Adaptive Runtime Verification

Radu Grosu Vienna University of Technology

Joint work with:

E. Bartocci, S. Callanan, K. Havelund, K. Kalajdzik S.A. Smolka, S.D. Stoller, J. Seyster, E. Zadok

Runtime Verification Problem

Why RV? Most properties cannot be checked statically

Problem: It introduces overhead!

Overhead Control Problem

Solution: Use a PID controller

LTL Prop
$$\phi_1 \mathcal{U} \phi_2$$
? $\phi_1 \mathcal{U} \phi_2$? $\phi_1 \mathcal{U} \phi_2$? $\phi_1 \mathcal{U} \phi_2$?

Problem: We do not know anymore if the LTL property holds!

Fix: Learn and Estimate state with a Hidden Markov Model

Stateful Overhead Control

Adaptive RV: Knowing the state one can tune budget towards Instances that are most likely to violate the LTL property next.

Outline

- Program Model: Hidden Markov Model
- Property: Deterministic Finite Automaton
- Correponding Dynamic Bayesian Network
- State Estimation with Particle Filters
- Comparison of State-Estimation Techniques
- Adaptive Runtime Verification

Program Model: Hidden Markov Model

T_{H}	x_1	x_2	x_3	X_4	x_5	
\mathcal{X}_1	0.6	0.4				
X_2			1			
X_3			0.9	0.1	$P(x_5)$	(x_3)
X_4					1	
X_5		0.2			0.8	

O_H	PROT	UNPROT	LOCK	UNLOCK	
x_1	0.2	0.8			
X_2			1		
x_3	0.6	0.4		P(UNL)	$ock \mid x_3)$
X_4				1	
X_5	10 ⁻⁶	1-10-6			

Program Model: Hidden Markov Model

Property: DFA

T_D	S_1	S_2	s_3	S_4	
S_1	PROT UNPROT UNLOCK	LOCK			
S_2		PROT UNPROT LOCK	UNLOCK		
S_3		LOCK	UNPROT UNLOCK	$P(s_4 \mid s_1)$,PROT)
S_4				PROT LOCK UNPROT UNLOCK	

O_D	р	q	
S_1	0	1	
s_2	1	0	
S_3	1	$P(q s_3$)
S_4	0	1	

Property: DFA

$$P(S_{t+1} \mid S_t, \underline{Y}_{t+1}) = T_D$$

$$P(Z_t \mid S_t) = O_D$$

Filtering in DBNs

Given

- $P(X_{t+1} | X_t) = T_H, P(X_1)$
- $\bullet \quad \mathbf{P}(Y_t \mid X_t) = O_H$
- $P(S_{t+1} | S_t, Y_{t+1}) = T_D, P(S_1)$
- $P(Z_t | S_t) = O_D$
- $y_1 \dots y_{t+1}$, $z_1 \dots z_{t+1}$

Find

• $P(S_{t+1} | y_1 ... y_{t+1}, z_1 ... z_{t+1})$

Computing $P(X_{t+1} | y_{1:t+1})$

Exact computation (RVSE):

- $P(X_{t+1} | y_{1:t+1})^t = \alpha O_{y_{t+1}}^d T^t P(X_t | y_{1:t})^t$
- Expensive: Matrix multiplication consumes 80% of time

Offline Tabling (AP-RVSE):

- Approximate computation of $P(X | y_{1:*})^t, \forall y_{1:*}$ for error ε
- Fast: Memory requirements are very high

Online Particle Filtering (RVPF):

- Approximate computation of $P(X_{t+1} | y_{1:t+1})^t$ for n particles
- Adaptive: Number n of particles balance overhead / accuracy

RVPF: Initial Distribution of Particles

RVPF: Observe LOCK

RVPF: Distribute Particles

RVPF: New Configuration of Particles

RVPF: Resemple Particles for LOCK

RVPF: Initial distribution of particles

RVPF: Observe a Peek p

Accuracy Evaluation

Accuracy Evaluation: Peeking

Peek after gap: significantly improves accuracy

Adaptive Runtime Verification Framework

Adaptive Runtime Verification Framework

