Unit Testing Plan

Test	Description	Cutting Point	Status
Unit Test #1: Button Press	Test that a button press (both buttons) triggers an interrupt and signals the angle task with a semaphore post.	Angle task (after sem post)	Not Run
Unit Test #2: Angle Task	Test that the button press increments and decrements changes the angle setpoint shared resource correctly.	Isolates buttons and angle task (cuts out physics)	Not Run
Unit Test #3: Slider Positions	Test each of four slider positions are read correctly from the throttle task, reading occurs periodically.	Throttle task (before mutex pend)	Not Run
Unit Test #4: Throttle Task	Confirm throttle task wakes periodically from timer semaphore post and modifies throttle setpoint correctly.	Isolates slider and angle task (cuts out physics)	Not Run
Unit Test #5: Configure Input	Test that the configured input is read correctly and stored in the physics task properly.	Isolates a subsection of physics task.	Not Run
Unit Test #6: Display Rocket	Test that the display task displays the rocket correctly throughout movement and rotation (given rocket data).	Display Task and mutex pend (cuts out physics)	Not Run
Unit Test #7: Periodic Physics	Confirm the physics task wakes up at the rate specified by configuration.	Isolates physics task and timer sem post.	Not Run
Unit Test #8: LED/PWM Task	Confirm that the LED task correctly sets up timers for PWM given thrust and acceleration data.	LED/PWM Task (cuts out physics)	Not Run
Unit Test #9: Physics Calculations	Test that calculated values are as expected given sample inputs.	Isolates physics task.	Not Run
Unit Test #10: Physics Queue	Assert that the physics task posts correct data to the message queue.	Cuts after message queue post	Not Run
Unit Test #11: Physics Rocket	Confirm that the rocket data structure is updated correctly according to the calculations.	Cuts before Display pends on mutex.	Not Run

Functional Testing Plan

Test	Description	Status
Functional Test #1: Game Start	Confirm the game starts and LCD displays welcome screen.	Not Run
Functional Test #2: Button 0	Confirm pressing Button 0 causes the rocket to rotate counter clockwise.	Not Run
Functional Test #3: Button 1	Confirm pressing Button 1 causes the rocket to rotate clockwise.	Not Run
Functional Test #4: Slider Throttle	Test that the position on the slider changes the fuel burn rate (also consider position slider not pressed).	Not Run
Functional Test #5: LED0	Test that LED0 shows current thrust as a % of the maximum via pulse width modulated lighting.	Not Run
Functional Test #6: LED 1 Normal	Test that LED1 shows current acceleration as a % of the maximum.	Not Run
Functional Test #6: Win	Confirm the game can be won (may take several tries).	Not Run
Functional Test #7: Loss	Confirm the game can be lost.	Not Run
Functional Test #8: Restart	Check that after a win or a loss the game can be played again.	Not Run
Functional Test #9: Blackout	Assert causing too much acceleration leads to blackout and LED1 blinks with 50% duty cycle.	Not Run
Functional Test #10: Configurable	Confirm that the game data is configurable.	Not Run

Summary

After week one no tests have been run. Time was spent developing test plans themselves. I feel good about where the unit tests are broken up but my biggest concern is how I will port in the sample inputs and outputs.