasi-fission (q.f.) process where the incoming channel does not loose its identity, i.e., P_0 =1 for qf. The ℓ_{max} could be fixed for the vanishing of the fusion barrier of the incoming channel, or the light particle cross-section $\sigma_{LPs} \rightarrow 0$, or else defined as the critical $\ell_c = R_a \sqrt{2\mu [E_{c.m.} - V(R_a, \eta_{in}, \ell = 0)]}/\hbar$.

III. CALCULATIONS AND RESULTS

Table 1 gives the newly fitted constants of Seeger's V_{LDM} for the experimental binding energy B_{expt} [3], and the theoretical B_{theo} values [4] where the experimental data were not available. Interestingly, only the bulk constant $\alpha(0)$, working as an overall scaling factor, and the asymmetry constant a_a , controlling the curvature of the experimental parabola, are required to be re-adjusted. The role of these re-fitted constants is illustrated in Fig. 1 for Z=97 nuclides. We notice in Fig. 1 an excellent agreement between the present fits (crosses and down open triangles) corresponding to experimental (solid circles) [3] and theoretical data (open circles) [4], respectively. The fits are with in 0-1.5 MeV

FIG. 3: The calculated IMFs cross-section σ_{IMFs} , using Eq. (9), for the decay of compound system ⁵⁶Ni* formed in ³²S+²⁴Mg reaction at T=3.60 MeV, taking pairing constant δ =0 and 9.5 MeV, compared with experimental data [28].

of the available B_{expt} or B_{theo} data. Also plotted in Fig. 1 are the results of calculations using the old 1961 Seeger's constants (hollow squares), showing the requirement and extent to which the fitting can clearly improve upon the older results.

Next, we consider an application of the re-adjusted V_{LDM} with an idea to impress upon the need and to propose here at least a partially modified variation of the pairing constant δ with temperature T, as compared to that of Davidson et al. [2]. Fig. 2 shows the fragmentation potential V(A) for the decay of ⁵⁶Ni* (a complete mass spectrum) into light particles (LPs) and intermediate mass fragments (IMFs) at T=3.60 MeV for two different ℓ values (ℓ =0 and 36 \hbar), compared with one at T =0 for ℓ =0 \hbar . We notice that at T =0 for ℓ =0 \hbar , the pairing effects are very strong since all the even-even fragments lie at potential energy minima. On the other hand, if we include temperature effects as per prescription of Davidson et al. (dashed line in Fig. 4), we find that $\delta=0$ MeV in V_{LDM} for T>2 MeV, and hence in Fig. 2 for T=3.60 MeV, δ =0 MeV, the odd-odd fragments like 10 B, 14 N, 18 F, etc., become equally probable as the even-even fragments, since minima are now equally stronger. The same result was obtained earlier in [12] for the decay of 56 Ni* at T=3.39 MeV, since there too δ =0 MeV was used from Davidson et al.. However, if we empirically choose δ =9.5 MeV for T=3.60 MeV (for the best fit to IMFs data in Fig. 3), the situation becomes again favourable. In other words, Fig. 2 for T=3.60 MeV, δ =9.5 MeV shows once again that the even-even fragments, like ¹²C, ¹⁶O, etc., are equally favoured as odd-odd ¹⁴N, ¹⁸F, etc. It is important to note that in this experiment [28] on $^{32}S+^{24}Mg\rightarrow^{56}Ni^*$, only the IMFs are measured, and theoretically LPs are more prominent at lower ℓ -values whereas IMFs seem to supersede them at higher ℓ-values, as is also evident from Fig. 2. The calculated decay cross-sections σ_{IMFs} for IMFs at T=3.60 MeV, for both δ =0 and 9.5 MeV cases are shown in Fig. 3, compared with experimental data [28]. We notice in this figure that better comparisons are obtained for the case of $\delta \neq 0$ calculations, contrary to earlier results in Fig. 13 of [12] for $\delta=0$ MeV, but supporting the one in Fig. 7 of [5] for $\delta=9.5$ MeV. Similar calulations, supporting non-zero δ values at T>2 MeV, are also reported for 56 Ni* at T=3.39 MeV in Fig. 7 of [5], and for fusion-fission cross-section in ¹¹⁸Ba (Fig. 2(b) in [6]), and the possible ¹⁴C clustering in ^{18,20}O and ²²Ne nuclei [7]. These calculations lead us to modify the variation of δ as function of T, as shown in Fig. 4 (solid line through solid dots). Apparently, many more calculations are needed for Fig. 4 to represent a true $\delta(T)$.

FIG. 4: The pairing energy δ (MeV) as function of temperature T (MeV), readjusted empirically for temperatures T>1.5 MeV (solid line and solid dots), compared with the original curve (dashed line) due to Davidson *et al.* [2].

IV. SUMMARY

In view of the large data for ground state (g.s.) binding energies having become available and to be able to include the T-dependence on binding energies, we have re-fitted two of the constants, the bulk $\alpha(0)$ and neutron-proton asymmetry a_a , of Seeger's mass formula. The experimental g.s. binding energies or theoretical binding energies for neutron- and proton-rich nuclei, where data are not yet available, are fitted within <1.5 MeV, and up to Z=118 nuclei. The method used is the Strutinsky renormalization procedure to define the g.s. binding energy as a sum of the liquid drop energy and the shell correction. Taking shell correction from the empirical formula of Myers and Swiatecki, the two constants of Seeger's liquid drop energy are fitted to obtain the experimental or theoretical binding energy. The fitted constants of liquid drop energy have been used for understanding the dynamics of excited compound nuclear systems, which point out to the inadequacy of the variation of pairing energy constant δ with temperature T. As per the given $\delta(T)$ variation of Davidson et al., δ =0 MeV for T>2 MeV. However, the recent compound nucleus decay calculations suggest that $\delta \neq 0$ for T> 2 MeV and hence clearly indicate the need for re-evaluation of the T-dependence of Seeger's constants. A new dependence of $\delta(T)$ is suggested on the basis of already published calculations for compound nucleus decay studies. Need for further studies are clealy indicated.

Acknowledgments

The authors are thankful to Prof. S. K. Patra for his interest in this work. M.K.S. is thankful to CSIR, New Delhi, and R.K.G. to Department of Science and Technology, Govt. of India, for financial support for this work in the form of research projects.

- [1] P. A. Seeger, Nucl. Phys. **25**, (1961) 1.
- N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller and Y. Tzeng, Nucl. Phys. A 570, (1994) 61c.
- [3] G. Audi, A.H. Wapstra and C. Thiboult, Nucl. Phys. A 729, (2003) 337.
- [4] P. Moller, J. R. Nix, W. D. Myers and W. J. Swiatecki, At. Nucl. Data Tables 59, (1995) 185.
- R. K. Gupta, S. K. Arun, R. Kumar and Niyti, Int. Rev. Phys. (IREPHY) 2, (2008) 369.
- [6] R. Kumar and R.K. Gupta, Phys. Rev. C 79, (2009) 034602.
- [7] M. Bansal, R. Kumar and R. K. Gupta, Contri. Internat. EFES-IN2P3 Conf. on "Many body correlations: from dilute to dense nuclear systems", Feb. 15-18, 2011, Paris.
- [8] M. Balasubramaniam, R. Kumar, R. K. Gupta, C. Beck and W. Scheid, J. Phys. G: Nucl. Part. Phys. 29, (2003) 2703.
- B. B. Singh, M. K. Sharma and R. K. Gupta, Phys. Rev. C 77, (2008) 054613.
- R. K. Gupta, R. Kumar, N. K. Dhiman, M. Balasubramaniam, W. Scheid and C. Beck, Phys. Rev. C 68, (2003) 014610.
- [11] R. K. Gupta, M Balasubramaniam, R. Kumar, D. Singh and C. Beck, Nucl. Phys. A738, (2004) 479c.
- [12] R. K. Gupta, M. Balasubramaniam, R. Kumar, D. Singh, C. Beck and W. Greiner, Phys. Rev. C 71, (2005) 014601.
- [13] R. K. Gupta, M. Balasubramaniam, R. Kumar, D. Singh, S. K. Arun and W. Greiner, J. Phys. G: Nucl. Part. Phys. 32, (2006) 345.
- [14] B. B. Singh, M. K. Sharma, R. K. Gupta and W. Greiner, Int. J. Mod. Phys. E 15, (2006) 699.
- [15] R. K. Gupta, S. K. Arun, D. Singh, R. Kumar, Niyti, S. K. Patra, P. Arumugam and B.K. Sharma, Int. J. Mod. Phys. E 17, (2008) 2244.
- [16] R. K. Gupta, Niyti, M. Manhas, S. Hofmann and W. Greiner, Int. J. Mod. Phys. E 18, (2009) 601.
- [17] S. K. Arun, R. Kumar and R.K. Gupta, J. Phys. G: Nucl. Part. Phys. 36, (2009) 085105.
- [18] S. Kanwar, M. K. Sharma, B. B. Singh, R. K. Gupta and W. Greiner, Int. J. Mod. Phys. E 18, (2009) 1453.
- [19] R. K. Gupta, Niyti, M. Manhas and W. Greiner, J. Phys. G: Nucl. Part. Phys. 36, (2009) 115105.
- [20] R. K. Gupta, S. K. arun, R. Kumar and M. Bansal, Nucl. Phys. A 834, (2010) 176c.
- [21] M. K. Sharma, G. Sawhney, S. Kanwar and R. K. Gupta, Mod. Phys. Lett. A 25, (2010) 2022.
- [22] R. K. Gupta, Clusters in Nuclei, Lecture Notes in Physics, 818, (2010) 223, Ed. C. Beck, Springer-Verlag Berlin Heidelberg..
- [23] M. K. Sharma, S. Kanwar, G. Sawhney and R. K. Gupta, AIP Conf. Proc. 1265, (2010) 37.
- [24] Niyti, R. K. Gupta and W. Greiner, J. Phys. G: Nucl. Part. Phys. 37, (2010) 115103.
- [25] W. Myers and W. J. Swiatecki, Nucl. Phys. A 81, (1966) 1.
- [26] A. S. Jensen and J. Damgaard, Nucl. Phys. A 203, (1973) 578.
- [27] S. DeBenedetti, Nuclear Interactions, New York, Wiley, (1964).
- [28] S. J. Sanders, D. G. Kovar, B. B. Back, C. Beck, D. J. Henderson, R. V. F. Janssens, T. F. Wang, and B. D. Wilkins, Phy. Rev. C 40, (1989) 2091; Phys. Rev. Lett. 59, (1987) 2856.

TABLE I: Re-fitted bulk $\alpha(0)$ and asymmetry a_a constants for Seeger's liquid drop energy in $1 \le Z \le 118$ nuclei, w.r.t. B_{expt} (for nuclei upto Z=7, and Z≥8 marked with star) and B_{theo} (only for Z≥8 and where experimental data were not available).

Ζ	N	$\alpha(0)$	\mathbf{a}_a	\mathbf{Z}	N	$\alpha(0)$	\mathbf{a}_a	Z	N	$\alpha(0)$	\mathbf{a}_a
1	2	-15.85		6	3,11		0.100			-16.25	
H	_	-16.93			4,9	-15.65			27	-16.25	
		-13.37			$5,6^{\dagger},7$	-16.53			28	-16.25	
H		-13.57						-	29		
H	5 6				8	-15.92			30	-16.25	
	-	-11.49			10	-15.09				-16.25	
2		-15.18			12,13	-15.04			31	-16.25	
Н		-16.11			14	-14.83		11	(7,8)*	-15.91	
	3	-16.90		_	15,16	-14.99			(9,21,23)*	-16.21	
Ш	,	-14.23		7	3	-14.27			(10-13)*	-16.27	
		-13.12			4	-15.12			14*	-16.06	
		-12.87			5,9	-16.20			(15-20,22,24)*	-16.18	
		-11.37			6	-16.53			$(25,26)^*$	-16.21	
3		-09.73			7	-16.75			27,28	-16.21	
	, ,	-16.67			8	-16.35			29	-16.27	
		-17.00			10,11,15	-15.90			30	-16.27	
	3	-18.43			12,13	-15.70		L	31	-16.27	
		-13.70			14	-15.68			32	-16.27	
	7	-14.37	0.400		16	-15.97	0.940		33	-16.27	0.801
	8	-13.16	0.100		17,18	-16.10	0.930	12	7*	-15.70	0.967
	9	-12.99	0.100	8	4^*	-14.00	0.940		8*	-15.86	0.958
4	1	-12.37	0.010		5*	-15.30			$(9,10)^*$	-16.07	0.920
	2	-14.45	0.100		$(6,10,11,13)^*$	-15.93	0.940		(11-13)*	-16.23	0.842
	3	-16.12	0.800		(7,8)*	-16.24	0.500		(14-26)*	-16.18	0.842
	4	-17.05	0.980		$(9,15,16)^*$	-16.17	0.950		(27,28)*	-16.18	0.835
Ħ	5	-16.70	0.600		(12,14)*	-15.85	0.940		29	-16.33	0.837
Ħ	6	-15.50	0.800		(17,19,20)*	-16.09	0.895		30	-16.03	0.792
	7	-15.23			18*	-16.01			31	-16.03	
	8	-14.24			21,22	-16.19			32,34,35	-16.09	
		-14.04			23,24		0.895		33	-16.03	
H	10	-13.28	0.010		25,26		0.867	13	8*	-15.95	0.950
		-12.96		9	5*	-15.19			(9,10)*	-16.10	
H		-12.23			$(6,12,13)^*$	-15.78			(11-19)*,(25-28)*	-16.26	
5		-13.10			$(7,8,10,11,15,16,18)^*$	-16.17			(20-24)*	-16.22	
Ħ		-14.53			9*	-16.30			29*	-16.41	
H	3	-16.43		H	14*	-15.95			30	-16.11	
H	4	-16.65		H	$(17,19,20)^*$	-16.17			31	-16.11	
\vdash	5	-17.16		H	(21,22)*	-16.17		1	32	-16.11	
H		-16.57			23-26	-16.17		<u> </u>	33-36	-16.00	
H		-16.30			27	-16.25		<u> </u>	37,38	-16.08	
H		-15.33		H	28	-16.25		14	8*	-15.95	
H	9	-15.12		H	29	-16.25		1-1	(9,10)*	-16.04	
\vdash	10	-14.40		10	6*	-15.22		1	(11,12)*	-16.17	
H	11	-14.40		10	$(7,14)^*$	-15.70			(13-20,27,28)*	-16.17	
\vdash		-14.10		H	(8,13)*	-15.70			(21-26)*	-16.23	
\vdash	13			\vdash	(' '	-16.16			\ /		
\vdash		-13.10			(9-12)*,(15-18)*			<u> </u>	(29,30)*	-16.31	
C	14	-12.92		H	$(19-22)^*$ $(23,24)^*$	-16.22			31	-16.09 -16.05	
6	2	-12.95	0.010	Щ	(23,24)	-16.29	0.070		32-35	-10.03	0.702

 $^{^{\}dagger}$ For Z=6, N=6, $\alpha(0){=}\text{-}16.72$ instead of -16.53.

					Continued 1	Table	1				
\mathbf{Z}	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
14	36,37	-16.09			51	-16.21		25	15,16	-16.38	
	38	-16.09		20	10	-16.17			17,18	-16.48	
	39,40	-16.09			11	-16.17			$(19-26)^*$	-16.46	
15	8	-16.10			12	-16.17			$(27-44)^*$	-16.42	
	(9-14)*	-16.31			13	-16.17			$45,\!46$	-16.43	
	$(15-24)^*$	-16.40			$(14-21)^*$	-16.49			47-52	-16.21	
	$(25-28)^*$	-16.12			(22-30)*	-16.37			53-59	-16.17	
	(29-31)*	-16.11			$(31-34)^*$	-16.43			60-64	-16.17	
	32-36	-16.11			$(35-37)^*$	-16.49		26	16-18	-16.44	
	37,38	-16.09			38-49	-16.22			(19-26)*	-16.47	
	39-42	-16.09			50,51	-16.22			$(27-45)^*$	-16.43	
16	8	-16.11			$52,\!53$	-16.17			46*	-16.47	
	9	-16.11		21	11,12	-16.17			47	-16.40	
	(10-14)*	-16.31			13,14	-16.29			48-62	-16.17	
	$(15-24)^*$	-16.40			$(15-21)^*$	-16.47			63-66	-16.17	
	$(25-28)^*$	-16.31			$(22,23,31,33,35-39)^*$	-16.43		27	17	-16.50	
	$(29-30)^*$	-16.22			$(24-30,32,34)^*$	-16.36			18,19	-16.50	
	(31-33)*	-16.25	0.773		40-50	-16.23			(20-27)*	-16.48	0.755
	34-38	-16.11			51,52	-16.23	0.729		$(28-46)^*$	-16.44	
	39	-16.20	0.758		53-55	-16.17			$(47,48)^*$	-16.47	0.767
	40-44	-16.20		22	12	-16.25			49,50	-16.42	
17	8	-16.11			13,14	-16.25			51-62	-16.18	
	9,10	-16.17			15	-16.25	0.700		63-69	-16.18	
	$(11-14,22-28)^*$	-16.32	0.822		$(16-23)^*$	-16.44	0.775	28	18	-16.50	0.774
	$(15-21)^*$	-16.46	0.893		$(24-30)^*$	-16.39	0.803		19	-16.50	0.760
	(29-30)*	-16.27	0.775		$(31-41)^*$	-16.39	0.768		$(20-29,46-48)^*$	-16.48	0.769
	$(31-34)^*$	-16.35			42-46,49-51	-16.24			30-45)*	-16.45	
	35-40	-16.20	0.755		47,48	-16.24	0.731		$(49,50)^*$	-16.22	
	41,42	-16.20			52,53	-16.17			51-55	-16.22	0.702
	43,44	-16.20	0.745		54-56	-16.17	0.715		56-60	-16.21	
	$45,\!46$	-16.20	0.743		57,58	-16.17	0.712		61-71	-16.21	0.700
18	9	-16.17		23	13,14	-16.17		29	19-22	-16.54	
	10,11	-16-17			15,16	-16.44			(23-30)*	-16.51	
	$(12-14)^*$	-16.40	0.893		$(17-25)^*$	-16.45			$(31-44)^*$	-16.51	
	$(15-19)^*$	-16.46			(26-30)*	-16.39			$(45-51)^*$	-16.44	
	$(20-25)^*$	-16.43			$(31-42)^*$	-16.40			52-55	-16.24	
	(26-28)*	-16.25			43-50	-16.25			56-73	-16.23	
	(29-31)*	-16.35			51-53		0.718	30	21-23	-16.55	
	$(32-35)^*$	-16.35	0.772		54-56	-16.21	0.717		(24-33)*	-16.52	0.700
\Box	36-41	-16.21			57-60		0.712		$(34-40)^*$	-16.52	
	42,43,47-49	-16.21		$\overline{24}$	14	-16.30			$(41-53)^*$	-16.40	
	44-46	-16.21			15,16	-16.38			54-57	-16.28	
19	10	-16.17			17		0.765		58-75	-16.26	
	11,12	-16.20			(18-25,42,43)*		0.770	31	22-24	-16.56	
	(13-21)*	-16.49			(26-29)*	-16.40			$(25-33)^*$	-16.57	
	$(22-28)^*$	-16.36			$(30-41)^*$	-16.42			$(34-45)^*$	-16.53	
	(29-32)*	-16.37			44-46,59-62	-16.17			(46-53)*	-16.41	
	$(33-36)^*$	-16.44			47-51	-16.21			$(54,55)^*$	-16.44	
	37-42,45-48	-16.21			52,53	-16.17			56-63	-16.30	
	43,44,49,50	-16.21	0.738		54-58	-16.17	0.708		64-77	-16.28	0.700

					Continued 2		Table 1	L			
Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Ζ	N	$\alpha(0)$	\mathbf{a}_{a}
32	23-25	-16.58	0.720	38	$(35-39)^*$	-16.67	0.735	43	$(42,43,70-72)^*$	-16.73	0.755
	$(26-33)^*$	-16.58	0.749		$(40-42,64-67)^*$	-16.63	0.742		$(44,45)^*$	-16.70	0.748
	$(34-45)^*$	-16.55	0.795		$(43-54)^*$	-16.58	0.748		$(46-54)^*$	-16.66	0.787
	$(46-57)^*$	-16.41	0.719		$(55-63)^*$	-16.57	0.734		$(55-69)^*$	-16.61	0.728
	58	-16.34	0.701		68-71	-16.47	0.705		$(73-75)^*$	-16.72	0.748
	59-80	-16.32	0.701		72-79	-16.47	0.708		76-80	-16.55	
33	24-26	-16.60	0.720		80-85	-16.21	0.673		81-88	-16.55	0.707
	$(27-34)^*$	-16.60			86-87	-16.21	0.674		89-103	-16.30	0.674
	$(35-46)^*$	-16.56	0.798		88-93	-16.19	0.674		104	-16.30	0.675
	$(47-59)^*$	-16.44		39	31-36	-16.70		44	37,38	-16.77	
	60-76	-16.38			$(37-40)^*$	-16.68			39-42	-16.73	
	77-80	-16.34			$(41-43)^*$	-16.64			$(43,44,75,76)^*$	-16.73	
	81,82	-16.34			$(44,45,63-69)^*$	-16.59			$(45,46,72-74)^*$	-16.71	
34		-16.60			(46-62)*	-16.57			(47-56)*	-16.68	
	$(31-36)^*$	-16.60			70,71,81	-16.50			(57-71)*	-16.62	
	$(37-46)^*$	-16.57			72-80	-16.51			77-79	-16.57	
	$(47-60)^*$	-16.46			82-86	-16.22			80,81	-16.57	
	61-73	-16.37			87-95	-16.22			82-90	-16.57	
	74-77	-16.37		40	32-37	-16.72			91-103	-16.32	
	78-84	-16.11			(38-40)*	-16.70			104-106	-16.33	
35		-16.62			$(41,42,67-70)^*$	-16.68		45	38-40	-16.76	
	$(32-37)^*$	-16.62			(43-46)*	-16.64			41-43	-16.74	
	$(38-46)^*$	-16.58			$(47-66)^*$	-16.59			$(44,45)^*$	-16.74	
	$(47-62)^*$	-16.48			71,72,78-81	-16.51			$(46,47,75-77)^*$	-16.72	
	63-74	-16.42			73-77	-16.53			$(48-57)^*$	-16.69	
	75,76	-16.37			82,83	-16.53			(58-74)*	-16.63	
	77-80	-16.40			84-87	-16.53			78-80	-16.57	
	81,82	-16.40			88-97	-16.24			81-91	-16.57	
-	83-86	-16.40		41	33-39	-16.73			92-93	-16.59	
36		-16.64			(40-42,70-72)*	-16.70			94-103	-16.35	
	$(33-38)^*$	-16.63			(43,44,66-69)*	-16.67		10	104-108	-16.35	
	$(39-48)^*$	-16.59			(45-51)*	-16.64		46	40-42	-16.77	
	(49-64)*	-16.49			(52-65)*	-16.59			43-44	-16.76	
	65-73	-16.44			73-80	-16.51			(45,46)*	-16.76	
<u> </u>	74-76	-16.44			81-84	-16.51		<u> </u>	(47-48,76-78)*	-16.73	
<u> </u>	77-79	-16.49			85-87	-16.51		<u> </u>	(49-61)*	-16.71	
<u> </u>	80-84	-16.15		40	88-99	-16.26		<u> </u>	(62-75)*	-16.64	
27	85-88	-16.15			35-39	-16.74		<u> </u>	79	-16.59	
37		-16.66		<u> </u>	40	-16.71		<u> </u>	80-91	-16.59	
<u> </u>	(34-39)*	-16.65		_	(41,42,72,73)*	-16.72		_	92-94	-16.59	
<u> </u>	(40-48)*	-16.60		<u> </u>	(43,44,68-71)*	-16.69		<u> </u>	95-105	-16.40	
-	(49-65)*	-16.51			(45-54)*	-16.66			106-110	-16.35	
<u> </u>	66-72	-16.45		<u> </u>	(55-67)*	-16.60		47	41,42	-16.79	
<u> </u>	73-78	-16.45		<u> </u>	74-80	-16.53		<u> </u>	43-45	-16.77	
<u> </u>	79-84	-16.17		<u> </u>	81-89		0.705	<u> </u>	(46,81-83)*	-16.78	
<u> </u>	85,86	-16.16		49	90-102	-16.28		<u> </u>	(47-49,78-80)*	-16.75	
90	87-91	-16.17			36-38	-16.75		_	(50-62)*		0.780
38	30-34	-16.68	0.702	1	39-41	-16.73	0.709	l	(63-77)*	-16.65	0.726

					Continued 3		e 1				
Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
47	84-93	-16.59		52	47-50	-16.86		56		-16.73	
	94-95	-16.57			51,52	-16.84			98-120	-16.70	
	96-101	-16.39			(53-59)*	-16.81			121-131	-16.54	
	102-105	-16.34			(60-66)*	-16.78			132,133	-16.54	
		-16.39			(67-79)*	-16.70		57	53-56	-16.91	
48	42-44	-16.80			(80-90)*	-16.69			57,58	-16.89	
	45,46	-16.78			91-98	-16.64			59	-16.88	
	(47-49,80-82)*	-16.77			99-109	-16.64			(60-62)*	-16.87	
	(50-63)*	-16.74			110,111,123,124				(63-74)*	-16.85	
	(64-79)*	-16.66			112-122	-16.47			(75-81)*	-16.77	
	(83,84)*		0.720	53	48-50	-16.86			(82-98)*	-16.70	
		-16.61			$51,\!52$	-16.85			99-117	-16.71	
	89-92	-16.58			$53,\!54$	-16.83			118-132	-16.54	
Ш	97-100	-16.39			(55-60)*	-16.82			133-135	-16.55	
	101-105	-16.41			(61-68)*	-16.80		58	55,56	-16.93	
	106-115	-16.39			(69-81)*	-16.72			57	-16.92	
49	43-46	-16.82			(82-91)*	-16.70			58-60	-16.91	
	47	-16.80			92-98	-16.64			$(61,62,97-99)^*$	-16.89	
	$(48-51,78)^*$	-16.78			99-109	-16.66			(63-66,90-92)*	-16.87	
	$(52-64)^*$	-16.75			110 - 118, 123 - 126				$(67-76)^*$	-16.86	
	(65-77)*	-16.67			119-122	-16.48			$(77-89)^*$	-16.77	0.720
	(79-86)*		0.718	54	49-52	-16.87			(93-96)*	-16.80	
	87-97	-16.61			53,54	-16.85			100-119	-16.74	
	98-102	-16.39			55	-16.84			120-128	-16.57	
	103-105	-16.41			$(56-60)^*$	-16.84			129-137	-16.37	0.661
	106-117	-16.42			(61-68)*	-16.81		59	56-58	-16.95	
50	44-46	-16.84			(69-83)*	-16.74			59-61	-16.93	0.600
	47,48	-16.82			(84-93)*	-16.71			(62-69)*	-16.91	
	$(49-52)^*$	-16.80			94-97	-16.66	0.700		$(70-80)^*$	-16.86	0.772
	(53-64)*	-16.76			98-113	-16.67			(81-92)*	-16.76	
	$(65-77)^*$	-16.68			114,125-128	-16.51			(93-100)*	-16.75	
	(78-81)*	-16.68			115-124	-16.50	0.680		101-118	-16.78	
	(82-87)*		0.715	55	51-53	-16.88	0.600		119-130	-16.59	0.683
	88-97	-16.63			54,55	-16.87			131-139	-16.40	
	98-102	-16.43			56	-16.86		$6\overline{0}$	58-60	-16.97	
	103-106	-16.44			(57-63)*	-16.85			61,62	-16.95	
	107-119	-16.43			(64-71)*	-16.83			63	-16.92	
51	46-49	-16.84			(72-76,92-96)*	-16.73			(64-76)*	-16.92	
	50,51	-16.82			$(77-91)^*$	-16.71			(77-86)*	-16.82	
	(52-59)*		0.885			-16.68			(87-91)*	-16.75	
	(60-65)*	-16.77			116-124	-16.53			(92-101)*	-16.75	
	(66-78)*	-16.69			125-130	-16.53			102-119	-16.79	
	(79-88)*		0.717	56	52-54	-16.90			120-130	-16.61	
	89-95	-16.64			$55,\!56$	-16.88			131-141	-16.42	
	96-100	-16.64			57	-16.87		61	59,60	-16.99	
	101-106	-16.64			$(58-62)^*$	-16.87	0.890		61,62	-16.97	0.600
	107-111	-16.45			(63-71)*	-16.84			63,64	-16.95	
	112-121	-16.43	$0.6\overline{78}$		$(72-76,93-97)^*$	-16.75	0.713		$(65-77)^*$	-16.93	$0.8\overline{40}$

_		1 /->			Table			7-1			
Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
61	$(78-85)^*$	-16.84		66	67,68	-17.02		70	124-131	-16.86	
	(86-102)*	-16.75			69,70	-17.01			132-164	-16.65	
	103-105	-16.79			71	-16.99		71	75	-17.03	
		-16.79			$(72-77)^*$	-17.00			76-78	-17.03	
		-16.62			$(78-85)^*$	-16.92			(79-88)*	-17.00	
	129-144	-16.43			$(86-91)^*$	-16.84			(89-113)*	-16.93	
62	61,62	-17.00			$(92-107)^*$	-16.86			114-124	-16.95	
	63-64	-16.98			108-124	-16.87			125-130	-16.87	
	65	-16.96			125-129	-16.80			131-163	-16.66	
	(66-76)*	-16.95			130-150	-16.53			164-166	-16.65	
	(77-85)*	-16.86			151-155	-16.52		72	77-80	-17.03	
	(86-103)*	-16.78		67	69,70	-17.01			(81-93)*	-17.00	
	104-106	-16.80			71,72	-17.01			(94-116)*	-16.94	
Щ	107-122	-16.80			(73-78)*	-17.00		Ш	117,118	-16.95	
	123-134	-16.64			(79-87)*	-16.93			119-131	-16.88	
Ш	135-146	-16.44			(88-93)*	-16.85			132-134,148-152		
63	62	-17.01			(94-108)*	-16.88			135-147,153-164		
	63,64	-17.00			109-123	-16.90			165-168	-16.78	
	65,66	-16.98			124-129	-16.81		73	78,79	-17.05	
	$(67-74)^*$	-16.96			130-135	-16.58			80,81	-17.04	
	$(75-84)^*$	-16.90			136-153	-16.56			(82-93)*	-17.01	
	$(85-104)^*$	-16.79			154-157	-16.56			(94-117)*	-16.95	
	105-109	-16.81		68	70	-17.05			118	-16.89	
	110-120	-16.81			71,72	-17.03			119-133	-16.89	
	121-131	-16.65			73,74	-17.01			134-136	-16.90	
	132-148	-16.45			$(75-80)^*$	-17.00			137-160	-16.68	
64	64	-17.01			(81-84)*	-16.91			161-167	-16.79	
	65,66	-17.00			(85-109)*	-16.89			168-170	-16.79	
	67,68	-16.98			110-123	-16.91		74	80-83	-17.06	
	69	-16.97			124-130	-16.83			(84-96)*	-17.02	
	(70-75)*	-16.97			131-156	-16.59			(97-118)*	-16.97	
	(76-85)*	-16.91			157-159	-16.58			119-134	-16.90	
	(86-105)*	-16.81		69	72,73	-17.04			135-152	-16.70	
	106-112	-16.82			74,75	-17.00			153-162	-16.70	
	113-120	-16.82			(76-85)*	-16.99			163-173	-16.90	
	121-134	-16.67			(86-95)*	-16.91		75	81-84	-17.07	
	135-150	-16.48			(96-110)*	-16.90			(85-97)*	-17.03	
65	65,66	-17.02			111-124	-16.92			(98-102)*	-16.97	
Щ	67,68	-17.00			125-131	-16.85			(103-119)*	-16.97	
		-16.99		_	132-157	-16.60			120-136		0.706
	(71-76)*	-16.99			158-161	-16.59			137-151	-16.71	
Щ	(77-85)*	-16.91		70	73,74	-17.04			152-161	-16.71	
Щ	(86-103)*	-16.82			75	-17.01			162-175	-16.88	
Щ	(104-106)*	-16.82			76,77	-17.00		76	83-85	-17.08	
Щ	107-115	-16.85			(78-87)*	-17.00		Щ	(86-95)*	-17.06	
	116-121	-16.83			(88-108)*	-16.91			(96-100)*	-17.02	
	122-134	-16.68			$(109-111)^*$	-16.90			$(101-120)^*$	-16.98	
	135 - 153	-16.52	0.665		112-123	-16.93	0.720		121-136	-16.92	0.706

					Continued 5	. Table	1		-		
\mathbf{Z}	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
76		-16.72		82	134-143	-17.00		87	111	-17.25	
	143-152	-16.72	0.672		144-159	-16.86	0.685		(112-117)*	-17.14	0.759
	153-163	-16.73			160-165	-16.87			(118-129)*	-17.09	
	164-166	-17.02			166-188	-16.86			(130-145)*	-17.01	
	167-170	-17.03			189-191	-16.86			146-153	-16.95	
	171-177	-16.80		83	95,96	-17.14			154-163	-16.95	
77	85,86	-17.09			97-100	-17.15			164-189	-16.95	
	(87-94)*	-17.06			(101-113)*	-17.08			190-192	-16.90	
	(95-105)*	-17.02			(114-135)*	-17.03			193-195	-16.90	
	(106-122)*	-16.98			136-140	-17.01			196-199,201	-16.90	
	123-138	-16.93			141-154	-16.88			200,202	-16.90	
	139-143	-16.73			155-193	-16.86		88	104-107	-17.23	
	144-150	-16.73		84	97-98	-17.16			108,109	-17.24	
	151-167	-16.81			99-101	-17.17			110,111	-17.25	
	168-179	-16.77			102,103	-17.18			112,113	-17.26	
78		-17.10			(104-115)*	-17.10			(114-120)*	-17.15	
	(88-97)*	-17.08			(116-136)*	-17.04			$(121-130)^*$	-17.10	
	(98-105)*	-17.05			137-140	-16.90			(131-146)*	-17.02	
	(106-124)*	-16.99			141-152	-16.90			147-153	-16.96	
	125-140	-16.94			153-156	-16.90			154-160	-16.96	
	141-150	-16.74			157-171	-16.90			161-164	-16.96	
	151-166	-16.82			172-193	-16.89			165-189	-16.96	
	167-182	-16.76			194,195	-16.89			190,191	-16.92	
79	/	-17.11		85	99,100	-17.18			192-195	-16.92	
	(90-98)*	-17.09			101-103	-17.19			196-199	-16.92	
	(99-106)*	-17.06			104,105	-17.20			200-202	-16.92	
	$(107-126)^*$	-16.99			106,107	-17.21			203,204	-16.92	
	127-136	-16.97			(108-116)*	-17.11		89	106-111	-17.24	
	137-164,171-184				(117-138)*	-17.05			112,113	-17.26	
	165-170	-16.84			139-149	-16.91			114	-17.27	
80		-17.12			150-154,194-197	-16.91			115	-17.28	
	(91-103)*	-17.09			155-188	-16.91			116	-17.29	
	(104-111)*	-17.05			189-193	-16.92			(117-127)*	-17.15	
	(112-130)*	-16.99		86	100-102	-17.20			(128-147)*	-17.04	
	131-139	-16.98			103-105	-17.21			148-169	-17.05	
	140-163,168-186				106-108	-17.22			170-181	-16.96	
	164-167	-16.85			(109-120)*	-17.13			182-189	-16.90	
81	92-94	-17.13			(121-125,132)*	-17.02			190-192	-16.90	
	(95-106)*	-17.08			(126-131,133-142)*	-17.02			193-197	-16.90	
	(107-131)*	-17.01			143-152	-16.92			198-202	-16.90	
	132-140	-16.99			153-162	-16.93			203-206	-16.90	
	141-159,166-175				163-189	-16.92		90	108-113	-17.25	
	160-165	-16.85			190-193	-16.92			114,115	-17.26	
	176-185	-16.95			194-197	-16.92			116,117	-17.27	
	186-188	-16.96			198-200	-16.92			118	-17.29	
82		-17.14		87	102-106	-17.20			(119-126)*	-17.16	
	(96-106)*	-17.11			107-109	-17.23			$(127-148)^*$	-17.05	
	$(107-133)^*$	-17.02	0.716		110	-17.24	0.845		149-154,172-176	-17.06	0.702

155-171				(tinued 6	<u>Tab</u>	le 1				
177-181	\mathbf{Z}	N	$\alpha(0)$		Z	N	$\alpha(0)$		Z	N	$\alpha(0)$	a_a
182-189	90				93				96			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
193-196												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
116,117												
118,119	91					1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					94							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1					-17.02	0.685
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									97			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-17.07	0.704		$(134-153)^*$					-17.30	0.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-16.93	0.685			-17.10	0.701			-17.32	0.801
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-16.93	0.684							-17.34	0.802
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		194-196	-16.93	0.683		188,189	-17.00	0.690		134,135	-17.36	0.803
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		197-203	-16.93	0.682			-17.00	0.689				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		204-209	-16.93	0.681		193-195	-17.00	0.688		$(138,155-157)^*$	-17.16	0.707
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		210,211	-16.93	0.680		196-199	-17.00	0.687		(139-154)*	-17.17	0.708
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92	111-117	-17.27	0.827		200-203	-17.00	0.686			-17.16	0.709
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		118-121	-17.28	0.820		204-207	-17.00	0.685		167-186	-17.15	0.709
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		122,123	-17.31	0.830		208-215	-17.00	0.684		187-189	-17.03	0.691
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-17.31	0.820		216-218					-17.03	0.690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(125-128,134-137)*	-17.09	0.704	95	117-123	-17.27	0.800		193,194	-17.03	0.689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(129-133)^*$	-17.09	0.707		124-127	-17.28	0.800		195-197	-17.03	0.688
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(138-150)*	-17.08	0.700		128,129	-17.29	0.800		198-201	-17.03	0.687
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		151-154	-17.08	0.701		130,131	-17.31	0.800		202-205	-17.03	0.686
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		155-185	-17.08	0.703		132,133	-17.33	0.800		206-210	-17.03	0.685
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		186-189	-16.99	0.691		134,135	-17.35	0.800		211-220	-17.03	0.684
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		190,191	-16.99	0.690		$(136-150)^*$	-17.12	0.700		221-224	-17.04	0.684
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		192-194	-16.99	0.689		$(151-154)^*$	-17.13	0.704	98		-17.30	0.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		195-197	-16.99	0.688		155-185	-17.14	0.709		128,129	-17.31	0.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						186-188	-17.01	0.691			-17.33	0.803
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		202-205	-16.99	0.686		189,190	-17.01	0.690		132,133	-17.35	0.805
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		206-209,212	-16.99	0.685		191-193	-17.01	0.689		134,135	-17.37	0.806
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		210,211,213	-16.99	0.684		194-197	-17.01	0.688		136,137	-17.39	0.807
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	93	113-118	-17.25	0.800		198-200	-17.01	0.687		138	-17.38	0.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		119-123				201-204				(139-153)*		
127 -17.28 0.800 209-217 -17.01 0.684 159-165 -17.17 0. 128,129 -17.29 0.800 218-220 -17.01 0.683 166-187 -17.17 0.	H	124-126				205-208						
128,129 -17.29 0.800 218-220 -17.01 0.683 166-187 -17.17 0.	П	127	-17.28	0.800		209-217				. ,		
	\Box	128,129									-17.17	0.710
130,131 -17.31 0.800 96 119-124 -17.28 0.800 188-190 -17.05 0.	\Box	130,131			96		-17.28	0.800		188-190	-17.05	0.692
(132-140,146-151)* -17.09 0.700 125-129 -17.29 0.800 191-193 -17.05 0.	\Box	,										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(141-145)*	-17.10	0.701		130,131	-17.32	0.801			-17.05	0.690

					Continued 7	. Table	e 1				
Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
98	196-198	-17.05		101	134,135	-17.37		103	171-188		0.717
	199-201	-17.05	0.688		136,137	-17.39	0.803		189-190	-17.08	0.690
	202-205	-17.04			138,139	-17.40			191-193	-17.08	
	206-211	-17.04			140,141	-17.42			194-196	-17.08	
	212-227	-17.04			142,143	-17.44			197-199	-17.08	
99	125-129	-17.31			$(144-155)^*$	-17.22			200-205		0.686
	130,131	-17.33			$(156-161)^*$	-17.22			206-215,227	-17.08	
	132	-17.34			162-166	-17.21			216-226	-17.08	0.684
	133,134	-17.35			167-186	-17.21	0.714		228-236	-17.08	
	135,136	-17.37			187-189	-17.07		104	134,135		0.804
	137,138	-17.39			190,191	-17.07			136,137		0.804
	139,140	-17.42			192,193	-17.07			138,139	-17.41	
	$(141-154)^*$	-17.19	0.707		194-196	-17.07	0.689		140,141	-17.43	0.804
	$(155-159)^*$	-17.19			197-199	-17.07			142,143	-17.44	
	160-166	-17.18	0.709		200-203	-17.07	0.687		144,145	-17.46	0.804
	167-180	-17.18	0.711		204-211	-17.07	0.686		146,147	-17.47	0.801
	181-187	-17.05	0.692		212-220,227-233	-17.07	0.685		148	-17.48	0.801
	188-191	-17.05	0.691		221-226	-17.07	0.684		(149-164)*	-17.30	0.727
	192,193	-17.05	0.690	102	130,131	-17.35	0.802		165-167	-17.26	
	194,195	-17.05	0.689		132,133	-17.36	0.800		168-187	-17.26	0.719
	196-199	-17.05	0.688		134,135	-17.38	0.802		188-191	-17.09	0.690
	200-202	-17.05	0.687		136,137	-17.39	0.800		192,193	-17.09	0.689
	203-207	-17.05	0.686		138,139	-17.40	0.800		194-196	-17.09	0.688
	208-216,227	-17.05	0.685		140,141	-17.42	0.800		197-199	-17.09	0.687
	217-226,228,229	-17.05	0.684		142,143	-17.44	0.802		200-205	-17.09	0.686
100	126-129	-17.32	0.802		144,145	-17.45	0.800		206-216,227	-17.09	0.685
	130,131	-17.34			$(146-162)^*$	-17.27			217-226	-17.09	0.684
	132,133	-17.35	0.802		163-167	-17.22	0.711		228-235	-17.09	0.684
	134,135	-17.37	0.802		168-182	-17.22	0.714	105	136,137	-17.40	0.800
	136,137	-17.39	0.804		183-188	-17.07	0.691		138,139	-17.41	0.800
	138,139	-17.41			189,190	-17.07	0.690		140,141	-17.43	0.802
	140,141	-17.43	0.807		191-193	-17.07	0.689		142,143	-17.44	0.800
	$(142-154)^*$	-17.21			194,195	-17.07			144,145		0.800
	(155-160)*	-17.22	0.714		196-199	-17.07			146,147	-17.47	
	161-166	-17.18			200-203	-17.07			148,149	-17.49	
	167-170	-17.18	0.709		204-212	-17.07	0.685		(150-165)*	-17.30	0.725
	171-186	-17.18	0.710		213-236	-17.07	0.684		166,167	-17.27	0.717
	187-189	-17.05	0.690	103	132,133	-17.37	0.803		168-186	-17.27	0.720
	190-192	-17.05			134,135	-17.38			187-191		0.690
	193-195	-17.05	0.688		136,137	-17.39			192-194	-17.10	0.689
	196-198	-17.05	0.687		138,139	-17.41	0.803		195-197	-17.10	0.688
	199-201	-17.05	0.686		140,141	-17.42	0.800		198-201	-17.10	0.687
	202-207	-17.05	0.685		142,143	-17.44	0.803		202-208	-17.10	0.686
	208-218,227	-17.05	0.684		144,145	-17.45	0.800		209-218,227-234	-17.10	0.685
	219-226,228-231	-17.07			146,147	-17.47	0.802		219-226	-17.10	0.684
101	128,129	-17.33	0.800		$(148-163)^*$	-17.27	0.721	106	138,139		0.800
	130,131	-17.34	0.800		164-166	-17.25	0.716		140,141	-17.43	0.800
	132,133	-17.36	0.803		167-170	-17.24	0.716		142,143	-17.44	0.800

				Con	tinued 8 Ta	ble 1					
\mathbf{Z}	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a	Z	N	$\alpha(0)$	a_a
106	144,145	-17.46	0.802	109	150,151	-17.51	0.803	112	214-224	-17.17	0.687
	146,147	-17.47	0.800		152,153	-17.52	0.803		225-227	-17.17	0.686
	148,149	-17.49	0.802		154	-17.53	0.803	113	153-164	-17.38	0.728
	150,151	-17.50	0.800		155	-17.34	0.724		165-169	-17.37	0.727
	(152-165)*	-17.33	0.731		(156-162)*	-17.34	0.727		$(170-174)^*$	-17.35	0.724
	(166-167)*	-17.33	0.731		(163-170)*	-17.33	0.726		175-188	-17.37	0.729
	168-186	-17.29	0.722		171-183	-17.33	0.726		189-197	-17.18	0.690
	187-191	-17.11	0.690		184-194	-17.14	0.690		198-201	-17.18	0.689
	192-194	-17.11	0.689		195-197	-17.14	0.689		202-221	-17.18	0.688
	195-197	-17.11	0.688		198-200	-17.14	0.688		222-226	-17.18	0.687
	198-201	-17.11	0.687		201-209	-17.14	0.687	114	155-170	-17.39	0.730
	202-209	-17.11	0.686		210-218,222-227	-17.14	0.686		(171-175)*	-17.35	0.722
	210-233	-17.11	0.685		219-221	-17.15	0.688		176-182,188-190	-17.38	0.729
107	140,141	-17.43		1	228-230	-17.14			183-187	-17.38	
	142,143		0.802	110	146,147	-17.48	0.800		191-197	-17.19	0.690
	144,145	-17.46	0.800		148,149	-17.49	0.800		198-201	-17.19	0.689
	146,147	-17.47	0.800		150,151	-17.50	0.800		202-221	-17.19	0.688
	148,149	-17.49	0.802		152,153	-17.52	0.802		222-225	-17.19	0.687
	150,151	-17.50	0.800		154-156	-17.35	0.725	115	157-171	-17.40	0.731
	152	-17.51	0.800		(157-164)*	-17.35	0.728		(172-176)*	-17.35	0.720
	(153-168)*	-17.33	0.729		(165-172)*	-17.34	0.727		177-181	-17.39	0.730
	169	-17.30	0.721		173-187	-17.34	0.727		182-189	-17.39	0.731
	170-182	-17.30	0.723		188-194	-17.15	0.690		190-197	-17.20	0.690
	183-192	-17.12	0.690		195-197	-17.15	0.689		198-215	-17.20	0.689
	193-195	-17.12	0.689		198-201	-17.15	0.688		216-224	-17.20	0.688
	196-198	-17.12	0.688		202-211,218-223	-17.15	0.687	116	159-167	-17.41	0.731
	199-203	-17.12	0.687		212-217,224-227	-17.15	0.686		168-172	-17.41	0.733
	204-211,226	-17.12	0.686		228,229	-17.15	0.685		(173-176)*	-17.42	0.740
	212-225,227-232	-17.12	0.685	111	148,149	-17.49	0.800		177-179	-17.41	0.733
108	142,143	-17.45	0.802		150,151	-17.51	0.804		180-189	-17.40	0.732
	144,145	-17.46	0.800		152	-17.51	0.800		190-197	-17.21	0.690
	146,147	-17.48	0.802		153-160	-17.36	0.726		198-219	-17.21	0.689
	148,149	-17.49	0.802		(161-164)*	-17.37	0.733		220-223	-17.21	0.688
	150,151	-17.50	0.800		(165-172)*	-17.35	0.728	117	161-171	-17.42	0.733
	152,153	-17.52	0.802		173-183	-17.35	0.727		172,173,176	-17.42	0.735
	154	-17.53	0.802		184-188	-17.16			$(174,175)^*$	-17.42	
	(155-169)*	-17.33	0.727		189-197	-17.16	0.690		177-181	-17.41	0.733
	170-183	-17.32			198-207	-17.16			182-189	-17.41	
	184-193	-17.13	0.690		208-225	-17.16				-17.22	0.690
	194-195	-17.13			226-228	-17.16			199-222	-17.22	0.689
	196-199		0.688	112	,		0.802	118	163-174,176	-17.44	
	200-203	-17.13			152-164	-17.37			$(175)^*$	-17.42	0.739
	204-218,220-223,225-226	-17.13	0.686		(165-173)*	-17.35	0.726		177-181	-17.43	0.737
	219,224,227-231	-17.13	0.685		174-188	-17.36	0.728		182-188	-17.42	0.736
109	144,145	-17.47			189-195	-17.17			189-194	-17.23	0.690
	146,147		0.803		196-199	-17.17			195-197	-17.23	
	148,149	-17.49	0.802		200-213	-17.17	0.688		198-221	-17.23	0.689