C1: Intro to RL

▼ Table of Content

What is RL

- Branch of ML where learning occurs through interaction with environment
- Goal-oriented learning where learner not thought what action to take, albeit, learn from the consequences of actions

High-Level RL Step

- 1. Agent interact with env by performing action
- 2. Agent perform action and move from one state to another
- 3. Agent receive reward based on the action performed
- 4. Agent understand the quality of an action based on the reward

How is RL different from other ML Paradigms

- Supervised Learning
 - RL does not have a human defined label or instruction to instruct the agent moving towards specific goal

C1: Intro to RL

- Unsupervised Learning
 - Unsupervised only have the input data and does not have any reward function/environment to interact with

Elements of RL

Agent

Bot/User/Machine that interacts with the environment based on its policy

Policy Function

- Defines the agent's behaviour and action to take given the current state
- Often denoted by π

Value Function V

- Quality of the current state towards the agent (Long Term)
 - \circ expected long-term return with discount γ
- ullet Often denoted by v(s)

Reward R

 an immediate signal received in a given state (Short-Term)

Value function, rather than immediate rewards, is what reinforcement learning seeks to predict and control.

Model

- Agent's representation of the environment
- Learning can be either model-based or model-free training:
 - Model-based agent exploits previously learned information to accomplish task
 - Model-free agent relies on trial-and-error experience for performing right action

C1: Intro to RL

Agent Environment Interface

Agent perform action A_t at time t from one state, S_t to another state S_{t+1} . And based on the action and state, a reward R is given.

Ultimately, RL is about finding the optimal actions that will increase the reward $\it R$.

C1: Intro to RL