Schwarzov princip zrcaljenja za harmonične funkcije

Matej Novoselec

FMF Fakulteta za matematiko in fiziko

5. april 2023

Princip maksima

Princip maksima za holomorfne funkcije

Naj bo D omejeno območje. Naj bo h holomorfna na D in zvezna na \overline{D} . Če velja $|h(z)| \leq M$ za vsak $z \in \partial D$, potem velja $|h(z)| \leq M$ za vsak $z \in \overline{D}$.

Dirichletov problem za enotski disk

Problem (Dirichletov problem za enotski disk)

Naj bo $\mathbb D$ enotski disk. Zvezno kompleksno funkcijo h, definirano na $\partial \mathbb D$, razširi do zvezne funkcije $\widetilde h$ tako, da bo $\widetilde h$ harmonična na $\mathbb D$ in zvezna na $\overline{\mathbb D}$, ter se bo zožitev $\widetilde h$ na $\partial \mathbb D$ ujemala s h.

Dirichletov problem za enotski disk

Problem (Dirichletov problem za enotski disk)

Naj bo $\mathbb D$ enotski disk. Zvezno kompleksno funkcijo h, definirano na $\partial \mathbb D$, razširi do zvezne funkcije $\widetilde h$ tako, da bo $\widetilde h$ harmonična na $\mathbb D$ in zvezna na $\overline{\mathbb D}$, ter se bo zožitev $\widetilde h$ na $\partial \mathbb D$ ujemala s h.

Spomnimo se...

Če razširitev obstaja je enolično določena.

Dirichletov problem za enotski disk

Problem (Dirichletov problem za enotski disk)

Naj bo $\mathbb D$ enotski disk. Zvezno kompleksno funkcijo h, definirano na $\partial \mathbb D$, razširi do zvezne funkcije $\widetilde h$ tako, da bo $\widetilde h$ harmonična na $\mathbb D$ in zvezna na $\overline{\mathbb D}$, ter se bo zožitev $\widetilde h$ na $\partial \mathbb D$ ujemala s h.

Spomnimo se...

Če razširitev obstaja je enolično določena.

Oglejmo si enostavne zvezne funkcije.

Poissonovo jedro

Definicija

Poissonovo jedro je funkcija definirana s predpisom

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} \mathrm{e}^{ik\theta}$$
, kjer je $\theta \in [-\pi,\pi]$ in $r < 1$.

Poissonovo jedro

Definicija

Poissonovo jedro je funkcija definirana s predpisom

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$
, kjer je $\theta \in [-\pi, \pi]$ in $r < 1$.

Poissonov integral

Definicija

Poissonov integral, ki ga označimo z $\widetilde{h}(z)$, zvezne funkcije $h(e^{i\theta})$, je funkcija, definirana na enotskem disku s predpisom

$$\widetilde{h}(z) = \int_{-\pi}^{\pi} h(e^{i\varphi}) P_r(\theta - \varphi) \; rac{d \varphi}{2\pi} \; , \; ext{kjer je} \; \; z = r e^{i heta} \in \mathbb{D}.$$

Poissonov integral

Definicija

Poissonov integral, ki ga označimo z $\widetilde{h}(z)$, zvezne funkcije $h(e^{i\theta})$, je funkcija, definirana na enotskem disku s predpisom

$$\widetilde{h}(z)=\int_{-\pi}^{\pi}h(e^{iarphi})P_r(heta-arphi)\;rac{darphi}{2\pi}$$
 , kjer je $\;z=re^{i heta}\in\mathbb{D}.$

Izrek (Poissonov integral)

Naj bo $h(e^{i\theta})$ zvezna funkcija na enotski krožnici. Potem nam zgoraj definiran Poissonov integral $\widetilde{h}(z)$ ponuja razširitev funkcije h do zvezne funkcije na $\overline{\mathbb{D}}$, harmonične v \mathbb{D} in velja, da se njena zožitev na $\partial \mathbb{D}$ ujema s h.

Lastnost povprečne vrednosti

Definicija

Zvezna funkcija h, definirana na območju $D \subseteq \mathbb{C}$, ima **lastnost povprečne vrednosti**, če za vsak $z_0 \in D$ obstaja $\epsilon_0 > 0$, da je $\overline{\mathbb{D}}(z_0, \epsilon_0) \subseteq D$ in za vsak $0 < \epsilon \le \epsilon_0$ velja:

$$h(z_0) = rac{1}{2\pi} \int_0^{2\pi} h(z_0 + \epsilon e^{i\theta}) d\theta.$$

Lastnost povprečne vrednosti

Definicija

Zvezna funkcija h, definirana na območju $D \subseteq \mathbb{C}$, ima **lastnost povprečne vrednosti**, če za vsak $z_0 \in D$ obstaja $\epsilon_0 > 0$, da je $\overline{\mathbb{D}}(z_0, \epsilon_0) \subseteq D$ in za vsak $0 < \epsilon \le \epsilon_0$ velja:

$$h(z_0) = rac{1}{2\pi} \int_0^{2\pi} h(z_0 + \epsilon e^{i\theta}) d\theta.$$

Izrek (Karakterizacija harmoničnih funkcij)

Naj bo h(z) zvezna funkcija na območju D. Potem je h(z) harmonična na D natanko tedaj, ko ima h(z) lastnost povprečne vrednosti na D.

Schwarzov princip zrcaljanja za harmonične funkcije

Izrek (Schwarzov princip zrcaljenja za harmonične funckije)

Naj bo $D \subseteq \mathbb{C}$ območje, simetrično glede na realno os. Označimo $D^+ = D \cap \{\text{Im} > 0\}$ in $D^- = D \cap \{\text{Im} < 0\}$.

Naj bo $u(z): D^+ \to \mathbb{R}$ harmonična funkcija, za katero velja, da gre $u(z) \to 0$, ko gre $z \in D^+$ proti poljubni točki $D \cap \mathbb{R}$ t.j.:

$$\lim_{\mathrm{Im}(z)\to 0^+}u(z)=0.$$

Potem obstaja harmonična razširitev u(z) na D, ki jo podaja predpis $u(\bar{z}) = -u(z)$ za $z \in D$:

$$u^e(z) = egin{cases} u(z) & z \in D^+ \ -u(\overline{z}) & z \in D^- \ 0 & z \in \mathbb{R} \end{cases}$$

