

MediCar – How vehicles can navigate around using LLMs

1

1) Starting Point

2) Progress

3) Results / Demo

STARTING POINT

Visualization with vehicles and routes

LLM generates incidents based on human prompt

Reroute incoming orders

Accuracy for different openai Few-Shot and Zero-Shot

PROGRESS

Dynamic edge weights

Research on Graph Representations

Evaluation of LLama

Langchain

Research Papers

Rerouting of moving vehicles

Expanded
Graph and
more vehicles

Dynamic edge weights

Research on graph representations

GraphLLM: Boosting Graph Reasoning Ability of Large Language Model

Chai, Ziwei, et al. "Graphllm: Boosting graph reasoning ability of large language model." *arXiv preprint arXiv:2310.05845* (2023).

Let Your Graph Do the Talking: Encoding Structured Data for LLMs

Perozzi, Bryan, et al. "Let Your Graph Do the Talking: Encoding Structured Data for LLMs." arXiv preprint arXiv:2402.05862 (2024)

Adjacency Matrix

	Α	В	С	Е	F
Α	0	1	1	0	0
В	1	0	1	1	0
С	1	1	0	1	1
Е	0	1	1	0	0
F	0	0	1	0	0

Graph Neural Network

(a) Input graph

(b) Neighborhood aggregation

Geographic node presentation

Action: "There is a radiation leak at Klinik für Strahlenheilkunde."

Context: List of nodes with (x,y)-coordinates

Output ~

The radiation leak at Klinik für Strahlenheilkunde will directly affect the following nodes:

1. Klinik für Frauenheilkunde

Explanation: Close proximity to Klinik für Strahlenheilkunde, likely to experience increased traffic due to emergency response or evacuation procedures.

2. Dialysestation

Explanation: Close proximity to Klinik für Strahlenheilkunde, likely to experience increased traffic due to emergency response or evacuation procedures.

-

RESULTS

LLaMA @ DWS

- Meta Model
- Open-Source
- Running on Uni-Server has much lower latency
- Improvement in performance

OpenAl Zero Shot

- OpenAl Model
- Relies on preexisting knowledge and only the context is given
- Task-diverse
- A small number of tokens is used

OpenAl Few Shot

- OpenAl Model
- Giving context and a few examples of expected output to certain inputs
- More fine-tuned for certain Tasks
- Larger amount of tokens used

Ranking	Model	Accuracy
1	OpenAl Few Shot	0.9151
2	OpenAl Zero Shot	0.8393
3	LLama2 Zero Shot	0.6607
4	LLama2 Few Shot	0.5179

LLama2 Few Shot like a coinflip

NEXT STEPS

Implement better graph tokenization

LLM decides affected edges

LLM Finetuning

Geographic node representation

Thank You For Your Attention!

Do You Have Any Questions?

