Formula Sheet

Electric current:
$$I = \frac{dQ}{dt}$$

Ohm's law
$$R = \frac{V}{I}$$

Resistance and resistivity:
$$R = \rho \frac{L}{A}$$

Electric power:
$$P = I \cdot V$$

N resistors in series:
$$R_{eq} = R_1 + R_2 + \cdots + R_N$$

N resistors in parallel:
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Kirchhoff's current law (KCL):
$$\sum I_{in} = \sum I_{out}$$
 at a junction Kirchhoff's voltage law (KVL): $\sum \Delta V = 0$ around a closed loop

Kirchhoff's voltage law (KVL):
$$\sum \Delta V = 0$$
 around a closed loop

Capacitance:
$$C = \varepsilon_0 \frac{A}{d}$$
; $C = \frac{Q}{V}$

Capacitor and inductor
$$i - v$$
 relationship: $i_C = C \frac{dv_C}{dt}$; $v_L = L \frac{di_L}{dt}$

Capacitor energy
$$E_c = \frac{Q^2}{2C}$$

Inductor energy
$$E_L = \frac{1}{2}Li^2$$

Capacitor in parallel:
$$C_{eq} = C_1 + C_2 + \cdots$$

Capacitor in series:
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$$

Impedance:
$$Z_R = R$$
; $Z_C = \frac{1}{j\omega C}$; $Z_L = j\omega L$.

Capacitor charging by an emf through a resistor:
$$V_C = \varepsilon (1 - e^{-\frac{\iota}{RC}})$$

Capacitor discharging through a resistor:
$$V_C = \varepsilon e^{-\frac{t}{RC}}$$

Inductor charging by an emf through a resistor:
$$i_L = \frac{\mathcal{E}}{R} (1 - e^{-\frac{l}{L/R}})$$

Inductor discharging through a resistor:
$$i_L = \frac{\mathcal{E}}{R} e^{-\frac{t}{L/R}}$$

General formula for transient variables
$$x(t) = x(\infty) + (x(0^+) - x(\infty))e^{-\frac{t}{\tau}}$$