

Evolutionary Multi-Objective Optimization: A Parallel Computing Approach

Rahul Krishna George Mathew

Department of Computer Science North Carolina State University

December 8, 2015

Outline

Background

→ Multi-Objective Problem

Models

- → DTI 72
- $\to \mathsf{XOMO}$
- → POM3

Algorithms

- → Evolutionary Algorithm
- $\rightarrow \mathsf{Differential}\ \mathsf{Evolution}$
- \rightarrow GALE: Geometric Active Learner

Parallelization Strategies

- \rightarrow The Island Model
- \rightarrow Master-Slave Model

Evaluation Metrics

- \rightarrow Evaluation
- \rightarrow Measures

Experimental Setup

Results

- \rightarrow Island Model
- → Master-Slave Model

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Outline

Background

\rightarrow Multi-Objective Problem

Models

- \rightarrow DTL72
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - → Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- ightarrow Measures

Experimental Setup

Results

- ightarrow Island Model
- ightarrow Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

 Pareto Frontier State of solutions which are equally good.

Computer Science

- Pareto Frontier State of solutions which are equally good.
- ► Pareto Point A point that lies on the Pareto frontier.

Computer Science

- Pareto Frontier State of solutions which are equally good.
- ► Pareto Point A point that lies on the Pareto frontier.
- Feasible Point A satisfiable solution for the problem but not necessarily the optimum one.

Computer Science

- Pareto Frontier State of solutions which are equally good.
- ► Pareto Point A point that lies on the Pareto frontier.
- Feasible Point A satisfiable solution for the problem but not necessarily the optimum one.
- Infeasible Point A solution outside the Pareto frontier

Figure: Sample Pareto Frontier

- Pareto Frontier State of solutions which are equally good.
- ► Pareto Point A point that lies on the Pareto frontier.
- Feasible Point A satisfiable solution for the problem but not necessarily the optimum one.
- Infeasible Point A solution outside the Pareto frontier
- Utopia Point The ideal theoretical solution we would love to reach but practically its not possible

Figure: Sample Pareto Frontier

Outline

Background

→ Multi-Objective Problem

Models

\rightarrow DTLZ2

- \rightarrow XOMO
- → POM3

Algorithms

- ightarrow Evolutionary Algorithm
- → Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluation
- \rightarrow Measures

Experimental Setup

Results

- \rightarrow Island Model
- ightarrow Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions

► **Decisions** DTLZ-2 has 30 decisions where each decision ranges between 0 and 1.

$$0 \leq x_i \leq 1 \quad \text{ where } \ i=1,2,3....30$$

Figure: Pareto Frontier

DTLZ-2

► Decisions DTLZ-2 has 30 decisions where each decision ranges between 0 and 1.

$$0 \leq x_i \leq 1 \quad \textit{ where } \ i=1,2,3....30$$

Objectives A point that lies on the Pareto frontier.

$$\begin{split} f_1(x) &= (1+g(x_M))\cos(x_1\pi/2)....\cos(x_{M-1}\pi/2) \\ f_2(x) &= (1+g(x_M))\cos(x_1\pi/2)....\cos(x_{M-1}\pi/2) \\ f_3(x) &= (1+g(x_M))\sin(x_1\pi/2) \\ where & g(x_M) &= \sum_{x \in x_M} (x_i - 0.5)^2 \end{split}$$

Figure: Pareto Frontier

DTLZ-2

► Decisions DTLZ-2 has 30 decisions where each decision ranges between 0 and 1.

$$0 \leq x_i \leq 1 \quad \textit{ where } \ i=1,2,3....30$$

Objectives A point that lies on the Pareto frontier.

$$f_1(x) = (1 + g(x_M))\cos(x_1\pi/2)....\cos(x_{M-1}\pi/2)$$

$$f_2(x) = (1 + g(x_M))\cos(x_1\pi/2)....\cos(x_{M-1}\pi/2)$$

$$f_3(x) = (1 + g(x_M))\sin(x_1\pi/2)$$

$$where \qquad g(x_M) = \sum_{x \in Y_{m,i}} (x_i - 0.5)^2$$

▶ **Optimal Solution:** Ideal Decisions are $x_i = 0.5$ where i = 1, 2, 3...30 Ideal objectives should satisfy the equation $\sum_{m=1}^{3} f_m^2 = 1$

Figure: Pareto Frontier

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTLZ2
- $\to \mathsf{XOMO}$
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithn
 - → Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- ightarrow Evaluation
- → Measures

Experimental Setup

Results

- ightarrow Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

➤ XOMO is a Monte Carlo Simulator to model NASA's space program software.

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.
- The model contains 4 objectives all of which have to be minimized

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.
- The model contains 4 objectives all of which have to be minimized
 - ► **Effort:** Total number of developer hours on the project.

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.
- The model contains 4 objectives all of which have to be minimized
 - ▶ **Effort:** Total number of developer hours on the project.
 - ▶ Months: Number of months required to complete the project.

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.
- The model contains 4 objectives all of which have to be minimized
 - ▶ **Effort:** Total number of developer hours on the project.
 - ► Months: Number of months required to complete the project.
 - ▶ **Defects:** Number of defects in the project.

- XOMO is a Monte Carlo Simulator to model NASA's space program software.
- XOMO contains 23 decisions like lines of code of software, data storate, cyclometric complexity etc.
- The model contains 4 objectives all of which have to be minimized
 - ▶ **Effort:** Total number of developer hours on the project.
 - ▶ Months: Number of months required to complete the project.
 - ▶ **Defects:** Number of defects in the project.
 - ▶ **Risk:** Risk involved in developing the project.

Outline

→ Multi-Objective Problem

Models

- \rightarrow DTL 72
- \rightarrow XOMO
- → POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - → Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- \rightarrow Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.
- ► The model contains 4 objectives

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.
- ► The model contains 4 objectives
 - Cost: Cost incurred in developing the project. To be Minimized.

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.
- ► The model contains 4 objectives
 - Cost: Cost incurred in developing the project. To be Minimized.
 - ► **Score:** Normalized utility of the project. To be Maximized.

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.
- ► The model contains 4 objectives
 - ► **Cost:** Cost incurred in developing the project. To be Minimized.
 - ► **Score:** Normalized utility of the project. To be Maximized.
 - Completion: Percentage of project completed. To be Maximized.

- ► The POM3 model is a tool for exploring that management challenge. POM3 implements the Boehm & Turner model of agile programming where teams select tasks as they appear in the scrum backlog.
- POM3 contains 9 decisions like project criticality, size of project, project plan, team size etc.
- ► The model contains 4 objectives
 - Cost: Cost incurred in developing the project. To be Minimized.
 - ► **Score:** Normalized utility of the project. To be Maximized.
 - Completion: Percentage of project completed. To be Maximized.
 - ▶ **Idle:** Developers sitting idle in the project. To be Minimized.

Outline

Computer Science

Background

 \rightarrow Multi-Objective Problem

Models

- \rightarrow DTL72
 - \rightarrow XOMO
 - → POM3

Algorithms

- $\rightarrow \ \mathsf{Evolutionary} \ \mathsf{Algorithm}$
- ightarrow Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- → Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Evolutionary Algorithm

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTL72
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
- $\rightarrow \mathsf{Differential} \ \mathsf{Evolution}$
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- → Master-Slave Model

Evaluation Metrics

- → Evaluatio
- → Measures

Experimental Setup

Results

- ightarrow Island Model
- \rightarrow Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

► Stochastic evolutionary optimization technique.

- ► Stochastic evolutionary optimization technique.
- ► Iteratively approximates the shape of the Pareto Frontier

- ► Stochastic evolutionary optimization technique.
- ► Iteratively approximates the shape of the Pareto Frontier
- ► Advantages:

- ► Stochastic evolutionary optimization technique.
- ► Iteratively approximates the shape of the Pareto Frontier
- ► Advantages:
 - ► Simple & Computationally Inexpensive.

Differential Evolution(DE)

- Stochastic evolutionary optimization technique.
- ► Iteratively approximates the shape of the Pareto Frontier
- ► Advantages:
 - ► Simple & Computationally Inexpensive.
 - ► High dimensional problems can be handled easily.

Differential Evolution(DE)

- Stochastic evolutionary optimization technique.
- ► Iteratively approximates the shape of the Pareto Frontier
- ► Advantages:
 - ► Simple & Computationally Inexpensive.
 - ► High dimensional problems can be handled easily.
 - ► Solutions are very stable.

DE - Algorithm

Pseudo-code 3.2 Differential Evolution

Begin

Generate randomly an initial population of solutions.

Calculate the fitness of the initial population.

Repeat

For each parent, select three solutions at random.

Create one offspring using the DE operators.

Do this a number of times equal to the population size.

For each member of the next generation

If offspring(x) is more fit than parent(x)

Parent(x) is replaced.

Until a stop condition is satisfied.

End.

Outline

Computer Science

Background

 \rightarrow Multi-Objective Problem

Models

- \rightarrow DTI 72
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - ightarrow Differential Evolution
- \rightarrow GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- → Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

► Near linear time Multi-Objective Evolutionary Algorithm.

- ► Near linear time Multi-Objective Evolutionary Algorithm.
- ▶ Builds piecewise approximation to the best solutions of the pareto frontier.

- ▶ Near linear time Multi-Objective Evolutionary Algorithm.
- ▶ Builds piecewise approximation to the best solutions of the pareto frontier.
- ► Based on WHERE which is a recursive clustering technique based on Dimensionality Reduction.

- ▶ Near linear time Multi-Objective Evolutionary Algorithm.
- Builds piecewise approximation to the best solutions of the pareto frontier.
- ► Based on WHERE which is a recursive clustering technique based on Dimensionality Reduction.
- Advantages:

- ► Near linear time Multi-Objective Evolutionary Algorithm.
- ► Builds piecewise approximation to the best solutions of the pareto frontier.
- ► Based on WHERE which is a recursive clustering technique based on Dimensionality Reduction.
- Advantages:
 - ► Less Number of Computations.

- ► Near linear time Multi-Objective Evolutionary Algorithm.
- ► Builds piecewise approximation to the best solutions of the pareto frontier.
- ► Based on WHERE which is a recursive clustering technique based on Dimensionality Reduction.
- Advantages:
 - ► Less Number of Computations.
 - Adept at handling problems that are non-differentiable, non-liner, multi-dimensional or multi-constraint.

- ► Near linear time Multi-Objective Evolutionary Algorithm.
- ► Builds piecewise approximation to the best solutions of the pareto frontier.
- ► Based on WHERE which is a recursive clustering technique based on Dimensionality Reduction.
- Advantages:
 - Less Number of Computations.
 - Adept at handling problems that are non-differentiable, non-liner, multi-dimensional or multi-constraint.
 - ► Concise representation of problem space.

► Cluster data based on WHERE

 Pick point X from the cluster. Then pick point East furthest from X and point West furthest from East. Let c be the distance between East and West.

- Pick point X from the cluster. Then pick point East furthest from X and point West furthest from East. Let c be the distance between East and West.
- For every other point in the cluster, compute a and b which represents distance of the point from East and West respectively.

- Pick point X from the cluster. Then pick point East furthest from X and point
 West furthest from East. Let c be the distance between East and West.
- For every other point in the cluster, compute a and b which represents distance of the point from East and West respectively.
- ► Compute the projection **x** as $\mathbf{x} = (\mathbf{a}^2 + \mathbf{c}^2 \mathbf{b}^2)/2\mathbf{c}$

- Pick point X from the cluster. Then pick point East furthest from X and point West furthest from East. Let c be the distance between East and West.
- For every other point in the cluster, compute a and b which represents distance of the point from East and West respectively.
- Compute the projection \mathbf{x} as $\mathbf{x} = (\mathbf{a}^2 + \mathbf{c}^2 \mathbf{b}^2)/2\mathbf{c}$
- ► Select the best point from the non-dominated cluster and mutate towards it and store the best points.

- Pick point X from the cluster. Then pick point East furthest from X and point West furthest from East. Let c be the distance between East and West.
- For every other point in the cluster, compute a and b which represents distance of the point from East and West respectively.
- Compute the projection \mathbf{x} as $\mathbf{x} = (\mathbf{a}^2 + \mathbf{c}^2 \mathbf{b}^2)/2\mathbf{c}$
- ► Select the best point from the non-dominated cluster and mutate towards it and store the best points.
- ► Repeat for **n** generations.

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTL72
 - \rightarrow XOMO
 - POM3

Algorithms

- ightarrow Evolutionary Algorithm
- ightarrow Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- $\rightarrow \ \mathsf{The} \ \mathsf{Island} \ \mathsf{Model}$
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- → Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Island Model

 Divide the initial population(N) into sub-populations of equal size(n) among k processors.

$$n=rac{N}{k}$$

Island Model

 Divide the initial population(N) into sub-populations of equal size(n) among k processors.

$$n=rac{N}{k}$$

Evolve each sub-population independently.

Island Model

 Divide the initial population(N) into sub-populations of equal size(n) among k processors.

$$n = \frac{N}{k}$$

- Evolve each sub-population independently.
- Aggregate the final population of each processor after the total number of generations.

Outline

Background

→ Multi-Objective Problem

Models

- → DTL70
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
- ightarrow Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- $\to \mathsf{Master}\text{-}\mathsf{Slave}\;\mathsf{Model}$

Evaluation Metrics

- Evaluation
- → Measures

Experimental Setup

Results

- ightarrow Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Master-Slave Model

Master selects a population for each free slave in each generation.

Master-Slave Model

- Master selects a population for each free slave in each generation.
- Slave evaluates the fitness and computes the best solution(s) for each population set.

Master-Slave Model

- Master selects a population for each free slave in each generation.
- Slave evaluates the fitness and computes the best solution(s) for each population set.
- Slave performs mutation on each population subset and sends it to master for next generation.

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTLZ2
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithn
- ightarrow Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- → Master-Slave Model

Evaluation Metrics

- ightarrow Evaluation
- ightarrow Measures

Experimental Setup

Results

- → Island Model
- \rightarrow Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

► Runtime: Time taken to run the algorithm. This can be measured using a profiler.

- ► Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.

- ► Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- Solution Quality:

- ► Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- ► Solution Quality:
- ► Convergence:

- ► Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- ► Solution Quality:

Convergence:

 Accuracy of the obtained solutions.

- Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- ► Solution Quality:

► Convergence:

- Accuracy of the obtained solutions.
- Represents the HyperVolume between the obtained solutions and Pareto Frontier

- Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- Solution Quality:

► Convergence:

- Accuracy of the obtained solutions.
- Represents the HyperVolume between the obtained solutions and Pareto Frontier
- ► Diversity:

- Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- Solution Quality:

Convergence:

- Accuracy of the obtained solutions.
- Represents the HyperVolume between the obtained solutions and Pareto Frontier

► Diversity:

Spread of the proposed solutions.

- ► Runtime: Time taken to run the algorithm. This can be measured using a profiler.
- ► **Speed-Up:** Serialized Runtime version of the algorithm over the Parallelized version of it.
- Solution Quality:

Convergence:

- Accuracy of the obtained solutions.
- Represents the HyperVolume between the obtained solutions and Pareto Frontier

Diversity:

- ► Spread of the proposed solutions.
- Ideally the solutions should be well distributed across the Pareto Frontier

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTL 72
 - \rightarrow XOMO
 - POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - → Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluation
- $\to \mathsf{Measures}$

Experimental Setup

Results

- → Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Measures

Convergence:

- ► Find a set of H optimal solutions.
- For each solution, compute the minimum eucledian distance from each of the solutions to a point on the Pareto Frontier.
- ► The average of these distances represent convergence.

Diversity:

- ▶ d_i is the distance between consecutive solutions.
- $ightharpoonup \bar{d}$ is the mean of d_i
- d_f & d_l are distance between extreme and boundary solutions.

$$\Delta = \frac{d_f + d_l + \sum_{i=1}^{N-1} |d_i - \bar{d}|}{d_f + d_l + (N-1)\bar{d}}$$

► Python

- ► Support for scientific computation: numpy, scipy, etc.
- Quick prototyping and benchmarking.

Python

- ► Support for scientific computation: numpy, scipy, etc.
- Quick prototyping and benchmarking.

Open-MPI

- ▶ Open Source Message Passing Interface with Python wrapper.
- The Open MPI Project is actively developed and maintained by a consortium of academic, research, and industry partners.

Python

- ► Support for scientific computation: numpy, scipy, etc.
- Quick prototyping and benchmarking.

▶ Open-MPI

- ► Open Source Message Passing Interface with Python wrapper.
- ► The Open MPI Project is actively developed and maintained by a consortium of academic, research, and industry partners.

Multi-Processing

- Offers local and remote concurrency.
- Overrides python Global Interpreter Lock.

► Python

- ► Support for scientific computation: numpy, scipy, etc.
- Quick prototyping and benchmarking.

▶ Open-MPI

- ► Open Source Message Passing Interface with Python wrapper.
- ► The Open MPI Project is actively developed and maintained by a consortium of academic, research, and industry partners.

Multi-Processing

- Offers local and remote concurrency.
- Overrides python Global Interpreter Lock.

► HPC

- ▶ The henry2 shared memory linux cluster at NCSU.
- ▶ Up to 16 shared memory processor cores and up to 128GB of memory accessible through a dedicated queue.

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTI 72
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - ightarrow Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- \rightarrow Island Model
- \rightarrow Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Rank	Optimizer	Median	IQR	Quartile Chart
1	DE(Parallel)	2.30 x 10 ⁻⁵	2.74 x 10 ⁻⁶	- -
1	DE(Serial)	2.36 x 10 ⁻⁵	3.04 x 10 ⁻⁶	- -
2	GALE(Serial)	5.49 x 10 ⁻⁴	8.32 x 10 ⁻⁶	- -
2	GALE(Parallel)	5.54 x 10 ⁻⁴	2.21 x 10 ⁻⁵	

Figure: Convergence of serial & parallel DE & GALE

Rank	Optimizer	Median	IQR	Quartile Chart
1	GALE(Parallel)	0.416	0.070	-
1	DE(Parallel)	0.417	0.049	- -
1	DE(Serial)	0.431	0.056	-
1	GALE(Serial)	0.432	0.047	- -

Figure: Diversity of serial & parallel DE & GALE

DTLZ-2(Island Model)

Runtimes:

POM3(Island Model)

Runtimes:

XOMO(Island Model)

Runtimes:

Outline

Computer Science

Background

→ Multi-Objective Problem

Models

- \rightarrow DTI 72
 - \rightarrow XOMO
 - → POM3

Algorithms

- → Evolutionary Algorithm
 - ightarrow Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- → Master-Slave Model

Evaluation Metrics

- → Evaluation
- → Measures

Experimental Setup

Results

- → Island Mode
- → Master-Slave Model

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

DTLZ-2(Master-Slave Model)

Computer Science

Runtimes:

POM3(Master-Slave Model)

Runtimes:

XOMO(Master-Slave Model)

14 16

Runtimes:

Outline

Background

→ Multi-Objective Problem

Models

- \rightarrow DTLZ2
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
 - ightarrow Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- Evaluatio
- \rightarrow Measures

Experimental Setup

Results

- ightarrow Island Model
- → Master-Slave Mode

Future Work

- \rightarrow Feature Models
- → Results: Feature Models
- → Other Extensions:

► A **feature model** is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.

- ▶ A feature model is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- ► Parent and Child features are categorized as

- ► A **feature model** is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- ► Parent and Child features are categorized as
 - ► Mandatory child feature is required.

- ► A **feature model** is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- ► Parent and Child features are categorized as
 - ► Mandatory child feature is required.
 - ▶ **Optional** child feature is optional.

- ▶ A feature model is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- Parent and Child features are categorized as
 - ► Mandatory child feature is required.
 - ▶ **Optional** child feature is optional.
 - ▶ Or at least one of the sub-features must be selected.

- ▶ A feature model is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- Parent and Child features are categorized as
 - ► Mandatory child feature is required.
 - ► **Optional** child feature is optional.
 - ▶ Or at least one of the sub-features must be selected.
 - ▶ **Alternative** one of the sub-features must be selected.

- ► A feature model is a compact representation of all the products of the Software Product Line in terms of "features". Feature models are visually represented by means of feature diagrams.
- Parent and Child features are categorized as
 - ► Mandatory child feature is required.
 - ► **Optional** child feature is optional.
 - ▶ Or at least one of the sub-features must be selected.
 - ▶ Alternative one of the sub-features must be selected.
- For our experiment we use the Emergency Response(ERS) feature model, which has 35 decisions and 3 objectives.

Outline

Computer Science

Background

→ Multi-Objective Problem

Models

- \rightarrow DTL 72
 - \rightarrow XOMO
 - → POM3

Algorithms

- ightarrow Evolutionary Algorithm
- → Differential Evolution
- → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- → Evaluatio
- \rightarrow Measures

Experimental Setup

Result

- ightarrow Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- \rightarrow Results: Feature Models
- → Other Extensions

Emergency Response(Island Model)

Runtimes:

Outline

Computer Science

Background

 \rightarrow Multi-Objective Problem

Models

- \rightarrow DTL72
 - \rightarrow XOMO
 - → POM3

Algorithms

- → Evolutionary Algorithm
 - → Differential Evolution
 - → GALE: Geometric Active Learner

Parallelization Strategies

- ightarrow The Island Model
- ightarrow Master-Slave Model

Evaluation Metrics

- → Evaluation
- → Measures

Experimental Setup

Results

- ightarrow Island Model
- → Master-Slave Mode

Future Work

- → Feature Models
- → Results: Feature Models
- → Other Extensions:

Other Extensions:

Mutation strategies for real world problems which are heavily constrained.

Other Extensions:

- Mutation strategies for real world problems which are heavily constrained.
- Extending these parallelization strategies for other
 Evolutionary algorithms like NSGA2, SPEA, IBEA etc

Other Extensions:

- Mutation strategies for real world problems which are heavily constrained.
- Extending these parallelization strategies for other
 Evolutionary algorithms like NSGA2, SPEA, IBEA etc
- Strategies for efficiently dividing the feature space for more efficient parallelization.