Compilation II: In Practice

CAS CS 320: Principles of Programming Languages

December 5, 2024 (Lecture 25)

Practice Problem

$$\cdot \vdash \lambda x.\lambda y.\lambda z.xz(yz) : \tau \dashv \mathcal{C}$$

Determine τ and \mathcal{C} so that the above judgment is derivable in Hindley-Milner Light (HM⁻). Solve the constraints \mathcal{C} and determine the principle type of this expression

Answer

· H XX.XY. X: T + C

Today

- Discuss stack-based languages
- Look a bit more deeply at the inner-workings of OCaml's compiler
- ▶ Talk briefly about what you can do if you're still interested in PL
- ► Fill out course evals(!)

Outline

Recap: Stack-Based Languages

Compilation/Bytecode Interpretation

Variables

OCaml Backeno

What's next's

Recall: High-Level

A stack-oriented language is a programming language which directly manipulates a stack of values (or multiple stacks)

There are roughly two categories of stack-oriented languages:

- ▶ "usable" stack-oriented languages, e.g. Forth
- instruction sets for virtual machines, e.g., JVM, CPython interpreter, Lua (not any more), OCaml bytecode interpreter

A virtual (stack) machine is a computational abstraction, like a Turing machine (but usually **easier to implement**).

Virtual machines are typically implemented as bytecode interpreters, where "programs" are streams of bytes and a command in the language are represented as a byte

Arithmetic (Syntax)

Arithmetic (Values and Configurations)

A **configuration** is made up of a stack (S) of values and a program (P) given by $\langle prog \rangle$

Arithmetic (Small-step Semantics)

$$\begin{array}{c} \langle \ \phi \ , \ \mathsf{PVSH} \ 2 \quad \Delta \ \mathsf{DD} \ \rangle \longrightarrow \underline{\mathbb{I}} \\ \\ \frac{m \in \mathbb{Z} \quad n \in \mathbb{Z}}{\left\langle \, m :: \, n :: \, \mathcal{S} \ , \ \mathsf{ADD} \ \mathcal{P} \, \right\rangle \longrightarrow \left\langle \, (m+n) :: \, \mathcal{S} \ , \ \mathcal{P} \, \right\rangle} \ (\mathsf{add}) \\ \\ \frac{m \in \mathbb{Z} \quad n \in \mathbb{Z}}{\left\langle \, m :: \, n :: \, \mathcal{S} \ , \ \mathsf{SUB} \ \mathcal{P} \, \right\rangle \longrightarrow \left\langle \, (m-n) :: \, \mathcal{S} \ , \ \mathcal{P} \, \right\rangle} \ (\mathsf{sub}) \\ \\ \frac{m \in \mathbb{Z} \quad n \in \mathbb{Z}}{\left\langle \, m :: \, n :: \, \mathcal{S} \ , \ \mathsf{MUL} \ \mathcal{P} \, \right\rangle \longrightarrow \left\langle \, (m \times n) :: \, \mathcal{S} \ , \ \mathcal{P} \, \right\rangle} \ (\mathsf{mul}) \\ \\ \frac{m \in \mathbb{Z} \quad n \in \mathbb{Z} \quad n \neq 0}{\left\langle \, m :: \, n :: \, \mathcal{S} \ , \ \mathsf{DIV} \ \mathcal{P} \, \right\rangle \longrightarrow \left\langle \, (m/n) :: \, \mathcal{S} \ , \ \mathcal{P} \, \right\rangle} \ (\mathsf{div}) \\ \\ \overline{\left\langle \, \mathcal{S} \ , \ \mathsf{PUSH} \ n \ \mathcal{P} \, \right\rangle \longrightarrow \left\langle \, n :: \, \mathcal{S} \ , \ \mathcal{P} \, \right\rangle} \ (\mathsf{push})} \end{array}$$

Example (Evaluation)

PUSH 2 PUSH 3 ADD PUSH 4 MUL

$$\langle p, p2 p3 AP4M \rangle \rightarrow$$

 $\langle 2:: \phi, p3 AP4M \rangle \rightarrow$
 $\langle 3:: z:: \phi, AP4M \rangle \rightarrow$
 $\langle 5:: \phi, P4M \rangle \rightarrow$
 $\langle 5:: \phi, P4M \rangle \rightarrow$
 $\langle 4:: 5:: \phi, M \rangle \rightarrow$
 $\langle 20:: \phi, \epsilon \rangle \sqrt{20}$

Outline

Recap: Stack-Based Languages

Compilation/Bytecode Interpretation

Variables

OCaml Backend

What's next?

Compilation

Compilation is the process of *translating* a program in one language to another, maintaining semantic behavior.

Compilation can be a part of interpretation as well, like with bytecode interpretation (this is what OCaml does).

Simple case: every arithmetic expression can be represented as an equivalent expression in reverse polish notation.

Bytecode Interpreters

A bytecode interpreter is an implementation of a virtual machine with a simple-command based language where each operation is mapped to a *byte*. This is called the code of the operation, or the opcode

The primary benefits are simplicity and portability. There's no parser, there's no fussing with string

Let's take a quick look at some code

Example (Compilation, by Intuition)

4 * (2 + 3)

Demo: Compiling Arithmetic Expressions

We'll walk though a small bit of code for compiling arithmetic expressions, both into a program and into a stream of bytes which piped to a bytecode interpreter.

Outline

Recap: Stack-Based Languages

Compilation/Bytecode Interpretation

Variables

OCaml Backend

What's next's

(Immutable) Variables (Syntax)

(Immutable) Variables (Values and Configurations)

We take a value to be an integer (\mathbb{Z})

A **configuration** is made up of a stack (S) of values, an environment (E) mapping identifiers (\mathbb{I}) to values, and a program (P) given by $\operatorname{\mathsf{cprog}}$ >

(Immutable) Variables (Small-step Semantics)

$$\begin{array}{c} m \in \mathbb{Z} & n \in \mathbb{Z} \\ \hline \langle \ m :: n :: \mathcal{S} \ , \overline{\mathcal{E}} \ , \ \ \text{ADD} \ \mathcal{P} \ \rangle \longrightarrow \langle \ (m+n) :: \mathcal{S} \ , \overline{\mathcal{E}} \ , \ \mathcal{P} \ \rangle \end{array} \end{array} \tag{add}$$

$$\begin{array}{c} m \in \mathbb{Z} & n \in \mathbb{Z} \\ \hline \langle \ m :: n :: \mathcal{S} \ , \overline{\mathcal{E}} \ , \ \ \text{SUB} \ \mathcal{P} \ \rangle \longrightarrow \langle \ (m-n) :: \mathcal{S} \ , \overline{\mathcal{E}} \ , \ \mathcal{P} \ \rangle \end{array} \tag{sub}$$

$$\begin{array}{c} m \in \mathbb{Z} & n \in \mathbb{Z} \\ \hline \langle \ m :: n :: \mathcal{S} \ , \ \mathcal{E} \ , \ \ \text{MUL} \ \mathcal{P} \ \rangle \longrightarrow \langle \ (m \times n) :: \mathcal{S} \ , \ \mathcal{E} \ , \ \mathcal{P} \ \rangle \end{array} \tag{mul}$$

$$\begin{array}{c} m \in \mathbb{Z} & n \in \mathbb{Z} \\ \hline \langle \ m :: n :: \mathcal{S} \ , \ \mathcal{E} \ , \ \ \text{DIV} \ \mathcal{P} \ \rangle \longrightarrow \langle \ (m/n) :: \mathcal{S} \ , \ \mathcal{E} \ , \ \mathcal{P} \ \rangle \end{array} \tag{div}$$

(Immutable) Variables (Small-step Semantics)

Example

PUSH 2 ASSIGN x PUSH 3 ASSIGN y LOOKUP x LOOKUP y ADD

⟨\$, {x→2, y→3}, Lx Ly A) → ⟨3::2::\$, {...3, A) → ⟨5::\$, {...3, £.?} 21/29

Scoping

The language we've just described is only good for compiling from languages with dynamic scoping.

How would we compile the following program?

```
let y = 1 in
let x =
  let y = 2 in
  y + y
in x + y
```

Answer: *closures.* This is also how we deal with functions. (feel free to chat with me after if you're interested)

Outline

Recap: Stack-Based Languages

Compilation/Bytecode Interpretation

Variables

OCaml Backend

What's next's

The Pipeline

OCaml's interpretation/compilation pipeline is *roughly* what we've implemented (with a couple more steps). Let's take a look

The OCaml Bytecode Compiler

OCaml has an underlying bytecode interpreter for a specially designed Caml virtual machine (designed by Xavier Leroy in 1990 in his master's thesis).

It's like the one we just looked at but much more complicated. Let's take a look

OCaml code is tranformed into bytecode and the run with ocamlrun

Let's do a quick demo

An Aside: The OCaml Native Compiler

If you want fast OCaml code, OCaml has a native compiler. This means it will generate assembly language

It works *completely differently* from the bytecode compiler

But it means it's possible to generate some pretty competitive code

If you're interested I recommend taking a look at the chapter in Real-World OCaml on the compiler backend

Outline

Recap: Stack-Based Languages

Compilation/Bytecode Interpretation

Variables

OCaml Backeno

What's next?

Directions for Exploration

- ▶ More OCaml
 - ▶ More advanced module usage
 - ▶ Functional Data Structures
 - ▶ Real-World OCaml
 - ▶ Jane Street LINK
- ▶ More PL
 - Come learn Rust (and linear types) with me next semester!
 - ▶ Learn Haskell, Elm, Scala?
- ▶ More Math/Type Theory
 - Go learn more about grammars with Professor Stoughton next semester!
 - Go learn about session types with Professor Das next semester!
 - Category theory (functors, monads, comonads)
 - Logic
 - Type theory
- More Computers
 - ▶ Compilers (e.g., LLVM)
 - Formal methods

Fill out a Course Eval(!)