Sharp and Simple Bounds for the Raw Moments of the Binomial and Poisson Distributions

Thomas D. Ahle thomas@ahle.dk University of Copenhagen, BARC, Facebook

7th July 2021

Abstract

We prove the inequality $\mathrm{E}[(X/\mu)^k] \leq (\frac{k/\mu}{\log(1+k/\mu)})^k \leq \exp(k^2/(2\mu))$ for sub-Poissonian random variables X, such as Binomially or Poisson distributed variables, with mean μ . The asymptotic behaviour $\mathrm{E}[(X/\mu)^k] = 1 + O(k^2/\mu)$ matches a lower bound of $1 + \Omega(k^2/\mu)$ for small k^2/μ . This improves over previous uniform raw moment bounds by a factor exponential in k.

1 Introduction

Suppose we sample an urn of n balls, each coloured red with probability p and otherwise blue. What is the probability that a sample of k balls, with replacement, $from\ this\ urn$ consists of only red balls? Such questions are of interest to sample-efficient statistics and the derandomisation of algorithms.

If $R \sim \text{Binomial}(n,p)$ denotes the number of red balls in the urn, the probability of drawing a single red ball from the urn is R/n. Thus, the probability that a sample of k balls from the urn is all red is given by $(R/n)^k$, or $P = \mathrm{E}[(R/n)^k]$ when the probability is taken over both sample phases. Whenever the urn is large (n is large), R/n concentrates around p, so sampling from the urn is equivalent to sampling from the original distribution and $P \approx p^k$. Indeed, from Jensen's inequality, we can see that p^k is always a lower bound: $P = \mathrm{E}[(R/n)^k] \geq \mathrm{E}[(R/n)]^k = p^k$. Previous authors have shown a nearly matching upper bound of $C^k p^k$ in the range k/(np) = O(1) for some constant C > 1. (See eq. (1) below for details.) In this note, we improve the upper bound to $P \leq p^k (1 + k/(2np))^k$, which shows that when $k = o(\sqrt{np})$, the factor C^k can be replaced by just 1 + o(1).

1.1 Related work

One direct approach to computing the Binomial moments expands them using the Stirling numbers of the second kind: $\mathrm{E}[X^k] = \sum_{i=0}^k {k \brace i} n^i p^i$, where $n^i = n(n-1)\cdots(n-i+1)$. This equality can be derived as a sum of the much easier to compute "factorial moments", $\mathrm{E}[X^k] = n^k p^k$. See Knoblauch (2008) for details. Taking the leading two terms of the sum, one finds that $\mathrm{E}[X^k] = (np)^k \left(1 + {k \choose 2} \frac{1-p}{np} + O(1/n^2)\right)$ as $n \to \infty$. However, this

approach does not work when k is not constant with respect to n. Similarly, for the Poisson distribution, the moments can be expressed as the so-called Bell (or Touchard) polynomials in μ : $\mathrm{E}[X^k] = \sum_{i=0}^k {k \brace i} \mu^i$. This sum gives a simple lower bound $\mathrm{E}[X^k] \geq {k \brack k} \mu^k + {k \brack k-1} \mu^{k-1} = \mu^k (1 + \frac{k(k-1)}{2\mu})$, matching our upper bound asymptotically when $k = O(\sqrt{\mu})$. However, as in the Binomial case, the sum does not easily yield a uniform bound. We give the details of both lower bounds in Section 2.1.

A different approach uses the powerful results on moments of independent random variables by Latała (1997) and Pinelis (1995). In the case of Binomial and Poisson random variables, they yield:

$$\left(c \frac{k/\mu}{\log(1 + k/\mu)}\right)^k \le \mathrm{E}[(X/\mu)^k] \le \left(C \frac{k/\mu}{\log(1 + k/\mu)}\right)^k \tag{1}$$

for some universal constants c < 1 < C. The bound is tight up to the factor $(C/c)^k$, which is negligible when the overall growth is $O(k^k)$. However, when $k/\mu \to 0$, we expect the upper bound to be 1, and so the factor C^k in the upper bound can be overwhelmingly large.

A third option is to use a Rosenthal bound, such as the following by Berend and Tassa (2010), (see also Johnson et al., 1985):

$$E[X^k] \le B_k \max\{\mu, \mu^k\}. \tag{2}$$

Here, B_k is the kth Bell number, which Berend and Tassa show satisfies the uniform bound $B_k < \left(\frac{0.792k}{\log(k+1)}\right)^k$. For large k, a precise asymptotic bound, $B_k^{1/k} = \frac{k}{e\log k}(1+o(1))$, is given by (e.g. de Bruijn, 1981; Ibragimov and Sharakhmetov, 1998). Unfortunately, the Rosenthal bound is incomparable to the other bounds in this paper when $\mu < 1$, as it grows with μ rather than μ^k . However, for $\mu \geq 1$ and integral, we show a matching asymptotic lower bound in the second half of Section 2.1. That indicates that the upper bound of this paper could be improved by a factor e^{-k} for large k.

Finally, Ostrovsky and Sirota (2017) give another asymptotically sharp bound in a recent preprint. Using a technique based on moment generating functions, similar to this paper, they bound the Bell polynomial, which as discussed above is equivalent to bounding the moments of a Poisson random variable. The bound holds when $k \geq 2\mu$:

$$E[(X/\mu)^k]^{1/k} \le \frac{k/\mu}{e \log(k/\mu)} \left(1 + C(\mu) \frac{\log \log(k/\mu)}{\log(k/\mu)} \right) \quad \text{if } k \ge 2\mu,$$
 (3)

where $C(\mu) > 0$ is some "constant" depending only on μ . In the range $k < 2\mu$, Ostrovsky and Sirota only gives the bound $\mathrm{E}[(X/\mu)^k] \leq 8.9758^k$, so similarly to the other bounds presented, it loses an exponential factor in k compared to Theorem 1 below, for smaller k.

2 Bounds

Theorem 1. Let X be a non-negative random variable with mean $\mu > 0$ and moment-generating function $E[\exp(tX)]$ bounded by $\exp(\mu(e^t - 1))$ for all t > 0. Then for all

k > 0:

$$E[(X/\mu)^k] \le \left(\frac{k/\mu}{\log(1+k/\mu)}\right)^k.$$

A standard logarithmic bound, $\frac{x}{\log(1+x)} \le 1+x/2$ (see e.g. Topsøe, 2007, eq. 6), implies the corollary

 $E[(X/\mu)^k] \le (1 + k/(2\mu))^k \le \exp(k^2/(2\mu)).$

Random variables satisfying the requirement $E[\exp(tX)] \leq \exp(\mu(e^t - 1))$ are known as sub-Poissonian and include many simple distributions, such as the Poisson or Binomial distribution. We give more examples in Section 3.

Technically our bound is shown using the moment-generating function and some new sharp inequalities involving the Lambert-W function, which is defined by $W(x)e^{W(x)} = x$. We will use the following lemma:

Lemma 1 (Hoorfar and Hassani, 2008). For all y > 1/e and x > -1/e,

$$e^{W(x)} \le \frac{x+y}{1+\log y}.\tag{4}$$

We perform an elementary proof of this fact for completeness:

Proof. Starting from $1 + t \le e^t$, substitute $\log(y) - t$ for t to get $1 + \log y - t \le ye^{-t}$. Multiplying by e^t we get $e^t(1 + \log y) \le te^t + y$. Let t = W(x) s.t. $te^t = x$. Rearranging, we get eq. (4).

Taking $y = e^{W(x)}$ in eq. (4) makes the two sides equal, so we can think of Lemma 1 as a way to turn a rough estimate into an upper bound. Hoorfar and Hassani make various substitutions, resulting in different bounds useful when $x \to \infty$. We will use the bound differently, focusing on having the right asymptotics as $x \to 0$.

We are now ready to prove the main theorem of the paper:

Proof of Theorem 1. Let $m(t) = E[\exp(tX)]$ be the moment-generating function. We will bound the moments of X by

$$E[X^k] \le m(t)(k/(et))^k,\tag{5}$$

which holds for all $k \geq 0$ and t > 0. This follows from the basic inequality $1 + z \leq e^z$, where we substitute tz/k - 1 for z to get $tz/k \leq e^{tz/k-1} \implies z^k \leq e^{tz}(k/(et))^k$. Letting z = X and taking expectations, we get eq. (5).

We now define $x = k/\mu$ and take t such that $te^t = x$. In the notation of the Lambert-W function, this means t = W(x). We note that t > 0 whenever x > 0. We proceed to bound the moments of X/μ using eq. (5):

$$E[(X/\mu)^k] \le m(t)(k/(et))^k \mu^{-k}$$

¹The Lambert-W function has multiple branches. We are interested in the main one (sometimes called the 0th), in which W(x) and x are both positive.

$$\leq \exp(\mu(e^{t} - 1)) \left(\frac{k}{e\mu t}\right)^{k}$$

$$= \exp(\mu(x/t - 1)) \left(\frac{e^{t}}{e}\right)^{k}$$

$$= \exp((k/x)(x/t - 1) + k(t - 1))$$

$$= \exp(kf(x)), \tag{7}$$

where we define f(x) := 1/t - 1/x + t - 1. Here eq. (6) came from the simple rewriting of the definition of t, $1/t = e^t/x$

It remains to show $\exp(f(x)) \leq \frac{x}{\log(1+x)}$. Taking logarithms, this means showing the bound

$$f(x) = \frac{1}{W(x)} + W(x) - 1 - \frac{1}{x} \le \log\left(\frac{x}{\log(1+x)}\right)$$

for all x>0, where W(x) is the Lambert-W function. The proof uses the identities $W(X)=\log x-\log(W(x))$ and $\frac{1}{W(x)}=\frac{1}{x}\exp(W(x))$ which are simple rewritings of the definition $W(x)e^{W(x)}=x$. The main idea is to introduce a new variable z>0, to be determined later, which allows us to control the effect of applying the logarithmic inequality $\log x\geq 1-1/x$. We also use Lemma 1 which introduces another new variable y>1 to be determined.

$$\frac{1}{W(x)} + W(x) - 1 - \frac{1}{x} = \frac{1}{W(x)} - 1 - \frac{1}{x} + \log x - \log(W(x))$$

$$= \frac{1}{W(x)} - 1 - \frac{1}{x} + \log\left(\frac{x}{z}\right) - \log\left(\frac{W(x)}{z}\right)$$

$$\leq \frac{1}{W(x)} - 1 - \frac{1}{x} + \log\left(\frac{x}{z}\right) - \left(1 - \frac{z}{W(x)}\right)$$

$$= \frac{1+z}{W(x)} - 2 - \frac{1}{x} + \log\left(\frac{x}{z}\right)$$

$$= e^{W(x)} \frac{1+z}{x} - 2 - \frac{1}{x} + \log\left(\frac{x}{z}\right)$$

$$\leq \frac{x+y}{1+\log(y)} \frac{1+z}{x} - 2 - \frac{1}{x} + \log\left(\frac{x}{z}\right).$$

Here the last inequality is eq. (4) in its general form. We finally take $z = \log(y)$ and y = 1 + x, which are both positive when x > 0. That simplifies the bound to

$$f(x) \le \log\left(\frac{x}{\log(1+x)}\right).$$

Backing up, we have shown $\mathrm{E}[(X/\mu)^k] \leq \exp(kf(x)) \leq (\frac{x}{\log(1+x)})^k$, which finishes the proof.

2.1 Lower bound

As mentioned in the introduction, the expansion for the Poisson moments $E[X^k] = \sum_{i=0}^k {k \brace i} \mu^i$ gives a simple lower bound by taking the two highest terms. We note that

$${k \brace k} = 1$$
 and ${k \brack k-1} = {k \choose 2}$ to get

$$\mathrm{E}[X^k] \ge \mu^k \left(1 + \frac{k(k-1)}{2\mu} \right),$$

matching Theorem 1 asymptotically for $k = O(\sqrt{\mu})$.

The expansion for Binomial moments $\mathrm{E}[X^k] = \sum_{i=0}^k \binom{k}{i} n^i p^i$ yields a similar lower bound

$$\begin{split} \mathbf{E}[X^k] &\geq n^{\underline{k}} p^k + \binom{k}{2} n^{\underline{k-1}} p^{k-1} \\ &= (np)^k \left(\frac{n^{\underline{k}}}{n^k} \right) \left(1 + \binom{k}{2} \frac{1}{(n-k+1)p} \right) \\ &= (np)^k \left(\prod_{i=0}^{k-1} 1 - \frac{i}{n} \right) \left(1 + \binom{k}{2} \frac{1}{(n-k+1)p} \right) \\ &\geq (np)^k \left(1 - \binom{k}{2} \frac{1}{n} \right) \left(1 + \binom{k}{2} \frac{1}{np} \right) \\ &= (np)^k \left(1 + \binom{k}{2} \frac{1-p}{np} \left(1 - \binom{k}{2} \frac{1}{n} \right) \right), \end{split}$$

which matches Theorem 1 for $k = O(\sqrt{\mu})$ and p not too close to 1.

We will investigate some more precise lower bounds as k/μ gets large. As mentioned briefly in the introduction, there is a correspondence between the moments of a Poisson random variable and the Bell polynomials defined by $B(k,\mu) = \sum_i {k \choose i} \mu^i$. In particular, $E[X^k] = B(k,\mu)$, if μ is the mean of the Poissonian random variable. The Bell polynomials are so named because B(k,1) is the kth Bell number. By Dobiński's formula $B(k,1) = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^k}{i!}$ the Bell numbers are generalised for real k. We write these as $B_x = B(x,1)$.

We give a lower bound for $E[(X/\mu)^k]$ by showing the following simple connection between the Bell polynomials and Bell numbers:

Theorem 2. Let k be a positive real number and $\mu \geq 1$ be an integer. Then

$$B(k,\mu)/\mu^k \ge B_{k/\mu}^{\mu}$$
.

While the proof below assumes μ is an integer, we will conjecture Theorem 2 to be true for any $\mu \geq 1$. Now by de Bruijn's (1981) asymptotic expression for the Bell numbers:

$$E[(X/\mu)^k] \ge B_{k/\mu}^{\mu} = \left(\frac{k/\mu}{e \log(k/\mu)} (1 + o(1))\right)^k \text{ as } k/\mu \to \infty.$$

matching the upper bound of Ostrovsky and Sirota, eq. (3), for large k, as well as Latała's uniform lower bound with a different constant.

Proof of Theorem 2. Let X, X_1, \ldots, X_{μ} be i.i.d. Poisson variables with mean 1, then $S = \sum_{i=1}^{\mu} X_i$ is Poisson with mean μ . We write $\|X\|_k = \mathrm{E}[X^k]^{1/k}$. Then by the AG

inequality:

$$||S/\mu||_{k} = \left\| \frac{1}{\mu} \sum_{i=1}^{\mu} X_{i} \right\|_{k} \ge \left\| \left(\prod_{i=1}^{\mu} X_{i} \right)^{1/\mu} \right\|_{k} = \left\| \prod_{i=1}^{\mu} X_{i} \right\|_{k/\mu}^{1/\mu} = \left(\prod_{i=1}^{\mu} ||X_{i}||_{k/\mu} \right)^{1/\mu} = ||X||_{k/\mu}.$$
(8)

Since X has mean 1 we have $||X||_{k/\mu} = B_{k/\mu}^{\mu/k}$, and as S has mean μ we have $||S/\mu||_k = B(k,\mu)^{1/k}/\mu$. Thus, taking kth powers, eq. (8) is what we wanted to show.

For small k/μ this bound is less interesting since $B_x \to 0$ as $x \to 0$, rather than 1 as our upper bound. However, it is pretty tight, as we conjecture by the following matching upper bound in terms of the Bell numbers:

Conjecture 1. For all k > 0 and $\mu \ge 1$,

$$B_{k/\mu}^{1/(k/\mu)} \leq \frac{B(k,\mu)^{1/k}}{\mu} \leq B_{k/\mu+1}^{1/(k/\mu+1)}.$$

Furthermore, for $0 < \mu \le 1$, $\frac{B(k,\mu)^{1/k}}{\mu} \le B_{k/\mu}^{1/(k/\mu)}$.

While the upper bound appears true numerically, it can't follow from our moment-generating function bound eq. (7), since it drops below that for k/μ bigger than 40. The conjectured upper bound is even incomparable with our Theorem 1, since it is slightly above $\frac{k/\mu}{\log(1+k/\mu)}$ for very small k/μ . In the region k < 2 and $\mu < 1$, the conjectured bound is weaker than eq. (2) by Berend and Tassa (2010), but for all other parameters, it is substantially tighter.

3 Sub-Poissonian Random Variables

We call a non-negative random variable X sub-Poissonian if $E[X] = \mu$ and the moment-generating function, $\operatorname{mgf.}$, $E[\exp(tX)] \leq \exp(\mu(e^t - 1))$ for all t > 0. We will briefly show that this notion includes all sums of bounded random variables, such as the Binomial distribution.

If X_1, \ldots, X_n are sub-Poissonian with mgf. $m_1(t), \ldots, m_n(t)$ and mean μ_1, \ldots, μ_n respectively, then $\sum_i X_i$ is sub-Poissonian as well, since

$$E\left[\exp\left(t\sum_{i}X_{i}\right)\right] = \prod_{i}m_{i}(t) \leq \prod_{i}\exp\left(\mu_{i}(e^{t}-1)\right) = \exp\left(\left(\sum_{i}\mu_{i}\right)\left(e^{t}-1\right)\right).$$

Next, a random variable bounded in [0,1] with mean μ has mgf.

$$E[\exp(tX)] = 1 + \sum_{k=1}^{\infty} \frac{t^k E[X^k]}{k!} \le 1 + \mu \sum_{k=1}^{\infty} \frac{t^k E[1^{k-1}]}{k!} = 1 + \mu(e^t - 1) \le \exp(\mu(e^t - 1)).$$

Hence if $X = X_1 + \cdots + X_n$ where each $X_i \in [0,1]$ we have $\mu = \mathrm{E}[X] = \sum_i \mathrm{E}[X_i]$ and by Theorem 1 that $\mathrm{E}[(X/\mu)^k] \leq \frac{k/\mu}{\log(k/\mu+1)}$. In particular this captures sum of Bernoulli variables with distinct probabilities.

An example of a non-sub-Poissonian distribution is the geometric distribution with mean μ . This has moment generating function $m(t) = \frac{1}{1-\mu(e^t-1)}$, which is larger than $\exp(\mu(e^t-1))$ for all t>0. However, likely, similar methods to those in the proof of Theorem 1 will still apply to bound its moments.

4 Acknowledgements

The author would like to thank Robert E. Gaunt for his encouragement and helpful suggestions.

References

- Daniel Berend and Tamir Tassa. Improved bounds on Bell numbers and on moments of sums of random variables. *Probability and Mathematical Statistics*, 30(2):185–205, 2010.
- Nicolaas Govert de Bruijn. Asymptotic methods in analysis, volume 4. Courier Corporation, 1981.
- Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the Lambert W function and hyperpower function. J. Inequal. Pure and Appl. Math, 9(2):5–9, 2008.
- Rustam Ibragimov and Sh Sharakhmetov. On an Exact Constant for the Rosenthal Inequality. Theory of Probability & Its Applications, 42(2):294–302, 1998.
- William B Johnson, Gideon Schechtman, and Joel Zinn. Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables. The Annals of Probability, 13(1):234 – 253, 1985.
- Andreas Knoblauch. Closed-Form Expressions for the Moments of the Binomial Probability Distribution. SIAM Journal on Applied Mathematics, 69(1):197–204, 2008.
- Rafał Latała. Estimation of moments of sums of independent real random variables. *The Annals of Probability*, 25(3):1502–1513, 1997.
- Eugene Ostrovsky and Leonid Sirota. Non-asymptotic estimation for Bell function, with probabilistic applications. arXiv preprint arXiv:1712.08804, 2017.
- Iosif Pinelis. Optimum bounds on moments of sums of independent random vectors. Siberian Adv. Math, 5(3):141–150, 1995.
- Flemming Topsøe. Some bounds for the logarithmic function. *Inequality theory and applications*, 4(01), 2007.
- Jacques Touchard. Sur les cycles des substitutions. *Acta Mathematica*, 70(1):243–297, 1939.