NLP project 2

第四組 B03902015 簡瑋德 B03902021 郭冠宏 B02902005 張志宏

Division of Work

- Preprocessing B02902005
- Model Design B03902015
- Eexperiment B03902021

Run

```
github url : https://github.com/Cabalelrsky2000/NLP
python model_poolgru_other.py(get outputfile : "output_poolgru_other.txt")
```

Method

Task Introduction

這次的專案是希望給定句子中的特定兩個詞,分析兩者之間的關係,兩個詞之間的關係分為九類 加上其他類,我們決定使用句子的依賴樹、詞向量和詞性當作模型的輸入,並運用機器學習架構 的模型來預測句中兩詞的關係,我們將問題著重於十八類加上其他類的分類問題,並使用"遞歸 神經網路"配上傳統機器學習和深度學習來完成這次的專案。

Featre Extraction

Building Dependency Tree

因為在這次的project中牽涉到字詞與字詞之間的關係,所以我們選擇使用dependency parse tree中的資訊作為進行training的features。

我們使用stanford parser 3.9.1,對每個句子建立帶有POS標記的dependency tree,再從中抽取 features作為分類使用。

其中,我們使用了wordsAndTags及typedDependencies兩種outputFormat:先透過前者完成語句的tokenization及POS tagging,接著從後者得出的所有dependency關係建立dependency tree。

另外,由於目前stanford parser這個工具所做的dependency parse提供的結果是dependency graph可能含有環(cycle),未必是dependency tree,必須加上在執行時加上

-outputFormatOptions "treeDependencies"

的額外參數以確保dependency graph為最有可能的樹狀結構。

以training data中的其中一個句子"The <e1>burst</e1> has been caused by water hammer <e2>pressure</e2>."為例,以下分別為wordsAndTags與typedDependencies的結果:

```
The/DT burst/NN has/VBZ been/VBN caused/VBN by/IN water/NN hammer/NN pressure/NN ./.

det(burst-2, The-1) nsubjpass(caused-5, burst-2) aux(caused-5, has-3) auxpass(caused-5, been-4) root(ROOT-0, caused-5) case(pressure-9, by-6) compound(pressure-9, water-7) compound(pressure-9, hammer-8) nmod:by(caused-5, pressure-9)
```

經過前述的處理我們就可以得到dependency parse tree:

得到dependency tree之後,我們擷取兩個name entity節點之間的最短路徑,以節點 (token+POS)-關係(dependency)-節點-...-節點的格式,作為training data。從前面提過的例子,burst(entity1)到pressure(entity2)的最短路徑即為:

其中我們對路徑上的dependency之方向性做出標記,即此路徑是從樹狀結構中的子節點走向父節點還是相反。並且我們參考OO paper中的nagative sampling的方式同時使用了雙向的路徑作為training data,所以將entity1到entity2以及entity2到entity1兩個方向的路徑都分別抽出。

$$burst(NN) \xrightarrow{nsubjpass(-)} caused(VBN) \xrightarrow{nmod:by(+)} pressure(NN)$$

$$pressure(NN) \xrightarrow{nmod:by(-)} caused(VBN) \xrightarrow{nsubjpass(+)} burst(NN)$$

除此之外,對於由兩個以上token組成的name entity,為避免這些token本身形成樹狀結構無法取得單一的路徑,我們只保留位於dependency tree中較靠近root的token來作為路徑的起點或終點。由於dependency tree中的parent節點永遠都是一個dependency關係中的head,而child節點們則是對於head的modifier,此方法同時也能確保這些由多個tokens組成的name entity中較為重要的head可以被保存。

以另外一個句子"The <e1>glass bottle</e1> was contained in a <e2>wire mesh basket</e2> in case of explosion."為例,若在選擇entity2的端點時選擇basket以外的節點,仍不能包含 entity2裡所有的節點。

因此僅選擇head為端點,最後的路徑為:

Word Embedding

在詞向量的部分,我們使用"Glove",將給予的資料句子轉成向量表示,我們使用的是"Wikipedia2014"+"Gigaword5"所提供維度為300的向量表示。 針對英文詞部分,我們會先把有"_"和"-"的詞分開,並利用"nltk"的"lemmatization"將有"ed"、"s"等轉回原本詞的型態,最後換成小寫再用"Glove"中對應的詞向量表示,其中忽略找

不到的字並"padding"至固定長度。

Classification

分類部分,為了讓模型有學到方向性,我們從九類擴展成十九類的分類問題,前九類作為順向、 第十類為其他類、後九類則為逆向。

訓練過程中我們將每筆訓練資料都產生了兩個方向的"Dependency Tree"和詞向量並配上對應的分數(正負向),而測試資料也同樣生出兩個方向的結果,並把兩個方向對於十九類相同的結果合併作為最後的答案,舉例來說(第一筆測試資料),「<e1>audits</e1> were about <e2>waste</e2>」就會分別用關係樹和詞向量等並經過模型產生順向和反向的兩個"one hot"陣列

兩者根據相對應的答案相加,即順向的順向加上逆向的逆向、順向的逆向加上逆向的順向 (0.1+0.2作為第一類、0.9+0.8作為第十一類的結果),最後取最大值得到第十一類"Cause-Effect(e2,e1)"。

Experiment & Discussions

Model Description

Features Model	Baseline+NN	Glove+NN	Lstm+NN	Lstm(dir)+NN
Glove(e1,e2)	_	V	_	_
Glove(sentence)	_	_	V	V
POS(onehot)	V	V	V	V
POS(sequence)	_	_	_	_
Relation(onehot)	V	V	V	V
Relation(sequence)	_	_	_	_

Features Model	GRU+NN	poolGRU+NN	poolGRU+XGB	poolGRU+Extrat
Glove(e1,e2)	_	_	_	_
Glove(sentence)	V	V	V	V
POS(onehot)	V / -	V	V	V
POS(sequence)	V / -	_	_	_
Relation(onehot)	V / -	V	V	V
Relation(sequence)	V / -	_	_	_
1				•

Baseline Model

Assumption

只用上"one hot"的"pos tag"和"relation"並配上簡單的DNN model,得到一個簡單的baseline

Architecture

Input => Dense(2048) => Dense(1024) => Dense(19)

Result

Evaluation	-
Accuracy	28.82%
Р	31.64%
R	32.57%
F1	32.10%

Discussion

baseline model只做得比random好一些些(大概10%)

LSTM+NN Model

Assumption

把e1、e2字的"word embedding"拉進來,和"pos tag"和"relation"接起來,可以讓正確率大概到40多,之後決定把e1到e2句子做 lstm預期得到更好的結果,然後在 lstm 的部分分別試了把"hidden layer"全部接起來和只拿最後一層

Architecture

Input \Rightarrow LSTM(256) \Rightarrow Concatenate \Rightarrow Dense(2048) \Rightarrow Dense(1024) \Rightarrow Dense(19)

Result

Evaluation	return_sequences,128	return_sequences,256	256
Accuracy	67.83%	68.46%	66.88%
Р	68.79%	68.74%	66.92%
R	80.95%	82.10%	80.29%
F1	74.38%	74.83%	73.00%

Discussion

只拿最後一層的結果比全拿稍微差了一點,且可以看到256維的 lstm 表現較 128維來的好,但 是

GRU+NN Model

Assumption

想說把 lstm 換成 GRU 256 維 ,一樣是把 GRU 過完後接"pos tag"和"relation",看結果會不會 比較好

Architecture

Input \Rightarrow GRU(256) \Rightarrow Concatenate \Rightarrow Dense(2048) \Rightarrow Dense(1024) \Rightarrow Dense(19)

Result

Evaluation	_
Accuracy	67.50%
Р	68.31%
R	80.29%
F1	73.82%

Discussion

結果跟用 lstm 256維差不多, 意料之內。

poolGRU+NN Model

Architecture

Input => GRU(256) => Maxpooling \cdot Averagepooling => Concatenate => Dense(2048) => Dense(1024) => Dense(19)

Assumption

再换上更強一點的model - poolGRU,在過完 GRU 後分別做"max pooling"和"average pooling"並concate起來放在前面,其他一樣

Discussion

在仔細調了一下參數之後,結果上升了不少,再觀察結果之後發現其他類做得特別不好,於是在判定類別的時候設定一個threshold。

Assumption

在計算分數時,因為其他類不屬於前九類,所以學習到的效果可能有限,因此最後算出機率時若分數最高的那類少於一定的threshold時,我們就判定為其他類。

Result

Evaluation	poolGRU	poolGRU(other threshold)
Accuracy	73.54%	78.43%
Р	73.78%	80.96%
R	87.54%	85.29%
F1	80.07%	83.06%

Discussion

結果就過 baseline 的,其實沒有很意外,因為原本做出來的其他類真的很差,400多個只找出 10多個,在經過threshold的判定後找了200多個出來,而這個也是最好的結果

poolGRU+Xgboost Model

Assumption

利用傳統機器學習的 xgboost 之後用來做 ensemble

Result

Evaluation	n_estimators=120,max_depth=8	n_estimatoes=150,max_depth=8
Accuracy	71.81%	71.84%
Р	72.01%	72.04%
R	85.95%	86.08%
F1	78.36%	78.44%

Discussion

在試過各種參數之後,發現xgboost在 150,8 的時候最好,且和 NN 結果相差不遠

poolGRU+Extratree Model

Assumption

一樣是用來做 ensemble,用"sklearn"的"extratree"來實作

Result

Evaluation	n_estimators=1000,max_depth=23	n_estimatoes=1200,max_depth=1
Accuracy	72.36%	70.48%
Р	72.46%	70.62%
R	86.47%	84.45%
F1	78.96%	76.92%
4		•

Discussion

試過各種參數之後發現extree的結果也是挺不錯的

Ensemble

Assumption

試了兩種方法,第一種是直接拿 GRU+NN 、 XGB 、 Extratree 三個分數加起來來選出分數最高的,第二種則是投票,若是意見歧異則選擇目前最好的 GRU+NN,應該要在進步一點點

Result

Evaluation	分數相加	vote
Accuracy	75.19%	77.70%
Р	88.22%	80.73%
R	76.45%	84.62%
F1	81.91%	82.63%

Discussion

跟想法有些差距,並沒有更好的成績,推測是因為 model 數量不多且兩個"tree based" model 結果相差不大,再加上其他類的偏差,因此沒有得到更好的結果。