

LABORATORIUM FIZYCZNE

Grupa nr	Semestr		Grupa laboratoryjna	
Imię i Nazwisko: .				
Ćwiczenie nr:				
Temat ćwiczenia:		•••••		
Data wykonania ć	wiczenia:	••••••		
Data oddania sprav	wozdania:			
			Ocena:	
			Podpis prowad	lzącego zajęcia

1 Wstęp

Zajęcia laboratoryjne polegały na analizie ruchu drgającego ciężarka zawieszonego na sprężynie bądź układzie sprężyn, czyli pomiarze okresu drgania. Pomiary miały być dokonane dwoma metodami - statyczną i dynamiczną. Celem tego miało być wyznaczenie współczynnika sprężystości tych sprężyn oraz ich układów, a także wyznaczenie modułu sztywności materiału sprężyny.

2 Otrzymane wyniki

Wyniki otrzymane podczas pomiaru na laboratorium

Pierwsza sprężyna

Metoda statyczna			
Masa ciężarków[g]	Wydłużenie[cm]		
0	0		
50.320	5		
100.342	10		
150.596	15		
200.861	20		

Metoda dynamiczna				
Masa	Czas wykonania 20 wachań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2 Pomiar 3			
50.152	9.31	9.21	9.23	
100.508	12.59	12.68	12.56	
150.830	15.25	15.17	15.16	
201.095	17.40	17.41	17.28	

Druga sprężyna

Metoda statyczna			
Masa ciężarków[g] Wydłużenie[cr			
0	0		
50.155	4.8		
100.478	10		
150.614	15.3		
200.790	20.5		

Metoda dynamiczna				
Masa	Czas wykonania 20 wachań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2			
50.155	9.53	9.49		
100.478	12.89	12.93		
150.614	15.57	15.43		
200.790	17.76	17.77		

własności pierwszej sprężyny

$$r=0.4mm$$

$$N=77$$
 zwojów

$$R = 8.3mm$$

Obie sprężyny połączone równolegle

Obie spręzyny porąc.			
Metoda statyczna			
Masa ciężarków[g] Wydłużenie[cn			
0	0		
50.155	2.5		
100.478	5.2		
150.614	7.8		
200.790	10.2		

Metoda dynamiczna				
Masa	Czas wykonania 20 wachań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2 Pomiar 3			
50.155	8.54	8.53	8.36	
100.478	10.56	10.55	10.55	
150.614	12.15	12.13	12.11	
200.790	13.58	13.57	13.59	

Obie sprężyny połączone szeregowo

Metoda statyczna				
Masa ciężarków[g]	Wydłużenie[cm]			
0	0			
50.155	10.5			
100.478	20.8			
150.614	31.1			
200.790	41.3			

Metoda dynamiczna				
Masa	Czas wykonania 20 wachań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2 Pomiar 3			
50.155	13.91	13.88	13.96	
100.478	18.58	18.45	18.40	
150.614	22.16	22.15	22.16	
200.790	25.32	25.36	25.30	

3 Opracowanie wyników

M7.1 Wyznaczyć współczynnik sprężystości wybranej sprężyny wykorzystując statyczną metodę pomiaru czyli badając zależność jej wydłużenia od wartości obciążenia

Wyznaczanie współczynnika sprężystości sprężyny nr. 1 Mierzyliśmy wydłużenie sprężyny pod wpływem różnych wartości obciążenia - od 0 g do około 200 g, dokładając kolejne ciężarki. Wyniki wyglądają następująco:

Otrzymane wyniki za pomocą metody statycznej

Te dane pomogą nam wyznaczyć współczynnik sprężystości danej sprężyny. Z prawa Hooke'a wynika, że siła potrzebna do odkształcenia ciała jest wprost proporcjonalna do tego odkształcenia. Można to wyrazić równaniem F = kx, gdzie F jest przykładaną siłą, k jest stałą sprężystości ciała, a x jego wydłużeniem. Pozwala to łatwo wyprowadzić wzór na stałą sprężystości:

Masa ciężarków[g]

$$k = \frac{F}{x}$$

Daną x uzyskaliśmy mierząc wydłużenie sprężyny, a F możemy obliczyć za pomocą wzoru na siłę ciężkości F=mg, gdzie m jest masą obciążenia naszej sprężyny, a g jest wartością przyspieszenia grawitacyjnego, która na Ziemi wynosi ok. $9,81\frac{m}{s^2}$. Po dokonaniu wszystkich obliczeń otrzymaliśmy następujące wyniki:

$$k_{\text{średnia}} = 9.85445$$

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050320	0.05	9.87335
0.100342	0.10	9.84344
0.150596	0.15	9.84854
0.200861	0.20	9.85245

Tabela 1: obliczanie stałej k dla poszczególnych pomiarów.

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.081 * x + 1.914$$

$$f'(x) = 0.081$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 9.85445$$

Zatem:

$$k = (9.85445 \pm 0.081) \frac{N}{m}$$

M7.2 Wyznaczyć współczynnik sprężystości wybranej sprężyny wykorzystując dynamiczną metodę pomiaru czyli mierząc zależność okresu jej drgań od wartości obciążenia.

uzywając

$$k = \frac{4\pi^2 m}{T^2}$$

Masa ciężarków[kg]	Czas wykonania 20 wachań[s]	stała sprężystości k
0.050152	9.25	9.24765
0.100508	12.60999	9.97253
0.150830	15.19333	10.30876
0.201095	17.36333	10.52242

$$k_{\text{średnie}} = 10.01283$$

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.081 * x + 1.914$$

$$f'(x) = 0.081$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 10.01283$$

Zatem:

$$k = (10.01283 \pm 0.081) \frac{N}{m}$$

M7.3 Obliczyć moduł sztywności materiału sprężyny.

Współczynnik sprężystości sprężyny jest zależny od modułu sztywności materiału, z którego została zrobiona, na co wskazuje równanie $k=\frac{Gr^4}{4NR^3}$. W celu obliczenia modułu, można go wyprowadzić z tego wzoru by uzyskać takie równanie:

$$G = \frac{4kNR^3}{r^4}$$

gdzie:

k - współczynnik sprężystości sprężyny,

N - liczba zwojów sprężyny,

R - promień sprężyny,

r - promień drutu sprężyny.

$$G = \frac{9.85445 * 4 * 77 * 0.0083^3}{0.0004^4} =$$

Obliczanie stałej sprężystości również dla drugiej sprężyny

Otrzymane wyniki za pomocą metody statycznej

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050155	0.048	10.25049
0.100478	0.100	9.85687
0.150614	0.153	9.65742
0.200790	0.205	9.6088

Tabela 2: obliczanie stałej k dla poszczególnych pomiarów.

$$k_{\text{\'srednia}} = 9.84338$$

Masa ciężarków[kg]	Czas wykonania 20 wachań[s]	stała sprężystości k
0.050155	9.51	8.74907
0.100478	12.90999	9.51086
0.150614	15.5	9.89133
0.200790	17.765	10.03677

 $k_{\text{\'srednie}} = 9.547$

 ${\bf M7.4}$ Wyznaczanie współczynnika sprężystości sprężyn połączonych rownolegle

Otrzymane wyniki za pomocą metody statycznej

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050155	0.025	19.68079
0.100478	0.052	18.95549
0.150614	0.078	18.94347
0.200790	0.102	19.31152

Tabela 3: obliczanie stałej k dla poszczególnych pomiarów.

$$k_{\text{\'srednia}} = 19.22281$$

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.051 * x - 0.119$$

$$f'(x) = 0.051$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 19.22281$$

Zatem:

$$k = (19.22281 \pm 0.081) \frac{N}{m}$$

Korzystając ze wzoru $k=k_1+k_2$ możemy obliczyć teoretyczną wartość współczynnika sprężystośći.

$$k = 9.85445 + 9.84338 = 19.69783$$

Otrzymane wyniki za pomocą metody dynamicznej

Masa ciężarków[kg]	Czas wykonania 20 wachań[s]	stała sprężystości k
0.050155	8.47665	11.01183
0.100478	10.55333	14.23262
0.150614	12.12999	16.14992
0.200790	13.58	17.17697

$$k_{\text{\'srednie}} = 14.64282$$

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.061 * x + 1.862$$

$$f'(x) = 0.061$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 14.64282$$

Zatem:

$$k = (14.64282 \pm 0.061) \frac{N}{m}$$

 ${\bf M7.5}$ Wyznaczanie współczynnika sprężystości sprężyn połączonych szeregowe

Otrzymane wyniki za pomocą metody statycznej

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050155	0.105	4.68594
0.100478	0.208	4.73897
0.150614	0.311	4.75102
0.200790	0.413	4.7695

Tabela 4: obliczanie stałej k dla poszczególnych pomiarów.

$$k_{\text{\'srednia}} = 4.73636$$

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.206 * x + -0.556$$

$$f'(x) = 0.206$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 4.73636$$

$$k =$$

Zatem:

$$k = (4.73636 \pm 0.206) \frac{N}{m}$$

Korzystając ze wzoru $\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}$ oraz co za tym idzie $k=\frac{k_1k_2}{k_1+k_2}$ możemy obliczyć teoretyczną wartość współczynnika sprężystośći.

$$k = \frac{9.85445 * 9.84338}{9.85445 + 9.84338} = 4.92445$$

Otrzymane wyniki za pomocą metody dynamicznej

Masa ciężarków[kg]	Czas wykonania 20 wachań[s]	stała sprężystości k
0.050155	13.91667	4.08527
0.100478	18.47665	4.64326
0.150614	22.15666	4.8402
0.200790	25.32666	4.9382

$$k_{\text{średnie}} = 4.62672$$

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.117 * x + 3.269$$

$$f'(x) = 0.117$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 4.62672$$

Zatem:

$$k = (4.62672 \pm 0.117) \frac{N}{m}$$

Korzystając ze wzoru $\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}$ oraz co za tym idzie $k=\frac{k_1k_2}{k_1+k_2}$ możemy obliczyć teoretyczną wartość współczynnika sprężystośći.

$$k = \frac{10.01283 * 9.547}{10.01283 + 9.547} = 4.88718$$