II.4. Minimizarea funcțiilor booleene prin metoda diagramelor Karnaugh

Metoda Veitch-Karnaugh

- oferă posibilitatea de a grupa vizual termenii conjuncție din FND pentru care se poate aplica unificarea
- pentru unificarea a doi termeni, aceștia trebuie să difere pe o singură variabilă
 - la un termen apare negată, la celălalt nenegată
- asemenea termeni devin vecini într-o diagramă Karnaugh

Structura diagramei Karnaugh

- tabel bidimensional
- numele variabilelor
 - pe linii, respectiv coloane
- zona etichetelor
 - etichetă şir de n biţi
 - fiecare bit corespunde unei variabile (intrări)
 - apar toate combinațiile posibile de valori
- zona valorilor funcției (ieșiri)

Exemple de diagrame

Codul Grey

- etichetele nu se scriu în ordinea naturală, ci în ordinea Grey
- oricare două etichete consecutive, inclusiv prima și ultima, diferă printr-un singur bit
 - 2 biţi: 00, 01, 11, 10
 - 3 biţi: 000, 001, 011, 010, 110, 111, 101, 100
 - 4 biţi: 0000, 0001, 0011, 0010, 0110, 0111,
 0101, 0100, 1100, 1101, 1111, 1110, 1010,
 1011, 1001, 1000

Adiacențe în diagrame (1)

- două poziții sunt adiacente dacă etichetele corespunzătoare diferă pe un singur bit
 - codul Grey translează adiacența în vecinătate
- pentru o funcție de n variabile, o locație are n locații adiacente
 - -n < 5: locațiile adiacente locației date se determină vizual (sus, jos, stânga, dreapta)
 - $-n \ge 5$: și alte adiacențe decât cele vizibile direct

Adiacențe în diagrame (2)

- pot fi mai mult de 2 locații adiacente
 - extinderea unificării la mai mult de 2 variabile
- în diagramele Karnaugh, acesta corespund unor blocuri de 2^k locații
 - putere a lui 2 atât pe linii, cât și pe coloane
 - inclusiv puterea 0
 - formă dreptunghiulară
 - pentru fiecare locație, blocul trebuie să conțină exact k locații adiacente cu ea

Minimizare Karnaugh

- se caută blocuri conţinând numai valori 1
 - corespunzătoare unor adiacențe (v. anterior)
 - blocuri cât mai mari şi mai puţine
- pentru fiecare bloc cu 2^k locații 1
 - avem un termen conjuncție cu *n-k* variabile
 - conține variabilele cu valori constante pentru toate locațiile din bloc
 - constant 0: variabilă negată; constant 1: nenegată
 - toți acești termeni sunt legați prin disjuncție

Exemple

Adiacența liniilor/coloanelor extreme

$$f = \Sigma(0,2,3,4,5,6)$$

Expresia depinde de grupare

Evitarea redundanțelor

simplificare neminimală

simplificare minimală

Combinații imposibile de valori

- anumite combinații de valori nu vor apărea niciodată la intrări
 - din definiția comportamentului dorit
 - dar diagrama trebuie completată pentru toate combinațiile de valori ale variabilelor
- în locațiile corespunzătoare acestor combinații se poate trece 0 sau 1
 - astfel încât să obținem o expresie cît mai simplă

Exemplu - afişaj zecimal

- afișaj cu 7 segmente
- selectarea segmentelor pentru fiecare cifră
 - -0 stins
 - 1 aprins
- comanda pe intrare 4
 variabile
 - o cifră zecimală se poate scrie pe 4 biți

Segmentul d - tabel de adevăr

Nr	A	В	C	D	d
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Nr	A	В	C	D	d
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	*
11	1	0	1	1	*
12	1	1	0	0	*
13	1	1	0	1	*
14	1	1	1	0	*
15	1	1	1	1	*

Expresii mai simple

"funcționare de siguranță"

combinații imposibile

Temă: comparator pe 2 biţi

- 4 variabile: A, B, C, D
- formează 2 numere

$$-N_1 = AB$$

$$-N_2 = CD$$

 3 ieşiri - corespund valorilor de adevăr

$$-LT = (N_1 < N_2)$$

$$- EQ = (N_1 = N_2)$$

$$-GT = (N_1 > N_2)$$

A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Temă: multiplicator pe 2 biţi

- 4 variabile: A, B, C, D
- formează 2 numere

$$-N_1 = AB$$

$$-N_2 = CD$$

 4 ieşiri - formează produsul N₁ · N₂

A	В	C	D	P8	P4	P2	P1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

Temă: incrementare cu 1 BCD

- 4 variabile
 - formează un numărBCD
 - între 0 și 9
- 4 ieșiri numărul de la intrare incrementat
 - rezultatul este tot un număr BCD

I8	I 4	I2	I1	O8	O4	O2	O1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	*	*	*	*
1	0	1	1	*	*	*	*
1	1	0	0	*	*	*	*
1	1	0	1	*	*	*	*
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*

II.5. Circuite combinaționale

• valorile de la ieşire depind doar de valorile de la intrare din momentul respectiv

Multiplexorul

- 2ⁿ intrări (de date)
- *n* intrări de selecție (variabile de control)
 - biţi de control (de adresă)
- o singură ieșire
- fiecare intrare corespunde unui termen FND cu variabile de control
- una dintre intrări (bit) este selectată devine valoare de ieșire

Multiplexor $4 \rightarrow 1 (n=2)$

S_1	S_0	O
0	0	I_0
0	1	\mathbf{I}_1
1	0	${ m I}_2$
1	1	I_3

Diagrama logică (4→1)

Implementare funcții booleene

- intrările de selecție formează un număr
- care reprezintă indicele intrării de date care este selectată ca valoare de ieșire
- putem astfel implementa funcții booleene cu ajutorul multiplexorului
 - intrări de date ieșirile corespunzătoare liniilor din tabelul de adevăr
 - intrări de selecție intrările funcției booleene

Exemple

Implementare eficientă - folding

majoritate din 3

A	В	C	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A	В	
0	0	0
0	1	С
1	0	С
1	1	1

Implementare eficientă - folding

imparitate

Α	В	C	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A	В	
0	0	C
0	1	$\overline{\overline{\mathbf{C}}}$
1	0	$\overline{\overline{\mathbf{C}}}$
1	1	С

Decodorul

- *n* intrări
- 2^n ieşiri
- în fiecare moment, exact una din ieșiri este activată
 - cea al cărei indice este egal cu numărul format de intrări
 - fiecare ieşire corespunde unui termen FND scris cu variabilele de intrare

Decodor n=2

I_1	I_0	_	O_2	O_1	O_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Diagrama logică (*n*=2)

Adunare - implementare cu decodor

A	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Comparatorul

- operatorii de comparare: = $, > , < , \ge , \le$
 - exemplu de implementare: egalitate pe 4 biţi
 - temă: comparator complet (<, =, >)

Sumatorul

- semi-sumatorul (half-adder)
 - adună cei doi biţi de intrare
 - ieşire: un bit sumă şi un bit transport
 - nu poate fi extins pentru mai multe cifre
- sumatorul complet (full adder)
 - adună cei trei biţi de intrare (inclusiv transport)
 - aceeași ieșire: un bit sumă și un bit transport
 - poate fi extins pentru mai multe cifre

Diagrame logice

A	В	Sum	C _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sumator serial (16 biţi)

Sumatoare seriale

- această variantă este sumatorul cu propagarea transportului
- avantaj: același circuit (simplu), repetat
- dezavantaj: viteza
 - la fiecare rang, trebuie așteptat rezultatul de pe rangul anterior
 - deci întârzierea este proporţională cu numărul de biţi

Accelerarea adunării (1)

- sumator cu anticiparea transportului
 - carry lookahead adder
 - transportul de intrare generat independent pentru fiecare rang
 - $C_0 = A_0 B_0$
 - $C_1 = A_0 B_0 A_1 + A_0 B_0 B_1 + A_1 B_1$
 - ...
 - $C_i = G_i + P_i C_{i-1} = A_i B_i + (A_i + B_i) \cdot C_{i-1}$
 - ...

Accelerarea adunării (2)

- sumatorul cu anticiparea transportului
 - avantaj viteza
 - elimină întârzierea datorată propagării transportului
 - dezavantaj circuite suplimentare, complexe
 - de obicei combinație anticipare-propagare
- sumator cu selecția transportului
 - la fiecare rang se calculează suma pentru $C_{in}=0$ și $C_{in}=1$, apoi se selectează cea corectă

Unitate aritmetică și logică elementară (1 bit)

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - semnale de control

Variantă îmbunătățită

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - semnale de control

Unitate aritmetică și logică pe 16 biți

