

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

课程信息

- 课时:
 - 10 周 40 课时;
 - 2024-09-09 ~ 2024-11-14
- 课程 QQ 群 (入群答案 1400261B)
 - 008 班 (生医、通信工程) 973042840
 - 009 班 (车辆创新实验、集成) 973041550
- 教材: 西交高数教研室《复变函数》, 张元林《积分变换》

作业 15 分

作业每次会提前发布,每章交一次. 作业不允许迟交. 没带的请当天联系助教补交,迟一天交 -50% 当次作业分,迟两天或以上0分.请假需提前交给我请假条.

期末考试 50 分

期末卷面需要达到 45 分 才计算总评分数, 45 分以下 直接不及格.

课堂测验 25 分

课堂测验共 3 次, 取最高的两次平均. 测验范围和时间会提前通知. 测验时在教室内作答, 否则按未考处理.

期末报告 10 分

期末之前会告知主题.请交手写纸质版,并自行留存电子版本以免意外丢失.

复变函数的应用

复变函数的应用非常广泛, 它包括:

- 数学中的代数、数论、几何、分析、动力系统……
- 物理学中流体力学、材料力学、电磁学、光学、量子力学……
- 信息学、电子学、电气工程……

可以说复变函数应用之广, 在大学数学课程中仅次于高等数学和线性代数.

第一章 复数与复变函数

- 1 复数及其代数运算
- 2 复数的三角与指数形式
- 3 复数的乘除、乘幂与方根
- 4 曲线和区域
- 5 复变函数
- 6 极限和连续性

复数起源于多项式方程的求根问题. 我们考虑一元二次方程 $x^2 + bx + c = 0$, 配方可得

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式

$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, $\Delta = b^2 - 4c$.

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;
- (3) 当 $\Delta < 0$ 时, 无实根. 然而, 如果我们接受负数开方的话, 此时仍然有两个根, 形式地计算可以发现它们满足原来的方程.

现在我们来考虑一元三次方程.

例

解方程 $x^3 + 6x - 20 = 0$.

解

设 x = u + v, 则

$$u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$$

我们希望 $u^3+v^3=20, uv=-2$, 则 u^3, v^3 满足一元二次方程 $X^2-20X-8=0$. 解得

$$u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3.$$

所以 $u = 1 \pm \sqrt{3}, v = 1 \mp \sqrt{3}, x = u + v = 2.$

那么这个方程是不是真的只有 x=2 这一个解呢? 由 $f'(x)=3x^2+6>0$ 可知其单调递增, 因此确实只有一个解.

例

解方程 $x^3 - 7x + 6 = 0$.

解

同样 地我们有 x = u + v. 其中

$$u^3 + v^3 = -6, \quad uv = \frac{7}{3}.$$

于是 u^3, v^3 满足一元二次方程 $X^2 + 6X + \frac{343}{27} = 0$. 然而这个方程没有实数解.

我们可以强行解得

$$u^3 = -3 + \frac{10}{9}\sqrt{-3}.$$

三次方程的根

续解

$$u = \sqrt[3]{-3 + \frac{10}{9}\sqrt{-3}} = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

相应地

$$v = \frac{3 - 2\sqrt{-3}}{3}, \frac{-9 - \sqrt{-3}}{6}, \frac{3 + 5\sqrt{-3}}{6},$$

$$x = u + v = 2, -3, 1.$$

所以我们从一条"错误的路径"走到了正确的目的地?

对于一般的三次方程 $x^3 + px + q = 0$ 而言, 类似可得:

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

由于 p=0 情形较为简单, 所以我们不考虑这种情形. 通过分析函数图像的极值点可以知道:

- (1) 当 $\Delta > 0$ 时, 有 1 个实根.
- (2) 当 $\Delta = 0$ 时, 有 2 个实根 $x = -\sqrt[3]{4q}, \frac{1}{2}\sqrt[3]{4q}$ (2 重).
- (3) 当 $\Delta < 0$ 时, 有 3 个实根.

所以我们想要使用求根公式的话, 就必须接受负数开方. 那么为什么当 $\Delta < 0$ 时, 从求根公式一定能得到 3 个实根呢? 在学习了第一章的内容之后我们就可以回答这个问题了.

尽管在十六世纪, 人们已经得到了三次方程的求根公式, 然而对其中出现的虚数, 却是难以接受.

圣灵在分析的奇观中找到了超凡的显示, 这就是那个理想世界的端兆, 那个介于存在与不存在之间的两栖物, 那个我们称之为虚的 -1 的平方根。

莱布尼兹 (Leibniz)

我们将在下一节使用更为现代的语言来解释和运用复数.

第一节 复数及其代数运算

- ■复数的概念
- 复数的代数运算
- 共轭复数

现在我们来正式介绍复数的概念.

定义

固定一个记号 i, 复数就是形如 z=x+yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

换言之, 每一个复数可以唯一地表达成 x+yi 这样的形式. 也就是说, 复数全体构成一个二维实线性空间, 且 $\{1,i\}$ 是一组基.

我们将全体复数记作 \mathbb{C} , 全体实数记作 \mathbb{R} , 则 $\mathbb{C} = \mathbb{R} + \mathbb{R}i$.

由于 $\mathbb C$ 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立 ——对应.

实部和虚部, 虚数和纯虚数

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们称 x 轴为实轴. 相应地, 称 y 轴为虚轴. 称 z=x+yi 在实轴和虚轴的投影为它的实部 $\mathrm{Re}\,z=x$ 和虚部 $\mathrm{Im}\,z=y$.

当 $\operatorname{Im} z=0$ 时, z 是实数. 不是实数的复数是虚数. 当 $\operatorname{Re} z=0$ 且 $z\neq 0$ 时, 称 z 是纯虚数.

典型例题: 判断实数和纯虚数

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是:

(1) 实数; (2) 纯虚数.

解

- (1) Im $z = x^2 5x 6 = 0$, $x = -1 \le 6$.
- (2) Re $z = x^2 3x 4 = 0$, 即 x = -1 或 4. 但同时要求 Im $z = x^2 5x 6 \neq 0$, 因此 $x \neq -1$, x = 4.

练习

若 $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数, 则实数 $x = \underline{-4}$.

复数的加法与减法

设 $z_1=x_1+y_1i, z_2=x_2+y_2i.$ 由 $\mathbb C$ 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

$$z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

复数的乘除法

规定 $i \cdot i = -1$. 由线性空间的数乘和乘法分配律可得:

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$,

$$\frac{1}{z} = \frac{x - yi}{x^2 + y^2}, \quad \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i.$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘. 当 $z \neq 0$ 时, 还可以定义 $z^0 = 1, z^{-n} = \frac{1}{z^n}$.

例

(1)
$$i^2=-1, i^3=-i, i^4=1$$
. 一般地, 对于整数 n ,
$$i^{4n}=1, \quad i^{4n+1}=i, \quad i^{4n+2}=-1, \quad i^{4n+3}=-i.$$

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{M} \ \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

(3) 令 z = 1 + i, 则

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

我们把满足 $z^n=1$ 的复数 z 称为 n 次单位根. 那么 1,i,-1,-i 是 4 次单位根, $1,\omega,\omega^2$ 是 3 次单位根.

典型例题: 常见复数的幂次

例

化简
$$1 + i + i^2 + i^3 + i^4 = _1$$
.

解

根据等比数列求和公式,

$$1 + i + i^2 + i^3 + i^4 = \frac{i^5 - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

练习 (2020 年 A 卷)

化简
$$\left(\frac{1-i}{1+i}\right)^{2020} = 1$$

复数全体构成一个域. 所谓的域, 是指带有如下内容和性质的集合

- 包含 0,1, 且有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 \mathbb{Q} , 实数全体 \mathbb{R} 也构成域, 它们是 \mathbb{C} 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域: 对于任何次数 $n\geqslant 1$ 的复系数多项式

$$p(z) = z^{n} + c_{n-1}z^{n-1} + \dots + c_{1}z + c_{0},$$

都存在复数 z_0 使得 $p(z_0) = 0$. 也就是说复系数多项式可以因式分解成一次多项式的乘积. 我们会在第五章证明该结论.

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域, 即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则要么 a > b, 要么 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;

而 \mathbb{C} 却不是有序域. 如果 i > 0, 则

$$-1 = i \cdot i > 0, \quad -i = -1 \cdot i > 0.$$

于是 0 > i, 矛盾! 同理 i < 0 也不可能.

定义

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z} = x - yi$.

从定义出发,不难验证共轭复数满足如下性质:

- (1) z 是 \overline{z} 的共轭复数.
- (2) $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{z_1/z_2} = \overline{z_1}/\overline{z_2}.$
- (3) $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.
- (4)表明了 x,y 可以用 z,\overline{z} 表出. (2)表明共轭复数和四则运算交换. 这意味着使用共轭复数进行计算和证明,往往比直接使用 x,y 表达的形式更简单.

例题: 共轭复数证明等式

练习

z 关于虚轴的对称点是 $_{-\overline{z}}$.

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i,$ 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

证明

由于
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} = \overline{z_1} \cdot z_2$$
, 因此

$$z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = z_1 \cdot \overline{z_2} + \overline{z_1 \cdot \overline{z_2}} = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$$

例题: 共轭复数判断实数

例

设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅当 $\frac{z}{1 + z^2}$ 是实数.

证明

 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

即

$$z(1+\overline{z}^2)=\overline{z}(1+z^2), \quad (z-\overline{z})(z\overline{z}-1)=0.$$

由 $y \neq 0$ 可知 $z \neq \overline{z}$. 故上述等式等价于 $z\overline{z} = 1$, 即 $x^2 + y^2 = 1$.

例: 复数的代数计算

由于 zz 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}.$$

例

$$z=-rac{1}{i}-rac{3i}{1-i}$$
,求 Re z , Im z 以及 $z\overline{z}$.

解

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

因此

Re
$$z = \frac{3}{2}$$
, Im $z = -\frac{1}{2}$, $z\overline{z} = \left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{5}{2}$.

例:复数的代数计算

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 \left(\frac{z_1}{z_2}\right).$$

解

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

因此
$$\left(\frac{z_1}{z_2}\right) = -\frac{7}{5} + \frac{1}{5}i$$
.

第二节 复数的三角与指数形式

- 复数的模和辐角
- 复数的三角形式和指数形式

复数的极坐标形式

由平面的极坐标表示, 我们可以得到复数的另一种表示方式. 以 0 为极点, 正实轴 为极轴, 逆时针为极角方向可以自然定义出复平面上的极坐标系.

定义

- 称 r 为 z 的模, 记为 |z|=r.
- $\theta \to z$ 的辐角, 记为 $Argz = \theta$. 0 的辐角没有意义.

任意 $z \neq 0$ 的辐角有无穷多个. 我们固定选择其中位于 $(-\pi,\pi]$ 的那个, 并称之为主辐角或辐角主值, 记作 $\arg z$.

$$\arg z = \begin{cases} \arctan \frac{y}{x}, & x > 0; \\ \arctan \frac{y}{x} + \pi, & x < 0, y \ge 0; \\ \arctan \frac{y}{x} - \pi, & x < 0, y < 0; \\ \frac{\pi}{2}, & x = 0, y > 0; \\ -\frac{\pi}{2}, & x = 0, y < 0. \end{cases}$$

那么 $\operatorname{Arg} z = \operatorname{arg} z + 2k\pi, k \in \mathbb{Z}.$

注意 $\arg \overline{z} = -\arg z$ 未必成立, 例如 z 是负实数.

复数模的性质

复数的模满足如下性质:

- $z\overline{z} = |z|^2 = |\overline{z}|^2$;
- $|\operatorname{Re} z|$, $|\operatorname{Im} z| \leq |z| \leq |\operatorname{Re} z| + |\operatorname{Im} z|$;
- $||z_1| |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$;
- $|z_1 + z_2 + \cdots + z_n| \le |z_1| + |z_2| + \cdots + |z_n|$.

例题: 共轭复数解决模的等式

例

证明 (1)
$$|z_1z_2| = |z_1\overline{z_2}| = |z_1| \cdot |z_2|$$
;
(2) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2})$.

证明

(1) 因为

$$|z_1 z_2|^2 = z_1 z_2 \cdot \overline{z_1 z_2} = z_1 z_2 \overline{z_1 z_2} = |z_1|^2 \cdot |z_2|^2,$$

所以
$$|z_1z_2| = |z_1| \cdot |z_2|$$
. 因此 $|z_1\overline{z_2}| = |z_1| \cdot |\overline{z_2}| = |z_1| \cdot |z_2|$.

(2) 因为

左边 =
$$(z_1 + z_2)(\overline{z_1} + \overline{z_2}) = z_1\overline{z_1} + z_2\overline{z_2} + z_1\overline{z_2} + \overline{z_1}z_2$$
,
右边 = $z_1\overline{z_1} + z_2\overline{z_2} + z_1\overline{z_2} + \overline{z_1}\overline{z_2}$,

而 $\overline{z_1\overline{z_2}} = \overline{z_1}z_2$, 所以两侧相等.

复数的三角形式和指数形式

由 $x = r \cos \theta, y = r \sin \theta$ 可得复数的三角形式

$$z = r(\cos\theta + i\sin\theta).$$

定义 $e^{i\theta} = \exp(i\theta) := \cos\theta + i\sin\theta$ (欧拉恒等式), 则我们得到复数的指数形式

$$z = re^{i\theta} = r\exp(i\theta).$$

这两种形式的等价的, 指数形式可以认为是三角形式的一种缩写方式.

求复数的三角/指数形式的关键在于计算模和辐角.

典型例题: 求复数的三角/指数形式

例

将 $z = -\sqrt{12} - 2i$ 化成三角形式和指数形式.

解

$$r = |z| = \sqrt{12 + 4} = 4$$
. 由于 z 在第三象限, 因此

$$\arg z = \arctan \frac{-2}{-\sqrt{12}} - \pi = \frac{\pi}{6} - \pi = -\frac{5\pi}{6}.$$

故

$$z = 4 \left[\cos \left(-\frac{5\pi}{6} \right) + i \sin \left(-\frac{5\pi}{6} \right) \right] = 4e^{-\frac{5\pi i}{6}}.$$

典型例题: 求复数的三角/指数形式

例

将
$$z = \sin \frac{\pi}{5} + i \cos \frac{\pi}{5}$$
 化成三角形式和指数形式.

解

$$|z| = 1$$
, $\arg z = \arctan \frac{\cos(\pi/5)}{\sin(\pi/5)} = \arctan \cot \frac{\pi}{5} = \frac{\pi}{2} - \frac{\pi}{5} = \frac{3\pi}{10}$.

因此
$$z = \cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10} = e^{\frac{3\pi i}{10}}$$
.

另解

$$z = \sin\frac{\pi}{5} + i\cos\frac{\pi}{5} = \cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos\frac{3\pi}{10} + i\sin\frac{3\pi}{10} = e^{\frac{3\pi i}{10}}.$$

典型例题: 求复数的三角/指数形式

求复数的三角或指数形式时, 我们只需要任取一个辐角就可以了, 不要求必须是主辐角.

练习

将 $z = \sqrt{3} - 3i$ 化成三角形式和指数形式.

答案

$$z = 2\sqrt{3} \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3}\right) = 2\sqrt{3}e^{-\frac{\pi i}{3}}$$
,写成 $\frac{5\pi}{3}$ 也可以.

模为 1 的复数

两个模相等的复数之和的三角/指数形式形式较为简单.

$$e^{i\theta} + e^{i\varphi} = 2\cos\frac{\theta - \varphi}{2}e^{\frac{\theta + \varphi}{2}i}$$

例

如果 |z| = 1, $\arg z = \theta$, 则 $z + 1 = 2\cos\frac{\theta}{2}e^{\frac{\theta i}{2}}$.

第三节 复数的乘除、乘幂与方根

- 复数的乘除与三角/指数表示
- 复数的乘幂
- ■复数的方根

三角/指数形式在进行复数的乘法、除法和幂次计算中非常方便.

定理

设

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1) = r_1 e^{i\theta_1},$$

 $z_2 = r_2(\cos \theta_2 + i \sin \theta_2) = r_2 e^{i\theta_2} \neq 0,$

则

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] = r_1 r_2 e^{i(\theta_1 + \theta_2)},$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)] = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}.$$

换言之,

$$|z_1 z_2| = |z_1| \cdot |z_2|, \quad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$$

$$\operatorname{Arg}(z_1z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2, \quad \operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \operatorname{Arg} z_1 - \operatorname{Arg} z_2.$$

关于多值函数的等式的含义是指: 两边所能取到的值构成的集合相等. 例如此处关于辐角的等式的含义是:

$$\operatorname{Arg}(z_1 z_2) = \{\theta_1 + \theta_2 : \theta_1 \in \operatorname{Arg} z_1, \theta_2 \in \operatorname{Arg} z_2\}.$$

$$\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \{\theta_1 - \theta_2 : \theta_1 \in \operatorname{Arg} z_1, \theta_2 \in \operatorname{Arg} z_2\}.$$

复数的乘除与三角/指数表示

注意上述等式中 Arg 不能换成 arg, 也就是说

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2, \quad \arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

不一定成立. 这是因为 $\arg z_1 \pm \arg z_2$ 有可能不落在区间 $(-\pi, \pi]$ 上. 例如 $z_1 = z_2 = e^{0.99\pi i}, z_1 z_2 = e^{1.98\pi i},$

$$\arg z_1 + \arg z_2 = 0.99\pi + 0.99\pi = 1.98\pi,$$

$$\arg(z_1 z_2) = -0.02\pi.$$

复数的乘除与三角/指数表示

证明

$$z_1 z_2 = r_1(\cos \theta_1 + i \sin \theta_1) \cdot r_2(\cos \theta_2 + i \sin \theta_2)$$

= $r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)]$
= $r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

因此乘法情形得证.

设
$$\frac{z_1}{z_2} = re^{i\theta}$$
, 则由乘法情形可知

$$rr_2 = r_1, \quad \theta + \operatorname{Arg} z_2 = \operatorname{Arg} z_1.$$

因此
$$r = \frac{r_1}{r_2}, \theta = \theta_1 - \theta_2 + 2k\pi$$
, 其中 $k \in \mathbb{Z}$.

乘积的几何意义

从该定理可以看出, 乘以复数 $z=re^{i\theta}$ 可以理解为模放大为 r 倍, 并沿逆时针旋转角度 θ .

例

已知正三角形的两个顶点为 $z_1=1$ 和 $z_2=2+i$, 求它的另一个顶点.

解

由于 $\overline{Z_1Z_3}$ 为 $\overline{Z_1Z_2}$ 顺时针或逆时针旋转 $\frac{\pi}{3}$,

续解

因此

$$z_3 - z_1 = (z_2 - z_1) \exp\left(\pm \frac{\pi i}{3}\right) = (1+i) \left(\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)$$
$$= \frac{1 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}i \not \otimes \frac{1 + \sqrt{3}}{2} + \frac{1 - \sqrt{3}}{2}i,$$
$$z_3 = \frac{3 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}i \not \otimes \frac{3 + \sqrt{3}}{2} + \frac{1 - \sqrt{3}}{2}i.$$

例

设 AD 是 $\triangle ABC$ 的角平分线, 证明 $\frac{AB}{AC} = \frac{DB}{DC}$.

证明

不妨设 A=0, B=z, C=1. 则 $D=(1-\lambda)z+\lambda$, 其中 $\lambda=\frac{DB}{BC}\in(0,1)$.

续证

由于 $\angle BAD = \angle DAC$, 因此 $\frac{z}{(1-\lambda)z+\lambda}$ 是 $\frac{(1-\lambda)z+\lambda}{1}$ 的正实数倍. 即

$$\frac{((1-\lambda)z+\lambda)^2}{z} = (1-\lambda)^2 z + \frac{\lambda^2}{z} + 2\lambda(1-\lambda) \in \mathbb{R}.$$

从而

$$(1-\lambda)^2 z + \frac{\lambda^2}{z} = (1-\lambda)^2 \overline{z} + \frac{\lambda^2}{\overline{z}}, \qquad ((1-\lambda)^2 |z|^2 - \lambda^2)(z-\overline{z}) = 0.$$

显然 $z \neq \overline{z}$. 又因为 $0 < \lambda < 1$, 故

$$\frac{AB}{AC} = |z| = \frac{\lambda}{1 - \lambda} = \frac{DB}{BC - DB} = \frac{DB}{DC}.$$

复数的乘幂

设 $z = r(\cos\theta + i\sin\theta) = re^{i\theta} \neq 0$. 根据复数三角/指数形式的乘法和除法运算法则, 我们有

$$z^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta}, \quad \forall n \in \mathbb{Z}.$$

特别地, 当 r=1 时, 我们得到棣莫弗公式

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

对棣莫弗公式左侧进行二项式展开可以得到

$$\cos(2\theta) = 2\cos^2\theta - 1,$$

$$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta,$$

$$\cos(4\theta) = 8\cos^4\theta - 8\cos^2\theta + 1,$$

$$\cos(5\theta) = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$$

一般地, 可以证明 $\cos n\theta$ 是 $\cos \theta$ 的 n 次多项式, 这个多项式

$$g_n(T) = 2^{n-1}T^n - n2^{n-3}T^{n-2} + \cdots$$

叫做切比雪夫多项式. 它在计算数学的逼近理论中有着重要作用.

典型例题:复数乘幂的计算

例

求
$$(1+i)^n + (1-i)^n$$
.

解

由于
$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \ 1 - i = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right),$$
 因此

$$(1+i)^n + (1-i)^n$$

$$= 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} + \cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right) = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}.$$

练习

 $\vec{X} (\sqrt{3} + i)^{2022} = \underline{-2^{2022}}$

我们利用复数乘幂公式来计算复数 z 的 n 次方根 $\sqrt[n]{z}$. 设

$$w^n = z = re^{i\theta} \neq 0, \quad w = \rho e^{i\varphi},$$

则

$$w^n = \rho^n(\cos n\varphi + i\sin n\varphi) = r(\cos \theta + i\sin \theta).$$

比较两边的模可知 $\rho^n = r, \rho = \sqrt[n]{r}$.

为了避免记号冲突,当 r 是正实数时, $\sqrt[r]{r}$ 默认表示 r 的唯一的 n 次正实根,称之为算术根.

由于 $n\varphi$ 和 θ 的正弦和余弦均相等, 因此存在整数 k 使得

$$n\varphi = \theta + 2k\pi, \quad \varphi = \frac{\theta + 2k\pi}{n}.$$

故

$$w = w_k = \sqrt[n]{r} \exp \frac{(\theta + 2k\pi)i}{n}$$
$$= \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n}\right).$$

不难看出, $w_k = w_{k+n}$, 而 $w_0, w_1, \ldots, w_{n-1}$ 两两不同. 因此只需取 $k = 0, 1, \ldots, n-1$. 故任意一个非零复数的 n 次方根有 n 个值.

这些根的模都相等,且 w_k 和 w_{k+1} 辐角相差 $\frac{2\pi}{n}$. 因此它们是以原点为中心, $\sqrt[n]{r}$ 为半径的圆的内接正 n 边形的顶点.

由于
$$1+i=\sqrt{2}\exp\left(\frac{\pi i}{4}\right)$$
, 因此

$$\sqrt[4]{1+i} = \sqrt[8]{2} \exp \frac{(\frac{\pi}{4} + 2k\pi)i}{4}, \quad k = 0, 1, 2, 3.$$

所以该方根所有值为

$$w_0 = \sqrt[8]{2}e^{\frac{\pi i}{16}}, \quad w_1 = \sqrt[8]{2}e^{\frac{9\pi i}{16}}, \quad w_2 = \sqrt[8]{2}e^{\frac{17\pi i}{16}}, \quad w_3 = \sqrt[8]{2}e^{\frac{25\pi i}{16}}.$$

典型例题:复数方根的计算

显然 $w_{k+1} = iw_k$, 所以 w_0, w_1, w_2, w_3 形成了一个正方形.

练习 $\sqrt{3}+i$, , , , $\sqrt{3}$

 $\Re \sqrt[6]{-1} = \frac{\pm \frac{\sqrt{3+i}}{2}, \pm i, \pm \frac{\sqrt{3-i}}{2}}{2}.$

方幂和方根的辐角等式

注意当 $|n| \ge 2$ 时, $\operatorname{Arg}(z^n) = n \operatorname{Arg} z$ 不成立. 这是因为

$$\operatorname{Arg}(z^n) = n \operatorname{arg} z + 2k\pi, \quad k \in \mathbb{Z},$$

$$n \operatorname{Arg} z = n \operatorname{arg} z + 2nk\pi, \quad k \in \mathbb{Z}.$$

不过我们总有

$$\operatorname{Arg} \sqrt[n]{z} = \frac{1}{n} \operatorname{Arg} z = \frac{\arg z + 2k\pi}{n}, \quad k \in \mathbb{Z},$$

其中左边表示 z 的所有 n 次方根的所有辐角.

现在我们来看三次方程 $x^3 + px + q = 0$ 的根, $p \neq 0$.

$$x = u + v$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $uv = -\frac{p}{3}$.

(1) 如果 $\Delta > 0$, 设实数 α 满足 $\alpha^3 = -q/2 + \sqrt{\Delta}$, $\omega = e^{2\pi i/3}$. 那么

$$u = \alpha, \alpha\omega, \alpha\omega^2, \qquad x = \alpha - \frac{p}{3\alpha}, \ \alpha\omega - \frac{p}{3\alpha}\omega^2, \ \alpha\omega^2 - \frac{p}{3\alpha}\omega.$$

容易证明后两个根都是虚数.

(2) 如果 $\Delta < 0$, 则 p < 0, $|u|^2 = -p/3$. 从而 $v = \overline{u}$. 设 $\sqrt[3]{-q/2} + \sqrt{\Delta} = u_1, u_2, u_3$, 则 我们得到 3 个实根

$$x = u_1 + \overline{u_1}, \ u_2 + \overline{u_2}, \ u_3 + \overline{u_3}.$$

第四节 曲线和区域

- ■复数表平面曲线
- 区域的定义
- ■区域的特性

很多的平面图形能用复数形式的方程来表示,这种表示方程有些时候会显得更加直观和易于理解.

例

|z+i|=2.

该方程表示与 -i 的距离为 2 的点全体, 即圆心为 -i 半径为 2 的圆.

一般的圆方程为 $|z-z_0|=R$, 其中 z_0 是圆心, R 是半径.

例

$$\overline{|z-2i|} = |z+2|.$$

该方程表示与 2i 和 -2 的距离相等的点, 即二者连线的垂直平分线. 两边同时平方化简可得 x+y=0.

例

$$\operatorname{Im}(i + \overline{z}) = 4.$$

设
$$z = x + yi$$
, 则 $\text{Im}(i + \overline{z}) = 1 - y = 4$, 因此 $y = -3$.

例

 $|z - z_1| + |z - z_2| = 2a.$

- 当 $2a > |z_1 z_2|$ 时, 该方程表示以 z_1, z_2 为焦点, a 为长半轴的椭圆;
- 当 $2a = |z_1 z_2|$ 时, 该方程表示连接 z_1, z_2 的线段;
- 当 $2a < |z_1 z_2|$ 时, 该方程表示空集.

例

 $|z - z_1| - |z - z_2| = 2a.$

- 当 $2a < |z_1 z_2|$ 时, 该方程表示以 z_1, z_2 为焦点, a 为实半轴的双曲线的一支;
- 当 $2a = |z_1 z_2|$ 时, 该方程表示以 z_2 为起点, 与 z_2, z_1 连线反向的射线;
- 当 $2a > |z_1 z_2|$ 时, 该方程表示空集.

练习

$$z^{\overline{2}} + \overline{z}^2 = 1$$
 和 $z^2 - \overline{z}^2 = i$ 分别表示什么图形?

答案

双曲线
$$x^2 - y^2 = \frac{1}{2}$$
 和双曲线 $xy = \frac{1}{4}$.

为了引入极限的概念, 我们需要考虑点的邻域. 类比于高等数学中的邻域和去心邻域, 我们在复变函数中, 称开圆盘

$$U(z_0, \delta) = \{z : |z - z_0| < \delta\}$$

为 z_0 的一个 δ -邻域, 称去心开圆盘

$$\overset{\circ}{U}(z_0, \delta) = \{z : 0 < |z - z_0| < \delta\}$$

为 z_0 的一个去心 δ -邻域.

内部、外部、边界

设 G 是复平面的一个子集, $z_0 \in \mathbb{C}$. 它们的位置关系有三种可能:

- (1) 如果存在 z_0 的一个邻域 U 完全包含在 G 中, 则称 z_0 是 G 的一个内点.
- (2) 如果存在 z_0 的一个邻域 U 完全不包含在 G 中, 则称 z_0 是 G 的一个外点.
- (3) 如果 z_0 的任何一个邻域 U, 都有属于和不属于 G 的点, 则称 z_0 是 G 的一个边界点.

显然内点都属于 G, 外点都不属于 G, 而边界点则都有可能. 这类比于区间的端点和区间的关系.

开集和闭集

如果 G 的所有点都是内点, 也就是说, G 的边界点都不属于它, 称 G 是一个开集. 例如

$$|z - z_0| < R$$
, $1 < \text{Re } z < 3$, $\frac{\pi}{4} < \text{arg } z < \frac{3\pi}{4}$

都是开集. 如果 G 的所有边界点都属于 G, 称 G 是一个闭集. 这等价于它的补集是开集.

直观上看: 开集往往由 >,< 的不等式给出, 闭集往往由 $>,\leqslant$ 的不等式给出. 不过注意这并不是绝对的. 例如 $|z+1|+|z-1|\geqslant 1$ 表示整个复平面.

如果 D 可以被包含在某个开圆盘 U(0,R) 中, 则称它是有界的. 否则称它是无界的.

区域和闭区域

定义

如果开集 D 的任意两个点之间都可以用一条完全包含在 D 中的折线连接起来,则称 D 是一个区域. 也就是说, 区域是连通的开集.

观察下侧的图案, 青色部分是一个区域 (不包含红色部分). 红色的线条和点是它的边界. 区域和它的边界一起构成了闭区域, 记作 \overline{D} . 它是一个闭集.

数学中边界的概念与日常所说的边界是两码事. 例如区域 |z|>1 的边界是 |z|=1, 其闭区域是 $|z|\geqslant 1$.

常见区域

复平面上的区域大多由复数的实部、虚部、模和辐角的不等式所确定. 这些区域对应的闭区域是什么?

简单闭曲线 (闭路)

设 $x(t), y(t), t \in [a, b]$ 是两个连续函数, 则参变量方程 $\begin{cases} x = x(t), \\ y = y(t), \end{cases} \quad t \in [a, b]$ 定义

了一条连续曲线. 这也等价于 $C: z = z(t) = x(t) + iy(t), t \in [a, b]$.

如果除了两个端点有可能重叠外, 其它情形不会出现重叠的点, 则称 C 是简单曲线. 如果还满足两个端点重叠, 即 z(a) = z(b), 则称 C 是简单闭曲线, 也简称为闭路.

闭路的内部和外部

闭路 C 把复平面划分成了两个区域,一个有界一个无界. 分别称这两个区域是 C 的内部和外部. C 是它们的公共边界.

这件事情的严格证明是十分困难的 (Veblen 1905).

单连通域和多连通域

在前面所说的几个区域的例子中,我们在区域中画一条闭路.除了圆环域之外,闭路的内部仍然包含在这个区域内.

定义

如果区域 D 中的任一闭路的内部都包含在 D 中, 则称 D 是单连通域. 否则称之为多连通域.

单连通域内的任一闭路可以连续地变形成一个点. 这也等价于: 设 ℓ_1,ℓ_2 是从 A 到 B 的两条连续曲线, 则 ℓ_1 可以连续地变形为 ℓ_2 且保持端点不动.

(1) $\operatorname{Re}(z^2) < 1$. 设 z = x + yi, 则 $\operatorname{Re}(z^2) = x^2 - y^2 < 1$. 这是无界的单连通域.

例 (续)

 $\frac{1}{(2)|\arg z|} < \frac{\pi}{3}$ (不含原点). 即角状区域 $-\frac{\pi}{3} < \arg z < \frac{\pi}{3}$. 这是无界的单连通域.

例 (续)

 $|z| \le 3$. 即 $|z| \ge \frac{1}{3}$. 这是无界的多连通闭区域.

例 (续)

(4) |z + 1| + |z - 1| < 4.

表示一个椭圆的内部. 这是有界的单连通域.

思考

 $|z+1| + |z-1| \ge 1$ 表示什么集合? 整个复平面.

第五节 复变函数

- ■复变函数的定义
- 映照

复变函数的定义

所谓的映射, 就是两个集合之间的一种对应 $f:A\to B$, 使得对于每一个 $a\in A$, 有一个唯一确定的 b=f(a) 与之对应.

- 当 A 和 B 都是实数集合的子集时, 它就是一个实变函数.
- 当 A 和 B 都是复数集合的子集时, 它就是一个复变函数.

例

$$f(z) = \operatorname{Re} z, \operatorname{arg} z, |z|, z^n, \frac{z+1}{z^2+1}$$
都是复变函数.

定义

- A 为函数 f 的定义域.
- $% \{w = f(z) : z \in A\} \$ 为它的值域.

上述函数的定义域和值域分别是什么?

多值复变函数

在复变函数理论中,我们常常会遇到多值的复变函数,也就是说一个 $z \in G$ 可能有多个 w 与之对应. 例如 $\operatorname{Arg} z$, $\sqrt[n]{z}$ 等. 为了方便研究,我们常常需要对每一个 z, 选取 固定的一个 f(z) 的值. 这样我们得到了这个多值函数的一个单值分支.

例

arg z 是无穷多值函数 Arg z 的一个单值分支.

在考虑多值的情况下,复变函数总有反函数. 如果 f 和 f^{-1} 都是单值的,则称 f 是一一对应.

例

 $f(z)=z^n$ 的反函数就是 $f^{-1}(w)=\sqrt[n]{w}$. 当 $n=\pm 1$ 时, f 是一一对应.

若无特别声明, 复变函数总是指单值的复变函数.

大部分复变函数的图像无法在三维空间中表示出来. 为了直观理解和研究, 我们用两个复平面 (z 复平面和 w 复平面) 之间的映照来表示这种对应关系, 其中

$$w = u + iv = u(x, y) + iv(x, y)$$

的实部和虚部是两个二元实变函数.

例

函数 $w=\overline{z}$. 如果把 z 复平面和 w 复平面重叠放置,则这个映照对应的是关于 z 轴的翻转变换. 它把任一区域映成和它全等的区域,且 u=x,v=-y.

例

函数 w=az. 设 $a=re^{i\theta}$, 则这个映照对应的是一个旋转映照 (逆时针旋转 θ) 和一个相似映照 (放大为 r 倍) 的复合. 它把任一区域映成和它相似的区域.

函数 $\overline{w}=z^2$. 这个映照把 z 的辐角增大一倍, 因此它会把角形区域变换为角形区域, 并将夹角放大一倍.

例 (续)

由于 $u=x^2-y^2, v=2xy$. 因此它把 z 复平面上两族分别以直线 $y=\pm x$ 和坐标轴 为渐近线的等轴双曲线 $x^2-y^2=c_1, 2xy=c_2$ 分别映射为 w 复平面上的两族平行直线 $u=c_1, v=c_2$.

例

求下列集合在映照 $w=z^2$ 下的像. (1) 线段 0<|z|<2, $\arg z=\frac{\pi}{2}$.

设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像还是一条线段 0 < |w| < 4, $\arg w = re^{\frac{\pi i}{2}}$ $-\pi$.

例

求下列集合在映照 $w=z^2$ 下的像.

(2) 双曲线 $x^2 - y^2 = 4$.

解

由于

$$w = u + iv = z^2 = (x^2 - y^2) + 2xyi.$$

因此 $u = x^2 - y^2 = 4, v = 2xy$.

可以说明当 u=4 时, 对任意 v, u+iv 都是该双曲线上某一点的像. 所以这条双曲线的像是直线 $\operatorname{Re} w=4$.

求下列集合在映照 $w=z^2$ 下的像. (3) 扇形区域 $0 < \arg z < \frac{\pi}{4}, 0 < |z| < 2.$

设 $z = re^{i\theta}$,则 $w = r^2e^{2i\theta}$. 因此它的像是扇形区域 $0 < \arg w < \frac{\pi}{2}, 0 < |w| < 4$.

例

求圆周 |z|=2 在映照 $w=\frac{z+1}{z-1}$ 下的像.

解

由于
$$z = \frac{w+1}{w-1}, \left| \frac{w+1}{w-1} \right| = 2$$
, 因此

$$|w+1|=2|w-1|, \quad w\overline{w}+w+\overline{w}+1=4w\overline{w}-4w-4\overline{w}+4,$$

$$w\overline{w} - \frac{5}{3}w - \frac{5}{3}\overline{w} + 1 = 0, \quad \left|w - \frac{5}{3}\right|^2 = \frac{16}{9},$$

即 $\left| w - \frac{5}{3} \right| = \frac{4}{3}$, 是一个圆周.

第六节 极限和连续性

- 无穷远点
- 数列的极限
- ■函数的极限
- ■函数的连续性

类似于实变函数情形, 我们可以定义复变函数的极限. 我们先来看数列极限的定义.

定义

- 设 $\{z_n\}_{n\geqslant 1}$ 是一个复数列. 如果 $\forall \varepsilon > 0, \exists N$ 使得当 $n\geqslant N$ 时 $|z_n-z|<\varepsilon$, 则称 z 是数列 $\{z_n\}$ 的极限, 记作 $\lim_{n\to\infty}z_n=z$.
- 如果 $\forall X>0, \exists N$ 使得当 $n\geqslant N$ 时 $|z_n|>X$, 则称 ∞ 是数列 $\{z_n\}$ 的极限, 记作 $\lim_{n\to\infty}z_n=\infty$.

如果我们称

$$\overset{\circ}{U}(\infty,X) = \{ z \in \mathbb{C} : |z| > X \}$$

为 ∞ 的 (去心) 邻域, 那么 $\lim_{n\to\infty} z_n = z \in \mathbb{C} \cup \{\infty\}$ 可统一表述为:

对 z 的任意邻域 U, $\exists N$ 使得当 $n \geqslant N$ 时 $z_n \in U$.

那么有没有一种看法使得 ∞ 的邻域和普通复数的邻域没有差异呢? 我们将介绍复球面的概念, 它是复数的一种几何表示且自然包含无穷远点 ∞ . 这种思想是在黎曼研究多值复变函数时引入的.

取一个与复平面相切于原点 z=0 的球面. 过 O 做垂直于复平面的直线, 并与球面相交于另一点 N, 称之为北极.

复球面

- 对于平面上的任意一点 z, 连接北极 N 和 z 的直线一定与球面相交于除 N 以外的唯一一个点 Z.
- 反之, 球面上除了北极外的任意一点 Z, 直线 NZ 一定与复平面相交于唯一一点.

这样, 球面上除北极外的所有点和全体复数建立了——对应.

复球面: 无穷远点

当 |z| 越来越大时,其对应球面上点也越来越接近 N. 如果我们在复平面上添加一个额外的" 点"——无穷远点,记作 ∞ . 那么扩充复数集合 $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ 就正好和球面上的点——对应. 称这样的球面为复球面,称包含无穷远点的复平面为扩充复平面(闭复平面).

复球面: 与实数无穷的联系

它和实数中 $\pm\infty$ 有什么联系呢? 选取上述图形的一个截面来看, 实轴可以和圆周去掉一点建立一一对应. 于是实数中的 $\pm\infty$ 在复球面上就是 ∞ .

朴素地看, 复球面上任意一点可以定义邻域的概念. 特别地, ∞ 的开邻域通过前面所说的对应关系, 可以对应到扩充复平面上 ∞ 的一个邻域. 所以在复球面上, 我们将普通复数和 ∞ 的开邻域可以视为相同的概念.

下述定理保证了我们可以使用实数列的敛散性判定技巧.

定理

设 $z_n = x_n + y_n i, z = x + y i,$ 则

$$\lim_{n \to \infty} z_n = z \iff \lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y.$$

证明

由三角不等式

$$|x_n - x|, |y_n - y| \le |z_n - z| \le |x_n - x| + |y_n - y|$$

易证.

例: 数列的敛散性

例

设
$$z_n = \left(1 + \frac{1}{n}\right)e^{\frac{\pi i}{n}}$$
. 数列 $\{z_n\}$ 是否收敛?

解

由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \quad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0.$$

因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.

定义

设函数 f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 $U(A,\varepsilon),\exists\delta>0$ 使得

$$z \in \overset{\circ}{U}(z_0, \delta) \implies f(z) \in U(A, \varepsilon),$$

则称 A 为 f(z) 当 $z \to z_0$ 时的极限, 记为 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A(z \to z_0)$.

此时我们称极限存在.

对于 $z_0 = \infty$ 或 $A = \infty$ 的情形, 也可以用上述定义统一描述.

与实函数极限之联系

不难看出, 变函数的极限和二元实函数的极限定义是类似的: 即 $z \to z_0$ 沿任一曲线趋向于 z_0 的极限都是相同的.

定理

设
$$f(z) = u(x,y) + iv(x,y), z_0 = x_0 + y_0 i, A = u_0 + v_0 i,$$
 则
$$\lim_{z \to z_0} f(z) = A \iff \lim_{x \to x_0} u(x,y) = u_0, \quad \lim_{x \to x_0} v(x,y) = v_0.$$

证明

由三角不等式

$$|u - u_0|, |v - v_0| \le |f(z) - A| \le |u - u_0| + |v - v_0|$$

易证.

由此可知极限的四则运算法则对于复变函数也是成立的.

定理

设
$$\lim_{z \to z_0} f(z) = A$$
, $\lim_{z \to z_0} g(z) = B$, 则

- (1) $\lim_{z \to z_0} (f \pm g)(z) = A \pm B;$
- (2) $\lim_{z \to z_0} (fg)(z) = AB;$
- (3) 当 $B \neq 0$ 时, $\lim_{z \to z_0} \left(\frac{f}{g} \right) (z) = \frac{A}{B}$.

在学习了复变函数的导数后, 我们也可以使用等价无穷小替换、洛必达法则等工具来计算极限.

例: 判断函数极限是否存在

例

证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.

证明

令
$$z = x + yi$$
, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \quad v(x,y) = 0.$$

当 z 在实轴原点两侧分别趋向于 0 时, $u(x,y)\to \pm 1$. 因此 $\lim_{\substack{x\to 0\\y\to 0}}u(x,y)$ 不存在, 从而

$$\lim_{z \to z_0} f(z)$$
 不存在.

函数的连续性

定义

- 如果 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.
- 如果 f(z) 在区域 D 内处处连续, 则称 f(z) 在 D 内连续.

根据前面的极限判定定理可知:

定理

函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处连续当且仅当 u(x,y) 和 v(x,y) 在 (x_0,y_0) 处连续.

例

设 $f(z) = \ln(x^2 + y^2) + i(x^2 - y^2)$. $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 - y^2$ 处处连续. 因此 f(z) 在 $z \neq 0$ 处连续.

定理

- 在 z_0 处连续的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 在 z_0 处仍然 连续.
- 如果函数 g(z) 在 z_0 处连续, 函数 f(w) 在 $g(z_0)$ 处连续, 则 f(g(z)) 在 z_0 处连续.

显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续,有理函数 $rac{P(z)}{Q(z)}$ 在 Q(z) 的零点以外处处连续.

例: 函数连续性的判定

例

证明: 如果 f(z) 在 z_0 连续, 则 $\overline{f(z)}$ 在 z_0 也连续.

证明

设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0$. 那么 u(x,y), v(x,y) 在 (x_0,y_0) 连续. 从而 -v(x,y) 也在 (x_0,y_0) 连续. 所以 $\overline{f(z)} = u(x,y) - iv(x,y)$ 在 $\underline{(x_0,y_0)}$ 连续. 另一种看法是, 函数 $g(z) = \overline{z} = x - iy$ 处处连续, 从而 $g(f(z)) = \overline{f(z)}$ 在 z_0 处连续.

可以看出, 在极限和连续性上, 复变函数和两个二元实函数没有什么差别. 那么复变函数和多变量微积分的差异究竟是什么导致的呢? 归根到底就在于 © 是一个域, 上面可以做除法.

这就导致了复变函数有<mark>导数</mark>,而不是像多变量实函数只有偏导数. 这种特性使得可导的复变函数具有整洁优美的性质, 我们将在下一章来逐步揭开它的神秘面纱.