Identification-robust inference for the LATE with high-dimensional covariates

Yukun Ma Vanderbilt University

> AMES August 4, 2023

Motivation

Figure: American Economic Review 2018-2022

LATE

- the effect of a treatment for subjects who comply with the experimental treatment assigned to their sample group (compliers).
- \bullet Assume we have N observations
 - $ightharpoonup Y_i$: outcome of interest for unit i.
 - ▶ $D_i \in \{0,1\}$: receipt of treatment.
 - ▶ $Z_i \in \{0,1\}$: offer of the treatment.
 - $igwedge X_i: p$ -dimensional controls (e.g. high-dimensional covariates $p\gg N$).
- Imbens and Angrist (1994) propose

$$\theta = \frac{\operatorname{E}_P[Y|Z=1] - \operatorname{E}_P[Y|Z=0]}{\operatorname{E}_P[D|Z=1] - \operatorname{E}_P[D|Z=0]} = \frac{ITT}{ITT_D} := \frac{\delta}{\pi}.$$

• Weak identification in LATE: $\pi \to 0$

◆□▶ ◆圖▶ ◆불▶ ◆불► 釣९♡

Weak identification

ullet When instruments Z are weakly correlated with endogenous regressors D, conventional methods for IV estimation and inference become unreliable.

$$heta=rac{\delta}{\pi},$$

normal approximation of $\widehat{\theta}$ can be derived using delta method by linearized $\widehat{\theta}$ in $(\widehat{\delta}, \widehat{\pi})$. However, $\widehat{\theta}$ is highly nonlinear in $\widehat{\pi}$ when $\widehat{\pi}$ is close to zero.

• Solution: test inversion. Given $H_0: \theta = \theta_0$, we have $\delta - \theta_0 \pi = 0$. Then the AR statistic

$$AR(\theta) = (\delta - \theta\pi)'\Omega(\theta)^{-1}(\delta - \theta\pi)$$

follows a χ^2 distribution under H_0 .

- A large literature in econometrics has developed methods for making inference with weak instruments,
 - ▶ Stock and Wright $(2000) \Rightarrow S$ test.
 - ▶ Kleibergen $(2002) \Rightarrow K$ test.
 - ▶ Andrews and Mikusheva (2016) \Rightarrow QLR test and pQLR test.
- none of them considers the model with high-dimensional covariates.

Contributions

- Weak identification in an IV context:
 - ▶ S statistic by Stock and Wright (2000), K statistic by Kleibergen (2005), Conditional test by Moreira (2003,2009), Andrews and Mikusheva (2016).
 - An important complement to existing literature: $p \gg N$
- ML based econometric methods:
 - ▶ Belloni, Chernozhukov, and Kato (2015), Chernozhukov et al. (2013,2016,2017).
 - ► An important complement to existing literature: weak identification.

Setup

• Model random vector W = (Y, D, Z, X')' as follows,

$$egin{aligned} E[D|Z,X] &= \Lambda(Zeta_{11} + X'eta_{12}) \end{aligned} & ext{(First stage)} \ E[Z|X] &= \Lambda(X\gamma) \end{aligned} & ext{(Propensity score)} \ E[Y|Z,X] &= Zeta_{21} + X'eta_{22} \end{aligned} & ext{(Reduce form)} \end{aligned}$$

- ightharpoonup Y: the outcome of interest
- ▶ $D \in \{0,1\}$: receipt of treatment
- $Z \in \{0,1\}$: offer of treatment
- ightharpoonup X: p-dimensional controls
- lacksquare $\Lambda(t) = rac{\exp(t)}{1 + \exp(t)}$ for all $t \in \mathbb{R}$

Setup

• Model random vector W = (Y, D, Z, X')' as follows,

$$E[D|Z,X] = \Lambda(Z\beta_{11} + X'\beta_{12}) := m(Z,X)$$
 (First stage)
 $E[Z|X] = \Lambda(X\gamma) := p(X)$ (Propensity score)
 $E[Y|Z,X] = Z\beta_{21} + X'\beta_{22} := g(Z,X)$ (Reduce form)

- ▶ Y: the outcome of interest
- ▶ $D \in \{0,1\}$: receipt of treatment
- $\triangleright Z \in \{0,1\}$: offer of treatment
- ightharpoonup X: p-dimensional controls
- lacksquare $\Lambda(t) = rac{\exp(t)}{1 + \exp(t)}$ for all $t \in \mathbb{R}$
- The doubly robust LATE proposed by Tan (2006) is given by

$$\theta_0 = \frac{E[g(1,X) - g(0,X) + \frac{Z}{p(X)}(Y - g(1,X)) - \frac{1 - Z}{1 - p(X)}(Y - g(0,X))]}{E[m(1,X) - m(0,X) + \frac{Z}{p(X)}(D - m(1,X)) - \frac{1 - Z}{1 - p(X)}(D - m(0,X))]} := \frac{E[\mathbf{a}]}{E[\mathbf{b}]}$$

Yukun Ma AMES2023 7 / 26

Setup

• Consider a score for LATE

$$\psi(W;\theta,\eta) = \overbrace{g(1,X) - g(0,X) + \frac{Z(Y - g(1,X))}{p(X)} - \frac{(1 - Z)(Y - g(0,X))}{1 - p(X)}}^{\alpha} - \frac{(1 - Z)(Y - g(0,X))}{1 - p(X)} - \frac{(1 - Z)(D - m(0,X))}{1 - p(X)},$$

with

- ▶ low-dimensional parameter vector $\theta \in \Theta$.
- nuisance parameter $\eta = (g, m, p) \in T$ for a convex set T.

$$E[\psi(W_i;\theta_0,\eta_0)]=0.$$

- The nuisance parameter $\eta = (\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma) \in T$.
- Object of interest: the true value $\theta_0 \in \Theta$.

High-dimensional QLR test statistic

Step 1: Randomly split the sample $\{1, \dots, N\}$ into K folds $\{I_1, \dots, I_K\}$.

Step 2: For each $k \in \{1, \dots, K\}$, obtain $\widehat{\eta}_k$ by using only the subsample of those observations with indices $i \in \{1, \dots, N\} \setminus I_k$

0 use lasso logistic regression to estimate $(\widehat{\beta}_{11,k},\widehat{\beta}_{12,k})$,

$$(\widehat{eta}_{11,k},\widehat{eta}_{12,k}) \in rg\min_{eta_{11},eta_{12}} \mathbb{E}_{I_k^c}[L_1(W_i;eta_{11},eta_{12})] + rac{\lambda_1}{|I_k^c|} \|(eta_{11},eta_{12})\|_1,$$

$$L_1(W_i; \beta_{11}, \beta_{12}) = D_i(Z_i\beta_{11} + X_i'\beta_{12}) - \log(1 + \exp(Z_i\beta_{11} + X_i'\beta_{12})).$$

- ① use lasso logistic regression to estimate $\hat{\gamma}_k$.

$$egin{aligned} (\widehat{eta}_{21,k},\widehat{eta}_{22,k}) \in \ &rg\min_{eta_{21},eta_{22}} \mathbb{E}_{I_k^c}[(Y_i-Z_ieta_{21}-X_i'eta_{22})^2] + rac{\lambda_3}{|I_k^c|} \|(eta_{21},eta_{22})\|_1. \end{aligned}$$

- ◆□ ▶ ◆圕 ▶ ◆분 ▶ · 토 = · 외익()

9/26

High-dimensional QLR test statistic

Step 3:

Compute
$$\widehat{q}_{N}(\theta)$$
 and $\widehat{\Omega}(\theta_{1},\theta_{2})$ for $\theta_{1},\theta_{2} \in \Theta$,

$$\widehat{q}_N(heta) = rac{1}{\sqrt{N}} \sum_{k=1}^K \sum_{i \in I_k} \psi(W_i; heta, \widehat{\eta}_k)$$

$$\begin{split} \widehat{\Omega}(\theta_1, \theta_2) &= \frac{1}{N} \sum_{k=1}^K \sum_{i \in I_k} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_i; \theta_2, \widehat{\eta}_k) \\ &- \frac{1}{N^2} \sum_{k=1}^K \sum_{k'=1}^K \sum_{i \in I_k, i' \in I_{k'}} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_{i'}; \theta_2, \widehat{\eta}_{k'}). \end{split}$$

An illustration of K=2-fold cross-fitting.

 I_1 Score I_2 Nuisance

 I_1 Nuisance I_2 Score

$$\sum_{i\in I_2} \psi(W_i; \theta, \widehat{\eta}_2)$$

Yukun Ma AMES2023 10 / 26

High-dimensional QLR test statistic

Step 4: Take independent draws $\xi \sim N(0, \widehat{\Omega}(\theta_0, \theta_0))$ and calculate $R = R(\xi, h_N, \widehat{\Omega})$, where

$$R(\xi, h_N, \widehat{\Omega}) = \xi^2 \widehat{\Omega}(\theta_0, \theta_0)^{-1} - \inf_{\theta} (V(\theta)\xi + h_N)^2 \widehat{\Omega}(\theta, \theta)^{-1},$$

with
$$V(\theta) = \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1}$$
 and $h_N(\theta) = \widehat{q}_N(\theta) - \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1} \widehat{q}_N(\theta_0)$.

Step 5: Calculate the conditional critical value $c_{\alpha}(\tilde{h})$ as

$$c_{lpha}(\widetilde{h}) = \min\{c: P(R(\xi, h_N, \widehat{\Omega}) > c | h_N = \widetilde{h}) \leqslant lpha\}.$$

Step 6: Reject the null hypothesis $H_0: \theta = \theta_0$ when $R(\xi, h_N, \widehat{\Omega})$ exceeds the $(1 - \alpha)$ quantiles $c_{\alpha}(h_N)$ and report the $(1 - \alpha)$ confidence interval $CI_{\alpha} = \{\theta: R(\xi, h_N, \widehat{\Omega}) \leq c_{\alpha}(h_N)\}.$

11 / 26

Yukun Ma AMES2023

The empirical process

$$\mathbb{G}_N(\cdot) = \underbrace{\frac{1}{\sqrt{N}} \sum_{i \in [N]} ig(\psi(W_i; \cdot, \eta_0) - \mathrm{E}_P[\psi(W; \cdot, \eta_0)]ig)}_{q_N(heta)}.$$

Propose an estimator of $\mathbb{G}_{N}(\cdot)$ as

$$\widehat{\mathbb{G}}_{N}(\theta) = \underbrace{\sqrt{N} \Big(\frac{1}{N} \sum_{k=1}^{K} \sum_{i \in I_{k}} \psi(W_{i}; \theta, \widehat{\eta}_{k}) - \mathbb{E}_{P} \left[\psi(W_{i}; \theta, \widehat{\eta}_{k}) \right] \Big)}_{\widehat{q}_{N}(\theta)}.$$

Theorem

Suppose some regularity assumptions hold. Under the null, we have

$$\widehat{\mathbb{G}}_N(\theta) = \mathbb{G}_N(\theta) + O_P(N^{-1/2}r_N').$$

The process $\widehat{\mathbb{G}}_N(\cdot)$ weakly converges to a centered Gaussian process $\mathbb{G}(\cdot)$ over $\theta \in \Theta$ with covariance function $\Omega(\theta_1, \theta_2) = \mathbb{E}_P[(\psi(W; \theta_1, \eta_0) - \mathbb{E}_P[\psi(W; \theta_1, \eta_0)]) (\psi(W; \theta_2, \eta_0) - \mathbb{E}_P[\psi(W; \theta_2, \eta_0)])]$ as $N \to \infty$.

Variance estimation

The variance $\Omega(\theta_1, \theta_2)$ can be consistently estimated uniformly under H_0 by

$$\begin{split} \widehat{\Omega}(\theta_{1}, \theta_{2}) &= \frac{1}{N} \sum_{k \in [K]} \sum_{i \in I_{k}} \psi(W_{i}; \theta_{1}, \widehat{\eta}_{k}) \psi(W_{i}; \theta_{2}, \widehat{\eta}_{k}) \\ &- \frac{1}{N^{2}} \sum_{k, k' \in [K]} \sum_{i \in I_{k}, i' \in I_{k'}} \psi(W_{i}; \theta_{1}, \widehat{\eta}_{k}) \psi(W_{i'}; \theta_{2}, \widehat{\eta}_{k'}) \end{split}$$

and $\widehat{\Omega}(\theta_1, \theta_2) = \Omega(\theta_1, \theta_2) + O_P(\rho_N)$ with $\rho_N \lesssim \delta_N$.

Simulation designs

- ullet $X \sim N(0,\Sigma)$ with $\Sigma_{jk} = 0.5^{|j-k|}$
- N = 500, $\dim(X) = 5,100,300$, and 500.
- ullet compliance class $Q:=egin{cases} 0 & ext{never-taker} \ 1 & ext{always-taker} \ 2 & ext{compliers} \end{cases}$
- $P[Q=2|X] = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)} = \begin{cases} 0.1 & \text{weakly identified case} \\ 0.5 & \text{strongly identified case} \end{cases}$
- $ullet \ Z = rac{\exp(\gamma_0 + \gamma_1 x)}{1 + \exp(\gamma_0 + \gamma_1 x)} + v ext{ with } v \sim N(0,1) \stackrel{s.t.}{\Longrightarrow} P(Z=1) = 0.5$
- $\bullet \ \ D = Z*\mathbb{1}\{Q=2\} + Q*\mathbb{1}\{Q \neq 2\}$
- $Y = D + X + \varepsilon$ with $\varepsilon \sim N(0, 1) \implies \theta_0 = 1$.

Simulation designs

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test (AM16): robust against weak identification but not against high-dimensional setting
- ML methods (CCDDHNR18 and BCFH17): robust against high-dimensional setting but not against weak identification.

Comparisons: strong identification

• AM16 with HD-QLR (this paper)

Comparisons: weak identification

• AM16 with HD-QLR (this paper)

Simulation designs

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test (AM16): robust against weak identification but not against high-dimensional setting
- ML methods (CCDDHNR18 and BCFH17): robust against high-dimensional setting but not against weak identification.

18 / 26

Comparisons: strong identification

• CCDDHNR18 and BCFH17 with HD-QLR (this paper)

Comparisons: weak identification

• CCDDHNR18 and BCFH17 with HD-QLR (this paper)

Revisit Erik Hornung (2015) "Railroads and growth in Prussia"

- Data: highly detailed city-level data from the historical German state of Prussia.
- Y_i : urban population growth rate.
- D_i : whether the city was connected to the railroad in a given year.
- Z_i : whether the city was located within a straight-line corridor between two important cities (nodes).
- X_i : whether the city has street access, whether the city has waterway access, military population, age composition, school enrollment rate, etc.

21 / 26

Results

Y_{it} : population				periods			
growth rate	49-52	52-55	55-58	58-61	61-64	64-67	67-71
growth rate	40-02		nel A: AM		01-04	04-01	01-11
LATE	0.010	0.020	0.063	0.030	0.037	0.056	0.044
CI	[-0.017,	[0.004,	[0.030,	[0.011,	[0.019,	[0.012,	[0.018,
	0.05]	0.039]	0.063	0.050]	0.050]	0.420]	[0.155]
length of CI	0.067	0.035	0.033	0.039	0.031	0.408	0.137
Panel B: CCDDHNR18							
LATE	0.012	0.011	0.007	0.000	0.020	0.012	0.011
CI	[-0.019,	[-0.014,	[-0.009,	[-0.016,	[-0.019,	[-0.014,	[-0.016,
	0.039	0.035]	0.044]	0.030]	0.052]	0.039	0.036]
length of CI	0.058	0.048	0.053	0.046	0.070	0.052	0.052
Panel C:BCFH17							
LATE	0.009	0.009	0.012	0.006	0.015	0.012	0.013
CI	[-0.009,	[-0.006,	[-0.007,	[-0.008,	[-0.009,	[-0.018,	[-0.008,
	0.026]	0.023]	0.031]	0.020]	0.040]	0.041]	0.034]
length of CI	0.035	0.029	0.038	0.028	0.049	0.059	0.042
Panel D: HD-QLR (this paper)							
LATE	0.010	0.011	0.014	0.004	0.018	0.014	0.011
CI	[0.000,	[0.002,	[0.003,	[-0.001,	[0.003,	[-0.004,	[-0.002,
	0.021]	0.018]	0.027	0.016]	0.029]	0.032	0.023]
length of CI	0.021	0.016	0.024	0.017	0.026	0.033	0.024
Size N	929	924	914	926	924	919	919
$\dim(X)$	212	212	212	212	212	212	212

Future work

 $\bullet\,$ Not limited to LATE, extend to just-identified single IV estimation

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional model	High-dimensional model
Strong Identification	t-test,···	CCDDHNR18, BDFH17
Weak Identification	AR, S, K, AM16	HD-QLR

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a positive bias in the length of confidence intervals and lose significance when high-dimensional covariates are taken into account.

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional model	High-dimensional model
Strong Identification	t-test,···	CCDDHNR18, BDFH17
Weak Identification	AR, S, K, AM16	HD-QLR

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a
 positive bias in the length of confidence intervals and lose
 significance when high-dimensional covariates are taken into
 account.

Thank you!

feel free to email me any comments yukun.ma@vanderbilt.edu

25 / 26

Motivation: Lee et al. (2022)

Figure: American Economic Review 2013-2019

26 / 26

Yukun Ma AMES2023