Algebrai struktúrák

1. A Példatár 4.2.1., 4.2.3., 4.2.4. feladataiból

Eml.:

 $(G; \circ) \ \textbf{f\'elcsoport}, \text{ha}: \qquad \qquad (G; \circ) \ \textbf{csoport}, \text{ha}: \\ G \ z\'{a}rt \ a \circ m\~{u}veletre \qquad \qquad G \ z\'{a}rt \ a \circ m\~{u}veletre \\ \circ \ k\'{e}tv\'{a}ltoz\'{o}s \qquad \circ \ k\'{e}tv\'{a}ltoz\'{o}s \\ \circ \ asszociat\'{i}v \qquad \circ \ asszociat\'{i}v \\ eftezik \ egys\'{e}gelem \\ minden \ elemnek \ l\'{e}tezik \ inverze \\ \end{cases}$

megj.: a \circ művelet neve: "kompozíció". (Vigyázat: a művelet konkrét esetben tetszőleges kétváltozós st. művelet lehet!)

- 4.2.1. Félcsoport-e? Amennyiben igen, van-e egység- ill. zéruselem?
- (a) $(\mathcal{P}(H); \Delta)$, ahol $\mathcal{P}(H)$ a H halmaz hatványhalmaza és Δ a szimmetrikus differencia; Mo.:

a szimmetrikus differencia kétváltozós művelet

műveleti zártság: $X,Y \in \mathcal{P}(H) \Rightarrow X \Delta Y \in \mathcal{P}(H)$ (hiszen $X,Y \subseteq H \Rightarrow X \Delta Y \subseteq H$) asszociativitás: $\forall X,Y,Z \in \mathcal{P}(H) \quad X \Delta (Y \Delta Z) = (X \Delta Y) \Delta Z$ (pl. Venn-diagrammal!) Kaptuk: $(\mathcal{P}(H);\Delta)$ félcsoport.

egységelem: \emptyset egységelem, mert $\forall X \in \mathcal{P}(H) \quad X \Delta \emptyset = \emptyset \Delta X = X$

zéruselem: nincs

(megj.: minden elemnek létezik inverze: minden elem inverze önmaga, mert $X \Delta X = \emptyset$. Ezért $(\mathcal{P}(H); \Delta)$ csoport.)

(b) $(V\,;\,\cdot)$ aholVa három
dimenziós vektorok halmaza, \cdot a skaláris szorzás;
 $\mathbf{Mo.:}$

Az alaphalmaz nem zárt a műveletre: $v_1, v_2 \in V \Rightarrow v_1 \cdot v_2 \in V$; sőt: $v_1, v_2 \in V \Rightarrow v_1 \cdot v_2 \notin V$ $(V; \cdot)$ nem algebrai struktúra, ezért nem is félcsoport.

(c) $(V\,;\,\times)$ aholVa három
dimenziós vektorok halmaza, \times a vektoriális szorzás;

Mo.: A vektoriális szorzás nem asszociatív művelet: általában $v_1 \times (v_2 \times v_3) \neq (v_1 \times v_2) \times v_3$ $(V; \times)$ nem félcsoport.

4.2.3. Bizonyítsa be, hogy az $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ alakú mátrixok $(n \in \mathbb{N})$ a szorzásra nézve félcsoportot alkotnak és ez a félcsoport izomorf az $(\mathbb{N}; +)$ félcsoporttal.

Mo.:

Jelöljük M-mel az $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ alakú mátrixok halmazát.

Először belátjuk, hogy (M , \cdot) félcsoport:

 $\begin{aligned} &\textit{\textit{műveleti zártság}} \colon \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & m+n \\ 0 & 1 \end{bmatrix}, \text{ továbbá } m, n \in \mathbb{N} \\ \Rightarrow m+n \in \mathbb{N}, \text{ vagyis az alaphalmaz zárt a műveletre.} \end{aligned}$

asszociativit'as:a mátrixszorzás általában asszociatív, tehát itt is. Kaptuk: (M , \cdot) félcsoport.

Az izomorfia bizonyítása előtt tekintsük át M elemeit:

$$\mathbf{M} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \dots, \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}, \dots \right\}.$$

Hasonlóan: $\mathbb{N} = \{0, 1, 2, ..., n, ...\}.$

Megadunk egy φ művelettartó bijekciót a két megszámlálhatóan végtelen számosságú halmaz között. A fenti sorbarendezésekkel adódik egy triviális bijekció a két halmaz között, kérdés, művelettartó-e:

Tekintsük a $\varphi: M \to \mathbb{N}$ leképezést, amelyre $\varphi\left(\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}\right) = n$. Ez nyilvánvalóan bijekció a két halmaz között.

Továbbá:

$$\varphi\left(\begin{bmatrix}1 & m \\ 0 & 1\end{bmatrix} \cdot \begin{bmatrix}1 & n \\ 0 & 1\end{bmatrix}\right) = \varphi\left(\begin{bmatrix}1 & m+n \\ 0 & 1\end{bmatrix}\right) = m+n = \varphi\left(\begin{bmatrix}1 & m \\ 0 & 1\end{bmatrix}\right) + \varphi\left(\begin{bmatrix}1 & n \\ 0 & 1\end{bmatrix}\right),$$

tehát φ művelettartó.

Ezzel beláttuk, hogy: $(M, \cdot) \cong (N; +)$.

megj.: a művelettartás mint tulajdonság könnyen jegyezhető alakban: "kompozíció képe a képek kompozíciója". A példában az első félcsoport kompozíciója a mátrixszorzás, a másik félcsoporté a (számok) összeadása.

4.2.4. Az alábbiak közül melyek alkotnak csoportot?

(a) A valós számok halmaza, ha a művelet a szorzás.

Mo.:

a szorzás kétváltozós művelet

műveleti zártság: $x, y \in \mathbb{R} \Rightarrow x \cdot y \in \mathbb{R}$

asszociativitás: $\forall x, y, z \in \mathbb{R}$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (axióma)

egységelem: az 1 egységelem, mert $\forall x \in \mathbb{R} \ 1 \cdot x = x \cdot 1 = x$

inverz: minden nem-nulla szám inverze a szám reciproka: $\forall x \in \mathbb{R} \setminus \{0\}$ $x^{-1} = \frac{1}{x}$, de a 0-nak nincs inverze. Ez utóbbi miatt: $(\mathbb{R};\cdot)$ nem csoport.

(b) A pozitív valós számok halmaza, ha a művelet a szorzás.

HF.: $(\mathbb{R}^+;\cdot)$ cooport.

(c) A pozitív valós számok halmaza, ha a művelet az osztás.

Mo.:

Az osztás művelete nem asszociatív: általában $x:(y:z)\neq (x:y):z,$

mert
$$x:(y:z)=\frac{xz}{y}$$
 és $(x:y):z=\frac{x}{yz}$.

Továbbá nincs egységelem: $\nexists e \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad e: x = x: e = x$

Kaptuk: $(\mathbb{R}^+; :)$ nem csoport.

(d) Az $A = \{1, 2, 3, 4, 5, 6, 7\}$ halmaz, ha a művelet a mod8 szorzás.

A mod
8 szorzás műveleti jele: \otimes_8

Néhány példa a számolásra:

$$2 \otimes_8 3 = 6$$

$$2 \otimes_8 4 = 0$$

$$3 \otimes_8 4 = 4$$

$$5 \otimes_8 6 = 6$$

$$3 \otimes_8 5 = 7$$

stb.

Látható, hogy a művelet kivezet az alaphalmazból, mert pl. $2 \otimes_8 4 = 0 \notin A$.

Kaptuk: $(A; \otimes_8)$ nem csoport.

(e) A $B = \{1, 3, 5, 7\}$ halmaz a mod8 szorzásra nézve.

HF.: $(B; \otimes_8)$ csoport.

2. Legyen $A = \{a, b, c, d\}$. Tekintsük a $\varphi : A \to A$ leképezések T(A) halmazát a kompozíció művelettel: $(T(A); \circ)$.

(a) Az egyes leképezéseket értéktáblájukkal jelölve (ld. tankönyv 94-95. old.), gyakoroljuk a kompozíció műveletét a $(T(A); \circ)$ transzformáció-félcsoportban.

$$T(A) = \left\{ \begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & b & d & c \end{pmatrix}, \dots, \begin{pmatrix} a & b & c & d \\ a & a & c & a \end{pmatrix}, \dots, \begin{pmatrix} a & b & c & d \\ b & b & b & b \end{pmatrix}, \dots \right\}$$

T(A) neve: A teljes transzformáció-félcsoportja (részfélcsoportjai: A transzformáció-félcsoportjai)

|T(A)| =ahány 4-hosszúa,b,c,dsorozat van, ha ismétlődés megengedett = $V_{4,4}^i = 4^4 = 256$

$$\begin{pmatrix} a & b & c & d \\ d & b & a & d \end{pmatrix}$$
egy leképezés az $a\mapsto d$, $b\mapsto b$, $c\mapsto a$, $d\mapsto d$ hozzárendelési szabállyal.

Két leképezés kompozíciója képezésekor ügyelnünk kell, melyik a belső ill. melyik a külső függvény:

$$\underbrace{\begin{pmatrix} a & b & c & d \\ a & c & d & d \end{pmatrix}}_{\text{k\"{u}ls\~{o}}} \circ \underbrace{\begin{pmatrix} a & b & c & d \\ d & c & a & c \end{pmatrix}}_{\text{bels\~{o}}} = \begin{pmatrix} a & b & c & d \\ d & d & a & d \end{pmatrix}$$

Itt a kompozíció a következő hozzárendelési szabállyal tekintendő:

$$\begin{array}{l} a \mapsto d \mapsto d \\ b \mapsto c \mapsto d \\ c \mapsto a \mapsto a \\ d \mapsto c \mapsto d \end{array}$$

Hasonlóan:

$$\begin{pmatrix} a & b & c & d \\ d & b & a & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & b & a & c \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ d & b & d & a \end{pmatrix}$$

(b) Igazoljuk, hogy $(T(A); \circ)$ félcsoport. Csoport-e?

Mo.:

A o kétváltozós művelet.

műveleti zártság: triviálisan teljesül

asszociativitás: leképezések kompozíciója általában asszociatív

HF.: Lássuk be, hogy pl.

$$\begin{bmatrix} \begin{pmatrix} a & b & c & d \\ a & a & d & d \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ b & c & b & a \end{pmatrix} \end{bmatrix} \circ \begin{pmatrix} a & b & c & d \\ d & b & c & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & d & d \end{pmatrix} \circ \begin{bmatrix} \begin{pmatrix} a & b & c & d \\ b & c & b & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ d & b & c & a \end{pmatrix} \end{bmatrix}$$

Kaptuk: $(T(A); \circ)$ félcsoport.

Továbbá:

egységelem: $\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}$ egységelem (identikus leképezés)

Ezzel tetszőleges T(A)-beli $\begin{pmatrix} a & b & c & d \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix}$ elemre:

$$\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix}$$

Itt $i_1\ i_2\ i_3\ i_4$ az $a\ b\ c\ d$ elemek egy permutációja.

HF.: Lássuk be, hogy pl.:

$$\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & c & d & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & c & d & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & c & d & a \end{pmatrix}$$

inverz: pl. az $\begin{pmatrix} a & b & c & d \\ a & a & c & c \end{pmatrix}$ elemnek nincs inverze:

$$\underbrace{\begin{pmatrix} a & b & c & d \\ a & a & c & c \end{pmatrix}}_{\text{elem}} \circ \underbrace{\begin{pmatrix} a & b & c & d \\ a & ? & c & ? \end{pmatrix}}_{\text{inverze}} = \underbrace{\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}}_{\text{egység}}$$

A belső függvény nem tud úgy elemet rendelni b-hez ill. d-hez, hogy a b ill. d elemek kompozíció általi képe b ill. d legyen.

megj.: csak a bijektív elemeknek van inverze.

Kaptuk: $(T(A); \circ)$ nem csoport.

(c) Részfélcsoport-e ($\{\alpha, \beta\}$; \circ), ha

$$\alpha = \begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix} \qquad \beta = \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} .$$

Mo.:

eml.: részfélcsoport: "részhalmaz és félcsoport ugyanazzal a művelettel"

 $\{\alpha,\beta\}$ egy kételemű részhalmaza T(A)-nak. Azt kell még belátnunk, hogy $(\{\alpha,\beta\};\circ)$ félcsoport. *műveleti zártság*: tételesen ellenőrizzük az összes lehetséges elempárral:

$$\begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \quad \Rightarrow \quad \alpha \circ \alpha = \beta \in \{\alpha, \beta\}$$

$$\begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \implies \alpha \circ \beta = \beta \in \{\alpha, \beta\}$$

$$\begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \implies \beta \circ \beta = \beta \in \{\alpha, \beta\}$$

$$\begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix} \implies \beta \circ \alpha = \beta \in \{\alpha, \beta\}$$

asszociativitás: öröklődik $(T(A); \circ)$ -ból

Kaptuk: Az ($\{\alpha, \beta\}$; o) algebrai struktúra a (T(A); o) teljes-transzfomáció-félcsoportnak egy **részfélcsoportja**. (Azaz: T(A) egy transzformáció-félcsoportja)

(d) Legyenek S(A) elemei T(A) bijektív elemei. Részfélcsoport-e $(S(A);\circ)$? Csoport-e? Mo.:

T(A) bijektív elemei A permutációi:

$$S(A) = \left\{ \begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & b & d & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & c & b & d \end{pmatrix}, \dots, \begin{pmatrix} a & b & c & d \\ d & c & b & a \end{pmatrix} \right\}$$

A táblázatok alsó sorában az $a\ b\ c\ d$ elemek egy-egy permutációja áll.

$$|S(A)| = P_4 = 4! = 24$$

$$S(A) \subseteq T(A)$$

műveleti zártság: bijektív leképezések kompozíciója bijektív (spec.: permutációk egymásutánja permutáció) asszociativitás: öröklődik $(T(A); \circ)$ -ból.

Eddig: $(S(A); \circ)$ félcsoport; részfélcsoport $(T(A); \circ)$ -ban.

Továbbá:

egységelem: $\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}$ egységelem (identikus leképezés)

 $inverz:\ S(A)\ \text{minden elemének van inverze:}\ \begin{pmatrix} a & b & c & d\\ i_1 & i_2 & i_3 & i_4 \end{pmatrix}\ \text{inverze}\ \begin{pmatrix} i_1 & i_2 & i_3 & i_4\\ a & b & c & d \end{pmatrix}$

(megj.: az inverz leképezés általános alakjában a felső sorban az $a\ b\ c\ d$ elemek nem a megszokott ábécérendben állnak (kivéve, ha az egységelem inverzéről van szó). Az egyértelműséget ez nem befolyásolja.)

Pl.: az
$$\begin{pmatrix} a & b & c & d \\ c & b & d & a \end{pmatrix}$$
 elem inverze $\begin{pmatrix} c & b & d & a \\ a & b & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ d & b & a & c \end{pmatrix}$.

Kaptuk: $(S(A); \circ)$ csoport. Név: A szimmetrikus csoportja

megj.: $(S(A); \circ)$ nem részcsoportja $(T(A); \circ)$ -nak, mert ez utóbbi nem csoport.

S(A) részcsoportjai: A permutációcsoportjai

(e) megj.: A permutációk ún. táblázatos írásmódjának alternatívája az ún. **ciklikus írásmód**. def.: **ciklus** olyan $(i_1i_2...i_k)$ permutáció, amelyben a hozzárendelési szabály a következő:

$$i_1 \mapsto i_2 \mapsto \ldots \mapsto i_k \mapsto i_1$$

pl.:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix} = (1243)(5)$$

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$ tehát egy 4-hosszú és egy 1-hosszú ciklus szorzataként írható fel.

Megj.: a "szorzat" szó itt szimbolikusan értendő, nem műveletként.

Egy ciklus első eleme a balzárójel utáni elem, utolsó eleme a jobbzárójel előtti elem; minden elem képe a ciklusban utána álló elem, ciklus utolsó elemének képe a ciklus első eleme.

Tétel: Minden permutáció felírható diszjunkt ciklusok szorzataként (a ciklusok sorrendjétől eltekintve

egyértelműen).

Pl.:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} = (12)(345) = (345)(12)$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix} = (12534)$$

Permutációk kompozíciója ciklikus írásmódban:

itt is: arra kell csak vigyáznunk, hogy először a belső, majd a külső függvény hozzárendelési szabályát kövessük. Pl.:

$$\underbrace{(124)(3)(5)}_{\text{k\"{u}ls\~{o}}} \circ \underbrace{(1)(234)(5)}_{\text{bels\~{o}}} = (123)(4)(5)$$

3. Írja le ciklikus írásmóddal a szabályos háromszög forgáscsoportjának elemeit!

A szóban forgó csoport elemei: egy szabályos háromszöget önmagába vivő síktranszformációk, azaz a szabályos háromszög forgásegybevágóságai a síkon. A művelet: kompozíció (síktranszformációk kompozíciója). Szokásos jelöléssel: $(F_3; \circ)$. A megoldásban kihasználjuk, hogy egy egybevágóság a háromszög csúcspontjait a háromszög csúcspontjaiba viszi bijektív módon, azaz egy egybevágóság egyértelműen leírható a háromszög csúcspontjai permutációjaként.

$$F_3 = \{e, f, f^2\}$$

Mo.:

$$e = O$$
 középpontú 0°-os forgatás $= \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix} = (A)(B)(C)$
 $f = O$ középpontú 120°-os forgatás $= \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix} = (ABC)$
 $f^2 = O$ középpontú 240°-os forgatás $= \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix} = (ACB)$

A forgatás pozitív forgásirányban értendő (óramutató járásával ellenkezőleg).

megj.:
$$f^3 = e$$
 , $e^{-1} = e$, $f^{-1} = f^2$, $(f^2)^{-1} = f$, $f^2 \circ f^2 = f$ stb.

4. Írja le ciklikus írásmóddal a szabályos háromszög szimmetriáit!

(Név: a szabályos háromszög diéder-csoportja)

Igaz-e ebben a csoportban az $(ABC) \circ (A)(BC) = (AB)(C)$ egyenlőség?

$$D_3 = \{e, f, f^2, t, ft, f^2t\}$$

Mo.:

Itt e, f, f^2 mint előbb, továbbá:

 $t={\rm az}~AB$ szakasz felezőmerőlegesére való tengelyes tükrözés =

$$=\begin{pmatrix}A&B&C\\B&A&C\end{pmatrix}=(AB)(C)$$

ft = az AB szakasz felezőmerőlegesére való tengelyes tükrözés és O kp-ú 120° -os forgatás egymásutánja =

$$=\begin{pmatrix}A&B&C\\C&B&A\end{pmatrix}=(AC)(B)$$

 $f^2t=$ az AB szakasz felezőmerőlegesére való tengelyes tükrözés és O kp-ú 240°-os forgatás egymásutánja =

$$= \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix} = (A)(BC)$$

megj.: $|D_3| = 6 = 3! = az A B C$ elemek összes permutációinak a száma.

(Kölcsönösen egyértelmű a megfelelés D_3 elemei és az $A\ B\ C$ elemek összes permutációi között.)

megj.:
$$t^2 = f^3 = e$$
, $tf = t \circ f = f^2t$, $tf^2 = t \circ f^2 = ft$, $t^{-1} = t$, $(ft)^{-1} = ft$, $(f^2t)^{-1} = f^2t$ $t \circ ft = t \circ tf^2 = e \circ f^2 = f^2$, $f \circ tf = f \circ f^2t = f^3t = e \circ t = t$ stb.

Igaz-e ebben a csoportban az $(ABC) \circ (A)(BC) = (AB)(C)$ egyenlőség?

I. mo.: áttérünk táblázatos alakra:

b.o.:
$$\begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix} \circ \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix} = \begin{pmatrix} A & B & C \\ B & A & C \end{pmatrix}$$

j.o.:
$$\begin{pmatrix} A & B & C \\ B & A & C \end{pmatrix}$$

A bal- és jobboldali elem megegyezik, tehát igaz az állítás.

II. mo.: elmagyarázzuk a hozzárendelési szabályt:

b.o.:
$$A \mapsto A \mapsto B$$
, $B \mapsto C \mapsto A$, $C \mapsto B \mapsto C$

j.o.:
$$A \mapsto B$$
, $B \mapsto A$, $C \mapsto C$

A bal- és jobboldali elem hozzárendelési szabálya megegyezik, tehát igaz az állítás.

III. mo.: a diédercsoport elemeiben gondolkodva:

b.o.:
$$f \circ f^2 t = f^3 t = et = t$$

j.o.:
$$t$$
 (ld. fent)

A bal- és jobboldali elem megegyezik, tehát igaz az állítás.

5. Mutassa meg, hogy (\mathbb{Z}_3 ; \oplus_3) és a szabályos háromszögek forgáscsoportja izomorf egymással! Mutassa meg, hogy mindegyik izomorf a Π_3 permutációcsoporttal!

I. mo.

1. áll.:
$$(\mathbb{Z}_3; \oplus_3) \cong (F_3; \circ)$$

biz.: $\mathbb{Z}_3 = \{0,1,2\}$, \oplus_3 a mod3 összeadás. Tekintsük át szisztematikusan a műveleti eredményeket a két csoportban:

$$(\mathbb{Z}_{3}; \oplus_{3}) \qquad (F_{3}; \circ)$$

$$0 \oplus_{3} 0 = 0 \qquad e \circ e = e$$

$$0 \oplus_{3} 1 = 1 \qquad e \circ f = f$$

$$0 \oplus_{3} 2 = 2 \qquad e \circ f^{2} = f^{2}$$

$$1 \oplus_{3} 0 = 1 \qquad f \circ e = f$$

$$1 \oplus_{3} 1 = 2 \qquad f \circ f = f^{2}$$

$$1 \oplus_{3} 2 = 0 \qquad f \circ f^{2} = e$$

$$2 \oplus_{3} 0 = 2 \qquad f^{2} \circ e = f^{2}$$

$$2 \oplus_{3} 1 = 0 \qquad f^{2} \circ f = e$$

$$2 \oplus_{3} 2 = 1 \qquad f^{2} \circ f^{2} = f$$

Mindkét csoportban az összes lehetséges elempárral elvégeztük a műveletet.

Ezek után megadunk egy művelettartó bijekciót a két halmaz között:

$$\varphi: \mathbb{Z}_3 \to F_3$$
 ahol $\varphi(0) = e$
$$\varphi(1) = f$$

$$\varphi(2) = f^2$$

 φ nyilvánvalóan bijekció a két halmaz között,

a művelettartás pedig a fenti táblázatban pontról pontra ellenőrizhető:

tetszőleges $a, b \in \mathbb{Z}_3$ esetén $\varphi(a \oplus_3 b) = \varphi(a) \circ \varphi(b)$ (vagyis, hogy "kompozíció képe a képek kompozíciója")

pl.:

$$\varphi(1 \oplus_3 2) = \varphi(1) \circ \varphi(2), \text{mert}$$
b.o.: $\varphi(1 \oplus_3 2) = \varphi(0) = e$ j.o.: $\varphi(1) \circ \varphi(2) = f \circ f^2 = e$ Ezt demonstrálja az előbbi 9 soros táblázat 6. sora.

Az öszes többi a,b elempárra hasonlóan kiolvasható a táblázatból az összefüggés. Kaptuk: $(\mathbb{Z}_3; \oplus_3) \cong (F_3; \circ)$

megj.: $(\mathbb{Z}_3; \oplus_3)$ csoportban $0^{-1}=0$, $1^{-1}=2$, $2^{-1}=1.$

2. áll.: Mindkét csoport izomorf a Π_3 permutációcsoporttal.

biz.: $(\Pi_3; \circ)$ permutációcsoport részcsoport az $(S_3; \circ)$ szimmetrikus csoportban.

(Itt az S_3 halmaz korábbi jelölésekkel S(A)-nak gondolandó, ahol A egy háromelemű halmaz. Mivel az, hogy konkrétan mik ennek az A halmaznak az elemei, strukturális szempontból teljesen mindegy, ezért elhagyhatjuk az A-ra történő utalást, és elég csupán alsó indexben jelölnünk, hogy háromelemű halmaz szimmetrikus csoportjáról van szó. A feladatban mindazonáltal célszerű konkrét elemekkel dolgozni, ezért legyen pl.: $A = \{1, 2, 3\}$.)

általában:
$$\Pi_n = \left\{ (123 \dots n)^k \mid k = 0, 1, 2, \dots, n-1 \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 3 & 4 & \dots & 1 \end{pmatrix}^k \mid k = 0, 1, 2, \dots, n-1 \right\}$$

most:

$$\Pi_3 = \left\{ (123)^k \mid k = 0, 1, 2 \right\} = \left\{ (1)(2)(3), (123), (132) \right\} =$$

$$= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^k \mid k = 0, 1, 2 \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

Mivel az izomorfia tranzitív tulajdonság, ezért elég pl. azt belátni, hogy $(F_3; \circ) \cong (\Pi_3; \circ)$ Ellenőrizhető, hogy az alábbi egy művelettartó bijekció a két halmaz között:

$$\varphi: \mathbb{F}_3 \to \Pi_3$$
 ahol
$$\begin{aligned} \varphi(e) &= (1)(2)(3) \\ \varphi(f) &= (123) \\ \varphi(f^2) &= (132) \end{aligned}$$

II. mo.

A három csoport páronkénti izomorfiája abból is következik, hogy mindhárom csoport harmadrendű ciklikus csoport:

$$|F_3| = |\mathbb{Z}_3| = |\Pi_3| = 3$$

és

$$F_3 = \{ f^k \mid k \in \mathbb{Z} \} = \{ f^0, f^1, f^2 \}$$

$$\mathbb{Z}_3 = \{ 1^k \mid k \in \mathbb{Z} \} = \{ 1^0, 1^1, 1^2 \}$$

$$\Pi_3 = \{ (123)^k \mid k \in \mathbb{Z} \} = \{ (123)^0, (123)^1, (123)^2 \}$$

Ebből:

$$(F_3; \circ) \cong (\mathbb{Z}_3; \oplus_3) \cong (\Pi_3; \circ)$$

- **6.** Mutassa meg, hogy az 5. komplex egységgyökök a szorzással csoportot alkotnak! Igazolja, hogy ez a csoport izomorf az ötödrendű forgáscsoporttal!
 - Az 5. komplex egységgyökök: $\sqrt[5]{1}$ értékei.

$$\sqrt[5]{1} = \sqrt[5]{\cos 0^\circ + j \sin 0^\circ} = \begin{cases} \cos 0^\circ + j \sin 0^\circ & =: & \epsilon \\ \cos 72^\circ + j \sin 72^\circ & =: & \gamma \\ \cos 144^\circ + j \sin 144^\circ & =: & \gamma^2 \\ \cos 216^\circ + j \sin 216^\circ & =: & \gamma^3 \\ \cos 288^\circ + j \sin 288^\circ & =: & \gamma^4 \end{cases}$$

Geometriailag: egy origó középpontú, 1-sugarú szabályos 5-szög öt csúcspontja, amelyek közül az egyik csúcspont a sík (1,0) koordinátájú pontjába esik. Az alaphalmazt jelöljük: $\sqrt[5]{1}$ -tel.

Mo:

1. áll.:
$$(\sqrt[5]{1}; \cdot)$$
 csoport.

biz.

műveleti zártság: a halmaz két tetszőleges elemének szorzata 1-hosszú, irányszöge pedig a 72° egész számú többszöröse: minden ilyen komplex szám $\sqrt[5]{1}$ -beli.

asszociativitás: komplex számok szorzása általában asszociatív

egységelem: ϵ

inverz

$$\begin{array}{l} \epsilon^{-1} = \epsilon \\ \gamma^{-1} = \gamma^4 \\ (\gamma^2)^{-1} = \gamma^3 \\ (\gamma^3)^{-1} = \gamma^2 \\ (\gamma^4)^{-1} = \gamma \end{array}$$

Ezzel beláttuk, hogy $\left(\sqrt[5]{1};\cdot\right)$ csoport.

2. áll.:
$$(\sqrt[5]{1};\cdot)\cong (F_5;\circ)$$

biz.: teljesül az izomorfia, mert mindkét csoport ötödrendű ciklikus csoport:

$$\left|\sqrt[5]{1}\right| = |F_5| = 5$$

és

$$\sqrt[5]{1} = \{ \gamma^k \mid k \in \mathbb{Z} \} = \{ \gamma^0, \gamma^1, \gamma^2, \gamma^3, \gamma^4 \} \qquad F_5 = \{ f^k \mid k \in \mathbb{Z} \} = \{ f^0, f^1, f^2, f^3, f^4 \}$$

megj.: az ötödrendű forgáscsoport a szabályos ötszög forgáscsoportja.

7. Példatár 4.3.4., 4.3.6. feladataiból

Eml.:

$$(R; \oplus, \otimes)$$
 gyűrű, ha $(R; \oplus)$ kommutatív csoport $(R; \otimes)$ félcsoport teljesül a kétoldali disztributivitás : $\forall a, b, c \in R$ $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ és $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$

spec: ha a \otimes műveletnek is van egységeleme: **egységelemes gyűrű**

spec: ha a \otimes művelet kommutatív: kommutatív gyűrű

Test: olyan egységelemes, kommutatív gyűrű, amelyben az additív egységelemen kívül minden elemnek van multiplikatív inverze.

megj.: az \oplus és \otimes műveletek szerepe nem szimmetrikus, ezért pl. a disztributivitási szabályokban sem felcserélhetők egymással! (Tehát ez egy más típusú disztributivitás, mint pl. disztibutív hálók esetében, ahol a \wedge és \vee műveletek szerepe szimmetrikus volt!)

megj.: az \oplus ill. \otimes műveletek neve: "összeadás" , "szorzás". (Vigyázat: a két művelet konkrét esetben tetszőleges kétváltozós stb. művelet lehet!)

megj.: az additiv jelző az \oplus művelettel való kapcsolatot, a multiplikativ jelző az \otimes művelettel való kapcsolatot fejezi ki. Pl.: additiv egységelem: értsd: az \oplus művelet egységeleme.

4.3.4. Gyűrű-e? Test-e?

 $(D; +, \cdot)$, ahol

 $D = \{x \mid x = a + b\sqrt{n} \mid a, b \in \mathbb{Q} : n \text{ olyan rögzített pozitív egész, amelyhez nem létezik } q \in \mathbb{Q}, \text{ hogy } n = q^2\},$ a műveletek a szokásosak.

Mo.:

+

műveleti zártság: $(a+b\sqrt{n})+(c+d\sqrt{n})=(a+c)+(b+d)\sqrt{n}$ és itt $a+c\in\mathbb{Q}$, $b+d\in\mathbb{Q}$

asszociativit'as: valós számok össze
adása asszociatív

egységelem: $0 + 0\sqrt{n}$ és itt $0 \in \mathbb{Q}$

inverz: az $a + b\sqrt{n}$ elem inverze: $(-a) + (-b)\sqrt{n}$ és itt $-a, -b \in \mathbb{Q}$

kommutativitás: valós számok összeadása kommutatív

Tehát (D; +) kommutatív csoport

. műveleti zártság: $(a+b\sqrt{n})\cdot(c+d\sqrt{n})=(ac+bdn)+(ad+bc)\sqrt{n}$ és itt $ac+bdn\in\mathbb{Q}$, $ad+bc\in\mathbb{Q}$ asszociativitás: valós számok szorzása asszociatív

Tehát $(D; \cdot)$ félcsoport

disztributivit'as:~Delemei valós számok, és valós számokra teljesül a kétoldali disztributivitás szimbolikusan:

$$(a+b\sqrt{n})\cdot[(c+d\sqrt{n})+(e+f\sqrt{n})]=(a+b\sqrt{n})\cdot(c+d\sqrt{n})+(a+b\sqrt{n})\cdot(e+f\sqrt{n})$$

$$\begin{array}{l} [(c+d\sqrt{n})+(e+f\sqrt{n})]\cdot(a+b\sqrt{n})=(c+d\sqrt{n})\cdot(a+b\sqrt{n})+(e+f\sqrt{n})\cdot(a+b\sqrt{n}) \\ \text{Tehát } (D;+,\cdot) \text{ gyűrű} \end{array}$$

Továbbá:

a · műveletnek van egységeleme (multiplikatív egység): $1 + 0\sqrt{n}$, tehát $(D; +, \cdot)$ egységelemes gyűrű;

a · művelet kommutatív: $(a + b\sqrt{n}) \cdot (c + d\sqrt{n}) = (c + d\sqrt{n}) \cdot (a + b\sqrt{n})$, mert

$$(a+b\sqrt{n})\cdot(c+d\sqrt{n})=(ac+bdn)+(ad+bc)\sqrt{n}$$

$$(c+d\sqrt{n})\cdot(a+b\sqrt{n}) = (ca+dbn) + (cb+db)\sqrt{n} = (ac+bdn) + (ad+bc)\sqrt{n}$$

tehát $(D; +, \cdot)$ kommutatív gyűrű, és így

$(D; +, \cdot)$ egyégelemes, kommutatív gyűrű.

multiplikatív inverz: mivel az 1 (= $1 + 0\sqrt{n}$) a multiplikatív egységelem, ezért egy szám multiplikatív inverze a szám reciproka: $a + b\sqrt{n}$ inverze $\frac{1}{a+b\sqrt{n}}$.

Ez akkor nem értelmes, ha $a + b\sqrt{n} = 0 + 0\sqrt{n}$, viszont ez éppen az additív egységelem, aminek a test-definíció szerint nem is kell hogy legyen multiplikatív inverze. Kérdés tehát: az $\frac{1}{a+b\sqrt{n}}$ szám D-beli-e?

$$\frac{1}{a + b\sqrt{n}} = \frac{a - b\sqrt{n}}{(a + b\sqrt{n})(a - b\sqrt{n})} = \frac{a - b\sqrt{n}}{a^2 - b^2n} = \left(\frac{a}{a^2 - b^2n}\right) + \left(-\frac{b}{a^2 - b^2n}\right)\sqrt{n}$$

és itt

$$\frac{a}{a^2-b^2n}\ ,\ -\frac{b}{a^2-b^2n}\ \in \mathbb{Q}$$

Ez a kifejezés akkor nem értelmes (akkor nem létezik inverz), ha $a^2 - b^2 n = 0$, azaz ha

(a) $\frac{a^2}{b^2}=n$ azaz $\left(\frac{a}{b}\right)^2=n$: viszont ezt az esetet D definíciója kizárta;

vagy ha

(b) a = b = 0, de ezt az esetet már az előbb kizártuk.

Kaptuk: $(D; +, \cdot)$ test

4.3.6.

(a) $(M; +, \cdot)$, ahol M az $n \times n$ -es mátrixok halmaza a valós számtest felett¹. Műveletek a mátrixösszeadás és -szorzás.

Mo.:

 $(M; +, \cdot)$ egységelemes gyűrű. HF

(b) $(M;+,\cdot)$, ahol M az $n\times n$ -es mátrixok halmaza az \mathbb{Z}_2 számtest felett. Műveletek a mod2 mátrixösszeadás és -szorzás.

 $\mathbb{Z}_2 = \{0, 1\}$

Példák a műveletekkel való számolásra n=3 esetben:

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Mo.:

 $(M;+,\cdot)$ egységelemes gyűrű. HF

(c) $(M; +, \cdot)$, ahol $M = \left\{ \mathbf{M} \mid \mathbf{M} = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, a, b \in \mathbb{R} \right\}$, műveletek a mátrixösszeadás és -szorzás.

 $(M; +, \cdot)$ gyűrű. HF

(d) $(M; +, \cdot)$, ahol $M = \left\{ \mathbf{M} \mid \mathbf{M} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, a, b \in \mathbb{R} \right\}$, műveletek a mátrixösszeadás és -szorzás. **Mo.:**

M elemei: "főátlóban ugyanaz, mellékátlóban egymás ellentettjei"

+

$$\begin{array}{ll} \top \\ \text{m\"{u}\'veleti z\'arts\'ag:} \begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ -(b_1 + b_2) & a_1 + a_2 \end{bmatrix} \ \ (\in M) \end{array}$$

asszociativitás: a mátrixösszeadás általában asszociatív

$$\textit{egységelem} \colon \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \ (\in M)$$

$$inverz: \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \text{ inverze } \begin{bmatrix} -a & -b \\ b & -a \end{bmatrix} \ \ (\in M)$$

kommutativitás: a mátrixösszeadás általában kommutatív

asszociativitás: a mátrixszorzás általában asszociatív

disztributivitás: mátrixokra általában igaz

Eddig: $(M; +, \cdot)$ gyűrű.

Továbbá:

a · műveletnek van egységeleme (multiplikatív egység):
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ (\in M)$$

tehát $(M; +, \cdot)$ egységelemes gyűrű;

 $^{^{1}\}mathrm{Azaz}$ a mátrix elemei valós számok.

$$\begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 - b_1b_2 & a_1b_2 + a_2b_1 \\ -(a_1b_2 + a_2b_1) & a_1a_2 - b_1b_2 \end{bmatrix}$$

és

$$\begin{bmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{bmatrix} \cdot \begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix} = \begin{bmatrix} a_2a_1 - b_2b_1 & a_2b_1 + a_1b_2 \\ -(a_2b_1 + a_1b_2) & a_2a_1 - b_2b_1 \end{bmatrix} = \begin{bmatrix} a_1a_2 - b_1b_2 & a_1b_2 + a_2b_1 \\ -(a_1b_2 + a_2b_1) & a_1a_2 - b_1b_2 \end{bmatrix}$$

tehát $(M; +, \cdot)$ kommutatív gyűrű;

multiplikatív inverz: egy elem csoprtbeli inverze (ha létezik), megegyezik az elem szokásos inverzmátrixsszával.

$$\det \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = a^2 + b^2 \neq 0 \text{ ha } \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Tehát az additív egységelemen kívül minden elemnek van multiplikatív inverze.

Kérdés: az inverz minden esetben M-beli-e?

áll.:
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 multiplikatív inverze:
$$\begin{bmatrix} \frac{a}{a^2+b^2} & -\frac{b}{a^2+b^2} \\ \frac{b}{a^2+b^2} & \frac{a}{a^2+b^2} \end{bmatrix} \in M$$

biz.:
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}^{-1} = \frac{\operatorname{adj} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}}{\operatorname{det} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}} = \frac{1}{a^2 + b^2} \cdot \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} \frac{a}{a^2 + b^2} & -\frac{b}{a^2 + b^2} \\ \frac{b}{a^2 + b^2} & \frac{a}{a^2 + b^2} \end{bmatrix}$$

Ez csak akkor nem értelmes, ha $a^2 + b^2 = 0$, de ezt az esetet már az előbb kizártuk.

Kaptuk: $(M; +, \cdot)$ test.