COL380

Introduction to Parallel & Distributed Programming

Agenda

- Parallel Algorithms
 - Merging
 - → Minimum finding
 - → Sorting

Towards Optimal Merge(A,B)

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search ←
- Merge pairs of sub-sequences
 - → If $|B_i| \le log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

Total time is O(log n)

Total work is O(n)

Data Partitioning Technique

limited by

Select from A, elements i√n, i ∈ [0: √n)

- Select from A, elements i√n, i ∈ [0: √n)
- · Rank each selected element of A in B

→ √n Parallel searches, use √n processors for each search

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A
- Recursively merge pairs of sub-sequences
 - → Total time: $T(n) = O(1)+T(\sqrt{n}) = O(\log \log n)$
 - → Total work: $W(n) = O(n) + \sqrt{n} W(\sqrt{n}) = O(n \log \log n)$

Fast, but too much work Not work optimal

- · Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - → A₁, A₂, ...
 - → B₁, B₂, ...

- · Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - $\rightarrow B' = q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \Rightarrow B' = q_1 , q_2 ...

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂...
 - $\rightarrow B' = Q_1, Q_2 \dots$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \Rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p_1 , p_2 ...
 - \rightarrow B' = $q_1, q_2 ...$

Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂...
 - \rightarrow B' = q_1, q_2 ...

Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - \rightarrow B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = q_1 , q_2 ...
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = q_1 , q_2 ...
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

Merge O(llg n) sized blocks O(n/llg n) times

Optimal Merge (A,B) (Analysis)

1. Merge A' and B' – find Rank(A':B'), Rank(B':A')

- → Use fast non-optimal algorithm
 - ▶ Time = $O(\log \log n)$, Work = O(n)
- 2. Compute Rank(A':B) and Rank(B':A)
 - → If Rank(p_i , B) is r_i , p_i lies in block B_{r_i}
 - Sequentially: Time = $O(\log \log n)$, Work = O(n)
- 3. Compute ranks of remaining elements
 - Sequentially: Time = O(log log n), Work = O(n)

Input: array A with n elements

Algorithm A1 using O(n²) processors:

CRCW

Input: array A with n elements

Algorithm A1 using O(n²) processors:

forall i in [0:n)
$$M[i] = 1$$

Input: array A with n elements

Algorithm A1 using O(n²) processors:

forall i in [0:n)
$$M[i] = 1$$

CRCW

Input: array A with n elements

Algorithm A1 using O(n²) processors:

```
forall i in [0:n)
M[i] = 1
forall i,j in [0:n)
if i \neq j \&\& A[i] < A[j]
M[j] = 0
```

CRCW

CRCW

Input: array A with n elements

Algorithm A1 using O(n²) processors:

```
forall i in [0:n)
    M[i] = 1
forall i,j in [0:n)
   if i \neq j \&\& A[i] < A[j]
       M[j] = 0
forall i in (0:n]
   if M[i]=1
       min = A[i]
```


O(1) time, O(n²) work: Not optimal

Optimal Min-find

Balanced Binary tree

- → O(log n) time
- \rightarrow O(n) work => Optimal
- Make the tree branch quicker
 - → Number of children of node $u = \sqrt{n_u}$
 - if the number of leaves in u's subtree is nu
 - → Works well if the operation at each node is fast, say, O(1)
- Use Accelerated cascading

Algorithm A2

Step 1: Partition into disjoint blocks of size \sqrt{n}

Algorithm A2

Step 1: Partition into disjoint blocks of size \sqrt{n}

Step 2: Apply A1 to each block

Algorithm A2

Step 1: Partition into disjoint blocks of size \sqrt{n}

Step 2: Apply A1 to each block

Step 3: Apply A1 to the results from the step 2

Algorithm A2

Step 1: Partition into disjoint blocks of size \sqrt{n}

Step 2: Apply A1 to each block

Step 3: Apply A1 to the results from the step 2

A2 work

$$n\sqrt{n}$$

n

Algorithm A3

Step 1: Partition into disjoint blocks of size

Step 2: Apply A2 to each block

Step 3: Apply A2 to the results from the step 2

Algorithm A3

Step 1: Partition into disjoint blocks of size

Step 2: Apply A2 to each block

Step 3: Apply A2 to the results from the step 2

Algorithm A3

Step 1: Partition into disjoint blocks of size

Step 2: Apply A2 to each block

Step 3: Apply A2 to the results from the step 2

Algorithm A3

Step 1: Partition into disjoint blocks of size

Step 2: Apply A2 to each block

Step 3: Apply A2 to the results from the step 2

A3 work

$$n^{\frac{1}{2}}n^{\frac{3}{4}}$$

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

$$A_1$$
 A_2 A_3 .. $n^2 \rightarrow n^{1+1/2} \rightarrow n^{1+1/4} \rightarrow n^{1+1/8} \rightarrow n^{1+1/2k}$.. $\sim n^{1+\epsilon}$

Algorithm A_{∞} takes ?? with $n^{1+\epsilon}$ processors

Doubly-log depth tree:
$$n^{\frac{1}{2^i}}$$
 = O(1) at leaf

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

 A_1 A_2 A_3 ... $n^{2} \rightarrow n^{1+1/2} \rightarrow n^{1+1/4} \rightarrow n^{1+1/8} \rightarrow n^{1+1/2k}$.. $\sim n^{1+8}$

Algorithm A_{∞} takes ?? with $n^{1+\epsilon}$ processors

Doubly-log depth tree: $n^{\frac{1}{2^i}}$ = O(1) at leaf

n loglog n work, loglog n time

- Constant-time algorithm
 - \rightarrow O(n²) work
- O(log n) Balanced tree approach
 - → O(n) work (Work-Optimal)
- O(loglog n) Doubly-log depth tree approach
 - → O(n loglog n) work
 - → Degree is high at the root, reduces going down
 - #Children of node $u = \sqrt{(\#nodes in tree rooted at u)}$
 - ▶ Depth = O(log log n)

Accelerated Cascading

- Solve recursively
- Start bottom-up with the optimal algorithm
 - until the problem sizes is smaller
- Switch to fast (non-optimal algorithm)
 - A few small problems solved fast but non-work-optimally
- Min Find:
 - Optimal algorithm for lower loglog n levels
 - Then switch to O(n loglog n)-work algorithm

Accelerated Cascading

- Solve recursively
- Start bottom-up with the optimal algorithm
 - until the problem sizes is smaller
- Switch to fast (non-optimal algorithm)
 - A few small problems solved fast but non-work-optimally
- Min Find:
 - Optimal algorithm for lower loglog n levels
 - Then switch to O(n loglog n)-work algorithm

o(n) work, O(loglog n) time

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

(i - psum[i])

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel
- Time per round = O(log n)
- Work per round = O(n)

```
5 6 7
T(n) ~ T(n/2) + O(log n)
W(n) ~ 2W(n/2) + O(n)
(i - psum[i]) + psum[n-1] + 1
```

tlag

Review

- · Merge, Minima-find, Quicksort
- Combining non-work optimal fast algorithm with optimal less fast algorithm
 - → Accelerated Cascading