不等式

2025年7月25日

不等式的性质

1. 设 a>b>c>d>0,且 $x=\sqrt{ab}+\sqrt{cd},y=\sqrt{ac}+\sqrt{bd},z=\sqrt{ad}+\sqrt{bc}$,则 x,y,z 的大小关系为______.

2. 使不等式 $\sqrt{3} + \sqrt{8} > 1 + \sqrt{a}$ 成立的正整数 a 的最大值为_____

3. 已知二次函数 f(x) 的图像过原点,且 $1 \le f(-2) \le 2$, $3 \le f(1) \le 4$,求 f(2) 的范围.

4. 判断 $x^2 + y^2$ 与 xy + x + y + 1 的大小.

5. 已知 $a,b,c,d>0,\ A=a+d,\ B=b+c,\$ 且 $\frac{a}{b}=\frac{c}{d}.$ 若 a 是 a,b,c,d 中最大的一个,试比较 A 与 B 的大小.

6. 设 $0 < a < \frac{1}{2}$. 则 $1 - a^2$, $1 + a^2$, $\frac{1}{1 - a^2}$, $\frac{1}{1 + a^2}$ 按从小到大的顺序排列为 ______.

7. 设 $a,b,c \in \mathbf{R}$. 则 "a>0,b>0,c>0" 是 "a+b+c>0,ab+bc+ca>0,abc>0" 成立的条件.

8. 若 $0 < b < a < \frac{1}{4}$. 则 $a - b, \sqrt{a} - \sqrt{b}, \sqrt{a - b}, \sqrt{a^2 - b^2}$ 中最大的是 ______.

9. 设对于 k = 1, 2, ..., n, 存在实数 x 满足如下不等式: $2^k < x^k + x^{k+1} < 2^{k+1}$. 试求 n 的最大值.

10. 设 $f(x) = x^8 - x^5 + x^2 - x + 1$. 证明: 对任意实数 x, f(x) 总大于 0.

不等式的证明

1. 设 $\triangle ABC$ 的三条边分别为 a,b,c, 试证明 $ab+bc+ac \geq \frac{1}{2}(a+b+c)^2$.

2. 己知
$$a > 0, b > 0$$
, 且 $a + b = 1$. 证明: $\left(a + \frac{1}{a}\right) \left(b + \frac{1}{b}\right) \ge \frac{25}{4}$.

3. 设正实数
$$a, b$$
 满足 $a + b = 1$. 证明: $\sqrt{a^2 + \frac{1}{a}} + \sqrt{b^2 + \frac{1}{b}} \ge 3$.

4. 己知
$$x, y, z \in \mathbf{R}^+$$
. 证明:
$$\frac{1 + xy + xz}{(1 + y + z)^2} + \frac{1 + yz + yx}{(1 + z + x)^2} + \frac{1 + zx + zy}{(1 + x + y)^2} \ge 1.$$

5. 己知 n 是正整数. 证明: $\frac{1}{\sqrt{1^3}} + \frac{1}{\sqrt{2^3}} + \frac{1}{\sqrt{3^3}} + \dots + \frac{1}{\sqrt{n^3}} < 3$.

6. 己知
$$u \in [-\sqrt{2}, \sqrt{2}], v \in \mathbf{R}^+$$
. 证明: $(u-v)^2 + \left(\sqrt{2-u^2} - \frac{9}{v}\right)^2 \ge 8$.

7. 若 a,b,c 是符号相同的三个实数, 且 a < b < c, 令 $S = a^3(b^2 - c^2) + b^3(c^2 - a^2) + c^3(a^2 - b^2)$. 则 S 与 0 的大小关系是 ______.

8. 设 a, b 都是正数, 且 $a + b \le 4$. 则 $\frac{1}{a} + \frac{1}{b}$ 与 1 的大小关系是 ______.

9. 设 $x, y, z \in \mathbf{R}$,在 $\triangle ABC$ 中. 证明: $x^2 + y^2 + z^2 \ge 2xy \cos C + 2yz \cos A + 2zx \cos B$.

10. 已知非负实数 a,b,c 满足 ab+bc+ca=1. 证明: $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{5}{2}$.

不等式的解法

1. 解不等式:
$$\sqrt{x+\frac{1}{x^2}} - \sqrt{x-\frac{1}{x^2}} < \frac{1}{x}$$
.

2. 解不等式
$$(x^2-1)\cdot\sqrt{x^2+1} < x\cdot(x^2+1)$$
.

3. 设
$$a$$
 为实常数, 关于 x 的不等式 $\frac{1}{1+\sqrt{x}} \ge a\sqrt{\frac{x}{x-1}}$ 有非零解. 求实数 a 的取值范围.

4. 解不等式 $\left| \log_2 x + \frac{2}{\sqrt{\log_2 x + 4}} \right| \ge 1.$

5. 解关于 x 的不等式 $2^{3x} - 2^{-3x} > \lambda(2^x - 2^{-x})$.

6. 已知不等式 $|x^2 - 4x + a| + |x - 3| \le 5$ 的解的最大值为 3. 求实数 a 的值,并解此不等式.

7. 已知不等式 $x^4 + ax^3 + (a+3)x^2 + ax + 1 > 0$ 对一切实数 x 恒成立,求实数 a 的取值范围.

8. 不等式 $|x + \log_2 x| < x + |\log_2 x|$ 的解集为 ______.

9. 若 $\sqrt{3-a} - \sqrt{a+1} \le 0$ 恒成立,则实数 a 的取值范围为 ______.

10. 设 $a, b, x \in \mathbb{N}^+$, 且 $a \le b$. A 为关于 x 的不等式 $\lg b - \lg a < \lg x < \lg b + \lg a$ 的解集. 已知 A 中 恰好有 50 个整数解, 且 $\frac{1}{a} + \frac{1}{b} \ge \frac{1}{50}$. 求当 ab 取最大值时, $\sqrt{a+b}$ 的值.