

Visión artificial para la identificación de frutos de duraznero

Autor:

Sergio Hinojosa

Director:

Título y Nombre del director (pertenencia)

Índice

1. Descripcion tecnica-conceptual del proyecto a realizar	
1.1 Contexto de la implementación	
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	6
4. Alcance del proyecto	6
5. Supuestos del proyecto	7
6. Requerimientos	7
7. Historias de usuarios ($Product\ backlog$)	8
8. Entregables principales del proyecto	8
9. Desglose del trabajo en tareas	8
10. Diagrama de Activity On Node	9
11. Diagrama de Gantt	LO
12. Presupuesto detallado del proyecto	L 3
13. Gestión de riesgos	L 3
14. Gestión de la calidad	L 4
15. Procesos de cierre	15

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	18 de Junio de 2024

Acta de constitución del proyecto

Buenos Aires, 18 de Junio de 2024.18 de Junio de 2024

Por medio de la presente se acuerda con Sergio Hinojosa que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Visión artificial para la identificación de frutos de duraznero" y consistirá en la implementación de un algoritmo que permita identificar y cuantificar frutos de duraznos a partir de imágenes de árboles tomadas a campo. El trabajo tendrá un presupuesto preliminar estimado de 600 horas , con fecha de inicio el 18 de Junio de 2024 y fecha de presentación pública el - de - de 2024.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Dr. Gerardo Sánchez INTA

Título y Nombre del director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

1.1. Contexto de la implementación

Contar de forma manual la cantidad frutos que posee un árbol a campo resulta una tarea laboriosa, lenta y propensa a errores. No obstante, conocer estos datos tiene diversas aplicaciones que por su dificultad no están siendo abordadas. Para un productor, por ejemplo, saber la cantidad de frutos que posee una muestra de su lote al momento del raleo * le permite calcular la intensidad a aplicar. Además, al momento de la cosecha, le permite tener una estimación de su producción.

1.2. Objetivo del proyecto

Este proyecto busca proporcionar al productor:

- Precisión y Eficiencia: Conteo de manera precisa y rápida
- Ahorro de Tiempo y Costos: Reducción del tiempo y de costos asociados con la mano de obra requerida para esta tarea.
- Optimización del Rendimiento Agrícola: Permitir toma de decisiones informadas sobre la gestión del cultivo, la cosecha y la planificación de la mano de obra.
- Monitoreo Temprano de la Producción.

Por otro lado, los algoritmos a desarrollar resultan una herramienta muy útil obteniendo un gran volumen de datos que serviran para vincularlos con diferentes características de nuestro interés como:

- Porcentaje de cuajado: Relacionado con la producción
- Potencial de raleo: capacidad de genotipo a soportar mayor o menor raleo.
- Rendimiento

A esto se lo denomina fenotipo y esta herramienta fenómica será fundamental para alimentar modelos de IA que combinan datos genómicos con variables ambientales.

El siguiente diagrama de bloques ilustra el pipeline del sistema, los diferentes subsistemas involucrados y el flujo de datos:

^{*}Descarte de una parte de los frutos para que los restantes tomen más nutrientes de la planta y puedan alcanzar tamaño comercial

Figura 1. Diagrama en bloques del sistema.

2. Identificación y análisis de los interesados

Rol	Nombre y	Organización	Puesto
	Apellido		
Cliente	Dr. Gerardo	INTA	Director Científico Biotango Technologies SAS
	Sánchez		
Responsable	Sergio Hino-	FIUBA	Alumno
	josa		
Orientador	Título y	pertenencia	Director del Trabajo Final
	Nombre del		
	director		

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sistema informático capaz de detectar y contar los frutos de un duraznero en el árbol a partir de imagenes tomadas por una cámara 2D.

4. Alcance del proyecto

El proyecto incluye:

- Procesamiento de la imagen tomada por un celular.
- Detección del árbol a analizar
- Conteo de los frutos

El proyecto no incluye:

- Procesamiento de imagenes en blano y negro.
- Procesamiento de video.
- Implementación industrial. No se realizará un deploy en ningún sistema embebido ni en la nube, el sistema semantendrá en un entorno de desarrollo

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que se cuenta con:

- Horas de trabajo del desarrollador y del director del proyecto.
- Un ordenador com placa de gráfica dedicada.
- Banco de imagenes de campo reales para el entrenamiento del sistema.
- No se invertirá en hardware
- No se espera una precision del 100 %. Se definirá un margen aceptable.

6. Requerimientos

Los requerimientos deben enumerarse y de ser posible estar agrupados por afinidad, por ejemplo:

- 1. Requerimientos funcionales:
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación:
 - 2.1. Requerimiento 1.
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

¡¡¡No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

"Como [rol] quiero [tal cosa] para [tal otra cosa]."
 Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)

- 2.2. Tarea 2 (tantas h)
- 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Figura 2. Diagrama de Activity on Node.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
SUBTOTAL					
COSTOS INDIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
SUBTOTAL					
TOTAL					

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

• Severidad (S): X. Justificación...

• Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X.
 Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

• Req #1: copiar acá el requerimiento con su correspondiente número.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.