Flip-Flops and Related Devices

Presented By

Firoz Mahmud

Assistant Professor

Dept. of Computer Science & Engineering Rajshahi University of Engineering & Technology

Chapter 5 Combinational Circuit Vs. Sequential Logic

 Combinational logic (sometimes also referred to as time-independent logic) is a type of digital logic which is implemented by Boolean circuits, where the output is a pure function of the present input only.

Chapter 5 Combinational Circuit Vs. Sequential Logic

• Sequential logic is a type of logic circuit whose output depends not only on the present value of its input signals but on the sequence of past inputs.

Chapter 5 Combinational Circuit Vs. Sequential Logic

1	Combinational Circuit	Sequential Logic
	Output is a function of the present inputs.	Output is a function of clock, present inputs and the previous states of the system.
	Do not have the ability to store data.	Have memory to store the present states that is sent as control input (enable) for the next operation.
	It does not require any feedback.	It involves feedback from output to input.
	Used mainly for Arithmetic and Boolean operations.	Used for storing data (and hence used in RAM).
		Flip flops (binary storage device) are the elementary building unit.

Chapter 5 Introduction

 The most important memory element is the flipflop (FF)—made up of an assembly of logic gates.

The flip-flop is known by other names, including *latch* and *bistable multivibrator*.

5-1 NAND Gate Latch

- The NAND gate latch or simply latch is a basic FF.
 - Inputs are SET and CLEAR (RESET).
- Inputs are active-LOW—output will change when the input is pulsed LOW.
 - When the latch is set: $\mathbf{Q} = 1$ and $\overline{\mathbf{Q}} = 0$
 - When the latch is clear or reset: $\mathbf{Q} = 0$ and $\overline{\mathbf{Q}} = 1$

5-1 NAND Gate Latch – Setting the Latch (FF)

- Pulsing the SET input to the 0 state...
 - (a) Q = 0 prior to SET pulse.
 - (b) Q = 1 prior to SET pulse.

In both cases, Q ends up HIGH.

5-1 NAND Gate Latch – Resetting the Latch (FF)

- Pulsing RESET LOW when...
 - (a) Q = 0 prior to the RESET pulse.
 - (b) Q = 1 prior to the RESET pulse.

In each case, Q ends up LOW.

5-1 NAND Gate Latch – Alternate Representations

NAND latch equivalent representations and simplified block diagram.

5-1 NAND Gate Latch - Summary

- Summary of the NAND latch:
 - SET = 1, RESET = 1—Normal resting state, outputs remain in state they were in prior to input.
 - SET = 0, RESET = 1—Output will go to Q = 1 and remains there, even after SET returns HIGH.
 - Called setting the latch.
 - SET = 1, RESET = 0—Will produce Q = 0 LOW and remains there, even after RESET returns HIGH.
 - Called clearing or resetting the latch.
 - SET = 0, RESET = 0—Tries to set and clear the latch at the same time, and produces $Q = \overline{Q} = 1$.
 - Output is unpredictable, and this input condition should not be used.

5-1 NAND Gate Latch - Summary

Summary of the NAND latch:

Set	Reset		Output
1	1		No change
0	1		Q = 1
1	0		Q = 0
0	0		Invalid*
		$\overline{}$	

*Produces Q = \overline{Q} = 1.

Assume that initially Q=0

5-2 NOR Gate Latch

- Two cross-coupled NOR gates can be used as a NOR gate latch—similar to the NAND latch.
 - The \mathbf{Q} and $\overline{\mathbf{Q}}$ outputs are reversed.

The SET and RESET inputs are active-HIGH.

Output will change when the input is pulsed HIGH.

5-1 NOR Gate Latch - Summary

- Summary of the NOR latch:
 - SET = 0, RESET = 0—Normal resting state, No effect on output state.
 - SET = 1, RESET = 0—will always set Q = 1, where it remains even after SET returns to 0.
 - SET = 0, RESET = 1—will always clear Q = 0, where it remains even after RESET returns to 0.
 - SET = 1, RESET = 1—Tries to set and reset the latch at the same time, and produces $Q = \overline{Q} = 0$.
 - Output is unpredictable, and this input condition should not be used.

5-1 NAND Gate Latch - Summary

Summary of the NOR latch:

Assume that initially Q=0

Set	Reset	Output
0	0	No change
1	0	Q = 1
0	1	Q = 0
1	1	Invalid*

*Produces Q = \overline{Q} = 0.

- Digital systems can operate either synchronously or synchronously.
 - Asynchronous system—outputs can change state at any time the input(s) change.
 - Synchronous system—output can change state only at a specific time in the clock cycle.

- The clock signal is a rectangular pulse train or square wave.
 - Positive going transition (PGT)—clock pulse goes from 0 to 1.
 - Negative going transition (NGT)—clock pulse goes from 1 to 0.

Transitions are also called *edges*.

- Clocked FFs change state on one or the other clock transitions.
 - Clock inputs are labeled CLK, CK, or CP.

A small triangle at the CLK input indicates that the input is activated with a PGT.

A bubble and a triangle indicates that the CLK input is activated with a NGT.

- Control inputs have an effect on the output only at the active clock transition (NGT or PGT)—also called synchronous control inputs.
 - The control inputs get the outputs ready to change,
 but the change is not triggered until the CLK edge.

 Setup time (t_S) is the minimum time interval before the active CLK transition that the control input must be kept at the proper level.

 Hold time (t_H) is the time following the active transition of the CLK, during which the control input must kept at the proper level.

- The S and R inputs are synchronous control inputs, which control the state the FF will go to when the clock pulse occurs.
 - The CLK input is the trigger input that causes the
 FF to change states according to the S and R inputs.
- SET-RESET (or SET-CLEAR) FF will change states at positive- or negative-going clock edges.

A clocked S-R flip-flop triggered by the positive-going edge of the clock signal.

	input	•	Output	
S	R	CLK	Q	
0	0	1	Q ₀ (no change)	
1	0	1	1	
0	1	1	0	
1	1	1	Ambiguous	

Innute

Output

 Q_0 is output level prior to \uparrow of CLK. \downarrow of CLK produces no change in Q.

The S and R inputs control the state of the FF in the same manner as described earlier for the NOR gate latch, but the FF does *not* respond to these inputs *until* the occurrence of the PGT of the clock signal.

	Input	S	Output	
S	R	CLK	Q	0
0	0	1	Q ₀ (no change)	0
1	0	<u> </u>	1	
0	1	<u> </u>	0	
1	1	↑	Ambiguous	

Waveforms of the operation of a clocked S-R flip-flop triggered by the positivegoing edge of a clock pulse.

A clocked S-R flip-flop triggered by the negative-going edge of the clock signal.

	Inputs		Output
S	R	CLK	Q
0	0	1	Q ₀ (no change)
1	0	↓	1
0	1	↓	0
1	1	1	Ambiguous

Both positive-edge and negative-edge triggering FFs are used in digital systems.

5-6 Clocked S-R Flip-Flop – Internal Circuitry

- An edge-triggered S-R flip-flop circuit features:
 - A basic NAND gate latch formed by NAND-3 and NAND-4.
 - A pulse-steering circuit formed by NAND-1 and NAND-2.
 - An edge-detector circuit.

5-6 Clocked S-R Flip-Flop – Internal Circuitry

- Implementation of edge-detector circuits used in edge-triggered flip-flops:
 - (a) PGT; (b) NGT.

The duration of the *CLK** pulses is typically 2–5 ns.

5-7 Clocked J-K Flip-Flop

- Operates like the S-R FF.
 - J is SET, K is CLEAR.
- When J and K are both HIGH, output is toggled to the opposite state.
 - May be positive going or negative going clock trigger.
- Much more versatile than the S-R flip-flop, as it has no ambiguous states.
 - Has the ability to do everything the S-R FF does, plus operates in toggle mode.

5-7 Clocked J-K Flip-Flop

Clocked J-K flip-flop that responds only to the positive edge of the clock.

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	<u> </u>	1
0	1	<u> </u>	0
1	1	<u> </u>	Q ₀ (toggles)

5-7 Clocked J-K Flip-Flop

Clocked J-K flip-flop that responds only to the negative edge of the clock.

J	K	CLK	Q
0	0	\	Q ₀ (no change)
1	0	1	1
0	1	1	0
1	1	1	Q ₀ (toggles)

5-7 Clocked J-K Flip-Flop – Internal Circuitry

 The internal circuitry of an edge-triggered J-K flip-flop contains the same three sections as the edge-triggered S-R flip-flop.

5-8 Clocked D Flip-Flop

- One data input—output changes to the value of the input at either the positive- or negative-going clock trigger.
- May be implemented with a J-K FF by tying the J input to the K input through an inverter.
- Useful for parallel data transfer.

5-8 Clocked D Flip-Flop

D flip-flop that triggers only on positive-going transitions.

5-8 Clocked D Flip-Flop - Implementation

- An edge-triggered D flip-flop is implemented by adding a single INVERTER to the edge-triggered J-K flip-flop.
 - The same can be done to convert a S-R flip-flop to a D flip-flop.

Edge-triggered D flip-flop implementation from a J-K flip-flop.

5-8 Clocked D Flip-Flop – Parallel Data Transfer

Outputs X, Y, Z are to be transferred to FFs Q1, Q2, and Q3 for storage.

Using D flip-flops, levels present at X, Y & Z will be transferred to Q1, Q2 & Q3, upon application of a TRANSFER pulse to the common CLK inputs.

5-8 Clocked D Flip-Flop – Parallel Data Transfer

Outputs X, Y, Z are to be transferred to FFs Q1, Q2, and Q3 for storage.

This is an example of **parallel data transfer** of binary data—the three bits X, Y & Z are transferred simultaneously.

5-9 D Latch (Transparent Latch)

- The edge-triggered D flip-flop uses an edgedetector circuit to ensure the output responds to the D input only on active transition of the clock.
 - If this edge detector is not used, the resultant circuit operates as a D latch.

5-9 D Latch (Transparent Latch)

D latch structure, function table, logic symbol.

Inputs		Output	
EN	D	Q	
0	X	Q ₀ (no change)	
1	0	0	
1	1	1	

"X" indicates 'don't care." Q₀ is state Q just prior to EN going LOW.

5-9 D Latch (Transparent Latch)

- The circuit contains the NAND latch and the steering NAND gates 1 and 2 without the edgedetector circuit.
- The common input to the steering gates is called an enable input (abbreviated EN)—rather than a clock input.
 - Its effect on the Q and Q outputs is not restricted to occurring only on its transitions

5-10 Asynchronous Inputs

- Inputs that depend on the clock are synchronous.
- Most clocked FFs have asynchronous inputs that do not depend on the clock.
 - Labels PRE & CLR are used for asynchronous inputs.
- Active-LOW asynchronous inputs will have a bar over the labels and inversion bubbles.
- If the asynchronous inputs are not used they will be tied to their inactive state.

5-10 Asynchronous Inputs

Clocked J-K flip-flop with asynchronous inputs.

J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
Х	Х	х	1	1	Q (no change)
х	х	х	1	0	0 (asynch clear)
х	х	х	0	1	1 (asynch preset)
X	X	х	0	0	(Invalid)

5-10 Asynchronous Inputs - Designations

- IC manufacturers do not agree on nomenclature for asynchronous inputs.
 - The most common designations are PRE (PRESET) and CLR (CLEAR).
 - Clearly distinguished from synchronous SET & RESET.
 - Labels such as S-D (direct SET) and R-D (direct RESET) are also used.

5-10 Asynchronous Inputs

A J-K FF that responds to a NGT on its clock input and has active-LOW asynchronous inputs.

Point	Operation
а	Synchronous toggle on NGT of CLK
b	Asynchronous set on PRE = 0
С	Synchronous toggle
d	Synchronous toggle
е	Asynchronous clear on CLR = 0
f	CLR overrides the NGT of CLK
g	Synchronous toggle

