Inductive Logic Programming (ILP) vs Deep Learning DL)

Simon Jacquet

June 23rd 2022

Paper 1: ILP vs DL in One-Shot Learning

- Title: "Human-like rule learning from images using one-shot hypothesis derivation"
- Author: Muggleton
- Content: ILP vs Deep Learning in One Shot Learning
- Databases:
 - Omniglot dataset: character recognition
 - UK Biobank: neurodegenerative disease identification
- Link: https://www.researchgate.net/publication/ 355875180_Human-like_rule_learning_from_images_using_ one-shot_hypothesis_derivation

Omniglot Dataset

- Character recognition
- 1623 different handwritten characters from 50 different alphabets
- Each character is a different class
- Each character has 20 examples Written by 20 different people

		Ве	enga	ali		
P	P	আ	7	ঢ	-sef	欬
3	ক	ग़	অ	ઉ	ह	ব
প	খ	শ	41	ป	ই	डा
প	ष्ट्	ত	G	স	બ	Ų
E	ত	互	ÄH	ঘ	डे	খ
F	5	Ģ	ল	Ŀ	丞	ম
ð	ফ	8	ব			

~		im	naç	jes
	>		ΑI	ph
	>		Ar	ngl
	>		Ar	ca
	>		Ar	m
	>		As	108
	>		Ва	alir
	~		В	en
		~		cl
				â
				â
				â
				all
				â
				â
				à
				â

abet_of_the_Magi

lo-Saxon Futhord

dian

mtavruli_(Georgian)

nese

gali

naracter01

0132_01.png

0132_02.png 0132_03.png

0132_04.png

0132_05.png

0132 06.png

0132_07.png

0132_08.png

0132_09.png

> character02

> Character03

One Shot Learning

- Classification task in which one is provided with 1 (or few) example of each class
- Deep learning usually needs thousands of examples to learn a new class
- Human only need to see a picture of a giraffe once to be able to recognise another one
- Most well known use case: Facial recognition

Siamese Neural Networks

- Model trained to differentiate between images of different classes
- https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Figure: Architectures of a Siamese NN

ILP approach

- One-Shot Hypothesis Derivation (OSHD) based on
- Implemented in Toplog
- Background knowledge:

Fig. 3: Human-like feature extraction criteria

Table 1: Geometrical and Directional Properties Geometrical Properties Directional Properties Character ID No. Loops No. Junctions No. Arcs No. Terminals Starting Point Ending Point null 2 3 4 3 2 null null 2 null 50

Modes:

```
:= modeh(1,alphabet(+character)).
:= modeh(*,has_gemproperties(+character,-properties)).
:= modeh(*,has_gemproperties_count(+properties)).
:= modeh(*,has_gemproperties_count(+properties, -properties)).
:= modeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties, -gradeh(*,has_dirproperties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature(+properties_feature
```


ILP vs DL

Background

- ILP:
 - Modes
 - Table of Geometrical and Directional Properties
- DL:
 - Many examples to train the model
 - 40 (of 50) alphabets used as background

Training

- ILP:
 - The 1 example generates a new rule
- DL:
 - The 1 example is kept in memory

Testing

- ILP:
 - The new example is verified against the new rule
- DL:
 - The new example, with the training example are compared to see whether they belong to the same class

Results

Net)

 Results provided by Muggleton are not consistent with those provided by the original Siamese paper

Table 1. Accuracy on Omniglot verification task (siamese convolutional neural net)

Method	Test
30k training	
no distortions	90.61
affine distortions x8	91.90
90k training	
no distortions	91.54
affine distortions x8	93.15
150k training	
no distortions	91.63
affine distortions x8	93.42

Figure: Comparison of the two models by Muggleton (left) and accuracy in the Siamese paper (right)

Approach 2: DeepProbLog

 Title: "From Statistical Relational AI to Neural Symbolic Computation: DeepProbLog"

Author: Luc De Raedt

Content: Adding a ProbLog brick at the end of Neural Networks

Databases:

MNIST dataset: digit recognition

• Link: https://www.i-aida.org/wp-content/uploads/2022/03/ Luc-De-Raedt_compressed.pdf

June 23rd 2022

DeepMNIST addition

Set of examples:

```
addition(3,5,8), addition(3,4), addition(4,2,11), ...
```

- Model:
 - Neural network:

• ProbLog brick:

```
nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
```

• Execution:

```
addition(3,5,8):- digit(3,N1), digit(5,N2), 8 is N1 + N2.
```


Frame Title

