Command Reference: NewStatisticTimeSeriesFromEnsemble()

Create a time series containing a statistic determined from a time series ensemble

Version 10.12.00, 2012-07-18

The NewStatisticTimeSeriesFromEnsemble () command uses data from time series in an ensemble to calculate a statistic for each interval in the ensemble, and assigns the statistic value to the corresponding interval in the result. For example, for a statistic of Mean applied to a daily time series, all January 1, 1970 values will be used for the sample and the mean value will be assigned to January 1, 1970 in the output time series. Leap year values will be included if they are included in the period of the ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeriesFromEnsemble() Command Editor

V

The command syntax is as follows:

NewStatisticTimeSeriesFromEnsemble(Parameter=Value,...)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewStatisticTimeSeriesFromEnsemble(Parameter=Value,...)

Command Parameters

Parameter	Description	Default
EnsembleID	The identifier for the ensemble to analyze.	None – must be specified.
NewTSID	The time series identifier to be assigned to the new time series, which is useful to avoid confusion with the original time series. This parameter may be required in the future.	None – use the same identifier as the original time series.
Alias	The alias to assign to the time series, as a literal string or using the special formatting characters listed by the command editor. The alias is a short identifier used by other commands to locate time series for processing, as an alternative to the time series identifier (TSID).	None – must be specified.
Statistic	The statistic to compute. See the Available Statistics table below.	None – must be specified.
Allow	The number of missing values allowed in the sample of	Missing values are
Missing	values in order to produce a result. This capability should	ignored in the sample
Count	be used with care because it may result in data that are not representative of actual conditions.	used to compute the statistic.
MinimumSample	The minimum number of values in the sample that are	Use the sample with
Size	required to compute the statistic.	no restrictions,
		although some
		statistics may have requirements.
AnalysisStart	The date/time for the analysis start, using a precision that matches the original time series.	Analyze the full period.
AnalysisEnd	The date/time for the analysis start, using a precision that matches the original time series.	Analyze the full period.
OutputStart	The date/time for the output start, using a precision that matches the original time series. An output period longer than the analysis period will result in missing values in output.	Output the full period.
OutputEnd	The date/time for the output start, using a precision that matches the original time series. An output period longer than the analysis period will result in missing values in output.	Output the full period.

Available Statistics

Statistic	Description	Limitations
Exceedance	The data value corresponding to a 10%	Small sample size will skew –
Probability10	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 30%	Small sample size will skew –
Probability30	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 50%	Small sample size will skew –
Probability50	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 70%	Small sample size will skew –
Probability70	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 90%	Small sample size will skew –

Statistic	Description	Limitations
Probability90	chance of value being exceeded.	see statistic details.
GeometricMean	Geometric mean of all values in the sample.	All values must be $\geq = 0$.
Max	Maximum of all values in the sample.	None.
Mean	Arithmetic mean of all values in the sample.	None.
Median	Median of all values in the sample.	None.
Min	Minimum of all values in the sample.	None.
Missing	The count of values that are missing.	This statistic will be computed
Count		regardless of
		AllowMissingCount and
		MinimumSampleSize.
Missing	The percent of values that are missing.	See above.
Percent		
Nonmissing	The count of values that are not missing.	See above.
Count		
Nonmissing	The percent of values that are not missing.	See above.
Percent		

Statistic Details

Statistic	Description
Exceedance Probability*	 The statistic for each time step in the analysis period is computed as follows: The data values are extracted for each trace with missing values being ignored. The sample size is n. The data values are sorted into ascending order. Exceedance probabilities are computed for the number of sample values according to Weibull plotting positions as follows (for i=1,,n):
	To create an exceedance probability plot, use several commands with different exceedance probability levels (listed low to high). Graphing the time series in a bar graph with BarOverlap=True will draw the bars on top of each other to give the desired appearance. The edges of the colors will represent the specific exceedance probabilities and the colored areas will represent ranges of exceedance probabilities.

Examples

The following example command file illustrates how to compute the mean statistic for one monthly data:

```
# Test computing a statistic time series for Month data where Statistic=Mean
StartLog(LogFile="Results/Test NewStatisticTimeSeriesFromEnsemble Month Mean.TSTool.log")
# Define 2 years of data that when averaged equal even numbers
# The 2nd time series is shifted by 1 from the first.
# Include missing values in the first time series but not the second.
NewPatternTimeSeries(Alias="ts1", NewTSID="ts1..Streamflow.Month",
   Description="test data 1", SetStart="2000-01", SetEnd="2001-12", Units="CFS",
    PatternValues=".5,1.5,,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,
   1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5")
NewPatternTimeSeries(Alias="ts2", NewTSID="ts2..Streamflow.Month",
   Description="test data 2", SetStart="2000-01", SetEnd="2001-12", Units="CFS",
   PatternValues="1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,
   2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5")
# Create an ensemble to hold the above time series
NewEnsemble(TSList=AllTS, NewEnsembleID="TestEnsemble", NewEnsembleName="Test Ensemble")
# Compute the statistic
NewStatisticTimeSeriesFromEnsemble(Alias="Mean", EnsembleID="TestEnsemble",
   NewTSID="Test..Streamflow.Month.Mean", Statistic=Mean)
```

The following figure illustrates the results:

NewStatisticTimeSeriesFromEnsemble_Table

NewStatisticTimeSeriesFromEnsemble() Command Results

NewStatisticTimeSeriesFromEnsemble() Command	TSTool Documentation
This page is intentionally blank.	