

Winter Term 21/22

Adversarial Self-Supervised Learning with Digital Twins

Org & Introduction

Prof. Dr. Holger Giese (holger.giese@hpi.uni-potsdam.de)

Christian Medeiros Adriano (christian.adriano@hpi.de) - "Chris"

He Xu (he.xu@hpi.de)

Key Facts

- Weekly Hours: 4
- Credit Points: 6
- Teaching Form: **Project Seminar**
- Enrolment Type: Compulsory Elective Module ("Wahlpflichtmodul")
- Course Language: English
- Study Programs and Modules:
 - □ IT-Systems Engineering MA
 - Mandatory module : "IT-Systems Engineering Analysis"
 - Mandatory module: "IT-Systems Engineering Design"
 - Specialization module(s): "Software Architecture & Modeling Technology"
 - Data Engineering MA
 - Digital Health MA

Dates

Enrollment deadline: 22.10.2021

□ Cancellation deadline for enrollment: **30.01.2022**

Introductory meeting: 27.10.2021 [NOW]

Meetings:

- □ Lectures scheduled
- □ Update meetings on demand, usually weekly
- Final Presentations at end of the semester: To be decided
 - □ We will be present at the lecture room, but we will also be joining via Zoom.

Communicantion Plan

Motive	Content	Medium
Artifacts	Source code, Data Documentation, Wiki	Github - https://github.com/orgs/hpi-sam/
Papers	Copyrighted material	Bib-Admin
Messaging ad hoc	Questions, Suggestions, Sharing	Our Slack group: adversarialre-o743758.slack.com
Official communications	Schedule, Orientations, Administrative issues	Email <u>christian.adriano@hpi.de</u>
Meetings	Lectures, Status, Work meetings	Zoom, Skype
Emergency	Call, SMS, messaging	Chris mobile number (check Chris' Slack profile)

Seminar Work, Deliverables and Grading

- Work alone or in groups on one selected topic/project.
- Each team has on-demand update meetings.

Project Execution: [60% of final grade]

- Weekly update meeting
- Intermediary Presentations

Written deliverables: [30% of final grade]

- Final report on findings
 - □ Length: approx. 10 pages ACM Format per team participants
 - Some parts must be attributable to each individual author

Final Presentations: [10% of final grade]

- Presentation on findings
- Questions and feedback for other students' presentation

Road Map (1/2)

6

- 1. Intro and Course Organization
- 2. Self-Adaptive Systems (mRubis)

Objectives

Setup the environment Form groups

- 3. Digital Twins
- 4. Model-Free Reinforcement Learning
- 5. Model-Based Reinforcement Learning

Week-2 Foundations

Acquire conceptual knowledge General architecture of projects

- 6. Underspecification & Generalization
- 7. Simulation and Sim2Real
- 8. Robust RL
- 9. Safe RL

Week-3 Challenges Understand a phenomenon Select and describe the problems

- 10. Adversarial Training
- 11. Continual & Curriculum Learning
- 12. Transfer & Meta-Learning RL
- 13. Representation Learning & Causal RL

Week-4 Solutions Understand solution space (degrees of freedom)
Select solutions
Choose evaluation methods
Plan experiments

Roadmap (2/2)

Project Phase 1: Learn fundamentals - Lectures

□ Goal: learn fundamentals

Deadline: Mid-End of December

Project Phase 2: Present Proposal - Reading and Writing

Goal: learn about the state of art of one application area

Project Phase 3: Apply a method - Coding and Evaluation

- ☐ Goal: learn to apply and evaluate a method
- Present update in weekly meetings
- Final Presentations in one session in February 2022
- Submission of final report one week after the presentation

Project Proposal

Team size: up to four people.

Project proposal in two stages:

- 1- State-of-art (one page, double column) in 6 weeks (First week of December)
- Each person covers at least five well-selected papers (group covers at least 20 papers)
- 2- Plan first draft in 8 weeks (before New Years Break)
- Detail the problem (what is it? why should I care?, why is it challenging?)
- Describe the dataset (source, size, main features, cite any papers that used it)
- Determine the metrics and algorithms to be used (preliminary insights, it might change)
- Discuss how you will evaluate your results (benchmarks and baselines)

END