1330

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»							
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»							
Лабораторная работа № <u>1</u> _							
Тема Методы Пикара, Эйлера, Рунге-Кутта							
Студент Брянская Е.В.							
Группа ИУ7-62Б							
Оценка (баллы)							
Преподаватель Градов В.М.							

Тема. Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы. Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Исходные данные.

ОДУ, не имеющее аналитического решения:

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0 \end{cases}$$
 (1)

Результат работы программы. Таблица, содержащая значения аргумента с заданным шагом в интервале $[0, x_{max}]$ и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала x_{max} выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.

Описание алгоритмов

Задача Коши

Общее решение дифференциального уравнения n-ого порядка зависит от n констант. Требуется задать n дополнительных условий:

$$u(x) = \phi(x, c_1, c_2, ...c_n)$$
(2)

В задаче Коши все дополнительные условия задаются в одной точке ξ :

$$u_k(\xi) = \eta_k, k = 1, ...n$$
 (3)

Задачу Коши можно решить с помощью следующих алгоритмов.

Приближённый аналитический метод Пикара

$$\begin{cases} u'(x) = f(x, u), \\ u(\xi) = \eta \end{cases}$$
 (4)

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t))dt$$
 (5)

Получается, что

$$y^{(s)}(x) = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t))dt$$
 (6)

$$y^{(0)} = \eta \tag{7}$$

Найдём 1, 2, 3 и 4 приближение для (1).

$$y^{(1)} = 0 + \int_{0}^{x} t^{2} dt = \frac{t^{3}}{3} \Big|_{0}^{x} = \frac{x^{3}}{3}$$
 (8)

$$y^{(2)} = 0 + \int_{0}^{x} \left[\left(\frac{t^3}{3} \right)^2 + t^2 \right] dt = \frac{t^7}{63} \Big|_{0}^{x} + \frac{t^3}{3} \Big|_{0}^{x} = \frac{x^7}{63} + \frac{x^3}{3}$$
 (9)

$$y^{(3)} = 0 + \int_{0}^{x} \left[\left(\frac{t^{3}}{3} + \frac{t^{7}}{63} \right)^{2} + t^{2} \right] dt = \frac{t^{15}}{15 \cdot 63^{2}} \Big|_{0}^{x} + \frac{2 \cdot t^{11}}{3 \cdot 63 \cdot 11} \Big|_{0}^{x} + \frac{t^{7}}{63} \Big|_{0}^{x} + \frac{t^{3}}{3} \Big|_{0}^{x} =$$

$$= \frac{x^{15}}{59535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^{7}}{63} + \frac{x^{3}}{3}$$

$$(10)$$

$$y^{(4)} = 0 + \int_{0}^{x} \left[\left(\frac{t^{15}}{59535} + \frac{2 \cdot t^{11}}{2079} + \frac{t^{7}}{63} + \frac{t^{3}}{3} \right)^{2} + t^{2} \right] dt = \frac{x^{31}}{109\ 876\ 902\ 975} + \frac{4 \cdot x^{27}}{3\ 341\ 878\ 155} + \frac{4 \cdot x^{23}}{3\ 411\ 543} + \frac{2 \cdot x^{23}}{86\ 266\ 215} + \frac{2 \cdot x^{19}}{3\ 393\ 495} + \frac{4 \cdot x^{19}}{2\ 488\ 563} + \frac{4 \cdot x^{15}}{93\ 555} + \frac{x^{15}}{59\ 535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^{7}}{63} + \frac{x^{3}}{3}$$

$$(11)$$

Метод Эйлера

Метод Рунге-Кутта

X	1	2	3	4	5	6	7
$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000 \mathrm{e}{+00}$
5.000e-04	4.167e-11	4.167e - 11	4.167e-11	4.167e-11	4.160e-11	$0.000 \mathrm{e}{+00}$	4.167e-11
1.000e-03	3.333e-10	3.333e-10	3.333e-10	3.333e-10	3.331e-10	$0.000 \mathrm{e}{+00}$	3.333e-10
1.500e-03	1.125e-09	1.125e-09	1.125e-09	1.125e-09	1.124 e-09	$0.000\mathrm{e}{+00}$	1.125e-09
2.000e-03	2.667e-09	2.667e-09	2.667e-09	2.667e-09	2.666e-09	$0.000\mathrm{e}{+00}$	2.667e-09
2.500e-03	5.208e-09	5.208e-09	5.208e-09	5.208e-09	5.207e-09	$0.000 \mathrm{e}{+00}$	5.208e-09
3.000e-03	9.000e-09	9.000e-09	9.000e-09	9.000e-09	8.998e-09	$0.000 \mathrm{e}{+00}$	9.000e-09
3.500e-03	1.429 e-08	1.429e-08	1.429 e-08	1.429 e-08	1.429 e-08	$0.000\mathrm{e}{+00}$	1.429e-08
4.000e-03	2.133e-08	2.133e-08	2.133e-08	2.133e-08	2.133e-08	$0.000 \mathrm{e}{+00}$	2.133e-08
4.500e-03	3.037e-08	3.038e-08	3.038e-08	3.038e-08	3.037 e - 08	$0.000\mathrm{e}{+00}$	3.038e-08
5.000e-03	4.167e-08	4.167e-08	4.167e-08	4.167e-08	4.166e-08	$0.000\mathrm{e}{+00}$	4.167e-08
5.500e-03	5.546 e - 08	5.546e-08	5.546 e - 08	5.546 e-08	5.545 e-08	$0.000\mathrm{e}{+00}$	5.546e-08
6.000e-03	7.200 e-08	7.200 e-08	7.200 e-08	7.200 e-08	7.199e-08	$0.000\mathrm{e}{+00}$	7.200e-08
6.500e-03	9.154 e-08	9.154 e-08	9.154 e-08	9.154 e-08	9.153 e-08	$0.000\mathrm{e}{+00}$	9.154e-08
7.000e-03	1.143e-07	1.143e-07	1.143e-07	1.143 e-07	1.143 e-07	$0.000\mathrm{e}{+00}$	1.143e-07
7.500e-03	1.406 e - 07	1.406e-07	1.406 e-07	1.406 e - 07	1.406 e-07	1.099e-08	1.406e-07
8.000e-03	1.707 e - 07	1.707e-07	1.707e-07	1.707 e-07	1.707 e-07	1.220 e-07	1.707e-07
8.500e-03	2.047e-07	2.047e-07	2.047e-07	2.047e-07	2.047e-07	2.330e-07	2.047e-07
9.000e-03	2.430 e - 07	2.430e-07	2.430 e-07	2.430 e-07	2.430 e-07	3.441e-07	2.430e-07
9.500e-03	2.858e-07	2.858e-07	2.858e-07	2.858e-07	2.858e-07	4.551e-07	2.858e-07
1.000e-02	3.333e-07	3.333e-07	3.333e-07	3.333e-07	$3.333\mathrm{e}\text{-}07$	$5.661\mathrm{e}\text{-}07$	3.333e-07
1.050e-02	3.859 e - 07	3.859 e-07	3.859 e-07	$3.859\mathrm{e}\text{-}07$	$3.858\mathrm{e}\text{-}07$	6.771 e-07	3.859e-07
1.100e-02	4.437e-07	4.437e-07	4.437e-07	4.437e-07	4.436 e - 07	7.881e-07	4.437e-07
1.150e-02	5.070 e-07	5.070 e-07	5.070 e-07	5.070 e-07	$5.069\mathrm{e}\text{-}07$	8.992 e-07	5.070e-07
1.200e-02	5.760e-07	5.760 e-07	5.760 e-07	5.760 e-07	5.760 e-07	1.010e-06	5.760e-07
1.250e-02	6.510 e - 07	6.510 e-07	6.510 e-07	6.510 e-07	$6.510\mathrm{e}\text{-}07$	1.121e-06	6.510e-07
1.300e-02	7.323e-07	7.323e-07	7.323e-07	7.323e-07	7.323e-07	1.232e-06	7.323e-07
1.350e-02	8.201 e-07	8.201 e-07	8.201 e-07	8.201 e-07	8.201 e-07	1.343e-06	8.201e-07
1.400e-02	9.147e - 07	9.147e-07	9.147e-07	9.147e-07	9.146 e-07	1.454 e-06	9.147e-07
1.450e-02	1.016e-06	1.016e-06	1.016e-06	1.016e-06	1.016e-06	1.565e-06	1.016e-06
1.500e-02	1.125e-06	1.125e-06	1.125e-06	1.125e-06	1.125e-06	1.676e-06	1.125e-06
1.550e-02	1.241e-06	1.241e-06	1.241e-06	1.241e-06	1.241e-06	1.787e-06	1.241e-06
1.600e-02	1.365e-06	1.365e-06	1.365e-06	1.365e-06	1.365e-06	1.898e-06	1.365e-06
1.650e-02	1.497e-06	1.497e-06	1.497e-06	1.497e-06	1.497e-06	2.009e-06	1.497e-06
1.700e-02	1.638e-06	1.638e-06	$1.638e^{4}06$	1.638e-06	1.638e-06	2.196e-06	1.638e-06
1.750e-02	1.786e-06	1.786e-06	1.786e-06	1.786e-06	1.786e-06	2.418e-06	1.786e-06
1 800 0 0 0	1.0446.06	1 0446 06	1.0446.06	1 0445 06	1.0446.06	2.6400.06	1 0446 06

x	1	2	3	4	5	6	7
$0.000\mathrm{e}{+00}$	$0.000 \mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000\mathrm{e}{+00}$	$0.000 \mathrm{e}{+00}$
5.000 e-04	4.167e - 11	4.167e - 11	4.167e - 11	4.167e-11	4.160e-11	$0.000\mathrm{e}{+00}$	4.167e - 11
1.000e-03	3.333e-10	3.333e-10	3.333e-10	3.333e-10	3.331e-10	$0.000\mathrm{e}{+00}$	3.333e-10
1.500 e-03	1.125 e-09	1.125 e-09	1.125e-09	1.125 e-09	1.124e-09	$0.000\mathrm{e}{+00}$	1.125e-09
2.000 e-03	2.667e-09	2.667e-09	2.667e-09	2.667e-09	2.666e-09	$0.000\mathrm{e}{+00}$	2.667e-09
2.500 e-03	5.208e-09	5.208e-09	5.208e-09	5.208e-09	5.207e-09	$0.000\mathrm{e}{+00}$	5.208e-09
3.000 e-03	9.000e-09	9.000e-09	9.000e-09	9.000e-09	8.998e-09	$0.000\mathrm{e}{+00}$	9.000e-09
$3.500 e{-}03$	1.429 e - 08	1.429 e - 08	1.429 e - 08	1.429 e - 08	1.429 e - 08	$0.000\mathrm{e}{+00}$	1.429e-08
4.000 e-03	2.133e-08	2.133e-08	2.133e-08	2.133e-08	2.133e-08	$0.000 \mathrm{e}{+00}$	2.133e-08
4.500 e-03	3.037e-08	3.038e-08	3.038e-08	3.038e-08	3.037e-08	$0.000 \mathrm{e}{+00}$	3.038e-08
5.000 e-03	4.167e-08	4.167e-08	4.167e-08	4.167e-08	4.166e-08	$0.000 \mathrm{e}{+00}$	4.167e-08
5.500 e-03	5.546 e-08	5.546 e - 08	5.546e-08	5.546 e - 08	5.545 e - 08	$0.000 \mathrm{e}{+00}$	5.546e-08
6.000 e-03	7.200 e-08	7.200 e-08	7.200 e-08	7.200 e-08	7.199e-08	$0.000 \mathrm{e}{+00}$	7.200 e-08
6.500 e-03	9.154 e-08	9.154 e-08	9.154 e-08	9.154 e-08	9.153 e-08	$0.000\mathrm{e}{+00}$	9.154 e - 08
7.000 e-03	1.143 e - 07	1.143e-07	1.143e-07	1.143e-07	1.143 e - 07	$0.000\mathrm{e}{+00}$	1.143e-07
7.500 e-03	1.406 e - 07	1.406 e - 07	1.406 e - 07	1.406 e - 07	1.406 e - 07	1.099e-08	1.406e-07
8.000 e-03	1.707 e - 07	1.707 e - 07	1.707e-07	1.707e-07	1.707 e - 07	1.220 e-07	1.707e-07
8.500 e-03	2.047e-07	2.047e-07	2.047e-07	2.047e-07	2.047e-07	2.330 e-07	2.047e-07
9.000 e-03	2.430 e - 07	2.430 e - 07	2.430e-07	2.430 e-07	2.430 e - 07	3.441 e-07	2.430e-07
9.500 e-03	2.858e-07	2.858e-07	2.858e-07	2.858e-07	2.858e-07	4.551 e-07	2.858e-07
1.000 e-02	3.333e-07	3.333e-07	3.333e-07	3.333e-07	3.333e-07	5.661 e-07	3.333e-07
1.050 e-02	3.859 e - 07	3.859 e - 07	3.859 e-07	3.859 e-07	3.858e-07	6.771 e-07	3.859e-07
1.100 e-02	4.437e-07	4.437e-07	4.437e-07	4.437e-07	4.436 e - 07	7.881e-07	4.437e-07
1.150e-02	5.070 e-07	5.070e-07	5.070e-07	5.070e-07	5.069 e-07	8.992e-07	5.070e-07
1.200 e-02	5.760 e-07	5.760e-07	5.760e-07	5.760 e-07	5.760 e-07	1.010e-06	5.760e-07
1.250 e-02	6.510 e - 07	6.510e-07	6.510e-07	6.510e-07	6.510 e-07	1.121e-06	6.510 e-07
1.300 e-02	7.323e-07	7.323e-07	7.323e-07	7.323e-07	7.323e-07	1.232e-06	7.323e-07
1.350 e-02	8.201e-07	8.201e-07	8.201e-07	8.201e-07	8.201e-07	1.343e-06	8.201e-07
1.400 e-02	9.147e-07	9.147e-07	9.147e-07	9.147e-07	9.146e-07	1.454e-06	9.147e-07
1.450 e-02	1.016e-06	1.016e-06	1.016e-06	1.016e-06	1.016e-06	1.565e-06	1.016e-06
1.500 e-02	1.125e-06	1.125e-06	1.125e-06	1.125e-06	1.125e-06	1.676e-06	1.125e-06
1.550e-02	1.241e-06	1.241e-06	1.241e-06	1.241e-06	1.241e-06	1.787e-06	1.241e-06
1.600e-02	1.365e-06	1.365e-06	1.365e-06	1.365e-06	1.365e-06	1.898e-06	1.365e-06
1.650e-02	1.497e-06	1.497e-06	1.497e-06	1.497e-06	1.497e-06	2.009e-06	1.497e-06
1.700e-02	1.638e-06	1.638e-06	1.638e-06	1.638e-06	1.638e-06	2.196e-06	1.638e-06
1.750e-02	1.786e-06	1.786e-06	1.786e-06	1.786e-06	1.786e-06	2.418e-06	1.786e-06
1.800e-02	1.944e-06	1.944e-06	1.944e-06	1.944e-06	1.944e-06	2.640e-06	1.944e-06
1.850e-02	2.111e-06	2.111e-06	2.111e-06	2.111e-06	2.110e-06	2.862e-06	2.111e-06
1.900e-02	2.286e-06	2.286e-06	2.286e-06	2.286e-06	2.286e-06	3.084e-06	2.286e-06
1.950e-02	2.472e-06	2.472e-06	2.472e-06	2.472e-06	2.472e-06	3.306e-06	2.472e-06
2.000e-02	2.667e-06	2.667e-06	2.667e-06	2.667e-06	2.667e-06	3.528e-06	2.667e-06
2.050e-02	2.872e-06	2.872e-06	2.872e-06	2.872e-06	2.872e-06	3.750e-06	2.872e-06
2.100e-02	3.087e-06	3.087e-06	3.087e-06	3.087e-06	3.087e-06	3.972e-06	3.087e-06
2.150e-02	3.313e-06	3.313e-06	3.313e-06	3.313e-06	3.313e-06	4.194e-06	3.313e-06
2.200e-02	3.549e-06	3.549e-06	3.549e-06	3.549e-06	3.549e-06	4.416e-06	3.549e-06
2.250e-02	3.797e-06	3.797e-06	3.797e-06	3.797e-06	3.797e-06	4.671e-06	3.797e-06
2.300e-02	4.056e-06	4.056e-06	4.056e-06	4.056e-06	4.056e-06	5.004e-06	4.056e-06
2.350e-02	4.326e-06	4.326e-06	4.326e-06	4.326e-06	4.326e-06	5.338e-06	4.326e-06
2.400e-02	4.608e-06	4.608e-06	4.608e-06	4.608e-06	4.608e-06	5.671e-06	4.608e-06
2.450 e-02	4.902e-06	4.902e-06	4.902e-06	4.902e-06	4.902e-06	6.004e-06	4.902e-06

Вопросы при защите лабораторной работы

- 1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.
- 2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.
- 3. Каково значение функции при x=2, т.е. привести значение u(2).

Список литературы

- Иванов, К. К. Принципы разработки параллельных методов / К. К. Иванов, С. А. Раздобудько, Р. И. Ковалев. Текст: непосредственный // Молодой ученый. 2017. № 3 (137). С. 30-32. URL: https://moluch.ru/archive/137/38412/ (дата обращения: 21.10.2020).
- 2. Кормен, Томас X. и др Алгоритмы: построение и анализ, 3-е изд. : Пер. с англ. М. : ООО "И.Д. Вильямс 2018. 1328 с. : ил. Парал. тит. англ. ISBN 978-5-8459-2016-4 (рус.).
- 3. Документация по Стандартной библиотекн языка C++ thread [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/standard-library/thread?view=vs-2019, свободный (дата обращения 22.10.2020)
- 4. Документация по Стандартной библиотекн языка C++ mutex [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/standard-library/mutex?view=vs-2019, свободный (дата обращения 22.10.2020)
- Документация по Visual Studio 2019 [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/visualstudio/windows/?view=vs-2019, свободный (дата обращения: 21.10.2020)
- 6. QueryPerformanceCounter function [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter, свободный (дата обращения: 22.10.2020).