Mini Research Problem

Le Yang

MSCS2201-1: Artificial Intelligence

Dr. Alex

12/6/2024

Interpretability of AI Models: Enhancing Trust and Transparency

Motivation:

"AI systems are increasingly used in sensitive domains like healthcare and finance. Transparent models enhance trust and accountability."

Main Idea:

"We integrated SHAP with neural networks to generate clear and actionable model explanations."

Key Results:

- 90% explanation accuracy
- 95% predictive accuracy maintained
- 25% reduction in explanation time

Type of AI	Key features	Use cases
Explainable AI	Provides transparent explanations for AI decisions Helps users understand how AI models work Enhances trust and accountability	Healthcare diagnostics, Fintech – financial risk assessment, legal decisions, regulatory compliance
AI fairness	Mitigates biases in AI algorithms Ensures equitable treatment of different groups Prevents discrimination in AI- driven decisions	Hiring processes, lending and credit decisions, criminal justice system
Emotion AI	Detects and interprets human emotions Analyses facial expressions, voice tone, and text sentiment Enhances human-computer interaction	Customer service, market research, mental health monitoring
Responsive AI	Adapts and responds to user inputs and context Improves user experience through natural interactions Personalised recommendations and services	Chatbots, virtual assistants, recommendation systems, e-commerce
Generative AI	Creates new content, text, images, or music Can produce creative and original outputs Used in content generation and creative tasks	Content generation, art creation, language translation, chatbots

Related Methods and Research

SHAP: Explains model predictions using Shapley values.

LIME: Provides local interpretable model-agnostic explanations.

Existing Gaps:

- Scalability issues.
- Difficulty in handling complex non-linear models.

Visual:

Comparison chart of SHAP vs. LIME vs. Our Approach (e.g., performance, speed, scalability).

Understanding Model Interpretability in ML Models

Our Methodology

Data Preparation:

• Used healthcare datasets to train neural networks.

Model Interpretation:

• Applied SHAP for feature-level explanations.

Optimization:

• Reduced explanation time by 25% using feature subset optimizations.

Tools & Frameworks:

• TensorFlow, SHAP library, custom scripts (GitHub link included).

Visual:

Flow diagram showing the process: Data \rightarrow Model \rightarrow SHAP \rightarrow Visual Explanations.

System Overview and Demo

System Highlights:

Inputs: Patient health records or financial data.

Outputs: Predictions with visual explanations.

Results and Performance

Metrics:

- o Explanation accuracy: 90%
- o Predictive accuracy: 95%
- o Explanation time reduced by 25%.

Case Studies:

- o Healthcare: Predicting disease outcomes.
- o Finance: Assessing credit scores.

User Feedback:

o Average rating: 8.5/10 for clarity.

Visual:

Graphs or tables summarizing metrics, feedback scores, or before/after comparison.

Ethical Considerations in Interpretability

Challenges Addressed:

- o Identified age-related bias in credit scoring models.
- o Improved transparency in decision-making.

Impact:

o Enabled fairer and more inclusive decisions.

Visual:

Example of bias detection (e.g., SHAP visualization highlighting biased features).

Summary and Next Steps

• Summary:

- Improved interpretability enhances trust without sacrificing accuracy.
 Results validate the practical value of our approach.

• Future Directions:

- Extend to real-time decision systems.
- Explore interpretability for reinforcement learning.

• Acknowledgments:

• Mention collaborators and contributors.