

4차 산업혁명 신산업 기술 이해

4차 산업혁명과 드론

- 트론의 개요
- 드론의 주요 기술
- 비행 주의 사항
- ▶ 비행 원리
- 비행 방법

🗘 학습목표 🖝

- ▶ 드론의 개요를 이해하고 설명할 수 있다.
- ▶ 드론에 주요 기술을 이해하고 설명할 수 있다.
- 드론 비행 시 주의 사항을 숙지하고 설명할 수 있다.
- ▶ 드론 비행 원리에 대해 이해하고 설명할 수 있다.
- ▶ 드론 비행 방법에 대해 이해할 수 있다.

🌣 드론의 개요

1. 왜 드론인가?

- IOT 융합을 통해 언제, 어디, 누구에게나 낮은 가격의 다양한 서비스를 제공할 수 있는 최적의 디바이스
 - 촬영감시, 재난과 같이 사람이 접근하기 어려운 지역이나 위치에서 일해야 할 경우
 - 공장의 통신, 무선자동화, 공장간의 통신 인프라의 무선통신 기술 적용을 위한 천문학적 위성을 사용해야 되는 경우
 - 택배, 개인 운송, 농업 등 반복적인 일을 해야 할 경우

2. 드론이란

- 사전적 의미
- 꿀벌, 개미 등 벌목과 곤충의 수컷을 칭하는 영어 단어
- '윙윙' 소리를 내는 행위
- 사람이 타지 않고 무선전파의 유도에 의해서 비행하는 비행기나 헬리콥터 모양의 비행체를 지칭하는 뜻

1) 드론의 다양한 영문 표기

- ① RPV: 지상에서 무선통신으로 원격조종으로 비행하는 무인 비행체
- ② UAV/UAS : 일정하게 정해진 공역 뿐만 아니라 민간 공역에 진입하게 됨에 따라 안전성을 확보하는 항공기임을 강조하는 용어
- ③ RPAV: 국방, 군사용 표현을 중심으로 사용되는 표현
- ④ RobotAircraft: 지상의 로봇시스템과 같은 개념에서 비행하는 로봇

🌣 드론의 개요

3. 드론의 역사

1917 최초개발 (군용무기로 제작되기 시작) 1982 군사용 드론 전쟁투입 (이스라엘) 2000 스마트폰 조종, AR 드론 2016 최초의 유인 드론 (택시 드론)

4. 드론 산업의 현황

🥸 드론의 개요

4. 드론 산업의 현황

연계 산업	부품분야	모터, 엔진, 배터리, 제어기 등 전자부품부터 역학적 설계가 가미된 프로펠러, 프레임 등 다양한 부품 소재, 가공법 발전
	소프트웨어 분야	IoT 연계된 드론존 개발, 어디서든 인터넷연결 기능, 장비와 상호작용 알고리즘, 시뮬레이션을 이용한 사전검증으로 문제 예측(AI)
	카메라분야	고해상도 다양한 시야각 렌즈 개발, 고속 비행시 흔들림 없이 보정 기능 개발
	자동항법분야	자동항법장치의 센서 기술, 3D 카메라, 충돌방 지 기술 및 고장으로 인한 문제 처리 방법 기술 필요

1) 글로벌 기업

- ① 각자 전문분야를 바탕으로 다양한 혁신 시도
- ② 군수분야: 미국 Northrop Grumman, Boeing와 이스라엘 IAI에서 정찰용, 무인스텔스 등을 개발 중
- ③ 민수 분야: 중국 DJI, 일본 YAMAHA, 미국 AMAZON에서 소형화, 농업, 택배용 등을 개발 및 보급

2) 국내 기업

- ① ㈜한국항공우주산업, 대한항공: 대형 무인기, 군수용 등을 개발
- ② ㈜유콘시스템, 성우엔지니어링: 중소형무인기로 방제, 농업, 군수물자배송용 등을 개발
- ③ LIG Next1, Microinifnity: 무인기의 부품과 SW 분야로 관련 시스템을 개발

🥸 드론의 개요

5. 드론의 종류

1) 드론의 구분

① 날개 형상에 따른 분류

고정익	■ 비행기의 동체와 같은 구조
회전익	헬기 등 프로펠러와 같은 구조보통 회전익 구조의 무인기를 드론이라고 지칭
	■ 프로펠러의 수에 따라 구분

- ② 모터의 수에 따른 분류
 - 모터가 4개인 쿼드콥터
 - 모터가 6개인 헥사콥터
 - 모터가 8개인 옥토콥터
 - 쿼드는 라틴어, 헥사, 옥타(토)는 그리스어를 사용하고 배치에 따라 I, X, V, Y로 표시
- ③ 활용용도에 따른 분류

전문촬영드론 (300만원 이상)	영상 촬영 전문가 드론
하이엔드급 드론 (100~250만원)	GPS, IMU 등 최첨단 센서 기술 탑재로 가장 많은 사람들이 선호
레이싱/FPV용 드론 (20~150만원)	속도가 매우 빠르기 때문에 상당한 연습 필요
중간급 드론 (30~70만원)	초급자 또는 숙련자보다는 중급자가 사용
토이급 드론 (2~30만원)	드론 입문자들이 보통 사용하는 드론

1. 드론의 구성

1) 통신부

- ① 조종기와 드론 본체 간 통신
- ② 조종기
- ③ RC수신기, LTE·Wi-Fi 송수신기가 대표적인 예

1. 드론의 구성

2) 제어부

- ① 드론 본체의 자세와 외부환경 감지를 위한 센서
- ② 모터 등을 제어
- ③ FC(Flight Control)이라고 하는 AVR, ARM계열의 비행 제어기가 장착
- ④ 자이로스코프, 가속도, 지자기, GPS, 고도·기압센서가 장착

1. 드론의 구성

3) 구동부

- ① 모터 등을 구동
- ② 제어부에서 오는 신호를 처리하는 모터드라이버와 모터, 프로펠러로 구성

1. 드론의 구성

4) 페이로드

- ① 임무 수행
- ② 활용 분야에 따라 카메라, 센서, 레이더, 살포기, 로봇암 등이 장착

2. 드론의 기술

1) 요소 기술

- ① 센서, 모터, 원격제어 등 드론의 성능을 최적화하기 위한 것
- ② 외부환경 감지를 위한 센서제어와 주행, 자세, 모터 효율을 위한 다양한 제어법, 조종기 제어 기술을 포함

2) 제어 기술

- ① 향로 계획이나 충돌방지을 위한 최적화
- ② 시뮬레이터를 이용하여 미리 검증하고 동작을 확인하는 기술을 포함

3) 제작 기술

- ① 비행을 위한 최소한의 장치와 구조물로 이루어 질 수 있는 경량화를 위한 것
- ② 설계, 제작, 역학 기술을 포함

4) 탑재 장비 기술

- ① 드론의 활용도를 분야에 맞게 극대화 시켜줌
- ② 촬영, 인프라, 데이터분석 보안 기술을 포함

3. 구성별 명칭 및 관련 기술

1) 드론 몸체

- ① 드론의 몸체는 가볍고 충돌이 될 경우 탄력이 있는 재질을 많이 사용
- ② 탄소섬유인 카본재질, 플라스틱, 유리섬유인 C10, 알루미늄, 제어기판 자체가 프레임일 경우 PCB(Printed Circuit Board) 형태로 많이 활용
- ③ 교육 및 취미용으로 DIY 드론이 많이 보급
- ④ 3D 프린터를 이용한 다양한 디자인의 몸체 제작

2) 배터리

- ① 드론을 구동시키는 전원 장치
- ② 리튬폴리머 배터리를 가장 많이 사용
- ③ 1개 이상의 셀로 구성되어 3.7V의 전력을 발생 ex) 셀이 3개인 배터리는 11.1V의 전력을 생산하며 3S로 표기
- ④ 배터리의 용량은 mAh 밀리암페어 단위

3. 구성별 명칭 및 관련 기술

2) 배터리

- ⑤ 전압
 - V볼트 단위
 - 물탱크에 가해지는 힘과 같음
- ⑥ 방전
 - 배터리는 일정 시간이 지나면 수명 다함
- ⑦ 방전률
 - 전류가 배터리에서 빠져 나가는 속도 (물탱크에서 물이 빠지는 호스의 너비에 해당)
 - 방전률은 C 이며 25C/35C 처럼 2개의 수치로 표시
 - 작은 수치는 지속적인 방전, 큰 수치는 몇 초 내에 이루어지는 순간적인 방전을 의미

3) 모터

- ① 브러시리스 모터(BLDC(Brushless Motor))
 - 자석이 회전하는 중에 코일이 고정되어 있는 구조
 - 신속한 속도 변화 가능
 - 온도에 민감하기 때문에 온도한계치를 넘어가면 효율성이 떨어짐
 - 비행 뿐만 아니라 효율적인 부분에서 브러시모터 보다 좋음

3. 구성별 명칭 및 관련 기술

3) 모터

종류: 인러너, 아웃러너

- ② 브러시 모터(BDC(Brush Motor))
 - 코일이 회전하는 중에 자석은 고정되어 있는 구조
 - 회전이 빨라질수록 힘이 줄어드는 단점
- ③ KV지수
 - 모터가 어떤 전압에서 얼마나 빠르게 회전 할 수 있는지 표기
 - 평균적인 드론은 600~1200KV가 사용됨
 - KV 지수가 높을 수록 곡예 주행이나 고급 조종 활용에 좋음
 - 1KV는 1V의 전압을 인가하였을 때 1000번 회전하는 것과 동일

모터 KV지수가 700RPM/V라고 한다면 그 모터는 11.1V에서 거의 7,700RPM으로 회전(700X11.1=7770)

BUT

같은 모터라도 인가해주는 전압 차이에 따른 회전력 고려 → 동일한 모터를 5.4V의 낮은 전압에서 작동하면 3,780RPM

3. 구성별 명칭 및 관련 기술

4) 변속기(ESC)

- ① 조종기의 제어 신호에 따라 모터 출력을 제어하는 장비
 - 일반적으로 변속기는 한 방향으로 모터를 제어하는데 펌웨어에 따라 정,역회전이 가능

5) 프로펠러

- ① 앞쪽에 있는 공기를 뒤쪽으로 밀어내어 밀어낸 거리 만큼 전진
 - 시계방향(CW), 반시계방향(CCW) 두 가지 중 한가지로 회전하도록 설계
 - 프로펠러 조립 시 CW인지 CCW인지를 구별하여 조립하는 것이 중요

10X4.5라고 표기되어 있는 프로펠러

10: 프로펠러가 회전할 때 그려지는 가상의 원의 지름

4.5: 비틀어진 프로펠러의 각,

한 바퀴 회전하여 앞으로 이동하는 거리

3. 구성별 명칭 및 관련 기술

6) 비행 컨트롤러

- 드론의 움직임과 자세 센서에서 감지된 정보, 조종기에서 보내는 정보를 제공 받아 모터로 보내 주는 중앙 허브 역할
 - 드론의 몸체 안에 조립
 - 내부에는 다양한 센서들이 장착되어 조종할 수 있도록 해줌

7) 센서

① 드론 비행컨트롤러에는 다양한 센서가 내장되어 있거나 연결이 되어 있음

자이로 센서	비행의 자세 수평을 잡아 줌
가속도 센서	중력가속도를 바탕으로 각도 측정
기압 센서	고도를 측정하여 유지 또는 고도 상태를 알 수 있음
자력 센서	자기장의 방향을 측정하여 나침반 역할을 하는 GPS 필수요소
광 센서/ 음파 센서	지면에 착륙하기 위한 고도 측정

3. 구성별 명칭 및 관련 기술

8) FPV

■ 조종자가 실시간으로 비행체에 장착된 카메라를 통해 수신되는 영상을 보며, 원하는 위치에서 사진이나 동영상을 촬영할 수 있는 시스템

① 카메라

- 보통 2개가 장착
- 촬영 영상의 실시간 전송을 목적으로 하는 FPV전용카메라 짐벌이나 서보에 장착되어 녹화 및 고속 링크에서의 영상 전송을 위한 해상도 카메라

② 영상 송신기

무선 영상 신호를 생성하여 안테나를 이용하여 지상으로 전송해 주는 장치

③ 영상 수신기

특수 안테나를 이용하여 무선 비디오 신호를 수신하고 모터니 또는 고글에 그 신호를 전송하기 위해 사용되는 장치

④ 아테나

- 영상을 안정적으로 수신하기 위해 필요
- 다이폴 안테나나 클로버모양, 지향성패치 안테나, 접시형, 야기 안테나

⑤ 모니터

- 일반적으로 AV모니터를 사용
- RGB 외부입력을 지원하는 TV나 네비게이션, PMP등을 사용
- 최근에는 스마트폰, 스마트패드와 같이 스마트기기와 WI-FI통신 으로 화면을 출력

3. 구성별 명칭 및 관련 기술

8) FPV

- ⑥ 고글
 - 비행에 더욱 몰입하기 위해 사용
- (7) OSD
 - 비행 정보 확인 장치
 - 배터리 전압, 비행시간, 고도, 기울기, 방위, 속도 등의 정보를 화면에 표시

9) 짐벌

- ① 카메라가 흔들리지 않도록 잡아주는 장치
- ② 비행체의 진동에 영향을 받지 않게 항상 수평 유지
 - 2축 짐벌과 3축 짐벌로 나뉨
 - 3축 짐벌이 2축 짐벌보다 안정적이기 때문에 많이 사용

🥸 비행 주의 사항

1. 드론 조종사 준수사항

1) 안전한 비행을 위한 준수사항

- ① 항상 육안으로 확인
- ② 사람 많은 곳 비행 금지
- ③ 사고 및 분실 대비 이름·연락처 기재
- ④ 야간 비행 금지
- ⑤ 음주 상태 조종 금지
- ⑥ 비행 중 낙하물 투하 금지
- ⑦ 비행 승인 필수
- ⑧ 조종법 및 매뉴얼 숙지
- ⑨ 전파 인증

2. 드론 비행 법규

■ 항공법 시행령 제14조

(신고를 필요로 하지 아니하는 초경량비행장치의 범위)

법 제23조 1항 "대통령령으로 정하는 초경량비행장치"란 다음 각 호의 어느 하나에 해당하는 것으로서 항공기대여업, 항공레저스포츠사업 또는 초경량비행장치 사용사업에 사용되지 아니하는 것으로 무인비행기 및 무인회전익 비행장치 중에서 연료의 무게를 제외한 자체 무게가 12킬로그램 이하인 것을 말하며 비행장 주변 관제권 반경 9.3Km 비행금지구역, 고도 150m 이상 비행시에는 반드시 승인을 받아야 한다.

3. 한눈에 보는 드론 구매

4. 우리 지역은 드론 비행 금지 구역?!

- 1) 드론 비행 가능 여부를 바로 확인할 수 있는 방법
 - ① 드론협회에서 제공하는 'Ready to fly' 어플을 설치하여 실행
 - 드론 비행 구역 어플: 스마트폰 > 마켓 > Ready to fly 검색
 - 지역에 대한 비행 승인 절차나 문의처가 상세히 나오기 때문에 불이익을 당하지 않을 수 있음
 - 승인 없이 비행을 하다 적발되면 촬영하지 않았어도 200만원 이하의 벌금을 처분 받게 됨
 - 사업등록 없이 이익 목적으로 비행 할 경우에는 1년 이하의 징역이나 3000만원의 벌금이 부과됨

🥸 비행 원리

1. 드론 비행 원리

2. 정지 비행

- 호버링
 - 일정 고도에서 드론이 정지한 상태
 - 호버링 하는 동안 양력과 중력, 추력 항력은 모두 평형

🌣 비행 원리

2. 비행 방향 원리

1) 상승·하강

■ 4개의 프로펠러가 고속으로 회전하면 상승을 하고 저속으로 회전하면 하강을 하게 됨

🌣 비행 원리

2. 비행 방향 원리

2) 좌우 회전

■ 1,3번 프로펠러가 고속으로 회전하고 2,4번 프로펠러가 저속이면 왼쪽으로 회전하고 2,4번 프로펠러가 고속으로 회전하고 1,3번 프로펠러가 저속이면 오른쪽으로 회전 함

🥸 비행 원리

2. 비행 방향 원리

3) 전진·후진

• 4,3번 프로펠러가 고속으로 회전하고 1,2번 프로펠러가 저속이면 전진을 하며 1,2번 프로펠러가 고속으로 회전하고 4,3번 프로펠러가 저속이면 후진 함

4) 좌우 이동

• 2,3번 프로펠러가 고속으로 회전하고 1,4번 프로펠러가 저속이면 좌로 이동을 하고 1,4번 프로펠러가 고속으로 회전하고 2,3번 프로펠러가 저속이면 우로 이동 함

🥸 비행 방법

1. 드론 조종기

1) 드론 조종기의 이용방법

- ① RC(Remote Controller)조종기를 이용한 방법
- ② 스마트폰, 패드 등 스마트기기로 조종하는 방법

2) 드론을 조종하는 방법

- ① 직접 육안으로 드론을 보는 방법
- ② 모니터를 보는 방법
- ③ 고글을 사용한 FPV 방법

2. 드론 비행

1) 움직임에 필수적인 신호

🌣 비행 방법

2. 드론 비행

2) 채널 배치에 따른 조종 모드

1. 드론의 개요

- IoT 융합 미래 인프라 구축 위한 최적의 디바이스
- 다양한 분야로의 활용가치가 높음
- 드론은 1917년 개발되어 2016년 택시 드론까지 군부전용에서 민간드론으로 보급
- 세계 드론 시장 규모는 점점 증가하고 있으며, 기간 시설 분야와 농업, 교통 등에 활용
- 드론은 활용 용도에 따라 토이급 드론, 중간급 드론, 레이싱/FPV용 드론, 하이엔드급 드론, 전문 촬영 드론으로 구분됨

2. 4차 산업혁명으로 인한 변화

- 요소기술(센서, 모터, 몸체, 제어기)
- 제어기술(프로그래밍, 조종)
- 제작기술(설계, 3D 프린팅)
- 탑제 장비 기술(촬영, 데이터자료화)

3. 비행 주의 사항

- 드론 조종사 준수사항
 - 항상 육안으로 확인, 사람 많은 곳 비행금지
 사고 및 분실 대비 이름표 기재, 야간 비행 금지, 음주 상태 조종 금지, 비행 중 낙하물 투하 금지, 비행 승인 필수, 조종법 및 매뉴얼 숙지, 전파 인증
- 고도 150m 이상, 비행장 주변 관제권 9.3Km이내, 비행금지구역 승인 필요
- Ready to fly 비행 구역 검색

4. 비행 원리

- 4개의 프로펠러 중 대각선으로 마주하는 2개씩 같은 방향으로 회전
- 프로펠러의 회전 방향과 반대로 돌아가는 힘이 동체에 작용하면 중력을 이기고 떠오름
- 회전 속도만으로 방향을 바꿔서 자유자재로 비행
- 호버링, 전후진, 좌우이동, 좌우회전, 상승하강

5. 비행 방법

- RC 조종기를 이용한 방법과 스마트폰 및 패드 등과 같은 스마트 기기로 조종하는 방법
- 채널에 따른 조종 모드 구성
 - 모드 1 왼쪽 조이스틱이 전진.후진.좌/우 회전 조종, 오른쪽 조이스틱은 상승.하강, 좌/우측 조종
 - 모드 2- 왼쪽 조이스틱이 상승. 하강. 좌/우회전 조종, 오른쪽 조이스틱은 전진. 후진, 좌/우측 조종 (최근에 출시되는 드론의 경우 모드2를 가장 많이 사용)