

planetmath.org

Math for the people, by the people.

proof of Ramsey's theorem

Canonical name ProofOfRamseysTheorem

Date of creation 2013-03-22 12:55:52

Last modified on 2013-03-22 12:55:52

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 8

Author mathcam (2727)

Entry type Proof

Classification msc 05D10

$$\omega \to (\omega)_k^n$$

is proven by induction on n.

If n=1 then this just states that any partition of an infinite set into a finite number of subsets must include an infinite set; that is, the union of a finite number of finite sets is finite. This is simple enough to prove: since there are a finite number of sets, there is a largest set of size x. Let the number of sets be y. Then the size of the union is no more than xy.

If

$$\omega \to (\omega)_k^n$$

then we can show that

$$\omega \to (\omega)_k^{n+1}$$

Let f be some coloring of $[S]^{n+1}$ by k where S is an infinite subset of ω . Observe that, given an $x < \omega$, we can define $f^x \colon [S \setminus \{x\}]^n \to k$ by $f^x(X) = f(\{x\} \cup X)$. Since S is infinite, by the induction hypothesis this will have an infinite homogeneous set.

Then we define a sequence of integers $\langle n_i \rangle_{i \in \omega}$ and a sequence of infinite subsets of ω , $\langle S_i \rangle_{i \in \omega}$ by induction. Let $n_0 = 0$ and let $S_0 = \omega$. Given n_i and S_i for $i \leq j$ we can define S_j as an infinite homogeneous set for $f^{n_i} : [S_{j-1}]^n \to k$ and n_j as the least element of S_j .

Obviously $N = \bigcup \{n_i\}$ is infinite, and it is also homogeneous, since each n_i is contained in S_j for each $j \leq i$.