Wolkite University Mathematics Department

Applied Mathematics III Worksheet 3

1. Solving the Following First Order Differential Equations using Laplace Transform

a)
$$y' + 2y = e^t$$
, $y(0) = 0$

b)
$$y' - y = t$$
, $y(0) = 1$

c)
$$y' + 3y = \sin(t)$$
, $y(0) = 0$

d)
$$y' + y = e^{-t}$$
, $y(0) = 2$

e)
$$y' + 4y = e^{2t}$$
, $y(0) = 0$

f)
$$y' + 2y = e^{-t}$$
, $y(0) = 1$

g)
$$y' + 3y = e^{3t}$$
, $y(0) = -1$

h)
$$y' - y = e^{4t}$$
, $y(0) = 2$

2. Solving the Following Second Order Differential Equations using Laplace Transfrom

a)
$$y'' - 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$

b)
$$y'' + y = \cos(t)$$
, $y(0) = 0$, $y'(0) = 1$

c)
$$y'' - 2y' + y = te^t$$
, $y(0) = 0$, $y'(0) = 0$

d)
$$y'' + 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = -1$

e)
$$y'' - 3y' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 1$

f)
$$y'' + y = 0$$
, $y(0) = 1$, $y'(0) = 0$

g)
$$y'' + 2y' + y = t^2$$
, $y(0) = 0$, $y'(0) = 1$

h)
$$y'' - y = \sin(t)$$
, $y(0) = 0$, $y'(0) = 1$

3. Solve the following differential equations using the Laplace transform method

a)
$$xy'' + (2x+3)y' + (x+3)y = 3e^{-x}$$
, $y(0) = 0$, $y'(0) = 1$

b)
$$y''' - y' = \cos(t)$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$

c)
$$y'' + 5y' + 6y = e^t$$
, $y(0) = 0$, $y'(0) = 1$

d)
$$y''' + 3y'' + 3y' + y = 0$$
, $y(0) = 0$, $y'(0) = -1$, $y''(0) = 1$