

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Taller de Trabajo - MAT3094 Informe Taller de Trabajo 04 de agosto de 2025

$\acute{\mathbf{I}}\mathbf{ndice}$

	reliminares
	l. Simplices
	2. Complejos Simpliciales y Mapas Simpliciales
	3. Complejos Simpliciales Abstractos
	4. Revisión de Grupos Abelianos
	5. Grupos de Homología
	6. Categorías y Funtores
2.	phomología
	L. El Funtor Hom
	Crupo de Cohomología Simplicial

Introducción

1. Preliminares

- 1.1. Simplices
- 1.2. Complejos Simpliciales y Mapas Simpliciales
- 1.3. Complejos Simpliciales Abstractos
- 1.4. Revisión de Grupos Abelianos
- 1.5. Grupos de Homología
- 1.6. Categorías y Funtores

2. Cohomología

2.1. El Funtor Hom

Definición: Sean A y G grupos abelianos, entonces el conjunto Hom(A,G) que consiste en todos los morfismos de A a G es un grupo abeliano con la operación $(\varphi + \psi)(a) := \varphi(a) + \psi(a)$.

Hay que probar que esta operación esta bien definida, esto es, debemos verificar que $\varphi + \psi$ es un morfismo de A a G, notemos que

$$(\varphi + \psi)(a+b) = \varphi(a+b) + \psi(a+b) = \varphi(a) + \psi(a) + \varphi(b) + \psi(b) = (\varphi + \psi)(a) + (\varphi + \psi)(b)$$

La identidad en Hom(A, G) resulta ser el morfismo trivial y el inverso de φ es $-\varphi$.

Ejemplo:

Definición: Un morfismo $f: A \to B$ da resultado a un **morfismo dual** $\widetilde{f}: Hom(B,G) \to Hom(A,G)$. Donde \widetilde{f} le asigna a un morfismo $\varphi: B \to G$ el morfismo $\widetilde{f}(\varphi) = \varphi \circ f$.

Se verifica que \widetilde{f} esta bien definido, en otras palabras, que $\widetilde{f}(\varphi)$ es un morfismo. Para G fijo, la asignación $A \to Hom(A,G)$ y $f \to \widetilde{f}$ define un funtor contravariante de la categoría de grupos abelianos y morfismos a si mismo.

2.2. Grupo de Cohomología Simplicial