```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, ExtraTreesClassifier
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
from xgboost import XGBClassifier, XGBRFClassifier
from sklearn.metrics import accuracy_score,confusion_matrix,precision_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from wordcloud import WordCloud
from collections import Counter
import nltk
import pickle
import string
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
nltk.download('punkt')
nltk.download('stopwords')
     [nltk_data] Downloading package punkt to /root/nltk_data...
     [nltk_data] Unzipping tokenizers/punkt.zip.
     [nltk_data] Downloading package stopwords to /root/nltk_data...
     [nltk_data]
                  Unzipping corpora/stopwords.zip.
     True
df = pd.read_csv("/content/spam.csv", encoding="latin-1")
df.sample(1)
                                                    Unnamed:
                                                                Unnamed:
                                                                            Unnamed:
                                               v2
            v1
                                                                                   4
                    Yup, no need. I'll jus wait 4 e rain 2
                                                                     NeN
                                                                                 NeN
df.rename(columns={"v1": "output","v2": "input"}, inplace = True)
df.sample(1)
                                                     Unnamed:
                                                                Unnamed:
                                                                            Unnamed:
            output
                                            input
                                                                        3
                    Do you think i can move <#&gt; in
      2/27
                                                         NaN
                                                                     MeM
                                                                                 NaN
le = LabelEncoder()
df["output"] = le.fit_transform(df["output"])
df.sample(1)
            output input Unnamed: 2 Unnamed: 3 Unnamed: 4
      2324
                0 Ok lor.
                                 NaN
                                             NaN
plt.pie(df["output"].value_counts(),autopct = "%.2f", labels=['ham','spam'])
plt.show()
```



```
df["characters"] = df["input"].apply(len)
df["word"] = df["input"].apply(lambda x:len( nltk.word_tokenize(x)))
df["sentence"] = df["input"].apply(lambda x:len(nltk.sent_tokenize(x)))
df.head(1)
```

output input Unnamed: Unnamed: Unnamed: characters word sentence

Go until

df[["characters","word", "sentence"]].describe()

	sentence	word	characters	
ıl.	5572.000000	5572.000000	5572.000000	count
	1.996411	18.699390	80.118808	mean
	1.520159	13.741932	59.690841	std
	1.000000	1.000000	2.000000	min
	1.000000	9.000000	36.000000	25%
	1.500000	15.000000	61.000000	50%
	2.000000	27.000000	121.000000	75%
	38.000000	220.000000	910.000000	max

```
plt.figure(figsize=(10,7))
sns.histplot(df[df["output"]==0]["characters"],label= "ham",color="green")
sns.histplot(df[df["output"]==1]["characters"],label= "spam",color = "red")
plt.title("SPAM Vs HAM : Characters")
plt.legend()
plt.show()
```


df[df["output"]==0][["characters","word", "sentence"]].describe()

	sentence	word	characters	
11.	4825.000000	4825.000000	4825.000000	count
	1.837720	17.276269	71.023627	mean
	1.454388	13.988585	58.016023	std
	1.000000	1.000000	2.000000	min
	1.000000	8.000000	33.000000	25%
	1.000000	13.000000	52.000000	50%
	2.000000	22.000000	92.000000	75%
	38.000000	220.000000	910.000000	max

df[df["output"] ==1][["characters","word", "sentence"]].describe()

	characters	word	sentence	
count	747.000000	747.000000	747.000000	11.
mean	138.866131	27.891566	3.021419	
std	29.183082	6.867007	1.537580	
min	13.000000	2.000000	1.000000	
25%	132.500000	25.000000	2.000000	
50%	149.000000	29.000000	3.000000	
75%	157.000000	32.000000	4.000000	
max	224.000000	46.000000	9.000000	

```
plt.figure(figsize=(10,7))
sns.histplot(df[df["output"]==0]["word"],label= "ham",color="green")
sns.histplot(df[df["output"]==1]["word"],label= "spam",color = "red")
plt.title("SPAM Vs HAM : Word")
plt.legend()
plt.show()
```


sns.pairplot(df,hue="output")

df.corr()

	output	characters	word	sentence	
output	1.000000	0.387285	0.263221	0.265332	11.
characters	0.387285	1.000000	0.966310	0.631881	
word	0.263221	0.966310	1.000000	0.685165	
sentence	0.265332	0.631881	0.685165	1.000000	

sns.heatmap(df.corr(),annot=True,cmap="viridis")

