1	Astrodynamics and Space Applications Qualifying Example 19 (1997)	n Notes
gps	s	
orb	o .	
quals	als	
sad	d	
$_{ m stm}$	n	

2 Satellite Navigation Past Problems

3 Orbit Mechanics Past Problems

3.1 Problem 1

3.1.1 Problem statement

Consider a hyperbolic flyby of a planet

- 1. Determine the values of the periapsis flyby radius r_p and hyperbolic excess speed v_{∞} that yield the maximum possible magnitude of the equivalent Δv_{eq} for the spacecraft due to the flyby. Express your answer for r_p in terms of the planet radius r_s ; include the constraint that $r_p \geq r_s$.
- 2. Determine this maximum Δv_{eq} in terms of v_s , the circular speed at the surface of the planet. Also determine the numerical values for the corresponding turn angle δ and the hyperbolic eccentricity e.

3.1.2 Solution

We know that the angle between the incoming and outgoing hyperbolic asymptotes is given by:

$$\delta = 2\sin^{-1}\left(\frac{1}{e}\right)$$
$$= 2\sin^{-1}\left(\frac{\Delta v_{eq}}{2v_{\infty}}\right)$$

We'll use these two expressions for δ to solve for the conditions that maximize Δv . First, we have to find a way to introduce r_p into the equation. We know that the distance from the attracting focus to the center of the hyperbola is given by:

$$ae = r_p + a$$
$$e = \frac{r_p}{a} + 1$$

We also know that by conservation of energy at $r = \infty$, we can express the semi-major axis a in terms of the hyperbolic excess speed v_{∞} :

$$\frac{v_{\infty}^2}{2} = \frac{\mu}{2a}$$
$$a = \frac{\mu}{v_{\infty}^2}$$

Substituting this into the expression for e:

$$e = \frac{r_p}{\mu/v_\infty^2} + 1$$
$$= \frac{r_p v_\infty^2}{\mu} + 1$$

Such that we can equate the two expressions for δ :

$$2\sin^{-1}\left(\frac{\Delta v_{eq}}{2v_{\infty}}\right) = 2\sin^{-1}\left(\frac{1}{\frac{r_{p}v_{\infty}^{2}}{\mu}+1}\right)$$
$$\frac{\Delta v_{eq}}{2v_{\infty}} = \frac{1}{\frac{r_{p}v_{\infty}^{2}}{\mu}+1}$$
$$\Delta v_{eq} = \frac{2v_{\infty}}{\frac{r_{p}v_{\infty}^{2}}{\mu}+1}$$

This tells us that for any given v_{∞} , minimizing r_p will maximize Δv_{eq} . The minimum value of r_p is r_s , the radius of the planet. Solving for the v_{∞} that corresponds to this minimum r_p requires taking the derivative of the Δv_{eq} expression with respect to v_{∞} and looking for critical points:

$$\begin{split} \frac{\partial \Delta v_{eq}}{\partial v_{\infty}} &= \frac{2}{\frac{r_p v_{\infty}^2}{\mu} + 1} - \frac{2v_{\infty}}{\left(\frac{r_p v_{\infty}^2}{\mu} + 1\right)^2} \frac{2r_p v_{\infty}}{\mu} \\ &= \frac{\frac{2r_p v_{\infty}^2}{\mu} + 2 - \frac{4r_p v_{\infty}^2}{\mu}}{\left(\frac{r_p v_{\infty}^2}{\mu} + 1\right)^2} \\ &= \frac{2 - \frac{2r_p v_{\infty}^2}{\mu}}{\left(\frac{r_p v_{\infty}^2}{\mu} + 1\right)^2} \end{split}$$

We notice that the denominator is always positive, so we can simply set the numerator to zero:

$$2 - \frac{2r_p v_{\infty}^2}{\mu} = 0$$
$$\frac{2r_p v_{\infty}^2}{\mu} = 2$$
$$v_{\infty}^2 = \frac{\mu}{r_p}$$
$$v_{\infty} = \sqrt{\frac{\mu}{r_p}}$$

This is an interesting result! We have found that the hyperbolic excess velocity for maximum Δv_{eq} is equal to the circular velocity at the surface of the planet. Solving for the corresponding value of Δv_{eq} :

$$\Delta v_{eq} = \frac{2v_{\infty}}{\frac{r_p v_{\infty}^2}{\mu} + 1}$$

$$= \frac{2\sqrt{\frac{\mu}{r_p}}}{\frac{r_p \left(\sqrt{\frac{\mu}{r_p}}\right)^2}{\mu} + 1}$$

$$= \frac{2\sqrt{\frac{\mu}{r_p}}}{\frac{\mu}{\mu} + 1}$$

$$= \frac{2\sqrt{\frac{\mu}{r_p}}}{2}$$

$$= \sqrt{\frac{\mu}{r_p}}$$

We can also solve for the corresponding values of δ :

$$\delta = 2\sin^{-1}\left(\frac{1}{e}\right)$$

$$= 2\sin^{-1}\left(\frac{\Delta v_{eq}}{2v_{\infty}}\right)$$

$$= 2\sin^{-1}\left(\frac{\sqrt{\frac{\mu}{r_p}}}{2\sqrt{\frac{\mu}{r_p}}}\right)$$

$$= 2\sin^{-1}\left(\frac{1}{2}\right)$$

$$= 60^{\circ}$$

And e:

$$e = \frac{r_p}{a} + 1$$

$$= \frac{r_p}{\frac{\mu}{v_{\infty}^2}} + 1$$

$$= \frac{r_p v_{\infty}^2}{\mu} + 1$$

$$= \frac{\mu}{\mu} + 1$$

$$= 2$$

6

Attitude Dynamics Past Problems

5 Orbit Determination Past Problem