

Transition Systems and Bisimulation

Giuseppe De Giacomo

Transition Systems

Concentrating on behaviors: Vending Machine

3

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

5

Example (Clock)

TS may describe (legal) nonterminating processes

Example (Slot Machine)

Nondeterministic transitions express

choice that is not under the control of clients

Example (Vending Machine - Variant 1)

8

Example (Vending Machine - Variant 2)

9

Transition Systems

- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - S^0 ⊆ S is the set of initial states
 - δ ⊆ $S \times A \times S$ is the transition relation
 - $F \subseteq S$ is the set of final states

(c.f. Kripke Structure)

- Variants:
 - No initial states
 - Single initial state
 - Deterministic actions
 - States labeled by propositions other than Final/¬Final

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

- A binary relation R is a reachability-like relation iff:
 - (s,s) $\in R$
 - if \exists a, s'. s \rightarrow _a s' \land (s',s'') \in R then (s,s'') \in R
- A state s₀ of transition system S reaches a state s_f iff for all a reachability-like relations R we have (s₀, s_f)∈ R.
- Notably that
 - reaches is a reachability-like relation itself
 - **reaches** is the smallest reachability-like relation

Note it is a inductive definition!

Algorithm ComputingReachability

Input: transition system TS

Output: the reachable-from relation (the smallest reachability-like relation)

Body

```
\begin{array}{l} R = \emptyset \\ R' = \{(s,s) \mid s \in S\} \\ \text{while } (R \neq R') \{ \\ R := R' \\ R' := R' \cup \{(s,s'') \mid \exists \, s' \, , a. \, s \rightarrow_a \, s' \, \land \, (s',s'') \in R \, \} \\ \} \\ \text{return } R' \\ \textbf{YdoB} \end{array}
```

This algorithm is based on computing iteratively fixpoint approximates for the **least fixpoint**, starting from the empty set.

13

Intuition:

Two (states of two) transition systems are bisimilar if they have the same behavior.

In the sense that:

- Locally they (the two **states**) look indistinguishable
- Every action that can be done on one of them can also be done on the other remaining indistinguishable

Bisimulation

A binary relation R is a **bisimulation** iff:

```
(s,t) \in R implies that
 - sis final iff tis final

 for all actions a

        • if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R
        • if t \rightarrow_a t' then \exists s' . s \rightarrow_a s' and (s',t') \in R
```

- A state s_0 of transition system S is **bisimilar**, or simply **equivalent**, to a state t₀ of transition system T iff there **exists** a **bisimulation** between the initial states s_0 and t_0 .
- Notably
 - bisimilarity is a bisimulation
 - bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

15

Computing Bisimulation on Finite Transition Systems


```
Algorithm ComputingBisimulation
Input: transition system TS_S = \langle A, S, S^0, \delta_S, F_S \rangle and
         transition system TS_T = \langle A, T, T^0, \delta_T, F_T \rangle
Output: the bisimilarity relation (the largest bisimulation)
```

Body

Ydob

```
R = S \times T
R' = R - \{(s,t) \mid \neg(s \in F_s \equiv t \in F_T)\}
while (R \neq R') {
             R := R'
             \mathsf{R'} \ := \ \mathsf{R'} \ - \left( \{ (s,t) \mid \exists \ s' \ , a. \ s \rightarrow_a s' \ \land \neg \exists \ t' \ . \ t \rightarrow_a t' \ \land (s',t') \in \mathsf{R'} \ \right)
                                     \{(s,t) \mid \exists \ t' \ , a. \ t \rightarrow_a t' \ \land \neg \exists \ s' \ . \ s \rightarrow_a s' \ \land (s',t') \in R' \ \})
return R'
```

This algorithm is based on computing iteratively fixpoint approximates for the greatest **fixpoint**, starting from the total set (SxT).

Example of Bisimulation

Example of Bisimulation

Automata vs. Transition Systems

- Automata
 - define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
 - ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

SAPIENZA LINDENZA

Example of Bisimulation

Are S and T bisimilar?

Computing Bisimulation

We need to compute the greatest fixpoint (gfp): we do it by computing approximates starting from the Cartesian product:

- R0={(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1),(t1,s2)} Cartesian product
- $R1=\{(t0,s0),(t1,s1),(t1,s2)\}$ removed those pairs that violate local condition on final (final iff final)
- R2={(t0,s0),(t1,s1),(t1,s2)} removed those pairs where one can do action and other cannot copy remaining in the relation.

21

Example of NON Bisimulation

Are S and T bisimilar?

SAPIENZA UNIVERSITÀ DI ROMA

Computing Bisimulation

We need to compute the greatest fixpoint: we do it by computing approximates starting from the cartesian product:

- R0={(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1),(t1,s2)} cartesian product
- R1={(t0,s0),(t1,s1),(t1,s2)} removed those pairs that violate local condition on final (final iff final)
- $R2=\{(t0,s0),(t1,s1)\}$ removed (t1,s2) since t1 can do c but s2 cannot.
- R3={(t1,s1)} removed (t0,s0) since t0 can do b, s2 can do b as well, but then the resulting states (t1,s2) are NOT in R2.
- R4 = {} removed (t1,s1) since t1 can do c, s1 can do c as well, but then the resulting states (t0,s0) are NOT in R3.
- $R5 = \{\}$

R4=R5 greatest fixpoint reached!

S and T are NOT **bisimilar** ((t0,s0) do not belong to gfp)

23