20

25

CLAIMS

 A metallocene catalyst component for olefin polymerization comprising a metallocene compound characterized by the following formula:

 $\left[\begin{array}{c} Y_{j} - (E) - Z \\ \end{array}\right]_{k}^{L} MY_{(H^{s}-2)}$ (I)

10 wherein:

5

Y is halogen;

M is a transition metal of groups 3-6 of the periodic table;

each L is independently selected from a cyclopentadienyl-type unity, including indenyl or fluorenyl, substituted or not and the substituents being equal or different, united to M through a π bond:

Z is a group that forms a union bridge between the two unities L, which can have between 0 and 20 carbon atoms and between 0 and 5 oxygen, sulfur, nitrogen, phosphorus, silicon, germanium, tin or boron atoms;

E is a spacer group that unites Z and Y and can have between 0 and 20 carbon atoms and between 0 and 5 oxygen, sulfur, nitrogen, phosphorus, silicon, germanium, tin or boron atoms. It is characterized for having in its skeleton at least one silicon, germanium or tin atom, which the substituent Y is united to:

o is a number of value 0 or 1: .

k is a number of value 1, 2 or 3:

m is a number equal to or higher than 2 and coinciding with the oxidation state of the transition metal:

j is a number of value 0 or 1 with the condition that its value is 1 at least once; when j is 1 and σ is 0, Z is characterized by having at least one silicon, germanium or tin atom which Y is directly united to;

30 with the proviso that the compound does not have general formula X...M'(L'-M²(R'R²)-A'-Z'R³, Hal,)_{B*}

10

15

20

25

30

A catalyst component according to claim 1, characterized in that the metallocene compound has formula:

wherein:

Y is halogen;

M is a transition metal of groups 3, 4, 5 or 6 of the periodic table;

each L is independently selected from a cyclopentadienyl-type unity, including indenyl or fluorenyl, substituted or not and the substituents being equal or different, united to M through a π bond;

Q is an element of group 13, 14 or 15;

 ${\bf E}$ is a spacer group that unites ${\bf Q}$ and ${\bf Y}$ and can have between 0 and 20 carbon atoms and between 0 and 5 oxygen, sulfur, nitrogen, phosphorus, silicon, germanium, tin or boron atoms and it is characterized by having in its skeleton at least one silicon, germanium or tin atom, which the substituent ${\bf Y}$ is united to:

R is an atom of hydrogen, halogen, halocarbon, substituted halocarbon, C_1 - C_{20} alkyl, C_2 - C_{20} alkylaryl, C_7 - C_{40} arylalkyl, C_7 - C_{20} arylalkenyl, alkoxy, siloxy and combinations thereof:

10

15

20

A, equal to or different from each other, is a bridge group between unities L and Q constituted either by only one divalent atom of group 16, preferably -O-, or by a trivalent monosubstituted element of group 15, preferably >N-R, R being defined above, or a tetravalent disubstituted element of group 14, preferably > $C(R)_2$ or > $Si(R)_2$, R being defined above, or by a chain of 2 or more atoms substituted or not, this chain being preferably of type -C-C-, -C-Si-, -Si-Si-, -Si-O-, -C-O-, -C-N-, -C-C-C, -C-Si-C-, -Si-O-Si-;

o is a number of value 0 or 1;

k is a number of value 1, 2 or 3:

m is a number equal to or higher than 2 and coinciding with the oxidation state of the transition metal;

p, n, l are numbers of value 0 or 1.

 ${\bf j}$ is a number of value 0 or 1 with the condition that its value is 1 at least once; when ${\bf J}$ is 1 and 0 is 0, ${\bf Q}$ is a silicon, germanium or tin atom;

with the proviso that the compound does not have general formula

$$X_{m'}M^{1}(L'-M^{2}(R^{1}R^{2})-A'-Z'R_{o}^{3}+Hal_{n'})_{n'}$$

wherein M^1 is a metal of group 4, 5 or 6 of the periodic table, each X is independently selected from hydrogen, halogen or a C_1 - C_{40} carbon-containing rest; m^2 is equal to 1, 2 or 3; n^2 is equal to 1 or 2; each L^2 is independently a π ligand, which coordinates to the central atom M^1 ; each M^2 is independently selected from silicon, germanium or tin; R^1 is a C_1 - C_{20} carbon-containing group; R^2 is a C_1 - C_{20} carbon-containing group or a π ligand, which coordinates to the central atom M^1 ; each A^2 is independently a divalent C_1 - C_{40} carbon-containing rest; each Z^2 is independently selected from boron, silicon, germanium or tin; each R^2 is independently selected from hydrogen or a C_1 - C_{20} carbon-containing rest; σ^2 is equal to 0, 1 or 2; each **Hal** is independently selected from a halogen atom; σ^2 is equal to 1, 2 or 3.

25 3. A catalyst component according to claims 1-2, characterized in that the metallocene compound has formula:

$$Y-T$$
 $(A)_{n}-L$
 $MY_{(m-2)}$

30

Wherein:

L, M, m, Y, R, I, n and A have already been defined;

T is selected from: silicon, germanium or tin.

 A catalyst component according to claims 1-2, characterized in that the metallocene compound has formula:

$$Y - E$$
 (A)
 $(A$

wherein:

5

10

15

L, M, m, Y, R, E, I, n and A have already been defined;

T is selected from: silicon, germanium or tin.

- A heterogeneous catalyst component for the polymerization of olefins obtained from an inorganic solid that contains hydroxy groups and a catalyst component according to claims 1-4.
- 6. A heterogeneous catalyst component for the polymerization of olefins according to claim 5 consisting of: an inorganic solid that contains hydroxy groups and that has been previously modified through reaction with a compound of formula:

$$\begin{array}{ccc}
\begin{pmatrix} R \\ J \\ S \end{pmatrix}_{z} & R \\
S & S \\
\begin{pmatrix} C \\ S \\ J \\ R \end{pmatrix}_{w} & R
\end{array}$$

$$\begin{array}{cccc}
R \\ J \\ J \\ J \\ R \\ R \\
\end{array}$$

20 being:

R: atom of hydrogen, halogen, halocarbon, substituted halocarbon, C_{1^-20} alkyl, C_{2^-20} alkyl, C_{2^-20} alkyl, C_{2^-20} aryl, C_{7^-40} alkylaryl, C_{7^-80} arylalkyl, $C_{2,20}$ arylalkenyl, alkoxy, siloxy and combinations thereof; X: halogen or group OR^4 wherein R^4 has the same meaning given above:

P: NH2, NHR, SH, OH or PHR;

- 25 v+z+w=3, v being different from 0; t and u are comprised between 0 and 10: and a catalyst component according to claims 1-4.
- A heterogeneous catalyst component for the polymerization of olefins according to claims 5-6 characterized in that the inorganic solid is selected from the group comprising: silica, silicales, carbonates, phosphates, clays, metal oxides and mixtures thereof.

- 8. A catalyst system comprising: a catalyst component according to claims 1-7 in combination with a cocatalyst selected from the group comprising: non-coordinating compounds of alumoxane-type, modified alumoxane-type, boron compounds and combinations thereof.
- A catalyst system according to claim 8 characterized in that the cocatalyst is selected from the group comprising: methylalumoxane, dimethylaniline tetrakis(pentafluorophenyl)boron or trispentafluorophenylborane
 - 10. A process for the preparation of the heterogeneous catalyst component characterized in that the compound of claims 1-4 and the inorganic support are put in contact by using tetrahydrofurane as solvent.
- 11. A process for the polymerization of alpha-olefins, optionally in combination with a cyclic olefin and/or a diene, characterized by the presence of a catalyst component according to claims 1-7.
 - 12. A process according to claim 11 characterized in that the monomers are selected from the group comprising: ethylene, propene, 1-butene, 1-hexene, 4-methyl-1-pentene, 4-octene and mixtures thereof.
- 15 13. A process according to claim I1-12 for the copolymerization of ethylene in combination with a comonomer selected from the group comprising: propene, 1-butene, 1-hexene, 4-methyl-1pentene, 1-octene, cyclic olefins and mixtures thereof.

5