10. feladatsor: Gráfok alapfogalmai, út, séta, fagráf

1. feladat

Ábrázoljuk a következő irányítatlan gráfot: $G = (V, E, \varphi), V = \{A, B, C, D\}, E = \{e_1, e_2, e_3, e_4\}, \varphi = \{(e_1, \{A, B\}), (e_2, \{B, C\}), (e_3, \{A, C\}), (e_4, \{C, D\})\}$. Határozza meg a következőket: d(A), d(B), d(C), d(D). Rajzolja le \overline{G} -t. Izomorf-e G és \overline{G} ?

2. feladat

Hány olyan 3, 4 illetve 5 csúcsú gráf van, amelyik izomorf a komplementerével?

3. feladat

Bizonyítsuk be, hogy egy gráfban a páratlan fokszámú csúcsok száma mindig páros.

4. feladat

Lehet-e egy 7 pontú egyszerű gráf fokszámsorozata

- (a) 4, 4, 3, 3, 2, 2, 1;
- (b) 6, 3, 3, 3, 3, 2, 0;
- (c) 5, 5, 5, 2, 2, 2, 1;
- (d) 2, 2, 2, 2, 2, 2, 2?

5. feladat

Van-e olyan 9 pontú gráf, melyben a csúcsok fokai rendre az alábbiak? És egyszerű gráf?

- (a) 7, 7, 7, 6, 6, 6, 5, 5, 5;
- (b) 6, 6, 5, 4, 4, 3, 2, 2, 1;
- (c) 2, 2, 3, 5, 6, 6, 6, 8, 8?

6. feladat

Van-e olyan 8 pontú gráf, melyben a csúcsok fokai rendre 6,6,6,6,3,3,2,2? És egyszerű gráf?

7. feladat

- (a) Bizonyítsuk be, hogy véges, egyszerű gráfban létezik 2 különböző pont, melyek fokszáma egyenlő.
- (b) Mutassuk meg, hogy minden társaságban van két ember, akiknek ugyanannyi ismerősük van a jelenlévők között! (Az ismeretségek kölcsönösek.)

8. feladat

Bizonyítsuk be, hogy ha egy összefüggő gráfnak kevesebb éle van, mint pontja, akkor van elsőfokú pontja.

9. feladat

Ha egy véges egyszerű gráf nem összefüggő, akkor a komplementere összefüggő lesz-e?

10. feladat

Mutassuk meg, hogy ha egy 2n csúcsú gráf minden pontjának foka legalább n, akkor a gráf összefüggő! Mi történik, ha n-1-fokú pontokat is megengedünk?

11. feladat

Legyen G=(V,E) egyszerű gráf és |V|=6. Bizonyítsuk be, hogy G-ben vagy \overline{G} -ben létezik 3 csúcsú teljes gráf.

12. feladat

- (a) Igaz-e, hogy ha egy gráf bármely két pontja között van séta, akkor út is van?
- (b) Mutassuk meg, hogy ha a-ból vezet út b-be, és b-ből c-be, akkor a-ból is vezet c-be!

13. feladat

Legyen a G=(V,E) összefüggő gráfnak $e\in E$ éle elvágó él. Bizonyítsuk be, hogy e nem lehet G-beli kör éle.

14. feladat

Bizonyítsuk be, hogy ha egy gráf minden pontjának fokszáma legalább 2, akkor a gráf tartalmaz kört.

15. feladat

Bizonyítsuk be, hogy minden, legalább 5 csúcsú gráf esetén maga a gráf vagy a komplementere tartalmaz kört.

16. feladat

Rajzoljuk le az összes (páronként nem izomorf) 3, 4 és 5 csúcsú fát.

17. feladat

Mely fák izomorfak a komplementerükkel?

18. feladat

Hány olyan 8 csúcsú fa van, amelyben pontosan 2 db harmadfokú csúcs van?

19. feladat

Létezik-e 10 csúcsú erdő a következő fokszámsorozattal: 1, 1, 1, 2, 3, 3, 4, 4, 5, 6? Bizonyítsuk álllításunkat.

20. feladat

Igazoljuk, hogy véges gráfban a komponensek számának és az élek számának összege nem kisebb, mint a csúcsszám.

21. feladat

Jelöljük egy fa elsőfokú pontjanak számát f_1 -gyel, a kettőnél nagyobb fokúak számát pedig c-vel. Mutassuk meg, hogy ha legalább két pontja van a gráfnak, akkor $f_1 \ge c + 2$.

22. feladat

Igazoljuk, hogy egy összefüggő véges gráfban bármely két leghosszabb útnak van közös pontja!

23. feladat

Mutassuk meg, hogy egy véges fában az összes leghosszabb út egy ponton megy át!

A 24-27 feladatokban legyen G = (V, E) fagráf, $|V| = n, V_i = \{v \in V \mid d(v) = i\}, i \in \{1, ..., n-1\}.$

Legyen $f_i = |V_i|$, tehát f_i az *i*-edfokú csúcsok száma.

24. feladat

Döntse el, hogy létezik-e olyan fagráf, melyre |V|=8 és $f_3=2$. Ha igen, rajzolja le őket.

25. feladat

Döntse el, hogy létezik-e olyan fagráf, melyre |V| = 9 és $f_3 = 2$.

26. feladat

Legyen G=(V,E) fagráf, $|V|=n\geq 2$. Bizonyítsuk be, hogy ekkor $2\cdot f_1+f_2\geq n+2$.

27. feladat

Legyen G=(V,E) fagráf, $|V|=n\geq 2$. Bizonyítsuk be, hogy ekkor $3\cdot f_1+2\cdot f_2+f_3\geq 2+2\cdot n$.

28. feladat

Legyen $G = (V, E), |E| \ge |V|$. Bizonyítsa be, hogy létezik kör a gráfban.