A Gentle Introduction to BLP*

Lei Ma

February 27, 2021

1 BLP

This exercise estimates the demand-side BLP model.

1.1 Logit model

The logit model without random coefficient is

$$u_{ij} = x_j \beta - \alpha p_j + \xi_j + \epsilon_{ij}$$

Inverting the market shares gives the mean utility of products,

$$\ln s_j - \ln s_0 = \delta_j = x_j \beta - \alpha p_j + \xi_j$$

We can estimate the equation using OLS or 2SLS depending on the assumptions on the correlation between (x_j, p_j) and ξ_j .

For each market (defined by store-week), I calculate the market share by $s_j = q_j/M$, where q_j denotes the sales for product j and M denotes the market size (proxied by count). Thus the market share for the outside good $s_0 = 1 - \sum_j s_j$.

Table 1 reports the regression results using the following five specifications.

Table 1: Logit Model Without Random Coefficients

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	IV	IV
Price	0.020	-0.189***	-0.145**	0.069***	0.169
	(0.014)	(0.059)	(0.058)	(0.015)	(0.115)
Promotion	0.121	0.187^{**}	0.201^{***}	0.149	0.308***
	(0.093)	(0.074)	(0.073)	(0.093)	(0.082)
Constant	-7.976***	-6.579***	-6.839***	-8.198***	-7.807***
	(0.070)	(0.212)	(0.214)	(0.074)	(0.399)
Product FE		Yes	Yes		Yes
Store FE			Yes		
Instrument				Yes	Yes

^{*}This project is part of the problem set of the second-year PhD IO class taught by Prof. Marc Rysman.

1.2 Fixed point algorithm

Following BLP's random coefficient model, the utility to consumer i from product j in market t is

$$u_{ijt} = \underbrace{x_{jt}\beta - \alpha p_{jt} + \gamma_j + \xi_{jt}}_{\delta_{jt}} + \underbrace{\sum_{\ell} x_{j\ell t} \sigma_{\ell t} \nu_{i\ell t} + \epsilon_{ijt}}_{\mu_{ijt}}$$

The last two terms $\mu_{ijt} + \epsilon_{ijt}$ captures the random coefficients. Assume that the variance of random coefficient is $E(\nu_{i\ell}^2) = 1$ and it is with mean zero, then the mean and variance of the marginal utility associated with characteristic ℓ is β_{ℓ} and σ_{ℓ}^2 . In this specific exercise, the random coefficient term is on the constant term, so $\ell = 1$.

The aggregate market share for each product j is

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu(x_{jt}, \nu_i, \sigma))}{1 + \sum_{j} \exp(\delta_{jt} + \mu(x_{jt}, \nu_i, \sigma))} f(\nu_i) d\nu_i$$

where $\nu \sim \mathcal{N}(0,1)$. The integral has no analytical solution in the random coefficient model, so we need to compute the integral by simulation. One method to approximate the integral is to use

$$\hat{s}_{jt} = \frac{1}{ns} \sum_{i=1}^{ns} \frac{\exp(\delta_{jt} + x_{jt}\sigma_t \nu_{it})}{1 + \sum_{k=1}^{J} \exp(\delta_{kt} + x_{kt}\sigma_t \nu_{it})}$$

where ns is the number of draws of ν_i . BLP shows that we can use contraction mapping to invert the market shares to get the mean utility δ ,

$$\delta'_{it} = \delta_{it} + \ln(s_{it}) - \ln(\hat{s}_{it}(\delta, \sigma))$$

The algorithm is as follows. First make ns draws of ν_i from a one-dimensional standard normal distribution, guess δ , compute the model prediction of \hat{s}_{jt} , and then solve for the contraction mapping problem for each market. The mean and standard deviation of δ is

$$mean(\hat{\delta}) = -8.364$$
$$sd(\hat{\delta}) = 0.854$$

1.3 GMM

After computing the mean utility δ , we can compute the error term (also the unobserved product characteristics)

$$\xi_{it} = \delta_{it} - x_{it}\beta + \alpha p_{it} - \gamma_i = \delta_{it}(\sigma) - X\theta_1 \equiv \omega(\theta)$$

where $\theta = (\beta, \alpha, \{\gamma\}_j, \sigma)$. Note that β , α , and $\{\gamma\}_j$ enter this equation linearly, while σ enters this equation nonlinearly. Let Z be the set of instruments, then we have the moment condition

$$E[Z'\omega(\theta)] = 0$$

The GMM estimator is

$$\hat{\theta} = \arg\min_{\theta} \omega(\theta)' Z \Phi^{-1} Z' \omega(\theta)$$

where $\Phi = z'z/n$ is the weighting matrix. Nevo (2004) shows that the linear parameters can be written¹ as

$$\hat{\theta}_1 = [X_1' Z \Phi^{-1} Z' X_1]^{-1} X_1' Z \Phi^{-1} Z' \delta(\hat{\sigma})$$

¹Note that $\omega(\theta) = \delta(\sigma) - X\theta_1$. Rewriting the GMM objective function and taking the first derivative yields the expression.

Instead of searching over the whole parameter space $\theta = (\beta, \alpha, \{\gamma\}_j, \sigma)$, we can just search over the nonlinear parameter σ and then optimizer over the linear parameters $\theta_1 \equiv (\beta, \alpha, \gamma)$. The detailed algorithm is

- Guess σ and compute $\delta(\sigma)$
- Compute the linear parameter $\hat{\theta}_1$ using $\hat{\theta}_1 = [X_1'Z\Phi^{-1}Z'X_1]^{-1}X_1'Z\Phi^{-1}Z'\delta(\hat{\sigma})$
- Compute the error term by plugging $\hat{\theta}_1$ and $\delta(\sigma)$ back into $\omega(\theta)$
- Compute the GMM objective function $\omega(\theta)'Z\Phi^{-1}Z'\omega(\theta)$ and find the minimum

Table 2 reports the model parameters.

Table 2: Estimated Parameters θ

σ	28.720
Intercept	-71.521
Price	-1.085
Promotion	0.222