23823 s/020/61/138/002/005/024 C111/C222

The method of variable ...

J. Douglas, H.H. Rachford, Trans.Am.Math.Soc., 82,421 (1956), G. Birkhoff, R. Varga, Trans.Am.Math.Soc., 92, 13 (1959), S.D. Conte, Pasif.J.Math., 7, no. 4, 1535 (1957), J. Heller, J.Soc.Ind.Appl.Math., 8,156 (1960).

ASSOCIATION: Moskovskiy gosudarstvennyy universitet imeni M.V.Lomonosova (Moscow State University imeni M.V. Lomonosov)

PRESENTED: December 29, 1960, by S.L. Sobolev, Academician

SUBMITTED: December 29, 1960

X

Card 6/6

16.3 4 00 16 3500 14.6500 5/020/61/158/003/005/013

AUTHOR. Devakonev Ye G

TITLE: An itsration method of solving simultaneous equations

of finite differences

PERIODICALS Akadamiya nauk SSSR Diklady, v. 138 no 3, 1961.

TEXT: The author describes an iteration methol for solving a system of difference equations which approximates the equations of elliptic type and of the order. The letermination of the solution with examines of requires

2 1n 5

arithmetic operations (h ... step of the net).

In the square D , O < $v = \uparrow = 0$ of y $\sigma_{\rm e}$, let the solution of the self-sonjugate elliptic equation

Let $= (11)^{\frac{m}{2}} \sum_{i \in \mathcal{I}} D_{i}(a_{i}D_{i}a_{i}) + (11)^{\frac{m}{2}} \sum_{i \in \mathcal{I}} D_{i}(b_{i}, D_{i}a_{i}) + f$ (1)

Cert $= (A_{i})^{\frac{m}{2}} \sum_{i \in \mathcal{I}} D_{i}(a_{i}D_{i}a_{i}) + f$ (1)

Sull 3 S/020/5 / .38/003/005/017 An iteration method of solving $\frac{3000}{5}$ City/0333 with the bounds

with the hourdary monditions

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

be sought with and it and two dimensional differentiation vector; again $\mathfrak{b}_{p^{n}}$, \mathfrak{f} is functions of \mathfrak{a} , \mathfrak{a}_{1} is initial of the boundary S of \mathfrak{D}_{p} $a_{\underline{a}} \leq e^{-\pi \cdot a_{\underline{a}}}$, $b = e^{-\pi \cdot a_{\underline{a}}} \leq a_{\underline{a}} \leq 0$, $a_{\underline{a}} \leq 0$, a_{\underline

Let D be the sat of the prints

$$x_j = in, y_j = jh$$
, where $a = \sqrt{N + O_{\frac{1}{N}}} : n + O_{\frac{1}{N}} : n + O_{\frac{1}$

The set of the points for which in holds 0 % i 1 mon or N o m + 1 $_{\rm BS}$ t at N or the same for j. is denoted by $S_{\rm p}$. It holds

$$(\mathbf{s}_{\mathbf{r}_{i}}) = \mathbf{0}, \quad \text{if } \mathbf{f} \Rightarrow \mathbf{S}_{\mathbf{f}_{i}} = \mathbf{0} \tag{4}$$

Card 2/%

\$\\\020\\61\\138\\003\\005\\017\\\0333\\011\\0333\\

An iteration method of solving ... C111/C333 For u_{ij} for which i, $j \subseteq D_h$ S_h one obtains the following approximation of the problem:

 $L_h u = (-1)^m \sum_{|\mathcal{A}| = 7n} D_{\overline{\mathcal{A}}}^h \left(a_{\alpha} D_{\alpha}^h u\right) + (-1)^{\frac{n}{2}} \sum_{|\mathcal{B}| < m} D_{\overline{\mathcal{B}}}^h \left(b_{\beta} D_{\beta}^h u\right) = f \qquad (5)$ where D_{α}^h denotes the "right" differences with respect to α , D_{α}^h the "left" differences, $u = -(N+1)^2$ - dimensional vector which satisfies (4). The convergence of (5) to the solution of (1) - (2) is proved in the paper of V_a K. Saul'yev (Ref. 7: Vychislitel'naya matematika, $Nr_a = 1 (1957)$).

Theorem :: The difference approximation (4) - (5) preserve the properties of self-adjointness and of the positivity of the differential operators.

Let $M_h u = (-1)^m (D_{(m,o)}^n D_{(m,o)}^h + D_{(0,m)}^h D_{(o,m)}^h) u$.

Theorem 2: If Ψ satisfies (4) and if $(\Psi_h \Psi, \Psi) = 1$, then there exist Card 3/5

"APPROVED FOR RELEASE: 08/22/2000

24033 \$/020/61/138/003/005/017 \$111/0333

An iteration method of solving . . . C111/C333 constants m_0 and M_0 which do not depend on h, such that

$$0 < m_o < (L_h \psi, \psi) \leq M_o \tag{6}$$

$$(?, \forall)$$
 denotes $\sum_{i=0}^{N} \sum_{j=0}^{N} P_{ij} \psi_{ij} h^2$.

In order to solve (4) - (5) the author proposes the following method. The approximation $v^{(n)}$ is assumed to be known. Let the next approximation then be determined from

$$M_h u^{(n+1)} = M_h v^{(n)} - \tau (L_h v^{(n)} - f)$$
 (12)

where T is the iteration parameter.

Theorem 3: The iteration process (12), for which for every step the $\mathbf{v}^{(n)}$ is taken as initial approximation for $\mathbf{u}^{(n+1)}$ and the error is Card 4/5

24033 S/020/61/138/003/005/017 C111/C333

An iteration method of solving . . .

 ξ_1 - times shortened according to the method of alternating directions, requires $h^{-2}\ln^2h$ ln ξ arithmetic operations for determining the solution of (4) - (5) with exactness ξ . The theorem is based on the paper of the author (Ref. 10: DAN, 138, Nr. 2 (1961)).

N. S. Bakhvalov is mentioned in the paper.

There are 6 Soviet-bloc and 4 non-Soviet-bloc references. The three references to English-language publications read as follows: D. W. Peaceman, H.H. Rachford, J.Soc. Ind. Appl. Math., 3, 28 (1955); J. Douglas, H. H. Rachford, Trans. Am. Math. Soc., 82, 421 (1956); G. Birkhoff, R. Varga, Trans. Am. Math. Soc., 92, 13 (1959).

ASSOCIATION: Moskovskiy gosudarstvennyy universitet imeni M. V. Lomonosova (Moscow State University imeni M.V.Lomonosov)

PRESENTED: December 29, 1960, by S. L. Sobolev, Academician

SUBMITTED: December 27, 1960

Card 5/5

VOLODARSKIY, R.F.; ARONOV, V.I.; D'YAKONOV, Ye.G.; SHIRIKOV, V.P.; FEDYNSKIY, V.V., doktor fiz.-mat. nauk, prof., red.; ZARETSKAYA, A.I., ved. red.; BASHMAKOV, G.M., tekhn. red.

[Use of electronic calculating machines to interpret gravity and magnetic fields] Primenenie elektronno-schetnykh mashin dlia interpretatsii gravitatsionnykh i magnitnykh polei. Pod red. V.V.Fedynskogo. Moskva, Gostoptekhizdat, 1962. 74 p. (MIRA 15:9)

(Electronic calculating machines) (Gravity)
(Magnetic anomalies)

26.5100

35531 \$/020/62/142/006/002/019 B112/B108

AUTHOR:

D'yakonov, Ye. G.

TITLE:

Method of nots for the solution of parabolic 2m-th-order

equations with separable variables

PERIODICAL: Akademiya nauk SSSR. Doklady, v. 142, no. 6, 1962, 1236-1238

TEXT: The author describes a very economical difference scheme for solving the heat conduction equation in a domain $Q_T = \overline{\Omega} \times [0, T]$, where Ω is a

parallelepiped. The equation

$$\delta u(x, t)/\delta t = \sum_{s=1}^{p} L_s u(x, t) + f(x, t)$$

with

$$L_{su} = \sum_{\infty=0}^{m} (-1)^{\alpha-1} \partial^{\alpha} (a_{sw}(x_{s}) \delta^{\infty} u / \partial x_{s}^{\alpha}) / \partial x_{s}^{\alpha}$$

is replaced by the system of difference equations

Card 1/3

3/020/62/142/006/002/019 B112/B108

Method of nets for ...

$$\frac{v_{\Delta}^{(n+1/p)}-v_{\Delta}^{(n)}}{\tau}=L_{1}^{h}v_{\Delta}^{(n+1/p)}+\sum_{s=2}^{p}L_{s}^{h}v_{\Delta}^{(n)}+f_{\Delta}^{(n)},$$

$$\frac{v_{\Delta}^{(n+s/p)} - v_{\Delta}^{(n+(s-1)/p)}}{\tau} = L_{s}^{h} v_{\Delta}^{(n+s/p)} - L_{s}^{h} v_{\Delta}^{(n)},$$

$$s = 2, 3, \dots, p,$$

(4), where

$$L_{s}^{h}v_{\Delta}=\sum_{\alpha=0}^{m}\left(-1\right)^{\alpha-1}\Delta_{\tilde{x}_{s}}^{\alpha}\left(a_{sx}\left(i_{s}h\right)\Delta_{x_{s}}^{\alpha}v_{\Delta}\right),$$

$$\Delta_{x_{s}}v_{\Delta} = \frac{v_{l_{1}...(l_{s}+1)...l_{p}} - v_{l_{1}...l_{p}}}{h}, \qquad \Delta_{\overline{x}_{s}}v_{\Delta} = \frac{v_{l_{1}...l_{p}} - v_{l_{1}...(l_{s}-1)...l_{p}}}{h}, \qquad (5).$$

$$v_{\Delta}^{(n+s/p)} = 0$$
 при $\Delta \in S_h$.

There are 11 references: 8 Soviet and 3 non-Soviet references. The three references to English-language publications read as follows: D. W. Peaceman, H. H. Rachford, J. Soc. Ind. Appl. Math., 3, No. 1, 28 (1955); J. Douglas, H. H. Rachford, Trans..Am. Math. Soc., 82, 421 (1956); G. A. Baker, T. A. Oliphant, Quart. Appl. Math., 17, No. 4 (1960).

Card 2/3

Method of nets for ...

\$/020/62/142/006/002/019 B112/B108

ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova (Moscow State University imeni M. V. Lomonosov)

PRESENTED:

October 27, 1961, by S. L. Sobolev, Academician

SUBMITTED:

October 7, 1961

Card 3/3

} { ! !

S/020/62/143/001/003/030 B112/B102

163500 10,1200 9,3700 AUTHOR: D'yakonov, Ye. G.

TITLE:

A method for solving the Poisson equation

PERIODICAL: Akademiya nauk SSSR. Doklady, v. 143, no. 1, 1962, 21 - 24

TEXT: The author solves the problem

$$\Delta_{x\bar{x}}^{2} u_{ij} + \Delta_{y\bar{y}}^{2} u_{ij} = f_{ij}$$

for $(i,j)\in S_h$, $u_{i,j} = 0$ for $(i,j)\in S_h$, where

$$2_{4x\bar{x}}^{2}u_{ij} = (u_{i+1,j} - 2u_{ij} + u_{i-1,j})/h^{2},$$

$$\Delta_{y\bar{y}}^{2} u_{ij} = (u_{i,j+1} - 2u_{ij} + u_{i,j-1})/h^{2},$$

by the following iteration process:

Card 1/2

S/020/62/143/001/003/030 B112/B102

A method for solving the Poisson equation

(5)

$$(E - \tau_n \Delta_{x\bar{x}}^2) u_{ij}^{(n+1)} = (E + \tau_n \Delta_{x\bar{x}}^2) u_{ij}^{(n)};$$

$$(E - \tau_n \Delta_{y\bar{y}}^2) u_{ij}^{(n+1)} = (E + \tau_n \Delta_{y\bar{y}}^2) u_{ij}^{(n+1)} + \tau_n \tilde{f}_{ij}^{(n)},$$
(5)

where $\tilde{f}_{ij}^{(n)} = 0$ for $(i,j) \in S_h$, $\tilde{f}_{ij}^{(n)} = (E - \tau_n \Delta_{x\bar{x}}^2)^{-1} f_{if}$ for $(i,j) \in \Omega_h$. In order to obtain an approximation of the accuracy ϵ , a number of arithmetical operations is necessary, which is of the order of ln h lng/h2. There are 4 references: 2 Soviet and 2 non-Soviet. The two references to English-language publications read as follows: D. W. Peaceman, H. H. Rachford, J. Soc. Ind. and Appl. Math., 3, No. 1 (1955); J. Douglas, H. H. Rachford, Trans. Am. Math. Soc., 82, No. 2 (1956).

ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova (Moscow State University imeni M. V. Lomonosov)

October 27, 1961, by S. L. Sobolev, Academician PRESENTED:

SUBMITTED: October 7, 1961

Card 2/2

"APPROVED FOR RELEASE: 08/22/2000

CIA-RDP86-00513R000411720005-1

```
S/O2O/62/144/001/003/024

S/O2O/62/144/001/0
```

Difference schemes with a ...

S/020/62/144/001/003/024 B112/B102

 $u|_{S} = \psi(x,t), u|_{t=0} = \varphi(x), D_{0}u|_{t=0} = \varphi_{1}(x);$

3. $D_0 u = (-1)^{m-1} \sum_{|s|=2m} a_s D^s u + \sum_{|\alpha|=2m} a_\alpha D^\alpha u + \sum_{|\beta| \le 2m} a_\mu D^\beta u + f,$ $u \mid_{t=0} = g(x).$

D and D denote $\partial/\partial t$ and $\partial/\partial x$, respectively. Estimates of the approximation rate are derived.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova

(Moscow State University imeni M. V. Lomonosov)

PRESENTED: December 12, 1961, by I. G. Petrovskiy, Academician

SUBMITTED: December 1, 1961

Card 2/.

D'YAKONOV, Ye.G. (Moskva)

Some difference systems for solving boundary value problems. Zhur. vych. mat. i mat. fiz. 2 no.1:57-79 Ja-F '62. (MIRA 15:3) (Differential equations-Numerical solutions) (Boundary value problems)

D'YAKONOV, Ye.G.

Method of nets for solving parabolic equations of order 2m with reparable variables. Dokl. AN SSSR 142 no.6:1236-1238 F 162. (MIRA 15:2)

1. Moskovskiy gosudarstvennyy universitet im. M.G.Lomonosova. Predstavleno akademikom S.L.Sobolevym.

(Differential equations, Partial)

D'YAKONOV, Ye.G. (Moskva)

Difference schemes with splitting operators for multidimensional stationary problems. Zhur.vych.mat.i mat.fiz. 2 no.4:549-568

Jl-Ag '62. (MIRA 15:8)

(Difference equations) (Operators (Mathematics))

BDS/EWT(d)/FCC(w) L 12736-63 IJP(C)

S/208/63/003/002/013/014

AUTHOR:

D'yakonov, Ye. G. (Moscow)

TITLE:

The application of splot-up operators

PERIODICAL:

Zhurnal vychislitel noy matematiki i matematicheskoy fiziki, v. 3.

no. 2, 1963, 385-388

The author introduced earlier (Ref. 1: Dokl. AN SSSR, 1961, 144, no. 1, 29-32; Ref. 2: Zh. vychisl. matem. i matem. fiz., 1962, 2, no. 4, 549-568) the concept of the difference split-up operator and proposed for the rectangular case a data-collecting algorithm based on the splitting-up of the operator. This algorithm can be used for the solution of the system of finite difference equations

$$A_{V}^{(n+1)} = F^{(n)}(V^{(n)}, V^{(n-1)}, \dots, V^{(n-q)}, f^{(n)}),$$
 (1)

occurring in the case of nonstationary problems within the scheme of differences with split-up operators, as well as in the case of certain iteration method of solution for stationary difference problems. (The notation follows the second mentioned article). In the case of p=2 one needs only $\approx 1/h^2$ arithmetic operation to find v(n+1). The present article shows that even in case of some nonorthogonal Card 1/2

\$/208/63/003/002/013/014

The application of split-up

L 12736-63

regions one can modify the algorithm and solve the system (1) with the splitting-up operator A at the expense of $\sim 1/h^2$ arithmetic operations. For an arbitrary region Ω one needs $\sim 1/h^3$ arithmetic operations. For the sake of simplicity the author discusses only the case p=2 since nothing new is needed for the generalization of the results to a greater number of spacial variables. He gives the reading algorithm with a choice of follow-up points, the algorithm with parametric points and notes that they are valid even in the case of an uneven network. The author thanks v. I. Lebedev for valuable remarks. There are 4 figures.

SUBMITTED: November 9, 1962

Card 2/2

D'YAKONOV, Ye.G.

Use of difference schemes with splitting operators for hyperbolic equations with variable coefficients. Dokl. AN SSSR 151 no.4: 762-765 Ag '63. (MIRA 16:8)

1. Moskovskiy gosudarstvennyy universitet im. M.V.Lomonosova. Predstavleno akademikom S.L.Sobolevym.

(Differential equations)

ACCESSION NR: APho24561

5/0208/64/004/002/0278/0291

AUTHOR: D'yakonov, Ye. G. (Moscow)

TITLE: Difference scheme with a splitting operator for general parabolic equations of the second kind with variable coefficients

SOURCE: Zhurnal vy*chislitel'noy matematiki i matematicheskoy fiziki, v. 4, no. 2, 1964, 278-291

TOPIC TAGS: difference equation, finite difference, parabolic equation, splitting operator

ABSTRACT: The problem considered is the solution of the equation

$$D_{\theta}u = \sum_{l_{s}=1}^{p} D_{l}(\widetilde{a}_{ls}(x) D_{\theta}u) + \sum_{s=1}^{p} (\widetilde{b}_{s}(x) D_{s}u + \widetilde{c}_{s}(x) u) + f(x),$$

with initial and boundary conditions

$$u|_{x\to 0} = \varphi(x')$$
 and $u|_S = \psi(x)$, $x \in S$.

Card 1/3

ACCESSION NR: AP4024561

on the cylinder

$$Q_T = \overline{\Omega} \times [0 < x_0 < T].$$

Here Ω is a closed bounded region of a finite number of p-dimensional parallelepipeds with boundaries parallel to the coordinate planes. The remaining notation
depends on that of Ye. G. D'yakonov (Raznostny*ye skhemy* s rasshcheplyayushchimsya
operatorom dlya mnogomerny*kh nestatsionarny*kh zadach. Zh. vy*chisl. matem. i
matem. Fiz., 1962, 2 No. 4, 549-568),

$$x = (x_0, x'),$$

$$\tilde{a}_s = \tilde{a}_{ss}(x) > \gamma_1 = \text{const}_{i} > 0; \qquad \tilde{a}_{sl} = \tilde{a}_{ls};$$

$$\left| \sum_{l \neq s} a_{sl} \xi_s \xi_l \right| < (1 - \sigma_1) \sum_{s=1}^{p} \tilde{a}_s \xi_s^s,$$
where $\sigma_1 > 0$, $\xi_s(s = 1, 2, ..., p)$ — is an arbitrary real number.

Card 2/3

ACCESSION NR: AP4024561

Because of the last condition, the equation is parabolic. In the case of p=2, this condition coincides with the usual parabolic condition. The problem is solved approximately by using a method of grids. A difference problem consisting of a system of finite difference equations is obtained for the given problem. Convergence of the method is shown and estimates of the rates of convergence are derived. Orig. art. has: 69 equations.

ASSOCIATION: none

SUBMITTED: 22Jan62

DATE ACQ: 16Apr64

ENCL: 00

SUB CODE: MM

NO RET SOV: Oll

OTHER: OOL

Card 3/3

D'YAKONOV, In.G. (Moskva)

Difference achemes of second-order exactness with splitting operators for parabolic equations without mixed derivatives. Zhur. vych. mat. i mat. fig. 4 no.5:935-941 SaO 164. (MIRA 17:12)

"APPROVED FOR RELEASE: 08/22/2000

CIA-RDP86-00513R000411720005-1

2, 45797-65 EWT(d) IJP(c)
ACCESSION NR: AP5008400

5/0199/65/006/001/0108/0113

AUTHOR: Lebedev, V. I.; D'yakonov, Ye. G.

TITLE: On the application of difference circuits with a decomposed operator for the solution of the third boundary value problem in the case of equations of the parabolic type

SOURCE: Sibirskiy matematicheskiy zhurnal, v. 6, no. 1, 1965, 108-113

TOPIC TAGS: partial differential equation, parabolic equation, approximation method, boundary value problem

ABSTRACT: The applicability of decomposed difference operators to the third boundary value problem is demonstrated for the case of a parabolic differential equation having constant coefficients. A solution is sought for the equation

$$D_0u = \sum_{\epsilon=1}^{2} \left(a_{\epsilon}D_{\epsilon}u + c_{\epsilon}u\right) + f(x) \qquad \left(D_{\epsilon} = \frac{\partial}{\partial x_{\epsilon}}\right),$$

in a prism $Q_r = \overline{\Omega} \times [0 \leqslant z_0 \leqslant T]$, where $\overline{\Omega} = (z = (z_1, z_1) : 0 \leqslant z_0 \leqslant 1; z = 1, 2)$, and

Cord 1/2

L 45797-65

ACCESSION NR: AP5008400

satisfying the initial condition $u|_{x_1=0}=\varphi(x)$ and conditions on the boundary Γ of the domain A:

 $D_{\epsilon}u + b_{\epsilon}u = \psi_{\epsilon}(x), \quad z = 1, 2,$

where $x \in \Gamma$, $a_{\bullet} > 0$, $b_{\bullet} - \cdot$ are functions constant along the boundary $x_{0} = 0$, 1;

 $b_s|_{x_{s=0}} < 0, b_s|_{x_{s=1}} > 0.$

The network solution is estimated in the metric of a positive definite quadratic form and is given in terms of the right member of an equation in divergent form. The algorithms proposed may be used in iterative methods of solution for the difference analog of the steady-state problem. It is extended to domains made up of rectangles with their sides parallel to the coordinate axes. Orig. art. has: 23 formulas.

ASSOCIATION: none

SUBMITTED: 06Apr64

ENCL: 00

SUB CODE: MA. DP

NO REF SOV: 011

OTHER: 000

Card 2/2 me.

LEBEDEV, V.I.; D'YAKON(V, Ye.G.

Use of difference schemes with splitting operators in solving the third boundary value problem in the case of parabolic equations. Sib. m.t. zhur. 6 no.1:108-113 Ja-F 165.

(MIRA 18:4)

L 53035-65 ENT(d) IJP(c)

ACCESSION NR: AT5010205

UR/3043/65/000/003/0163/0190

AUTHOR: D'yakonov, Ye. G.

9 13+1

TITLE: Difference schemes of second-order accuracy with splitting operator for multidimensional parabolic equations with variable coefficients

SOURCE: Moscow. Universitet. Vychislitel'nyy tsentr. Sbornik rabot, no. 3, 1965. Vychislitel'nyye metody i programmirovaniye (Computing methods and programming), 163-190

TOPIC TAGS: partial differential equation, parabolic equation, second order equation, difference method, approximate calculation

ABSTRACT: This is a continuation of earlier studies by the author (DAN SSSR v. 144, no. 1, 1962 and others) in which he introduced difference computation schemes with splitting operator for multidimensional nonstationary problems. The present article is devoted to three-layer difference methods for the mixed problem for an equation of the parabolic type

Card 1/3

L 53035-65

ACCESSION NR: AT5010205

 $D_{0}u = \sum_{s,l=1}^{\rho} D_{s} (a_{sl}(x) D_{l}u) + f(x, u, D_{1} u, D_{2} u, \dots, D_{\rho}u).$ $D_{s} = \frac{\partial}{\partial x_{s}} (s = 0, 1, \dots, \rho), \quad x = (x_{0}, x_{1}, \dots, x_{\rho}),$ $\left| \sum_{s \neq l} a_{sl} \xi_{s} \xi_{l} \right| \leq (1 - \sigma) \sum_{s=1}^{\rho} a_{ss} \xi_{s}^{2}, \quad (0 < \sigma < 1),$

with an aim at obtaining an economical difference scheme. Such a scheme, although not optimal in the sense of using a minimum number of arithmetic operations, makes less demands on the capacity of the computer memory and on the amount of equipment in the computer. The work done by others in field is reviewed in some detail. By rigorously and thoroughly analyzing the initial problem and the various investigated difference schemes, and by analyzing the stability, convergence, and degree of accuracy of the results, the author obtains an economic difference method which converges to a higher degree of accuracy than the previous methods and which calls

Card 2/3

53033-65 ENT(a IJP(c) ACCESSION NRI AT 110206 UR/3043/65/000/003/0191/9222 AUTHOR: D'yakonov, Ya. G. TITLE: Concerning some iterative methods of solving systems of difference equations arising in the solution of elliptic partial differential equations by the SOURCE: Moscow. Universitet. Vychislitel'nyy tsentr. Sbornik rabot, no. 3, 1965. Vychislitel'nyye metody i programmirovaniye (Computing methods and programming), TOPIC TAGS: partial differential equation, elliptic equation, iterative method, difference equation ABSTRACT: This is a companion to the preceding paper in the same source (Accession Mr. AT5010205) and is also a continuation of earlier work by the author (DAN SSSR v. 138, no. 2, 1961 and others), dealing with alternating-direction iterative methods of solving the difference analogs of the Dirichlet problem for the Poisson equation and the first boundary value problem for the case of self-conjugate elliptic equations of order 2m with variable coefficients. The present article is devoted Card 1/3

L 53033-65

ACCESSION NR: AT5010206

to the construction and investigation of rapidly converging iterative methods for such problems. The iterative methods of this article are based on the fact that the difference operator acting on the sought iteration is of the splitting type, as defined by the author elsewhere (DAN SSSR v. 144, no. 1, 1962). Algorithms based on the splitting of the operator make it possible to reduce the number of auxiliary quantities that must be stored in a computer memory. The author solves the difference analog of the first boundary problem in a rectangle for the equation

$$D_{1}^{2}(a_{1}(x_{1})D_{1}^{2}u) + 2D_{1}D_{2}(a_{12}(x_{1}, x_{2})D_{1}D_{2}u) + D_{2}^{2}(a_{1}(x_{2})D_{2}^{2}u) + D_{1}(b_{1}(x_{1})D_{1}u) + D_{2}(b_{2}(x_{2})D_{1}u) + c_{1}(x_{1})u + c_{1}(x_{1})u + c_{2}(x_{2})u = f(x_{1}, x_{2})$$

$$\left(D_{2} = \frac{\partial}{\partial x_{2}}\right)$$
(1)

with the aid of the iteration process based on the splitting of the operator. It is proved that the proposed method converges and the rate of convergence is estimated for the case when the variables of Eq. (1) separate. This is followed by development of an iteration method for the solution of the system of difference

Card 2/3

ACCESSION HR. ATS	5010206	.,,	The second secon	1
MCCESSION IN MIL	JULU200			
equations arising w	hen the grid method :	is used for a	numerical solution of	the
first boundary prob	olem in a parallelepij	ped in the cas	se of a self-conjugate	elliptic
equation with varia	ble coefficients of	order 2m. The	number of operations	neces-
			specified degree of acc	mech
is estimated. Urig	. art. has: 103 for	WILES.		
ASSOCIATION. Vuchi	alitalimes teamte Mon	skarekogo unis	versiteta (Computation	Cantan
Moscow Unive		SWADWIRD GITT	Versitera (Compatation	CERVEL
	<u> </u>			
SUBMITTED: 00	ENCL	00	SUB CODE: M	1
TO DETI COM. ALA	Amm	. 63.0		
HR REF 80V: 013	OTHER	013		
				î :
				• • • • • • • • • • • • • • • • • • •
		•		
	A,			
BAB				ļ
Cord 3/3				

"APPROVED FOR RELEASE: 08/22/2000

CIA-RDP86-00513R000411720005-1

IJP(c) EWT(d) L 59515-65

ACCESSION HR: AP5017599

UR/0199/65/006/003/0509/0515 517.946

AUTHOR: D'yakonov. Ye. G.

TITLE: Use of difference schemes with decomposed operator for certain systems of parabolic and hyperbolic equations /6

SOURCE: Sibirskiy matematicheskiy zhurnal, v. 6, no. 3, 1965, 509-515

TOPIC TAGS: differential equation, approximation calculation, difference equation

ABSTRACT: The author seeks the solution via difference approximation of the system

 $D_0 u = \sum_{i,l=1}^{p} D_i (\Lambda^{il} D_i u) + \sum_{i=1}^{p} B^i D_i u + Cu + f_i,$

subject to

(2) $u|_{x_0=0}=\varphi(x'), u|_{\Gamma}=\psi(x), x\in\Gamma$

in the cylinder $Q_T = \overline{\Omega} \times (0 \leqslant x_0 \leqslant T)$, where $\overline{\Omega}$ is a closed region in p dimensional space composed of a finite number of p-dimensional parallelepipeds parallel to the coordinate planes. He uses a scheme he has previously developed, giving a more precise a priori estimate of the error. Urig. art. has: 20 formulas.

Card 1/2

. 59515-65 CCESSION NR: AP5017599	<u> </u>		3
SUBLITTED: 10Feb64	ENCL: 90	SUB CODE:	MA.
HO REF SOV: 009	OTHER: CO1		
			:
dm Card 2/2			

L 2136-66 ENT(d) IJP(c) UR/0020/65/163/006/1314/1317 ACCESSION NR: AP5021879 AUTHOR: D'yakonov, Ye. G. TITLE: Use of operators equivalent in spectrum for solving difference analogs of strongly elliptic systems SOURCE: AN SSSR. Doklady, v. 163, no. 6, 1965, 1314-1317 TOPIC TAGS: differential equation, integral equation ABSTRACT: After a brief abstract discussion of the notion of operators which are equivalent in spectrum and of the use of this concept for devising algorithms for inversion of operators, the author considers the system $\sum_{l=1}^{\infty} \sum_{\substack{|a| < m_r \\ |\beta| < m_l}} (-1)^{|a|} D^{\alpha} (a_{rl}^{\alpha\beta}(x) D^{\beta} z_l) = f_r(x), \quad r = 1, 2, \ldots, N_i)$ (1) (2) $D^{\alpha}z_{l}|_{\Gamma}=0, \quad |\alpha| \leq m_{l}-1, \quad l=1, 2, \ldots, N,$ satisfying where $z(x) = (z_1, ..., z_N)$ is the desired solution $a_{rl}^{\alpha\beta} = 0$, if $|\beta| > m_{rl}$ (3)

	L 2136-66				
	ACCESSION NR: AP5021879			3	
	1.	$\sum_{\substack{r=1 \ \alpha =m_r\\ \beta =m_l}}^{N} \sum_{a_r^{\alpha\beta} \xi_l^{(\beta)} \xi_r^{(\alpha)}} > \delta \sum_{l=1}^{N} \sum_{ \alpha _c=m_l} (\xi_l^{(\alpha)})^a,$	ð>0; (4)	
	for any real N dimensional vectors $\xi^{(a)} = (\xi_1^{(a)}, \xi_2^{(a)}, \dots, \xi_N^{(a)})$. The author introduces a natural generalization of the method of variable controls. He discusses the number of arithmetic operations needed to obtain given accuracy and finally treats applications to other boundary conditions. The results can be generalized to certain systems of integro-differential equations and to certain nonlinear strongly elliptic problems. Orig. art. has: 26 formulas.				
	OL-In Mindresonaitre	gosudarstvennyy universitet im.	M. V. Lomonosova	(Moscow	
	SUBMITTED: 26Nov64	ENCL: 00	SUB	CODE: MA	
	NO REF SOV: 007	OTHER: 004			
t in the second	Card 2/2				

L 07173-67 EWT(d) IJP(c) ACC NR: AP6032171 SOURCE CODE: UR/0055/66/000/005/0003/0011 AUTHOR: D'yakonov, Ye. G. 21 13 ORG: Chair of Computer Mathematics, Moscow State University (Moskovskiy gosudarstvennyy universitet, Kafedra vychislitel'noy matematiki) TITLE: On the use of difference schemes with a decomposed operator for several systems of integral-differential equations SOURCE: Moscow. Universitet. Vestnik. Seriya I. Matematika, mekhanika, no. 5, 1966, 3-11 TOPIC TAGS: integral equation, difference equation, parabolic equation, hyperbolic equation, boundary value problem, approximation method ABSTRACT: Difference methods using a decomposed operator are applied to the solution of integral-differential equations in p space variables. The system studied is $D_0u - Lu = f(x, Du, Su),$ satisfying initial and boundary conditions $u|_{x_0=0}=\varphi(x'), \quad u|_{\Gamma_T}=\psi(x), \quad x\in\Gamma_T,$ (2) where $x=(x_0,x'), D_s=\frac{\partial}{\partial x_s}, s=0,1,\ldots,p,$

Card 1/2

UDC: 517.948.34

0

L 07173-67

ACC NR: AP6032171

 $Lu = \sum_{i,i=1}^{p} D_i (a_{ii}(x) D_i u)_i$

The difference scheme is constructed and theorems are proved to demonstrate its absolute stability. Error estimates are given and an algorithm is presented. Orig. art. has: 46 formulas.

SUB CODE: 12/ SUBM DATE: 12Nov64/ ORIG REF: 005/ OTH REF: 000

Card 2/2 MLE

D'YAKENEL, You.

AUTHOR:

Vyatkin, O. and D'yakonov, Yu.

107-9-5/53

fITLE:

Contributions of Radio-Amateurs (Vklad radiolyubiteley)

PERIODICAL: Radio, 1957, # 9, p 5-6 (USSR)

ABSTRACT:

The Tomsk TV-center was established by radio-amateurs with the help of workers of the Tomsk Polytechnic Institute, especially by the chief of the TV laboratory V.S. Melikhov, candidate of technical sciences, and several laboratory assistants.

The TV station has four channels: two channels serve for studio broadcasts and the two others for broadcasting movies. The equipment was manufactured at the TV laboratory of the Polytechnic Institute. The two transmitting cameras contain

"JN-1" iconoscopes.

The first transmissions of the Tomsk TV center began in May 1955. Since the available floor space of the original studio was inadequate, a new studio had to be built. Regular TV broadcasts from this new studio began in March 1957. The effective range of the Tomsk TV-center is now 36 km.

However, a reliable reception can be obtained also at longer distances from the TV-center by utilizing accessory amplifier

units and multiple directional antennas.

Card 1/2

The construction of a separate building for the TV-trans-

Contributions of Radio-Amateurs

107-9-5/53

mitters and a 100 m high TV antenna tower is planned. New 4-channel equipment, must be developed and manufactured by the Polytechnic Institute and will be installed by amateurs in the new TV-center. The complete set of this equipment will contain studio transmitting cameras with "JN-7" type tubes, designed by the engineer of the TV-laboratory of the Institute, Yu.I. Potekhin.

The Tomsk enterprises are manufacturing the equipment for the VHF radio-station. It will contain TV video transmitters of 5.0 kw and TV aural transmitters of 2.5 kw, as well as a radio FM transmitter.

There is one photo.

AVAILABLE:

Library of Congress

Card 2/2

37133

S/179/62/000/001/001/027

E191/E435

10.1100 AUTHORS:

)

D'yakonov, Yu.N., Pirumov, U.G. (Moscow)

TITLE:

Certain supersonic types of gas flow in the

presence of dissociation and ionization phenomena

PERIODICAL: Akademiya nauk SSSR. Izvestiya. Otdeleniye tekhnicheskikh nauk. Mekhanika i mashinostroyeniye.

no.1, 1962, 7-14

A method is presented for the analysis of flow around a TEXT: wedge and a cone in a supersonic stream, taking into account the dissociation and ionization phenomena. Considering first the flow around the wedge, the pressure and enthalpy ratios upstream and downstream of a straight compression shock are recited resulting from the laws of conservation of mass, energy Both ratios depend on the ratio of specific and momentum. This ratio, in turn, depends on the approach Mach volumes. number and the nature of the gas. General relationships for this dependence are given graphically and the curves are used throughout the present analysis. In the flow around a wedge it is assumed that complete thermodynamic equilibrium prevails Card(1/3)

\$/179/62/000/001/001/027 E191/E435

Certain supersonic types ...

The viscosity is ignored. downstream of the shockwave. Using thermodynamic functions for air (0.001 to $1\overline{000}$ atm, 1000 to 20000°K) and the evaluation of the parameters of a straight shock carried out by a team of the Energeticheskiy institut AN SSSR (Power Engineering Institute AS USSR), a table is computed giving for a wedge with a semi-angle of 40°, the angle of the oblique shock-wave and the pressure, temperature and density ratios for different approach Mach numbers in air at zero Turning to the flow around the cone, altitude and 80 km altitude. the analysis shows that very similar numerical relationships are valid in the two-dimensional and three-dimensional cases. Taking into account the real properties of air leads to a large increase in the limiting cone angle. At an approach Mach number of 5, the increase is 1° and at an approach Mach number of 20, it is 20°. Taking into account dissociation and ionization substantially reduces the pressure coefficient on the surface of the body under certain conditions. As the approach Mach number increases, the nature of the gas affects less and less the position of the compression shock. At a Mach number of 20, the Card 2/3

Certain supersonic types ...

S/179/62/000/001/001/027 E191/E435

difference in limiting angles in the case of air and carbon dioxide does not exceed 2°. This applies to the cone and the wedge. Finally, the Prandtl-Meyer flow around an external blunt angle is considered on the assumption of a complete thermodynamic equilibrium of the gas. In addition, a "frozen" Prandtl-Meyer flow is considered. The degree of dissociation is assumed constant throughout the expansion and is equal to the degree of dissociation in the approaching flow. Solely the rotational and translational energy of the molecules and atoms varies, but the inert degrees of freedom preserve the value of the energy which they had in the approaching flow. It is shown that the parameters of the equilibrium and the frozen flow differ significantly, for example the lift values differ by about 10%. There are 7 figures and 3 tables.

SUBMITTED: August 8, 1961

Card 3/3

D'YAKONOV, Yu.N. (Moskva); ZAYTSEVA, N.A. (Noginsk)

Supersonic flow of an ideal gas about a blunt body. Izv.AN
SSSR.Otd.tekh.nauk.Mekh.i mashinostr. no.1:118-123 Ja-F '63.

(MIRA 16:2)

(Aerodynamics, Supersonic)

D'YAKONOV, Yu.N.; TELENIN, G.F.; TINYAKOV, G.P. (Moscow):

"Study of three-dimensional flow past bodies with detached shock wave."

report presented at the 2nd All-Union Congress on Theoretical and Applied Mechanics, Moscow, 29 Jan - 5 Feb 64.

S/0179/64/000/004/0150/0153

ACCESSION.NR: AP4043901

AUTHOR: D'yakonov, Yu. N. (Moscow)

TITLE: Three-dimensional flow of a perfect supersonic gas around blunt bodies

SOURCE: AN SSSR. Izvestiya. Mekhanika i mashinostroyeniye, no. 4, 1964, 150-153

TOPIC TAGS: supersonic flow, three-dimensional supersonic flow, perfect gas, perfect gas flow, perfect supersonic gas, perfect supersonic gas flow, rocket propulsion

ABSTRACT: The recent paper by K. I. Babenko and G. P. Voskresenskiy evolved a numerical method for calculating three-dimensional flow of a supersonic gas around bodies. Using this method, Yu. ND'yakonov and N. A. Zaytseva calculated the supersonic flow field at a sphere and near blunt cones with zero angles of attack and a wide range of Mach numbers and coning angles. This paper includes the results of computer calculations of supersonic flow around cones with spherical blunting, flying at angles of attack which were obtained by the net method. The gas parameter fields in the shock layer, pressure distribution at the surface of the blunt body and the shape of the shock wave are also included. A net and cylindrical coordinates are used for solving the problem. In the solution, the author sets the distance between the shock wave and the body at 1 along one coordinate, and the gas

Card 1/5

ACCESSION NR: AP4043901

parameters along different coordinates. The components of the velocity vector were taken at critical sonic velocity; the density was taken as the inflow density, and the pressure was taken as \$\textit{P}\cdot a_*^2\$. Using the obtained data, curves were plotted for various angles of attack and coning angles. Figs. 1 and 2 in the Enclosure show the pressure distribution at the cone surface with a coning angle of 4°53', Mach number of 6 and angles of attack of 5° and 10°. Other curves in the paper illustrate the change in gas parameters along one of the coordinates. An entropy vortex is formed at the surface of blunt bodies caused by the varying gas intensity at supersonic velocities. On the basis of the theory of hypersonic currents (G. G. Cherny*y) it is known that for high Mach numbers the shock wave formed at blunt bodies has an inflection point. The data obtained correspond with theoretical results. The particles in the vortex have a lower kinetic energy than those outside the vortex and cannot resist the significant pressure gradient. This leads to the appearance of a shock wave at the stagnation region. The accuracy of the obtained results is 1 - 3%, of the same order as the initial data. The author met with difficulties, however, in finding the gas parameters of a thin vortex layer. "The author thanks K. I. Babenko and G. P. Voskresenskiy for the computer program used in their

2/5 مرم

ACCESSION NR: AP4043901

paper when calculating the flow around sharp bodies flying at an angle of attack. The author also expresses his thanks to G. F. Telenin for his help in performing the work, as well as discussing its results." Orig. art. has: 9 figures and 1 table.

ASSOCIATION: none

SUBMITTED: 21Jan64

ENCL: 02

SUB CODE: ME

NO REF SOV: 003

OTHER: 000

Card 3/5

ACCESSION NR: AP4043901

ENCLOSURE: 02

Figure 2.

Card 5/5

L 8403-65 EWT(1)/EPA(b)/FCS(k)/ENA(1)

Pd-4 BSD/ASD(f)/AFTC(a)/ASD(p)-3/

AEDC(a)/AFWL/ASD(d)/AFETR/SSD R

\$/0020/64/157/004/0822/0825

AUTHOR: D'yakonov, Yu. II.

ACCESSION NR: AP4043540

 \mathcal{B}

TITLE: Three-dimensional flow over blunt-nesed bodies taking account of equilibrium physicochemical reactions

SOURCE: AN SSSR. Doklady*, v. 157, no. 4, 1964, 822-825

TOPIC TAGS: three dimensional flow, supersonic flow, thermodynamic gas function, equilibrium flow, isentropic exponent, equilibrium physicochemical reaction, shock wave

ABSTRACT: The problem of three-dimensional supersonic flow over blunt-nosed bodies taking account of equilibrium physicochemical reactions is considered. A new analytical approximation of equilibrium thermodynamic gas functions makes it possible to solve the problem by the method of nets. It is assumed that the dependence of new thermodynamic function κ (the effective isentropic exponent) on pressure is a known function. Calculations were made on a computer for a wide range of temperature and velocity up to M=20. The results are given in graphs and show that at equilibrium flow the point of inflection on a shock wave moves toward the nose, and the width of Cord 1/2

L 8h03-65
ACCESSION NR: AP4043540

the shock wave decreases with a consequent diminution of the effect of bluntness. Orig. art. has: 4 figures and 6 formulas.

ASSOCIATION: None

SUBHITTED: 15Jan64 ATD PRESS; 3101 ENCL: 00

SUB CODE: ME, AS NO REF SOV: 005 OTHER: 001

KOVALEV, G.A.; D'YAKONOV, Yu.S.

X-ray study of kaolinitic clay minerals. Zap.Vses. min.ob-va 88
no.4:467-473 '59.

(Clay)

KOVALEV, G.A.; D'YAKONOV, Yu.S.

Structural characteristics of vermiculatelike minerals from the Kola Peninsula. Zap. Vses. min. ob-va 89 no.4:458-460 (MIRA 13:11)

(Kola Peninsula--Vermiculite)

D'YAKONOV, Yu.S.

Application of Fourier's method of analysis to the interpretation of X-ray photographs of stratified minerals with a mixed laminated structure. Kristallografiia 6 no.4:624-625 Jl-Ag '61. (MIRA 14:8)

1. Vsesoyuznyy geologicheskiy institut.
(Fourier transformations) (X-ray crystallography)

VOLOSTNYKH, J.T.; DOYAKONOV, Yu.S.

Vses.min.ob-va 90 no.3:310-312 161. (MIRA 14:10)

D'YAKONOV, Yu.S.

Fourier transform method for a direct interpretation of X-ray photographs of mixed-layered minerals. Rent.min.syr. no.1: 97-107 '62. (MIRA 16:3)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologicheskiy institut.

(Yray crystallography)

D'YAKONOV, Yu.S.; KOVALEV, G.A.

X-ray studies of halloysite from Tertiary sediments in Bashkiria. Zap. Vses.min. ob. va 92 no.2:227-230 '62. (MIRA 15:6) (Bashkiria. Halloysite) (X rays—Industrial applications)

D'YAKONOV, Yu.S.

Alternation of layers in composite laminar structures of vermiculite - biotite. Kristallografiia 7 no.6:878-881 N-D 162. (MIRA 16:4)

1. Vsesoyuznyy gologicheskiy institut.
(Vermiculite) (Biotite) (X-ray crystallography)

APPROVED FOR RELEASE: 08/22/2000 CIA-RDP86-00513R000411720005-1"

. 1

D'YAKONOV, Yu.S.

Possibility of quantitative X-ray determination of kaolinite, hydromicas and montmorillonites. Rent.min.syr. no.3:85-106 *63. (MIRA 17:4)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologicheskiy institut, Leningrad.

D'YAKONOV, Yu.S.

X-ray analysis of cerolite. Trudy VSEGEI 96:203-212 '63. (MIRA 17:9)

D'YAKONOV, Yu.S.

Results of an X-ray diffraction study of cerolites. Dokl.AN SSSR 148 no.4:909-911 F 163. (MIRA 16:4)

1. Vsesoyuznyy nauchno-issledovatel*skiy geologicheskiy institut. Predstavleno akademikom N.V.Belovym.
(X-ray diffraction examination) (Cerolite)

D'YAKONOV, Yu.S.

Mixed-layered clay mineral cognate to stevensite. Zap. Vses. min. ob-va 93 no.48463-468 164 (MIRA 1822)

D'YAKONOVA, A., tkachikha Shuyskoy Obeyedinennoy fabriki; STOLEUNOV, S.N., inzhener, konsul'tant; DEMICHEVA, D., redaktor; MALEK, Z., tekhnicheskiy redaktor.

[School at the loom] Shkola u stanka, [Moskva] Izd-vo VTsSPS Profizdat, 1953. 57 p. (MLRA 7:9) (Weaving)

USSR Soil Science - Tillage. Amelioration. Erosion.

: Ref Zhur Biol., No 1, 1959, 1406 Abs Jour

: D'yakonova A.A.

: Eastern Affiliate Academy of Science, USSR Author

: Change in Some Physical and Chemical Properties of Inst

Virgin Black Soils with Their Treatment. Title

: Izv. vost. fil. AN SSSR, 1957, No 3, 126-134 Orig Pub

: Investigations were conducted in the vicinity of Barnaul on 2 fields containing an 8-field vagetable-Grassland Abstract

erop rotation: oats and grasses, grasses, grasses, cucumbers and toratoes, cabbage, plants with edible roots, beans, and potatoes. Observations were conducted on common chernozens according to the rotation of the

bed and in the field which was the last in the crop rotation. In the grable horizon of worked soils in

- 411 Patas

Card 1/2

- 31 -

D'YAKONOVA, A.A.

Dynamics and relations of moisture forms in ordinary Chernozem soils under vegetable - grassland rotations. Izv.Sib.otd. AN SSSR no.9:126-135 '58. (MIRA 11:11) (Siberia, Western-Chernozem soils) (Soil moisture) (Rotation of crops)

D'YAKONOVA, A. A., CAND AGR SCI, "VARIATION IN PHYSICAL AND CHEMICAL PROPERTIES OF ORDINARY CHERNOZEM AT THE WEST-ERN SIBERIA VEGETABLE EXPERIMENTAL STATION, UNDER CONDITIONS OF THE VEGETABLE GRASS FARABLE CYSTEM OF CROP ROTATION."

NOVOSIBIRSK, 1960. (BASHKIR AGR INST). (KL, 3-61, 225).

320

D'YAKONOVA, A.A.

Salt and nutrient balances of Scionetz soils under cultivation in southern Kulunda. Trudy Biol. inzt. Sib. otd. AN SSSR no.9:107-117 *62 (MTRA 17:8)

D' YAKOHOVA, A.D.

Course of influenza pnewionia in children. Pediatriia 37 no.7:86 J1 59. (MIRA 12:10)

1. Iz kafedry detskikh bolezney Chelyabinskogo meditsinskogo instituta.

(PNEUMONIA)

D'YAKONOVA, A.D.

Clinical aspect of protracted colienteritis in young children.
Vopokhomatoi det. 8 no.3:38-40 Mr *63. (MIRA 16:5)

1. Iz detskoy bol'nitsy (glavnyy vrach A.I. Patova) Traktorozavodskogo rayona Chelyabinska. (ESCHERICHIA COLI) (INTESTINES-DISEASES)

L 33947-65 EWT(m)/EPF(c)/EPA(w)-2/EWP(J)/T Pc-4/Pab-10, Fr-4 R&H/WW/RW ACCESSION NR: AP4047219 S/0190/64/006/010/1891/1894 @

At In a: Okhrimenko, I. S.; D'yakonova, E. B.

TITLE. The problem of the interaction of polymethacrylic acid with polyvinyl alcohol in concentrated aqueous solutions

SOURCE: Vy sokomolekulyarny ye soyedineniya, v. 6, no. 10, 1964, 1891-1894

TOPIC TAGS: polymethacrylic acid, polyvinyl alcohol, gel formation, hydrogen bonding, ester formation

ABSTRACT: The authors studied the effect of concentration, the ratio of reactants, time and temperature on the interaction between polymethacrylic acid (PMAA) and polymerization of methacrylic acid in methyl alcohol solution. PMAA was prepared by polymerization of methacrylic acid in methyl alcohol solution at 65-700 in the presence of 0.5% of the peroxide. The ratio of the reactants by wt. (PMAA:PVA) was varied from that at 16-180 in mixtures containing 50% PMAA and higher, a gel-like product is tured. The amount of gel increases with increasing concentration of starting soluble on lowering the temperature and increased reaction time. The products become soluble on lowering the temperature to 0-20, and the sol-gel reversibility is

L 33947-65

ACCESSION NR: AP4047219

2

ASSOCIATION: Leningradskiy tekhnologicheskiy institut im. Lensoveta (Leningrad technological institute)

SUBMITTED: 25Dec63

ENGL: 00

SUB CODE: OC

NO REF SOV: 002

OTHER: 003

Cord 2/2

D'YAKONOVA, E.B.; OKHRIMENKO, I.S.; YEFREMOV, I.F.

Effect of nonelectrolytes on the association of pelymethacrylic acid and polyvinyl alcohol in solutions. Vysokom. soed. 7 no.6: 1016-1019 Je '65. (MIRA 18:9)

1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta.

44

ACC NR AP6000354

SOURCE COLE: UR/0286/65/000/021/0048/0040

AUTHORS: Okhrimenko, I. S.; D'yakonova, E. B.

ORG: none

TITLE: Method for obtaining thermosensitized carboxyl-containing latex. Class 39, No. 176068 announced by Leningrad Technological Institute im. Lensovet (Leningradskiy tekhnologicheskiy institut)

SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 21, 1965, 48

7. P. TT/24200 EUT(#//EUT/]/ CUT/

TOPIC TAGS: rubber, synthetic rubber, rubber chemical, latex

ABSTRACT: This Author Certificate presents a method for obtaining thermosensitized carboxyl-containing latex with the aid of thermosensitizing agents. To speed up the process of gel formation and to increase the thickness of the rubber gel layer, a mixture of aqueous solutions of polymethacrylic acid and polyvinylalcohol or its derivatives are used as thermosensitizing agents. The solutions are mixed in the ratio of 1.5:1 to 2.5:1.

SUB CODE: 11/ SUBM DATE: 11Jul64

card 1/1 HW

UDC: 678.041.5:678.744.332+678.744.72

D'YAKONOVA, I.N.

Further improvement of cranioplasty with plexiglass. Vop. neirokhir. 18 no.4:24-26 J1-Ag '54. (MLRA 7:10)

U'YAKOTOVA, I. H.

D'yakonova, I. N.

"The plastic surgery of skull defects with thin organic class." Rostov na Donu State Medical Inst. Rostov na Donu, 1956. (Dissertation for the Degree of Candidate in Medical Science)

So: Knizhnaya letopis', No. 25, 1956

URMANCHEYEVA, T.G.; D'YAKONOVA, I.N.

Electrophysiological study of some subcortical formations in man with chronically implented electrodes, Fiziol. zhur. 51 nc.8.909-917 Ag 165. (MIRA 18:7)

1. Laboratoriya fiziologii vyashey nervnoy deyatelinosti Instituta eksperimentalinoy patologii i terapii AMN SSSR. Suhhumi i kliniki nervnykh bolezney i neyrokhirurgii keditsinskogo instituta, RostovnasoDona.

D'YAKONOVA, I.P.

Quadratic transformations arising in double projecting of a quadric onto a plane. Dokl. na nauch. konf. 1 no.3:50-54 '62.

(MIRA 16:8)

(Quadrics) (Cremona transformations) (Geometry, Projective)

D'YAKONOVA, I.P., SKOPETS, Z.A.

Combined oblique and stereographic projection of a quadric onto a plane. Dokl. na nauch. konf. 1 no.3:55-59 '62. (MIRA 16:8) (Geometry, Projective) (Quadrics) (Cremona transformations)

D'YAKONOVA, K. V.

D'YAKONOVA, K. V. -- "Soil as a Source of Carbon Dioxide for Plants under Irrigated and Non-Irrigated Conditions of the Pre-Gaucasian Chernozems." Acad Sci USSR. Soil Inst imeni V. V. Dokuchayev. Moscow, 1955. (Dissertation for the Degree of Candidate of Agricultural Sciences.)

SO: Knizhnava letopis', No. 4, Moscow, 1956

DIVAKONOVA, K.V.

Soil as carbon dioxide source for plants in irrigated and nonirrigated Chernozem regions of Ciscaucasia [with summary in English]. Pochvovedenie no.10:86-92 0 '57. (MIRA 10:12)

1. Pochvennyy institut AN SSSR.
(Caucasia, Northern--Chernosem soils) (Carbon dioxide)

DNAKUNOVA, K. V. and ALEKSANDROVA, I. V. and KONONOVA, MM M. M.

"Das Wesen der Humusstoffe und ihre Aufgabe in der Ernährung der Pflanzen."

report submitted for the 7th Intl. Cong. of Moorland Research Frankskovy Lagne/Franzensbad-Prague, 15-19 Sep 60.

KONONOVA, M.M., D'YAKONOVA, K.V.

Second International Symposium on Humus and Plants. Izv. AN SSSR. Ser. biol. no.2:311-313 Mr-Ap²62. (MIRA 16:7) (HUMUS) (PLANTS—NUTRITION)

D'YAKONOVA, K. V.

Iron-humus complexes and their role in the nutrition of plants. Pochwovedenie no.7:19-25 Jl 162. (MIRA 15:10)

1. Pochvennyy institut imeni V. V. Dokuchayeva.

(Plants—Nutrition) (Soils—Iron content) (Humus)

DIYAKONOVA, K.V.

D'VHECKOUTH. CAN

"Preparations of Baikal Scutellaria for Parenteral Administration," by L. N. D'yakonova and Ye. M. Dumenova, Novyye Lekarstvennyye Rasteniya Sibiri, Ikh Lechebnyye Preparaty i Primineniye (New Medicinal Plants of Siberia, Their Therapeutic Preparations, and Application), Tomsk, 1953, No 4, pp 29-32 (from Referativnyy Zhurnal -- Biologiya No 10, 25 May 57, Abstract No 43,660)

"Twelve preparations prepared from Baikal scutellaria (Scutellaria baicalensis) were tested on frogs, cats, and dogs poisoned by strychnine. The preparation scutellaren (2.4-percent solution of the glucoside of scutellarin) was found to be the more suitable for injection purposes. Administered intravenously in doses of 0.3 milligram per kilogram of body weight, scutellaren arrested spasms and saved the lives of two thirds of the experimental cats and dogs. Administered to healthy dogs intravenously in doses of 0.3 milligram per kilogram of body weight, it reduced arterial pressure 30-40 millimeters of mercury and slowed down respiration." (U)

Burn . 1467

D'YAKONOVA, L.N., dotsent

Extraction of a glycoside of the flavonnol group from leaves of Bupleurum aureus and its chemical investigation. Apt. delo 9 no.6: 12-15 N-D '60. (MIRA 13:12)

1. Tomskiy meditsinskiy institut. (GLYCOSIDES) (FLAVONES)

MARKOV, A.A., prof.; D'YAKONOVA, L.P., kand.vetern.nauk

Distribution and the epizootiological importance of the tick Rhipicephalus turanicus B. Pom., 1940. Trudy VIEV 26:173-178 *62. (MIRA 16:2)

THERMO, N. H., BIVAMONO A, A. L. "Mecroinfections to Voronery or) of in 1946 and 1947", Trudy Voronerhalm, gone med. In-ta, Vol. XVIII, 1949, p. 20-23.

LG: U-4631, 16 Sept 93, (Letopis 'Zhernal 'nyht Scatey, No. 24, 1949).

D'YARA " //., 1. 1.

DIYAKIMOVA, N. I. "On the clinical trechment of neurosultaria", Irmiy Voronembak. got. med. ic-ta, Vol. XVIII, 1750, p. 30-52.

20: 1-1531, 16 Sept 53, (Letopis "Thornel India States, No. 21, 1949).

DIYAROMCUA, H. I.

biYAK MOVA, N. T. "On the clinical treatment of nacroimfecti as of the Eargellus-coore-Gillen type", Trudy Voronezhok. got. med. in-ta, Vol. NVIII, 1949, p. 32-34.

10: U-1/631, 16 Sept 53, (Letopis 'Churnal 'nykt Statey, No. 24, 1919).

D'YAKOMOVA, M. I.

D'YAKONOVA, N. I. "On the clinical aspects of the optical-vegetable syntem", Trudy Voronezhsk. gos. med. in-ta, Vol. XVIII, 1949, p. 59-62.

SO: U-4631, 16 Sept 53, (Letopis 'Zhurnal 'nykt Statey, No. 24, 1949).

D'YAKONOVA, M.

Seventh conference on meteorites. Astron. zhur. 34 no.1:141-143

Ja-F 157. (Mira 10:4)

DOYAKONOVA, M.T.

YAVNEL', A.A.; D'YAKONOVA, M.I.

Chemical composition of meteorites. Meteoritika no.15:136-151 158. (MIRA 11:4)

(Meteorites)

TAVNEL', A.A.; D'YAKONOVA, M.I.

Determining various types of iron in stone meteorites. Meteoritika no.15:152-155 '58.

(Meteorites)

D'YAKONOVA, M.I.

D'YAKONOVA, M.I.

Nickel content of some specimens of iron meteorites in the collection of the Academy of Sciences of the U.S.S.R. Meteoritika no.16:179-180 '58. (MIRA 11:8) (Meteorites) (Nickel)

•	The second control of	Emitte to enteration	다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다		· 1000 1000 1000 1000 1000 1000 1000 10	Va		A CONTRACTOR OF THE CONTRACTOR		# 10 mm of the second of the s	神田 1、12 時に 1、12 時間 1 日間の日間の日間の日間の日間の日間の日間の日間の日間の日間の日間の日間の日間の日	大きない 一年 からない 一日 大きな 日本の	index) bis seed on a constant of the design	Denty, L. G. Administrat A Vector Dingra of Units General Congestition	Lotinors, S. P. Hammalogish and Patrographic Craip of the Embroys by 1858-1858-1858-18	of Externities 55	Analysis of the Composition of Intites.	of the Maryon Stone Entecains	briner, Ye. L. Stone Extensite Shower in Earten County, Cla.	Apertmental Study of Paston of Bolles by an	Elmbor, E. E. (Malgaria) To Univertigated Dalgarian Em'oro	**************************************	Expos. 0. A. Utility to Centrifical Method to Separate Monodoral Frightnary without method the (based on the Separation of Mathalinite From the Performental Postable Medicality	The Meture of the Lottson, Mart	Problem of the Mature of Counterplow	of Mainteapration of Asterville Based on the Rodison Light	Top of Arabenteian P. S. Pallas in Berlin 131	MATTERS AND MINISTERATION	" The base and before of "the forthering and theribering of Betearies"		8		
Statement of the statem	COLUMN TO THE CO	Abstracts and fixed.	Mercanthins channes staby, vyp. 17; ("shouthers) God Arteles, Do. 17) history, 1559. 157 St. Birding and 1,500 explass principal.	Ed. 1 V. C. Princher, Academicion Dr. 17 E. Ed. D. P. Lindler	no destruction of maintained of state of the control of the contro	Court of the second second	the state of the s	THE THE PROPERTY OF THE PROPER	ecchind by A. a. Tr.	See the other production with the other of the other of the other	A STATE OF THE PROPERTY OF THE	CANADA DATA SANCARA BARANA PARA PARA PARA PARA PARA PARA PARA	County, and Emitors (Calcula) and at the attention to an an analysis of the attention to an attention to an attention to a state of the attention and attention to a state of the attention and attention at the attention attentio	Corporation	Reducer, S. P. Macralogia	Levin, B. Th. On the Origin of Integrates	Verychyny, G. G. Asalysis	Ontloratty, V. G. Ber Sample of the Maryon Stone	Driner, It. L. Stone Esteor	forther, I. A. Exertments Utrasonic Bean	Ethnior, E. E. (Bulgaria)	Printed I. Citaes Mrtecrites	Exrons, O. A. Utilisting th Fractions From Stone Betout From the Personnal's Post	Pasembor, V. G. The Metury		Peesbry V. d. Condition of Distribution of Art Description of Arts of Sodiesh Light	Pesselov, V. G. Tosb of A.	•	w Evander, L. G. Bertler of "D	- Erigov, 10. L. Berter of	Bearl'styr, E. P. Class		

•	1) Y	AK	OA	<u>ن ک</u>	u At)7. <u>-</u>	<u></u>												 		•		
The second section of the second section of the second section of the second section of the second section sec			Card 1/5	Orthind 273. Elicatical Experition on Meteorities in the name 119 of Early Sciences at Mostry State Interrity	Taila. I.l. Finds of Meteoric bust in the Area of the Emmahain Stone 113 Meteoria Conver	Polity V.I., and Vist. Chemypre. The Rescords Dust in Schlich	Gerlind, I.I., and i.K. ierning. Product in common	and Kida Kidania	Secreta Life., E.I., Sectionals, and M.M. Entry, Determination of the 88 Secreta National Vision by the Leavest Action	Shirik, 1.70-, and M.W. Shirts, Her data on the Determination of the 83	Harris of Four Carbonaceous Chondrites	the remain E.S. Fer Data on the Partical Properties of Stone Retarrities of	A in	Polarymicki, Jersy (Varser, Poland). The Specific Weight of Mateorities 41	Bener, E. (Seria, Polepris). The Origin of Portion. 2. Moldarium.	Jules 4. These ten Craters in the Literian Ed	cased. V.G. Pescakor describes the cased, and emorphere during limbar solipses.	Transaction (1976). An introductory artists """ of moteorites. Individual function of determining the say of moteorites, and any of meteor-particularly in the matter of determining the say of properties, and any of meteorites the case that the fall, population and metalogs the case of metalogs the case of the say of metalogs the case of the say of metalogs the case of the say of the	plats, personned to an anticles on problems in secondary technics the collection of 36 articles on problems in secondary techniques as before, companied to the collection of the Edglith Reterritie Collection which took progress in the field,	FUNCIE: This publication is intended for astrophysicists, astronomy, the publication is intended in the study of astrophysics.	ļ	Alademiya ment MSR. Limitet po meteorities	FILES I DOCK EXPLOITATION BOX/27-95		