The group G is isomorphic to the group labelled by [37,1] in the Small Groups library. Ordinary character table of $G\cong \mathbf{C37}$:

1	a 37a	37b	37c	37d	37e	37 <i>f</i>	37g	37h	37i	37j	37k	37 <i>l</i>	37m	37n	370	37p	37q	37r	37s	37t	37u	37v	37w	37x	37 <i>y</i>	37z	37aa	37ab	37ac	37ad	37ae	37af	37ag	37ah	37ai	37aj
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	E(37)	$E(37)^{2}$	$E(37)^{3}$	$E(37)^4$	$E(37)^{5}$	$E(37)^{6}$	$E(37)^{7}$	$E(37)^{8}$	$E(37)^9$	$E(37)^{10}$	$E(37)^{11}$	$E(37)^{12}$			$E(37)^{15}$	$E(37)^{16}$	$E(37)^{17}$	$E(37)^{18}$	$E(37)^{19}$	$E(37)^{20}$	$E(37)^{21}$	$E(37)^{22}$	$E(37)^{23}$	$E(37)^{24}$	$E(37)^{25}$	$E(37)^{26}$	$E(37)^{27}$	$E(37)^{28}$	$E(37)^{29}$	$E(37)^{30}$	$E(37)^{31}$	$E(37)^{32}$	$E(37)^{33}$	$E(37)^{34}$	$E(37)^{35}$	$E(37)^{36}$
χ_3	$E(37)^2$	$E(37)^4$	$E(37)^{6}$	$E(37)^{8}$	$E(37)^{10}$	$E(37)^{12}$	$E(37)^{14}$	$E(37)^{16}$	\ /	\ /	$E(37)^{22}$	(/	()	()	(/	\ /	\ /	$E(37)^{36}$	E(37)	$E(37)^{3}$	$E(37)^{5}$	$E(37)^{7}$	$E(37)^9$	$E(37)^{11}$	$E(37)^{13}$	$E(37)^{15}$	$E(37)^{17}$	$E(37)^{19}$	$E(37)^{21}$	$E(37)^{23}$	$E(37)^{25}$	$E(37)^{27}$	$E(37)^{29}$	$E(37)^{31}$	$E(37)^{33}$	$E(37)^{35}$
χ_4	$E(37)^{3}$	$E(37)^{6}$	$E(37)^{9}$	$E(37)^{12}$	$E(37)^{15}$	$E(37)^{18}$	$E(37)^{21}$	$E(37)^{24}$	$E(37)^{27}$	$E(37)^{30}$	\ /	\ /	\ /		\ /	$E(37)^{11}$	$E(37)^{14}$	$E(37)^{17}$	$E(37)^{20}$	$E(37)^{23}$	$E(37)^{26}$	$E(37)^{29}$	$E(37)^{32}$	$E(37)^{35}$	E(37)	$E(37)^4$	$E(37)^{7}$	$E(37)^{10}$	$E(37)^{13}$	$E(37)^{16}$	$E(37)^{19}$	$E(37)^{22}$	$E(37)^{25}$	$E(37)^{28}$	$E(37)^{31}$	$E(37)^{34}$
χ_5 1	$E(37)^4$	$E(37)^{8}$	$E(37)^{12}$	$E(37)^{16}$	$E(37)^{20}$	$E(37)^{24}$	$E(37)^{28}$	$E(37)^{32}$	$E(37)^{36}$	$E(37)^{3}$	$E(37)^{7}$	$E(37)^{11}$	$E(37)^{15}$	$E(37)^{19}$	$E(37)^{23}$	$E(37)^{27}$	$E(37)^{31}$	$E(37)^{35}$	\ /	\ /	\ /	\ /	\ /	$E(37)^{22}$	$E(37)^{26}$	$E(37)^{30}$	$E(37)^{34}$	E(37)	$E(37)^{5}$	$E(37)^{9}$	$E(37)^{13}$	$E(37)^{17}$	$E(37)^{21}$	$E(37)^{25}$	$E(37)^{29}$	$E(37)^{33}$
χ_6	$E(37)^{5}$	$E(37)^{10}$	$E(37)^{15}$	$E(37)^{20}$	$E(37)^{25}$	$E(37)^{30}$	$E(37)^{35}$	$E(37)^{3}$	\ /	$E(37)^{13}$	\ /	$E(37)^{23}$	\ /	$E(37)^{33}$	E(37)	\ /	\ /	\ /	()	\ /	()	()	\ /	$E(37)^9$	$E(37)^{14}$	$E(37)^{19}$	$E(37)^{24}$	$E(37)^{29}$	$E(37)^{34}$	$E(37)^{2}$	$E(37)^{7}$	$E(37)^{12}$	$E(37)^{17}$	$E(37)^{22}$	2(3.)	$E(37)^{32}$
χ_7 1	$E(37)^{6}$	$E(37)^{12}$	$E(37)^{18}$	$E(37)^{24}$	$E(37)^{30}$	$E(37)^{36}$	$E(37)^{5}$	$E(37)^{11}$	()	\ /	\ /	\ /	\ /	\ /	\ /	\ /	$E(37)^{28}$	\ /	\ /	\ /	$E(37)^{15}$	\ /	$E(37)^{27}$	\ /	$E(37)^{2}$	\ /	$E(37)^{14}$	$E(37)^{20}$	$E(37)^{26}$	$E(37)^{32}$	E(37)	$E(37)^{7}$	$E(37)^{13}$	$E(37)^{19}$	$E(37)^{25}$	$E(37)^{31}$
χ_8	$E(37)^{7}$	$E(37)^{14}$	$E(37)^{21}$	$E(37)^{28}$	$E(37)^{35}$	$E(37)^{5}$	$E(37)^{12}$	$E(37)^{19}$	$E(37)^{26}$	$E(37)^{33}$	$E(37)^{3}$	$E(37)^{10}$	$E(37)^{17}$	$E(37)^{24}$	$E(37)^{31}$	E(37)	$E(37)^{8}$	$E(37)^{15}$	$E(37)^{22}$	$E(37)^{29}$	$E(37)^{36}$	$E(37)^{6}$	$E(37)^{13}$	$E(37)^{20}$	$E(37)^{27}$	$E(37)^{34}$	$E(37)^4$	$E(37)^{11}$	$E(37)^{18}$	$E(37)^{25}$	$E(37)^{32}$	$E(37)^{2}$	$E(37)^{9}$	$E(37)^{16}$	$E(37)^{23}$	$E(37)^{30}$
χ_9	$E(37)^{8}$	$E(37)^{16}$	$E(37)^{24}$	$E(37)^{32}$	$E(37)^{3}$	$E(37)^{11}$	$E(37)^{19}$	$E(37)^{27}$	$E(37)^{35}$	$E(37)^{6}$	$E(37)^{14}$	$E(37)^{22}$	$E(37)^{30}$	E(37)	$E(37)^9$	$E(37)^{17}$	$E(37)^{25}$	$E(37)^{33}$	$E(37)^4$	$E(37)^{12}$	$E(37)^{20}$	$E(37)^{28}$	$E(37)^{36}$	$E(37)^{7}$	$E(37)^{15}$	$E(37)^{23}$	$E(37)^{31}$	$E(37)^{2}$	$E(37)^{10}$	$E(37)^{18}$	$E(37)^{26}$	$E(37)^{34}$	$E(37)^{5}$	$E(37)^{13}$	$E(37)^{21}$	$E(37)^{29}$
χ_{10}	$E(37)^9$	$E(37)^{18}$	$E(37)^{27}$	$E(37)^{36}$	$E(37)^{8}$	$E(37)^{17}$	$E(37)^{26}$	$E(37)^{35}$	$E(37)^{7}$	$E(37)^{16}$	$E(37)^{25}$	$E(37)^{34}$	$E(37)^{6}$	$E(37)^{15}$	$E(37)^{24}$	$E(37)^{33}$	$E(37)^{5}$	$E(37)^{14}$			\ /	$E(37)^{13}$	$E(37)^{22}$	$E(37)^{31}$	$E(37)^{3}$	$E(37)^{12}$	$E(37)^{21}$	$E(37)^{30}$	$E(37)^{2}$	$E(37)^{11}$	$E(37)^{20}$	$E(37)^{29}$	E(37)	$E(37)^{10}$	$E(37)^{19}$	$E(37)^{28}$
χ_{11}	$E(37)^{10}$	$E(37)^{20}$	$E(37)^{30}$	$E(37)^{3}$	$E(37)^{13}$	$E(37)^{23}$	$E(37)^{33}$	$E(37)^{6}$	$E(37)^{16}$	$E(37)^{26}$	$E(37)^{36}$	$E(37)^9$	$E(37)^{19}$	$E(37)^{29}$		$E(37)^{12}$	$E(37)^{22}$	$E(37)^{32}$	\ /	\ /	\ /	$E(37)^{35}$	$E(37)^{8}$	$E(37)^{18}$	$E(37)^{28}$	E(37)	$E(37)^{11}$	$E(37)^{21}$	$E(37)^{31}$	$E(37)^4$	$E(37)^{14}$	$E(37)^{24}$	$E(37)^{34}$	$E(37)^{7}$	$E(37)^{17}$	$E(37)^{27}$
χ_{12}	$E(37)^{11}$	$E(37)^{22}$	$E(37)^{33}$	$E(37)^{7}$	$E(37)^{18}$	$E(37)^{29}$	$E(37)^{3}$	$E(37)^{14}$	$E(37)^{25}$	$E(37)^{36}$	$E(37)^{10}$	$E(37)^{21}$	\ /	$E(37)^{6}$	\ /	$E(37)^{28}$	$E(37)^{2}$	$E(37)^{13}$	\ /	$E(37)^{35}$	$E(37)^9$	$E(37)^{20}$	$E(37)^{31}$	$E(37)^{5}$	$E(37)^{16}$	$E(37)^{27}$	E(37)	$E(37)^{12}$	$E(37)^{23}$	$E(37)^{34}$	$E(37)^{8}$	$E(37)^{19}$	$E(37)^{30}$	$E(37)^4$	$E(37)^{15}$	$E(37)^{26}$
χ_{13}	$E(37)^{12}$	()	$E(37)^{36}$	$E(37)^{11}$	$E(37)^{23}$	$E(37)^{35}$	$E(37)^{10}$	$E(37)^{22}$	$E(37)^{34}$	$E(37)^9$	$E(37)^{21}$	$E(37)^{33}$	$E(37)^{8}$	$E(37)^{20}$	$E(37)^{32}$	$E(37)^{7}$	$E(37)^{19}$	$E(37)^{31}$	$E(37)^{6}$	$E(37)^{18}$	$E(37)^{30}$	$E(37)^{5}$	$E(37)^{17}$	$E(37)^{29}$	$E(37)^4$	$E(37)^{16}$	$E(37)^{28}$	$E(37)^{3}$	$E(37)^{15}$	$E(37)^{27}$	$E(37)^{2}$	$E(37)^{14}$	$E(37)^{26}$	E(37)	$E(37)^{13}$	$E(37)^{25}$
χ_{14}	$E(37)^{13}$	$E(37)^{26}$	$E(37)^{2}$	$E(37)^{15}$	$E(37)^{28}$	$E(37)^4$	$E(37)^{17}$	\ /	\ /	\ /	$E(37)^{32}$	$E(37)^{8}$	\ /	\ /	\ /	$E(37)^{23}$	\ /	\ /	\ /	\ /	$E(37)^{14}$	$E(37)^{27}$	\ /	\ /	\ /	$E(37)^{5}$	$E(37)^{18}$	$E(37)^{31}$	$E(37)^{7}$	$E(37)^{20}$	$E(37)^{33}$	$E(37)^9$	$E(37)^{22}$	$E(37)^{35}$	$E(37)^{11}$	$E(37)^{24}$
χ_{15}	$E(37)^{14}$	$E(37)^{28}$	$E(37)^{5}$	$E(37)^{19}$	$E(37)^{33}$	$E(37)^{10}$	$E(37)^{24}$	E(37)	$E(37)^{15}$	$E(37)^{29}$	$E(37)^{6}$	$E(37)^{20}$	\ /	\ /	\ /		\ /	\ /	\ /	\ /	\ /	$E(37)^{12}$	$E(37)^{26}$	$E(37)^{3}$	$E(37)^{17}$	$E(37)^{31}$	$E(37)^{8}$	$E(37)^{22}$	$E(37)^{36}$	$E(37)^{13}$	$E(37)^{27}$	$E(37)^4$	$E(37)^{18}$	$E(37)^{32}$	$E(37)^9$	$E(37)^{23}$
χ_{16}	$E(37)^{15}$	$E(37)^{30}$	$E(37)^{8}$	$E(37)^{23}$	E(37)	$E(37)^{16}$	$E(37)^{31}$	$E(37)^9$	$E(37)^{24}$	$E(37)^{2}$	$E(37)^{17}$	$E(37)^{32}$	$E(37)^{10}$	$E(37)^{25}$	\ /	\ /	\ /	\ /	$E(37)^{26}$	\ /	$E(37)^{19}$	$E(37)^{34}$	$E(37)^{12}$	$E(37)^{27}$	$E(37)^{5}$	$E(37)^{20}$	$E(37)^{35}$	$E(37)^{13}$	$E(37)^{28}$	$E(37)^{6}$	$E(37)^{21}$	$E(37)^{36}$	$E(37)^{14}$	$E(37)^{29}$	$E(37)^{7}$	$E(37)^{22}$
χ_{17}	$E(37)^{16}$	$E(37)^{32}$	$E(37)^{11}$	$E(37)^{27}$	$E(37)^{6}$	$E(37)^{22}$	E(37)	$E(37)^{17}$	$E(37)^{33}$	$E(37)^{12}$	$E(37)^{28}$	\ /	\ /	$E(37)^{2}$	\ /		$E(37)^{13}$	$E(37)^{29}$	$E(37)^{8}$	$E(37)^{24}$	$E(37)^{3}$	$E(37)^{19}$	$E(37)^{35}$	$E(37)^{14}$	$E(37)^{30}$	$E(37)^9$	$E(37)^{25}$	$E(37)^4$	$E(37)^{20}$	$E(37)^{36}$	$E(37)^{15}$	$E(37)^{31}$	$E(37)^{10}$	$E(37)^{26}$	$E(37)^{5}$	$E(37)^{21}$
χ_{18}	$E(37)^{17}$	$E(37)^{34}$	$E(37)^{14}$	$E(37)^{31}$	$E(37)^{11}$	$E(37)^{28}$	$E(37)^{8}$	$E(37)^{25}$	$E(37)^{5}$	$E(37)^{22}$	$E(37)^{2}$				$E(37)^{33}$	$E(37)^{13}$	$E(37)^{30}$	\ /	()	\ /	$E(37)^{24}$	\ /	$E(37)^{21}$	E(37)	$E(37)^{18}$	$E(37)^{35}$	$E(37)^{15}$	$E(37)^{32}$	$E(37)^{12}$	$E(37)^{29}$	$E(37)^9$	$E(37)^{26}$	$E(37)^{6}$	$E(37)^{23}$	$E(37)^{3}$	$E(37)^{20}$
χ_{19}	$E(37)^{18}$	$E(37)^{36}$	$E(37)^{17}$	$E(37)^{35}$	$E(37)^{16}$	$E(37)^{34}$	$E(37)^{15}$	$E(37)^{33}$	$E(37)^{14}$	$E(37)^{32}$	$E(37)^{13}$	\ /	\ /	\ /	\ /	\ /	\ /	\ /	\ /		\ /	\ /	$E(37)^{7}$	$E(37)^{25}$	$E(37)^{6}$	$E(37)^{24}$	$E(37)^{5}$	$E(37)^{23}$	$E(37)^4$	$E(37)^{22}$	$E(37)^{3}$	$E(37)^{21}$	$E(37)^{2}$	$E(37)^{20}$	E(37)	$E(37)^{19}$
χ_{20}	$E(37)^{19}$	E(37)	$E(37)^{20}$	$E(37)^{2}$	$E(37)^{21}$	$E(37)^{3}$	$E(37)^{22}$	$E(37)^4$	$E(37)^{23}$	\ /	$E(37)^{24}$	\ /	$E(37)^{25}$	\ /	\ /	$E(37)^{8}$	\ /	\ /					\ /	$E(37)^{12}$	\ /	\ /	$E(37)^{32}$	$E(37)^{14}$	$E(37)^{33}$	$E(37)^{15}$	$E(37)^{34}$	$E(37)^{16}$	$E(37)^{35}$	$E(37)^{17}$	$E(37)^{36}$	$E(37)^{18}$
χ_{21}	$E(37)^{20}$	$E(37)^{3}$	$E(37)^{23}$	$E(37)^{6}$	$E(37)^{26}$	$E(37)^{9}$	$E(37)^{29}$	$E(37)^{12}$	$E(37)^{32}$	$E(37)^{15}$	$E(37)^{35}$	\ /	\ /				\ /	()				$E(37)^{33}$		$E(37)^{36}$		$E(37)^{2}$	$E(37)^{22}$	$E(37)^{5}$	$E(37)^{25}$	$E(37)^{8}$	$E(37)^{28}$	$E(37)^{11}$	$E(37)^{31}$	$E(37)^{14}$	$E(37)^{34}$	$E(37)^{17}$
χ_{22}	$E(37)^{21}$	$E(37)^{5}$	$E(37)^{26}$	$E(37)^{10}$	$E(37)^{31}$	$E(37)^{15}$	$E(37)^{36}$	$E(37)^{20}$	$E(37)^4$	$E(37)^{25}$	$E(37)^9$	$E(37)^{30}$	\ /	\ /		\ /	\ /					$E(37)^{18}$	` /	$E(37)^{23}$	\ /	\ /	$E(37)^{12}$	$E(37)^{33}$	$E(37)^{17}$	E(37)	$E(37)^{22}$	$E(37)^{6}$	$E(37)^{27}$	$E(37)^{11}$	$E(37)^{32}$	$E(37)^{16}$
χ_{23}	$E(37)^{22}$	\ /	$E(37)^{29}$	$E(37)^{14}$	$E(37)^{36}$	$E(37)^{21}$	$E(37)^{6}$	$E(37)^{28}$	$E(37)^{13}$	$E(37)^{35}$	$E(37)^{20}$	$E(37)^{5}$	\ /	\ /	\ /	\ /	\ /	\ /	$E(37)^{11}$	()	$E(37)^{18}$	\ /	$E(37)^{25}$	()	$E(37)^{32}$	$E(37)^{17}$	$E(37)^{2}$	$E(37)^{24}$	$E(37)^9$	$E(37)^{31}$	$E(37)^{16}$	E(37)	$E(37)^{23}$	$E(37)^{8}$	$E(37)^{30}$	$E(37)^{15}$
χ_{24}	$E(37)^{23}$	$E(37)^9$	$E(37)^{32}$	$E(37)^{18}$	$E(37)^4$	$E(37)^{27}$	$E(37)^{13}$	$E(37)^{36}$	$E(37)^{22}$	$E(37)^{8}$	$E(37)^{31}$	$E(37)^{17}$	\ /	\ /	\ /	$E(37)^{35}$	\ /	\ /	()	$E(37)^{16}$	\ /	$E(37)^{25}$	\ /	\ /	$E(37)^{20}$	\ /	\ /	$E(37)^{15}$	\ /	$E(37)^{24}$	$E(37)^{10}$	$E(37)^{33}$	$E(37)^{19}$	$E(37)^{5}$	$E(37)^{28}$	$E(37)^{14}$
χ_{25}	$E(37)^{24}$	$E(37)^{11}$	$E(37)^{35}$	$E(37)^{22}$	$E(37)^9$	$E(37)^{33}$	$E(37)^{20}$	$E(37)^{7}$	$E(37)^{31}$	$E(37)^{18}$	$E(37)^{5}$	· / .	$E(37)^{16}$	\ /	\ /	$E(37)^{14}$	\ /_	\ /	()	\ /	\ / .	\ /	\ /	$E(37)^{21}$	$E(37)^{8}$	\ /	\ /	$E(37)^{6}$	$E(37)^{30}$	$E(37)^{17}$	$E(37)^4$	$E(37)^{28}$	$E(37)^{15}$	$E(37)^{2}$	$E(37)^{26}$	$E(37)^{13}$
χ_{26}	$E(37)^{25}$	$E(37)^{13}$	E(37)	$E(37)^{26}$	$E(37)^{14}$	$E(37)^2$	$E(37)^{27}$	$E(37)^{15}$	\ /	$E(37)^{28}$	$E(37)^{16}$	\ /	\ /	\ /	\ /	\ /	\ /	\ /	()	$E(37)^{19}$	\ /	\ /	$E(37)^{20}$	$E(37)^{8}$	$E(37)^{33}$	\ /	\ /	$E(37)^{34}$	$E(37)^{22}$	$E(37)^{10}$	$E(37)^{35}$	$E(37)^{23}$	$E(37)^{11}$	$E(37)^{36}$	$E(37)^{24}$	$E(37)^{12}$
χ_{27}	$E(37)^{26}$	$E(37)^{15}$	$E(37)^4$	$E(37)^{30}$	$E(37)^{19}$	$E(37)^{8}$	$E(37)^{34}$	$E(37)^{23}$	$E(37)^{12}$	\ /.	$E(37)^{27}$	\ /	\ /	$E(37)^{31}$	\ /	\ /	\ /	\ /	\ /	\ /	\ /	\ /	\ /	$E(37)^{32}$	$E(37)^{21}$	\ /	\ /	$E(37)^{25}$	$E(37)^{14}$	$E(37)^{3}$	$E(37)^{29}$	$E(37)^{18}$	$E(37)^{7}$	$E(37)^{33}$	$E(37)^{22}$	$E(37)^{11}$
χ_{28}	$E(37)^{27}$	$E(37)^{17}$	$E(37)^{7}$	$E(37)^{34}$	$E(37)^{24}$	$E(37)^{14}$	$E(37)^4$	\ /	\ /	$E(37)^{11}$	E(37)	\ /	\ /	$E(37)^{8}$	\ /				` /	\ /	\ /	\ /	\ /	$E(37)^{19}$	$E(37)^9$		$E(37)^{26}$	$E(37)^{16}$	$E(37)^{6}$	$E(37)^{33}$	$E(37)^{23}$	$E(37)^{13}$	$E(37)^{3}$	$E(37)^{30}$	$E(37)^{20}$	$E(37)^{10}$
χ_{29}	$E(37)^{28}$	$E(37)^{19}$	$E(37)^{10}$	E(37)	$E(37)^{29}$	$E(37)^{20}$	$E(37)^{11}$	$E(37)^{2}$	$E(37)^{30}$	\ /	$E(37)^{12}$	\ /	\ /	\ /	\ /		\ /		()	\ /	\ /	$E(37)^{24}$	\ /	\ /	$E(37)^{34}$	\ /	\ /	$E(37)^{7}$	$E(37)^{35}$	$E(37)^{26}$	$E(37)^{17}$	$E(37)^{8}$	$E(37)^{36}$	$E(37)^{27}$	$E(37)^{18}$	$E(37)^9$
χ_{30}	$E(37)^{29}$	$E(37)^{21}$	$E(37)^{13}$	$E(37)^{5}$	$E(37)^{34}$	$E(37)^{26}$	$E(37)^{18}$	$E(37)^{10}$	$E(37)^{2}$	\ /	$E(37)^{23}$	\ /	()	\ /	\ /	\ /	\ /	\ /	\ /	\ /	()	$E(37)^9$	\ /	$E(37)^{30}$	$E(37)^{22}$	$E(37)^{14}$	$E(37)^{6}$	$E(37)^{35}$	$E(37)^{27}$	$E(37)^{19}$	$E(37)^{11}$	$E(37)^{3}$	$E(37)^{32}$	$E(37)^{24}$	$E(37)^{16}$	$E(37)^8$
χ_{31}	$E(37)^{30}$	$E(37)^{23}$	$E(37)^{16}$	$E(37)^9$	$E(37)^{2}$	$E(37)^{32}$	\ /	(/	$E(37)^{11}$	()	\ /	(/	\ /	\ /	()	\ /	\ /	\ /	()	$E(37)^{8}$	\ /	(/	\ /	$E(37)^{17}$	$E(37)^{10}$	$E(37)^{3}$	$E(37)^{33}$	$E(37)^{26}$	$E(37)^{19}$	$E(37)^{12}$	$E(37)^{5}$	$E(37)^{35}$	$E(37)^{28}$	$E(37)^{21}$	$E(37)^{14}$	$E(37)^7$
χ_{32}	$E(37)^{31}$	$E(37)^{25}$	$E(37)^{19}$	$E(37)^{13}$	$E(37)^{7}$	E(37)	$E(37)^{32}$	$E(37)^{26}$	$E(37)^{20}$	$E(37)^{14}$	$E(37)^{8}$	$E(37)^{2}$	$E(37)^{33}$	$E(37)^{27}$	$E(37)^{21}$	$E(37)^{15}$	$E(37)^9$	$E(37)^{3}$	$E(37)^{34}$	$E(37)^{28}$	$E(37)^{22}$	$E(37)^{16}$	$E(37)^{10}$	$E(37)^4$	$E(37)^{35}$	$E(37)^{29}$	$E(37)^{23}$	$E(37)^{17}$	$E(37)^{11}$	$E(37)^{5}$	$E(37)^{36}$	$E(37)^{30}$	$E(37)^{24}$	$E(37)^{18}$	$E(37)^{12}$	$E(37)^6$
χ_{33}	$E(37)^{32}$	$E(37)^{27}$	$E(37)^{22}$	$E(37)^{17}$	$E(37)^{12}$	$E(37)^{7}$	$E(37)^{2}$	$E(37)^{34}$	\ /	\ /	$E(37)^{19}$	\ /	$E(37)^9$	$E(37)^4$	$E(37)^{36}$	\ /	$E(37)^{26}$	\ /	$E(37)^{16}$	\ /	$E(37)^{6}$	E(37)	$E(37)^{33}$	$E(37)^{28}$	$E(37)^{23}$	$E(37)^{18}$	$E(37)^{13}$	$E(37)^{8}$	$E(37)^3$	$E(37)^{35}$	$E(37)^{30}$	$E(37)^{25}$	$E(37)^{20}$	$E(37)^{15}$	$E(37)^{10}$	$E(37)^5$
χ_{34}	$E(37)^{33}$	$E(37)^{29}$	$E(37)^{25}$	$E(37)^{21}$	$E(37)^{17}$	$E(37)^{13}$	$E(37)^9$	$E(37)^{5}$	E(37)	$E(37)^{34}$	\ /	$E(37)^{26}$	\ /	\ /	\ /	\ /	$E(37)^{6}$	\ /	\ /	$E(37)^{31}$	\ /	\ /	$E(37)^{19}$	$E(37)^{15}$	$E(37)^{11}$	$E(37)^{7}$	$E(37)^{3}$	$E(37)^{36}$	$E(37)^{32}$	$E(37)^{28}$	$E(37)^{24}$	$E(37)^{20}$	$E(37)^{16}$	$E(37)^{12}$	$E(37)^{8}$	$E(37)^4$
χ_{35}	$E(37)^{34}$	$E(37)^{31}$	$E(37)^{28}$	$E(37)^{25}$	$E(37)^{22}$	$E(37)^{19}$	$E(37)^{16}$	$E(37)^{13}$	$E(37)^{10}$	$E(37)^{7}$	$E(37)^4$	\ /	\ /	\ /	$E(37)^{29}$	$E(37)^{26}$	$E(37)^{23}$	\ /	()	\ /	()	$E(37)^{8}$	$E(37)^{5}$	$E(37)^{2}$	$E(37)^{36}$	$E(37)^{33}$	$E(37)^{30}$	$E(37)^{27}$	$E(37)^{24}$	$E(37)^{21}$	$E(37)^{18}$	$E(37)^{15}$	$E(37)^{12}$	$E(37)^9$	$E(37)^{6}$	$E(37)^3$
χ_{36}	$E(37)^{35}$	\ /	$E(37)^{31}$	$E(37)^{29}$	$E(37)^{27}$	$E(37)^{25}$	$E(37)^{23}$	\ /	\ /	\ /	\ /	$E(37)^{13}$	\ /			\ /	$E(37)^{3}$					$E(37)^{30}$		\ /	$E(37)^{24}$	\ /	$E(37)^{20}$	$E(37)^{18}$	$E(37)^{16}$	$E(37)^{14}$	$E(37)^{12}$	$E(37)^{10}$	$E(37)^{8}$	$E(37)^{6}$	$E(37)^4$	$E(37)^2$
χ_{37}	$E(37)^{36}$	$E(37)^{35}$	$E(37)^{34}$	$E(37)^{33}$	$E(37)^{32}$	$E(37)^{31}$	$E(37)^{30}$	$E(37)^{29}$	$E(37)^{28}$	$E(37)^{27}$	$E(37)^{26}$	$E(37)^{25}$	$E(37)^{24}$	$E(37)^{23}$	$E(37)^{22}$	$E(37)^{21}$	$E(37)^{20}$	$E(37)^{19}$	$E(37)^{18}$	$E(37)^{17}$	$E(37)^{16}$	$E(37)^{15}$	$E(37)^{14}$	$E(37)^{13}$	$E(37)^{12}$	$E(37)^{11}$	$E(37)^{10}$	$E(37)^9$	$E(37)^{8}$	$E(37)^7$	$E(37)^6$	$E(37)^5$	$E(37)^4$	$E(37)^3$	$E(37)^2$	E(37)

Trivial source character table of $G \cong C37$ at $p = 37$:	
Normalisers N_i	$N_1 \mid N_2$
p-subgroups of G up to conjugacy in G	$P_1 \mid P_2$
Representatives $n_j \in N_i$	$1a \mid 1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot \chi_{33} + 1 \cdot \chi_{34} + 1 \cdot \chi_{35} + 1 \cdot \chi_{36} + 1 \cdot \chi_{36} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot \chi_{32} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot \chi_{32} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot $	(37 37 0)
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{33} + 0 \cdot \chi_{34} + 0 \cdot \chi_{35} + 0 \cdot \chi_{36} + 0 \cdot \chi_{36} + 0 \cdot \chi_{31} + 0 \cdot $	$(37 \mid 1 \mid 1)$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37)]) \cong C37$

 $N_1 = Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)]) \cong C37 \\ N_2 = Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)]) \cong C37 \\ N_3 = Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)]) \cong C37 \\ N_4 = Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)]) \cong C37 \\ N_4 = Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)]) \cong C37 \\ N_5 = Group([(1,2,3,4,5,5,5,12,22,23,24,25,24$