Complex Analysis

Homework 4: 1.5) 12, 20, 46a

Kenny Roffo

Due September 9, 2015

12) Sketch the graph of the given equation in the complex plane: $\arg(z) = \pi/4$

This is simply the positive portion of the line y=x, as this is the set of z which have an angle of $\pi/4$ above the x-axis.

20) Sketch the set S of points in the complex plane satisfying Im(z) < Re(z). Determine whether the set is open, closed, a domain or connected.

This set is open, and connected, but not closed, therefore it is a domain.

46a) Suppose S_1 and S_2 are open sets in the complex plane. Is the union $S_1 \cup S_2$ an open set?

Yes. Let $z \in S_1 \cup S_2$. Then either $z \in S_1$ or $z \in S_2$. Without loss of generality, assume $z \in S_1$. Then z is an interior point, since S_1 is an open set, and thus there exists a neighbor hood of z entirely contained in S_1 . But since all points in S_1 are in $S_1 \cup S_2$, such a neighborhood also lies entirely in $S_1 \cup S_2$, thus z is an interior point of $S_1 \cup S_2$. This implies that every point in $S_1 \cup S_2$ is an interior point, thus $S_1 \cup S_2$ is an open set.