Théorie des groupes

Table des matières

1	informations utiles	2
I	Théories des groupes	2
II	Chapitre 2 : Espaces vectoriels	5
2	Notion d'espace vectoriel	5
	2.1 Définitions	5
	2.2 Sous-espace vectorel	7

1 informations utiles

Slavyana GENINSKA Jean RAIMBAUT

cours sur: http://www.math.univ-toulouse.fr/ jraimbau/Enseignement/theorie_des_groupes.html

Première partie

Théories des groupes

Exemple. Isométries préservant un triangle équilateral

Rappel 1. Isométrie du plan:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\forall x, y \in \mathbb{R}^2, d(x, y) = d(f(x), f(y))$$

Exemple. Isométries

- symétrie
- rotation
- translation
- symétrie glissée

Remarque 1. L'identité, notée Id, peut être vue comme une rotation (d'angle 0) ou comme une translation (par le vecteur nul).

Soit T, un triangle équilatéral.

$$Isom(T) = \{f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie || f(T) = T\}$$

est l'ensemble des isométries du plan sui préservent T.

Une telle application f *a forcement au moins un point fixe* :

$$Isom(T) = \{Id, r_{\frac{2\pi}{3}}, r_{-\frac{2\pi}{3}}, S_A, S_B, S_C\}$$

On peut alors faire les deux remarques suivantes :

Remarque 2. — Isom(T) est stable par composition :

$$S_A \circ S_B = r_{\frac{2\pi}{3}}$$
$$S_B \circ S_A = r_{-\frac{2\pi}{3}}$$

— Toute application $f \in Isom(T)$ admet une transformation inverse $f^{-1} \in Isom(T)$

Exemple. Le groupe symétrique :

Soit E, un ensemble de n objets, S_n est l'ensemble des bijection de E, appelé groupe symétrique.

Par exemple, le groupe symétrique S_3 avec $E = \{1, 2, 3\}$

Remarque 3. — S_3 est stable par composition

— Toute bijection admet un inverse qui est encore dans S_3

Remarque 4. Les deux exemples sont les mêmes d'un certain point de vue, il s'agit de la même structure algébrique (nous verrons plus tard qu'il s'agit d'un isomorphisme)

Définition 1. *Un groupe est un ensemble G muni d'une application (appelée loi de groupe) :*

$$*: {G \times G \rightarrow G \atop (g,h) \mapsto g * h}$$

Cette loi vérifie les propriétés suivantes :

- associativité:

$$\forall g, h, k \in G, (g * h) * k = g * (h * k)$$

— présence d'un élément neutre :

$$\exists e \in G / \forall g \in G, g * e = e * g = g$$

— existance de l'inverse (ou symétrique) :

$$\forall g \in G, \ \exists h \in G \ / \ g * h = h * g = e$$

Exemple. 1. \mathbb{R} avec la loi +, l'élément neutre est alors 0 et le symétrique est l'opposé.

- 2. \mathbb{R}^* avec la loi \cdot , l'élément neutre est alors 1 et le symétrique est l'inverse.
- 3. Soit $P \subset \mathbb{R}^2$, un polygone régulier à n cotés. On note alors I som(P), l'ensemble des isométries le concervant :

$$Isom(P) = \{ f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie \mid\mid f(P) = P \}$$

Isom(P) est alors un groupe si on le muni de la loi de composition \circ . L'élément neutre est alors l'identité : $\forall f \in Isom(P), \ f \circ Id = Id \circ f = f$.

Le symétrique est la transformation réciproque f^{-1}

Ce groupe est alors appelé groupe diédral, on le note D_n (ou D_{2n} étant donné que ce groupe possède 2n éléments).

Exemple. — $D_3 = Isom(T)$ est le groupe présenté dans l'exemple 1,

*D*₃ possède six éléments

- D₄ est l'ensemble des isométries préservant le carré.
 - $D_4 = Isom(C) = \{Id, r_{\frac{\pi}{2}}, r_{\pi}, r_{-\frac{\pi}{2}}, S_{AC}, S_{MP}, S_{BD}, S_{NQ}\}$

 D_4 possède donc 8 éléments

4. Si E est un ensemble, l'ensemble des bijections de E dans E est un groupe pour la loi · comme précédemment.

 $Si E = \{1, ..., n\}, Bi j(E)S_n$

 $Si E = \mathbb{R}$, $Bi j(\mathbb{R})$ est un groupe

- 5. \mathbb{R}^n muni de l'addition vectorielle est un groupe. Plus généralement, tout espace vectoriel E est un groupe pour l'addition
- 6. $GL_n(\mathbb{R}) = \{A \in M_{n,n}(\mathbb{R}) \mid det A \neq 0\}$ Pour la multiplication matricielle, voir l'exercice 1.

Contre-exemple. 1. $(\mathbb{N},+)$ n'est pas un groupe car aucun élément n'admet de symétrique

- 2. (\mathbb{R},\cdot) n'est pas un groupe car 0 n'admet pas de symétrique
- 3. (\mathbb{Z}^*,\cdot) n'est pas un groupe car 1 et -1 sont les seuls éléments admettant un symétrique
- 4. $(\{-1,0,1\},+)$ n'est pas un groupe car $1+1=2 \notin \{-1,0,1\}$

Remarque 5. Le groupe \mathbb{Z} est $(\mathbb{Z}, +)$. Le groupe \mathbb{R}^* est (\mathbb{R}^*, \cdot) . Le groupe \mathbb{R}^n est $(\mathbb{R}^n, +)$.

Deuxième partie

Chapitre 2: Espaces vectoriels

Soit \mathbb{K} , un corps (\mathbb{R} , \mathbb{C} , ou autre)

2 Notion d'espace vectoriel

2.1 Définitions

Définition 2. vague $Un \mathbb{K}$ -espace vectoriel est un ensemble d'éléments appelés vecteurs tels qu'on puisse les additionner entre eux et les multiplier par des scalaires, c'est-à-dire des éléments de \mathbb{K} avec des relations naturelles de compatibilité

Définition 3. $Un \mathbb{K}$ -espace vectoriel est un ensemble E muni de deux lois :

— une loi de composition interne :

$$+: E \times E \rightarrow E$$

 $(u, v) \mapsto u + v$

— une loi de composition externe :

$$: \mathbb{K} \times E \to E$$
$$(\lambda, u) \mapsto \lambda \cdot v$$

Ces lois vérifient:

- $\forall u, v, w \in E$, (u + v) + w = u + (v + w)la loi + est donc associative
- $\forall u, v \in E, u + v = v + u$ la loi + est donc commutative
- $\exists 0_E \in E$, $\forall u \in E$, $u + 0_E = 0_E + u = u$ la loi + admet un élément neutre
- $\forall u \in E, \exists v \in E, u + v = v + u = 0_E$ chaque élément de E admet, par +, un inverse ou opposé
- chaque element de E damet, par +, un inverse of $\forall \lambda, \mu \in \mathbb{K}, \forall u \in E, \lambda \cdot (\mu \cdot u) = (\lambda \cdot \mu) \cdot u$
- $la\ loi \cdot est\ associative$
- $\forall \lambda, \mu \in \mathbb{K}$, $\forall u \in E$, $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ la loi · est distributive à gauche
- $\forall \lambda \in \mathbb{K}$, $\forall u, v \in E$, $(u + v) \cdot \lambda = \lambda \cdot u + \lambda \cdot v$ la loi · est distributive à droite

Remarque 6. Dans le troisième axiome, l'élément neutre est unique. Dans le quatrième axiome, le vecteur v est en fait unique, on le note -u.

Proposition 1. *On a également,* $\forall u \in E$, $\forall \lambda \in \mathbb{K}$:

1.
$$\lambda \cdot 0_E = 0_E$$

$$2. \ 0_{\mathbb{K}} \cdot u = 0_E$$

3.
$$\lambda \cdot u = 0_E \Rightarrow \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_E$$

4.
$$(-\lambda) \cdot u = \lambda \cdot (-u) = -(\lambda \cdot u)$$

Démonstration. 1.

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E)$$
$$= \lambda \cdot 0_E + \lambda \cdot 0_E$$
$$= \lambda \cdot 0_E + 0_E$$

$$\lambda \cdot 0_E = O_E$$

2.

$$\begin{aligned} 0_{\mathbb{K}} \cdot u &= (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot u \\ &= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \cdot u \\ &= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \end{aligned}$$

$$0_{\mathbb{K}} \cdot u = O_{\mathbb{K}}$$

3. Si $\lambda = 0_{\mathbb{K}}$, cf. 2 Si $\lambda \neq 0$, alors $\lambda^{-1} \in \mathbb{K}$,

$$0 = \lambda^{-1} \cdot 0 = \lambda^{-1} (\lambda \cdot u) = (\lambda^{-1} \cdot \lambda) \cdot u = 1 \cdot u = u$$

Notation. *On note souvent :*

-
$$0_E = 0$$
 et $0_K = 0$
- $u - v = u + (-v)$

Lemme 1. $\forall u, v, w \in E, u + w = v + w \Rightarrow u = v$

Démonstration.

$$v = (u + w) - w$$
$$= u + (w - w)$$
$$= u + 0_E$$
$$= u$$

donc v = u

Remarque 7. — Pour $\lambda \in \mathbb{K}$ et $u \in E$ $u \cdot \lambda$ ne veut rien dire.

— Pour $u, v \in E$ $u \cdot v$ ne veut rien dire

Exemple. 1/Pour les lois de compositions internes et externes usuelles,

- K est un K-espace vectoriel
- $--\mathbb{K}^n$ est un \mathbb{K} -espace vectoriel
- plus généralement, si E_1 et E_2 sont des $E_1 \times E_2$ est un \mathbb{K} -espace vectoriel 2/ Soit E, un \mathbb{K} -espace vectoriel et A, un ensemble qualconque,

— $\mathcal{F}(A, E)$, l'ensemble des applications de A dans E, est un \mathbb{K} -espace vectoriel

$$\forall f_1, f_2 \in \mathcal{F}(A, E), \ \forall \lambda \in \mathbb{K},$$

$$f_1 + f_2 : A \to E$$

$$a \mapsto f_1(a) + f_2(a)$$

$$\lambda \cdot f_1 : A \to E$$

$$a \mapsto \lambda \cdot f_1(a)$$

- $Si \mathbb{K} = \mathbb{R}$ et $A = I \subset \mathbb{R}$, un intervalle, on peut avoir $\mathcal{F}(I, \mathbb{R})$
- $Si \mathbb{K} = \mathbb{R}$ et $A = \mathbb{N}$, on a $\mathscr{F}(\mathbb{N}, \mathbb{R})$, l'ensemble des suites numériques $3/\mathbb{K}[X]$, l'ensemble des polynômes

 $4/M_{n,p}(\mathbb{K})$, l'ensemble des matrices à coefficient dans \mathbb{K} , à n lignes et p colonnes.

Remarque 8. \mathbb{R}^2 , munit de la loi + usuelle et $\lambda \cdot (x_1, x_2) = (\lambda \cdot x_1, 0)$ n'est pas un \mathbb{K} -espace vectoriel, pourquoi?

2.2 Sous-espace vectorel

Définition 4. *Soit* E, $un \mathbb{K}$ -espace vectoriel, et $F \subset E$.

F est un sous espace vectoriel de E s'il s'agit d'un \mathbb{K} -espace vectoriel pour les lois + et \cdot de E.

- -- $\forall u, v \in F, u + v \in F$
- $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda \cdot u \in F$
- -+ et \cdot vérifient les propriétés des lois de composition interne et externe des espaces vectoriels

Proposition 2. F est un sous-espace vectoriel de E si:

- F ≠ Ø
- -- $\forall u, v \in F, u + v \in F$
- $\forall u \in F, \forall \lambda \in \mathbb{K}, \lambda \cdot u \in F$

En pratique, pour montrer qu'un ensemble est un \mathbb{K} -espace vectoriel, on montre qu'il s'agit d'un sous-espace vectoriel d'un \mathbb{K} -espace vectoriel connu.