Appendix to:

C.A.J. Appelo, Principles, caveats and improvements in databases for calculating hydrogeochemical reactions in saline waters from 0 - 200 °c and 1 - 1000 atm.

This appendix has figures showing experimental solubilities and PHREEQC calculations, using the Pitzer interaction coefficients given in Table 1, and the temperature dependent $\log K$'s in Table 2 of the paper. The PHREEQC input files are in the directory:

c:\phreeqc\high_P_T\appendix_AG15

The main directory contains pitzer.dat and input files that calculate the figures presented by Pabalan and Pitzer, 1987. Input files for other minerals and CO₂ gas are in sub-directories.

It is easiest to run the files with Notepad++ adapted for PHREEQC. Download from:

http://www.hydrochemistry.eu/ph3/phreeqc3.Installer.exe

and install in your computer. In Notepad++, open a file (Ctrl+O), and press Ctrl+F6 to start the PHREEQC calculations.

Table 3. List of figures with mineral solubilities as a function of *T*, *P* and solution composition.

Mineral solubility in water or aqueous solution	Temp °C	Pressure / atm	Figure
halite (NaCl)	0 - 300	$1 - P_{sat}$	A1
sylvite (KCl)	10 - 300	$1 - P_{sat}$	A2
bischofite (MgCl ₂ :6H ₂ O), MgCl ₂ :2H ₂ O, MgCl ₂ :4H ₂ O	0 - 200	$1 - P_{sat}$	A3
mirabilite (Na ₂ SO ₄ :10H ₂ O), thenardite (Na ₂ SO ₄)	0 - 220	$1 - P_{sat}$	A4
arcanite (K ₂ SO ₄)	0 - 210	$1 - P_{sat}$	A5
epsomite (MgSO ₄ :7H ₂ O), hexahydrite (MgSO ₄ :6H ₂ O), kieserite (MgSO ₄ :H ₂ O)	0 - 200	$1 - P_{sat}$	A6
halite (NaCl), sylvite (KCl) in Na/K-Cl solutions	0 - 200	$1 - P_{sat}$	A7
carnallite (KMgCl ₃ :H ₂ O) in K/Mg-Cl solutions	0 - 75	1	A8
gypsum (CaSO ₄ :2H ₂ O)	0 - 95	1	A9
gypsum (CaSO ₄ :2H ₂ O) in NaCl solutions	0.5 - 95	1	A10
gypsum (CaSO ₄ :2H ₂ O), mirabilite (Na ₂ SO ₄ :10H ₂ O), glauberite (Na ₂ Ca(SO ₄) ₂) and thenardite (Na ₂ SO ₄) in Na ₂ SO ₄ solutions	25 - 100	1	A11
gypsum (CaSO ₄ :2H ₂ O) and anhydrite (CaSO ₄)	30 - 160	1 - 1000	A12
anhydrite (CaSO ₄) in NaCl solutions	100 - 200	$1 - P_{sat}$	A13
anhydrite (CaSO ₄) in NaCl solutions	100 - 200	1 - 987	A14
anhydrite (CaSO ₄) and glauberite (Na ₂ Ca(SO ₄) ₂) in Na ₂ SO ₄ solutions	100 - 200	$1 - P_{sat}$	A15
anhydrite (CaSO ₄), Goergeyite (K ₂ Ca ₅ (SO ₄) ₆ H ₂ O) and syngenite (K ₂ Ca(SO ₄) ₂ :H ₂ O) in K ₂ SO ₄ solutions	100 - 200	$1 - P_{sat}$	A16
amorphous silica (SiO ₂ (a)) in NaCl solutions	25 - 300	$1 - P_{sat}$	A17
amorphous silica (SiO ₂ (a)) in Na ₂ SO ₄ solutions	25 - 300	$1 - P_{sat}$	A18
amorphous silica (SiO ₂ (a)) in MgCl ₂ solutions	25 - 300	$1 - P_{sat}$	A19
amorphous silica (SiO ₂ (a)) in MgSO ₄ solutions	25 - 250	$1 - P_{sat}$	A20
amorphous silica (SiO ₂ (a)) in Li-Cl/NO ₃ solutions	25	1	A21

amorphous silica (SiO ₂ (a)) in K-Cl/NO ₃ solutions	25	1	A22
amorphous silica (SiO ₂ (a)) in CaCl ₂ solutions	25	1	A23
barite (BaSO ₄) in NaCl solutions	1 - 250	$1 - P_{sat}$	A24
barite (BaSO ₄) in NaCl solutions	150 - 250	493	A25
calcite (CaCO ₃) in NaCl solutions	10 - 60	1	A26
calcite (CaCO ₃) in 3 M NaCl, variable CO ₂	200	580	A27
calcite (CaCO ₃) in NaCl solutions	120 - 260	12	A28
calcite (CaCO ₃) at 1 bar CO ₂ pressure	0 - 300	$1 - (P_{sat} + 1)$	A29
calcite (CaCO ₃) in NaCl solutions at 1 bar CO ₂ pressure	0 - 250	1 - 1450	A30
CO ₂ gas	25 - 100	1 - 710	A31
CO ₂ gas in 1 and 6 M NaCl solution	25 - 300	35 - 200	A32
CO ₂ gas in 4 M NaCl solution	80 - 180	9 - 95	A33
CO ₂ gas in Na ₂ SO ₄ solutions	140	12 - 96	A34
CO ₂ gas in 2.3 M CaCl ₂ solution	75 - 120	22 - 655	A35
CO ₂ fugacity coefficients	0 - 300	99 - 987	A36

Figure A1. Halite (NaCl) solubility as a function of temperature. Data points from Pabalan and Pitzer, 1987; Clarke and Glew, 1985. File Halite.phr

Figure A2. Sylvite (KCl) solubility as a function of temperature. Data points from Pabalan and Pitzer, 1987. File Sylvite.phr

Figure A3. Solubility of $MgCl_2$ -hydrates. Data points from Pabalan and Pitzer, 1987. File $MgCl_2$ -phr

Figure A4. Solubility of Na_2SO_4 -(an)hydrate. Data points from Pabalan and Pitzer, 1987. File Na2SO4-phr

Figure A5. Solubility of arcanite (K_2SO_4) . Data points from Pabalan and Pitzer, 1987. File K2SO4.phr

Figure A6. Solubility of $MgSO_4$ -hydrates. Data points from Pabalan and Pitzer, 1987. File $MgSO_4$ -phr

Figure A7. Mutual influence of NaCl and KCl solutions on halite and sylvite solubilities, with triple points $KCl + NaCl + H_2O$ from Pabalan and Pitzer, 1987. File NaKCl.phr

Figure A8. Solubility of carnallite (KMgCl $_3$:H $_2$ O). Data points from Pabalan and Pitzer, 1987. File Carnallite.phr

Figure A9. Solubility of gypsum ($CaSO_4:2H_2O$). Data points from Marshall and Slusher, 1966; Blount and Dickson, 1969. File gypsum.phr

Figure A10. Solubility of gypsum ($CaSO_4:2H_2O$) in NaCl solutions. Data points from Marshall and Slusher, 1966. File gyps_NaCl.phr

Figure A11. Solubility of gypsum (CaSO₄•2H₂O) in Na₂SO₄ solutions. Data points from Block and Waters, 1968. File gyps_Na2SO4.phr. The concentration decrease of CaSO₄ at Na₂SO₄ concentrations above 1 M is due to mirabilite precipitation (25°C), or glauberite and thenardite precipitation at higher temperatures. At 85 and 100°C, and possibly at 70°C, gypsum transforms into anhydrite.

Figure A12. Solubility of gypsum (CaSO₄•2H₂O) and anhydrite (CaSO₄) as a function of temperature and pressure. Data points from Blount and Dickson, 1973. File gypsum_P.phr.

Figure A13. Solubility of anhydrite (CaSO₄) in NaCl solutions. Data points from Block and Waters, 1968; Blount and Dickson, 1969; Freyer and Voigt, 2004. File anhy_NaCl.phr.

Figure A14. Solubility of anhydrite (CaSO₄) in NaCl solutions as a function of pressure at 100°C and 200°C. Data points from the summary table in Blount and Dickson, 1969. File anhy_P_NaCl.phr.

Figure A15. Solubility of anhydrite (CaSO₄) in Na₂SO₄ solutions. Data points from Freyer and Voigt, 2004. The decrease of the CaSO₄ concentration at Na₂SO₄ concentrations above 1 M is due to glauberite precipitation. File anhy_Na₂SO₄.phr.

Figure A16. Solubility of anhydrite (CaSO₄) in K_2SO_4 solutions. Data points from Freyer and Voigt, 2004. The breaks in the concentration lines result from precipitation of Goergeyite ($K_2Ca_5(SO_4)_6H_2O$) and, at 100 and 150°C, Syngenite ($K_2Ca(SO4)_2:H_2O$). File anhy_K2SO4.phr.

Figure A17. Solubility of amorphous silica $(SiO_2(a))$ in NaCl solutions. Data points from Marshall and Warakomski, 1980, and Chen and Marshall, 1982. File SiO2_NaCl.phr.

Figure A18. Solubility of amorphous silica (SiO₂(a)) in Na₂SO₄ solutions. Data points from Marshall and Warakomski, 1980, and Chen and Marshall, 1982. File SiO2_Na₂SO₄.phr.

Figure A19. Solubility of amorphous silica (SiO₂(a)) in MgCl₂ solutions. Data points from Marshall and Warakomski, 1980, and Chen and Marshall, 1982. File SiO2_MgCl2.phr.

Figure A20. Solubility of amorphous silica (SiO₂(a)) in MgSO₄ solutions. Data points from Marshall and Warakomski, 1980, and Chen and Marshall, 1982. File SiO2_MgSO4.phr.

Figure A21. Solubility of amorphous silica (SiO₂(a)) in LiCl and LiNO₃ solutions at 25°C. Data points from Marshall and Warakomski, 1980. File SiO2_Li.phr.

Figure A22. Solubility of amorphous silica (SiO₂(a)) in KCl and KNO₃ solutions at 25°C. Data points from Marshall and Warakomski, 1980. File SiO2_K.phr.

Figure A23. Solubility of amorphous silica (SiO₂(a)) in CaCl₂ solutions at 25°C. Data points from Marshall and Warakomski, 1980. File SiO2_CaCl2.phr.

Figure A24. Solubility of barite (BaSO₄) in NaCl solutions. Data points $< 95^{\circ}$ C from Templeton, 1960, $> 100^{\circ}$ C from Uchameyshvili et al., 1966, and the summary table in Blount, 1977. File Barite_NaCl.phr.

Figure A25. Solubility of barite (BaSO₄) in NaCl solutions at 500 bar. Measured (large symbols) and interpolated (small symbols) data from Blount, 1977. File Barite_500.phr.

Figure A26. Solubility of calcite ($CaCO_3$) in NaCl solutions at about 0.01 atm CO_2 pressure. Measured data from Wolf et al., 1989. File $cc_Wolf.phr$.

Figure A27. Solubility of calcite (CaCO₃) at 200 °C, 580 atm pressure in 3 M NaCl as a function of the CO₂ concentration. Measured data from Malinin and Kanukov, 1971. File cc_Malin.phr.

Figure A28. Solubility of calcite (CaCO₃) in NaCl solutions at 12 bar CO₂ pressure. Measured data from Ellis, 1963. File cc_Ellis.phr.

Figure A29. Solubility of calcite ($CaCO_3$) as a function of temperature at 1 bar CO_2 pressure. Measured data from Miller, 1952; Ellis, 1959; Plummer and Busenberg, 1982. File cc_1barCO_2 .phr.

Figure A30. Solubility of calcite (CaCO₃) in 0.1 M NaCl as a function of temperature and pressure at 1 bar CO₂ pressure. Measured data from Shi et al., 2013. File cc_Shi.phr. Solubilities at 4 M NaCl and in a brine are also calculated when the file is run.

Figure A31. Solubility of CO₂ gas in water. Measured data from Wiebe and Gaddy, 1939, 1940; King et al., 1992; Takenouchi and Kennedy, 1964. File CO2_conc_PR_IS.phr.

Figure A32. Solubility of CO₂ gas in 1 and 6 M NaCl solutions at about 40 atm CO₂. Measured data from Drummond, 1981. File Drummond.phr.

Figure A33. Solubility of CO_2 gas in 4 M NaCl solution. Measured data from Rumpf et al. 1994. File $CO_2_4M_NaCl.phr$.

Figure A34. Solubility of CO_2 gas in Na_2SO_4 solutions at 140°C. Measured data from Rumpf and Maurer, 1993. File P_CO2_Na2SO4.phr.

Figure A35. Solubility of CO_2 gas in 2.3 M $CaCl_2$ solution. Data from Springer et al., 2012. File CO_2 CaCl2.phr.

Figure A36. CO₂ fugacity coefficient as a function of temperature for CO₂ gas pressures from 100 - 1000 bar. Data from Angus et al., 1976. File phi_Angus_bar.phr.