SBML Model Report

Model name: "Invergo2014 Phototransduction cascade in mouse rod cells"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Brandon Invergo² at August sixth 2015 at 3:33 p.m. and last time modified at August sixth 2015 at 4:33 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	76
events	0	constraints	0
reactions	96	function definitions	0
global parameters	103	unit definitions	0
rules	37	initial assignments	0

Model Notes

Invergo2014 - Phototransduction cascade inmouse rod cells

¹EMBL-EBI, viji@ebi.ac.uk

²EMBL-EBI, invergo@ebi.ac.uk

This model is described in the article: A comprehensive model of the phototransduction cascade in mouse rod cells. Invergo BM, Dell'Orco D, Montanucci L, Koch KW, Bertranpetit J.Mol Biosyst 2014 Jun; 10(6): 1481-1489

Abstract:

Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.

This model is hosted on BioModels Database and identified by: BIOMD0000000578.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol	cytosol	0000290	3	0.03916	1	Ø	

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of 0.03916 litre.

Name cytosol

SBO:0000290 physical compartment

4 Species

This model contains 76 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Arr	Arr	cytosol	mol		
Arr_di	Arr₋di	cytosol	mol	\Box	
Arr_tetra	Arr_tetra	cytosol	mol		
Ca2_buff	Ca2_buff	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
Ca2_free	Ca2_free	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\square
G_GTP	$G_{-}GTP$	cytosol	mol	\Box	
Ga_GDP	Ga_GDP	cytosol	mol	\Box	
Ga_GTP	Ga_GTP	cytosol	mol	\Box	
Ga_GTP_PDE_a_Ga- _GTP	Ga_GTP_PDE_a_Ga_GTP	cytosol	mol		
Ga_GTP_a_PDE_a_Ga- _GTP	Ga_GTP_a_PDE_a_Ga_GTP	cytosol	mol		
Gbg	Gbg	cytosol	mol	\Box	
Gt	Gt	cytosol	mol		
Ops	Ops	cytosol	mol		
Ops_G	Ops_G	cytosol	mol		
Ops_G_GTP	Ops_G_GTP	cytosol	mol	\Box	
Ops_Gt	Ops_Gt	cytosol	mol	\Box	
PDE	PDE	cytosol	mol	\Box	
PDE_Ga_GTP	PDE_Ga_GTP	cytosol	mol		
$PDE_a_Ga_GTP$	PDE_a_Ga_GTP	cytosol	mol	\Box	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
R	R	cytosol	mol		
RO	R0	cytosol	mol		
RO_G	R0_G	cytosol	mol		
RO_GGTP	R0_G_GTP	cytosol	mol		\Box
RO_Gt	R0_Gt	cytosol	mol		\Box
RO_RKpre	R0_RKpre	cytosol	mol		\Box
R1	R1	cytosol	mol		\Box
R1_Arr	R1_Arr	cytosol	mol		\Box
R1_G	R1_G	cytosol	mol		\Box
R1_G_GTP	R1_G_GTP	cytosol	mol		\Box
R1_Gt	R1_Gt	cytosol	mol		\Box
$R1_RKpost$	R1_RKpost	cytosol	mol		\Box
R1_RKpre	R1_RKpre	cytosol	mol		\Box
R2	R2	cytosol	mol		\Box
R2_Arr	R2_Arr	cytosol	mol		\Box
R2_G	R2_G	cytosol	mol		\Box
$R2_GGTP$	R2_G_GTP	cytosol	mol		\Box
R2_Gt	R2_Gt	cytosol	mol		\Box
$R2_RKpost$	R2_RKpost	cytosol	mol		\Box
R2_RKpre	R2_RKpre	cytosol	mol		\Box
R3	R3	cytosol	mol		\Box
R3_Arr	R3_Arr	cytosol	mol		
R3_G	R3_G	cytosol	mol		
$R3_GGTP$	R3_G_GTP	cytosol	mol		\Box
R3_Gt	R3_Gt	cytosol	mol		\Box
R3_RKpost	R3_RKpost	cytosol	mol		\Box
R3_RKpre	R3_RKpre	cytosol	mol		

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	R4	R4	cytosol	mol		
	$R4_Arr$	R4_Arr	cytosol	mol		
	$R4_G$	R4_G	cytosol	mol		
	$R4_G_GTP$	R4_G_GTP	cytosol	mol		
	$R4_Gt$	R4_Gt	cytosol	mol		
	$R4_RKpost$	R4_RKpost	cytosol	mol		
	R4_RKpre	R4_RKpre	cytosol	mol		
_	R5	R5	cytosol	mol		
Produced by SBML2PTEX	R5_Arr	R5_Arr	cytosol	mol		
duc	$R5_G$	R5_G	cytosol	mol		
ed	$R5_G_GTP$	R5_G_GTP	cytosol	mol		
by	$R5_Gt$	R5_Gt	cytosol	mol		
<u>₩</u>	$R5_RKpost$	R5_RKpost	cytosol	mol		
\leq	R5_RKpre	R5_RKpre	cytosol	mol		
, A	R6	R6	cytosol	mol		
$\stackrel{\square}{\times}$	R6_Arr	R6_Arr	cytosol	mol		
	$R6_G$	R6_G	cytosol	mol		
	$R6_G_GTP$	R6_G_GTP	cytosol	mol		
	$R6_Gt$	R6_Gt	cytosol	mol		
	$R6_RKpost$	R6_RKpost	cytosol	mol		
	R6_RKpre	R6_RKpre	cytosol	mol		
	RGS	RGS	cytosol	mol		
	RGS_Ga_GTP_a_PDE- _a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	cytosol	mol		
	RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	cytosol	mol	\Box	
	RK	RK	cytosol	mol		
	$R_{-}Gt$	R_Gt	cytosol	mol		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
RecR_Ca	RecR_Ca	cytosol	mol		\Box
RecR_Ca_RK	RecR_Ca_RK	cytosol	mol		
RecT	RecT	cytosol	mol		
cGMP	cGMP	cytosol	$\mathrm{mol} \cdot \mathrm{l}^{-1}$		

5 Parameters

This model contains 103 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Rtot	Rtot	10	08	✓
PDEtot	PDEtot	2000000.00	0	
Gtot	Gtot	10	0^{7}	
RGStot	RGStot	100000.00	0	
ArrTot	ArrTot	7074600.00	0	
flashBG	flashBG	0.00	0	
flash0Dur	flash0Dur	0.00	1	
flash0Mag	flash0Mag	0.00	0	
flashDel	flashDel	0.00	0	
flashDur	flashDur	0.00	1	
flashMag	flashMag	0.00	0	
otherstimulus	otherstimulus	0.00	0	
kRK1_0	kRK1_0	0.17	2	
omega	omega	2.50	0	
kRK2	kRK2	250.00	0	
kRK3_ATP	kRK3_ATP	4000.00	0	
kRK4	kRK4	250.00	0	
kArr	kArr	$9.9147 \cdot 10^{-1}$	-6	
kA2	kA2	0.02	6	
${\tt m_Arr}$	$m_{-}Arr$	$9.5475 \cdot 10^{-3}$	-6	
kA3	kA3	1.16	5	
kA4	kA4	$2.9965 \cdot 10^{-3}$	- 7	
kA5	kA5	0.42	4	
k0ps	kOps	$6.1172 \cdot 10^{-}$	13	
kRrecyc	kRrecyc	$7 \cdot 10^{-1}$	-4	
${\tt omega_G}$	omega_G	0.60	0	
$kG1_0$	$kG1_{-}0$	0.00	1	
kG2	kG2	2200.00	0	
kG3	kG3	8500.00	0	
$kG4_GDP$	kG4_GDP	400.00	0	
$kG5_GTP$	kG5_GTP	3500.00	0	
kG6	kG6	8500.00	0	$\overline{\mathscr{L}}$
kG7	kG7	200.00	0	$\overline{\mathscr{L}}$
kGrecyc	kGrecyc	2.00	0	$\overline{\checkmark}$
kGshutoff	kGshutoff	0.05	0	$\overline{\mathbf{Z}}$
kP1	kP1	0.05	5	$\overline{\mathbf{Z}}$
kP1_rev	kP1_rev	0.00	0	$\overline{\checkmark}$

Id	Name	SBO Value	Unit	Constant
kP2	kP2	940.70		Ø
kP3	kP3	1.4983 · 10	-9	$\overline{\mathbf{Z}}$
kP4	kP4	21.08	38	$\overline{\mathbf{Z}}$
kPDEshutoff	kPDEshutoff	0.10	00	$ \overline{\checkmark} $
kRGS1	kRGS1	$4.8182 \cdot 10$	-5	
kRGS2	kRGS2	98.00	00	$ \overline{\checkmark} $
kRec1	kRec1	0.01	11	$ \overline{\checkmark} $
kRec2	kRec2	0.05	50	
kRec3	kRec3	$4.1081 \cdot 10$	-4	
kRec4	kRec4	0.61	10	$ \overline{\checkmark} $
Vcyto	Vcyto	0.03	39	$ \overline{\checkmark} $
Kc1	Kc1	0.17	71	$\overline{\mathbf{Z}}$
Kc2	Kc2	0.05	59	$\overline{\mathbf{Z}}$
m1	m1	3.00	00	$ \overline{\checkmark} $
m2	m2	1.50	00	
alfamax	alfamax	60.00	00	
betadark	betadark	3.19	90	
betasub	betasub	0.00)2	$ \overline{\checkmark} $
fCa	fCa	0.12	20	
Jdark	Jdark	14.87	70	
F	F	96485.34	40	
cGMPdark	cGMPdark	6.49	94	
ncg	ncg	3.80	00	
gammaCa	gammaCa	981.35	56	$ \overline{\checkmark} $
Ca2dark	Ca2dark	0.25	50	$ \overline{\checkmark} $
Ca2_0	Ca2_0	0.02	23	$ \overline{\checkmark} $
k1	k1	9.37	71	
k2	k2	46.41	12	
eT	eT	400.00	00	
ktherm	ktherm	0.02	24	
background	background	0.00	00	
premag	premag	0.00	00	\Box
mag	mag	0.00	00	\Box
predur	predur	0.00	00	\Box
dur	dur	0.00	00	
del	del	0.00	00	
preflash	preflash	0.00	00	
testflash	testflash	0.00	00	
stimulus	stimulus	0.00	00	
${\tt numConcFactor}$	numConcFactor	0.00	00	
$kRK1_{-}1$	kRK1_1	0.00	00	
kRK1_2	kRK1_2	0.00	00	

Id	Name	SBO	Value	Unit	Constant
kRK1_3	kRK1_3		0.000		
kRK1_4	kRK1_4		0.000		\Box
$kRK1_5$	kRK1_5		0.000		\Box
$kRK1_6$	kRK1_6		0.000		\Box
$kA1_{-}1$	$kA1_{-}1$		0.000		
kA1_2	kA1_2		0.000		
$kA1_3$	kA1_3		0.000		
$\mathtt{kA1}_4$	$kA1_4$		0.000		\Box
$kA1_5$	kA1_5		0.000		\Box
$kA1_{-}6$	kA1_6		0.000		\Box
kGpre1	kGpre1		0.000		
kGpre2	kGpre2		0.000		
kG1ops	kGlops		0.000		
kG2ops	kG2ops		0.000		
$kG1_{-}1$	$kG1_{-}1$		0.000		
$kG1_{-}2$	$kG1_{-}2$		0.000		
$kG1_{-}3$	$kG1_{-}3$		0.000		
$kG1_4$	$kG1_{-}4$		0.000		
$kG1_5$	kG1_5		0.000		
$kG1_6$	$kG1_{-}6$		0.000		
E	E		0.000		
${\tt Ca2_frac}$	Ca2_frac		0.000		
J	J		0.000		
deltaJ	deltaJ		0.000		

6 Rules

This is an overview of 37 rules.

6.1 Rule background

Rule background is an assignment rule for parameter background:

$$background = flashBG (1)$$

6.2 Rule premag

Rule premag is an assignment rule for parameter premag:

$$premag = \frac{flash0Mag}{flash0Dur}$$
 (2)

6.3 Rule mag

Rule mag is an assignment rule for parameter mag:

$$mag = \frac{flashMag}{flashDur}$$
 (3)

6.4 Rule predur

Rule predur is an assignment rule for parameter predur:

$$predur = flash0Dur (4)$$

6.5 Rule dur

Rule dur is an assignment rule for parameter dur:

$$dur = flashDur (5)$$

6.6 Rule del

Rule del is an assignment rule for parameter del:

$$del = flashDel$$
 (6)

6.7 Rule preflash

Rule preflash is an assignment rule for parameter preflash:

$$preflash = \begin{cases} premag & \text{if time} \leq predur \\ 0 & \text{otherwise} \end{cases}$$
 (7)

6.8 Rule testflash

Rule testflash is an assignment rule for parameter testflash:

$$testflash = \begin{cases} mag & \text{if } (time \ge del) \land (time \le del + dur) \\ 0 & \text{otherwise} \end{cases}$$
 (8)

6.9 Rule stimulus

Rule stimulus is an assignment rule for parameter stimulus:

$$stimulus = background + preflash + testflash + otherstimulus$$
 (9)

6.10 Rule numConcFactor

Rule numConcFactor is an assignment rule for parameter numConcFactor:

$$numConcFactor = \frac{1}{602200.0 \cdot Vcyto}$$
 (10)

6.11 Rule kRK1_1

Rule kRK1_1 is an assignment rule for parameter kRK1_1:

$$kRK1_{-}1 = kRK1_{-}0 \cdot exp (omega)$$
 (11)

6.12 Rule kRK1_2

Rule kRK1_2 is an assignment rule for parameter kRK1_2:

$$kRK1_2 = kRK1_0 \cdot exp(omega \cdot 2)$$
 (12)

6.13 Rule kRK1_3

Rule kRK1_3 is an assignment rule for parameter kRK1_3:

$$kRK1_3 = kRK1_0 \cdot exp(omega \cdot 3)$$
 (13)

6.14 Rule kRK1_4

Rule kRK1_4 is an assignment rule for parameter kRK1_4:

$$kRK1_4 = kRK1_0 \cdot exp(omega \cdot 4)$$
 (14)

6.15 Rule kRK1_5

Rule kRK1_5 is an assignment rule for parameter kRK1_5:

$$kRK1_5 = kRK1_0 \cdot exp(omega \cdot 5)$$
 (15)

6.16 Rule kRK1_6

Rule kRK1_6 is an assignment rule for parameter kRK1_6:

$$kRK1_{-}6 = 0 \tag{16}$$

6.17 Rule kA1_1

Rule kA1_1 is an assignment rule for parameter kA1_1:

$$kA1_{-}1 = kArr (17)$$

6.18 Rule kA1_2

Rule kA1_2 is an assignment rule for parameter kA1_2:

$$kA1_2 = kArr + 1 \cdot m_Arr \tag{18}$$

6.19 Rule kA1_3

Rule kA1_3 is an assignment rule for parameter kA1_3:

$$kA1_{3} = kArr + 2 \cdot m_{Arr} \tag{19}$$

6.20 Rule kA1_4

Rule kA1_4 is an assignment rule for parameter kA1_4:

$$kA1_{-}4 = kArr + 3 \cdot m_{-}Arr \tag{20}$$

6.21 Rule kA1_5

Rule kA1_5 is an assignment rule for parameter kA1_5:

$$kA1_5 = kArr + 3 \cdot m_Arr \tag{21}$$

6.22 Rule kA1_6

Rule kA1_6 is an assignment rule for parameter kA1_6:

$$kA1_6 = kArr + 3 \cdot m_Arr \tag{22}$$

6.23 Rule kGpre1

Rule kGpre1 is an assignment rule for parameter kGpre1:

$$kGpre1 = kG1_0 \cdot 1.6 \tag{23}$$

6.24 Rule kGpre2

Rule kGpre2 is an assignment rule for parameter kGpre2:

$$kGpre2 = kG2 \cdot 315 \tag{24}$$

6.25 Rule kG1ops

Rule kG1ops is an assignment rule for parameter kG1ops:

$$kG1ops = kG1_0 \cdot 1.9 \tag{25}$$

6.26 Rule kG2ops

Rule kG2ops is an assignment rule for parameter kG2ops:

$$kG2ops = kG2 \cdot 3 \tag{26}$$

6.27 Rule kG1_1

Rule kG1_1 is an assignment rule for parameter kG1_1:

$$kG1_1 = kG1_0 \cdot \exp(\text{omega}_G) \tag{27}$$

6.28 Rule kG1_2

Rule kG1_2 is an assignment rule for parameter kG1_2:

$$kG1_2 = kG1_0 \cdot \exp(\text{omega}_G \cdot 2) \tag{28}$$

6.29 Rule kG1_3

Rule kG1_3 is an assignment rule for parameter kG1_3:

$$kG1_3 = kG1_0 \cdot \exp(\text{omega}_G \cdot 3) \tag{29}$$

6.30 Rule kG1_4

Rule kG1_4 is an assignment rule for parameter kG1_4:

$$kG1_4 = kG1_0 \cdot \exp(\text{omega}_G \cdot 4) \tag{30}$$

6.31 Rule kG1_5

Rule kG1_5 is an assignment rule for parameter kG1_5:

$$kG1_5 = kG1_0 \cdot exp(omega_G \cdot 5)$$
(31)

6.32 Rule kG1_6

Rule kG1_6 is an assignment rule for parameter kG1_6:

$$kG1_6 = kG1_0 \cdot \exp(\text{omega}_G \cdot 6) \tag{32}$$

6.33 Rule E

Rule E is an assignment rule for parameter E:

$$E = PDE_a_Ga_GTP + 2 \cdot Ga_GTP_a_PDE_a_Ga_GTP + Ga_GTP_PDE_a_Ga_GTP$$
 (33)

6.34 Rule Ca2 frac

Rule Ca2_frac is an assignment rule for parameter Ca2_frac:

$$Ca2_frac = \frac{[Ca2_free] - Ca2_0}{Ca2dark - Ca2_0}$$
(34)

6.35 Rule J

Rule J is an assignment rule for parameter J:

$$J = \frac{2}{2 + fCa} \cdot \left(\frac{[cGMP]}{cGMPdark}\right)^{ncg} \cdot Jdark + \frac{fCa}{fCa + 2} \cdot Ca2_frac \cdot Jdark$$
 (35)

6.36 Rule deltaJ

Rule deltaJ is an assignment rule for parameter deltaJ:

$$deltaJ = Jdark - J (36)$$

6.37 Rule Ca2_free

Rule Ca2_free is a rate rule for species Ca2_free:

$$\frac{d}{dt}\text{Ca2_free} = v_r33 - v_r34 + v_r35 - 2 \cdot v_r30 \cdot \text{numConcFactor}$$
 (37)

7 Reactions

This model contains 96 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	v_r1	v_r1	$R \longrightarrow R0$	
2	$v_rstprec$	v_rstprec	$R_Gt \longrightarrow R0_Gt$	
3	v_r2_0	v_r2_0	$R0 + RK \Longrightarrow R0_RKpre$	
4	v_r2_1	v_r2_1	$R1 + RK \Longrightarrow R1 RKpre$	
5	v_r2_2	v_r2_2	$R2 + RK \Longrightarrow R2_RKpre$	
6	v_r2_3	v_r2_3	$R3 + RK \Longrightarrow R3 RKpre$	
7	v_r2_4	v_r2_4	$R4 + RK \Longrightarrow R4_RKpre$	
8	v_r2_5	v_r2_5	$R5 + RK \Longrightarrow R5 RKpre$	
9	v_r2_6	v_r2_6	$R6 + RK \Longrightarrow R6_RKpre$	
10	v_r3_0	v_r3_0	$R0_RKpre \longrightarrow R1_RKpost$	
11	v_r3_1	v_r3_1	$R1_RKpre \longrightarrow R2_RKpost$	
12	v_r3_2	v_r3_2	$R2_RKpre \longrightarrow R3_RKpost$	
13	v_r3_3	v_r3_3	$R3_RKpre \longrightarrow R4_RKpost$	
14	v_r3_4	v_r3_4	$R4_RKpre \longrightarrow R5_RKpost$	
15	v_r3_5	v_r3_5	$R5_RKpre \longrightarrow R6_RKpost$	
16	v_r4_1	v_r4_1	$R1_RKpost \longrightarrow R1 + RK$	
17	v_r4_2	v_r4_2	$R2_RKpost \longrightarrow R2 + RK$	
18	v_r4_3	v_r4_3	$R3_RKpost \longrightarrow R3 + RK$	
19	v_r4_4	v_r4_4	$R4_RKpost \longrightarrow R4 + RK$	
20	v_r4_5	v_r4_5	$R5_RKpost \longrightarrow R5 + RK$	
21	v_r4_6	v_r4_6	$R6_RKpost \longrightarrow R6 + RK$	
22	v_r5_1	v_r5_1	$Arr + R1 \Longrightarrow R1_Arr$	
23	v_r5_2	v_r5_2	$Arr + R2 \Longrightarrow R2_Arr$	

N⁰	Id	Name	Reaction Equation	SBO
24	v_r5_3	v_r5_3	$Arr + R3 \Longrightarrow R3_Arr$	
25	v_r5_4	v_r5_4	$Arr + R4 \Longrightarrow R4_Arr$	
26	v_r5_5	v_r5_5	$Arr + R5 \Longrightarrow R5_Arr$	
27	v_r5_6	v_r5_6	$Arr + R6 \Longrightarrow R6_Arr$	
28	v_r6_1	v_r6_1	$R1_Arr \longrightarrow Arr + Ops$	
29	v_r6_2	v_r6_2	$R2_Arr \longrightarrow Arr + Ops$	
30	v_r6_3	v_r6_3	$R3_Arr \longrightarrow Arr + Ops$	
31	v_r6_4	v_r6_4	$R4_Arr \longrightarrow Arr + Ops$	
32	v_r6_5	v_r6_5	$R5_Arr \longrightarrow Arr + Ops$	
33	v_r6_6	v_r6_6	$R6_Arr \longrightarrow Arr + Ops$	
34	v_r7_0	v_r7_0	$R0 \longrightarrow Ops$	
35	v_r7_1	v_r7_1	$R1 \longrightarrow Ops$	
36	v_r7_2	v_r7_2	$R2 \longrightarrow Ops$	
37	v_r7_3	v_r7_3	$R3 \longrightarrow Ops$	
38	v_r7_4	v_r7_4	$R4 \longrightarrow Ops$	
39	v_r7_5	v_r7_5	$R5 \longrightarrow Ops$	
40	v_r7_6	v_r7_6	$R6 \longrightarrow Ops$	
41	v_r8	v_r8	$Gt + Ops \Longrightarrow Ops_Gt$	
42	v_r9	v_ r 9	$Ops_Gt \Longrightarrow Ops_G$	
43	v_r10	v_r10	$Ops_G \longrightarrow Ops_G_GTP$	
44	v_r11	v_r11	$Ops_G_GTP \longrightarrow G_GTP + Ops$	
45	v_r12	v_r12	$Ops \longrightarrow R$	
46	${ t v_GtRpre}$	v_GtRpre	$Gt + R \rightleftharpoons R_Gt$	
47	v_r13_0	v_r13_0	$Gt + R0 \Longrightarrow R0_Gt$	
48	v_r13_1	v_r13_1	$Gt + R1 \Longrightarrow R1_Gt$	
49	v_r13_2	v_r13_2	$Gt + R2 \Longrightarrow R2_Gt$	
50	v_r13_3	v_r13_3	$Gt + R3 \Longrightarrow R3_Gt$	
51	v_r13_4	v_r13_4	$Gt + R4 \Longrightarrow R4_Gt$	
52	v_r13_5	v_r13_5	$Gt + R5 \Longrightarrow R5_Gt$	

$N_{\bar{0}}$	Id	Name	Reaction Equation S	SBO
53	v_r13_6	v_r13_6	$Gt + R6 \rightleftharpoons R6_Gt$	
54	v_r14_0	v_r14_0	$R0_Gt \rightleftharpoons R0_G$	
55	v_r14_1	v_r14_1	$R1_Gt \rightleftharpoons R1_G$	
56	v_r14_2	v_r14_2	$R2_Gt \Longrightarrow R2_G$	
57	v_r14_3	v_r14_3	$R3_Gt \Longrightarrow R3_G$	
58	v_r14_4	v_r14_4	$R4_Gt \Longrightarrow R4_G$	
59	v_r14_5	v_r14_5	$R5_Gt \Longrightarrow R5_G$	
60	v_r14_6	v_r14_6	$R6_Gt \rightleftharpoons R6_G$	
61	v_r15_0	v_r15_0	$R0_G \longrightarrow R0_G_GTP$	
62	v_r15_1	v_r15_1	$R1_G \longrightarrow R1_G_GTP$	
63	v_r15_2	v_r15_2	$R2_G \longrightarrow R2_G_GTP$	
64	v_r15_3	v_r15_3	$R3_G \longrightarrow R3_G_GTP$	
65	v_r15_4	v_r15_4	$R4_G \longrightarrow R4_G_GTP$	
66	v_r15_5	v_r15_5	$R5_G \longrightarrow R5_G_GTP$	
67	v_r15_6	v_r15_6	$R6_G \longrightarrow R6_G_GTP$	
68	v_r16_0	v_r16_0	$R0_G_GTP \longrightarrow G_GTP + R0$	
69	v_r16_1	v_r16_1	$R1_G_GTP \longrightarrow G_GTP + R1$	
70	v_r16_2	v_r16_2	$R2_G_GTP \longrightarrow G_GTP + R2$	
71	v_r16_3	v_r16_3	$R3_G_GTP \longrightarrow G_GTP + R3$	
72	v_r16_4	v_r16_4	$R4_G_GTP \longrightarrow G_GTP + R4$	
73	v_r16_5	v_r16_5	$R5_G_GTP \longrightarrow G_GTP + R5$	
74	v_r16_6	v_r16_6	$R6_G_GTP \longrightarrow G_GTP + R6$	
75	v_r17	v_r17	$G_GTP \longrightarrow Ga_GTP + Gbg$	
76	v_r18	v_r18	$Ga_GTP + PDE \Longrightarrow PDE_Ga_GTP$	
77	v_r19	v_r19	$PDE_Ga_GTP \longrightarrow PDE_a_Ga_GTP$	
78	v_r20	v_r20	$Ga_GTP+PDE_a_Ga_GTP \longrightarrow Ga_GTP_PDE_a_Ga_GTP$	ГР
79	v_r21	v_r21	$Ga_GTP_PDE_a_Ga_GTP \longrightarrow Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_PDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_GTP_a_DDE_a_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_G$	TP
80	v_r22	v_r22	Ga_GTP_a_PDE_a_Ga_GTP +	
			$RGS \longrightarrow RGS_Ga_GTP_a_PDE_a_Ga_GTP$	

Nº	Id	Name	Reaction Equation	SBO
81	v_r23	v_r23	$RGS_Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP +$	
			$PDE_a_Ga_GTP + RGS$	
82	v_r24	v_r24	$PDE_a_Ga_GTP + RGS \longrightarrow RGS_PDE_a_Ga_GTP$	
83	v_r25	v_r25	$RGS_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE + RGS$	
84	v_r26	v_r26	$PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE$	
85	v_r27	v_r27	$Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP$ +	
			PDE_a_Ga_GTP	
86	v_r28	v_r28	$Ga_GTP \longrightarrow Ga_GDP$	
87	v_r29	v_r29	$Ga_GDP + Gbg \longrightarrow Gt$	
88	v_r30	v_r30	$RecT + Ca2_free \Longrightarrow RecR_Ca$	
89	v_r31	v_r31	$RK + RecR_Ca \Longrightarrow RecR_Ca_RK$	
90	v_r_diarr	v_r_diarr	2 Arr ← Arr_di	
91	$v_r_{tetraarr}$	v_r_tetraarr	2 Arr_di ← Arr_tetra	
92	v_r33	v_r33	Ca2_free ← Ca2_buff	
93	v_r34	v_r34	$Ca2_free \longrightarrow \emptyset$	
94	v_r35	v_r35	$\emptyset \xrightarrow{\text{cGMP}} \text{Ca2_free}$	
95	v_r36	v_r36	$\emptyset \xrightarrow{\text{Ca2_free}} \text{cGMP}$	
96	v_ r 37	v_r37	cGMP Ga_GTP_PDE_a_Ga_GTP, Ga_GTP_a_PDE_a_	Ga_GTP, PDE_a_Ga_GT

7.1 Reaction v_r1

This is an irreversible reaction of one reactant forming one product.

Name v_r1

Notes Photoactivation of unphosphorylated R

Reaction equation

$$R \longrightarrow R0$$
 (38)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
R	R	

Product

Table 7: Properties of each product.

Id	Name	SBO
RO	R0	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \frac{\text{stimulus} \cdot R}{\text{Rtot}}$$
 (39)

7.2 Reaction v_rstprec

This is an irreversible reaction of one reactant forming one product.

Name v_rstprec

Notes Photoactivation of pre-coupled R-Gt

Reaction equation

$$R_Gt \longrightarrow R0_Gt \tag{40}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
R_Gt	R_Gt	

Product

Table 9: Properties of each product.

Id	Name	SBO
RO_Gt	R0_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \frac{\text{stimulus} \cdot \text{R}_\text{Gt}}{\text{Rtot}}$$
 (41)

7.3 Reaction v_r2_0

This is a reversible reaction of two reactants forming one product.

Name v_r2_0

Notes Binding of R0 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R0 + RK \Longrightarrow R0_RKpre$$
 (42)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
RO	R0	
RK	RK	

Product

Table 11: Properties of each product.

Id	Name	SBO
RO_RKpre	R0_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = kRK1_0 \cdot RK \cdot R0 - kRK2 \cdot R0_R Kpre$$
 (43)

7.4 Reaction v_r2_1

This is a reversible reaction of two reactants forming one product.

Name v_r2_1

Notes Binding of R1 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R1 + RK \Longrightarrow R1_RKpre$$
 (44)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
R1	R1	
RK	RK	

Product

Table 13: Properties of each product.

Id	Name	SBO
R1_RKpre	R1_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = kRK1_1 \cdot RK \cdot R1 - kRK2 \cdot R1_R Kpre$$
 (45)

7.5 Reaction v_r2_2

This is a reversible reaction of two reactants forming one product.

Name v_r2_2

Notes Binding of R2 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R2 + RK \Longrightarrow R2_RKpre$$
 (46)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
R2	R2	
RK	RK	

Product

Table 15: Properties of each product.

Id	Name	SBO
R2_RKpre	R2_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = kRK1_2 \cdot RK \cdot R2 - kRK2 \cdot R2_R Kpre$$
 (47)

7.6 Reaction v_r2_3

This is a reversible reaction of two reactants forming one product.

Name v_r2_3

Notes Binding of R3 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R3 + RK \Longrightarrow R3_RKpre$$
 (48)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
R3	R3	
RK	RK	

Product

Table 17: Properties of each product.

Id	Name	SBO
R3_RKpre	R3_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = kRK1_3 \cdot RK \cdot R3 - kRK2 \cdot R3_RKpre$$
 (49)

7.7 Reaction v_r2_4

This is a reversible reaction of two reactants forming one product.

Name v_r2_4

Notes Binding of R4 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R4 + RK \Longrightarrow R4_RKpre$$
 (50)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
R4	R4	
RK	RK	

Product

Table 19: Properties of each product.

Id	Name	SBO
R4_RKpre	R4_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = kRK1_4 \cdot RK \cdot R4 - kRK2 \cdot R4_RKpre$$
 (51)

7.8 Reaction v_r2_5

This is a reversible reaction of two reactants forming one product.

Name v_r2_5

Notes Binding of R5 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R5 + RK \Longrightarrow R5_RKpre$$
 (52)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
R5	R5	
RK	RK	

Product

Table 21: Properties of each product.

Id	Name	SBO
R5_RKpre	R5_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = kRK1_5 \cdot RK \cdot R5 - kRK2 \cdot R5_RKpre$$
 (53)

7.9 Reaction v_r2_6

This is a reversible reaction of two reactants forming one product.

Name v_r2_6

Notes Binding of R6 and RK. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$R6 + RK \Longrightarrow R6_RKpre$$
 (54)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
R6	R6	
RK	RK	

Product

Table 23: Properties of each product.

Id	Name	SBO
R6_RKpre	R6_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = kRK1_6 \cdot RK \cdot R6 - kRK2 \cdot R6_RKpre$$
 (55)

7.10 Reaction v_r3_0

This is an irreversible reaction of one reactant forming one product.

Name v_r3_0

Notes Phosphorylation of R0 to give R1

Reaction equation

$$R0_RKpre \longrightarrow R1_RKpost$$
 (56)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
RO_RKpre	R0_RKpre	

Product

Table 25: Properties of each product.

Id	Name	SBO
R1_RKpost	R1_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = kRK3_ATP \cdot R0_RKpre$$
 (57)

7.11 Reaction v_r3_1

This is an irreversible reaction of one reactant forming one product.

Name v_r3_1

Notes Phosphorylation of R1 to give R2

Reaction equation

$$R1_RKpre \longrightarrow R2_RKpost$$
 (58)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
R1_RKpre	R1_RKpre	

Product

Table 27: Properties of each product.

Id	Name	SBO
R2_RKpost	R2_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = kRK3_ATP \cdot R1_RKpre$$
 (59)

7.12 Reaction v_r3_2

This is an irreversible reaction of one reactant forming one product.

Name v_r3_2

Notes Phosphorylation of R2 to give R3

Reaction equation

$$R2_RKpre \longrightarrow R3_RKpost \tag{60}$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
R2_RKpre	R2_RKpre	

Product

radic 2). I reperties of each product	Table 29:	Properties	of each	product.
---------------------------------------	-----------	------------	---------	----------

Id	Name	SBO
R3_RKpost	R3_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = kRK3_ATP \cdot R2_RKpre$$
 (61)

7.13 Reaction v_r3_3

This is an irreversible reaction of one reactant forming one product.

Name v_r3_3

Notes Phosphorylation of R3 to give R4

Reaction equation

$$R3_RKpre \longrightarrow R4_RKpost$$
 (62)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
R3_RKpre	R3_RKpre	

Product

Table 31: Properties of each product.

Id	Name	SBO
R4_RKpost	R4_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = kRK3_ATP \cdot R3_RKpre$$
 (63)

7.14 Reaction v_r3_4

This is an irreversible reaction of one reactant forming one product.

Name v_r3_4

Notes Phosphorylation of R4 to give R5

Reaction equation

$$R4_RKpre \longrightarrow R5_RKpost$$
 (64)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
R4_RKpre	R4_RKpre	

Product

Table 33: Properties of each product.

Id	Name	SBO
R5_RKpost	R5_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = kRK3_ATP \cdot R4_RKpre$$
 (65)

7.15 Reaction v_r3_5

This is an irreversible reaction of one reactant forming one product.

Name v_r3_5

Notes Phosphorylation of R5 to give R6

Reaction equation

$$R5_RKpre \longrightarrow R6_RKpost$$
 (66)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
R5_RKpre	R5_RKpre	

Product

Table 35: Properties of each product.

Id	Name	SBO
R6_RKpost	R6_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = kRK3_ATP \cdot R5_RKpre$$
 (67)

7.16 Reaction v_r4_1

This is an irreversible reaction of one reactant forming two products.

Name v_r4_1

Notes Dissociation of the R1-RK complex

Reaction equation

$$R1_RKpost \longrightarrow R1 + RK$$
 (68)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
R1_RKpost	R1_RKpost	

Products

Table 37: Properties of each product.

Id	Name	SBO
R1	R1	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = kRK4 \cdot R1_RKpost \tag{69}$$

7.17 Reaction v_r4_2

This is an irreversible reaction of one reactant forming two products.

Name v_r4_2

Notes Dissociation of the R2-RK complex

Reaction equation

$$R2_RKpost \longrightarrow R2 + RK$$
 (70)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
R2_RKpost	R2_RKpost	

Products

Table 39: Properties of each product.

Id	Name	SBO
	R2 RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = kRK4 \cdot R2_RKpost \tag{71}$$

7.18 Reaction v_r4_3

This is an irreversible reaction of one reactant forming two products.

Name v_r4_3

Notes Dissociation of the R3-RK complex

Reaction equation

$$R3_RKpost \longrightarrow R3 + RK$$
 (72)

Reactant

Table 40: Properties of each reactant.

Id Name SBO

R3_RKpost R3_RKpost

Products

Table 41: Properties of each product.

Id	Name	SBO
R3	R3	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = kRK4 \cdot R3 RKpost$$
 (73)

7.19 Reaction v_r4_4

This is an irreversible reaction of one reactant forming two products.

Name v_r4_4

Notes Dissociation of the R4-RK complex

Reaction equation

$$R4_RKpost \longrightarrow R4 + RK \tag{74}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
R4_RKpost	R4_RKpost	

Products

Table 43: Properties of each product.

Id	Name	SBO
R4	R4	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = kRK4 \cdot R4_RKpost \tag{75}$$

7.20 Reaction v_r4_5

This is an irreversible reaction of one reactant forming two products.

Name v_r4_5

Notes Dissociation of the R5-RK complex

Reaction equation

$$R5_RKpost \longrightarrow R5 + RK$$
 (76)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
R5_RKpost	R5_RKpost	

Products

Table 45: Properties of each product.

Id	Name	SBO
R5	R5	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = kRK4 \cdot R5 RKpost$$
 (77)

7.21 Reaction v_r4_6

This is an irreversible reaction of one reactant forming two products.

Name v_r4_6

Notes Dissociation of the R6-RK complex

Reaction equation

$$R6_RKpost \longrightarrow R6 + RK$$
 (78)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
R6_RKpost	R6_RKpost	

Products

Table 47: Properties of each product.

Id	Name	SBO
R6	R6	
RK	RK	

Derived unit contains undeclared units

$$v_{21} = kRK4 \cdot R6_RKpost \tag{79}$$

7.22 Reaction v_r5_1

This is a reversible reaction of two reactants forming one product.

Name v_r5_1

Notes Binding of R1 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R1 \rightleftharpoons R1_Arr$$
 (80)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R1	R1	

Product

Table 49: Properties of each product.

Id	Name	SBO
R1_Arr	R1_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = kA1_{-}1 \cdot Arr \cdot R1 - kA2 \cdot R1_{-}Arr$$
(81)

7.23 Reaction v_r5_2

This is a reversible reaction of two reactants forming one product.

Name v_r5_2

Notes Binding of R2 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R2 \Longrightarrow R2_Arr$$
 (82)

Reactants

Table 50: Properties of each reactant.

Name	SBO
Arr R2	
	Arr

Product

Table 51: Properties of each product.

Id	Name	SBO
R2_Arr	R2_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = kA1_2 \cdot Arr \cdot R2 - kA2 \cdot R2_Arr \tag{83}$$

7.24 Reaction v_r5_3

This is a reversible reaction of two reactants forming one product.

Name v_r5_3

Notes Binding of R3 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R3 \rightleftharpoons R3_Arr$$
 (84)

Reactants

Table 52: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R3	R3	

Product

Table 53: Properties of each product.

Id	Name	SBO
R3_Arr	R3_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = kA1_3 \cdot Arr \cdot R3 - kA2 \cdot R3_Arr \tag{85}$$

7.25 Reaction v_r5_4

This is a reversible reaction of two reactants forming one product.

Name v_r5_4

Notes Binding of R4 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R4 \Longrightarrow R4_Arr$$
 (86)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R4	R4	

Table 55: Properties of each product.

Id	Name	SBO
R4_Arr	R4_Arr	

Derived unit contains undeclared units

$$v_{25} = kA1_4 \cdot Arr \cdot R4 - kA2 \cdot R4_Arr \tag{87}$$

7.26 Reaction v_r5_5

This is a reversible reaction of two reactants forming one product.

Name v_r5_5

Notes Binding of R5 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R5 \rightleftharpoons R5_Arr$$
 (88)

Reactants

Table 56: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R5	R5	

Product

Table 57: Properties of each product.

Id	Name	SBO
R5_Arr	R5_Arr	

Kinetic Law

$$v_{26} = kA1_5 \cdot Arr \cdot R5 - kA2 \cdot R5_Arr$$
 (89)

7.27 Reaction v_r5_6

This is a reversible reaction of two reactants forming one product.

Name v_r5_6

Notes Binding of R6 and Arr. The association rate constant increases linearly with the first four phosphorylations.

Reaction equation

$$Arr + R6 \Longrightarrow R6_Arr$$
 (90)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R6	R6	

Product

Table 59: Properties of each product.

Id	Name	SBO
R6_Arr	R6_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = kA1_6 \cdot Arr \cdot R6 - kA2 \cdot R6_Arr \tag{91}$$

7.28 Reaction v_r6_1

This is an irreversible reaction of one reactant forming two products.

Name v_r6_1

Notes Arr-mediated inactivation of R1.

Reaction equation

$$R1_Arr \longrightarrow Arr + Ops$$
 (92)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
R1_Arr	R1_Arr	

Products

Table 61: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = kA3 \cdot R1 Arr \tag{93}$$

7.29 Reaction v_r6_2

This is an irreversible reaction of one reactant forming two products.

Name v_r6_2

Notes Arr-mediated inactivation of R2.

Reaction equation

$$R2_Arr \longrightarrow Arr + Ops \tag{94}$$

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
R2_Arr	R2_Arr	

Products

Table 63: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = kA3 \cdot R2 Arr \tag{95}$$

7.30 Reaction v_r6_3

This is an irreversible reaction of one reactant forming two products.

Name v_r6_3

Notes Arr-mediated inactivation of R3.

Reaction equation

$$R3_Arr \longrightarrow Arr + Ops \tag{96}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
R3_Arr	R3_Arr	

Table 65: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Derived unit contains undeclared units

$$v_{30} = kA3 \cdot R3 Arr \tag{97}$$

7.31 Reaction v_r6_4

This is an irreversible reaction of one reactant forming two products.

Name v_r6_4

Notes Arr-mediated inactivation of R4.

Reaction equation

$$R4_Arr \longrightarrow Arr + Ops \tag{98}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
R4_Arr	R4_Arr	

Products

Table 67: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = kA3 \cdot R4 Arr \tag{99}$$

7.32 Reaction v_r6_5

This is an irreversible reaction of one reactant forming two products.

Name v_r6_5

Notes Arr-mediated inactivation of R5.

Reaction equation

$$R5_Arr \longrightarrow Arr + Ops \tag{100}$$

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
R5_Arr	R5_Arr	

Products

Table 69: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = kA3 \cdot R5_Arr \tag{101}$$

7.33 Reaction v_r6_6

This is an irreversible reaction of one reactant forming two products.

Name v_r6_6

Notes Arr-mediated inactivation of R6.

Reaction equation

$$R6_Arr \longrightarrow Arr + Ops$$
 (102)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
R6_Arr	R6_Arr	

Products

Table 71: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = kA3 \cdot R6 Arr \tag{103}$$

7.34 Reaction v_r7_0

This is an irreversible reaction of one reactant forming one product.

Name v_r7_0

Notes Thermal decay of catalytic active form of R0 to give Ops.

Reaction equation

$$R0 \longrightarrow Ops$$
 (104)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
RO	R0	

Product

Table 73: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

$$v_{34} = \text{ktherm} \cdot \text{R0} \tag{105}$$

7.35 Reaction v_r7_1

This is an irreversible reaction of one reactant forming one product.

Name v_r7_1

Notes Thermal decay of catalytic active form of R1 to give Ops.

Reaction equation

$$R1 \longrightarrow Ops$$
 (106)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
R1	R1	

Product

Table 75: Properties of each product.

	_	
Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{ktherm} \cdot R1 \tag{107}$$

7.36 Reaction v_r7_2

This is an irreversible reaction of one reactant forming one product.

Name v_r7_2

Notes Thermal decay of catalytic active form of R2 to give Ops.

Reaction equation

$$R2 \longrightarrow Ops$$
 (108)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
R2	R2	

Product

Table 77: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{ktherm} \cdot R2 \tag{109}$$

7.37 Reaction v_r7_3

This is an irreversible reaction of one reactant forming one product.

Name v_r7_3

Notes Thermal decay of catalytic active form of R3 to give Ops.

Reaction equation

$$R3 \longrightarrow Ops$$
 (110)

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
R3	R3	

Table 79: Properties of each product.

Id	Name	SBO
0ps	Ops	

Derived unit contains undeclared units

$$v_{37} = \text{ktherm} \cdot \text{R3} \tag{111}$$

7.38 Reaction v_r7_4

This is an irreversible reaction of one reactant forming one product.

Name v_r7_4

Notes Thermal decay of catalytic active form of R4 to give Ops.

Reaction equation

$$R4 \longrightarrow Ops$$
 (112)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
R4	R4	

Product

Table 81: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

$$v_{38} = \text{ktherm} \cdot \text{R4} \tag{113}$$

7.39 Reaction v_r7_5

This is an irreversible reaction of one reactant forming one product.

Name v_r7_5

Notes Thermal decay of catalytic active form of R5 to give Ops.

Reaction equation

$$R5 \longrightarrow Ops$$
 (114)

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
R5	R5	

Product

Table 83: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{ktherm} \cdot R5 \tag{115}$$

7.40 Reaction v_r7_6

This is an irreversible reaction of one reactant forming one product.

Name v_r7_6

Notes Thermal decay of catalytic active form of R6 to give Ops.

Reaction equation

$$R6 \longrightarrow Ops$$
 (116)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
R6	R6	

Product

Table 85: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{ktherm} \cdot \text{R6} \tag{117}$$

7.41 Reaction v_r8

This is a reversible reaction of two reactants forming one product.

Name v_r8

Notes Spontaneous Ops activity.

Reaction equation

$$Gt + Ops \Longrightarrow Ops_Gt$$
 (118)

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
0ps	Ops	

Table 87: Properties of each product.

Id	Name	SBO
Ops_Gt	Ops_Gt	

Derived unit contains undeclared units

$$v_{41} = kG1ops \cdot Ops \cdot Gt - kG2ops \cdot Ops_Gt$$
 (119)

7.42 Reaction v_r9

This is a reversible reaction of one reactant forming one product.

Name v_r9

Notes GDP dissociation from the Ops-Gt complex.

Reaction equation

$$Ops_Gt \rightleftharpoons Ops_G \tag{120}$$

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
Ops_Gt	Ops_Gt	

Product

Table 89: Properties of each product.

Id	Name	SBO
Ops_G	Ops_G	

Kinetic Law

$$v_{42} = kOps \cdot Ops_Gt - kG4_GDP \cdot Ops_G$$
 (121)

7.43 Reaction v_r10

This is an irreversible reaction of one reactant forming one product.

Name v_10

Notes GTP binding to the Ops-Gt complex.

Reaction equation

$$Ops_G \longrightarrow Ops_G_GTP \tag{122}$$

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Ops_G	Ops_G	

Product

Table 91: Properties of each product.

Id	Name	SBO
Ops_G_GTP	Ops_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = kG5_GTP \cdot Ops_G$$
 (123)

7.44 Reaction v_r11

This is an irreversible reaction of one reactant forming two products.

Name v_r11

Notes Dissociation of the Ops-G_GTP complex

Reaction equation

$$Ops_G_GTP \longrightarrow G_GTP + Ops$$
 (124)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
Ops_G_GTP	Ops_G_GTP	

Products

Table 93: Properties of each product.

Id	Name	SBO
$G_{-}GTP$	G_GTP	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = kG6 \cdot Ops_G_GTP$$
 (125)

7.45 Reaction v_r12

This is an irreversible reaction of one reactant forming one product.

Name v_r12

Notes Chromophore regeneration by 11-cis retinal binding to Ops.

Reaction equation

$$Ops \longrightarrow R \tag{126}$$

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
0ps	Ops	

Table 95: Properties of each product.

Id	Name	SBO
R	R	

Derived unit contains undeclared units

$$v_{45} = kRrecyc \cdot Ops$$
 (127)

7.46 Reaction v_GtRpre

This is a reversible reaction of two reactants forming one product.

Name v_GtRpre

Notes Pre-coupling of inactive R to Gt

Reaction equation

$$Gt + R \rightleftharpoons R_Gt$$
 (128)

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R	R	

Product

Table 97: Properties of each product.

Id	Name	SBO
$R_{-}Gt$	R_Gt	

Kinetic Law

$$v_{46} = kGpre1 \cdot Gt \cdot R - kGpre2 \cdot R_{-}Gt$$
 (129)

7.47 Reaction v_r13_0

This is a reversible reaction of two reactants forming one product.

Name v_r13_0

Notes Binding of R0 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R0 \Longrightarrow R0_Gt$$
 (130)

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
RO	R0	

Product

Table 99: Properties of each product.

Id	Name	SBO
RO_Gt	R0_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = kG1_0 \cdot Gt \cdot R0 - kG2 \cdot R0_Gt$$
 (131)

7.48 Reaction v r13 1

This is a reversible reaction of two reactants forming one product.

Name v_r13_1

Notes Binding of R1 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R1 \Longrightarrow R1_Gt$$
 (132)

Reactants

Table 100: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R1	R1	

Product

Table 101: Properties of each product.

Id	Name	SBO
R1_Gt	R1_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = kG1_{-}1 \cdot Gt \cdot R1 - kG2 \cdot R1_{-}Gt \tag{133}$$

7.49 Reaction v_r13_2

This is a reversible reaction of two reactants forming one product.

Name v_r13_2

Notes Binding of R2 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R2 \Longrightarrow R2_Gt$$
 (134)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R2	R2	

Product

Table 103: Properties of each product.

Id	Name	SBO
R2_Gt	R2_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = kG1_2 \cdot Gt \cdot R2 - kG2 \cdot R2_Gt \tag{135}$$

7.50 Reaction v_r13_3

This is a reversible reaction of two reactants forming one product.

Name v_r13_3

Notes Binding of R3 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R3 \Longrightarrow R3_Gt$$
 (136)

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R3	R3	

Table 105: Properties of each product.

Id	Name	SBO
R3_Gt	R3_Gt	

Derived unit contains undeclared units

$$v_{50} = kG1_3 \cdot Gt \cdot R3 - kG2 \cdot R3_Gt \tag{137}$$

7.51 Reaction v_r13_4

This is a reversible reaction of two reactants forming one product.

Name v_r13_4

Notes Binding of R4 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R4 \Longrightarrow R4_Gt$$
 (138)

Reactants

Table 106: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R4	R4	

Product

Table 107: Properties of each product.

Id	Name	SBO
$R4_Gt$	R4_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = kG1_4 \cdot Gt \cdot R4 - kG2 \cdot R4_Gt \tag{139}$$

7.52 Reaction v_r13_5

This is a reversible reaction of two reactants forming one product.

Name v_r13_5

Notes Binding of R5 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R5 \Longrightarrow R5_Gt$$
 (140)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R5	R5	

Product

Table 109: Properties of each product.

Id	Name	SBO
R5_Gt	R5_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = kG1_5 \cdot Gt \cdot R5 - kG2 \cdot R5_Gt$$
 (141)

7.53 Reaction v_r13_6

This is a reversible reaction of two reactants forming one product.

Name v_r13_6

Notes Binding of R6 and Gt. The association rate constant is assumed to decrease exponentially with increasing phosphorylations.

Reaction equation

$$Gt + R6 \Longrightarrow R6_Gt$$
 (142)

Reactants

Table 110: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R6	R6	

Product

Table 111: Properties of each product.

Id	Name	SBO
R6_Gt	R6_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = kG1_{-}6 \cdot Gt \cdot R6 - kG2 \cdot R6_{-}Gt \tag{143}$$

7.54 Reaction v_r14_0

This is a reversible reaction of one reactant forming one product.

Name v_r14_0

Notes GDP dissociation from the R0-Gt complex.

Reaction equation

$$R0_Gt \rightleftharpoons R0_G$$
 (144)

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
RO_Gt	R0_Gt	

Table 113: Properties of each product.

Id	Name	SBO
RO_G	R0_G	

Derived unit contains undeclared units

$$v_{54} = kG3 \cdot R0_Gt - kG4_GDP \cdot R0_G$$
 (145)

7.55 Reaction v_r14_1

This is a reversible reaction of one reactant forming one product.

Name v_r14_1

Notes GDP dissociation from the R1-Gt complex.

Reaction equation

$$R1_G t \rightleftharpoons R1_G$$
 (146)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
R1_Gt	R1_Gt	

Product

Table 115: Properties of each product.

Id	Name	SBO
$R1_G$	R1_G	

Kinetic Law

$$v_{55} = kG3 \cdot R1_Gt - kG4_GDP \cdot R1_G$$
 (147)

7.56 Reaction v_r14_2

This is a reversible reaction of one reactant forming one product.

Name v_r14_2

Notes GDP dissociation from the R2-Gt complex.

Reaction equation

$$R2_Gt \rightleftharpoons R2_G$$
 (148)

Reactant

Table 116: Properties of each reactant.

Id	Name	SBO
R2_Gt	R2_Gt	

Product

Table 117: Properties of each product.

Id	Name	SBO
R2_G	R2_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = kG3 \cdot R2_Gt - kG4_GDP \cdot R2_G$$
 (149)

7.57 Reaction v_r14_3

This is a reversible reaction of one reactant forming one product.

Name v_r14_3

Notes GDP dissociation from the R3-Gt complex.

Reaction equation

$$R3_Gt \rightleftharpoons R3_G$$
 (150)

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
R3_Gt	R3_Gt	

Product

Table 119: Properties of each product.

Id	Name	SBO
R3_G	R3_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = kG3 \cdot R3_Gt - kG4_GDP \cdot R3_G$$
 (151)

7.58 Reaction v_r14_4

This is a reversible reaction of one reactant forming one product.

Name v_r14_4

Notes GDP dissociation from the R4-Gt complex.

Reaction equation

$$R4_Gt \rightleftharpoons R4_G$$
 (152)

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
R4_Gt	R4_Gt	

Table 121: Properties of each product.

Id	Name	SBO
R4_G	R4_G	

Derived unit contains undeclared units

$$v_{58} = kG3 \cdot R4_Gt - kG4_GDP \cdot R4_G$$
 (153)

7.59 Reaction v_r14_5

This is a reversible reaction of one reactant forming one product.

Name v_r14_5

Notes GDP dissociation from the R5-Gt complex.

Reaction equation

$$R5_G t \rightleftharpoons R5_G$$
 (154)

Reactant

Table 122: Properties of each reactant.

Id	Name	SBO
R5_Gt	R5_Gt	

Product

Table 123: Properties of each product.

Id	Name	SBO
R5_G	R5_G	

Kinetic Law

$$v_{59} = kG3 \cdot R5 Gt - kG4 GDP \cdot R5 G$$
 (155)

7.60 Reaction v_r14_6

This is a reversible reaction of one reactant forming one product.

Name v_r14_6

Notes GDP dissociation from the R6-Gt complex.

Reaction equation

$$R6_Gt \rightleftharpoons R6_G$$
 (156)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
R6_Gt	R6_Gt	

Product

Table 125: Properties of each product.

Id	Name	SBO
R6_G	R6_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = kG3 \cdot R6 - Gt - kG4 - GDP \cdot R6 - G$$

$$\tag{157}$$

7.61 Reaction v_r15_0

This is an irreversible reaction of one reactant forming one product.

Name v_r15_0

Notes GTP binding to the R0-Gt complex.

Reaction equation

$$R0_G \longrightarrow R0_G_GTP$$
 (158)

Reactant

Table 126: Properties of each reactant.

Id	Name	SBO
RO_G	R0_G	

Product

Table 127: Properties of each product.

Id	Name	SBO
RO_G_GTP	R0_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = kG5_GTP \cdot R0_G \tag{159}$$

7.62 Reaction v_r15_1

This is an irreversible reaction of one reactant forming one product.

Name v_r15_1

Notes GTP binding to the R1-Gt complex.

Reaction equation

$$R1_G \longrightarrow R1_G_GTP$$
 (160)

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
R1_G	R1_G	

Table 129: Properties of each product.

Id	Name	SBO
R1_G_GTP	R1_G_GTP	

Derived unit contains undeclared units

$$v_{62} = kG5_GTP \cdot R1_G \tag{161}$$

7.63 Reaction v_r15_2

This is an irreversible reaction of one reactant forming one product.

Name v_r15_2

Notes GTP binding to the R2-Gt complex.

Reaction equation

$$R2_G \longrightarrow R2_G_GTP \tag{162}$$

Reactant

Table 130: Properties of each reactant.

Id	Name	SBO
R2_G	R2_G	

Product

Table 131: Properties of each product.

Id	Name	SBO
R2_G_GTP	R2_G_GTP	

Kinetic Law

$$v_{63} = kG5_GTP \cdot R2_G \tag{163}$$

7.64 Reaction v_r15_3

This is an irreversible reaction of one reactant forming one product.

Name v_r15_3

Notes GTP binding to the R3-Gt complex.

Reaction equation

$$R3_G \longrightarrow R3_G_GTP$$
 (164)

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
R3_G	R3_G	

Product

Table 133: Properties of each product.

Id	Name	SBO
R3_G_GTP	R3_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = kG5_GTP \cdot R3_G \tag{165}$$

7.65 Reaction v_r15_4

This is an irreversible reaction of one reactant forming one product.

Name v_r15_4

Notes GTP binding to the R4-Gt complex.

Reaction equation

$$R4_G \longrightarrow R4_G_GTP$$
 (166)

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
R4_G	R4_G	

Product

Table 135: Properties of each product.

Id	Name	SBO
R4_G_GTP	R4_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = kG5_GTP \cdot R4_G \tag{167}$$

7.66 Reaction v_r15_5

This is an irreversible reaction of one reactant forming one product.

Name v_r15_5

Notes GTP binding to the R5-Gt complex.

Reaction equation

$$R5_G \longrightarrow R5_G_GTP$$
 (168)

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
$R5_G$	R5_G	

Table 137: Properties of each product.

Id	Name	SBO
R5_G_GTP	R5_G_GTP	

Derived unit contains undeclared units

$$v_{66} = kG5_GTP \cdot R5_G \tag{169}$$

7.67 Reaction v_r15_6

This is an irreversible reaction of one reactant forming one product.

Name v_r15_6

Notes GTP binding to the R6-Gt complex.

Reaction equation

$$R6_G \longrightarrow R6_G_GTP \tag{170}$$

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
R6_G	R6_G	

Product

Table 139: Properties of each product.

Id	Name	SBO
R6_G_GTP	R6_G_GTP	

Kinetic Law

$$v_{67} = kG5_GTP \cdot R6_G \tag{171}$$

7.68 Reaction v_r16_0

This is an irreversible reaction of one reactant forming two products.

Name v_r16_0

Notes Dissociation of the R0-G_GTP complex.

Reaction equation

$$R0_G_GTP \longrightarrow G_GTP + R0$$
 (172)

Reactant

Table 140: Properties of each reactant.

Id	Name	SBO
RO_G_GTP	R0_G_GTP	

Products

Table 141: Properties of each product.

Id	Name	SBO
G_GTP	$G_{-}GTP$	
RO	R0	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = kG6 \cdot R0_G_GTP \tag{173}$$

7.69 Reaction v_r16_1

This is an irreversible reaction of one reactant forming two products.

Name v_r16_1

Notes Dissociation of the R1-G_GTP complex.

Reaction equation

$$R1_G_GTP \longrightarrow G_GTP + R1$$
 (174)

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
R1_G_GTP	R1_G_GTP	

Products

Table 143: Properties of each product.

Id	Name	SBO
G_GTP	$G_{-}GTP$	
R1	R1	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = kG6 \cdot R1_G_GTP \tag{175}$$

7.70 Reaction v_r16_2

This is an irreversible reaction of one reactant forming two products.

Name v_r16_2

Notes Dissociation of the R2-G_GTP complex.

Reaction equation

$$R2_G_GTP \longrightarrow G_GTP + R2 \tag{176}$$

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
R2_G_GTP	R2_G_GTP	

Products

Table 145: Properties of each product.

Id	Name	SBO
G_GTP R2	G_GTP R2	
162	112	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = kG6 \cdot R2_G_GTP \tag{177}$$

7.71 Reaction v_r16_3

This is an irreversible reaction of one reactant forming two products.

Name v_r16_3

Notes Dissociation of the R3-G_GTP complex.

Reaction equation

$$R3_G_GTP \longrightarrow G_GTP + R3$$
 (178)

Reactant

Table 146: Properties of each reactant.

Id	Name	SBO
R3_G_GTP	R3_G_GTP	

Products

Table 147: Properties of each product.

Id	Name	SBO
$G_{-}GTP$	G_GTP	
R3	R3	

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = kG6 \cdot R3_G_GTP \tag{179}$$

7.72 Reaction v_r16_4

This is an irreversible reaction of one reactant forming two products.

Name v_r16_4

Notes Dissociation of the R4-G_GTP complex.

Reaction equation

$$R4_G_GTP \longrightarrow G_GTP + R4 \tag{180}$$

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
R4_G_GTP	R4_G_GTP	

Products

Table 149: Properties of each product.

Id	Name	SBO
G_GTP R4	G₋GTP R4	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = kG6 \cdot R4_G_GTP \tag{181}$$

7.73 Reaction v_r16_5

This is an irreversible reaction of one reactant forming two products.

Name v_r16_5

Notes Dissociation of the R5-G_GTP complex.

Reaction equation

$$R5_G_GTP \longrightarrow G_GTP + R5 \tag{182}$$

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
R5_G_GTP	R5_G_GTP	

Products

Table 151: Properties of each product.

Id	Name	SBO
$G_{-}GTP$	G_GTP	
R5	R5	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = kG6 \cdot R5_G_GTP \tag{183}$$

7.74 Reaction v_r16_6

This is an irreversible reaction of one reactant forming two products.

Name v_r16_6

Notes Dissociation of the R6-G_GTP complex.

Reaction equation

$$R6_G_GTP \longrightarrow G_GTP + R6$$
 (184)

Reactant

Table 152: Properties of each reactant.

Id	Name	SBO
R6_G_GTP	R6_G_GTP	

Products

Table 153: Properties of each product.

Id	Name	SBO
G_GTP R6	G_GTP R6	

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = kG6 \cdot R6 - G - GTP \tag{185}$$

7.75 Reaction v_r17

This is an irreversible reaction of one reactant forming two products.

Name v_r17

Notes Dissociation of trimeric Gt into and subunits.

Reaction equation

$$G_GTP \longrightarrow Ga_GTP + Gbg$$
 (186)

Reactant

Table 154: Properties of each reactant.

Id	Name	SBO
$G_{-}GTP$	G_GTP	

Products

Table 155: Properties of each product.

Id	Name	SBO
Ga_GTP	Ga_GTP	
Gbg	Gbg	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = kG7 \cdot G_{-}GTP \tag{187}$$

7.76 Reaction v_r18

This is a reversible reaction of two reactants forming one product.

Name v_r18

Notes Binding of G_GTP to one PDE inactive subunit.

Reaction equation

$$Ga_GTP + PDE \Longrightarrow PDE_Ga_GTP$$
 (188)

Reactants

Table 156: Properties of each reactant.

Id	Name	SBO
Ga_GTP	Ga_GTP	
PDE	PDE	

Product

Table 157: Properties of each product.

Id	Name	SBO
PDE_Ga_GTP	PDE_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{kP1} \cdot \text{PDE} \cdot \text{Ga_GTP} - \text{kP1_rev} \cdot \text{PDE_Ga_GTP}$$
 (189)

7.77 Reaction v_r19

This is an irreversible reaction of one reactant forming one product.

Name v_r19

Notes Activation of the PDE-G_GTP complex.

Reaction equation

$$PDE_Ga_GTP \longrightarrow PDE_a_Ga_GTP \tag{190}$$

Reactant

Table 158: Properties of each reactant.

Id	Name	SBO
PDE_Ga_GTP	PDE_Ga_GTP	

Product

Table 159: Properties of each product.

Id	Name	SBO
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = kP2 \cdot PDE_Ga_GTP \tag{191}$$

7.78 Reaction v_r20

This is an irreversible reaction of two reactants forming one product.

Name v_r20

Notes Binding of G_GTP to singly active PDE.

Reaction equation

$$Ga_GTP + PDE_a_Ga_GTP \longrightarrow Ga_GTP_PDE_a_Ga_GTP$$
 (192)

Reactants

Table 160: Properties of each reactant.

	I	
Id	Name	SBO
Ga_GTP	Ga_GTP PDE a Ga GTP	
IDE_a_Ga_GII		

Product

Table 161: Properties of each product.

Id	Name	SBO
Ga_GTP_PDE_a_Ga_GTP	Ga_GTP_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = kP3 \cdot PDE_a_Ga_GTP \cdot Ga_GTP$$
 (193)

7.79 Reaction v_r21

This is an irreversible reaction of one reactant forming one product.

Name v_r21

Notes Activation of the second G_GTP-bound PDE subunit.

Reaction equation

$$Ga_GTP_PDE_a_Ga_GTP \longrightarrow Ga_GTP_a_PDE_a_Ga_GTP$$
 (194)

Reactant

Table 162: Properties of each reactant.

Id	Name	SBO
Ga_GTP_PDE_a_Ga_GTP	Ga_GTP_PDE_a_Ga_GTP	

Product

Table 163: Properties of each product.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP	Ga_GTP_a_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = kP4 \cdot Ga_GTP_PDE_a_Ga_GTP$$
 (195)

7.80 Reaction v_r22

This is an irreversible reaction of two reactants forming one product.

Name v_r22

Notes Binding of RGS9-1 complex to a doubly-active PDE tetramer.

Reaction equation

$$Ga_GTP_a_PDE_a_Ga_GTP + RGS \longrightarrow RGS_Ga_GTP_a_PDE_a_Ga_GTP$$
 (196)

Reactants

Table 164: Properties of each reactant.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP RGS	Ga_GTP_a_PDE_a_Ga_GTP RGS	

Product

Table 165: Properties of each product.

Id	Name	SBO
RGS_Ga_GTP_a_PDE_a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = kRGS1 \cdot RGS \cdot Ga_GTP_a_PDE_a_Ga_GTP$$
 (197)

7.81 Reaction v_r23

This is an irreversible reaction of one reactant forming three products.

Name v_r23

Notes RGS9-1-mediated deactivation of one of two PDE active subunits.

Reaction equation

$$RGS_Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE_a_Ga_GTP + RGS$$
 (198)

Reactant

Table 166: Properties of each reactant.

Id	Name	SBO
RGS_Ga_GTP_a_PDE_a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	

Products

Table 167: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
$PDE_a_Ga_GTP$	PDE_a_Ga_GTP	
RGS	RGS	

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = kRGS2 \cdot RGS_Ga_GTP_a_PDE_a_Ga_GTP$$
 (199)

7.82 Reaction v_r24

This is an irreversible reaction of two reactants forming one product.

Name v_r24

Notes Binding of RGS9-1 complex to a singly-active PDE tetramer.

Reaction equation

$$PDE_a_Ga_GTP + RGS \longrightarrow RGS_PDE_a_Ga_GTP$$
 (200)

Reactants

Table 168: Properties of each reactant.

Id	Name	SBO
PDE_a_Ga_GTP RGS	PDE_a_Ga_GTP RGS	

Product

Table 169: Properties of each product.

Id	Name	SBO
RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = kRGS1 \cdot RGS \cdot PDE_a_Ga_GTP$$
 (201)

7.83 Reaction v_r25

This is an irreversible reaction of one reactant forming three products.

Name v_r25

Notes RGS9-1-mediated deactivation of a singly active PDE.

Reaction equation

$$RGS_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE + RGS$$
 (202)

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	

Products

Table 171: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
PDE	PDE	
RGS	RGS	

Kinetic Law

Derived unit contains undeclared units

$$v_{83} = kRGS2 \cdot RGS_PDE_a_Ga_GTP$$
 (203)

7.84 Reaction v_r26

This is an irreversible reaction of one reactant forming two products.

Name v_r26

Notes Inactivation of the PDE*-G_GTP complex by G_GTP's inate GTPase activity.

Reaction equation

$$PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE$$
 (204)

Reactant

Table 172: Properties of each reactant.

Id	Name	SBO
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Products

Table 173: Properties of each product.

Id	Name	SBO
Ga_GDP PDE	Ga_GDP PDE	

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = \text{kPDE} \cdot \text{hutoff} \cdot \text{PDE} \cdot \text{a_Ga_GTP}$$
 (205)

7.85 Reaction v_r27

This is an irreversible reaction of one reactant forming two products.

Name v_r27

Notes Inactivation of one of the two active PDE subunits by G_GTP's inate GTPase activity.

Reaction equation

$$Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE_a_Ga_GTP$$
 (206)

Reactant

Table 174: Properties of each reactant.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP	Ga_GTP_a_PDE_a_Ga_GTP	

Products

Table 175: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{85} = \text{kPDE} \cdot \text{Sa_GTP_a_PDE_a_Ga_GTP}$$
 (207)

7.86 Reaction v_r28

This is an irreversible reaction of one reactant forming one product.

Name v_r28

Notes G_GTP auto-catalytic GTPase activity

Reaction equation

$$Ga_GTP \longrightarrow Ga_GDP \tag{208}$$

Reactant

Table 176: Properties of each reactant.

Id	Name	SBO
Ga_GTP	Ga_GTP	

Product

Table 177: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = kGshutoff \cdot Ga_GTP$$
 (209)

7.87 Reaction v_r29

This is an irreversible reaction of two reactants forming one product.

Name v_r29

Notes Reconstitution of Gt heterotrimer from inactive subunits

Reaction equation

$$Ga_GDP + Gbg \longrightarrow Gt \tag{210}$$

Reactants

Table 178: Properties of each reactant.

Id	Name	SBO
Ga_GDP	Ga_GDP	
Gbg	Gbg	

Product

Table 179: Properties of each product.

Id	Name	SBO
Gt	Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = kGrecyc \cdot Gbg \cdot Ga_GDP$$
 (211)

7.88 Reaction v_r30

This is a reversible reaction of two reactants forming one product.

Name v_r30

Notes Ca2+-induced Rec conformation change

Reaction equation

$$RecT + Ca2_free \Longrightarrow RecR_Ca$$
 (212)

Reactants

Table 180: Properties of each reactant.

Id	Name	SBO
RecT	RecT	
${\tt Ca2_free}$	Ca2_free	

Product

Table 181: Properties of each product.

Id	Name	SBO
RecR_Ca	RecR_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{88} = \text{kRec1} \cdot \text{RecT} \cdot [\text{Ca2_free}] - \text{kRec2} \cdot \text{RecR_Ca}$$
 (213)

7.89 Reaction v_r31

This is a reversible reaction of two reactants forming one product.

Name v_r31

Notes Binding of RK to Ca2+-bound Rec

Reaction equation

$$RK + RecR_Ca \Longrightarrow RecR_Ca_RK$$
 (214)

Reactants

Table 182: Properties of each reactant.

Id	Name	SBO
RK	RK	
RecR_Ca	RecR_Ca	

Product

Table 183: Properties of each product.

Id	Name	SBO
RecR_Ca_RK	RecR_Ca_RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = kRec3 \cdot RecR_Ca \cdot RK - kRec4 \cdot RecR_Ca_RK$$
 (215)

7.90 Reaction v_r_diarr

This is a reversible reaction of one reactant forming one product.

Name v_r_diarr

Notes Arr homo-dimerization

Reaction equation

$$2 Arr \rightleftharpoons Arr_di$$
 (216)

Reactant

Table 184: Properties of each reactant.

Id	Name	SBO
Arr	Arr	

Product

Table 185: Properties of each product.

Id	Name	SBO
Arr_di	Arr_di	

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = kA4 \cdot Arr \cdot Arr - kA5 \cdot Arr_{di}$$
 (217)

7.91 Reaction v_r_tetraarr

This is a reversible reaction of one reactant forming one product.

Name v_r_tetraarr

Notes Arr homo-tetramerization

Reaction equation

$$2 Arr_di \Longrightarrow Arr_tetra$$
 (218)

Reactant

Table 186: Properties of each reactant.

Id	Name	SBO
Arr_di	Arr_di	

Product

Table 187: Properties of each product.

Id	Name	SBO
Arr_tetra	Arr_tetra	

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = kA4 \cdot Arr_di \cdot Arr_di - kA5 \cdot Arr_tetra$$
 (219)

7.92 Reaction v_r33

This is a reversible reaction of one reactant forming one product.

Name v_r33

Notes Ca2+ association and dissociation from intracellular buffers with total concentration eT.

Reaction equation

$$Ca2_free \rightleftharpoons Ca2_buff$$
 (220)

Reactant

Table 188: Properties of each reactant.

Id	Name	SBO
Ca2_free	Ca2_free	

Product

Table 189: Properties of each product.

Id	Name	SBO
Ca2_buff	Ca2_buff	

Kinetic Law

Derived unit contains undeclared units

$$v_{92} = k1 \cdot (eT - [Ca2_buff]) \cdot [Ca2_free] - k2 \cdot [Ca2_buff]$$
(221)

7.93 Reaction v_r34

This is an irreversible reaction of one reactant forming no product.

Name v_r34

Notes Intracellular Ca2+ efflux via the Na+/Ca2+-K+ exchanger.

Reaction equation

Ca2_free
$$\longrightarrow \emptyset$$
 (222)

Reactant

Table 190: Properties of each reactant.

Id	Name	SBO
Ca2_free	Ca2_free	

Kinetic Law

Derived unit not available

$$v_{93} = \text{gammaCa} \cdot ([\text{Ca2_free}] - \text{Ca2_0}) \tag{223}$$

7.94 Reaction v_r35

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v_r35

Notes Extracellular Ca2+ influx via the cGMP-gated cation channels.

Reaction equation

$$\emptyset \xrightarrow{\text{cGMP}} \text{Ca2_free} \tag{224}$$

Modifier

Table 191: Properties of each modifier.

Id	Name	SBO
cGMP	cGMP	

Product

Table 192: Properties of each product.

Id	Name	SBO
Ca2_free	Ca2_free	

Kinetic Law

Derived unit contains undeclared units

$$v_{94} = \frac{1000000.0 \cdot \text{fCa} \cdot \text{Jdark}}{(2 + \text{fCa}) \cdot \text{F} \cdot \text{Vcyto}} \cdot \left(\frac{[\text{cGMP}]}{\text{cGMPdark}}\right)^{\text{ncg}}$$
(225)

7.95 Reaction v_r36

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v_r36

Notes cGMP synthesis by guanylate cyclases.

Reaction equation

$$\emptyset \xrightarrow{\text{Ca2_free}} \text{cGMP}$$
 (226)

Modifier

Table 193: Properties of each modifier.

Id	Name	SBO
Ca2_free	Ca2_free	

Product

Table 194: Properties of each product.

Id	Name	SBO
cGMP	cGMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{95} = \frac{\text{alfamax}}{1 + \left(\frac{\text{[Ca2_free]}}{\text{Kc1}}\right)^{\text{m1}}} + \frac{\text{alfamax}}{1 + \left(\frac{\text{[Ca2_free]}}{\text{Kc2}}\right)^{\text{m2}}}$$
(227)

7.96 Reaction v_r37

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name v_r37

Notes cGMP hydrolysis by PDE.

Reaction equation

$$cGMP \xrightarrow{Ga_GTP_PDE_a_Ga_GTP, \ Ga_GTP_a_PDE_a_Ga_GTP, \ PDE_a_Ga_GTP} \emptyset \qquad (228)$$

Reactant

Table 195: Properties of each reactant.

Id	Name	SBO
cGMP	cGMP	

Modifiers

Table 196: Properties of each modifier.

Id	Name	SBO
	Ga_GTP_a_PDE_a_Ga_GTP	
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{96} = (\text{betadark} + \text{betasub} \cdot \text{E}) \cdot [\text{cGMP}]$$
 (229)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species Arr

Name Arr

Initial amount 1260760 mol

This species takes part in 13 reactions (as a reactant in v_r5_1 , v_r5_2 , v_r5_3 , v_r5_4 , v_r5_5 , v_r5_6 , v_r5_6 , v_r6_4 , v_r6_5 , v_r6_6).

$$\frac{d}{dt}Arr = |v_{28}| + |v_{29}| + |v_{30}| + |v_{31}| + |v_{32}| + |v_{33}| - |v_{22}| - |v_{23}| - |v_{24}| - |v_{25}| - |v_{26}| - |v_{27}| - 2|v_{90}|$$
(230)

8.2 Species Arr_di

Name Arr_di

Initial amount 1123300 mol

This species takes part in two reactions (as a reactant in v_r _tetraarr and as a product in v_r _diarr).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Arr}_{-}\mathrm{di} = v_{90} - 2v_{91} \tag{231}$$

8.3 Species Arr_tetra

Name Arr_tetra

Initial amount 891810 mol

This species takes part in one reaction (as a product in v_r_tetraarr).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Arr}_{-}\mathrm{tetra} = v_{91} \tag{232}$$

8.4 Species Ca2_buff

Name Ca2_buff

Initial concentration 19.2199 mol·l⁻¹

This species takes part in one reaction (as a product in v_r33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ca2_buff} = v_{92} \tag{233}$$

8.5 Species Ca2_free

Name Ca2_free

Initial concentration $0.25 \text{ mol} \cdot l^{-1}$

Involved in rule Ca2_free

This species takes part in five reactions (as a reactant in v_r30, v_r33, v_r34 and as a product in v_r35 and as a modifier in v_r36). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.6 Species G_GTP

Name G_GTP

Initial amount 0 mol

This species takes part in nine reactions (as a reactant in v_r17 and as a product in v_r11, v_r16_0, v_r16_1, v_r16_2, v_r16_3, v_r16_4, v_r16_5, v_r16_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}G_{-}GTP = |v_{44}| + |v_{68}| + |v_{69}| + |v_{70}| + |v_{71}| + |v_{72}| + |v_{73}| + |v_{74}| - |v_{75}|$$
(234)

8.7 Species Ga_GDP

Name Ga_GDP

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r29 and as a product in v_r23, v_r25, v_r26, v_r27, v_r28).

$$\frac{d}{dt}Ga_GDP = |v_{81}| + |v_{83}| + |v_{84}| + |v_{85}| + |v_{86}| - |v_{87}|$$
(235)

8.8 Species Ga_GTP

Name Ga_GTP

Initial amount 0 mol

This species takes part in four reactions (as a reactant in v_r18, v_r20, v_r28 and as a product in v_r17).

$$\frac{d}{dt}Ga_GTP = |v_{75}| - |v_{76}| - |v_{78}| - |v_{86}|$$
(236)

8.9 Species Ga_GTP_PDE_a_Ga_GTP

Name Ga_GTP_PDE_a_Ga_GTP

Initial amount 0 mol

This species takes part in three reactions (as a reactant in v_r21 and as a product in v_r20 and as a modifier in v_r37).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ga_GTP_PDE_a_Ga_GTP} = |v_{78}| - |v_{79}| \tag{237}$$

8.10 Species Ga_GTP_a_PDE_a_Ga_GTP

Name Ga_GTP_a_PDE_a_Ga_GTP

Initial amount 0 mol

This species takes part in four reactions (as a reactant in v_r22, v_r27 and as a product in v_r21 and as a modifier in v_r37).

$$\frac{d}{dt}Ga_GTP_a_PDE_a_Ga_GTP = v_{79} - v_{80} - v_{85}$$
 (238)

8.11 Species Gbg

Name Gbg

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r29 and as a product in v_r17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gbg} = |v_{75}| - |v_{87}| \tag{239}$$

8.12 Species Gt

Name Gt

Initial amount 8152500 mol

This species takes part in ten reactions (as a reactant in v_r8, v_GtRpre, v_r13_0, v_r13_1, v_r13_2, v_r13_3, v_r13_4, v_r13_5, v_r13_6 and as a product in v_r29).

$$\frac{d}{dt}Gt = v_{87} - v_{41} - v_{46} - v_{47} - v_{48} - v_{49} - v_{50} - v_{51} - v_{52} - v_{53}$$
 (240)

8.13 Species Ops

Name Ops

Initial amount 0 mol

This species takes part in 16 reactions (as a reactant in v_r8, v_r12 and as a product in v_r6-1, v_r6_2, v_r6_3, v_r6_4, v_r6_5, v_r6_6, v_r7_0, v_r7_1, v_r7_2, v_r7_3, v_r7_4, v_r7_5, v_r7_6, v_r11).

$$\frac{d}{dt}Ops = v_{28} + v_{29} + v_{30} + v_{31} + v_{32} + v_{33} + v_{34} + v_{35} + v_{36} + v_{37} + v_{38} + v_{39} + v_{40} + v_{44} - v_{41} - v_{45}$$
(241)

8.14 Species Ops_G

Name Ops_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r10 and as a product in v_r9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}G = |v_{42}| - |v_{43}| \tag{242}$$

8.15 Species Ops_G_GTP

Name Ops_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r11 and as a product in v_r10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}\mathrm{G-}\mathrm{GTP} = v_{43} - v_{44} \tag{243}$$

8.16 Species Ops_Gt

Name Ops_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r9 and as a product in v_r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}\mathrm{Gt} = |v_{41}| - |v_{42}| \tag{244}$$

8.17 Species PDE

Name PDE

Initial amount 2000000 mol

This species takes part in three reactions (as a reactant in v_r18 and as a product in v_r25, v_r26).

$$\frac{d}{dt}PDE = |v_{83}| + |v_{84}| - |v_{76}| \tag{245}$$

8.18 Species PDE_Ga_GTP

Name PDE_Ga_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r19 and as a product in v_r18).

$$\frac{\mathrm{d}}{\mathrm{d}t} PDE_Ga_GTP = |v_{76}| - |v_{77}| \tag{246}$$

8.19 Species PDE_a_Ga_GTP

Name PDE_a_Ga_GTP

Initial amount 0 mol

This species takes part in seven reactions (as a reactant in v_r20, v_r24, v_r26 and as a product in v_r19, v_r23, v_r27 and as a modifier in v_r37).

$$\frac{d}{dt}PDE_a_Ga_GTP = v_{77} + v_{81} + v_{85} - v_{78} - v_{82} - v_{84}$$
 (247)

8.20 Species R

Name R

Initial amount $9.81525 \cdot 10^7$ mol

This species takes part in three reactions (as a reactant in v_r1 , v_GtRpre and as a product in v_r12).

$$\frac{\mathrm{d}}{\mathrm{d}t}R = |v_{45}| - |v_1| - |v_{46}| \tag{248}$$

8.21 Species RO

Name R0

Initial amount 0 mol

This species takes part in five reactions (as a reactant in v_r2_0 , v_r7_0 , v_r13_0 and as a product in v_r1 , v_r16_0).

$$\frac{\mathrm{d}}{\mathrm{d}t}R0 = |v_1| + |v_{68}| - |v_3| - |v_{34}| - |v_{47}| \tag{249}$$

8.22 Species RO_G

Name $R0_G$

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_0 and as a product in v_r14_0).

$$\frac{d}{dt}R0_{-}G = v_{54} - v_{61} \tag{250}$$

8.23 Species RO_G_GTP

Name R0_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_0 and as a product in v_r15_0).

$$\frac{d}{dt}R0_{-}G_{-}GTP = |v_{61}| - |v_{68}|$$
 (251)

8.24 Species RO_Gt

Name R0_Gt

Initial amount 0 mol

This species takes part in three reactions (as a reactant in v_r14_0 and as a product in $v_rstprec, v_r13_0$).

$$\frac{d}{dt}R0_{-}Gt = v_2 + v_{47} - v_{54}$$
 (252)

8.25 Species RO_RKpre

Name R0_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_0 and as a product in v_r2_0).

$$\frac{\mathrm{d}}{\mathrm{d}t} R0_{-}RKpre = |v_3| - |v_{10}| \tag{253}$$

8.26 Species R1

Name R1

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_1, v_r5_1, v_r7_1, v_r13_1 and as a product in v_r4_1, v_r16_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}R1 = |v_{16}| + |v_{69}| - |v_{4}| - |v_{22}| - |v_{35}| - |v_{48}| \tag{254}$$

8.27 Species R1_Arr

Name R1_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_1 and as a product in v_r5_1).

$$\frac{d}{dt}R1_Arr = |v_{22}| - |v_{28}| \tag{255}$$

8.28 Species R1_G

Name R1_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_1 and as a product in v_r14_1).

$$\frac{d}{dt}R1_{-}G = v_{55} - v_{62} \tag{256}$$

8.29 Species R1_G_GTP

Name R1_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_1 and as a product in v_r15_1).

$$\frac{d}{dt}R1_{-}G_{-}GTP = v_{62} - v_{69}$$
 (257)

8.30 Species R1_Gt

Name R1_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_1 and as a product in v_r13_1).

$$\frac{d}{dt}R1_{-}Gt = |v_{48} - v_{55}| \tag{258}$$

8.31 Species R1_RKpost

Name R1_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_1 and as a product in v_r3_0).

$$\frac{d}{dt}R1_RKpost = |v_{10}| - |v_{16}|$$
 (259)

8.32 Species R1_RKpre

Name R1_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_1 and as a product in v_r2_1).

$$\frac{\mathrm{d}}{\mathrm{d}t} R1 R K pre = |v_4| - |v_{11}| \tag{260}$$

8.33 Species R2

Name R2

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_2, v_r5_2, v_r7_2, v_r13_2 and as a product in v_r4_2, v_r16_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}R2 = |v_{17}| + |v_{70}| - |v_{5}| - |v_{23}| - |v_{36}| - |v_{49}| \tag{261}$$

8.34 Species R2_Arr

Name R2_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_2 and as a product in v_r5_2).

$$\frac{d}{dt}R2_Arr = v_{23} - v_{29} \tag{262}$$

8.35 Species R2_G

Name R2_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_2 and as a product in v_r14_2).

$$\frac{d}{dt}R2_{-}G = v_{56} - v_{63} \tag{263}$$

8.36 Species R2_G_GTP

Name R2_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_2 and as a product in v_r15_2).

$$\frac{d}{dt}R2_{-}G_{-}GTP = v_{63} - v_{70}$$
 (264)

8.37 Species R2_Gt

Name R2_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_2 and as a product in v_r13_2).

$$\frac{d}{dt}R2_{-}Gt = v_{49} - v_{56}$$
 (265)

8.38 Species R2_RKpost

Name R2_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_2 and as a product in v_r3_1).

$$\frac{d}{dt}R2_RKpost = |v_{11}| - |v_{17}|$$
 (266)

8.39 Species R2_RKpre

Name R2_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_2 and as a product in v_r2_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} R2 RKpre = v_5 - v_{12}$$
 (267)

8.40 Species R3

Name R3

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_3, v_r5_3, v_r7_3, v_r13_3 and as a product in v_r4_3, v_r16_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}R3 = |v_{18}| + |v_{71}| - |v_{6}| - |v_{24}| - |v_{37}| - |v_{50}| \tag{268}$$

8.41 Species R3_Arr

Name R3_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_3 and as a product in v_r5_3).

$$\frac{d}{dt}R3_Arr = |v_{24}| - |v_{30}|$$
 (269)

8.42 Species R3_G

Name R3_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_3 and as a product in v_r14_3).

$$\frac{d}{dt}R3_{-}G = v_{57} - v_{64} \tag{270}$$

8.43 Species R3_G_GTP

Name R3_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_3 and as a product in v_r15_3).

$$\frac{d}{dt}R3_{-}G_{-}GTP = |v_{64}| - |v_{71}|$$
 (271)

8.44 Species R3_Gt

Name R3_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_3 and as a product in v_r13_3).

$$\frac{d}{dt}R3_{-}Gt = v_{50} - v_{57}$$
 (272)

8.45 Species R3_RKpost

Name R3_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_3 and as a product in v_r3_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} R3 RKpost = |v_{12}| - |v_{18}| \tag{273}$$

8.46 Species R3_RKpre

Name R3_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_3 and as a product in v_r2_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} R3 R K pre = |v_6| - |v_{13}| \tag{274}$$

8.47 Species R4

Name R4

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_4, v_r5_4, v_r7_4, v_r13_4 and as a product in v_r4_4, v_r16_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}R4 = |v_{19}| + |v_{72}| - |v_{7}| - |v_{25}| - |v_{38}| - |v_{51}| \tag{275}$$

8.48 Species R4_Arr

Name R4_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_4 and as a product in v_r5_4).

$$\frac{d}{dt}R4_Arr = |v_{25}| - |v_{31}| \tag{276}$$

8.49 Species R4_G

Name R4_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_4 and as a product in v_r14_4).

$$\frac{d}{dt}R4_{-}G = v_{58} - v_{65} \tag{277}$$

8.50 Species R4_G_GTP

Name R4_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_4 and as a product in v_r15_4).

$$\frac{d}{dt}R4_{-}G_{-}GTP = v_{65} - v_{72}$$
 (278)

8.51 Species R4_Gt

Name R4_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_4 and as a product in v_r13_4).

$$\frac{d}{dt}R4_{-}Gt = |v_{51}| - |v_{58}| \tag{279}$$

8.52 Species R4_RKpost

Name R4_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_4 and as a product in v_r3_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} R4 RKpost = |v_{13}| - |v_{19}| \tag{280}$$

8.53 Species R4_RKpre

Name R4_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_4 and as a product in v_r2_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} R4 RKpre = v_7 - v_{14}$$
 (281)

8.54 Species R5

Name R5

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_5, v_r5_5, v_r7_5, v_r13_5 and as a product in v_r4_5, v_r16_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}R5 = |v_{20}| + |v_{73}| - |v_{8}| - |v_{26}| - |v_{39}| - |v_{52}| \tag{282}$$

8.55 Species R5_Arr

Name R5_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_5 and as a product in v_r5_5).

$$\frac{d}{dt}R5_Arr = |v_{26}| - |v_{32}| \tag{283}$$

8.56 Species R5_G

Name R5_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_5 and as a product in v_r14_5).

$$\frac{d}{dt}R5_{-}G = v_{59} - v_{66}$$
 (284)

8.57 Species R5_G_GTP

Name R5_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_5 and as a product in v_r15_5).

$$\frac{d}{dt}R5_{-}G_{-}GTP = v_{66} - v_{73}$$
 (285)

8.58 Species R5_Gt

Name R5_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_5 and as a product in v_r13_5).

$$\frac{d}{dt}R5_{-}Gt = v_{52} - v_{59}$$
 (286)

8.59 Species R5_RKpost

Name R5_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_5 and as a product in v_r3_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} R5 RKpost = |v_{14}| - |v_{20}| \tag{287}$$

8.60 Species R5_RKpre

Name R5_RKpre

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r3_5 and as a product in v_r2_5).

$$\frac{\mathrm{d}}{\mathrm{d}t} R5 R K pre = |v_8| - |v_{15}| \tag{288}$$

8.61 Species R6

Name R6

Initial amount 0 mol

This species takes part in six reactions (as a reactant in v_r2_6, v_r5_6, v_r7_6, v_r13_6 and as a product in v_r4_6, v_r16_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}R6 = |v_{21}| + |v_{74}| - |v_{9}| - |v_{27}| - |v_{40}| - |v_{53}| \tag{289}$$

8.62 Species R6_Arr

Name R6_Arr

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r6_6 and as a product in v_r5_6).

$$\frac{d}{dt}R6_Arr = |v_{27}| - |v_{33}| \tag{290}$$

8.63 Species R6_G

Name R6_G

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r15_6 and as a product in v_r14_6).

$$\frac{d}{dt}R6_{-}G = v_{60} - v_{67} \tag{291}$$

8.64 Species R6_G_GTP

Name R6_G_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r16_6 and as a product in v_r15_6).

$$\frac{d}{dt}R6_{-}G_{-}GTP = v_{67} - v_{74}$$
 (292)

8.65 Species R6_Gt

Name R6_Gt

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r14_6 and as a product in v_r13_6).

$$\frac{d}{dt}R6_{-}Gt = |v_{53} - v_{60}| \tag{293}$$

8.66 Species R6_RKpost

Name R6_RKpost

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r4_6 and as a product in v_r3_5).

$$\frac{d}{dt}R6_{R}Kpost = |v_{15}| - |v_{21}|$$
 (294)

8.67 Species R6_RKpre

Name R6_RKpre

Initial amount 0 mol

This species takes part in one reaction (as a product in v_r2_6).

$$\frac{\mathrm{d}}{\mathrm{d}t} R6 R K pre = v_9 \tag{295}$$

8.68 Species RGS

Name RGS

Initial amount 100000 mol

This species takes part in four reactions (as a reactant in v_r22, v_r24 and as a product in v_r23, v_r25).

$$\frac{d}{dt}RGS = |v_{81}| + |v_{83}| - |v_{80}| - |v_{82}| \tag{296}$$

8.69 Species RGS_Ga_GTP_a_PDE_a_Ga_GTP

Name RGS_Ga_GTP_a_PDE_a_Ga_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r23 and as a product in v_r22).

$$\frac{d}{dt}RGS_Ga_GTP_a_PDE_a_Ga_GTP = |v_{80}| - |v_{81}|$$
(297)

8.70 Species RGS_PDE_a_Ga_GTP

Name RGS_PDE_a_Ga_GTP

Initial amount 0 mol

This species takes part in two reactions (as a reactant in v_r25 and as a product in v_r24).

$$\frac{\mathrm{d}}{\mathrm{d}t} RGS_PDE_a_Ga_GTP = v_{82} - v_{83}$$
 (298)

8.71 Species RK

Name RK

Initial amount 580 mol

This species takes part in 14 reactions (as a reactant in v_r2_0 , v_r2_1 , v_r2_2 , v_r2_3 , v_r2_4 , v_r2_5 , v_r2_6 , v_r3_1 and as a product in v_r4_1 , v_r4_2 , v_r4_3 , v_r4_4 , v_r4_5 , v_r4_6).

$$\frac{d}{dt}RK = v_{16} + v_{17} + v_{18} + v_{19} + v_{20} + v_{21} - v_3 - v_4 - v_5 - v_6 - v_7 - v_8 - v_9 - v_{89}$$
(299)

8.72 Species R_Gt

Name R_Gt

Initial amount 1847500 mol

This species takes part in two reactions (as a reactant in v_rstprec and as a product in v_GtRpre).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R}_{-}\mathrm{Gt} = |v_{46}| - |v_{2}| \tag{300}$$

8.73 Species RecR_Ca

Name RecR_Ca

Initial amount 510930 mol

This species takes part in two reactions (as a reactant in v_r31 and as a product in v_r30).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{RecR} \cdot \mathrm{Ca} = |v_{88} - v_{89}| \tag{301}$$

8.74 Species RecR_Ca_RK

Name RecR_Ca_RK

Initial amount 199420 mol

This species takes part in one reaction (as a product in v_r31).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RecR}_{-}\mathrm{Ca}_{-}\mathrm{RK} = v_{89} \tag{302}$$

8.75 Species RecT

Name RecT

Initial amount 9289650 mol

This species takes part in one reaction (as a reactant in v_r30).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RecT} = -v_{88} \tag{303}$$

8.76 Species cGMP

Name cGMP

Initial concentration $6.4944 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in v_r37 and as a product in v_r36 and as a modifier in v_r35).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cGMP} = v_{95} - v_{96} \tag{304}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany