TD 10 - Ondes électromagnétiques dans le vide

IPESUP - PC

1 Rappels de cours

Les champs \vec{B} et \vec{E} vérifient l'équation d'Euler tridimensionnelle :

$$\Delta \vec{B}(M,t) = \frac{1}{c^2} \frac{\partial^2 \vec{B}(M,t)}{\partial t^2}$$
, avec $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$

Définition: Une onde plane est une onde dont les surfaces d'onde sont des plans. Pour rappel, on définit une surface d'onde comme l'ensemble des points M tels que $\vec{E}(M,t)=\vec{E}_0$

Quelques concepts:

- 1. Relation de dispersion : relation entre ω et le vecteur d'onde.
- 2. Vitesse de phase $v_{\phi} = \frac{\omega}{k}$
- 3. Vitesse de groupe $v_g = \frac{d\omega}{dk}$
- 4. Bilan énergétique : $div(\Pi) + \frac{\partial u_{em}}{\partial t} = -\vec{j} \cdot \vec{E}$

Propriétés des OPPH:

- 1. Les champs \vec{E} et \vec{B} sont orthogonaux entre eux et à la direction de propagation.
- 2. Les champs \vec{E} et \vec{B} sont en phase.
- 3. $\vec{B} = \frac{\vec{k}}{\omega} \wedge \vec{E}$
- 4. Relation de dispersion : $\omega^2 = c^2 k^2$

Capacités exigibles:

- 1. Relation entre \vec{E} et \vec{B} pour une OPPH.
- 2. Retrouver la relation de dispersion pour une OPPH.
- 3. Calculer la vitesse de phase et de groupe pour une OPPH.

2 Onde électromagnétique dans le vide

On considère une onde électromagnétique se propageant dans le vide. On la représentation complexe du champ électrique de cette onde :

$$\vec{E} = \begin{cases} 0 \\ E_0 cos(\frac{\pi y}{a}) exp(i(\omega t - k_0 z)) \\ \underline{\alpha} E_0 sin(\frac{\pi y}{a}) exp(i(\omega t - k_0 z)) \end{cases}$$

avec $\underline{\alpha}$ un nombre complexe et k_0 positif.

- 1. Déterminer $\underline{\alpha}$ et k_0 en fonction de E_0 , ω , a et c.
- 2. Déterminer le champ magnétique \vec{B} associé à cette onde.
- 3. Calculer le vecteur de Poynting et sa valeur moyenne dans le temps.
- 4. Calculer la valeur moyenne dans le temps de la densité volumique d'énergie.

3 Guide d'ondes rectangulaire

Quatre plans métalliques parfaitement conducteurs (sur la figure ci-dessous x=0, x=a, y=0, y=b) délimitent un guide d'onde de longueur infinie suivant Oz, de section droite rectangulaire et dans lequel règne le vide (permitivité ϵ_0 , perméabilité μ_0). On se propose d'étudier la propagation dans ce guide suivant la direction Oz d'une onde électromagnétique monochromatique de pulsation ω , dont le champ électrique s'écrit : $\vec{E} = f(x,y) cos(\omega t - k_g z) \vec{u_x}$. Dans cette expression : f désigne une fonction réelle des variables y et x, et k_g est une constante positive. On posera $k_g = \frac{2\pi}{\lambda_g}$, où λ_g est la "longueur d'onde guidée" et on notera : $k_0 = \frac{2\pi}{\lambda_0} = \frac{\omega}{c}$

- 1. Montrer que f ne dépend que de y puis déterminer l'équation différentielle à laquelle est soumise f(y).
- 2. Résoudre cette équation et introduire un entier n correspondant à différents modes propres.
- 3. Déterminer \vec{B} .
- 4. Exprimer k_g en fonction de ω , c, n et b. En déduire λ_g en fonction de λ_0 , b et n.
- 5. Montrer qu'il existe une fréquence de coupure f_c en dessous de laquelle il n'y a plus propagation.
- 6. Exprimer la vitesse de phase v_{ϕ} de l'onde en fonction de c, n et du rapport $\frac{f}{f_c}$, f étant la fréquence de l'onde.
- 7. Donner l'expression du vecteur de Poynting $\vec{\Pi}$. Quelle est la valeur moyenne $<\vec{\Pi}>$ dans le temps de ce vecteur? En déduire la puissance moyenne transmise par une section droite du guide d'ondes.
- 8. Calculer la valeur moyenne, dans le temps de la densité d'énergie volumique de l'énergie électromagnétique < u>
- 9. A l'aide des résultats précédents, déduire la vitesse de propagation v_e de l'énergie. Quelle relation simple peut-on constater entre v_e et v_{ϕ} ?

4 Pression de radiation

1. Soit une onde plane, monochromatique, de fréquence ν se propageant le long des x croissants, dont le champ électrique est $\vec{E}(x,t) = E_0 cos(\omega t - kx)\vec{u_y}$. Soit \mathcal{E} l'éclairement (défini par la puissance moyenne qui traverse une surface d'aire unité perpendiculaire à la direction de propagation). Exprimer \mathcal{E} en fonction de ϵ_0 , c et E_0 .

- 2. On considère cette onde comme un faisceau de photons se propageant le long des x croissants.
 - (a) Exprimer N_0 le nombre de photons traversant par unité de temps l'unité de surface perpendiculaire à Ox en fonction de \mathcal{E} et de ν .
 - (b) L'onde arrive sur une surface plane perpendiculaire à Ox, d'aire S, et parfaitement réfléchissante. On étudie le rebondissement des photons sur cette surface. Quelle est la quantité de mouvement reçue par la paroi au cours d'un choc photon-paroi? Quelle est la force subie par la paroi en fonction de \mathcal{E} , S et c? Exprimer la pression p subie par la paroi en fonction de \mathcal{E} et c puis en fonction de ϵ_0 et ϵ_0 .
 - (c) Reprendre la question ci-dessus lorsque la paroi est parfaitement aborbante.
 - (d) Calculer \mathcal{E} , E_0 et p sur une paroi totalement absorbante pour un laser ayant un diamètre d=5,00 mm et une puissance moyenne $\mathcal{P}=100$ W (laser utilisé industriellement pour la découpe de feuilles).
- 3. (a) L'onde est maintenant absorbée par une sphère de rayon a, bien inférieur au rayon du faisceau. Quelle est, en fonction de \mathcal{E} , E_0 et p, la force \vec{F} subie par la sphère?
 - (b) Le soleil donne au voisinage de la Terre l'éclairement $\mathcal{E}=1,4\times10^3W.m^{-2}$. L'émission est isotrope. Sur une surface de dimensions petites devant D, l'onde arrivant du Soleil est quasi plane.

Quelle est la puissance \mathcal{P}_{t} émise par le Soleil?

Un objet sphérique de rayon a, de masse volumique μ est situé à une distance r du Soleil et absorbe totalement le rayonnement solaire. Evaluer le rapport entre la force due à l'absorbtion du rayonnement solaire et a force gravitationelle exercée par le Soleil sur cet objet dans les deux cas suivants :

- Cas d'une météorite : $\mu = 3,0 \times 10^3 kg.m^{-3}$ et a = 1,0m
- Cas d'une poussière interstellaire : $\mu=1,0\times 10^3 kg.m^{-3}$ Commenter.
- (c) Quelle est la surface minimale de la voile solaire d'un vaisseau spatial pour que celui-ci quitte l'attraction solaire?

