Test di Calcolo Numerico

Ingegneria Informatica 26/07/2014

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 26/07/2014

1) Siano $x \in [2,3], y \in [1,2]$ e si consideri la funzione

$$f(x,y) = x y$$
.

Determinare il massimo errore assoluto che si deve commettere nella introduzione dei dati e con quale massimo errore assoluto si deve eseguire l'operazione per avere un massimo errore assoluto finale $|\delta_f| \leq 10^{-3}$.

2) L'equazione

$$\log(x) - \frac{1}{x} = 0$$

ha una unica soluzione $\alpha \in [1.5, 2]$. Dire se, scegliendo opportunamente il valore iniziale x_0 , il metodo iterativo

$$x_{n+1} = e^{1/x_n}$$
, $n = 0, 1, 2, \dots$

può risultare convergente con limite α .

3) Gli autovalori di una matrice $A \in \mathbb{C}^{3\times 3}$ sono

$$\lambda_1 = 2i$$
, $\lambda_2 = 1$, $\lambda_3 = 1 + i$.

Determinare i valori $\alpha \in \mathbb{R}$ per i quali la matrice $B = \alpha A$ risulta convergente.

4) È data la matrice

$$A = \begin{pmatrix} 1 + \alpha & \alpha & 0 \\ 1 & 5 & 2 \\ 0 & \beta & \beta \end{pmatrix} , \quad \alpha, \beta \in \mathbb{R} .$$

Determinare i valori reali dei parametri α e β per i quali, rispettivamente,

- a) A risulta simmetrica,
- b) A risulta a predominanza diagonale forte,
- c) A risulta a predominanza diagonale debole,
- 5) Calcolare i pesi a_0 e a_1 in modo tale che la formula di quadratura

$$\int_{1}^{2} x^{4} f(x) dx \simeq a_{0} f(1) + a_{1} f(2)$$

abbia grado di precisione (algebrico) massimo.

SOLUZIONE

1) Il punto $P_0 = (x, y)$ appartiene all'insieme di indeterminazione $D = [2, 3] \times [1, 2]$.

Risultano $A_x = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial x} \right| = 2$ e $A_y = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial y} \right| = 3$. Per ottenere la precisione richiesta basta quindi che risulti, per esempio,

$$|\delta_a| \le \frac{1}{2} 10^{-3}$$
, $A_x |\delta_x| \le \frac{1}{4} 10^{-3}$, $A_y |\delta_y| \le \frac{1}{4} 10^{-3}$.

Ne segue che basta arrotondare la divisione alla terza cifra decimale introducendo l'approssimazione di x com massimo errore assoluto minore di 10^{-4} (troncare alla quarta cifra decimale) e l'approssimazione di y con massimo errore assoluto minore di $\frac{1}{2}10^{-4}$ (arrotondare alla quarta cifra decimale).

- 2) Il metodo iterativo proposto ha la funzione di iterazione data da $\phi(x)=e^{1/x}$ con derivata $\phi'(x)=-\frac{1}{x^2}e^{1/x}$. Sull'intervallo [1.5, 2] si ha $|\phi'(x)|<\frac{1}{4}e^{2/3}<1$ per cui il metodo, scegliendo opportunamente il valore iniziale, risulta convergente.
- 3) Deve risultare $|\alpha \lambda_i| < 1$, i = 1, 2, 3. Ne segue che la matrice B risulta convergente se $|\alpha| < \frac{1}{2}$.
- 4) La matrice A è simmetrica se $\alpha=1$ e $\beta=2$. Osservando la terza riga si deduce che non esistono valori dei parametri per i quali A sia a predominanza diagonale forte. La predominanza diagonale debole si ha per ogni valore reale di β con la condizione $|1+\alpha| \geq |\alpha|$ che risulta verificata per $\alpha \geq -1/2$.
- 5) Imponendo che la formula data sia esatta per f(x) = 1 e f(x) = x si ha $a_0 = \frac{57}{30}$ e $a_1 = \frac{129}{30}$. Risultando $E_1(x^2) \neq 0$, il grado di precisione è m = 1.