Package 'ConformalSmallest'

October 12, 2022

Fitle Efficient Tuning-Free Conformal Prediction
Version 1.0
Description An implementation of efficiency first conformal prediction (EFCP) and validity first conformal prediction (VFCP) that demonstrates both validity (coverage guarantee) and efficiency (width guarantee). To learn how to use it, check the vignettes for a quick tutorial. The package is based on the work by Yang Y., Kuchibhotla A.,(2021) arxiv:2104.13871
URL https://github.com/Elsa-Yang98/ConformalSmallest
mports glmnet, mvtnorm, stats, MASS, quantregForest
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.1
LazyData true
Suggests testthat (>= 3.0.0), knitr, rmarkdown, ggplot2, repr
Config/testthat/edition 3
Depends R (>= $3.5.0$)
VignetteBuilder knitr
NeedsCompilation no
Author Yachong Yang [aut, cre]
Maintainer Yachong Yang <yachong@wharton.upenn.edu></yachong@wharton.upenn.edu>
Repository CRAN
Date/Publication 2021-08-09 14:10:06 UTC
R topics documented:
conf_CQR conf_CQR_conditional conf_CQR_prelim conf_CQR_reg conf_CQR_reg_conditional cv.fun

conf_CQR

	efcp.fun																															6
	efcp_cqr																															
	efcp_ridge																															
	ginverse.fun																															
	ginverselm.funs																															
	my.ginverselm.funs																															
	naive.fun																															10
	pois_n400_reps100																															
	ridge_linear_cov100	_t3																														12
	ridge_linear_cov100																															
	ridge_linear_len100	<u>t</u> 3																														13
	ridge_linear_len100	_t5																														14
	star.fun																															15
	vfcp.fun																															15
	vfcp_cqr																															
	vfcp_ridge																															17
Index																																18
											_					_						_		_		_					_	_
conf_	.CQR	Cor										ov	er	ag	ej	for	· C	\mathcal{Q}	R,	in	ter	na	ılf	un	cti	01	ı u	sec	l ir	ısi	de	
		con	<i>f_</i> (CQ)R	c	cor	ıdi	tic	n	al																					

Description

Conditional width and coverage for CQR, internal function used inside conf_CQR_conditional

Usage

```
conf_CQR(X1, Y1, X2, Y2, beta, mtry, ntree, alpha = 0.1)
```

Arguments

X1	training matrix to fit the quantile regression forest
Y1	training vector
X2	training matrix to compute the conformal scores
Y2	training vector to compute the conformal scores
beta	nominal quantile level
mtry	random forest parameter
ntree	random forest parameter
alpha	miscoverage level

Value

a function for computing conditional width and coverage

conf_CQR_conditional

3

conf_CQR_conditional Conditional width and coverage for CQR

Description

Conditional width and coverage for CQR

Usage

```
conf_CQR_conditional(x, y, beta, mtry, ntree, alpha = 0.1)
```

Arguments

X	A N*d training matrix
у	A N*1 training vector
beta	nominal quantile level
mtry	random forest parameter
ntree	random forest parameter
alpha	miscoverage level

Value

a function for computing conditional width and coverage

conf_CQR_prelim preliminary function for CQR

Description

preliminary function for CQR

Usage

```
conf_CQR_prelim(X1, Y1, X2, Y2, beta_grid, mtry, ntree, alpha = 0.1)
```

Arguments

X1	A n1*d matrix for training
Y1	A n1*1 vector for training
X2	A n2*d matrix for calibration
Y2	A n2*1 vector for calibration

beta_grid a grid of beta's

mtry mtry parameter in random forest

ntree number of trees parameter in random forest

alpha miscoverage level

conf_CQR_reg

Value

the smallest width and its corresponding beta

conf_CQR_reg

EFCP and VFCP for CQR, CQR-m, CQR-r

Description

EFCP and VFCP for CQR, CQR-m, CQR-r

Usage

```
conf_CQR_reg(
    x,
    y,
    split,
    beta_grid,
    mtry_grid,
    ntree_grid,
    method = "efficient",
    alpha = 0.1
)
```

Arguments

```
x A N*d training matrix
y A N*1 training vector
split a vector of length 1 for efcp, length 2 for vfcp
beta_grid a grid of beta's
mtry_grid a grid of mtry
ntree_grid a grid of ntree
method "efficient" for efcp; "valid" for vfcp
alpha miscoverage level
```

Value

the selected cqr method

```
{\it conf\_CQR\_reg\_conditional} \\ {\it Conditional\ width\ and\ coverage\ for\ EFCP,\ VFCP\ between\ CQR,} \\ {\it CQR-m,\ CQR-r} \\
```

Description

Conditional width and coverage for EFCP, VFCP between CQR, CQR-m, CQR-r

Usage

```
conf_CQR_reg_conditional(
    x,
    y,
    split,
    beta_grid,
    mtry_grid,
    ntree_grid,
    method = "efficient",
    alpha = 0.1
)
```

Arguments

```
x A N*d training matrix
y A N*1 training vector
split a vector of length 1 for efcp, length 2 for vfcp
beta_grid a grid of beta's
mtry_grid a grid of mtry
ntree_grid a grid of ntree
method "efficient" for efcp; "valid" for vfcp
alpha miscoverage level
```

Value

the selected cqr method

efcp.fun

Cross validation conformal prediction for ridge regression

Description

Cross validation conformal prediction for ridge regression

Usage

```
cv.fun(X, Y, X0, lambda = seq(0, 100, length = 100), nfolds = 10, alpha = 0.1)
```

Arguments

Χ	A N*d training matrix
Υ	A N*1 training vector
X0	A N0*d testing vector

lambda a sequence of penalty parameters for ridge regression

nfolds number of folds alpha miscoverage level

Value

upper and lower prediction intervals for X0

efcp.fun

Efficiency first conformal prediction for ridge regression

Description

Efficiency first conformal prediction for ridge regression

Usage

```
efcp.fun(X, Y, X0, lambda = seq(0, 100, length = 100), alpha = 0.1)
```

Arguments

Χ	A N*d training matrix
Υ	A N*1 training vector
X0	A N0*d testing vector

lambda a sequence of penalty parameters for ridge regression

alpha miscoverage level

efcp_cqr 7

Value

upper and lower prediction intervals for X0.

Examples

```
df=3
d = 5
n=50
       #number of training samples
n0=10 #number of prediction points
rho=0.5
Sigma=matrix(rho,d,d)
diag(Sigma)=rep(1,d)
beta=rep(1:5,d/5)
X0=mvtnorm::rmvt(n0,Sigma,df)
X=mvtnorm::rmvt(n,Sigma,df) #multivariate t distribution
eps=rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
Y=X%*%beta+eps
out.efcp=efcp.fun(X,Y,X0)
out.efcp$up
out.efcp$lo
```

efcp_cqr

Efficiency first conformal prediction for Conformal Quantile Regression

Description

Efficiency first conformal prediction for Conformal Quantile Regression

Usage

```
efcp_cqr(x, y, split, beta_grid, params_grid, alpha = 0.1)
```

Arguments

x A N*d training matrix
y A N*1 training vector
split a number between 0 and 1

beta_grid a grid of beta's

params_grid a grid of mtry and ntree alpha miscoverage level

Value

average prediction width and a function for coverage on some testing points

8 efcp_ridge

efcp_ridge

Efficiency first conformal prediction for ridge regression

Description

Efficiency first conformal prediction for ridge regression

Usage

```
efcp_ridge(X, Y, X0, lambda = seq(0, 100, length = 100), alpha = 0.1)
```

Arguments

X A N*d training matrix
Y A N*1 training vector
X0 A N0*d testing vector

lambda a sequence of penalty parameters for ridge regression

alpha miscoverage level

Value

upper and lower prediction intervals for X0.

Examples

```
df=3
d = 5
n=50
       #number of training samples
n0=10 #number of prediction points
rho=0.5
Sigma=matrix(rho,d,d)
diag(Sigma)=rep(1,d)
beta=rep(1:5,d/5)
X0=mvtnorm::rmvt(n0,Sigma,df)
X=mvtnorm::rmvt(n,Sigma,df) #multivariate t distribution
eps=rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
Y=X%*%beta+eps
out.efcp=efcp.fun(X,Y,X0)
out.efcp$up
out.efcp$lo
```

ginverse.fun 9

ginve	rse.	tun

Conformal prediction for linear regression

Description

Conformal prediction for linear regression

Usage

```
ginverse.fun(x, y, x0, alpha = 0.1)
```

Arguments

X	A N*d training matrix
У	A N*1 training vector
×0	A N0*d testing vector
alpha	miscoverage level

Value

upper and lower prediction intervals for X0

 ${\tt ginverselm.funs}$

Internal function used for ginverse.fun

Description

Internal function used for ginverse.fun

Usage

```
ginverselm.funs(intercept = TRUE, lambda = 0)
```

Arguments

intercept default is TRUE

lambda a vector

10 naive.fun

my.ginverselm.funs

Internal function used for ginverse.fun

Description

Internal function used for ginverse.fun

Usage

```
my.ginverselm.funs
```

Format

An object of class list of length 4.

naive.fun

Conformal prediction for linear regression

Description

Conformal prediction for linear regression

Usage

```
naive.fun(X, Y, X0, alpha = 0.1)
```

Arguments

Χ	A N*d training matrix
Υ	A N*1 training vector
X0	A N0*d testing vector
alpha	miscoverage level

Value

upper and lower prediction intervals for X0

pois_n400_reps100

pois_n400_reps100 Outcomes of an example for tuning-free conformalized quantile regression (CQR) .	e-
--	----

Description

A dataset containing the experiment results used in the vignettes.

Usage

```
pois_n400_reps100
```

Format

A list with 10 elements: x_test, n,nrep,width_mat, cov_mat,beta_mat, ntree_mat, cqr_method_mat, evaluations, alpha

x_test test points of x

n number of training samples

nrep number of replications

width_mat a data frame with the first column being the width of the prediction regions

cov_mat a data frame with the first column being the coverage of the prediction regions

beta_mat a data frame with the first column being the beta for CQR used in the final prediction

ntree_mat a data frame with the first column being the number of trees for CQR used in the final prediction

ntree_mat a data frame with the first column being the CQR method (among CQR, CQR-m, CQR-r)used in the final prediction

alpha desired miscoverage level

Source

For details please see the "Example-tuning_free_CQR" vignette:vignette("Example-tuning_free_CQR", package = "ConformalSmallest")

ridge_linear_cov100_t3

Outcomes of an example for tuning-free conformal prediction with ridge regression.

Description

A dataset containing the experiment results used in the vignettes.

Usage

```
ridge_linear_cov100_t3
```

Format

A list with 7 elements: dim_linear_t3,cov.param_linear_fm_t3, cov.naive_linear_fm_t3, cov.vfcp_linear_fm_t3, cov.star_linear_fm_t3, cov.cv5_linear_fm_t3, cov.efcp_linear_fm_t3

dim dimensions used in the experiment

len.param a matrix with coverages for the prediction regions produced by the parametric method

len.naive a matrix with coverages for the prediction regions produced by naive linear regression method

len.vfcp na matrix with coverages for the prediction regions produced by VFCP

len.star a matrix with coverages for the prediction regions produced by cross validation with the

len.cv5 a matrix with coverages for the prediction regions produced by cross-validation with 5 splits

len.efcp a matrix with coverages for the prediction regions produced by efcp

Source

For details please see the "Example-tuning_free_ridge_regression" vignette:vignette("Example-tuning_free_ridge_regression" package = "ConformalSmallest")

```
ridge_linear_cov100_t5
```

Outcomes of an example for tuning-free conformal prediction with ridge regression.

Description

A dataset containing the experiment results used in the vignettes.

Usage

```
ridge_linear_cov100_t5
```

Format

A list with 7 elements: dim_linear_t5,cov.param_linear_fm_t5, cov.naive_linear_fm_t5, cov.vfcp_linear_fm_t5, cov.vfcp_linear_fm_t5, cov.vfcp_linear_fm_t5, cov.vfcp_linear_fm_t5

dim dimensions used in the experiment

cov.param a matrix with coverages for the prediction regions produced by the parametric method

cov.naive a matrix with coverages for the prediction regions produced by naive linear regression method

cov.vfcp na matrix with coverages for the prediction regions produced by VFCP

cov.star a matrix with coverages for the prediction regions produced by cross validation with the errors

cov.cv5 a matrix with coverages for the prediction regions produced by cross-validation with 5 splits

cov.efcp a matrix with coverages for the prediction regions produced by efcp

Source

For details please see the "Example-tuning_free_ridge_regression" vignette:vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge

```
ridge_linear_len100_t3
```

Outcomes of an example for tuning-free conformal prediction with ridge regression.

Description

A dataset containing the experiment results used in the vignettes.

Usage

```
ridge_linear_len100_t3
```

Format

A list with 6 elements: len.param_linear_fm_t3, len.naive_linear_fm_t3, len.vfcp_linear_fm_t3, len.star_linear_fm_t3, len.cv5_linear_fm_t3, len.efcp_linear_fm_t3

len.param a matrix with widths for the prediction regions produced by the parametric method
len.naive a matrix with widths for the prediction regions produced by naive linear regression method

len.vfcp na matrix with widths for the prediction regions produced by VFCP

len.star a matrix with widths for the prediction regions produced by cross validation with the errors

len.cv5 a matrix with widths for the prediction regions produced by cross-validation with 5 splits

len.efcp a matrix with widths for the prediction regions produced by efcp

Source

For details please see the "Example-tuning_free_ridge_regression" vignette:vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_fr

```
ridge_linear_len100_t5
```

Outcomes of an example for tuning-free conformal prediction with ridge regression.

Description

A dataset containing the experiment results used in the vignettes.

Usage

```
ridge_linear_len100_t5
```

Format

A list with 6 elements: len.param_linear_fm_t5, len.naive_linear_fm_t5, len.vfcp_linear_fm_t5, len.star_linear_fm_t5, len.cv5_linear_fm_t5, len.efcp_linear_fm_t5

len.param a matrix with widths for the prediction regions produced by the parametric method

len.naive a matrix with widths for the prediction regions produced by naive linear regression method

len.vfcp na matrix with widths for the prediction regions produced by VFCP

len.star a matrix with widths for the prediction regions produced by cross validation with the errors

len.cv5 a matrix with widths for the prediction regions produced by cross-validation with 5 splits

len.efcp a matrix with widths for the prediction regions produced by efcp

Source

For details please see the "Example-tuning_free_ridge_regression" vignette:vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression" vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge_regression vignette("Example-tuning_free_ridge

star.fun 15

star.fun	Conformal prediction for ridge regression, tuning parameter by minimizing the mean of the residuals

Description

Conformal prediction for ridge regression, tuning parameter by minimizing the mean of the residuals

Usage

```
star.fun(X, Y, X0, lambda = seq(0, 100, length = 100), alpha = 0.1)
```

Arguments

Y A N*1 training vector X0 A N0*d testing vector	
X0 A N0*d testing vector	
lambda a sequence of penalty parameters for ridge regression	n

alpha miscoverage level

Value

upper and lower prediction intervals for X0

vfcp.fun Validity first conformal prediction for ridge regression

Description

Validity first conformal prediction for ridge regression

Usage

```
vfcp.fun(X, Y, X0, lambda = seq(0, 100, length = 100), alpha = 0.1)
```

Arguments

Χ	A N*d training matrix
Υ	A N*1 training vector
X0	A N0*d testing vector

lambda a sequence of penalty parameters for ridge regression

alpha miscoverage level

16 vfcp_cqr

Value

upper and lower prediction intervals for X0.

Examples

```
df=3
d = 5
n=50
      #number of training samples
n0=10 #number of prediction points
rho=0.5
Sigma=matrix(rho,d,d)
diag(Sigma)=rep(1,d)
beta=rep(1:5,d/5)
X0=mvtnorm::rmvt(n0,Sigma,df)
X=mvtnorm::rmvt(n,Sigma,df) #multivariate t distribution
eps=rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
Y=X%*%beta+eps
out.vfcp=vfcp.fun(X,Y,X0)
out.vfcp$up
out.vfcp$lo
```

vfcp_cqr

Validity first conformal prediction for Conformal Quantile Regression

Description

Validity first conformal prediction for Conformal Quantile Regression

Usage

```
vfcp_cqr(x, y, split, beta_grid, params_grid, alpha = 0.1)
```

Arguments

 $\begin{array}{cccc} x & & A \ N^*d \ training \ matrix \\ y & & A \ N^*1 \ training \ vector \\ split & & a \ number \ between \ 0 \ and \ 1 \end{array}$

beta_grid a grid of beta's

params_grid a grid of mtry and ntree alpha miscoverage level

Value

average prediction width and a function for coverage on some testing points

vfcp_ridge 17

vfcp_ridge	Validity first conformal prediction for ridge regression
vfcp_ridge	Validity first conformal prediction for ridge regression

Description

Validity first conformal prediction for ridge regression

Usage

```
vfcp_ridge(X, Y, X0, lambda = seq(0, 100, length = 100), alpha = 0.1)
```

Arguments

X A N*d training matrix
Y A N*1 training vector
X0 A N0*d testing vector

lambda a sequence of penalty parameters for ridge regression

alpha miscoverage level

Value

upper and lower prediction intervals for X0.

Examples

```
df=3
d = 5
       #number of training samples
n=50
n0=10 #number of prediction points
rho=0.5
Sigma=matrix(rho,d,d)
diag(Sigma)=rep(1,d)
beta=rep(1:5,d/5)
X0=mvtnorm::rmvt(n0,Sigma,df)
X=mvtnorm::rmvt(n,Sigma,df) #multivariate t distribution
eps=rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
Y=X%*%beta+eps
out.vfcp=vfcp.fun(X,Y,X0)
out.vfcp$up
out.vfcp$lo
```

Index

```
* datasets
    my.ginverselm.funs, 10
    pois_n400_reps100, 11
    ridge_linear_cov100_t3, 12
    ridge_linear_cov100_t5, 12
    ridge_linear_len100_t3, 13
    ridge_linear_len100_t5, 14
conf_CQR, 2
conf_CQR_conditional, 3
conf\_CQR\_prelim, 3
conf_CQR_reg, 4
conf_CQR_reg_conditional, 5
cv.fun, 6
efcp.fun, 6
efcp_cqr, 7
efcp_ridge, 8
ginverse.fun, 9
{\tt ginverselm.funs}, {\tt 9}
\verb|my.ginverselm.funs|, 10
{\tt naive.fun}, \textcolor{red}{10}
pois_n400_reps100, 11
ridge_linear_cov100_t3, 12
ridge_linear_cov100_t5, 12
ridge_linear_len100_t3, 13
ridge_linear_len100_t5, 14
star.fun, 15
vfcp.fun, 15
vfcp_cqr, 16
vfcp_ridge, 17
```