Université Pierre et Marie Curie - LM223 - Année 2012-2013

Interro nº 1

Exercice 1:

Calculer le déterminant de la matrice suivante.

$$M = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{array}\right)$$

En déduire que M est inversible et calculer son inverse.

Exercice 2:

On considère le sous-ensemble de matrices réelles 2×2 suivant :

$$\mathbf{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \ a, b \in \mathbb{R} \right\}.$$

1. Montrer que **F** est un sous-espace vectoriel de $M_2(\mathbb{R})$. Quelle est la dimension de **F**?

On considère \mathbb{C} comme un espace vectoriel réel, et on définit une application $f: \mathbf{F} \to \mathbb{C}$ par

$$f: \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + ib$$

- 2. Montrer que f est linéaire.
- 3. Montrer que f est bijective.
- 4. Montrer que pour toutes $M, N \in \mathbf{F}$, le produit MN est dans \mathbf{F} .
- 5. Montrer que f(MN) = f(M)f(N) pour toutes $M, N \in \mathbf{F}$.

Exercice 3:

Soit
$$M = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- 1. Calculer le polynôme caractéristique $P_M(X)$.
- 2. Quelles sont les valeurs propres de M? Donner des bases des sous-espaces propres associés.
- 3. M est-elle diagonalisable? Si oui, donner une matrice P telle que $P^{-1}MP$ soit diagonale.

Exercice 4:

Soit
$$F = \{(x, y, z, t) \in \mathbb{C}^4 \mid x + y + z + t = 0\}.$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{C}^4 et donner, en le justifiant, sa dimension.
- 2. Soit $e_1 = (1, 0, 0, -1)$, $e_2 = (0, 1, 0, -1)$, $e_3 = (0, 0, 1, -1)$ et $\mathcal{B} = \{e_1, e_2, e_3\}$. Montrer que \mathcal{B} est une base de F.
- 3. Soit

Montrer que φ est bien une application de F dans F, et qu'elle est linéaire. Puis calculer $M = \operatorname{Mat}_{\mathcal{B}}(\varphi)$.

4. Est-ce que φ est diagonalisable? Si oui donner une base de vecteurs propres de φ .

Exercice 5:

Soit $A \in M_3(\mathbb{C})$ une matrice diagonalisable. $\mathcal{C}_A = \{M \in M_3(\mathbb{C}) \mid MA = AM\}$

- 1. Montrer que \mathcal{C}_A est un sous-espace vectoriel de $M_3(\mathbb{C})$.
- 2. Soit λ une valeur propre de A, E_{λ} l'espace propre associé. Si $u \in E_{\lambda}$, montrer que $Mu \in E_{\lambda}$.
- 3. En déduire la dimension de C_A .

 Attention, la dimension de C_A dépend de la dimension des espaces propres de A, et n'est pas la même pour toutes les matrices diagonalisables. Dans votre réponse il faut donc distinguer plusieurs cas.
- 4. Soit $D = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \in M_3(\mathbb{C})$, avec a, b, c trois nombres complexes distincts. Soit $\mathcal{C}_D = \{ M \in M_3(\mathbb{C}) \mid MD = DM \}$. Donner une base de \mathcal{C}_D .