Survival Analysis Biostatistics 140.641

Problem Set 1

Due date: Monday, 9/12/2022

1. (a) Given the hazard function $\lambda(t) = c$, where c > 0, derive the survival function and the density function. Derive the median failure time for c = 2, 5 and 11.

(b) Given the survival function $S(t) = \exp(-\theta t^{\beta})$, where $\theta, \beta > 0$, derive the density function and the hazard function.

2. Assume the hazard function starts at 0 and increases linearly with time. Suppose the slope of the line is a positive "b".

(a) Comment in a couple of sentences on the meaning of the above assumption.

(b) Derive a formula for the survival function based on this assumption.

(c) Derive a formula for the density function based on this assumption.

(d) Sketch three graphs: the hazard vs time; the survival function vs time; and the density vs time. To do this, assume b=.08.

3. Suppose T follows Uniform $(0,\theta)$ distribution, $\theta>0$, and $C=c_0$ is a constant variable, $c_0>0$. Define

$$Y = \left\{ \begin{array}{ll} T & \text{if} & T \leq C \\ C & \text{if} & T > C \end{array} \right.$$

and the censoring indicator $\Delta = I(T \leq C)$.

(a) Find the probability density function of Y and express it as a function of (θ, c_0) .

(b) Find the survival function of Y and express it as a function of (θ, c_0) .

(c) Find the probability density function of Δ and express it as a function of (θ, c_0) .

1

4. Suppose the failure time variable T has the Exponential $(\lambda = 5)$ distribution, where $\lambda > 0$ is the hazard parameter, and suppose the censoring variable C has the Uniform (0,10) distribution. Assume T and C are independent. Define

$$Y = \left\{ \begin{array}{ll} T & \text{if} & T \le C \\ C & \text{if} & T > C \end{array} \right.$$

and the censoring indicator $\Delta = I(T \leq C)$.

- (a) Find the probability density function of Y.
- (b) Find the survival function of Y.
- (c) Find the probability density function of Δ .
- 5. In a simulation study the following design is used: $T_i \sim \text{Exponential}(\theta)$, $\theta > 0$ (where θ is the constant hazard), and $C_i \sim \text{Unif}(0, 5)$. Suppose the pairs $(T_1, C_1), ..., (T_n, C_n)$ are mutually independent, and T_i and C_i are independent, i = 1, 2, ..., n. We then generate a set of standard survival data which include i.i.d. $(Y_1, \Delta_1), (Y_2, \Delta_2), ..., (Y_n, \Delta_n)$.
 - (a) Please select a specific value of θ so that the proportion of uncensored data takes about 40% of the whole data set.
 - (b) Suppose now a value of θ is specified. Describe how you generate the observed data $(Y_1, \Delta_1), (Y_2, \Delta_2), \ldots, (Y_n, \Delta_n)$.