Branch: CSE/IT

Batch : Hinglish

WEEKLY TEST - 06

Subject: Discrete Mathematics

Topic: Set Theory

Maximum Marks 17

Q.1 to 5 Carry ONE Mark Each

[MCQ]

- **1.** If A is a proper sub set of B, then which of the following statements is not true
 - (a) $A \cap B = A$
- (b) $B^C \subset A^C$
- (c) $B \cup A^C = U$
- (d) $B A = \emptyset$

[MCQ]

- **2.** The poset $[\{2, 3, 5, 30, 60, 120, 180, 360\}]$ is
 - (a) a lattice
 - (b) a join semi lattice
 - (c) a meet semi lattice
 - (d) neither a join semi lattice nor a meet semi lattice

[MCQ]

3. Consider the poset:

 $P = \{a, b, c, d, e\}$ shown below

Which of the following statements is false?

- (a) P is not a lattice
- (b) The sub set {a, b, c, d} of P is a lattice

- (c) The sub set {b, c, d, e} of P is a lattice
- (d) The sub set {a, b, c, e} of P is a lattice

[MCQ]

4. Consider the following Lattices L_1^* and L_2^*

Which of the following is true?

- (a) L_1^* is distributive and L_2^* is distributive
- (b) L_1^* is not distributive and L_2^* is distributive
- (c) Both Lattices are distributive
- (d) Both Lattices are non-distributive

[MCQ]

- **5.** The set of all strings under the operation concatenation of strings is
 - (a) a monoid but not a group
 - (b) an abelian group
 - (c) a group but not a abelian group
 - (d) not a semi group

Q.6 to 11 Carry TWO Mark Each

[MCQ]

- **6.** If (G, *) is a group then which of the following is false
 - (a) $\{(a * b) = (a * c)\} \Rightarrow (b = c)$
 - (b) $\{(a * c) = (b * c)\} \Rightarrow (a = b)$
 - (c) a * b = b * a
 - (d) $(a * b)^{-1} = (b^{-1} * a^{-1})$

[MCQ]

- 7. Which of the following is false?
 - (a) A cyclic group with only one generator can have atmost 2 elements
 - (b) The order of a cyclic group is equal to the order of its generator
 - (c) The group $(\{1, 2, 3, 4\}, \otimes_5)$ is cyclic
 - (d) A group of order 4 is cyclic

[MCQ]

- **8.** Let G be a reduced residue system modulo is say $G = \{1, 2, 4, 7, 8, 11, 13, 14\}$ (i.e. the set of integers between 1 and 15 which are coprime to 15). Then G is a group under multiplication modulo 15. Which of the following is false
 - (a) inverse of 2 = 8
 - (b) inverse of 7 = 13
 - (c) inverse of 11 = 11
 - (d) inverse of 4 = 9

[MCQ]

- 9. If $X = \{x \mid x \text{ is a multiple of 4}\}$ and $Y = \{y \mid y \text{ is a multiple of 6}\}$. If $Z = X \cup Y$ and $z \in Z$ then z is a multiple of _____.
 - (a) 4
- (b) 6
- (c) 12
- (d) 2

[MCQ]

- 10. Let 'A' is set of all non zero real numbers. For a, b \in A, a relation R on A is defined as "a R b iff $\frac{a}{b} \in Q$ " where Q is set of all rational numbers. Then 'R' is
 - (a) An equivalence relation
 - (b) A partial ordering relation
 - (c) Symmetric but not transitive
 - (d) Transitive but not symmetric

[MCQ]

- **11.** Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$ be a relation on A. The transitive closure of R is
 - (a) $A \times A$
 - (b) {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}
 - (c) $R \cup R^{-1}$
 - (d) $R \cup \Delta_A$

Answer Key

2. (c)

3. (c)

4. (d)

5. (a)

6. (c)

7. (d)

8. (d) 9. (d)

10. (a)

11. (b)

Hints and Solutions

1. (d)

The venn diagram to represent $A \subset B$ is

- (a) $A B = \{I\} \cap \{I, II\} = \{I\} = A$
- (b) $B^c = \{III\}$ and $A^c = \{II, III\}$ $\therefore B^c \subset A^c$
- (c) $B \cup A^c = \{I, II\} \cup \{II, II\} = \{I, II, III\} = U$
- (d) $B A = \{II\} = \phi$ The statement (d) is false.

2. (c)

The hasse diagram of the poset is shown below

We have 3 minimal elements 2, 3 and 5.

For any two minimal elements glb does not exist.

... The given poset is not a meet semi lattice.

However, for every pair of elements in the poset, lub exists.

Hence, the poset is a join semi lattice.

3. (c)

- (a) The least upper bound of c and d does not exist.∴ P is not a lattice.
- (b) The subset {a, b, c, d} of P is a lattice whose Hasses diagram is shown below.

(c) The Hasses diagram of the subset {b, c, d, e} is shown below

We have, two minimal elements and two maximal elements.

- ... The poset is not a lattice.
- (d) The subset {a, b, c, e} of P is a lattice whose Hasse diagram is shown below.

4. (d)

In the lattice L_1^* . The element b has two complements c and d.

 \therefore L₁* is not a distributive lattice

In the lattice L_2^* , the element d has two complements b and c.

 \therefore L₂* is not a distributive lattice

5. (a)

Let S = set of all bit strings and + denote string concatenation.

- (i) concatenation of any two bit strings is also a bit string.
 - \therefore + is a closed a closed operation on S.
- (ii) string concatenatenation is associative i.e., $(S_1 + S_2) + S_3 = S_1 + (S_2 + S_3)$
- \therefore + is associative on S.

- (iii) The identity element of S with respect to + is the null string \in
- (iv) The inverse of a non empty string does not exist with respect to +.
 - \therefore (S, +) is a monoid but not a group
- 6. (c)
 - (a) Let a * b = a * c $\Rightarrow a^{-1} * (a * b) = a^{-1} * (a * c)$ $\Rightarrow (a^{-1} *) * b = (a^{-1} * a) * c$ $\Rightarrow e * b = e * c$ $\Rightarrow b = c$
 - (b) Let (a * c) = (b * c) $\Rightarrow (a * c) * c^{-1} = (b * c) * c^{-1}$ $\Rightarrow a*(c*c^{-1}) = b * (c * c^{-1})$ $\Rightarrow a* e = b * e$ $\Rightarrow a = b$
 - (c) (G, *) need not be an abelian group.∴ option (c) is false.
 - (d) Consider $(a * b)*(b^{-1} * a^{-1})$ = $a*(b * b^{-1}) * a^{-1}$ (by associativity) = $a*e*a^{-1} = a * a^{-1}$ = e

Similarly, $(b^{-1} * a^{-1})*(a*b) = e$ $\therefore (a*b)^{-1} = b^{-1} * a^{-1}$

7. (d)

 $G = \{1, 3, 5, 7\}$ is a group with respect to \otimes_8 .

G is not cyclic, because the generating element does not exist.

- 8. (d)
 - (a) $2 \otimes_{15} 8 = 1$ (identity element) \therefore Inverse of 2 is 8
 - (b) $7 \otimes_{15} 13 = 1$ (identity element) \therefore Inverse of 7 is 13
 - (c) $11 \otimes_{15} 11 = 1$ (identity element) \therefore Inverse of 11 is 11

- (d) $4 \otimes_{15} 9 = 6$ \therefore Inverse of 4 is 9. Inverse of 4 = 4 ($\therefore 4 \otimes_{15} 4 = 1$)
- 9. (d)

$$Z = \{4, 8, 12, 16, \dots 6, 12, 18, 24, \dots\}$$

If $z \in Z$ then z is a multiple of 2, because z is a common divisor of 4 and 6.

10. (a)

$$A = R - \{0\}$$

 $(a^Rb) \Leftrightarrow \frac{a}{b}$ is a relational number

(a)
$$\frac{a}{a} = 1 \ (a \neq 0)$$

 $\Rightarrow a^{R}a \quad \forall \ a \in$

∴ r is reflexive

If $\frac{a}{b}$ = Rational number, then

$$\frac{b}{a}$$
 = Rational number

:. R is symmetric

Let (a^Rb) and (b^Rc)

$$\Rightarrow \left(\frac{a}{b}\right)$$
 and $\left(\frac{b}{c}\right)$ are rational number

$$\frac{a}{c} = \left(\frac{a}{b}\right) \left(\frac{b}{c}\right) \in Q$$

Q means set of all rational numbers

- :. R is transitive
- (b) R is not anti-symmetric.

Ex: 2 R 3 and 3 R 2

.. R is not a partial order

Options (c) and (b) are false.

11. (b)

The relation can be denoted buy the following diagram

From vertex 1, there is a path to all other vertices.

From vertex 2, there is a path to all other vertices.

From vertex 3, we can reach only vertex 4.

From vertex 4, there is not path to other vertices.

Transitive closing of R

$$= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)\}$$

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

