APPENDIX C

The Contraction Mapping Theorem

Let X and Y be non-empty metric spaces, with distance function denoted by d. Let κ be any positive number. A map $f: X \to Y$ is Lipschitz (with constant κ) if, for all x and $x' \in X$,

$$d(f(x), f(x')) \leq \kappa d(x, x').$$

The chords of the graph of f have slope $\leq \kappa$ (see Figure C.1). Clearly any

FIGURE C.1

Lipschitz map is continuous (in fact, uniformly continuous). An invertible Lipschitz map with Lipschitz inverse is sometimes called a *Lipeomorphism*. A map f is *locally Lipschitz* if every $x \in X$ has a neighbourhood on which f is Lipschitz.

(C.2) Proposition. Let X and Y be subsets of B anach spaces and let $f: X \to Y$ be a map. If f is C^1 with |Df(x)| bounded by κ and if X is convex, then f is Lipschitz with constant κ . In particular, any C^1 map is locally Lipschitz.

Conversely, if f is Lipschitz with constant κ and f is differentiable at x then $|Df(x)| \leq \kappa$.

Proof. These are immediate consequences of the mean value theorem (see \S 4 of Chapter 5 of Lang [2]) and the definition of differentiability.

- (C.3) Exercise. Which of the following maps are Lipschitz?
 - (i) $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \sin^2 x$,
 - (ii) $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^{1/3}$,
 - (iii) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^2 + y^2$,
 - (iv) $f: \mathbf{E} \to \mathbf{R}$ defined by f(x) = |x|, for any norm | | on a vector space \mathbf{E} .

We say that f is a (metric) contraction if it is Lipschitz with constant $\kappa < 1$. If f is invertible and f^{-1} is a contraction we call f an expansion. When $X \cap Y$ is non-empty, a $fixed\ point$ of f is any $x \in X \cap Y$ such that f(x) = x. One of the simplest and yet most widely used of all fixed point theorems is due to Banach and Cacciopoli. The idea is as follows. Suppose that $\chi: X \to X$ is a contraction, with Lipschitz constant $\kappa < 1$. Let $x_0 \in X$, and choose a number r with $r(1-\kappa) > d(x_0, \chi(x_0))$. If $B_r(x)$ denotes the closed ball with centre x and radius r in X, then $B_{\kappa r}(\chi(x_0))$ is contained in $B_r(x_0)$ (see Figure C.4). Since χ

FIGURE C.4

maps $B = B_r(x_0)$ into $B_{\kappa r}(\chi(x_0))$, the iterates $\chi^n(B)$ for $n = 0, 1, 2, \ldots$ form a nested sequence, as in Figure C.4. Since χ decreases diameters by a factor κ , it is intuitively obvious that there is single point at the core of the sequence, and this must be a fixed point of f.

It is almost as quick to give a proper proof:

(C.5) Theorem. (Contraction mapping theorem) A contraction $\chi: X \to Y$ has at most one fixed point. If X = Y and X is complete then χ has a fixed point.

Proof. Let x and x' be fixed points of χ . Then

$$d(x, x') = d(\chi(x), \chi(x')) \le \kappa d(x, x')$$

where $\kappa < 1$ is the Lipschitz constant of χ . Thus d(x, x') = 0, and so x = x'. Suppose that X = Y is complete. Let $x \in X$. Consider the sequence $(\chi^n(x))_{n \ge 0}$. For all integers $n \ge m \ge 0$

$$\begin{aligned} d(\chi^{n}(x), \chi^{m}(x)) &\leq \kappa^{m} d(\chi^{n-m}(x), x) \\ &\leq \kappa^{m} \sum_{r=0}^{n-m-1} d(\chi^{r+1}(x), \chi^{r}(x)) \\ &\leq \kappa^{m} \sum_{r=0}^{n-m-1} \kappa^{r} d(\chi(x), x) \\ &\leq \kappa^{m} (1-\kappa)^{-1} d(\chi(x), x), \end{aligned}$$

which tends to 0 as $m \to \infty$. Thus the sequence is a Cauchy sequence. Since X is complete, the sequence converges to some limit, l say, in x. By the continuity of χ ,

$$\chi(l) = \chi\left(\lim_{n \to \infty} \chi^n(x)\right) = \lim_{n \to \infty} \chi(\chi^n(x)) = l.$$

We often find in applications that there is a variable parameter present, and that we need to know how the fixed point depends on this parameter. Let us be more precise. A map $\chi: X \times Y \to Z$ is uniformly Lipschitz on the first factor if for some constant $\kappa > 0$ and all $y \in Y$ the map $\chi_y: X \to Z$ taking x to $\chi(x, y)$ is Lipschitz with constant κ . Similarly for the second factor. Clearly χ is Lipschitz if and only if it is uniformly Lipschitz on both factors. It is a uniform contraction on either factor if it is uniformly Lipschitz on that factor with constant <1. When χ is a uniform contraction on the second factor, say, and Y = Z is complete, each map χ^x has a unique fixed point, which we denote by g(x). This defines the fixed point map $g: X \to Y$ of χ . Such a map, satisfying for all $x \in X$

$$\chi(x, g(x)) = g(x)$$

may, of course, exist even when the above Lipschitz conditions do not hold. We now investigate the extent to which properties of χ influence properties of g.

(C.7) Theorem. Let $\chi: X \times Y \to Z$ be a uniform contraction on the second factor, and let $g: X \to Y$ satisfy (C.6). If χ is continuous then g is continuous. If χ is Lipschitz then g is Lipschitz. If, further, X is a subset of a Banach space E, Y and Z are subsets of a Banach space F and χ is C^r then g is C^r ($r \ge 1$). If, further, D_X is C^{r-1} -bounded then D_g is C^{r-1} -bounded.

Proof. We denote the distance from p to p' by |p-p'|. Let $\kappa > 1$ be a Lipschitz constant for χ on the second factor. Then, for all x and $x' \in X$,

$$|g(x) - g(x')| = |\chi(x, g(x)) - \chi(x', g(x'))|$$

$$\leq |\chi(x, g(x)) - \chi(x', g(x))|$$

$$+ |\chi(x', g(x)) - \chi(x', g(x'))|$$

$$\leq |\chi(x, g(x)) - \chi(x', g(x))| + \kappa |g(x) - g(x')|,$$

and so

$$|g(x)-g(x')| \le (1-\kappa)^{-1} |\chi(x,g(x))-\chi(x',g(x))|.$$

Thus g is continuous when χ is continuous, and Lipschitz when χ is Lipschitz.

Now suppose $X \subseteq \mathbb{E}$, $Y \cup Z \subseteq \mathbb{F}$ and that χ is Lipschitz and C' $(r \ge 1)$. Then for all $(x, y) \in X \times Y$, $|D_2\chi(x, y)| \le \kappa$, and thus $id - D_2\chi(x, y)$ is a linear homeomorphism of \mathbb{F} . We first show that g is differentiable at $x \in X$, with

(C.8)
$$Dg(x) = T(x)D_1\chi(x, g(x))$$

where $T(x) = (id - D_2\chi(x, g(x)))^{-1}$. For all sufficiently small $\xi \in \mathbf{E}$,

$$|g(x+\xi) - g(x) - T(x)D_{1}\chi(x, g(x))(\xi)|$$

$$\leq |T(x)||g(x+\xi) - g(x) - D_{2}\chi(x, g(x))(g(x+\xi) - g(x))$$

$$-D_{1}\chi(x, g(x))(\xi)|$$

$$= |T(x)||\chi(x+\xi, g(x+\xi)) - \chi(x, g(x))$$

$$-D\chi(x, g(x))((x+\xi, g(x+\xi)) - (x, g(x)))|.$$

By the differentiability of χ , this expression is $o(|(\xi, g(x+\xi)-g(x))|)$ as $|(\xi, g(x+\xi)-g(x))| \to 0$, whence $o(|\xi|)$ as $|\xi| \to 0$ (since g is Lipschitz). This gives differentiability of g.

The proof that g is C' is by induction on $r(\ge 0)$. The case r = 0 is trivial, since g is Lipschitz. The inductive step is clear, since (C.8) expresses Dg as a composite

(C.9)
$$X \xrightarrow{(id, g)} X \times Y \xrightarrow{(D_1\chi, D_2\chi)} L(\mathbf{E}, \mathbf{F}) \times B \xrightarrow{id \times \rho} L(\mathbf{E}, \mathbf{F}) \times L(\mathbf{E}, \mathbf{F}),$$

where B is the ball with centre 0 and radius κ in $L(\mathbf{F}, \mathbf{F})$, and $\rho: B \to L(\mathbf{F}, \mathbf{F})$ is the C^{∞} -bounded uniformly C^{∞} map sending T to $(id - T)^{-1}$. Note that comp is here continuous bilinear.

The last part comes, similarly, by induction using Lemma B.7.

Notice that the proof of continuity of g works in principle when X is merely a topological space. Note also that continuity of χ is implied by continuity of the maps χ_{γ} for $\gamma \in Y$.

We now take the theory one stage further. Our attitude is that results in the text such as Theorem 3.45 (relating a change in a vector field to the corresponding change in its integral curves) should be immediate applications of theorems in this section. To achieve this, we introduce a further parameter, taking values in a topological space A. The spaces X, Y and Z are as in Theorem C.7. We are now, however, given a map $\chi: A \times X \times Y \to Z$ such that, for each $a \in A$, $\chi^a: X \times Y \to Z$ is a uniform contraction on the second factor with constant $\kappa < 1$. We also have, for each $a \in A$, a fixed point map $g^a: X \to Y$ satisfying $g^a(x) = \chi^a(x, g^a(x))$ for all $x \in X$.

(C.10) Theorem. Let $a_0 \in A$. Suppose that, for all $a \in A$, χ^a is C^r $(r \ge 0)$ and, if r > 0, Lipschitz. Suppose also that $D\chi^a$ is C^{r-1} -bounded and that $\chi^a - \chi^{a_0}$ is C^0 -bounded. Then $g^a - g^{a_0}$ is C^r -bounded. If, further, $D\chi^{a_0}$ is uniformly C^{r-1} and the map $\alpha: A \to C^r(X \times Y, Z)$ taking a to $\chi^a - \chi^{a_0}$ is continuous at a_0 , then the map $\beta: A \to C^r(X, Y)$ taking a to $g^a - g^{a_0}$ is continuous at a_0 .

Proof. By Theorem C.7 Dg^a is C^{r-1} -bounded for all $a \in A$. Also, for all $a \in A$ and $x \in X$,

$$\begin{aligned} |g^{a}(x) - g^{a_{0}}(x)| &= |\chi^{a}(x, g^{a}(x)) - \chi^{a_{0}}(x, g^{a_{0}}(x))| \\ &\leq |\chi^{a}(x, g^{a}(x)) - \chi^{a_{0}}(x, g^{a}(x))| \\ &+ |\chi^{a_{0}}(x, g^{a}(x)) - \chi^{a_{0}}(x, g^{a_{0}}(x))| \\ &\leq |\chi^{a} - \chi^{a_{0}}|_{0} + \kappa |g^{a}(x) - g^{a_{0}}(x)|, \end{aligned}$$

and

$$|g^{a}(x)-g^{a_{0}}(x)| \leq (1-\kappa)^{-1}|\chi^{a}-\chi^{a_{0}}|_{0}.$$

This completes the proof that $g^a - g^{a_0}$ is C^r -bounded. It also gives continuity of β at a_0 , when α is continuous at a_0 , in the r=0 case. We complete the proof by induction. Suppose that $\beta: A \to C^k(X, Y)$ is continuous at a_0 . To perform the inductive step, we show that the map $\gamma: A \to C^k(X, L(\mathbf{E}, \mathbf{F}))$ taking a to Dg^a is continuous at a_0 .

First note that, by hypothesis, the map from A to $C^k(X, X \times Y)$ taking a to $(0, g^a - g^{a_0})$ is continuous at a_0 . So is the map $(a \mapsto D\chi^a)$ from A to $C^k(X \times Y, L(\mathbf{E} \times \mathbf{F}, \mathbf{F}))$. Now (id, g^{a_0}) has a C^{k-1} -bounded derivative, and $D\chi^{a_0}$ is uniformly C^k . We may apply Theorem B.18 and the s = 0 argument from Theorem B.15 to show that the composition map from $C^k(X, X \times Y) \times C^k(X \times Y, L(\mathbf{E} \times \mathbf{F}, \mathbf{F}))$ to $C^k(X, L(\mathbf{E} \times \mathbf{F}, \mathbf{F}))$ taking (θ, ϕ) to $(\phi(\theta + (id, g^{a_0}))$ is continuous at $((0, 0), D\chi^{a_0})$. Thus the map λ from A to

 $C^k(X, L(\mathbf{E} \times \mathbf{F}, \mathbf{F}))$ taking a to $D\chi^a(id, g^a)$ is continuous at a_0 . We identify $C^k(X, L(\mathbf{E} \times \mathbf{F}, \mathbf{F}))$ with $C^k(X, L(\mathbf{E}, \mathbf{F})) \times C^k(X, L(\mathbf{F}, \mathbf{F}))$ by the canonical isomorphism. The second component of λ takes values in $C^k(X, B)$, where B is as in the proof of Theorem C.7. We now describe a decomposition of the map γ . One first applies λ . Then one operates on the second factor by ρ_* , where ρ is as in the proof of Theorem C.7. Finally one takes the compositional product of the two factors (continuous bilinear, by Lemma B.5). Since λ is continuous at a_0 , and the maps that follow are continuous, γ is continuous at a_0 .

(C.11) Exercise. (Lipschitz inverse mapping theorem) Let B be the closed ball with centre 0 and radius b (possibly $b=\infty$) in a Banach space E. Let $T: E \to E$ be a (topological) linear automorphism, and let $\eta: B \to E$ be Lipschitz with constant $\kappa < |T^{-1}|^{-1}$ and such that $\eta(0) = 0$. Let C be the closed ball with centre 0 and radius $b(|T^{-1}|^{-1} - \kappa)$ in E. Prove that, for all $y \in C$, there is a unique $x \in B$ such that $(T + \eta)(x) = y$. (Hint: rewrite this as $x = T^{-1}(y - \eta(x))$.) Hence, if D = int C and we write x = g(y), then g(D) is an open neighbourhood of 0 in B and the map $g: D \to g(D)$ is inverse to the restriction $T + \eta: g(D) \to D$. Prove that g is Lipschitz, and C^r $(r \ge 1)$ when η is C'. Deduce the following local form:

If f is a C' $(r \ge 1)$ map of some open subset of **E** into **E** and if $Df(x_0)$ is an automorphism then there exist open neighbourhoods U of x_0 and V of $f(x_0)$ such that the restriction $f: U \to V$ is a C' diffeomorphism.

- **(C.12) Exercise.** (Immersive mapping theorem) Prove that if $f: X \to Y$ is a C' map of manifolds $(r \ge 1)$ and f is immersive at x_0 then f restricts to a C' embedding of some neighbourhood of x_0 . (Hint: Assume that X and Y are open in Banach spaces \mathbf{E} and \mathbf{F} , $x_0 = f(x_0) = 0$, $\mathbf{F} = \mathbf{E} \times \mathbf{G}$ and Df(0) = (id, 0). Apply the inverse mapping theorem to the map $\phi: X \times \mathbf{G} \to \mathbf{F}$ defined by $\phi(x, z) = f(x) + (0, z)$.)
- **(C.13) Exercise.** (Submersive mapping theorem) Prove that if $f: X \to Y$ is a C' map of manifolds $(r \ge 1)$ and f is submersive at x_0 then some neighbourhood of x_0 in $f^{-1}(f(x_0))$ is a C' submanifold of X modelled on ker $Df(x_0)$. (Hint: Assume that X and Y are open in Banach spaces E and F, $x_0 = f(x_0) = 0$, $E = F \times \ker Df(0)$ and Df(0) is projection to the first factor. Apply the inverse mapping theorem to the map $\phi: X \to E$ defined by $\phi(x) = \phi(x_1, x_2) = (f(x), x_2)$.)
- **(C.14) Exercise.** (*Implicit mapping theorem*) The implicit mapping theorem is, basically, concerned with solving the equation

(C.15)
$$T(y) + \eta(x, y) = 0$$

for y in terms of x, where T is an automorphism of a Banach space \mathbf{F} , x takes values in a topological space X and η is Lipschitz on the second factor. The theorem is usually presented in a local form, where we are given a single solution y = b when x = a, and have to show the existence of a unique continuous map $x \mapsto g(x)$ defined on some neighbourhood of a in X such that g(a) = b and

(C.16)
$$T(g(x)) + \eta(x, g(x)) = 0$$

for all x in the neighbourhood. We can always modify η so that a = b = 0. Let B be the closed ball in F with centre 0 and radius b (possibly $b = \infty$). Suppose that x = 0, y = 0 satisfies (C.15) and let $\eta: X \times B \to F$ be uniformly Lipschitz on the second factor with constant $\kappa < |T^{-1}|^{-1}$. Suppose that, for all $x \in X$, $|\eta(x, 0)| \le |T^{-1}|^{-1} - \kappa$. Prove that there is a unique map $g: X \to B$ satisfying (C.16) for all $x \in X$. (Hint: Rewrite (C.15) as $y = -T^{-1}\eta(x, y) = 0$.) Prove that g is continuous if g is continuous. Prove that if g is open in a Banach space g then g is Lipschitz if g is Lipschitz, and g if g is g. Deduce the following local form:

Let X and Y be open subsets of Banach spaces \mathbf{E} and \mathbf{F} respectively, and let $f: X \times Y \to \mathbf{F}$ be C^r $(r \ge 1)$ with f(a, b) = 0 and $D_2 f(a, b)$ an automorphism, for some $(a, b) \in X \times Y$. Prove that there exist neighbourhoods U of a in X and V of b in Y such that there is a unique map $g: U \to V$ satisfying f(x, g(x)) = 0 for all $x \in U$. Moreover the map $g: C^r$.