КАФЕДРА №

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3 Настройка подсистемы тактирования Микроконтроллера по курсу: Программирование встроенных приложений	должность, уч. степень, звание	подпись, дата	инициалы, фамилия
Настройка подсистемы тактирования Микроконтроллера			
Микроконтроллера	ОТЧЕТ О Ј	ТАБОРАТОРНОЙ РАБО	OTE № 3
	Настрой	ка подсистемы тактирог	вания
по курсу: Программирование встроенных приложений		Микроконтроллера	
	по курсу: Прогр	раммирование встроенных г	приложений
	АБОТУ ВЫПОЛНИЛ		
	СТУДЕНТ ГР. №	подпись, дата	инициалы, фамили:

1. Задание

24	44 (HSI)	PA15	PB0

2. Листинг

```
#include "RTE_Components.h" // Component selection
#include CMSIS_device_header // Device header
#define DELAY { nop(); nop(); nop(); nop(); // Задержка на 4 такта
int main(void)
 // Supportive variables (compiler don't modify)
  volatile uint32 t StartUpCounter = 0, HSEStatus = 0;
 // Turn on HSE oscillator
  SET_BIT(RCC->CR, RCC_CR_HSEON);
 // Wait for HSE to turn on
  do {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;
  \} while ((HSEStatus == 0) && (StartUpCounter != 0x15000));
 // Check if HSE is working
 if ((RCC->CR & RCC_CR_HSERDY) != RESET) {
    // Configure FLASH
    FLASH->ACR=0;
    // AHB Pre = 4
    RCC->CFGR |= (uint32_t) RCC_CFGR_HPRE_DIV4;
    // Configure PLL for 44 MHz
    CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE_PREDIV |
RCC_CFGR_PLLMUL16);
    RCC->CFGR2 |= (uint32_t)RCC_CFGR2_PREDIV_DIV3;
    RCC->CFGR |= (uint32_t)RCC_CFGR_PLLXTPRE_HSE_PREDIV_DIV2;
```

```
// Turn on PLL and wait for it to stabilize
   SET_BIT(RCC->CR, RCC_CR_PLLON);
    while ((RCC->CR \& RCC\_CR\_PLLRDY) == 0) {}
   // Set PLL as clock source for the MC
   RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
   while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{}
  } else {
    while (1) {} // HSE doesn't launch
  }
 // Update system core clock
 SystemCoreClockUpdate();
 // Configure MCO to HSI
 SET_BIT(RCC->CFGR, RCC_CFGR_MCO_HSI);
 // Enable clocking for GPIOA and GPIOB
 SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOAEN);
 SET_BIT(GPIOA -> MODER,GPIO_MODER_MODER8_1);
 CLEAR_BIT(GPIOA -> AFR[1], GPIO_AFRH_AFRH0_Msk);
 SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOBEN);
 // Set PA15 and PB0 to output mode
 GPIOA->MODER&=~GPIO_MODER_MODER15;
 SET_BIT(GPIOA->MODER, GPIO_MODER_MODER15_0);
 SET_BIT(GPIOB->MODER, GPIO_MODER_MODER0_0);
 // Configure PA15 and PB0 output types and pull-up/pull-down settings
 SET_BIT(GPIOA->OTYPER, GPIO_OTYPER_OT_15);
 SET_BIT(GPIOB->PUPDR, GPIO_PUPDR_PUPDR0_1);
 SET_BIT(GPIOA->PUPDR, GPIO_PUPDR_PUPDR15_0);
```

```
while (1) {
    // Set PA15 and PB0
    GPIOA->BSRR = GPIO_ODR_15;
    GPIOB->BSRR = GPIO_ODR_0;

    // Delay
    //DELAY; DELAY;

    // Reset PA15 and PB0
    GPIOA->BRR = GPIO_ODR_15;
    GPIOB->BRR = GPIO_ODR_0;

    // Delay
    //DELAY; DELAY;
}
```

3. Осциллограмму вывода МСО (РА8)

4. Осциллограммы

а)Без оптимизации

Порт РА15.

Порт РВ0.

б)С оптимизацией

Порт РА15.

Порт РВ0.

в)с задержкой

Порт РА15.

Порт РВ0.

5. Сводная таблица

Линия	Измеряемый параметр								
	Частота	Амплитуда,	Длительность	Время	Время				
	следования	В	импульса, нс	нарастания	спада				
	импульсов,			фронта, нс	среза, нс				
	КГц								
	Оптимизация компилятора отключена 'Level 0(-O0)'								
PA15	363	0,48	2845	1000	100				
PB0	363	3	2845	100	100				
Оптимизация компилятора включена 'Level 3(-O3)'									
PA15	1333	0,41	752	250	50				
PB0	1333	3	752	50	50				
Добавлена задержка (~ 0,000009 сек)									
PA15	210	0.67	4800	2150	200				
PB0	210	3	4800	200	200				

6. Расчет соотношения НСLК с частотой переключения выводов

Без оптимизации: $16\ 000\ 000\ /\ 363\ 000 = 44$

С оптимизацией: $16\,000\,000\,/\,1\,334\,000 = 12$