Pegasos: Primal Estimated sub-Gradient Solver for SVM

Zhimo Shen

University of California shenzhimo@hotmail.com

February 25, 2014

Zhimo Shen (UCSD) Pegasos February 25, 2014 1 / 21

Overview

- Introduction
- 2 Algorithm
- 3 Analysis
- 4 Result

Introduction

Definition (SVM)

Given a training set $B = \{(\mathbf{x_i}, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}$ and $y_i \in \{+1, -1\}$ we would like to find the minimizer of the problem $f(\mathbf{w}) = \min_{\mathbf{w}} \frac{\sigma}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{(\mathbf{x}, y) \in B} I(\mathbf{w}; (\mathbf{x}, y))$ where

 $I(\mathbf{w}; (\mathbf{x}, y)) = \max\{0, 1 - y \langle \mathbf{w}, \mathbf{x} \rangle\}$

Zhimo Shen (UCSD) Pegasos

3 / 21

Algorithm

Definition (optimization problem)

On iteration t of the algorithm, we first choose a set $A_t \subseteq B$ of size k. Then, we replace the objective with an approximate objective function $f(w; A_t) = \min_{\mathbf{w}} \frac{\sigma}{2} \|\mathbf{w}\|^2 + \frac{1}{k} \sum_{(\mathbf{x}, \mathbf{v}) \in A_t} I(\mathbf{w}; (\mathbf{x}, y))$

Definition (Gradient)

$$\nabla_t = \sigma \mathbf{w}_t - \frac{1}{|A_t|} \sum_{(\mathbf{x}, y) \in A_t^+} y \mathbf{x}$$

Pseudo code

Pseudo code

INPUT: B. σ . T. k INITIALIZE: Choose w_1 s.t. $||w_1|| \leq \frac{1}{\sqrt{s}}$ FOR t=1.2....TChoose $A_t \subseteq B$, where $|A_t| = k$ Set $A_t^+ = \{(x, y) \in A_t : y \langle w_t, x \rangle < 1\}$ Set $\eta_t = \frac{1}{2t}$ Set $w_{t+\frac{1}{2}} = w_t - \eta_t \nabla_t$ Set $w_{t+1} = \min\{1, \frac{1/\sqrt{\sigma}}{\left\|w_{t+\frac{1}{2}}\right\|}\}w_{t+\frac{1}{2}}$ $OUTPUT: w_{T+1}$

5 / 21

Basic definition

Definition (sub-gradient)

A vector λ is a sub-gradient of a function f at v if

$$\forall u \in S, f(u) - f(v) \ge \langle u - v, \lambda \rangle$$

The differential set of f at v, denoted $\partial f(v)$, is the set of all sub-gradients of f at v.

Definition (convex)

A function f is convex iff $\partial f(v)$ is non-empty for all $v \in S$. If f is convex and differentiable at v then $\partial f(v)$ consists of a single vector which amounts to $\nabla f(v)$

As a consequence we obtain that a differential function f is convex iff for all $v,u\in S$ we have that

$$\forall u \in S, f(u) - f(v) - \langle u - v, \nabla f(v) \rangle \geq 0$$

4 D > 4 A > 4 B > 4 B > B 904 A

Basic Definition

Definition (Bregman divergence)

$$B_f(u||v) = f(u) - f(v) - \langle u - v, \nabla f(v) \rangle$$

if
$$f(v) = \frac{1}{2} ||v||^2$$
, then $B_f(u||v) = \frac{1}{2} ||u - v||^2$

Definition (Fenchel conjugate)

$$f^*(\theta) = \sup_{w \in S} (\langle w, \theta \rangle - f(w))$$

if
$$f(w) = \frac{1}{2} ||w||^2$$
, then

$$f^*(\theta) = \max_{w \in S} \langle w, \theta \rangle - f(w) = \frac{1}{2} \|\theta\|^2 - \min_{w \in S} \frac{1}{2} \|w - \theta\|^2$$

$$\nabla f^*(\theta) = \operatorname{argmax}_{w \in S} \langle w, \theta \rangle - f(w) = \operatorname{argmin}_{w \in S} \|w - \theta\|^2$$

Definition (strong convex)

A closed and convex function f is σ -strongly convex over S with respect to a convex and differentiable function f if

$$\forall u, v \in S, \forall \lambda \in \partial g(v), g(u) - g(v) - \langle u - v, \lambda \rangle \ge \sigma B_f(u||v)$$

Zhimo Shen (UCSD) Pegasos February 25, 2014 7 / 21

Lemma (1)

Assume that f is a differentiable and convex function and let $g = \sigma f + h$ where h is also a convex function. Then g is σ -strongly convex w.r.t f.

proof: Lwt v,u∈ S and choose a vector $\lambda \in \partial g(v)$. Since $\partial g(v) = \partial h(v) + \sigma \partial f(v)$, we have that there exists $\lambda_1 \in \partial h(v)$ s.t. $\lambda = \lambda_1 + \sigma \bigtriangledown f(v)$. Thus $g(u) - g(v) - \langle u - v, \lambda \rangle = \sigma B_f(u||v) + h(u) - h(v) - \langle u - v, \lambda_1 \rangle \ge \sigma B_f(u||v)$

Zhimo Shen (UCSD) Pegasos

8 / 21

Lemma (2)

Let
$$f(w) = \frac{1}{2} ||w||^2$$
 over S , we can get that $\forall \theta \in \mathbb{R}^n, \forall u \in S, \langle u - v, \theta - \nabla f(v) \rangle \leq 0$ where $v = \nabla f^*(\theta)$

```
Proof: Let P(w) = \langle w, \theta \rangle - f(w)
By the definition of v, we can easily get that \forall u, P(u) - P(v) \leq 0
and P(u) - P(v) \geq \langle u - v, \nabla P(v) \rangle
so \langle u - v, \nabla P(v) \rangle \leq 0
which concludes our proof since \nabla P(v) = \theta - \nabla f(v)
```

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Lemma (3)

Let $f(w) = \frac{1}{2} \|w\|^2$. $\sigma > 0$ is a scalar. $g_1, g_2...g_T$ to be a sequence of σ -strongly convex functions w.r.t over S. $w_1, w_2, ...w_T$ to be a sequence of vector that $w_1 \in S$ and $w_{t+1} = \nabla f^*(w_t - \eta_t \lambda_t)$ where $\eta_t = 1/(\sigma t)$ and $\lambda_t \in \partial g_t(w_t)$. we can get $\forall u \in S, \langle w_t - u, \lambda_t \rangle \leq \frac{B_f(u||w_t) - B_f(u||w_{t+1})}{2} + \eta_t \frac{\|\lambda_t\|^2}{2}$

proof: donate
$$\Delta_t = B_f(u||w_t) - B_f(u||w_{t+1})$$
.
$$\Delta_t = \langle u - w_{t+1}, \nabla f(w_{t+1}) - \nabla f(w_t) \rangle + B_f(w_{t+1}||w_t)$$
$$= \langle u - w_{t+1}, w_{t+1} - w_t \rangle + \frac{1}{2} \left\| w_{t+1} - w_t \right\|^2$$
we denote by θ_t the term $w_t - \eta_t \lambda_t$, so $w_{t+1} = \nabla f^*(\theta_t)$

10 / 21

Zhimo Shen (UCSD) Pegasos February 25, 2014

by lemma 2 we can get:

$$0 \ge \langle u - w_{t+1}, \theta_t - \nabla f(w_{t+1}) \rangle$$

= $\langle u - w_{t+1}, w_t - \eta_t \lambda_t - w_{t+1} \rangle$

SO

$$\langle u - w_{t+1}, w_t - w_{t+1} \rangle \ge \eta_t \langle w_{t+1} - u, \lambda_t \rangle$$

by combining them we can get

$$\begin{split} & \Delta_{t} \geq \eta_{t} \left\langle w_{t+1} - u, \lambda_{t} \right\rangle + \frac{1}{2} \left\| w_{t+1} - w_{t} \right\|^{2} \\ & = \eta_{t} \left\langle w_{t} - u, \lambda_{t} \right\rangle - \left\langle w_{t+1} - w_{t}, \eta \lambda_{t} \right\rangle + \frac{1}{2} \left\| w_{t+1} - w_{t} \right\|^{2} \\ & = \eta_{t} \left\langle w_{t} - u, \lambda_{t} \right\rangle - \frac{1}{2} \left\| w_{t+1} - w_{t} \right\|^{2} - \frac{1}{2} \left\| \eta_{t} \lambda_{t} \right\|^{2} + \frac{1}{2} \left\| w_{t+1} - w_{t} \right\|^{2} \\ & = \eta_{t} \left\langle w_{t} - u, \lambda_{t} \right\rangle - \frac{\eta_{t}^{2}}{2} \left\| \lambda_{t} \right\|^{2} \end{split}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Lemma (4)

Let G be a scalar such that $\|\lambda_t\| \leq G$ for all t. Then the following bound holds for all $T \geq 1$ $\sum_{t=1}^{T} g_t(w_t) - \sum_{t=1}^{T} g_t(u) \leq \frac{G^2}{2\pi} (1 + \log(T))$

Proof:

$$\langle w_t - u, \lambda_t \rangle \geq g_t(w_t) - g_t(u) + \sigma B_f(u||w_t)$$

Combining with lemma 3 and using $\|\lambda_t\| \leq G$ we get that

$$g_t(w_t) - g_t(u) \le (\frac{1}{\eta_t} - \sigma)B_f(u||w_t) - \frac{1}{\eta_t}B_f(u||w_{t+1}) + \frac{\eta_t G^2}{2}$$

Summing over t we obtain

$$\sum_{t=1}^{T} (g_t(w_t) - g_t(u)) \leq (\frac{1}{\eta_1} - \sigma) B_f(u||w_1) - \frac{1}{\eta_T} B_f(u||w_{T+1}) + \frac{1}{\eta_T} B_f(u||w_T) + \frac{1}{\eta_T$$

$$\sum_{t=2}^{T} B_{f}(u||w_{t})(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} - \sigma) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}$$

Plugging the value of η_t we obtain first and third summands of right-hand side vanish and second summand is negative. We therefore get

$$\sum_{t=1}^{T} (g_t(w_t) - g_t(u)) \leq \frac{G^2}{2} \sum_{t=1}^{T} \eta_t \leq \frac{G^2}{2\sigma} (1 + \log(T))$$

Zhimo Shen (UCSD) Pegasos February 25, 2014 12 / 21

Lemma (5)

The norm of optimal solution of optimization problem of SVM is bounded by $1/\sqrt{\sigma}$

proof: Let us denote the optimal solution by w^* . The Lagrange dual problem of the optimization problem is $\max_{\alpha \in [0,1/m]^m} \sum_{i=1}^m \alpha_i - \frac{1}{2\sigma} \| \sum_{i=1}^m \alpha_i y_i x_i \|^2$ denote α^* be an optimal solution of the dual problem. we get $\frac{\sigma}{2} \| w^* \|^2 + \frac{1}{m} \sum_{(x,y) \in B} \max\{0,1-y \ \langle w^*,x \rangle\} = \sum_{i=1}^m \alpha_i^* - \frac{1}{2\sigma} \| \sum_{i=1}^m \alpha_i^* y_i x_i \|^2$ In addition,at the optimum we have that $w^* = \frac{1}{\sigma} \sum_{i=1}^m alpha_i^* y_i x_i$ Plugging this and rearranging terms $\sigma \| w^* \|^2 = \sum_{i=1}^m \alpha_i^* - \max\{0,1-y \ \langle w^*,x \rangle\} < 1$

Theorem

Theorem (1)

In the pegasos algorithm.Let $S = \{w : \|w\| \le 1/\sqrt{\sigma}\}$. Assume that for all $(x,y) \in S$ the norm of x is at most R. Denote $w^* = \operatorname{argmin}_{w \in S}$ and let $c = (\sqrt{\sigma} + R)^2$. Then for $T \ge 3$, $\frac{1}{T} \sum_{t=1}^T f(w_t; A_t) \le \frac{1}{T} \sum_{t=1}^T f(w^*; A_t) + \frac{c \ln(T)}{\sigma T}$

proof: We use shorthand
$$f_t(\mathbf{w}) = f(\mathbf{w}; A_t)$$

By lemma 5 we know that the $\min_{\mathbf{w}} \frac{\sigma}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{(\mathbf{x}, y) \in B} I(\mathbf{w}; (\mathbf{x}, y)) = \min_{\mathbf{w} \in S} \frac{\sigma}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{(\mathbf{x}, y) \in B} I(\mathbf{w}; (\mathbf{x}, y))$

Because of $\frac{\sigma}{2} \|w\|^2$ is a σ -strongly convex function w.r.t to $\frac{1}{2} \|w\|^2$ and the average hinge-loss function is convex. So by Lemma 1 we can get to know that

 f_t is a σ -strongly convex function w.r.t to $\frac{1}{2} \|w\|^2$ The projection step is to do the ∇f^*

4 D > 4 A > 4 B > 4 B > B = 900

Theorem

By the facts that $\|w_t\| \le 1/\sqrt{\sigma}$ and that $\|x\| \le R$ we can get that $\|\nabla_t\| \le \sigma \|w_t\| + \|x\| \le \sqrt{\sigma} + R$ In condition $T \ge 3$, $\frac{1+\ln(T)}{2} \le \ln(T)$ Now we can use the Lemma 4 and we can get our conclusion:

 $\frac{1}{T} \sum_{t=1}^{T} f(w_t; A_t) \leq \frac{1}{T} \sum_{t=1}^{T} f(w^*; A_t) + \frac{c \ln(T)}{\sigma T}$

Corollary

Corollary

Assume the conditions stated in Thm. 1 and that $A_t = B$ for all t.Let $\overline{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$. Then, $f(\overline{w}) \leq f(w^*) + \frac{c \ln(T)}{\sigma^T}$

Note that the convexity of f implies that $\int_{-\infty}^{\infty} dt dt$

$$f(\overline{w}) \leq \frac{1}{T} \sum_{t=1}^{T} f(w_t)$$

Based on the above corollary, the number of iterations required for achieving a solution of accuracy ϵ is $O(c/(\sigma\epsilon))$ and the complexity of single iteration is O(md)

Theorem

Theorem (2)

Assume that the conditions stated in Thm.1 hold for all t, A_t is chosen i.i.d from B. Let r be an integer picked uniformly at random from 1 to T. Then, $\mathbb{E}_{A_1,A_2,...,A_T}\mathbb{E}_r[f(w_r)] \leq f(w^*) + \frac{c \ln(T)}{\sigma T}$

proof: We denote by A_i^J the sequence of sets $(A_i, ..., A_j)$. From Thm.1,we obtain

$$\mathbb{E}_{A_{i}^{T}}[\frac{1}{T}\sum_{t=1}^{T}f(w_{t};A_{t})] \leq \mathbb{E}_{A_{i}^{T}}[\frac{1}{T}\sum_{t=1}^{T}f(w^{*};A_{t})] + \frac{c\ln(T)}{\sigma T}$$

and w^* does not depend on the choice of A_1^T , we have,

$$\mathbb{E}_{A_{t}^{T}}[\frac{1}{T}\sum_{t=1}^{T}f(w^{*};A_{t})]=\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}_{A_{t}}[f(w^{*};A_{t})]=f(w^{*})$$

Recall that the $\mathbb{E}[f(X)] = \mathbb{E}_Y \mathbb{E}_X[f(X)|Y]$ and wt only depends on

$$A_1^{t-1}$$
, we get

$$\mathbb{E}_{A_i^T} \left[\frac{1}{T} \sum_{t=1}^T f(w_t; A_t) \right] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{A_i^t} [f(w_t; A_t)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{A_i^{t-1}} [\mathbb{E}_{A_i^t} [f(w_t; A_t) | A_1^{t-1}]] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{A_i^{t-1}} [f(w_t)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{A_i^$$

$$\mathbb{E}_{A^{t-1}}[\frac{1}{T}\sum_{t=1}^{T}f(w_t)] = \mathbb{E}_{A^T}\mathbb{E}_r[f(w_r)]$$

4 D > 4 B > 4 B > 4 B > B 9 Q C

Zhimo Shen (UCSD) Pegasos February 25, 2014 17 / 21

Theorem

Theorem (3)

Assume that the conditions stated in Thm. 2 hold. Let $\delta \in (0,1)$, Then, with probability of at least $1-\delta$ we have that $f(w_r) \leq f(w^*) + \frac{c \ln(T)}{\delta \sigma T}$

proof: Let Z be the random variable $f(w_r) - f(w^*)$, from the definition we can know Z is non-negative. Thus, from Markov inequality

 $\mathbb{P}[Z > a] \leq \mathbb{E}[Z]/a$. Setting $\mathbb{E}[Z]/a = \delta$ and using Thm.2 we obtain that $a \leq \frac{c \ln(T)}{\delta \sigma T}$

From Thm. 3 we obtain that to achieve accuracy ϵ with confidence $1-\delta$ we need $O(\frac{1}{\sigma\delta\epsilon})$ iterations

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Result

Figure: fix T

Result

Figure: fix kT

The End