Problem Set 8

D. Zack Garza

November 27, 2019

Contents

1	Problem 1	1
	1.1 Part a	1
	1.2 Part b	2
	1.3 Part c	2
2	Problem 2	3
	2.1 Part a	3
	2.1.1 Part i	3
	2.1.2 Part ii	4
	2.2 Part b	4
3	Problem 3	4
4	Problem 4	4
5	Problem 5	4
6	Problem 6	4

1 Problem 1

1.1 Part a

It follows from the definition that $||f||_{\infty} = 0 \iff f = 0$ almost everywhere, and if $||f||_{\infty}$ is the best upper bound for f almost everywhere, then $||cf||_{\infty}$ is the best upper bound for cf almost everywhere.

So it remains to show the triangle inequality. Suppose that $|f(x)| \leq ||f||_{\infty}$ a.e. and $|g(x)| \leq ||g||_{\infty}$ a.e., then by the triangle inequality for the $|\cdot|_{\mathbb{R}}$ we have

$$|(f+g)(x)| \le |f(x)| + |g(x)|$$
 a.e.
 $\le ||f||_{\infty} + ||g||_{\infty}$ a.e.,

which means that $\|f+g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}$ as desired.

1.2 Part b

 \Longrightarrow : Suppose $||f_n - f||_{\infty} \to 0$, then for every ε , N_{ε} can be chosen large enough such that $|f_n(x) - f(x)| < \varepsilon$ a.e., which precisely means that there exist sets E_{ε} such that $x \in E_{\varepsilon} \Longrightarrow |f_n(x) - f(x)|$ and $m(E_{\varepsilon}^c) = 0$.

But then taking the sequence $\varepsilon_n := \frac{1}{n} \to 0$, we have $f_n \rightrightarrows f$ uniformly on $E := \bigcap_n E_n$ by definition, and $E^c = \bigcup_n E_n^c$ is still a null set.

 \Leftarrow : Suppose $f_n \rightrightarrows f$ uniformly on some set E and $m(E^c) = 0$. Then for any ε , we can choose N large enough such that $|f_n(x) - f(x)| < \varepsilon$ on E; but then ε is an upper bound for $f_n - f$ almost everywhere, so $||f_n - f||_{\infty} < \varepsilon \to 0$.

1.3 Part c

To see that simple functions are dense in $L^{\infty}(X)$, we can use the fact that $f \in L^{\infty}(X) \iff$ there exists a g such that f = g a.e. and g is bounded.

Then there is a sequence s_n of simple functions such that $||s_n - g||_{\infty} \to 0$, which follows from a proof in Folland:

Proof. (a) For
$$n = 0, 1, 2, ...$$
 and $0 \le k \le 2^{2n} - 1$, let
$$E_n^k = f^{-1}((k2^{-n}, (k+1)2^{-n}]) \quad \text{and} \quad F_n = f^{-1}((2^n, \infty]),$$

and define

$$\phi_n = \sum_{k=0}^{2^{2^n}-1} k 2^{-n} \chi_{E_n^k} + 2^n \chi_{F_n}.$$

(This formula is messy in print but easily understood graphically; see Figure 2.1.) It is easily checked that $\phi_n \leq \phi_{n+1}$ for all n, and $0 \leq f - \phi_n \leq 2^{-n}$ on the set where $f \leq 2^n$. The result therefore follows.

However, $C_c^0(X)$ is dense $L^{\infty}(X) \iff$ every $f \in L^{\infty}(X)$ can be approximated by a sequence $\{g_k\} \subset C_c^0(X)$ in the sense that $\|f - g_n\|_{\infty} \to 0$. To see why this can *not* be the case, let f(x) = 1, so $\|f\|_{\infty} = 1$ and let $g_n \to f$ be an arbitrary sequence of C_c^0 functions converging to f pointwise.

Since every g_n has compact support, say E, then $g_n|_{E^c} \equiv 0$ and $m(E^c) > 0$. In particular, this means that $||f - g_n||_{\infty} = 1$ for every n, so g_n can not converge to f in the infinity norm.

2 Problem 2

2.1 Part a

2.1.1 Part i

Lemma: $||1||_p = m(X)^{1/p}$

This follows from $||1||_p^p = \int_X |1|^p = \int_X 1 = m(X)$ and taking pth roots.

By Holder with p = q = 2, we can now write

$$\begin{split} \|f\|_1 &= \|1 \cdot f\|_1 \leq \|1\|_2 \|f\|_2 = m(X)^{1/2} \|f\|_2 \\ \Longrightarrow \|f\|_1 \leq m(X)^{1/2} \|f\|_2. \end{split}$$

We also have

$$||f||_{2}^{2} = \int_{X} |f|^{2} \le \int_{X} |||f||_{\infty}|^{2} = ||f||_{\infty} \int_{X} 1 = ||f||_{\infty}^{2} m(X)$$

$$\implies ||f||_{2} \le m(X)^{1/2} ||f||_{\infty}$$

$$\implies m(X)^{1/2} ||f||_{2} \le m(X) ||f||_{\infty},$$

and combining these yields

$$||f||_1 \le m(X)^{1/2} ||f||_2 \le m(X) ||f||_{\infty}.$$

, from which we can immediately conclude that if $m(X) < \infty$, we have $L^{\infty}(X) \subseteq L^{2}(X) \subseteq L^{1}(X)$. To see that the inclusion is strict in general, we'll use the fact that $\sum_{k} k^{-2} < \infty$ and $\sum_{k} k^{-1} = \infty$: $\exists f \in L^{1}(X) \setminus L^{2}(X)$:

Let $E_k = X \cap B(t_k)$ where $B(t_k)$ is a ball centered at the origin (with radius depending on a parameter), $A_k = E_k \setminus E_{k-1}$ to be disjoint annuli where t_k is chosen for each k such that $m(A_k) = 1$.

(Note: since
$$m(X) < \infty$$
, $X \subseteq \bigcup A_k$.)

Then define $f: X \to \mathbb{R}$ by $f(x) = \sum_k s(k) \chi_{A_k}$, so we have

$$||f||_1 = \int_X |f| = \sum_k \int_{A_k} s(k) = \sum_k s(k) \int_{A_k} 1 = \sum_k s(k)$$

$$||f||_2 = \sum_k s(k)^2.$$

Now setting $s(k) = \left(\frac{1}{k}\right)^{1/2}$ yields $\|f\|_1 < \infty$ but $\|f\|_2 = \infty$, so $f \not\in L^2(X)$.

$$\exists f \in L^2(X) \setminus L^\infty(X):$$

Let X=(0,1] and $f(x)=x^{-1/4}$. Then $\|f\|_2=\int_0^1\frac{1}{x^{1/4}}<\infty$ by the p-test, but f is unbounded near 0. In particular, for any upper bound M, we have $m(\{x\ni f(x)>M\})>0$, so $\|f\|_\infty=\infty$ and $f\not\in L^\infty(X)$.

2.1.2 Part ii

 $\exists f \in L^2(X) \setminus L^1(X) \text{ when } m(X) = \infty$:

Take $X = [1, \infty)$ and let $f(x) = x^{-1}$. Then $||f||_2 < \infty$ but $||f||_1 = \infty$ by the *p*-test.

 $\exists f \in L^{\infty}(X) \setminus L^{2}(X) \text{ when } m(X) = \infty$:

Take $X = \mathbb{R}$ and f(x) = 1. Then $||f||_{\infty} = 1 < \infty$ but $||f||_{2} = \int_{\mathbb{R}} 1 = \infty$.

$$L^2(X) \subseteq L^1(X) \implies m(X) < \infty$$
:

Let $f = \chi_X$, by assumption we can find a constant M such that $\|\chi_X\|_2 \leq M\|\chi_X\|_1$.

Then pick a sequence of sets $E_k \nearrow X$ such that $m(E_k) < \infty$ for all $k, \chi_{E_k} \nearrow \chi_X$, and thus $\|\chi_{E_k}\|_p \le M \|\chi_E\|_p$. By the lemma, $\|\chi_{E_k}\|_p = m(E)^{1/p}$, so we have

$$\|\chi_{E_k}\|_2 \le M \|\chi_{E_k}\|_1 \implies \frac{\|\chi_{E_k}\|_2}{\|\chi_{E_k}\|_1} \le M$$

$$\implies \frac{m(E_k)^{1/2}}{m(E_k)} \le M$$

$$\implies m(E_k)^{-1/2} \le M$$

$$\implies m(E_k) \le M^2 < \infty.$$

and by continuity of measure, we have $\lim_K m(E_k) = m(X) \le M^2 < \infty$.

- 2.2 Part b
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6