Chapitre 25 : Représentaiton matricielle des applications linéaires

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} et E un \mathbb{K} espace vectoriel de dimension finie.

Rappel:

Définition : Matrice colonne d'un vecteur

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathscr{B} = (e_1, \dots, e_n)$ une base de E.

Soit $x \in E$. Il existe un unique n-uplet $(x_1, ..., x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.

On appelle matrice du vecteur x dans la base \mathcal{B} la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{K})$ notée $\mathrm{mat}_{\mathcal{B}}(x)$ dont les coefficients sont les coordonnées de x dans la base \mathcal{B} . On note

$$\mathrm{mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$

Proposition

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Alors, l'application :

$$\Phi_{\mathscr{B}}: E \to \mathscr{M}_{n,1}(\mathbb{K})$$
 $x \mapsto \operatorname{mat}_{\mathscr{B}}(x)$

est un isomorphisme de $\mathbb K$ espace vectoriel.

Démonstration. • $\Phi_{\mathscr{B}}$ est linéaire :

Soient $x, y \in E$, il existe $(x_1, ..., x_n)$, $(y_1, ..., y_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$, $y = \sum_{i=1}^n y_i e_i$. Soient $\lambda, \mu \in \mathbb{K}$.

Ainsi,
$$\lambda x + \mu y = \sum_{i=1}^{n} (\lambda x_i + \mu y_i) e_i$$
.

D'où :

$$\operatorname{mat}_{\mathscr{B}}(\lambda x + \mu y) = \begin{pmatrix} \lambda x_1 + \mu y_1 \\ \vdots \\ \lambda x_n + \mu y_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \mu \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \lambda \operatorname{mat}_{\mathscr{B}}(x) + \mu \operatorname{mat}_{\mathscr{B}}(y)$$

• $\Phi_{\mathscr{B}}$ est injective :

Soit $x \in E$ tel que $\operatorname{mat}_{\mathscr{B}}(x) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ alors par définition de $\operatorname{mat}_{\mathscr{B}}(x)$, on a : $x = \sum_{i=1}^{n} 0e_i = 0_E$. Donc $\operatorname{Ker} \Phi_{\mathscr{B}} = \{0_E\}$. D'où $\Phi_{\mathscr{B}}$ est injective.

• On a de plus, $\dim(E) = n = \dim(\mathcal{M}_{n,1}(\mathbb{K}))$ donc $\Phi_{\mathscr{B}}$ est bijective. Ainsi, $\Phi_{\mathscr{B}}$ est un isomorphisme.

Matrice et application linéaire

1.1 Matrice d'une application linéaire

Définition

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies respectivement égales à p et $n, \mathcal{B} = (e_1, \dots, e_p)$ une base de $E, \mathcal{C} = (f_1, ..., f_n)$ une base de F et $u \in \mathcal{L}(E, F)$.

On appelle matrice de u dans les bases \mathcal{B} et \mathcal{C} , notée $\mathrm{mat}_{\mathcal{B},\mathcal{C}}(u)$ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ définie par :

$$\mathrm{mat}_{\mathcal{B},\mathcal{C},}(u) = (m_{i,j}) = \begin{pmatrix} m_{1,1} & \dots & m_{1,j} & \dots & m_{1,p} \\ \vdots & & \vdots & & \vdots \\ m_{i,1} & \dots & m_{i,j} & \dots & m_{i,p} \\ \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j} & \dots & m_{n,p} \end{pmatrix} \quad \text{où } \forall j \in [1,p], \quad u(e_j) = \sum_{i=1}^n m_{i,j} f_i.$$

Remarque:

- / à l'ordre des vecteurs dans une base.
- $\dim(E)$ = nombre de colonnes de la matrice, $\dim(F)$ = nombre de lignes de la matrice.
- Soit E un espace vectoriel de dimension finie et \mathscr{B} une base de E. Soit $u \in \mathscr{L}(E)$ un endomorphisme de E. La matrice de u de la base \mathscr{B} dans la (même) base \mathscr{B} est appelée plus simplement matrice de u dans la base \mathscr{B} et notée $mat_{\mathscr{B}}(u) = mat_{\mathscr{B}\mathscr{B}}(u).$

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathscr{B} = (e_1, ..., e_n)$ une base de E. Alors

$$mat_B(Id_E) = I_n$$

Démonstration. On a $u(e_j) = e_j = \sum_{i=1}^n \delta_{i,j} e_i$.

Ainsi, $mat_{\mathscr{B}}(u) = (\delta_{i,j})_{i,j} = I_n$.

Exemple : Soit $\begin{array}{ccc} u: & \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & e^{i\theta}z \end{array}$. Soit $\mathscr{B} = (1,i)$ une base du \mathbb{R} -espace vectoriel \mathbb{C} . Déterminer $\mathrm{mat}_{\mathscr{B}}(u)$.

On a: $u(1) = e^{i\theta} = \cos(\theta) \times +i\sin(\theta)$.

$$u(i) = ie^{i\theta} = -\sin(\theta) \times 1 + i\cos(\theta).$$

Ainsi, on obtient:

$$\mathrm{mat}_{\mathscr{B}}(u) = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right).$$

Remarque: La matrice représentative d'une application linéaire dépend des bases choisies.

Exemple: Soient F et G deux sous-espaces supplémentaires de E, $\mathscr{B}_F = (e_1, \dots, e_r)$, $\mathscr{B}_G = (e_{r+1}, \dots, e_n)$ des bases respectives de F et G. Notons $\mathscr{B}_1 = (\mathscr{B}_F, \mathscr{B}_{\mathscr{G}})$, base de E adaptée à $E = F \oplus G$.

• Soit *p* le projecteur sur *F* parallèlement à *G*.

On a:
$$\forall j \in [1, r], \ p(e_j) = e_j = \sum_{i=1}^r \delta_{i,j} e_i + \sum_{i=r+1}^n 0 e_i.$$

Et: $\forall j \in [r+1, n], \ p(e_j) = 0.$

Ainsi:

$$\operatorname{mat}_{\mathscr{B}_1}(p) = \left(\begin{array}{cc} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{array} \right).$$

• Soit s la symétrie par rapport à F dans la direction de G.

De le même manière, on obtient : On a : $\forall j \in [1, r], p(e_j) = e_j = \sum_{i=1}^r \delta_{i,j} e_i + \sum_{i=1}^n 0e_i$.

Et: $\forall j \in [r+1, n], \ p(e_j) = -e_j = \sum_{i=1}^n 0e_i + \sum_{i=r+1}^n (-\delta_{i,j})e_i.$

Ainsi:

$$\operatorname{mat}_{\mathscr{B}_1}(s) = \left(\begin{array}{cc} I_r & 0_{r,n-r} \\ 0_{n-r,r} & -I_{n-r} \end{array} \right).$$

Proposition

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies respectivement égales à p et n, \mathscr{B} une base de E, \mathcal{E} une base de E et E et

Soit $x \in E$. Notons $X = \max_{\mathscr{B}}(x)$, $Y = \max_{\mathscr{C}}(u(x))$ et $A = \max_{\mathscr{B},\mathscr{C}}(u)$. Alors:

$$Y = AX$$

Démonstration. Notons $\mathscr{B} = (e_1, \dots, e_p), \mathscr{C} = (f_1, \dots, f_n), \max_{\mathscr{B}, \mathscr{C}} (u) = A = (a_{i,j}).$

Il existe un unique $(x_1, ..., x_p) \in \mathbb{K}^p$, $(y_1, ..., y_n) \in \mathbb{K}^n$ tels que $x = \sum_{i=1}^p x_i e_i$ et $u(x) = \sum_{i=1}^n y_i f_i$.

On a

$$\begin{cases} u(x) = u\left(\sum_{j=1}^{p} x_{j} e_{j}\right) = \sum_{j=1}^{p} x_{j} u(e_{j}) = \sum_{j=1}^{p} x_{j} \left(\sum_{i=1}^{n} a_{i,j} f_{i}\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{i,j} x_{j}\right) f_{i} & \text{par definition de mat}_{\mathscr{B},\mathscr{C}}(u) \\ u(x) = \sum_{i=1}^{n} y_{i} f_{i}. \end{cases}$$

Par unicité des coordonnées d'un vecteur dans une base, on en déduit que : $\forall i \in [1, n], \ y_i = \sum_{j=1}^p a_{i,j} x_j$. Ainsi, Y = AX.

1.2 Opérations sur les matrices de deux applications linéaires

Proposition: Matrice d'une combinaison linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies respectivement p et n, munis respectivement des bases \mathscr{B} et \mathscr{C} . Soit $(u,v)\in \mathscr{L}(E,F)^2$ et $(\lambda,\mu)\in \mathbb{K}^2$, $\max_{\mathscr{B},\mathscr{C}}(\lambda u+\mu v)=\lambda \max_{\mathscr{B},\mathscr{C}'}(u)+\mu \max_{\mathscr{B},\mathscr{C}'}(v)$.

Démonstration. Notons $\mathscr{B} = (e_1, ..., e_p)$ et $\mathscr{C} = (f_1, ..., f_p)$. Notons $\max_{\mathscr{B},\mathscr{C}}(u) = A = (a_{i,j})$, $\max_{\mathscr{B},\mathscr{C}}(v) = B = (b_{i,j})$ et $\max_{\mathscr{B},\mathscr{C}}(\lambda u + \mu v) = C = (c_{i,j})$. Soit $j \in [1, p]$, on a :

 $\begin{cases} (\lambda u + \mu v)(e_j) = \lambda u(e_i) + \mu v(e_i) = \lambda \left(\sum_{i=1}^n a_{i,j} f_i\right) + \mu \left(\sum_{i=1}^n b_{i,j} f_i\right) = \sum_{i=1}^n (\lambda a_{i,j} + \mu b_{i,j}) f_i & \text{par d\'efinition de mat}_{\mathscr{B},\mathscr{C}}(u), \max_{\mathscr{B},\mathscr{C}}(v) \\ (\lambda u + muv)(e_j) = \sum_{i=1}^n c_{i,j} f_i & \text{par d\'efinition de mat}_{\mathscr{B},\mathscr{C}}(\lambda u + \mu v). \end{cases}$

Par unicité des coordonnées d'un vecteur dans une base, on en déduit que : $\forall i \in [\![1,n]\!], c_{i,j} = \lambda a_{i,j} + \mu b_{i,j}$. Ainsi : $\forall (i,j) \in [\![1,n]\!] \times [\![1,p]\!], c_{i,j} = \lambda a_{i,j} + \mu b_{i,j}$. Ainsi, $C = \lambda A + \mu B$.

Proposition

Soit E et F deux \mathbb{K} -espaces de dimensions finies respectivement égales à p et n, munis respectivement des bases \mathscr{B} , \mathscr{C} . Alors l'application : $\begin{array}{ccc} \Phi_{\mathscr{B},\mathscr{C}} & \mathscr{L}(E,F) & \to & \mathscr{M}_{n,p}(\mathbb{K}) \\ u & \mapsto & \mathrm{mat}_{\mathscr{B},\mathscr{C}}(u) \end{array}$ est un isomorphisme de \mathbb{K} -espaces vectoriels.

En particulier : $\forall (u, v) \in \mathcal{L}(E, F)^2$, u = v; \iff $\max_{\mathcal{B}, \mathcal{C}}(u) = \max_{\mathcal{B}, \mathcal{C}}(v)$.

Démonstration. • Soient $u, v \in \mathcal{L}(E, F)$, soient $\lambda, \mu \in \mathbb{K}$,

 $\Phi_{\mathscr{B},\mathscr{C}}(\lambda u + \mu v) = \mathrm{mat}_{\mathscr{B},\mathscr{C}}(\lambda u + \mu v) = \lambda \mathrm{mat}_{\mathscr{B},\mathscr{C}}(u) + \mu \mathrm{mat}_{\mathscr{B},\mathscr{C}}(v) = \lambda \Phi_{\mathscr{B},\mathscr{C}}(u) + \mu \Phi_{\mathscr{B},\mathscr{C}}(v).$ Ainsi, $\Phi_{\mathscr{B},\mathscr{C}}$ est linéaire.

• Injectivité:

Notons $\mathscr{B} = (e_1, ..., e_p)$.

Soit $u \in \text{Ker}\Phi_{\mathscr{B},\mathscr{C}}$. On a alors $0_{n,p} = \Phi_{\mathscr{B},\mathscr{C}}(u) = \text{mat}_{\mathscr{B},\mathscr{C}}(u)$. Par définition, on a : $\forall j \in [1,p]$, $u(e_j) = 0$. Ainsi, u coïncide sur une base avec l'application nulle : donc u est l'application nulle. On a donc : $\text{Ker}\Phi_{\mathscr{B},\mathscr{C}} = \{0_{\mathscr{L}(E,F)}\}$. Ainsi, $\Phi_{\mathscr{B},\mathscr{C}}$ est injective.

• Surjectivité : Soit $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$. Notons $\mathscr{C} = (f_1, ..., f_p)$. Il existe une unique application linéaire de $\mathscr{L}(E,F)$ telle que : $\forall j \in [1, p]$, $u(e_j) = \sum_{i=1}^n a_{i,j} f_i$. On alors : $\max_{\mathscr{B},\mathscr{C}}(u) = A$. D'où la surjectivité de $\Phi_{\mathscr{B},\mathscr{C}}$.

Corollaire

Soit E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p et n. Alors, $\mathcal{L}(E,F)$ est de dimension finie et

$$\dim(\mathcal{L}(E,F)) = np = \dim(E)\dim(F)$$

Démonstration. Avec l'isomorphisme précédent, $\dim(\mathcal{L}(E,F)) = \dim\mathcal{M}_{n,p}(\mathbb{K}) = np$.

Proposition : Matrice d'une composée

Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimension finies respectives p, q, n et munis respectivement des bases $\mathscr{B}, \mathscr{B}', \mathscr{B}''$. Soit $u \in \mathscr{L}(E, F)$ et $v \in \mathscr{L}(F, G)$. Alors :

$$\operatorname{mat}_{\mathscr{B},\mathscr{B}''}(v \circ u) = \operatorname{mat}_{\mathscr{B}',\mathscr{B}''}(v) \times \operatorname{mat}_{\mathscr{B},\mathscr{B}'}(u).$$

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \ \text{Notons} \ \mathscr{B} = (e_1, \ldots, e_p), \ \mathscr{B}' = (e_1', \ldots, e_q') \ \text{et} \ \mathscr{B}'' = (e_1'', \ldots, e_n''). \\ \text{Notons} \ \ \text{mat}_{\mathscr{B}, \mathscr{B}'}(u) = A = (a_{i,j}) \in \mathscr{M}_{q,p}(\mathbb{K}), \ \ \text{mat}_{\mathscr{B}', \mathscr{B}''}(v) = B = (b_{i,j}) \in \mathscr{M}_{n,q}(\mathbb{K}) \ \text{et} \ \ \text{mat}_{\mathscr{B}, \mathscr{B}''}(v \circ u) = C = (c_{i,j}) = \mathscr{M}_{n,p}. \end{array}$ Soit $j \in [1, p]$, on a : $(v \circ u)(e_j) = v(u(e_j))$.

Par définition de $mat_{\mathscr{B},\mathscr{B}'}(u)$, on a :

$$u(e_j) = \sum_{k=1}^q a_{k,j} e_k'$$

Ainsi:

$$(v \circ u)(e_j) = v\left(\sum_{k=1}^q a_{k,j}e_k'\right) = \sum_{k=1}^q a_{k,j}v(e_k')$$

par linéarité de v. De plus, par définition de mat $_{\mathscr{B}',\mathscr{B}''}(v)$, on a :

$$\forall k \in [1, q], \ \nu(e'_k) = \sum_{i=1}^n b_{i,k} e''_i.$$

D'où:

$$(v \circ u)(e_j) = \sum_{k=1}^q a_{k,j} \left(\sum_{i=1}^n b_{i,k} e_i'' \right) = \sum_{i=1}^n \left(\sum_{k=1}^q a_{k,j} b_{i,k} \right) e_j'' i$$

De plus, par définition de $\mathrm{mat}_{\mathcal{B},\mathcal{B}''}(v\circ u),$ on a :

$$(v \circ u)(e_j) = \sum_{i=1}^n c_{i,j} e_i''$$

Ainsi, par unicité des coordonnées, on a : $\forall i \in [1, n], \ c_{i,j} = \sum_{k=1}^{q} b_{i,k} a_{k,j}$.

Donc:

$$\forall (i,j) \in [\![1,n]\!] \times [\![1,p]\!], \ c_{i,j} = \sum_{k=1}^q b_{i,k} a_{k,j}.$$

Par définition du produit matricielle , $B \times A = C$.

Proposition

Soient E et F deux \mathbb{K} -espaces vectoriels de même dimension n munis respectivement des bases \mathscr{B} et \mathscr{C} . Soit $u \in \mathcal{L}(E, F)$

u est un isomorphisme si et seulement si mat $_{\mathcal{B},\mathcal{C}}(u)$ est inversible.

On a alors $\left(\operatorname{mat}_{\mathscr{B},\mathscr{C}}(u) \right)^{-1} = \operatorname{mat}_{\mathscr{C},\mathscr{B}} \left(u^{-1} \right)$.

Démonstration.

• Supposons *u* bijective. On a $u^{-1} \circ u = Id_E$. On a alors :

$$\operatorname{mat}_{\mathscr{C},\mathscr{B}}(u^{-1}).\operatorname{mat}_{\mathscr{B},\mathscr{C}}(u) = \operatorname{mat}_{\mathscr{B},\mathscr{B}}(Id_E) = I_n$$

ce qui prouve que $\max_{\mathscr{B},\mathscr{C}}(u)$ est inversible, d'inverse $\max_{\mathscr{C},\mathscr{B}}(u^{-1})$.

• Notons $A = \max_{\mathscr{B},\mathscr{C}}(u)$ et supposons A inversible. Soit v l'unique application linéaire de $\mathscr{L}(F,E)$ telle que $\max_{\mathscr{C},\mathscr{B}}(v) = A^{-1}$ (v existe et est unique car $\Phi_{\mathscr{C},\mathscr{B}}$ est bijective). Comme $AA^{-1} = I_n$, $\max_{\mathscr{B},\mathscr{C}}(u) \max_{\mathscr{C},\mathscr{B}}(v) = \max_{\mathscr{C}}(Id_F)$ i.e. $\max_{\mathscr{C}}(u \circ v) = \max_{\mathscr{C}}(Id_F)$. Ainsi $u \circ v = Id_F$. De même, $v \circ u = Id_E$, donc u et v sont bijective, réciproques l'une de l'autre. u est donc un isomorphisme.

Exemple: Remarque:

• pour prouver que u est un isomorphisme, on aurait aussi pu remarquer que : $\dim(\mathbb{R}_2[X]) = \dim\mathbb{R}^3$ et prouver l'injectivité de u : Soit $P \in \mathbb{R}_2[X]$,

$$u(P) = 0 \iff P(0) = P(1) = P(2)$$

 $\iff P = 0 \text{ car deg}(P) \le 2 \text{ et } P \text{ admet au moins 3 racines distinctes}$

Ainsi, u est injective.

• Pour prouver que u est un isomorphisme et déterminer u^{-1} , on aurait pu résoudre un système : Soit $(x, y, z) \in \mathbb{R}^3$, soit $P = aX^2 + bX + c$, on a :

$$u(P) = (x, y, z) \iff \dots$$

x, y, z sont les paramètres et a, b, c les inconnues.

1.3 Matrice d'une famille de vecteurs - Matrice de passage

Définition : Matrice d'une famille de vecteurs

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. Soit $\mathcal{F}=(u_1,\ldots,u_p)$, une famille de vecteurs de E.

On appelle matrice de la famille (u_1, \dots, u_p) dans la base \mathcal{B} et on note $\text{mat}_{\mathcal{B}}(\mathcal{F}) = \text{mat}_{\mathcal{B}}(u_1, \dots, u_p)$ la matrice de $\mathcal{M}_{n,p}$ dont la j-ème colonne est $\text{mat}_{\mathcal{B}}(u_j)$.

$$\max_{\mathscr{B}}(\mathscr{F}) = (m_{i,j}) = \begin{pmatrix} m_{1,1} & \dots & m_{1,j} & \dots & m_{1,p} \\ \vdots & & \vdots & & \vdots \\ m_{i,1} & \dots & m_{i,j} & \dots & m_{i,p} \\ \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j} & \dots & m_{n,p} \end{pmatrix} \quad \text{où} \quad \forall j \in [\![1,p]\!], \ u_j = \sum_{i=1}^n m_{i,j} e_i.$$

Proposition

Soit $\mathcal{B} = (e_1, ..., e_n)$ une base d'un \mathbb{K} -espace vectoriel E.

$$\max_{\mathscr{B}}\mathscr{B}=I_n$$

 $D\acute{e}monstration. \ \ \text{Soit} \ j \in [\![1,p]\!], \ \text{on a} \ e_j = \sum_{i=1}^p \delta_{i,j} e_i.$

Donc $\max_{\mathscr{B}}(\mathscr{B}) = (\delta_{i,j})_{i,j \in [1,n]} = I_n$.

Exemple : Considérons $E = \mathbb{K}^3$ et \mathscr{B} sa base canonique.

Soit $x_1 = (1, 2, 3)$, $x_2 = (2, 0, 1)$ vecteurs de E.

On a:

$$\operatorname{mat}_{\mathscr{B}}(x_1, x_2) = \begin{pmatrix} 1 & 2\\ 2 & 0\\ 3 & 1 \end{pmatrix}$$

Remarque : Soient E, F deux \mathbb{K} espaces vectoriels de dimension finie respectivement n, p. Soit $\mathscr{B} = (e_1, ..., e_p)$ une base de E et \mathscr{C} une base de E. Soit $E = (e_1, ..., e_p)$ une base de E et E une base de E soit E explanation of E and E is a solution of E is a solution of E and E is a solution of E in E and E is a solution of E in E and E is a solution of E in E and E is a solution of E in E is a solution of E in E and E is a solution of E in E in E in E in E in E in E is a solution of E in E

$$\max_{\mathcal{B},\mathcal{C}}(u) = \max_{\mathcal{C}}(u(e_1),...,u(e_p)).$$

Corollaire

Soient E un \mathbb{K} -espace vectoriel de dimension n, \mathscr{B} une base E et $(u_1, \ldots, u_n) \in E^n$.

 $\text{mat}_{\mathscr{B}}(u_1,\ldots,u_n)$ est inversible si et seulement si (u_1,\ldots,u_n) est une base de E.

Démonstration. Notons $\mathscr{B} = (e_1, ..., e_n)$. Il existe un unique endomorphisme $u \in \mathscr{L}(E)$ tel que : $\forall k \in [1, n]$, $u(e_k) = u_k$. On a alors $\max_{\mathscr{B}}(u_1, ..., u_n) = \max_{\mathscr{B}}(u)$, d'où :

 $\max_{\mathscr{B}}(u_1,...,u_n)$ inversible $\Leftrightarrow \max_{\mathscr{B}}(u)$ est inversible

 $\Leftrightarrow u$ est bijectif

 \Leftrightarrow $(u(e_1),...,u(e_n))=(u_1,...,u_n)$ est une base de E.

Définition

Soit \mathscr{B} et \mathscr{B}' deux bases de E, on appelle matrice de passage de \mathscr{B} à \mathscr{B}' et on note $P_{\mathscr{B},\mathscr{B}'}$ la matrice mat $_B(B')$.

Remarque : Il est fréquent d'utiliser l'appellation d' « ancienne base » pour la base \mathcal{B} et de « nouvelle base » pour la base \mathcal{B}' . **Exemple :** Posons $E = \mathbb{R}_2[X]$ et notons \mathcal{B} la base canonique de E. On montre facilement que la famille $\mathcal{B}' = (X+1,3X-2,X^2+X)$ est aussi une base de E. On a :

$$P_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soit \mathscr{B} , \mathscr{B}' deux bases de E.

- $P_{\mathscr{B},\mathscr{B}'} = \operatorname{mat}_{\mathscr{B}',\mathscr{B}}(Id_E)$.
- $P_{\mathcal{B},\mathcal{B}} = I_n$.
- $P_{\mathscr{B},\mathscr{B}'}$ est inversible et $(P_{\mathscr{B},\mathscr{B}'})^{-1} = P_{\mathscr{B}',\mathscr{B}}$

Démonstration. • Posons $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$. On a : $\max_{\mathcal{B}', \mathcal{B}} (Id_E) = \max_{\mathcal{B}} (Id_E(e'_1), ..., Id_E(e'_n)) = \max_{\mathcal{B}} (e'_1, ..., e'_n) = \max_{\mathcal{B}} (\mathcal{B}') = P_{\mathcal{B}, \mathcal{B}'}.$

- $P_{\mathscr{B},\mathscr{B}} = \operatorname{mat}_{\mathscr{B},\mathscr{B}}(Id_E) = I_n$.
- $P_{\mathscr{B},\mathscr{B}'}P_{\mathscr{B}',\mathscr{B}} = \operatorname{mat}_{\mathscr{B}',\mathscr{B}}(Id_E)\operatorname{mat}_{\mathscr{B},\mathscr{B}'}(Id_E) = \operatorname{mat}_{\mathscr{B},\mathscr{B}}(Id_E) = I_n$. Ainsi, $P_{\mathscr{B},\mathscr{B}'}$ est inversible et $\left(P_{\mathscr{B},\mathscr{B}'}\right)^{-1} = P_{\mathscr{B}',\mathscr{B}}$. Remarque, on le savait déjà car \mathscr{B}' est une base de E donc par une proposition précédente, $\operatorname{mat}_{\mathscr{B}}(\mathscr{B}')$ est inversible.

Remarque: \bigwedge Si $\mathscr{B} \neq \mathscr{B}'$, mat $_{\mathscr{B},\mathscr{B}'}(Id_E) \neq I_n$.

1.4 Formules de changement de base

Proposition: Effet d'un changement de base sur la matrice d'un vecteur

Soient E un \mathbb{K} -espace vectoriel de dimension finie, \mathscr{B} et \mathscr{B}' deux bases de E. Soit $x \in E$. Notons $X = \max_{\mathscr{B}}(x)$ et $X' = \max_{\mathscr{B}'}(x)$. On a :

$$X = P_{\mathscr{B},\mathscr{B}'}X'$$

Démonstration. On a $P_{\mathscr{B},\mathscr{B}'}X' = \operatorname{mat}_{\mathscr{B}',\mathscr{B}}(Id_E)\operatorname{mat}_{\mathscr{B}'}(x) = \operatorname{mat}_{\mathscr{B}}(Id_E(x)) = \operatorname{mat}_{\mathscr{B}}(x) = X$.

Proposition : Effet d'un changement de base sur la matrice d'une application linéaire

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions respectives p et n. Soient \mathscr{B} et \mathscr{B}' deux bases de E, \mathscr{C} et \mathscr{C}' deux bases de E. Soit E0 et E1. En notant E2 et E3, E4, E5 et E6 et E7 deux bases de E7. Soit E8 et E9 et

$$A' = Q^{-1}AP$$

Démonstration. On a $Q^{-1} = P_{\mathscr{C}',\mathscr{C}}$.

 $\text{Ainsi}: Q^{-1}AP = P_{\mathscr{C}',\mathscr{C}} \text{mat}_{\mathscr{B},\mathscr{C}}(u) P_{\mathscr{B},\mathscr{B}'} = \text{mat}_{\mathscr{C},\mathscr{C}'}(Id_F) \text{mat}_{\mathscr{B},\mathscr{C}}(u) \text{mat}_{\mathscr{B}',\mathscr{B}}(Id_E) = \text{mat}_{\mathscr{B}',\mathscr{C}'}(Id_F \circ u \circ Id_E) = \text{mat}_{\mathscr{B}',\mathscr{C}'}(u) = A'.$

$Corollaire: Effet \ d'un\ changement\ de\ base\ sur\ la\ matrice\ d'un\ endomorphisme$

Soient E un \mathbb{K} -espace vectoriel de dimension n, \mathscr{B} et \mathscr{B}' deux bases de E. En notant $P = P_{\mathscr{B},\mathscr{B}'}$, $A = \operatorname{mat}_{\mathscr{B}}(u)$ et $A' = \operatorname{mat}_{\mathscr{B}'}(u)$, on a :

$$A = P^{-1}AP$$

Remarque: $\operatorname{mat}_{\mathscr{B}'}(u)$ et $\operatorname{mat}_{\mathscr{B}}(u)$ représentent le même endomorphisme dans des bases différentes. On dit que ces matrices sont semblables. (Il s'agit d'une relation d'équivalence sur $\mathscr{M}_n(\mathbb{K})$.)

2 Noyau, image et rang d'une matrice

2.1 Définitions

Définition

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle application linéaire canoniquement associée à A l'unique application linéaire $u \in \mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$ dont la matrice dans les bases canoniques de \mathbb{K}^p et \mathbb{K}^n est A.

Remarque : Notons \mathscr{B}_p et \mathscr{B}_n les bases canoniques de \mathbb{K}^p et \mathbb{K}^n . Soit $x \in \mathbb{K}^p$. On sait que $\mathrm{mat}_{\mathscr{B}_n}(u(x)) = A \times \mathrm{mat}_{\mathscr{B}_p}(x)$. Ainsi, l'application linéaire canoniquement associée à $A \in \mathscr{M}_{n,p}(\mathbb{K})$ est :

$$\begin{array}{ccccccc} u : & \mathbb{K}^p & \to & \mathbb{K}^n \\ & (x_1,...,x_p) & \mapsto & (y_1,...,y_n) \end{array}$$

où
$$(y_1, ..., y_n)$$
 est l'unique n - uplet tel que : $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$.

En pratique, on identifie souvent \mathbb{K}^p avec $\mathcal{M}_{p,1}(\mathbb{K})$ et \mathbb{K}^n avec $\mathcal{M}_{n,1}(\mathbb{K})$. Avec cette convention, l'application canoniquement associée s'écrit : $X \mapsto AX$.

Vocabulaire:

Si $A \in \mathcal{M}_n(\mathbb{K})$, on parle aussi d'endomorphisme $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associée à A.

Exemple : L'application linéaire canoniquement associée à la matrice $I_n \in \mathcal{M}_n(\mathbb{K})$ est $Id_{\mathbb{K}^n}$.

Définition

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$

• On appelle noyau de A et on note Ker A le sous-ensemble de $\mathcal{M}_{p,1}(\mathbb{K})$ défini par :

$$\operatorname{Ker} A = \{X \in \mathcal{M}_{p,1}(\mathbb{K}), AX = 0\}$$

• On appelle image de A en note $\mathrm{Im}A$ le sous-ensemble de $\mathcal{M}_{n,1}(\mathbb{K})$ défini par :

$$\begin{split} \operatorname{Im} A &= \{Y \in \mathcal{M}_{n,1}(\mathbb{K}) \;,\; \exists X \in \mathcal{M}_{p,1}(\mathbb{K}), \, Y = AX \} \\ &= \{AX \;,\; X \in \mathcal{M}_{p,1}(\mathbb{K}) \} \end{split}$$

Remarque:

- Ker A et $\operatorname{Im} A$ s'interprète en termes de systèmes linéaires :
 - Ker A correspond à l'ensemble des solutions du système linéaire homogène associé à A.
 - Im A correspond à l'ensemble des seconds membres tel que le système linéaire associé à A admette des solutions.
- Posons $v: \mathcal{M}_{p,1}(\mathbb{K}) \to \mathcal{M}_{n,1}(\mathbb{K})$ $X \mapsto AX$. v est linéaire. De plus, on a : Ker v = Ker A et Im V = Im A. En particulier, Ker A et Im A sont des sous-espaces vectoriels.
- En notant u_A l'application canoniquement associée à A et en identifiant les matrices colonne de $\mathcal{M}_{p,1}(\mathbb{K})$ et $\mathcal{M}_{n,1}(\mathbb{K})$ avec \mathbb{K}^p et \mathbb{K}^n , Ker A s'identifie à Ker u_A et ImA s'identifie à Im u_A .

Proposition

En notant C_1 , ..., C_p les colonnes de A, on a :

$$Im A = Vect(C_1, ..., C_p)$$

Démonstration. Posons $v: \mathcal{M}_{p,1}(\mathbb{K}) \to \mathcal{M}_{n,1}(\mathbb{K})$ v est linéaire et $\mathrm{Im} v = \mathrm{Im} A$. De plus, $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ est une famille génératrice de $\mathcal{M}_{p,1}(\mathbb{K})$ Donc

$$\operatorname{Im} A = \operatorname{Im} \nu = \operatorname{Vect} \left(A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, A \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, ..., A \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right) = \operatorname{Vect} (C_1, ..., C_p)$$

Définition

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle rang de A le rang de la famille $(C_1,...,C_p)$ des colonnes de A. On note :

$$\operatorname{rg} A = \operatorname{rg} (C_1, ..., C_p)$$

Remarque : On a ainsi rg(A) = dim Im A.

Exemple : Posons $A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 4 \\ 1 & 1 & 2 & 5 \end{pmatrix} \in \mathcal{M}_{3,4}(\mathbb{R})$. Déterminer rg (A).

On a $C_1 = C_1$ et $C_3 = 2C_1$. Donc $\text{Vect}(C_1, C_2, C_3, C_4) = \text{Vect}(C_1, C_4)$. De plus, C_1 et C_4 ne sont pas colinéaires donc (C_1, C_4) est libre. Ainsi, rg(A) = 2.

Proposition

Soient E et F deux \mathbb{K} -espace vectoriels de dimensions finies respectivement égales à p et n. Soient \mathscr{B} et \mathscr{C} des bases respectives de E et F. Soit $u \in \mathcal{L}(E,F)$. Notons $A = \max_{\mathscr{B},\mathscr{C}}(u)$. On a : $\operatorname{rg} A = \operatorname{rg}(u)$.

Démonstration. Notons $\mathcal{B} = (e_1, ..., e_p)$, $\mathcal{C} = (f_1, ..., f_n)$ et $C_1, ..., C_p$ les colonnes de A. On sait que

$$p: F \to \mathcal{M}_{n,1}(\mathbb{K})$$

$$x \to \max_{\mathscr{C}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

est un isomorphisme de K-espaces vectoriels. Ainsi,

$$rg(u) = rg(\phi \circ u)$$
 car ϕ est un isomorphisme

Or, $(e_1, ... e_p)$ est une base de E donc une famille génératrice de E.

Ainsi, $\operatorname{Im}(\phi \circ u) = \operatorname{Vect}(\phi(u(e_1)), ..., \phi(u(e_p)))$. Ainsi:

$$\begin{split} \operatorname{rg}(\phi \circ u) &= \dim(\phi(u(e_1)),...,\phi(u(e_p))) \\ &= \operatorname{rg}(\operatorname{mat}_{\mathscr{C}}(u(e_1)),...,\operatorname{mat}_{\mathscr{C}}(u(e_p))) \\ &= \operatorname{rg}(C_1,...,C_p) \\ &= \operatorname{rg}A \end{split}$$

Corollaire

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, le rang d'une matrice A est égal au rang de l'application u canoniquement associée à A.

Proposition

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- $\operatorname{rg}(A) \leq \min(n, p)$
- Théorème du rang : $p = \dim (\operatorname{Ker} A) + \operatorname{rg}(A)$

Démonstration. On connaît ces résultats pour u_A . De plus, $rg(u_A) = rg(A)$ et en utilisant l'identification entre Ker A et Ker u_A , on en déduit le résultat pour A.

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a les équivalences suivantes :

A inversible \Leftrightarrow Ker $(A) = \{0\}$ \Leftrightarrow Im $(A) = \mathcal{M}_{n,1}(\mathbb{K})$ \Leftrightarrow rg(A) = n.

Démonstration. A est inversible si et seulement si son application canoniquement associée $u_A \in \mathcal{L}(\mathbb{K}^n)$ est bijective si et seulement si u_A est injective (Ker $A = \{0\}$, via l'identification entre Ker u_A et Ker A) si et seulement si u_A est surjective (Im(A) = $\mathcal{M}_{n,1}(\mathbb{K})$, via l'identification entre Im u_A et ImA) ssi rg(A) = n. □

2.2 Calcul du rang

Proposition

Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $P \in GL_p(\mathbb{K})$ et $Q \in GL_n(\mathbb{K})$.

$$rg(QA) = rg(A) = rg(AP)$$

Démonstration. Notons u, v et w les applications linéaires canoniquement associées à A, P et Q. Notons \mathscr{B}_p et \mathscr{B}_n les bases canoniques de \mathbb{K}^p et \mathbb{K}^n . Alors $A = \max_{\mathscr{B}^p, \mathscr{B}^n}(u), P = \max_{\mathscr{B}^p}(v)$ et $Q = \max_{\mathscr{B}^n}(w)$. Ainsi, $AP = \max_{\mathscr{B}^p, \mathscr{B}^n}(u) \max_{\mathscr{B}^p}(v) = \max_{\mathscr{B}^p, \mathscr{B}^n}(u \circ v)$. Ainsi, $u \circ v$ est canoniquement associée à AP, De même, on obtient que $u \circ u$ est canoniquement associée à QA. Comme P et Q sont inversibles, v et w sont des isomorphismes. On a alors vu dans un chapitre précédent que $\operatorname{rg}(u \circ v) = \operatorname{rg}(u) = \operatorname{rg}(w \circ u)$, donc $\operatorname{rg}(AP) = \operatorname{rg}(A) = \operatorname{rg}(QA)$.

Corollaire

Si $A \sim_L B$ ou $A \sim_C B$, rg(A) = rg(B).

Ainsi, le rang d'une matrice est invariant lorsque l'on effectue des opérations élémentaires sur les lignes ou sur les colonnes.

Démonstration. Si $A \sim B$, il existe E produit de matrices d'opérations élémentaires telle que B = EA. De plus, E est inversible, donc rg(B) = rg(A). Le résultat se montre de même si $A \sim B$. □

Proposition

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, le rang de A est le nombre de pivots non nuls dans l'unique matrice réduite échelonnée par lignes équivalente par lignes à A.

Démonstration. Notons R l'unique matrice échelonnée réduit équivalente par lignes à A. On a $A \sim R$. Par la proposition précédente, on a rg(A) = rg(R). Notons r le nombre de pivots (non nuls). Ainsi :

où * désigne un coefficient nul ou pas. Par permutations des colonnes de R, on obtient la matrice :

$$R' = \begin{pmatrix} 1 & 0 & * & \cdots & * \\ & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & * & \cdots & * \\ 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

avec $R' \sim R$.

Enfin, en annulant les coefficients sur les p-r dernières colonnes à l'aide d'opérations élémentaires sur les colonnes, on obtient :

$$J_r = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

avec $J_r \sim R'$.

Ainsi, on a $\operatorname{rg}(A) = \operatorname{rg}(R) = \operatorname{rg}(R') = \operatorname{rg}(J_r) = r$. En effet si on note C_1, \ldots, C_p les colonnes de J_r , on a :

$$rg(J_r) = \dim Vect(C_1, \dots, C_p) = \dim Vect(C_1, \dots, C_r) = r$$

où $(C_1,...,C_r)$ est libre.

Corollaire

Le rang d'un système linéaire est égal au rang de sa matrice.

Démonstration. Par définition, le rang d'un système linéaire (S) de matrice associée A est égal au nombre de pivots de l'unique matrice échelonnée réduite par lignes équivalente par lignes à A.

Proposition: Rang de la transposée

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, alors $\operatorname{rg}(A) = \operatorname{rg}({}^t A)$.

Démonstration. Notons R l'unique matrice échelonnée réduite par lignes équivalente par lignes à A. Comme $A \sim R$, $\operatorname{rg}(A) = \operatorname{rg}(R)$. De plus, il existe E produit de matrices d'opérations élémentaires donc inversible tel que A = ER. Alors ${}^tA = {}^tR^tE$. Or $E \in GL_n(\mathbb{K})$ donc tE est inversible, on a ainsi $\operatorname{rg}({}^tA) = \operatorname{rg}({}^tR)$.

Notons $r = \operatorname{rg} R$. Par définition le rang de tR est égal au rang de la famille des colonnes de tR et donc au rang de la famille $(L_1, ..., L_n)$ des vecteurs lignes de R.

Or, les n-r dernières lignes de R sont nulles (r pivots dans R). Ainsi,

$$Vect(L_1, ..., L_n) = Vect(L_1, ..., L_r)$$

Ainsi, $(L_1,...,L_r)$ est une famille génératrice de Vect $(L_1,...,L_n)$.

Ainsi, $\operatorname{rg}({}^{t}R) = \dim(\operatorname{Vect}(L_1, ..., L_n)) = \dim(\operatorname{Vect}(L_1, ..., L_r)) \le r = \operatorname{rg}(R)$.

On a donc: $rg({}^tR) \le rg(R)$. Ainsi: $rg({}^tA) \le rg(A)$. Or ceci vaut pour toute matrice A, donc on a aussi $rg(A) = rg({}^t({}^tA)) \le rg({}^tA)$ puis $rg(A) = rg({}^tA)$.

Corollaire

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Si on note L_1, \ldots, L_n les lignes de A, on a :

$$\operatorname{rg}(A) = \operatorname{rg}(L_1, \ldots, L_n).$$

Démonstration. Les lignes de A sont les colonnes de tA , le résultat vient donc directement de $\operatorname{rg}(A) = \operatorname{rg}(^tA)$.