Insight into OpenStack

Kailash S C-DAC Chennai

MIDDLEWARE

- Core cloud component Brain
- Functionalities
 - Orchestrating
 - Scheduling
 - Coordinating resources
 - Compute; Storage & Network
 - Provisioning user request

Open stack - What & what not

- What not
 - Not a Hypervisor
 - No Virtualization all alone
 - Not a single project
- What it is
 - Collection of multiple software components

What is OpenStack

- Cloud OS with multiple controlling services
- Offers laaS, Orchestration, Service management
- Open source, openly designed, openly developed by an open community
- Easy to use, simple to implement, interoperable
- cost savings, customization, value-added services, and innovation in the product line
- Automation of cloud maintenance

OpenStack Significance

- One of top 3 most active open source projects, manages 10 million compute cores
- Fastest-growing open-source communities in the world.
- 1,518 unique change authors approved more than 47,500 changes and published two major releases.

OpenStack Community

• One of the fastest growing open source communities in the world.

History

- Control pools of processing, storage, and networking resources throughout a data center
- Terms of the Apache License.
- 2010 : Rackspace and NASA
- 2012 : Openstack Foundation
- 2014 : Over 200 Companies

The OpenStack Foundation

- Open Infrastructure Summit: bringing together more than 20,000 open infrastructure enthusiasts
- Goal serve developers, users, and the entire open infrastructure ecosystem by providing a set of shared resources to build community, facilitate collaboration and support integration of open source technologies.
- Individual membership: free for anyone with an interest in open infrastructure.

COMPANIES

698

INDIVIDUAL MEMBERS

15,672

Source : Openstack.org

As of May 2020

LoC

20 M +

COUNTRIES

187

TOP 10 COUNTRIES
United States, China, India,
Great Britain, France, Russia,
Australia, Canada, Japan,
Germany

CODE CONTRIBUTIONS

115,206

Openstack

• Origin:

Project by Rackspace cloud & NASA, Intel & AMD

Core Technology:

Python

- Features:
 - Openstack Compute for managing Virtual machines (Nova)
 - Openstack Object storage for creating reduntant, scalable data storage (swift)
 - Openstack Imaging Service for discovery, registration and delivery services for virtual disk images (Glance).
 - Graphical user interface (Horizon)
 - Hypervisor support includes ESX, Hyper-V, KVM, Xen, and XenServer/XCP

OpenStackspecific Considerations

Interoperability

Bidirectional Compatibility

Cross-Project Dependencies

Partitioning

Design Goals

PLAYS WELL WITH OTHERS

HARDWARE VIRTUALISATION

INFINITE, CONTINUOUS SCALING

BUILT-IN RELIABILITY
AND DURABILITY

CUSTOMISABLE INTEGRATION

ABSTRACT SPECIALISED OPERATIONS

GRAPHICAL USER INTERFACE

Releases

- Austin
- Bexar
- Cactus
- Essex
- Folsom
- Grizzly
- Havana
- Ice House
- Juno
- Kilo

- Liberty
- Mitaka
- Newton
- Ocata
- Pike
- Queens
- Rocky
- Steins
- Train
- Ussuri

Ussuri

- 21st release of OpenStack
- Improvements in core functionality, automation, cold migration, containerized applications
- Over 24,000 code changes by more than 1,000 developers from 188 different organizations and over 50 countries

Openstack Architecture

Components of OpenStack

- Compute 3
- Hardware Lifecycle 2
- Storage 3
- Networking 3
- Shared services 6
- Orchestration 6
- Workload provisioning –3
- Application lifecycle 4
- API proxies 1
- Web Frontend 1

- Monitoring tools 3
- Optimization/policy tools – 4
- Billing / Business Logic –3
- Testing / Benchmarking- 3
- Multi-Region tools 1
- Containers 1
- NFV 1
- Framework for life cycle management – 8

Compute

• NOVA : Compute Service

• ZUN : Container Management Service

• QINLING : Functions service

Storage, Backup & Recovery

• SWIFT : Object Store

• CINDER : Block Storage

• MANILA : Shared Filesystems

Networking & Content Delivery

• NEUTRON : Networking

• DESIGNATE : DNS Service

OCTAVIA : Load Balancer

Hardware life cycle

• IRONIC : Bare Metal Provisioning Service

• CYBROG : Life cycle management

Shared services

KEYSTONE Identity service

PLACEMENT Placement service

GLANCE Image service

• BARBICAN Key management

KARBOR Application Data Protection as a Service

SEARCHLIGHT Indexing and Search

Orchestration

• HEAT

SENLIN

• MISTRAL

• ZAQAR

• BLAZAR

AODH

Orchestration

Clustering service

Workflow service

Messaging Service

Resource reservation service

Alarming Service

Data & Analytics

• TROVE : Database as a Service

• SAHARA : Big Data Processing Framework Provisioning

• SEARCHLIGHT: Indexing and Search

Frameworks for lifecycle management

• TRIPLEO Deploys OpenStack using OpenStack itself

• OPENSTACK-HELM Deploys OpenStack in containers using Helm

• **KOLLA-ANSIBLE** Deploys OpenStack in containers using Ansible

KAYOBE Deployment of containerised OpenStack to bare metal

• **OPENSTACK-ANSIBLE** Ansible playbooks to deploy OpenStack

• OPENSTACK-CHARMS Deploys OpenStack in containers using Charms and Juju

BIFROST Ansible playbooks using ironic

• **OPENSTACK-CHEF** Chef cookbooks to build, operate and consume OpenStack

Security, Identity & Compliance

• KEYSTONE : Identity service

• BARBICAN : Key Management

• CONGRESS : Governance

• MISTRAL : Workflow service

Management Tools

HORIZON : Dashboard

• OPENSTACK CLIENT (CLI) : Command-line client

• RALLY : Benchmark service

• SENLIN : Clustering service

• VITRAGE : RCA (Root Cause Analysis service)

• WATCHER : Optimization Service

Deployment tools

• CHEF OPENSTACK : Chef cookbooks for OpenStack

KOLLA : Container deployment

• OPENSTACK CHARMS : Juju Charms for OpenStack

• OPENSTACKANSIBLE : Ansible Playbooks for OpenStack

PUPPET OPENSTACK : Puppet Modules for OpenStack

• TRIPLEO : Deployment service

Application services

• HEAT : Orchestration

• ZAQAR : Messaging Service

MURANO : Application Catalog

• SOLUM : Software Development Lifecycle Automation

Monitoring & metering

• CEILOMETER : Metering & Data Collection Service

• CLOUDKITTY : Billing and chargebacks

MONASCA : Monitoring

AODH : Alarming Service

• PANKO : Event, Metadata Indexing Service

Nova

- Computing Fabric controller for OpenStack
- Manages the life cycle of instances
- Control computing resources, networking, security
- All capabilities through a web services REST API

Nova

- Nova-api server Heart of the cloud framework, which provides an interface for the outside world to interact with the cloud infrastructure
- Nova-AMQP
 - AMQP is the messaging technology chosen by the OpenStack cloud
 - Nova components use Remote Procedure Calls to communicate to one another

Nova Architecture

Compute/Nova Key Features

Nova

- nova-volume
 - Nova volume is responsible for managing attachable block storage devices
 - It loads a Service object which exposes the public methods on VolumeManagervia rpc
- nova-network
 - Nova network is responsible for managing floating and fixed ips, dhcp, bridging and vlans.
 - t loads a Service object which exposes the public methods on one of the subclasses of NetworkManager

Nova

- Nova-compute process is a worker daemon that creates and terminates virtual machine instances
 - It deal with instance management life cycle
 - It receive the request from the queue and perform the series of system commands for instance life cycle management, and updating the state in the databases
- Nova-Conductor
 - Mediates database access
 - No database access from compute hosts
 - Conductor updates database state

- Nova-scheduler service to determine how to dispatch compute requests
- For example, the nova-scheduler service determines on which host a VM should launch
- In the context of filters,
- the term host means a
- physical node that has a
- nova-compute service
- running on it.
- Defaults to
- filter scheduler

Filter class Nova

- Have not been attempted for scheduling purposes (RetryFilter).
- Are in the requested availability zone (AvailabilityZoneFilter).
- Have sufficient RAM available (RamFilter).
- Can service the request (ComputeFilter).
- Satisfy the extra specs associated with the instance type (ComputeCapabilitiesFilter).

Glance

- Glance Image Store
- It provides discovery, registration and delivery services for disk and server images. List of processes and their functions:
- glance-api: It accepts Image API calls for image discovery, image retrieval and image storage.
- glance-registry: it stores, processes and retrieves metadata about images (size, type, etc.).
- glance database : A database to store the image metadata.
- A storage repository for the actual image files. Glance supports normal filesystems, RADOS block devices, Amazon S3, HTTP and Swift.

Glance

- Image Store
- Discovery, registration and delivery services for disk and server images.
- Glance-api : Accepts Image API calls for image discovery, image retrieval and image storage
- Glance-registry: Stores, processes and retrieves metadata about images (size, type, etc.).
- Glance database : Database to store the image metadata.

Glance Architecture

Image Service/Glance

Disk and Container Formats

• Raw : Unstructured disk image format

Vhd : VMWare, Xen, Microsoft, VirtualBox and others

Vmdk : Common disk format supported by many virtual machine

monitors

Vdi : VirtualBox and QEMU emulator

• Iso : An archive format - optical disc

Qcow2 : QEMU emulator that can expand dynamically

Aki : Amazon kernel image

Ari : Amazon ramdisk image

Ami : Amazon machine image

Cinder

- Can be compared in concept to Amazon EBS
- Provides block storage functionality to instances running on Compute
- Sub components : cinder-api, cinder-volume, cinder-scheduler

Cinder

- Can be compared in concept to Amazon EBS
- Provides block storage functionality to instances running on Compute
- Similar to Compute, it has several sub-components (cinder-api, cinder-volume, cinder-scheduler)
- cinder-volume leverages storage drivers to interact with underlying storage platforms

Cinder - Block Storage

Cinder –

- Cinder allows block devices to be exposed and connected to compute instances for expanded storage & better performance.
- cinder-api accepts requests and routes them to cinder-volume for action.
- cinder-volume reacts reading or writing to the cinder database to maintain state, interacts with other processes (like cinder-scheduler) through a message queue and directly on block storage providing hardware or software.
- cinder-scheduler picks the optimal block storage node to create the volume on.
- A cinder database store volumes state.

Swift

- Think of it as similar to Amazon S3
- Provides distributed object storage
- Supports the OpenStack Object API as well as raw HTTP
- Authentication is handled via OpenStack Identity

- Object store allows you to store or retrieve files.
- Provides a fully distributed, API accessible storage platform
 - Integrated directly into applications or used for backup / archiving
- Not a traditional file system
- A distributed storage system
 - For static data such as VM images, backups and archives

- Object store allows you to store or retrieve files.
- It provides a fully distributed, API-accessible storage platform that can be integrated directly into applications or used for backup, archiving and data retention.
- Note: Object Storage is not a traditional file system, but rather a distributed storage system for static data such as virtual machine images, photo storage, email storage, backups and archives.

- Object store allows you to store or retrieve files.
- Provides a fully distributed, API accessible storage platform
 - Integrated directly into applications or used for backup / archiving
- Not a traditional file system
- A distributed storage system
 - For static data such as VM images, backups and archives

- Accounts server manage accounts defined with the object storage service.
- Container servers manage a mapping of containers, folders, within the object store service.
- Object servers manage actual objects, files, on the storage nodes

Object Storage Key Features Data distributed evenly throughout system ReST-based API **Scalable** to multiple petabytes, billions of objects Account/Container/Object structure (not file system, no nesting) plus Replication (N copies of accounts, containers, objects) No central database Hardware agnostic: standard hardware, RAID not required

Swift

Neutron

What is Neutron?

Network infrastructure management

Concepts

Networks

Routers

Subnets

Ports

Multiple technologies

OpenVSwitch, Linux Bridge, Vendor plugins

 neutron-server Accepts and routes API requests to the appropriate OpenStack Networking plug-in for action.

Pools Managed by the Cloud O.S.

COMPUTE, NETWORK, & STORAGE

OpenStack Projects: Detailed View

OpenStack Projects: Communication Types

Initial State

Step 1: Request VM Provisioning via UI/CLI

Step 2: Validate Auth Data

Step 3: Send API request to nova-api

Step 4: Validate API Token

Step 5: Process API request

Step 6: Publish provisioning request to queue

Step 7: Schedule provisioning

Step 8: Start VM provisioning on compute node

Step 9: Start VM rendering via hypervisor

Step 10: Request VM Image from Glance

Step 11: Get Image URI from Glance

Step 12: Download image from Swift

Step 13: Configure network

Step 14: allocate and associate network

Step 15: Request volume attachment

OpenStack: Deployment Topology

Essential Services

Types of pools managed by the Cloud O.S.

COMPUTE, NETWORK, & STORAGE

Deployment scenario

- All in one VM
- All in one single machine
- All in one LXC container
- Multi-node
- Mutli-node with HA
- Multi-node with DR
- Multi-node with HA & DR

Join the Community

Join The OpenStack Community

http://www.openstack.org/community/

Developers In Action: Jenkins recently made a contribution to **Cinder** r 666

Got Questions?

- Ask OpenStack
- #openstack-101 on Freenode (via browser client)
- More OpenStack IRC channels

Mailing Lists

- General Discussions Register | Archives
- Development Register | Archives
- Documentation Register | Archives
- Announcements Register | Archives
- Community Register | Archives
- Foundation Register | Archives
- Operators Register | Archives

Social Networks

- Twitter: @openstack
- Facebook
- LinkedIn
- OpenStack on Ohloh

User Groups

The OpenStack Wiki has a full list of user groups available at The OpenStack User Groups Page. If you know of one we missed, please edit the wiki and add it. Thanks!

OpenStack Worldwide Meetup Groups

OpenStack Resources

Forums

http://forums.openstack.org/

Wiki

http://wiki.openstack.org/

Documentation

http://docs.openstack.org/

Mailing Lists

http://wiki.openstack.org/MailingLists

OpenStack Project Management

https://launchpad.net/openstack

Blogs

http://planet.openstack.org

Real-time chat room

• #openstack and #openstack-dev on irc://freenode.net

Source code

https://releases.openst ack.org/ussuri/? ga=2.1 57726141.645805525.1 596761639-1865794046.15967616 39

Sample configurations

https://www.openstack .org/software/sampleconfigs#webapplications