Metody numeryczne projekt nr $2\,$

Kacper Wnek

11.01.2023

Contents

1	$\mathbf{W}\mathbf{y}$	znaczanie Rozkładu Crouta macierzy	2			
	1.1	Opis matematyczny	9			
	1.2	Opis programu	,			
	1.3	Wykorzystanie rozkładu do rozwiazania równań macierzowych AX=B oraz XA=B				
		1.3.1 Równania w postaci Ax=B				
		1.3.2 Równania w postaci xA=B	ļ			
		1.3.3 Checkresult i Displayexample	(
		1.3.4 Przykłady	8			
2	Por	równanie równań AX=B oraz XA=B	1			
2.1 Porównanie czasu rozwiazywania równań AX=B oraz XA=B						
	2.2	Zależność błedu wzglednego dla równań AX=B oraz XA=B	1			
		2.2.1 Rozmiar macierzy A				
		2.2.2 Liczba kolumn—wierszy macierzy B	19			
	2.3	Podsumowanie porównania				

1 Wyznaczanie Rozkładu Crouta macierzy

1.1 Opis matematyczny

Dekompozycja Crouta jest metoda rozkładania macierzy na iloczyn dwóch macierzy dolnotrójkatnej L i górnotrójkatnej U.

$$A = L \cdot U$$

Polega ona na założeniu, że na głównej przekatnej macierzy górnej U wystepuja jedynki. Pozostałe elementy macierzy L i U wyznacza sie dla kolejnych wierszy od pierwszego do ostatniego wg zależności:

$$i, j \in 1, \dots, n$$

$$u_{ii} = 1$$

$$l_{ij} = a_{ij} - \sum_{k=1}^{i} l_{ik} \cdot u_{kj}$$

$$u_{ij} = \frac{1}{l_{ii}} (a_{ij} - \sum_{k=i+1}^{n} l_{ik} \cdot u_{kj})$$

1.2 Opis programu

Program 'crout' jest funkcja służaca do dekompozycji macierzy kwadratowej zgodnie z metoda Crouta opisana w 1.1. Progam przyjmuje jeden argument:

• A- macierz kwadratowa do rozłożenia.

oraz zwraca:

- L Macierz dolnotrójkatna,
- ullet U Macierz górnotrójkatna

```
function [L, U] = crout(A)
       %Funkcja dokonuje dekompozycji kwadratowej macierzy A na macierz
 3
       %dolnotrójkątną i górnotrójkątną przy czym górnotrójkątna macierz ma na
       %głównej diagonali jedynki
       if size(A,1)~=size(A,2)
           error('A must be a square matrix')
       [n, n] = size(A);
       L=zeros(n,n);
9
10
       U=eye(n);
11
12 🗀
               for i = 1:n
13
                    L(i, 1) = A(i, 1);
14
15 🖹
               for j = 2:n
16
                    U(1, j) = A(1, j) / L(1, 1);
17
18 🖨
               for i = 2:n
19 🗀
                    for j = 2:i
                        L(i, j) = A(i, j) - L(i, 1:j - 1) * U(1:j - 1, j);
20
21
22
23 🖹
                    for j = i + 1:n
24
                        U(i, j) = (A(i, j) - L(i, 1:i - 1) * U(1:i - 1, j)) / L(i, i);
25
                    end
26
               end
27
          end
```

Funkcja crout

1.3 Wykorzystanie rozkładu do rozwiazania równań macierzowych AX=B oraz XA=B

1.3.1 Równania w postaci Ax=B

Nastepujace równanie przekształcamy koszystajac z rozkładu:

$$A \cdot X = B$$

$$L \cdot U \cdot X = B$$

Nastepnie dokonujemy podstawienia:

$$U\cdot X=Y$$

Korzystajac z podstawienia rozwiazujemy równanie:

$$L \cdot Y = B$$

a nastepnie po obliczeniu Y wracamy do podstawienia i rozwiazujemy równanie:

$$U \cdot X = Y$$

W celu rozwiazania takiego równania wykorzystamy funkcje pomocnicze solvecroutLYB, solvecroutUXY oraz funkcje solvecroutLUX Wyżej wymienione funkcje działaja w nastepujacy sposób:

\bullet solvecroutLYB

Funkcja służy do rozwiazania równania $L \cdot Y = B$ gdzie L jest macierza dolnotrójkatna o wymiarach $n \times n$ a Y i B sa macierzami o wymiarach $n \times m$. Funkcja przyjmuje dane wejściowe:

- -A := L
- -B := B

oraz zwraca:

```
- Y
       function [Y] = solve_crout_LYB(A,B)
       %Funkcja służy do rozwiązania równania L*Y=B
 2 <u>=</u>
 3
       % gdzie L jest macierzą dolnotrójkątną o wymiarach nxn
       % a Y i B są macierzami o wymiarach nxm
 5
       % zwraca wartość Y
 6
       % dane wejściowe A->L B->B
 7
       if size(A,1)~=size(B,1)
 8
           error('number of rows of A and B matrix must be equal')
 9
10
       [n,m]=size(B);
       Y=zeros(n,m);
11
12
13 🗀
       for i=1:n
14
             j=1:i-1;
15
            y=A(i,j)*Y(j,:);
16
            Y(i,:)=(B(i,:)-y)/A(i,i);
17
18
       end
19
       end
```

Funkcja solve crout LYB

\bullet solvecroutUXY

Funkcja służy do rozwiazania równania $U\cdot X=Y$ gdzie U jest macierza górnotrójkatna o wymiarach $n\times n$ a X i Y sa macierzami o wymiarach $n\times m$. Funkcja przyjmuje dane wejściowe:

- -A := U
- -B:=Y

oraz zwraca:

-X

```
function [X] = solve_crout_UXY(A,B)
 1 🖃
 2 🗀
       %Funkcja służy do rozwiązania równania U*X=Y
 3
       % gdzie U jest macierzą górnotrójkątną o wymiarach nxn
       % a X i Y są macierzami o wymiarach nxm
 4
 5
       % zwraca wartość X
 6
       % dane wejściowe A->U B ->Y
 7
       if size(A,1)~=size(B,1)
 8
           error('number of rows of A and B matrix must be equal')
 9
10
       [n,m]=size(B);
11
       X=zeros(n,m);
12
13 F
       for i=n:-1:1
14
            j=n:-1:i+1;
15
            x=A(i,j)*X(j,:);
16
            X(i,:)=(B(i,:)-x)/A(i,i);
17
18
       end
19
       end
```

Funkcja solve crout UXY

\bullet solvecroutLUX

Funkcja wykorzystuje funkcje solvecroutUXY, solvecroutLYB oraz crout do rozwiazania układu $A\cdot X=B$ poprzez dekompozycje metoda Crouta macierzy A

```
1 🖃
       function [X] = solve crout LUX(A,B)
 2 🗀
       %Funkcja wykorzystuje funkcje solve_crout_UXY, solve_crout_LYB oraz crout
       % do rozwiązania układu A*X=B poprzez dekompozycje metodą crouta macierzy A
 3
 4
 5
       % wykonujemy dekompozycje crouta macierzy A
 6
       [L,U] = crout(A);
 7
 8
       % rozwiązujemy układ równań LY = B
 9
       Y = solve_crout_LYB(L, B);
10
11
       % rozwiązujemy układ równań UX = Y
12
       X = solve_crout_UXY(U, Y);
13
14
       end
```

Funkcja solve crout LUX

1.3.2 Równania w postaci xA=B

Do rozwiazania równania w postaci $X \cdot A = B$ możemy skorzystać ze wzorów omówionych w poprzednim podpunkcie. Wystarczy dokonać matematycznych przekształceń.

$$X \cdot A = B$$
$$(X \cdot A)^{T} = B^{T}$$
$$A^{T} \cdot X^{T} = B^{T}$$

Można zauważyć, że po wykonanych przekształceniach możemy skorzystać z funkcji solvecroutLUX dla transponowanych macierzy i otrzymamy wtedy transponowana macierz X. W celu jasności kodu na dalszym etapie zdefiniujmy do tego funkcje solvecroutXLU

```
function [X] = solve_crout_XLU(A,B)

% Funkcja rozwiązująca równania xA=B poprzez funkcje solve_crout_LUX()

X=solve_crout_LUX(A',B')';
end
```

Funkcja solve crout XLU

1.3.3 Checkresult i Displayexample

Funkcje Checkresult oraz Displayexample beda służyły do wypisania rozwiazań równań $A \cdot X = B$, $X \cdot A = B$ oraz do przedstawienia w postaci tabeli nastepujacych własności:

- wskaźnik uwarunkowania macierzy cond(A): cond(A) = ||A⁻¹|| · ||A||,
- błąd rozkładu $e_{dec} = \frac{\|A BC\|}{\|A\|},$
- błąd względny e_{rel}: jeśli z jest dokładnym rozwiązaniem układu Ax = b, a x obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$e_{rel} = \frac{\|x - z\|}{\|z\|},$$

 współczynnik stabilności wsp_{stab}: jeśli z jest dokładnym rozwiązaniem układu Ax = b, a x obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$wsp_{stab} = \frac{\|x - z\|}{\|z\| \operatorname{cond}(A)},$$

 współczynnik poprawności wsp_{popr}: jeśli x jest obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$wsp_{popr} = \frac{\|b - Ax\|}{\|A\| \cdot \|x\|}.$$

Funkcje napisane sa w nastepujacy sposób:

• Checkresult 1 function [] = check_result(A,B) 2 -%funkcja sprawdzająca poprawność przykładów dla Ax=B 3 %korzystająca z funkcji solve crout LUX, crout, oraz funkcji wbudowanych % zwraca tabele z informacjami o wskazniku uwarunkowania, bledzie rozkladu, 4 5 % bledzie wzglednym, wspolczynniku stablinosci, wspolczynniku poprawnosci 6 % oraz czasy rozwiązywania równań Ax=B i xA=B (dla odpowiednio 7 % zmodyfikowanych jednak podobnych do siebie macierzy) 8 %przyjmuje macierz kwadratowa A o wymiarze n i macierz B o wymiarze nxm 9 10 X = solve crout LUX(A, B);11 z = inv(A)*B;12 [L,U]=crout(A); 13 wskaznik_uwar=cond(A); 14 blad rozkladu= norm(A-L*U)/norm(A); 15 blad wzgledny= norm(z-X)/norm(z); wsp_stabilnosci= norm(X-z)/norm(z)*cond(A); 16 17 wsp_poprawnosci= norm(B-A*X)/norm(A)*norm(X); 18 g= @() solve_crout_LUX(A,B); 19 B=B'; 20 f= @() solve_crout_XLU(A,B); 21 time_Ax=timeit(g); 22 time xA=timeit(f); 23 24 tabela=table(wskaznik uwar, blad rozkladu, blad wzgledny, ... 25 wsp stabilnosci, ... 26 wsp_poprawnosci,time_Ax, time_xA, 'VariableNames', ... ["Wskaźnik uwarunkowania", "Błąd rozkładu", "Błąd względny", ... 27 "Współczynnik stabilności", "Współczynnik poprawności", ... 28 29 "czas rozwiązania Ax", "czas rozwiązania xA"]) 30 end

• Displayexample

```
1 🖃
       function [] = Display example(A,B)
 2 🗀
       %Funkcja wykorzystująca funkcje solve_crout_LUX, wbudowaną funkcje inv
 3
       % oraz funkcje chceck result do zobrazowania wyników tych funkcji
 4
       X=solve crout LUX(A,B)
 5
       Y=inv(A)*B
 6
       B=B';
 7
       X 2=solve crout XLU(A,B)
 8
       Y_2=B*inv(A)
 9
       B=B';
       check result(A,B)
10
11
12
13
14
       end
```

1.3.4 Przykłady

Działanie funkcji omówionych w poprzednim podpunkcie zobrazujemy na podstawie poniższych zróżnicowanych przykładów tj. gdy macierz A jest dużych rozmiarów, gdy macierz B jest macierza jednostkowa, gdy macierz B nie jest jednostkowa, jednak B=XA=AX, oraz dla ksiażkowych przypadków. Wyniki zwracane przez wywołanie funkcji *Displayexample* to

- X rozwiazanie równania $A \cdot X = B$ za pomoca metody solvecroutLUX
- \bullet Yrozwiazanie równania $A\cdot X=B$ za pomoca wbudowanej metody inv
- X_2 rozwiazanie równania $X \cdot A = B$ za pomoca metody solvecrout XLU
- $\bullet \ Y_2$ rozwiazanie równania $X \cdot A = B$ za pomoca wbudowanej metody inv

Naturalnie w przypadku równań $A \cdot X = B$ oraz $X \cdot A = B$ rozmiary macierzy sie różnia, wiec macierze nie sa sobie równe, ale sa one odpowiednio transponowane tak, żeby można było porównać rozwiazania 2 równań dla odpowiadających sobie macierzy.

PRZYKŁADY

```
2 🖃
       %Przykład pierwszy
 3
       %AX=B
 4
       %XA=B
 5
       A = gallery("gcdmat",10);
 6
       B=randn(10,4);
 7
       Display_example(A,B);
 8
 9
10 🗐
       %Przykład drugi B=I
11
       %AX=B
12
       %XA=B
       fprintf("B jednostkowa")
13
14
       A = gallery("gcdmat",10);
15
       B=eye(10);
16
       Display_example(A,B);
17
18
19 🖃
       %Przykład trzeci B=I
20
       %AX=B
21
       %XA=B
22
       fprintf("B jednostkowa")
23
       A = [1,7,3;4,0,6;7,1,9];
24
       B=eye(3);
25
       Display_example(A,B);
26
27
       %Przykład czwarty
28 🗔
29
       %AX=B
30
       %XA=B
31
32
       A = [1,7,3;4,0,6;7,1,9];
33
       B=[0,2;1,4;7,15];
34
       Display_example(A,B);
35
36
37
38 🖃
       %Przykład piąty B=AX=XA
39
       %AX=B
40
       %XA=B
       fprintf("B=AX=XA")
41
       A=[2,0;1,-1];
42
43
       B=[6,0;2,0];
44
       Display_example(A,B);
45
46
47 🗔
       %Przykład szósty
48
       %AX=B
49
       %XA=B
50
       A = gallery("gcdmat",5);
51
       B=randn(5,4);
52
       Display_example(A,B);
53
```

PRZYKŁADI

X =									
-1.6070	4.4113	-1.1432	11.9151						
1.2647	0.2942	-0.5870	-7.8315						
-0.2749	-0.7778	1.4167	-4.5975						
-0.5538	-0.8687	0.7989	-0.0166						
-0.5298	-0.8813	-0.0860	-1.6424						
0.4945	-0.1859	-0.6290	3.0843						
0.3229	-0.3773	0.1843	-0.3347						
-0.0665	-0.2067	-0.0351	0.2572						
0.0135	0.1492	-0.3792	0.0540						
0.2466	0.2851	0.2593	1.1453						
Υ =									
-1.6070		-1.1432	11.9151						
1.2647			-7.8315						
-0.2749	-0.7778		-4.5975						
-0.5538	-0.8687	0.7989	-0.0166						
-0.5298	-0.8813	-0.0860	-1.6424						
0.4945	-0.1859	-0.6290	3.0843						
0.3229	-0.3773		-0.3347						
-0.0665	-0.2067	-0.0351	0.2572						
0.0135		-0.3792	0.0540						
0.2466	0.2851	0.2593	1.1453						
X 2 =									
A_2 -									
-1.6070	1.2647	-0.2749	-0.5538	-0.5298	0.4945	0.3229	-0.0665	0.0135	0.2466
4.4113	0.2942	-0.7778	-0.8687	-0.8813	-0.1859	-0.3773	-0.2067	0.1492	0.2851
-1.1432	-0.5870	1.4167	0.7989	-0.0860	-0.6290	0.1843	-0.0351	-0.3792	0.2593
11.9151	-7.8315	-4.5975	-0.0166	-1.6424	3.0843	-0.3347	0.2572	0.0540	1.1453
W 0 -									
Y_2 =									
-1.6070	1.2647	-0.2749	-0.5538	-0.5298	0.4945	0.3229	-0.0665	0.0135	0.2466
4.4113	0.2942	-0.7778	-0.8687	-0.8813	-0.1859	-0.3773	-0.2067	0.1492	0.2851
-1.1432	-0.5870	1.4167	0.7989	-0.0860	-0.6290	0.1843	-0.0351	-0.3792	0.2593
11.9151	-7.8315	-4.5975	-0.0166	-1.6424	3.0843	-0.3347	0.2572	0.0540	1.1453
				TAB.	ELA				
Wskaźnik uwarunko	owania Bład n	ozkładu Błąd	względny Wspó	łczynnik stabili	ności Współcz	ynnik poprawności	. czas rozwia	zania Ax czas	rozwiązania xA

2.0611e-14

3.3737e-16

0.00020005

0.00018747

109.47

1.8828e-16

PRZYKŁAD~II

B jednostko	wa								
3.6667	-1.7500	-1.0000	0	-0.5000	0.5000	-0.1667	0	0	0.2500
				0.2500			0	0	-0.2500
		1.1667			-0.5000		0	-0.1667	0
	-0.5000	0	0.7500	0			-0.2500		0
	0.2500		0	0.5000	0	0	0	0	-0.2500
	-0.5000	-0.5000	0	0	0.5000	0	0	0	0
-0.1667			0	0	0	0.1667	0		0
0				0					
0		-0.1667							0
	-0.2500		0	0 -0.2500	0	0	0	0	0.2500
Y =								_	
		-1.0000		-0.5000					0.2500
									-0.2500
		1.1667	0	0	-0.5000 0	0	0 -0.2500	-0.1667	0
	-0.5000		0.7500	0	0	0			
		0		0.5000					-0.2500
		-0.5000		0	0.5000	0	0		0
-0.1667				0	0	0.1667	0	0	0
				0	0	0	0.2500	0	0
0	0	-0.1667	0	0	0	0	0	0.1667	0
0.2500	-0.2500	0	0	-0.2500	0	0	0	0	0.2500
x_2 =									
3.6667	-1.7500	-1.0000	0	-0.5000	0.5000	-0.1667	0	0	0.2500
				0.2500	0 5000	0			-0.2500
	0.5000	1 1667	0.5000	0.2300	-0.5000	0	0	-0 1667	0.2300
	-0.5000		0.7500	0	0.3000	0	0 -0.2500	0.1007	0
	0.2500			0.5000			0		-0.2500
	-0.5000			0.0000	0.5000	0	0		0.2000
-0.1667					0		0		0
0.1007			-0.2500	0	0	0.1007	0.2500	0	
0		-0.1667	0.2000	0	0	0	0.2500	0.1667	0
0.2500	-0.2500	0	0	-0.2500	0		0	0	0.2500
Y_2 =									
3 6667	-1 7500	-1 0000	0	-0.5000	0.5000	-0 1667	0	0	0.2500
-1.7500									
-1.0000	0.5000	1.1667	0.0000	0	-0.5000	0	0	-0.1667	0.2000
0.0000	-0.5000	0	0.7500	0	0.3000	0	-0.2500	0.1007	0
				0.5000			0		
0.5000	-0.5000	-0.5000	0	0	0.5000	0	0	0	0
-0.1667	0	0	0	o 0	0	0.1667	0	0	0
0				0		0	0.2500	0	0
0	0	-0.1667	0	0				0.1667	0
	-0.2500	0	0	-0.2500					

Wskaźnik uwarunkowania	Błąd rozkładu	Błąd względny	Współczynnik stabilności	Współczynnik poprawności	czas rozwiązania Ax	czas rozwiązania xA
109.47	0	2.0599e-17	2.255e-15	2.1224e-16	0.00019844	0.00019747

PRZYKŁAD~III

B jednostko	wa	
x =		
-0.1250	-1.2500	0.8750
0.1250	-0.2500	0.1250
0.0833	1.0000	-0.5833
Y =		
-0.1250	-1.2500	0.8750
0.1250	-0.2500	0.1250
0.0833	1.0000	-0.5833
X_2 =		
-0.1250	-1.2500	0.8750
0.1250	-0.2500	0.1250
0.0833	1.0000	-0.5833
Y_2 =		
	-1.2500	
0.1250	-0.2500	
0.0833	1.0000	-0.5833

TABELA

Wskaźnik uwarunkowania	Błąd rozkładu	Błąd względny	Współczynnik stabilności	Współczynnik poprawności	czas rozwiązania Ax	czas rozwiązania xA
						-
27.275	0	2.0918e-16	5.7053e-15	1.26le-16	2.2651e-05	2.5236e-05

$PRZYKŁAD\ IV$

Wskaźnik uwarunkowania	Błąd rozkładu	Błąd względny	Współczynnik stabilności	Współczynnik poprawności	czas rozwiązania Ax	czas rozwiązania xA
27.275	0	1.1295e-16	3.0808e-15	8.2244e-15	2.1557e-05	2.2546e-05

PRZYKŁADV

B=AX	=XA	
x =		
	3	0
	1	0
	1	U
Y =		
	3	0
	1	0
X_2	=	
		_
	4	-2
	0	0
Y_2	=	
	4	-2
	0	0

Wskaźnik uwarunkowania	Błąd rozkładu	Błąd względny	Współczynnik stabilności	Współczynnik poprawności	czas rozwiązania Ax	czas rozwiązania xA
2.618	0	0	0	0	1.0409e-05	1.1444e-05

$PRZYKŁAD\ VI$

X =				
-2.8847	-0.3609	2.3104	-3.1117	
1.8985	-0.6232	-1.8445	1.1175	
0.4999	0.8253	-0.4358	-0.0472	
-0.2234	0.0318	0.6459	0.2194	
0.2010	-0.3321	-0.0193	0.5518	
Y =				
1 -				
-2.8847	-0.3609	2.3104	-3.1117	
1.8985	-0.6232	-1.8445	1.1175	
0.4999	0.8253	-0.4358	-0.0472	
-0.2234	0.0318	0.6459	0.2194	
0.2010	-0.3321	-0.0193	0.5518	
x_2 =				
_2 9947	1.8985	0.4999	_0 2224	0.2010
-0.3609				
	-1.8445			
-3.1117				
3.1117	1.11/0	0.01/2	0.2131	0.0010
Y_2 =				
-2.8847	1.8985	0.4999	-0.2234	0.2010
-0.3609	-0.6232	0.8253	0.0318	-0.3321
2.3104	-1.8445	-0.4358	0.6459	-0.0193
-3.1117	1.1175	-0.0472	0.2194	0.5518

Wskaźnik uwarunkowania	Błąd rozkładu	Błąd względny	Współczynnik stabilności	Współczynnik poprawności	czas rozwiązania Ax	czas rozwiązania xA
26.46	0	3.9493e-17	1.045e-15	5.7334e-16	5.2284e-05	5.6031e-05

2 Porównanie równań AX=B oraz XA=B

2.1 Porównanie czasu rozwiazywania równań AX=B oraz XA=B

Do tego porównania skorzystamy z funkcji timecomparing, która przyjmuje dwie macierze A i B oraz zwraca czas działania funkcji solvecroutLUX oraz solvecroutXLU

```
function [ time_Ax, time_xA] = time_comparing(A,B)
g= @() solve_crout_LUX(A,B);
B=B';
f= @() solve_crout_XLU(A,B);
time_Ax=timeit(g);
time_xA=timeit(f);
end
```

PORÓWNANIE CZASU W ZALEŻNOŚCI OD ROZMIARU MACIERZY A

Z wykorzystaniem nastepujacego kodu porównamy czas rozwiazania obu równań dla rosnacego rozmiaru macierzy A:

```
%poniższy kod rysuje czasa rozwiązywania równań Ax=B i xA=B dla
%rozmiarów macierzy A [1,100]
y=repelem(0,100);
x=1:100;
for i=x
        A=gallery("gcdmat",i);
        B=randn(i,2);
        y(i)=time_comparing(A,B);
end
hold on
plot(x,y)
title("Czas rozwiązywanie układów równań xA=B oraz Ax=B")
xlabel("Rozmiar macierzy A")
ylabel("czas")
hold off
```

Otrzymamamy wykres:

Gdzie niebieski wykres przedstawia czas dla $A \cdot X = B$, a czerwony dla $X \cdot A = B$. Możemy zauważyć, że czas rozwiazywania jest zbliżony, jednak dla równań $X \cdot A = B$ jest on bardziej stabilny; W przypadku wykresu $A \cdot X = B$ możemy zauważyć, że dla niektórych rozmiarów macierzy czas rozwiazania sie znaczaco (oczywiście nie dla ludzkiego oka) wydłuża.

PORÓWNANIE CZASU W ZALEŻNOŚCI OD LICZBY KOLUMN|WIERSZY MACIERZY B

Analogicznie za pomoca poniższego kodu zbadamy różnice czasu gdy modyfikowana jest odpowiednio liczba kolumn wierszy macierzy B.

```
166 🖃
        %poniższy kod rysuje roznice czasu rozwiązywania równań Ax=B i xA=B dla
167 L
        %liczby kolumn\wierszy macierzy B[1,100]
168
        y=repelem(0,100);
        x=1:100;
169
170 🖃
        for i=x
171
            A=gallery("gcdmat",10);
172
            B=randn(size(A,1),i);
173
            y(i) = time_comparing(A,B);
174
        end
175
        hold on
176
        plot(x,y)
        title("Czas rozwiązywanie układów równań xA=B oraz Ax=B")
177
178
        xlabel("liczba kolumn macierzy B")
        ylabel("czas")
179
        hold off
180
```

Otrzymamy wykres:

Gdzie ponownie niebieski wykres przedstawia czas dla $A \cdot X = B$ a czerwony dla $X \cdot A = B$. Na wykresie wyraźnie widać, że w przypadku jednakowych rozmiarów n macierzy A oraz macierzy B o odpowienio rozmiarach $n \times m$ i $m \times n$ czas rozwiazywania równania (ponownie raczej niewidoczny dla ludzkiego oka) dla równania $X \cdot A = B$ jest zazwyczaj wiekszy chociaż nie zachodzi tak zawsze.

2.2 Zależność błedu wzglednego dla równań AX=B oraz XA=B

2.2.1 Rozmiar macierzy A

Poniżej znajduje sie kod, za pomoca którego można zobaczyć jak zmienia sie bład wzgledny w zależności od rozmiaru macierzy A dla równania $A \cdot X = B$

```
% poniższy kod pokazuje na wykresie jak zmienia się błąd względny
57 🖃
58
       %w zaleznośći od rozmiaru macierzy A
       % błąd wzgledny:
59
       % z- dokładne rozwiązanie układu Ax=B,
60
       % X obliczone numerycznie przybliżenie
61
62
       % błąd względny ||X-z||/||z||
63
64
       y=repelem(0,100);
65
       x=1:100;
       for i=x
66 🖃
67
           A=gallery("gcdmat",i);
68
           B=randn(i,1);
69
           X = solve crout LUX(A, B);
70
           z = inv(A)*B;
           y(i) = norm(z-X)/norm(z);
71
72
       end
73
       hold on
74
       plot(x,y)
75
       title("Wielkość błędu względnego w zależności od rozmiaru macierzy dla xA=B")
76
77
       xlabel("rozmiar macierzy kwadratowej A")
78
       ylabel("wielkość błędu")
79
       hold off
```

Dokonujac odpowienich drobnych zmian, tak aby wymiary macierzy sie zgadzały otrzymamy wykres dla równania $X\cdot A=B$

Wykresy wygladaja nastepujaco:

$$A \cdot X = B$$

$$X \cdot A = B$$

Z wykresu patrzac na skale y możemy wyczytać, że średnio bład wzgledny jest mniejszy dla rozwiazywania równania $X\cdot A=B$

2.2.2 Liczba kolumn—wierszy macierzy B

Analogicznie porównamy bład wzgledny w zależności od liczby kolumn—wierszy macierzy B. Dokonamy tego za pomoca poniższego kodu:

```
54 🖃
       %poniższy kod pokazuje na wykresie jak zmienia się błąd względny
55
       %w zaleznośći od liczby kolumn macierzy B
56
       % błąd wzgledny:
57
       % z- dokładne rozwiązanie układu AX=B,
       % X obliczone numerycznie przybliżenie
58
59
       % błąd względny ||X-z||/||z||
60
61
       y=repelem(0,100);
62
       x=1:100;
63 🖃
       for i=x
64
           A=gallery("gcdmat",10);
65
           B=randn(size(A,1),i);
           X = solve_crout_LUX(A, B);
66
67
           z = inv(A)*B;
           y(i) = norm(z-X)/norm(z);
68
69
       end
70
       hold on
71
       plot(x,y)
72
       title("Wielkość błędu względnego w zależności od liczby kolumn macierzy B dla Ax=B")
       xlabel("liczba kolumn macierzy B")
73
74
       ylabel("wielkość błędu")
75
       hold off
```

Dokonujac odpowienich drobnych zmian, tak aby wymiary macierzy sie zgadzały otrzymamy wykres dla równania $X \cdot A = B$

Tak powstałe wykresy wygladaja nastepujaco:

$$A \cdot X = B$$

Wykresy zasadniczo dla tych samych argumentów sie różnia, jednak nie da sie stwierdzić, które wyniki sa bardziej satysfakcjonujace. Wyniki sa bardzo do siebie zbliżone. Raz bład jest wiekszy dla równania $A \cdot X = B$ a raz dla $X \cdot A = B$.

2.3 Podsumowanie porównania

Cieżko jednoznacznie stwierdzić, które równania sa lepsze do rozwiazywania w przypadku $X\cdot A=B$ bład wzgledny obliczeń z reguły mniejszy, jednak czas obliczeń był dłuższy. Różnice czasowe jak i błedu wzglednego, mimo że wystepuja to i tak nie sa wychwytywane dla ludzkiego oka. Jednak z perspektywy rosnacego czasu dla wiekszych macierzy i raczej niezależnego od rozmiaru macierzy błedu wzglednego. Do rozwiazywania dużej ilości równań lepsze sa równania w postaci $A\cdot X=B$