- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Week 2

- Warm-up: negative results

- Output of a node can only depend on what it knows
- After T time steps, a node can only know about things up to distance T

- Who knows that node 15 exists?
 - initially, only node 15
 - everyone else has to learn it by exchanging messages

- Who knows about node 15 at time T = 0?
 - initial state, before we exchange any messages

- Who knows about node 15 at time T = 1?
 - after 1 communication round

- Who knows about node 15 at time T = 2?
 - after 2 communication rounds

- Who knows about node 15 at time T = 3?
 - after 3 communication rounds

- After T communication rounds, only nodes up to distance T from node x can know anything about node x
 - distance = "number of hops"

- After T communication rounds, node x can only know about other nodes that are within distance T from it
 - distance = "number of hops"

- My state at time T only depends on:
 - my state at time T − 1, and
 - messages that I received on round T, which only depend on:
 - the state of my neighbours at time T − 1

 State at time T only depends on initial information within distance T

- Time = distance
- Fast algorithm = "local" algorithm
 - outputs only depend on local neighbourhoods

Example: 3-colouring

- Recall: given 128-bit unique identifiers,
 3-colouring possible in 7 rounds
- Equivalently: each node can pick its colour based on what it sees in its radius-7 neighbourhood

Using locality to prove lower bounds

- Example: 2-colouring of a path
- Upper bound: possible in time O(n)
- Lower bound: not possible in time o(n)

- Assumption: path, unique identifiers
- Two phases:
 - find the endpoint with smaller identifier
 - starting from this end, assign colours
 1, 2, 1, 2, ...

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- "ID x" = there is an endpoint with identifier x
- "colour c" = my colour is c

- 2-colouring possible in O(n) rounds
- Goal: prove that this is optimal!
 - there is no algorithm that finds a 2-colouring in time o(n)
 - assumptions: path, unique identifiers

- Assume: there is an o(n)-time algorithm A
- For large n, running time << n/2
- Idea: construct two possible worlds, show that A fails in one of them

• Long paths with 2k and 2k+1 nodes, algorithm runs in $\leq k-1$ rounds

$$H: (1)-(2)-(3)-(7)-(4)-(5)-(6)$$

• Same (k-1)-neighbourhood, same output

• Same (k-1)-neighbourhood, same output

Contradiction — why?

- G: nodes 1 and 6 must have different colours
- H: nodes 1 and 6 must have the same colour

 Conclusion: there is no algorithm that finds a 2-colouring of a path in time o(n)

Using locality to prove lower bounds

- Example: 3-colouring of a path
- Upper bound: possible in time O(log* n)
- Lower bound: not possible in time o(log* n)

Given: directed path with n nodes,
 identifiers are a permutation of {1, 2, ..., n}

- Given: directed path with n nodes,
 identifiers are a permutation of {1, 2, ..., n}
- Assume: there is an algorithm A that finds a 3-colouring in time T
- Goal: prove that $T \ge \frac{1}{2} \log^*(n) 1$

Algorithm for 3-colouring paths

- Running time T = output only depends on radius-T neighbourhood of the node
- Algorithm = k-ary function where k = 2T+1

Algorithm for 3-colouring paths

 $A(87, 29, 11, 46, 32) \neq A(29, 11, 46, 32, 77)$

Algorithm for c-colouring paths

- $A(x_1, ..., x_k) \in \{1, ..., c\}$ for all distinct $x_1, ..., x_k \in \{1, ..., n\}$
- $A(x_1, ..., x_k) \neq A(x_2, ..., x_{k+1})$ for all distinct $x_1, ..., x_{k+1} \in \{1, ..., n\}$

Definition: "k-ary c-colouring function"

- $f(x_1, ..., x_k) \in \{1, ..., c\}$ for all $1 \le x_1 < ... < x_k \le n$
- $f(x_1, ..., x_k) \neq f(x_2, ..., x_{k+1})$ for all $1 \leq x_1 < ... < x_{k+1} \leq n$
- We only care what happens with increasing identifiers

k-ary c-colouring function

 $f(25, 29, 34, 46, 52) \neq f(29, 34, 46, 52, 77)$

k-ary c-colouring function

- Assume: A is a distributed algorithm that finds a 3-colouring in directed n-cycles in time T
- Then: A is also a k-ary 3-colouring function for k = 2T + 1
- Plan: show that $k + 1 \ge \log^* n$

• If f is a 1-ary c-colouring function, then $c \ge n$

Intuition:

 you cannot do anything useful without some communication

• If f is a 1-ary c-colouring function, then $c \ge n$

Proof:

- pigeonhole principle
- if c < n, there is a collision f(x) = f(y) for some $1 \le x < y \le n$, contradiction

• If f is a k-ary c-colouring function, then we can construct a (k-1)-ary 2^c -colouring function g

Intuition:

 we can always construct a faster algorithm, if we can use a larger colour palette

• If f is a k-ary c-colouring function, then we can construct a (k-1)-ary 2^c -colouring function g

Proof:

- $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
- $g(x_1, ..., x_{k-1}) = h(g'(x_1, ..., x_{k-1}))$
- h = bijection that maps sets to colours

Lemma 2: proof

- $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
- $g(x_1,...,x_{k-1}) = h(g'(x_1,...,x_{k-1}))$
- h = bijection that maps sets to colours
- By construction: $g(x_1, ..., x_{k-1}) \in \{1, ..., 2^c\}$
- Need to show: $g(x_1, ..., x_{k-1}) \neq g(x_2, ..., x_k)$ for all $1 \leq x_1 < ... < x_k \leq n$

Lemma 2: proof

•
$$g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$$

• Need to show: $g'(x_1, ..., x_{k-1}) \neq g'(x_2, ..., x_k)$ for all $1 \leq x_1 < ... < x_k \leq n$

Lemma 2: proof

- $1 \le x_1 < x_2 < \dots < x_k \le n$
- $g'(x_1, ..., x_{k-1}) = \{f(x_1, ..., x_{k-1}, y) : y > x_{k-1}\}$
- $g'(x_2, ..., x_k) = \{f(x_2, ..., x_k, z) : z > x_k\}$
- $f(x_1, ..., x_{k-1}, x_k) \in g'(x_1, ..., x_{k-1})$
- $f(x_1, ..., x_{k-1}, x_k) \notin g'(x_2, ..., x_k)$
- $g'(x_1, ..., x_{k-1}) \neq g'(x_2, ..., x_k)$

• If f is a k-ary c-colouring function, then we can construct a (k-1)-ary 2^c -colouring function g

Iterate Lemma 2

$$^{i}2 = 2^{2} \cdot (i \text{ twos})$$

```
    k-ary 3-colouring function ⇒
    k-ary <sup>2</sup>2-colouring function ⇒
    (k-1)-ary <sup>3</sup>2-colouring function ⇒
    (k-2)-ary <sup>4</sup>2-colouring function ⇒
    (k-3)-ary <sup>5</sup>2-colouring function ⇒
    ...
    1-ary <sup>k+1</sup>2-colouring function
```

Lemma 1 + Lemma 2

$$^{i}2 = 2^{2} \cdot (i \text{ twos})$$

- Lemma 2:
 - k-ary 3-colouring function →
 1-ary ^{k+1}2-colouring function
- Lemma 1:
 - $^{k+1}2 \ge n$ (that is, $k+1 \ge \log^* n$)

Lower bound for 3-colouring

- Assume: A is a distributed algorithm that finds a 3-colouring in directed n-cycles in time T
- Then: A is also a k-ary 3-colouring function for k = 2T + 1
- Then: k + 1 ≥ log* n,
 therefore: T ≥ ½ log*(n) 1

Conclusions: tight bounds

2-colouring paths:

- possible in time O(n)
- not possible in time o(n)

3-colouring paths:

- possible in time O(log* n)
- not possible in time o(log* n)

Assuming: directed path, unique IDs = {1, 2, ..., n}

Conclusions: tight bounds

2-colouring paths:

- possible in time O(n)
- not possible in time o(n)

3-colouring paths:

- possible in time O(log* n)
- not possible in time o(log* n)

Richard Cole and Uzi Vishkin (1986)

Nathan Linial (1992)

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap