Computer Architecture

December 12, 2019

Contents

1	Fun	damentals of Quantitative Design and Analysis
	1.1	Introduction
	1.2	Classes of Computers
	1.3	Defining Computer Architecture p.40
	1.4	Trends in Technology

1 Fundamentals of Quantitative Design and Analysis

1.1 Introduction

1.2 Classes of Computers

Classes of Parallelism and Parallel Architectures

- 1. Basic classification:
 - Data-Level Parralelism.
 - Task-Level Parralelism.
- 2. Classification by exploitation:
 - Instruction-Level.
 - Vector Architectures and Graphic Processor Units.
 - Thread-Level(tightly coupled).
 - Request-Level(largely decoupled).
- 3. Classification by instruction-stream
 - SISD.
 - SIMD. Applying the same operations to multiple items of data in parallel. Mainly for DLP.
 - MISD. None.
 - MIMD. Mainly for task-levle parralelism.

1.3 Defining Computer Architecture p.40

ISA(Instruction Set Architecture)

- 1. Class of ISA.
 - register-memory: 80x86.
 - load-store: ARM, MIPS.
- 2. Memory addressing.

Byte addressing and alignment. p.531

- 3. Adressing modes.
 - Register, Immediate, and Displacement(variations).
- 4. Types and sizes of operands.
- 5. Operations.

- 6. Control flow instructions.
 Conditional branches, unconditional jumps, procedure calls, returns.
- 7. Encoding an ISA. Fixed length v.s. variable length.

Designing the Organization and Hardware

1.4 Trends in Technology

Performance Trends: Bandwidth over Latency p.48