T.C.

SAMSUN ÜNİVERSİTESİ MÜHENDİSLİK ve DOĞA BİLİMLERİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ

OMAT301 NÜMERİK YÖNTEMLER BÜTÜNLEME CEVAP ANAHTARI

Adı: Soyadı: No:

Soru 1 $f(x) = x^2$ fonksiyonunun x = 0, x = 3 doğruları ve x ekseniyle sınırlandırılan bölgedeki alanını n = 6 için **Trapez** (**Yamuk**) yöntemiyle çözünüz ve bağıl hatayı hesaplayınız. (**30p**)

Ç**özüm:**
$$f(x) = x^2$$
, $h = \frac{3-0}{6} = 0.5$

x	0	0.5	1	1.5	2	2.5	3
f(x)	0	0.25	1	2.25	4	6.25	9

Trapez(yamuk) kuralından; $I \cong \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$

$$= \frac{0.5}{2} [0 + 2. (0.25 + 1 + 2.25 + 4 + 6.25) + 9] = 9.125$$

elde edilir. Bağıl Hata= $\left|\frac{9-9.125}{9}\right| = \frac{0.125}{9} \approx 0.0139$.

Soru 2: $\begin{cases} y' = y^2 \\ y(0) = 0.25 \end{cases}$ ile verilen başlangıç değer probleminin yaklaşık çözümünü

- a. Euler
- b. 2. dereceden Taylor Serisi açılımı

Yöntemleri ile h = 0.5 olmak üzere y(2.5) değerini yaklaşık olarak bulunuz.

c. Diferansiyel denklemin tam çözümü $y(x) = \frac{1}{4-x}$ olmak üzere her bir noktadaki tam çözüm, Euler ve 2. dereceden Taylor Serisi yöntemi sonuçlarını tablo ile oluşturunuz ve bağıl hatalarını hesaplayınız. (40p)

Cözüm: a. Euler formülü: $y_{i+1} = y_i + hf_i$ ve burada y' = f(x, y) ve $y' = y^2$: $f(x, y) = y^2$.

O halde iterasyon formülü

$$y_{i+1} = y_i + 0.5y_i^2$$

haline dönüşür.

i	X_i	y_i	$f_i = y_i^2.$	Tam çözüm
0	0.	0.25	0.0625	0.25
1	0.5	0.28125	0.07910	0.28571
2	1.0	0.32080	0.10291	0.33333
3	1.5	0.37225	0.13857	0.4
4	2.0	0.44153	0.19495	0.5
5	2.5	0.53900		0.66667

b. 2. derece Taylor Formülü:

i	x_i	y_i	$f_i = y_i^2.$	$f' = 2y_i f_i.$	Tam çözüm
0	0.	0.25	0.0625	0.03125	0.25
1	0.5	0.28516	0.08132	0.04638	0.28571
2	1.0	0.33162	0.10997	0.07294	0.33333
3	1.5	0.39572	0.15659	0.12393	0.4
4	2.0	0.48951	0.23962	0.23459	0.5
5	2.5	0.63864			0.66667

Euler Formülünün bağıl hatası:

yaklaşık çözüm $y(2.5) \approx 0.539$ ve tam çözüm y(2.5) = 0.66667 olmak üzere **Bağıl Hata=0.191505.**

2. dereceden Taylor Formülünün bağıl hatası:

yaklaşık çözüm $y(2.5) \approx 0.63864$ ve tam çözüm y(2.5) = 0.66667 olmak üzere **Bağıl Hata=0.042044.**

Soru 3: Diferansiyel denklemi $\begin{cases} y' = y + x^2 + 1 \\ y(0) = 0.5 \end{cases}$ ile verilen başlangıç değer probleminin y(1) yaklaşık çözümünü h=0.25 olması durumunda sonlu farklar metodu ile bulunuz. (30p)

Not: Bu soruda türev için $y' \approx \frac{y_{i+1} - y_i}{h}$ ileri fark formülü kullanılacaktır.

Çözüm:

Verilen başlangıç değer problemi $\begin{cases} y' = y + x^2 + 1 \\ y(0) = 0.5 \end{cases}$ ve h = 0.25 olmak üzere diferansiyel denklem

 $\frac{y_{i+1} - y_i}{h} = y_i + x_i^2 + 1 \Rightarrow y_{i+1} = y_i + h(y_i + x_i^2 + 1)$ iterasyon formülüne dönüşür. Bu formül kullanılarak adım adım hesaplama aşağıdaki gibi elde edilir.

y(0) = 0.5 başlangıç koşulu olmak üzere

Birinci adım:

$$x_1 = 0.25 \Rightarrow y_1 = y_0 + h(y_0 + x_0^2 + 1)$$

$$y_1 = 0.5 + 0.25(0.5 + 0^2 + 1)$$

$$y_1 = 0.875$$

Üçüncü adım:

$$x_3 = 0.75 \Rightarrow y_3 = y_2 + h(y_2 + x_2^2 + 1)$$

 $y_3 = 1.359375 + 0.25(1.359375 + 0.5^2 + 1)$
 $y_3 = 2.011719$

Böylece yaklaşık çözümde y(1) = 2.905273 bulunur.

İkinci adım:

$$x_2 = 0.5 \Rightarrow y_2 = y_1 + h(y_1 + x_1^2 + 1)$$

 $y_2 = 0.875 + 0.25(0.875 + 0.25^2 + 1)$
 $y_2 = 1.359375$

Dördüncü adım:

$$x_4 = 1 \Rightarrow y_4 = y_3 + h(y_3 + x_3^2 + 1)$$

 $y_4 = 2.011719 + 0.25(2.011719 + 0.75^2 + 1)$
 $y_4 = 2.905273$