

Խնդիր 5.2 Մահմանների մասին թեորեմում ոչինչ չէինք կարող ասել $\left(\frac{a_n}{b_n}\right)$ -ի սահմանի մասին, երբ $\lim_{n\to\infty}b_n=0$ ։ Կարո՞ղ եք բերել այնպիսի a և b հաջորդականությունների օրինակներ, որոնց համար $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=0$, բայց

Du = x lu = g nu + lu = x 2

- $\text{u.} \lim_{n\to\infty} \frac{a_n}{b_n} = 1 \text{ }$
- $p. \lim_{n \to \infty} \frac{a_n}{b_n} = -5$
- $q. \lim_{n \to \infty} \frac{a_n}{b_n} = 0$
- $\eta. \lim_{n\to\infty} \frac{a_n^n}{b_n} = +\infty \quad \longleftarrow$
- t. $\lim_{n\to\infty}\frac{a_n^n}{b_n}$ գոյություն չունի
 - du mo lon mo

- Qin dr = 7
 - -5 h
 - $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

Sin n

Խնդիր 5.3 ∇ ետևյալ ֆունկցիաները բաղկացած են x=2 կետում իրար «սոսնձած» երկու առանձին ֆունկզիաներից։ Կարո՞ղ եք գտնել c-ի այնպիսի արժեք, որի դեպքում ֆունկցիան անընդհատ լինի 2-ում։

https://www.desmos.com/calculator/c3047befa7

սկզբից փորձեք աչքաչափով

սա նույնպես

https://www.desmos.com/calculator/8eb756f334

u.
$$f(x) = \begin{cases} 3x - 5 & \text{tipt } x < 2 \\ x^2 + c & \text{tipt } x \ge 2 \end{cases}$$

р.
$$f(x) = \begin{cases} x^3 + 1 & \text{hph } x < 2 \\ cx^2 & \text{hph } x \ge 2 \end{cases}$$

q.
$$f(x) = \begin{cases} -7 & \text{tipt } x < 2 \\ c & \text{tipt } x = 2 \\ 4 + 3\sin(\pi x) & \text{tipt } x > 2 \end{cases}$$

u.
$$f(x) =\begin{cases} 3x - 5 & \text{lipt } x < 2 \\ x^2 + c & \text{lipt } x \ge 2 \end{cases}$$

p. $f(x) =\begin{cases} x^3 + 1 & \text{lipt } x < 2 \\ cx^2 & \text{lipt } x \ge 2 \end{cases}$

q. $f(x) =\begin{cases} -7 & \text{lipt } x < 2 \\ c & \text{lipt } x = 2 \end{cases}$

4 + $3\sin(\pi x)$ lipt $x > 2$

$$\begin{cases} -7 & \text{lipt } x < 2 \\ 4 + 3\sin(\pi x) & \text{lipt } x > 2 \end{cases}$$

Խնդիր 5.4 Ձևսը, Պրոմեթևսն ու Արամազդը 1000-ական ոսկի են ավանդ դնում համապատասխանաբար

- 1. ՕլիմպոսԲանկում, որտեղ գումարը x տարի հետո կազմելու է $f(x) = 100x + x^3 \text{ nullh}$
- 2. Տավրոս Բանկում, որտեղ գումարը x տարի հետո կազմելու է f(x) = $0.18x^3 \cdot \sqrt{x}$ nulph
- 3. Արարապեանկում, որտեղ գումարը x տարի հետո կազմելու է $f(x) = 30x^2$ nulph

<u>Տաշվի առնելով, որ երեքն էլ անմահ են, նրանցից ո՞վ ի վերջո ավելի</u> հարուստ կլինի ∞ շատ ժամանակ անգ։

$$\frac{100 \times 1}{6.18 \times 3.5} = 0.18 \times 3.7$$

$$30 \times^{2}$$

$$\frac{f}{g} = k$$

լուծում

Խնդիր 5.7 Դիցուք ունենք որևէ $\mathbb{R}^2 o \mathbb{R}^2$ գծային ձևափոխություն՝

https://www.youtube.com/watch?v=BnhCUCzmWeM&feature=youtu.be

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

և ցանկանում ենք պարզել` ինչ տեղի կունենա, եթե այն մի փոքր փոփոխենք (օրինակ` $A+0.001\cdot I$)։ Մասնավորապես` որքա՞ն կփոխվի ձևափոխության որոշիչը, եթե նրան գումարենք (փոքր թիվ) \times (միավոր մատրից)։

Դա պարզելու համար համար նշանակենք՝

$$f(x) = \det(A + x \cdot I)$$

- ա. ինչի՞ է հավասար f(0)-ն
- բ. օգտվելով ածանցյալի բանաձևից` գտեք f'(0)-ն
- գ. ճանաչեցի՞ք