Aufgabe 1

Wir zeigen, dass $B(x,y) \coloneqq \langle x,Qy \rangle$ ein Skalarprodukt ist und somit ist $\|x\|_Q \coloneqq \sqrt{B(x,x)}$ die vom Skalarprodukt induzierte Norm.

Bilinearität: Seien $x_1, x_2, y \in \mathbb{R}^n$. Dann gilt $B(x_1 + x_2, y) = \langle x_1 + x_2, Qy \rangle = \langle x_1, Qy \rangle + \langle x_2, Qy \rangle = B(x_1, y) + B(x_2, y)$. Seien $x_1, x_2, y \in \mathbb{R}^n$. Dann gilt $B(y, x_1 + x_2) = \langle y, Q(x_1 + x_2) \rangle = \langle y, Qx_1 \rangle + \langle y, Qx_2 \rangle = B(y, x_1) + B(y, x_2)$. Seien $\lambda, \mu \in \mathbb{R}$. Dann gilt: $B(\lambda x, \mu y) = \langle \lambda x, Q\mu y \rangle = \lambda \mu \langle x, Qy \rangle = \lambda \mu B(x, y), \forall x, y \in \mathbb{R}^n$.

Symmetrie: Da Q reell und symmetrisch ist, ist Q auch selbstadjungiert. Also $B(x,y) = \langle x, Qy \rangle = \langle Qx, y \rangle = \langle y, Qx \rangle = B(y,x), \forall x,y \in \mathbb{R}^n$ (unter Verwendung der Symmetrie des Skalarproduktes).

Positive Definitheit: $B(x,x) = \langle x,Qx \rangle = x^TQx > 0$, $\forall x \in \mathbb{R}^n \setminus \{0\}$ wegen der positiven Definitheit von Q. Außerdem gilt B(0,0) = 0. Falls B(x,x) = 0, so ist $x^TQx = 0$ und da alle $x^TQx > 0$ für alle $x \in \mathbb{R}^n \setminus \{0\}$, folgt x = 0. Demnach ist $B(x,x) = 0 \iff x = 0$.

B(x,y) ist also ein Skalarprodukt und $||x||_Q$ ist die von B induzierte Norm.

Aufgabe 2

- (i) Eindeutigkeit: Seien P(x) und $\tilde{P}(x)$ die orthogonale Projektion von $x \in \mathbb{R}^n$ auf den Untervektorraum $W \subset \mathbb{R}^n$. Das heißt, es gilt
 - (a) P(x) und $\tilde{P}(x)$ sind in W,
 - (b) $\langle P(x) x, w \rangle = 0$ und $\langle \tilde{P}(x) x, w \rangle = 0$ für alle $w \in W$.

Nun folgt

$$\langle P(x) - x, w \rangle = \langle \tilde{P}(x) - x, w \rangle$$

$$\iff \langle P(x), w \rangle - \langle x, y \rangle = \langle \tilde{P}(x), w \rangle - \langle x, w \rangle$$

$$\iff \langle P(x), w \rangle = \langle \tilde{P}(x), w \rangle$$

$$\iff \langle P(x) - \tilde{P}(x), w \rangle = 0$$
(1)

Die Gleichung (1) soll für alle $w \in W$ gelten, das heißt, der Vektor $P(x) - \tilde{P}(x)$ soll orthogonal zu jedem Vektor in W stehen. Dies ist nur der Fall, falls $P(x) - \tilde{P}(x) = 0$ gilt, denn wegen der positiven Definitheit des Skalarproduktes gilt:

$$\langle P(x) - \tilde{P}(x), P(x) - \tilde{P}(x) \rangle = 0 \iff P(x) - \tilde{P}(x) = 0.$$

Also sind P(x) und $\tilde{P}(x)$ gleich und die Projektion ist damit eindeutig.

(ii) Da $d := \dim W < n$, finden wir eine Orthonormalbasis $(u_i)_{i=1,\dots,d}$ für W. Definiere

$$P(x) := \sum_{i=1}^{d} \langle x, u_i \rangle u_i.$$

Zeige, dass P(x) eine orthogonale Projektion ist. Erstens, ist $P(x) \in W$, da $P(x) \in \text{span}(u_1,...,u_d) = W$ mit Koordinaten $(\langle x, u_i \rangle)_{i=1,...,d}$.

Sei $w \in W$ beliebig. Insbesondere ist $w = \sum_{i=1}^{d} \lambda_i u_i$.

$$\begin{split} P(x) - x, w \rangle &= \langle \sum \langle x, u_i \rangle u_i, w \rangle - \langle x, w \rangle \\ &= \sum \langle x, u_i \rangle \langle u_i, w \rangle - \langle x, w \rangle \\ &= \sum \langle x, u_i \rangle \langle u_i, \sum \lambda_j u_j \rangle - \langle x, w \rangle \\ &= \sum \left(\langle x, u_i \rangle \sum_{j=1}^d \lambda_j \underbrace{\langle u_i, u_j \rangle}_{=\delta_{ij}} \right) - \langle x, w \rangle \\ &= \sum \langle x, u_i \rangle \lambda_i - \langle x, w \rangle \\ &= \langle x, \sum \lambda_i u_i \rangle - \langle x, w \rangle \\ &= \langle x, w \rangle - \langle x, w \rangle = 0 \end{split}$$

Dabei bezeichnet δ_{ij} das Kroneckerdelta und wir verwenden, dass wir eine ONB haben:

$$\langle u_i, u_i \rangle = 0, i \neq j \quad \langle u_i, u_i \rangle = 1.$$

(iii) Linearität: Sei λ ein beliebiges Skalar im Vektorraum und $x \in \mathbb{R}^n$

$$P(\lambda x) = \sum_{i=1}^{d} \langle \lambda x, u_i \rangle u_i = \sum_{i=1}^{d} \lambda \langle x, u_i \rangle u_i = \lambda \sum_{i=1}^{d} \langle x, u_i \rangle u_i = \lambda P(x).$$

Seien $x, y \in \mathbb{R}^n$.

$$P(x+y) = \sum_{i=1}^{d} \langle x+y, u_i \rangle u_i = \sum_{i=1}^{d} \langle x, u_i \rangle u_i + \langle y, u_i \rangle u_i = \sum_{i=1}^{d} \langle x, u_i \rangle u_i + \sum_{i=1}^{d} \langle y, u_i \rangle u_i = P(x) + P(y).$$

(iv) Betrachte Aufgabe 3 mit $S = E_n$, wobei E_n die Einheitsmatrix der Dimension n bezeichnet.

Aufgabe 3

Bezeichne $u_1,...,u_m$ die Spalten der Matrix $A \in \mathbb{R}^{n \times m}$ mit $n \ge m$. Definiere

$$P(x) := A(A^TSA)^{-1}A^TSx$$

als Projektion von $x \in \mathbb{R}^n$ auf $W := \operatorname{span}(u_1, ..., u_m)$. Beachte, dass $S \in \mathbb{R}^{n \times n}$. Sei $B := A^T S A$ und B ist dann eine $m \times m$ Matrix, denn $SA \in \mathbb{R}^{n \times m}$ und $A^T \in \mathbb{R}^{m \times n}$. Wir zeigen, dass $P(x) \in W$. Es gilt, dass $Sx \in \mathbb{R}^n$ und somit $A^T S x \in \mathbb{R}^m$. Dann ist $b := B^{-1} A^T S x \in \mathbb{R}^m$. Somit ist $P(x) = Ab \in W$, da W der Spaltenraum von A ist.

Zeige, dass $\langle P(x) - x, w \rangle = 0$ für alle $w \in W$. Es gilt, dass w = Az für ein $z \in \mathbb{R}^m$ und $B^T = B$ wegen der Symmetrie $S^T = S$.

$$\langle P(x) - x, w \rangle = \langle AB^{-1}A^TSx - x, Az \rangle = \langle AB^{-1}A^TSx, Az \rangle - \langle x, Az \rangle.$$

Wegen $(B^{-1})^T = (B^T)^{-1} = B^{-1}$ ergibt sich

$$\langle AB^{-1}A^TSx, Az \rangle = (AB^{-1}A^TSx)^TSAz = x^TSAB^{-1}\underbrace{A^TSA}_{=R}z = x^TSAz = \langle x, Az \rangle.$$

Damit ist $\langle P(x) - x, w \rangle = \langle AB^{-1}A^TSx, Az \rangle - \langle x, Az \rangle = \langle x, Az \rangle - \langle x, Az \rangle = 0$.