Definition of eigenvalues and eigenvectors of a matrix

Let A be any square matrix. A non-zero vector v is an **eigenvector** of A if

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

for some number λ , called the corresponding **eigenvalue**.

NOTE: The German word "eigen" roughly translates as "own" or "belonging to". Eigenvalues and eigenvectors correspond to each other (are paired) for any particular matrix \mathbf{A} .

The solved examples below give some insight into what these concepts mean. First, a summary of what we're going to do:

How to find the eigenvalues and eigenvectors of a 2x2 matrix

- 1. Set up the **characteristic equation**, using $|\mathbf{A} \lambda \mathbf{I}| = 0$
- 2. **Solve** the characteristic equation, giving us the **eigenvalues** (2 eigenvalues for a 2x2 system)
- 3. **Substitute** the eigenvalues into the two equations given by $\mathbf{A} \lambda \mathbf{I}$
- 4. Choose a convenient value for x_1 , then find x_2
- 5. The resulting values form the corresponding **eigenvectors** of **A** (2 eigenvectors for a 2x2 system)

There is no single **eigenvector formula** as such - it's more of a set of steps that we need to go through to find the eigenvalues and eigenvectors.

Example 1

We start with a system of two equations, as follows:

$$y_1 = -5x_1 + 2x_2$$

$$y_2 = -9x_1 + 6x_2$$

We can write those equations in matrix form as:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

In general we can write the above matrices as:

$$y = Av$$

where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix},$$

$$\mathbf{A} = egin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$$
 , and

$$\mathbf{v} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

Step 1. Set up the characteristic equation, using $|A - \lambda I| = 0$

Our task is to find the eigenvalues λ , and eigenvectors \mathbf{v} , such that:

(1)

$$\mathbf{y} = \lambda \mathbf{v}$$

We are looking for scalar values λ (numbers, not matrices) that can replace the matrix ${\bf A}$ in the expression ${\bf y}={\bf A}{\bf v}$.

That is, we want to find λ such that :

$$-5x_1 + 2x_2 = \lambda x_1$$

$$-9x_1 + 6x_2 = \lambda x_2$$

Rearranging gives:

$$-(5-\lambda)x_1+2x_2=0$$

$$-9x_1 + (6 - \lambda)x_2 = 0$$

This can be written using matrix notation with the identity matrix I as:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$$
, that is:

$$\left(\mathbf{A} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \mathbf{v} = 0$$

$$\left(\mathbf{A} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) \mathbf{v} = 0$$

Step 2. Solve the characteristic equation, giving us the eigenvalues (2 eigenvalues for a 2x2 system)

In this example, the coefficient determinant from equations (1) is:

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{vmatrix}$$
$$= (-5 - \lambda)(6 - \lambda) - (-9)(2)$$
$$= -30 - \lambda + \lambda^2 + 18$$
$$= \lambda^2 - \lambda - 12$$
$$= (\lambda + 3)(\lambda - 4)$$

Now this equals 0 when:

$$(\lambda + 3)(\lambda - 4) = 0$$

That is, when:

$$\lambda = -3$$
 or 4.

These two values are the eigenvalues for this particular matrix A.

Step 3. Substitute the eigenvalues into the two equations given by $A - \lambda I$

Case 1: $\lambda_1 = -3$

When $\lambda = \lambda_1 = -3$, equations (1) become:

$$[-5 - (-3)]x_1 + 2x_2 = 0$$

$$-9x_1 + [6 - (-3)]x_2 = 0$$

That is:

$$-2x_1 + 2x_2 = 0$$

$$-9x_1 + 9x_2 = 0$$
(2)

Dividing the first line of Equations (2) by -2 and the second line by -9 (not really necessary, but helps us see what is happening) gives us the identical equations:

$$x_1 - x_2 = 0$$

$$x_1 - x_2 = 0$$

Step 4. Choose a convenient value for x_1 , then find x_2

There are infinite solutions of course, where $x_1 = x_2$. We choose a convenient value for x_1 of, say 1, giving $x_2 = 1$.

Step 5. The resulting values form the corresponding eigenvectors of A (2 eigenvectors for a 2x2 system)

So the corresponding eigenvector is:

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

NOTE: We could have easily chosen $x_1 = 3$, $x_2 = 3$, or for that matter, $x_1 = -100$, $x_2 = -100$. These values will still "work" in the matrix equation.

In general, we could have written our answer as " $x_1 = t$, $x_2 = t$, for any value t", however it's usually more meaningful to choose a convenient starting value (usually for x_1), and then derive the resulting remaining value(s).

Is it correct?

We can check by substituting:

$$\mathbf{A}\mathbf{v}_1 = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -3 \\ -3 \end{bmatrix}$$
$$= -3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \lambda_1 \mathbf{v}_1$$

We have found an eigenvalue $\lambda_1=-3$ and an eigenvector $\mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}$ for the matrix $\mathbf{A}=\begin{bmatrix}-5&2\\-9&6\end{bmatrix}$ such that $\mathbf{A}\mathbf{v}_1=\lambda_1\mathbf{v}_1.$

Graphically, we can see that matrix $\mathbf{A} = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$ acting on vector $\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is equivalent to multiplying $\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ by the scalar $\lambda_1 = -3$. The result is applying a scale of -3.

Graph indicating the transform $\mathbf{y}_1 = \mathbf{A}\mathbf{v}_1$

Case 2: $\lambda_2 = 4$

When $\lambda=\lambda_2=4$, equations (1) become:

$$(-5 - (4))x_1 + 2x_2 = 0$$

$$-9x_1 + (6 - (4))x_2 = 0$$

That is:

$$-9x_1 + 2x_2 = 0$$

$$-9x_1 + 2x_2 = 0$$

We choose a convenient value for x_1 of 2, giving $x_2 = 9$. So the corresponding eigenvector is:

$$\mathbf{v}_2 = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$$

We could check this by multiplying and concluding $\begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 9 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 9 \end{bmatrix}$, that is $\mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{v}_2$.

We have found an eigenvalue $\lambda_2=4$ and an eigenvector $\mathbf{v}_2=\begin{bmatrix}2\\9\end{bmatrix}$ for the matrix $\mathbf{A}=\begin{bmatrix}-5&2\\-9&6\end{bmatrix}$ such that $\mathbf{A}\mathbf{v}_2=\lambda_2\mathbf{v}_2$.

Graphically, we can see that matrix $\mathbf{A} = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$ acting on vector $\mathbf{v_2} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$ is equivalent to multiplying $\mathbf{v_2} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$ by the scalar $\lambda_2 = 4$. The result is applying a scale of 4.

Graph indicating the transform $\mathbf{y}_2 = \mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{x}_2$