

A. Mreńca-Kolasińska

February 20, 2025; last update February 20, 2025

1 Spin precession in external magnetic field

Figure 1: Dispersion relation E(k) for $\mathbf{B} = 0$.

Figure 2: Dispersion relation E(k) for (from the left) $\mathbf{B} = (B,0,0)$, $\mathbf{B} = (0,B,0)$, $\mathbf{B} = (0,0,B)$, with B=1 T.

Figure 3: Conductance as a function of energy at $B_z=1~\mathrm{T}.$

Figure 4: Spin dependent transmission coefficients as a function of magnetic field B_y , at $B_z = 1$ T and E = 0.005 eV.

Figure 5: Spin up and spin down electron density in the nanowire at $B_y = 0.6$ T, $B_z = 0.1$ T, and E = 0.005 eV.

Figure 6: Spin s_z , s_y , and s_z distribution in the nanowire at $B_y = 0.6$ T, $B_z = 0.1$ T, and E = 0.005 eV.

2 Spin transistor based on the spin-orbit coupling

Figure 7: Dispersion relation E(k) in the channel with spin-orbit coupling ($\alpha = 50$ meVnm).

Figure 8: Conductance as a function of incident electron energy with spin-orbit coupling present.

Figure 9: Spin dependent transmission coefficients as a function of the α parameter at E=0.005 eV.

Figure 10: Spin dependent conductance and the total conductance as a function of the α parameter at E=0.005 eV and (from the left) $P=0.2,\,P=0.4,$ and P=1.

Figure 11: Spin up and spin down electron density in the nanowire at $\alpha = 18$ meVnm and E = 0.005 eV.

Figure 12: Spin s_z , s_y , and s_z distribution in the nanowire at $\alpha=18$ meVnm and E=0.005 eV.