CADE Tutorial The Sequent Calculus of the KeY Tool Part II

Reiner Hähnle & Peter H. Schmitt

Department of Computer Science Technische Universität Darmstadt / Karlsruhe Institute of Technology

3 August 2015

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

A type hierarchy $\mathcal{H}=(\mathcal{T},\sqsubseteq)$ consists of

▶ a set of types \mathcal{T} and a subtype relation \sqsubseteq on $\mathcal{T} \times \mathcal{T}$.

A type hierarchy $\mathcal{H} = (\mathcal{T}, \sqsubseteq)$ consists of

▶ a set of types \mathcal{T} and a subtype relation \sqsubseteq on $\mathcal{T} \times \mathcal{T}$.

For Vocabulary $\Sigma = (Func, Pred, Var)$

- ▶ Type spec $f: T_1 \times ... T_n \rightarrow T_0$ required for $f \in Func$,
- ▶ Type spec $p: T_1 \times ... T_n$ required for $p \in Pred$,
- ▶ Type spec x : T required for $x \in Var$,

A type hierarchy $\mathcal{H} = (\mathcal{T}, \sqsubseteq)$ consists of

▶ a set of types \mathcal{T} and a subtype relation \sqsubseteq on $\mathcal{T} \times \mathcal{T}$.

For Vocabulary $\Sigma = (Func, Pred, Var)$

- ▶ Type spec $f: T_1 \times ... T_n \rightarrow T_0$ required for $f \in Func$,
- ▶ Type spec $p: T_1 \times ... T_n$ required for $p \in Pred$,
- ▶ Type spec x : T required for $x \in Var$,

Recursive Definition of Terms $(\sigma(t))$ is the type of term t

A type hierarchy $\mathcal{H} = (\mathcal{T}, \sqsubseteq)$ consists of

▶ a set of types \mathcal{T} and a subtype relation \sqsubseteq on $\mathcal{T} \times \mathcal{T}$.

For Vocabulary $\Sigma = (Func, Pred, Var)$

- ▶ Type spec $f: T_1 \times ... T_n \rightarrow T_0$ required for $f \in Func$,
- ▶ Type spec $p: T_1 \times ... T_n$ required for $p \in Pred$,
- ▶ Type spec x : T required for $x \in Var$,

Recursive Definition of Terms $(\sigma(t))$ is the type of term t

For
$$f \in Func$$
 with $f: T_1 \times ... T_n \to T_0$ and terms $\sigma(t_i) \sqsubset T_i$
 $f(t_1, ..., t_n)$

is a term of type T_0 .

A type hierarchy $\mathcal{H} = (\mathcal{T}, \sqsubseteq)$ consists of

• a set of types \mathcal{T} and a subtype relation \sqsubseteq on $\mathcal{T} \times \mathcal{T}$.

For Vocabulary $\Sigma = (Func, Pred, Var)$

- ▶ Type spec $f: T_1 \times ... T_n \rightarrow T_0$ required for $f \in Func$,
- ▶ Type spec $p: T_1 \times ... T_n$ required for $p \in Pred$,
- ▶ Type spec x : T required for $x \in Var$,

Recursive Definition of Terms $(\sigma(t))$ is the type of term t

For $f \in Func$ with $f: T_1 \times \dots T_n \to T_0$ and terms $\sigma(t_i) \sqsubset T_i$ $f(t_1, \dots, t_n)$

is a term of type T_0 .

Definition of Formulas Unchanged

Transform into untyped predicate logic

Logic textbooks by Donald Monk (1997), Maria Manzano (1996).

Transform into untyped predicate logic

- ▶ Logic textbooks by Donald Monk (1997), Maria Manzano (1996).
- A Polymorphic Intermediate Verification Language: Design and Logical Encoding
 K. Rustan M. Leino and Philipp Rümmer
 TACAS 2010, SLNCS 4015, pp 321-327

Transform into untyped predicate logic

- ▶ Logic textbooks by Donald Monk (1997), Maria Manzano (1996).
- A Polymorphic Intermediate Verification Language: Design and Logical Encoding
 K. Rustan M. Leino and Philipp Rümmer
 TACAS 2010, SLNCS 4015, pp 321-327

Transform into untyped predicate logic

- ▶ Logic textbooks by Donald Monk (1997), Maria Manzano (1996).
- A Polymorphic Intermediate Verification Language: Design and Logical Encoding
 K. Rustan M. Leino and Philipp Rümmer
 TACAS 2010, SLNCS 4015, pp 321-327

Extend Calculus

- A Calculus for Type Predicates and Type Coercion Martin Giese
 TABLEAUX 2005, SLNCS Vol.3702, pp 123-137
- A Calculus for Typed First-Order Logic Peter H. Schmitt and Mattias Ulbrich FM 2015

First-Order Rules

allRight
$$\frac{\Gamma \Longrightarrow [x/c](\varphi), \Delta}{\Gamma \Longrightarrow (\forall Ax)\varphi, \Delta}$$
$$c: \to A \text{ a new constant}$$

exLeft
$$\frac{\Gamma, [x/c](\varphi) \Longrightarrow \Delta}{\Gamma, (\exists Ax).\varphi \Longrightarrow \Delta}$$

$$c : \to A \text{ a new constant}$$

allLeft
$$\frac{\Gamma, \forall Ax)\varphi, [x/t](\varphi) \Longrightarrow \Delta}{\Gamma, (\forall Ax)\varphi \Longrightarrow \Delta}$$

$$t \text{ ground term, } \sigma(t) \sqsubseteq A$$

exRight
$$\frac{\Gamma \Longrightarrow (\exists Ax)\varphi, [x/t](\varphi), \Delta}{\Gamma \Longrightarrow (\exists Ax)\varphi, \Delta}$$
$$t \text{ a ground term, } \sigma(t) \sqsubseteq A$$

close
$$\Gamma, \varphi \Longrightarrow \varphi, \Delta$$

closeFalse
$$\overline{\Gamma, \mathrm{false} \Longrightarrow \Delta}$$

closeTrue
$$\overline{\Gamma \Longrightarrow \mathrm{true}, \Delta}$$

Equational Rules

$$\begin{array}{l} \text{eqLeft} & \dfrac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta} \\ & \qquad \qquad \text{if } \sigma(t_2) \sqsubseteq \sigma(t_1) \\ \\ \text{eqRight} & \dfrac{\Gamma, t_1 \doteq t_2 \Longrightarrow [z/t_2](\varphi), [z/t_1](\varphi), \Delta}{\Gamma, t_1 \doteq t_2 \Longrightarrow [z/t_1](\varphi), \Delta} \\ & \qquad \qquad \text{if } \sigma(t_2) \sqsubseteq \sigma(t_1) \\ \end{array}$$

eqLeft
$$\frac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta}$$
if $\sigma(t_2) \sqsubseteq \sigma(t_1)$

eqLeft
$$\frac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta}$$
if $\sigma(t_2) \sqsubseteq \sigma(t_1)$

Why is the side condition $\sigma(t_2) \sqsubseteq \sigma(t_1)$ necessary?

eqLeft
$$\frac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta}$$
if $\sigma(t_2) \sqsubseteq \sigma(t_1)$

Why is the side condition $\sigma(t_2) \sqsubseteq \sigma(t_1)$ necessary? Consider the signature:

$$B \subsetneq A$$
, $a: \rightarrow A$, $b: \rightarrow B$, $p:B$.

$$\begin{array}{c} \text{eqLeft} \ \ \dfrac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta} \\ \text{if} \ \ \sigma(t_2) \sqsubseteq \sigma(t_1) \end{array}$$

Why is the side condition $\sigma(t_2) \sqsubseteq \sigma(t_1)$ necessary? Consider the signature:

$$B \subsetneq A, a: \rightarrow A, b: \rightarrow B, p:B.$$

Applying eqLeft without side condition on the sequent

$$b \doteq a, p(b) \Longrightarrow$$

would result in

$$b \doteq a, p(b), p(a) \Longrightarrow$$

with p(a) being not well-typed.

Soundness and Completeness

Martin Giese's TABLEAUX paper

presents a sound and complete calculus provided the type hierarchy ${\cal H}$ is closed under greatest lower bounds.

Soundness and Completeness

Martin Giese's TABLEAUX paper

presents a sound and complete calculus provided the type hierarchy ${\cal H}$ is closed under greatest lower bounds.

Optimization

A sound and complete calculus without restrictions on $\ensuremath{\mathcal{H}}$ can be obtained by the following modification:

$$\begin{array}{l} \text{eqLeft} \ \frac{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi), [z/t_2](\varphi) \Longrightarrow \Delta}{\Gamma, t_1 \doteq t_2, [z/t_1](\varphi) \Longrightarrow \Delta} \\ \text{provided} \ [z/t_2](\varphi) \ \text{is welltyped} \end{array}$$

Likewise for eqRight.

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

Theoretical Motivation

$$\neg(\exists x)(\exists y)(x \doteq y)$$
 is tautology for this type hierarchy

A : x B : y

Theoretical Motivation

$$\neg(\exists x)(\exists y)(x \doteq y)$$
 is tautology for this type hierarchy

$$\neg(\exists x)(\exists y)(x \doteq y)$$
 is not a tautology for the extended type hierarchy

Theoretical Motivation

$$\neg(\exists x)(\exists y)(x \doteq y)$$
 is tautology for this type hierarchy

$$\neg(\exists x)(\exists y)(x \doteq y)$$
 is not a tautology for the extended type hierarchy

The phenomenon that universal validity of a formula depends on symbols not occurring in it, is highly undesirable.

Practical Motivation from Program Verification

Segment of Java Library

java.lang.Object

†

java.util.AbstractCollection

†

java.util.AbstractList

†

java.util.ArrayList AbstractSequentialList Vector

Practical Motivation from Program Verification

Segment of Java Library

java.lang.Object

†

java.util.AbstractCollection

†

java.util.AbstractList

†

java.util.ArrayList AbstractSequentialList Vector

Verification of programs using these classes should remain valid if another subclass is added to java.util.AbstractList.

Type Hierarchies Extensions

Type Hierarchies Extensions

Only subtype relations may be added.

Logical Consequence Relation

Definition of Super-Consequence Relation

```
\varphi \in \operatorname{Fml}_{\mathcal{T},\Sigma}, \ \Phi \subseteq \operatorname{Fml}_{\mathcal{T},\Sigma} for type hierarchy \mathcal{T} and signature \Sigma.
```

 $\Phi \vdash \varphi$ iff for all type hierarchies \mathcal{T}' with $\mathcal{T} \sqsubseteq \mathcal{T}'$ and all $\mathcal{T}' - \Sigma$ -structures \mathcal{M} if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models \varphi$

Logical Consequence Relation

Definition of Super-Consequence Relation

```
\varphi \in \operatorname{Fml}_{\mathcal{T},\Sigma}, \ \Phi \subseteq \operatorname{Fml}_{\mathcal{T},\Sigma} for type hierarchy \mathcal{T} and signature \Sigma.
```

 $\Phi \vdash \varphi$ iff for all type hierarchies \mathcal{T}' with $\mathcal{T} \sqsubseteq \mathcal{T}'$ and all $\mathcal{T}' - \Sigma$ -structures \mathcal{M} if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models \varphi$

Logical Consequence Relation

Definition of Super-Consequence Relation

 $\varphi \in \operatorname{Fml}_{\mathcal{T},\Sigma}, \ \Phi \subseteq \operatorname{Fml}_{\mathcal{T},\Sigma}$ for type hierarchy \mathcal{T} and signature Σ .

$$\Phi \vdash \varphi$$
 iff for all type hierarchies \mathcal{T}' with $\mathcal{T} \sqsubseteq \mathcal{T}'$ and all $\mathcal{T}' - \Sigma$ -structures \mathcal{M} if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models \varphi$

For the example on the previous slide.

$$\varnothing \not\vdash \neg(\exists x)(\exists y)(x \doteq y)$$

A : x B : y

Note

Completeness

A calculus that is complete for the ordinary consequence relation is also complete for the super-consequence relation.

Note

Completeness

A calculus that is complete for the ordinary consequence relation is also complete for the super-consequence relation.

Note

Completeness

A calculus that is complete for the ordinary consequence relation is also complete for the super-consequence relation.

Soundness

A rule that is sound for the ordinary consequence relation need not be sound for the super-consequence relation.

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

Conditional Terms

Syntax

(if φ then t_1 else t_2) is a term of type A for a formula φ and terms t_i of type A_i if $A_2 \sqsubseteq A_1 = A$ or $A_1 \sqsubseteq A_2 = A$.

Conditional Terms

Syntax

(if φ then t_1 else t_2) is a term of type A for a formula φ and terms t_i of type A_i if $A_2 \sqsubseteq A_1 = A$ or $A_1 \sqsubseteq A_2 = A$.

Semantics by Elimination (Example)

 $(\forall x, y)(x \le (\text{if } x \le y \text{ then } y \text{ else } x))$

is replaced by

$$(\forall x, y)(x \leqslant y \to x \leqslant y \land \neg(x \leqslant y) \to y \leqslant y)$$

Motivation

At the VSTTE'10 (Verified Software:Theories, Tools and Experiments) conference 2010 in Edinburgh.

VSComp: The Verified Software Competition

Problem 1

- Description: Given an N-element array of natural numbers, write a program to compute the sum and the maximum of the elements in the array.
- Properties: Given that $N \ge 0$ and $a[i] \ge 0$ for $0 \le i < N$, prove the post-condition that $sum \le N * max$

Motivation

At the VSTTE'10 (Verified Software:Theories, Tools and Experiments) conference 2010 in Edinburgh.

VSComp: The Verified Software Competition

Problem 1

- Description: Given an N-element array of natural numbers, write a program to compute the sum and the maximum of the elements in the array.
- Properties: Given that $N \ge 0$ and $a[i] \ge 0$ for $0 \le i < N$, prove the post-condition that $sum \le N * max$

We need a way to express $\sum_{i=b}^{i=e}$.

Variable Binders

Explanation

Variable Binders are function symbols which bind a variable ranging over a set of values.

Application of a variable binder results in a term.

Variable Binders available in KeY

Mathematical Notation	KeY Syntax
$\sum_{b_0 \leqslant vi < b_1} s_1$	$bsum{Int vi;}(b_0,b_1,s_1)$
$\prod_{b_0 \leqslant vi < b_1} s_1$	$prod{Int \ vi;}(b_0,b_1,s_1)$
$\bigcup_{-\infty < vi < \infty} s_2$	$infiniteUnion\{Int\ vi;\}(s_2)$
$\langle s_3[b_0/vi],\ldots,s_3[(b_1-1)/vi]\rangle$	$seqDef{Int vi;}(b_0,b_1,s_3)$

 b_0 , b_1 , s_1 terms of type Int, s_2 term of type LocSet, s_3 term of type Seq, vi would typically occur free in s_1 , s_2 , s_3

Status of Variable Binders

Theorem

For every formula containing variable binders there is a satisfiability equivalent formula without.

Status of Variable Binders

Theorem

For every formula containing variable binders there is a satisfiability equivalent formula without.

Example

$$(\forall Int N)(bsum\{Int vi; \}(0, N, a[vi]) \leq N * max)$$

is replaced by

$$f(0) = 0 \quad \land \\ (\forall \operatorname{Int} j)(f(j+1) = f(j) + a[j]) \quad \land \\ (\forall \operatorname{Int} N)(f(N) \leqslant N * \operatorname{max})$$

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

Ways to deal with undefinedness

- 1. Remove it. e.g. set the empty sum to 0: $\sum_{i=0}^{i=-2} s_i = 0$.
- 2. Introduce new error elements.
- 3. Use some kind of 3-valued logic.
- 4. Use underspecification.

1. All functions are total.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.
- 4. Downside: user has to understand some non-intuitive behaviour.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.
- 4. Downside: user has to understand some non-intuitive behaviour.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.
- **4.** Downside: user has to understand some non-intuitive behaviour. $(\exists i)(\frac{1}{0} \doteq i)$ is a tautology.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.
- **4.** Downside: user has to understand some non-intuitive behaviour. $(\exists i)(\frac{1}{0} \doteq i)$ is a tautology.

$$\frac{1}{0} \doteq \frac{2}{0}$$
 is not.

- 1. All functions are total.
- 2. Function values at argument positions that are intended to be undefined are chosen arbitrarily within the correct type.
- 3. Upside: No changes to the logic needed.
- **4.** Downside: user has to understand some non-intuitive behaviour. $(\exists i)(\frac{1}{0} \doteq i)$ is a tautology.

$$\frac{1}{0} \doteq \frac{2}{0}$$
 is not.

Also $cast_{Int}(c) \doteq 5 \rightarrow c \doteq 5$ is not a tautology. In case c is not of type Int the underspecified value for $cast_{Int}(c)$ could be 5.

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

Axioms for \mathbb{Z}

A.1
$$(i+j)+k = i+(j+k)$$

A.2 $i+j = j+i$
A.3 $0+i = i$
A.4 $i+(-i) = 0$
M.1 $(i*j)*k = i*(j*k)$
M.2 $i*j = j*i$
M.3 $1*x = x$
M.4 $i*(j+k) = i*j+i*k$
M.5 $1 \neq 0$
O.1 $0 < i \lor 0 = i \lor 0 < (-i)$
O.2 $0 < i \land 0 < j \to 0 < i+j$
O.3 $0 < i \land 0 < j \to 0 < i*j$
O.4 $i < j \leftrightarrow 0 < j + (-i)$
O.5 $-(0 < 0)$
Ind $\varphi(0) \land (\forall i)(0 \le i \land \varphi(i) \to \varphi(i+1)) \to (\forall i)(0 \le i \to \varphi(i))$

Definition

Let (G, R) be a graph and G a type.

$$reachR(g, h, 0) \leftrightarrow g \doteq h)$$

$$n \geqslant 0 \rightarrow (reachR(g, h, n + 1) \leftrightarrow (\exists G k)(reachR(g, k, n) \land R(k, h)))$$

$$TR(g, h) \leftrightarrow (\exists Int \ n)(n \geqslant 0 \land reachR(g, h, n))$$

Here, g, h are variables of type G and n of type Int.

Definition

Let (G, R) be a graph and G a type.

$$reachR(g, h, 0) \leftrightarrow g \doteq h)$$

$$n \geqslant 0 \rightarrow (reachR(g, h, n + 1) \leftrightarrow (\exists G k)(reachR(g, k, n) \land R(k, h)))$$

$$TR(g, h) \leftrightarrow (\exists Int \ n)(n \geqslant 0 \land reachR(g, h, n))$$

Here, g, h are variables of type G and n of type Int.

Definition

Let (G, R) be a graph and G a type.

$$reachR(g, h, 0) \leftrightarrow g \doteq h)$$

$$n \geqslant 0 \rightarrow (reachR(g, h, n + 1) \leftrightarrow (\exists G k)(reachR(g, k, n) \land R(k, h)))$$

$$TR(g, h) \leftrightarrow (\exists Int \ n)(n \geqslant 0 \land reachR(g, h, n))$$

Here, g, h are variables of type G and n of type Int.

TR is the transitive closure of R.

Definition

Let (G, R) be a graph and G a type.

$$reachR(g, h, 0) \leftrightarrow g \doteq h)$$

$$n \geqslant 0 \rightarrow (reachR(g, h, n + 1) \leftrightarrow (\exists G k)(reachR(g, k, n) \land R(k, h)))$$

$$TR(g, h) \leftrightarrow (\exists Int \ n)(n \geqslant 0 \land reachR(g, h, n))$$

Here, g, h are variables of type G and n of type Int.

TR is the transitive closure of R.

More precisely:

In any interpretation satisfying the above three axioms the interpretation of TR is the transitive closure of R.

Proof Exercise

A Special Case of the Bellman-Ford Lemma

Let (G, R) be a graph, $s \in G$ the start element.

Let $d: G \to \mathbb{N}$ be a function satisfying:

$$\begin{array}{l} \textit{d}(\textit{s}) = 0 \\ (\forall \textit{G} \textit{g})(\textit{g} \neq \textit{s} \rightarrow (\exists \textit{G} \textit{h})(\textit{R}(\textit{h},\textit{g}) \land \textit{d}(\textit{g}) = \textit{d}(\textit{h}) + 1)) \\ (\forall \textit{G} \textit{g})(\forall \textit{G} \textit{h}; (\textit{R}(\textit{h},\textit{g}) \rightarrow \textit{d}(\textit{g}) <= \textit{d}(\textit{h}) + 1)) \end{array}$$

Then d(g) is the length of the shortest path from s to g.

Proof Exercise

A Special Case of the Bellman-Ford Lemma

Let (G, R) be a graph, $s \in G$ the start element.

Let $d: G \to \mathbb{N}$ be a function satisfying:

$$\begin{array}{l} d(s) = 0 \\ (\forall \ G \ g)(g \neq s \rightarrow (\exists \ G \ h)(R(h,g) \land d(g) = d(h) + 1)) \\ (\forall \ G \ g)(\forall G \ h; (R(h,g) \rightarrow d(g) <= d(h) + 1)) \end{array}$$

Then d(g) is the length of the shortest path from s to g.

KeY Demo

Undecidability of $\ensuremath{\mathbb{Z}}$

The set of all first-order formulas true in $\ensuremath{\mathbb{Z}}$ is not recursively enumerable.

Undecidability of \mathbb{Z}

The set of all first-order formulas true in $\ensuremath{\mathbb{Z}}$ is not recursively enumerable.

The theory of \mathbb{Z} cannot be axiomatized.

Undecidability of $\ensuremath{\mathbb{Z}}$

The set of all first-order formulas true in $\ensuremath{\mathbb{Z}}$ is not recursively enumerable.

The theory of \mathbb{Z} cannot be axiomatized.

The axioms on $\ensuremath{\mathbb{Z}}$ shown previously fall short of being complete.

Undecidability of \mathbb{Z}

The set of all first-order formulas true in $\ensuremath{\mathbb{Z}}$ is not recursively enumerable.

The theory of \mathbb{Z} cannot be axiomatized.

The axioms on $\ensuremath{\mathbb{Z}}$ shown previously fall short of being complete.

Goodstein's theorem

$$(\forall \ \textit{Int} \ \textit{m})(\textit{m} > 0 \rightarrow (\exists \ \textit{Int} \ \textit{n})(\textit{n} > 1 \ \land \ \textit{G}(\textit{m})(\textit{n}) \doteq 0$$

cannot be derived.

 $G(m)(1), G(m)(2), \ldots, G(m)(n), \ldots$ is the Goodstein sequence of m.

The Data Type of Finite Sequences

Core Theory

 $seqLen : Seq \rightarrow Int$

 $seqGet_A : Seq \times Int \rightarrow A$ for any type $A \sqsubseteq Any$

seqGetOutside: Any

The Data Type of Finite Sequences

Core Theory

 $seaLen: Sea \rightarrow Int$ $segGet_A: Seg \times Int \rightarrow A$ for any type $A \sqsubseteq Any$ segGetOutside: Any

Definitional Extension

segEmpty : Seg $segSingleton : Any \rightarrow Seg$ $seaConcat : Sea \times Sea \rightarrow Sea$ $segSub : Seg \times Int \times Int \rightarrow Seg$ seaReverse : Sea → Sea $seaIndexOf : Seq \times Any \rightarrow Int$ segNPerm(Seg)segPerm(Seg, Seg) $segSwap : Seg \times Int \times Int \rightarrow Seg$ $segRemove : Seg \times Int \rightarrow Seg$ $seqNPermInv : Seq \rightarrow Seq$ $seqDepth: Seq \rightarrow Int$ TU Darmstadt, KIT

Sequence Comprehension

Let le, ri be integers, t a term of arbitrary type, typically containing variable vi:

$$seqDef{Int vi;}(le, ri, t)$$

is interpreted as the sequence

$$\langle t(\textit{le/vi}), \dots, t((\textit{ri}-1)/\textit{vi}) \rangle$$

If $ri \leq le$ it is the empty sequence.

Sequence Comprehension

Let le, ri be integers, t a term of arbitrary type, typically containing variable vi:

$$seqDef{Int vi;}(le, ri, t)$$

is interpreted as the sequence

$$\langle t(le/vi), \ldots, t((ri-1)/vi) \rangle$$

If $ri \leq le$ it is the empty sequence.

Example

$$seqDef\{Int\ vi;\}(2,6,vi^2)$$

is interpreted as the sequence

$$\langle 4, 9, 25 \rangle$$

Axioms of the core theory $CoT_{\rm seq}$

1
$$(\forall Seq s)(0 \leq seqLen(s))$$

Axioms of the core theory CoT_{seq}

- $1 \quad (\forall \ \textit{Seq s})(0 \leqslant \textit{seqLen}(\textit{s}))$
- 2 $(\forall Seq s_1, s_2)(s_1 \doteq s_2 \leftrightarrow seqLen(s_1) \doteq seqLen(s_2) \land (\forall Int i)(0 \leqslant i < seqLen(s_1) \rightarrow seqGet_{Any}(s_1, i) \doteq seqGet_{Any}(s_2, i)))$

Axioms of the core theory CoT_{seq}

1 $(\forall Seq s)(0 \leq seqLen(s))$ 2 $(\forall Seq s_1, s_2)(s_1 \doteq s_2 \leftrightarrow seqLen(s_1) \doteq seqLen(s_2) \land (\forall Int i)(0 \leq i < seqLen(s_1) \rightarrow seqGet_{Any}(s_1, i) \doteq seqGet_{Any}(s_2, i)))$ 3 $(\forall Int ri, le)((le < ri \rightarrow seqLen((seqDef\{u\}(le, ri, t)) \doteq ri - li)) \land (ri \leq le \rightarrow seqLen((seqDef\{u\}(le, ri, t)) \doteq 0))$

```
(\forall Seq s)(0 \leq seqLen(s))
2 (\forall Seq s_1, s_2)(s_1 \doteq s_2 \leftrightarrow
         segLen(s_1) \doteq segLen(s_2) \land
         (\forall Int \ i)(0 \leqslant i \leqslant seqLen(s_1) \rightarrow seqGet_{Anv}(s_1, i) \doteq seqGet_{Anv}(s_2, i)))
3 (∀ Int ri, le)(
     (le < ri \rightarrow seqLen((seqDef\{u\}(le, ri, t)) \doteq ri - li))
     (ri \leq le \rightarrow seqLen(seqDef\{u\}(le, ri, t)) \doteq 0))
4 (\forall Int i, ri, le)(\forall Any \bar{x})(((0 \le i \land i < ri - le) \rightarrow
     segGet_{\Delta}(segDef\{u\}(le, ri, t), i) \doteq cast_{\Delta}(t\{(le + i)/u\}))
     (\neg (0 \le i \land i < ri - le) \rightarrow
     segGet_{\Delta}(segDef\{u\}(le, ri, t), i) \doteq cast_{\Delta}(segGetOutside)))
```

A Model for CoT_{seq}

The type domain D^{Seq}

Inductive Definition:

$$U = D^{Any} \setminus D^{Seq}$$

$$D^{0}_{Seq} = \{\langle \rangle \}$$

$$D^{n+1}_{Seq} = \{\langle a_{1}, \dots, a_{k} \rangle \mid k \in \mathbb{N} \text{ and } a_{i} \in D^{n}_{Seq} \cup U, 1 \leqslant i \leqslant k \}, n \geqslant 0$$

$$D^{Seq} := \bigcup_{n \geq 0} D^n_{Seq}$$

A Model for CoT_{seq}

Interpretaion of the Vocabulary of CoT_{seq}

- $\begin{array}{ll} \textbf{1.} \ \ seq Get^{\mathcal{M}}_A(\langle a_0, \ldots, a_{n-1} \rangle, i) = \\ & \left\{ \begin{array}{ll} \operatorname{\textit{cast}}^{\mathcal{M}}_A(a_i) & \text{if } 0 \leqslant i < n \\ \operatorname{\textit{cast}}^{\mathcal{M}}_A(\operatorname{\textit{seqGetOutside}}^{\mathcal{M}}) & \text{otherwise} \end{array} \right.$
- **2.** $seqLen^{\mathcal{M}}(\langle a_0,\ldots,a_{n-1}\rangle)=n$
- **3.** $seqGetOutside^{\mathcal{M}} \in D^{Any}$ arbitrary.
- **4.** $seqDef\{iv\}(le, ri, e)^{\mathcal{M}, \beta} = \begin{cases} \langle a_0, \dots a_{k-1} \rangle & \text{if } ri le = k > 0 \text{ and for all } 0 \leqslant i < k \\ a_i = e^{\mathcal{M}, \beta_i} & \text{with } \beta_i = \beta[le + i/iv] \\ \langle \rangle & \text{otherwise} \end{cases}$

Consistency

Theorem

The theory $\textit{CoT}_{\mathrm{seq}}$ is consistent.

Consistency

Theorem

The theory CoT_{seq} is consistent.

Proof

Check that all axioms of CoT_{seq} are true in the model \mathcal{M} .

$$seqEmpty \doteq seqDef\{iv\}(0,0,x)$$

$$seqEmpty \doteq seqDef\{iv\}(0,0,x)$$

 $(\forall Any x)(seqSingleton(x) \doteq seqDef\{iv\}(0,1,x))$

```
\begin{split} seqEmpty &\doteq seqDef\{iv\}(0,0,x) \\ (\forall \ Any \ x)(seqSingleton(x) \doteq seqDef\{iv\}(0,1,x)) \\ (\forall \ Seq \ s_1, s_2)(seqConcat(s_1,s_2) \doteq \\ seqDef\{iv\}(0, Len(s_1) + Len(s_2), \text{if } iv < Len(s_1) \\ &\qquad \qquad \qquad \text{then } seqGet_{Any}(s_1, iv) \\ &\qquad \qquad \qquad \text{else } seqGet_{Any}(s_2, iv - Len(s_1)) \end{split}
```

```
\begin{split} seqEmpty &\doteq seqDef\{iv\}(0,0,x) \\ (\forall \ Any \ x)(seqSingleton(x) \doteq seqDef\{iv\}(0,1,x)) \\ (\forall \ Seq \ s_1, s_2)(seqConcat(s_1,s_2) \doteq \\ seqDef\{iv\}(0, Len(s_1) + Len(s_2), \text{if } iv < Len(s_1) \\ &\qquad \qquad \text{then } seqGet_{Any}(s_1, iv) \\ &\qquad \qquad \text{else } seqGet_{Any}(s_2, iv - Len(s_1)) \\ (\forall \ Seq \ s)(\forall \ Int \ i, j)(seqSub(s, i, j) \doteq seqDef\{iv\}(i, j, seqGet_{Any}(s, iv))) \end{split}
```

Set 1

```
segEmpty = segDef\{iv\}(0,0,x)
(\forall Any x)(seqSingleton(x) = seqDef\{iv\}(0,1,x))
(\forall Seq s_1, s_2)(seqConcat(s_1, s_2) \doteq
 seqDef\{iv\}(0, Len(s_1) + Len(s_2), if iv < Len(s_1)\}
                                                                               ))
                                        then seqGet_{Anv}(s_1, iv)
                                        else seqGet_{Anv}(s_2, iv-Len(s_1))
(\forall Seq s)(\forall Int i, j)(seqSub(s, i, j) = seqDef\{iv\}(i, j, seqGet_{Anv}(s, iv)))
(\forall Seq s)(seqReverse(s) \doteq
 seqDef\{iv\}(0, Len(s), seqGet_{Anv}(s, Len(s) - iv - 1)))
```

For concise presentation we have used Len instead of seqLen.

Set 2

```
 \begin{array}{l} (\forall \ \mathit{Seq} \ s) (\mathit{seqNPerm}(s) \leftrightarrow \\ (\forall \ \mathit{Int} \ i) (0 \leqslant \mathit{i} < \mathit{Len}(s) \rightarrow (\exists \ \mathit{Int} \ \mathit{j}) (0 \leqslant \mathit{j} < \mathit{Len}(s) \land \mathit{seqGet}_{\mathit{Int}}(s,\mathit{j}) \doteq \mathit{i}))) \\ (\forall \ \mathit{Seq} \ s_1, s_2) (\mathit{seqPerm}(s_1, s_2) \leftrightarrow \mathit{Len}(s_1) \doteq \mathit{Len}(s_2) \land \\ (\exists \ \mathit{Seq} \ s) (\mathit{Len}(s) \doteq \mathit{Len}(s_1) \land \mathit{seqNPerm}(s) \land \\ (\forall \ \mathit{Int} \ \mathit{i}) (0 \leqslant \mathit{i} < \mathit{Len}(s) \rightarrow \\ \mathit{seqGet}_{\mathit{Any}}(s_1, \mathit{i}) \doteq \mathit{seqGet}_{\mathit{Any}}(s_2, \mathit{seqGet}_{\mathit{Int}}(s, \mathit{i}))))))))))) \\ ) ) ) ) \\ ) \end{array}
```

For concise presentation we have again used Len instead of seqLen.

Consistency

Theorem

The theory T_{seq} is consistent.

Consistency

Theorem

The theory T_{seq} is consistent.

Proof

We refer to

If T_2 is obtained from T_1 by definitional extension then T_2 is consistent iff T_1 is consistent.

and the fact that T_{seq} is a definitional extension of CoT_{seq} .

Relative Completeness

Theorem

If the union of the component theories is complete then

 T_{seq} is complete

provided that the function symbol and axioms for seqDepth are added.

$$\begin{split} \mathit{seqDepth}(s) &= 0 \quad \text{if } \neg \mathit{instance}_{\mathrm{Seq}}(s) \\ \mathit{seqDepth}(s) &= \max \{ \mathit{seqDepth}(\mathit{seqGet}_{\mathit{Seq}}(s,i)) \mid \\ & 0 \leqslant i < \mathit{seqLen}(s) \land \mathit{instance}_{\mathrm{Seq}}(\mathit{seqGet}_{\mathit{Seq}}(s,i)) \} + 1 \end{split}$$

 $\begin{array}{ll} 1 & \mathsf{getOfSeqConcat} \\ & (\forall \ \mathsf{Seq} \ \mathsf{s}, \ \mathsf{s2})(\forall \ \mathsf{Int} \ i)(\mathsf{seqGet}_{\mathsf{alpha}}(\mathsf{seqConcat}(s, \ \mathsf{s2}), i) \doteq \\ & \mathsf{if} \quad i < \mathsf{Len}(s) \ \mathsf{then} \quad \mathsf{seqGet}_{\mathsf{alpha}}(s, i) \ \mathsf{else} \quad \mathsf{seqGet}_{\mathsf{alpha}}(s2, i - \mathsf{Len}(s)) \end{array}$

 $\begin{array}{ll} 1 & \mathsf{getOfSeqConcat} \\ & (\forall \, \mathsf{Seq} \, \mathsf{s}, \mathsf{s2})(\forall \, \mathsf{Int} \, i)(\mathsf{seqGet_{alpha}}(\mathsf{seqConcat}(\mathsf{s}, \mathsf{s2}), i) \doteq \\ & \mathsf{if} \quad i < \mathsf{Len}(\mathsf{s}) \, \mathsf{then} \quad \mathsf{seqGet_{alpha}}(\mathsf{s}, i) \, \mathsf{else} \quad \mathsf{seqGet_{alpha}}(\mathsf{s2}, i - \mathsf{Len}(\mathsf{s})) \end{array}$

KeY Demo

1 getOfSeqConcat

$$(\forall \textit{Seq s}, \textit{s2})(\forall \textit{Int i})(\textit{seqGet}_{\textit{alpha}}(\textit{seqConcat}(\textit{s}, \textit{s2}), \textit{i}) \doteq \\ \text{if } \textit{i} < \textit{Len}(\textit{s}) \text{ then } \textit{seqGet}_{\textit{alpha}}(\textit{s}, \textit{i}) \text{ else } \textit{seqGet}_{\textit{alpha}}(\textit{s2}, \textit{i} - \textit{Len}(\textit{s}))$$

 $\begin{array}{ll} 1 & \mathsf{getOfSeqConcat} \\ & (\forall \, \mathsf{Seq} \, \mathsf{s}, \mathsf{s2})(\forall \, \mathsf{Int} \, i)(\mathsf{seqGet}_{\mathsf{alpha}}(\mathsf{seqConcat}(\mathsf{s}, \mathsf{s2}), i) \doteq \\ & \mathsf{if} \, \, i < \mathsf{Len}(\mathsf{s}) \, \mathsf{then} \, \, \mathsf{seqGet}_{\mathsf{alpha}}(\mathsf{s}, i) \, \mathsf{else} \, \, \mathsf{seqGet}_{\mathsf{alpha}}(\mathsf{s2}, i - \mathsf{Len}(\mathsf{s})) \end{array}$

2 getOfSeaSub

```
(\forall Seq s)(\forall Int f, t, i)(seqGet_{alpha}(seqSub(s, f, t), i) \doteq if 0 \leq i \land i < (t-f) then seqGet_{alpha}(s, i+f) else (alpha)seqGetOutside
```

 $\begin{array}{ll} 1 & \mathsf{getOfSeqConcat} \\ & (\forall \, \mathsf{Seq} \, \mathsf{s}, \mathsf{s2})(\forall \, \mathsf{Int} \, i)(\mathsf{seqGet_{alpha}}(\mathsf{seqConcat}(\mathsf{s}, \mathsf{s2}), i) \doteq \\ & \mathsf{if} \, \, i < \mathsf{Len}(\mathsf{s}) \, \mathsf{then} \, \, \mathsf{seqGet_{alpha}}(\mathsf{s}, i) \, \mathsf{else} \, \, \mathsf{seqGet_{alpha}}(\mathsf{s2}, i - \mathsf{Len}(\mathsf{s})) \end{array}$

- 2 getOfSeqSub
 - $(\forall Seq s)(\forall Int f, t, i)(seq Get_{alpha}(seq Sub(s, f, t), i) \doteq i \land i \land (t f) \text{ then } seq Get \land (s, i + f) \text{ else } (alpha) seq Get \land (s, i + f) seq Get \land (s, i$
 - if $0 \le i \land i < (t-f)$ then $seqGet_{alpha}(s, i+f)$ else (alpha)seqGetOutside
- 3 lenOfSeqConcat

$$(\forall \textit{Seq s}, \textit{s2})(\textit{Len}(\textit{seqConcat}(\textit{s}, \textit{s2})) \doteq \textit{Len}(\textit{s}) + \textit{Len}(\textit{s2}))$$

- $\begin{array}{ll} 1 & \mathsf{get}OfSeqConcat \\ & (\forall \ \mathit{Seq}\ s, s2)(\forall \ \mathit{Int}\ i)(seq\mathit{Get}_{\mathit{alpha}}(seq\mathit{Concat}(s, s2), i) \doteq \\ & \mathsf{if}\ \ i < \mathit{Len}(s)\ \mathsf{then}\ \ \mathit{seq}\mathit{Get}_{\mathit{alpha}}(s, i)\ \mathsf{else}\ \ \mathit{seq}\mathit{Get}_{\mathit{alpha}}(s2, i \mathit{Len}(s)) \\ 2 & \mathsf{get}Of\mathit{SeqSub} \\ & (\forall \ \mathit{Seq}\ s)(\forall \ \mathit{Int}\ f, t, i)(seq\mathit{Get}_{\mathit{alpha}}(seq\mathit{Sub}(s, f, t), i) \doteq \\ & \mathsf{if}\ 0 \leqslant i \land i < (t-f)\ \mathsf{then}\ \ \mathit{seq}\mathit{Get}_{\mathit{alpha}}(s, i+f)\ \mathsf{else}\ \ (\mathit{alpha})\mathit{seq}\mathit{Get}\mathit{Outside} \\ 3 & \mathsf{len}\mathit{Of}\mathit{Seq}\mathit{Concat} \\ & (\forall \ \mathit{Seq}\ s, s2)(\mathit{Len}(\mathit{seq}\mathit{Concat}(s, s2)) \doteq \mathit{Len}(s) + \mathit{Len}(s2)) \\ \end{array}$
- 4 lenOfSeqSub $(\forall Seq s)(\forall Int from, to)(Len(seqSub(s, from, to)) \doteq if from < to then <math>(to - from)$ else 0)

Typed Logic

Modular Reasoning

Extension of First-Order Logic

Undefinedness

Theories

Wrap-Up

Requirements on the KeY Calculus, Re-Revisited

for serious program verification

- Full typed first-order logic
- Partially ordered extensible type hierarchies reflecting Java's type system
- Rich expressive power, even if theoretically redundant
- Coverage of partial functions
- Combination of automatic and interactive proving
- Extensible: many theories
- Supportive user interface

THE END

Derived Theorems on Permutations

```
seqNPermRange
  (\forall Seq s)(\forall Int i)(seqNPerm(s) \land 0 \leq i \land i < Len(s))
                                  \rightarrow (0 \leq segGet_{Int}(s,i) \wedge segGet_{Int}(s,i) < Len(s))
segNPermInjective
  (\forall Seg s)(\forall Int i, i)(segNPerm(s) \land 0 \leq i \land i < Len(s) \land i \leq i \land i \leq Len(s) \land i \leq
                 segGet_{Int}(s, i) \doteq segGet_{Int}(s, i)) \land 0 \leq i \land i < Len(s)
                                 \rightarrow i = i
segNPermComp
         (\forall Seg s1, s2)(segNPerm(s1) \land segNPerm(s2) \land Len(s1) \doteq Len(s2) \rightarrow
         segNPerm(segDef\{u\}(0, Len(s1), segGet_{Int}(s1, segGet_{Int}(s2, u))))))
 segPermTrans
  (\forall Seq s1, s2, s3)(seqPerm(s1, s2) \land seqPerm(s2, s3)
                                  \rightarrow segPerm(s1, s3))
 segPermRefl (\forall Segs)(segPerm(s,s))
```

Hereditary base-*n* notation

Taken from Wikipedia

The hereditary base-n notation for a natural number m is obtained from its ordinary base-n notation

$$m = m_k \cdot n^k + m_{k-1} \cdot n^{k-1} + \dots + m_1 \cdot n + m_0, \quad 0 \le m_i < n, m_k \ne 0$$

by also writing the exponents k, k-1, ..., n+1 in base-n notation and again the thus arising exponents, and so on.

Hereditary base-*n* notation

Taken from Wikipedia

The hereditary base-n notation for a natural number m is obtained from its ordinary base-n notation

$$m = m_k \cdot n^k + m_{k-1} \cdot n^{k-1} + \dots + m_1 \cdot n + m_0, \quad 0 \le m_i < n, m_k \ne 0$$

by also writing the exponents k, k-1, ..., n+1 in base-n notation and again the thus arising exponents, and so on.

Example

base-2
$$35 = 2^5 + 2^1 + 2^0$$

hereditary base-2 $35 = 2^{2^2+1} + 2 + 1$
base-3 $100 = 3^4 + 2 \cdot 3^2 + 3^0$
hereditary base-3 $100 = 3^{3+1} + 2 \cdot 3^2 + 1$.

Goodstein Sequences

Taken from Wikipedia

Definition

$$G(m)(1) = m$$

 $G(m)(n+1)$ write $G(m)(n)$ in hereditary base- $(n+1)$ notation replace all bases $n+1$ by $n+2$ subtract 1

Goodstein Sequences

Taken from Wikipedia

Definition

$$G(m)(1) = m$$

 $G(m)(n+1)$ write $G(m)(n)$ in hereditary base- $(n+1)$ notation replace all bases $n+1$ by $n+2$ subtract 1

Example

Base	Hered. not.	G(3)(n)	Notes
2	$2^1 + 1$	3	Write 3 in base 2 notation
3	$3^1 + 1 - 1 = 3^1$	3	Switch 2 to 3, subtract 1
4	$4^1 - 1 = 3$	3	Switch 3 to 4, subtract 1.No 4s left
5	3 - 1 = 2	2	No 4s left. Just subtract 1
6	2 - 1 = 1	1	No 5s left. Just subtract 1
7	1 - 1 = 0	0	No 6s left. Just subtract 1