Universidade Tecnológica Federal do Paraná

Engenharia de Computação Campus Pato Branco

Trabalho de Conclusão de Curso - 2019/1 Navegação de robôs móveis utilizando Lógica *Fuzzy*

Profa. Orientadora: Dra. Kathya Silvia Collazos Linares Acadêmico: Marcelo Gervazoni Carbonera

2 de Julho de 2019

Estrutura

- 1. Introdução
- 2. Objetivos
- 3. Fundamentos Teóricos
 - → 3.1 Modelo do robô móvel
 - → 3.2 Sistemas a Eventos Discretos
 - → 3.3 Sistemas Híbridos
 - → 3.4 Lógica *Fuzzy* em Controle
- 4. Materiais e Método
- 5. Desenvolvimento
- 6. Considerações

Aspectos Qualitativos

Arquiteturas:

- Deliberativa.
- Reativa.
- Híbrida.
- Comportamental.

Aspectos Qualitativos

Arquiteturas:

- Deliberativa.
- Reativa
- Híbrida
- Comportamental.

Deliberativa

"Pensar antes de agir".

Foco no longo prazo.

Aspectos Qualitativos

Arquiteturas:

- Deliberativa
- Reativa.
- Híbrida.
- Comportamental.

Reativa

Reagir rapidamente a estímulos, sem planejar.

Foco no curto prazo.

Aspectos Qualitativos

Arquiteturas:

- Deliberativa
- Reativa.
- Híbrida.
- Comportamental.

Híbrida

Camadas deliberativa e reativa em conjunto.

Desafio: extrair o melhor de cada abordagem.

Aspectos Qualitativos

Arquiteturas:

- Deliberativa
- Reativa
- Híbrida.
- Comportamental.

Comportamental

Semelhante à arquitetura reativa.

Difere pelo nível de abstração.

Objetivos

Objetivo Geral

- → Construir robô autônomo, sem armazenamento de mapa, capaz de desviar de obstáculos.
- ightarrow Comparar qualitativamente: controlador Híbrido e Fuzzy.

Objetivos Específicos

- ightarrow Modelagem.
- → Arquitetura de controle.
- → Implementação física.
- → Implementação do sistema embarcado
- → Teste e validação.

Objetivos

Objetivo Geral

- → Construir robô autônomo, sem armazenamento de mapa, capaz de desviar de obstáculos.
- → Comparar qualitativamente: controlador Híbrido e Fuzzy.

Objetivos Específicos

- → Modelagem.
- → Arquitetura de controle.
- ightarrow Implementação física.
- → Implementação do sistema embarcado.
- → Teste e validação.

Arquitetura comportamental

Comportamentos como campos potenciais

(a) Comportamento "Ir Para Objetivo"

(b) Comportamento "Evitar Obstáculo"

Mínimos locais

- Existência de mínimos locais depende da disposição e formato de obstáculos.
- Um comportamento "Seguidor de parede" pode ser criado a fim de contornar obstáculos.

Modelo Cinemático

$$\begin{cases} \dot{x} &= v \cos \phi \\ \dot{y} &= v \sin \phi \\ \dot{\phi} &= \omega \end{cases}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \cos \phi & 0 \\ \sin \phi & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$\begin{cases} \dot{x} = \frac{R}{2}(\omega_I + \omega_r)\cos\phi \\ \dot{y} = \frac{R}{2}(\omega_I + \omega_r)\sin\phi \\ \dot{\phi} = \frac{R}{L}(\omega_r - \omega_I) \end{cases}$$

Estabelecendo vínculo entre os modelos

$$\begin{cases} \dot{x} = \frac{R}{2}(\omega_I + \omega_r)\cos\phi \\ \dot{y} = \frac{R}{2}(\omega_I + \omega_r)\sin\phi \\ \dot{\phi} = \frac{R}{I}(\omega_r - \omega_I) \end{cases}$$

$$\begin{cases} \dot{x} = v \cos \phi \\ \dot{y} = v \sin \phi \\ \dot{\phi} = \omega \end{cases}$$

Equivalência entre modelos

$$\omega_I = \frac{2v - L\omega}{2R}$$

$$\omega_r = \frac{2v + L\omega}{2R}$$

$$\begin{cases} x' = x_o + I \cos \phi \\ y' = y_o + I \sin \phi \end{cases}$$

$$\begin{cases} x' = x_o + l\cos\phi \\ y' = y_o + l\sin\phi \end{cases}$$
$$\begin{cases} \dot{x'} = \dot{x_o} - \dot{\phi}l\sin\phi = v\cos\phi - l\omega\sin\phi \\ \dot{y'} = \dot{y_o} + \dot{\phi}l\cos\phi = v\sin\phi + l\omega\cos\phi \end{cases}$$

$$\begin{cases} x' = x_o + l\cos\phi \\ y' = y_o + l\sin\phi \end{cases}$$

$$\begin{cases} \dot{x'} = \dot{x_o} - \dot{\phi}l\sin\phi = v\cos\phi - l\omega\sin\phi \\ \dot{y'} = \dot{y_o} + \dot{\phi}l\cos\phi = v\sin\phi + l\omega\cos\phi \end{cases}$$

$$\begin{bmatrix} \dot{x'} \\ \dot{y'} \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & l \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$\begin{cases} x' = x_o + I \cos \phi \\ y' = y_o + I \sin \phi \end{cases}$$

$$\begin{cases} \dot{x'} = \dot{x_o} - \dot{\phi} I \sin \phi = v \cos \phi - I \omega \sin \phi \\ \dot{y'} = \dot{y_o} + \dot{\phi} I \cos \phi = v \sin \phi + I \omega \cos \phi \end{cases}$$

$$\begin{bmatrix} \dot{x'} \\ \dot{y'} \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \dot{x'} \\ \dot{y'} \end{bmatrix}$$

$$\begin{cases} x' = x_o + I \cos \phi \\ y' = y_o + I \sin \phi \end{cases}$$

$$\begin{cases} \dot{x'} = \dot{x_o} - \dot{\phi} I \sin \phi = v \cos \phi - I \omega \sin \phi \\ \dot{y'} = \dot{y_o} + \dot{\phi} I \cos \phi = v \sin \phi + I \omega \cos \phi \end{cases}$$

$$\begin{bmatrix} \dot{x'} \\ \dot{y'} \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{I} \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \dot{x'} \\ \dot{y'} \end{bmatrix}$$

Sistemas a Eventos Discretos

Definição

- Sistema Dinâmico.
- Estados discretos.
- Eventos assíncronos provocam transições instantâneas de estado.
- Arbitragem!

Controle Supervisório

Definição

- Captura eventos observáveis.
- Permite ou suprime eventos passíveis de ocorrência.

Automatos Temporizados com guarda

clocks

- "Contador": associado a tempo.
- Definido por uma função linear ($\dot{x} = 1$).

Função de transição

- ullet Transições: (Estado, Evento) o (Estado)
- ullet Transições Temporizadas: (Guardas, Evento, Reset)
 ightarrow (Estado)
 - → Guardas: condições nas variáveis contínuas.
 - → Reset: conjunto de variáveis clock às quais deve-se atribuir valor zero.

Invariante

Evita deadlock por tempo ao forçar transição!

Sistemas Híbridos

Definição

- Estados formados por tuplas (q,x).
 - \rightarrow q: Estados discretos .
 - → x: Estados contínuos .
- Autômato híbrido extende o autômato temporizado com guardas.
- Estados são chamados "modos de operação", pois alteram a dinâmica do sistema.

Sistemas Híbridos

Definição

- Estados formados por tuplas (q,x).
 - → q: Estados discretos .
 - → x: Estados contínuos .
- Autômato híbrido extende o autômato temporizado com guardas.
- Estados são chamados "modos de operação", pois alteram a dinâmica do sistema.

Arbitragem

Chaveamento de dinâmicas (controladores).

Campos vetoriais descontínuos

- Regiões de costura.
- Deslizamento.
- Comportamento de Zenão.
- Regularização.

Campos vetoriais descontínuos

- Regiões de costura.
- Deslizamento.
- Comportamento de Zenão.
- Regularização.

Campos vetoriais descontínuos

- Regiões de costura.
- Deslizamento.
- Comportamento de Zenão.
- Regularização.

Lógica Fuzzy em controle

Conjuntos fuzzy

- Variável linguística.
- Valor linguístico.
- Grau de pertinência.

Lógica Fuzzy em controle

Conjuntos *fuzzy*

- Variável linguística.
- Valor linguístico.
- Grau de pertinência.

Motivação para uso

Mescla aspectos exatos e elementos qualitativos.

Lógica Fuzzy em controle

Conjuntos fuzzy

- Variável linguística.
- Valor linguístico.
- Grau de pertinência.

Motivação para uso

Mescla aspectos exatos e elementos qualitativos.

Indicação e contraindicação

- Indicada em sistemas **complexos**, compreendidos parcialmente.
- Deseja-se solução rápida.
- Não apropriada para sistemas simples (LIT).

Fuzzyficação

- Associa variáveis numéricas a conjuntos fuzzy.
- Saída: conjunto de graus de pertinência vinculados a valores linguísticos.

Fuzzyficação

- Associa variáveis numéricas a conjuntos fuzzy.
- Saída: conjunto de graus de pertinência vinculados a valores linguísticos.

Mecanismo de Inferência

- Base de regras $(P \rightarrow Q)$.
- Pertinência das premissas determinam pertinências das saídas.
- Conjunto de "recomendações".

Fuzzyficação

- Associa variáveis numéricas a conjuntos fuzzy.
- Saída: conjunto de graus de pertinência vinculados a valores linguísticos.

Mecanismo de Inferência

- Base de regras $(P \rightarrow Q)$.
- Pertinência das premissas determinam pertinências das saídas.
- Conjunto de "recomendações".

Defuzzificação

• A partir de recomendações distintas, determinam-se as saídas.

Materiais

Tabela de Custos

Item	Qtd	Custo Unitário	Custo Total
Bateria LiPo Limskey 11,1v 3S 4200mAh	1	112,05	112,05
Módulo para cartão de memória SD WAVGAT, comunicação SPI	1	2,79	2,79
Ponte H dupla L298N	1	6,12	6,12
Sensor infravermelho GP2Y0A21YK0F, alcance de 10 a 80 cm	5	13,07	65,35
Módulo conversor Buck DC-DC, saída 5v	1	9,14	9,14
Sensor inercial IMU GY-87, com 10 graus de liberdade (MPU6050, HCM5883L, BMP180)	1	25,9	25,9
Módulo wireless NRF24L01 com antena de alcance de 1000 metros	1	7,69	7,69
Conjuntos de motores, caixa de redução 1:34 e sensores de efeito hall (341,2 PPR)	2	47,015	94,03
Esfera de rolagem	1	2,002	2,002
Tiva Connected LaunchPad TM4C1294	1	80,00	80,00
		Total:	405,07

Metodologia

- Projetar controladores.
- Validar o funcionamento usando simulador Simiam.
- Montagem física.
- Sistema embarcado.
- Teste e validação.

Desenvolvimento

Simiam

- Simulador implementado no Matlab.
- Implementado como sistema híbrido (Supervisor escalona controladores).

Desenvolvimento

Simiam

- Simulador implementado no Matlab.
- Implementado como sistema híbrido (Supervisor escalona controladores).

Alterações mais importantes

- Incluir uma classe para implementar aspectos físicos do robô deste trabalho.
- Incluir suporte para controladores fuzzy.

Considerações Finais

- Autonomia em arquiteturas não deliberativas.
- Estimativa de estado.
- Comparação qualitativa.

Universidade Tecnológica Federal do Paraná

Engenharia de Computação Campus Pato Branco

Trabalho de Conclusão de Curso - 2019/1 Navegação de robôs móveis utilizando Lógica *Fuzzy*

Profa. Orientadora: Dra. Kathya Silvia Collazos Linares Acadêmico: Marcelo Gervazoni Carbonera

2 de Julho de 2019

