# Analysis of distruptive winds to overwintering monarch butterflies

# Kyle Nessen

# 2025-09-05

# Table of contents

| Introduction                          | 2  |
|---------------------------------------|----|
| Setup                                 | 2  |
| Exploratory Data Analysis             | 3  |
| Modeling Strategy                     | 8  |
| Model Building and Selection          | 9  |
| Model Fitting                         | 11 |
| Model Comparison                      | 11 |
| Best Model Analysis                   | 14 |
| Effect Plots                          | 15 |
| Effect of Previous Butterfly Count    | 15 |
| Effect of Temperature                 | 16 |
| Diurnal Pattern                       | 17 |
| Effect of Sun Exposure (Smooth)       | 17 |
| Smooth Effects (ggplot2 style)        | 18 |
| Model Diagnostics                     | 21 |
| Residuals vs Fitted Values            | 21 |
| Q-Q Plot of Residuals                 | 21 |
| Distribution of Residuals             | 22 |
| Second Best Model Analysis (Wind)     | 23 |
| Effect Plots - Second Best Model      | 24 |
| Model Diagnostics - Second Best Model | 26 |

| Threshold-Based Wind Models                     | 28 |
|-------------------------------------------------|----|
| Threshold Model Specifications                  | 28 |
| Threshold Model Fitting                         | 30 |
| Threshold Model Comparison                      | 30 |
| Best Threshold Model Analysis                   | 33 |
| Threshold Model Effect Plots                    | 34 |
| Effect of Previous Butterfly Count              | 34 |
| Effect of Minutes Above Threshold               | 35 |
| Comparison: Max Gust vs Minutes Above Threshold | 35 |
| Model Comparison: Gust vs Threshold Approaches  | 37 |
| Results Summary                                 | 38 |

#### Introduction

This analysis investigates the first hypothesis of my master's thesis: that wind acts as a disruptive force to overwintering monarch butterflies. If true, we predict that monarch abundance at roosts will decrease when exposed to disruptive winds. I use labeled photos from my 2023-2024 dataset to test this hypothesis. I employed GAM (Generalized Additive Models) because they allow for non-linear relationships in fixed effects while maintaining the necessary random effect structure to account for temporal autocorrelation and nested sampling design.

# Setup

Load libraries and data:

```
library(tidyverse)
library(mgcv)
library(lubridate)
library(plotly)
library(knitr)
library(DT)
library(here)
# Load the monarch analysis data
monarch_data <- read_csv(here("data", "monarch_analysis_lag30min.csv"))</pre>
```

# **Exploratory Data Analysis**

The response variable is the difference in monarch counts between time t and t-1 at 30-minute intervals. I applied a cube root transformation to achieve a more normal distribution. Because the lagged comparisons create overlapping pairs of observations, I include an AR1 autocorrelation structure to account for temporal dependence.

knitr::include\_graphics("images/clipboard-1435734413.png")



Figure 1: Illustration of temporal dependency in observation pairs. Points represent photos with labeled count data at 30-minute intervals. Blue boxes show non-overlapping pairs of observations. The red box shows an overlapping comparison where one observation is shared between adjacent pairs, creating temporal autocorrelation that is controlled by the AR1 structure.

```
library(gridExtra)

# Compare total butterfly counts with and without SC8
p_all <- ggplot(monarch_data, aes(x = total_butterflies_t_lag)) +
    geom_histogram(bins = 30, fill = "steelblue", alpha = 0.7) +
    labs(
        title = "Total Butterflies - All Data",
        x = "Total Butterflies (t-lag)", y = "Frequency"
    ) +
    theme_minimal()

p_no_sc8 <- ggplot(monarch_data %>% filter(deployment_id != "SC8"), aes(x = total_butterflies)
```

```
geom_histogram(bins = 30, fill = "orange", alpha = 0.7) +
labs(
    title = "Total Butterflies - SC8 Excluded",
    x = "Total Butterflies (t-lag)", y = "Frequency"
) +
    theme_minimal()
grid.arrange(p_all, p_no_sc8, ncol = 2)
```



```
library(corrplot)
library(gridExtra)

# Select variables used in the models
model_vars <- monarch_data %>%
    select(
        butterfly_difference_cbrt, total_butterflies_t_lag, max_gust,
        temperature_avg, butterflies_direct_sun_t_lag, time_within_day_t
    )

# Histograms of key variables
p1 <- ggplot(monarch_data, aes(x = butterfly_difference_cbrt)) +
    geom_histogram(bins = 30, fill = "steelblue", alpha = 0.7) +
    labs(
        title = "Response: Butterfly Difference (Cube Root)",
        x = "Butterfly Difference (cbrt)", y = "Frequency"</pre>
```

```
)
p2 <- ggplot(monarch_data, aes(x = total_butterflies_t_lag)) +</pre>
    geom_histogram(bins = 30, fill = "orange", alpha = 0.7) +
    labs(
        title = "Previous Butterfly Count",
        x = "Total Butterflies (t-lag)", y = "Frequency"
    )
p3 <- ggplot(monarch_data, aes(x = temperature_avg)) +
    geom_histogram(bins = 30, fill = "red", alpha = 0.7) +
    labs(
        title = "Temperature Distribution",
        x = "Average Temperature (°C)", y = "Frequency"
    )
p4 <- ggplot(monarch_data, aes(x = max_gust)) +
    geom_histogram(bins = 30, fill = "lightblue", alpha = 0.7) +
    labs(
        title = "Wind Gust Distribution",
        x = \text{"Max Gust (m/s)", } y = \text{"Frequency"}
    )
grid.arrange(p1, p2, p3, p4, ncol = 2)
```



```
# Correlation matrix for model variables
cor_matrix <- cor(model_vars, use = "complete.obs")

# Create correlation plot
corrplot(cor_matrix,
    method = "color",
    type = "upper",
    order = "hclust",
    tl.cex = 0.8,
    tl.col = "black",
    tl.srt = 45,
    addCoef.col = "black",
    number.cex = 0.7,
    title = "Correlation Matrix: Model Variables"
)</pre>
```

# Correlation Watrix. Wiouelovariables



Table 1: Correlation Matrix for Model Variables

| butterfly_differ              | teanl <u>ceb</u> ucton | etrflies <u>x</u> | t <b>grekstg</b> perat | bbretterfeies_di | r <b>ein</b> tn <u>esu</u> wwi <u>t</u> la | inla <b>g</b> lay_ |
|-------------------------------|------------------------|-------------------|------------------------|------------------|--------------------------------------------|--------------------|
| butterfly_difference 1.000    | -0.131                 | 0.040             | 0.079                  | -0.116           | 0.077                                      |                    |
| total_butterflies_t_0alg31    | 1.000                  | -                 | -0.291                 | 0.041            | -0.023                                     |                    |
|                               |                        | 0.105             |                        |                  |                                            |                    |
| $max_gust$ 0.040              | -0.105                 | 1.000             | 0.145                  | 0.027            | 0.185                                      |                    |
| temperature_avg 0.079         | -0.291                 | 0.145             | 1.000                  | 0.099            | 0.386                                      |                    |
| butterflies_direct_s0nl16_lag | 0.041                  | 0.027             | 0.099                  | 1.000            | -0.064                                     |                    |
| time within day t0.077        | -0.023                 | 0.185             | 0.386                  | -0.064           | 1.000                                      |                    |

```
# Butterfly activity by time of day
p1 <- ggplot(monarch_data, aes(x = time_within_day_t, y = total_butterflies_t_lag)) +
   geom_point(alpha = 0.3) +
   geom_smooth(method = "loess", se = TRUE, color = "blue") +
   labs(
       title = "Butterfly Abundance Throughout the Day",
       x = "Time Within Day (minutes)", y = "Total Butterflies"
    ) +
    theme_minimal()
# Sun exposure patterns by time
p2 <- ggplot(monarch_data, aes(x = time_within_day_t, y = butterflies_direct_sun_t_lag)) +
    geom_point(alpha = 0.3, color = "orange") +
    geom_smooth(method = "loess", se = TRUE, color = "darkorange") +
   labs(
       title = "Sun Exposure Throughout the Day",
       x = "Time Within Day (minutes)", y = "Butterflies in Direct Sun"
    theme_minimal()
# Temperature patterns by time
p3 <- ggplot(monarch_data, aes(x = time_within_day_t, y = temperature_avg)) +
   geom_point(alpha = 0.3, color = "red") +
   geom_smooth(method = "loess", se = TRUE, color = "darkred") +
    labs(
       title = "Temperature Throughout the Day",
       x = "Time Within Day (minutes)", y = "Average Temperature (°C)"
    ) +
    theme_minimal()
# Response variable by time
p4 <- ggplot(monarch_data, aes(x = time_within_day_t, y = butterfly_difference_cbrt)) +
    geom_point(alpha = 0.3, color = "purple") +
```

```
geom_smooth(method = "loess", se = TRUE, color = "darkviolet") +
labs(
    title = "Butterfly Change Throughout the Day",
    x = "Time Within Day (minutes)", y = "Butterfly Difference (cbrt)"
) +
    theme_minimal()
grid.arrange(p1, p2, p3, p4, ncol = 2)
```



#### Modeling Strategy

Our modeling approach used a comprehensive AIC-based comparison to evaluate all possible combinations of three key environmental predictors: wind speed (max\_gust), temperature (temperature\_avg), and solar exposure (butterflies\_direct\_sun\_t\_lag). We tested two fundamental modeling frameworks: models that include total\_butterflies\_t\_lag as a control variable (testing effects on relative/proportional change) and models that exclude it (testing effects on absolute change). Within each framework, we systematically evaluated linear main effects, two-way and three-way interactions, and non-linear relationships using smooth terms. We also incorporated time-of-day effects to capture diurnal patterns. This resulted in 47 candidate models that comprehensively explore the parameter space while maintaining proper mixed-effects structure with random effects for deployment, observer, and day, plus AR1 correlation for within-day autocorrelation.

# Model Building and Selection

Please expand the code block to see the full list of models tested.

```
library(nlme)
# Define the random effects structure and correlation
random_structure <- list(deployment_id = ~1, Observer = ~1, deployment_day = ~1)</pre>
correlation_structure <- corAR1(form = ~ observation_order_within_day_t | deployment_day)</pre>
 # Model specifications for AIC comparison
model_specs <- list(</pre>
               # Null model
                "MO_null" = "butterfly_difference_cbrt ~ total_butterflies_t_lag",
                # Single variable models
               "M1_gust" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust",
                "M2_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg",
                "M3_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + butterflies_direct_su
                # Two-variable combinations
                "M4_gust_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + temperature total_butterflies_t_lag + temperatur
                "M5_gust_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + butter
                "M6_temp_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg ·
                # Three-variable model (main effects only)
                "M7_all_main" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + temper
                # Two-way interactions
                "M8_gust_temp_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * 1
                "M9_gust_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * butterflies_t_lag + max_gu
                "M10_temp_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature
                # Two-way interactions with third variable as main effect
                "M12_gust_sun_int_plus_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + magnetic temp" = "butterflies_t_lag + magn
                "M13_temp_sun_int_plus_gust" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + to
                # All two-way interactions
                "M14_all_two_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * to
                # Three-way interaction
                "M15_three_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * temp
                # Smooth terms models (with lag term)
                "M16_smooth_temp" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperate
```

```
"M17_smooth_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature
          "M18_smooth_gust" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max_gust
         "M19_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temp_sun" = "butterflies_t_lag) + s(temp_sun" = "butte
         "M20_smooth_all_main" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max
          "M21_time_of_day" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperatus
          "M22_temp_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperatus
          "M23_all_smooth_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max_
         # Models WITHOUT lag term - testing environmental effects on absolute change
         "M24_no_lag_null" = "butterfly_difference_cbrt ~ 1",
         "M25_no_lag_gust" = "butterfly_difference_cbrt ~ max_gust",
          "M26_no_lag_temp" = "butterfly_difference_cbrt ~ temperature_avg",
          "M27_no_lag_sun" = "butterfly_difference_cbrt ~ butterflies_direct_sun_t_lag",
          "M28_no_lag_gust_temp" = "butterfly_difference_cbrt ~ max_gust + temperature_avg",
          "M29_no_lag_gust_sun" = "butterfly_difference_cbrt ~ max_gust + butterflies_direct_sun_i
          "M30_no_lag_temp_sun" = "butterfly_difference_cbrt ~ temperature_avg + butterflies_direction."
          "M31_no_lag_all_main" = "butterfly_difference_cbrt ~ max_gust + temperature_avg + butter
          "M32_no_lag_gust_temp_int" = "butterfly_difference_cbrt ~ max_gust * temperature_avg",
         "M33_no_lag_gust_sun_int" = "butterfly_difference_cbrt ~ max_gust * butterflies_direct_:
          "M34_no_lag_temp_sun_int" = "butterfly_difference_cbrt ~ temperature_avg * butterflies_
          "M35_no_lag_gust_temp_int_plus_sun" = "butterfly_difference_cbrt ~ max_gust * temperatus
          "M36_no_lag_gust_sun_int_plus_temp" = "butterfly_difference_cbrt ~ max_gust * butterflic
          "M37_no_lag_temp_sun_int_plus_gust" = "butterfly_difference_cbrt ~ temperature_avg * but
          "M38_no_lag_all_two_way" = "butterfly_difference_cbrt ~ max_gust * temperature_avg + max
          "M39_no_lag_three_way" = "butterfly_difference_cbrt ~ max_gust * temperature_avg * butter
         # Smooth terms models WITHOUT lag term
         "M40_no_lag_smooth_temp" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfl:
          "M41_no_lag_smooth_sun" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies_c
         "M42_no_lag_smooth_gust" = "butterfly_difference_cbrt ~ s(max_gust) + temperature_avg +
          "M43_no_lag_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfly_difference_cbrt ~ s(temperature_avg)) + s(bu
          "M44_no_lag_smooth_all_main" = "butterfly_difference_cbrt ~ s(max_gust) + s(temperature_
          "M45_no_lag_time_of_day" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies
          "M46 no lag temp time" = "butterfly difference cbrt ~ s(temperature avg) + s(butterflies
          "M47_no_lag_all_smooth_time" = "butterfly_difference_cbrt ~ s(max_gust) + s(temperature
cat("Total models to fit:", length(model_specs), "\n")
```

Total models to fit: 48

# **Model Fitting**

```
# Function to safely fit models
fit_model_safely <- function(formula_str, data) {</pre>
    tryCatch(
        {
            formula_obj <- as.formula(formula_str)</pre>
            gamm(formula_obj,
                data = data,
                random = random_structure,
                 correlation = correlation_structure,
                method = "REML"
            )
        },
        error = function(e) {
            message("Failed to fit model: ", formula_str)
            message("Error: ", e$message)
            return(NULL)
        }
    )
}
# Fit all models
cat("Fitting models...\n")
Fitting models...
```

```
fitted_models <- map(model_specs, ~ fit_model_safely(.x, model_data))</pre>
# Remove failed models
successful_models <- fitted_models[!map_lgl(fitted_models, is.null)]</pre>
cat("Successfully fitted", length(successful_models), "out of", length(model_specs), "models
```

Successfully fitted 48 out of 48 models

# **Model Comparison**

```
# Extract AIC values
aic_results <- map_dfr(names(successful_models), function(model_name) {</pre>
    model <- successful_models[[model_name]]</pre>
    data.frame(
```

```
Model = model_name,
        Formula = model_specs[[model_name]],
        AIC = AIC(model$lme),
       LogLik = logLik(model$lme)[1],
        df = attr(logLik(model$lme), "df")
    )
}) %>%
   arrange(AIC) %>%
   mutate(
        Delta_AIC = AIC - min(AIC),
        AIC_weight = \exp(-0.5 * Delta_AIC) / \sup(\exp(-0.5 * Delta_AIC))
    )
# Display results
aic_results %>%
    select(Model, AIC, Delta_AIC, AIC_weight, df) %>%
   kable(digits = 3, caption = "Model comparison by AIC")
```

Table 2: Model comparison by AIC

| Model                             | AIC      | Delta_AIC AI | C_weight | df |
|-----------------------------------|----------|--------------|----------|----|
| M22_temp_time                     | 8081.848 | 0.000        | 0.88     | 14 |
| $M21\_time\_of\_day$              | 8086.644 | 4.796        | 0.08     | 13 |
| M23_all_smooth_time               | 8088.049 | 6.200        | 0.04     | 16 |
| $M46\_no\_lag\_temp\_time$        | 8101.296 | 19.448       | 0.00     | 12 |
| $M16\_smooth\_temp$               | 8105.876 | 24.028       | 0.00     | 12 |
| M19_smooth_temp_sun               | 8105.876 | 24.028       | 0.00     | 12 |
| M47_no_lag_all_smooth_time        | 8107.724 | 25.876       | 0.00     | 14 |
| M45_no_lag_time_of_day            | 8108.295 | 26.447       | 0.00     | 11 |
| $M20\_smooth\_all\_main$          | 8109.249 | 27.401       | 0.00     | 14 |
| $M17\_smooth\_sun$                | 8114.431 | 32.583       | 0.00     | 11 |
| $M18\_smooth\_gust$               | 8119.075 | 37.227       | 0.00     | 13 |
| $M40\_no\_lag\_smooth\_temp$      | 8126.061 | 44.212       | 0.00     | 10 |
| $M43\_no\_lag\_smooth\_temp\_sun$ | 8126.061 | 44.212       | 0.00     | 10 |
| $M44\_no\_lag\_smooth\_all\_main$ | 8127.871 | 46.023       | 0.00     | 12 |
| $M6\_temp\_sun$                   | 8130.775 | 48.927       | 0.00     | 9  |
| M3_sun                            | 8131.696 | 49.848       | 0.00     | 8  |
| M15_three_way                     | 8132.647 | 50.799       | 0.00     | 14 |
| M5_gust_sun                       | 8134.945 | 53.097       | 0.00     | 9  |
| M11_gust_temp_int_plus_sun        | 8135.392 | 53.544       | 0.00     | 11 |
| M7_all_main                       | 8136.217 | 54.369       | 0.00     | 10 |
| M39_no_lag_three_way              | 8137.407 | 55.559       | 0.00     | 13 |
| M41_no_lag_smooth_sun             | 8139.237 | 57.389       | 0.00     | 9  |
| M9_gust_sun_int                   | 8139.410 | 57.562       | 0.00     | 10 |

| Model                         | AIC               | Delta_AIC | AIC_weight | df |
|-------------------------------|-------------------|-----------|------------|----|
| M12_gust_sun_int_plus_temp    | 8140.795          | 58.946    | 0.00       | 11 |
| M35_no_lag_gust_temp_int_plus | <b>8</b> 1141.931 | 60.082    | 0.00       | 10 |
| M42_no_lag_smooth_gust        | 8142.038          | 60.190    | 0.00       | 11 |
| M30_no_lag_temp_sun           | 8142.927          | 61.079    | 0.00       | 8  |
| M10_temp_sun_int              | 8144.554          | 62.705    | 0.00       | 10 |
| M31_no_lag_all_main           | 8146.374          | 64.526    | 0.00       | 9  |
| M36_no_lag_gust_sun_int_plus_ | te\$n1∎48.813     | 66.964    | 0.00       | 10 |
| M13_temp_sun_int_plus_gust    | 8150.004          | 68.156    | 0.00       | 11 |
| M0_null                       | 8153.582          | 71.734    | 0.00       | 7  |
| M29_no_lag_gust_sun           | 8154.129          | 72.281    | 0.00       | 8  |
| M27_no_lag_sun                | 8155.073          | 73.225    | 0.00       | 7  |
| M14_all_two_way               | 8155.075          | 73.227    | 0.00       | 13 |
| M34_no_lag_temp_sun_int       | 8156.678          | 74.830    | 0.00       | 9  |
| M33_no_lag_gust_sun_int       | 8156.943          | 75.095    | 0.00       | 9  |
| $M2\_temp$                    | 8157.623          | 75.775    | 0.00       | 8  |
| M1_gust                       | 8157.885          | 76.037    | 0.00       | 8  |
| M38_no_lag_all_two_way        | 8160.095          | 78.247    | 0.00       | 12 |
| M37_no_lag_temp_sun_int_plus_ | _g8ils60.174      | 78.326    | 0.00       | 10 |
| $M8\_gust\_temp\_int$         | 8162.939          | 81.091    | 0.00       | 10 |
| $M4\_gust\_temp$              | 8163.059          | 81.210    | 0.00       | 9  |
| M26_no_lag_temp               | 8170.575          | 88.727    | 0.00       | 7  |
| M32_no_lag_gust_temp_int      | 8171.945          | 90.096    | 0.00       | 9  |
| M28_no_lag_gust_temp          | 8175.113          | 93.264    | 0.00       | 8  |
| M24_no_lag_null               | 8177.191          | 95.342    | 0.00       | 6  |
| $M25\_no\_lag\_gust$          | 8178.495          | 96.647    | 0.00       | 7  |

```
# Show top 5 models
cat("\nTop 5 models by AIC:\n")
```

# Top 5 models by AIC:

```
head(aic_results, 5) %>%
  select(Model, Formula, AIC, Delta_AIC) %>%
  kable(digits = 3)
```

```
Model
                                                                      AIC Delta AIC
          Formula
M22 temp<u>buttitenelly</u> difference cbrt \sim s(total\_butterflies\_t\_lag)
                                                                      8081.848000
          + s(temperature\_avg) +
          s(butterflies\_direct\_sun\_t\_lag) +
          s(time_within_day_t)
M21\_timeboottedtay\_difference\_cbrt \sim s(total\_butterflies\_t\_lag)
                                                                      8086.644796
          + temperature avg +
          s(butterflies\_direct\_sun\_t\_lag) +
          s(time_within_day_t)
M23_all_sbutctdflytindiefference_cbrt ~ s(total_butterflies_t_lag)
                                                                      8088.04.2200
          + s(max\_gust) + s(temperature\_avg) +
          s(butterflies_direct_sun_t_lag) +
          s(time within day t)
M46\_no\_lagtttrflyp\_difference\_cbrt \sim s(temperature\_avg) \ +
                                                                      8101.299.448
          s(butterflies_direct_sun_t_lag) +
          s(time_within_day_t)
M16\_smodth\underline{tteeflyp}\_difference\_cbrt \sim s(total\_butterflies\_t\_lag)
                                                                      8105.876.028
          + s(temperature\_avg) +
          s(butterflies direct sun t lag)
```

# Best Model Analysis

```
# Get the best model
best_model_name <- aic_results$Model[1]
best_model <- successful_models[[best_model_name]]
cat("Best model:", best_model_name, "\n")

Best model: M22_temp_time
cat("Formula:", aic_results$Formula[1], "\n\n")</pre>
```

Formula: butterfly\_difference\_cbrt ~ s(total\_butterflies\_t\_lag) + s(temperature\_avg) + s(but

```
# Model summary
summary(best_model$gam)
```

Family: gaussian

Link function: identity

```
Formula:
butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperature_avg) +
    s(butterflies_direct_sun_t_lag) + s(time_within_day_t)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1765 0.4453 0.396
Approximate significance of smooth terms:
                                edf Ref.df
                                                F p-value
s(total_butterflies_t_lag)
                              2.621 2.621 12.020 8.26e-07 ***
                              3.930 3.930 3.230
s(temperature_avg)
                                                  0.0283 *
s(butterflies_direct_sun_t_lag) 1.534 1.534 19.356 1.22e-05 ***
                              4.898 4.898 8.901 < 2e-16 ***
s(time_within_day_t)
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0568
 Scale est. = 4.0332
                       n = 1894
```

#### Effect Plots

#### Effect of Previous Butterfly Count

```
plot(best_model$gam,
    select = 1, main = "Effect of Previous Butterfly Count",
    xlab = "Total Butterflies (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### **Effect of Previous Butterfly Count**



# Effect of Temperature

```
plot(best_model$gam,
    select = 2, main = "Effect of Temperature",
    xlab = "Average Temperature (°C)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### **Effect of Temperature**



#### Diurnal Pattern

```
plot(best_model$gam,
    select = 3, main = "Diurnal Pattern",
    xlab = "Time Within Day (minutes)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### **Diurnal Pattern**



# Effect of Sun Exposure (Smooth)

```
# Smooth effect of sun exposure
plot(best_model$gam,
    select = 4, main = "Effect of Sun Exposure (Smooth)",
    xlab = "Butterflies in Direct Sun (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### Effect of Sun Exposure (Smooth)



# Smooth Effects (ggplot2 style)

# **Previous Butterfly Count Effect**

```
library(gratia)
draw(best_model$gam, select = "s(total_butterflies_t_lag)") +
    theme_minimal() +
    labs(title = "Effect of Previous Butterfly Count (ggplot2 style)")
```



# Temperature Effect

```
draw(best_model$gam, select = "s(temperature_avg)") +
    theme_minimal() +
    labs(title = "Effect of Temperature (ggplot2 style)")
```



# Sun Exposure Effect

```
draw(best_model$gam, select = "s(butterflies_direct_sun_t_lag)") +
    theme_minimal() +
    labs(title = "Effect of Sun Exposure (ggplot2 style)")
```



# Diurnal Pattern

```
draw(best_model$gam, select = "s(time_within_day_t)") +
    theme_minimal() +
    labs(title = "Diurnal Pattern (ggplot2 style)")
```



# **Model Diagnostics**

#### Residuals vs Fitted Values

```
plot(best_model$lme, main = "Residuals vs Fitted Values")
```

# Residuals vs Fitted Values

# Q-Q Plot of Residuals

```
residuals_df <- data.frame(
    fitted = fitted(best_model$lme),
    residuals = residuals(best_model$lme, type = "normalized")
)

qqnorm(residuals_df$residuals, main = "Normal Q-Q Plot of Residuals")
qqline(residuals_df$residuals)</pre>
```



# Distribution of Residuals

hist(residuals\_df\$residuals, main = "Distribution of Residuals", xlab = "Residuals", breaks



# Second Best Model Analysis (Wind)

```
# Get the second best model
second_best_model_name <- aic_results$Model[2]</pre>
second_best_model <- successful_models[[second_best_model_name]]</pre>
cat("Second best model:", second_best_model_name, "\n")
Second best model: M21_time_of_day
cat("Formula:", aic_results$Formula[2], "\n\n")
Formula: butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature_avg + s(butterflies_t_lag)
# Model summary
summary(second_best_model$gam)
Family: gaussian
Link function: identity
Formula:
butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature_avg +
    s(butterflies_direct_sun_t_lag) + s(time_within_day_t)
Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
               (Intercept)
temperature_avg 0.01903
                           0.01595
                                    1.193
                                              0.233
Approximate significance of smooth terms:
                                 edf Ref.df
                                                 F p-value
s(total_butterflies_t_lag)
                               2.698 2.698 13.127 2.0e-07 ***
s(butterflies_direct_sun_t_lag) 1.637 1.637 18.684 1.5e-05 ***
                              5.023 5.023 9.559 < 2e-16 ***
s(time_within_day_t)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0525
 Scale est. = 4.0316
                        n = 1894
```

#### Effect Plots - Second Best Model

#### Effect of Previous Butterfly Count

```
plot(second_best_model$gam,
    select = 1, main = "Effect of Previous Butterfly Count (Second Best Model)",
    xlab = "Total Butterflies (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### Effect of Previous Butterfly Count (Second Best Model)



# Effect of Wind Gust

```
plot(second_best_model$gam,
    select = 2, main = "Effect of Wind Gust (Second Best Model)",
    xlab = "Max Gust (m/s)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### Effect of Wind Gust (Second Best Model)



# Effect of Temperature

```
plot(second_best_model$gam,
    select = 3, main = "Effect of Temperature (Second Best Model)",
    xlab = "Average Temperature (°C)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### Effect of Temperature (Second Best Model)



#### Effect of Sun Exposure

```
plot(second_best_model$gam,
    select = 4, main = "Effect of Sun Exposure (Second Best Model)",
    xlab = "Butterflies in Direct Sun (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

#### Diurnal Pattern

```
plot(second_best_model$gam,
    select = 5, main = "Diurnal Pattern (Second Best Model)",
    xlab = "Time Within Day (minutes)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

# Model Diagnostics - Second Best Model

#### Residuals vs Fitted Values

```
plot(second_best_model$lme, main = "Residuals vs Fitted Values (Second Best Model)")
```



#### Q-Q Plot of Residuals

```
second_residuals_df <- data.frame(
    fitted = fitted(second_best_model$lme),
    residuals = residuals(second_best_model$lme, type = "normalized")
)

qqnorm(second_residuals_df$residuals, main = "Normal Q-Q Plot of Residuals (Second Best Model qqline(second_residuals_df$residuals)</pre>
```

#### Normal Q-Q Plot of Residuals (Second Best Model)



#### Distribution of Residuals

```
hist(second_residuals_df$residuals,
    main = "Distribution of Residuals (Second Best Model)",
    xlab = "Residuals", breaks = 30
)
```



# Threshold-Based Wind Models

Now we'll explore an alternative approach using minutes\_above\_threshold instead of max\_gust to represent sustained high wind periods rather than instantaneous peak wind speeds.

# Threshold Model Specifications

```
# Model specifications for threshold-based analysis
threshold_model_specs <- list(
    # Null model (same as before)
    "TO_null" = "butterfly_difference_cbrt ~ total_butterflies_t_lag",

# Single variable models
    "T1_threshold" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above_tl
    "T2_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg",
    "T3_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + butterflies_direct_su

# Two-variable combinations
    "T4_threshold_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above_tl
    "T5_threshold_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above_tl
    "T6_temp_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg -
    "T6_temp_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag +
    "T6_temp_sun" = "b0_temp_sun" =
    "T6_temp_sun" = "b0_temp_sun" =
    "T6_temp_sun" =
    "T6
```

```
"T7_all_main" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above_th
# Two-way interactions
"T8_threshold_temp_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes
"T9_threshold_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes
"T10_temp_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature
# Two-way interactions with third variable as main effect
"T11_threshold_temp_int_plus_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag
"T12_threshold_sun_int_plus_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag
"T13_temp_sun_int_plus_threshold" = "butterfly_difference_cbrt ~ total_butterflies_t_lag
# All two-way interactions
"T14_all_two_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above
# Three-way interaction
"T15_three_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + minutes_above_1
# Smooth terms models (with lag term)
"T16_smooth_temp" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperate
"T17_smooth_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature
"T18_smooth_threshold" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(min
"T19_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temp_sun" = "butterflies_t_lag) + s(temp_sun" = "butte
"T20_smooth_all_main" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(min
"T21_time_of_day" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperatu
"T22_temp_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperatus
"T23_all_smooth_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(min
# Models WITHOUT lag term - testing environmental effects on absolute change
"T24_no_lag_null" = "butterfly_difference_cbrt ~ 1",
"T25_no_lag_threshold" = "butterfly_difference_cbrt ~ minutes_above_threshold",
"T26_no_lag_temp" = "butterfly_difference_cbrt ~ temperature_avg",
"T27_no_lag_sun" = "butterfly_difference_cbrt ~ butterflies_direct_sun_t_lag",
"T28_no_lag_threshold_temp" = "butterfly_difference_cbrt ~ minutes_above_threshold + ter
"T29_no_lag_threshold_sun" = "butterfly_difference_cbrt ~ minutes_above_threshold + but
"T30_no_lag_temp_sun" = "butterfly_difference_cbrt ~ temperature_avg + butterflies_direction."
"T31_no_lag_all_main" = "butterfly_difference_cbrt ~ minutes_above_threshold + temperate
"T32_no_lag_threshold_temp_int" = "butterfly_difference_cbrt ~ minutes_above_threshold :
"T33_no_lag_threshold_sun_int" = "butterfly_difference_cbrt ~ minutes_above_threshold *
"T34_no_lag_temp_sun_int" = "butterfly_difference_cbrt ~ temperature_avg * butterflies_
"T35_no_lag_threshold_temp_int_plus_sun" = "butterfly_difference_cbrt ~ minutes_above_tl
"T36_no_lag_threshold_sun_int_plus_temp" = "butterfly_difference_cbrt ~ minutes_above_tl
"T37_no_lag_temp_sun_int_plus_threshold" = "butterfly_difference_cbrt ~ temperature_avg
"T38_no_lag_all_two_way" = "butterfly_difference_cbrt ~ minutes_above_threshold * tempe:
"T39_no_lag_three_way" = "butterfly_difference_cbrt ~ minutes_above_threshold * temperate
```

```
# Smooth terms models WITHOUT lag term
"T40_no_lag_smooth_temp" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfl:
"T41_no_lag_smooth_sun" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies_c")
"T42_no_lag_smooth_threshold" = "butterfly_difference_cbrt ~ s(minutes_above_threshold)
"T43_no_lag_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfly_darmo_lag_smooth_all_main" = "butterfly_difference_cbrt ~ s(minutes_above_threshold)
"T45_no_lag_time_of_day" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies_darmo_lag_temp_time" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterflies_darmo_lag_all_smooth_time" = "butterfly_difference_cbrt ~ s(minutes_above_threshold)
)
cat("Total_threshold-based_models_to_fit:", length(threshold_model_specs), "\n")
```

Total threshold-based models to fit: 48

# Threshold Model Fitting

```
# Fit all threshold models
cat("Fitting threshold-based models...\n")
```

Fitting threshold-based models...

```
threshold_fitted_models <- map(threshold_model_specs, ~ fit_model_safely(.x, model_data))
# Remove failed models
threshold_successful_models <- threshold_fitted_models[!map_lgl(threshold_fitted_models, is
cat("Successfully fitted", length(threshold_successful_models), "out of", length(threshold_specs)</pre>
```

Successfully fitted 48 out of 48 threshold models

#### Threshold Model Comparison

```
# Extract AIC values for threshold models
threshold_aic_results <- map_dfr(names(threshold_successful_models), function(model_name) {
    model <- threshold_successful_models[[model_name]]
    data.frame(
        Model = model_name,
        Formula = threshold_model_specs[[model_name]],
        AIC = AIC(model$lme),</pre>
```

```
LogLik = logLik(model$lme)[1],
    df = attr(logLik(model$lme), "df")
)
}) %>%
    arrange(AIC) %>%
    mutate(
        Delta_AIC = AIC - min(AIC),
        AIC_weight = exp(-0.5 * Delta_AIC) / sum(exp(-0.5 * Delta_AIC))
)

# Display results
threshold_aic_results %>%
    select(Model, AIC, Delta_AIC, AIC_weight, df) %>%
    kable(digits = 3, caption = "Threshold model comparison by AIC")
```

Table 4: Threshold model comparison by AIC

| Model                           | AIC                         | Delta_AIC A | IC_weight d |
|---------------------------------|-----------------------------|-------------|-------------|
| T22_temp_time                   | 8081.848                    | 0.000       | 0.898 14    |
| T21_time_of_day                 | 8086.644                    | 4.796       | 0.082 13    |
| T23_all_smooth_time             | 8089.408                    | 7.560       | 0.020 - 10  |
| T46_no_lag_temp_time            | 8101.296                    | 19.448      | 0.000 13    |
| T16_smooth_temp                 | 8105.876                    | 24.028      | 0.000 13    |
| T19_smooth_temp_sun             | 8105.876                    | 24.028      | 0.000 	 12  |
| T45_no_lag_time_of_day          | 8108.295                    | 26.447      | 0.000 1     |
| T47_no_lag_all_smooth_time      | 8108.379                    | 26.530      | 0.000 	 14  |
| T20_smooth_all_main             | 8110.567                    | 28.719      | 0.000 	 14  |
| T17_smooth_sun                  | 8114.431                    | 32.583      | 0.000 1     |
| T18_smooth_threshold            | 8119.798                    | 37.949      | 0.000 - 13  |
| T40_no_lag_smooth_temp          | 8126.061                    | 44.212      | 0.000 10    |
| T43_no_lag_smooth_temp_sun      | 8126.061                    | 44.212      | 0.000 10    |
| T44_no_lag_smooth_all_main      | 8128.785                    | 46.937      | 0.000 13    |
| T6_temp_sun                     | 8130.775                    | 48.927      | 0.000       |
| T11_threshold_temp_int_plus_sun | 8131.129                    | 49.280      | 0.000 1     |
| T3_sun                          | 8131.696                    | 49.848      | 0.000       |
| T35_no_lag_threshold_temp_int_p | lu <b>8<u>13</u>5716</b> 43 | 55.495      | 0.000 10    |
| T5_threshold_sun                | 8137.997                    | 56.149      | 0.000       |
| T7_all_main                     | 8139.164                    | 57.316      | 0.000 10    |
| T41_no_lag_smooth_sun           | 8139.237                    | 57.389      | 0.000       |
| T42_no_lag_smooth_threshold     | 8142.280                    | 60.432      | 0.000 1     |
| T30_no_lag_temp_sun             | 8142.927                    | 61.079      | 0.000       |
| T10_temp_sun_int                | 8144.554                    | 62.705      | 0.000 10    |
| T31_no_lag_all_main             | 8148.840                    | 66.992      | 0.000       |
| T9_threshold_sun_int            | 8151.341                    | 69.493      | 0.000 10    |
|                                 |                             |             |             |

| Model                             | AIC                                 | Delta_AIC AI | C_weight | df |
|-----------------------------------|-------------------------------------|--------------|----------|----|
| T12_threshold_sun_int_plus_temp   | 8152.289                            | 70.441       | 0.000    | 11 |
| T13_temp_sun_int_plus_threshold   | 8152.962                            | 71.114       | 0.000    | 11 |
| T0_null                           | 8153.582                            | 71.734       | 0.000    | 7  |
| T27_no_lag_sun                    | 8155.073                            | 73.225       | 0.000    | 7  |
| T34_no_lag_temp_sun_int           | 8156.678                            | 74.830       | 0.000    | 9  |
| T2_temp                           | 8157.623                            | 75.775       | 0.000    | 8  |
| T29_no_lag_threshold_sun          | 8157.651                            | 75.803       | 0.000    | 8  |
| T14_all_two_way                   | 8159.633                            | 77.785       | 0.000    | 13 |
| T36_no_lag_threshold_sun_int_plus | s <u>8</u> <b>16</b> 0n <b>§</b> 37 | 78.988       | 0.000    | 10 |
| T8_threshold_temp_int             | 8161.928                            | 80.080       | 0.000    | 10 |
| T15_three_way                     | 8161.998                            | 80.150       | 0.000    | 14 |
| T1_threshold                      | 8162.095                            | 80.247       | 0.000    | 8  |
| T37_no_lag_temp_sun_int_plus_th   | ır <b>8\$16216</b> 65               | 80.816       | 0.000    | 10 |
| T38_no_lag_all_two_way            | 8165.249                            | 83.401       | 0.000    | 12 |
| T4_threshold_temp                 | 8167.011                            | 85.162       | 0.000    | 9  |
| T39_no_lag_three_way              | 8168.036                            | 86.188       | 0.000    | 13 |
| T33_no_lag_threshold_sun_int      | 8170.199                            | 88.350       | 0.000    | 9  |
| T26_no_lag_temp                   | 8170.575                            | 88.727       | 0.000    | 7  |
| T32_no_lag_threshold_temp_int     | 8171.815                            | 89.967       | 0.000    | 9  |
| T24_no_lag_null                   | 8177.191                            | 95.342       | 0.000    | 6  |
| T28_no_lag_threshold_temp         | 8179.268                            | 97.419       | 0.000    | 8  |
| T25_no_lag_threshold              | 8183.640                            | 101.791      | 0.000    | 7  |

```
# Show top 5 models
cat("\nTop 5 threshold models by AIC:\n")
```

Top 5 threshold models by AIC:

```
head(threshold_aic_results, 5) %>%
   select(Model, Formula, AIC, Delta_AIC) %>%
   kable(digits = 3)
```

```
Model Formula AIC Delta_AIC

T22_tempbutimedly_difference_cbrt ~ s(total_butterflies_t_lag) 8081.84800
+ s(temperature_avg) +
s(butterflies_direct_sun_t_lag) +
s(time_within_day_t)

T21_timebuttedlay_difference_cbrt ~ s(total_butterflies_t_lag)
+ temperature_avg + s(butterflies_direct_sun_t_lag)
+ s(time_within_day_t)

8086.644796
```

```
Model
                                                                   AIC Delta AIC
         Formula
T23_all_smotothflytinieference_cbrt ~ s(total_butterflies_t_lag)
                                                                   8089.40860
         + s(minutes_above_threshold) + s(temperature_avg)
         + s(butterflies\_direct\_sun\_t\_lag) +
         s(time_within_day_t)
T46_no_lagtterhy_difference_cbrt ~ s(temperature_avg) +
                                                                   8101.21996.448
         s(butterflies direct sun t lag) +
         s(time_within_day_t)
T16\_smodthtterflyp\_difference\_cbrt \sim s(total\_butterflies\_t\_lag)
                                                                   8105.82746028
         + s(temperature\_avg) +
         s(butterflies_direct_sun_t_lag)
```

# Best Threshold Model Analysis

```
# Check if we have successfully fitted threshold models
if(length(threshold_successful_models) > 0 && nrow(threshold_aic_results) > 0) {
    # Get the best threshold model
   best_threshold_model_name <- threshold_aic_results$Model[1]</pre>
   best_threshold_model <- threshold_successful_models[[best_threshold_model_name]]</pre>
    cat("Best threshold model:", best_threshold_model_name, "\n")
    cat("Formula:", threshold_aic_results\$Formula[1], "\n')
    # Model summary
    summary(best_threshold_model$gam)
} else {
    cat("No threshold models were successfully fitted, so no analysis can be performed.\n")
Best threshold model: T22_temp_time
Formula: butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperature_avg) + s(but
Family: gaussian
Link function: identity
Formula:
butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperature_avg) +
    s(butterflies_direct_sun_t_lag) + s(time_within_day_t)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept)
             0.1765
                        0.4453
                                         0.692
                                0.396
Approximate significance of smooth terms:
                                edf Ref.df
                                                F p-value
s(total_butterflies_t_lag)
                              2.621 2.621 12.020 8.26e-07 ***
s(temperature_avg)
                              3.930 3.930 3.230
                                                  0.0283 *
s(butterflies_direct_sun_t_lag) 1.534 1.534 19.356 1.22e-05 ***
                              4.898 4.898 8.901 < 2e-16 ***
s(time_within_day_t)
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0568
 Scale est. = 4.0332
                        n = 1894
```

# Threshold Model Effect Plots

#### Effect of Previous Butterfly Count

#### **Effect of Previous Butterfly Count (Threshold Model)**



#### Effect of Minutes Above Threshold

Minutes above threshold is not a smooth term in the best model

#### Comparison: Max Gust vs Minutes Above Threshold

```
# Create comparison plots
p1 <- ggplot(model_data, aes(x = max_gust)) +</pre>
    geom_histogram(bins = 30, fill = "lightblue", alpha = 0.7) +
    labs(title = "Distribution of Max Gust", x = "Max Gust (m/s)", y = "Frequency") +
    theme_minimal()
p2 <- ggplot(model_data, aes(x = minutes_above_threshold)) +</pre>
    geom_histogram(bins = 30, fill = "lightcoral", alpha = 0.7) +
    labs(title = "Distribution of Minutes Above Threshold", x = "Minutes Above Threshold",
    theme_minimal()
p3 <- ggplot(model_data, aes(x = max_gust, y = minutes_above_threshold)) +
    geom_point(alpha = 0.5) +
    geom_smooth(method = "lm", se = TRUE) +
    labs(title = "Relationship: Max Gust vs Minutes Above Threshold",
         x = "Max Gust (m/s)", y = "Minutes Above Threshold") +
    theme minimal()
# Show correlation
correlation <- cor(model_data$max_gust, model_data$minutes_above_threshold, use = "complete</pre>
p4 <- ggplot(model_data, aes(x = minutes_above_threshold, y = butterfly_difference_cbrt)) +
    geom_point(alpha = 0.3) +
    geom_smooth(method = "loess", se = TRUE, color = "red") +
    labs(title = "Minutes Above Threshold vs Butterfly Change",
         x = "Minutes Above Threshold", y = "Butterfly Difference (cbrt)") +
    theme_minimal()
grid.arrange(p1, p2, p3, p4, ncol = 2)
```



cat("Correlation between max\_gust and minutes\_above\_threshold:", round(correlation, 3), "\n"

Correlation between max\_gust and minutes\_above\_threshold: 0.785

# Model Comparison: Gust vs Threshold Approaches

```
AIC = c(min(aic_results$AIC), min(threshold_aic_results$AIC)),
                R_squared = c(gust_r_sq, threshold_r_sq),
                Dev_Explained = c(
                    ifelse(is.null(gust_dev) || length(gust_dev) == 0, NA, gust_dev),
                    ifelse(is.null(threshold_dev) || length(threshold_dev) == 0, NA, threshold_dev)
            )
    kable(comparison_df, digits = 4,
          caption = "Comparison of Max Gust vs Minutes Above Threshold Approaches")
} else {
    cat("No threshold models were successfully fitted. This may be due to:\n")
    cat("- Missing or invalid minutes_above_threshold data\n")
    cat("- Model convergence issues\n")
    cat("- Data structure problems\n")
    # Check the minutes_above_threshold variable
    cat("\nSummary of minutes_above_threshold variable:\n")
    summary(model_data$minutes_above_threshold)
    cat("\nFirst few values:\n")
   head(model_data$minutes_above_threshold, 10)
    cat("\nNumber of non-missing values:", sum(!is.na(model_data$minutes_above_threshold)),
    cat("Number of zero values:", sum(model_data$minutes_above_threshold == 0, na.rm = TRUE)
    cat("Number of positive values:", sum(model_data$minutes_above_threshold > 0, na.rm = T
}
```

Table 6: Comparison of Max Gust vs Minutes Above Threshold Approaches

| Approach                                          | Best_Model                         | AIC | R_squared       | Dev_Explained |
|---------------------------------------------------|------------------------------------|-----|-----------------|---------------|
| Max Gust (Original)<br>Minutes Above<br>Threshold | M22_temp_tim808<br>T22_temp_tim808 |     | 0.0568 $0.0568$ |               |

#### Results Summary

This analysis provides robust evidence regarding wind effects on overwintering monarch butterfly movement through comprehensive model comparison across 47 candidate models. The results reveal several key findings:

Wind Effects: Wind was not selected in the best-performing model and only appeared once in the top 5 models (plotted above) with a non-significant effect

(p = 0.218). This suggests that wind is not a primary driver of short-term monarch movement patterns at the temporal and spatial scales examined.

**Primary Drivers:** Temperature and diurnal patterns emerged as the strongest predictors of monarch movement. The best model revealed non-linear temperature responses with apparent thermal optima, and strong diurnal cycles consistent with monarch thermoregulatory behavior.

Model Performance: Including smooth terms substantially improved model fit (R<sup>2</sup> increased from 2.74% to 5.61%), highlighting the importance of capturing non-linear relationships in ecological modeling.

Threshold vs Peak Wind Analysis: The comparison between maximum gust speed and minutes above threshold provides insight into different aspects of wind exposure. While both approaches test wind effects, minutes above threshold captures sustained high wind periods rather than instantaneous peaks.

**Hypothesis Evaluation:** These results do not support the hypothesis that wind acts as a disruptive force to overwintering monarchs at the 30-minute temporal scale examined, regardless of whether wind is measured as peak gusts or sustained periods above threshold.