# OPTIMIZING THE F-MEASURE IN MULTI-LABEL CLASSIFICATION: Plug-in Rule Approach versus Structured Loss Minimization

Krzysztof Dembczyński<sup>1</sup>, Arkadiusz Jachnik<sup>1</sup>, Wojciech Kotłowski<sup>1</sup>, Willem Waegeman<sup>2</sup>, and Eyke Hüllermeier<sup>3</sup>





<sup>1</sup> Intelligent Decision Support Systems Laboratory, Poznań University of Technology, Poland <sup>2</sup> NGDATA-Europe, Belgium <sup>3</sup> Mathematics and Computer Science, Marburg University, Germany

## Multi-Label Classification (MLC)

- For a feature vector x predict a binary vector of responses y using a prediction function h(x):

$$\boldsymbol{x} = (x_1, x_2, \dots, x_p) \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \boldsymbol{y} = (y_1, y_2, \dots, y_m)$$

- Main challenges in multi-label classification:
- Appropriate modeling of label dependencies between labels

$$y_1, y_2, \ldots, y_m$$

• A multitude of multivariate loss functions defined over the binary vectors

 $\ell(oldsymbol{y},oldsymbol{h}(oldsymbol{x}))$ 

## $F_{\beta}$ -measure

– We focus on the  $F_{\beta}$ -measure-based loss function ( $F_{\beta}$ -loss):

$$\ell_{F_{\beta}}(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{x})) = 1 - F_{\beta}(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{x}))$$

$$= 1 - \frac{(1 + \beta^2) \sum_{i=1}^{m} y_i h_i(\boldsymbol{x})}{\beta^2 \sum_{i=1}^{m} y_i + \sum_{i=1}^{m} h_i(\boldsymbol{x})} \in [0, 1].$$

- Provides a **better balance** between relevant and irrelevant labels.
- However, it **is not easy** to optimize.

# Two Approaches

# Plug-in rule approach Structured loss minimization training examples minimization **LEARNING** of *F*-based loss function Scoring Function

# training examples **LEARNING** Probabilistic Model Inference minimization query $x \rightarrow$ $\rightarrow$ result $\hat{y}$ of *F*-based loss function

#### Structured Loss Minimization with SSVM

- Use a scoring function f(y, x)
- Minimize the **structured hinge loss** [5]:

Inference  $\rightarrow$  result  $\hat{y}$ 

$$\tilde{\ell}_h(\boldsymbol{y}, \boldsymbol{x}, f) = \max_{\boldsymbol{y}' \in \mathcal{Y}} \{ \ell_F(\boldsymbol{y}, \boldsymbol{y}') + f(\boldsymbol{y}', \boldsymbol{x}) \} - f(\boldsymbol{y}, \boldsymbol{x}),$$

- With  $\ell_F(y, y')$  used for margin rescaling.
- Predict according to:

$$m{h}(m{x}) = \underset{m{y} \in \mathcal{Y}}{\operatorname{arg\,max}} f(m{y}, m{x}).$$

- Requires solving the arg max and constraint generation problem.
- Two algorithms:

#### **RML** [3]

No label interactions:

$$f(oldsymbol{y},oldsymbol{x}) = \sum_{i=1}^m f_i(y_i,oldsymbol{x})$$

Quadratic learning and linear prediction

### **SML** [4]

Submodular interactions:

$$f(oldsymbol{y},oldsymbol{x}) = \sum_{i=1}^m f_i(y_i,oldsymbol{x}) + \sum_{y_k,y_l} f_{k,l}(y_k,y_l)$$

More complex (graph-cut and approximate algorithms)

# Plug-in Rule Approaches with LR

- Plug estimates of required parameters into the **Bayes classifier**.
- The brute-force algorithm is **intractable**:

$$\boldsymbol{h}^* = \arg\min_{\boldsymbol{h} \in \mathcal{Y}} \mathbb{E}\left[\ell_{F_{\beta}}(\boldsymbol{Y}, \boldsymbol{h})\right] = \arg\max_{\boldsymbol{h} \in \mathcal{Y}} \sum_{\boldsymbol{v} \in \mathcal{V}} \Pr(\boldsymbol{y}) \frac{(\beta + 1) \sum_{i=1}^{m} y_i h_i}{\beta^2 \sum_{i=1}^{m} y_i + \sum_{i=1}^{m} h_i}$$

- Approximation needed? Not really. The exact solution is tractable!

- Assumes label independence
   No assumptions
- Linear number of parameters:  $\Pr(y_i = 1)$
- Inference based on dynamic programming [6]
- Reduction to LR for each label

- Quadratic number of parameters:  $\Pr(y_i = 1, s = \sum_i y_i)$
- o Inference based on matrix multiplication and top k selection [1]
- o Reduction to multinomial LR for each label

# Theoretical Analysis

- Computational complexity (with respect to the number of labels):

|            | RML SML                               | LFP EFP                               |
|------------|---------------------------------------|---------------------------------------|
| learning   | $\mathcal{O}(m^2)$ $\mathcal{O}(m^4)$ | $\mathcal{O}(m)$ $\mathcal{O}(m^2)$   |
| prediction | $\mathcal{O}(m)$ $\mathcal{O}(m^3)$   | $\mathcal{O}(m^2)$ $\mathcal{O}(m^3)$ |

- Statistical consistency of multi-label classifiers [2]:
  - RML and SML are **not consistent**
  - EFP is **consistent**.

# **Empirical Evaluation On Benchmark Datasets**

|     | HL[%]↓ | <i>F</i> [%]↑ | $t_{cv}$  | $t_{train}$ | $t_{inf}$ | HL[%]↓ | <i>F</i> [%]↑ | $t_{cv}$ | $t_{train}$ | $t_{inf}$ |
|-----|--------|---------------|-----------|-------------|-----------|--------|---------------|----------|-------------|-----------|
|     | IMAGE  |               |           |             |           | SCENE  |               |          |             |           |
| BR  | 19.90  | 43.63         | 9         | 0.392       | 0.087     | 10.51  | 55.73         | 29       | 0.733       | 0.241     |
| LFP | 27.55  | 58.86         | 9         | 0.392       | 0.119     | 12.18  | 74.38         | 29       | 0.733       | 0.270     |
| EFP | 26.07  | 59.77         | 24        | 0.606       | 0.183     | 12.22  | 74.44         | 72       | 0.995       | 0.399     |
| RML | 25.07  | 57.49         | 94        | 1.104       | 0.051     | 9.70   | 73.92         | 73       | 1.001       | 0.118     |
| SML | 28.82  | 56.99         | 156       | 7.116       | 0.052     | 15.65  | 68.50         | 52       | 1.129       | 0.123     |
|     | YEAST  |               | Medical   |             |           |        |               |          |             |           |
| BR  | 20.03  | 60.59         | 12        | 0.429       | 0.128     | 1.17   | 70.19         | 9        | 1           | 0.952     |
| LFP | 22.24  | 65.02         | 12        | 0.429       | 0.146     | 1.18   | 81.27         | 9        | 1           | 1.513     |
| EFP | 22.82  | 65.47         | 101       | 2.004       | 0.367     | 1.23   | 80.39         | 16       | 1           | 1.883     |
| RML | 22.82  | 64.78         | 206       | 5.194       | 0.056     | 1.20   | 80.63         | 1253     | 30          | 0.144     |
| SML | 24.52  | 63.96         | 319       | 4.385       | 0.070     | 2.50   | 67.90         | 715      | 23          | 0.773     |
|     | Enron  |               | Mediamill |             |           |        |               |          |             |           |
| BR  | 4.54   | 55.49         | 52        | 4           | 1.016     | 3.19   | 51.21         | 3238     | 118         | 13        |
| LFP | 6.09   | 56.86         | 52        | 4           | 1.519     | 3.67   | 55.15         | 3238     | 118         | 20        |
| EFP | 5.34   | 61.04         | 214       | 6           | 2.628     | 3.63   | 55.16         | 24620    | 440         | 30        |
| RML | 6.35   | 57.69         | 3897      | 41          | 0.143     | 4.12   | 49.35         | _        | 1125        | 7         |
| SML | 7.82   | 54.61         | 18780     | 62          | 0.887     | 4.18   | 50.02         | _        | 10365       | 131       |

Experimental results for Hamming loss (HL),  $F_1$ , and running times (in seconds) of cross-validation ( $t_{cv}$ ), training  $(t_{train})$  (for the best set of parameters) and inference  $(t_{inf})$ . The best results are marked by a '\*'. BR denotes Binary Relevance which is a baseline in the comparison.

## References

- [1] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. An exact algorithm for F-measure maximization. In NIPS, volume 25, 2011.
- [2] W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Journal of Machine Learning Research -Proceedings Track, 19:341-358, 2011.
- [3] J. Petterson and T. S. Caetano. Reverse multi-label learning. In Advances in Neural Information Processing Systems 24, pages 1912–1920, 2010.
- [4] J. Petterson and T. S. Caetano. Submodular multi-label learning. In Advances in Neural Information Processing Systems 24, pages 1512–1520, 2011.

[5] Y. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and

- interdependent output variables. JMLR, 6:1453-1484, 2005.
- [6] N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing F-measures: a tale of two approaches. In ICML, 2012.







