Eulerin ϕ -funktion koko kun $n \to \infty$ Elli Kiiski 2020

1 Tiivistelmä

Viittaus [1] toinenkin [2]

2 Johdanto

3 Määritelmiä ja merkintätapoja

Merkintätapa 3.1. Jaollisuus a|b

Olkoot $a \in \mathbb{Z}$ ja $b \in \mathbb{Z}$ siten, että luku b on jaollinen luvulla a. Tällöin merkitään a|b.

Määritelmä 3.2. Suurin yhteinen tekijä, syt(a,b)

Olkoot $a \neq 0$ ja $b \neq 0$. Tällöin on olemassa yksiselitteinen $d \in \mathbb{N}$, jolla on seuraavat ominaisuudet:

- 1. d|a ja d|b
- 2. jos d'|a ja d'|b, niin d'|d

Luku
adkutsutaan lukujen a ja bsuurimmaksi yhteiseksi tekijäksi, ja merkitään syt(a,b)=d.

Määritelmä 3.3. Alkuluku

Luku $p\in\mathbb{N}$ on alkuluku, jos $p\geq 2$ ja jokaisella $k\in\mathbb{N}$ jaollisuudesta k|p seuraa $k\in 1,p$. Tällöin merkitään $p\in\mathbb{P}$.

Toisin sanoen alkulukuja ovat kaikki lukua 1 suuremmat luonnolliset luvut, jotka ovat jaollisia vain itsellään ja luvulla 1.

Määritelmä 3.4. Suhteellinen alkuluku

Jos syt(a,b)=1, kutsutaan lukuja a ja b suhteellisiksi alkuluvuiksi tai alkuluvuiksi toistensa suhteen.

4 Eulerin ϕ -funktio ja Möbiuksen μ -funktio

Määritellään seuraavaksi kaksi funktiota: itse ϕ -funktio sekä myöhemmin hyödylliseksi apufunktioksi osoittautuva μ -funktio.

4.1 Eulerin ϕ -funktio

Eulerin ϕ -funktio on lukuteoreettinen funktio, eli se kuvautuu luonnollisilta luvuilta luonnollisille luvuille. Nönnönnöö

Määritelmä 4.2. Eulerin ϕ -funktio $\phi: \mathbb{N} \to \mathbb{N}$

Määritetään $\phi(1)=1$. Kaikilla $n\geq 2,\ \phi(n)$ on lukujen $a\in\{1,2,...,n\}$ määrä, joille pätee syt(a,n)=1.

Toisin sanoen Eulerin ϕ -funktion arvo luonnollisella luvulla n on sitä pienempien luonnolisten lukujen määrä, jotka ovat alkulukuja sen suhteen.

4.3 Möbiuksen μ -funktio

Möbiuksen μ -funktio puolestaan nönnönöö

Määritelmä 4.4. Möbiuksen μ -funktio $\mu: \mathbb{N} \to \mathbb{N}$ Määritelmä tähän

5 Eulerin ϕ -funktion rajat

Todisteteaan funktion triviaali yläraja ja tutkitaan mutkikkaampaa alarajaa.

5.1 Eulerin ϕ -funktion yläraja

Lause 5.2. Eulerin ϕ -funktion yläraja Kaikilla luonnollisilla luvuilla $n \ge 2$ pätee $\phi(n) < n$.

Todistus. Suoraan määritelmästä seuraa, että $\phi(n) \leq n$, koska joukossa $\{1,2,...,n\}$ on n alkiota ja siten niiden joukosta ei voi löytyä yli n kappaletta ehtoa täyttävää lukua. Lisäksi jokaisella n pätee syt(n,n)=n. Täten millään $n\geq 2$ ei voi olla $\phi(n)=n$.

Siis $\phi(n) < n$ jokaisella $n \ge 2$.

Lause 5.3. Alkuluvuilla $\phi(p) = p - 1$ Jokaisella alkuluvulla $p \in \mathbb{P}$ pätee $\phi(p) = p - 1$.

Todistus. Olkoon $p\in\mathbb{P}.$ Tällöin jokaisella $k< p,\ k\in\mathbb{N}$ päteesyt(k,p)=1,mistä seuraa suoraan $\phi(p)=p-1.$ PITÄISIKÖ TÄÄ TODISTAA PAREMMIN

Lause 5.4. ϕ -funktion pienin yläraja Jokaisella $n \in \mathbb{N}$ pätee $\phi(n) \leq n - 1$.

 $To distus. \ \ Tulos saadaan suoraan yhdistämällä lauseet ÄSKEINEN ja SITÄ EDELLINEN.$

5.5 Eulerin ϕ -funktion alaraja

5.6 $\phi(n) < \sqrt{(n)}$?

Lähdetään tutkimaan ϕ -funktion alarajaa tarkastelemalla onko olemassa suuria luonnollisia lukuja, joilla $\phi(n) < \sqrt{n}$. Huomataan, että ainakin vielä luvulla n=6 pätee $\phi(6)=2<\sqrt(6)$, mutta sen jälkeen arvot näyttäisivät järjestään ylittävän vastaavan neliöjuuren arvon.

Tarkastellaan tilannetta tarkemmin jos osataan ehehe

- 6 Asiaaa
- 7 Asiaaaa
- 8 Lähteet
- [1] E. M. Wright G. H. Hardy. An Introduction to the Theory of Numbers. 2008.
- $[2]\ \ {\rm Eero}$ Saksman. "Introduction to Number Theory". 2019.