Exercise 1

(a) supp
$$(e_{ij}) = [2-j,k,2-j,(k+i)]$$
 $\forall j,k \in \mathbb{Z}$ where e_{ij}

where
$$e^{(j)} = 2^{j/2}$$
, $e^{(2j)}$, $e^{(2j)}$, $e^{(2j)}$.

and
$$e(x) := \chi_{CO, M}(x) = \chi_{J, k} \in \mathcal{X}$$

o otherwise

$$= 2^{j/2} \int_{0}^{1} 0 \leq 2^{j} \times -k \leq 1$$

$$= 2^{j/2}$$

$$= 2$$

$$= 2^{j|2} \int_{2^{j}} \frac{k}{2^{j}} \leq \chi \leq \frac{(1+k)}{2^{j}}$$
otherwise

$$= \begin{cases} 2^{i/2} & 2^{-j}k \leq x \leq 2^{-j}(k+1) \\ 0 & \text{otherwise} \end{cases}$$

Thus supp
$$(e_k^{(i)}) = [2^{-i}k, 2^{-i}(k+1)]$$

Aso,
$$\langle e_{k}(i) \rangle$$
, $e_{k}(i) \rangle_{L^{2}(\mathbb{R})} = \int e_{k}(i) e_{k}(i) dx = 0$
Nowever if $k = l$ then $= 1$