

## Analyse Mathématique

Author: CatMono

**Date:** July, 2025

Version: 0.1

## **Contents**

| Preface |                                                            | iii |
|---------|------------------------------------------------------------|-----|
| Chapter | 1 Preliminaries                                            | 1   |
| 1.1     | Trigonometric Formulas                                     | 1   |
| Chapter | 2 Limits of Sequences and Continuity of Real Number System | 3   |
| 2.1     | Convergent Sequences                                       | 3   |
| 2.2     | Indeterminate Form                                         | 3   |
| 2.3     | Subsequences                                               | 4   |
| 2.4     | Completeness of The Real Numbers                           | 4   |
| 2.5     | Iterative Sequences                                        | 5   |
| Chapter | 3 Limits and Continuity of Functions                       | 6   |
| 3.1     | Limits of Functions                                        | 6   |
| 3.2     | Continuous Functions                                       | 6   |
| 3.3     | Infinitesimal and Infinite Quantities                      | 6   |
| 3.4     | Continuous Functions on Closed Intervals                   | 6   |
| 3.5     | Period Three Implies Chaos                                 | 7   |
| 3.6     | Functional Equations                                       | 7   |
| Chapter | 4 Differential                                             | 8   |
| 4.1     | Differential and Derivative                                | 8   |
| 4.2     | Higher-Order Derivatives                                   | 9   |
| 4.3     | Differential Mean Value Theorems                           | 9   |
| 4.4     | Theorems and Applications concerning Derivatives           | 9   |
| 4.5     | Taylor Theorem                                             | 9   |
| 4.6     | Applications of Taylor Theorem                             | 9   |
| Chapter | 5 Indefinite Integral                                      | 10  |
| 5.1     | Two Common Integration Methods                             | 10  |
| Chapter | 6 Definite Integral                                        | 11  |
| 6.1     | Riemann Integral                                           | 11  |
| 6.2     | Integrability Criteria                                     | 12  |
| 6.3     | Properties of Definite Integrals                           | 13  |
| 6.4     | Fundamental Theorem of Calculus                            | 13  |
| 6.5     | Calculation of Definite Integrals                          | 13  |
| 6.6     | Integral Inequalities                                      | 13  |
| 6.7     | Applications of Definite Integrals                         | 13  |
| Chapter | 7 Improper Integral                                        | 14  |

| Chapter   | 8 Numerical Series                                   | 15 |
|-----------|------------------------------------------------------|----|
| 8.1       | Convergence of Numerical Series                      | 15 |
| 8.2       | Positive Term Series                                 | 15 |
| 8.3       | General Term Series                                  | 15 |
| Chapter   | 9 Series of Functions                                | 16 |
| Chapter : | 10 Power Series                                      | 17 |
| Chapter : | 11 Limits and Continuity in Euclidean Spaces         | 18 |
| 11.1      | Continuous Mappings                                  | 18 |
| Chapter:  | 12 Multi-variable Differential Calculus              | 19 |
| 12.1      | Directional Derivatives and Total Differential       | 19 |
| 12.2      | Differential of Vector-Valued Functions              | 24 |
| 12.3      | Derivatives of Composite Mappings (Chain Rule)       | 25 |
| 12.4      | Mean Value Theorem and Taylor's Formula              | 25 |
| 12.5      | Implicit Function Theorem                            | 27 |
| 12.6      | Applications of Multi-Variable Differential Calculus | 29 |
| Chapter:  | 13 Multiple Integrals                                | 31 |

## **Preface**

This is the preface of the book...

## **Chapter 1 Preliminaries**

## 1.1 Trigonometric Formulas

#### **Product-to-Sum Formulas:**

$$\sin \alpha \cos \beta = \frac{1}{2} \left[ \sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[ \sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[ \cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

#### Sum and Difference Formulas:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

#### **Sum-to-Product Formulas:**

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

#### **Double Angle Formulas:**

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

#### Half Angle Formulas:

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$$

#### **Power-Reducing Formulas:**

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

#### **Angle Decomposition Formulas:**

$$\sin^2 \alpha - \sin^2 \beta = \sin(\alpha + \beta)\sin(\alpha - \beta)$$
$$\cos^2 \alpha - \sin^2 \beta = \cos(\alpha + \beta)\cos(\alpha - \beta)$$



#### **Z**Remark

- On the gray triangle, the sum of the squares of the two numbers above is equal to the square of the number below, for instance,  $\tan^2 x + 1 = \sec^2 x$
- The three trigonometric functions in the clockwise direction have the following properties:  $\tan x = \frac{\sin x}{\cos x}$ , etc.

## Chapter 2 Limits of Sequences and Continuity of Real Number System

### 2.1 Convergent Sequences

- ¶ Convergent Sequences
- ¶ Properties of Convergent Sequences
- ¶ Cauchy Proposition and Fitting Method

#### Proposition 2.1 (Cauchy Proposition)

Let  $\lim_{n\to\infty} x_n = l$ , then:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = l.$$



- 1. In the proposition, l can be  $+\infty$  or  $-\infty$ .
- 2. Let  $\lim_{n\to\infty} x_n = l$ , then:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = \lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = \lim_{n \to \infty} \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = l.$$

It can be proved directly by Stolz theorem 2.1. On top of that, it can also be proved by the **fitting method**.



Remark To prove  $\lim_{n\to\infty} x_n = A$ , the key is to show that  $|x_n - A|$  can be arbitrarily small. For this purpose, it is generally recommended to simplify the expression of  $x_n$  as much as possible. However, in some cases, A can also be transformed into a form similar to  $x_n$ . This method is called the fitting method. The core idea behind the method of fitting is to appropriately divide into units of 1 for analysis.

#### 2.2 Indeterminate Form

- ¶ Infinitely Large Quantities and Infinitesimal Quantities
- ¶ Indeterminate Forms

#### Theorem 2.1 (Stolz-Cesàro theorem

**Type**  $\frac{0}{0}$  Let  $\{a_n\}, \{b_n\}$  be two infinitesimal sequences, where  $\{a_n\}$  is also a strictly monotonic decreasing sequence. If

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l\ (\text{finite or }\pm\infty),$$

then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l.$$

**Type**  $\frac{*}{\infty}$  Let  $\{a_n\}$  be a strictly monotonic increasing sequence of divergent large quantities. If

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l\ (\text{finite or }\pm\infty),$$

then

$$\lim_{n\to\infty}\frac{a_n}{b_n}=l.$$



#### Note

- 1. The inverse proposition of Stolz's Theorem does not hold.
- 2. If  $a_1$  is an undefined infinite quantity  $\infty$ , Stolz Theorem does not hold.

#### Theorem 2.2 (Silverman-Toeplitz Theorem)

Let

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ \vdots \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \vdots \end{bmatrix},$$

where the infinite triangular matrix satisfies:

- 1.  $\forall j, \lim_{n\to\infty} a_{nj} = 0$ . (Every column sequence converges to 0.)
- 2.  $\sup_{i\in\mathbb{N}}\sum_{j=1}^{i}|a_{ij}|<\infty.$  (The absolute row sums are bounded.)

And  $\lim_{n\to\infty} x_n = l$ . We denote  $y_n$  as the weighted sum sequence:  $y_n = \sum_{j=1}^n a_{nj}x_j$ . Then the following results hold:

- 1. If l = 0, then  $\lim_{n \to \infty} y_n = 0$ .
- 2. If  $l \neq 0$  and  $\lim_{n \to \infty} \sum_{j=1}^n a_{ij} = 1$ , then  $\lim_{n \to \infty} y_n = l$ .



## 2.3 Subsequences

- ¶ Subsequences
- ¶ Upper Limits and Lower Limits

## 2.4 Completeness of The Real Numbers

- ¶ Dedkind Completeness
- $\P$  Least Upper Bound Property
- ¶ Monotone Convergence Theorem
- $\P$  Bolzano-Weierstrass Theorem
- ¶ Nested Interval Theorem
- ¶ Cauchy Completeness

#### Definition 2.1 (Cauchy Sequence)

A sequence  $\{x_n\}$  is called a **Cauchy sequence** if for any  $\varepsilon > 0$ , there exists a positive integer N such that when m, n > N,

$$|x_n - x_m| < \varepsilon$$
.



#### Theorem 2.3 (Cauchy Convergence Criterion for Sequences,

A sequence  $\{x_n\}$  converges if and only if it is a Cauchy sequence.

### $\Diamond$

#### $\P$ Heine-Borel Theorem

## 2.5 Iterative Sequences

Formally,  $x_0$  is a **fixed point** of the function f if  $f(x_0) = x_0$ .

#### Theorem 2.4 (Banach Fixed-Point Theorem (Contraction Mapping Theorem)

There exists a contraction mapping (in 3.2) f on an interval I, which admits a unique fixed point  $x^* \in I$ . Furthermore,  $x^*$  can be found as follows: start with an arbitrary point  $x_0 \in I$  and define the iterative sequence  $x_{n+1} = f(x_n)$  for  $n = 0, 1, 2, \cdots$ . Then  $\lim_{n \to \infty} x_n = x^*$ .

**FRemark** The following inequalities are equivalent and describe the speed of convergence:

$$|x_n - x^*| \le \frac{L^n}{1 - L} |x_1 - x_0|,$$
  
 $|x_{n+1} - x^*| \le \frac{L}{1 - L} |x_{n+1} - x_n|,$   
 $|x_{n+1} - x^*| \le L |x_n - x^*|.$ 

Any such value of L < 1 is the Lipschitz constant for f, and the smallest one is sometimes called **the best** Lipschitz constant of L.

## **Chapter 3 Limits and Continuity of Functions**

### 3.1 Limits of Functions

- ¶ Definition of Limit
- ¶ Limits of Functions and Sequences

#### Theorem 3.1 (Heine Theorem

Let f be a function defined on a deleted neighborhood  $\mathring{U}(x_0)$  of  $x_0$ . The following two statements are equivalent:

- 1.  $\lim_{x \to x_0} f(x) = A$ .
- 2. For any sequence  $\{x_n\} \subset \mathring{U}(x_0)$  with  $\lim_{n\to\infty} x_n = x_0$ , we have  $\lim_{n\to\infty} f(x_n) = A$  for the sequence  $\{f(x_n)\}$ .

### 3.2 Continuous Functions

## 3.3 Infinitesimal and Infinite Quantities

### 3.4 Continuous Functions on Closed Intervals

¶ Concerning Theorems

Theorem 3.2 (The Bolzano-Cauchy Intermediate-Value Theorem)

Theorem 3.3 (2010 Found Experience Interioring)

¶ Uniform Continuity and Lipschitz Continuity

Definition 3.1 (Uniform Continuity)

Theorem 2 1 (2) will arm Continuity Theorem

Theorem 3.5 (Cantor's Theorem

#### Definition 3.2 (Lipschitz Continuity)

If there exists a constant L>0 such that for any  $x_1,x_2\in I$ ,

$$|f(x_1) - f(x_2)| \le L |x_1 - x_2|,$$

then f is called **Lipschitz continuous** on I.

Specially, if L < 1, then f is called a **contraction mapping** on I.

- If f is Lipschitz continuous on I, then f is uniformly continuous on I. ( $\forall \varepsilon>0$ , just let  $\delta=\frac{\varepsilon}{L}$ )
- $\bullet\,$  If f is uniformly continuous on I, then f is continuous on I.
- The converse of the above two statements does not hold.

## 3.5 Period Three Implies Chaos

## 3.6 Functional Equations

## **Chapter 4 Differential**

## 4.1 Differential and Derivative

#### Basic Differential Rules and Formulas

|                    | Derivative Rules                                    | Differential Rules                                  |
|--------------------|-----------------------------------------------------|-----------------------------------------------------|
| Linear Combination | $(c_1f + c_2g)' = c_1f' + c_2g'$                    | $d(c_1f + c_2g) = c_1df + c_2dg$                    |
| Product Rule       | (fg)' = f'g + fg'                                   | d(fg) = gdf + fdg                                   |
| Quotient Rule      | $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ | $d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$ |
| Inverse Function   | $[f^{-1}(y)]' = \frac{1}{f'(x)}$                    | $dx = \frac{dy}{f'(x)} = [f^{-1}(y)]'dy$            |
| Chain Rule         | [f(g(x))]' = f'(u)g'(x)                             | d[f(g(x))] = f'(u)g'(x)dx                           |

| Derivative                                                                   | Differential                                                                  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (C)' = 0                                                                     | $d(C) = 0 \cdot dx = 0$                                                       |
| $(x^{\alpha})' = \alpha x^{\alpha - 1}$                                      | $d(x^{\alpha}) = \alpha x^{\alpha - 1} dx$                                    |
| $(\sin x)' = \cos x$                                                         | $d(\sin x) = \cos x dx$                                                       |
| $(\cos x)' = -\sin x$                                                        | $d(\cos x) = -\sin x dx$                                                      |
| $(\tan x)' = \sec^2 x$                                                       | $d(\tan x) = \sec^2 x dx$                                                     |
| $(\cot x)' = -\csc^2 x$                                                      | $d(\cot x) = -\csc^2 x dx$                                                    |
| $(\sec x)' = \tan x \sec x$                                                  | $d(\sec x) = \tan x \sec x dx$                                                |
| $(\csc x)' = -\cot x \csc x$                                                 | $d(\csc x) = -\cot x \csc x dx$                                               |
| $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$                                      | $d(\arcsin x) = \frac{1}{\sqrt{1-x^2}} dx$                                    |
| $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$                                     | $d(\arccos x) = -\frac{1}{\sqrt{1-x^2}} dx$                                   |
| $(\arctan x)' = \frac{1}{1+x^2}$                                             | $d(\arctan x) = \frac{1}{1+x^2} dx$                                           |
| $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$                              | $d(\operatorname{arccot} x) = -\frac{1}{1+x^2} dx$                            |
| $(a^x)' = \ln a \cdot a^x, (e^x)' = e^x$                                     | $d(a^x) = \ln a \cdot a^x dx, d(e^x) = e^x dx$                                |
| $(\log_a x)' = \frac{1}{x \ln a}, (\ln x)' = \frac{1}{x}$                    | $d(\log_a x) = \frac{1}{x \ln a} dx, d(\ln x) = \frac{1}{x} dx$               |
| $(\operatorname{sh} x)' = \operatorname{ch} x$                               | $d(\operatorname{sh} x) = \operatorname{ch} x dx$                             |
| $(\operatorname{ch} x)' = \operatorname{sh} x$                               | $d(\operatorname{ch} x) = \operatorname{sh} x dx$                             |
| $(\operatorname{th} x)' = \operatorname{sech}^2 x$                           | $d(\operatorname{th} x) = \operatorname{sech}^2 x dx$                         |
| $(\operatorname{cth} x)' = -\operatorname{csch}^2 x$                         | $d(\operatorname{cth} x) = -\operatorname{csch}^2 x dx$                       |
| $(\operatorname{arcsh} x)' = \frac{1}{\sqrt{1+x^2}}$                         | $d(\operatorname{arcsh} x) = \frac{1}{\sqrt{1+x^2}} dx$                       |
| $(\operatorname{arcch} x)' = \frac{1}{\sqrt{x^2 - 1}}$                       | $d(\operatorname{arcch} x) = \frac{1}{\sqrt{x^2 - 1}} dx$                     |
| $(\operatorname{arcth} x)' = (\operatorname{arccth} x)' = \frac{1}{1 - x^2}$ | $d(\operatorname{arcth} x) = d(\operatorname{arccth} x) = \frac{1}{1-x^2} dx$ |
| $\ln(x + \sqrt{x^2 + a^2})' = \frac{1}{\sqrt{x^2 + a^2}}$                    | $d[\ln(x + \sqrt{x^2 + a^2})] = \frac{dx}{\sqrt{x^2 + a^2}}$                  |

## 4.2 Higher-Order Derivatives

#### 4.3 Differential Mean Value Theorems

#### Definition 4.1 (Extremum)

Let f(x) is defined on (a,b),  $x_0 \in (a,b)$ . If there exists  $U(x_0,\delta) \subset (a,b)$  such that  $f(x) \leqslant f(x_0)$  on it, then  $x_0$  is called a local maximum point of f, and  $f(x_0)$  is referred to as the corresponding local maximum value. The definition of the minimum value is analogous.

### \*

#### Lemma 4.1 (Fermat's Lemma)

If f is differentiable at  $x_0$  which is a local extremum, then  $f'(x_0) = 0$ .

#### Theorem 4.1 (Rolle's Theorem

If  $f \in C[a,b]$ ,  $f \in D(a,b)$  and f(a) = f(b), then there exists  $\xi \in (a,b)$  such that  $f'(\xi) = 0$ . Enhanced Version: If  $f \in D(a,b)$  (finite or infinite interval), and  $\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x)$ , then there exists  $\xi \in (a,b)$  such that  $f'(\xi) = 0$ .

#### Theorem 4.2 (Lagrange's Mean Value Theorem,

If  $f \in C[a,b], f \in D(a,b)$ , then there exists  $\xi \in (a,b)$  such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$



#### Theorem 4.3 (Cauchy's Mean Value Theorem,

If  $f,g\in C[a,b], f,g\in D(a,b)$  and  $g'(x)\neq 0$  for all  $x\in (a,b)$ , then there exists  $\xi\in (a,b)$  such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$



## 4.4 Theorems and Applications concerning Derivatives

Theorem 4.4 (Darboux's Intermediate Value Theorem for Derivatives)

If  $f(x) \in D[a,b]$ , and  $f'_+(a) \cdot f'_-(b) < 0$ , then there at least exists  $\xi \in (a,b)$  such that  $f'(\xi) = 0$ .



Theorem 4.5 (Theorem on the Limit of Derivatives,

If  $f(x) \in C(U(x_0))$ ,  $\mathring{D}(U(x_0))$ , and  $\lim_{x \to x_0} f'(x) = A$ , then f is differentiable at  $x_0$  and  $f'(x_0) = A$ .

**Z**Remark In fact,  $\lim_{x\to x_0} f'(x) = A$  has already been shown to imply that  $f\in \mathring{D}(U(x_0))$ .

### 4.5 Taylor Theorem

## 4.6 Applications of Taylor Theorem

## **Chapter 5** Indefinite Integral

## **5.1 Two Common Integration Methods**

#### $\P$ Integration Methods

#### Definition 5.1 (Integration by Parts)

Let u(x) and v(x) be two differentiable functions, and at least one of them has an antiderivative. Then the integration by parts formula states that:

$$\int u(x) dv(x) = u(x)v(x) - \int v(x) du(x).$$

#### ¶ Basic Integration Formulas

| Integral                                        | Result                                                      |
|-------------------------------------------------|-------------------------------------------------------------|
| $\int a  \mathrm{d}x$                           | ax + C (a is constant)                                      |
| $\int x^n  \mathrm{d}x$                         | $\frac{x^{n+1}}{n+1} + C  (n \neq -1)$                      |
| $\int \frac{1}{x} dx$                           | $\ln x  + C$                                                |
| $\int e^x  \mathrm{d}x$                         | $e^x + C$                                                   |
| $\int a^x  \mathrm{d}x$                         | $\frac{a^x}{\ln a} + C  (a > 0, a \neq 1)$                  |
| $\int \sin x  \mathrm{d}x$                      | $-\cos x + C$                                               |
| $\int \cos x  \mathrm{d}x$                      | $\sin x + C$                                                |
| $\int \tan x  \mathrm{d}x$                      | $-\ln \cos x  + C$                                          |
| $\int \cot x  \mathrm{d}x$                      | $\ln \sin x  + C$                                           |
| $\int \sec x  \mathrm{d}x$                      | $\ln \sec x + \tan x  + C$                                  |
| $\int \csc x  \mathrm{d}x$                      | $\ln \csc x - \cot x  + C$                                  |
| $\int \sec x \tan x  \mathrm{d}x$               | $\sec x + C$                                                |
| $\int \csc x \cot x  \mathrm{d}x$               | $-\csc x + C$                                               |
| $\int \sec^2 x  \mathrm{d}x$                    | $\tan x + C$                                                |
| $\int \csc^2 x  \mathrm{d}x$                    | $-\cot x + C$                                               |
| $\int \frac{1}{\sqrt{a^2 - x^2}}  \mathrm{d}x$  | $\arcsin\left(\frac{x}{a}\right) + C$                       |
| $\int \frac{-1}{\sqrt{a^2 - x^2}}  \mathrm{d}x$ | $\arccos\left(\frac{x}{a}\right) + C$                       |
| $\int \frac{1}{a^2 + x^2}  \mathrm{d}x$         | $\arctan\left(\frac{x}{a}\right) + C$                       |
| $\int \frac{-1}{a^2 + x^2}  \mathrm{d}x$        | $\operatorname{arccot}\left(\frac{x}{a}\right) + C$         |
| $\int \frac{1}{\sqrt{x^2 + a^2}}  \mathrm{d}x$  | $\ln x + \sqrt{x^2 + a^2}  + C$                             |
| $\int \frac{1}{\sqrt{x^2 - a^2}}  \mathrm{d}x$  | $\ln x + \sqrt{x^2 - a^2}  + C  (x > a \text{ or } x < -a)$ |
| $\int \sinh x  \mathrm{d}x$                     | $\cosh x + C$                                               |
| $\int \cosh x  \mathrm{d}x$                     | $\sinh x + C$                                               |

## **Chapter 6 Definite Integral**

## 6.1 Riemann Integral

#### ¶ Riemann Integral

#### Definition 6.1 (Riemann Integral)

Let f(x) be a bounded function defined on [a,b]. Take any set of division points  $\{x_i\}_{i=0}^n$  on [a,b] to form a partition  $P: a = x_0 < x_1 < \cdots < x_n = b$ , and choose arbitrary points  $\xi_i \in [x_{i-1}, x_i]$ . Denote the length of the sub-interval  $[x_{i-1}, x_i]$  as  $\Delta x_i = x_i - x_{i-1}$ , and let  $\lambda = \max_{1 \le i \le n} (\Delta x_i)$ . If the limit

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

exists as  $\lambda \to 0$ , and the limit is independent of the partition P and the choice of  $\xi_i$ , then f(x) is said to be Riemann integrable on [a, b].

The summation

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

is called the Riemann sum, and its limit I is called the definite integral of f(x) on [a, b], denoted as:

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x,$$

where a and b are called the lower and upper limits of the definite integral, respectively.

Alternatively, it can also be expressed as:

$$\exists I, \forall \varepsilon > 0, \exists \delta > 0, \text{s.t.} \forall P(\lambda = \max_{1 \leqslant i \leqslant n} (\Delta x_i) < \delta), \forall \{\xi_i\} : \left| \sum_{i=1}^n f(\xi_i) \Delta x_i - I \right| < \varepsilon.$$

Then f(x) is said to be Riemann integrable on [a, b], and I is the definite integral of f(x) on [a, b].

**Frank** Partition  $\rightarrow$  Intermediate points  $\rightarrow$  Summation  $\rightarrow$  Take the limit.

#### ¶ Darboux Sum

#### Definition 6.2 (Darboux Sum)

Let the supremum and infimum of f(x) on [a, b] be M and m, respectively. Clearly,  $m \le f(x) \le M$ . Let the supremum and infimum of f(x) on  $[x_{i-1}, x_i]$  be  $M_i$  and  $m_i$  (i = 1, 2, ..., n), respectively, i.e.,

$$M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}, \quad m_i = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}.$$

After fixing the partition P, define the sums:

$$\bar{S}(P) = \sum_{i=1}^{n} M_i \Delta x_i, \quad \underline{S}(P) = \sum_{i=1}^{n} m_i \Delta x_i,$$

which are called the Darboux upper sum and Darboux lower sum corresponding to the partition P, respectively.

#### Property

- 1.  $\underline{S}(P) \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \bar{S}(P)$ .
- 2. If a new partition is formed by adding division points to the original partition, the upper sum does not increase, and the lower sum does not decrease.

3. Let  $\bar{S}$  denote the set of Darboux upper sums and  $\underline{S}$  denote the set of Darboux lower sums. For any  $\bar{S}(P_1) \in \bar{S}$ ,  $\underline{S}(P_2) \in \underline{S}$ , it always holds that:

$$m(b-a) \leqslant \underline{S}(P_2) \leqslant \overline{S}(P_1) \leqslant M(b-a).$$

- 4. Let  $L = \inf\{\bar{S}(P) \mid \bar{S}(P) \in \bar{S}\}$ ,  $l = \sup\{\underline{S}(P) \mid \underline{S}(P) \in \underline{S}\}$ , which are called the upper integral and lower integral, respectively. It always holds that:  $l \leq L$ .
- 5. **Darboux's Theorem**: For any  $f(x) \in B[a, b]$ , it always holds that:

$$\lim_{\lambda \to 0} \bar{S}(P) = L, \quad \lim_{\lambda \to 0} \underline{S}(P) = l.$$

¶ Riemann-Stieltjes Integral

#### Definition 6.3 (Riemann-Stieltjes Integral)

Let  $\alpha$  be a bounded, monotonically increasing function on [a,b]. For every partition P of [a,b], let  $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$  (clearly  $\Delta \alpha_i \geqslant 0$ ). For a bounded real function f(x) on [a,b], define the Stieltjes upper sum and lower sum as:

$$\bar{S}(P,\alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i, \quad \underline{S}(P,\alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i,$$

and define the upper and lower integrals as:

$$L = \inf\{\bar{S}(P,\alpha) \mid \bar{S}(P,\alpha) \in \bar{S}\}, \quad l = \sup\{\underline{S}(P,\alpha) \mid \underline{S}(P,\alpha) \in \underline{S}\},$$

where  $\bar{S}, \underline{S}$  are the sets of Stieltjes upper and lower sums respectively.

If L = l, then:

$$\int_{a}^{b} f(x) \, d\alpha(x) = L = l,$$

and f(x) is said to be **Riemann-Stieltjes integrable** on [a,b] with respect to  $\alpha$ , or simply Stieltjes integrable.



When  $\alpha(x)=x$ , this reduces to the Riemann integral. However, in general,  $\alpha(x)$  does not even need to be continuous.

The properties of Darboux sums also apply to Stieltjes sums.

### 6.2 Integrability Criteria

 $\P$  Common Integrability Criteria

#### Theorem 6.1 (Integrability Criterion

A bounded function f(x) is Riemann integrable on [a, b] if and only if:

• The upper and lower integrals are equal, i.e.,

$$\forall P(\lambda = \max_{1 \le i \le n} (\Delta x_i) < \delta) : \lim_{\lambda \to 0} \bar{S}(P) = L = l = \lim_{\lambda \to 0} \underline{S}(P).$$

• Let  $\omega_i = M_i - m_i$  be the oscillation of f(x) on  $[x_{i-1}, x_i]$ . Then: The limit of the sum of oscillations is zero, i.e.,

$$\forall P(\lambda = \max_{1 \le i \le n} (\Delta x_i) < \delta) : \lim_{\lambda \to 0} \sum_{i=1}^{n} \omega_i \Delta x_i = 0.$$

**Corollary 1** Continuous functions on closed intervals are necessarily integrable.

**Corollary 2** Monotonic functions on closed intervals are necessarily integrable.

• For all  $\varepsilon > 0$ , there exists a partition P such that:

$$\sum_{i=1}^{n} \omega_i \Delta x_i < \varepsilon.$$

**Corollary 1** The total length of intervals where oscillation  $\omega$  cannot be arbitrarily small can be made arbitrarily small, i.e.,

$$\forall \varepsilon, \eta > 0, \exists P, \text{s.t.} \sum_{\omega \geqslant \eta} \Delta x_i < \varepsilon.$$

**Corollary 2** Bounded functions with only finitely many discontinuities on closed intervals are necessarily integrable.



¶ Lesbesgue's Theorem

Theorem 6.2 (Lesbesgue's Theorem)



## **6.3 Properties of Definite Integrals**

- $\P$  Properties of Riemann Integrals
- ¶ Integrability of Composite Functions

### 6.4 Fundamental Theorem of Calculus

- ¶ Newton-Leibniz Formula
- ¶ Riemann Lemma
- $\P$  Common Questions concerning Integrals
  - **6.5 Calculation of Definite Integrals**
  - 6.6 Integral Inequalities
  - **6.7 Applications of Definite Integrals**

## **Chapter 7** Improper Integral

## **Chapter 8 Numerical Series**

## 8.1 Convergence of Numerical Series

### 8.2 Positive Term Series

### 8.3 General Term Series

- ¶ Cauchy Convergence Criterion for Series
- ¶ Alternative Series
- ¶ Abel-Dirichlet Test

#### Theorem 8.1 (Abel Transform (Discrete Integration by Parts/Summation by Parts)

Let  $\{a_n\}, \{b_n\}$  be two sequences, then for any  $n \in \mathbb{N}^+$ ,

$$\sum_{k=1}^{n} a_k b_k = a_n B_n + \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k,$$

where  $B_n = \sum_{k=1}^n b_k$ .



## **Chapter 9 Series of Functions**

## **Chapter 10 Power Series**

## **Chapter 11 Limits and Continuity in Euclidean Spaces**

## 11.1 Continuous Mappings

- Continuous Mappings on Compact Sets
- Continuous Mappings on Connected Sets

#### Definition 11.1 (Connected Set)

Let S be a set of points in  $\mathbb{R}^n$ . If a continuous mapping

$$\gamma:[0,1]\to\mathbb{R}^n$$

satisfies that the range of  $\gamma([0,1])$  lies entirely within S, we call  $\gamma$  a path in S, where  $\gamma(0)$  and  $\gamma(1)$  are referred to as the starting point and ending point of the path, respectively.

If for any two points  $\mathbf{x}, \mathbf{y} \in S$ , there exists a path in S with  $\mathbf{x}$  as the starting point and  $\mathbf{y}$  as the ending point, Sis called path-connected, or equivalently, S is called a connected set.

A connected open set is called an (open) region. The closure of an (open) region is referred to as a closed region.



**Zerophics** Intuitively, this means that any two points in S can be connected by a curve lying entirely within S. Clearly, a connected subset of  $\mathbb{R}$  is an interval, and a connected subset of  $\mathbb{R}$  is compact if and only if it is a closed interval.

## **Chapter 12 Multi-variable Differential Calculus**

#### 12.1 Directional Derivatives and Total Differential

#### Directional Derivative ¶

#### Definition 12.1 (Directional Derivative)

Let  $U \subset \mathbb{R}^n$  be an open set,  $f: U \to \mathbb{R}^1$ , **e** is a unit vector in  $\mathbb{R}^n$ ,  $\mathbf{x}^0 \in U$ . Define

$$u(t) = f(\mathbf{x}^0 + t\mathbf{e}).$$

If the derivative of u at t = 0

$$u'(0) = \lim_{t \to 0} \frac{u(t) - u(0)}{t} = \lim_{t \to 0} \frac{f(\mathbf{x}^0 + t\mathbf{e}) - f(\mathbf{x}^0)}{t}$$

exists and is finite, it is called the directional derivative of f at  $\mathbf{x}^0$  in the direction e, denoted by  $\frac{\partial f}{\partial \mathbf{e}}(\mathbf{x}^0)$ . It is the rate of change of f at  $\mathbf{x}^0$  in the direction  $\mathbf{e}$ .

Consider the following set of unit coordinate vectors:  $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$ . Let  $\mathbf{e}_i = (0, 0, \cdots, 0, 1, 0, \cdots, 0)$ denote the standard orthonormal basis in  $\mathbb{R}^n$ , where the 1 appears in the *i*-th position. That is,

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

For a function f, the directional derivative of f at the point  $\mathbf{x}_0$  in the direction of  $\mathbf{e}_i$  is called the ith first-order **partial derivative** of f at  $\mathbf{x}^0$ , denoted by

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^0)$$
 or  $D_i f(\mathbf{x}^0)$  or  $f_{x_i}(\mathbf{x}^0)$   $(i = 1, 2, \dots, n)$ .

 $\mathrm{D}_i = \frac{\partial}{\partial x_i}$  is called the ith partial differential operator ( $i=1,2,\cdots,n$ ). Let  $\mathbf{e}_i = \sum_{i=0}^n \mathbf{e}_i \cos \alpha$  be a unit vector, where  $\sum_{i=0}^n \cos^2 \alpha = 1$ . If  $\frac{\partial f}{\partial x_i}$  is continuous at  $\mathbf{x}^0$ , then the directional derivative of f at  $\mathbf{x}^0$  along the direction  $\mathbf{e}$  is given by:

$$\frac{\partial f}{\partial \mathbf{e}}(\mathbf{x}^0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}^0) \cos \alpha_i.$$

This is the formula for expressing a directional derivative using partial derivatives.

 $ilde{Y}$  Note Let  ${f e}$  be a direction, then  $\|-{f e}\|=\|{f e}\|=1$ , which implies that  $-{f e}$  is also a direction. At this point, we have:

$$\frac{\partial f}{\partial (-\mathbf{e})}(\mathbf{x}^0) = -\frac{\partial f}{\partial \mathbf{e}}(\mathbf{x}^0).$$

#### Definition 12.2 (Jacobian Matrix (Gradient))

Let

$$Jf(\mathbf{x}) = (D_1 f(\mathbf{x}), D_2 f(\mathbf{x}), \dots, D_n f(\mathbf{x})),$$

which is called the **Jacobian matrix** of the function f at the point  $\mathbf{x}$ , (a 1  $\times$  n matrix) whose counterpart is the first-order derivative of a single-variable function.

Henceforth, we represent the point  $\mathbf{x}$  in  $\mathbb{R}^n$  and its increments  $\mathbf{h}$  as column vectors. In this way, the differential of the function can be expressed using matrix multiplication as follows:

$$df(\mathbf{x}^0)(\mathbf{\Delta}\mathbf{x}) = Jf(\mathbf{x}^0)\mathbf{\Delta}\mathbf{x}.$$

The Jacobian matrix of the function f is also frequently denoted as grad f (or  $\nabla f$ ), that is,

$$\operatorname{grad} f(\mathbf{x}) = Jf(\mathbf{x}),$$

which is called the **gradient** of the scalar function f.



- **Note** Let  $U \subset \mathbb{R}^n$  be an open set, and  $\mathbf{f}: U \to \mathbb{R}^m$  be a  $C^k$  mapping:
  - k = 0, **f** is a continuous mapping;
  - $0 < k < +\infty$ ,  $f_i$  has continuous partial derivatives up to order k,  $i = 1, 2, \ldots, m$ ;
  - $k = +\infty$ ,  $f_i$  has continuous partial derivatives of all orders,  $i = 1, 2, \ldots, m$ ;
  - $k = \omega$ ,  $f_i$  is really analytic, i.e., in the neighborhood of any point  $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in U$ ,  $f_i$  can be expanded into a convergent (n-dimensional) power series,  $i = 1, 2, \dots, m$ .

Let  $C^k(U, \mathbb{R}^m)$  denote the totality of  $C^k$  mappings from U to  $\mathbb{R}^m$ .

#### ¶ Total Differential

#### Definition 12.3 (Total Differential)

Let  $U \subset \mathbb{R}^n$  be an open set,  $f: U \to \mathbb{R}^1$ ,  $\mathbf{x}^0 \in U$ ,  $\Delta \mathbf{x} = (\Delta x_1, \Delta x_2, \cdots, \Delta x_n) \in \mathbb{R}^n$ . If

$$f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) = \sum_{i=1}^n A_i \Delta x_i + o(\|\Delta \mathbf{x}\|) \qquad (\|\Delta \mathbf{x}\| \to 0),$$

where  $A_1, A_2, \ldots, A_n$  are constants independent of  $\Delta \mathbf{x}$ , then the function f is said to be **differentiable** at the point  $\mathbf{x}^0$ , and the linear main part  $\sum_{i=1}^n A_i \Delta x_i$  is called the **total differential** of f at  $\mathbf{x}^0$ , denoted as

$$df(\mathbf{x}^0)(\mathbf{\Delta}\mathbf{x}) = \sum_{i=1}^n A_i \Delta x_i.$$

If f is differentiable at every point in the open set U, then f is called a differentiable function on U.



#### Theorem 12.1 (Conditions of Differentiability)

**Necessary Condition** If an n-variable function f is differentiable at the point  $\mathbf{x}_0$ , then f is continuous at  $\mathbf{x}^0$  and possesses first-order partial derivatives  $\frac{\partial f}{\partial x_i}(\mathbf{x}^0)$  at  $\mathbf{x}^0$  for  $i=1,2,\ldots,n$ , and

$$\mathbf{A} = (A_1, A_2, \dots, A_n) = Jf(\mathbf{x}^0) = (D_1 f(\mathbf{x}^0), D_2 f(\mathbf{x}^0), \dots, D_n f(\mathbf{x}^0)).$$

<sup>a</sup> However, the converse is not true.

**Sufficient Condition** Let  $U \subset \mathbb{R}^n$  be an open set, and let  $f: U \to \mathbb{R}^1$  be an n-variable function. If  $Jf = (D_1 f, D_2 f, \dots, D_n f)$  is continuous at  $\mathbf{x}^0$  (i.e.,  $\frac{\partial f}{\partial x_i}$  is continuous at  $\mathbf{x}^0$  for  $i = 1, 2, \dots, n$ ), then f is differentiable at  $\mathbf{x}^0$ . However, the converse is not necessarily true.

<sup>a</sup>It is referred to as the total differential formula, and the more common form is

$$df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) dx + \frac{\partial f}{\partial y}(x_0, y_0) dy.$$



#### Note

- The continuity of the derivative function at  $\mathbf{x}^0$  implies that the original function f is differentiable in some neighborhood of  $\mathbf{x}^0$ .
- In fact, this condition can be relaxed to require that one partial derivative exists at the point, while the remaining n-1 partial derivative functions are continuous at that point.
- Proof Taking a function of three variables as an example.

Assume the 3-ary function  $f: \mathbb{R}^3 \to \mathbb{R}$  meets:

- 1. There exists  $f_z(x_0, y_0, z_0)$ .
- 2. The partial derivative functions  $f_x(x, y, z)$  and  $f_y(x, y, z)$  are continuous at  $(x_0, y_0, z_0)$ , i.e. there are partial derivatives in some neighborhood of  $(x_0, y_0, z_0)$ .

Consider the total increment of f at the point  $(x_0, y_0, z_0)$ :

$$\Delta f = \underbrace{\left[f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0 + \Delta y, z_0 + \Delta z)\right]}_{I_1} + \underbrace{\left[f(x_0, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0, z_0 + \Delta z)\right]}_{I_2} + \underbrace{\left[f(x_0, y_0, z_0 + \Delta z) - f(x_0, y_0, z_0)\right]}_{I_3}.$$

For  $I_1,I_2$ , by the Lagrange's Mean Value Theorem of unary functions, there exist  $\theta_1,\theta_2\in(0,1)$  such that

$$I_{1} = f_{x}(x_{0} + \theta_{1}\Delta x, y_{0} + \Delta y, z_{0} + \Delta z)\Delta x,$$
  

$$I_{2} = f_{y}(x_{0}, y_{0} + \theta_{2}\Delta y, z_{0} + \Delta z)\Delta y.$$

Then by the continuity of the their partial derivatives at  $(x_0, y_0, z_0)$ , we have

$$\lim_{\Delta x, \Delta y, \Delta z \to 0} I_1 = f_x(x_0, y_0, z_0) \Delta x, \quad \lim_{\Delta x, \Delta y, \Delta z \to 0} I_2 = f_y(x_0, y_0, z_0) \Delta y.$$

They can be expressed in terms of infinitesimals( $\rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ ):

$$I_1 = f_x(x_0, y_0, z_0) \Delta x + \alpha_1 \Delta x, \quad \alpha_1 \to 0 (\rho \to 0),$$
  

$$I_2 = f_y(x_0, y_0, z_0) \Delta y + \alpha_2 \Delta y, \quad \alpha_2 \to 0 (\rho \to 0).$$

For  $I_3$ , by the definition of the partial derivative  $f_z(x, y, z)$  at  $(x_0, y_0, z_0)$ , we have

$$I_3 = f_z(x_0, y_0, z_0)\Delta z + \alpha_3 \Delta z, \quad \alpha_3 \to 0 (\rho \to 0).$$

Accordingly,

$$\begin{split} \Delta f &= I_1 + I_2 + I_3 \\ &= \left[ f_x(x_0, y_0, z_0) \Delta x + \alpha_1 \Delta x \right] + \left[ f_y(x_0, y_0, z_0) \Delta y + \alpha_2 \Delta y \right] + \left[ f_z(x_0, y_0, z_0) \Delta z + \alpha_3 \Delta z \right] \\ &= f_x(x_0, y_0, z_0) \Delta x + f_y(x_0, y_0, z_0) \Delta y + f_z(x_0, y_0, z_0) \Delta z + \left[ \alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z \right]. \end{split}$$

Apparently,

$$\lim_{\rho \to 0} \frac{\alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z}{\rho} = 0,$$

i.e.  $\alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z = o(\rho)$ . Therefore, f(x,y,z) is differentiable at  $(x_0,y_0,z_0)$ , which completes the proof.

**Note** (At some point)

- 1. Differentiable
  - $\Longrightarrow$  Continuous
  - $\Longrightarrow$  Partial derivatives exist:  $D_{\vec{u}} = \nabla f \cdot \vec{u}$
- 2. Directional Derivative
  - ullet All directional derivatives exist  $\Longrightarrow$  differentiable or continuous.
  - ullet All directional derivatives exist and are equal  $\Longrightarrow$  differentiable.
- 3. Partial Derivative
  - The continuity and existence of directional/partial derivatives are mutually exclusive.

#### $\P$ Higher-Order Partial Derivatives and Differential

If the first-order partial derivative of f,  $\frac{\partial f}{\partial x_i}$ , itself possesses partial derivatives, then the second-order partial derivative of f is defined, and is denoted as follows(the first is also called the mixed partial derivative):

$$f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j} \left( \frac{\partial f}{\partial x_i} \right), \quad f_{x_i x_i} = \frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left( \frac{\partial f}{\partial x_i} \right), \quad i, j = 1, 2, \dots, n.$$

Similarly, higher-order partial derivatives of order  $3, 4, \dots m, \dots$  can be defined.

The following theorem provides the conditions under which mixed partial derivatives are equal.

#### Theorem 12.2 (Conditions for Equality of Mixed Partial Derivatives

1. Let  $U \subset \mathbb{R}^2$  be an open set, and  $f: U \to \mathbb{R}$  be a function of two variables. If  $f_{xy}$  and  $f_{yx}$  are continuous at  $(x_0, y_0) \in U$ , then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

2. Let  $U \subset \mathbb{R}^n$  be an open set, and  $f: U \to \mathbb{R}$  be a function of n variables. If f has partial derivatives up to order k in D, and all of them are continuous at  $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in U$ , then

$$\frac{\partial^l f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_l}}(\mathbf{x}^0) = \frac{\partial^l f}{\partial x_{i_2} \partial x_{i_1} \cdots \partial x_{i_l}}(\mathbf{x}^0) = \cdots = \frac{\partial^l f}{\partial x_{i_l} \partial x_{i_{l-1}} \cdots \partial x_{i_1}}(\mathbf{x}^0),$$

that is, the order of taking partial derivatives  $l(\leq k)$  does not affect the result.

<sup>&</sup>quot;If the condition " $f_{xy}$  and  $f_{yx}$  are continuous at  $(x_0, y_0)$ ", is not satisfied, then the conclusion " $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$ " does not necessarily hold.



$$\varphi(y) = f(x_0 + h, y) - f(x_0, y),$$

and

$$\psi(x) = f(x, y_0 + k) - f(x, y_0).$$

Applying the Lagrange Mean Value Theorem, we have

$$\begin{aligned} &[f(x_0+h,y_0+k)-f(x_0,y_0+k)]-[f(x_0+h,y_0)-f(x_0,y_0)]\\ =&\varphi(y_0+k)-\varphi(y_0)\\ =&\varphi'(y_0+\theta_1k)k\\ =&[f_y(x_0+h,y_0+\theta_1k)-f_y(x_0,y_0+\theta_1k)]k\\ =&f_{yx}(x_0+\theta_2h,y_0+\theta_1k)hk,\quad 0<\theta_1,\theta_2<1. \end{aligned}$$

On the other hand,

$$[f(x_0 + h, y_0 + k) - f(x_0, y_0 + k)] - [f(x_0 + h, y_0) - f(x_0, y_0)]$$

$$= [f(x_0 + h, y_0 + k) - f(x_0 + h, y_0)] - [f(x_0, y_0 + k) - f(x_0, y_0)]$$

$$= \psi(x_0 + h) - \psi(x_0)$$

$$= \psi'(x_0 + \theta_3 h) h$$

$$= [f_x(x_0 + \theta_3 h, y_0 + k) - f_x(x_0 + \theta_3 h, y_0)] h$$

$$= f_{xy}(x_0 + \theta_3 h, y_0 + \theta_4 k) hk, \quad 0 < \theta_3, \theta_4 < 1.$$

Therefore.

$$f_{xy}(x_0 + \theta_3 h, y_0 + \theta_4 k) = f_{yx}(x_0 + \theta_2 h, y_0 + \theta_1 k).$$

Since  $f_{xy}$  and  $f_{yx}$  are continuous at  $(x_0, y_0)$ , letting  $h \to 0, k \to 0$ , we obtain

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

By applying 12.1 and the principle of mathematical induction, one can immediately derive the following result.

Suppose z=f(x,y) has continuous partial derivatives in the domain  $U\subset\mathbb{R}^2$ . Then z is differentiable, and

$$\mathrm{d}z = \frac{\partial z}{\partial x} \mathrm{d}x + \frac{\partial z}{\partial y} \mathrm{d}y.$$

If z also has continuous second-order partial derivatives, then  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$  are also differentiable, and thus  $\mathrm{d}z$  is differentiable. We call the differential of  $\mathrm{d}z$  the second-order differential of z, denoted as

$$d^2z = d(dz).$$

In general, based on the k-th order differential  $d^k z$  of z, its (k+1)-th order differential (if it exists) is defined as

$$d^{k+1}z = d(d^kz), \quad k = 1, 2, \cdots.$$

Due to the fact that for the independent variables x and y, we always have

$$d^2x = d(dx) = 0,$$
  $d^2y = d(dy) = 0,$ 

the second-order differential of z = f(x, y) is given by

$$d^{2}z = d(dz) = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)$$

$$= d\left(\frac{\partial z}{\partial x}\right)dx + \frac{\partial z}{\partial x}d^{2}x + d\left(\frac{\partial z}{\partial y}\right)dy + \frac{\partial z}{\partial y}d^{2}y$$

$$= \left(\frac{\partial^{2}z}{\partial x^{2}}dx + \frac{\partial^{2}z}{\partial x\partial y}dy\right)dx + \left(\frac{\partial^{2}z}{\partial y\partial x}dx + \frac{\partial^{2}z}{\partial y^{2}}dy\right)dy$$

$$= \frac{\partial^{2}z}{\partial x^{2}}(dx)^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}(dy)^{2},$$

where  $(\mathrm{d}x)^2$  and  $(\mathrm{d}y)^2$  denote  $\mathrm{d}^2x$  and  $\mathrm{d}^2y$  respectively. If we treat  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$  as operators for partial differentiation and define

$$\left(\frac{\partial}{\partial x}\right)^2 = \frac{\partial^2}{\partial x^2}, \quad \left(\frac{\partial}{\partial y}\right)^2 = \frac{\partial^2}{\partial y^2}, \quad \left(\frac{\partial}{\partial x}\frac{\partial}{\partial y}\right) = \frac{\partial^2}{\partial x \partial y},$$

then the formulas for the first and second differentials can be written as

$$dz = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right) z,$$
$$d^2 z = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right)^2 z.$$

Similarly, we define

$$\left(\frac{\partial}{\partial x}\right)^p \left(\frac{\partial}{\partial y}\right)^q = \frac{\partial^{p+q}}{\partial x^p \partial y^q} = \frac{\partial^q}{\partial y^q} \left(\frac{\partial}{\partial x}\right)^p, \quad (p, q = 1, 2, \dots)$$

It is easy to use mathematical induction to prove the formula for higher-order differentials:

$$\mathrm{d}^k z = \left(\mathrm{d}x \frac{\partial}{\partial x} + \mathrm{d}y \frac{\partial}{\partial y}\right)^k z, \quad k = 1, 2, \cdots.$$

For an n-variable function  $u=f(x_1,x_2,\ldots,x_n)$ , higher-order differentials can be similarly defined, and the

following holds:

$$d^{k}u = \left(dx_{1}\frac{\partial}{\partial x_{1}} + dx_{2}\frac{\partial}{\partial x_{2}} + \dots + dx_{n}\frac{\partial}{\partial x_{n}}\right)^{k}u, \quad k = 1, 2, \dots$$

### 12.2 Differential of Vector-Valued Functions

Consider an n-dimensional vector-valued function defined on a domain  $U \subset \mathbb{R}^n$ :

$$f: U \to \mathbb{R}^m,$$
  
 $\mathbf{x} \mapsto \mathbf{v} = f(\mathbf{x})$ 

Expressed in coordinate vector form:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in U$$

1. If each component function  $f_i(x_1, x_2, \dots, x_n)$  ( $i = 1, 2, \dots, m$ ) is partially differentiable at  $\mathbf{x}^0$ , then the vector-valued function  $\mathbf{f}$  is differentiable at  $\mathbf{x}^0$ , and we define the matrix

$$\left(\frac{\partial f}{\partial x_j}(\mathbf{x}^0)\right)_{m \times n} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}^0) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}^0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_m}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}^0) \end{pmatrix}$$

This matrix is called the Jacobian matrix of  $\mathbf{f}$  at  $\mathbf{x}^0$ , denoted by  $f'(\mathbf{x}^0)$  (or  $\mathrm{D}f(\mathbf{x}^0)$ ,  $J_f(\mathbf{x}^0)$ ).

For the special case m=1, i.e., n-variable scalar function  $z=f(x_1,x_2,\ldots,x_n)$ , the derivative at  $\mathbf{x}^0$  is

$$f'(\mathbf{x}^0) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}^0), \frac{\partial f}{\partial x_2}(\mathbf{x}^0), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x}^0)\right)$$

If the vector-valued function  $\mathbf{f}$  is differentiable at every point in U, then  $\mathbf{f}$  is said to be differentiable on U, and the corresponding relationship is

$$\mathbf{x} \in U \mapsto f'(\mathbf{x}) = J_f(\mathbf{x})$$

where  $f'(\mathbf{x})$  (or  $Df(\mathbf{x})$ ,  $J_f(\mathbf{x})$ ) denotes the derivative of  $\mathbf{f}$  at  $\mathbf{x}$  in U.

2. If every component function  $f_i(x_1, x_2, ..., x_n)$  (i = 1, 2, ..., m) of  $\mathbf{f}$  has continuous partial derivatives at  $\mathbf{x}^0$ , then every element of the Jacobian matrix of  $\mathbf{f}$  is continuous at  $\mathbf{x}^0$ . In this case,  $\mathbf{f}$  is said to have a continuous derivative at  $\mathbf{x}^0$  as a vector-valued function.

If the derivative of a vector-valued function  ${\bf f}$  is continuous at every point in U, then  ${\bf f}$  is said to have a continuous derivative on U.

3. If there exists an  $m \times n$  matrix A that depends only on  $\mathbf{x}^0$  (and not on  $\Delta \mathbf{x}$ ), such that in the neighborhood of  $\mathbf{x}^0$ ,

$$\Delta \mathbf{y} = f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) = A\Delta \mathbf{x} + o(\|\Delta \mathbf{x}\|)$$

(where  $\Delta \mathbf{x} = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)^T$  is a column vector and  $\|\Delta \mathbf{x}\|$  denotes its norm), then f is said to be differentiable at  $\mathbf{x}^0$  as a vector-valued function, and  $A\Delta \mathbf{x}$  is called the differential of f at  $\mathbf{x}^0$ , denoted as  $d\mathbf{y}$ . If we denote  $\Delta \mathbf{x}$  by  $d\mathbf{x}$  ( $d\mathbf{x} = (dx_1, dx_2, \dots, dx_n)^T$ ), then

$$d\mathbf{v} = A d\mathbf{x}$$
.

If the vector-valued function f is differentiable at every point in U, then f is said to be differentiable on U.

Combining the above three points, we obtain the following unified statement:

A vector-valued function  $\mathbf{f}$  is continuous, differentiable, and has derivatives if and only if each of its coordinate component functions  $f_i(x_1, x_2, \dots, x_n)$  ( $i = 1, 2, \dots, m$ ) is continuous, differentiable, and has derivatives.

## 12.3 Derivatives of Composite Mappings (Chain Rule)

Let  $U \subset \mathbb{R}^l$  and  $V \subset \mathbb{R}^n$  be open sets, and let

$$\mathbf{g}: U \to V$$
 and  $\mathbf{f}: V \to \mathbb{R}^m$ 

be mappings. If  $\mathbf{g}$  is derivative at  $\mathbf{u}^0 \in U$  and  $\mathbf{f}$  is differentiable at  $\mathbf{x}^0 = \mathbf{g}(\mathbf{u}^0)$ , then the composite mapping  $\mathbf{f} \circ \mathbf{g}$  is differentiable at  $\mathbf{u}^0$ , and:

$$J(\mathbf{f} \circ \mathbf{g})(\mathbf{u}^0) = J\mathbf{f}(\mathbf{x}^0)J\mathbf{g}(\mathbf{u}^0).$$



- 1. outer differentiable + inner derivative = total derivative
- ${\it 2. outer differentiable + inner differentiable = total differentiable}$

3

Specially, define  $z=f(x,y), (x,y)\subset D_f\subset \mathbb{R}^2$ ,  $\mathbf{g}:D_g\to \mathbb{R}^2, (u,v)\mapsto (x(u,v),y(u,v))$ , and  $g(D_g)\subset D_f$ , then we have composite function

$$z = f \circ \mathbf{g} = f[x(u, v), y(u, v)], \quad (u, v) \in D_g.$$

$$\mathbb{R}^2 \xrightarrow{\mathbf{g}: \text{derivative}} \mathbb{R}^2 \xrightarrow{f: \text{differentiable}} \mathbb{R}$$

If g is derivative at  $(u_0, v_0) \in D_g$ , and f is differentiable at  $(x_0, y_0) = \mathbf{g}(u_0, v_0)$ , then  $z = f \circ \mathbf{g}$  is differentiable at  $(u_0, v_0)$ , and at the point,

$$\begin{bmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}$$

## A Proof

## 12.4 Mean Value Theorem and Taylor's Formula

#### Definition 12.4 (Convex Region)

Let  $D \subseteq \mathbb{R}^n$  be a region. If every line segment connecting any two points  $\mathbf{x}_0, \mathbf{x}_1 \in D$  (denoted by  $\overline{\mathbf{x}_0}\overline{\mathbf{x}_1}$ ) is entirely contained in D, i.e., for any  $\lambda \in [0, 1]$ , we have

$$\mathbf{x}_0 + \lambda(\mathbf{x}_1 - \mathbf{x}_0) \in D$$
,

then D is called a convex region.

#### Theorem 12.3 (Lagrange's Mean Value Theorem)

Let f be <u>differentiable</u> on <u>a convex region</u>  $D \subseteq \mathbb{R}^n$ . For any two points  $\mathbf{a}, \mathbf{b} \in D$ , there exists a point  $\xi \in \overline{\mathbf{ab}}$  such that:

$$f(\mathbf{b}) - f(\mathbf{a}) = Jf(\xi)(\mathbf{b} - \mathbf{a}).$$



#### Theorem 12.4

Let D be a region in  $\mathbb{R}^n$ . If for any  $\mathbf{x} \in D$ , we have

$$Jf(\mathbf{x}) = 0$$
,

then f is constant on D.

## # Proof

#### Theorem 12.5 (Taylor's Formula)

**Lagrange's Remainder** Let  $D \subseteq \mathbb{R}^n$  be a convex region, and let  $f: D \to \mathbb{R}$  have m+1 continuous partial derivatives. For  $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in D$  and  $\mathbf{x} = (x_1, x_2, \dots, x_n) \in D$ , there exists  $\xi \in \overline{\mathbf{x}^0 \mathbf{x}}$  such that:

$$f(\mathbf{x}) = f(\mathbf{x}^0) + \sum_{k=1}^{m} \frac{1}{k!} \left( \sum_{i=1}^{n} (x_i - x_i^0) \frac{\partial}{\partial x_i} \right)^k f(\mathbf{x}^0) + \frac{1}{(m+1)!} \left( \sum_{i=1}^{n} (x_i - x_i^0) \frac{\partial}{\partial x_i} \right)^{m+1} f(\xi).$$

**Peano's Remainder** Let  $D \subseteq \mathbb{R}^n$  be a convex region, and let  $f: D \to \mathbb{R}$  have m continuous partial derivatives. Then:

$$f(\mathbf{x}) = f(\mathbf{x}^0) + \sum_{k=1}^m \frac{1}{k!} \sum_{i_1, i_2, \dots, i_k = 1}^n \frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} (\mathbf{x}^0) \prod_{j=1}^k (x_{i_j} - x_{i_j}^0) + R_m(\mathbf{x} - \mathbf{x}^0),$$
where  $R_m(\mathbf{x} - \mathbf{x}^0) = O(\|\mathbf{x} - \mathbf{x}^0\|^{m+1})$  or  $o(\|\mathbf{x} - \mathbf{x}^0\|^m)$ , as  $\|\mathbf{x} - \mathbf{x}^0\| \to 0$ .

In applications, particularly important is the expression of the first three terms in Taylor's formula, which is given as (let  $x_1 - x_1^0$  be denoted by  $\Delta x_1$ , and similarly for other variables;  $\Delta \mathbf{x} = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)$ ):

$$f(\mathbf{x}) = f(\mathbf{x}^0) + Jf(\mathbf{x}^0)(\Delta \mathbf{x}) + \frac{1}{2!}(\Delta \mathbf{x})Hf(\mathbf{x}^0)(\Delta \mathbf{x})^{\mathrm{T}} + \cdots,$$

where the matrix

$$Hf(\mathbf{x}^{0}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}_{\mathbf{x}^{0}}$$

is called the **Hessian matrix** of the function f. It is an  $n \times n$  symmetric matrix.

## 12.5 Implicit Function Theorem

#### Theorem 12.6 (Implicit Function Theorem)

Let  $U\subset\mathbb{R}^{n+1}$  be an open set, and  $F:U\to\mathbb{R}$  be an n+1-variable function. If:

- 1.  $F \in C^k(U, \mathbb{R})$ , where  $1 \le k \le +\infty$ ;
- 2.  $F(\mathbf{x}^0, y^0) = 0$ , where  $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in \mathbb{R}^n$ ,  $y^0 \in \mathbb{R}$ , and  $(\mathbf{x}^0, y^0) \in U$  (i.e., the equation  $F(\mathbf{x}, y) = 0$  has a solution  $(\mathbf{x}^0, y^0)$ );
- 3.  $F'_{y}(\mathbf{x}^{0}, y^{0}) \neq 0$ .

Then there exists an open interval  $I \times J$  containing  $(\mathbf{x}^0, y^0)$  (I being an open interval in  $\mathbb{R}^n$  containing  $\mathbf{x}^0$ , and J being an open interval in  $\mathbb{R}$  containing  $y^0$ ), as shown in Fig. 12.1, such that:

- 1.  $\forall x \in I$ , the equation  $F(\mathbf{x}, y) = 0$  has a unique solution  $y = f(\mathbf{x})$ , where  $f : I \to J$  is an n-variable function (called the **implicit function** f, hidden within the equation  $F(\mathbf{x}, f(\mathbf{x})) = 0$ , though not necessarily explicitly expressed);
- 2.  $y^0 = f(\mathbf{x}^0);$
- 3.  $f \in C^k(I, \mathbb{R})$ ;
- 4. When  $x \in I$ ,  $\frac{\partial f}{\partial x_i} = \frac{\partial y}{\partial x_i} = -\frac{F_x(\mathbf{x}, y)}{F_y(\mathbf{x}, y)}$ ,  $i = 1, 2, \dots, n$ , where y = f(x).



Figure 12.1: Implicit Function

Proof Only the single-variable implicit function theorem is proved; the multi-variable case can be derived using mathematical induction.

Without loss of generality, assume  $F_y(x^0, y^0) > 0$ .

First, prove the existence of the implicit function. From the continuity of  $F_y(x^0, y^0) > 0$  and  $F_y(x, y)$ , it is known that there exist closed rectangle:

$$D^* = \{(x, y) \mid |x - x_0| \le \alpha, |y - y_0| \le \beta\} \subset U,$$

where the following holds:

$$F_{u}(x,y) > 0.$$

Thus, for fixed  $x_0$ , the function  $F(x^0, y)$  is strictly monotonically increasing within  $[y^0 - \beta, y^0 + \beta]$ . Furthermore, since:

$$F(x^0, y^0) = 0,$$

it follows that:

$$F(x^0, y^0 - \beta) < 0, \quad F(x^0, y^0 + \beta) > 0.$$

Due to the continuity of F(x, y) within  $D^*$ , there exists  $\rho > 0$  such that along the line segment:

$$x = x^{0} + \rho, y = y^{0} + \beta,$$

we have F(x, y) > 0, and along the line segment:

$$x = x^{0} + \rho, y = y^{0} - \beta,$$

we have F(x,y) < 0. Therefore, for any point  $\bar{x} \in (x^0 - \rho, x^0 + \rho)$ , treat F(x,y) as a single-variable function of y. Within  $[y^0 - \beta, y^0 + \beta]$ , this function is continuous. From the previous discussion, we know:

$$F(\bar{x}, y^0 - \beta) < 0, \quad F(\bar{x}, y^0 + \beta) > 0.$$

According to the zero point existence theorem 3.3, there must exist a unique  $\bar{y} \in [y^0 - \beta, y^0 + \beta]$  such that  $F(\bar{x}, \bar{y}) = 0$ . Furthermore, because  $F_y(x, y) > 0$  within  $D^*$ , this  $\bar{y}$  is unique. Denote the corresponding relationship as  $\bar{y} = f(\bar{x})$ , then the function y = f(x) is defined within  $(x^0 - \rho, x^0 + \rho)$ , satisfying F(x, f(x)) = 0, and clearly:

$$y^0 = f(x^0).$$

Further proving the continuity of the implicit function y=f(x) on  $(x^0-\rho,x^0+\rho)$ : Let  $\bar x\in(x^0-\rho,x^0+\rho)$  be any point. For any given  $\varepsilon>0$  ( $\varepsilon$  being sufficiently small), since  $F(\bar x,\bar y)=0$  ( $\bar y=f(\bar x)$ ), from the previous discussion we know:

$$F(\bar{x}, \bar{y} - \varepsilon) < 0, \quad F(\bar{x}, \bar{y} + \varepsilon) > 0.$$

Furthermore, due to the continuity of F(x, y) on  $D^*$ , there exists  $\delta > 0$  such that:

$$F(x, \bar{y} - \varepsilon) < 0$$
,  $F(x, \bar{y} + \varepsilon) > 0$ , when  $x \in O(x^0, \delta)$ .

By reasoning similar to the previous discussion, it can be obtained that when  $x \in O(x^0, \delta)$ , the corresponding implicit function value must satisfy  $f(x) \in (\bar{y} - \varepsilon, \bar{y} + \varepsilon)$ , i.e.,

$$\left| f(x) - f(x^0) \right| < \varepsilon.$$

This implies that y = f(x) is continuous on  $(x^0 - \rho, x^0 + \rho)$ .

Finally, prove the <u>differentiability</u> of y=f(x) on  $(x^0-\rho,x^0+\rho)$ : Let  $\bar{x}\in(x^0-\rho,x^0+\rho)$  be any point. Take  $\Delta x$  sufficiently small such that  $\bar{x}=x+\Delta x\in(x^0-\rho,x^0+\rho)$ . Denote  $\bar{y}=f(\bar{x})$  and  $\bar{y}+\Delta y=f(\bar{x})$ . Clearly,

$$F(\bar x,\bar y)=0\quad\text{and}\quad F(\bar x,\bar y+\Delta y)=0.$$

Using the multi-variable function's mean value theorem 12.3, we obtain:

$$\begin{split} 0 &= F(\bar{x}, \bar{y} + \Delta y) - F(\bar{x}, \bar{y}) \\ &= F_x(\bar{x} + \theta \Delta x, \bar{y} + \theta \Delta y) \Delta x + F_y(\bar{x} + \theta \Delta x, \bar{y} + \theta \Delta y) \Delta y, \end{split}$$

where  $0 < \theta < 1$ . Note that  $F_y \neq 0$  on  $D^*$ , hence:

$$\frac{\Delta y}{\Delta x} = -\frac{F_x(\bar{x} + \theta \Delta x, \bar{y} + \theta \Delta y)}{F_y(\bar{x} + \theta \Delta x, \bar{y} + \theta \Delta y)}.$$

Let  $\Delta x \to 0$ . Considering the continuity of  $F_x$  and  $F_y$ , we obtain:

$$\frac{dy}{dx}\Big|_{x=\bar{x}} = -\frac{F_x(\bar{x},\bar{y})}{F_y(\bar{x},\bar{y})}.$$

Thus:

$$f'(\bar{x}) = -\frac{F_x(\bar{x}, \bar{y})}{F_y(\bar{x}, \bar{y})}.$$

The proof is complete.

#### Theorem 12.7 (Implicit Mapping Theorem)

Let  $U \subset \mathbb{R}^{n+m}$  be an open set, and  $\mathbf{F}: U \to \mathbb{R}^m$  be a mapping. If:

- 1.  $\mathbf{F} \in C^k(U, \mathbb{R}^m), 1 \le k \le \infty$ ;
- 2.  $\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = 0$ , where  $\mathbf{x}^0 = (x_1, x_2, \dots, x_n)$ ,  $\mathbf{y}^0 = (y_1, y_2, \dots, y_m)$ ,  $(\mathbf{x}^0, \mathbf{y}^0) \in U$  (implying  $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$  has a solution at  $(\mathbf{x}^0, \mathbf{y}^0)$ );
- 3. The determinant

$$\det \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix}_{(\mathbf{x}^0, \mathbf{y}^0)} = \det J_{\mathbf{y}} \mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) \neq 0,$$

then there exists an open neighborhood  $I \times J \subset U \subset \mathbb{R}^{n+m}$  containing  $(\mathbf{x}^0, \mathbf{y}^0)$ , such that:

- 1. For all  $\mathbf{x} \in I$ , the system  $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$  has a unique solution  $\mathbf{y} = \mathbf{f}(\mathbf{x})$ , where  $\mathbf{f} : I \to J$  is a mapping (called  $\mathbf{f}$  the implicit function hidden in  $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$ );
- 2.  $\mathbf{y}^0 = \mathbf{f}(\mathbf{x}^0)$ ;
- 3.  $\mathbf{f} \in C^k(I, \mathbb{R}^m)$ ;
- 4. For  $x \in I$ ,

$$J_{\mathbf{f}}(x) = -(J_{\mathbf{y}}\mathbf{F}(\mathbf{x}, \mathbf{f}(x)))^{-1}J_{\mathbf{x}}\mathbf{F}(\mathbf{x}, \mathbf{f}(x)) = -\begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix}^{-1}\begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix},$$

where  $\mathbf{y} = \mathbf{f}(\mathbf{x})$ .

## 12.6 Applications of Multi-Variable Differential Calculus

#### $\P$ Surface and Tangent Space

#### Definition 12.5 (Parameterization of Surface)

Let  $\Delta$  be an open subset in  $\mathbb{R}^s$ , and  $\mathbf{x}: \Delta \to \mathbb{R}^n$  be a mapping, where  $\mathbf{u} = (u_1, u_2, \dots, u_s) \to \mathbf{x}(\mathbf{u}) = (x_1(u_1, u_2, \dots, u_s), x_2(u_1, u_2, \dots, u_s), \dots, x_n(u_1, u_2, \dots, u_s))$ . Then  $M = \mathbf{x}(\Delta) = \{\mathbf{x}(\mathbf{u}) \mid \mathbf{u} \in \Delta\}$  is called an s-dimensional surface, and  $\mathbf{x}(\mathbf{u})$  is referred to as the parameterization of M. When  $\mathbf{x}(\mathbf{u}) \in C^k$   $(k \geq 0)$ ,  $\mathbf{x}$  or M is called an s-dimensional  $C^k$  surface.

If  $\mathbf{x} \in C^k$   $(k \ge 1)$ ,  $\mathbf{x}$  or M is called an s-dimensional  $C^k$  smooth surface. When

$$\operatorname{rank}(x_1'(\mathbf{u}^0), x_2'(\mathbf{u}^0), \dots, x_s'(\mathbf{u}^0)) = \operatorname{rank} \begin{pmatrix} \frac{\partial x_1}{\partial u_1} & \dots & \frac{\partial x_1}{\partial u_s} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial u_s} & \dots & \frac{\partial x_n}{\partial u_s} \end{pmatrix} = s,$$

we call  $\mathbf{u}^0$  or  $\mathbf{x}(\mathbf{u}^0)$  a regular point of the surface M. Otherwise, it is called a singular point. Every point that is a regular point of the surface is referred to as an s-dimensional  $C^k$  regular surface. At such points,  $\{x_1', \ldots, x_s'\}$  are linearly independent.

When s=1, t represents the parameter, a one-dimensional surface is commonly referred to as a curve. Considering a  $C^k$  ( $k \ge 1$ ) curve  $\mathbf{x}(t)$ , we have:

$$\mathbf{x}'(t) = (x_1'(t), x_2'(t), \cdots, x_n'(t)).$$

If t is a regular point, then  $\operatorname{rank}(\mathbf{x}'(t)) = \operatorname{rank}(x_1'(t), x_2'(t), \dots, x_n'(t)) = 1$ ; this is equivalent to  $\mathbf{x}'(t) \neq 0$ , which means  $x_1'(t), x_2'(t), \dots, x_n'(t)$  are not all zero.

We refer to  $\mathbf{x}'(t)$  as the tangent vector of the curve  $\mathbf{x}(t)$  at point t. When t varies, a tangent vector field along the curve  $\mathbf{x}(t)$  is obtained. If  $\mathbf{x}(t)$  is a regular curve,  $\frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$  is the unit tangent vector field along the curve  $\mathbf{x}(t)$ . It should be emphasized that  $\mathbf{x}'(t)$  or  $\frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$  always points outward from point t.

#### Definition 12.6 (Tangent Vector)



- $\P$  Unconditional Extremum
- ¶ Conditional Extremum

# **Chapter 13 Multiple Integrals**

## **Bibliography**

- [1] 徐森林, 薛春华. 数学分析 (Ist edition). 清华大学出版社, 2005.
- [2] 陈纪修, 於崇华. 数学分析 (3rd edition). 高等教育出版社, 2019.
- [3] 常庚哲, 史济怀. 数学分析教程 (3rd edition). 中国科学技术大学出版社, 2012.
- [4] 裴礼文. 数学分析中的典型问题与方法 (3rd edition). 高等教育出版社, 2021.
- [5] 汪林. 数学分析中的问题与反例 (1st edition). 高等教育出版社, 2015.
- [6] 谢惠民, 恽自求, 易法槐, 钱定边. 数学分析习题课讲义 (2nd edition). 高等教育出版社, 2019.
- [7] Walter Rudin. Principles of Mathematical Analysis (3rd edition). McGraw-Hill, 1976.
- [8] 菲赫金哥尔茨. 微积分学教程 (8th edition). 高等教育出版社, 2006.
- [9] Wikipedia.https://en.wikipedia.org/wiki/.