CUATERNIONES

Cheuk Kelly Ng Pante alu0101364544@ull.edu.es

Historia de los cuaterniones

- Creados por el matemático William Rowan Hamilton en 1843.
- Quería buscar una extensión de los números complejos.
- Los cuaterniones no fueron recibidas con entusiasmo por la comunidad matemática de la época.
- Con el tiempo, los cuaterniones comenzaron a ser utilizados en área como la graficación 3D, la robótica, etc.

¿Qué son los cuateriones?

01

Extensión matemática de los números complejos y se utilizan en disciplinas relacionadas con la representación y manipulación de orientaciones y rotaciones en el espacio tridimensional.

02

Describir y manipular la orientación de objetos tridimensionales, como robots, cámaras o herramientas.

$$q = w + xi + yj + zk$$

$$i^2 = j^2 = k^2 = ijk = -1$$

¿Qué son los cuateriones?

Se pueden representar mediante un vector de cuatro componentes (w, x, y, z) o una matriz 4x4.

Hay dos tipos: unitarios y no unitarios.

$$q = egin{bmatrix} w & x & y & z \ -x & w & -z & y \ -y & z & w & -x \ -z & -y & x & w \end{bmatrix}$$

Aritmética básica de cuaterniones

SUMA

$$q_1+q_2=(w_1+w_2)+(x_1+x_2)i+(y_1+y_2)j+(z_1+z_2)k$$

PRODUCTO

$$egin{aligned} q_1 \cdot q_2 &= (w_1 \cdot w_2 - x_1 \cdot x_2 - y_1 \cdot y_2 - z_1 \cdot z_2) + \ &(w_1 \cdot x_2 + x_1 \cdot w_2 + y_1 \cdot z_2 - z_1 \cdot y_2)i + \ &(w_1 \cdot y_2 - x_1 \cdot z_2 + y_1 \cdot w_2 + z_1 \cdot x_2)j + \ &(w_1 \cdot z_2 + x_1 \cdot y_2 - y_1 \cdot x_2 + z_1 \cdot w_2)k \end{aligned}$$

COCIENTE

$$q^{-1}=rac{\overline{q}}{q\cdot\overline{q}}$$

Aritmética básica de cuaterniones

CONJUGACIÓN

$$x = x_1 + x_2i + x_3j + x_4k$$

CONJUGADO

$$\overline{x}=x_1-x_2i-x_3j-x_4k$$

VALOR ABSOLUTO

$$||x|| = \sqrt{x \cdot \overline{x}} = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

EXPONENCIACIÓN

$$e^q = e^{a+bi+cj+dk} = e^a \left(cos\sqrt{b^2+c^2+d^2} + rac{sen \cdot \sqrt{b^2+c^2+d^2}}{\sqrt{b^2+c^2+d^2}} \cdot (bi+cj+dk)
ight)$$

Aplicaciones

Diversas aplicaciones que van desde:

- Teoría de numeros, como el teorema de cuatro cuadrados.
- Aplicaciones físicas dentro del electromagnetismo, mecánica cuántica y la teoria de la relatividad.
- En sistemas robotizados.

Uso en los videojuegos

Rotacion de personajes y objetos

Representar la orientación de un personaje o un objeto en el espacio tridimensional.

Control de cámaras

Controlar la orientación de una cámara en un videojuego

Unity

Motor de videojuegos multiplataforma.

Uso en los sistemas robotizados

Cinematica directa

Se calcula la posición y orientación del extremo final de un robot en función de las posiciones de sus articulaciones.

Uso en la ingeniería aeroespacial

Control de orientacion de la nave espacial

Describir la orientación de una nave espacial en el espacio.

Navegación

Posición y orientación de nave en el espacio en relación a un sistema de referencia

Su uso más importante es la automatizar la navegacion y el control de la nave sin la invervención humana.

>>>

Conclusiones

Los cuaterniones son una extensión matemática de los números complejos y se utilizan en disciplinas relacionadas con la representación y manipulación de orientaciones y rotaciones en el espacio tridimensional

Ofrecen una representación compacta y eficiente de la orientación.

Facilitando los cálculos en comparación con otras representaciones como las matrices de rotación.

Evita problemas como el bloqueo gimbal y proporciona una manera eficiente de manejar rotaciones en el espacio tridimensional.

ENLACES

Enlace video

Enlace informe

alu0101364544@ull.edu.es

Cuaterniones

MUCHAS GRACIAS