Exercice 1

Approche en mécanique classique

- ♣ Dans une volume $a\Sigma$, on a une charge +e et une charge -e, comme celle-ci sont réparties uniformément. Les densités de charges sont donc respectivement $\rho_+ = e/(a\Sigma)$ et $\rho_- = -e/(a\Sigma)$.
- ♣ Par définition, $\vec{j} = \rho \vec{v}$. Comme seuls les électrons ont une vitesse non nulle, $\vec{j} = -v'\rho_{-} = -ev'/(a\Sigma)$. Et donc $I = \oiint_{\Sigma} d\vec{S}\vec{j} = -ev'/a$.
- $\rho_{tot} = \rho_+ + \rho_- = 0 \text{ donc } \vec{E} = 0.$
- A vec le théorème d'Ampère appliqué uniquement en dehors du fil, on trouve :

$$\vec{B} = -\frac{\mu_0 I}{2\pi r} \vec{e_\theta}$$

(le signe - provient du fait que le sens du courant est opposé à celui des électrons) La force qui s'exerce sur la charge q est donc :

$$\vec{F} = -\frac{qv\mu_0 I}{2\pi r}\vec{e_r}$$

Approche en mécanique relativiste

♣ Ainsi, en se déplaçant à la vitesse \vec{v} , la charge +q voit dans son référentiel la distance entre atomes réduite d'un facteur $\gamma_+ = 1/\sqrt{1-v^2/c^2}$ et la distance entre électrons de conduction d'un facteur $\gamma_- = 1/\sqrt{1-(v-v')^2/c^2}$. On trouve donc que :

$$\rho_{+} = \frac{e}{a\Sigma} \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$\rho_{-} = \frac{e}{a\Sigma} \frac{1}{\sqrt{1 - (v - v')^2/c^2}}$$

Attention, l'hypothèse que la vitesse relative des électrons par rapport à la charge q est v'-v est une approximation. En mécanique relativiste, la vitesse relative serait :

$$v_{e_{-}/q} = \frac{v' - v}{1 - \frac{vv'}{c^2}} \tag{1}$$

A On trouve facilement avec le théorème dee Gauss que :

$$\vec{E} = \frac{\Sigma(\rho_+ + \rho_-)}{2\pi r \epsilon}$$

♣ En développant à l'ordre 2, on trouve :

$$\rho_+ + \rho_- \approx \frac{e}{a\Sigma} \frac{vv'}{c^2}$$

On trouve alors que:

$$\vec{E} = -\frac{I\mu_0 v}{2\pi r} \vec{e_r}$$

La force de Lorentz associée est donc :

$$\vec{F} = -\frac{qI\mu_0 v}{2\pi r}\vec{e_r}$$

Cette expression est identique à celle trouvée par le calcul du champ magnétique en mécanique classique. Le champ magnétique est-il est une approximation à l'ordre 2 de la force de Coulomb ?

1

Exercice 3

- \spadesuit On raisonne sur un ensemble d'électrons. On considère les évènements ayant eu lieu à partir de t=0. Il faut calculer d'abord le nombre d'électrons ayant subi une collision entre t et t+dt. Ce nombre est $N(t)-N(t+dt)=N(t)/\tau$. On a donc $N(t)=N_0\exp(-t/\tau)$. Pour un électron donné, la probabilité de ne pas subir de collision est donc $P(t)=N(t)/N_0$.
- \spadesuit Soit N_0 le nombre total d'électrons. Entre t et t+dt, il y a eu dtN_0/τ qui ont subi une collision. La quantité de mouvement de tous ces électrons est donc perdue. D'autre part, entre t et t+dt chaque électron est soumis à la force $\vec{F}(t)$, faisant changer la quantité de mouvement totale de $N_0F(t)dt$. Finalement, il vient :

$$\vec{P}(t+dt) = \vec{P}(t) - \frac{dt}{\tau}\vec{P}(t) + N_0\vec{F}dt$$
(2)

 \spadesuit On en déduit la vitesse moyenne d'un électron, définie par $\vec{v}(t) = \vec{P}/(mN_0)$:

$$\frac{d\vec{v}}{dt} = \frac{\vec{v}}{\gamma} + \vec{F}(t)$$

où $\gamma = m/\tau$.

 \spadesuit La force subie par les électrons est la force de Lorentz : $\vec{F} = -eE_0 \exp(-i\omega t)$. L'équation précédente devient :

$$-i\omega\vec{v} = -\frac{e}{m}\vec{E_0} - \frac{\vec{v}}{\tau}$$

On en déduit :

$$\vec{v} = \frac{e\tau}{m} \frac{E_0}{i\omega\tau - 1}$$

En introduisant la conductivité $\gamma,\,\vec{j}=\gamma\vec{E},$ où $\vec{j}=-ne\vec{v},$ on trouve :

$$\gamma(\omega) = \frac{ne^2\tau}{m} \frac{1}{1 - i\omega\tau}$$

- \spadesuit Dans un métal, qui est un réseau cristallin, il y a typiquement un électron tous les Angstrom, soit tous les 10^{-10} m. On obtient des densités typiques de 10^{30} atomes par m³.
- ♠ La résistivité statique correspond à une fréquence qui tend vers 0, cad :

$$\rho = \frac{1}{\gamma} = \frac{m}{ne^2\tau}$$

On trouve donc $\tau \simeq 10^{-14} \text{s}$.

Exercice 4

- \heartsuit Résistance classique d'un cylindre : $R = L/(\gamma \pi a^2)$.
- \heartsuit Isolons le câble arrivant en A. Par symétrie, le courant partira dans tous les directions. La densité de courant va s'écrire en un point M:

$$\vec{j_A} = \frac{I}{2\pi e} \frac{\vec{e_r}}{\|\vec{AM}\|}$$

On effectue le même raisonnement pour B. La densité de courant totale est alors :

$$ec{j} = rac{I}{2\pi e} \left[rac{ec{e_r}}{\|ec{AM}\|} - rac{ec{e_r}}{\|ec{BM}\|}
ight]$$

 \heartsuit En intégrant la relation $\vec{j} = \gamma \vec{E}$ le long du chemin AB, dont la coordonnée sera donnée par x, en faisant varier x de a à d-a (pour éviter une divergence de la densité de courant) :

$$\int_{a}^{d-a} dx j(x) = \frac{I}{2\pi e} \int_{a}^{d-a} dx \left(\frac{1}{x} + \frac{1}{d-x}\right) = \gamma \int_{a}^{d-a} dx E = \gamma \int_{a}^{d-a} dx \frac{dV}{dx}$$

On trouve alors:

$$\Delta V = \frac{I}{\pi e \gamma} \log \left(\frac{d - a}{a} \right)$$

 \heartsuit En se plaçant en coordonnées sphériques, on a :

$$ec{j} = rac{I}{2\pi} \left[rac{ec{e_r}}{\| ec{AM} \|^2} - rac{ec{e_r}}{\| ec{BM} \|^2}
ight]$$

Attention, il y a un facteur 2 par rapport à la surface d'une sphère car il s'agit de demi-sphères. On trouve alors :

$$\Delta V = \frac{I}{\pi \gamma} \frac{d}{a(d-a)}$$

Exercice 5

 \diamondsuit Les lignes de champs sont radiales cad $\vec{j}=j(r)\vec{e_r}$. On a donc :

$$\vec{j}(r) = \frac{I}{2\pi r^2} \vec{e_r}$$

On en déduit :

$$\mathrm{d}V = -E(r)dr = \frac{-I}{2\pi r^2 \gamma} dr$$

Par intégration, on trouve :

$$V(r) = \frac{I}{2\pi r \gamma}$$

♦ Le potentiel de l'hémisphère est donc simplement :

$$U = \frac{I}{2\pi a \gamma}$$

La résistance est donc tout simplement $R=\frac{1}{2\pi a\gamma}$. On trouve qu'elle ne dépasse pas 30Ω si $a>53{\rm cm}$.

 \diamondsuit La tension de pas vaut, si d = 1m:

$$V_p(r) = V(r) - V(r+d) = \frac{I}{2\pi\gamma r(r+d)}$$

On trouve que $V_p(10m) = 7,2kV$ et $V_p(100m) = 79V$

 \diamondsuit Le courant qui traverse la personne est $i=V_p/R$. On trouve i(10)=2,9A et i(100)=32mA.