Table of distributions

Name	Param.	PMF or PDF	Mean	Variance
Bernoulli	p	P(X = 1) = p, P(X = 0) = q	p	pq
Binomial	n, p	$\binom{n}{k} p^k q^{n-k}$, for $k \in \{0, 1, \dots, n\}$	np	npq
FS	p	pq^{k-1} , for $k \in \{1, 2, \dots\}$	1/p	q/p^2
Geom	p	pq^k , for $k \in \{0, 1, 2, \dots\}$	q/p	q/p^2
NBinom	r, p	$\binom{r+n-1}{r-1} p^r q^n, n \in \{0, 1, 2, \dots\}$	rq/p	rq/p^2
HGeom	w, b, n	$\frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}}, \text{ for } k \in \{0, 1, \dots, n\}$	$\mu = \frac{nw}{w+b}$	$\left(\frac{w+b-n}{w+b-1}\right)n\frac{\mu}{n}\left(1-\frac{\mu}{n}\right)$
Poisson	λ	$\frac{e^{-\lambda}\lambda^k}{k!}$, for $k \in \{0, 1, 2, \dots\}$	λ	λ
Uniform	a < b	$\frac{1}{b-a}$, for $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal	μ,σ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2
Log-Normal	μ, σ^2	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-(\log x - \mu)^2/(2\sigma^2)}, x > 0$	$\theta = e^{\mu + \sigma^2/2}$	$\theta^2(e^{\sigma^2}-1)$
Expo	λ	$\lambda e^{-\lambda x}$, for $x > 0$	$1/\lambda$	$1/\lambda^2$
Gamma	a, λ	$\Gamma(a)^{-1}(\lambda x)^a e^{-\lambda x} x^{-1}$, for $x > 0$	a/λ	a/λ^2
Beta	a, b	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$, for $0 < x < 1$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{a+b+1}$
Chi-Square	n	$\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}$, for $x > 0$	n	2n
Student-t	n	$\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} (1+x^2/n)^{-(n+1)/2}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$