1	1			
Chapter _	L			

Documentación Modelo Lambda

1.1 Índices

 $egin{array}{ll} pe & {
m Periodos} \\ st, \, st2 & {
m Estados} \\ \end{array}$

gt Grupos térmicos

gh, gh2 Grupos hidráulicos

em Empresas

amv Agentes marginalistas de venta

amc Agentes marginalistas de compra

 $nd,\,nd2$ $\,$ Nodos de la red de transmisión

 d_st1 Características de los estados

d_em1 Cuotas mínimas de producción de las empresa

 d_gt1 Características de los grupos térmicos

 d_gt2 Costos de los grupos térmicos d_gt3 Energía máxima y mínima de los grupos térmicos d_gh1 Características de los grupos hidráulicos

1.2 Modelado de las características temporales

1.2.1 Elementos de los conjuntos

d_st1	Características de los estados
st_ini	Estado inicial
st_fin	Estado final

1.2.2 Parámetros

 $DUR_PS_{pe,st}$ Duración de los estados

TRAN_PSS $_{pe,st,st2}$ Transición entre el estado st y st2

 $CARAC_PS_{pe,st,d_st1}$ Características de los estados

1.3 Modelado de las empresas

1.3.1 Elementos de los conjuntos

d_em1	Cuotas mínimas de producción de las empresa
em₋cuotamin	Cuota mínima (%)
em_pmin	Producción mínima (MW)

1.3.2 Parámetros

EM_THETA_PS_{em,pe,st} Variación conjetural del precio del sistema respecto a la producción de la empresa en el periodo y estado

 $\mbox{EM_CBILPOT_PS}_{em,pe,st} \qquad \mbox{Potencia de los contratos bilaterales de la empresa en el periodo y estado } \\$

 ${\it EM_CDIFPOT_PS}_{em,pe,st} \qquad {\it Potencia de los contratos por diferencias de la empresa en el periodo y estado}$

 $EM_{-}CUOTA_{em,d_em1}$ Cuota mínima de producción de la empresa

1.4 Modelado de los grupos térmicos

1.4.1 Elementos de los conjuntos

d_gt1	Características de los grupos térmicos
gt₋pmax	Potencia máxima (MW)
gt₋pmin	Potencia mínima (MW)
gt_aco_ini	Acoplamiento inicial

d_gt2	Costos de los grupos térmicos
gt_cvacio	Costo de vacío (\$/MWh)
gt_carr	Costo de arranque (\$)
gt_cpar	Costo de parada (\$)

d_gt3	Energía máxima y mínima de los grupos térmicos
gt_emin	Energía mínima (MWh)
gt_emax	Energía máxima (MWh)

1.4.2 Parámetros

 $\operatorname{GT_CARAC}_{gt,d_gt1}$ Características del grupo térmico

 $\operatorname{GT_COSTOS}_{gt,d_gt2}$ Costos del grupo térmico

 $\operatorname{GT_CVAR_P}_{gt,pe}$ Costo variable del grupo térmico por periodo

 $\begin{array}{ll} \operatorname{GT_COEFDISP_P_{gt,pe}} & \operatorname{Coeficiente} \ \operatorname{de} \ \operatorname{disponibilidad} \ \operatorname{del} \ \operatorname{grupo} \ \operatorname{térmico} \ \operatorname{por} \ \operatorname{periodo} \\ \operatorname{GT_EMAX_P_{gt,pe}} & \operatorname{Energ\'ia} \ \operatorname{m\'axima} \ \operatorname{que} \ \operatorname{debe} \ \operatorname{producir} \ \operatorname{el} \ \operatorname{grupo} \ \operatorname{por} \ \operatorname{periodo} \\ \operatorname{GT_EMIN_P_{gt,pe}} & \operatorname{Energ\'ia} \ \operatorname{m\'axima} \ \operatorname{que} \ \operatorname{debe} \ \operatorname{producir} \ \operatorname{el} \ \operatorname{grupo} \ \operatorname{por} \ \operatorname{periodo} \\ \operatorname{GT_ENER_{gt,d_gt3}} & \operatorname{Energ\'ia} \ \operatorname{m\'axima} \ \operatorname{y} \ \operatorname{m\'inima} \ \operatorname{que} \ \operatorname{debe} \ \operatorname{producir} \ \operatorname{el} \ \operatorname{grupo} \ \operatorname{a} \ \operatorname{lo} \ \operatorname{largo} \ \operatorname{de} \ \operatorname{todo} \ \operatorname{el} \ \operatorname{horizonte} \\ \operatorname{GT_PERT_EM_{gt,em}} & \operatorname{Pertenencia} \ \operatorname{del} \ \operatorname{grupo} \ \operatorname{térmico} \ \operatorname{a} \ \operatorname{la} \ \operatorname{empresa} \\ \operatorname{GT_LOCA_ND_{gt,nd}} & \operatorname{Localizaci\'on} \ \operatorname{del} \ \operatorname{grupo} \ (1 \ \operatorname{si} \ \operatorname{esta} \ \operatorname{en} \ \operatorname{el} \ \operatorname{nodo} \ nd, \ 0 \ \operatorname{en} \ \operatorname{otro} \ \operatorname{caso}) \\ \end{array}$

1.5 Modelado de los grupos hidráulicos

1.5.1 Elementos de los conjuntos

d_gh1	Características de los grupos hidráulicos
gh_upmaxres	Término constante de la relación potencia máxima-reserva (MW)
gh_vpamxres	Término lineal de la relación potencia máxima-reserva (MW/MWh)
gh_rendturbom	Rendimiento completo del ciclo turbinación-bombeo (p.u.)
gh_rini	Reservas iniciales (MWh)
gh_rfin	Reservas finales (MWh)

1.5.2 Parámetros

Características del grupo térmico
Aportaciones hídricas al grupo hidráulico por periodo
Potencia máxima de bombeo del grupo hidráulico por periodo
Producción mínima obligada del grupo hidráulico por periodo
Reserva máxima del grupo hidráulico por periodo
Reserva mínima del grupo hidráulico por periodo
Pertenencia del grupo hidráulico a la empresa
Sistemas hidráulicos inmediatamente superiores
Localización del grupo (1 si esta en el nodo nd , 0 en otro caso)

1.6 Modelado de los agentes marginalistas

1.6.1 Parámetros

AMV_OFERPCIO_PS_{amv,pe,st} Precio de generación ofertado por el amv por periodo y estado

AMV_OFERPOT_PS $_{amv,pe,st}$ Generación ofertada por el amv por periodo y estado

 $\mathsf{AMC_OFERPCIO_PS}_{amc,pe,st}$ Precio de demanda ofertado por el amc por periodo y estado

AMC_OFERPOT_PS $_{amc,pe,st}$ Demanda ofertada por el amc por periodo y estado

AMV_LOCA_ $\mathrm{ND}_{amv,nd}$ Localización del agente marginalista (1 si esta en el nodo nd, 0 en otro caso)

AMC_LOCA_ND_{amc,nd} Localización del agente marginalista (1 si esta en el nodo nd, 0 en otro caso)

1.7 Modelado de la demanda y de la red

1.7.1 Parámetros

 $\mbox{RED_REAC}_{nd,nd2} \qquad \qquad \mbox{Reactancia de la linea entre los nodos } nd \ \mbox{y} \ nd2$

DEM_COSTOENENOSUM Costo de la energía no suministrada

 ${\sf DEM_ORD_PS}_{pe,st} \qquad \qquad {\sf Ordenada\ en\ el\ origen\ de\ la\ potencia\ demandada\ en\ el\ periodo\ y\ estado}$

 ${\sf DEM_PEN_PS}_{pe,st} \qquad \qquad {\sf Pendiente} \; \; {\sf de} \; {\sf la} \; {\sf potencia} \; {\sf demandada} \; {\sf en} \; {\sf el} \; {\sf periodo} \; {\sf y} \; {\sf estado}$

 $\mathsf{DEM_ORD_NPS}_{nd,pe,st}$ Ordenada en el origen de la potencia demandada en el periodo y estado por nodo

DEM_PEN_NPS $_{nd,pe,st}$ Pendiente de la potencia demandada en el periodo y estado por nodo

1.8 Opciones de ejecución

OPT_DEM Opción de demanda

0 Demanda Inelástica

1 Demanda Elástica

OPT_EQUI Opción de tipo de equilibrio

0 Competencia perfecta

1 Variación conjetural

OPT_ENT Opción de tipos de variables

0 Relajadas

1 Enteras

OPT_RED Opción de red

0 Sin red

1 Con red

1.9 Variables de decisión

1.9.1 Costos

 C_FO_TOT Costo total

C_FO_CARR Costos totales de arranque

C_FO_CPAR Costos totales de parada

C_FO_CVACIO Costos totales de vacío

 C_FO_CVAR Costos totales variables

 C_FO_AM Ingresos y costos totales de los agentes marginalistas

 C_FO_CENS Costo total de la energía no suministrada

1.9.2 Empresas

 $EM_POT_PS_{em,pe,st}$ Potencia producida por la empresa en el periodo y estado

1.9.3 Grupos térmicos

 $GT_POT_PS_{gt,pe,st}$ Potencia producida por el grupo térmico en el periodo y estado $GT_ARR_PSS_{gt,pe,st,st2}$ Decisión de arranque del grupo térmico del estado st al estado st2 $GT_PAR_PSS_{gt,pe,st,st2}$ Decisión de parada del grupo térmico del estado st al estado st2 $GT_ARR_P_{gt,pe}$ Decisión de arranque del grupo térmico al inicio del periodo $GT_PAR_P_{gt,pe}$ Decisión de parada del grupo térmico al inicio del periodo $GT_ACO_PS_{gt,pe,st}$ Estado de acoplamiento del grupo en periodo y estado

1.9.4 Grupos hidráulicos

 $GH_POT_PS_{gh,pe,st}$ Potencia turbinada por el grupo hidráulico en el periodo y estado $GH_BOM_PS_{gh,pe,st}$ Potencia bombeada por el grupo hidráulico en el periodo y estado $GH_VE_P_{gh,pe}$ Energía vertida por el grupo hidráulico en el p $GH_RES_P_{gh,pe}$ Reservas del grupo hidráulico al final del p $GH_EQUI_P_{gh,pe}$ Equivalente de la energía total del grupo hidráulico

1.9.5 Agentes marginalistas

 $AMV_POT_PS_{amv,pe,st}$ Potencia de generación aceptada a un amv en el periodo y estado $AMC_POT_PS_{amc,pe,st}$ Demanda aceptada a un amc en el periodo y estado

1.9.6 Demanda

 $\begin{array}{ll} DEM_PS_{pe,st} & \text{Demanda de potencia en el periodo y estado} \\ DNS_PS_{pe,st} & \text{Potencia no suministrada por periodo y estado} \\ DEM_NPS_{nd,pe,st} & \text{Demanda de potencia en el periodo y estado por nodo} \\ DEM_CBILPOT_NPS_{nd,pe,st} & \text{Potencia de los contratos bilaterales en cada nodo} \\ DNS_NPS_{nd,pe,st} & \text{Potencia no suministrada por periodo y estado por nodo} \\ \end{array}$

1.9.7 Red

 $RED_ANG_{nd,pe,st}$ Angulo en el nodo por periodo y estado

 $RED_FLX_{nd,nd2,pe,st}$ Flujo entre nodos nd y nd2 por periodo y estado

1.10 Ecuaciones

1.10.1 **R_FO_TOT**

Función objetivo

 C_FO_TOT

=

 $C_FO_CARR + C_FO_CPAR + C_FO_CVACIO + C_FO_CVAR + C_FO_AM + C_FO_CENS$

$$+ \sum_{em,pe,st} \left\{ \frac{1}{2} \cdot \text{DUR_PS}_{pe,st} \cdot \text{EM_THETA_PS}_{em,pe,st} \cdot \left(EM_POT_PS_{em,pe,st} - EM_CBILPOT_PS_{em,pe,st} - EM_CDIFPOT_PS_{em,pe,st} \right)^2 \right\} \bigg|_{\text{OPT_EQUI=1}} \\ - \sum_{pe,st} \left\{ \frac{\text{DUR_PS}_{pe,st}}{\text{DEM_PEN_PS}_{pe,st}} \cdot \left(\text{DEM_ORD_PS}_{pe,st} \cdot DEM_PS_{pe,st} - \frac{1}{2} \cdot DEM_PS_{pe,st}^2 \right) \right\} \bigg|_{\text{(OPT_DEM=1)} \land (\text{OPT_RED=0})} \\ - \sum_{nd,pe,st} \left\{ \frac{\text{DUR_PS}_{pe,st}}{\text{DEM_PEN_NPS}_{nd,pe,st}} \cdot \left(\text{DEM_ORD_NPS}_{nd,pe,st} \cdot DEM_NPS_{nd,pe,st} - \frac{1}{2} \cdot DEM_NPS_{nd,pe,st}^2 \right) \right\} \bigg|_{\text{(OPT_DEM=1)} \land (\text{OPT_RED=1})}$$

1.10.2 **R_FO_CARR**

Costos de arranque

$$C_FO_CARR$$

$$\sum_{gt} \bigg\{ \text{GT_COSTOS}_{gt, \texttt{gt_carr}} \cdot \bigg(\sum_{pe, st, st2|_{st \neq st2}} (\text{TRAN_PSS}_{pe, st, st2} \cdot GT_ARR_PSS_{gt, pe, st, st2}) + \sum_{pe} GT_ARR_P_{gt, pe} \bigg) \bigg\}$$

1.10.3 **R_FO_CPAR**

Costos de parada

$$\begin{aligned} &C_FO_CPAR \\ &= \\ &\sum_{gt} \bigg\{ \text{GT_COSTOS}_{gt,\texttt{gt_cpar}} \cdot \bigg(\sum_{pe,st,st2|_{st \neq st2}} (\text{TRAN_PSS}_{pe,st,st2} \cdot GT_PAR_PSS_{gt,pe,st,st2}) + \sum_{pe} GT_PAR_P_{gt,pe} \bigg) \bigg\} \end{aligned}$$

1.10.4 R_FO_CVACIO

Costos de vacío

$$\begin{split} &C_FO_CVACIO \\ &= \\ &\sum_{gt,pe,st} \Big(\text{GT_COSTOS}_{gt,\texttt{gt_cvacio}} \cdot \text{DUR_PS}_{pe,st} \cdot GT_ACO_PS_{gt,pe,st} \Big) \end{split}$$

1.10.5 **R_FO_CVAR**

Costos variables

$$\begin{split} &C_FO_CVAR \\ &= \\ &\sum_{gt,pe,st} \Big(\text{GT_CVAR_P}_{gt,pe} \cdot \text{DUR_PS}_{pe,st} \cdot GT_POT_PS_{gt,pe,st} \Big) \end{split}$$

1.10.6 R_FO_AM

Ingresos y costos de los agentes marginalistas

$$\begin{split} &C_FO_AM \\ &= \\ &\sum_{amv,pe,st} \left(\text{DUR_PS}_{pe,st} \cdot \text{AMV_OFERPCIO_PS}_{amv,pe,st} \cdot AMV_POT_PS_{amv,pe,st} \right) \\ &- \sum_{amc,pe,st} \left(\text{DUR_PS}_{pe,st} \cdot \text{AMC_OFERPCIO_PS}_{amc,pe,st} \cdot AMC_POT_PS_{amc,pe,st} \right) \end{split}$$

1.10.7 **R_FO_CENS**

Costo de la energía no suministrada

$$\begin{split} &C_FO_CENS \\ &= \\ &\sum_{pe,st} \Big(\text{DUR_PS}_{pe,st} \cdot \text{DEM_COSTOENENOSUM} \cdot DNS_PS_{pe,st} \Big) \end{split}$$

Balance de potencia por periodo y estado

$$\sum_{gt} GT_POT_PS_{gt,pe,st} + \sum_{gh} GH_POT_PS_{gh,pe,st} + \sum_{amv} AMV_POT_PS_{amv,pe,st}$$

$$= \\ DEM_PS_{pe,st} + \sum_{em} EM_CBILPOT_PS_{em,pe,st} + \sum_{gh} GH_BOM_PS_{gh,pe,st} + \sum_{amc} AMC_POT_PS_{amc,pe,st} + DNS_PS_{pe,st} \quad \forall pe, st \in S_{gh}$$

1.10.9 R_DEM_BALPOT_NPS
$$_{nd,pe,st}$$
 OPT_RED=1

Balance de potencia en cada nodo por periodo y estado

$$\sum_{gt \mid_{\text{GT_LOCA.ND}_{gt,nd}}} GT_POT_PS_{gt,pe,st} + \sum_{gh \mid_{\text{GH_LOCA.ND}_{gh,nd}}} GH_POT_PS_{gh,pe,st} + \sum_{amv \mid_{\text{AMV_LOCA.ND}_{amv,nd}}} AMV_POT_PS_{amv,pe,st}$$

$$=$$

$$DEM_NPS_{nd,pe,st} + DEM_CBILPOT_NPS_{nd,pe,st} + \sum_{nd2 \mid_{nd \neq nd2}} RED_FLX_{nd,nd2,pe,st}$$

$$+ \sum_{gh \mid_{\text{GH_LOCA.ND}_{gh,nd}}} GH_BOM_PS_{gh,pe,st} + \sum_{amc \mid_{\text{AMC_LOCA.ND}_{amc,nd}}} AMC_POT_PS_{amc,pe,st} + DNS_NPS_{nd,pe,st} \quad \forall nd, pe, st \in S_{nd}$$

1.10.10 R_DEM_CBILPOT_PS_{pe,st} OPT_RED=

Balance de los contratos bilaterales

$$\sum_{nd} DEM_CBILPOT_NPS_{nd,pe,st}$$

$$=$$

$$\sum_{em} EM_CBILPOT_PS_{em,pe,st} \quad \forall pe, st$$

$$\textbf{1.10.11} \quad \textbf{R_RED_FLUJO}_{nd,nd2,pe,st} \left|_{\substack{\textbf{(OPT_RED}=1) \land (nd \neq nd2)}} \right|$$

Flujo entre los nodos nd y nd2

$$\begin{split} RED_FLX_{nd,nd2,pe,st} &= \\ RED_REAC_{nd,nd2} \cdot \left(RED_ANG_{nd,pe,st} - RED_ANG_{nd2,pe,st}\right) & \forall nd,nd2,pe,st \end{split}$$

1.10.12 R_EM_CUOTA_{em} EM_CUOTA_{em,em_cuotamin}

Restricción de cuota mínima de la empresa

$$\begin{split} & \sum_{pe,st} \left(\text{DUR_PS}_{pe,st} \cdot EM_POT_PS_{em,pe,st} \right) \\ & \geq \\ & \text{EM_CUOTA}_{em,\texttt{em_cuotamin}} \cdot \sum_{pe,st} \left(\text{DUR_PS}_{pe,st} \cdot DEM_PS_{pe,st} \right) & \forall em \end{cases}$$

1.10.13 $R_{-}EM_{-}POT_{-}PS_{em,pe,st}$

Potencia total de la empresa

$$\begin{split} &EM_POT_PS_{em,pe,st} \\ &= \\ &\sum_{gt} \Big(\text{GT_PERT_EM}_{gt,em} \cdot \text{GT_POT_PS}_{gt,pe,st} \Big) + \sum_{gh} \Big(\text{GH_PERT_EM}_{gh,em} \cdot \big(\text{GH_POT_PS}_{gh,pe,st} - \text{GH_BOM_PS}_{gh,pe,st} \big) \Big) \\ &\quad \forall em, pe, st \\ &\quad \end{split}$$

1.10.14 $R_GT_PMIN_PS_{gt,pe,st}$

Restricción de potencia mínima del grupo térmico

$$\begin{split} >_POT_PS_{gt,pe,st} \\ & \geq \\ >_CARAC_{gt,\texttt{gt_pmin}} \cdot GT_COEFDISP_P_{gt,pe} \cdot GT_ACO_PS_{gt,pe,st} & \forall gt, pe, st \end{split}$$

1.10.15 $R_{-}GT_{-}PMAX_{-}PS_{gt,pe,st}$

Restricción de potencia máxima del grupo térmico

$$\begin{split} >_POT_PS_{gt,pe,st} \\ &\leq \\ >_CARAC_{gt,\texttt{gt_pmax}} \cdot GT_COEFDISP_P_{gt,pe} \cdot GT_ACO_PS_{gt,pe,st} & \forall gt,pe,st \end{split}$$

1.10.16 R_GT_EMIN_
$$\mathbf{P}_{gt,pe}$$
 GT_EMIN_ $\mathbf{P}_{gt,pe}$

Restricción de energía mínima del grupo térmico por periodo

$$\begin{split} & \sum_{st} \Big(\text{DUR_PS}_{pe,st} \cdot GT_POT_PS_{gt,pe,st} \Big) \\ & \geq \\ & \text{GT_EMIN_P}_{gt,pe} & \forall gt, pe \end{split}$$

1.10.17 R_GT_EMAX_
$$\mathbf{P}_{gt,pe}$$
 GT_EMAX_ $\mathbf{P}_{gt,pe}$

Restricción de energía máxima del grupo térmico por periodo

$$\begin{split} & \sum_{st} \Big(\mathsf{DUR_PS}_{pe,st} \cdot GT_POT_PS_{gt,pe,st} \Big) \\ & \leq \\ & \mathsf{GT_EMAX_P}_{gt,pe} \qquad \forall gt, pe \end{split}$$

1.10.18 R_GT_ARRPAR_PSS
$$_{gt,pe,st,st2}$$
 $\left|_{st\neq st}$

Restricción de arranque y parada del grupo térmico entre estados del periodo

$$\begin{split} >_ARR_PSS_{gt,pe,st,st2} - GT_PAR_PSS_{gt,pe,st,st2} \\ &= \\ >_ACO_PS_{gt,pe,st2} - GT_ACO_PS_{gt,pe,st} & \forall gt,pe,st,st2 \end{split}$$

1.10.19 $R_{-}GT_{-}ARRPAR_{-}P_{gt,pe}$

Restricción de arranque y parada al inicio del periodo

1.10.20
$$\mathbf{R}_{-}\mathbf{GT}_{-}\mathbf{ETMIN}_{gt}$$
 GT_ENER $_{gt, \mathtt{gt_emin}}$

Restricción de energía mínima total producida por el grupo térmico

$$\begin{split} & \sum_{pe,st} \Big(\text{DUR_PS}_{pe,st} \cdot GT_POT_PS_{gt,pe,st} \Big) \\ & \geq \\ & \text{GT_ENER}_{gt,\texttt{gt_emin}} & \forall gt \end{split}$$

Restricción de energía máxima total producida por el grupo térmico

$$\sum_{pe,st} \left(\text{DUR_PS}_{pe,st} \cdot GT_POT_PS_{gt,pe,st} \right)$$

$$\leq$$

$$GT_ENER_{gt,\text{gt_emax}} \quad \forall gt$$

1.10.22 $R_GH_BALHID_P_{qh,pe}$

Balance hidráulico por periodo

$$\begin{aligned} &GH_RES_P_{gh,pe} - GH_RES_P_{gh,pe-1} \bigg|_{pe>1} - \text{GH_CARAC}_{gh,\text{gh_rini}} \bigg|_{pe=1} \\ &= \\ &\text{GH_APOR_P}_{gh,pe} + \sum_{gh2|_{\text{GH_SUP_GH}_{gh2,gh}}} \left(\text{GH_SUP_GH}_{gh2,gh} \cdot GH_EQUI_P_{gh2,pe} \right) - GH_EQUI_P_{gh,pe} \qquad \forall gh,pe \end{aligned}$$

$\textbf{1.10.23} \quad \textbf{R_GH_EQUI_P}_{gh,pe}$

Energía total equivalente del grupo hidráulico por periodo

$$\begin{aligned} &GH_EQUI_P_{gh,pe} \\ &= \\ &\sum_{st} \bigg\{ \text{DUR_PS}_{pe,st} \cdot \Big(GH_POT_PS_{gh,pe,st} - \text{GH_CARAC}_{gh,\text{gh_rendturbom}} \cdot GH_BOM_PS_{gh,pe,st} \Big) \bigg\} + GH_VE_P_{gh,pe} \qquad \forall gh,pe,for the standard of the stan$$

1.10.24 $R_GH_PMAX_PS_{gh,pe,st}$

Restricción de potencia máxima de turbinación del grupo hidráulico

$$\begin{split} & GH_POT_PS_{gh,pe,st} \\ & \leq \\ & GH_CARAC_{gh,\text{gh_upmaxres}} + GH_CARAC_{gh,\text{gh_upmaxres}} \cdot GH_RES_P_{gh,pe} & \forall gh,pe,st \end{split}$$

1.10.25 $R_GH_BMAX_PS_{gh,pe,st}$

Restricción de potencia máxima de bombeo del grupo hidráulico

$$\begin{split} &GH_BOM_PS_{gh,pe,st}\\ &\leq \\ &GH_BMAX_P_{gh,pe} \quad \forall gh,pe,st \end{split}$$

1.10.26 R_GH_EMIN_
$$P_{gh,pe}$$
 GH_POBLI_ $P_{gh,pe}$

Restricción de energía mínima obligada por el grupo hidráulico por periodo

$$\begin{split} & \sum_{st} \Big(\text{DUR_PS}_{pe,st} \cdot GH_POT_PS_{gh,pe,st} \Big) \\ & \geq \\ & \text{GH_POBLI_P}_{gh,pe} & \forall gh, pe \end{split}$$

1.10.27
$$\mathbf{R}_{\cdot}\mathbf{GH}_{\cdot}\mathbf{RMIM}_{\cdot}\mathbf{P}_{gh,pe}$$
 $\mathbf{GH}_{\cdot}\mathbf{RMIN}_{\cdot}\mathbf{P}_{gh,pe}$

Restricción de reserva mínima de los embalses por periodo

$$\begin{split} &GH_RES_P_{gh,pe}\\ &\geq \\ &GH_RMIN_P_{gh,pe} & \forall gh,pe \end{split}$$

1.10.28
$$\mathbf{R}_{.}\mathbf{GH}_{.}\mathbf{RMAX}_{.}\mathbf{P}_{gh,pe}$$
 $\mathbf{GH}_{.}\mathbf{RMAX}_{.}\mathbf{P}_{gh,pe}$

Restricción de reserva máxima de los embalses por periodo

$$\begin{split} &GH_RES_P_{gh,pe}\\ &\leq \\ &GH_RMAX_P_{gh,pe} & \forall gh,pe \end{split}$$

1.10.29
$$\mathbf{R}_{-}\mathbf{GH}_{-}\mathbf{RFIN}_{-}\mathbf{P}_{gh}$$
 GH_CARAC_{gh,gh,rfin}

Restricción de reserva final del embalse al final del horizonte de ejecución

$$\begin{aligned} & \text{GH_RES_P}_{gh,|pe|} \\ &= \\ & \text{GH_CARAC}_{gh,\text{gh_rfin}} & \forall gh \end{aligned}$$

1.10.30 R.AMV_PMAX_ $PS_{amv,pe,st}$

Restricción de potencia máxima generada por los amv

$$\begin{split} &AMV_POT_PS_{amv,pe,st} \\ &\leq \\ &AMV_OFERPOT_PS_{amv,pe,st} & \forall amv, pe, st \end{split}$$

1.10.31 R_AMC_PMAX_ $PS_{amc,pe,st}$

Restricción de demanda máxima suministrada a los amc

$$\begin{split} &AMC_POT_PS_{amc,pe,st} \\ &\leq \\ &AMC_OFERPOT_PS_{amc,pe,st} & \forall amc,pe,st \end{split}$$

1.10.32 Variables positivas

```
C\_FO\_CARR \ge 0
                     C\_FO\_CPAR \ge 0
                 C\_FO\_CVACIO > 0
                     C\_FO\_CVAR \ge 0
                        C\_FO\_AM \ge 0
                     C\_FO\_CENS \ge 0
            EM_{-}POT_{-}PS_{em,pe,st} \geq 0
                                                 \forall em, pe, st
                     DEM_{-}PS_{pe,st} \geq 0
                                                 \forall pe, st
               DEM\_NPS_{nd,pe,st} \geq 0
                                                 \forall nd, pe, st
              GT\_ACO\_PS_{qt,pe,st} \ge 0
                                                 \forall gt, pe, st
              GT\_POT\_PS_{gt,pe,st} \ge 0
                                                 \forall gt, pe, st
         AMV\_POT\_PS_{amv,pe,st} \ge 0
                                                 \forall amv, pe, st
         AMC\_POT\_PS_{amc.pe.st} \ge 0
                                                 \forall amc, pe, st
                     DNS\_PS_{pe,st} \ge 0
                                                 \forall pe, st
             GH\_POT\_PS_{qh,pe,st} \ge 0
                                                 \forall gh, pe, st
            GH\_BOM\_PS_{ah,pe,st} \ge 0
                                                 \forall gh, pe, st
DEM\_CBILPOT\_NPS_{nd,pe,st} \ge 0
                                                 \forall nd, pe, st
                DNS\_NPS_{nd,pe,st} \geq 0
                                                 \forall nd, pe, st
                  GH\_RES\_P_{qh,pe} \geq 0
                                                 \forall gh, pe
                    GH\_VE\_P_{qh,pe} \geq 0
                                                 \forall gh, pe
```

1.10.33 Variables binarias

$$GT_ARR_PSS_{gt,pe,st,st2} \in \{0,1\} \qquad \forall gt,pe,st,st2$$

$$GT_ARR_P_{gt,pe} \in \{0,1\} \qquad \forall gt,pe$$

$$GT_PAR_PSS_{gt,pe,st,st2} \in \{0,1\} \qquad \forall gt,pe,st,st2$$

$$GT_PAR_P_{gt,pe} \in \{0,1\} \qquad \forall gt,pe$$