Note for Measure Theory

Chenmi'en Tan E-mail: chenmientan@outlook.com Actively Updating (Last update: June 19, 2021)

The axiom of choice is obviously true; the well-ordering principle is obviously false; and who can tell about Zorn's lemma?

—Jerry Bona

Theorem 1 (Axiom of choice). Suppose that $\{X_j\}_{j\in J}$ is a nonempty collection of nonempty sets, then $\prod_{i\in J} X_i \neq \emptyset$.

Here we prove theorem 1 by admitting theorem 6. In the following context we will prove theorem 2 by admitting theorem 1, theorem 4 by admitting theorem 2, and theorem 5 by admitting theorem 4, theorem 6 by admitting 5. In this way we show that theorem 1, 2, 4, 5, and 6 are essentially equivalent.

Proof. Pick a well order on $X = \bigcup_{j \in J} X_j$ (where the existence is guaranteed by theorem 6), define $f: J \to X, j \mapsto \min X_j$. Thus $f \in \prod_{j \in J} X_j$.

Theorem 2. Suppose that for any $x \in X$, there exists $y \in Y$ such that property P(x,y) holds, then there exists $f: X \to Y$ satisfies $\forall x \in X, P(x,f(x))$ holds.

Proof. For any $x \in X$, let $Y_x = \{y \in Y : P(x,y)\}$. Through theorem 1, there exists $f \in \prod_{x \in X} Y_x$ satisfies that $\forall x \in X, P(x,f(x))$ holds.

0.1 Order

We refer that \leq is a partially order iff it satisfies

- Reflexivity: $x \leq x$
- Antisymmetry: $x \leq y, y \leq x \Rightarrow x = y$
- Transmissibility: $x \leq y, y \leq z \Rightarrow x \leq z$

We define that (X, \leq) is a partially ordered set iff \leq is a partially order on X, (X, \leq) is a totally ordered set iff for any $x, y \in X$, either $x \leq y$ or $y \leq x$ holds, and X is a well ordered set iff for any $\emptyset \neq A \subset X$, A has a minimum.

Theorem 3 (Strong induction principle). Suppose that X is a well ordered set and property P(n) satisfies $\forall n > n' \in X, P(n')$ holds implies P(n) holds, then $\forall n \in X, P(n)$ holds.

Proof. Assume there exists $n \in X$ such that $\neg P(n)$ holds, then $Y = \{n \in X : \exists n \geq m \in X, \neg P(m)\} \neq \emptyset$. Denote $n' = \min Y$. It is clear that $\forall n' > n \in X, P(n)$ holds, thus $\neg P(n')$ holds. Meanwhile we can derive P(n') holds, which forms a contradiction.

Theorem 4. Every partially ordered set X has a well ordered subset with no strict upper bound.

Proof. The case for emptyset is too trivial to be specified. Suppose that $x_0 \in X$. Assume that every well ordered subset has a strict upper bound. Through theorem 2, there exists mapping f satisfies that for any well ordered subset Y, f(Y) is a strict upper bound of Y. In the following context we construct a contradiction to find that such a mapping cannot exist. We refer \mathcal{G} as a collection of well ordered subsets of X where $Y \in \mathcal{G}$ iff $\min Y = x_0$ and $\forall x_0 \neq x \in Y, x = f(\{y \in Y : y < x\})$. Firstly we verify that

$$\forall n \in Y \cap Y', \{y \in Y : y < n\} = \{y \in Y' : y < n\} = \{y \in Y \cap Y' : y < n\} \ \ (1)$$

Since $Y \cap Y'$ is well ordered, through theorem 3, to varify (1), we can use the condition

$$\forall n > n' \in Y \cap Y', \{y \in Y : y < n'\} = \{y \in Y' : y < n'\} = \{y \in Y \cap Y' : y < n'\}$$
 which implies

$$\bigcup_{n > n' \in Y \cap Y'} \{ y \in Y : y \le n' \} = \bigcup_{n > n' \in Y \cap Y'} \{ y \in Y' : y \le n' \}$$

$$= \bigcup_{n > n' \in Y \cap Y'} \{ y \in Y \cap Y' : y \le n' \}$$

or, equivalently

$$\{y \in Y : \exists n > n' \in Y \cap Y' : y \in Y : y \le n'\}$$

$$= \{y \in Y' : \exists n > n' \in Y \cap Y' : y \in Y : y \le n'\}$$

$$= \{y \in Y \cap Y' : \exists n > n' \in Y \cap Y' : y \in Y : y \le n'\}$$

Thus, we only need to prove

$$Z = \{ y \in Y \setminus Y' : \forall n > n' \in Y \cap Y', n' < y < n \} = \emptyset$$
$$Z' = \{ y \in Y' \setminus Y : \forall n > n' \in Y \cap Y', n' < y < n \} = \emptyset$$

Assume $Z \neq \emptyset$, $Z' = \emptyset$ and denote $z = \min Z$. We have $\{y \in Y : y < z\} = \{y \in Y \cap Y' : y < n\} = \{y \in Y' : y < n\}$, which implies z = n and

forms a contradition. By symmetry, $Z = \emptyset$, $Z' \neq \emptyset$ also impossibly holds. Assume $Z, Z' \neq \emptyset$ and denote $z' = \min Z'$. We have $\{y \in Y : y < z\} = \{y \in Y \cap Y' : y < n\} = \{y \in Y' : y < z'\}$, which implies z = z' and forms a contradition. Thus there must be $Z = Z' = \emptyset$, which indicates that (1) holds.

Now assume $Y \setminus Y', Y' \setminus Y \neq \emptyset$ and denote $x = \min Y \setminus Y', x' = \min Y' \setminus Y$. Because of (1) we have $\forall y \in Y \cap Y', x > y, x' > y$, then

$${y \in Y : y < x} = {y \in Y' : y < x'} = Y \cap Y'$$

which leads to x=x' and forms a contradiction. Thus either $Y \setminus Y' = \emptyset$ or $Y' \setminus Y = \emptyset$ and hence either $Y \subset Y'$ or $Y' \subset Y$ is true.

Next we prove $Y_{\infty} = \bigcup_{Y \in \mathcal{G}} Y$ is well ordered. For any $\emptyset \neq A \subset Y_{\infty}$, there exists $x \in A, Y \in \mathcal{G}$ such that $x \in Y$, thus $\emptyset \neq A \cap Y \subset Y$. Denote $a = \min(A \cap Y)$. Since for any $Y' \in \mathcal{G}$, every element in $Y' \setminus Y$ are greater than a, we can derive $a = \min(A \cap Y_{\infty}) = \min A$.

It is clear that $Y_{\infty} \in \mathcal{G}$ and furthermore $Y_{\infty} \cup \{f(Y_{\infty})\} \in \mathcal{G}$, thus $Y_{\infty} \cup \{f(Y_{\infty})\} \subset Y_{\infty} \Rightarrow f(Y_{\infty}) \in Y_{\infty}$, which forms a contradiction.

Theorem 5 (Zorn's lemma). Suppose X is an nonempty partially ordered set where every totally ordered subset has an upper bound, then X has a maximal element.

Proof. Assume that X has no maximal element, then every totally subset of X has a strict upper bound, which contrdicts theorem 4.

Theorem 6 (Well ordering principle). Every nonempty set X can be well ordered.

Proof. Suppose that \mathcal{P} is the set of partially order on the subsets of X, \leq_1 , \leq_2 are well orders on X_1, X_2 , which are both subsets of X. We refer that $\leq_1 \leq \leq_2$ iff $X_1 \subset X_2$ and $\leq_2 \mid_{X_1} = \leq_1$. It is clear that (\mathcal{P}, \preceq) is a partially ordered set. For any totally ordered subset $\mathcal{T} \subset \mathcal{P}$, we define $a \leq_\infty b$ iff there exists $\leq \in \mathcal{T}$ satisfies that $a \leq b$. It can be examined that \leq_∞ is an upper bound of \mathcal{T} , thus through theorem 5, there exists a maximal element $\leq_M \in \mathcal{P}$. Here \leq_M must be defined on X, or by denoting the domain by M and $x \in X \setminus M$, we can define $a \leq_N b$ iff $a, b \in M$ and $a \leq_M b$ and $a \leq_N x$ for any $a \in M$, where $\leq_M \leq_N$.

0.2 Cardinality

We refer that $\operatorname{card}(X) \leq \operatorname{card}(Y), \operatorname{card}(X) = \operatorname{card}(Y), \operatorname{card}(X) \geq \operatorname{card}(Y)$ iff there exists injective, bijective, and surjective from X to Y, respectively. In the following context we verify that \leq is a totally order.

Theorem 7 (Schröder-Bernstein). Suppose that $card(X) \leq card(Y)$ and $card(X) \geq card(Y)$ both hold, then card(X) = card(Y).

Proof. Let $f: X \to Y, g: Y \to X$ be injections,

Theorem 8. For any sets X and Y, either $\operatorname{card}(X) \leq \operatorname{card}(Y)$ or $\operatorname{card}(X) \geq \operatorname{card}(Y)$ holds.

Proof. Consider the set of injections from subset of X to Y. We refer that $f \leq g$ iff $dom(f) \subset dom(g)$ and $g|_{dom(f)} = f$, which can be verified to satisfy the condition of theorem 5. Thus there exists a maximal injection h, where either dom(h) = X or image(h) = Y holds.