Problem

Use the pumping lemma to show that the following languages are not context free.

a.
$$\{0^n 1^n 0^n 1^n | n \ge 0\}$$

^A**b.**
$$\{0^n \# 0^{2n} \# 0^{3n} | n \ge 0\}$$

^Ac.
$$\{w\#t|\ w \text{ is a substring of } t, \text{ where } w,t\in\{\mathtt{a},\mathtt{b}\}^*\}$$

d.
$$\{t_1 \# t_2 \# \cdots \# t_k | k \ge 2, \text{ each } t_i \in \{a, b\}^*, \text{ and } t_i = t_j \text{ for some } i \ne j\}$$

Step-by-step solution

Step 1 of 5

a) Consider the language $B = \{0^n 1^n 0^n 1^n \mid n \ge 0\}$

Let P be the pumping length of B given by the pumping lemma.

To show that B is not a CFL, it is enough to show that a string $s = 0^p 1^p 0^p 1^p$ cannot be pumped.

Consider s is of the form uvxyz.

- If both v and y contain at most one type of alphabet symbol, the string will be of the form uv^2xy^2z runs of 0's and 1's of unequal length. Hence the string s cannot be a member of s.
- If either $v \circ r y$ contains more than one type of alphabet symbol, the string will be of the form uv^2xy^2z which does not contain the symbols in correct order. Hence the string s cannot be a member of s.

Since the string s cannot be pumped without violating the pumping lemma condition, B is not a CFL (context-free language).

Comment

Step 2 of 5

b) Consider the language $B = \left\{0^n \# 0^{2n} \# 0^{3n} \mid n \ge 0\right\}$

Let P be the pumping length of B given by the pumping lemma.

To show that *B* is not a CFL, it enough to show that a string $s = 0^p \# 0^{2p} \# 0^{3p}$ cannot be pumped.

Consider $\,^{\it S}$ is of the form $\,^{\it uvxyz}$.

Neither v nor y can contains #, otherwise uv^2xy^2z contains more than two #s. If the string s is divided into three segments by #s at least one of the segments $0^p, 0^{2p}$ and 0^{3p} is not contained within either v or y.

Because the length ratio of the segments is not maintained as 1:2:3, xv^2wy^2z is not in B

Hence the string s cannot be a member of B.

Since the string s cannot be pumped without violating the pumping lemma condition, B is not a CFL (context-free language).

Comment

Step 3 of 5

c) Consider the language $B = \left\{ w \# t \mid w \text{ is a substring of } t, \text{ where } w, t \in \left\{a, b\right\}^* \right\}$

Let P be the pumping length of B given by the pumping lemma.

To show that B is not a CFL, it enough to show that a string $s = a^p b^p \# a^p b^p$ cannot be pumped.

Consider s is of the form uvxyz.

- Neither $v^{\text{nor}}y$ can contain #, otherwise uv^0xy^0z does not contain #. Hence the string s cannot be a member of B.
- If both v and y are nonempty and occur on the left-hand side of #, the string uv^2xy^2z is longer on the left-hand side of #. Hence the string s cannot be a member of B
- Similarly, if both v and y are nonempty and occure on the right-hand side of #, the string uv^0xy^0z is longer on the right hand side of #. Hence the string g cannot be a member of g.
- If only one of v and y is nonempty we can treat them as if both occurred on the same side of #. Hence the string s cannot be a member of B.
- In the remaining case if both v and y are nonempty and include the #, then by the third pumping lemma condition $|vxy| \le P$, we have v consists of b's and y consists of a's. Hence uv^2xy^2z contains more b's on the left-hand side of the #. Hence the string s cannot be a member of B. Since the string s cannot be pumped without violating the pumping lemma condition, B is not a CFL (context-free language).

Comments (3)

Step 4 of 5

d) Consider the language

$$B = \left\{ t_1 \# t_2 \# \dots \# t_k \mid k \ge 2, \ t_i \in \left\{ a, b \right\}^*, \text{ and } t_i = t_j \text{ for some } i \ne j \right\}$$

Let ${\it P}$ be the pumping length of ${\it B}$ given by the pumping lemma.

The t_i can be equal to t_j for different i and j values. Hence, the same terms will be appeared in the string s separated by #.

To show that B is not a CFL, it enough to show that a string $s = a^p b^p \# a^p b^p$ cannot be pumped.

Consider s is of the form uvxyz.

- Neither v nor y can contains #, otherwise $uv^0 x y^0 z$ does not contain #. Hence the string s cannot be a member of B.
- If only one of v and y is nonempty we can treat them as if both occurred on the same side of #. Hence the string s cannot be a member of B.
- If both v and y are nonempty and occur on the left-hand side of #, the string uv^2xy^2z is longer on the left-hand side of #. Hence the string s cannot be a member of B.
- If both v and y are nonempty and occur on the right-hand side of #, the string uv^0xy^0z is longer on the right hand side of #. Hence the string s cannot be a member of B.

Comment

Step 5 of 5

In the remaining case if both v and y are nonempty and include the #, then by the third pumping lemma condition $|vxy| \le p$, we have v consists of b's and y consists of a's. Hence uv^2xy^2z contains more b's on the left-hand side of the #. Hence the string s cannot be a member of B. Since the string s cannot be pumped without violating the pumping lemma condition, B is not a CFL (context-free language).

Comment