AMENDMENTS TO THE CLAIMS

1. (Original) A product which on a surface is provided with a first position code which codes coordinates for a plurality of first points, c h a r a c t e r i z e d in that at least one partial area on the surface is further provided with a second position code which codes coordinates for a plurality of second points, and that said partial area comprises a field which is associated with a predetermined function to be performed in consequence of a user unit being placed in the field.

- 2. (Original) The product as claimed in claim 1, wherein said plurality of first points are points in a first coordinate system and said second points are points in a second coordinate system.
- 3. (Currently amended) The product as claimed in claim 1 or 2, wherein said partial area is larger than the field.
- 4. (Currently amended) The product as claimed in claim 1, 2 or 3, wherein the second position code is spatially separated from the first position code.
- 5. (Currently amended) The product as claimed in any one of the preceding claims claim 1, wherein each of the first and the second position code is coded with marks, and wherein at least some marks in the partial area are common to the first and the second position code.
- 6. (Original) The product as claimed in claim 5, wherein the first position code is coded by variation of a first parameter of the common marks and the second position code is coded by variation of a second parameter of the common marks.
- 7. (Original) The product as claimed in claim 6, wherein the first and the second parameter are one of the following pairs: location and size; location and color; location and

shape; size and location; size and shape; size and color; shape and location; shape and color; shape and size; color and location; color and size; and color and shape.

- 8. (Currently amended) The product as claimed in any one of the preceding claims claim 1, wherein the coordinates for each of said plurality of first points are coded by means of a first plurality of marks and the coordinates for each of said plurality of second points are coded by means of a second plurality of marks.
- 9. (Original) The product as claimed in claim 8, wherein said second plurality of marks are divisible into cells with at least two marks, each cell defining a cell value and the cell values of the cells corresponding to said plurality of second marks together coding the coordinates for one of said second points.
- 10. (Currently amended) The product as claimed in any one of the preceding claims claim 1, wherein the first and the second position code have different position resolutions.
- 11. (Currently amended) The product as claimed in any one of the preceding claims claim 1, wherein the field has a function from the following group of functions: giving a predetermined feedback to a user when the field is detected, interpreting by character recognition the information recorded from the field by means of the first position code in the same or sending information recorded by means of a predetermined part of the first position code to an address.
- 12. (Currently amended) The product as claimed in any one of the preceding claims claim 1, wherein the surface comprises at least two adjacent fields, wherein the first position code in said at least two adjacent fields codes coordinates within at least two non-adjacent coordinate areas, and wherein the second position code extends over said at least two adjacent fields.

13. (Original) A method for coding, which method is carried out in a coding device and which comprises providing a first position code which is adapted to be arranged over a surface and which codes coordinates for a plurality of first points, and providing a second position code which codes coordinates for a plurality of second points and which is adapted to be arranged over at least one partial area on the surface for enabling detection of a field associated with a predetermined function which is to be performed when a user unit is placed in the field.

- 14. (Original) The method as claimed in claim 13, further comprising printing the first position code over a surface on a product and printing the second position code over at least one partial area on the surface of the product.
- 15. (Currently amended) The method as claimed in claim 13 or 14, wherein said partial area is larger than the field.
- 16. (Currently amended) The method as claimed in any one of claims 13-15 claim 13, further comprising associating a size of a coordinate area coded by the first position code with the second position code which is adapted to be arranged over said at least one partial area.
- 17. (Currently amended) A computer program comprising instructions for causing a computer to carry out a method according to any one of claims 13-16 claim 13.
- 18. (Original) A coding device comprising a signal processor which is adapted to provide a first position code which is adapted to be arranged over a surface and which codes coordinates for a plurality of first points, and to provide a second position code which codes coordinates for a plurality of second points and which is adapted to be arranged over at least one partial area on the surface for enabling detection of a field which is associated with a predetermined function to be carried out when a user unit is placed in the field.

19. (Original) A method for recording of information from a surface provided with a first position code which codes coordinates for a plurality of first points, and which in at least one partial area is further provided with a second position code which codes coordinates for a plurality of second points, which method comprises the steps of checking whether the second position code is present in an image of the surface recorded by means of a user unit, determining, if this is the case, the coordinates for at least one of said plurality of second points by means of the second position code in the image, and, on the basis of the determined coordinates, determining whether the user unit is placed in a field on the surface, which field is associated with a function to be carried out by the user unit.

- 20. (Original) The method as claimed in claim 19, wherein the step of determining whether the user unit is placed in a field on the surface comprises comparing the determined coordinates with a description, stored in advance in the user unit, of a plurality of coordinate partial areas, which are coded by the second position code and in each of which a coordinate field is defined, which is associated with a function.
- 21. (Currently amended) The method as claimed in claim 19 or 20, wherein the user unit comprises a sensor and, arranged at a distance from the sensor, a pen point defining the location of the user unit, and wherein the step of determining whether the user unit is placed in a field on the surface is carried out while taking the distance between the sensor and pen point into consideration.
- 22. (Currently amended) The method as claimed in any one of claims 19 21 claim 19, further comprising the step of determining, if the user unit is placed in a field on the surface, a

size of a coordinate area coded by the first position code on the surface by means of said description.

- 23. (Currently amended) The method as claimed in any one of claims 19 22 claim 19, further comprising determining, if the user unit is placed in a field on the surface, the location of said partial area on the surface by means of said description.
- 24. (Currently amended) A computer program comprising instructions for causing a computer to carry out a method according to any one of claims 19-23 claim 19.
- 25. (Original) A device for recording information from a surface which is provided with a first position code coding coordinates for a plurality of first points and which in at least one partial area is further provided with a second position code coding coordinates for a plurality of second points, comprising a signal processor which is adapted to check whether the second position code is present in an image of the surface recorded by means of a user unit, to determine, if this is the case, the coordinates for at least one of said plurality of second points by means of the second position code in the image, and, on the basis of the determined coordinates, determine whether the user unit is placed in a field on the surface, which field is associated with a function to be performed by the user unit.
- 26. (Original) The device as claimed in claim 25, further comprising a memory, in which is stored a description of a plurality of coordinate partial areas, which are coded by the second position code and in each of which a coordinate field is defined, which is associated with a function.
- 27. (Currently amended) The device as claimed in claim 25 or 26, which further comprises a sensor and, arranged at a distance from the sensor, a pen point defining the location

of the device, and in which the signal processor is further adapted to determine whether the user unit is placed in a field on the surface while taking the distance between the sensor and the pen point into consideration.

28. (Currently amended) The device as claimed in claim 26 or 27, in which the signal processor is further adapted to determine a size of a coordinate area which is coded by the first position code on the surface by means of the description stored in the memory.