Circuit Satisfiability

Boolean Combinational Circuits

not satisfiable for any $x_1 \in \{0,1\}$

satisfiable for $x_1x_2 = 01$, 10, or 11, thus satisfiable

Circuit-Satisfiability Problem

Given a boolean combination circuit composed of AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = $\{\langle C \rangle \mid C \text{ is a satisfiable boolean combinational circuit}\}$ where $\langle C \rangle$ is a binary-string encoding of the circuit (e.g., as a graph)

Determining membership in CIRCUIT-SAT would require checking the 2^k possible binary assignments to the k inputs of a circuit.

There is strong evidence that CIRCUIT-SAT $\not\in$ P.

CIRCUIT-SAT is NP-Complete

Proof:

1. CIRCUIT-SAT \in NP

Proof: Can verify an input assignment satisfies a circuit by computing the output of a finite number of gates, one of which will be the output of the circuit. This can be done in polynomial time. Thus, by definition of NP, CIRCUIT-SAT \in NP.

2. CIRCUIT-SAT \in NP-Hard

I.e., $L \leq_P CIRCUIT\text{-SAT}$ for every $L \in NP$

Proof: Complex

Show that any problem in NP can be computed using a boolean combination circuit (i.e., a computer).

This circuit has a polynomial number of elements and can be constructed in polynomial time. Thus, $L \leq_P CIRCUIT\text{-SAT}$ for all $L \in NP$.

Thus, CIRCUIT-SAT \in NP-Hard.

CIRCUIT-SAT is NP-Complete Proof by Cook, 1971

NP-Completeness Proofs

Lemma 36.8

If L is a language such that L' \leq_P L for some L' \in NPC, then L is NP-Hard. If also L \in NP, then L \in NPC.

Strategy for proving $L \in NPC$

- 1. Prove $L \in NP$ (poly-time verifiable)
- 2. Select L' \in NPC
- 3. Describe poly-time algorithm computing a function f that maps instances of L' to instances of L
- 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0,1\}^*$.

Note: Showing L' $\leq_P \operatorname{spec}(L)$ implies L' $\leq_P L$.

Example: Boolean Formula Satisfiability

SAT: Given a Boolean formula in Conjunctive Normal Form (C.N.F.), does there exist a satisfying assignment?

SAT = { B : B is a boolean formula in CNF that is satisfiable by some truth assignment to its variables}

A CNF formula is a boolean formula composed of variables and connectives AND, OR, NOT, IMPLIES, and EQUIV, possibly separated by parentheses.

Let
$$B = (u_1 \vee \overline{u_2}) \wedge (\overline{u_1} \vee u_2)$$
.

This is an *instance* of SAT for which the answer is "yes". A satisfying truth assignment is given by $t(u_1) = t(u_2) = T$.

On the other hand, the expression $u_1 \wedge \overline{u_1}$ is an instance of SAT for which the answer is "no".

$SAT \in NPC$

Proof:

1. SAT \in NP

Replace each variable with 0 or 1 as specified by the certificate and evaluate (poly-time).

- 2. Select L' = CIRCUIT-SAT
- 3. Reduction from CIRCUIT-SAT to SAT.

Straight-forward technique of computing the formula of each gate output as a combination of the input formulae may cause exponential instantiations of a variable as outputs are copied to multiple inputs. Instead, let each gate output be a variable.

AND the output variable with expressions for each gate describing the equivalence between the gate's output and input variables.

Example

Circuit C

Formula

 $\phi = x_6 \wedge (x_4 \leftrightarrow (x_1 \wedge x_2)) \wedge (x_5 \leftrightarrow \neg x_3) \wedge (x_6 \leftrightarrow (x_4 \vee x_5))$

Constructing this formula takes polynomial time.

$SAT \in NPC$

4. Prove $x \in L'$ iff $f(x) \in L$, where L' is CIRCUIT-SAT, L is SAT, and f is the construction above.

$$x \in CIRCUIT\text{-SAT} \to f(x) \in SAT$$

If C has a satisfying assignment, then each wire is well-defined and the output is 1.

Therefore, each conjunct of ϕ is 1, and ϕ will evaluate to 1.

A satisfying assignment to ϕ yields a valid circuit C whose output is 1.

CNF Satisfiability

When the full power of SAT is not required to prove a language is in NPC, 3-CNF provides a more constrained alternative.

k-CNF (Conjunctive Normal Form) is a formula having a conjunction of **clauses**, where each clause is a disjunction of exactly k literals (variable or its negation).

Example 3-CNF: $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor \neg x_2 \lor x_4)$

Theorem 36.10

 $3\text{-CNF-SAT} \in \text{NPC}$

Some NP-Complete Problems

Clique Problem

CLIQUE: Given graph G = (V, E), find largest subset $V' \subseteq V$ such that $\forall u, v \in V', (u, v) \in E$.

I.e., V' forms a complete subgraph of G (usually want largest).

$$\mathrm{CLIQUE} = \{ \langle G, k \rangle : \exists V' \subseteq V \text{ of size} \geq k \text{ and } \forall u, v \in V', (u, v) \in E \}$$

Example

The running time of the CLIQUE algorithm is $\Omega(k^2 \begin{pmatrix} |V| \\ k \end{pmatrix})$

Theorem 36.11: $CLIQUE \in NPC$

1. CLIQUE \in NP

To show CLIQUE in NP, we use set V' of vertices as a certificate.

Verifying is polynomial time, check whether for every pair u,v in V', the edge is in E ($|V'|^2$ pairs).

- 2. L' = 3-CNF-SAT
- 3. 3-CNF-SAT \leq_P CLIQUE

Start with instance of 3-CNF-SAT (also called 3CNF).

Let f be 3CNF with k clauses, $(C_{11} \lor C_{12} \lor C_{13}) \land (C_{21} \lor C_{22} \lor C_{23}) \land (C_{31} \lor C_{32} \lor C_{33}) \land \dots (C_{k1} \lor C_{k2} \lor C_{k3}).$

For r = 1,2,...,k, each clause has three distinct literals l_1^r , l_2^r , l_3^r .

Construct a graph G such that f is satisfiable iff G has a clique of size k.

For each C_r in f, put triple of vertices v_1^r , v_2^r , v_3^r in V. Add edge (v_i^r, v_j^s) if

- 1. v_i^r and v_i^s are in different triples $(r \neq s)$, and
- 2. their corresponding literals are consistent (l_i^r) is not the negation of l_j^s .

Proof (cont.)

This graph is constructed in polynomial time.

If $f = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$, then the graph is

Proof (cont.)

4. Is this a reduction?

Suppose f has a satisfying assignment. Then each clause C_r contains at least one literal l_i^r that is assigned 1, and each such literal corresponds to a vertex v_i^r .

Picking one such "true" literal from each clause yields a set V' of k vertices.

Is V' a clique? For any two vertices v_i^r , v_j^s , $r \neq s$, the corresponding literals are mapped to 1 by the satisfying assignment and thus the literals cannot be complements. By the construction of G, the edge (v_i^r, v_j^s) belongs in E.

Proving the other direction, if G has a clique V' of size k, no edges in G connect vertices in the same triple, so V' contains exactly one vertex per triple. Assign a 1 to each literal l_i^r such that v_i^r in V' without fear of assigning 1 to a literal and its complement. Each clause is satisfied, and f is satisfied.

Vertex-Cover Problem

A **vertex cover** of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that each edge in E is incident on at least one of the vertices in V'.

VC = $\{\langle G, k \rangle : G = (V, E) \text{ is a graph, and } \exists V' \subseteq V \text{ such that } |V'| \leq k \text{ and } \forall (u, v) \in E, \text{ either } u \in V' \text{ or } v \in V' \text{ (or both) } \}$

 $VC = \{\langle G, k \rangle \mid \text{graph } G \text{ has vertex cover of size } k\}$

Theorem 36.12: $VC \in NPC$

Proof Sketch:

1. $VC \in NP$

Given V', check |V'|=k, and for each edge $(u,v)\in E$, check that either $u\in V'$ or $v\in V'$.

- 2. L' = CLIQUE
- 3. CLIQUE \leq_P VC

If graph G = (V, E) has clique V', then graph \overline{G} has vertex cover V - V'.

 $\overline{G}=(\mathbf{V},\!\overline{E}) \text{ is the } complement \text{ of } \mathbf{G}=(\mathbf{V},\!\mathbf{E}), \text{ where } \overline{E}=\{(u,v)|(u,v)\not\in$

E

Reduction: $G \to \overline{G}$ (poly-time)

4. $x \in CLIQUE(G) = V' \longrightarrow f(x) \in VC(\overline{G}) = V - V' (|V'| = k)$ Every edge $(u,v) \in \overline{E}$ implies $(u,v) \notin E$, thus at least one of u and v $\notin V'$. Thus, at least one of u,v belongs to V - V', which means edge (u,v) is covered by V - V'. Similar argument for other direction.

Set-Covering Problem

Given a finite set X and a family F of subsets of X, $X = \bigcup_{S \in F} S$, find a minimum-size subset $C \subseteq F$ whose members cover all of X.

 $SC = \{\langle X, F, k \rangle \mid \text{there exists a set cover } C \subseteq F \text{ covering } X \text{ with size } \leq k \}$

s1

C {s1, s3}

Theorem: $SC \in NPC$

Proof:

1. Given C, check that all elements of X are members of some set in C and that $|C| \leq k$.

- 2. L' = VC
- 3. Given $\langle G, k \rangle \in VC$, define F such that each element of F is a subset for a vertex v in G containing v and all vertices reachable by an edge from v.

Let
$$X = V$$
. Then $\langle X, F, k \rangle \in SC$.

4. If C is the vertex cover of $\langle G, k \rangle \in VC$, then every vertex u in G is incident from an edge (u,v) where either $u \in C$ or $v \in C$. Thus all vertices will appear in some set in F, and the sets in F corresponding to the vertices in C make up the set covering of $\langle X, F, k \rangle \in SC$.

Subset Sum Problem

SUBSET-SUM = { $\langle S, t \rangle$ | there exists $S' \subseteq S \subset N$ such that $\sum_{s \in S'} s = t \in N$ },

N = set of natural numbers

Theorem 36.13: SUBSET-SUM \in NPC

Proof:

- 1. SUBSET-SUM \in NP. Just add up elements of S' and compare sum to t.
- 2. L' = VC
- 3. VC \leq_P SUBSET-SUM
- 4. $x \in VC \leftrightarrow f(x) \in SS$ Proof is complex.

Hamiltonian Cycle Problem

A Hamiltonian Cycle is a simple cycle in a graph going through each vertex exactly once.

$$HC = \{ \langle G \rangle | G \text{ has a Hamiltonian cycle} \}$$

 $HC \in NPC$

Proof:

- 1. Done earlier.
- 2. L' = 3-CNF-SAT
- 3. 3-CNF-SAT \leq_P HC
- 4. $x \in 3$ -CNF-SAT $\leftrightarrow f(x) \in HC$ Proof is complex.

Traveling Salesman Problem

Given a complete graph with weights on the edges, find a cycle of least total weight that visits each vertex exactly once.

Decision Problem:

TSP = $\{\langle G, k \rangle | G \text{ is a complete graph with weights on edges that contains a cycle of total weight } \leq k \text{ visiting each vertex exactly once} \}$

TRAVELING SALESMAN PROBLEM

Theorem 36.15: $TSP \in NPC$

Variant of proof in textbook.

Proof sketch:

1. TSP \in NP

Given a tour, check that each vertex is visited exactly once and the sum of costs \leq k

- 2. L' = HC
- 3. HC \leq_P TSP

Given graph G = (V, E), transformation f outputs complete graph with vertices V.

Weights of edges = 1 if $e \in E$, or (-V - + 1) if $e \notin E$

Also outputs the number —V—.

f is clearly implementable in polynomial time.

4. Then there exists a tour in this complete graph of size $\leq |V|$ iff there exists a Hamiltonian Cycle in original graph.

Partition Problem

Given a finite set A and a "size" $s(a) \in Z^+$ for each $a \in A$, find a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in (A - A')} s(a)$$

PARTITION = $\{\langle A, s(a) \rangle : \exists A' \subseteq A \text{ such that the sums of } A' \text{ and } (A-A') \text{ are equal} \}$

For example, if $A = \{a = 1, b = 2, c = 3, d = 4, e = 5, f = 7, g = 8\}$, then one possible partition is $A' = \{a, b, c, d, e\}$ and $A - A' = \{f, g\}$. The sum of both subsets is 15.

Knapsack Problem

KNAPSACK: Given a finite set U, a "size" $s(u) \in Z^+$ and a "value" $v(u) \in Z^+$ for each $u \in U$, a size constraint $B \in Z^+$, and a value goal $K \in Z^+$, is there a subset $U' \subseteq U$ such that $\sum_{u \in U'} s(u) \leq B$ and $\sum_{u \in U'} v(u) \geq K$?

This can be seen as a knapsack, which has a size limit for the objects, as in the picture below.

KNAPSACK PROBLEM

The goal is to pick a collection of objects that will fit in the knapsack and whose total value is at least K (K is input)

KNAPSACK = $\{(U, s, v, B, K) : \exists \text{ subset } U' \text{ of } U \text{ such that the sum of } s \text{ values is at most } B, \text{ and the sum of } v \text{ values is at least } K\}$

KNAPSACK is NP-Complete

Proof: We will show that the KNAPSACK problem is NP-complete by polynomial-time restricting it in a way that makes it equal to the PARTITION problem, or PARTITION $\leq_P \operatorname{spec}(KNAPSACK)$.

We can restrict KNAPSACK to PARTITION by allowing only instances in which s(u) = v(u) for all $u \in U$ and $B = K = 1/2 \sum_{u \in U} s(u)$.

NP-Complete Problems