

Project Importance

Initial Research Questions

Why are we here?

 Potable water is essential for maintaining biological processes.

Why should I care?

 Less than 1% of water on Earth is potable, most living things require potable water.

What should we do about it?

 Continue to analyze water features to maintain water supplies for industrial and civil applications.

Do high sulfate levels indicate a high chance of non-potability?

Does water hardness have an inverse or direct relationship with turbidity?

What is the greatest indicator of water non-potability?

Water Evaluation

Chemistry Indicator	Description	EPA Acceptable Range and/or Maximum
рН		6.5 - 8.5
Hardness		180-210 ppm
Solids (Total Dissolved Solids-TDS)		500 ppm
Chloramines		4 ppm
Sulfates	Ø	400 ppm

Water Evaluation Cont'd

Chemistry Indicator	Description	EPA Acceptable Range and/or Maximum
Conductivity	<u></u>	N/A (WHO recommended value is below 400 µS/cm)
Total Organic Carbon (TOC)		< 4 ppm in source water
Trihalomethanes (THMs)	ڰۿ	80 ppm
Turbidity	Ş	N/A (WHO recommended value is below 5.00 NTU)
Potability		N/A (Potable water = 1, Non-potable water = 0)

Initial ETL

- Imported Dependencies
 - matplotlib for basic visualizations and graph labels
 - pandas for data cleansing and basic statistical summary
 - numpy for multi-dimensional arrays
 - seaborn for advanced statistical visualizations
- Read in .csv with raw data from Kaggle to a DataFrame using pandas

```
In [1]: # Dependencies and Setup
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns

# Study data files
readin = "../dataset/water_potability.csv"

# create a dataframe
OG_df = pd.read_csv(readin)
OG_df.head()
```


Data Transformation

- Drop rows that contain N/A values for any water chemistry component
- Divide solids column by 100 (scale only goes up to 2,000)

```
# Drop rows w/ blank values
df2 = OG_df.dropna(axis=0,how='any')
df2.head(10)
```

```
# Fix weird solids column error (all values multiplied by 100)
df2['Solids'] = df2['Solids'].div(100)
df2.head()
```

Before

	pl	h	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	N	laN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.	.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0

After

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
3	8.316766	214.373394	220.184174	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	179.789863	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0

What Correlation?

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

 Weak/no correlation between any of the water chemistry components and potability

Distribution Analysis

- Distributions picked by feature
- 0: Non-Potable, 1: Potable
- Chloramines- data outside acceptable range
- Hardness- data outside acceptable range (180-210 ppm)
- TOC- Well outside of acceptable range (< 2-4 ppm)
- Whether water represented to be potable is actually safe for consumption

Are Any Samples Safe for Consumption?

- Original data frame was filtered by EPA and WHO water feature parameters
- Contrasting water standards nation to nation
- Garbage in, garbage out
- Cultures adapting to different water conditions

What Did We Learn?

- Appearance of data reputability ≠ actual reputability
- Use accepted benchmarks / relevant standards to verify quality of data and assertions
- A bad data set can teach you as many things as a good data set
- The greatest indicator of water potability is likely Fecal Coliform not the features included in our dataset

"IN WINE THERE IS
WISDOM, IN BEER
THERE IS FREEDOM,
IN WATER THERE
IS BACTERIA."

Sources

- Acceptable drinking water parameters: https://epa.gov
- Backup standards for non-EPA regulated water components: https://who.int
- Potable Water Dataset: https://www.kaggle.com/adityakadiwal/water-potability
- Slide Aesthetic: https://www.revivedwater.eu/
- Benjamin Franklin Quote: https://me.me/i/in-wine-there-is-wisdomi-in-beer-there-is-treedomi-15067068
- Fecal Coliform Primary Indicator of Potability:
 https://www.water-research.net/index.php/water-testing/bacteria-testing/fecal-coliform-bacteria
- Hardness: https://www.realtor.com/advice/home-improvement/ what-is-hard-water/
- TOC: https://science.nd.edu/undergraduate/minors/sustainability/capstone-projects/2014/elser/

Kernel Density Estimation

Correlation of Potability:

	Features	Correlation
1	Hardness	0.001505
7	Trihalomethanes	0.009244
0	ph	0.014530
4	Sulfate	0.015303
5	Conductivity	0.015496
6	Organic_carbon	0.015567
3	Chloramines	0.020784
8	Turbidity	0.022682
2	Solids	0.040674

Feature Boxplot by Potability Feature

