Assignment-1

Op-Amp

1.

A valve is used to release (when valve is OPEN,) or maintain (when valve is CLOSED,) water pressure in a water tank. The valve operates on **ACTIVE LOW** logic. (i.e., the valve is OPENED when given a LOW voltage of 1 *V*, but remains CLOSED when provided a HIGH voltage of 6 *V*.)

A pressure sensor is installed in the water tank that outputs a voltage linearly proportional to pressure, as shown in the table below.

At 0.5 atm	At 1 atm	At 1.5 atm
pressure	pressure	pressure
$v_{0.5 atm} = 0.5 V$	$v_{1 atm} = 3 V$	$v_{1.5 atm} = 5.5 V$

The pressure in the water tank can be measured by the formula $P = h\rho g$, where P, (in **Pascals (Pa)** unit) is the water pressure, h is the height of water in the tank (in *metres*), ρ (= 1000 kgm^{-3}) is the density of water and g is the acceleration due to gravity (in ms^{-2}).

[1 atm = 101325 Pa]

- i.**Design** a circuit using Op-Amp comparator to automatically turn OPEN the valve if water level exceeds 10 m.
- ii. Draw the voltage transfer characteristics (VTC) of the designed Op-Amp.
- 2. **Deduce** the expression for output, V_0 from the circuit above

- (a) Analyze the circuit above to find an expression of f in terms of inputs x and y. Also, determine the intermediate outputs v_{I_1} , v_{I_2} , and v_{I_3} as denoted in the circuit. [4]
- (b) Draw the circuit of an inverting amplifier and design it in such a way that the voltage gain, k = −4. (i.e., find the values of R₁ and R₂).
 [3]
- (c) Show the input and output waveforms of the inverting amplifier of part (b) assuming a sinusoidal input of 0.5 V amplitude. Calculate the amplitude of the output.
 [2]
- (d) Consider the inverting amplifier of part (b) again. Assume the input voltage can provide a <u>maximum</u> current of 0.5 μA. **Determine** the design changes required, if any, for the circuit to work. [1]

4. Consider the Ideal Op-Amp and find the value of Vo.

5. Determine the marked currents and the output voltage

6. Determine the appropriate value of \boldsymbol{R}_1

7. Express the output voltage \boldsymbol{v}_0 in terms of all the other quantities shown in the circuit below.

8. Determine the output of the comparator, \boldsymbol{V}_0 after finding \boldsymbol{V}_a and \boldsymbol{V}_b .

9. Draw the correct waveform of V_0 (with voltage labels) alongside the input waveform of $\it E$.

10. Draw the approximate waveforms of both $\,V_{_A}\,{\rm and}\,\,v_{_0}^{}$ from the circuit below.

