HOMEWORK # 3 - March 17, 2020

Part 1

Demonstrate the results shown in slides # 43-45 of the lecture "Analysis of unbalanced systems : the symmetrical components".

group	fault	slide #
MaEM	single line to ground	43
MaEL	double line to ground	45

Part 2

Consider the system shown below. A solid fault of the type specified in the above table takes place at bus L.

Using the technique described in the above slides compute :

- the voltage (in kV) between each phase and the ground at bus L
- the current (in A) in each phase of the cable
- the current in the fault (resp. each fault)

Generator:

- \bullet 5 MVA. 6 kV, connected in star, neutral grounded through a resistance of 1 Ω
- $R_{+} \simeq 0$, $X_{+} = X'' = 0.15$ pu
- $P_{-} = 0.01 \text{ pu}, X_{-} = 0.15 \text{ pu}$
- $R_0 \simeq 0$, $X_0 = 0.04$ pu

Cable:

- 6 kV, three-phase, single core with grounded shield
- $R_{+} = 0.9 \Omega$, $X_{+} = 1.5 \Omega$, shunt susceptance neglected
- $R_o = 4 \Omega$, $X_o = 3 \Omega$, shunt susceptance neglected

Load: connected in triangle

Operating point:

- (three-phase) power consumed by load : 2 MW / 0.8 Mvar
- voltage at bus L: 6 kV

Make all calculations in per unit on the base : single-phase power : 1 MVA phase-to-neutral voltage : $6/\sqrt{3}$ kV

E-mail your report to t.vancutsem@uliege.be no later than Sat March 28.

You will present it on March 31st (dedicated course)