The Retracing Boomerang Attack Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir **EUROCRYPT 2020**

Gautam Singh

Indian Institute of Technology Hyderabad

July 21, 2025

- Introduction
- Preliminaries
- 3 The Retracing Boomerang Attack
- 4 Retracing Boomerang Attack on Five Round AES

Introduction

Broke the record for 5-round AES when it was published.

- Broke the record for 5-round AES when it was published.
- 2 Brings the attack complexity down to $2^{16.5}$ encryptions.

Introduction

- Broke the record for 5-round AES when it was published.
- \odot Brings the attack complexity down to $2^{16.5}$ encryptions.
- Uncovers a hidden relationship between boomerang attacks and two other cryptanalysis techniques: yoyo game and mixture differentials.

Boomerang Attack

The Boomerang Attack

1 Typically split the encryption function as $E=E_1\circ E_0$, with differential trails for each sub-cipher.

Figure 1: The boomerang attack.

The Boomerang Attack

- 1 Typically split the encryption function as $E = E_1 \circ E_0$, with differential trails for each sub-cipher.
- 2 We can build a distinguisher that can distinguish E from a truly random permutation in $\mathcal{O}((pq)^{-2})$ plaintext pairs.

Figure 1: The boomerang attack.

The Boomerang Distinguisher

Algorithm 1 The Boomerang Attack Distinguisher

- 1: Generate $(pq)^{-2}$ plaintext pairs (P_1, P_2) such that $P_1 \oplus P_2 = \alpha$.
- 2: for all pairs (P_1, P_2) do
- 3: Ask for the encryption of (P_1, P_2) to (C_1, C_2) .
- 4: Compute $C_3 = C_1 \oplus \delta$ and $C_4 = C_2 \oplus \delta$.
- 5: Ask for the decryption of (C_3, C_4) to (P_3, P_4) .
- 6: if $P_3 \oplus P_4 = \alpha$ then
- 7: **return** This is the cipher *E*
- 8: return This is a random permutation

 $\triangleright \delta$ -shift

The Yoyo Game

1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.

- 1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this continues in the yoyo game.

- 1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- Unlike the boomerang attack, this continues in the yoyo game.
- 3 All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this continues in the yoyo game.
- § All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).
- ② Probabilities are low with large I. Still, the yoyo technique has been used to attack AES reduced to 5 rounds.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le j \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

• If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability q^2 .

The SimpleSWAP Algorithm

Algorithm 2 is a simple method to generate mixture counterparts.

Algorithm 2 Swaps the first word where texts are different and returns one word.

1: function SIMPLESWAP(x^0 , x^1)

 $\triangleright x^0 \neq x^1$

- 2: $x'^0, x'^1 \leftarrow x^0, x^1$
- 3: **for** *i* from 0 to 3 **do**
- 4: if $x_i^0 \neq x_i^1$ then
- 5: $x_i^{0}, x_i^{1} \leftarrow x_i^{1}, x_i^{0}$
- $x_i, x_i \leftarrow x_i, x_i$
- 6: **return** x'^0, x'^1

The Retracing Boomerang Framework

The Retracing Boomerang Framework

Figure 2: The retracing boomerang attack.

The Retracing Boomerang Attack

• The retracing boomerang framework consists of a shifting type and a mixing type.

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- 2 Both attacks use the setup shown in Figure 2.

The Retracing Boomerang Framework

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Ø Both attacks use the setup shown in Figure 2.
- 6 Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Both attacks use the setup shown in Figure 2.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.
- **4.** It is assumed that E_{12} can be split into two parts of size b and n-bbits, call these functions E_{12}^L and E_{12}^R , with characteristic probabilities q_2^L and q_2^R respectively.

1 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.

- Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1, C_3\} = \{C_2, C_4\}$.

- **1** Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1, C_3\} = \{C_2, C_4\}$.
- § If one of these pairs satisfies $\delta_L \xrightarrow{q_2^L} \mu_L$, the other pair will too!. Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.

- ① Check if $C_1^L \oplus C_2^L = 0$ or δ_I . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1, C_3\} = \{C_2, C_4\}.$
- **3** If one of these pairs satisfies $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!. Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.
- 4 Any possible characteristic of E_{12}^L has probability at least 2^{-b+1} . thus overall probability increases by a factor of at most 2^{b-1} . On the other hand, filtering only leaves 2^{-b+1} of the pairs, so no apparent gain?

Figure 3: A shifted quartet (dashed lines indicate equality).

1 In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

Here,
$$\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}.$$

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- 2 Each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

Here, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}.$

§ Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$. Additional gain of $(q_2^R)^{-2}$ for total probability $(pq_1)^2 q_2^L$, better than shifting!

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

Here, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}.$

- § Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$. Additional gain of $(q_2^R)^{-2}$ for total probability $(pq_1)^2 q_2^L$, better than shifting!
- Similar to the core step used in the yoyo attack on AES.

The Mixing Retracing Attack

Figure 4: A mixture quartet of ciphertexts (dashed lines indicate equality).

- Using structures
 - Shifting applies the same δ -shift to all pairs of ciphertexts.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.
- **2** Combination with E_{11}

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

Combination with E_{11}

In mixing, the output difference of E_{12}^L is arbitrary.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

Combination with E_{11}

- In mixing, the output difference of E₁₂^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E₁₂^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.
- Construction of 'friend pairs'

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E₁₂^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

Construction of 'friend pairs'

'Friend pairs' are pairs which satisfy a common property.

Comparison Between the Two Types of Retracing Attacks

Advantages of Shifting Retracing Attack

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering applied first reduces the data complexity. No filtering in mixing since shift is based on ciphertexts.
- With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simultaneously checking for the filter and condition between P_3 and P_4 using a hash table.

② Combination with E_{11}

- In mixing, the output difference of E_{12}^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

6 Construction of 'friend pairs'

- 'Friend pairs' are pairs which satisfy a common property.
- More 'friend pairs' can be constructed in the shifting variant.

1 Byte ordering shown after SB in Figure 5 (column major).

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_i$.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- \bigcirc *j*-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- **3** Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.

Figure 5: An AES round.

- 1 Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- **6** Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- 4 The *I*-th shifted column (resp. *I*-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the *I*-th column.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_i$.
- Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- The I-th shifted column (resp. I-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the I-th column.
- **6** Round subkeys are k_{-1}, k_0, \ldots

Figure 5: An AES round.

Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$.

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- 2 Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$.
- \odot For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- 2 Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$.
- \odot For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- $_{0}$ Attack inverse shifted columns of k_{-1} . Friend pairs used to get more information.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m , and WLOG let l=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m , and WLOG let l=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table.

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

Meet in the Middle Improvement on Yoyo Attack

1 Denote the value of byte m before MC operation of round 0 by $W_{m,n}$ and WLOG let I=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3and storing the concatenated 24-bit value in a hash table.

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

8 We need $Z_0 = 0$ to satisfy the truncated differential characteristic. Meet in the Middle (MITM) methods are used to narrow down candidates for k_{-1} .

Meet in the Middle Improvement on Yoyo Attack

1 Denote the value of byte m before MC operation of round 0 by $W_{m,n}$ and WLOG let I=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3and storing the concatenated 24-bit value in a hash table.

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

- **8** We need $Z_0 = 0$ to satisfy the truncated differential characteristic. Meet in the Middle (MITM) methods are used to narrow down candidates for k_{-1} .
 - Specific choice of plaintexts based on DDT of AES S-boxes.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m , and WLOG let I=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table.

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

- **3** We need $Z_0 = 0$ to satisfy the truncated differential characteristic. Meet in the Middle (MITM) methods are used to narrow down candidates for k_{-1} .
 - Specific choice of plaintexts based on DDT of AES S-boxes.
 - Eliminating key bytes using friend pairs.

Specific Choice of Plaintexts

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

Specific Choice of Plaintexts

Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

2 Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.

Specific Choice of Plaintexts

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **②** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- § DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.

Specific Choice of Plaintexts

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0.5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- ODT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.

Specific Choice of Plaintexts

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- ODT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.
- **5** Lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1,5}$ corresponding to the guessed $k_{-1,0}$.

Specific Choice of Plaintexts

Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0.5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- 2 Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.
- 6 Lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1.5}$ corresponding to the guessed $k_{-1.0}$.
- **6** Obtain 2^8 candidates for $k_{-1,\{0,5\}}$ in about 2^8 operations per pair.

Eliminating Key Bytes Using Friend Pairs

1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .

- To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_4^i) .
- 2 In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

Eliminating Key Bytes Using Friend Pairs

- To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_4^i) .
- 2 In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

§ If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- 2 In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1.15}$ is isolated for a fixed $k_{-1.\{0.5\}}$ and has only 2⁸ possible values.
- Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0.5,15\}}$.
- 5 Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0,5,10,15\}}$ by isolating $k_{-1,10}$.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **6** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0.5,10,15\}}$ by isolating $k_{-1,10}$.
- **6** Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- 2 In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1.15}$ is isolated for a fixed $k_{-1.\{0.5\}}$ and has only 2⁸ possible values.
- Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0.5,15\}}$.
- Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0,5,10,15\}}$ by isolating $k_{-1,10}$.
- 6 Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.
- Fach pair requires 2⁷ friend pairs to find one that satisfies (6) with high probability. Total data complexity is increased to about 2^{15} .

Precomputation: Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.

- **1 Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.

- **Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.
- Solution For each plaintext pair, create 2^7 friend pairs (P_1^j, P_2^j) such that for each j, $P_1^j \oplus P_2^j = P_1 \oplus P_2$ and $(P_1^j)_{\{0.5,10.15\}} = (P_1)_{\{0.5,10.15\}}$.

4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)

- ① For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .

- For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (I = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0.5\}}$ in a table.
 - Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - Find a *j* for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.

Attack Description and Analysis

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - § Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.

- For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (I = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0.5\}}$ in a table.
 - Use the boomerang process to obtain pairs (P_3, P_4) and (P_3, P_4) .
 - Find a *i* for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0.5,10.15\}}$.
 - 6 If contradiction, go to the next value of I. If contradiction for all I, discard this pair and go to the next pair.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - 3 Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.
 - **5** If contradiction, go to the next value of *I*. If contradiction for all *I*, discard this pair and go to the next pair.
- § Using a pair (P_1, P_2) for which no contradiction occurred, perform MITM attacks on columns 1, 2 and 3 of round 0 using the fact that $Z_3 \oplus Z_4$ equals 0 in the *I*-th inverse shifted column to recover k_{-1} .

1 Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.

- 1) Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.
- ② Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 e^{-1})^2 \approx 0.4$

- Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.
- Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 - e^{-1})^2 \approx 0.4$
- 3 Another way to boost succees probability is to find other ways to cancel terms in (3). For instance, if there exist j, j' such that $\{(P_3^j)_{10}, (P_4^j)_{10}\} = \{(P_3^{j'})_{10}, (P_4^{j'})_{10}\},$ we can take the XOR of (3) to cancel the effect of $k_{-1.10}$, thus increasing the success probability even when there is no pair that satisfies (6).

Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- 5 Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.
- **6** Memory complexity of the attack remains at 2^9 , like yoyo attack.

- Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- 5 Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.
- Memory complexity of the attack remains at 2⁹, like yoyo attack.
- Time complexity dominated by MITM attacks that take 2^{16} operations each. Taking one AES operation equivalent to 80 S-box lookups and adding it to the number of queries gives us a total of 2^{16.5} encryptions.

