Generating Functions

Tomasz Brengos Committers : Mykhailo Moroz, Mihail Orlov

1 Generating Series

Instead of viewing a sequence as a function that returns its nth term, a generating series packages all of its terms into a single power series whose coefficients are exactly the sequence entries. Concretely, the sequence

is encoded by the generating series

$$2 + 3x + 5x^2 + 8x^3 + 12x^4 + \cdots$$

In general, given any sequence $\{c_n\}_{n\geq 0}$, its generating series is the formal power series

$$G(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

We say that G(x) "generates" the sequence $\{c_n\}$ because each coefficient of x^n in G(x) is precisely c_n . Generating series turn sequence-based problems into algebraic manipulations of power series, a technique we will exploit heavily in what follows.

Recall of the Basic Series

$$a_0 = 1 \qquad a_1 = \frac{1}{2} \\ a_2 = \frac{1}{4} a_3 . . .$$

Figure 1: A geometric interpretation of the binary series, showing how $\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$.

A Geometric View of the Binary Series For |x| < 1, we have the infinite geometric series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n.$$

We now present a quick proof of this result by performing long division of 1 by 1-x.

$$\begin{array}{c|c}
1 + x + x^2 + x^3 + \cdots \\
1 - x & 1 \\
\hline
 & \frac{1 - x}{x} \\
 & \frac{x - x^2}{x^2} \\
 & \frac{x^2 - x^3}{x^3} \\
 & \vdots
\end{array}$$

The process works as follows: The long-division proceeds by repeatedly dividing the current remainder by the leading term of the divisor, producing one new power of x at each step:

1. Divide 1 by 1-x. The multiplier needed to eliminate the constant term is 1, so

$$1 - 1 \cdot (1 - x) = x.$$

Thus the first summand is 1, leaving a remainder of x.

2. Divide the remainder x by 1-x. The multiplier is x, so

$$x - x \cdot (1 - x) = x^2.$$

Hence the second summand is x, leaving a remainder of x^2 .

3. Divide x^2 by 1-x. The multiplier is x^2 , giving

$$x^2 - x^2 \cdot (1 - x) = x^3.$$

Therefore the third summand is x^2 , with remainder x^3 .

4. Continuing in this fashion produces the infinite series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

Continuing indefinitely produces

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n,$$

as claimed.

We will use this fact in further examples throughout the notes.

2 Building Generating Functions

The simplest (or "basic") generating function is

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots,$$

which generates the constant sequence $1, 1, 1, \ldots$

Replacing x with -x:

$$\frac{1}{1-(-x)} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots,$$

generating $1, -1, 1, -1, \ldots$

Replacing x with 3x:

$$\frac{1}{1-3x} = 1 + 3x + 9x^2 + 27x^3 + \cdots,$$

generating $1, 3, 9, 27, \ldots$

Scaling a sequence by 3:

$$\frac{3}{1-3x} = 3 + 9x + 27x^2 + 81x^3 + \cdots,$$

generating 3, 9, 27, 81, ...

Termwise addition of sequences:

Adding the generating functions for $1, 1, 1, \ldots$ and $1, 3, 9, \ldots$ gives

$$\frac{1}{1-x} + \frac{1}{1-3x} = 2 + 4x + 10x^2 + 28x^3 + \cdots,$$

which generates $2, 4, 10, 28, \ldots$

Replacing x with x^2 :

$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + \cdots,$$

generating $1, 0, 1, 0, 1, 0, \dots$

Shifting a sequence:

Multiplying by x shifts all coefficients right by one:

$$\frac{x}{1-3x} = 0 + x + 3x^2 + 9x^3 + \cdots,$$

generating $0, 1, 3, 9, \ldots$, and

$$\frac{x}{1-x^2} = 0 + x + 0x^2 + x^3 + \cdots,$$

generating $0, 1, 0, 1, \ldots$

Combining shifted sequences:

Adding the two "even-odd" generating functions recovers

$$\frac{1}{1-x^2} + \frac{x}{1-x^2} = \frac{1+x}{1-x^2} = \frac{1}{1-x},$$

which generates $1, 1, 1, 1, \ldots$

Differentiation:

Differentiating the basic Generating Function

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \cdots,$$

yields the generating function for $1, 2, 3, 4, \ldots$

3 Recurrence Relations & Generating Functions

We conclude with an example of one of the many reasons studying generating functions is helpful: solving recurrence relations via algebraic manipulation of power series.

Example: Tower of Hanoi The minimum number of moves required to transfer n disks satisfies

$$a_0 = 0$$
, $a_1 = 1$, $a_n = 2a_{n-1} + 1$ $(n \ge 1)$,

giving the sequence

$$0, 1, 3, 7, 15, 31, \dots$$

Figure 2: Initial configuration for Tower of Hanoi (3 disks).

Define the generating function

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Using the recurrence for $n \geq 1$:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} (2a_{n-1} + 1)x^n = 2x \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} x^n,$$

so

$$f(x) - a_0 = 2x f(x) + \frac{x}{1-x},$$

and since $a_0 = 0$.

$$f(x) = \frac{x}{(1-x)(1-2x)}.$$

Performing partial fractions:

$$\frac{x}{(1-x)(1-2x)} = \frac{-1}{1-x} + \frac{1}{1-2x},$$

hence

$$f(x) = -\frac{1}{1-x} + \frac{1}{1-2x}.$$

Extracting coefficients yields the closed-form solution

$$a_n = 2^n - 1,$$

confirming the well-known formula for the Tower of Hanoi moves.

4 Introduction to the Fibonacci Sequence

The Fibonacci sequence famously arises from a puzzle involving rabbit populations. Imagine starting with a single pair of rabbits that takes one month to mature. After maturing, each pair produces a new pair of rabbits every month. Mathematically, if F_n represents the number of rabbit pairs in month n, the sequence satisfies the initial conditions

$$F_0 = 0, \quad F_1 = 1,$$

and the recurrence

$$F_{n+2} = F_{n+1} + F_n$$
 for $n \ge 0$.

Q: is there a non-recursive (closed-form) formula for F_n ?

2)
$$|| + ||$$
 (1 big pair + 1 small pair)

3)
$$|| + || + ||$$
 (2 big pairs + 1 small pair)

4)
$$|| + || + || + || + ||$$
 (3 big pairs + 2 small pairs)

Figure 3: Illustration of rabbit pairs over successive months. Blue bars represent small rabbits; orange bars represent big (mature) rabbits.

Idea: consider and calculate it

5 Deriving the Closed-Form for the Fibonacci Sequence

Step 1: Define the generating function. Let $\{F_n\}_{n=0}^{\infty}$ be the Fibonacci sequence with

$$F_0 = 0$$
, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$ $(n \ge 0)$.

Define the generating function

$$f(x) = \sum_{n=0}^{\infty} F_n x^n.$$

We aim to find a closed-form expression for f(x), and then extract a formula for F_n .

Step 2: Use the Fibonacci recurrence in f(x). Starting from

$$f(x) = F_0 + F_1 x + \sum_{n=2}^{\infty} F_n x^n,$$

and noting $F_0 = 0$, $F_1 = 1$, we have

$$f(x) = x + \sum_{n=2}^{\infty} (F_{n-1} + F_{n-2}) x^n$$

because $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Separate the sums:

$$f(x) = x + \sum_{n=2}^{\infty} F_{n-1} x^n + \sum_{n=2}^{\infty} F_{n-2} x^n.$$

Shift indices to factor out f(x):

$$\sum_{n=2}^{\infty} F_{n-1} x^n = x \sum_{n=2}^{\infty} F_{n-1} x^{n-1} = x \sum_{m=1}^{\infty} F_m x^m = x (f(x) - F_0) = x f(x),$$

since $F_0 = 0$. Similarly,

$$\sum_{n=2}^{\infty} F_{n-2} x^n = x^2 \sum_{n=2}^{\infty} F_{n-2} x^{n-2} = x^2 \sum_{k=0}^{\infty} F_k x^k = x^2 f(x).$$

Hence,

$$f(x) = x + x f(x) + x^2 f(x) \implies f(x)(1 - x - x^2) = x.$$

Thus,

$$f(x) = \frac{x}{1 - x - x^2}.$$

Step 3: Partial-Fraction Decomposition (as in the images). First, rewrite

$$\frac{1}{1-x-x^2} = \frac{1}{-(x^2+x-1)} = -\frac{1}{x^2+x-1}.$$

Next, factor $x^2 + x - 1$. Observe that the roots of

$$x^2 + x - 1 = 0$$

are

$$x = -\frac{1+\sqrt{5}}{2}$$
 and $x = -\frac{1-\sqrt{5}}{2}$.

Hence,

$$x^{2} + x - 1 = \left(x + \frac{1 + \sqrt{5}}{2}\right) \cdot \left(x + \frac{1 - \sqrt{5}}{2}\right).$$

Therefore,

$$-\frac{1}{x^2 + x - 1} = -\frac{1}{\left(x + \frac{1 + \sqrt{5}}{2}\right)\left(x + \frac{1 - \sqrt{5}}{2}\right)}.$$

We look for constants A and B such that

$$-\frac{1}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)} = \frac{A}{x+\frac{1+\sqrt{5}}{2}} + \frac{B}{x+\frac{1-\sqrt{5}}{2}}.$$

Step 4: Solve for A and B. Comparing coefficients of x and the constant term in

$$-1 = A(x+\beta) + B(x+\alpha),$$

we obtain the system

$$\begin{cases} A + B = 0, \\ A \beta + B \alpha = -1. \end{cases}$$

It follows that

$$B = -A$$
, $A(\beta - \alpha) = -1 \implies A = \frac{1}{\alpha - \beta}$ and $B = -\frac{1}{\alpha - \beta}$.

Hence,

$$-\frac{1}{(x+\alpha)(x+\beta)} = \frac{1}{\alpha-\beta} \frac{1}{x+\alpha} - \frac{1}{\alpha-\beta} \frac{1}{x+\beta}.$$

Step 5: Combine with the earlier factor -1 and rewrite. Recalling that

$$\frac{1}{1 - x - x^2} = -\frac{1}{x^2 + x - 1} = -\frac{1}{(x + \alpha)(x + \beta)},$$

we combine the above result to conclude

$$\frac{1}{1-x-x^2} = \frac{1}{\alpha-\beta} \left(\frac{1}{x+\alpha} - \frac{1}{x+\beta} \right).$$

Step 6: Expand each term in a power series. Notice that

$$\frac{1}{x+\alpha} = \frac{1}{\alpha} \frac{1}{1+\frac{x}{\alpha}} = \frac{1}{\alpha} \sum_{n=0}^{\infty} \left(-\frac{x}{\alpha}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha^{n+1}} x^n,$$

valid for $\left|\frac{x}{\alpha}\right| < 1$. Similarly,

$$\frac{1}{x+\beta} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^{n+1}} x^n.$$

Hence,

$$\frac{1}{1-x-x^2} = \frac{1}{\alpha-\beta} \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha^{n+1}} x^n - \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^{n+1}} x^n \right] = \sum_{n=0}^{\infty} \left[\frac{1}{\alpha-\beta} \left(\frac{(-1)^n}{\alpha^{n+1}} - \frac{(-1)^n}{\beta^{n+1}} \right) \right] x^n.$$

Step 7: Identify Fibonacci numbers. Recall that $\alpha - \beta = \sqrt{5}$, and

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} = \frac{\alpha^n - \beta^n}{\sqrt{5}}.$$

One checks (or uses known identities) to see that the coefficient of x^n in the above power series is exactly F_n . Consequently,

$$\sum_{n=0}^{\infty} F_n x^n = \frac{1}{1 - x - x^2},$$

which is the generating function for the Fibonacci sequence.

Conclusion. We have shown that the generating function for the Fibonacci sequence is $\frac{x}{1-x-x^2}$. Through partial fractions and comparing coefficients, we deduced that

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}.$$

This gives a non-recursive (closed-form) expression for F_n , completing the derivation.

6 More examples

In earlier sections (see, e.g., A Geometric View of the Binary Series on page 14), we explored methods to solve recurrences and introduced generating functions as a tool to transform sequences into functions. In this section, we briefly reiterate these ideas and demonstrate, through several examples, how generating functions serve as a bridge between discrete mathematics and calculus.

Example 1: Constant Sequence. Consider the sequence defined by

$$a_n = 1$$
 for all $n > 0$,

so that the sequence is

$$1, 1, 1, \ldots$$

By the geometric series formula (proved earlier), its generating function is given by

$$f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1.$$

Example 2: Exponential Sequence. Now, let

$$a_n = \frac{1}{n!}.$$

Then the generating function is

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \quad x \in \mathbb{R}.$$

A partial justification of this result can be obtained by recalling the Taylor series expansion of the exponential function. Although a complete treatment of Taylor series is a topic in calculus (not yet covered in this course), note that differentiating the power series term-by-term confirms the identity.

Example 3: Binomial Coefficient Sequence. Consider the sequence defined by

$$a_n = \binom{n+k}{k}.$$

Theorem. The generating function for this sequence is

$$f(x) = \sum_{n=0}^{\infty} {n+k \choose k} x^n = \frac{1}{(1-x)^{k+1}}, \quad |x| < 1.$$

Proof.

• For k = 1: Note that

$$a_n = \binom{n+1}{1} = n+1,$$

so that

$$f(x) = \sum_{n=0}^{\infty} \binom{n+1}{1} x^n = \sum_{n=0}^{\infty} (n+1)x^n.$$

Recall the geometric series,

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n,$$

and observe that by differentiating both sides term-by-term with respect to x, we can derive the generating function for the sequence (n + 1). In detail, differentiate the left-hand side:

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}.$$

On the right-hand side, notice that since

$$\frac{d}{dx}x^{n+1} = (n+1)x^n,$$

differentiating the series yields

$$\frac{d}{dx}\left(\sum_{n=0}^{\infty}x^n\right) = \sum_{n=0}^{\infty}(n+1)x^n.$$

Thus, we conclude that

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n.$$

This recovers the generating function for k = 1. A less formal derivation was given in the subsection Building Generating Functions on page 16.

A complete inductive proof follows similar lines but is omitted here for brevity.

Example 4: Alternating Factorial Sequence. Define the sequence by

$$a_n = \begin{cases} 0, & \text{if } n \text{ is even,} \\ \frac{(-1)^{\frac{n-1}{2}}}{n!}, & \text{if } n \text{ is odd.} \end{cases}$$

Then the generating function is

$$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sin(x), \quad x \in \mathbb{R}.$$

Even though a full treatment of the Taylor series for trigonometric functions is part of calculus (again, a topic not yet covered here), this example illustrates how generating functions capture nontrivial sequence behavior by connecting discrete structures with analytic functions.

7 Generating Function Applications

One key application is the multiplication (or convolution) of generating functions, which naturally arises when we combine two distinct combinatorial constructions into a single, more complex structure.

Question: If a_k counts all objects of type A of size k and b_k counts all objects of type B of size k, how many pairs of objects (A, B) have a total size of n?

Answer: The number of such pairs is given by

$$\sum_{k=0}^{n} a_k \, b_{n-k}.$$

Observation: The generating function for the sequence

$$C_n = \sum_{k=0}^n a_k \, b_{n-k}$$

is

$$\sum_{n=0}^{\infty} C_n x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n.$$

It shows that multiplying the generating functions corresponding to $\{a_n\}$ and $\{b_n\}$ produces a new generating function whose coefficients are given by the convolution of the two original sequences.

Example: Dice Sum Counting. A classic example of this application is counting the number of ways to obtain a given sum when rolling two standard six-sided dice. For a single die, the generating function is:

$$D(x) = x + x^2 + x^3 + x^4 + x^5 + x^6,$$

where the term x^k corresponds to rolling a k. Since the two dice are independent, the generating function for the sum of the two dice is:

$$D(x)^2 = (x + x^2 + x^3 + x^4 + x^5 + x^6)^2$$
.

Expanding this product, the coefficient of x^n in $D(x)^2$ equals the number of ways to achieve a total sum of n. For instance, one can verify that the coefficient of x^7 is 6, which corresponds to the six possible outcomes that sum to 7 (namely, the pairs (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)).