Lab09-Approximation Algorithm

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

* If there is any problem, please contact TA Jiahao Fan. * Name:Bowen Zhang Student ID:517021910797 Email: 372799293@qq.com

- 1. Metric k-center: Let G = (V, E) be an complete undirected graph with nonnegative edge costs satisfying the triangle inequality, and k be a positive integer. For any set $S \subseteq V$ and vertex $v \in V$, define cost(v, S) to be the cost of the cheapest edge from v to a vertex in S $(cost(v, S) = 0 \text{ if } v \in S)$. The problem is to find a set $S \subseteq V$, with |S| = k, so as to minimize $\max_{v} \{cost(v, S)\}$.
 - (a) Design a greedy approximation algorithm (in the form of pseudo code) with approximation ratio 2 for this problem.

(Basic idea: start with an arbitrary center, and in each round, add the 'farthest' vertex to the center set until there are totaly k centers)

Algorithm 1: Greedy approximation algorithm

Input: An complete undirected graph G = (V, E) with non-negative edge costs satisfying the triangle inquality; a positive integer k;

Output: a set $S \subseteq V$;

```
1 S = \{v_1\};

2 for i = 2 \rightarrow k do

3 forall v_j \in V do

4 cost(v_j, S) = \min_{v \in S} cost(v_j, v);

5 v_j = \max_v \{cost(v, S)\};

6 S = S \cup \{v_j\};
```

(b) Prove that your greedy algorithm achieves an approximation ratio of 2 for the metric k-center problem. (Hint: prove by contradiction and use the triangle inequality.)

Proof. Suppose that we select v_1, v_2, \ldots, v_k in turn by Greedy algorithm. $S_i = \{v_1, v_2, \ldots, v_i\}$ and $S = \{v_1, v_2, \ldots, v_k\}$. We can easily induce that $\max_{v} \{cost(v, S_i)\} \ge \max_{v} \{cost(v, S_{i+1})\}$.

Lemma: $max_v\{cost(v, S)\}$ is less than any pair in S.

We prove it by mathematical induction:

It's obviously satisfied when k = 1, 2.

If $k = n, n \ge 2$ satisfied, that is, $\max_{v} \{ cost(v, S_n) \}$ is less than any pair in $S_n.S_{n+1} = \{ v_{n+1} \} \cup S_n, cost(v_{n+1}, S_n) = \max_{v} \{ cost(v, S_n) \}$.

As we have $\max_{v} \{ cost(v, S_{n+1}) \} \le \max_{v} \{ cost(v, S_n) \} = cost(v_{n+1}, S_n)$, and $cost(v_{n+1}, S_n)$ is the minimum in any pair in S_{n+1} .

Thus, $max_v\{cost(v, S_{n+1})\}\$ is less than any pair in S_{n+1} .

And then we proof the greedy algorithm achieves an approximation ratio of 2 for the problem by contradiction:

We suppose that the optimal cost is OPT and $max_v\{cost(v,S) \geq 2OPT$.

We assume $v_{k+1} = arg\{max_v\{cost(v,S)\}\}$, and we can easily induce that any pair in $S_{k+1} = \{v_{k+1}\} \cup S$ is more than 2OPT. As $|S_{k+1}| = k+1$, there exist two vertex v_p, v_q in S_{k+1} belong to the same center in optimal solution, and we denote it as v_o .

Thus, we will have $cost(v_p, v_o) \leq OPT, cost(v_q, v_o) \leq OPT, cost(v_p, v_q) \geq 2OPT$, and it's contradict with triangle inequality.

2. Let G = (V, E) be a complete undirected graph with nonnegative edge costs satisfying the triangle inequality, and its vertices are partitioned into two sets, R and S. The goal is to find a minimum cost tree in G that contains R and any subset of S. Obviously, a minimum spanning tree (MST) on R is a feasible solution. Prove that finding an MST on R achieves an approximation ratio of 2 for this problem.

Proof. Lemma: According to the triangle inequality, if we want to travel from V_1 to V_2 with minimum cost, then travel directly from V_1 to V_2 will be the optimal solution.

Suppose the optimal cost is OPT, and the corresponding tree is T^* . We construct a new graph T' based on T^*, T' will double each edge of T^* with same weight. Figure 1 is an example:

图 1: T*

图 2: T'

The total cost of T' is 2OPT. As the degree of each vertex is even, T' has an **Euler Circuit**. Starting with a random vetex, travelling along with the Euler Circuit, we sorted the

vertex in R by the sequential order that travelled in the Euler Circuit. Suppose the order is R_1, R_2, \ldots, R_n . We construct the a tree T = (V, E) with $V = \{R_1, R_2, \ldots, R_n\}$ and $E = \{\langle R_1, R_2 \rangle, \langle R_2, R_3 \rangle, \ldots, \langle R_{n-1}, R_n \rangle\}$. According to the **Lemma**, the cost of $\langle R_k, R_{k+1} \rangle$ will be less than the cost traveling from R_k to R_{k+1} in Euler Circuit. Thus the total cost of T will be less than T, that is the cost of T is less than T. Thus, the cost of T is less than T.

- 3. **Minimum Weighted Vertex Cover:** Consider the weighted version of the Minimum Vertex Cover problem in which a non-negative weight c_i is associated with each vertex v_i and we look for a vertex cover having minimum total weight.
 - (a) Given a weighted graph G = (V, E) with a non-negative weight c_i associated with each vertex v_i , please formulate the Minimum Weighted Vertex Cover problem as an integer linear program.

Solution.

$$\min \quad \sum_{j=1}^{|V|} c_j x_j$$

s.t.
$$x_i + x_j \ge 1$$
 $< i, j > \in E$
 $x_i = 0, 1$ $i = 1, 2, ..., |V|$

(b) Prove that the following algorithm finds a feasible solution of the Minimum Weighted Vertex Cover problem with value $m_{LP}(G)$ such that $m_{LP}(G)/m^*(G) \leq 2$.

Algorithm 2: Rounding Weighted Vertex Cover

Input: Graph G = (V, E) with non-negative vertex weights;

Output: Vertex cover V' of G;

- 1 Let ILP_{VC} be the integer linear programming formulation of the problem;
- **2** Let LP_{VC} be the problem obtained from ILP_{VC} by LP-relaxation;
- **3** Let $x^*(G)$ be the optimal solution for LP_{VC} ;
- 4 $V' \leftarrow \{v_i \mid x_i^*(G) \ge 0.5\};$
- 5 return V':

Proof. Let $x^*(G)$ be the optimal solution for $ILP_{VC}, x(G)$ be the optimal solution for LP_{VC}, U^* be the vertex cover solved by ILP_{VC} and U be the vertex cover solved by LP_{VC} .

- i. Firstly,we need to prove that V' is a feasible solution For any $\langle i, j \rangle \in E$, we have $x_i + x_j \geq 1$. Thus, there is at least one of x_i, x_j will be greater than 0.5, that is the element of V'. So V' is a feasible solution.
- ii. As $x_i \geq \frac{1}{2}$ for $v_i \in U, x_i^* = 1$ for $v_i \in U^*$, we have

$$\sum_{v_i \in U} \frac{1}{2} c_i \le \sum_{v_i \in U} c_i x_i$$

$$\sum_{v_i \in U^*} c_i = \sum_{v_i \in U^*} c_i x_i^*$$

As $\sum_{v_i \in U^*} c_i x_i^*$ is the optimal solution of ILP_{VC} , $\sum_{v_i \in U} c_i x_i$ is the optimal solution of LP_{VC} , and LP_{VC} is a relaxation of ILP_{VC} , thus we have

$$\sum_{v_i \in U} c_i x_i \le \sum_{v_i \in U^*} c_i x_i^*$$

Thus

$$\sum_{v_i \in U} \frac{1}{2} c_i \le \sum_{v_i \in U^*} c_i$$

That is

$$\sum_{v_i \in U} c_i / \sum_{v_i \in U^*} c_i \le 2$$

That is

$$m_{LP}(G)/m^*(G) \le 2$$

4. Give the corresponding (I, sol, m, goal) for Metric k-center and Minimum Weighted Vertex Cover respectively.

Metric k-center:

 $I = \{(G, k) | G = (V, E) \text{ is an complete undirected graph with nonnegative edge costs satisfying the triangle inequality, <math>k$ is a positive integer $\}$

$$sol((G, k)) = \{S | S \subseteq V \text{ with } |S| = k\}$$

$$m((G,k),S) = \max_{v} \{ cost(v,S) \}$$

goal=min

Minimum Weighted Vertex Cover:

 $I = \{G = (V, E) | G \text{ is a graph with a non-negative weight } c_i \text{ associated with each vetex } v_i\}$

$$sol(G) = \{ U \subseteq V | \forall (v_i, v_j) \in E[v_i \in U \lor v_j \in U] \}$$

$$m(G, U) = \sum_{v_i \in U} c_i$$

goal=min

Remark: You need to include your .pdf and .tex files in your uploaded .zip file.