

Conception Avancée de Base de Données

Hash Concept

26 slots

Letter ASCII CODE as array index

$$CAR(A) = 65$$
$$CAR(B) = 66$$

INDEX
$$(X) = CAR(X) - 64$$

Alphabet

26 slots

$$CAR(A) = 65$$

 $CAR(B) = 66$

INDEX
$$(X) = CAR(X) - 64$$

1	Α
2	В
3	С
4	D
5	E
6	F
7	G
8	Н
9	I
10	J
11	K
12	L
13	M
14	N
15	0
16	Р
17	Q
18	R
19	S
20	T U
21	U
22	V
23	W
24	Х
25	Υ
26	Z

26 slots

Letter ASCII CODE as array index

$$CAR(A) = 65$$

 $CAR(B) = 66$

$$INDEX (X) = CAR(X) - 64$$

INDEX (K) = CAR (K)
$$-64 = 75 - 64 = 11$$

	1
8	5

1	Α
2	В
3	С
4	D
5	E
6	F
7	G
8	Н
9	I
10	J
11	K
12	L
13	М
14	N
15	0
16	Р
17	Q
18	R
19	S
20	T U
21	U
22	V
23	W
24	X
25	Υ

10 VALUES = WASTE 16 SLOTS

Letter ASCII CODE as array index -

$$CAR(A) = 65$$
$$CAR(B) = 66$$

$$INDEX(X) = CAR(X) - 64$$

INDEX (K) = CAR (K)
$$-64 = 75 - 64 = 11$$

1	Α
2	В
3	
4	D
5	E
6	
7	
8	
9	
10	
11	K
12	L
13	
14	
15	0
16	
17	Q
18	
19	
20	Т
21	
22	V
23	
24	
25	
26	Z

26 slots

10 VALUES = WASTE 16 SLOTS

Letter ASCII CODE as array index

$$CAR(A) = 65$$

 $CAR(B) = 66$

$$INDEX(X) = CAR(X) - 64$$

INDEX (K) = CAR (K)
$$-64 = 75 - 64 = 11$$

1	Α
2	В
3	
4	D
5	Е
6	
6 7	
8	
9	
10	
11	K
12	L
13	
14	
15	0
16	
17	Q
18	
19	
20	Т
21	
22	V
23	
24	
25	
26	Z

10 VALUES = WASTE 16 SLOTS

$$CAR(A) = 65$$

 $CAR(B) = 66$

$$INDEX (X) = CAR(X) - 64$$

INDEX (K) = CAR (K)
$$-64 = 75 - 64 = 11$$

1	Α
2	В
3	
4	D
5	E
6	
7	
8	
9	
10	
11	K
12	L
13	
14	
15	0
16	
17	Q
18	
19	
20	Т
21	
22	V
23	
24	
25	
26	Z

1	Α
2	В
3	С
4	D
5	Е
6	F
7	G
8	Н
9	I
10	J
11	K
12	L
13	M
14	N
15	0
16	Р
17	Q
18	R
19	S
20	Т
21	U
22	V
23	W
24	X
25	Υ
26	Z

26 slots

1	Α
2	В
3	Е
4	K
5	L
6	0
7	Q
8	Т
9	V
0	Z

10 slots

INDEX (K) = HASH(K) = 4

SSN: Social Security Number

Social Security Number = address →

9999999999999

125675798988090

SSN: Social Security Number

John SSN: 125675798988090

Social Security Number = address ----

steve	
mike	
john	
bob	
may	
max	

edward

9999999999999

125675798988090

SSN: Social Security Number

John SSN: 125675798988090

Social Security Number = address ----

= 1E+15 = 1 petaoctet (Po)

steve	90
	99
mike	
ما ما ما	
john	12
bob	
505	
max	
	000
edward	UUL

99999999999999

125675798988090

SSN: Social Security Number

N element Array 99 SSN 125675798988090 00

100 employees

9999999999999

125675798988090

SSN: Social Security Number

N element Array 99 steve bob SSN john mike 125675798988090 edward 00

steve mike john bob max

edward

9999999999999

125675798988090

SSN: Social Security Number

SSN: Social Security Number

SSN: Social Security Number

Key

space

Key space to Address space mapping

Key space to Address space mapping

Hash Function

The hash function is used to transform the key into the index (the hash) of an array element (the slot or bucket) where the corresponding value is to be stored and sought.

Hash table

hash table is an array-based data structure.

SSN

Hash table

 hash function is used to convert the key into the index of an array element, where associated value is to be seek.

Key	Month and Source. Weels Summum	index	Value	
129007 —	→ h(129007) —	→ 0	Fred	
926647 —	→ h(129007) —	→ 1	Steve	buckets
		2		Real Property of the Control of the
975378 —	→ h(975378) —	→ 3	Richard	
		4		The state of the s
269908 —	→ h(269908) —	→ 5	Robert	
CCN		_		

Collision

 If the hash function returns a slot that is already occupied there is a collision

hash clustering

 When the distribution of keys into buckets is not random, we say that the hash table exhibits clustering.

Hash function

 Good Hash function provides uniform distribution of hash values.

Poor hash function will cause collisions and hash

cluster.

Hash Distribution

Hash

Value	# Hash
0	1
1	1
2	1
3	1
4	1
4 5	1
6	1
7	1
8	1
9	1
10	1

Hash Distribution

Value	# Hash
0	2
1	2
2	2
3	2
4	0
5	0
6	0
7	0
8	0
9	0
10	1

Hash Distribution

Value	# Hash
0	0
1	0
2	0
3	1
<u>4</u> 5	3
	5
6	3
7	1
8	0
9	0
10	0

Hash function toy implementation : Modulo N

R	CAR(R)	mod (11)
Α	65	10
В	66	0
С	67	1
D	68	2
D E	69	3
F	70	4
G	71	5
Н	72	6
I	73	7
J	74	8
K	75	9
L	76	10
М	77	0
N	78	1
0	79	2
Р	80	3
Q	81	4
R	82	5
S	83	6
Т	84	7
U	85	8
V	86	9
W	87	10
Х	88	0
Υ	89	1
Z	90	2

26 => 11

Modulo N Hash Distribution

R	CAR(R)	mod (11)
Α	65	10
В	66	0
С	67	1
D	68	2
E	69	3
F	70	4
G	71	5
Н	72	6
1	73	7
J	74	8
К	75	9
L	76	10
М	77	0
N	78	1
0	79	2
Р	80	3
Q	81	4
R	82	5
S	83	6
Т	84	7
U	85	8
V	86	9
W	87	10
Х	88	0
Υ	89	1
Z	90	2

Collision handling strategies

- Closed addressing (open hashing).
- Open addressing (closed hashing).

Open addressing (closed hashing).

When there is a collision, "Probe" the array to find an empty slot after the occupied slot.

 Each slot of the hash table contains a link to another data structure.

Each slot of the hash table contains a link to

another data structure.

Overflow Table

-			
	Fred	129007	0
			1
	Richard	975378	2
			3
	Robert	269908	4
	Steve	926647	5
	Greg	697803	6
			7
	Phil	168477	8
•			9
			10

Each slot of the hash table contains a link to

another data structure.

Each slot of the hash table contains a link to

another data structure.

Key						
129007		129007	Fred	b		
		\subseteq	926647	Steve		
	************		320047	Sieve		
975378	 	975378	Richard	697803	Greg	
269908					168477	Phil
	L,	269908	Robert		200177	

0	129007	Fred	5	
1				
2	975378	Richard		
3				
4	269908	Robert] /
5	926647	Steve	6	\langle
6	697803	Greg	8	
7			7	
8	168477	Phil	8	
9			9	
10			10	

Hash Table components

- 1) Hash function
- 1) Data Structure
 - 1) Tables + Tables
 - 2) Tables + Chained Lists
 - 3) Chained Lists

Open @

129007	Fred
926647	Steve
697803	Greg
168477	Phil
975378	Richard
269908	Robert

Hash Phases

- Fill the hash table : Build phase
- Get values : "Probe" phase
 - Probe term is used in several way.

