Feuille d'exercices n°1 Révisions

(du lundi 24 septembre 2012 au vendredi 28 septembre 2012)

Exercice 1

Rappeler les développements limités au voisinage de 0 à l'ordre 6 des fonctions suivantes :

1.
$$f(x) = e^x$$

2.
$$g(x) = \ln(1+x)$$

3.
$$h(x) = (1+x)^{\alpha}$$
 où $\alpha \in \mathbb{R}^*$

4.
$$i(x) = \sin(x)$$

$$5. \ j(x) = \cos(x)$$

Exercice 2

Déterminer, au voisinage de 0, les développements limités des fonctions suivantes :

1.
$$f(x) = \cos(x)e^x$$
 à l'ordre 4

2.
$$g(x) = \frac{1}{1-x} - e^x$$
 à l'ordre 3

3.
$$h(x) = \frac{\cos(x)}{\sqrt{1+x}}$$
 à l'ordre 3

4.
$$i(x) = \ln(1 + \cos(x))$$
 à l'ordre 4

5.
$$j(x) = e^{\cos(x)}$$
 à l'ordre 4

6.
$$k(x) = \frac{xe^x}{1-x^2}$$
 à l'ordre 3

7.
$$\ell(x) = (\cos(x))^{\sin(x)}$$
 à l'ordre 4

Exercice 3

Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x$$

2.
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$$

3.
$$\lim_{x \to +\infty} \left(\cos \left(\frac{1}{x} \right) \right)^{x^2}$$

4.
$$\lim_{x \to +\infty} x^3 \sin\left(\frac{1}{x}\right) - x^2$$

5.
$$\lim_{x \to 0} \frac{e^x - \cos(x) - x}{x - \ln(1+x)}$$

6.
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\ln(1+x)}$$

7.
$$\lim_{x \to 0} \frac{\ln(1 + \sin(x)) - \sin(\ln(1 + x))}{x^2 \sin(x^2)}$$

Exercice 4

Soient $a \in \mathbb{R} \cup \{+\infty\}$, f et g deux fonctions définies sur \mathbb{R} à valeurs réelles. On note e^f l'application $x \mapsto e^{f(x)}$ et $\ln(f)$ l'application $x \mapsto \ln(f(x))$.

1. Montrer que :

$$f \sim_a g \Rightarrow e^f \sim_a e^g$$

- 2. Donner une condition nécessaire et suffisante sur f et g pour que $e^f \sim e^g$
- 3. On suppose f et g strictement positives. Montrer que :

$$f \sim_a g \Rightarrow \ln(f) \sim_a \ln(g)$$

4. On suppose f et g strictement positives telles que $f \underset{a}{\sim} g$. On suppose de plus que g admet en a une limite ℓ dans $(\mathbb{R}^+_* - \{1\}) \cup \{+\infty\}$. Montrer qu'alors $\ln(f) \underset{a}{\sim} \ln(g)$. On distinguera le cas $\ell = +\infty$ du cas $\ell \in \mathbb{R}^+_* - \{1\}$.