Vzorec $[a \in R]$	Platnosť	Vzorec $[a \in R]$	Platnosť
$\int \mathrm{d}x = \int 1 \mathrm{d}x = x + c,$	$x \in R$	$\int x^a \mathrm{d}x = \frac{x^{a+1}}{a+1} + c,$	$a \neq -1, x \in R - \{0\}$
$\int \frac{\mathrm{d}x}{x} = \ln x + c,$	$x\!\in\!R\!-\!\{0\}$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c,$	$f(x) \neq 0, x \in D(f)$
$\int e^{ax} dx = \frac{e^{ax}}{a} + c,$	$a \neq 0, x \in R$	$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + c,$	$a > 0, \ a \neq 1, \ x \in R$
$\int \sin ax \mathrm{d}x = -\frac{\cos ax}{a} + c,$	$a \neq 0, x \in R$	$\int \cos ax \mathrm{d}x = \frac{\sin ax}{a} + c,$	$a \neq 0, x \in R$
$\int \frac{\mathrm{d}x}{\sin^2 ax} = -\frac{\cot g}{a} + c,$	$a \neq 0, x \in R,$ $x \neq \frac{k\pi}{a}, k \in Z$	$\int \frac{\mathrm{d}x}{\cos^2 ax} = \frac{\operatorname{tg} ax}{a} + c,$	$a \neq 0, x \in \mathbb{R},$ $x \neq \frac{(2k+1)\pi}{2a}, k \in \mathbb{Z}$
$\int \sinh ax \mathrm{d}x = \frac{\cosh ax}{a} + c,$	$a \neq 0, x \in R$	$\int \cosh ax \mathrm{d}x = \frac{\sinh ax}{a} + c,$	$a \neq 0, x \in R$
$\int \frac{\mathrm{d}x}{\sinh^2 ax} = -\frac{\cot h ax}{a} + c,$	$a \neq 0, \ x \in R - \{0\}$	$\int \frac{\mathrm{d}x}{\cosh^2 ax} = \frac{\tanh ax}{a} + c,$	$a \neq 0, \ x \in R$
$\int_{\frac{\mathrm{d}x}{x^2+a^2}} = \frac{1}{a} \arctan \frac{x}{a} + c_1 = -\frac{1}{a} \arctan \frac{x}{a} + c_2, \qquad a \neq 0, x \in \mathbb{R}$			
$\int \frac{\mathrm{d}x}{x^2 - a^2} = \int \frac{1}{2a} \left[\frac{1}{x - a} - \frac{1}{x + a} \right] \mathrm{d}x = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + c, \qquad a \neq 0, \ x \in \mathbb{R} - \{ \pm a \}$			
$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{ a } + c_1 = -\arccos \frac{x}{ a } + c_2, \int \sqrt{a^2 - x^2} \mathrm{d}x = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}}, a \neq 0, x \in (- a ; a)$			
$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln\left x + \sqrt{x^2 - a^2}\right + c, \int \sqrt{x^2 + a^2} \mathrm{d}x = \frac{x\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}}, \qquad a \neq 0, \ x \in \mathbb{R}$			
$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + c, \int \sqrt{x^2 - a^2} \mathrm{d}x = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}}, \qquad x \in (-\infty; - a) \cup (a ; \infty)$			

Neurčité integrály základných elementárnych funkcií