Optimization and Software - Case Study in Transportation

CARDINAL JULIEN RONDIER LUCIEN JAMAL FEDOUA SOUILAH ADEL

February 22, 2024

Problem presentation: introduction

- Goal: to carry out a delivery tour from a warehouse to a varying number of clients depending on the database
- fulfill the demand
- respecting the capacity limits of the three vehicles used: Truck, Bicycle, and Motorcycle
- trying to minimize the delivery cost

Figure: Truck

Figure: Bicycle

Figure: Motorcycle

Problem presentation: our data

We have decided to use the C++ language to resolve this problem To deal with the data we first transform the excel tabs into 3 different CSV files containing information about distances, characteristics of the vehicles and demand, as shown below:

```
7 6
8 10
9 1
10 5
```

Figure: Features of the 3 kinds of vehicles

Figure: Demand

10

Problem presentation: our data

Here is an extract of how we handle data loading from CSV files to a C++ class named config in our code, with parameterName being data parsed in our CSV and value a vector of floats containing lines of our tab:

```
if (parameterName == "Capacity") {
    config.Capacity = {values[0], values[1], values[2]}; //Capacity est un std::vector<float>
} else if (parameterName == "Average Speed") {
    config.speed = {values[0], values[1], values[2]};
} else if (parameterName == "Fixed Cost") {
    config.fixedCostVehicle = {values[0], values[1], values[2]}; //Pour les long terme
    config.fixedCostShortTermVehicle = {values[3], values[4]}; // Pour les court terme
```

Linear modeling of the problem

Here we can see the objective function, which translates our goal to reduce the cost of the delivery:

$$\min \left(\sum_{k=1}^{K_{ST}} \sum_{i=2}^{N} c_{ST,k} \cdot y_{ik} + \sum_{k=1}^{K} \left(p_{d,k} \cdot d_k + p_{t,k} \cdot t_k + \sum_{j=2}^{N} c_{V,k} \cdot x_{1jk} \right) \right)$$

With the following constraints:

- time constraints
- distance constraints
- flow constraints
- use constraints (one vehicle per demand point)
- Elimination of subtours

Solving the problem using Cplex

- For the first table, Cplex remains a good solution method because it achieves an exact solution in just 1.93252 seconds.
- This is fast, even though we will see later that we can do much better.
- However, from the second instance onwards, its solution time is almost 10 minutes. It became clear to us that we need to find a faster way to solve our problem. We initially sought to find a quicker exact method.

Bottom-up approach

As opposed to local Search methods, we first tried to **build** the best possible solution **from scratch**, this could later be used to :

- quickly solve small instances
- create a bottom-up heuristic
- initialize local search algorithms

Hierarchical decomposition of the problem

The CVRP problem can be separated into two different parts :

- A K-partitioning problem (with K being the number of vehicle)
- K Travelling Salesman Problem (TSP)

The 3-partitioning Problem

For n clients $I=\{1,2,...,n\}$ We aim to separate it into 3 subsets : $I_1,I_2,I_3\subset I$ with $I_1\sqcup I_2\sqcup I_3=I$ For example for n = 10 :

The Travelling Salesman Problem (TSP)

The Travelling salesman Problem aims at minimizing the total travelled distance while going through every cities.

Combining the two

Implementing an **exhaustive search**: We compute every K-partitioning possible solution, respecting the Capacity constraint in $O(K^n)$

For every vehicle we compute the TSP to get the travelled distance, that way we can check the remaining constraints and compute the cost of a partition. For a total of $O(n!K^n)$

Total complexity

A problem that occurs is that we **compute too many times the same TSP**.

An easy improvement is to pre-compute the result of the TSP of every subset possible and **store it in a table**.

The complexity is in $O(2^n n!)$

Improvement for the TSP: The Held-Karp Method

Computing every TSP is very time consuming. An improvement would be to use the Held-Karp Method

Figure: Graph for the Held-Karp dynamic Programming

Improvement for the global algorithm

The Held-Karp Method stores every minimal sub-path. With it we can easily directly **retrieve every TSP result**.

In total, filling our table is in $O(n^22^n)$ and after that we brute-force the K-partitioning problem, in $O(K^n)$. With a total of $O(n^22^n + K^n)$

This algorithm quickly solves every instances with n < 25

Adaptation into an heuristic

Computing the Held-Karp algorithm is not realistic for instances with $n \ge 25$ as the time and space complexity is **exponential**.

The idea is to **compute an upper-bound** of the TSP solution in **polynomial time**.

We are going to use the approach of **Minimal Spanning Trees**.

Upper bound for the TSP

Heuristics to solve the K-partitioning Problem

Now computing a good solution for the TSP is quick in $O(n^2 log(n))$. Brute-Forcing the K-partitioning Problem is also not feasible for big instances. $n \ge 25$

We can try many **graph searching algorithms** to find the best approximation :

We can think of using a **Branch and Bound** algorithm or a **MCTS** algorithm.

Local search

Tabu Search

- Step 1: Initialization
- Step 2: Exploration
- Step 3: Evaluation and Selection
- Step 4: Tabu List

figureOvercoming local minima

The implementation

- Start with a randomly generated initial solution, exploring neighborhoods through swapping and reassignment.
- Use a tabu list to select moves, it avoids cycles.
- Second to a second the smallest cost to always improve.

Possible improvements

- Aspiration criteria
- Oynamically change the tabu list size and tenure
- 3 Expand the neighborhood definition

Conclusion et analyse des résultats

The following table shows the performance of our methods across 5 instances, with each cell containing the score achieved, the computation time required, and the error percentage relative to the exact solution:

Methods	1 (n=10)	2 (n=15)	15 (n=20)	16 (n=50)	17 (n=100)
Tabou	700.4 / 0.04s / 0%	1109.36 / 0.18s / 25.4%	1071.62 / 0.45s / 37.1%	540 / 2.8s / 80%	1080 / 12.5s / 58.8%
Heur.	700.4 / 0.08s / 0%	884.81 / 0.01s / 0%	781.36 / 23.56s / 0%	300 / 61.01s / 0%	780 / 61.02s / 14.7%
Exact	700.4 / 0.002s / 0%	884.81 / 0.065s / 0%	781.36 / 5.62s / 0%	=	-
CPLEX	700.4 / 1.39s / 0%	884.81 / 284.77s / 0%	-	-	-

Table: Comparative results of methods on datasets