

TLC Trip Record Data Prediction

Presented by:

Rehab AL Zaidi & Amal Al Thaqafi

Contents

Introduction

The purpose of this project is to predict the fare amount of the trip using linear regression algorithm. We worked with data provided by <u>TLC Trip Record Data</u>.

About Data:

The data of Green Taxi trip records contain 2 months which is **January** and **February** at **2021.**

It's contain:

- 20 Features.
- 76487 Observations for **Jan** and 64541 for Feb.

Visualize data

1- Does the number of passengers affect the fare?

passenger count in trips distribution

3- Does the day of the week affect the fare?

2- Does the time of pickup affect the fare?

Taxi trip by Rush hour of the day

Ridge Regularization

Training = 0.8951

Validation=0.8867

Testing=0.8199

Lasso Regularization

Training = 0.8958

Validation=0.8873

Testing=0.81995

Model Building

Conclusion

In the attempts to predict the best model for Fare Amount, we made a number of models such as: The Ridge, Lasso, RMSE, MAE, MSE, Feature Engineering.

The best score is:

R-sq of training set = 0.8958

R-sq of validation set = 0.8873

R-sq of Test set = 0.8199

