Математический анализ.

30 сентября 2015

1 Дифференциальное счисление функций одной переменной

Определение

Пусть f(x) определена в некоторой окрестности точки x_0 . Производной функции f(x) в точке x_0 называется предел отношения приращения функции Δy к приращению аргумента Δx в этой точке при $\Delta x \to 0$, если $\exists \lim \neq \infty$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Операцию нахождения производной функции называют дифференцированием

1.1 Таблица производных

f(x)	$\mathbf{f}'(\mathbf{x})$
$x^{\alpha}, \ \alpha \neq 1$	$\alpha x^{\alpha-1}$
\sqrt{x}	$\frac{1}{\sqrt{x}}$
a^x	$a^x \ln a$
e^x	e^x
$\ln x$	$\frac{1}{x}$
,	1
$\log_a x$	$\overline{x \ln a}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$