1. Converse, Inverse, and Contrapositive In mathematics, there are many rules, properties, and theorems that are stated using ifthen . These are conditional statements, $\mathbf{p} \rightarrow \mathbf{q}$, if p then q
If p and q are interchanged, negated, or both then a new conditional statement is formed.
Look at the following statement:
Conditional: If I go, then you stay.
pis I go
qis you stay
2. Let's interchange p and q , in other words, switch their position in the statement:
Converse : If you stay then I go
3. Look back at #1, the original conditional statement. Now let's write the \boldsymbol{p} and \boldsymbol{q} as a negation:
Inverse : If I do not go, then you do not's
4. Look back at #2, the converse statement. Now let's write the p and q as a negation:
Contrapositive: If you do not stay then I do not g
ConditionaloppositeInverse (the negative) ConverseoppositeContrapositive (the negative)
EXAMPLE: Write the three related statements given the conditional statement:
Conditional: If there is smoke then there is fire.
Converse: If there is fire then there is smoke Inverse: If there is no smoke then there is no fire
Inverse: If there is no smoke then there is no fire
Contrapositive: If there is no fire then there is no smoke

Here is a chart that shows all four conditional and related statements in symbol form.

Conditional Statement	$p \rightarrow q$	(If p , then q .)
Converse	$q \rightarrow p$	(If q , then p .)
Inverse	$\sim p \rightarrow \sim q$	(If not p , then not q .)
Contrapositive	$\sim q \rightarrow \sim p$	(If not q , then not p .)

EXAMPLE: Write in symbol form, the three related statements given the conditional statement. Make sure to simplify two negatives, just like in regular math.

Conditional: $\sim p \rightarrow q$

Converse: $q \rightarrow \sim \rho$

Inverse: $\rho \rightarrow \sim q$

Contrapositive: $\sim 9 \rightarrow \rho$

EXAMPLE: Translate the conditional statement into symbols. The translation might be the converse, inverse, or contrapositive.

A triangle is equilateral only if it has three sides of equal length.

p = A triangle is equilateral

q = a triangle has three sides of equal length

- 1. A triangle is equilateral if it has three sides of equal length. $q \rightarrow \rho$
- 2. If a triangle is not equilateral then it does not have three sides of equal length. $\frac{\sim \rho \rightarrow \sim q}{}$

2. Biconditional statements

A compound statement using the words "if and only if" (abbreviated as iff) is called a biconditional statement, $p \leftrightarrow q$, p if and only if q p iff q

Biconditional means there are two conditions: $p \rightarrow q$ and $q \rightarrow p$

Therefore in symbol form: $(\rho \rightarrow q) \land (q \rightarrow p) = \rho \mapsto q$

Construct the truth table for "biconditional"

p q	$p \rightarrow q$	$q \rightarrow p$	$(b \to d) \lor (d \to b)$	p ↔ q
T F F F	TETT	TETT	T F F T	TEET

Notice that a biconditional statement is true when both p and q statements are the <u>SAME</u>.

EXAMPLE: Determine if each biconditional statement is TRUE or FALSE.

3.
$$6 = 5$$
 if and only if $12 \neq 12$

4. Apple makes Ipods if and only if Burger King sells Big Macs

gamen.	er-	2		
-	de	1 -	10	
8	1.3	1	e	
菱	8 ,	B man	Nenth	pocupio.

3. Consistent and Contrary

If two statements are both true about the same object, the statements are Consistent

EXAMPLE: "the apple is red" and "it weighs 12 ounces"

If two statements cannot be true about the same object, the statements are Contracy

EXAMPLE: "the apple is red" and "the apple is green"

EXAMPLE: decide if each pair of statements are consistent or contrary

Contrary Elvis is dead. Elvis is alive!

Contracy George Bush was a republican. George Bush was a Democrat.

Consistent That animal has four legs. That animal is a tiger.

Contrary Pi is an irrational number. Pi is a whole number.

Consistent This number is a whole number. This number is an integer.