

Session - 2 Content

Bu derste ne öğreneceğiz?

Graphical Represent

- Patterns
- Frequency Table
- Bar Chart
- Pie Chart
- Histogram

Önceki dersten hatırladıklarınızdan bir cümle yazar mısınız?

Data Visualization - Graphical Represent

- Graphical Representation of Data
 - Center
 - Spread
 - Shape
 - Unusual Features

Data Patterns

- Data Patterns
 - Center
 - Spread
 - Shape
 - Symmetric
 - Number of peaks
 - Skewness
 - Uniform
 - Unusual Features
 - Gaps
 - Outliers

- Dağılımın merkezi, grafiksel olarak dağılımın medyanında olur
- Gözlemlerin yarısı her iki taraftadır
- Sütunun yüksekliği, gözlemlerin sıklığını gösterir.

Graphical Representation of Data

Spread

- Verilerin varyasyonu
- Gözlem kümesi geniş bir aralığa yayılıyorsa
- Gözlemler daha dar bir aralıkta tek bir değer etrafında ortalanırsa......

Normally Distribution Videos

O https://www.youtube.c
om/watch?v=Bampgm
OHKDU

O https://www.youtube.c
om/watch?v=4HpvBZn
HOVI

O https://www.youtube.c
om/watch?v=Ph2Dmw
ZMhGo

Normal distribution is everywhere...

Graphical Representation of Date

Shape

Bir dağılımın şekli aşağıdaki özellikler kullanılarak tanımlanabilir.

- Symmetric
- Number of Peaks
- Skewness
- Uniform

Probability distributions

Figure 6A.15: Distributional Choices

Graphical Representation of Data

Unusual Features

Veri modellerinin ortak olağandışı özellikleri, boşluklar ve aykırı değerlerdir

- Gaps
- Outliers

Data Patterns

Descriptive istatistikte kullanılan yöntemler:

- Frekans Tabloları
- Şekiller ve Grafikler
- Histogram ve Frekans Poligonları
- Sütun ve Pasta Grafikleri

Developer Type	Frequency	Relative Frequency
Front-end Developer	25	0.25
Backend Developer	15	0.15
Full-stack Developer	20	0.20
Data Scientist	40	0.40

	Sınıflar	Frekans, f	
	1-4	4	
Üst Sınıf	5-8	5 👡	
Limiti	9 → 12	3 ←	Sıklıklar
	13 → 16	4 -	
	17 – 20	2	

Frequency

 Bir veri değerinin meydana gelme sayısı

DATA VALUE	FREQUENCY
3	5
4	3
5	6
6	2
7	1

Relative Frequency

 bir şeyin ne sıklıkla gerçekleştiğinin tüm sonuçlara bölünmesi

DATA VALUE	FREQUENCY	RELATIVE FREQUENCY
2	3	$\frac{3}{20}$ or 0.15
3	5	5/20 or 0.25
4	3	$\frac{3}{20}$ or 0.15
5	6	$\frac{6}{20}$ or 0.30
6	2	$\frac{2}{20}$ or 0.10
7	1	$\frac{1}{20}$ or 0.05

Cumulative Frequency

 Önceki relative frekansların birikimi

DATA VALUE	FREQUENCY	RELATIVE FREQUENCY	CUMULATIVE RELATIVE FREQUENCY
2	3	$\frac{3}{20}$ or 0.15	0.15
3	5	5 or 0.25	0.15 + 0.25 = 0.40
4	3	$\frac{3}{20}$ or 0.15	0.40 + 0.15 = 0.55
5	6	6/20 or 0.30	0.55 + 0.30 = 0.85
6	2	$\frac{2}{20}$ or 0.10	0.85 + 0.10 = 0.95
7	1	$\frac{1}{20}$ or 0.05	0.95 + 0.05 = 1.00

QUESTION

En fazla 12 yıla kadar (at most) yaşayanların oranı nedir?

Data	Frequency	Relative Frequency	Cumulative Relative Frequency
0	2	2 19	0.1053
2	3	3 19	0.2632
4	1	1/19	0.3158
5	3	3 19	0.4737
7	2	2 19	0.5789
10	2	2 19	0.6842
12	2	2 19	0.7895
15	1	1/19	0.8421
20	1	1/19	1.0000

Graphs and Charts

Why Charts?

- Anlaşılabilirlik artırılır.
- Dikkat çekilecek hususlar belirtilir.
- Dağılımın biçimi hakkında bilgi sağlanır.
- Tahmin kolaylaşır

Pi

Pie Charts

- Genelde nominal ve ordinal değişkenlerle kullanılır
- Daire toplamda %100 ü tamamlayacak şekilde pasta dilimleri şeklinde kesilerek gösterilir
- Her dilim değişkenin niteliğini sunmuş olur

Pie Chart Examples

1	Expenses	Amount
2	Rent	7000
3	Grocery	3000
4	Transport	800
5	Current	300
6	School fee	2000
7	Savings	1900
8		
9		
10		
11		
12		
13		

Pie Chart

Örnek

Dilim yüzdesi hesaplama

Activity	No. of Hours	Measure of central angle
School	6	$(^{6}/_{24} \times 360)^{\circ} = 90^{\circ}$
Sleep	8	(8/ ₂₄ × 360)° = 120°
Playing	2	$(^2/_{24} \times 360)^\circ = 30^\circ$
Study	4	$(^4/_{24} \times 360)^\circ = 60^\circ$
T. V.	1	$(^{1}/_{24} \times 360)^{\circ} = 15^{\circ}$
Others	3	$(^{3}/_{24} \times 360)^{\circ} = 45^{\circ}$

Histogram

- Interval / Ratio değişkenlerle kullanılır
- Bir değişken için herbir niteliğin frekansını temsil eder
- Datanızın dağılımına iyi bir kuşbakışı bakma imkanı verir

Histogram

 Örnek bir Histogram çizim aşamaları

Interval's Lower Limit	Interval's Upper Limit	Class Frequency
32	38.4	1
38.4	44.8	4
44.8	51.2	19
51.2	57.6	22
57.6	64	49
64	70.4	50
70.4	76.8	38
76.8	83.2	48
83.2	89.6	13
89.6	96	6

Bar Chart vs. Histogram

B

Bar Chart

- Kategoriler vardır
- ayrık değişkenlerin şematik bir karşılaştırması
- Kategorik veriler sunar
- Barlar arası boşlukludur

Histogram

- Grafik gösterime atıfta bulunur
- sürekli değişkenlerin frekans dağılımı
- Sayısal veriler sunar
- Barlar arası boşluk olmaz

Populations & Samples

Populations & Samples

 İstatistiki bir çalışma tamamen veri kümesi veya çözüm uzayının incelenmesine dayanır.

!! Sample'ları gözlemliyoruz ama popülasyonlarla ilgileniyoruz

Parameters & Statistics

Population Attributes

Parameters

Sample Attributes

Statistics

Bir parametre, popülasyonun sayısal bir özetidir ve bir istatistik, örneklemin sayısal bir özetidir.

EXERCISE 1. At what level are each of the following variables operationalized?

	Variable Name	Value Labels	Data Type
1	Age	1, 2, 3,	Continuous
2	Sex	male, female, other	
3	Class standing	freshman, sophomore, junior, senior	
4	Marital Status	married, single, divorced, widowed	
5	Median Household Income	annual household income in dollars	
6	How much you like the food on campus?	a lot, some, a little, other	
7	The number of toxic waste sites in your community	0, 1, 2, 3,	
8	The number of toxic waste sites in your community	0, 1–5, 6–10, 11+	
9	Your GPA	below average, average, above average	

EXERCISE 2. The number of passengers of an airline company by years is given in the table below. Create a bar chart based on these data.

The number of passengers per year

Years	2010	2012	2013	2014	2015	2016	2017	2018	2019
Number of passengers (x1000)	5	7	13	10	20	22	17	16.5	27

EXERCISE 3. Create a frequency histogram from the data in the table below. What you can conclude about the shape of the distribution?

Income (In thousands of dollars)	Number of families
16-22	2
23-29	3
30-36	5
37-43	8
44-50	8
51-57	10

Central Tendency (Measure of Centre)

Merkezi Eğilim ve Dağılım Ölçüleri

Content

Central Tendency (Measure of Centre

Merkezi Eğilim Ölçüleri

- Mean
- Median
- Mode

Dispersion (Measure of Spread)

Dağılım Ölçüleri

- Range
- IQR
- Standart Deviation
- Variation

Central Tendency

Merkezi Eğilim

Tek değerle verileri en iyi tanımlama

- Ortalama
- Medyan (Ortanca)
- Mode (Tepe Değeri)

- Dataların toplamını, toplam gözlem sayısına bölmek
- Dağılımın yerinin belirlenmesinde kullanılır

Staff	Salary (thousand \$)
1	102
2	33
3	26
4	27
5	30
6	25
7	33
8	33
9	24

Population Mean	Sample Mean
$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$
N = number of items in	n = number of items in
the population	the sample

Mean Example

Örnek-1

Örnek:

Aşağıdakiler küçük bir şirketin yedi çalışanının yaşlarıdır:

Kitle ortalamasını hesaplayın.

$$\mu = \frac{\sum x}{N} = \frac{343}{7}$$
 Yaşları yoplayın ve 7'ye bölün.
$$= 49 \text{ years}$$

Çalışanların yaş ortalaması 49'dur.

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

$$\bar{x} = \frac{10 \times 3 + 12 \times 5 + 15 \times 2 + 17 \times 6 + 20 \times 1 + 24 \times 4}{3 + 5 + 2 + 6 + 1 + 4}$$

$$\bar{x} = \frac{338}{21}$$

$$\bar{x} = 16.095$$

x	frequency
10	3
12	5
15	2
17	6
20	1
24	4

Median

- küçükten büyüğe sıralanmış bir veri kümesinin orta puanıdır
- Data sayısı tek ise median 1 değerdir ama çift sayı ise medianı bulurken ortadaki 2 değerin ortalaması alınır
- Medyan, orta puandır.
 Örneklem büyüklüğü 9 ise, beşinci eleman medyandır.

Staff	Salary (thousand \$)
1	24
2	25
3	26
4	27
5	30
6	33
7	33
8	33
9	102

iyidir.

- büyük data setlerinde outlier yoksa mean daha iyidir.
- Salary teklifinde median daha iyi olabilir

111

Median

Mean

Mode

- Mode tepe değeri diye adlandırlır
- Mode: Data setinde nn fazla karşılaşılan, en popüler değer
- hem numeric hem kategorik değişkenler için kullanılabiliyor
- Avantaj- Dezavantajları

Mode Example

• Örnek-1

Örnek:

Yedi çalışanın yaş grubunu bulun..

61 57

57

44 Mod 57, çünkü diğer veriler bir kez varken 57 iki kez

Ortalama-Mod-Medyan Karşılaştırılması

tekrarlanıyor.

29 yaşında bir çalışan şirkete katılıyor ve çalışanların yaşları şimdi:

32

61

57 39 44

29

57

Ortalama, medyan ve modu yeniden hesaplayın. Bu yeni yaş eklendiğinde hangi merkezî eğilim ölçüsü etkilendi?

Mean = 46.5

Ortalama her değeri hesaba katar, ancak aykırı değerden etkilenir.

Median = 48.5

Ortanca ve mod uç değerlerden etkilenmez.

Mode = 57

• Örnek-2

Örnek 4:

Aşağıdaki verilerin modunu ve medyanını belirleyiniz.

120 100 160

130 100 130

100

90

Çözüm 3:

Verileri küçükten büyüğe sıralayalım.

1.değer	2.değer	3.değer	4.değer	5.değer	6.değer	7.değer	8.değer	9.değer	10.değer
86	90	94	100	100	100	120	130	130	160

Veri grubunda en çok tekrarlanan değer 100 olduğu için Mod=100

Veri sayısı n=10 → çift

$$\frac{n}{2} = \frac{10}{2} = 5. \text{deger} \rightarrow 100$$

 $\frac{n}{2} + 1 = \frac{10}{2} + 1 = 6. \text{deger} \rightarrow 100$

$$\Rightarrow M edyan = \frac{100 + 100}{2} = 100$$

Statistic with Python

Input

import numpy as np from scipy import stats

salary = [102, 33, 26, 27, 30, 25, 33, 33, 24]

mean_salary = np.mean(salary) print("mean:", mean_salary)

median_salary = np.median(salary) print("median:", median_salary)

mode_salary = stats.mode(salary) print("mode:", mode_salary)

mean: 37.0 median: 30.0

mode: ModeResult(mode=array([33]), count=array([3]))

Output

Calculate Mean, Median and Mode with Python

YouTube Öneri Video

Mode, Median, Mean, Range, and Standard Deviation

https://www.youtube.com/watc h?v=mk8tOD0t8M0

Dispertion (Measure of Spread)

Dağılım Ölçüleri

- merkezi eğilim) ölçüleri tek başına dağılımı karakterize etmez
- İki veri grubu ortalamasının eşit olması dağılımlarının aynı olmasını gerektirmez
- bir dağılım, merkezi eğilimin yaptığından daha fazlasını açıklar

Range

Aralık-Açıklık - Değişim Genişliği

- Bir veri kümesinin aralığı, kümedeki maksimum ve minimum veri girişleri arasındaki farktır
- Değişkenliğin en basit ölçüsüdür.

Range = Largest - Smallest = 9 - 2 = 7

Inter Quartile Range (IQR)

IQR

- bir sayı grubunu dörde bölen değerlerdir
- Q2 tüm datasetinin median'ıdır
- Q1, medianın altında kalan kısmın medianı'dır
- Q3, medianın üstünde kalan kısmın medianı'dır.

IQR = Q3 - Q1

IQR Example - 2

QUESTION

What is the

- mean
- Q1
- Q3
- Median
- IQR

27 28 30 32 34 38 41 42 43 44 46 53 56 62

IQR

Outlier Nasıl bulunur

- Outlier, Q1'in altında veya Q3'ün üzerinde 1.5 IQR' den fazla olan veri noktalarıdır
- list = [1, 5, 8,10, 12,15, 40]
- Q1 (1.5 * IQR) = 5-15 = -10
- Q3 + (1.5 * IQR) = 15+15 = 30

Boxplot aka Box and Whiskers Plot

Variance (Population)

Varyans

- Varyans, ortalamadan farkların karelerinin ortalaması olarak tanımlanır
- Her bir skorun mean'den uzaklaştığı miktardır.

Variance Example

Alttaki 4 değer için Varyans

0 1 5 6

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

 $\begin{array}{ll} \text{O} & \textbf{1} & \textbf{5} & \textbf{6} \\ \\ \text{Mean:} & \mu = \frac{\sum X}{N} = \frac{0+1+5+6}{4} = \frac{12}{4} = 3 \\ \\ \text{Dev Sum of Squares:} & SS = \sum (X-\mu)^2 \\ & SS = (0-3)^2 + (1-3)^2 + (5-3)^2 + (6-3)^2 \\ & SS = 9+4+4+9 = 26 \\ \\ \text{Variance:} & \sigma^2 = \frac{\sum (X-\mu)^2}{N} \\ & \sigma^2 = \frac{26}{4} = 6.5 \end{array}$

• Örnek-2

10 12 17 20 25 27 42 45

 Hem sample hem de popülasyon için bulalım.

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

Standard Deviation

Standart Sapma

- Varyansın kareköküdür.
- Veriler ne kadar çok yayılırsa, standart sapma o kadar büyük olur.

<u>Sample</u>

Population

$$S = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

standard deviation
$$\sigma = \sqrt{\frac{\sum (x-\mu)^2}{N}}$$
 number of elements

Std. Dev. Example

Staff	Salary (thousand \$)
1	24
2	25
3	26
4	27
5	30
6	33
7	33
8	33
9	102

$$\begin{split} \mu &= \frac{24+25+26+27+30+33+33+33+102}{9} \\ \mu &= \frac{333}{9} = 37 \\ \sigma &= \sqrt{\frac{\sum (x-\mu)^2}{N}} \\ \sigma &= \sqrt{\frac{(24-37)^2+(25-37)^2+(26-37)^2+(27-37)^2+(30-37)^2+(33-37)^2+(33-37)^2}{9}} \\ \sigma &= \sqrt{\frac{(24-37)^2+(25-37)^2+(26-37)^2+(27-37)^2+(30-37)^2+(33-37)^2+(33-37)^2}{9}} \\ \sigma &= \sqrt{\frac{(-13)^2+(-12)^2+(-11)^2+(-10)^2+(-7)^2+(-4)^2+(-4)^2+(-4)^2+(65)^2}{9}} \\ \sigma &= \sqrt{\frac{169+144+121+100+49+16+16+16+4225}{9}} \\ \sigma &= \sqrt{\frac{4856}{9}} \\ \sigma &= \sqrt{5}39,55 \\ \sigma &= 23,22833518 \end{split}$$

Std. Dev. Example - 2

Men: 0 0 0 2 4 4 4 Women: 0 2 2 2 2 2 4

- Bir aile için ideal çocuk saysını cevaplayanlardan oluşan yukardaki 2 grup dağılım için (7 şer kişi),
- Varyansı nedir

Men:
$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2.0.$$
Women: $s = 1.2$

Std. Dev with python

input:

import numpy as np

salary = [102, 33, 26, 27, 30, 25, 33, 33, 24]

print("Range: ", (np.max(salary)-np.min(salary)))

print("Variance: ", (np.var(salary)))

print("Std: ", (np.std(salary)))

output:

Range: 78

Variance: 539.555555555555

Std: 23.22833518691246

Empirical Rule

3 Sigma Kuralı

- Three Sigma Rule veya 68-95-99.7 kuralı diye de bilinir.
- Ampirik Kural:
- 1. % 68'de kural,
- = (Ortalama standart sapma) ve (Ortalama
- + standart sapma)
- 2. % 95'de kural,
- = (Ortalama 2 × standart sapma) and (Ortalama + 2 × standart sapma)
- 3. % 97.7'de kural,
- = (Ortalama 3 × standart sapma) and (Ortalama + 3 × standart sapma)

Empirical Rule

Statistics Practice-1

Python Notebook zamanı