模块二 常用逻辑用语 (★★)

强化训练

- 1. (2023 浙江模拟 ★) " $\alpha = 60^{\circ}$ " 是 " $\sin \alpha = \frac{\sqrt{3}}{2}$ "的()
- (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 答案: A

解析: 判断充分条件、必要条件,就看二者能否互推,先看充分性,即由 $\alpha = 60^{\circ}$ 能否推出 $\sin \alpha = \frac{\sqrt{3}}{2}$,

当 $\alpha = 60^{\circ}$ 时, $\sin \alpha = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$,故充分性成立;再看必要性,即由 $\sin \alpha = \frac{\sqrt{3}}{2}$ 能否推出 $\alpha = 60^{\circ}$,

当 $\sin \alpha = \frac{\sqrt{3}}{2}$ 时, α 不一定等于 60° ,例如可取 $\alpha = 120^{\circ}$,也满足 $\sin \alpha = \frac{\sqrt{3}}{2}$,所以必要性不成立,故选 A.

- 2. (2022・陕西模拟・★) 若 x, y 为正实数,则 " $\frac{1}{x} < \frac{1}{y}$ " 是 " $\log_2 x > \log_2 y$ "的()
- (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 答案: C

解析: 判断充分条件、必要条件,就看二者能否互推,先看充分性,即由 $\frac{1}{x} < \frac{1}{y}$ 能否推出 $\log_2 x > \log_2 y$,

若 $\frac{1}{x} < \frac{1}{y}$,则 $\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy} < 0$,又x,y为正实数,所以xy > 0,从而y - x < 0,故x > y > 0,

所以 $\log_2 x > \log_2 y$,故充分性成立;再看必要性,即由 $\log_2 x > \log_2 y$ 能否推出 $\frac{1}{x} < \frac{1}{y}$

若 $\log_2 x > \log_2 y$,则 x > y > 0,所以 $\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy} < 0$,从而 $\frac{1}{x} < \frac{1}{y}$,故必要性成立;所以选 C.

- 3. (2023 •四川成都一模 •★★) 已知直线 l, m 和平面 α , β ,若 $\alpha \perp \beta$, $l \perp \alpha$,则 " $l \perp m$ " 是 " $m \perp \beta$ " 的 ()
- (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 答案: B

解析: 先看充分性,即由 $l \perp m$ 能否推出 $m \perp \beta$,如图 1,当 $l \perp m$ 时, $m \perp \beta$ 不成立,所以充分性不成立;再看必要性,即由 $m \perp \beta$ 能否推出 $l \perp m$,如图 2,当 $m \perp \beta$ 时,必有 $l \perp m$,所以必要性成立;故选 B.

- (A) 充分条件但不是必要条件
- (B) 必要条件但不是充分条件

(C) 充要条件

(D) 既不是充分条件也不是必要条件

答案: B

解析:对比两个式子发现,将 $\sin^2 \beta$ 换成 $1-\cos^2 \beta$,即可统一函数名,

 $\sin^2 \alpha + \sin^2 \beta = 1 \Leftrightarrow \sin^2 \alpha = 1 - \sin^2 \beta \Leftrightarrow \sin^2 \alpha = \cos^2 \beta \Leftrightarrow \sin \alpha = \pm \cos \beta \Leftrightarrow \sin \alpha \pm \cos \beta = 0$

所以 " $\sin^2 \alpha + \sin^2 \beta = 1$ " 是 " $\sin \alpha + \cos \beta = 0$ " 必要不充分条件.

5. $(2022 \cdot 天津一模 \cdot ★★) 在等比数列 <math>\{a_n\}$ 中,公比为 q,则 " q>1 " 是 " $a_{n+1}>a_n(n \in \mathbb{N}^*)$ " 的 ()

- (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件

答案: D

解析: 先看充分性, 当q>1时, 要比较 a_{n+1} 和 a_n , 可作差, 并将 a_{n+1} 化为 a_nq , 提公因式来看,

 $a_{n+1}-a_n=a_nq-a_n=a_n(q-1)$, 其中q-1>0, 但若 $a_n<0$, 则 $a_{n+1}-a_n<0$, 即 $a_{n+1}< a_n$, 充分性不成立;

再看必要性,当 $a_{n+1} > a_n$ 时, $a_{n+1} - a_n = a_n q - a_n = a_n (q-1) > 0$,

6. (2023 • 辽宁模拟 • ★★) "对任意的 $x \in \mathbb{R}$,都有 $2kx^2 + kx - \frac{3}{8} < 0$ "的一个充分不必要条件是()

(A) -3 < k < 0 (B) $-3 < k \le 0$ (C) -3 < k < 1 (D) k > -3

答案: A

解析:可先求出充要条件,再选答案,所给不等式平方项含字母,需讨论它为0的情形,

当 k = 0 时, $2kx^2 + kx - \frac{3}{8} < 0$ 即为 $-\frac{3}{8} < 0$, 该不等式恒成立;

当
$$k \neq 0$$
 时, $2kx^2 + kx - \frac{3}{8} < 0$ 恒成立 \Leftrightarrow
$$\begin{cases} 2k < 0 \\ \Delta = k^2 - 4 \times 2k \times (-\frac{3}{8}) < 0 \end{cases}$$
 解得: $-3 < k < 0$;

综上所述, $2kx^2 + kx - \frac{3}{8} < 0$ 对任意的 $x \in \mathbb{R}$ 恒成立的充要条件是 $-3 < k \le 0$,

让选的是充分不必要条件,应取上述范围的一个真子集,因为(-3,0) (-3,0],所以选 A.

7. (2022 • 四川成都期末 • ★) 设命题 $p:\ln(x-1)<0$,命题 $q:a\leq x\leq a+2$,若 p 是 q 的充分不必要条件, 则实数a的取值范围是(

(A)
$$[0,1]$$
 (B) (0,1) (C) $(-\infty,0] \cup [1,+\infty)$ (D) $(-\infty,0) \cup (1,+\infty)$

答案: A

解析:由所给不等式容易得到对应的集合,故可将已知条件翻译成集合间的包含关系,再求a的范围,

$$\ln(x-1) < 0 \Leftrightarrow 0 < x-1 < 1 \Leftrightarrow 1 < x < 2$$
, $\forall \exists A = (1,2)$, $B = [a, a+2]$,

因为p是q的充分不必要条件,所以A B,如图,应有 $\begin{cases} a \le 1 \\ a+2 \ge 2 \end{cases}$,所以 $0 \le a \le 1$.

8. (2022・安徽月考・★★) 已知集合 $A = \{x \mid y = \ln(3x^2 - 7x + 4)\}$, $B = \{x \mid 27^{x+m} - 9 > 0\}$, 若" $x \in A$ " 是 " $x \in B$ "的必要不充分条件,则实数 m 的取值范围是 ...

答案:
$$(-\infty, -\frac{2}{3}]$$

解析: 题干集合A和B中的元素不清晰, 先对其进行分析,

集合 A 为函数 $y = \ln(3x^2 - 7x + 4)$ 的定义域,由 $3x^2 - 7x + 4 > 0$ 可得 (3x - 4)(x - 1) > 0,

解得:
$$x < 1$$
或 $x > \frac{4}{3}$,所以 $A = (-\infty, 1) \cup (\frac{4}{3}, +\infty)$;由 $27^{x+m} - 9 > 0$ 可得 $27^{x+m} > 9$ ①,

要进一步求解,可将底数都化为3,用指数函数的单调性来分析,

不等式①等价于 $(3^3)^{x+m} > 3^2$,即 $3^{3x+3m} > 3^2$,所以3x + 3m > 2,解得: $x > \frac{2-3m}{3}$,故 $B = (\frac{2-3m}{3}, +\infty)$;

" $x \in A$ "是" $x \in B$ "的必要不充分条件等价于" $x \in B$ "是" $x \in A$ "的充分不必要条件,

由"小可推大,大不推小"知 $_B$ $_A$,如图,应有 $\frac{2-3m}{3} \ge \frac{4}{3}$,解得: $m \le -\frac{2}{3}$.

- 9. (2022・北京模拟・★) 已知命题 $p:\exists x>5$, $2x^2-x+1>0$,则 p 的否定为()
- (A) $\forall x \le 5$, $2x^2 x + 1 \le 0$ (B) $\forall x > 5$, $2x^2 x + 1 \le 0$

- (C) $\exists x > 5$, $2x^2 x + 1 \le 0$ (D) $\exists x \le 5$, $2x^2 x + 1 > 0$

答案: B

解析: 否定存在量词命题, 先"存在"改"任意", 再否定结论, 命题 p 的否定为 $\forall x > 5$, $2x^2 - x + 1 \le 0$. 10. (2022 • 四川眉山模拟 • ★) 命题 $p: \forall x \in \mathbb{Q}$, $x^2 \in \mathbb{Q}$ 的否定为 ()

- (A) $\forall x \notin \mathbf{Q}$, $x^2 \notin \mathbf{Q}$ (B) $\forall x \in \mathbf{Q}$, $x^2 \notin \mathbf{Q}$ (C) $\exists x \notin \mathbf{Q}$, $x^2 \notin \mathbf{Q}$ (D) $\exists x \in \mathbf{Q}$, $x^2 \notin \mathbf{Q}$

答案: D

解析: 否定全称量词命题, 先"任意"改"存在", 再否定结论, 命题 p 的否定为 $\exists x \in \mathbb{Q}$, $x^2 \notin \mathbb{Q}$.

11. (2022・广西玉林模拟・★★)若命题 $p:\exists x \in \mathbb{R}$, $x^2 + 2(a+1)x + 1 < 0$ 是假命题,则实数 a 的取值范 围是____.

答案: [-2,0]

解析:根据假命题求参,常等价转化为其否定为真命题来考虑,

命题 p 的否定为: $\forall x \in \mathbb{R}$, $x^2 + 2(a+1)x + 1 \ge 0$, 所以 $\Delta = 4(a+1)^2 - 4 \le 0$, 解得: $-2 \le a \le 0$.

12. (2022 • 河北承德模拟 • ★★★)命题 $p:\exists x\in[-1,1]$,使 $x^2+1< a$ 成立;命题 $q:\forall x>0$, $ax< x^2+1$ 恒成立.若命题 p与 q有且只有一个为真命题,则实数 a 的取值范围是_____.

答案: $(-\infty,1]$ \cup $[2,+\infty)$

解析: p与 q 有且只有一个为真命题有 p 假 q 真、p 真 q 假两种情况,分别讨论即可,

当 p 为假命题,q 为真命题时,其中 p 为假命题等价于 p 的否定 " $\forall x \in [-1,1]$, $x^2 + 1 \ge a$ " 为真命题,因为 $x^2 + 1$ 在 [-1,1] 上的最小值为 1,所以 $a \le 1$ ①,

对命题 q, $\forall x > 0$, $ax < x^2 + 1 \Leftrightarrow a < x + \frac{1}{x}$, 因为 $x + \frac{1}{x} \ge 2\sqrt{x \cdot \frac{1}{x}} = 2$, 当且仅当 x = 1时取等号,

所以 $(x+\frac{1}{x})_{min} = 2$,因为 $a < x + \frac{1}{x}$ 对任意的x > 0都成立,所以a < 2,结合①可得 $a \le 1$;

当p为真命题,q为假命题时,无需重复计算,在上面p为假,q为真的结果中各自取补集即可,

由前面的分析过程知p为假命题时 $a \le 1$,所以p为真命题时应有a > 1②,

同理,q为真命题时,a < 2,所以q为假命题时,应有 $a \ge 2$,结合②可得 $a \ge 2$;

综上所述,实数 a 的取值范围是 $(-\infty,1]$ U[2,+∞).

【**反思**】当两个命题一真一假时,可选其中一种情况来求参数范围,另一种情形直接在此基础上各自取补 集再考虑即可.