Candidates Name:						
~·····································	Ce	ntre	No.	Per	sonal	No.
Signature:						

P525/1 CHEMISTRY PAPER 1 JULY/AUGUST 2022 2 1/4 Hours

TORORO ARCHDIOCESE EXAMINATIONS BOARD

Uganda Advanced Certificate of Education MOCK EXAMINATIONS – AUGUST 2022

CHEMISTRY

Paper 1

3 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

Answer all questions in Section A and only six questions in Section B.

All questions must be answered in the spaces provided.

The Periodic table, with relative atomic masses is attached at the end of the paper.

Mathematical tables (3 - figure tables) and non-programmable scientific electronic calculators may be used.

Molar gas constant, $R = 8.314 J K^{-1} mol^{-1}$

Molar volume of gas at s.t.p is 22.4dm³

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Tota
																	1

Turnover

1

SECTION A: (46 MARKS)

Answer all questions from this section.

1.	(a) Define:(i) Bond energy.	(1 mark)
	()	(Timerk)
	(ii) Heat of formation.	(1 mark)
	(b) Given the following bond energies.	
Г		
}	Bond	Bond Energy (Kj/mole)
}	с—с	337
	С—Н	414
	c—o	360
L	О—H	123
	Calculate the heat of conversion of gas	eous methoxymethane to gaseous ethanol.
		(2 marks)
-		
	•••••••••••••••••••••••••••••••••••••••	
(a) An alkyne Q has molecular formula	C ₄ H ₆ . Write the names and structural
f	ormulae of all possible isomers of Q.	(2 marks)
•		

2.

	(b) Q	reacts with an ammoniacal solution of silver nitrate.	
	(i)	State what is observed.	(½ marks)
	(ii)	Write the equation for the reaction in b (i) above.	(1 ½ marks)
		•••••••••••••••••••••••••••••••••••••••	
		rite equations to show how $f Q$ can be synthesized from ethe	
	•••••		
		•••••••••••••••••••••••••••••••••••••••	
3.	(a) E	xplain briefly why chlorine is a stronger oxidizing agent tha	
	(b) W	Vrite equation (s) for the reactions of:	
	(i)	Bromine with cold dilute sodium hydroxide.	(1 ½ marks)
	(ii)	Chlorine with hot concentrated sodium hydroxide.	(1 ½ marks)

4. The standard electrode potentials for some half-cell reactions are given below.

(a) Write the:

Half-cell reaction	E ⁰ /V	
$MnO_4^-(aq) + e \longrightarrow MnO_4^{2-}(aq)$	+0.56	
$MnO_4^2(aq) + 2H_2O(1) + 2e \longrightarrow MnO_2(s) + 4OH(aq)$	+0.60	
$MnO_4 (aq) + 8H^+ (aq) + 5e$ $Mn^{2+} (aq) + 4H O(1)$	+1.52	
$Br_2 (aq) + 2e \longrightarrow 2Br^- (aq)$	-1.06	

	(1)	Cell convention of the cell formed when bromine half-cell with the half-cell of acidified potassium manganate (VII).	(1 mark)
	(ii)	Overall cell reaction in a (i).	(1 ½ marks)
(b)	Calcul	ate the electromotive force of the cell in (a).	(1 ½ marks)

State whether the reaction in (b) above is feasible or not. Give a reason for yo answer. (1 marks)					

exposed to air and write equation for the reaction that took place. Observation	(VI) is (2 marks)
Observation	•••••

	• • • • • • • • • • • • • • • • • • • •

			 	 • • • • • • • •	 ••••
Equation					
	 • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	 • • • • • • • •	

5. Complete the following equations and write the IUPAC name of the major product.

¥	10	(CH ₃ COO) ₂ Ca	Heat					
١	и	(C113COO)2Ca		Server and the server	11	14 ma	arks'	١

Name of product.....

Name of product.....

Name of product.....

Name of product....

6. (a) Write the:

(i) Equation for the ionization of ethylamine in water. (1 ½ marks)

(ii) Expression for the ionization constant, K_{b_i} of ethylamine. (1 mark)

	(b)	A solution containing 0.1 moles of ethylamine per	r litre of solution at 25°C.
	(i)	Calculate the pH of the solution. (the ionization constant of ethylamine is $5.4 \times 10^{-4} \times 10^{-14} \text{ mol}^2 \text{dm}^{-3}$)(2 ½ marks)	

	(ii)	State the assumptions made in b (i) above.	(1 mark)
	•••••		
7.	(a) Staplace	ate what would be observed and write equation for the if potassium iodide was added to acidified potassium	ne reaction that would take a dichromate (VI) solution.
	Obser	vation	(1marks)
	•••••		
	Equat	tion	(1 ½ marks)
	•••••		
	(b) So observ	edium thiosulphate solution was added to the mixture wed and write equation for the reaction that took place	in (a), state what was
	Obser	rvation	(1 mark)
			•••••
	Equat	ion	(1 ½ marks)
		••••••	

3.	(a) Define a 'complex ion	ı,	(1 mark)
		•••••	
	(b) Complete the following	g table about complexes of chro	mium and cobalt. (2 marks
	Complex	Oxidation state of metal ion	Coordination number
	[Co(NH ₃) ₄ (H ₂ O) ₂]Cl ₂		
	$[Cr(NH_3)_6]^{3+}$		
9.		a be used to distinguish between to state what you would observe wh pair.	
	(a) CH ₃ CH ₂ OH an	d CH ₃ OH	(2 marks)
	Reagent		
	Observation		
			•••••••••••
	(b) HCOOH and	CH ₃ COOH	(2 marks)
	Reagent		
	Observation	•••••	••••••

SECTION B: (54 MARKS)

Answer any six questions from this section.

Any additional question(s) answered will not be marked.

oxygen.	ogen and the rest
(a) Determine the empirical formula of T.	(2 ½ marks)
••••••	
•••••••••••••••••••••••••••••••••••••••	
(b) 0.453g of a vaporized sample of T occupied 200cm ³ at 10 pressure.	0°C and 95.0kPa
(i) Calculate the molecular mass of T.	(2 ½ marks)

(ii) Determine the molecular formula of T.	(1 ½ marks)

	(c) T rea	ncts with magnesium metal with evolution of a gas. Write: The structural formula of T.	(1 mark)
	(ii)	The equation for the reaction between T and magnesium r	netal. (1 ½ marks)
1.	 During to catalytic	manufacture of sulphuric acid by contact process, Sulphur dic cally oxidized to Sulphur trioxide according to the following of	oxide is
	2SO ₂ (g	$(1) + O_2(g) \rightleftharpoons 2SO_3(g)\Delta H^{\theta} = -97kJmol^{-1}$	
	(a) Nar	ne one source of dioxide and one source of oxygen used in the	e contact
	pro	cess.	(1 mark)
	<u></u>		
		te the industrial conditions used to obtain the maximum yield axide.	of Sulphur (1 ½ marks)
		te the conditions under which sulphuric acid reacts with tin anch case write equation for the reaction that takes place. Tin	(2 marks)
	•••		• • • • • • • • • • • • • • • • • • • •

(ii	i) Copper	tion of iron (II) salt was added to an acidified solution of oxidation state of +6. was observed. (1 mark) Gequations and the overall equation for the reaction that took (3 ½ marks)
•••		Iphuric acid is 98% w/w and has a density of 1.84gcm ⁻³ .Calculate the concentrated sulphuric acid. (2 ½ marks) It is exhibited by chromium as a transition metal. (3 marks) ion of iron (II) salt was added to an acidified solution of exidation state of +6. was observed. (1 mark) equations and the overall equation for the reaction that took (3 ½ marks)
(d) Co the	oncentrated sulphuric acid is 98% w/w and has a density of 1.84g molarity of the concentrated sulphuric acid.	
•••••		
	te three properties exhibited by chromium as a transition metal. (
(c) An	aqueous solution of iron (II) salt was added to an acidified solution omium in the oxidation state of +6.	
(i)	Sate what was observed.	. ,
(ii)	Write half equations and the overall equation for the reaction place.	that took
	•••••••••••••••••••••••••••••••••••••••	
		••••••
		• • • • • • • • • • • • • • • • • • • •

	(d)	(i) Stat	State one application of chromium in the oxidation state of +6 in on the sis.								
		(iii)	Write the equation to illustrate your answer.	(1 mark)							
		••••••									
13.	(a)		s meant by the term common ion effect ?	(2 marks)							
			••••••								
	•••	•••••	••••••								
	(b)	Magne Write:	sium hydroxide is sparingly soluble in water.								
	(i)	Th	e equation for the solubility of magnesium hydroxide in w	ater. (1 ½ marks)							
	•••	•••••	••••••								
	(ii)) The	e expression for the solubility product, <i>Ksp</i> , of magnesium	hydroxide.							
				(1 mark)							
	•••	••••••									
	(d)	If the s Calcula (i)	olubility product of magnesium hydroxide at 25°C is 4.2 x ate the solubility in mole per litre at 25°C of magnesium hydroxide at 25°C (1 ½ (1 ½ (1 ½ (1 ½ (1 ½ (1 ½ (1 ½ (1	10 ⁻¹² mol ³ dm ⁻⁹ . ydroxide in: marks)							
		•••••									
		••••••	······································								
		•••••									
				•••••							

(ii) 0.01M sodium hydroxide.	(2 marks)
······································	
•••••	
••••••	
(iii) Comment on your answer in (c) above.	(1 mark)
•••••••••••••••••••••••••••••••••••••••	
•••••	
••••••	
14. Complete each of the following equations and write a neach case.	nechanism for the reaction in
CH ₃ CH ₂ C=0 + H ⁺	,
(a) H ₃ C	(4 marks)
••••••	
	••••••
	••••••

(b) (CH ₃) ₂ CO –	dil. NaOH(aq)		(3	marks)
			•••••	
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(c) CH ₃ (+ OH	NaOH (aq) Heat	((2 marks)
		••••		• • • • • • • • • • • • • • • • • • • •
15. (a) Define				
(i) Conduc				(1 mark)

(ii)	Molar conductivity	(1 mark)
•••••	••••••	
	•••••	
	•	
Calcu	ılate:	
(i)		, ,
(ii)	The degree of ionization of the acid at 20°C.	(1 mark)
(iii)	The pH of the acid	(2 marks)
	The degree of ionization of the acid at 20°C. (1 mark)	
		•••••

16.	(a) Compare the thermal stabilities of silicon (IV) chloride and tin (IV [Include equations of reactions if any].	(2 marks)
	(b) State conditions of reaction between tin and chlorine and write equ	ation of the
	reaction that took place. Condition	(2 ½ marks)
	Equation	
	(c) Silicon (IV) chloride was dissolved in water.	
	(i) State what was observed.	(1 mark)
	(ii) Write equation for the reaction that took place.	(1 ½ marks)
	(e) When 0.325g of silicon (IV) chloride was dissolved in water, the resolution required 48 cm3 of 0.1 M sodium hydroxide for complete Calculate the percentage purity of silicon (IV) chloride.	esultant e neutralization. (2 marks)

17. Write equations and indicate the conditions under which the following conversions can be effected.

(a) CH ₃ CH ₂ OH	from	bromomethane	(2 ½ marks)
	••••		
(p) CH	H₂CH₂OH from	phenylethanone	(4 ½ marks)
			••••••••••••
			•••••••••••••••••••••••••••••••••••••••
	i i		
			V
(c) CH ₃ CH ₂ CH ₃	from	1-iodobutane	(2 marks)

END

THE PERIODIC TABLE

		7	-		-												
1	2											3	4	5	6	7	8
1 H 1.0						,										1 H 1.0	2 He 4.0
3 14 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 No 20.2
11 Na 23.0	12 Mg 24.3		1.		·		·			s.		13 Al 27.0	14 81 28.1	15 P 31.0	16 S 32.1	17 Cl. 35.4	18 Ar 40,6
19 K 39,1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55,8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zu 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 8r 87.6	39. Y 88. 9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Te 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 105	48 Cd 112	49 In 115	50 Sn 119	51 8b 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 H£ 178	73 Th 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 T1 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr 223)	88 Ra (226)	89 Ac (227)				14							L	;			
	٠.		57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 5m 152	63 8m 150	64 Ew 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 La 175
	(⁻¹)	,	89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 C/ 251	99 Es (254)	100 Fm (257)	101 My (356)	102 No (254)	103 Lw

^{1. 1 -} indicates Atomic number.

^{2.} H - indicates relative Atomic number.