Covergence Clubs and Regression Trees

0686 - Spatial Economics

Nikolas, Philipp, Lukas & Daniel Based on Postiglione, Benedetti, and Lafratta (2010) 17 Jänner, 2019

Data Recap

European Regional Database by Cambridge Econometrics

We limit the dataset:

- timeframe 2000-2015
- no Croatia (i.e. two fewer NUTS2 regions)

And use the full set of variables for our 273 regions.

Oh what a merry regression tree

Split observations into clubs:

```
tree <- function(data, split_vars, end_criteria) {</pre>
  split <- find_best_split(...)</pre>
  if (!end criteria) {
    return(list(tree(split$data1, ...),
                 tree(split$data2, ...)))
  } else { # if(end_criteria)
    return(data)
```

Regression Tree

We receive a recursive, tree-like data structure that is:

- hard to deal with (a lot of helper functions are necessary)
- nice

Regression Tree

Our results are comparable to partykit (Hothorn and Zeileis 2015). Still there's the caveat of spatially filtering the data.

Motivation

Table 1: Regression results using unfiltered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-1.139***	-0.265	1.769***	2.922***	
	(0.323)	(0.360)	(0.146)	(0.147)	
Initial GDP p.c.	0.120***	0.035	-0.159***	-0.275***	
	(0.032)	(0.036)	(0.016)	(0.015)	
Observations	63	92	67	51	
Residual Std. Error	0.118 (df = 61)	0.105 (df = 90)	0.129 (df = 65)	0.086 (df = 49)	

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: Regression results using SAR-filtered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-1.174***	1.445***	1.296***	-0.037	
	(0.343)	(0.122)	(0.383)	(0.470)	
Initial GDP p.c.	0.109***	-0.142***	-0.128***	-0.003	
	(0.034)	(0.013)	(0.037)	(0.047)	
Observations	63	97	55	58	
Residual Std. Error	0.125 (df = 61)	0.124 (df = 95)	0.073 (df = 53)	0.110 (df = 56)	

Note:

 $^*p<0.1; \ ^{**}p<0.05; \ ^{***}p<0.01$

Table 3: Regression results using SEM-filtered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-0.039**	0.088***	0.016	-0.021	
	(0.018)	(0.014)	(0.020)	(0.022)	
Initial GDP p.c.	-0.277***	-0.265***	-0.061**	-0.132***	
	(0.022)	(0.026)	(0.028)	(0.047)	
Observations	55	89	59	70	
Residual Std. Error	0.117 (df = 53)	0.120 (df = 87)	0.086 (df = 57)	0.106 (df = 68)	

Note:

p<0.1; p<0.05; p<0.05; p<0.01

- club-plots
- some first LM vs. SAR vs. SEM comparisons

Implementation I

1. Grow the tree

Implementation II

2. Fell the tree

Implementation II

```
untree <- function(nodes, simplify = FALSE){</pre>
  out <- list()
  lumberjack <- function(nodes){</pre>
    # ...
    parent <- parent.frame()</pre>
    pos <- length(parent$out) + 1</pre>
    # if(...){...}
    }else if(term leq){
      parent$out[[pos]] <- leq</pre>
      Recall(gre)
  #...} # lumberjack
  lumberjack(nodes)
  return(out)
```

Implementation III

3. Plan the furniture

```
> plan
$plan
[1] "emp ind <= -0.70577934346498"
[2] "emp ind > -0.70577934346498"
[3] "emp ind > -0.70577934346498 & inv nms > -0.0469046310811765"
[4] "emp ind > -0.70577934346498 & inv nms <= -0.0469046310811765"
[5] "emp ind > -0.70577934346498 & inv nms <= -0.0469046310811765 & emp nms <= -0.311514464909221"
[6] "emp ind > -0.70577934346498 & inv nms <= -0.0469046310811765 & emp nms > -0.311514464909221"
Sterminal
[1] "emp ind <= -0.70577934346498"
[2] "emp ind > -0.70577934346498 & inv nms > -0.0469046310811765"
[3] "emp ind > -0.70577934346498 & inv nms <= -0.0469046310811765 & emp nms <= -0.311514464909221"
[4] "emp ind > -0.70577934346498 & inv nms <= -0.0469046310811765 & emp nms > -0.311514464909221"
cumPaste <- function(vec, collps = NULL){</pre>
   return(sapply(vec, function(x)
      paste(vec[1:which(vec == x)], collapse = collps)))
}
```

Implementation IV

4. Build the furniture

• E.g. for terminal nodes:

```
odat list [4] List of length 4
odf1 list [63 x 18] (S3: data.frame A data.frame with 63 rows and 18 columns
odf2 list [92 x 18] (S3: data.frame A data.frame with 92 rows and 18 columns
odf3 list [67 x 18] (S3: data.frame A data.frame with 67 rows and 18 columns
odf4 list [51 x 18] (S3: data.frame A data.frame with 51 rows and 18 columns
```

lapply(dat, ...) desired regression function

Computational concerns

- Looping
 - For each splitting variable
 - For each value in variable
- Rcpp (Eddelbuettel and Balamuta 2017)
- 1. Write function in C++

2. Source in R

```
Rcpp::sourceCpp("get_var_stat.cpp")
```

Literature

Eddelbuettel, Dirk, and James Joseph Balamuta. 2017. "Extending extitR with extitC++: A Brief Introduction to extitRcpp." *PeerJ Preprints* 5 (August): e3188v1. doi:10.7287/peerj.preprints.3188v1.

Hothorn, Torsten, and Achim Zeileis. 2015. "partykit: A Modular Toolkit for Recursive Partytioning in R." *Journal of Machine Learning Research* 16: 3905–9.

http://jmlr.org/papers/v16/hothorn15a.html.

Postiglione, Paolo, Roberto Benedetti, and Giovanni Lafratta. 2010. "A Regression Tree Algorithm for the Identification of Convergence Clubs." *Computational Statistics & Data Analysis* 54 (11). Elsevier: 2776–85.