Analysis with data on final matches

Nikhil Agarwal

MIT and NBER

Role of Using Choice Models

- ✓ Preferences are the primitives in the theory of matching markets
- Positive Analysis:
 - Quantifying preferences/ammenities
 - ▶ Effects of market interventions are intermediated through agent choices
 - √ Taxes, tuition subsidies, free tuition, quotas
 - ✓ Preference estimates facilitate General Equilibrium policy analysis
- Normative Analysis:
 - Welfare and distributional consequences
- ✓ Complementary to theory in evaluation of trade-offs
 - Magnitudes of effects identified in the theory
 - Analysis when theory is intractible or ambiguous

Revealed Preference Approach

- Traditional revealed preference approach
 - ✓ Use data on consumer decisions to deduce most preferred option (given price)
- ullet Matching Markets: Cannot choose your preferred option o must also be chosen
 - Cannot decide to enroll at any university
 - Your partner needs to agree to marry you
 - Cannot show up at work at Google
 - Peer-to-peer platforms require mutual consent (eg. AirBnb)

Revealed Preference Approach

- ✓ Rules of the market determine the interpretation of the data
 - Matched partner need not be preferred to others
 - College application decisions consider chances of admission
 - Agents need not submit a truthful ranking
- ✓ Organized marketplaces present a unique opportunity for analysis
 - Administrative data on outcomes and/or submitted rankings
 - Well understood rules of the game assist modeling choices

Using Final Match Data

- School choice models use data on reported preferences
- 1. Many well-functioning markets do not use centralized systems
- 2. Barriers to obtaining reported preferences
 - ► Rank-ordered data are not collected (e.g. decentralized implementation)
 - Confidentiality concerns (NRMP)
 - Early work was on marriage markets [Chiappori et al, 2012; Dagsvik, 2000]
 - Key problem: Final matches depend on two sets of preferences

- Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
- TU Models

- Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition
- 3 TU Models

(Aspirational) Empirical Framework

Borrows from survey in Agarwal and Somaini (2021)

- Two-sided matching market
 - ▶ Agents indexed by $i \in \mathcal{I}$ on side 1 and $j \in \mathcal{J}$ on side 2
 - Agents i may be matched with at most one agent in \mathcal{J}
 - \triangleright Agents j may be matched with up to q_i agents
- Preferences (in their most general form)
 - ▶ Indirect utility of *i* for matching with *j* is given by u_{ij} . e.g.

$$u_{ij} = u(\mathbf{x}_j, \mathbf{z}_i, \xi_j, \varepsilon_i) - d_{ij}$$

▶ Similarly, utility of *j* for matching with *i* is given by

$$v_{ii} = v(\mathbf{x}_i, \mathbf{z}_i, \eta_i) - w_{ii}$$

Typically assume the independence condition

$$(\varepsilon_i, \eta_i) \perp (\mathbf{d}_i, w_i) | \mathbf{z}_i, \mathbf{x}, (\xi_j)_{j=1}^J$$

Equilibrium: Pairwise stable matching

Important Assumptions

1. No externalities

- ✓ Utility only depends on who you match with
- Difficulty in ensuring existence of stable matching [Extensions in Sasaki and Toda, 1996; Pycia and Yenmez, 1997]
- ▶ Rules out peer-effects and preferences based on post-match competition
- Recent advances make some progress [Uetake and Watanabe, 2019; Vissing, 2018]

2. No frictions in matching

- Full information
- ▶ Well-formed preferences [see Narita, 2018, for an exception]
- 3. Exogeneity of observables (orthogonality)
 - ▶ Problematic if counterfactuals that affect incentives for chosing characteristics
- 4. Transfers, if any, are fixed/not negotiated
 - ▶ Related models with fully or imperfectly transferable utility [Choo and Siow, 2006; Galichon and Salanie, 2021; Galichon et al., 2019]

- Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition
- 3 TU Models

Empirical Content of Pairwise Stability

- How do we learn about preferences from the data?
 - ▶ Key problem: Final matches depend on two sets of preferences
- Intuition using simple model with no preference heterogeneity
 - → Identification with "double-vertical" preferences

$$u_j = u(x_j) + \xi_j$$

$$v_i = v(z_i) + \eta_i$$

- \rightarrow Perfect assortative matching on u and h
 - Information in sorting patterns [Chiappori et al., 2012: Diamond and Agarwal, 2017]
 - Necessity of using many-to-one matching structure [Diamond and Agarwal, 2017]
- Extension to heterogeneity in preferences recently studied [He, Sinha and Sun, 2022; Agarwal and Somaini, 2022]
 - √ Stay tuned during the conference

Sign Restriction

- Sorting patterns summarized by F_{XZ}: Contingency table w/ binary characteristics
 - ▶ z denotes large or small hospital; x denotes high or low funding

Resident	Program Characteristic		
Characteristic	Large	Small	
High	30%	20%	
Low	20%	30%	

- Need a sign restriction on one characteristic
 - ▶ Without this restriction, both characteristics could be undesirable
- Assumption: Residents from medical schools with higher NIH funding are more likely to have higher human capital ($\alpha_{NIH} > 0$)
 - Sorting indicates that larger hospitals are preferred ($\beta_{LARGE} > 0$)

Limitation of Sorting Patterns

Resident	Program Characteristic		
Characteristic	Large	Small	
High	30%	20%	
Low	20%	30%	

- Cannot learn about preferences on both sides from sorting patterns alone
 - Consistent a strong preference for large hospitals + moderate association between high NIH funding and resident skill
 - Cannot distinguish from the reverse

$$u_j = x_j \beta + \xi_j$$
$$v_i = z_i \alpha + \varepsilon_i$$

- lacktriangle Degree of sorting on observables increases with both lpha and eta
 - ullet Large eta and small lpha vs. large lpha and small eta
- ✓ Non-parametric version: quantile-quantile matching implies

$$u(\mathbf{x}_j) = F_U^{-1}(F_V^{-1}(v(z_i) + \eta_i) - \xi_j$$

Usefulness of Data from Many-to-One Matching

- Do residents matched at the same program have similar characteristics?
- Two residents matched at the same program must be similarly qualified
 - ▶ Otherwise, program or resident can find a better match
- Residents at a program have similar values of z if it strongly predicts human capital ⇒ small within-program variation
- Provides crucial information that is not available in one-to-one matching
 - ▶ Combine with sorting patterns to learn about preferences on both sides
- ✓ Multiple matches can be seen as noisy measures [Hu and Schennach, 2008; Diamond and Agarwal, 2017]

$$u(\mathbf{x}_{j}) = F_{U}^{-1}(F_{V}^{-1}(v(z_{i}) + \eta_{i}) - \xi_{j}$$

$$u(\mathbf{x}_{j}) = F_{U}^{-1}(F_{V}^{-1}(v(z_{i'}) + \eta_{i'}) - \xi_{j}$$

Sorting Patterns: Objective Function

$$u_j = z_j \beta + \xi_j$$
$$v_i = x_i \alpha + \varepsilon_i$$

 \bullet Level sets of sorting moments across large β and small α

Within Program Moments: Objective Function

$$u_j = x_j \beta + \xi_j$$
$$v_i = z_i \alpha + \varepsilon_i$$

 \bullet Within program variation changes only with α

Within Program + Sorting: Objective Function

$$u_j = x_j \beta + \xi_j$$
$$h_i = z_i \alpha + \varepsilon_i$$

- Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition
- 3 TU Models

Separable and Idiosyncratic Heterogeneity

• One to one matching model of Menzel (2015)

$$u_{ij} = u(x_i, z_j) + \varepsilon_{ij}$$

$$v_{ji} = v(x_i, z_j) + \eta_{ji}$$

$$\frac{f(x, z)}{f(*, z)f(x, *)} = \exp(u(x, z) + v(x, z))$$

where ε_{ij} , η_{ji} ~ Type 1 EV

- Notes
 - ✓ Tractable!
 - Generalizes to distributions with tail behavior similar to Type 1 EV
 - Reinforces the idea that one-to-one models are under-identified

Extensions and Variations

- Restricted transfers/moment inequalities [Uetake and Watanabe, 2019]
 - Revealed preference inequality derived from no blocking conditions
 - ► No "structural" errors
- Political mergers (one-sided matching) [Weese, 2015; Gordon and Knight, 2009]
- Matching with Nash Bargaining over surplus [Sorenson, 2007]

$$S(x_j, z_i) + \eta_{ij} \text{ split } \lambda, 1 - \lambda$$

✓ Likelihood based methods

- Non-Transferable Utility Models: Empirical Framework
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition
- TU Models

Medical Residency Market

- Clearinghouse uses rank-order lists and the Roth-Peranson algorithm
- Outcomes in matching markets result from two-sided preferences

National Residency Matching Program

Centralized assignment process (Roth-Peranson algorithm)

Research Objectives

Methods:

- 1. Develop a method for estimating preferences using only final matches
 - ▶ Employer-employee matched data or school enrollment records are common

Policy Analysis:

- 2. How do government regulations affect the assignments in rural programs?
 - Study both supply regulations and financial incentives
 - ✓ Estimating primitives allows analyzing important general equilibrium effects
- 3. Why are medical residents' salaries lower than substitute labor?
 - ► An antitrust lawsuit and research have questioned the role of the match
 - Analyze salary depression in a counterfactual without the match

- 1 Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition

3 TU Models

Equilibrium Concept

Pairwise Stability

- 1. IR: Each program is assigned no more than its capacity
- 2. IC: No resident prefers a program that prefers that resident to an assigned resident (at fixed salaries)

Discussion

- Mechanism implements a stable match with respect to reported ranks
- Strategic interviewing/ranking can result in violations
 - **L**ow frictions in this market: \sim 8 interviews per position

Family Medicine: Data

- Data from annual census of programs matched with residents (AMA/AAMC)
 - Estimation: 2003 2004 to 2010 2011; Out-of-sample: 2011 2012
 - lacktriangle Multiple years are used only to improve precision ightarrow data from large markets
- Residents birth location and medical school
 - ► For MDs, merge with medical school characteristics
- Extensive set of characteristics for programs
 - Program setting, affiliated hospitals and medical schools and location

Residents	All
	Mean
Allopathic/MD	45%
${\sf Osteopathic/DO}$	14%
Foreign Graduate	41%

Programs	All		Rural
	Mean	Std	Mean
First Year Salary	\$46,394	\$3,239	\$46,259
Positions	7.57	2.77	5.25
Matches	7.01	2.92	4.72

Resident Preferences

Pure Characteristics Model: Berry and Pakes (2007)

$$u_{ijt} = z_{ijt}\beta_i + \delta w_{jt} + \xi_{jt}$$

i :resident j :program t :market

- Utility micro-founded on finitely many program and resident characteristics
 - Unobserved heterogeneity through research focus, size and diagnostic mix
 - Allows for unmeasured program quality (faculty and resources)

$$z_{ijt}$$
 Pgm. Chars. \rightarrow NIH Funding (Major and Minor affiliates), Beds Case Mix, Rent, Wage Index, Program Types Geo. Het. \rightarrow Birth/Med school state and Rural-born \times Rural Program β_i Unob. Het. \rightarrow NIH, Beds and Case Mix via normally distributed random-coefficients with estimated variance w_{jt} Salary $\xi_{jt} \perp w_{jt}$ (relaxed in paper) $\xi_{jt} \sim N(0,1)$

Program Preferences: Human Capital

Model program preferences using human capital index

$$h_i = x_i \alpha + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma_{x_i})$

- x_i Medical school characteristics, degree type, US Born (Foreign Grads)
- σ_{x_i} Depends on degree type, normalized to 1 for MD
- Program directors refer to "pecking order"

Additional Benefits/Properties

- Implies uniqueness of stable match (Clark, 2006; Niederle and Yariv, 2009)
 - ▶ Multiplicity may not be empirically important (Roth and Peranson, 1999)
 - Computational simplicity is an additional benefit

- 1 Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition

3 TU Models

Identification

- Addresses salary endogeneity using control function [Imbens and Newey, 2009]
- Heterogeneity in resident preferences identified via exclusion restrictions
 - ▶ Preference shifters for only one side of the market
 - √ Isolates source of sorting patterns
 - Instrumental variables intuition for simultaneous equations

Empirical model uses two restrictions

- 1. Birth/medical school state excluded from resident desirability
 - Learn about geographic preferences using sorting of medical school classmates born in different locations
- 2. Determinants of human capital index excluded from resident preferences
 - Higher quality residents choose ahead of those with less desirable traits

Estimation: Moments

- Data is a match $\mu \to \mathsf{Resident}\ i$'s match: $\mu(i)$; Program j's matches: $\mu^{-1}(j)$
- 1. Moments from sorting patterns

$$\frac{1}{N}\sum_{i}x_{i}z_{\mu(i)}$$

2. Within-program variance of resident characteristics

$$\frac{1}{N} \sum_{i} \left(x_{1,i} - \underbrace{\frac{1}{\left|\mu^{-1}\left(\mu\left(i\right)\right)\right|} \sum_{i' \in \mu^{-1}\left(\mu\left(i\right)\right)} x_{1,i'}}_{i' \in \mu^{-1}\left(\mu\left(i\right)\right)} \right)^{2}$$

3. Peer based moments

$$\frac{1}{N} \sum_{i} x_{1,i} \underbrace{\frac{1}{|\mu^{-1}(\mu(i))| - 1}}_{i' \in \mu^{-1}(\mu(i)) \setminus \{i\}} x_{2,i'}$$

Simulating Matches/Moments

- \bullet SMD needs a procedure for simulating equilibrium match for any parameter θ
- 1. Simulate human capital index $\{h_i\}$

$$h_i = x_i \alpha + \varepsilon_i$$

2. Simulate preferences of residents

$$u_{ij} = z_{ij}\beta_i + \delta w_j + \xi_j$$

- 3. Calculate the (simulated) pairwise stable match
 - ▶ Step 1 : Assign top resident to their first choice
 - ▶ Step *k* : Assign *k*-th resident to most preferred choice with unfilled positions
 - Pairwise Stable: A resident can only envy the assignment of a more qualified resident
 - Use S simulated matches to compute simulated moments $\hat{m}^{S}(\theta)$

Simulated Minimum Distance

ullet The simulated minimum distance estimate, $\hat{ heta}_{SMD}$ minimizes criterion

$$\left\|\hat{m} - \hat{m}^{S}(\theta)\right\|_{W} = \left(\hat{m} - \hat{m}^{S}(\theta)\right)' W \left(\hat{m} - \hat{m}^{S}(\theta)\right)$$

 \hat{m} Sample moment

 \hat{m}^{S} Simulated counterpart

W Positive definite weight matrix

- \hat{m}^S and \hat{m} are averaged across years and individual matches
- $m{\hat{ heta}}_{SMD}$: Parameter generating the best fit for sorting and many-to-one moments
- Confidence sets need to account for dependence of matches
 - ▶ Parametric bootstrap used to compute covariance of moments
 - Delta method to get standard errors in parameters

- 1 Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition
- 3 TU Models

Estimates: Resident Preferences

Select Variables	Full	Geographic	Geo. Het. w/
	Heterogeneity	Heterogeneity	Instrument
	(1)	(2)	(3)
Case Mix Index (1 sd.)	\$4,792	\$2,320	\$6,088
Random Coeff. (sigma)	\$4,503		
Log NIH Fund (Major) (1 sd.)	\$491	\$6,499	\$4,402
Random Coeff. (sigma)	\$5,498		
Log Beds (1 sd.)	\$6,900	\$3,528	\$8,837
Random Coeff. (sigma)	\$11,107		
Log NIH Fund (Minor) (1 sd.)	\$4,993	\$5,560	\$7,620
Medical School State	\$9,820	\$2,302	\$4,529
Birth State	\$6,342	\$1,320	\$2,451
Rural Birth x Rural Program	\$1,189	\$109	\$233

Estimates: Willingness to Pay

- Large willingness to pay for more desirable programs
 - \blacktriangleright Estimated standard deviation in utility of \sim \$14,000 to \sim \$28,000
- Larger for models using wage instruments, but imprecisely estimated
 - ▶ Decline in co-efficient on salaries \rightarrow indicates positive correlation between w_{jt} and ξ_{jt}
- Mean utility from rural hospitals is lower, but not economically large

	Full	Geographic	Geo. Het. w/
	Heterogeneity	Heterogeneity	Instrument
	(1)	(2)	(3)
Std. Dev in Utility (Across Programs)	\$21,937	\$14,088	\$28,577
	(5,215)	(1,880)	(8,166)
Mean Utility of Rural Programs	-\$7,292	-\$4,692	-\$8,066
	(3,101)	(967)	(4,044)
Mean Utility of Urban Programs	\$1,259	\$810	\$1,392
	(535)	(167)	(698)

Estimates: Human Capital

- Similar coefficient estimates on medical school prestige indicators
- Unobserved characteristics have larger variance for foreign medical graduates

$$h_i = \alpha x_i + \varepsilon_i$$
$$\varepsilon_i \sim N(0, \sigma_{x_i})$$

	Full Heterogeneity (1)		Geographic Heterogeneity (2)		Geo. Het. w/ Instrument (3)	
	Est.	(s.e.)	Est.	(s.e.)	Est.	(s.e.)
Log NIH Fund (MD)	0.115	(0.016)	0.127	(0.014)	0.094	(0.013)
Median MCAT Score	0.081	(0.007)	0.067	(0.004)	0.041	(0.003)
σ_{MD}	1	_	1	_	1	_
σ_{DO}	0.884	(0.036)	0.794	(0.029)	0.728	(0.029)
$\sigma_{Foreign}$	3.619	(0.110)	3.071	(0.072)	2.821	(0.072)
Parameters	25		22		24	
Moments	106		106		118	

Outline

- 1 Non-Transferable Utility Models: Empirical Framework
 - An aspirational framework
 - "Double-Vertical" Model
 - Separable and Idiosyncratic Heterogeneity
- 2 Application: The Medical Match
 - Equilibrium Model and Data
 - Empirical Strategy
 - Results and Counterfactual
 - Application: Salary Competition

3 TU Models

Is the match responsible for low salaries?

- In 2002 former residents alleged a price-fixing conspiracy
 - "The NRMP matching program has the purpose and effect of depressing, standardizing and stabilizing compensation [...] below competitive levels."
 Jung et al. v. AAMC et al. (2002).
 - ▶ Reasoned that inflexible salaries is a restraint to competition → Residents cannot use multiple offers and wage bargaining
- Plaintiffs suggested perfect competition as the alternative
 - Used salaries of physician assistants as a proxy for resident productivity
 - Ignores entry barriers (accreditation, fixed costs) and program heterogeneity

Frictionless Decentralized Market

Competitive Equilibrium

- Assignment of residents to programs and resident-program specific salaries
- Equilibria correspond to core allocations: Shapley and Shubik (1971)
 - 1. The allocation is individually rational
 - 2. No program-resident pair would prefer recontracting (with flexible salaries)
 - Further negotiations cannot be mutually beneficial

Frictionless Decentralized Market

Competitive Equilibrium

- Assignment of residents to programs and resident-program specific salaries
- Equilibria correspond to core allocations: Shapley and Shubik (1971)
 - 1. The allocation is individually rational
 - 2. No program-resident pair would prefer recontracting (with flexible salaries)
 - Further negotiations cannot be mutually beneficial

Illustrative Model

- N residents with human capital h_i and N programs with quality q_j
 - ightharpoonup Resident value program quality and wage ightharpoonup extends Bulow and Levin (2006)

$$u = aq + w$$

▶ Program-resident pair produce output $f(h, q) \ge 0$, where f_h , f_q , $f_{hq} \ge 0$. Profit is

$$f(h,q)-w$$

- Each program hires at most one resident
- Important features are capacity constrains and heterogeneity in types
 - ► Entry barriers include accreditation requirements and fixed costs

Implicit Tuition

• If $\mu(i)$ is i's equilibrium match, salaries are bounded above by

$$\overbrace{f\left(h_{i},q_{\mu(i)}\right)}^{\text{Output net of costs}}-\overbrace{aq_{\mu(i)}^{\text{Implicit Tuition}}}$$

- 1. Results due to residents' willingness to pay for quality and capacity constraints
- 2. Higher at more desirable programs \rightarrow compensating differentials
- 3. Lower bound for depression of salaries from marginal productivity

Implicit Tuition

• If $\mu(i)$ is i's equilibrium match, salaries are bounded above by

$$\overbrace{f\left(h_{i},q_{\mu(i)}\right)}^{\text{Output net of costs}}-\overbrace{aq_{\mu(i)}^{\text{Implicit Tuition}}}$$

- 1. Results due to residents' willingness to pay for quality and capacity constraints
- 2. Higher at more desirable programs \rightarrow compensating differentials
- 3. Lower bound for depression of salaries from marginal productivity
- Lowest markdown from output when $f(h,q) = \bar{f}(h) \rightarrow \text{Salaries}$: $w_i = \bar{f}(h_i) aq_{u(i)}$
 - ▶ Program profits equal the implicit tuition → residents "own" productive input
 - ▶ Invariant to choice of $\bar{f}(h_i)$ → need not estimate productivity of residents
 - ▶ Depends only on resident willingness to pay for programs and positions offered

Implicit Tuition: Estimates

- Estimated average implicit tuition is between \$22,500 and \$43,500
 - Current salaries paid to residents is \$47,000
 - Median pay for physician assistants is about \$86,000

	Full	Geographic	Geo. Het. w/
	Heterogeneity	Heterogeneity	Instruments
	(1)	(2)	(3)
Mean	\$23,803	\$22,628	\$43,470
	(5,526)	(3,496)	(13,678)
Median	\$21,263	\$21,168	\$40,607
	(5,077)	(3,266)	(12,848)
Standard Deviation	\$16,661	\$12,278	\$24,792
25th Percentile	\$11,649	\$14,070	\$24,853
75th Percentile	\$31,467	\$28,902	\$58,355
95th Percentile	\$55,280	\$45,785	\$92,343

- Salary depression may be caused by a limited supply of heterogeneous positions
 - Implicit tuition may explain low salaries without a match observed in Niederle and Roth (2003, 2009)

Outline

- Non-Transferable Utility Models: Empirical Framework
- 2 Application: The Medical Match
- 3 TU Models

Transferable Utility Models

Literature built on Choo and Siow (2006) with discrete observable types

$$V_{i,x,y} = \alpha_{x,y} - \tau_{x,y} + \varepsilon_{i,x,y}$$

$$U_{j,x,y} = \gamma_{x,y} + \tau_{x,y} + \varepsilon_{j,x,y},$$

where $\varepsilon \sim \mathsf{Type} \ 1 \ \mathsf{EV}$

Demand and supply

$$\begin{array}{lcl} \ln \mu_{{\rm x},{\rm y}}^d - \ln \mu_{{\rm x},0}^d & = & \alpha_{{\rm x},{\rm y}} - \alpha_{{\rm x},0} - \tau_{{\rm x},{\rm y}} \\ \ln \mu_{{\rm x},{\rm y}}^s - \ln \mu_{{\rm 0},{\rm y}}^s & = & \gamma_{{\rm x},{\rm y}} - \gamma_{{\rm 0},{\rm y}} + \tau_{{\rm x},{\rm y}} \end{array}$$

• Equilibrium match probabilities $\mu_{x,y}$

$$\ln \Pi_{x,y} \equiv \frac{\alpha_{x,y} - \alpha_{x0} + \gamma_{x,y} - \gamma_{0y}}{2} = \ln \mu_{xy} - \frac{\ln \mu_{0y} + \ln \mu_{x0}}{2}$$

- Extensions by Galichon and Salanie (2010) to other functional forms
- Imperfectly transferable utility by Galichon, Kominers, Weber (2019)

Semi-parametric approaches

- Fox (2010; 2018) develops a semi-parametric approach
 - lacktriangle Upstream/downstream firm pair j and i receive payoffs of $\pi^d_{ij}-t_{ij}$ and $\pi^u_{ij}+t_{ij}$
 - ▶ Total surplus $f_{ij} = \pi_{ii}^u + \pi_{ii}^d$
- Stability implies efficiency

$$\sum_{ij} \mu'_{ij} f_{ij} \le \sum_{ij} \mu_{ij} f_{ij}$$

where $\mu_{ij} = 1$ if i is matched with j, and zero otherwise

► Consider swapping the partners of i and i'. It must be that

$$f_{ij} + f_{i'j'} \geq f_{ij'} + f_{i'j}$$

Inequality above depends only on the joint surplus

Maximum Score Estimator

- Fox (2018) maximum score estimator akin to Manski (1975)
 - ▶ If there are no unobservables, $x_{ij}\theta + x_{i'j'}\theta \ge x_{ij'}\theta + x_{i'j}\theta$, where $x_{ij}\theta$ is an approximation for f_{ij}
 - Suggests maximizing the objective function

$$S(\theta) = \sum_{i=1}^{N-1} \sum_{i'>i}^{N} 1\{x_{ij}\theta + x_{i'j'}\theta \ge x_{ij'}\theta + x_{i'j}\theta\}$$

- Note that the unobservables are omitted
 - ▶ Need that value of θ that maximizes $S(\theta)$ also maximizes a version with unobservable terms
 - This rank-order property is shown for certain forms in Graham (2011; 2014) and in Fox et al. (2018)