MACHINE LEARNING IN PYTHON

COS 2021 SESSION 4 | HOLLY WIBERG

MACHINE LEARNING WORKFLOW FOR SUPERVISED LEARNING

SCIKIT-LEARN: THE PYTHON ML TOOLKIT

I. PROBLEM DEFINITION

What is our outcome of interest (y)?

Regression

- Continuous outcome: $y \in \mathbb{R}$
- Model outputs an estimated value $\hat{y} \in \mathbb{R}$
- Example: price of an Airbnb listing

Classification

- Discrete outcome: binary $(y \in \{0,1\})$ or multi-class
- Model outputs an estimated probability

$$\hat{y} = P(y = 1) \in [0,1]$$

Example: whether a listing has an elevator

What are the relevant variables available in the data that we can use for our predictive task?

Data cleaning: many algorithms require complete, numeric data to run models.

- Categorical features → one-hot encode
 - Add indicator variables for all possible levels of a categorical feature
- Missing data → remove/impute
 - Remove columns/rows that have "too much" missingness
 - Impute remaining missing values: median/mode imputation, K-nearest neighbors imputation, etc.

Listing ID	Max. Guests	City	 Elevator?	Price
ı	NA	NA	yes	105
2	8	Boston	no	150
3	2	Cambridge	yes	90
4	4	Boston	no	130
5	3	NA	yes	NA
6	NA	Brookline	no	110
7	6	Boston	no	98
8	2	Cambridge	no	70

Remove missing outcomes

Listing ID	Max. Guests	City	•••	Elevator?	Price
I	5	Boston		I	105
2	8	Boston		0	150
3	2	Cambridge		0	90
4	4	Boston		0	130
6	2	Brookline		0	110
7	6	Boston		0	98
8	2	Cambridge		0	70

Impute missing values

Listing ID	Max. Guests	City_Boston	City_Brookline	City_Cambridge	•••	Elevator?	Price
I	5	I	0	0		I	105
2	8	I	0	0		0	150
3	2	0	0	1		0	90
4	4	I	0	0		0	130
6	2	0	0	1		0	110
7	6	I	I	0		0	98
8	2	0	0	ſ		0	70

One-hot encode categorical values

Tools: pd.get_dummies()

III. MODEL TRAINING + EVALUATION

Now that our feature space is clean, we can split the data into train/validation/test sets to prepare for model training:

Training Data	Validation Data	Testing Data
---------------	-----------------	--------------

- 1. **Training Set:** The sample of the data used to create the predictive model. It is important this subset is large enough to yield statistically significant results. Generally, at least 60% of the data is allocated to the training set.
- 2. Validation Set: The sample of data used to provide an unbiased evaluation of a model on the training dataset while tuning model hyperparameters.
 - When using cross-validation, we will not explicitly separate the training/validation data. Multiple splits will be used to tune the hyperparameters.
- 3. **Testing Set:** The subset of data used to provide an unbiased evaluation of the final model. Evaluation on the testing set is also referred to as **out-of-sample** evaluation.

Tools: sklearn.model_seletion.train_test_split()

III. MODEL TRAINING + EVALUATION

Model Training

- Train models using various ML methods.
- Tune parameters within each method using the training and validation sets.
 - Parameter tuning is used to prevent our model from overfitting to the training data, making the models more generalizable to unseen data.

Tools: sklearn.model_selection.GridSearchCV()

Model Evaluation

- Compare performance across methods
 - **Regression:** R^2 , root mean-squared error (RMSE)
 - Classification: Area under the ROC curve (AUC), threshold-based metrics (accuracy, sensitivity, specificity)

Tools: sklearn.metrics

LINEAR MODELS: OLS REGRESSION

Ordinary Least Squares (OLS)

- Predict $y \in \mathbb{R}$ as a linear function of the input variables $(x_i \in \mathbb{R}^p) : \hat{y} = \beta^T x$
- Find the coefficients $\beta \in \mathbb{R}^p$ by minimizing the least squares loss function

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (\beta^T x_i - y_i)^2$$

• We won't talk about the details behind solving this problem, but the optimal β^* can be written in closed form.

LINEAR MODELS: REGULARIZED REGRESSION

Regularization is a tool which helps us to avoid overfitting by penalizing model complexity. Mathematically, we add a term to the loss function in the optimization problem to be solved. Our new loss function is:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (\beta^{T} x_{i} - y_{i})^{2} + \lambda \Omega(\beta)$$

LASSO: $\Omega(\beta) = \|\beta\|_1$ Ridge Regression: $\Omega(\beta) = \|\beta\|_2^2$

LASSO and Ridge regression both shrink the elements of the optimal β^* vector towards 0, but in different ways.

We will focus on LASSO -- which tends to shrink the coefficients so that some are equal to 0. This is nice because it helps us interpret the model by making it **sparser**.

LINEAR MODELS: LOGISTIC REGRESSION

Logistic Regression is a generalized linear model (GLM) for binary classification. It maps a linear fit through a nonlinear function f() and returns a probability that the outcome class is 1.

$$P(y_i = 1) = f(\beta^T x_i) = \frac{1}{1 + e^{-(\beta^T x_i)}}$$

Since the function stays between zero and one, it can be interpreted as a mapping from predictor values to a probability of being in one of two classes.

LINEAR MODELS: LOGISTIC REGRESSION

Logistic Regression is a generalized linear model (GLM) for binary classification. It maps a linear fit through a nonlinear function f() and returns a probability that the outcome class is 1.

We find the optimal β by minimizing the logistic loss:

$$\min_{\beta} \left(\frac{1}{n} \sum_{i=1}^{n} -y_i \log f(\beta^T x_i) - (1 - y_i) \log \left(1 - f(\beta^T x_i) \right) \right)$$

Loss if $y_i = 0$ \rightarrow high penalty for predictions near I

Loss if $y_i = 1$ \rightarrow high penalty for predictions near 0

DECISION TREES

- Decision trees partition the feature space through a series of splits, such that each observation ends up in a leaf node.
 - It is built to minimize a loss function which quantifies the error of the model. Splits are chosen based on how much they improve the tree's loss.
- Each leaf has a predicted y based on the average outcome of the leaf members.
- Various implementations: CART (Breiman 1984), Optimal Classification/Regression Trees (Bertsimas and Dunn 2017).

DECISION TREES

- Decision trees partition the feature space through a series of splits, such that each observation ends up in a leaf node.
 - It is built to minimize a loss function which quantifies the error of the model. Splits are chosen based on how much they improve the tree's loss.
- Each leaf has a predicted y based on the average outcome of the leaf members.
- Various implementations: CART (Breiman 1984), Optimal Classification/Regression Trees (Bertsimas and Dunn 2017).

ENSEMBLE MODELS

- A Random Forest model consist of a collection of classification trees, where each one uses a random sample
 of the training data and predictive variables.
- **Each tree "votes"** on the predicted outcome of every observation, and the final prediction is taken to be the majority vote.

Ensemble Method: Uses a large group of trees to generate predictions. This allows it to capture more complex decision boundaries. XGBoost is another popular method of this type.

Higher Accuracy – Lower Interpretability

III. MODEL TRAINING + EVALUATION

Method	Туре	Python Implementation	Pros	Cons
Linear/Logistic Regression	Linear	<pre>sklearn.linear_model - Lasso() - LogisticRegression()</pre>	Highly interpretable.	Does not capture interactions between variables.
Decision Tree	Tree-Based	<pre>sklearn.tree - DecisionTreeClassifier() - DecisionTreeRegressor()</pre>	Highly interpretable, models nonlinear relationships.	Does not capture linear dependence on variables.
Random Forests	Ensemble	<pre>sklearn.ensemble - RandomForestClassifier() - RandomForestRegressor()</pre>	Highly performant, models nonlinear relationships.	No single final model, less interpretable.
XGBoost	Ensemble	<pre>xgb - XGBClassifier() - XGBRegressor()</pre>	State-of-the-art performance, models nonlinear relationships.	No single final model, less interpretable, more parameter tuning.

... and many others!

III. MODEL EVALUATION: CONTINUOUS OUTCOME

(Root) Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2}$$

R-Squared (R^2)

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}$$

- Proportion of variance in the data which is explained by the model: how much better does the model predict y than a baseline of just predicting the average?
- More interpretable measure of accuracy (maximum value = 1)

III. MODEL EVALUATION: CLASSIFICATION

Threshold-based metrics: compare actual outcomes to predicted outcomes using a confusion matrix (classification matrix). We turn probabilities into 0/1 predictions by prediction 1 if $\hat{y} > \tau$ and 0 otherwise, for a threshold τ

	Predicted Class = 0	Predicted Class = I
Actual Class = 0	True Negatives (TN) 🗸	False Positives (FP) 🗶
Actual Class = I	False Negatives (FN) 🗙	True Positives (TP) 🗸

- Accuracy = (TN+TP)/ # of observations
- A different threshold value (τ) changes the types of errors
 - Sensitivity = TP/(TP+FN)
 - Specificity = TN/(TN + FP)

Question: What is the "right" threshold for a prediction task?

III. MODEL EVALUATION: CLASSIFICATION

ROC Curve: plot true positives vs. false positives across all thresholds $\tau \in [0,1]$

Area under the ROC Curve (AUC) measures how well the model discriminates between positive and negative cases, *independent* of threshold.

- An AUC of 0.5 means the model is random.
- An AUC of I means that the model perfectly identifies true positives and negatives.

Receiver Operator Characteristic Curve

IV. MODEL INTERPRETATION

Method	How to Interpret?
Linear/Logistic Regression	Coefficients: direction (positive -> increase prediction) and magnitude (but be careful about variable scales!)
Decision Tree	Tree decision paths : what characterizes leaves with high (and low) predictions? What dependencies do you find between variables?
Random Forests	Feature importance plots: estimate how much each variable contributes to
XGBoost	predictions. SHAP values: advanced importance estimation.

DEMO: PREDICTING AIRBNB PRICE AND AMENITIES

Let's move over to Python!