dog_app

July 26, 2020

1 Convolutional Neural Networks

1.1 Project: Write an Algorithm for a Dog Identification App

In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with '(IMPLEMENTATION)' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section, and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

Note: Once you have completed all of the code implementations, you need to finalize your work by exporting the Jupyter Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to **File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission.

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

Note: Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. Markdown cells can be edited by double-clicking the cell to enter edit mode.

The rubric contains *optional* "Stand Out Suggestions" for enhancing the project beyond the minimum requirements. If you decide to pursue the "Stand Out Suggestions", you should include the code in this Jupyter notebook.

Step 0: Import Datasets

Make sure that you've downloaded the required human and dog datasets:

Note: if you are using the Udacity workspace, you *DO NOT* need to re-download these - they can be found in the /data folder as noted in the cell below.

- Download the dog dataset. Unzip the folder and place it in this project's home directory, at the location /dog_images.
- Download the human dataset. Unzip the folder and place it in the home directory, at location /lfw.

Note: If you are using a Windows machine, you are encouraged to use 7zip to extract the folder. In the code cell below, we save the file paths for both the human (LFW) dataset and dog dataset in the numpy arrays human_files and dog_files.

Step 1: Detect Humans

In this section, we use OpenCV's implementation of Haar feature-based cascade classifiers to detect human faces in images.

OpenCV provides many pre-trained face detectors, stored as XML files on github. We have downloaded one of these detectors and stored it in the haarcascades directory. In the next code cell, we demonstrate how to use this detector to find human faces in a sample image.

```
In [2]: import cv2
    import matplotlib.pyplot as plt
    %matplotlib inline

# extract pre-trained face detector
    face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')

# load color (BGR) image
    img = cv2.imread(human_files[0])
    # convert BGR image to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# find faces in image
    faces = face_cascade.detectMultiScale(gray)

# print number of faces detected in the image
    print('Number of faces detected:', len(faces))
```

```
# get bounding box for each detected face
for (x,y,w,h) in faces:
    # add bounding box to color image
    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

# convert BGR image to RGB for plotting
cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# display the image, along with bounding box
plt.imshow(cv_rgb)
plt.show()
```

Number of faces detected: 1

Before using any of the face detectors, it is standard procedure to convert the images to grayscale. The detectMultiScale function executes the classifier stored in face_cascade and takes the grayscale image as a parameter.

In the above code, faces is a numpy array of detected faces, where each row corresponds to a detected face. Each detected face is a 1D array with four entries that specifies the bounding box of the detected face. The first two entries in the array (extracted in the above code as x and y) specify the horizontal and vertical positions of the top left corner of the bounding box. The last two entries in the array (extracted here as w and h) specify the width and height of the box.

1.1.1 Write a Human Face Detector

We can use this procedure to write a function that returns True if a human face is detected in an image and False otherwise. This function, aptly named face_detector, takes a string-valued file path to an image as input and appears in the code block below.

```
In [3]: # returns "True" if face is detected in image stored at img_path
    def face_detector(img_path):
        img = cv2.imread(img_path)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray)
        return len(faces) > 0
```

1.1.2 (IMPLEMENTATION) Assess the Human Face Detector

Question 1: Use the code cell below to test the performance of the face_detector function.

- What percentage of the first 100 images in human_files have a detected human face?
- What percentage of the first 100 images in dog_files have a detected human face?

Ideally, we would like 100% of human images with a detected face and 0% of dog images with a detected face. You will see that our algorithm falls short of this goal, but still gives acceptable performance. We extract the file paths for the first 100 images from each of the datasets and store them in the numpy arrays human_files_short and dog_files_short.

Answer: (You can print out your results and/or write your percentages in this cell)

```
In [4]: from tqdm import tqdm
        human_files_short = human_files[:100]
        dog_files_short = dog_files[:100]
        #-#-# Do NOT modify the code above this line. #-#-#
        ## TODO: Test the performance of the face_detector algorithm
        ## on the images in human_files_short and dog_files_short.
        human_count = 0
        dog_count = 0
        for human in tqdm(human_files_short):
            if face_detector(human):
                human_count += 1
        for dog in tqdm(dog_files_short):
            if face_detector(dog):
                dog_count += 1
        print((human_count/len(human_files_short))*100)
        print((dog_count/len(dog_files_short))*100)
            #print(np.sum(faceDT)/len(human_files))
100%|| 100/100 [00:02<00:00, 33.89it/s]
100%|| 100/100 [00:29<00:00, 3.34it/s]
```

```
98.0
17.0
```

```
In [5]: dog_files_short[90]
Out[5]: '/data/dog_images/train/059.Doberman_pinscher/Doberman_pinscher_04157.jpg'
```

We suggest the face detector from OpenCV as a potential way to detect human images in your algorithm, but you are free to explore other approaches, especially approaches that make use of deep learning:). Please use the code cell below to design and test your own face detection algorithm. If you decide to pursue this *optional* task, report performance on human_files_short and dog_files_short.

Step 2: Detect Dogs

In this section, we use a pre-trained model to detect dogs in images.

1.1.3 Obtain Pre-trained VGG-16 Model

The code cell below downloads the VGG-16 model, along with weights that have been trained on ImageNet, a very large, very popular dataset used for image classification and other vision tasks. ImageNet contains over 10 million URLs, each linking to an image containing an object from one of 1000 categories.

```
In [7]: import torch
    import torchvision.models as models

# define VGG16 model
    VGG16 = models.vgg16(pretrained=True)

# check if CUDA is available
    use_cuda = torch.cuda.is_available()

# move model to GPU if CUDA is available
    if use_cuda:
        VGG16 = VGG16.cuda()
```

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /root/.torch/models/vgg100%|| 553433881/553433881 [00:05<00:00, 97924980.25it/s]

```
In [8]: VGG16.parameters
Out[8]: <bound method Module.parameters of VGG(</pre>
          (features): Sequential(
            (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (1): ReLU(inplace)
            (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (3): ReLU(inplace)
            (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
            (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (6): ReLU(inplace)
            (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (8): ReLU(inplace)
            (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
            (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (11): ReLU(inplace)
            (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (13): ReLU(inplace)
            (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (15): ReLU(inplace)
            (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
            (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (18): ReLU(inplace)
            (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (20): ReLU(inplace)
            (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (22): ReLU(inplace)
            (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
            (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (25): ReLU(inplace)
            (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (27): ReLU(inplace)
            (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (29): ReLU(inplace)
            (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
          (classifier): Sequential(
            (0): Linear(in_features=25088, out_features=4096, bias=True)
            (1): ReLU(inplace)
            (2): Dropout(p=0.5)
            (3): Linear(in_features=4096, out_features=4096, bias=True)
            (4): ReLU(inplace)
            (5): Dropout(p=0.5)
            (6): Linear(in_features=4096, out_features=1000, bias=True)
          )
        )>
```

Given an image, this pre-trained VGG-16 model returns a prediction (derived from the 1000 possible categories in ImageNet) for the object that is contained in the image.

1.1.4 (IMPLEMENTATION) Making Predictions with a Pre-trained Model

In the next code cell, you will write a function that accepts a path to an image (such as 'dogImages/train/001.Affenpinscher/Affenpinscher_00001.jpg') as input and returns the index corresponding to the ImageNet class that is predicted by the pre-trained VGG-16 model. The output should always be an integer between 0 and 999, inclusive.

Before writing the function, make sure that you take the time to learn how to appropriately pre-process tensors for pre-trained models in the PyTorch documentation.

```
In [9]: from PIL import Image
        import torchvision.transforms as transforms
        from torch.autograd import Variable
        # Set PIL to be tolerant of image files that are truncated.
        VGG16.eval()
        def VGG16_predict(img_path):
            111
            Use pre-trained VGG-16 model to obtain index corresponding to
            predicted ImageNet class for image at specified path
            Args:
                img_path: path to an image
            Returns:
                Index corresponding to VGG-16 model's prediction
            fp = open(img_path, "rb")
            p = ImageFile.Parser()
            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)
            ## TODO: Complete the function.
            ## Load and pre-process an image from the given img_path
            ## Return the *index* of the predicted class for that im
            transform_to_tensor = transforms.Compose(
                [transforms.Resize(size=(224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                1)
            img = Image.open(img_path)
            img = transform_to_tensor(img)
            image_ten = img.unsqueeze(0)
```

1.1.5 (IMPLEMENTATION) Write a Dog Detector

Out[11]: 243

Move image to gp

img = Variable(image_ten)

While looking at the dictionary, you will notice that the categories corresponding to dogs appear in an uninterrupted sequence and correspond to dictionary keys 151-268, inclusive, to include all categories from 'Chihuahua' to 'Mexican hairless'. Thus, in order to check to see if an image is predicted to contain a dog by the pre-trained VGG-16 model, we need only check if the pre-trained model predicts an index between 151 and 268 (inclusive).

Use these ideas to complete the dog_detector function below, which returns True if a dog is detected in an image (and False if not).

1.1.6 (IMPLEMENTATION) Assess the Dog Detector

Question 2: Use the code cell below to test the performance of your dog_detector function.

- What percentage of the images in human_files_short have a detected dog?
- What percentage of the images in dog_files_short have a detected dog?

In []:

Answer:

```
In [14]: ### TODO: Test the performance of the dog_detector function
         ### on the images in human_files_short and dog_files_short.
         human_count = 0
         dog_count = 0
         for human in tqdm(human_files_short):
             if dog_detector(human):
                   human_count += 1
         for dog in tqdm(dog_files_short):
             if dog_detector(dog):
                     dog_count += 1
         print((human_count/len(human_files_short))*100)
         print((dog_count/len(dog_files_short))*100)
             #print(np.sum(faceDT)/len(human_files))
100%|| 100/100 [00:03<00:00, 30.02it/s]
100%|| 100/100 [00:04<00:00, 25.84it/s]
0.0
100.0
```

We suggest VGG-16 as a potential network to detect dog images in your algorithm, but you are free to explore other pre-trained networks (such as Inception-v3, ResNet-50, etc). Please use the code cell below to test other pre-trained PyTorch models. If you decide to pursue this *optional* task, report performance on human_files_short and dog_files_short.

```
In [15]: ### (Optional)
          ### TODO: Report the performance of another pre-trained network.
          ### Feel free to use as many code cells as needed.
```

Step 3: Create a CNN to Classify Dog Breeds (from Scratch)

Now that we have functions for detecting humans and dogs in images, we need a way to predict breed from images. In this step, you will create a CNN that classifies dog breeds. You must create your CNN from scratch (so, you can't use transfer learning yet!), and you must attain

a test accuracy of at least 10%. In Step 4 of this notebook, you will have the opportunity to use transfer learning to create a CNN that attains greatly improved accuracy.

We mention that the task of assigning breed to dogs from images is considered exceptionally challenging. To see why, consider that *even a human* would have trouble distinguishing between a Brittany and a Welsh Springer Spaniel.

Brittany Welsh Springer Spaniel

It is not difficult to find other dog breed pairs with minimal inter-class variation (for instance, Curly-Coated Retrievers and American Water Spaniels).

```
Curly-Coated Retriever American Water Spaniel
```

Likewise, recall that labradors come in yellow, chocolate, and black. Your vision-based algorithm will have to conquer this high intra-class variation to determine how to classify all of these different shades as the same breed.

```
Yellow Labrador Chocolate Labrador
```

We also mention that random chance presents an exceptionally low bar: setting aside the fact that the classes are slightly imabalanced, a random guess will provide a correct answer roughly 1 in 133 times, which corresponds to an accuracy of less than 1%.

Remember that the practice is far ahead of the theory in deep learning. Experiment with many different architectures, and trust your intuition. And, of course, have fun!

1.1.7 (IMPLEMENTATION) Specify Data Loaders for the Dog Dataset

Use the code cell below to write three separate data loaders for the training, validation, and test datasets of dog images (located at dog_images/train, dog_images/valid, and dog_images/test, respectively). You may find this documentation on custom datasets to be a useful resource. If you are interested in augmenting your training and/or validation data, check out the wide variety of transforms!

```
In [25]: from torchvision import datasets
    from torch.utils.data.sampler import SubsetRandomSampler
    import torchvision.transforms as transforms
    import numpy as np
    import os
    # check if CUDA is available
    use_cuda = torch.cuda.is_available()

### TODO: Write data loaders for training, validation, and test sets
    ## Specify appropriate transforms, and batch_sizes
    # defining the training, validation and test sest dir
    data_dir = "/data/dog_images/"

    train_dir = data_dir + '/train/'
    valid_dir = data_dir + '/valid/'
    test_dir = data_dir + '/test/'
```

```
# a dictionary for the transformations of data
         the_transforms = {
             'train' : transforms.Compose([
             transforms.Resize(256),
             transforms.RandomResizedCrop(224),
             transforms.RandomHorizontalFlip(), # randomly flip and rotate
             transforms.RandomRotation(15),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
             # no need of image augmentation for the validation test set
             'valid' : transforms.Compose([
             transforms.Resize(256),
             transforms.CenterCrop(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
             # test dataset flips can be found o
             'test' : transforms.Compose([
             transforms.Resize(256),
             transforms.CenterCrop(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
         }
         train_data = datasets.ImageFolder(train_dir, transform=the_transforms['train'])
         test_data = datasets.ImageFolder(test_dir, transform=the_transforms['test'])
         valid_data = datasets.ImageFolder(valid_dir, transform=the_transforms['valid'])
         # preparin data ; oaders for each sets
         train_loader = torch.utils.data.DataLoader(train_data, batch_size=10,
                                                    num_workers=0, shuffle=True)
         test_loader = torch.utils.data.DataLoader(test_data, batch_size=10,
                                                   num_workers=0, shuffle=False)
         valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=20,
                                                   num_workers=0, shuffle=True)
         loaders_scratch = dict(train=train_loader, test=test_loader, valid=valid_loader)
In [17]: loaders_scratch['train']
Out[17]: <torch.utils.data.dataloader.DataLoader at 0x7f1094ff8cf8>
```

normalizing = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

Question 3: Describe your chosen procedure for preprocessing the data. - How does your code resize the images (by cropping, stretching, etc)? What size did you pick for the input tensor, and why? - Did you decide to augment the dataset? If so, how (through translations, flips, rotations, etc)? If not, why not?

Answer:

- my code resizes the image to one of 224(height, width) from the 250 by 250 and also randomly resize to 224 by 224 for transformations to smallest size possible(this is initiated to train on small-sized image fed to the model. Also, normalisation(Normalizing an image is an important step that makes model training stable and fast) is done using mean and std of vgg16 model as per my knowledge currently on the best one to use
- I used some augmentation by flipping (both horizontally and vertyically) and rotating so as to help in generalising

1.1.8 (IMPLEMENTATION) Model Architecture

Create a CNN to classify dog breed. Use the template in the code cell below.

```
In [27]: import torch.nn as nn
         import torch.nn.functional as F
         # define the CNN architecture
         class Net(nn.Module):
             ### TODO: choose an architecture, and complete the class
             def __init__(self):
                 super(Net, self).__init__()
                 ## Define layers of a CNN
                 # convolutional layers
                 self.conv1 = nn.Conv2d(3, 32, 2, stride=2, padding=0)
                 self.conv2 = nn.Conv2d(32, 64, 2, stride=2, padding=0) # 56x56x32 -> conv layer
                 # convolutional layer (sees 56x56x32 tensor) "after pooling"
                 self.conv3 = nn.Conv2d(64, 128, 2, padding=1)
                 self.pool = nn.MaxPool2d(2, 2)
                 self.fc1 = nn.Linear(128 * 7 * 7, 500)
                 self.fc2 = nn.Linear(500, 133)
                 # dropout layer
                 self.dropout = nn.Dropout(0.3)
             def forward(self, x):
                 ## Define forward behavior
                 x = self.pool(F.relu(self.conv1(x)))
                 x = self.pool(F.relu(self.conv2(x)))
                 x = self.pool(F.relu(self.conv3(x)))
```

flatten image input

```
x = x.view(-1, 128 * 7 * 7)
                 # add dropout layer
                 x = self.dropout(x)
                 # add 1st hidden layer, with relu activation function
                 x = F.relu(self.fc1(x))
                 # add dropout layer
                 x = self.dropout(x)
                 # add 2nd hidden layer, with relu activation function
                 x = self.fc2(x)
                 return x
         #-#-# You do NOT have to modify the code below this line. #-#-#
         # instantiate the CNN
         model_scratch = Net()
         print(model_scratch)
         # move tensors to GPU if CUDA is available
         if use_cuda:
             model_scratch.cuda()
Net(
  (conv1): Conv2d(3, 32, kernel_size=(2, 2), stride=(2, 2))
  (conv2): Conv2d(32, 64, kernel_size=(2, 2), stride=(2, 2))
  (conv3): Conv2d(64, 128, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=6272, out_features=500, bias=True)
  (fc2): Linear(in_features=500, out_features=133, bias=True)
  (dropout): Dropout(p=0.3)
)
In [20]: model_scratch
Out[20]: Net(
           (conv1): Conv2d(3, 32, kernel_size=(2, 2), stride=(2, 2))
           (conv2): Conv2d(32, 64, kernel_size=(2, 2), stride=(2, 2))
           (conv3): Conv2d(64, 128, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1))
           (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
           (fc1): Linear(in_features=6272, out_features=500, bias=True)
           (fc2): Linear(in_features=500, out_features=133, bias=True)
           (dropout): Dropout(p=0.3)
         )
In []:
```

Question 4: Outline the steps you took to get to your final CNN architecture and your reasoning at each step.

Answer: 1. The CNN architecture is taken to follow the pattern or similar trend of vgg-net beacuse of it fanstatic accuracy and is good for image classification. Its describe below: -- I used three CNN layers, the first takes in 3 channels and returns 32 channels and the other laters took the output channels from the CNN layer before it while each output channel of each layer is a increment by 2 of the previous layer. This is done to detect more clor channels in the images. A 3*3 filter is used throyug each layer for feature exytaction One fully connected later is used to classify.

1.1.9 (IMPLEMENTATION) Specify Loss Function and Optimizer

Use the next code cell to specify a loss function and optimizer. Save the chosen loss function as criterion_scratch, and the optimizer as optimizer_scratch below.

```
In [31]: import torch.optim as optim
    ### TODO: select loss function
    criterion_scratch = nn.CrossEntropyLoss()

### TODO: select optimizer
    optimizer_scratch = optim.SGD(model_scratch.parameters(), lr=0.003)
```

1.1.10 (IMPLEMENTATION) Train and Validate the Model

Train and validate your model in the code cell below. Save the final model parameters at filepath 'model_scratch.pt'.

```
In [32]: # the following import is required for training to be robust to truncated images
         from PIL import ImageFile
         ImageFile.LOAD_TRUNCATED_IMAGES = True
         def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path):
             """returns trained model"""
             # initialize tracker for minimum validation loss
             valid_loss_min = np.Inf
             for epoch in range(1, n_epochs+1):
                 # initialize variables to monitor training and validation loss
                 train_loss = 0.0
                 valid_loss = 0.0
                 ##################
                 # train the model #
                 ##################
                 model.train()
                 for batch_idx, (data, target) in enumerate(loaders['train']):
                     # move to GPU
                     if use_cuda:
                         data, target = data.cuda(), target.cuda()
```

```
## find the loss and update the model parameters accordingly
        optimizer.zero_grad()
        # forward pass
        output = model(data)
        # Loss
        loss = criterion(output, target)
        # backward pass
        loss.backward()
        # Optimization
        optimizer.step()
        ## record the average training loss, using something like
        train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss)
    ######################
    # validate the model #
    #####################
    model.eval()
    for batch_idx, (data, target) in enumerate(loaders['valid']):
        # move to GPU
        if use_cuda:
            data, target = data.cuda(), target.cuda()
        ## update the average validation loss
        output = model(data)
        loss = criterion(output, target)
        # update average validation loss
        valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss)
    # print training/validation statistics
    train_loss = train_loss/len(loaders['train'].dataset)
    valid_loss = valid_loss/len(loaders['valid'].dataset)
    print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
        epoch,
        train_loss,
        valid_loss
        ))
    ## TODO: save the model if validation loss has decreased
    if valid_loss <= valid_loss_min:</pre>
        print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.fc
        valid_loss_min,
        valid_loss))
        torch.save(model.state_dict(), save_path)
        valid_loss_min = valid_loss
# return trained model
return model
```

```
# train the model
         model_scratch = train(10, loaders_scratch, model_scratch, optimizer_scratch,
                               criterion_scratch, use_cuda, 'model_scratch.pt')
         # load the model that got the best validation accuracy
        model_scratch.load_state_dict(torch.load('model_scratch.pt'))
Epoch: 1
                 Training Loss: 0.000606
                                                 Validation Loss: 0.004629
Validation loss decreased (inf --> 0.004629). Saving model ...
                Training Loss: 0.000600
Epoch: 2
                                                 Validation Loss: 0.004585
Validation loss decreased (0.004629 --> 0.004585). Saving model ...
                Training Loss: 0.000594
Epoch: 3
                                                 Validation Loss: 0.004568
Validation loss decreased (0.004585 --> 0.004568). Saving model ...
Epoch: 4
                Training Loss: 0.000593
                                                Validation Loss: 0.004539
Validation loss decreased (0.004568 --> 0.004539). Saving model ...
Epoch: 5
                Training Loss: 0.000589
                                                Validation Loss: 0.004529
Validation loss decreased (0.004539 --> 0.004529). Saving model ...
Epoch: 6
                Training Loss: 0.000586
                                                Validation Loss: 0.004525
Validation loss decreased (0.004529 --> 0.004525). Saving model ...
                Training Loss: 0.000586
                                                Validation Loss: 0.004493
Epoch: 7
Validation loss decreased (0.004525 --> 0.004493). Saving model ...
                Training Loss: 0.000580
                                                Validation Loss: 0.004465
Epoch: 8
Validation loss decreased (0.004493 --> 0.004465). Saving model ...
Epoch: 9
                Training Loss: 0.000579
                                                Validation Loss: 0.004450
Validation loss decreased (0.004465 --> 0.004450). Saving model ...
Epoch: 10
                 Training Loss: 0.000578
                                                 Validation Loss: 0.004468
```

1.1.11 (IMPLEMENTATION) Test the Model

Try out your model on the test dataset of dog images. Use the code cell below to calculate and print the test loss and accuracy. Ensure that your test accuracy is greater than 10%.

```
In [33]: def test(loaders, model, criterion, use_cuda):
    # monitor test loss and accuracy
    test_loss = 0.
    correct = 0.
    total = 0.

model.eval()
for batch_idx, (data, target) in enumerate(loaders['test']):
    # move to GPU
    if use_cuda:
        data, target = data.cuda(), target.cuda()
        # forward pass: compute predicted outputs by passing inputs to the model output = model(data)
        # calculate the loss
```

Step 4: Create a CNN to Classify Dog Breeds (using Transfer Learning)

You will now use transfer learning to create a CNN that can identify dog breed from images. Your CNN must attain at least 60% accuracy on the test set.

1.1.12 (IMPLEMENTATION) Specify Data Loaders for the Dog Dataset

Use the code cell below to write three separate data loaders for the training, validation, and test datasets of dog images (located at dogImages/train, dogImages/valid, and dogImages/test, respectively).

If you like, **you are welcome to use the same data loaders from the previous step**, when you created a CNN from scratch.

```
data_dir = "/data/dog_images/"
train_dir = data_dir + '/train/'
valid_dir = data_dir + '/valid/'
test_dir = data_dir + '/test/'
\# normalizing = transforms. Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# a dictionary for the transformations of data
the_transforms = {
    'train' : transforms.Compose([
    transforms.Resize(256),
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(), # randomly flip and rotate
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # no need of image augmentation for the validation test set
    'valid' : transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ]),
    # test dataset flips can be found o
    'test' : transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ]),
}
train_data = datasets.ImageFolder(train_dir, transform=the_transforms['train'])
test_data = datasets.ImageFolder(test_dir, transform=the_transforms['test'])
valid_data = datasets.ImageFolder(valid_dir, transform=the_transforms['valid'])
# preparin data ; oaders for each sets
train_loader = torch.utils.data.DataLoader(train_data, batch_size=10,
                                           num_workers=0, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=10,
                                          num_workers=0, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=20,
                                          num_workers=0, shuffle=True)
```

1.1.13 (IMPLEMENTATION) Model Architecture

Use transfer learning to create a CNN to classify dog breed. Use the code cell below, and save your initialized model as the variable model_transfer.

```
In [36]: import torchvision.models as models
         import torch.nn as nn
         ## TODO: Specify model architecture
         model_transfer = models.vgg16(pretrained=True)
         # clearin the pre-trained weights
         for param in model_transfer.features.parameters():
             param.required_grad = False
         # Get the input of the last layer of VGG-16
         inputs = model_transfer.classifier[6].in_features
         # Create a new layer(n_inputs -> 133)
         # The new layer's requires_grad will be automatically True.
         last_layer = nn.Linear(inputs, 133)
         # Change the last layer to the new layer.
         model_transfer.classifier[6] = last_layer
         if use cuda:
             model_transfer = model_transfer.cuda()
         # Print the model.
         print(model_transfer)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
```

```
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace)
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=133, bias=True)
 )
)
```

Question 5: Outline the steps you took to get to your final CNN architecture and your reasoning at each step. Describe why you think the architecture is suitable for the current problem.

Answer: >> I instantiate vgg16 architecture and set its pretrained arg to true. I also freeze the weight of the by extracting the parameters of the model layers and settiing require_grad = false; So as to be able to pass in input a modified the last classifier layer to a new on

1.1.14 (IMPLEMENTATION) Specify Loss Function and Optimizer

Use the next code cell to specify a loss function and optimizer. Save the chosen loss function as criterion_transfer, and the optimizer as optimizer_transfer below.

1.1.15 (IMPLEMENTATION) Train and Validate the Model

Train and validate your model in the code cell below. Save the final model parameters at filepath 'model_transfer.pt'.

```
In [38]: # train the model
         n_{epochs} = 5
         model_transfer = train(n_epochs, loaders_transfer, model_transfer, optimizer_transfer,
         # load the model that got the best validation accuracy (uncomment the line below)
         model_transfer.load_state_dict(torch.load('model_transfer.pt'))
                 Training Loss: 0.000416
                                                 Validation Loss: 0.001029
Epoch: 1
Validation loss decreased (inf --> 0.001029). Saving model ...
                 Training Loss: 0.000235
Epoch: 2
                                                 Validation Loss: 0.000817
Validation loss decreased (0.001029 --> 0.000817). Saving model ...
                 Training Loss: 0.000202
Epoch: 3
                                                 Validation Loss: 0.000657
Validation loss decreased (0.000817 --> 0.000657). Saving model ...
Epoch: 4
                Training Loss: 0.000183
                                                 Validation Loss: 0.000724
                Training Loss: 0.000174
Epoch: 5
                                                Validation Loss: 0.000660
```

1.1.16 (IMPLEMENTATION) Test the Model

Try out your model on the test dataset of dog images. Use the code cell below to calculate and print the test loss and accuracy. Ensure that your test accuracy is greater than 60%.

```
In [39]: test(loaders_transfer, model_transfer, criterion_transfer, use_cuda)
Test Loss: 0.619896
Test Accuracy: 80% (675/836)
```

1.1.17 (IMPLEMENTATION) Predict Dog Breed with the Model

Write a function that takes an image path as input and returns the dog breed (Affenpinscher, Afghan hound, etc) that is predicted by your model.

Sample Human Output

Step 5: Write your Algorithm

Write an algorithm that accepts a file path to an image and first determines whether the image contains a human, dog, or neither. Then, - if a **dog** is detected in the image, return the predicted breed. - if a **human** is detected in the image, return the resembling dog breed. - if **neither** is detected in the image, provide output that indicates an error.

You are welcome to write your own functions for detecting humans and dogs in images, but feel free to use the face_detector and human_detector functions developed above. You are required to use your CNN from Step 4 to predict dog breed.

Some sample output for our algorithm is provided below, but feel free to design your own user experience!

1.1.18 (IMPLEMENTATION) Write your Algorithm

```
plt.show()

if dog_detector(img_path) is True:
    prediction = predict_breed(img_path)
    print("A dog has been detected which most likely to be {0} breed".format(prediction face_detector(img_path) > 0:
    prediction = predict_breed(img_path)
    print("This is a Human who looks like {0}".format(prediction))

else:
    print("Neither Human nor Dog")
```

Step 6: Test Your Algorithm

In this section, you will take your new algorithm for a spin! What kind of dog does the algorithm think that *you* look like? If you have a dog, does it predict your dog's breed accurately? If you have a cat, does it mistakenly think that your cat is a dog?

1.1.19 (IMPLEMENTATION) Test Your Algorithm on Sample Images!

Test your algorithm at least six images on your computer. Feel free to use any images you like. Use at least two human and two dog images.

Question 6: Is the output better than you expected:) ? Or worse:(? Provide at least three possible points of improvement for your algorithm.

Answer: (Three possible points for improvement)

- . It predicted well on the human dataset, maybe this is due to more data available for learning
- 1. More Image augmentation through transformation may help in improving the algorithm
- 2. The learning could also be more tuned to improve test accuracy
- 3. The vgg!6 architecture could possibly open more of its parameters to help in training

```
In [46]: ## TODO: Execute your algorithm from Step 6 on
    ## at least 6 images on your computer.
    ## Feel free to use as many code cells as needed.

## suggested code, below
    human_files = np.array(glob("human_imgs/*"))
    dog_files = np.array(glob("dog_images/*"))
    for file in np.hstack((human_files[:], dog_files[:])):
        run_app(file)
```


This is a Human who looks like Dalmatian

This is a Human who looks like Chihuahua

This is a Human who looks like Chinese crested

This is a Human who looks like Borzoi

This is a Human who looks like Chesapeake bay retriever

Neither Human nor Dog

Neither Human nor Dog

Neither Human nor Dog