CHEMICAL FORMULA SHEET CLASS 9TH

- > While attempting a numerical what would you require-
 - 1. Subject Knowledge
 - 2. Clarity of concept
 - 3. To have the formulas at the tips of your fingers
- To have all the formula at our tips not only helps to solve the question but also helps to solve it quicker.

MATTER IN OUR SURROUNDING

> To convert the temperature from Kelvin and Celsius or Celsius to Kelvin

$$K = {}^{\circ}C + 273$$

$$\circ$$
 C = K - 273

ATOMS AND MOLECULES

- $1nm = 10^{-9}m$ $10^9 = 1 m$
- Atomic number and atomic mass of first 20 element with their symbol

NAME AND SYMBOL	ATOMIC NUMBER	ATOMIC MASS
		(amu)

Н	1	1.00
Не	2	4.00
Li	3	6.94
Ве	4	9.01
В	5	10.81
С	6	12.01
N	7	14.00
0	8	15.99
F	9	18.99
Ne	10	20.18
Na	11	22.99
Mg	12	24.30
Al	13	26.98
Si	14	28.08
Р	15	30.97
S	16	32.06
Cl	17	35.45
Ar	18	39.94
K	19	39.09
Ca	20	40.07

- > 1 mole = 6.023×10^{23} atoms/ molecule / ions or 1 mole of anything = Avogadro's number (N_O)
- No. of Moles = $\frac{\text{Mass of element}}{\text{Molar mass}}$ (Given mass / Molar mass)
- $ightharpoonup No. of Moles = \frac{Given number of atoms}{Avogadro number} = \frac{Given number of molecules}{Avogadro number}$

$$n = \frac{N}{N_0}$$

No. of moles = n

Given mass = m (could be of for atom / molecule/ ion)

Molar mass = M (could be of for atom / molecule/ ion)

Given number of particles = N

Avogadro number of particles = N_0

These relations can be interchanged as

Mass of element, $m = n \times M$ or No. of particles of element, $N = n \times N_0$

Vapour Density (V.D) = $\frac{\text{Mass of 'x'volume of a gas}}{\text{Mass of equal volume of hydrogen}}$

STRUCTURE OF ATOM

- \triangleright charge present on an electron = -1.6 \times 10⁻¹⁹ C
- charge present on an electron = $+1.6 \times 10^{-19}$ C
- > There is no charge present on a neutron.
- Number of electrons = Number of protons (in any atom)
- > Atomic number = Number. of protons present in that atoms
- Mass number or Atomic mass number = Number of Protons+ Number of Neutrons
- The maximum number of electrons in different shells is 2n²

The first orbit or K shell will have $2 \times 1 = 2$ electrons.

The second shell L will have $2 \times 2 = 8$ electrons.

The third shell M will have $2 \times 32 = 18$ electrons.

The fourth shell N will have $2 \times 42 = 32$ electrons and so on.

Average atomic mass = $\frac{M_1P_1 + M_2P_2 + \dots + M_NP_N}{100}$

where $M_1.....M_N$ are the individual atomic mass of the isotopes of the element

 P_1 P_N is the their respective natural abundance.
