Типы в языках программирования Лекция 1. Язык арифметических выражений

Денис Николаевич Москвин

СП6АУ РАН

15.02.2018

План лекции

1 Что такое типы

2 Бестиповая арифметика

③ Арифметика с типами

План лекции

1 Что такое типы

Бестиповая арифметика

③ Арифметика с типами

Системы типов

Два подхода к типам:

- Теория типов как раздел логики. (Рассел Рамсей/Черч -Карри/Говард - Мартин-Лёф -Берарди/Терлоу/Барендрегт - Воеводский)
- Типы в прикладной информатике. (Системы типов для языков программирования.)

Система типов — это гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Бенджамин Пирс

Для чего нужны типы?

• Выявление некоторых классов ошибок.

```
GHCi> length 42
GHCi> foldr (+) "ABCDE"
```

- Обеспечивают механизм *абстракции*, позволяя отделить протокол использования от деталей реализации.
- Обеспечивают безопасность языка, через механизм целостности абстракций.
- Документация.
- Эффективность.

Какие бывают системы типов?

Возможны классификации систем типам по разным аспектам:

- статические (static) vs динамические (dinamic);
- явные (explicit) vs неявные (implicit);
- сильные (strong) vs слабые (weak);
- структурные (structural) vs именные (nominal).
- консервативные (conservative) vs выразительные (expressive).

Пример слабой системы:

```
x = 5;
y = "37";
z = x + y;
```

Когда изготавливать систему типов?

Четыре взгляда на языки программирования:

- точка зрения прикладного программиста;
- точка зрения разработчика библиотек, компиляторов, инфраструктуры;
- точка зрения разработчиков стандарта существующего языка;
- точка зрения разработчиков нового языка.

Попытки приделать статическую систему типов на уровнях, отличных от последнего, обычно не очень удачны.

План лекции

1 Что такое типь

2 Бестиповая арифметика

3 Арифметика с типами

Термы исчисления

В стандартной форме Бэкуса-Наура:

Термы (выражения) исчисления

```
t ::=
    true
    false
    if t then t else t
    0
    succ t
    pred t
    iszero t
```

Здесь t — метапеременная.

Можно описать и *индуктивно*, и в виде *схем правил вывода*, и в виде *конкретной иерархии*.

Термы исчисления, индуктивно

Термы, индуктивно

Множество термов T — это наименьшее множество, обладающее следующими свойствами:

$$\label{eq:true_false} \begin{split} &\{\texttt{true}, \texttt{false}, 0\} \subset \mathit{T} \\ & \texttt{t} \in \mathit{T} \ \Rightarrow \ \{\texttt{succ} \ \texttt{t}, \texttt{pred} \ \texttt{t}, \texttt{iszero} \ \texttt{t}\} \subset \mathit{T} \\ & \texttt{t}_1, \texttt{t}_2, \texttt{t}_3 \in \mathit{T} \ \Rightarrow \ \texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 \in \mathit{T} \end{split}$$

Почему мы не говорим о скобках, хотя, вроде, надо бы?

Термы исчисления, индуктивно

Термы, индуктивно

Множество термов T — это наименьшее множество, обладающее следующими свойствами:

$$\label{eq:true_false} \begin{split} &\{\texttt{true}, \texttt{false}, 0\} \subset \mathit{T} \\ & \texttt{t} \in \mathit{T} \ \Rightarrow \ \{\texttt{succ} \ \texttt{t}, \texttt{pred} \ \texttt{t}, \texttt{iszero} \ \texttt{t}\} \subset \mathit{T} \\ & \texttt{t}_1, \texttt{t}_2, \texttt{t}_3 \in \mathit{T} \ \Rightarrow \ \texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 \in \mathit{T} \end{split}$$

Почему мы не говорим о скобках, хотя, вроде, надо бы?

Мы определяем термы как деревья в абстрактном синтаксисе. При записи в линейном, строковом виде используем группирующие скобки.

Термы исчисления, конкретно

Конкретная иерархия

$$\begin{array}{lll} T_0 & = & \varnothing \\ T_{i+1} & = & \{ \texttt{true}, \texttt{false}, 0 \} \\ & \cup & \{ \texttt{succ} \ t, \texttt{pred} \ t, \texttt{iszero} \ t \mid t \in T_i \} \\ & \cup & \{ \texttt{if} \ t_1 \ \texttt{then} \ t_2 \ \texttt{else} \ t_3 \mid t_1, t_2, t_3 \in T_i \} \end{array}$$

$$T & = \bigcup_i T_i$$

Сколько элементов содержит T_1 ? T_2 ? Является ли эта иерархия куммулятивной?

Индукция на термах

Индуктивное определение множества констант терма:

Определите size (количество узлов всех типов) и depth (глубина дерева).

Индуктивное доказательство

Принцип структурной индукции

Если из того, что свойство выполнено для всех непосредственных подтермов данного терма выводимо, что свойство выполнено для данного терма, то свойство верно для любого терма.

Лемма

$$\forall t | cnst(t) | \leq size(t)$$

Доказываем структурной индукцией, перебирая всевозможные синтаксические формы.

Можно доказывать и индукцией по глубине и по размеру.

Семантические стили

- Операционная семантика: описываем абстрактную машину. Для простых языков состояние это терм, а поведение задается функцией перехода, которая либо описывает следующее состояние, либо говорит, что достигнуто конечное состояние. Смысл терма его конечное состояние.
- Денотационная семантика: смысл терма некоторый математический объект из семантического домена. Для каждого терма задается функция интерпретации.

Операционная семантика

Для того, чтобы описать процесс вычисления, надо

- задать подмножество термов, называемых значениями;
- ullet задать отношение вычисления за один шаг: t o t'.

На булевом подмножестве

```
Термы и значения
```

```
t ::=
    true
    false
    if t then t else t
v ::=
    true
    false
```

Отношение вычисления на булевом подмножестве

Вычисление

Как будет вычисляться следующее выражение?

if true then (if false then false else false) else true

Можно построить дерево вывода для вычислений: листья — экземпляры правил (E-IfTrue) и (E-IfFalse), узлы — (E-If). (При этом ветвлений нет!)

Теорема

Если $t \to t'$ и $t \to t''$, то t' = t''.

Доказательство: индукция по дереву вывода для вычисления $t \to t'$. Смотрим в корень, разбираем возможные варианты структуры t, исходя из последнего правила, затем сравниваем с деревом для $t \to t''$.

- ullet (E-IfTrue): t= if t_1 then t_2 else t_3 и $t_1=$ true. В дереве вывода для $t \to t''$ не может быть другого правила.
- \bullet (E IfFalse): аналогично.
- ullet $({
 m E}-{
 m If})$: аналогично, с использованием IH.

Нормальная форма

Определение

Если к терму неприменимо ни одно вычислительное правило, то говорят, что он находится в *нормальной форме*.

Теорема

Любое значение является нормальной формой.

Теорема

Если t — нормальная форма, то t является значением.

Доказательство: пусть t не значение, докажем, что не NF, структурной индукцией. «Не значение» должно иметь вид if t_1 then t_2 else t_3 . t_1 = false или t_1 = true — не NF, в третьем случае пользуемся IH. \blacksquare

Второе утверждение верно только для нашего простого исчисления, первое должно выполнятся для любого разумного.

Многошаговое вычисление

Определение

Отношение многошагового вычисления t woheadrightarrow t' - это рефлексивно-транзитивное замыкание отношения (одношагового) вычисления.

Теорема (единственность нормальной формы)

Если $\mathfrak u$ и $\mathfrak v$ — нормальные формы, и $\mathfrak t \twoheadrightarrow \mathfrak u$ и $\mathfrak t \twoheadrightarrow \mathfrak v$, то $\mathfrak u = \mathfrak v$.

Доказательство: следует из детерминированности одношагового вычисления. ■

Завершимость вычисления

Теорема

Для каждого терма t существует нормальная форма t' такая, что t woheadrightarrow t'.

Доказательство: На каждом шаге вычисления размер терма сокращается. ■

(Эта теорема верна только для ограниченного круга исчислений.)

Расширение до арифметики

```
Термы и значения
t ::= ...
       succ t
       pred t
       iszero t
v ::=
       nv
nv ::=
       succ nv
```

Введена синтаксическая категория числовых значений nv.

Расширение вычислений

Вычисление (новые правила)

$$\begin{array}{c} \frac{t_1 \rightarrow t_1'}{\mathrm{succ} \ t_1 \ \rightarrow \ \mathrm{succ} \ t_1'} \end{array} \qquad \begin{array}{c} (\mathrm{E} - \mathrm{Succ}) \\ \\ \mathrm{pred} \ 0 \ \rightarrow \ 0 \\ \mathrm{pred}(\mathrm{succ} \ n\nu_1) \ \rightarrow \ n\nu_1 \\ \\ \frac{t_1 \rightarrow t_1'}{\mathrm{pred} \ t_1 \ \rightarrow \ \mathrm{pred} \ t_1'} \end{array} \qquad \begin{array}{c} (\mathrm{E} - \mathrm{PredZero}) \\ (\mathrm{E} - \mathrm{PredSucc}) \\ \\ (\mathrm{E} - \mathrm{PredSucc}) \\ \\ (\mathrm{E} - \mathrm{Pred}) \\ \end{array}$$

$$\begin{array}{c} \mathrm{iszero} \ 0 \ \rightarrow \ \mathrm{true} \\ \mathrm{iszero} \ 0 \ \rightarrow \ \mathrm{true} \\ \mathrm{iszero} (\mathrm{succ} \ n\nu_1) \ \rightarrow \ \mathrm{false} \\ \\ \frac{t_1 \rightarrow t_1'}{\mathrm{iszero} \ t_1 \ \rightarrow \ \mathrm{iszero} \ t_1'} \end{array} \qquad \begin{array}{c} (\mathrm{E} - \mathrm{IsZeroZero}) \\ \\ (\mathrm{E} - \mathrm{IsZero}) \\ \end{array}$$

Детерминировано ли вычисление pred(succ(pred 0))?

Для нашей расширенной системы по-прежнему верна теорема о детерминированности вычислений.

Теорема

Если $t \to t'$ и $t \to t''$, то t' = t''.

- Можно расширить вычисления для многошаговых и ввести понятие нормальной формы.
- Верна ли теорема о завершимости?

Для нашей расширенной системы по-прежнему верна теорема о детерминированности вычислений.

Теорема

Если $t \rightarrow t'$ и $t \rightarrow t''$, то t' = t''.

- Можно расширить вычисления для многошаговых и ввести понятие нормальной формы.
- Верна ли теорема о завершимости? Да.

Для нашей расширенной системы по-прежнему верна теорема о детерминированности вычислений.

Теорема

Если
$$t \rightarrow t'$$
 и $t \rightarrow t''$, то $t' = t''$.

- Можно расширить вычисления для многошаговых и ввести понятие нормальной формы.
- Верна ли теорема о завершимости? Да.
- Верна ли теорема о том, всякая нормальная форма является значением?

Для нашей расширенной системы по-прежнему верна теорема о детерминированности вычислений.

Теорема

Если
$$t \rightarrow t'$$
 и $t \rightarrow t''$, то $t' = t''$.

- Можно расширить вычисления для многошаговых и ввести понятие нормальной формы.
- Верна ли теорема о завершимости? Да.
- Верна ли теорема о том, всякая нормальная форма является значением? Нет!

Тупиковое состояние

Определение

Терм называется *тупиковым* (stuck), если он находится в нормальной форме, но не является значением.

Пример тупикового терма

succ true

Для нашей абстрактной машины тупиковое состояние это ошибка времени исполнения.

Семантика с большим шагом

Семантика с большим шагом описывает вычислительные правила в посылках (и заключениях) через понятие «терм t имеет при вычислении значение v», нотация $t \Downarrow v$.

Вычисление

$$\begin{array}{c} v \Downarrow v & (B-Value) \\ \\ \frac{t_1 \Downarrow true \quad t_2 \Downarrow v_2}{if \ t_1 \ then \ t_2 \ else \ t_3 \ \Downarrow v_2} & (B-IfTrue) \\ \\ \frac{t_1 \Downarrow false \quad t_3 \Downarrow v_3}{if \ t_1 \ then \ t_2 \ else \ t_3 \ \Downarrow v_3} & (B-IfFalse) \\ \\ \dots \end{array}$$

Упражнение: продолжите самостоятельно.

Упражнение

Предположим, что нам захотелось поменять стратегию вычисления для булева языка так, чтобы ветви then и else в условном выражении вычислялись (в указанном порядке) до того, как вычислится само условие.

Покажите, как нужно изменить правила вычисления, чтобы добиться такого поведения.

План лекции

1 Что такое типь

Бестиповая арифметика

3 Арифметика с типами

Бестиповая арифметика

Термы и значения

```
t ::=
      true
      false
      if t then t else t
      0
      succ t
      pred t
      iszero t
v ::=
      true
      false
      nv
nv ::=
      succ nv
```

Типы

- У нас имелись тупиковые термы, вроде pred false.
- Хотелось бы иметь возможность *статически* проверять, зайдет ли вычисление в тупик.
- Типы позволят это сделать, но консервативно, то есть отбросив при этом и некоторые нетупиковые, например if true then 0 else false.

Введем новые синтаксические формы

Типы T ::= Bool Nat

Отношение типизации

Правила типизации

$$\begin{array}{lll} & \text{true:Bool} & (T-\text{True}) \\ & \text{false:Bool} & (T-\text{False}) \\ & \\ & \frac{t_1:\text{Bool} \quad t_2:T \quad t_3:T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3:T} & (T-\text{If}) \\ & 0:\text{Nat} & (T-\text{Zero}) \\ & \\ & \frac{t_1:\text{Nat}}{\text{succ}(t_1):\text{Nat}} & (T-\text{Succ}) \\ & \\ & \frac{t_1:\text{Nat}}{\text{pred}(t_1):\text{Nat}} & (T-\text{Pred}) \\ & \\ & \frac{t_1:\text{Nat}}{\text{iszero}(t_1):\text{Bool}} & (T-\text{IsZero}) \end{array}$$

Отношение типизации

Определение

Отношение типизации (typing relation) для арифметических выражений — это наименьшее бинарное отношение между термами и типами, удовлетворяющее всем правилам с предыдущего слайда.

Определение

Терм t называется τ ипизируемым (typable) (или κ орректно τ ипизированным, well-typed), если существует тип T такой, что t:T.

Лемма об инверсии

Лемма (генерации)

- ullet Если true: R, то R = Bool.
- $lacksymbol{\circ}$ Если if t_1 then t_2 else $t_3: R$, то $t_1: Bool, \ t_2: R$ и $t_3: R$.
- Если 0: R, то R = Nat.
- **5** Если $succ(t_1): R$, то R = Nat и $t_1: Nat$.
- $oldsymbol{6}$ Если $\operatorname{pred}(t_1):R$, то $R=\operatorname{Nat}$ и $t_1:\operatorname{Nat}$.
- $oldsymbol{O}$ Если $iszero(t_1): R$, то R = Bool и $t_1: Nat.$

Лемма об инверсии дает нам рекурсивный алгоритм вывода типов.

Теорема

Все подтермы типизируемого терма типизируемы.

Дерево вывода типа

Правила типизации позволяют строить дерево вывода типа. Докажем, например, что if iszero 0 then 0 else pred 0 : Nat.

Единственность типа

Теорема о единственности типа

Всякий терм t имеет не более одного типа.

Доказательство: Структурная индукция по t, с использованием леммы генерации. \blacksquare

Это свойство выполняется далеко не для всех систем.

Корректность типа (типобезопасность)

Безопасность = продвижение + сохранение (Харпер)

- Продвижение: Правильно типизированный терм не может быть тупиковым (либо это значение, либо может быть проделан следующий шаг в соответствии с правилами вычисления).
- Сохранение: Если над правильно типизированным термом выполнить шаг вычисления, то получившийся терм также правильно типизирован.

Второе свойство почти всегда можно сформулировать более сильным образом — тип сохраняется при вычислениях.

Канонические формы

Определение

Канонические формы (canonical forms) для некоторого типа — это правильно типизированные значения этого типа.

Лемма о канонических формах

- 1. Если ν значение типа Bool, то ν равно либо true, либо false.
- 2. Если v значение типа Nat, то v является числовым значением.

Доказательство:

- 1. Значения это true, false, 0 или succ(nv). Первые два дают искомые $K\Phi$, а вторые два имеют тип Nat.
- 2. Самостоятельно. ■

Продвижение

Теорема о продвижении

Пусть t: Т. Тогда либо t является значением, либо существует некоторый t', такой, что $t \to t'$.

Доказательство: Индукция по дереву вывода t:T с использованием леммы о канонических формах.

Сохранение

Теорема о редукции субъекта (сохранении)

Пусть t: T и $t \to t'$, тогда t': T.

Доказательство: Индукция по дереву вывода t:T с анализом соответствующих вычислительных правил.