

	task	type	time limit	memory limit
Α	Cities	standard	2.00 s	256 MB
В	Maze	output only	N/A	N/A
С	Swap	standard	1.00 s	256 MB

A Cities

Det er n byer i Byteland, og k av disse er viktige byer som kongen av Byteland besøker ofte.

Det er også m veier i landet, og hver av dem går mellom to byer. Dessverre er tilstanden på veiene for dårlig til at kongen kan kjøre på dem i sin sportsbil i maksimal hastighet.

For hver vei så er kostnaden for å renovere veien kjent. Din oppgave er å bestemme hvilke veier som skal renoveres slik at alle de k viktige byene er sammenkoblet med et nettverk av renoverte veier, slik at den totale kostnaden er så lav som mulig.

Input

Den første linjen i input inneholder tre heltall n, k og m: antall byer, antall viktige byer og antall veier. Byene er nummerert $1, 2, \ldots, n$. Den andre linjen inneholder k heltall: de viktige byene.

De siste m linjer beskriver veiene. Hver av disse linjene inneholder tre heltall $a,\,b$ og c, som betyr at det er en toveiskjørt vei mellom byene a og b, og at renoveringskostnaden for veien er c.

Man kan anta at det for ethvert par av byer er mulig å kjøre mellom dem langs det eksisterende veinettet.

Output

Du skal gi som output den minste totale kostnaden for renovering av veier slik at kongen kan reise mellom alle viktige byer med sin sportsbil.

Example

Input:

4 3 6

1 3 4

1 2 4

1 3 9 1 4 6

2 3 2

2 4 5

3 4 8

Output:

11

Subtasks

In all subtasks $1 \le c \le 10^9$ and $n \ge k$.

Subtask 1 (22 points)

- $2 \le k \le 5$
- $n \leq 20$
- $1 \le m \le 40$

Subtask 2 (14 points)

- $\bullet \ 2 \leq k \leq 3$
- $n \le 10^5$

• $1 \le m \le 2 \cdot 10^5$

Subtask 3 (15 points)

- ullet $2 \leq k \leq 4$
- $n \leq 1000$
- $\bullet \ 1 \leq m \leq 2000$

Subtask 4 (23 points)

- \bullet k=4
- $n \le 10^5$
- $\bullet \ 1 \stackrel{-}{\leq} m \stackrel{\cdot}{\leq} 2 \cdot 10^5$

Subtask 5 (26 points)

- *k* = 5
- $n \leq 10^5$
- $1 \leq m \leq 2 \cdot 10^5$

B Maze

Uolevi har utviklet et spill der man samler mynter i en labyrint.

For øyeblikket er spillet for lett. Kan du lage noen mer utfordrende labyrinter for dette spillet?

Hver labyrint er et rektangulært rutenett som består av gulv (.) og vegger (#). En av cellene er en base (x), og noen celler kan inneholde mynter (o). Spilleren begynner i basen, og kan gå til venstre, høyre, opp og ned. Målet er å samle alle myntene i labyrinten og deretter gå tilbake til basen.

Vanskelighetsgraden til en labyrint er lengden av den korteste veien som begynner i basen, samler alle mynter og returnerer til basen.

Input

Input begynner med et heltall t: antall labyrinter. Etter dette kommer t linjer. Hver slik linje inneholder tre heltall n, m og k. Dette betyr at størrelsen på labyrinten din må være $n \times m$ celler, og at den må ha nøyaktig k mynter.

Output

Output skal inneholde beskrivelser av t labyrinter, atskilt med en tom linje, i samme rekkefølge som i input. Hver labyrint må kunne løses.

Example

```
Input:
2
3 3 1
4 7 2

Output:
###
#.x
#0#
.0.####
....#
...##.#
###0...
```

Vanskelighetsgraden til den første labyrinten er 4, og for den andre er det 18.

Submission

Dette er en 'output only' oppgave, og det finnes kun en enkelt inputfil (maze.in). Du kan laste ned inputfilen <u>her</u>. Du må sende inn en outputfil (maze.out) som inneholder alle labyrinter spesifisert i inndatafilen.

Grading

For hver labyrint er poengsummen din $\max(0,100-3(d-x))$ der x er vanskelighetesgraden av din labyrint og d er vanskelighetsgraden av den mest utfordrende labyrint funnet av juryen. Din totale poengsum for oppgaven er gjennomsnittet av alle poengsummer rundet ned til nærmeste heltall.

C Swap

Du er gitt en sekvens av n tall x_1, x_2, \ldots, x_n . Hvert tall $1, 2, \ldots, n$ opptrer nøyaktig en gang i sekvensen.

Du kan endre rekkefølgen på tallene ved hjelp av bytter. Det er n-1 runder med bytter og disse er nummerert $k=2,3,\ldots,n$. I runde k kan du enten bytte verdiene x_k og $x_{\lfloor k/2 \rfloor}$ i sekvensen eller du kan la vær å utføre dette byttet.

Sekvens a_1, a_2, \ldots, a_n er leksikografisk mindre enn sekvens b_1, b_2, \ldots, b_n dersom det finnes en indeks j ($1 \le j \le n$) slik at $a_k = b_k$ for alle k < j og $a_j < b_j$.

Hva er den leksikografisk minimale sekvens du kan oppnå?

Input

Den første inputlinjen inneholder et heltall n.

Den andre inputlinjen inneholder n heltall: tallene i sekvensen.

Output

Du må gi som output n heltall: den leksikografisk minimale sekvensen som kan oppnåes.

Example

Input:

3 4 2 5 1

Output:

2 1 3 4 5

Subtask 1 (10 points)

• $1 \le n \le 20$

Subtask 2 (11 points)

• $1 \le n \le 40$

Subtask 3 (27 points)

• $1 \le n \le 1000$

Subtask 4 (20 points)

• $1 < n < 5 \cdot 10^4$

Subtask 5 (32 points)

• $1 < n < 2 \cdot 10^5$