STA2001 Assignment 6

1. 3.2-7. Find the moment-generating function for the gamma distribution with parameters α and θ .

Hint: In the integral representing $E(e^{tX})$, change variables by letting $y = (1 - \theta t)x/\theta$, where $1 - \theta t > 0$.

2. 3.2-9. If the moment-generating function of a random variable W is

$$M(t) = (1 - 7t)^{-20},$$

find the pdf mean and the variance of W.

- 3. 3.2-11 If X is $\chi^2(17)$, find
 - (a) P(X < 7.564).
 - (b) P(X > 27.59).
 - (c) P(6.408 < X < 27.59).
 - (d) $\chi^2_{0.95}(17)$.
 - (e) $\chi^2_{0.025}17$
- 4. 3.2-22 Let X have a logistic distribution with pdf

$$f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}, -\infty < x < \infty.$$

Show that

$$Y = \frac{1}{1 + e^{-X}}$$

has a U(0,1) distribution.

Hint: Find $G(y) = P(Y \le y) = P(\frac{1}{1 + e^{-X}} \le y)$, where 0 < y < 1.

- 5. 3.3-2 If Z is N(0,1), find
 - (a) $P(0 \le Z \le 0.87)$.
 - (b) $P(-2.64 \le Z \le 0)$.
 - (c) $P(-2.13 \le Z \le -0.56)$.

- (d) P(|Z| > 1.39).
- (e) P(Z < -1.62).
- (f) P(|Z| > 1).
- (g) P(|Z| > 2).
- (h) P(|Z| > 3).
- 6. 3.3-3 If Z is N(0,1), find values of c such that
 - (a) $P(Z \ge c) = 0.025$
 - (b) $P(|Z| \le c) = 0.95$
 - (c) P(Z > c) = 0.05
 - (d) $P(|Z| \le c) = 0.90$.
- 7. 3.3-5. If X is normally distributed with a mean of 6 and a variance of 25, find
 - (a) $P(6 \le X \le 12)$
 - (b) $P(0 \le X \le 8)$
 - (c) $P(-2 < X \le 0)$
 - (d) P(X > 21)
 - (e) P(|X-6|<5)
 - (f) P(|X-6| < 10)
 - (g) P(|X-6| < 15)
 - (h) P(|X-6| < 12.41)
- 8. 3.3-6. If the moment-generating function of X is $M(t) = \exp(166t + 200t^2)$, find
 - (a) The mean of X
 - (b) The variance of X
 - (c) P(170 < X < 200)
 - (d) $P(148 \le X \le 172)$
- 9. 3.3-10 If X is $N(\mu, \sigma^2)$, show that the distribution of Y = aX + b is $N(a\mu + b, a^2\sigma^2)$, $a \neq 0$. Hint: Find the cdf $P(Y \leq y)$ of Y, and in the resulting integral, let w = ax + b or, equivalently, x = (w b)/a.
- 10. 3.3-14. The strength X of a certain material is such that its distribution is found by $X=e^Y$, where Y is N(10,1). Find the cdf and pdf of X, and compute P(10,000 < X < 20,000). Note: $F(x)=P(X \le x)=P(e^Y \le x)=P(Y \le \ln x)$ so that the random variable X is said to have a lognormal distribution.