MATH 3424 Tutorial

October 16, 2020

1 Review

Chapter 1 Sec 4.2 F test.

2 Exercises

1. Using the following data set

x_1	x_2	y_1	x_1	x_2	y_1
2	-2	2	1	-1	2
0	1	3	1	3	5
2	3	7	3	3	11
1	4	6	0	5	6
1	6	9	1	8	11

with summary statistics:

Overall

Overall
$$n = 10$$
, $\sum_{i=1}^{10} x_{i1} = 12$, $\sum_{i=1}^{10} x_{i2} = 30$, $\sum_{i=1}^{10} y_{i} = 62$, $\sum_{i=1}^{10} x_{i1}^{2} = 22$, $\sum_{i=1}^{10} x_{i1} x_{i2} = 31$, $\sum_{i=1}^{10} x_{i2}^{2} = 174$, $\sum_{i=1}^{10} x_{i1} y_{i} = 84$, $\sum_{i=1}^{10} x_{i2} y_{i} = 262$, $\sum_{i=1}^{10} y_{i}^{2} = 486$, $S_{x_{1}x_{1}} = 7.6000$, $S_{x_{1}x_{2}} = -5.0000$, $S_{x_{2}x_{2}} = 84.0000$, $S_{x_{1}y} = 9.6$, $S_{x_{2}y} = 76.0000$, $S_{yy} = 101.6000$. and
$$\begin{pmatrix} 7.6000 & -5.0000 \\ -5.0000 & 84.0000 \end{pmatrix}^{-1} = \begin{pmatrix} 0.136942 & 0.008151 \\ 0.008151 & 0.012390 \end{pmatrix},$$

When β_0 , β_1 and β_2 are all unknown, to fit the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \qquad e_i \sim_{iid} N(0, \sigma^2)$$

Note that estimations of **centered model** are $\hat{\beta}'_0 = 6.20000$, $\hat{\beta}'_1 = 1.93414$, $\hat{\beta}'_2 = 1.01989$ Give **all** your answers in 4 decimal points.

(a) Find the Regression Sum of Squares, Residual Sum of Squares, Total Sum of Squares and the unbiased estimate of the unknown parameter σ^2

$$y_{i} - \overline{y} = \beta_{0}' + \beta_{1}'(x_{i1} - \overline{x}_{i}) + \beta_{2}'(x_{i2} - \overline{x}_{2}) + \ell_{1}'$$

$$y_{i} = \beta_{0}' + \overline{y} - \beta_{1}' \overline{x}_{1} - \beta_{2}' \overline{x}_{2} + \beta_{1}' x_{11} + \beta_{2}' x_{12} + \ell_{1}'$$

$$\hat{\beta}_{0} = \hat{\beta}_{0}' + \overline{y} - \hat{\beta}_{1}' \overline{x}_{1} - \hat{\beta}_{2}' \overline{x}_{2} = 0.8195$$

$$\hat{\beta}_{1} = \hat{\beta}_{1}' , \quad \hat{\beta}_{2} = \hat{\beta}_{2}'$$

$$Reg. SS = \hat{\beta}_{1} S_{x_{1}y} + \hat{\beta}_{2} S_{x_{2}y} = 96.07938$$

$$Res. SS = S_{yy} - \hat{\beta}_{1} S_{x_{1}y} - \hat{\beta}_{2} S_{x_{2}y} = 5.5206$$

$$\hat{\sigma}^{2} = \frac{\beta_{2}SS}{n - \beta_{-1}} = 0.78866$$

$$T.SS = S_{yy} = 101.6$$

(b) Fill the ANOVA table for H_0 : $\beta_1 = \beta_2 = 0$ at significance level $\alpha = 0.05$. Write down your conclusion clearly.

Source	Sum of Squares	D.F.	Mean Squares	F value
Regression	96.0794	2	48.0397	60.9100
Residual	5.5206	7	0.7887	-
Total	(11.6000	9	-	-

$$F_{\text{obs.}} > F_{0.05}(2.7) = 4.74$$

Reject Ho.

(c) Test the hypothesis $H_0: \beta_1 = 1.5 \ vs \ H_1: \beta_1 > 1.5 \ at$ the significant level of $\alpha = 0.05$

* Note that $\hat{\beta}_i = \hat{\beta}_i'$

Computation as in (d)

so no need of the complicated

$$\hat{\beta}_1 - 1.5 = 0.43402$$
.
S.e. $(\hat{\beta}_1) = \sqrt{0.78866 \times 0.13694} = 0.32863$.
 $t = 1.3207$.
 $t_{0.05}(7) = 1.8946$.
 $t < t_{0.05}(7) \Rightarrow Cannot reject Ho.$

(d) Find a 95% confidence interval of β_0 .

$$\hat{\beta}_0 = \hat{\beta}_0' - \hat{\beta}_1' \overline{x}_1 - \hat{\beta}_2' \overline{x}_2$$

 $Var(\hat{\beta}_{0}) = Var(\hat{\beta}_{0}') + \bar{\chi}_{1}^{2} Var(\hat{\beta}_{1}') + \bar{\chi}_{2}^{2} Var(\hat{\beta}_{2}') - 2\bar{\chi}_{1} Cov(\hat{\beta}_{0}', \hat{\beta}_{1}') - 2\bar{\chi}_{2} Cov(\hat{\beta}_{1}', \hat{\beta}_{2}') + 2\bar{\chi}_{1} \bar{\chi}_{2} Cov(\hat{\beta}_{0}', \hat{\gamma}_{2}') + 2\bar{\chi}_{1} \bar{\chi}_{2} Cov(\hat{\beta}_{0}', \hat{\gamma}_{2}') + 2\bar{\chi}_{1} \bar{\chi}_{2} Cov(\hat{\beta}_{0}', \hat{\gamma}_{2}$

 $\widehat{Var}(\hat{\beta}_{s}') = \hat{\sigma}^{2} \cdot 0.0|2390 = 0.00977(497, \widehat{Cav}(\hat{\beta}_{s}', \hat{\beta}_{s}') = \hat{\sigma}^{2} \cdot 0.00815| = 0.006428$

 $\hat{Cov}(\hat{\beta}_0,\hat{\beta}_1) = \hat{Cov}(\hat{\beta}_0',\hat{\beta}_2') = 0$.

(e) Test the hull hypothesis
$$H_0: \beta_1 = \beta_2 \ vs \ H_\alpha: \beta_1 \neq \beta_2 \ at the significant level of $\alpha = 0.05$.$$

i. t-test. Write down the test statistic, the critical value and your conclusion clearly.

$$\hat{\beta}_1 - \hat{\beta}_2 = 0.91425$$

$$Var(\hat{\beta}_1 - \hat{\beta}_2) = Var(\hat{\beta}_1) + Var(\hat{\beta}_2) - 2Cov(\hat{\beta}_1, \hat{\beta}_2)$$

$$t = \frac{\hat{\beta}_1 - \hat{\beta}_2}{5e(\hat{\beta}_1 - \hat{\beta}_2)} = 2.822543$$

ii. F test for testing $H_0: \mathcal{C}\beta = \mathcal{J}$. Write down the test statistic, the critical value and your conclusion clearly.

$$C = (0 \ 1 \ -1) , A = 0.$$

$$C\hat{\beta} - d = 0.9(425).$$

$$[C(X^{T}X)^{-1}C^{T}]^{-1} = 7.5(700).$$

$$Y = tank(c) = 1.$$

$$F = \frac{0.9(425 \times 7.5700) \times 0.9(425/1)}{0.78866} = 7.966921.$$

$$F_{0.05}(1,7) = 5.59.$$

$$\Rightarrow \text{Reject Ho}.$$

iii. F test in terms of "Increase in Regression Sum of Squares". Write down the test statistic, the critical value and your conclusion clearly.

Reduced model:
$$y = \beta_0 + \beta_1(x_1 + x_2) + \ell$$
;

Under l : $|\vec{\beta}|_R = \frac{S_{x'y}}{S_{x'x'}} = \frac{S_{x,y} + S_{x,y}}{S_{x,x_2} + S_{x,x_2} + S_{x,x_2}} = 1.04902$

Reg.SS($|_R = S_{yy} - \hat{\beta}_1|_R S_{x'y} = 11.80389$.

The. Reg.SS = Reg.SS| $|_F - R_{eg}.SS|_R = 6.28328$.

 $|_F = \frac{Inc. Reg.SS}{8^2} = 7.96704S > F_{0.05}(1.7) = 5.59$

Reject the.