Math 103A: Homework 2 solutions

1. Solution to I.2, Q2

$$(a \star b) \star c = b \star c = a$$

$$a \star (b \star c) = a \star a = a$$

We cannot conclude based on the above computation if \star is associative. We would need to verify $(x \star y) \star z = x \star (y \star z) \ \forall x, y, z \in S$.

- 2. Solution to I.2, Q4
 - \star is not commutative because $b \star e = c$, whereas $e \star b = b$.
- 3. Solution to I.2, Q17
 - \star satisfies condition 1 since a-b is uniquely defined for any $a,b \in \mathbb{Z}^+$.
 - \star does not satisfy condition 2. For example: 1-2=-1, and $-1\notin\mathbb{Z}^+$.

Hence, \star does not give a binary operation on \mathbb{Z}^+ .

- 4. Solution to I.2, Q24
 - (a) False. Take $(\mathbb{Z}, +)$. $1 + 1 \neq 1$.
 - (b) True. Let $b \star c = d \in S$. Since \star is commutative, $a \star d = d \star a$.
 - (c) False. As discussed on page 24, multiplication of $n \times n$ matrices is an associative

binary operation. Take
$$a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $c = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

- (d) False. We already saw several important binary operations on sets of functions and matrices.
- (e) False. The commutative property needs to hold for every pair of elements in S.
- (f) True. To be noncommutative, for example, there must exist $a, b \in S$ such that $a \star b \neq b \star a$. This cannot happen if S contains only one element.
- (g) True. See page 24.
- (h) True. See page 24.
- (i) True. See page 24.
- (j) False. See page 24.
- 5. Solution to I.2 Q26

$$(a \star b) \star (c \star d) = (c \star d) \star (a \star b)$$
 Commutative
= $[(c \star d) \star a] \star b$ Associative
= $[(d \star c) \star a] \star b$ Commutative

6. Solution to I.2 Q36

Let $h_1, h_2 \in H$. Need to show $h_1 \star h_2 \in H$.

$$(h_1 \star h_2) \star x = h_1 \star (h_2 \star x)$$
 Associative
 $= h_1 \star (x \star h_2)$ $h_2 \in H$
 $= (h_1 \star x) \star h_2$ Associative
 $= (x \star h_1) \star h_2$ $h_1 \in H$
 $= x \star (h_1 \star h_2)$ Associative

7. Solution to I.2 Q37

Let $h_1, h_2 \in H$. Need to show $h_1 \star h_2 \in H$.

$$(h_1 \star h_2) \star (h_1 \star h_2) = h_1 \star (h_2 \star (h_1 \star h_2))$$
 Associative
$$= h_1 \star ((h_2 \star h_1) \star h_2)$$
 Associative
$$= h_1 \star ((h_1 \star h_2) \star h_2)$$
 Commutative
$$= h_1 \star (h_1 \star (h_2 \star h_2))$$
 Associative
$$= h_1 \star (h_1 \star h_2)$$

$$= h_1 \star (h_1 \star h_2)$$
 Associative
$$= (h_1 \star h_1) \star h_2$$
 Associative
$$= h_1 \star h_2$$
 Associative
$$= h_1 \star h_2$$

8. Solution to I.3 Q2

 ϕ is an isomorphism. It is clearly a bijection of sets. Furthermore, $-(m+n) = \phi(m+n) = \phi(m) + \phi(n) = -m - n = -(m+n)$

9. Solution to I.3 Q4

 ϕ is not an isomorphism since it fails the homomorphism property. For example $\phi(2) = 2 + 1 = 3$, but $\phi(1) + \phi(1) = 2 + 2 = 4$.

10. Solution to I.3 Q17

(a) Define
$$\star$$
 on \mathbb{Z} as $m \star n = (m-1)(n-1)+1$. Then $\phi(m) \star \phi(n) = (m+1) \star (n+1) = mn+1 = \phi(mn)$ as needed. The identity element is $\phi(1) = 2$.

(b) Define
$$\star$$
 on \mathbb{Z} as $m \star n = (m+1)(n+1) - 1$. Then $\phi(m \star n) = \phi((m+1)(n+1) - 1) = (m+1)(n+1) = \phi(m)\phi(n)$ as needed. The identity element is 0 since $\phi(0) = 1$.

11. Solution to I.3 Q19

(a) Define
$$\star$$
 on \mathbb{Q} as $x \star y = \frac{(x+1)(y+1)}{3} - 1$. Then $\phi(x) \star \phi(y) = (3x-1) \star (3y-1) = \frac{(3x)(3y)}{3} - 1 = 3xy - 1 = \phi(xy)$ as needed. The identity element is $\phi(1) = 3 - 1 = 2$.

(b) Define
$$\star$$
 on \mathbb{Q} as $x \star y = \frac{(3x-1)(3y-1)+1}{3}$. Then $\phi(x \star y) = \phi\left(\frac{(3x-1)(3y-1)+1}{3}\right) = (3x-1)(3y-1) = \phi(x)\phi(y)$ as needed. The identity element is $\frac{2}{3}$ since $\phi(\frac{2}{3}) = 2-1 = 1$.

12. Solution to I.3 Q27

First we prove that $\psi \circ \phi$ is a bijection between *S* and *S*".

Onto: Let $s_2 \in S''$. Since ψ is onto, there exists $s_1 \in S'$ such that $\psi(s_1) = s_2$. Furthermore, since ϕ is also onto, there exists $s \in S$ such that $\phi(s) = s_1$. So $\psi \circ \phi(s) = \psi(\phi(s)) = \psi(s_1) = s_2$ as needed.

One-to-one: Assume $\psi \circ \phi(s) = \psi \circ \phi(t)$, i.e. $\psi(\phi(s)) = \psi(\phi(t))$. Since ψ is one-to-one, $\phi(s) = \phi(t)$, and since ϕ is one-to-one, s = t as needed.

Now we prove that $\psi \circ \phi$ satisfies the homomorphism property. $\psi \circ \phi(s \star t) = \psi(\phi(s \star t)) = \psi(\phi(s) \star' \phi(t)) = \psi(\phi(s)) \star'' \psi(\phi(t)) = \psi \circ \phi(s) \star'' \psi \circ \phi(s)$ as needed. Here, the second and third equalities hold because ϕ and ψ satisfy the homomorphism property.