Hodowla sumów

Bu Dengklek ma hodowlę sumów. Hodowla sumów jest stawem, który przedstawiamy jako siatkę złożoną z $N\times N$ komórek. Każda komórka jest kwadratem o takim samym rozmiarze. Kolumny siatki są ponumerowane od 0 do N-1 z zachodu na wschód, a wiersze od 0 do N-1 z południa na północ. Komórkę należącą do kolumny c i wiersza r siatki ($0 \le c \le N-1$, $0 \le r \le N-1$) nazywamy komórką (c,r).

W stawie jest M sumów ponumerowanych od 0 do M-1 i znajdujących się w **parami różnych** komórkach. Dla każdego i spełniającego $0 \le i \le M-1$, sum i znajduje się w komórce (X[i],Y[i]) oraz waży W[i] gramów.

Bu Dengklek chce zbudować pomosty, które umożliwią łapanie sumów. Pomost długości k w kolumnie c (dla dowolnego $0 \le c \le N-1$ i $1 \le k \le N$) jest prostokątem rozciągającym się od wiersza 0 do wiersza k-1 i pokrywającym komórki $(c,0),(c,1),\ldots,(c,k-1)$. Dla każdej kolumny, Bu Dengklek może wybudować pomost o wybranej długości lub nie budować pomostu.

Sum i (dla każdego i spełniającego $0 \le i \le M-1$) może być złapany gdy istnieje pomost bezpośrednio na zachód lub na wschód od jego komórki, a jednoczesnie nie ma pomostu pokrywającego jego komórkę. Innymi słowy

- **przynajmniej jedna** z komórek (X[i]-1,Y[i]) i (X[i]+1,Y[i]) jest pokryta przez pomost, oraz
- nie ma pomostu pokrywającego komórkę (X[i], Y[i]).

Na przykład, rozważmy staw o rozmiarze N=5 z M=4 sumami:

- Sum 0 znajduje się w komórce (0,2) i waży 5 gramów.
- Sum 1 znajduje się w komórce (1, 1) i waży 2 gramy.
- Sum 2 znajduje się w komórce (4,4) i waży 1 gram.
- Sum 3 znajduje się w komórce (3,3) i waży 3 gramy.

Jeden z sposobów, na który Bu Dengklek może zbudować pomosty, wygląda tak:

Liczba w komórce oznacza wagę suma znajdującego się w tej komórce. Ciemniejsze komórki są pokryte przez pomosty. W tym przypadku, sum 0 (w komórce (0,2)) i sum 3 (w komórce (3,3)) mogą być złapane. Sum 1 (w komórce (1,1)) nie może być złapany, ponieważ istnieje pomost pokrywający jego komórkę. Sum 2 (w komórce (4,4)) nie może być złapany, ponieważ nie ma pomostu bezpośrednio na wschód lub zachód od jego komórki.

Bu Dengklek chciałaby wybudować pomosty w taki sposób, aby sumaryczna waga sumów, które można złapać była jak największa. Twoim zadaniem jest znalezieniem największej sumarycznej wagi sumów, które można złapać po wybudowaniu pomostów.

Szczegóły implementacji

Powinieneś zaimplementować następującą funkcję:

```
int64 max_weights(int N, int M, int[] X, int[] Y, int[] W)
```

- N: rozmiar stawu.
- *M*: liczba sumów.
- ullet X, Y: tablice długości M opisujące położenie sumów.
- W: tablica długości M opisująca wagi sumów.
- Wynikiem działania funkcji powinna być liczba całkowita odpowiadająca maksymalnej łącznej wadze sumów, które mogą być złapane po wybudowaniu pomostów.
- Ta funkcja będzie wywołana dokładnie raz.

Przykład

Rozważ następujące wywołanie:

```
max_weights(5, 4, [0, 1, 4, 3], [2, 1, 4, 3], [5, 2, 1, 3])
```

Ten przykład jest przedstawiony na powyższym rysunku.

Po wybudowaniu pomostów tak jak opisano wyżej, można złapać sumy 0 i 3, których łączna waga to 5+3=8 gramów. Ponieważ nie jest możliwe wybudowanie pomostów tak, aby można było złapać sumy o łącznej wadze większej niż 8 gramów, wynikiem działania funkcji powinno być 8.

Ograniczenia

- $2 \le N \le 100\ 000$
- $1 < M < 300\ 000$
- $0 \le X[i] \le N-1$, $0 \le Y[i] \le N-1$ (dla każdego i spełniającego $0 \le i \le M-1$)
- $1 \le W[i] \le 10^9$ (dla każdego i spełniającego $0 \le i \le M-1$)
- W żadnej komórce nie ma więcej niż jednego suma. Innymi słowy, $X[i] \neq X[j]$ lub $Y[i] \neq Y[j]$ (dla każdych i i j spełniających $0 \leq i < j \leq M-1$).

Podzadania

- 1. (3 punkty) X[i] jest parzyste (dla każdego i spełniającego $0 \le i \le M-1$)
- 2. (6 punktów) $X[i] \leq 1$ (dla każdego i spełniającego $0 \leq i \leq M-1$)
- 3. (9 punktów) Y[i] = 0 (dla każdego i spełniającego $0 \le i \le M-1$)
- 4. (14 punktów) $N \leq 300$, $Y[i] \leq 8$ (dla każdego i spełniającego $0 \leq i \leq M-1$)
- 5. (21 punktów) $N \leq 300$
- 6. (17 punktów) N < 3000
- 7. (14 punktów) W każdej kolumnie znajdują się co najwyżej 2 sumy.
- 8. (16 punktów) Bez dodatkowych ograniczeń.

Przykładowy program oceniający

Przykładowy program oceniający wczytuje dane wejściowe w następującym formacie:

- wiesz 1:NM
- wiersz 2 + i ($0 \le i \le M 1$): X[i] Y[i] W[i]

Przykładowy program oceniający wypisuje Twoją odpowiedź w następującym formacie:

• wiersz 1: wynik działania funkcji max_weights