Department of Mathematics Indian Institute of Technology Guwahati

MA 101: Mathematics I Continuity

July-December 2019

Definition 1. Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$. If $f: D \to \mathbb{R}$, then $\ell \in \mathbb{R}$ is said to be the limit of f at x_0 if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in D$ satisfying $0 < |x - x_0| < \delta$.

We write: $\lim_{x\to x_0} f(x) = \ell$. In the following theorem, we prove a sequential criterion for limit.

Theorem 1 (Sequential criterion). Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$. Let $f : D \to \mathbb{R}$. Then the following are equivalent.

- (a) $\lim_{x \to x_0} f(x) = \ell.$
- (b) For any sequence (x_n) in D with $x_n \neq x_0$ for all $n \geq 1$ and $x_n \to x_0$, the sequence $(f(x_n))$ converges to ℓ .

Proof. (a) \Rightarrow (b): Suppose that $\lim_{x\to x_0} f(x) = \ell$. Then for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in D$ satisfying $0 < |x - x_0| < \delta$. Suppose that (x_n) is a sequence in D converging to x_0 . Then there exists $n_0 \in \mathbb{N}$ such that $|x_n - x_0| < \delta$ for all $n \geq n_0$. Then we have $|f(x_n) - \ell| < \varepsilon$ for all $n \geq n_0$, and hence $f(x_n) \to \ell$.

(b) \Rightarrow (a): Suppose that $x_n \to x_0$ implies $f(x_n) \to \ell$. We claim that $\lim_{x \to x_0} f(x) = \ell$. To see why the cliam must be true, assume otherwise. Then there exists some $\varepsilon_0 > 0$ such that for any $\delta > 0$, there is $x \in D$ such that $0 < |x - x_0| < \delta$ and $|f(x) - \ell| \ge \varepsilon_0$. We now apply this to each $\delta = 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots$ For $\delta = \frac{1}{n}$, we pick $x_n \in D$ satisfying $0 < |x_n - x_0| < \frac{1}{n}$. Then $x_n \to x_0$ but $|f(x_n) - \ell| \ge \varepsilon_0$. Thus, we have found a sequence (x_n) in D with $x_n \to x_0$, but the sequence $(f(x_n))$ does not converge to ℓ . Therefore, (a) must be true.

Example 1. $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Solution. We have

Let $x_n = \frac{2}{(4n+1)\pi}$ and $y_n = \frac{1}{n\pi}$ for all $n \in \mathbb{N}$. Then $x_n \to 0$ and $y_n \to 0$. Since $\sin \frac{1}{x_n} = 1$ and $\sin \frac{1}{y_n} = 0$ for all $n \in \mathbb{N}$, we get $\sin \frac{1}{x_n} \to 1$ and $\sin \frac{1}{y_n} \to 0$. Therefore by the sequential criterion for limit, $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Definition 2. A function $f: D \to \mathbb{R}$ is called bounded if there exists M > 0 such that |f(x)| < M for all $x \in D$.

Theorem 2. Let $f: D \to \mathbb{R}$. Suppose that $\lim_{x \to x_0} f(x) = \ell$. Then there exists some $\delta > 0$ such that f is bounded on $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. That is, there exists M > 0 such that |f(x)| < M for all $x \in (x_0 - \delta, x_0 + \delta)$ with $x \neq x_0$.

Proof. Let $\varepsilon > 0$. Since $\lim_{x \to x_0} f(x) = \ell$, so there is some $\delta > 0$ such that

$$|f(x) - \ell| < \varepsilon$$
 whenever $0 < |x - x_0| < \delta$.

Take $M = \varepsilon + |\ell|$. Then we have |f(x)| < M for all $x \in (x_0 - \delta, x_0 + \delta)$ with $x \neq x_0$. \square

Remark 1. If $x_0 \in D$, then by taking $M = \max\{\varepsilon + |\ell|, |f(x_0)|\}$ we have |f(x)| < M for all $x \in (x_0 - \delta, x_0 + \delta)$.

Theorem 3 (Limit Theorems). Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$. Let $f, g, j : D \to \mathbb{R}$. Suppose that $\lim_{x \to x_0} f(x) = \ell$ and $\lim_{x \to x_0} g(x) = m$. Then

- (1) $\lim_{x \to x_0} (f(x) \pm g(x)) = \ell \pm m.$
- (2) If $f(x) \leq g(x)$ for all $x \in (x_0 h, x_0 + h) \setminus \{x_0\}$, then $\ell \leq m$.
- (3) $\lim_{x \to x_0} (fg)(x) = \ell m \text{ and if } m \neq 0 \text{ and } g(x) \neq 0 \text{ for all } x \in D, \text{ then } \lim_{x \to x_0} \frac{1}{g(x)} = \frac{1}{m}.$
- (4) If $f(x) \leq j(x) \leq g(x)$ for all $x \in (x_0 h, x_0 + h) \setminus \{x_0\}$ and $\ell = m$, then $\lim_{x \to x_0} j(x) = \ell$.

Proof. (2) We will use sequential criterion to prove the result. Let (x_n) be a sequence in D with $x_n \neq x_0$ for all $n \geq 1$ and $x_n \to x_0$. Since $\lim_{x \to x_0} f(x) = \ell$ and $\lim_{x \to x_0} g(x) = m$, so $\lim_{n \to \infty} f(x_n) = \ell$ and $\lim_{n \to \infty} g(x_n) = m$. Also $x_n \to x_0$, and therefore there is some $n_0 \in \mathbb{N}$ such that $x_n \in (x_0 - h, x_0 + h)$ for all $n \geq n_0$. Since $f(x) \leq g(x)$ for all $x \in (x_0 - h, x_0 + h) \setminus \{x_0\}$, so $f(x_n) \leq g(x_n)$ for all $n \geq n_0$. This yields $\lim_{n \to \infty} f(x_n) \leq \lim_{n \to \infty} g(x_n)$, and hence $\ell \leq m$.

(3) We will use the definition to prove this result. Since $\lim_{x\to x_0} f(x) = \ell$, so there exist $\delta_1 > 0$ and M > 0 such that

$$|f(x)| < M$$
 for all $x \in (x_0 - \delta_1, x_0 + \delta_1)$ with $x \neq x_0$.

Let $\varepsilon > 0$. Then there exist $\delta_2, \delta_3 > 0$ such that $|f(x) - \ell| < \frac{\varepsilon}{2(|m|+1)}$ whenever $0 < |x - x_0| < \delta_2$ and $|g(x) - m| < \varepsilon/2M$ whenever $0 < |x - x_0| < \delta_3$. Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then

$$|f(x)g(x) - \ell m| = |f(x)g(x) - f(x)m + f(x)m - \ell m|$$

$$\leq |f(x)||g(x) - m| + |m||f(x) - \ell|$$

$$< \varepsilon \text{ whenever } 0 < |x - x_0| < \delta.$$

This proves that $\lim_{x\to x_0} (fg)(x) = \ell m$.

Theorem 4. Suppose that f(x) is bounded in $(x_0 - h, x_0 + h) \setminus \{x_0\}$ for some h > 0 and $\lim_{x \to x_0} g(x) = 0$. Then $\lim_{x \to x_0} f(x)g(x) = 0$.

Proof. Let M > 0 be such that |f(x)| < M for all $x \in (x_0 - h, x_0 + h) \setminus \{x_0\}$. Let $\varepsilon > 0$ be given. Since $\lim_{x \to x_0} g(x) = 0$, so there exists $\delta_1 > 0$ such that $|g(x) - 0| < \varepsilon/M$ whenever $0 < |x - x_0| < \delta_1$. Let $\delta = \min\{\delta_1, h\}$. Then,

$$|f(x)g(x) - 0| < \varepsilon$$
 whenever $0 < |x - x_0| < \delta$.

Hence,
$$\lim_{x \to x_0} f(x)g(x) = 0$$
.

Example 2. $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

Solution. We have $\sin \frac{1}{x}$ is bounded on $\mathbb{R} \setminus \{0\}$. Hence the result follows by the previous theorem.

Definition 3. Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0, x_0 + h) \subseteq D$. If $f: D \to \mathbb{R}$, then $\ell \in \mathbb{R}$ is said to be the right hand limit of f at x_0 if for each $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - \ell| < \varepsilon \quad whenever \quad x \in D \quad and \quad 0 < x - x_0 < \delta.$$

Notation for right hand limit: $\lim_{x \to x_0+} f(x) = \ell$.

Similarly one defines left hand limit of f at x_0 and is denoted by $\lim_{x\to x_0-} f(x)$.

Theorem 5.
$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x) = \ell$$
.

Example 3. Show that $\lim_{h\to 0} \frac{\sin h}{h} = 1$.

Solution. We consider the following unit circle.

We have

Area of $\triangle OPQ$ < Area of the circular section OPQO < Area of $\triangle OPR$ $\Rightarrow 1 < \frac{\text{Area of the circular section } OPQO}{\text{Area of } \triangle OPQ} < \frac{\text{Area of } \triangle OPR}{\text{Area of } \triangle OPQ}$ $\Rightarrow 1 < \frac{h}{\sin h} < \frac{\text{Area of } \triangle OPR}{\text{Area of } \triangle OPQ}$

Now
$$\frac{\text{Area of }\Delta OPR}{\text{Area of }\Delta OPQ} \to 1 \text{ as } h \to 0+$$
. Therefore, we have $\lim_{h\to 0+}\frac{\sin h}{h}=1$. Since $\frac{\sin h}{h}$ is an even function, so $\lim_{h\to 0-}\frac{\sin h}{h}=1$. This proves that $\lim_{h\to 0}\frac{\sin h}{h}=1$.

Definition 4. f(x) has limit ℓ as x approaches $+\infty$, if for any given $\varepsilon > 0$, there exists M > 0 such that

$$x > M \implies |f(x) - \ell| < \varepsilon$$
.

Similarly, one can define limit of f(x) as x approaches $-\infty$.

Example 4. (i) $\lim_{x\to\infty} \frac{1}{x} = 0$, (ii) $\lim_{x\to-\infty} \frac{1}{x} = 0$, (iii) $\lim_{x\to\infty} \sin x$ does not exist.

Definition 5. A function f(x) approaches ∞ as $x \to x_0$ if for every real M > 0, there exists $\delta > 0$ such that

$$0 < |x - x_0| < \delta \implies f(x) > M$$
.

Similarly, one can define limit of f(x) approaching $-\infty$.

Example 5. (i) $\lim_{x\to 0} \frac{1}{x^2} = \infty$, (ii) $\lim_{x\to 0} \frac{1}{x^2} \sin(1/x)$ does not exist.

Solution. For (ii), let $x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ and $y_n = \frac{1}{n\pi}$. Then $x_n, y_n \to 0$ as $n \to \infty$.

But
$$\lim_{n\to\infty} f(x_n) = \frac{1}{x_n^2} \to \infty$$
 and $\lim_{n\to\infty} f(y_n) = 0$.

Theorem 6. Suppose that $\lim_{x\to x_0} f(x) = \ell$. If $\ell \neq 0$, then there exists some δ such that $f(x) \neq 0$ for all $x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$.

Proof. Case-I: Let $\ell > 0$. Take $\varepsilon = \frac{\ell}{2} > 0$. Then there exists $\delta > 0$ such that

$$f(x) > \ell - \varepsilon = \ell - \frac{\ell}{2} = \frac{\ell}{2} > 0$$
 whenever $0 < |x - x_0| < \delta$.

Case-II: Let $\ell < 0$. Take $\varepsilon = -\frac{\ell}{2} > 0$. Then there exists $\delta > 0$ such that

$$f(x) < \ell + \varepsilon = \ell - \frac{\ell}{2} = \frac{\ell}{2} < 0$$
 whenever $0 < |x - x_0| < \delta$.

Definition 6. Let D be a nonempty subset of \mathbb{R} and let $f: D \to \mathbb{R}$. We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $x_0 \in D$.

Let $f:[a,b]\to\mathbb{R}$. Then f is continuous at $c\in(a,b)$ if $\lim_{x\to c}f(x)=f(c)$. Also, f is continuous at a if $\lim_{x\to a+}f(x)=f(a)$. Similarly, f is continuous at b if $\lim_{x\to b-}f(x)=f(b)$.

Theorem 7 (Sequential criterion of continuity). Let $f: D \to \mathbb{R}$. Then f is continuous at $x_0 \in D$ if and only if for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

Example 6. We have

(a)
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1 \end{cases}$$
 is not continuous at $x = 1$.

Solution. We have $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (3x+2) = 5$ and $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} 4x^2 = 4$. Hence $\lim_{x\to 1} f(x)$ does not exist and so f is not continuous at 1.

(b)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$
 is continuous at 0.

Solution. For all $x \neq 0 \in \mathbb{R}$, $|f(x) - f(0)| = |x \sin \frac{1}{x}| \leq |x|$ and hence given any $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we get $|f(x) - f(0)| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $|x - 0| < \delta$. Therefore f is continuous at 0.

(c)
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$
 is not continuous at 0.

Solution. Since $\lim_{x\to 0} \sin \frac{1}{x}$ does not exists. Therefore f is not continuous at 0.

(d)
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 is not continuous at any point of \mathbb{R} .

Solution. If $x_0 \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = 0$ for all $n \in \mathbb{N}$, $f(t_n) \to 0 \neq 1 = f(x_0)$. Hence f is not continuous at x_0 . Again, if $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x_0$. Since $f(r_n) = 1$ for all $n \in \mathbb{N}$, $f(r_n) \to 1 \neq 0 = f(x_0)$. Hence f is not continuous at x_0 .

(e)
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 is continuous only at 0.

Solution. Given any $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we have $|f(x) - f(0)| = |x| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $|x - 0| < \delta$. Therefore f is continuous at 0. If $x_0 \neq 0 \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = -t_n$ for all $n \in \mathbb{N}$, $f(t_n) \to -x_0 \neq x_0 = f(x_0)$. Hence f is not continuous at x_0 . Again, if $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x_0$. Since $f(r_n) = x_0$ for all $n \in \mathbb{N}$, $f(r_n) \to x_0 \neq -x_0 = f(x_0)$. Hence f is not continuous at x_0 .

Theorem 8. Let $f, g: D \to \mathbb{R}$ be continuous at $x_0 \in D$. Then

- (a) f + g, fg and |f| are continuous at x_0 ,
- (b) f/g is continuous at x_0 if $g(x) \neq 0$ for all $x \in D$.

Proof. Here we prove that if f is continuous at x_0 , then |f| is also continuous at x_0 . The remaining results can be easily proved using the sequential criterion for continuity. We note that the function |f| is defined as |f|(x) := |f(x)| for all $x \in D$. Let $\varepsilon > 0$ be given. Since f is continuous at x_0 , so there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ whenever $|x - x_0| < \delta$. Now,

$$||f|(x) - |f|(x_0)| = ||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| < \varepsilon$$
 whenever $|x - x_0| < \delta$.

This proves that |f| is continuous at x_0 .

Theorem 9. Composition of two continuous functions is continuous.

Proof. Let A and B be nonempty subsets of \mathbb{R} . Let $f: A \to B$ be continuous at $x_0 \in A$ and g be continuous at $f(x_0)$. We now prove that $g \circ f$ is continuous at x_0 . Let (x_n) be a sequence in A such that $x_n \to x_0$. Since f is continuous at x_0 , so $f(x_n) \to f(x_0)$. Now, $(f(x_n))$ is a sequence in B and g is continuous at $f(x_0)$. Therefore, $f(x_0) \to f(x_0)$, that is, $f(x_0) \to f(x_0)$. Hence, by using sequential criterion, $f(x_0) \to f(x_0)$ at $f(x_0) \to f(x_0)$. $f(x_0) \to f(x_0)$.

Example 7 (Further examples of continuous functions). Polynomial function, Rational function, sine function, cosine function, exponential function, etc.

Theorem 10. If $f: D \to \mathbb{R}$ is continuous at x_0 and $f(x_0) \neq 0$, then there exists $\delta > 0$ such that $f(x) \neq 0$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

Proof. Case-I: Let $f(x_0) > 0$. Take $\varepsilon = \frac{f(x_0)}{2} > 0$. Then there exists $\delta > 0$ such that

$$f(x) > f(x_0) - \varepsilon = f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} > 0$$
 whenever $x \in D$ and $|x - x_0| < \delta$.

Case-II: Let $f(x_0) < 0$. Take $\varepsilon = -\frac{f(x_0)}{2} > 0$. Then there exists $\delta > 0$ such that

$$f(x) < f(x_0) + \varepsilon = f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} < 0$$
 whenever $x \in D$ and $|x - x_0| < \delta$.

Theorem 11. If $f:[a,b] \to \mathbb{R}$ is continuous and if $f(a) \cdot f(b) < 0$, then there exists $c \in (a,b)$ such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Let $S = \{x \in [a,b] : f(x) < 0\}$. Let $c = \sup S$. We claim that f(c) = 0. Since f(b) > 0, so there exists $\delta > 0$ such that f(x) > 0 for all $x \in (b - \delta, b]$. Hence $c \le b - \delta < b$. Choose $n_0 \in \mathbb{N}$ such that $c + \frac{1}{n_0} \in (c, b)$. Then $x_n = c + \frac{1}{n} \notin S$ for all $n \ge n_0$. Clearly, $x_n \to c$. Therefore, $f(c) = \lim f(x_n) \ge 0$. On the other and, note that $c - \frac{1}{n}$ is not an upper bound of S for each n. Therefore, there exists a point $y_n \in (c - \frac{1}{n}, c) \cap S$. Note that $y_n \to c$ and $f(c) = \lim f(y_n) \le 0$. Hence f(c) = 0.

Theorem 12 (Intermediate value theorem). Let I be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be continuous. If $a, b \in I$ with a < b and if f(a) < k < f(b), then there exists $c \in (a, b)$ such that f(c) = k.

Proof. We define a new function $g:[a,b] \to \mathbb{R}$ by g(x) = f(x) - k. Since f is continuous so g is also continuous. Now, g(a) = f(a) - k < 0 and g(b) = f(b) - k > 0. By the previous theorem, there exists $c \in (a,b)$ such that g(c) = 0. This yields f(c) = k.

Example 8. The following are some consequences of intermediate value theorem.

(a) The equation $x^2 = x \sin x + \cos x$ has at least two real roots.

Solution. Let $f(x) = x^2 - x \sin x - \cos x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is continuous and $f(-\pi) = \pi^2 + 1 > 0$, f(0) = -1 < 0 and $f(\pi) = \pi^2 + 1 > 0$. Hence by the intermediate value theorem, the equation f(x) = 0 has at least one root in $(-\pi, 0)$ and at least one root in $(0, \pi)$. Thus the equation f(x) = 0 has at least two real roots.

(b) (Fixed point theorem). If $f:[a,b] \to [a,b]$ is continuous, then there exists $c \in [a,b]$ such that f(c) = c.

Solution. Let g(x) = f(x) - x for all $x \in [a, b]$. Since f is continuous, $g : [a, b] \to \mathbb{R}$ is continuous. If f(a) = a or f(b) = b, then we get the result by taking c = a or c = b respectively. Otherwise g(a) = f(a) - a > 0 and g(b) = f(b) - b < 0 (since it is given that $a \le f(x) \le b$ for all $x \in [a, b]$). Hence by the intermediate value theorem, there exists $c \in (a, b)$ such that g(c) = 0, that is, f(c) = c.

(c) Let $f:[0,2] \to \mathbb{R}$ be continuous such that f(0) = f(2). Then there exist $x_1, x_2 \in [0,2]$ such that $x_1 - x_2 = 1$ and $f(x_1) = f(x_2)$.

Solution. Let g(x) = f(x+1) - f(x) for all $x \in [0,1]$. Since f is continuous, $g: [0,1] \to \mathbb{R}$ is continuous. Also, g(0) = f(1) - f(0) and g(1) = f(2) - f(1) = -g(0), since f(0) = f(2). If g(0) = 0, then f(1) = f(0) and we get the result by taking $x_1 = 1$ and $x_2 = 0$. If $g(0) \neq 0$, then g(0) and g(1) are of opposite signs and hence by the intermediate value theorem, there exists $c \in (0,1)$ such that g(c) = 0, that is, f(c+1) = f(c). We get the result by taking $x_1 = c + 1$ and $x_2 = c$.

Theorem 13. If $f:[a,b] \to \mathbb{R}$ is continuous, then $f:[a,b] \to \mathbb{R}$ is bounded.

Proof. We need to prove that the set f([a,b]) is bounded. Suppose that the set f([a,b]) is unbounded. Firstly, suppose that it is unbounded above. Then for each $n \in \mathbb{N}$, there exists $x_n \in [a,b]$ such that $f(x_n) > n$. Since (x_n) is a sequence in [a,b], so it is bounded. By Bolzano Weierstrass theorem, (x_n) has a convergent subsequence, say (x_{n_k}) . Let $x_{n_k} \to x_0$. Since $a \le x_n \le b$, so $x_0 \in [a,b]$. (Note that this is the place where we need a closed interval as the domain of f). We are given that f is continuous on [a,b]. Therefore, $f(x_{n_k}) \to f(x_0)$. By the definition of subsequence, we have $n_k \ge k$ and hence $f(x_{n_k}) > n_k \ge k$ for all $k \ge 1$. This is a contradiction to the fact the sequence $f(x_{n_k})$ is bounded. We get a similar contradiction if we assume that f([a,b]) is unbounded below. Therefore, f must be a bounded function.

Example 9. There does not exist any continuous function from [0,1] onto $(0,\infty)$.

Theorem 14. If $f:[a,b] \to \mathbb{R}$ is continuous, then there exist $x_0, y_0 \in [a,b]$ such that $f(x_0) \le f(x) \le f(y_0)$ for all $x \in [a,b]$.

Proof. Since $f:[a,b]\to\mathbb{R}$ is continuous, so f is bounded. That is, the set A=f([a,b]) is bounded. Let $M=\sup(A)$ and $m=\inf(A)$. We claim that there exist $x_0,y_0\in[a,b]$ such that $m=f(x_0)$ and $M=f(y_0)$. Since $M=\sup(A)$, so for each $n\in\mathbb{N}$ there exists $y_n\in[a,b]$ such that $M-\frac{1}{n}< f(y_n)\le M$. This implies that $f(y_n)\to M$. Again, (y_n) is a bounded sequence and hence by Bolzano Weierstrass theorem it has a convergent subsequence, say (y_{n_k}) . Let $y_{n_k}\to y_0$. Clearly, $y_0\in[a,b]$. Since f is continuous at y_0 , so $f(y_{n_k})\to f(y_0)$. Hence $M=f(y_0)\in f([a,b])$. Equivalently, the maximum of f(x) is attained at y_0 .

The proof of $m = f(x_0)$ for some $x_0 \in [a, b]$ follows along similar lines.

Definition 7 (Limit point of a set). Let $A \subseteq \mathbb{R}$. A real number x is called a limit point of A if there exists a sequence (x_n) in A converging to x.

Definition 8 (Closed set). Let $A \subseteq \mathbb{R}$. Then A is called a closed set if A contains all its limit points. That is, if (x_n) is a sequence in A converging to x, then $x \in A$.

Example 10. \mathbb{R} , [a,b], $\{x_1, x_2, \ldots, x_n\}$, \mathbb{N} are closed sets. But, (a,b), \mathbb{Q} are not closed sets.

Theorem 15. Let A be a closed and bounded subset of \mathbb{R} . If $f: A \to \mathbb{R}$ is continuous, then f is bounded.

Proof. We need to prove that the set f(A) is bounded. Suppose that the set f(A) is unbounded. Firstly, suppose that f(A) is unbounded above. Then for each $n \in \mathbb{N}$, there exists $x_n \in A$ such that $f(x_n) > n$. Since (x_n) is a sequence in A, so it is bounded. By Bolzano Weierstrass theorem, (x_n) has a convergent subsequence, say (x_{n_k}) . Let $x_{n_k} \to x_0$. Since (x_{n_k}) is a sequence in A converging to x_0 and A is closed, so $x_0 \in A$. We are given that f is continuous on A. Therefore, $f(x_{n_k}) \to f(x_0)$. By the definition of subsequence, we have $n_k \geq k$ and hence $f(x_{n_k}) > n_k \geq k$ for all $k \geq 1$. This is a contradiction to the fact the sequence $f(x_{n_k})$ is bounded. We get a similar contradiction if we assume that f([a,b]) is unbounded below. Therefore, f must be a bounded function. \square

Remark 2. The above result is not true if A is bounded but not closed. For example f(x) = 1/x on (0,1). Also, the result is not true if A is closed but not bounded. For example, f(x) = x on \mathbb{R} .