Announcements for Wednesday, 06NOV2024

none

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try These On Your Own

• Write a balanced net ionic equation for the reaction that takes place when an aqueous solution of iron(II) nitrate is mixed with an aqueous solution of potassium phosphate.

3 Fe²⁺(aq) + 2 PO₄³⁻(aq)
$$\rightarrow$$
 Fe₃(PO₄)₂(s)

 Write a balanced net ionic equation for the reaction that takes place when solid sodium chloride is added to an aqueous solution of silver acetate.

$$NaCl(s) + Ag^{+}(aq) \rightarrow AgCl(s) + Na^{+}(aq)$$

 Write balanced molecular, complete ionic, and net ionic equations for the reaction that takes place when aqueous copper(II) acetate reacts with an aqueous solution of calcium hydroxide.

```
molecular: Cu(C_2H_3O_2)_2(aq) + Ca(OH)_2(aq) \rightarrow Cu(OH)_2(s) + Ca(C_2H_3O_2)_2(aq)

CIE: Cu^{2+}(aq) + 2 C_2H_3O_2^{-}(aq) + Ca^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Cu(OH)_2(s) + Ca^{2+}(aq) + 2 C_2H_3O_2^{-}(aq)

NIE: Cu^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Cu(OH)_2(s)
```

Acids

- acid = a compound that is an H⁺ (proton) donor
- Arrhenius definition: an acid is <u>a molecular</u>
 <u>compound that dissociates</u> in water to generate H⁺/H₃O⁺ ions (and the associated anions)
 - formula usually starts with Hs followed by one or more nonmetals
 - if an organic acid you may see "COOH" in the formula
- not all Hs in a molecule are ionizable in water
- monoprotic vs. diprotic vs. polyprotic acids
- strong acids: dissociate completely
 - MEMORIZE THESE: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
- weak acids: dissociate partially
 - if a compound is an acid but not one of the ones you memorized, it will be considered a weak acid

© 2018 Pearson Education, Inc.

© 2018 Pearson Education, Inc.

Naming Acids

names of acids are derived from the names of the anion

- 1. binary acids
- anions are either monatomic or non-oxyanions (F⁻, Cl⁻, S²⁻, CN⁻, etc.)
- prefix "hydro" + base name + -ic acid
- HI = hydroiodic acid H_2S = hydrosulfuric acid HCN = hydrocyanic acid
- 2. oxyacids
- anions are oxyanions (NO₃⁻, ClO₄⁻, SO₃²⁻, PO₄³⁻, CH₃COO⁻, etc.)
- -ate turns to -ic acid
- H_2CO_3 = carbonic acid $HCIO_3$ = chloric acid H_3PO_4 = phosphoric acid
- -ite turns to -ous acid
- H₂SO₃ = sulfurous acid HClO = hypochlorous acid HNO₂ = nitrous acid

Bases

- base = a species that is a proton (H⁺) acceptor
- Arrhenius definition: a base is a compound (either ionic or molecular) that generates OH⁻ (hydroxide) ions when placed into water
- strong bases vs. weak bases
- DO NOT CONFUSE STRONG BASES (ionic) WITH ALCOHOLS (molecular)

© 2018 Pearson Education, Inc.

Acid Base Reactions

- neutralization reaction = reaction between an acid and a base in which an H⁺ ion is transferred from the acid to the base
 - it is a proton-transfer reaction
- produces a salt (a soluble ionic compound formed as a result of neutralization) and (often) water
 - HBr (aq) + LiOH (aq) → LiBr (aq) + H₂O (ℓ)
 - HCl (aq) + NH₃ (aq) → NH₄Cl (aq)
- strong acid/strong base neutralizations can have the same net ionic equation
 - H^{+} (aq) + OH^{-} (aq) $\rightarrow H_{2}O$ (ℓ)
- to predict products, transfer the H⁺s from acid to base and write down what results
- complete neutralization = when ALL ionizable H*s react with base
 - H_2SO_4 (aq) + 2 NaOH (aq) \rightarrow Na₂SO₄ (aq) + 2 H_2O (ℓ)

Try These On Your Own

• 10.0 g Ca(OH)₂(s) was needed to completely neutralize 266 mL HCl(aq). What was the molarity of HCl(aq)?

• What volume of 2.5 M NaOH (aq) must be added to 100. mL of $0.50 \text{ M H}_3\text{PO}_4$ (aq) to completely neutralize the acid?

Try This

0.600 mol of NaOH is required to completely neutralize 28.4 g of an unknown triprotic acid. Which of the following could be that acid?

$$3 \text{ NaOH} + \text{H}_3\text{X} \rightarrow \text{Na}_3\text{X} + 3 \text{ H}_2\text{O}$$

$$0.600 \text{ mol NaOH} \times \frac{1 \text{ mol H}_3 \text{X}}{3 \text{ mol NaOH}} = 0.200 \text{ mol H}_3 \text{X}$$

A.
$$H_3PO_4$$
 (98.0 g/mol)

molar mass
$$H_3X = \frac{28.4 \text{ g}}{0.200 \text{ mol}} = 142 \text{ g/mol}$$

(C.)
$$H_3AsO_4$$
 (142 g/mol)

D.
$$HOC(COOH)(CH_2COOH)_2$$
 (192 g/mol)

E.
$$H_3N$$
 (17.0 g/mol)

Titration

- a common laboratory procedure in which a substance in a solution of known concentration (the titrant) is reacted with another substance in a solution of *unknown* concentration (the analyte)
- equivalence point = the point of a titration in which all of the analyte has been reacted with the titrant
- indicator = a chemical compound that changes color at the equivalence point

© 2018 Pearson Education, Inc.

Gas-Evolution Reactions

- some ions, when reacted with acid form gaseous products directly:
 - sulfides: $S^{2-}(aq) + 2 H^{+}(aq) \rightarrow H_2S(g)$
- some ions react with acid to form gaseous products by going through an unstable intermediate:
 - carbonates: $CO_3^{2-}(aq) + 2 H^+(aq) \rightarrow H_2CO_3(aq) \rightarrow CO_2(g) + H_2O(\ell)$
 - bicarbonates: $HCO_3^-(aq) + H^+(aq) \rightarrow H_2CO_3(aq) \rightarrow CO_2(g) + H_2O(\ell)$
 - sulfites: $SO_3^{2-}(aq) + 2 H^+(aq) \rightarrow H_2SO_3(aq) \rightarrow SO_2(g) + H_2O(\ell)$
 - <u>bisulfites</u>: $HSO_3^-(aq) + H^+(aq) \rightarrow H_2SO_3(aq) \rightarrow SO_2(g) + H_2O(\ell)$
- reactions with base
 - <u>ammonium</u>: $NH_4^+(aq) + OH^-(aq) \rightarrow NH_4OH(aq) \rightarrow NH_3(g) + H_2O(\ell)$

© 2018 Pearson Education, Inc.

 $HCI(aq) + CaCO_3(s)$