Boolean Logic

Digital Systems 2022/23

Dr James Stovold

Boolean Algebra

(George Boole, 1815–64)

- Foundation of logical operations within computers.
- Variables are either True (T) or False (F).
 - Mutually-exclusive characters map nicely to binary numbers!
- Fundamental operations are conjunction (and), disjunction (or), negation (not).

Conjunction (AND)

- Conjunction is represented by ∧ · or
 nothing> (& or && in C)
 - Similar to product in elementary algebra

$$Q = AB = A \cdot B$$
$$Q = A \wedge B$$

Also a truth

table

Truth table

Α	В	Q
F	F	F
F	Т	F
T	F	F
T	T	T

A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

Disjunction (OR)

- Disjunction is represented by V or + (| or || in C)
 - Similar to addition in elementary algebra

$$Q = A + B$$

$$Q = A \lor B$$

A	В	Q
F	F	F
F	T	Т
T	F	T
T	T	T

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Negation (NOT)

- Negation is represented by ¬¯ or ' (~ or ! in C)
 - \bar{X} is pronounced "X bar", X' is "X prime"

$$Q = \neg A$$

$$Q = A' = \overline{A}$$

A	Q
F	T
T	F

A	Q
0	1
1	0

Negated Operators

(NAND, NOR)

- Represented by a combination:
 - NAND (NOT AND), e.g. NOT(X AND Y), \overline{XY}
 - NOR (NOR OR), e.g. NOT(X OR Y), $\overline{X} + \overline{Y}$

$$Q = \neg(A \land B)$$

A	В	AB	Q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

	$ (\Lambda$	\ /	\boldsymbol{P}
Y	'(\1	V	D

A	В	A + B	Ø
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Exclusive-OR/-NOR (XOR, XNOR)

- Exclusive-OR is represented by ⊕ (^ in C)
- Exclusive-NOR is represented by O

$$Q = A \oplus B$$

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

$$Q = A \odot B$$

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Quick aside: Truth Tables

- The truth table is a useful technique for mapping out an entire function.
- We list all possible permutations of the input variables and calculate the output variables.
- Particularly useful for working through a complicated equation.

$$Q = AB + C$$

A	В	C	AB	Q
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$Q = AB + C$$

A	В	C	AB	Q
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$Q = AB + C$$

A	В	C	AB	Q
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

$$Q = AB + C$$

A	В	C	AB	Q
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

$$Q = AB + C$$

A	В	C	AB	Q
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Logic Gates

• Each of our operators has a conceptual electronic component/symbol:

Logic Gates

• Each of our operators has a conceptual electronic component/symbol:

Universal Gates

- NAND and NOR gates are considered "universal" gates
- Any binary logic can be built just from NAND gates, or just from NOR gates.
 - Remember: simple is cheap, simple is good!

Using NANDs

Using NANDs

Using NANDs

Boolean Algebra

Law	AND form	OR form
Identity 1	$A = \overline{\overline{A}}$	$A=\overline{\overline{A}}$
Identity 2	1A = A	0+A=A
Null	0A = 0	1 + A = 1
Idempotence	AA = A	A + A = A
Complementarity	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutativity	AB = BA	A + B = B + A
Associativity	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributivity	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption	A(A+B)=A	A + AB = A
de Morgan's Law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$

Proof by Perfect Induction (AND Forms)

$A = \overline{\overline{A}}$			
A	\overline{A}	$\overline{\overline{A}}$	
0	1	0	
1	0	1	

1A = A		
1	A	1 <i>A</i>
1	0	0
1	1	1

0A = 0			
0	A	0A	
0	0	0	
0	1	0	

	AA = A			
A	A	AA		
0	0	0		
1	1	1		

$A\overline{A} = 0$			
A	\overline{A}	$A\overline{A}$	
0	1	0	
1	0	0	

A(A+B)=A			
\boldsymbol{A}	B	A + B	A(A + B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

de Morgan's Law

- $\overline{(AB)} = \overline{A} + \overline{B}$ and $\overline{(A+B)} = \overline{A} \cdot \overline{B}$
- Useful for restating expressions
- If all sub-expressions are ANDed together, we can switch to ORing them together:
 - 1. negate overall expression
 - 2. negate all sub-expressions
 - 3. switch between ANDs and ORs

Designing Logic Circuits

- Basic approach:
 - 1. Write out a truth table for the desired logical function
 - 2. Derive a Boolean expression by ORing together all the rows whose output column is 1
 - 3. Translate to logic gates
 - Can simplify using digital circuit analysis techniques (see later lecture).

Logic Circuit Design Example

- Consider a lighting system for a house.
- You have a light over the stairs which is controlled by two switches:
 - one at the bottom, in the hallway (H)
 - one at the top of the stairs (S)
- We want to be able to switch the light on at the bottom and off again at the top (and vice-versa).

Stairway Light Logic

- We want the light to be **on** if S is **up** and H is **down**.
- Alternatively, the light should be **on** if S is **down** and H is **up**.

S	Н	Light
0	0	0
0	1	1
1	0	1
1	1	0

 $\overline{S}H$ $S\overline{H}$

Stairway Light Logic

- So, $L = \overline{S}H + S\overline{H}$ (in sum-of-products form)
- We can implement this using NAND gates.
- Apply de Morgan's law:
 - Let $X = \overline{S}H$ and $Y = S\overline{H}$, so we have X + Y
 - By de Morgan's: $X + Y = \overline{(\overline{X}\overline{Y})}$
 - Expand: $L = \left(\overline{SH} \right) \overline{SH}$
 - This is now in the required 'Inverted AND' form...

