Graph mining

Results of dcut

- Create density tree
- Cut density tree
- Find all neighbors of the two cutted nodes
- Create two new trees with this nodes
- Repeat until n-trees were created
- Find nodes in original graph
- Color them in clusters

Density trees after 12 cuts

gspan

- Load graphs
- Split data in training and test data
- Create matrices with results of gspan algorithm
 - Column should be freq patterns
 - Rows should be the input graphs
 - 1 if pattern in graph else 0
- Hand train matrix to an RandomForest classifier
- Check performance with the test matrix

SLR-kit

- Basic run + -showAUC -pruneSingletons -pruneZeroKnowledge
- Statistics used:
 - Average graph degree
 - Density
 - Subgraphs

cora_cite

- Size of graph 4240
- Average degree 5.31
- Density 0.0025
- Nodes with degree 0, ausgangsgrad, eingangsgrad (657, 657)
- Full connected graph, size of the subgraphs (False, [3385, 34, 11, 9, 6, 5x2, 4x6, 3x2, 2x46]

Count Min Sketch

- CMS table with murmurhash
- Read twits & perform estimate over the drugs

•

- Epsilon --> how much error is added to our counts with each item we add to the cm sketch
- Delta --> with what probability do we want to allow the count estimate to be outside of our epsilon error rate

Acetaminophen

Caffeine

Trimethadione

Diltiazem

Stream Classification

CovtypeNorm Hoeffding Tree

Window 10

Window 100000

Stream Classification

CovtypeNorm Naive Bayes

Window 100000