3. It is a fact that, for all real numbers x > 2,

$$10|x^6| \leq |17x^6 - 45x^3 + 2x + 8| \leq 30|x^6|.$$

Given this, what sort of Big-O, Big- Ω and/or Big- Θ statements are possible here?

1. If $m \ge n$ and f is a polynomial of degree n, then f(x) is $O(x^m)$.

2. n! is $O(n^n)$ and, as a consequence, $\log_b n!$ is $O(n \log_b n)$, for any b > 1.

$$n! = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$$
 Conversity

 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n \cdot n \cdot n$
 $n = n(n-1)(n-2) \cdots (1) \leq n \cdot n \cdot n \cdot n \cdot n \cdot n \cdot n$

3. It can be shown that $n < 2^n$ for $n \ge 1$ and, as a consequence, $\log_b n$ is O(n) for all b > 1.

$$n : \mathcal{O}(2^n)$$
 taking logs $\log_1 n : \mathcal{O}(\log_2 n)$ $(n \cdot \log_2 n)$

4. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.

Take
$$f(n) = \log(n!) + n^2$$
 is $O(\max(\ln \log n) + n^2)$

5. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.

is O(nloga)

So $f(n) = 3n^{2} \log_{2} n + 2n^{3}$ $f_{2}(n) = n + 2$ $f_{1} \leq O(n^{3})$ $f_{2} = n + 2$ So product $f_{1} \cdot f_{2} = (n + 2)(3n^{2})\log_{2} n + 2n^{3}$ 7,5 $O(n^{4})$ 6. As a result of Facts 3 and 5, we have

 $n \log_b n$ is $O(n^2)$, $x^p (\log_b x)^q$ is $O(x^{p+q})$, etc

$$f(x) = x^{3}(\log_{2} x)^{5}$$
; $f(x^{8})$
By # 9, f is $f(x^{4})$.

7. If f(x) is O(g(x)) and g(x) is O(h(x)), the f(x) is O(h(x)).

8. Let c > b > 1, and d > 0. For comparing of a power function x^d with an exponential growth runction b^x , we have

$$x^d$$
 is $O(b^x)$, but not vice versa.

For comparing the two exponential growth functions c^x , b^x we have

$$b^x$$
 is $O(c^x)$, but not vice versa.

9. It requires calculus, but it can be shown that for any b > 0, c > 0, $(\log_b x)^c$ is O(x).

$$(\log_2 x)^8$$
 and $(\log_2 x)^8$ both $O(x)$

There is, therefore, this increasing sequence of orders: 1, $\log_h n$, $(\log_h n)^2$, $(\log_h n)^3$, ..., n, $n \log_h n$, $n(\log_h n)^2$, ..., n^2 , $n^2 \log_h n$, n^3 , ..., 2^n , 3^n , ..., n!.

Theorem 1: Let f(x) be a polynomial of degree n—that is,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

with $a_n \neq 0$. Then

- f(x) is $O(x^s)$ for all integers $s \ge n$.
- f(x) is not $O(x^r)$ for all integers r < n.
- f(x) is $\Omega(x^r)$ for all integers $r \le n$.
- f(x) is not $\Omega(x^s)$ for all integers s > n.
- f(x) is $\Theta(x^n)$.

f(x) = 200 is O(1).

withusser

k = 0

c = 201

Algorithmic Complexity

Basic idea: relate size n of input to, for instance

- time complexity (often assessed by number of steps)
 - o worst-case analysis
 - o average-case analysis
- space complexity
- terms like
 - o linear complexity
 - o quadratic complexity
 - o polynomial complexity
 - exponential complexity

Algorithm:

1. Seek divisor of $n \in \mathbb{Z}^+$

Find a divisor of n

Similar to analysis of linear search algorithm

- 2. binary search
- 3. bubble sort
- 4. matrix multiplication

Aly.

Start at j=2

Does j Livide n

-i.e. compare

[n/j] w/ n/j

add 1 to j

loop until j E M

The ar

complexity