نيما طاهرى

در این بخش تابع جریان های متفاوت بررسی شده و در انتها هم با تغییر پارامتر های مختلف به جز جریان مقایسه هایی انجام شده.

1) برای جریان ثابت 5:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

داريم:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

در ابتدا میبینیم که پتانسیل افزایش میابد و به آستانه میرسد و اسپایک میزند و بعد به حالت استراحت میرود و در ادامه میخواهد که باز افزایش یابد اما بدلیل وجود ضریب سازگاری و تمایل مدل برای بازگشت به حالت استراحت پتانسیل از جایی به بعد رشد نکرده و ثابت میشود.

2) برای تابع جریان پله ای:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

داريم:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

همان اتفاقات حالت قبل میافتد با این تفاوت که زمانی که جریان قطع میشود کاهش پتانسیل زیادی داریم و به مقداری کمتر از مقدار استراحت میرود.

:20 *
$$(\sin(t) + 0.9)$$
 برای تابع جریان سینوسی (3 R: 1 C: 10 I: I(t) = 20. $(\sin(t) + 0.9)$ THRESHOLD: 2 a: 2 b: 2 tw: 5

داريم:

R: 1 C: 10 I: I(t) = 20.(sin(t) + 0.9) THRESHOLD: 2 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 20.(sin(t) + 0.9) THRESHOLD: 2 a: 2 b: 2 tw: 5

شبیه مطالب گفته شده در قسمت های قبل است.

4) برای حالتی که جریان نداریم و بعد از مدتی وارد میکنیم:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

داريم:

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

شبیه حالت 1 است منتها در ابتدا در حال استراحت است.

5) اگر تابع جریان به صورت خطی و با شیب مثبت باشد:

R: 1 C: 10 I: I(t) = 2.t THRESHOLD: 5 a: 2 b: 2 tw: 5

داريم:

R: 1 C: 10 I: I(t) = 2.t THRESHOLD: 5 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 2.t THRESHOLD: 5 a: 2 b: 2 tw: 5

• اگر \mathbf{w} را افزایش دهیم سازگارتر میشود و اسپایک هم در این مثال خواهیم داشت.

Adaptive Leaky Integrate and Fire

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 1

Adaptive Leaky Integrate and Fire

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 2 a: 2 b: 2 tw: 5

• \mathbf{b} سازگاری بیشتر میشود.

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 1.5 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 1.5 a: 2 b: 20 tw: 5

• با افزایش a میشود زیر آستانه را سازگاز کرد.

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 1.5 a: 2 b: 2 tw: 5

R: 1 C: 10 I: I(t) = 5 THRESHOLD: 1.5 a: 4 b: 2 tw: 5

