Quantum mechanics

Law #3

- A qubit state (in general, a joint state) can be changed by any linear transformation that preserves lengths.
- Unitary transformation
 - ullet A linear transformation U is unitary if it preserves lengths.
 - Proposition: U is unitary if and only if $U^\dagger U = I$
 - Theorem: U is unitary if and only if $U^\dagger = U^{-1}$ if and only if $UU^\dagger = I$
 - ullet Corollary: Columns of U form an orthonormal basis. Same holds for rows.
 - Theorem: Unitary transformations preserve inner products

Examples of unitary transformations

- Unitary transformations map an orthonormal basis to another orthonormal basis
- Rotations $R_{ heta}$
- Hadamard H
- NOT gate

• Phase shift
$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

• Pauli-Z gate
$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\mathbf{SWAP} = \begin{bmatrix} 1 & & & \\ & & 1 & \\ & & 1 & \\ & & 1 \end{bmatrix}$$

Square root of a unitary transformation

• Fact: For every unitary transformation U, there exists a unitary transformation W such that $W^2=U$.

• Examples:
$$\sqrt{Z} = S$$
, $\sqrt{R_{\theta}} = R_{\theta/2}$, $\sqrt{\text{NOT}} = \begin{bmatrix} (1+i)/2 & (1-i)/2 \\ (1-i)/2 & (1+i)/2 \end{bmatrix}$

Quantum state tomography

General question

- Given an unknown state $|\phi\rangle$, you are promised that $|\phi\rangle \in \{|u\rangle, |v\rangle\}$
- You are asked to guess $|\phi\rangle$. For simplicity, suppose that $|u\rangle, |v\rangle \in \mathbb{R}^2$, and the angle between them is θ .
- Idea: Rotate and measure.
- Observation: may assume that the measurement is in standard basis (why?)
- Option 1: two-sided error algorithm
- Option 2: one-sided error algorithm
- Option 3: zero-sided error algorithm

Option 1

Measure in $|u'\rangle$, $|v'\rangle$

- Let $|u'\rangle, |v'\rangle$ be an orthonormal basis such that their angle bisector overlaps with the angle bisector of $|u\rangle, |v\rangle$
- Two-sided error algorithm
 - Measure $|\phi\rangle$ in the $|u'\rangle, |v'\rangle$ basis
 - Guess $|u\rangle$ when the readout is $|u'\rangle$, and guess $|v\rangle$ when the readout is $|v'\rangle$
- In either case, error probability is $|\langle u \mid v' \rangle|^2 = \cos^2(\pi/4 + \theta/2) = (1 \sin\theta)/2$

Option 2

Measure in $|u\rangle$, $|u^{\perp}\rangle$

- Let $|u\rangle$, $|u^{\perp}\rangle$ be an orthonormal basis that contains $|u\rangle$
- One-sided error algorithm
 - Measure in the $|u\rangle$, $|u^{\perp}\rangle$ basis
 - Guess $|u\rangle$ when the readout is $|u\rangle$, and guess $|v\rangle$ when the readout is $|u^{\perp}\rangle$
- Only in the case where $|\varphi\rangle = |v\rangle$, the error probability is $|\langle u \mid v\rangle|^2 = \cos^2\theta$

Option 3

Measure in $|u\rangle$, $|u^{\perp}\rangle$ or $|v\rangle$, $|v^{\perp}\rangle$ randomly

- Flip a coin to choose a basis from $|u\rangle$, $|u^{\perp}\rangle$ and $|v\rangle$, $|v^{\perp}\rangle$
- Measure in that basis
 - If the basis is $|u\rangle, |u^{\perp}\rangle$, guess $|v\rangle$ only when the readout is $|u^{\perp}\rangle$
 - If the basis is $|v\rangle, |v^{\perp}\rangle$, guess $|u\rangle$ only when the readout is $|v^{\perp}\rangle$
 - Otherwise, say "I don't know"
- Probability of correct guess is $(1/2)|\langle u | v^{\perp} \rangle|^2 = (1/2)\sin^2\theta$
- Not optimal when $\theta = \pi/2$

Multi-qubit systems

4-dimensional quantum systems

- Two photons
- Basic states: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$

Joint state:
$$\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle=\begin{pmatrix}\alpha_{00}\\\alpha_{01}\\\alpha_{10}\\\alpha_{11}\end{pmatrix}$$

Multi-qubit systems

Three questions

- Alice $|\psi\rangle$, Bob $|\phi\rangle$
- Question 1: What is the joint 4-dimensional state?
- Question 2: How will the joint state change if Bob applies unitary U to his qubit?
- Question 3: What is the readout if Alice measures her qubit?

What is the joint 4-dimensional state?

Question 1

• Alice:
$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$

• Bob:
$$| \varphi \rangle = \beta_0 | 0 \rangle + \beta_1 | 1 \rangle$$

Joint state
$$\begin{bmatrix} \alpha_0\beta_0\\ \alpha_0\beta_1\\ \alpha_1\beta_0\\ \alpha_1\beta_1 \end{bmatrix}$$

What happens if Alice (or Bob) measures her (or his) qubit?

In general...

Alice and Bob

$$a = \begin{bmatrix} \alpha_0 \\ \vdots \\ \alpha_{d-1} \end{bmatrix} \in \mathbb{C}^d, b = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_{e-1} \end{bmatrix} \in \mathbb{C}^e \quad \text{Tensor product of two matrices}$$

- Joint state is $a \otimes b = ?$
- Example:

 - $|0\rangle \otimes |+\rangle$

•
$$|+\rangle \otimes |0\rangle$$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

•
$$A \otimes B = ?$$

Properties of tensor products

Distributivity, associativity, conjugate transpose and multiplication

•
$$(A + B) \otimes C = A \otimes C + B \otimes C$$

•
$$A \otimes (B + C) = A \otimes B + A \otimes C$$

•
$$A \otimes (B \otimes C) = (A \otimes B) \otimes C =: A \otimes B \otimes C$$

•
$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$$

•
$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$