MTH1102D Calcul II

Chapitre 9, section 3: Le théorème fondamental des intégrales curvilignes

Énoncé du théorème fondamental et conséquences

Introduction

- Énoncé du théorème fondamental des intégrales curvilignes.
- Deux conséquences importantes.

Définition

Une courbe C paramétrée par une fonction vectorielle $\vec{r}(t)$, $a \leq t \leq b$, est

- fermée si ses deux extrémités coïncident : $\vec{r}(a) = \vec{r}(b)$.
- lisse si
 - lacktriangle les composantes de \vec{r} ont des dérivées partielles continues
 - 2 $\vec{r}'(t) \neq \vec{0}$ pour tout $t \in [a, b]$.
- *lisse par morceaux (LPM)* si elle est constituée d'un nombre fini de morceaux lisses.

Exemple : l'astroïde paramétrée par $\vec{r}(t) = \cos^3 t \vec{i} + \sin^3 t \vec{j}$ est lisse par morceaux.

Rappel : Un champ vectoriel \vec{F} est conservatif si $\vec{F} = \nabla f$ pour une certaine fonction scalaire f.

Théorème (TFIC)

Soit C une courbe lisse par morceaux et f une fonction scalaire possédant des dérivées partielles continues. Alors on a

$$\int_C \nabla f \cdot \vec{dr} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

Autrement dit, l'intégrale curviligne d'un champ vectoriel conservatif ayant un potentiel f est égale à la différence de potentiel aux extrémités de la courbe.

Conséquences du TFIC

1. L'intégrale curviligne d'un champ vectoriel conservatif $\vec{F} = \nabla f$ est indépendante du chemin : si C_1 et C_2 sont des courbes ayant les mêmes extrémités alors $\int_C \vec{F} \cdot \vec{dr} = \int_C \vec{F} \cdot \vec{dr}$.

$$\int_{C_1} \vec{F} \cdot \vec{dr} = f(Q) - f(P) = \int_{C_2} \vec{F} \cdot \vec{dr}$$

Conséquences du TFIC

2. L'intégrale curviligne d'un champ vectoriel conservatif $\vec{F} = \nabla f$ autour d'une courbe fermée C est nulle : $\oint_C \vec{F} \cdot \vec{dr} = 0$.

$$\oint_C \vec{F} \cdot \vec{dr} = f(P) - f(P) = 0$$

Exemple

Soit *C* une courbe reliant le point (1,0) au point (-1,0) et $\vec{F}(x,y) = 2(x-1)\vec{i} - 2y\vec{j}$. Calculer $\int_C \vec{F} \cdot d\vec{r}$.

- $\vec{F} = \nabla f$, où $f(x, y) = (x 1)^2 y^2$.
- Selon le TFIC,

$$\int_C \vec{F} \cdot \vec{dr} = f(-1,0) - f(1,0) = 4 - 0 = 4.$$

Le TFIC généralise le théorème fondamental du calcul :

• TFC : Si
$$f'(x) = F(x)$$
 alors $\int_{a}^{b} F(x) dx = f(b) - f(a)$.

• TFIC : Si
$$\nabla f = \vec{F}$$
 alors $\int_C \vec{F} \cdot \vec{dr} = f(\vec{r}(b)) - f(\vec{r}(a))$.

Le TFIC généralise le théorème fondamental du calcul :

• TFC : Si
$$f'(x) = F(x)$$
 alors $\int_a^b F(x) dx = f(b) - f(a)$.

• TFIC : Si
$$\nabla f = \vec{F}$$
 alors $\int_C \vec{F} \cdot \vec{dr} = f(\vec{r}(b)) - f(\vec{r}(a))$.

La dérivée de f est F.

La « dérivée » de
$$f$$
 est \vec{F}

Le TFIC généralise le théorème fondamental du calcul :

• TFC : Si
$$f'(x) = F(x)$$
 alors $\int_{a}^{b} F(x) dx = f(b) - f(a)$.

• TFIC : Si
$$\nabla f = \vec{F}$$
 alors $\int_C \vec{F} \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$.

L'intégrale de F est égale à la différence des valeurs de f aux extrémités de l'intervalle.

L'intégrale de \vec{F} est égale à la différence des valeurs de f aux extrémités de la courbe.

Résumé

- Énoncé du théorème fondamental des intégrales curvilignes.
- Conséquence : indépendance du chemin pour l'intégrale d'un champ conservatif.
- Conséquence : intégrale nulle pour un champ conservatif autour d'une courbe fermée.
- Le TFIC généralise le TFC du calcul différentiel et intégral en une variable.