

Department of Computer Engineering

Faculty of Engineering
Prince of Songkla University

240-319

Embedded System Developer Module

Associate Prof. Dr. Panyayot Chaikan panyayot@coe.psu.ac.th

Chapter 2

เทคนิคการอินเตอร์เฟส 1

เนื้อหา

การอินเตอร์เฟสแอลอีดี การเชื่อมต่อแอลอีดีชนิด 7 ส่วน การเชื่อมต่อแอลอีดีชนิด 7 ส่วนด้วยวิธีมัลติเพล็กซ์ การเชื่อมต่อสวิตช์จำนวนมาก การเชื่อมต่อคีย์แพ็ด การเชื่อมต่อแอลอีดีแบบชาร์ลีเพล็กซ์ การเชื่อมต่อโดยใช้ออปโตคับเปลอร์ รีเลย์

ลักษณะเฉพาะทางไฟฟ้า

(Electrical Characteristics) ของพอร์ต

- ค่าแรงดันอินพุตขณะเป็นตรรกะต่ำ ใช้สัญลักษณ์ตัวย่อว่า V_{IL} (ย่อมาจาก Input Low Voltage)
- ♦ ค่าแรงดันอินพุตขณะเป็นตรรกะสูง ใช้สัญลักษณ์ตัวย่อว่า V_{IH} (ย่อมาจาก Input High Voltage)
- ค่าแรงดันเอาต์พุตขณะเป็นตรรกะต่ำ ใช้สัญลักษณ์ตัวย่อว่า V_{OL} (ย่อมาจาก Output Low Voltage)
- ค่าแรงดันเอาต์พุตขณะเป็นตรรกะสูง ใช้สัญลักษณ์ตัวย่อว่า V_{OH} (ย่อมาจาก Output High Voltage)

ลักษณะเฉพาะทางไฟฟ้า

(Electrical Characteristics) ของพอร์ต

- ค่ากระแสอินพุตขณะเป็นตรรกะต่ำ ใช้สัญลักษณ์ตัวย่อว่า I_{IL} (ย่อมาจาก Low-level Input Current)
- ค่ากระแสอินพุตขณะเป็นตรรกะสูง ใช้สัญลักษณ์ตัวย่อว่า I_{IH} (ย่อมาจาก High-level Input Current)
- ค่ากระแสเอาต์พุตขณะเป็นตรรกะต่ำ ใช้สัญลักษณ์ตัวย่อว่า I_{OL} (ย่อมาจาก Low-level Output Current)
- ค่ากระแสเอาต์พุตขณะเป็นตรรกะสูง ใช้สัญลักษณ์ตัวย่อว่า I_{OH} (ย่อมาจาก
 High-level Output Current)

ค่าลักษณะเฉพาะทางไฟฟ้า

ของตัวประมวลผลในชุด ATmega

สัญลักษณ์	คำอธิบาย	เงื่อนไข	ค่าต่ำสุด	ค่าปรกติ	ค่าสูงสุด	หน่วย
V _{IL}	ค่าแรงดันอินพุตขณะเป็นตรรกะต่ำ	V _{CC} =1.8V-2.4V	-0.5	-	0.2V _{CC}	V
12	(ยกเว้นขา XTAL1 และขา RESET)	V _{CC} =2.4V-5.5V	-0.5		0.3V _{CC}	V
V _{IH}	ค่าแรงดันอินพุตขณะเป็นตรรกะสูง	V _{CC} =1.8V-2.4V	0.7V _{CC}	_	V _{CC} +0.5	V
	(ยกเว้นขา XTAL1 และขา RESET)	V _{CC} =2.4V-5.5V	0.6V _{CC}	-	V _{CC} +0.5	V
V _{OL}	ค่าแรงดันเอาต์พุตขณะเป็นตรรกะ	I_{OL} =20mA, V_{CC} =5V	-	-	0.9	V
	ต่ำ (ยกเว้นขา RESET)	$I_{OL}=10$ mA, $V_{CC}=3$ V	-	-	0.6	V
V _{OH}	ค่าแรงดันเอาต์พุตขณะเป็นตรรกะ	I_{OL} =-20mA, V_{CC} =5V	4.2	-	-	V
	สูง (ยกเว้นขา RESET)	I_{OL} =-10mA, V_{CC} =3V	2.3	_	_	V
I _{IL}	ค่ากระแสอินพุตขณะเป็นตรรกะต่ำ	V _{CC} =5V (ค่าสัมบูรณ์)			1	μА
I _{IH}	ค่ากระแสอินพุตขณะเป็นตรรกะสูง	V _{CC} =5V (ค่าสัมบูรณ์)			1	μА
I _{OL}	ค่ากระแสเอาต์พุตขณะเป็นตรรกะ	V _{CC} =5V		20		mA
	ต่ำ	V _{CC} =3V		10		mA
Іон	ค่ากระแสเอาต์พุตขณะเป็นตรรกะ	V _{CC} =5V		20		mA
4	র্	V _{CC} =3V		10		mA
240-319 Embedded System Developer Wioddie Chapter 02-interjacing Techniques of						

ค่าลักษณะเฉพาะทางไฟฟ้า

- ของตัวประมวลผลในชุด ATmega ◆ ค่ากระแสไหลออก (I_{OH}) ของขา PC0-PC5, PD0-PD4, ADC7 และ RESET รวมกันจะต้องไม่เกิน 150 mA
- ♦ ค่ากระแสไหลออก (I_{OH}) ของขา PB0-PB5, PD5-PD7, ADC6, XTAL1 และ XTAL2 รวมกันจะต้องไม่เกิน 150 mA
- ค่ากระแสไหลเข้า (I_{OI}) ของขา PC0-PC5, ADC7 และ ADC6 รวมกันจะต้องไม่ เกิน 100 mA
- ๑่ากระแสไหลเข้า (I_∩) ของขา PB0-PB5, PD5-PD7, XTAL1 และ XTAL2 รวมกันจะต้องไม่เกิน 100 mA
- 🔶 ค่ากระแสไหลเข้า (I_{กเ}) ของขา PD0-PD4 และขา RESET รวมกันจะต้องไม่เกิน 100 mA

ขาของ ATmega 328P

การขับแอลอีดี

หมายเหตุ ถ่ายภาพโดยผู้จัดทำ

คุณสมบัติที่สำคัญของแอลอีดี

- 🔷 ค่ากระแสไปหน้าต่อเนื่อง (IF : Continuous Forward Current)
 - ◆คือ ค่ากระแสสูงสุดที่แอลอีดีตัวนั้น ๆสามารถรับได้อย่างต่อเนื่องโดย ไม่เกิดความเสียหายหรือถูกทำลายเมื่อแอลอีดีได้รับการไบแอสไปหน้า
- ค่าแรงดันไปหน้า (VF : Forward Voltage)
 - ◆คือ ค่าแรงดันตกคร่อมตัวแอลอีดีเมื่อได้รับการไบแอสไปหน้า

การขับแอลอีดี (LED)

♦ค่าแรงดันไปหน้า และ กระแสไปหน้าของแอลอีดีโดยทั่วไป เท่ากับ 2 V และ 10 mA

R = 3/10mA = 300 ohm

ตัวอย่างคุณสมบัติของแอลอีดีหมายเลขรุ่น LTL-1CHGE

พารามิเตอร์	ค่าประเมินสูงสุด (ที่ 25 °C)					
อัตราสูญเสียกำลังเป็นความร้อน (Power Dissipatio		100 mW				
ค่ากระแสไปหน้าแบบเสิร์จ (Surge forward currer	nt)			120 mA		
(ที่ค่าวัฏจักรหน้าที่ 10 %, และความกว้างของพัลส์เห	ท่ากับ 0.1 มิลลิร์	วินาที)				
กระแสไปหน้าต่อเนื่อง					30 mA	
แรงดันย้อนกลับ (V _R)					5 V	
พารามิเตอร์	ค่าต่ำสุด ค่าปรกติ ค่าสู				เงื่อนไขทดสอบ	
ความเข้มของการเปล่งแสง	12.6 mcd	40 mcd	-		ที่ I _F = 10 mA	
ความยาวคลื่นสูงสุดที่ปล่อยออกมา - 565 nm -						
ความยาวคลื่นเด่น (Dominant wavelength) 568 nm 573 nm 578 n						
แรงดันไปหน้า - 2.1 V 2.6			V	ที่ I _F = 20 mA		
กระแสย้อนกลับ - 100			μА	ที่ V _R = 5 V		
ค่าความจุไฟฟ้า (Capacitance) - 35 pF -					ที่ V _F =0, ความถี่ 1 MHz	

แอลอีดีชนิดกระแสต่ำ

ผู้ผลิต	หมายเลขรุ่น	ความยาวคลื่นของแสง ที่เปล่งออกมา (nm)	V _F	I _F
Kingbright	WP7113LID [3]	617	1.7 V	2 mA
Kingbright	WP7113LYD [4]	588	1.85 V	2 mA
Vishay	TLLR5401 [5]	612	1.9 V	2 mA
Vishay	VLMA3100-GS08 [6]	588	2.2 V	2 mA
OSA OptoLight	OLS-256 HD [7]	615	1.9 V	1.9 mA
OSA OptoLight	OLS-156 BB460 [8]	461.5	2.6 V	1.2 mA

แอลอีดีชนิด 7 ส่วน

การขับแอลอีดีชนิด 7 ส่วน

การขับแอลอีดีชนิด 7 ส่วน

รูปจาก https://cdn.mikroe.com/ebooks/img/2/2016/01/8051-chapter-06-image-012.gif

การมัลติเพลกซ์แอลอีดีชนิด 7 ส่วนจำนวน 8 หลัก

รูปจาก https://www.maximintegrated.com/en/images/appnotes/1880/DI217Fig01.gif

การชาร์ลีเพลกซ์ (Charlieplexing)

การชาร์ลีเพลกซ์ (Charlieplexing)

สถานะ	ทางตรรกะของพล	00010011000	
บิตที่ 2	บิตที่ 1 บิตที่0		หมายเหตุ
อิมพีแดนซ์สูง	อิมพีแดนซ์สูง 0 1		LED 0 ติด
อิมพีแดนซ์สูง 1 0		LED 1 ติด	
0	1	อิมพีแดนซ์สูง	LED 2 ติด
1	0	อิมพีแดนซ์สูง	LED 3 ติด
0 อิมพีแดนซ์สูง		1	LED 4 ติด
1	อิมพีแดนซ์สูง	0	LED 5 ติด

การชาร์ลีเพลกซ์

ฐปจาก http://www.pcbheaven.com/wikipages/images/charlieplexing_1302527019.jpg

การชาร์ลีเพลกซ์

รูปจาก http://www.pcbheaven.com/wikipages/images/charlieplexing_1302527012.jpg

การตั้งค่าให้ขาของพอร์ต อยู่ในสภาวะอิมพีแดนซ์สูง

ค่าตรรกะของแต่ละบิต		สถานะ เกิดการดึงขึ้น		สถานะทางไฟฟ้าที่ P <i>xn</i>	
DDxn	PORT <i>xn</i>	บิต PUD	ใช้งาน	ที่ Pxnหรือไม่	สถานธทางเพพาท PXN
0	0	0 หรือ 1 ก็ได้	อินพุต	ไม่เกิด	อยู่ในสภาวะอิมพีแดนซ์สูง
0	1	0	อินพุต	เกิด	มีการจ่ายกระแสออกจากขา Pxn หากวงจร
U	1	0	ยนพุต	67 191	ภายนอกมีการต่ออุปกรณ์จากขา Pxn ลงกราวด์
0	1	1	อินพุต	ไม่เกิด	อยู่ในสภาวะอิมพีแดนซ์สูง
1	0	0 หรือ 1 ก็ได้	เอาต์พุต	ไม่เกิด	ส่งค่าตรรกะต่ำออกจากขา Pxn หรือดึงกระแส
1	0	ONSOLLING	เอ เผเฟ็นเ	P91 P J I B J	จากภายนอกมาลงกราวด์ในขา Pxn เอง
1	1	0 หรือ 1 ก็ได้	เอาต์พต	ไม่เกิด	ส่งค่าตรรกะสูงออกจากขา Pxn หรือจ่ายกระแส
1	1		เด.เผเ <i>ฟ</i> ฟ	P31P1B1	ออกจากขา P <i>xn</i> ให้กับวงจรภายนอก

จำนวนแอลอีดีที่ขับได้ด้วยการชาร์ลีเพลกซ์

$$n = P_n \times (P_n - 1)$$

- ♦n = จำนวนแอลอีดี
- ◆P_n = จำนวนของขาพอร์ตของไมโครคอนโทรลเลอร์
- ◆ยกตัวอย่าง:
 - ุ
 ♦พอร์ต 3 ขาสามารถขับแอลอีดีได้ 3x(3-1)=6 ตัว

4-bit port Charlieplexing

• จำนวนแอลอีดี = 4*(4-1) = 12 ตัว

4-bit port Charlieplexing

สถ	าานะทางตรรกะเอ	00010011000		
บิตที่ 3	3 บิตที่ 2 บิตที่ 1		บิตที่ 0	หมายเหตุ
อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	0	1	LED 0 ติด
อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	1	0	LED 1 ติด
อิมพีแดนซ์สูง	0	1	อิมพีแดนซ์สูง	LED 2 ติด
อิมพีแดนซ์สูง	1	0	อิมพีแดนซ์สูง	LED 3 ติด
0	1	อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	LED 4 ติด
1	0	อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	LED 5 ติด
อิมพีแดนซ์สูง	0	อิมพีแดนซ์สูง	1	LED 6 ติด
อิมพีแดนซ์สูง	1	อิมพีแดนซ์สูง	0	LED 7 ติด
0	อิมพีแดนซ์สูง	1	อิมพีแดนซ์สูง	LED 8 ติด
1	อิมพีแดนซ์สูง	0	อิมพีแดนซ์สูง	LED 9 ติด
0	อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	1	LED 10 ติด
1	อิมพีแดนซ์สูง	อิมพีแดนซ์สูง	0	LED 11 ติด

การชาร์ลีเพลกซ์แอลอีดีชนิด 7 ส่วน

รูปจาก http://www.maxim-ic.com/app-notes/index.mvp/id/1880

🔷 ขับแอลอีดีชนิด 7 ส่วน จำนวน 8 ตัว ใช้ขาของพอร์ต เพียง 9 ขา

ข้อควรระวังในการชาร์ลีเพลกซ์

- 🔷 แอลอีดีแต่ละดวงถูกขับเป็นห้วงสั้น ๆ ดังนั้นความสว่างจึงลดลง
- อาจต้องลดค่าความต้านทานอนุกรมแอลอีดีลง
- ♦ค่ากระแสจะต้องไม่เกินค่ากระแสไปหน้าแบบเสิร์จ (Surge forward current)
- อาจมีปัญหาในกรณีตัวประมวลผลเกิดอาการค้าง (ทางออกอาจ ต้องใช้วงจรจับเวลาว็อตช์ด็อกเข้าช่วย)

การชาร์ลีเพลกซ์และการอ่านค่าจากสวิตช์

รูปจาก http://www.pcbheaven.com/wikipages/images/charlieplexing_1302613532.jpg

LED matrix

รูปจาก https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcRdYgjFC0Rpqk3 WuDxrDFuroQ-k4d26hXfqXKtYMIneeforFBd0

รูปจาก http://pcbheaven.com/wikipages/images/howkeymatricesworks_1277657675.png

LED matrix

รูปจาก http://pcbheaven.com/wikipages/images/howkeymatricesworks_1277658667.png

ปัญหาจากสัญญาณรบกวนช่วงสั้น

หมายเหตุ ถ่ายภาพโดยผู้จัดทำ

การกำจัดสัญญาณรบกวนช่วงสั้นโดยฮาร์ดแวร์

การกำจัดสัญญาณรบกวนช่วงสั้นโดยซอฟต์แวร์

การกำจัดสัญญาณรบกวนช่วงสั้นโดยซอฟต์แวร์

ตัวอย่างการอ่านค่าจากสวิตช์

ัตัวอย่างการอ่านค่าจากสวิตช์

ตัวอย่างการอ่านค่าจากสวิตช์ (ต่อ)


```
//ฟังก์ชันสำหรับแสดงผลแอลอีดีชนิด 7 ส่วน
     void display led7seg (unsigned char a)
11
                                       //เริ่มต้นขอบเขตของฟังก์ชัน display led7seg
12
                                       //ประกาศตัวแปรท้องถิ่น
         unsigned char tmp;
13
                                       //เปิดตารางแปลงค่า a เป็นรหัสแสดงผล7ส่วนใส่ในตัวแปร tmp
         tmp = TB7SEG[a];
14
                                       //แสดงผลค่ารหัสส่วน A-F ในตำแหน่งบิต 0-5 ที่พอร์ต C
         PORTC = tmp;
15
                                       //เลื่อนบิตไปทางขวา 6 ตำแหน่งเพื่อเตรียมส่งส่วน G ออกที่พอร์ต D บิต 0
         tmp = tmp >> 6;
16
                                       //พรางบิตอื่นทิ้งไปให้เหลือเพียงบิตล่างสุด
         tmp \&= 0x01;
17
                                       //ตรวจสอบบิตที่ต้องการแสดงยังส่วน G
         if (tmp)
18
                                       //หากเป็น 1 ให้พอร์ต D บิตล่างสุดเป็น 1 บิตอื่นยังมีค่าคงเดิม
            PORTD |= 0b00000001;
19
         else
20
            PORTD &= 0b11111110; //หากเป็น 0 ให้พอร์ต D บิตล่างสุดเป็น 0 บิตอื่นยังมีค่าคงเดิม
                                       //สิ้นสุดขอบเขตของฟังก์ชัน display led7seg
22
23
```


ตัวอย่างการอ่านค่าจากสวิตช์ (ต่อ)

```
23
                                               //วนรอจนกว่าจะมีการกดและปล่อยสวิตช์
    void wait_until_sw_pressed(void)
24
                                                //เริ่มต้นขอบเขตของฟังก์ชัน wait until sw pressed
                                                //ประกาศตัวแปรสำหรับเก็บค่าจากสวิตช์
         uint8_t sw;
26
                                                //วนซ้ำ (วงวนรอบนอก)
27
         do
28
                                               //วนซ้ำ(วงวนรอบใน) จนกว่าจะพบค่าตรรกะตรรกะสูงจากสวิตช์
29
              do
                                                //เริ่มต้นขอบเขตวงวนซ้ำรอบใน
30
                                                //อ่านค่าจากสวิตซ์ ซึ่งอยู่ที่ PD1 เลื่อนบิตไปทางขวา 1 ตำแหน่ง
31
                   sw = PIND >> 1;
                                                //พรางบิตอื่นทิ้งให้หมด เหลือเพียงบิตล่างสุด
                   sw &= 0x01;
32
                                                //หากค่าจากสวิตช์เท่ากับ 1 ให้วนซ้ำต่อไปเรื่อย ๆ
              } while (sw);
33
                                               //หน่วงเวลา 10 มิลลิวินาที
               _delay_ms(10);
34
                                                //อ่านค่าสถานะทางตรรกะจากสวิตซ์อีกครั้งและเลื่อนไปทางขวา
35
              sw = PIND >> 1;
                                                //พรางบิตอื่นทิ้งหมด เหลือเพียงบิตล่างสุด
36
              sw &= 0x01;
                                                //หากอ่านค่าได้เป็นตรรกะต่ำให้หยุดวนซ้ำและไปขั้นตอนถัดไป
37
         } while (sw);
                                                //วนซ้ำจนกว่าจะตรวจสอบได้ว่ามีการปล่อยสวิตซ์
38
         do
                                                //เริ่มต้นขอบเขตของการวนซ้ำตรวจสอบการปล่อยสวิตซ์
39
                                                //อ่านค่าสถานะจากสวิตช์ เลื่อนบิตไปทางขวา 1 ตำแหน่ง
              sw = PIND >> 1;
40
                                                //พรางบิตอื่นทิ้งหมด เหลือเพียงบิตล่างสุด
               sw \&= 0x01;
41
                                                //วนซ้ำจนกว่าค่าจากสวิตซ์จะเป็นตรรกะสูง
42
         } while (!sw);
                                                //สิ้นสุดขอบเขตของฟังก์ชัน wait until sw pressed
43
```


ตัวอย่างการอ่านค่าจากสวิตช์ (ต่อ)

```
int main(void)
                                                 //ฟังก์ซันหลัก
                                                 //เริ่มต้นขอบเขตของฟังก์ชันหลัก
46
                                                 //ประกาศตัวแปร count สำหรับเก็บค่าที่แสดงผลออกแอลอีดี
          uint8 t count=0;
47
                                                 //ประกาศตัวแปร sw สำหรับรับค่าจากสวิตช์
          uint8 t sw;
48
                                                 //ตั้งค่าทิศทางของพอร์ต C ให้ส่งออกที่ 6 บิตล่าง
          DDRC = 0b001111111;
49
                                                 //ตั้งทิศทางของพอร์ต D ให้รับเข้าที่ขา PD1 และส่งออกที่ PD0
          DDRD = 0b111111101;
50
                                                 //เมื่อเริ่มต้นโปรแกรม ให้แสดงค่าศูนย์ออกสู่แอลอีดี
          display led7seg (count);
51
                                                 //วนซ้ำแบบไม่รู้จบ
          while(1)
52
                                                 //เริ่มต้นขอบเขตของการวนซ้ำไม่รู้จบ
53
                                                 //อ่านค่าจากสวิตซ์จนกว่าจะพบว่ามีการกดและปล่อยสวิตซ์
               wait until sw pressed();
54
                                                 //เพิ่มค่าในตัวแปร count ขึ้นหนึ่งค่า
55
               count++;
                                                 //หากตัวแปร count มากกว่า 15 ให้ลบล้างค่ากลับเป็น 0 ใหม่
               if (count>15)
56
                                                 //สั่งลบล้างตัวแปร count ให้กลับเป็นศูนย์
57
                    count=0;
                                                 //แสดงค่าในตัวแปร count ออกทางแอลอีดี 7 ส่วน
               display led7seg(count);
58
                                                 //สิ้นสุดขอบเขตของการวนซ้ำไม่รู้จบ
59
                                                 //สิ้นสุดขอบเขตของฟังก์ชันหลัก
```


การเชื่อมต่อกับสวิตช์แบบเมทริกซ์

ปัญหาโกสต์เอฟเฟกต์ (Ghost Effect)

การแก้ปัญหาโกสต์เอฟเฟกต์

การเชื่อมต่อสวิตช์แบบเมทริกซ์

ุ เสียพอร์ต 7 บิต

ุ ♦ ต่อสวิตช์ได้ 4*3 =12 ตัว

240-319 Embedde

การเชื่อมต่อสวิตช์แบบเมทริกซ์โดยใช้ ADC

◆ค่อยเรียนรายละเอียด อีกครั้งหลังจากเรียน เรื่อง ADC แล้ว

การขับรีเลย์ (Relay)

รูปจาก http://sdigital-components.com/wpcontent/uploads/2012/08/relays1.jpg

ทรานซิสเตอร์ทำงาน ในโหมดใด?

รูปจาก https://cdn.mikroe.com/ebooks/img/2/2016/01/8051-chapter-06-image-008.gif

การแยกกันทางไฟฟ้าโดยใช้ Optocoupler

จบบทที่ 2

