Mathematics 2013 Doctoral Qualifying Exam

Caution!!!

Use separate answer books for Problems 1-5 (Math.-A) and 6-7 (Math.-B). ${\bf Math.-A}$

[1](10pt) Express $f(x,y) = x^2y\cos y$ in the Taylor series expansion up to second order around (x,y) = (1,0). Should be written in the following form

$$f(x,y) = f(1,0) + \begin{bmatrix} \cdot \\ \cdot \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \cdot \\ \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}.$$

[2](10pt) Show that the eigenvalues are invariant under the similarity transformation, i.e., for matrix $A \in \mathcal{R}^{n \times n}$ that has distinct n eigenvalues, show that

$$det(sI - A) = det(sI - T^{-1}AT) = 0$$

where $T \in \mathcal{R}^{n \times n}$, $I \in \mathcal{R}^{n \times n}$ is the identity matrix, s is a scalar variable, and det(A) implies the determinant of a matrix A.

[3](10pt) Evaluate

$$\int_C 3x^2yds$$

clockwise along the circle $C: x^2 + y^2 = 1$ from (0,1) to (1,0).

[4](10pt) Find the solution using the Laplace transformation:

$$y'' + y = 2\cos t$$
, $y(0) = 2$, $y'(0) = 0$.

[5](10pt) Find the limit of

$$\lim_{n\to\infty} \left(\frac{2n}{2n-1}\right)^n.$$

Caution!!!

Use separate answer books for Problems 1-5 (Math.-A) and 6-7 (Math.-B). ${\bf Math.-B}$

Problem 6. (25 points) When \underline{x} is a length-m column vector of complex entries, we define the p-norm of \underline{x} as

$$\|\underline{x}\|_p \triangleq \left(\sum_{i=1}^m |x_i|^p\right)^{\frac{1}{p}}$$

where m is a natural number, x_i satisfying $|x_i| < \infty$ is the i-th entry of \underline{x} , and $p \ge 1$. Let j denote $\sqrt{-1}$ and answer the following questions.

- (a) (5 points) When $\underline{x} = [-3, 4j]^T$, find the *p*-norms of \underline{x} for p = 1 and 2, respectively.
- (b) (5 points) When m=2 and x_i 's are all real-valued, sketch on two-dimensional plane the sets of \underline{x} such that $||\underline{x}||_p=1$ for p=1 and 2, respectively.
- (c) (10 points) When m = 2, find

$$\lim_{p \to \infty} \|\underline{x}\|_p,$$

in terms of $|x_1|$ and $|x_2|$. (Hint. Consider all three different cases: i) $|x_1| > |x_2|$, ii) $|x_1| = |x_2|$, and iii) $|x_1| < |x_2|$.)

(d) (5 points) Based on the result in (c), introduce a definition of the ∞ -norm $\|\underline{x}\|_{\infty}$ of \underline{x} that holds for all $m \geq 1$.

Problem 7. (25 points) Suppose that s(t) is a finite-energy strictly-bandlimited signal with bandwidth B, i.e., its Fourier transform S(f) has no energy outside the interval |f| < B. Answer the following questions.

(a) (5 points) State the analysis and the synthesis equations that show the relationship between s(t) and S(f).

(b) (10 points) When T > 0, define p(t) as

$$p(t) = \sum_{n = -\infty}^{\infty} s(t - nT).$$

Find the Fourier transform P(f) of p(t) in terms of S(f).

(c) (10 points) Find the necessary and sufficient condition on T for p(t) in (b) to be a constant function of t for any finite-energy strictly-bandlimited signal s(t) with bandwidth B > 0.