# Задача

Доказать, что  $\Sigma$  является базой канонической топологии на  $\mathbb{R}^2$ .

Каноническая топология на  $\mathbb{R}^2$  это топология, базой которой служат открытые круги, т. е.

$$U^2\in T^2\iff egin{cases} U^2=\emptyset\ orall (x,y)\in U^2 &\exists V^2:V^2=ig\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilonig\}: &V^2\in U^2 \end{cases}$$

## N<sub>2</sub>1

#### **Условие**

$$\Sigma^2$$
 - все открытые круги  $B^2((x_0,y_0),\epsilon)=ig\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilonig\}$ 

#### Решение

Для того, чтобы  $\Sigma^2$  была базой канонической топологии  $T^2$ , необходимо, чтобы  $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists B^2((x_b,y_b),\epsilon) \in \Sigma^2: \quad x \in B^2 \subseteq U^2$ 

По условию,  $\Sigma^2=\left\{B_i^2|i\in I\right\}$ , где  $B^2=\left\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilon\right\}$ , видим, что  $\Sigma^2$  принадлежит топологии и является набором множеств открытых кругов.

Для любого круга  $U^2$  из топологии мы сможем найти такой же круг из  $\Sigma^2$ , который будет иметь в центре точку x и радиус  $\epsilon$ .

### **№**2

## **Условие**

 $\Sigma^\infty$  - все открытые квадраты  $k((x_0,y_0),\epsilon)=\{(x,y)|\max{\{(x-x_0),(y-y_0)\}}<\epsilon\}$ 

#### Решение

Для того, чтобы  $\Sigma^2$  была базой канонической топологии  $T^2$ , необходимо, чтобы  $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists k^2((x_b,y_b),\epsilon): \quad x \in k^2 \subseteq U^2.$ 

По построению и по геометрическим свойствам, любой круг  $U^2$  из топологии, мы сможем описать в квадрат из  $\Sigma^2$ .

# **N**º3

## **Условие**

 $\Sigma^1$  - все открытые квадраты  $k'((x_0)) = \{(x,y) | |x-x_0| + |y-y_0| < \epsilon \}$ 

#### Решение

Для того, чтобы  $\Sigma^2$  была базой канонической топологии  $T^2$ , необходимо, чтобы  $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists k'^2((x_b,y_b),\epsilon): \quad x \in k'^2 \subseteq U^2.$ 

По построению и по геометрическим свойствам, любой круг  $U^2$  из топологии, мы сможем описать в квадрат из  $\Sigma^2$ .

# Подтверждающий графический материал



Как мы видим, круг вполне можно описать любым из представленных выше квадратов