Remarks on the vanishing viscosity process of state-constraint Hamilton-Jacobi equations

Rate of convergence

Son Tu

Michigan State University tuson@msu.edu

Academy of Mathematics and Systems Science April 19, 2023

Presentation Overview

The state-constraint problem

The model, optimal control and viscosity solution The first-state-constraint problem The second-order state-constraint problem

- 2 Literature
- Main results

Properties of solutions
Main results

Semiconcavity

A Discussion

A model problem: escape of a light ray

- Let Ω be open with smooth boundary $\partial \Omega$ (the medium).
- A light ray starting from $x \in \Omega$ is a path $\gamma : [0, t] \to \Omega$ with $\gamma(0) = x$ for some t > 0.
- $c:\overline{\Omega}\to [0,+\infty)$ the medium constraint of the speed of light (inhomogeneity).
- $T_{\gamma} = \inf\{s \geq 0 : \gamma(s) \notin \Omega\}$: first time the light ray exists the medium and $T_{\gamma} = +\infty$ if $\gamma([0, \infty)) \subset \Omega$.

The light ray takes the path that exists the medium in the least amount of time with the speed constraint

$$|\dot{\gamma}(s)| \leq c(\gamma(s)), \qquad s \geq 0.$$

This leads to the introduction of the minimum time function

$$u(x) = \inf \{ T_{\gamma} : \gamma(0) = x, |\dot{\gamma}(s)| \le c(\gamma(s)) \}$$

for $x \in \Omega$. Assume that $\nabla u(x)$ exists at all points, then using Bellman's optimality principle and a Taylor expansion:

$$\begin{cases} c(x)|Du(x)| = 1 & \text{in } \Omega, \\ u(x) = 0 & \text{on } \partial\Omega. \end{cases}$$

This is *Eikonal equation*.

Example - vanishing viscosity

The minimal amount of time required to travel from a point to the boundary with constant cost 1 is model by

$$|u'(x)| = 1$$
 in $(-1,1)$ with $u(-1) = u(1) = 0$.

Infinitely many a.e. solutions, physically correct solution: u(x) = 1 - |x|.

Approximated equation with unique solution

$$\begin{cases} |(u^{\varepsilon})'| = 1 + \varepsilon (u^{\varepsilon})'' & \text{in } (-1,1), \\ u^{\varepsilon}(-1) = u^{\varepsilon}(1) = 0. \end{cases}$$

Vanishing viscosity

$$u^{\varepsilon}(x) = 1 - |x| + \varepsilon \left(e^{-1/\varepsilon} - e^{-|x|/\varepsilon}\right) \to u(x)$$

Optimal control and first-order Hamilton-Jacobi equation

Let *U* be a compact metric space. A *control* is a Borel measurable map $\alpha : [0, \infty) \mapsto U$. We are given:

$$\begin{cases} b = b(x, a) : \overline{\Omega} \times U \to \mathbb{R}^n & \text{velocity vector field} \\ f = f(x, a) : \overline{\Omega} \times U \to \mathbb{R} & \text{running cost.} \end{cases}$$

For $x \in \mathbb{R}^n$ and a control $\alpha(\cdot)$, let $y^{x,\alpha}(t)$ solves

$$\dot{y}(t) = b(y(t), \alpha(t)), \qquad t > 0, \qquad \text{and} \qquad y(0) = x$$

Question. Minimize the cost functional ($\lambda \geq 0$ - the discount factor)

$$u(x) = \inf_{\alpha(\cdot)} \int_0^\infty e^{-\lambda s} f(y^{x,\alpha}(s), \alpha(s)) ds.$$

Define $H(x, p) = \sup_{v \in U} (-b(x, v) \cdot p - f(x, v))$ then

$$\lambda u(x) + H(x, Du(x)) = 0 \text{ in } \mathbb{R}^n$$

assuming that $u \in \mathbb{C}^{\infty}$ (using optimality or dynamic programming principle). However the *value function* is usually not smooth! \longrightarrow viscosity solution.

Viscosity solution

Definition

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, we consider the fully nonlinear PDE

$$F(x, u, Du, D^2u) = 0$$
 in Ω .

F is non-decreasing in *u*, non-increasing in D^2u (degenerate elliptic).

→ No integration by parts, only maximum principle.

Subsolution: $\varphi \in \mathbb{C}^2$, $u - \varphi \max$ at x:

$$F(x, u(x), D\varphi(x), D^2\varphi(x)) \leq 0$$

Supersolution: $\psi \in \mathbb{C}^2$, $u - \psi$ *min* at x:

$$F(x,u(x),D\psi(x),D^2\psi(x))\geq 0$$

Viscosity solution is *both* subsolution and supersolution.

- → physically correct solution
- → value function in optimal control theory

State-constraint: 1st-order

We consider

$$\begin{cases} u(x) + |Du|^p - f(x) \le 0 & \text{in } \Omega, \\ u(x) + |Du|^p - f(x) \ge 0 & \text{on } \overline{\Omega} \end{cases}$$

$$(PDE_0)$$

This is the state-constrain Hamilton-Jacobi equation Soner (1986), which describe the value function of a deterministic optimal control problem

$$u(x) = \inf_{\eta(0)=x} \left\{ \int_0^\infty e^s L(\eta(s), -\dot{\eta}(s)) ds : \eta \in AC, \underline{\eta([0, \infty))} \subset \overline{\Omega} \right\}.$$

Here $L(x, v) : \overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}$ is the running cost, Legendre's transform of $H(x, \xi) = |\xi|^p - f(x)$. Generally, if H is smooth and u is smooth

$$\begin{cases} u(x) + H(x, Du(x)) = 0 & \text{in } \Omega, \\ D_p H(x, Du(x)) \cdot \nu(x) \ge 0 & \text{on } \partial \Omega. \end{cases}$$

Given stochastic control $\alpha(\cdot)$, we solve

$$\begin{cases} dX_t = \alpha(X_t) dt + \sqrt{2\varepsilon} d\mathbb{B}_t & \text{for } t > 0, \\ X_0 = x. \end{cases}$$
 (1)

 $\mathbb{B}_t \sim \mathcal{N}(0,t)$ is the Brownian motion, to constraint $X_t \in \Omega$, we define

$$\widehat{\mathcal{A}}_{x} = \left\{ lpha(\cdot) \in \mathsf{C}(\Omega) : \mathbb{P}(X_{t} \in \Omega) = 1 \text{ for all } t \geq 0 \right\}$$

Minimize the cost function

$$u^{\varepsilon}(x) = \inf_{\alpha \in \widehat{\mathcal{A}}_x} \mathbb{E}\left[\int_0^{\infty} e^{-t} L(X_t, \alpha(X_t)) dt\right],$$

If $1 , <math>u^{\varepsilon} \in C^2(\Omega)$ Lasry and Lions (1989) is the solution to

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\ \lim_{\text{dist}(x, \partial \Omega) \to 0} u^{\varepsilon}(x) = +\infty. \end{cases}$$
(PDE_{\varepsilon})

If p > 2 then $u^{\varepsilon} \in C(\overline{\Omega})$. We focus on the subquadratic case $1 < \le 2$.

Using the stochastic, Lasry and Lions (1989) Dynamic Programming Principle, u^{ε} solves

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \leq 0 & \text{in } \Omega, \\ u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \geq 0 & \text{on } \overline{\Omega}, \end{cases}$$
(2)

• u^{ε} is a viscosity subsolution in Ω , that is if $x_0 \in \Omega$ and $\varphi \in C^2(\Omega)$ with $u^{\varepsilon} - \varphi$ has a maximum over Ω at x_0 , then

$$u^{\varepsilon}(x_0) + |D\varphi(x_0)|^p - f(x_0) - \varepsilon \Delta \varphi(x_0) \leq 0.$$

• u^{ε} is a viscosity supersolution on $\overline{\Omega}$, that is that is if $x_0 \in \Omega$ and $\varphi \in C^2(\overline{\Omega})$ with $u^{\varepsilon} - \varphi$ has a maximum over $\overline{\Omega}$ at x_0 , then

$$u^{\varepsilon}(x_0) + |D\varphi(x_0)|^p - f(x_0) - \varepsilon\Delta\varphi(x_0) \geq 0.$$

When $1 , <math>u^{\varepsilon}$ is the unique solution with $u^{\varepsilon}(x) = +\infty$ on $\partial \Omega$.

Literature

Qualitative: As $\varepsilon \to 0$, $u^{\varepsilon} \to u$ in some sense, and in the limit, u is no longer blowing-up on the boundary:

- 1 Lasry and Lions (1989) (*PDEs approach*)
- Capuzzo-Dolcetta and Lions (1990) (PDEs approach)
- 3 Fabbri et al. (2017) (stochastic control approach)

In the literature the solution is also called *large solutions*, and has been studied extensively. Blow-up rate of gradient is studied in Porretta (2004); Porretta and Véron (2006).

Quantitative: Rate of convergence: not yet done for state-constraint but for Dirichlet BC:

$$\begin{cases} u^{\varepsilon}(x) + H(x, Du^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\ u^{\varepsilon}(x) = 0 & \text{on } \partial \Omega \end{cases} \longrightarrow \begin{cases} u(x) + H(x, Du) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

The rate is $\mathcal{O}(\sqrt{\varepsilon})$, $\|u^{\varepsilon} - u\|_{L^{\infty}(\overline{\Omega})} \leq C\sqrt{\varepsilon}$ and the one-sided rate can be $\mathcal{O}(\varepsilon)$ for convex Hamiltonians

- 1 Fleming (1961)
- Bardi and Capuzzo-Dolcetta (1997)
- 3 Crandall and Lions (1984)
- 4 Evans (2010), Tran (2011) (nonlinear adjoint method)

Properties of solutions

A blow up rate of u^{ε} near $\partial \Omega$

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\ \lim_{\text{dist}(x,\partial\Omega) \to 0} u^{\varepsilon}(x) = +\infty. \end{cases}$$
 (PDE_{\varepsilon})

When $H(x,\xi) = |\xi|^p - f(x)$, we can compute the asymptotic expansion of u^{ε} near $\partial \Omega$. Assume

$$u^{\varepsilon} \sim \frac{C}{d(x)^{\alpha}}$$

we find

$$\boxed{ u^{\varepsilon}(x) \sim \frac{C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}}}, \qquad p < 2, \qquad \alpha = \frac{2-p}{p-1}, \quad C_{\alpha} = \frac{(\alpha+1)^{\alpha+1}}{\alpha}$$

$$\boxed{ u^{\varepsilon}(x) \sim -\varepsilon \log(d(x))}, \qquad p = 2$$

Summary of main results

Theorem (Han and Tu (2022))

Without loss of generality, we can assume $f \ge 0$. Also assume f is Lipschitz.

1 Assume f=0 on $\partial\Omega$ then $|u^{\varepsilon}-u|\leq C\sqrt{\varepsilon}$ in the interior of Ω . More precisely,

$$-C\sqrt{arepsilon} \leq u^{arepsilon} - u \leq C\sqrt{arepsilon} + rac{Carepsilon^{lpha+1}}{d(x)^{lpha}}, \qquad p < 2$$
 $-C\sqrt{arepsilon} \leq u^{arepsilon} - u \leq C\sqrt{arepsilon} + Carepsilon |\log(d(x))|, \qquad p = 2$

2 If f is compactly supported in Ω then

$$-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\varepsilon + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}.$$

3 If $f \in C^2(\Omega)$ such that Df = 0 and f = 0 on $\partial \Omega$ then

$$-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\varepsilon^{1/p} + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}, \qquad 1$$

Difficulties and contributions

Difficulties

- The blow-up behaviors at the boundary makes it a nontrivial task to apply conventional method: doubling variables.
- A uniform bound for the Laplacian of u^{ε} is complicated with blow-up behavior.
 - \longrightarrow We avoid this by using a bound for the Laplacian of u instead. This is related to the semi-concavity of the solution u^{ε} and u.

Contributions

- The rate $\mathcal{O}(\varepsilon^{1/p})$ is new!
- Construct a new blow-up solution to deal with the blow-up behavior of u^{ε} (major difficulty)
- Specific (blow-up rate) of semi-concavity behavior of u of improve the one-sided rate.

A heuristic argument

Heuristic: Doubling variable method

$$\Phi(x,y) = u^{\varepsilon}(x) - u(y) - \frac{|x-y|^2}{\sigma}, \qquad (x,y) \in \overline{\Omega} \times \overline{\Omega}$$

- Viscosity solution \sim weak solution in $L^{\infty} \Longrightarrow$ move the derivative to test function without integration by parts by maximum principle.
- Assume Φ has a maximum at x_{σ}, y_{σ} and $x_{\sigma} \in \Omega$ then $\Phi(x_{\sigma}, y_{\sigma}) \geq \Phi(x_{\varepsilon}, x_{\varepsilon})$ implies that $|x_{\sigma} y_{\sigma}| \leq C\sigma$
 - $\frac{|x-y_{\sigma}|^2}{\varepsilon}$ as a test function for $u^{\varepsilon}(x)$ in (PDE $_{\varepsilon}$) to get

$$u^{\varepsilon}(x_{\sigma}) + \left| \frac{2(x_{\sigma} - y_{\sigma})}{\sigma} \right|^{p} - f(x_{\sigma}) - \varepsilon \frac{2n}{\sigma} \leq 0$$

• $-\frac{|x_{\sigma}-y|^2}{\varepsilon}$ as a test function for u(y) in (PDE_0) to obtain

$$u(y_{\sigma}) + \left| \frac{2(x_{\sigma} - y_{\sigma})}{\sigma} \right|^{\rho} - f(y_{\sigma}) \geq 0$$

$$u^{\varepsilon}(x) - u(x) \leq u^{\varepsilon}(x_{\sigma}) - u(y_{\sigma}) \leq \frac{2n\varepsilon}{\sigma} + f(x_{\sigma}) - f(y_{\sigma}) \leq \frac{2n\varepsilon}{\sigma} + C\sigma$$

and the best choice here is $\sigma = \sqrt{\varepsilon}$.

The $\mathcal{O}(\sqrt{\varepsilon})$ rate

To overcome the difficulties in the argument, we instead use

$$\Phi(x,y) = \underbrace{u^{\varepsilon}(x) - \frac{C_{\alpha}\varepsilon^{\alpha+1}}{d(x)^{\alpha}}}_{\psi^{\varepsilon}(x)} - u(y) - \frac{C|x-y|^2}{\sigma}$$
(3)

• This forces the maximum happen at (x_{σ},y_{σ}) where $x_{\sigma}\in\Omega$ (make C_{α} bigger). We also have

$$D\psi^{\varepsilon}(x) = Du^{\varepsilon}(x) + C_{\alpha}\alpha \left(\frac{\varepsilon}{d(x)}\right)^{\alpha+1} Dd(x). \tag{4}$$

- $|D\psi^{\varepsilon}(x)| \leq C$ if $d(x) \geq \varepsilon$ Armstrong and Tran (2015) \Longrightarrow boundary layer is $\mathcal{O}(\varepsilon)$ from the boundary.
- However, we need $d(x_{\sigma}) \approx \varepsilon^{\gamma}$ for $\gamma \in (0,1)$. We need fine control of this after using some penalty to force the max happens.

The $\mathcal{O}(\sqrt{\varepsilon})$ rate Reduction

Recall the equation

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\ \lim_{\text{dist}(x,\partial\Omega) \to 0} u^{\varepsilon}(x) = +\infty. \end{cases}$$
 (PDE_{\varepsilon})

• Consider the case f=0 first (then $u\equiv 0$), then ($\nu>1$)

$$0 \le u^{\varepsilon} \le \underbrace{\frac{\nu C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}} + C \varepsilon^{\alpha+2}}_{\text{supersolution}}$$

- Compactly supported supp $(f) \subset \Omega_{\kappa} = \{x \in \Omega : d(x) > \kappa\}$. If $\Phi(x, y)$ has max at (x_{σ}, y_{σ})
 - (a) If $x_{\sigma} \in \Omega_{\kappa}$ then $d(x_{\sigma}) \geq C_{\kappa}$, it is stronger than $d(x_{\sigma}) \approx \varepsilon^{\gamma}$.
 - (b) If $x_{\sigma} \in \Omega \setminus \Omega_{\kappa}$ we use a new *barrier*, bound solution by w that solves the PDE with $w = +\infty$ on $\partial \Omega_{\kappa} \cup \partial \Omega$.
- General case f=0 on $\partial\Omega$: we do a cut-off $f_{\kappa}\to f$ as $\kappa\to 0$ and $\mathrm{supp}(f_{\kappa})\subset\Omega_{\kappa}$. Since f=0 on $\partial\Omega$, we can construct $\|f_{\kappa}-f\|_{L^{\infty}}\leq C\kappa$.

The $\mathcal{O}(\varepsilon)$ rate Compactly supported data

Heuristic

- To overcome $\kappa + \frac{c}{\kappa}$, which make the best rate is only $\mathcal{O}(\sqrt{\varepsilon})$ we use u^{ε} as a C^2 test function for u.
- Assume that $u^{\varepsilon}(x) u(x)$ has a maximum over $\overline{\Omega}$ at some interior point $x_0 \in \Omega$, then

$$\max_{x \in \overline{\Omega}} \left(u^{\varepsilon}(x) - u(x) \right) \le u^{\varepsilon}(x_0) - u(x_0) \le \varepsilon \Delta u^{\varepsilon}(x_0).$$

• If u is uniformly semiconcave in $\overline{\Omega}$, then $\Delta u^{\varepsilon}(x_0) \leq \Delta u(x_0) \leq C$.

Difficulties

- 1. $u^{\varepsilon} = +\infty$ on $\partial\Omega$, we can subtract by $\frac{G_{\varepsilon}^{\alpha+1}}{d(x)^{\alpha}}$ to make maximum happen in the interior (then we need the barrier to handle the case d(x) is small \leftarrow the barrier still plays a crucial role).
- 2. Unless $f \in C_c^2(\Omega)$, in general, u is not uniformly semiconcave but only locally semiconcave. In fact

$$\Delta u(x) \leq \frac{C}{d(x)}$$

and this is enough to get $\mathcal{O}(\varepsilon)$ for compactly supported data.

Figure: The different data that lead to different semiconcavities of u

- One the left: If f can be extended to a semiconcave function $\tilde{f}: \mathbb{R}^n \to \mathbb{R}$ by setting f = 0 on Ω^c , then u is uniformly semiconcave, i.e., $|Du| \leq C$, and hence an improvement on the rate happens.
- One the right: the best we can do is $|Du| \le Cd(x)^{-1}$.

Semiconcavity of solutions to the first-order problem

We want to show that if $x, x - h, x + h \in \overline{\Omega}$ then

$$u(x+h) - 2u(x) + u(x-h) \le C|h|^2$$

• If f can be extended to $f \in \mathbb{R}^n$ by setting f = 0 outside Ω and \tilde{f} is semiconcave then u is the restriction of \tilde{u} where

$$\tilde{u}(x) + |D\tilde{u}(x)|^{\rho} - \tilde{f}(x) = 0$$
 in \mathbb{R}^n .

Equation in the whole space is easier to deal with, see Calder (2018).

• If f=0 on $\partial\Omega$ but cannot be extended to semiconcave function globally by setting f=0 outside Ω , we relies on *optimal control formula and* $p\leq 2\Longrightarrow q=p^*>2$. Take a minimizer η of x and let η hits $\partial\Omega$ at time T, then

$$u(x) = \int_0^T e^{-s} (c |\dot{\eta}(s)|^q + f(\eta(s))) ds.$$

- $\xi \mapsto |\xi|^q$ is C^2 if q > 2, thus locally semiconcave.
- Bounded velocity $|\dot{\eta}| \leq C$ implies $d(x) \leq CT$.

Discussion

Open questions

- **1** Can we remove the assumption f = 0 on $\partial\Omega$?
- ② What is the optimal rate of convergence? (The semiconcavity of u in a more general setting was studied in a recent paper Han (2022)).
- **3** What is the rate of convergence for the super-quadratic case p > 2?
- 4 More general form of Hamiltonians?
- **6** A finer control of solution locally (which could leads to better rate) by using stochastic approach?

References

- Armstrong, S. N. and Tran, H. V. (2015). Viscosity solutions of general viscous Hamilton–Jacobi equations. *Mathematische Annalen*, 361(3):647–687.
- Bardi, M. and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser Classics.
- Calder, J. (2018). Lecture notes on viscosity solutions.
- Capuzzo-Dolcetta, I. and Lions, P.-L. (1990). Hamilton-Jacobi Equations with State Constraints. Transactions of the American Mathematical Society, 318(2):643–683.
- Crandall, M. G. and Lions, P. L. (1984). Two Approximations of Solutions of Hamilton-Jacobi Equations.
- Evans, L. C. (2010). Adjoint and Compensated Compactness Methods for Hamilton-Jacobi PDE. Archive for Rational Mechanics and Analysis, 197(3):1053–1088.
- Fabbri, G., Gozzi, F., and Swiech, A. (2017). Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations. Probability Theory and Stochastic Modelling.
- Fleming, W. H. (1961). The convergence problem for differential games. *Journal of Mathematical Analysis and Applications*, 3(1):102–116.

- Han, Y. (2022). Global semiconcavity of solutions to first-order Hamilton-Jacobi equations with state constraints. (arXiv:2205.01615). arXiv:2205.01615 [math] type: article.
- Han, Y. and Tu, S. N. T. (2022). Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton-Jacobi Equations. Applied Mathematics & Optimization, 86(1):3.
- Lasry, J. M. and Lions, P.-L. (1989). Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with State Constraints. I. The Model Problem. *Mathematische Annalen*, 283(4):583–630.
- Porretta, A. (2004). Local estimates and large solutions for some elliptic equations with absorption. *Advances in Differential Equations*, 9(3-4):329–351. Publisher: Khayyam Publishing, Inc.
- Porretta, A. and Véron, L. (2006). Asymptotic Behaviour of the Gradient of Large Solutions to Some Nonlinear Elliptic Equations. *Advanced Nonlinear Studies*, 6(3):351–378. Publisher: Advanced Nonlinear Studies, Inc. Section: Advanced Nonlinear Studies.
- Soner, H. (1986). Optimal Control with State-Space Constraint I. SIAM Journal on Control and Optimization, 24(3):552–561.
- Tran, H. V. (2011). Adjoint methods for static Hamilton–Jacobi equations. *Calculus of Variations and Partial Differential Equations*, 41(3):301–319.

The End

Questions & Comments Thank you

- Co-author: Yuxi Han
- This work was done at University of Wisconsin Madison
- The work was supported in part by the GSSC Fellowship (UW-Madison), NSF grant DMS1664424 and NSF CAREER grant DMS-1843320