Exercices d'oraux MP2I 2022

Juin 2022

1. Dichotomie et récursivité : Karatsuba

2. Programmation dynamique: Plus longue sous-suite commune

3. Arbres : Arbres AVL définis par récurrence

4. Graphes: Graphes graphiques

5. Graphes : Graphes eulériens

Karatsuba

On souhaite calculer le produit de deux entiers x et y. On suppose que x et y ont 2n chiffres en base 2. On peut donc écrire :

$$x = a2^n + b$$

$$y = c2^n + d$$

Avec $a, b, c, d < 2^n$.

1. Montrer que l'on peut calculer le produit xy en effectuant seulement 3 multiplications d'entiers à n chiffres, et expliciter ces 3 multiplications (les multiplications par 2^k ont un coût négligeable).

Indication: on pourra s'aider du développement du produit (a+b)(c+d)

- 2. Ecrire une fonction taille(x) qui renvoie le nombre de chiffre de l'entier x en base 2.
- 3. Écrire une fonction karatsuba(x, y, n) qui calcule le produit xy par la méthode décrite dans la question 1, en supposant que les entiers x et y ont n chiffres en base 2.
- 4. En déduire une fonction mult(x, y) calculant le produit xy en utilisant karatruba.
- 5. On admet qu'avec cette méthode, la complexité est en $O(n^{1.58})$. Est-ce mieux qu'une méthode naïve de multiplications? Justifier.
- 6. Expliquer comment adapter cette méthode au produit de deux polynômes.

Plus longue sous-suite commune

On considère une suite finie $x = (x_0, ..., x_{m-1})$ de m éléments d'un ensemble E. Une sous-suite de x de longueur k est une suite x' obtenue à partir de x en supprimant m_k éléments tout en conservant l'ordre : $x' = (x_{f(0), ..., x_{f(k-1)}})$ avec $0 \le f(0) < ... < f(k-1) < m$. On dit que z est une sous-suite commune de x et y si z est une sous-suite de x et une sous-suite de y. On représentera les suites finies par des tableaux. On cherche maintenant à trouver une plus longue sous-suite commune à deux suites $x = (x_0, ..., x_{m-1})$ et $y = (y_0, ..., y_{m-1})$.

1. Une méthode naïve consiste à construire l'ensemble des sous-listes de x et de y, puis à calculer leur intersection. Évaluez la complexité de cette méthode en fonction de la taille des listes x et y.

Pour une méthode moins naïve, on va commencer par le calcul de la longueur d'une plus longue sous-suite commune. On note l(i, j) la longueur de la plus longue sous-suite commune des suites $(x_0, ..., x_{i-})$ et $(y_0, ..., y_{j-})$. La longueur recherchée est donnée par l(m, n). De plus, l vérifie :

$$l(i,j) = \max(l(i-1,j-1) + \delta_{(x_{i-1},y_{j-1})}, l(i,j-1), l(i-1,j))$$

où δ est le symbole de Kronecker.

2. Montrer qu'en utilisant cette relation pour écrire une fonction récursive naïve calculant l(i, j), on obtient une complexité dans le pire cas minorée par $2^{\min(m,n)}$.

Le programmation dynamique contourne ce problème en stockant les résultats intermédiaires dans un tableau t: on va stocker l(i, j) dans la case (i, j).

3. Comment remplir de proche en proche le tableau t?

- 4. En déduire une fonction Caml subseq_length: 'a vect -> 'a vect -> int qui calcule la longueur de la plus longue sous-suite commune à deux suites
- 5. Comment adapter la méthode pour calculer la plus longue sous-suite commune au lieu de calculer simplement sa longueur?

Arbres AVL définis par récurrence

On définit le déséquilibre d'un arbre binaire a = (x, g, d) par : des(a) = hauteur(g) - hauteur(d). On dit qu'un arbre binaire a est AVL si le déséquilibre de tout sous-arbre de a est 0, 1 ou -1.

On définit le type d'arbre binaire strict suivant : type arbre = Feuille | Noeud of arbre * arbre ;; et on définit par récurrence la suite d'arbres (A_n) :

- A_0 et A_1 sont des feuilles (de hauteur 0)
- si $n \leq 2$, A_n est l'arbre binaire dont le sous-arbre gauche est A_{n-1} et le sous-arbre droit est A_{n-2} .
- 1. Dessiner les arbres A_k pour $k \in [3, 5]$ puis définir une fonction Caml qui génère A_n en fonction de n.
- 2. Quelle est la hauteur de A_n ? Montrer que les arbres (A_n) sont AVL.
- 3. Déterminer le nombre de feuilles et de noeuds de A_n .

On suppose que pour un arbre AVL, on a :

$$\log_2(t+1) \le h < \frac{\log_2(t+2)}{\log_2(\phi)} \tag{1}$$

Où ϕ est le nombre d'or, h la hauteur de l'arbre et t le nombre de noeuds.

4. Vérifier que cette relation fonctionne pour les arbres A_n .

On pourra utiliser le fait que $F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$, avec F_n le n^{eme} nombre de Fibonacci et $\psi \approx -0.618$ et que $\log_{\phi}(\sqrt{5}) \approx 10^{-10}$

5. Démontrer la relation (1).

Graphes graphiques

Une suite décroissante est dite graphique s'il existe un graphe simple (ni arêtes multiples ni boucle sur un sommet) dont les degrés des sommets correspondent à cette suite.

- 1. Les suites suivantes sont-elles graphiques?
 - (3,3,2,2)
 - (5,3,3,2)
 - \bullet (3,3,1,1)
- 2. Trouver deux graphes différents correspondants à la suite (3, 2, 2, 2, 1)
- 3. Soit $n \geq 2$ et $(d_1, d_2, ..., d_n)$ une suite décroissante. Montrer l'équivalence des deux propriétés suivantes :
 - (a) la suite $(d_1, d_2, ..., d_n)$ est graphique
 - (b) la suite $(d_2 1, d_3 1, ..., d_{d_1+1} 1, d_{d_1+2}, d_{d_1+3}, ..., d_n)$ est graphique

Pour le sens direct, on pourra montrer par l'absurde l'existence d'un graphe G = (V, E) tel que $V = (v_1, ..., v_n)$, $deg(v_i) = d_i$ et tel que v_i soit adjacent aux sommets $v_2, v_3, ... v_{d_1+1}$

4. Déduire de ce résultat un graphe correspondant à la suite (4, 4, 3, 2, 2, 1).

Graphes eulériens

Soit un graphe G = (V, E) non orienté et sans sommets isolés. Une chaîne dans G est dite eulérienne si elle passe une et une seule fois par chaque arête. Un graphe G est dit eulérien s'il existe une chaîne eulérienne (qui peut être ouverte ou fermée).

1. Montrer que le graphe suivant est eulérien :

- 2. Montrer que si un graphe G est eulérien, alors il possède 0 ou 2 sommets de degré impair.
- 3. Est-il possible de se balader dans Königsberg en traversant tous les ponts une unique fois ?

- 4. Dans le cas où G ne possède que des sommets de degré pair, prouver que G possède une chaîne eulérienne fermée.
- 5. Dans le cas où G possède exactement deux sommets de degré impair, montrer l'existence d'une chaîne eulérienne ouverte.