Technical Appendix: UNNS Simulation Showcase v1.0

Temporal Recursion Engine, Klein Surface Mapper, and Theoretical Coupling

UNNS Research Initiative, 2025

Abstract

This document provides the technical and theoretical foundation for the UNNS Simulation Showcase v1.0, an interactive visualization suite that demonstrates recursive temporal dynamics and their geometric realization on non-orientable manifolds. The prototype integrates three conceptual domains:

- 1. **Temporal Recursion Engine (TRE)** simulates forward and reverse UNNS recursion.
- 2. Klein Surface Mapper (KSM) embeds recursion trajectories onto a dynamic Klein surface.
- 3. Confluence Architecture couples numeric recursion and geometric deformation as dual projections of the same process.

Each subsystem is implemented in JavaScript (Canvas and WebGL/Three.js) with modular interconnectivity and educational instrumentation.

1 System Overview

The UNNS Simulation Showcase visualizes recursion as a computational substrate where depth replaces continuous time. Each iteration represents a discrete operator transformation:

$$a_{n+1} = \alpha a_n + \beta \tanh(a_{n-1}) + \delta n + \sigma \varepsilon_n,$$

where:

- α damping or persistence parameter,
- β coupling coefficient controlling nonlinearity,
- δ drift term (time-dependent forcing),

• $\sigma \varepsilon_n$ — stochastic perturbation (Gaussian noise).

The forward mapping defines the *temporal cone* (information expansion), while the reverse operator:

$$a_{n-1} = \tanh^{-1} \left(\frac{a_{n+1} - \alpha a_n - \delta n}{\beta} \right)$$

exists only when the transformation $F(a_n, a_{n-1})$ is locally invertible.

2 Module I — Temporal Recursion Engine (TRE)

2.1 Purpose

TRE visualizes the progression of recursion depth as a function of stability and energy evolution. It allows:

- Parameter scanning across $(\alpha, \beta, \delta, \sigma)$,
- Visualization of state trajectories a_n ,
- Real-time heatmap of Jacobian magnitudes,
- Bidirectional time traversal (forward and reverse recursion).

2.2 Algorithmic Core

Forward recursion follows the iterative rule:

$$a_{n+1} = F(a_n, a_{n-1}, n),$$

computed sequentially across N steps. For reversibility testing, the inverse operator F^{-1} is approximated symbolically and checked for domain validity:

$$|(a_{n+1} - \alpha a_n - \delta n)/\beta| < 1.$$

When violated, the mapping becomes non-invertible, representing loss of information (entropy increase).

2.3 Stability Metric

The local Jacobian norm is given by:

$$J_n = \sqrt{\left(\frac{\partial F}{\partial a_n}\right)^2 + \left(\frac{\partial F}{\partial a_{n-1}}\right)^2},$$

which informs a color-coded stability plot:

bright regions: $J_n < 1$ (stable), dark regions: $J_n > 1$ (divergent).

This provides an empirical sense of attractor behavior.

3 Module II — Klein Surface Mapper (KSM)

3.1 Topology

The KSM represents a non-orientable manifold defined by the identification:

$$(\theta, 0) \sim (\theta, 1), \qquad (0, y) \sim (1, 1 - y).$$

The resulting surface (Klein bottle) exhibits $w_1 \neq 0$, signifying global non-orientability, though locally Euclidean.

3.2 Parametric Embedding

The surface is parametrized by $(u, v) \in [0, 2\pi]^2$:

$$\begin{cases} x = (r + a\cos v)\cos u, \\ y = (r + a\cos v)\sin u, \\ z = a\sin v\cos(u/2), \end{cases}$$

rendered via THREE.ParametricGeometry. The surface dynamically *breathes* and rotates, with emissive glow proportional to recursion energy.

3.3 Flow Field Visualization

Flow particles are advected along the surface according to:

$$\dot{u} = \omega_u, \quad \dot{v} = 0,$$

where ω_u varies sinusoidally with recursion energy, simulating transport along the A-cycle of the Klein surface.

4 Coupling: $TRE \rightarrow KSM$

The TRE output is used as an input driver for the KSM:

scale factor =
$$1 + 0.15 \sin(n \cdot 0.05)$$
,
color hue = $f(\alpha, E_n)$,
emissive intensity = $g(|\sin n|, E_n)$.

This coupling demonstrates that recursive numeric evolution can deform a geometric topology in time-dependent ways, representing the duality between recursion and geometry.

5 Data Structures

• TRE data model:

```
{
  alpha, beta, delta, noise, steps,
  sequence[], energies[], stabilities[]
}
```

• KSM dynamic parameters:

```
{
  rotSpeed, flowDensity, twist, energyCoupling
}
```

6 Theoretical Correspondence

- 1. **Temporal recursion** \leftrightarrow **local flow:** Each recursive depth increment corresponds to infinitesimal displacement on the surface.
- 2. **Invertibility** \leftrightarrow **orientability**: Non-invertible recursion corresponds to non-orientable phase identification on the Klein surface.
- 3. Energy decay \leftrightarrow metric contraction: Damping reduces local curvature, compressing the surface volume.
- 4. Stability cone \leftrightarrow recursion cone: The Jacobian norm visualized as cone opening angle illustrates local causality spread.

7 Implementation Summary

7.1 Technologies

- JavaScript (ES6), Canvas 2D API, WebGL (Three.js)
- CSS grid and variable-driven theming
- Event-driven architecture for modular simulation control
- JSON export for reproducibility and analysis

7.2 Performance

Frame synchronization achieved via requestAnimationFrame, with adaptive rendering frequency for smooth visuals at $\sim 60 \, \text{FPS}$.

8 Interpretation and Future Work

The prototype reveals how recursive numeric processes can encode and visualize reversible (and non-reversible) temporal structures. Next steps include:

- 1. Introducing a **UNNS**—**Manifold Tensor Engine** (symbolic mapping of recursion operators to metric tensors),
- 2. Adding energy—entropy cross-spectra to analyze information dissipation,
- 3. Implementing a **Klein Flow Integrator** for topological charge preservation.

References

- I. Chomko, On the Possibility of Temporal Recursion in the UNNS Substrate, 2025.
- I. Chomko, Temporal Recursion and Klein Surface Realization, 2025.
- UNNS Research Notes: https://ukbbi.github.io/UNNS/