Algorithm: Given a board state x and a value network $v(\cdot)$, the algorithm optimizes $\{I_{\mathrm{and}}(S)\}_{S\subseteq N}$ and $\{I_{\mathrm{or}}(S)\}_{S\subseteq N}$ for all subsets $S\subseteq N$. Then, we extract interaction primitives , select common coalitions T based on interaction primitives, and compute the coalition attributions $\varphi(T)$.

Input: a board state x, a value network $v(\cdot)$.

Output: Interactions $\{I_{\mathrm{and}}(S)\}_{S\subseteq N}$ and $\{I_{\mathrm{or}}(S)\}_{S\subseteq N}$ for all subsets $S\subseteq N$, the attribution $\varphi(T)$ of each coalition T.

1. Initialize parameters as

$$a_k = \mathbb{E}_{m{x}} \mathbb{E}_{T \subseteq N: \Delta n(T) = k} \log(rac{p_{ ext{white}}(m{x}_T)}{1 - p_{ ext{white}}(m{x}_T)}), k \in \{-rac{n}{2}, -rac{n}{2} + 1, \dots, rac{n}{2}\}. \ orall T \subseteq N, p_T = q_T = 0.$$

2. for $S \subseteq N$ do

compute initial
$$I_{\mathrm{and}}(S)$$
 and $I_{\mathrm{or}}(S)$ by setting $\ \forall T \subset N, v_{\mathrm{and}}(\boldsymbol{x}_T) = \frac{1}{2} \cdot [u(\boldsymbol{x}_T) + q_T] + p_T$ and $v_{\mathrm{or}}(\boldsymbol{x}_T) = \frac{1}{2} \cdot [u(\boldsymbol{x}_T) + q_T] - p_T$, subject to $u(\boldsymbol{x}_T) = v(\boldsymbol{x}_T) - a_k$, according to Equation (1) and Equation (3).

end for

- 3. Iteratively update parameters $m{a} = \{a_{-\frac{n}{2}}, a_{-\frac{n}{2}+1}, \dots, a_{\frac{n}{2}}\}, \{p_T\}_{T \subseteq N}, \{q_T\}_{T \subseteq N}$ via $\min_{m{a}, \{p_T\}_{T \subseteq N}, \{q_T: |q_T| < \tau\}_{T \subseteq N}} \|m{I}_{\mathrm{and}}\|_1 + \|m{I}_{\mathrm{or}}\|_1$
- 4. Determine a set of salient interaction primitives $\Omega_{\rm salient}=\{S:|I(S)|>\xi\}$, where $\xi=0.15\cdot \max_S |I(S)|$.
- 5. Manually annotate 50 common coalitions T based on interaction primitives $\Omega_{\mathrm{salient}}$.
- 6. Compute coalition attributions $\varphi(T) = \sum_{S \supseteq T} \frac{|T|}{|S|} [I_{\rm and}(S) + I_{\rm or}(S)]$ for each annotated coalition T.