Ускоряем Apache.JMeter

«Ты можешь быстрее. Предела нет. Знай: ты можешь! Будь уверен.» (Морфеус, «Матрица»).

О себе

Вячеслав Смирнов

Эксперт по тестированию в Райффайзенбанк

Занимаюсь тестированием производительности

Читаю почту:

Публикую код:

https://github.com/polarnik/

В этой презентации

- Когда нужна оптимизация
- Известные рекомендации
- Производительность стандартных компонентов
 - результаты исследования

Барианты подачи нагрузки из эметег

Варианты подачи нагрузки из JMeter

По частоте использования выделю (субъективно) следующие варианты подачи нагрузки из Apache. JMeter:

- Встроенные компоненты
- Плагины
- Библиотеки
 - ∘ JSR223 Sampler и дополнительные библиотеки
 - JUnit Sampler и дополнительные библиотеки
- Внешние приложения
 - o через os Process Sampler
- Внешние системы
 - o по отношению к которым Apache. JMeter выступает, как контрольный центр

Варианты подачи нагрузки из JMeter

Прежде всего поговорим о производительности встроенных компонентов и популярных плагинов для Apache. JMeter:

- Встроенные компоненты
- Плагины
- Библиотеки
 - ∘ JSR223 Sampler и дополнительные библиотеки
 - JUnit Sampler и дополнительные библиотеки
- Внешние приложения
 - o через os Process Sampler
- Внешние системы
 - ∘ по отношению к которым Apache. JMeter выступает, как контрольный центр

С чего всё начинается

- недовес:
 - нужно 1000 сценариев в минуту
 - видим 800 сценариев в минуту
- перегруз:
 - нужно уложиться в 4 ГБайта ОЗУ
 - o ВИДИМ java.lang.OutOfMemoryError: Java heap space

И есть скрипт на Apache. JMeter, и, возможно, причина в нём.

Некоторые причины недовеса и перегруза

- Профиль нагрузки:
 - расчитан неверно
- Ограничения:
 - выставленные ограничения не позволяют использовать доступные системные ресурсы
- Ошибки:
 - ошибки компонентов и скрипта не позволяют нагрузить систему
- Неоптимальное использование компонентов:
 - неоптималные настройки Apache. JMeter или неоптимальное использование компонентов

Некоторые причины недовеса и перегруза

- Профиль нагрузки:
 - ошибка расчёта профиля нагрузки
 - ошибка выставления шага нагрузки
- Ограничения:
 - сработали ограничения JVM
 - ∘ сработали ограничения cgoups
- Ошибки:
 - ∘ ОШИбКИ Apache.JMeter
 - ошибки разработки скрипта
- Неоптимальное использование компонентов:
 - недостаточно оперативной памяти, **можно изменить скрипт**
 - недостаточно ресурсов процессора, можно изменить скрипт
- недостаточно соединений, **можно изменить скрипт**

Что будем делать?

Известные рекомендации

- Будет корректно рассчитывать профиль нагрузки
- Понимая ограничения JVM, cgroups, системы
- Обходя и не допуская ошибок

Неизвестные рекомендации

- Исследуем
 - потребление памяти компонентами Apache. JMeter
 - потребление ресурсов процессора компонентами
 - ∘ общее влияние компонентов Apache. JMeter на производительность
- Выберем подходы для типовых задач

Когда нужна оптимизация

Опимизация оправдана, когда:

- Применены известные (очевидные) рекомендации
 - Профиль нагрузки известен и расчитан корректно
 - Известны и настроены ограничения JVM, cgroups, системы
 - Скрипт написан без ошибок (без функциональных ошибок)

Сначала нужно делать то, что нужно делать с начала (капитан)

Профиль нагрузки

- Закрытая модель нагрузки (RPS и потоки ограничены сверху)
- Шаг нагрузки расчитан верно, потоки расчитаны верно
- Зависающие запросы прерываются
- Ошибочные тесты прерываются

Ограничения JVM и системы

- операционная система имеет ограничения и настройки
 - в операционной системе выполняются процессы
- для процессов есть ограничения и настройки
 - ∘ java-машина выполняет Apache.JMeter и его компоненты
 - некоторые компоненты Apache.JMeter запускают новые процессы

•

•

Ошибка расчёта профиля нагрузки

Thread Group и одноразовые пользователи без таймеров

Дано:

• нужна интенсивность 16 в секунду

Ошибиться можно с математикой или пониманием

- Thread Properties
 - Number of Threads (users): 16000
 - Ramp-Up Period (in seconds): 1000

14

Ошибка выставления шага нагрузки

Известные рекомендации

Производительность стандартных компонентов

Постпроцессоры

- Regular Expression Extractor
- CSS Selector Extractor (was: CSS/JQuery Extractor)
- XPath2 Extractor
- XPath Extractor
- Result Status Action Handler
- BeanShell PostProcessor
- JSR223 PostProcessor
- JDBC PostProcessor
- JSON Extractor
- Boundary Extractor
- Debug PostProcessor

http://jmeter.apache.org/usermanual/component_reference.html

Постпроцессоры для извлечения значений из ответа Для HTML

- Regular Expression Extractor
- CSS Selector Extractor (was: CSS/JQuery Extractor)
- XPath2 Extractor
- XPath Extractor
- BeanShell PostProcessor
- JSR223 PostProcessor
- Boundary Extractor

Постпроцессоры для извлечения значений из ответа

Для XML

- Regular Expression Extractor
- XPath2 Extractor
- XPath Extractor
- BeanShell PostProcessor
- JSR223 PostProcessor
- Boundary Extractor

Постпроцессоры для извлечения значений из ответа

Для JSON

- Regular Expression Extractor
- BeanShell PostProcessor
- JSR223 PostProcessor
- Boundary Extractor

Известные проблемы производительности

Решение долгих и больших задач

Отправка больших НТТР-запросов

Получение больших НТТР-ответов