Converse of $p \rightarrow q$

p	q	$q \rightarrow p$
Т	T	Т
T	F	T
F	T	F
F	F	T

Contrapositive of $p \rightarrow q$

p	q	~q	~p	$\sim q \rightarrow \sim p$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

Exercises

Suppose p represents "You like to paint," q represents "You are an artist," and r represents "You draw landscapes." Express in words each of the following statements.

1.
$$p \rightarrow q$$

2.
$$q \rightarrow r$$

3.
$$\sim q \rightarrow \sim r$$

4.
$$\sim (p \rightarrow q)$$

5.
$$(p \land q) \rightarrow$$

1.
$$p \rightarrow q$$
 2. $q \rightarrow r$ 3. $\sim q \rightarrow \sim r$ 4. $\sim (p \rightarrow q)$ 5. $(p \land q) \rightarrow r$ 6. $p \land (q \rightarrow r)$ 7. $(r \lor q) \rightarrow p$ 8. $r \lor (q \rightarrow p)$

7.
$$(r \lor q) \rightarrow p$$

8.
$$r \lor (q \rightarrow p)$$

Let b, s, and k represent the following statements.

b: Bonnie bellows. s: Sheila shouts. k: Keiko cackles.

Express in symbolic form each of the following statements.

- 9. If Bonnie bellows, then Keiko cackles.
- 10. If Keiko cackles, then Sheila does not shout.
- 11. If Bonnie does not bellow or Keiko does not cackle, then Sheila shouts.
- 12. Sheila shouts, and if Bonnie bellows, then Keiko cackles.
- 13. It is not true that Sheila shouts if Bonnie bellows.
- 14. If Bonnie does not bellow, then Keiko cackles and Sheila shouts.
- 15. a. Make a truth table for $\sim p \rightarrow \sim q$ (the inverse of $p \rightarrow q$). Your first two columns should be the same as the first two columns of the table for $p \rightarrow q$. The last columns of the two tables should be different. Are they? Is $\sim p \rightarrow \sim q$ logically equivalent to $p \rightarrow q$?
 - **b.** Compare the truth table for $\sim p \rightarrow \sim q$ (the inverse of $p \rightarrow q$) with the truth table for $q \to p$ (the converse of $p \to q$). Are the last columns the same? Are the inverse and the converse logically equivalent?

Make truth tables for the following statements.

16.
$$p \rightarrow \sim q$$

16.
$$p \rightarrow \sim q$$
 17. $\sim (p \rightarrow q)$ **18.** $p \land \sim q$

18.
$$p \wedge \sim q$$

- 19. By comparing the truth tables in Exercises 16-18, you should find that two of the three statements are logically equivalent. Which two?
- 20. The biconditional statement "p if and only if q" is defined as $(p \to q) \land (q \to p)$. Make a truth table for this statement.