SSN COLLEGE OF ENGINEERING, KALAVAKKAM – 603 110 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.E. Computer Science and Engineering CS6503 THEORY OF COMPUTATION

Date: 21.07.2017, 8.00-9.30 AM UNIT TEST – 1 Max. Marks: 50 Academic Year: 2017-2018 ODD Batch: 2015-2019

Semester: 5 Faculty: Dr. S. Kavitha / Ms. A. Beulah

Qn.	Part – A (Answer any FIVE) (5 x 2 = 10)				(KL,COn)
1	Define Deterministic Finite Automat (DFA).				K1,CO1
2	What are the closure properties of regular languages?			2 2	K1,CO3
3	Generate ε-NFA to represent a*b c.			2	K3,CO1
4	Describe the language accepted by the following DFA:			2	K3,CO1
•	Tooling the language accepted	States	Input {0}	_	,
		$\rightarrow q_0$	q ₁		
		*q ₂	q ₂		
_	Draw a NFA to accept strings co		q ₀	2	V2 CO1
5	•	2	K3,CO1		
6	Write Regular Expression for the	2	K3,CO3		
7	one symbol '1'. Define the extended transition function for non-deterministic finite automata.				K1,CO1
	Part – B	(Answer any FOUR)) (4 x 10 = 40)		
8.	Construct NFA with epsilon for the RE = (a/b)*ab and convert into DFA and further find the minimal DFA.				K3,CO1
9.	a) Prove that "A language L is a	6	K2,CO1		
٥.	accepted by some NFA"	7 (II alla olliy II 2 15	Ū	112,001	
	b) Construct a DFA accepting b	inary strings with the	ree consecutive Os	4	K3,CO1
10.	a) Consider the following ϵ -NFA and find ϵ -closure and its equivalent NFA.				K3,CO1
	q (}		
	b) Also check the word '001' for	constructed NFA		2	K3,CO3
11.	a) Determine DFA for the given NFA. M = ({p, q, r, s}, {0, 1}, δ , p, {q, s}), where δ is defined as :				K1,CO1
	States	0 1			
	р	{q, s} q			
	q	r {q,	r}		
	r	s p			
	S	- p.			
	b) Given $\Sigma = \{a,b\}$. Construct a DFA which recognizes the language $L = \{b^m ab^n m,n > 0\}$				K3,CO1
12.	a) State and prove the theorem of DFA to RE such that $L(A) = L(R)$ using $R_{ij}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			5	K2,CO3
	b) Find the RE of the given automata				K3,CO3

13. a) State the rule of Arden's theorem. Find the RE of the given automata 6 K3,CO3 using Arden's theorem.

b) Find the RE of the given automata using the state elimination method 4 K3,CO3

- a) State and prove the pumping lemma for regular languages. 4
 - b) Check whether a language $L = \{0^n 1^{2n}\}$ is regular or not. 6 K3,CO3

********BEST OF LUCK*******

Prepared by	
Dr. S. Kavitha	Ms. A. Beulah

Reviewed by	HoD, CSE	

K3,CO3