KT projektas Kompiuterių tinklo projektavimas ir modeliavimas

Metodiniai nurodymai

1. <u>Užduoties aprašo paaiškinimas</u>

Reikia suprojektuoti ir sumodeliuoti Cisco Packet Tracer aplinkoje duoto rajono 5 mokyklų kompiuterių tinklą.

Studentui techninė užduotis pateikiama vedančio užsiėmimus dėstytojo individualiai pagal MS Excel failą, kur užduoties aprašymas susideda iš vienos eilutės, kurioje nurodytos 5 mokyklų tinklų konfigūracijos ir IP adresų segmentai. Eilutės numerį XX atitinkančiame **slideXX.jpg** paveikslėlyje parodytas mokyklų išdėstymas žemėlapyje ir jas jungiantis optinis kabelis. Paveikslėlyje naudojami tokie pažymėjimai:

- šiuo ženklu žymimas rajono centras, o tokiu ženklu — mokykla. Ją žymėsim ne numeriu, bet šalia žemėlapyje pažymėtos gyvenvietės pavadinimo trumpiniu (pvz.: Matuizos – žymimos **Mat**)

Mokyklų tinklo centrinis mazgas įrengiamas rajono centre. Jame statomas rajono maršrutizatorius, kuris jungia užduotyje nurodytų mokyklų tinklus. Prie jo prijungiamas serveris.

Mokyklos tinklo konfigūracija.

- 1. Konfigūracijos užduotyje ženklas "+' skiria fiziškai skirtingose klasėse esančių kompiuterių skaičius. Skaičius nurodo kiek kompiuterių yra klasėje. Kiekvienos klasės kompiuteriai jungiami prie **atskiro komutatoriaus** Jei kompiuterių skaičius klasėje viršija laisvų jungčių komutatoriuje kieki, klasėje prijungiamas papildomas komutatorius.
- 2. Raidė "v" pažymi viešam naudojimui skirtus potinklius, o raidė "a" pažymi administracijai skirtus potinklius. Jei po raidžių "a" ar "v" prirašyta "W", tame pačiame potinklyje dar reiks prijungti belaidės prieigos įrenginį. Belaidis prisijungimas turi būti saugus.
- 3. Kiekvienoje mokykloje komutatoriai sujungiami tarpusavyje nuosekliai.
- 4. Jei mokykloje yra ir viešas ir administracijos potinklis, jie sujungiami per maršrutizatorių, kuris jungiamas į mokyklas su rajono centru jungiantį kamieninį tinklą. Vieno potinklio atveju (tik "v") mokyklos komutatorius jungiamas tiesiai į kamieninį tinklą, jei mokykloje nestatomas maršrutizatorius.
- 5. Mokyklos kompiuteriai prie komutatorių jungiami variniu kabeliu, 100 Mbps Ethernet UTP (Unshielded twisted pair) jungtimis (Fast Ethernet). Komutatoriai tarpusavyje ir į maršrutizatorių jungiami variniu kabeliu per 1 Gbps UTP jungtis (Gigabit Ethernet). Į optiniais kabeliais sujungtą kamieninį tinklą įrenginiai jungiami naudojant 1 Gbps (Gigabit Ethernet) optines jungtis.
- 6. Maršrutizatorių mokykloje statyti būtina ir šiais papildomais atvejais:
- mokyklos tinklo konfigūracijoje nurodyta "+R": privaloma mokyklos tinklą atskirti per maršrutizatorių;
- mokyklos ženklas schemoje uždėtas kabelio viduryje arba ant išsišakojimo. Tai reiškia, kad ant to
 paties kabelio toliau esanti mokykla nebus jungiama atskiru ryšiu į rajono centrą, o bus jungiama
 nuosekliai per šios mokyklos maršrutizatorių:

- 7. Jeigu maršrutizatoriaus reikia dėl dviejų priežasčių (užduotyje mokykla pažymėta +R ir mokyklos ženklas yra ant kabelio), tai užtenka vieno maršrutizatoriaus.
- 8. Rajono centre reikalingas maršrutizatorius mokyklų tinklams sujungti į rajono tinklą ir serveris, kuriame bus paskirti resursai mokykloms. Serveryje reikia aktyvuoti HTTP ir pakeisti index.html. Jame turi būti studento vardas pavardė, užduoties varianto schema ir konfigūracijos duomenys.
- 9. Tinklo mazgų pažymėjimus parinkti taip, kad jie atspindėtų mazgo tipą ir vietą tinkle topologijoje. Maršrutizatoriaus pavadinimą pradėti raide R, komutatoriaus raide K, stacionaraus kompiuterio PC, belaidžio įrenginio W, prie jo jungiamą nešiojamą kompiuterį– N.
- 10. Jungiant kompiuterius prie komutatorių iš kiekvieno užduotyje pažymėto potinklio prijungti du kompiuterius: pirmąjį PCxxx1 prie numeriu 1 žymimos jungties, paskutinį –prie atitinkamą numerį turinčios jungties. Jei paskutiniojo numeris didesnis už didžiausią jungties numerį, prijungti papildomą komutatorių ir atitinkamai perskaičiuoti jungties numerį.
- 11. Belaidės prieigos įrenginius jungti prie atitinkamo potinklio komutatoriaus ir prie jų pavaizduoti po du nešiojamus kompiuterius. Nešiojamiems kompiuteriams statiniai IP numeriai nesuteikiami. Juos, laikinus, turi duoti belaidės prieigos įrenginys. Nustatyti SSID (**s**ervice **s**et **id**entifier) ir prisijungimo slaptažodžius.

Tinklo mazgams adresuoti užduotyje nurodyti trys IP adresų segmentai. Viešų mokyklos kompiuterių adresacijai naudojami adresai iš segmento "Viešiems mokyklų tinklams", administracijos kompiuteriams ir rajono serveriui - iš segmento "Mokyklų administracijų tinklams", maršrutizatorių sujungimui - iš segmento "Tarnybiniams ryšiams".

2. <u>Tinklo topologinės schemos projektavimas</u>

	Mokyklų tinklų konfigūracija						IP numerių intervalai		
Jpg Nr	1	2	3	4	5	Viešiems tinklams	Administracijų tinklams	Tarnybiniams ryšiams	
XX	12v+10v	12v+25vW+5a	8v+4vW	18v	12v+20v+R	172.16.0.0/23	192.168.0.0/24	10.10.10.128/26	

Pagal aukščiau nurodytas taisykles šakoje **Skuodas-Aleksandrija-Ylakiai** Aleksandrija ir Ylakiai jungiami į rajono centrą atskirais ryšiais; šaka **Skuodas –Barstyčiai-Šatės-Notėnai** – mišri: Šatės ir Barstyčiai tiesiogiai jungiami su Skuodu, bet Notėnai jungiami nuo Šačių mokyklos nuosekliai. Maršrutizatoriai bus reikalingi:

- Ylakiuose: atskirti a ir v potinklius (12v+20v ir 5a)
- Barstyčiuose: kadangi nurodyta +R
- Šatėse: kadangi Notėnai jungiami nuosekliai, nuo Šačių.

Mokykloms (Notėnai ir Aleksandrija), kuriose yra tik "v" tipo potinkliai numatome išankstinį komutatorių kiekį: Notėnuose -1, Aleksandrijoje — 2. **Pastaba: Jei pritrūks jungčių visiems kompiuteriams prijungti, dėliodami įrangą panaudosime papildomus komutatorius**. Aleksandrijoje komutatorius sujungiame tarpusavyje ir prijungiame vieną iš jų prie rajono maršrutizatoriaus. Mokykloje (Ylakiai), kurioje yra "v" ir "a" tipo potinkliai pastatome mašrutizatorių **Ryla**k, per kurį sujungiame "v" ir "a" tipo potinklius. Kadangi Barstyčių konfigūracijoje nurodyta +R, Barstyčių mokyklos tinklą su dviem komutatoriais jungiame per maršrutizatorių **Rbar**, o Šatėse tenka statyti tarpinį maršrutizatorių **Rsat** dėl to, kad nuo jo reiks jungti Notėnų mokyklą. Šačių ir Ylakių viešuose potinkliuose dar reiks prie komutatoriaus prijungti belaidės prieigos įrenginius **W1-sat-v2** ir **W1-ylak-v2**. Gauname žemiau parodytą topologinę schemą.

3. IP adresų paskirstymas

Tinklo topologijoje išskiriame atskirus IP potinklius ir nustatome adresuojamų sąsajų skaičių juose. Pirmiausia nustatome kiek IP adresų reikia kiekvienam potinkliui. Suskaičiuojame potinklyje esančius

kompiuterius ir pridedame po vieną adresą maršrutizatoriaus jungčiai ir belaidės prieigos įrenginiui, jei tame potinklyje jis numatytas.

Mūsų pavyzdyje:

LAN	Numeruojama sąsajų	Potinklio tipas	Potinklio dydis	Prefiksas	Kaukė	Adresų segmentas nuo - iki
Sskuo-Rskuo	1+1	Admin				
Rskuo-Rylak	1+1	Tarnyb				
Rskuo-Rsat	1+1	Tarnyb				
Rskuo-Rbar	1+1	Tarnyb				
sat	8+4+1+1	Viešas				
not	18+1	Viešas				
bar	12+20+1	Viešas				
ale	12+10+1	Viešas				
ylak-v	12+25+1+1	Viešas				
Ylak-a	5+1	Admin				

Pastaba: segmento pradžios adresas visada turi dalintis iš segmento dydžio.

Nustatome reikalingus adresų segmentų dydžius. Nepamirškite, kad segmentų dydžiai gali būti tik 2ⁿ, be to kraštiniai numeriai numeracijai nenaudojami (potinklio adresas ir transliacijos angl. "Broadcast" adresas). Pavyzdžiui 7 sąsajoms numeruoti jau reikia 16 adresų segmento.

Parenkame potinklius iš užduotyje duotų adresų segmentų pagal potinklio tipą. Prefiksą ir kaukę apsiskaičiuojame arba imame iš šios lentelės:

Prefiksas	Kaukė	Adresų segmento dydis
/30	255.255.255.252	4
/29	255.255.255.248	8
/28	255.255.255.240	16
/27	255.255.255.224	32
/26	255.255.255.192	64
/25	255.255.255.128	128
/24	255.255.255.0	256
/23	255.255.254.0	512
/22	255.255.252.0	1024

Lentelėje susižymime reikalingus potinklių dydžius ir jiems atitinkančius prefiksus ir kaukes.

LAN	Numer	Potinklio	Potin	Prefik	Kaukė	Adresų segmentas nuo - iki
	uojama	tipas	klio	sas		
	sąsajų		dydis			
Sskuo-Rskuo	2	Admin	4	/30	255.255.255.252	
Rskuo-Rylak	2	Tarnyb	4	/30	255.255.255.252	
Rskuo-Rsat	2	Tarnyb	4	/30	255.255.255.252	
Rskuo-Rbar	2	Tarnyb	4	/30	255.255.255.252	
sat	14	Viešas	16	/28	255.255.255.240	
not	19	Viešas	32	/27	255.255.255.224	
bar	33	Viešas	64	/26	255.255.255.192	
ale	23	Viešas	32	/27	255.255.255.224	
ylak-v	39	Viešas	64	/26	255.255.255.192	
Ylak-a	6	Admin	8	/29	255.255.255.248	

Taigi, jei **Sskuo-Rskuo** potinkliui skiriame 4 adresus 192.168.0.0/30, tai sekančiam 8 adresų potinkliui **Ylak-a** mes negalime skirti 8 adresų nuo 192.168.0.4/29, o turime skirti nuo 192.168.0.8/29. Ta pati situacija pereinant iš **sat – not- bar** ir iš **ale į ylak-v** eilutes. Problemos galima išvengti pirmiau skiriant adresus didesniems potinkliams, pvz. išdėsčius potinklius lentelėje mažėjimo tvarka:

LAN	Numer	Potinklio	Potin	Prefik	Kaukė	Adresų segmentas nuo - iki
	uojama	tipas	klio	sas		
	sąsajų		dydis			
Rskuo-Rylak	2	Tarnyb	4	/30	255.255.255.252	
Rskuo-Rsat	2	Tarnyb	4	/30	255.255.255.252	
Rskuo-Rbar	2	Tarnyb	4	/30	255.255.255.252	
bar	33	Viešas	64	/26	255.255.255.192	
ylak-v	39	Viešas	64	/26	255.255.255.192	
not	19	Viešas	32	/27	255.255.255.224	
ale	23	Viešas	32	/27	255.255.255.224	
sat	14	Viešas	16	/28	255.255.255.240	
Ylak-a	6	Admin	8	/29	255.255.255.248	
Sskuo-Rskuo	2	Admin	4	/30	255.255.255.252	

Į paskutinį stulpelį užrašome adresų segmento pradžios ir pabaigos adresus. Pvz. jei potinklio dydis 64 adresai ir potinklis yra 192.168.91.0/26, tai potinklio adresų aibė bus 192.168.91.0-192.168.92.63. Nepamirškime, kad sąsajų adresams niekada nenaudojamas pirmas ir paskutinis adresas, t.y. sąsajoms lieka 62 adresai 192.168.91.1-192.168.92.62.

Pagal užduotį turime tokius IP adresų segmentus:

Viešiems mokyklų tinklams	172.16.0.0/23
Administracijų tinklams	192.168.0.0/24
Tarnybiniams ryšiams	10.10.10.128/26

LAN	Numer	Potinklio	Potin	Prefik	Kaukė	Adresų segmentas nuo - iki
	uojama	tipas	klio	sas		
	sąsajų		dydis			
Rskuo-Rylak	2	Tarnyb	4	/30	255.255.255.252	10.10.10.128-10.10.10.131
Rskuo-Rsat	2	Tarnyb	4	/30	255.255.255.252	10.10.10.132-10.10.10.135
Rskuo-Rbar	2	Tarnyb	4	/30	255.255.255.252	10.10.10.136-10.10.10.139
ylak-v	39	Viešas	64	/26	255.255.255.192	172.16.0.0-172.16.0.63
bar	33	Viešas	64	/26	255.255.255.192	172.16.0.64-172.16.0.127
ale	23	Viešas	32	/27	255.255.255.224	172.16.0.128-172.16.0.159
not	19	Viešas	32	/27	255.255.255.224	172.16.0.160-172.16.0.191
sat	14	Viešas	16	/28	255.255.255.240	172.16.0.192-172.16.0.207
Ylak-a	6	Admin	8	/29	255.255.255.248	192.168.0.0-192.168.0.7
Sskuo-Rskuo	2	Admin	4	/30	255.255.255.252	192.168.0.8-192.168.0.11

Paskirsčius adresus naudinga žinoti, kokie adresų segmentai liko nepanaudoti, kad galėtume plėsti tinklą atlikdami darbo gynimui nurodomas užduotis.

Paskirtis	Duotas segmentas	Panaudota	Liko laisvų
Viešiems mokyklų tinklams	172.16.0.0/23	172.16.0.0-172.16.0.207	172.16.0.208-172.16.1.255
Administracijų tinklams	192.168.0.0/24	192.168.0.0-192.168.0.11	192.168.0.12-192.168.0.255
Tarnybiniams ryšiams	10.10.10.128/26	10.10.10.128-10.10.10.139	10.10.10.140-10.10.10.191

Kad nepadaryti klaidų mintinai paskaičiuojant Gateway adresus ir dėliojant IP adresus kompiuteriams, susidarome papildomą lentelę:

LAN	Kompiute- rių skaičius	Kaukė	Adresų segmentas nuo - iki	Gateway (Maršrutizatoriaus jungties) adresas	Adresai kompiuteriams	Adresas belaidžiam įrenginiui
ylak-v	37	255.255.255.192	172.16.0.0-63	172.16.0.62	172.16.0.1-37	172.16.0.38
bar	32	255.255.255.192	172.16.0.64-127	172.16.0.126	172.16.0.65-96	
ale	22	255.255.255.224	172.16.0.128-159	172.16.0.158	172.16.0.129-150	
not	18	255.255.255.224	172.16.0.160-191	172.16.0.190	172.16.0.161-178	
sat	12	255.255.255.240	172.16.0.192-207	172.16.0.206	172.16.0.193-204	172.16.0.205
ylak-a	5	255.255.255.248	192.168.0.0-7	192.168.0.6	192.168.0.1-5	
Sskuo- Rskuo	1	255.255.255.252	192.168.0.8-11	192.168.0.10	192.168.0.9	

Atlikus darbą iki šios vietos, jei yra abejonių, reikia konsultuotis su dėstytoju. Realizuoti tinklą pagal klaidingą projektą nepavyks.

Maršrutų lentelių sudarymą atliksime vėliau, kai Cisco Packet Tracer surinksime tinklo elementus, juos sujungsime ir konfigūruosime IP adresus.

4. <u>Tinklo topologija</u> Cisco Packet Tracer programoje

Topologija sudarome tokia tvarka:

- 1. Tinkamu tinklo įrenginių pasirinkimas.
 - a. Maršrutizatoriai. Reikalingi maršrutizatoriai, turintys Gigabit Ethernet tiek UTP, tiek optines jungtis. Iš pateikiamų tenkina "Router PT" ar "Router PT Empty".
 - b. Komutatoriai. Reikalingos Fast Ethernet UTP jungtys kompiuteriams ir Gigabit Ethernet UTP jungtys tarpusavio sujungimams. Šiuos reikalavimus geriausiai atitinka 2950T ar 2960 modeliai, turintys po 24 FastEthernet ir po 2 Gigabit Ethernet jungtis. Tačiau jie neturi optinių jungčių ir netinkami jungti į kamieninį tinklą. Tam tinka modulinis komutatorius "Switch PT Empty", kuriame galime susirinkti reikalingą modulių kombinaciją iki 10 jungčių. Mūsų pavyzdyje šiuos komutatorius naudosime jungdami į kamieninį tinklą Notėnų ir Aleksandrijos mokyklų tinklus.
 - c. Belaidės priegos įrenginiui realizuoti Access point tipo įrenginiai nelabai tinkami. Statinių IP adresų nešiojamiems kompiuteriams nenorime, o dinaminius dalinti DHCP (Dynamic Host Configuration Protocol) būdu mokyklose būtų reikalingi

atitinkami serveriai. Naudosime belaidį maršrutizatorių WRT300N. Apžiūrėję jo savybes matome, kad jam galima bus suteikti statinį IP adresą, o prisijungiantiems nešiojamiems kompiuteriams jis gali būti nustatytas DHCP serveriu ir dalinti IP numerius iš reguliuojamo dydžio 192.168.0.0/24 adresų segmento.

- 2. Į darbalaukį sukeliame tinklo topologinėje schemoje numatytus įrenginius. Patogiausia paeiliui imti ir iki galo sudėlioti kiekvieną tinklo zoną pradedant nuo rajono centro. Pagal topologinę schemą sužymime įrenginių pavadinimus, pagal IP adresų lentelę sukonfigūruojame kompiuterių ir maršrutizatorių sąsajų IP adresus. Kai kuriose vietose pritrūks jungčių komutatoriuose jungiant pagal 1 skyriaus 10 punkto taisykles. Reiks įkelti papildomus komutatorius, kurių nėra topologinėje schemoje.
- 3. Įrenginių jungimas. Įrenginių sujungimui galime naudoti "Automaticaly choose" sujungimo tipą, tačiau jis automatiškai parenka ir sąsają. Geriau pasirinkti konkretų: Fiber optiniam, Cooper Straight-Through jungiant kompiuterius su komutatoriais ir komutatorius su maršrutizatoriumi. Tarp to paties tipo įrenginių naudojamas senstelėjęs jungimo metodas Cooper Cross-Over. Jungiamas sąsajas pasirinksime patys.

Mūsų pavyzdyje įkeliame **Rskuo**, jame įdedame modulį 1CFE serverio jungimui ir keturis modulius 1FGE kamieninių ryšių jungimui. Įkeliame ir prijungiame serverį, pakeičiame pavadinimus, ant sąsajų nustatome IP adresus, serveriui papildomai nurodome Gateway:

Serveryje aktyvuojame HTTP servisą, paredaguojame index.html įrašydami savo vardą, pavardę, gr. ir užduotį (užduoties paveiksliuką įkelti į ...Cisco Packet Tracer 6.2\saves).

Taip pat surenkame **Šačių** mokyklos tinklą. Maršrutizatoriuje **Rsat** įdėsime du 1FGE modulius kamieninių ryšių jungimui ir vieną 1CGE komutatoriaus prijungimui, sujungsime abu maršrutizatorius ir prijungsime du komutatorius. Nustatome IP adresus ryšiui **Rskuo-Rsat** iš lentelės, <u>neimdami kraštinių</u>, t.y imdami 10.10.10.33 ir 10.10.10.34. Ant CGE jungties į komutatorių uždėsime **paskutinį galimą** IP numerį iš segmento **sat**: 172.16.0.206. Visiems **sat** potinklyje esantiems mazgams šis adresas bus Gateway adresu.

Prie komutatoriaus K1-sat-v1 FastEthernet 0/1 ir 0/8 sąsąjų prijungiame kompiuterius. Įdedame komutatorių K2-sat-v2, sujungiame komutatorius per Gigabit Ethernet sąsąjas, prie sąsąjų FastEthernet 0/1 ir 0/4 prijungiame kompiuterius, o prie sąsąjos 0/5 – belaidį maršrutizatorių (sąsąja Internet). Šalia jo atkeliame du nešiojamus kompiuterius. Juose įdėtos netinkamos sąsąjos, pakeičiame į WPC300N. Belaidis ryšis atsiras automatiškai. Kompiuteriams nustatome IP konfigūracijas pagal lentelę. Imsime 8 numerius iš eilės nuo 172.16.0.193 iki 200 pirmam potinkliui ir 4 nuo 172.16.0.201 iki 204 antram. Belaidžio maršrutizatoriaus Internet sąsąjai liko 172.16.0.205. Perėję į W1-sat-v2 GUI patikrinsime, kad IP numeris nustatytas, DHCP įjungtas, nešiojamiems kompiuteriams bus dalinami adresai nuo 192.168.0.100. Tinka. SSID nustatome pagal mokyklos pavadinimą. Tačiau negalima palikti atviros belaidės prieigos. Šiame darbe nustatysime bent minimalų saugumą: ant Wireless sąsąjos nustatome WPA2-PSK su bendru slaptažodžiu "pavyzdys". Paruošę abi užduotyje numatytas belaides zonas nešiojamuose kompiuteriuose "Desktop"-> "PC Wirelless" galime pabandyti prisijungti prie kiekvienos iš ju:

Galima pabandyti **ping** iš nešiojamų kompiuterių į stacionarius. Tačiau jungtis į serverį dar nepavyks: nenustatyti maršrutai.

Notėnams parinkus tinkamą jungimui į kamieninį tinklą komutatorių likusių jungčių nepakanka visiems 18 kompiuterių sujungti. Todėl jame įdėsime tik du modulius,

o kompiuteriams jungti imame papildomą komutatorių 2950T. Notėnų tinklą į kamieninį jungia Šačių maršrutizatorius, todėl jis bus "Gateway" Notėnų kompiuteriams ir jo atitinkamai sąsajai skirsime adresą 172.16.0.190.

Ylakių maršrutizatoriui reiks vieno optinio ir dviejų varinių Gigabit Ethetnet sąsajų. Dėliodami kompiuterius pastebime, kad **K2-ylak-v2** komutatoriui nepakanka jungčių ir reikia papildomo, prie kurio reiks prijungti 25-tą kompiuterį ir belaidį maršrutizatorių.

Rylak jungčiai į "v" potinklį dedame adresą 172.16.0.62, jungčiai į "a" potinklį 192.168.0.6.

Pilna modeliuojamo tinklo schema:

5. Maršutų lentelių sudarymas

Sujungę visas mokyklas ir nustatę IP numerius, pereiname prie sekančio etapo - maršrutų tarp tinklų nustatymo. Maršrutizatoriai turi užtikrinti duomenų perdavimą tarp visų mokyklų tinklų ir serverio, o taip pat tarp mokyklų tinklų tarpusavyje.

1. Pasitikriname maršrutizatorių jungčių adresus, sulyginame su IP adresų lentele, patikriname, kad visos reikalingos jungtys turėtų konkrečius IP adresus. Pravartu susižymėti maršrutizatorių sasajų numerius darbastalio schemoje.

2. Sudarome maršrutų lenteles maršrutizatoriams nurodydami kelius į tuos tinklus, kurie nėra tiesiogiai prijungti prie maršrutizatoriaus jungčių (pastaruosius įtrauks automatiškai).

Sudarysime maršrutų lentelę maršrutizatoriui **Rskuo** į tuos tinklus, kurie pasiekiami per kitus maršrutizatorius. Iš **Rskuo** per **Rsat** maršrutizatorių pasiekiami **sat** ir **not**, per **Rbar** - **bar** ir per **Rylak ylak-v** ir **ylak-a**. Taigi, juos išvardinsime lentelėje:

Rskuo

Žymėjimas	Tinklo IP	Tinklo kaukė	Per kurį	Sekančio šuolio
	adresas		maršrutizatorių	adresas
sat	172.16.0.192	255.255.255.240	Rsat	
not	172.16.0.160	255.255.255.224	Rsat	
bar	172.16.0.64	255.255.255.192	Rbar	
Ylak-v	172.16.0.0	255.255.255.192	Rylak	
Ylak-a	192.168.0.0	255.255.255.248	Rylak	

Belieka surašyti gretimų maršrutizatorių IP adresus. Čia būtina nurodyti tą gretimo maršrutizatoriaus jungties adresą, kuri jungia ryšį į **Rskuo**.

Rskuo

Žymėjimas	Tinklo IP	Tinklo kaukė	Per kurį	Sekančio šuolio
	adresas		maršrutizatorių	adresas
sat	172.16.0.192	255.255.255.240	Rsat	10.10.10.133
not	172.16.0.160	255.255.255.224	Rsat	10.10.10.133
bar	172.16.0.64	255.255.255.192	Rbars	10.10.10.138
Ylak-v	172.16.0.0	255.255.255.192	Rylak	10.10.10.130
Ylak-a	192.168.0.0	255.255.255.248	Rylak	10.10.10.130

Analogiškai sudarome maršrutų lenteles maršrutizatoriams Rbars, Rsat ir Rylak

Rhar:

Žymėjimas	Tinklo IP	Tinklo kaukė	Per kurj	Sekančio šuolio
	adresas		maršrutizatorių	adresas
Sskuo-	192.168.0.8	255.255.255.252	Rskuo	10.10.10.137
Rskuo				
sat	172.16.0.192	255.255.255.240	Rskuo	10.10.10.137
not	172.16.0.160	255.255.255.224	Rskuo	10.10.10.137
Ylak-v	172.16.0.0	255.255.255.192	Rskuo	10.10.10.137
Ylak-a	192.168.0.0	255.255.255.248	Rskuo	10.10.10.137
ale	172.16.0.128	255.255.255.224	Rskuo	10.10.10.137

Schemoje matome, kad į visus išvardintus tinklus kelias tas pats: per **Rskuo** jungtį Gig4/0.

Rsat:

Žymėjimas	Tinklo IP	Tinklo kaukė	Per kurį	Sekančio šuolio
	adresas		maršrutizatorių	adresas
Sskuo-	192.168.0.8	255.255.252	Rskuo	10.10.10.134
Rskuo				
bar	172.16.0.64	255.255.255.192	Rskuo	10.10.10.134
Ylak-v	172.16.0.0	255.255.255.192	Rskuo	10.10.10.134
Ylak-a	192.168.0.0	255.255.255.248	Rskuo	10.10.10.134
ale	172.16.0.128	255.255.255.224	Rskuo	10.10.10.134

Kelias į išvardintus tinklus eina per **Rskuo** jungtį Gig1/0, sat ir not tinklai prijungti tiesiogiai.

Rylak:

Žymėjimas	Tinklo IP	Tinklo kaukė	Per kurį	Sekančio šuolio
	adresas		maršrutizatorių	adresas
Sskuo-	192.168.0.8	255.255.252	Rskuo	10.10.10.129
Rskuo				
bar	172.16.0.64	255.255.255.192	Rskuo	10.10.10.129
sat	172.16.0.192	255.255.255.240	Rskuo	10.10.10.129
not	172.16.0.160	255.255.255.224	Rskuo	10.10.10.129
ale	172.16.0.128	255.255.255.224	Rskuo	10.10.10.129

Konfigūruojame maršrutizatoriams "Routing-> Static" lenteles:

6. Tinklo konfigūracijos testavimas

1. Tinklo veikimą tikrinsime iš kompiuterių į serverį ir kitus kompiuterius leisdami ping ir tracert komandas, per naršyklę prisijungdami prie serverio:

Galima pabandyti "Add simple PDU" vokelį užnešti ant pradinio ir galinio mazgų, iš "Realtime" pereiti į "Simulation" režimą ir paspausdus "Play" stebėti paketo judėjimą tinklu.

7. Darbo išvados

Aprašyti kiek gauti rezultatai atitinka užduotį, ar užduotis įvykdyta pilnai, ar liko problemų ir kokios jos

8. Darbo ataskaita

Etapo	Eil.	Dalies	
Nr.	Nr	pavadinimas	
1	1	Įvadas	Suformuluoti darbo tikslą - suprojektuoti nurodyto
etapas			rajono mokyklų kompiuterių tinklą. Pateikti varianto
			numerį, užduoties paveiksliuką, aprašyti kitus
02			užduotyje nurodytus parametrus
gegužės	2	Tinklo	Aprašyti mokyklų tinklų jungimo būdą,
		topologinės	maršrutizatorių išdėstymą ir paskirtį, pateikti
		schemos	topologinę schemą su mazgų pavadinimais.
		projektavimas	
	3	IP adresų	Pateikti IP adresų paskirstymo lenteles
		paskirstymas	
2	4	Tinklo	Pateikti tinklo vaizdą su reikalingais pažymėjimais
etapas		modeliavimas	
	5	Maršrutų	Pateikti visų maršrutizatorių maršrutų lenteles
09		lentelių	
gegužės		sudarymas	
	6	Tinklo	Pateikti tinklo testavimo rezultatų lenteles (ekrano
		konfigūracijos	kopijas)
		testavimas	
	7	Išvados	Aprašyti kiek gauti rezultatai atitinka užduotį, ar
			užduotis įvykdyta pilnai, ar liko problemų ir kokios jos

9. Darbo atlikimas

Atliekant darbą naudotis šiais nurodymais, pratybų "IP adresacija" ir "Maršrutų lentelės" medžiaga, laboratorinio darbo " Statinis marsrutizavimas PKT aplinkoje" aprašymu. Galutinę ataskaitą pateikti 7-8 savaitę pagal užsiėmimų tvarkaraštį.

10. Gynimas

Pateikti KT projekto ataskaita ir veikiantį tinklo modelį.

Įrodyti, kad modelis veikia teisingai. Minimalūs reikalavimai teigiamam modelio įvertinimui: serveris turi būti pasiekiamas ping būdu bent iš vieno potinklio.

Mokėti paaiškinti tinklo topologiją ir konfigūraciją,

Atlikti dėstytojo nurodytus topologijos, konfigūracijos ar testavimo parametrų pakeitimus.

Darbas turės būti demonstruojamas lab. klasės kompiuteryje. Kiekvienam studentui duodama užduotis operatyviai atlikti topologijos, konfigūracijos ar testavimo parametrų pakeitimus. Jei studentas nesugeba gynimo metu atlikti nurodytų pakeitimų, laikoma, kad darbas atliktas nesavarankiškai ir gali būti neužskaitomas.

Darbo atsiskaitymo metu bus kreipiamas dėmesys ar darbas tenkina šiuos kriterijus:

Ar yra įgyvendintas tinklo modelyje yra įtraukti žemėlapyje nurodyti mazgai ir jų sujungimai, taip pat IP adresaciją;

Ar įrenginiai yra pasiekiami ping būdu iš bet kurio potinklio;

Teorijos gynimo temos:

- 1. IP adresacija;
- 2. Statinių maršrutų sudarymo principai;
- 3. Mazgų (maršrutizatorių, komutatorių) techninių charakteristikų paaiškinimas ir skirtumai tarp skirtingų mazgų modelių;
- 4. ICMP protokolo (ping) veikimo principo paaiškinimas.
- 5. Belaidžio tinklo naudojamų modelyje nustatymų parametrų (NAT, SSID, security) paaiškinimas.

Galimybė atlikti šiuos ir panašius pakeitimus:

- 1. Nurodytoje vietoje prijungti papldomą potinklį ar padidinti esamų kompiuterių kiekį.
- 2. Padalinti potinklį į dvi, tris ar daugiau dalių ir dalį iškelti į kitą tinklo vietą.
- 3. Įterpti maršrutizatorių į bet kurią tinklo vietą ir savarankiškai priskirti IP adresus.
- 4. Įterpti komutatorių į bet kurią tinklo vietą ir sudaryti galimybes prie komutatoriaus jungti maršrutizatorių, tinklo dalį su kompiuteriais.
- 5. Sujungti tinklo galus tarpusavyje (sudarant žiedą tinkle) ir pakeisti maršrutus pagal dėstytojo nurodytas kryptis.