Tutorium Hardware- und Systemgrundlagen

Gruppe 1

Raum F109 | Mittwoch, 11.30 Uhr

Mirko Bay

[mirko.bay@htwg-konstanz.de]

Gruppe 2

Raum F110 | Mittwoch, 11.30 Uhr

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Zahlensysteme I

Dual-, Oktal-, Dezimal-, Hexadezimalsystem

Betrag + Vorzeichen Einer- / Zweierkomplement

IEEE-P 754-Floating-Point-Standard BCD-Zahl

Zahlensysteme I: Mögliche Aufgabentypen

von Basis 10 in Basis n ► Horner Schema (Vorauss. Ausgangs-Basis 10) Beispiel: (42)₁₀ als Dualzahl (Basis 2) 42:2=21 Rest 0 21:2=10 Rest 1 10:2=5 Rest 0 $=(101\ 010)_{3}$ 5:2=2 Rest 1 2:2=1 Rest 0 1:2=0 Rest 1 Beispiel: (0,42)₁₀ als Dualzahl (Basis 2) $0.42 \cdot 2 = 0$, 84 $0.84 \cdot 2 = 1$, 68 $=(0,011\ 010)_{2}$ $0.68 \cdot 2 = 1$, 36 Bei genügend $0.36 \cdot 2 = 0$, 72 hoher Genauigkeit $0.72 \cdot 2 = 1$, 44 abbrechen! $0.44 \cdot 2 = 0$, 88 Beispiel: $(0,\bar{4})_{10} = 4/9 = \text{als Dualzahl (Basis 2)}$ $4/9 \cdot 2 = 8/9 \rightarrow 0 8/9$ $8/9 \cdot 2 = 16/9 \rightarrow 1 7/9$ $7/9 \cdot 2 = 14/9 \rightarrow 1 5/9$ $5/9 \cdot 2 = 10/9 \rightarrow 1 1/9$ $=(0,\overline{011}\ 100)_{3}$ $1/9 \cdot 2 = 2/9 \rightarrow 0 \ 2/9$

von Basis n in Basis n (über Basis 10)

- ► Stellenwert berechnen und addieren
- ▶ dann weiter mit Horner Schema

Beispiel: (42)₇ als Dualzahl (Basis 2)

 $(42)_7 = 4 \cdot 7^1 + 2 \cdot 7^0$

$$= 4 \cdot 7 + 2 \cdot 1$$

$$= 28 + 2$$

$$= (30)_{10}$$

$$30: 2 = 15 \quad \text{Rest} \quad 0$$

$$15: 2 = 7 \quad \text{Rest} \quad 1$$

$$7: 2 = 3 \quad \text{Rest} \quad 1$$

$$3: 2 = 1 \quad \text{Rest} \quad 1$$

$$1: 2 = 0 \quad \text{Rest} \quad 1$$

von Basis n in Basis 8 / 16

► Erst Dezimalzahl berechnen, dann mit Horner ins Dualsystem, dann auflösen in Oktal/Hexa

$$(1120)_{3} = 1 \cdot 3^{3} + 1 \cdot 3^{2} + 2 \cdot 3^{1} + 0 \cdot 3^{0}$$

$$= 27 + 9 + 6 + 0$$

$$= (42)_{10}$$

$$(42)_{10} = (101 \ 010)_{2} = (\frac{5}{2})_{8}$$

$$(\frac{0010}{2} \ \frac{1010}{10})_{2}$$

von Basis 8 / 16 in Basis 2 (und umgekehrt!)

- ▶ untereinander schreiben
- ▶ in 3er / 4er Pakete zusammenfassen

Beispiel: (3D3,A2)₁₆ als Dualzahl (Basis 2)

 $(3D3,A2)_{16} = (0011\ 1101\ 0011\ ,\ 1010\ 0010)_{2}$

Beispiel: (7312,67)₈ als Dualzahl (Basis 2)

 $(7312,67)_8 = (111\ 011\ 001\ 010\ ,\ 110\ 111)_2$

- → wichtig: Perioden müssen immer als Bruch geschrieben werden, da sonst Genauigkeitsverlust!
- → auf gute Struktur achten, das hilft gerade bei den Dualzahlen viel!

Aufgabe 1:

- a) (247)₈ ins Dezimalsystem
- **b)** $(159)_{10}$ in Zahl zur Basis 4

a)
$$(247)_8 = 2 \cdot 8^2 + 4 \cdot 8^1 + 7 \cdot 8^0$$

= $2 \cdot 8 \cdot 8 + 4 \cdot 8 + 7 \cdot 1$
= $128 + 32 + 7$
= $(167)_{10}$

a)
$$(247)_8 = 2 \cdot 8^2 + 4 \cdot 8^1 + 7 \cdot 8^0$$

 $= 2 \cdot 8 \cdot 8 + 4 \cdot 8 + 7 \cdot 1$
 $= 128 + 32 + 7$
 $= (167)_{10}$
b) $159 : 4 = 39$ Rest 3
 $39 : 4 = 9$ Rest 1
 $9 : 4 = 2$ Rest 1
 $2 \cdot 4 = 0$ Rest 2

Aufgabe 2:

- a) (D59FA)₁₆ ins Dualsystem
- **b)** (1 0110, 01)₂ ins Dezimalsystem

Bei Hexadezimal 4, bei Oktal 3 Binärstellen je Ziffer **a)** (D 5 9 F A)₁₆ $(1101\ 0101\ 1001\ 1111\ 1010)_2$ $2^{-1} = \frac{1}{2^1} = \frac{1}{2} = 0,5$ $2^{-2} = \frac{1}{2^2} = \frac{1}{4} = 0,25$ **b)** $(1\ 0110\ ,\ 01)_2 = 1 \cdot 2^4 + 0 \cdot 2^3 \cdot 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2}$ = 16 + 4 + 2 + 0,25 $= (22,25)_{10}$ $2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0,125$

Aufgabe 3: (0101 0110)₂ ins Dezimalsystem

$$\begin{array}{ll} {76.5 \cdot 4 \cdot 3 \cdot 21.0} \\ (0101 \ 0110)_2 & = 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 \cdot 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \\ & = 64 + 16 + 4 + 2 \\ & = (86)_{10} \end{array}$$

Aufgabe 4: (666)₁₀ als Dualzahl (mit Horner Schema)

Aufgabe 5: (-27)₁₂ als Oktalzahl

(Nachklausur WS 06/07)

$$-(27)_{12} = 2 \cdot 12^{1} + 7 \cdot 12^{0}$$
 Horner Schema:
 $= 24 + 7$
 $= (31)_{10}$ $31: 8 = 3$ Rest 7 $3: 8 = 0$ Rest 3 $3: 8 = 0$ Rest 3 Das Minuszeichen wird am Ende einfach wieder rangehängt

Aufgabe 6: (DDDD,DDD)₁₆ als Oktalzahl

(Testat WS 13/14)

Aufgabe 7: (-53,2)₁₀ als Zahl zur Basis 7 (Testat WS 13/14)

mit Horner Schema: Vor- und Nachkomma-Anteil getrennt berechnen!

$$53: 7 = 7$$
 Rest 4
 $7: 7 = 1$ Rest 0
 $1: 7 = 0$ Rest 1

Vorsicht: Wiederholung! Dies bedeutet dass es sich um eine **Periode** handelt!

 $= (-104, \overline{1254})_7$

Aufgabe 8: Wandeln Sie den unendlichen Dezimalbruch $(0,\overline{4})_{10}$ in einen unendlichen Dualbruch um!

(Testat WS 10/11)

Aufgabe 9: (110 120)₃ als Hexadezimalzahl

Aufgabe 10:

Addieren Sie die beiden Hexadezimal-Zahlen (21A5,3C)₁₆ und (BE04,8)₁₆ und die Oktalzahl (57231,05)₈ zusammen.

(Testat WS 06/07)

(21A5,3)	$C)_{16} =$	2	1	A	5	,	3	C		
		0010	0001	1010	0101	,	0011	1100		
(BE04,8	$)_{16} =$	В	E	0	4	,	8			
		1011	1110	0000	0100	,	1000			
$(57231,05)_8 =$		5 7	2 3	1	,	0 5				
			101 111	010 011	001	,	000 101			
0000	0010	0001	1010	0101 ,	0011		1100			
0000	1011	1110	0000	0100 ,	1000		0000 +		۸ ماماندنا میں میں	Dualachlan
0000	<mark>0</mark> 101	1110	1001	1001,	0001		0100 +		Addition von $0 + 1 = 1$	Duaizanien:
1	1111	1111	111	1 1	111		1		1 + 0 = 1	
0001	0011	1110	0100	0010,	1101		0000 =			Übertrag 1
1	3	E	4	2,	D		0		1 + 1 + 1 = 1	Übertrag 1
$= (13E42, D)_{16}$										

Aufgabe 11: (1100 1100 1101)₂ als Dezimalzahl

Aufgabe 12: Finden Sie die Basen r und s so, dass gilt $12_r = 111_s$!

(Klausur WS 07/08)

$$1 \cdot r^{1} + 2 \cdot r^{0} = 1 \cdot s^{2} + 1 \cdot s^{1} + 1 \cdot s^{0}$$

$$1 \cdot r + 2 \cdot 1 = s^{2} + 1 \cdot s + 1$$

$$r + 2 = s^{2} + s + 1$$

Zuerst weitmöglichst auflösen, dann einsetzen von Zahlen in den größeren (komplexeren) Term

$$5+2 = 2^2 + 2 + 1$$

 $7 = 4 + 2 + 1$
 $7 = 7$
 $r = 5$ $s = 2$
 $11+2 = 3^2 + 3 + 1$
 $13 = 9 + 3 + 1$
 $13 = 13$
 $r = 11$ $s = 3$

Aufgabe 13:

$\left(\frac{3}{5}\right)_{10}$ [drei fünftel] als Hexadezimalzahl, mit 4 Stellen nach dem Komma!

(Klausur WS 06/07)

(Klausur WS 11/12)

$$0,\overline{5} = \frac{5}{9} \\
\frac{5}{9} \cdot 5 = \frac{25}{9} = 2$$

$$\frac{7}{9} \cdot 5 = \frac{35}{9} = 3$$

$$\frac{8}{9} \cdot 5 = \frac{40}{9} = 3$$

$$\frac{4}{9} \cdot 5 = \frac{20}{9} = 2$$

$$\frac{7}{9} \cdot 5 = \frac{5}{9} = 0$$

$$\frac{1}{9} \cdot 5 = \frac{5}{9} = 0$$

$$\frac{5}{9} \cdot 5 = \frac{25}{9} = 0$$

$$\frac{5}{9} \cdot 5 = \frac{25}{9} = 0$$

$$\frac{5}{9} \cdot 5 = \frac{25}{9} = 0$$

Aufgabe 15: a) (9CF4,BE)₁₆ als Oktalzahl

b) Den unendlichen Dezimalbruch $(0,\overline{1})_{10}$ in einen unendlichen Dualbruch

(Testat SS 07)

Aufgabe 16: Stellen Sie die angegebenen Zahlen im jeweils anderen Zahlensystem dar:

(Testat WS 02/03)

Dual	Dezimal	Oktal	Hexadezimal
	1435,625		
1	0,3		

Mit 8 Stellen nach dem Komma!

Dual	Dezimal	Oktal	Hexadezimal	
101 1001 1011,101	1435,625	2633,5	59B,A	
0,0100 1101	0,3	$0,2\overline{3146}$	0,4 <u>C</u>	