ALGEBRA

2th

Session II

RETROALIMENTACIÓN

HELICO REGRECTUL

1. Resuelva

$$\frac{8x - 3}{8} - 1 = \frac{3x - 5}{4}$$

RESOLUCIÓN

$$mcm(8;4) = 8$$

RECORDEMOS

Resuelva, Resuelve, Resolver nos están indicando que encontremos el **CONJUNTO SOLUCIÓN**.

2. Calcule el valor de "x"

$$\frac{x+2}{3} - \frac{4x}{9} = \frac{x}{9}$$

Si este valor indica el número de vacunas que recibirá Luis por la Campaña Nacional contra la Difteria.

RESOLUCIÓN

$$mcm(3; 9) = 9$$

$$\frac{3}{3} + \frac{2}{3} - \frac{1}{3} = \frac{4x}{9} = \frac{1}{9}$$

$$\frac{3}{3} + 2 - 4x = x$$

$$\frac{3}{3} + 6 - 4x = x$$

$$-x + 6 = x$$

$$6 = 2x$$

$$x = 3$$

Recibió 3 Vacunas

3. Si la ecuación en x, (4m - 12)x = 7n - 10 es compatible indeterminada matoriale 3m + 7n.

RESOLUCIÓN

Decimos que, por ser compatible indeterminada, tiene infinitas soluciones.

$$(4m - 12) x = 7n - 10$$

 $(4m - 12) x + (-7n + 10) = 0$ Forma general $a = 0$ $b = 0$

RECORDEMOS

Sea la forma general: ax + b = 0

Ecuación Compatible Indeterminada

Es aquella ecuación que tiene **infinitas** soluciones

Se cumple que: a = 0 $\land b = 0$

Si la ecuación tiene infinitas soluciones se dice que "x" toma cualquier valor.

$$\rightarrow CS = \mathbb{R}$$

HELICO RETRO CAPÍTULO 20

4. Sea la ecuación

$$3x^2 - 4x + 1 = 0 \text{ de raíces } x_1 \wedge x_2$$
 Calcule $\frac{1}{x_2} - \frac{1}{x_1}$. $x_1 > x_2$

RESOLUCIÓN

$$3x^2 - 4x + 1 = 0$$

Diferencia de raíces

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{a}$$

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{3}$$

$$x_{1} - x_{2} = \pm \frac{2}{3}$$

Producto de raíces

$$x_1 \times x_2 = \frac{c}{a}$$
$$x_1 \times x_2 = \frac{1}{3}$$

$$\frac{1}{x_2} - \frac{1}{x_1} \to \frac{x_1 - x_2}{x_1 \times x_2} \to \frac{2}{3} \div \frac{1}{3} = \boxed{2}$$

RECORDEMOS

Forma General

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$
Diferencia de raíces	$x_1 - x_2 = \frac{\sqrt{\Delta}}{a}$

Hallando la discriminante (Δ)

$$\Delta = b^2 - 4ac$$
 $\Delta = (-4)^2 - 4(3)(1)$
 $\Delta = 4$

5. Determine la suma, el producto y la diferencia de raíces de

$$2x^2 - 14x + 20 = 0$$

RESOLUCIÓN

$$2x^2 - 14x + 20 = 0$$

$$x_1 + x_2 = -\frac{b}{a}$$
 $x_1 \times x_2 = \frac{c}{a}$ $x_1 - x_2 = \frac{\sqrt{\Delta}}{a}$ $x_1 + x_2 = \frac{-(-14)}{2}$ $x_1 \times x_2 = \frac{20}{2}$ $x_1 - x_2 = \frac{\sqrt{\Delta}}{2}$

$$x_1 + x_2 = \frac{14}{2} = 7$$
 $x_1 \times x_2 = 10$ $x_1 - x_2 = \pm \frac{6}{2} = \pm 3$

Suma de raíces Producto de raíces Dif. de raíces

$$x_1 \times x_2 = \frac{c}{a}$$

$$x_1 \times x_2 = \frac{20}{2}$$

Suma de raíces = 7
Producto de raíces =
$$10$$

Diferencia de raíces = ± 3

RECORDEMOS

Forma General

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$
Diferencia de raíces	$x_1 - x_2 = \frac{\sqrt{\Delta}}{a}$

Hallando la discriminante (Δ)

$$\Delta = b^{2} - 4ac$$

$$\Delta = (-14)^{2} - 4(2)(20)$$

$$\Delta = 36$$

6. Sea $x^2 - 9x + 8 = 0$ de raíces $x_1 y x_2$.

Calcule
$$T = (x_1 + x_2)^2 - (x_1 - x_2)^2$$

RESOLUCIÓN

Suma de raíces

$$x_{1} + x_{2} = -\frac{b}{a}$$

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{a}$$

$$x_{1} + x_{2} = \frac{-(-9)}{1}$$

$$x_{1} + x_{2} = 9$$

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{a}$$

$$\Rightarrow \Delta = b^{2} - 4ac$$

$$\Delta = (-9)^{2} - 4(1)$$

Diferencia de raíces

$$x_{1} + x_{2} = -\frac{b}{a}$$

$$x_{1} + x_{2} = \frac{-(-9)}{1}$$

$$x_{1} + x_{2} = 9$$

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{a}$$

$$\Delta = b^{2} - 4ac$$

$$\Delta = (-9)^{2} - 4(1)(8)$$

$$\Delta = 49$$

$$x_{1} - x_{2} = \frac{\sqrt{\Delta}}{1}$$

$$x_{1} - x_{2} = \pm 7$$

Entonces:

$$T = (x_1 + x_2)^2 - (x_1 - x_2)^2$$

$$T = ()^2 - ()^2$$

RECORDEMOS

Identidad de Legendre

$$(a+b)^2 - (a-b)^2 = 4ab$$

$$T = (x_1 + x_2)^2 - (x_1 - x_2)^2$$

$$T = 4 x_1 \cdot x_2$$

$$T = 4 \times \frac{c}{a}$$

$$T = 4 \times \frac{8}{1} = 32$$

HELICO RETRO CAPÍTULO 21

7. Sabiendo que $A = \langle -3; 5 \rangle$ y $B = \langle 2; 7 \rangle$, halle $A \cap B$.

RESOLUCIÓN

Graficamos

RECORDEMOS

Decimos que la Intersección de **A** n **B** son todos los elementos comunes que pertenecen a **A** y **B** a la vez.

$$A \cap B = \{x/x \in A \land x \in B\}$$

8. Sea $\mathbf{x} \in (12; 17]$, determine la suma de elementos enteros en la variación $\frac{3x-1}{5}$.

RESOLUCIÓN

$$12 < x \le 17$$
 x 3
 $36 < 3x \le 51$ -1
 $36 - 1 < 3x - 1 \le 51 - 1$
 $35 < 3x - 1 \le 50$ ÷ 5
 $7 < \frac{3x - 1}{5} \le 10$

$$\therefore \frac{3x-1}{5} = \{8,9,10\}$$

Suma = 27

RECORDEMOS

Propiedades

Si: **a > b** y **m >** 0 a. **m >** b. **m**
$$\frac{a}{m} > \frac{b}{m}$$

En cambio, si **m** es **negativo**, el sentido de la desigualdad se **invierte**.

a.m < b.m
$$\frac{a}{m} < \frac{b}{m}$$

9. Si $x \in [11; 13)$ halle el intervalo de $\frac{48}{x-5}$.

RESOLUCIÓN

$$\Rightarrow \frac{48}{x-5} \in \left[\langle 6; 8] \right]$$

RECORDEMOS

Propiedades

Si: a > b y a, b, n son positivos se tiene

$$a^n > b^n$$

En cambio, si **n** es **negativo**, el sentido de la desigualdad se invierte.

Tener en cuenta:

$$6^{-1} \le (x-5)^{-1} < 8^{-1}$$

Para evitar cambiar el sentido, podemos "**Reflejar**" la desigualdad.

$$< (x-5)^{-1} \le$$

HELICO RETRO PREGUNTA PISA

10. Si 8 ≤ x ≤ 13, determine las edades de Pedro y Juan si están representadas por el menor y mayor valor entero respectivamente de la variación $\frac{2x-1}{5}$

RESOLUCIÓN

Edad de Pedro: 3 años Edad de Juan : 5 años