MSDS 7333 Spring 2021: Case Study 03 Email Spam Detection

Sachin Chavan, Tazeb Abera, Gautam Kapila, Sandesh Ojha

2021 February 18

Introduction

Email spams are unsolicited emails that also referred as Junk email sent in bulk. There is no law at least in United States that prevents anybody from sending unsolicited emails whether in single email or in bulk. Research indicate that email spams are accounted for over 80% of total email traffic. [2][3][4]. There are different forms of email spams or unsolicited emails that may affect either individuals or organizations. Following are the few of them:

- Commercial Advertisements
- · Hoax emails
- Emails Spoofs or phishing
- Lottery winining notification is very common
- · Money Scams
- Virus/Malware

All these can adversely affect individual as well as organizations. Such emails comes from unknown sources that we never interacted with or sometimes spammers use spoofing techniques to mislead recipients to appear as valid source. Organizations also takes advantage to send bulk emails to potential customers to advertise their products. Such bulk emails occupies network traffic all the time. Human can easily categorize suche mails and trash them manually

Now a days different machine learning algorithm are used for detecting and daily inspecting for incoming emails by different email provider companies like google, yahoo and the like. Among these machine learning algorithms decision tree methods are one of the best list.

Business Understanding

The two common approaches used for filtering spam mails are knowledge engineering and machine learning. Emails are classified as either spam or ham using a set of rules in knowledge engineering [4]. Machine learning approach have proved to be more efficient than knowledge engineering approach. No rule is required to be specified, rather a set of training samples which are pre-classified email messages are provided. A particular machine learning algorithm is then used to learn the classification rules from these email messages.

Machine learning algorithms use statistical models to classify data. In the case of spam detection, a trained machine learning model must be able to determine whether the sequence of words found in an email are closer to those found in spam emails or safe ones.

Several studies have been carried out on machine learning techniques and many of these algorithms are being applied in the field of email spam filtering. Examples of such algorithms include Deep Learning, Naïve Bayes, Decision tree, Support Vector Machines, Neural Networks, K-Nearest Neighbor, Rough sets, and Random Forests.

For this case study we are implementing a a decision tree algorithms. Decision tree learning is the predictive modeling approaches used in statistics, data mining and machine learning. It uses a decision tree to go from observations about an item to conclusions about the item's target value. [Wikipedia]. We explore a decision tree package in R called rpart, which is short for recursive partitioning.

Our objective is to investigate and optimize key hyperparameters used in the rpart package in order to classify email messages as spam or Ham email. In order to accomplish this, we fit a default decision tree and an optimized decision tree and compare them.

Data Evaluation / Engineering

The dataset provided for this cases study was preprocessed and labeled already and contains features extracted from after preprocessing. It contains total of 9348 unique emails with 29 predictor variables and one response variable named isSpam. Of the 30 total variables, 17 are boolean factor variables and the remaining 13 variables are numeric variables. Each email has been previously classified as spam or valid. This dataset will be used to build a model using decision trees to classify email messages as spam or ham. Details of each feature is as follows:

Factor variables

Feature	Description
isSpam isRe underscore priority isInReplyTo	Target Variable (T=Spam/F=Ham) T=If subject starts with Re: F=Otherwise T=If FROM email address field contains underscore F=Otherwise T=If priority key present in the header F=Otherwise T=If inReplyTo present in the header F=Otherwise
sortedRec subPunc multipartText hasImages isPGPsigned	T=If Recipient's email addresses are sorted F=Otherwise T=if Subject line contains punctuation F=Otherwise T=If MIME type is multipart/text F=otherwise T=If email body contains images F=Otherwise T=If message contains PGP signature F=Otherwise
subSpamWords noHost numEnd isYelling isOrigMsg	T=If subject contains one of the words from spam vector F=Otherwise T=If there is no hostname in header F=Otherwise T=If sender's email address ends with number T=If subject line contains all uppercase letters F=Otherwise T=If Message body contains word original message F=Otherwise
isDear isWrote	T=If word dear found in message body F=Otherwise T=if message body contains word Wrote: F=Otherwise

Numeric variables

Feature	Description
numLines bodyCharCt subExcCt subQuesCt numAtt	Number of Lines in the message Number of characters in the messsage Number of Exclamation in Subject line Number of question marks in subject line Number of email attachments
numRec perCaps hour perHTML subBlanks	Number of Recipients in the email message Percentage of uppercase letters in the Body of the message Hour of the day Percentage of HTML tags in the body of the message Percentage blanks in Subject line
forwards avgWordLen numDlr	Number of consecutive forward symbols in the body of the message Average length of the word in the body of the message Number of dollar symbol in the message body

Structure of dataframe

As shown below this dataframe contains 30 columns and 9348 observations.

```
'data.frame':
               9348 obs. of 30 variables:
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ isSpam
               : Factor w/ 2 levels "F", "T": 2 1 1 1 2 2 1 2 ...
$ isRe
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ underscore
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ priority
$ isInReplyTo : Factor w/ 2 levels "F","T": 2 1 1 1 1 2 1 1 ...
$ sortedRec
               : Factor w/ 2 levels "F", "T": 2 2 2 2 2 2 2 2 ...
$ subPunc
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ multipartText: Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ hasImages
$ isPGPsigned : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ subSpamWords : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ noHost
$ numEnd
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ isYelling
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ isOrigMsg
$ isDear
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 ...
$ isWrote
               : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 2 ...
$ numLines
               : int 50 26 38 32 31 25 38 39 ...
$ bodyCharCt
                      1554 873 1713 1095 1021 718 1288 1182 ...
               : int
$ subExcCt
               : int 00000000...
$ subQuesCt
               : int 00000000...
$ numAtt
               : num 00000000...
$ numRec
                      2 1 1 0 1 1 1 1 ...
               : int
$ perCaps
               : num 4.45 7.49 7.44 5.09 ...
$ hour
               : num
                     11 11 12 13 13 13 13 14 ...
$ perHTML
               : num 00000000...
$ subBlanks
                      12.5 8 8 18.9 ...
               : num
$ forwards
               : num 0 0 0 3.12 ...
$ avgWordLen
               : num 4.38 4.56 4.82 4.71 ...
$ numDlr
               : int 30000000...
```

Summary of Factor Variables

```
isSpam
         isRe
                   underscore priority isInReplyTo sortedRec subPunc
F:6951
                              F:9294
                                       F:6556
         F:6343
                   F:9222
                                                    F: 948
                                                               F:9085
T:2397
         T:3005
                   T: 126
                              T:
                                       T:2792
                                                               T: 263
                                  54
                                                    T:8400
multipartText hasImages isPGPsigned subSpamWords noHost
                                                                numEnd
                                     F
F:9020
              F:9326
                         F:9172
                                          :8697
                                                   F
                                                        :9318
                                                                F:8209
T: 328
              T: 22
                         T: 176
                                     Τ
                                          : 644
                                                          29
                                                                T:1139
                                     NA's:
                                                   NA's:
                                                            1
isYelling
            isOrigMsg isDear
                                isWrote
    :9134
            F:8988
                       F:9270
                                F:7442
Τ
    : 207
            T: 360
                       T: 78
                                T:1906
NA's:
```

Summary of Numeric Variables

numLines	bodyCharCt	subExcCt	subQuesCt		
Min. : 2.00	Min. : 6	Min. : 0.0000	Min. : 0.0000		
1st Qu.: 19.00	1st Qu.: 587	1st Qu.: 0.0000	1st Qu.: 0.0000		
Median : 32.00	Median: 1088	Median : 0.0000	Median : 0.0000		
Mean : 66.91	Mean : 2844	Mean : 0.1313	Mean : 0.1378		
3rd Qu.: 59.00	3rd Qu.: 2192	3rd Qu.: 0.0000	3rd Qu.: 0.0000		
Max. :6319.00	Max. :188505	Max. :42.0000	Max. :12.0000		
		NA's :20	NA's :20		
numAtt	numRec	perCaps	hour		
Min. : 0.00000	Min. : 0.000	Min. : 0.000	Min. : 0.00		
1st Qu.: 0.00000	1st Qu.: 1.000) 1st Qu.: 4.255	1st Qu.: 8.00		
Median : 0.00000	Median : 1.000	Median : 6.055	Median :13.00		
Mean : 0.06579	Mean : 1.929	9 Mean : 8.850	Mean :12.21		
3rd Qu.: 0.00000	3rd Qu.: 1.000	3rd Qu.: 9.059	3rd Qu.:18.00		
Max. :18.00000	Max. :311.000	Max. :100.000	Max. :23.00		
	NA's :282				
perHTML	subBlanks	forwards	avgWordLen		
Min. : 0.000	Min. : 0.00	Min. : 0.00 Min	n. : 1.363		
1st Qu.: 0.000	1st Qu.:10.53	1st Qu.: 0.00 1s	t Qu.: 4.208		
Median : 0.000	Median :13.25	Median: 0.00 Med	dian : 4.455		
Mean : 6.517	Mean :13.87	Mean :10.45 Mean	an : 4.487		
3rd Qu.: 0.000	3rd Qu.:15.69	3rd Qu.:15.38 3rd	d Qu.: 4.729		
Max. :100.000	Max. :86.42	Max. :99.06 Max	x. :26.000		
	NA's :20				
numDlr					
Min. : 0.000					
1st Qu.: 0.000					
Median : 0.000					
Mean : 1.782					
3rd Qu.: 0.000					
Max. :1977.000					

Summary shows missing values in subSpamWords(7),noHost(1),isYelling(7) from factor variables and in subExcCt(20), subQuesCt(20), numRec(282),subBlanks(20) from numeric fields

Missing Values: Visualization

Figure 1: Left : Not Spam, Right : Spam

Interpretation:

- noHost is missing on single record when all other values are present
- subSpamWords & isYelling are missing on same 7 records when all other values are present
- subExcCt, subQuesCt, subBlanks appears to be missing on same 20 records
- It is observed that 13 of 20 rows in subBlanks are NaN.
- numRec has missing values on 282 records most likely due to recipients were added in BCC and only 12 emails have been flagged as Spam and remaining 270 are not spam. These 282 missing values are appears to be random and satisfies MAR (Missing at Random). Missing values will be fixed using mean imputation for both categories (Spam and not Spam) separately.

Missing Values: Assumptions and Actions

Instead of deleting records with missing values following actions will be taken on the missing data. Imputation will be applied to numRec variable.

FeatureName	DataType	Missing	Assumption	Action
noHost	factor	1	HostName missing	Replace NAs with F
$\operatorname{subSpamWords}$	factor	7	Subject line Missing	Replace NAs with F
is Yelling	factor	7	Subject Line Missing	Replace NAs with F
$\mathrm{subExcCt}$	numeric	20	Subject Line without exclamation mark	Replace NAs with 0s
$\operatorname{subQuesCt}$	numeric	20	Subject Line without question mark	Replace NAs with 0s
numRec	numeric	282	Undisclosed recipients	Apply mean imputation to Spam and Not Spam groups seperately
$\operatorname{subBlanks}$	numeric	20	Subject Line Witout Blanks	Replace NAs with 0s

No Missing data in Final DataFrame

Figure 2: Left : Not Spam, Right : Spam

Class Distribution (Target Variable)

Below chart shows target variable is binary and class lables are not evenly distributed. This is the case of imbalanced dataset.

Figure 3: Target Variable

Table 1: Target Percentage Distribution

isSpam	Total	percentage			
No Spam Spam	$6951 \\ 2397$	$74.35815 \\ 25.64185$			

Correlation Plot

This plot shows numLines and body CharCt are strongly correlated at 90% and one of them can be removed. So body CharCt will be removed from further analysis.

Figure 4: Correlogram

Strcuture of Final DataFrame

```
'data.frame':
                    9348 obs. of 29 variables:
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ isSpam
##
   $ isRe
                   : Factor w/ 2 levels "F", "T": 2 1 1 1 2 2 1 2 1 2 ...
   $ underscore
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ priority
                   : Factor w/ 2 levels "F", "T": 2 1 1 1 1 2 1 1 1 2 ...
##
   $ isInReplyTo
                   : Factor w/ 2 levels "F", "T": 2 2 2 2 2 2 2 2 2 2 ...
##
   $ sortedRec
##
   $ subPunc
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
   $ multipartText: Factor w/ 2 levels "F","T": 1 1 1 1 1 1 1 1 1 1 1 ...
##
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ hasImages
##
   $ isPGPsigned : Factor w/ 2 levels "F","T": 1 1 1 1 1 1 1 1 1 1 1 ...
   $ subSpamWords : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 1 ...
##
   $ noHost
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
##
   $ numEnd
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ isYelling
   $ isOrigMsg
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ isDear
##
   $ isWrote
                   : Factor w/ 2 levels "F", "T": 1 1 1 1 1 1 1 2 1 1 ...
##
   $ numLines
                   : int
                          50 26 38 32 31 25 38 39 126 50 ...
   $ subExcCt
                          0 0 0 0 0 0 0 0 0 0 ...
##
                   : num
   $ subQuesCt
                          0 0 0 0 0 0 0 0 0 0 ...
##
                   : num
                   : num
##
   $ numAtt
                          0 0 0 0 0 0 0 0 0 0 ...
##
   $ numRec
                   : num
                          2 1 1 0 1 1 1 1 1 2 ...
##
   $ perCaps
                   : num
                          4.45 7.49 7.44 5.09 6.12 ...
##
   $ hour
                          11 11 12 13 13 13 13 14 14 11 ...
                   : num
##
   $ perHTML
                          0 0 0 0 0 0 0 0 0 0 ...
                   : num
   $ subBlanks
##
                   : num 12.5 8 8 18.9 15.2 ...
##
   $ forwards
                          0 0 0 3.12 6.45 ...
                   : num
##
   $ avgWordLen
                   : num
                          4.38 4.56 4.82 4.71 4.23 ...
##
   $ numDlr
                   : int 300000003...
```

Final Dataframe for analysis

Structure of DataFrame has not changed. In previous steps only missing values have been replaced with 0s or Fs based on assumption made. Here is sample DataFrame.

underscore isSpam isRe numLines subExcCt subQuesCt numAttnumRec perCaps hour F Т \mathbf{F} 50 0 0 0 2 4.451039 11 F F F 26 0 0 0 1 7.491289 11 F F F 0 38 0 0 1 7.436096 12 F 32 F F 0 0 0 0 5.090909 13 Т F F 31 0 0 0 1 6.116643 13 F Т F 250 0 0 1 7.62527213 F F F 38 0 0 0 6.343714 13

Table 2: DataFrame

Train/Test split

Original data to be split into train(0.8) and test set (0.2). R package caret provides library function createDataPartition to split data into train/test set and it performs stratified sampling by default as per its documentation. Stratified sampling technique preserves percentage of samples of each class. Target variable in this case is binary i.e. email could either be Spam or not Spam and only approximately 25% emails have been labeled as Spam therefore Stratified sampling is the best way to proceed.

Train - Target Percentage Distribution

createDataPartition function from caret packages was used to split data into train/test set. Target variable is binary and distribution of classes is not balanced. i.e. 70% observations are not spam and only 30% are labeled as Spam in this dataset. This is case of imbalanced dataset. Random Stratified sampling has been used to split data into train/test set for building model using decision trees. Stratified Sampling preserves the percentage of samples of each class. Scaling and normalization is required for decision tree models.

Table 3: Target Percentage Distribution

isSpam	Total	percentage
No Spam Spam	5561 1918	$74.35486 \\ 25.64514$

Constraints

Following are limitations of Decision tree algorithms:

- Decision Tree algorithms are greedy algorithms, prone to overfitting. If not handled properly tree tends to grow larger and become complex and difficult to interpret. Overfitting affects generalizability and hence accuracy of prediction goes down significantly.
- Trees are unstable, meaning that even small change in information leads to big change in trees.
- Loses lot of information in splitting process.
- Bad for large datasets

However, there are different ways to tackle these problems. Hyperparameter tunining, building stopping criteria are discussed in next sections.

Modeling Preparations

The primary objective of this case study is to detect Spam emails. This is binary classification problem. There are bunch of algorithms in the machine learning toolkit to solve classification problems. Logistic regression, Naive Bayes, kNN, SVM and Decision Trees

Hyperparameters

Here are decision tree hyperparameters

	Туре	len	Def		Constr	Req	${\tt Tunable}$	${\tt Trafo}$
minsplit	integer	-	20	1	to Inf	_	TRUE	_
minbucket	integer	-	-	1	to Inf	_	TRUE	_
ср	numeric	-	0.01		0 to 1	_	TRUE	_
maxcompete	integer	-	4	0	to Inf	_	TRUE	_
maxsurrogate	integer	-	5	0	to Inf	_	TRUE	_
usesurrogate	${\tt discrete}$	-	2		0,1,2	_	TRUE	_
surrogatestyle	${\tt discrete}$	-	0		0,1	_	TRUE	_
maxdepth	integer	-	30	-	l to 30	_	TRUE	_
xval	integer	-	10	0	to Inf	-	FALSE	_
parms	untyped	-	-		-	_	TRUE	-

Model Building & Evaluation

Decision tree algorithm are prone to overfit quickly and loses generalizability for prediction i.e. prediction performance become poor. Solution to this problem is hyperparameter tuning. Decision trees have several hyperameters that can be tuned to get optimal model. Below table lists important hyperparameters of which minsplit,minbucket, cp and maxdepth will be used here to tune the model. These are the stopping criterion for the trees which can be applied at each stage during tree-building process.

HyperParameters	Description
minsplit	Minimum number of observations required to split the given node.
	If it is set to 20 indicates that if data has less than 20 records then root node becomes leaf node.
minbucket	Minimum number of observations required at leaf node. default is minbucket = $minsplit/3$
cp	Complexity Parameter to control size of the tree and also known as
	cost of adding another variable to decision tree
\max depth	Set the maximum depth of any node of the final tree
maxsurrogate	Used if data contains missing values. useful to determine which split can be used for missing data
usesurrogate surrogatestyle	Controls use of surrogate split Controls selection of best surrogate

getParamSet(tree) function from **R package mlr** returns following list of hyper-parameters for the decision tree.

	Туре	len	Def		${\tt Constr}$	Req	Tunable	Trafo
minsplit	integer	-	20	1	to Inf	-	TRUE	_
minbucket	integer	-	-	1	to Inf	-	TRUE	_
ср	numeric	-	0.01		0 to 1	-	TRUE	_
maxcompete	integer	-	4	0	to Inf	-	TRUE	_
maxsurrogate	integer	-	5	0	to Inf	-	TRUE	_
usesurrogate	${\tt discrete}$	-	2		0,1,2	-	TRUE	_
surrogatestyle	${\tt discrete}$	-	0		0,1	-	TRUE	_
maxdepth	integer	-	30	1	L to 30	-	TRUE	_
xval	integer	-	10	0	to Inf	-	FALSE	_
parms	untyped	-	_		-	-	TRUE	_

Tuned Parameters

Parameters are tuned with following criteria

- $5 \le \min \text{split} \le 20$
- $3 \le \min$
- $3 \le \max depth \le 10$
- $0.01 \le cp \le 0.1$
- 10 fold cross validation
- Random search Max iterations 200

Here are tuning results:

```
Tune result:
```

```
Op. pars: minsplit=7; minbucket=9; cp=0.0111; maxdepth=9
f1.test.mean=0.9416169,tpr.test.mean=0.9536787,ppv.test.mean=0.9299075,tnr.test.mean=0.7904280
```

Resample Result Task: train.data

Learner: classif.rpart.tuned

Aggr perf: mmce.test.mean=0.0901186

Runtime: 1024.82

Model Interpretability & Explainability

Case Study 03 CONCLUSION

Conclusion

Case Study 03 CONCLUSION

References

- 1. Deborah Nolan; Duncan Temple Lang. Data Science in R.Chapman and Hall/CRC, 2015.
- 2. The statistica report
- 3. The Paper I Email spam filtering using decision tree algorithm.
- 4. The Paper II Identifying Valid Email Spam Emails Using Decision Tree.