# Flavour Fusion

TEAM MEMBERS: IMT2020015 Pushkar Pawar IMT2020056 Rudransh Dixit IMT2020100 Teja Janaki Ram IMT2020121 Manan Patel IMT2020133 Darpan Singh

### Novelty of the problem

- Many people, when only a few ingredients are available in their homes, don't think it is possible to make a dish that they like or atleast any dish.
- Hence, they turn to ordering the food online
- Our goal is to recommend dishes that they like with only the ingredients available to them.
- Ultimately, we achieve making the user choose home-made food over restaurant-made food and also probably introduced him/her to new recipes and cuisines.

# **Dataset creation and preprocessing**

- Kaggle dataset Crawled data from food.com (Formerly Genius Kitchen)
- 230K+ recipes and 1.1M+ ratings
- Filtered users who didn't give enough ratings from the Top-20 most common recipes

# **Data Analysis**

- Most of the features were in text form, therefore it does not contain any information that can be analysed statistically.
- Only rating feature can be analysed statistically.
- We have perform standard scaling of rating given by each user.





Before

After

# Approach to solve the problem



# User embeddings

- First we calculated top 20 most rated recipes
- Now for each user we calculated its rating for the above top 20 recipes.
- This list will act as user embedding.
- For new user we first ask them to rate this top 20 recipes to get recommendation.

# Item (recipes) embeddings

- For each recipe we took its ingredient and description data
- We applied word 2 vec to get its embeddings
- Also tried BERT transformer but got poor results

# Philosophy behind algorithm selection

- Due to the huge dataset we used neural networks and tree based algorithms.
- Got following results

| Model                          | Train Accuracy | Test Accuracy |
|--------------------------------|----------------|---------------|
| Light Gradient Boosting (LGBM) | 0.9056         | 0.8157        |
| Xgboost                        | 0.8877         | 0.8413        |
| Neural network                 | 0.8673         | 0.8562        |

# **Model Accuracy Using BERT**

| Model          | Train Accuracy | Test Accuracy |
|----------------|----------------|---------------|
| Neural Network | 0.7410         | 0.6362        |

#### **NN** architecture

- 5 hidden layer
- Relu activation function
- Adam optimiser with MSE loss used
- Added dropout after each layer for regularization
- Gives rating as output

# **Algorithm Analysis**

Neural Network (Regression Net) for different number of layers

| Number of hidden layers | Training accuracy | Testing accuracy |
|-------------------------|-------------------|------------------|
| 3                       | 0.79              | 0.69             |
| 4                       | 0.801             | 0.72             |
| 5                       | 0.86              | 0.85             |
| 6                       | 0.87              | 0.77             |

# NOVELTY

#### **Nutrition Score**

- Calculating a "nutrition score" for each recipe and using it along with predicted recipes to rank the recipes.
- Weighted addition over all values of the nutrition array based on the diet choice.
- Normalizing all the values due to the huge difference in component values.

# **Nutrition sensitivity meter**

- A nutrition sensitivity meter which can adjusted according to user's nutrition needs.
- Has the range of (0,1)

#### Diet choice

- Option to choose among diet types.
- Can choose among balanced diet, high protein
- Balanced diet has reasonably equal weights whereas high protein would have more weight for protein.

#### Time taken

- Added option for user to view only recipes based on his time requirement.
- Filter recipes which take more time than specified by the user.

# **THANK YOU**