Handbook of Excel to Gurobi for Network Models

STEP 1:

Input the data into the cells of the chosen sheet of the attached Excel file (see appendix).

STEP 2:

Replace the sheet name in the Jupyter Notebook file.

```
main = wb['Transportation Problem']
```

STEP 3:

Run all cells.

Appendix

Note: The first pictures of Examples 1 to 5 are quoted from the PowerPoint "Network Models" created by Professor Steven Shechter for the course "Optimal Decision Making II." The second picture of the examples is the completed Excel sheet based on the information of first picture.

Example 1: Transportation Problem

A	В	С	D	E	F	G
Objective	min					
Variable Type						
non-neg?	Υ					
Problem Type	MCNF					
START HERE	Edmonton	Toronto	Ottawa		FLOW IN = OUT (Y/N)	SUPPLY
Winnipeg	5	4	3		N	100
Montreal	3	2	1		N	300
Halifax	9	7	5		N	300
DEMAND	300	200	200			
	Objective Variable Type non-neg? Problem Type START HERE Winnipeg Montreal Halifax	Objective min Variable Type non-neg? Y Problem Type MCNF START HERE Edmonton Winnipeg 5 Montreal 3 Halifax 9	Objective Min Variable Type non-neg? Y Problem Type MCNF START HERE Edmonton Toronto Winnipeg 5 4 Montreal 3 2 Halifax 9 7	Objective min Variable Type non-neg? Y MCNF START HERE Edmonton Toronto Ottawa Winnipeg 5 4 3 Montreal 3 2 1 Halifax 9 7 5	Objective min Variable Type non-neg? Y MCNF START HERE Edmonton Toronto Ottawa Winnipeg 5 4 3 Montreal 3 2 1 Halifax 9 7 5	Objective Variable Type non-neg? Problem Type MCNF START HERE Edmonton Toronto Ottawa FLOW IN = OUT (Y/N) Winnipeg 5 4 3 N Montreal 3 2 1 N Halifax 9 7 5 N

Example 2: Transshipment Problem

	A	В	С	D	E	F	G	Н
	Objective	min						
	Variable Type							
	non-neg?	Υ						
	Problem Type	MCNF						
	START HERE	Chicago	Memphis	NY	Boston		FLOW IN = OUT (Y/N)	SUPPLY
	Denver	6	8				N	200
	LA	12	10				N	150
,	Chicago			4	5		Y	
	Memphis			5	7		Y	
3	DEMAND			130	130			

Example 3: Assignment Problem

Assignment Problem: Employees to Tasks

- 4 employees are available to work on 4 tasks.
- The time it would take each employee to complete each task (in hours) is given by this table:

	Task 1	Task 2	Task 3	Task 4
Employee 1	7	3	4	8
Employee 2	5	4	6	5
Employee 3	6	7	15	6
Employee 4	8	6	7	4

 Decision: Which employee do you assign to which task to minimize total hours worked?

Seervada Park Examples (based on problems from H&L book)

- The road system for Seervada Park
 - Location O: park entrance
 - Location T: a scenic wonder
 - Trams transport sightseers from park entrance to location T and back

 $@\ 2015\ McGraw-Hill\ Education.\ All\ rights\ reserved.$

15

A	В	С	D	E	F	G	Н	1	J
Objective	min								
Variable Type									
non-neg?	Y								
Problem Type	MCNF								
START HERE	A	В	с	D	E	т		FLOW IN = OUT (Y/N)	SUPPLY
o	2	5	4					N	1
А		2		7				Y	
В				4	3			Y	
С		1			4			Y	
D						5		Y	
E				1		7		Y	
DEMAND						1			

Maximum Flow Problem

- Seervada Park wants to determine the maximum number of trams they
 can send from O to T per day, and how to route them to achieve this
 max flow.
- To avoid disturbing the wildlife too much each day, park management has decided to limit the number of tram rides per day on each road, as shown in the diagram:

• How can we formulate this as a MCNF problem?

23

SAUDER School of Business

A	В	C	D	E	F	G	Н	1	J	K
Objective	min									
Variable Type										
non-neg?	Υ									
Problem Type	MFP									
START HERE	A	В	С	D	E	т	0		FLOW IN = OUT (Y/N)	SUPPLY
0	5	7	4						Y	
Α		1		3					Y	
В				4	5				Υ	
С		2			4				Y	
D						9			Υ	
E				1		6			Υ	
т							9999999		Y	
DEMAND										

Example 6: Traveling Salesperson Problem

	A	В	С	D	E	F	G	Н	1
	Objective	min							
	Variable Type	int							
	non-neg?	Y							
	Problem Type	TSP							
L									
	START HERE	A	В	С	D	E		FLOW IN = OUT (Y/N)	SUPPLY
	A		1	2	10	13		Y	1
	В	1		3	7	10		Υ	1
	С	2	3		9	11		Υ	1
	D	10	7	10		3		Y	1
	E	8	9	11	4			Y	1
	DEMAND	1	1	1	1	1			