Gradle - Yet another Build-Tool?!

Vortrag im Rahmen von Large-Scale Development (LSD)

Felix Hefner, Max Jando & Severin Kohler

27. Oktober 2017

Hochschule Mannheim, WS 2017

- 1. Was ist Gradle?
- 2. Colors
- 3. Blocks
- 4. Fonts
- 5. Features

Was ist Gradle?

Gradle?!

Gradle?!

Ausgabe des Befehls man gradle im Terminal:

sthlm Theme Information

sthlm continues to be a theme that can easily be modified through the style files. If you are looking for a packaged theme, then I highly recommend mTheme.

I use a custom version of **sthlm** for daily decks and make a vanilla version of the theme available for others to use and modify. - Enjoy!

sthml Build Information

sthlm theme has been designed and tested to work within the SageMathCloud (Linux) environment.

Warning of Build Issues

I cannot guarantee that the code used to create the sthlm theme is *error free*, *optimized*, *well written* nor *if it will work in your production environment*.

Have Fun!

If you have read this far, then you are probably interested in using / modifying this theme for your own project.

Everything you need is in the

- style files:
 - beamerthemesthlm.sty,
 - beamerfontthemesthlm.sty,
 - beamercolorthemesthlm.sty.

Get it on GitHub

This theme and all the documentation is hosted on GitHub

Download, Fork, Contribute

https://goo.gl/0Wg6xt

Thank You Overleaf

Special thank you to Overleaf - especially Dr. Lian Tze Lim for supporting those using the theme on Overleaf. Awesome work!

You can view and download the theme from Overleaf.

https://goo.gl/Z5zrsF

Theme Package Requirements

This theme requires that the following packages are installed:

- beamer
- backgrounds
- o booktabs
- o calc

- o datetime
- o ragged2e

There is always the option of simplifying the theme to reduce the number of required packages.

Replace the Logo With Your Own

Abbildung: SSHL Logo

Theme Options

Option	Description	
newPxFont	newpxtext and newpxtext fonts will be	
	used (pdfLaTeX)	
progressbar	Frame Title progress bar	
sectionpages	Section pages	
fullfooter	Footers with logo	
numfoooter	Footers with page number only	
greybg	Frame background default is set to grey	
cblock	Blocks with colored background	
protectFrameTitle	Protect the frame title (if needed)	
valigncolumns	Vertically align columns	

Colors

Color Style File

The sthlm theme style file beamerthemesthlm.sty references the beamercolorthemesthlm.sty file for the theme colors automatically.

If you wish to bring your own color theme, then you will have to either change the reference in the beamerthemesthlm.sty file or rename your style file to beamercolorthemesthlm.sty.

Primary Presentation Colors

Colored Text

Tabelle: Colored Text

Red		Red
Blue		Blue
Green		Green
Purple		Purple
Orange	LightOrange	Orange
Grey		DarkGrey

Green Background

Light Green Background

Great for examples

Blue Background

Light Blue Background

Great for definitions

Red Background

Light Red Background

Colored Title Block

Great for alerts

Purple Background

Light Purple Background

Great for Proofs

Simple Frames

Keeping it Simple

Plain Frame

Plain Frame

Blocks

Blocks

Block Title Here

Great for definitions

Alert Title Here

Great for definitions

Example Title Here

Great for examples

Blocks

Block Title Here

- o point 1
- o point 2

Blue Colored Blocks

Produced by using the cblock theme option

Additional Blocks

Alert Block

Highlight important information.

Red Colored Blocks

Produced by using the cblock theme option

Additional Blocks

Example Block

Examples can be good.

Green Colored Blocks

Produced by using the cblock theme option

Custom Blocks

Purple customization

Using the theme colors to generate colored blocks.

Fonts

No Special Fonts Required

This theme was originally made to work with pdflatex and the default latex fonts.

sthlm does comes with a pdflatex font option, newPxFont, which loads the following fonts:

- newpxtext for text
- cantarell for sans-serif
- inconsolata for sans-serif monospaced
- newpxmath for math

Please refer to the beamerfontthememsthlm.sty for the package requirements.

Features

Tables

Tabelle: Selection of window function and their properties

Window	First side lobe	3 dB bandwidth	Roll-off
Rectangular	13.2 dB	o.886 Hz/bin	6 dB/oct
Triangular	26.4 dB	1.276 Hz/bin	12 dB/oct
Hann	31.0 dB	1.442 Hz/bin	18 dB/oct
Hamming	41.0 dB	1.300 Hz/bin	6 dB/oct

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1x^n (1) + nx^{n-1} \Delta x^1 + \dots + 1(1) \Delta x^n - x^n}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1x^n (1) + nx^{n-1} \Delta x^1 + \dots + 1(1) \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1x^n (1) + nx^{n-1} \Delta x^1 + \dots + 1(1) \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1x^n (1) + nx^{n-1} \Delta x^1 + \dots + 1(1) \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{Ax(nx^{n-1} + \dots + \Delta x^{n-1})}{Ax}$$

$$= nx^{n-1}$$

Functions

Gaussian Probability Density Function

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2 \pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The slope of the secant line

can be found using the difference quotient

The slope of the secant line

- o can be found using the difference quotient
- \odot represents a function's average slope on the interval $[x, x + \Delta x]$

PGFPlots Example

Abbildung: Consistent improvement over the last year

Multiple Columns

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam.

- Point 1
 - Sub point a
 - Sub point b
- Point 2

References

About

This sthlm beamer theme is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

If you have any questions or comments

Website: markolson.se

Twitter: @markolsonse

⊚ Instagram: @markolson.se

THE END