Ch. 2: Combinational Systems

2.1: Design Process for Combinational Systems

To design a logic circuit:

- Describe input/output relationships
- Translate these relationships into a digital logic circuit

2.2: Switching Algebra

An algebraic system to analyze and design *combinational logic circuits*. Consists of *binary variables* and a set of *logical operations*:

- Binary variables: A, B, C, w, x, y, z, etc (as in algebra), taking values 0 or 1
- Three basic logical operations: AND, OR, NOT

AND $F = x \cdot y$ (*F* is equal to *x* AND *y*) x, y are inputs; *F* is output Definition: output is 1 if and only if **both** inputs are 1.

Symbol	Truth Table	Timing Diagram
	x y	
	0 0	
	0 1	
	1 0	
	1 1	

OR F = x + y (*F* is equal to *x* OR *y*) x, *y* are inputs; *F* is output Definition: output is 1 if and only if either input is 1.

Symbol	Truth Table	Timing Diagram
	$ \begin{array}{c cc} x & y \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array} $	

Page 1 of 6

NOT F = x' (*F* is equal to *x* prime) *x* is input; *F* is output Definition: output is opposite (inverse) of input. (This takes one input only)

Symbol

Truth Table

Timing Diagram

X	
0	
1	

The AND and OR operators can be extended to more than two inputs:

- Definition of **AND**: output is 1 if and only if <u>all</u> inputs are 1.
- Definition of **OR** : output is 1 if and only if <u>any</u> input is 1.

3-input **AND**

$$F = x \cdot y \cdot z = x y z$$
(*dot* is often omitted)

4-input **OR**
$$G = A + B + C + D$$

Precedence of Operations (p. 46)

Order or operations - First: **NOT**; Second: **AND**; Last: **OR**Parentheses are used to indicate or modify order of logical operations.

 $a \cdot (b') \leftarrow$ Evaluate b' first, then **AND** the result with a

 $(x \cdot y)' \leftarrow$ Evaluate $x \cdot y$ first, then take the **NOT** of the result

 $(a \cdot b) + c \leftarrow$ Evaluate $a \cdot b$ first, then **OR** the result with $c \leftarrow$

 $a \cdot (b+c) \leftarrow$ Evaluate b+c first, then **AND** the result with a

Not the same!

 $(X \cdot Y')' + Z \leftarrow$ Evaluate Y' first, then $(X \cdot Y')$, then $(X \cdot Y')'$, finally the **OR**

Properties (Postulates or Theorems) of Switching Algebra

Summarized in textbook's inside front cover.

P1a.	a+b=b+a	P1b.	$a \cdot b = b \cdot a$	Commutative
P2a.	a + (b+c) = (a+b) + c	P2b.	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	Associative
P3a.	a + 0 = a	P3b.	$a \cdot 1 = a$	Identity
P3aa.	0 + a = a	P3bb.	$1 \cdot a = a$	
P4a.	a + 1 = 1	P4b.	$a \cdot 0 = 0$	Null
P4aa.	1 + a = 1	P4bb.	$0 \cdot a = 0$	
P5a.	a + a' = 1	P5b.	$a \cdot a' = 0$	Complement
P5aa.	a' + a = 1	P5bb.	$a' \cdot a = 0$	
P6a.	a + a = a	P6b.	$a \cdot a = a$	Idempotency
P7.	(a')' = a			Involution
P8a.	$a \cdot (b+c) = a \cdot b + a \cdot c$	P8b.	$a + b \cdot c = (a + b) \cdot (a + c)$	Distributive
P9a.	$a \cdot b + a \cdot b' = a$	P9b.	$(a+b)\cdot(a+b')=a$	Adjacency
P9aa.	a'· b ' + a '· b + a · b + a · b ' = 1	P9bb.	$(a'+b')\cdot(a'+b)\cdot(a+b)\cdot(a+b')$	0 = 0
P10a.	$a + a' \cdot b = a + b$	P10b.	$a \cdot (a' + b) = a \cdot b$	Simplification
P11a.	$(a+b)'=a'\cdot b'$	P11b.	$(a \cdot b)' = a' + b'$	DeMorgan
P11aa.	$(a+b+c\ldots)'=a'\cdot b'\cdot c'\ldots$	P11bb	$(a \cdot b \cdot c)' = a' + b' + c'$	
P12a.	$a + a \cdot b = a$	P12b.	$a \cdot (a+b) = a$	Absorption
P13a.	$a \cdot t_1 + a' \cdot t_2 + t_1 \cdot t_2 = a \cdot t_1 + a' \cdot t_2$	P13b.	$(a + t_1) \cdot (a' + t_2) \cdot (t_1 + t_2)$	Consensus
			$= (a+t_1)\cdot(a'+t_2)$	
P14a.	$a \cdot b + a' \cdot c = (a + c) \cdot (a' + b)$			

P1 thru P8, and P11 are basic properties. The rest can be derived from them.

Some points worth noting:

P6a means that xyz + xyz can be replaced with xyz. (Eliminate duplicates) It also means that xyz can be replaced with xyz + xyz. (Duplicate a term)

P8a is the distributive property over **OR** function, similar in regular algebra.

P8b means that the distributive property also applies over **AND**. (There is no analogous property in regular algebra)

Proving Basic Properties of Switching Algebra

One way: use a *truth table*. A truth table shows all possible combinations of the input variables, where each input can take on value of 0 or 1. Show if the left-hand side (LHS) is equal to the right-hand side (RHS) for every combination.

Ex. Prove $a \cdot (b + c) = a \cdot b + a \cdot c$ [**P8a**] (See book p. 48 for **P8b** proof)

a	b	С	b + c	$a \cdot (b + c)$	$a \cdot b$	$a \cdot c$	$a \cdot b + a \cdot c$

In a truth table: *n* inputs $\rightarrow 2^n$ rows

Another Example: Determine whether $(a+b)(a'+b') \stackrel{?}{=} a'b + ab'$

a	b	(a+b)	(a'+b')	LHS	a'b	a b	RHS

Determine whether $(A + B)' \stackrel{?}{=} A' + B'$ [Incorrect application of P11]

\overline{A}	В	A+B	(A+B)'	<i>A</i> '	B'	(A' + B')
0	0					
0	1					
1	0					
1	1					

Prove Property P11aa $(X + Y + Z)' \stackrel{?}{=} X' \cdot Y' \cdot Z'$ [DeMorgan's Property]

-			I		1			
X	Y	Z	X+Y+Z	(X+Y+Z)	X'	Y'	Z'	$(X' \cdot Y' \cdot Z')$
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Is the equality $((A' + B)' \cdot C')' + A) = B$ true?

\overline{A}	В	C	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Determine whether a(a + b)(a b')' = 1 is true

a	b	
0	0	
0	1	
1	0	
1	1	

Is the equality $A \cdot B + A \cdot B' + C \cdot D + C' \cdot D = A + D$ true?

				T
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	

Is the equality (a + b) (a' + c) (b + c) = (a + b) (a' + c) true?

a	b	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth table method is cumbersome when more than 4 variables are involved. As alternative, we will learn how to algebraically manipulate the Boolean expressions using the *Properties of Boolean Algebra*. (Next class)