Data Representation

Computer System Architecture

By

M. Morris Mano

Data Types

- Information that a Computer is dealing with
 - Data
 - Relationship between data elements
 - Program (Instruction)
- Binary information is stored in *memory* or *processor registers*
- Registers contain either data or control information
 - Data are numbers and other binary-coded information
 - Control information is a bit or a group of bits used to specify the sequence of command signals

Data Types cont..

- Data
 - Numeric Data
 - Numbers(Integer, real)
 - Non-numeric Data
 - Letters, Symbols
- Data types found in the registers of digital computers
 - Numbers used in arithmetic computations
 - Letters of the alphabet used in data processing
 - Other discrete symbols used for specific purpose

Number Systems

1. Nonpositional number system

Roman number system

2. Positional number system

- Each digit position has a value called a weight associated with it.
- Also called weight System.
- Most common number system
 - Decimal, Octal, Hexadecimal, Binary

Base or Radix r system

- Uses distinct symbols for *r digits*
- r = 10 Decimal number system
- r = 2 Binary
- r = 8 Octal
- r=16 Hexadecimal
- $r^2 r^1 r^0 \cdot r^{-1} r^{-2} r^{-3}$
- Multiply each digit by an integer power of r and then form the sum of all weighted digits

• Ex:
$$A_R = a_{n-1} a_{n-2} ... a_1 a_0 ... a_{-m}$$

$$-\mathbf{V}(\mathbf{A}_{\mathbf{R}}) = \sum_{i=-m}^{n-1} a_i R^i$$

Radix point(.) separates the integer portion and the fractional portion

Common number system

Decimal System/Base-10 System

- Composed of 10 symbols or numerals
- -(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Binary System/Base-2 System

- Composed of 2 symbols or numerals
- -(0,1)

Hexadecimal System/Base-16 System

- Composed of 16 symbols or numerals
- (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Common number system cont..

Table 3	3-2	
Hex	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
Α	1010	10
В	1011	11
С	1100	12
D	1101	13
Е	1110	14
F	1111	15

Conversions

Binary-to-Decimal Conversions

```
1011.101_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})
= 8_{10} + 0 + 2_{10} + 1_{10} + 0.5_{10} + 0 + 0.125_{10}
= 11.625_{10}
```

- Decimal-to-Binary Conversions
 - Repeated division

```
37 / 2 = 18 remainder 1 (binary number will end with 1): LSB
18 / 2 = 9 remainder 0
9 / 2 = 4 remainder 1
4 / 2 = 2 remainder 0
2 / 2 = 1 remainder 0
1 / 2 = 0 remainder 1 (binary number will start with 1): MSB
Read the result upward to give an answer of 37<sub>10</sub> = 100101<sub>2</sub>
```

Prof.S.Meenatchi, SITE, VIT

Conversions cont..

Hex-to-Decimal Conversion

$$2AF_{16} = (2 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})$$

= $512_{10} + 160_{10} + 15_{10}$
= 687_{10}

Decimal-to-Hex Conversion

```
423_{10} / 16 = 26 remainder 7 (Hex number will end with 7) : LSB 26_{10} / 16 = 1 remainder 10 1_{10} / 16 = 0 remainder 1 (Hex number will start with 1) : MSB Read the result upward to give an answer of 423_{10} = 1A7_{16}
```

Conversions cont..

Hex-to-Binary Conversion

$$9F2_{16} = 9$$
 F 2
 \downarrow \downarrow \downarrow
= 1001 1111 0010
= 100111110010₂

Binary-to-Hex Conversion

$$1110100110_{2} = \underbrace{0011}_{3} \underbrace{1010}_{4} \underbrace{0110}_{6}$$

$$= 3A6_{16}$$

Binary-Coded-Decimal Code

Each digit of a decimal number is represented by its binary equivalent

- Only the four bit binary numbers from 0000 through 1001 are used
- Comparison of BCD and Binary

```
137_{10} = 10001001_2 (Binary) - require only 8 bits 137_{10} = 0001 \ 0011 \ 0111_{BCD} (BCD) - require 12 bits
```

Alphanumeric Representation

- Alphanumeric character set
 - 10 decimal digits, 26 letters, special character(\$, +, =,....)
 - A complete list of ASCII
 - ASCII (American Standard Code for Information Interchange)
 - Standard alphanumeric binary code uses seven bits to code
 128 characters

Character Representation ASCII

MSB (3 bits)

		0	1	2	3	4	5	6	7
LSB (4 bits)	0	NUL	DLE	SP	0	@	P	6	P
	1	SOH	DC1	!	1	\mathbf{A}	Q	a	q
	2	STX	DC2	66	2	В	R	b	r
	3	ETX	DC3	#	3	C	S	c	S
	4	EOT	DC4	\$	4	D	T	d	t
	5	ENQ	NAK	%	5	\mathbf{E}	\mathbf{U}	e	u
	6	ACK	SYN	&	6	\mathbf{F}	\mathbf{V}	f	v
	7	BEL	ETB	6	7	G	\mathbf{W}	\mathbf{g}	W
	8	BS	CAN	(8	H	X	h	X
	9	HT	EM)	9	Ι	Y	I	y
	A	LF	SUB	*	:	J	${\bf Z}$	j	Z
	В	VT	ESC	+	;	K	[k	{
	C	FF	FS	,	<	${f L}$	\	1	
	D	CR	GS	-	=	\mathbf{M}]	m	}
	\mathbf{E}	SO	RS	•	>	N	m	n	~
	F	SI	US	/	?	O	n	0	DEL

Prof.S.Meenatchi, SITE, VIT

Complements

- Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation
- There are two types of complements for base r system
 - 1. r's complement
 - 2. (r-1)'s complement
 - Binary number : 2's or 1's complement
 - Decimal number : 10's or 9's complement

(r-1)'s Complement and r's Complement

N: given number ♦ (r-1)'s Complement r:base n : digit number (r-1)'s Complement of N = (rⁿ-1)-N » 9's complement of N=546700 $(10^6-1)-546700 = (1000000-1)-546700 = 9999999-546700$ 546700(N) + 453299(9's com) = 453299 =999999 » 1's complement of N=101101 $(2^{6}-1)-101101=(1000000-1)-101101=111111-101101$ 101101(N) + 010010(1's com) = 010010=1111111r's Complement * r's Complement r's Complement of N = rⁿ-N (r-1)'s Complement $+1 = (r^n-1)-N+1 = r^n-N$ » 10's complement of 2389= 7610+1= 7611 2's complement of **1101100**= 0010011+1= **0010100**

Prof.S.Meenatchi, SITE, VIT

Subtraction of Unsigned Numbers

Subtraction of Unsigned Numbers

(M-N), N≠0

- 1) M + (rⁿ-N)
- 2) M ≥ N : Discard end carry, Result = M-N
- 3) M < N : No end carry, Result = (N-M) = r's complement of (N-M)
 = r's complement of (M-N)

Example

No End Carry

» Decimal Example)

$$\frac{M \ge N}{72532(M) - 13250(N) = 59282}$$

+ 86750 (10's complement of 13250)

℃159282

Discard

End Carry

Result = 59282

13250(M) - 72532(N) = -59282 13250

+ 27468 (10's complement of 72532)

(0) 40718

Result = -(10's complement of 40718) = -(59281+1) = -59282

» Binary Example)

$$X \ge Y$$
 1010100(X) - 1000011(Y) = 0010001

+ 0111101 (2's complement of 1000011)

0010001

Result = 0010001

1000011(X) - 1010100(Y) = -00100011000011

+ 0101100 (2's complement of 1010100)

(1) 1101111

Result = -(2's complement of 1101111) = -(0010000+1) = -0010001