# polynomial regression

assignment2.csv is the data for you to do analysis on. It is the data to predict cars' prices. Below is the guideline:

- 1. Read the data, call it data\_original
- 2. Target = 'price'
- 3. Fix the features, e.g., features\_numerical = ['A', 'B', 'C', 'D'], features\_category=['E', 'F'].
- 4. Preprocess the data
  - add one-hot encoding for categorical to data
  - add polynomial to data
- **5. Fit to model,** model.fit(data.drop[target], data[target])
- 6. Predict the model by data

\*You may use the function create poly feature() defined as follows to generate the polynomials.

## read the dataset assignment2.csv and answer the following question:

return print("Please select a feature in this df!")

- How many features in this dataset and what are their names?
- Which are categorical features? List their names.

```
In [358]:
```

else:

```
import pandas as pd
data_origin = pd.read_csv('assignment2-1.csv')
target = data_origin['price']
# rwd( rear wheels drive)
# fwd( front wheels drive)
# make (company)
def onehot encode(df, feature):
   result = pd.DataFrame()
   if feature in df.columns:
       # loop over the degrees:
       result = pd.get dummies(df, columns=[feature])
       return result
   else:
       return print("Please select a feature in this df!")
cat feature make = onehot encode(data origin, 'make')
cat feature mnd = onehot encode(cat feature make, 'drive-wheels')
```

```
features_num = ['length', 'width', 'height']
features_cat = ['make', 'drive-wheels']
print("There are 6 features, their names are 'make', 'drive-wheels', 'length', 'width', 'height', and 'price'.")
print("Categorical features in the dataset are 'make'and 'drive-wheels' ")
data_origin
```

There are 6 features, their names are 'make', 'drive-wheels', 'length', 'width', 'height', and 'price'.

Categorical features in the dataset are 'make'and 'drive-wheels'

Out[358]:

|     | make        | drive-wheels | length | width | height | price |
|-----|-------------|--------------|--------|-------|--------|-------|
| 0   | alfa-romero | rwd          | 168.8  | 64.1  | 48.8   | 16500 |
| 1   | alfa-romero | rwd          | 171.2  | 65.5  | 52.4   | 16500 |
| 2   | audi        | fwd          | 176.6  | 66.2  | 54.3   | 13950 |
| 3   | audi        | 4wd          | 176.6  | 66.4  | 54.3   | 17450 |
| 4   | audi        | fwd          | 177.3  | 66.3  | 53.1   | 15250 |
|     |             |              |        |       |        |       |
| 175 | volvo       | rwd          | 188.8  | 67.2  | 57.5   | 18950 |
| 176 | volvo       | rwd          | 188.8  | 68.9  | 55.5   | 16845 |
| 177 | volvo       | rwd          | 188.8  | 68.8  | 55.5   | 19045 |
| 178 | volvo       | rwd          | 188.8  | 68.9  | 55.5   | 21485 |
| 179 | volvo       | rwd          | 188.8  | 68.9  | 55.5   | 22625 |

180 rows × 6 columns

# add the following features to the original dataset:

- degree of 2 polynomial of length\*
- degree of 3 polynomial of height\*

```
In [359]:
```

```
poly_feature_length = create_poly_feature(data_origin, 'length', 2)
poly_feature_height = create_poly_feature(data_origin, 'height', 3)
```

# consider the whole data set as training set and fit the model.

```
In [360]:
```

```
from sklearn import linear model
from sklearn.model selection import train test split
target = ['price']
data processed = pd.concat([cat feature mnd, poly feature length, poly feature height], a
xis = 1)
x = data processed.drop('price',axis=1)
y = data processed['price']
#x_train, x_test, y_train, y_test = train_test_split(x, y, test size = 0.9, random state
regr = linear model.LinearRegression()
#regr.fit(x train, y train)
regr.fit(x, y)
print(regr.coef )
print(regr.intercept )
pd = pd.DataFrame(regr.coef_, x.columns, columns = ['Coeff'])
#pred = regr.predict(x test)
pred = regr.predict(x)
plt.scatter(y, pred, color="blue")
```

```
m, b = np.polyfit(y, pred, 1)
plt.plot(y, m*y + b, color="black")

plt.show()
print(pd)

[-9.60452364e+02  9.73908147e+02 -2.02220364e+04  1.74495521e+03
    -4.94696981e+02  7.89459622e+03 -1.70970023e+03 -2.31839431e+03
    -1.97305751e+03  -4.14061589e+03  8.51413031e+03 -2.91691413e+03
    1.18458241e+04  -1.62485913e+03  -3.03692314e+03 -1.76119502e+03
```

-6.04572700e+03 -3.04745840e+03 1.61535353e+04 -5.16160120e+03 -4.50084489e+02 -3.72066491e+03 -3.38694465e+03 -1.76282286e+03 -2.60138138e+03 7.99258798e+02 -1.73317854e+03 9.33919740e+02

```
40000
35000
30000
25000
20000
15000
10000
```

5000 10000 15000 20000 25000 30000 35000 40000 45000

405375.8759149376

3.26372540e+00 3.54757749e+02 -2.09106997e+00]

```
Coeff
length
                    -960.452364
width
                     973.908147
height
                  -20222.036390
make alfa-romero
                   1744.955214
make audi
                    -494.696981
                    7894.596224
make bmw
make chevrolet
                   -1709.700228
make dodge
                   -2318.394308
make honda
                   -1973.057513
make isuzu
                   -4140.615889
                    8514.130311
make_jaguar
make mazda
                   -2916.914134
make mercedes-benz 11845.824149
make_mercury -1624.859126
                   -3036.923143
make_mitsubishi
                   -1761.195023
make nissan
make peugot
                   -6045.726997
make plymouth
                   -3047.458397
make porsche
                  16153.535331
make renault
                   -5161.601199
                    -450.084489
make saab
make subaru
                   -3720.664907
make_toyota
                   -3386.944653
make_volkswagen
                   -1762.822865
                   -2601.381378
make volvo
                    799.258798
drive-wheels 4wd
drive-wheels fwd
                   -1733.178538
drive-wheels rwd
                     933.919740
length_power_2
                       3.263725
height_power_2
                     354.757749
height power 3
                      -2.091070
```

### In [361]:

```
plt.hist(y - predictions)
```

### Out[361]:

```
(array([ 1., 0., 3., 9., 58., 83., 20., 5., 0., 1.]),
```



# write down the formula of RMSE and compute its value of this model.

- Hint: you can use  $y_i$  as the value of i-th target and  $\,\hat{y}_i$  as the i-th predicted target.

## The formula of RMSE:

RMSE = 
$$\sqrt{\frac{\frac{1}{n} \sum_{i=1}^{n} (y_i)^2}{-\hat{y}_i}}$$

#### In [362]:

```
import math
RMSE = np.sqrt(metrics.mean_squared_error(y, pred))
print("Root Mean Square Error: ", RMSE)
```

Root Mean Square Error: 2392.4540709679427

# compute the following user-defined metric of this model:

• loss=, where  $y_i$  is the value of i-th target and  $\hat{y}_i$  is the i-th predicted target.

 $\sum_i |y_i| \ - \hat{y}_i |$ 

#### In [363]:

```
loss = np.sum(abs(np.subtract(y, pred)))
print("loss: ", loss)
```

loss: 292778.9744982414