

SOTA in Computer Vision

Наталья Ханжина ML Lab CV DL Senior Researcher PhD student

Роман Лебедев JetBrains Research CV DL Intern Researcher PhD student

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
 - SOTA frameworks

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
- SOTA frameworks

Short history of computer vision

1957	Персептрон Розенблата
1974	Многослойный персептрон и Back propagation algorithm (Rumelhart, Werbos, Galushkin)
1978	Распознавание образов (Gonzalez)
1980	Convolutional NN (Fukushima)
1998	LeNet : Gradient descent for convolutional NN (LeCun et al.)
2006	Deep belief nets (Hinton, Osindero and Teh)
2007	Глубокое обучение (Hinton)

Modern history of computer vision

2012

Архитектура **AlexNet** (Hinton, Krizhevsky, and Sutskever) выиграла ImageNet. С этого началась современная история компьютерного зрения

2015

Архитектура **ResNet** превзошла человеческий уровень ошибки на ImageNet

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA модели
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA модели
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA модели
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
- SOTA frameworks

Базовые слои

Convolution

Pooling

UpSampling

Dense (fully-connected)

Dropout

Batch normalization

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Module

- Модуль, или блок структурная единица современных моделей нейросетей
- Каждый модуль объект или функция $a = h(x; \theta)$, которая
 - Имеет настраиваемые параметры (θ)
 - ullet В качестве аргумента принимает входной сигнал x
 - Возвращает выходное значение a, пропущенное через функцию активации h
 - Функция активации должна иметь (по крайней мере) производные первого порядка (почти) везде
 - Обучается с помощью chain rule
 - Может состоять из базовых слоев (операций)

Basic classification model

1x1 convolution

 Свертка 1х1 часто используется в сверточных модулях, она нужна для контроля размерности промежуточных тензоров

• Также известна как Cascaded Cross-Channel pooling (СССР)

Residual block (2015)

- Стакать слои не всегда помогает
- А если добавить не слой, а остаточный сигнал?

Figure 2. Residual learning: a building block.

 $\mathcal{H}(\mathbf{x})$ is the true function we want to learn

Let's pretend we want to learn

$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$$

instead.

The original function is then

$$\mathcal{F}(\mathbf{x}) + \mathbf{x}$$

ResNets

Depth-wise Separable Convolution (2017)

Conv2d

- В три раза меньше обучаемых параметров min
- MobileNet, Xception

Residual Inverted block (2018)

Residual block

Inverted Residual block

- Меньше параметров
- MobileNetV2, EfficientNet

Independent-Component (IC) layer (2019)

BatchNorm conv block

- +3% accuracy на CIFAR100
- Tested on ResNet

Squeeze-and-Excitation block (2017)

ResNet module

Residual $W \times H \times C$ Global pooling 1×1×C $1\times1\times\frac{C}{}$ FC ReLU $1\times1\times\frac{C}{}$ $1 \times 1 \times C$ Sigmoid $1 \times 1 \times C$ Scale $W \times H \times C$ $W \times H \times C$ squeeze

SE-ResNet module

excitation

- Attention для картинок
- 25% boost on ImageNet
- SENets, EfficientNet DeepSEED...

ResNeXt (2016)

ResNet block

ResNeXt shortcut

NASNet (2018)

- Найдена с помощью AutoML
- Использует ScheduledDropPath
- 82,7% accuracy on ImageNet

EfficientNet (2019)

- Top accuracy on ImageNet (84,4%)
- Использует Compound model scaling coefficient ϕ

Классификация: SOTA model zoo

- Классификация:
 - <u>EfficientNet</u>
 - <u>AmoebaNet</u>
 - ResNeXt
 - NASNet
 - SENet
 - Inception-ResNet
 - Xception
 - MobileNetV2

Network comparison

Регуляризация

Dropout (2014)

DropChannel (2018)

Input Layer [H x W x 3] Convolutional Output Layer
[H x W x F]
Red filters are dropped out

DropLayer (2016)

DropBlock (2015)

Benchmarks for classification

ImageNet(ILSVRC)	1000 classes	<u>data</u>
CIFAR	100/10 classes	<u>data</u>
MNIST	10 classes	<u>data</u>
FashionMNIST	10 classes	<u>data</u>
Food-11	11 classes	<u>data</u>
KITTI Vision Benchmark Suite	8 classes	<u>data</u>
Visual Object Classes 2012 (VOC12)	20 classes	<u>data</u>
Common Objects in Context (COCO)	80 classes	<u>data</u>

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
 - SOTA frameworks

Basic detection model

Quality Assessment and Metrics

- mean average precision (mAP)
 - Для каждого класса сі вычислить average precision $ap_i = AP(c_i)$
 - Посчитать среднее по всем ар; значениям для каждого класса
- intersection over union (IoU)
 - Каждый bounding box (результат детекции) обладает определенной уверенностью предсказания (confidence)
 - Оценивается близость predicted bboxes с ground truth bboxes как истинные/ложные срабатывания по уровню их пересечения

area_{ovl} часто называют intersection over union (IoU)

Quality Assessment and Metrics

Generalized IoU (2019)

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: $A,B\subseteq \mathbb{S}\in \mathbb{R}^n$ output: GIoU

1 For A and B, find the smallest enclosing convex object C, where $C \subseteq \mathbb{S} \in \mathbb{R}^n$

$$2 IoU = \frac{|A \cap B|}{|A \cup B|}$$

$$3 GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$

Quality Assessment

Non-Maximum Suppression (NMS):

```
# code is taken from https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-
detection-python/
# loop over all indexes in the indexes list
for pos in xrange(0, last):
# grab the current index
j = idxs[pos]
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = max(x1[i], x1[j])
yy1 = max(y1[i], y1[i])
xx2 = min(x2[i], x2[i])
yy2 = min(y2[i], y2[j])
# compute the width and height of the bounding box
w = max(0, xx2 - xx1 + 1)
h = max(0, yy2 - yy1 + 1)
# compute the ratio of overlap between the computed
# bounding box and the bounding box in the area list
overlap = float(w * h) / area[j]
# if there is sufficient overlap, suppress the
# current bounding box
if overlap > overlapThresh:
suppress.append(pos)
# delete all indexes from the index list that are in the
# suppression list
idxs = np.delete(idxs, suppress)
# return only the bounding boxes that were picked
```

return boxes[pick]

Feature pyramid networks

Model zoo

Anchor-based:

Key-point-based:

• One-shot:

• Two-shot:

Model zoo

- Anchor-based:
 - <u>EfficientDet</u>
 - YOLO v4
 - RetinaNet
 - SSD (on MobileNet v2)
- One-shot:
 - YOLO v4
 - RetinaNet
 - RPN
 - FCOS
 - <u>SSD</u>

- Key-point-based:
 - CornerNet
 - <u>CenterNet</u>
 - FCOS

- Two-shot:
 - Faster R-CNN
 - R-FCN

RetinaNet (2017)

- Использует Focal loss
- Использует FPN

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1 - p) & \text{otherwise.} \end{cases}$$

$$FL(p,y) = \begin{cases} -\alpha(1-p)^{\gamma} \log p, & \text{if } y = 1\\ -p^{\gamma} \log(1-p), & \text{otherwise.} \end{cases}$$

CornerNet (2019)

	AP	AP^{50}	AP^{60}	AP^{70}	AP^{80}	AP^{90}
RetinaNet (Lin et al., 2017)	39.8	59.5	55.6	48.2	36.4	15.1
Cascade R-CNN (Cai and Vasconcelos, 2017)	38.9	57.8	53.4	46.9	35.8	15.8
Cascade R-CNN + IoU Net (Jiang et al., 2018)	41.4	59.3	55.3	49.6	39.4	19.5
CornerNet	40.6	56.1	52.0	46.8	38.8	23.4

FCOS (2019)

- Предсказывает вектор (I,t,r,b) удаленности точки от для каждого пикселя
- Отказ от кандидатов
- Проблема пересечения классов
- Для решения предсказываем класс наименьшего размера

EfficientDet (2020)

• Единый масштабирующий коэффициент ϕ

EfficientNet backbone

• Сгенерированные архитектуры EfficientDet превосходят по скорости сравнимые по точности архитектуры

	Input Backbone B		BiFF	'n	Box/class	
	size	Network	#channels	#layers	#layers	
	R_{input}		W_{bifpn}	D_{bifpn}	D_{class}	
D0 ($\phi = 0$)	512	В0	64	3	3	
D1 ($\phi = 1$)	640	B 1	88	4	3	
D2 ($\phi = 2$)	768	B2	112	5	3	
D3 ($\phi = 3$)	896	В3	160	6	4	
D4 ($\phi = 4$)	1024	B 4	224	7	4	
D5 ($\phi = 5$)	1280	B5	288	7	4	
D6 ($\phi = 6$)	1280	B6	384	8	5	
D7 ($\phi = 7$)	1536	В6	384	8	5	
D7x	1536	B 7	384	8	5	

Anchor vs anchor-free detectors

• <u>Авторы</u> добавили главные фичи FCOS в RetinaNet

Inconsistency	FCOS		Re	tinaNe	et (#A	=1)	
GroupNorm	V		V	~	/	/	/
GIoU Loss	/			1	1	1	/
In GT Box	/				1	✓	1
Centerness	/					1	/
Scalar	/						1
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

- Оказалось, что их точность стала сравнима (разница 0,8%)
- Таким образом, оба подхода к детекции объектов достигают одинаковой точности при равных условиях

Regression Classification	Box	Point
Intersection over Union	37.0	36.9
Spatial and Scale Constraint	37.8	37.8

YOLOv4 (2020)

CSPDarknet backbone

SPP (Spatial Pyramid Pooling)

Modified PANet as FPN

- YOLOv3 head
- Modified Spatial attention module
- Mosaic Augmentation
- Self-adversarial training

Public Datasets for detection

ICDAR	2013-2019	OCR	paper	<u>data</u>
COCO-Text	2016	OCR	paper	<u>data</u>
SynthText	2016	OCR	paper	<u>data</u>
LUNA16	2016	CT/lung	paper	<u>data</u>
SUN RGB-D	2015	indoor	paper	<u>data</u>
Common Objects in Context (COCO)	2014	general	paper	<u>data</u>
Oxford RoboCar Dataset	2014	street	paper	<u>data</u>
KITTI Vision Benchmark Suite	2012	street	paper	<u>data</u>
Visual Object Classes 2012 (VOC12)	2012	street	[1][2]	<u>data</u>
LIDC-IDRI	2011	CT/lung	paper	<u>data</u>
Caltech Pedestrian Detection Benchmark	2009	street	[1][2]	<u>data</u>

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
- SOTA frameworks

Semantic segmentation

Basic semantic segmentation model

Model zoo

- Семантическая сегментация:
 - <u>HRNet</u>
 - <u>PSPNet</u>
 - <u>UNet++</u>
 - DeepLabV3
 - Mask R-CNN

HRNet (2020)

• Построение признаков высокого разрешения

Instance segmentation

Basic instance segmentation model

Mask R-CNN (2017)

Results on COCO test images using ResNet-101-FPN at 5 fps.

SOTA model zoo

- Инстанс сегментация:
 - Mask R-CNN
 - Detectron (see model zoo)
 - Detectron2 (see model zoo)

Panoptic segmentation

Basic panoptic segmentation model

Model zoo

- Паноптическая сегментация:
 - Panoptic FPN
 - CenterMask
 - AdaptIS (Adaptive Instance Segmentation)

Panoptic Feature Pyramid Networks (2019)

Mask R-CNN, дополненная веткой семантической сегментации

CenterMask (2020)

- FCOS + Mask R-CNN
- Для каждого объекта генерируется его маска

AdaptIS (2019)

- Использует Adaptive Instance Normalization (AdaIN)
- AdaIN управляющая сеть

Public Datasets for segmentation

BRaTS	2012-2020	MRI/brain	paper	<u>data</u>
Inria Aerial Image Labeling	2017	UAV	paper	<u>data</u>
DAVIS Challenge	2017	general	paper	<u>data</u>
Mapillary Vistas	2017	street	paper	<u>data</u>
ADE20K	2016	indoor	paper	<u>data</u>
SYNTHIA	2016	street	paper	<u>data</u>
SpaceNet	2016	UAV	N/A	<u>data</u>
Playing for Data	2016	street	paper	<u>data</u>
SUN RGB-D	2015	indoor	paper	<u>data</u>
Cityscapes	2015	street	paper	<u>data</u>
Common Objects in Context (COCO)	2014	general	paper	<u>data</u>
Oxford RoboCar Dataset	2014	street	paper	<u>data</u>
KITTI Vision Benchmark Suite	2012	street	paper	<u>data</u>
Visual Object Classes 2012 (VOC12)	2012	street	[<u>1</u>][<u>2</u>]	<u>data</u>
NYU Depth Dataset V2	2012	indoor	paper	<u>data</u>
CamVid: Motion-based Segmentation	2008	street	paper	<u>data</u>

53/70

Detection and Segmentation Atlas

54/70

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
- SOTA frameworks

Practical tips: Bag of freebies

- SOTA Augmentations:
 - Mixup

Cutout

CutMix (2 images)

Mosaic (4 images)

Practical tips: Bag of freebies

- Test-time Augmentation (TTA)
 - Позволяет повысить точность на ~3%
 - Увеличивает время inference

Practical tips: Bag of specials

- ATSS (Adaptive training sample selection)
- Self-adversarial training
- <u>Uncertainty estimation with MC Dropout</u>

План лекции

- Краткая история компьютерного зрения
- Классификация изображений
 - Модули
 - SOTA model zoo
 - Регуляризация
 - Наборы данных
- Детекция изображений
 - Модули
 - Виды детекции и SOTA model zoo
 - Losses
 - Метрики
 - Наборы данных
- Сегментация

- Виды сегментации
- Модули
- SOTA model zoo
- Метрики
- Наборы данных
- Practical tips
 - Bag of freebies
 - Bag of specials
- SOTA frameworks

Common trends

Low-level frameworks

K Keras

inside

- tf.errors
- tf.estimator
- 🕨 tf.experimental 👗
- tf.feature_column
- ▶ tf.graph_util
-) tf.image
- tf.io
 tf.keras
-) tf.linalg
-) tf.lite
- ▶ tf.lookup
-) tf.math
- tf.mixed_precision
-) tf.mlir
- ▶ tf.nest
-) tf.nn
- tf.quantization

- Низкоуровневый, но
- TFLearn, TFLite etc
- Много шаблонного кода
- Подходит для продакшн
- Визуализация Tensorboard
- Tensorflow Serving
- Quick Tutorial

- Проще и
- FastAl, Lightning advanced stuff
- Много готовых модулей
- Подходит для прототипирования
- Подходит для ризерча
- Визуализация visdom
- Flask
- Quick Tutorial

Catalyst & Pytorch Lightning

```
# model runner
    runner = SupervisedRunner()
23
    # model training
    runner.train(
26
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler.
30
        loaders=loaders,
        callbacks=[
            PrecisionCallback(),
            EarlyStoppingCallback()
34
        logdir=logdir,
        n epochs=n epochs,
        verbose=True
38
39
```

VS

C_{\(\)}talyst

```
import argparse
    import torch
    import torch.nn as nn
    import torch.nn.parallel
    import torch.optim
    import torch.utils.data
    import torchvision transforms as transforms
    import torchvision.datasets as datasets
   import torchvision models as models
13 # experiment setup
14 logdir = "./logdir'
   n_epochs = 42
   args = ...
   loaders = {"train": train_loader, "valid": test_loader}
   use cuda = not args.no cuda and torch.cuda.is available()
   device = torch.device("cuda" if use_cuda else "cpu")
   # model, criterion, optimizer
28 if args.gpu is not None:
       torch.cuda.set device(args.qpu)
       model = model.cuda(args.gpu)
       # DataParallel will divide and allocate batch size to all available GPUs
       model = torch.nn.DetaParallel(model).cuda()
35 # define loss function (criterion) and optimizer
   criterion = nn.CrossEntropyLoss().cuda(args.gpu)
   optimizer = torch.optim.SGD(
       model.parameters(), args.lr,
        momentum=args.momentum,
        weight decay=args.weight decay)
   for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args)
        train(train loader, model, criterion, optimizer, epoch, args)
        acc1 = validate(val_loader, model, criterion, args)
        # remember best acc@l and save checkpoint
        is best = acc1 > best acc1
        best acc1 = max(acc1, best acc1)
        save checkpoint()
            'epoch': epoch + 1,
            'arch': args.arch,
             'state_dict': model.state_dict(),
            'best accl'; best accl.
             'optimizer' : optimizer.state dict(),
       ), is best)
```

with torch.no grad():

input = input.cude(args.gpu, non blocking=True)
terget = target.cude(args.gpu, non blocking=True)

sccl, acc5 - accuracy(output, target, topk=(1, 5))

if i & srgs.print_freq -- Di

```
85 def train(train_loader, model, criterion, optimizer, epoch, args):
                                                                                                                            199 def save checkpoint(state, is best, filename='checkpoint.pth.tar'):
           batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
                                                                                                                                        torch.saveistate, filename
                                                                                                                                                 nutil.copyfile(fileneme, 'model best.pth.tar')
           top1 = AverageMeter |
           # switch to train mode
                                                                                                                                       ""Computes and stores the average and current value""

def _init__(self):
    self.renet()
           for i, (input, target) is enumerate(train_loader):
    # measure data loading time
    data_time.update(time.time() = end)
                                                                                                                                             self.avg = 0
self.com = 0
self.count = 0
                if args.gpu is not Bene:
    input = input.coda(args.gpu, non_blocking=True)
                                                                                                                                       def update(self, val. nwi);
                 target = target.cude(args.gpu, non blocking=True)
                                                                                                                                              self.count +- vel * n
self.count +- n
self.avg = self.sum / self.count
                 loss = criterion(output, target)
                 # measure accuracy and record loss
                                                                                                                                  def adjust_learning_rets(optimizer, epoch, args):
    ""Sets the learning rate to the initial DR decayed by 10 every 30 epochs""
    Ir = args_Ir * (0.1 ** (opoch // 30))
                 acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.iten(), input.size(0))
top1.update(accl[0], input.size(0))
                                                                                                                                       for param group in optimizer param groups:
                  top5.update(acc5[0], input.size(0))
                                                                                                                                   def accuracy(output, target, topk=(1,));
    """Computes the accuracy over the k top predictions for the specified values of k"""
                 optimizer.zero grad()
                   loss backward()
                                                                                                                                       with torch.no grad():
                                                                                                                                              batch_size = target.size(0)
                 # measure alaneat time
                                                                                                                                               _, pred = output.topk(maxk, I, True, True)
                                                                                                                                              correct = pred.eg(target.view(1, -1).expand as(pred))
                 if i t args.print freq == 0:
    print('Epoch: [(0)]((3))(2))\t'
    'Time (batch_time.val:.3f) ({batch_time.avg:.3f})\t'
                                                                                                                                              red = []
for k in topk:
    correct[:k].view(-1).float().sum(0, keepdin=Trus)
                                  Tace (secon time-val..if) ((date time.avg..if))\t'
Tose (date time.val..if) ((date time.avg..if))\t'
Tose (lose.val..if) ((lose.avg..if))\t'
Ascél (topi.val..if) ((topi.avg..if))\t'
Nocé5 (top5.val..if) ((top5.avg..if))\t'
                                  epoch, i, len(train loader), batch time-batch time,
data time-data time, loss-losses, topl-topl, top5-top5)
        def validate[val loader, model, criterion, args]
```

200+ lines!

Detection frameworks

MMDetection

MMDetection

News: We released the technical report on ArXiv.

Documentation: https://mmdetection.readthedocs.io/

Introduction

The master branch works with PyTorch 1.1 to 1.4.

mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-m by Multimedia Laboratory, CUHK.

Detectron

Segmentation frameworks

MMSegmentation

Detectron

Inference acceleration

GPU

- 40x faster than CPU
- Model Zoo

CPU

- 20x faster than CPU
- Model optimization
- Model Zoo

Clouds for training

Colab.google

- https://colab.research.google.com
- 12h session
- Notebooks saved to google drive
- Not full jupyter keyboard shortcuts

Kaggle kernels

- https://www.kaggle.com/notebooks
- 9h session
- Notebooks easy savings
- Full jupyter keyboard shortcuts

Preprocessing and augmentations

- <u>Albumentations</u>
- FastAl preprocessing
- Kornia <u>augmentations</u>
- NVIDIA DALI (on GPU)

Acknowledgments

• Презентация подготовлена на основе слайдов Andrej Karpathy, Артура Кузина, Антона Конушина, Андрея Фильченкова, Всеволода Коняхина

ВОПРОСЫ? ПИШИТЕ

Наталья Ханжина @natkaha

Роман Лебедев @lebedev_rv

