

ERTH 1006/1010

225 million years ago 135 million years ago 65 million years ago Pacific

Plate Tectonics (Ch. 1)
Minerals (Ch. 2)

Continents in Motion!

© Brian Cousens, 2024

Phanerozoic 0.57 Ga - now

Proterozoic 2.5 - 0.57 Ga

Archean 4.0 - 2.5 Ga

Hadean 4.55 - 4.0 Ga The
Eons of
the
Geologic
Time
Scale

Ga = billions of years

GEOLOGIC TIME SCALE v. 6.0

*The Pleistocene is divided into four ages, but only two are shown here. What is shown as Calabrian is actually three ages: Calabrian from 1.8 to 0.774 Ma, Chibanian from 0.774 to 0.129 Ma, and Late from 0.129 to 0.0117 Ma. The Holocene is divided into three ages: Greenlandian from 0.0117 to 0.0082 Ma, Northgrippian from 0.0082 to 0.0042 Ma, and Meghalayan from 0.0042 to present. The geologic community broadly recognizes the Anthropocene as a proposed new time interval of Earth history, partly coincident with the Holocene. Currently, the Anthropocene has an informal designation, with a proposed age span extending from the present to a beginning point between ca. 15,000 yr B.P. and as recent as 1960 CE.

The Cenozoic, Mesozoic, and Paleozoic are the Eras of the Phanerozoic Eon. Names of units and age boundaries usually follow the Gradstein et al. (2012), Cohen et al. (2012), and Cohen et al. (2013, updated) compilations. Numerical age estimates and picks of boundaries usually follow the Cohen et al. (2013, updated) compilation. The numbered epochs and ages of the Cambrian are provisional. A "~" before a numerical age estimate typically indicates an associated error of ± 0.4 to more than 1.6 Ma.

Walker, J.D., and Geissman, J.W., compilers, 2022, Geologic Time Scale v. 6.0: Geological Society of America, https://doi.org/10.1130/2022.CTS006C. (Walker—University of Kansas; Geissman—University of Texas—Dallas, University of New Mexico.)

REFERENCES CITED

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, https://stratigra-phy.org/ICSchart/ChronostratChart2012.pdf (accessed Sept. 2022).

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013 (updated), The ICS International Chronostratigraphic Chart: Episodes, v. 6, p. 199–204, http://www.stratigraphy.org/ICSchart/ChronostratChart2021-10.pdf (accessed Sept. 2022).

Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale 2012: Boston, USA, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00004-4.

How Continents Grow by Accretion

Moving plates carry small fragments of continental material that collide with, and are thus added to, older continental masses

Assembly of a Continent

Orogens:

Growth by addition of small continental masses along margins of cratons

Note that cratons may also include older orogens

The Atmosphere

- -first atmosphere H, He; swept away by solar wind
- -volcanism --> H₂O, CO₂, H, S
 - second atmosphere!
- -Earth cools enough that condensed H_2O pools, forms lakes, oceans removes H_2O
- CO₂ removed by photosynthesis, carbonate rocks

-eventually N, O dominate atmosphere (organic activity)

-but no free O₂ for first 2.5 billion years of Earth history

www.globalchange.umich.edu

Where We Are At.....

- -Earth formation 4.6 Ga; Moon at 4.5 Ga; earliest continent formation at 4.4 Ga (Ga = billion years)
- -Major continent formation during Archean (4.0-2.5 Ga), but growth continued via continent-continent collisions and other processes (e.g., volcanism)

Questions:

Why do continents collide?

Why do we have earthquakes?

Why do we have volcanoes?

Has the Earth always looked as it does now, or is it constantly changing?

Plate Tectonics: Lithospheric Plates

Plates = crust plus uppermost mantle (solid)

Plate Boundaries

Divergent: new plate

Convergent: destroy plate

Transform: plates slide

Geological Survey of Canada

Plate Tectonics

- Earth's surface divided into ~13 lithospheric plates, in motion
- Plates include lithospheric mantle (solid), crust (solid)
- Plates underlain by upper mantle asthenosphere (hot, plastic, convects)
- Three kinds of plate boundaries: divergent, convergent, transform
- Volcanoes, earthquakes commonly associated with plate boundaries
- More to come as course progresses!

ERTH 1006/1010
Minerals: The
Building Blocks!
Chapter 2

Carletonite

Minerals Learning Outcomes

- Know the definition of a mineral
- Know the structure of the silicon tetrahedron
- Know the five silicate minerals groups: isolated, single chain, double chain, sheet, framework
- Know what physical properties distinguish minerals
- Understand that Earth shells have different composition, minerals
- Know the three kinds of feldspar minerals

What is a mineral?

- -Naturally occurring
- -Inorganic
- -Homogeneous solid
- -Ordered atomic arrangement (crystal structure)
- -Specific (fixed) chemical composition

What is a rock?

Wikipedia

How Many Minerals?

Almost 4000!

How many do YOU need to know?

About 25! (phew....)

What is NOT a mineral?

Bone - Ca-phosphate (apatite) is ORGANIC

Seashell - Ca-carbonate (calcite) is ORGANIC

Opal - SiO₂ (quartz) is NOT CRYSTALLINE

Tree resin - ORGANIC

Volcanic glass - NOT FIXED COMPOSITION, NOT CRYSTALLINE

Minerals Built from Atoms: Elements

Element	Continental Crust
Oxygen (O)	46.6%
Silicon (Si)	27.7%
Aluminium (AI)	8.1%
Iron (Fe)	5.0%
Calcium (Ca)	3.6%
Sodium (Na)	2.8%
Potassium (K)	2.6%
Magnesium (Mg)	2.1%
Others	1.7%

Atomic Bonding

Geometric arrangement of atoms --> crystal lattice - defines

a mineral

Mineral properties reflect bond type, strength

Ionic

Covalent

Van der Waals

Weak
electrostatic
attraction
between
layers of
bound atoms

Crystal Structure; Composition

9 Mineral Groups

Group	Group Formula	Example
Silicate	[SiO ₄] ⁴⁻	quartz
Oxides	[O ²⁻]	magnetite
Sulfides	[S ²⁻]	pyrite
Sulfates	[SO ₄] ²⁻	gypsum
Halides	[CI, F] ¹⁻	halite
Carbonates	[CO ₃] ²⁻	calcite
Hydroxides	[OH] ¹⁻	Iron ore
Phosphates	[PO ₄] ³⁻	apatite
Native element		Copper, gold

Silicate Minerals

Basic Unit:
Silica
tetrahedron
[Si⁴⁺O²⁻₄]⁴⁻

Silicate Mineral Groups

- 1. Isolated tetrahedra
- 2. Single chain
- 3. Double chain
- 4. 2-dimensional sheet
- 5. 3-dimensional framework

Isolated Tetrahedra

Individual tetrahedra held together by bonds with Fe of Mg cations; four available O's for bonding

Single Chains: Pyroxenes

Two types:

Mg-Fe series (orthopyroxene)

Ca-Mg-Fe series (clinopyroxenes)

Together form rest of Earth's mantle (2 free O's per ST)

Double Chains: Amphiboles

Compositionally diverse:

Mg, Fe, Ca, Al, Na, K, OH⁻
(1 or 2 free O's per ST)

2-Dimensional Sheet Silicates Distinctly layered crystals layers peel apart

Elements fit between sheets

Framework Silicates

Complex structures - feldspars most common minerals in continental crust

Feldspars: Ca - Na- K substitution in lattice

Mineral ID: Properties

1) Lustre: the way that light is reflected from mineral surface

Metallic

Non-metallic

Carl Friedrich Mohs

Hardness: Moh's Scale

Vickers Indentation Values: force to make small indentation

To Help You Remember:

Toronto talc

Girls gypsum

Can calcite

Flirt fluorite

And apatite

Other orthoclase feldspar

Quirky quartz

Things topaz

Can corundum

Do diamond

Density: "Specific Gravity"

Weight of mineral relative to weight of equal volume of water

Silicates: 2.5 - 3.3

Gold: 15!

Colour

Sulfur

Sulfur Photo from MII, courtesy of the Smithsonian Institution

Azurite

Diagnostic for some minerals, not for others

Colour....

Quartz!

Streak: colour of powder

Non-metallic minerals: white

Metallic minerals: varies, but diagnostic

Hematite - red

Goethite - brown

Habit: crystal form

Quartz

Sulfur

Galena

GROWTH
FACES - slow
growth

<u>Cleavage: breakage</u> <u>surfaces</u>

Planes of weakness in lattice

Galena - cubic

Amphibole - prismatic

Fracture - irregular breakage

Next: More on Minerals, Chapter 2

