Least Squares

Regression Line Equation

In standard units, the equation of the regression line is:

Regression Line Equation

In original units, the regression line has this equation:

$$\left[\frac{\text{estimate of } y - \text{ average of } y}{\text{SD of } y} \right] = r \times \left[\frac{\text{the given } x - \text{ average of } x}{\text{SD of } x} \right]$$

y in standard units

x in standard units

$$y = \text{slope} \times x + \text{intercept}$$

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

```
def standard units(nums):
    return (nums - np.mean(nums)) / np.std(nums)
def correlation(t,x,y):
    return np.mean(standard units(t.column(x)) * standard units(t.column(y)))
def slope(t,x,y):
    r = correlation(t,x,y)
    return r * np.std(t.column(y)) / np.std(t.column(x))
def intercept(t,x,y):
    r = correlation(t,x,y)
    return np.mean(t.column(y)) - slope(t, x, y) * np.mean(t.column(x))
                                                                   Demo
```

Linear Regression Code

Least Squares

Error in Estimation

- error = actual value estimate
- Typically, some errors are positive and some negative
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

(Demo)

Least Squares Line

- Minimizes the root mean squared error (rmse) among all lines
- Names:
 - "Best fit" line
 - Least squares line
 - Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization
- If the function rmse(a, b) returns the rmse of estimation using the line "estimate = ax + b",
 - then minimize (rmse) returns array $[a_0, b_0]$
 - a₀ is the slope and b₀ the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Time to Work On Group Project