Robot avion ★★

C2-07

Objectif

L'objectif est de déterminer le couple articulaire C_{12} à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur.

Hypothèses:

- ▶ l'étude est réalisée pour une demi couture orbitale (couture supérieure);
- ▶ le repère $\Re_0\left(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ sera supposé galiléen;
- ▶ $\overrightarrow{y_0}$ est l'axe vertical ascendant et $\overrightarrow{g} = -g\overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$; ▶ toutes les liaisons sont supposées parfaites.

Repérage et paramétrage

Le repère associé à l'embase fixe (0) est le repère $\Re_0\left(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right), \overrightarrow{y_0}$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1, \overrightarrow{y_1})$, par rapport au bâti (0), a pour repère associé le repère $\Re_1\left(O_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$ tel que $O_0 = O_1, \overrightarrow{x_0} = \overrightarrow{x_1}, \overrightarrow{y_0} = \overrightarrow{y_1}$, $\overrightarrow{z_0} = \overrightarrow{z_1}$.

Le bras (2), en liaison pivot d'axe $(O_2, \overrightarrow{z_2})$ par rapport à l'embase de rotation (1), a pour repère associé le repère $\Re_2\left(O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}\right)$ tel que $\overrightarrow{O_1O_2} = L_1\overrightarrow{x_1} + L_2\overrightarrow{y_1}, \overrightarrow{z_1} = \overrightarrow{z_2}$ et $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3, \overline{z_3})$ par rapport au bras (2), a pour repère associé le repère $\Re_3\left(O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}\right)$ tel que $\overrightarrow{O_2O_3} = L_3\overrightarrow{x_2}, \overrightarrow{z_1} = \overrightarrow{z_3}$ et $\left(\overrightarrow{x_1}, \overrightarrow{x_3}\right) = \left(\overrightarrow{y_1}, \overrightarrow{y_3}\right) = \left(\overrightarrow{y_1}, \overrightarrow{y_3}\right)$ θ_{13} .

Le bras (4), en liaison pivot d'axe $(O_4, \overrightarrow{x_4})$ par rapport au bras (3), a pour repère associé le repère $\Re_4(O_4; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ tel que $\overrightarrow{O_3O_4} = L_4\overrightarrow{x_3} + l_5\overrightarrow{y_3}, \overrightarrow{x_3} = \overrightarrow{x_4}$ et $(\overrightarrow{y_3}, \overrightarrow{y_4}) = (\overrightarrow{z_3}, \overrightarrow{z_4}) = \theta_{34}$.

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $\left(O_5, \overrightarrow{z_5}\right)$ par rapport au bras (4), a pour repère associé le repère $\Re_5\left(O_5; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5}\right)$ tel que $\overrightarrow{O_4O_5} = L_5\overrightarrow{x_3}, \overrightarrow{z_1} = \overrightarrow{z_5}$ et $\left(\overrightarrow{x_1}, \overrightarrow{x_5}\right) = \left(\overrightarrow{y_1}, \overrightarrow{y_5}\right) = \theta_{15}$.

La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overrightarrow{O_2G_2} = \frac{1}{2}L_3\overrightarrow{x_2}$.

La masse du bras (3) et du bras (4) est notée M_{34} et la position du centre de gravité est définie par $\overrightarrow{O_3G_3} = \frac{1}{3}L_4\overrightarrow{x_3} + L_5\overrightarrow{y_3}$.

La masse de l'ensemble (E1) est notée M_{E1} et la position du centre de gravité est définie par $\overrightarrow{O_5G_5} = L_7\overrightarrow{x_5}$.

L'extrémité de l'outil est définie par le point P définie par $\overrightarrow{O_5P}=L_8\overrightarrow{x_5}$

Le torseur d'action mécanique lié au perçage sera noté : $\{\mathcal{T} \text{ (Tronçon (perçage)} \rightarrow E_1)\}\ =$

$$\left\{ \begin{array}{cc} -F & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}_{P,\mathcal{R}_5} .$$
 Un effort presseur est de plus nécessaire pour le perçage optimal des

deux tronçons. Le torseur d'action mécanique associé sera noté : $\{\mathcal{T} \text{ (Tronçon (presseur)} \rightarrow E_1)\}\ =$

$$\left. \begin{array}{cc} -P & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}_{P,\mathcal{R}_5}$$

Le torseur couple modélisant l'action du moteur sur la pièce **1** sur **2** : $\{\mathcal{T}(1_m \to 2)\} = (\frac{1}{2})$

$$\left\{\begin{array}{c} \overrightarrow{0} \\ C_{12}\overrightarrow{z_0} \end{array}\right\}_{\forall P}.$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Question 1 Réaliser le graphe de structure de l'ensemble en précisant les liaisons et les actions mécaniques extérieures.

Question 2 Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} .

Question 3 Réaliser un bilan des actions mécaniques extérieures appliquées à Σ et écrire les éléments de réduction de chaque torseur d'actions mécaniques.

Question 4 Quel théorème doit-être appliqué et sur quel axe de projection, pour déterminer le couple C_{12} ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivants : $\theta_{12}=60\,^{\circ}$, $\theta_{13}=-4\,^{\circ}$, $\theta_{15}=-90\,^{\circ}$.

Dans la suite de l'étude, l'angle θ_{13} sera considéré nul.

Question 5 Déterminer l'équation littérale du couple C_{12} en fonction de g, F, P, M_2 , M_{34} , M_{E1} , L_3 , L_4 , L_5 , L_6 , L_7 , θ_{12} , θ_{15} .

Les valeurs du robot considéré sont :

► $M_2 = 264 \,\mathrm{kg}$, $M_{34} = 430 \,\mathrm{kg}$, $M_{E1} = 150 \,\mathrm{kg}$, $P = 150 \,\mathrm{N}$, $F = 1000 \,\mathrm{N}$;

► $L_1 = 0.405 \,\text{m}$, $L_2 = 0.433 \,\text{m}$, $L_3 = 1.075 \,\text{m}$, $L_4 = 1.762 \,\text{m}$, $L_5 = 0.165 \,\text{m}$, $L_6 = 0.250 \,\text{m}$, $L_7 = 0.550 \,\text{m}$, $L_8 = 0.750 \,\text{m}$.

Question 6 Déterminer alors la valeur du couple C_{12} .

La valeur limite supérieure du couple C_{12} est fixée par le constructeur à 9000 Nm.

Question 7 Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position? Justifier la réponse.

Corrigé voir .