ML Workflow

An **example** and **checklist** to guide you in your own projects.

Checklist

- 1. **Frame** the problem and look at the big picture
- Get the data
- 3. **Explore** the data to get insights
- 4. **Prepare** the data to better expose the underlying data patterns to machine learning algorithms
- 5. **Explore** many different models and short-list the best ones.
- 6. **Fine-tune** your models and combine them to a great solution.
- 7. **Present** your solution
- 8. **Launch**, monitor and maintain your system.

1. Frame the Problem and Look at the Big Picture

*	VLA Data Rate	SKA Data Rate				
3	<100 MB/s (360 GB/hr)	0.5 – 1 TB/s (>1.3 PB/hr)				
	https://science.nrao.edu/facilities/vla/docs/manuals/os s/performance/tim-res	https://doi.org/10.1098/rsta.2019.0060				

http://sundog.stsci.edu/index.html

Brightest pixel is 65.96 mJy/beam at X, Y = 862, 288 pixels RA Dec = 10 44 18 323 + 30 38 51 91 (12000)

2. Get Data

Source extractor, catalogues, private and public data sets.

https://github.com/fmporter/MiraBest-full

3. Explore the Data to get Insights

Look at the data.

Check biases.

Check distributions.

Label	No.	Class	Confidence	Morphology	No.	MiraBest Label	
	591	FRI	Certain	Standard	339	0	
				Wide-Angle Tailed	49	1	
0				Head-Tail	9	2	
			Uncertain	Standard	191	3	
			Oncertain	Wide-Angle Tailed	3	4	
	631	FRII	Certain	Standard	432	5	
1				Double-Double	4	6	
			Uncertain	Standard	195	7	
NA	3/1	34 Hybrid	Certain	NA	19	8	
IVA	04		Uncertain	NA	15	9	

4. Prepare the data [...]

"Feature Engineering" / "Cleaning"

5. Explore many different models [...]

Use your validation set.

Try 'out of the box models'!

Norm.	Range Norm.		Standardisation		Sigmoid		Softmax	
Class	TNI	TNII	TNI	TXII	TNI	TNII	TNI	TNII
F1 Score	0.81	0.83	0.69	0.71	0.83	0.84	0.85	0.87
Precision	0.84	0.80	0.72	0.70	0.85	0.83	0.89	0.84
Recall	0.77	0.87	0.67	0.73	0.81	0.86	0.81	0.91
Accuracy			70 % 0.71		84 % 0.85		86 % 0.92	
AUC								
\vdash			_		_			
Agg.	gg. Mean		Concatenation		Deep Supervised		Fine Tuned	
						-F		
Class	TINI	TNII	TNI	TNII	TNI	TKII	TNI	TIMI
Class	TNI	ГКП	TINI	FNII	TKI	PNII	ГXI	TNII
Class F1 Score	0.78	0.82	0.82	0.84	0.79	0.78	0.79	0.82
	TNI	0.82 0.77	0.82 0.86	0.84 0.81	TNI	TNII	1 IXI	TNII
F1 Score	0.78			3000000000	0.79	0.78	0.79	0.82
F1 Score Precision	0.78 0.85 0.72	0.77	0.86 0.78	0.81	0.79 0.77 0.81	0.78 0.80	0.79 0.83 0.76	0.82 0.79
F1 Score Precision Recall	0.78 0.85 0.72 80	0.77 0.88	0.86 0.78 8	0.81 0.88	0.79 0.77 0.81	0.78 0.80 0.75	0.79 0.83 0.76 81	0.82 0.79 0.85

6. Fine-tune your models and combine them [...]

Grid search using your validation sets.

Build an 'Ensemble' (e.g. Multiple good models vote for final class)

7. Present your solution

Present a (boring) table (but also ...)

Network Data Set		c CNN EEP-F			AG-CNN MiraBest*		AG-CNN MiraBest	
Class	FRI	FRII	FRI	FRII	FRI	FRII	FRI	FRII
F1 Score	0.90 ± 0.03	0.88 ± 0.06	0.87	0.90	0.91	0.92	0.82	0.86
Precision	0.95 ± 0.02	0.83 ± 0.04	0.87	0.90	0.89	0.89	0.91	0.80
Recall	0.85 ± 0.02	0.94 ± 0.04	0.87	0.90	0.95	0.94	0.75	0.93
Accuracy	$89 \pm 1 \%$ 0.94		88	%	92	2%	84	· %
AUC			0.89		0.96		0.92	

Present value

(speed / reliability / adaptability / cost saving / scientific benefit)

8. Launch, monitor and maintain your system.

Use it!

Make it (publicly) available!

Make it as user friendly as possible. Remove as many barriers to use as possible.

Continue to test it against the 'norm'.

Continue training with incoming data if appropriate (or fully retrain if enough new data becomes available).

https://github.com/mb010/AstroAttention

Conclusion

Aim to solve the problem, not use a fancy technology.

(have fun along the way).

Discussion

Checklist

- 1. Frame the problem and look at the big picture
- Get the data
- 3. Explore the data to get insights
- 4. Prepare the data to better expose the underlying data patterns to machine learning algorithms
- 5. Explore many different models and short-list the best ones.
- 6. Fine-tune your models and combine them to a great solution.
- 7. Present your solution
- 8. Launch, monitor and maintain your system.