Prototyping

Younsuk Choi Thanas Dushku Raheem Abiola Salam Luis Cabezas Suarez

Motivation

System Engineering Use Case Diagrams

System Engineering Sequential Diagrams

System Engineering Class Diagrams

Design Evolution of Functional Design

Functional Design for the First Prototype

Functional Design for the Second Prototype

Final Functional Design

Design Assembled drawing of the final design

Hybrid Electric Vehicle Exhaust System Internal combustion engine (spark ignited) Power Electronics Controller DC/DC Converter Fuel Tank (gasoline) Thermal System (cooling) Traction Battery Pack Electric Traction Motor Electric Generator Transmission Battery (auxiliary)

- Reasons for placing hardware components
- Front Wheel Drive (FWD)
 vs Rear Wheel Drive (RWD)
- Placing the power source

afdc.energy.gov

https://afdc.energy.gov/vehicles/how-do-hybrid-electric-cars-work

Design Selected Design Style

- Wheel Shield

https://www.designnews.com/electronics/nine-red-hot-sports-cars-you-cant-afford/gallery?slide=1

_____ Design Final Design Style

Code Implementation Coordinates With X

```
void goTo(int x, int y){
 Serial.print("X =");
 Serial.println(startX);
 Serial.print("Y =");
 Serial.println(startY);
 while(startX < x){</pre>
                                                         //moving up
if(direction == Up){
                                                         //pointed up
    followLine();
    if(sensorValueLeft == white && sensorValueRight == white){
     startX++;
     delay(150);
  if(direction == Right){
                                                         //pointed right
    if(turned == 0){}
     turnLeft();
     turned = 1;
    followLine();
    if(sensorValueLeft == white && sensorValueRight == white){
    direction = Up;
    startX++;
    turned = 0;
    delay(150);
  if(direction == Down){
                                                          //pointed down
    if(turned == 0){
     turnLeft();
     turned = 1;
```

Code Implementation Coordinates With Y

```
while(startX == x && startY < y){</pre>
                                                                 //moving right
if(direction == Up){
                                                                 //pointed up
    if(turned == 0){}
      turnRight();
      turned = 1;
    followLine();
    if(sensorValueLeft == white && sensorValueRight == white){
      startY++;
      delay(150);
      direction = Right:
      turned = 0;
   if(direction == Right){
                                                                //pointed right
    followLine();
    if(sensorValueLeft == white && sensorValueRight == white){
      startY++;
      delay(150);
  if(direction == Down){
                                                                 //pointed down
    if(turned = 0){
      turnLeft();
      turned = 1;
    followLine();
    if(sensorValueLeft == white && sensorValueRight == white){
      direction = Right;
      startY++;
   delay(150);
      turned = 0;
```

Code Implementation Follow Line Function

```
}while(startX != x && startY != y);
                                                                  //At desired coordinates
                                                                  //We stop the car for 2 seconds
 vehicleStop();
 delay(2000);
void followLine(){
    sensorValueLeft = digitalRead(sensorPinLeft);
    sensorValueRight = digitalRead(sensorPinRight);
   if(sensorValueLeft == black && sensorValueRight == white){
     Serial.println("adjusting right");
     rightSlow();
   else if(sensorValueLeft == white && sensorValueRight == black){
    Serial.println("adjusting left");
     leftSlow();
   else if(sensorValueLeft == black && sensorValueRight == black){
     Serial.println("going forward");
     forward();
```

Conclusion