

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 4-Nitrophenol-2,4,6-triamino-1,3,5-triazine-water (2/1/1)

N. Kanagathara,<sup>a</sup> G. Chakkaravarthi,<sup>b</sup>\*
M. K. Marchewka,<sup>c</sup> S. Gunasekaran<sup>d</sup> and G. Anbalagan<sup>e</sup>\*

<sup>a</sup>Department of Physics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Enginering College, Avadi, Chennai 600 062, India, <sup>b</sup>Department of Physics, CPCL Polytechnic College, Chennai 600 068, India, <sup>c</sup>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, 2, PO Box 937, Poland, <sup>d</sup>PG and Research Department of Physics, Pachiayappa's College, Chennai 600 030, India, and <sup>e</sup>Department of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: chakkaravarthi\_2005@yahoo.com, anbu24663@yahoo.co.in

Received 17 June 2012; accepted 26 June 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma(C-C) = 0.002$  Å; R factor = 0.043; wR factor = 0.122; data-to-parameter ratio = 18.3.

In the title adduct,  $2C_6H_5NO_3\cdot C_3H_6N_6\cdot H_2O$ , the melamine and the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0294 (10), 0.0706 (12) and 0.0742 (12) Å, respectively. In the crystal,  $N-H\cdots N$ ,  $O-H\cdots N$ ,  $N-H\cdots O$  and  $O-H\cdots O$  hydrogen bonds link the components into a three-dimensional network. In addition, weak  $\pi-\pi$  interactions [centroid–centroid distances = 3.728 (3) and 3.749 (3) Å] are observed.

#### Related literature

For applications of melamine, see: Cook *et al.* (2005); Rima *et al.* (2008). For a related structure, see: Cousson *et al.* (2005).

#### **Experimental**

Crystal data

$$2C_6H_5NO_3\cdot C_3H_6N_6\cdot H_2O$$
  $a=7.123~(5)~\text{Å}$   $M_r=422.37$   $b=10.577~(4)~\text{Å}$  Triclinic,  $P\overline{1}$   $c=13.680~(5)~\text{Å}$ 

 $\begin{array}{lll} \alpha = 68.256~(5)^{\circ} & \text{Mo } K\alpha ~ \text{radiation} \\ \beta = 88.772~(6)^{\circ} & \mu = 0.12 ~ \text{mm}^{-1} \\ \gamma = 76.604~(5)^{\circ} & T = 295 ~ \text{K} \\ V = 928.9~(8) ~ \text{Å}^3 & 0.30 \times 0.20 \times 0.20 ~ \text{mm} \\ Z = 2 & \end{array}$ 

Data collection

Bruker Kappa APEXII 21610 measured reflections diffractometer 5696 independent reflections 4164 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.030$   $R_{\rm int} = 0.030$ 

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.043 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.122 & \text{independent and constrained} \\ S=1.03 & \text{refinement} \\ 5696 \text{ reflections} & \Delta\rho_{\max}=0.20 \text{ e Å}^{-3} \\ 311 \text{ parameters} & \Delta\rho_{\min}=-0.25 \text{ e Å}^{-3} \end{array}$ 

Table 1
Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$           | D-H        | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|-------------------------|------------|-------------------------|-------------------------|------------------------|
| O1-H1···O7 <sup>i</sup> | 0.90 (2)   | 1.76 (2)                | 2.6600 (18)             | 172 (2)                |
| O4-H4···N5              | 0.91(2)    | 1.87 (2)                | 2.7217 (16)             | 157 (2)                |
| $O7-H7A\cdots N4$       | 0.88 (2)   | 1.94(2)                 | 2.8020 (18)             | 166 (2)                |
| $O7-H7B\cdots O2^{iv}$  | 0.84(2)    | 2.22 (2)                | 3.0424 (18)             | 164 (2)                |
| $N6-H6A\cdots O6^{ii}$  | 0.860 (18) | 2.363 (19)              | 3.0276 (16)             | 134 (2)                |
| $N6-H6B\cdots N3^{iii}$ | 0.845 (18) | 2.235 (19)              | 3.080(2)                | 178 (2)                |
| $N7-H7C\cdots O6^{v}$   | 0.867 (17) | 2.250 (17)              | 3.056 (2)               | 155 (2)                |
| $N7-H7D\cdots O1^{v}$   | 0.894 (19) | 2.049 (19)              | 2.8996 (17)             | 159 (2)                |
| N8−H8A···O3             | 0.830 (17) | 2.367 (18)              | 3.158 (2)               | 159 (2)                |
| $N8-H8B\cdots O7^{iv}$  | 0.867 (19) | 2.517 (18)              | 3.1890 (19)             | 135 (2)                |

Symmetry codes: (i) -x, -y, -z +1; (ii) -x, -y, -z; (iii) -x +1, -y +1, -z; (iv) -x, -y +1, -z +1; (v) x +1, y +1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5493).

#### References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576–1583.

Cousson, A., Nicolaï, B. & Fillaux, F. (2005). Acta Cryst. E61, o222–o224.
Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689–693.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, o2286 [doi:10.1107/S1600536812029066]

### 4-Nitrophenol-2,4,6-triamino-1,3,5-triazine-water (2/1/1)

### N. Kanagathara, G. Chakkaravarthi, M. K. Marchewka, S. Gunasekaran and G. Anbalagan

#### Comment

Melamines are used in the production of melamine foam in polymeric cleaning (Rima *et al.*, 2008) and as a chemical intermediate in plastics manufacturing (Cook *et al.*, 2005). Here, we report the crystal structure of a the title compound. The asymmetric unit contains one melamine molecule, two independent nitrophenol molecules and one solvent water molecule.

The geometric parameters of the melamine molecule (I) (Fig. 1) are comparable with those determined by Cousson *et al.* (2005). The melamine and nitrophenol molecules are essentially planar, with a maximum deviation of -0.0294 (10) Å for atom N4 in the least square plane (N6/C13/C14/N7/N4/C15/N8/N5), -0.0706 (12) Å for atom O2 in the least square plane (O1/C1-C6/N1/O2/O3) and 0.0742 (12) Å for atom O5 in the least square plane (O4/C10/C11/C12/C7/C8/C9/N2/O5/O6).

In the crystal, O—H···N, N—H···O and O—H···O hydrogen bonds (Table 1 & Fig. 2) and  $\pi$ – $\pi$  interactions [Cg1···Cg1 (1-x,-y,1-z) distance of 3.749 (3)Å; Cg1···Cg2 (x,-1+y,z) distance of 3.728 (3)Å and Cg2···Cg1 (x,1+y,z) distance of 3.728 (3)Å; Cg1 and Cg2 are the centroids of the rings (C1-C6) and (C7-C12), respectively] connect the components of the structure into a three-dimensional network.

#### **Experimental**

Melamine (1.2612g, 0.01 mmol) was dissolved in 200 ml of hot solution of distilled water. p-Nitrophenol (1.3911g, 0.01 mmol) was dissolved in 100 ml of distilled water separately. To the hot solution of melamine, p-nitrophenol solution was added gently, and stirred well for nearly five hours to get the homogenous solution and the mixture is allowed to evaporate. Within a few days tiny, transparent, yellowish crystals were formed. Recrystallization was carried out by using distilled water to get the pure crystal suitable for X-ray diffraction.

#### Refinement

The H atoms for aromatic C-H groups were positioned geometrically with C-H = 0.93 %A and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$  and all other H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.830 (17)-0.894 (19)Å and O—H = 0.84 (2)–0.91 (2)Å].

#### **Computing details**

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



**Figure 1**The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.



Figure 2

The packing of (I), viewed along the a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

### 4-Nitrophenol-2,4,6-triamino-1,3,5-triazine-water (2/1/1)

Crystal data

 $2C_6H_5NO_3\cdot C_3H_6N_6\cdot H_2O$  Hall symbol: -P 1  $M_r = 422.37$  a = 7.123 (5) Å Triclinic,  $P\overline{1}$  b = 10.577 (4) Å

| c = 13.680 (5)  Å<br>$\alpha = 68.256 (5)^{\circ}$<br>$\beta = 88.772 (6)^{\circ}$<br>$\gamma = 76.604 (5)^{\circ}$<br>$V = 928.9 (8) \text{ Å}^{3}$<br>Z = 2<br>F(000) = 440<br>$D_x = 1.510 \text{ Mg m}^{-3}$                    | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 21610 reflections $\theta = 2.1-30.7^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ $T = 295 \text{ K}$ Block, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |
| Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega$ and $\varphi$ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.964$ , $T_{\max} = 0.976$ | 21610 measured reflections<br>5696 independent reflections<br>4164 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.030$<br>$\theta_{\text{max}} = 30.7^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$<br>$h = -8 \rightarrow 10$<br>$k = -15 \rightarrow 15$<br>$l = -17 \rightarrow 19$ |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.043$   $wR(F^2) = 0.122$  S = 1.03 5696 reflections 311 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0598P)^2 + 0.1276P]$  where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\rm max} < 0.001$   $\Delta\rho_{\rm max} = 0.20$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\min} = -0.25 \text{ e Å}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|    | x             | у             | z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|---------------|---------------|--------------|-----------------------------|--|
| C1 | -0.33225 (16) | 0.07164 (12)  | 0.40065 (10) | 0.0341 (2)                  |  |
| C2 | -0.24544 (16) | -0.05332 (12) | 0.48003 (9)  | 0.0348 (2)                  |  |
| H2 | -0.1702       | -0.0549       | 0.5354       | 0.042*                      |  |
| C3 | -0.27246(18)  | -0.17603 (13) | 0.47577 (9)  | 0.0370(3)                   |  |
| Н3 | -0.2136       | -0.2617       | 0.5281       | 0.044*                      |  |
| C4 | -0.38715 (18) | -0.17217(13)  | 0.39367 (10) | 0.0378 (3)                  |  |
| C5 | -0.47281(18)  | -0.04548(15)  | 0.31426 (10) | 0.0423 (3)                  |  |
| H5 | -0.5486       | -0.0437       | 0.2590       | 0.051*                      |  |
| C6 | -0.44573(17)  | 0.07743 (14)  | 0.31718 (10) | 0.0406 (3)                  |  |
| Н6 | -0.5024       | 0.1630        | 0.2642       | 0.049*                      |  |
| C7 | -0.16167(17)  | -0.02771 (12) | 0.09893 (9)  | 0.0345 (2)                  |  |
| C8 | -0.20456(18)  | 0.11701 (13)  | 0.05818 (10) | 0.0394(3)                   |  |

| H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H9         -0.1618         0.2824         0.0860         0.046*           C10         -0.02072 (16)         0.10786 (12)         0.20608 (9)         0.0331 (2)           C11         0.01838 (17)         -0.03791 (12)         0.24690 (10)         0.0357 (2)           H11         0.0921         -0.0892         0.3105         0.043*           C12         -0.05206 (17)         -0.10608 (12)         0.19311 (10)         0.0361 (3)           H12         -0.0263         -0.2035         0.2197         0.043*           C13         0.26472 (17)         0.45692 (12)         0.11080 (9)         0.0339 (2)           C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0305 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.55802 (10)         0.1487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)                      |
| C10         -0.02072 (16)         0.10786 (12)         0.20608 (9)         0.0331 (2)           C11         0.01838 (17)         -0.03791 (12)         0.24690 (10)         0.0357 (2)           H11         0.0921         -0.0892         0.3105         0.043*           C12         -0.05206 (17)         -0.10608 (12)         0.19311 (10)         0.0361 (3)           H12         -0.0263         -0.2035         0.2197         0.043*           C13         0.26472 (17)         0.45692 (12)         0.11080 (9)         0.0339 (2)           C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0325 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42555 (10)         0.17511 (8)         0.0359 (2)           N6                      |
| C11         0.01838 (17)         -0.03791 (12)         0.24690 (10)         0.0357 (2)           H11         0.0921         -0.0892         0.3105         0.043*           C12         -0.05206 (17)         -0.10608 (12)         0.19311 (10)         0.0361 (3)           H12         -0.0263         -0.2035         0.2197         0.043*           C13         0.26472 (17)         0.45692 (12)         0.11080 (9)         0.0339 (2)           C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0305 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42855 (10)         0.17511 (8)         0.0359 (2)           N6         0.2906 (2)         0.40378 (15)         0.03568 (10)         0.0538 (3)           N7 <td< td=""></td<>       |
| H11 0.0921 -0.0892 0.3105 0.043* C12 -0.05206 (17) -0.10608 (12) 0.19311 (10) 0.0361 (3) H12 -0.0263 -0.2035 0.2197 0.043* C13 0.26472 (17) 0.45692 (12) 0.11080 (9) 0.0339 (2) C14 0.36186 (16) 0.58004 (11) 0.19500 (9) 0.0305 (2) C15 0.10688 (16) 0.48525 (11) 0.24878 (9) 0.0322 (2) N1 -0.30636 (15) 0.20134 (11) 0.40532 (10) 0.0443 (3) N2 -0.22950 (16) -0.10017 (13) 0.04030 (9) 0.0447 (3) N3 0.38541 (14) 0.53546 (10) 0.11487 (7) 0.0338 (2) N4 0.22586 (14) 0.55802 (10) 0.26462 (7) 0.0329 (2) N5 0.12224 (14) 0.42855 (10) 0.17511 (8) 0.0359 (2) N6 0.2906 (2) 0.40378 (15) 0.03568 (10) 0.0538 (3) N7 0.48129 (18) 0.65529 (12) 0.20504 (10) 0.0444 (3) N8 -0.03642 (18) 0.46571 (13) 0.31286 (10) 0.0443 (3) N8 -0.03642 (18) 0.46571 (13) 0.31286 (10) 0.0465 (3) O1 -0.42179 (18) -0.28988 (12) 0.38794 (9) 0.0562 (3) O2 -0.21683 (16) 0.19698 (11) 0.48256 (9) 0.0566 (3) O3 -0.37293 (19) 0.31089 (11) 0.33173 (12) 0.0782 (4) O4 0.05318 (15) 0.16839 (10) 0.26239 (8) 0.0464 (2) O5 -0.31476 (16) -0.03215 (14) -0.04647 (9) 0.0633 (3) O6 -0.19394 (18) -0.22987 (12) 0.08023 (9) 0.0652 (3) O7 0.23235 (17) 0.53850 (11) 0.47450 (9) 0.0526 (3) H1 -0.357 (3) -0.370 (3) 0.4389 (18) 0.093 (7)*                                              |
| C12         -0.05206 (17)         -0.10608 (12)         0.19311 (10)         0.0361 (3)           H12         -0.0263         -0.2035         0.2197         0.043*           C13         0.26472 (17)         0.45692 (12)         0.11080 (9)         0.0339 (2)           C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0305 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42855 (10)         0.17511 (8)         0.0359 (2)           N6         0.2906 (2)         0.40378 (15)         0.03568 (10)         0.0538 (3)           N7         0.48129 (18)         0.65529 (12)         0.20504 (10)         0.0444 (3)           N8         -0.03642 (18)         0.46571 (13)         0.31286 (10)         0.0465 (3)                   |
| H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C13         0.26472 (17)         0.45692 (12)         0.11080 (9)         0.0339 (2)           C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0305 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42855 (10)         0.17511 (8)         0.0359 (2)           N6         0.2906 (2)         0.40378 (15)         0.03568 (10)         0.0538 (3)           N7         0.48129 (18)         0.65529 (12)         0.20504 (10)         0.0444 (3)           N8         -0.03642 (18)         0.46571 (13)         0.31286 (10)         0.0465 (3)           O1         -0.42179 (18)         -0.28988 (12)         0.38794 (9)         0.0562 (3)           O2         -0.21683 (16)         0.19698 (11)         0.48256 (9)         0.0566 (3)  |
| C14         0.36186 (16)         0.58004 (11)         0.19500 (9)         0.0305 (2)           C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42855 (10)         0.17511 (8)         0.0359 (2)           N6         0.2906 (2)         0.40378 (15)         0.03568 (10)         0.0538 (3)           N7         0.48129 (18)         0.65529 (12)         0.20504 (10)         0.0444 (3)           N8         -0.03642 (18)         0.46571 (13)         0.31286 (10)         0.0465 (3)           O1         -0.42179 (18)         -0.28988 (12)         0.38794 (9)         0.0562 (3)           O2         -0.21683 (16)         0.19698 (11)         0.48256 (9)         0.0566 (3)           O3         -0.37293 (19)         0.31089 (11)         0.33173 (12)         0.0782 (4) |
| C15         0.10688 (16)         0.48525 (11)         0.24878 (9)         0.0322 (2)           N1         -0.30636 (15)         0.20134 (11)         0.40532 (10)         0.0443 (3)           N2         -0.22950 (16)         -0.10017 (13)         0.04030 (9)         0.0447 (3)           N3         0.38541 (14)         0.53546 (10)         0.11487 (7)         0.0338 (2)           N4         0.22586 (14)         0.55802 (10)         0.26462 (7)         0.0329 (2)           N5         0.12224 (14)         0.42855 (10)         0.17511 (8)         0.0359 (2)           N6         0.2906 (2)         0.40378 (15)         0.03568 (10)         0.0538 (3)           N7         0.48129 (18)         0.65529 (12)         0.20504 (10)         0.0444 (3)           N8         -0.03642 (18)         0.46571 (13)         0.31286 (10)         0.0465 (3)           O1         -0.42179 (18)         -0.28988 (12)         0.38794 (9)         0.0562 (3)           O2         -0.21683 (16)         0.19698 (11)         0.48256 (9)         0.0566 (3)           O3         -0.37293 (19)         0.31089 (11)         0.33173 (12)         0.0782 (4)           O4         0.05318 (15)         0.16839 (10)         0.26239 (8)         0.0464 (2)  |
| N1       -0.30636 (15)       0.20134 (11)       0.40532 (10)       0.0443 (3)         N2       -0.22950 (16)       -0.10017 (13)       0.04030 (9)       0.0447 (3)         N3       0.38541 (14)       0.53546 (10)       0.11487 (7)       0.0338 (2)         N4       0.22586 (14)       0.55802 (10)       0.26462 (7)       0.0329 (2)         N5       0.12224 (14)       0.42855 (10)       0.17511 (8)       0.0359 (2)         N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)                                                           |
| N2       -0.22950 (16)       -0.10017 (13)       0.04030 (9)       0.0447 (3)         N3       0.38541 (14)       0.53546 (10)       0.11487 (7)       0.0338 (2)         N4       0.22586 (14)       0.55802 (10)       0.26462 (7)       0.0329 (2)         N5       0.12224 (14)       0.42855 (10)       0.17511 (8)       0.0359 (2)         N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.                                                    |
| N3       0.38541 (14)       0.53546 (10)       0.11487 (7)       0.0338 (2)         N4       0.22586 (14)       0.55802 (10)       0.26462 (7)       0.0329 (2)         N5       0.12224 (14)       0.42855 (10)       0.17511 (8)       0.0359 (2)         N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7                                                    |
| N4       0.22586 (14)       0.55802 (10)       0.26462 (7)       0.0329 (2)         N5       0.12224 (14)       0.42855 (10)       0.17511 (8)       0.0359 (2)         N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                      |
| N5       0.12224 (14)       0.42855 (10)       0.17511 (8)       0.0359 (2)         N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                          |
| N6       0.2906 (2)       0.40378 (15)       0.03568 (10)       0.0538 (3)         N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                              |
| N7       0.48129 (18)       0.65529 (12)       0.20504 (10)       0.0444 (3)         N8       -0.03642 (18)       0.46571 (13)       0.31286 (10)       0.0465 (3)         O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                 |
| N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O1       -0.42179 (18)       -0.28988 (12)       0.38794 (9)       0.0562 (3)         O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| O2       -0.21683 (16)       0.19698 (11)       0.48256 (9)       0.0566 (3)         O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| O3       -0.37293 (19)       0.31089 (11)       0.33173 (12)       0.0782 (4)         O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O4       0.05318 (15)       0.16839 (10)       0.26239 (8)       0.0464 (2)         O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| O5       -0.31476 (16)       -0.03215 (14)       -0.04647 (9)       0.0633 (3)         O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O6       -0.19394 (18)       -0.22987 (12)       0.08023 (9)       0.0632 (3)         O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O7       0.23235 (17)       0.53850 (11)       0.47450 (9)       0.0526 (3)         H1       -0.357 (3)       -0.370 (3)       0.4389 (18)       0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H1 -0.357 (3) -0.370 (3) 0.4389 (18) 0.093 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H4 0.054 (3) 0.257 (2) 0.2186 (15) 0.071 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| : 0.2100(15) 0.011(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H6A 0.216 (3) 0.353 (2) 0.0306 (14) 0.063 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H6B 0.378 (3) 0.4227 (19) -0.0065 (14) 0.060 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H7A 0.243 (3) 0.555 (2) 0.4067 (17) 0.075 (6)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H7B 0.252 (3) 0.607 (2) 0.4863 (17) 0.084 (6)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H7C 0.576 (2) 0.6648 (17) 0.1643 (13) 0.054 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| H7D 0.478 (2) 0.6781 (18) 0.2619 (15) 0.061 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| H8A -0.119 (2) 0.4277 (18) 0.3014 (14) 0.058 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H8B -0.048 (2) 0.4994 (19) 0.3622 (15) 0.062 (5)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| C1  | 0.0295 (5) | 0.0342 (6) | 0.0400 (6) | -0.0099 (4) | 0.0057 (4) | -0.0143 (5) |
| C2  | 0.0353 (5) | 0.0380(6)  | 0.0333 (6) | -0.0102(5)  | 0.0008 (4) | -0.0151 (5) |
| C3  | 0.0442 (6) | 0.0343 (6) | 0.0329 (6) | -0.0094(5)  | 0.0004 (5) | -0.0129(5)  |
| C4  | 0.0430(6)  | 0.0430(7)  | 0.0358 (6) | -0.0153(5)  | 0.0064 (5) | -0.0214(5)  |
| C5  | 0.0385 (6) | 0.0548 (8) | 0.0365 (6) | -0.0139(6)  | -0.0014(5) | -0.0188(6)  |
| C6  | 0.0329 (6) | 0.0422 (7) | 0.0389 (6) | -0.0057(5)  | -0.0015(5) | -0.0083(5)  |
| C7  | 0.0374 (6) | 0.0389(6)  | 0.0356 (6) | -0.0163(5)  | 0.0085 (5) | -0.0195(5)  |
| C8  | 0.0446 (6) | 0.0391 (6) | 0.0321 (6) | -0.0115(5)  | -0.0014(5) | -0.0098(5)  |
| C9  | 0.0485 (7) | 0.0279 (5) | 0.0376 (6) | -0.0099(5)  | 0.0000 (5) | -0.0093(5)  |
| C10 | 0.0371 (6) | 0.0324 (5) | 0.0344 (6) | -0.0131(4)  | 0.0055 (4) | -0.0151(5)  |

| C11 | 0.0384 (6) | 0.0312 (6) | 0.0350(6)   | -0.0080(5) | -0.0002 (5) | -0.0096(5)  |
|-----|------------|------------|-------------|------------|-------------|-------------|
| C12 | 0.0418 (6) | 0.0271 (5) | 0.0409 (6)  | -0.0099(4) | 0.0070 (5)  | -0.0135(5)  |
| C13 | 0.0448 (6) | 0.0315 (5) | 0.0297 (5)  | -0.0136(5) | -0.0005(5)  | -0.0134(5)  |
| C14 | 0.0394 (6) | 0.0249 (5) | 0.0281 (5)  | -0.0092(4) | -0.0024(4)  | -0.0100(4)  |
| C15 | 0.0380(6)  | 0.0265 (5) | 0.0317 (5)  | -0.0073(4) | 0.0008 (4)  | -0.0105(4)  |
| N1  | 0.0362 (5) | 0.0353 (5) | 0.0616 (7)  | -0.0111(4) | 0.0050 (5)  | -0.0169(5)  |
| N2  | 0.0466 (6) | 0.0588 (7) | 0.0475 (6)  | -0.0282(5) | 0.0158 (5)  | -0.0326 (6) |
| N3  | 0.0446 (5) | 0.0344 (5) | 0.0288 (5)  | -0.0170(4) | 0.0032 (4)  | -0.0148(4)  |
| N4  | 0.0412 (5) | 0.0300 (5) | 0.0322 (5)  | -0.0104(4) | 0.0028 (4)  | -0.0160(4)  |
| N5  | 0.0440 (5) | 0.0357 (5) | 0.0360 (5)  | -0.0178(4) | 0.0036 (4)  | -0.0175(4)  |
| N6  | 0.0714 (8) | 0.0706 (8) | 0.0509(7)   | -0.0428(7) | 0.0212 (6)  | -0.0438(7)  |
| N7  | 0.0581 (7) | 0.0516 (7) | 0.0411 (6)  | -0.0309(6) | 0.0084 (5)  | -0.0269(5)  |
| N8  | 0.0490(6)  | 0.0521 (7) | 0.0498 (7)  | -0.0222(5) | 0.0158 (5)  | -0.0265 (6) |
| O1  | 0.0798 (7) | 0.0498 (6) | 0.0523 (6)  | -0.0234(6) | -0.0038(6)  | -0.0293(5)  |
| O2  | 0.0633 (6) | 0.0503 (6) | 0.0687 (7)  | -0.0224(5) | 0.0021 (5)  | -0.0310(5)  |
| O3  | 0.0767 (8) | 0.0327 (5) | 0.1046 (10) | -0.0105(5) | -0.0261(7)  | -0.0024(6)  |
| O4  | 0.0633 (6) | 0.0399 (5) | 0.0426 (5)  | -0.0224(4) | -0.0035(4)  | -0.0166(4)  |
| O5  | 0.0642 (7) | 0.0895 (9) | 0.0527 (6)  | -0.0272(6) | -0.0010(5)  | -0.0398(6)  |
| O6  | 0.0876 (8) | 0.0572 (6) | 0.0702 (7)  | -0.0425(6) | 0.0180(6)   | -0.0382 (6) |
| O7  | 0.0817 (7) | 0.0497 (6) | 0.0421 (6)  | -0.0346(5) | 0.0143 (5)  | -0.0242(5)  |

Geometric parameters (Å, °)

| C1—C2         1.3766 (17)         C13—N6         1.3333 (16)           C1—C6         1.3877 (18)         C13—N3         1.3414 (14)           C1—N1         1.4501 (16)         C13—N5         1.3421 (16)           C2—C3         1.3774 (17)         C14—N7         1.3326 (15)           C2—H2         0.9300         C14—N3         1.3381 (14)           C3—C4         1.3887 (17)         C14—N4         1.3418 (16)           C3—H3         0.9300         C15—N8         1.3335 (17)           C4—O1         1.3538 (15)         C15—N4         1.3384 (15)           C4—C5         1.3882 (19)         C15—N5         1.3416 (15)           C5—C6         1.3726 (19)         N1—O3         1.2176 (16)           C5—H5         0.9300         N1—O2         1.2266 (16)           C6—H6         0.9300         N2—O5         1.2212 (17)           C7—C8         1.3804 (18)         N2—O6         1.2386 (17)           C7—C12         1.3815 (18)         N6—H6A         0.860 (18)           C7—N2         1.4518 (15)         N6—H6B         0.845 (18)           C8—C9         1.3770 (17)         N7—H7C         0.867 (17)           C8—H8         0.9300         N8—H8B |           |             |              |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------------|-------------|
| C1—N1       1.4501 (16)       C13—N5       1.3421 (16)         C2—C3       1.3774 (17)       C14—N7       1.3326 (15)         C2—H2       0.9300       C14—N3       1.3381 (14)         C3—C4       1.3857 (17)       C14—N4       1.3418 (16)         C3—H3       0.9300       C15—N8       1.3335 (17)         C4—O1       1.3538 (15)       C15—N4       1.3384 (15)         C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3915 (17)       04—H4       0.91 (2                                                           | C1—C2     | 1.3766 (17) | C13—N6       | 1.3333 (16) |
| C2—C3         1.3774 (17)         C14—N7         1.3326 (15)           C2—H2         0.9300         C14—N3         1.3381 (14)           C3—C4         1.3857 (17)         C14—N4         1.3418 (16)           C3—H3         0.9300         C15—N8         1.3335 (17)           C4—O1         1.3538 (15)         C15—N4         1.3384 (15)           C4—C5         1.3852 (19)         C15—N5         1.3416 (15)           C5—C6         1.3726 (19)         N1—O3         1.2176 (16)           C5—H5         0.9300         N1—O2         1.2266 (16)           C5—H5         0.9300         N2—O5         1.2212 (17)           C7—C8         1.3804 (18)         N2—O6         1.2386 (17)           C7—C12         1.3815 (18)         N6—H6A         0.860 (18)           C7—N2         1.4518 (15)         N6—H6B         0.845 (18)           C8—C9         1.3770 (17)         N7—H7C         0.867 (17)           C8—H8         0.9300         N7—H7D         0.894 (19)           C9—C10         1.3871 (18)         N8—H8B         0.867 (19)           C10—C11         1.3488 (14)         O1—H1         0.90 (2)           C10—C11         1.3747 (17)         O7—H7A  | C1—C6     | 1.3877 (18) | C13—N3       | 1.3414 (14) |
| C2—H2       0.9300       C14—N3       1.3381 (14)         C3—C4       1.3857 (17)       C14—N4       1.3418 (16)         C3—H3       0.9300       C15—N8       1.3335 (17)         C4—O1       1.3538 (15)       C15—N4       1.3384 (15)         C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8B       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—C4       1.3488 (14)       O1—H1       0.90 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H1       0.9300       O7—H7B       0.84 (2)     <                                                                | C1—N1     | 1.4501 (16) | C13—N5       | 1.3421 (16) |
| C3—C4       1.3857 (17)       C14—N4       1.3418 (16)         C3—H3       0.9300       C15—N8       1.3335 (17)         C4—O1       1.3538 (15)       C15—N4       1.3384 (15)         C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8B       0.867 (19)         C10—C4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3915 (17)       04—H4       0.91 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C11—H12       0.9300       07—H7B       0.84 (2)                                                                                                                                | C2—C3     | 1.3774 (17) | C14—N7       | 1.3326 (15) |
| C3—H3       0.9300       C15—N8       1.3335 (17)         C4—O1       1.3538 (15)       C15—N4       1.3384 (15)         C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—C4       1.3488 (14)       O1—H1       0.90 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       O7—H7B       0.84 (2)                                                                                                                                     | C2—H2     | 0.9300      | C14—N3       | 1.3381 (14) |
| C4—O1       1.3538 (15)       C15—N4       1.3384 (15)         C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C2—C1—C6       122.08 (11)       C11—C12—C7       119.00 (11)                                                                                                                                                                                  | C3—C4     | 1.3857 (17) | C14—N4       | 1.3418 (16) |
| C4—C5       1.3852 (19)       C15—N5       1.3416 (15)         C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C2—C1—C6       122.08 (11)       C11—C12—C7       119.00 (11)                                                                                                                                                                                    | С3—Н3     | 0.9300      | C15—N8       | 1.3335 (17) |
| C5—C6       1.3726 (19)       N1—O3       1.2176 (16)         C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3747 (17)       07—H7A       0.88 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C2—C1—C6       122.08 (11)       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                | C4—O1     | 1.3538 (15) | C15—N4       | 1.3384 (15) |
| C5—H5       0.9300       N1—O2       1.2266 (16)         C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3747 (17)       07—H7A       0.88 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C12—H12       0.9300       07—H7B       0.84 (2)                                                                                                                                                                                                                                                                                                                                                                                           | C4—C5     | 1.3852 (19) | C15—N5       | 1.3416 (15) |
| C6—H6       0.9300       N2—O5       1.2212 (17)         C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3915 (17)       04—H4       0.91 (2)         C11—C12       1.3747 (17)       07—H7A       0.88 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C12—H12       0.9300       07—H7B       0.84 (2)          C2—C1—C6       122.08 (11)       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                | C5—C6     | 1.3726 (19) | N1—O3        | 1.2176 (16) |
| C7—C8       1.3804 (18)       N2—O6       1.2386 (17)         C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       01—H1       0.90 (2)         C10—C11       1.3915 (17)       04—H4       0.91 (2)         C11—C12       1.3747 (17)       07—H7A       0.88 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                         | C5—H5     | 0.9300      | N1—O2        | 1.2266 (16) |
| C7—C12       1.3815 (18)       N6—H6A       0.860 (18)         C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       04—H4       0.91 (2)         C11—C12       1.3747 (17)       07—H7A       0.88 (2)         C11—H11       0.9300       07—H7B       0.84 (2)         C12—H12       0.9300       07—H7B       0.84 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C6—H6     | 0.9300      | N2—O5        | 1.2212 (17) |
| C7—N2       1.4518 (15)       N6—H6B       0.845 (18)         C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7—C8     | 1.3804 (18) | N2—O6        | 1.2386 (17) |
| C8—C9       1.3770 (17)       N7—H7C       0.867 (17)         C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C7—C12    | 1.3815 (18) | N6—H6A       | 0.860 (18)  |
| C8—H8       0.9300       N7—H7D       0.894 (19)         C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C7—N2     | 1.4518 (15) | N6—H6B       | 0.845 (18)  |
| C9—C10       1.3871 (18)       N8—H8A       0.830 (17)         C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8—C9     | 1.3770 (17) | N7—H7C       | 0.867 (17)  |
| C9—H9       0.9300       N8—H8B       0.867 (19)         C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C8—H8     | 0.9300      | N7—H7D       | 0.894 (19)  |
| C10—O4       1.3488 (14)       O1—H1       0.90 (2)         C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C9—C10    | 1.3871 (18) | N8—H8A       | 0.830 (17)  |
| C10—C11       1.3915 (17)       O4—H4       0.91 (2)         C11—C12       1.3747 (17)       O7—H7A       0.88 (2)         C11—H11       0.9300       O7—H7B       0.84 (2)         C12—H12       0.9300       C11—C12—C7       119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С9—Н9     | 0.9300      | N8—H8B       | 0.867 (19)  |
| C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C10—O4    | 1.3488 (14) | O1—H1        | 0.90 (2)    |
| C11—H11 0.9300 O7—H7B 0.84 (2) C12—H12 0.9300  C2—C1—C6 122.08 (11) C11—C12—C7 119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C10—C11   | 1.3915 (17) | O4—H4        | 0.91 (2)    |
| C12—H12 0.9300<br>C2—C1—C6 122.08 (11) C11—C12—C7 119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C11—C12   | 1.3747 (17) | O7—H7A       | 0.88 (2)    |
| C2—C1—C6 122.08 (11) C11—C12—C7 119.00 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C11—H11   | 0.9300      | 07—Н7В       | 0.84 (2)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C12—H12   | 0.9300      |              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 C1 C6  | 122.08 (11) | C11 C12 C7   | 110 00 (11) |
| 02 01 101 110,00 (11) 011—012—1112 120,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | ` '         |              | ` '         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02-01-111 | 110.00 (11) | C11—C12—III2 | 120.3       |

| C6—C1—N1       | 119.04 (11)  | C7—C12—H12    | 120.5        |
|----------------|--------------|---------------|--------------|
| C1—C2—C3       | 118.59 (11)  | N6—C13—N3     | 116.17 (11)  |
| C1—C2—H2       | 120.7        | N6—C13—N5     | 118.22 (11)  |
| C3—C2—H2       | 120.7        | N3—C13—N5     | 125.61 (10)  |
| C2—C3—C4       | 120.13 (11)  | N7—C14—N3     | 117.08 (11)  |
| C2—C3—H3       | 119.9        | N7—C14—N4     | 117.00 (11)  |
|                |              |               | * *          |
| C4—C3—H3       | 119.9        | N3—C14—N4     | 125.61 (10)  |
| 01—C4—C5       | 117.44 (12)  | N8—C15—N4     | 117.07 (11)  |
| O1—C4—C3       | 122.07 (12)  | N8—C15—N5     | 117.58 (11)  |
| C5—C4—C3       | 120.48 (11)  | N4—C15—N5     | 125.34 (10)  |
| C6—C5—C4       | 119.93 (12)  | O3—N1—O2      | 122.26 (12)  |
| C6—C5—H5       | 120.0        | O3—N1—C1      | 118.70 (12)  |
| C4—C5—H5       | 120.0        | O2—N1—C1      | 119.04 (11)  |
| C5—C6—C1       | 118.78 (12)  | O5—N2—O6      | 122.77 (11)  |
| C5—C6—H6       | 120.6        | O5—N2—C7      | 119.29 (12)  |
| C1—C6—H6       | 120.6        | O6—N2—C7      | 117.92 (12)  |
| C8—C7—C12      | 121.83 (10)  | C14—N3—C13    | 114.25 (10)  |
| C8—C7—N2       | 119.31 (12)  | C15—N4—C14    | 114.57 (10)  |
| C12—C7—N2      | 118.84 (11)  | C15—N5—C13    | 114.40 (9)   |
| C9—C8—C7       | 118.99 (11)  | C13—N6—H6A    | 118.8 (12)   |
| C9—C8—H8       | 120.5        | C13—N6—H6B    | 119.2 (12)   |
| C7—C8—H8       | 120.5        | H6A—N6—H6B    | 122.0 (17)   |
| C8—C9—C10      | 119.96 (11)  | C14—N7—H7C    | 118.7 (11)   |
| C8—C9—H9       | 120.0        | C14—N7—H7D    | 118.9 (11)   |
| C10—C9—H9      | 120.0        | H7C—N7—H7D    |              |
|                |              |               | 121.0 (15)   |
| O4—C10—C9      | 122.67 (11)  | C15—N8—H8A    | 119.2 (12)   |
| O4—C10—C11     | 117.05 (11)  | C15—N8—H8B    | 119.5 (11)   |
| C9—C10—C11     | 120.27 (10)  | H8A—N8—H8B    | 121.1 (16)   |
| C12—C11—C10    | 119.93 (12)  | C4—O1—H1      | 114.2 (14)   |
| C12—C11—H11    | 120.0        | C10—O4—H4     | 107.8 (12)   |
| C10—C11—H11    | 120.0        | H7A—O7—H7B    | 108.7 (19)   |
| C6—C1—C2—C3    | 0.14 (18)    | C2—C1—N1—O3   | 175.39 (13)  |
| N1—C1—C2—C3    | 179.25 (11)  | C6—C1—N1—O3   | -5.47(18)    |
| C1—C2—C3—C4    | -0.89 (18)   | C2—C1—N1—O2   | -3.93(17)    |
| C2—C3—C4—O1    | -178.18 (11) | C6—C1—N1—O2   | 175.21 (11)  |
| C2—C3—C4—C5    | 1.15 (18)    | C8—C7—N2—O5   | 3.71 (17)    |
| O1—C4—C5—C6    | 178.73 (12)  | C12—C7—N2—O5  | -174.89 (11) |
| C3—C4—C5—C6    | -0.63 (19)   | C8—C7—N2—O6   | -177.86 (11) |
| C4—C5—C6—C1    | -0.12 (18)   | C12—C7—N2—O6  | 3.55 (17)    |
| C2—C1—C6—C5    | 0.37 (18)    | N7—C14—N3—C13 | 178.15 (11)  |
| N1—C1—C6—C5    | -178.74 (11) | N4—C14—N3—C13 | -3.37 (16)   |
| C12—C7—C8—C9   | 0.89 (18)    | N6—C13—N3—C14 | -176.36 (11) |
| N2—C7—C8—C9    | -177.66 (11) | N5—C13—N3—C14 | 3.84 (17)    |
| C7—C8—C9—C10   | 0.24 (19)    | N8—C15—N4—C14 | -177.10 (11) |
| C8—C9—C10—O4   | 179.76 (12)  | N5—C15—N4—C14 | 4.13 (17)    |
| C8—C9—C10—C11  | -1.32 (18)   | N7—C14—N4—C15 | 178.19 (11)  |
|                |              |               |              |
| O4—C10—C11—C12 | -179.73 (11) | N3—C14—N4—C15 | -0.29 (16)   |
| C9—C10—C11—C12 | 1.29 (18)    | N8—C15—N5—C13 | 177.51 (11)  |

| C10—C11—C12—C7 | -0.18 (18)  | N4—C15—N5—C13 | -3.73 (17)  |
|----------------|-------------|---------------|-------------|
| C8—C7—C12—C11  | -0.92 (18)  | N6—C13—N5—C15 | 179.61 (12) |
| N2—C7—C12—C11  | 177.64 (10) | N3—C13—N5—C15 | -0.59(17)   |

### Hydrogen-bond geometry (Å, $^{o}$ )

| <i>D</i> —H··· <i>A</i>             | <i>D</i> —H | $H\cdots A$ | D··· $A$    | D— $H$ ··· $A$ |
|-------------------------------------|-------------|-------------|-------------|----------------|
| O1—H1···O7 <sup>i</sup>             | 0.90(2)     | 1.76(2)     | 2.6600 (18) | 172 (2)        |
| O4—H4···N5                          | 0.91(2)     | 1.87 (2)    | 2.7217 (16) | 157 (2)        |
| N6—H6 <i>A</i> ···O6 <sup>ii</sup>  | 0.860 (18)  | 2.363 (19)  | 3.0276 (16) | 134 (2)        |
| N6—H6 <i>B</i> ···N3 <sup>iii</sup> | 0.845 (18)  | 2.235 (19)  | 3.080(2)    | 178 (2)        |
| O7—H7 <i>A</i> ···N4                | 0.88(2)     | 1.94(2)     | 2.8020 (18) | 166 (2)        |
| O7—H7 <i>B</i> ···O2 <sup>iv</sup>  | 0.84(2)     | 2.22(2)     | 3.0424 (18) | 164 (2)        |
| N7—H7 <i>C</i> ···O6 <sup>v</sup>   | 0.867 (17)  | 2.250 (17)  | 3.056(2)    | 155 (2)        |
| N7—H7 <i>D</i> ···O1 <sup>v</sup>   | 0.894 (19)  | 2.049 (19)  | 2.8996 (17) | 159 (2)        |
| N8—H8 <i>A</i> ···O3                | 0.830 (17)  | 2.367 (18)  | 3.158 (2)   | 159 (2)        |
| N8—H8 <i>B</i> ····O7 <sup>iv</sup> | 0.867 (19)  | 2.517 (18)  | 3.1890 (19) | 135 (2)        |

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z+1; (v) x+1, y+1, z.