**5** The variation with time *t* of the displacement *y* of a wave X, as it passes a point P, is shown in Fig. 5.1.



Fig. 5.1

The intensity of wave X is I.

(a) Fig. 5.1 to determine the frequency of wave X.

| fraguanav   | <i>,</i> _ | <br>$\square$   | 7  | ٦ |
|-------------|------------|-----------------|----|---|
| treauencv : | =          | <br>$\square Z$ | 12 | J |

- **(b)** A second wave Z with the same frequency as wave X also passes point P. Wave Z has intensity 2*I*. The phase difference between the two waves is 90°.
  - On Fig. 5.1, sketch the variation with time *t* of the displacement *y* of wave Z.

Show your working.

(c) A double-slit interference experiment is used to determine the wavelength of light emitted from a laser, as shown in Fig. 5.2.



Fig. 5.2 (not to scale)

The separation of the slits is  $0.45 \, \text{mm}$ . The fringes are viewed on a screen at a distance D from the double slit.

The fringe width x is measured for different distances D. The variation with D of x is shown in Fig. 5.3.



Fig. 5.3

(i) the gradient of the line in Fig. 5.3 to determine the wavelength, in nm, of the laser light.

| ncreased. State and explain the effects, if any, on the graph | The separation of the slits is of Fig. 5.3. | (ii) |
|---------------------------------------------------------------|---------------------------------------------|------|
|                                                               |                                             |      |
|                                                               |                                             |      |
| [2]                                                           |                                             |      |
| [Total: 11]                                                   |                                             |      |