## STA 235H - Multiple Regression: Nonlinearity

Fall 2022

McCombs School of Business, UT Austin

#### Last week



- Reviewed more multiple regression models:
  - Interaction models
  - Logarithmic outcomes

## **Today**

- Continue with nonlinearity:
  - Review of regressions with log variables
  - Polynomial terms in regressions
- Assessing issues with our data:
  - Outliers
  - Multicollinearity
- Binary response models:
  - Should we do something different than traditional OLS?



## Logs, logs everywhere

## Regressions and logarithms

- Every time we have a variable in a logarithm, we should think percentage change
- For a log-level regression  $\log(Y) = \beta_1 + \beta_2 X + \varepsilon$ :
  - $\circ$  Exact association: "For a one-unit increase in X, Y changes, on average, by  $(\exp(\hat{eta}_2)-1) imes 100\%$ "
  - $\circ$  **Approximation**: "For a one-unit increase in X, Y changes, on average by  $\hat{eta}_2 imes 100\%$ "

What about if X is also in a logarithm?

## How would we interpret coefficients now?

• There are also approximations that can be useful!

| Model                                             | Interpretation of $\beta$               |
|---------------------------------------------------|-----------------------------------------|
| Level-Level regression $y=lpha+eta x$             | $\Delta y = eta \Delta x$               |
| Log-Level regression $\log(y) = \alpha + \beta x$ | $\%\Delta y=100\cdoteta\Delta x$        |
| Level-Log regression $y = lpha + eta \log(x)$     | $\Delta y = rac{eta}{100} \% \Delta x$ |
| Log-Log regression $\log(y) = lpha + eta \log(x)$ | $\%\Delta y=eta\%\Delta x$              |

## Let's practice!

log(Revenue) = 
$$\beta_0 + \beta_1$$
Bechdel +  $\beta_2$ Rating +  $\varepsilon$ 

log(Income) = 
$$β_0 + β_1$$
City +  $β_2$ Profession +  $β_3$ Education +  $ε$ 

GPACollege = 
$$\beta_0$$
 +  $\beta_1$ SAT +  $\beta_2$ log(FamilyIncome) +  $\beta_3$ GPAHS +  $\epsilon$ 

# Getting squared

## Adding polynomial terms

• Another way to capture nonlinear associations between the outcome (Y) and covariates (X) is to include polynomial terms:

$$\circ$$
 e.g.  $Y=eta_0+eta_1X+eta_2X^2+arepsilon$ 

• Let's look at an example!

## Determinants of wages: CPS 1985



## Determinants of wages: CPS 1985



## Experience vs wages: CPS 1985



#### Experience vs wages: CPS 1985

$$\log(Wage) = \beta_0 + \beta_1 E duc + \beta_2 E x p + \varepsilon$$



#### Experience vs wages: CPS 1985

$$\log(Wage) = eta_0 + eta_1 E duc + eta_2 E x p + eta_3 E x p^2 + arepsilon$$



## Mincer equation

$$\log(Wage) = eta_0 + eta_1 E duc + eta_2 E x p + eta_3 E x p^2 + arepsilon$$

• Interpret the coefficient for education

One additional year of education is associated, on average, to  $\hat{\beta}_1 \times 100\%$  increase in hourly wages, holding experience constant

• What is the association between experience and wages?







$$\log(Wage) = eta_0 + eta_1 E duc + eta_2 E x p + eta_3 E x p^2 + arepsilon$$

What is the association between experience and wages?

• Pick a value for  $Exp_0$  (e.g. mean, median, one value of interest)

Increasing work experience from 20 to 21 years is associated, on average, to a  $(\hat{\beta}_2 + 2\hat{\beta}_3 \cdot 20)100\%$  increase on hourly wages, holding education constant

Let's go to R!

#### References

• Ismay, C. & A. Kim. (2021). "Statistical Inference via Data Science". Chapter 6 & 10.