Agenda

- Tema IV, hasta transformación de relaciones
- Tarea 9

Facultad de Ingeniería

Diseño lógico de una base de datos

Tema IV

Semestre 2023-2

Objetivo

El alumno realizará la construcción de modelos relacionales a partir de modelos entidad/relación, haciendo uso de conceptos, principios y buenas prácticas, para obtener el diseño lógico de la base de datos. Comprenderá el uso de herramientas CASE empleando diversas notaciones.

Definición MR

Modelo basado en lógica de predicados y en teoría de conjuntos, propuesto en los años 70's por Frank Codd

Definición MR

Propiedades:

- No pueden existir dos relaciones que se llamen igual
- No pueden existir tuplas iguales
- No pueden existir atributos que tengan el mismo nombre
- No hay orden en tuplas ni en atributos
- Los valores de los atributos deben ser atómicos

Notación Crow's foot

nombre_Relacion

Llave(s) primaria

Atributos restantes

Notación Crow's foot

$$(0,1) - \bigcirc \qquad (0,N)$$

$$(0,1) \longrightarrow (0,1)$$

Transformación de entidades fuertes

- Toda entidad fuerte se transforma en una relación
- Se conservan los atributos y la clave primaria (ahora se llamará llave primaria, denotada por PK)

- En claves candidatas debe establecerse restricción de unicidad (U)
- Los atributos compuestos deben indicarse de forma individual

 Para atributos multivalor se crea una nueva relación y se propaga como *llave foránea* (FK) la PK de la relación base a la nueva relación

 Para atributos derivados se indica que son calculados (C)

 Finalmente, se deben indicar las restricciones que haya sobre los atributos, como check (CK) o null (N)

Ejemplo

PROFESOR: { cveProf int (PK), rfcProf varchar(13) (U), nombre varchar(70), apPat varchar (50), apMat varchar (50) (N), edad smallint (C)}

EMAIL: { email varchar(150) (PK), cveProf int (FK) }

Ejercicio

Transformar el MER el ejercicio 1 a la representación intermedia de MR

Ejercicio

Transformar el MER el ejercicio 1 a la representación intermedia de MR

Tarea 10

Investigar tipos de datos en postgres: numéricos, caracteres, fechas. Y dos que les llamen la atención

Transformación de relaciones

 m:m -> Se crea una nueva relación, que tendrá como PK las PK's de las entidades que une (que a su vez son FK's), más los atributos (si hubiera) de la relación

Transformación de relaciones

 1:m ó m:1 -> La llave primaria de la relación con cardinalidad 1 se propaga como llave foránea a la relación con cardinalidad m

Transformación de relaciones

- 1:1 -> La clave primaria de una relación se propaga a la otra relación dependiendo de:
- 1) La semántica
- 2) Considerar cuál relación será accedida más frecuentemente

Ejercicio

Transformar el MER el ejercicio 2 a la representación intermedia y final de MR