1 数列の極限

演習 1.1 (前回の問題) $\lim_{n\to\infty}\frac{n}{2^n}=0$ を証明せよ.

演習 1.2 $\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0$ を証明せよ.

演習 1.3 $\lim_{n\to\infty}(n-\sqrt{n^2-n})=rac{1}{2}$ を証明せよ.

演習 1.4 r を $0 \le r < 1$ となる実数とするとき, $\lim_{n \to \infty} r^n = 0$ を証明せよ.

(ヒント) r=0 のときは明らか. 0 < r < 1 のとき, 1/r = 1 + h となる h > 0 をとると, 2項定理により $1/r^n = (1+h)^n > nh$ がいえる.

演習 1.5 r を $0 \le r < 1$ となる実数とする. 数列 $\{a_n\}$ について, ある自然数 M が存在して, $n \ge M$ なるすべての n について $|a_{n+1}| \le r|a_n|$ であったとする. このとき $\lim_{n\to\infty} a_n = 0$ であることを示せ.

演習 1.6 $\lim_{n\to\infty}\frac{2^n}{n!}=0$ を証明せよ.

演習 1.7 r を $0 \le r < 1$ となる実数とする. 正の数列 $\{a_n\}$ が, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$ を満たすとき, $\lim_{n \to \infty} a_n = 0$ であることを示せ.

演習 1.8 a > 0 のとき, $\lim_{n \to \infty} \sqrt[n]{a} = 1$ を示せ.

(ヒント) a=1 のときは明らか. 次に a>1 と a<1 とで場合分けして示す. まず, a>1 のとき, $\sqrt[n]{a}>1$ だから, $\sqrt[n]{a}=1+h_n$ となる正の数列 $\{h_n\}$ がとれる. この h_n が 0 に収束することを示せばよい. 2 項定理より $a=(1+h_n)^n>nh_n$ がいえることに注意. なお, a<1 の場合は逆数を考える.

演習 1.9 $\lim_{n\to\infty} \sqrt[n]{n} = 1$ を示せ.

(ヒント) 任意の $\varepsilon > 0$ に対して, $M \geq 2/\varepsilon$ となるような自然数 M をとれば, $n \geq M$ のとき $1 < n\varepsilon/2 \Rightarrow n+1 < (1+\varepsilon/2)n$. よって, $M+1 \leq n$ ならば $n < (1+\varepsilon/2)^{n-M}M$. 両辺の n 乗根をとって, $\sqrt[n]{n} < \sqrt[n]{(1+\varepsilon/2)^{-M}M}(1+\varepsilon/2)$. 後は演習 1.8 を使って, $n > N \Rightarrow \sqrt[n]{n} < 1+\varepsilon$ となるような N をみつけよう.

演習 1.10 数列 $\{a_n\}$ が $\lim_{n\to\infty}(a_{n+1}-a_n)=\alpha$ を満たすとき, $\lim_{n\to\infty}\frac{a_n}{n}=\alpha$ となることを証明せよ.

(ヒント) 教科書 (プリント) の p.244, 例 7.1 (1) を使う.