5 points

1. Let
$$A = \begin{bmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{bmatrix}$$
.

- a) Compute det A by using any of the algorithms we saw in class.
- b) Let B be a 3×3 matrix such that $\det B = 2$. Compute $\det (4BA^{-1})$.

Solution.

a)

$$\det A = \begin{vmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{vmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{vmatrix} 1 & -1 & 2 \\ -3 & 2 & 4 \\ -1 & 4 & 0 \end{vmatrix} \xrightarrow{R_2 + 3R_1} \begin{vmatrix} 1 & -1 & 2 \\ 0 & -1 & 10 \\ 0 & 3 & 2 \end{vmatrix} = -(1)(-1)(32) = 32.$$

b)
$$\det(4BA^{-1}) = 4^3(\det B)(\det(A^{-1})) = 4^3(2)\frac{1}{32} = \frac{4^3}{16} = 4.$$

4 points

2. Let
$$A = \begin{bmatrix} -1 & c-1 & 1-c \\ -c-2 & 2c-3 & 4-c \\ -c-2 & c-1 & 2 \end{bmatrix}$$
. Use a determinant to find all the values of c for

which A is not invertible. Use any algorithm from class.

Solution. A is singular (not invertible) if and only if $\det A = 0$.

$$\det A = \begin{vmatrix} -1 & c - 1 & 1 - c \\ -c - 2 & 2c - 3 & 4 - c \\ -c - 2 & c - 1 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 - c & c - 1 \\ -c - 2 & 2c - 3 & 4 - c \\ -c - 2 & c - 1 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 - c & c - 1 \\ -c - 2 & c - 1 & 2 \end{vmatrix} R_2 + (c + 2)R_1$$
$$= - \begin{vmatrix} 1 & 1 - c & c - 1 \\ 0 & -c^2 + c - 1 & c^2 + 2 \\ 0 & 1 - c^2 & c^2 + c \end{vmatrix}$$

Doing a cofactor expansion along column 1:

$$\det A = -1(-1)^{1+1} \begin{vmatrix} -c^2 + c - 1 & c^2 + 2 \\ 1 - c^2 & c^2 + 2 \end{vmatrix} = -((-c^2 + c - 1)(c^2 + c) - (c^2 + 2)(1 - c^2))$$

$$= c(c^2 - c + 1)(c + 1) + (c^2 + 2)(1 - c)(1 + c) = (c + 1)(c^3 - c^2 + c + c^2 - c^3 + 2 - 2c) = (c + 1)(2 - c)$$

Therefore A is not invertible when c = -1 or c = 2.

3 points

3. Let A be an $n \times n$ matrix such that $A^T A = I_n$. Show that $\det(A) = \pm 1$.

Solution. Note that since A is $n \times n$, so is A^T . Therefore, we can use the property $\det(AA^T) = (\det A)(\det(A^T))$. Applying determinant to $AA^T = I_n$:

$$\det(AA^{T}) = \det(I_{n})$$

$$(\det A)(\det(A^{T})) = 1$$

$$(\det A)^{2} = 1$$

$$\det A = \pm \sqrt{1}$$

$$\det A = \pm 1.$$

4 points

- 4. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) If the determinant of a square matrix is zero, then the matrix has either one row or column of zeros.
 - b) Let A be an $n \times n$ matrix, and let \vec{b} be a given vector in \mathbb{R}^n . If the system $A\vec{x} = \vec{b}$ is consistent, then $\det A \neq 0$.
 - c) If the columns of a square matrix A are linearly dependent, then $\det A = 0$.
 - d) If A is a square matrix whose diagonal entries are all zero, then $\det A = 0$.

Solution.

- a) FALSE. For example, we have $\det \begin{pmatrix} \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix} \end{pmatrix} = -4 + 4 = 0$ but the matrix does not have any row or column of zeros.
- b) FALSE. Consider $A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. The system $A\vec{x} = \vec{b}$ is consistent, but $\det A = 0$.
- c) TRUE. This is a result of the invertible matrix theorem.
- d) FALSE. $\det \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \end{pmatrix} = 2$ and the diagonal entries of this matrix are all zero.