5 Machines de Turing restreintes

Objectif: quelques «simplifications» des MT

5.1 MT sans notion d'état final

Rappels : acceptation \Leftrightarrow arrêt dans un état final on peut n'avoir qu'un seul état final f, sans transition

Sol. 1 : acceptation \Leftrightarrow arrêt

 \rightarrow Ajouter $\delta(q,X) = (q,X,S) \quad \forall q \neq f$ quand $\delta(q,X)$ indéfini Inconvénient : la notion de langage *récursif* (décidé) disparaît...

Sol. 2: acceptation \Leftrightarrow symbole sous la tête = H (H: nouveau symbole)

$$\rightarrow$$
 Aiouter $\delta(f, X) = (f, H, S) \quad \forall X \neq H$

ou

 \rightarrow Changer tous les $\delta(q, X) = (f, ..., ...)$ en $\delta(q, X) = (..., H, S)$

5.2 MT qui n'écrit jamais B

 $Id\acute{e}e$: un nouveau symbole W qui remplace les B écrits

- 1. Changer $\delta(q, X) = (p, B, M)$ en $\delta(q, X) = (p, W, M) \quad \forall q, X$
- 2. Ajouter $\delta(q, W) = (p, X, M) \quad \forall \delta(q, B) = (p, X, M)$

Exemple : $\{a^nb^n\}$ a/B^{\downarrow} q_0 $B/\stackrel{\downarrow}{B}$ \sqrt{B} B/B q_4 q_0 $B/\overset{\downarrow}{W}$ W/W

 q_4

5.3 MT à ruban semi-infini

Config: ruban
$$\alpha X \beta B^{\infty}$$
, α et $\beta \in \Gamma^*$, état q , tête $\rightsquigarrow X$: $\alpha q X \beta$ Si $\delta(q,X) = (p,Y,G)$ alors $q X \beta \not\vdash$

(on ne peut pas aller à gauche de la première cellule...)
Une MT à ruban infini peut «évidemment» simuler une MT à ruban semi-infini... → insérer à gauche du mot en entrée un nouveau symbole, qui dénote le «début du ruban...»... et pas de transition sur ce symbole...

Plus intéressant : une MT à ruban semi-infini peut simuler une MT à ruban infini

Simuler? passer d'un formalisme (un «style») S à un autre S' m' dans S' simule m dans $S \Leftrightarrow$

- 1. \exists un *codage* \mathcal{C} de Σ^* dans Σ'^* , injectif
- 2. on peut décider pour un $w' \in \Sigma'^*$ si $\exists w \in \Sigma^* : w' = \mathcal{C}(w)$
- 3. $w \in \Sigma^* \in L(m) \Leftrightarrow C(w) \in L(m')$

Idée : «replier le ruban»

$$\begin{split} &\Gamma' = \Gamma \times (\Gamma \cup \{\star\}) \qquad B' = (B,B) \\ &\Sigma' = \Sigma \times \{B,\star\} \\ &\mathcal{C}(w_1w_2...w_p) = (w_1,\star)(w_2,B)...(w_p,B) \\ &\text{Config init: pour } m: \ q_0w, \ \text{pour } m': \ q_0'\mathcal{C}(w) \end{split}$$

$$\mathcal{C}(\varepsilon) = (B,\star)$$

$$Q'=Q imes\{h,b\}$$
 : en q , et on s'intéresse au haut du ruban (q^h) ou au bas du ruban (q^b) $q'_0=q_0^h$ La suite n'est que technique...

Transitions : Convention : $T \in \Gamma \cup \{\star\}, X, Y, Z \in \Gamma$ $\delta(q, X) = (p, Z, D) \rightsquigarrow \delta'(q^h, (X, T)) = (p^h, (Z, T), D)$ $\delta(q, X) = (p, Z, G) \rightsquigarrow \delta'(q^h, (X, Y)) = (p^h, (Z, Y), G)$ $\delta'(q^h, (X, \star)) = (p^b, (Z, \star), D)$

$$\delta(q, Y) = (p, Z, G) \rightsquigarrow \delta'(q^b, (X, Y)) = (p^b, (X, Z), D)$$

$$\delta(q, Y) = (p, Z, D) \rightsquigarrow \delta'(q^b, (X, Y)) = (p^b, (X, Z), G)$$
 [1]

$$\forall q, X : \delta'(q^b, (X, \star)) = (q^h, (X, \star), S)$$
 [2]

Note: on ne peut arriver en [2] qu'en venant de [1]...

On peut toujours avoir un ruban «à plusieurs pistes» (ici 2)...

5.4 MT à alphabet réduit

Si $|\Sigma|=k\geq 2$, on peut toujours simuler par $\Sigma'=\{0,1\}={\sf ZOU}$ en codant chaque symbole de Σ par $\lceil\log_2k\rceil$ symboles de ${\sf ZOU}$ $E{\sf x}: \Sigma=\{a,b,c\}: a{\to}00,\ b{\to}01,\ c{\to}10$

Si $|\Gamma|=k$, on peut aussi simuler par $\Gamma'=\{0,1,B\}$ en codant chaque symbole de $\Gamma-\{B\}$ par $p=\lceil\log_2k\rceil$ symboles de ZOU et en prenant $\mathcal{C}(B)=B^p$ (pour garder les «blancs vers l'infini») ou même $\mathcal{C}(B)=B$ si m (et donc m') n'écrit jamais B

Restriction plus drastique : $\Gamma' = \{1, B\}$

 \Rightarrow deux symboles pour TOUT coder mais autoriser B dans Σ' ... : $a \rightarrow B1, \ b \rightarrow 1B, \ c \rightarrow 11, \ B \rightarrow BB$

Conclusion: Une MT (plus proche du réel) qui...

- n'«efface» jamais tout à fait ce qu'elle voit (5.2)
- a une notion de «mémoire» plus proche de la réalité (5.3)
- travaille avec des 0 et des 1 (5.4)

... peut «faire» autant qu'une MT générale...

Note: 5.1 (pas d'état final) pas «plus proche du réel» mais intéressant d'un point de vue théorique...

6 Machines de Turing étendues

Objectif: étendre pour voir si on peut gagner en expressivité...

6.1 Plusieurs rubans Exo: définir les MT à r rubans

 $Id\acute{e}$: un ruban, $2 \times r$ pistes... en q' on sait où on est $/\star$...

7 Un langage non récursivement énumérable

```
7.1 Codage des machines de Turing dans ZOU^* = \{0, 1\}^*
Objectif: une MT \leftrightarrow un mot de ZOU* \equiv un n \in \mathbb{N}
On ne s'intéresse qu'aux MT avec \Sigma = \{0, 1\}...
  \triangleright États : q_1, \ldots q_n
                                             q_1 initial, q_2 seul état final
  \triangleright Symboles : X_1, \ldots X_n
                                                   X_1:0,X_2:1,X_3:B
                                                 M_1: G, M_2: D, M_3: S
  ► Mouvements : G, D, S
Transition \delta(q_i, X_i) = (q_k, X_\ell, M_r) codée par 0^i 10^j 10^k 10^\ell 10^r 1
Code de m : séquence des codes des transitions (ordre quelconque)
Exemple: \delta(q_1, 1) = (q_3, 1, D) \rightarrow 010010001001001
             \delta(q_3,0) = (q_1,1,G) \rightarrow 0001010100101
             \delta(q_3, B) = (q_2, 0, S) \rightarrow 00010001001010001
Codes valides: ((0+1)^5)^* (langage régulier...)
w \in \mathsf{ZOU}^* pas un code valide \to m sans transition (L(m) = \emptyset)
On peut donc parler de «la n-ième MT» \hat{n}:
  m_n, dont le code est w_n, le n-ième mot de ZOU* (i.e. \tilde{n})
```

Note: si on assimile une MT et son code, on a en fait $m_n = w_n$

7.2 Le langage «de diagonalisation» n'est pas RE

Définition :

$$L_d = \{ w_n \in \mathsf{ZOU}^* \mid w_n \not\in L(m_n) \} \qquad (= \{ \tilde{n} \in \mathsf{ZOU}^* \mid \tilde{n} \not\in L(\hat{n}) \})$$

Théorème : L_d ∉ RE

Preuve par l'absurde : si $L_d \in RE, \exists k : L(m_k) = L_d$

$$\blacktriangleright$$
 $w_k \in L_d \Rightarrow w_k \in L(m_k) \Rightarrow w_k \notin L_d$

$$\blacktriangleright$$
 $w_k \notin L_d \Rightarrow w_k \notin L(m_k) \Rightarrow w_k \in L_d$

«Diagonalisation»:

 $1: m_i$ accepte w_j

0 : m_i n'accepte pas w_j vect. caract. de $L(m_2)$: 10011...

Diagonale: 01001...

Complémentation : 10110...

 \rightarrow vect. caract. de L_d diffère de chaque ligne i au point i

8 Un langage récursivement énumérable mais non récursif

Objectif:

- ightharpoonup R \neq RE
- ▶ $\exists L : L$ accepté (arrêt dans un état final $\iff w \in L$) mais pas décidé (toujours arrêt)
- ▶ $\exists L$: on peut toujours savoir que $w \in L$, mais on peut ne jamais savoir que $w \notin L$
- ▶ $\exists f$, fonction partielle calculable pour laquelle aucun programme qui la réalise s'arrête toujours (e.g. en levant une exception hors de son domaine)

8.1 Préliminaires

Théorème : $L \in \mathbb{R}$ ⇒ $\overline{L} \in \mathbb{R}$ (\overline{L} : complémentaire de L)

Preuve: L = L(m) avec m qui s'arrête toujours

pour
$$\overline{m} \stackrel{\text{def}}{=} (m \text{ sauf } F \leftrightarrow Q - F) \text{ on a } L(\overline{m}) = \overline{L}$$

Théorème : $L \in RE$ et $\overline{L} \in RE \Rightarrow L \in R$ (et $\overline{L} \in R$ aussi, donc)

Preuve: de m(L(m) = L) et $\overline{m}(L(\overline{m}) = \overline{L})$ construire m':

États : (q, \overline{q}') , 2 rubans, transitions «en parallèle»

m ouex \overline{m} accepte w... m accepte : OK ; \overline{m} accepte : KO

8.2 Le langage «universel», la MT universelle [Turing 1936]

Définition : $L_u = \{(m, w) \in (\mathsf{ZOU}^*)^2 \mid w \in L(m)\}$

Théorème : $L_u \in RE$

Preuve : \exists MTU («Machine de Turing Universelle») qui accepte L_u m : codée selon 7.1 ; (m, w) codé par «m1w» (fin de m : 11)

MTU a plusieurs rubans :

- ▶ r₁ contient l'entrée m1w
- ▶ r_2 encode le ruban de m, codage de $7.1:0\rightarrow0$, $1\rightarrow00...$ chacun suivi de 1... sauf «B de $m\gg\rightarrow$ «B de MTU»... init: w (e.g. $w=1001:B^\infty\underline{0010101001}B^\infty$) B remplacé par 0001 au besoin
- ▶ r₃ contient l'état courant de m (init : 0)...
- $ightharpoonup r_4...r_k$ pour les comptages, recopies, décalages...

MTU simule m sur w: MTU accepte $(m,w) \iff m$ accepte w MTU: une machine de Turing interprète de machines de Turing MTU \Leftrightarrow «programme» du processeur d'un ordi. élémentaire! Existence de MTU \Rightarrow existence des ordinateurs!

Pour simuler un pas de m:

- 1. chercher sur r_1 une transition $0^i 10^j 10^k 10^\ell 10^r 1$ sachant 0^i sur r_3 et $0^j 1$ à partir de la tête de r_2
- 2. si pas trouvée : s'arrêter (en état final $\Leftrightarrow i = 2$)
- 3. si trouvée :
 - a. changer r_3 pour y mettre 0^k (nouvel état)
 - b. sur r_2 , remplacer 0^j par 0^ℓ (nouveau symbole) avec décalages si $j \neq \ell$
 - c. déplacer la tête de r_2 pour se placer sur le bon symbole selon r («à gauche», «à droite», «stationnaire»)

Note : m ne s'arrête pas sur $w \Leftrightarrow MTU$ ne s'arrête pas sur (m, w)

Théorème : $L_u \notin R$

Preuve : si $L_u \in \mathbb{R}$ alors $\overline{L_u} \in \mathbb{R}$

$$\overline{L_u} = \{(m, w) \in (\mathsf{ZOU}^*)^2 \mid w \not\in L(m)\}$$

Supposons qu'on ait $m_{\overline{L_u}}$, une MT pour décider $\overline{L_u}$

Alors on pourrait construire une MT m_{L_d} pour décider L_d ...

Rappel:
$$L_d = \{ w \in \mathsf{ZOU}^* \mid w \notin L(w) \}... \text{ et } L_d \notin \mathsf{RE}$$

 m_{L_d} sur w: lancer $m_{\overline{L_u}}$ sur (w,w); accepter w ssi $m_{\overline{L_u}}$ accepte!