curs 3

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

PRELIMINARII - CONTINUARE

PRINCIPIUL DIAGONALIZĂRII

Principiul diagonalizării.

Fie R o relație binară pe o mulțime A și $D \subseteq A$ definită astfel:

$$D = \{x \in A \mid (x, x) \notin R\}.$$

Pentru orice $a \in A$, definim

$$R_a = \{x \in A \mid (a, x) \in R\}.$$

Atunci D este diferit de fiecare R_a .

Demonstrație. Presupunem că există $a \in A$ astfel încât $D = R_a$. Sunt posibile două cazuri:

- · $a \in D$. Rezultă că $(a, a) \notin R$, deci $a \notin R_a = D$. Contradicție.
- · $a \notin D$. Rezultă că $(a, a) \in R$, deci $a \in R_a = D$. Contradicție.

Prin urmare, $D \neq R_a$ pentru orice $a \in A$.

ARGUMENTUL DIAGONAL AL LUI CANTOR

Teoremă Cantor.

Nu există o bijecție între $\mathbb N$ și mulțimea $2^{\mathbb N}$ a părților lui $\mathbb N$. În concluzie, $2^{\mathbb N}$ nu este mulțime numărabilă.

Demonstraţie. Presupunem că există o bijecţie $f: \mathbb{N} \to 2^{\mathbb{N}}$. Prin urmare, $2^{\mathbb{N}}$ poate fi enumerată ca $2^{\mathbb{N}} = \{S_0, S_1, \dots, S_n, \dots, \}$, unde $S_i = f(i)$ pentru orice $i \in \mathbb{N}$. Considerăm relaţia binară $R \subseteq \mathbb{N} \times \mathbb{N}$ definită astfel:

$$R = \{(i,j) \mid j \in f(i)\} = \{(i,j) \mid j \in S_i\}$$

și aplicăm Principiul diagonalizării. Astfel,

$$D = \{n \in \mathbb{N} \mid (n, n) \notin R\} = \{n \in \mathbb{N} \mid n \notin S_n\},\$$

$$R_i = \{j \in \mathbb{N} \mid (i, j) \in R\} = \{j \in \mathbb{N} \mid j \in S_i\} = S_i, \quad i \in \mathbb{N}.$$

Deoarece $D \subseteq \mathbb{N}$ şi f este bijecţie, există $k \in \mathbb{N}$ a.î. $D = f(k) = S_k = R_k$. Pe de altă parte, conform Principiului diagonalizării, $D \neq R_i$ pentru orice $i \in \mathbb{N}$. Am obţinut o contradicţie.

- · O mulţime are n elemente dacă este echipotentă cu $\{j \in \mathbb{N} \mid 1 \le j \le n\}$ (mulţime notată şi $\{1, ..., n\}$).
- · O mulţime A se numeşte finită dacă există $n \in \mathbb{N}$ a.î. A are n elemente.
- · O mulţime care nu este finită se numeşte infinită.
- · Pentru o mulțime A, definim cardinalul lui A ca fiind

$$|A| = \{B \mid A \simeq B\}$$

- · Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele mulțimilor infinite sunt cardinalele transfinite.
- · Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, fiind folosite pentru a măsura dimensiunea unei mulţimi.

CARDINALE

- $|\mathbb{N}|$ se notează \aleph_0 (se citeşte *alef zero*).
- · O mulţime A este numărabilă daca $|A| = \aleph_0$.
- $|\mathbb{R}|$ se notează \mathfrak{c} (se mai numește și puterea continuumului).
- $\cdot \ |2^{\mathbb{N}}| \neq \aleph_0$
- $|2^{\mathbb{N}}| = \mathfrak{c}$
- · Ipoteza continuumului (Continuum Hypothesis):

Nu există nicio mulţime S a.î. $\aleph_0 < |S| < \mathfrak{c}.$

CARDINALE

Pentru orice două mulțimi A, B definim următoarea relație:

$$|A| \le |B| \iff \text{există } f: A \to B \text{ funcție injectivă.}$$

Teorema Cantor-Schröder-Bernstein.

Dacă există două funcții injective $f:A\to B$ și $g:B\to A$, atunci A și B sunt echipotente. Altfel scris, dacă $|A|\le |B|$ și $|B|\le |A|$, atunci |A|=|B|.

RELAŢII BINARE

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ şi $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

$$xRy$$
 şi yRx implică $x = y$.

· R este tranzitivă dacă pentru orice $x, y, z \in A$,

· R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

RELAŢII DE ECHIVALENŢĂ

Definiţie.

Fie A o mulţime nevidă. O relaţie binară $R \subseteq A \times A$ se numeşte relaţie de echivalenţă dacă este reflexivă, simetrică şi tranzitivă.

Exemplu.

Fie $n \in \mathbb{N}^*$. Definim relaţia $\equiv \pmod{n} \subseteq \mathbb{Z} \times \mathbb{Z}$ astfel:

$$\equiv \pmod{n} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid n \text{ divide } (x-y)\}.$$

Relaţia $\equiv \pmod{n}$ se numeşte congruenţa modulo n. Folosim notaţia $x \equiv y \pmod{n}$ pentru $(x, y) \in \equiv \pmod{n}$.

Exemplu.

Fie $f: A \to B$ o funcţie. Definim relaţia $\ker f \subseteq A \times A$ astfel:

$$\ker f = \{(a_1, a_2) \in A \times A \mid f(a_1) = f(a_2)\}.$$

kerf se numeşte nucleul lui f.

RELAŢII DE ECHIVALENŢĂ

Notaţii.

Vom nota relațiile de echivalență cu ∼.

Scriem $x \sim y$ dacă $(x,y) \in \sim$ şi $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiție.

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel:

$$[x] = \{ y \in A \mid x \sim y \}.$$

Definiție.

Mulţimea tuturor claselor de echivalenţă distincte ale elementelor lui A se numeşte mulţimea cât a lui A prin \sim şi se notează A/\sim .

Aplicaţia $\pi: A \to A/\sim$, $\pi(x) = [x]$ se numeşte funcţia cât.

RELAȚII DE ECHIVALENȚĂ

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n+1] = [1], pentru orice $n \in \mathbb{Z}$

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Propoziție.

Fie A o mulțime nevidă și $\sim \subseteq A \times A$ o relație de echivalență. Atunci

- $\cdot A = \bigcup_{x \in A} [x].$
- · [x] = [y] ddacă $x \sim y$.
- $\cdot [x] \cap [y] = \emptyset \text{ ddacă } x \not\sim y \text{ ddacă } [x] \neq [y].$

RELAŢII DE ECHIVALENŢĂ

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiţie.

Un sistem de reprezentanţi pentru \sim este o submulţime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2).

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Sisteme de reprezentanți: $X = \{0, 1\}, X = \{2, 5\}, X = \{999, 20\}.$

Propoziție.

Fie X un sistem de reprezentanți pentru \sim .

Atunci $A = \bigcup_{x \in X} [x]$ şi $A/\sim = \{[x] \mid x \in X\}.$

PARTIŢII

Fie A o mulţime nevidă.

Definiție.

O partiție a lui A este o familie $(A_i)_{i \in I}$ de submulțimi nevide ale lui A care verifică proprietățile:

- $\cdot A = \bigcup_{i \in I} A_i$ şi
- $A_i \cap A_i = \emptyset$ pentru orice $i \neq j$.

Partiţia $(A_i)_{i \in I}$ se numeşte finită dacă I este finită.

PARTIŢII

Fie A o mulţime nevidă.

Propoziție.

Există o bijecție între mulțimea relațiilor de echivalență pe A și mulțimea partițiilor lui A:

- · $(A_i)_{i \in I}$ partiție a lui $A \mapsto$ relația de echivalență pe A definită prin:
 - $x \sim y$ ddacă există $i \in I$ a.î. $x, y \in A_i$.
- · ~ relaţie de echivalenţă pe $A \mapsto \text{partiţia } ([x])_{x \in X}$, unde $X \subseteq A$ este un sistem de reprezentanţi pentru ~.

RELAŢII DE ORDINE

Definiție.

Fie A o mulțime nevidă. O relație binară R pe A este relație de

- · ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este ireflexivă și tranzitivă.
- · ordine totală dacă este antisimetrică, tranzitivă și totală.

Notaţii.

Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

MULŢIMI PARŢIAL ORDONATE

Definiţie.

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Propoziție.

Fie (A, \leq) o mulţime parţial ordonată.

- · Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.
- · Relaţia < definită prin $x < y \iff (x \le y \text{ şi } x \ne y)$ este relaţie de ordine strictă.
- · Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulţime parţial ordonată.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de Logică Matematică și Computațională al prof. Laurențiu Leuștean din anul universitar 2017/2018.