C. Relacionando Propiedades de H con Propiedades de G/H

Sea G un grupo y H un subgrupo normal de G. Probar:

1. Si $x^2 \in H$ para cada $x \in G$, entonces cada elemento de G/H es su propio inverso.

Si $x^2 \in H$, entonces $x^2H = H$, esto es equivalente a decir que $xH = x^{-1}H$

2.AAAAAAA

3. AAAAAAAAAAAAAAAAAA

4. Cada elemento de G/H posee una raíz cuadrada si y solo si para todo $x \in G$ hay un $y \in G$ tal que $xy^2 \in H$.

Si cada $Hx \in G/H$ posee una raíz cuadrada, hay Hy tal que $Hx = Hy^2$, es decir $xy^{-2} \in H$. Las implicancias se leen en sus respectivas direcciones.

5. G/H es cíclico si y solo si hay un elemento $a \in G$ con la siguiente propiedad: por cada $x \in G$, hay n tal que $xa^n \in H$.

Si G/H es cíclico, sease $\langle aH \rangle$ su generador, luego existe $xH \in \langle aH \rangle$ tal que $xH = a^nH$, para algún $n \in \mathbb{N}$, luego $x^{-1}a^n \in H$.

Si para todo $x \in G$, existe n tal que $xa^n \in H$, etonces $xa^nH = H \iff a^nH = x^{-1}H$, luego esta definición corresponde a grupo cíclico.

6. Si G es un grupo abeliano, sea H_p el conjunto de todos los $x \in G$ cual orden es una potencia de p. Probar que H_p es un subgrupo de G. Probar que G/H_p no posee elementos cual orden es ua potencia de p (elemento no nulo.)

(i)Sea $a,b\in H_p$, luego ord $(a)=p^n$ y ord $(b)=p^m$, suponer que m>n. Luego ord $(ab)=p^m$, $ab\in H_p$. (ii) Sea $a^{p^n}=e$, luego $e=a^{-p^n}=(a^{-1})^{p^n}$. (iii) Sea $e\in G$, luego $e^{p^n}=e$ para todo $n\in\mathbb{N}$.

(iv) Supongamos que $a^p \in H_p$. Por definición, esto significa que el orden de a^p es una potencia de p, es decir, existe un $n \in \mathbb{N}$ tal que:

$$\operatorname{ord}(a^p) = p^n$$
.

Por lo tanto, se cumple que:

$$(a^p)^{p^n} = e.$$

Reescribiendo la expresión, obtenemos:

$$a^{p^{n+1}} = e.$$

Esto implica que el orden de a, denotado como ord(a), debe dividir p^{n+1} . Es decir, existe un entero m tal que:

$$ord(a) = p^m$$
.

Dado que p^m es una potencia de p, se concluye que $a \in H_p$, como queríamos demostrar.

(a) Si G/H es abeliano, probar que H contiene todos los conmutadores de G.

Si G/H es abeliano, entonces Hab = Hba, luego $Haba^{-1}b^{-1} = H$, entonces $aba^{-1}b^{-1} \in H$

(b)

Sean $q, q' \in G$. Como G/H es abeliano, para cualesquiera $q, q' \in G$ se tiene

$$gg'H = g'Hg.$$

Esto implica que el conmutador

$$[g, g'] = g g' g^{-1} g'^{-1} \in H.$$

Dado que $H \subseteq K$, se tiene $[g, g'] \in K$. Por lo tanto,

$$g g' = [g, g'] g' g,$$

y al pasar al cociente obtenemos

$$gK \ g'K = g'K \ gK.$$

Concluimos que G/K es abeliano.

Sea $k, k' \in K$. Dado que $k, k' \in G$ y G/H es abeliano, el conmutador

$$[k, k'] = k k' k^{-1} k'^{-1} \in H.$$

Luego, en el cociente K/H se tiene

$$kH k'H = k'H kH$$
.

Por lo tanto, K/H es abeliano.

En consecuencia, si G/H es abeliano, entonces tanto G/K como K/H son abelianos.

D. Propiedades de G determinadas por propiedades de G/H y J

Hay propiedades de grupo donde si se cumplen en G/H y en H, entonces se cumplen en G. Sea G un grupo y H un subgrupo normal de G. Probar:

1. Si cada elemento de G/H posee orden finito y cada elemento de H posee orden finito, entonces cada elemento de G posee orden finito.

Sea Hx con $x \in G$ en G/H, se tiene que hay $n \in \mathbb{N}$ tal que $Hx^n = H$, es decir $x^n \in H$, Luego, para elemento en H posee orden finito, es decir, hay $m \in \mathbb{N}$ tal que $h^m = e$, luego esto se cumple para todo $x \in G$, ya que, $x^n \in H$, entonces $(x^n)^m = e$. Luego cada $x \in G$ posee orden finito.

2. Si cada elemento de G/H posee una raíz cuadrada y cada elemento de H posee raíz cuadrada, entonces cada elemento de G posee una raíz cuadrada.

Sea Hx con $x \in G$ en G/H, existe Hy tal que $Hx = Hy^2$ es decir $x(y^{-1})^2 \in H$, luego cada $h \in H$ posee una raíz cuadrada también, por lo que $h = (h')^2$, luego como todo $x(y^{-1})^2 \in H$ con $x, y \in G$, cada $g \in G$ posee raíz cuadrada.

3. Sea p un número primo. Si G/H v H son p-qrupos, entonces G es un p-qrupo.

Sea $Hx \in G/H$, se tiene que $Hx^{p^n} = H$, es decir $x^{p^n} \in H$, luego todo $h \in H$ cumple que $h^{p^m} = e$, como todo $x \in G$ cumple que $x^{p^n} \in H$, $(x^{p^n})^{p^m} = x^{p^{m+n}}$, luego G es un p-grupo.

4. Si G/H y H son finitamente generados, entonces G es finitamente generado.

Sea G/H finitamente generado por los cosets Hx_1, \ldots, Hx_n y H finitamente generado por h_1, \ldots, h_m . Entonces, para cualquier $g \in G$, se tiene que gH se puede escribir como un producto de los cosets Hx_i , de modo que existe $h \in H$ y enteros a_1, \ldots, a_n tales que

$$g = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} h.$$

Pero como h se puede expresar como un producto de h_1, \ldots, h_m , se sigue que g es producto de los elementos del conjunto finito

$$\{x_1,\ldots,x_n,h_1,\ldots,h_m\}.$$

Por tanto, G es finitamente generado.

E. Orden de Elementos en Grupos Cocientes

Sea G un grupo y H un subgrupo normal de G. Probar:

1. Por cada elemento $a \in G$, el orden del elemento Ha en G/H es un divisor del orden de $a \in G$.

Sea $\varphi: G \to G/H: a \mapsto Ha$ dado que G/H es la imagen homomorfa de G. Luego se tiene que ord $\varphi(a) \mid \operatorname{ord}(a)$ por ejercicio anterior, equivalentemente, $\operatorname{ord}(Ha) \mid \operatorname{ord}(a)$

2. Si (G:H)=m, el orden de cada elemento de G/H es divisor de m.

Se tiene que (G:H) es el orden de G/H, luego por teorema, para $Hg \in G/H$, ord $(Hg) \mid |G/H|$.

3. Si (G:H)=p con p primo, entonces el orden de cada elemento $a\notin H$ en G es un múltiplo de p.

 $|G| = p \cdot |H|$, luego como para $g \notin H$, $\operatorname{ord}(g) \mid |G|$, es decir $\operatorname{ord}(g) \mid p \cdot |H|$, luego $\operatorname{ord}(g) \nmid |H|$, por lo que es múltiplo de p.

4. Si G posee un subgrupo normal de índice p, donde p es primo, entonces G posee almenos un elemento de orden p.

Suponer que G es finito, como (G:H)=p, entonces G/H es cíclico, luego, como G es finitio $p\mid |G|$, por lo que posee un elemento de orden p. Luego como es cíclico de orden p, cada elemento de G es generador de G. Luego $G/H\cong \mathbb{Z}_p$.

5. Si (G:H)=m, entonces $a^m \in H$ para todo $a \in G$.

Se tiene que ord $(Hx) \mid m$, luego $Ha^m = H$, luego $a^m \in H$.

6. En \mathbb{Q}/\mathbb{Z} , cada elemento posee orden finito.

Sea $\mathbb{Q}/\mathbb{Z} = \{\frac{m}{n} + \mathbb{Z} \mid (m,n) = 1\}$. Luego para $\frac{m}{n} + \mathbb{Z}$ en el conjunto se cumple que $n(\frac{m}{n} + \mathbb{Z}) = m + n\mathbb{Z} = m + \mathbb{Z} = \mathbb{Z}$.

F. Cociente de un Grupo por Su Centro

El centro de un grupo G es el subgrupo normal C de G consistiendo de todos los elementos de G que conmutan con cada elemento de G. Suponer que el grupo cociente G/C es grupo cíclico. Sease generado por $Ca \in G/C$. Probar:

1. Por cada $x \in G$, hay algún entero m tal que $Cx = Ca^m$.

Como G/C es cíclico, todo elemento Cx con $x \in G$ es generado por una potencia de Ca, es decir, hay m tal que $Cx = (Ca)^m = Ca^m$.

2. Por cada $x \in G$ hay algún entero m tal que $x = ca^m$, donde $c \in C$.

Por el punto anterior, $Cx = Ca^m$, es decir, existen c_1, c_2 que: $c_1x = c_2a^m \iff x = c_1^{-1}c_2a^m$, luego tomar $c = c_1^{-1}c_2$.

3. Para cualquier par de elementos $x, y \in G$, xy = yx.

Por punto anterior $x = ca^m$ y $y = c'a^n$, luego $xy = ca^mc'a_n$, como $c, c' \in C$ subgrupo normal, estos conmutan, es decir $ca^mc'a^n = c'a^nca^m = yx$.

4. Luego Si G/C es cíclico, se cumple que xy = yx, es decir, que G es abeliano.

G. Usando la Ecuación de Clase para Determinar el Tamaño del Centro

Sea G un grupo finito. Un par de elementos $a, b \in G$ se dicen conjugados de uno y de otro si y solo si $a = xbx^{-1}$, para algún $x \in G$. Esto es una relación $a \sim b$ de equivalencia en G, la clase de equivalencia de cualquier elemento a se dice clase de conjugación. Entonces G es particionado en clases de conjugación. (El tamaño de cada clase de conjugación divide a |G|.)

Sean S_1, S_2, \ldots, S_t las distintas clases de conjugación de G y sea k_1, k_2, k_t sus respectivos tamaños, entonces $|G| = k_1 + k_2 + \cdots + k_t$ (Esta es la ecuación de clase de G)

Sea G un grupo cual orden es una potencia de p, sease $|G| = p^k$. Sea C el centro de G.

1. La clase de conjugación contiene a a si y solo si $a \in C$.

Si $a \in [a]$, se tiene que $a \sim a$, es decir $a = xax^{-1}$ o equivalentemente ax = xa, por lo que $a \in C$.

2. Sea c el orden de C. Entonces $|G|=c+k_s+k_{s+1}+\cdots+k_t$, donde k_s,\ldots,k_t son los tamaños de todas las clases de conjugación de elementos $x \notin C$.

Se tiene que cada elelemt
no de C es su propia clase de equivalencia, es decir par
a $a \in C$, [a] contiene solamente a, por lo que en conjunto todas estas representa
n|C| = c clases de equivalencia, luego tomando la ecuación de clase,

$$|G| = k_1 + k_2 + \dots + k_t$$

podemos sumar el tamaño de las clases de conjugación de elementos de C, (las cuales aportan indidividualmente 1 en tamaño) obteniendo c y dejar la ecuación como:

$$|G| = c + k_s + k_{s+1} + \dots + k_t$$

3. Por cada $i \in \{s, s+1, \ldots, t\}$, k_i es una potencia de |G|.

Vimos en 13-I6 que el número de conjugados es un factor de (G:C), luego el tamaño de cada clase de conjugación es un factor de |G|, luego $k_i = p^{j_i}$.

4. Despejando la ecuación $|G| = c + k_s + \cdots + k_t$ para c, explicar por que c es un múltiplo de p.

Se tiene que $c = |G| - (k_s + \cdots + k_t)$, luego $|G| = p^k$ y cada $k_i = p^{j_i}$, con $j_i \neq 0$, por lo que $p \mid c$.

Podemos concluir por la parte 4 que C debe contener más de un solo elemento e. De hecho |C| es múltiplo de p.

5. Probar: Si $|G| = p^2$, G debe ser abeliano.

Si $|G| = p^2$, |C| = p, p^2 (no puede ser 1 ya que debe ser múltiplo de p!). Si $|C| = p^2$, entonces G = C y entonces todo elemento conmuta, asi que es directamente abeliano.

Si |C|=p, entonces |G/C|=p, por lo que G/C es cíclico, luego por ejercicio F, G es abeliano.

6. Probar que si $|G| = p^2$, entonces $G \cong \mathbb{Z}_{p^2}$ o $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Si G es cíclico, hay un elemento a que genera todo el grupo, es decir, posee orden p^2 , luego $\langle a \rangle = \mathbb{Z}_{p^2}$

Si no es cíclico, por teorema de Lagrange hay un subgrupo de orden p, ciclico, luego |G - H| = p, por lo que también es cíclico, luego tomando el mapeo $f: G \to \mathbb{Z}_p \times \mathbb{Z}_p : f(ab = (a, b))$ obtenemos un isomorfismo.

Inducción en |G|: Un Ejemplo

1. Si ord(a) = tp (para algún entero t), ¿Cuál es el elemento de G que posee orden p?.

$$\operatorname{ord}(a)=tp,$$
es decir $a^{tp}=e=(a^t)^p.$ Luego $\operatorname{ord}(a^t)=p$