

2.
$$S_n = \frac{2}{k} = \frac{k}{k^2 + n^2} = \frac{n}{k} = \frac{k/n^2}{(k/n)^2 + 1} = \frac{1}{n} \frac{k}{k} = \frac{1}{(k/n)^2 + 1}$$

En posaur $a = 0, b = 1$ et $f(x) = \frac{x}{n^2 + 1}$ Aur $(0, 1]$

on a que $S_n = \frac{1}{n} = \frac{x}{f(k/n)}$.

et f est continue $S_n = \frac{1}{n} = \frac{x}{f(k/n)}$.

Pou le cours, en a $S_n = \frac{1}{n^2 + 1} = \frac{x}{f(k/n)}$.

Or $\int_0^1 f(x) dx = \int_0^1 \frac{x}{n^2 + 1} dx$

on remarque que $S_n = \frac{1}{n^2 + 1} = \frac{x}{n^2 + 1}$

d'eù $\int_0^1 \frac{x}{n^2 + 1} dx = \frac{1}{n^2 + 1} dx$
 $= \frac{1}{n} \left(\frac{2n(n^2 + 1)}{n^2 + 1} \right) = \frac{1}{n} \frac{1}{n} \frac{1}{n}$
 $= \frac{1}{n} \left(\frac{2n(n^2 + 1)}{n^2 + 1} \right) = \frac{1}{n} \frac{1}{n}$

Exercice 2
Rocherche des primitives de auchan(x).
- Cherchous d'abord le domaine de définition, et de continuité de la fonction.
Df = R, la foucher est continue sur R donc
aduer des primitives dur Za, b J C R.
- Intégration: Soit [9, b] CR.
Posons auchau(n) = $f(n) \Rightarrow f'(n) = \frac{1}{1+x^2}$
er gin) = 1 => gin) = x. porpusi charchestu
Par integration par partie, on a: stegale?
$\int_{a}^{b} \operatorname{auchau}(n) dn = \int \frac{\pi a r \operatorname{chau}(n)}{a} \int_{a}^{b} \frac{\pi}{1 + \pi^{2}} dx$
or $\int_{a}^{b} \frac{\pi}{1+\pi^{2}} d\pi = \left[\frac{1}{2}\ln(1+\pi^{2})\right]_{a}^{b} \cot 1+\pi^{2} > 0, \forall x \in \mathbb{R}.$
d'où \int_{a}^{b} auchau(x)dx = $\left[\operatorname{narchau}(x)\right]_{a}^{b} - \left[\frac{1}{2}\ln(1+x^{2})\right]_{a}^{b}$
$= aarchau(a) - \frac{1}{2}\ln(1+a^2) - barchau(b) + \frac{1}{2}\ln(1+b^2).$
Prinsi une primitive de la fonction auctanta) est la fonction.
$6: x \in \mathbb{R} \longrightarrow xarchau(x) - \frac{1}{2}ln(1+x^2)$
et l'ensemble des primitives de auchan(x) est
1 $f = 1$ $x \in \mathbb{R}$ \longrightarrow $G(x) + C$, $C \in \mathbb{R}$ the constant 2 .