CS222 - Algorithm Design

Dr. Arpita Korwar

Assignment – 2: Fibonacci series using recursion

Authors:

- Prakhar Mathur 1906328
- Sanjay Marreddi 1904119
- Rishabh Tripathi 1904129

Problem Statement

1. : Recall the Fibonacci series:

$$F_0 = 0,$$

 $F_1 = 1,$
 $F_n = F_{n-1} + F_{n-2}, \quad \forall n \ge 2.$

Implement a recursive function that computes the nth Fibonacci number F_n . In a line graph, map

- 1. $n, \log(F_n)$ and
- 2. $n, \log(T(n))$, where T(n) is the time taken to compute F_n .

Conclude that the Fibonacci series and the time taken grows exponentially. What are the slopes of the two lines? Make a guess about F_n as a function of n. Make a guess about T(n) as a function of n.

The values of $\mathbf{n}, \log(F_n)$, $\log\left(T(n)\right)$ obtained using our code are as follows:

n	log(F_n)	log(T(n))	
1	0	-12.7169	
2	0	-13.8155	
3	0.693147	-13.8155	
4	1.098612	-13.8155	
5	1.609438	-13.8155	
6	2.079442	-13.8155	
7	2.564949	-13.8155	
8	3.044522	-13.1224	
9	3.526361	-13.1224	
10	4.007333	-13.1224	
11	4.488636	-12.4292	
12	4.969813	-12.0238	
13	5.451038	-11.6183	
14	5.932245	-11.2506	
15	6.413459	-10.8198	
16	6.89467	-10.3498	
17	7.375882	-9.92369	
18	7.857094	-9.43348	
19	8.338306	-8.96348	
20	8.819518	-8.48763	

	9.300729	
	9.781941	
23	10.26315	-7.01201
24	10.74437	-6.60469
25	11.22558	-6.20317
26	11.70679	-5.64731
27	12.188	-5.22432
28	12.66921	-4.75367
29	13.15042	-4.31527
30	13.63164	-3.9446
31	14.11285	-3.55501
32	14.59406	-3.21953
33	15.07527	-3.30101
34	15.55648	-2.97434
35	16.0377	-2.46199
36	16.51891	-1.96811
37	17.00012	-1.51752
38	17.48133	-1.10221
39	17.96254	-0.62338
40	18.44375	-0.14186
40	18.44375	-0.14186
39	17.96254	-0.62338
	17.48133	-1.10221

Line graph of n vs $log(F_n)$:

Line graph of n vs log(T(n)):

The slopes of both the above graphs are almost **constant** i.e., **logarithms** of T(n) and F_n are constant which implies that they are **exponential** in nature.

So, we can conclude that the Fibonacci series and the time taken grows exponentially.

The slopes of the two lines are as follows:

 $> n vs log(F_n) has a slope of 0.4804468921$

> n vs log(T(n)) has a slope of 0.3846896294

Let us guess/compute the \mathbf{F}_n and $\mathbf{T}(\mathbf{n})$ as a function of n using above values:

Since we observed that slopes are constant,

$$d(log(F_n))/dn = constant$$
 (Here it is 0.4804468921)

$$\int d(\log(\mathbf{F}_n)) = \int 0.4804468921 dn$$

$$log(\mathbf{F}_n) = 0.4804468921\mathbf{n} + \mathbf{k}$$
 (Integration constant)

$$F_n = e^{(0.4804468921n+k)}$$

$$F_n = A^*(e^{(0.4804468921n)})$$
 (A is constant)

In the similar way, the function for T(n) will be of the form:

$$T(n) = B^*(e^{(0.3846896294 n)})$$
 (B is constant)