Lecture 8: Stability of Linear Systems

Baboo J. Cui, Yangang Cao July 11, 2019

Contents

T	Stability of C-T Autonomous Linear Systems	2
2	Stability of C-T LTI Systems	2
3	Phase Portraits of Stable 2D Systems	2
4	Unstable Systems	2
5	Phase Portraits of Unstable 2D Systems	3
6	Marginally Stable Systems	3
7	Phase Portraits of Marginally Stable 2D Systems	3
8	Phase Portraits of 3D Systems	3
9	Stability of C-T LTV Systems	3
10	Stability of D-T Autonomous Linear Systems	3
11	Stability of D-T LTV Systems	4
12	Stability of D-T LTI Systems	4
13	Marginal Stability of D-T LTI Systems	4

1 Stability of C-T Autonomous Linear Systems

A continuous-time autononous linear system

$$\dot{x}(t) = A(t)x(t) \tag{1}$$

Definition (Asymptotic Stability):

The linear system (1) is called asymptotically stable at $x_e = 0$ if its solution x(t) starting from any initial condition $x(0) \in \mathbb{R}^n$ satisfies

$$x(t) \to 0 \text{ as } t \to \infty$$

Definition (Exponential Stability):

The linear system (1) is called exponentially stable at $x_e = 0$ if its solution x(t) starting from any initial condition $x(0) \in \mathbb{R}^n$ satisfies

$$||x(t)|| \le Ke^{-r}||x(0)||, \quad \forall t \ge 0,$$

for some constants K, r > 0.

2 Stability of C-T LTI Systems

Theorem:

For a C-T LTI system $\dot{x} = Ax$, the following statements are equivalent

- 1. System is asymptotically stable
- 2. System is exponentially stable
- 3. All eigenvalues of A are in the open left half of the complex plane $\mathbb C$

3 Phase Portraits of Stable 2D Systems

4 Unstable Systems

Definition:

The LTI system $\dot{x} = Ax$ is unstable if, starting from some x(0), the solution x(t) will deverge to infinity.

Theorem:

The LTI system is unstable if either of the following is true:

- 1. A has eigenvalues on the open right half plane of \mathbb{C}
- 2. A has a defective eigenvalues on the $j\omega$ -axis
- An eigenvalue is defective if at least one of its Jordan blocks has size greater than one

5 Phase Portraits of Unstable 2D Systems

6 Marginally Stable Systems

Definition:

The LTI system $\dot{x} = Ax$ is marginally stable if, starting from some x(0), the solution x(t) will neither converge to zero nor diverge to infinity.

Theorem:

The LTI system is marginally stable if both of the following hold:

- 1. All eigen of A are in the closed left half of the complex plane $\mathbb C$
- 2. There are some eigenvalues of A on the $j\omega$ -axis, and all the Jordan blocks associated with such eigenvalues have size one

7 Phase Portraits of Marginally Stable 2D Systems

8 Phase Portraits of 3D Systems

9 Stability of C-T LTV Systems

For LTV system $\dot{x}(t) = A(t)x(t)$, its solution is $x(t) = \Phi(t)x(0), t \ge 0$

Theorem:

- LTV system is asymptotically stable if $\Phi(t) \to 0$ as $t \to \infty$
- LTV system is exponentially stable if there exist C, r > 0 such that

$$||\Phi(t)|| \le Ce^{-rt}, \forall t \ge 0$$

10 Stability of D-T Autonomous Linear Systems

A discrete-time LTV system

$$x[k+1] = A[k]x[k], \quad k = 0, 1, \dots$$

Definition (Asymptotic Stability):

LTV system is asymptotically stable at time k_0 if its solution x[k] starting from any initial condition $x[k_0]$ at time k_0 satisfies

$$x[k] \to 0 \text{ as } k \to \infty$$

Definition(Exponential Stability):

LTV system is **exponentially stable at time** k_0 if its solution x[k] starting from any initial condition $x[k_0]$ at time k_0 satisfies

$$||x[k]|| \le Kr^{k-k_0} ||x[k_0]||, \quad \forall k = k_0, k_0 + 1, \dots$$

for some constants $K > 0, 0 \le r < 1$

11 Stability of D-T LTV Systems

For LTV system $x[k+1] = A[k]x[k], \quad k = 0, 1, \dots$

• LTV system is asymptotically stable at time k_0 if

$$\Phi[k, k_0] \to 0 \text{ as } k \to \infty$$

• LTV system is exponentially stable at time k_0 if there exist $C \geq 0$,

$$\|\Phi\left[k, k_0\right]\| \le Cr^{k-k_0}, \quad \forall k \ge k_0$$

- Asymptotic stability is **not equivalent** to exponential stability
- The starting time k_0 does matter

12 Stability of D-T LTI Systems

Consider the discrete-time LTI system

$$x[k+1] = Ax[k], k=0,1,\dots$$

Theorem:

The following statements are equivalent

- 1. The LTI system is asymptetically stable
- 2. The LTI system is exponentially stable
- 3. All the eigenvalues of A are inside the open unit disk of the complex plane $\mathbb C$
- \bullet For LTI systems, the starting time k_0 does not matter

13 Marginal Stability of D-T LTI Systems

Given a LTI system x[k+1] = Ax[k] The LTI system is **marginally stable** if both of the following hold:

- 1. All the eigenvalues of A are inside the closed unit disk of $\mathbb C$
- 2. There are some non-defective eigenvalues of A on the unit circle

The LTI system is **unstable** if either of the following is true:

- 1. A has eigenvalues outside the closed unit disk of $\mathbb C$
- 2. A has a defective eigenvalues on the unit circle