✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

Your computer's timezone does not seem to match your Coursera account's timezone setting of Europe/London.

Change your Coursera timezone setting

Key concepts on Deep Neural Networks

LATEST SUBMISSION GRADE 100%	
 What is the "cache" used for in our implementation of forward propagation and backward propagation? It is used to cache the intermediate values of the cost function during training. We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations. It is used to keep track of the hyperparameters that we are searching over, to speed up computation. Correct Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives. Among the following, which ones are "hyperparameters"? (Check all that apply.) 	1/1 point
$ ightharpoonup$ number of iterations $ ightharpoonup$ Correct $ ightharpoonup$ size of the hidden layers $n^{[l]}$	Change your Coursera timezone setting
\checkmark Correct $$$$ weight matrices $W^{[l]}$ $$$$ number of layers L in the neural network	
\checkmark Correct	Change your Coursera timezone setting
\checkmark Correct \Box bias vectors $b^{[l]}$	
 Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. 	1/1 point

✓ Correct	Change your Coursera timezone setting
Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for legiterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$.	
ssume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4, 3, 2, 1]$. So layer 1 has for idden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the arameters for the model?	ur 1/1 point
<pre>1 * for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>	
<pre>1 * for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01</pre>	
<pre>1 * for(i in range(1, len(layer_dims))): 2 parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>	Change your Coursera timezone setting
<pre>1 * for(i in range(1, len(layer_dims))): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>	
4.6	
✓ Correct	
	1/1 point
onsider the following neural network	17 Fpoint
onsider the following neural network.	
onsider the following neural network.	
x_1	
x_1	
x_1 x_2 x_3	
x_1	Change your Coursera timezone setting
x_1 x_2 x_3 x_3	Change your Coursera timezone setting
x_1 x_2 x_3 ow many layers does this network have? The number of layers L is 4. The number of hidden layers is 3.	Change your Coursera timezone setting
x_1 x_2 x_3 ow many layers does this network have? The number of layers L is 4. The number of hidden layers is 3. The number of layers L is 3. The number of hidden layers is 3.	Change your Coursera timezone setting
x_1 x_2 x_3 ow many layers does this network have? The number of layers L is 4. The number of hidden layers is 3.	Change your Coursera timezone setting
x_1 x_2 x_3 ow many layers does this network have? The number of layers L is 4. The number of hidden layers is 3. The number of layers L is 4. The number of hidden layers is 4.	Change your Coursera timezone setting

True

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you $need \ to \ know \ which \ activation \ was \ used \ in \ the \ forward \ propagation \ to \ be \ able \ to \ compute \ the \ correct$

Change your Coursera timezone setting

8. There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

○ False

✓ Correct

9. Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $lacksquare W^{[1]}$ will have shape (4, 4)

✓ Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $lacksquare b^{[1]}$ will have shape (4, 1)

Change your Coursera timezone setting

Change your Coursera timezone setting

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $b^{[1]}$ will have shape (3, 1)

 $lacksquare W^{[2]}$ will have shape (3, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $\ \ \ \ \ \ b^{[2]}$ will have shape (1, 1)

lacksquare $b^{[2]}$ will have shape (3, 1)

/ Correct

tes. More generally, the shape of v^{\perp} is $(n^{\perp}, {f 1})$.	
$oxed{ }W^{[3]}$ will have shape (3, 1)	Change your Coursera timezone setting
$m{m{eta}}^{[3]}$ will have shape (1, 1)	
\checkmark Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	Change your Coursera timezone setting
$igspace{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
\checkmark Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
10. Whereas the previous question used a specific network, in the general case what is the dimension of W^{[I]}, the weight matrix associated with layer <i>l</i> ?	1/1 point
$igcirc$ $W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$	
$igcirc$ $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$	
$lacktriangledown$ $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$	
$igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$	
✓ Correct True	