Package 'dimensio'

August 26, 2024

```
Title Multivariate Data Analysis
Version 0.9.0
Maintainer Nicolas Frerebeau < nicolas.frerebeau@u-bordeaux-montaigne.fr>
Description Simple Principal Components Analysis (PCA) and (Multiple)
     Correspondence Analysis (CA) based on the Singular Value Decomposition
     (SVD). This package provides S4 classes and methods to compute,
     extract, summarize and visualize results of multivariate data
     analysis. It also includes methods for partial bootstrap validation
     described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et
     al. (2006, ISBN: 978-2-10-049616-7).
License GPL (>= 3)
URL https://packages.tesselle.org/dimensio/,
     https://github.com/tesselle/dimensio
BugReports https://github.com/tesselle/dimensio/issues
Depends R (>= 3.5)
Imports arkhe (>= 1.7.0), graphics, grDevices, khroma (>= 1.13.0),
     methods
Suggests knitr, markdown, rsvg, svglite, tinysnapshot, tinytest
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Collate 'AllClasses.R' 'AllGenerics.R' 'annotations.R' 'augment.R'
     'biplot.R' 'bootstrap.R' 'ca.R' 'coerce.R' 'data.R'
     'dimensio-defunct.R' 'dimensio-deprecated.R'
     'dimensio-internal.R' 'dimensio-package.R'
     'get_contributions.R' 'get_coordinates.R' 'get_correlations.R'
     'get_cos2.R' 'get_data.R' 'get_distances.R' 'get_eigenvalues.R'
     'get_inertia.R' 'get_variance.R' 'loadings.R' 'mca.R'
     'mutators.R' 'pca.R' 'pcoa.R' 'plot.R' 'predict.R' 'reexport.R'
     'screeplot.R' 'show.R' 'subset.R' 'summary.R' 'svd.R' 'tidy.R'
```

2 Contents

'tools.R' 'viz_contributions.R' 'viz_coordinates.R'
'viz_cos2.R' 'viz_ellipse.R' 'viz_hull.R' 'wrap_ellipses.R'
'wrap_hull.R' 'zzz.R'
NeedsCompilation no
Author Nicolas Frerebeau [aut, cre] (https://orcid.org/0000-0001-5759-4944 , Université Bordeaux Montaigne),
Jean-Baptiste Fourvel [ctb] (https://orcid.org/0000-0002-1061-4642 , CNRS),
Brice Lebrun [ctb] (https://orcid.org/0000-0001-7503-8685">https://orcid.org/0000-0001-7503-8685 , Logo designer),
Université Bordeaux Montaigne [fnd],
CNRS [fnd]

Repository CRAN

Date/Publication 2024-08-26 12:50:11 UTC

Contents

Index

benthos																		3
biplot								 										3
boot								 										7
burt								 										8
ca																		9
cdt								 										11
colours								 										12
countries								 										13
dimnames								 										13
get_contributions								 										14
get_coordinates .								 										15
get_data								 										17
get_eigenvalues .								 										17
loadings								 										19
mca								 										20
pca								 										21
pcoa								 										23
plot								 										24
predict								 										26
screeplot								 										27
subset								 										28
summary																		30
tidy								 										31
viz_contributions								 										33
viz_individuals .								 										35
viz_variables								 										38
viz_wrap								 										42
wrap																		43

46

benthos 3

benthos

Benthos

Description

Abundances of Marine Species in Sea-Bed Samples

Usage

benthos

Format

```
A data. frame with 13 columns (sites) and 92 rows (species).
```

Source

```
http://www.carme-n.org/?sec=data7
```

See Also

Other datasets: colours, countries

biplot

Biplot

Description

Biplot

Usage

```
## S4 method for signature 'CA'
biplot(
    x,
    ...,
    axes = c(1, 2),
    type = c("symetric", "rows", "columns", "contributions"),
    active = TRUE,
    sup = TRUE,
    labels = NULL,
    col.rows = c("#E69F00", "#009E73"),
    col.columns = c("#56B4E9", "#F0E442"),
    cex.rows = graphics::par("cex"),
    cex.columns = graphics::par("cex"),
    pch.rows = 16,
```

4 biplot

```
pch.columns = 17,
 xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
 legend = list(x = "topleft")
)
## S4 method for signature 'PCA'
biplot(
 Х,
  ...,
  axes = c(1, 2),
  type = c("form", "covariance"),
  active = TRUE,
  sup = TRUE,
  labels = "variables",
  col.rows = c("#E69F00", "#009E73"),
  col.columns = c("#56B4E9", "#F0E442"),
  xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
  legend = list(x = "topleft")
)
```

Arguments

Х	A CA, MCA or PCA object.
	Currently not used.
axes	A length-two numeric vector giving the dimensions to be plotted.
type	A character string specifying the biplot to be plotted (see below). It must be one of "rows", "columns", "contribution" (CA), "form" or "covariance" (PCA). Any unambiguous substring can be given.
active	A logical scalar: should the active observations be plotted?
sup	A logical scalar: should the supplementary observations be plotted?
labels	A character vector specifying whether "rows"/"individuals" and/or "columns"/"variables" names must be drawn. Any unambiguous substring can be given.
col.rows	A length-two vector of color specification for the active and supplementary rows.
col.columns	A length-two vector of color specification for the active and supplementary columns.
xlim	A length-two numeric vector giving the x limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
ylim	A length-two numeric vector giving the y limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.

biplot 5

main A character string giving a main title for the plot.

sub A character string giving a subtitle for the plot.

legend A list of additional arguments to be passed to graphics::legend(); names

of the list are used as argument names. If NULL, no legend is displayed.

pch, pch.rows, pch.columns

A symbol specification.

cex, cex.rows, cex.columns

A numeric vector giving the amount by which plotting characters and symbols

should be scaled relative to the default.

Details

A biplot is the simultaneous representation of rows and columns of a rectangular dataset. It is the generalization of a scatterplot to the case of multivariate data: it allows to visualize as much information as possible in a single graph (Greenacre 2010).

Biplots have the drawbacks of their advantages: they can quickly become difficult to read as they display a lot of information at once. It may then be preferable to visualize the results for individuals and variables separately.

Value

biplot() is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

PCA Biplots

form (**row-metric-preserving**) The form biplot favors the representation of the individuals: the distance between the individuals approximates the Euclidean distance between rows. In the form biplot the length of a vector approximates the quality of the representation of the variable.

covariance (**column-metric-preserving**) The covariance biplot favors the representation of the variables: the length of a vector approximates the standard deviation of the variable and the cosine of the angle formed by two vectors approximates the correlation between the two variables. In the covariance biplot the distance between the individuals approximates the Mahalanobis distance between rows.

CA Biplots

symetric (**symetric biplot**) Represents the row and column profiles simultaneously in a common space: rows and columns are in standard coordinates. Note that the inter-distance between any row and column items is not meaningful.

rows (asymetric biplot) Row principal biplot (row-metric-preserving) with rows in principal coordinates and columns in standard coordinates.

columns (**asymetric biplot**) Column principal biplot (column-metric-preserving) with rows in standard coordinates and columns in principal coordinates.

contribution (asymetric biplot) Contribution biplot with rows in principal coordinates and columns in standard coordinates multiplied by the square roots of their masses.

6 biplot

Author(s)

N. Frerebeau

References

```
Aitchison, J. and Greenacre, M. J. (2002). Biplots of Compositional Data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(4): 375-92. doi:10.1111/14679876.00275. Greenacre, M. J. (2010). Biplots in Practice. Bilbao: Fundación BBVA.
```

See Also

```
Other plot methods: plot(), screeplot(), viz_contributions(), viz_individuals(), viz_variables(), viz_wrap, wrap
```

```
## Replicate examples from Greenacre 2007, p. 59-68
data("countries")
## Compute principal components analysis
## All rows and all columns obtain the same weight
row_w <- rep(1 / nrow(countries), nrow(countries)) # 1/13</pre>
col_w <- rep(1 / ncol(countries), ncol(countries)) # 1/6</pre>
Y <- pca(countries, scale = FALSE, weight_row = row_w, weight_col = col_w)
## Row-metric-preserving biplot (form biplot)
biplot(Y, type = "form")
## Column-metric-preserving biplot (covariance biplot)
biplot(Y, type = "covariance", legend = list(x = "bottomright"))
## Replicate examples from Greenacre 2007, p. 79-88
data("benthos")
## Compute correspondence analysis
X <- ca(benthos)</pre>
## Symetric CA biplot
biplot(X, labels = "columns", legend = list(x = "bottomright"))
## Row principal CA biplot
biplot(X, type = "row", labels = "columns", legend = list(x = "bottomright"))
## Column principal CA biplot
biplot(X, type = "column", labels = "columns", legend = list(x = "bottomright"))
## Contribution CA biplot
biplot(X, type = "contrib", labels = NULL, legend = list(x = "bottomright"))
```

boot 7

boot

Partial Bootstrap Analysis

Description

Checks analysis with partial bootstrap resampling.

Usage

```
## S4 method for signature 'CA'
bootstrap(object, n = 30)
## S4 method for signature 'PCA'
bootstrap(object, n = 30)
```

Arguments

object A CA or PCA object.

A non-negative integer giving the number of bootstrap replications.

Value

Returns a BootstrapCA or a BootstrapPCA object.

Author(s)

N. Frerebeau

References

Greenacre, Michael J. *Theory and Applications of Correspondence Analysis*. London: Academic Press, 1984.

Lebart, L., Piron, M. and Morineau, A. *Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données.* Paris: Dunod, 2006.

Lockyear, K. (2013). Applying Bootstrapped Correspondence Analysis to Archaeological Data. *Journal of Archaeological Science*, 40(12): 4744-4753. doi:10.1016/j.jas.2012.08.035.

Ringrose, T. J. (1992). Bootstrapping and Correspondence Analysis in Archaeology. *Journal of Archaeological Science*, 19(6): 615-629. doi:10.1016/03054403(92)90032X.

```
## Bootstrap on CA
## Data from Lebart et al. 2006, p. 170-172
data("colours")

## Compute correspondence analysis
X <- ca(colours)</pre>
```

8 burt

```
## Bootstrap (30 replicates)
Y \leftarrow bootstrap(X, n = 30)
## Not run:
## Get replicated coordinates
get_replications(Y, margin = 1)
get_replications(Y, margin = 2)
## End(Not run)
## Plot with ellipses
viz_rows(Y)
viz_tolerance(Y, margin = 1, level = c(0.68, 0.95))
viz_columns(Y)
viz_tolerance(Y, margin = 2, level = c(0.68, 0.95))
## Plot with convex hulls
viz_columns(Y)
viz_hull(Y, margin = 2)
## Bootstrap on PCA
## Compute principal components analysis
data("iris")
X <- pca(iris)</pre>
## Bootstrap (30 replicates)
Y \leftarrow bootstrap(X, n = 30)
## Plot with ellipses
viz_variables(Y)
viz_tolerance(Y, margin = 2, level = c(0.68, 0.95))
```

burt

Burt Table

Description

Computes the burt table of a factor table.

Usage

```
burt(object, ...)
## S4 method for signature 'data.frame'
burt(object, exclude = NULL, abbrev = TRUE)
```

ca 9

Arguments

object A data.frame.

... Currently not used.

exclude A vector of values to be excluded when forming the set of levels (see factor()). If NULL (the default), will make NA an extra level.

abbrev A logical scalar: should the column names be abbreviated? If FALSE, these are of the form 'factor_level' but if abbrev = TRUE they are just 'level' which will suffice if the factors have distinct levels.

Value

A symetric matrix.

Author(s)

N. Frerebeau

See Also

Other tools: cdt()

Examples

```
## Create a factor table
x <- data.frame(
    A = c("a", "b", "a"),
    B = c("x", "y", "z")
)

## Complete disjunctive table
cdt(x)
## Burt table
burt(x)</pre>
```

Ca

Correspondence Analysis

Description

Computes a simple correspondence analysis based on the singular value decomposition.

10 ca

Usage

```
ca(object, ...)
## S4 method for signature 'data.frame'
ca(object, rank = NULL, sup_row = NULL, sup_col = NULL)
## S4 method for signature 'matrix'
ca(object, rank = NULL, sup_row = NULL, sup_col = NULL)
```

Arguments

object A $m \times p$ numeric matrix or a data.frame.

... Currently not used.

rank An integer value specifying the maximal number of components to be kept in

the results. If NULL (the default), min(m, p) - 1 components will be returned.

sup_row A vector specifying the indices of the supplementary rows.

sup_col A vector specifying the indices of the supplementary columns.

Value

A CA object.

Author(s)

N. Frerebeau

References

Greenacre, M. J. Theory and Applications of Correspondence Analysis. London: Academic Press, 1984.

Greenacre, M. J. *Correspondence Analysis in Practice*. Seconde edition. Interdisciplinary Statistics Series. Boca Raton: Chapman & Hall/CRC, 2007.

Lebart, L., Piron, M. and Morineau, A. *Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données.* Paris: Dunod, 2006.

See Also

```
svd()
```

```
Other multivariate analysis: mca(), pca(), pcoa(), predict()
```

```
## Data from Lebart et al. 2006, p. 170-172
data("colours")

## The chi square of independence between the two variables
stats::chisq.test(colours)
```

cdt 11

```
## Compute correspondence analysis
X <- ca(colours)

## Plot rows
viz_rows(X, labels = TRUE)

## Plot columns
viz_columns(X, labels = TRUE)

## Get row coordinates
get_coordinates(X, margin = 1)

## Get column coordinates
get_coordinates(X, margin = 2)

## Get total inertia
sum(get_inertia(X))

## Get row contributions
get_contributions(X, margin = 1)</pre>
```

cdt

Complete Disjunctive Table

Description

Computes the complete disjunctive table of a factor table.

Usage

```
cdt(object, ...)
## S4 method for signature 'matrix'
cdt(object, exclude = NULL, abbrev = TRUE)
## S4 method for signature 'data.frame'
cdt(object, exclude = NULL, abbrev = TRUE)
```

Arguments

object	A data.frame.
	Currently not used.
exclude	A vector of values to be excluded when forming the set of levels (see factor()). If NULL (the default), will make NA an extra level.
abbrev	A logical scalar: should the column names be abbreviated? If FALSE, these are of the form 'factor_level' but if abbrev = TRUE they are just 'level' which will suffice if the factors have distinct levels.

12 colours

Value

```
A data.frame.
```

Author(s)

N. Frerebeau

See Also

Other tools: burt()

Examples

```
## Create a factor table
x <- data.frame(
    A = c("a", "b", "a"),
    B = c("x", "y", "z")
)

## Complete disjunctive table
cdt(x)

## Burt table
burt(x)</pre>
```

colours

Colours

Description

Contingency table of eye and hair colours of different individuals.

Usage

colours

Format

A data.frame with 4 columns (hair colours) and 4 rows (eye colours).

Source

Lebart, L., Piron, M. and Morineau, A. *Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données.* Paris: Dunod, 2006, p. 170-172

See Also

Other datasets: benthos, countries

countries 13

countries

Countries

Description

Student ratings of 13 countries on six attributes.

Usage

countries

Format

A data. frame with 6 columns (attributes) and 13 rows (countries).

Source

Greenacre, M. J. Biplots in Practice. Bilbao: Fundación BBVA, 2010.

See Also

Other datasets: benthos, colours

dimnames

Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

```
## S4 method for signature 'MultivariateAnalysis'
dim(x)

## S4 method for signature 'MultivariateAnalysis'
rownames(x, do.NULL = TRUE, prefix = "row")

## S4 method for signature 'MultivariateAnalysis'
colnames(x, do.NULL = TRUE, prefix = "col")

## S4 method for signature 'MultivariateAnalysis'
dimnames(x)
```

14 get_contributions

Arguments

An object from which to retrieve the row or column names (a CA or PCA object).

do. NULL A logical scalar. If FALSE and names are NULL, names are created.

prefix A character string specifying the prefix for created names.

Author(s)

N. Frerebeau

See Also

Other mutators: loadings(), subset()

get_contributions

Get Contributions

Description

Get Contributions

Usage

```
get_contributions(x, ...)
get_correlations(x, ...)
get_cos2(x, ...)
## S4 method for signature 'MultivariateAnalysis'
get_contributions(x, margin = 1)
## S4 method for signature 'PCA'
get_correlations(x, sup_name = ".sup")
## S4 method for signature 'MultivariateAnalysis'
get_cos2(x, margin = 1, sup_name = ".sup")
```

Arguments

x An object from which to get element(s) (a CA, MCA or PCA object).

... Currently not used.

margin A length-one numeric vector giving the subscript which the data will be re-

turned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.

sup_name A character string specifying the name of the column to create for supplemen-

tary points attribution (see below).

get_coordinates 15

Value

• get_contributions() returns a data. frame of contributions to the definition of the principal dimensions.

- get_correlations() returns a data.frame of correlations between variables and dimensions. An extra column (named after sup_name) is added specifying whether an observation is a supplementary point or not.
- get_cos2() returns a data.frame of cos^2 values (i.e. quality of the representation of the points on the factor map). An extra column (named after sup_name) is added specifying whether an observation is a supplementary point or not.

Author(s)

N. Frerebeau

See Also

```
Other getters: get_coordinates(), get_data(), get_eigenvalues()
```

get_coordinates

Get Coordinates

Description

Get Coordinates

Usage

```
get_coordinates(x, ...)

get_replications(x, ...)

## S4 method for signature 'MultivariateAnalysis'
get_coordinates(x, margin = 1, principal = TRUE, sup_name = ".sup")

## S4 method for signature 'PCOA'
get_coordinates(x)

## S4 method for signature 'MultivariateBootstrap'
get_replications(x, margin = 1)

## S4 method for signature 'BootstrapPCA'
get_replications(x)
```

16 get_coordinates

Arguments

X	An object from which to get element(s) (a CA, MCA or PCA object).
	Currently not used.
margin	A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.
principal	A logical scalar: should principal coordinates be returned? If FALSE, standard coordinates are returned.
sup_name	A character string specifying the name of the column to create for supplementary points attribution (see below).

Value

- get_coordinates() returns a data.frame of coordinates. An extra column (named after sup_name) is added specifying whether an observation is a supplementary point or not.
- get_replications() returns an array of coordinates.

Author(s)

N. Frerebeau

See Also

```
Other getters: get_contributions(), get_data(), get_eigenvalues()
```

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_row = 5:10)

## Get row principal coordinates
head(get_coordinates(X, margin = 1, principal = TRUE))

## Get row standard coordinates
head(get_coordinates(X, margin = 1, principal = FALSE))

## Tidy principal coordinates
head(tidy(X, margin = 1))
head(tidy(X, margin = 2))

head(augment(X, margin = 1, axes = c(1, 2)))
head(augment(X, margin = 2, axes = c(1, 2)))</pre>
```

get_data 17

get_data

Get Original Data

Description

Get Original Data

Usage

```
get_data(x, ...)
## S4 method for signature 'MultivariateAnalysis'
get_data(x)
```

Arguments

x An object from which to get element(s) (a CA, MCA or PCA object).

... Currently not used.

Value

Returns a data. frame of original data.

Author(s)

N. Frerebeau

See Also

```
Other getters: get_contributions(), get_coordinates(), get_eigenvalues()
```

get_eigenvalues

Get Eigenvalues

Description

Get Eigenvalues

18 get_eigenvalues

Usage

```
get_eigenvalues(x)
get_variance(x, ...)
get_distances(x, ...)
get_inertia(x, ...)
## S4 method for signature 'MultivariateAnalysis'
get_distances(x, margin = 1)
## S4 method for signature 'MultivariateAnalysis'
get_eigenvalues(x)
## S4 method for signature 'PCOA'
get_eigenvalues(x)
## S4 method for signature 'MultivariateAnalysis'
get_inertia(x, margin = 1)
## S4 method for signature 'MultivariateAnalysis'
get_variance(x, digits = 2)
```

Arguments

X	An object from which to get element(s) (a CA, MCA or PCA object).
	Currently not used.
margin	A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.
digits	An integer indicating the number of decimal places to be used.

Value

- get_eigenvalues() returns a data. frame with the following columns: eigenvalues, variance (percentage of variance) and cumulative (cumulative percentage of variance).
- get_variance() returns a numeric vector giving the amount of variance explained by each (principal) component.
- get_distance()returns a numeric vector of squared distance to the centroid.
- get_inertia() returns a numeric vector giving the inertia (weighted squared distance to the centroid).

Author(s)

N. Frerebeau

loadings 19

See Also

Other getters: get_contributions(), get_coordinates(), get_data()

loadings

Extract Loadings

Description

Extract loadingsin principal components analysis.

Usage

```
## S4 method for signature 'PCA'
loadings(x, ...)
```

Arguments

x A PCA object.

... Currently not used.

Value

Returns variable loadings (i.e. the coefficients of the linear combination of the original variables).

Note

loadings() is only implemented for consistency with stats::loadings().

Author(s)

N. Frerebeau

See Also

Other mutators: dimnames(), subset()

20 mca

 ${\it mca}$

Multiple Correspondence Analysis

Description

Computes a multiple correspondence analysis.

Usage

```
mca(object, ...)
## S4 method for signature 'data.frame'
mca(object, rank = NULL, sup_row = NULL, sup_col = NULL, sup_quanti = NULL)
## S4 method for signature 'matrix'
mca(object, rank = NULL, sup_row = NULL, sup_col = NULL)
```

Arguments

object A $m \times p$ numeric matrix or a data.frame.	
Currently not used.	
rank An integer value specifying the maximal number of components to be the results. If NULL (the default), $min(m,p)-1$ components will be returned to be the results.	
sup_row A vector specifying the indices of the supplementary rows.	
sup_col A vector specifying the indices of the supplementary categorical column	1S.
sup_quanti A vector specifying the indices of the supplementary quantitative column	ns.

Value

A MCA object.

Author(s)

N. Frerebeau

References

Lebart, L., Piron, M. and Morineau, A. *Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données.* Paris: Dunod, 2006.

See Also

```
svd(), cdt()
Other multivariate analysis: ca(), pca(), pcoa(), predict()
```

pca 21

рса

Principal Components Analysis

Description

Computes a principal components analysis based on the singular value decomposition.

Usage

```
pca(object, ...)
## S4 method for signature 'data.frame'
pca(
 object,
  center = TRUE,
  scale = TRUE,
  rank = NULL,
  sup_row = NULL,
  sup_col = NULL,
  sup_quali = NULL,
 weight_row = NULL,
 weight_col = NULL
)
## S4 method for signature 'matrix'
pca(
 object,
  center = TRUE,
  scale = TRUE,
  rank = NULL,
  sup_row = NULL,
  sup_col = NULL,
 weight_row = NULL,
 weight\_col = NULL
```

Arguments

object	A $m \times p$ numeric matrix or a data. frame.
	Currently not used.
center	A logical scalar: should the variables be shifted to be zero centered?
scale	A logical scalar: should the variables be scaled to unit variance?
rank	An integer value specifying the maximal number of components to be kept in the results. If NULL (the default), $p-1$ components will be returned.
sup_row	A vector specifying the indices of the supplementary rows.

22 pca

sup_col A vector specifying the indices of the supplementary columns.

sup_quali A vector specifying the indices of the supplementary qualitative columns.

weight_row A numeric vector specifying the active row (individual) weights. If NULL (the

default), uniform weights are used. Row weights are internally normalized to

sum 1

weight_col A numeric vector specifying the active column (variable) weights. If NULL (the

default), uniform weights (1) are used.

Value

A PCA object.

Author(s)

N. Frerebeau

References

Lebart, L., Piron, M. and Morineau, A. *Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données.* Paris: Dunod, 2006.

See Also

```
svd()
```

Other multivariate analysis: ca(), mca(), pcoa(), predict()

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris)

## Get eigenvalues
get_eigenvalues(X)

## Get individual cos2
head(get_cos2(X, margin = 1))

## Get variable contributions
get_contributions(X, margin = 2)

## Get correlations between variables and dimensions
get_correlations(X)</pre>
```

pcoa 23

pcoa

Principal Coordinates Analysis

Description

Computes classical (metric) multidimensional scaling.

Usage

```
pcoa(object, ...)
## S4 method for signature 'dist'
pcoa(object, rank = 2)
```

Arguments

object A distance structure.
... Currently not used.

rank An integer value specifying the maximal number dimension of the space which

the data are to be represented in.

Value

A PCOA object.

Author(s)

N. Frerebeau

References

Gower, J. C. (1966). Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. *Biometrika*, 53(3-4): 325-338. doi:10.1093/biomet/53.34.325.

See Also

```
stats::cmdscale()
Other multivariate analysis: ca(), mca(), pca(), predict()
```

```
## Load data
data("iris")

## Compute euclidean distances
d <- dist(iris[, 1:4], method = "euclidean")

## Compute principal coordinates analysis</pre>
```

24 plot

```
X <- pcoa(d)
## Screeplot
screeplot(X)
## Plot results
plot(X, extra_quali = iris$Species)</pre>
```

plot

Plot Coordinates

Description

Plot Coordinates

Usage

```
## S4 method for signature 'PCOA, missing'
plot(
  х,
  axes = c(1, 2),
  labels = FALSE,
  extra_quali = NULL,
  extra_quanti = NULL,
  color = NULL,
  fill = FALSE,
  symbol = FALSE,
  size = c(1, 6),
  xlim = NULL,
  ylim = NULL,
 main = NULL,
  sub = NULL,
  ann = graphics::par("ann"),
  frame.plot = TRUE,
  panel.first = NULL,
  panel.last = NULL
)
```

Arguments

x An R object.

... Further graphical parameters.

axes A length-two numeric vector giving the dimensions to be plotted.

labels A logical scalar: should labels be drawn? Labeling a large number of points can be computationally expensive and make the graph difficult to read. A se-

lection of points to label can be provided using a list of two named elements,

plot 25

	filter (a string specifying how to filter the labels to be drawn) and n (an integer specifying the number of labels to be drawn). See examples below.
extra_quali	An optional vector of qualitative data for aesthetics mapping.
extra_quanti	An optional vector of quantitative data for aesthetics mapping. If a single character string is passed, it must be one of "observation", "mass", "sum", "contribution" or "cos2" (see augment()).
color	The colors for lines and points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
fill	The background colors for points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
symbol	A vector of plotting characters or symbols (will be mapped to extra_quali). This can either be a single character or an integer code for one of a set of graphics symbols. If symbol is a named a named vector, then the symbols will be associated with their name within extra_quali. Ignored if set to FALSE.
size	A length-two numeric vector giving range of possible sizes (greater than 0; will be mapped to extra_quanti). Ignored if set to FALSE.
xlim	A length-two numeric vector giving the x limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
ylim	A length-two numeric vector giving the y limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
main	A character string giving a main title for the plot.
sub	A character string giving a subtitle for the plot.
ann	A logical scalar: should the default annotation (title and x and y axis labels) appear on the plot?
frame.plot	A logical scalar: should a box be drawn around the plot?
panel.first	An expression to be evaluated after the plot axes are set up but before any plotting takes place. This can be useful for drawing background grids.
panel.last	An expression to be evaluated after plotting has taken place but before the axes, title and box are added.

Author(s)

N. Frerebeau

See Also

 $Other plot methods: biplot(), screeplot(), viz_contributions(), viz_individuals(), viz_variables(), viz_wrap, wrap\\$

26 predict

predict

Predict New Coordinates

Description

Predict the projection of new individuals/rows or variables/columns.

Usage

```
## S4 method for signature 'CA'
predict(object, newdata, margin = 1)
## S4 method for signature 'MCA'
predict(object, newdata, margin = 1)
## S4 method for signature 'PCA'
predict(object, newdata, margin = 1)
```

Arguments

object A CA or PCA object.

newdata An object of supplementary points coercible to a matrix for which to compute

principal coordinates.

margin A length-one numeric vector giving the subscript which the data will be pre-

dicted: 1 indicates individuals/rows (the default), 2 indicates variables/columns.

Value

A data, frame of coordinates.

Author(s)

N. Frerebeau

See Also

```
Other multivariate analysis: ca(), mca(), pca(), pcoa()
```

```
## Create a matrix
A <- matrix(data = sample(1:10, 100, TRUE), nrow = 10, ncol = 10)
## Compute correspondence analysis
X <- ca(A, sup_row = 8:10, sup_col = 7:10)
## Predict new row coordinates
Y <- matrix(data = sample(1:10, 120, TRUE), nrow = 20, ncol = 6)</pre>
```

screeplot 27

```
predict(X, Y, margin = 1)
## Predict new column coordinates
Z <- matrix(data = sample(1:10, 140, TRUE), nrow = 7, ncol = 20)
predict(X, Z, margin = 2)</pre>
```

screeplot

Scree Plot

Description

Plot eigenvalues (scree plot) or variances histogram.

Usage

```
## S4 method for signature 'MultivariateAnalysis'
screeplot(
  Х,
  . . . ,
 eigenvalues = FALSE,
 cumulative = FALSE,
 labels = TRUE,
 limit = 10,
 col = "grey90",
 border = "grey10",
  col.cumulative = "red",
 lty.cumulative = "solid",
 lwd.cumulative = 2
)
## S4 method for signature 'PCOA'
screeplot(
 х,
  . . . ,
 labels = FALSE,
 limit = NULL,
 col = "grey90"
 border = "grey10"
)
```

Arguments

```
    A CA, MCA or PCA object.
    Extra parameters to be passed to graphics::barplot().
    eigenvalues
    A logical scalar: should the eigenvalues be plotted instead of variance/inertia?
    A logical scalar: should the cumulative percentages of variance be plotted?
```

28 subset

labels A logical scalar: should text labels be drawn on top of bars?

limit An integer specifying the number of top elements to be displayed.

col, border A character string specifying the bars infilling and border colors.

col.cumulative A specification for the line color.

lty.cumulative A specification for the line type.

lwd.cumulative A specification for the line width.

Value

screeplot() is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), viz_contributions(), viz_individuals(), viz_variables(), viz_wrap, wrap
```

Examples

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE)

## Screeplot
screeplot(X)
screeplot(X, cumulative = TRUE)</pre>
```

subset

Extract Parts of an Object

Description

Operators acting on objects to extract parts.

Usage

```
## S4 method for signature 'CA,ANY,missing'
x[[i]]
## S4 method for signature 'PCA,ANY,missing'
x[[i]]
```

subset 29

Arguments

x An object from which to extract element(s) or in which to replace element(s).

i A character string specifying elements to extract. Any unambiguous substring can be given (see details).

Details

```
If i is "data", returns a list with the following elements:

data A numeric matrix of raw data.

mean A numeric vector giving the variables means (PCA).

sd A numeric vector giving the variables standard deviations (PCA).

If i is "rows", returns a list with the following elements:

coord A numeric matrix of rows/individuals coordinates.

cos2 A numeric matrix of rows/individuals squared cosine.

masses A numeric vector giving the rows masses/individual weights.

sup A logical vector specifying whether a point is a supplementary observation or not.

If i is "columns", returns a list with the following elements:

coord A numeric matrix of columns/variables coordinates.

cor A numeric matrix of correlation between variables and the dimensions (PCA).

cos2 A numeric matrix of columns/variables squared cosine.

masses A numeric vector giving the columns masses/variable weights.

sup A logical vector specifying whether a point is a supplementary observation or not.
```

Value

A list.

Author(s)

N. Frerebeau

See Also

Other mutators: dimnames(), loadings()

If i is "eigenvalues", returns a numeric vector of eigenvalues.

30 summary

Examples

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_row = 8:10, sup_col = 1)

## Get results for the individuals
X[["rows"]]</pre>
```

summary

Object Summaries

Description

Provides a summary of the results of a multivariate data analysis.

Usage

```
## S4 method for signature 'CA'
summary(object, ..., margin = 1, active = TRUE, sup = TRUE, rank = 3)
## S4 method for signature 'PCA'
summary(object, ..., margin = 1, active = TRUE, sup = TRUE, rank = 3)
```

Arguments

object	A CA, MCA or PCA object.
	Currently not used.
margin	A length-one numeric vector giving the subscript which the data will be summarized: 1 indicates individuals/rows (the default), 2 indicates variables/columns.
active	A logical scalar: should the active observations be summarized?
sup	A logical scalar: should the supplementary observations be summarized?
rank	An integer value specifying the maximal number of components to be kept in the results.

Author(s)

N. Frerebeau

See Also

Other summary: tidy()

tidy 31

Examples

```
## Data from Lebart et al. 2006, p. 170-172
data("colours")

## Compute correspondence analysis
X <- ca(colours)

## Rows summary
summary(X, margin = 1)

## Columns summary
summary(X, margin = 2)</pre>
```

tidy

Tidy Coordinates

Description

Tidy Coordinates

Usage

```
tidy(x, ...)
augment(x, ...)
## S4 method for signature 'MultivariateAnalysis'
augment(x, ..., margin = 1, axes = c(1, 2), principal = TRUE)
## S4 method for signature 'MultivariateAnalysis'
tidy(x, ..., margin = 1, principal = TRUE)
```

Arguments

X	A CA, MCA or PCA object.
	Currently not used.
margin	A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.
axes	A length-two numeric vector giving the dimensions for which to compute results.
principal	A logical scalar: should principal coordinates be returned? If FALSE, standard coordinates are returned.

32 tidy

Value

```
tidy() returns a long data. frame with the following columns:
    label Row/column names of the original data.
    component Component.
    supplementary Whether an observation is active or supplementary.
    coordinate Coordinates.
    contribution Contributions to the definition of the components.
    \cos 2 \cos^2.
    augment() returns a wide data. frame of the row/column coordinates along axes and the following
    columns:
    label Row/column names of the original data.
    supplementary Whether an observation is active or supplementary.
    mass Weight/mass of each observation.
    sum Sum of squared coordinates along axes.
    contribution Joint contributions to the definition of axes.
    \cos 2 Joint \cos^2 along axes.
Author(s)
    N. Frerebeau
See Also
    Other summary: summary()
```

```
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_row = 5:10)</pre>
## Get row principal coordinates
head(get_coordinates(X, margin = 1, principal = TRUE))
## Get row standard coordinates
head(get_coordinates(X, margin = 1, principal = FALSE))
## Tidy principal coordinates
head(tidy(X, margin = 1))
head(tidy(X, margin = 2))
head(augment(X, margin = 1, axes = c(1, 2)))
head(augment(X, margin = 2, axes = c(1, 2)))
```

viz_contributions 33

 $viz_contributions$

Visualize Contributions and cos2

Description

Plots contributions histogram and \cos^2 scatterplot.

Usage

```
viz_contributions(x, ...)
viz_cos2(x, ...)
## S4 method for signature 'MultivariateAnalysis'
viz_contributions(
 х,
 margin = 2,
  axes = 1,
  sort = TRUE,
  decreasing = TRUE,
  limit = 10,
 horiz = FALSE,
  col = "grey90"
  border = "grey10"
)
## S4 method for signature 'MultivariateAnalysis'
viz_cos2(
 Х,
  ...,
 margin = 2,
 axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  sort = TRUE,
  decreasing = TRUE,
  limit = 10,
  horiz = FALSE,
 col = "grey90",
  border = "grey10"
)
```

Arguments

```
x A CA, MCA or PCA object.
... Extra parameters to be passed to graphics::barplot().
```

34 viz_contributions

A length-one numeric vector giving the subscript which the data will be remargin turned: 1 indicates individuals/rows (the default), 2 indicates variables/columns. A numeric vector giving the dimensions to be plotted. axes A logical scalar: should the data be sorted? sort decreasing A logical scalar: should the sort order be decreasing? Only used if sort is TRUE. limit An integer specifying the number of top elements to be displayed. horiz A logical scalar: should the bars be drawn horizontally with the first at the bottom? col, border A character string specifying the bars infilling and border colors. A logical scalar: should the active observations be plotted? active A logical scalar: should the supplementary observations be plotted?

Details

sup

The red dashed line indicates the expected average contribution (variables with a contribution larger than this cutoff can be considered as important in contributing to the component).

Value

viz_contributions() and viz_cos2() are called for their side-effects: they result in a graphic being displayed. Invisibly return x.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), screeplot(), viz_individuals(), viz_variables(),
viz_wrap, wrap
```

```
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, scale = TRUE)</pre>
## Get row contributions
head(get_contributions(X, margin = 1))
## Plot contributions
viz_contributions(X, axes = 1)
## Plot cos2
viz_cos2(X)
```

viz_individuals 35

viz_individuals

Visualize Individuals Factor Map

Description

Plots row/individual principal coordinates.

Usage

```
viz_individuals(x, ...)
viz_rows(x, ...)
## S4 method for signature 'MultivariateAnalysis'
viz_rows(
 х,
  axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  labels = FALSE,
  extra_quali = NULL,
  extra_quanti = NULL,
  color = NULL,
  fill = FALSE,
  symbol = FALSE,
  size = c(1, 6),
  xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
  panel.first = NULL,
  panel.last = NULL,
  legend = list(x = "topleft")
)
## S4 method for signature 'BootstrapCA'
viz_rows(x, ..., axes = c(1, 2), color = FALSE, fill = FALSE, symbol = FALSE)
## S4 method for signature 'PCA'
viz_individuals(
  х,
  axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  labels = FALSE,
```

36 viz_individuals

```
extra_quali = NULL,
extra_quanti = NULL,
color = NULL,
fill = FALSE,
symbol = FALSE,
size = c(1, 6),
xlim = NULL,
ylim = NULL,
main = NULL,
sub = NULL,
panel.first = NULL,
legend = list(x = "topleft")
```

Arguments

x	A CA, MCA or PCA object.
	Further graphical parameters.
axes	A length-two numeric vector giving the dimensions to be plotted.
active	A logical scalar: should the active observations be plotted?
sup	A logical scalar: should the supplementary observations be plotted?
labels	A logical scalar: should labels be drawn? Labeling a large number of points can be computationally expensive and make the graph difficult to read. A selection of points to label can be provided using a list of two named elements, filter (a string specifying how to filter the labels to be drawn) and n (an integer specifying the number of labels to be drawn). See examples below.
extra_quali	An optional vector of qualitative data for aesthetics mapping.
extra_quanti	An optional vector of quantitative data for aesthetics mapping. If a single character string is passed, it must be one of "observation", "mass", "sum", "contribution" or "cos2" (see augment()).
color	The colors for lines and points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
fill	The background colors for points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
symbol	A vector of plotting characters or symbols (will be mapped to extra_quali). This can either be a single character or an integer code for one of a set of graphics symbols. If symbol is a named a named vector, then the symbols will be associated with their name within extra_quali. Ignored if set to FALSE.
size	A length-two numeric vector giving range of possible sizes (greater than 0; will be mapped to extra_quanti). Ignored if set to FALSE.
xlim	A length-two numeric vector giving the x limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
ylim	A length-two numeric vector giving the y limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.

viz_individuals 37

main	A character string giving a main title for the plot.
sub	A character string giving a subtitle for the plot.
panel.first	An expression to be evaluated after the plot axes are set up but before any plotting takes place. This can be useful for drawing background grids.
panel.last	An expression to be evaluated after plotting has taken place but before the axes, title and box are added.
legend	A list of additional arguments to be passed to graphics::legend(); names of the list are used as argument names. If NULL, no legend is displayed.

Value

viz_*() is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), screeplot(), viz_contributions(), viz_variables(), viz_wrap, wrap
```

Examples

```
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, scale = TRUE)</pre>
## Plot individuals
viz_individuals(X, panel.last = graphics::grid())
## Labels of the 10 individuals with highest cos2
viz_individuals(X, labels = list(how = "cos2", n = 10))
## Plot variables
viz_variables(X, panel.last = graphics::grid())
## Graphical parameters
## Continuous values
viz_individuals(X, extra_quanti = iris$Petal.Length, symbol = 16, size = c(1, 2))
viz_individuals(X, extra_quanti = iris$Petal.Length, symbol = 16, size = c(1, 2),
                color = grDevices::hcl.colors(12, "RdPu"))
viz_variables(X, extra_quanti = "contribution",
              color = grDevices::hcl.colors(12, "BluGrn", rev = TRUE),
              size = c(0, 1)
## Discrete values
viz_individuals(X, extra_quali = iris$Species, symbol = 21:23)
```

viz_variables

Visualize Variables Factor Map

Description

Plots column/variable principal coordinates.

Usage

```
viz_variables(x, ...)
viz_columns(x, ...)
## S4 method for signature 'MultivariateAnalysis'
viz_columns(
 х,
  ...,
  axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  labels = FALSE,
  extra_quali = NULL,
  extra_quanti = NULL,
  color = NULL,
  fill = FALSE,
  symbol = FALSE,
  size = c(1, 6),
  xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
  panel.first = NULL,
  panel.last = NULL,
  legend = list(x = "topleft")
)
## S4 method for signature 'MultivariateBootstrap'
viz_columns(
 х,
```

```
. . . ,
 axes = c(1, 2),
 color = FALSE,
 fill = FALSE,
  symbol = FALSE
)
## S4 method for signature 'PCA'
viz_variables(
 х,
  ...,
 axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  labels = list(filter = "contribution", n = 10),
  extra_quali = NULL,
  extra_quanti = NULL,
  color = NULL,
  symbol = NULL,
  size = 1,
 xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
 panel.first = NULL,
 panel.last = NULL,
 legend = list(x = "topleft")
)
## S4 method for signature 'CA'
viz_variables(
 х,
  axes = c(1, 2),
  active = TRUE,
  sup = TRUE,
  labels = FALSE,
 extra_quali = NULL,
  extra_quanti = NULL,
  color = NULL,
  fill = FALSE,
  symbol = FALSE,
  size = c(1, 6),
 xlim = NULL,
 ylim = NULL,
 main = NULL,
  sub = NULL,
  panel.first = NULL,
```

```
panel.last = NULL,
  legend = list(x = "topleft")
)

## S4 method for signature 'BootstrapPCA'
viz_variables(
    x,
    ...,
    axes = c(1, 2),
    color = FALSE,
    fill = FALSE,
    symbol = FALSE
)
```

Arguments

x	A CA, MCA or PCA object.
	Further graphical parameters.
axes	A length-two numeric vector giving the dimensions to be plotted.
active	A logical scalar: should the active observations be plotted?
sup	A logical scalar: should the supplementary observations be plotted?
labels	A logical scalar: should labels be drawn? Labeling a large number of points can be computationally expensive and make the graph difficult to read. A selection of points to label can be provided using a list of two named elements, filter (a string specifying how to filter the labels to be drawn) and n (an integer specifying the number of labels to be drawn). See examples below.
extra_quali	An optional vector of qualitative data for aesthetics mapping.
extra_quanti	An optional vector of quantitative data for aesthetics mapping. If a single character string is passed, it must be one of "observation", "mass", "sum", "contribution" or "cos2" (see augment()).
color	The colors for lines and points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
fill	The background colors for points (will be mapped to extra_quanti or extra_quali; if both are set, the latter has priority). Ignored if set to FALSE.
symbol	A vector of plotting characters or symbols (will be mapped to extra_quali). This can either be a single character or an integer code for one of a set of graphics symbols. If symbol is a named a named vector, then the symbols will be associated with their name within extra_quali. Ignored if set to FALSE.
size	A length-two numeric vector giving range of possible sizes (greater than 0; will be mapped to extra_quanti). Ignored if set to FALSE.
xlim	A length-two numeric vector giving the x limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
ylim	A length-two numeric vector giving the y limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
main	A character string giving a main title for the plot.

sub	A character string giving a subtitle for the plot.
panel.first	An expression to be evaluated after the plot axes are set up but before any plotting takes place. This can be useful for drawing background grids.
panel.last	An expression to be evaluated after plotting has taken place but before the axes, title and box are added.
legend	A list of additional arguments to be passed to graphics::legend(); names of the list are used as argument names. If NULL, no legend is displayed.

Value

viz_*() is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), screeplot(), viz_contributions(), viz_individuals(), viz_wrap, wrap
```

Examples

```
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, scale = TRUE)</pre>
## Plot individuals
viz_individuals(X, panel.last = graphics::grid())
## Labels of the 10 individuals with highest cos2
viz_individuals(X, labels = list(how = "cos2", n = 10))
## Plot variables
viz_variables(X, panel.last = graphics::grid())
## Graphical parameters
## Continuous values
viz_individuals(X, extra_quanti = iris$Petal.Length, symbol = 16, size = c(1, 2))
viz_individuals(X, extra_quanti = iris$Petal.Length, symbol = 16, size = c(1, 2),
                color = grDevices::hcl.colors(12, "RdPu"))
viz_variables(X, extra_quanti = "contribution",
              color = grDevices::hcl.colors(12, "BluGrn", rev = TRUE),
              size = c(0, 1)
## Discrete values
viz_individuals(X, extra_quali = iris$Species, symbol = 21:23)
viz_individuals(X, extra_quali = iris$Species, symbol = 21:23,
```

42 viz_wrap

viz_wrap

Plot Envelopes

Description

Plot Envelopes

Usage

```
viz_hull(x, ...)
viz_confidence(x, ...)
viz_tolerance(x, ...)

## S4 method for signature 'MultivariateAnalysis'
viz_tolerance(x, ..., margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

## S4 method for signature 'BootstrapCA'
viz_tolerance(x, ..., margin = 1, axes = c(1, 2), level = 0.95)

## S4 method for signature 'MultivariateAnalysis'
viz_confidence(x, ..., margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

## S4 method for signature 'BootstrapCA'
viz_confidence(x, ..., margin = 1, axes = c(1, 2), level = 0.95)

## S4 method for signature 'MultivariateAnalysis'
viz_hull(x, ..., margin = 1, axes = c(1, 2), group = NULL)

## S4 method for signature 'BootstrapCA'
viz_hull(x, ..., margin = 1, axes = c(1, 2))
```

Arguments

An object from which to wrap observations (a CA, MCA or PCA object).
 Further graphical parameters to be passed to graphics::polygon().
 A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.

wrap 43

axes	A length-two numeric vector giving the dimensions for which to compute results.
group	A vector specifying the group an observation belongs to.
level	A numeric vector specifying the confidence/tolerance level.

Value

viz_*()is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), screeplot(), viz_contributions(), viz_individuals(), viz_variables(), wrap
```

Examples

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_quali = "Species")

## Plot with convex hulls
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_hull(X, group = iris$Species, border = col)

## Plot with tolerance ellipses
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_tolerance(X, group = iris$Species, border = col)</pre>
```

wrap

Wrap Observations

Description

- wrap_hull() computes convex hull of a set of observations.
- wrap_confidence() computes a confidence ellipse.
- wrap_tolerance() computes a tolerance ellipse.

44 wrap

Usage

```
wrap_hull(x, ...)
wrap_confidence(x, ...)

## S4 method for signature 'MultivariateAnalysis'
wrap_confidence(x, margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

## S4 method for signature 'MultivariateAnalysis'
wrap_tolerance(x, margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

## S4 method for signature 'MultivariateAnalysis'
wrap_hull(x, margin = 1, axes = c(1, 2), group = NULL)
```

Arguments

X	An object from which to wrap observations (a CA, MCA or PCA object).
	Currently not used.
margin	A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.
axes	A length-two numeric vector giving the dimensions for which to compute results.
group	A vector specifying the group an observation belongs to.
level	A numeric vector specifying the confidence/tolerance level.

Value

wrap_*() returns a data. frame of envelope x and y coordinates.

An extra column named group is added specifying the group an observation belongs to.

Author(s)

N. Frerebeau

See Also

```
Other plot methods: biplot(), plot(), screeplot(), viz_contributions(), viz_individuals(), viz_variables(), viz_wrap
```

Examples

```
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_quali = "Species")</pre>
```

wrap 45

```
## Confidence ellipse coordinates
conf <- wrap_confidence(X, margin = 1, group = "Species", level = c(0.68, 0.95))
## Tolerance ellipse coordinates
conf <- wrap_confidence(X, margin = 1, group = "Species", level = 0.95)
## Convex hull coordinates
hulls <- wrap_hull(X, margin = 1, group = "Species")</pre>
```

Index

•	
* datasets	augment (tidy), 31
benthos, 3	augment(), 25, 36, 40
colours, 12	augment, MultivariateAnalysis-method
countries, 13	(tidy), 31
* getters	augment-method(tidy), 31
get_contributions, 14	1 1 2 12 12
get_coordinates, 15	benthos, 3, 12, 13
get_data, 17	biplot, 3, 25, 28, 34, 37, 41, 43, 44
get_eigenvalues, 17	<pre>biplot,CA-method(biplot), 3</pre>
* multivariate analysis	biplot, PCA-method (biplot), 3
ca, 9	boot, 7
mca, 20	bootstrap, CA-method (boot), 7
pca, 21	bootstrap, PCA-method (boot), 7
pcoa, 23	BootstrapCA, 7
predict, 26	BootstrapPCA, 7
* mutators	burt, 8, <i>12</i>
dimnames, 13	burt, data. frame-method (burt), 8
loadings, 19	burt-method (burt), 8
subset, 28	
* plot methods	CA, 4, 7, 10, 14, 16–18, 26, 27, 30, 31, 33, 36,
biplot, 3	40, 42, 44
plot, 24	ca, 9, 20, 22, 23, 26
screeplot, 27	ca, data. frame-method (ca), 9
viz_contributions, 33	ca, matrix-method (ca), 9
viz_individuals, 35	ca-method(ca), 9
viz_variables, 38	cdt, 9, 11
viz_wrap, 42	cdt(), 20
wrap, 43	cdt, data.frame-method (cdt), 11
* resampling methods	cdt, matrix-method (cdt), 11
boot, 7	cdt-method (cdt), 11
* summary	character, 4, 5, 14, 16, 25, 28, 29, 34, 36, 37,
summary, 30	40, 41
tidy, 31	colnames, MultivariateAnalysis-method
* tools	(dimnames), 13
burt, 8	colours, <i>3</i> , 12, <i>13</i>
cdt, 11	countries, <i>3</i> , <i>12</i> , 13
[[,CA,ANY,missing-method(subset), 28	
[[,PCA,ANY,missing-method(subset), 28	data.frame, 3, 9-13, 15-18, 20, 21, 26, 32, 44
[[, 1 5/1, 11/1, mildsing method (dubbet), 20	dim, MultivariateAnalysis-method
array, <i>16</i>	(dimnames), 13
	(

INDEX 47

dimnames, 13, 19, 29	<pre>get_replications (get_coordinates), 15</pre>
dimnames, MultivariateAnalysis-method	<pre>get_replications,BootstrapPCA-method</pre>
(dimnames), 13	(get_coordinates), 15
distance structure, 23	<pre>get_replications,MultivariateBootstrap-method</pre>
	(get_coordinates), 15
factor(), 9, 11	get_replications-method
finite, 4, 25, 36, 40	(get_coordinates), 15
	get_variance (get_eigenvalues), 17
get_contributions, 14, 16, 17, 19	get_variance, MultivariateAnalysis-method
<pre>get_contributions,MultivariateAnalysis-metho</pre>	d (get_eigenvalues), 17
(get_contributions), 14	<pre>get_variance-method (get_eigenvalues),</pre>
get_contributions-method	17
(get_contributions), 14	graphical parameters, 24, 36, 40, 42
get_coordinates, 15, 15, 17, 19	graphics::barplot(), 27, 33
<pre>get_coordinates,MultivariateAnalysis-method</pre>	graphics::legend(), 5, 37, 41
(get_coordinates), 15	graphics::polygon(), 42
get_coordinates,PCOA-method	graphicsporygon(), 42
(get_coordinates), 15	integer, 7, 10, 18, 20, 21, 23, 28, 30, 34
get_coordinates-method	Tilleger, 7, 10, 16, 20, 21, 23, 26, 30, 34
(get_coordinates), 15	list, 5, 29, 37, 41
get_correlations (get_contributions), 14	loadings, 14, 19, 29
get_correlations,PCA-method	loadings, PCA-method (loadings), 19
(get_contributions), 14	
get_correlations-method	logical, 4, 9, 11, 14, 16, 21, 24, 25, 27–31,
(get_contributions), 14	34, 36, 40
get_cos2 (get_contributions), 14	matrix, 9, 10, 20, 21, 26
get_cos2, MultivariateAnalysis-method	
(get_contributions), 14	MCA, 4, 14, 16–18, 20, 27, 30, 31, 33, 36, 40,
· -	42, 44
get_cos2-method (get_contributions), 14	mca, 10, 20, 22, 23, 26
get_data, 15, 16, 17, 19	mca, data. frame-method (mca), 20
get_data,MultivariateAnalysis-method	mca, matrix-method (mca), 20
(get_data), 17	mca-method (mca), 20
get_data-method (get_data), 17	
get_distances (get_eigenvalues), 17	numeric, 4, 5, 14, 16, 18, 22, 24–26, 29–31,
<pre>get_distances,MultivariateAnalysis-method</pre>	34, 36, 40, 42–44
(get_eigenvalues), 17	4 7 14 16 10 22 26 27 20 21 22 26
<pre>get_distances-method(get_eigenvalues),</pre>	PCA, 4, 7, 14, 16–19, 22, 26, 27, 30, 31, 33, 36,
17	40, 42, 44
get_eigenvalues, <i>15-17</i> , 17	pca, 10, 20, 21, 23, 26
<pre>get_eigenvalues,MultivariateAnalysis-method</pre>	pca, data.frame-method(pca), 21
(get_eigenvalues), 17	pca, matrix-method (pca), 21
<pre>get_eigenvalues,PCOA-method</pre>	pca-method (pca), 21
(get_eigenvalues), 17	PCOA, 23
<pre>get_eigenvalues-method</pre>	pcoa, 10, 20, 22, 23, 26
(get_eigenvalues), 17	pcoa, dist-method (pcoa), 23
get_inertia(get_eigenvalues), 17	pcoa-method (pcoa), 23
<pre>get_inertia,MultivariateAnalysis-method</pre>	plot, 6, 24, 28, 34, 37, 41, 43, 44
(get_eigenvalues), 17	plot, PCOA, missing-method (plot), 24
<pre>get_inertia-method(get_eigenvalues), 17</pre>	predict, 10, 20, 22, 23, 26

INDEX

<pre>predict,CA-method(predict), 26</pre>	viz_hull,MultivariateAnalysis-method
<pre>predict, MCA-method (predict), 26</pre>	(viz_wrap), 42
<pre>predict,PCA-method(predict), 26</pre>	<pre>viz_hull-method(viz_wrap), 42</pre>
	viz_individuals, 6, 25, 28, 34, 35, 41, 43, 44
rownames,MultivariateAnalysis-method	viz_individuals,PCA-method
(dimnames), 13	<pre>(viz_individuals), 35</pre>
concentrat 6 25 27 24 27 41 42 44	viz_individuals-method
screeplot, 6, 25, 27, 34, 37, 41, 43, 44	<pre>(viz_individuals), 35</pre>
screeplot, MultivariateAnalysis-method	viz_rows (viz_individuals), 35
(screeplot), 27	viz_rows,BootstrapCA-method
screeplot, PCOA-method (screeplot), 27	<pre>(viz_individuals), 35</pre>
screeplot-method (screeplot), 27	viz_rows, MultivariateAnalysis-method
stats::cmdscale(), 23	(viz_individuals), 35
stats::loadings(), 19	viz_rows-method(viz_individuals), 35
subset, 14, 19, 28	viz_tolerance (viz_wrap), 42
summary, 30, 32	viz_tolerance,BootstrapCA-method
summary, CA-method (summary), 30	(viz_wrap), 42
summary, PCA-method (summary), 30	viz_tolerance, MultivariateAnalysis-method
svd(), 10, 20, 22	(viz_wrap), 42
tidy, 30, 31	viz_tolerance-method(viz_wrap), 42
tidy, MultivariateAnalysis-method	viz_variables, 6, 25, 28, 34, 37, 38, 43, 44
(tidy), 31	viz_variables,BootstrapPCA-method
tidy-method (tidy), 31	(viz_variables), 38
truy metriou (truy), 31	viz_variables,CA-method
viz_columns (viz_variables), 38	(viz_variables), 38
viz_columns,MultivariateAnalysis-method	viz_variables, PCA-method
(viz_variables), 38	(viz_variables), 38
viz_columns,MultivariateBootstrap-method	viz_variables-method (viz_variables), 38
(viz_variables), 38	viz_wrap, 6, 25, 28, 34, 37, 41, 42, 44
viz_columns-method(viz_variables), 38	VIZ_WI ap, 0, 23, 20, 34, 37, 41, 42, 44
viz_confidence (viz_wrap), 42	wrap, 6, 25, 28, 34, 37, 41, 43, 43
viz_confidence,BootstrapCA-method	wrap_confidence (wrap), 43
(viz_wrap), 42	wrap_confidence,MultivariateAnalysis-method
viz_confidence,MultivariateAnalysis-method	(wrap), 43
(viz_wrap), 42	wrap_confidence-method (wrap), 43
viz_confidence-method (viz_wrap), 42	wrap_hull (wrap), 43
viz_contributions, 6, 25, 28, 33, 37, 41, 43,	wrap_hull, MultivariateAnalysis-method
44	(wrap), 43
viz_contributions, MultivariateAnalysis-metho	177
(viz_contributions), 33	wrap_tolerance (wrap), 43
viz_contributions-method	wrap_tolerance, MultivariateAnalysis-method
(viz_contributions), 33	(wrap), 43
viz_cos2 (viz_contributions), 33	wrap_tolerance-method (wrap), 43
viz_cos2, MultivariateAnalysis-method	map_color and method (map), 15
(viz_contributions), 33	
viz_cos2-method (viz_contributions), 33	
viz_hull (viz_wrap), 42	
viz_hull,BootstrapCA-method(viz_wrap),	
40	