MATRIKS

Operasi Matriks

Jenis-Jenis Matriks

Determinan Matriks

Inverse Matriks

DEFINISI MATRIKS

Apakah yang dimaksud dengan Matriks?

kumpulan bilangan yang disajikan secara teratur dalam baris dan kolom yang membentuk suatu persegi panjang, serta termuat diantara sepasang tanda kurung.

NOTASI MATRIKS

- □ Nama matriks menggunakan huruf besar
- ☐ Anggota-anggota matriks dapat berupa huruf kecil maupun angka
- ☐ Digunakan kurung biasa atau kurung siku

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{pmatrix} \qquad H = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

Ordo matriks atau ukuran matriks merupakan banyaknya baris (garis horizontal) dan banyaknya kolom (garis vertikal) yang terdapat dalam matriks tersebut.

NOTASI MATRIKS

☐ Jadi, suatu matriks yang mempunyai m baris dan n kolom disebut matriks berordo atau berukuran m x n.

Notasi
$$A = (a_{ij})$$

☐ Memudahkan menunjuk anggota suatu matriks

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$
 Dengan $i = 1, 2, \dots, m$ $j = 1, 2, \dots, n$

MATRIKS

☐ Contoh: Matriks A merupakan matriks berordo 4x2

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \\ 2 & 1 \\ 6 & -1 \end{bmatrix}$$

☐ Bilangan-bilangan yang terdapat dalam sebuah matriks dinamakan entri dalam matriks atau disebut juga elemen atau unsur.

NOTASI <u>MATRIKS</u>

Baris

Matriks berukuran m x n atau berorde m x n

MATRIKS BARIS DAN KOLOM

Matriks baris adalah matriks yang hanya mempunyai satu baris

$$C = \begin{bmatrix} 1 & 2 & 1 & 4 \end{bmatrix}$$

Matriks kolom adalah matriks yang hanya mempunyai satu kolom.

$$E = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

MATRIKS A = B

- □ Dua buah matriks A dan B dikatakan sama (A = B) apabila A dan B mempunyai jumlah baris dan kolom yang sama (berordo sama) dan semua unsur yang terkandung di dalamnya sama.
- \Box aij = bij dimana
 - aij = elemen matriks A dari baris i dan kolom j
 - bij = elemen matriks B dari baris i dan kolom j
- A = B $A = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} \quad \text{dan} \quad B = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}$
 - \Box A \neq B

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & 5 \end{bmatrix} \quad \text{dan} \qquad B = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

PENJUMLAHAN MATRIKS

- □ Apabila A dan B merupakan dua matriks yang ukurannya sama, maka hasil penjumlahan (A + B) adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut.
- ☐ Matriks-matriks yang ordo/ukurannya berbeda tidak dapat ditambahkan.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \text{dan} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{bmatrix}$$

PENJUMLAHAN MATRIKS

☐ Contoh Soal 1.

☐ Contoh Soal 2.

$$(8 6) + (3 4) = (8+3 6+4) = (11 10)$$

☐ Contoh Soal 3.

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 1+4 & 3+2 \\ 5+8 & 7+9 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 13 & 16 \end{bmatrix}$$

☐ Contoh Soal 4.

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 3 \\ 7 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 2 & 7 \\ 5 & 8 & 4 \\ 1 & 7 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 7 & 12 \\ 7 & 9 & 7 \\ 8 & 9 & 8 \end{bmatrix}$$

☐ Contoh Soal 5.

$$A = \begin{bmatrix} 4 & 2 \\ -1 & 3 \\ 2 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -4 \\ 2 & 1 \\ 1 & -2 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 4+3 & 2-4 \\ -1+2 & 3+1 \\ 2+1 & -2-2 \end{bmatrix} \qquad A + B = \begin{bmatrix} 7 & -2 \\ 1 & 4 \\ 3 & -4 \end{bmatrix}$$

PENGURANGAN MATRIKS

- □ A dan B adalah suatu dua matriks yang ukurannya sama, maka A-B adalah matriks yang diperoleh dengan mengurangkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut.
- ☐ Matriks-matriks yang ordo/ukurannya berbeda tidak dapat dikurangkan.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \text{dan} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13} \\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23} \\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}$$

PENGURANGAN MATRIKS

☐ Contoh Soal 1.

☐ Contoh Soal 2.

$$(8 6) - (3 4) = (8 - 3 6 - 4) = (5 2)$$

☐ Contoh Soal 3.

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} - \begin{bmatrix} 4 & 2 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 - 4 & 3 - 2 \\ 5 - 8 & 7 - 9 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -3 & -2 \end{bmatrix}$$

☐ Contoh Soal 4.

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 3 \\ 7 & 2 & 5 \end{bmatrix} - \begin{bmatrix} 4 & 2 & 7 \\ 5 & 8 & 4 \\ 1 & 7 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 1 & -2 \\ -3 & -7 & -1 \\ 6 & -5 & 2 \end{bmatrix}$$

☐ Contoh Soal 5.

$$A = \begin{bmatrix} 4 & 2 \\ -1 & 3 \\ 2 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -4 \\ 2 & 1 \\ 1 & -2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 4 - 3 & 2 + 4 \\ -1 - 2 & 3 - 1 \\ 2 - 1 & -2 + 2 \end{bmatrix} \qquad A - B = \begin{bmatrix} 1 & 6 \\ -3 & 2 \\ 1 & 0 \end{bmatrix}$$

□ Contoh 6.

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1 - 1 & 0 - 1 & -1 - 1 \\ 2 + 1 & 2 - 2 & -3 - 4 \\ 3 - 3 & 4 - 4 & 0 - 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 0 & -1 & -2 \\ 3 & 0 & -7 \\ 0 & 0 & -2 \end{bmatrix}$$

- □Jika k adalah suatu bilangan skalar dan matriks A=(a_{ij}) maka matriks kA=(ka_{ij}) adalah suatu matriks yang diperoleh dengan mengalikan semua elemen matriks A dengan k.
- ☐Mengalikan matriks dengan skalar dapat dituliskan di depan atau dibelakang matriks.

$\Box[C]=k[A]=[A]k$

$$A = \begin{bmatrix} 3 & 8 \\ 5 & 1 \end{bmatrix} \longrightarrow 4A = \begin{bmatrix} 4*3 & 4*8 \\ 4*5 & 4*1 \end{bmatrix} \longrightarrow 4A = \begin{bmatrix} 12 & 32 \\ 20 & 4 \end{bmatrix}$$

Sifat-sifat perkalian matriks dengan skalar:

```
k(B+C) = kB + kC

k(B-C) = kB-kC

(k_1+k_2)C = k_1C + k_2C

(k_1-k_2)C = k_1C - k_2C

(k_1.k_2)C = k_1(k_2C)
```

Contoh:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}$$

 $A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}$ dengan k = 2, maka

$$K(A+B) = 2(A+B) = 2A+2B$$

$$2(A+B) = 2*\begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix} + \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}) = 2*\begin{bmatrix} 3 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 6 & 0 \end{bmatrix}$$
TERBUKTI

$$2A + 2B = 2 * \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} + 2 * \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 6 & 8 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 6 & 0 \end{bmatrix}$$

Contoh:

$$C = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$
 dengan k1 = 2 dan k2 = 3, maka

TERBUKTI

(k1+k2)C = k1.C + k2.C

$$(k_1 + k_2) * C = (2+3) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = 5 * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 10 & -5 \end{bmatrix}$$

$$(k_1 * C + k_2 * C) = (2) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} + (3) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 3 & 3 \\ 6 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 10 & -5 \end{bmatrix}$$

PERKALIAN MATRIKS

- □ Perkalian matriks dengan matriks pada umumnya tidak bersifat komutatif.
- ☐ Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua.
- ☐ Jika matriks A berukuran mxn dan matriks B berukuran nxp maka hasil dari perkalian A*B adalah suatu matriks C=(c_{ij}) berukuran mxp dimana

PERKALIAN

DUA MATRIKS A dan B DAPAT DIKALIKAN APABILA :

BANYAK KOLOM MATRIKS A **=** BANYAK BARIS MATRIKS B

PERKALIAN MATRIKS

☐ Contoh 1:

$$(1 \quad 3) x {5 \choose 2} = (1x5 + 3x2) = (5+6) = (11)$$

1baris 2baris

1baris

2kolom 1kolom

1kolom

☐ Contoh 2:

$$\begin{pmatrix} 5 \\ 2 \end{pmatrix} x \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5x1 & 5x3 \\ 2x1 & 2x3 \end{pmatrix} = \begin{pmatrix} 5 & 15 \\ 2 & 6 \end{pmatrix}$$

2B 1K 1B 2K

2*B* 2*K*

PERKALIAN MATRIKS

☐ Contoh 3:

$$A = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

$$AxB = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}x \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = [(3x3) + (2x1) + (1x0)] = [11]$$

$$BxA = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} x \begin{bmatrix} 3 \\ 2 \end{bmatrix} x \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3x3 & 3x2 & 3x1 \\ 1x3 & 1x2 & 1x1 \\ 0x3 & 0x2 & 0x1 \end{bmatrix} = \begin{bmatrix} 9 & 6 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

☐ Contoh 4:

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} x \begin{bmatrix} 2 & 4 \\ 7 & 6 \end{bmatrix} = \begin{bmatrix} 1x2 + 3x7 & 1x4 + 3x6 \\ 2x2 + 5x7 & 2x4 + 5x6 \end{bmatrix} = \begin{bmatrix} 23 & 22 \\ 39 & 38 \end{bmatrix}$$

☐ Contoh 5:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 5 \\ 2 & 4 & 3 \end{bmatrix} x \begin{bmatrix} 3 & 6 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3+10+2 & 6+4+1 & 2+8+3 \\ 9+5+10 & 18+2+5 & 6+4+15 \\ 6+20+6 & 12+8+3 & 4+16+9 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 11 & 13 \\ 24 & 25 & 25 \\ 32 & 23 & 29 \end{bmatrix}$$

SOAL LATIHAN 1.

$$jika: A=[-1 \ 3 \ -2], B=\begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}, C=[5 \ -2 \ -1], D=\begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$$

Tentukan: a. A + C

$$b. B + D$$

$$c. A - C$$

$$d. B - D$$

SOAL LATIHAN 2.

$$A = \begin{bmatrix} 6 & 1 \\ -1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -2 & 4 \\ 3 & 5 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & 5 \\ 1 & 2 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 5 & 1 \\ 2 & 1 & -2 \end{bmatrix}$$

Hitunglah:

- a. AXB
- b. BXA
- c. CXD
- d. DXC

PERKALIAN MATRIKS

- ☐ Apabila A merupakan suatu matriks persegi, maka $A^2 = A.A$; $A^3=A^2.A$ dan seterusnya
- □ Apabila AB = BC maka tidak dapat disimpulkan bahwa A=C (tidak berlaku sifat penghapusan)
- □ Apabila AB = AC belum tentu B = C
- □ Apabila AB = 0 maka tidak dapat disimpulkan bahwa A=0 atau
 B=0
- □ Terdapat beberapa hukum perkalian matriks :
 - 1. A(BC) = (AB)C
 - 2. A(B+C) = AB+AC
 - 3. (B+C)A = BA+CA
 - 4. A(B-C)=AB-AC
 - 5. (B-C)A = BA-CA
 - 6. A(BC) = (aB)C = B(aC)
 - 7. AI = IA = A

PERPANGKATAN MATRIKS

Sifat perpangkatan pada matriks sama seperti sifat perpangkatan pada bilangan-bilangan untuk setiap a bilangan riil, dimana berlaku:

 $A^2 = A A$

 $A^3 = A^2 A$

 $A^4 = A^3 A$

 $A^5 = A^4 A$; dan seterusnya

PERPANGKATAN MATRIKS

Tentukan hasil A² dan A³

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$A^{2} = AxA = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$

$$A^{3} = AxA^{2} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 6 & -2 \end{bmatrix}$$

PERPANGKATAN MATRIKS

Tentukan hasil 2A² + 3A³

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$2A^2 = 2 \cdot \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ -4 & 4 \end{bmatrix}$$

$$3A^3 = 3 \cdot \begin{bmatrix} -5 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} -15 & 9 \\ -6 & 6 \end{bmatrix}$$

$$2A^{2} + 3A^{3} = \begin{bmatrix} 6 & -2 \\ -4 & 4 \end{bmatrix} + \begin{bmatrix} -15 & 9 \\ -6 & 6 \end{bmatrix} = \begin{bmatrix} -9 & 7 \\ -10 & 10 \end{bmatrix}$$

JENIS -JENIS MATRIKS

■ Matriks bujursangkar (persegi) adalah matriks yang berukuran n x n

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

■ Matriks nol adalah matriks yang setiap entri atau elemennya adalah bilangan nol

$$O_{3x2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Sifat-sifat dari matriks nol:

- -A+0=A, jika ukuran matriks A = ukuran matriks 0
- -A*0=0, begitu juga 0*A=0.

JENIS -JENIS MATRIKS

■ Matriks Diagonal adalah matriks persegi yang semua elemen diatas dan dibawah diagonalnya adalah nol. Dinotasikan sebagai D.

Contoh:

$$D_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

■ Matriks Skalar adalah matriks diagonal yang semua elemen pada diagonalnya sama

$$D_{3x3} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

JENIS -JENIS MATRIKS

Matriks Identitas adalah matriks skalar yang elemen-elemen pada diagonal utamanya bernilai 1.

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Sifat-sifat matriks identitas :
$$A^*I = A$$

$$I^*A = A$$

$$I^*A=A$$

- Matriks Segitiga Atas adalah matriks persegi yang elemen di bawah diagonal utamanya bernilai nol
- Matriks Segitiga Bawah adalah matriks persegi yang elemen di atas diagonal utamanya bernilai nol

$$A = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 2 & 5 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 2 & 5 & 1 \end{bmatrix}$$

DETERMINAN MATRIKS

- ☐ Setiap matriks persegi atau bujur sangkar memiliki nilai determinan
- □ Nilai determinan dari suatu matriks merupakan suatu skalar.
- ☐ Jika nilai determinan suatu matriks sama dengan nol, maka matriks tersebut disebut matriks singular.

NOTASI DETERMINAN

- ☐ Misalkan matriks A merupakan sebuah matriks bujur sangkar
- ☐ Fungsi determinan dinyatakan oleh det (A)
- ☐ Jumlah det(A) disebut determinan A
- \Box det(A) sering dinotasikan |A|

NOTASI DETERMINAN

☐ Pada matriks 2x2 cara menghitung nilai determinannya adalah :

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \quad \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

☐ Contoh:

$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 $\det(A) = \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix}$ $\det(A) = 6 - 5 = 1$

METODE SARRUS

- ☐ Pada matriks 3x3 cara menghitung nilai determinannya adalah menggunakan Metode Sarrus
- ☐ Metode Sarrus hanya untuk matrix berdimensi 3x3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} & \mathbf{a_{13}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} & \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{22}} & \mathbf{a_{23}} \\ \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} \\ \mathbf{a_{22}} & \mathbf{a_{23} \\ \mathbf{a_{33}} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{22}} \\ \mathbf{a_{23}} & \mathbf{a_{2$$

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

IETODE SARRUS

Contoh:
$$A = \begin{pmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{pmatrix}$$

$$A = \begin{vmatrix} -2 & 2 & -3 & -2 & 2 \\ -1 & 3 & -1 & 1 \\ 2 & 0 & -1 & 2 & 0 \end{vmatrix}$$

☐ Nilai Determinan dicari menggunakan metode Sarrus

$$det(A) = 2 + 12 + 0 - (-6 + 0 + 2)$$

 $det(A) = 14 - (-4) = 14 + 4 = 18$

- ☐ Yang dimaksud dengan MINOR unsur aij adalah determinan yang berasal dari determinan orde ke-n tadi dikurangi dengan baris ke-i dan kolom ke-j.
- ☐ Dinotasikan dengan Mij
- ☐ Contoh Minor dari elemen a₁₁

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \qquad M_{11} = \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

MINOR

☐ Minor-minor dari Matrik A (ordo 3x3)

$$|M_{11}| = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \qquad |M_{21}| = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \qquad |M_{31}| = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$|M_{12}| = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \qquad |M_{22}| = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \qquad |M_{32}| = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

$$|M_{13}| = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \qquad |M_{23}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \qquad |M_{33}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

KOFAKTOR MATRIKS

□ Kofaktor dari baris ke-i dan kolom ke-j dituliskan dengan

$$c_{ij} = (-1)^{i+j} M_{ij}$$

☐ Contoh:

Kofaktor dari elemen a11

$$c_{23} = (-1)^{2+3} M_{23} = -M_{23}$$

$$\begin{bmatrix} + & - & + & - & + & \cdots \\ - & + & - & + & - & \cdots \\ + & - & + & - & + & \cdots \\ - & + & - & + & - & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$

☐ Determinan dari suatu matriks sama dengan jumlah perkalian elemen-elemen dari sembarang baris atau kolom dengan kofaktor-kofaktornya

Ekspansi Baris

$$|A| = \sum_{j=1}^{n} a_{ij} c_{ij} = a_{i1} c_{i1} + a_{i2} c_{i2} + \dots + a_{in} c_{in}$$

Ekspansi Kolom

$$|A| = \sum_{j=1}^{n} a_{ij} c_{ij} = a_{1j} c_{1j} + a_{2j} c_{2j} + \dots + a_{nj} c_{nj}$$

Determinan dengan Ekspansi Kofaktor Pada Baris

☐ Misalkan ada sebuah matriks A berordo 3x3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor baris pertama

$$|A| = a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$$

$$= a_{11}|M_{11}| - a_{12}|M_{12}| + a_{13}|M_{13}|$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor baris kedua

$$\begin{aligned} |A| &= a_{21}c_{21} + a_{22}c_{22} + a_{23}c_{23} \\ &= a_{21}|M_{21}| - a_{22}|M_{22}| + a_{23}|M_{23}| \\ &= a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} - a_{22}\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor baris ketiga

$$|\mathbf{A}| = a_{31}c_{31} + a_{32}c_{32} + a_{33}c_{33}$$

$$= a_{31}|\mathbf{M}_{31}| - a_{32}|\mathbf{M}_{32}| + a_{33}|\mathbf{M}_{33}|$$

$$= a_{31}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} - a_{32}\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + a_{33}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Determinan dengan Ekspansi Kofaktor Pada Kolom

☐ Misalkan ada sebuah matriks A berordo 3x3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor kolom pertama

$$\begin{aligned} |A| &= a_{11}c_{11} + a_{21}c_{21} + a_{31}c_{31} \\ &= a_{11}|M_{11}| - a_{21}|M_{21}| + a_{31}|M_{31}| \\ &= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \end{aligned}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor kolom kedua

$$\begin{aligned} |A| &= a_{12}c_{12} + a_{22}c_{22} + a_{32}c_{32} \\ &= a_{12}|M_{12}| - a_{22}|M_{22}| + a_{32}|M_{32}| \\ &= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} - a_{22}\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{32}\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \end{aligned}$$

☐ Determinan Matriks A dengan metode ekspansi kofaktor kolom ketiga

$$\begin{aligned} |A| &= a_{13}c_{13} + a_{23}c_{23} + a_{33}c_{33} \\ &= a_{13}|M_{13}| - a_{23}|M_{23}| + a_{33}|M_{33}| \\ &= a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{aligned}$$

DET MATRIKS SEGITIGA

☐ Jika A adalah matriks segitiga bujur sangkar berupa segitiga atas atau segitiga bawah maka nilai det(A) adalah hasil kali diagonal matriks tersebut

$$\det(A) = a_{11} \cdot a_{22} \cdot a_{33} \cdot \cdots \cdot dst$$

☐ Contoh

$$\begin{bmatrix} 2 & 7 & -3 & 8 & 3 \\ 0 & -3 & 7 & 5 & 1 \\ 0 & 0 & 6 & 7 & 6 \\ 0 & 0 & 0 & 9 & 8 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix} \qquad \det(A) = 2 \cdot (-3) \cdot 6 \cdot 9 \cdot 4 = -1296$$

$$\det(A) = 2 \cdot (-3) \cdot 6 \cdot 9 \cdot 4 = -1296$$

TRANSPOSE MATRIKS

□ Jika A adalah şuatu matriks m x n, maka tranpose A dinyatakan oleh A dan didefinisikan dengan matriks n x m yang kolom pertamanya adalah baris pertama dari A, kolom keduanya adalah baris kedua dari A, demikian juga dengan kolom ketiga adalah baris ketiga dari A dan seterusnya.

Contoh: matriks A: $A = \begin{bmatrix} 1 & 3 & 1 \\ 4 & 1 & 3 \end{bmatrix}$ berordo 2 x 3

transposenya: $A^{t} = \begin{bmatrix} 1 & 4 \\ 3 & 1 \\ 1 & 3 \end{bmatrix}$ berordo 3 x 2

TRANSPOSE MATRIKS

Beberapa Sifat Matriks Transpose:

$$1.(A+B)^T = A^T + B^T$$

$$2.(A^T)^T = A$$

$$3.(AB)^T = B^T A^T$$

$$4.(kA)^T = kA^T$$

ANSPOSE MATRI

Pembuktian aturan no1:
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$

$$A + B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$

$$(A+B)^{T} = \begin{bmatrix} a_{11} + b_{11} & a_{21} + b_{21} \\ a_{12} + b_{12} & a_{22} + b_{22} \\ a_{13} + b_{13} & a_{23} + b_{23} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix} \quad B^{T} = \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \\ b_{13} & b_{23} \end{bmatrix} \quad A^{T} + B^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \\ b_{13} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{21} + b_{21} \\ a_{12} + b_{12} & a_{22} + b_{22} \\ a_{13} + b_{13} & a_{23} + b_{23} \end{bmatrix}$$

TRANSPOSE MATRIKS

Pembuktian aturan no 2:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

$(A^{T})^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}^{T} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$

TERBUKTI

MATRIKS SIMETRI

Sebuah matriks dikatakan simetri apabila hasil dari transpose matriks A sama dengan matriks A itu sendiri.

$$A^T = A$$

Contoh:

1.

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

2.

$$B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
$$B^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

INVERS MATRIKS

- ☐ Matriks invers dari suatu matriks A adalah matriks B yang apabila dikalikan dengan matriks A memberikan satuan I
- $\Box AB = I$
- \square Notasi matriks invers : A^{-1}
- ☐ Sebuah matriks yang dikalikan matriks inversenya akan menghasilkan matrik satuan

$$A^{-1}A = I$$

☐ Jika

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 Maka $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

- ☐ Langkah-langkah untuk mencari invers matriks M yang berordo 3x3 adalah :
 - Cari determinan dari M
 - Transpose matriks M sehingga menjadi M^T
 - Cari adjoin matriks
 - Gunakan rumus

$$M^{-1} = \frac{1}{\det(M)}(adjoin(M))$$

☐ Contoh Soal:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

- Cari Determinannya : det(M) = 1(0-24)-2(0-20)+3(0-5) = 1
- Transpose matriks M

$$M^{T} = \begin{bmatrix} 1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0 \end{bmatrix}$$

- Temukan matriks kofaktor dengan menghitung minorminor matriksnya

$$\mathbf{M}^{\mathsf{T}} = \begin{pmatrix} \mathbf{1} & 0 & 5 \\ \mathbf{2} & \mathbf{1} & 6 \\ 3 & 4 & 0 \end{pmatrix} \qquad \mathbf{M}_{11} = \begin{vmatrix} \mathbf{1} & 6 \\ 4 & 0 \end{vmatrix} = -24 \qquad \mathbf{M}_{12} = \begin{vmatrix} \mathbf{2} & 6 \\ 3 & 0 \end{vmatrix} = -18 \qquad \mathbf{M}_{13} = \begin{vmatrix} \mathbf{2} & \mathbf{1} \\ 3 & 4 \end{vmatrix} = 5$$

$$\mathbf{M}_{21} = \begin{vmatrix} 0 & 5 \\ 4 & 0 \end{vmatrix} = -20 \qquad \mathbf{M}_{22} = \begin{vmatrix} \mathbf{1} & 5 \\ 3 & 0 \end{vmatrix} = -15 \qquad \mathbf{M}_{23} = \begin{vmatrix} \mathbf{1} & 0 \\ 3 & 4 \end{vmatrix} = 4$$

$$\mathbf{M}_{31} = \begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = -5 \qquad \mathbf{M}_{32} = \begin{vmatrix} \mathbf{1} & 5 \\ 2 & 6 \end{vmatrix} = -4 \qquad \mathbf{M}_{33} = \begin{vmatrix} \mathbf{1} & 0 \\ 2 & 1 \end{vmatrix} = 1$$

- Hasilnya:
$$\begin{bmatrix}
-24 & -18 & 5 \\
-20 & -15 & 4 \\
-5 & -4 & 1
\end{bmatrix}
=>
\begin{bmatrix}
+ & - & + \\
- & + & - \\
+ & - & +
\end{bmatrix}
=>
\begin{bmatrix}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{bmatrix}$$

☐ Hasil akhir

$$M^{-1} = \frac{1}{1} \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix}$$

BIRSMAYNERX

$$1.A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}, maka A^{-1} = ...$$

$$A^{-1} = \frac{1}{6-4} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}$$

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -2 & \frac{3}{2} \end{pmatrix}$$

$$1.A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}, maka A^{-1} = \dots \qquad 2.B = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}, maka B^{-1} = \dots$$

$$B^{-1} = \frac{1}{-2+3} \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$$

$$B^{-1} = \frac{1}{1} \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$$

$$1. A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix} maka A^{-1} = \dots$$

jawab:

$$\det A = \begin{vmatrix} 1 & -1 & 2 & 1 & -1 \\ 3 & 1 & 3 & 1 \\ 1 & -2 & 3 & 1 & -2 \end{vmatrix}$$

$$\det A = 3 + (-1) + (-12) - [2 + (-2) + (-9)]$$

$$\det A = -10 - (-9) = -10 + 9 = -1$$

$$adj A = \begin{bmatrix} +\begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} & -\begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} & +\begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} \\ -\begin{vmatrix} -1 & 2 \\ -2 & 3 \end{vmatrix} & +\begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & -1 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} \\ +\begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} & +\begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} \end{bmatrix}$$

$$adj A = \begin{bmatrix} +(3+2) & -(9-1) & +(-6-1) \\ -(-3+4) & +(3-2) & -(-2+1) \\ +(-1-2) & -(1-6) & +(1+3) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ \\ 1 & -2 & 3 \end{bmatrix}$$

$$adj A = \begin{bmatrix} 5 & -8 & -7 \\ -1 & 1 & 1 \\ -3 & 5 & 4 \end{bmatrix}$$

$$BARIS$$

$$BARIS$$

$$BARIS$$

$$Adj A = \begin{bmatrix} 5 & -1 & -3 \\ -8 & 1 & 5 \\ -7 & 1 & 4 \end{bmatrix}$$

$$Adj A = \begin{bmatrix} 5 & -1 & -3 \\ -8 & 1 & 5 \\ -7 & 1 & 4 \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det A} .adjA$$

$$A^{-1} = \frac{1}{-1} \begin{bmatrix} 5 & -1 & -3 \\ -8 & 1 & 5 \\ -7 & 1 & 4 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -5 & 1 & 3 \\ 8 & -1 & -5 \\ 7 & -1 & -4 \end{bmatrix}$$

$$2. B = \begin{bmatrix} -2 & 1 & -3 \\ 5 & 1 & -4 \\ -5 & -1 & 2 \end{bmatrix} maka B^{-1} = \dots$$

jawab:

$$\det B = \begin{vmatrix} -2 & 1 & -3 & -2 & 1 \\ 5 & 1 & 5 & 1 \\ -5 & -1 & 2 & -5 & -1 \end{vmatrix}$$

$$\det B = -4 + 20 + 15 - [15 + (-8) + 10]$$

$$\det B = 31 - 17 = 14$$

$$adjB = \begin{bmatrix} +\begin{vmatrix} 1 & -4 \\ -1 & 2 \end{vmatrix} & -\begin{vmatrix} 5 & -4 \\ -5 & 2 \end{vmatrix} & +\begin{vmatrix} 5 & 1 \\ -5 & -1 \end{vmatrix} \\ -\begin{vmatrix} 1 & -3 \\ -1 & 2 \end{vmatrix} & +\begin{vmatrix} -2 & -3 \\ -5 & 2 \end{vmatrix} & -\begin{vmatrix} -2 & 1 \\ -5 & -1 \end{vmatrix} \\ +\begin{vmatrix} 1 & -3 \\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} -2 & -3 \\ 5 & -4 \end{vmatrix} & +\begin{vmatrix} -2 & 1 \\ 5 & 1 \end{vmatrix} \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 1 & -4 \\ -5 & -1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} -2 & 1 & -3 \\ B = \begin{bmatrix} 5 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

$$adjB = \begin{bmatrix} +(2-4) & -(10-20) & +(-5+5) \\ -(2-3) & +(-4-15) & -(2+5) \\ +(2+3) & -(8+15) & +(-2-5) \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 1 & -3 \\ 5 & 1 & -4 \end{bmatrix}$$

$$B = \begin{bmatrix} -2 & 1 & -3 \\ 5 & 1 & -4 \end{bmatrix}$$

$$B^{-1} = \frac{1}{\det B} \cdot adjB$$

$$B^{-1} = \frac{1}{14} \cdot \begin{bmatrix} -2 & 1 & -3 \\ 10 & -19 & 5 \\ 0 & -7 & 4 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} -\frac{1}{7} & \frac{1}{14} & \frac{-3}{14} \\ \frac{5}{7} & \frac{-19}{14} & \frac{5}{14} \\ 0 & -\frac{1}{2} & \frac{2}{7} \end{bmatrix} = \begin{bmatrix} -0.14 & 0.07 & -0.21 \\ 0.71 & -1.36 & 0.36 \\ 0 & -0.5 & 0.29 \end{bmatrix}$$

SOAL LATIHAN

$$1.jika \ A = \begin{pmatrix} -3 & 2 & -2 \\ 1 & -1 & 3 \\ -1 & 3 & 1 \end{pmatrix}, tentukan \ A^{-1}$$

$$2. jika B = \begin{pmatrix} 1 & 3 & 0 \\ -1 & -1 & -2 \\ -1 & 3 & 1 \end{pmatrix}, tentukan B^{-1}$$

REFERENSI

- 1. Discrete Mathematics and its Applications; Kenneth H. Rosen; McGraw Hill; sixth edition; 2007
- 2. http://p4tkmatematika.org/
- 3. http://www.idomaths.com/id/matriks.php