Problem Set 10

Finite-volume method solution of 1D steady-state diffusion equation

Write a finite-volume program using a cell-centered approach to find the temperature T=T(x) in [0,1] such that (strong form)

$$\partial_x^2 T + f = 0$$

where f is a source or sink, with the following boundary conditions:

$$T(1) = T_1$$

$$\partial_x T(0) = -q_0$$

The function f = f(x) can be an arbitrary function. The initial temperature T_1 at location x = 1 and heat flux q_0 are scalar constants.

Problem:

Address this FVM problem as follows:

- 1. Write the integral form of the equation.
- 2. Define the corresponding grid cell contributions.
- 3. Assemble these contributions into (global) matrices.
- 4. Prescribe the number of cells (N_{el}). Choose a couple of cases, for example, $N_{el}=10$ and $N_{el}=20$.
- 5. Explore two sets of boundary conditions:

• (i)
$$T_1 = 1$$
, $q_0 = 1$, and $f(x) = 0$

• (ii)
$$T_1 = 1$$
, $q_0 = 1$, and $f(x) = 5$

Compare the finite-volume solution to the exact solution of the strong form, by plotting the temperature T versus x.

Note: The analytical solution found for this problem was (for any y)

$$T(x) = T_1 + (1 - x)q_0 + \int_x^1 \left(\int_0^y f(z)dz \right) dy$$
 (1)