4.9. FORMAS N-LINEALES Y DETERMINANTES.

Def 4,9,1. Sea V un e.v. de dim n sobre un aucepo It.

Una forma n-lineal es una aplicación F: Vx. xV +>1k

que para todo l=1,2,..,n cumple

(1) F(Z, ..., 22, ..., Z) = 2 F(Z, ..., Z, ..., Z), /2 6/k

(2) $F(\vec{V}_1,...,\vec{V}_{c}+\vec{V}'_{c},...,\vec{V}_{n}) = F(\vec{V}_1,...,\vec{V}_{c},...,\vec{V}_{n}) + F(\vec{V}_1,...,\vec{V}'_{c},...,\vec{V}_{n})$ poura $\vec{V}_{c},\vec{V}_{c} \in V$.

NOTA: Las propiedades (1) y (2) dien que F es lineel en cada uno de sus factores, es deux multilineal. Grando n=1 son los aplicaciones lineales y si n=2 se llaman formas belineales.

& 4.9.1. (a) $F: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $F(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = x_1 y_1 + x_2 y_2$ es una forma bilineal en \mathbb{R}^2 . En general, $F: \mathbb{R}^2 \times \mathbb{R}^2$ $\to \mathbb{R}$ dada por $F(\vec{x}, \vec{y}) = \langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i y_i$ (producto escular) un $\vec{x} = (x_1, \dots, x_n)^{\frac{1}{n}}$, $\vec{y} = (y_1, \dots, y_n)^{\frac{1}{n}}$ es una forma bilineal.

(b) (Determinante) $F: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dado par $F(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1y_2 - x_2y_1$ es una forma bilineal.

En general, par les propiedades demostrades para los deter-

minantes F: 1k"x." x 1k", dade por

 $F(\vec{V}_1,...,\vec{V}_n) = \det [\vec{V}_1,...,\vec{V}_n]$ (por whemner) es una forma n-lineal.

(c) $F: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $F((x_1), (y_2)) = (x_1, x_2) \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ = $(x_1 - x_2, 2x_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = (x_1 - x_2) y_1 + 2 x_2 y_2$ as believed. Sea In (V, 1k) = {F: 1√x... x V → 1k: F n-lineal}.

Pongamos les operaciones

(a) $(F+G)(V_1, V_n) = F(V_1, V_n) + G(V_1, V_n)$, $F,GGG_n(V,IK)$ (b) $(AF)(V_1, V_n) = A(F(V_1, V_n))$, $FGG_n(V,IK)$, AGIKEs falcil comprobar que, con estos operaciones, $G_n(V,IK)$ es un espació vectorial. La aplicación $O:V_{\times,\times}V \to IK$ dada pore $O(V_1, V_n) = O$ es el elemento neutro o rulo.

NOTA: Observa que La (V, 1K) es el españo dual de V.

Def 4,9,2 Una forma n-lineal $F: V_{\times} \stackrel{\circ}{...} \times V \longrightarrow 15$ se dice calternada si mando $i \neq j$ y $\vec{V}_i = \vec{V}_j$, $F(\vec{V}_1, ..., \vec{V}_i, ..., \vec{V}_n) = 0$.

& 4.9.2, Indica cuales de les foxmes n-lineales del 6

Vamos a deducir algunos propiedades de las formas n-lineales altornadas.

Prop 4.9.3

(4) Si F: Vx. xV → It es una faxma n-lineal alternada se cumple

(9.1) F(Z, , , , , , , , , , ,) =-F(Z, , , , , , , , , , , , , ,), i +1

. (b) Si se cumple (9.1) y lk es un cuerpo de característica de stinta de 2, Fes alternada.

D/(a) Como F es alternada $0 = F(\vec{V}_1, ..., \vec{V}_C + \vec{V}_J, ..., \vec{V}_J + \vec{V}_J, ..., \vec{V}_n) \stackrel{(2)}{=}$ $= F(\vec{V}_1, ..., \vec{V}_{C, ..., V_J}, ..., \vec{V}_n) + F(\vec{V}_1, ..., \vec{V}_{C, ..., V_{C, ..., V_n}})$ $+ F(\vec{V}_1, ..., \vec{V}_J, ..., \vec{V}_J, ..., \vec{V}_n) + F(\vec{V}_1, ..., \vec{V}_J, ..., \vec{V}_{C, ..., V_n}) \stackrel{(1)}{=}$ $= F(\vec{V}_1, ..., \vec{V}_{C, ..., V_J}, ..., \vec{V}_n) + F(\vec{V}_1, ..., \vec{V}_J, ..., \vec{V}_{C, ..., V_n}),$ where proveba (9.1).

(b) Si $\vec{V}_i = \vec{V}_j$ son $\hat{i} \neq j$ por (9, 1) $F(\vec{V}_1, \vec{V}_i, \vec{V}_i, \vec{V}_j, \vec{V}_n) = -F(\vec{V}_1, \vec{V}_j, \vec{V}_i, \vec{V}_i, \vec{V}_n).$ (omo $\vec{V}_i = \vec{V}_j$ se treve $2F(\vec{V}_1, \vec{V}_i, \vec{V}_i, \vec{V}_i, \vec{V}_n) = 0,$

lo que implica F(V1, ,, Ve, ,, Ve, ,, Vn) =0 porque 1k no trere característica 2,

Sea $F: V_{X} \xrightarrow{n}_{X} V \rightarrow K$ una forma n-lineal alternada. Si $T \in S_n$ es una permutación de n elementes $F(\vec{V}_{TL}) = (\vec{V}_{TL}) = (\vec$

D/ Como $T = \zeta_1 \circ ... \circ \zeta_n$ (ζ_j trospositiones) y signo(T) = $(-1)^n$, el resultado se deduce aplicando n vers la prop. 4.9.3.

Sea F; $V \times \stackrel{?}{\sim} \times V \rightarrow 1$ K una forma n-lineal alternada.

(a) Si $\overrightarrow{V}_i = \overrightarrow{O}$ para algun i = 1, -n, $F(\overrightarrow{V}_1, -, \overrightarrow{V}_i, -, \overrightarrow{V}_n) = 0$.

(b) Si $\overrightarrow{V}_i = \sum_{k \neq j} \lambda_k \overrightarrow{V}_k$, $F(\overrightarrow{V}_2, -, \overrightarrow{V}_3, -, \overrightarrow{V}_n) = 0$.

(c)
$$F(\vec{V}_1,...,\vec{V}_i + \sum_{k \neq i} \lambda_k \vec{V}_{k,-..}, \vec{V}_n) = F(\vec{V}_{2,-..}, \vec{V}_{2,...}, \vec{V}_n)$$

.D/ (a) Esoubir $\vec{V}_i = \vec{O} = \lambda . \vec{V}_i$ y ephicar la propredad (1) de la definición de forma n-lineal,

En cada sumando de la derecha aparece Vk en los posiciones j y k + j: Como F es alternada todos los soman dos son cero.

(C) Como F es lineal en cada variable

$$F(\vec{V_1}, ..., \vec{V_i} + \sum_{k \neq i} \lambda_k \vec{V_k}, ..., \vec{V_n}) = F(\vec{V_2}, ..., \vec{V_i}, ..., \vec{V_n})$$

+ F(V1, -, ZAKVk, -, Vn) = F(V1, -, Vn)

por (b).

Sea $A_n(V, |K|)$ el subvenjonto de $I_n(V, |K|)$ formado por las formas n-lineales <u>alternadas</u>. Es fabil ver que $A_n(V, |K|)$ es un subespano vectoral de $I_n(V, |K|)$.

El rusultado siguiente muestra que acando dim (V)=n dim $(A_n(V, Ik))=1$.

Teorema 4.9.6.

Sec V un e.v. de dimensión $n \neq 0$ sobre lk y B=1 \mathbb{E}_1 , \mathbb{E}_n } una bax de V. Existe una <u>eínica</u> foroma n-lineal alternada $D_g \in \mathcal{A}_n(V, lk)$ tel que $D_g(\mathbb{E}_1, \mathbb{E}_n) = 1$. Además, si $F \in \mathcal{A}_n(V, lk)$, entones $F = \lambda D$ con $\lambda = F(\mathbb{E}_1, \mathbb{E}_n)$. Pox tanto, $\mathcal{A}_n(V, lk)$ treve dimes 1.

D/ Sean $\vec{V}_{1,-}$, $\vec{V}_{n} \in V$ y escalbamos $\vec{V}_{i} = \sum_{j=1}^{n} a_{i,j} \vec{e}_{j}$ en la bax \vec{B} , $\vec{C} = 1, ..., n$. Entonies $F(\vec{V}_{1,-}, \vec{V}_{n}) = F(\sum_{j=1}^{n} a_{1,j} \vec{e}_{j}, ..., \sum_{j=1}^{n} a_{n,j} \vec{e}_{j})$ $= \sum_{j=1}^{n} F(a_{1,j_{1}} \vec{e}_{j_{1},-}, a_{n,j_{n}} \vec{e}_{j_{n}})$ $= \sum_{j=1}^{n} a_{1,j_{1}}...a_{n,j_{n}} F(\vec{e}_{j_{1},-}, \vec{e}_{j_{n}}) \quad (9.2)$ $d_{1} = 1,..., j_{n=1}$

En esta ultima cada subindice ji, , , jn puede toman valores malesquiera en (1,2,-, n), es duir, hay n° sumandos. Pero somo F es alternada, F(P₁₁,-, P₁) =0 siempræ que dos de los P_K sean iguales. Por tanto, en la soma anterior solo pueden ser no la los los términas en los que los ji, -, jn son todos distintos; es deux, mando (1/1, -, /jn) es una permutación de (1,2,-, n). Poniera do T(N)=jk la suma (9.2) se reduce a

$$F(\vec{V}_1, \cdot, \vec{V}_n) = \sum_{\sigma \in S_n} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)} F(\vec{e}_{\sigma(1)}, \cdot, \vec{e}_{\sigma(n)})$$

Goz 4.9.4
$$\sum$$
 signo(σ) $\alpha_{1,\sigma(1)}$, $\alpha_{n,\sigma(n)}$, $F(\vec{e}_{1},...,\vec{e}_{n})$

=
$$F(\vec{e}_{1,-1},\vec{e}_{n})$$
 $\left[\sum_{\sigma \in S_{n}} signo(\sigma) \alpha_{1,\sigma(\alpha)} \cdots \alpha_{n,\sigma(n)}\right].$ (9.2)

Definamos ahora una aplicación $D_{i}: V \times \mathbb{C} \times V \to IK$ por $D_{i}(\vec{V}_{i}, \vec{V}_{i}) = \int signo(T) a_{i} \cdots a_{i} \cdots a_{i} a_{i} \cdots a_{i} \cdots$

 $D_{\beta}(\vec{V}_{1},,\vec{V}_{n}) = \sum signc(\sigma) a_{1,\sigma(1)} \dots a_{n,\sigma(n)} \qquad (9.3)$ $\sigma \in S_{n}$

donde (ai,1,., ai,n) son les wordenades de Vi en la base β , e.d. $V_i = \sum_{i=1}^{n} a_{i,j} \in \mathcal{F}_i$. Ya he mos probado en la section 4.2 les propiedad de D_{β} que prueban que es una -forma n-lineal alternada. Se llama determinant de les verteres $V_{1,-}$, V_{n} on la bien β . Además,

 $D_{\mathcal{B}}(\vec{e}_1, \vec{e}_n) = 1$. Con esta notation, la formula (9.2) se estable

$$F(\vec{e}_1, \vec{v}_n) = F(\vec{e}_1, \vec{e}_n) D_{\beta}(\vec{v}_1, \vec{v}_n)$$
 (9.4)

para todo $(V_1, ..., V_n) \in V \times ... \times V_r$ es deux $F = F(\vec{e}_1, ..., \vec{e}_n) D_{\vec{e}_1}$. (who applicationes).

Esto permite proban que Do es unica, puesto que el .D., 6 Un(V, lk) un D'(P1, ..., Pn)=1, pornondo F=D'. en (9.4)

La fórmula (9.4) prueba que $\{D_{\vec{p}}\}\$ es un sistema de generadores de $A_n(V, |K|)$ y como $D_{\vec{p}} \neq 0$ porque $D_{\vec{p}}(\vec{e_1}, -, \vec{e_n}) = 1$, es base. Por tanto, $D_{\vec{p}}(\vec{e_1}, -, \vec{e_n}) = 1$.

Les propredades de Dy (definido en (9,3)) son les mismes que les propredades del determinante que hemos estudiado en les secciones antociores. En particular,

destacamos

Prop 4.9.6.

Sea V e.v. de dim. n sobre lk y β una bax de V.

los vectores $\vec{V}_1, ..., \vec{V}_n$ son l. i se'y solo se' $D_{\beta}(\vec{V}_1, ..., \vec{V}_n) \neq 0$.

Como conclavio de este resultado y la formula (9.4)se obtiene que si $F \in A_n(V, |K|)$, $\{V_1, ..., V_n\}$ son $\ell, i \iff$ $F(V_1, ..., V_n) \neq 0$.

a) Calula Dp (V2, V2, V3) Sea e' = e' + e' , e' = -e, + e3 , e' = 2e' + e3 + e3

b) Prueba que β' es base de $1k^3$ y calcula $D_{\beta'}(\vec{V_2}, \vec{V_2}, \vec{V_3})$.

$$S/a$$
 D_f $(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \begin{vmatrix} 1 & -1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{vmatrix} = -13.$

Ej. 4.9.3. Sea \$ 212, P. B) une bax de lk 3 y

V_2 = 1, 12, 12, 12, 3, V_2 = -3P_1 + P_2 + 2P_3.

$$D_{\mathcal{B}}(\mathcal{P}_{1},\mathcal{P}_{n}) = \frac{D_{\mathcal{B}}(\mathcal{P}_{1},\mathcal{P}_{n})}{D_{\mathcal{B}}(e_{1}^{\prime},e_{n}^{\prime})}$$

pera todo V_{1} , $V_{n} \in V$, (Observa que $D_{\mathcal{B}}(\vec{R}_{1}^{\prime},..,\vec{R}_{n}^{\prime}) \neq 0$) por la prop 4.9.6).

$$F(\vec{v}_1, \vec{v}_n) \stackrel{(4.4)}{=} F(\vec{e}_1, \vec{v}_n) D_{\beta}(\vec{v}_1, \vec{v}_n)$$

$$F(\vec{V}_{1},..,\vec{V}_{n}) \stackrel{(q.4)}{=} F(\vec{e}'_{1},..,e'_{n}) \stackrel{(p)}{=} D_{p}(\vec{v}'_{1},..,\vec{v}'_{n})$$

$$\stackrel{(q.4)}{=} F(\vec{e}'_{1},..,\vec{e}'_{n}) D_{p}(\vec{e}'_{1},..,\vec{e}'_{n}) D_{p}(\vec{v}'_{1},..,\vec{v}'_{n})$$

Toman $F \in A_n(V)(k)$ tal que $F(\vec{e}_1, -, \vec{e}_n) \neq 0$ (vale unalque $F \neq 0$)

per obtener

NOTA: (b) del B' 4.9.3 es sencillo pg. Dp. (\$1, 2, 2) = 2.