SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation

Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Reda Alami, Alexey Naumov, Eric Moulines

CAp Conference

July 2nd, 2024

Linear Stochastic Approximation

Find θ^c_{\star} such that

$$A^c \theta^c_{\star} = b^c$$

Linear Stochastic Approximation

Find θ^c_{\star} such that

$$A^c\theta^c_{\star}=b^c$$

... but we only have unbiased estimators $A^{c}(Z)$, $b^{c}(Z)$

Applications: TD learning, linear regression

Federated Linear Stochastic Approximation

Find θ_{\star} such that

$$\left(rac{1}{N}\sum_{c=1}^{N}A^{c}
ight) heta_{\star}=rac{1}{N}\sum_{c=1}^{N}b^{c}$$

... but we only have unbiased estimators $A^c(Z)$, $b^c(Z)$

The FedLSA algorithm

- * Initialize θ_0
- * For t = 0 to T 1:
 - * Set $\theta_{t+1,0}^c = \theta_t$
 - * For each agent c, for h = 0 to H 1:

$$\theta_{t+1,h+1}^c = \theta_{t+1,h}^c - \eta (A^c \theta_{t+1,h}^c - b^c)$$

* Aggregate
$$\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t+1,H}^{c}$$

Works if agents are homogeneous (H = 1000)

Biased if agents are heterogeneous (H = 1000)

ightarrow and we can give a formal expression of this bias: if η and H are small, then bias is also small!

SCAFFLSA: Use Control Variates!

- * Initialize $\theta_0, \, \xi_0^1, \, \ldots, \, \xi_0^N$
- * For t = 0 to T 1:
 - * Set $\theta_{t+1.0}^c = \theta_t$
 - * For each agent c, for h = 0 to H 1:

$$\theta_{t+1,h+1}^{c} = \theta_{t+1,h}^{c} - \eta (A^{c}\theta_{t+1,h}^{c} - b^{c} - \xi_{t}^{c})$$

- * Aggregate $\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t+1,H}^{c}$
- * Update $\xi_{t+1}^c = \xi_t^c + \frac{1}{\eta H} (\theta_{t+1} \theta_{t+1,H}^c)$

Works even if agents are heterogeneous (H = 1000)

Algorithm	Communication T	Local updates H	Total samples
FedLSA	$\mathcal{O}\left(\frac{1}{a^2\epsilon}\log\frac{1}{\epsilon}\right)$	$\mathcal{O}\!\left(rac{1}{N\epsilon} ight)$	$\mathcal{O}ig(rac{1}{\mathit{Na}^2\epsilon^2}\lograc{1}{\epsilon}ig)$
Scafflsa	$\mathcal{O}\left(rac{1}{a^2}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\!\left(rac{1}{N\epsilon^2} ight)$	$\mathcal{O}ig(rac{1}{ extstyle N extstyle a^2} \log rac{1}{\epsilon}ig)$

Come to the poster for theoretical results:

- * linear speed-up
- * acceleration in the setting where noise dominates