

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15080065002

FCC REPORT (BLE)

Applicant: Telcare

Address of Applicant: 4350 East-West Highway, Suite 1111 Bethesda, MD 20814

USA

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: BGM2.0

Trade mark: Telcare

FCC ID: YPTTELCBGM03

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Aug., 2015

Date of Test: 14 Aug., to 18 Sep., 2015

Date of report issued: 21 Sep., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	21 Sep., 2015	Original

Tested by: Over hen Date: 21 Sep., 2015

Test Engineer

Reviewed by: Date: 21 Sep., 2015

Project Engineer

3 Contents

			Page				
1	COV	ER PAGE	1				
2	2 VERSION						
3		TENTS					
4		T SUMMARY					
5	GEN	ERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.					
	5.3	TEST ENVIRONMENT AND MODE					
	5.4	DESCRIPTION OF SUPPORT UNITS					
	5.5	LABORATORY FACILITY	7				
	5.6	LABORATORY LOCATION	7				
	5.7	TEST INSTRUMENTS LIST	8				
6	TES	T RESULTS AND MEASUREMENT DATA	9				
	6.1	ANTENNA REQUIREMENT:	9				
	6.2	CONDUCTED EMISSION	10				
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH					
	6.5	POWER SPECTRAL DENSITY	18				
	6.6	BAND EDGE					
	6.6.1	00.000000 =00.00					
	6.6.2						
	6.7	SPURIOUS EMISSION					
	6.7.1						
	6.7.2	Radiated Emission Method	30				
7	TES	T SETUP PHOTO	35				
8		CONSTRUCTIONAL DETAILS	26				

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15 207		Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Telcare
Address of Applicant:	4350 East-West Highway, Suite 1111 Bethesda, MD 20814 USA
Manufacturer:	Teleepoch
Address of Manufacturer:	Room 308, Building-A, Unisplendour Information Harbor,
	Hi-Tech Park North, Nan Shan District, Shenzhen, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	BGM2.0
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1800mAh
AC adapter:	Model: S-TR-010L-048050U Input:100-240V AC,50/60Hz 0.19A Output:4.8V DC MAX 0.5A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS150800650RF

Report No: CCIS15080065002

5.7 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -3 dBi.

6.2 Conducted Emission

To at Do avino as out	500 Dart 45 0 Caption 45 005	7					
Test Requirement:	FCC Part 15 C Section 15.207						
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	dBuV) Average				
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test setup:		ence Plane					
	AUX Equipment Test table/Insulation pla Remark: EU.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 32

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

650RF pro EUT

: Mobile Phone : BGM2.0 Model Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Remark :

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>d</u> B	<u>ab</u>	dBu₹	——dBu₹	āB	
0.442	41.17	0.27	10.74	52.18	57.02	-4.84	QP
0.442	32.65	0.27	10.74	43.66	47.02	-3.36	Average
0.489	37.76	0.29	10.76	48.81	56.19	-7.38	QP
0.494	29.63	0.29	10.76	40.68	46.10	-5.42	Average
0.880	26.61	0.21	10.83	37.65	46.00	-8.35	Average
0.933	39.13	0.21	10.85	50.19	56.00	-5.81	QP
2.237	38.98	0.29	10.95	50.22	56.00	-5.78	QP
2.309	25.22	0.29	10.95	36.46	46.00	-9.54	Average
3.173	37.49	0.29	10.91	48.69	56.00	-7.31	QP
3.346	23.84	0.29	10.91	35.04	46.00	-10.96	Average
6.454	30.55	0.26	10.81	41.62	60.00	-18.38	QP
15.635	16.25	0.25	10.91	27.41	50.00	-22.59	Average
	MHz 0.442 0.449 0.494 0.880 0.933 2.237 2.309 3.173 3.346 6.454	MHz dBuV 0.442 41.17 0.442 32.65 0.489 37.76 0.494 29.63 0.880 26.61 0.933 39.13 2.237 38.98 2.309 25.22 3.173 37.49 3.346 23.84 6.454 30.55	Freq Level Factor MHz dBuV dB 0.442 41.17 0.27 0.442 32.65 0.27 0.489 37.76 0.29 0.494 29.63 0.29 0.880 26.61 0.21 0.933 39.13 0.21 2.37 38.98 0.29 2.309 25.22 0.29 3.173 37.49 0.29 3.346 23.84 0.29 6.454 30.55 0.26	MHz dBuV dB dB 0.442 41.17 0.27 10.74 0.442 32.65 0.27 10.74 0.489 37.76 0.29 10.76 0.494 29.63 0.29 10.76 0.880 26.61 0.21 10.85 2.237 38.98 0.29 10.95 2.309 25.22 0.29 10.95 3.173 37.49 0.29 10.91 3.346 23.84 0.29 10.91 6.454 30.55 0.26 10.81	MHz dBuV dB dB dBuV 0.442 41.17 0.27 10.74 52.18 0.442 32.65 0.27 10.74 43.66 0.489 37.76 0.29 10.76 48.81 0.494 29.63 0.29 10.76 40.68 0.880 26.61 0.21 10.83 37.65 0.933 39.13 0.21 10.85 50.19 2.237 38.98 0.29 10.95 50.22 2.309 25.22 0.29 10.95 36.46 3.173 37.49 0.29 10.91 48.69 3.346 23.84 0.29 10.91 35.04 6.454 30.55 0.26 10.81 41.62	MHz dBuV dB dB dBuV dBuV 0.442 41.17 0.27 10.74 52.18 57.02 0.442 32.65 0.27 10.74 43.66 47.02 0.489 37.76 0.29 10.76 48.81 56.19 0.494 29.63 0.29 10.76 40.68 46.10 0.933 39.13 0.21 10.83 37.65 46.00 2.237 38.98 0.29 10.95 50.22 56.00 2.309 25.22 0.29 10.95 50.22 56.00 3.173 37.49 0.29 10.91 48.69 56.00 3.346 23.84 0.29 10.91 35.04 46.00 6.454 30.55 0.26 10.81 41.62 60.00	MHz dBuV dB dB dBuV dBuV dB 0.442 41.17 0.27 10.74 52.18 57.02 -4.84 0.442 32.65 0.27 10.74 43.66 47.02 -3.36 0.489 37.76 0.29 10.76 48.81 56.19 -7.38 0.494 29.63 0.29 10.76 40.68 46.10 -5.42 0.880 26.61 0.21 10.83 37.65 46.00 -8.35 0.933 39.13 0.21 10.85 50.19 56.00 -5.81 2.237 38.98 0.29 10.95 50.22 56.00 -5.78 2.309 25.22 0.29 10.91 48.69 56.00 -7.31 3.173 37.49 0.29 10.91 48.69 56.00 -7.31 3.346 23.84 0.29 10.91 35.04 46.00 -10.96 6.454 30.55 0.26 <t< td=""></t<>

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 650RF

pro EUT : Mobile Phone Model : BGM2.0 Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer:

ACMAIK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
===	MHz	dBu∜	<u>dB</u>	₫B	dBu∜	dBu∀	<u>dB</u>	
1	0.437	31.46	0.28	10.74	42.48	47.11	-4.63	Average
1 2 3	0.442	39.57	0.28	10.74	50.59	57.02	-6.43	QP
3	0.479	37.49	0.29	10.75	48.53	56.36	-7.83	QP
4	0.489	29.09	0.29	10.76	40.14	46.19	-6.05	Average
4 5 6 7 8 9	0.933	38.26	0.24	10.85	49.35	56.00	-6.65	QP
6	0.933	25.91	0.24	10.85	37.00	46.00	-9.00	Average
7	2.167	37.98	0.26	10.95	49.19	56.00	-6.81	QP
8	2.261	24.66	0.26	10.95	35.87	46.00	-10.13	Average
9	3.156	36.32	0.27	10.91	47.50	56.00	-8.50	QP
10	3.293	23.09	0.27	10.91	34.27	46.00	-11.73	Average
11	6.698	30.19	0.32	10.81	41.32	60.00	-18.68	QP
12	15.066	15.40	0.32	10.90	26.62	50.00	-23.38	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.44		
Middle	0.37	30.00	Pass
Highest	-2.21		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.75	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.10		
Middle	1.10	N/A	N/A
Highest	1.10		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	0.19		
Middle	-0.12	8.00	Pass
Highest	-2.63		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:							
·	Frequency	Detector	RBW	VBW	Remark		
		Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	Average Value	1MHz	10Hz	Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Remark						
	54.00 Average \						
	Above 1	GHz	74.0		Peak Value		
Test setup:	to determing to determing antenna, we tower. 3. The antennate the ground Both horizon make the nate of the find the second to find the second to find the second to find the second the second to find the second to find the second the second to determine	ne the position of the positio	of the highests away from a ted on the to ted from one maximum al polarization, the EU a was turned from the EUT in peasting could be ted. Otherwise be re-tested.	et radiation. the interfer op of a variate meter to for a value of the ons of the ar to heights for cold Mode. It made war one stopped a vise the emistone by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the es to 360 degrees. Function and so 10 dB lower than and the peak values serions that did not the using peak, quasi-ported in a data		
	Ground Reference Plan Test Receiver				wer		
Test Instruments:	Refer to section	5.7 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed				CCIS4E00006E0DF		

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT Model : BGM2.0 Test mode : BLE-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

	Freq		Antenna Factor						
,	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone Model : BGM2.0 Test mode : BLE-L mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C
Test Engineer: Carey
REMARK:

Huni:55%

_	Freq		Antenna Factor							
	MHz	dBu∀	dB/m		<u>ab</u>	dBuV/m	dBu∜/m	<u>dB</u>		
	2390.000 2390.000			6.63 6.63	0.00 0.00	56.01 45.22	74.00 54.00	-17.99 -8.78	Peak Average	

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile Phone EUT Model : BGM2.0 Test mode : BLE-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

1 2

THY		Road	Antenna	Cable	Dreamn		Limit	Orrer	
	Freq		Factor						
•	MHz	dBu∇	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	 -
	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone Model : BGM2.0 Test mode : BLE-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

	•	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∇	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
	2483,500								
2	2483,500	11.64	27, 52	6, 85	0.00	46, 01	54,00	-7.99	Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 6.SEP.2015 21:22:18

30MHz~25GHz

Middle channel

Date: 6.SEP.2015 21:40:59

30MHz~25GHz

Highest channel

Date: 6.SEP.2015 21:55:12

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	Distance: 3m							
Receiver setup:									
·	Frequency Detector RBW VBW Remark								
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 10112	Average Value	1MHz	10Hz	Average Value				
Limit:									
	Frequency		_imit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH		46.0		Quasi-peak Value				
	960MHz-1GHz		54.0 54.0		Quasi-peak Value				
	Above 1GHz		74.0 74.0		Average Value Peak Value				
Test Procedure:	1. The EUT v			rotating tah	le 0.8 meters above				
	to determing the EUT antenna, we tower. 3. The antennal the ground Both horized make the make the make the make the form to find the end of the EUT have 10 determing the EUT antennal to determine the limit specified the EUT have 10 determine the EUT antennal to determine the limit specified the EUT have 10 determine the EUT antennal tower.	ne the position was set 3 me which was mount in a height is various and vertine asurement. It is uspected emeasurement at the rota table maximum read eceiver system is and width with sion level of the cified, then test would be reparagin would	of the higheseters away for the maximum the maximum that it is sion, the Ena was turned ling. Maximum Haring could be orted. Other it is entered.	st radiation. from the in op of a variance meter to um value or ions of the EUT was also to height from 0 deg to Peak Dolold Mode. ak mode who estopped wise the end one by on	rotated 360 degrees aterference-receiving liable-height antenna of four meters above of the field strength. I antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees are tect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasimal reported in a data				

Below 1GHz

Horizontal:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Mobile Phone

EUT : BGM2.0 : BLE mode Model Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Winner
REMARK:

MAKK	:								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∇	— <u>dB</u> /m		<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>db</u>	
1	89.590	47.81	11.76	0.91	29.57	30.91	43.50	-12.59	QP
1 2 3 4	96.436	46.29	12.94	0.94	29.54	30.63	43.50	-12.87	QP
3	166.651	48.48	8.87	1.34	29.08	29.61	43.50	-13.89	QP
4	213.015	43.47	10.97	1.45	28.75	27.14	43.50	-16.36	QP
5 6	251.180	40.99	12.07	1.62	28.54	26.14	46.00	-19.86	QP
6	295, 147	37, 31	12.95	1.76	28.46	23, 56	46,00	-22.44	OP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Mobile Phone

Model : BGM2.0

Test mode : BLE mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner

REMARK :

minute.									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	84.702	45.53	10.16	0.88	29.60	26.97	40.00	-13.03	QP
2 3 4	94.760	42.07	12.84	0.93	29.55	26.29	43.50	-17.21	QP
3	147.921	47.60	8.24	1.31	29.23	27.92	43.50	-15.58	QP
4	173.205	41.25	9.16	1.35	29.02	22.74	43.50	-20.76	QP
5 6	281.995	39.67	12.70	1.72	28.48	25.61	46.00	-20.39	QP
6	308.913	36.12	13.17	1.80	28.47	22.62	46.00	-23.38	QP

Above 1GHz

Test channel:			Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.34	31.53	10.57	40.24	47.20	74.00	-26.80	Vertical
4804.00	44.47	31.53	10.57	40.24	46.33	74.00	-27.67	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.96	31.53	10.57	40.24	37.82	54.00	-16.18	Vertical
4804.00	34.02	31.53	10.57	40.24	35.88	54.00	-18.12	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	42.28	31.58	10.66	40.15	44.37	74.00	-29.63	Vertical
4884.00	44.03	31.58	10.66	40.15	46.12	74.00	-27.88	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	32.61	31.58	10.66	40.15	34.70	54.00	-19.30	Vertical
4884.00	34.05	31.58	10.66	40.15	36.14	54.00	-17.86	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	43.58	31.69	10.73	40.03	45.97	74.00	-28.03	Vertical
4960.00	43.25	31.69	10.73	40.03	45.64	74.00	-28.36	Horizontal

Т	Test channel:			Highest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	33.24	31.69	10.73	40.03	35.63	54.00	-18.37	Vertical
4960.00	33.23	31.69	10.73	40.03	35.62	54.00	-18.38	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366