Normalização no modelo relacional

Dependências funcionais

Existe uma dependência funcional $X \rightarrow Y$ entre dois conjuntos de atributos X e Y, se uma instância de valores dos atributos de X determina ou identifica univocamente uma instância de valores dos atributos de Y.

Formas Normais

- Uma relação diz-se que está na Primeira Forma Normal (1FN) quando:
 - Não contém atributos multivalor;
 - Não contém grupos repetitivos.
- Uma relação diz-se que está na Segunda Forma Normal (2FN) quando:
 - o Está na Primeira Forma Normal (1FN);
 - o Todos os atributos não chave dependem funcionalmente da totalidade da chave.
- Uma relação diz-se que está na Terceira Forma Normal (3FN) quando:
 - o Está na Segunda Forma Normal (2FN);
 - o Todos os atributos não chave não dependem funcionalmente uns dos outros.

Ficha Prática 3 Exercício 1

NOTAS (Numero aluno, Disciplina, Semestre, Nota)

Hipótese 1: Considerando que uma mesma disciplina pode existir no 1.º e no 2.º semestre:

Exemplo:

Numero_aluno	<u>Disciplina</u>	<u>Semestre</u>	Nota
10123	Bases de Dados	1	15
10123	Álgebra	2	9
10123	Álgebra	1	13
11245	Bases de Dados	1	14

. . .

NOTAS (Numero aluno, Disciplina, Semestre, Nota)

1FN ✓, 2FN ✓, 3FN ✓

Hipótese 2: Considerando que uma disciplina está sempre associada a um semestre:

Exemplo:

	Numero_aluno	<u>Disciplina</u>	Semestre	Nota
٠	10123	Bases de Dados	1	15
	10123	Álgebra	2	13
	11245	Bases de Dados	1	14
		•	•	•

NOTAS (Numero aluno, Disciplina, Semestre, Nota)

1FN ✓, 2FN ×

Dependências funcionais existentes na tabela NOTAS:

Disciplina → Semestre

Numero aluno, Disciplina → Nota

Assim a tabela original deve ser substituída pelas seguintes que obedecem à 2FN:

DISCIPLINAS (Disciplina, Semestre)

NOTAS (Numero_aluno, Disciplina, Nota)

Disciplina referencia DISCIPLINAS

1FN ✓, 2FN ✓, 3FN ✓

Exercício 2

SOFTWARE (SoftwareHouse, Produto, Release, ReqSys, Preco, Garantia)

Exemplo:

SoftwareHouse Produto		Release	ReqSys	Preco	Garantia	
Microsoft	Windows	7	1	80	1	
Microsoft	Windows	8	1	100	1	
Microsoft	Windows	10	2	120	1	
Oracle	OracleServer	9	2	220	2	

Vamos considerar para os requisitos do sistema (ReqSys):

ReqSys	Processador	Memoria	Disco
1	Pentium II	128	10
2	Pentium IV	512	80

Assim, temos:

REQUISITOS (RegSys, Processador, Memoria, Disco)

SOFTWARE (SoftwareHouse, Produto, Release, ReqSys, Preco, Garantia)

ReqSys referencia REQUISITOS

1FN ✓, 2FN ×

Dependências funcionais na tabela SOFTWARE:

SoftwareHouse → Garantia

SoftwareHouse, Produto, Release → ReqSys, Preco

REQUISITOS (...) Nota: esta notação significa que a tabela se mantém.

GARANTIAS (SoftwareHouse, Garantia)

SOFTWARE (SoftwareHouse, Produto, Release, ReqSys, Preco)

SoftwareHouse referencia GARANTIAS

ReqSys referencia REQUISITOS

1FN ✓, 2FN ✓, 3FN ✓

Exercício 3

PRODUTO LOJA (id produto, id promocao, marca, estilo, preco)

Dependências funcionais na tabela PRODUTO_LOJA:

id_produto, id_promocao → marca, estilo, preco id produto → marca, estilo

Então:

PRODUTO_LOJA (<u>id_produto</u>, <u>id_promocao</u>, marca, estilo, preco)

1 FN ✓, 2 FN ×

Pelas dependências funcionais obtidas a partir da 2FN na tabela PRODUTO_LOJA, nomeadamente:

id_produto → marca, estilo id produto, id promocao → preco

Resulta nas seguintes tabelas:

PRODUTO (id produto, marca, estilo)

PRODUTO LOJA (<u>id_produto</u>, id_promocao, preco)

id produto referencia PRODUTO

1FN ✓, 2 FN ✓, 3 FN ✓

Exercício 4a

```
R1 (\underline{H}, \underline{I}, J, K, L, M, N, O)
```

Dependências funcionais na tabela R1:

$$H, I \rightarrow J, K, L$$

 $J \rightarrow M$
 $K \rightarrow N$
 $L \rightarrow O$

Então:

$$R1\ (\underline{H},\underline{I},J,K,L,M,N,O)$$

Pelas dependências funcionais fornecidas, resulta nas seguintes tabelas:

R11 (<u>J</u>, M)

R12 (<u>K</u>, N)

R13 (<u>L</u>, O)

 $R1(\underline{H}, \underline{I}, \underline{J}, \underline{K}, \underline{L})$

J referencia R11

K referencia R12

L referencia R13

1 FN ✓, 2 FN ✓, 3 FN ✓

Exercício 4b

$$R2(\underline{D}, \underline{O}, N, T, C, R, Y)$$

Dependências funcionais na tabela R2:

$$D, O \rightarrow N, T, C, R, Y$$

 $D \rightarrow N$

Então:

$$R2(\underline{D}, \underline{O}, N, T, C, R, Y)$$

Pelas dependências funcionais obtidas a partir da 2FN na tabela R2, nomeadamente:

$$D \rightarrow N$$

D, O \rightarrow T, C, R, Y

Resulta nas seguintes tabelas:

R21 (<u>D</u>, N)

 $R2(\underline{D}, \underline{O}, T, C, R, Y)$

D referencia R21

Exercício 5b

APOLICE (num_apolice, data, matricula, marca_viatura, cod_cliente, nome_cliente, localidade_cliente, cod_tipo, tipo, num_pagamento, data_pagamento, valor_pagamento, estado_pagamento)

Exemplo:

NA	D	M	MV	CC	NC	LC	CT	T	NP	DP	VP	EP
1	20.01.2004	01-01-AA	X	1	AA	VR	1	TR	1	20.01.2004	50	P
1	20.01.2004	01-01-AA	X	1	AA	VR	1	TR	2	20.01.2005	45	NP
2	01.01.1998	02-02-BB	Z	2	BB	PT	2	T	3	01.01.1998	10	P
2	01.01.1998	02-02-BB	Z	2	BB	PT	2	T	4	01.01.1999	10	P
2	01.01.1998	02-02-BB	Z	2	BB	PT	2	T	5	01.01.2000	9	P
2	01.01.1998	02-02-BB	Z	2	BB	PT	2	T	6	01.01.2001	8	P

Legenda: TR – Todos os Riscos; T – Terceiros; P – Pago; NP – Não Pago.

De forma simplificada temos a seguinte tabela:

APOLICE (NA, D, M, MV, CC, NC, LC, CT, T, NP, DP, VP, EP)

1 FN 🗴

Analisando o exemplo é possível definir vários linhas identificadas pelo NP referentes a cada apólices com o mesmo NA. Assim, podemos decompor a tabela APOLICE nas seguintes tabelas:

APOLICE (NA, D, M, MV, CC, NC, LC, CT, T)

LINHAS_APOLICE (NA, NP, DP, VP, EP)

NA referencia APOLICE

1 FN ✓,2 FN ✓,3 FN ×

Dependências funcionais na tabela APOLICE:

 $M \rightarrow MV$

 $CC \rightarrow NC, LC$

 $CT \rightarrow T$

 $NA \rightarrow D, M, CC, CT$

Então resulta nas seguintes tabelas:

VEICULO (M, MV)

CLIENTE (<u>CC</u>, NC, LC)

TIPO (CT, T)

APOLICE (NA, D, M, CC, CT)

M referencia VEICULO

CC referencia CLIENTE

CT referencia TIPO

LINHAS APOLICE (...)

1 FN ✓,2 FN ✓,3 FN ✓