Demo Session: Price Discovery

Overview

- What has been completed
- Current Progress
- Next Steps

Objective

Develop LLM that sees product image and reads product description to establish price range.

Recap

Week 1

- Collected Amazon 2023 product dataset ~ 1.4m entries
- Feature engineering on dataset
- Data scraper tested

Week 2

- CLIP w/ statistical Architecture designed and tested
- Text and image embeddings created
- Evaluation metrics selected and tested preliminarily

Week 3

- -vit-large CLIP model used
- Evaluation metrics improved
- RAG implementation
- Price range outputting for products

Week 5

- Migrating DB to the cloud
- Experiment Knowledge graph db
- Product demonstration

Week 4

- Improvement of prompts
- Agent and prompt evaluations
- Fine tuning LLM

This Week

- Migrating the Vector Database from local machine to Cloud.
- Experimented with Knowledge graph database to improve model.
- Developed UI for product MVP

Database Migration

Database: Qdrant

- Efficient similarity search
- Vector Indexing
- REST API and Client Libraries

Progress on deployment

- Completed collection of ~50,000 products with embedded vectors.
 - Text collection 49,982 products
 - Image collection 50,000 products
- Ready to be implemented and used in production.

Proposed improvements.

- Using different embedding functions.
 - Dual-Path Convolutional Image-Text Embeddings

Resources used

- Sentence transformers in hugging face.
- Trung's 50,000 apparel dataset.

embeddings = OpenCLIPEmbeddings(model_name="ViT-B-32", checkpoint="laion2b_s34b_b79k")

apparel-collection **POINTS** INFO **SNAPSHOTS** VISUALIZE **Collection Info** status green (optimizer_status vectors_count 50046 indexed_vectors_count 48116 points_count 49982 segments_count config > { ... } 5 Items payload_schema {}0 Items

Example point:

img-collection		
POINTS INFO	SNAPSHOTS	VISUALIZE
Collection Info		
status		green •
optimizer_status		ok
vectors_count		50064
indexed_vectors_count		49352
points_count		50000
segments_count		2
config		> { } 5 Items
payload_schema		{}0 Items

Example point:

2,500 products visualized:

Knowledge Graph Database

Why Knowledge graphs?

- A knowledge graph is a way to store and organize information that makes the relationships between pieces of data clear and easy to understand.
- Follow up from last week; we used a data scraper to extract products from amazon in 10 different categories.

Experimentation process

Results

Limitations

- Missing data reduced inconsistency
- Browser was unable to support large range of products at a time
- Insufficient data, inconsistent data and Irregular values were the key blockers

Product Demonstration

Basic Flow

Demo

Next Steps

Next Steps

- UI
 - Prompting and Output formatting
 - Improve on the attractiveness of design
- Evaluation metric finalization
 - MAPE
 - Rouge & BLU
 - Ragas
- Pipeline Implementation
 - Show them that data is in database
 - Show images that show that product is in the database

Feedback?

