Introduction to Text Encoding

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science, Ordergroove

Standardizing your text

Example of free text:

Fellow-Citizens of the Senate and of the House of Representatives: AMONG the vicissitudes incident to life no event could have filled me with greater anxieties than that of which the notification was transmitted by your order, and received on the th day of the present month.

Dataset

```
print(speech_df.head())
```

```
Inaugural Address
                  Name
     George Washington
                          First Inaugural Address
     George Washington
                          Second Inaugural Address
                                 Inaugural Address
    John Adams
                           First Inaugural Address
    Thomas Jefferson
    Thomas Jefferson
                          Second Inaugural Address
                        Date
                                                           text
     Thursday, April 30, 1789
                                 Fellow-Citizens of the Sena...
0
        Monday, March 4, 1793
                                 Fellow Citizens: I AM again...
     Saturday, March 4, 1797
                                 WHEN it was first perceived...
     Wednesday, March 4, 1801
                                 Friends and Fellow-Citizens...
        Monday, March 4, 1805
                                 PROCEEDING, fellow-citizens...
4
```

Removing unwanted characters

- [a-zA-Z]: All letter characters
- [^a-zA-Z] : All non letter characters

Removing unwanted characters

Before:

```
"Fellow-Citizens of the Senate and of the House of
Representatives: AMONG the vicissitudes incident to
life no event could have filled me with greater" ...
```

After:

```
"Fellow Citizens of the Senate and of the House of
Representatives AMONG the vicissitudes incident to
life no event could have filled me with greater" ...
```


Standardize the case

```
speech_df['text'] = speech_df['text'].str.lower()
print(speech_df['text'][0])
```

"fellow citizens of the senate and of the house of representatives among the vicissitudes incident to life no event could have filled me with greater"...

Length of text

```
speech_df['char_cnt'] = speech_df['text'].str.len()
print(speech_df['char_cnt'].head())
```

```
0 1889
1 806
2 2408
3 1495
4 2465
Name: char_cnt, dtype: int64
```

Word counts

```
speech_df['word_cnt'] =
    speech_df['text'].str.split()
speech_df['word_cnt'].head(1)
```

```
['fellow', 'citizens', 'of', 'the', 'senate', 'and',...
```

Word counts

```
speech_df['word_counts'] =
    speech_df['text'].str.split().str.len()
print(speech_df['word_splits'].head())
```

```
0  1432
1  135
2  2323
3  1736
4  2169
Name: word_cnt, dtype: int64
```

Average length of word

```
speech_df['avg_word_len'] =
    speech_df['char_cnt'] / speech_df['word_cnt']
```


Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Word Count Representation

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science

Director of Data Science, Ordergroove

Text to columns

"citizens of the senate and of the house of representatives"

Index	citizens	of	the	senate	and	house	representatives
1	1	3	2	1	1	1	1

Initializing the vectorizer

```
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
print(cv)
```

Specifying the vectorizer

```
from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(min_df=0.1, max_df=0.9)
```

min_df: minimum fraction of documents the word must occur in

max_df: maximum fraction of documents the word can occur in

Fit the vectorizer

```
cv.fit(speech_df['text_clean'])
```


Transforming your text

```
cv_transformed = cv.transform(speech_df['text_clean'])
print(cv_transformed)
```

<58x8839 sparse matrix of type '<type 'numpy.int64'>'

Transforming your text

cv_transformed.toarray()

Getting the features

```
feature_names = cv.get_feature_names()
print(feature_names)
```

```
[u'abandon', u'abandoned', u'abandonment', u'abate', u'abdicated', u'abeyance', u'abhorring', u'abide', u'abiding', u'abilities', u'ability', u'abject'...
```

Fitting and transforming

```
cv_transformed = cv.fit_transform(speech_df['text_clean'])
print(cv_transformed)
```

```
<58x8839 sparse matrix of type '<type 'numpy.int64'>'
```


Putting it all together

Counts_aback	Counts_abandoned	Counts_a
1	0	• • •
0	0	• • •
0	1	• • •
0	1	• • •
0	0	• • •
	1 0 0 0	0 0 0 1 0 1 0 1

¹ ```out Counts_aback Counts_abandon Counts_abandonment 0 1 0 0 1 0 2 0 1 0 3 0 1 0 4 0 0 0 ```

Updating your DataFrame

(58, 8845)

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Tf-ldf Representation

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove

Introducing TF-IDF

```
print(speech_df['Counts_the'].head())

0    21
1    13
2    29
3    22
4    20
```

TF-IDF

Importing the vectorizer

```
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer()
print(tv)
```

Max features and stopwords

max_features : Maximum number of columns created from TF-IDF

stop_words: List of common words to omit e.g. "and", "the" etc.

Fitting your text

```
tv.fit(train_speech_df['text'])
train_tv_transformed = tv.transform(train_speech_df['text']
```


Putting it all together

Inspecting your transforms

```
examine_row = train_tv_df.iloc[0]
```

```
print(examine_row.sort_values(ascending=False))
```

```
TFIDF_government 0.367430

TFIDF_public 0.333237

TFIDF_present 0.315182

TFIDF_duty 0.238637

TFIDF_citizens 0.229644

Name: 0, dtype: float64
```

Applying the vectorizer to new data

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Bag of words and N-grams

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science, Ordergroove

Issues with bag of words

Positive meaning

Single word: happy

Negative meaning

Bi-gram: not happy

Positive meaning

Trigram: never not happy

Using N-grams

```
[u'american people', u'best ability ', u'beloved country', u'best interests' ... ]
```

Finding common words

```
Counts_administration government 12
Counts_almighty god 15
Counts_american people 36
Counts_beloved country 8
Counts_best ability 8
dtype: int64
```


Finding common words

```
print(tv_sums.sort_values(ascending=False)).head()
```

```
Counts_united states 152
Counts_fellow citizens 97
Counts_american people 36
Counts_federal government 35
Counts_self government 30
dtype: int64
```


Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Wrap-up

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove

- How to understand your data types
- Efficient encoding or categorical features
- Different ways to work with continuous variables

- How to locate gaps in your data
- Best practices in dealing with the incomplete rows
- Methods to find and deal with unwanted characters

- How to observe your data's distribution
- Why and how to modify this distribution
- Best practices of finding outliers and their removal

- The foundations of word embeddings
- Usage of Term Frequency Inverse Document Frequency (Tfidf)
- N-grams and its advantages over bag of words

Next steps

- Kaggle competitions
- More DataCamp courses
- Your own project

Thank You!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

