Ejercicio 6:

Implementar un contador de 3 bits de cuenta regresiva ("111" -> "110" -> "101" -> … "000"), con una entrada **R** (reinicio), que lleve el contador al estado "111" en el siguiente ciclo de reloj, si su valor es igual a '0'. Utilizar Flip-flops tipo D y las compuertas lógicas necesarias. Tener en cuenta que el contador es cíclico, es decir, que pasa del estado "000" al "111".

Estado actual	Enerada	Dato siquiente
Qz Q, Qo	R	Dz D ₄ D ₀
E, 000	0	1 1 1
000	1	1 1 1
E6 0 0 1	0	1 1 1
001	1	000
E ₅ 0 1 0	0	1 1 1
010	1	0 0 1
E4 0 1 1	0	1 1 1
011	1	010
E3 100	0	1 1 1
100	1	0 1 1
E2 1 0 1	0	1 1 1
101	1	100
E4 1 1 0	0	1 1 1
110	1	101
E. 111	0	1 1 1
111	1	110

Albora busco las ecuaciones simplificadas:

	QOR.	Qo R	QoR.	Q.R
$\overline{Q}_{z}\overline{Q}_{\lambda}$	1	1	0	1
$\overline{Q}_{z}Q_{\lambda}$	1	0	0	1
Q_zQ_1	1	1	1	1
$Q_z\overline{Q_A}$	1	0	1	1

$$\mathcal{D}_{z} = \overline{R} + Q_{z}Q_{4} + Q_{z}Q_{0} + \overline{Q_{z}Q_{1}Q_{0}}$$

	QOR.	Q.R	QoR	Q.R
$\overline{Q}_{z}\overline{Q}_{\lambda}$	1	1	0	1
$\overline{Q}_{z}Q_{1}$	1	0	1	1
Q_zQ_1	1	0	1	1
$Q_z\overline{Q_A}$	1	1	0	1

$$D_1 = \overline{R} + \overline{Q_4} \overline{Q_0} + Q_4 Q_0$$

$$D_o = \overline{R} + \overline{Q}_o$$

