池田「テンソル代数と表現論」

2023年3月8日

課題の解答例.

1 広義固有区間

1.1 $A^m = E \$ \$\text{\$1\$}, $f(t) = t^m - 1 \$ \$\text{\$1\$} $f(A) = 0 \$ \$\text{\$\varphi}\$\$\$\text{\$\varphi}\$\$\$.

$$f(t) = \prod_{k=0}^{m-1} (t - e^{2\pi i k/m})$$

である。最小多項式は f を割り切るので,f の右辺のどの項も高々 1 回しか現れない,つまり重根を持たない. したがって定理 1.2.6 より A は対角化できる.

- 2 ジョルダン標準形
- 3 行列の指数関数とその応用
- 4 テンソル代数
 - $4.1 \, ^t f$ の表現行列を B とする.

$$\langle {}^t f(\psi_i), v_j \rangle = \langle \sum_k b_{ki} \phi_k, v_j \rangle = \sum_k b_{ki} \delta_{jk} = b_{ji}$$

と

$$\langle {}^t f(\psi_i), v_j \rangle = \psi_i(f(v_j)) = \psi_i \left(\sum_k a_{kj} w_k \right) = \sum_k a_{kj} \delta_{ik} = a_{ij}$$

より、 $b_{ji} = a_{ij}$. したがって $B = {}^t A$.

- 4.2(1) $\psi \in W^*$ の定義域を V に拡張すれば V^* の元になる.それには $\psi(v_{r+1}), \cdots, \psi(v_n)$ を設定して,線型 に拡張すればよい.したがって $\Phi: W^* \to V^*$ は全射.
- 4.2(2) $\bar{\Psi}$ を $\phi + W^{\perp} \mapsto \phi|_{W}$ と定義すれば well-defined な線型写像になる.
- 4.2(3) $\dim(V^*/W^{\perp})=n-\dim W^{\perp}=n-(n-r)=r=\dim W^*$ より $\bar{\Psi}$ は全射. (2) より単射でもあるから、線型同型.