9장 모수적 회귀모형을 이용한 생존분석

2020년 가을학기

전북대학교 통계학과

Outline

모수적 비례위험 모형

가속실패모형

모수적 비례위험 모형

모수적 방법

Basic Idea 생존시간은 확률분포를 따름

Goal

확률분포의 모수 추정

- ⇒ 완전한 형태가 주어진 모형
- ⇒ 시간 분위수 추정

모수적 비례위험 모형

모수적 비례위험 모형	Cox 비례위험모형	
h(t), S(t)에 대해 완전한 형태가 주어짐	S(t)의 형태를 모름	
이론적 $S(t)$ 와 더 일치성을 가짐	이론적 $S(t)$ 와 일치성을 덜 가짐	
시간-분위수 추정 가능	분포 가정에 의존하지 않음	
내고 기기에 대한 번째로 아이야 된	위험률(HR) 추정을 위해	
생존시간에 대한 분포를 알아야 함	기저위험률 필요 없음	

모수적 비례위험 모형과 Cox 비례위험모형과의 비교

모수적 비례위험 모형

생존시간 $T \sim 확률밀도함수 f(t)$

- 생존함수 $S(t) = P(T > t) = \int_{t}^{\infty} f(u) du$
- 위험함수 $h(t) = -\frac{\frac{d}{dt}S(t)}{S(t)}$ 누적위험함수 $H(t) = \int_0^t h(u)du$
- $S(t) = \exp(-H(t))$, f(t) = h(t)S(t)

분포이름	확률밀도함수	위험함수	생존함수	공변량 Z가 있는 경우
군포이금	f(t)	h(t)	S(t)	생존함수
지수분포)() ()	,	() 4)	(+-β ₀ +β ₁ Z)
$\lambda > 0t \geq 0$	$\lambda \exp(-\lambda t)$	λ	$\exp(-\lambda t)$	$\exp(-te^{eta_0+eta_1 Z})$
와이블분포	$\kappa \lambda^{\kappa} t^{\kappa-1}$.			
$\kappa>0, \lambda>0$	$\exp(-\lambda t)$	$\kappa \lambda^{\kappa} t^{\kappa-1}$	$\exp(-\lambda^{\kappa}t^{\kappa})$	$\exp(-t^{\kappa}[e^{\beta_0+\beta_1Z}]^{\kappa})$
$t \geq 0$				
로그-로지스틱	$\lambda \alpha t^{\alpha-1}$	$\lambda \alpha t^{\alpha-1}$	1	1
분포 $\alpha > 0, \lambda > 0$	$\overline{(1+\lambda t^{lpha})^2}$	$\overline{(1+\lambda t^{lpha})}$	$\overline{1+\lambda t^{lpha}}$	$1+t^{\alpha}e^{eta_0+eta_1Z}$

모수회귀에 많이 사용되는 분포

와이블 비례위험 모형

모수 κ, λ 를 갖는 와이블분포 하에서 위험함수

- 공변량이 없는 경우 위험함수 $h(t) = \kappa \lambda^{\kappa} t^{\kappa-1}$
- 공변량 $\mathbf{Z} = (Z_1, Z_2, \dots, Z_p)'$ 이 주어진 경우 $h(t|\mathbf{Z}) = h_0(t)g(\mathbf{Z}'\boldsymbol{\beta})$
 - 연결함수 $g(\cdot)$ 의 예 : $g_1(x) = e^x$, $g_2(x) = e^{-x}$

Weibull 분포의 성질 : $\log t$ 와 $\log(-\log S(t))$ 는 직선관계

 \Rightarrow $(\log t, \log(-\log \hat{S}(t))$ 그림으로 와이블모형 타당성 확인 $(\hat{S}(t): \mathsf{K-M}$ 추정량)

 κ : shape parameter

- $\kappa > 1$ 인 위험함수: 증가함수
- $\kappa = 1$ 인 위험함수: 상수함수
- $\kappa < 1$ 인 위험함수: 감소함수

Example: Remission Data

42명의 폐렴 환자의 회복시간 자료: MASS패키지의 gehan data

- 6-MP 처리를 받은 21명의 환자
- control 21명의 환자

- 선형성 ⇒ 와이블
- 동일한 기울기⇒ 비례위험

와이블 비례위험 모형

Recall
$$h(t) = \kappa \lambda^{\kappa} t^{\kappa - 1}$$

Weibull PH 모형 eha 패키지의 phreg 함수에서의 λ 모형

λ의 모형화

$$\lambda^{\kappa} = \exp(\beta_0 + \beta_1 treat)$$

• 위험률 (treat=1 vs. treat=0)

$$HR = \frac{\exp[\beta_0 + \beta_1]\kappa t^{\kappa - 1}}{\exp[\beta_0]\kappa t^{\kappa - 1}} = \exp(\beta_1)$$

PH가정 만족

$$\log h(t|treat) = (\kappa - 1)\log t + \beta_0 + \beta_1 treat + \log \kappa$$

 $\log t$ 에 대해 절편 $\beta_0 + \beta_1 treat + \log \kappa$, 기울기 $\kappa - 1$ 인 직선

지수 비례위험 모형

지수분포: $\kappa = 1$ 인 와이블분포

- 공변량 treat이 주어진 경우 $h(t|treat) = \exp(\beta_0 + \beta_1 treat)$
- eha 패키지의 phreg 함수 이용

```
> phreg(Surv(time,cens) ~ treat, data=gehan2, dist='weibull', shape =1)
Call:
phreg(formula = Surv(time, cens) ~ treat, data = gehan2, dist = "weibull"
   shape = 1)
Covariate
                 W.mean Coef Exp(Coef) se(Coef) Wald p
treat
                                                (reference)
                 0.336
        control
                           -1.527 0.217 0.398
           6-MP
                  0.664
                                                        0.000
log(scale)
                            2.159
                                               0.218
                                                        0.000
 Shape is fixed at 1
```

추정된 위험률 (HR)

$$\hat{HR}(\text{treat}=\text{6-MP vs.treat}=\text{control}) = \exp(\hat{\beta}_1) = \exp(-1.527) = 0.22$$

해석 : 6-MP그룹의 위험률이 control그룹의 0.22배 (p-value < 0.05), 즉 treatment가 효과가 있음

가속실패모형

- 모수적인 접근 방법
- 위험률을 공변량 효과의 함수로 표현되는 비례위험모형 대안
- 생존시간 자체에 대한 공변량의 효과를 다룸

두 집단의 생존함수 $S_1(t)$, $S_2(t)$ 비교

$$S_1(t) = S_2(\gamma t), \quad t \geq 0$$

- $\gamma > 0$: 과속화 인수 (acceleration factor)
- ullet 모집단 1의 노화비율 (aging rate)이 모집단 2의 노화비율보다 γ 배임을 의미

Example

- 개(dog)의 수명은 10~15년
- 일반적으로 개의 1년은 사람의 7년에 해당
- $S_1(t)$: 사람의 생존함수, $S_2(t)$:개의 생존함수:

AFT 모형

생존시간의 확장 또는 축소를 공변량의 함수로 모형화

Smokers vs. nonsmokers 흡연자와 비흡연자의 생존함수를 각각 $S_S(t)$, $S_{NS}(t)$

AFT 가정

- 생존함수로 표현: $S_{NS}(t)=S_{S}(\gamma t),\ t\geq 0$
- 생존시간으로 표현 : $\gamma T_{NS} \stackrel{d}{=} T_S$ 여기에서 T_S , T_{NS} 는 흡연자와 비흡연자의 생존시간

• μ_i : 모집단 i의 생존시간의 평균

모집단 2의 평균
$$\mu_2=\int_0^\infty S_2(t)dt=\gamma\int_0^\infty S_2(\gamma u)du,\quad (t=\gamma u)$$
$$=\gamma\int_0^\infty S_1(u)du=\gamma\mu_1$$

• ψ_i : 모집단 i의 θ 분위수(quantile), 즉 $S_i(\psi_i) = \theta$

$$S_2(\psi_2) = \theta = S_1(\psi_1) = S_2(\gamma \psi_1) \Rightarrow \psi_2 = \gamma \psi_1$$

[그림 9.1] 두 모집단에 대한 가속실패시간모형을 만족하는 생존함수

가속화 인수 γ 의 해석

Acceleration factor

 $\gamma > 1 \Rightarrow$ exposure benefits survival

 $\gamma < 1 \Rightarrow \text{exposure harmful to survival}$

Note Hazard ratio

 $HR > 1 \Rightarrow$ exposure harmful to survival

 $\mathit{HR} < 1 \Rightarrow \mathsf{exposure}$ benefits survival

 $\gamma = \mathit{HR} = 1 \Rightarrow \mathsf{no} \ \mathsf{effect} \ \mathsf{from} \ \mathsf{exposure}$

공변량 X를 가진 AFT 모형

$$\log(T) = \alpha_0 + \alpha_1 X + \epsilon$$

여기에서 ϵ 는 오차

Т	log T	
Exponential	Extreme value	
Weibull	Extreme value	
Log-logistic	Logistic	
Lognormal	Normal	

T가 와이블 분포를 따르는 경우 AFT 모형

$$\log(T) = \alpha_0 + \alpha_1 X + \sigma \epsilon$$

여기에서 $\sigma=1/\kappa$ 에 해당하는 모수

$$T = \exp(\alpha_0 + \alpha_1 X + \sigma \epsilon) = \exp(\alpha_0) \exp(\alpha_1 X) \exp(\sigma \epsilon)$$

Weibull AFT 모형

- gehan data 사용하여 공변량이 treat인 Weibull AFT 모형 적합
- ullet AFT 모형 가정 : 6-MP그룹과 control 그룹의 시간-분위수 비는 상수 γ

시간-분위수 (time-quantiles)의 표현

$$S(t) = \exp(-\lambda^{\kappa} t^{\kappa}) \Leftrightarrow -\log S(t) = (\lambda t)^{\kappa}$$
$$\Leftrightarrow t = \frac{(-\log S(t))^{1/\kappa}}{\lambda}$$

 $survival패키지의 survreg함수에서 <math>\lambda$ 모형

• λ 의 모형화 : $\lambda = \exp(-\alpha_0 - \alpha_1 treat)$

$$t = (-\log S(t))^{1/\kappa} \exp(\alpha_0 + \alpha_1 t r e a t)$$

• q-분위수 : $S(t_q) = q \Leftrightarrow t_q = (-\log q)^{1/\kappa} \exp(\alpha_0 + \alpha_1 t r e a t)$

$$\gamma = \gamma(\mathsf{treat} = \mathsf{6} - \mathsf{MP} \; \mathsf{vs.} \; \mathsf{treat} = \mathsf{control}) = \frac{(-\log q)^{1/\kappa} \exp(\alpha_0 + \alpha_1)}{(-\log q)^{1/\kappa} \exp(\alpha_0)} = \exp(\alpha_1)$$

R Code and R Output

패키지의 survreg()함수

• dist 옵션 : "weibull", "exponential", "gaussian", "logistic","lognormal", "loglogistic".

Weibull AFT 모형: Acceleration factor

가속화 인수 γ

$$\gamma = \gamma (\mathsf{treat} = \mathsf{6-MP} \; \mathsf{vs.} \; \mathsf{treat} = \mathsf{control}) = \frac{(-\log q)^{1/\kappa} \exp(\alpha_0 + \alpha_1)}{(-\log q)^{1/\kappa} \exp(\alpha_0)} = \exp(\alpha_1)$$

대조 그룹에 대해 처리 그룹을 비교할 때 추정된 가속화 인수 $\hat{\gamma}$

$$\hat{\gamma} = \exp(\hat{\alpha}_1)$$

> exp(weib.aft\$coefficients[2])
treat6-MP
3.551374

해석: 처리 그룹의 생존 시간은 대조 그룹에 비하여 인수 3.55로 증가⇒ 6-MP는 positive 효과가 있다.

Weibull AFT 모형: 시간-분위수

생존시간의 중앙값, 즉 0.5-분위수

$$S(t) = 0.5 \implies \hat{t}_{0.5} = (-\log 0.5)^{1/\hat{\kappa}} \exp(\hat{\alpha}_0 + \hat{\alpha}_1 treat)$$

중앙값의 추정

Weibull AFT와 PH 계수의 관계

- AFT : $\lambda = \exp(-\alpha_0 \alpha_1 treat) \Rightarrow \log \lambda = -\alpha_0 \alpha_1 treat$
- PH : $\lambda^{\kappa} = \exp(\beta_0 + \beta_1 treat) \Rightarrow \log \lambda = (\beta_0 + \beta_1 treat)/\kappa$

eha 패키지의 phreg()함수

• dist 옵션 : "weibull", "gompertz", "pch", "lognormal", "loglogistic"

exponential은 dist="weibull", scale=1

R Output

```
> weib.ph <- phreq(Surv(time.cens) ~ treat, data=gehan2, dist='weibull')
> summarv(weib.ph)
Call:
phreq(formula = Surv(time, cens) ~ treat, data = gehan2, dist = "weibull")
Covariate
                  W.mean
                              Coef Exp(Coef) se(Coef) Wald p
treat
        control 0.336 0 1 (referons 6-MP 0.664 -1.731 0.177 0.413
                                                (reference)
                                                           0.000
log(scale)
                                                 0.166 0.000
                             2.248
log(shape)
                             0.312
                                                 0.147 0.034
```

- $\beta_1/\kappa = -\alpha_1 \Rightarrow \beta_1 = -\alpha_1 \kappa$
- survreg 결과에서 Scale= $1/\kappa \Rightarrow 1.731 = 1.267/0.732$
- AFT 가정 ⇔ PH 가정

그림을 이용한 모형 적합성에 대한 평가

Kaplan-Meier 생존함수 $\hat{S}(t)$ 그림으로 평가

- $(t, -\log \hat{S}(t))$ 그림 직선 \Rightarrow 지수분포
- $(\log t, \log[-\log \hat{S}(t)])$ 그림 직선 \Rightarrow 와이블분포

범주형 공변량의 경우 각 공변량 범주에 대해 Kaplan-Meier 생존함수를 그림으로 평가

 \Rightarrow Weibull (or Exponential if p=1), PH and AFT assumption hold.

⇒ Not Weibull, PH and not AFT.

 \Rightarrow Not Weibull, not PH and not AFT.

 \Rightarrow Weibull, not PH and not AFT (p not fixed)

 $(\log t, \log(-\log \hat{S}(t))$ 그림

모형선택문제

모형적합도 통계량

- AIC (Akaike Information Criterion) =
 - $-2 \times \log(\text{maximum likelihood}) + 2 \times p$
 - -p= 적합모형의 모수 개수
 - AIC는 모수가 많을수록 AIC 값이 커지는 벌점(penalty)효과를 가짐
 - AIC를 최소로 하는 모형이 더 나은 모형으로 추천됨
- BIC (Bayesian Information Criterion) =
 - $-2 \times \log(\text{maximum likelihood}) + (\log n) \times p$
 - BIC를 최소로 하는 모형이 더 나음 모형으로 추천됨