计算机学院研究生《人工智能原理》考试试题

2.12622	
班级 学号 2013532030 姓名 19天本公	S有线
A 2006的 65 中华于大桥 66 66 是一位 9月 86 印:「C N 中国66 中央 55 平静 28 96	
◆ 请将答案写在答题纸上,写明题号,不必抄题,字迹工整、清晰;◆ 请在答题纸和试题纸上都写上班级、学号和姓名,交卷时请将试题纸、答题纸和草纸一并交	4 0.
1.57	
13 304 Bot Snaken	
一、[40分] 简要回答下列问题	
1. [8分] 产生式系统由哪几部分组成?给出归结反证系统的产生式系统表示。[[s 中旬が
2. [8 分] 给出搜索算法的可采纳性的定义,并分别指出一般情况下 A*算法、AO*	THEN !!
算法是否可采纳,若不是,请给出可采纳性的条件。	4
3. [8 分] 简要说明子句集 S 的 Herbrand 解释与普通解释的关系。在语义上证明	机
子句集恒假时,仅考虑该子句集的 Herbrand 解释是否够用?为什么?	1
4. [8 分] 设子句集 $S=\{P(x)\lor \sim Q(x), \sim P(f(x)), Q(f(x))\}$.	1/20
(1) 求 S 的 Herbrand 域; S 的原子集。	I Seconor
(2) 分别画出 S 的完全语义树与封闭语义树,指出所有失效点与推键点。	1 PI-ETVAG
(3) 写出被封闭语义树中所有失效点弄假的 S 的所有基例的集合。 Hend	5
5. 限分] 用 Davis-Putnam 方法证明:	
(1) (R ∨ 0) ∧(~R ∨ 0) ∧(~P ∨ ~ 0) ∧(P ∨ ~ 0) 是不可满足的。 (2) (P ∨ Q ∨ W) ∧(~P ∨ Q ∨ W) ∧R ∧ W 是可满足的。	
A TEAN AND CONTRACTOR	. 1
二、[10 分] 请用回溯搜索策略 BACKTRACK 求解四皇后问题,要求规则排序	
使用对角函数 diag(i, j)。如果 diag(i, j) < diag(i, k)。则在排序中把 Rii 放在 Rik 的	
前面:如果 diag(i, j)=diag(i,k), j <k,则把 diag(i,="" j)定义<="" ria="" rij="" td="" 放在="" 的前面。其中=""><td></td></k,则把>	
为通过单元(i, j)的最长对角线的长度。	· · · · · · · · · · · · · · · · · · ·
	[int]:
三、[10 分] 设八数码难题有估价函数: f(n)=d(n)+P(n). 其中 d(n)是节点 n 在授	الشياش
索树中的深度, P(n)是每个数码离"家"(目标位置)距离的和。	ê.
现有初始状态描述和目标状态描述如下:	~ /2
1 3 1 2 3	1. Sec
7 2 4 8 4	/ دبلوس
6 8 5 7 6 5	
初始状态 目标状态	
请画出使用此函数的 A 算法启发式搜索过程图,要求:在图中标明各节点	
的估价函数值,标明节点扩展的次序,写出算法每次循环结束时其 OPEN 表和	
CLOSED表。(左优先、浅层的优先)	
Ⅲ * 178 △ 1 佃户非和专 《 全生中医体 】 甘于加丁每回相则	
四、[10分] 假定我们有一个产生式系统,基于如下重写规则:	
R ₁ : $n_0 + n_1$, n_2 R ₅ : $n_2 + n_6$, n_7 R ₂ : $n_0 + n_2$, n_3 R ₆ : $n_3 + n_5$, n_6	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	•
	•

R3: n1-n2

R7: 104-102

R4: n1-n4

R8: n5-n7

- (1) 用与/或图表示此产生式系统。
- (2) 若 $h(n_6)=0$, $h(n_1)=2$, $h(n_2)=4$, $h(n_3)=4$, $h(n_4)=3$, $h(n_5)=1$, $h(n_6)=0$, $h(n_7)=0$ 为 启发函数, k-连接符的费用为 k,

求 no 到{no, no}的最佳解图。(要求: 使用 AO*算法, 画出各次循环图, 标 明各点费用 q(m), 画出最后的最佳解图,并指明最佳解图的费用)

五、[10 分] 设 $G= \forall x (\sim Q(x) \vee Q(f(x)))$, $H=\forall y (\sim Q(y) \vee Q(f(f(y))))$ 。问是否有 H是G的逻辑结果,即 G⇒H? 若H不是G的逻辑结果,请说明原因,若H ~ R(n) V R (fin) 変記を列 是G的逻辑结果,请画出推出空子句的单元归结演绎树。

My 1986.

六、[10分] 请用基于规则的正向演绎系统证明如下问题:skolemic对这种类似,但是不同时个队对心里

已知 表示事实的逻辑公式。 $\exists x(P(x) \rightarrow (Q(x) \land S(x)))$

表示规则的逻辑公式:Ri: ∀x(P(x) V~R(x)) Sholem 后页化为 直层式. L->w, L是单分 $\mathbf{R}_{\mathbf{Z}}: \forall \mathbf{y}(\sim \mathbf{Q}(\mathbf{y}) \vee \mathbf{T}(\mathbf{y}))$

表示目标的逻辑公式: $\exists z (R(z) \rightarrow T(z))$ 。Skolem 对偶化,不同所取多尔利。

- (1) 分别将事实、规则和目标转化成基于规则的正向演绎系统所要求的形式。
- (2) 画出演绎过程与/或图, 标明其中的匹配替换;
- ② 检验替换集合的相容性, 若相容, 请写出合一复合替换;
- (4))写出终止于文字节点的解图对应的所有子句。

七、[30分] 若博弈哲中口表示极大点,〇表示极小点。在以优先生成左边于节 点的顺序对下图中的博弈树进行 a - B 剪枝时,请指出:

- (1) 在何处发生剪枝;
- (2) 何处为 6 修剪, 何处为 8 修剪;
- (3) 初始节点的最终返回值; 口将选择什么移动?

第2页共2页