Name:

Robots

5. (16 points) Consider the following deterministic Markov Decision Process (MDP), describing a simple robot grid world. Notice that the values of the immediate rewards r for **two** transitions are written next to them; the other transitions, with no value written next to them, have an immediate reward of r = 0. Assume the discount factor γ is 0.8.

(a) For states $s \in \{s6, s5, s2\}$, write the value for $V_{\pi^*}(s)$, the discounted infinite horizon value of state s using an optimal policy π^* . It is fine to write a numerical expression—you don't have to evaluate it—but it shouldn't contain any variables.

Solution:

$$V_{\pi^*}(s6) = 100$$

Solution:

$$V_{\pi^*}(s5) = \gamma V_{\pi^*}(s6) = 80$$

Solution:

$$V_{\pi^*}(s2) = \gamma V_{\pi^*}(s5) = 64$$

Name:	

(b) For each state in the state diagram below, circle exactly one outgoing arrow, indicating an optimal action $\pi^*(s)$ to take from that state. If there is a tie, it is fine to select any action with optimal value.

(c) Give a value for γ (constrained by $0 < \gamma < 1$) that results in a different optimal policy, and describe the resulting policy by indicating which $\pi^*(s)$ values (i.e., which policy actions) change.

Solution: A small $\gamma = 0.001$ will make it not worthwhile to defer gains for very long. In this problem, if $\gamma^2 100 < 50$, then it will be better to directly take the 50 reward. So valid answers here are $0 < \gamma < \frac{\sqrt{2}}{2}$.

Solution: Now $\pi^*(s2)$ is to go right (east).

(d) Is it possible to change the immediate reward for each state in such a way that V_{π^*} changes but the optimal policy π^* remains unchanged? If yes, provide a new reward function, and explain how the resulting V_{π^*} changes but π^* does not. Otherwise, explain in at most two sentences why this is impossible.

Solution: Yes. We can establish small immediate rewards, say r=1, for all of the transitions currently with r=0. These are not enough to change the π^* decisions, but do change V_{π^*} for all of these states.

Name:

When winter comes, snow also appears on one path in the grid world, making exactly one of the actions non-deterministic. The resulting MDP is shown below. Specifically, the change is that now the result of the action "go north" from state $\mathfrak{s6}$ results in one of two outcomes. With probability p, the robot succeeds in transitioning to state $\mathfrak{s3}$ and receives immediate reward 100. However, with probability (1-p) it slips on the ice, and remains in state $\mathfrak{s6}$ with 0 immediate reward. Assume again that the discount factor $\gamma = 0.8$.

(e) Assume p = 0.75. For each of the states $s \in \{s2, s5, s6\}$, write the value for $V_{\pi^*}(s)$. It is fine to write a numerical expression, but it shouldn't contain any variables.

Solution:

$$V_{\pi^*}(s6) = 100p + (1-p)\gamma V_{\pi^*}(s6)$$
$$V_{\pi^*}(s6)(1 - (1-p)\gamma) = 100p$$
$$V_{\pi^*}(s6) = \frac{100p}{1 - (1-p)\gamma} = 93.75$$

Solution:

$$V_{\pi^*}(s5) = \gamma V_{\pi^*}(s6) = 75$$

Solution:

$$V_{\pi^*}(s2) = \gamma V_{\pi^*}(s5) = 60$$

(f) How bad does the ice have to get before the robot will prefer to completely avoid the ice? Let us answer the question by giving a value for p for which the optimal policy chooses actions that completely avoid the ice, i.e., choosing the action "go left" over "go up" when

Name:	

the robot is in the state $\mathfrak{s6}$. Approach this in four parts. The answer to each of the first three parts can be a numerical expression; the answer to the last part can be an expression involving numbers and p.

i. What is the value V of going right in state s2?

Solution: 50

ii. What is the value V of going up in state s5, if you're going to go right in state s2?

Solution: $\gamma \cdot 50 = 40$

iii. What is the value V of going left in state $\mathfrak{s6}$, if you're going to go up in state $\mathfrak{s5}$ and right in state $\mathfrak{s2}$?

Solution: $\gamma^2 \cdot 50 = 32$

iv. Under what condition on p is it better to go left in state s6 (then up in state s5 and right in state s2) than it is to go up in state s6?

Solution:

$$\frac{p \cdot 100}{1 - (1 - p) \cdot 0.8} < 32$$
$$p < \frac{8}{93} \approx 0.086$$