SERIE D'EXERCICES N° 11 : MECANIQUE : CINEMATIQUE DU POINT (fin).

Les vecteurs sont notés en caractères gras.

Changement de référentiel, composition des mouvements.

Exercice1.

Les coordonnées d'une particule mobile dans le référentiel (R) muni du repère (O, i, j, k) sont données en fonction du temps par : $x = t^2 - 4t + 1$; $y = -2t^4$; $z = 3t^2$.

Dans un deuxième référentiel (R') muni du repère (O', \mathbf{i}' , \mathbf{j}' , \mathbf{k}'), avec $\mathbf{i}=\mathbf{i}'$, $\mathbf{j}=\mathbf{j}'$, $\mathbf{k}=\mathbf{k}'$, elles ont pour expression : $x' = t^2 + t + 2$; $y' = -2t^4 + 5$; $z' = 3t^2 - 7$.

Exprimer la vitesse \mathbf{v} de \mathbf{M} dans (R) en fonction de sa vitesse \mathbf{v}' dans (R'). Procéder de même pour les accélérations. Définir le mouvement d'entraînement de (R') par rapport à (R).

Exercice 2.

Exercice 3.

Exercice 4.

On laisse tomber d'un immeuble de hauteur $\,h\,$ une bille sans vitesse initiale. La chute de celle-ci s'effectue à la verticale selon un mouvement uniformément accéléré d'accélération $\,g\,$.

- 1. Quelle est la trajectoire de la bille dans un référentiel lié à une voiture se déplaçant suivant un mouvement rectiligne et uniforme de vitesse \mathbf{u} et passant à la verticale de chute au moment du lâcher?
- 2. Quelle est la trajectoire de la bille dans le même référentiel si on admet que la voiture entame au moment du lâcher et à partir de la verticale de chute un mouvement rectiligne uniformément accéléré d'accélération **a**_e ?

(Représenter dans chaque cas la trajectoire demandée.)

Un gland tombe à la vitesse verticale ${\bf v}$ sur le pare-brise incliné à 45° d'une voiture roulant à la vitesse ${\bf u}$. Comment s'effectue la réflexion du gland sur le pare-brise, vue par un piéton immobile ?

On peut admettre raisonnablement que dans le référentiel lié à la voiture, la vitesse réfléchie est égale et orientée symétriquement à la vitesse incidente par rapport à la normale au pare-brise.

Dans le plan Oxy, un cercle de rayon R, de diamètre OA, tourne à la vitesse angulaire constante ω autour du point O. On lie à son centre mobile O' deux axes rectangulaires O'x'y' (l'axe O'x' est dirigé suivant OA).

A l'instant t = 0, A est sur Ox, Ox et O'x' étant alors colinéaires.

Un point $\,M$, initialement en $\,A$, parcourt la circonférence dans le sens positif avec la même vitesse angulaire $\,\omega$.

- 1. Calculer directement les composantes des vecteurs vitesse et accélération de M dans le repère Oxy (en dérivant les composantes de **OM**).
- 2. Calculer les composantes de la vitesse et de l'accélération relatives de M dans le repère O'x'y' puis dans Oxy.
- 3.a) Calculer les composantes de la vitesse d'entraînement dans le repère Oxy en utilisant la notion de point coï ncidant, retrouver le résultat par la loi de composition des vitesses.
- b) Calculer de même les composantes de l'accélération d'entraînement dans le repère Oxy ; en déduire l'accélération complémentaire.
- 4. Vérifier les expressions des composantes de la vitesse d'entraînement et celle de l'accélération complémentaire en utilisant les expressions faisant intervenir le vecteur rotation **w** ..

Exercice 5.

Deux bateaux traversent une rivière de largeur 1; leur vitesse par rapport à l'eau est $\mathbf{v} = \mathbf{cte}$, la vitesse du courant est $\mathbf{V} = \mathbf{cte}$. Le premier met le temps le plus court, le second emprunte le chemin le plus court. Comparer les durées mises par les deux bateaux pour traverser la rivière.

Exercice 6.

Soit un plateau de manège tournant à la vitesse angulaire ω constante. Un observateur assimilé à un point matériel M part du centre O et marche uniformément le long d'un rayon du plateau. Déterminer l'équation de sa trajectoire en coordonnées polaires planes dans le référentiel lié au sol.

Exercice 7.

Dans le plan xOy, une droite Ox' tourne autour de Oz avec une vitesse angulaire constante $\omega = \frac{d\theta}{dt}$.

Un mobile M (OM = r) se déplace sur la droite Ox' suivant la loi : $r = r_0$ ($\cos \omega t + \sin \omega t$) avec $r_0 = \cot x$.

- 1. Déterminer à l'instant t en fonction de r_0 et ω , la vitesse relative et la vitesse d'entraînement de M par leurs projections dans le repère mobile x'Oy'. En déduire la vitesse absolue exprimée dans cette même base de projection, et montrer que le module de celle-ci est constant
- 2. Déterminer à l'instant t en fonction de r_0 et ω , l'accélération relative, l'accélération d'entraînement et l'accélération complémentaire de M par leurs projections dans le repère mobile x'Oy'. En déduire l'accélération absolue exprimée dans cette même base de projection, et montrer que le module de celle-ci est constant.

Une roue de rayon a , de centre $\,O_1$, d'axe $\,OO_1$ horizontal roule sans glisser sur un plan horizontal fixe : $\,O$ est fixe et $\,OO_1$ tourne avec une vitesse angulaire constante $\,\omega = \frac{d\theta}{dt}\,$ autour d'un axe vertical $\,Oz$.

On considère à l'instant t le point M le plus haut de la roue.

- 1. Ecrire la condition de roulement sans glissement qui lie $\frac{d\phi}{dt}$, $\frac{d\theta}{dt}$, a et $R = OO_1$ si ϕ repère la position de O_1M ' par rapport à l'axe O_1z (voir la figure).
- 2. Etude du mouvement relatif de M (mouvement dans le référentiel (R') lié au repère (O , u_r , u_q , u_z)): exprimer la vitesse relative et l'accélération relative de M en fonction de R , a , ω , T et N vecteur unitaire directement perpendiculaire à T .
- 3. Etude du mouvement d'entraînement de M (mouvement du référentiel (R') lié au repère (O , \mathbf{u}_r , \mathbf{u}_q , \mathbf{u}_z) par rapport au référentiel (R) lié au repère (O , \mathbf{u}_x , \mathbf{u}_y , \mathbf{u}_z)): exprimer la vitesse d'entraînement et l'accélération d'entraînement de M en fonction de R , ω , T , $\mathbf{OO_1}$.
- 4. Calculer l'accélération complémentaire de M en fonction de ω et OO_1 .
- 5. En déduire les expressions de la vitesse absolue et de l'accélération absolue en fonction des données précédentes.

Réponses.

Exercice 1.

 $\mathbf{v} = \mathbf{v'} - 5\mathbf{i}$ et $\mathbf{a} = \mathbf{a'}$: translation rectiligne et uniforme.

Exercice 2.

1)
$$z' = -\frac{g}{2\pi^2} x'^2 + h$$
 (parabole) . 2) $z' = \frac{g}{ae} x' + h$ (droite).

Exercice 3.

$$\mathbf{v}_{après} = (v + u)\mathbf{i} + u\mathbf{j}$$
.

Exercice 4.

- 1) $\mathbf{v_a} = [-R\omega(\sin\theta + 2\sin2\theta)\mathbf{i} + R\omega(\cos\theta + 2\cos2\theta)\mathbf{j}]$ et $\mathbf{a_a} = [-R\omega^2(\cos\theta + 4\cos2\theta)\mathbf{i} R\omega^2(\sin\theta + 4\sin2\theta)\mathbf{j}]$.
- 2) $\mathbf{v_r} = R \omega (-\sin 2\theta \mathbf{i} + \cos 2\theta \mathbf{j})$ et $\mathbf{a_r} = -R \omega^2 (\cos 2\theta \mathbf{i} + \sin 2\theta \mathbf{j})$.
- 3) $\mathbf{v_e} = [-R\omega(\sin\theta + \sin2\theta)\mathbf{i} + R\omega(\cos\theta + \cos2\theta)\mathbf{j}]$ et $\mathbf{a_e} = [-R\omega^2(\cos\theta + \cos2\theta)\mathbf{i} R\omega^2(\sin\theta + \sin2\theta)\mathbf{j}]$; d'où $\mathbf{a_c} = -2R\omega^2(\cos2\theta)\mathbf{i} + \sin2\theta\mathbf{j}$.

Exercice 5.

$$t_1 = \frac{1}{v} \ \ \text{et} \ \ t_2 = \frac{1}{\sqrt{v^2 - V^2}} > t_1 \ .$$

Exercice 6.

$$r = v \ \frac{\theta - \theta_0}{\omega} \ .$$

Exercice 7.

1)
$$\mathbf{v_r} = r_0 \, \omega \, (\cos(\omega t) - \sin(\omega t)) \, \mathbf{u_r} \, \text{ et } \, \mathbf{v_e} = r_0 \, \omega \, (\cos(\omega t) + \sin(\omega t)) \, \mathbf{u_q} \, \text{ et } \, \mathbf{v_a} = \mathbf{v_r} + \mathbf{v_e} \, \text{ donneavec } \, \mathbf{v_a} = \sqrt{2} \, r_0 \, \omega \, .$$
2) $\mathbf{a_r} = -r_0 \, \omega^2 \, (\cos(\omega t) + \sin(\omega t)) \, \mathbf{u_r} \, \text{ et } \, \mathbf{a_e} = -r_0 \, \omega^2 \, (\cos(\omega t) + \sin(\omega t)) \, \mathbf{u_r} \, \text{ et } \, \mathbf{a_e} = 2 \, r_0 \, \omega^2 \, (\cos(\omega t) - \sin(\omega t)) \, \mathbf{u_q} \, \text{ et } \, \mathbf{a_e} = \mathbf{a_r} + \mathbf{a_e} + \mathbf{a_e} \, \text{ donne } \, \mathbf{a_a} = 2 \, \sqrt{2} \, r_0 \, \omega^2 \, .$

Exercice 8.

1)
$$\mathbf{a} \dot{\phi} = \mathbf{R} \dot{\theta}$$
. 2) $\mathbf{v_r} = \mathbf{R} \omega \mathbf{T}$ et $\mathbf{a_r} = -\frac{\mathbf{R}^2}{a} \omega^2 \mathbf{N}$. 3) $\mathbf{v_e} = \mathbf{R} \omega \mathbf{T}$ et $\mathbf{a_e} = -\omega^2 \mathbf{OO_1}$. 4) $\mathbf{a_c} = -2 \omega^2 \mathbf{OO_1}$. 5) $\mathbf{v_a} = 2 \mathbf{R} \omega \mathbf{T}$ et $\mathbf{a_a} = -\omega^2 \left(\frac{\mathbf{R}^2}{a} \mathbf{N} + 3 \mathbf{OO_1}\right)$.