四川大学期末考试试题 (闭卷)

(2022~2023 学年第1学期)

卷

课程	号: <u>31</u>	100604	10 i	果程名称	· <u>操</u>	作系统		_任课教	如: <u></u>	上航、 負	熊运余、	陈楷	£	
*****				*****									• • • • • •	
评例	教师	得分	— ,	单项选	择题(本大是	熨共 20	小题,	每小	题 1.5	分,共	30分	•)	
			提示	: 在每小	题列出的	的四个备	选项中层	?有一个	是符合語		的,请	将其代码	身填写在	E下表
				措选、多.				,,,	,011 = /-		-114	132 (14)	• / , • /-	_, , , ,
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			-											
			1.											
16	17	18	19	20										
1 1 1		da darr	4la a			: - £	سو و ما سان	J			~a\ tl aa	fallarrin	. ~	
	•	eeas aov oply: (emory hi	erarcny (i.e., iron	1 inboard	ı memor	ry to om	ine stora	ge), the	IOHOWII	ıg	
		ost per b												
	_	capacity	/It											
	_	ccess tin	ne											
	of the al													
2. A fe	tched in	struction	is norm	nally load	ed into th	ne:()								
A.Inst	ruction 1	Register	(IR)											
B.Pro	gram Co	ounter (P	C)											
C.Acc	umulato	or (AC)												
D.No	ne of the	above												
3. The principle objective of a time sharing, multi-programming system is to:()														
A.Maximize response time														
B.Maximize processor use														
C.Provide exclusive access to hardware														
	ne of the						1. 1							
			-	ements tw	o suspei	nd states,	, a valıd	state trar	nsition is	represei	nted by:	()		
		end -> R	•											
	•	Ready/S	•											
	-	eady/Sus	spena											
D.All of the above 5 One of the disadvantages of User-Level Threads (ULTs) compared to Kernel-Level Threads (KLTs) is (
	5.One of the disadvantages of User-Level Threads (ULTs) compared to Kernel-Level Threads (KLTs) is (A.Scheduling is application specific													
	_		•	equire ke	nel mod	le privile	ges							
		_		tem call, a		-	_	are block	red					
				, (III uio j	p. 0 0 0 0 0	01001	-54					
	D.All of the above 6.The following requirement must be met by any facility or capability that is to provide support for mutual exclusion				usion:									

课程名称:	任课教师:	学号:	姓名:
()	al code section for a finite time on	Jy z	
-	n be allowed into a critical code so	-	
C.No assumptions can be made		CHOII	
D.All of the above	about relative process speeds		
	enial approach to Deadlock Avoida	anaa a safa stata is dafina	l oc one in which:
	uences do not result in a deadlock:		ras one in which.
B.All potential process sequence			
	sequence does not result in a dead	flock	
D.None of the above	sequence does not result in a dead	HOCK	
	nagement satisfies certain system	requirements including:()
A. protection	nagement sausnes cerum system	requirements, including.	,
B. physical organization			
C. relocation			
D. all of the above			
	ory is based on one or both of two	basic techniques ()	
A. overlaying and relocation	Ty is oused on one of bour of two	basic teeriniques.	
B. segmentation and paging			
C. segmentation and partitioni	nσ		
D. none of the above	····b		
	technique of memory manageme	nt_the placement algorithr	n that chooses the block that
is closest in size to the request is	•	nt, the placement digorith.	if that chooses the chock that
A. best-fit	, canca ()		
B. first-fit			
C. next-fit			
D. none of the above			
	cess contains the following inforn	nation of each segment.)
A. segment base and length	Total Communication Total Wang announce		
B. frame number and length			
C. page number			
D. offset and length			
· ·	as well as an optimal policy, b	ut is difficult to impleme	ent and imposes significant
overhead. ()	us went us air optimal pones, o	at is difficult to impleme	one tara imposes significant
A. LRU			
B. FIFO			
C. CLOCK			
D. SCAN			
	ed proportion of real memory is	required for the tables r	egardless of the number of
processes or virtual pages suppo		required for the there's r	ogmentes of the months of or
A. one-level page table			
B. multiple-level page tables			
C. TLB			
D. The inverted page table			
	ains information on available disk	space is called the ()	
A. File Allocation Table (FAT)		. ,	
B. Disk Allocation Table			
C. Bit Table			
D. Page Table			
6			

课程名称:	任课教师:	学号:	姓名:
15.the technique of fr	ee disk space management that employs a	pointer and length value of e	each free portion is the
()			
A. indexing			
B. free block list			
C. bit tables			
D. none of the above			
16.which of the follow	ving scheduling policies allow the o/s to inter	rrupt the currently running pro	cess and move it to the
ready state ()			
A. preemptive			
B. first-come-first-serv	ved .		
C. non-preemptive			
D. none of the above			
17.in the round robin s	scheduling technique, the principle design iss	sue is: ()	
A. determining the fair	r distribution of time quanta to individual pro	ocesses	
B. determining the len	gth of the time quantum		
C. determining the me	thod of cycling through a given set of proces	sses	
D. none of the above			
18.an example of a blo	ock-oriented i/o device is ()		
A. modem			
B. Printer			
C. CD-ROM			
D. all of the above			
19.in a hierarchical str	ucture for managing i/o on a secondary stora	age device that supports a file s	system, the layer that is
closest to the hardware			
A. device i/o layer			
B. directory managem	ent layer		
C. physical organization	on layer		
D. none of the above	•		
20.a typical way to ove	ercome starvation of lower-priority processes	s in a priority-based scheduling	g system is to:(
A. change a process pr			
B. change a process pr	_		
C. round-robin cycling	g of processes in a priority queue		
D. all of the above	, , , , , , , , , , , , , , , , , , , ,		
;······			
评阅教师 得分	二、填空题(本大题共 20 小题	,每小题 1 分,共 20 ケ	分) 。
1. Registers that are	used by system programs to minimize mai	n memory references by optim	mizing register use are
called			
	dance, the Resource Allocation Denial strates	gy is also referred to as the	
3. A resource that car	n be created (produced) and destroyed (const	umed) is called a	resource.
	which a process can do nothing until it gets p		
_	riable to gain entrance is called		
	quired for a single instruction is called a(n) _		
6. The operating sy	rstem's refers t	to its inherent flexibility in	permitting functional
	vstem without interruption of services.	·	
	employs a paging memory management so	heme, the	shows the frame

课程名称:	任课教师:	学号:	姓名:
1 6 . 1 . 6.	1		
location for each page of t	_		
	is an actual location in main memo		
	l lead to fragmer		
	stem spends most of its time swapping	pages in and out rather than e	xecuting instructions is
known as			
	states that program an		
12. The virtual memory	schemes make use of a special high	-speed cache for page table	entries, usually called
a			
	g virtual memory, the portion of a proce	ess that is actually in main men	mory at any given time
	of the process.		
	ere the processor busy waits for an I/O o		
	blocking is the common mode of file blocking		
16. In a tree-structured di	rectory, the series of directory names that	culminates in a file name is re	eferred to as the
17. the type of scheduling	g that involves the decision to add a proc	ess to those that are at least pa	rtially in main memory
	execution is referred to as	_	,
	ng model, the total time that a process s		ne plus service time) is
	·	1 3 (8	1 /
	file can be conducted by		
20. In the	I/O technique, the processor is	sues an i/o request, continue	s with other work and
	ification that the request was fulfilled.	1 ,	
·	•		
评阅教师 得分 -	三、判断题(本大题共 10 小题	,每小题 1 分,共 10 分	分)。
	gy that deals with deadlocks has its ad	vantages and disadvantages, t	he best solution to the
problem is to choose one		.64	1
	Thread (ULT) facility, all of the work of existence of threads.	of thread management is done	by the application, bu
		avecants for that was a sec	
	ting of the sequence of instructions that of the binary form of the program co		
•			ing greaten and and for
the running processes. (system, main memory is divided into to	vo sections, one for the operat	ing system and one for
C1 \) a program and data are organized in s	such a sway that warious modu	las oan ha assigned the
6. The practice in which same region of memory is		uch a way mai various modu	ies can be assigned the
•	• • • • •	- out the first fit also consent al	~~ith
	tioning technique of memory managen st placement and chooses the first availal	•	•
	•		ne request: ()
	periences the potential problem of extern		in a manid barmata afi/a id
	ultiple buffers are used in an attempt to a	neviate the problem of absorb	ing rapid bursts of 1/0 is
typically referred to as do	• , ,		
	g time (srt) scheduling policy is a pre-	empuve version of the short	test process next (spn)
scheduling policy.()			
评阅教师 得分	四、问答题(本大题共3小是	蔥,共 40 分)。	

注: 试题字迹务必清晰,书写工整。

1. (15 分) The beautiful island can accommodate 100 people to visit at the same time. As shown in the figure, there is a one-way gate to enter and leave the scenic area, and only one person can pass through each gate. After entering the scenic spot, the person must enter and leave the island through a one-way bridge for tourism. Only one direction is allowed on the bridge at a time. If people in one direction occupy the one-way bridge, let people in that direction have the priority to cross the bridge.

- 1) If there is no rule restriction, at least several tourists will have deadlocks for the one-way bridge. Please explain the causes of one-way bridge deadlocks.
- 2) Use the semaphore method to simulate the entering and leaving of the beautiful island.

注: 试题字迹务必清晰,书写工整。

2. In an OS adopts demand paging fetch policy. Before loading process A, which contains 4 pages, the frame numbers in the system free frame chain list are 3, 33, 9, 17(decimal 十进制)。 The OS will allocate two frames for process A as resident set. The page size is 4kB. Ignore all the effects by other processes.

(1) Assume virtual address 0x0100 and 0x1200 of process A will be accessed immediately, now please fill in the following the page table of process A, none for uncertain item and use a few words to explain the reason. (5 %)

1 ,		1
Page number	Frame number	Valid bit
0		
1		
2		
3		

The reason is:

(2) The OS adopts one-level hierarchical page table, fixed allocation and local replacement policy and LRU replacement policy. The memory access time is 100ns, one page fault process time is 500ns (include the process to load one page and update page table). The address is translated by one-level hierarchical page table only. If the valid bit is 0, the access to the page triggers a page fault. The page fault handler will load the page into main memory and re-execute the instruction that triggers the interrupt (ignore the time re-access the page table).

Now, the program needs to access data in virtual address 0x1100 and 0x3345.

Please answer:

(2.1)Calculate the access time for the two data. (4 %)

0x1100:

0x3345:

(2.2)Fill in the following the page table of process A after the previous access and use a few words to explain why. (6 分)

Page number	Frame number	Valid bit
0		
1		
2		
3		

The reason is:

3. (10 %) There is sequence of disk track requests: 90,88,148,190,92,210,179,245,45,250,56,70,80. Assume that the disk head is initially positioned over track 95 and is moving in the direction of increasing track number.

Question: For SSTF and CSCAN $\,$

- a. What is the tracking order?
- b. What is Average seek Length?

注: 试题字迹务必清晰,书写工整。 第**8**页 教务处试题编号: