

Tarefa 1 - Aprendizado de máquina

Designing Machine Learning Systems - cap 1-5

Emelyn Clementino Freire

O'REILLY"

Designing Machine Learning Systems

Capítulo 1: Overview of Machine Learning Systems

1.	Overview of Machine Learning Systems	1
	When to Use Machine Learning	3
	Machine Learning Use Cases	9
	Understanding Machine Learning Systems	12
	Machine Learning in Research Versus in Production	12
	Machine Learning Systems Versus Traditional Software	22
	Summary	23

Objetivo:

Explicar o que são sistemas de aprendizado de máquina (ML) e como eles são usados.

Principais pontos:

Quando usar ML:

- Para identificar padrões complexos nos dados.
- Para fazer previsões, como recomendar filmes ou prever o clima.
- Para lidar com grandes volumes de informações.

• Como funciona um sistema de ML:

 É mais do que só o algoritmo: inclui dados, infraestrutura e como tudo isso se conecta para resolver problemas reais.

Desafios:

Um sistema de ML precisa ser rápido, confiável e atender às necessidades de quem vai usá-lo.

```
# Capitulo 1: Overview of Machine Learning Systems
    print("### Capitulo 1: Overview of Machine Learning Systems ###")
    # Exemplo de quando usar ML: Classificação binária simples
    X, y = make_classification(n_samples=500, n_features=5, random_state=42)
    X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
    # Treinamento simples de modelo
    model = LogisticRegression()
    model.fit(X_train, y_train)
    # Previsões e avaliação
    predictions = model.predict(X test)
    print("\nRelatório de Classificação:\n")
    print(classification_report(y_test, predictions))
    # Visualização simples
    plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis', alpha=0.5)
    plt.title("Classificação: Previsões de Teste")
    plt.show()
```


ø	0.89	0.91 0.90	75
1	0.91	0.89 0.90	75
accuracy		0.90	150
macro avg	0.90	0.90 0.90	150
weighted avg	0.90	0.90 0.90	150

Capítulo 2: Introduction to Machine Learning Systems Design 2. Introduction to Machine Learning Systems Design......

Objetivo:

Apresentar como planejar sistemas de ML que sejam confiáveis, eficientes e fáceis de ajustar.

Principais pontos:

Começando pelo objetivo:

- Entender o que o negócio precisa e alinhar isso com o que o sistema de ML deve fazer.
- Definir métricas claras para medir o sucesso.

O que faz um bom sistema:

- Confiabilidade: Funciona bem sem falhas.
- Escalabilidade: Aguenta crescer junto com o aumento de dados ou usuários.
- o Manutenção: Fácil de atualizar e monitorar.

Como fazer:

 Seguir um processo de tentativa e erro: definir problemas, testar soluções, avaliar e melhorar.

2.	Introduction to Machine Learning Systems Design	25
	Business and ML Objectives	26
	Requirements for ML Systems	29
	Reliability	29
	Scalability	30
	Maintainability	31
	Adaptability	31
	Iterative Process	32
	Framing ML Problems	35
	Types of ML Tasks	36
	Objective Functions	40
	Mind Versus Data	43
	Summary	46

```
# Capítulo 2: Introduction to Machine Learning Systems Design
print("### Capítulo 2: Introduction to Machine Learning Systems Design ###")
# Demonstração de confiabilidade e escalabilidade
print("Simulação de análise de desempenho em diferentes tamanhos de amostras")
sizes = [100, 500, 1000, 5000]
latencies = []

for size in sizes:
    X_sample, y_sample = make_classification(n_samples=size, n_features=5, random_state=42)
    model = LogisticRegression()
    %time model.fit(X_sample, y_sample)
    latencies.append(size / model.n_iter_[-1])

plt.plot(sizes, latencies, marker='o')
plt.xlabel("Tamanho do conjunto de dados")
plt.ylabel("Desempenho (amostras por iteração)")
plt.title("Escalabilidade do Modelo")
```

plt.show()

Capítulo 3: Data Engineering Fundamentals

Objetivo:

Mostrar como organizar e processar dados para que o sistema de ML funcione bem.

Principais pontos:

_	D-		2		4-4	
•	υe	onde	vem	os	aaa	OS:

 Podem ser organizados em tabelas (dados estruturados) ou mais livres, como texto e imagens (não estruturados).

Como organizar os dados:

 Usar bancos de dados relacionais (como tabelas) ou NoSQL para casos mais flexíveis.

Transformando dados em algo útil:

 Usar processos como ETL (Extrair, Transformar, Carregar) para preparar os dados.

Desafios:

 Garantir que os dados sejam confiáveis, atualizados e possam ser usados em larga escala.

3.	Data Engineering Fundamentals	49
	Data Sources	50
	Data Formats	53
	JSON	54

Row-Major Versus Column-Major Format 54 Text Versus Binary Format 57 Data Models 58 Relational Model 59 NoSOL Structured Versus Unstructured Data Data Storage Engines and Processing Transactional and Analytical Processing ETL: Extract, Transform, and Load 70 Modes of Dataflow 72 Data Passing Through Databases Data Passing Through Services 73 Data Passing Through Real-Time Transport 74 Batch Processing Versus Stream Processing 78 Summary 79

```
# Capítulo 3: Data Engineering Fundamentals
print("### Capítulo 3: Data Engineering Fundamentals ###")
# Exemplo de preparação de dados: Limpeza e transformação
raw_data = {'idade': [23, 35, np.nan, 29], 'salario': [50000, 70000, 80000, np.nan]}
data = pd.DataFrame(raw_data)
print("Dados Brutos:\n", data)
data.fillna(data.mean(), inplace=True)
data['salario_escalonado'] = StandardScaler().fit transform(data[['salario']])
```

print("Dados Pós-Limpeza:\n", data)

NaN

Dados Brutos:

3 29.0

idade salario 0 23.0 50000.0 1 35.0 70000.0 2 NaN 80000.0

Dados Pós-Limpeza: idade sa

0 23.0 50000.000000

1 35.0 70000.000000

2 29.0 80000.000000

3 29.0 66666.666667

🖅 ### Capítulo 3: Data Engineering Fundamentals ###

salario salario escalonado

-1.543033

0.308607

0.000000

1.234427

Capítulo 4: Training Data

Objetivo:

Ensinar como escolher, preparar e melhorar os dados usados para

"treinar" o sistema de MI.

Principais pontos:

- Escolher bem os dados:
 - Garantir que eles sejam representativos do problema que você quer resolver.
- Rotular os dados:
 - Identificar o que cada dado representa, como classificar imagens em "gato" ou "cachorro".
- Lidando com problemas comuns:
 - Resolver casos de desbalanceamento, como quando temos muitas imagens de um tipo e poucas de outro.
- Aumentando os dados:
 - Criar variações dos dados, como ajustar cores de uma imagem ou girá-la.

Training Data	81
Sampling	82
Nonprobability Sampling	83
Simple Random Sampling	84
Stratified Sampling	84
Weighted Sampling	85
Reservoir Sampling	86
Importance Sampling	87
Labeling	88
Hand Labels	88
Natural Labels	91
Handling the Lack of Labels	94
Class Imbalance	102
Challenges of Class Imbalance	103
Handling Class Imbalance	105
Data Augmentation	113
Simple Label-Preserving Transformations	114
Perturbation	114
Data Synthesis	116
Summary	118

```
# Capítulo 4: Training Data

print("### Capítulo 4: Training Data ###")

# Exemplo de balanceamento de classes

imbalanced_y = [0] * 95 + [1] * 5

plt.bar([0, 1], [imbalanced_y.count(0), imbalanced_y.count(1)], color=['blue', 'orange'])

plt.title("Distribuição de Classes Desequilibrada")

plt.show()

balanced_y = np.random.choice([0, 1], size=100, p=[0.5, 0.5])

plt.bar([0, 1], [list(balanced_y).count(0), list(balanced_y).count(1)], color=['blue', 'orange'])

plt.title("Distribuição de Classes Balanceada")

plt.show()
```


Capítulo 5: Feature Engineering

Objetivo:

Ensinar como extrair informações importantes dos dados para que o sistema funcione melhor.

Principais pontos:

O que são features:

 São características dos dados que ajudam o modelo a aprender, como o tamanho ou a cor de um objeto em uma imagem.

Como melhorar os dados:

 Preencher valores faltantes, ajustar os dados para ficarem na mesma escala e transformar textos em números.

• Evitar erros:

 Garantir que o modelo só use informações que ele realmente terá quando estiver funcionando.

Generalização:

 Criar features que funcionem bem com novos dados, não apenas com os dados usados no treinamento.

5.	Feature Engineering	119
	Learned Features Versus Engineered Features	120
	Common Feature Engineering Operations	123
	Handling Missing Values	123
	Scaling	126

iv | Table of Contents

Discretization	128
Encoding Categorical Features	129
Feature Crossing	132
Discrete and Continuous Positional Embeddings	133
Data Leakage	135
Common Causes for Data Leakage	137
Detecting Data Leakage	140
Engineering Good Features	141
Feature Importance	142
Feature Generalization	144
Summary	146

```
# Capítulo 5: Feature Engineering
print("### Capítulo 5: Feature Engineering ###")
# Exemplo de criação de features
raw_features = pd.DataFrame({
    'idade': [23, 45, 31],
    'salario': [50000, 80000, 60000]
})
raw_features['idade_quadrado'] = raw_features['idade'] ** 2
raw_features['salario_log'] = np.log(raw_features['salario'])
print("Dados com Novas Features:\n", raw features)
```

529 10.819778

961 11.002100

2025 11.289782

Capitulo 5: Feature Engineering

idade salario idade_quadrado salario_log

Dados com Novas Features:

45 80000

23

31

50000

60000