Задача

- Content-based image retrieval
- Поиск изображений с определенным содержанием в базе изображений
- Задача похожа на выделение объектов и классификацию изображений, но фокусируется в основном на масштабировании

R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends of the new age. *ACM Computing Surveys*, 2008.

Что запрашивает пользователь?

- Запрос в виде атрибутов/текстового описания изображения
 - «Московская фотобиеннале-2012, фото» аннотация (атрибуты) изображения
 - Нужна категоризация/аннотация изображений
- Запрос в виде изображения-примера («найди то же самое»)

• Запрос в виде некоторой характеристики содержимого

- Гистограмма цветов

• Запрос в виде рисунка-наброска

Semantic Gap

• Запрос в виде изображения-примера («найди то же самое», «найди похожее изображение»)

- Что имел пользователь в виду?
- Что значит «похожее изображение»?
- «Семантический разрыв» несовпадение информации, которую можно извлечь из визуальных данных, и интерпретацией тех же самых данных со стороны пользователя

1. Похожее по каким-то характеристикам, например, по цвету

2. Полудубликаты (Near-duplicates) – слегка измененная версия изображения (ракурс, цвета)

- 3. Тот же самый объект или сцена («Object retrieval»)
 - Большие вариации ракурсов, фона, и т.д., чем при поиске полудубликатов

4. Похожие визуально по геометрии сцены с учетом ракурса (могут быть разные по назначению)

5. «Category-level classification» - изображения одного класса сцен или объектов

Пример – банкетный зал.

Например, 256 классов из базы Caltech 256

Анализ постановок задач

• Какие постановки задач внутренне схожи, а какие существенно отличаются?

Визуальное подобие

Семантическое подобие

- В последнем случае нам нужно выполнить автоматическую аннотацию изображения, определить класс сцены, присутствующие объекты, их характеристики
- Затем мы будем сравнивать метки запроса с метками изображений в базе
- Мы рассмотрим именно визуальное подобие

Общая схема поиска изображений

Ищем ближайших соседей по выбранной метрике

Дескрипторы изображений

Гистограммы цветов (1995)

Мешок слов (2003)

Отдельные особенности (2003)

Гистограммы градиентов (2005)

Мешок слов и пирамида (2006)

QBIC (1995)

- «Query By Image Content»
- Самая первая система CBIR
- Изображения сравниваются по набору признаков
 - Цветовая гистограмма
 - Выделенные вручную объекты и признаки их формы (размер, площадь, количество)
- ~10000 изображений в базе

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the QBIC system. *IEEE Computer*, 28(9):23–32, 1995.

QBIC: Интерфейс

Реализация на сайте Эрмитажа

Гистограмма

Пространственное распределение цветов

<u>http://www.hermitagemuseum.org/fcgi-bin/db2www/qbicSearch.mac/qbic?selLang=Russian</u>

QBIC: Пример использования

Качество работы системы понятно. Но первая!

Гистограммы градиентов

- Что общего у SIFT и у HOG?
- Насколько они подходят для сравнения визуального подобия произвольных изображений?
- Как в этих методах учитывается масштаб/размер объекта?

SIFT (2003)

HOG (2003)

Дескриптор изображения GIST

- Воспользуемся методом, похожим на SIFT.
- Посчитаем отклики детекторов краёв на 5 разных масштабах и 6 ориентациях края
- Получим 33 «канала» RGB-цвет и 30 откликов фильтров края

TORRALBA, A., MURPHY, K. P., FREEMAN, W. T., AND RUBIN. Context-based vision system for place and object recognition. In ICCV 2003

Дескриптор изображения GIST

- Разобьём изображение сеткой 4х4 на 16 ячеек
- В каждой ячейке усредним значения всех каналов
- Получим дескриптор GIST

Применение GIST

Запрос

Похожие по GIST + цвету

- GIST хорошо себя показал для оценки визуального подобия изображений
- Отлично подходит для поиска полудубликатов

Ограничения GIST и цветов

• Ищем изображения одного и того же объекта

- Как с этой задачей справится GIST?
- Не очень хорошо, т.к. размеры и ориентация объектов могут значительно меняться
- Может помочь сопоставление изображений по ключевым точкам

Геометрическое сопоставление

- Построим «дескриптор изображения» как набор найденных точек SIFT с дескрипторами
- Визуальное подобие будем оценивать через сопоставление двух изображений по набору SIFT
 - Найдём соответствующие пары точек по дескрипторам
 - Чем больше соответствий, тем более похожи два изображения
 - Можем оценить геометрическое преобразование с помощью RANSAC и отфильтровать ложные

Выбор дескрипторов

Полудубликаты

GIST

Похожие объекты

Набор точек SIFT

• Теперь проанализируем эффективность по вычислениям и по памяти

Затраты по памяти

- GIST
 - решетка 4х4 * 8 ориентаций * 4 масштаба = 512 параметров
 - при 4 байтах на параметр 2048 байт (16384 бита)
- Точки и дескрипторы SIFT
 - SIFT = решетка 4х4 * 8 ориентаций = 128 параметров
 - 1000 точек = 128000 параметров
 - Итого дескриптор от 128 до 512 кбайт
- 1М изображений
 - 2Гб для GIST
 - 512Гб для точек SIFT

Уже тяжело или невозможно всё в RAM хранить!

Скорость работы

- Задача CBIR сводится к поиску ближайших соседей по дескриптору во всей коллекции (Nearest Neighbor)
- Простейшее и точное решение линейный поиск
- Размер коллекции миллионы и миллиарды векторов
- Нужны быстрые методы, пусть и с потерей точности

Квантование векторов

- «Vector quantization» способ ускорения поиска за счёт уменьшения точности
 - Отображение x на q(x), где q(x) in $\{c_i\}$, c_i центроиды, i от 1 до K
- Индекс q(x) можно записать в виде битового кода длиной $log_2(K)$
- Простейший способ квантования разбиение пространства дескрипторов на ячейки вдоль осей координат

Адаптивное квантование

- Регулярное разбиение не учитывает структуру данных, их распределение в пространстве дескрипторов
- Адаптивно разбить пространство можем с помощью кластеризации К-средними

Инвертированный индекс

Квантованные вектора удобно записывать в форме «инвертированного индекса»

- К списков по числу центроидов (кодовых слов)
- В каждом списке храним индексы всех векторов, квантованных до С_і

Инвертированный индекс

- Поиск по индексу:
 - Просмотрим инвертированный индекс, найдём ближайший кластер
 - Все элементы в списке ближайшие вектора (приближенно)

Ранжирование результатов

- Зачем выдавать все элементы в списке из одного кластера неупорядоченно?
- Упорядочим результаты (Re-ranking)
 - Рассчитаем расстояния от вектора-запроса до каждого элемента списка по полному дескриптору
 - Упорядочим результаты по близости (первые ближайшие)
- Есть и другие способы ранжирования!

Проблемы квантования К-средними

- Для повышения точности требуется существенно увеличивать число кластеров К
- Для векторов SIFT квантование до кодов 64 бита (0.5 бита на параметр) требует подсчёта и хранения 2⁶⁴ центроидов, что невозможно
- Сложность одного этапа O(NK)
 - Медленно на больших выборках (большие N)
 - Медленно при больших К
- Поэтому нужны другие, более быстрые приближенные методы.

Hierarchical k-means (HKM)

- Иерархическое разбиение
 - Кластеризуем всё на К кластеров (К=10) с помощью К-средних
 - Затем данные в каждом кластере снова разбиваем на К кластеров
 - Повторяем до достижения нужной глубины
- Пример:
 - Глубина 6 даёт 1М листьев
- По точности проигрывает существенно К-средним

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proc. CVPR, 2006.

KD-дерево

- Метод быстрого поиска ближайшего соседа
- Алгоритм:
 - Выбираем параметр (ось), по которому разброс точек наибольший
 - Вычисляем медиану по этому параметру
 - Запоминаем параметр и медиану в вершине
 - Разбиваем пространство на 2 полупространства, запускаем процедуру построения вершины для всех элементов из каждого полупространства
- В каждом листе 1 элемент
- Высота дерева log₂(N)

J. H. Freidman et. Al. An algorithm for finding best matches in logarithmic expected time. ACM *transactions on mathematical software*, 1977

ANN

- ANN Approximate Nearest Neighbour
- Priority search
 - Спускаемся по дереву в ячейку
 - Составляем список ячеек, сортируя его по расстоянию от запроса до границы
 - Просматриваем элементы в ячейках по списку

S. Arya et. Al.. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM, 1998

Проблемы высокой размерности

- Эффективность kd-деревьев падает с увеличением размерности
 - «Curse of dimensionality»
- Количество векторов N в выборке должно быть больше 2^{M} , где M количество параметров
 - Иначе мы просто не сможем учесть все параметры при построении дерева
- Для 512-размерных GIST такое количество точек невозможно обеспечить

Рандомизированные kd-деревья

- Не можем построить дерево нужно глубины из-за нехватки данных
- Построим несколько рандомизированных kd деревьев
 - При выборе разбиения будем брать не параметр с наибольшим разбросом, а выбирать случайно параметр из набора параметров с наибольшим разбросом (например, из 5)
 - Порог разбиения тоже выбираем случайно недалеко от медианы
 - Для поиска ближайшего будем строить одну очередь (priority search) из листьев всех деревьев

Approximate k-means (AKM)

- Раз иерархические К-средние сильно проигрывают обычным К-средним, построим алгоритм «приближенных К-средних»
 - Лес из 8 рандомизированных k-d деревьев с общим списком обхода
 - Будем использовать этот лес для поиска ближайших на одном из этапов К-средних
 - Сложность каждого этапа k-средних падает с O(NK) до O(Nlog(K))

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, "Object retrieval with large vocabularies and fast spatial matching," CVPR, 2007.

Сравнение K-means и AKM

Clustering parameters		mAP	
# of descr.	Voc. size	k-means	AKM
800K	10K	0.355	0.358
1M	20K	0.384	0.385
5M	50K	0.464	0.453
16.7M	1M		0.618

- Сравнение АКМ с обычным K-means показывает небольшое падение точности (1%)
- На больших размерах выборки обычным K-means слишком долго считать

Сравнение АКМ и НКМ

Method	Dataset	mAP	
		Bag-of-words	
(a) HKM-1	5K	0.439	
(b) HKM-2	5K	0.418	
(c) HKM-3	5K	0.372	
(d) HKM-4	5K	0.353	
(e) AKM	5K	0.618	
(f) AKM	5K+100K	0.490	
(g) AKM	5K+100K+1M	0.393	

Выводы:

- АКМ превосходит по точности НКМ
- С ростом размера выборки точность сильно падает

Семантическое хеширование

R. R. Salakhutdinov and G. E. Hinton. Semantic hashing. In SIGIR workshop on Information Retrieval and applications of Graphical Models, 2007.

Формализация и методы

Смысл:

- Пусть х,у вектор-признаки (дескрипторы)
- $N_{100}(x)$ ближайшие 100 векторов к x в исходном пространстве по L2
- Хотим найти h(x) бинарную подпись, такую что
 - $N_{h100}(x) = N_{h100}(y)$
 - Где N_{h100}(у) расстояние Хэмминга

• Методы:

- LSH Locality Sensitive Hashing
- Обучение кодов (BoostCC, RBM)
- Спектральное хэширование
- Обучение метрики с помощью LSH

Locality Sensitive Hashing (LSH)

- Возьмем случайную проекцию данных на прямую
- Выберем порог близко к медиане проекций на прямую
- Пометим проекции 0 или 1 (1 бит подписи)
- С увеличением числа бит подпись приближает L2-метрику в исходных дескрипторах

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, 2006

Locality Sensitive Hashing (LSH)

• Плюсы

- Приближенный способ вычисления ближайшего соседа
- Быстрое квантование (быстро вычисляем бинарный код)

• Недостатки:

- Приближение L2 лишь асимптотическое
- На практике может потребоваться слишком много бит для подписи

Вывод:

- Использовать как замену К-средних нельзя
- Можно использовать в дополнение

Проблемы К-средних

- Маленькое К большие ячейки
 - Слишком грубый порог на сравнение!
- Большое К маленькие ячейки
 - Медленнее кластеризация и квантование
 - Ячейка может оказаться слишком маленькой, не все соседи попадут

Hamming Embedding

Идея:

- Припишем каждому дескриптору бинарный код, задающий положение дескриптора внутри ячейки диаграммы Вороного
- Будем использовать эти коды для сравнения дескрипторов, попавших в одну ячейку
- Коды построим с помощью LSH для каждой ячейки независимо

Влияние кодов

- Посмотрим распределение расстояний Хэмминга между правильными и неправильными парами
- Сравнение по кодам показывает, что при длине кода > 32 бит наблюдается заметная разница между правильными и неправильными сопоставлениями

Алгоритм GISTIS

- GIST Indexing Structure
 - Добавим в наш простой алгоритм для поиска полудубликатов hamming embedding
- Схема метода:
 - Строим GIST для каждого изображения
 - Кластеризуем все дескрипторы с помощью k-means на k=200 слов
 - Применяем LSH к каждому кластеру и для всех векторов в кластере считаем бинарную подпись
 - Идентификатор картинки и бинарная подпись хранится в индексе в RAM

M.Douze et.al., Evaluation of gist descriptors for web-scale image search. In International Conference on Image and Video Retrieval. ACM,2009.

Схема метода

- В индексе в RAM хранится только бинарная подпись изображения (512 бит) и идентификатор
- Сам GIST хранится на жестком диске
- Можем проводить сортировку несколько раз:
 - Вначале по бинарным подписям
 - Затем по GIST с жёсткого диска

Результаты

	Байт на изображение в RAM	Время на построение дескриптора	Время поиска в базе из 110М изображений
GIST	3840	35мс	1.26c
GISTIS	68	36мс	2мс
GISTIS + L2	68	36мс	6/192мс

M.Douze et.al., Evaluation of gist descriptors for web-scale image search. In International Conference on Image and Video Retrieval. ACM,2009.

Обучение кодов

- Рассмотрим синтетический пример точки в прямоугольнике
- BoostingCC:
 - Разбиение по порогу по одной из координат («простые признаки»)
 - Поиск оптимальной комбинации таких простых разбиений
- RBM Restricted Bolzman machines
 - Вариант стохастических «нейронных» сетей
 - По сути, простая «Марковская сеть» (Вторая часть курса)

Сравнение на LabelMe

- 32-битные коды работают так же хорошо, как исходный дескриптор в 512 вещественных чисел
- Методы на основе обучения обгоняют LSH

Сравнение на web

• Сравнение на 12.9М изображений

Пример работы

Обучаемые метрики

- Что если для наших дескрипторов Евклидово расстояние плохо подходит для описание близости изображений?
- Модифицируем процедуру построения бинарных кодов так, чтобы они учитывали априорно известную информацию, какие изображения похожи, а какие нет

Когда применимо?

Частично-размеченная база изображений

Полностью размеченная база

Специфическая проблемная область

Обучение расстояния с LSH

Будем выбирать линии проекции «не случайно»

С меньшей вероятностью разбиваем подобные пары с ограничением сходства

С большей вероятностью разобьем пары с ограничением несходства

Результаты

- Сравнение на tiny images (80M)
- Обученная метрика позволяет найти то же количество правильных соседей, что и обычных LSH, просмотрев меньше 1% базы
- Скорость 0.5с вместо 45с

B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In *ICCV*, 2009.

Product quantization

- Вспомним:
 - Для векторов SIFT квантование до кодов 64 бита (0.5 бита на параметр) требует подсчёта и хранения 2⁶⁴ центроидов, что невозможно
- Простая идея:
 - Разобьём вектор х длины D на m частей
 - Квантуем каждый подвектор u_i независимо от остальных

- Пусть каждый подвектор квантуем на k* центроидов, тогда всего центроидов (k*)^m
- Длина кода $I = m \log_2 k^*$
- Сравнение с К-средними по памяти
 - Память: kD (K-средние) и mk*(D/m)=k^{1/m}D

H.Jégou et. al. Product quantization for nearest neighbor search, PAMI 2011

Сравнение векторов

- Можем применять квантование произведения и к записям в базе, и к запросу (симметричное сравнение)
- Можем сравнивать вектор-запрос с реконструированной версий квантованных векторов (ассиметричное сравнение)
- Ассиметричный вариант точнее

Инвертированный индекс

Воспользуемся схемой «hamming embedding»:

- Сделаем «грубое» квантование
- Построим по нему инвертированный индекс
- Для каждого вектора у вычислим ошибку r = y q(y)
- Применим «квантование произведения» к ошибке
- Допишем к записи каждого вектора код
- Используем эти коды для уточнения поиска в списке (ранжирование)

Резюме поиска ближайшего

- Для векторов большой размерности (SIFT, GIST) обычные быстрые методы поиска соседей (kd-деревья) работаю неточно и долго
- Есть целый ряд хороших подходов для приближенного вычисления на основе квантования:
 - Иерархические К-средние
 - Рандомизированные kd-деревья и приближенное k-среднее
 - Семантическое хеширование и обучение бинарных кодов
 - Квантование произведения