INFOSÜSTEEMID JA ANDMEBAASID

Harjutustund. Modelleerimine

Lektor: Merle Laurits (MA, Infoteadus)

Kontakt: Merle.Laurits@tlu.ee

Modelleerimise teemad

- Visuaalne modelleerimine ja UML põhielemendid
- Kontekstiskeem
- Tegevusdiagramm
- Infosüsteemi funktsionaalsus kasutusjuhud, kasutusjuhtude diagramm
- Olekudiagramm

Visuaalne modelleerimine

- Visuaalsel modelleerimisel seatakse modelleeritava süsteemi osadele vastavusse mingid graafilised sümbolid.
 - "üks pilt parem kui tuhat sõna"
 - "mõnede piltide puhul läheb siiski veel täiendavalt vaja tuhandet sõna"
- Oluline on pildi selgus

3

Visuaalse modelleerimise keel

- Graafiliste sümbolite komplekt ja reeglid nende kasutamiseks
- Reeglid
 - Süntaks
 - määrab ära, milliseid elemente tohib kasutada ja kuidas neid omavahel seostada
 - Semantika
 - selgitab sümbolite tähendust eraldiseisvana ja teistega seotult
 - Pragmaatilised reeglid
 - selgitavad keele kasutusvõimalusi

UML- Unified Modelling Language

- Aja jooksul iga mudeli osale on kujunenud oma diagrammitüüp, diagrammitüübid koondatud standarditesse
- UML on suhteliselt uudne lähenemine, mis kasutab kõiki eelnevaid kogemusi, koondab kõike vajalikke reegleid ja sümboleid nii ärikui ka infosüsteemi modelleerimiseks
- UML-i tugevaks küljeks on selle hõlbus laiendatavus

UML-i diagrammide liigid

- Staatikadiagrammid
 - objektide ja nendevaheliste seoste modelleerimiseks
 - tähtis osa infosüsteemi modelleerimises
- Dünaamikadiagrammid
 - süsteemi funktsioneerimise modelleerimiseks
- Diagrammide detailsuse reguleerimiseks grupeeritakse eri sümbolid pakettidesse

Dünaamikadiagrammid

- Kasutusjuhtude diagramm
 - kasutusjuht tegevuste jada koos selle variatsioonidega, mille süsteem teostab toomaks jälgitava väärtusega tulemust tegutsejale. Ärisüsteemi mudelis sama, mis äriprotsess
- Tegevusdiagramm
 - voodiagramm, mis kujutab liikumist tegevuselt tegevusele
- Olekudiagramm
 - näitab kuidas objekt või süsteem reageerib erinevatele sündmustele, kuidas objekti olekud vastavalt muutuvad
- Jadadiagramm
 - mugav kujutada sõnumite jada, mida objektid vahetavad üksteisega suheldes.
 Ärisüsteemi modelleerimisel on selle abil mugav kujutada ettevõtete või ettevõtte allüksuste vahelist sõnumivahetust
- Koostöödiagramm
 - on nagu jadadiagrammgi orienteeritud objektidevahelise sõnumivahetuse modelleerimisele

Millest alustada?

- Süsteemi kontekstidiagramm
 - Süsteem kui üks tervikprotsess, terviklik vaade
 - Kujutab süsteemi ja tegutsejate omavahelisi mõjusid – sisendid ja väljundid
- Süsteemi põhiprotsesside tegevusdiagrammid

Kontekstidiagramm

- UML-i elemendid
 - pakett
 - seos (joon, mis näitab signaali)
 - kontekstidiagrammil näidatakse reeglina ka suunda
 - tegutseja

Näide: õppetooli kontekstidiagramm

Näide: suusavarustuse laenutuse kontekstiskeem

□ Tegutsejad

- Klient
- Laenutuse töötaja
- Laenutuse omanik
- Parandused
 - klienditeenindaja
 - Varustuse hooldaja
 - Laenutuse omanik

Näide: hotelli kontekstiskeem

Raamatukogu kontekstiskeem: näide

Tegevusdiagramm 1

- Tegevuselt tegevusele liigutakse üleminekute abil, mis võivad moodustada kas juhtimisvoo või objektivoo.
- Liigutakse tegevuse lõppedes järgmisele tegevusele.
- Liikumine võib olla tingimuslik ja seotud otsustuspunktidega (kujutatud rombina).
- Tegevuste ahel võib ka hargneda paralleelseteks lõimedeks ning hiljem taas ühineda (kujutatud nn sünkroniseerimisriba, horistontaalse või vertikaalse jämeda joone, abil).

Tegevusdiagramm

- Kirjeldab süsteemi tegevuste järjekorda
- UML mõisted:
 - tegevus action state
 - üleminek: noolega sirge
 - kui on mitu situatsioonist sõltuvat võimalust - romb
 - hargnemine (mitu parallelset võimalust) fork
 - kokkusulamine join

Näide: õppetooli protsess "ainekaardi menetlus"

kasutatud rajad, mis näitavad protsessi liikumist ühe instantsi kompetentsist teise

Näide: suusavarustuse laenutus:

Näide: hotelli toa reserveerimine (tekstikirjeldus diagrammile!)

- Klient avaldab soovi saada tuba
- 2. Administraator edastab soovi süsteemile
- 3. Süsteem kontrollib andmebaasist vaba toa olemasolu
- 4. Süsteem teatab vabade tubade nimekirja
- Klient valib toa
- 6. Administraator edastab soovi süsteemile
- Süsteem kinnistab valitud toa kliendile

Võimalik variant:

Klient on tundmatu. Süsteem saab kliendi kirjelduse administraatori käest ja lisab andmebaasi uue kliendi. Tegevus jätkub p. 7.

Raamatukogu laenutusprotsess

Infosüsteemi piiritlemine

- Infosüsteemi eesmärgid
 - Reaalse süsteemi eesmärkidest, probleemidest, infovajadustest tulenevalt
- Infosüsteemi funktsioonid
 - Reaalse süsteemi protsessidest tulenevalt
- Infosüsteemi tegutsejad
 - Valitakse reaalse süsteemi tegutsejate hulgast
- Infosüsteemi sündmused
 - On need, millele reageerib IS, käivitades ühe oma funktsioonidest

Õppetool: eesmärgid ja infovajadused

- Põhieesmärgid (missioon)
 - Üliõpilastele kvaliteetse haridusteenuse pakkumine
 - Õppejõudude töö korraldamine
- Kriitilised edukuse faktorid
 - Üliõpilane saab hariduse ettenähtud aja jooksul
- Sihtmärgid
 - Üliõpilase koormus on ühtlane läbi kogu õppeaja
 - Ainete õppimise järjekord on tagatud
 - Õppejõu koormus on ühtlane
 - Tagatud vastused infopäringutele

- Probleemid
 - üliõpilane ei jõua lõpetada õpinguid ettenähtud ajaga
 - üliõpilaste teadmiste kontrolli registreerimine vajab palju käsitööd
 - **-** ...
- Infovajadused
 - Oppetoolis õpetatavate ainete nimekiri
 - Hinnete seis
 - Aine õppimisele registreerunud üliõpilased
 - Teadmiste kontrollile registreerunud üliõpilased
 - Öppejõudude töö aruanne

Näide: õppetool

- Eesmärgid, lähtudes <u>õppetooli eesmärkidest,</u>
 <u>probleemidest ja infovajadustest</u>
 - Tagada elektroonne ainete deklareerimine
 - Kontrollida aine õppimise võimalikust, lähtudes üliõpilase seisust ja õppeprogrammist
 - Võimaldada üliõpilaste teadmiste kontrolli registreerimine
 - Tagada õppetoolis õpetatavate ainete ülevaade
 - Kiirendada vastuseid päringutele hinnete seisu kohta
 - Fikseerida teadmistekontrolli tulemused
 - Hõlbustada õppejõudude töö aruannete koostamist

Näide: õppetooli infosüsteemi põhifunktsioonid

- Õppetooli põhiprotsessid
 - Õpetamine

- Teadmiste kontrolli läbiviimine
- Õppetöö korraldamine
- Öppimine
- Ainete loomine

- Infosüsteemi põhifunktsioonid
 - Õpetamise arvestus
 - Teadmiste kontrolli registreerimine
 - Õppimise arvestus
 - Ainete loomise ja kinnitamise registreerimine
 - Tudengite arvestus
 - Õppejõudude arvestus

UML Use Case Diagram (kasutusmallide diagramm): põhimõisted

- Tegutseja (Actor)
 - Tingimus: tegutseja peab olema väljaspool kirjeldatavat süsteemi osa
 - Tegutseja edastab süsteemile signaali ja süsteem (või mõni süsteemi funktsioon ehk siin kasutusmall) reageerib sellele
- Kasutusmall (*Use Case*)
 - Kirjeldab süsteemi käitumist peale selle, kui kasutaja on signaali edastanud
 - Kirjeldus sisaldab:
 - signaali, mis stimuleeris tegevuse
 - sisendeid ja väljundeid teistele kasutajatele
 - käitumise sisu ja variante ning võimalike vigu

Kasutusjuhtude diagrammi elemendid

Näide: hotell: kasutusjuhud

Õppetooli infosüsteem Tudengite arvestus Õppejõudude arvestus Tudengi registreerimine Õppejõu registreerimine **Õppimisele** Aine registreerimine registreerimine Aine kinnitamise Eksamile registreerimine registreerimine **Õ**petamise Eksami annulleerimise registreerimine registreerimine Eksamitulemuste Õpetamise päringute registreerimine koostamine Õppejõu töö aruande Eksamilehe koostamine koostamine MA (Infoteadus) 28

Õppetool: Õppimise arvestus: kasutusjuhud

- Tudengi andmete registreerimine
- Z. Tudengi registreerimine aine õppimiseks
- Eksami sooritamine

Variandid: eksami tulemus negatiivne: korduva eksami sooritamine

Olekudiagramm

- Kajastab objekti või süsteemi elutsüklit.
- Kirjeldab, kuidas objektid muudavad ajas oma olekut.
- Sõltuvalt:
 - toimuvatest sündmustest,
 - olekus teostatavast käitumisest ja tegevusest,
 - ajast, mil sündmus toimub.
- Ühe tegevuse lõppemisega võib muutuda mingi objekti olek, mis omakorda kutsub esile järgmise tegevuse.
- Kesksel kohal on olekud.

Olekute modelleerimine

UML state chart

- Paljud objektid on kirjeldatavad olekust olekusse üleminekutega
 - Oleku tähistamiseks kasutatakse omadusi, mille väärtused muutuvad sõltuvalt sündmustest
- Kui on võimalik määrata kindel arv olekuid, siis objekti elutsükkel koosneb algolekust, lõppolekust ja vaheolekutest, millistes ta võib olla ka korduvalt
- Objektiklass peab olema loodud nii, et vajalikud situatsioonid oleks kirjeldatavad

Mida näitab olekumudel?

- Olek stabiilne situatsioon objekti elutsüklis, milles ta
 - Arendab mingit tegevust
 - Ootab sündmust
 - Kontrollib mingit kriteeriumi
- Aktiivne (jooksev olek)
 - Objekt on korraga ühes olekus
 - Objekt reageerib sündmustele erinevalt ja sõltuvalt olekust
- Alg- ja lõppolek
 - on pseudo-olekud

Oleku kirjeldus

- Nimi
- Tegevused
 - Olekusse sisenemisel (entry)
 - Olekust väljumisel (exit)
 - Kogu olekus viibimise ajal (do)
- UML tähistus

Nimi

entry/ tegevus sisenemisel exit/ tegevus väljumisel do / sisemine tegevus

Üleminek (transition)

ühest olekust teise

- Kirjeldab, kuidas objekt muutub olekust olekusse
- Üleminekut käivitab sündmus, ülemineku jooksul võib toimuda tegevus ning sisenemine teise olekusse
- Kestab määramata aja jooksul
- Üleminek võib olla suunatud samasse olekusse
 - kuid ka siin rakendatakse tegevusi sisenemisel ja väljumisel

Sündmuste-tegevuste-olemimuutuste tabel

Sündmused	Tegevused	Olemi muutus
Uus tudeng	Tudengi andmete kontroll ja sisestamine	Lisatakse tudeng
Tudeng alustab õppimist	Õppimisele registreerimine	Lisatakse õppimise reg. registreeritud=JAH
Tudeng teeb eksamit	Eksami tulemuse registreerimine	Lisatakse eksamile reg. Eksamihinne=
Tudeng lõpetab aine õppimise	Lõpetamise registreerimine	Lõpetatud=JAH

Aine olekudiagramm

Kokkuvõte

- Vaatamata diagrammide atraktiivsusele, täiendatakse need alati tekstidega.
- Igal diagrammitüübil on oma kohustuslikud elemendid (vt näidised)!
- Protsessi kirjeldus tegevusdiagrammina näitab vaid tegevuste järjekorda, ei näita aega ega sündmusi.
- Kasutusjuhtude diagramm on süsteemianalüüsi vahend, mis aitab analüütikul kirjeldada ja struktureerida süsteemi funktsioone.
- Kasutusjuhtude diagramm ei ole eriti informatiivne, talle lisandub alati tekstiline kirjeldus.

Praktikum. Modelleeri oma loodava infosüsteemi baasil, joonista ja lisa tekstikirjeldused:

- Kontekstiskeem
- Tegevusdiagramm (-skeem, 1 põhiprotsessi lõikes) ja tekstikirjeldus
- Infosüsteemi põhiprotsessid (loetelu)
- Infosüsteemi eesmärgid
- Funktsionaalne vaade:
 - IS põhifunktsioonid
 - Kasutusjuhtude diagramm + tekstikirjeldus
- Olekudiagramm (+ sündmuste-tegevusteolemimuutuste vastavustabel)