Al Applications – NLP, Computer Vision, IoT UCS655

Unit 3

Fundamentals of Computer Vision and its applications

Content

- Introduction and goal of computer vision
- Basics of image processing and formation
- Introduction of ANN
- Convolutional neural network
- Application of computer vision in face recognition

Convolution

 Convolution is a mathematical way of combining two signals to form a third signal

$$G(i,j) = \sum_{u=-k}^k \sum_{v=-k}^k \underbrace{\underbrace{H(u,v)}_{\text{Non-uniform}}}_{\substack{\text{Weights}}} I(i-u,j-v)$$

pixel of interest

• General Representation: $K_1 \times K_2$

$$Y(i,j) = \sum_{a=|-\frac{K_1}{2}|}^{\lfloor \frac{K_1}{2} \rfloor} \sum_{b=|-\frac{K_2}{2}|}^{\lfloor -\frac{K_2}{2} \rfloor} X(i-a,j-b)W\left(\frac{K_1}{2}+a,\frac{K_2}{2}+b\right)$$

Convolution (Hyper)Parameters

- Input dimensions: $W_1 \times H_1 \times D_1$
- Spatial extent of a filter is $F \times F$
- Output dimensions: $W_2 \times H_2 \times D_2$

Convolution (Hyper)Parameters

- Find dimensions (W_2, H_2)
- Stride, S
- Number of filters, K

Convolution (Hyper)Parameters

• Computation of (W_2, H_2) of output

Cont.

pixel of interest

Padding

- New Dimensions of the output:
 - $W_2 = W_1 F + 1$
 - $H_2 = H_2 F + 1$
- Padding
 - P=1, on 3x3 kernel
- New Dimensions of the output:
 - $W_2 = W_1 F + 2P + 1$
 - $H_2 = H_2 F + 2P + 1$

Stride

- It defines the interval at which the filter is applied
- S = 2, skips every 2nd pixel
 - Result in smaller dimensions
- New Dimensions of the output:

•
$$W_2 = \frac{W_1 - F + 2P}{S} + 1$$

•
$$H_2 = \frac{H_2 - F + 2P}{S} + 1$$

•
$$D_2 = K$$

https://setosa.io/ev/image-kernels/

Pooling

- Refers to a small portion
 - Average Pooling take a small portion of the input and compute the average value
 - Max Pooling if we take a maximum value
- we are not taking out all the values we are taking a summarized value over all the values present

CNN

- Traditional machine learning based computer vision solutions static feature engineering
 - Do not scale well to the real world images
- Can we learn meaningful kernels as apart of learning algorithm in addition to learning weights of classifier?

CNN

- Why can't we just take raw pixels of the input image to the FNN, why there is this convolution in between?
- MNIST dataset FNN
 - Good performance 2% error
- Limitations
 - Ignores spatial structure
 - No way for the network to learn same features at different places in the image
 - Computationally expensive

```
3479636

34796

34796

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3470

3
```

MNIST Dataset

How CNN solve these issues

- Local receptive fields
 - Capture local spatial relationships in pixels
 - Greatly reduces number of parameters
- Weight sharing
 - Enables translation invariance of NN to objects in the images
 - Reduces number of parameters
- Pooling
 - Aggregates information
 - Reduces size of the output, which reduces number of computations in the later layers

Local Receptive Fields

Local Receptive Fields

- How does this helps?
 - Makes connection sparser
 - Reduces number of parameters
 - Taking advantage of image structure
- Don't we loose information through this process
 - All the neurons interact over the depth of the NN

Weight Sharing

CNN

Pooling Layers

Parameter-free down sampling

1	4	2	1			
5	8	3	4	maxpool	8	4
7	6	4	5	2x2 filters (stride 2)		
1	3	1	2			

1	4	2	1			
5	8	3	4	maxpool	8	8
7	6	4	5	2x2 filters (stride 1)		
1	3	1	2		- 15	

1	4	2	1			
5	8	3	4	maxpool	8	4
7	6	4	5	2x2 filters (stride 2)	7	
1	3	1	2			

1	4	2	1				
5	8	3	4	maxpool	8	8	4
7	6	4	5	2x2 filters (stride 1)			
1	3	1	2				

Pooling Layers

Parameter-free down sampling

		1	2	4	1
8 4	maxpool	4	3	8	5
7 5	2x2 filters (stride 2)	5	4	6	7
		2	1	3	1

1	4	2	1				
5	8	3	4	maxpool	8	8	4
7	6	4	5	2x2 filters (stride 1)	8	8	
1	3	1	2				

1	4	2	1				
5	8	3	4	maxpool	8	8	4
7	6	4	5	2x2 filters (stride 1)	8	8	5
1	3	1	2				

1	4	2	1				
5	8	3	4	maxpool	8	8	4
7	6	4	5	2x2 filters (stride 1)	8	8	5
1	3	1	2		7		

CNN in Understanding Human Faces

- Face Recognition (FR)
 - Security, Finance, Healthcare
- Face Verification (FV)

Credit: VGG Face2 Dataset

Face Recognition Pipeline

Face recognition = Face detection + Face alignment + Face matching Ref. : Wang et al., Deep Face Recognition: A Survey

Components of Face Recognition System

- Face Processing
- Deep Feature Extraction
- Face Matching

b) many to one

Face Processing

- 1 to many Augmentation
 - Ref.: Wang at al., A Survey on Face Data Augmentation
 - rotation

- Many to 1 normalization
 - Ref: Qian et al., Unsupervised Face Normalization with Extreme Pose and Expression in the Wild
 - Preserve identity despite of variations in pose, lighting, expression and background

Deep Feature Extraction

Network Architecture

 Ref.: Wang et al., Deep Recognition: A Survey

THE ACCURACY OF DIFFERENT METHODS EVALUATED ON THE LFW DATASET.

Method	Public. Time	Loss	A schitectuse	Number of Networks	Training Set	Accuracy ±Std(%)
DeepFace [20]	2014	softmax	Alexnet	3	Facebook (4.4M,4K)	97.35±0.25
DeepID2 21	2014	contrastive loss	A lex net	25	CelebFaces+ (0.2M,10K)	99.15±0.13
DeepID3 36	2015	contrastive loss	VGGNet-10	50	CelebFaces+ (0.2M,10K)	99.53±0.10
FaceNet [38]	2015	triplet loss	GoogleNet-24	1	Google (500M,10M)	99.63±0.09
Baidu [58]	2015	triplet loss	CNN-9	10	Baidu (1.2M,18K)	99.77
VGGface [37]	2015	triplet loss	VGGNet-16	1	VGGface (2.6M,2.6K)	98.95
light-CNN [85]	2015	softmax	light CNN	1	MS-Celeb-1M (8.4M,100K)	98.8
Center Loss [101]	2016	center loss	Lenet+-7	1	CASIA-WebFace, CACD2000, Celebrity+ (0.7M,17K)	99.28
L-softmax [104]	2016	L-softmax	VGGNet-18	1	CASIA-WebFace (0.49M,10K)	98.71
Range Loss [82]	2016	range loss	VGGNet-16	1	MS-Celeb-1M, CASIA-WebFace (5M,100K)	99.52
L2-softmax [109]	2017	L2-softmax	ResNet-101	1	MS-Celeb-1M (3.7M,58K)	99.78
Nomface 110	2017	contrastive loss	ResNet-28	1	CASIA-WebFace (0.49M,10K)	99.19
CoCo loss III2	2017	CoCo loss	-	1	MS-Celeb-1M (3M,80K)	99.86
vMF loss [115]	2017	vMF loss	ResNet-27	1	MS-Celeb-1M (4.6M,60K)	99.58
Marginal Loss [116]	2017	marginal loss	ResNet-27	1	MS-Celeb-1M (4M,80K)	99.48
SphereFace [84]	2017	A-softmax	ResNet-64	1	CASIA-WebFace (0.49M,10K)	99.42
CCL [113]	2018	center invariant loss	ResNet-27	1	CASIA-WebFace (0.49M,10K)	99.12
AMS loss [105]	2018	AMS loss	ResNet-20	1	CASIA-WebFace (0.49M,10K)	99.12
Cosface [107]	2018	cosface	ResNet-64	1	CASIA-WebFace (0.49M,10K)	99.33
A reface 106	2018	a rc face	ResNet-100	1	MS-Celeb-1M (3.8M,85K)	99.83
Ring loss [117]	2018	Ring loss	ResNet-64	1	MS-Celeb-1M (3.5M,31K)	99.50

Face Recognition

- Face Identification
- Face Verification

Face Identification

- Assign input image to person name/ID from the database
- K+1 multi-class classification
 - 1 additional class for unrecognized faces
- Input: Face Image and Output: Identity class/ Face ID

Face Verification

- Verifying whether two images belong to the same ID
- 1 to 1 matching
- Input: Face image + ID
- Output: Match/Not match

Identification via Verification

- Removes retraining
 - Scalable
- Goal: build an accurate/ efficient verification system

Verification: Siamese Network

- Proposed in 1994
- Two replicas of same CNN architecture parameterized with same weights

 Ref: Bromley et al., Signature verification using a Siamese Time Delay Neural Network, NIPS, 1994

DeepFace: Identification

- Step 1: Frontal crop of face
- Ref: Taigman et al., DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fiducial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on the 2D-aligned crop with their corresponding Delaunay triangulation, we added triangles on the contour to avoid discontinuities. (d) The reference 3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle visibility w.r.t. to the fitted 3D-2D camera; darker triangles are less visible. (f) The 67 fiducial points induced by the 3D model that are used to direct the piece-wise affine warpping. (g) The final frontalized crop. (h) A new view generated by the 3D model (not used in this paper).

DeepFace: Identification

 Step 2: Frontal crop passed for identification to deep CNN with K-way softmax

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

Ref: Taigman et al., DeepFace: Closing the Gap to Human-Level Performance in Face Verification

DeepFace Verification: Siamese Network

- Classification parameters are frozen
- Representations learnt from identification are used for verification
- Network trained by taking the absolute difference between features, followed by a fully connected network
- Distance Induced:
 - $d(f_1, f_2) = \sum_i \alpha_i |f_1[i], f_2[i]|$
 - α_i are trainable parameters
- Output:
 - Binary decision (match/not match)

Contrastive Loss

- Based on metric learning paradigm
- Learn distinctive discriminative feature representations
- Objective: Map input to embedding space where distance between the points corresponds to semantic similarity between the input points
- Hadsell et al. introduced an approach called pairwise contrastive loss, where similar points in the input space are mapped to nearby points on a lower dimensional manifold.
- Goal: learn W such that $D_W(X_1,X_2)$, approximates the semantic similarity of inputs
- Ref: Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, 2006

Pairwise Contrastive Loss

- Let X_1, X_2 be high dimensional input vectors
- y Binary label assigned to the pair

$$\begin{cases} y = 0, if X_1, X_2 \text{ are similar} \\ y = 1, Otherwise \end{cases}$$

- Given (W, y, X_1, X_2) , pairwise contrastive loss is given by:
- $L_{contrastive}(W, y, X_1, X_2) = \frac{1-y}{2}D_W^2 + \frac{y}{2}max(0, m D_W^2)$

Step 1: For each input sample \vec{X}_i , do the following:

- (a) Using prior knowledge find the set of samples $S_{\vec{X_i}} = {\{\vec{X_j}\}_{j=1}^p}$, such that $\vec{X_j}$ is deemed similar to $\vec{X_i}$.
- (b) Pair the sample \vec{X}_i with all the other training samples and label the pairs so that: $Y_{ij} = 0$ if $\vec{X}_j \in \mathcal{S}_{\vec{X}_i}$, and $Y_{ij} = 1$ otherwise.

Combine all the pairs to form the labeled training set.

Step 2: Repeat until convergence:

- (a) For each pair (\vec{X}_i, \vec{X}_j) in the training set, do
 - i. If $Y_{ij} = 0$, then update W to decrease $D_W = ||G_W(\vec{X}_i) G_W(\vec{X}_j)||_2$
 - ii. If $Y_{ij} = 1$, then update W to increase $D_W = ||G_W(\vec{X_i}) G_W(\vec{X_j})||_2$

DeepID2

- Trains a deep CNN to jointly perform identification and verification
- Identification task: Increases inter-personal variations by pushing features from different IDs apart
- Verification Task: Reduces intra-personal variations by pulling features from same ID together

DeepID2

• Cross Entropy Loss: for training identification parameters, $heta_{id}$

$$Ident(f, t, \theta_{id}) = -\sum_{i=1}^{n} -p_i \log \hat{p}_i = -\log \hat{p}_t$$

- *f*: DeepID2 feature vector
- t: Target Class
- θ_{id} : Softmax layer parameters
- p_i : Target probability distribution
- \hat{p}_i : Predicted probability distribution
- ullet Pairwise Contrastive Loss: for training verification parameters, $heta_{ve}$

$$\operatorname{Verif}(f_{i}, f_{j}, y_{ij}, \theta_{ve}) = \begin{cases} \frac{1}{2} \|f_{i} - f_{j}\|_{2}^{2} & \text{if } y_{ij} = 1\\ \frac{1}{2} \max \left(0, m - \|f_{i} - f_{j}\|_{2}\right)^{2} & \text{if } y_{ij} = -1 \end{cases}$$

 f_i and f_j are DeepID2 vectors extracted from the two face images in comparison $\theta_{ve} = \{m\}$ is the parameter to be learned in the verification loss function $y_{ij} = 1$ means that f_i and f_j are from the same identity $y_{ij} = -1$ means different identities.

DeepID2: Learning Algorithm

The DeepID2 learning algorithm

input: training set $\chi = \{(x_i, l_i)\}$, initialized parameters θ_c , θ_{id} , and θ_{ve} , hyperparameter λ , learning rate $\eta(t)$, $t \leftarrow 0$

while not converge do $t \leftarrow t + 1$ sample two training samples (x_i, l_i) and (x_j, l_j) from χ $f_i = \text{Conv}(x_i, \theta_c) \text{ and } f_j = \text{Conv}(x_j, \theta_c)$ $\nabla \theta_{id} = \frac{\partial \text{Ident}(f_i, l_i, \theta_{id})}{\partial \theta_{id}} + \frac{\partial \text{Ident}(f_j, l_j, \theta_{id})}{\partial \theta_{id}}$ $\nabla \theta_{ve} = \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial \theta}$, where $y_{ij} = 1$ if $l_i = l_j$, and $y_{ij} = -1$ otherwise. $\nabla f_i = \frac{\partial \text{Ident}(f_i, l_i, \theta_{id})}{\partial f_i} + \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial f_i}$ $\nabla f_j = \frac{\partial \text{Ident}(f_j, l_j, \theta_{id})}{\partial f_i} + \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial f_i}$ $\nabla \theta_c = \nabla f_i \cdot \frac{\partial \text{Conv}(x_i, \theta_c)}{\partial \theta} + \nabla f_j \cdot \frac{\partial \text{Conv}(x_j, \theta_c)}{\partial \theta}$ update $\theta_{id} = \theta_{id} - \eta(t) \cdot \theta_{id}$, $\theta_{ve} = \theta_{ve} - \eta(t) \cdot \theta_{ve}$, and $\theta_c = \theta_c - \eta(t) \cdot \theta_c$. end while output θ_c

FaceNet: Triplet Loss

ensure that an image x_i^a (anchor) of a specific person is closer to all other images x_i^p (positive) of the same person than it is to any image x_i^n (negative) of any other person

Thus we want,

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$
,

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in \mathcal{T}$$
.

where α is a margin that is enforced between positive and negative pairs. $\mathcal T$ is the set of all possible triplets in the training set

Figure . The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

$$\sum_{i}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]$$

 Ref: Schroff et al, FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015.

FaceNet

- Let f(x): representation/embedding on d-dimensional hypersphere, s.t. $||f(x)||_2 = 1$
- Objective:
 - train θ to ensure that for all triplets $x_a(\text{anchor})$, $x_p(\text{positive})$, $x_n(\text{negative})$:

$$||f(x_a) - f(x_p)||_2^2 + \alpha < ||f(x_a) - f(x_n)||_2^2$$

where α is margin

Achieved by training parameters θ to minimize:

$$L_{triplet} = \sum_{i} [||f(x_a^i) - f(x_p^p)||_2^2 - ||f(x_a^i) - f(x_n^i)||_2^2 + \alpha]$$

Recent Efforts

CosFace:

Wang et al, CosFace: Large Margin Cosine Loss for Deep Face Recognition, CVPR 2018

UniformFace:

Duan et al, UniformFace: Learning Deep Equidistributed Representation for Face Recognition, CVPR 2019

RegularFace:

Zhao et al, RegularFace: Deep Face Recognition via Exclusive Regularization, CVPR 2019

GroupFace:

Kim et al, GroupFace: Learning Latent Groups and Constructing Group-based Representations for Face Recognition, CVPR 2020

CurricularFace:

Huang et al, CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition, CVPR 2020

Thank You!