Power Systems Analysis: Assignment 3

Due on June 3, 2017 at 3:00pm

 $Kamal\ Debnath$

S.Reynolds (262538)

Consider the power system shown in Figure 1. Each three phase transformer is made up of three single phase transformers. The squares B_1 , B_2 , B_3 ,..., B_6 are circuit breakers which can be considered to have very low series impedance while closed and infinite impedance when open.

Figure 1: text

Figure	2.	text

Component	Power Rating (MVA)	Voltage Rating (kV)	X_1 (pu)	X_2 (pu)	X_0 (pu)
-	(171 711)	(11.4.)	(Pa)	(Pa)	(Pa)
G_1	200	20	0.2	0.14	0.06
G_2	200	13.2	0.2	0.14	0.06
T_1	200	20/230	0.2	0.2	0.2
T_2	200	13.2/230	0.3	0.3	0.3
T_3	200	20/230	0.25	0.25	0.25
T_4	200	13.2/230	0.35	0.35	0.35
TL_{23}	200	230	0.15	0.15	0.3
TL_{56}	200	230	0.22	0.22	0.5

Assignment 3.1 - PART A

The following section details the three sequence networks, and the impedance vlued

Zero Sequence Network

Positive Sequence Network

Negative Sequence Network

Assignment 3.1 - PART B

Assuming that there is a fault on bus 3, to analyse the response to this, the Thevenin equivalent circuits for the zero, positive, and negative sequences need to be found looking into bus 3. To find the Thevenin impedance, the Y_{BUS} matrix was first found for each sequence, and inverted to determine Z_{th}^0 , Z_{th}^1 , and Z_{th}^2 .

Zero Sequence

We first determine all of the admittances for each of the links between the buses for all i, j combinations. The results can be seen in Table 2.

Figure 3: text	
Admittance	Y_{ij}^{BUS}
$y_{12} = -j5$	$Y_{12} = Y_{21} = j5$
$y_{13} = j0$	$Y_{13} = Y_{31} = j0$
$y_{14} = j0$	$Y_{14} = Y_{41} = j0$
$y_{15} = -j4$	$Y_{15} = Y_{51} = j4$
$y_{16} = j0$	$Y_{16} = Y_{61} = j0$
$y_{23} = -j3.33$	$Y_{23} = Y_{32} = j3.33$
$y_{24} = j0$	$Y_{24} = Y_{42} = j0$
$y_{25} = j0$	$Y_{25} = Y_{52} = j0$

Figure 4: text	
Admittance	Y_{ij}^{BUS}
$y_{26} = j0$	$Y_{26} = Y_{62} = j0$
$y_{34} = j0$	$Y_{34} = Y_{43} = j0$
$y_{35} = j0$	$Y_{35} = Y_{53} = j0$
$y_{36} = j0$	$Y_{36} = Y_{63} = j0$
$y_{45} = j0$	$Y_{45} = Y_{54} = j0$
$y_{46} = j0$	$Y_{46} = Y_{64} = j0$
$y_{56} = -j2$	$Y_{56} = Y_{65} = j2$

Now, we need to find the Y_{ii} elements, which are calculated as follows:

$$\begin{split} Y_{11} &= y_{10} + y_{12} + y_{15} = -j25.66 \\ Y_{22} &= y_{12} + y_{23} = -j8.33 \\ Y_{33} &= y_{23} = -j3.33 \\ Y_{44} &= y_{04} = -j6.67 \\ Y_{55} &= y_{15} + y_{56} = -j6 \\ Y_{66} &= y_{56} = -j2 \end{split}$$

The Y^0_{BUS} matrix is given as follows:

$$Y_{BUS}^{0} = \begin{bmatrix} -j25.66 & +j5 & +j0 & +j0 & +j4 & +j0 \\ +j5 & -j8.33 & +j3.33 & +j0 & +j0 & +j0 \\ +j0 & +j3.33 & -j3.33 & +j0 & +j0 & +j0 \\ +j0 & +j0 & +j0 & -j6.67 & +j0 & +j0 \\ +j4 & +j0 & +j0 & +j0 & -j6 & +j2 \\ +j0 & +j0 & +j0 & +j0 & +j2 & -j2 \end{bmatrix}$$

Noting that $Z_{BUS}^0 = (Y_{BUS}^0)^{-1}$, we can find the Z_{BUS}^0 by inverting the Y_{BUS}^0 matrix. This operation was performed in MATLAB, which yielded the following output:

Z0 =

```
0.0000 + 0.0600i
               0.0000 + 0.0600i 0.0000 + 0.0600i 0.0000 + 0.0000i 0.0000 + 0.0600i 0.0000 + 0.0600i
0.0000 + 0.0600i
               0.0000 + 0.0600i
                              0.0000 + 0.5603i
0.0000 + 0.0600i
               0.0000 + 0.2600i
                                               0.0000 + 0.0000i 0.0000 + 0.0600i
                                                                               0.0000 + 0.0600i
0.0000 + 0.0000i
               0.0000 + 0.0000i
                               0.0000 + 0.0000i
                                               0.0000 + 0.1499i
                                                               0.0000 + 0.0000i
                                                                                0.0000 + 0.0000i
0.0000 + 0.0600i
               0.0000 + 0.0600i
                               0.0000 + 0.0600i
                                                0.0000 + 0.0000i
                                                               0.0000 + 0.3100i
                                                                                0.0000 + 0.3100i
               0.0000 + 0.0600i
                                                               0.0000 + 0.3100i
0.0000 + 0.0600i
                               0.0000 + 0.0600i
                                               0.0000 + 0.0000i
                                                                                0.0000 + 0.8100i
```

This allows us to easily extract the Thevenin impedance, noting that $Z_{th}^0 = (Z_{BUS}^0)_{3,3}$. Hence, we note that the zero sequence impedance is:

$$(Z_{BUS}^0)_{3.3} = j0.5603$$

The Thevenin equivalent for the Zero sequence circuit looking in from bus 3, is shown in Figure 4 below.

Figure 5: text

Positive Sequence

We first determine all of the admittances for each of the links between the buses for all i, j combinations. The results can be seen in Table 2.

Figure 6: text	
Admittance	Y_{ij}^{BUS}
$y_{12} = -j5$	$Y_{12} = Y_{21} = j5$
$y_{13} = j0$	$Y_{13} = Y_{31} = j0$
$y_{14} = j0$	$Y_{14} = Y_{41} = j0$
$y_{15} = -j4$	$Y_{15} = Y_{51} = j4$
$y_{16} = j0$	$Y_{16} = Y_{61} = j0$
$y_{23} = -j6.67$	$Y_{23} = Y_{32} = j6.67$
$y_{24} = j0$	$Y_{24} = Y_{42} = j0$
$y_{25} = j0$	$Y_{25} = Y_{52} = j0$

Figure 7: text	
Admittance	Y_{ij}^{BUS}
$y_{26} = j0$	$Y_{26} = Y_{62} = j0$
$y_{34} = -j3.33$	$Y_{34} = Y_{43} = j3.33$
$y_{35} = j0$	$Y_{35} = Y_{53} = j0$
$y_{36} = j0$	$Y_{36} = Y_{63} = j0$
$y_{45} = j0$	$Y_{45} = Y_{54} = j0$
$y_{46} = -j2.86$	$Y_{46} = Y_{64} = j2.86$
$y_{56} = -j4.54$	$Y_{56} = Y_{65} = j4.54$

Now, we need to find the Y_{ii} elements, which are calculated as follows:

$$Y_{11} = y_{10} + y_{12} + y_{15} = -j14$$

$$Y_{22} = y_{12} + y_{23} = -j11.67$$

$$Y_{33} = y_{23} = -j10$$

$$Y_{44} = y_{04} = -j11.19$$

$$Y_{55} = y_{15} + y_{56} = -j8.54$$

$$Y_{66} = y_{56} = -j7.4$$

The Y_{BUS}^1 matrix is given as follows:

$$Y_{BUS}^{0} = \begin{bmatrix} -j14 & +j5 & +j0 & +j0 & +j4 & +j0 \\ +j5 & -j11.67 & +j6.67 & +j0 & +j0 & +j0 \\ +j0 & +j6.67 & -j10 & +j3.33 & +j0 & +j0 \\ +j0 & +j0 & +j3.33 & -j11.19 & +j0 & +j2.86 \\ +j4 & +j0 & +j0 & +j0 & -j8.54 & +j4.54 \\ +j0 & +j0 & +j0 & +j2.86 & +j4.54 & -j7.4 \end{bmatrix}$$

Noting that $Z_{BUS}^1 = (Y_{BUS}^1)^{-1}$, we can find the Z_{BUS}^1 by inverting the Y_{BUS}^1 matrix. This operation was performed in MATLAB, which yielded the following output:

Z1 =

```
0.0000 + 0.1476i
                  0.0000 + 0.1183i
                                     0.0000 + 0.0964i
                                                        0.0000 + 0.0524i
                                                                          0.0000 + 0.1186i
                                                                                             0.0000 + 0.0930i
0.0000 + 0.1183i
                  0.0000 + 0.2455i
                                     0.0000 + 0.1910i
                                                        0.0000 + 0.0817i
                                                                          0.0000 + 0.1071i
                                                                                             0.0000 + 0.0973i
0.0000 + 0.0964i
                  0.0000 + 0.1910i
                                     0.0000 + 0.2619i
                                                        0.0000 + 0.1036i
                                                                          0.0000 + 0.0986i
                                                                                             0.0000 + 0.1005i
                                     0.0000 + 0.1036i
0.0000 + 0.0524i
                  0.0000 + 0.0817i
                                                        0.0000 + 0.1476i
                                                                          0.0000 + 0.0814i
                                                                                             0.0000 + 0.1070i
                  0.0000 + 0.1071i
                                                                          0.0000 + 0.2810i
                                                                                             0.0000 + 0.2039i
0.0000 + 0.1186i
                                     0.0000 + 0.0986i
                                                        0.0000 + 0.0814i
0.0000 + 0.0930i
                 0.0000 + 0.0973i
                                     0.0000 + 0.1005i
                                                        0.0000 + 0.1070i
                                                                          0.0000 + 0.2039i
                                                                                             0.0000 + 0.3016i
```

This allows us to easily extract the Thevenin impedance, noting that $Z_{th}^1 = (Z_{BUS}^1)_{3,3}$. Hence, we note that the zero sequence impedance is:

$$(Z_{BUS}^1)_{3,3} = j0.2619$$

The Thevenin equivalent for the Positive sequence circuit looking in from bus 3, is shown in Figure 4 below.

Figure 8: text

Negative Sequence

We first determine all of the admittances for each of the links between the buses for all i, j combinations. The results can be seen in Table 2.

Figure 9: text	
Admittance	Y_{ij}^{BUS}
$y_{12} = -j5$	$Y_{12} = Y_{21} = j5$
$y_{13} = j0$	$Y_{13} = Y_{31} = j0$
$y_{14} = j0$	$Y_{14} = Y_{41} = j0$
$y_{15} = -j4$	$Y_{15} = Y_{51} = j4$
$y_{16} = j0$	$Y_{16} = Y_{61} = j0$
$y_{23} = -j6.67$	$Y_{23} = Y_{32} = j6.67$
$y_{24} = j0$	$Y_{24} = Y_{42} = j0$
$y_{25} = j0$	$Y_{25} = Y_{52} = j0$

Figure 10: text	
Admittance	Y_{ij}^{BUS}
$y_{26} = j0$	$Y_{26} = Y_{62} = j0$
$y_{34} = -j3.33$	$Y_{34} = Y_{43} = j3.33$
$y_{35} = j0$	$Y_{35} = Y_{53} = j0$
$y_{36} = j0$	$Y_{36} = Y_{63} = j0$
$y_{45} = j0$	$Y_{45} = Y_{54} = j0$
$y_{46} = -j2.86$	$Y_{46} = Y_{64} = j2.86$
$y_{56} = -j4.54$	$Y_{56} = Y_{65} = j4.54$

Now, we need to find the Y_{ii} elements, which are calculated as follows:

$$\begin{split} Y_{11} &= y_{10} + y_{12} + y_{15} = -j16.14 \\ Y_{22} &= y_{12} + y_{23} = -j11.67 \\ Y_{33} &= y_{23} = -j10 \\ Y_{44} &= y_{04} = -j13.33 \\ Y_{55} &= y_{15} + y_{56} = -j8.54 \\ Y_{66} &= y_{56} = -j7.41 \end{split}$$

The Y_{BUS}^2 matrix is given as follows:

$$Y_{BUS}^2 = \begin{bmatrix} -j16.14 & +j5 & +j0 & +j0 & +j4 & +j0 \\ +j5 & -j11.67 & +j6.67 & +j0 & +j0 & +j0 \\ +j0 & +j6.67 & -j10 & +j3.33 & +j0 & +j0 \\ +j0 & +j0 & +j3.33 & -j13.33 & +j0 & +j2.86 \\ +j4 & +j0 & +j0 & +j0 & -j8.54 & +j4.54 \\ +j0 & +j0 & +j0 & +j2.86 & +j4.54 & -j7.4 \end{bmatrix}$$

Noting that $Z_{BUS}^2 = (Y_{BUS}^2)^{-1}$, we can find the Z_{BUS}^2 by inverting the Y_{BUS}^2 matrix. This operation was performed in MATLAB, which yielded the following output:

Z2 =

```
0.0000 + 0.1095i
         0.0000 + 0.0852i
                   0.0000 + 0.0670i
                             0.0000 + 0.0305i
                                       0.0000 + 0.0854i
                                                 0.0000 + 0.0642i
0.0000 + 0.0852i
         0.0000 + 0.0678i
0.0000 + 0.0670i
         0.0000 + 0.0305i
         0.0000 + 0.0548i
                   0.0000 + 0.0758i
0.0000 + 0.0854i
         0.0000 + 0.0760i
                   0.0000 + 0.0689i
                             0.0000 + 0.1744i
         0.0000 + 0.0678i
                   0.0000 + 0.0705i
                             0.0000 + 0.2713i
0.0000 + 0.0642i
```

This allows us to easily extract the Thevenin impedance, noting that $Z_{th}^2 = (Z_{BUS}^2)_{3,3}$. Hence, we note that the negative sequence impedance is:

$$(Z_{BUS}^2)_{3,3} = j0.2319$$

The Thevenin equivalent for the Negative sequence circuit looking in from bus 3, is shown in Figure 4 below.

Figure 11: text