Mathematical Underpinnings of ML

Feature Selection

Ivan Mialeshka

Methods

- JMI
- CMIM
- Random forest feature importance
- Random forest permutation importance

Artificial data (high sparsity)

Artificial data (low sparsity)

Real-world datasets

- Musk (Version 2)
 - features=166
 - samples=6598
- Breast Cancer Wisconsin (Diagnostic)
 - features=30
 - samples=569
- Optical Recognition of Handwritten Digits
 - features=64
 - samples=5620

Classifier

```
return nn.Sequential(
    nn.Linear(in_features, hidden_state),
    nn.ReLU(),
    nn.Linear(hidden_state, hidden_state),
    nn.ReLU(),
    nn.Linear(hidden_state, classes),
    nn.Softmax() if classes > 1 else nn.Sigmoid()
)
```

Molecules Musk classification

Breast Cancer Wisconsin (Diagnostic)

Optical Recognition of Handwritten Digits

