Modeling and High-Performance Control of Electric Machines

Chapter 4 Rotating Magnetic Fields

John Chiasson

Wiley-IEEE Press 2005

Rotating Magnetic Fields

- Distributed Windings
- Approximate Sinusoidally Distributed B Field
- Sinusoidally Wound Phases
- Sinusoidally Distributed Magnetic Fields
- Magnetomotive Force (mmf)
- Flux Linkage
- Azimuthal Magnetic Field in the Air Gap*

Distributed Windings

- A **single** length of wire is wound around the core.
- This single wire is wound to make 3 loops (windings/turns/coils).
- The 1st (half-cylindrical shape) loop is from a to b.
- The 2^{nd} loop is from c to d.
- The 3^{rd} loop is form e to f.
- This single wire with 3 loops is called a phase winding.
- The semi-circular sides of each loop are referred to as end turns.
- This is a distributed winding as the loops are not all in a single pair of slots.

Distributed Windings - Cross-Sectional View

- The top three slots are at $\theta = \pi/3$, $\theta = \pi/2$, and $\theta = 2\pi/3$.
- The bottom three slots are at $\theta = 4\pi/3$, $\theta = 3\pi/2$, and $\theta = 5\pi/3$.
- i > 0 if it is coming out of the top 3 slots and into the bottom 3 slots.

Distributed Windings - Cross-Sectional View

- (a) A single rotor phase similar to before except that two loops are wound in the middle slots.
- (b) A single stator phase with the slots in the inside surface of the stator iron.
 - The radial air gap distance is denoted as g.
 - An arbitrary point is located using polar coordinates (r, θ) .

Slip Rings to Bring Electrical Power into the Rotor

- Slip rings 1 and 2 are conducting material and rigidly connected to the rotor.
- The brushes b_1 and b_2 are **fixed** in space.
- The brushes b_1 and b_2 make sliding contact with the slip rings.
- ullet Slip ring 1 is electrically connected point f of the rotor phase.
- Slip ring 2 is electrically connected to point a of the rotor phase.
- Voltage source connected to brushes b_1 and b_2 .

More Distributed Windings

- (a) A single rotor phase with a distributed winding.
- **(b)** A single **stator** phase with a distributed winding.
 - The point of using distributed windings is so that their currents create a **radial** magnetic field in the air gap that is **sinusoidally** distributed in θ .
 - This is explained next!

- (a) Idealized rotor windings: Slots and wire inside has zero cross-section.
- (b) Idealized stator windings: Slots and wire inside has zero cross-section.
 - ullet Compute the **radial ar{B}** field **in the air gap** created by the current in a distributed winding.
 - Ampère's law $\oint \vec{\mathbf{H}} \cdot d\vec{\ell} = i_{\mathrm{enclosed}}$ is the **key tool** to do this.
 - Our first idealization is that the slots and wire inside them have zero cross-section.

Stator phase a has current i_{Sa} .

Take $\vec{\mathbf{H}} \equiv 0$ in the **iron**.

$$\begin{split} \int_{1}^{2} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} + \int_{2}^{3} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} + \int_{3}^{4} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} + \int_{4}^{1} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} &= i_{\text{enclosed}} \\ \int_{1}^{2} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} + \int_{3}^{4} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} &= i_{\text{enclosed}} \\ \int_{1}^{2} H_{Sa}(0) \mathbf{\hat{r}} \cdot d\ell \mathbf{\hat{r}} + \int_{3}^{4} H_{Sa}(\theta) \mathbf{\hat{r}} \cdot (-d\ell \mathbf{\hat{r}}) &= i_{\text{enclosed}} \\ gH_{Sa}(0) - gH_{Sa}(\theta) &= i_{\text{enclosed}} \end{split}$$

$$H_{Sa}(\theta) = H_{Sa}(0) - \frac{i_{\rm enclosed}(\theta)}{g}.$$

$$i_{\rm enclosed} = \begin{cases} 0 & {\rm for} \quad 0 < \theta < \pi/3 \\ i_{Sa} & {\rm for} \quad \pi/3 < \theta < \pi/2 \\ 3i_{Sa} & {\rm for} \quad \pi/2 < \theta < 2\pi/3 \\ 4i_{Sa} & {\rm for} \quad 2\pi/3 < \theta < 4\pi/3 \\ 3i_{Sa} & {\rm for} \quad 4\pi/3 < \theta < 3\pi/2 \\ i_{Sa} & {\rm for} \quad 3\pi/2 < \theta < 5\pi/3 \\ 0 & {\rm for} \quad 5\pi/3 < \theta < 2\pi \end{cases}$$

Compute $H_{Sa}(0)$ using Conservation of Flux

 $\vec{\mathbf{B}}_{Sa} = \mu_0 \vec{\mathbf{H}}_{Sa}$ in air.

 $\vec{\mathbf{B}}_{Sa}=B_{Sa}\mathbf{\hat{r}}=\mu_0(H_{Sa}(0)-i_{\mathrm{enclosed}}(\theta)/g)\mathbf{\hat{r}}$ on the cylindrical surface.

$$0 = \oint \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}} = \underbrace{\int_{D_1} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}} + \int_{D_2} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}}}_{= 0} + \int_{S_{cylinder}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}}$$
$$= \underbrace{\int_{S_{cylinder}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}}}_{= 0}.$$

Then

$$\int_{\mathcal{S}_{\textit{cylinder}}} \vec{\mathbf{B}}_{\textit{Sa}} \cdot d\vec{\mathbf{S}} = \int_{0}^{\ell_{1}} \int_{0}^{2\pi} \left(B_{\textit{Sa}}(\theta) \mathbf{\hat{r}} \right) \cdot \left(r d\theta dz \mathbf{\hat{r}} \right) = r \ell_{1} \int_{0}^{2\pi} B_{\textit{Sa}}(\theta) d\theta = 0$$

or

$$\int_0^{2\pi} \mu_0 \underbrace{(H_{Sa}(0) - i_{\text{enclosed}}(\theta)/g)}_{\theta} d\theta = 0.$$

Compute $H_{Sa}(0)$ using Conservation of Flux

$$\begin{split} H_{Sa}(0) &= \int_{0}^{2\pi} \frac{i_{\rm enclosed}(\theta)}{2\pi g} d\theta &= \frac{1}{2\pi g} \left(i_{Sa} \frac{\pi}{6} + 3i_{Sa} \frac{\pi}{6} + 4i_{Sa} \frac{2\pi}{3} + 3i_{Sa} \frac{\pi}{6} + i_{Sa} \frac{\pi}{6} \right) \\ &= \frac{2i_{Sa}}{g}. \end{split}$$

So

$$\vec{\mathbf{B}}_{Sa} = B_{Sa}(\theta)\mathbf{\hat{r}} = \mu_0 \left(\frac{2i_{Sa}}{g} - \frac{i_{\text{enclosed}}(\theta)}{g}\right)\mathbf{\hat{r}}.$$

$$ec{\mathbf{B}}_{Sa}=B_{Sa}(heta)\mathbf{\hat{r}}$$

$$\vec{\mathbf{B}}_{Sa} = B_{Sa}(\theta)\mathbf{\hat{r}} = \mu_0 \left(\frac{2i_{Sa}}{g} - \frac{i_{\rm enclosed}(\theta)}{g}\right)\mathbf{\hat{r}}.$$

Expanding $B_{Sa}(\theta)$ in a Fourier series

$$\begin{split} B_{Sa}(\theta) &= \mu_0 \frac{i_{Sa}}{g} \frac{4}{\pi} \times \sum_{k=1,3,5,\dots}^{\infty} \frac{\left(1 + \cos\left(\frac{k\pi}{6}\right)\right)}{k} \sin\left(k(\theta + \frac{\pi}{2})\right) \\ &= \mu_0 \frac{i_{Sa}}{g} \frac{4}{\pi} \left(\frac{2 + \sqrt{3}}{2} \sin\left(\theta + \frac{\pi}{2}\right) + \frac{1}{3} \sin\left(3(\theta + \frac{\pi}{2})\right) + \frac{1 - \sqrt{3}/2}{5} \sin\left(5(\theta + \frac{\pi}{2})\right) + \cdots \\ &= \mu_0 \frac{i_{Sa}}{g} \frac{4}{\pi} \left(1.866 \cos(\theta) - 0.333 \cos(3\theta) + 0.0268 \cos(5\theta) \mp \cdots \right) \end{split}$$

To a first approximation,

$$\vec{\mathbf{B}}_{\mathit{Sa}}(\theta) = B_{\mathit{Sa}}(\theta)\mathbf{\hat{r}} \approx 1.866\mu_0 \frac{\mathit{i}_{\mathit{Sa}}}{\mathit{g}} \frac{4}{\pi} \cos(\theta)\mathbf{\hat{r}}$$

• This is a sinusoidal distribution in θ .

2^{nd} Example: Approximate Sinusoidally-Distributed \vec{B} Field

Conservation of Flux and 1/r Dependence of \vec{B}

 $\vec{\mathbf{B}}$ has only a radial component so $\vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = 0$ on S_3, S_4, S_5, S_6 .

$$\begin{split} \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} &= \int_{S_1} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} + \int_{S_2} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = 0 \\ \int_0^{\ell_1} \int_{\theta_1}^{\theta_2} \left(B_{Sa}(\theta) \mathbf{\hat{r}} \right) \cdot \left(r_1 d\theta dz (-\mathbf{\hat{r}}) \right) + \int_0^{\ell_1} \int_{\theta_1}^{\theta_2} \left(B_{Sa}(\theta) \mathbf{\hat{r}} \right) \cdot \left(r_2 d\theta dz \mathbf{\hat{r}} \right) = 0 \\ -\ell_1 r_1 \int_{\theta_1}^{\theta_2} B_{Sa}(\theta) d\theta + \ell_1 r_2 \int_{\theta_1}^{\theta_2} B_{Sa}(\theta) d\theta = 0 \\ \ell_1 \left(r_2 - r_1 \right) \int_{\theta_1}^{\theta_2} B_{Sa}(\theta) d\theta = 0 \end{split}$$

As $r_1 \neq r_2$, conservation of flux does **no**t hold.

Conservation of Flux and 1/r Dependence of \vec{B}

- B_{Sa} was assumed **constant** across the air gap.
- In fact B_{Sa} must vary as 1/r to satisfy conservation of flux.
- To satisfy $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} \equiv 0$, replace $B_{Sa}(\theta)$ by

$$B_{Sa}(r,\theta) \triangleq \frac{r_R}{r} B_{Sa}(\theta) = \mu_0 \frac{r_R}{r} \left(\frac{2i_{Sa}}{g} - \frac{i_{\text{enclosed}}(\theta)}{g} \right) \mathbf{f}.$$

• The air gap g is assumed to be small so

$$\frac{r_R}{r} \approx 1 \text{ for } r_R \leq r \leq r_S = r_R + g.$$

• The factor $\frac{r_R}{r}$ does not really change the value of $\vec{\bf B}$ in the air gap.

Magnetic Field Distribution due to i_{Sa} and i_{Sb}

Stator phase b is rotated 90° from phase a.

Compute $\vec{\mathbf{B}}_{Sb}$ from $\vec{\mathbf{B}}_{Sa}$ by replacing i_{Sa} by i_{Sb} and θ by $\theta - \pi/2$ (See slide 14).

$$\vec{\mathbf{B}}_{Sb}(r,\theta) = B_{Sb}(r,\theta)\mathbf{P} = \mu_0 \frac{i_{Sb}}{g} \frac{r_R}{r} \frac{4}{\pi} \sum_{k=1,3,5,\dots}^{\infty} \frac{(1+\cos(k\pi/6)}{k} \sin(k\theta)\mathbf{P} \approx 1.866 \mu_0 \frac{i_{Sb}}{g} \frac{r_R}{r} \frac{4}{\pi} \sin(\theta)\mathbf{P}.$$

Summarizing:

$$\vec{\mathbf{B}}_{\mathit{Sa}}(r,\theta) = \mathit{B}_{\mathit{Sa}}(r,\theta)\mathbf{P} \approx 1.866\mu_0 \frac{\mathit{i}_{\mathit{Sa}}}{\mathit{g}} \frac{4}{\pi} \frac{\mathit{r}_{\mathit{R}}}{\mathit{r}} \cos(\theta)\mathbf{P}$$

$$\vec{\mathbf{B}}_{Sb}(r,\theta) = B_{Sb}(r,\theta)\mathbf{\hat{r}} \approx 1.866\mu_0 \frac{i_{Sb}}{g} \frac{4}{\pi} \frac{r_R}{r} \sin(\theta)\mathbf{\hat{r}}.$$

Sinusoidally Wound Phase

Sinusoidal turns density

- A single strand of wire (phase winding) is wrapped around the cylindrical iron core.
- The number of coils/loops/turns per angular distance is

$$N_{Ra}(\theta-\theta_R)=rac{N_R}{2}\sin(\theta-\theta_R) \ \ ext{for} \ heta_R< heta<\pi+ heta_R.$$

I.e., the number of the loops (turns) between θ and $\theta + d\theta$ is $N_{Ra}(\theta - \theta_R)d\theta$.

• The total number of turns is

$$\int_{ heta_R}^{ heta_R+\pi} N_{Ra}(heta- heta_R)d heta=N_R.$$

Schematic Representation of a Sinusoidally Wound Phase

- Slots are not shown and the turns are shown enclosed in a sine curve envelope.
- Sinusoidal turns density

$$N_{Sa}(heta) = rac{N_S}{2} \sin(heta) ext{ for } 0 < heta < \pi$$

I.e., the number of the turns between θ and $\theta + d\theta$ is $N_{Sa}(\theta)d\theta$.

- The **total** number of turns making up stator phase a is $\int_0^\pi N_{Sa}(\theta)d\theta = N_S$.
- The **cross-sectional area** of the turns is taken to be **zero**.

Stator Phase b

- Stator phase b is identical in structure to phase a and rotated 90° with respect to phase a.
- Sinusoidal turns density

$$N_{Sb}(\theta) = \frac{N_S}{2}\sin(\theta - \pi/2)$$
 for $\pi/2 < \theta < 3\pi/2$.

- The number of turns between θ and $\theta + d\theta$ is $N_{Sb}(\theta)d\theta = (N_S/2)\sin(\theta \pi/2)d\theta$.
- The **total** number of turns making up stator phase b is $\int_{\pi/2}^{3\pi/2} N_{Sb}(\theta) d\theta = N_S$.
- The cross-sectional area of the turns is taken to be zero.

Modeling and Control of Electric Machines (Chiasson)

Compute $\vec{\mathbf{B}}_{Sa}$ in the air gap created by the current i_{Sa} .

$$\oint \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} = \int_{0}^{\theta} i_{Sa}(N_{S}/2) \sin(\theta') d\theta'$$

$$\int_{1}^{2} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} + \int_{3}^{4} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\ell} = \int_{0}^{\theta} i_{Sa}(N_{S}/2) \sin(\theta') d\theta'$$

$$\int_{\ell=0}^{\ell=g} H_{Sa}(i_{Sa}, 0) \mathbf{r} \cdot (d\ell \mathbf{r}) + \int_{\ell=0}^{\ell=g} H_{Sa}(i_{Sa}, \theta) \mathbf{r} \cdot (-d\ell \mathbf{r}) = -i_{Sa} \frac{N_{S}}{2} \cos(\theta) + i_{Sa} \frac{N_{S}}{2}$$

$$H_{Sa}(i_{Sa}, 0)g - H_{Sa}(i_{Sa}, \theta)g = -i_{Sa}\frac{N_S}{2}\cos(\theta) + i_{Sa}\frac{N_S}{2}$$

or

$$H_{Sa}(i_{Sa},\theta) = i_{Sa} \frac{N_S}{2g} \cos(\theta) + H_{Sa}(i_{Sa},0) - i_{Sa} \frac{N_S}{2g}.$$

- Both $H_{Sa}(i_{Sa}, \theta)$ and $H_{Sa}(i_{Sa}, 0)$ are unknown.
- Using conservation of flux to compute $H_{Sa}(i_{Sa}, 0)$.

As

$$0 = \oint_{S} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}} = \underbrace{\int_{D_{1}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}} + \int_{D_{2}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}}}_{= 0} + \int_{S_{cylinder}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}} = \int_{S_{cylinder}} \vec{\mathbf{B}}_{Sa} \cdot d\vec{\mathbf{S}}$$

we have

$$\int_{\mathcal{S}_{\textit{cylinder}}} \vec{\mathbf{B}}_{\textit{Sa}} \cdot d\vec{\mathbf{S}} = \int_{0}^{\ell_{1}} \int_{0}^{2\pi} B_{\textit{Sa}}(i_{\textit{Sa}}, \theta) \mathbf{P} \cdot \left(r_{\textit{R}} d\theta dz \mathbf{P}\right) = \ell_{1} r_{\textit{R}} \int_{0}^{2\pi} B_{\textit{Sa}}(i_{\textit{Sa}}, \theta) d\theta = 0.$$

 $B_{Sa}(i_{Sa}, \theta) = \mu_0 H_{Sa}(i_{Sa}, \theta)$ in the air gap.

$$\begin{split} 0 &= \int_0^{2\pi} B_{Sa}(i_{Sa},\theta) d\theta &= \int_0^{2\pi} \mu_0 \bigg(i_{Sa} \frac{N_S}{2g} \cos(\theta) + H_{Sa}(i_{Sa},0) - i_{Sa} \frac{N_S}{2g} \bigg) d\theta \\ &= 2\pi \mu_0 \bigg(H_{Sa}(i_{Sa},0) - i_{Sa} \frac{N_S}{2g} \bigg). \end{split}$$

$$\begin{aligned} H_{Sa}(i_{Sa},\theta) &=& \frac{N_S}{2g}i_{Sa}\cos(\theta) \\ B_{Sa}(i_{Sa},\theta) &=& \frac{\mu_0N_S}{2g}i_{Sa}\cos(\theta). \end{aligned}$$

- Applying Ampère's law, we assumed $\vec{\bf B}=\mu_0\vec{\bf H}$ was **constant** across the air gap. I.e., $\vec{\bf B}$ did **not** depend on the cylindrical coordinate r.
- To satisfy $\oint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = 0$, $\vec{\mathbf{B}}$ must decrease as 1/r in the air gap.
- H_{Sa} , B_{Sa} are modified by the factor r_R/r so that conservation of flux holds.

 $\vec{\mathbf{B}}_{Sa}$ in the air gap due to i_{Sa} is

$$\vec{\mathbf{B}}_{Sa}(i_{Sa}, r, \theta) = \frac{\mu_0 N_S r_R}{2g} \frac{i_{Sa} \cos(\theta)}{r} \hat{\mathbf{r}}.$$

Similarly, for stator phase b

$$\vec{\mathbf{B}}_{Sb}(i_{Sb},r,\theta) = \frac{\mu_0 N_S r_R}{2g} \frac{i_{Sb} \cos(\theta - \pi/2)}{r} \mathbf{\hat{r}} = \frac{\mu_0 N_S r_R}{2g} \frac{i_{Sb} \sin(\theta)}{r} \mathbf{\hat{r}}.$$

Sinusoidally Distributed Rotating Magnetic Field

- (a) $\vec{\mathbf{B}}_{Sa}$ field lines due to the current i_{Sa} (drawn with $i_{Sa} > 0$).
- **(b)** $\vec{\mathbf{B}}_{Sb}$ field lines due to the current i_{Sb} (drawn with $i_{Sb} > 0$).

Total magnetic field in the air gap:

$$\vec{\mathbf{B}}_{S}(i_{Sa},i_{Sb},r,\theta) = \vec{\mathbf{B}}_{Sa}(i_{Sa},r,\theta) + \vec{\mathbf{B}}_{Sb}(i_{Sb},r,\theta) = \frac{\mu_{0}r_{R}N_{S}}{2g}\frac{1}{r}\left(i_{Sa}\cos(\theta) + i_{Sb}\sin(\theta)\right)\mathbf{\hat{r}}.$$

Sinusoidally Distributed Rotating Magnetic Field

With
$$i_{Sa}(t) = I_S \cos(\omega_S t)$$
, $i_{Sb}(t) = I_S \sin(\omega_S t)$ and $\theta_S(t) \triangleq \omega_S t$

$$\begin{split} \vec{\mathbf{B}}_S(r,\theta,t) &= \frac{\mu_0 r_R N_S I_S}{2g} \frac{1}{r} \Big(\cos(\omega_S t) \cos(\theta) + \sin(\omega_S t) \sin(\theta) \Big) \mathbf{\hat{r}} \\ &= \frac{\mu_0 r_R N_S I_S}{2g} \frac{1}{r} \cos(\theta - \omega_S t) \mathbf{\hat{r}} \\ &= \frac{\mu_0 r_R N_S I_S}{2g} \frac{1}{r} \cos(\theta - \theta_S(t)) \mathbf{\hat{r}}. \end{split}$$

$$\vec{\mathbf{B}}_{S}(r,\theta,t) = \frac{\mu_{0}r_{R}N_{S}I_{S}}{2g}\frac{1}{r}\mathrm{cos}\Big(\theta - \theta_{S}(t)\Big)\mathbf{P} \quad \text{with} \quad \theta_{S}(t) \triangleq \omega_{S}t$$

• θ_S is the magnetic axis of $\vec{\mathbf{B}}_S(r, \theta, t)$.

Definition Magnetomotive force (mmf)

The magnetomotive force (mmf) is defined to be

$$\Im \triangleq \oint_{\mathcal{C}} \vec{\mathbf{H}} \cdot d\vec{\ell}.$$

- ullet I.e., the **mmf** is the integral of $\vec{\mathbf{H}}$ around a **closed** curve.
- ullet The value of \Im depends on the particular closed-curve C.
- Of course, by Ampère's law, $\Im = \oint_{\mathcal{C}} \vec{\mathbf{H}} \cdot d\vec{\ell} = i_{\mathsf{enclosed}}.$
- Many books incorrectly consider S to be a scalar field, i.e., it has a value at each point in space (like temperature).
- f H is a vector field as it has a value at each point in space.

$$\begin{split} \Im & \triangleq \oint_{C} \vec{\mathbf{H}} \cdot d\vec{\ell} = \int_{1}^{2} \vec{\mathbf{H}} \cdot d\vec{\ell} + \int_{3}^{4} \vec{\mathbf{H}} \cdot d\vec{\ell} &= \int_{1}^{2} \underbrace{H(\theta - \pi) \mathbf{P} \cdot (-d\ell \mathbf{P})}_{-H(\theta)} + \int_{3}^{4} (H(\theta) \mathbf{P}) \cdot (d\ell \mathbf{P}) \\ &= 2 \int_{3}^{4} (H(\theta) \mathbf{P}) \cdot (d\ell \mathbf{P}) \\ &= 2 H(\theta) g. \end{split}$$

- $i_{\text{enclosed}} = -\int_{\theta-\pi}^{\theta} i_{Sa}(N_S/2)\sin(\theta')d\theta' = i_{Sa}N_S\cos(\theta)$.
- By Ampère's $\Im(\theta) = 2H(\theta)g = i_{Sa}N_S\cos(\theta)$.

The usual "interpretation" of mmf

- The mmf $\Im = 2H(\theta)g = i_{Sa}N_S\cos(\theta)$ is "dropped" across the air gap.
- The amount $\Im_1 = H(\theta)g$ is "dropped" across each of the two diametrically opposite sides of the air gap.
- ullet It is then said that an $\mathbf{mmf}\ \Im_1(heta)=H(heta)g$ is "set \mathbf{up} " in the air gap.

The correct interpretation

- Ampère's law is used to find $\vec{\mathbf{H}}$ in the air gap by using $\vec{\mathbf{H}}\equiv 0$ in the iron.
- $oldsymbol{f B}$ in the air gap is found from $f B=\mu_0f H$.
- The mmf is **only** used as a way to compute $\vec{\mathbf{B}}$ in the air gap.
- Noble Laureate Melvin Schwartz:

... we must interject a small bit of philosophy. It is customary to call $\vec{\bf B}$ the magnetic induction and $\vec{\bf H}$ the magnetic field strength. We reject this custom inasmuch as $\vec{\bf B}$ is the truly fundamental field and $\vec{\bf H}$ is a subsidiary artifact. We shall call $\vec{\bf B}$ the magnetic field and leave the reader to deal with $\vec{\bf H}$ as he pleases.

- $\phi = \int_S \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}}$ is defined for a surface whose boundary is a **closed curve**.
- Faraday's law $\xi = -d\phi/dt$ then gives the induced emf (voltage) in the loop.
- Phase windings are comprised of turns distributed around the iron core surface.
- We want the total emf induced in the phase winding.
- Flux linkage is a convenient way to do this.

Phase a - a' consists of 3 loops:

- **Loop 1:** Path from a to b and placed in slots at $\theta = \pi/3$ and $\theta = \pi/3 \pi$.
- **Loop 2:** Path from c to d and place in slots $\theta = \pi/2$ and $\theta = 3\pi/2$.
- **Loop 3:** Path from e to f = a' and placed in slots $\theta = 2\pi/3$ and $\theta = 5\pi/3$.

A PM rotor produces a magnetic field in the air gap given by

$$ec{\mathbf{B}}_R(\theta- heta_R) = B_{\mathsf{max}} rac{r_R}{r} \cos(\theta- heta_R) \mathbf{\hat{r}}.$$

Compute the **total emf** induced in phase a - a' as the PM rotates. At any time the emfs will be **different** in each of the three loops.

 $d\vec{S} = r_S d\theta dz \hat{r}$, r_S is the radius of the inside surface of the stator iron.

Flux in Loop 1:

$$\begin{split} \phi_{\pi/3} &= \int_0^{\ell_1} \int_{\theta=\pi/3-\pi}^{\theta=\pi/3} B_{\max} \frac{r_R}{r_S} \cos(\theta-\theta_R) \mathbf{P} \cdot (r_S d\theta dz \mathbf{P}) &= \ell_1 r_R \int_{\theta=\pi/3-\pi}^{\theta=\pi/3} B_{\max} \cos(\theta-\theta_R) d\theta \\ &= \ell_1 r_R B_{\max} \sin(\theta-\theta_R) d\theta \Big|_{\theta=\pi/3-\pi}^{\theta=\pi/3} \\ &= 2\ell_1 r_R B_{\max} \sin(\pi/3-\theta_R). \end{split}$$

Emf induced in loop 1:

$$\xi_{\pi/3} = -rac{d\phi_{\pi/3}}{dt} = 2\ell_1 r_R B_{\mathsf{max}} \omega_R \cos(heta_R - \pi/3)$$

- If $\xi_{\pi/3} > 0$, this emf will force current to go in the **positive direction of travel**.
- This **coincides** with the positive direction of **current** in that loop.

Similarly, for **loop 2** (sides between $-\pi/2$ to $\pi/2$)

$$\begin{array}{ll} \phi_{\pi/2} & = & \int\limits_{\substack{\text{Loop from} \\ -\pi/2 \text{ to } \pi/2}} \vec{\mathbf{B}}_R \cdot d\vec{\mathbf{S}} = 2\ell_1 r_R B_{\text{max}} \sin(\pi/2 - \theta_R) \\ \xi_{\pi/2} & = & -\frac{d\phi_{\pi/2}}{dt} = 2\ell_1 r_R B_{\text{max}} \omega_R \cos(\theta_R - \pi/2). \end{array}$$

The positive direction of travel around the loop is the positive direction of current.

Finally, for **loop 3** (sides between $2\pi/3 - \pi$ and $2\pi/3$)

$$\begin{array}{ll} \phi_{2\pi/3} & = \int \limits_{\substack{\text{Loop from} \\ 2\pi/3 - \pi \text{ to } 2\pi/3}} \vec{\mathbf{B}}_R \cdot d\vec{\mathbf{S}} = 2\ell_1 r_R B_{\text{max}} \sin(2\pi/3 - \theta_R) \\ \xi_{2\pi/3} & = -\frac{d\phi_{2\pi/3}}{dt} = 2\ell_1 r_R B_{\text{max}} \omega_R \cos(\theta_R - 2\pi/3). \end{array}$$

The positive direction of travel around the loop is the positive direction of current.

- All three loops are connected in series to make up the phase winding.
- All three loops have the same sign convention for positive travel.

$$\begin{split} \xi_{\mathsf{a}-\mathsf{a}'} &=& \xi_{\pi/3} + \xi_{\pi/2} + \xi_{2\pi/3} \\ &=& 2\ell_1 r_R B_{\mathsf{max}} \omega_R \cos(\theta_R - \pi/3) + 2\ell_1 r_R B_{\mathsf{max}} \omega_R \cos(\theta_R - \pi/2) + \\ && 2\ell_1 r_R B_{\mathsf{max}} \omega_R \cos(\theta_R - 2\pi/3) \\ &=& \left(1 + \sqrt{3}\right) 2\ell_1 r_R B_{\mathsf{max}} \omega_R \sin\left(\theta_R\right). \end{split}$$

$$\begin{split} \xi_{\mathsf{a}-\mathsf{a}'} &= \xi_{\pi/3} + \xi_{\pi/2} + \xi_{2\pi/3} &= -\left(\frac{d\phi_{\pi/3}}{dt} + \frac{d\phi_{\pi/2}}{dt} + \frac{d\phi_{2\pi/3}}{dt}\right) \\ &= -\frac{d}{dt} \left(\phi_{\pi/3} + \phi_{\pi/2} + \phi_{2\pi/3}\right) \\ &= -\frac{d}{dt} \lambda_{\mathsf{a}-\mathsf{a}'} \end{split}$$

where the flux linkage $\lambda_{a-a'}$ is defined as

$$\begin{split} \lambda_{\textit{a}-\textit{a}'} &\triangleq \phi_{\pi/3} + \phi_{\pi/2} + \phi_{2\pi/3} &= 2\ell_1 r_R B_{\text{max}} \sin(\pi/3 - \theta_R) + 2\ell_1 r_R B_{\text{max}} \sin(\pi/2 - \theta_R) \\ &\quad + 2\ell_1 r_R B_{\text{max}} \sin(2\pi/3 - \theta_R) \\ &= \left(1 + \sqrt{3}\right) 2\ell_1 r_R B_{\text{max}} \cos\left(\theta_R\right) \end{split}$$

Then the **total induced emf** $\xi_{a-a'}$ in the phase a-a' is

$$\xi_{\mathbf{a}-\mathbf{a}'} = -\frac{d\lambda_{\mathbf{a}-\mathbf{a}'}}{dt} = \left(1+\sqrt{3}\right)2\ell_1 r_R B_{\mathsf{max}} \omega_R \sin\left(\theta_R\right).$$

- One can first sum the loop fluxes, i.e., compute $\lambda_{a-a'}$.
- ullet Apply Faraday's law to the flux linkage to obtain the **total emf** $\xi_{a-a'}$.
- Be careful to have consistent sign conventions in each loop of the phase.

*This is an optional section.

- $\vec{\mathbf{B}}_{Sa}(i_{Sa}, r, \theta) = \frac{\mu_0 r_R N_S}{2gr} i_{Sa} \cos(\theta) \mathbf{\hat{r}}$ at a point (r, θ) in the air gap.
- ullet We now show there **must** be a component of the magnetic field in the ullet direction!

$$\oint\limits_{1-2-3-4-1} \vec{\mathbf{H}}_{Sa} \cdot d\vec{\boldsymbol{\ell}} = \int_1^2 \vec{\mathbf{H}}_{Sa} \cdot d\vec{\boldsymbol{\ell}} = \int_{\theta_1}^{\theta_2} (-i_{Sa}) \frac{N_S}{2} \sin(\theta) d\theta.$$

As $d ec{\ell} = r_S d heta heta heta heta (r_S = r_R + g)$ we have

$$\int_{\theta_1}^{\theta_2} (H_{Sa\theta} \pmb{\hat{\theta}}) \cdot (r_S d\theta \pmb{\hat{\theta}}) = -\int_{\theta_1}^{\theta_2} i_{Sa} \frac{N_S}{2} \sin(\theta) d\theta \quad \text{for} \quad 0 \leq \theta_1 \leq \theta \leq \pi.$$

This must hold for **any** such θ_1 , θ_2 !

We have

$$H_{Sa heta}(i_{Sa}, r_S, \theta) = -rac{N_S}{2r_S}i_{Sa}\sin(\theta) \ \ ext{for} \ \ 0 \leq heta \leq \pi.$$

A similar argument shows that

$$H_{Sa\theta}(i_{Sa}, r_{S}, \theta) = -\frac{N_{S}}{2r_{S}}i_{Sa}\sin(\theta) \text{ for } \pi \leq \theta \leq 2\pi.$$

Thus

$$B_{Sa heta}(i_{Sa}, r_{S}, \theta) = -rac{\mu_{0}N_{S}}{2r_{S}}i_{Sa}\sin(\theta) \ \ ext{for} \ \ 0 \leq heta \leq 2\pi.$$

This is the tangential magnetic field at the inside surface of the stator.

$$\oint\limits_{a-b-c-d-a}\vec{\mathbf{H}}_{Sa}\cdot d\vec{\ell} = \int_a^b \vec{\mathbf{H}}_{Sa}\cdot d\vec{\ell} = \int_{\theta_3}^{\theta_4} H_{Sa\theta}(i_{Sa},r_R,\theta)r_R d\theta \equiv 0$$

ullet As $heta_3$, $heta_4$ are arbitrary, it follows that

$$H_{Sa\theta}(i_{Sa}, r_R, \theta) \equiv 0$$
 and $B_{Sa\theta}(i_{Sa}, r_R, \theta) \equiv 0$.

• What about $r_R < r < r_S$? Write

$$B_{Sa\theta}(i_{Sa}, r, \theta)\hat{\boldsymbol{\theta}} = -\alpha(r)\frac{\mu_0 N_S}{2r_S}i_{Sa}\sin(\theta)\hat{\boldsymbol{\theta}}$$

where $\alpha(r_S) = 1$ and $\alpha(r_R) = 0$.

• Need to find $\alpha(r)$!

$$oldsymbol{ec{f B}}_{Sa}=B_{Sar}oldsymbol{\hat{r}}+B_{Sa heta}oldsymbol{\hat{ heta}}+B_{Saz}oldsymbol{\hat{z}}$$

$$\bullet \ B_{Sar} = \frac{\mu_0 \ell_2 N_S}{4g} i_{Sa} \frac{\cos(\theta)}{r}, \ B_{Sa\theta} = -\alpha(r) \frac{\mu_0 N_S}{2r_S} i_{Sa} \sin(\theta), \ B_{Saz} = 0$$

$$\bullet \ \, \vec{\mathbf{B}}_{Sa} = B_{Sar}\mathbf{\hat{r}} + B_{Sa\theta}\boldsymbol{\hat{\theta}} = B_{Sar}\mathbf{\hat{r}} - \alpha(r)\frac{\mu_0N_S}{2r_S}i_{Sa}\sin(\theta)\boldsymbol{\hat{\theta}}$$

$$abla \cdot \vec{\mathbf{B}}_{Sa} \equiv 0$$
 gives

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{Sar}) - \frac{1}{r}\alpha(r)\frac{\mu_0N_S}{2r_S}i_{Sa}\frac{\partial}{\partial\theta}\sin(\theta) \equiv 0$$

or

$$\begin{split} \frac{\partial}{\partial r}(rB_{Sar}) &= \alpha(r)\frac{\mu_0N_S}{2r_S}i_{Sa}\cos(\theta) \\ rB_{Sar} &= \frac{\mu_0N_S}{2r_S}i_{Sa}\cos(\theta)\int_{r_R}^r\alpha(r')dr' + f(\theta)^1 \\ B_{Sar} &= \frac{\mu_0N_S}{2r_S}\frac{i_{Sa}}{r}\cos(\theta)\int_{r_R}^r\alpha(r')dr' + \frac{f(\theta)}{r}. \end{split}$$

 $^{{}^1}f(\theta)$ is the "constant of integration".

•
$$B_{Sar}(i_{Sa}, r, \theta) = \frac{\mu_0 N_S}{2r_S} \frac{i_{Sa}}{r} \cos(\theta) \int_{r_R}^r \alpha(r') dr' + \frac{f(\theta)}{r}$$

ullet To include $B_{Sa heta}$ we **modified** B_{Sar} in order to satisfy Gauss's law.

- $B_{Sar}(i_{Sa}, r, \theta)|_{r=r_R} = \frac{f(\theta)}{r_R}$ value of B_{Sar} on the **rotor surface**.
- ullet Choose f(heta) to make B_{Sar} the same value we got before considering $B_{Sa heta}$.

$$\text{l.e., set } \frac{f(\theta)}{r} = \frac{\mu_0 r_R N_S}{2gr} i_{Sa} \cos(\theta)$$

• We modify B_{Sar} to be

$$B_{Sar}(i_{Sa}, r, \theta) = \frac{\mu_0 r_R N_S}{2g} i_{Sa} \frac{\cos(\theta)}{r} \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right).$$

- By this choice of $f(\theta)$, the torque on the rotor will **not** change. The torque depends only on the value of B_{Sar} at $r=r_R$.
- $0 \le \int_{r_B}^r \alpha(r') dr' \le g/2$ so the percent **change** in B_{Sar} is bounded by

$$\frac{g^2}{2r_Sr_R} << 1.$$

Summarizing:

$$\vec{\mathbf{B}}_{Sa} = \frac{\mu_0 r_R N_S}{2g} i_{Sa} \frac{\cos(\theta)}{r} \bigg(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \bigg) \mathbf{P} \underbrace{-\frac{\mu_0 r_R N_S}{2g} \frac{g}{r_S r_R} \alpha(r) i_{Sa} \sin(\theta)}_{B_{Sa\theta}} \underline{\boldsymbol{\theta}}$$

with $\alpha(r_S) = 1$ and $\alpha(r_R) = 0$.

• We next determine $\alpha(r)$.

Determination of $\alpha(r)$

- Ampère's law in differential form $\nabla imes \vec{\mathbf{H}} = \vec{\mathbf{J}}_{\text{free}}$ is used.
- In the air gap $\vec{\mathbf{J}}_{\text{free}}=0$ and $\vec{\mathbf{B}}=\mu_0\vec{\mathbf{H}}$ so we have $\nabla \times \vec{\mathbf{B}}=\mathbf{0}$.
- In cylindrical coordinates,

$$\nabla \times \vec{\mathbf{B}} = \left(\frac{1}{r} \frac{\partial B_z}{\partial \theta} - \frac{\partial B_\theta}{\partial z}\right) \mathbf{\hat{r}} + \left(\frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r}\right) \mathbf{\hat{\theta}} + \frac{1}{r} \left(\frac{\partial}{\partial r} (rB_\theta) - \frac{\partial B_r}{\partial \theta}\right) \mathbf{\hat{z}} = \mathbf{0}.$$

• $B_{Saz} \equiv 0$ while B_{Sar} and $B_{Sa\theta}$ do not depend on the coordinate z. Need only worry about the z component of $\nabla \times \vec{\mathbf{B}} = \mathbf{0}$, that is,

$$\frac{\partial}{\partial r}(rB_{Sa\theta}) = \frac{\partial B_{Sar}}{\partial \theta}.$$

This becomes

$$-\frac{g}{r_{S}r_{R}}\frac{\partial}{\partial r}\left(r\alpha(r)\right)i_{Sa}\sin(\theta) = -i_{Sa}\frac{\sin(\theta)}{r}\left(1+\frac{g}{r_{S}r_{R}}\int_{r_{R}}^{r}\alpha(r')dr'\right)$$

$$\frac{g}{r_{S}r_{R}}\frac{d}{dr}\left(r\alpha(r)\right) = \frac{1}{r}\left(1+\frac{g}{r_{S}r_{R}}\int_{r_{R}}^{r}\alpha(r')dr'\right)$$

$$\frac{d}{dr}(r\alpha) = \frac{1}{r}\frac{r_{S}r_{R}}{g}+\frac{\int_{r_{R}}^{r}\alpha(r')dr'}{r}$$

$$r\alpha+r^{2}\frac{d\alpha}{dr} = \frac{r_{S}r_{R}}{g}+\int_{r_{R}}^{r}\alpha(r')dr'.$$

From the previous slide: $r\alpha + r^2 \frac{d\alpha}{dr} = \frac{r_S r_R}{g} + \int_{r_R}^{r} \alpha(r') dr'$.

Differentiating w.r.t. r and rearranging:

$$\alpha + r\frac{d\alpha}{dr} + 2r\frac{d\alpha}{dr} + r^2\frac{d^2\alpha}{dr^2} = \alpha$$

or

$$\frac{d^2\alpha}{dr^2} + \frac{3}{r}\frac{d\alpha}{dr} = 0.$$

Then $\frac{d\alpha}{dr}=c_1 e^{-\int_{r_R}^r (3/r')dr'}=c_1 e^{-3\ln(r/r_R)}$ and thus

$$\alpha(r) = c_1 \int_{r_R}^r e^{-3\ln(r'/r_R)} dr' + c_2.$$

 $\alpha(r_R) = 0 \Longrightarrow c_2 = 0$ and $\alpha(r_S) = 1$ requires that

$$c_1 = \frac{1}{\int_{r_R}^{r_S} e^{-3\ln(r'/r_R)} dr'} \approx \frac{1}{g} \text{ using } \ln(r/r_R) \approx \ln(1) = 0 \text{ for } r_R < r < r_S.$$

Finally

$$\alpha(r) = \frac{1}{g} \int_{r_R}^r e^{-3\ln(r'/r_R)} dr' \approx \frac{1}{g} \int_{r_R}^r 1 dr' = \frac{r - r_R}{g}.$$

Electric Field \vec{E}_{Sa}

$$\vec{\mathbf{B}}_{Sa} = \frac{\mu_0 \ell_2 N_S}{4g} i_{Sa} \frac{\cos(\theta)}{r} \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right) \hat{\mathbf{r}} - \frac{\mu_0 \ell_2 N_S}{4g} \frac{g}{r_S r_R} \alpha(r) i_{Sa} \sin(\theta) \hat{\mathbf{\theta}}.$$

 $ec{m{E}}_{Sa}$ is a solution to $abla imesec{m{E}}_{Sa}=-rac{\partial m{B}_{Sa}}{\partial t}$ where the curl of $ec{m{E}}$ is given by

$$\nabla \times \vec{\mathbf{E}} = \left(\frac{1}{r}\frac{\partial E_z}{\partial \theta} - \frac{\partial E_\theta}{\partial z}\right)\mathbf{\hat{r}} + \left(\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r}\right)\mathbf{\hat{\theta}} + \frac{1}{r}\left(\frac{\partial}{\partial r}(rE_\theta) - \frac{\partial E_r}{\partial \theta}\right)\mathbf{\hat{z}}.$$

 $B_{Saz}\equiv 0$ and by symmetry $rac{\partial E_{Sa heta}}{\partial z}=0$ and $rac{\partial E_{Sar}}{\partial z}=0$.

Try a solution of the form $\vec{\bf E}_{Sa}=E_{Saz}{\bf 2}$, i.e., $E_{Sar}=E_{Sa\theta}\equiv 0$ and solve

$$\nabla \times \vec{\mathbf{E}}_{Sa} = \frac{1}{r} \frac{\partial E_{Saz}}{\partial \theta} \hat{\mathbf{r}} - \frac{\partial E_{Saz}}{\partial r} \hat{\boldsymbol{\theta}} = -\frac{\partial B_{Sar}}{\partial t} \hat{\mathbf{r}} - \frac{\partial B_{Sa\theta}}{\partial t} \hat{\boldsymbol{\theta}}.$$

$$\begin{split} \vec{\mathbf{E}}_{Sa} &= E_{Saz} \mathbf{\hat{z}} &= -\frac{\mu_0 \ell_2 N_S}{4g} \, \frac{di_{Sa}}{dt} \sin(\theta) \bigg(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \bigg) \mathbf{\hat{z}} \\ &\approx -\frac{\mu_0 \ell_2 N_S}{4g} \, \frac{di_{Sa}}{dt} \sin(\theta) \bigg(1 + \frac{(r - r_R)^2}{2r_S r_R} \bigg) \mathbf{\hat{z}} \\ &\approx -\frac{\mu_0 \ell_2 N_S}{4r} \, \frac{di_{Sa}}{dt} \sin(\theta) \mathbf{\hat{z}}. \end{split}$$

The Magnetic and Electric Fields $\vec{\mathbf{B}}_{Sa}$, $\vec{\mathbf{E}}_{Sa}$, $\vec{\mathbf{B}}_{Sb}$, $\vec{\mathbf{E}}_{Sb}$

$$\begin{split} \vec{\mathbf{B}}_{Sa} &= \frac{\mu_0 \ell_2 N_S}{4g} i_{Sa} \frac{\cos(\theta)}{r} \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right) \mathbf{\hat{r}} - \frac{\mu_0 \ell_2 N_S}{4g} \frac{g}{r_S r_R} \alpha(r) i_{Sa} \sin(\theta) \mathbf{\hat{\theta}} \\ \vec{\mathbf{E}}_{Sa} &= -\frac{\mu_0 r_R N_S}{2g} \frac{di_{Sa}}{dt} \sin(\theta) \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right) \mathbf{\hat{z}} \\ \vec{\mathbf{B}}_{Sb} &= \frac{\mu_0 r_R N_S}{2g} i_{Sb} \frac{\sin(\theta)}{r} \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right) \mathbf{\hat{r}} + \frac{\mu_0 r_R N_S}{2g} \frac{g}{r_S r_R} \alpha(r) i_{Sb} \cos(\theta) \mathbf{\hat{\theta}} \end{split}$$

$$\vec{\mathbf{E}}_{Sb} = \frac{\mu_0 r_R N_S}{2g} \frac{di_{Sb}}{dt} \cos(\theta) \left(1 + \frac{g}{r_S r_R} \int_{r_R}^r \alpha(r') dr' \right) \mathbf{\hat{z}}.$$

With
$$i_{Sa}(t) = I_S \cos(\omega_S t)$$
, $i_{Sb}(t) = I_S \sin(\omega_S t)$ and $\alpha(r) \equiv 0$,

$$\vec{\mathbf{B}}_{S}(r,\theta,t) = \frac{\mu_{0} r_{R} N_{S} I_{S}}{2g} \frac{1}{r} \cos(\theta - \omega_{S} t) \mathbf{\hat{r}}$$

$$\vec{\mathbf{E}}_{S}(\theta,t) = \omega_{S} \frac{\mu_{0} r_{R} N_{S} I_{S}}{2g} \cos(\theta - \omega_{S} t) \mathbf{2}.$$

- At $r=r_R$, the expressions for $\vec{\bf E}$ and $\vec{\bf B}$ are the same as taking $\alpha(r)\equiv 0$.
- ullet Thus the **induced emfs** in the rotor loops are **not** affected by neglecting $B_{S heta}$