CSE 5311 Homework Assignment 2 (Fall 2019)

Due date: 9/11 (Wednesday) (type, print, and hand-in in class)

(1) [10 points] Exercise 2.2-1 on Page 29.

Express the function $n^3/1000 - 100n^2 - 100n + 3$ in terms of Θ -notation.

Answer: $\Theta(n^3)$

(2) [10 points] Exercise 3.1-1 on Page 52.

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Answer:

First, let's clarify what the function $\max(f(n), g(n))$ is. Let's define the function $h(n) = \max(f(n), g(n))$. Then

$$h(n) = \begin{cases} f(n), & f(n) \ge g(n) \\ g(n), & f(n) < g(n) \end{cases}$$

Since f(n) and g(n) are asymptotically nonnegative, there exists n_0 such that $f(n) \ge 0$ and $g(n) \ge 0$ for all $n \ge n_0$. Thus for $n \ge n_0$, $f(n) + g(n) \ge f(n) \ge 0$ and $f(n) + g(n) \ge g(n) \ge 0$. Since for any particular n, h(n) is either f(n) or g(n), we have $f(n) + g(n) \ge f(n) \ge 0$, which shows that $h(n) = \max(f(n), g(n))$ $\le c_2(f(n) + g(n))$ for all $n \ge n_0$ (with $c_2 = 1$ in the definition of Θ). Similarly, since for any particular n, h(n) is the larger of f(n) and g(n), we have for all $n \ge n_0$, $0 \le f(n) \le h(n)$ and $0 \le g(n) \le h(n)$. Adding these two inequalities yields $0 \le f(n) + g(n) \le 2h(n)$, or equivalently $0 \le (f(n) + g(n))/2 \le h(n)$, which shows that $h(n) = \max(f(n), g(n)) \ge c_1(f(n) + g(n))$ for all $n \ge n_0$ (with $c_2 = 1/2$ in the definition of Θ).

(3) [10 points] Exercise 3.1-2 on Page 52.

Show that for any real constants a and b, where b > 0, $(n + a)^b = \Theta(n^b)$.

Answer:

To show that $(n+a)^b = \Theta(n^b)$, we want to find constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$ for all $n \ge n_0$.

Note that

 $n + a \le n + |a| \le 2n$ when $|a| \le n$,

and

$$n + a \ge n - |a| \ge \frac{1}{2}$$
n when $|a| \le \frac{1}{2}n$.

Thus, when $n \ge 2|a|$, $0 \le \frac{1}{2}n \le n + a \le 2n$.

Since b > 0, the inequality still holds when all parts are raised to the power b:

$$0 \le (\frac{1}{2}n)^b \le (n+a)^b \le (2n)^b ,$$

Thus, $c_1 = (1/2)^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the definition.

(4) [10 points] Problem 3.4 (b) (h) on Page 62.

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

b.
$$f(n) + g(n) = \Theta(\min(f(n), g(n)))$$
.

$$h. f(n) + o(f(n)) = \Theta(f(n)).$$

Answer:

b. False. Counterexample: $n + n^2 \neq \Theta(\min(n, n^2)) = \Theta(n)$.

h. True. Let
$$g(n) = o(f(n))$$
. Then $\exists c, n_0 : \forall n \ge n_0, 0 \le g(n) \le cf(n)$.

We need to prove that

$$\exists c_1, c_2, n_0 : \forall n \ge n_0, 0 \le c_1 f(n) \le f(n) + g(n) \le c_2 f(n).$$

Thus, if we pick $c_1 = 1$ and $c_2 = c + 1$, it holds.

(5) [10 points] Exercise 4.4-2 on Page 92.

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.

Answer:

The height of the tree is $\lg n$, and there are $1^{\lg n} = 1$ leaf.

$$T(n) = \sum_{i=0}^{lgn-1} (\frac{1}{4})^i n^2 = \Theta(n^2).$$

Guess $T(n) = \Theta(n^2)$.

Assume that $T(k) \le ck^2$.

Then
$$T(n) \le c(n/2)^2 + n^2 = (c/4 + 1)n^2 \le cn^2$$
, when $c \ge \frac{4}{3}$.

(6) [10 points] Exercise 4.4-4 on Page 93.

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

Answer:

Depth is n and leaf number is 2ⁿ⁻¹

$$T(n) = 1 + 2 + \dots + 2^{n-1} = 2^n - 1 = \Theta(2^n)$$

Assume that $T(k) \le c2^k$ for k < n

Then
$$T(n) = 2T(n-1) + 1 \le 2c2^{n-1} + 1 = c2^n + 1 = 0(2^n)$$

(7) [10 points] Exercise 4.5-4 on Page 97.

Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2 \lg n$? Why or why not? Give an asymptotic upper bound for this recurrence.

Answer:

In the given recurrence, a=4 and b=2. Hence, $n^{\log}b^a=n^{\log}2^4=n^2$ and $f(n)=\Theta(n^2\lg n)$. Based on Case 2 of master method, $f(n)=\Theta(n^2\lg n)$ for some constant $k=1\geq 0$. f(n) and n^2 grow at similar rates.

So we **can** use master method to calculate time complexity of T(n):

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n) = \Theta(n^2 \lg^2 n)$$

Assume that $T(n) \le c(n^2(\lg n)^2)$, for k < n

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 lgn \le 4\left(c\left(\frac{n}{2}\right)^2 \left(\lg\left(\frac{n}{2}\right)\right)^2\right) + n^2 lgn$$

$$\leq \operatorname{cn}^2(\lg n - 1)^2 + n^2 \lg n$$

$$\leq \operatorname{cn}^2(lgn)^2 + n^2(c + (1 - 2c)lgn)$$

Just let c = 1, whenever n is large enough, $T(n) \le cn^2(lgn)^2$

(8) [30 points] Problem 4.1 on Page 107.

4-1 Recurrence examples

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers.

a.
$$T(n) = 2T(n/2) + n^4$$
.

b.
$$T(n) = T(7n/10) + n$$
.

c.
$$T(n) = 16T(n/4) + n^2$$
.

d.
$$T(n) = 7T(n/3) + n^2$$
.

e.
$$T(n) = 7T(n/2) + n^2$$
.

f.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

g.
$$T(n) = T(n-2) + n^2$$
.

Answer:

a. $T(n) = 2T(n/2) + n^4$: $T(n) = \Theta(n^4)$: in terms of the Master Theorem, a = 2, b = 2, so $\log_b a = \log_2 2 = 1$. $f(n) = n^4 = n^{\log_b a + 3}$; this is looking like case 3. We need to check $af\left(\frac{n}{b}\right) \leq cf(n)$ for some c < 1 and n large enough. In fact, $af\left(\frac{n}{b}\right) = 2\left(\frac{n}{2}\right)^4 = \frac{1}{8}n^4 = \frac{1}{8}f(n)$, and case 3 applies. Conclude $T(n) = \Theta(n^4)$.

b. $T(n)=T(7^n/10)+n$: $T(n)=\Theta(n)$: in terms of the Master Theorem, $a=1,\ b=\frac{10}{7},\ \text{so}\ \log_b a=\log_{\frac{10}{7}}1=0$. $f(n)=n=n^{\log_b a+1}$; this is looking like case 3. We need to check $af\left(\frac{n}{b}\right)\leq cf(n)$ for some c<1 and n large enough. In fact, $af\left(\frac{n}{b}\right)=1\left(\frac{7n}{10}\right)^1=\frac{7}{10}n=\frac{7}{10}f(n)$, and case 3 applies.

Conclude $T(n) = \Theta(n)$.

c. $T(n) = 16T(n/4) + n^2$: $T(n) = \Theta(n^2 \lg n)$: in terms of the Master Theorem, a = 16, b = 4, so $\log_b a = \log_4 16 = 2$. $f(n) = n^2 = n^{\log_b a}$; this is case 2.

Conclude $T(n) = \Theta(n^2 \lg n)$.

d. as $log_37 < 2$, based on master method, as case 3 applies, $T(n) = \Theta(n^2)$

e. $T(n) = 7T(n/2) + n^2$: $T(n) = \Theta\left(n^{\log_2 7}\right)$: in terms of the Master Theorem, $a = 7, \ b = 2$, so $2 < \log_b a = \log_2 7 < 3$. $f(n) = n^2 = n^{\log_b a - \varepsilon}$; this is case 1. Conclude $T(n) = \Theta\left(n^{\log_2 7}\right)$.

f. $T(n) = 2T(n/4) + \sqrt{n}$: $T(n) = \Theta(\sqrt{n} \lg n)$: in terms of the Master Theorem, a = 2, b = 4, so $\log_b a = \log_4 2 = \frac{1}{2}$. $f(n) = n^{\frac{1}{2}} = n^{\log_b a}$; this is case 2.

Conclude $T(n) = \Theta(\sqrt{n} \lg n)$.

g. Recursion-tree method. $T(n) = T(n-2) + n^2 = \sum_{i=0}^{n/2} (n-2i)^2 = \sum_{i=0}^{n/2} (n^2 - 4ni + n^2)$

$$4i^{2}) = n^{2} \sum_{i=0}^{n/2} 1 - 4n \sum_{i=0}^{n/2} i + 4 \sum_{i=0}^{n/2} i^{2} = \frac{n^{3}}{2} - 4n \left(\frac{n}{4} * \frac{n+2}{2}\right) + 4 * \frac{\frac{n}{2} * \left(\frac{n}{2} + 1\right) * (n+1)}{6} = \Theta(n^{3}).$$