[076] The following sections are examples of the various expression vectors, host cells, and protein purification methods that are known in the art. These examples are provided merely as illustrative and should not be construed as the only means to express and purify the polypeptides and polypeptide variants of the invention.

## Expression Vectors and Purified proteins

encoding the polypeptides of the invention can be prepared using well known methods. In one embodiment, the expression vectors include a cDNA sequence encoding the polypeptide operably linked to suitable transcriptional or translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation initiation and termination. Nucleotide sequences are "operably linked" when the regulatory sequence functionally relates to the cDNA sequence of the invention. Thus, a promoter nucleotide sequence is operably linked to a cDNA sequence if the promoter nucleotide sequence controls the transcription of the cDNA sequence. The ability to replicate in the desired host cells, usually conferred by an origin of replication, and a selection gene by which transformants are identified can additionally be incorporated into the expression vector.

[078] In addition, sequences encoding appropriate signal peptides that are not naturally associated with the polypeptides of the invention can be incorporated into expression vectors. For example, a DNA sequence for a signal peptide (secretory leader) can be fused in-frame to the pine tree nucleotide sequence so that the

202-408-4000

polypeptides of the invention is initially translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cells enhances extracellular secretion of the expressed polypeptide. The signal peptide can be cleaved from the polypeptide upon secretion from the cell.

[079] Fusions of additional peptide sequences at the amino and carboxyl terminal ends of the polypeptides of the invention can be used to enhance expression of the polypeptides or aid in the purification of the protein. Such peptides include, for example, poly-His or the antigenic identification peptides described in U.S. Patent No. 5,011,912 and in Hopp et al., (*Bio/Technology* 6:1204, 1988).

[080] Suitable host cells for expression of polypeptides of the invention include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al., *Cloning Vectors: A Laboratory Manual*, Elsevier, New York, (1985). Cell-free translation systems could also be employed to the disclosed polypeptides using RNAs derived from DNA constructs disclosed herein.

## Prokaryotic expression systems

[081] Prokaryotes include gram negative or gram positive organisms, for example, *E. coli* or *Bacilli*. Suitable prokaryotic host cells for transformation include, for example, *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium*, and various other species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*. In a prokaryotic host cell, such as *E. coli*, the disclosed polypeptides can include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in the

LAW OFFICES
FINNEGAN, HENDERSON,
FARABOW, GARRETT,
& DUNNER, L.L.P.
1300 I STREET, N. W.
WASHINGTON, DC 20005
202-408-4000

prokaryotic host cell. The N-terminal methionine can be cleaved from the expressed recombinant polypeptide.

[082] Expression vectors for use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes. A phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement. Examples of useful expression vectors for prokaryotic host cells include those derived from commercially available plasmids such as the cloning vector pBR322 (ATCC 37017). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells. To construct an expression vector using pBR322, an appropriate promoter and a DNA sequence encoding one or more of the polypeptides of the invention are inserted into the pBR322 vector. Other commercially available vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM-1 (Promega Biotec, Madison, WI, USA). Other commercially available vectors include those that are specifically designed for the expression of proteins; these would include pMAL-p2 and pMAL-c2 vectors that are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, MA, USA).

[083] Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include β-lactamase (penicillinase), lactose promoter system (Chang et al., *Nature* 275:615, 1978; and Goeddel et al., *Nature* 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., *Nucl. Acids Res.* 8:4057, 1980; and EP-A-36776), and tac promoter (Maniatis, *MoLecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, p. 412, 1982). A particularly useful prokaryotic host cell expression

LAW OFFICES
FINNEGAN, HENDERSON,
FARABOW, GARRETT,
& DUNNER, L. L. P.
1300 I STREET, N.
WASHINGTON, DC 20005
202-408-4000