MSJ Math Club

Week 17: Computational Angle Chasing

April 18, 2013

Warning: This is a *very* difficult handout. In many of these problems, extra constructions or other synthetic observations may be needed. Alternatively, you can view this as good trig bashing practice. I (Aaron) haven't actually solved everything in here yet, so I won't be able to provide hints.;)

1 Problems

- 1. Triangle ABC is isosceles with $\angle A = 100^{\circ}$ and AB = AC. A point D is constructed outside the triangle such that BD = AC and $\angle DBC = 20^{\circ}$. What is the measure of $\angle BCD$?
- 2. ABCD is a convex quadrilateral such that AB < AD. The diagonal AC bisects $\angle BAD$, and $\angle ABD = 130^{\circ}$. Let E be a point on segment AD. Given that $\angle BAD = 40^{\circ}$ and that BC = CD = DE, determine $\angle ACE$ in degrees.
- 3. (AMC10 2008) Quadrilateral ABCD has AB = BC = CD, $\angle ABC = 70^{\circ}$, and $\angle BCD = 170^{\circ}$. What is the degree measure of $\angle BAD$?
- 4. In isosceles triangle ABC with AB = AC and $\angle BAC = 82^{\circ}$, a point P is located inside the triangle such that BP = BA and $\angle ABP = 38^{\circ}$. Find the measure of $\angle PCA$.
- 5. In acute triangle ABC, O is the circumcenter, point M is the midpoint of side BC, and point N is the midpoint of segment OA. If $\angle ABC = 4\angle ONM$ and $\angle ACB = 6\angle ONM$, what are the angle measures of the triangle?
- 6. Point P is constructed in triangle ABC such that $\angle PAB = \angle PAC = 22^{\circ}$, $\angle PBA = 8^{\circ}$, and $\angle PBC = 30^{\circ}$. What is the measure of $\angle PCA$?
- 7. In isosceles triangle ABC with AB = BC and $\angle ABC = 20^{\circ}$, points D and E are on sides AB and BC respectively such that $\angle BAE = 20^{\circ}$ and $\angle BCD = 30^{\circ}$. Find the measure of $\angle AED$.
- 8. In triangle ABC, point P is located inside so that $\angle PBA = 16^{\circ}$, $\angle PBC = 34^{\circ}$, $\angle PCB = 24^{\circ}$, and $\angle PCA = 2^{\circ}$. Find the measure of $\angle PAC$.
- 9. (AIME 2003) Triangle ABC is isosceles with AC = BC and $\angle ACB = 106^{\circ}$. Point M is in the interior of the triangle so that $\angle MAC = 7^{\circ}$ and $\angle MCA = 23^{\circ}$. Find the number of degrees in $\angle CMB$.
- 10. Square ABCD has a point E inside such that $\angle EBC = \angle ECB = 15^{\circ}$. What is $\angle EDA$?
- 11. Let ABC be a triangle such that $\angle A = 60^{\circ}$ and $\angle B = 100^{\circ}$. Point E is the midpoint of side BC, and D is on side AC such that $\angle DEC = 80^{\circ}$. If the length of AC is 1, evaluate [ABC] + 2[CDE].
- 12. (CGMO 2007) Point D lies inside triangle ABC such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point E is the midpoint of segment BC. Point F lies on segment AC with AF = 2FC. Prove that $DE \perp EF$.
- 13. (JBMO 2007) Let ABCD be a convex quadrilateral with $\angle DAC = \angle BDC = 36^{\circ}$, $\angle CBD = 18^{\circ}$ and $\angle BAC = 72^{\circ}$. The diagonals and intersect at point P. Determine the measure of $\angle APD$.
- 14. (USAMO 1996) Let ABC be a triangle, and M an interior point such that $\angle MAB = 10^{\circ}$, $\angle MBA = 20^{\circ}$, $\angle MAC = 40^{\circ}$ and $\angle MCA = 30^{\circ}$. Prove that the triangle is isosceles.