

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年9月20日(20.09.2001)

PCT

(10) 国際公開番号 WO 01/69710 A1

(51) 国際特許分類7:

H01P 1/203, 3/08, H03H 7/705

(21) 国際出願番号:

PCT/JP01/02002

(22) 国際出願日:

2001年3月14日(14.03.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

(30) 優先権データ:

特願2000-072830 特願2000-072831 特願2000-072832

2000年3月15日(15.03.2000) 2000年3月15日(15.03.2000)

日本語

2000年3月15日(15.03.2000) ΠP JP IP

(71) 出願人 (米国を除く全ての指定国について): 松下電 器産業株式会社 (MATSUSHITA ELECTRIC INDUS-TRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市 大字門真1006番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 瓜生一英 (URIU, Kazuhide) [JP/JP]; 〒576-0054 大阪府交野市 费野4-10-404 Osaka (JP). 中村弘幸 (NAKAMURA, Hiroyuki) [JP/JP]; 〒576-0016 大阪府交野市星田 5-3-1-206 Osaka (JP). 山田 徹 (YAMADA, Toru) [JP/JP]; 〒576-0033 大阪府交野市私市4-69-7 Osaka (JP). 松村 勉 (MATSUMURA, Tsutomu) [JP/JP]; 〒 581-0874 大阪府八尾市教興寺6-10 Osaka (JP). 加賀 田博司 (KAGATA, Hiroshi) [JP/JP]; 〒573-0035 大

[続葉有]

(54) Title: MULTILAYER ELECTRONIC PART, MULTILAYER ANTENNA DUPLEXER, AND COMMUNICATION APPA-**RATUS**

(54) 発明の名称: 積層電子部品、積層共用器、及び通信機器

f...REAR FACE

(57) Abstract: A multilayer filter comprising a first dielectric layer (2101a) having a first shield electrode provided on one major surface, a second dielectric layer (b) having a resonator electrode provided on the one major surface, a third dielectric layer (2101c) having a bond electrode provided oppositely to a part of the resonator electrode on the one major surface, a fourth dielectric layer (2101d) having a second shield electrode provided on the one major surface, a fifth dielectric layer (2101e) where at least the one major surface is exposed to the outside, and a ground electrode (2108) provided on the other major surface of the first dielectric layer and/or the one major surface of the fifth dielectric layer, characterized in that the first ground electrode and the first shield electrode are connected electrically through a via hole (2109) made in the first dielectric layer.

前面

下b

阪府枚方市高塚町15-15-507 Osaka (JP). 川北晃司 (KAWAKITA, Kouji) [JP/JP]; 〒610-0121 京都府城陽 市寺田西ノ口43-48 Kyoto (JP). 石埼俊雄 (ISHIZAKI, Toshio) [JP/JP]; 〒658-0072 兵庫県神戸市東灘区岡本 3丁目2-2-502 Hyogo (JP).

- (74) 代理人: 弁理士 松田正道(MATSUDA, Masamichi); 〒532-0003 大阪府大阪市淀川区宮原5丁目1番3号 新 大阪生島ビル Osaka (JP).
- (81) 指定国 (国内): CN, JP, KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

一方の主面に設けられた第1のシールド電極を有する第1の誘電体層2101 a、一方の主面に設けられた共振器電極を有する第2の誘電体層b、一方の主面に、前記共振器電極の一部と対向して設けられた結合電極を有する第3の誘電体層2101c、一方の主面に設けられた第2のシールド電極を有する第4の誘電体層2101dと、少なくとも一方の主面が外部に露出している第5の誘電体層2101dと、前記第1の誘電体層の他方の主面および/または前記第5の誘電体層の前記一方の主面に設けられた接地電極2108とを備え、前記第1の接地電極と前記第1のシールド電極とは、前記第1の誘電体層に設けられたビアホール2109を介して電気的に接続されていることを特徴とする積層フィルタ。

1

明細書

積層電子部品、積層共用器、及び通信機器

技術分野

本発明は主として携帯電話機などの高周波無線機器に実装する積層電子部品に関するものである。

背景技術

近年、積層電子部品は通信機器の小型化に伴い、高周波デバイスとして用いられている。以下に図面を参照しながら、上記した従来の積層電子部品の一例について説明する。

図3は従来の積層電子部品の分解斜視図を示すものである。図3に示すように 積層電子部品は誘電体層301から誘電体層308までが順に積層されている。 誘電体層301には接地電極309が配置され、誘電体層302にはコンデンサ 電極310が配置されている。また、誘電体層303にはストリップライン31 1とストリップライン312が配置され、接続点313で接続されている。

誘電体層304、305、306、307にはそれぞれコンデンサ電極314、接地電極315、コンデンサ電極316、接地電極317が配置されている。さらに、コンデンサ電極310はビアホール322を介してストリップライン311の接続点318に接続され、コンデンサ電極314はビアホール323を介して接続点313に接続されている。さらに、コンデンサ電極316はビアホール324を介してストリップライン312の接続点319に接続されている。

接地電極315、317は積層電子部品側面に形成された外部電極320を介

して接地電極309に接続され、回路の外部電極端子はストリップライン311、312の一端を積層電子部品端面まで引き伸ばし、積層電子部品側面に形成された外部電極321に接続することにより入力電極及び出力電極を形成している。ただし、上記の説明に関し、図におけるビアホールの位置は、簡単のため原則として分解斜視図上の点線にて模式的に示した。

次に、従来の積層電子部品の斜視図のもう一つの例を図23に示す。

図23において、積層電子部品3901は複数の誘電体シートが積層されて成る積層体3902と、外部電極3903とから構成されたものである。積層体3902の内層には入力/出力端子を備える少なくとも1つの内部回路(図示せず)および少なくとも1つの内部接地電極(図示せず)が介在する。

積層体3902の少なくとも1つの側面には外部電極3903が形成され、これらの外部電極3903は内部回路の入力/出力端子と内部接地電極にそれぞれ電気的に接続される。ここで、内部回路の入力/出力端子に接続されたほうを外部電極3903a、内部接地電極に接続された方を外部電極3903bとする。

外部電極3903a、bは金属膜を積層体3902の側面の特定個所に塗布することにより形成され、いずれの外部電極も、積層体3902の最上面から最底面にかけて幅広い面積で形成される。

しかしながら図3に示すような従来の構成では、複数の回路が存在する積層電子部品の側面に、外部電極として、入力電極及び出力電極及び接地電極が存在することになるため、積層電子部品側面に形成されるこれら外部電極が複数個となり、接地電極の占める面積が小さくなる。したがって、これら複数の外部電極だけでは接地電極の面積を十分に確保できず、電気的な接地強度が弱くなるという課題が有った。

尚、ここで、接地電極は、積層電子部品が搭載される予定のマザー基板(図示 省略)上の所定の接地面と、半田等により接続するための電極である。

一方、図23に示す従来の積層電子部品においては、内部回路の入力/出力端子に電気的に接続される外部電極3903aと、内部接地電極に電気的に接続される外部電極3903bとはほぼ同様の形状で、積層体3902の最上面から最底面にかけて幅広い面積で形成されていた。

そのため、特に内部回路の入力/出力端子に電気的に接続される外部電極3903aの面積が大きい場合、外部電極3903の内、特に外部電極3903aにコンダクタンス成分あるいはインダクタンス成分の寄生成分が生じ、高周波領域での使用においては、特性劣化につながるという課題があった。

特に、図3、図23に示す上記従来の積層電子部品を、1GHz以上の入力信号を扱う積層フィルタ等として使用したとすると、フィルタ回路等の高周波特性、即ち、高周波領域における周波数の選択特性が劣化するという課題を有していた。

発明の開示

本発明は上記従来の積層電子部品のこの様な課題を考慮して、接地電極が十分確保でき、接地強度の強化が図れる積層電子部品を提供することを目的とする。

又、本発明は上記従来の積層電子部品のこの様な課題を考慮し、高周波領域に おける周波数の選択性に優れた積層電子部品を提供することを目的とする。

第1の本発明 (請求項1記載の本発明に対応) は、一方の主面に第1のシール ド電極が設けられた誘電体層Aと、

前記誘電体層Aに対して、間接的に積層された誘電体層であって、一方の主面に第2のシールド電極が設けられた誘電体層Cと、

少なくとも一方の主面が外部に露出している誘電体層Dと、

前記誘電体層Aと前記誘電体層Cとの間に積層された、内部回路を含む誘電体層Bと、

前記誘電体層Aの他方の主面、または前記誘電体層Dの前記一方の主面に設けられた第1の接地電極とを備え、

前記誘電体層Aと前記誘電体層Dの少なくとも一方の誘電体層にはビアホール が設けられており、

前記第1のシールド電極と前記第2のシールド電極が、電気的に接続されており、

前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されているか、又は、前記第1の接地電極と前記第2のシールド電極とが、前記誘電体層Dに設けられたビアホールを介して電気的に接続されている積層電子部品である。

又、第2の本発明(請求項2記載の本発明に対応)は、前記積層電子部品の側面に設けられた、前記第1のシールド電極と前記第2のシールド電極とを前記電気的に接続するための端面電極を備えた上記第1の本発明の積層電子部品である。

又、第3の本発明(請求項3記載の本発明に対応)は、前記誘電体層Bには、 前記内部回路として、共振器電極が含まれており、

前記積層電子部品は、前記共振器電極に接続された第1の端子電極を備え、 前記端面電極は、前記積層電子部品が搭載される予定の基板上の所定の接地面 に接続するための第2の接地電極であり、

前記第1の端子電極は、前記第2の接地電極で取り囲まれるように、又は、前 記第2の接地電極と電気的に接続されて、前記誘電体層A~誘電体層Dの側面部

PCT/JP01/02002 WO 01/69710 5

に設けられている上記第2の本発明の積層電子部品である。

又、第4の本発明 (請求項4記載の本発明に対応) は、前記誘電体層Bには、 前記内部回路として、前記共振器電極の一部と対向して設けられた結合電極が更 に含まれており、

前記積層電子部品は、前記結合電極に接続された第2の端子電極を備え、

前記第2の端子電極は、(1)前記誘電体層Aの前記他方の主面および/また は誘電体層Dの前記一方の主面上に、前記第1の接地電極と電気的に接続しない ように形成され、且つ、(2)前記ピアホールとは異なるピアホールを介して前 記結合電極と電気的に接続されている上記第3の本発明の積層電子部品である。

又、第5の本発明(請求項5記載の本発明に対応)は、前記共振器電極は、伝 送線路にて構成された上記第3の本発明の積層電子部品である。

又、第6の本発明(請求項6記載の本発明に対応)は、前記第1の接地電極は 網目状、帯状もしくは蜂の巣状のいずれかに形成されている上記第1の本発明の 積層電子部品である。

又、第7の本発明(請求項7記載の本発明に対応)は、前記結合電極は、伝送 線路にて構成されている上記第4の本発明の積層電子部品である。

又、第8の本発明(請求項8記載の本発明に対応)は、前記結合電極は、伝送 線路にて構成された段間結合コンデンサ電極である上記第4の本発明の積層電子 部品である。

又、第9の本発明(請求項9記載の本発明に対応)は、上記第7の本発明の積 層電子部品を用いた送信フィルタと、

上記第8の本発明の積層電子部品を用いた受信フィルタと、 を備えた積層共用器である。

又、第10の本発明(請求項10記載の本発明に対応)は、上記第1の本発明 の積層電子部品を用いた積層フィルタおよび/または上記第9の本発明の積層共 用器を備えた通信機器である。

以上のような構成では、例えば、最底面または最上面の誘電体層にビアホールを形成し、シールド電極と接地電極とをビアホールを通じて接続することにより、積層電子部品の本体側面の外部電極の有無に関わらず、大きな接地面積を確保することが出来、接地強度を強化することが出来る。

又、第11の本発明(請求項11記載の本発明に対応)は、前記内部回路に接続され、前記積層電子部品の底面から最上面に向う第1の高さを有した外部端子電極を備え、

前記端面電極は、(1)前記積層電子部品が搭載される予定の基板上の所定の接地面に接続するための第2の接地電極であり、且つ、(2)前記積層電子部品の底面から最上面に向う第2の高さを有しており、

前記第1の高さと前記第2の高さは、互いに異なる上記第2の本発明の積層電子部品である。

又、第12の本発明(請求項12記載の本発明に対応)は、前記外部端子電極 の前記積層体最底面からの前記第1の高さは、前記第2の接地電極の前記積層体 底面部からの前記第2の高さより低い上記第11の本発明の積層電子部品である。

又、第13の本発明(請求項13記載の本発明に対応)は、前記第2の接地電極は、前記積層体の最上面と最底面とに引き延ばされて設けられている上記第1 2の本発明の積層電子部品である。

又、第14の本発明(請求項14記載の本発明に対応)は、前記第2の接地電極に接続された外部シールド電極を備え、

前記外部シールド電極は、前記積層体の最上面に設けられた上記第11の本発明の積層電子部品である。

又、第15の本発明(請求項15記載の本発明に対応)は、前記シールド電極 に接続された引き出し側面電極を備え、

前記引き出し側面電極は、少なくとも前記積層体の最上面から前記積層体側面 の前記外部端子電極が形成されている領域に渡って設けられており、

、前記積層体側面に設けられた部分は、前記積層体最低面からみて、前記外部端子電極の高さよりも高いところに配置されている上記第11の本発明の積層電子部品である。

又、第16の本発明(請求項16記載の本発明に対応)は、前記引き出し側面 電極は、前記外部シールド電極に接続されている上記第11の本発明の積層電子 部品である。

又、第17の本発明(請求項17記載の本発明に対応)は、前記外部端子電極 の両側に前記第2の接地電極が配置されている上記第11の本発明の積層電子部 品である。

又、第18の本発明(請求項18記載の本発明に対応)は、前記外部端子電極 を複数備え、

前記第2の接地電極は、前記外部端子電極間に配置されている上記第11の本 発明の積層電子部品である。

又、第19の本発明(請求項19記載の本発明に対応)は、前記引き出し側面 電極は、前記第2の接地電極の少なくとも1つに接続されている上記第15,1 7又は18の本発明の積層電子部品である。

又、第20の本発明(請求項20記載の本発明に対応)は、前記外部端子電極

と、前記外部端子電極の隣に配置される前記第2の接地電極との間隔は、前記外部端子電極の電極幅以上である上記第17又は18の本発明の積層電子部品である。

又、第21の本発明(請求項21記載の本発明に対応)は、前記外部端子電極 および前記第2の接地電極は、前記積層体に埋設されているか、又は、前記積層 体外部に露出している上記第11の本発明の積層電子部品である。

又、第22の本発明(請求項2記載の本発明に対応)は、前記誘電体層は、結 晶相とガラス相とを含み、

前記結晶相が、Al₂O₃、MgO、SiO₂及びRO。(RはLa、Ce、Pr、Nd、Sm及びGdから選ばれる少なくとも1つの元素であり、aは前記Rの価数に応じて化学量論的に定まる数値)のうち少なくとも1つを含有する上記第11の本発明の積層電子部品である。

又、第23の本発明(請求項23記載の本発明に対応)は、前記誘電体層は、 Bi₂O₃、Nb₂O₆を主成分として含む上記第11の本発明の積層電子部品である。

又、第24の本発明(請求項24記載の本発明に対応)は、上記第11の本発明の積層電子部品を用いたことを特徴とする通信機器である。

以上のような本発明の積層電子部品は、例えば、少なくとも1つの内部回路の入力/出力端子に接続される外部電極の高さが少なくとも1つのシールド電極 (内部接地電極)に接続される外部接地電極の高さより低くすることを特徴とする。

又、第26の本発明(請求項26記載の本発明に対応)は、複数の誘電体シートを積層して一体化した積層体と、

前記積層体内の複数の誘電体シートの主面上に設けられた内部回路と、

前記積層体内の複数の誘電体シートの主面上に設けられた接地電極と、

前記積層体の全部または一部を貫通して、前記複数の誘電体シートの主面上に 設けられた接地電極をそれぞれ電気的に接続する第1のビアホールと、

前記積層体の全部または一部を貫通して、前記複数の誘電体シートの主面上に 設けられた内部回路をそれぞれ電気的に接続する第2のビアホールと、

前記第2のビアホールと電気的に接続された、入力端子および出力端子とを備えた積層電子部品であって、

前記接地電極の少なくとも1つは、前記誘電体層の最下層および/または最上層の誘電体シートの主面上から外部に露出した露出接地電極として設けられており、

前記入力電極と前記出力電極とは、前記露出接地電極が設けられた面と同一の面に、該露出接地電極を間に挟んで設けられていることを特徴とする積層電子部品である。

又、第27の本発明(請求項27記載の本発明に対応)は、前記露出接地電極 以外の前記接地電極は、該積層電子部品の外部に露出する部分を持たないことを 特徴とする上記第26の本発明の積層電子部品である。

又、第28の本発明(請求項28記載の本発明に対応)は、前記複数の誘電体 シートは、少なくとも第1の誘電体シートと第2の誘電体シートとを有し、

前記複数の接地電極は、少なくとも前記第1の誘電体シートの主面上に設けられた第1の接地電極と、前記第2の誘電体シートの主面上に設けられた第2の接地電極とを有し、

前記第2の誘電体シートは、前記第1の接地電極と前記第2の接地電極との間

に配置されており、

前記第1のビアホールは、前記第1の誘電体シートおよび/または前記第2の 誘電体シートを少なくとも貫通して前記第1および第2の接地電極を電気的に接 続することを特徴とする上記第26の本発明の積層電子部品である。

又、第29の本発明(請求項29記載の本発明に対応)は、前記第2の誘電体シートは、前記第1の誘電体シートより上層に設けられたことを特徴とする上記第28の本発明の積層電子部品である。

又、第30の本発明(請求項30記載の本発明に対応)は、前記第1の誘電体シートと、前記第2の誘電体シートとの間には、前記内部回路が主面上に設けられた少なくとも1つの誘電体シートが配置されていることを特徴とする上記第29の本発明の積層電子部品である。

又、第31の本発明(請求項31記載の本発明に対応)は、前記第1の誘電体シートと前記第2の誘電体シートとは直接積層されていることを特徴とする上記第29の本発明の積層電子部品である。

又、第32の本発明(請求項32記載の本発明に対応)は、前記複数の誘電体シートは、少なくとも第3の誘電体シートを有し、

前記複数の接地電極は、少なくとも前記第3の誘電体シートの主面上に設けられた第3の接地電極を有し、

前記第1のピアホールは、前記第3の誘電体シートを少なくとも貫通して前記第3の誘電体シートと前記露出接地電極とを電気的に接続することを特徴とする上記第26の本発明の積層電子部品である。

又、第33の本発明(請求項33記載の本発明に対応)は、前記第3の誘電体シートと、前記露出接地電極が設けられた誘電体シートとの間には、前記内部回

路が主面上に設けられた少なくとも1つの誘電体シートが配置されていることを 特徴とする上記第32の本発明の積層電子部品である。

又、第34の本発明(請求項34記載の本発明に対応)は、前記第3の誘電体シートと前記露出接地電極が設けられた誘電体シートとは同一の誘電体シートであることを特徴とする上記第32の本発明の積層電子部品である。

又、第35の本発明(請求項35記載の本発明に対応)は、前記誘電体シートの厚みは5~50 μ mであることを特徴とする上記第26の本発明の積層電子部品である。

又、第36の本発明(請求項36記載の本発明に対応)は、前記誘電体シートは結晶相とガラス相とから少なくともなり、

前記結晶相が Al_2O_3 、MgO、 SiO_2 及びRO. (Rは、La、Ce、Pr、Nd、Sm及びGdから選ばれる少なくとも1つの元素であり、aは前記Rの価数に応じて化学量論的に定まる数値)のうち少なくとも1つを含有することを特徴とする上記第26の本発明の積層電子部品である。

又、第37の本発明(請求項37記載の本発明に対応)は、前記誘電体シートは、Bi₂O₃、Nb₂O₆を含むことを特徴とする上記第26の本発明の積層電子部品である。

又、第38の本発明(請求項38記載の本発明に対応)は、上記第26ないし 37のいずれかの本発明の積層電子部品を実装したことを特徴とする高周波無線 機器である。

以上のような本発明の積層電子部品は、例えば、複数の誘電体シートを積層して一体化した積層体と、前記積層体の内層に入力電極及び出力電極を備える複数の内部回路と複数の接地電極とが介在する電子部品であって、前記電子部品の底

面に第1の接地電極を形成し、前記電子部品の内層に第2の接地電極を形成するとともに、前記第1の接地電極と前記第2の接地電極を少なくとも2つ以上のビアホールを介して接続するという構成を備えたものである。

図面の簡単な説明

第1図は、本発明の実施の形態1における積層電子部品の分解斜視図である。

第2図は、本発明の実施の形態1における積層電子部品の等価回路図である。

第3図は、従来の積層電子部品の分解斜視図である。

第4図は、本発明の実施の形態2における積層電子部品の分解斜視図である。

第5 (a) 図は、実施の形態1における積層電子部品とマザー基板との接続状態を示す模式図である。

第5 (b) 図は、実施の形態2における積層電子部品とマザー基板との接続状態を示す模式図である。

第6図は、実施の形態1の積層電子部品の表層にチップ部品を実装した状態を 示す斜視図である。

第7図は、実施の形態2の積層電子部品の表層にチップ部品を実装した状態を 示す斜視図である。

第8図は、本発明の実施の形態B1による積層フィルタの分解斜視図である。

第9図は、本発明の実施の形態B1による積層フィルタの等価回路図である。

第10図は、本発明の実施の形態B2による積層フィルタの分解斜視図である。

第11図は、本発明の実施の形態B2による積層フィルタの等価回路図である。

第12図は、本発明の実施の形態B1の構成に実施の形態C1の構成を適用した積層フィルタの一例を説明するための分解斜視図である。

第13図は、本発明の実施の形態B1の構成に実施の形態C2の構成を適用した積層フィルタの一例を説明するための分解斜視図である。

第14図は、本発明における実施の形態C1の積層電子部品図である。

第15図は、本発明における実施の形態Clの積層電子部品における別の形態 図である。

第16図は、本発明における実施の形態C2の積層電子部品図である。

第17図は、本発明における実施の形態C2の積層電子部品の分解斜視図である。

第18図は、本発明における実施の形態C2の積層電子部品の内部回路の等価 回路図である。

第19図は、本発明における実施の形態C2の積層電子部品における別の形態 図である。

第20図は、本発明における実施の形態C2の積層電子部品図である。

第21(a)図は、本発明の実施の形態C1~C3における外部電極概略図である。

第21 (b) 図は、本発明の実施の形態C1~C3における外部電極の別の概略図である。

第21 (c) 図は、本発明の実施の形態C1~C3における外部電極の別の概略図である。

第22図は、本発明の実施の形態B1の積層フィルタの変形例を示す分解斜視 図である。

第23図は、従来の積層電子部品の斜視図である。

(符号の説明)

101、102、103、104、105、106、107、108 誘電体層

301、302、303、304、305、306、307、308 誘電体 層

401、402、403、404、405、406、407 誘電体層

109、112、118、120 接地電極

309、315、317 接地電極

409、417、419 接地電極

121、122、123、124、125,126 ビアホール

420、421、422、423 ビアホール

110、111、320、321、410、411、424 外部電極

113、117、119、310、314、316 コンデンサ電極

412、416、418 コンデンサ電極

114、115、311、312、413、414 ストリップライン

C1、C2、C3 キャパシタンス

L1、L2 インダクタンス

2101 誘電体層

2102 シールド電極

2103 共振器電極

2104、2105 コンデンサ電極

2106、2107 端面電極

2108 接地電極

- 2109 ビアホール電極
- 3101 積層電子部品
- 3102 積層体
- 3103 外部端子電極
- 3104 外部接地電極
- 3201 積層電子部品
- 3202 積層体
- 3203 外部端子電極
- 3204 外部接地電極
- 3205 引き出し側面電極
- 3206 外部シールド電極
- 3301 積層電子部品
- 3302 積層体
- 3303a 外部入力端子電極
- 3303b 外部出力端子電極
- 3304 外部接地電極
- 3305a 引き出し側面電極
- 3305b 引き出し側面電極
- 3401 第1の誘電体層
- 3402 第2の誘電体層
- 3403 第3の誘電体層
- 3404 第4の誘電体層
- 3405 第5の誘電体層

- 3406 第6の誘電体層
- 3407 第7の誘電体層
- 3408 第8の誘電体層
- 3409 内部接地電極
- 3410 コンデンサ電極
- 3411 ストリップライン
- 3412 ストリップライン
- 3413 接続点
- 3414 コンデンサ電極
- 3415 内部接地電極
- 3416 コンデンサ電極
- 3417 内部接地電極
- 3418 接続点
- 3419 接続点
- 3501 内部回路の入力/出力端子に接続される第1の外部電極
- 3502 内部回路の入力/出力端子に接続される第2の外部電極
- 3503 シールド電極に接続される外部電極
- 3601a 接続電極
- 3601b 接続電極
- 3602 外部シールド電極
- 3701 積層電子部品
- 3702 積層体
- 3703a 外部入力端子電極

- 3703b 外部出力端子電極
- 3704 外部接地電極
- 3705a 引き出し側面電極
- 3705b 引き出し側面電極
- 3706 接続電極
- 3707 外部シールド電極
- 3801 積層電子部品
- 3802 積層体
- 3803a 外部電極
- 3803b 外部電極
- 3803c 外部電極
- 3901 積層型電子部品
- 3902 積層体
- 3903 外部電極
- 3904 外部電極

発明を実施するための最良の形態

以下、本発明の実施の形態について、図面を参照しながら説明する。

(実施の形態1)

本発明の実施の形態 1 の積層電子部品について、図面を参照しながら説明する。 図1 は本発明の実施の形態 1 における積層電子部品の分解斜視図を示すものである。図1 に示すように本発明の積層電子部品は誘電体層 1 0 1 から誘電体層 1 0 1 を影響を表現しなが順に積層され、それぞれの誘電体層は比誘電率 1 1 1 に対して、図面を参照しながら説明する。

 $a n \delta = 2.0 \times 10^{-4}$ である結晶相とガラス相からなる誘電体シートである。

誘電体層101の底面には接地電極109と、回路の入力電極110、出力電極111が配置され、誘電体層101の上面には接地電極112が配置されている。

また、誘電体層102にはコンデンサ電極113が配置され、誘電体層103 にはストリップライン114とストリップライン115が配置され、接続点11 6で接続されている。

誘電体層104、105、106、107にはそれぞれコンデンサ電極117、 接地電極118、コンデンサ電極119、接地電極120が配置されている。

さらに、接地電極112はビアホール121、122、123 を介して接地電極109に接続され、接地電極118、120はそれぞれビアホール122、123を介して接地電極112に接続されている。

また、ストリップライン114の一端とコンデンサ電極113はビアホール1 24を介して入力電極110に接続されている。

コンデンサ電極119はビアホール125を介して接続点116に接続され、 コンデンサ電極117とストリップライン115の一端はビアホール126を介 して出力電極111に接続されている。

ただし、上記の説明に関し、図におけるビアホールの位置は、簡単のため原則 として分解斜視図上の点線にて模式的に示した。これは以下の各実施の形態も同様である。

以上のように構成された本実施の形態1による積層電子部品について、以下図 1及び図2を用いてその動作を説明する。

まず、図2は図1の積層電子部品の等価回路を示しており、図1に対応する素

子は同じ素子番号を用いて示した。

図2において、キャパシタンスC1はコンデンサ電極113と接地電極110 の間に形成され、キャパシタンスC2はコンデンサ電極117と接地電極118 の間に形成される。

また、キャパシタンスC3はコンデンサ電極119と接地電極120の間に形成され、インダクタンスL1、L2はそれぞれストリップライン114、115によって形成される。

また、入力電極110に直列にL1、並列にC1が接続され、出力電極111 に直列にL2、並列にC3が接続されており、接続点116において直列にL1、 L2、並列にC2が接続されている。

これにより、図1の積層電子部品は、5段のローパスフィルタを構成している ことがわかる。

ここで、キャパシタンスC2、C3を形成している接地電極118、120は ビアホール122、123を介してキャパシタンスC1を形成している接地電極 110に接続され、接地電極112はさらにビアホール121、122、123 を介して接地電極109に接続される。

すなわち、積層電子部品内層に配置された接地電極109、112、118、120はビアホール121、122、123を介してすべてが積層電子部品内部で接続され、さらに接地電極の外部電極として、積層電子部品底面に形成された接地電極109が用いられる。

また、ローパスフィルタの入力電極110、出力電極111はその電極間に接 地電極109の一部が存在するように配置されている。

以上のように、本発明の実施の形態1における積層電子部品によれば、積層電

子部品底面において従来と比較して広い面積の接地電極109の形成が可能となる。

したがって、従来の積層電子部品側面に接地電極及び回路の入力電極及び出力 電極を設けるという構成に比べて、実装基板との接地面積が広くなるため電気的 な接地強度が強化される。

これにより、高周波における特性劣化を防止し、積層電子部品内部回路の特性 を安定化することが可能となる。

特に、本実施の形態の積層電子部品を、1GHz以上の入力信号を扱う積層フィルタ等として使用した場合、フィルタ回路等の高周波特性、即ち、高周波領域における周波数の選択特性の劣化を防止することが出来るという効果を発揮する。

また、入力電極110、出力電極111の電極間に接地電極109が形成されている構成により、入力電極及び出力電極間の結合を防止でき、アイソレーション特性が強化されることになる。

さらに、外部電極109、110、111が積層電子部品底面にのみ形成され、 積層電子部品側面には外部電極が存在しないという構成により、積層電子部品側 面に外部電極を形成する必要がなくなるため、積層母体から積層電子部品個片へ の切断時に、積層母体切断面すなわち積層電子部品側面の平坦度の精度が求めら れない。

また、積層電子部品底面のみに外部電極を有するので、BGA(Ball Grid Array)やLGA(Land Grid Array)方式の端子形成が可能となり、高密度実装が可能となる。さらに、外部電極形成工程が内部電極の印刷工程と同時に行うことが可能となり、製作工程の簡素化が図れコストダウンが可能となる。

なお、外部電極となる接地電極、入力電極および出力電極は積層電子部品の底面でなく上面に設けてもよいし、底面および上面の両方に設けるようにしても同様の効果が得られる。

なお、本発明の実施の形態 1 では、誘電体層 1 0 1 から誘電体層 1 0 8 として、比誘電率 ϵ r = 7 、誘電損失 t an δ = 2 . 0×1 0 である結晶相とガラス相からなる誘電体シートを例として述べたが、比誘電率 ϵ r = $5 \sim 1$ 0 である結晶相とガラス相からなる誘電体シートを用いても同様の効果が得られる。

また、比誘電率 ϵ r = 50~100程度であるB i ϵ O₃、N b ϵ O₅を主成分する誘電体シートを用いても同様であり、誘電体シートの組成や誘電体シートの比誘電率および誘電損失に関わらず、同様の効果が得られる。

なお、本発明の実施の形態1では、ローパスフィルタの構成を例として述べたが、この構成はハイパスフィルタやバンドパスフィルタなど、さまざまなフィルタについても同様の効果が得られる。

(実施の形態2)

本発明の実施の形態2の積層電子部品について、図面を参照しながら説明する。 図4は本発明の実施の形態2における積層電子部品の分解斜視図を示すもので ある。

図4に示すように本発明の積層電子部品は誘電体層401から誘電体層407 までが順に積層され、それぞれの誘電体層は比誘電率 ϵ r=7、誘電損失 t a n $\delta=2$. 0×10^{-4} である結晶相とガラス相からなる誘電体シートである。

誘電体層401の底面には接地電極409と、回路の入力電極410、出力電極411が配置され、誘電体層401の上面にはコンデンサ電極412が配置されている。

また、誘電体層402にはストリップライン413とストリップライン414 が配置され、接続点415で接続されている。

誘電体層403、404、405、406にはそれぞれコンデンサ電極416、 接地電極417、コンデンサ電極418、接地電極419が配置されている。

さらに、接地電極417、419はピアホール420を介して接地電極409 に接続されている。

また、ストリップライン413の一端とコンデンサ電極412はビアホール4 21を介して入力電極410に接続されている。

コンデンサ電極418はビアホール422を介して接続点415に接続され、 コンデンサ電極416とストリップライン414の一端はビアホール423を介 して出力電極411に接続されている。

また、接地電極409、417、419は積層電子部品側面に形成された外部 電極427に接続されている。

以上のように、本発明の実施の形態2による積層電子部品では、本発明の実施の形態1とは異なり、積層電子部品底面に配置された接地電極409と積層電子部品内層に配置された接地電極417、419の間に複数のコンデンサ電極やストリップラインが配置されているが、この場合においても、本発明の実施の形態1と同様に積層電子部品底面において、従来と比較して広い面積の接地電極409の形成が可能となる。

したがって、従来の積層電子部品側面に接地電極及び回路の入力電極及び出力 電極を設けるという構成に比べて、実装基板との接地面積が広くなるため電気的 な接地強度が強化される。

また、すべての接地電極が積層電子部品内層においてビアホール420を介し

て接続されているだけではなく、積層電子部品側面においても外部電極424を 介して接続されているという違いも存在するが、この構造により、本発明の実施 の形態1と比べて、さらに電気的な接地強度が強化される。

したがって、高周波における特性劣化を防止し、積層電子部品内部回路の特性 を安定化することが可能となる。

特に、本実施の形態の積層電子部品を、1GHz以上の入力信号を扱う積層フィルタ等として使用した場合、フィルタ回路等の高周波特性、即ち、高周波領域における周波数の選択特性の劣化をより一層抑制することが出来るという効果を発揮する。

ここで、図5(a)、図5(b)を用いて、上記2つの実施の形態で説明した それぞれの積層電子部品が、マザー基板上に搭載される場合、そのマザー基板の 接地面に、どの様に接続されるのかという点について簡単に述べる。

図5 (a)、図5 (b)は、上記2つの実施の形態における、積層電子部品1502,1504をそれぞれ、マザー基板1501上の接地面に、半田等により接合した様子を模式的に示す側面図である。尚、半田の厚み等は、説明のために誇張して図示している。

実施の形態1で述べた積層電子部品1502は、図5(a)に示す様に、マザー基板1501の接地面と、接地電極109において半田1503等により電気的に接続されている。又、実施の形態2で述べた積層電子部品1504は、図5(b)に示す様に、マザー基板1501の接地面と、接地電極409において半田1505等により電気的に接続されている。

また、本発明の実施の形態1と同様に、入力電極410、出力電極411の電極間に接地電極409が形成されている構成により、入力電極及び出力電極間の

結合を防止でき、アイソレーションが強化されることになる。

なお、本発明の実施の形態 2 では、誘電体層 101 から誘電体層 108 として、比誘電率 ϵ r=7、誘電損失 t a n $\delta=2$. 0×10^{-4} である結晶相とガラス相からなる誘電体シートを例として述べたが、比誘電率 ϵ $r=5\sim10$ である結晶相とガラス相からなる誘電体シートを用いても同様の効果が得られる。

また、比誘電率 ϵ $r=50\sim100$ 程度である B i ϵ O 3、 N b ϵ O 5 を主成分する誘電体シートを用いても同様であり、誘電体シートの組成や誘電体シートの比誘電率および誘電損失に関わらず、同様の効果が得られる。

なお、本発明の実施の形態2では、ローパスフィルタの構成を例として述べたが、実施の形態1と同様、この構成はハイパスフィルタやバンドパスフィルタなどさまざまなフィルタについても同様の効果が得られる。

また、本発明の各実施の形態による積層電子部品をフィルタとして高周波無線機器に用いると、BGAなどの底面実装を用いることにより、基板への高密度実装が可能となるため、高周波無線機器の小型化が実現できる。また、実装基板との設置面積が広いことから、抗折強度が強化され、落下試験などによる信頼性の向上に繋がる効果が得られる。

又、図 6, 7 に示す様に、上記実施の形態の積層電子部品の表層に、スイッチ 等のチップ部品を実装しても良い。

即ち、図6は、実施の形態1の積層電子部品1502の表層にチップ部品16 01を実装した状態を示す斜視図である。積層電子部品1502の表層及び側面 に設けられた外部電極1602は、チップ部品1601と、マザー基板(図示量 略)上の所定の電極パターンとを電気的に接続するための電極である。

実施の形態1の積層電子部品1502では、その側面に積層電子部品自体の電

極が存在しないので、チップ部品1601の接続に必要な電極を自由に配置できるという効果を発揮する。

又、図7は、実施の形態2の積層電子部品1504の表層にチップ部品160 1を実装した状態を示す斜視図である。積層電子部品1504の表層に設けられ た外部電極1701は、チップ部品1601の裏面に設けられた外部端子(図示 省略)と接続するための電極である。

又、積層電子部品1504の内部を貫通するように設けられたビアホール1702は、マザー基板(図示量略)上の所定の電極パターンと、外部電極1701とを電気的に接続するための電極である。

実施の形態2の積層電子部品1504の様に、その側面に自身の電極が存在している場合でも、ビアホールを用いて、マザー基板に対するチップ部品1601の接続を可能にするという効果を発揮する。

又、図6と図7とを組み合わせた構成であっても良い。即ち、その場合、チップ部品1601の一部の端子と、マザー基板上の所定の電極パターンとが、図6に示す様な外部電極1602により接続され、且つ、チップ部品1601の他の端子と、マザー基板上の別の電極パターンとが、図7に示す様なビアホール1702を介して接続されている。

更に、チップ部品1601の別の端子が、上記積層電子部品の内部回路と上記 外部電極や上記ビアホールなどにより電気的に接続されている構成であっても勿 論良い。

尚、本発明の接地電極は、上記各実施の形態における接地電極109 (図1)、 接地電極409 (図4) に対応する。

又、本発明の第1のシールド電極は、接地電極112 (図1) や、接地電極4

17 (図4) に対応し、本発明の第2のシールド電極は、接地電極120、11 8 (図1) や、接地電極419 (図4) に対応する。又、本発明の端面電極は、 外部電極424 (図4) に対応する。

尚、図1等に示した積層電子部品では、上記本発明の接地電極に対応する電極 109等を、露出接地電極と呼び、又、本発明の第1又は第2のシールド電極に 対応する電極112,118,120等を、内部接地電極などと呼ぶこともある。 又、これらの電極は、シールド機能と接地機能の双方の機能を明確に区別する

以上のように本発明によれば、積層電子部品底面または上面において従来と比較して広い面積の接地電極の形成が可能となり、実装基板との接地面積が広くなるため電気的な接地強度が強化される。

これにより、高周波における特性劣化を防止し、積層電子部品内部回路の特性を安定化することが可能となる積層電子部品を提供することができる。

また、積層電子部品の底面または上面に形成された接地電極をはさんで回路の入力電極及び出力電極を形成することにより、入力電極及び出力電極間の結合を防止でき、アイソレーション特性が強化された積層電子部品を提供することができる。

(実施の形態 B1)

ことが困難な場合もある。

図8は本発明の実施の形態B1における積層フィルタの分解斜視図を示すものである。

図8において、2101は誘電体層、2102はシールド電極、2103は共振器電極、2104, 2105はコンデンサ電極、2106, 2107は端面電極、2108は接地電極、2109はビアホール電極を示している。

次に、この積層フィルタの積層構造について説明する。ただし図における上下 前後方向は、図中矢印に基づき定めるものとする。

本実施の形態の積層フィルタは、第1の誘電体層2101aの上主面に第1のシールド電極2102aを配置し、下主面に接地電極2108を配置している。

また、第1のシールド電極2102aの上主面に第2の誘電体層2101bを 積層し、さらに誘電体層2101bの上主面に2個の共振器電極2103a, 2 103bを配置している。

さらに、誘電体層2101bの上主面に第3の誘電体層2101cを積層し、 誘電体層2101cの上主面に3個のコンデンサ電極2104a、2104b及び2105を配置している。

さらに、コンデンサ電極 2104a、 2104b及び 2105の上側に第4の誘電体層 2101dを積層し、その積層体層 2101dの上主面に第2のシールド電極 2102b を配置し、第2のシールド電極 2102b の上側に第5の誘電体層 2101e を積層している。尚、ここで積層された第1~第5の誘電体層をまとめて誘電体と呼ぶ。

更に第1の誘電体層2101aには、上下主面を貫通するビアホールが開口され、それぞれのビアホールにはビアホール電極2109a、2109b及び2109c、2109dが配置しており、ビアホール電極第1のシールド電極2102aと接地電極2108とを電気的に接続するようにしている。

このようにして本実施の形態の誘電体フィルタの積層構造は形成されている。

さらに、誘電体の各側面にも電極を設けており、以下説明を行う。誘電体の前面に端面電極2106aを、誘電体の後面に端面電極2106dを設け、又、誘電体の右側面に端面電極2106b、2106cを、誘電体の左側面に端面電極

2106e、2106fを設けている。

また誘電体の左側面には、端面電極2106fと2106eとの間に、さらに端面電極2107aを設け、又、誘電体の右側面には、端面電極2106bと2106cとの間に、さらに端面電極2107bを設けている。

次に、これらの端面電極と各誘電体層上に形成された電極との接続関係について説明する。

第1のシールド電極2102aと、誘電体層2101bの後面側の短絡端2103cと、第2のシールド電極2102bとが、端面電極2106dで接続されている。尚、ここで、共振器電極2103a、2103bは、短絡端2103cにおいて共に接続されている。

尚、図5(b)で述べた様に、端面電極2106dは、半田等を用いて、図8に示す本実施の形態の積層フィルタが実装される予定のマザー基板(図示省略)上の接地パターン電極と電気的に接続されることになる。

又、コンデンサ電極2104aと端面電極2107aとを接続し、コンデンサ電極2104bと端面電極2107bを接続している。また、第1のシールド電極2102aと、第2のシールド電極2102bとを端面電極2106aで接続している。

尚、端面電極2106aは、上述した端面電極2106dと同様に、マザー基板の接地パターン電極と電気的に接続されることになる。

また、第1のシールド電極2102aと第2のシールド電極2102bとを端面電極2106b、2106c、2106e、及び2106fで接続しており、ここで端面電極2106aは2106b、2106fに、2106dは2106c、2106eにそれぞれ接続している。

また、接地電極2108は、第1のシールド電極2102aと、ビアホール電極2109a、2109b及び2109c、2109dを通じてそれぞれ接続している。

ここで図9に本発明の実施の形態B1による積層フィルタの等価回路を示す。 以下、図8、及び図9の等価回路を参照して、本発明の実施の形態B1による積 層フィルタの動作を説明する。

共振器電極2103a、2103bは、端面電極2106dを介して接地されているので4分の1波長共振器として作用する。コンデンサ電極2105は、共振器電極2103bの一部に対向して配置され、段間結合コンデンサとして作用するコンデンサ2205a、2205bを形成する。

また、これらのコンデンサ2205a、2205bは、コンデンサ電極210 5のうちの共振器電極2103a、2103bと対向しない部分に相当する伝送 線路2204で接続されている。

コンデンサ電極2104aは共振器電極2103aの一部に対向して配置され、 コンデンサ電極2104bは共振器電極2103bの一部に対向して配置されて、 入出力結合コンデンサ2203a、2203bを形成する。

また、これらのコンデンサ2203a、2203bは、端面電極2107a、 2107bに相当する伝送線路2202a、2202bに接続されている。

このように、本実施の形態B1による誘電体フィルタは、バンドパスフィルタとして動作することが分かる。

以上のように、本実施の形態によれば、誘電体の最底面に位置する誘電体層にビアホールを形成し、シールド電極からビアホールを通じて接地電極と接続して

いることで、誘電体の底面全体で接地でき、急峻な減衰特性をもつバンドパスフィルタの実現ができる。

また、底面全体の接地電極で接地するために、抗折強度がより強くなり、落下試験においても従来の構造に比べ耐久性を増すことが可能となる。

なお、上記の説明においては、接地電極2108は平板上であるとして説明を 行ったが、接地電極を網目状、帯状もしくは蜂の巣状にすることにより、減衰特 性はそのままで底面に偏った電極によるソリを低減できる。

また、接地電極は誘電体の最低面に設けるものとして説明を行ったが、これは 最上面としてもよく、最低面の場合と同じようにしてシールド電極とビアホール で接続すればよい。

なお、本実施の形態では、2段のバンドパスフィルタについて述べたが、この 構成は3段以上のフィルタでも同様の効果が得られるものであり、この場合は誘 電体層を5つ以上用いてもよい。

尚、本発明の誘電体層A, C, Dは、上記実施の形態の誘電体層2101a、 2101d、2101eにそれぞれ対応している。又、本発明の誘電体層Bは、 誘電体層2101b及び/又は2101cが対応する。又、本発明の内部回路に は、共振器電極103(103a~103c)等が含まれる。

又、本発明の第1の接地電極は、接地電極2108に対応し、又、本発明の第2の接地電極には、端面電極2106a~2106fが対応する。又、本発明の第1の端子電極は、端面電極2106dに対応しており、本発明の第2の端子電極は、端面電極2107a, bに対応している。

(実施の形態 B2)

次に本発明の実施の形態B2の積層フィルタについて、図面を参照しながら説

明する。

図10は本発明の実施形態における積層フィルタの分解斜視図を示すものである。

図10において、2301は誘電体層、2302はシールド電極、2303は 共振器電極、2304は伝送線路電極、2305, 2306は端面電極、230 7は接地電極、2308はビアホール電極を示している。

次に、この積層フィルタの積層構造について説明する。ただし図における上下 前後方向は、図8と同様にして定めるものとする。

本実施の形態の積層フィルタは、第1の誘電体層2301aの上主面に第1のシールド電極2302aを配置し、下主面に接地電極2307を配置している。

また、第1のシールド電極2302aの上主面に第2の誘電体層2301bを 積層し、さらに誘電体層2301bの上主面に2個の共振器電極2303a, 2 303bを配置している。

さらに、誘電体層2301bの上主面に第3の誘電体層2301cを積層し、 誘電体層2301cの上主面に伝送線路電極2304aを配置している。更に伝 送線路電極2304aの上側に第4の誘電体層2301dを積層し、その積層体 層2301dの上主面に第2のシールド電極2302bを配置している。

そして、第2のシールド電極2302bの上側に第5の誘電体層2301eを 積層している。ここで積層された第1~第5の誘電体層をまとめて誘電体と呼ぶ。

更に第1の誘電体層2301aには、上下主面を貫通するビアホールが開口され、それぞれのビアホールにはビアホール電極2308a、2308b及び2308c、2308dが配置しており、第1のシールド電極2302aと接地電極2308とを電気的に接続するようにしている。

このようにして本実施の形態の誘電体フィルタの積層構造は形成されている。 さらに、誘電体の各側面にも電極を設けており、以下説明を行う。

誘電体の前面に端面電極2305aを、誘電体の後面に端面電極2305dを 設けている。誘電体の右側面に端面電極2305b、2305cを、誘電体の左 側面に端面電極2305e、2305fを設けている。

また誘電体の左側面では、端面電極2305fと2305eとの間に、さらに端面電極2306aを設け、誘電体の右側面では、端面電極2305bと2305cとの間に、さらに端面電極2306bを設けている。

次に、これらの端面電極と各誘電体層上に形成された電極との接続関係について次に説明する。

第1のシールド電極2302aと、共振器電極2303a、2303bが共に接続された誘電体層2301bの後面側の短絡端と、第2のシールド電極230 2bとを端面電極2305dで接続して接地している。

又、伝送線路電極2304の一端と端面電極2306aとを接続し、伝送線路電極2304の他端と端面電極2306bとを接続している。また、第1のシールド電極2302aと、第2のシールド電極2302bとを端面電極2305aで接続して接地している。

また、第1のシールド電極2302aと第2のシールド電極2302bとを端 面電極2305b、2305c、2305e、及び2305fで接続している。

尚、ここで端面電極2305aは2305b、2305fに、2305dは2 305c、2305eにそれぞれ接続している。

また、接地電極2307は、第1のシールド電極2302aと、ビアホール電極2307a、2307b及び2307c、2307dを通じてそれぞれ接続し

ている。

ここで図11に本発明の実施の形態B2による積層フィルタの等価回路を示す。 以下、図10及び図11の等価回路を参照して、本発明の実施の形態B2による 積層フィルタの動作を説明する。

共振器電極2303a、2303bは、端面電極2305dを介して接地されているので4分の1波長共振器として作用する。伝送線路電極2304は、共振器電極2303bの一部に対向して配置され、ノッチ容量として作用するコンデンサ2401a、2401bを形成する。

また、これらのコンデンサ2401a、2401bは、伝送線路電極2304 のうちの共振器電極2303a、2303bと対向しない部分に相当する伝送線 路2402a, 2402b、2402cで接続されている。

このように、本実施の形態B2による誘電体フィルタは、バンドストップフィルタとして動作することが分かる。

以上のように、本実施の形態によれば、誘電体の最底面の誘電体層にビアホールを形成し、シールド電極からビアホールを通じて接地電極と接続していることにより、誘電体の底面全体で接地でき、急峻な減衰特性をもつバンドストップフィルタの実現ができる。

また、底面全体の接地電極で接地するために抗折強度がより強くなり、落下試験においても従来の構造に比べ耐久性を増すことが可能となる。

なお、上記の説明においては、接地電極2307は平板上であるとして説明を 行ったが、接地電極を網目状、帯状もしくは蜂の巣状にすることにより減衰特性 はそのままで底面に偏った電極によるソリを低減できる。

また、接地電極は誘電体の最低面に設けるものとして説明を行ったが、これは

最上面としてもよく、最低面の場合と同じようにしてシールド電極とビアホール で接続すればよい。

なお、本実施の形態では、2段のバンドストップフィルタについて述べたが、 この構成は3段以上のフィルタでも同様の効果が得られるものであり、この場合 は誘電体層を5つ以上用いてもよい。

また、本発明の各実施の形態の積層フィルタを携帯電話等の通信機器の送信と受信の周波数を切り分けるアンテナ共用器として使用することにより、限られた大きさで所望の特性を実現でき、通信機器の小型化にも貢献することが可能になる。その場合(RXはBPF、TXはBEF)との構成にすれば更に効果が高い。更に、本発明の各実施の形態の積層フィルタを携帯電話等の通信機器に使用することにより、抗折強度等の信頼性にもすぐれた構造が実現でき、通信機器の信頼性にも貢献することが可能になる。

又、本発明の積層電子部品は、上記実施の形態では、積層フィルタとして構成 した場合について説明したが、これに限らず例えば、バランやカップラなど、フィルタ以外の他の電子部品であっても良い。

以上のように本発明によれば、誘電体層にビアホールを形成しシールド電極からビアホールを通じて接地電極と接続することにより、所望の減衰特性を有するとともに、信頼性にもすぐれたフィルタを提供できる。

又、上記実施の形態では、本発明の第1の端子電極の一例として、端面電極2 106d等が、本発明の第2の接地電極に対応する端面電極2106c, 210 6eと電気的に接続されている場合について説明したが、これに限らず例えば、 第1の端子電極は、第2の接地電極で取り囲まれる様に、各誘電体層の側面に設けられていても良い。 尚、上記実施の形態では、結合電極(例えば、コンデンサー電極2104a, 2104b)に接続された本発明の第2の端子電極が、例えば端面電極2107 a、2107bとして積層電子部品の側面に設けられている場合(図8参照)に ついて説明したが、これに限らず例えば、上記第2の端子電極が以下の様な構成 であっても良い。

即ち、この場合、上記第2の端子電極は、(1)本発明の積層電子部品の前記 誘電体層Aの前記他方の主面および/または前記誘電体層Dの前記一方の主面上 に、前記第1の接地電極と電気的に接続しないように形成され、且つ、(2)前 記ピアホールとは異なるビアホールを介して前記結合電極と電気的に接続されて いる。

尚、ここで、上記本発明の積層電子部品の構成は、例えば、一方の主面に第1 のシールド電極が設けられた誘電体層Aと、

前記誘電体層Aに対して、間接的に積層された誘電体層であって、一方の主面に第2のシールド電極が設けられた誘電体層Cと、

少なくとも一方の主面が外部に露出している誘電体層Dと、

前記誘電体層Aと前記誘電体層Cとの間に積層された、内部回路を含む誘電体層Bと、

前記誘電体層Aの他方の主面、または前記誘電体層Dの前記一方の主面に設けられた第1の接地電極とを備え、

前記誘電体層Aと前記誘電体層Dの少なくとも一方の誘電体層にはビアホールが設けられており、

前記第1のシールド電極と前記第2のシールド電極が、電気的に接続されており、

前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されているか、又は、前記第1の接地電極と前記第2のシールド電極とが、前記誘電体層Dに設けられたビアホールを介して電気的に接続されている積層電子部品であって、前記誘電体層Bには、前記内部回路として、前記共振器電極の一部と対向して設けられた結合電極が更に含まれており、前記積層電子部品は、前記結合電極に接続された第2の端子電極を備えた構成である。

この様な構成による積層電子部品は、具体的には、図22に示す様に、第2の端子電極2111、2110が、(1)誘電体層2101aの下主面上に、第1の接地電極2108と電気的に接続しないように形成され、且つ、(2)ビアホール2109a~2109dとは異なるビアホール2126,2124を介してコンデンサ電極2104a,2104bと電気的に接続されている。その他の構成は、基本的に図8で示す構成と同じである。

図22に示す構成の積層電子部品によれば、内部回路のコンデンサ電極210 4a, bに接続される端面電極2111,2110のそれぞれの面積が、図8に 示す端面電極2107a, bのそれぞれの面積に比べて小さく出来る。

そのため、こらの端面電極(外部端子電極)に生じるコンダクタンス成分あるいはインダクタンス成分の寄生成分を抑制することが出来るという効果を発揮する。

更に又、端面電極2111,2110を、誘電体層2101aの下主面上に設けることが出来、積層電子部品の側面において、各第2の接地電極(端面電極2106b、c、e、f)を、電極2106bと2106cを一つにし、電極2106eと2106fを合体するという様に、各側面において、接地電極を一つに

まとめることが可能となり、電極の面積をより大きくすることが出来る。

これにより、接地電極の面積がより一層大きく出来るので、電気的な接地強度 がより一層強くなるという効果を発揮する。

(実施の形態C1)

図14は、本発明における実施の形態C1の積層電子部品の構成を示す図である。

図14において、本発明の実施の形態C1の積層電子部品3101は、複数の 誘電体シートが積層されて成る積層体3102であって、積層体3102の内層 には入力/出力端子を備える内部回路(図示せず)と内部接地電極(図示せず) とが介在する。

誘電体シートは比誘電率 ϵ r=7、誘電損失 t an $\delta=2$. 0×10^{-4} である 結晶相とガラス相とからなる。積層体 3102の側面には、内部回路の入力/出力端子に電気的に接続される外部端子電極 3103 と内部接地電極に電気的に接続される外部接地電極 3104 とが形成される。

このとき、内部回路の入力/出力端子に電気的に接続される外部端子電極31 03の高さは、内部接地電極に接続される外部接地電極3104の高さより低くなるよう形成されている。

即ち、外部接地電極3104は、積層体3102の側面において、積層体3102の最上面から最底面に渡って形成されている。又、外部端子電極3103は、 積層体3102の側面において、中間部から最底面の間に形成されている。

外部端子電極3103と外部接地電極3104の横幅は、ここでは略同一としている。したがって、電極の高さの違いにより、外部端子電極3103の面積が 従来のものより小さくなる様に形成されている。 尚、外部端子電極3103と外部接地電極3104の横幅は、必ずしも同一出なくても良い。

以上のような構成とすることにより、本発明における実施の形態C1の積層電子部品は、内部回路の入力/出力端子に電気的に接続される外部端子電極のコンダクタンス成分あるいはインダクタンス成分の寄生成分による特性劣化を抑えることができる。

なお、本発明の積層電子部品は図15に示す構成であってもかまわない。

図15において、本発明の積層電子部品3201は、複数の誘電体シートが積層されて成る積層体3202であって、積層体の内層には入力/出力端子を内部回路(図示せず)と内部接地電極(図示せず)とが介在する。

積層体3202の側面には、内部回路の入力/出力端子に電気的に接続される外部電極3203と内部接地電極に電気的に接続される外部電極3204とが形成される。内部回路の入力/出力端子に電気的に接続される外部電極3203の高さが内部接地電極に接続される外部接地電極3204の高さより低く形成されている。

また、外部接地電極3204は、積層体3202の側面において、積層体32 02の最上面から最底面に渡って形成されている。又、外部端子電極3203は、 積層体3202の側面において、中間部から最底面の間に形成されている。

又、外部端子電極3203の上部の領域には積層体3202の最上面から引き 出し側面電極3205が引き出されており、引き出し側面電極3205は内部接 地電極に接続される。

また、積層体3202の最上面には外部シールド電極3206が設けられており、外部接地電極3204と引き出し側面電極3205が接続される。

以上の構成とすることにより、本発明の積層電子部品は、入力/出力端子に電気的に接続される外部端子電極のコンダクタンス成分あるいはインダクタンス成分の寄生成分による特性劣化を抑えるとともに、シールド効果を改善できる効果を有するものである。

なお、引き出し側面電極3205は積層体3202の内部接地電極と外部シールド電極3206の両方に接続されていなくても、内部接地電極あるいは外部シールド電極3206のどちらか一方に接続され電気的に接地されていればかまわない。

なお、本実施の形態においては、外部端子電極、外部接地電極、引き出し側面 電極の数、及び配置される側面の位置は図14および図15に示すものに限るも のでなく、積層体の内部回路、内部接地電極の配置、構成にあわせて任意に適応 するものであり、いずれの外部電極も、少なくとも積層体の底面から延伸して形 成されていればよい。

また、本実施の形態では、内部接地電極を1つとして説明したが、内部接地電極が複数存在しても、積層体にビアホールを設けて接続するか、外部接地電極により接続することにより同電位とすればよく、内部接地電極を増やすことにより接地の強化、及びシールド効果の向上にもつながる。

また、本実施の形態では、内部接地電極に接続される外部接地電極3104、3204は積層体3102、3202の最上面と最底面との間に渡って形成されている構成としたが、これに限らず例えば、内部回路の入力/出力端子に接続される外部端子電極3103、3203の高さの方が、内部接地電極に接続される外部接地電極3104、3204の高さより低い構成であれば、上記と同様の効果が得られる。

ただし、このとき外部端子電極3103または3203と、外部接地電極31 04または3204とは、その横幅が略同一であることが望ましい。

また、本実施の形態では、誘電体シートとして、比誘電率 ϵ r=7、誘電損失 t a n $\delta=2$. 0×10^{-4} である結晶相とガラス相からなる誘電体シートを例として述べたが、比誘電率 ϵ $r=5\sim 10$ である結晶相とガラス相からなる誘電体シートを用いても同様の効果が得られる。

また、比誘電率 ϵ r = 50~100程度であるB i ϵ Os、N b ϵ Osを主成分する誘電体シートを用いても同様の効果が得られる。

尚、本発明の第2の接地電極は、上記実施の形態の外部接地電極3104等に 対応し、本発明の外部端子電極は、外部端子電極3103等に対応する。

(実施の形態 C2)

図16は、本発明における実施の形態C2の積層電子部品の構成を示す図である。

図16において、本発明の実施の形態C2の積層電子部品3301は、複数の 誘電体シートが積層されて成る積層体3302であって、積層体の内層には入力 /出力端子を備える内部回路(図示せず)と内部接地電極(図示せず)とが介在 する。

誘電体シートは比誘電率 ϵ r=7、誘電損失 t a n $\delta=2$. 0×10^{-4} である 結晶相とガラス相からなる。

積層体3302の側面には、内部回路の入力端子に電気的に接続される外部入力端子電極3303aと内部回路の出力端子に電気的に接続される外部出力端子電極3303bと内部接地電極に電気的に接続される外部接地電極3304とが形成される。

このとき、外部入力端子電極3303aの高さ、及び外部出力端子電極330 3bの高さは、外部接地電極3304の高さより低くなるよう形成されている。

また、外部接地電極3304は、外部入力端子電極3303a、3303bの 両側に配置されており、外部接地電極3304は積層体3302の最上面から積 層体3302の最底面に渡って形成されている。

外部入力端子電極3303aは、積層体3302の側面において、その中間部から最底面までの間に形成されている。上記側面において、外部入力端子電極3303aの上部の領域には、積層体3302の最上面から引き出し側面電極3305aは内部接地電極に接続される。

また、外部出力端子電極3303bは、積層体3302の側面において、その中間部から最底面に渡って形成されている。外部出力端子電極3303bの上部の領域には積層体3302の最上面から引き出し側面電極3305bが引き出されており、引き出し側面電極3305bは内部接地電極に接続される。

なお、以上の構成において、外部端子電極3303と外部接地電極3304の 横幅は、ここでは略同一としている。

図17に示すのは、図16で示した積層電子部品3301の分解斜視図である。 図17に示すように、積層電子部品3301は誘電体層3401から誘電体層3408までが番号順に積層されている。誘電体層3401には内部接地電極3409が配置され、誘電体層3402にはコンデンサ電極3410が配置されている。

また、誘電体層3403にはストリップライン3411とストリップライン3412とが配置され、接続点3413で接続されている。誘電体層3404、3

405、3406、3407にはそれぞれコンデンサ電極3414、内部接地電極3415、コンデンサ電極3416、内部接地電極3417が配置されている。

さらに、コンデンサ電極3410はビアホール3501を介してストリップライン3411の接続点3418に接続され、コンデンサ電極3414はビアホール3502を介して接続点3413に接続されている。

さらに、コンデンサ電極3416はビアホール3503を介してストリップライン3412の接続点3419に接続されている。

また、内部接地電極3415、3417は積層電子部品側面に形成された外部接地電極3304を介して内部接地電極3409に接続されている。又、内部回路の入力端子は、ストリップライン3411の一端を積層電子部品端面まで引き伸ばされ、積層電子部品側面に形成された外部入力端子電極3303aに接続されている。

又、内部回路の出力端子は、ストリップライン3412の一端を積層電子部品 端面まで引き伸ばされ、積層電子部品側面に形成された外部入力端子電極330 3bに接続されている。

また、内部接地電極3417は引き出し側面電極3305a、引き出し側面電極3305bに接続されている。ただし、上記の説明に関し、図におけるビアホールの位置は簡単のため原則として分解斜視図上の点線にて模式的に示した。

図18は、図17の積層電子部品の等価回路を示しており、図17に対応する素子は同じ番号を用いている。キャパシタンスC1はコンデンサ電極3410と内部接地電極3409の間に形成され、キャパシタンスC2はコンデンサ電極3414と接地電極3415の間に形成される。

また、キャパシタンスC3はコンデンサ電極3416と接地電極3417の間

に形成され、インダクタンスL1、L2はそれぞれストリップライン3411、3412によって形成される。外部入力端子電極3303aに直列にL1、並列にC1が接続され、外部出力端子電極3303bに直列にL2、並列にC3が接続されている。

さらに接続点3413において直列にL1、L2、並列にC2が接続されることにより5素子の低域通過型フィルタを構成している。

以上の構成とすることにより、本発明における実施の形態C2の積層電子部品は、内部回路の入力端子に電気的に接続される外部入力端子電極3303a、内部回路の出力端子に電気的に接続される外部出力端子電極3303bのコンダクタンス成分あるいはインダクタンス成分の寄生成分による特性劣化を抑えるとともに、外部入力端子電極3303a、及び外部出力端子電極3303bの両側に配置された外部電極3304によりシールド効果を改善して、空間的な電気的結合による特性劣化を抑えることができるものである。

なお、本実施の形態では、積層電子部品3301において、図19に示すように、外部シールド電極3602を積層体3302の最上面に配置してもかまわない。この場合には、積層電子部品3301のシールド効果が改善されるものである。

なお、引き出し外部電極3305a、3305bは、図19に示すように、接続電極3601a、3601bにより内部接地電極に電気的に接続される外部接地電極3304に接続されるように構成しても構わない。この場合は、さらにシールド効果が改善されることが期待できる。

なお、本実施の形態においては、図16に示す様に、外部端子電極3303a と、その両側に配置された外部接地電極3304との間隔W2、W3が、外部端子 電極3303aの電極幅Wiと、同じか又はそれよりも大きいことが望ましい。

又、外部端子電極3303bと、その両側に配置された外部接地電極3304 との間隔 W_2 '、 W_3 'と、外部端子電極3303bの電極幅 W_1 'との関係においても、これと同様のことが言える。

なお、本実施の形態においては、外部端子電極、外部接地電極、引き出し側面 電極の数、及び配置される側面の位置はこれに限るものでなく、積層体の内部回 路、内部接地電極にあわせて適応するものであり、いずれの外部電極も、少なく とも積層体の底面から延伸して形成されていればよい。

なお、本実施の形態では、内部回路を低域通過型フィルタとして説明したが、 他の回路構成でもよく、また、内部回路は単一でなく、複数存在していても構わ ない。

なお、本実施の形態では、内部接地電極を1つとして説明したが、内部接地電極が複数存在しても、積層体にピアホールを設けて接続するか、外部接地電極により接続することにより同電位とすればよく、内部接地電極を増やすことにより接地の強化、及びシールド効果の向上にもつながる。

なお、引き出し側面電極3305a、3305bは積層体3302の内部接地電極に接続されていなくても、外部シールド電極3206に接続され電気的に接地されていればかまわない。

 トを用いても同様の効果が得られる。

尚、例えば請求項11に記載の本発明の第1のシールド電極の一例が、上記実施の形態の内部接地電極3409であり、又、本発明の第2のシールド電極の一例が、内部接地電極3417である。

(実施の形態C3)

図20は、本発明における実施の形態C3の積層電子部品を示す図である。

図20において、本発明の実施の形態C3の積層電子部品3701は、複数の 誘電体シートが積層されて成る積層体3702であって、積層体の内層には入力 /出力端子を備える内部回路(図示せず)と内部接地電極(図示せず)とが介在 する。

誘電体シートは比誘電率 ϵ r=7、誘電損失 t a n $\delta=2$. 0×10^{-4} である 結晶相とガラス相からなる。積層体 3 7 0 2 の側面には、内部回路の入力端子に 電気的に接続される外部入力端子電極 3 7 0 3 a と内部回路の出力端子に電気的 に接続される外部出力端子電極 3 7 0 3 b と内部接地電極に電気的に接続される 外部接地電極 3 7 0 4 とが形成される。

このとき、外部入力端子電極3703aの高さ、及び外部出力端子電極370 3bの高さは、外部接地電極3704の高さより低くなるよう形成されている。

また、外部入力端子電極3703a、及び外部出力端子電極3703bは積層体3702の同一側面に配置されており、外部入力端子電極3703aと外部出力端子電極3703bとの外部接地電極3704が配置されている。

外部接地電極3704は、積層体3702の最上面から最底面に渡って形成されている。外部入力端子電極3703aは、積層体3702の側面において、その中間部から最底面に渡って形成されている。

外部入力端子電極3703aの上部の領域には積層体3702の最上面から引き出し側面電極3705aが引き出されており、引き出し側面電極3705aは 内部接地電極に接続される。

また、外部出力端子電極3703bは、積層体3702の側面において、その中間部から最底面までの間に形成されている。外部出力端子電極3703bの上部の領域には積層体3702の最上面から引き出し側面電極3705bが引き出されており、引き出し側面電極3705bは内部接地電極に接続される。

なお、上記の構成において、外部端子電極3703、外部接地電極3704お よび引き出し側面電極3705の横幅は、ここでは略同一としている。

以上の構成とすることにより、本発明における実施の形態C3の積層電子部品は、積層体3702の同一側面に外部入力端子電極3703a、及び外部出力端子電極3703bが配置された場合であっても、外部入力端子電極3703a、及び外部出力端子電極3703bとの間のアイソレーションが確保できるものである。

また、引き出し側面電極3705a、3705bは、接続電極3706により、 内部接地電極に電気的に接続された外部接地電極3704に接続される構成としても構わない。この場合は、さらにシールド効果が改善されることが期待できる。

さらに、外部接地電極3704、あるいは引き出し側面電極3705a、37 05bは外部シールド電極3707に接続されてもかまわない。この場合には、 アイソレーション確保に加えて、シールド効果も改善されることが期待できる。

なお、内部回路の入力端子に電気的に接続される外部入力端子電極3703a、 及び内部回路の出力端子に電気的に接続される外部出力端子電極3703bと、 内部接地電極に電気的に接続される外部接地電極3704との間隔については、 外部入力端子電極3703a、外部出力端子電極3703bの電極幅と同じ程度か、あるいはそれよりも大きいことが望ましい。

なお、本実施の形態では、積層体3702の同一側面に外部入力端子電極3703a、及び内部回路を配置した構成としたが、これに限るものでなく、複数の内部回路の外部端子電極が同一側面に配置されていても、外部端子電極の間に外部接地電極を配置すれば、同様の効果が得られる。

なお、本実施の形態においては、外部端子電極、外部接地電極、引き出し側面 電極の数、及び配置される側面の位置はこれに限るものでなく、積層体の内部回 路、内部接地電極にあわせて適応するものであり、少なくとも端子ないし外部の 外部電極が、いずれも少なくとも積層体の底面から延伸して形成されていればよ い。

なお、本実施の形態では、内部接地電極を1つとして説明したが、内部接地電極が複数存在しても、積層体にビアホールを設けて接続するか、外部接地電極により接続することにより同電位とすればよく、内部接地電極を増やすことにより接地の強化、及びシールド効果の向上にもつながる。

なお、引き出し側面電極3705a、3705bは積層体3302の内部接地 電極に接続されていなくても、外部シールド電極3707に接続され電気的に接 地されていればかまわない。

なお、本実施の形態では、誘電体層 3101 から誘電体層 3108 として、比誘電率 ϵ r=7、誘電損失 t an $\delta=2$. 0×10^{-4} である結晶相とガラス相からなる誘電体シートを例として述べたが、比誘電率 ϵ $r=5\sim 10$ である結晶相とガラス相からなる誘電体シートを用いても同様の効果が得られる。

また、比誘電率 ϵ $r=50\sim100$ 程度であるB i $_2$ O $_3$ 、N b $_2$ O $_5$ を主成分す

る誘電体シートを用いても同様の効果が得られる。また、誘電体層の数もこれに 限るものではない。

また、実施の形態C1~C3にて説明した内部接地電極に接続される外部接地電極3104、3204、3304、3704は、図21(a)に示すように、積層電子部品3801において、積層体3802を形成後に積層体3802にドリルなどで穴を形成して導電材料の塗布やメッキなどを行うことにより形成されて積層体3802に埋没された構成の外部電極3803aでもよい。

また、図21(b)に示すように、積層電子部品3801において、積層体3802を構成する誘電体シートに印刷などにより電極パターンを形成し、積層体3802に内層して形成される埋没された構成の外部電極3803bでもよい。

また、実施の形態C1~C3にて説明した内部接地電極に接続される外部接地電極3104、3204、3304、3704は、図21(c)に示すように、積層電子部品3801において、積層体3802を形成後に銀ペーストなどの導電材料を塗布することにより積層体3802の外部に形成される構成の外部電極3803cとしてももよい。

なお、外部電極3803cは積層体3802の最上面に周りこむ形状となっているが、これは側面だけに塗布されていてもかまわない。

なお、内部回路の入力/出力端子に接続される外部端子電極3103、3203、3303a、3303b、3703a、3703bについては、図21(a)~図21(c)の外部電極3803a、3803b、3803cと同様に形成される。しかし、外部端子電極3103、3203、3303a、3303b、3703a、3703bの高さが、外部接地電極3104、3204、3304、3704の高さより低く形成される構成であるという点が異なる。

また、引き出し側面電極3205、3305a、3305b、3705a、3705b、3705b、3705b、3706については、図21(a)~図21(c)の外部電極3803a、3803b、3803cと同様に形成される。

しかし、引き出し側面電極3205、3305a、3305b、3705a、3705b、および接続電極3601a、3601b、3706の高さが、外部接地電極3104、3204、3304、3704の高さより低く形成される構成であるという点が異なる。

また、実施の形態C1~C3にて説明した積層電子部品は、半導体、弾性表面 波フィルタなどの電子部品チップを積層体に複合した構成であってもかまわない。

また、実施の形態C1~C3にて説明した積層電子部品は、通信機器に用いることにより、端子面積を小型化して、基板上のパターンとのカップリングを小さくすることができる、もしくは入出力のアイソレーションを改善したことにより、不要な信号の入力を防いで、高性能化できる効果がある。

以上の構成とすることにより、本発明の積層電子部品は、少なくとも1つの内部回路の入力/出力端子に接続される外部端子電極の高さが内部接地電極に接続される外部接地電極の高さより低くすることにより、コンダクタンス成分あるいはインダクタンス成分の寄生成分による特性劣化を抑えることができる積層電子部品を提供することを目的とする。

また、少なくとも1つの内部回路の入力/出力端子に接続される複数の外部端子電極の間に、少なくとも1つの内部接地電極に接続される外部接地電極を配置することにより、外部端子電極間における空間的結合を小さくすることができる積層電子部品を提供することを目的とする。

以上説明したように本発明の積層電子部品は、複数の誘電体シートを積層して一体化した積層体と、前記積層体の内層に入力/出力端子を備える少なくとも1つの内部回路の入力/出力端子と少なくとも1つの内部接地電極とが介在する積層電子部品であって、前記内部回路の入力/出力端子が前記積層体の側面に形成される外部端子電極に電気的に接続され、前記内部接地電極が前記積層体の側面に形成される外部接地電極に電気的に接続されるとともに、前記外部端子電極の高さが前記外部接地電極の高さより低い構成とすることにより、コンダクタンス成分あるいはインダクタンス成分の寄生成分による特性劣化を抑えることができる。

尚、上記実施の形態 $B1\sim B2$ では、端面電極107a、107b等の高さと、接地電極106b, 106e等の高さとが同じである場合について説明したが、これに限らず例えば、実施の形態 $C1\sim C3$ の何れかと組み合わせることにより、図12, 13に示す様に、双方の電極の高さが異なる構成としても良い。

ここで、図12は、上記実施の形態B1の構成に上記実施の形態C1の構成を 適用した例を説明するための分解斜視図である。

同図の構成では、端面電極2117a, 2117bの高さが異なる点を除き、図8の構成と同じである。端面電極2117a, 2117bの各上端部は、コンデンサ電極2104a、2104bにそれぞれ接続されている。

この様な構成により、接地強度の改善に加えて、端面電極2117a, 211 7bにおける、コンダクタンス成分あるいはインダクタンス成分の寄生成分の発生を抑制することも出来るので、より一層、高周波特性の優れた積層電子部品を提供することが出来るという効果を発揮する。

又、図13は、上記実施の形態B1の構成に上記実施の形態C2の構成を適用

した例を説明するための分解斜視図である。

同図の構成では、端面電極2117c,2117dが更に形成されている点と、第2シールド電極2102bの外形が異なる点を除き、図12の構成と同じである。端面電極2117c,2117dの各下端部は、第2シールド電極2102bの一方の接続用電極2112c、他方の接続用電極2112dにそれぞれ接続されている。

この様な構成により、図13で述べたものと同様の効果が得られる。

又、本発明の積層電子部品は、上記実施の形態では、例えば5つの誘電体層を 有している積層フィルタとして構成した場合等について説明したが、これに限ら ず例えば、以下の様な構成でも良い。

即ち、この場合の積層電子部品は、一方の主面に第1のシールド電極が設けられた誘電体層Aと、

前記誘電体層Aに対して、直接又は間接的に積層された誘電体層であって、一方の主面に第2のシールド電極が設けられた誘電体層Bと、

少なくとも一方の主面が外部に露出している誘電体層Dと、

前記誘電体層Bと前記誘電体層Dの間に積層された、内部回路を含む誘電体層 Bと、

前記誘電体層Aの他方の主面、または前記誘電体層Dの前記一方の主面に設けられた第1の接地電極とを備え、

前記誘電体層Aと前記誘電体層Dの少なくとも一方の誘電体層にはビアホールが設けられており、

前記第1のシールド電極と前記第2のシールド電極が、電気的に接続されており、

前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されているか、又は、前記第1の接地電極と前記第2のシールド電極とが、前記誘電体層Dに設けられたビアホールを介して電気的に接続されている積層電子部品でありさえすれば良い。

従って、本願発明の積層電子部品は、誘電体層の数や、電子部品の種類や、ビアホールが設けられている誘電体層の積層位置や、その他の構成については上記 実施の形態には限定されない。

又、本発明の積層電子部品は、上記実施の形態では、例えば、第1及び第2のシールド電極が設けられている場合について説明したが、これに限らず例えば、第2のシールド電極が無くても良い。

この場合の構成としては、例えば、上記実施の形態B1で説明した積層電気部 品の構成の内、第4の誘電体層2101dが存在しない点を除き、図8に示した 構成と基本的に同じである。

よって、この場合の積層電子部品は、一方の主面に第1のシールド電極が設けられた誘電体層Aと、少なくとも一方の主面が外部に露出している誘電体層Dと、前記誘電体層Aと前記誘電体層Dとの間に積層された、内部回路を含む誘電体層Bと、前記誘電体層Aの他方の主面に設けられた第1の接地電極とを備え、前記誘電体層Aにはビアホールが設けられており、前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されている。

この様な構成により、上記実施の形態B1で述べた様に、接地電極の面積が十分に確保出来、マザー基板に対する接地強度の強化が図れるという効果を発揮する。

尚、第1のシールド電極が、積層電子部品の内部回路とマザー基板との間に設けられているので、上記内部回路とマザー基板側の回路との間のシールド機能も 従来と同様に確保出来ることは言うまでもない。

以上述べたところから明らかなように本発明は、積層電子部品において、寄生 成分による特性劣化を抑え、シールド及び外部電極間のアイソレーションを改善 できるという長所を有する。

又、上記各実施の形態の積層電子部品を、1 GH z 以上の入力信号を扱う積層フィルタ等として使用した場合、フィルタ回路等の高周波特性、即ち、高周波領域における周波数の選択特性の劣化をより一層抑制することが出来るという効果を発揮する。

以上述べたことから明らかなように、本発明は接地電極が十分確保でき、接地 強度の強化が図れるという長所を有する。

又、本発明は高周波領域における周波数の選択性に優れているという長所を有 する。

産業上の利用可能性

以上説明したように、本発明の構成を、例えば、1GHz以上の入力信号を扱う積層フィルタに適用した場合、フィルタ回路等の高周波特性、即ち、高周波領域における周波数の選択特性の劣化をより一層抑制することが出来る。

請求の範囲

1. 一方の主面に第1のシールド電極が設けられた誘電体層Aと、

前記誘電体層Aに対して、間接的に積層された誘電体層であって、一方の主面に第2のシールド電極が設けられた誘電体層Cと、

少なくとも一方の主面が外部に露出している誘電体層Dと、

前記誘電体層Aと前記誘電体層Cとの間に積層された、内部回路を含む誘電体層Bと、

前記誘電体層Aの他方の主面、または前記誘電体層Dの前記一方の主面に設けられた第1の接地電極とを備え、

前記誘電体層Aと前記誘電体層Dの少なくとも一方の誘電体層にはビアホールが設けられており、

前記第1のシールド電極と前記第2のシールド電極が、電気的に接続されており、

前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されているか、又は、前記第1の接地電極と前記第2のシールド電極とが、前記誘電体層Dに設けられたビアホールを介して電気的に接続されている積層電子部品。

- 2. 前記積層電子部品の側面に設けられた、前記第1のシールド電極と前記第2のシールド電極とを前記電気的に接続するための端面電極を備えた請求項1 記載の積層電子部品。
 - 3. 前記誘電体層Bには、前記内部回路として、共振器電極が含まれており、 前記積層電子部品は、前記共振器電極に接続された第1の端子電極を備え、 前記端面電極は、前記積層電子部品が搭載される予定の基板上の所定の接地面

に接続するための第2の接地電極であり、

前記第1の端子電極は、前記第2の接地電極で取り囲まれるように、又は、前記第2の接地電極と電気的に接続されて、前記誘電体層A~誘電体層Dの側面部に設けられている請求項2に記載の積層電子部品。

4. 前記誘電体層Bには、前記内部回路として、前記共振器電極の一部と対向して設けられた結合電極が更に含まれており、

前記積層電子部品は、前記結合電極に接続された第2の端子電極を備え、

前記第2の端子電極は、(1)前記誘電体層Aの前記他方の主面および/または誘電体層Dの前記一方の主面上に、前記第1の接地電極と電気的に接続しないように形成され、且つ、(2)前記ピアホールとは異なるピアホールを介して前記結合電極と電気的に接続されている請求項3に記載の積層電子部品。

- 5. 前記共振器電極は、伝送線路にて構成された請求項3に記載の積層電子 部品。
- 6. 前記第1の接地電極は網目状、帯状もしくは蜂の巣状のいずれかに形成されている請求項1に記載の積層電子部品。
- 7. 前記結合電極は、伝送線路にて構成されている請求項4に記載の積層電子部品。
- 8. 前記結合電極は、伝送線路にて構成された段間結合コンデンサ電極である請求項4に記載の積層電子部品。
 - 9. 請求項7に記載の積層電子部品を用いた送信フィルタと、

請求項8に記載の積層電子部品を用いた受信フィルタと、

を備えた積層共用器。

10. 請求項1に記載の積層電子部品を用いた積層フィルタおよび/または

請求項9に記載の積層共用器を備えた通信機器。

11. 前記内部回路に接続され、前記積層電子部品の底面から最上面に向う 第1の高さを有した外部端子電極を備え、

前記端面電極は、(1)前記積層電子部品が搭載される予定の基板上の所定の接地面に接続するための第2の接地電極であり、且つ、(2)前記積層電子部品の底面から最上面に向う第2の高さを有しており、

前記第1の高さと前記第2の高さは、互いに異なる請求項2に記載の積層電子 部品。

- 12. 前記外部端子電極の前記積層体最底面からの前記第1の高さは、前記第2の接地電極の前記積層体底面部からの前記第2の高さより低い請求項11に記載の積層電子部品。
- 13. 前記第2の接地電極は、前記積層体の最上面と最底面とに引き延ばされて設けられている請求項12に記載の積層電子部品。
 - 14. 前記第2の接地電極に接続された外部シールド電極を備え、

前記外部シールド電極は、前記積層体の最上面に設けられた請求項11に記載 の積層電子部品。

15. 前記シールド電極に接続された引き出し側面電極を備え、

前記引き出し側面電極は、少なくとも前記積層体の最上面から前記積層体側面 の前記外部端子電極が形成されている領域に渡って設けられており、

- 、前記積層体側面に設けられた部分は、前記積層体最低面からみて、前記外部端 子電極の高さよりも高いところに配置されている請求項11に記載の積層電子部 品。
 - 16. 前記引き出し側面電極は、前記外部シールド電極に接続されている請

- 求項11に記載の積層電子部品。
- 17. 前記外部端子電極の両側に前記第2の接地電極が配置されている請求 項11に記載の積層電子部品。
 - 18. 前記外部端子電極を複数備え、

前記第2の接地電極は、前記外部端子電極間に配置されている請求項11に記載の積層電子部品。

- 19. 前記引き出し側面電極は、前記第2の接地電極の少なくとも1つに接続されている請求項15,17又は18に記載の積層電子部品。
- 20. 前記外部端子電極と、前記外部端子電極の隣に配置される前記第2の接地電極との間隔は、前記外部端子電極の電極幅以上である請求項17又は18 に記載の積層電子部品。
- 21. 前記外部端子電極および前記第2の接地電極は、前記積層体に埋設されているか、又は、前記積層体外部に露出している請求項11に記載の積層電子部品。
 - 22. 前記誘電体層は、結晶相とガラス相とを含み、

前記結晶相が、Al₂O₃、MgO、SiO₂及びRO、(RはLa、Ce、Pr、Nd、Sm及びGdから選ばれる少なくとも1つの元素であり、aは前記Rの価数に応じて化学量論的に定まる数値)のうち少なくとも1つを含有する請求項11に記載の積層電子部品。

- 23. 前記誘電体層は、Bi₂O₃、Nb₂O₆を主成分として含む請求項11 に記載の積層電子部品。
 - 24. 請求項11に記載の積層電子部品を用いたことを特徴とする通信機器。
 - 25. 前記誘電体層 B 及び前記誘電体層 C の内、全部又は一部の誘電体層を

貫通する、前記第1のシールド電極と前記第2のシールド電極とを前記電気的に接続するためのビアホールが設けられた請求項1記載の積層電子部品。

26. 複数の誘電体シートを積層して一体化した積層体と、

前記積層体内の複数の誘電体シートの主面上に設けられた内部回路と、

前記積層体内の複数の誘電体シートの主面上に設けられた接地電極と、

前記積層体の全部または一部を貫通して、前記複数の誘電体シートの主面上に 設けられた接地電極をそれぞれ電気的に接続する第1のピアホールと、

前記積層体の全部または一部を貫通して、前記複数の誘電体シートの主面上に設けられた内部回路をそれぞれ電気的に接続する第2のビアホールと、

前記第2のビアホールと電気的に接続された、入力端子および出力端子とを備えた積層電子部品であって、

前記接地電極の少なくとも1つは、前記誘電体層の最下層および/または最上層の誘電体シートの主面上から外部に露出した露出接地電極として設けられており、

前記入力電極と前記出力電極とは、前記露出接地電極が設けられた面と同一の面に、該露出接地電極を間に挟んで設けられていることを特徴とする積層電子部品。

- 27. 前記露出接地電極以外の前記接地電極は、該積層電子部品の外部に露出する部分を持たないことを特徴とする請求項26に記載の積層電子部品。
- 28. 前記複数の誘電体シートは、少なくとも第1の誘電体シートと第2の 誘電体シートとを有し、

前記複数の接地電極は、少なくとも前記第1の誘電体シートの主面上に設けられた第1の接地電極と、前記第2の誘電体シートの主面上に設けられた第2の接

地電極とを有し、

前記第2の誘電体シートは、前記第1の接地電極と前記第2の接地電極との間 に配置されており、

前記第1のピアホールは、前記第1の誘電体シートおよび/または前記第2の 誘電体シートを少なくとも貫通して前記第1および第2の接地電極を電気的に接 続することを特徴とする請求項26に記載の積層電子部品。

- 29. 前記第2の誘電体シートは、前記第1の誘電体シートより上層に設けられたことを特徴とする請求項28に記載の積層電子部品。
- 30. 前記第1の誘電体シートと、前記第2の誘電体シートとの間には、前記内部回路が主面上に設けられた少なくとも1つの誘電体シートが配置されていることを特徴とする請求項29に記載の積層電子部品。
- 31. 前記第1の誘電体シートと前記第2の誘電体シートとは直接積層されていることを特徴とする請求項29に記載の積層電子部品。
- 32. 前記複数の誘電体シートは、少なくとも第3の誘電体シートを有し、 前記複数の接地電極は、少なくとも前記第3の誘電体シートの主面上に設けられた第3の接地電極を有し、

前記第1のビアホールは、前記第3の誘電体シートを少なくとも貫通して前記第3の誘電体シートと前記露出接地電極とを電気的に接続することを特徴とする請求項26に記載の積層電子部品。

- 33. 前記第3の誘電体シートと、前記露出接地電極が設けられた誘電体シートとの間には、前記内部回路が主面上に設けられた少なくとも1つの誘電体シートが配置されていることを特徴とする請求項32に記載の積層電子部品。
 - 34. 前記第3の誘電体シートと前記露出接地電極が設けられた誘電体シー

トとは同一の誘電体シートであることを特徴とする請求項32に記載の積層電子 部品。

- 35. 前記誘電体シートの厚みは $5\sim50\mu$ mであることを特徴とする請求 項26に記載の積層電子部品。
 - 36. 前記誘電体シートは結晶相とガラス相とから少なくともなり、

前記結晶相が Al_2O_3 、MgO、 SiO_2 及びRO. (Rは、La、Ce、Pr、Nd、Sm及びGdから選ばれる少なくとも1つの元素であり、aは前記Rの価数に応じて化学量論的に定まる数値)のうち少なくとも1つを含有することを特徴とする請求項26に記載の積層電子部品。

- 37. 前記誘電体シートは、Bi₂O₃、Nb₂O₆を含むことを特徴とする請求項26に記載の積層電子部品。
- 38. 請求項26ないし37のいずれかに記載の積層電子部品を実装したことを特徴とする高周波無線機器。
 - 39. 一方の主面に第1のシールド電極が設けられた誘電体層Aと、 少なくとも一方の主面が外部に露出している誘電体層Dと、

前記誘電体層Aと前記誘電体層Dとの間に積層された、内部回路を含む誘電体層Bと、

前記誘電体層Aの他方の主面に設けられた第1の接地電極とを備え、

前記誘電体層Aにはビアホールが設けられており、

前記第1の接地電極と前記第1のシールド電極とが、前記誘電体層Aに設けられたビアホールを介して電気的に接続されている積層電子部品。

第1図

2/22

第2図

3/22

第3図

4/22

第4図

第5 (a) 図

第5(b)図

6 / 2 2

第6図

第7図

7/22

第8図

8/22

第9図

9/22

第10図

1 0 / 2 2

第11図

1 1 / 2 2

第12図

1 2 / 2 2

第13図

1 3/2 2

第14図

1 4/2 2

第15図

1 5 / 2 2

第16図

1 6 / 2 2

第17図

1 7/2 2

第18図

1 8 / 2 2

第19図

1 9 / 2 2

第20図

第21(b)図

第21 (c)図

2 1 / 2 2

第22図

2 2 / 2 2

第 2 3 図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/02002

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01P1/203, H01P3/08, H03H7/705						
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
	SEARCHED					
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01P1/20-1/219, H01P7/00-7/10, H01P3/08, H03H7/705					
Jits: Koka:	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1966 Toroku Jitsuyo Shinan Koho 1994-2001 Kokai Jitsuyo Shinan Koho 1971-2001 Jitsuyo Shinan Toroku Koho 1996-2001					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app		Relevant to claim No.			
Y	JP, 7-273502, A (Murata Mfg. Co 20 October, 1995 (20.10.95), Full text; Figs. 1 to 7 Full text; Figs. 1 to 7		1-10,25-33, 35-39 8,9,11-24,34			
	& EP, 675560, A & US, 56685 & DE, 69513072, A JP, 9-93005, A (Matsushita Elec 04 April, 1997 (04.04.97),					
Y	Full text; Figs. 1 to 10 (Family: none) JP, 5-275903, A (NGK Insulators 22 October, 1993 (22.10.93),	, Ltd.),	39			
Y	Par. No. [0003]; Figs. 11 to 13 (Family: none)		1-10,25-33, 35-38			
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
Date of the	actual completion of the international search June, 2001 (13.06.01)	Date of mailing of the international sea 26 June, 2001 (26.0	ren report 6 . 0 1)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/02002

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
JP, 5-283906, A (NGK Insulators, Ltd.), 29 October, 1993 (29.10.93), Par. Nos. [0042] to [0044] Par. Nos. [0042] to [0044] (Family: none)	36 22
JP, 9-307320, A (Matsushita Electric Ind. Co., Ltd.), 28 November, 1997 (28.11.97), Par. No. [0013] Par. No. [0013] (Family: none)	37,38 23
•	
	29 October, 1993 (29.10.93), Par. Nos. [0042] to [0044] Par. Nos. [0042] to [0044] (Family: none) JP, 9-307320, A (Matsushita Electric Ind. Co., Ltd.), 28 November, 1997 (28.11.97), Par. No. [0013] Par. No. [0013]

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

- A. 発明の属する分野の分類(国際特許分類(IPC))
- Int. Cl' H01P1/203, H01P3/08, H03H7/705
- B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' H01P1/20-1/219, H01P7/00-7/10, H01P3/08, H03H7/705

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1966年

日本国公開実用新案公報

1971-2001年

日本国登録実用新案公報 日本国実用新案登録公報 1994-2001年1996-2001年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号		
Y	JP, 7-273502, A (株式会社村田製作所) 20.10月.1995 (20.10.95) 全文, 第1-7図 全文, 第1-7図 & EP, 675560, A	1-10, 25-33, 35-39 8, 9, 11-24, 34		
	& US, 5668511, A & DE, 69513072, A			

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告

国際出願番号 PCT/JP01/02002

C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP, 9-93005, A (松下電器産業株式会社) 04.04月.1997 (04.04.97) 全文, 第1-10図 (ファミリーなし)	39	
Υ .	JP, 5-275903, A (日本碍子株式会社) 22.10月.1993 (22.10.93) 段落番号【0003】, 第11-13図 (ファミリーなし)	1-10, 25-33, 35-38	
Y A	JP, 5-283906, A (日本碍子株式会社) 29.10月.1993 (29.10.93) 段落番号【0042】-【0044】 段落番号【0042】-【0044】 (ファミリーなし)	36 22	
Y A	JP, 9-307320, A (松下電器産業株式会社) 28. 11月. 1997 (28. 11. 97) 段落番号【0013】 段落番号【0013】 (ファミリーなし)	37, 38 23	
7			