Exercise 1.

Theorem (General principle of recursive definition). Let J be a well-ordered set; let C be a set. Let \mathscr{F} be the set of all functions mapping sections of J into C. Given a function $\rho: \mathscr{F} \to C$, there exists a unique function $h: J \to C$ such that $h(\alpha) = \rho(h|S_{\alpha})$ for each $\alpha \in J$.

[Hint: Follow the pattern outlined in exercise 10 of §10.]

Proof. For future reference in the proof, the property we wish to have a function $f: J \to C$ satisfy is

$$\forall \alpha \in J, \quad h(\alpha) = \rho(f|S_{\alpha}) \tag{1}$$

The existence of a function $f: J \to C$ implies that C is nonempty. Furthermore, if J is empty, then there is a unique function from J to C, and it vacuously verifies (1). Therefore we assume in the rest of the proof that J is nonempty.

Lemma 1. If h and k map sections of J into C and satisfy (1) for all α in their respective domains, then that h(x) = k(x) for all x in both domains.

Proof. Let \mathcal{D}_h (resp. \mathcal{D}_k) be the domain of h (resp. of k). The set $\mathcal{D}_h \cap \mathcal{D}_k$, as the intersection of two sections of J, is equal to one of these sections. Possibly switching the roles of h and k, we can suppose that $\mathcal{D}_h \subset \mathcal{D}_k$. Let \mathscr{A} be the subset of \mathcal{D}_h such that for all $\alpha \in \mathscr{A}$, $h(\alpha) \neq k(\alpha)$. If \mathscr{A} is nonempty, then, as a subset of the well-ordered set J, it has a smallest element β . For all $\alpha < \beta$, α is an element of the section \mathcal{D}_h and $h(\alpha) = k(\alpha)$, so that $h|S_{\beta} = k|S_{\beta}$. Since h and k satisfy (1), we deduce that $h(\beta) = \rho(h|S_{\beta}) = \rho(k|S_{\beta}) = k(\beta)$, which contradicts the existence of β . Therefore for all $\alpha \in \mathcal{D}_h$, we have $h(\alpha) = k(\alpha)$.

Lemma 2. If there exists a function $h: S_{\alpha} \to C$ which satisfies (1), then there exists a function $k: S_{\alpha} \cup \{\alpha\} \to C$ which satisfies (1).

Proof. Let $\alpha \in J$ and suppose there exists $h: S_{\alpha} \to C$ satisfying (1). Let

$$k: S_{\alpha} \cup \{\alpha\} \to C$$

$$x \mapsto \begin{cases} h(x) & \text{if } x \in S_{\alpha} \\ \rho(h) & \text{otherwise} \end{cases}$$

For all $x \in S_{\alpha}$, k(x) = h(x), so that for all $y \in S_x$, $h|S_x = k|S_x$. Since h satisfies (1), we have $k(x) = h(x) = \rho(h|S_x) = \rho(k|S_x)$. Thus k satisfies (1) on S_{α} . Moreover, $k(\alpha) = \rho(h) = \rho(k|S_{\alpha})$, so k satisfies (1) on $S_{\alpha} \cup \{\alpha\}$.

Lemma 3. If $K \subset J$ and for all $\alpha \in K$, there exists a function $h_{\alpha} : S_{\alpha} \to C$ satisfying (1), there exists a function

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

satisfying (1).

Proof. Let $I = \bigcup_{\alpha \in K} S_{\alpha}$. If K is empty or has only one element, then I is empty and there is no function from I to C. Therefore K has at least two elements.

Let R be the subset of $I \times C$ containing all the tuples $(x, h_{\alpha}(x))$ for all $\alpha \in K$ and all $x \in S_{\alpha}$. Let $\alpha, \beta \in K$ such that $\alpha < \beta$; we have $S_{\alpha} \subset S_{\beta}$, and from lemma 1, $h_{\beta}|S_{\alpha} = h_{\alpha}$. From this we deduce that for all $x \in I$, there is a unique $y \in C$ such that $(x, y) \in R$. Therefore R is the rule of a function $k: I \to C$.

Let $x \in I$, there exists $\alpha \in K$ such that $x \in S_{\alpha}$. The function h_{α} satisfies (1) on its domain S_{α} , so $k(x) = h_{\alpha}(x) = \rho(h_{\alpha}|S_x)$. For all $y \in S_x$, $h_{\alpha}(y)$ is the unique element of R with y as its first coordinate, so $h_{\alpha}(y) = k(y)$. From this we deduce that $h_{\alpha}|S_x = k|S_x$, and therefore k satisfies (1).

Lemma 4. For all $\beta \in J$, there exists a function $h_{\beta}: S_{\beta} \to C$ satisfying (1).

Proof. Let J_0 be the subset of J such that for all $\alpha \in J_0$, there exists a function $h_{\alpha}: S_{\alpha} \to C$ satisfying (1). Since J is nonempty and well-ordered, it has a smallest element m, and $S_m = \emptyset$. There is only one function from \emptyset to C, and it vacuously satisfies (1), so $S_m \subset J_0$, $m \in J_0$ and J_0 is nonempty.

Suppose that for some $\beta \in J$, we have $S_{\beta} \subset J_0$.

- If β has an immediate predecessor α , then $\alpha \in S_{\beta}$, so that $\alpha \in J_0$. Therefore there exists a function $h_{\alpha}: S_{\alpha} \to C$ satisfying (1). The fact that α is the immediate predecessor of β implies that $S_{\beta} = S_{\alpha} \cup \{\alpha\}$. From lemma 2 we deduce that there exists a function $h_{\beta}: S_{\beta} \to C$ satisfying (1). Therefore $\beta \in J_0$.
- Otherwise, β does not have an immediate predecessor, and thus $S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$. For all $\alpha \in J$ such that $\alpha < \beta$, we have $\alpha \in S_{\beta}$ and therefore $\alpha \in J_0$. From this we deduce that there exists a function $h_{\alpha} : S_{\alpha} \to C$ satisfying (1). We are within the hypotheses of lemma 3, and can conclude to the existence of a function $h_{\beta} : S_{\beta} \to C$ satisfying (1). From this we deduce that $\beta \in J_0$.

The above shows that J_0 is an inductive subset of the well-ordered set J, and therefore $J_0 = J$.

If J has a largest element M, then $J = S_M \cup \{M\}$. From lemma 4, we deduce the existence of $h_M : S_M \to C$ satisfying (1); and from lemma 2, we deduce the existence of a function $h : J \to C$ satisfying (1).

Otherwise, $J = \bigcup_{\alpha \in J} S_{\alpha}$: for all $\alpha \in J$, $S_{\alpha} \subset J$, so that $\bigcup_{\alpha \in J} S_{\alpha} \subset J$. Conversely, for all $\alpha \in J$, there exists $\beta \in J$ such that $\alpha < \beta$, since J does not have a largest element. From this we deduce that $\alpha \in S_{\beta}$ and finally $J \subset \bigcup_{\alpha \in J} S_{\alpha}$.

For all $\alpha \in J$, we deduce from lemma 4 the existence of a function h_{α} : $S_{\alpha} \to C$ satisfying (1). Let then R be the subset of the cartesian product $J \times C$ containing all the tuples $(x, h_{\alpha}(x))$ for all $\alpha \in J$ and all $x \in S_x$. From lemma 1, we deduce that, for all $\alpha, \beta \in J$ such that $\alpha < \beta, h_{\beta}|S_{\alpha} = h_{\alpha}$. The set R is therefore the rule of a function $h: J \to C$.

Let $\alpha \in J$. For all $x \in S_{\alpha}$, $(x, h_{\alpha}(x))$ is the unique tuple in R with x as its first coordinate, so that $h_{\alpha}|S_x = h|S_x$. Furthermore, since h_{α} satisfies (1) on S_{α} , we have

$$h(x) = h_{\alpha}(x) = \rho(h_{\alpha}|S_x) = \rho(h|S_x)$$

so that the function $h: J \to C$ satisfies (1).

Suppose that $h, k: J \to C$ both satisfy (1), and let \mathscr{A} be the subset of J such that for all $\alpha \in \mathscr{A}$, $h(\alpha) \neq k(\alpha)$. If \mathscr{A} is nonempty, then it has a smallest element β . The functions h and k are both defined on the section S_{β} , and for all $\alpha \in S_{\beta}$, $h(\alpha) = k(\alpha)$. From this we deduce that $h|S_{\beta} = k|S_{\beta}$, and, since h and k satisfy (1) on S_{β} , we have $h(\beta) = \rho(h|S_{\beta}) = \rho(k|S_{\beta}) = k(\beta)$, which contradicts the existence of β . Therefore the function h defined in the preceding paragraph is unique.