

UL Université de Lille

Patrick Saux¹, Odalric-Ambrym Maillard ¹

¹Univ. Lille, Inria, CNRS, UMR 9198 - CRIStAL

Setting

Linear bandits

- Play action X_t from a decision set $\mathcal{X}_t \subset \mathbb{R}^d$.
- Receive reward $Y_t \sim p_{\langle \theta^*, X_t \rangle}$, where $\{p_{\varphi}\}$ is a statistical model.
- Goal: minimise regret $\mathcal{R}_T = \sum_{t=1}^T \max_{x \in \mathcal{X}_t} \rho\left(p_{\langle \theta^*, x \rangle}\right) \rho\left(p_{\langle \theta^*, X_t \rangle}\right)$, where ρ is a certain **risk measure**.

 \neq existing settings: $\mathbb{E}[Y_t \mid X_t] = \mu(\langle \theta^*, X_t \rangle)$ (generalised mean-linear)

Example: risk-aversion in agriculture

Elicitable risk measures

Definitions

• Risk measure elicited by a convex loss $\mathcal{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$:

$$\rho_{\mathcal{L}}: p \in \mathcal{P}(\mathbb{R}) \mapsto \operatorname{argmin} \mathbb{E}_{Y \sim p} [\mathcal{L}(Y, \xi)].$$

• Adapted loss to the linear bandit if $\rho_{\mathscr{L}}$ is linear on the statistical model $\{p_{\varphi}\}$: $\rho_{\mathscr{L}}(p_{\varphi}) = \varphi.$

Examples of elicitable risk measures

Name	$ ho_{\mathscr{L}}$	$\mathscr{L}(y,\xi)$	Example of adapted statistical model
Mean	$\mathbb{E}[Y]$	$\frac{1}{2}(y-\xi)^2$	$p_{\varphi}(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\varphi)^2}{2}\right)$
p-expectile	$\underset{\xi \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}[\psi_{\mathfrak{p}}(Y - \xi)]$ $\psi_{\mathfrak{p}}(z) = \mathfrak{p} - \mathbb{1}_{z < 0} z^{2}$	$\psi_{\mathfrak{p}}(y-\xi)$	$p_{\varphi}(y) = \frac{\sqrt{2\mathfrak{p}(1-\mathfrak{p})}}{\sqrt{\pi}\sqrt{\mathfrak{p}}+\sqrt{1-\mathfrak{p}}} \exp\left(-\frac{\psi_{\mathfrak{p}}(y-\varphi)}{2}\right)$

Remark: variance and CVaR are *not* (first-order) elicitable.

LinUCB-CR (Convex Risk)

Input: regularisation parameter α , projection operator Π , sequence of exploration bonus functions $(\gamma_t)_{t \in \mathbb{N}}$.

for
$$t = 1, ..., T$$
 do

$$\widehat{\theta}_{t} \in \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{s=1}^{t-1} \mathcal{L}(Y_{s}, \langle \theta, X_{s} \rangle) + \frac{\alpha}{2} \|\theta\|_{2}^{2}; \triangleright \text{ ERM}$$

$$\bar{\theta}_{t} = \Pi(\widehat{\theta}_{t}); \triangleright \text{ Projection}$$

$$X_{t} = \underset{x \in \mathcal{X}_{t}}{\operatorname{argmax}} \langle \bar{\theta}_{t}, x \rangle + \gamma_{t}(x); \triangleright \text{ Play arm}$$

Numerical computation of $\widehat{\theta}_t$ at each step! \neq mean-linear case: $\widehat{\theta}_t = \left(\sum_{s=1}^{t-1} X_s X_s^\top + \alpha I_d\right)^{-1} \sum_{s=1}^{t-1} Y_s X_s$.

Analysis

Bounded loss curvature: $\forall y, \xi \in \mathbb{R}, \ 0 < m \le \frac{\partial^2 \mathcal{L}}{\partial \xi^2}(y, \xi) \le M$.

Supermartingale lemma

Self-normalised concentration bound with the local Hessian

$$H_t^{\alpha}(\theta) = \sum_{s=1}^{t-1} \partial^2 \mathcal{L}(Y_s, \langle \theta, X_s \rangle) X_s X_s^{\top} + \alpha I_d$$

instead of the global Hessian

$$V_t^{\alpha} = \sum_{s=1}^{t-1} X_s X_s^{\top} + \alpha I_d.$$

Regret of LinUCB-CR

With probability at least
$$1-\delta$$
,
$$\kappa = \frac{M}{m}^{\dagger}$$
 dimension of actions
$$\approx \text{ variance of } \partial \mathcal{L}(Y_t, \langle \theta^*, X_t \rangle) \qquad \qquad \text{upper bound on } \|X_t\|_2$$

$$\mathcal{R}_T^{\text{LinUCB-CR}} = \mathcal{O}\left(\frac{\sigma \kappa d}{\sqrt{m}} \sqrt{T} \log \frac{TL^2}{d}\right).$$
 lower bound on $\partial^2 \mathcal{L}$
$$\uparrow \text{ conjecture: } \kappa \approx \text{ constant in certain cases.}$$

 $\Re \mathcal{R}_T^{\text{LinUCB-CR}} = \mathcal{O}\left(\frac{\sigma\kappa d}{\sqrt{m}}\sqrt{T\log\frac{TL^2}{d}}\right)$ under stochastic arrival of action sets.

→ Take-home message ←

The analysis of LinUCB can be lifted from mean-linear to elicitable convex loss with essentially the same regret bound.

A faster approximate algorithm: LinUCB-OGD-CR

Input: T, α , Π , $(\gamma_{t,T}^{\text{OGD}})_{t \leq T}$, OGD steps $(\varepsilon_t)_{t \leq T}$, episode length h > 0. **Initialization:** Set $\widehat{\theta}_0^{\text{OGD}}$, t = 1, n = 1. **for** t = 1, ..., T **do** if t = nh + 1 then
$$\begin{split} \widehat{\theta}_{n}^{\text{OGD}} &= \widehat{\theta}_{n-1}^{\text{OGD}} - \varepsilon_{n-1} \Big(\sum_{k=1}^{h} \partial \mathcal{L}(Y_{(n-1)h+k}, \langle \widehat{\theta}_{n-1}^{\text{OGD}}, X_{(n-1)h+k} \rangle) + \alpha \widehat{\theta}_{n-1}^{\text{OGD}} \Big) \\ \bar{\theta}_{n}^{\text{OGD}} &= \frac{1}{n} \sum_{j=1}^{n} \Pi(\widehat{\theta}_{j}^{\text{OGD}}) \; ; \triangleright \; \text{Average previous OGD steps} \end{split}$$

 $X_t = \underset{x \in \mathscr{X}}{\operatorname{argmax}} \langle \bar{\theta}_n^{\text{OGD}}, x \rangle + \gamma_{t,T}^{\text{OGD}}(x)$; > Freeze $\bar{\theta}_n^{\text{OGD}}$ for h steps

Regret of LinUCB-OGD-CR

With probability at least $1 - \delta$, under stochastic arrival of action sets, $\mathcal{R}_T^{\text{LinUCB-OGD}} = \mathcal{O}\left(\sqrt{T} \times \text{Polylog}(T)\right)$

if episode length satisfies $h = \Omega(d^2 \log \frac{1}{\delta})$.

 $n \leftarrow n + 1$

Numerical experiments

Gaussian expectile bandit.

Bernoulli entropic risk bandit.

Asymmetric Gaussian expectile bandit.

Full paper.