

Introduction to Event Modelling with AnyLogic

A Bank and a Mysterious Substance

More AnyLogic Element Types

Plain Variables

- Represent ordinary Java variables (int, float, ...)
- ... just like Parameters

However, they differ in their usage:

- Parameters describe input parameters to the simulation: they can be modified by the experiment
- Plain variables hold the current system state: they act as outputs, their values can be read and processed by the experiment

(For temporary value storage, both types can be used)

Events in Simulation

The most important element of a discrete-event simulation is the event

- Events happen instantaneously
- Events happen when they are triggered
- Events change the values of the state variables

Primary event

Occurrence is scheduled to happen at a certain time

Conditional / secondary event

Triggered by a certain condition becoming true

Events in AnyLogic

An event is characterized by its trigger type

Timeout or Condition

An event occurrence executes the specified *Action*, which can

be any Java code

Arrival
V Queue
∮ Move

	Properties 🛭				
ş	Service - Even	it			
	Name:	Service	✓ Show	name 🗌	Ignore
	Visible:	yes			
	Trigger type:	Timeout 🗸			
	Mode:	Cyclic			
	Use model time	Use calendar dates			
	First occurrence time (absolute):				
	0				
	Occurrence date:	17.11.2014 🗐 🔻 08:00:0	A .		
	Recurrence time:	1	model t	ime units 🔻	•
•	Action				
	Server;				

Timeout Triggered Events

Timeout Triggered Events

- Occur a certain time after they have been activated
- Are primary events
- Are collected in the FEL and occur at a specified time
- Timeouts can be described by distribution functions or absolute values

Timeout Triggered Events

Trigger Mode	Parameters Needed
Occurs once	Occurrence time
Cyclic	First occurrence timeRecurrence time in between events
User controlled	 Timeout from activation to occurrence

N.B.: *Rate events* are just a shortcut for:

timeout triggered, cyclic, exponentially distributed

Condition Triggered Events

Condition triggered events ...

- Occur when their condition becomes true
- → Are conditional/secondary events
- Occur only once, unless explicitly reactivated

Controlling Events Through Java

Events can be controlled through Java code

(User controlled) Timeout events are scheduled (placed in the FEL) and conditional events reactivated using

```
<event_name>.restart()
<event_name>.restart(<timeout>)
```

An already scheduled event is deleted from the FEL using

```
<event_name>.reset()
```

The timeout countdown is temporarily interrupted using

```
<event_name>.suspend()
<event_name>.resume()
```

Distribution Functions in AnyLogic

AnyLogic provides a wide variety of non-uniform random numbers generators

- exponential(lambda)
- normal(sigma, mean)
- uniform(min,max)
- **-** ...

Each call of a distribution function draws a sample from the corresponding distribution

→ Successive calls to the same function with the same parameters will yield *different* values!

Modeling a Bank

Modeling a Bank

We would like to model the bank in AnyLogic

Modeling a Bank

We have three different events:

- Customer arrives into the queue
- Customer moves from the queue into service
- Customer finishes service

We have two state variables:

- Number of customers in the queue public int Queue;
- Number of customers in service public int Server;

Event #1: Customer Arrives

Customers arrive with exponentially distributed inter-arrival times with a rate of 1

Each arrival increases the queue length by 1

Event #2: Begin Service

The event is triggered when

- There is no one in service
- There are customers waiting in the queue

The event removes one customer from the queue and places him in service

The *service ends* event is scheduled

■ Properties 🏻			
Move - Even	t		
Name:	Move	✓ Show name	☐ lgnore
Visible:	yes		
Trigger type:	Condition 🗸		
Condition:	Queue > 0 &&	Server == 0	
▼ Action			
710001			
Queue;			
Server++;			
Service.restart();			
Move.restart();			

Event #3: Service Completion

The length of a service process is a normally distributed random variable with a mean of 0.8 and a standard deviation of 0.1

Each service completion removes the current customer from service

The AnyLogic Model

One Simulation Result

- V Server
- Service

Collecting Statistics in AnyLogic

Statistics Objects

- Compute values such as: mean, variance, min, count...
- Can be discrete or continuous in time
- Can be linked to a model element
- Are updated automatically or by explicitly adding values

Histogram Data Objects

- Are needed to draw histograms
- Can be linked to a model element
- Collect the data items in bins (equally sized intervals)
- Have a fixed number of intervals (with variable width)

Statistics for Queue and Server

■ Properties 🏻				
© QueueLength - Statistics				
Name:	QueueLength Ignore			
Visible:	(yes			
O LLLL Discrete	〇 山山, Discrete(samples have no duration in time)			
 Continuous(samples have duration in time) 				
Value:	Queue			
 Update data aut 	Update data automatically			
On not update data automatically				
Recurrence time:	1			

■ Properties □					
🕯 ServerHist - Histog	ổ⊪ ServerHist - Histogram Data				
Name:	ServerHist	✓ Show name	lgnore		
Visible:	yes				
Value:	Server				
Number of intervals:	2				
Calculate CDF					
Calculate percentiles:	Low: 10 High:	10			
▼ Values range					
Automatically detected Fixed					
Initial interval size:					
▼ Data update					
Update data automatically Do not update data automatically					
Recurrence time: 0.1					

Simulation Result Including Statistics

- QueueLength 1,001 samples [0...6]. Mean=1.244
- O ServerUtil 1,001 samples [0...1], Mean=0.772

Modeling a Substance in the Bloodstream

Hybrid Models

Models containing both discrete and continuous elements are called "hybrid" models

AnyLogic supports hybrid models

Events can be used to change the values of continuous variables

Example system: A student at a party

Hybrid Models

Description of the model:

- He/she swallows pills at regular intervals /
- The pill contains a certain quantity of a "substance"
- The substance starts out in the student's stomach
- It is gradually absorbed into his/her blood
 - Rate a=0.04 is proportional to amount in stomach
- The substance in the blood is gradually removed
 - Rate b=0.02 is proportional to amount in blood

Continuous mathematical model:

$$\frac{dS}{dt} = -aS \text{ (+ discrete increments)} \qquad \frac{dB}{dt} = aS - bB$$

The AnyLogic Model

The Event Influencing the Flow Variable

The swallow event is cyclic and occurs every 15 minutes

Each event increases the amount of substance in the stomach by 1 dose

🗲 swallow - Eve	swallow - Event				
Name:	swallow		✓ Show name	lgnore	
Visible:	yes				
Trigger type:	Timeout 🗸				
Mode:	Cyclic 🔻				
Use model time					
First occurrence time (absolute):					
15					
Occurrence date:	05.10.2009	13:36:28	* ·		
Recurrence time:	15		model time un	its 🗸	
▼ Action					
Stomach +=	Dose;				

Simulation Results

Learning Goals

Learning Goals to solve the Semester Assignments:

 The simulation models of the semester assignments are hybrid models

Events change the values of continuous variables

- A call from school can reduce the account balance
- Buying flowers increases moms mood
- **.** . . .

Events change the values of continuous variables

A particle hit reduces the shield energy

