Kapitel 3 — Relationen, Ordnung und Betrag

Definition 3.1 (Relationen)

Es seien M und N Mengen. Eine Relation zwischen M und N ist eine Teilmenge $\mathfrak{R}\subset M\times N$. Ist $(a,b)\in\mathfrak{R}\subset M\times N$ ein Element der Relation \mathfrak{R} , so sagen wir a Steht in Relation zu b und wir schreiben $a\sim_{\mathfrak{R}}b$.

Beispiele

- Es sei M die Menge aller Autos, und N die Menge aller Farben. Durch $(c,f)\in\mathfrak{R}\subset M\times N$, wenn ein Teil des Autos c in der Farbe f lackiert ist, wird eine Relation definiert.
- Es sei M die Menge aller Bundesligapaarungen und N die Menge aller Spielergebnisse. Die Definition $(p,e)\in\mathfrak{R}\subset M\times N$, wenn die Paarung p das Ergebnis e erspielt, liefert eine Relation.

Definition 3.2 (Relationen auf einer Menge)

Eine Relation auf einer Menge M ist eine Relation $\mathfrak{R}\subset M\times M$. Eine Relation auf einer Menge M heißt ...

- 1. ... REFLEXIV, wenn $a \sim_{\mathfrak{R}} a$ für alle $a \in M$ ist .
- 2. ... TRANSITIV, wenn mit $a \sim_{\Re} b$ und $b \sim_{\Re} c$ auch $a \sim_{\Re} c$ ist.
- 3. ... SYMMETRISCH, wenn mit $a \sim_{\mathfrak{R}} b$ auch $b \sim_{\mathfrak{R}} a$ ist.
- 4. ... ANTISYMMETRISCH, wenn, falls $a \sim_{\mathfrak{R}} b$ und $b \sim_{\mathfrak{R}} a$, schon a = b ist.
- 5. ... TOTAL, wenn für alle $a,b \in M$ $a \sim_{\Re} b$ oder $b \sim_{\Re} a$ ist

Definition 3.3 (Ordnungs-, und Äquivalenzrelation)

Eine Relation heißt ...

- 1... TOTALORDNUNG, wenn sie 1., 2., 4,. und 5. erfüllt.
- ... HALBORDNUNG, wenn sie 1., 2. und 4. erfüllt.
- 3 ... ÄQUIVALENZRELATION, wenn sie 1., 2., und 3. erfüllt.

Beispiele:

- Die Teilbarkeitsrelation $\mathfrak{T}\subset\mathbb{N}^+\times\mathbb{N}^+$ ist definiert durch $(a,b)\in\mathfrak{T}$, wenn a|b (also | statt $\sim_{\mathfrak{T}}$). Die Teilbarkeitsrelation ist eine Halbordnung.
- Die Gleichheit $\mathfrak{G} \subset M \times M$ ist definiert durch $(a,b) \in \mathfrak{G}$, wenn a=b (also = statt $\sim_{\mathfrak{G}}$). Die Gleichheit ist eine Äquivalenzrelation.

Beispiele [cont.]:

- Die Ordnungsrelation auf $\mathfrak{O} \subset \mathbb{R} \times \mathbb{R}$ ist definiert durch $(a,b) \in \mathfrak{O}$, wenn $a \leq b$ (also \leq statt $\sim_{\mathfrak{O}}$). Die Ordnungsrelation ist eine Totalordnung auf \mathbb{R} .
- Es sei M eine Menge und $\mathcal{P}(M)$ die Menge aller Teilmenge von M. Diese Menge nennt man POTENZMENGE VON M. Die Teilmengenrelation $\tau \subset \mathcal{P}(M) \times \mathcal{P}(M)$ ist definiert durch $(U,V) \in \tau$, wenn $U \subset V$ (\subset statt \sim_{τ}). Die Teilmengenrelation ist eine Halbordnung.
- Es sei M die Menge der Autos auf einem Parkplatz, und $\mathfrak{R} \subset M \times M$ die Relation die durch folgende Vorschrift gegeben ist; $car_1 \sim_{\mathfrak{R}} car_2$, wenn beide die gleiche Farbe haben. Dies ist eine Äquivalenzrelation.

 $\frac{\text{Bemerkung:}}{\text{Vorschrift gegeben, so identifizieren wir Relation und Vorschrift.}}$

Definition 3.4 (Ordnungszeichen)

Da \leq eine Totalordnung auf $\mathbb R$ definiert, gilt also $x \leq y$ oder $y \leq x$ für alle $x,y \in \mathbb R$. Statt $x \leq y$ schreiben wir auch $y \geq x$.

Weiter schreiben wir x < y, wenn $x \le y$ und $x \ne y$, und ebenso y > x für x < y.

Damit gilt für alle $x, y \in \mathbb{R}$ entweder(!) x < y oder x = y oder x > y. Die Zeichen $\leq, \geq, <, >$ und = heißen Ordnungszeichen.

Mit Hilfe der Ordnungszeichen definieren wir spezielle Teilmengen von \mathbb{R} . Seien dazu $a,b\in\mathbb{R}$ mit a< b.

Definition 3.5 (Intervalle)

Beschränkte Intervalle

- $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$ (Abgeschlossenes Intervall).
- $]a, b[:= \{x \in \mathbb{R} \mid a < x < b\}$ (Offenes Intervall).
- $[a, b[:= \{x \in \mathbb{R} \mid a \le x < b\} \text{ oder }]a, b] := \{x \in \mathbb{R} \mid a < x \le b\}$ (Halboffene Intervalle).

Unbeschränkte Intervalle:

- $\bullet \ [a,\infty[:=\{x\in\mathbb{R}\ |\ a\leq x\}\ \operatorname{und}\]-\infty,b]:=\{x\in\mathbb{R}\ |\ x\leq b\}$
- $\bullet \]a,\infty[:=\{x\in\mathbb{R}\ |\ a< x\}\ \mathrm{und}\]-\infty,b[:=\{x\in\mathbb{R}\ |\ x< b\}$
- \bullet] $-\infty$, ∞ [:= \mathbb{R}

Satz 3.6 (Rechenregeln)

Es seien $x, y, z \in \mathbb{R}$. Dann gilt

- **1** Ist x < y und y < z, dann gilt x < z.

- \bullet lst x > 0 und y > 0, so ist auch xy > 0.

- Ist 0 < x < y, so gilt $\frac{1}{x} > \frac{1}{y} > 0$.

Aus den Rechenregeln 3.6 folgt:

Satz 3.7 (Vorzeichen von Produkten)

Es seien $x_1, \ldots, x_n \in \mathbb{R}$. Dann gilt:

- ullet $\prod_{i=1}^n x_i = 0$ ist gleichbedeutend damit, dass es mindestens ein $j \in \{1,\dots,n\}$ gibt mit $x_j = 0$.
- ullet $\prod_{i=1}^n x_i>0$ ist gleichbedeutend damit, dass nur eine gerade Anzahl der Faktoren x_j negativ ist.

Die Rechenregeln 3.6 liefern für das Rechnen mit Ungleichungen das Folgende:

Bemerkung 3.8

Die Lösungsmenge einer Ungleichung ändert sich nicht, wenn wir auf beiden Seiten ...

- ... eine Zahl addieren.
- ... mit einer positiven Zahl multiplizieren.
- ... eine streng monoton steigende Funktion anwenden. (Genaueres dazu folgt später.)

Beispiele streng monotoner Funktionen:

- Die Wurzelfunktion auf $[0, \infty[$.
- Potenzfunktion mit ungeradem Exponenten auf $\mathbb R$ und mit geradem Exponenten auf $[0,\infty[$.
- Die Exponentialfunktion auf $\mathbb R$ und die Logarithmusfunktion auf $(0,\infty)$.

Definition 3.9 (Betrag)

Der Betrag einer reellen Zahl x ist definiert als der Abstand zu 0 und wird mit |x| bezeichnet. Also

$$|x| := \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$$

Für $x, y \in \mathbb{R}$ ist |x - y| der Abstand von x und y.

Satz 3.10 (Eigenschaften des Betrags für $x,y\in\mathbb{R}$)

- 1. |x| = 0 ist gleichbedeutend mit x = 0.
- 2. |x| = |-x|.
- 3. $-|x| \le x \le |x|$ mit Gleichheit an genau einer Stelle, wenn $x \ne 0$.
- 4. |xy| = |x||y|.

Satz 3.11 [cont.]

- 5. $|x+y| \le |x| + |y|$.
- 6. $||x| |y|| \le |x y|$.
- 7. $\sqrt{x^2} = |x|$.

Satz 3.12 (Quadratische Ungleichungen)

Es gilt

$$x^2 + px + q < 0 \Leftrightarrow \left| x + \frac{p}{2} \right| < \frac{\sqrt{D}}{2}$$

wobei $D=p^2-4q$ die Diskriminante ist. Ist D<0 so hat die Ungleichung keine reelle Lösung. Außerdem gilt

$$x^2 + px + q > 0 \Leftrightarrow \left| x + \frac{p}{2} \right| > \frac{\sqrt{D}}{2}$$
,

wobei im Fall D < 0 die Lösungsmenge ganz $\mathbb R$ ist.

Kapitel 4 — Abbildungen und Funktionen

Definition 4.1 (Abbildungen)

Es seien D und W Mengen. Eine Abbildent Abbilden Von <math>D nach W ist eine Relation zwischen D und W mit den folgenden zusätzlichen Eigenschaften:

- 1. Für alle $x \in D$ gibt es ein $y \in W$, so dass (x, y) in der Relation liegt.
- 2. Sind (x, y_1) und (x, y_2) beide in der Relation enthalten, so gilt $y_1 = y_2$.

D heißt der Definitions- und W der Wertebereich.

Bemerkung/Schreibweise 4.2

Ist eine Abbildung zwischen D und W gegeben, so gibt es zu jedem $x \in D$ genau(!) ein $y \in W$ so dass (x,y) in der Relation enthalten ist. Diese eindeutige Zuordnung bezeichnen wir mit f und schreiben $f:D \to W$. Für $x \in D$ bezeichnet $f(x) \in W$ das BILD .

Definition 4.1 [cont.]

Ist nun $f:D\to W$ eine Abbildung, so heißt die Menge der Elemente in W, die von f getroffen wird, die $\operatorname{BILDMENGE}$ VON f und wird mit f(D) bezeichnet. Es gilt

$$f(D) := \{ y \in W \, | \, \exists x \in D : y = f(x) \} = \{ f(x) \, | \, x \in D \} \subset W \, .$$

Ist nun umgekehrt $U\subset W$ eine Teilmenge, so nennt man die Menge aller Elemente von D deren Bild in U liegt, das $\operatorname{UrBILD\ VON\ }U.$ Dies wird mit $f^{-1}(U)$ bezeichnet. Es gilt

$$f^{-1}(U) := \{ x \in D \mid f(x) \in U \} \subset D.$$

Die Abbildung als Relation selbst, also die Teilmenge $\{(x,f(x))\,|\,x\in D\}\subset D\times W$, bezeichnet man auch als Graphen der Abbildung f.

Bemerkung 4.3

Zwei Abbildungen $f_1:D_1\to W_1$ und $f_2:D_2\to W_2$ sind genau dann gleich, wenn $D_1=D_2$ und $f_1(x)=f_2(x)$ für alle $x\in D_1$.

Definition/Bemerkung 4.4 (identische Abbildung)

Es sei $f:D\to D$ mit f(x):=x für alle $x\in D$. Diese Abbildung heißt IDENTISCHE ABBILDUNG oder IDENTITÄT auf D und wird hier mit id_D bezeichnet.

Die Identität entspricht als Relation der Gleichheit auf D.

Sprechweisen:

Oft wird in der Literatur der Begriff Funktion parallel zum Begriff Abbildung benutzt. Bei uns sind Funktionen jedoch spezielle Abbildungen, nämlich die, deren Wertebereich eine Teilmenge der reellen Zahlen ist.

Definition 4.5 (Polynome)

Es sei $n\in\mathbb{N}$ und $a_0,a_1,\ldots,a_n\in\mathbb{R}$ mit $a_n\neq 0$. Dann heißt die Funktion $p:\mathbb{R}\to\mathbb{R}$ mit

$$p(x) = \sum_{k=0}^{n} a_k x^k = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

ein Polynom.

Die Zahl $\operatorname{grad}(p) := n$ heißt der Grad, die a_k heißen die Koeffizienten und speziell a_n der Leitkoeffizient von p. Eine Zahl $x_0 \in \mathbb{R}$ mit $p(x_0) = 0$ heißt Nullstelle von p.

Satz 4.6 (Faktorisierung)

Es sei p ein Polynom und x_0 eine Nullstelle. Dann gibt es ein Polynom q mit $\operatorname{grad}(q) = \operatorname{grad}(p) - 1$, so dass $p(x) = (x - x_0)q(x)$.

Beispiel:

Es sei $p(x)=x^n-c^n$ das Polynom n-ten Grades mit den Koeffizienten $a_n=1$ und $a_0=-c^n$ (alle anderen Koeeffizienten sind 0). Dieses Polynom hat die Nullstelle $x_0=c$ und wir wollen nun das Polynom q bestimmen. Es gilt

$$x^{n} - c^{n} = c^{n} \left(\left(\frac{x}{c} \right)^{n} - 1 \right) = c^{n} \left(\frac{x}{c} - 1 \right) \sum_{k=0}^{n-1} \left(\frac{x}{c} \right)^{k}$$

wobei die letzte Gleichheit gerade die geometrische Summenformel für $q=\frac{x}{c}$ ist.

Damit rechnen wir nun weiter

$$x^{n} - c^{n} = c\left(\frac{x}{c} - 1\right)c^{n-1}\sum_{k=0}^{n-1} \left(\frac{x}{c}\right)^{k}$$
$$= (x - c)\sum_{k=0}^{n-1} x^{k}c^{n-1-k}.$$

Also ist das gesuchte Polynom:

$$q(x) = \sum_{k=0}^{n-1} x^k c^{n-1-k} = x^{n-1} + cx^{n-2} + \dots + c^{n-2}x + c^{n-1}$$

Die Koeffizienten des Polynoms q aus der Faktorisierung lassen sich durch Polynomdivision oder mit Hilfe des Hornerschemas bestimmen.

Hornerschema 4.7

Das Hornerschema kann dazu benutzt werden, den Funktionswert eines Polynoms p an einer beliebigen Stelle x_0 zu bestimmen.

Man erhält zusätzlich die Koeffizienten eines Polynoms q, dessen Grad um Eins kleiner ist, als der von p, und das

$$p(x) = (x - x_0)q(x) + p(x_0)$$

erfüllt.

Beschreibung des Hornerschemas:

Zunächst schreiben wir die Koeffizienten von p in die erste Zeile einer Tabelle und führen dann von links nach rechts in der Tabelle immer wieder zwei Schritte durch.

Schließlich gelangt man zu folgendem Abschlußschema:

a_n		a_{n-1}		a_{n-2}			a_1		a_0
+		+		+			+		+
0		$c_{n-1}x_0$		$c_{n-2}x_0$			c_1x_0		c_0x_0
=	7	=	7	=	7	7	=	7	=
c_{n-1}		c_{n-2}		c_{n-3}			c_0		c_{-1}

Die zwei Schritte die man macht sind:

- 1. Addiere die Zahlen der ersten und zweiten Zeile und schreibe sie in die dritte Zeile.
- 2. Der zuletzt berechnete Wert wird mit x_0 multipliziert und in die zweite Zeile der nächsten Spalte eingetragen.

Es ist dann

$$c_{n-1}=a_n \quad \text{ und } \quad c_{k-1}=a_k+c_kx_0 \text{ für } k=0,\ldots,n-1$$

Hornerschema 4.7 [cont.]

Mit dem Hornerschema erhalten wir

1.
$$p(x_0) = c_{-1}$$
 und 2. $q(x) = \sum_{k=0}^{n-1} c_k x^k$

Ist x_0 eine Nullstelle von p, also $c_{-1}=0$, so ist das Ergebnis die Faktorisierung aus 4.6.

Weitere Bemerkungen zu den Nullstellen von Polynomen

1. Man kann nun 4.6 auf q anwenden und so nach und nach Nullstellen von p abspalten.

Es gilt sogar

Fundamentalsatz der Algebra 4.8

Jedes Polynom n-ten Grades hat eine Faktorisierung der Form

$$p(x) = a_n(x - x_1)^{k_1} \cdots (x - x_r)^{k_r} (x^2 + b_{11}x + b_{12})^{m_1} \cdots (x^2 + b_{s1}x + b_{s2})^{m_s}$$

mit
$$\sum_{j=1}^{r} k_j + 2 \sum_{i=1}^{s} m_i = n$$
.

Die auftretenden Faktoren sind also entweder (1) Linearfaktoren aus der Abspaltung von Nullstellen oder (2) quadratische Faktoren ohne weitere Nullstellen. Gibt es keine quadratischen Faktoren, so sagt man: p zerfällt in Linearfaktoren.

Zum Faktorisieren muss man allerdings die Nullstellen ausrechnen, bzw finden. Das geht jedoch in der Regel nicht. Aber es gilt zum Beispiel

- 2. Hat p nur ganzzahlige Koeffizienten, und ist der Leitkoeffizient $a_n=1$, so sind alle rationalen Nullstellen sogar ganz und sie sind Teiler des Koeffizienten a_0 .
- 3. Ist in 2. der Leitkoeffizient $a_n \neq 1$ so gilt folgende Verallgemeinerung: Ist $\frac{r}{s}$ eine (gekürzte) rationale Nullstelle so gilt $s|a_n$ und $r|a_0$.

Manchmal interessiert einen nur die Existenz oder die ungefähre Lage einer Nullstelle. Dann kann man folgendes ausnutzen:

4. Hat man zwei Werte $x_1,x_2\in\mathbb{R}$ mit $p(x_1)>0$ und $p(x_2)<0$ so gibt es einen Wert x_0 zwischen x_1 und x_2 für den $p(x_0)=0$ ist. Kann man nun x_1 und x_2 dicht zusammenbringen, ohne dass die Vorzeicheneigenschaft verloren geht, so hat man eine Näherung für x_0 gefunden.

In anderen Fällen interessiert gegebenenfalls nur die Anzahl der positiven und negativen Nullstellen. Dann kann man folgendes ausnutzen:

- 5. Wissen wir, dass das Polynom p in Linearfaktoren zerfällt und 0 keine Nullstelle ist, so gilt folgende Regel:
 - Die Anzahl der positiven Nullstellen entspricht der Anzahl der Vorzeichenwechsel in der Folge $(a_n,a_{n-1},\ldots,a_1,a_0)$
 - Die Anzahl der negativen Nullstellen entspricht der Anzahl der Vorzeichenerhaltungen in der Folge $(a_n,a_{n-1},\ldots,a_1,a_0)$

Dabei ordnet man den Nullkoeffizienten ein beliebiges (aber einheitliches) Vorzeichen zu.

Das Resultat kann man so modifizieren, dass auch 0 als Nullstelle erlaubt ist.

Achtung: Die Voraussetzung, dass das Polynom zerfällt, ist notwendig!

Definition 4.9 (Rationale Funktionen)

Es seien p und q Polynome. Dann heißt die Funktion f mit $f(x):=\frac{p(x)}{q(x)}$ RATIONALE FUNKTION. Ihr Definitionsbereich ist $D=\{x\in\mathbb{R}\,|\, q(x)\neq 0\}.$

Definition 4.10 (Potenzfunktion)

Es sei $q \in \mathbb{Q}$ eine rationale Zahl. Dann ist die Potenzfunktion definiert durch

- i) $f_q: [0, \infty[\to]0, \infty[, f_q(x) = x^q, \text{ falls } q < 0,$
- ii) $f_q: \ [0,\infty[\to \ [0,\infty[,\ f_q(x)=x^q,\ {\rm falls}\ q>0.$

Bemerkung: Später werden wir die Potenzfunktionen auch für irrationale Exponenten erklären.

Definition 4.11 (Einschränkung und Fortsetzung)

Es seien $D_1\subset D_2$ und $f_1:D_1\to W$, $f_2:D_2\to W$ zwei Abbildungen mit $f_1(x)=f_2(x)$ für alle $x\in D_1$. Dann heißt f_1 EINSCHRÄNKUNG VON f_2 und f_2 FORTSETZUNG VON f_1 .

Man schreibt auch $f_1 = f_2|_{D_1}$.

Definition 4.12 (Verkettung von Abbildungen)

Es seien $f:D \to U$ und $g:V \to W$ Abbildungen und es gelte $U \subset V$. Dann ist die $Verkettung\ g \circ f:D \to W$ definiert durch

$$(g \circ f)(x) := g(f(x)).$$

Statt Verkettung sagt man auch Hintereinanderausführung oder Komposition und man liest $g \circ f$ als "g nach f".

Definition 4.12 [cont.] (Addition Multiplikation)

Es seien $f:D\to\mathbb{R}$ und $g:D\to\mathbb{R}$ Funktionen mit dem gleichen Definitionsbereich. Dann sind die Addition $f+g:D\to\mathbb{R}$ und die Multiplikation $f\cdot g:D\to\mathbb{R}$ punktweise definiert. Das heißt, dass für alle $x\in D$ gilt:

$$(f+g)(x):=f(x)+g(x)\qquad \text{ und }\qquad (f\cdot g)(x):=f(x)g(x)\,.$$

Bemerkung:

Für allgemeine Abbildungen kann man in der Regel keine Addition und Multiplikation erklären. Hier spielt der Wertebereich $\mathbb R$ eine große Rolle.

Definition 4.13 (Umkehrabbildung)

Es seien $f:D\to W$ und $g:W\to D$ Abbildungen mit den Eigenschaften (1) $g\circ f=\mathrm{id}_D$ und (2) $f\circ g=\mathrm{id}_W$.

Dann heißen f und g UMKEHRABBILDUNGEN voneinander und wir schreiben $g=f^{-1}$ bzw. $f=g^{-1}$. Man sagt dann auch f (und natürlich auch g) ist INVERTIERBAR.

Definition 4.14 (Injektiv, Surjektiv, Bijektiv)

Eine Abbildung $f:D\to W$ heißt ...

- ... INJEKTIV, wenn für alle $x_1, x_2 \in D$ mit $x_1 \neq x_2$ für die Bilder $f(x_1) \neq f(x_2)$ gilt.
- \bigcirc ... SURJEKTIV, wenn f(D) = W.
- \odot ... BIJEKTIV, wenn f injektiv und surjektiv ist.

Satz 4.15

Eine Abbildung $f:D\to W$ ist injektiv, wenn die Gleichung $f(x_1)=f(x_2)$ schon $x_1=x_2$ liefert.

Satz 4.16

Eine Abbildung
$$f:D \to W$$
 ist $\left\{ egin{array}{l} \mbox{injektiv} \\ \mbox{surjektiv} \\ \mbox{bijektiv} \end{array} \right\}$ genau dann, wenn die bijektiv $\left\{ egin{array}{l} \mbox{h\"o\'chstens} \\ \mbox{mindestens} \\ \mbox{genau} \end{array} \right\}$ eine Lösung $x \in D$ hat.

Folgerung 4.17

Satz 4.18 (Umkehrabbildung)

Eine Abbildung ist genau dann invertierbar, wenn sie bijektiv ist.

Bemerkung 4.19 (Graph der Umkehrfunktion)

Es seien $D,W\subset\mathbb{R}$ und $f:D\to W$ eine bijektive Funktion. Den Graphen der Umkehrfunktion $f^{-1}:W\to D$ erhält man, indem man den Graphen von f an der Winkelhalbierenden spiegelt.

Definition 4.20 (Monotonie)

Es sei $I\subset\mathbb{R}$ und $f:I\to\mathbb{R}$ eine Funktion. Dann heißt f ...

- ① ... MONOTON WACHSEND, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt $f(x_1) \leq f(x_2)$.
- ② ... STRENG MONOTON WACHSEND, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt $f(x_1) < f(x_2)$.
- ③ ... MONOTON FALLEND, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt $f(x_1) \ge f(x_2)$.
- \bullet ... STRENG MONOTON FALLEND, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt $f(x_1) > f(x_2)$.

Beispiel: Die Potenzfunktionen $f_q:[0,\infty[\to[0,\infty[$ sind streng monoton steigend.

Satz 4.21

Es sei $I \subset \mathbb{R}$ und $f:I \to \mathbb{R}$ eine streng monotone Funktion. Dann ist finjektiv.

Wenn man den Wertebereich auf $f(I) \subset \mathbb{R}$ einschränkt, dann ist $f: I \to f(I)$ sogar invertierbar.