# Photophysics of Multichromophoric Systems: Small Oligomers and Polymers in Solution and Film

Louise Sinks, Paul Frail, and Michael Therien



### Outline



- Introduction
- Experimental
- Structures of the Arrays
- Polymer Photo-physics
- Conclusion

### Introduction



- We desire to make devices and materials.
- We need to move charge or energy long distances.
- How do we correlate solution phase data with solid state results? How do you move from molecular studies to material sciences?
- Can we determine principles of molecular design?
- Can we correlate the photo-physics with the solid state materials properties?

# (Photophysical) Experimental Techniques



- Steady state measurements
  - UV-VIS
  - Fluorescence
- Time resolved measurements
  - Fluorescence (35 ps- seconds)
  - Femtosecond transient absorption (300 fs- 6 ns)
  - Nanosecond transient absorption (10 ns- μs)

#### FS-TA





 $\lambda = 775 \text{ nm}, 1 \text{kHz}, ~800 \text{ mW}$ 

Line



White light probe centered at  $\lambda = 775$  nm.

Visible excitation: OPA1 provides tunable light from ~550 to 710 nm; 775 nm or 338 nm pulses are available by bypassing the OPA

CCD camera provides 400-1100 nm detection capability

Redirection of probe to an InGaAs detector extends detection wavelengths through ~ 1800 nm.



# Transient Absorption







# Porphyrin Oligomers



### Different Substituents



### The "DD" Series

|       | $ \begin{array}{c} \lambda_{\text{max}} \\ (S_0 \rightarrow S_1) \\ [\text{nm}]^a \end{array} $ | $ \begin{array}{c} \epsilon_{g} @ \\ \lambda_{max}(S_{0} \rightarrow S_{1}) \\ [M^{-1} cm^{-1}] \end{array} $ | $ \begin{array}{c} \lambda_{\text{max}} \\ (S_1 \rightarrow S_0) \\ [\text{nm}]^a \end{array} $ | $\Phi_{ m f}^{\ b}$ | $ \begin{array}{c} \lambda_{\text{max}} \\ (S_1 \rightarrow S_n) \\ [nm]^{a,c} \end{array} $ | $egin{array}{c} 	au_{ m F}^d \ (	au_{ m o})^e \ [ m ns] \end{array}$ |
|-------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| DD    | 695<br>(1085)                                                                                   | 51400                                                                                                         | 711<br>(810)                                                                                    | 0.16<br>(0.03)      | 980<br>(656)                                                                                 | 1.09<br>(17.6)                                                       |
| DDD   | 770<br>(1380)                                                                                   | 116000                                                                                                        | 806<br>(875)                                                                                    | 0.22<br>(0.03)      | 1120<br>(750)                                                                                | 1.13<br>(7.32)                                                       |
| DDDDD | 842<br>(1563)                                                                                   | 230000                                                                                                        | 883<br>(955)                                                                                    | 0.14<br>(0.01)      | 1325<br>(1980)                                                                               | 0.45<br>(3.56)                                                       |



# NIR Band- Marker for structural inhomeneity in the excited state?





Exceptional Near-Infrared Fluorescence Quantum Yields and Excited-State Absorptivity of Highly Conjugated Porphyrin Arrays, Duncan, Susumu, Sinks, and Therien, *JACS*, ASAP

# Tuning the Bandwidth-Adding Porphyrin Units





Using the method of Meier et al., the  $\lambda_{max}$  vs. n was fit with:



$$\lambda_{i}(n) = \lambda_{i,\infty} - (\lambda_{i,\infty} - \lambda_{i,1})e^{-b_{i}(n-1)}$$

$$\lambda_{i,\infty} = 863 \text{ nm}$$
  
b= 0.5



### Different Substituents











# UV-Vis Spectra



### "O1" Series in Solution









# Transient Absorption of ZnO1-3 in THF





Global fitting indicates two main time constants: 63 ps and 800 ps. This is somewhat shorter than those reported for the DDD series, which found three time constants of 70 ps, 130 ps, and 1.24 ns



# ZnO1-polymers

| Batch  | Cat.     | $\lambda_{\max}(nm)$ | Cond. |
|--------|----------|----------------------|-------|
| A      | AsPh3    | 911                  | 4     |
| В      | AsPh3    | 896                  | 1     |
| С      | PPh3     | 876                  | 2     |
| D      | P(Cyclo) | 904                  | 3     |
| ZnO1-3 |          | 777                  | 5     |











### Polymer A





Global fit produces 2-3 time constants:

Low power: 6.9 ps, 203 ps, and very long lived component



### Second Order Kinetics





# Singlet-Singlet Annihilation (or fusion)



- When an assembly of chromophores are photo-excited by a laser, numerous chromophores in the assembly may be excited.
- If the chromophores are in good communication, the excitons can migrate to each other and interact.  $*S+*S \rightarrow S+**S$
- This higher excited singlet state (\*\*S) generally quickly dumps energy to re-form the first excited singlet state.
- The net result is the destruction of one exciton and the preservation of one exciton







### Annihilation



- Annihilation is well known in the literature.
- First seen in PS
- Bimolecular process- second order kinetics
- Should be power dependent
- Can, in theory, back out the number of chromophores involved
- Indication of good electronic coupling



### Annihilation Analysis

Assume a simple kinetic model where the annihilation rate is *time independent* ( $\gamma_2$ ) and defined as a pseudo-first order rate (rate per pair of excitons) per Paillotin et al.\*

$$\frac{dn}{dt} = \gamma_1 n - \frac{1}{2} \gamma_2 n$$



# ZnO1-polymers

| Batch  | Cat.     | $\lambda_{\max}(nm)$ | cond | $\gamma_1 (x10^{12} 1/s)$ |
|--------|----------|----------------------|------|---------------------------|
| A      | AsPh3    | 911                  | 4    | 211                       |
| В      | AsPh3    | 896                  | 1    | 11.3                      |
| C      | PPh3     | 876                  | 2    | 44.4                      |
| D      | P(Cyclo) | 904                  | 3    | 93.1                      |
| ZnO1-3 |          | 777                  | 5    | N/A                       |

### Linear Chain Model



- $\tau_a = [N(N-1)* \tau_{hop}]/6$ 
  - Where N= number of sites sampled,  $\tau_a$  = annihilation time constant, and  $\tau_{hop}$  is the exciton lifetime at each site
- Assuming no chain-chain interactions, which may not be correct.
- Let us assume that the hopping rate is the same in these systems (and it is 1 fs) and calculate a hypothetical "n"



### ZnO1-polymers

| $\gamma_1 (x10^{12} 1/s)$ | n  | Batch | Cat.     | $\lambda_{\max}(nm)$ | cond |
|---------------------------|----|-------|----------|----------------------|------|
| 11.3                      | 23 | В     | AsPh3    | 896                  | 1    |
| 44.4                      | 12 | С     | PPh3     | 876                  | 2    |
| 93.1                      | 8  | D     | P(Cyclo) | 904                  | 3    |
| 211                       | 6  | A     | AsPh3    | 911                  | 4    |

Note: if we assume the hopping rate is the same for all the polymers, then a larger annihilation rate means a shorter chain (with a linear chain model).













Rapid deactivation of the excited state (non-linear with power). Subtle dynamic differences between films, but the spectra show differences base on sol. group





### Conclusions



- Annihilation data correlates very well with preliminary conductivity data.
  - Does this mean that intrachain communication is key?
  - Or is this another indication that some polymers form aggregates (and interchain communication is important?)
- More structural information is needed to correlate with the photo-physical data
  - Is our n vs.  $\lambda$  plot saturated at ~860 nm, or do we just need more data?
  - Do we have chain-chain interactions?
- Films show fast deactivation pathway
  - Is this annihilation or something else?
  - How do we test this?



### Acknowledgements

Prof. Michael Therien &

**Prof. Robin Hochstrasser** 

Paul Frail Timothy V. Duncan

**Prof. Paul J. Angiolillo**St. Joseph's University

Funding
NIH
NIH Ruth L.
Kirschstein NRSA Fellowship

Wasielewski Group/ Northwestern University Wenhao Liu Dr. Michael Tauber Randall Goldsmith

