CSC242: Introduction to Artificial Intelligence

Lecture 3.1

Please put away all electronic devices

242 TAs Wanted

CSC242 TA Application for Spring 2018 https://goo.gl/forms/Od7rvfA8g4PfQU8T2

Uncertainty

Hunt The Wumpus

1,4 ?	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} ?	AND DESCRIPTION OF THE PERSON	3,2	4,2
1,1	2,1?	3,1?	4,1?

 $At_{1,1} \neg P_{1,1}$

1,4	2,4	3,4 ?	4,4
1,3 ?	2,3	3,3	4,3
1,2		3,2 ?	4,2
1,1 0K	2,1?	3,1?	4,1?

 $At_{1,1} \neg P_{1,1}$

1,4	2,4	3,4 ?	4,4
1,3		3,3	4,3
^{1,2} ?		3,2	4,2
1,1 0K	2,1	3,1?	4,1?

 $At_{1,1} \neg P_{1,1}$

1,4 ?	2,4	3,4 ?	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2 ?	4,2
1,1 0K	2,1?	3,1?	4,1?

$$B_{1,1} \iff P_{2,1} \vee P_{1,2}$$

$$At_{1,1} \neg P_{1,1}$$
 $\neg P_{2,1}$
 $\neg P_{1,2}$

		1	
1,4	2,4	3,4	4,4
1,3 ?	2,3	3,3	4,3
1,2 OK	2,2	3,2 ?	4,2
1,1 0K	2,1 OK	3,1?	4,1?

$$At_{2,1} \neg P_{1,1}$$
 $\neg P_{2,1}$
 $\neg P_{1,2}$

	ST. ST.		Mary Street
1,4	2,4	3,4	4,4
?	?	?	?
1,3	2,3	3,3	4,3
?	?	?	?
1,2	2,2	3,2	4,2
ОК	?	?	3
1,1	2,1	3,1	4,1
ОК	OK	?	·?

$$At_{2,1} \neg P_{1,1}$$
 $\neg P_{2,1}$
 $\neg P_{1,2}$

1,4	2,4	3,4 ?	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 OK	2,1 OK B	3,1?	4,1?

$$\neg B_{1,1}$$
 $B_{2,1}$

$$At_{2,1} \neg P_{1,1}$$
 $\neg P_{2,1}$
 $\neg P_{1,2}$

1,4	2,4	3,4	4,4
?	? ^{2,3} ?	3,3	? 4,3
?		?	?
1,2 OK	2,2	3,2	4,2
1,1 OK	2,1 OK B	3,1?	4,1?

$$\neg B_{1,1}$$

$$B_{2,1}$$

$$B_{2,1} \iff P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

 $\neg B_{1,1}$ $B_{2,1}$

 $\neg B_{1,1}$ $B_{2,1}$

 $At_{1,2}$ $\neg P_{1,1}$ $\stackrel{1,4}{?}$ $\stackrel{2,4}{?}$ $\stackrel{3,4}{?}$ $\stackrel{4,4}{?}$ $\stackrel{?}{?}$ $\neg P_{2,1}$ $\stackrel{1,3}{?}$ $\stackrel{2,3}{?}$ $\stackrel{3,3}{?}$ $\stackrel{4,3}{?}$ $\stackrel{?}{?}$ $\neg P_{1,2}$ $\stackrel{1,2}{?}$ $\stackrel{2,2}{?}$ $\stackrel{3,2}{?}$ $\stackrel{4,2}{?}$ $\stackrel{?}{?}$ $\stackrel{1,1}{?}$ $\stackrel{2,1}{\circ}$ $\stackrel{3,1}{\circ}$ $\stackrel{4,1}{?}$ $\stackrel{?}{?}$ $\stackrel{4,1}{?}$

 $\neg B_{1,1}$ $B_{2,1}$ $B_{1,2}$

$$At_{1,2}$$
 $\neg P_{1,1}$ $?$ $?$ $?$ $?$ $?$ $\neg B_{1,1}$ $\neg P_{2,1}$ $\neg P_{2,1}$ $P_{2,2}$ $P_{3,2}$ $P_{3,2}$ $P_{3,2}$ $P_{3,2}$ $P_{3,2}$ $P_{3,1}$ $P_{2,2}$ $P_{3,2}$ $P_{3,$

 $B_{1,2} \iff P_{1,1} \vee P_{2,2} \vee P_{1,3}$

 $eg B_{1,1}$ $B_{2,1}$ $B_{1,2}$

$$At_{1,2}$$
 $\neg P_{1,1}$ $?$ $?$ $?$ $?$ $?$ $\neg B_{1,1}$ $\neg P_{2,1}$ $\neg P_{2,1}$ $P_{2,2} \lor P_{3,1}$ $P_{3,1}$ $P_{3,2}$ $P_{3,2}$ $P_{3,1}$ $P_{3,2}$ $P_{3,$

Which room is least likely to contain a pit?

- Reasoning from symptoms to causes
 - What disease is most likely to be causing the observed symptoms

- Reasoning from symptoms to causes
 - What disease is most likely to be causing the observed symptoms

Diagnostic rule: $Toothache \Rightarrow Cavity$

- Reasoning from symptoms to causes
 - What disease is most likely to be causing the observed symptoms

Diagnostic rule: $Toothache \Rightarrow Cavity$

 $Toothache \Rightarrow Cavity \lor GumProblem \lor Abcess \lor \dots$

- Reasoning from symptoms to causes
 - What disease is most likely to be causing the observed symptoms

Diagnostic rule: $Toothache \Rightarrow Cavity$

 $Toothache \Rightarrow Cavity \lor GumProblem \lor Abcess \lor \dots$

Causal rule: $Cavity \Rightarrow Toothache$

Approach

- Representing uncertain information
- Reasoning with uncertain information
 - Uncertain inference

Uncertainty

Sources of Uncertainty

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	THE RESERVE THE PARTY NAMED IN	3,2	4,2
1,1	2,1?	3,1?	4,1?

Partial Observability Nondeterminism

Sources of Uncertainty

Partial Observability and Nondeterminism

Probability

WARNING!

MATH AHEAD

Probability

Hungry=true, Hungry=false, Cranky=false Cranky=true

Hungry=true, Hungry=false, Cranky=true Cranky=false

Hungry=true, Hungry=false, Cranky=false Cranky=true

Hungry=true,

Hungry-ralse, Cranky=true Cranky=false

Hungry=true, Hungry=false, Cranky=false Cranky=true

Hungry=true, Hungry=false, Cranky=true Cranky=false

Logical knowledge rules out possible worlds

- Logical knowledge rules out possible worlds
- Probabilistic assertions talk about how probable (likely) the possible worlds are

Experiments

Outcomes

Heads or Tails

Red, Green, or Blue

Experiments

Outcomes

Heads or Tails

Red, Green, or Blue

Conceptualization (Ontology)

Experiments

Outcomes

Heads or Tails

Red, Green, or Blue

Conceptualization (Ontology)

Possible World

Sample Space

• Set of all possible outcomes:

$$\Omega = \{ \omega_i \}$$

- Possible worlds ω_i are:
 - Mutually exclusive
 - Exhaustive

Sample Space

• Set of all possible outcomes:

$$\Omega = \{ \omega_i \}$$

- Possible worlds ω_i are:
 - Mutually exclusive
 - Exhaustive

Same as in logic

Probability Model

• Assigns a numerical probability $P(\omega)$ to each outcome*, such that:

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

*Finite, countable set

Where Do Probabilities Come From?

Degrees of Belief

- The degree to which an agent believes a possible world is the actual world
 - 0: certainly not the case (i.e., false)
 - 1: certainly is the case (i.e., true)

Degrees of Belief

- The degree to which an agent believes a possible world is the actual world
 - 0: certainly not the case (i.e., false)
 - 1: certainly is the case (i.e., true)
- Could come from statistical data, general principles, combination of evidence, ...

Probability Model

• Assigns a degree of belief $P(\omega)$ to each possible world, such that:

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

 $P(\omega_i) = 1/36 \text{ for all } \omega_i \in \Omega$

$$P(\omega_i) = 2/36 \text{ if } \omega_i \in \{[1,1], [2,2], [3,3], [4,4], [5,5], [6,6] \}$$

 $P(\omega_i) = 2/90 \text{ otherwise}$

Events

- An event is a subset of the sample space (that is, a set of outcomes a.k.a. possible worlds)
 - "Coming up heads"
 - "Throwing doubles"
 - "Picking one red and one green ball"

Events

 An event is a subset of the sample space (that is, a set of outcomes a.k.a. possible worlds)

$$P(e) = \sum_{\omega \in e} P(\omega)$$

$$P(Total=11) = P([5,6]) + P([6,5]) = 1/36 + 1/36 = 1/18$$

$$P(Doubles) = 1/6$$

$$P([1,1])+P([2,2])+P([3,3])+P([4,4])+P([5,5])+P([6,6]) = 1/6$$

$$P(Doubles) = 1/4$$

$$P([1,1])+P([2,2])+P([3,3])+P([4,4])+P([5,5])+P([6,6]) = 1/4$$

Probability

- Sample space: possible worlds
- Probability model: degrees of belief in possible worlds
- Events: subsets of possible worlds

Probability Statements

- "Heads and tails are equally likely"
- "Doubles are more likely than nondoubles"
- "The probability of picking one red and one green ball is 30% (0.3)"

A function from outcomes to values

- "the number of heads in three flips"
- "the total of the two dice"
- "the dice are matched doubles"
- "a red ball was picked"

Factored Representation

- Represents a state (outcome, possible world) as a set of variable/value pairs
- Each random variable represents a feature or aspect of the world that we care about

"the number of heads in three flips" X(HHH)=3, X(HHT)=X(HTH)=X(THH)=2, X(HTT)=X(THT)=X(TTH)=1, X(TTT)=0

"the total of the two dice"

$$X([1,1]) = 2,$$

 $X([1,2]) = X([2,1]) = 3,$
 $X([1,3]) = X([2,2]) = X([3,1]) = 4,$

• • •

$$X([6,6]) = 12$$

"the dice are matched doubles"

$$X([1,1]) = X([2,2]) = X([3,3]) =$$
 $X([4,4]) = X([5,5]) = X([6,6]) = true,$
 $X([1,2]) = X([1,3]) = X([1,4]) = ...$
 $X([6,3]) = X([6,4]) = X([6,5]) = false$

Domain (of Random Variable)

- Finite
 - Set of values
 - Two values: Boolean
- Infinite
 - Discrete (e.g. integers)
 - Continuous (e.g. reals)
- May be ordered (or not)

Domain (of Random Variable)

- **†** Finite
 - Set of values
 - Two values: Boolean
 - Infinite
 - Discrete (e.g. integers)
 - Continuous (e.g. reals)
 - May be ordered (or not)

Domain (of Random Variable)

```
egin{aligned} Die_1 = \{ \ 1, \ ..., \ 6 \ \} \ & Total = \{ \ 2, \ ..., \ 12 \ \} \ & Doubles = \{ \ true, \ false \ \} \ & Weather = \{ \ sunny, \ rain, \ cloudy, \ snow \ \} \end{aligned}
```

ullet Elementary (atomic) statement: RV=value

$$egin{aligned} Die_1 &= 3 \ Total &= 7 \ Doubles &= true & \longrightarrow doubles \ Weather &= sunny \longrightarrow sunny \end{aligned}$$

ullet Elementary (atomic) statement: RV = value

$$egin{aligned} Die_1 &= 3 \ Total &= 7 \ Doubles &= true & \longrightarrow doubles \ Weather &= sunny \longrightarrow sunny \end{aligned}$$

• Ordered domains: <, >, \leq , \geq

• Elementary (atomic) statement: RV = value

$$egin{aligned} Die_1 &= 3 \ Total &= 7 \ Doubles &= true & \longrightarrow doubles \ Weather &= sunny \longrightarrow sunny \end{aligned}$$

• Ordered domains: <, >, \leq , \geq

Can be true or false

- ullet Elementary (atomic) statement: RV=value
- Combine with connectives from PL

$$egin{aligned} Die_1 &= 3 \land Total = 7 \ Total &= 7 \lor doubles \end{aligned}$$
 $egin{aligned} Die_1 &= 3 \land \neg doubles \end{aligned}$

Probability Statements

Assign a probability to a statement

$$P(Die_1 = 3 \land Total = 7) = 1/36$$

 $P(Total = 7 \lor doubles) = 12/36$
 $P(Die_1 = 3 \land \neg doubles) = 5/36$

Probability Language

- ullet Elementary (atomic) statement: RV=value
- Combine with connectives from PL
- Assign probabilities that statements are true: P(statement) = p

Probability Distribution

Assign a probability to every possible value of a random variable

```
Weather: \{sunny, rain, cloudy, snow\}

P(Weather=sunny) = P(sunny) = 0.6

P(Weather=rain) = P(rain) = 0.1

P(Weather=cloudy) = P(cloudy) = 0.29

P(Weather=snow) = P(snow) = 0.01
```

Probability Distribution

Assign a probability to every possible value of a random variable

```
Weather: \{sunny, rain, cloudy, snow\}

P(Weather=sunny) = P(sunny) = 0.6

P(Weather=rain) = P(rain) = 0.1

P(Weather=cloudy) = P(cloudy) = 0.29

P(Weather=snow) = P(snow) = 0.01

\mathbf{P}(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle
```

Bold

Vector

Probability Distribution

Assign a probability to every possible value of a random variable

```
Weather: { sunny, rain, cloudy, snow }
P(Weather=sunny) = P(sunny) = 0.6
P(Weather=rain) = P(rain) = 0.1
P(Weather=cloudy) = P(cloudy) = 0.29
P(Weather=snow) = P(snow) = 0.01
\mathbf{P}(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle
```

Probabilities of a distribution must sum to 1

Probability Statements

- Random variables
- Domains
- Probability statements
 - Elementary (atomic) and compound
- Probability distribution
 - $P(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$

Multiple Variables

Weather

Cavity

- Distribution over multiple variables
- Gives probabilities of all combinations of the values of the variables

 $\mathbf{P}(Weather, Cavity)$

		Cavity		
		true	false	
Weather	sunny			
	rain			
	cloudy			
	snow			

 $\mathbf{P}(sunny, Cavity)$

	Cavity		
	true	false	
Weather sunny			

 $\mathbf{P}(sunny, cavity)$

		Cavity
		true
Weather	sunny	

 $\mathbf{P}(sunny, cavity) = P(sunny, cavity) = P(sunny \land cavity)$

- Distributions over multiple variables
- Describe probabilities of all combinations of the values of the variables

Full Joint Probability Distribution

- Joint probability distribution over all the random variables
- Probabilities for every possible combination of values assigned to random variables
- Probabilities for every possible world

Full Joint Probability Distribution

 $\mathbf{P}(Cavity, Toothache, Weather)$

	toothache		$\neg toothache$	
	cavity	$\neg cavity$	cavity	$\neg cavity$
$oxed{sunny}$				
rain				
cloudy				
snow		HINN		

Representing Uncertainty

- Probability: Sample space, probabilities, events
- Random variables, domains
- Language of probability statements
- Probability distributions, joint distributions, full joint distribution

For Next Time:

AIMA 13.3 - 13.6