

#### Introduction to Sparsity in Modeling and Learning

- The Curse of Dimensionality
- Ockham's Razor
- Notions of Simplicity
- Conclusion





# The Curse of Dimensionality



# What is this Curse Anyway?

Some definition:

Various phenomena that arise when analyzing and organizing data in high-dimensional spaces.

- Term coined by Richard E. Bellman
  - **1920 1984**
  - dynamic programming
  - differential equations
  - shortest path
- What is (not) the cause?
  - not an intrinsic property of the data
  - depends on the representation
  - depends on how data is analyzed

## **Combinatorial Explosion**

- Suppose
  - lacksquare you have d entities
  - each can be in 2 states
- Then
  - ullet there are  $2^d$  combinations to consider/test/evaluate
- Happens when considering
  - lacksquare all possible subsets of a set  $(2^d)$
  - $\blacksquare$  all permutations of a list (d!)
  - lacksquare all affectations of entities to labels ( $k^d$ , with k labels)



## Regular Space Coverage

- Analogous to combinatorial explosion, in continuous spaces
- Happens when considering
  - histograms
  - density estimation
  - anomaly detection
  - **-** ...



# In Modeling and Learning

- The world is complicated
  - state with a huge number of variables (dimensions)
  - possibly noisy observations
  - e.g. a 1M-pixel image has 3 million dimensions



- Learning would need observations for each state
  - it would require too many examples
  - need for an "interpolation" procedure, to avoid overfitting
- Hughes phenomenon, 1968 paper (which is wrong, it seems)

given a (small) number of training samples, additional feature measurements may reduce the performance of a statistical classifier

#### A Focus on Distances/Volumes

- ullet Considering a d dimensional space
- About volumes
  - lacksquare volume of the cube:  $C_d(r)=(2r)^d$
  - lacksquare volume of a sphere with radius <math>r:  $S_d(r) = rac{\pi^{d/2}}{\Gamma(rac{d}{2}+1)} r^d$

 $(\Gamma \text{ is the continuous generalization of the factorial})$ 

lacksquare ratio:  $rac{S_d(r)}{C_d(r)} 
ightarrow 0$  (linked to space coverage)



### A Focus on Distances/Volumes (cont'd)



- About distances
  - average (euclidean) distance between two random points?
  - everything becomes almost as "far"
- Happens when considering
  - radial distributions (multivariate normal, etc)
  - k-nearest neighbors (hubiness problem)
  - other distance-based algorithms





Many things get degenerated with high dimensions
Problem of: approach + data representation

We have to hope that there is no curse

#### Introduction to Sparsity in Modeling and Learning

- The Curse of Dimensionality
- Ockham's Razor
- Notions of Simplicity
- Conclusion







#### Ockham's Razor

- Term from 1852, in reference to Ockham (XIV<sup>th</sup>)
- lex parsimoniae, law of parsimony
- Prefer the simplest hypothesis that fits the data.
- Formulations by Ockham, but also earlier and later
- More a concept than a rule
  - simplicity
  - parsimony
  - elegance
  - shortness of explanation
  - shortness of program (Kolmogorov complexity)
  - falsifiability (sciencific method)
- According to Jürgen Schmidhuber, the appropriate mathematical theory of Occam's razor already exists, namely, Solomonoff's theory of optimal inductive inference.

# **Notions of Simplicity**

## Simplicity of Data: subspaces

- Data might be high-dimensional, but we have hope
  - that there is a organization or regularity in the high-dimensionality
  - that we can guess it
  - or, that we can learn/find it
- Approaches: dimensionality reduction, manifold learning
  - PCA, kPCA, \*PCA, SOM, Isomap, GPLVM, LLE, NMF, ...



# Simplicity of Data: compressibility



- Idea
  - data can be high dimensional but compressible
  - i.e., there exist a compact representation
- Program that generates the data (Kolmogorov complexity)
- Sparse representations
  - wavelets (jpeg), fourier transform
  - sparse coding, representation learning
- Minimum description length
  - size of the "code" + size of the encoded data



# Simplicity of Models: information criteria

- Used to select a model
- ullet Penalizes by the number k of free parameters
  - AIC (Aikake Information Criterion)
    - lacktriangle penalizes the Negative-Log-Likelihood by k
  - BIC (Bayesian IC)
    - lacksquare penalizes the NLL by  $k\log(n)$  (for n observations)
  - BPIC (Bayesian Predictive IC)
  - DIC (Deviance IC)
  - FIC (Focused IC)
  - Hannan-Quinn IC
  - TIC (Takeuchi IC)
- Sparsity of the parameter vector (l0 norm)
  - penalizes the number of non-zero parameters



