Московский физико-технический институт

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ІЗАДАНИЕ

Автор: Яфаров Руслан, Б13-202

1. Виды сходимости случайных векторов

1. Пусть X_1, \ldots, X_n — независимые одинаково распределенные случайные величины с распределением $Exp(\alpha), \alpha > 0$.

Рассмотрим статистику $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$. Найдите такие константы $a(\alpha)$ и $\sigma^2(\alpha) > 0$, что выполнено

$$\sqrt{n}(Y\sin Y - a(\alpha)) \xrightarrow{\mathrm{d}} \mathcal{N}(0,\sigma^2(\alpha))$$
, при $n \to \infty$

Решение. По закону больших чисел $Y \xrightarrow{d} \frac{1}{\alpha}$. По ЦПТ $\sqrt{n} \left(Y - \frac{1}{\alpha} \right) \xrightarrow{d} \mathcal{N} \left(0, \frac{1}{\alpha^2} \right)$. Воспользуемся теоремой 1.4 из С2. Положим $h(x) = x \sin x, b_n = \frac{1}{\sqrt{n}}, \xi_n = \sqrt{n} \left(Y - \frac{1}{\alpha} \right), a = \frac{1}{\alpha}$. Тогда получим, что $\frac{h(a+\xi_nb_n)-h(a)}{b_n} = \sqrt{n} \left(Y \sin Y - \frac{1}{\alpha} \sin \frac{1}{\alpha} \right) \xrightarrow{d} h'(a) \mathcal{N} \left(0, \frac{1}{\alpha^2} \right) \sim \left(\sin \frac{1}{\alpha} + \frac{1}{\alpha} \cos \frac{1}{\alpha} \right) \mathcal{N} \left(0, \frac{1}{\alpha^2} \right) \sim \mathcal{N} \left(0, \left(\frac{1}{\alpha} \sin \frac{1}{\alpha} + \frac{1}{\alpha^2} \cos \frac{1}{\alpha} \right)^2 \right) \Rightarrow a(\alpha) = \frac{1}{\alpha} \sin \frac{1}{\alpha}, \sigma(\alpha) = \frac{1}{\alpha} \sin \frac{1}{\alpha} + \frac{1}{\alpha^2} \cos \frac{1}{\alpha}$

2. Пусть $\{\xi_n\}_{n=1}^{\infty}, \{\eta_n\}_{n=1}^{\infty}, \{\zeta\}_{n=1}^{\infty}$ - последовательности случайных величин. Докажите, что если $\xi_n \xrightarrow{d} \xi, |\xi_n - \eta_n| \le \zeta_n |\xi_n|, \zeta_n \xrightarrow{P} 0$, то $\eta_n \xrightarrow{d} \xi$

Решение. TODO

3. Задан набор независимых одинаково распределённых случайных величин X_1,\ldots,X_n с распределением $\mathcal{N}(0,\sigma^2)$. Рассмотрим статистики $Y=\frac{1}{n}\sum_{i=1}^n|X_i|,Z=\frac{1}{n}\sum_{i=1}^nX_i^2,\,T=\sqrt{\frac{2}{\pi}Z/Y}$ Найдите предел сходимости по распределению выражения $\sqrt{n}(T-\sigma)$

Решение. Найдем необходимые моменты и ковариации:

$$\mathbb{E}|X_{i}| = \int_{\mathbb{R}} |x| p_{X_{i}}(x) dx = 2 \int_{0}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{x^{2}}{2\sigma^{2}}} dx = \frac{2}{\sqrt{2\pi\sigma^{2}}} \int_{0}^{+\infty} -\frac{\sigma^{2}}{x} x d(e^{-\frac{x^{2}}{2\sigma^{2}}}) = \sigma \sqrt{\frac{2}{\pi}} e^{-\frac{x^{2}}{2\sigma^{2}}} \Big|_{+\infty}^{0}$$

$$= \sigma \sqrt{\frac{2}{\pi}}$$

$$\mathbb{E}X_{i}^{2} = \mathbb{D}X_{i} + (\mathbb{E}X_{i})^{2} = \sigma^{2}$$

$$\mathbb{E}|X_{i}|X_{i}^{2} = 2 \int_{0}^{+\infty} x^{3} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{x^{2}}{2\sigma^{2}}} dx = -2\sigma^{2} \left(x^{2} p_{X_{i}}(x)|_{0}^{+\infty} - 2 \int_{0}^{+\infty} x p_{X_{i}}(x) dx\right) = 2\sigma^{2} \mathbb{E}|X_{i}| = 2\sigma^{3} \sqrt{\frac{2}{\pi}}$$

$$\mathbb{E}X_{i}^{4} = -\sigma^{2} \left(0 - \int_{\mathbb{R}} p_{X_{i}}(x) 3x^{2} dx\right) = 3\sigma^{2} \mathbb{E}X_{i}^{2} = 3\sigma^{4}$$

$$\mathbb{D}|X_{i}| = \sigma^{2} - \sigma^{2} \frac{2}{\pi} = \sigma^{2} \frac{\pi - 2}{\pi}, \mathbb{D}X_{i}^{2} = \mathbb{E}X_{i}^{4} - (\mathbb{E}X_{i}^{2})^{2} = 3\sigma^{4} - \sigma^{4} = 2\sigma^{4}$$

$$cov(|X_{i}|, X_{i}^{2}) = \mathbb{E}|X_{i}|X_{i}^{2} - \mathbb{E}|X_{i}|\mathbb{E}X_{i}^{2} = 2\sigma^{3} \sqrt{\frac{2}{\pi}} - \sigma \sqrt{\frac{2}{\pi}} \sigma^{2} = \sigma^{3} \sqrt{\frac{2}{\pi}}$$

Положим
$$\eta_i=(|X_i|,X_i^2)^T,$$
 тогда $\mathbb{D}\eta_i=\begin{pmatrix}\sigma^2\frac{\pi-2}{\pi}&\sigma^3\sqrt{\frac{2}{\pi}}\\\sigma^3\sqrt{\frac{2}{\pi}}&2\sigma^4\end{pmatrix}$ Далее воспользуемся теоремой

$$1.4$$
 для $\xi_n = \sum_{i=1}^n \eta_i, h(x,y) = \sqrt{\frac{2}{\pi}} \frac{y}{x}, b_n = 1/\sqrt{n}, a = \mathbb{E}\eta_1 = (\sigma\sqrt{\frac{2}{\pi}},\sigma^2)^T$. Получим

$$\sqrt{n}(T-\sigma) \xrightarrow{d} (\nabla h|_a, \xi) \sim \mathcal{N}\left(0, \nabla h|_a^T \mathbb{D}\eta \nabla h|_a\right)$$

$$\nabla h = (-\sqrt{\frac{2}{\pi}} \frac{y}{x^2}, \sqrt{\frac{2}{\pi}} \frac{1}{x})^T \Rightarrow \nabla h|_a = (-\sqrt{\frac{\pi}{2}}, \frac{1}{\sigma})^T \Rightarrow \nabla h|_a^T \mathbb{D}\eta \nabla h|_a = \sigma^2 \left(\frac{\pi}{2} - 1\right)$$

4. Пусть $\xi, \xi_1, \xi_2, \ldots$ - такие случайные величины, что $(\xi_n - \xi)^2 \xrightarrow{P} 0$ при $n \to \infty$ Показать, что $\xi_n^2 \xrightarrow{P} \xi^2$ при $n \to \infty$

 $Peшение. \ (\xi_n - \xi)^2 \xrightarrow{P} 0 \Leftrightarrow P(|\xi_n - \xi|^2 > \varepsilon^2) = P(|\xi_n - \xi| > \varepsilon) \to 0 \Rightarrow \xi_n \xrightarrow{P} \xi.$ Далее пользуемся теоремой о наследовании сходимости для $h(x) = x^2$

5. Пусть $\xi, \xi_1, \xi_2, \ldots$ - случайные величины. Привести пример, когда

1.
$$\xi_n \xrightarrow{L_2} \xi$$
, $\xi_n \xrightarrow{\text{п.н.}} \xi$, $n \to \infty$

2.
$$\xi_n \xrightarrow{\text{II.H}} \xi, \, \xi_n \xrightarrow{L_2} \xi, \, n \to \infty$$

3.
$$\xi_n \xrightarrow{d} \xi$$
, $\xi_n \xrightarrow{P} \xi$, $n \to \infty$

Peшeние. 1. TODO

- 2. TODO
- 3. Пусть $\xi \sim \mathcal{N}(0,1), \xi_n = \xi$, тогда $\xi_n \xrightarrow{d} -\xi$, но $P(|\xi_n + \xi| > \varepsilon) = P(|\xi| > \varepsilon/2) \xrightarrow{f} 0$
- 6. Рассмотрим последовательность d-мерных случайных векторов $\overline{\xi}_n$. Доказать, что если при некотором $\overline{c} \in \mathbb{R}^d$ выполнено соотношение $\overline{\xi}_n \xrightarrow{d} \overline{c}$, то $\overline{\xi}_n \xrightarrow{P} \overline{c}$

Решение. $\bar{\xi}_n \stackrel{d}{\to} \bar{c} \Rightarrow \xi_n^i \stackrel{d}{\to} c^i \forall i$. Тогда, если докажем, что $\xi \in \mathbb{R}, \xi \stackrel{d}{\to} c \in \mathbb{R} \Rightarrow \xi \stackrel{P}{\to} c$, то утверждение будет доказано, т. к. покомпонентная сх-ть по в-ти влечет сх-ть вектора. Пусть $\xi_n \in \mathbb{R}, \xi_n \stackrel{d}{\to} c \in \mathbb{R}$. Тогда $P(|\xi_n - c| < \varepsilon) = P(c - \varepsilon < \xi_n < c + \varepsilon) = F_{\xi_n}(c + \varepsilon) - F_{\xi_n}(c + \varepsilon) - F(c - \varepsilon/2) \to 1 \Rightarrow \xi_n \stackrel{P}{\to} c$

2. Статистики и оценки. Построение и сравнение оценок

7. Пусть X_1, \ldots, X_n — выборка из распределения $R(0,\theta)$ (равномерного распределения на отрезке $[0,\theta]$). Проверьте на несмещенность, состоятельность и сильную состоятельность следующие оценки параметра $\theta: 2\overline{X}, \overline{X} + X_{(n)}/2, (n+1)X_{(1)}, X_{(1)} + X_{(n)}, \frac{n+1}{n}X_{(n)}$.

Решение.

1. $\mathbb{E}(2\overline{X})=2\mathbb{E}X_1=2\frac{\theta-0}{2}=\theta\Rightarrow$ оценка несмещенна. По УЗБЧ $2\overline{X}\xrightarrow{\text{п. н.}}\theta\Rightarrow$ оценка сильно состоятельна.

2. Пусть $X_{(n)}/2=\xi_n$. Найдем $p_{\xi_n}:F_{\xi_n}(x)=F_{X_1}^n(2x)$. $p_{\xi_n}(x)=\frac{d}{dx}F_{\xi_n}(x)=nF_{X_1}^{n-1}(2x)p_{X_1}(2x)*$ $2=n2^n\frac{x^{n-1}}{\theta^n}I_{[0,\frac{\theta}{2}]}(x)$. $\mathbb{E}\xi_n=\int_0^{\theta/2}xn2^n\frac{x^{n-1}}{\theta^n}dx=n2^n\frac{x^{n+1}}{\theta^n(n+1)}\Big|_0^{\frac{\theta}{2}}=\frac{n}{2n+2}\theta\Rightarrow\mathbb{E}(\overline{X}+X_{(n)}/2)=\frac{\theta}{2}\left(1+\frac{n}{n+1}\right)\neq\theta\Rightarrow$ оценка является смещенной

$$F_{\xi_n}(x) = \begin{cases} 1, x \geq \theta/2, \\ (\frac{2x}{\theta})^n, 0 < x < \theta/2 \\ 0, x \leq 0 \end{cases}, \text{ тогда при } n \to \infty \text{ получаем } F(x) = \begin{cases} 1, x \geq \theta/2, \\ 0, x < \theta/2 \end{cases} \Rightarrow$$

 $\xi_n \xrightarrow{d} \frac{\theta}{2} \Leftrightarrow \xi_n \xrightarrow{P} \frac{\theta}{2} \Rightarrow$ по теореме о наследовании сходимости получаем, что $\overline{X} + \xi_n \xrightarrow{P} \theta$ оценка состоятельная

Докажем, что $X_{(n)} \xrightarrow{\text{п. н.}} \theta$. Заф. $\omega \in \Omega$, тогда последовательность $\{X_{(n)}(\omega)\}$ является неубывающей и ограниченной сверху $\Rightarrow \exists \xi(\omega) : \lim_{n \to \infty} X_{(n)}(\omega) = \xi(\omega) \Rightarrow$ оценка сильно состоятельная, но $X_{(n)} \xrightarrow{P} \theta \Rightarrow \xi(\omega) = \theta$. Аналогично доказывается, что $X_{(1)} \xrightarrow{\text{п. н.}} 0$. Тогда по теореме о наследовании сходимости оценка является сильно состоятельной

3. Найдем $p_{(n+1)X_{(1)}}: F_{X_{(1)}}(x) = 1 - (1 - F_{X_1}(x))^n \Rightarrow F_{(n+1)X_{(1)}}(x) = 1 - (1 - F_{X_1}(\frac{x}{n+1}))^n \Rightarrow p_{(n+1)X_{(1)}}(x) = n \left(1 - \frac{x}{(n+1)\theta}\right)^{n-1} \frac{1}{\theta} I_{[0,(n+1)\theta]}(x)$ $\mathbb{E} X_{(1)} = \int_0^\theta x n \left(1 - \frac{x}{\theta}\right)^{n-1} \frac{1}{\theta} dx = \theta n \int_0^1 t (1-t)^{n-1} dt = \theta n B(2,n) = \theta n \frac{\Gamma(2)\Gamma(n)}{\Gamma(n+2)} = \theta n \frac{1!(n-1)!}{(n+1)!} = \frac{\theta}{n+1} \Rightarrow \text{ оценка } X_{(1)}(n+1) \text{ несмещенная.}$

$$F_{(n+1)X_{(1)}}(x) = \begin{cases} 1, x \geq (n+1)\theta, \\ 1 - \left(1 - \frac{x}{(n+1)\theta}\right)^n, 0 < x < (n+1)\theta & \text{при } n \to \infty \text{ получим } F(x) = \\ 0, x \leq 0 \end{cases}$$

$$\begin{cases} 1-e^{-\frac{x}{\theta}}, x\geq 0,\\ 0, x<0 \end{cases} \Rightarrow$$
 оценка не состоятельна и сл-но не сильно состоятельна

- 4. $\mathbb{E}(X_{(1)}+X_{(n)})=\frac{\theta}{n+1}+\frac{\theta n}{n+1}=\theta\Rightarrow$ оц-ка не смещена. Т. к. $F_{X_{(1)}}\to F(x)=\begin{cases} 1,x\geq 0\\ 0,x<0 \end{cases}$, то $X_{(1)}\xrightarrow{P}0\Rightarrow$ по теореме о наследовании сходимости оценка является сильно состоятельной.
- 5. Оценка явлется несмещенной и сильно состоятельной (по модулю предыдущих выкладок это очев).
- 8. Пусть $\hat{\theta}_n(X)$ асимптотически нормальная оценка параметра θ с асимптотической дисперсией $\sigma^2(\theta)$. Докажите, что тогда $\hat{\theta}_n(X)$ является состоятельной оценкой θ .

Решение. Пусть $\xi_n = \frac{1}{\sqrt{n}}$. $\xi_n \xrightarrow{P} 0$ По теореме о наследовании сходимости $\xi_n \sqrt{n}(\hat{\theta}_n(X) - \theta) \xrightarrow{P} 0 \Rightarrow \hat{\theta}_n(X) \xrightarrow{P} \theta$

9. Пусть X_1, \ldots, X_n - выборка из распределения с параметром σ^2 . Пусть, кроме того $D_{\sigma^2}X_1 = \sigma^2$ Докажите, что статистика $s = 1/n \sum_{i=1}^n (X_i - \overline{X})^2$ равна $\overline{X^2} - \left(\overline{X}\right)^2$ и является состоятельной оценкой σ^2 . Является ли она несмещенной оценкой того же параметра?

Решение. $1/n \sum_{i=1}^{n} (X_i - \overline{X})^2 = 1/n \sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + (\overline{X})^2) = 1/n \sum_{i=1}^{n} X_i^2 - 2\overline{X}1/n \sum_{i=1}^{n} X_i - (\overline{X})^2 = \overline{X^2} - 2(\overline{X})^2 + (\overline{X})^2 = \overline{X^2} - (\overline{X})^2$. Подставляя в равентсво вместо $X_i \ X_i - \mathbb{E} X_i$ мы получим, что данная оценка равна $\overline{(X - \mathbb{E} X_1)^2} - (\overline{X} - \mathbb{E} X_1)^2 \xrightarrow{\text{п. н.}} \mathbb{D} X_1$ по УЗБЧ. Но $\mathbb{E} s = \mathbb{D} X_1 - \mathbb{D} \overline{X} = \mathbb{D} X_1 - \frac{1}{n} \mathbb{D} X_1 \neq \mathbb{D} X_1 \Rightarrow$ оценка смещена

10. Пусть X_1, \ldots, X_n — выборка из экспоненциального распределения с параметром θ . Покажите, что $\forall k \in \mathbb{N}$ статистика $\sqrt[k]{k!/\overline{X^k}}$ является асимптотически нормальной оценкой параметра θ . Найдите ее асимптотическую дисперсию.

Решение.

$$\psi_{X_1}(t) = \mathbb{E}e^{itX_1} = \int_0^{+\infty} \theta e^{-\theta x} e^{itx} dx = \int_0^{+\infty} \theta e^{x(it-\theta)} dx = -\frac{\theta}{it-\theta} = \left(1 - \frac{it}{\theta}\right)^{-1}$$
$$\frac{d^k}{dt^k} \psi_{X_1}(t) = \frac{i^k}{\theta^k} k! \left(1 - \frac{it}{\theta}\right)^{-k-1} \Rightarrow \mathbb{E}X_1^k = \frac{k!}{\theta^k}$$

. Пользуясь теоремой 1.4 из C2 для $h(x) = \sqrt[k]{k!/x}$, $\xi_n = \sqrt{n} \left(\overline{X^k} - \frac{k!}{\theta^k} \right)$, $b_n = 1/\sqrt{n}$ и $a = \frac{k!}{\theta^k} \cdot h'(x) = (\sqrt[k]{k!} x^{-\frac{1}{k}})' = -\frac{1}{k} \sqrt[k]{\frac{k!}{x^{k+1}}} \Rightarrow h'(a) = -\frac{\theta^{k+1}}{k!k} \Rightarrow \sqrt{n} \left(\sqrt[k]{k!/\overline{X^k}} - \theta \right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^2(\theta)\right)$, где $\sigma^2(\theta) = \left(\frac{\theta^k}{kk!}\right)^2$

11. Пусть X_1, \ldots, X_n - выборка из распределения с плотностью

$$p_{\alpha,\beta}(x) = \frac{1}{\alpha} e^{(\beta - x)/\alpha} I_{[\beta, +\infty)}(x)$$

где $\theta = (\alpha, \beta)$ — двумерный параметр. Найдите для θ оценку максимального правдоподобия. Докажите, что полученная для α оценка $\hat{\alpha}_n$ является асимптотически нормальной, и найдите ее асимптотическую дисперсию.

Решение. Пусть $\theta = (\alpha, \beta)$

$$\mathcal{L}(x,\theta) = \frac{1}{\alpha^n} e^{\sum_{i=1}^n \frac{\beta - x_i}{\alpha}} I_{[\beta, +\infty]}(x_1, \dots, x_n) = \frac{1}{\alpha^n} e^{\sum_{i=1}^n \frac{\beta - x_i}{\alpha}} I_{[\beta, +\infty]}(\min(x_1, \dots, x_n))$$

Для того, чтобы произведение было не 0, должно выплняться $\beta \leq \min(x_1, \dots, x_n)$, в то же время $\mathcal{L}(x,\theta) \underset{\beta}{\to} \max_{\beta} \Leftrightarrow \sum_{i=1}^n \beta - x_i \underset{\beta}{\to} \max_{\beta} \Rightarrow \hat{\beta} = X_{(1)}$. $l(x,\theta) = \sum_{i=1}^n \frac{\beta - x_i}{\alpha} - n \ln \alpha \Rightarrow \hat{\alpha_n} = \sum_{i=1}^n \frac{X_i - \beta}{n} = \overline{X} - X_{(1)}$ в силу того, что функция $f(x) = \frac{c}{x} - \ln x, c \leq 0$ имеет глобальный максимум в т. x = -c

ТООО Доказать асимптотическую нормальность

12. Найдите оценку максимального правдоподобия для параметра сдвига в распределении Коши, т.е. плотность равна

$$p_{\theta}(x) = \frac{1}{\pi(1 + (x - \theta)^2)}$$

если выборка состоит из а) одного наблюдения, б) двух на- блюдений (т.е. n=1,2).

Решение.

- a $\pi \mathcal{L}(x,\theta) = \frac{1}{1+(x-\theta)^2} \Rightarrow \hat{\theta} = X_1$
- b $l(x,\theta) = -\ln(1+(x_1-\theta)^2) \ln(1+(x_2-\theta)^2) 2\ln\pi \Rightarrow \frac{dl}{d\theta} = \frac{2(x_1+x_2-2\theta)(\theta^2-\theta x_1-\theta x_2+x_1x_2+1)}{(1+(x_1-\theta)^2)(1+(x_2-\theta)^2)}$. Получаем 2 случая:
 - (a) $|x_1 x_2| \le 2$ Тогда уравенение правдоподобия имеет единственный корень $\frac{x_1 + x_2}{2}$. Легко заметить, что в этой точке достигается максимум всей функции
 - (b) $|x_1-x_2|>2$. Тогда уравнение имеет 3 корня и максимум достигается в одной из точек $\frac{x_1+x_2}{2}+\sqrt{\left(\frac{x_1-x_2}{2}\right)^2-1}, \frac{x_1+x_2}{2}-\sqrt{\left(\frac{x_1-x_2}{2}\right)^2-1}$. Легко убедиться, что значение функции правдободобия совпадают на них

Тогда оценка максимального правдободобия $\hat{\theta} = \begin{cases} \frac{X_1 + X_2}{2}, |X_1 - X_2| \leq 2\\ \frac{X_1 + X_2}{2} + \sqrt{\left(\frac{X_1 - X_2}{2}\right)^2 - 1}, |X_1 - X_2| > 2 \end{cases}$

13. Пусть $X_1 \sim R(0, \theta)$. Найдите несмещённую оценку параметра $1/\theta$.

Решение. Для n=1 $\mathbb{E}g(X_1)=\int_0^\theta \frac{1}{\theta}g(x)dx=\frac{1}{\theta} \Rightarrow \forall \theta \int_0^\theta g(x)dx=1$, что невозможно. Для $n\geq 2$ пусть $\hat{\theta}=\frac{1}{4\sqrt{X_1X_2}}$. Тогда

$$\mathbb{E}\hat{\theta} = \int_{[0,\theta]^2} \frac{1}{\theta^2} \frac{1}{2\sqrt{x_1}} \frac{1}{2\sqrt{x_2}} dx_1 dx_2 = \frac{1}{\theta}$$

14. Найдите несмещенную оценку λ^3 по выборке X_1,\ldots,X_n из распределения $Pois(\lambda)$.

Решение.
$$\varphi_{X_1}(t) = \mathbb{E}e^{tX_1} = e^{\lambda(e^t-1)} \Rightarrow \frac{d}{dt}\varphi_{X_1}(t) = \lambda e^{t+\lambda(e^t-1)}, \frac{d^2}{dt^2}\varphi_{X_1}(t) = \lambda e^{t+\lambda(e^t-1)} + \lambda^2 e^{2t+\lambda(e^t-1)}, \frac{d^3}{dt^3}\varphi_{X_1}(t) = \lambda e^{t+\lambda(e^t-1)} + \lambda^2 e^{2t+\lambda(e^t-1)} + \lambda^2 (2+\lambda e^t) e^{2t+\lambda(e^t-1)} \Rightarrow \mathbb{E}X_1 = \lambda, \mathbb{E}X_1^2 = \lambda + \lambda^2, \mathbb{E}X_1^3 = \lambda^3 + 3\lambda^2 + \lambda \Rightarrow \hat{\lambda} = X_1^3 - 3X_1^2 + 2X_1$$

15. Пусть X_1, \ldots, X_n — выборка из равномерного распределения на отрезке $[0, \theta]$. Сравните следующие оценки параметра θ в равномерном подходе с квадратичной функцией потерь: $\theta: 2\overline{X}, (n+1)X_{(1)}, \frac{n+1}{n}X_{(n)}$.

Pemeнue. По задаче 7 все оценки несмещены \Rightarrow нужно сравнить дисперсии этих случайных величин.

5

1.
$$\mathbb{D}(2\overline{X}) = \frac{4}{n}\mathbb{D}X_1 = \frac{\theta^2}{3}$$

2.
$$\mathbb{D}(n+1)X_{(1)} = (n+1)^2 \mathbb{D}X_{(1)}.\mathbb{E}X_{(1)}^2 = \int_0^\theta x^2 n \left(1 - \frac{x}{\theta}\right)^{n-1} \frac{1}{\theta} dx = n\theta^2 \int_0^1 t^2 (1-t)^{n-1} dt = \theta^2 n B(3,n) = \theta^2 n \frac{2!(n-1)!}{(n+2)!} = \frac{2\theta^2}{(n+1)(n+2)} \Rightarrow \mathbb{D}X_1 = \frac{2\theta^2}{(n+1)(n+2)} - \frac{\theta^2}{(n+1)^2} = \frac{n\theta^2}{(n+1)^2(n+2)} \Rightarrow \mathbb{D}(n+1)X_{(1)} = \theta^2 \left(1 - \frac{2}{n+2}\right)$$

3.
$$\mathbb{E}X_{(n)}^2 = \int_0^\theta nx^2 \frac{x^{n-1}}{\theta^n} dx = \theta^2 \frac{n}{n+2} \Rightarrow \mathbb{D}X_{(n)} = \theta^2 n \left(\frac{1}{(n+2)} - \frac{n}{(n+1)^2}\right) = \theta^2 \frac{n}{(n+1)^2(n+2)} \Rightarrow \mathbb{D}\frac{n+1}{n}X_{(n)} = \frac{\theta^2}{(n+1)(n+2)}$$

Таким образом(асимптотически), $3_{\text{оц}}$ лучше $1_{\text{оц}}$ лучше $2_{\text{оц}}$

16. Пусть $\theta_1^*(X)$ и $\theta_2^*(X)$ — две наилучшие в среднеквадратичном подходе оценки параметра θ в классе всех оценок с од- ним и тем же математическим ожиданием $\tau(\theta)$. Докажите, что тогда для любого θ они совпадают почти наверное.

Решение. $\mathbb{E}(\theta_1^*(X) - \theta)^2 = \mathbb{E}(\theta_2^*(X) - \theta)^2$, при этом $\mathbb{E}\theta_1^*(X) = \mathbb{E}\theta_2^*(X) \Rightarrow \mathbb{E}(\theta_1^*(X))^2 = \mathbb{E}(\theta_2^*(X))^2$. Предположим, $\theta_1^*(X)$ и $\theta_2^*(X)$ не совпадают почти наверное. Тогда $\mathbb{E}(\theta_1^*(X) - \theta_2^*(X))^2 > 0 \Rightarrow \mathbb{E}\theta_1^*(X)\theta_2^*(X) < \mathbb{E}(\theta_1^*(X))^2$. Тогда

$$\begin{split} \mathbb{E}(\theta_1^*(X) - \theta)^2 - \mathbb{E}\left(\frac{\theta_1^*(X) + \theta_2^*(X)}{2} - \theta\right)^2 &= \mathbb{E}(\theta_1^*(X))^2 - \frac{\mathbb{E}(\theta_1^*(X))^2}{2} + \frac{\mathbb{E}\theta_1^*(X)\theta_2^*(X)}{2} = \\ &\frac{1}{2}(\mathbb{E}(\theta_1^*(X))^2 - \mathbb{E}\theta_1^*(X)\theta_2^*(X)) > 0 \Rightarrow \end{split}$$

оценка $\frac{\theta_1^*(X) + \theta_2^*(X)}{2}$ лучше в данном классе.

17. Пусть X_1, \ldots, X_n - выборка из нормального распределения с параметрами (a, σ^2) . Найдите эффективную оценку а) параметра а, если σ известно; б) параметра σ^2 , если а известно. Вычислите информацию Фишера одного наблюдения в обоих случаях

Решение.

18. Пусть X_1, \ldots, X_n — выборка из логистического распределения со сдвигом θ , имеющего плотность

$$p_{\theta}(x) = \frac{\exp\{\theta - x\}}{(1 + \exp\{\theta - x\})^2}$$

Найдите информацию Фишера $i(\theta)$ одного наблюдения в этой модели.

Решение.

$$u_{\theta}(x) = \frac{1 - e^{\theta - x}}{1 + e^{\theta - x}} \Rightarrow i(\theta) = \int_{\mathbb{R}} \frac{(1 - e^{\theta - x})^2}{(1 + e^{\theta - x})^2} \frac{e^{\theta - x}}{(1 + e^{\theta - x})^2} dx = \int_0^{+\infty} \frac{(1 - t)^2}{(1 + t)^4} dt = \int_0^{+$$

$$\int_{1}^{+\infty} \frac{(2-u)^2}{u^4} du = \int_{1}^{+\infty} \frac{4-4u+u^2}{u^4} du = \left(4\frac{u^{-3}}{-3} - 4\frac{u^{-2}}{-2} + \frac{u^{-1}}{-1}\right)\Big|_{1}^{+\infty} = -\left(-\frac{4}{3} + 2 - 1\right) = \frac{1}{3}$$

- 19. С помощью метода моментов построить оценку параметра θ для следующих распределений: а) $Bern(\theta)$, б) $Pois(\theta)$, в) $\mathcal{N}(\theta, 1)$, г) $\exp(\theta)$. Является ли данная оценка:
 - 1. несмещенной?
 - 2. состоятельной?
 - 3. сильно состоятельной?
 - 4. асимптотически нормальной?

Peшение. В первых 3 случаях оценка $\hat{\theta} = \overline{X}$ является несмещенной, состоятельной и сильно состоятельной по УЗБЧ. По ЦПТ также она явлется асимптотически нормальной с асимптотической дисперсией равной дисперсии этой случайной величины, то есть

a
$$\mathbb{D}X_1 = \theta(1-\theta)$$

b
$$\mathbb{D}X_1 = \theta$$

$$c \mathbb{D}X_1 = 1$$

d $\mathbb{E}X_1 = 1/\theta \Rightarrow \hat{\theta} = \frac{1}{X}$. По методу моментов оценка сильно состоятельная. По задаче 10 оценка асимптотически нормальная с ас-й дисперсией θ^2 . Найдем $p_{\overline{X}}(x)$. В силу независимости $p_{X_1+X_2}(x) = \int_{\mathbb{R}} p_{X_1}(x-t)p_{X_2}(t)dt = \int_{\mathbb{R}} \theta e^{-\theta(x-t)}I_{x-t\geq 0}\theta e^{-\theta t}I_{t\geq 0}dt = \int_0^x \theta^2 e^{-\theta x} = \theta^2 x e^{-\theta x}I_{x\geq 0}$. По индукции получаем, что $p_{X_1+\cdots+X_n}(x) = \theta^n \frac{x^{n-1}}{(n-1)!}e^{-\theta x}I_{x\geq 0}$. $p_{\xi/n}(x) = \frac{d}{dx}F_{\xi/n}(x) = np_{\xi}(nx) \Rightarrow p_{\overline{X}}(x) = n^n\theta^n \frac{x^{n-1}}{(n-1)!}e^{-\theta nx}I_{x\geq 0}$.

$$\mathbb{E}1/\overline{X} = \int_0^{+\infty} n^n \theta^n \frac{x^{n-2}}{(n-1)!} e^{-\theta nx} dx = -\frac{n^{n-1} \theta^{n-1}}{n-1} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \int_0^{+\infty} \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-1)!} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-1)!} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-1)!} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-2)!} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-2)!} \left(\frac{x^{n-2}}{(n-2)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} \Big|_0^{+\infty} - \frac{x^{n-3}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} \left(\frac{x^{n-2}}{(n-3)!} e^{-\theta nx} dx \right) = -\frac{n^{n-1} \theta^{n-1}}{(n-3)!} e^{-\theta nx} dx$$

$$\frac{n^{n-1}\theta^{n-1}}{n-1} \int_0^{+\infty} \frac{x^{n-3}}{(n-3)!} e^{-\theta n x} dx = \dots = \frac{(n\theta)^{n-(n-2)}}{n-1} \int_0^{+\infty} e^{-\theta n x} dx = \frac{n\theta}{n-1} \neq \theta \Rightarrow \text{ оценка смещена}$$

20. Решить предыдущую задачу использую вместо метода моментов метод максимального правдоподобия.

Peшeние. Пусть $\sum_{i=1}^{n} x_i = a$

а
$$L(\theta)=\theta^a(1-\theta)^{n-a}\Rightarrow l(\theta)=a\ln\theta+(n-a)\ln(1-\theta)\Rightarrow \frac{d}{d\theta}l(\theta)=\frac{a}{\theta}-\frac{n-a}{1-\theta},$$
 причем
$$\frac{d^2}{d\theta^2}l(\theta)=\frac{-a}{\theta^2}-\frac{n-a}{(1-\theta)^2}<0 \forall \theta\Rightarrow\theta=a/n$$
 точка строгого глобального максимума $\Rightarrow\hat{\theta}=\overline{X}$

b
$$L(\theta) = \frac{\theta^a e^{-n\theta}}{x_1! x_2! \dots x_n!} \to \max_{\theta} \Leftrightarrow H(\theta) = \theta^a e^{-n\theta} \to \max_{\theta} .h(\theta) = a \ln \theta - n\theta \Rightarrow \frac{d}{d\theta} h(\theta) = \frac{a}{\theta} - n \Rightarrow \hat{\theta} = \overline{X}$$

c
$$L(\theta) = \frac{1}{(2\pi)^{n/2}} e^{\frac{-\sum_{i=1}^{n} (x_i - \theta)^2}{2}} \to \max_{\theta} \Leftrightarrow \sum_{i=1}^{n} (x_i - \theta)^2 \to \min_{\theta} \Rightarrow \hat{\theta} = \overline{X}$$

d $L(\theta)=\theta^n e^{-\theta a}I_{x_{(1)}\geq 0}$. Опустим индикатор, он ни на что не влияет. $l(\theta)=n\ln\theta-\theta a\Rightarrow \frac{d}{d\theta}l(\theta)=\frac{n}{\theta}-a\Rightarrow \hat{\theta}=\frac{1}{\overline{X}}$

Во всех случаях получили те же оценки

21. Рассмотрим распределения Коши с плотностью $p_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)}$. С помощью выборочной медианы построить асимптотически нормальную оценку для θ^2 и найти ее асимптотическую дисперсию.

Решение. По теореме о выборочной медиане $\hat{\mu}$ является асимтотически нормальной оценкой параметра $z_{\frac{1}{2}}=\theta$ с асимптотической дисперсией $\frac{1}{4p_{\theta}\left(z_{\frac{1}{2}}\right)}=\frac{\pi^2}{4}$. Ф-я $f(x)=x^2$ является дифференциируемой, по теореме о наследовании асимптотической нормальности получаем, что $\hat{\mu}^2$ является асимптотически нормальной оценкой параметра θ^2 с асимптотичской дисперсией $(2\theta)^2\frac{\pi^2}{4}=(\pi\theta)^2$

22. Пусть X_1, \ldots, X_n — выборка из распределения: а) $Bern(\theta)$, б) $Pois(\theta)$, в) $\mathcal{N}(\theta, 1)$, г) $\exp(\theta)$. Для каких функций существует эффективная оценка? Найти соответствующую эффективную оценку и количество информации (фишеровской), содежащейся в одном сообщении.

Решение. Для всех распределений $\Theta = \mathbb{R}$, носитель не зависит от θ и все функции распределений "хорошие", то есть выполняются первые 3 пункта условий регулярности.

a
$$p_{X_1}(x) = \theta I_1(x) + (1 - \theta)I_0(x) \Rightarrow u_{\theta}(x) = \frac{I_1(x) - I_0(x)}{p_{X_1}(x)} \Rightarrow i(\theta) = \frac{1}{\theta} + \frac{1}{1 - \theta} = \frac{1}{\theta(1 - \theta)}$$
TODO

3. Достаточные статистики. Полные статистики. Оптимальные оценки.

23. Приведите пример такого параметрического семейства распределений P и нетривиальной неполной достаточной статистики $S(X_1, \ldots, X_n)$, где X_1, \ldots, X_n — выборка из неизвестного распределения $P \in \mathcal{P}$, что размерность статистики S равна 1.

Pешение. Рассмотрим $X_1 \sim Bern(\theta)$. Правдоподобие выборки равно $L(\theta) = \theta^{\sum_{i=1}^n x_n} (1 - \theta)^{n-\sum_{i=1}^n x_n} \Rightarrow$ по критерию факторизации $S(X) = \sum_{i=1}^n X_n$ является досаточной статистикой.

24. Пусть X_1, \ldots, X_n - выборка из нормального распределения с параметрами $(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$. Найдите оптимальную оценку параметра $\theta = (a, \sigma^2)$.

Решение. $L(\theta) = \frac{1}{(2\pi)^{n/2}\sigma^n}e^{\frac{-\sum_{i=1}^n(x_i-a)^2}{2\sigma^2}} \Rightarrow T(X) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ ялвяется полной достаточной статистикой по теореме об экспоненциальных семействах. Решая уравнение несмещённости, получаем, что $S(X) = (\overline{X}, \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2)$ оптимальная оценка.

25. Пусть X_1, \ldots, X_n — выборка из нормального распределения с параметрами $(0, \theta^2)$. Найдите оптимальную оценку для θ .

Peшение. Так как нормальное распределение из экспоненциального семейства, $T(X)=\sum_{i=1}^n X_i^2$ является полной достаточной статистикой. Решая уравнение несмещённости, получаем $S(X)=\frac{n}{n-1}\overline{X^2}$ - оптимальная оценка θ

26. Пусть X_1, \dots, X_n — выборка из пуассоновского распределения с параметром $\theta > 0$. Найдите $\mathbb{E}\left(X_1^2 \left| \sum_{i=1}^n X_i \right.\right)$.

 $Peшение. \sum_{i=1}^n X_i$ полная достаточная статистика для параметра $\theta. \mathbb{E} X_1^2 = \mathbb{D} X_1 + (\mathbb{E} X_1)^2 = \theta + \theta^2 \Rightarrow$ матожидание равно оптимальной оценке $\theta + \theta^2. T(X) = \sum_{i=1}^n X_i \sim Pois(n\theta) \Rightarrow \mathbb{E} T = n\theta, \mathbb{E} T^2 = n\theta + n^2\theta^2 \Rightarrow S(T) = \frac{T^2 - T}{n^2} + \frac{T}{n}$

27. С помощью критерия факторизации найти достаточную статистику для следующего семейства распределений: а) $Bern(\theta)$, б) $Pois(\theta)$, в) $\mathcal{N}(\theta,1)$, г) $\exp(\theta)$. Проверить, является ли полученная статистика полной.

Решение. Пусть $\sum_{i=1}^{n} x_i = a, T(X) = \sum_{i=1}^{n} X_i$

- а $L(\theta) = \theta^a (1-\theta)^{n-a} \Rightarrow T(X)$ достаточная статистика. $T \sim Bin(n,\theta)\mathbb{E}\varphi(T) = \sum_{k=1}^n \varphi(k) C_n^k \theta^k (1-\theta)^{n-k} = 0 \forall \theta \Leftrightarrow \sum_{k=1}^n \varphi(k) C_n^k z^k = 0 \forall z$, где $z = \frac{\theta}{1-\theta} \Rightarrow \forall k \varphi(k) = 0 \Rightarrow$ статистика полная.
- b $L(\theta)=\frac{\theta^ae^{-n\theta}}{x_1!x_2!...x_n!}\Rightarrow T(X)$ достаточная статистика. $T(X)\sim Pois(n\theta)\Rightarrow \mathbb{E}\varphi(T)=\sum_{k=0}^{\infty}\varphi(k)e^{-n\theta}\frac{(n\theta)^k}{k!}=0 \forall \theta \left.\frac{d^m}{d\theta^m}e^{n\theta}\mathbb{E}\varphi(T)\right|_{\theta=0}=\sum_{k=m}^{\infty}\varphi(k)n^k\frac{\theta^{k-m}}{(k-m)!}\Big|_{\theta=0}=n^m\varphi(m)=0\Rightarrow \varphi(m)=0\Rightarrow$ статистика является полной.
- с $L(\theta)=\frac{1}{(2\pi)^{n/2}}e^{\frac{-\sum_{i=1}^n(x_i-\theta)^2}{2}}=\frac{1}{(2\pi)^{n/2}}e^{\frac{-\sum_{i=1}^nx_i^2}{2}}e^{\theta a-\frac{n\theta^2}{2}}\Rightarrow T(X)$ достаточная статистика. $T(X)\sim \mathcal{N}\left(\theta,1/n\right)$ $\mathbb{E}\varphi(T)=\int_{\mathbb{T}}\sqrt{\frac{n}{2\pi}}\varphi(x)e^{-\frac{n}{2}(x-\theta)^2}dx$

TODO

- d $L(\theta) = \theta^n e^{-\theta a} I_{x_{(1)} \geq 0} \Rightarrow T(X)$ достаточная.
- 28. Построить оптимальную оценку функции $\tau(\theta)=5\theta^2+3\theta+7$ для $Bern(\theta)$.

Peшение. При n=1 построить несмещенную оценку для θ^2 невозможно, далее полгаем $n \neq 1.$ По предыдущей задаче известно, что статистика $T(X) = \sum_{i=1}^n X_i$ является полной

достаточной. $T(X) \sim Bin(n,\theta) \Rightarrow \mathbb{E}T(X) = n\theta, \ \mathbb{D}T(X) = n(\theta - \theta^2) \Rightarrow \mathbb{E}T^2(X) = n\theta - n\theta^2 + n^2\theta^2 \Rightarrow \theta^2 = \frac{\mathbb{E}T^2 - \mathbb{E}T}{n^2 - n} \Rightarrow \varphi(T) = 5\frac{T^2 - T}{n^2 - n} + 3\frac{T}{n} + 7$

29. Построить оптимальную оценку функции $\tau(\theta) = \sqrt{\theta}$ для $\exp(\theta)$

Решение. Так как семейство экспоненциальное с правдоподобием $L(\theta) = e^{-\theta \sum_{i=1}^n x_i + n \ln \theta}$, то оценка $T(X) = \sum_{i=1}^n X_i$ является полной достаточной по теореме об экспоненциальном распределении. Решим уравнение несмещенности. По задаче 19 известно, что $p_T(x) = \theta^n \frac{x^{n-1}}{(n-1)!} e^{-\theta x} I_{x \geq 0}$. Положим $\varphi(x) = \frac{1}{\sqrt{x}}$. Тогда

$$\mathbb{E}\varphi(T(X)) = \frac{\theta^{n}}{(n-1)!} \int_{0}^{+\infty} x^{n-3/2} e^{-\theta x} dx = -\frac{\theta^{n-1}}{(n-1)!} \left(x^{n-3/2} e^{-\theta x} \Big|_{0}^{+\infty} - (n-3/2) \int_{0}^{+\infty} x^{n-5/2} e^{-\theta x} dx \right)$$

$$= \frac{\theta^{n-1}}{(n-1)!} (n-3/2) \int_{0}^{+\infty} x^{n-5/2} e^{-\theta x} dx = \dots = \frac{\theta^{2}}{(n-1)!} \prod_{i=1}^{n-2} (n-i-1/2) \int_{0}^{+\infty} \sqrt{x} e^{-\theta x} dx$$

$$\int_{0}^{+\infty} \sqrt{x} e^{-\theta x} dx = \int_{0}^{+\infty} 2t^{2} e^{-\theta t^{2}} dt = -\frac{1}{\theta} \int_{0}^{+\infty} t d(e^{-\theta t^{2}}) = \frac{1}{\theta} \int_{0}^{+\infty} e^{-\theta t^{2}} dt = \frac{\sqrt{\pi}}{2} \frac{1}{\theta \sqrt{\theta}} \Rightarrow$$

$$\mathbb{E}\varphi(T(X)) = \frac{\sqrt{\pi} \prod_{i=1}^{n-2} (n-i-1/2)}{2(n-1)!} \sqrt{\theta}$$

Отсюда положив $\psi(T(X))=\frac{2(n-1)!}{\sqrt{\pi}\Pi_{i=1}^{n-2}(n-i-1/2)}\frac{1}{\sqrt{T(X)}}=\frac{2(n-1)!}{\sqrt{\pi}\Pi_{i=1}^{n-2}(n-i-1/2)}\frac{1}{\sqrt{\sum_{i=1}^n X_i}}$ мы получим оптимальную оценку.