

WEAVER: INTERWEAVING SQL AND LLM FOR TABLE REASONING

EMNIP 2025

Rohit Khoja*, Devanshu Gupta* Yanjie Fu, Dan Roth, Vivek Gupta

Arizona State University, University of Pennsylvania

Why is Table QA still Challenging?

- Tables contain both structured (numbers, fields) and unstructured (long text/images) data
- SQL is great for logic but fails at semantic inference
- LLMs handle semantics but struggle at structured logic

Example: "Which country had the most competitors?"

Driver	Constructor	Laps	Time
Alain Prost	Ferrari	64	1:18:31
Thierry Boutsen	Williams-Renault	64	39.092
Ayrton Senna	McLaren-Honda	63	1 Lap

SQL fails here \rightarrow LLM helps with nationality inference

Existing SQL-LLM integration is rigid or shallow

Method	Strength	Limitation	
Binder/BlendSQL	Integrate LLM into	Fail on multi-step	
	SQL	reasoning	
H-STAR / Re-	Structured pruning	Struggles with row	
AcTable		extraction	
ProTrix	2-step reasoning	Limited flexibility	

Key Issue: Fixed workflows lack adaptability to complex queries

Weaver dynamically interweaves SQL and LLM reasoning

LLM-generated dynamic execution plan:

Weaver first generates a **flexible step-by-step plan** that adapts to query complexity, then executes through dynamic interweaving of:

- 1. **SQL** step \rightarrow Structured operations (filter, aggregate, join)
- 2. LLM step → Semantic reasoning (inference, understanding)
- 3. **Verification** → Ensures correctness

Back-and-forth reasoning:

 $SQL \leftrightarrow LLM \leftrightarrow SQL \leftrightarrow LLM$

Phase 1: Preprocessing

Prepare the data:

- Extract metadata and constraints
- Identify table schema and data types
- Filter irrelevant columns

Phase 2: Planning

LLM generates a dynamic execution plan:

- Generate step-by-step execution plan
- Determine SQL vs. LLM operations for each step
- Adapt plan based on query complexity

Phase 3: Code Execution

Dynamic interweaving of SQL and LLM:

- Execute SQL queries on structured data
- Run LLM inference for semantic tasks

Phase 4: Answer Extraction

Generate final answer:

- Extract Answer from final table
- Format and validate the final answer

Example Walkthrough:

Question: Which country had the most competitors?

- SQL step: Extract unique drivers
 SELECT DISTINCT driver COUNT(*) FROM table
- 2. LLM step: Infer country from driver column "Alain Prost" → France, "Thierry Boutsen" → Belgium
- SQL step: Count competitors by country SELECT country, COUNT(*) as competitors FROM unique_drivers GROUP BY country
- 4. Final Answer: Italy

Key Benefit: Every step is transparent and interpretable

Planning Optimization for Fewer API Calls

Optimization strategies:

- SQL reordering
- Parallelization
- Batch processing

Result:

23% reduction in total steps with 1% accuracy loss

Weaver Outperforms State-of-the-Art

Performance on major benchmarks:

Key achievements:

• +5% accuracy improvement across datasets

Extends to Text + Image Tables

Multimodal Table QA Performance:

Dataset	Modalities	Accuracy Gain
MMTabQA	Text + Images	+6.6%
FinQA-MM	Tables + Passages	+17.3%
OTT-QA-MM	Tables + Passages	+2.9%

Highlight: Weaver handles reasoning across:

- Structured tables
- Unstructured text
- Embedded images

Unified framework for multimodal table reasoning

Efficacy & Efficiency

Efficiency:

 Average 6 API calls per query

Method	API Calls
Binder	50
H-STAR	8
Weaver	5.5

Efficacy:

• 28.1% accuracy improvement on large tables

Method	API Calls
H-STAR	35.9%
ProTrix	37.5%
Weaver	65.6%

Interpretability:

- Transparent step-by-step plan
- Intermediate tables visible
- Easy debugging and verification

Conclusion

Dynamic SQL-LLM weaving enables accurate, interpretable, and efficient Table QA

Key Takeaways:

- Modular, interpretable pipeline for hybrid table reasoning
- 5–10% accuracy gain over state-of-the-art methods
- Multimodal support (text, image, table)
- Flexible planning adapts to query complexity

Link:

coral-lab-asu.github.io/weaver

Future Work

- Multi-table reasoning with joins across databases
- Multilingual table support (non-English tables)
- Hierarchical & nested data structures
- Integration with database systems