

Scheduling Analysis

Ebrahem Mostafa Sprints

Table of content

Table of content	1
Overview	2
Goals	2
Tasks needed	3
System Tick Rate	3
Hyperperiod	3
URM Calculations	4
Equations	2
 Solution 	2
Time Demand Analysis Calculations	ŧ
 Equations 	5
 Solution 	Ę
Simso Results	(

Overview

We Have 3 Tasks and we want to schedule using rate-monotonic:

- T1 {P: 5, E: 2.5, D: 5}
- T2 {P: 15, E: 4.5, D: 15}
- T3 {P: 20, E: 3.5, P: 20}

Goals

- 1. Calculate The URM.
- 2. Calculate The time demand analysis.
- 3. Model the task set using Simso.

Tasks needed

Tasks	Priority	Periodicity	Execution	Deadline
Task 1	2	5 ms	2.5	5
Task 2	1	15 ms	4.5	15
Task 3	0	20 ms	3.5	20

System Tick Rate

- We can calculate System tick rate by summing all execution time of all tasks and take the system tick rate bigger than it.
- Sum of execution tasks = 2.5 + 4.5 + 3.5 = 10.5 ms
- So .. System tick Rate > 10.5ms = <u>12 ms</u>

Hyperperiod

Hyperperiod = LCM(5,15,20)

Hyperperiod = 20 ms

URM Calculations

Equations

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i} \le n(2^{\frac{1}{n}} - 1)$$

U = Total Utilization

C = Execution time

P = Periodicity

N = Number of tasks

$$URM = n\left(2^{\frac{1}{n}} - 1\right)$$

Note: the rule is >> [U <= URM]

Solution

$$U = (2.5 / 5) + (4.5 / 15) + (3.5 / 20) = 0.975$$

 $URM = 3 * (2\frac{1}{3} - 1) = 0.799$

- ∵ U > URM
- ∴ System needs more tests.

Time Demand Analysis Calculations

Equations

$$Wi(t) = ei + \sum_{k=1}^{i-1} [t/p_k]$$
 ek for $0 < P \le Pi$

, Where

W=Worst response time

E=Execution time

P=Periodicity

T=Time instant

Solution

Task 1 : W(5) = 2.5 + 0 = 2.5 ms.

>> .*. time provided > time needed (Success).

Task 2: W(15) = ((15/5) * 2.5) + 4.5 = 12 ms

>> .*. time provided > time needed (Success).

Task 3: W(20) = (20/5)*2.5 + (20/15)*4.5 + 3.5 = 22.5 ms.

>> .*. time provided < time needed (Failed).

- ... Task 3 is not schedulable.
- ... System needs more tests

Simso Results

∴ Task 3 missed the Deadline as shown in figure.