Chapter 2: Number Fields and Number Rings

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 2.1.

- (a) Show that every number field of degree 2 over \mathbb{Q} is one of the quadratic fields $\mathbb{Q}[\sqrt{m}]$, $m \in \mathbb{Z}$.
- (b) Show that the fields $\mathbb{Q}[\sqrt{m}]$, m squarefree, are pairwise distinct. (Hint: Consider the equation $\sqrt{m} = a + b\sqrt{n}$); use this to show that they are in fact pairwise non-isomorphic.

Proof of (a). Let $f(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{Z}$ $(a \neq 0)$ and assume f is irreducible over \mathbb{Q} . Let α be a root of f(x). So

$$\alpha = \frac{-b \pm \sqrt{m}}{2a}$$

where $m = b^2 - 4ac \in \mathbb{Z}$. Therefore,

$$\mathbb{Q}[\alpha] = \mathbb{Q}\left[\frac{-b \pm \sqrt{m}}{2a}\right] = \mathbb{Q}[\sqrt{m}].$$

Proof of (b). Show that $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are not isomorphic as fields if m and n are squarefree and $m \neq n$. Reductio ad absurdum.

(1) If $\varphi: \mathbb{Q}[\sqrt{m}] \to \mathbb{Q}[\sqrt{n}]$ were an isomorphism as fields, then φ is an identity map on \mathbb{Q} , and

$$\varphi(\sqrt{m}) = a + b\sqrt{n} \text{ for some } a, b \in \mathbb{Q}$$

$$\Longrightarrow \varphi(\sqrt{m})\varphi(\sqrt{m}) = (a + b\sqrt{n})^2$$

$$\Longrightarrow \varphi(\sqrt{m}\sqrt{m}) = (a + b\sqrt{n})^2$$

$$\Longrightarrow \varphi(m) = a^2 + nb^2 + 2ab\sqrt{n}$$

$$\Longrightarrow m = a^2 + nb^2 + 2ab\sqrt{n}.$$

If $2ab \neq 0$, then $\sqrt{n} = \frac{m-a^2-nb^2}{2ab} \in \mathbb{Q}$, contrary to the assumption that n is squarefree. Hence 2ab = 0.

(2) a=0. Write $b=\frac{r}{s}\in\mathbb{Q}$ where $r,s\in\mathbb{Z}$ and (r,s)=1. So

$$ms^2 = nr^2$$
.

Hence

$$b \neq 0 \Longrightarrow s^2 > 0$$
 and $r^2 > 0$
 $\Longrightarrow m$ and n have the same sign
 $\Longrightarrow (\exists \text{ prime } p \mid m, p \nmid n) \text{ or } (\exists \text{ prime } q \mid n, q \nmid m) \text{ since } m \neq n.$

(a) There is a prime $p \mid m$ but $p \nmid n$.

$$p \mid m \Longrightarrow \text{Write } m = pm_1 \text{ for some } m_1 \in \mathbb{Z}$$

$$\Longrightarrow (pm_1)s^2 = nr^2 \qquad (ms^2 = nr^2)$$

$$\Longrightarrow p \mid nr^2$$

$$\Longrightarrow p \mid r \qquad (p \nmid n \text{ by assumption})$$

$$\Longrightarrow Write \ r = pr_1 \text{ for some } r_1 \in \mathbb{Z}$$

$$\Longrightarrow (pm_1)s^2 = n(pr_1)^2 \qquad (ms^2 = nr^2)$$

$$\Longrightarrow m_1s^2 = npr_1^2$$

$$\Longrightarrow p \mid m_1s^2$$

$$\Longrightarrow p \mid m_1 \qquad ((r,s) = 1 \text{ and } p \mid r)$$

$$\Longrightarrow \text{Write } m_1 = pm_2 \text{ for some } r_2 \in \mathbb{Z}$$

$$\Longrightarrow m = p^2m_2,$$

contrary to the assumption that m is squarefree.

- (b) There is a prime $q \mid n$ but $q \nmid m$. Similar to (a).
- (3) b=0. $m=a^2$. Write $a=\frac{r}{s}\in\mathbb{Q}$ where $r,s\in\mathbb{Z}$ and (r,s)=1. Hence $ms^2=r^2$. Similar to the argument in (2).
- (4) By (2)(3), no such isomorphism φ , that is, $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are not isomorphic as fields.

Supplement (Isomorphic as vector spaces). Show that $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are isomorphic as \mathbb{Q} -vector spaces.

Proof. $[\mathbb{Q}[\sqrt{m}]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{n}]:\mathbb{Q}] = 2$. There is a natural map $\varphi:\mathbb{Q}[\sqrt{m}] \to \mathbb{Q}[\sqrt{n}]$ defined by $\varphi(a+b\sqrt{m}) = a+b\sqrt{n}$. Clearly φ is well-defined, linear, injective and surjective. \square

Exercise 2.2. Let I be the ideal generated by 2 and $1 + \sqrt{-3}$ in the ring $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$. Show that $I \neq (2)$ but $I^2 = 2I$. Conclude that ideals in $\mathbb{Z}[\sqrt{-3}]$ do not factor uniquely into prime ideals. Show moreover that

I is the unique prime ideal containing (2) and conclude that (2) is not a product of prime ideals.

Proof.

- (1) Show that $I \neq (2)$.
 - (a) Show that $I \supseteq (2)$. $2 \in (2, 1 + \sqrt{-3}) = I$.
 - (b) Show that $I \nsubseteq (2)$. Consider $1 + \sqrt{-3} \in I$. (Reductio ad absurdum) If $1 + \sqrt{-3}$ were in (2), then there exists $a + b\sqrt{-3}$ such that

$$1 + \sqrt{-3} = 2(a + b\sqrt{-3}) = 2a + 2b\sqrt{-3}.$$

Thus, $a = \frac{1}{2}$ and $b = \frac{1}{2}$, which is absurd.

- (2) Show that $I^2 = 2I$.
 - (a) Show that $I^2 \supseteq 2I$. Since $2 \in (2, 1 + \sqrt{-3}) = I$, $2I \subseteq I^2$.
 - (b) Show that $I^2 \subseteq 2I$. All elements of I^2 are generated by

$$2 \cdot 2, 2(1 + \sqrt{-3})$$
 and $(1 + \sqrt{-3})^2$.

Clearly, $2 \cdot 2$, $2(1 + \sqrt{-3}) \in 2I$. Besides,

$$(1+\sqrt{-3})^2 = -2 + 2\sqrt{-3} = 2(-(2) + (1+\sqrt{-3})) \in 2I.$$

Hence $I^2 \subseteq 2I$.

- (3) Show that ideals in $\mathbb{Z}[\sqrt{-3}]$ do not factor uniquely into prime ideals. TODO.
- (4) Show that I is the unique prime ideal containing (2). TODO.
- (5) Show that (2) is not a product of prime ideals. TODO.

Exercise 2.4. Suppose a_0, \ldots, a_{n-1} are algebraic integers and α is a complex number satisfying

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0} = 0.$$

Show that the ring $\mathbb{Z}[a_0,\ldots,a_{n-1},\alpha]$ has a finitely generated additive group. (Hint: Consider the products $a_0^{m_0}a_1^{m_1}\cdots a_{n-1}^{m_{n-1}}\alpha^m$ and show that only finitely many values of the exponents are needed.) Conclude that α is an algebraic integer.

Proof. Let $V = \mathbb{Z}[a_0, \dots, a_{n-1}, \alpha]$. Let n_k be the degree of the algebraic integer a_k where $0 \le k \le n-1$.

(1) Show that V is finitely generated as an additive subgroup of \mathbb{C} . It suffices to show that V is generated by

$$a_0^{m_0}a_1^{m_1}\cdots a_{n-1}^{m_{n-1}}\alpha^m$$

where $0 \le m_k < n_k$ and $0 \le m < n$. Given any $x \in V$, x is a finite sum of the product $a_0^{m_0} a_1^{m_1} \cdots a_{n-1}^{m_{n-1}} \alpha^m$ with $m_k \ge 0$ and $m \ge 0$.

If $m \geq n$, replace α^m by

$$\alpha^{m} = \alpha^{m-n} \alpha^{n}$$

$$= \alpha^{m-n} (-a_{n-1} \alpha^{n-1} - \dots - a_{1} \alpha - a_{0})$$

$$= -a_{n-1} \alpha^{m-1} - \dots - a_{1} \alpha^{m-n+1} - a_{0} \alpha^{m-n}.$$

Repeat this process to reduce the degree of α^m less than n. Therefore, we can write x as a finite sum of the product $a_0^{m'_0}a_1^{m'_1}\cdots a_{n-1}^{m'_{n-1}}\alpha^{m'}$ with $m'_k\geq 0$ and $0\leq m'< n$.

Once the degree of α^m is reduced, continue to reduce the degree of each $a_k^{m_k'}$ without affecting other a_h $(h \neq k)$ and α . Now replace $a_k^{m_k'}$ by

$$a_k^{m_k'} = \sum_{i=0}^{n_k - 1} b_{k,i} a_k^i$$

where $b_{k,i} \in \mathbb{Z}$. Therefore, we can write x as a finite sum of the product $a_0^{m_0''}a_1^{m_1''}\cdots a_{n-1}^{m_{n-1}''}\alpha^{m'}$ with $0 \le m_k'' < n_k$ and $0 \le m' < n$.

(4) Show that α is an algebraic integer. Since $\alpha \in V$, $\alpha V \subseteq V$. Thus α is an algebraic integer (Theorem 2.2).

Exercise 2.5. Show that if f is any polynomials over $\mathbb{Z}/p\mathbb{Z}$ (p a prime) then $f(x^p) = (f(x))^p$. (Suggestion: Use induction on the number of terms.)

Proof.

(1) Let

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

be a binomial coefficient. If $1 \le k \le p-1$, show that p divides $\binom{p}{k}$.

(a) If $1 \le k \le p-1$, then $p \nmid k!$ and $p \nmid (p-k)!$ since p is a prime.

(b) Write
$$a = \frac{p!}{k!(p-k)!} \in \mathbb{Z}$$
. Hence,

$$a = \frac{p!}{k!(p-k)!} \iff p! = ak!(p-k)!$$
$$\implies p \mid p! \text{ or } p \mid ak!(p-k)!$$
$$\implies p \mid a \text{ by (a)}.$$

Hence p divides $\binom{p}{k}$ if $1 \le k \le p-1$.

- (2) Note that $a^p = a \in \mathbb{Z}/p\mathbb{Z}$ for all $a \in \mathbb{Z}/p\mathbb{Z}$.
- (3) Write

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}/p\mathbb{Z}[x].$$

Induction on n.

(a)
$$n = 0$$
. So $f(x) = a_0$, and thus $f(x)^p = a_0^p = a_0$ by (2).

(b)
$$n = 1$$
. By $f(x) = a_1 x + a_0$,

$$f(x)^{p} = (a_{1}x + a_{0})^{p}$$

$$= a_{1}^{p}x^{p} + \sum_{k=1}^{p-1} {p \choose k} (a_{1}x)^{k} a_{0}^{p-k} + a_{0}^{p} \quad \text{(Binomial theorem)}$$

$$= a_{1}^{p}x^{p} + a_{0}^{p} \qquad ((1))$$

$$= a_{1}x^{p} + a_{0} \qquad ((2))$$

$$= f(x^{p}).$$

(c) If the statement holds for n-1, then

$$f(x)^{p} = (a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0})^{p}$$

$$= [a_{n}x^{n} + (a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0})]^{p}$$

$$= (a_{n}x^{n})^{p} + (a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0})^{p} \qquad \text{(Same as (b))}$$

$$= a_{n}(x^{p})^{n} + (a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0})^{p} \qquad \text{((2))}$$

$$= a_{n}(x^{p})^{n} + a_{n-1}(x^{p})^{n-1} + \dots + a_{1}x^{p} + a_{0} \qquad \text{(Induction hypothesis)}$$

$$= f(x^{p}).$$

The inductive step is established.

By induction, $f(x)^p = f(x^p)$ holds for any $n \ge 0$.

Exercise 2.6. Show that if f and g are polynomials over a field K and $f^2 \mid g$ in K[x], then $f \mid g'$. (Hint: Write $g = f^2h$ and differentiate.)

Proof (Hint). Since $f^2 \mid g$ in K[x], there exists $h \in K[x]$ such $g = f^2h$. Differentiate to get $g' = 2ff'h + f^2h' = f(2f'h + fh')$, or $f \mid g'$ in K[x]. \square

Exercise 2.10. Complete the proof of Corollary 3 to Theorem 2.3, by showing if m is even, $m \mid r$, and $\varphi(r) \leq \varphi(m)$, then r = m.

Proof.

(1) Since m is even, write the unique factorization of m as

$$m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

where $p_1 = 2$, all $\alpha_i \ge 1$ $(1 \le i \le k)$, and all p_i $(1 \le i \le k)$ are distinct prime numbers.

(2) Since $m \mid r$, write $r = mm_1$ for some $m_1 \in \mathbb{Z}$. Thus we can write the unique factorization of r as

$$m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} q_1^{\gamma_1} \cdots q_h^{\gamma_h}$$

where all $\beta_i \geq \alpha_i \geq 1$ $(1 \leq i \leq k)$ and all p_i $(1 \leq i \leq k)$ and q_j $(1 \leq j \leq h)$ are distinct prime numbers. Here h might be zero if $m_1 = 1$, and all $q_j \mid m_1$ but $q_j \nmid m$.

(3) Thus,

$$\begin{split} \varphi(m) &= m \left(1 - \frac{1}{2}\right) \cdots \left(1 - \frac{1}{p_k}\right) \\ \varphi(r) &= m m_1 \left(1 - \frac{1}{2}\right) \cdots \left(1 - \frac{1}{p_k}\right) \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_h}\right) \\ &= \varphi(m) m_1 \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_h}\right) \\ &\geq \varphi(m) (q_1 \cdots q_h) \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_h}\right) \\ &\geq \varphi(m) (q_1 - 1) \cdots (q_h - 1). \end{split}$$

(4) Since all $q_j \neq 2$ $(1 \leq j \leq h)$, $q_j - 1 > 1$. Hence by (3) and assumption that $\varphi(r) \leq \varphi(m)$, h = 0 or $m_1 = 1$ or r = m.

Exercise 2.11.

(a) Suppose all roots of a monic polynomial $f \in \mathbb{Q}[x]$ has absolute value 1. Show that the coefficient of x^r has absolute value $\leq \binom{n}{r}$, where n is the degree of f and $\binom{n}{r}$ is the binomial coefficient.

- (b) Show that there are only finitely many algebraic integers α of fixed degree n, all of whose conjugates (including α) have absolute value 1. (Note: If you don't use Theorem 2.1, your proof is probably wrong.)
- (c) Show that α must be a root of 1. (Show that its powers are restricted to a finite set.)

Proof of (a).

(1) Write $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$ where $\alpha_i \in \mathbb{C}$, $|\alpha_i| = 1$ for $i = 1, 2, \dots, n$.

(2) So

$$f(x) = x^{n} - s_{1}x^{n-1} + s_{2}x^{n-2} + \dots + (-1)s_{n}$$

where

$$s_r = \sum_{1 \le j_1 < \dots < j_r \le n} \alpha_{j_1} \cdots \alpha_{j_r} \in \mathbb{C}.$$

Let $c_r = (-1)^r s_{n-r}$ be the coefficient of x^r .

(3)

$$|c_r| = |(-1)^r s_{n-r}|$$

$$= \left| \sum_{1 \le j_1 < \dots < j_{n-r} \le n} \alpha_{j_1} \dots \alpha_{j_{n-r}} \right|$$

$$\le \sum_{1 \le j_1 < \dots < j_{n-r} \le n} |\alpha_{j_1} \dots \alpha_{j_{n-r}}|$$

$$= \sum_{1 \le j_1 < \dots < j_{n-r} \le n} |\alpha_{j_1}| \dots |\alpha_{j_{n-r}}|$$

$$= \sum_{1 \le j_1 < \dots < j_{n-r} \le n} 1$$

$$= \binom{n}{n-r}$$

$$= \binom{n}{r}.$$

Proof of (b).

(1) Let f be an irreducible monic polynomial over \mathbb{Z} of degree n such that $f(\alpha) = 0$. So f is irreducible over \mathbb{Q} (Theorem 2.1), and thus all the conjugates of α (including α) are roots of f.

- (2) By (a), all the coefficient of x^r has absolute value $\leq \binom{n}{r}$. Since all the coefficient of x^r are integers, there are finitely many irreducible monic polynomials $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$ with $|\alpha| = 1$.
- (3) For each such f, there are only finitely many roots. Therefore, there are only finitely many such algebraic integers α .

Proof of (c).

- (1) If $\alpha_1, \ldots, \alpha_n$ are the roots of f of degree n over \mathbb{Q} , then for every $r \in \mathbb{Z}^+$, $\alpha_1^r, \ldots, \alpha_n^r$ are all the roots of some monic polynomial f_r of degree n over \mathbb{Q} (Fundamental theorem of symmetric polynomials).
- (2) Now we consider the powers of α . All the powers of α (α^r) are algebraic integers (Theorem 2.2), and of degree at most n. (Let $g \in \mathbb{Z}[x]$ be the minimal polynomial of α^r over \mathbb{Q} . By (1), $f_r(\alpha^r) = 0$, and thus $g \mid f_r$. Hence $\deg(g) \leq \deg(f_r) = n$.)
- (3) By (b), the powers of α are restricted to a finite set, say $\alpha^r = \alpha^s$ for some $s > r \ge 1$. So $\alpha^{s-r} = 1$ with $s r \ge 1$. That is, α is a root of unity.

Exercise 2.12 (Kummer's Lemma). Now we can prove Kummer's lemma on units in the p-th cyclotomic field, as stated before Exercise 1.26: Let $\omega = e^{\frac{2\pi i}{p}}$, p an odd prime, and suppose u is a unit in $\mathbb{Z}[\omega]$.

- (a) Show that u/\overline{u} is a root of 1. (Use Exercise 2.11(c) above and observe that complex conjugation is a member of the Galois group of $\mathbb{Z}[\omega]$ over \mathbb{Q} .) Conclude that $u/\overline{u} = \pm \omega^k$ for some k.
- (b) Show that the + sign holds: Assuming $u/\overline{u} = -\omega^k$, we have $u^p = -\overline{u^p}$; show that this implies that u^p is divisible by p in $\mathbb{Z}[\omega]$. (Use Exercise 1.23 and 1.25) But this is impossible since u^p is a unit.

Proof of (a). Write $\alpha = u/\overline{u}$. Then

```
|\alpha|=1\Longrightarrow \alpha is a root of unity (Exercise 2.11)

\Longrightarrow \alpha is a 2p-th root of unity (Corollary 3 to Theorem 2.3)

\Longrightarrow \alpha=\pm\omega^k for some k\in\mathbb{Z}
```

Proof of (b). (Reductio ad absurdum) Assume that $u/\overline{u} = -\omega^k$, then

$$\begin{split} u/\overline{u} &= -\omega^k \Longrightarrow (u/\overline{u})^p = (-\omega^k)^p \\ &\Longrightarrow u^p/\overline{u}^p = (-1)^p \omega^{pk} = -1 \\ &\Longrightarrow u^p = -\overline{u}^p = -\overline{u}^p \end{split} \tag{p is odd)}$$

By Exercise 1.25, $u^p \equiv a \pmod{p}$ for some $a \in \mathbb{Z}$. By Exercise 1.23, $\overline{u^p} \equiv \overline{a} \equiv a \pmod{p}$. Thus

$$u^p = -\overline{u^p} \Longrightarrow a \equiv -a \pmod{p}$$

 $\Longrightarrow 2a \equiv 0 \pmod{p}$
 $\Longrightarrow a \equiv 0 \pmod{p}$ (p is odd)

or $u^p \equiv 0 \pmod{p}$, contradicts the assumption that u is a unit. Hence $u/\overline{u} = \omega^k$ for some k. \square

Exercise 2.14. Show that $1 + \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$. Use the powers of $1 + \sqrt{2}$ to generate infinitely many solutions to the diophantine equation $a^2 - 2b^2 = \pm 1$. (It will be shown in Chapter 5 that all units in $\mathbb{Z}[\sqrt{2}]$ are of the form $\pm (1 + \sqrt{2})^k$, $k \in \mathbb{Z}$.)

Might assume to find nonnegative solutions to the Pell's equation $a^2 - 2b^2 = \pm 1$.

Proof.

(1) Show that $1 + \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$. There is $-1 + \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ such that $(1 + \sqrt{2})(-1 + \sqrt{2}) = 1 \in \mathbb{Z}[\sqrt{2}]$.

Hence $1+\sqrt{2}$ is a unit.

(2) $N(a+b\sqrt{2})=|a^2-2b^2|$ is a norm on $\mathbb{Z}[\sqrt{2}]$. To prove this, use the same argument as Exercise 1.1 and note that

$$N(a + b\sqrt{2}) = |(a + b\sqrt{2})(a - b\sqrt{2})|.$$

(3) By (1)(2), all $(1+\sqrt{2})^k$ with $k \ge 0$ are distinct solutions to the diophantine equation $a^2 - 2b^2 = \pm 1$. Explicitly, let

$$(a_0, b_0) = (1, 0),$$

 $(a_1, b_1) = (1, 1),$
 $(a_2, b_2) = (3, 2),$
 $(a_3, b_3) = (7, 5),$
...
 $(a_k, b_k) = (a_{k-1} + 2b_{k-1}, a_{k-1} + b_{k-1}),$

9

Note that all (a_k, b_k) are distinct and satisfying $a_k^2 - 2b_k^2 = \pm 1$. Hence we get infinitely many solutions to the Pell's equation $a^2 - 2b^2 = \pm 1$.

Note. Suppose that all units in $\mathbb{Z}[\sqrt{2}]$ are of the form $\pm (1+\sqrt{2})^k$, $k \in \mathbb{Z}$. Note that $(1+\sqrt{2})^k = (-1+\sqrt{2})^{-k}$. Thus we can find all nonnegative solutions to the Pell's equation $a^2 - 2b^2 = \pm 1$ are exactly the same as (3). \square

Exercise 2.15.

- (a) Show that $\mathbb{Z}[\sqrt{-5}]$ contains no element whose norm is 2 or 3.
- (b) Verify that $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ is an example of non-unique factorization in the number ring $\mathbb{Z}[\sqrt{-5}]$.

Proof of (a). Since $N(a+b\sqrt{-5})=a^2+5b^2\equiv a^2\equiv 0,1,4\pmod 5$, there is no element whose norm is 2 or 3. \square

Proof of (b).

(1) Show that $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

$$2 \cdot 3 = 6$$
 and $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6$.

(2) Show that 2 is irreducible. Suppose $2 = \alpha \beta$ where $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}]$. Take norm to get

$$N(2) = N(\alpha)N(\beta) \Longrightarrow 4 = N(\alpha)N(\beta)$$

 $\Longrightarrow N(\alpha) = 1 \text{ or } N(\beta) = 1$
 $\Longrightarrow \alpha \text{ is unit or } \beta \text{ is unit.}$ ((1))

- (3) Show that 3 is irreducible. Similar to (2).
- (4) Show that $1 \pm \sqrt{-5}$ is irreducible. Since $N(1 \pm \sqrt{-5}) = 2$ is prime, $1 + \sqrt{-5}$ is irreducible.

Hence 6 has a non-unique factorization in the number ring $\mathbb{Z}[\sqrt{-5}]$. \square

Exercise 2.28. Let $f(x) = x^3 + ax + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f.

- (a) Show that $f'(\alpha) = -\frac{2a\alpha + 3b}{\alpha}$
- (b) Show that $2a\alpha + 3b$ is a root of

$$\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b.$$

Use this to find $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha+3b)$.

- (c) Show that $disc(\alpha) = -(4a^3 + 27b^2)$.
- (d) Suppose $\alpha^3 = \alpha + 1$. Prove that $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}[\alpha]$. (See Exercise 2.27(e).) Do the same if $\alpha^3 + \alpha = 1$.

Proof of (a).

- (1) Show that $\alpha \neq 0$. If α were 0, then $f(\alpha) = f(0) = b$. So $f(x) = x^3 + ax = x(x^2 + a)$ is reducible, contrary to the irreducibility of f.
- (2) Since α be a root of f, $f(\alpha) = 0$, or $\alpha^3 + a\alpha + b = 0$, or $\alpha^3 = -a\alpha b$.

(3)

$$f'(x) = 3x^{2} + a \Longrightarrow f'(\alpha) = 3\alpha^{2} + a$$

$$\iff \alpha f'(\alpha) = 3\alpha^{3} + a\alpha \qquad (\alpha \neq 0)$$

$$\iff \alpha f'(\alpha) = 3(-a\alpha - b) + a\alpha \qquad (\alpha^{3} = -a\alpha - b)$$

$$\iff \alpha f'(\alpha) = -2a\alpha - 3b.$$

So
$$f'(\alpha) = -\frac{2a\alpha + 3b}{\alpha}$$

Proof of (b).

(1) Since $\alpha^3 + a\alpha + b = 0$,

$$\left(\frac{(2a\alpha+3b)-3b}{2a}\right)^3+a\left(\frac{(2a\alpha+3b)-3b}{2a}\right)+b=0.$$

That is, $2a\alpha + 3b$ is a root of $\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b$.

(2) $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha+3b)$ is the product of three roots of $\left(\frac{x-3b}{2a}\right)^3+a\left(\frac{x-3b}{2a}\right)+b$. Hence,

$$\begin{split} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha + 3b) &= (2a)^3 \left[\left(\frac{-3b}{2a} \right)^3 + a \cdot \frac{-3b}{2a} + b \right] \\ &= 8a^3 \left[\frac{-27b^3}{8a^3} - \frac{b}{2} \right] \\ &= -27b^3 - 4a^3b. \end{split}$$

Proof of (c).

$$\begin{aligned} \operatorname{disc}(\alpha) &= (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha)) & \text{(Theorem 2.8)} \\ &= -N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} \left(-\frac{2a\alpha + 3b}{\alpha} \right) & \text{($n = 3$ and (a))} \\ &= \frac{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha + 3b)}{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)} \\ &= \frac{-27b^3 - 4a^3b}{b} & \text{((b))} \\ &= -27b^2 - 4a^3. \end{aligned}$$

Proof of (d).

- (1) (a) $\alpha^3 = \alpha + 1$, or $\alpha^3 \alpha 1 = 0$.
 - (b) $f(x) = x^3 x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/3\mathbb{Z}$.
 - (c) $disc(\alpha) = -23$ (by (c)).
 - (d) Since $\operatorname{disc}(\alpha)$ is squarefree, the result is established (Exercise 2.27(e)).
- (2) (a) $\alpha^3 + \alpha = 1$, or $\alpha^3 + \alpha 1 = 0$.
 - (b) $f(x) = x^3 + x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/2\mathbb{Z}$.
 - (c) $disc(\alpha) = -31$ (by (c)).
 - (d) Since $\operatorname{disc}(\alpha)$ is squarefree, the result is established (Exercise 2.27(e)).

Exercise 2.43. Let $f(x) = x^5 + ax + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f.

- (a) Show that $disc(\alpha) = 4^4a^5 + 5^4b^4$. (Suggestion: See Exercise 2.28.)
- (b) Suppose $\alpha^5 = \alpha + 1$. Prove that $\mathbb{A} \cap \mathbb{Q}[\alpha] = \mathbb{Z}[\alpha]$. $(x^5 x 1 \text{ is irreducible over } \mathbb{Q}; \text{ this can be shown by reducing } \pmod{3}$.)
- (c) ...
- (d) ...

Proof of (a) (Exercise 2.28).

(1) Show that $f'(\alpha) = -\frac{4a\alpha + 5b}{\alpha}$.

- (a) Show that $\alpha \neq 0$. If α were 0, then $f(\alpha) = f(0) = b$. So $f(x) = x^5 + ax = x(x^4 + a)$ is reducible, contrary to the irreducibility of f.
- (b) Since α be a root of f, $f(\alpha) = 0$, or $\alpha^5 + a\alpha + b = 0$, or $\alpha^5 = -a\alpha b$.

(c)

$$f'(x) = 5x^4 + a \Longrightarrow f'(\alpha) = 5\alpha^4 + a$$

$$\iff \alpha f'(\alpha) = 5\alpha^5 + a\alpha \qquad (\alpha \neq 0)$$

$$\iff \alpha f'(\alpha) = 5(-a\alpha - b) + a\alpha \quad (\alpha^5 = -a\alpha - b)$$

$$\iff \alpha f'(\alpha) = -4a\alpha - 5b.$$

So
$$f'(\alpha) = -\frac{4a\alpha + 5b}{\alpha}$$
.

(2) Show that $4a\alpha + 5b$ is a root of

$$\left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b.$$

Use this to show that $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b) = -4^4a^5b - 5^5b^5$.

(a) Since $\alpha^5 + a\alpha + b = 0$,

$$\left(\frac{(4a\alpha+5b)-5b}{4a}\right)^5+a\left(\frac{(4a\alpha+5b)-5b}{4a}\right)+b=0.$$

That is, $4a\alpha + 5b$ is a root of $\left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b$.

(b) $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b)$ is the product of 5 roots of $\left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b$. Hence,

$$N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b) = (4a)^5 \left[\left(\frac{-5b}{4a} \right)^5 + a \cdot \frac{-5b}{4a} + b \right]$$
$$= 4^5 a^5 \left[\frac{-5^5 b^5}{4^5 a^5} - \frac{b}{4} \right]$$
$$= -5^5 b^5 - 4^4 a^5 b.$$

(3) Show that $disc(\alpha) = 4^4 a^5 + 5^4 b^4$.

$$\operatorname{disc}(\alpha) = (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha)) \qquad \text{(Theorem 2.8)}$$

$$= N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} \left(-\frac{4a\alpha + 5b}{\alpha} \right) \qquad (n = 5 \text{ and } (1))$$

$$= -\frac{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b)}{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)}$$

$$= -\frac{-4^4 a^5 b - 5^5 b^5}{b}$$

$$= 4^4 a^5 + 5^4 b^4$$

Proof of (b)(Exercise 2.28).

- (1) $\alpha^5 = \alpha + 1$, or $\alpha^5 \alpha 1 = 0$.
- (2) $f(x) = x^5 x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/3\mathbb{Z}$.
- (3) $disc(\alpha) = 881$ (by (a)).
- (4) Since $\operatorname{disc}(\alpha)$ is squarefree (a prime number), the result is established (Exercise 2.27(e)).

Exercise 2.44. Let $f(x) = x^5 + ax^4 + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f and let d_1, d_2, d_3 and d_4 be as in Theorem 2.13.

- (a) Show that $disc(\alpha) = b^3(4^4a^5 + 5^5b)$.
- (b) ...
- (c) ...
- (d) ...

Proof of (a). TODO. \square

Exercise 2.45. Obtain a formula for $disc(\alpha)$ if α is a root of an irreducible polynomial $x^n + ax + b$ over \mathbb{Q} . Do the same for $x^n + ax^{n-1} + b$.

Assume that $n \geq 2$.

Proof of $x^n + ax + b$ (Exercise 2.28).

- (1) Show that $f'(\alpha) = -\frac{(n-1)a\alpha + nb}{\alpha}$.
 - (a) Show that $\alpha \neq 0$. If α were 0, then $f(\alpha) = f(0) = b$. So $f(x) = x^n + ax = x(x^{n-1} + a)$ is reducible, contrary to the irreducibility of f.
 - (b) Since α be a root of f, $f(\alpha) = 0$, or $\alpha^n + a\alpha + b = 0$, or $\alpha^n = -a\alpha b$.
 - (c)

$$f'(x) = nx^{n-1} + a \Longrightarrow f'(\alpha) = n\alpha^{n-1} + a$$

$$\iff \alpha f'(\alpha) = n\alpha^n + a\alpha \qquad (\alpha \neq 0)$$

$$\iff \alpha f'(\alpha) = n(-a\alpha - b) + a\alpha \qquad (\alpha^n = -a\alpha - b)$$

$$\iff \alpha f'(\alpha) = -(n-1)a\alpha - nb.$$

So
$$f'(\alpha) = -\frac{(n-1)a\alpha + nb}{\alpha}$$
.

(2) Let $\beta = (n-1)a\alpha + nb$. Show that β is a root of

$$\left(\frac{x-nb}{(n-1)a}\right)^n + a\left(\frac{x-nb}{(n-1)a}\right) + b.$$

Use this to show that

$$N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\beta) = -(n-1)^{n-1}a^nb + (-1)^nn^nb^n.$$

(a) Since $\alpha^n + a\alpha + b = 0$,

$$\left(\frac{\beta - nb}{(n-1)a}\right)^n + a\left(\frac{\beta - nb}{(n-1)a}\right) + b = 0.$$

That is, β is a root of $\left(\frac{x-nb}{(n-1)a}\right)^n + a\left(\frac{x-nb}{(n-1)a}\right) + b$.

(b) $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\beta)$ is the product of n roots of $\left(\frac{x-nb}{(n-1)a}\right)^n + a\left(\frac{x-nb}{(n-1)a}\right) + b$. Hence,

$$\begin{split} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\beta) &= ((n-1)a)^n \left[\left(\frac{-nb}{(n-1)a} \right)^n + a \cdot \frac{-nb}{(n-1)a} + b \right] \\ &= (n-1)^n a^n \left[\frac{(-1)^n n^n b^n}{(n-1)^n a^n} - \frac{b}{n-1} \right] \\ &= (-1)^n n^n b^n - (n-1)^{n-1} a^n b. \end{split}$$

(3) Show that $disc(\alpha) = (-1)^{\frac{(n-1)(n-2)}{2}} (n-1)^{n-1} a^n + (-1)^{\frac{n(n-1)}{2}} n^n b^{n-1}$

$$\begin{aligned} \operatorname{disc}(\alpha) &= (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha)) & \text{(Theorem 2.8)} \\ &= (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} \left(-\frac{(n-1)a\alpha + nb}{\alpha} \right) & \text{((1))} \\ &= (-1)^{\frac{n(n-1)}{2}} (-1)^n \frac{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}((n-1)a\alpha + nb)}{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)} & \\ &= (-1)^{\frac{n(n-1)}{2}} (-1)^n \frac{-(n-1)^{n-1}a^nb + (-1)^n n^n b^n}{b} & \\ &= (-1)^{\frac{(n-1)(n-2)}{2}} (n-1)^{n-1}a^n + (-1)^{\frac{n(n-1)}{2}} n^n b^{n-1}. \end{aligned}$$

Proof of $x^n + ax^{n-1} + b$. TODO. \square