Varun Khadayate A016 16/9/20 F.L.A.T Assignment - IV 2 Decidalineralityty Aprollem is said to be decidable if we can always constructe Korresponding algorithm that can arriver the problem correctly. A problem is said to be a decidable problem of there exist a corresponding Turing Machine which halts on every input with an answer yes or no Undecidalimershility The problem for which we cont construct an algorithm that can answer the problem correctly in finite time one termed as Underdalemerabethe problem. These problem may be partially partially decidable problems but their will be never decidable that is there will be always be a condition that will lead the turing machine into an infinite loop whithout without providing an answer at all Eg: - 1. Whether a CFCr generates all the strings or not. 2. Ambiguity of CFG. Rocursiu Enumerable Language RE larguage or Type-O Larguage are generated by type-O grammer for RE larguage can be accepted or recognized by Turing Machine which means it will enter into final state for the strings are may be or may not enter into is rejecting State strings of language. It means Turing Machine can loop the strings which are not part of the language.

Cam	ilin Pa	ge
Date	1	1

Recursive Language can be decided by markine which means it will enter finite state for the strings of language and real state for the strings which are not part of language

Eg: L= [a" b"c" | n > 19, is recursine & locause construct
a turing muchine which move to state if the strings that
Taring Machine will also halt in this case. RE language
are also as Twing Decidable Longuage.

Q4. Rice Theorem states that any non-trival semantic property of a language which is recognized by a Turing Machine is Underidable. A property, P, is the language of all Turing Machine that satisfy that property.

Formal Defination

If P is a non-trival property, and the language holding
the property, Lp, is recognized by Twing Machine M,
then Ip = 2 < M > I L (M) EPY is Underdalle.

Fronerties

1.25 Property 1: There exists Turing Machine, M1 and M2 that recognize the same language, i.e, either (<M1>,<M2>EL)
or (<M1>,<M2>EL)

2. Property 2: There exists Turing Machine MI and M2 where M1 recognizes the longuage while M2 does not rice < M1> ELand

However, for a few values of A and B, it might how a solution.

Eg: Find whether the list M= (abb, ag, aga) & N=(bba, aga, aga, aga) have a PCS?

->	٠	81	X,	X3	
	M	abb	aa	aaa	
	N	bba	999	99	-

Here,

x , x, 23 = agabbaga

and, yzy, yz = aaabbaaa

Henry, web can su that

Hence, the solution is "= 2, J=1 2 K=3.

DI. To Prove: The Halting Problem Is Unsolvable.

Proof: Let us procue the halting problem is ansalvable by contradictions.

Letra us assume that there exist a TM (A) which desides whether or not any computation by any TM (T) will ever halt given that the description of CSFM of T, and the input tape t of T. Then for every input (t, a) to A, if T halts, then A reaches an accept halt state;

Cam	lin Pa	ge	
Date	1	T	

else Areache	a rejed helt!	state.	
	Ø.	The	elte for t'
Input	(A)	2	> Accept Halt
(t, at)	3		> Reject Halt
	A 1 / 1 / 1	Tdoes	not halts for 't'
	A halts for inp	ut (t, d)	· · · · · · · · · · · · · · · · · · ·
· i	V .		
We now alter	mpt to construct	t another	TM(B) which takes
(t. dr) ou the	input: it I +	:011 a. 1.11	o or
- 4:6. A : d co	input; it funt	and as fall	the trib
- Just w	pails the superior	ra augreally	the same orloits
Tape. then	it takes this du	phiated inf	formation tape as
the input to	H. Whenever A	reaches the	accept halt state,
B loops fo	rever, and, when	or wheneve	r A reaches the
reject halt	state Bhalts	8.80	
0		Thomas	Halt
		foring	ut t=dr
	TM(B)		-
Input	(t) (A) ===		Loop
(t/dz)	(407) (M)	-	Halt
		1	
		Tdoes not	- Halt
		for input	t=d+
		0	
Consolina	H. mi a / /al.	· · · · · · · · · · · · · · · · · · ·	1:11100+
unsidering)	ne original rende	way or we	find that Back
694 / 601/164/1/1			
It fatte log	as if Tholto for;	input & and	d halts if T does irking of T M(B)
not halt ho	The input Ft. I	hus, the wo	irking of TM(B)
is great him	ported that da	M(T).	
war of	The state of		

Now Now, since Bitsolf is a TM, let us set TB. In this case, Bhalts for the input if and only & B does not halt for the same input, and loops forever if and only if Bhalts for the input.

Bhalts for inpud (ts, ds)

> Loop

(ts, ds)

> M(B)

| State |

Well, this is a constrantion.

Hence, we conclude that the machine A wehich can decide whether or not any other TM will ever halt connot exist. Therefore, we conclude that the holting problem is unsalvable.

Hery, Proved