-Exercices

Corr. exo. 1.

a)
$$I \cap J = [-3; 4] \cap [-2; 0] = [-2; 0]$$

b)
$$I \cup K = [-3; 4[\cup]-5; 3] =]-5; 4[$$

c)
$$I \cap K = [-3; 4[\cap] -5; 3] = [-3; 3]$$

d)
$$I \setminus K = [-3; 4[\setminus] -5; 3] =]3; 4[$$

e)
$$K \setminus I =]-5; 3] \setminus [-3; 4[=]-5; -3[$$

Corr. exo. 2.

a)
$$[-3; 2]$$

b)
$$[3; +\infty[$$

c)
$$]-\infty;-1[$$

d)
$$]-2;4]$$

e)
$$]-\frac{3}{2};-\frac{1}{2}]$$

f)
$$]-\infty;1+\sqrt{2}]$$

g)
$$]-\infty;+\infty$$

g)
$$]-\infty; +\infty[$$
 h) $]-\infty; -2[\cup [4; +\infty[$

Corr. exo. 3. Il y a plusieurs réponses correctes.

a)
$$A = \{1, 2\}$$
 et $B = \{0, 3, 4\}$

b)
$$A = \{0, 1, 2, 3, 4\}$$
 et $B = \{2, 3, 4\}$

c)
$$A = \{0, 2, 3, 4\}$$
 et $B = \{0, 1\}$

$$\begin{array}{c|c}
A & B \\
\hline
2; 3; & 0 \\
4 & 0
\end{array}$$

d)
$$A = \{0, 2, 3\}$$
 et $B = \{1, 4\}$

Corr. exo. 4.

a) La taille des diagrammes n'est pas représentative de la « taille » des ensembles.

- b) $I \cap E = E$, car l'ensemble des triangles équilatéraux est contenu dans l'ensemble de triangles isocèles.
 - $R \cap E = \emptyset$, car il n'existe aucun triangle qui est équilatéral et rectangle (par le théorème de Pythagore, si $a \in \mathbb{R}_+^*$ est la longueur du côté du triangle, alors $a^2 + a^2 \neq a^2$).
 - $I \cap R$ est l'ensemble des triangles dont les deux cathètes mesure $a \in \mathbb{R}_+^*$ et l'hypoténuse mesure $a\sqrt{2}$ (par Pythagore).

Corr. exo. 5.

a) Vrai

- b) Faux, semi-ouvert à gauche
- c) Vrai

- d) Faux, ce n'est pas l'intervalle
- e) Vrai

f) Faux, il y appartient

- g) Faux, 0 est dans l'intersection
- h) Vrai

Vrai

Automatismes