Method of Simulated Moments

Thierry Kamionka

2021-2022

Definition (Stationarity)

Let us consider a stochastic process $\{Y_i\}$. $\{Y_i\}$ is stationary if for any integer r and for any (k_1, k_2, \ldots, k_r) , the distribution of $(Y_i, Y_{i+k_1}, Y_{i+k_2}, \ldots, Y_{i+k_r})$ is the same as the distribution of $(Y_j, Y_{j+k_1}, Y_{j+k_2}, \ldots, Y_{j+k_r})$.

Example: An i.i.d. sequence is a stationary stochastic process with no serial dependence: the joint density of $(Y_j, Y_{j+k_1}, Y_{j+k_2}, \dots, Y_{j+k_r})$ is the product of the marginal densities.

Definition (Weak Stationarity)

Let us consider a stochastic process $\{Y_i\}$. $\{Y_i\}$ is weakly stationary if

$$\mu_i = E[Y_i] = \mu$$

for all i.

The autocovariance function exists, is finite and

$$\gamma(i, i - j) = cov(Y_i, Y_{i-j}) = E[(Y_i - \mu_i)(Y_{i-j} - \mu_{i-j})]$$

only depends on j: $\gamma(i, i - j) = \gamma(j)$.

Definition (Ergodicity)

A **stationary stochastic** process $\{Y_i\}$ is ergodic if for any bounded function $f: \mathbb{R}^k \longrightarrow \mathbb{R}$ and any bounded function $g: \mathbb{R}^{k'} \longrightarrow \mathbb{R}$

$$\lim_{n \to \infty} | E[f(Y_i, ..., Y_{i+k}) g(Y_{i+n}, ..., Y_{i+n+k'})] |$$

$$= | E[f(Y_i, ..., Y_{i+k})] | | E[f(Y_{i+n}, ..., Y_{i+n+k'})] |$$

The stationary process $\{Y_i\}$ is ergodic if it is **asymptotically independent**.

Theorem (e.g. Hayashi, 2000)

Let $\{Y_i\}$ be a stationary and ergodic stochastic process, then

$$\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n y_i \xrightarrow{a.s.} \mu$$

where $\mu = E[Y_i]$.

It is a generalization of the Law of Large Numbers (Kolmogorov). Hence, serial dependence is allowed but cancels asymptotically.

For any function f mesurable, $\{f(Y_i)\}$ is stationary and ergodic. Then, any moment (if it exists and is finite) of Y_i can be estimated consistently using the corresponding **sample** average.

The **method of moment** can also be seen as a semi parametric method. In this case, Y_i is a vector of stationary and ergodic random variables with probability distribution function P_0 . The parameter θ_0 is defined by

$$E_{P_0}[h(Y_i,\theta_0)]=0$$

where θ_0 is the true value of the parameter.

The distribution P_0 is estimated using the empirical distribution and θ can be estimated solving

$$\frac{1}{n}\sum_{i=1}^n h(y_i,\theta)=0$$

with respect to θ or minimizing a norm of this quantity in the overidentified case.

Alternatively, for a **parametric model** index by θ , the method of moments can be considered as an estimation method.

Let us assume that the sample consists in $\{Y_1, \dots, Y_n\}$, where Y_i is a vector of **stationary and ergodic** random variables.

The variables are distributed according to P_{θ} where θ is a vector of parameters. The vector Y_i may include a vector of exogenous variables X_i .

The vector of parameters θ is defined by the moment conditions

$$E_{\theta}[h(Y_i,\theta)]=0$$

where E_{θ} is the expectation with respect to the distribution P_{θ} .

 P_{θ} is estimated by the empirical distribution. The moments conditions are assumed to identify θ

$$E_{\theta}[h(Y_i,\theta)] = 0 \Longrightarrow \theta = \theta_0$$

Let $h_n(\theta) = \frac{1}{n} \sum_{i=1}^n h(y_i; \theta)$. The GMM estimator is a solution of $\min_{\theta \in \Theta} h_n(\theta)' W_n h_n(\theta)$

where W_n is a positive definite matrix.

If the function $h_n(y_i; \theta)$ is difficult to calculate - for instance, it is a multiple integral - it can be **approximated using** simulations.

Let us assume that there exists a latent variable, namely ξ^* , such that

$$h(y_i;\theta) = E_{\xi^*}[\tilde{h}(Y_i,\xi^*;\theta) \mid y_i]$$

where E_{ξ^*} is the expectation with the conditional distribution of ξ^* .

For some applications, it can provide some gain of efficiency to draw ξ^* conditionally on (y_1, \ldots, y_n) (see, McFadden and Ruud, 1994). Here, we assume ξ^* is drawn from its **marginal distribution**.

Let us consider a **multinomial logit (MNL) model** with **random coefficient** α (see McFadden and Train, 2000). These coefficients are assumed to be distributed according to the pdf $g(\alpha; \theta)$:

$$P_C(j \mid x, \theta) = \int L_C(j \mid x, \alpha) g(\alpha; \theta) d\alpha$$

where

$$L_{C}(j \mid \mathbf{x}, \alpha) = \frac{\exp(\mathbf{x}_{j}\alpha)}{\sum_{k \in C} \exp(\mathbf{x}_{k}\alpha)}$$

with $C = \{1, ..., J\}$ is the set of alternatives the individual can chose. Let $x = (x_1, ..., x_J)$ where x_j is a $1 \times K$ vector of characteristics of the individual and of attributes of alternative j.

The mixing pdf $g(\alpha; \theta)$ can belong to a continuous parametric family such as multivariate normal or may have a finite support (in this case, this MNL model it is a latent class model).

Let us consider $\alpha = \beta + \Lambda \xi^*$ where β is a $K \times 1$ vector "mean" coefficients, Λ is $K \times M$ matrix of **factor loadings** (with exclusion restrictions for identification) and ξ^* is a $M \times 1$ vector of **factor levels** that are i.i.d. with a density $f(\xi^*)$.

Let vec(A) denote the function that stacks the columns of A into a vector. Let $\gamma = vec(\Lambda')$ and $\theta' = (\beta', \gamma')$ denote the vector of parameters.

Let us consider

$$x_C(\xi^*) = \sum_{k \in C} x_k \ L_C(k \mid x, \beta + \Lambda \xi^*),$$

and

$$x_{iC}(\xi^*) = x_i - x_C(\xi^*).$$

where x_i is a 1 \times K vector.

Let $E_{\xi^*|j}$ denote an expectation with respect to the density of ξ^* given that the event j is chosen. This density is

$$\frac{L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*)}{\int L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*}$$

We have

$$P_C(j \mid x; \theta) = E_{\xi^*}[L_C(j \mid x, \beta + \Lambda \xi^*)],$$

The derivative with respect to β of

$$\log(P_C(j \mid x; \theta)) = \log(\int L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*)$$
is

$$\frac{\int \frac{\partial}{\partial \beta} L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*}{\int L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*}$$

$$=\frac{\int (x_j'-\sum_{k\in C}x_k'L_C(k\mid x,\beta+\Lambda\xi^*))\ L_C(j\mid x,\beta+\Lambda\xi^*)f(\xi^*)d\xi^*}{\int L_C(j\mid x,\beta+\Lambda\xi^*)f(\xi^*)d\xi^*}$$

This derivative is

$$\frac{\int x_{jC}(\xi^*)' L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*}{\int L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*}$$

Consequently,

$$\frac{\partial}{\partial \beta} \log(P_C(j \mid x; \theta)) = E_{\xi^* \mid j} [x_{j\ell C}(\xi^*)']$$

The derivative with respect to $\gamma = vec(\Lambda')$ of $\log(P_C(j \mid x; \theta)) = \log(\int L_C(j \mid x, \beta + \Lambda \xi^*) f(\xi^*) d\xi^*)$ can be obtained staking the elements:

$$\frac{\int \frac{\partial}{\partial \gamma_{\ell}} L_{C}(j \mid x, \beta + \Lambda \xi^{*}) f(\xi^{*}) d\xi^{*}}{\int L_{C}(j \mid x, \beta + \Lambda \xi^{*}) f(\xi^{*}) d\xi^{*}}$$

$$= \frac{\int \xi^{*}(x_{j\ell} - \sum_{k \in C} x_{k\ell} L_{C}(k \mid x, \beta + \Lambda \xi^{*})) L_{C}(j \mid x, \beta + \Lambda \xi^{*}) f(\xi^{*}) d\xi^{*}}{\int L_{C}(j \mid x, \beta + \Lambda \xi^{*}) f(\xi^{*}) d\xi^{*}}$$

$$= E_{\xi^{*}|j}[\xi^{*}x_{i\ell C}(\xi^{*})]$$

where γ_{ℓ} are the elements of the line ℓ of Λ ($\ell = 1, ..., K$).

Thus,

$$\frac{\partial}{\partial \gamma_{\ell}} \log(P_C(j \mid x; \theta)) \in I\!\!R^M$$

Consequently,

$$\frac{\partial}{\partial \gamma} \log(P_C(j \mid x; \theta)) = vec(E_{\xi^* \mid j}[\xi^* x_{jC}(\xi^*)])$$

where $E_{\xi^*|j}[\xi^*x_{jC}(\xi^*)]$ is a $M \times K$ matrix.

It is possible to simulate $P_C(j \mid x, \theta)$ and its derivatives in order to estimate the vector of parameters θ .

Let us consider ξ_r^* for r = 1, ..., H, i.i.d. random draws obtained from the pdf $f(\xi^*)$.

Let us consider the following estimator of $P_C(j \mid x, \theta)$

$$P_{C,H}(j \mid x, \theta) = \frac{1}{H} \sum_{r=1}^{H} L_C(j \mid x; \beta + \Lambda \xi_r^*) \equiv E_H[L_C(j \mid x; \beta + \Lambda \xi^*)].$$
(1)

 $P_{C,H}(j \mid x, \theta)$ is an **unbiased estimator** of $P_C(j \mid x, \theta)$. It is continuous with respect to θ and twice derivable. The derivative of $\log(P_C(j \mid x, \theta))$ are functions of elements

$$E_{\xi^*|j}[b(\xi^*)] \equiv \frac{E_{\xi^*}[b(\xi^*)L_C(j \mid x; \beta + \Lambda \xi^*)]}{P_C(j \mid x, \theta)}$$

where, for instance, $b(\xi^*) = \xi^* x_{j\ell C}(\xi^*)$ or $b(\xi_{\square}^*) = x_{jC}(\xi^*)'$.

The expectation $E_{\xi^*|j}[b(\xi^*)]$ can be simulated by

$$E_{\xi^*|j}^{H}[b(\xi^*)] \equiv \frac{E_{H}[b(\xi^*)L_{C}(j \mid x; \beta + \Lambda \xi^*)]}{P_{C,H}(j \mid x, \theta)}$$

It is a continuously differentiable function of θ at the first and second order.

Let us remark that the simulator $\log(P_{C,H}(j \mid, \theta))$ of $\log(P_C(j \mid, \theta))$ is **not unbiased** due to the non linear transformation $\log(.)$.

All the simulators considered here are consistent when $H \longrightarrow +\infty$.

The second derivatives can be obtained by numerical differentiation of the first derivatives.

When one optimize the objective function with respect to θ , the drawings ξ_h^* should remain fixed. This can be achieved by storing these drawings in memory of by drawing them again using the same seed.

MNL Models - MSM

Remark: SMLE can be obtained maximizing $\sum_{i=1}^{n} \log(P_{C,H}(y_i \mid x; \theta))$, where $P_{C,H}(j \mid x; \theta)$ is given by (1) and $y_i \in C$ is the alternative chosen by individual i.

Let d_j denote a binary variable that is equal to 1 if alternative j is chosen and is equal to 0 otherwise. Let $d = (d_1, \dots, d_J)$.

The method of moments estimator of θ is such that the generalized residual $d_j - E_{\xi^*}[L_C(j \mid x; \beta + \Lambda \xi^*)]$ is orthogonal to any instrument vector $\omega_j(x; \theta)$ with the same dimension than θ .

The moment is (one observation)

$$h(d, x; \theta) = \sum_{j \in C} (d_j - E_{\xi^*} [L_C(j \mid x; \beta + \Lambda \xi^*)]) \omega_j(x; \theta)$$

Let us denote
$$s_j(x;\theta) = \frac{\partial}{\partial \theta} \log(P_C(j\mid x,\theta))$$
.

Let us consider the function $h(d, x; \theta)$ - for a given individual - under the **restriction** that $\omega_i(x; \theta) = s_i(x; \theta)$

$$h(d, x; \theta) = \sum_{j \in C} (d_j - E_{\xi^*} [L_C(j \mid x; \beta + \Lambda \xi^*)]) \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta))$$

$$= \sum_{j \in C} (d_j - P_C(j \mid x; \theta)) \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta))$$

$$= \sum_{j \in C} \left(d_j \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta)) - \frac{\partial}{\partial \theta} P_C(j \mid x; \theta) \right)$$

$$= \sum_{j \in C} d_j \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta)) - \sum_{j \in C} \frac{\partial}{\partial \theta} P_C(j \mid x; \theta)$$

$$= \sum_{j \in C} d_j \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta)) - \frac{\partial}{\partial \theta} \sum_{j \in C} P_C(j \mid x; \theta)$$

Consequently,

$$h(d, x; \theta) = \sum_{j \in C} d_j \frac{\partial}{\partial \theta} \log(P_C(j \mid x; \theta))$$

Let us consider the **contribution** of a typical individual to the log likelihood

$$\log(L(\theta)) = \sum_{j=1}^{J} d_j \log(P_C(j \mid x; \theta))$$

The score function for this individual is

$$\frac{\partial}{\partial \theta} \log(L(\theta)) = \sum_{i=1}^{J} d_{j} \frac{\partial}{\partial \theta} \log(P_{C}(j \mid x; \theta))$$

If $\omega_j(x;\theta) = s_j(x;\theta)$, then $h(d,x,\theta)$ is the score of an observation. Then, the method of moments estimator (MME) is the maximum likelihood estimator (MLE).

Any vector of instrument $\omega_j(x;\theta)$ such that the covariance with $s_j(x;\theta)$ is of maximum rank can be used (McFadden and Train, 2000) and allows to obtain an **MM estimator** that is **consistent** and **asymptotically normal** (but not in general efficient).

In order to obtain the MSM estimator, the conditional probability $P_C(j \mid x; \theta)$ is replaced by the simulator $P_{C,H}(j \mid x; \theta)$ (see (1)) and we use independent and identically distributed drawings of ξ^* . Let $h^H(d, x; \theta)$ denote the simulator of $h(d, x; \theta)$ we obtain.

The **Method of Simulated Moments (MSM)** estimator of θ is a root of

$$\frac{1}{n} \sum_{i=1}^{n} h^{H}(d^{i}, x_{i}; \theta) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{J} (d^{i}_{j} - P_{CH}(j \mid x_{i}; \theta)) \omega_{j}(x_{i}; \theta)$$

where $d^i = (d^i_1, \dots, d^i_J)$ and $d^i_j = 1$ if individual choses alternative j and $d^i_j = 0$ otherwise.

Let us assume that $\hat{\theta}_{n,H}$ is a root of $\frac{1}{n} \sum_{i=1}^{n} h^{H}(d^{i}, x_{i}; \theta)$.

Under regularity conditions, McFadden (1989, 1996) shows that the MSM estimator is **consistent and asymptotically normal**.

It is not necessary to obtain such a result that H (number of draws) increases with n as long as the **simulators of the generalized residual are independent**.

The Method of Simulated Moments (MSM) estimator is obtained here by replacing the conditional probabilities $P_c(j \mid x; \theta)$ by an unbiased simulator and by using independent simulators to obtain the instruments $\omega_j(x_i; \theta)$.

Iteration: The optimization can be done by estimating θ using crude instruments, as they do not depend of θ , in order to obtain a consistent estimator $\hat{\theta}$. Then one can simulate the suggested instruments for this particular value of θ . And, then, one may obtain a new value of the estimator of θ .

The asymptotic covariance matrix of the MSM of θ (namely, $\hat{\theta}_{n,H}$) is consistently estimated by

$$\Psi_{n,H}(\hat{\theta}_{n,H})^{-1} \; \Sigma_{n,H}(\hat{\theta}_{n,H}) \; \Psi_{n,H}(\hat{\theta}_{n,H})^{-1}$$

where

$$\Psi_{n,H}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in C} (\frac{\partial}{\partial \theta} P_{C,H}(j \mid x_i; \theta)) \omega_j(x_i; \theta)'$$

$$\Sigma_{n,H}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j \in C} \omega_j(x_i; \theta) P_{C,H}(j \mid x_i; \theta)) \omega_j(x_i; \theta)' - \left[\sum_{j \in C} \omega_j(x_i; \theta) P_{C,H}(j \mid x_i; \theta) \right] \left[\sum_{j \in C} \omega_j(x_i; \theta) P_{C,H}(j \mid x_i; \theta) \right]' \right)$$

The SMLE is asymptotically efficient (if $H/\sqrt{n} \longrightarrow \infty$ as $n \longrightarrow \infty$). But it is difficult computationally to obtain (H should be large).

The more $\omega_j(x;\theta)$ is correlated with $s_j(x;\theta) = \frac{\partial}{\partial \theta} \log(P_C(j\mid x;\theta))$, the more efficient is the MSM estimator. Consequently, a relatively large number of draws H should be obtained in order that the simulated score $s_j^H(x;\theta)$ approximate $s_j(x;\theta)$ accurately, where

$$s_j^H(x; \theta) = \frac{\partial}{\partial \theta} \log(P_{C,H}(j \mid x; \theta)).$$

The moment conditions are the following ones

$$E_{\theta_0}[h(Y_i,\theta)]=0.$$

We assume there exists a latent variable ξ^* such that

$$h(y_i;\theta) = E_{\xi^*}[\tilde{h}(y_i,\xi^*;\theta)]$$

The distribution of the latent variable is assumed to be such that it is easy to simulate. Let $\tilde{h}_{i,H}(\theta)$ denote the simulator of the function $h(y_i, \theta)$. We have

$$\tilde{h}_{i,H}(\theta) = \frac{1}{H} \sum_{r=1}^{H} \tilde{h}(y_i, \xi_{i,r}^*; \theta)$$

where $\xi_{i,1}^*, \dots, \xi_{i,H}^*$ are **independent identically distributed** according to the distribution of ξ^* .

The **MSM estimator** is a solution to

$$\min_{\theta \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{i,H}(\theta)\right)' W \left(\frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{i,H}(\theta)\right)$$

The draws $\xi_{i,r}^*$ are such that we can use the same values whatever the value of θ . In practice, the definition of the function \tilde{h} we use is such that the distribution of the latent variable ξ^* do not depend on θ .

Example: Mixed MNL models

Let us assume that Y = (d, x) and

$$\tilde{h}(y,\xi^*;\theta) = \sum_{j\in C} (d_j - L_C(j \mid x,\beta + \Lambda \xi^*)) \,\omega_j(x;\theta)$$

On can verify that

$$h(y;\theta) = E_{\xi^*}[\tilde{h}(y,\xi^*;\theta)] = \sum_{j\in C} (d_j - E_{\xi^*}[L_C(j \mid x,\beta + \Lambda \xi^*)]) \,\omega_j(x;\theta) \,\,\Box$$

Static case - Importance Sampling

Let ξ^* denote a latent variable. Let us assume we need to evaluate an expectation, namely

$$E_{\xi^*}(b(\xi^*))$$

using simulations. Let F denote the cdf of the distribution of ξ^* . We can obtain draws from F by inverting the cdf for instance. Example: Mixed MNL models

$$b(\xi^*) \equiv \tilde{h}(y, \xi^*; \theta) = \sum_{j \in C} (d_j - L_C(j \mid x; \beta + \Lambda \xi^*)) \, \omega_j(x; \theta) \qquad \Box$$

Then the expectation can be estimated using

$$\hat{E}_{\xi^*}(b(\xi^*)) = \frac{1}{H} \sum_{r=1}^H b(\xi_r^*)$$

where ξ_1^*, \dots, ξ_H^* are i.i.d. draw from the distribution F.

If it is difficult to simulate in the distribution corresponding to F, we may use **importance sampling**. Let us remark that

$$E_{\xi^*}(b(\xi^*)) = \int rac{b(\xi^*)f(\xi^*)}{g(\xi^*)}g(\xi^*) \, d\, \xi^*$$

where g is a pdf with the same support than the pdf f.

The importance sampling simulator is

$$\hat{E}_{\xi^*}(b(\xi^*)) = \frac{1}{H} \sum_{r=1}^H \frac{b(\xi_r^*)f(\xi_r^*)}{g(\xi_r^*)}$$

where ξ_1^*, \dots, ξ_H^* are i.i.d. draws from the distribution with pdf g.

Dynamic case - Path simulation

To illustrate the context, let us consider the **Markov model of asset prices** proposed by Duffie and Singleton (1993).

The production of the consumption commodity is fixed by the equation

$$F(k_t, z_t) = z_t \ k_t^{\phi}, \ \text{where } 0 < \phi < 1,$$

where F is a production function, k_t is a level of capital stock at time t, z_t is a technology shock and ϕ is a parameter.

For each period t, the firm optimizes its profits by choosing the level of capital to rent from consumer

$$d_t = \max_{k_t} \{ z_t \ k_t^{\phi} - r_t^k k_t \}$$

where r_t^k is the **rental rate** and d_t represents the **dividends** that the firm pays to owners of the shares.

Let p_t denote the **shares market value of the firm** (capitalization).

The budget constraint of the consumer is

$$1 \times c_t + p_t(s_{t+1} - s_t) + (k_{t+1} - \mu k_t) = d_t s_t + r_t^k k_t$$
 (2)

where c_t denote consumption at time t, s_t is the **share of the capital of the firm** owned by the representative consumer (asset shares) and $(1 - \mu)$ is the **depreciation rate** on the capital stock.

(similar to an economy who produces wheat for consumption and as input)

The **consumer maximizes** the expectation of the utility stream with respect to the capital he rents to the firm and consumption. Using the budget constraint, one can deduce the share holdings.

The consumer maximizes under (2)

$$\max_{\{c_t,k_t\}} E\left[\sum_{t=1}^{\infty} \delta^t \frac{(c_t-1)^{1-\alpha}}{1-\alpha} u_t\right]$$

where α represents the **coefficient of the relative risk** aversion (CRRA), δ is a subjective discount factor $(0 < \delta < 1)$ and u_t is a taste shock.

Let us assume that $X'_t = (z_t, u_t)$ is a Markov process, such that

$$X_t = \kappa(X_{t-1}, \epsilon_t, \rho_0)$$

where $\epsilon_t \in \mathbb{R}^2$, is an **i.i.d. stochastic process**, κ is a transition function and ρ_0 is a vector of parameters.

For instance, Michner (1984), assumes that $u_t = 1$ and $\ln(z_{t+1}) = \zeta_z + \rho \ln(z_t) + \epsilon_{t+1}$, where $\{\epsilon_t\}$ is an i.i.d. normal.

In order to estimate the vector of parameters $\beta=(\phi,\alpha,\rho_0,\mu,\delta)',$ the model is solved in order to determine the equilibrium transition function

$$Y_{t+1} = \lambda(Y_t, \epsilon_{t+1}, \beta)$$

where $Y_t = (X'_t, k_t)'$ is the augmented state process.

For any value of the vector of parameters β , it is possible to obtain a simulated state process $\{\hat{Y}_t\}$ using the transition function

$$\hat{Y}_{t+1} = \lambda(\hat{Y}_t, \hat{\epsilon}_{t+1}, \beta)$$

where $\{\hat{\epsilon}_t\}$ is an **i.i.d. sequence** of $\{\epsilon_t\}$.

From $\{\hat{Y}_t\}$, a history $\{\hat{Y}_t\}_{t=1}^{\mathcal{T}}$ of \mathcal{T} equilibrium states can be generated.

Let $f_t^* = s(Y_t, Y_{t-1}, \dots, Y_{t-\ell+1})$, where s is an 'observation function' made of a finite history of Y_t .

Example : For instance, a component of $s(Y_t, Y_{t-1}, ..., Y_{t-\ell+1})$ can be $k_t \times k_{t-1}$, an other can be c_t .

Let $\hat{f}_t = s(\hat{Y}_t, \hat{Y}_{t-1}, \dots, \hat{Y}_{t-\ell+1})$, is a function of the history of \hat{Y}_t .

Intuition : The MSM estimator is a value of β that matches the sample moments of the actual observation process $\{f_t^*\}$ and the sample moments of the simulated observation process $\{\hat{f}_t\}$.

Remark: Under a different set of assumptions, if it is difficult to simulate a sequence $\{\hat{e}_t\}$, one can consider to use an importance function (Kamionka, 1998).

Example: Michner (1984)

The **taste shock** is such that $u_t = 1$ for all t.

Let us assume we have a 100% depreciation rate ($\mu = 0$).

The utility is logarithmic ($\alpha = 1$).

The equilibrium asset-pricing function and the evolution of the capital stock are

$$p_{t} = \frac{\delta}{(1 - \delta)} (1 - \phi) z_{t} k_{t}^{\phi},$$

$$d_{t} = (1 - \phi) z_{t} k_{t}^{\phi},$$

$$k_{t+1} = \delta \phi z_{t} k_{t}^{\phi}.$$

Let Y_i denote a vector of ergodic stationary random variables.

These random variables are distributed according to the distribution P_{θ} , where θ is a vector of parameters.

The vector Y_i can include, depending on the case, a vector of exogenous variables, namely X_i . Let E_{P_a} denote the expectation with respect to the distribution P_{θ} .

Identification : $E_{P_{\theta_0}}[h(Y_i;\theta)] = 0 \Longrightarrow \theta = \theta_0 \ (\theta_0 \ \text{is the solution})$ of the asymptotic optimization program).

Let us assume that

$$h(Y_i,\theta) = E_{\xi^*}[\tilde{h}(Y_i,\xi^*;\theta) \mid Y_i],$$

where $\tilde{h}()$ is a known function and ξ^* is a random variable such that its distribution is known and does not depend on θ . ξ^* is independent of $\{Y_i, i = 1, \ldots, n\}$.

Assumption: $\{\tilde{h}(Y_i, \xi^*; \theta)\}$ is stationary and ergodic.

We generate $\{\xi_{i,r}^*, i=1,\ldots,n\}_{r=1,\ldots,H}$ i.i.d. using the same distribution as $\{\xi_i^*, i=1,\ldots,n\}$.

Consequently, $\{\tilde{h}(Y_i, \xi_{ir}^*; \theta)\}_{r=1,...,H}$ are i.i.d. conditional on Y_i .

Let us remind that the MSM estimator is a solution of

$$\min_{\theta \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{i,H}(\theta) \right)' W_n \left(\frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{i,H}(\theta) \right)$$

where $\tilde{h}_{i,H}(\theta) = \frac{1}{H} \sum_{r=1}^{H} \tilde{h}(Y_i, \xi_{ir}^*; \theta)$.

Let us assume that $h_i = h_i(Y_i, \theta_0)$.

$$\hat{ heta}_n = \mathop{argmin}_{ heta \in \Theta} C_n(heta)$$

where
$$C_n(\theta) = \left(\frac{1}{n} \sum_{i=1}^n \tilde{h}_{i,H}(\theta)\right)' W_n \left(\frac{1}{n} \sum_{i=1}^n \tilde{h}_{i,H}(\theta)\right)$$
.

$$\Sigma_0 = \sum_{k=-\infty}^{\infty} Cov_{P_{\theta_0}}(h_i, h_{i-k})$$

$$= \sum_{k=-\infty}^{\infty} E_{P_{\theta_0}}(h_i - E_{P_{\theta_0}}(h_i)) (h_{i-k} - E_{P_{\theta_0}}(h_{i-k}))',$$

Assumption: Σ_0 is non singular and $W_n \longrightarrow W = \Sigma_0^{-1}$ almost surely.

Let us assume that H is fixed and regularity conditions are satisfied (see Duffie and Singleton, 1993).

Theorem (Consistency)

Under these regularity conditions, the MSM estimator $\hat{\theta}_n$ converges to θ_0 in probability as $n \longrightarrow \infty$.

Let us assume that θ_0 and the sequence of MSM estimators $\hat{\theta}_n$ are interior to the parameters space Θ .

Let us assume that the matrix

$$D_0 = E_{P_{\theta_0}} \left[\frac{\partial h_i}{\partial \theta'} \right] = E_{P_{\theta_0}} \left[\frac{\partial}{\partial \theta'} E_{\xi^*} [\tilde{h}(Y_i, \xi^*; \theta_0) \mid Y_i] \right]$$

exists, is finite and has a full rank.

Let us assume $\tilde{h}(Y_i, \xi^*; \theta)$ is continuously differentiable with respect to θ .

The objective function $C_n(\theta)$ converges almost surely to the asymptotic objective function $C(\theta)$. Let us assume that $C(\theta) > C(\theta_0)$, for all $\theta \in \Theta$ and $\theta \neq \theta_0$.

Remark : If the model is correct at θ_0 then $E[h(y; \theta_0)] = E[\tilde{h}(y, \xi^*; \theta_0)].$

Let us assume some additional regularity conditions (see Duffie and Singleton, 1993).

Theorem (Asymptotic normality, Under optimal weighting)

Under these regularity conditions and for H fixed, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow[n \to \infty]{d} N(0, (1 + \frac{1}{H})(D_0' \Sigma_0^{-1} D_0)^{-1})$$

The covariance matrix is similar to the expression obtained by McFadden (1989) and Pakes and Pollard (1989).

When *H* is large, the asymptotic covariance matrix is close to $(D_0'\Sigma_0^{-1}D_0)^{-1}$.

Other set of assumptions: Lee and Ingram (1991)

Let us assume some additional regularity conditions. **Let us assume** that the weighting matrix W_n **converges** in probability to W. Let us remark that the total number of simulations is $n \times H$ and tends to infinity as n tends to infinity.

Theorem (Asymptotic normality)

Under these regularity conditions and for H fixed, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \underset{n \to \infty}{\overset{d}{\longrightarrow}} N(0, (D_0'WD_0)^{-1}D_0'W(1 + \frac{1}{H})\Sigma_0WD_0(D_0'WD_0)^{-1})$$

Optimal choice for $W = [(1 + \frac{1}{H})\Sigma_0]^{-1}$.

In order to obtain a **consistent estimator** of Σ_0 , see Newey and West, 1987.

Let us assume the objective function we minimize is such that

$$\min_{\theta \in \Theta} h_{n,H}(\theta)' \ W_n \ h_{n,H}(\theta)$$

where

$$h_{n,H}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{i,H}(\theta)$$

and

$$\tilde{h}_{i,H}(\theta) = \frac{1}{H} \sum_{r=1}^{H} \tilde{h}(Y_i, \xi_{i,r}^*; \theta)$$

Let us denote $\hat{h}_i = \tilde{h}_{i,H}(\hat{\theta}_n)$.

Let m denote the **number of nonzero autocorrelation** of $\tilde{h}_{i H}(\theta_0)$.

Let us denote

$$\hat{\Omega}_k = \frac{1}{n} \sum_{i=1+k}^n \hat{h}_i \hat{h}'_{i-k}$$

An estimator of Σ_0 is

$$\tilde{\Sigma}_0 = \hat{\Omega}_0 + \sum_{k=1}^m (\hat{\Omega}_k + \hat{\Omega}'_k).$$

Remark : In the particular case of an i.i.d. sample, $\tilde{\Sigma}_0 = \hat{\Omega}_0.$

However, the estimator of the asymptotic variance-covariance matrix of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ obtained using $\tilde{\Sigma}_0$ need not be positive semi-definite. Alternatively, let us consider

$$\hat{\Sigma}_0 = \hat{\Omega}_0 + \sum_{k=1}^m w(k, m) (\hat{\Omega}_k + \hat{\Omega}'_k),$$

where w(k, m) = 1 - (k/(1 + m)).

Let us assume we observe (y_i, x_i) , i = 1, ..., n. x_i is a vector of exogenous variables. Let us consider the following objective function

$$Q_n(\underline{y}_n,\underline{x}_n;\lambda)$$

where $\underline{y}_n = (y_1, \dots, y_n)$ and $\underline{x}_n = (x_1, \dots, x_n)$.

 Q_n is the log of a quasi-likelihood function.

Let $\hat{\lambda}$ is a solution of

$$\max_{\lambda} Q_n(\underline{y}_n, \underline{x}_n; \lambda)$$

Consequently, $\hat{\lambda}$ can be considered as a Quasi Maximum Likelihood estimator (QLME).

Let us denote $y_i(\theta_0) \equiv y_i$, for i = 1, ..., n, in order to insist on the fact that the realizations were obtained from the true model (indexed by θ_0).

The **Efficient Method of Moment estimator** (EMM estimator) is such that the expectation with respect to the true distribution of the vector of **pseudo score** should be equal to zero (Gallant and Tauchen, 1996)

$$\min_{\theta \in \Theta} || E_{P_{\theta}} [\frac{\partial}{\partial \lambda} Q_n(\underline{y}_n(\theta), \underline{x}_n; \hat{\lambda})] ||$$

where $y_i(\theta)$ is distributed according to P_{θ} (true family of distribution for a hypothetical value of θ).

We generate, for each value of θ , H samples of size n, $y_n^r = (y_1^r, \dots, y_n^r)$, according to the distribution P_θ , conditionally on $\underline{x}_n = (x_1, \dots, x_n)$.

In practice, the expectation in the objective function in replaced by an average obtained using the simulated data y_n^r , for r = 1, ..., H.

The EMM estimator is a solution of

$$\min_{\theta \in \Theta} \left(\frac{\partial}{\partial \lambda'} \frac{1}{H} \sum_{r=1}^{H} Q_n(\underline{y}_n^r(\theta), \underline{x}_n; \hat{\lambda}) \right) \ W_n \left(\frac{\partial}{\partial \lambda} \frac{1}{H} \sum_{r=1}^{H} Q_n(\underline{y}_n^r(\theta), \underline{x}_n; \hat{\lambda}) \right)$$

Remarks : The EMM estimator is a **method of moments estimator** as it is based on moment conditions (expectation of pseudo score is zero). The information of the original sample in "included" in the value of $\hat{\lambda}$ and in the vector $\underline{\mathbf{x}}_n$.

Example: Let us assume that $x_i = 1$ and y_i , i = 1, ..., n, are i.i.d. and distributed as an exponential random variable with parameters $\theta > 0$.

$$f(y_i \mid x_i; \theta) = \theta \exp(-\theta y_i)$$

f is the pdf of the **true distribution**.

We consider a normal distribution with mean λ and variance 1 for the **auxiliary model**

$$g(y_i \mid x_i; \lambda) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}(y_i - \lambda)^2)$$

The objective function is the log-quasi likelihood

$$Q_n = -\frac{1}{2} \sum_{i=1}^{n} (y_i - \lambda)^2 - n \ln(\sqrt{2\pi})$$

The QMLE is $\hat{\lambda} = \sum_{i=1}^{n} y_i/n = \bar{y}_n$. $\hat{\lambda}$ is obtained by maximizing Q_n with respect to λ .

Simulations: Let us **assume** that $z_{i,r}$ are i.i.d. uniform on (0,1) for i = 1, ..., n and r = 1, ..., H.

Then $y_i^r(\theta) = -\frac{1}{\theta} \ln(1 - z_{i,r})$ for i = 1, ..., n and r = 1, ..., H. The EMM estimator (W = 1) is solution of the program

$$\begin{split} \hat{\theta}_{EMM} &= \underset{\theta \in \boldsymbol{R}^{+}}{argmin} \, (\frac{1}{H} \sum_{r=1}^{H} \sum_{i=1}^{n} (y_{i}^{r}(\theta) - \hat{\lambda}))^{2} \\ \hat{\theta}_{EMM} &= \underset{\theta \in \boldsymbol{R}^{+}}{argmin} \, (\frac{1}{H} \sum_{r=1}^{H} \sum_{i=1}^{n} (-\frac{1}{\theta} \ln(1 - z_{i,r}) - \bar{y}_{n}))^{2} \\ \hat{\theta}_{EMM} &= -\frac{\sum_{r=1}^{H} \sum_{i=1}^{n} \ln(1 - z_{i,r})}{H \sum_{i=1}^{n} y_{i}} \end{split}$$

Let us remark that

$$\hat{\theta}_{EMM} = \frac{\frac{1}{nH} \sum_{r=1}^{H} \sum_{i=1}^{n} -\ln(1 - z_{i,r})}{\frac{1}{n} \sum_{i=1}^{n} y_{i}}$$

and

$$\frac{1}{nH} \sum_{r=1}^{n} \sum_{i=1}^{n} [-\ln(1-z_{i,r})] \xrightarrow[n,H\to\infty]{a.s.} E(D)$$

where $D \sim$ exponential variable with mean 1.

We know, moreover, that

$$\frac{1}{n}\sum_{i=1}^{n}y_{i}\underset{n\to\infty}{\overset{a.s.}{\longrightarrow}}E(Y_{i}\mid x_{i})=\frac{1}{\theta_{0}}$$

Then (Slutsky)

$$\hat{\theta}_{\textit{EMM}} \underset{n,H \to \infty}{\overset{\textit{a.s.}}{\mapsto}} \theta_0.$$

Remarks: Here $\hat{\lambda}$ is such that $\hat{\lambda} = \bar{y}_n$ tends almost surely to $1/\theta_0$. This is closely related to the fact that the quasi likelihood belongs to an exponential linear family. The **binding function** is $\lambda(\theta) = 1/\theta$ (see Indirect inference). $\hat{\lambda}$ tends almost surely to $\lambda(\theta_0)$ as n tends to ∞ .

Let us **assume** that the objective function tends asymptotically to a limit (the log-quasi likelihood is multiplied by 1/n)

$$\frac{1}{H}\sum_{r=1}^{H}Q_{n}(\underline{\mathsf{y}}_{n}^{r}(\theta),\underline{\mathsf{x}}_{n},\lambda)\underset{n\to\infty}{\longrightarrow}Q_{\infty}(\lambda,\theta)$$

Let us denote

$$\lambda(\theta) = \mathop{argmax}_{\lambda} \mathcal{Q}_{\infty}(\lambda, \theta)$$

where $\lambda(\theta)$ is called the **binding function**.

Let us denote

$$I_{0} = \lim_{n \to \infty} V_{P_{\theta_{0}}} \left[\sqrt{n} \frac{\partial}{\partial \lambda} Q_{n}(\underline{y}_{n}, \underline{x}_{n}; \lambda_{0}) - E_{P_{\theta_{0}}} \left[\sqrt{n} \frac{\partial}{\partial \lambda} Q_{n}(\underline{y}_{n}, \underline{x}_{n}; \lambda_{0}) \mid \underline{x}_{n} \right] \right]$$

$$J_0 = \underset{n \to \infty}{\text{plim}} - \frac{\partial^2}{\partial \lambda \partial \lambda'} Q_n(\underline{y}_n, \underline{x}_n; \lambda_0)$$

The EMM estimator and the Indirect Inference estimator are asymptotically equivalent (Gourieroux, Monfort, Renault, 1993)

Let us assume W_n is a positive definite matrix and converges to a positive definite matrix W.

Theorem (Gourieroux, Monfort, Renault, 1993)

Under some regularity conditions, the EMM estimator is consistent and asymptotically normal (H is fixed and n tends to ∞)

$$\sqrt{n}(\hat{\theta}_{EMM} - \theta_0) \xrightarrow[n \to \infty]{d} N(0, V)$$

where

$$V = \left(1 + \frac{1}{H}\right) \left(\frac{\partial}{\partial \theta} \lambda(\theta_0)' \ W \ \frac{\partial}{\partial \theta'} \lambda(\theta_0)\right)^{-1}$$
$$\left(\frac{\partial}{\partial \theta} \lambda(\theta_0)' \ W \ J_0^{-1} \ I_0 \ J_0^{-1} \ W \ \frac{\partial}{\partial \theta'} \lambda(\theta_0)\right)$$
$$\left(\frac{\partial}{\partial \theta} \lambda(\theta_0)' \ W \ \frac{\partial}{\partial \theta'} \lambda(\theta_0)\right)^{-1}$$

Theorem

Under some regularity conditions, for the optimal matrix $W^* = J_0 I_0^{-1} J_0$, the EMM estimator is asymptotically normal

$$\sqrt{n}(\hat{\theta}_{EMM} - \theta_0) \overset{d}{\underset{n \to \infty}{\longrightarrow}} N(0, V^*)$$

where

$$V^* = \left(1 + \frac{1}{H}\right) \left(\frac{\partial}{\partial \theta} \lambda(\theta_0)' J_0 I_0^{-1} J_0 \frac{\partial}{\partial \theta'} \lambda(\theta_0)\right)^{-1}$$

The expression of the asymptotic covariance matrix V^* includes the derivative of the binding function $\lambda(\theta)$ calculated for the true value of θ .

It is possible possible to show (Gourieroux and Monfort, 1996) that

$$V^* = \left(1 + \frac{1}{H}\right) \left(\frac{\partial^2}{\partial \theta \partial \lambda'} Q_{\infty}(\lambda_0, \theta_0) I_0^{-1} \frac{\partial^2}{\partial \lambda \partial \theta'} Q_{\infty}(\lambda_0, \theta_0)\right)^{-1}$$

where $\lambda_0 = \lambda(\theta_0)$.

Carrasco, M., Florens, J.-P., 2002, Simulation-based method of moments and efficiency, Journal of Business and Economic Statistics, 20(4), 482-492.

Duffie, D., Singleton, K., 1993, Simulated moments estimation of Markov models of asset prices, Econometrica, 61(4), 929-952.

Gallant, A.R., Tauchen, G., 1996, Which moments to match?, Econometric Theory, 12, 657-681.

Gourieroux, Ch., Monfort, A., Renault, E., 1993, Indirect Inference, Journal of Applied Econometrics, S85-S118.

Gourieroux, Ch., Monfort, A., 1996, Simulation Based Econometrics Methods, Core Lecture Series, Louvain-La-Neuve.

Hayashi, F., 2000, Econometrics, Princeton University Press.

Kamionka, T., 1998, Simulated maximum likelihood estimation in transition models, Econometrics Journal, 1, C129-C153

Lee, B.-S., Ingram, B.F., 1991, Simulation estimation of times-series models, 47, 197-205.

McFadden, D., 1989, A method of simulated moments for estimation of discrete choice models without numerical integration, Econometrica, 57, 995-1026.

McFadden, D., 1996, Lectures on simulation-assisted statistical inference, EC-squared Conference, Florence, Italy December 12-14.

McFadden, D., Train, K., 2000, Mixed MNL models for discrete response, Journal of Applied Econometrics, 15, 447-470.

McFadden, D., Ruud, P., 1994, Estimation by simulation, Review of Economics and Statistics, 76, 591-608.

Michener, R., 1984, Permanent income in general equilibrium, Journal of Monetary Economics, 13, 297-305.

Newey, K., West, K.D., 1987, A simple, Positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55(3), 703-708.

Pakes, A., Pollard, D., 1989, Simulation and asymptotics of optimization estimators, Econometrica, 57, 1027-1057.