## Deriving Trace Plots

## The Expected Slope Between Two Indicators, Given the Latent Variable

Suppose we have the factor analysis model shown below.



Assume both indicators and the latent variable are standard normal variables. In this situation, we define the observed variables as follows:

$$x_1 = aF + e_1$$

$$x_2 = bF + e_2$$

$$x_3 = cF + e_3$$

These can be re-expressed in terms of F as follows:

$$F = \frac{x_1 - e_1}{a}$$
$$F = \frac{x_2 - e_2}{b}$$

$$F = \frac{x_2 - e_2}{h}$$

$$F = \frac{x_3 - e_3}{c}$$

Suppose we wish to plot the fitted line between  $x_1$  and  $x_2$  implied by the latent variable model. To do so, we can re-express  $x_2$  in terms of  $x_1$ :

$$x_2 = bF + e_2$$

$$= b(\frac{x_1 - e_1}{a}) + e_2$$
(1)

Computing the expectation, we get



Figure 1: Scatterplot of the x1/x2 relationship. The red line shows the implied fit between the two variables under the assumption of perfect reliability. The blue line shows the actual fitted relationship.

$$E[x_{2}|x_{1}] = E\left[b(\frac{x_{1} - e_{1}}{a}) + e_{2}\right]$$

$$= \frac{b}{a}E[(x_{1} - e_{1})] + E[e_{2}]$$

$$= \frac{b}{a}E[x_{1}] - E[e_{1}] + E[e_{2}]$$

$$= \frac{b}{a}E[x_{1}]$$
(2)

Also, since these variables are standardized, Equation 2 is both the slope of the line predicting  $x_2$  from  $x_1$ , as well as the correlation coefficient,  $\rho$ .

Recall that latent variable models explicitly model the unreliability in indicators. As such, 2 is the "corrected" estimate of the correlation between  $x_1$  and  $x_2$ . As such, the regression line generated from Equation 2 will visually overestimate the strength of the relationship, as demonstrated below:

For example, of b and a are both 0.5, Equation 2 suggests the slope is one (indicating a perfect correlation between these standardized variances). This is clearly not the case. As such, the slope needs to be "uncorrected" for unreliability.

Recall the standard correction for unreliability

$$\rho = \frac{r}{\sqrt{\rho_{xx}\rho_{yy}}}\tag{3}$$

To "uncorrect" this estimate, we simply solve for  $\boldsymbol{r}$ 

$$r = \rho \sqrt{\rho_{xx}\rho_{yy}} \tag{4}$$

We can then multiply Equation 4 by Equation 2:

$$E[x_2|x_1] = \sqrt{\rho_{xx}\rho_{yy}} \frac{b}{a} E[x_1]$$

$$= \sqrt{a^2b^2} \left(\frac{b}{a}\right) E[x_1]$$

$$= a * b \left(\frac{b}{a}\right) E[x_1]$$

$$= b^2 E[x_1]$$
(5)

Using Equation 5, we now get a line that closely approximates the actual relationship between the two variables:

