DSE 203 (Fall 2020)

The Entity Resolution Problem (AI + DB)

From a Company that sells Entity Resolution Products

Entity Resolution - The Problem

- Many databases contain uncertain and imprecise references to realworld entities
- The absence of proper identifiers for the underlying entities often results in one or more databases which contain multiple references to as well as multiple properties of the same real-world entity
- Entity resolution involves discovering the underlying entities and mapping each database reference to these entities
 - Using all available information about the entities
- Many variants
 - Deduplication, record linking, entity matching, record matching, ...

The General Architecture for Entity Matching

2 unclean sources -> n:m mappings

1 clean, 1 unclean source -> 1:n mapping

Blocking

- An indexing technique
 - Splits the databases into non-overlapping blocks, such that only records within each block are compared with each other.
 - A blocking criterion, commonly called a blocking key is either based on a single record field (attribute), or the concatenation of values from several fields.

Record fields			Blocking keys and BKVs				
Identifiers	Givennames	Surnames	Postcodes	Suburb names	Sndx(GiN)+PC	Fi2D(PC)+DMe(SurN)	Sndx(SubN)+La2D(PC)
R1	Peter	Christen	2010	North Sydney	P360-2010	20-KRST	N632-10
R2	Pedro	Kristen	2000	Sydeny	P360-2000	20-KRST	S530-00
R3	Paul	Smith	2600	Canberra	P400-2600	26-SM0	C516-00
R4	Pablo	Smyth	2700	Canberra Sth	P140-2700	27-SM0	C516-00

Soundex (Sndx) encoded givenname (GiN)
First two digits (Fi₂D) of postcode
Double-Metaphone (DMe) encoded surname (SurN) values

Blocking Methods

- The "standard" (token-ased) method
 - a parameter-free technique
 - every distinct token t_i in the input creates a separate block b_i that contains all entities having t_i in their attribute values as long as t_i is shared by at least 2 entities

- Attribute Clustering
 - partitions attribute names into a set K of non-overlapping clusters according to the similarity of their values
 - applies the standard method independently inside each cluster

Attribute Clustering for Blocking

- Each attribute name from N1 is associated with the most similar attribute name of N2 (Lines 2-5) and vice versa (Line 6)
- The link between two attribute names is stored in a data structure (Line 5)
 - Based on the condition that the similarity of their values exceeds zero (Line 4)
- The transitive closure of the stored links is then computed (Line 7) to form the basis for partitioning attribute names into clusters
- Each connected component of the transitive closure corresponds to an attribute cluster (Line 8).
- All singleton clusters are merged into a new one, called the Glue Cluster and symbolized as k_{glue} (Line 10).

```
Algorithm 1: Attribute Clustering Blocking.

Input: Attribute name sets: N_1, N_2, Attribute values: V_1, V_2
Output: Set of attribute names clusters: K

1 links \leftarrow \{\}; k_{glue} \leftarrow \{\};

2 foreach n_{i,1} \in N_1 do

3 n_{j,2} \leftarrow getMostSimilarAttribute(n_{i,1}, N_2, V_2);

4 if 0 < sim(n_{i,1}.getValues(), n_{j,2}.getValues()) then

5 links.add(newLink(n_{i,1}, n_{j,2}));

6 foreach n_{i,2} \in N_2 do ...; // same as with N_1

7 links' \leftarrow computeTransitiveClosure(links);

8 K \leftarrow getConnectedComponents(links');

9 foreach k_i \in K do

10 links' \in K if k_i = 1 then k.remove(k_i); k_{glue}.add(k_i);

11 k.add(k_{glue});

12 return k;
```


Meta-Blocking

Fig. 5. (a) A block collection B with $e_1 \equiv e_3$ and $e_2 \equiv e_4$, (b) the corresponding Entity Index, (c) the corresponding blocking graph G_B , (d) the weighted G_B , (e) the pruned G_B , and (f) the new block collection B'.

- Construct the blocking graph
 - Edges are weighted proportionately to the likelihood that the adjacent entities are matching
 - Edges with low weights are pruned, because they correspond to superfluous comparisons
 - Weighted Edge Pruning (WEP) removes all edges that do not exceed a specific threshold
 - Cardinality Edge Pruning (CEP) retains the globally K top weighted edges
 - Weighted Node Pruning (WNP) retains in each node neighborhood the entities that exceed a local threshold, which may be the average edge weight of each neighborhood
 - Cardinality Node Pruning (CNP) retains the top-k weighted edges in each node neighborhood
 - The resulting pruned blocking graph GB' is transformed into a restructured block collection B' by forming one block for every retained edge

The General Architecture for Entity Matching

2 unclean sources -> n:m mappings

clusters of matching objects

Matching Strategy

- Blocking to reduce search space
 - Group similar objects within blocks based on blocking key
 - Restrict object matching to objects from the same block
 - Alternative approach: Sorted Neighborhood
- Combined use of several matchers
 - Attribute-level matching
 - Based on generic or domain-specific similarity functions, e.g., string similarity (edit distance, n-gram, TF/IDF, etc.)
 - Context-based matchers
 - Learning-based or manual specification of matcher combination
 - Optional: Transitive closure of matches to identify indirect matches

Rule-based Matching

- The developer writes rules that specify when two tuples match
 - typically after examining many matching and non-matching tuple pairs, using a development set of tuple pairs
 - rules are then tested and refined, using the same development set or a test set
- Many types of rules exist
 - linearly weighted combination of individual similarity scores
 - logistic regression combination
 - more complex rules

Linearly Weighted Combination Rules

- Tuple Matching
 - Choose a set of attributes to be used for matching
 - Compute the similarity score between tuples x and y as a linearly weighted combination of individual similarity scores

```
\begin{aligned} & \operatorname{sim}(\mathsf{x},\mathsf{y}) = \sum_{i=1}^n \alpha_i * sim_i(x,y) \\ & \text{n is number of attributes in each table} \\ & \mathbf{s}_\mathsf{i}(\mathbf{x},\!\mathbf{y}) \text{ is a sim score between the i-th attributes of x and y} \\ & \alpha_\mathsf{i} \in [0,\!1] \text{ is a pre-specified weight that indicates the important of the i-th attribute to <math>\operatorname{sim}(\mathsf{x},\!\mathsf{y}), \operatorname{such that} \sum_{i=1}^n \alpha_i = 1 \end{aligned}
```

- sim(x,y) is a match if sim(x,y) ≥ β
- Learn the weights with a suitable version (e.g., with regularization) of linear regression

Example

Table X

	Name	Phone	City	State
X_1	Dave Smith	(608) 395 9462	Madison	WI
X_2	Joe Wilson	(408) 123 4265	San Jose	CA
X_3	Dan Smith	(608) 256 1212	Middleton	WI

(a)

Table Y

	Name	Phone	City	State
у ₁	David D. Smith	395 9426	Madison	WI
y ₂	Daniel W. Smith	256 1212	Madison	WI

(b)

Matches (x₁, y₁)

(c)

sim(x,y) =

$$0.3s_{name}(x,y) + 0.3s_{phone}(x,y) + 0.1s_{city}(x,y) + 0.3s_{state}(x,y)$$

- $-\mathbf{s}_{name}(\mathbf{x},\mathbf{y})$: based on Jaro-Winkler
- s_{phone}(x,y): based on edit distance between x's phone (after removing area code) and y's phone
- $\mathbf{s}_{citv}(\mathbf{x},\mathbf{y})$: based on edit distance
- $\mathbf{s}_{\text{state}}(\mathbf{x},\mathbf{y})$: based on exact match; yes \rightarrow 1, no \rightarrow 0

Pros and Cons

Pros

conceptually simple, easy to implement

Cons

- an increase δ in the value of any ${\bf s}_{\rm i}$ will cause a linear increase $\alpha_i * \delta$ in the value of s
- in certain scenarios this is not desirable,
- after a certain threshold, an increase in \mathbf{s}_i should count less (i.e., "diminishing returns" should kick in)
- e.g., if s_{name}(x,y) is already 0.95 then the two names already very closely match
 - so any increase in $\mathbf{s}_{name}(\mathbf{x},\mathbf{y})$ should contribute only minimally

Logistic Regression Rules

- Addressing the diminishing returns problem
- $sim(x,y) = 1/(1 + e^{-z})$, where $z = \sum_{i=1}^{n} \alpha_i * sim_i(x,y)$
- Notice that
 - α_i are not constrained to be between 0 and 1 and are not required to sum to 1
 - Even if z goes to infinity, sim(x, y) increases only gradually

Logistic Regression Rules

- Are also very useful in situations where
 - there are many "signals" (e.g., 10-20) that can contribute to whether two tuples match
 - we don't need all of these signals to "fire" in order to conclude that the tuples match
 - as long as a reasonable number of them fire, we have sufficient confidence
- Logistic regression is a natural fit for such cases
- Hence is quite popular as a first matching method to try

Matching with a Decision Tree

match names match phones match cities match states check area code against city

 $v_1 = \langle [s_1(a_1,b_1), s_2(a_1,b_1), s_3(a_1,b_1), s_4(a_1,b_1), s_5(a_1,b_1), s_6(a_1,b_1)], yes \rangle$ $v_2 = \langle [s_1(a_2,b_2), s_2(a_2,b_2), s_3(a_2,b_2), s_4(a_2,b_2), s_5(a_2,b_2), s_6(a_2,b_2)], yes \rangle$

 $v_3 = \langle [s_1(a_3,b_3), s_2(a_3,b_3), s_3(a_3,b_3), s_4(a_3,b_3), s_5(a_3,b_3), s_6(a_3,b_3)], no \rangle$

Now the labels are yes/no, not 1/o

More Complex Rules

- Appropriate when we want to encode more complex matching knowledge
 - e.g., two persons match if names match approximately and either phones match exactly or addresses match exactly
 - 1. If $s_{name}(x,y) < 0.8$ then return "not matched"
 - 2. Otherwise if $e_{phone}(x,y)$ = true then return "matched"
 - 3. Otherwise if $e_{city}(x,y) = true$ and $e_{state}(x,y) = true$ then return "matched"
 - 4. Otherwise return "not matched"

Constraints

- Important forms of constraints:
 - Transitivity If M1 and M2 match, M2 and M3 match, then M1 and M3 match
 - Exclusivity: If M1 matches with M2, then M3 cannot match with M2
 - Functional Dependency: If M1 and M2 match, then M3 and M4 must match
- Transitivity is key to deduplication
- Exclusivity is key to record linkage
- Functional dependencies for data cleaning

Constraint Types

Some constraints might need Joins

		Hard Constraint	Soft Constraint
Constraints m	Positive Evidence	If M1, M2 match then M3, M4 must match If two papers match, their venues match directional	If M1, M2 match then M3, M4 more likely to match If two venues match, then their papers are more likely to match
	Negative Evidence	Mention M1 and M2 must refer to distinct entities (Uniqueness) Coauthors are distinct If M1, M2 don't match then M3, M4 cannot match If two venues don't match, then their	If M1, M2 don't match then M3, M4 less likely to match If institutions don't match, then authors less likely to match
			s can be recursive, e.g., if two aut co-authors, then they match

Additional Constraints

- Aggregate Constraints
 - count constraints
 - Entity A can link to at most N Bs Authors have at most 5 papers at any conference
 - Other aggregates like sum, average more complex
 - Examples?

Matching by Clustering

- Many common clustering techniques have been used
 - agglomerative hierarchical clustering (AHC), k-means, graph-theoretic, ...
 - here we focus on AHC, a simple yet very commonly used one

AHC

- partitions a given set of tuples D into a set of clusters
 - all tuples in a cluster refer to the same real-world entity, tuples in different clusters refer to different entities
- begins by putting each tuple in D into a single cluster
- iteratively merges the two most similar clusters
- stops when a desired number of clusters has been reached, or until the similarity between two closest clusters falls below a pre-specified threshold

Example

$$sim(x,y) = 0.3s_{name}(x,y) + 0.3s_{phone}(x,y) + 0.1s_{city}(x,y) + 0.3s_{state}(x,y)$$

Computing a Similarity Score between Two Clusters

- Let c and d be two clusters
- Single link: $s(c,d) = \min_{x_i \in c, y_j \in d} sim(x_i, y_j)$
- Complete link: $s(c,d) = \max_{x_i \in c, y_j \in d} sim(x_i, y_j)$
- Average link: $s(c,d) = [\sum_{x_i \in c, y_j \in d} sim(x_i, y_j)] / [# of (x_i, y_j) pairs]$
- Canonical tuple construction/canonicalization
 - create a canonical tuple that represents each cluster
 - sim between c and d is the sim between their canonical tuples
 - canonical tuple is created from attribute values of the tuples
 - e.g., "Mike Williams" and "M. J. Williams" → "Mike J. Williams"
 - (425) 247 4893 and 247 4893 → (425) 247 4893

Key Ideas underlying the Clustering Approach

- View matching tuples as the problem of constructing entities (i.e., clusters)
- The process is iterative
 - leverage what we have known so far to build "better" entities
- In each iteration merge all matching tuples within a cluster to build an "entity profile", then use it to match other tuples → merging then exploiting the merged information to help matching
- These same ideas appear in subsequent approaches that we will cover

Relational Clustering

- A bibliographic database
 - W. Wang, C. Chen, A. Ansari, A mouse immunity model
 - W. Wang, A. Ansari, A better mouse immunity model
 - L. Li, C. Chen, W. Wang, Measuring protein-bound fluxetine
 - W. W. Wang, A. Ansari, Autoimmunity in biliary cirrhosis
- Goal
 - Which of these author names refer to the same author entities?

6 underlying author entities – Wang1 and Wang 2, Chen1 and Chen2, Ansari and Li But there are 10 references

The Target Result

Match Dependencies and Extent

Match Dependency

 When matching decisions depend on other matching decisions (in other words, matching decisions are not made independently), we refer to the approach as collective

Match Extent

- Global
 - If two papers match, then their venues match
 - This constraint can be applied to all instances of venue mentions All occurrences of 'SIGMOD' can be matched to 'International Conference on Management of Data'
- Local
 - If two papers match, then their authors match
 - This constraint can only be applied locally Don't want to match all occurrences of 'J. Smith' with 'Jeff Smith' who is mentioned in this paper

Semantic Integrity Constraints

Туре	Example
Aggregate	C1 = No researcher has published more than five AAAI papers in a year
Subsumption	C2 = If a citation X from DBLP matches a citation Y in a homepage, then each author mentioned in Y matches some author mentioned in X
Neighborhood	C3 = If authors X and Y share similar names and some co-authors, they are likely to match
Incompatible	C4 = No researcher exists who has published in both HCI and numerical analysis
Layout	C5 = If two mentions in the same document share similar names, they are likely to match
Key/Uniqueness	C6 = Mentions in the PC listing of a conference is to different researchers
Ordering	C7 = If two citations match, then their authors will be matched in order
Individual	C8 = The researcher with the name "Mayssam Saria" has fewer than five mentions in DBLP (new graduate student)

Handling Constraints

- Record linkage propagation through exclusivity
 - Weighted k-partite matching
- Deduplication propagation through transitivity
 - Correlation clustering
- Collective propagation through general constraints
 - Similarity propagation
 - Dependency graphs, Collective Relational Clustering
 - Probabilistic approaches
 - LDA, CRFs, Markov Logic Networks, Probabilistic Relational Models

Two sub-problems

- Identification problem
 - A set of different name references the same entity
 - Wei Wei Wang can be represented as Wei Wang, W. Wang, W. Wang, ...
- Disambiguation problem
 - Same name refers to different entities
- Relational Clustering
 - Don't look only at values, look at the relationships between the entities
 - Simultaneously solve both the identification and the disambiguation problems
- The relationship that we would like to exploit is that these authors co-occur (co-authorship) in various combinations

Re-representing Data

The r's are references and the h's are hyperedges

- Each hyperedge h may have attributes as well which we denote h.A₁, h.A₂, ..., h.A_k
- *h.R* denotes the set of references that it connects
- A reference r can belong to zero or more hyperedges
- r.H denotes the set of hyperedges in which r participates

An abstract representation for the entity graph for the author resolution example; the nodes are the entities, the set of references they correspond to are listed, and the h's are hyperedges.

Naïve Relational Entity Resolution

- The similarity function has two components
 - Attribute based similarity $sim_A(r_i, r_i)$ same as what we have seen before
 - How well do the names match? How well do other attributes match?
 - Relationship-based similarity
 - The idea: To determine if two author references in two different papers are coreferent, we can compare the names of their coauthors
 - The naive relational decision about the references W. Wang and W. W. Wang, would consider that both have coauthors with the name A. Ansari
 - Take a linear combination of the two scores
 - $sim_{NR}(r_i,r_j) = (1-lpha) \times sim_A(r_i,r_j) + lpha \times sim_H(r_i,r_j), \qquad 0 \leq lpha \leq 1.$
 - If two references belong to just one hyperedge, then we compare the similarity between the set of hyperedges that each reference belongs to
 - Otherwise, we make pairwise computation of the similarity of these hyperedges

Collective Relational Entity Resolution

- Problem with the naïve Relational Entity Resolution Technique
 - It can mislead in domains where most names are frequent and hyperedges are dense
 - the naive relational approach is it does not reason about the identities of the related references
 - For the two Wang references the two C. Chen coauthors match regardless of whether they refer to Chen1 or Chen2.
 - The correct evidence to use here is that the Chens are not coreferent.
 - Therefore, to resolve the W. Wang references, it is necessary to resolve the C Chen references as well and not just consider their name similarity.

The Basic Approach

- Cluster the references so that only those that correspond to the same entity are assigned to the same cluster
- Use a greedy agglomerative clustering algorithm where
 - At any stage, the current set $C=\{ci\}$ of entity clusters reflects the current belief about the mapping of the references to entities
- Here, instead of similarity measures for references, we need to define similarities between clusters of references

$$sim(c_i,c_j) = (1-\alpha) \times sim_A(c_i,c_j) + \alpha \times sim_R(c_i,c_j), \qquad 0 \leq \alpha \leq 1$$

- $sim_R()$ is the relational similarity between the references in the two entity clusters
- The similarity of two clusters depends on the current cluster labels of their neighbors and therefore changes as their labels are updated
 - The similarity between W. Wang and W. W. Wang increases once the Ansari references are given the same cluster label

Computing Cluster Similarity - 1

- Each reference r is associated with one or more hyperedges
- The set of hyperedges c.H for a cluster c is given by

$$c.H = igcup_{r \in \mathcal{R} \wedge r.C = c} \{ h \mid h \in \mathcal{H} \ \land \ r \in h.R \}.$$

- The union of all hyperedges associated with each reference in the cluster
- These hyperedges connect c to other clusters
- The relational similarity for two clusters needs to compare their connectivity patterns to other clusters
- For any cluster c, the set of other clusters to which c is connected via its hyperedge set c.H form the neighborhood Nbr(c) of cluster c:

$$Nbr(c) = \bigcup_{h \in c.H, r \in h.R} \{c_j \mid c_j = r.C\}.$$

 The neighborhood of the cluster for Wang1 consists of the clusters for Ansari and Chen1; alternatively it is the bag of clusters {Ansari, Ansari, Ansari, Chen1}

Computing Cluster Similarity - 2

- Jaccard coefficient for two clusters
 - The bag semantics variant
 - JaccardCoeff + $Fr(ci, c_j)$, by using $Nbr_B(ci)$ and $Nbr_{B_j}(c_j)$ in the formula

$$JaccardCoeff(c_i, c_j) = \frac{|Nbr(c_i) \bigcap Nbr(c_j)|}{|Nbr(c_i) \bigcup Nbr(c_j)|}.$$

Agglomerative Hierarchical Relational Clustering

1. 2.	Find similar references using blocking Initialize clusters using bootstrapping
3. 4.	For clusters c_i, c_j such that $\mathrm{similar}(c_i, c_j)$ Insert $\langle sim(c_i, c_j), c_j, c_j \rangle$ into priority queue
5.	While priority queue not empty
6.	Extract $\langle sim(c_i,c_j),c_i,c_j \rangle$ from queue
7.	If $sim(c_i, c_j)$ less than threshold, then stop
8.	Merge c_i and c_j to new cluster c_{ij}
9.	Remove entries for c_i and c_j from queue
10.	For each cluster c_k such that $similar(c_{ij}, c_k)$
11.	Insert $\langle sim(c_{ij},c_k),c_{ij},c_k angle$ into queue
12.	For each cluster c_n neighbor of c_{ij}
13.	For c_k such that $similar(c_k, c_n)$
14.	Update $sim(c_k,c_n)$ in queue

Sorting

- use a key to sort tuples, then scan the sorted list and match each tuple with only the previous (w-1) tuples, where w is a pre-specified window size
- key should be strongly "discriminative": brings together tuples that are likely to match, and pushes apart tuples that are not
 - example keys: soc sec, student ID, last name, soundex value of last name
- employs a stronger heuristic than hashing: also requires that tuples likely to match be within a window of size w
 - but is often faster than hashing because it would match fewer pairs

Indexing

- index tuples such that given any tuple a, can use the index to quickly locate a relatively small set of tuples that are likely to match a
 - e.g., inverted index on names

Canopies

- use a computationally cheap sim measure to quickly group tuples into overlapping clusters called canopines (or umbrella sets)
- use a different (far more expensive) sim measure to match tuples within each canopy
- e.g., use TF/IDF to create canopies

Using representatives

- applied during the matching process
- assigns tuples that have been matched into groups such that those within a group match and those across groups do not
- create a representative for each group by selecting a tuple in the group or by merging tuples in the group
- when considering a new tuple, only match it with the representatives

Combining the techniques

 e.g., hash houses into buckets using zip codes, then sort houses within each bucket using street names, then match them using a sliding window

- For the second goal of minimizing time it takes to match each pair
 - no well-established technique as yet
 - tailor depending on the application and the matching approach
 - e.g., if using a simple rule-based approach that matches individual attributes then combines their scores using weights
 - can use short circuiting: stop the computation of the sim score if it is already so high that the tuple pair will match even if the remaining attributes do not match