Lecture A2. Probability Review

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- I. Probability
- II. Random Variables
- III. Uniform
- IV. Exponential
- V. Poisson
- VI. Some Exercises

I. Probability

Probability

I. Probability

Definition 1

Probability is a function from "Event" to real number between 0 and 1.

$$\mathbb{P}:S\to [0,1],$$

where S is the set of all possible events.

Remark 1

- For any event E, $0 \le \mathbb{P}(E) \le 1$.
- For $E = \emptyset$, $\mathbb{P}(E) = 0$.
- ullet $\mathbb{P}(S)=1$, where S is whole space, or a space for all possible events.

Remark 2

I. Probability

- $\bullet \ \mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) \mathbb{P}(E_1 \cap E_2).$
- \bullet If $E_1\cap E_2=\emptyset$, then $\mathbb{P}(E_1\cup E_2)=\mathbb{P}(E_1)+\mathbb{P}(E_2).$

Conditional Probabilities

Definition 2

I. Probability

 $\mathbb{P}(E|F)$, "probability of E given F", is the probability that event E occurs given that F has occurred. In a math notation,

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$$

• Ex) (from Ross) Suppose cards numbered one through ten are placed in a hat, mixed up, and then one of the cards is drawn. If we are told that the number on the drawn card is at least five, then what is the conditional probability that it is ten?

Independent Probability

Definition 3

If $\mathbb{P}(E) = \mathbb{P}(E|F)$, then we say the events E and F are independent events.

- That is, the occurrence of E happening has nothing to do with the occurrence of F.
- Just as Galilei once said "And yet it rotates (even though people do not believe so)". People believing whether or not the earth rotates is independent event of earth's rotation.

Properties

I. Probability

$$\bullet \ \mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) \text{, if } E_1 \cap E_2 = \emptyset.$$

 $\textbf{ 1} \text{ If } F_i \cap F_j = \emptyset \text{ for all } i \neq j \text{ and } \mathbb{P}(F_1 \cup \dots \cup F_n) = 1 \text{ where } 1 \leq i,j \leq n \text{, then } \mathbb{P}(E) = \sum_{i=1}^n \mathbb{P}(E \cap F_i)$

Bayes' rule

I. Probability 00000000

Theorem 1

Suppose $F_1, ..., F_n$ are mutually exclusive events (or, $F_i \cap F_j = \emptyset$, or, $\mathbb{P}(F_i \cap F_j) = 0$, for any $i \neq j$) and $\mathbb{P}(F_1 \cup \cdots \cup F_n) = 1$ (In other words, exactly one and only one events among $F_1, ..., F_n$ will occur.), then the following holds.

$$\begin{split} \mathbb{P}(E) &= \mathbb{P}(E \cap F_1) + \dots + \mathbb{P}(E \cap F_n) \\ &= \sum_{i=1}^n \mathbb{P}(E \cap F_i) \\ &= \sum_{i=1}^n \mathbb{P}(E|F_i) \mathbb{P}(F_i) \end{split}$$

Exercise 1

I. Probability

Show that $\mathbb{P}(A|B\cap C)\mathbb{P}(B|C) = \mathbb{P}(A\cap B|C)$.

II. Random Variables

discrete vs continuous

Discrete r.v.

Definition 4

A random variable X is called a discrete random variable if (*complete sentence*)

- Example
 - flip a coin
 - · throw a dice

Continuous r.v.

Definition 5

A random variable X is called a continuous random variable if (*complete sentence*)

- Example
 - weights and heights of a person
 - temperature of a room

pmf and pdf

pmf(probability mass function) for a discrete r.v. X

Definition 6

A pmf p(x) is a function that gives the **probability** that a discrete random variable is exactly equal to some value.

$$\mathbb{P}(X=x) = p(x)$$

- Suppose you throw a dice and *X* be a r.v. of the outcome. What is the pmf of *X*?
 - answer in a math form:
 - 2 answer in a tabular form:

pdf(probability density function) for a continuous r.v. X

Definition 7

A pdf f(x) is a function that gives the **relative likelihood** for this continuous r.v. to take on a given value.

$$\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$$

- Suppose a random variable takes a real values between 0 and 1 with equal likelihood, what is the pdf of *X*?
 - answer in a math form:
 - draw a graph:

Properties of pmf and pdf

• Mathematical property? Something that always happen.

Remark 3

The functions (pmf and pdf) are nonnegative everywhere. That is,

$$p(x) \ge 0$$
 and $f(x) \ge 0$

Remark 4

Its summation or integral over the entire area is equal to one. That is,

$$\sum p(x) = 1 \text{ and } \int f(x) dx = 1$$

• One can derive a cdf (cumulative distribution function) from a pmf or from a pdf. (See the upcoming definition of cdf.)

Expectation

- ullet For a discrete random variable X with pmf p(x)
 - $\mathbb{E}X = \sum xp(x)$
 - $\mathbb{E}[g(X)] = \sum_{i=1}^{n} g(x)p(x)$
 - Ex) $\mathbb{E}X^2 = \sum x^2 p(x)$
 - Ex) $\mathbb{E}(X^2 2X) = \sum$
- ullet For a continuous random variable X with pdf f(x)
 - $\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx$
 - $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
 - \bullet Ex) $\mathbb{E} X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx$

cdf

Definition 8

For a random variable X, the cdf(cumulative distribution function) F(x) is a function of probability that the random variable X is found at a value less than or equal to x.

$$F(x) := \mathbb{P}(X \le x)$$

• If discrete,

$$F(x) = \mathbb{P}(X \leq x) = \sum_{y = -\infty}^{x} \mathbb{P}(X = y) = \sum_{y = -\infty}^{x} p(y)$$

• If continuous,

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(y)dy$$

III. Uniform

Definition 9

A continuous random variable X is said to follow uniform distribution with parameter a and b, and write $X \sim U(a,b)$ if (reads "X follows a uniform distribution with parameter a and b.")

III. Uniform

$$\operatorname{pdf} f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{cdf} F(x) = \begin{cases} 0 & \text{if } x \leq a \\ \frac{x-a}{b-a} & \text{if } a \leq x \leq b \\ 1 & \text{if } x > b \end{cases}$$

• (The value $\frac{1}{b-a}$ is chosen as a constant so that it will make integrations over $-\infty$ to ∞ to be equal to 1.)

U(0, 1)

pdf

• cdf

Exercise 2

$$X \sim U(10,20)$$
, then what is $F(10)$? and $F(15)$?

IV. Exponential

Definition 10

A nonnegative continuous random variable X is said to follow exponential distribution with parameter λ and write $X\sim exp(\lambda)$, if

$$\operatorname{pdf} f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\operatorname{cdf} F(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

• cdf

- TFAE (The followings are equivalent If any one of them is true, the rest of them are all true. If any one of them is false, then the rest of them are all false.)

 - 2 pdf $f(x) = \lambda e^{-\lambda x}$, if $x \ge 0$; f(x) = 0, otherwise

Exercise 3

Prove that pdf \rightarrow *cdf*

More statistics (통계량) for r.v.

- Variance: $Var(X) = \mathbb{E}X^2 (\mathbb{E}X)^2$
- ullet Standard Deviation: $sd(X) = \sqrt{Var(X)}$
- Coefficient of Variation (cv): $cv(X) = \frac{sd(X)}{\mathbb{E}X}$
- (A cv measures 'relative' variation and often more meaningful.)
- Examples
 - cv of $N(10, \sqrt{10}^2)$ vs $N(10000, 10^2)$.
 - ② For an exponential r.v., $X \sim exp(\lambda)$, then $cv(X) = (next \ slide)$
 - \bullet For a normal r.v. $X \sim N(\mu, \sigma^2)$, cv(X) =
 - For deterministic variable X, $c_x =$

Properties of exponential distribution

- Statistics for a r.v. $X \sim exp(\lambda)$,
 - \bullet $EX = 1/\lambda$
 - $Var(X) = 1/\lambda^2$
 - $oldsymbol{o}$ $oldsymbol{o}$ olds
- Theorems
 - Memoryless property
 - ② Suppose $X_1 \sim exp(\lambda_1), X_2 \sim exp(\lambda_2)$, and independent, then $\mathbb{P}(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - If $X_1 \sim exp(\lambda_1)$, $X_2 \sim exp(\lambda_2)$, and independent, then $min(X_1, X_2) \sim exp(\lambda_1 + \lambda_2)$

Exercise 4

Show that
$$EX = 1/\lambda$$

Exercise 5

Show that $Var(X) = 1/\lambda^2$. (Hint: need to do EX^2 first)

Common usage of exponential distribution

- Since exponential r.v. is continuous and nonnegative, it is frequently used to describe time.
- ullet In such cases, the parameter λ can be understood as "rate" as an inverse value of the time.
- For example, $X \sim exp(\lambda)$ and $\mathbb{E}X = 1/\lambda = 5$ yrs imply $\lambda = 1/5$ per year.
- For example, consider the series of events that occur in every time interval that follows exponential distribution with mean 3 minutes. (In post office, you expect one customer arrival in 3 minutes on average and the time follows exponential distribution). We say that it follows exponential arrival times with rate 1/3 per minute

Memoryless property

Definition 11

A r.v. X is memoryless, if $\mathbb{P}(X>s+t|X>t)=\mathbb{P}(X>s)$, for $s,t\geq 0$.

Theorem 2

Exponential random variable is memoryless.

• For example, we shall assume that bus arrival time follows exp(1/5). In other words, it follows an exponential distribution and its expected arrival time is 5 minutes. You are waiting for bus, and have been waiting for 3 minutes, what is the probability that bus will not come in 5 minutes from now.

Exercise 6

Prove the previous theorem.

Theorem 3

Suppose
$$X_1 \sim exp(\lambda_1), X_2 \sim exp(\lambda_2)$$
 and they are independent, then $\mathbb{P}(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$

- Smith and Jones came to post office together and they are served by two clerks, A and B, respectively. Server A has service time following exp(1/3) and server B has service time following exp(1/5). What is the chance that Smith will be done first?
- Suppose that Smith came to post office earlier than Jones by 2 minutes, but Smith
 was still being served at the moment that Jones started to being served. Would this
 assumption change your previous answer? Why or why not?

V. Poisson

Definition 12

A discrete random variable X is said to follow Poisson distribution with parameter λ , and write $X\sim poi(\lambda)$, if its pmf is

$$\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \text{ for } k=0,1,2,\dots$$

• What is cdf of $poi(\lambda)$?

Remark 5

$$\mathbb{E} X = Var(X) = \lambda$$

For $X \sim poi(\lambda)$, prove that $\mathbb{E}X = \lambda$.

- cf) $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- pf) We have $\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$ for k=0,1,2,..., and

$$\mathbb{E}X = \sum_{x=-\infty}^{\infty} xp(x) \text{ (this is common for all discrete r.v.)}$$
=

VI. Some Exercises

Maximum and minimum

Definition 13

$$x \wedge y = min(x,y) = \begin{cases} x & \text{, if } x \leq y \\ y & \text{, otherwise} \end{cases}$$

$$x \lor y = max(x, y) = \begin{cases} x & \text{, if } x \ge y \\ y & \text{, otherwise} \end{cases}$$

$$x^+ = max(x,0)$$
 (positive part)

- Ex) $x \wedge 25 = min(x, 25)$
- Ex) $(25-x)^+ = max(25-x,0)$

For
$$X \sim U(20,40)$$
, evaluate $\mathbb{E}[X \wedge 25]$ and $\mathbb{E}[(25-X)^+]$.

For $X \sim Poi(8)$,

- $\mathbb{P}(X=0) =$
- **2** $\mathbb{P}(2 \le X \le 4) =$
- P(X > 2) =

For $X \sim exp(7)$, evaluate $\mathbb{E}[max(X,7)]$.

For $X \sim exp(8)$, find x^* such that $F(x^*) = 0.6$.

For
$$X \sim U(10, 20)$$
, find x^* such that $F(x^*) = 0.7$.

"Man can learn nothing unless he proceeds from the known to the unknown. - Claude Bernard"