الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقاط)

- اً) حَلَ فِي مَجِمُو مِنْ الأَحِدَادِ العراكيةِ $\sqrt{2} = \sqrt{2} = 1 + 3$. $\sqrt{2} = 1 + 3$
- المستوي المركب منسوب إلى المعلم المتعادد و المتجانس $O(\bar{n}, \bar{N})$. $B(\bar{n}, \bar{N})$ نقط المستري التي الحقائها $C(\bar{n}, \bar{N})$

$$Z_{c} - Z_{A} + Z_{B} = Z_{B} - Z_{A} + Z_{A} - \frac{1+i}{\sqrt{2}}$$
 علي الترتيب:

 $z_{A}=0$ و $z_{A}=0$ و $z_{A}=0$ الأحداد المركبة: $z_{A}=0$ و $z_{A}=0$

C مين الأحقة كل من A' ، A' و B' مسور النقط A ، A و A على الترتيب بالدور ن الذي مركزه A' و راويته A'.

ج بين أن الرباعي "OA'C'B' مربع،

 $z_{A} = z_{A}$ عجموعة النقط M من المستوي ذات اللاحقة $z_{A} = z_{A}$: $z_{A} = z_{A}$ مجموعة النقط $z_{A} = z_{A}$ المستوي ذات اللاحقة $z_{A} = z_{A}$ محمور الفواصل.

ب- ببُن أن حلي المعادلة: $t = \left(\frac{z-z_A}{z-z_B}\right)^2$ عددان حقيقيان. (لا يطلب حساب الحلين)

التمرين الثاني: (04 نفاط)

- أ تحتير في 22 المحادلة ذات المجيول (x;y) الثانية: (1) ... 31 1432y 31 ... (1)
 - أ أثبت أن العدد 2011 أولى.

 (x_n, y_n) المعادلة (1)، ثم حل المعادلة (1)، ثم حل المعادلة (1). باستعمال خوارزمية إقليس، عين حلا خاصا

- 2) أ- عين، حسب فيم العدد الطبيعي n، ياقي القسمة الإقليدية للعدد 2^n على 7، ثم جد ياقي القسمة الإقليدية -1 للعدد $2011^{1652^{2012}}$ على 7.
 - ب عين فيم العدد الطبيعي n التي من أجلها يكون: |7|0- "1132+ "2010- "2010.
- 3) ٨ عدد طبيعي بكتب 270β في نظام التحداد الذي أساسه 9 حيث : ٢٠β٠α بهذا الترتيب تشكل حدودا متتابعة من متتالية حسابية منز لهدة تماما و (٥,٠٠) حل للمعادلة (١).

عبّن α ، μ و γ ، تـد اكتب γ فـى النظام العشري.

الثمرين الثالث: (04 نقاط)

C(2;2;2) و B(0;4;0) ، A(3;0;0) النقط C(2;2;2) و أمتجانس B(0;4;0) ، B(0;4;0) ، النقط B(0;4;0) ، B(0;4;0)

- 1) بين أن النقط $C \cdot B \cdot A$ ليست في استقامية وأن الشعاع \overline{n} (4;3; 1) عمودي على كل من الشعاعين: \overline{AB} و
 - $C \cdot B \cdot A$ اكتب معادلة ديكارتية للمستوي (P) الذي بشمل النقط (2)
 - ق أ بين أن $M\left(x;y;z\right)$ معادلة ديكارتية للمستوي P' مجموعة النقط $M\left(x;y;z\right)$ من الفضاء $M\left(x;y;z\right)$ من الفضاء حيث: MM-BM
- ب- بِيِّنَ أَنَّ: 0 2x 4y 4z + 3 معادلة ديكار ثبة للمستوي (P") مجموعة النقط (x ; y ; z ممادلة ديكار ثبة للمستوي (AM CM) مجموعة النقط (x + y ; z + dy CM) من الفضاء حيث: AM CM CM
 - ج بيِّن أن (P') و (P'') يتقاطعان وفق مستقيم (Δ) يطلب تعيين تعثيل وسيطى له،
 - احسب إحداثيات النقطة α مركز الدائرة المحيطة بالمثلث 1BC.

النمرين الرابع: (08 نقاط)

- g(x)=2 هي الدالة المعرفة على $\mathbb R$ كما يلي: xe^{α} هي الدالة المعرفة على $\mathbb R$
 - ادرس تغیرات الدلة ج، ثم شكل جنول تغیراتها.
- $-0.8 < \alpha < 0.9$ بَيْنَ أَنَ المعادلَة -0.9 و تقبل حلا وحيدا α على π ، ثم تحقق أن: $-0.8 < \alpha < 0.9$
 - 3) عين، حسب قيم د، إشارة (د) يو.
 - $f\left(x\right)=rac{2x+2}{4}$. هي الدالة المعرفة على R كما يلي: $\frac{2x+2}{4}$
- (رم) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجالس ($O:\overline{t},\overline{f}$)، (وحدة الطول C_{r}).
 - ا) بِيْنَ أَنَ: $0 (x) / \lim_{x \to \infty} f(x)$ النثيجة هنسيا.
 - $\lim_{x \to -1} f(x) = -1$ (2

y = x (C_x) ذا المحادلة y = x (X) عستقيم مقارب للمنحني (X).

- (x x) ادر س و ضعیة (x x) بالنسبة إلى كل من (Δ') و (Δ') حیث (Δ') هو المستقیم ذو المعادلة (x x)
 - $f'(x) = \frac{2g(x)}{(e^x + 2)^2}$ ، $f'(x) = \frac{2g(x)}{(e^x + 2)^2}$

 $f(\alpha) = \alpha$ بين أن $\alpha: f(\alpha) = \alpha$ ، ثم شكل جدول تغير ات الدائة

- $\cdot(C_{J})$ ر (Δ') ، (Δ)
- -6 ناقش، بیانیا، حسب قیم الوسیط الحقیقی m عدد حلول المعادلة -6 -6
- $U_{n+1} = f\left(U_n^{-1}\right): n$ هي المنتالية العندية المعرفة على اله كما بلي $U_0 = 0:$ ومن أجل كل عند طبيعي $U_0 = 0:$ السام $U_0 = 0:$
 - $U_{\pi} < \alpha$ ، u برهن بالتراجع أنه من أجل كل عدد طبيعي $u < U_{\pi} < \alpha$ ، u
- $U_{\star}(U_{\star})$ باستعمال $U_{\star}(\Delta)$ و $U_{\star}(\gamma)$ مثل على محور القواصل الحدود: $U_{\star}(\gamma)$ و $U_{\star}(\gamma)$ ثم خمن اتجاه تغير $U_{\star}(\gamma)$
 - 3) برهن أن المنتالية (إلى) منقارية، ثم احسب نهايتها...

الموضوع الثاني

النمرين الأول: (14) نفاط)

را محموعة الأعداد المركبة z المعادلة ذات المجهول z الثالية: $z^2 + 4$ المركبة $z^2 + 4$ المعادلة ذات المجهول z الثالية: $z^2 + 4$

$$C$$
 ، B ، A النقط C ، B ، C النقط C ، C . C النقط C ، C ، C . C

. O نرمز بـــ $_{R}$ 2 إلى لاحقة النقطة E نظيرة النقطة B بالنسبة إلى الميدأ E

$$-\frac{z_A}{z_K} - \frac{z_C}{z_C} = e^{I(-\frac{a}{3})}$$
: اَ- بَشِن آن:

ب بيّن أن النقطة A هي صورة النقطة F بدوران R مركزه C يطلب تعيين زاويته.

- استنج طبيعة المثلث AEC.

د – H هو التحاكي الذي مركزء O ونسبته 2.

- عين طبيعة النمويل RoH وعناصره المعيزة، ثم استنج صورة الدانرة (γ) بالنمويل RoH .

التمرين الثاني: (04 نقاط)

 $C\left(2;0;1
ight)$ و $B\left(1;-1;0
ight)$ ، $A\left(1;1;1
ight)$ ، ($O(\overline{I},\overline{J},\overline{R})$) ، ($O(\overline{I},\overline{I},\overline{R})$ و (2;0;1) و الفضاء المنسوب إلى المعلم المتعامد و المتجانس ($\overline{I},\overline{I},\overline{I},\overline{R})$ ، النقط (1;1;1) ، (1;1;1)

-) بَيْنَ أَنَ الْنَقَطَ A ، B و C تعين مستوبا (P_1) يطلب تعيين نمثيل وسيطى له.
 - x 2y 2z + 6 = 0 المستوى الذي: x 2y 2z + 6 = 0 معادلة ديكار ثبة (P_1)

بيّن أن (P_1) و (P_2) بتقاطعان وفق مستقيم (Δ) بطلب تعيين تمثيل وسبطي L^p .

- ((A;1),(B;1),(C;-1)) : ابيّن أن النقطة (A;1) هي مرجح الجملة:
- $|MA| |MB| |MC| = 2\sqrt{3}$ عين (S) مجموعة النقط (x;y;z) من الفضاء التي تحقق: (S) مجموعة النقط (S) من الفضاء التي تحقق: (S) من الفضاء الحداثيات (S) و (S) و (S) و (S) .

 (Δ) ج ما هي طبيعة المثلث ODE؛ ثم ستنتج المسافة بين O و

النمرين الثالث: (14) تفاط)

 $u_{n-1} = 6u_n - 9$. n حي المنتائية المعرفة على n كما يلي: 16 ومن أجل كان عدد طبيعي n المنتائية المعرفة على n

ما الحسب يو التي قسمة كل عن الحدود $u_1 \cdot u_2 \cdot u_3 \cdot u_4 \cdot u_5 = 1$ احسب يو التي قسمة كل عن الحدود $u_2 \cdot u_3 \cdot u_4 \cdot u_5 \cdot u_6 = 1$

 $u_{n+1} = u_n[7] \cdot n$ بر هن أَجْلُ كَلَّ عند طبيعي (2) أَ بر هن أَجْلُ كَلَّ عند المبيعي (4)

 $n_{2k,n} = 3$ [7] ثم من أجل كل عدد طبيعي أ ، $n_{2k} = 2$ [7] عبر المنتفح أن: [7] $n_{2k,n} = 3$ برجن بالتراجع أنَّ من أجل كل عدد طبيعي أ

 $v_{+} u_{+} = \frac{y}{5} \cdot n$ فضع من أجل كل عدد طبيعي (3

أ بين أن المتتالية (٧,) عندسية، يطلب تعيين أساسها وحدها الأول.

 $S_n = u_0 + u_1 + ... + u_n$: حيث $S_n = u_n$ کلا من n کلا من n حيث - - احسب، بدلاله

التمرين الرابع: (08 نفاط)

- . $g(x) = 2\ln(x+1) \frac{x}{x+1}$: كما يلى : $\frac{1}{x+1} 2\ln(x+1) = 2\ln(x+1)$. $g(x) = 2\ln(x+1) \frac{x}{x+1}$
 - ادرس تغیرات اداله ی، ثم شکل جدول نغیراتها.
- α بين أن المعادلة: α (x) بج نقبل حلين أحدهما معدوم والأخر α يحقق: α ب α α α α
 - (3) عين، حسب فيم (x) الشر (3) عين
 - $h(x) |g(x)|^2$ بـــ |1:3| بـــ |h(x)| هي الدالة المعرفة على المحل |h(x)|

 $+g^*(x)$ و g(x) من g(x) و $h^*(x)$

ب- حيَّن إشارة (h (x)، ثم شكَّل جدول تغيرات الدالة h . .

$$\int \frac{f\left(x\right) - \frac{x^{2}}{\ln\left(x+1\right)} \left(x \neq 0\right)}{\ln\left(x+1\right)} \left(x \neq 0\right) = \left[2\pi i \right] \left[1; 3 \right] \ln\left(x+1\right) \left[2\pi i \right] \left[2\pi i \right]$$

 (C_{j}, i, j) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_{j}).

. (1) بين أن الدالة f نقبل الاشتقاق عند الصغر، ثم اكتب معادلة f معاس f معاس f في النقطة ذات الفاصلة f

رد الجال کل x من |0;3| من |0;3| ، |1;0| ، |1;

 $f(\alpha) = 1$ بین آن : $f(\alpha) = 2\alpha$ (α) ، ثم عین حصورا $f(\alpha) = 1$

ج احساب: (3) f و (x) f الله الله الله الله علم شكَّل جدول خور ات الدالة عرب

 $-x + \ln(x+1) \ge 0$: بَرُن أَلْهُ مِن أَجِلَ كُلُ x مِن الْمَجِالَ [-1;3] فَإِنَ: 0 < (x+1)

(T) , which is (T) , where (T) , (T)

- 4) عيّن معادلة للمستثنية (٢٠) المو ازي للمماس (٦٠) و الذي يتقاطع مع (٢٠) في النفطة ذات الفاصلة 3.
 - (C_{r}) از سم (T) ، (T') ی (C_{r})
 - f(x) = x + m : غدد حلول المعادلة: m وميط الحقيقي m عدد حلول المعادلة: