Particle spectrograph

Wave operator and propagator

	$\Delta_{1^{+}lphaeta}^{\#1}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1-lpha}^{\#1}$	$\Delta_{1-lpha}^{\#2}$			Δ#3	γ		$\Delta_{1^{-}\alpha}^{\#4}$		$\Delta_{1}^{\#5}{}_{lpha}$		$\Delta_{1^{-}\alpha}^{\#6}$		${\mathcal T}_{1^-lpha}^{\sharp 1}$		
$\Delta_1^{\#1}$ †	αβ 0	$-\frac{2\sqrt{2}}{a_0}$				0				0		0		0		0			
$\Delta_{1}^{#2}$ †	$\frac{\alpha\beta}{a_0} = \frac{2\sqrt{2}}{a_0} = \frac{2}{a_0}$	$\frac{2(a_0^2 - 14a_0a_1k^2 - 35a_1^2k^4)}{a_0^2(a_0 - 29a_1k^2)}$	$\frac{40\sqrt{2}a_1k^2}{a_0^2 - 29a_0a_1k^2}$	0	0	0			0		0		0		0				
$\Delta_{1}^{#3}$ †	αβ 0	$\frac{40\sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0			0		0				0				
$\Delta_1^{\#1}$ 1	-α 0	0	0	0	$0 \frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$			$-\frac{2k^2}{\sqrt{3} a_0 (2+k^2)}$			0		$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$			$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$			
$\Delta_1^{\#2}$ †	-α 0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)} \frac{a_0^2 (4+k^2)^2 - 30 a_0 a_1 k^2 (4+k^2) (4+3 k^2) + a_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$			$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$				$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1)(40-31)k^2}{2 a_0 (2+k^2)(a_0-33) a_1 k^2}$	_	$\frac{k^2 (2 a_0^2 (5+2 k^2)-a_0 a_1 (880+778 k^2+199 k^4)+a_1^2 k^2 (9440+1901 k^2 (4+k^2)))}{2 \sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$			$\frac{1}{a_0^2} = \frac{i k (-30 a_0 a_1 k^4 + a_0^2 (4 + k^2) + 27 a_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$			
$\Delta_1^{\#3}$ 1	-α 0	0	0 $ -\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)} \frac{k^2(a_0^2(-2+k^2)+a_0a_1(560+302k^2+71k^4)-2a_1^2k^2(9440+1901k^2(4+k^2)))}{2\sqrt{6}a_0^2(2+k^2)^2(a_0-33a_1k^2)} -\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)} $			$\frac{-a_0^2 (76+52 k^2+3 k^4)+4 a_0 a_1 k^2 (472+214 k^2+19 k^4)+4 a_1^2 k^4 (5120+7280 k^2+1901 k^4)}{12 a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$					$(2a_1k^4)$ $(2a_0^2(-2+k^2)+a_0^2)$	$\frac{2a_0^2(-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$			$\frac{a_1 k^4}{a_1^2} = \frac{i k (54 a_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 a_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$				
$\Delta_1^{\#4}$ 1	-α 0	0 0 $-\frac{\sqrt{\frac{5}{6}} k^2 (a_0 + a_1 (40 - 31 k^2))}{2 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$			$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 a_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$				$\frac{1}{12 a_0 - 396 a_1 k^2}$,	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$				$-\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$)			
$\Delta_1^{\#5}$ 1	-α 0	0	$\sqrt{\frac{2}{3}}k^2$ $k^2(2\pi a^2(5+2k^2)-3\pi a^2(880+778k^2+199k^4)+3\pi^2k^2(9440+1901k^2(4+k^2)))$			$\frac{2{a_{0}}^{2}(-2+k^{2})+a_{0}a_{1}k^{2}(472+934k^{2}+289k^{4})-2a_{1}^{2}k^{4}(5120+7280k^{2}+1901k^{4})}{6\sqrt{2}{a_{0}}^{2}(2+k^{2})^{2}(a_{0}-33a_{1}k^{2})}$				$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right) + a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$					$\frac{3k^2)}{k^2)} \frac{i k (2 a_0^2 (3+k^2)-27 a_1^2 k^4 (40+3 k^2)+3 a_0 a_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$				
$\Delta_1^{\#6}$ 1	-α 0	0	$k^{2}(-a_{0}+a_{1}(200+43k^{2}))$			$-\frac{2a_0 + (3a_0 - 56a_1)k^2 + 86a_1k^4}{6a_0(2+k^2)(a_0 - 33a_1k^2)}$				$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$		$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$			$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$				
${\mathcal T}_1^{\sharp 1}$:	- ^α 0	0 $\frac{2 i \sqrt{2} k}{2 a_0 + a_0 k^2} \qquad \frac{i (-30 a_0 a_1 k^5 + a_0^2 k (4 + k^2) + 27 a_1^2)}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$				$-\frac{i(54a_1^2k^5(40+3k^2)+a_0^2k(6+5k^2)-3a_0}{\sqrt{6}a_0^2(2+k^2)^2(a_0-33a_1)}$				$\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	_ i (2 a ₍	$-\frac{i(2a_0^2k(3+k^2)-27a_1^2k^5(40+3k^2)+3a_0a_1k^3(34+7k^2))}{\sqrt{3}a_0^2(2+k^2)^2(a_0-33a_1k^2)}$		$\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$\frac{2 k^2 (a_0^2 + 30 a_0 a_1 k^2 - 459 a_1^2 k^4)}{2 a_0^2 a_1^2 $		$a_1^2 k^4$)		
	$\Gamma^{\#1}_{1^+ lpha eta}$	$\Gamma^{\#2}_{1^+ \alpha\beta} \qquad \Gamma^{\#3}_{1^+ \alpha\beta}$	Γ ₁ -1	γ Γ ₁ - α	Γ ₁ - α Γ ₁ - α	Γ# ⁵ α	Γ ^{#6} ₁ α	$h_{1}^{\#1}{}_{\alpha}$		Δ ₀ ^{#1}	$\Delta_{0}^{\#2}$	Δ ₀ ^{#3}	$\Delta_{0}^{\#4}$	${\mathcal T}_{0}^{\#1}$	T ₀ ^{#2}	$\Delta_0^{#1}$	n h		7
$\Gamma_{1+}^{\#1} + \alpha \beta \boxed{\frac{1}{4}}$	$-a_0 - 15 a_1 \lambda$	<i>a</i> -			0 0	0	0	ο 0	$\Delta_{0}^{\#1}$ †	Ů	4 √6	$\frac{4\sqrt{\frac{2}{3}}}{\sqrt{\frac{2}{3}}}$	8	<u>-</u> 2 i √2	$-\frac{2 i \sqrt{6} k}{16 a_0 + 3 a_0 k^2}$	0 [h ₀₊ ² +	0# 0# 0# +4 + +	#1 + 1 0+ 1
$\Gamma_{1}^{#2} + \alpha \beta$	$-\frac{a_0}{2\sqrt{2}}$	0 0	0	0	0 0	0	0	0	Δ#2 †	4./5	$16 a_0 + 3 a_0 k^2$ $48 (3 a_0 + 197 a_1 k^2)$	$16 a_0 + 3 a_0 k^2$ $16 (19 a_0 + (3 a_0 + 197 a_1))$	$\frac{\sqrt{3} (16 a_0 + 3 a_0 k^2)}{2}$ $\frac{8 \sqrt{2} (10 a_0 + (3 a_0 - 394 a_1) k^2)}{2}$	$\begin{array}{c c} a_0 k \\ \hline \\ 2 & 8i \sqrt{3} (a_0 - 65 a_1 k^2) \end{array}$			2 **	10 √	(-a ₀ +
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$5a_1k^2$	$0 \frac{1}{4} (a_0 - 29 a)$	0	0	0 0	0	0	0	O	$16a_0 + 3a_0 k^2$	$-\frac{48 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$ $\frac{16 (19 a_0 + (3 a_0 + 197 a_1) k^2)}{a_0^2 (16 + 3 a_0 + 197 a_1) k^2}$	$a_0^2 (16+3k^2)^2$ $16 (35 a_0 + (6 a_0 + 197 a_1))$	$a_0^2 (16+3k^2)^2$	$a_0^2 k(16+3k^2)$	$\frac{24 i k (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$ $8 i k (19 a_0 + (3 a_0 + 197 a_1) k^2)$		$\begin{array}{c c} a_0 k \\ \sqrt{2} \\ \end{array}$	0 $\sqrt{\frac{2}{3}} a_1 t$ $\sqrt{\frac{3}{3}} a_1 t$	-#1 0 ⁺
$\Gamma_1^{\#1} + \alpha$	0	0 0	$\frac{1}{4} (-a_0 - 3)$	$3a_1k^2)\left \frac{a_0}{2\sqrt{2}}\right $	$\frac{5}{2}\sqrt{3} a_1 k^2 \qquad -\frac{5}{2}\sqrt{\frac{5}{3}} a_1 k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$\Delta_{0+}^{#3}$ †	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{a_0^2 (16+3k^2)^2}{a_0^2 (16+3k^2)^2}$	$-\frac{10(3340+(340+13741))}{3a_0^2(16+3k^2)^2}$	$\frac{3a_0^2(16+3k^2)^2}{3a_0^2(16+3k^2)^2}$	$\sqrt{3} a_0^2 k (16+3k^2)$	$a_0^2 (16+3k^2)^2$	0		1 2	k ²)
$\Gamma_1^{\#2} \uparrow^{\alpha}$	0	0 0	$\frac{a_0}{2\sqrt{1}}$		0 0	0	0	0	$\Delta_{0}^{\#4}$ †	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)^2)}{3a_0^2(16+3k^2)^2}$	$\frac{32(13a_0 + (3a_0 - 197a_1)k^2)}{3a_0^2(16 + 3k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	0	0 0 0	$ \begin{array}{c c} 0 & 0 \\ \hline 2 & 2 \\ \hline 2 & \sqrt{2} \end{array} $	Γ ₀ ^{#2}
Γ ₁ ^{#3} † ^α	0	0 0	$\frac{5}{2}\sqrt{3}$		$-\frac{a_0}{3} \qquad \frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)}{-}$	<u>i a₀ k</u> 4 √6	${\mathcal T}^{\sharp 1}_{0^+}\dagger$	<u>2 i √2</u>	$\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$ \frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{2} $	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	0	- <u>i</u> a	$ \begin{array}{c} $	$ \Gamma_{0}^{\#3} $ $ 10 \sqrt{\frac{2}{3}} $
$\Gamma_1^{\#4} \uparrow^{\alpha}$	0	0 0	$-\frac{5}{2}\sqrt{\frac{5}{3}}$	0	$\sqrt{5} (a_0 - 8 a_1 k^2)$ $\frac{1}{3} (a_0 + 7 a_1 k^2)$	<u> </u>	$\left -\frac{1}{6} \sqrt{5} \left(a_0 - 5 a_1 k^2 \right) \right $,	${\mathcal T}^{\#2}_{0^+}$ †	a ₀ k 2 i √6 k	24 i k (3 a ₀ + 197 a ₁ k ²)	$\frac{8ik(19a_0 + (3a_0 + 197a_1))}{8ik(19a_0 + (3a_0 + 197a_1))}$		$\frac{2}{4\sqrt{3}} \left(a_0-65a_1k^2\right)$	$\frac{12 k^2 (3 a_0 + 197 a_1 k^2)}{12 k^2 (3 a_0 + 197 a_1 k^2)}$		0 /3	$\frac{1}{\sqrt{2}}$	$_{0^{+}}^{#3}$ $_{0^{+}}^{0^{+}}$ $_{3}^{2}$ a_{1} k^{2}
$\Gamma_1^{\#5} \uparrow^{\alpha}$	0	0 0	$5\sqrt{\frac{3}{2}}$	$a_1 k^2 \qquad 0$	$-\frac{a_0}{6\sqrt{2}} \qquad -\frac{1}{6}\sqrt{\frac{5}{2}} (a_0 + 16a_1k^2)$		$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	Δ_{0}^{+1} †	16 a ₀ + 3 a ₀ k ²	$a_0^2 (16+3k^2)^2$	$a_0^2 (16+3k^2)^2$	$a_0^2 (16+3k^2)^2$	$a_0^2 (16+3k^2)$	$a_0^2 (16+3k^2)^2$	- 2		- 3 - 1 6 (3 a	
Γ ₁ ^{#6} † ^α	0	0 0	$-\frac{5a_1}{\sqrt{3}}$	$\frac{k^2}{8}$ 0 $\frac{1}{6}$	$(-a_0 + 20 a_1 k^2)$ $-\frac{1}{6} \sqrt{5} (a_0 - 5 a_1 k^2)$	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	$\frac{i a_0 k}{4 \sqrt{6}}$	Δ_{0} . I	Ü	Ŭ		· ·		U	a_0 - a_1 k^2	$ \frac{i a_0 k}{4 \sqrt{6}} $ $ -\frac{i a_0 k}{4 \sqrt{2}} $	$ \begin{array}{c c} & -\frac{u_0}{2\sqrt{2}} \\ & a_0 + 46a \\ & 6\sqrt{2} \\ \hline & 6\sqrt{2} \end{array} $	$\Gamma_{0}^{#4}$ $10a_{1}$ $\sqrt{3}$
$h_1^{\#,1} + \alpha$	0	0 0	<i>i a</i> ₀ 4 √	$\frac{k}{2}$ 0	$-\frac{i a_0 k}{4 \sqrt{6}} \qquad \frac{1}{4} i \sqrt{\frac{5}{6}} a_0 k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0		atic (free) action			Source consists SO(3) irreps	traints/gauge gene	mators Multiplicities			$\frac{11k^2}{3a_1k^2}$	12
	$\Gamma^{\#1}_{2^+ lpha eta}$	Γ#2 2 ⁺ αβ	$h_{2}^{\#1}{}_{\alpha\beta}$ $\Gamma_{2}^{\#1}{}_{\alpha}$	_{βχ} Γ ^{#2} ₂ αβχ	$S == \iiint \left(\frac{1}{4} \left(2 a_0 \Gamma_{\alpha}^{\alpha \beta} \Gamma^{\lambda}\right)\right)$						$2\mathcal{T}_{0+}^{\#2}$ - $ik\Delta_{0+}^{\#2}$	$2\mathcal{T}_{0+}^{\#2} - \bar{\imath}k\Delta_{0+}^{\#2} == 0$) <u> 1</u>	0 0 0	$ \begin{array}{c c} 0 \\ \frac{i a_0 k}{4 \sqrt{3}} \\ -\frac{i a_0 k}{4 \sqrt{6}} \end{array} $	$h_{0}^{\#}$ $-\frac{ia_{0}}{2}\sqrt{\frac{1}{2}}$		
$\Gamma_{2+}^{\#1} + \alpha^{\beta}$ $\frac{1}{4}$ (a)	$(a_0 + 11 a_1 k^2)$ $-5 \sqrt{\frac{2}{3}} a_2 k^2 \sqrt{\frac{5a_1 k^2}{3a_1 k^2}}$ $\frac{ia_0 k}{a_0 k}$ 0									$\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}$ - 2 $a_0 h_{\alpha\chi} \partial_{\beta}\Gamma^{\alpha\beta\chi}$ + $a_1 \partial^{\alpha}\Gamma^{\chi\delta}_{\chi} \partial_{\beta}\Gamma_{\delta\alpha}^{\beta}$ + 2 $a_0 h_{\beta\chi}$		0 0	$\Delta_{0+}^{\#3} + 2\Delta_{0+}^{\#4} + 3\Delta_{0+}^{\#2} == 0$		$\Gamma_{3}^{\#1}\alpha \mu$		1		
$\Gamma_{2+}^{\#2} + \alpha\beta$	V 3 V3 4 V2										$\partial_{\beta} \Gamma^{\delta}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} + 2 a_{1} \partial_{\chi} \Gamma_{\beta}$			$\frac{6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0}{2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0}$		$(a_1 k^2)$	0 0 0	$ \begin{array}{c c} 0 \\ i a_0 k \\ \sqrt{2} \end{array} $	h ₀ #2
											$\partial_{\chi}\Gamma^{\delta}_{\delta\beta}\partial^{\chi}\Gamma^{\alpha}_{\alpha}{}^{\beta}-22a_{1}\partial_{\beta}\Gamma_{\gamma}$			$\frac{2 \Delta_{1}^{2} + \Delta_{1}^{2} + 2 \Delta_{1}^{2} + \Delta_{1}^{2}}{\text{Total constraints:}}$		_	$\frac{1}{2}(-a)$		
$\Gamma_{2+}^{\#3} \uparrow^{\alpha\beta}$	$\frac{5a_1k^2}{\sqrt{3}}$										$2 a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha\beta} - 2 a_1 \partial_{\chi}^{\alpha\beta}$		$\Delta_{3}^{#1}$	$\Delta_{3}^{\#1}{}_{lphaeta\chi}$			0 0	0 0 0	Γ ₀ -1
$h_{2+}^{\#1} + \alpha \beta$	$-\frac{i a_0 k}{4 \sqrt{2}}$									$_{\alpha}\Gamma_{\chi}^{\delta}\delta^{\chi}\Gamma_{\beta}^{\alpha\beta}-4a_{1}$	$\partial_\chi \Gamma_{\alpha \ \delta}^{\ \delta} \partial^\chi \Gamma^{\alpha\beta}_{\ \beta} 2 a_1 \partial_\chi \Gamma^{\alpha\beta}_{\ \ \beta}$	$^{3\chi}\partial_{\delta}\Gamma_{lphaeta}^{\delta}$ -		$\Delta_{3}^{\#1} + \alpha \beta \chi \left[-\frac{2}{a_0 + 7 a_1 k^2} \right]$			(k ²)		
$\Gamma_2^{\#1} + \alpha\beta\chi$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										$\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha}^{\ \delta} + 38 a_1 \partial_{\chi}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\beta\alpha}^{\ \delta} +$			$\Delta_{2^{+}\alpha\beta}^{\#1} \qquad \Delta_{2^{+}\alpha\beta}^{\#2}$		$\Delta_{2^{+}\alpha\beta}^{\#1}$ $\Delta_{2^{-}\alpha}^{\#1}$	$^{1}_{+}{}_{lphaeta}$ $\Delta^{\#1}_{2^{-}}{}_{lphaeta\chi}$ $\Delta^{\#2}_{2^{-}}{}_{lphaeta\chi}$		
$\Gamma_2^{\#2} \dagger^{\alpha\beta\chi}$	0 0 0 $\frac{1}{4}(a_0-5a_1k^2)$										$\partial^{\chi} \Gamma^{\alpha\beta}_{\ \beta} \partial_{\delta} \Gamma_{\chi\alpha}^{\ \delta} + 2 a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} \partial_{\delta} \Gamma_{\chi\beta}^{\ \delta} -$			2 2					
											${}^{\chi}\Gamma^{\alpha\beta}_{\beta}\partial_{\delta}\Gamma^{\alpha}_{\alpha} + 2a_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\Gamma^{\alpha}_{\alpha} +$		$\Delta_2^{\#} \uparrow \uparrow^{\alpha\beta} = 0$	$\Delta_{2}^{\#1} + \alpha \beta = 0$ $\frac{2\sqrt{\frac{2}{3}}}{a_0}$		$\frac{i\sqrt{2}}{a_0k}$	0		
												$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta_{2+}^{\#2} + \alpha \beta = \frac{2\sqrt{\frac{2}{3}}}{a_0} = -\frac{8(a_0 + 13a_1k^2)}{3a_0^2} = -\frac{2\sqrt{\frac{2}{3}}}{a_0}$		$\frac{a_1+31a_1k^2)}{\overline{3}a_0^2k}$	0		
										$\alpha \Gamma_{\alpha \delta} \partial_{\delta} \Gamma_{\chi}^{\alpha \beta \chi} + 2a$	$1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial_{\alpha} \Gamma + 4 u_1 \partial_{\alpha} \Gamma$ $1 \partial_{\alpha} \Gamma_{\alpha \alpha} \partial_{\alpha} \Gamma^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \Gamma$	${}_{\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + 4 a_1 \partial_{\alpha}\Gamma_{\beta\delta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} +$ ${}_{\delta\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + 4 a_1 \partial_{\alpha}\Gamma_{\delta\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} +$		a ₀ 3 a ₀		$(a_2 + 2)$ $(a_2 + 31 a_3 + 2)$			
									$4a_1\partial_0$	$_{\alpha}^{\alpha}\Gamma_{\delta\chi\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi}-2a_{1}$	$\partial_{\beta}\Gamma_{\alpha\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi}$ - 2 $a_1\partial_{\beta}\Gamma_{\alpha\delta}$	$ \Delta_{2}^{\#3} + 4 a_{1} \partial_{\alpha} \Gamma_{\delta\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \Delta_{2}^{\#3} + \Delta_{2}^{\#3} + \Delta_{3}^{\#3} + \Delta_{4}^{\#3} + \Delta_{2}^{\#3} + \Delta_{3}^{\#3} + \Delta_{4}^{\#3} + \Delta_{$			3a ₀ ²				
									$2a_1\partial_{\mu}$	$2 a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - 2 a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - 2 a_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$				$\mathcal{T}_{2}^{\#1} \dagger^{\alpha\beta} \left[-\frac{4 i \sqrt{2}}{a_0 k} \right] \left[\frac{4 i (a_0 + 31 a_1 k^2)}{\sqrt{3} a_0^2 k} \right] \left[\frac{4 i \sqrt{\frac{2}{3}} (a_0 + 31 a_1 k^2)}{a_0^2 k} \right] - \frac{8 (a_0 + 31 a_1 k^2)}{a_0^2 k}$			$\frac{a_0 + 11a_1k^2}{a_0^2k^2} \qquad 0 \qquad 0$		
									$4a_1\partial_2$	$_{\chi}\Gamma_{\beta\deltalpha}\partial^{\delta}\Gamma^{lphaeta\chi}$ - 4 a_{1}	$\partial_{\delta}\Gamma_{\alpha\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - 4a_1\partial_{\delta}\Gamma_{\alpha\chi}$	$_{\prime eta} \partial^{\delta} \Gamma^{lpha eta \chi}$ -		$\Delta_{2}^{\#1} + \alpha \beta \chi$ 0 0 0					
											$\partial_{\delta}\Gamma_{\beta\chi\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} - 2a_1\partial_{\delta}\Gamma_{\chi\beta}$		$\Delta_2^{\#2} + \alpha \beta \chi \qquad 0$	0	0	$\begin{bmatrix} 0 & a_0 - a_1 \\ 0 & 0 \end{bmatrix}$	$\frac{1}{a_0-5}\frac{4}{a_1}$		
$2a_1\partial_eta \Gamma_{\deltalpha}^{eta}\partial^\delta$											$_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma_{\chi}^{\alpha}))[t,x,y,z]$	z]dzdydxdt	2 1				a_0 -5 $a_1 k^2$		

Massive and massless spectra

** MassiveAnalysisOfSector...Null

Unitarity conditions