GENÓMICA COMPUTACIONAL - PEC 2 por Diego Vallarino

EJERCICIO 1

1. El programa CLUSTAL realiza alineamientos globales de dos o más secuencias. Conectaos al servidor implementado en el EBI para comparar la secuencia CDS del gen *TMEM106B* obtenida desde RefSeq (UCSC) para humano y ratón en la PEC1 anterior (hg38 y mm10, respectivamente).

CLUSTAL O(1.2.4) multiple sequence alignment

human	ATGGGAAAGTCTCTTTCTCATTTGCCTTTGCATTCAAGCAAAGAAGATGCTTATGATGGA	60
raton	ATGGGAAAGTCTCTTTCTCACTTACCTTTGCATTCAAATAAAGAAGATGGCTATGATGGC	60

human	GTCACATCTGAAAACATGAGGAATGGACTGGTTAATAGTGAAGTCCATAATGAAGAT	117
raton	GTTACATCGACAGACAATATGAGAAATGGATTGGTTAGCAGTGAAGTGCACAACGAAGAC	120
	** ***** ** ** ***** ***** ****** ** **	
human	GGAAGAAATGGAGATGTCTCTCAGTTTCCATATGTGGAATTTACAGGAAGAGATAGTGTC	177
raton	GGAAGAAATGGAGATGTCTCTCAGTTCCCATATGTGGAATTTACTGGAAGAGATAGTGTC	180

human	ACCTGCCCTACTTGTCAGGGAACAGGAAGAATTCCTAGGGGGCAAGAAAACCAACTGGTG	237
raton	ACTTGTCCCACTTGCCAAGGAACAGGAAGAATTCCTAGGGGACAAGAAAACCAACTGGTG	240
	** ** ** ***** ** ****************** ****	
human	GCATTGATTCCATATAGTGATCAGAGATTAAGGCCAAGAAGAACAAAGCTGTATGTGATG	297
raton	GCATTGATTCCATATAGTGATCAGCGGTTACGGCCAAGAAGAACAAAGCTGTATGTGATG	300

human	GCTTCTGTGTTTGTCTGTCTACTCCTTTCTGGATTGGCTGTGTTTTTCCCTTTTCCCTCGC	357
raton	GCGTCTGTGTTTGTCTGCCTGCTCCTGTCTGGATTGGCTGTTTTTTTT	
	** ********* ** **** *********** ******	
human	TCTATCGACGTGAAATACATTGGTGTAAAATCAGCCTATGTCAGTTATGATGTTCAGAAG	417
raton	TCTATTGAGGTGAAGTACATTGGAGTAAAATCAGCCTATGTCAGCTACGACGCTGAAAAG	420
	***** ** ***** ****** ************* **	
human	CGTACAATTTATTTAAATATCACAAACACACTAAATATAACAAACAATAACTATTACTCT	477
raton	CGAACCATATATTTAAATATCACGAACACACTAAATATAACAAATAATAACTATTATTCT	480
	** ** ** ********** *********** *******	
human	GTCGAAGTTGAAAACATCACTGCCCAAGTTCAATTTTCAAAAACAGTTATTGGAAAGGCA	537
raton	GTTGAAGTTGAAAACATCACTGCTCAAGTCCAGTTTTCAAAAACCGTGATTGGAAAGGCT	540
	** *************** **** ** ******* ** *	
human	CGCTTAAACAACATAACCATTATTGGTCCACTTGATATGAAACAAATTGATTACACAGTA	597
raton	CGTTTAAACAACATAACTAACATTGGCCCACTTGATATGAAGCAGATTGATT	600
	** ********* * **** ******** ** ****** ** ***	
human	CCTACCGTTATAGCAGAGGAAATGAGTTATATGTATGATTTCTGTACTCTGATATCCATC	657
raton	CCCACAGTTATTGCAGAGGAAATGAGTTACATGTATGATTTCTGTACACTGCTCTCCATC	660
	** ** ***** ************ *********** *** *	
human	AAAGTGCATAACATAGTACTCATGATGCAAGTTACTGTGACAACAACATACTTTGGCCAC	717
raton	AAAGTGCACAACATAGTACTCATGATGCAAGTTACTGTAACAACAGCATACTTTGGACAC	720
	******* ************************* ***** ****	
human	TCTGAACAGATATCCCAGGAGAGGTATCAGTATGTCGACTGTGGAAGAAACACAACTTAT	777
raton	TCTGAGCAGATATCTCAGGAAAGGTACCAGTATGTCGACTGTGGAAGGAA	780
	***** ******* ***** ***** *************	
human	CAGTTGGGGCAGTCTGAATATTTAAATGTACTTCAGCCACAACAGTAA 825	
raton	CAGTTGGCCCAGTCTGAGTATCTAAATGTCCTTCAGCCACAACAATAA 828	
	****** ******* *** ****** ********** ***	

2. Repetid este mismo alineamiento global, utilizando ahora las respectivas proteínas de este gen en cada especie (que previamente debéis volver a recuperar de la entrada de RefSeq). Valorad el grado de homología entre estas dos secuencias.

```
CLUSTAL O(1.2.4) multiple sequence alignment
          MGKSLSHLPLHSSKEDAYDGVTS-ENMRNGLVNSEVHNEDGRNGDVSQFPYVEFTGRDSV 59
          MGKSLSHLPLHSNKEDGYDGVTSTDNMRNGLVSSEVHNEDGRNGDVSQFPYVEFTGRDSV 60
raton
          TCPTCOGTGRIPRGOENQLVALIPYSDQRLRPRRTKLYVMASVFVCLLLSGLAVFFLFPR 119
human
          TCPTCQGTGRIPRGQENQLVALIPYSDQRLRPRRTKLYVMASVFVCLLLSGLAVFFLFPR 120
           SIDVKYIGVKSAYVSYDVQKRTIYLNITNTLNITNNNYYSVEVENITAQVQFSKTVIGKA 179
human
           SIEVKYIGVKSAYVSYDAEKRTIYLNITNTLNITNNNYYSVEVENITAOVOFSKTVIGKA 180
raton
          RLNNITIIGPLDMKQIDYTVPTVIAEEMSYMYDFCTLISIKVHNIVLMMQVTVTTTYFGH 239
human
          RLNNITNIGPLDMKQIDYTVPTVIAEEMSYMYDFCTLLSIKVHNIVLMMQVTVTTAYFGH 240
raton
          SEQISQERYQYVDCGRNTTYQLGQSEYLNVLQPQQ 274
          SEQISQERYQYVDCGRNTTYQLAQSEYLNVLQPQQ 275
raton
```

El grado de homología es cercado al 96%.

```
# # # # Percent Identity Matrix - created by Clustal2.1 # # # 1: human 100.00 95.99 2: raton 95.99 100.00
```

3. El programa BLAST realiza alineamientos locales. Conectaos a BLAST, en el servidor principal del NCBI, para buscar qué versión de este programa debéis utilizar para alinear dos secuencias. Realizad ahora el alineamiento local de las dos regiones CDS del gen *TMEM106B*.

Tomamos el Blast Nucleotide y tomamos la frecuencia FASTA de cada una de las dos secuencias. A continuación, se muestra en la siguiente figura:

4. Ahora utilizad el servidor de CLUSTAL para alinear globalmente la secuencia *genomicA.txt* y la secuencia *genomicB.txt* que encontraréis adjuntas a este enunciado.

He codificado en RStudio para poder acceder a cada uno de los txt. Este fue el código escirto:

untar("D:/Master en BioEstadistica/Materias/2.Genómica computacional/PEC2/input.tar.gz", exdir = "D:/Master en BioEstadistica/Materias/2.Genómica computacional/PEC2")

genomicA genomicB		cagaagaattgcttgaaccagggaggtggaggttgcagtgagcagagatcacgccactgcgctgggatgtggggagcagtgttctgaggctgagcag-gac * **** * ***** * *** *	60 40
genomicA genomicB		actcctgcttaagtgacagagtgagactccatctcaaaaaaaa	120 90
genomicA genomicB		tgtgcttgagtaataccacccactctggcaaatcttaaaaaagctcttggccgggtgcag tgagcctgtgtcctataacttattgcaggctgttagaagcaggcagac ** ** ** ** ** ** * * * * * * *	180 138
genomicA genomicB		tggctcatgcctgtaatccccagaagaattgcttgaaccagggaggtggaggttgcagtg tactttctggatgctttgctgcttagaattttttctgcca	240 179
genomicA genomicB		agcagagatcacgccactgcactcctgcttaagtgacagagtgagactccatctcaaaaagatatcctaggtcatcactctATGAGTGTGGATCCAGCTTGT ** ** ** ** ***** *****************	300 221
genomicA genomicB		aaaaaaaaaattcctattatgtgcttgagtaataccacccac	360 245
genomicA genomicB		aagctcttggccgggtgcagtggctcatgcctgtaatcccATGGGAAAGTCTCTTTCTCA GCATCatgggaggagctgtctctaagatctctaaagtgactttgaggccttttgctca * * ** ** ** * * * * * * * * * * * * *	420 303
genomicA genomicB		TTTGCCTTTGCATTCAAGCAAAGAAGATGCagttccccatttctgtcgccacacctctga ttgtcttggatattagcccttggcacccttttagtcacgctaatccccta ** ** *** *** * *** * *** ** *** ***	480 354
genomicA genomicB		gatggtgcctgtgtctgtcattgtttcttgaatcaatctagacctcagttctaaagaacc gcaagtggttgctccacagcctgtttatattcctctctaataatgc * *** * * * * * * * * * * * *	540 401
genomicA genomicB		ctaaaaactctgtccgtgaatcttgggggaaggaaggaag	600 455
genomicA genomicB		ttgtatttctaagatgtctatttcccctttgtgattattttgactgcaagtgtccgtg gtttcccttttaaatgtaagtttcagctttaagtcatttctttgcatggggagcagatga ** ** ** **** **** **** **** **** ***	658 515
genomicA genomicB		aatcttgggggaaggaagtcaatgtaaaatacttccatattgtatttctaagatgtc atcatatggtgagaggaggtacagagagagactaggatgtggtaccagactcttaag * * * * * * * * * * * * * * * * * * *	718 575
genomicA genomicB		tatttcccctttgtgattattttgactgcaagATGAGTGTGGATCCAGCTTGTCCCCAAA caatcaaatctcacgtgaactaactgagcaagaagtgacttatcaccaag * * * * * ******* *** * * **********	778 625
genomicA genomicB		GCTTGCCTTGCAGCATCagttccccatttctgtcgccacacctc gggtgttaaccattcatgagggatctgcccacatgatccaatcacctcccaccaggaaat * ** * ** * * * **** * * *****	827 685
genomicA genomicB		tgagatggtgcctgtgtctgtcattgtttcttgaatcaatc	887 736
genomicA genomicB		accctaaaaactcagttccccatttctgtcgccacacctctgagatggtgcctgtgtctg AGCAAAGAAGATGCtgcccacatgatccaatcacctcccaccaggaaatcacattgggaa * * * * * * * * * * * * * * * * * * *	947 796
genomicA genomicB		tcattgtttcttgaatcaatctagacctcagttctaaagaaccctaaaaactc 1000 tcac	
	# # # #	Percent Identity Matrix - created by Clustal2.1	
	**	1: genomicA 100.00 44.09 2: genomicB 44.09 100.00	

5. Proceded ahora a efectuar el alineamiento local con BLAST de la secuencia genómica genomicA.txt y la secuencia genomicB.txt adjuntadas con el enunciado.

olastn bla	astp blastx tblastn tblastx	
	a	BLAS
Enter Query S		
	number(s), gi(s), or FASTA sequence(s) ? Clear Query subrange ?	
>genomicA cagaagaattgcttgaacc	cagggaggtggaggttgcagtgagcagagatc From	
acgccactgcactcctgct	taagtgacagagtgagactccatctcaaaaa 🔻	
aaaaaaaaaattcctatt	tatgtgcttgagtaataccacccactctggca // To	
Or, upload file	Seleccionar archivo genomicA.txt.txt	
Job Title	genomicA	
	Enter a descriptive title for your BLAST search ?	
>genomicB	number(s), gi(s), or FASTA sequence(s)	0
Enter accession n >genomicB gctgggatgtggggagca	number(s), gi(s), or FASTA sequence(s)	0
Enter accession n >genomicB gctgggatgtggggagca tgggcctggacctctgaaac	number(s), gi(s), or FASTA sequence(s)	0
Enter accession n >genomicB gctgggatgtggggagca tgggcctggacctctgaaac	number(s), gi(s), or FASTA sequence(s)	0
Enter accession n >genomic8 gctgggttggggagca tgggctggcttgaaac tcctataacttattgcaggcl	number(s), gi(s), or FASTA sequence(s)	3
Enter accession n >genomic8 gctgggttggggagca tgggctggcttgaaac tcctataacttattgcaggcl	number(s), gi(s), or FASTA sequence(s) outgittctgaggctgagcaggagagtgagcaggagctctgagcctgagctgagcaggagagatactttctggat Seleccionar archivo genomicB.txt.txt	0
Enter accession n >genomic8 gctgggatgfggggagca tgggcctggcctctgaaac tcctataacttattgcaggcl Or, upload file Program Sele	number(s), gi(s), or FASTA sequence(s) outgittctgaggctgagcaggagacagtgaggcct cattittccacctaggcctctgagcctgtg tottagaagcaggcagactatttctggat Seleccionar archivo genomicB.txt.txt Highly similar sequences (megablast)	0
Enter accession n >genomic8 gctaggatgfggggagca tgggcctggcctctgaaac tcctataacttattgcaggcl Or, upload file	number(s), gi(s), or FASTA sequence(s) Clear Subject subrange Indigit (chagagical aga aga aga (aga aga cact aga aga cact aga aga aga aga aga aga aga aga aga ag	0
Enter accession n >genomic8 gctgggatgfggggagca tgggcctggcctctgaaac tcctataacttattgcaggcl Or, upload file Program Sele	number(s), gi(s), or FASTA sequence(s) outgittctgaggctgagcaggagacagtgaggcct cattittccacctaggcctctgagcctgtg tottagaagcaggcagactatttctggat Seleccionar archivo genomicB.txt.txt Highly similar sequences (megablast)	0

Score	-2	Expect	Identities	Gaps	Strand	
95.3 bits(51)	2e-23	51/51(100%)	0/51(0%)	Plus/Plus	
Query 75	1 A	GAGTGTGGATCCAG	GCTTGTCCCCAAAGCTTGC	CTTGCTTTGAAGCATCA	801	
Sbjct 20	1 A			CTTGCTTTGAAGCATCA	251	
Score 93.5 bits(50)	Expect 6e-23	Identities 50/50(100%)	Gaps 0/50(0%)	Strand Plus/Plus	
43 5 hits/	50)	6e-23	50/50(100%)			
	4 0		CICATITICCTTTICATI	CAAGCAAAGAAGATGC	450	
)uery 40)1 A					
	1	GGGAAAGTCTCTTT GGGAAAGTCTCTTT	CTCATTTGCCTTTGCATT	CAAGCAAAGAAGATGC	750	
Juery 40	1	GGGAAAG ICICIII GGGAAAGTCTCTTT	CTCATTTGCCTTTGCATT	CAAGCAAAGAAGATGC	750	

6. Comparad los resultados del alineamiento global y local en los dos casos anteriores (2 CDSs o las secuencias *genomicA.txt* y *genomicB.txt*). Decidid cuál de los dos programas probados es más adecuado para cada caso en función de la estrategia empleada.

Un **alineamiento global** efectúa la correspondencia entre las secuencias completas, maximizando el número total de caracteres coincidentes a lo largo de las cadenas.

Un **alineamiento local** realiza exclusivamente la correspondencia entre aquellos fragmentos de las secuencias que poseen una coincidencia máxima de caracteres, descartando el resto de regiones a lo largo de dichas secuencias que no presentan una mínima similaridad.

En este caso, a nivel de globalidad, el alineamiento era del 44%, pero cuando se analiza localmente, se encuentran 2 fragmentos en donde la coincidencia es muy alta. Como no se tiene toda la secuencia completa, parecería mejor utilizar el segundo caso, con un alineamiento local para poder tener mayor comprensión de esas dos regiones.

7. Unos investigadores que trabajan con el genoma del pollo (*chicken*) nos envían la secuencia adjunta *genomicC.txt*, pues sospechan que la forma ortóloga de nuestro gen *TMEM106B* está codificada en su interior.

Decidid qué versión de BLAST debéis utilizar para validar esta hipótesis con la proteína humana (que tenéis de pasos previos), anotando su homóloga en esta región genómica de pollo. En caso de respuesta afirmativa, interpretad el grado de homología resultante entre ambas proteínas.

El grado de homologia es relativamente alto, de aproximadamente 85%.

8. El programa MEME representa una familia alternativa de herramientas bioinformáticas para comparar secuencias. Definid en pocas palabras qué tipo de tarea realiza esta aplicación y cómo puede ser empleado dentro del área de estudio de la regulación génica mediante factores de transcripción:

El servidor web de MEME Suite proporciona un portal unificado para el descubrimiento y análisis en línea de motivos (*motifs*) de secuencia que representan características tales como sitios de unión de ADN y dominios de interacción de proteínas.

El popular algoritmo de descubrimiento de motivos MEME ahora se complementa con el algoritmo GLAM2 que permite el descubrimiento de motivos que contienen huecos. Tres algoritmos de escaneo de secuencias, MAST, FIMO y GLAM2SCAN, permiten escanear numerosas bases de datos de secuencias de ADN y proteínas en busca de motivos descubiertos por MEME y GLAM2. Los motivos de los factores de transcripción (incluidos los descubiertos mediante MEME) se pueden comparar con motivos en muchas bases de datos de motivos populares utilizando el algoritmo de exploración de la base de datos de patrón TOMTOM.

Los motivos de los factores de transcripción se pueden analizar adicionalmente para determinar la función putativa mediante la asociación con términos de Ontología Genética (GO) utilizando la herramienta de asociación de términos motivo-GO GOMO. La salida de MEME ahora contiene LOGOS de secuencia para cada motivo descubierto, así como botones para permitir que los motivos se envíen convenientemente a los algoritmos de escaneo de la base de datos de secuencias y patrón (MAST, FIMO y TOMTOM), o a GOMO, para su posterior análisis. La salida de GLAM2 contiene de manera similar botones para un análisis más detallado usando GLAM2SCAN y para volver a ejecutar GLAM2 con diferentes parámetros.

9. Vamos a estudiar la regulación transcripcional de nuestro gen *TMEM106B* a lo largo de la evolución. En primer lugar, empleando el navegador genómico de UCSC y las anotaciones de RefSeq, debéis extraer la región promotora del gen (seleccionad 5000 nucleótidos de longitud justo antes del inicio de transcripción del gen en cada especie) para estas especies: humano (hg38), ratón (mm10), rata (rn6) y pollo (galgal6).

Se tomó la información se cargó en MEME. No se agrega por un tema de espacio.

10. En segundo lugar, emplead el programa MEME para comparar esas cuatro secuencias ortólogas. Buscamos los 10 mejores motivos que posean una longitud entre 5 y 15 pares de bases. Explorad qué función puede jugar el programa TOMTOM integrado dentro de la *suite* de programas MEME y efectuad una prueba con alguno de los motivos identificados.

Se tomaron los datos por default para 3 Motifs

Home Documentation Downloads Authors Citing

MEME version 4

ALPHABET= ACGT

strands: + -

Background letter frequencies (from unknown source): A 0.250 C 0.250 G 0.250 T 0.250

MOTIF 1 GGAACAGGAAGAATTCCTAGGGGGCAAGAAAACCAACTGGTGGCATTGAT

```
letter-probability matrix: alength= 4 w= 50 nsites= 1 E= 0e+0 \,
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
1.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
1.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
1.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 1.000000
0.000000 0.000000 0.000000 1.000000
0.000000 1.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 1.000000
1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
```

EJERCICIO 2

1. Deseamos conocer las coordenadas de los exones que constituyen el gen codificado en esta secuencia. Como primer paso de nuestro protocolo de anotación, debéis utilizar el programa GENEID para recuperar el mejor gen identificado computacionalmente en esta región del genoma humano:

	e Tue May 4 13							
		neid v $1.2 ge$		es				
		ure. 2 genes. Sc		27				
		ure. 2 genes. 50 1 exons. 622 aa.						
human	geneid v1.2		286	9.81	+	0	human 1	
	geneid_v1.2		10376	10458	1.45	+	2	human 1
human	geneid_v1.2	Internal			0.89		0	human 1
human	geneid_v1.2	Internal		15655	-0.00		2	human 1
human	geneid_v1.2	Internal		16828	1.03		0	human 1
human	geneid_v1.2	Internal		17406	5.73	+	1	human 1
human	geneid_v1.2	Internal		23865	-1.35	+	2	human 1
numan	geneid v1.2	Internal		25142	2.96	+	ō	human 1
numan	geneid v1.2	Internal		26281	2.17	+	1	human 1
human	geneid v1.2	Internal	27296	27427	2.70	+	2	human 1
human	geneid v1.2	Terminal	28008	28858	6.20	+	2	human 1
		exons. 141 aa.					_	
human	geneid v1.2	First 30518		-2.92	+	0	human 2	
numan		Internal	30780		0.68	+	0	human 2
numan	geneid v1.2	Internal		31994	2.93	+	0	human 2
human	geneid v1.2	Terminal	33682	33875	-0.40	+	2	human 2

>human_1|geneid_v1.2_predicted_protein_1|622_AA

MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY CMWVQDEPLLQEELANTIAQLVHAVNNSAAQACVWFFSRIKVFLDVLMKEVLCPESQSPN GVRFHFIDIYLDELSKVGGKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVD QSPFVPEETMEEQKTKVGDGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERG RDDCGTFEDTGPLLQFDYKAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQ LSFAEDISADEDDQILSQGKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRK KKKKHHLQPENPGPGGAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEH PPAVPMHNKRKRPRKKSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLK RKRKLGVVPVNGSGLSTPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLEL CGLPSQKTASLKKRKKMRVMSNLVEHNGVLESEAGQPQALVRWEHPQASSPQRHSLASMG LHCLLRGRVGAGGQASGLSSS

>human_2|geneid_v1.2_predicted_protein_2|141_AA

MKIKGSSGTCSSLKKQKLRAESDFVKFDTPFLPKPLFFRRAKSSTATHPPGPAVQLNKTP SSSKKVTFGLNRNMTAEFKKTDKSILVSPTGPSRVAFDPEQKPLHGVLKTPTSSPASSPL VAKKPLTTTPRRRPRAMDFF

2. Como segundo componente de nuestro *pipeline*, debéis emplear GENSCAN para recuperar el gen codificado internamente en esta secuencia humana:

>/tmp/05_04_21-09:27:48.fasta|GENSCAN_predicted_peptide_1|897_aa MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML IRLVLRQSFEVLKRNGWEESRIKVFLDVLMKEVLCPESQSPNGVRFHFIDIYLDELSKVG GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY

KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ GKHKKKGNKLLEKTNLEKEKGKQELQGALGGGCLMTTRDLWFLPLSPKISGNGTISVPYV FINGQKEGFQSQLGMEEVGPDDKGSRVFCVEEEDSESSLQKRRRKKKKKHHLQPENPGPG GAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRK KSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGL STPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRK KMRVMSNLVEHNGVLESEAGQPQALAAHLNLPEPPVCRQRHWAAHTSESQVRDPVSLWVA VSCCTRNECPGPASVVLCVKPELCRMEGLSASAVRKTAGRRGSSGTCSSLKKQKLRAESD FVKFDTPFLPKPLFFRRAKSSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDK SILVSPTGPSRVAFDPEQKPLHGVLKTPTSSPASSPLVAKKPLTTTPRRRPRAMDFF

3. Finalmente, como tercer componente del proceso, utilizad el programa FGENESH para identificar también la predicción de este sistema:

Predicted protein(s):

>FGENESH: 1 16 exon (s) 157 - 33875 758 aa, chain +
MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY
CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML
IRLVLRQSFEVLKRNGWEESRIKVFLDVLMKEVLCPESQSPNGVRFHFIDIYLDELSKVG
GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG
DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY
KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ
GKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRKKKKKHHLQPENPGPGGAA
PSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRKKSP
RAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGLSTP
AWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRKKMR
VMSNLVEHNGVLESEAGQPQALGSSGTCSSLKKQKLRAESDFVKFDTPFLPKPLFFRRAK
SSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDKSILVSPTGPSRVAFDPEQK
PLHGVLKTPTSSPASSPLVAKKPLTTTPRRRPRAMDFF

4. Para evaluar la coherencia de las predicciones obtenidas por cada programa, emplead CLUSTAL para comparar las proteínas reportadas por GENEID, GENSCAN y FGENESH. Realizad una primera interpretación de estos resultados en el contexto de este alineamiento global.

```
# Percent Identity Matrix - created by Clustal2.1
#

1: geneid 100.00 94.35 99.30
2: Genscan 94.35 100.00 100.00
3: Fgenesh 99.30 100.00 100.00
```

5. Finalmente, para comparar cuantitativamente los tres sistemas de predicción, rellenad la siguiente tabla con las coordenadas de todos los exones identificados dentro del mejor gen presentado por cada programa. Seleccionad dos de estos exones para realizar una búsqueda con BLASTP contra la base de datos completa de proteínas. Interpretad estos resultados para elaborar una primera anotación factible de este gen en función de estas predicciones:

GENEID

# Gene 1	(Forward).	11 exons.	622 aa.	Scor	re	=	31.58						
First	157	286	9.81				8.07	2.83	20.67	0.00	AA	1: 44	human 1
Internal	10376	10458	1.45	+	2	0	5.58	2.65	3.77	0.00	AA	44: 71	human 1
Internal	12800	12857	0.89	+	0	1	3.87	3.09	5.54	0.00	AA	72: 91	human 1
Internal	15504	15655	-0.00	+	2	0	0.91	4.65	5.41	0.00	AA	91:141	human 1
Internal	16764	16828	1.03	+	0	2	4.32	1.67	6.10	0.00	AA	142:163	human 1
Internal	17225	17406	5.73	+	1	1	3.69	3.72	15.71	0.00	AA	163:224	human 1
Internal	23771	23865	-1.35	+	2	0	-0.44	3.68	4.25	0.00	AA	224:255	human 1
Internal	25045	25142	2.96	+	0	2	3.54	0.05	14.52	0.00	AA	256:288	human 1
Internal	26262	26281	2.17	+	1	1	6.90	4.53	0.77	0.00	AA	288:295	human 1
Internal	27296	27427	2.70	+	2	1	0.45	5.26	10.70	0.00	AA	295:339	human 1
Terminal	28008	28858	6.20	+	2	0	4.56	0.00	21.14	0.00	AA	339:622	human_1
# Gene 2	(Forward) .	4 exons. 1	141 aa. S	core	=	0	.28						
First	30518	30529	-2.92	+	0	0	1.42	1.23	1.21	0.00	AA	1: 4	human 2
Internal	30780	30932	0.68	+	0	0	2.81	3.31	5.01	0.00	AA	5: 55	human 2
Internal	31931	31994	2.93	+	0	1	4.88	4.80	5.31	0.00	AA	56: 77	human 2
Terminal	33682	33875	-0.40	+	2	0	-0.70	0.00	12.53	0.00	AA	77:141	human_2

FGENESH

Pos.	itions	0	f predi	cted	genes	and exons:	Variant	1 from	n 1,	Score:	115.993872
G	Str	F	'eature	Sta	rt	End	Score		ORF		Len
1	+	1	CDSf	1	57 -	286	28.30	157	_	285	129
1	+	2	CDSi	103	76 -	10458	7.43	10378	-	10458	81
1	+	3	CDSi	128	00 -	12857	6.33	12800	-	12856	57
1	+	4	CDSi	143	62 -	14447	3.34	14364	_	14447	84
1	+	5	CDSi	151	28 -	15189	2.40	15128	_	15187	60
1	+	6	CDSi	155	26 -	15655	6.39	15527	-	15655	129
1	+	7	CDSi	167	64 -	16828	6.62	16764	-	16826	63
1	+	8	CDSi	172	25 -	17406	12.24	17226	_	17405	180
1	+	9	CDSi	237	71 -	23865	2.10	23773	_	23865	93
1	+ :	LO	CDSi	250	45 -	25142	0.60	25045	-	25140	96
1	+	1	CDSi	262	62 -	26281	-1.21	26263	-	26280	18
01	# n D	12	CDSi	272	96 -	27427	8.29	27298	_	27426	129
1	+	13	CDSi	280	08 -	28732	33.29	28010	2	28732	723
1	+ :	L4	CDSi	307	80 -	30932	9.89	30780	-	30932	153
1	+	15	CDSi	319	31 -	31994	13.04	31931	-	31993	63
1	+	16	CDSl	336	82 -	33875	1.90	33684	_	33875	192
1	+		PolA	339	23		-4.47				

GENSCAN

Gn.Ex	Туре		.Begin	End	.Len	Fr	Ph	I/Ac	Do/T	CodRg	P	Tscr
1.01	Init		162	291	130	2	1	107	80	324	0.752	33.81
1.02	Intr		10381	10463	83	2		94	92	26	0.829	2.96
1.03	Intr		12805	12862	58	0	1	97	99	62	0.963	6.66
1.04	Intr		14367	14452	86	1	2	47	95	49	0.678	1.04
1.05	Intr		15133	15194	62	0	2	53	86	51	0.694	-1.07
1.06	Intr		15531	15660	130	0	1	27	99	108	0.642	6.50
1.07	Intr		16769	16833	65	1	2	78	83	73	0.995	3.32
1.08	Intr		17230	17411	182	1	2	77	91	192	0.962	17.91
1.09	Intr		23776	23870	95	2		37	94	55	0.688	0.68
1.10	Intr		25050	25147	98	2		64	26	129	0.640	3.11
1.11	Intr		26267	26286	20	2	2	91	100	-1	0.600	-2.35
1.12	Intr		27301	27432	132		0	41	121	120	0.872	11.22
1.13	Intr		27668	27856	189	0	0	51	67	92	0.625	2.96
1.14	Intr		28013	28737	725	0		85	95	470	0.762	38.55
1.15	Intr		30241	30385	145	0	1	71	48	71	0.368	1.26
1.16	Intr		30594	30676	83	1	2	30	51	91	0.478	-1.04
1.17	Intr		30785	30937	153	1	0	100	101	109	0.999	13.67
1.18	Intr		31936	31999	64	0	1	114	131	52	0.996	10.39
1.19	Term		33687	33880	194	1	2	52	55	187	0.999	9.38
1.20	PlyA	+	35505	35510	6							-0.45

6. Aprovechad BLAT para identificar en qué parte del genoma humano se encuentra *anonima.fa* (cromosoma, inicio, final, hebra). Verificad visualmente que el inicio y el final de nuestra secuencia encajan con la región correcta.

7. Convertid manualmente nuestras predicciones de GENEID, GENSCAN y FGENESH en formato GFF para visualizarlas como Custom tracks en UCSC (será necesario adaptar las coordenadas de los exones para trasladarlos sobre el cromosoma 21):

9. Para acabar, efectuad con CLUSTAL el alineamiento múltiple global de las tres proteínas predichas por cada programa junto con la proteína real RRP1B. Analizad cuidadosamente cada sección de la proteína en busca de las mejores predicciones en ese fragmento. Con todas estas informaciones, decidid qué programa ha efectuado la mejor predicción.

```
# Percent Identity Matrix - created by Clustal2.1
#

1: geneid 100.00 94.35 99.30 99.30
2: Genscan 94.35 100.00 100.00 100.00
3: Fgenesh 99.30 100.00 100.00 100.00
4: RRP1B 99.30 100.00 100.00 100.00
```

10. El navegador genómico VISTA permite observar la conservación entre diversos genomas. Analizad la documentación existente sobre esta aplicación y averiguad el significado que tienen las gráficas y los colores empleados sobre cada alineamiento entre dos genomas. Posteriormente, seleccionad nuestro gen de estudio para analizar el grado de conservación que poseen los exones de éste.

Razonad brevemente sobre cómo podríamos mejorar las predicciones iniciales servidas por GENEID, GENSCAN y FGENESH utilizando esta información sobre la conservación de secuencia en regiones funcionales.

La página web http://www-gsd.lbl.gov/vista/ sirve como portal para acceder al conjunto de herramientas de VISTA.

Uno de ellos es VISTA Browser, que permite al usuario ver alineaciones del genoma completo precalculadas de muchas especies. Hay tres servidores VISTA, GenomeVISTA, mVISTA y rVISTA, que permiten al usuario enviar secuencias de ADN para su análisis. Para GenomeVISTA, el usuario envía una única secuencia (borrador o terminada) que se compara con conjuntos completos de genoma completo disponibles públicamente. mVISTA es el programa original, diseñado para la comparación de secuencias ortólogas de diferentes especies.

rVISTA combina una búsqueda en la base de datos de sitios de unión de factores de transcripción con un análisis de secuencia comparativo. El programa Phylo-VISTA, un nuevo miembro de la familia de herramientas VISTA, permite al usuario visualizar múltiples datos de alineación de secuencias enviados mientras se tienen en cuenta las relaciones filogenéticas entre secuencias. El sitio web de VISTA también proporciona acceso a los análisis comparativos del conjunto de genes cardiovasculares, estudiado por el Programa de Berkeley para Aplicaciones Genómicas (PGA).

Las páginas de VISTA brindan una gran ayuda para seleccionar un tipo de análisis, encontrar los parámetros óptimos para un proyecto en particular y navegar por el sitio web.

Los gráficos de visualización muestran secuencias conservadas entre humanos y ratones (panel superior) y humanos y ratas (panel inferior) basadas en la alineación múltiple de tres genomas usando MLAGAN. El nivel de conservación (eje vertical) se muestra en las coordenadas de la secuencia humana (eje horizontal). Las regiones conservadas por encima del nivel de 70% / 100 pb se resaltan debajo de la curva, donde el rojo indica una región no codificante conservada, el azul, un exón conservado y el turquesa, una región no traducida. Los detalles de la pantalla se dan en la leyenda en el lado izquierdo del gráfico. El botón 'UCSC' abre otra ventana que contiene la vista del navegador UCSC reflejada del mismo intervalo con pistas VISTA integradas.

El navegador cuenta con una amplia ayuda en línea. (b) VISTA Browser generó una lista de elementos conservados de humanos / ratones en la región *KIF3A* con sus coordenadas en la secuencia humana (números sin corchetes) y del ratón (números entre corchetes), longitudes e identidades porcentuales y anotación funcional. Se muestran los elementos del comienzo del intervalo de 180 kb en *RAD50*. (c) Fragmento genómico corriente arriba del gen *KIF3A* que contiene múltiples elementos no codificantes conservados. El número de elementos conservados (coloreados) depende de la identidad porcentual seleccionada por el usuario y los límites de longitud que se muestran arriba de cada gráfico.

Con respecto a cómo nos ayudaría contar con esta información, podríamos decir que para reducir sustancialmente el ruido en estas representaciones podemos emplear la comparación con otras secuencias relacionadas, aportando nueva información sobre la conservación regulatoria.

Existen diversas fuentes de conocimiento que nos permiten identificar regiones de genes que hipotéticamente comparten una colección de sitios de unión:

- 1. Genes que desempeñan funciones similares en el organismo.
- 2. Genes que en experimentos de expresión a gran escala poseen patrones parecidos de activación.
- 3. Genes ortólogos pertenecientes a múltiples especies.

En todos los casos, asumiendo que funciones similares deben ser implementadas mediante combinatorias de motivos comunes, la comparación de secuencias nos ayuda a focalizar nuestro interés únicamente sobre ciertas regiones conservadas para reforzar aquellas predicciones obtenidas con matrices de pesos. De todas estas alternativas, el análisis de regiones reguladoras que incluye información sobre conservación filogenética es el método que arroja resultados más prometedores.