A review of Burgard & Kjaer's Funding costs, funding strategies

Imanuel Costigan, Model Risk, Westpac Banking Corporation 8 January 2015

Burgard & Kjaer (B&K) ¹ develop a derivative pricing PDE based on a hedging strategy that eliminates market, counterparty credit risk, but which does not necessarily eliminate all own credit risk. I² will expand on their derivation of a derivative pricing PDE and correct an error in it.

¹ C. Burgard and M. Kjaer. Funding costs, funding strategies. Version 12.0, November 2013. URL http://ssrn.com/abstract=2027195

² Disclaimer: This note represents the views of the author alone, and not necessarily the views of Westpac Banking Corporation.

Correcting the B&K PDE

Background

A derivative is exposed to the three types of risks:

- 1. Market risk associated with the underlying asset *S*
- 2. Credit risk associated with the default of the counterparty *C* before the derivative's termination date.
- 3. Credit risk associated with the default of the issuer (say a bank) *B* before the derivative's termination date.

Hedging strategy

We can specify a self-financing, replicating³ hedging strategy associated with the derivative as seen from the perspective of *B*:

- 1. δ units of the asset *S* financed by β_S units of cash from the repo market.
- 2. α_C units of the zero-recovery bond P_C issued by C financed by β_C units of cash from the repo market.
- 3. α_1 and α_2 units of the bonds P_1 and P_2 issued by B which have the recovery rates R_1 and R_2 respectively. These bonds are bought back/issued with the hedging strategy's cash surplus/shortfall.

If the derivative belongs to a netting setting defined by a Credit Support Annex (CSA), then the derivative will be supported by X units of cash in a collateral pool where X>0 when the derivative is in-the-money to the bank. The bank can use X to fund the cash needs of the hedging strategy if the collateral can be rehypothecated. Let use denote the hedging strategy's value proceess inclusive of collateral by Π . Then,

³ Replicating except perhaps at bank default

$$\Pi = \delta S + \beta_S + \alpha_C P_C + \beta_C + \alpha_1 P_1 + \alpha_2 P_2 - X \tag{1}$$

$$d\Pi = \delta dS + d\beta_S + \alpha_C dP_C + d\beta_C + \alpha_1 dP_1 + \alpha_2 dP_2 - dX$$
 (2)

The funding strategy of the asset S and the bond P_C outlined above can be represented as:

$$\delta S + \beta_S = 0 \tag{3}$$

$$\alpha_C P_C + \beta_C = 0 \tag{4}$$

Substituting (3) and (4) into (1), and using the fact that the hedging strategy replicates the derivative value process we find that:

$$\Pi = \alpha_1 P_1 + \alpha_2 P_2 - X$$
$$= -\hat{V}$$

As a result we find the following funding constraint:

$$\hat{V} - X + \alpha_1 P_1 + \alpha_2 P_2 = 0 \tag{5}$$

Dynamics

B&K set out the following dynamics for elements of the hedging strategy:

$$dS = \mu S dt + \sigma S dW \tag{6}$$

$$d\beta_S = \delta(\gamma_S - q_S)Sdt \tag{7}$$

$$dP_C = r_C P_C dt - P_C dJ_C (8)$$

$$d\beta_C = -\alpha_C q_C P_C dt \tag{9}$$

$$dP_i = r_i P_i dt - \bar{R}_i P_i dJ_B \quad i = 1, 2 \tag{10}$$

$$dX = -r_X X dt (11)$$

Note that:

- 1. γ_S and q_S denote the dividend income from and financing rate for S respectively;
- 2. q_C denotes the financing rate for P_C ;
- 3. J_C and J_B are the independent jump processes denoting the default of C and B respectively;
- 4. B&K assume that there is zero basis between r_1 and r_2 so that $r_i = r + \hat{R}_i \lambda_B$;

- 5. \bar{R}_i denotes the loss on the (pre)-default value of the bond P_i so that $\bar{R}_i = 1 - R_i^4$; and
- ${}^{4}R_{C}=0$ by definition

⁵ C. Burgard and M. Kjaer. Funding costs, funding strategies. Version

12.0, November 2013. URL http:

//ssrn.com/abstract=2027195

6. r_X denotes the rate accruing on the posted collateral X.

When we substitute the dynamics of (6) – (11) into (2) and collecting the risk terms associated with dS, dJ_B and dJ_C as well as the drift terms dt we find that:

$$d\Pi = \delta dS + d\beta_{S} + \alpha_{C} dP_{C} + d\beta_{C} + \alpha_{1} dP_{1} + \alpha_{2} dP_{2} - dX$$

$$= \delta dS + \delta(\gamma_{S} - q_{S}) S dt + \alpha_{C} (r_{C} P_{C} dt - P_{C} dJ_{C}) - \alpha_{C} q_{C} P_{C} dt$$

$$+ \alpha_{1} (r_{1} P_{1} dt - \bar{R}_{1} P_{1} dJ_{B}) + \alpha_{2} (r_{2} P_{2} dt - \bar{R}_{2} P_{2} dJ_{B}) + r_{X} X dt$$

$$= \delta dS - \alpha_{C} P_{C} dJ_{C} - (\alpha_{1} \bar{R}_{1} P_{1} + \alpha_{2} \bar{R}_{2} P_{2}) dJ_{B}$$

$$+ (\delta(\gamma_{S} - q_{S}) S + (r_{C} - q_{C}) \alpha_{C} P_{C} + \alpha_{1} r_{1} P_{1} + \alpha_{2} r_{2} P_{2}$$

$$+ r_{X} X) dt$$
(12)

as $dX = -r_X X dt$ (as per (11)). This is different to the net position expression given by B&K in equation (47) of their working paper⁵ (with the difference highlighted in red).

Then using the assumption that r_1 and r_2 have no basis (see the notes above) and denoting $P = \alpha_1 P_1 + \alpha_2 P_2$ and $P_D = \alpha_1 R_1 P_1 +$ $\alpha_2 R_2 P_2$ we find that:

$$\alpha_1 r_1 P_1 + \alpha_2 r_2 P_2 = \alpha_1 (r + \hat{R}_1 \lambda_B) P_1 + \alpha_2 (r + \hat{R}_2 \lambda_B) P_2$$

$$= rP + \lambda_B (P - P_D)$$
(13)

Then, substituting (13) into (12), we find that:

$$d\Pi = \delta dS - \alpha_C P_C dJ_C - (P - P_D) dJ_B$$

$$+ (\delta(\gamma_S - q_S)S + (r_C - q_C)\alpha_C P_C$$

$$+ rP + \lambda_B (P - P_D) + r_X X) dt$$
(14)

PDE

As in B&K, the PDE associated with the derivative's value when exposed to counterparty and bank risk:

$$d\hat{V} = \partial_t \hat{V} dt + \partial_S \hat{V} dS + \frac{1}{2} \sigma^2 S^2 \partial^2 \hat{V}_S dt + \Delta \hat{V}_B dJ_B + \Delta \hat{V}_C dJ_C$$

$$= \partial_S \hat{V} dS + \Delta \hat{V}_C dJ_C + \Delta \hat{V}_B dJ_B + \left(\partial_t \hat{V} + \frac{1}{2} \sigma^2 S^2 \partial_S^2 \hat{V}\right) dt \quad (15)$$

where $\Delta \hat{V}_B = g_B - \hat{V}$, $\Delta \hat{V}_C = g_C - \hat{V}$ and g_B and g_C denote the close-out values of the derivative when B and C default⁶.

"regular" close-out values

⁶ See B&Ks paper for what they term

Net position

Let's now consider the change in the bank's net value of the hedging portfolio (14) and the derivative (15):

$$d\hat{V} + d\Pi = (\partial_{S}\hat{V} + \delta)dS + (\Delta\hat{V}_{C} - \alpha_{C}P_{C})dJ_{C} + (\Delta\hat{V}_{B} - (P - P_{D}))dJ_{B}$$

$$+ \left(\partial_{t}\hat{V} + \frac{1}{2}\sigma^{2}S^{2}\partial_{S}^{2}\hat{V} + \delta(\gamma_{S} - q_{S})S\right)$$

$$+ (r_{C} - q_{C})\alpha_{C}P_{C} + rP + \lambda_{B}(P - P_{D}) + r_{X}X dt \qquad (16)$$

$$\triangleq \chi dS + Y_{C}dJ_{C} + Y_{B}dJ_{B} + Zdt \qquad (17)$$

Suppose that the bank would like to perfectly hedge the P&L due to variations in S or J_C . Then from (16) we can see that this can be achieved by holding the following units of S and P_C respectively. ⁷

$$\delta = -\partial_S \hat{V} \tag{18}$$

$$\delta = -\partial_S \hat{V}$$

$$\alpha_C = \frac{\Delta \hat{V}_C}{P_C} \triangleq \frac{g_C - \hat{V}}{P_C}$$
(18)

When the holdings of S and P_C conform to these quantities, X =Y = 0, denoting $\lambda_C = r_C - q_C$ and $A_t \hat{V} = \frac{1}{2} \sigma^2 S^2 \partial_S^2 \hat{V} - (\gamma_S - q_S) S \partial_S \hat{V}$ and using the funding constraint in (5) along with the notation we introduced earlier for *P* we find that:

$$Zdt = \left(\partial_{t}\hat{V} + \frac{1}{2}\sigma^{2}S^{2}\partial_{S}^{2}\hat{V} - (\gamma_{S} - q_{S})S\partial_{S}\hat{V} + (r_{C} - q_{C})(g_{C} - \hat{V}) + rP + \lambda_{B}(P - P_{D}) + r_{X}X\right)dt$$

$$= \left(\partial_{t}\hat{V} + \mathcal{A}_{t}\hat{V} + \lambda_{C}(g_{C} - \hat{V}) + r(X - \hat{V}) + \lambda_{B}(X - \hat{V} - P_{D}) + r_{X}X\right)dt$$
(20)

And consequently, with $\epsilon_h = g_B + P_D - X$, we find that:

⁷ As there may be restrictions on the bank's hedging strategy associated with its own default, we do not, for the moment, assume that the bank wishes to hedge its own default risk

$$d\hat{V} + d\Pi = (\Delta\hat{V}_B - (P - P_D))dJ_B$$

$$+ (\partial_t \hat{V} + \mathcal{A}_t \hat{V} + \lambda_C (g_C - \hat{V})$$

$$+ r(X - \hat{V}) + \lambda_B (X - \hat{V} - P_D) + r_X X) dt$$

$$= (g_B - \hat{V} - (X - \hat{V} - P_D))dJ_B$$

$$+ (\partial_t \hat{V} + \mathcal{A}_t \hat{V} + \lambda_C (g_C - \hat{V})$$

$$+ r(X - \hat{V}) + \lambda_B (X - \hat{V} - P_D) + r_X X) dt$$

$$= \epsilon_h dJ_B + (\partial_t \hat{V} + \mathcal{A}_t \hat{V} + \lambda_C (g_C - \hat{V})$$

$$+ r(X - \hat{V}) + \lambda_B (X - \hat{V} - P_D) + r_X X) dt$$

$$= (\partial_t \hat{V} + \mathcal{A}_t \hat{V} - (r + \lambda_C + \lambda_B) \hat{V}$$

$$+ \lambda_C g_C + (X - P_D) \lambda_B + (r + r_X) X) + \epsilon_h dJ_B$$

$$= (\partial_t \hat{V} + \mathcal{A}_t \hat{V} - (r + \lambda_C + \lambda_B) \hat{V}$$

$$+ \lambda_C g_C + (g_B - \epsilon_h) \lambda_B + (r + r_X) X + \epsilon_h dJ_B$$

$$= (\partial_t \hat{V} + \mathcal{A}_t \hat{V} - (r + \lambda_C + \lambda_B) \hat{V}$$

$$+ \lambda_C g_C + (g_B - \epsilon_h) \lambda_B + (r + r_X) X + \epsilon_h dJ_B$$

$$= (\partial_t \hat{V} + \mathcal{A}_t \hat{V} - (r + \lambda_C + \lambda_B) \hat{V}$$

$$+ \lambda_C g_C + \lambda_B g_B + (r + r_X) X - \lambda_B \epsilon_h) + \epsilon_h dJ_B$$
 (22)

For the hedging strategy to perfectly replicate the derivative, we need the following conditions to hold:

$$0 = \tilde{\epsilon}_h = g_B + P_D - X$$

$$0 = \partial_t \hat{V} + A_t \hat{V} - (r + \lambda_C + \lambda_B) \hat{V}$$

$$+ \lambda_C g_C + \lambda_B g_B + (r + r_X) X - \lambda_B \epsilon_h$$
(24)

The difference between (24) and the one presented by B&K is that the coefficient of *X* is $+(r + r_X)$ rather than $-(r_X - r)$ (respectively) - the latter which would appear to have a more natural explanation. Unfortunately, the latter term does not follow from the specified hedging strategy.

References

C. Burgard and M. Kjaer. Funding costs, funding strategies. Version 12.0, November 2013. URL http://ssrn.com/abstract=2027195.