Napredni postupci u projektiranju analognih integriranih sklopova

Pregled tehnologija i integriranih komponenata

Tehnologija za proizvodnju integriranih sklopova

Primjena znanstvenih spoznaja za izradu skupa međusobno povezanih elktroničkih elemenata izvedenih u istoj podlozi

Utjecaj tehnologije na projektiranje analognih sklopova

Karakteristike analognih IC

- Kontinuirani u amplitudi signala
- Diskretni ili kontinuirani u vremenu
- Obrada signala primarno ovisi o omjeru vrijednosti ili vremenskih konstanti
 - U omjerima su obično vodljivosti, otpori ili kapaciteti
 - Vremenske konstante su produkti otpora i kapaciteta
- Dinamički opseg je određen najmanjim i najvećim signalima

Utjecaj tehnologije

- Točnost obrade signala ovisi o točnosti omjera vrijednosti elemenata
- Dinamički opseg ovisi o linearnosti elemenata u sklopu te o šumu
- Iznos vrijednosti elemenata ograničen je površinom koju zauzimaju
- Tehnologija unosi otporne, kapacitivne i induktivne parazite koji rezultiraju odstupanjem od željenih karakteristika sklopa
- Na analogni sklop utječu ostali sklopovi izvedeni u istoj podlozi (često se kombiniraju analogni i digitalni)

Klasifikacija tehnologija

Primjene tehnologija

Year	Lmin μm	Bits/chip Gb/chip	Trans/chip millions/chip	Clock MHz	Wiring
1995	0.35	0.064	4	300	4 - 5
1998	0.25	0.256	7	450	5
2001	0.18	1	13	600	5-6
2004	0.13	4	25	800	6
2007	0.09	16	50	1000	6-7
2010	0.065	64	90	1100	7 - 8
20	003				

Semiconductor Industry Association

- Skaliranjem broj tranzistora na čipu se približno udvostručuje svakih 18 mjeseci
- Skaliranje je motivirano poboljšanjem digitalnih sklopova (veća gustoća memorija, kompleksniji mikroprocesori)
- Analogne primjene kasne 2~3 tehnološka čvora
- Broj slojeva metalizacije raste što omogućava integraciju više tipova pasivnih komponenata

Primjene tehnologija

- CMOS je u početku bio rezerviran samo za digitalne sklopove
- Skaliranjem raste brzina CMOS tranzistora (fT i fmax) te se pojačanje može postići na višim frekvencijama
- Danas se CMOS koristi u brzim RF komunikacijaskim sklopovima

Primjene tehnologija - komunikacije

Zašto CMOS?

Usporedba BJT i MOSFET tehnologije iz perspektive analogne elektronike

Predmet usporedbe	ВЈТ	MOSFET
Frekv. jediničnog pojačanja (fT)	100 GHz	50 GHz (0.25 μm)
Šum (termički je približno jednak)	Manji 1/f šum	Veći 1/f šum
DC raspon rada	9 dekada eksponencijalne ovisnosti IC o UBE	2-3 dekade ovisnosti ID o UGS
Strmina	Veća 10x	Manja 10x
Izlazni dinamički otpor	Malo veći	Manji za kratki kanal
Izrada sklopke	Loša	Dobra
Kondenzatori	Naponski ovisni	Više mogućnosti
Razvoj tehnologije	Polagan	Brz

- Skoro sve stavke su na strani BJT, ali iz perspektive digitalne elektronike sličan omjer bi bio na strani CMOS-a
- Kako su potrebe tehnologije miješanog signala koje se koriste u masovnoj proizvodnji određene potrebama za digitalnim sklopovima, CMOS tehnologija se javlja kao očiti izbor

CMOS tehnologija

CMOS Analog Circuit Design © P.E. Allen - 2006

CMOS – SEM presjek

Fig. 2.8-20

CMOS Analog Circuit Design

CMOS – SEM presjek, metalizacija

CMOS Analog Circuit Design © P.E. Allen - 2006

CMOS – primjer sub-mikrometarske tehnologije

65 Nanometer CMOS Technology

TEM cross-section of a 35 nm NMOS and PMOS transistors.[†]

NMOS: PMOS:

These transistors utilize enhanced channel strains to increase drive capability and to reduce off currents.

P. Bai, et. Al., "A 65nm Lobic Technology Featuring 35nm Gate Lengths, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 μm² SRAM Cell, IEEE Inter. Electron Device Meeting, Dec. 12-15, 2005.
 CMOS Analog Circuit Design
 © P.E. Allen - 2006

CMOS – primjer sub-mikrometarske tehnologije

UDSM Metal and Interconnects

Physical aspects:

Layer	Pitch (nm)	Thickness (nm)	Aspect Ratio
Isolation	220	230	62
Polysilicon	220	90	
Contacted Gate Pitch	220	(2)	## #
Metal 1	210	170	1.6
Metal 2	210	190	1.8
Metal 3	220	200	1.8
Metal 4	280	250	1.8
Metal 5	330	300	1.8
Metal 6	480	430	1.8
Metal 7	720	650	1.8
Metal 8	1080	975	1.8

CMOS Analog Circuit Design © P.E. Allen - 2006

Prednosti sub-mikrometarskih tehnologija

Aspekt digitalnih sklopova:

- Popravljen omjer I_{on}/I_{off}
- Smanjen kapacitet upravljačke elektrode
- Mogućnost većih radnih struja
- Smanjena gustoća prospojnih linija
- Smanjenje disipacije snage

Aspekt analognih sklopova:

- Više slojeva metalizacije
- Veći f_⊤
- Veća gustoća kapaciteta
- Smanjen kapacitet pn-spojeva po g_m

Mane sub-mikrometarskih tehnologija

Aspekt analognih sklopova:

- Smanjen napon napajnja, manji hod napona
- Struje curenja upravljačke elektrode
- Smanjen faktor pojačanja za mali signal (μ)
- Izraženije nelinearnosti (IIP3)
- Šum i usklađenost karakteristika

Intrinsic gain and IP3 as a function of the gate overdrive for decreasing V_{DS} :

CMOS Analog Circuit Design © P.E. Allen - 2006

[†] Anne-Johan Annema, et. Al., "Analog Circuits in Ultra-Deep-Submicron CMOS," *IEEE J. of Solid-State Circuits*, Vol. 40, No. 1, Jan. 2005, pp. 132-143.

Problem struje curenja upravljačke elektrode

Struja curenja se javlja zbog tuneliranja elektrona kroz tanki oksidni sloj upravljačke elektrode

Struja upravljačke elektrode ovisi o:

1.) Naponu uprav.elektroda-uvod (i naponu odvod-uprav.elektroda)

$$i_{GS} = K_1 v_{GS} \exp(K_2 v_{GS})$$
 and $i_{GD} = K_3 v_{GD} \exp(K_4 v_{GD})$

2.) Površini upravljačke elektrode – curenje NMOS ~ 6nA/μm², PMOS~3nA/μm² Struja ima nelinearnu ovisnost o naponima. Mogući model je:

Tehnike eliminacije bazne struje poznate iz bipolarne tehnologije je teško primjeniti na MOSFET

Problem struje curenja upravljačke elektrode

Struja curenja upravljačke elektrode i f_{qate}

Struja curenja upravljačke elektrode predstavlja se vodljivošću g_{gate} koja je paralelno spojena C_{gate} . Kako oba elementa imaju istu ovisnost o površini, rezultiraju s frekvencijom fgate. C_{gate} i g_{gate} su međusobno neovisni i slabo ovise o v_{DS}

$$f_{gate} = \frac{g_{gate}}{2\pi C_{gate}} \approx \begin{cases} 1.5 \cdot 10^{16} \ v_{GS}^2 e^{tox(vGS-13.6)} & \text{(NMOS)} \\ 0.5 \cdot 10^{16} \ v_{GS}^2 e^{tox(vGS-13.6)} & \text{(PMOS)} \end{cases}$$

Gdje je t_{OX} u nm i v_{GS} u V.

Za frekvencije iznad fgate, MOSFET je kapacitivan, a ispod fgate je otporan (struja curenja)

© P.E. Allen - 2006

Sub-mikrometarske tehnologije - sažetak

- Poboljšanje strmine i frekvencijskih karakteristika
- Smanjen napon napajanja
- Smanjeni paraziti
- Struje curenja upravljačke elektrode predstavlja izazov za analogne primjene ekstremno skaliranih tehnologija

Formiranje kanala – obogaćeni MOSFET

- Prijenosna karakteristika uz mali U_{DS}
- Porastom U_{GS} formira se kanal i postaje obogaćeniji struja raste

- Izlazne karakteristike uz konstantni U_{GS}
- Porastom U_{DS} struja I_D raste, kanal se sužava na strani odvoda radna točka se pomiče kroz triodno područje
- Uz $U_{DS}=U_{GS}-U_{GSO}$ kanal se prekida na strani odvoda radna točka u zasićenju

- Izlazne karakteristike uz konstantni U_{DS}
- Uz $U_{GS} = U_{GSO}$ formira se kanal, radna točka ulazi u područje zasićenja
- Za manje vrijednosti U_{GS} vrijedi $U_{DS} > U_{GS} U_{GSO}$ i tranzistor je u zasićenju
- Kako U_{GS} raste postiže se $U_{DS} < U_{GS} U_{GS0}$ i tranzistor ulazi u triodno područje

NMOS tranzistor – strujno-naponska karakteristika

$$U_{GS} > U_{GS0}$$
, $U_{DS} < U_{GS} - U_{GS0}$

Kapacitet oksida po jedinici površine:

$$C_{ox} = \varepsilon_{ox}/t_{ox}$$

Naboj elektrona:

$$dQ = -C_{ox}(dy \cdot W)[U_{GS} - U_{GS0} - U(y)]$$

Driftna struja:

$$I_{Fn} = \frac{dQ}{dt} = \frac{dQ}{dy} \frac{dy}{dt} = \frac{dQ}{dy} v_{dn}(y)$$

$$v_{dn}(y) = -\mu_n F(y) = \mu_n dU(y)/dy$$

$$I_{Fn} = -\mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] \frac{dU(y)}{dy}$$

Struja odvoda: $I_D = -I_{Fn}$

NMOS tranzistor – strujno-naponska karakteristika

Diferencijalna jednadžba:

$$I_D dy = \mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] dU(y)$$

Integriranjem po kanalu: od y = 0 do y = L; od U(0) = 0 do $U(L) = U_{DS}$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right] \Rightarrow$$
 struja I_D u triodnom području

$$K = \mu_n C_{ox} \frac{W}{I}$$
 \rightarrow strujni koeficijent

$$\mathrm{Za}~U_{DS}=U_{DSS}=U_{GS}-U_{GS0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$
 \rightarrow struja I_D u području zasićenja

NMOS tranzistor – izlazna karakteristika

obogaćeni tip
$$ightarrow U_{GS0} = 1 \text{ V}$$

triodno područje

$$za\ 0 \leq U_{DS} \leq U_{GS} - U_{GS0}$$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$

područje zasićenja

za
$$U_{DS} \ge U_{GS} - U_{GS0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$

linearno područje za mali U_{DS}

$$I_D \approx K(U_{GS} - U_{GS0})U_{DS}$$

područje zapiranja za $U_{GS} < U_{GS0}$

$$I_D = 0$$

Triodno područje i zasićenje

NMOS

Kanal se prekida ako je UGD < UGSOn zasićenje

Zasićenje

Na granici triodnog

PMOS

Kanal se prekida ako je UDG < |UGS0p| zasićenje

Zasićenje

Na granici triodnog

Modulacija duljine kanala

Točka dodira pomiče se prema uvodu

Kanal se skraćuje

U kanalu elektroni se ubrzavaju naponom $U_{DS} = U_{DSS} = U_{GS} - U_{GS0}$

U području zasićenja struja I_{D} raste s naponom U_{DS}

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L - \Delta L} (U_{GS} - U_{GS0})^2 = I_{DS} \frac{1}{1 - (\Delta L/L)}$$

Model za struju u zasićenju

Primjer 0.25 μm CMOS

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2 (1 + \lambda u_{DS})$$

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^2$$

$$r_d = \frac{1}{g_d} = \frac{1 + \lambda U_{DS}}{\lambda I_D} \approx \frac{1}{\lambda I_D}$$

- λ ovisi o duljini kanala
- kod projektiranja analognih sklopova najčešće se ne koristi minimalna duljina kanala kako bi se dobilo veće pojačanje i bolja usklađenost karakteristika

Strmina i intrinzično pojačanje

Strmina:

Izlazni dinamički otpor:

$$g_m = K(U_{GS} - U_{GS0}) = \sqrt{2KI_D} = \frac{2I_D}{(U_{GS} - U_{GS0})}$$

$$r_d \approx \frac{1}{\lambda I_D}$$

$$\frac{W}{L} = konst. \implies g_m \sim \sqrt{I_D}$$
 slučaj kod mjerenja

$$(U_{GS}-U_{GS0})=konst. \implies g_m \sim I_D$$
 slučaj kod projektiranja

Naponsko pojačanje:

$$\begin{split} \mu &= g_m \cdot r_d = \sqrt{2KI_D} \cdot \frac{1}{\lambda I_D} = \frac{1}{\lambda} \cdot \sqrt{\frac{2K}{I_D}} \\ \lambda &\sim \frac{1}{L} \quad , \quad K \sim \frac{W}{L} \quad \Rightarrow \quad \mu \sim L \cdot \sqrt{\frac{1}{I_D} \cdot \frac{W}{L}} = \sqrt{\frac{W \cdot L}{I_D}} \end{split}$$

- Pojačanje možemo povećati povećanjem W i L te smanjenjem struje
 - Pri tome raste kapacitet upravljačke elektrode loše za brzinu

Omjer strmine i struje – MOS vs BJT

MOS:

$$g_m = \frac{2I_D}{(U_{GS} - U_{GS0})} \implies \frac{g_m}{I_D} = \frac{2}{(U_{GS} - U_{GS0})}$$

Tipično:
$$(U_{GS} - U_{GS0}) = 0.2 V \implies \frac{g_m}{I_D} = \frac{2}{0.2 \ V} = 10 V^{-1}$$

Odabirom prenapona U_{GS} - U_{GSO} fiksiran je omjer g_m/I_D

BJT:

$$g_m = \frac{I_C}{U_T} \implies \frac{g_m}{I_C} = \frac{1}{U_T} = \frac{1}{0.025 \, V} = 40 \, V^{-1}$$
 v-1 20 -

4x veću strminu dobijemo s BJT uz istu utrošenu struju!!

Comparison MOST - Bipolar : g_m/I_{DS} ratio

Willy Sansen 19.45 0186

Frekvencija jediničnog strujnog pojačanja - $f_{\mathcal{T}}$

$$f_T = \frac{g_m}{2\pi C_{GS}} \sim \frac{U_{GS} - U_{GS0}}{L^2}$$

	High gain	High speed
V _{GS} -V _T	Low (0.2 V)	High (0.5 V)
L	High	Low

- f_T daje mjeru do kojih frekvencija možemo dobiti pojačanje
- Kod projektiranja sklopova velike brzine rada koristi se minimalna duljina kanala i veći prenaponi U_{GS} - U_{GSO}
- Skaliranjem se f_T povećava
- Brzina i pojačanje imaju suprotne zahtijeve
- Osnovni kompromis u projektiranju analognih integriranih sklopova

Efekt podloge

$$U_{GS0} = U_{FB} - 2\phi_B - \frac{Q_d}{C_{OX}} - \frac{Q_{SS}}{C_{OX}}$$

 U_{FB} – napon ravnih energija (razlika rada izlaza upr.elektrode i podloge)

 $2\phi_B$ – napon promjene površinskog potencijala (konc. u kanalu jednaka konc. podloge)

 Q_d – naboj osiromašenog područja

Q_{ss} – naboj površinskih stanja

Ako se podloga spoji na niži potencijal od uvoda, šupljine odlaze prema kontaktu podloge Širi se osiromašeno područje ispod kanala, raste Q_d

Potrebno je dovesti više poz.naboja na upravljačku elektrodu kako bi se formirao kanal

Efekt podloge

$$\Delta \boldsymbol{U}_{GS0} = \frac{\Delta Q_d}{C_{OX}} = \frac{\sqrt{2 \cdot \varepsilon_{Si} \cdot q \cdot N_{SUB}} \left(\sqrt{\left|\boldsymbol{U}_{BS}\right| + \left|2\phi_{B}\right|} - \sqrt{\left|2\phi_{B}\right|} \right)}{C_{OX}} = \gamma \cdot \left(\sqrt{\left|\boldsymbol{U}_{BS}\right| + \left|2\phi_{B}\right|} - \sqrt{\left|2\phi_{B}\right|} \right)$$

$$U_{GS00} = U_{GS00} + \gamma \cdot \left(\sqrt{\left| U_{BS} \right| + \left| 2\phi_{B} \right|} - \sqrt{\left| 2\phi_{B} \right|} \right)$$

$$\gamma = \frac{\sqrt{2 \cdot \varepsilon_{Si} \cdot q \cdot N_{SUB}}}{C_{OV}}$$
 Koeficijent efekta podloge

- Napon praga raste
- Podloga djeluje kao donja upravljačka elektroda
- Podlaoga mora biti spojena na niži potencijal od uvoda za NMOS odnosno na pozitivniji u slučaju PMOS-a
- Spoj uvod-podloga mora biti reverzno polariziran
- Eng. Body-effect, Backgate effect

Model za struju ispod napona praga

Za slabu inverziju

Elektroni u podlozi na strani uvoda:

Elektroni u podlozi na strani odvoda:

$$n_p(0) = n_{p0} \exp\left(\frac{\phi_S}{U_T}\right)$$

$$n_p(L) = n_{p0} \exp\left(\frac{\phi_S - U_{DS}}{U_T}\right)$$

Teče difuzijska struja:

$$i_D = q S D_n \frac{n_p(0) - n_p(L)}{L} = \frac{W}{L} X D_n n_{p0} \exp\left(\frac{\phi_S}{U_T}\right) \left[1 - \exp\left(\frac{-U_{DS}}{U_T}\right)\right]$$

X je debljina sloja kroz koji teče struja

U slaboj inverziji promjenu površinskog potencijala ΔφS kontrolira promjena napona ΔUGS preko naponskog djelila koji se sastoji od kapaciteta Cox i CjS

$$\frac{d\phi_{S}}{dU_{GS}} = \frac{C_{OX}}{C_{OX} - C_{iS}} = \frac{1}{n}$$

$$\phi_S = \frac{U_{GS}}{n} + k_1 = \frac{U_{GS} - U_T}{n} + k_2$$
 $k_2 = \frac{U_T}{n} + k_1$

Uvod

Model za struju ispod napona praga

Dobiva se za struju:

$$i_{D} = \frac{W}{L} X D_{n} n_{p0} \exp\left(\frac{k_{2}}{U_{T}}\right) \exp\left(\frac{U_{GS} - U_{T}}{nU_{T}}\right) \left[1 - \exp\left(\frac{-U_{DS}}{U_{T}}\right)\right]$$

Uz definiranje:

$$I_{t} = X D_{n} n_{p0} \exp\left(\frac{k_{2}}{U_{T}}\right)$$

Dobijemo:

$$i_{D} = \frac{W}{L} I_{t} \exp \left(\frac{U_{GS} - U_{T}}{n U_{T}} \right) \left[1 - \exp \left(\frac{-U_{DS}}{U_{T}} \right) \right]$$

Uz $U_{DS} > 3U_T$ drugi član u uglatoj zagradi je zanemariv \rightarrow struja u zasićenju

Mali napon U_{DS} je potreban da postavi tranzistor u zasićenje – ta činjenica je pogodna za dizajn sklopova s niskim naponom napajanja

Slaba inverzija - strmina

Dobiva se za strminu:

$$g_m = \frac{\partial i_D}{\partial u_{GS}} = \frac{I_D}{nU_T} \implies \frac{g_m}{I_D} = \frac{1}{nU_T} \qquad \frac{g_m}{I_{DS}}$$

Za BJT:
$$g_m = \frac{I_C}{U_T} \implies \frac{g_m}{I_C} = \frac{1}{U_T}$$

Tipične vrijednosti za *n*=1.5~3 → BJT bolji

Comparison MOST - Bipolar : g_m/I_{DS} ratio

Za slabu inverziju struja i g_m ovise eksponencijalno o U_{GS} , atraktivno za velika pojačanja i manju potrošnju jer je g_m/I_D manji

Međutim, tranzistori moraju biti veliki i struja je jako mala, pa je brzina jako limitirana (veliki kapaciteti)

Efekti kratkog kanala – zasićenje brzine nosilaca

Ovisnost brzine nosilaca o polju

$$vd = \frac{\mu_{eff} F}{1 + \frac{F}{F_c}} \qquad \text{za } F < F_c$$

$$v_s \qquad \text{za } F > F_c$$

Za rubni slučaj:

$$v_s = \frac{\mu_{eff} F}{1 + \frac{F}{F_c}} \quad (1)$$

Uz priključen napon U_{DSs} nosioci postižu brzinu zasićenja v_s :

$$i_D = C_{OX} \frac{W}{L} \left(U_{GS} - U_{GS0} - \frac{U_{DS}}{2} \right) U_{DS} \frac{\mu_{eff}}{1 + \frac{U_{DS}}{F_C L}}$$
 (2)

$$i_D = C_{OX}W(U_{GS} - U_{GS0} - U_{DSs})v_s \quad (3)$$

Zasićenje brzine nosilaca – izlazna karakteristika

Zbog kontinuiranosti struje (2)=(3) i korištenjem (1) dobiva se:

$$U_{DSs} = \frac{(U_{GS} - U_{GS0})F_{C}L}{U_{GS} - U_{GS0} + F_{C}L}$$

$$I_{Ds} = C_{OX} W v_{s} \frac{(U_{GS} - U_{GS0})^{2}}{U_{GS} - U_{GS0} + F_{C}L}$$

Zbog zasićenja brzine nosilaca struja je manja i tranzistor ulazi u zasićenje za napone $U_{DS} < U_{GS} - U_{GSO}$

Zasićenje brzine nosilaca – prijenosna karakteristika

$$\Theta = \frac{1}{F_C L}$$

- Zasićenje brzine nosilaca postaje izraženije za kraći kanal
- Prijenosna karakteristika postaje linearnija
- Strmina se smanjuje
- Kao da imamo uvodsku degeneraciju

MOSFET-kapaciteti

Sastoji se od:

- Kapaciteta osiromašenih područja C_{BS} i C_{BD}
 - Ovise o površini uvoda i odvoda, obično se u modelima uzimaju planarna i bočna komponenta
- Kapaciteta pločastih kondenzatora $C_1 \sim C_4$
 - Ovise o području rada tranzistora
 - C_2 i C_4 imaju poznatu ovisnost MOS kapaciteta
 - C_1 (C_{GS}) i C_3 (C_{GD}) zbog preklapanja upravljačke elektrode i uvoda te odvoda $\rightarrow C_{GD}$ Miller-ov kapacitet !
 - C_5 (C_{GB}) kapacitet između upravljačke elektrode i podloge

MOSFET- kapaciteti

<u>Illustration of C_{GD}, C_{GS} and C_{GB}</u>

Comments on the variation of C_{RG} in the cutoff region:

$$C_{BG} = \frac{1}{\frac{1}{C_2} + \frac{1}{C_4}} + 2C_5$$

- 1.) For $vGS \approx 0$, $CGB \approx C_2 + 2C_5$ (C4 is large because of the thin inversion layer in weak inversion
- 2.) For $0 < v_{GS} \le V_T$, $C_{GB} \approx 2C_5$ (C4 is small because of the thicker inversion layer in strong inversion)

Modeli tranzistora u simulatorima sklopova

Zahtijevi:

Model za veliki signal – nelinearni modeli

Poželjno je da su zasnovani na fizici rada

Skalabilni

Stabilni i konvergentni

Modularni

Brzo izvođenje na računalu

		Time Dependence		
		Time Independent	Time Dependent	
Linearity	Linear	Small-signal, midband R_{in} , A_v , R_{out} (.TF) Small-signal frequency response-poles and (.AC)		
	Nonlinear	DC operating point $i_D = f(v_D, v_G, v_S, v_B)$ (.OP)	Large-signal transient response - Slew rate (.TRAN)	

Modeli bipolarnog tranzistora

Ebers-Moll 1

Nelinearni DC model

Ebers-Moll 2

Uključuje nelinearne efekte nakrcanog naboja te serijske otpore

Ebers-Moll 3

Uključuje efekte višeg reda

- Modulacija širine baze
- Ovisnost τF i β o struji kolektora
- Bolji opis distribuiranog kapaciteta baza-kolektor
- Poboljšan opis temperaturnih ovisnosti

Gummel-Poon (SPICE Gummel-Poon – SGP)

- Po kompleksnosti sličan EM 3 modelu
- Poboljšan DC model u odnosu na EM3
- "Fizikalniji" i prema tome nešto točniji i kompletniji

SPICE Gummel-Poon

Model za veliki signal

Vrijedi za sva područja rada

~ 40 parametara modela

Transportni Gummel-Poon model

Model za mali signal

Linearizirani SGP model

- Za određenu radnu točku lineariziraju se ulazne i izlazne karakteristike tranzistora te se nadomještaju dinamičkim otporima
- Cc kapacitet osiromašenog područja kolektor-baza
- Ce paralelna kombinacija difuzijskog kapaciteta i kapaciteta osiromašenog područja spoja emiter-baza

Napredni modeli bipolarnog tranzistora

- Za sklopove koji rade na visokim frekvencijama i visokim gustoćama kolektorske struje SGP model nije dovoljno točan
- Najbrži bipolarni SiGe bipolarni tranzistori imaju fT i fmax između 300 i 400 GHz
- Npr. Primjena u radarskim sustavima u automobilima najnovije generacie

VBIC (Vertical Bipolar Intercompany Model) – unaprjeđenje SPICE Gummel-Poon (SGP) model

- Poboljšan model za Early-ev efekt
- Model za kvazi-zasićenje
- Model za parazitni supstratni tranzistor
- Model parazitnog kapaciteta od izolacijskog oksida
- Model za lavinsku multiplikaciju
- Poboljšan temperaturni model
- Bazna struja je odvojeno modelirana od kolektorske struje
- Elektrotermički model (samozagrijavanje)
- Kontinuirani modeli

HiCUM (High Current Model), TU Dresden, Univ. San Diego MEXTRAM, TU Delft

Parametri modela

Model	Broj parametara modela		
SPICE Gummel-Poon	~ 40		
VBIC	~ 100		
HiCUM	~ 115		
MEXTRAM	~ 80		

- Veći broj parametara znači veći broj jednadžbi i duže izvođenje simulacija
- Treba odabrati model koji će "obaviti posao"
- Ovisi o sklopu odnosno primjeni
- Za RF sklopove i brze digitalne sklopove potrebni su točniji modeli

Uvod

Modeli CMOS tranzistora u simulatorima sklopova

- Prva generacija analitički modeli temeljeni na fizici rada s uključene sve geometrijske ovisnosti
- Druga generacija jednadžbe modela su matematički prilagođene izvođenju simulacija na računalu. Korištenje empirijskih relacija i ekstrakcije parametara.
- Treća generacija povratak jednostavnijem modelu s manjim brojem parametara koji su bazirani na fizici rada umjesto empirijskim relacijama. Korištenje boljih algo ritama i specijaliziranih pomoćnih funkcija (eng. smoothing functions)
- Usporedba karakteristika modela (prema Cheng-u i Hu-u, MOSFET Modeling & BSIM3 Users Guide)

Model	Minimum	Minimum	Model	iD Accuracy in	iD Accuracy in	Small signal	Scalability
	L (µm)	Tox (nm)	Continuity	Strong Inversion	Subthreshold	parameter	
MOS1	5	50	Poor	Poor	Not Modeled	Poor	Poor
MOS2	2	25	Poor	Poor	Poor	Poor	Fair
MOS3	1	20	Poor	Fair	Poor	Poor	Poor
BSIM1	0.8	15	Fair	Good	Fair	Poor	Fair
BSIM2	0.35	7.5	Fair	Good	Good	Fair	Fair
BSIM3v2	0.25	5	Fair	Good	Good	Good	Good
BSIM3v3	0.15	4	Good	Good	Good	Good	Good

Prva generacija modela MOSFET-a

Level1 (MOS1)

- Osnovni kvadratni model baziran na aproksimaciji gradiranim kanalom i kvadratnim zakonom za struju u zasićenju.
- Dobar za ručnu analizu
- Potrebna su poboljšanja za submikrometarske tehnologije (must incorporate the square law to linear shift)

Level 2 (MOS2)

- Prvi pokušaj uključivanja efekata malih geometrija
- Uključenje osiromašenog naboja između kanala i tijela rezultira poznatim 3/2 eksponentom
- Sadrži jednostavni model za napone ispod napona praga koji nije u kontinuitetu s modelom za jaku inverziju
- Model je postao jako kompleksan i postao je temelj za razvoj novih tehnika modeliranja

Level 3 (MOS3)

- Razvijen kako bi prevladao nedostatke Level 2 modela. Koristi polu-empirijski pristup
- Uključuje DIBL i smanjenje pokretljivosti o lateralnom polju
- Sličan modelu Level 2, ali puno efikasniji
- Implementacija segmentiranih modela (eng. Model binning) ovisno o dimenzijama tranzistora koristi se zasebni set parametara modela (loše je izvedeno)

Druga generacija modela MOSFET-a

BSIM (eng. Berkeley Short-Channel IGFET Model)

- Naglasak na matematičkom opisu za simulaciju sklopova
- Efekti kratkog kanala su pretežno empirijski i modeliranje se uglavnom ovisi o sposobnosti ekstrakcije parametara
- Uveden precizniji model za struju ispod napona praga s dobrim prijelazom između područja
- Loš model vodljivosti kanala

HSPICE Level 28 (MOS3)

- Baziran na BSIM-u, ali je znatno izmijenjen
- Prikladniji za projektiranje analognih sklopova
- Koristi segmentirane modele
- Parametri modela gotovo potpuno empirijski
- Korisnik mora koristiti HSPICE program
- Model u vlasništvu (eng. proprietary)

BSIM 2

- Baziran na BSIM-u
- Uzima u obzir neke 2D efekte
- Znatno su promijenjeni modeli za pokretljivost i za struju odvoda u odnosu na BSIM model
- Novi model za područje ispod napona praga
- Model izlazne vodljivosti čini model pogodnim za projektiranje analognih sklopova
- Točniji model za struju odvoda, bolja konvergencija
- Postaje kompleksan s velikim brojem parametara

Treća generacija modela MOSFET-a

BSIM 3

- Model je postigao stabilnost i široko se koristi u industriji za sub-mikrometarske (eng. Deepsubmicron) tehnologije
- Željena jednostavnost nije ostvarena
- Kompleksan model ~200 parametara

MOS Model 9

- Razvio Philips
- Puno je korišten u industriji
- Jednadžbe modela su čiste i jednostavne trebao bi biti efikasan

Ostali modeli

 EKV (Enz-Krummenacher-Vittoz) – novi pristup, prikladan za potrebe projektiranja analognih sklopova

Novije generacije

- BSIM 4 (Berkeley), MOS Model 11 (Philips)
 - Razvijeni za ekstremno skalirane tranzistore (duljina kanala ispod 100 nm)
 - Za potrebe digitalnih, analognih i RF sklopova

Kondenzatori u CMOS tehnologiji

Koriste se za:

- Blokade napona napajanja
- Izmjeničnu vezu između pojačala
- Uspostavljanje povratne veze u operacijskim pojačalima
- Kompenzacija operacijskih pojačala
- Kao element za uzorkovanje kod sample&hold sklopova
- Varaktori u LC titrajnim krugovima naponski upravljanih oscilatora

U CMOS tehnologiji postoji više opcija kako izvesti kondenzatore

Karakteristike kondenzatora

Disipacija odnosno faktor kvalitete – Q

$$Q = \omega C R_p = \frac{\omega C}{R_s}$$

Gdje je R_p paralelni ekvivalentni otpor, a R_s električki serijski otpor (ESR) kondenzatora

- Parazitni kapaciteti od svakog izvoda kondenzatora prema masi
- Gustoća kapaciteta
- Apsolutna i relativna točnost kapaciteta
- C_{max}/C_{min} odnos maksimalnog i minimalnog iznosa kapaciteta kada se kondenzator koristi kao varaktor
- Ovisnost promjenjivog kapaciteta o kontrolnom naponu
- Linearnost q=C·v

Model kondenzatora

Capacitor Models

One of the parasitic capacitors is the top plate and the other is associated with the bottom plate.

1.) Large signal

2.) Small signal

$$q = Cv \rightarrow i = C(dv/dt)$$

Kondenzatori u CMOS tehnologiji

Kapaciteti osiromašenih područja *pn*-spoja Kapacitet ovisi o naponu – koristi se u varaktorima, bitno za RF sklopove

Kapaciteti upravljačke elektrode MOSFET-a

Vodič-dielektrik-vodič Linearni kondenzatori – koriste se u pojačalima, filtrima, sklopovima za uzorkovanje signala

© P.E. Allen - 2006

Varaktori – *pn*-spoj

PN JUNCTION CAPACITORS

PN Junction Capacitors in a Well

Generally made by diffusion into the well.

Layout:

Minimize the distance between the p+ and n+ diffusions.

Da bi se smanjili serijski otpori i povećao Q

$$C_{j} = \frac{C_{j0}}{\left(1 + \frac{U_{D}}{U_{K}}\right)^{m}}$$

$$C_{j} = \frac{C_{j0}}{\left(1 + \frac{U_{D}}{U_{K}}\right)^{m}}$$

$$m=0.5 \text{ za skokoviti } pn\text{-spoj}$$

$$C_{j0} - \text{ kapacitet uz } U_{D} = 0$$

$$U_{K} - \text{ kontaktni potencijal}$$

Varaktori – MOS

MOSFET sa D=S=B

Conditions:

- D = S = B
- · Operates from accumulation to inversion
- Nonmonotonic ——— Nije dobro za varaktor
- Nonlinear

$$C_{gate} = \frac{1}{\frac{1}{C_{OX}} + \frac{1}{C_{j}}}$$

 C_{OX} – kapacitet upravljačke elektrode C_i – kapacitet osiromašenog područja ispod kanala

Uvod

Varaktori – MOS

MOSFET sa D=S, V_{BS}≠0

MOSFET Gate Capacitor as a function of V_{GS} with Bulk Fixed (Inversion Mode)

Conditions:

- D = S, B = V_{SS}
- Accumulation region removed by connecting bulk to VDD
- Nonlinear
- Channel resistance:

$$R_{on} = \frac{L}{12K_P'(V_{BG^-}|V_T|)}$$

LDD transistors will give lower Q because of the increased series resistance

Varaktori – MOS

Accumulation Mode NMOS Gate Capacitor

Conditions:

- Remove p⁺ drain and source and put n⁺ bulk contacts instead.
- Implements a variable capacitor with a larger transition region between the maximum and minimum values.
- Reasonably linear capacitor for values of V_{GB} > 0,

Kondenzatori – poly-poly

CONDUCTOR-INSULATOR-CONDUCTOR CAPACITORS

Polysilicon-Oxide-Polysilicon (Poly-Poly) Capacitors

LOCOS Technology:

A very linear capacitor with minimum bottom plate parasitic.

DSM Technology:

A very linear capacitor with larger bottom plate parasitic.

Kondenzatori – metal-izolator-metal (MIM)

Metal-Insulator-Metal (MiM) Capacitors

In some processes, there is a thin dielectric between a metal layer and a special metal layer called "capacitor top metal". Typically the capacitance is around $1 \text{fF}/\mu\text{m}^2$ and is at the level below top metal.

Good matching is possible with low parasities.

Kondenzatori – MIM (nastavak)

Metal-Insulator-Metal Capacitors – Lateral and Vertical Flux

Capacitance between conductors on the same level and use lateral flux.

These capacitors are sometimes called fractal capacitors because the fractal patterns are structures that enclose a finite area with a near-infinite perimeter.

The capacitor/area can be increased by a factor of 10 over vertical flux capacitors.

Kondenzatori – MIM (nastavak)

More Detail on Horizontal Metal Capacitors[†]

Some of the possible metal capacitor structures include:

1.) Horizontal parallel plate

2.) Parallel wires (PW):

Kondenzatori – MIM (nastavak)

Horizontal Metal Capacitors - Continued

3.) Vertical parallel plates (VPP):

4.) Vertical bars (VB):

Kondenzatori – parazitni kapacitet donje ploče

- Može iznositi do 10% nominalne vrijednosti
- Predstavlja problem kod projektiranja sklopova

Primjer – parazitni kapacitet donje ploče

Želimo izvesti kapacitivnu vezu na ulazu u pojačalo koje ima ulazni kapacitet C_{in} . Odrediti dodatni ulazni kapacitet koji proizlazi zbog korištenja veznog kondenzatora. Pretpostaviti C_p =0.1 C_C

Kako bi se smanjilo prigušenje signala C_C mora biti puno veće od C_{in} (npr. uzmimo $C_C=5\cdot C_{in}$). Prema tome $C_p=0.5\cdot C_{in}$

$$C'_{in} = C_p + \frac{C_C C_{in}}{C_C + C_{in}} = 0.5 \cdot C_{in} + \frac{5C_{in} C_{in}}{5C_{in} + C_{in}} = \frac{4}{3} C_{in}$$

Ulazni kapacitet se povećao više od 30%!!!

Zavojnice

Koriste se uglavnom u RF sklopovima

Mreže za prilagodbu impedancije

Kao dio rezonantnog kruga

U transformatorima

Kao teret u pojačalima – omogućavaju veći hod napona (više od napona napajanja)

Integrirane zavojnice omogućavaju:

Nižu cijenu

Veću pouzdanost – prilikom povezivanja vanjskih zavojnica, bond-žice i izvodi kućišta imaju međuinduktivitet preko kojeg dolazi do preslušavanja različitih točaka RF sklopa

Manji parazitni elementi

Problemi vezani uz integrirane zavojnice

Loše karakteristike – mali faktor dobrote Q

Zauzimaju puno površine

Modeliranje – potrebni su točni modeli koji ovise o obliku zavojnice (topologiji), načinu izvođenja namotaja, o metalizaciji koja se koristi. Zahtijeva elektromagnetske simulacije

Zavojnice

$$L_{uk} = L_1 + L_2 + L_3 + M_{12} + M_{13} + M_{23}$$

Spiralna zavojnica ima veći induktivitet od ravne linije zbog međuinduktivne sprege između susjednih linija

Induktivitet je proporcional duljini linije (kao i otpor)

Za veću širinu linije otpor linije je manji

Veći vanjski promjer (Dout) znači veću ukupnu površinu

Manji unutarnji promjer znači veću međuinduktivnu spregu unutarnjih linija

Zavojnice

Uz fiksirani L, vanjski promjer možemo smanjiti:

- Manjom širinom linije (W2<W1 na sl.a) pri tome raste otpor linije i pada Q
- Povećanjem broja zavoja (N2>N1 na sl.a) pri tome se smanjuje unutarnji promjer kao i međuinduktivitet unutarnjih namota, a kako struja teče u suprotnom smjeru on smanjuje ukupni induktivitet

Zavojnice – parazitni kapacitet

Paralelni kapacitet prema podlozi

Kapacitet između susjednih zavoja

Induktivitet zavojnice ulazi u rezonanciju s parazitnim kapacitetom na frekvenciji f_{SR} (vlastita rezonantna frekvencija, eng. self-resonant frequency)

Na frekvencijama iznad f_{SR} zavojnica se ponaša kao kapacitet

Zavojnice – mehanizmi gubitaka, serijski otpor

Najvažniji parametar zavojnice je faktor dobrote Q (npr. fazni šum oscilatora ~1/Q²)
Q daje mjeru koliko je energije izgubljeno u zavojnici kada krz nju teče sinusna struja.
Kako snagu disipiraju samo otporne komponente gubitci su vezani uz otporne komponente unutar ili oko strukture zavojnice

Ako se u obzir uzme samo serijski otpor zavojnice:

$$Q = \frac{\omega_0 L}{R_S}$$

U stvarnosti Q je približno dvostruko manji

R_s možemo smanjiti povećanjem širine linije, pri tome raste parazitni kapacitet Možemo i paralelno spojiti više slojeva metalizacije. Također raste parazitni kapacitet

Zavojnice – mehanizmi gubitaka, skin-efekt

Na visokim frekvencijama struja teče po površini metala

$$J_{S} = J_{0} \exp\left(-\frac{x}{\delta}\right)$$
 $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$

 δ – dubina (skin depth)

Kako struja teče kroz manji presjek, otpor raste, dodatni otpor

$$R_{Skin} = \frac{1}{\sigma \cdot \delta}$$

σ – specifična vodljivost

Zavojnice – gomilanje stuje

Usljed vremnski promjenjivog polja u susjednim namotajima se generiraju strujne petlje odnosno vrtložne struje

Na jednom rubu se dodaju, a suprotnom oduzimaju od struje koja teče kroz namot Rezultat je gomilanje struje uz rub

Efekt povećava otpor jer struja teče kroz manji presjek

Zavojnice – kapacitivna sprega prema podlozi

Izmjenični naponi duž zavojnice uzrokuju tok struje kroz parazitni kapacitet i protječe kroz podlogu koja ima otpornu komponentu

Na taj način gubi se energija i smanjuje se Q zavojnice

Zavojnice – induktivna sprega prema podlozi

Struja kroz zavojnicu stvara promjenjivo magnetsko polje koje u podlozi generira vrtložne struje

Vrtložne struje teku u suprotnom smjeru tako da se induktivitet smanjuje

Zavojnice – ovisnost Q o frekvenciji

Na niskim frekvencijama Q ovisi o $R_{\scriptscriptstyle S}$ te raste linearno s ω

Kako frekvencija raste pojavljuje se skin-efekt pa Q raste s \sqrt{f}

Na visokim frekvencijama R_{sub} se pojavljuje u paralelu s L i Q pada s frekvencijom:

$$Q \approx \frac{R_{sub}}{\omega L_1}$$

Zavojnice – kompaktni modeli

Manje su fizikalni

Pogodni su za ekstrakciju parametara i fitiing

Model s koncentriranim parametrima

Uz konstantne vrijednosti elemenata postiže se dobra točnost u pojasu frekvencija +- 20% od centralne frekvencije