PROBLEM DOMINIRAJUĆEG STABLA

VALENTINA KRIŽ, JELENA KURILIĆ

DEFINICIJA PROBLEMA

Dan je neusmjeren povezan težinski graf G = (V, E), gdje je V skup svih vrhova, a E skup svih bridova. Svakom bridu $e \in E$ pridružena je nenegativna težina w_e . Stablo T = (V(T), E(T)) grafa G je **dominirajuće stablo** (dominating tree - DT) ako je svaki vrh $v \in V$ koji nije u stablu T susjedan nekom vrhu iz T. Težina stabla je definirana kao suma težina svih bridova.

Problem dominirajućeg stabla (dominating tree problem - DTP) je problem pronalaska dominirajućeg stabla grafa G minimalne težine.

PRIMJER

NAŠE RJEŠENJE

- programski jezik: C++ (standard c++11)
- IDE: Qt Creator 4.7.2
- vizualizacija grafova: Gephi 0.8.2
- implementacija grafa pomoću liste susjedstva
- genetski algoritam
- bitne funkcije:
 - rezanje nepotrebnih listova (CUT)
 - konstrukcija minimalnog razapinjućeg stabla (MST)
 - konstruktor početne populacije
 - križanje
 - mutacija

FUNKCIJE CUT I MST

- CUT = rezanje nepotrebnih listova
- MST = konstrukcija minimalnog razapinjućeg stabla (Primov algoritam)

Prije CUT i MST Nakon CUT Nakon MST

POČETNA POPULACIJA

- označi sve vrhove kao neposjećene
- U = skup posjećenih vrhova koji nisu u rješenju (na početku prazan)
- V = skup vrhova u rješenju (na početku prazan)
- odaberi vrh na slučajan način (Mersenne-Twister)
 - dodaj ga u V, a njegove susjede u U
- sve dok ne posjetiš sve vrhove:
 - odaberi vrh $u \in U$ i vrh $v \in V$, ako su susjedi dodaj vrh u u skup V i brid koji ih povezuje u rješenje
 - posjeti susjede od u
- odreži nepotrebne listove
- konstruiraj minimalno razapinjuće stablo

$$V = \{\}$$
$$U = \{\}$$

Random vrh je 4.

$$V = \{4\}$$

 $U = \{5, 7\}$

Random $v \in V$ je 4. Random $u \in U$ je 7. Susjedni su -> poveži ih.

$$V = \{4, 7\}$$

 $U = \{5, 6\}$

Random $v \in V$ je 4. Random $u \in U$ je 6. Nisu susjedni –> ne radi ništa.

$$V = \{4, 7\}$$

 $U = \{5, 6\}$

Random $v \in V$ je 7. Random $u \in U$ je 6. Susjedni su -> poveži ih.

$$V = \{4, 6, 7\}$$

 $U = \{3, 5\}$

Random $v \in V$ je 6. Random $u \in U$ je 5. Susjedni su -> poveži ih.

$$V = \{4, 5, 6, 7\}$$

 $U = \{1, 2, 3\}$

Posjećeni svi vrhovi -> kraj.

$$V = \{5, 6, 7\}$$

 $U = \{1, 2, 3, 4\}$

Posjećeni svi vrhovi -> kraj.

KRIŽANJE

- V_1 = skup vrhova u prvom roditelju
- V_2 = skup vrhova u drugom roditelju
- C = skup vrhova u potomku (na početku prazan)
- na slučajan način odaberi prvi vrh iz V_1 ili prvi vrh iz V_2 i dodaj ga u C
- označi odabrani vrh i sve njegove susjede kao posjećene
- sve dok ne posjetiš sve vrhove:
 - na slučajan način odaberi sljedeći vrh v iz V_1 ili V_2
 - ako postoji brid između v i bilo kojeg vrha iz C, dodaj v u C i brid u rješenje
 - ako ne postoji brid, pronađi najkraći put s najvećim potencijalom između vrha v i svih vrhova
 iz C

KRIŽANJE

- $potencijal = \frac{broj neposjećenih vrhova u putu}{težina puta}$
- dodaj sve vrhove i bridove iz puta u rješenje
- posjeti susjede svih vrhova iz puta
- odreži nepotrebne listove
- konstruiraj minimalno razapinjuće stablo

$$V_1 = \{5, 6, 7\}$$

 $V_2 = \{2, 4, 5\}$
 $C = \{\}$

$$V_1 = \{5, 6, 7\}$$

 $V_2 = \{2, 4, 5\}$
 $C = \{\}$

v ∈ V₂ je 2. Dodaj ga u C. Posjeti susjede.

$$V_1 = \{5, 6, 7\}$$

 $V_2 = \{4, 5\}$
 $C = \{2\}$

 $v \in V_1$ je 5. Najkraći put s najvećim potencijalom je 2 -> 1 -> 5. Dodaj vrhove iz puta u C. Posjeti susjede.

$$V_1 = \{6, 7\}$$

 $V_2 = \{4, 5\}$
 $C = \{1, 2, 5\}$

v ∈ V₁ je 6. Postoji brid između 6 i 5. Dodaj v u C. Posjeti susjede.

$$V_1 = \{7\}$$

 $V_2 = \{4, 5\}$
 $C = \{1, 2, 5, 6\}$

Svi vrhovi posjećeni -> kraj.

$$V_1 = \{7\}$$

 $V_2 = \{4, 5\}$
 $C = \{1, 5, 6\}$

Svi vrhovi posjećeni -> kraj.

PRIMJER KRIŽANJA

MUTACIJA

- kopiraj roditelja u potomak
- *C* = skup vrhova u potomku
- V = skup vrhova u početnom grafu
- iz skupa $V \setminus C$ na slučajan način odaberi skup vrhova V_m t.d. $|V_m| = \text{pm} * \min(|C|, |V \setminus C|)$
- sve dok je V_m neprazan:
 - na slučajan način odaberi vrh $v_c \in C$
 - pronađi vrh $v_m \in V_m$ koji je najbliži vrhu v_c i spoji ih najkraćim putem
 - izbaci V_m iz V_m
- odreži nepotrebne listove
- konstruiraj minimalno razapinjuće stablo

Vrh u rješenju Vrh u skupu V_m

$$|C| = 3$$

 $|V \setminus C| = 4$
 $p_m = 0.7$
 $|V_m| = [0.7 * 3] = 2$

Random odabran vrh 1.
Random odabran vrh 6.

Vrh u rješenju Vrh u skupu V_m

$$V_{m} = \{1, 6\}$$

C = \{2, 4, 5\}

Random $v_c \in C$ je 4.

Najkaći putevi:

Spajamo vrhove 4 i 1 najkraćim putem.

Vrh u rješenju Vrh u skupu V_m

$$V_{m} = \{6\}$$

C = \{1, 2, 4, 5\}

Random $v_c \in C$ je 5. Najkaći putevi: $5 \rightarrow 6$ težine 10

Spajamo vrhove 5 i 6 najkraćim putem.

$$V_m = {} -> kraj$$

C = {1, 2, 4, 5, 6}

$$V_m = \{\} -> kraj$$

C = {2, 4, 5, 6}

$$V_m = \{\} \rightarrow kraj$$

C = {4, 5, 6}

$$V_{m} = \{\} -> kraj$$

C = {5, 6}

Roditelj

Potomak

PRIMJER MUTACIJE

Roditelj Potomak

ALGORITAM

- funkcija cilja = funkcija dobrote = zbroj težina bridova u rješenju
- parametri:
 - pop = veličina populacije
 - n = broj generacija
 - p = vjerojatnost križanja
 - p_c = vjerojatnost selekcije bolje jedinke za križanje
 - p_m = vjerojatnost selekcije bolje jedinke za mutaciju
 - pm = p_m u mutaciji
- konstruiraj početnu populaciju veličine pop
- n puta:
 - s vjerojatnošću p učini križanje, inače učini mutaciju
 - ako je potomak drugačiji od svih jedinki, ubaci ga u populaciju i izbaci najgoru jedinku

ALGORITAM - NASTAVAK

- selekcija za mutaciju:
 - na slučajan način odaberi 2 jedinke
 - s vjerojatnošću p_m odaberi bolju jedinku
- selekcija za križanje:
 - na slučajan način odaberi 2 jedinke
 - s vjerojatnošću p_c odaberi bolju jedinku
 - postupak ponovi 2 puta (za prvog i drugog roditelja)

REZULTATI

- testni primjeri: mreže bežičnih senzora
 - 3 skupine (domet senzora 100m, 125m i 150m) po 18 primjera (po 3 primjera mreža veličine 50, 100, 200, 300, 400 i 500 senzora)
 - u svim primjerima senzori raspoređeni u prostoru dimenzija 50m×50m

parametri:

```
• pop = 200 . . . . . . veličina populacije
```

```
• n = 25 000 . . . . . . . . broj generacija
```

• nisu idealni za sve testne primjere, ali daju dobre rezultate

REZULTATI – RANGE 100

Datoteka	Vrhovi	Bridovi	Gustoća	Najbolje rj.	Naše rj.	Odstupanje (%)
050_01	50	122	0.0488	1204.41	1204.41	0
050_02	50	118	0.0472	1340.44	1347.31	0.5099049217
050_03	50	126	0.0504	1316.39	1317.42	0.07818311548
100_01	100	535	0.0535	1217.47	1252.08	2.764200371
100_02	100	526	0.0526	1128.4	1160.66	2.77945307
100_03	100	481	0.0481	1252.99	1272.73	1.550996676
200_01	200	2188	0.0547	1206.79	1293.21	6.682596021
200_02	200	21 <i>47</i>	0.053675	1216.41	1285.02	5.33921651
200_03	200	2069	0.051725	1247.73	1353.04	7.783214096
300_01	300	4983	0.055367	1215.48	1273.77	4.576179373
300_02	300	4737	0.052633	1170.85	1283.24	8.758299305
300_03	300	4577	0.050856	1249.54	1361.65	8.23339331
400_01	400	8738	0.054613	1212.51	1332.2	8.984386729
400_02	400	8314	0.051963	1199.23	1273.23	5.811989978
400_03	400	8109	0.050681	1246.94	1350.99	7.70175945
500_01	500	13716	0.054864	1200.06	1313.64	8.64620444
500_02	500	13069	0.052276	1220.68	1290.13	5.383178439
500_03	500	12681	0.050724	1231.81	1353.43	8.986057646

REZULTATI – RANGE 125

Datoteka	Vrhovi	Bridovi	Gustoća	Najbolje rj.	Naše rj.	Odstupanje (%)
050_01	50	194	0.0776	802.95	808.92	0.7380210651
050_02	50	192	0.0768	1055.1	1065.89	1.012299581
050_03	50	188	0.0752	877.77	882.69	0.5573870781
100_01	100	798	0.0798	943.01	950.16	0.7525048413
100_02	100	781	0.0781	917	919.66	0.2892373268
100_03	100	726	0.0726	998.18	1010.73	1.241676808
200_01	200	3244	0.0811	910.17	929.48	2.077505702
200_02	200	3221	0.080525	921.76	943.85	2.340414261
200_03	200	3090	0.07725	939.58	976.47	3.777893842
300_01	300	7406	0.082289	979.81	1013.86	3.358451857
300_02	300	7008	0.077867	913.01	951.96	4.091558469
300_03	300	6841	0.076011	974.78	1005.51	3.056160555
400_01	400	12958	0.080988	965.99	986.1	2.039346922
400_02	400	12419	0.077619	941.02	1007.17	6.567908099
400_03	400	11942	0.074638	1002.61	1059.88	5.403441899
500_01	500	20377	0.081508	963.89	1006.73	4.255361418
500_02	500	19374	0.077496	948.96	1035.67	8.37235799
500_03	500	18791	0.075164	981.9	1064.35	7.746511956

REZULTATI – RANGE 150

Datoteka	Vrhovi	Bridovi	Gustoća	Najbolje rj.	Naše rj.	Odstupanje (%)
050_01	50	276	0.1104	647.75	647.75	0
050_02	50	262	0.1048	863.69	865.45	0.2033624126
050_03	50	269	0.1076	743.94	745.96	0.2707919996
100_01	100	1041	0.1041	876.69	879.65	0.3364974706
100_02	100	1078	0.1078	657.35	660.92	0.540156146
100_03	100	1013	0.1013	722.87	724.18	0.1808942528
200_01	200	4345	0.108625	809.9	821.81	1.449240092
200_02	200	4446	0.11115	736.26	740.89	0.6249240778
200_03	200	4246	0.10615	792.71	809.28	2.047499011
300_01	300	10039	0.111544	796.29	812.96	2.050531391
300_02	300	9693	0.1077	741.02	746.25	0.7008375209
300_03	300	9418	0.104644	819.76	842.01	2.642486431
400_01	400	17629	0.110181	795.53	819.14	2.882291183
400_02	400	17058	0.106613	779.63	785.67	0.7687706034
400_03	400	16340	0.102125	814.14	827.14	1.571680731
500_01	500	27720	0.11088	793.98	806.89	1.599970256
500_02	500	26676	0.106704	779.35	791.59	1.546255006
500_03	500	25814	0.103256	808.5	837.88	3.506468707

KOMENTAR

• srednje odstupanje od najboljeg rješenja (u %):

Broj vrhova	Odstupanje		
50	0.3744389081		
100	1.739269494		
200	3.569167068		
300	4.163099801		
400	4.636841733		
500	5.560262873		

Gustoća	Odstupanje
0.05	5.253845192
0.08	3.204335537
0.1	1.273480961

• bolji rezultati za gušće grafove i grafove s manje vrhova

GRAFOVI S 50 VRHOVA

Range 100 - 122 brida (naše rješenje 19 vrhova, najbolje 19 vrhova) Range 125 - 188 bridova (naše rješenje 12 vrhova, najbolje 10 vrhova) Range 150 - 276 bridova (naše rješenje 7 vrhova, najbolje 7 vrhova)

GRAFOVI SA 100 VRHOVA

Range 100 - 535 bridova (naše rješenje 24 vrhova, najbolje 18 vrhova) Range 125 - 781 brid (naše rješenje 13 vrhova, najbolje 13 vrhova) Range 150 - 1013 bridova (naše rješenje 9 vrhova, najbolje 9 vrhova)

200 vrhova, 2147 bridova (naše rješenje 19 vrhova, najbolje 20 vrhova)

300 vrhova, 4983 bridova (naše rješenje 24 vrha, najbolje 23 vrha)

400 vrhova, 8314 bridova (naše rješenje 29 vrhova, najbolje 20 vrhova)

500 vrhova, 13069 bridova (naše rješenje 35 vrhova, najbolje 23 vrha)

LITERATURA

- I. Shin, Y. Shen, M.T. Thai, *On approximation of dominating tree in wireless sensor networks*, Optim Lett Springer 4:393-403, 2010.
- S. Sundar, A. Singh, *New heuristic approaches for the dominating tree problem*, Appl Soft Comput 13:4695-4703, 2013.
- S.N. Chaurasia, A. Singh, *A hybrid heuristic for dominating tree problem*, Soft Comput 20:377-397, 2014.
- S. Sundar, A steady-state genetic algorithm for the dominating tree problem, In: Proceedings of the tenth international conference on simulated evolution and learning (SEAL 2014), LNCS, vol 8886. Springer-Verlag, Dunedin, pp 48-57, 2014.

LITERATURA

- S. Sundar, S.N. Chaurasia, A. Singh, An Ant Colony Optimization Approach for the Dominating Tree Problem, In: B. Panigrahi, P. Suganthan, S. Das, S. Satapathy (eds) Swarm, Evolutionary, and Memetic computing, SEMCCO 2015. Lecture Notes in Computer Science, vol 9873. Springer, Cham, 2016.
- Z. Dražić, M. Čangalović, V. Kovačević-Vujčić, *A meta-heuristic approach to the dominating tree problem*, Optim Lett Springer 11:1155-1167, 2017.
- K. Singh, S. Sundar, *Two new heuristics for the dominating tree problem*, Appl Intell 48:2247, 2017.