Решение интегралов с помощью квадратурных формул Ньютона-Котеса

- 1. Дан полином на отрезке (по варианту)
- 2. Вычислить точное значение интеграла от функции на отрезке
- 3. Найти приближенное значение интеграла с помощью формулы
 - а. средних прямоугольников
 - б. трапеций
 - в. парабол
 - г. трех восьмых
- 4. Построить графики зависимости фактической точности и числа итераций (число разбиений отрезка) от заданной точности. Заданная точность достигается по правилу Рунге. На графике отметить линию биссектрисы.
- 5. **Тестовый пример** выполнить для заданной функции на заданном отрезке для 1, 2 и 4х разбиений отрезка. Применив правило Рунге, узнать с какой точностью вычислен интеграл

T

- 6. Для заданной функции найти выражение для теоретической ошибки при помощи нужных производных
- 7. Построить на графике для ошибок линии, соответствующие максимальной и минимальной теоретической ошибке

II

6. Построить функцию с разрывом в точке x = t вблизи середины отрезка

$$F(x) = \frac{f(x)}{x - t}$$

7. На графики из п.3 добавить линии для функции с разрывом

Ш

- 6. Провести оптимизацию кода для сокращения вычислений
- 7. Построить график зависимости объема вычислений числа вызовов подынтегральной функции от заданной точности до и после оптимизации

Замечание. Число разбиений отрезка и объем вычислений на графиках представлять в виде степени 2

Варианты Для каждого варианта даны отрезок и функция (одна на два варианта)

вариант	отрезок	вариант	отрезок	функция
1.	[-2.0,-0.3]	17.	[-0.5, 2.1]	$f(x) = x^5 - 2.2x^3 + 0.5x^2 - 7x - 3.4$
2.	[-2.3,-0.5]	18.	[-0.7, 2.2]	$f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x - 5.4$
3.	[-2.7,-0.2]	19.	[-0.4, 2.4]	$f(x) = x^5 - 5.2x^3 + 2.5x^2 - 7x - 2.4$
4.	[-2.6,-0.6]	20.	[-0.8, 2.2]	$f(x) = x^5 - 4.2x^3 + 3.5x^2 - 7x - 7.4$
5.	[-2.6,-0.3]	21.	[-0.5, 1.5]	$f(x) = x^5 - 2.2x^3 + 7.5x^2 - 7x - 3.9$
6.	[-2.6,-0.4]	22.	[-0.6, 1.8]	$f(x) = x^5 - 2.9x^3 + 6.5x^2 - 7x - 5.4$
7.	[-2.8,-0.5]	23.	[-0.7, 1.6]	$f(x) = x^5 - 3.2x^3 + 9.5x^2 - 7x - 7.5$
8.	[-2.4,-0.5]	24.	[-0.7, 2.2]	$f(x) = x^5 - 3.5x^3 + 2.5x^2 - 7x - 6.4$
9.	[-3.5, 0.3]	25.	[0.1, 2.9]	$f(x) = x^5 - 9.2x^3 + 2.5x^2 - 7x + 1.4$
10.	[-3.3, 0.9]	26.	[0.7, 2.8]	$f(x) = x^5 - 8.2x^3 + 4.5x^2 - 7x + 6.5$
11.	[-2.5, 0.3]	27.	[0.1, 2.0]	$f(x) = x^5 - 3.2x^3 + 2.5x^2 - 7x + 1.5$
12.	[-3.4, 0.8]	28.	[0.6, 2.1]	$f(x) = x^5 - 7.2x^3 + 9.5x^2 - 7x + 2.5$
13.	[-3.0, 0.7]	29.	[0.5, 2.0]	$f(x) = x^5 - 5.2x^3 + 5.5x^2 - 7x - 3.5$
14.	[-3.4, 1.1]	30.	[0.9, 2.1]	$f(x) = x^5 - 7.2x^3 + 8.5x^2 - 7x - 4.5$
15.	[-2.5, 1.3]	31.	[1.1, 1.8]	$f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x - 9.5$
16.	[-2.9, 0.4]	32.	[0.2, 2.5]	$f(x) = x^5 - 6.2x^3 + 3.5x^2 - 7x - 2.1$