Chapter 11 - Digital Logic

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

Table of Contents I

- 1 Introduction
- 2 Boolean Algebra
- 3 Gates

Universal Gates

NOT Operator

AND Operator

OR Operator

NOR Operator

4 Combinatorial Circuit

Implementation of Boolean Functions

Algebraic simplification

Table of Contents II

Karnaugh Maps

Multiplexers

Decoders

Adders

Table of Contents I

5 Sequential Circuits

Flip-flops

SR flip-flops

D flip-flops

J-K flip-flops

J-K flip-flops

J-K flip-flops

Registers

Parallel Registers

Shift Registers

Counters

Table of Contents II

Asynchronous counters

Synchronous counters

Introduction

Today's class will be a revision of digital logic elements:

- Boolean algebra.
- Gates:
 - AND, OR, NOT, XOR, ...
- Combinatorial logic:
 - Multiplexers, Decoders, Adders, ...
- Sequential logic:
 - Flip-flops, registers, counters, ...

Computer architecture builds on these concepts to develop new ones.

Lets see how to review an entire semestre of concepts in a single class =)

Boolean Algebra

Boolean algebra makes use of variables and operations:

- The variables and operations are logical variables and operations.
- A variable may take on the value 1 (TRUE) or 0 (FALSE).

What are some of the logical operations that you know?

- NOT
- AND
- OR
- ...

Lets see how well you remember these operations: volunteers?

P	Ø	NOT P	P AND Q	P OR Q	P NAND Q	P NOR Q	P XOR Q	P XNOR Q
0	0							
0	1							
1	0							
1	1							

Boolean Algebra

В		NOT D	D AND O	D OD O	DAIANDO	DNODO	D VOD O	D VNOD O
P	Ø	NOIP	PANDQ	PORG	P NAND Q	P NOR Q	PAORQ	P XNOR Q
0	0	1	0	0	1	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	1	0	1	1	0	0	0	

What if we have more than two variables? Any ideas?

Operation	Expression	Output = 1 if
AND	A · B ·	All of the set {A, B,} are 1.
OR	A + B +	Any of the set [A, B,] are 1.
NAND	A•B•	Any of the set {A, B,} are 0.
NOR	A + B +	All of the set {A, B,} are 0.
XOR	A⊕B⊕	The set {A, B,} contains an odd number of ones

Figure: Boolean operators extended to more than two inputs (Source: (Stallings, 2015))

	Basic Postulates	
$A \cdot B = B \cdot A$	A + B = B + A	Commutative Laws
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive Laws
$1 \cdot A = A$	0 + A = A	Identity Elements
$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements
	Other Identities	
0 • A = 0	1 + A = 1	
$A \cdot A = A$	A + A = A	
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	DeMorgan's Theorem

Figure: Basic identities of boolean algebra (Source: (Stallings, 2015))

Exercises (1/6)

Use the previous table to simplify the following expressions:

- 1. X + XY
- 2. $XY + X\overline{Y}$
- 3. $X + \bar{X}Y$
- 4. X(X + Y)
- 5. $(X + Y)(X + \bar{Y})$
- 6. $X(\bar{X} + Y)$
- 7. $\bar{X}YZ + \bar{X}Y\bar{Z} + XZ$
- 8. $XY + \bar{X}Z + YZ$
- 9. $(A + B)(\bar{A} + C)$

Exercises (2/6)

$$X + XY = X(1 + Y) = X$$

$$XY + X\overline{Y} = X(Y + \overline{Y}) = X$$

$$X + \overline{X}Y = (X + \overline{X})(X + Y) = X + Y$$

Exercises (3/6)

$$X(X + Y) = X + XY = X(1 + Y) = X$$

$$(X + Y)(X + \bar{Y}) = XX + X\bar{Y} + XY + Y\bar{Y} = XX + X(Y + \bar{Y}) = X(1 + X) = X$$

$$X(\bar{X} + Y) = X\bar{X} + XY = XY$$

Exercises (4/6)

$$XY + \bar{X}Z + YZ = XY + \bar{X}Z + YZ(X + \bar{X})$$

$$= XY + \bar{X}Z + XYZ + \bar{X}YZ$$

$$= XY + XYZ + \bar{X}Z + \bar{X}YZ$$

$$= XY(1 + Z) + \bar{X}Z(1 + Y)$$

$$= XY + \bar{X}Z$$

Exercises (5/6)

$$(A + B)(\bar{A} + C) = A\bar{A} + AC + \bar{A}B + BC$$

$$= AC + \bar{A}B + BC$$

$$= AC + \bar{A}B + BC(A + \bar{A})$$

$$= AC + \bar{A}B + ABC + \bar{A}BC$$

$$= AC + ABC + \bar{A}B + \bar{A}BC$$

$$= AC(1 + B) + \bar{A}B(1 + C)$$

$$= AC + \bar{A}B$$

Exercises (6/6)

Prove the following Boolean equations using algebraic manipulation:

$$2 \bar{A}B + \bar{B}\bar{C} + AB + \bar{B}C = 1$$

$$3 Y + \bar{X}Z + X\bar{Y} = X + Y + Z$$

Gates

Fundamental building block of all digital logic circuits is the gate.

- Logical functions are implemented by the interconnection of gates.
- Basic gates used are AND, OR, NOT, NAND, NOR, and XOR.

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A	F = A • B or F = AB	AB F 0000 010 100 111
OR	A F	F = A + B	AB F 0000 011 101 111
NOT	AF	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A F	$F = \overline{AB}$	AB F 0011 011 101 110
NOR	A F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$A \longrightarrow F$	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

There are a lot of gates. Do we really need all of these gates? Any ideas?

• Ever heard of universal gates?

Universal Gates

The NAND and NOR gates are also known as universal gates:

- Any Boolean function can be implemented using only them;
- Lets have a look at some examples:
 - NOT gate;
 - AND gate;
 - OR gate;
 - NOR gate;

Universal Gates:: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

• What happens when we duplicate the same input on a NAND gate?

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

• What happens when we duplicate the same input on a NAND gate?

Р	Q	P NAND Q
0	0	1
1	1	0

Universal Gates :: Obtaining the NOT Operator (2/2)

Figure: NOT operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?

Universal Gates:: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?

Remember the algebraic properties?

$$AB = \overline{\overline{AB}}$$

Universal Gates :: Obtaining the AND Operator (2/2)

Remember the algebraic properties?

$$AB = \overline{\overline{AB}}$$

Figure: AND operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?

Remember the algebraic properties?

$$A + B = \overline{\overline{A + B}}$$
$$= \overline{\overline{A}.\overline{B}}$$

Universal Gates :: Obtaining the OR Operator (2/2)

Remember the algebraic properties?

$$A + B = \overline{\overline{A + B}}$$
$$= \overline{\overline{A}.\overline{B}}$$

Figure: OR operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

- Recall that the NOR operator is also a universal gate;
- Therefore there is a mapping between NAND and NOR;

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

- Recall that the NOR operator is also a universal gate;
- Therefore there is a mapping between NAND and NOR;

$$\overline{A+B} = \overline{\overline{\overline{A+B}}}$$
$$= \overline{\overline{\overline{A}.\overline{B}}}$$

$$\overline{A+B} = \overline{\overline{\overline{A+B}}}$$
$$= \overline{\overline{\overline{A}.\overline{B}}}$$

Figure: NOR operation achieved through a NAND gate (Source: wikipedia)

Now that we have a basic understanding of the logical operations:

Lets see how we can combine these elements to calculate functions;

Combinatorial Circuit

A set of interconnected gates

- Output at any time is a function only of the input at that time;
- Consists of n binary inputs and m binary outputs
- Can be defined in three ways:
 - Truth table:
 - Graphical symbols;
 - Boolean equations

Example

Consider the following truth table for a boolean function:

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Figure: A boolean function of three variables (Source: (Stallings, 2015))

F can be expressed by itemizing the combinations of either:

sum of minterms that have value 1;

$$\sum m(2,3,6)$$

product of maxterms that have value 0;

$$\Pi M(0, 1, 4, 5, 7)$$

F can be expressed by itemizing the combinations of either:

sum of minterms that have value 1;

$$\sum \textit{m}(2,3,6) = \bar{\textit{A}}\textit{B}\bar{\textit{C}} + \bar{\textit{A}}\textit{B}\textit{C} + \textit{A}\textit{B}\bar{\textit{C}}$$

product of maxterms that have value 0;

$$\Pi M(0,1,4,5,7) = (A+B+C)(A+B+\bar{C})(\bar{A}+B+C)(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+\bar{C})$$

Lets focus on the minterms:

$$\sum m(2,3,6) = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C}$$

How can we obtain the equivalent logical circuit? Any ideas?

Lets focus on the minterms:

$$\sum m(2,3,6) = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C}$$

How can we obtain the equivalent logical circuit? Any ideas?

Convenient to obtain the simplified form...

Simplified form:

$$F = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C}$$

$$= \bar{A}B(\bar{C} + C) + AB\bar{C}$$

$$= \bar{A}B.1 + AB\bar{C}$$

$$= B(\bar{A} + A\bar{C})$$

$$= B((\bar{A} + A)(\bar{A} + \bar{C}))$$

$$= B(1(\bar{A} + \bar{C}))$$

$$= \bar{A}B + \bar{B}\bar{C}$$

Once we have obtained the simplified form it is easy to obtain the equivalent circuit... Any ideas?

Function F expressed in minterms form:

Figure: Circuit implementation (Source: (Stallings, 2015))

Karnaugh Maps

Algebraic simplification procedure is awkward:

- Lacks specific rules to predict each succeeding step;
- Difficult to determine if the simplest expression has been obtained;

Karnaugh map provides a way for simplifying boolean expressions:

- Up to four variables;
 - More than this becomes difficult to use.
- Takes advantage of humans' pattern-recognition capability.

This section is based on (Mano and Kime, 2002).

The map is a diagram made up of squares:

- Each square represents one minterm of the function;
- Visual diagram of all possible ways a function may be expressed;

Lets take a look at a three-variable map.

- Only one bit changes in value from one column to the other;
- Any two adjacent squares differ in only a single variable;

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

- Any two minterms in adjacent squares produce a product of two variables.
 - Why?

Lets see why...

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

- E.g.: $m_5 + m_7 = X\overline{Y}Z + XYZ$
 - I.e. $m_5 + m_7 = X\overline{Y}Z + XYZ = XZ(\overline{Y} + Y) = XZ$
 - The two squares differ in variable Y, which can be removed.

Figure: $\sum m(2,3,4,5) = \bar{X}Y + X\bar{Y}$ (Source: (Mano and Kime, 2002))

Two squares can also be adjacent without touching each other:

Figure: $\sum m(0, 2, 4, 6) = \bar{X}\bar{Z} + X\bar{Z}$ (Source: (Mano and Kime, 2002))

• The minterms continue to differ by one variable;

It is also possible to combine 4 squares:

Figure: $\sum m(0,2,4,6) = \bar{X}\bar{Z} + X\bar{Z} = (\bar{X} + X)\bar{Z} = \bar{Z}$ (Source: (Mano and Kime, 2002))

It is also possible to have several combinations:

Figure: $\sum m(0, 1, 2, 3, 6, 7) = \bar{X} + Y$ (Source: (Mano and Kime, 2002))

The more squares are combined the fewer literals are used:

- One square represents three literals;
- Two squares represents a product term of two literals;
- Four squares represents a product term of one literal;
- Eight squares (entire map) is equal to value 1.

Now that we have a basic understanding of boolean algebra:

Lets have a look at other types of gates...

Multiplexers

The multiplexer connects multiple inputs to a single output.

At any time, one of the inputs is selected to be passed to the output.

Figure: A 4-to-1 Multiplexer representation (Source: (Stallinas, 2015))

- Four input lines (D0, D1, D2, and D3);
- Two selection lines (\$0 and \$1);

S2	S1	F
0	0	D0
0	1	D1
1	0	D2 D3
1	1	D3

Figure: A 4-to-1 Multiplexer truth table (Source: (Stallings, 2015))

Figure: Multiplexer Implementation (Source: (Stallings, 2015))

Multiplexeres are useful for:

- To control signal and data routing;
 - E.g. loading PC from different sources;

Decoders

Combinational circuit with a number of output lines:

- Only one of which is asserted at any time, dependent on input;
- n inputs, 2ⁿ output lines;

Figure: Decoder with 3 inputs and $2^3 = 8$ outputs (Source: (Stallings, 2015))

Adders

Binary addition differs from Boolean algebra in that the result includes a carry term.

0	0	1	1
+ 0	+ 1	+ 0	+ 1
0	1	1	10

	(a) Single-Bit Addition		
A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) Addition with Carry Input				
C _{in}	A	В	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure: Binary addition truth tables (Source: (Stallings, 2015))

The two outputs can be expressed:

•
$$Sum = \overline{C_{in}}AB + \overline{C_{in}}AB + C_{in}\overline{AB} + C_{in}AB$$

•
$$C_{out} = \overline{C_{in}}AB + C_{in}\overline{A}B + C_{in}A\overline{B} + C_{in}AB$$

Figure: 4 bit adder (Source: (Stallings, 2015))

Figure: Implementation of an adder using AND, OR and NOT gates (Source: (Stallings, 2015))

Sequential Circuits

Combinational circuits implement the essential functions of a computer.

However, they provide no memory or state information,

In sequential circuits the output depends:

- not only on the current input...
- but also of the current circuit state:

Useful examples of sequential circuits:

- Flip-flops;
- Registers;
- Counters.

Useful examples of sequential circuits:

- Flip-flops;
- Registers;
- Counters.

Guess what we will be seeing today! Any ideas?

Flip-flops

- Simplest form of the sequential circuit;
- A variety of flip-flops exist, all of which share two properties:
 - Can maintain a binary state indefinitely*:
 - Until directed by an input signal to switch states;
 - The flip-flop can function as a 1-bit memory;
 - *As long as powered is deliver to the circuit.
 - Has two outputs, these are generally labeled Q and \overline{Q} .

Does anyone have any idea how flip-flops are implemented?

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?

Several possibilities:

- Science / Engineering;
- Magic;)

SR flip-flops

SR circuit has:

- Two inputs S (Set) and R (Reset);
- Two outputs Q and \overline{Q} ;
- Two NOR gates connected in a feedback arrangement;

Figure: The S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Circuit functions as a 1-bit memory:

- Inputs S and R serve to write the values 1 and 0 to Q;
- Consider the state Q = 0, $\overline{Q} = 1$, S = 0, R = 0

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Suppose that S changes to the value 1.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))

- 1 Now the inputs to the lower NOR gate are S = 1, Q = 0.
- 2 After some time delay Δt , the output of the lower NOR gate will be $\bar{Q}=0$.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))

- 3 The inputs to the upper NOR gate become $R = 0, \overline{Q} = 0$.
- 4 After another gate delay of Δt , the output Q becomes 1.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))

- This is a stable state. The inputs to the lower gate are now S = 1, Q = 1, which maintain the output $\bar{Q} = 0$.
 - As long as S=1 and R=0, the outputs will remain Q=1, Q=0.
 - Furthermore, if S returns to 0, the outputs will remain unchanged.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))

- The R output performs the opposite function.
 - When R goes to 1, it forces Q = 0, $\bar{Q} = 1$
 - Regardless of the previous state of Q and \bar{Q} .
 - Again, a time delay of $2\Delta t$ occurs before the final state is established

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))

In essence:

- S=1 makes $\bar{Q}=0$
 - If S = 1 then R = 0 which makes Q = 1
- R=1 makes Q=0
 - If R=1 then S=0 which makes $\bar{Q}=1$

This behaviour can be described by a characteristic table:

(a) Characteristic Table				
Current Inputs	Current State	Next State		
SR	Q_n	Q_{n+1}		
00	0	0		
00	1	1		
01	0	0		
01	1	0		
10	0	1		
10	1	1		
11	0	_		
11	1	_		

Figure: (Source: (Stallings, 2015))

This behaviour can be described by a characteristic table:

(a) Characteristic Table				
Current Inputs	Current State	Next State		
SR	Q_n	Q_{n+1}		
00	0	0		
00	1	1		
01	0	0		
01	1	0		
10	0	1		
10	1	1		
11	0	_		
11	1	_		

Figure: (Source: (Stallings, 2015))

But what happens when the inputs are set to S = 1, R = 1? Any ideas?

This behaviour can be described by a characteristic table:

(a) Characteristic Table				
Current Inputs	Current State	Next State		
SR	Q_n	Q_{n+1}		
00	0	0		
00	1	1		
01	0	0		
01	1	0		
10	0	1		
10	1	1		
11	0	_		
11	1	_		

Figure: (Source: (Stallings, 2015))

Inputs S = 1, R = 1 are **not allowed**:

• Would produce the inconsistent output $Q = \bar{Q} = 0$

It is also possible to derive a simplified version:

(b) Simplified Characteristic Table				
S	R	\mathbf{Q}_{n+1}		
0	0	Q_n		
0	1	0		
1	0	1		
1	1	_		

Figure: (Source: (Stallings, 2015))

Example

Lets look at a particular example:

Response to Series of Inputs										
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}										

Example

Lets look at a particular example:

Response to Series of Inputs										
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

Typically events in the digital computer are synchronized to a clock pulse,

- Changes occur only when a clock pulse occurs;
- R and S inputs are passed to the NOR gates only during the clock pulse.

Figure: Clocked SR flip-flops (Source: (Stallings, 2015))

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

How can we be sure that these inputs are not allowed? Any ideas?

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

One way to do this is to allow just a single input.

Figure: (D flip-flops (Stallings, 2015))

- By using a NOT gate:
 - Nonclock inputs are the opposite of each other.

Figure: D flip-flops (Stallings, 2015)

Clock	D	\mathbf{Q}_{n+1}
0	0	Q _n
0	1	Q_n
1	0	0
1	1	1

- Flip-flop captures the value of the D-input during the clock cycle;
- Captured value becomes the Q output.
- Other times, the output Q does not change.

J-K flip-flops (1/3)

Has two inputs, with all possible combinations of inputs values being valid:

Figure: J-K flip-flops (Stallings, 2015)

J	K	Q _{n+1}
0	0	Q _n
0	1	0
1/	0	1
1	1	$\overline{Q_n}$

- Note that the first three combinations are the same as for the SR flip-flop;
- With no input asserted (J=K=0): output is stable;

J-K flip-flops (2/3)

Figure: J-K flip-flops (Stallings, 2015)

J	K	Q_{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{Q_n}$

- If only the J input is asserted, the output is set to 1;
- if only the K in put is asserted, the output is reset to 0.

J-K flip-flops (3/3)

Figure: J-K flip-flops (Stallings, 2015)

	J	K	\mathbf{Q}_{n+1}
Ī	0	0	Q _n
	0	1	0
	1	0	
	1	1	$\overline{Q_n}$

- When both J and K are 1: output is reversed;
 - If $Q_n = 0$ then $Q_{n+1} = 1$
 - If $Q_n = 1$ then $Q_{n+1} = 0$

In summary:

Name	Graphical Symbol	1	Truth T	able
	s _ Q	S	R	Q_{n+1}
		0	0	Q _n 0 1
S-R	>Ck	0	1	0
			0	1
	$R \overline{Q}$	1	1	_
	1	J	K	Q_{n+1}
		0	0	Q _n
J-K	>Ck	0	1	Q_n 0 $\frac{1}{Q_n}$
			0	1
	<u> </u>	1	1	Q _n
	D Q		D	Q_{n+1}
			0	0
D	Ck		1	1
	₹			

Figure: Basic flip-flops summary (Stallings, 2015)

Registers

Lets look at another type of sequential circuits: registers:

First, how many of you have heard of registers? Any ideas?

Registers

Lets look at another type of sequential circuits: registers:

- Circuit used within the CPU to store one or more bits of data
- Two basic types of registers are commonly used:
 - Parallel registers;
 - Shift registers.

Lets have a quick look at each one of these...

Parallel Registers

Consists of a set of 1-bit memories that can be read or written simultaneously.

Figure: 8 Bit Parallel Register (Source: (Stallings, 2015))

- Makes use of D flip-flops
- Load control signal controls writing into the register from signal lines, D11 through D18.

Shift Registers (1/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

- A 5-bit shift register constructed from clocked D flip-flops;
- Data are input only to the leftmost flip-flop;
- With each clock pulse, data are shifted to the right one position;
- and the rightmost bit is transferred out.

Shift Registers (2/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

- Shift registers can be used to interface to serial I/O devices.
- In addition, they can be used within the ALU to perform logical shift and rotate functions.

Counters

Lets look at another type of sequential circuits: counters:

First, how many of you have heard of counters? Any ideas?

Counters

Register whose value is incremented by 1;

- Register made up of *n* flip-flops can count up to $2^n 1$.
- After value $2^n 1$ the next increment sets the counter value to 0.
- An example of a counter in the CPU is the program counter;

Counters can be designated as asynchronous or synchronous:

- Asynchronous counter:
 - Slow since output of one flip-flop triggers a change in next flip-flop.
- Synchronous counter:
 - All of the flip-flops change state at the same time.
 - The kind used in CPUs.

Lets have a look at each one of these...

Asynchronous counters (1/3)

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- Output of the leftmost flip-flop (Q₀) is the least significant bit;
- All output Q_i bits are initialized to zero;
- Extensible to an arbitrary number of bits by cascading more flip-flops;
- Counter is incremented with each clock pulse;

Asynchronous counters (2/3)

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- J and K inputs to each flip-flop are held at a constant 1 (High).
- I.e. when there is a clock pulse, the output at Q will be inverted;
- Change in state occurs with the falling edge of the clock pulse
 - A.k.a. edge-triggered flip-flop
 - Timing is very important for the correct functioning of the counter.

Asynchronous counters (3/3)

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- State of each individual bit is initially set to zero
- If one looks at patterns of output for this counter, it can be seen that it cycles through 0000, 0001, . . ., 1110, 1111, 0000
- Note the transitional delay from each flip-flops

Synchronous counters (1/11)

Asynchronous counters have a disadvantageous built-in delay:

Proportional to the length of the counter.

CPUs make use of synchronous counters:

All of the flip-flops of the counter change at the same time.

Lets take a look at how to build a 3-bit synchronous counter.

Synchronous counters (2/11)

For a 3-bit counter, three flip-flops will be needed:

- Lets us use J-K flip-flops.
- Label the uncomplemented output of the three flip-flops A, B, C respectively, with C representing the least significant bit.
- It is helpful to recast the characteristic table for the J-K flip-flop:

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}_n}$

Figure: Original

Qn	J	K	Q _{n+1}
0			0
0			1
1			0
1			

Synchronous counters (3/11)

For a 3-bit counter, three flip-flops will be needed:

- Lets us use J-K flip-flops.
- Label the uncomplemented output of the three flip-flops A, B, C respectively, with C representing the least significant bit.
- It is helpful to recast the characteristic table for the J-K flip-flop:

K	Q_{n+1}
0	Q_n
1	0
0	1
1	$\overline{\mathbb{Q}_n}$
	0

Figure: Original

Qn	J	K	Q_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	

Synchronous counters (4/11)

• It is helpful to recast the characteristic table for the J-K flip-flop:

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}_n}$

Figure: Origin	nal

Figure: Recast

- If $Q_n = 0$ and we want to transition to $Q_{n+1} = 0$
 - Then J = 0 and $K = \{0, 1\}$
- If $Q_n = 0$ and we want to transition to $Q_{n+1} = 1$
 - Then J = 1 and $K = \{0, 1\}$

Synchronous counters (5/11)

It is helpful to recast the characteristic table for the J-K flip-flop:

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}_n}$

Q _n	J	N	Q_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Figure: Original

Figure: Recast

- If $Q_n = 1$ and we want to transition to $Q_{n+1} = 0$
 - Then K = 1 and $J = \{0, 1\}$
- If $Q_n = 1$ and we want to transition to $Q_{n+1} = 1$
 - Then K = 0 and $J = \{0, 1\}$

Synchronous counters (6/11)

\mathbf{Q}_n	J	K	Q_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Figure: Synchronous Counter Truth Table (Source: (Stallings, 2015))

- Consider transition from ``000'' to ``001''
 - Value of A needs to remain 0;
 Value of B needs to remain 0;
 Value of C needs to go from 0 to 1;
 - Excitation table shows that to:
 - Maintain an output of 0: inputs must be $\{J=0, K=d\}$;
 - To effect a transition from 0 to 1: inputs must be $\{J=1, K=a\}$;

Synchronous counters (7/11)

 With this in mind we can construct a truth table that relates the J-K inputs and outputs

С	В	Α	J _c	K _c J _b	K _b	Ja	Ka
0	0	0		7			1/
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

	Qn	J	K	Q_{n+1}
	0	0	d	0
	0	1	d d	1
	1/	d	1	0
	1	d	0	1
Ī				

Synchronous counters (8/11)

 With this in mind we can construct a truth table that relates the J-K inputs and outputs

С	В	Α	J	K _c	J _b	K _b	Jα	Kα
0	0	0	0	d	0	d	1	d
0	0	1	0	d	1	d	d	1
0	1	0	0	d	d	0	1	d
0	1	1	1	d	d	1	d	1
1	0	0	d	0	0	d	1	d
1	0	1	d	0	1	d	d	1
1	1	0	d	0	d	0	1	d
1	1	1	d	1	d	1	d	1

Qn	J	K	Q_{n+1}
0	0	d	0
0	1	d	1
1/	d	1	0
1	d	0	1

Synchronous counters (9/11)

We can develop Boolean expressions for these six functions:

$$J_b = A \quad \quad C \quad \begin{matrix} 0 & BA \\ 00 & 01 & 11 & 10 \\ \hline & 1 & d & d \\ 1 & 1 & d & d \end{matrix}$$

$$Kb = A \quad C \quad \begin{matrix} BA \\ 00 & 01 & 11 & 10 \\ 0 & d & d & 1 \\ 1 & d & d & 1 \end{matrix}$$

Figure: Synchronous Counter Karnaugh Maps (Source: (Stallings, 2015))

Synchronous counters (10/11)

For example, the Karnaugh map for the variable Jc:

- The J input to the flip-flop that produces the C output;
- yields the expression Jc = BA.

When all six expressions are derived,

straightforward to design the circuit.

Synchronous counters (11/11)

Circuit example:

Figure: Synchronous Counter Design (Source: (Stallings, 2015))

References I

Mano, M. and Kime, C. R. (2002).

Logic and Computer Design Fundamentals: 2nd Edition.

Prentice Hall, Englewood Cliffs, NJ, USA.

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.