

# Harnessing the Power of Data Science in Policy Underwriting

#### **Ashok Shetty**

MBA in Business Analytics, REVA University, Bengaluru

# Agenda





### Problem statement - The Bigger Picture



#### Problem statement

- Insurance industry has not been quick to embrace the digital revolution
- Digital transformation in life insurance is still in the beginning stage
- Life and health insurance products have not changed much since their inception in the 1960s.
- Life and health insurance is still relying on -
  - old-fashioned broker to client interactions
  - lot of face to face communications and paper works
- The overall market penetration of life and health has been declining for the last 30 years and the annual sales of new insurance policies have declined from about 17 million contract in the 1980's to less than 10 million today

#### Changing landscape of Life & Health Life Insurance Industry

- Due to the pandemic, migrating old–fashioned business to a digital platform has become need of the hour
- Modern consumers are accustomed to speed, transparency and convenience regardless of the channel they use or product they purchase. Insurance customers are no different
- 70% of customers looking for life insurance policies begin their information gathering process online
- Websites of top 10 life insurance providers get more than 7 million total visits a month

#### The need for a Digital Solution

- An online mechanism that can automatically classify the life insurance applications into appropriate risk buckets with highest possible accuracy
- A predictive model that can reduce the 'from application to policy purchase' time by a great extent, thereby increasing the sales and customer satisfaction

#### Potential benefits

- An online mechanism that can automatically classify the life insurance applications into appropriate risk buckets with highest possible accuracy.
- A predictive model that can reduce the 'from application to policy purchase' time by a great extent, thereby increasing the sales and customer satisfaction





### Understanding Data – The Structure



#### Highlights

- ☐ The data we have used is a collection of policy level information of random customers.
- ☐ Each observation has been classified on three risk categories by the underwriters.
- The data broadly contain the following feature-sets: Body structure, Product, Employment Information, Insurance History, Family History and Medical History





| Feature Variable    | % Missing Values |
|---------------------|------------------|
| Medical_History_10  | 99%              |
| Medical_History_32  | 98%              |
| Medical_History_24  | 94%              |
| Medical_History_15  | 75%              |
| Family_Hist_5       | 70%              |
| Family_Hist_3       | 58%              |
| Family_Hist_2       | 48%              |
| Insurance_History_5 | 43%              |
| Family Hist 4       | 32%              |

### Baseline model



#### Observations:

- Once we had the data prepared, we built a baseline models using 8 classification algorithms. This was done in order to have a benchmark model to compare with.
- However, the results were not satisfactory.
- We fitted three variants of Naïve Bayes classifiers, however, that also produced a similar result where the test scores were too low
  - BinaryRelevance
  - ClassifierChain
  - LabelPowerset

#### Result of Baseline Models

|   | Model_Name                 | Precision | Recall | Train_Accuracy | Test_Accuracy | F1_Score |
|---|----------------------------|-----------|--------|----------------|---------------|----------|
| 1 | RandomForestClassifier     | 0.47      | 0.47   | 0.8            | 0.47          | 0.47     |
| 2 | GradientBoostingClassifier | 0.47      | 0.47   | 0.48           | 0.47          | 0.47     |
| 3 | XGBClassifier              | 0.47      | 0.47   | 0.57           | 0.47          | 0.47     |
| 4 | AdaBoostClassifier         | 0.46      | 0.46   | 0.46           | 0.46          | 0.46     |
| 5 | BaggingClassifier          | 0.43      | 0.43   | 0.78           | 0.43          | 0.43     |
| 6 | DecisionTreeClassifier     | 0.37      | 0.37   | 0.8            | 0.37          | 0.37     |
| 7 | LogisticRegression         | 0.34      | 0.34   | 0.34           | 0.34          | 0.34     |
| 8 | SVC                        | 0.18      | 0.18   | 0.18           | 0.18          | 0.18     |

#### Result from Naïve Bayes Classifiers

```
BinaryRelevance(classifier=GaussianNB(priors=None, var_smoothing=1e-09), require_dense=[True, True])

0.5300389393658446

ClassifierChain(classifier=GaussianNB(priors=None, var_smoothing=1e-09), order=None, require_dense=[True, True])

0.5300389393658446

LabelPowerset(classifier=GaussianNB(priors=None, var_smoothing=1e-09), require_dense=[True, True])

0.4157240867791582
```

### Understanding Data – Exploratory Analysis



#### Highlights

- ☐ The data we have used is a collection of policy level information of random customers.
- ☐ Each observation has been classified on three risk categories by the underwriters.
- The data broadly contain the following feature-sets: Body structure, Product, Employment Information, Insurance History, Family History and Medical History

#### **Descriptive Statistics**

|       | Product_Info_4 | Ins_Age      | Ht           | Wt           | BMI          | Employment_Info_1 | Employment_Info_4 | Employment_Info_6 | Medical_History_1 |
|-------|----------------|--------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|
| count | 35953.000000   | 35953.000000 | 35953.000000 | 35953.000000 | 35953.000000 | 35953.000000      | 35953.000000      | 35953.000000      | 35953.000000      |
| mean  | 0.342919       | 0.429306     | 0.708683     | 0.294140     | 0.470582     | 0.082957          | 0.007461          | 0.378181          | 8.021695          |
| std   | 0.294550       | 0.194556     | 0.073842     | 0.088794     | 0.121112     | 0.088230          | 0.035481          | 0.354785          | 12.974841         |
| min   | 0.000000       | 0.000000     | 0.000000     | 0.064854     | 0.151567     | 0.000000          | 0.000000          | 0.000000          | 0.000000          |
| 25%   | 0.076923       | 0.268657     | 0.654545     | 0.228033     | 0.388515     | 0.038000          | 0.000000          | 0.070000          | 2.000000          |
| 50%   | 0.230769       | 0.447761     | 0.709091     | 0.288703     | 0.454733     | 0.061800          | 0.000000          | 0.250000          | 4.000000          |
| 75%   | 0.487179       | 0.582090     | 0.763636     | 0.349372     | 0.533838     | 0.100000          | 0.000000          | 0.600000          | 10.000000         |
| max   | 1.000000       | 1.000000     | 1.000000     | 0.828452     | 1.000000     | 1.000000          | 1.000000          | 1.000000          | 240.000000        |

#### **Correlation Plot**

|                   | Product_Info_4 | Ins_Age   | Ht       | Wt        | ВМІ       | Employment_info_1 | Employment_Info_4 | Employment_Info_6 | Medical_History_1 |
|-------------------|----------------|-----------|----------|-----------|-----------|-------------------|-------------------|-------------------|-------------------|
| Product_Info_4    | 1.000000       | -0.301644 | 0.125037 | -0.044115 | -0.138894 | 0.344285          | 0.039712          | 0.233310          | 0.058122          |
| Ins_Age           | -0.301644      | 1.000000  | 0.025706 | 0.123066  | 0.143475  | 0.073569          | 0.140789          | 0.364370          | -0.107262         |
| Ht                | 0.125037       | 0.025706  | 1.000000 | 0.617337  | 0.133398  | 0.194375          | 0.014956          | 0.098359          | 0.048498          |
| Wt                | -0.044115      | 0.123066  | 0.617337 | 1.000000  | 0.855395  | 0.091093          | 0.003314          | 0.016680          | -0.021301         |
| ВМІ               | -0.138894      | 0.143475  | 0.133398 | 0.855395  | 1.000000  | -0.009320         | -0.006035         | -0.043840         | -0.057709         |
| Employment_Info_1 | 0.344285       | 0.073569  | 0.194375 | 0.091093  | -0.009320 | 1.000000          | 0.034297          | 0.373369          | 0.016479          |
| Employment_Info_4 | 0.039712       | 0.140789  | 0.014956 | 0.003314  | -0.006035 | 0.034297          | 1.000000          | 0.184324          | -0.008093         |
| Employment_Info_6 | 0.233310       | 0.364370  | 0.098359 | 0.016680  | -0.043840 | 0.373369          | 0.184324          | 1.000000          | -0.011645         |
| Medical_History_1 | 0.058122       | -0.107262 | 0.048498 | -0.021301 | -0.057709 | 0.016479          | -0.008093         | -0.011645         | 1.000000          |

#### **Checking Spread of the Data**



### Data Treatment & Preparation

#### Imputing / Treating Missing Values

- Variables with more than 30% values missing were dropped.
- As remaining variables with missing values were categorical in nature and none of the imputation methods were proven to be useful, the respective rows were dropped.
- The methods were tried KNN, Mode, SimpleImputer() from sklearn.impute

#### **Treating Outliers**

- Outliers were identified using by polling histogram and scatter plot
- The same was treated using the IQR flowing and capping methods, as shown below -





<matplotlib.axes.\_subplots.AxesSubplot at 0x1ecaf79</pre>



Splitting data into train and test

After reshuffling the observations the data was split into 80 – 20 for training and test purpose.



### Feature selection



#### Notes / Observations:

- The next step was to identify the list of significant features. To do so, the following feature selection approaches were tried
  - Feature identification using Radom forest classifier
  - Chi -square test for independence
  - Select from model
  - Recursive Feature Elimination (RFE)
- Finally, after various iterations, we combined the results from two different approaches, i.e. RF and RFE

#### Features Identified by Random Forest



## Features Identified by RFE

|    | Feature           | Importance |
|----|-------------------|------------|
| 1  | BMI               | 11.690595  |
| 2  | Wt                | 8.254409   |
| 3  | Product_Info_4    | 5.556538   |
| 4  | Ins_Age           | 5.087508   |
| 5  | Employment_Info_1 | 4.270304   |
| 6  | Medical_History_1 | 3.743639   |
| 7  | Employment_Info_6 | 3.723107   |
| 8  | Medical_History_2 | 3.649597   |
| 9  | Ht                | 3.608519   |
| 10 | Product_Info_2_en | 3.103485   |



### Model Interpretation and Conclusion



#### Notes / Observations:

- Once we had the final list of significant features ready, we re-ran all the models to compare the results
- Based on the outcome, we concluded that XGBClassifier is the best model in our case (predicting Risk Buckets), as it fitted the data well and showed promising result
- To test the selected model, we ran multiple iterations by
  - reshuffling the samples
  - changing the proportion of training and test dataset
  - adding/removing variables that are not significant

and after every iteration XGB classifier came out to be the best model with highest Accuracy and Precision

In near future, we intend to feed in the fresh unseen data into the model to test its predictive capability

#### The Final Result

| Model_Name                 | Precision | Recall | Train_Accuracy | Test_Accuracy F | _Score |
|----------------------------|-----------|--------|----------------|-----------------|--------|
| XGBClassifier              | 0.74      | 0.72   | 0.81           | 0.74            | 0.71   |
| RandomForestClassifier     | 0.67      | 0.67   | 1              | 0.67            | 0.67   |
| GradientBoostingClassifier | 0.67      | 0.67   | 0.68           | 0.67            | 0.67   |
| AdaBoostClassifier         | 0.66      | 0.66   | 0.65           | 0.66            | 0.66   |
| BaggingClassifier          | 0.64      | 0.64   | 0.99           | 0.64            | 0.64   |
| DecisionTreeClassifier     | 0.57      | 0.57   | 1              | 0.57            | 0.57   |
| LogisticRegression         | 0.5       | 0.5    | 0.5            | 0.5             | 0.5    |
| SVC                        | 0.39      | 0.39   | 0.39           | 0.39            | 0.39   |

### Future Scope



- ☐ Understand which categorical features have orders in them
- ☐ Using K-fold validations with at least 10% of the data in validation set
- ☐ Using Deep Learning Models
- ☐ Precision and Recall trade-off



# Thank You!





### Code Repo and Citations



#### GitHub link

https://github.com/AshokShetty/REVA/blob/master/CapstoneProjectLnHPolicyUnderwriting.ipynb

#### References

- Accenture. 2015. "Harnessing the Data Exhaust Stream: Changing the Way the Insurance Game Is Played." Accenture Publication
- Aggour, Kareem S., Piero P. Bonissone, William E. Cheetham, and Richard P. Messmer. 2006. "Automating the Underwriting of Insurance Applications." AI
   Magazine
- Balasubramanian, Ramnath, Ari Libarikian, and Doug McElhaney. 2018. "Insurance 2030 The Impact of AI on the Future of Insurance." Digital McKinsey & Company
- Biddle, Rhys, Shaowu Liu, Peter Tilocca, and Guandong Xu. 2018. "Automated Underwriting in Life Insurance: Predictions and Optimisation." in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).