තියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා විතාල දෙපාර්තමේත්තුව ලි ලංකා විතාල දෙපාර්ත**ල්ක් කිරි. සිතුලේ පිරිසු ලි ලංකා** විතාල දෙපාර්තමේත්තුව ලි ලංකා විතාල දෙපාර්තමේත්තුව இබත්තනසට பුරිද්යාවේ නිශෝස්සභාව මහත්තසට පුර්දික්වේ, නික්කේසභාව මහත්තයට පුර්දියාවේ පුරාක්ෂේසභාව මහත්තයට පුර්දියාවේ Department of Examinations, Sri Lanka Department of E**. මහත්තික් පිරිසියාවේ සහත්තයට ප්රදේශය** විතාල දෙපාරකම්ත්තුව ලි ලංකා විතාල දෙපාරකම්ත්තුව ලි ලංකා විතාල දෙපාරකම්ත්තුව ලි ලංකා විතාල දෙපාරකම්ත්තුව ලිලකා විතාල දෙපාරකම්තියාව ප්රධාන දෙපාරකම්ත්තව ලිලකා විතාල දෙපාරකම්ත්තව ලිලකා විතාල දෙපාරකම්ත්තව ලිලකා විතාල දෙපාරකම්ත්තව ලිලකා විතාල දෙපාරකම්ත්තමේ සහත්තයට ප්රධාන සිතුම් සහත්තයට ප්රධාන සිතුම් සහත්තයට ප්රධාන සිතුම් සහත්තයට සහත්තයට සහත්ත සිතුම් සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සිතුම් සහත්තයට සහත්කයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්කයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්තයට සහත්ක

> අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

සංයුක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics 10 S I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம்

10 நிமிடங்கள்

Additional Reading Time

10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

| විභාග අංකය |  |  |  |
|------------|--|--|--|
|------------|--|--|--|

## උපදෙස්:

- 🛠 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
  - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- \* A කොටස:

**සියලු ම** පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- \* B කොටස:
  - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- \* නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

## පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

| (    | 10) සංයුක්ත ගණි | තය I  |
|------|-----------------|-------|
| කොටස | පුශ්න අංකය      | ලකුණු |
|      | 1               | ٠     |
|      | 2               |       |
| •    | 3               |       |
|      | 4               |       |
| A    | 5               | :     |
| A    | 6               |       |
| ,    | 7               |       |
|      | 8               |       |
|      | 9               |       |
|      | 10              |       |
|      | 11              |       |
| ·    | 12              |       |
|      | . 13            | •     |
| В    | 14              |       |
| ٠    | 15              |       |
|      | 16              |       |
|      | 17              |       |
|      | එකතුව           |       |

|           | එකතුව |
|-----------|-------|
| ඉලක්කමෙන් |       |
| අකුරින්   |       |

|                  |   | සංකෙත අංක |
|------------------|---|-----------|
| උත්තර පතු පරීක්ෂ | ක |           |
| පරීක්ෂා කළේ:     | 1 |           |
|                  | 2 |           |
| අධීක්ෂණය කළේ:    |   |           |

|     | A කොටස                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| l.  | ගණිත අගපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!{f Z}^+$ සඳහා $\sum_{r=1}^n (6r\!+\!1) = n(3n\!+\!4)$ බව සාධනය කරන්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | න    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٠.   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| e e |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Ž.  | and a second of the second of |      |
|     | වක්ම රූපි සිටහනක් $y=2 x+1 $ හා $y=2- x $ හ පුස්තාරවල දළ සිටහන් අදනන්.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | එක ම රූප සටහනක $y=2 x+1 $ හා $y=2- x $ හි පුස්තාරවල දළ සටහන් අඳින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාන්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32   |
|     | එක ම රූප සිටහිනික $y=2 x+1 $ හා $y=2- x $ හි පුසිතාවවල දළ සිටහිනි අදිනිය. ඒ නියින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගයෙන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | విభ  |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38   |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33   |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br> |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33   |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | <b>ඒ නගින් හෝ අන් අයුරකින් හෝ</b> , $2 x+2 + x \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33   |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325  |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33   |
|     | ඒනයින් හෝ අන් අයුරකින් හෝ, $2 x+2 + x  \le 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අග සොයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |

| 2 Contract demonstration | , | විභාග | අංකය |  |
|--------------------------|---|-------|------|--|
|--------------------------|---|-------|------|--|

| ١.         | ආගත්ඩ් සටහනක, $\operatorname{Arg}(z-1-i)=-rac{\pi}{4}$ සපුරාලන $z$ සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයෙහි දළ සටහනක් අඳින්න.                                                                            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}(iz+1-i)=\frac{\pi}{4}$ සපුරාලන $ z-2+i $ හි අවම අගය $\frac{1}{\sqrt{2}}$ බව පෙන්වන්න.                                                                     |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            | ***************************************                                                                                                                                                                   |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            | ***************************************                                                                                                                                                                   |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                           |
| •          | $\sim$ 11                                                                                                                                                                                                 |
| ١.         | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්වීපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්වීපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| ١.         | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| ١.         | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| ١.         | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| ١.         | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| <b>1.</b>  | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| <b>I.</b>  | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
|            | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.     |
| <b>1.</b>  | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.     |
| <b>!.</b>  | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^1$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^1$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.           |
| •          | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{12}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.     |
| •          | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
|            | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{1}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{1}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.       |
|            | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.     |
|            | $k>0$ යැයි ගනිමු. $\left(x^2+\frac{k}{x}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-\frac{1}{x^2}\right)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න. |
| <b>.</b> . | $k>0$ යැයි ගනිමු. $\left(x^2+rac{k}{x} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^7$ හි සංගුණකය හා $\left(x-rac{1}{x^2} ight)^{11}$ හි ද්විපද පුසාරණයේ $x^{-7}$ හි සංගුණකය සමාන බව දී ඇත. $k=1$ බව පෙන්වන්න.     |

| 5. | $\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^2 \left(\sqrt{1+x} - \sqrt{1-x}\right)} = 4 \ \text{බව ඉපත්වන්න.}$                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| -  |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    | · · · · · · · · · · · · · · · · · · ·                                                                                                         |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
|    |                                                                                                                                               |   |
| 6. | $y=rac{\ln x}{\sqrt{x}},\;y=0$ හා $x=e^2$ වකු මගින් ආවෘත වන පෙදෙස $S$ යැයි ගනිමු. $S$ හි වර්ගඑලය, වර්ග ඒකක $4$ ස                             | ช |
| 6. | බව පෙන්වන්න.                                                                                                                                  |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුණේ                                        |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙ $8\pi$                                 |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුණේ                                        |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |
| 6. | බව පෙන්වන්න. $S$ පෙදෙස $x$ $-$ අක්ෂය වටා රේඩියන $2\pi$ වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තු ෙස් පරිමාව $\frac{8\pi}{3}$ බව පෙන්වන්න. |   |

| 7. |                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $t \neq 0$ සඳහා $x = ct$ හා $y = \frac{c}{t}$ මගින් පරාමිතිකව දෙනු ලබන සෘජුකෝණාසු බහුවලයට $P \equiv \left(cp, \frac{c}{p}\right)$ ලක්ෂායේදී වූ ස්පර්ශ රේඛාවේ සමීකරණය $x + p^2y = 2cp$ බව පෙන්වන්න. |
|    | $P$ හි දී මෙම බහුවලයට වූ අභිලම්භ රේඛාව වෙනත් $Q\equiv\left(cq,rac{c}{q} ight)$ ලක්ෂාායකදී බහුවලය නැවත හමු වේ.                                                                                     |
|    | $p^3q=-1$ බව පෙන්වන්න.                                                                                                                                                                             |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                    |
| 8. | $A \equiv (0,-1)$ හා $B \equiv (9,8)$ යැයි ගනිමු. $C$ ලක්ෂාය $AB$ මත $AC:CB=1:2$ වන පරිදි පිහිටයි. $C$ හරහා යන                                                                                     |
|    | AB ට ලම්බ වූ $l$ සරල රේඛාවේ සමීකරණය $x+y-5=0$ බව පෙන්වන්න.                                                                                                                                         |
|    |                                                                                                                                                                                                    |
|    | y=5x+1 සරල රේඛාවට $AD$ සමාන්තර වන පරිදි $l$ මත වූ ලක්ෂාය $D$ යැයි ගනිමු. $D$ හි ඛණ්ඩාංක සොයන්න.                                                                                                    |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                     |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                     |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත් වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                    |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත් වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                    |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                     |
|    | y=5x+1 සරල මෙඛාවට $AD$ සමාන්තර වන පිටද $t$ මත වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි බණ්ඩාංක සොයන්න.                                                                                                     |
|    | y=5x+1 සංල ලෙකාවට $AD$ සමාන්තර වන පිටද $t$ මන වූ ලක්ෂයිය $D$ යැය ගන්මු. $D$ හි කමාධාරක සොයන්න.                                                                                                     |
|    | y=5x+1 සරල මෙකාවට $AD$ සමානකට වන පිරදි $t$ මක වූ ලක්ෂයය $D$ යැය ගනමු. $D$ හි කිණ්ඩාංක සොයවාවා.                                                                                                     |
|    | y=5x+1 සරල මෙබාවට $AD$ සමාන්තර වන පිරදි $t$ මන වූ ලක්ෂයය $D$ යැය ගන්මු. $D$ හි බණයාංක සොයවනි.                                                                                                      |
|    | y=5x+1 සබල රෙඛාවට $AD$ සමාන්තර වන පිරද $t$ මන වූ ලක්ෂය $D$ සැය ගන්මු. $D$ හි බණ්ඩායන්න.                                                                                                            |
|    | y=5x+1 සංල ලෙකාවට $AD$ සමානකර වන පිරද $t$ මක වූ ලක්ෂයය $D$ යැය ගන්මු. $D$ හි තමායන්නේ සොයවාරා.                                                                                                     |
|    | y=5x+1 සරල රෙඛාවට $AD$ සමානිතර වන පිරද $t$ මන වූ ලක්ෂය $D$ සැය ගනමු. $D$ හි ගිණිඩායක් සොයිඩ්වා.                                                                                                    |
|    | y = 5x + 1 සංල ටෙයාවට AD සමානකා වන පරද 1 මත වූ ලක්ෂය D සැය ගත්වූ. D හි සමස්සියේ සියියියි.                                                                                                          |

| පෙන්වන්න.                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               | ٠ الماليين                              |                                         | o b                                   |                                         | ·b                    |                 |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------|-----------------|
|                                         | දෙක හා $S=0$ ව                                      |                                         |                                         |                                       |                                         |                       |                 |
| *************************************** | •                                                   |                                         |                                         | ************                          |                                         |                       | • • • • •       |
|                                         |                                                     |                                         | • • • • • • • • • • • • • • • • • • • • |                                       |                                         | •••••••               | ••••            |
| •••••                                   | • • • • • • • • • • • • • • • • • • • •             | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                       |                                         |                       | • • • • •       |
|                                         |                                                     |                                         | . <b></b>                               |                                       |                                         |                       |                 |
|                                         |                                                     | ***********                             |                                         |                                       |                                         |                       |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         | *******               |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         |                       |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         |                       |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         | *************         |                 |
| **********                              |                                                     |                                         |                                         |                                       |                                         |                       |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         |                       |                 |
|                                         | •••••                                               |                                         | ٠                                       |                                       |                                         |                       |                 |
| ••••••                                  | • • • • • • • • • • • • • • • • • • • •             | ***************                         | •••••                                   |                                       |                                         |                       | • • • • •       |
|                                         |                                                     |                                         |                                         |                                       |                                         |                       |                 |
| • • • • • • • • • • • • • • • • • •     | *****************                                   |                                         |                                         |                                       | *************************************** |                       |                 |
|                                         |                                                     |                                         |                                         |                                       |                                         |                       |                 |
|                                         | • • • • • • • • • • • • • • • • • • • •             |                                         |                                         |                                       |                                         |                       |                 |
|                                         | ••••••                                              |                                         |                                         | · · · · · · · · · · · · · · · · · · · |                                         |                       |                 |
|                                         | sin x cos x -1 az                                   |                                         |                                         |                                       | <br>(න්න; මෙහි <i>R</i> :               | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $\sin x \cos x - 1 \cos x + \sqrt{3} \sin x \cos x$ |                                         |                                         |                                       | <br>රන්න; මෙහි <i>R</i> :               | > 0 හා 0 < $lpha$ <   | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              |                                         |                                       | රන්න; මෙහි <i>R</i> :                   | > 0 හා 0 < $lpha$ <   | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> :                   | > 0 හා 0 < <i>a</i> < | <u>π</u> 2      |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> :                   | > 0 හා 0 < \alpha <   | <u>π</u> 2      |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 හා 0 < α <        | <u>π</u> 2      |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> 2                   | > 0 හා 0 < $lpha$ <   | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> :                   | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ?                   | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> 2                   | > 0 හා 0 < $lpha$ <   | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> :                   | > 0 co 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 හා 0 < α <        | <u>π</u> 2      |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 to 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> 2                   | > 0 හා 0 < α <        | $\frac{\pi}{2}$ |
|                                         | $+\sqrt{3}\sin x\cos x$                             | = 1 සමීකරණ                              | යෙ විසඳන්න                              |                                       | රන්න; මෙහි <i>R</i> ර                   | > 0 co 0 < α <        | $\frac{\pi}{2}$ |

ගියලු ම හිමිකම් ඇවිරිණි /  $\psi\psi$  ාස්රාූූ හිතාවානු  $All\ Rights\ Reserved$ 

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

**සංයුක්ත ගණිතය I** இணைந்த கணிதம் **I** Combined Mathematics **I** 



## R කොටස

\* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

- 11.(a) k > 1 යැයි ගනිමු.  $x^2 2(k+1)x + (k-3)^2 = 0$  සමීකරණයට තාත්ත්වික පුභින්න මූල ඇති බව පෙන්වන්න. මෙම මූල  $\alpha$  හා  $\beta$  යැයි ගනිමු. k ඇසුරෙන්  $\alpha + \beta$  හා  $\alpha\beta$  ලියා දක්වා,  $\alpha$  හා  $\beta$  දෙකම ධන වන පරිදි වූ k හි අගයන් සොයන්න.  $\alpha$  දැන්, 1 < k < 3 යැයි ගනිමු. k ඇසුරෙන්,  $\alpha$  හා  $\alpha$  මූල වන වර්ගජ සමීකරණය සොයන්න.
  - (b)  $f(x) = 2x^3 + ax^2 + bx + 1$  හා  $g(x) = x^3 + cx^2 + ax + 1$  යැයි ගතිමු; මෙහි  $a,b,c \in \mathbb{R}$  වේ. (x-1) මගින් f(x) බෙදූ විට ශේෂය 5 බව හා  $x^2 + x 2$  මගින් g(x) බෙදූ විට ශේෂය x + 1 බව දී ඇත. a,b හා c හි අගයන් සොයන්න. තවද, a,b හා c සඳහා මෙම අගයන් සහිත ව, සියලු  $x \in \mathbb{R}$  සඳහා  $f(x) 2g(x) \le \frac{13}{12}$  බව පෙන්වත්න.
- 12.(a) පහත දී ඇති සංඛාහාංක 10 න් ගනු ලබන සංඛාහාංක 4 කින් සමන්විත, සංඛාහාංක 4 ක සංඛාහවක් සැදීමට අවශාව ඇත:

1, 1, 1, 2, 2, 3, 3, 4, 5, 5

- (i) තෝරා ගනු ලබන සංඛාහාංක 4 ම වෙනස් නම්,
- (ii) ඕනෑම සංඛනාංක 4 ක් තෝරාගත හැකි නම්,

සෑදිය හැකි එවැනි වෙනස් සංඛාහාංක 4 ක සංඛාහ ගණන සොයන්න.

(b)  $r \in \mathbb{Z}^+$ සඳහා  $U_r = \frac{-16r^3 + 12r^2 + 40r + 9}{5(2r+1)^2(2r-1)^2}$  යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා  $U_r = \frac{A(r-1)}{(2r+1)^2} - \frac{(r-B)}{(2r-1)^2}$  වන පරිදි A හා B තාත්ත්වික නියතයන් හි අගයන් සොයන්න.

**ඒ නයින්.**  $r\!\in\! \mathbb{Z}^+$  සඳහා  $\frac{1}{5^{r-1}}U_r=f(r)-f(r-1)$  වන පරිදි f(r) මසායා,

 $n \in \mathbb{Z}^+$ සඳහා  $\sum_{r=1}^n \frac{1}{5^{r-1}} \, U_r = 1 + \frac{n-1}{5^n (2n+1)^2}$  බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} rac{1}{5^{r-1}} U_r$  අපරිමිත ශ්‍රේණිය අභිසාරී බව **අපෝහනය** කර එහි ඓකාස සොයන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left( egin{array}{ccc} a & 0 & 3 \\ 0 & a & 1 \end{array} 
ight)$$
 හා  $\mathbf{B} = \left( egin{array}{ccc} a & 1 & 1 \\ 1 & 0 & 1 \end{array} 
ight)$  යැයි ගනිමු; මෙහි  $a \in \mathbb{R}$  වේ.

 ${f C}={f A}{f B}^{f T}$  යැයි ද ගනිමු. a ඇසුරෙන්  ${f C}$  සොයා, සියලු  $a\neq 0$  සඳහා  ${f C}^{-1}$  පවතින බව පෙන්වන්න. a ඇසුරෙන්  ${f C}^{-1}$ , එය පවතින විට, ලියා දක්වන්න.

$$\mathbf{C}^{-1}egin{pmatrix} 1 \\ 2 \end{pmatrix} = rac{1}{8}egin{pmatrix} 9 \\ -11 \end{pmatrix}$$
 නම්,  $a=2$  බව පෙන්වන්න.

a සඳහා මෙම අගය සහිතව,  $\mathbf{DC} - \mathbf{C^TC} = 8\mathbf{I}$  වන පරිදි  $\mathbf{D}$  නාහසය සොයන්න; මෙහි  $\mathbf{I}$  යනු ගණය 2 වන ඒකක නාහසය වේ.

- (b)  $z_1=1+\sqrt{3}i$  හා  $z_2=1+i$  යැයි ගනිමු.  $\frac{z_1}{z_2}$  යන්න x+iy ආකාරයෙන් පුකාශ කරන්න; මෙහි  $x,y\in\mathbb{R}$ . තවද,  $z_1$  හා  $z_2$  සංකීර්ණ සංඛාහ r>0 හා  $0<\theta<\frac{\pi}{2}$  වන  $r(\cos\theta+i\sin\theta)$  ආකාරයෙන් පුකාශ කර, ඒ නයින්,  $\frac{z_1}{z_2}=\sqrt{2}\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$  බව පෙන්වන්න.  $\cos\left(\frac{\pi}{12}\right)=\frac{1+\sqrt{3}}{2\sqrt{2}}$  බව අපෝහනය කරන්න.
- (c)  $n\in \mathbb{Z}^+$ ද  $k\in \mathbb{Z}$  සඳහා  $heta \neq 2k\pi \pm \frac{\pi}{2}$  යැයි ද ගතිමු. ද මුවාවර් පුමේයය භාවිතයෙන්,  $(1+i\tan\theta)^n=\sec^n\theta(\cos n\theta+i\sin n\theta)$  බව පෙන්වන්න. ඒ නයින්,  $(1-i\tan\theta)^n$  සඳහා එවැනි පුකාශනයක් ලබා ගෙන  $(1+i\tan\theta)^n+(1-i\tan\theta)^n=2\sec^n\theta\cos n\theta$  බව පෙන්වන්න.  $z=i\tan\left(\frac{\pi}{10}\right)$  යන්න  $(1+z)^{25}+(1-z)^{25}=0$  හි විසඳුමක් බව අපෝහනය කරන්න.
- 14.(a)  $x \neq 0, 2$  සඳහා  $f(x) = \frac{4x+1}{x(x-2)}$  යැයි ගනිමු.  $x \neq 0, 2$  සඳහා f(x) හි වනුත්පන්නය, f'(x) යන්න  $f'(x) = -\frac{2(2x-1)(x+1)}{x^2(x-2)^2}$  මගින් දෙනු ලබන බව පෙන්වන්න.

**ඒ නයින්**, f(x) වැඩි වන පුංත්තර හා f(x) අඩු වන පුංත්තර සොයන්න. ස්පර්ශෝත්මුඛ, x-අත්තෘඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න. මෙම පුස්තාරය භාවිතයෙන්,  $f(x)+\left|f(x)\right|>0$  අසමානතාව තෘප්ත කරන x හි සියලුම තාත්ත්වික අගයන් සොයන්න.

(b) යාබද රූපයෙහි අඳුරු කළ S පෙදෙසින් සෘජුකෝණාසුයකින් හා කේන්දයෙහි  $\frac{3\pi}{8}$  ක කෝණයක් ආපාතනය කරන වෘත්තයක කේන් දික බණ්ඩ දෙකකින් සමන්විත ගෙවත්තක් දැක්වේ. එහි මාන, මීටරවලින්, රූපයෙහි දක්වා ඇත. S හි වර්ගඵලය  $36\ m^2$  බව දී ඇත. S හි පරිමිතිය p m යන්න x>0 සඳහා  $p=2x+\frac{72}{x}$  මගින් දෙනු ලබන බව ද, x=6 විට p අවම වන බව ද පෙන්වන්න.



**15.**(a) සියලු  $x \in \mathbb{R}$  සඳහා  $x^4 + 3x^3 + 4x^2 + 3x + 1 = A(x^2 + 1)^2 + Bx(x^2 + 1) + Cx^2$  වන පරිදි A, B හා C නියතයන් හි අගයන් සොයන්න.

**ඒ න**යින්, 
$$\frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2}$$
 යන්න හින්න භාගවලින් ලියා දක්වා,

$$\int \frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2} \, \mathrm{d}x$$
 සොයන්න.

- $I=\int\limits_{0}^{rac{1}{4}} \sin^{-1}\Bigl(\sqrt{x}\Bigr) \mathrm{d}x$  යැයි ගනිමු.  $I=rac{\pi}{24}-rac{1}{2}\int\limits_{0}^{rac{1}{4}} \sqrt{rac{x}{1-x}} \,\mathrm{d}x$  බව පෙන්වා **ඒ නයින්**, I අගයන්න.
- (c)  $\frac{\mathrm{d}}{\mathrm{d}x} \Big( x \ln(x^2 + 1) + 2 \tan^{-1} x 2x \Big) = \ln(x^2 + 1)$  බව පෙන්වන්න.

ඒ නයින්, 
$$\int \ln(x^2+1) \, \mathrm{d}x$$
 මසායා,  $\int _0^1 \ln(x^2+1) \, \mathrm{d}x = \frac{1}{2} \left(\ln 4 + \pi - 4\right)$  බව පෙන්වන්න.

$$a$$
 නියතයක් වන  $\int\limits_0^a f(x)\mathrm{d}x = \int\limits_0^a f(a-x)\mathrm{d}x$  පුතිඵලය භාවිතයෙන්

$$\int_{-1}^{1} \ln \left[ (x^2 + 1)(x^2 - 2x + 2) \right] dx$$
 හි අගය සොයන්න.

**16.**  $P \equiv (x_1, y_1)$  ද l යනු ax + by + c = 0 මගින් දෙනු ලබන සරල රේඛාව ද යැයි ගනිමු. P ලක්ෂාය හරහා යන හා l ට ලම්බ වූ රේඛාව මත ඕනෑම ලක්ෂායක ඛණ්ඩාංක  $(x_1 + at, y_1 + bt)$  මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි  $t \in \mathbb{R}$ වේ.

$$P$$
 හි සිට  $l$ ට ලම්බ දුර  $\dfrac{\left|ax_1+by_1+c\right|}{\sqrt{a^2+b^2}}$  බව **අපෝහනය** කරන්න.

l යනු x+y-2=0 සරල රේඛාව යැයි ගනිමු.  $A\equiv (0,6)$  හා  $B\equiv (3,-3)$  ලක්ෂා l හි දෙපස පිහිටන බව පෙන්වන්න.

 $\emph{l}$  හා  $\emph{AB}$  රේඛාව අතර සුළු කෝණය සොයන්න.

l ස්පර්ශ කරන, පිළිවෙළින් A හා B කේන්දු සහිත  $S_1$  හා  $S_2$  වෘත්තවල සමීකරණ සොයන්න.

 $\emph{l}$  හා  $\emph{AB}$  රේඛාවේ ඡේදන ලක්ෂාය  $\emph{C}$  යැයි ගනිමු.  $\emph{C}$  හි ඛණ්ඩාංක සොයන්න.

 $S_1$  හා  $S_2$  ට C හරහා වූ අනෙක් පොදු ස්පර්ශකයේ සමීකරණය ද සොයන්න.

මූල ලක්ෂාය හරහා යන,  $S_1$  හි පරිධිය සමච්ඡේද කරන හා  $S_2$  ට පුලම්බ වෘත්තයේ සමීකරණය  $3x^2+3y^2-38x-22y=0$  බව පෙන්වන්න.

 $17.~(a)~\cos A, \cos B, \sin A$  හා  $\sin B$  ඇසුරෙන්  $\cos (A+B)$  හා  $\cos (A-B)$  ලියා දක්වන්න.

ඒ නයින්, 
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$
 බව පෙන්වන්න.

$$\cos C - \cos D = -2 \sin \left( \frac{C+D}{2} \right) \sin \left( \frac{C-D}{2} \right)$$
 බව **අපෝහනය** කරන්න.

$$\cos 9x + \cos 7x + \cot x (\cos 9x - \cos 7x) = 0$$
 සමීකරණය විසඳන්න.

(b) සුපුරුදු අංකනයෙන්, ABC තිුකෝණයක් සඳහා **කෝසයින නිබ්ය** පුකාශ කර සාධනය කරන්න.

$$n\in\mathbb{Z}$$
 සඳහා  $x\neq n\pi+rac{\pi}{2}$  යැයි ගනිමු.  $\sin2x=rac{2\tan x}{1+ an^2x}$  බව පෙන්වන්න.

$$ABC$$
 තිකෝණයක  $AB=20~{
m cm}$ ,  $BC=10~{
m cm}$  හා  $\sin 2B=rac{24}{25}$  බව දී ඇත.

එවැනි වෙනස් තුිකෝණ දෙකක් තිබෙන බව පෙන්වා, ඒ එක එකක් සඳහා AC හි දිග සොයන්න.

(c)  $\sin^{-1}\left[\left(1+e^{-2x}\right)^{-\frac{1}{2}}\right] + \tan^{-1}(e^x) = \tan^{-1}(2)$  සමීකරණය විසඳන්න.