Lab3 实验报告

一、 实验目的

- 1、进一步熟悉并掌握搭建网络拓扑的方法。
- 2、学习搭建静态网络环境, 学会子网的划分方法。
- 3、学习用 NAT 来配置子网的统一端口,从而感受怎么解决 IP 地址的紧缺问题。

二、 网络拓扑配置

表:

节点名	虚拟设备名	ip	netmask		
Router0	U-571	eth0:192.168.3.1	255.255.255.0		
		eth1: 192.168.2.1	255.255.255.128		
		eth2: 192.168.2.129	255.255.255.128		
Router1	U-572	eth0: 192.168.3.2	255.255.255.0		
		eth1: 192.168.4.1	255.255.255.0		
PC0	U-573	192.168.2.2	255.255.255.128		
PC1	UT-574	192.168.2.3	255.255.255.128		
PC2	UT-576	192.168.4.2	255.255.255.0		
PC3	UT-575	192.168.2.130	255.255.255.128		

图:

三、 路由规则配置:

	Router0						
设计	发往子网 VMnet2(192.168.2.0/25)的数据包,将通过 Router0 的						
	eth1(192.168.2.1)发送出去。						
	发往子网 VMnet3(192.168.3.0/24) 的数据包,将通过 Router0 的						
	eth0(192.168.3.1)发送出去。						
	发往子网 VMnet4(192.168.2.128/25)的数据包, 将通过 Router0 的						
	eth2(192.168.2.129)发送出去。						
	发往子网 VMnet5(192.168.4.0/24) 的数据包,将通过 Router1 的						
	eth0(192.168.3.2)发送出去。						
命令	ifconfig eth0 192.168.3.1 netmask 255.255.255.0						
	ifconfig eth1 192.168.2.1 netmask 255.255.255.128						
	ifconfig eth2 192.168.2.129 netmask 255.255.255.128						
	ip route add 192.168.2.0/25 via 192.168.2.1						
	ip route add 192.168.3.0/24 via 192.168.3.1						
	ip route add 192.168.2.128/25 via 192.168.2.129						
	ip route add 192.168.4.0/24 via 192.168.3.2						
	echo 1 > /proc/sys/net/ipv4/ip_forward						
	Router1						
设计	发往子网 VMnet3(192.168.3.0/24) 的数据包,将通过 Router1 的						
	eth0(192.168.3.2)发送出去。						
	发往子网 VMnet5(192.168.4.0/24) 的数据包,将通过 Router1 的						
	eth1(192.168.4.1)发送出去。						
	发往子网 VMnet2 和 VMnet4(192.168.2.0/24)的数据包, 将通过 Router0 的						
	eth0(192.168.3.1)发送出去。						
命令	ifconfig eth0 192.168.3.2 netmask 255.255.255.0						
	ifconfig eth1 192.168.4.1 netmask 255.255.255.0						
	ip route add 192.168.3.0/24 via 192.168.3.2 ip route add 192.168.4.0/24 via 192.168.4.1						
ip route add 192.168.2.0/24 via 192.168.3.1							
	echo 1 > /proc/sys/net/ipv4/ip_forward						
	PC0						
设计	将数据包发往子网 VMnet2(192.168.2.0/25) 中的路由器 Router0 的						
	eth1(192.168.2.1)						
命令	ifconfig eth0 192.168.2.2 netmask 255.255.255.128						
	route add default gw 192.168.2.1						
	PC1						
设计	将数据包发往子网 VMnet2(192.168.2.0/25) 中的路由器 Router0 的						
	eth1(192.168.2.1)						
命令	ifconfig eth0 192.168.2.3 netmask 255.255.255.128						
route add default gw 192.168.2.1							
PC2							
设计	将数据包发往子网 VMnet5(192.168.4.0/24)中的路由器 Router1 的						

	eth1(192.168.4.1)					
命令	ifconfig eth0 192.168.4.2 netmask 255.255.255.0					
	route add default gw 192.168.4.1					
PC3						
设计	将数据包发往子网 VMnet4(192.168.2.128/25)中的路由器 Router0 的					
	eth2(192.168.2.129)					
命令	ifconfig eth0 192.168.2.130 netmask 255.255.255.128					
	route add default gw 192.168.2.129					

四、 NAT 命令设置

设计:将 VMnet2 和 VMnet4 看成一个内网, 把它所有的 IP 都设置成 Router0 的 eth0 端口, 也就是 192.168.3.1。这样子网内可以自主设置 IP 地址, 而对外都统一使用一个 IP 地址, 这样子就实现了一个 IP 地址进行多用的目的。

命令:

sudo iptables -t nat -A POSTROUTING -o eth0 -s 192.168.2.0/24 -j SNAT --to 192.168.3.1

五、 数据包截图及协议报文分析

① 内网的主机 ping 内网的主机(以 PC0 ping PC3 为例)

PC0: 192.168.2.2 PC3: 192.168.2.130

截图:

37 73215.70515 192.168.2.2	192.168.2.130	ICMP	98 Echo (ping) request id=0x0ea7, seq=1/256, ttl=64
38 73215.70761 192.168.2.130	192.168.2.2	ICMP	98 Echo (ping) reply id=0x0ea7, seq=1/256, ttl=63
39 73216.70640 192.168.2.2	192.168.2.130	ICMP	98 Echo (ping) request id=0x0ea7, seq=2/512, ttl=64
40 73216.70817 192.168.2.130	192.168.2.2	ICMP	98 Echo (ping) reply id=0x0ea7, seq=2/512, ttl=63

分析:

可以看出内网内的主机通信抓取到的包都是用的真实的IP地址。

② 内网的主机 ping 外网的主机(以 PC0 ping PC2 为例)

PC0: 192.168.2.2 PC2: 192.168.4.2

截图:

内网中抓包:

4	49 73621.21882.192.168.2.2	192.168.4.2	ICMP	98	Echo	(ping)	request	id=0x0eb0,	seq=1/256,	ttl=64
	73621.22107 192.168.4.2	192.168.2.2	ICMP	98	Echo	(ping)	reply	id=0x0eb0,	seq=1/256,	ttl=62
	73622.21980!192.168.2.2	192.168.4.2	ICMP	98	Echo	(ping)	request	id=0x0eb0,	seq=2/512,	ttl=64
	73622.22197(192.168.4.2	192.168.2.2	ICMP	98	Echo	(ping)	reply	id=0x0eb0,	seq=2/512,	ttl=62
	外网中抓包:									
	21 72568.29688 192.168.3.1	192.168.4.2	ICMP	98	Echo	(ping)	request	id=0x0eb0,	seq=1/256,	ttl=63
	22 72568.29775 192.168.4.2	192.168.3.1	ICMP	98	Echo	(ping)	reply	id=0x0eb0,	seq=1/256,	ttl=63
	23 72569.29776 192.168.3.1	192.168.4.2	ICMP	98	Echo	(ping)	request	id=0x0eb0,	seq=2/512,	ttl=63
	24 72569.29857 192.168.4.2	192.168.3.1	ICMP	98	Echo	(ping)	reply	id=0x0eb0,	seq=2/512,	ttl=63

分析:

可以看出在内网中抓包用的是真实的 IP 地址,而在外网中已经通过 NAT 技术修改成了一个统一的 IP 地址(此例中 192.168.2.2 被修改成为了 192.168.3.1)。这种技术的模拟让我们可以通过 NAT 技术去设置自己小 LAN 的 IP,比如宿舍的 IP,感觉还是很实用的。