ZhiShi LA ZhiShi LA BAOYAN第10章 重积分

ZhiShi LAND BAO 本章讨论重积分,即在平面区域上的二元函数和空间区域上的三元函数的积分,分别称之为 ts reserved 重积分, 三重积分. All rights to 这章必需上册定积分的知识和定积分的计算。请同学们务必认真复习。加一个作业:默写求 积分基本及全部法则公式。 BAOYANDAO AOYANDAO ZHISHI LAND BAOYANDAO

第1节 重积分的概念和性质

1.1 重积分的概念

1 实例背景

【例 1.1】 求曲顶柱体的体积.

设 D 为 xO y 平面内的 \overline{q} 界闭区域。以 D 的边界曲线 $\P D$ 为准线,母线平行于 Z 轴的柱面与 平面 Z=0 及曲面 Z=f(x,y) ($f(x,y)^3$ 0,且在 D 上连续)围得的空间立体,称此立体为曲项 柱体. 求此柱体的体积 V .

解 我们用如下 4 步计算体积 1/1.

(1) 分割: 用一组曲线网将区域 D 分割成 n 个小区域: D s_1 , D s_2 , L , D s_n (同时 D s_i 也表示第 i 个小区域 D s_i 的面积)(图 1.2). 设 D s_i 为底的小的曲顶柱体 D v_i 体积为 D v_i ,则 V = $\overset{\circ}{a}$ $\overset{\circ}{D}$ D v_i

(D v,是无法算得的).

(2) 近似: 在 $''(x_i, h_i)$ Î D s_i , 把 D v_i 近似看作固定高 $f(x_i, h_i)$ 的柱体,则 D v_i 》 $f(x_i, h_i)$ D s_i , (i= 1,2,L ,n). (图 1.1)

(3) 求和:
$$V =$$
 質的 V_i 》 $\int_{i=1}^{n} f(x_i, h_i) \mathbb{D} s_i$.

(4) 求极限:记D s_i 上两点间最大距离为 I_i ,令 $I = \max\{I_1, L_i, I_n\}$ 。当 I® 0 时(此时每

个 I_i ® 0), $\overset{\circ}{a}_{i=1}^n f(x_i, h_i)$ D s_i 与 V 的误差趋于零。所以,曲顶柱体的体积 $V = \lim_{I \circledast 0} \overset{\circ}{a}_{i=1}^n f(x_i, h_i)$ D s_i .

图 1.1

图 1.2

【例 1.2】 求非匀质平面薄板的质量.

设 xOy 面上有界闭区域 D 是一块薄板,其面密度函数为 f(x,y) (f(x,y) 3 0 且在 D 上连续). 求此薄板的质量 M 。

解 我们也用如下 4 步计算薄板的质量 M 。

- (1) 分割: 用一组曲线网将区域 D 分割成 n 个小区域: D s_1 , D s_2 , L , D s_n (同时 D s_i 也表示第 i 个小区域 D s_i 的面积). 设 D s_i 的质量为 D m i (i = 1,2,L , n),则 M = $\overset{\circ}{a}$ D m i (D m i 是无法算得的).
- (2) 近似: 在 $''(x_i,h_i)$ Î D s_i , 把 D s_i 近似看作固定面密度 $f(x_i,h_i)$ 的小块,则 D m_i 》 $f(x_i,h_i)$ D s_i , (i=1,2,L,n) .

2 重积分的定义

上面的两个背景例子虽然实际意义完全不同,但是计算方法是一样的。为了一次性地讲完千千万万个这样的例子,我们给出二重积分的定义:

定义 1.1 设 f(x,y) 是有界闭区域 $D \stackrel{!}{\downarrow} R^2$ 上的有界函数。

- (1) 分割: 用一组曲线网将区域 D 分割成 n 个小区域: D s_1 , D s_2 , L , D s_n (同时 D s_i 也表示第 i 个小区域 D s_i 的面积).
 - (2) "近似": 在 " (x_i, h_i) Î D s_i, 计算 f(x_i, h_i) D s_i, (i= 1,2,L,n).
 - (3) 求和: $\overset{\circ}{a}_{i}^{n} f(x_{i}, h_{i}) \mathbb{D} s_{i}$.
- (4) 求极限:记D s_i 上两点间最大距离为 I_i ,令 $I=\max\left\{I_1,L_1,I_n\right\}$ 。(当I® 0时每个 I_i ® 0)

 $\lim_{I \gg 0}$ $\overset{\circ}{a}_{i=1}^{n} f(x_i, h_i)$ D s_i = 不存在,则称f(x, y)在D上不可积; = A 存在,称A 为f(x, y)在D 上的二重积分,记为

$$\bigoplus_{n} f(x,y)ds \stackrel{\text{fix}}{=} \lim_{I \stackrel{\text{h}}{=} 0} \underset{i=1}{\overset{\text{o}}{=}} f(x_i, h_i) D s$$

其中 f(x,y) 称为为被积函数, f(x,y) d s 称为积分表达式, D 称为积分区域, d s 称为面积元素; x,y 称为积分变量; **科** 称为二重积分号.

注 极限 $\lim_{I \gg 0} \sum_{i=1}^{a} f(x_i, h_i) D s_i = D$ 的分法和点 (x_i, h_i) 的取法是无关的,(如果张三用一种分法和点 (x_i, h_i) 的取法得到一个极限,李四用另一种分法和点 (x_i, h_i) 的取法得到另一个极限,极限就不唯一。但是极限是不能不唯一的。)如果已知 $\inf_D f(x, y) d s$ 可积,就可以用特殊的分法和

点 (x_i, h_i) 的取法计算 \mathbf{x}_i f(x, y) d s 。比如说,用平行于坐标轴的线分割、取线的交点为 (x_i, h_i)

此时,D s_i = D x_i D y_i ,所以ds = dxdy, 解f(x,y)ds =解f(x,y)dxdy

当 f(x,y) 3 0 时,以 f(x,y) 为高以区域 D 为底的曲顶柱体的体积 $V=\bigoplus_{D}f(x,y)$ d s . 当 f(x,y) 是面密度函数时,D 的质量 $M=\bigoplus_{D}f(x,y)$ d s . 当 f(x,y) 0 1 时, $\bigoplus_{D}1$ d $s=\bigoplus_{D}ds=D$ 的面积。当 f(x,y) 有千千万万实际意义时, $\bigoplus_{D}f(x,y)$ d s 随之有千千万万实际意义(一次性讲完了千千万万个例子)。

上述二重积分的定义,可以很容易地推广,得到三重积分的定义。 定义 1.2 设 f(x, y, z) 是空间有界闭区域 \mathbb{W} 上的有界函数。

- (1) 分割:用一组曲面网将区域 W 分割成 n 个小区域: DW_1 , DW_2 , L , DW_n , DW_i 的体积为 Dw_i (i= 1,2,L,n).
 - (2) "近似": 在 " (x, h, z) Î D W, 计算 f(x, h, z) D v, (i= 1,2,L,n).
 - (3) 求和: $\overset{\circ}{a}_{i=1}^{n} f(x_i, h_i, z_i) D v_i$.
 - (4) 求极限:记DW,上两点间最大距离为 I_i ,令 $I=\max\{I_1,L_i,I_n\}$ 。(当I® 0时每个

 $I_i \otimes 0$

 $\lim_{I \gg 0}$ $\mathop{\rm a}\limits_{i=1}^n f(x_i,h_i,z_i) \mathop{\rm D}\limits_{v_i} v_i$ 不存在,则称f(x,y,z)在W上不可积; f(x,y,z)在W上的三重积分,记为

 $\oint_{\mathbb{R}} f(x, y, z) dv = \lim_{I \circledast 0} \mathop{\text{a}}_{i=1}^{n} f(x_i, h_i, z_i) \mathbb{D} v_i$

其中 f(x,y,z) 称为被积函数, f(x,y,z)dv 称为积分表达式, \mathbb{W} 称为积分区域,dv 称为体积元素; x,y,z 称为积分变量; **以** 称为三重积分号.

与二重积分类似,dv = dxdydz,**科科**(x,y,z)dv = **科** f(x,y,z)dxdydz

当 f(x,y,z) 是体密度函数时, W 的质量 $M=\bigoplus_{x\in S} f(x,y,z)dv$. 当 f(x,y,z)° 1 时,

採料 dv = W 的体积。

^{*} <mark>注意:</mark>在重积分的过程中,积分变量总在积分区域中变化。

我们不加证明地给出函数可积的充分条件:

- (1) 有界闭区域上的连续函数必可积.
- (2) 有界闭区域上的分块连续函数必可积.

思考题:

1. 二重积分的定义中,能否用各小区域的面积 D_{s_i} 的最大值趋近于零来代替各小区域的直径趋近于零作为对积分区域的无限细分?对三重积分呢?(不行。最大面积趋于零与 $I^{(8)}$ 0 是不等价的。)

ZhiShi LAND

Shi LAND BAOYAND

BAOYANDAO

0

BAOYANDA

NANDAO

ZhiShi LAND

1.2 重积分的性质

从上面积分的定义可看到,重积分实际上是定积分概念的推广,重积分有着和定积分相类似的性质.

下面以二重积分为例,不加证明地叙述重积分的性质.设 f,g在闭区域 D 上均可积,则有

(1) 线性性质

当b=0时, $\oint af(x,y)ds=a$ $\oint f(x,y)ds$ 常数因子可以提出来。

(2) **对积分区域的可加性**:将D划分为只有公共边界点而无公共内点的两个区域 D_1,D_2 ,则

(3) 积分不等式: 若对 ''(x,y) î D ,有 f(x,y) 3 0 ,则 赋 f(x,y) d s 3 0 .

推论 若对 "(x,y)Î D , f(x,y)£ g(x,y) , 则有

(4) **绝对可积性**: 若 f(x,y) 在 D 上可积,则 |f(x,y)| 在 D 上也可积,且

(5) **估值定**理: 设在 $D \perp m + f(x,y) \mid M$,区域D 的面积等于A ,则

mA # f(x,y) ds MA.

(6) **积分中值定理:** 若 f,g均在 D 上连续, 且 g在 D 上不变号,则在 D 内至少存在一点 (x,h),

使

特别地, 当 g(x,y)° 1时, 存在一点 (x,h)Î D, 使 \not $f(x,y)ds = f(x,h) \rtimes$, A 为区域 D 的

以上性质可类似地推广到三重积分.

 $D = \{(x, y) | 0 \# x = 1, 0 \# y = 2\}$

解 对函数 f(x,y) = x + y + 1,因 $f_x = 1$, $f_y = 1$,故 f(x,y) 在 D 的内部无极值点存在,从而 f(x,y) 的最值只能在边界上取得. 显然 $\max f(x,y) = 4$, $\min f(x,y) = 1$,且 D 的面积 A = 2, 所以由估值定理,有

2£ (x+y+1)d s£ 8 .

【例 1.4 】 比较 $\mathbf{y}(x+y)^2 ds$ 与 $\mathbf{y}(x+y)^3 ds$ 的大小,其中区域

 $D = \{(x,y) | (x-2)^2 + (y-1)^2 £ 2 \}.$

解 令 x-2=x iy-1=y ,则 x+y=x iy+3 ,区域 D 可变换为: $D=\left\{(x\ iy)\mid_X \hat{\mathbf{n}}+y^2\pounds 2\right\}$,因在D ¢上,有x iy+3 ³ 1,故 $(x\ iy+3)^2\pounds (x\ iy+3)^3$,即 $(x+y)^2\pounds (x+y)^3$,"(x,y) $\hat{\mathbf{1}}$ D ,所以

【例 1.5】 设闭区域 $\mathbb{W}=\left\{(x,y,z)\,|\,x^2+\,y^2+\,z^2\,\mathfrak{t}\,\,R^{\,2}\,\right\}$,函数 f(x,y,z) 在 \mathbb{W} 上连续,求极

 $\mathbb{R} \lim_{R^* 0^+} \frac{1}{R^3} \not \mathbb{H} \quad f(x, y, z) dv$

解 因为函数 f(x,y,z) 在 \mathbb{W} 上连续,由重积分的中值定理,存在点 (x,h,z) $\hat{\mathbb{W}}$,使得

$$\frac{1}{R^3} \bigoplus_{w} f(x, y, z) dv = \frac{1}{R^3} f(x, h, z) \bigoplus_{w} dv = \frac{4 p}{3} f(x, h, z) ,$$

当 $R \otimes 0^+$ 时,点 $(x, h, z) \otimes (0, 0, 0)$,又因为 f(x, y, z) 连续,所以

$$\lim_{R^{\oplus 0^{+}}} \frac{1}{R^{3}} \bigoplus_{w} f(x, y, z) dv = \frac{4p}{3} f(0, 0, 0)$$

思考题:

2. 若函数 f(x,y) 在区域 D_1 上可积,且 D_1 É D_2 ,问在什么条件下,必有 f(x,y) d s ³ f(x,y) d s ? (f(x,y) 在 D_1 上非负。)

ANDAO ZhiShi LAN registe reserved All registe reserved

习题 10-1

A类

1. 利用二重积分的性质估计下列积分的值.

(2)
$$I = \{ (x + y + 10) ds , \notin D = \{ (x, y) | x^2 + y^2 \pounds 4 \} ; \}$$

(3)
$$I = \underset{}{\coprod} (x^2 + 4y^2 + 9) ds$$
, $\underset{}{\coprod} + D = \{(x, y) | 1 \# x^2 + y^2 - 4\}$

*(4)
$$I = \bigoplus_{D} \frac{1}{100 + \cos^2 x + \cos^2 y} ds$$
, $\sharp \oplus D = \{(x, y) | |x| + |y| \sharp 10 \}$.

2. 比较下列各组积分值的大小.

①
$$D_1 = \{(x, y) | 0 \# x \quad 1, 0 \# y \quad 1 \}; \quad ② D_2 = \{(x, y) | -1 \# x \quad 0, 0 \# y \quad 1 \}$$

3. 求解下列各题.

(1) 极限
$$\lim_{r \to 0} \frac{1}{r^2} \bigoplus_{s \to 0} e^{x^2 - y^2} \cos(x + y) ds$$
, 其中 $D = \{(x, y) | x^2 + y^2 \pounds r^2\}$;

4. 判断下列积分的符号.

*(2)
$$xy ds$$
, $xp ds$

*(4)
$$\mbox{\em μ}(x+1) \mbox{d} s$$
, $\mbox{\em μ} = \left\{ (x,y) \middle| \mbox{\em 1} = x \mbox{\em 1}, \mbox{\em 1} = x \mbox{\em 1} \right\}$.

B 类

1. 设闭区域 D 在 x 轴和 y 轴上的投影分别为区间 [a,b]和 [c,d]. 设 D 的面积为 A(D),又设点 (a,b) Î D,证明:

$$\bigoplus_{D} (x-a)(y-b) ds \pounds (b-a)(d-c)A(D),$$

2. 判别积分 蝌 $\sqrt[3]{1-x^2-y^2} \, ds$ 的符号,其中 $D = \{(x,y) | x^2 + y^2 \, \text{£ } 4\}$.

解记

$$D_{1} = \left\{ (x, y) \middle| x^{2} + y^{2} \triangleq 1 \right\}, D_{2} \quad \left\{ (x, y) \middle| 1 \# x^{2} + y^{2} \quad 2 \right\}, D_{3} = \left\{ (x, y) \middle| 2 \# x^{2} + y^{2} \quad 4 \right\} \bigcirc \mathbb{M}$$

$$\bigoplus_{D} \sqrt[3]{1 - x^2 - y^2} \, ds = \bigoplus_{D_1} \sqrt[3]{1 - x^2 - y^2} \, ds + \bigoplus_{D_2} \sqrt[3]{1 - x^2 - y^2} \, ds + \bigoplus_{D_3} \sqrt[3]{1 - x^2 - y^2} \, ds$$

*3. 试证: (1) 若 f(x,y) 在平面闭区域 D 上连续,且 $f(x,y)^3$ 0 但 f(x,y) % 0 ,则 **以** f(x,y) d s > 0 .

- (2) 设 f(x,y) 在平面区域 D 上连续且不变号,证明:若 f(x,y) d s=0 ,则在 D 上 f(x,y)° 0 .
- (3) 设 f(x,y) 在有界闭区域上连续,若对 D 内的任一子区域 D_1 \dot{D} ,都有 f(x,y) d s=0 ,则在区 域D上, f(x,y)° 0.

(1) 若 f(x,y) 在平面闭区域 D 上连续,且 $f(x,y)^3$ 0 但 $f(x,y) \sim 0$,则 f(x,y) d s > 0 .

证 (1) 由 f(x,y) $\stackrel{\checkmark}{\sim}$ 0 且 f(x,y) $\stackrel{3}{\sim}$ 0,存在 (x_0,y_0) $\hat{1}$ D 使 $f(x_0,y_0)$ > 0。根据局部保号性,存在面积 A_1 > 0

- (2) 与 (1) 类似可证: 若 f(x,y) 在平面闭区域 D 上连续,且 f(x,y) £ 0 但 f(x,y) \checkmark 0,则

题目(考点): 给了有界闭区域 D 及函数 f(x,y), 计算 f(x,y)d s.

下面我们寻找计算 f(x,y)ds 的方法。

首先, f(x,y) d s 的计算与 D 的特点有很大的关系。

通常基本区域 D 有两种: (看黑板图)

$$D = \{(x, y) | y_1(x) \# y \ y_2(x), a \# x \ b \}$$

 $D = \{(x,y) | y_1(x) \# y \quad y_2(x), a \# x \quad b\}$ $y = y_2(x) (大y边界), x = a. v - , -$ 9 的 成 如 一 个. 这与小y边界和大y边界都能写成函数是等价的。)

(2) Y型区域

$$D = \{(x, y) | x_1(y) \# x \quad x_2(y), c \# y \quad d \}$$

 \mathbf{K}_d 是 D 在 y 轴上的投影.

下面先设 $D \in Y$ 型区域。D 的平面图参见图 2.3。 我们已经知道,当 $f(x,y)^3$ 0 时,

其中V 是以 f(x,y) 为高以区域 D 为底的曲顶柱体的体积 (图 2.2) (如果 f(x,y) £ 0 则二重积分是负体积,一般情况是体积的代数和). 只要体积V 计算出来了,也就得到了二重积分 f(x,y)dxdy。

V 分布在y轴的区间 ${66\over 100} d$ 。任意给定y ${1\over 100} {100} d$,设平面Y=y截曲顶柱体得到截面面积是 A(y),则

我们先固定 y 算出 A (y) 。截面是以 x Î (y), x_2 (y) 为底以 f(x,y) 为高的曲边梯形(图 2.2)。

$$A(y) = \sum_{x_1(y)}^{x_2(y)} f(x, y) dx$$

因此,

$$\bigoplus_{n} f(x,y)dxdy = \bigoplus_{n=1}^{\infty} \bigoplus_{x_1(y)}^{x_2(y)} f(x,y)dx dy$$

约定: 蚪 ^{d}dy $\frac{x_{2}(y)}{x_{1}(y)} f(x,y)dx = 蚪 ^{d} \frac{f(x,y)}{f(x,y)} f(x,y)dx dy$ 。

BAOYANDAO

-VANDAO

方法总结: 只要 f(x,y) 在 D 上可积,

如果D 是Y 型区域,则

([c,d]是 D 在 y 轴上的投影; 小 χ 边界 $x=x_1(y)$ 和大 χ 边界 $x=x_2(y)$ 的找法: (x,y) [c,d],

Y = y截 D 得截线 $x_1(y) # x x_2(y)$ 如图 2.3。)

如果D是X型区域,则

$$\oint_{\mathbb{R}^{n}} f(x,y) dx dy = \oint_{\mathbb{R}^{n}} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy$$

 $([a,b] 是 D 在 x 轴上的投影; 小 y 边界 y = y_1(x) 和大 y 边界 y = y_2(x) 的找法: "x Î [a,b], X = x 截 D 得截线 y_1(x) # y y_2(x))$

为防止两分法互相混淆,记得口诀: X 型区域,后 x 积分,往 x 轴投影,找小、大 y 边界; Y 型区域,后 y 积分,往 y 轴投影,找小、大 x 边界。里层积分的上下限总是外层变量的函数。

(把二重积分转化为做两次定积分: 称为二次积分)做里层积分时,外层变量固定为常数。 里层定积分的结果是外层变量的函数。

小技巧:如果你只熟悉X(Y)型区域的计算,在整个题中,把X改成Y把Y改成X,区域就变型了。结果不变。(黑板解析)

上面的方法是总结出来的,没有严格的证明。我们也不去追求严格证明了。

将二重积分转化为二次积分的关键是确定二次积分的积分限。得画出积分区域D 的草图,弄清楚D 的表示或围成D 的曲线.

若积分区域D 既不是X 型区域,又不是Y 型区域,可利用重积分的可加性,把D 分割成若干X 型或Y 型的部分进行计算。

解 画出三条曲线 $x=y^2,y=0,x=1$ 就得到区域 D 的草图 (图 2.4、图 2.5),求出曲线的交点 (1,1) .

(1) 视 D 为 X 型区域(图 2.4),将 D 投影到 x 轴,得 a = 0 # x 1 = b。小 y 边界 $y = j_1(x) = 0$,

大y边界 $y=j_2(x)=\sqrt{x}$ 。区域D 表示为 $D=\left\{(x,y)\middle|0\ \#y\ \sqrt{x},0\ \#x\ 1\right\}$,故

$$\iint_0 f(x,y) ds = \iint_0 dx \int_0^{\sqrt{x}} f(x,y) dy.$$

(2) 视 D 为 Y 型区域(图 2.5),将 D 投影到 y 轴,得 c=0 # y 1 = d 。小 x 边界 $x=y_1(y)=y^2$,大 x 边界 $x=y_2(y)=1$ 。区域 D 可表示为: $D=\left\{(x,y)\middle|y^2 \# x = 1,0 \# y = 1\right\}$,故

$$\oint_{D} f(x, y) ds = \oint_{D} dy \int_{y^{2}}^{1} f(x, y) dx .$$

注 ①如果区域 D 既是 X 型又是 Y 型区域,二重积分 ϕ f(x,y) d s 可用二种不同次序的二

次积分来计算.不同次序的二次积分,计算过程的繁简可能不同。因此,要学会根据不同的情形,选择适当的积分次序.

②二重积分化为二次积分的关键在于二次积分的积分限的确定. 所以在学习的过程中, 要熟练的掌握二次积分的定限方法. (黑板并列两种区域、两种二次积分作总结。)

【例 2.2】 计算二重积分 蚪 xy ds, 其中 D 由曲线 $y+x=2, y=x^2, x=2$ 围成.

解 画出三曲线 $y+x=2, y=x^2, x=2$ 就得到区域 D 的草图(图 2.6). 求出 D 的边界曲线的交点.

$$y = 2 - x$$

 $y = x^2$, 解得 $x = 1$
 $y = 1$ (舍)

观察可得,视 D 为 X 型区域,计算较为简便.将区域 D 投影到 x 轴上,得 a=1 # x=2=b 。 小 y 边 界 $y=j_1(x)=2-x$, 大 y 边 界 $y=j_2(x)=x^2$ 。 区 域 D 表 示 为 : $D=\left\{(x,y)\,|\,2-x$ # $y=x^2,1$ # $x=2\right\}$.

$$\iint_{D} xy \, ds = \iint_{2-x}^{2} dx \frac{x^{2}}{2-x} xy \, dy = \iint_{2-x}^{2} x \left(\frac{1}{2}y^{2}\right) \Big|_{y=2-x}^{y=x^{2}} dx = \frac{1}{2} \int_{1}^{2} x \left(x^{4} - (2-x)^{2}\right) dx$$

$$= \frac{1}{2} \int_{1}^{2} (x^{5} - 4x + 4x^{2} - x^{3}) dx = \frac{121}{24}.$$

如果把D 视为Y 型区域,将区域D 投影到Y 轴上,得c=0 #y 4 = d 。大x 边界 $x=y_2(y)=2$,而小x 边界有两段: $x=y_1(y)=2$ - y(0 #y 1) 和 $x=y_1(y)=\sqrt{y}$ (1 #y 4) 。小x 边界的表达式不一致。必须用直线y=1 把D 割成两块计算积分。

方法总结: 当边界的表示式不一致时,作适当分割。

计算 蝇 $dx = \frac{1}{x^2} \frac{xy}{\sqrt{1+y^3}} dy$.

解 此题给出的是先对y后对x的二次积分,但由被积函数的形式知,若直接计算较复杂, 而从二次积分的积分限知,积分区域 $D = \{(x,y) | x^2 \# y = 1,0 \# x = 1\}$ 较简单,故可考虑先交换 积分次序再计算.

画出区域 D 的草图(图 2.7). 将 D 视为 Y 型区域. 可得 $D = \{(x,y) | 0 \# x = \sqrt{y}, 0 \# y = 1\}$, 则有

画出区域
$$D$$
 的草图(图 2.7). 将 D 视为 Y 型区域. 可得 $D=\{(x,y) | 0 \# x = \sqrt{y}, 0 = 0\}$ 则有 以 $dx = \frac{xy}{\sqrt{1+y^3}} dy = \frac{xy}{\sqrt{1+y^3}} dx dy$ 以 $dy = \frac{xy}{\sqrt{1+y^3}} dx = \frac{1}{2} \frac{y}{\sqrt{1+y^3}} (\frac{1}{2}x^2) \Big|_{x=0}^{x=\sqrt{y}} dy$ 是 $dy = \frac{1}{2} \frac{1}{2} \frac{y^2}{\sqrt{1+y^3}} dy = \frac{1}{3} \sqrt{1+y^3} \Big|_{0}^{1} = \frac{\sqrt{2}-1}{3}$. 思考题:

1. 计算二重积分 $\mathbf{p} e^{y^2} dx dy$,其中 D 是以 O (0,0), A (0,1), B (2,1) 为顶点的三角形区

求蚪 $|\cos(x+y)| ds$, 其中 $D = \{(x,y) | 0 \# x = \frac{p}{2}, 0 \# y = \frac{p}{2} \}$. 【例 2.4】 困难在于被积函数有绝对值符号. 必须先把绝对值符号除掉。 当 0 £ x + y £ $\frac{p}{2}$ 时, $\cos(x + y)^3$ 0 ; 当 $\frac{p}{2}$ £ x + y £ p , $\cos(x + y)$ £ 0 。 所以,用直线 $y = \frac{p}{2}$ 将区域 p 划分成两部分(图 2 8). $D_1 = \{(x,y) \mid 0 \ \# y = \frac{p}{2} - x, 0 \ \# x = \frac{p}{2} \}$, $D_2 = \{(x,y) \mid \frac{p}{2} - x \ \# y \}$ 型区域。故 $(x+y) \mid A_2 - A_3 = A_4 = A_4$ $x + y = \frac{p}{2}$ 将区域 D 划分成两部分(图 2.8): 都看作 X 型区域。故 $= \bigoplus_{p=0}^{p} dx \int_{0}^{\frac{p}{2}-x} \cos(x+y) dy - \bigoplus_{p=0}^{p} dx \int_{\frac{p}{2}-x}^{\frac{p}{2}} \cos(x+y) dy$ $= \bigoplus_{p=0}^{p} \sin(x+y) \Big|_{y=0}^{y=\frac{p}{2}-x} dx - \int_{0}^{\frac{p}{2}} \sin(x+y) \Big|_{y=\frac{p}{2}-x}^{y=\frac{p}{2}} dx$ $= \int_{0}^{\frac{p}{2}} (2-\cos x - \sin x) dx = p-2.$ 方法总结: 当被积函数 |f(x,y)| 有绝对值符号时,用曲线 f(x,y)=0 分割积分区域再计算。

求由曲面y=0, x=0, z=0, x=2, y=3, x+y+z=4所围的立体的体积. 【例 2.5】

解 画出六平面 y=0, x=0, z=0, x=2, y=3, x+y+z=4 就得到所围的立体,如图 2.9 所 示。立体的底:将立体向xOy面投影,得投影区域 $D=D_1$ È D_2 (图 2.10),其中

 $D_1 = \{(x,y) | 0 \# x \quad 2,0 \# y \quad 2 \}, \quad D_2 = \{(x,y) | 0 \# x \quad 4-y,2 \# y \quad 3 \}.$

都视为 Y 型区域。立体的高度函数: z= 4-x-y。

all rights re

图 2.10

故立体的体积为

$$V = \bigoplus_{D} (4 - x - y) ds = \bigoplus_{D_1} (4 - x - y) ds + \bigoplus_{D_2} (4 - x - y) ds$$

$$= \bigoplus_{D} dy \Big|_{0}^{2} (4 - y - x) dx + \bigoplus_{D} dy \Big|_{0}^{4 - y} (4 - y - x) dx$$

$$= \bigoplus_{D} (4 - y) - \frac{1}{2} x^{2} \Big|_{0}^{2} dy + \Big|_{2}^{3} \bigoplus_{D} (4 - y)^{2} - \frac{1}{2} x^{2} \Big|_{0}^{4 - y} dy.$$

$$= \bigoplus_{D} (4 - y) - 2 dy + \Big|_{2}^{3} \frac{1}{2} (4 - y)^{2} dy = \frac{55}{6}$$

2. 定积分的上限可大于也可小于下限,重积分化为二次积分后,其上限是否可小于下限. 为 什么? (不行。下限是小边界,上限是大边界。)

3. 当二重积分的被积函数中含有绝对值函数, 符号函数, 取大或取小等特殊函数时, 如 何计算二重积分的值? (分割。)

1. 设 f(x,y) 在区域 D 上连续, 将 \mathbf{w} f(x,y) dx dy 化为 D 上的二次积分(两种次序).

*(1)
$$D = \{(x,y)|y \# 2x, x = 2y, xy = 2\};$$

(2)
$$D = \{(x,y)|_{|X|+} |y| \text{£ } 1\}$$
;

(3)
$$D = \{(x,y) | 1 \# x^2 + y^2 + 4 \};$$

(4)
$$D \oplus y = \sqrt{2ax - x^2}$$
 , $y = \sqrt{2ax}$, $x = a$ 围成. $(a > 0)$.

(1)
$$\mathbf{H}^{1} dx = \int_{2-x}^{\sqrt{2x-x^{2}}} f(x,y) dy; \quad *(2) \mathbf{H}^{1} dy = \int_{y^{2}}^{4} f(x,y) dx;$$

(3)
$$\bigoplus_{k=1}^{2} dx = \frac{2^{-x}}{4} f(x, y) dy$$
; (4) $\bigoplus_{k=1}^{3} dy = \frac{2^{y}}{6} f(x, y) dx + \bigoplus_{k=1}^{3} dy = \frac{3^{-y}}{6} f(x, y) dx$.

很多时候(也许考试时候)要交换积分次序。方法如下:

(i) 画曲线 $x=a, x=b, y=j_1(x), y=j_2(x)$ 得到积分区域 D 的草图。把所给二次积分还原为

$$\bigoplus_{j_1(x)}^{j_2(x)} f(x,y) dy = \bigoplus_{j_2(x)} f(x,y) dxdy$$

- (ii) 再把D 视为Y 型区域,写出另一个二次积分。
- (i') 画曲线 $y=c,y=d,x=y_1(y),x=y_2(y)$ 得到积分区域 D 的草图。把所给二次积分还原为

$$\oint_{y_1(y)} dy \int_{y_1(y)}^{y_2(y)} f(x, y) dx = \iint_{p} f(x, y) dxdy$$

(ii') 再把 D 视为 X 型区域,写出另一个二次积分。

解 (4) 蚊dy
$$\int_{0}^{2y} f(x,y) dx + \underbrace{\mathbf{y}}_{0}^{3} dy \int_{0}^{3-y} f(x,y) dx$$
。 D 画图如黑板。

$$\oint_{0}^{3-y} dy \int_{0}^{2y} f(x,y) dx + \oint_{0}^{3-y} dy \int_{0}^{3-y} f(x,y) dx = \oint_{0}^{3-x} f(x,y) dx dy$$

$$= \oint_{0}^{3-x} dx \int_{\frac{1}{2}x}^{3-x} f(x,y) dy$$

- - (1) 稣 $x\sqrt{y}$ dxdy, D 为曲线 $y=x^2$, $x=y^2$ 所围的区域:

(2)
$$\bigoplus e^{x^{+}y} dx dy$$
, $D = \{(x,y) | |x| + |y| \pounds 1\}$;

- *(3) 稣 $(x^2 + y^2 x) dx dy$, 其中 $D \oplus y = x$,
- *(4) $(2x + 3y)^2 dx dy$, 其中 D 是以 A(-1,0), B(0,1) 和 C(1,0) 为顶点的三角形; all rights reserv

(6)
$$\slashed{\mathbf{H}} | y^2 - x^3 | dx dy, \quad \slashed{\mathbf{H}} + D = \{ (x, y) | 0 \# x \quad 1, -1 \# y \quad 1 \}.$$

(2)
$$\bigoplus e^{x+y} dx dy$$
, $D = \{(x,y) | |x| + |y| \pounds 1\}$;

解 (2) 图见黑板。

$$\bigoplus_{D} e^{x+y} dx dy = \bigoplus_{1}^{0} dx \xrightarrow{x+1} e^{x} e^{y} dy + \bigoplus_{1}^{1} dx \xrightarrow{x-1} e^{x} e^{y} dy$$

$$= \bigoplus_{D} e^{x} \left(e^{x+1} - e^{-1-x} \right) dx + \xrightarrow{0} e^{x} \left(e^{1-x} - e^{x-1} \right) dx$$

$$= \bigoplus_{D} \left(e^{2x+1} - e^{-1} \right) dx + \xrightarrow{0} \left(e^{-2x-1} \right) dx = \bigoplus_{1}^{0} e^{2x+1} - e^{-1}x \xrightarrow{0} + \bigoplus_{1}^{0} e^{2x-1} \xrightarrow{1} e^{2x-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$= \frac{1}{2} e^{-1} - e^{-1} + e^{-1} + e^{-1} = e^{-1}$$

$$D_{1} = \begin{bmatrix} x, y \\ -1 & y \\ -1 & y \end{bmatrix} - x^{\frac{3}{2}}, 0 \# x \quad 1, D_{2} = \begin{bmatrix} x, y \\ -1 & y \\ -1 & y \end{bmatrix} - x^{\frac{3}{2}} \# y \quad x^{\frac{3}{2}}, 0 \# x \quad 1$$

$$D_{3} = \begin{bmatrix} x, y \\ -1 & y \\ -1 & y \end{bmatrix} = \begin{bmatrix} x^{\frac{3}{2}} \# y & 1, 0 \# x & 1 \\ -1 & y & y \end{bmatrix}$$

$$|y^{2} - x^{3}| dx dy = |x| (y^{2} - x^{3}) dx dy + |x| (x^{3} - y^{2}) dx dy + |x| (y^{2} - x^{3}) dx dy$$

$$= |x| dx - \frac{x^{\frac{3}{2}}}{-1} (y^{2} - x^{3}) dy + |x| dx - \frac{x^{\frac{3}{2}}}{-1} (x^{3} - y^{2}) dy + |x| dx - \frac{1}{3} (y^{2} - x^{3}) dy$$

$$= |x| - \frac{y^{\frac{9}{2}}}{-1} + x^{\frac{9}{2}} + x^{\frac{3}{2}} |x^{\frac{3}{2}} - 1| = |x| dx + \frac{1}{3} |x^{\frac{3}{2}} - 2| = 2 |x| - \frac{1}{11} |x|^{\frac{1}{2}} - \frac{1}{4} |x|^{\frac{1}{2}}$$

(1)
$$\iint_{2}^{3} dy \int_{2}^{9} y \sin(x^{2}) dx$$
;

*(2)
$$\int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \sqrt{2 + x^3} dx$$
;

(3)
$$\bigoplus_{0}^{1} dx \int_{x}^{x^{2}} \frac{\sin y}{y} dy;$$

(4)
$$\int_{Y}^{1} dx \int_{Y}^{1} x^{2} e^{-y^{2}} dy$$
;

(5)
$$\bigoplus_{a}^{3} dx \stackrel{a^{+}x}{=} (x^{2} + y^{2}) dy + \bigoplus_{a}^{2a} dx \stackrel{a^{+}x}{=} (x^{2} + y^{2}) dy + \bigoplus_{b}^{3a} dx \stackrel{3a}{=} (x^{2} + y^{2}) dy$$

*(6)
$$dy = \frac{p}{2} \cos x \times \sqrt{1 + \cos^2 x} dx$$

分请看黑板)

5. 计算由下列曲线所围的平面图形的面积:

(1)
$$y = 2x - x^2 = y = x^2$$
;

(2)
$$xy = a^2 与 x + y = \frac{5}{2}a$$
, 其中 $a > 0$;

*(3)
$$y = \sin x$$
, $y = \cos x$, $x = 0$ $//$ $x = \frac{p}{2}$;

*(4) $xy = a^2$, $xy = 2a^2$, y = x, y = 2x 所围的位于第一象限的部分。解(4) 黑板看图。

$$D_{1} = \left[\frac{a^{2}}{x}, y \right] \left| \frac{a^{2}}{x} \# y - 2x, \frac{a}{\sqrt{2}} \# x - a \right|, D_{2} = \left[\frac{a^{2}}{x}, y \right] \left| x \# y - \frac{2a^{2}}{x}, a \# x - \sqrt{2}a \right|$$

所求面积

$$A = \bigoplus_{D} dx dy = \bigoplus_{D_1} dx dy + \bigoplus_{D_2} dx dy = \bigoplus_{\frac{a^2}{\sqrt{2}}} dx = \bigoplus_{\frac{a^2}{\sqrt{2}}} dy + \bigoplus_{\frac{a^2}{\sqrt{2}}} dx = \underbrace{\frac{2a^2}{x}} dy$$

$$= \bigoplus_{D} x - \underbrace{\frac{a^2}{x}} x + \underbrace{\frac{\sqrt{2a} \bigoplus_{D=2}}{x}} x - x dx = \underbrace{\bigoplus_{D=2}} x - a^2 \ln x = \underbrace{\frac{a}{\sqrt{2}}} \ln x - \underbrace{\frac{1}{2}} x^2 = \underbrace{\frac{1}{2}} a^2$$

$$= a^2 (1 - \ln a) - \underbrace{\frac{a^2}{2}} + a^2 \ln a - a^2 \ln \sqrt{2} + 2a^2 (\ln \sqrt{2} + \ln a - \ln a) - a^2 + \underbrace{\frac{1}{2}} a^2 = \underbrace{\frac{\ln 2}{2}} a^2$$

6. 求下列曲面所围立体的体积:

(1) x = 0, y = 0, x + y = 1 所围成的立体被平面 z = 0 及 $x^2 + y^2 = 6 - z$ 所截得的立体;

(2)
$$z = x^2 + y^2$$
, $y = x^2$, $y = 1$, $z = 0$ 所围的立体;

(3)
$$z = x^2 + y^2$$
, $z = 0$, $y^2 = x$, $y^2 = 4x$, $x = 1$ 所围成的立体

B 类

*2. 求 瞬 x ($x^2 + y^2$) dx dy, 其中 D 是由 $y = x^3$, y = 1, x = -1 围成的区域.

*3. 设连续函数 f(x) > 0, 计算 $\oint_{D} \frac{af(x) + bf(y)}{f(x) + f(y)} dx dy$, 其中 D 为圆域: $x^2 + y^2 \pounds x + y$.

5. 计算
$$\lim_{x \to 0} \frac{\int_0^x du}{\int_0^u \arctan(1+t)dt}$$
.

$$\lim_{x \to 0} \frac{\lim_{x \to 0} du \int_{0}^{u^{2}} \arctan(1+t) dt}{x(1-\cos x)} = 2 \lim_{x \to 0} \frac{\lim_{x \to 0} du \int_{0}^{u^{2}} \arctan(1+t) dt}{x^{3}} = 2 \lim_{x \to 0} \frac{\int_{0}^{u^{2}} \arctan(1+t) dt}{3x^{2}}$$

$$= 2 \lim_{x \to 0} 2x \arctan(1+x^{2}) = P$$

*6. 若 f(x) 在 [a,b]上连续且恒大于零,证明: $\underset{a}{\overset{b}{\bigoplus}} f(x) dx \, + \frac{b}{a} \frac{1}{f(x)} dx$ $(b-a)^2$

*7. 设函数 f(x) 和 g(x) 在 [a,b]上可积,证明:

$$\int_{a}^{b} f(x)g(x) dx^{2} W \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx .$$

8. 设 f(x,y) 连续,且满足 f(x,y)=xy+ 軒 f(u,v) d u d v ,其中 D 是 v=0 , $v=u^2$, u=1 所围成的区

域, 求 f(x,y).

解 a = 解 f(u,v) du dv 是常数。 f(x,y) = xy + a

在有些情形下,用极坐标来计算二重积分比较简便.

3.1 利用极坐标计算二重积分

设区域 D 用极坐标表示为(看黑板图)

$$D = \left\{ \left(r,q\right) \middle| r_1\left(q\right) \# r \quad r_2\left(q\right), a \# q \quad b \right\}.$$

(参见图 3.2,其中 $r=r_1(q)$ 称为小 r 边界, $r=r_2(q)$ 称为大 r 边界。)要计算

$$f(x,y)$$
ds

用下面特殊分割和特殊取点计算上面二重积分。用一些射线 q= 常数、一些圆弧 r= 常数分 割 D 。设第 i小块 D s_i 的极角 q_i 、极角增量 D q_i 、极径 r_i 、极径增量为 D r_i ,则 D s_i = r_i D q_i D r_i 。 取点 (x_i, h_i) = $(r_i \cos q_i, r_i \sin q_i)$ î D s_i 。则

$$\oint_{D} f(x,y)ds = \lim_{I \to 0} \inf_{i=1}^{n} f(x_{i}, h_{i}) \operatorname{D} s_{i} = \lim_{I \to 0} \int_{i=1}^{n} f(r_{i} \cos q_{i}, r_{i} \sin q_{i}) r_{i} \operatorname{D} q_{i} \operatorname{D} r_{i}$$

$$\bigoplus_{D} f(x,y) ds = \bigoplus_{D} f(r \cos q, r \sin q) r dq dr$$

$$= \bigoplus_{r_1(q)}^{b} dq \frac{r_2(q)}{r_1(q)} f(r\cos q, r\sin q) r dr$$

这就是用极坐标计算二重积分的公式。(D 刚好夹在射线 q=a,q=b 之间; 小 r 边界 $r=r_1(q)$ 和 大r边界 $r=r_{_2}(q)$ 的找法: "qÎ [a] b ,射线 Q=q 截 D 得截线 $r_{_1}(q)$ # r $r_{_2}(q)$ 。)

注意:用极坐标计算二重积分时,总是先对r后对q积分;用坐标关系 $x=r\cos q$, $y=r\sin q$ 个因子r,即ds = dxdy = rdqdr.

【例 3.1】

- (1) $x^2 + y^2 3 a^2 (y 0)$;
- (2) $x^2 + y^2 + 3a^2 (x + 0)$;
- (3) $x^2 + y^2 + 32ax(y + 0)$.

解 (1) $D: x^2 + y^2 3 a^2 (y 0)$ 为圆心在原点,半径为a 的上半圆域(图 3.5). 其在极坐

标系下表示为: $D = \{(r,q) | 0 \# r \ a, 0 \# q \ p \}$, 故

 $I = \bigoplus_{n} xy^2 ds = \bigoplus_{n} dq \int_{0}^{a} r^4 \sin^2 q \cos q dr$

 $= \frac{1}{5} \int_0^p \sin^2 q \cos q \times a^5 dq = \frac{a^5}{15} \sin^3 q \Big|_0^p = 0.$

(2) $D: x^2 + y^2 \ 3 a^2 (x \ 0)$ 为圆心在原点,半径为a 的右半圆域 (图 3.6). 其在极坐标系

 $I = \bigoplus_{xy^2} xy^2 ds = \bigoplus_{xy=0}^{\frac{p}{p}} dq \int_0^a r^4 \sin^2 q \cos q dr$

 $\frac{1}{5} \grave{O}_{-\frac{p}{2}}^{\frac{p}{2}} \sin^2 q \cos q \gg^5 dq = \frac{a^5}{15} \sin^3 q \Big|_{-\frac{p}{2}}^{\frac{p}{2}} = \frac{2a^5}{15}$

图 3.5

图 3.7

(3) $D: x^2 + y^2$ 3 2ax (y 0) 为圆心在点 (a,0) 处,半径为 a 的圆的上半圆域 (图 3.7). 极 坐标系下可表示为 $D = \begin{bmatrix} p \\ q \end{bmatrix} | 0 \# r \quad 2a \cos q, 0 \# q \quad \frac{p}{2}$, 故

$$I = \underset{D}{\text{ iff}} xy^2 ds = \underset{D}{\text{ iff}} dq \frac{2a\cos q}{0} r^4 \sin^2 q \cos q dr$$

$$= \frac{1}{5} \underset{D}{0}^{\frac{D}{2}} \sin^2 q \cos q \times 2a \cos q)^5 dq ,$$

$$= \frac{32a^5}{5} \underset{E}{\text{ iff}} \sin^2 q \cos^6 q dq = \frac{32a^5}{5} \frac{\frac{D}{2}}{0} (\cos^6 q - \cos^8 q) dq$$

$$= \frac{32a^5}{5} \underset{E}{\text{ iff}} \frac{3}{4} \underset{E}{\text{ iff}} \frac{2}{2} \underset{D}{\text{ iff}} 2 \underset{D}{\text{ iff}} 2$$

解 边界曲线在极坐标系下的方程为: r=a, $r=2a\cos q$, q=0, $q=\frac{p}{2}$. 求边界曲线的交点. 由 r=a, $r=2a\cos q$, 得 $\cos q=\frac{1}{2}$, 所以 $q=\frac{p}{3}$.

区域 D 的大 r 有两个不一样的表示式,必须用 $\frac{p}{3}$ 将区域分成两块(图 $\frac{p}{0}$ 3.8).

8).
$$D_{1} = \prod_{q} r, q) |0 \# r| 2a \cos q, 0 \# q| \frac{p}{3} ; D_{2} = \prod_{q} r, q) |0 \# r| a, \frac{p}{3} \# q| \frac{p}{2}$$

方法总结:当边界的表示式不一致时,作适当分割。

计算 $\oint_{D} e^{-(x^{2}+y^{2})} ds$,其中 $D = \{(x,y) | x^{2} + y^{2} \pounds a^{2} \}$ 【例 3.3】

函数 $f(x,y) = e^{-x^2-y^2}$ 在直角坐标系下无法直接积分. 利用极坐标系, 有

$$f(x,y) = f(r\cos q, r\sin q) = e^{-r^2}, D = \{(r,q) | 0 \# r \ a, 0 \# q \ 2p \},$$

$$\bigoplus_{p} e^{-(x^2+y^2)} ds = \bigoplus_{0}^{2p} dq \Big|_{0}^{a} e^{-r^2} r dr = -\frac{1}{2} \Big|_{0}^{2p} e^{-r^2} \Big|_{0}^{a} dq$$

$$= -\frac{1}{2} \partial_{0}^{2p} (e^{-a^2} - 1) dq = (1 - e^{-a^2}) p.$$

现利用上述结论来求得积分: $\hat{O}_0^{+x} e^{-x^2} dx$.

设
$$D = \{(x,y) | x^2 + y^2 \, \text{£} \, a^2 \},$$

$$D_1 = \{(x,y) | |x| \#a, |y| \ a \},$$

$$D_2 = \{(x,y) | x^2 + y^2 £ 2a^2 \}.$$

$$D_2 = \{(x,y) | x^2 + y^2 \notin 2a^2 \}$$
.
则有 D 烫 $D_1 = D_2 = \{(x,y) | x^2 + y^2 \notin 2a^2 \}$.
则有 D 烫 $D_1 = D_2 = \{(x,y) | x^2 + y^2 \notin 2a^2 \}$.
明有 D 烫 $D_1 = \{(x^2 + y^2) \mid ds \in A^2 \}$ 由是例可知

$$\bigoplus_{D} e^{-(x^2+y^2)} ds = p(1-e^{-a^2}), \quad \bigoplus_{D_2} e^{-(x^2+y^2)} ds = p(1-e^{-2a^2}),$$

$$\bigoplus_{D_1} e^{-(x^2+y^2)} ds = \bigoplus_{a} dx \quad {}_{-a}^a e^{-(x^2+y^2)} dy = \bigoplus_{a} e^{-x^2} dx \times {}_{-a}^a e^{-y^2} dy = 4 \left({}_{0}^a e^{-x^2} dx \right) = 0$$

$$\mathcal{B}_1$$
 \mathcal{B}_1 \mathcal{B}_1 \mathcal{B}_1 \mathcal{B}_1 \mathcal{B}_1 \mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_3 \mathcal{B}_4 \mathcal

故有
$$\frac{p}{4}$$
(1-e^{-a²})# $\left(\stackrel{a}{o}_{0}^{a} e^{-x^{2}} dx \right)^{2}$ $\frac{p}{4}$ (1-e^{-2a²}),又因为
$$\lim_{a^{\infty}+\frac{y}{4}} \frac{p}{4} (1-e^{-a^{2}}) = \frac{p}{4}, \lim_{a^{\infty}+\frac{y}{4}} \frac{p}{4} (1-e^{-2a^{2}}) = \frac{p}{4},$$

$$\lim_{a^{\oplus}+\frac{\pi}{4}} \frac{p}{4} \left(1 - e^{-a^2}\right) = \frac{p}{4}, \quad \lim_{a^{\oplus}+\frac{\pi}{4}} \frac{p}{4} \left(1 - e^{-2a^2}\right) = \frac{p}{4}$$

所以
$$\lim_{a^* + \frac{\pi}{4}} \left(\grave{O}_0^a e^{-x^2} dx \right)^2 = \frac{p}{4}, \quad \text{即 } \grave{O}_0^{+\frac{\pi}{4}} e^{-x^2} dx = \frac{\sqrt{p}}{2}.$$

称 $\stackrel{^{+}}{O}_0$ e^{-x^2} d x 为 Euler-Poisson 积分,其值为 $\frac{\sqrt{p}}{2}$,这一结论在概率论等课程中有着重要的

应用. **注意:** ò e^{-x²}dx积不出来。

方法总结: 当积分区域 D 的边界有圆弧,或被积函数有 $x^2 + y^2$ 时,用极坐标计算二重积分

ANDAO Zhis

【例 3.4】 设平面上两定点间的距离为 2a (a>0),动点到两定点的距离之积为 a^2 ,称动点的轨迹为双纽线. 求双纽线所围图形的面积.

解 建立直角坐标系.设两定点的坐标为 P_1 (- a, 0), P_2 (a, 0),动点的坐标为P (x, y),则

$$d_1^2 = |PP_1|^2 = (x+a)^2 + y^2,$$

$$d_2^2 = |PP_2|^2 = (x-a)^2 + y^2,$$

由题意得 $d_1 \times d_2 = a^2$,即

$$(a^{2} + a)^{2} + y^{2} = a^{4}$$

整理方程得, $\overset{\leftarrow}{\mathbf{a}}^2 + y^2^2 = 2a^2(x^2 - y^2)$

令 $x = r\cos q$, $y = r\sin q$, $r^4 = 2a^2r^2(\cos^2q - \sin^2q)$, 故曲线方程为: $r^2 = 2a^2\cos 2q$. 由 曲线方程知,双纽线关于 x,y 轴是对称的,故 D 的面积是 D_1 的面积的 4 倍.这里

$$D_1 = \left\{ (r, q) \mid 0 \# r \quad a \sqrt{2 \cos 2q}, 0 \# q \quad \frac{p}{4} \right\}.$$

$$A = \bigoplus_{p} ds = 4 \bigoplus_{p=1}^{\infty} ds = 4 \bigoplus_{p=1}^{\infty} dq \int_{0}^{a\sqrt{2\cos 2q}} r dr$$
$$= 4a^{2} \sum_{0}^{\infty} \frac{p}{4} \cos 2q dq = 2a^{2} \sin 2q \Big|_{0}^{\infty} = 2a^{2}.$$

利用对称性可以简化计算。

当积分区域的对称性与被积函数关于自变量的奇偶性相配合时,关于二重积分的计算,容易得到如下结论:

- - (3) 若被积函数 f(x,y) 关于 y 是奇函数, 积分区域 D 关于 x 轴对称, 则有 **以** f(x,y) d s=0;
- (2)若被积函数 f(x,y) 关于 x 是偶函数,积分区域 D 关于 y 轴对称,则有 f(x,y) d s=2 好 f(x,y) d s ,其中 D_1 为位于 y 轴的右侧的半区域.
- (4) 若被积函数 f(x,y) 关于 y 是偶函数,积分区域 D 关于 x 轴对称,则有 f(x,y) d s=2 好 f(x,y) d s ,其中 D_1 为位于 x 轴的上侧的半区域.

(5) 若积分区域 D 关于 y=x 对称,则有 f(x,y) d s=f(y,x) d s ,我们也称这种对称 性为轮换对称性.

因积分区域D是圆域,关于x轴、y轴对称,故有

此处利用了上面性质 (1), (3). 从而有 $I = 4 \sqrt{y^2} \, \mathrm{d} s$.

又因D 关于直线y=x对称,由上面性质(5),有 $\mathbf{y}^2 ds = \mathbf{y}^2 x^2 ds$,从而

$$I = \oiint y^2 \, \mathrm{d} \, s = \frac{1}{2} \oiint (x^2 + y^2) \, \mathrm{d} \, s = \frac{1}{2} \oiint^p \, \mathrm{d} \, q \, \int_0^R r^2 \, \mathsf{d} \, r \, dr = \frac{p}{4} \, R^4 \, .$$

$$D = \{(x,y) | -2 \# x \quad 2, -1 \# y \quad 1\}, \quad D_1 = \{(x,y) | 0 \# x \quad 2, 0 \# y \quad 1\},$$

上面两式是否成立? ((1) 错, (2) 对。)

2. 设
$$D = \{(x,y) | x^2 + y^2 \mathbf{f} \ a^2 \}$$
, 则 $\mathbf{p} (x^2 + y^2) ds = \mathbf{p} a^2 ds = pa^4$. 是否正确? (错!

因为积分过程中,积分变量(x,y)在整个积分区域D上变化,而不只是在D的边界 x^2

All rights resi

习题 10-3

1. 化下列积分为极坐标下的二次积分:

(1)
$$\int_{1-x}^{1} dx \int_{1-x}^{1-x^2} f(x,y) dy$$

(2)
$$\int_{0}^{2a} dx \int_{-\sqrt{2ax-x^2}}^{\sqrt{2ax-x^2}} f(x,y) dy$$

(3)
$$\int_{0}^{2} dx \int_{0}^{3x} f(\sqrt{x^2 + y^2}) dy$$

(4)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x, y) dy$$
;

(5)
$$\iint_{0}^{2} dx \int_{2x-x^{2}}^{\sqrt{4x-x^{2}}} f(x,y)dy + \iint_{0}^{4} dx$$

$$\int_{0}^{\sqrt{4x-x^2}} f(x,y) dy$$
;

(6)
$$\bigoplus_{y}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x,y) dx .$$

$$\bigoplus_{x=0}^{p} dx = \int_{0}^{\sqrt{4x-x^2}} f(x,y)dy + \bigoplus_{x=0}^{p} dx = \int_{0}^{\sqrt{4x-x^2}} f(x,y)dy$$

$$= \bigoplus_{x=0}^{p} f(x,y)dxdy$$

$$= \bigoplus_{x=0}^{p} dq = \int_{0}^{4\cos q} f(r\cos q, r\sin q)rdr$$

2. 利用极坐标计算下列各题:

(2)
$$\lim_{x \to a} xy \, dx \, dy$$
, $D = \{(x,y) | x^2 + y^2 - 2y \# 0, y = x \}$

(3)
$$\mathbb{H}^{1}(x+y) dx dy , D = \{(x,y) | x^{2} + y^{2} \mathfrak{t} x + y \} ;$$

(4)
$$\iint_{D} \arctan \frac{y}{x} dx dy$$
, $D = \{(x, y) | 1 \# x^{2} + y^{2} + 4, 0 \# y = x \}$

(5)
$$\bigoplus_{D} |x^2 + y^2 - 2y| dx dy, D = \{(x,y) | x^2 + y^2 \pounds 4\}.$$

3. 求下列曲线所围平面图形的面积:

(1)
$$(x^2 + y^2)^2 = 2ax^3$$
; (2) $r = a(1 - \cos q)$;

(2)
$$r = a(1 - \cos a)$$

*(3)
$$r^2 = 4a^2 \sin 2q$$
;

(4)
$$r = a \sin 2a$$

4. 求下列曲面所围成的立体的体积:

*(2)
$$x^2 + y^2 - 2ax = 0$$
, $\sqrt{x^2 + y^2} = z \not \! Z z = 0$;

(3)
$$z = \sqrt{x^2 + y^2} \not \not z = \sqrt{1 - x^2 - y^2}$$
;

(4)
$$az = x^2 + y^2 \not b z = 2a - \sqrt{x^2 + y^2} \quad (a > 0)$$
;

*(5)
$$z = x^2 + y^2 \not \not Z = x + y$$
.

- *1. 作适当的变换, 计算下列二重积分:
 - (1) $\bigoplus (x+y) \sin(x-y) dx dy$, $D = \{(x,y) | 0 \Leftrightarrow x y \# p, 0 x-y p\}$;
 - (2) 蚪 (y-x) d x d y , 其中 D 由直线 y=x+1 , y=x-3 , $y=-\frac{x}{3}+\frac{7}{3}$, $y=-\frac{x}{3}+\frac{5}{3}$ 围成.

(3)
$$\bigoplus_{D} (x^2 + y^2) \, \mathrm{d} x \, \mathrm{d} y , \quad D = \bigoplus_{D} (x, y) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} \pounds \right| 1 , \quad a > 0, b > 0 ;$$

(4)
$$\bigoplus_{D} \cos(\frac{x-y}{x+y}) dx dy$$
, $D = \{(x,y) | x+y \text{ £ } 1,x \text{ PDO}, y = 0\}$;

(5) 蚪
$$(x^2 + y^2 + 1) dx dy$$
,其中 D 由曲线 $xy = 1$, $xy = 2$, $y = x$, $y = 4x$ $(x > 0, y > 0)$ 围成.

(6) 蚪
$$(\sqrt{x} + \sqrt{y}) dx dy$$
, 其中 D 由曲线 $\sqrt{x} + \sqrt{y} = 1$, $x = 0$, $y = 0$ 围成.

(3)
$$\prod_{D} (x^2 + y^2) \, \mathrm{d} x \, \mathrm{d} y , \quad D = \prod_{D} (x, y) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} \, \mathrm{ft} \quad 1 \quad , \quad a > 0, b > 0 \right|$$

(经)解(3)
$$D_1 = \frac{x^2}{a^2} + \frac{y^2}{b^2} 31, x = 0, y = 0$$
。根据对称性,

$$(x^2 + y^2) \, dx \, dy = 2 \, \mathbf{x} \, (x^2 + y^2) \, dx \, dy = 4 \, \mathbf{x} \, (x^2 + y^2) \, dx \, dy$$

$$=4 \iint_{a_0}^{a_0} \int_{a_0}^{1-\frac{x^2}{a^2}} (x^2 + y^2) dy dx$$

$$= 4 + \frac{x^2}{4} \left(x^2 + b^2 v^2 \right) b dv dx = 4 + \frac{x^2}{4} \left(x^2 + b^2 v^2 \right) b dv a du$$

$$= 4ab \lim_{n \to \infty} \begin{cases} \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty}^{\infty} \sqrt{1 - u^2} (a^2 u^2 + b^2 v^2) dv \\ \int_{-\infty$$

$$= 4a^{3}b \bigoplus_{0} dx \int_{0}^{\sqrt{1-x^{2}}} x^{2}dy + 4ab^{3} \bigoplus_{0} dx \int_{0}^{\sqrt{1-x^{2}}} y^{2}dy$$
$$= 4a^{3}b \bigoplus_{0} x^{2}dxdy + 4ab^{3} \bigoplus_{0} y^{2}dxdy$$

其中
$$D \not= \{(x,y)|_{x^2} + y^2 \ 3 \ 1, x \ 0, y \ 0 \}$$
。根据轮换对称性

$$\iint_{D} (x^{2} + y^{2}) dx dy = \frac{p}{4} a^{3} b + \frac{p}{4} a b^{3} = \frac{p}{4} a b (a^{2} + b^{2})$$

方法总结:二重积分不能换元,但是化为二次积分是定积分就可以随你换元!

2. 计算 瞬
$$\left| \frac{x+y}{\sqrt{2}} - x^2 - y^2 \right| dx dy$$
, $D = \left\{ (x,y) \middle| x^2 + y^2 \pounds 1 \right\}$.

3. 求下列曲线所围的区域
$$D$$
 的面积:
 (1) $x + y = a$, $x + y = b$, $y = kx$, $y = mx$ (0 < a < b, 0 < k < m);
 *(2) $y^2 = px$, $y^2 = qx$, $xy = a$, $xy = b$ (0 < p < q , 0 < a < b).

*(2)
$$v^2 = px$$
, $v^2 = ax$, $xv = a$, $xv = b$ (0 < p < a < b)

*4. 设 f(x,y) 在 xoy 面上连续,且 F(t) = 蝉 f(x,y) d x d y , 其中 D 为 $x^2 + y^2 = t^2$ 所围的区域,求 $\lim_{t\to t} F(t)$

解: 得先求出F $\phi(t)$, 为此得先求出F(t)。

$$F(t) = \bigoplus_{D} f(x, y) dx dy = \bigoplus_{D} f(r\cos q, r\sin q) rdr$$
$$= \bigoplus_{D} f(x\cos y, x\sin y) xdx$$

在积分过程中 t是常数。交换积分次序

$$F(t) = \bigoplus_{n=0}^{\infty} \frac{\Re^{2p}}{n} f(x \cos y, x \sin y) x dy dx$$

第 4 节 直角坐标系下三重积分的计算

我们直接给出三重积分

的计算方法.不追求它的严格证明,只要求同学们<mark>理解、记住、练熟</mark>下面的计算方法步骤。(参看图 4.1)

图 4.1

- (1) 将积分区域 \mathbb{W} 投影到 x O y 面,得投影区域 D_{xy} .
- (2) 以 D_{xy} 的边界曲线为准线,作一个母线平行于 z 轴的柱面. 柱面与闭区域 \mathbb{W} 的边界曲面 S 相交将 S 分割为上、下两片曲面 $S_2: z=z_2(x,y)$ (大z边界); $S_1: z=z_1(x,y)$ (小z边界),且 $z_1(x,y)$ £ $z_2(x,y)$. ((1) 和 (2) 是几何准备。)

(二重积分里面套一个定积分。称为先一后二方法。)只要你会做里面的定积分,再会做外面的 二重积分,三重积分就算出来了。

约定: 與 dxdy與 f(x,y) f(x,y,z)dz = 解 f(x,y,z)dz = 如 f(x,y,z)dz = 如 f(x,y,z)dz = f(x,y,z)dz =

做里层定积分的时候,x,y视为常数,里层定积分的结果是x,y的函数。<mark>里层积分的上下限总是外层变量的函数</mark>。

(大z边界 $z=z_2(x,y)$ 和小z边界 $z=z_1(x,y)$ 的找法: "(x,y)Î D_{xy} ,过(x,y)点平行于z轴的直线截 W 得截线 $z_1(x,y)$ # $z=z_2(x,y)$ (图 4.1)。)

利用图 4.1 的 x0 y 上区域 D_{xy} , D_{xy} 在 x 轴上投影 **版** b , D_{xy} 的小 y 边界 $y = y_1(x,z)$ 大 y 边界 $y = y_2(x,z)$ (此 时 积 分 区 域 W 表 示 为 W = $\left\{ (x,y,z) \middle| y_1(x,z) \neq y \middle| y_2(x,z), z_1(x) \neq z \middle| z_2(x), a \neq x \middle| b \right\}$),我们可以进一步把外层的二重积分写成二次积分

这样,三重积分就变成了做三次定积分,称为三次积分。

约定:

 $\bigoplus_{y_1(x)}^{b} \mathrm{d} x \quad \bigvee_{y_1(x)}^{y_2(x)} \mathrm{d} y \bigoplus_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \mathrm{d} z = \quad \sum_{a}^{b} \bigoplus_{x_1(x)}^{z_2(x)} \bigoplus_{z_1(x,y)}^{z_2(x)} f(x,y,z) \mathrm{d} z \stackrel{\mathbf{i}}{=} v \, \mathrm{d} x \quad .$

上式是先对z,后对y,再对x的三次积分. <mark>里层积分的上下限总是外层变量的函数</mark>。做里层积分时,外层变量固定为常数。

同理,如果积分区域W表示为

 $W = \{(x, y, z) \mid x_1(y, z) \# x \quad x_2(y, z), y_1(z) \# y \quad y_2(z), c \# z \quad d \}$

将积分区域W投影到yOz面上得投影区域 D_{vz} 。,可类似地将三重积分化为

先对 x ,后对 y (或 z),再对 z (或 y)的三次积分。其中 $x=x_1(y,z)(小x边界), <math>x=x_2(y,z)(大x边界)$, D_{yz} 的 $y=y_1(z)(小y边界)$, $y=y_2(z)(大y边界)$ 。

若将区域W 投影到xOz面得区域 D_{xz} ,可将三重积分化为

其中 $y = y_1(x,z)(\Lambda y$ 边界), $y = y_2(x,z)(大 y$ 边界), D_{xz} 的 $z = z_1(x)(\Lambda z$ 边界), $z = z_2(x)(\tau z)$

上面并没有列举完三重积分化为三次积分的全部可能情形。

由此可看到,三重积分化为三次积分的关键也在于将积分区域用不等式组表示出来.

为了避免出错,希望同学们严格顺序: 首先把三重积分变成先一后二,再把先一后二变成 三次积分。

小技巧: 如果你只熟悉"同理"前计算方法,在整个题中,改一下x,y,z(比如说把x改成y把y改成x),就可变成"同理"前的计算方法。结果不变。(黑板解析)

Zhishi LAND

6

BAOYANDAS

NANDAO Zh

思考题:

1. 若穿过区域 W 且平行于对应坐标轴的直线与 W 的边界曲面的交点多于两个时,如何化三重积分为三次积分? (分割。)

【例 4.1】 将三重积分 \mathbf{K} f(x,y,z) dv 化为三次积分,其中 \mathbf{W} 为由曲面 $z=4-x^2$

2x+y=4及三个坐标面所围成的位于第一卦限的部分.

解 画出两张曲面 $z=4-x^2$ 和 2x+y=4,就得到积分区域 W (见图 4.2)。将区域分别向三个坐标面投影,有三种不同的解法.

(1) 将区域W向xOy面投影,得

$$D_{xy} = \{(x,y) | 0 \# y \quad 4-2x, 0 \# x \quad 2 \},$$

W 的小 z 边界 z=0 ,大 z 边界 $z=4-x^2$ 。区域 W 的不等式组表示式为

$$W = \{(x, y, z) \mid 0 \# z \quad 4 - x^2, 0 \# y \quad 4 - 2x, 0 \# x \quad 2 \},$$

 D_{xy} 在 x 轴上的投影 50 2 , D_{xy} 的小 y 边界 y=0 大 y 边界

$$y=4-x^2$$
。所以

 $\bigoplus_{\mathbf{W}} (x, y, z) dv = \bigoplus_{D_{xy}} (x, y, z) dz$

$$= \bigoplus_{0}^{2} dx \int_{0}^{4-2x} dy \int_{0}^{4-x^{2}} f(x, y, z) dz.$$

(2) 将区域 \mathbb{W} 向 xOz 面投影,得 $D_{xz} = \{(x,z) | 0 \# z = 4 - x^2, 0 \# x = 2\}$ 。 \mathbb{W} 的小 y 边界 y = 0,

$$W = \{(x, y, z) | 0 \# y \quad 4 - 2x, 0 \# z \quad 4 - x^2, 0 \# x \quad 2 \}$$

(3) 将区域向 yOz 面投影,得 $D_{yz} = \{(y,z) | 0 \# y = 4, 0 \# z = 4\}$ 。 W 的小 x 边界 x = 0,大 x = 0

边界有两个表示式 $x = \sqrt{4-z}$ 和 $x = \frac{4-y}{2}$ (过 D_{yz} 内的任一点 (y,z) ,作平行于 x 轴的直线穿过

W 内部,发现当点
$$(y,z)$$
 位于曲面的交线 $\frac{1}{2}z=4-x^2$ 在 $y0z$ 面上的投影曲线 $z=4-(2-\frac{y}{2})^2$ 的两

侧时,过点 (y,z) 的直线与区域 W 的边界曲面的交点落在不同曲面上: 当点 (y,z) �D % $\{(y,z) \mid 0 \; \#z \quad 4 - (2 - \frac{y}{2})^2, 0 \; \#y \quad 4\}$ 时,直线上位于 W 内部的点的 x 坐标满足 $0 \; \#x \quad 2 - \frac{y}{2}$; 当点 (y,z) �D $\overset{\cdot}{,}\overset{\cdot}$

$$W_{1} = \left\{ (x, y, z) \mid 0 \#_{X} \quad 2 - \frac{y}{2}, 0 \#_{Z} \quad 4 - (2 - \frac{y}{2})^{2}, 0 \#_{Y} \quad 4 \right\},$$

$$W_{2} = \left\{ (x, y, z) \mid 0 \#_{X} \quad \sqrt{4 - z}, 4 - (2 - \frac{y}{2})^{2} \#_{Z} \quad 4, 0 \#_{Y} \quad 4 \right\},$$

所以

围成的闭区域.

解 如图 4.3 所示,画出 $2y^2 = x$, x + 2y + 2z = 4, z = 0 就得到积分区域 W。将积分区域 W向 xOy 面投影,得投影区域 D_{xy} 由曲线 $x = 2y^2$ 及 x + 2y = 4 围成,可求两曲线的交点为 (2,1), (8,-2).故可得

$$D_{xy} = \{(x,y) | 2y^2 \# x \quad 4-2y,-2 \# y \quad 1 \},$$

W 的小 z边界 z=0 大过 z边界 $z=2-y-\frac{1}{2}x$ 。 积分区域 W 表示为

 $W = \{(x, y, z) \mid 0 \# z \quad 2 - y - \frac{x}{2}, 2y^2 \# x \quad 4 - 2y, -2 \# y \quad 1 \}$

思考题:

2. 将上述积分区域分别向 yO z 和 xO z 面投影,并写出对应的三次积分的表示式.

Zhist

ZhiShi LAND

BAOYANDAO

ZhiShi LAND

-VANDAO

下面介绍计算三重积分的另一方法。

- (1) 把W 往z轴投影得 ad;
- (2) 任意给定 zÎ ${\bf K}d$,用平面 Z=z截 W 得截面(与 z有关) D_z ;则

做里层二重积分时,把z视为常数。此称先二后一方法。

如果你会计算里层的二重积分,再会计算外层的定积分,三重积分就算出来了。

约定: $\oint dz$ $\oint f(x,y,z)dxdy = \int_{c}^{d} f(x,y,z)dxdy dz$.

类似地,

- (1') 把W往x投影得籍b;
- (2') 任意给定 xÎ 籍 b ,用平面 X = x 截 \mathbb{W} 得截面 (与 x 有关) D_x ;则

- (1") 把W往y投影得**籬**f;
 - (2") 任意给定 y î $\begin{align*}{c} \mathbf{f} \\ \mathbf{f} \\$

BAOYANDAO

Thishi LAND

BAOYANDAO

ANDAO Z

All rights reserved

ZhiSh

Zhishi LAND Zhishi reserved pu rodite reserved

计算 $\mathbf{w}^2 dx dy dz$, 其中 \mathbb{W} 是由三个坐标面与平面 x + y + z = 1 围成的闭区 【例 4.3】

域.

解 1 将积分区域W 向 xOy 面投影(图 4.4),得

$$D_{xy} = \{(x,y) | 0 \# y \quad 1-x, 0 \# x \quad 1 \},$$

区域W可表示为 W 的 小 z 边 界 z=0 大 过 z 边 界 z=1-x-yW = $\{(x, y, z) | 0 \# z \quad 1-x-y, 0 \# y \quad 1-x, 0 \# x \quad 1 \}$,则有

$$\iiint_{\mathbb{R}} 2 dx dy dz = \iiint_{D_{xy}} x^2 dz$$

$$= \bigoplus_{0}^{1} dx \int_{0}^{1-x} dy \bigoplus_{0}^{1-x-y} x^{2} dz = \int_{0}^{1} dx \int_{0}^{1-x} x^{2} (1-x-y) dy$$

$$= \bigoplus_{0}^{1} -\frac{1}{2} x^{2} (1-x-y)^{2} \Big|_{0}^{1-x} dx = \frac{1}{2} \int_{0}^{1} x^{2} (1-x)^{2} dx = \frac{1}{60}.$$

解 2 因为被积函数 $f(x,y,z) = x^2$,只与变量 x 有关,而 f(x,y,z) 的面积,所

以,我们可以用先二后一方法计算.

W 往x 轴投影得 5 程 : 任意给定 x 1 6 据 1 ,用平面 1 = 1 截区域 W 得三角形

$$D_{x} = \left\{ \left(x, y, z \right) \middle| 0 \Leftrightarrow y \quad z \Leftrightarrow 1 \quad x, y \not \Vdash 0, z \quad 0 \right\}$$

(图 4.5)。此三角形的面积为 $S(x) = \frac{1}{2} (1 - x)^2$ 。故

 $\int_{0}^{1} dx || \mathbf{x}|^{2} dy dz = \mathbf{x}^{2} dx$

图 4.5

NANDAO ZhiE

方法总结: 当被积函数 f(x,y,z) 与 (y,z) ((x,z) 或 (y,x)) 无关时,用先往 x (y 或 z) 轴投影的先二后一方法计算特别简单。

一般情况用先一后二方法计算三重积分,只是为了简便才用先二后一方法。

【例 4.4】 计算 \mathbb{Z}^2 d v ,其中 \mathbb{W} 由 $z^2 = x^2 + y^2$, z = H (H > 0) 围成的闭区域.

解 被积函数 $f(x,y,z)=z^2$,只与变量 x,y 无关,用先往 z 轴投影的一套二方法计算。 \mathbb{W} 往 z 轴投影得 \mathbb{K} H 。任意给定 z \mathbb{L} \mathbb{K} H ,用平面 Z=z 截 \mathbb{W} 得半径为 z 的圆(图 4. 6)

$$D_z = \left\{ \left(x, y, z \right) \middle| x^2 + y^2 \pounds z^2 \right\}$$

所以

 $\bigoplus_{\mathbf{w}} \mathbf{z}^{2} \, \mathrm{d} \, v = \int_{0}^{H} \mathrm{d} z \, \sum_{\mathbf{z}} \sum_{\mathbf{D}, \mathbf{z}} \mathbf{z}^{2} \, \mathrm{d} \, x \, \mathrm{d} \, y = \bigoplus_{\mathbf{D}, \mathbf{z}}^{H} \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H} \mathbf{z}^{2} \, \mathrm{d} \, z = \int_{0}^{H}$

y X 图 4.7

【例 4.5】 计算三重积分 蚪 xz dv, 其中 \mathbb{W} 由曲面 $z = x^2 + y^2$, $z = 1 - x^2$ 围成的闭区域.

解 求两曲面的交线的投影柱面

交线的投影柱面的方程为:

$$2x^2 + y^2 = 1$$

如图 4.7 所示,将积分区域向 x0 y 面投影,得投影区域为椭圆

W 的小 z边界 $z = x^2 + y^2$ 大 z边界 $z = 1 - x^2$ (图 4.7)。得

$$W = \begin{bmatrix} x, y, z \end{bmatrix} |_{X^2 + y^2} \#_{Z} \quad 1 - x^2, -\sqrt{\frac{1 - y^2}{2}} \#_{X} \quad \sqrt{\frac{1 - y^2}{2}}, -1 \#_{Y} \quad 1 \quad ,$$

$$= \bigoplus_{1=y^2}^{\sqrt{\frac{1-y^2}{2}}} \frac{1}{2} x \bigoplus_{1=y^2}^{\sqrt{1-y^2}} \frac{1}{2} x \bigoplus_{1=y^2}^{\sqrt{1-y^2}}$$

因为里层积分(固定y为常数)的被积函数是x的奇函数,

$$\frac{4}{2}\sqrt{\frac{1-y^2}{2}},\sqrt{\frac{1-y^2}{2}}$$

事实上,在此题中,因积分区域 \mathbb{W} 关于 yO z 面是对称的,而被积函数 f(x,y,z)=xz 关于 x 是 奇函数,直接可得 🙌 🛛 xz d v = 0 .

类似于二重积分中的关于对称性和函数的奇偶性的讨论,三重积分的对称性与函数的奇偶性 有下面结论:

若积分区域W关于xOy面对称,被积函数f(x,y,z)关于z是奇函数,则有

$$f(x, y, z) d v = 0.$$

All rights

其中 W_1 是区域W位于xOy面上方的部分区域.

其余的两种情形类似。

若积分区域W关于zOy面对称,被积函数f(x,y,z)关于x是奇函数,则有

$$f(x, y, z) d v = 0.$$

若积分区域W关于xOy面对称,被积函数f(x,y,z)关于z是偶函数,则有

 $f(x, y, z) dv = 2 \quad f(x, y, z) dv,$

若积分区域W关于zOy面对称,被积函数f(x,y,z)关于x是偶函数,则有

$$f(x, y, z) dv = 2 \quad \text{if } f(x, y, z) dv,$$

其中W₁是区域W位于zOy面前方的部分区域.

若积分区域W关于xOz面对称,被积函数f(x,y,z)关于y是奇函数,则有

$$f(x, y, z) d v = 0.$$

若积分区域 \mathbb{W} 关于xOz面对称,被积函数 f(x,y,z) 关于y 是偶函数,则有 rights reserved All righ

其中W₁是区域W位于x0z面右方的部分区域.

习题 10-4 A **类**

- 1. 化三重积分 $\oint f(x,y,z) dx dy dz$ 为三次积分.
 - *(1) W $\pm z = x^2 + y^2$, $y = x^2$, y = 1, $z = 0 \pm \vec{x}$;
 - (2) W 由 $x^2 + y^2 = 4$, z = 0, z = x + y 10 围成:
 - (3) z = y, z = 0, $y = \sqrt{1 x^2}$ 围成;
 - (4) $z = x^2 + y^2$, 及 $z = 2 x^2$ 所围成.
 - 解 (2) W 往 x0 y 面投影得圆

$$D_{xy} = \left\{ (x, y) \middle| x^2 + y^2 \right\} \quad \left\{ (x, y) \middle| - \sqrt{4 - x^2} \right. \# y \quad \sqrt{4 - x^2}, -2 \# x \quad 2 \right\}$$
$$= \left\{ (x, y) \middle| - \sqrt{4 - y^2} \right. \# x \quad \sqrt{4 - y^2}, -2 \# y \quad 2 \right\}$$

W 的小 z 边界 z= x+ y- 10 大 z 边界 z= 0。所以

W 往xOz或yOz面投影很复杂,略。

- 2. 计算 $\frac{1}{(x+y+z)^3} dx dy dz$, $\mathbb{W} = \{(x,y,z) | 1 \# x = 2, 1 \# y = 2, 1 \# z = 2\}$.
- 3. 求蜗 $e^{x^+y^+z} dx dy dz$, W 由 z=-x, z=0, y=-x, y=1 围成.
- 5. 求稣 xy dx dy dz, \mathbb{W} 由 $z=x^2+y^2$, $y^2=x$, x=1及z=0围成
- 6. 求輯 $xy^2z^3 dx dy dz$, W 由 z=xy, y=x, x=1 及 z=0 围成.
- 7. 求 蚪 $e^y dx dy dz$, W 由 $x^2 y^2 + z^2 = 1$, y = 0, y = 2 围成.
- 解 被积函数与x,z无关,用先往y轴投影的一套二方法简单。

W 往y轴投影得 ${\bf K}$ 2 。任意给定yÎ ${\bf K}$ 2 ,用Y = y截W 得圆

$$D_{y} = \left\{ \left(x, y, z \right) \middle| x^{2} + z^{2} 1 + y^{2} \right\}$$

- *8. 计算 ళ $y^2 \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z$, $\mathbb{W} \, \mathrm{d} y = x^2 1$, $y = 1 x^2$, z = 1 及 z = -1 围成.
- 10. 利用三重积分计算曲面所围的立体的体积.

BAO

All rights reserved

ZhiSh

ZhiShi LAND

BAOYANDAO

- (1) $z = x^2 + y^2$, $z = 2x^2 + 2y^2$, $y = x \not \exists y = x^2$; (2) z = x + y, z = xy, $x + y = 1 \not \exists x = 0$, y = 0.

- 1. 改变下列三次积分的积分次序.

 - - (3) $\bigoplus_{1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{x^2+y^2}^{1} f(x,y,z) dz.$
- 2. 求**妖** $z^2 dx dy dz$,其中 y 为
 - "(1) $x^2 + y^2 + z^2 = 2$ 与 $z = x^2 + y^2$ 围成的含点 (0,0,1) 的部分; *(2) $x^2 + y^2 + z^2 = 2$ 与 $z = x^2 + y^2$ 围成的含点 (0,0,-1) 的部分.
- 3. 计算 $\mathbf{x} dx \int_{0}^{1-x} dy \int_{0}^{\frac{y}{2}} \frac{\cos z}{(2z-1)^2} dz$.
- 4. 证明 **以** dv $\int_{0}^{v} du$ $\int_{0}^{u} f(t) dt = \frac{1}{2} \int_{0}^{x} (x-t)^{2} f(t) dt$.
- $\stackrel{\square}{\text{if}} du = \stackrel{U}{\text{o}} f(t) dt = \stackrel{V}{\text{o}} dt = \stackrel{V}{\text{o}} dt = \stackrel{V}{\text{o}} f(t) du = \stackrel{V}{\text{o}} f(t) dt =$

 $\oint_{0}^{t} dv \int_{0}^{v} du \oint_{0}^{t} f(t) dt = \int_{0}^{x} \oint_{0}^{t} du \int_{0}^{u} f(t) dt dv = \oint_{0}^{t} dv \int_{0}^{v} (v - t) f(t) dt$ $= \oint_{0}^{t} dt \int_{t}^{x} (v - t) f(t) dv = \oint_{0}^{t} f(t) dt \int_{t}^{x} (v - t) dv = \int_{0}^{x} f(t) \frac{1}{2} (v - t)^{2} \Big|_{v = t}^{v = x} dt$ $= \frac{1}{2} \oint_{0}^{x} (x - t)^{2} f(t) dt$ $f(t) \int_{0}^{t} f(t) dt \int_{0$

- - *(2) 将三重积分 $\oint_0^1 dx \int_0^1 dy \int_0^{x+y} f(z) dz$ 化为关于变量 z 的单积分.

第5节 柱面坐标与球面坐标系下三重积分的计算

5.1 利用柱面坐标计算三重积分

我们不按课本上的讲法,换一种讲法。

用柱面坐标计算三重积分的步骤:

(1) 把三重积分写成先一后二:

将 W 往 xOy 平面投影得 D_{xy} ,设 W 的 小 z 边界 $z=z_1(x,y)$ 大 z 边界 $z=z_2(x,y)$,

All rights

 $\underset{\mathbb{W}}{\bigoplus} f(x, y, z) dv = \underset{D_{xy}}{\bigoplus} xdy \quad \frac{z_2(x, y)}{z_1(x, y)} f(x, y, z) dz$

(2) 用极坐标计算外层的二重积分:

设

 $D_{xy} = \left\{ (r,q) \mid r_1(q) \# r \quad r_2(q), a \# q \quad b \right\}$

 $\bigoplus_{\mathbf{w}} f(x, y, z) dv = \bigoplus_{\substack{D_{xy} \\ r_2(q) \\ r}} f(x, y, z) dz$ $= \bigoplus_{\mathbf{w}} dq \qquad \sum_{\substack{T_2(q) \\ r_2(q) \\ r}} r dr \qquad \sum_{\mathbf{w}} \frac{z_2(r \cos q, r \sin q)}{r} f(r \cos q, r \sin q, z) dz$

注意: 用极坐标计算外层二重积分时,总是先对 r 后对 q 积分;用坐标关系 $x = r \cos q$, $y = r \sin q$ 代入被积函数<mark>和里层定积分的上下限</mark>, z 不动,并且外层面积元素多一个因子 r,即 dxdy = rdqdr,或说体积元素 dxdydz = rdqdrdz.

当然,当投影区域 D_{xy} 的边界有圆弧或被积函数有 $x^2 + y^2$ 时用柱面坐标计算简单。

Thishi LAND BAOYANDAO

AN HOMES TOBERTORS

AND HOMES TOB

ZhiShi LAND

绕z轴旋转一周而 【例 5.1】 All rights reserved A 成的曲面与平面 z= 2 所围成的区域. 解 旋转面的方程为: $x^2 + y^2 = 2z$. 如图 5.1 所示,将积分区域 W 投影到 xO y 面,得投影区域为: W 的小 z 边界 $z = \frac{x^2 + y^2}{2}$ 大 z 边界 z = 2 。积分区域 W 为: 图 5.1 $= \bigoplus_{0}^{2^{p}} dq \frac{1}{2} r^{2} (2 - \frac{1}{2} r^{2}) r dr$ $= 2p (\frac{1}{2} r^{4} - \frac{1}{12} r^{6}) \Big|_{0}^{2} = \frac{16}{3} p$

我们看到,上面计算方法中,用r,q,z作坐标(变量)。设空间有一点 M(x,y,z). 并设M 在xOy面上的投影点P的极坐标为r,q,则这样三个数 r,q,z 就叫做点M 的柱面坐标. 一般地 r,q,z 的取值范围为: 容易看出,所谓柱面坐标,就是: z不变还是 z, 而 x, y 换成极坐标。 点 M 的直角坐标与柱面坐标的关系为: $P(\rho,\theta,0)$ $x = r \cos q$, $y = r \sin q$, z = z. 图 5.2 构成柱面坐标系的三个坐标面为: $r=r_0$,以z轴为中心轴, r_0 为半径的圆柱面; $q=q_0$, 过z轴且极角为 q_0 的半平面; $z=z_0$,平行于 x0 y 平面且高度为 z_0 的平面. ZhiShi LANE rights reserved All rights reserved All rights reserved

计算 **以** (x+z)dv, 其中 W 是由曲面 $z=\sqrt{x^2+y^2}$ 【例 5.2】 与 $z = \sqrt{1-x^2-y^2}$ 所围成的区域. 蝌zdv, 由上节中关于三重积分的对称性的讨论知, $2x^2 + 2y^2$ 图 5.5 $\frac{1}{2}$ $_{Z}$ = $\sqrt{1-x^{2}-y^{2}}$,解得两曲面的交线关于 联立两曲面方程。 STILL AN LIGHTS $x\mathcal{O}y$ 面的投影柱面方程为: $2x^2+2y^2=1$. 即积分区域 \mathbb{V} 在 $x\mathcal{O}y$ 面上的投影区域为: $D_{xy} = \left\{ (x,y) \mid x^2 + y^2 \, \mathbf{f}_{-\frac{1}{2}} \right\}$. W的小z边界 $z = \sqrt{x^2 + y^2}$ 大 z 边界 $z = \sqrt{1 - x^2 - y^2}$ 。所以 $dr = p \int_{0}^{1} \sqrt{2} r(1-2r^{2}) dr = \frac{p}{8}$ 所以

围成的闭区域.

解 W 为锥面,圆柱面及平面所围成(图 5.6)。由于W 关于 xOz 面是对称的,而被积函数 $f(x,y,z) = x^2 + y^2$ 关于变量 y 为偶函数,故

$$(x^2 + y^2) dv = 2$$
 $(x^2 + y^2) dv$,

其中W₁为W 在第一卦限的部分.

交线
$$\frac{1}{2}x^2 + y^2 = 2x$$
 在 xOy 面上的投影是 $\frac{1}{2}x^2 + y^2 = 2x$ 。 \mathbb{W}_1 在 xOy 面上

的投影区域是半圆 $D_{xy} = \{(x,y,0) | (x-1)^2 + y^2 \ 31,y \ 0 \}$. \mathbb{W}_1 的小z边界

$$z=0$$
 大 z 边界 $z=\sqrt{x^2+y^2}$ 。所以

 $(D_{xy}$ 的大r边界 $(x-1)^2 + y^2 = 1$ 化为极坐标方程为 $r = 2\cos q$ 。)

类似地,

(1') 把三重积分写成先一后二:

将W 往xOz平面投影得 D_{xz} , 设W的小y边界 $y = y_1(x,z)$ 大y边界 $y = y_2(x,z)$,

图 5.6

加

$$\bigvee_{\mathbf{W}} f(x, y, z) dv = \bigvee_{D_{xz}} f(x, y, z) dy$$

(2') 用极坐标计算外层的二重积分:

议

$$D_{xz} = \left\{ (r,q) \mid r_1(q) \# r \quad r_2(q), a \# q \quad b \right\}$$

则

(1") 把三重积分写成先一后二:

将 W 往 yOz 平面投影得 D_{yz} ,设 W 的 小 x 边界 $x=x_1(y,z)$ 大 x 边界 $x=x_2(y,z)$,

则

$$\bigoplus_{\mathbb{R}} f(x, y, z) dv = \bigoplus_{D_{y|x}} ydz \quad \sum_{x_1(y, z)}^{x_2(y, z)} f(x, y, z) dx$$

(2")用极坐标计算外层的二重积分: 设

$$D_{vz} = \{(r,q) | r_1(q) \# r \quad r_2(q), a \# q \quad b \}$$

则 蝌ydz f(x, y, z)dxf(x, y, z) d v = $= \bigoplus_{q=1}^{b} dq \sum_{r_{1}(q)}^{r_{2}(q)} r dr \sum_{x_{1}(r\cos q, r\sin q)}^{x_{2}(r\cos q, r\sin q)}$ $\int_{x_1} \frac{1}{(r\cos q, r\sin q)} f(x, r\cos q, r\sin q) dx$ **小技巧:** 如果你只熟悉"类似地"前计算方法,在整个题中,改一下x,y,z (比如说把x改 成y把y改成x),就可变成"类似地"前的计算方法。结果不变。(黑板解析) 思考题: z^2 34, $y = \sqrt{x^2 + z^2}$, $\Leftrightarrow : x = r \cos q, z = r \sin q, y = y$ 1. 设 W = $\{(x, y, z) | 1 • x^2 \}$ **《黑板。**) 问此运算是否正确? (不对。看黑板。) Inghis reserved. All rights reserved. All rights reserved.

5.2 利用球面坐标计算三重积分

如图 5.7 所示,空间中的点 M(x,y,z) 可用球面坐标 (r,j,q) 表示,其中 $r=\left|\partial M\right|$, j,q 如图 5.7。(r= 常数a 是半径为a 的球面,所以称 (r,j,q) 为球面坐标).

显然:

$$0 \pounds r < + ¥$$
 , $0 # j$ p

点 № 的直角坐标与球面坐标间的关系为:

 $x = r \cos q \sin j$, $y = r \sin q \sin j$, $z = r \cos j$.

下面我们按定义计算三重积分:

用三组坐标面:

r= 常数 (球面),j= 常数 (锥面),q= 常数 (半平面)

将积分区域 W 划分成 n 个小区域: D W $_1$, D W $_2$, L , D W $_n$ 。 设 D W $_i$ 的 $r = r_i$ 增量 D r_i 、 $j = j_i$ 增量 D j_i 、 $q = q_i$ 增量 D q_i (图 5.8)。 D W $_i$ 的 体积 D $v_i = r_i^2 \sin j_i D$ $r_i D$ $q_i D$ j_i 。 取点 $(x_i, h_i, z_i) = (r_i \cos q_i \sin j_i, r_i \sin q_i \sin j_i, r_i \cos j_i)$ \hat{I} D W $_i$ 。 则

 $f(x, y, z)dv = \lim_{I = 0} \mathring{\mathbf{a}}_{i=1}^{n} f(x_i, h_i, z_i) \mathbf{D} v_i$ $= \lim_{I = 0} \mathring{\mathbf{a}}_{i=1}^{n} f(r_i \cos q_i \sin j_i, r_i \sin q_i \sin j_i, r_i \cos j_i) r_i^2 \sin j_i \mathbf{D} r_i \mathbf{D} q_i \mathbf{D} j_i$

其右边的极限正好是关于球面坐标 (r, j, q) 的三重积分

 $f(r\cos q\sin j, r\sin q\sin j, r\cos j)r^2\sin j\,\mathrm{d} r\mathrm{d} q\mathrm{d} j$

所以

这就是用球面坐标计算三重积分的公式。

注意: 用坐标关系 $x = r \sin j \cos q$, $y = r \sin j \sin q$, $z = r \cos j$ 代入被积函数,并且体积元素多一个因子 $r^2 \sin j$,即 $dxdydz = r^2 \sin j drdqdj$.

当然,(5.2)还是得化为三次积分来计算。即

 $\lim_{\mathbb{R}} f(x, y, z) dv = \lim_{\mathbb{R}} f(r\cos q\sin j, r\sin q\sin j, r\cos j) r^{2} \sin j dr dq dj$ $= \lim_{\mathbb{R}} dq \int_{j_{1}(q)}^{y} dj \int_{r_{1}(q,j)}^{r_{2}(q,j)} f(r\cos q\sin j, r\sin q\sin j, r\cos j) r^{2} \sin j dr$

其中,a 是整个 \mathbb{W} 中最小的q,b 是整个 \mathbb{W} 中最大的q; $"q\hat{1}[a,b]$ 后, $(小 j) j_1(q)$ 是最小的

j , (大 j) $j_{_2}$ (q) 是最大的 j ; 固定 (q, j) 后, (小 r 边界) $r_{_1}$ (q, j) 是最小的 r , (大 r 边界) $r_{_2}$ (q, j) 是最大的 r 。

注意:用球面坐标计算三重积分时,总是先对r后对j最后对q积分。

当然,<mark>关键还是定三次积分的上下限</mark>。关于三次积分上下限的定法,我们只需懂得一些简单情况。一般情况太复杂,不作要求。

(1)W 由锥面 $j=j_0$ (半锥角)和顶曲面 r=r(q,j) 围成,如图 5.9.1。此时

 $a = 0, b = 2p, j_1(q) = 0, j_2(q) = j_0$ $r_1(q, j) = 0, r_2(q, j) = r(q, j)$ $r = r(\theta, \varphi)$

(2)W 的边界只有一张曲面 r=r(q,j), z正半轴穿过W 的内部,且曲面 r=r(q,j) 在原点与 x0 y 平面相切,如图 5.10.1。此时

rights reserved. All rights reserved. All rights reserved.

计算 蜗 $(x^2 + y^2 + z^2) dv$,其中 W 为 $z = \sqrt{x^2 + y^2}$ 及 $z = \sqrt{1 - x^2 - y^2}$ 围成 【例 5.4】

的区域.

解 W属于第 (1) 种情况 (图 5.9)。锥面 $z = \sqrt{x^2 + y^2}$ 半锥角 $j_0 = \frac{p}{4}$,

顶曲面 $z = \sqrt{1-x^2-y^2}$ 的球面坐标方程 r = 1 。于是

$$x = \sqrt{1 - x^2 - y^2}$$
 的球面坐标万程 $r = 1$ 。于是

 $\mathbf{x}^2 + y^2 + z^2$) $\mathrm{d} v = \mathbf{x}^2$ $\mathrm{d} q = \int_0^{2\pi} \mathrm{d} j = \int_0^1 r^2 \times r^2 \sin j \, \mathrm{d} r$

$$= \bigoplus_{j=0}^{2^{p}} dq \int_{0}^{\frac{p}{4}} \frac{1}{5} \sin j \, dj = \frac{2p}{5} (-\cos j) \Big|_{0}^{\frac{p}{4}} = \frac{2p}{5} (1 - \frac{\sqrt{2}}{2}).$$

2. 能否用柱面坐标重解此题? (可以。)

$$z = \sqrt{x^2 + y^2}$$
, $z = \sqrt{1 - x^2 - y^2}$ 消去 z 得 $x^2 + y^2 = \frac{1}{2}$ 。 W 在 $x0$ y 平面的投影

$$D_{xy}: x^2 + y^2$$
 £ $\frac{1}{2}$ 。 W 的小 z 边界 $z = \sqrt{x^2 + y^2}$ 大 z 边界 $z = \sqrt{1 - x^2 - y^2}$ 。 所以

$$= \bigoplus_{n=1}^{2^{p}} dq \int_{0}^{1} \sqrt{1-r^{2}} \left(r^{2} + z^{2}\right) dz$$

E
$$\frac{1}{2}$$
。 W 的小 z 边界 $z = \sqrt{x^2 + y^2}$ 大 z 边界 $z = \sqrt{1 - x^2 - y^2}$ 。所以

W 的小 z 边界 $z = \sqrt{x^2 + y^2}$ 大 z 边界 $z = \sqrt{1 - x^2 - y^2}$ 。所以

$$= x^2 dy \sqrt{\frac{1 - x^2 - y^2}{x^2 + y^2}} (x^2 + y^2 + z^2) dz$$

$$= x^2 dy \sqrt{\frac{1}{2}} r dr \frac{\sqrt{1 - r^2}}{r} (r^2 + z^2) dz$$

$$= x^2 dy \sqrt{\frac{1}{2}} r dr \frac{\sqrt{1 - r^2}}{r} (r^2 + z^2) dz$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$= x^2 dy \sqrt{1 - r^2} - r + \frac{x^2 - y^2}{3} \frac{1}{x^2} - r^3$$

$$\frac{2p}{5} \underbrace{\mathbb{I}_{-}}_{5} \frac{\sqrt{2}}{2} \underbrace{\frac{1}{2}}_{5}$$

WANDAO ZhiE

计算 蚪 $z^2 dv$,其中 \mathbb{W} 为 $x^2 + y^2 + z^2$ £ R^2 , $x^2 + y^2 + z^2$ $y^2 + z^2$ £ 2Rz 围成的闭域.

解 W 是由两个球面围成(图 5.10),球面 $x^2 + y^2 + z^2 = R^2$ 的球面坐标 方程是 r= R ,球面 x^2 + y^2 + z^2 = 2Rz 的球面坐标方程是 r= $2R\cos j$ 。

r=R $r=2R\cos j$,解得 $\cos j=\frac{1}{2}$,即两曲面的交线

$$\begin{cases}
j = \frac{p}{3} \\
r = R
\end{cases}$$

W 属于第 (1) 种情况,但是 W 的边界有两个表示式和 r= $2R\cos j$

因此,需要用锥面 $j = \frac{p}{3}$ 将区域 W 分成两部分

$$W_1 = \left\{ (r, j, q) \mid 0 \# r \quad R, \ 0 \# j \quad \frac{p}{3}, \ 0 \# q \quad 2p \right\},$$

$$W_2 = \left\{ (r, j, q) \mid 0 \# r \quad 2R \cos j, \quad \frac{p}{3} \# j \quad \frac{p}{2}, \quad 0 \# q \quad 2p \right\}$$

$$= \bigoplus_{n=1}^{\infty} dq \int_{0}^{\infty} dj \int_{0}^{R} r^{2} \cos^{2} j \times^{2} \sin j dr$$

$$+ \iint_{\mathbb{R}^2} dq \, \frac{\frac{p}{2}}{\frac{p}{3}} dj \, \frac{{}^{2R\cos j}}{{}^{0}} r^2 \cos^2 j \, \mathbb{X}^2 \sin j \, dr$$

$$= \frac{2p}{5}R^{5} \stackrel{\text{fifted}}{=} \frac{1}{3}\cos^{3}j\Big|_{0}^{\frac{p}{3}} - \frac{32}{8}\cos^{8}j\Big|_{\frac{p}{3}}^{\frac{p}{2}} = \frac{59}{480}pR^{5}.$$

图 5.10

思考题:

3. 考虑被积函数为 $f(x, y, z) = z^2$, 能否用"先二后一"法求解此题?

解 解 $x^2 + y^2 + z^2 = R^2$ 得 $z = \frac{1}{2}R$ 。用平面 $z = \frac{1}{2}R$ 分割 W 成上下两部分 W $_1$ 和 W $_2$ 。 W $_1$ 在

z上的投影 $\frac{4}{18}R$, 任意给定 z $\hat{1}$ $\frac{4}{18}R$, 用平面 Z=z 截 \mathbb{W}_1 得

$$D_z = \{ (x, y, z) | x^2 + y^2$$
£ $R^2 - z^2 \}$

所以

$$\begin{array}{llll}
& & & \\
\downarrow & & \\
\downarrow &$$

类似地可计算 蝌 $z^2 dv$ 。然后 蝌 $z^2 dv =$ 蝌 $z^2 dv +$ 蝌 $z^2 dv$

A类

- 1. 选择适当的坐标系计算下列三重积分
- (1) 稣 $(x^2 + y^2 + z) dx dy dz$,其中 \mathbb{Z} 为曲面 $2z = x^2 + y^2$ 及平面 z = 2 所围区域;
- (2) 稣 $e^{-(x^2+y^2)} dx dy dz$, 其中 W 为曲面 $x^2 + y^2 = a^2$, z = a(a > 0) 及 z = 0 围成;
- *(3) 蚪 (x+z)dxdydz, 其中W 为曲面 $z=\sqrt{a^2-x^2-y^2}$ 及 $z^2=x^2+y^2$ 所围区域;
- *(4) 蚪 $ze^{x^2+y^2}$ dxdydz, 其中 \mathbb{W} 为曲面 $z=\sqrt{x^2+y^2}$ 及 z=h(h>0) 围成的闭区域;
- (5) 蚪 $(x^2 + y^2 + z^2) dx dy dz$, 其中W 为曲面 $x^2 + y^2 + z^2 = 4$ 所围区域;
- (6) 軟 $\frac{\ln (1 + \sqrt{x^2 + y^2})}{x^2 + y^2}$ dxdydz, 其中W 为曲面 $z = 2x^2 + 2y^2$, $z = \sqrt{x^2 + y^2}$ 所围区域;
- *(8) 此 $z\sqrt{x^2+y^2}$ dx dy dz ,其中 W 为曲面 $y=\sqrt{2x-x^2}$ 及平面 z=2 , z=0 , y=0 围成的区域;
- (9) 蚪 $\sqrt{x^2 + y^2 + z^2} \, dx dy dz$, 其中 W 为曲面 $z = \sqrt{a^2 x^2 y^2}$ 及 $z = \sqrt{3x^2 + 3y^2}$ 围成的区域;

(10)
$$\iiint_{\mathbb{R}} \frac{\sin \sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} dx dy dz, \mathbb{V} = \left\{ (x, y, z) \middle| 1 \# x^2 + y^2 + z^2 - 4, x \text{ PMO}, y = 0 \right\}$$

解(10) W 关于x0 y 平面对称,被积函数是z 的偶函数。所以

$$\lim_{\mathbf{W}} \frac{\sin \sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = 2 \quad \lim_{\mathbf{W}_1} \frac{\sin \sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

其中 \mathbb{W}_1 是 \mathbb{W} 在第一卦限的部分 \mathbb{W}_1 = $[q,j,r) | 1 # r 2,0 # j <math>\frac{p}{2},0 # q \frac{p}{2}$ 。所以

$$\lim_{y \to \infty} \frac{\sin \sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} \, dx \, dy \, dz = \int_{0}^{\frac{p}{2}} dq \, dq \, dx \, dy \, dz = \int_{0}^{\frac{p}{2}} dq \, dq \, dx \, dy \, dz = \int_{0}^{\frac{p}{2}} dq \, dq \, dx \, dy \, dz = \int_{0}^{\frac{p}{2}} dq \, dq \, dx \, dy \, dz = \int_{0}^{\frac{p}{2}} dq \, dx \, dy \, dx \, dy \, dx \, dy \, dx = \int_{0}^{\frac{p}{2}} dq \, dx \, dy \, dx \,$$

- 2. 利用"先二后一"的方法计算下列三重积分:
 - (1) 蚪 z dx dy dz, 其中 \mathbb{V} 为曲面 $z = \sqrt{2-x^2-y^2}$ 及 $z = x^2+y^2$ 围成的区域;
 - (2) $\oint_{\mathbb{R}} \frac{e^{z}}{\sqrt{x^{2}+y^{2}}} dx dy dz$, f(x) = 0 f(x
 - *(3) 蚪 $e^{y} dx dy dz$, 其中 \mathbb{V} 由曲面 $x^{2} y^{2} + z^{2} = 1$ 及 y = 0, y = 2 围成;
 - (4) 蚪 x dx dy dz, 其中 W 由曲面 $x = y^2 + z^2$, x = 1 及 x = 2 围成.
 - 解 (2) 用一套二方法计算。 W 在 z 轴上的投影 $\frac{m}{4}$ 2 。任意给定 z Î $\frac{m}{4}$ 2 ,用平面 Z = z 截 W 得

$$D_z = \left\{ \left(x, y, z \right) \middle| x^2 + y^2 \pounds z^2 \right\}$$

用极坐标计算里层的二重积分

$$\bigoplus_{D_z} \frac{e^z}{\sqrt{x^2 + y^2}} dx dy = e^z \bigoplus_{D_z} \frac{1}{\sqrt{x^2 + y^2}} dx dy = e^z \bigoplus_{0}^{z} \frac{1}{r} dr = 2 pz e^z$$

3. 利用三重积分求下列立体的体积:

*(1) 曲面
$$x^2 + y^2 + z^2 = a^2$$
, $x^2 + y^2 + z^2 = b^2 \not \! D_z = \sqrt{x^2 + y^2}$ (b> a> 0);

- (2) $z = 6 x^2 y^2 \not \not z = \sqrt{x^2 + y^2}$
- (3) $x^2 + y^2 + z^2 \pounds 2az$, $x^2 + y^2 \Im z^2$.
- 4. 曲面 $x^2 + y^2 + az = 4a^2$ 将球体 $x^2 + y^2 + z^2$ £ 4az 分成两部分,求这两部分的体积比.
- 5. 设 W 为球面 $x^2 + y^2 + z^2 = 1$ 围成的空间区域. 试证:

6. 设 f(x) 为连续函数. F(t) = 解 $f(x^2 + y^2 + z^2) dv$, \mathbb{W} 为 $x^2 + y^2 + z^2 = t^2$ (t> 0) 所围区域,求 $F \phi(t)$.

B类

- *1. 蝌 |z| dx dv dz, 其中 \mathbb{V} 为 $x^2 + v^2 + z^2 \pm a^2$.
- 2. 蚪 $e^{|z|} dx dy dz$, 其中 \mathbb{E} 为 $x^2 + y^2 + z^2 \pounds 1$.
- 3. 蝌 $|\sqrt{x^2 + y^2 + z^2} 1| dx dy dz$, 其中 W 为 $z = \sqrt{x^2 + y^2}$ 及 z = 1 所围区域.
- *4. 蚪 $(x^2 + y^2) dx dy dz$, 其中 W 为平面曲线 y = 0 绕 z 轴旋转一周而成的旋转面.
- *5. 利用三重积分的换元法计算

- (1) 蚪 $(y-z) \arctan z \, dv$,其中W 为曲面 $x^2 + \frac{1}{2} (y-z)^2 = R^2 \, \mathcal{D} z = 0$, z = h(h > 0) 围成. (2) 蚪 $x^2 \, dx \, dy \, dz$,其中W 为曲面 $\sqrt{z} = y$, $\sqrt{z} = 2y$, z = x, $z = 2x \, \mathcal{D} z = h(h > 0)$ 围成. *6. 求曲面 $az = a^2 - x^2 - y^2$, z = a - x - y及三坐标面所围的立体的体积.
- 7. 证明: 曲面 $z=x^2+y^2+1$ 上任一点处的切平面与曲面 $z=x^2+y^2$ 所围的立体的体积为常数.

$$W = \{(x, y, z) | x^2 + y^2 \# t^2, 0 \ z \ h \} \ (h > 0, t > 0), \ \Re \lim_{t \gg 0^+} \frac{F(t)}{t^2}.$$

*9. 设函数 f(x) 是连续函数且恒大于零,

. 设函数
$$f(x)$$
 是连续函数且恒大于零,
$$F(t) = \frac{\mathbb{F} f(x^2 + y^2 + z^2) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z}{\mathbb{F} f(x^2 + y^2) \, \mathrm{d} x \, \mathrm{d} y}, \qquad G(t) = \frac{\mathcal{D}}{\mathcal{O}_{-t}^{t} f(x^2) \, \mathrm{d} x},$$

$$\Phi \mathbb{W} = \left\{ (x, y, z) \middle| x^2 + y^2 + z^2 \, \mathrm{f} f^2 \right\}, \quad D = \left\{ (x, y) \middle| x^2 + y^2 \, \mathrm{f} f^2 \right\}.$$

其中W = $\{(x,y,z) | x^2 + y^2 + z^2 \pounds t^2 \}$, $D = \{(x,y) | x^2 + y^2 \pounds t^2 \}$,

- (1) 讨论 F(t) 在 [0,+¥) 内的单调性;
- (2) 证明: 当 t > 0 时, $F(t) > \frac{2}{n}G(t)$.

公众号矩阵:保研 保研岛 经管保研岛 计算机保研岛 大学生科研竞赛 保研快讯 保研经验 保研问答
总习题十
1. 填空题:
(1) 变换累次积分次序
②
A COLUMN AND A COL
(2) 将二次积分化为 \mathbf{f} $\mathbf{d}y$ $\mathbf{f}(x,y)\mathbf{d}x$ 极坐标系下的二次积分
*(3) 设区域 $D = \left\{ (x,y) \middle -1 \# x \sin y, -\frac{p}{2} \# y \frac{p}{2} \right\}, \text{M. } \text{M. } x (\sin y - 1) \mathrm{d} s = \underline{\hspace{1cm}}.$
(4)曲面 $z=x^2+2y^2$ 与 $z=2-x^2$ 所围的立体的体积为
*(5) $ \bigoplus_{i=1}^{p-\arcsin y} dy = \underline{\qquad}. $
*(6) $\bigoplus_{x^2+y^2 \in 1} (2x+y)^2 \mathrm{d} x \mathrm{d} y = \underline{\hspace{1cm}}$
(7) 设 $I=$ 蚪 $f(\sqrt{x^2+y^2+z^2})$ d v ,其中 \mathbb{W} 为曲面 $z=\sqrt{3(x^2+y^2)}$, $x^2+y^2-y=0$ 及平面 $z=0$ 围
成的区域.将 I 化为累次积分,则在直角坐标系下 I =;在柱面坐标系下 I =
(8) 设 W 为 曲 面 $z = x^2 + y^2$ 和 $z = \sqrt{x^2 + y^2}$ 围 成 的 闭 区 域 , $f(x,y,z)$ 在 W 上 连 续 , 将
$I=rac{1}{2}$ $f(x,y,z)$ d v 化为三次积分,则在直角坐标系下 $I=2$;在柱面坐标系下 $I=2$;
球面坐标系下 I =
*(9) 设 为 球域
\mathbb{Z}^{1} \mathbb{Z}^{1} \mathbb{Z}^{2}
(10) ① 若积分 $ \mathbf{H} $
② 若积分 $f(z) dv$ 可化为定积分 $\partial_{-R}^{R} j(x) dx$,则 $j(x) =;$
$x^2 + y^2 + z^2 \in \mathbb{R}^2$
*③ 设 W = $\left\{ (x,y,z) \middle \sqrt{x^2 + y^2} \# z 2 - x^2 - y^2 \right\}$,积分可化为定积分 $\partial_0^2 j(x) dx$ 的形式,则 $j(x) = 0$
40 74 拉脑
*2. 远拜趣: (1) 设 D_1 是以 $(-1,1)$ 为中心点的正方形, D_2 是 D_1 的内切圆, D_3 是 D_1 的外切圆, $f(x,y) = e^{2y-x^2-y^2}$,记 I_1 , I_2 , I_3 分别为 $f(x,y)$ 在 D_1 , D_2 , D_3 上的二重积分,则它们满足的不等式是
记 I_1 , I_2 , I_3 分别为 $f(x,y)$ 在 D_1 , D_2 , D_3 上的二重积分,则它们满足的不等式是
A. $I_1 \# I_2 = I_3$; B. $I_2 \# I_1 = I_3$; C. $I_3 \# I_2 = I_1$; D. $I_3 \# I_1 = I_2$.
(2) $\sqrt{2}$ \sqrt
(2) 科权至标下的二人权分 $I = \underbrace{\text{up}}_{0} \text{d} q_{0}$
C. $\mathbf{H} dy \int_{0}^{y} f(x,y) dx + \mathbf{H}^{2} dy \int_{0}^{\sqrt{2y-y^{2}}} f(x,y) dx$; D. $\mathbf{H}^{1} dy \int_{0}^{\sqrt{2y-y^{2}}} f(x,y) dx$.
(3) 在极坐标下与二次积分 $\oint_{\mathbb{R}^2-x^2} \int_{\mathbb{R}^2-x^2} f(x,y) dy$ 相等的是
(3) 在极坐标下与二次积分 \mathbf{p}_{R}^{0} d $x = \sqrt{\frac{R^{2}-x^{2}}{\sqrt{R^{2}-x^{2}}}} f(x,y) dy$ 相等的是 A. \mathbf{p}_{R}^{0} d $q = \frac{R}{-R} r f(r \sin q, r \cos q) dr$; B. \mathbf{p}_{R}^{0} d $q = \frac{R}{-R} r f(r \sin q, r \cos q) dr$;
C. $\bigoplus_{i=1}^R \operatorname{d} q = \int_0^R rf(r\sin q, r\cos q)\operatorname{d} r$; D. $\bigoplus_{i=1}^{3}\int_0^{2r}\operatorname{d} q = \int_0^R rf(r\sin q, r\cos q)\operatorname{d} r$.
0.

(4) 设区域
$$D = \{(x,y) | x^2 + y^2 \, \mathfrak{t} \, 1\}$$
, $f(x,y) \in D$ 上连续,则 $f(\sqrt{x^2 + y^2}) \, \mathrm{d} \, s = _$

$$A.2p \underset{0}{\grave{\lozenge}}_{0}^{1} rf(r) dr; \qquad B.4p \underset{0}{\grave{\lozenge}}_{0}^{1} rf(r) dr; \qquad C.2p \underset{0}{\grave{\lozenge}}_{0}^{1} f(r^{2}) dr. \quad D.2p \underset{0}{\grave{\lozenge}}_{0}^{1} f(r^{2}) r dr$$

(5) 设
$$\mathbb{W}_1 = \{(x, y, z) | x^2 + y^2 + z^2 \ 3 \ R^2, z \ 0 \}$$
 , $\mathbb{W}_2 \to \mathbb{W}_1$ 位于第一卦限的部分,则

A.
$$\mathbf{H} \mathbf{H} \mathbf{d} v = 4 \mathbf{H} x \mathbf{d} v$$
;

D.
$$\mathbf{M} \mathbf{W} \mathbf{y} \mathbf{z} \, \mathbf{d} \mathbf{v} = 4 \quad \mathbf{M} \mathbf{x} \mathbf{y} \mathbf{z} \, \mathbf{d} \mathbf{v}$$

(6) 设函数
$$f(u)$$
 有连续导数,且 $f(0)=0$, $\mathbb{W}=\left\{(x,y,z)\big|x^2+y^2+z^2\pounds\ t^2\right\}$,则

$$\lim_{t \to 0} \frac{1}{p t^4} \bigoplus_{x \to 0} f(\sqrt{x^2 + y^2 + z^2}) d v = \underline{\hspace{1cm}}.$$

A.
$$f(0)$$
; B. $f(0)$; C. $\frac{1}{p}f(0)$; D. $\frac{2}{p}f(0)$

- 3. 计算下列二重积分:
 - (1) **以** $(x-y)^2 \sin^2(x+y) dx dy$,其中 D 为以 (p,0), (2p,p), (p,2p), (0,p) 为项点的平行四边形.

(3)
$$\mathbf{y} | x^2 + y^2 - 4 | ds$$
, $\mathbf{x} = \{(x,y) | x^2 + y^2 \, \mathbf{f} \, 9 \}$.

*(5) 蚪
$$xy^3e^{x^2+y^2}$$
 ds, 其中 D 是由曲线 $y=x$, $y=-x$, $x=1$ 围成的区域.

(6)
$$\lim_{D} \mathbf{m}$$
 in $\left[\frac{3}{16} - x^2 - y^2, 2(x^2 + y^2) \right] ds$, $\mathbb{E} \mathbf{p} D = \left\{ (x, y) | x^2 + y^2 \right\} \frac{3}{16} \right\}$.

*(7) 蝌
$$\frac{x}{y+1}$$
ds, D 由 $y=x^2+1$, $y=2x$, $x=0$ 围攻成的区域.

*(8) 蚪
$$(x+y)$$
 d s ,其中 D 由 $y^2 = 2x$, $x+y=4$ 及 $x+y=12$ 围成的区域.

4. 交换二次积分的积分次序:

*(1)
$$\iint_{0}^{2} dx \int_{2+x^{2}}^{\sqrt{4-x^{2}}} f(x,y) dy$$

(2)
$$\bigoplus_{3-x}^{2} dx \int_{3-x}^{\sqrt{2x-1}} f(x,y) dy$$

(3)
$$\bigoplus_{0}^{2p} dx \int_{0}^{\sin x} f(x, y) dy$$

*(4)
$$\bigoplus_{y=1}^{2} dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx$$

- 5. 若 W 是由锥面 $z^2 = 3(x^2 + y^2)$ 和球面 $x^2 + y^2 + z^2$ £ 16 所围成的位于锥面内部的那部分区域,将三重积
- 分 f(x,y,z) d v 分别化为直角坐标系下,柱面坐标系下,球面坐标系下的三次积分.
- 6. 选择适当的坐标系计算下列三重积分:

(1) 蚪
$$\sqrt{x^2 + y^2} \, dv$$
, 其中 W 是由 $x^2 + y^2 = z^2 \, Z = 1$ 围成的区域.

(2) 蝌
$$\sqrt{x^2 + y^2 + z^2} \, dv$$
,其中 \mathbb{W} 为 $x^2 + y^2 + z^2 \, \mathbf{f} \, z$.

*(3) 解
$$xe^{-\frac{x^2+y^2+z^2}{a^2}} dv$$
, W 为曲面 $x^2 + y^2 + z^2 = a^2$ 中位于第一卦限的部分区域.

(4) 蚪
$$z(x^2+y^2) dv$$
, W 为曲面 $x^2+y^2=z^2$, $z=1$ 及 $z=4$ 所围成的区域.

*(5) 蚪 |xyz| dv, 其中区域 W 为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$ £ 1.

*7. 设 f 是 [0,1] 上的连续函数, f(x) > 0 且单调减. 证明:

$$\frac{ \underbrace{\operatorname{tr}^{2}(x) \operatorname{d} x}}{ \underbrace{\operatorname{tr}^{2}(x) \operatorname{d} x}} \underbrace{\operatorname{tr}^{2}(x) \operatorname{d} x}_{0} \underbrace{\operatorname{tr}^{2}(x) \operatorname{d} x}_{0}.$$

VO Y Na rights

8. 三个有相同半径 a 的正圆柱,其对称轴两两正交,求它们相贯所得的立体的体积.

我们学了的重积分方法: 1、X型区域上计算二重积分; 2、Y型区域上计算二重积分; 3、极坐标计算二重积分; 4、先一后二计算三重积分; 5、先二后一计算三重积分; 6、柱面坐标计算三重积分; 7、球面坐标计算三重积分。

注意: 1、每种方法都要整个方法过程理解、记住、掌握; 2、各种方法中的要素做法不要<mark>张冠李戴互相串用</mark>(这是常出现的主要错误!); 3、其中只有方法 1、2、4 是一般方法,而方法 3、5、6、7 是为简单计算而学会使用的。拿到一个二重积分或者三重积分,一定要善于判断用哪种方法计算简单。

