VAT Workshop on

Computer vision, Graphics and Image processing

Class 31 and 32: Single view, stereo and Multiview reconstruction

Dr. Uma Mudenagudi

Professor,

Department of Electronics and Communication,

BVB College of Engineering and Technology, Hubli

Class-31, 32
Workshop on CVG and IP

30-06-2010 Dr. Uma Mudenagudi 10.00-1.15pm Single, stereo and Multivew reconstr

Outline

- Introduction
- Single view reconstruction
 - Camera Calibration using homographies
 - Computing 3D coordinates
 - Results
- Stereo reconstruction
 - Introduction
 - Stereo reconstruction and results
- Multiview reconstruction
 - Introduction
 - Multi view reconstruction and results
- Summary and Conclusions

Tethods of reconstruction/depth estimatio

- Process of capturing the depth and appearance of real scene from image/s.
- Methods:
 - Stereo: dense correspondence
 - Structure from motion
 - Depth from focus: needs more photographs
 - Depth from defocus: needs careful settings of the camera
 - Depth from multiple views

Single view 3D reconstruction

- http://make3d.cs.cornell.edu/code.html
- Given a single image of a 3D scene, the aim is to generate a partial 3D model by manually registering two world planes.
- This is called interactive registration.
- The method is based on the computation of homographies H and G from two world planes to the image.
- Homography: The mapping from plane to plane

Single view 3D reconstruction

The basic case

Camera calibration

- Let H and G be the homographies from the world X-Z and X-Y planes to the image respectively.
- The two crucial properties of H and G are:
 - The third column of both the homographies are equal(up to scale): world origin (0,0,0) has same coord (0,0) in both.
 - The first column of both the homographies are equal(again up to scale): images of the points at infinity along *X* direction.
- 8+8=16 unknowns reduce to 11 (8+3 in the second)

Camera calibration contd...

ightharpoonup The 3×4 projection matrix of the camera can be read out from the columns of the homographies

$$H = [H(1), H(2), H(3)]$$
 and $G = [G(1), G(2), G(3)]$

The projection matrix *P* for the camera is

$$P = [H(1) \ G(2) \ H(2) \ H(3)]$$

first three col: vanishing points in the respective directions and last col:projection of world origin.

• The P-matrix obtained above can be written as K[R|t] where 3×3 matrix K is the matrix of camera internals, R is the 3×3 rotation matrix from the world coordinate system to camera coordinate system and $-R^{t}t$ are the coordinates of the camera center.

Camera calibration contd...

- The first 3×3 of P is KR. Letting $\widetilde{P} = KR$.
- Clearly

$$\widetilde{P} * \widetilde{P}^t = KK^t$$

The camera internal matrix has the general form

$$K = \begin{pmatrix} \alpha_u & s & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

Hence KK^t will have the form

$$X = KK^t = \begin{pmatrix} \alpha_u^2 + u_0^2 + s^2 & \alpha_v s + u_0 v_0 & u_0 \\ \alpha_v s + u_0 v_0 & \alpha_v^2 + v_0^2 & v_0 \end{pmatrix}$$
 Workshop on CVG and IP Dr. Uma Muderlagudi Single, stereo and Multivew reconstr

Calibration contd..

- Thus the camera internals can be directly obtained from the above matrix.
- Normalising **X** and making X_{33} equal to 1.
- Now,

$$u_0 = X_{31}v_0 = X_{32}\alpha_v = \sqrt{X_{22} - v_0^2}s = \frac{X_{21} - u_0v_0}{\alpha_v}\alpha_u = \sqrt{X_{11} - s^2}$$

Calibration contd..

Once K has been obtained, R and t can be obtained as

$$\mathbf{R} = \mathbf{K}^{-1} * \widetilde{\mathbf{P}}$$
 where $\widetilde{\mathbf{P}}$ is $\mathbf{K}\mathbf{R}$.

 $\mathbf{t} = \mathbf{K}^{-1} * \mathbf{K} \mathbf{t}$ where $\mathbf{K} \mathbf{t}$ is the last column of \mathbf{P} .

- Once **R** and **t** are computed, the camera center can be computed as $-R^t$ **t**.
- Alternately, the camera center can be directly computed from the homographies H and G as follows:

$$T = G^{-1}H = \lambda \left(egin{array}{ccc} -C_z & C_x & 0 \ 0 & C_y & 0 \ 0 & 1 & -C_z \end{array}
ight)$$

Calibration contd..

• Normalizing the homography **T** by making $T_{32} = 1$. Then the camera center in the world coordinate system is

$$C = (C_x, C_y, C_z) = (T_{12}, T_{22}, -T_{11})$$

Computing the 3D coordinates

The height can be computed as

$$h = \text{Camera height} * \frac{FH}{CH}$$

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Results

Dr. Uma Mudenagudi

Methods of depth estimation

- Stereo: dense correspondence
- Structure from motion
- Depth from focus: needs more photographs
- Depth from defocus: needs careful settings of the camera
- Depth from multiple views

Point correspondence geometry

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Epipolar geometry

- X in space is imaged in two views at x and x'
- Aim of stereo: correspondence
 between x and x'
- Baseline: line joining the camera centres
- Intersection of image planes with the pencil of planes having baseline

- Points x, x', X and camera centers are coplanar, lying in π
- The back projected rays from x and x' intersect at X
- Given x how the corresponding point x' is constrained?

Point correspondence geometry cont..

- An image point x back projects to a ray in 3 space defined by the first camera center C and x
- This ray is imaged as a line l^\prime in the second view
- The 3-space point X which projects to x must lie on this ray, so the image of X in the second image

- The ray corresponding to the x' lie in π , hence point x' lies on line of intersection of l' of π with the second image plane
- This line l' is the image in the second view of the ray back projected from x
- The correspondence is now restricted to the line l^\prime

- As the position of the 3D point varies, the epipolar planes rotate about the baseline
- This family of planes is known as an epipolar pencil
- All the epipolar lines intersect at the epipole

Geometric entities

- Epipole: point of intersection of the line joining the camera centres with the image plane
- Epipolar plane: plane containing the baseline
- An Epipolar line: intersection of an epipolar plane with the image plane

Converging cameras

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Motion parallel to the image plane

- The Fundamental matrix F

 Algebraic representation of Epipolar geometry.
- For each point x in an image, a corresponding epipolar line I exists in the other image
- The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x'$ in the two images $x'^T F x = 0$

ebraic representation of Fundamental ma

- The Fundamental matrix is given as $\mathbf{F} = \mathbf{K}'^{-\mathbf{T}}\mathbf{R}\mathbf{K}^{\mathbf{T}}[\mathbf{e}]$, where diag(f,f,1) is a diagonal matrix and [I|0] represents a matrix divided up to 3×3 block (identity) plus a column vector
- F can be computed in-terms camera
 matrices for each view

Stereo

Stereo contd..

We can get

$$Z = \frac{bf}{x^R - x^L}$$

- b-baseline, f-focal length $x^R x^L$ disparity
- Disparity is inversely proportional to

Stereo contd..

• In intensity based disparity estimation, the disparity d_{ij} is computed by by minimizing

$$min \quad \sum (x_{i,j}^R - x_{i,j+d_{ij}}^L)^2$$

where (x_{ij}^R) and (x_{ij}^L) are the intensity at the pixel location (i,j) in the right image and the left image

Results

Right and left input images

Results contd..

Depth using correlation method

Results contd..

Depth using BVZ method

Results

Depth using KZ2 method

Outline

- Multiview 3D reconstruction
- Problem formulation
- Energy function
- Graph construction
- Algorithm
- Results
- Conclusions

Multiview 3D reconstruction

- Classic vision problem
- Multiple images of the same scene are used.
- Harder due to reasoning about visibility.
- Very few scene elements are visible from every camera. So visibility cannot be ignored.

Problem formulation

- Given are n calibrated images of the same scene taken from different viewpoints.
- Let P_i be the set of pixels in the camera i, and let $P = P_1 \cup ... \cup P_n$ be the set of all pixels.
- A pixel $p \in P$ corresponds to a ray in 3D-space.
- Consider the point of the first intersection of this ray with an object in the scene.
- Goal is to find the depth of this point for all pixels in all images.
- A pair $\langle p, l \rangle$ where $p \in P$, $l \in L$ corresponds 3D-point.

Energy function

The energy function consists of three terms

$$E(f) = E_{data}(f) + E_{smoothness}(f) + E_{visibility}(f)$$

The data term will impose photo-consistency.

$$E_{data}(f) = \sum_{\langle p, f(p) \rangle, \langle q, f(q) \rangle \in I} D(p, q)$$

where

$$D(p,q) = min\{0, (Intensity(p) - Intensity(q))^2 - K\}$$

I is the set of 3D-points satisfying the following:

- Only 3D-points at the same depth can interact, i.e.if $\{\langle p_1, l_1 \rangle, \langle p_2, l_2 \rangle\} \in I$ then $l_1 = l_2$.

Smoothness term

This involves the notion of neighborhood.

$$E_{smoothness}(f) = \sum_{\{p,q\} \in \mathbf{N}} V_{\{p,q\}}(f(p), f(q))$$

where $V_{\{p,q\}}$ is a metric. N is a 4-neighborhood system.

This term imposes smoothness while preserving discontinuities.

Visibility term

This term will encode the visibility constraint. It is zero if the constraint is satisfied; otherwise infinity.

$$E_{visiblity}(f) = \sum_{\langle p, f(p) \rangle, \langle q, f(q) \rangle \in I_{vis}} \infty$$

where I_{vis} satisfies:

- Only 3D-points at different depths can interact, i.e. if $\langle p_1, l_1 \rangle$, $\langle p_2, l_2 \rangle \in I_{vis}$ then $l_1 \neq l_2$.
- The visibility constraint states that the color and intensity of a 3D-point visible in the camera remains same.
- This 3D point may block views from other cameras. If a 3D-point $\langle p, l \rangle$ is present in a configuration f, and if a ray corresponding to a pixel q goes through $\langle p, l \rangle$ then its depth is at most l.

Visibility constraint

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Graph construction

For energy functions of binary variables of the form

$$E(x_1,...,x_n) = \sum_{i < j} E^{i,j}(x_i,x_j)$$

it is possible to construct a graph for minimizing it if and only if each term $E^{i,j}$ satisfies the following condition:

$$E^{i,j}(0,0) + E^{i,j}(0,0) \le E^{i,j}(0,1) + E^{i,j}(1,0).$$

- Then the graph G is constructed as follows:
 - Add a node v_i for each variable x_i .

Adding edges to the graph

- For each term $E^{i,j}(x_i,y_j)$, add the edges as follows:
 - If E(1,0) > E(0,0) then add an edge (s,v_i) with the weight E(1,0) E(0,0), otherwise add an edge (v_i,t) with the weight E(0,0) E(1,0).
 - if E(1,0)>E(1,1) then add an edge (v_j,t) with the weight E(1,0)-E(1,1), otherwise add an edge (s,v_j) with the weight E(1,1)-E(1,0).
 - The last edge that is added is (v_i, v_j) with the weight E(0,1) + E(1,0) E(0,0) E(1,1).

Algorithm

- The algorithm is straightforward.
 - Select(in a fixed order or at random) a disparity α.
 - Find a unique configuration within a single α-expansion move(local improvement step).
 - If this decreases the energy, then go to that label; If there is no α that decreases the energy then we are done.
 - One restriction on the algorithm is that the initial configuration must satisfy the visibility constraint
 - The critical step is to efficiently compute the α-expansion with the smallest energy. This is accomplished using graph cuts by solving minimum cut problem.

Results: Data set 1

Results for data set 1

Data set 2

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Results for data set 2

Data set 3

Workshop on CVG and IP

Dr. Uma Mudenagudi

Single, stereo and Multivew reconstr

Results for data set 3

Conclusions

- Graph cuts used for optimizing the energy function.
- Gives good reconstruction for less occlusions.