# Clasificación

- Regresión Logística
- Redes Neuronales



# Regresión logística

### Regresión logística: modelo discriminativo

#### Bayes

- Modelo generativo
- Calculamos P(clase, | Datos) a partir de calcular el likelihood -> P(Datos | clase,)

\_

### Regresión logística: modelo discriminativo

#### Bayes

- Modelo generativo
- Calculamos P(clase; | Datos) a partir de calcular el likelihood -> P( Datos | clase;)

#### Regresión Logística

- Se computa directamente P(y|D), sin pasar por el Likehood
- Puede usar features poco importantes para la generación



1. Representacion de features

$$x^{(i)} = [x_{1}^{(i)}, x_{2}^{(i)}, ..., x_{n}^{(i)}]$$
 -> asociado a una clase y

- 1. Representacion de features  $x^{(i)} = [x^{(i)}_{1}, x^{(i)}_{2}, \dots, x^{(i)}_{n}]$  -> asociado a una clase y
- 2. Funcion de clasificacion, que compute  $\hat{y}$  $f(x^{(i)}) = f([x^{(i)}_1, x^{(i)}_2, ..., x^{(i)}_n]) = \hat{y}$

- 1. Representacion de features  $x^{(i)} = [x^{(i)}_{1}, x^{(i)}_{2}, \dots, x^{(i)}_{n}]$  -> asociado a una clase y
- 2. Funcion de clasificacion, que compute  $\hat{y}$  $f(x^{(i)}) = f([x^{(i)}_1, x^{(i)}_2, ..., x^{(i)}_n]) = \hat{y}$
- 3. Función objetivo para el aprendizaje

- 1. Representacion de features  $x^{(i)} = [x^{(i)}_{1}, x^{(i)}_{2}, ..., x^{(i)}_{n}]$  -> asociado a una clase y
- 2. Funcion de clasificacion, que compute  $\hat{y}$  $f(x^{(i)}) = f([x^{(i)}_1, x^{(i)}_2, ..., x^{(i)}_n]) = \hat{y}$
- 3. Función objetivo para el aprendizaje
- 4. Algoritmo para optimizar la función objetivo

### 1 - Representación de features



| Feature                           | Valor |
|-----------------------------------|-------|
| Cantidad de palabras positivas    | 1     |
| Cantidad de palabras negativas    | 0     |
| Cantidad de signos de exclamación | 2     |
| Cantidad de palabras              | 7     |
|                                   |       |

$$x^{(1)} = [1, 0, 2, 7, ..., x^{(1)}_{n}] \rightarrow y = positivo$$

Funcion de clasificacion, que compute ŷ

$$f(x^{(i)}) = f([x^{(i)}_{1}, x^{(i)}_{2}, \dots, x^{(i)}_{n}]) = \hat{y}$$

Dado un problema de clasificación binaria, necesitamos una función que tenga un resultado binarizado







#### 3 - Función objetivo (costo)

#### ¿ Cómo entrenamos el algoritmo?

- Encontrar los pesos w, que generen buenas predicciones
- Por cada instancia que predecimos, calculamos el costo (error) de esa predicción
- Modificamos los pesos w, para minimizar el error

 $L(\hat{y}, y)$  -> cuánta diferencia hay entre la predicción y el valor real

### 3 - Función objetivo (costo)

Cross - Entropy: entropía cruzada

$$L_{CF}(\hat{y}, y) = -[y \log(\hat{y}) + (1-y) \log(1-\hat{y})]$$

### 3 - Función objetivo (costo)

Cross - Entropy: entropía cruzada

$$L_{CF}(\hat{y}, y) = -[y \log(\hat{y}) + (1-y) \log(1-\hat{y})]$$

Siy = 0

$$L_{CE}(\hat{y}, y) = -\log(1-\hat{y})$$

Siy = 1

$$L_{CF}(\hat{y}, y) = -\log(\hat{y})$$

### 4 - Algoritmo de optimización

¿ Cómo minimizamos la pérdida (costo)?

$$L_{CE}(\hat{y}, y) = -[y \log(\hat{y}) + (1-y) \log(1-\hat{y})]$$

$$L_{CE}(w, b) = -[y \log\sigma(w \cdot x + b) + (1-y) \log(1-\sigma(w \cdot x + b))]$$

### 4 - Algoritmo de optimización

¿ Cómo minimizamos la pérdida (costo)?

$$L_{CE}(\hat{y}, y) = -[y \log(\hat{y}) + (1-y) \log(1-\hat{y})]$$

$$L_{CE}(w, b) = -[y \log\sigma(w \cdot x + b) + (1-y) \log(1-\sigma(w \cdot x + b))]$$

Tenemos que modificar los pesos y bias para minimizar la pérdida

Derivamos la función de costo y buscamos la dirección en la cual baja la pérdida

Cross-entropy con la función sigmoidea es derivable y convexa



## Regresión logística, discriminación lineal



# Regresión logística, discriminación lineal







#### Clasificación multiclase



#### Clasificación multiclase



#### Clasificación multiclase



# Regularización

#### Regularización

Si los pesos de los features se vuelven muy grandes, probablemente estemos overfitteando

Regularización: penalizar los pesos altos a la hora de calcular el costo

$$L_{CE}(w,b) = -[y \log \sigma(w \cdot x + b) + (1-y) \log(1 - \sigma(w \cdot x + b))] + \lambda R_{(w,b)}$$

$$R_{(w,b)} = \sum |w_i|^N + |b|^N$$

$$N = 1 \rightarrow Lasso$$

$$N = 2 \rightarrow Ridge$$

# Redes neuronales

# ¿Y si tenemos un problema más complejo?



# ¿Y si tenemos un problema más complejo?







# ¿Y si tenemos un problema más complejo?



## Estructura básica



### Activación sigmoidea

#### Input layer Hidden 1



#### **Redes Neuronales**



| Feature                           | Valor |
|-----------------------------------|-------|
| Cantidad de palabras positivas    | 1     |
| Cantidad de palabras negativas    | 0     |
| Cantidad de signos de exclamación | 2     |
| Cantidad de palabras              | 7     |
|                                   |       |

$$x^{(1)} = [1, 0, 2, 7, ..., x^{(1)}_{n}] \rightarrow y = positivo$$

### **Entrenamiento (backpropagation)**



## **Entrenamiento (backpropagation)**



#### **Entrenamiento (backpropagation)**



$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \, \frac{\partial a^{(L)}}{\partial z^{(L)}} \, \frac{\partial C0}{\partial a^{(L)}} = a^{(L-1)} \sigma'\!(z^{(L)}) 2(a^{(L)} - y)$$

#### **Entrenamiento (backpropagation)**

Finalmente, para actualizar los valores de w hago:

$$w_i^+ = w_i - \eta * \frac{\partial C}{\partial w_i}$$

donde eta es el "learning rate"

#### **Stochastic Gradient Descent**



Hacer esta cuenta para cada instancia es muy costoso

- Se entrenan mini-batches
- Se calcula el costo medio
- Se actualiza sobre con gradiente del mini-batch



# Tipos de neuronas



Lineal y=wa+b



 $y = \begin{cases}
ReLu \\
0 & sia<0 \\
wa+b & sia \ge 0
\end{cases}$ 



Tanh
$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

# Pre-procesamiento

#### Pre-procesamiento: Term-frequency matrix:

- > "Más queso siempre es mejor, siempre"
- "Cerró la casa del queso y sus empleados tomaron el restaurant. Los empleados no fueron indemnizados"

|    | más | queso | siempre | mejor | cerró | casa | empleado<br>s | tomaron | restaurant | fueron | indemnizados |
|----|-----|-------|---------|-------|-------|------|---------------|---------|------------|--------|--------------|
| d1 | 1   | 1     | 2       | 1     | 0     | 0    | 0             | 0       | 0          | 0      | 0            |
| d2 | 0   | 1     | 0       | 0     | 1     | 1    | 2             | 1       | 1          | 1      | 1            |

Notar que queso tiene igual peso en ambos documentos

#### **Normalizacion**

|    | más | queso | siempre | mejor | cerró | casa | empleados | tomaron | restaurant | fueron | indemnizados |
|----|-----|-------|---------|-------|-------|------|-----------|---------|------------|--------|--------------|
| d1 | 1   | 1     | 2       | 1     | 0     | 0    | 0         | 0       | 0          | 0      | 0            |
| d2 | 0   | 1     | 0       | 0     | 1     | 1    | 2         | 1       | 1          | 1      | 1            |

$$egin{array}{lll} d_1 &=& (1,1,2,1,0,0,0,0,0,0,0) \ d_2 &=& (0,1,0,0,1,1,2,1,1,1,1) \end{array}$$

#### **Normalizacion**

|    | más | queso | siempre | mejor | cerró | casa | empleados | tomaron | restaurant | fueron | indemnizados |
|----|-----|-------|---------|-------|-------|------|-----------|---------|------------|--------|--------------|
| d1 | 1   | 1     | 2       | 1     | 0     | 0    | 0         | 0       | 0          | 0      | 0            |
| d2 | 0   | 1     | 0       | 0     | 1     | 1    | 2         | 1       | 1          | 1      | 1            |

Norma L2 (euclidea)

$$egin{array}{lll} d_1 &=& (1,1,2,1,0,0,0,0,0,0,0) \ d_2 &=& (0,1,0,0,1,1,2,1,1,1) \end{array}$$

 $d_2 = (0,1,0,0,1,1,2,1,1,1,1)$ Normalización Ln  $\longrightarrow \hat{d} = -$ 

$$d_1 = rac{(1,1,2,1,0,0,0,0,0,0,0)}{\sqrt{1+1+4+1}} = (0.38,0.38,0.76,0.38,0,0,0,0,0,0,0)$$

 $d_2 = \frac{(0,1,0,0,1,1,2,1,1,1,1)}{\sqrt{1+1+1+4+1+1+1+1}} = (0,0.3,0,0,0.3,0.3,0.6,0.3,0.3,0.3,0.3)$ 

> "Más queso siempre es mejor, siempre"

Estaría bueno resaltar las palabras más significativas

¿Cómo cuantifico cuán significativa es una palabra?

$$tf$$
-idf  $(t,d) = tf(t,d)$ . idf  $(t)$ 

Número de documentos en el set de entrenamiento

$$\operatorname{idf}(t) = \log rac{|D|^{r}}{|\{d:t\in d\}|}$$

Número de documentos en los que aparece el término *t* 

$$tf$$
-idf  $(t,d) = tf(t,d)$ . idf  $(t)$ 

Número de documentos en el set de entrenamiento

$$\operatorname{idf}(t) = \log rac{|D|}{|\{d: t \in d\}|} + 1$$
 Evita idf=0 para los términos que están en todos los documentos

Número de documentos en los que aparece el término *t* 

Número de documentos en el set de entrenamiento

$$\operatorname{idf}(t) = \log rac{|D|}{|\{d:t\in d\}|} + 1$$

Número de documentos en los que aparece el término *t* 

Con add-1 smoothing

$$\operatorname{idf}(t) = \log rac{1 + |D|}{1 + |\{d: t \in d\}|} + 1$$

Equivalente a agregar un documento que contenga todas las palabras.
Esto evita el "cero" en el denominador

> "Más queso siempre es mejor, siempre"

 $d_{test} = (1, 1, 2, 1, 0, 0, 0, 0, 0) \longleftarrow \mathsf{tf}$ 

| Term    | tf | idf | tf-idf |  |
|---------|----|-----|--------|--|
| más     | 1  | 1.1 | 1.1    |  |
| queso   | 1  | 3   | 3      |  |
| siempre | 2  | 1.1 | 2.2    |  |
| mejor   | 1  | 1.4 | 1.4    |  |
| pomelo  | 0  | 4.1 | 0      |  |

"Más queso siempre es mejor, siempre"

|            |   |                                                       | más     | 1 | 1.1 | 1.1 |
|------------|---|-------------------------------------------------------|---------|---|-----|-----|
|            |   |                                                       | queso   | 1 | 3   | 3   |
| $d_{test}$ | = | $(1,1,2,1,0,0,0,0,0) \leftarrow tf$                   | siempre | 2 | 1.1 | 2.2 |
|            |   |                                                       | mejor   | 1 | 1.4 | 1.4 |
| $d_{test}$ | = | $(1.1, 3, 2.2, 1.4, 0, 0, 0, 0, 0) \leftarrow tf-idf$ | pomelo  | 0 | 4.1 | 0   |

tf

**Term** 

idf

tf-idf

 $d_{test} = (0.27, 0.73, 0.53, 0.34, 0, 0, 0, 0, 0) \leftarrow tf-idf + norm$