## Вводная лекция

Центральным объектом всего курса математического анализа является функция. Под функцией мы будем понимать понимать зависимость значения одной величины y от значения другой величины x. В первом семестре мы чаще всего будем рассматривать функции одного вещественного переменного, то есть, которые сопоставляют одному вещественному числу x другое вещественное число y:

$$y = f(x)$$
.

Выпускнику школы обычно уже известно, что одна функция f(x) может производить другую функцию f'(x), которая называется *производной функции* f(x). Операция взятия производной от функции называется *дифференцированием*. Она по сути представляет собой функцию от функции, значения которой тоже являются функциями. В анализе такие объекты обычно называют операторами.

Какого же рода задачи приводят к понятию производной?<sup>1</sup>

**Задача 1.** Рассмотрим график функции y = f(x). Мы хотим описать касательную прямую

$$y = k(x - x_0) + f(x_0)$$

к графику функции, проходящую через точку  $(x_0, f(x_0))$ , очевидно лежащую на графике.



Для этого проведем секущую, проходящую через точки  $(x_0, f(x_0))$  и  $(x_0 + b, f(x_0 + b))$ , ее угловой коэффициент (тангенс угла наклона) равен

$$k(h) = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\Delta f(x_0, h)}{h},$$

где числитель

$$\Delta f(x_0, h) = f(x_0 + h) - f(x_0)$$

 $<sup>^{1}\</sup>mbox{B}$  этой лекции мы жертвуем математической строгостью рассуждений во имя наглядности.

называется nриращением  $\phi$ ункции f(x) в точке  $x_0$ , а знаменатель h – nриращением аргумента.

Геометрия подсказывает нам: когда h становится очень мало, секущая мало отличается касательной. Иными словами, секущая стремится к касательной, когда приращение h устремляется к нулю. При этом угловой коэффициент касательной

 $k(h) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$ 

где знак lim используется для обозначения операции стремления h к нулю. Угловой коэффициент и является значением производной  $f'(x_0)$  функции f(x) в точке  $x_0$ . В этом состоит *геометрический смысл производной*.

**Задача 2.** Пусть теперь x = s(t) — функция, описывающая закон движения точки вдоль числовой оси Ox. Как описать скорость движения точки в момент времени  $t_0$ ?

Нужно рассмотреть промежуток времени  $[t_0,t_0+h]$  и среднюю скорость движения точки за этот промежуток

$$v_{\rm cp.} = \frac{s(t_0 + h) - s(t_0)}{h}.$$



Устремляя b к нулю в этом выражении, мы получим, что искомая м<br/>гновенная скорость есть

$$v_{\text{cp.}}(t_0) = s'(t_0) = \lim_{h \to 0} \frac{s(t_0 + h) - s(t_0)}{h}.$$

Физический смысл производной – скорость изменения какой-либо величины.

Итак, равенство

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

кладется в основу определения производной. Для его формализации нам нужно будет строго объяснить, что мы будем понимать под *пределом* и *операцией предельного перехода* lim. В этом состоит наша первоначальная задача.

Но даже, исходя из интуитивных представлений о предельном переходе, мы уже можем найти производные некоторых функций.

**Пример 1.** Пусть f(x) = C – постоянная функция, которая во всех вещественных точках x принимает значение C. Тогда

$$(C)' = \lim_{h \to 0} \frac{C - C}{h} = 0.$$

Пример 2.

$$(x)' = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} 1 = 1.$$

Пример 3.

$$(x^2)' = \lim_{h \to 0} \frac{(x+h)^2 - x}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x+h) = 2x.$$

**Пример 4.** Для вычисления производной от  $f(x) = x^n$ ,  $n \in \mathbb{N}$ , нам потребуется формула *бинома Ньютона* для возведения суммы двух вещественных чисел *a* и *b* в степень *n*:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$
, где  $C_n^k = \frac{n!}{k!(n-k)!}$ .

По определению

$$(x^n)' = \lim_{h \to 0} \frac{(x+h)^n - x}{h} = \lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h + \dots + nxh^{n-1} + h^n}{h} = nx^{n-1}.$$

**Пример 5.** Наша интуиция подсказывает, что при малых t значение  $\sin t$  мало отличается от самого t, и что малые изменения аргумента косинуса влекут малые изменения его значений. Тогда

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin\frac{h}{2}\cos\frac{2x+h}{2}}{\frac{h}{2}} = \lim_{h \to 0} \cos(x+\frac{h}{2}) = \cos x.$$

Вскоре мы вычислим производные всех основных функций, получив таблицу производных:

| $f(x) \\ f'(x)$ | $x^{\alpha} \\ \alpha x^{\alpha-1}$ | $e^x$ $e^x$           | $a^x$ $a^x \ln x$             |                                | $\sin x$ $\cos x$       | $\cos x$ $-\sin x$                     |
|-----------------|-------------------------------------|-----------------------|-------------------------------|--------------------------------|-------------------------|----------------------------------------|
| f(x) $f'(x)$    | $tg x$ $1/\cos^2 x$                 | $ctg x$ $-1/\sin^2 x$ | $\arcsin x \\ 1/\sqrt{1-x^2}$ | $\arccos x \\ -1/\sqrt{1-x^2}$ | $\arctan x$ $1/(1+x^2)$ | $\operatorname{arcctg} x$ $-1/(1+x^2)$ |

**Задача 3.** Можно рассмотреть и обратную дифференцированию операцию: по заданной функции f(x) найти функцию F(x), такую что F'(x) = f(x). Функция F(x) называется первообразной функции f(x), а операция её нахождения — неопределенным интегрированием. Давайте выясним как первообразная связана с площадью под графиком функции.

Пусть S(x) – площадь, лежащая под графиком y = f(x) над отрезком [a, x], где  $a \le x \le b$ .



Приращение площади естественно представляется в виде

$$S(x+h) - S(x) = f(x)h + \alpha(h),$$

где величина  $\alpha(h)$  – разность между площадью под графиком над отрезком [x,x+h] и площадью прямоугольника с вершинами (x,0),(x,f(x)),(x+h,f(x)) и (x+h,0). Можно показать, что

$$0 \le |\alpha(h)| \le C(x,h)h,$$

где C(x, h) стремится к нулю, если  $h \to 0$ . Тогда справедливо равенство

$$f(x) = \frac{S(x+h) - S(x)}{h} - \frac{\alpha(h)}{h},$$

переходя к пределу по  $b \to 0$  в котором, мы находим,

$$f(x) = \lim_{h \to 0} \frac{S(x+h) - S(x)}{h} = S'(x).$$

Таким образом, S(x) является первообразной функции f(x). Этот факт лежит в основе формулы Ньютона-Лейбница:

$$\int_a^b f(x) \, dx = F(b) - F(a).$$