

Implementation and evaluation of attention layer on gaze tracking using neural network

Yucheng XIAO

Supervisor Professor: Renaud Lachaize

Supervisor in Lab: Didier Schwab

Hosted by GETALP Team

Outline

- 1. Issue correction on Gazeplay games
- 2. Performance evaluation and comparison on gaze tracking of webcam and eye-tracker
- Implementation and evaluation of attention layer on gaze tracking using neural network

Issue correction on Gazeplay games

Issue #1572 :

Add the option to modifty progress bar size & color

Performance evaluation and comparison on webcam and eyetracker

The game Gazeplay

https://gazeplay.github.io/GazePlay/

Some comparisions...

Laptop camera

- Free (Basiclly)
- Integrated in laptop
- Drivers already installed

Can we use laptop camera instead?

Tobii Eye Tracker 5

- 259.00€
- Fixtation required
- Driver installation required

Defining Performance metrics

- Accuracy
- Precision
- Gaze Time

Figure inspired by [Tobii, 2011]

Test Environments

The Creampie Game – With modifications

Test Environments on laptop camera

Application GazePointer

https://gazerecorder.com/gazepointer/

Test Results

	Precision	Accuracy	Gaze Time				
	pixels	pixels	ms				
Eye-Tracker	29	36	430				
Webcam	58	112	989				
Table 1 : Evaluation results							

Implementation and evaluation of attention layer on gaze tracking using neural network

What is Attention?

Image from [Xu et al., 2015]

Widely Used Attention

Image captioning

Language translation

Image Generation

Database: MPIIGaze

Pictures from laptop cameras

Figure 2: Sample images from our MPIIGaze dataset showing the considerable variability in terms of place and time of recording, directional light and shadows. For comparison, the last column shows sample images from other current publicly available datasets (cf. Table 1): UT Multiview [39] (top), Eyediap [8] (middle), Smith et al. [37] (bottom).

Pytorch-MPIIGaze

Pytorch-MPIIGaze

Gaze angle calculation process of pytorch-mpiigaze Figure from [Zhang et al., 2015]

Convolutional Neural Networks

3x3 convolution, half padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

LeNet

 Proposed by Yann Lecun and others in 1998

Structure of LeNet-5 from [Lecun et al., 1998]

ResNet

- Proposed by Kaiming He and others in 2015
- Winner of 2015 ILSVRC competition

As the network goes deeper, its performance gets saturated or even starts degrading rapidly...

A residual block

Figures from [He et al., 2015]

ResNet

Left: the VGG-19 model (19.6 billion FLOPs) as a reference.

Middle: a plain network with 34 parameter layers (3.6 billion FLOPs).

Right: a residual network with 34 parameter layers (3.6 billion FLOPs).

Figure from [He et al., 2015].

Attention layers

- ECA-Net, Efficient Channel Attention [Wang et al., 2019];
- Coordinate Attention [Hou et al., 2021];
- CBAM: Convolutional Block Attention Module [Woo et al., 2018];
- SK-Net: Selective Kernel Networks [Li et al., 2019].

ECA-Net

 $1 \times 1 \times \frac{C}{r}$ $1 \times 1 \times C$ $0 \times C$ $1 \times 1 \times C$ $0 \times C$ 0

Adaptive Selection of

Kernel Size: $k = \psi(C)$

SE-Net, 2017

ECA-Net, 2019

ECA-Net

Coordinate Attention

Coordinate Attention

CBAM - convolutional block attention module

CBAM - convolutional block attention module

Architecture	Param.	GFLOPs	Top-1 Error (%)	Top-5 Error (%)				
ResNet18 [5]	11.69M	1.814	29.60	10.55				
ResNet18 [5] + SE [28]	11.78M	1.814	29.41	10.22				
ResNet18 [5] + CBAM	11.78M	1.815	29.27	10.09				
ResNet34 [5]	21.80M	3.664	26.69	8.60				
ResNet34 [5] + SE [28]	21.96M	3.664	26.13	8.35				
ResNet34 [5] + $CBAM$	21.96M	3.665	25.99	8.24				
ResNet50 [5]	25.56M	3.858	24.56	7.50				
ResNet50 [5] + SE [28]	28.09M	3.860	23.14	6.70				
ResNet50 [5] + CBAM	28.09M	3.864	22.66	6.31				
ResNet101 [5]	44.55M	7.570	23.38	6.88				
ResNet101 [5] + SE [28]	49.33M	7.575	22.35	6.19				
ResNet101 [5] + CBAM	49.33M	7.581	21.51	5.69				
WideResNet18 [6] (widen=1.5)	25.88M	3.866	26.85	8.88				
WideResNet18 [6] (widen=1.5) + SE [28]	26.07M	3.867	26.21	8.47				
WideResNet18~[6]~(widen=1.5) + CBAM	26.08M	3.868	26.10	8.43				
WideResNet18 [6] (widen=2.0)	45.62M	6.696	25.63	8.20				
WideResNet18 [6] (widen= 2.0) + SE [28]	45.97M	6.696	24.93	7.65				
$WideResNet18 \ [6] \ (widen=2.0) + CBAM$	45.97M	6.697	24.84	7.63				
ResNeXt50 [7] (32x4d)	25.03M	3.768	22.85	6.48				
ResNeXt50 [7] $(32x4d) + SE$ [28]	27.56M	3.771	21.91	6.04				
ResNeXt50 [7] $(32x4d) + CBAM$	27.56M	3.774	21.92	5.91				
ResNeXt101 [7] (32x4d)	44.18M	7.508	21.54	5.75				
ResNeXt101 [7] $(32x4d) + SE$ [28]	48.96M	7.512	21.17	5.66				
ResNeXt101 [7] (32x4d) + CBAM	48.96M	7.519	21.07	5.59				
* -11								

^{*} all results are reproduced in the PyTorch framework.

SK-Net

SK-Net

	top-1 e	err (%)	#P	GFLOPs				
	224×	320×	#1					
ResNeXt-50	22.23	21.05	25.0M	4.24				
AttentionNeXt-56 44	21.76	_	31.9M	6.32				
InceptionV3 43	_	21.20	27.1M	5.73				
ResNeXt-50 + BAM [32]	21.70	20.15	25.4M	4.31				
ResNeXt-50 + CBAM 45	21.40	20.38	27.7M	4.25				
SENet-50 12	21.12	19.71	27.7M	4.25				
SKNet-50 (ours)	20.79	19.32	27.5M	4.47				
ResNeXt-101	21.11	19.86	44.3M	7.99				
Attention-92 44	_	19.50	51.3M	10.43				
DPN-92 [5]	20.70	19.30	37.7M	6.50				
DPN-98 [5]	20.20	18.90	61.6M	11.70				
InceptionV4 41	_	20.00	42.0M	12.31				
Inception-ResNetV2 [41]	_	19.90	55.0M	13.22				
ResNeXt-101 + BAM [32]	20.67	19.15	44.6M	8.05				
ResNeXt-101 + CBAM 45	20.60	19.42	49.2M	8.00				
SENet-101 [12]	20.58	18.61	49.2M	8.00				
SKNet-101 (ours)	20.19	18.40	48.9M	8.46				

Experiments

Experiments – Performance Metrics

- Error of estimated gaze angle
- Training time for each epoch

Results – LeNet

Results – LeNet

Relative performance in angle error

Training time for each epoch

Results – ResNet

Results – ResNet

Relative performance in angle error

Training time for each epoch

Conclusion

- 2.2% better with coordinate attention in LeNet
- 2.5% better with CBAM in ResNet
- Higher time consuming in training

Future Works

- Fine tuning parameters of attention layers
- Combine the attention layer with calibration

Thank you for listening!

4

Reference

- [Tobii, 2011] Tobii. Accuracy and precision test method for remote eye trackers. Stockholm, Sweden, 2011.
- [Xu et al., 2015] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention, 2015.
- [Lecun et al., 1998] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
- [He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
- [Wang et al., 2019] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net:
 Efficient channel attention for deep convolutional neural networks. CoRR, abs/1910.03151, 2019.
- [Hou et al., 2021] Qibin Hou, Daquan Zhou, and Jiashi Feng. Coordinate attention for efficient mobile network design. CoRR, abs/2103.02907, 2021.
- [Woo et al., 2018] Sanghyun Woo, Jongchan Park, Joon- Young Lee, and In So Kweon. CBAM: convolutional block attention module. CoRR, abs/1807.06521, 2018.
- [Li et al., 2019] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. CoRR, abs/1903.06586, 2019.