Les méthodes d'Induction d'Arbres

CHAID - CART - C4.5 et les autres...

Ricco RAKOTOMALALA

Différenciation des méthodes

Mesures d'Evaluation de la Segmentation -- Impact

- Mesures statistiques
- · Mesures issues de la théorie de l'information

Regroupement des modalités

- · 1 modalité = 1 branche
- · Arbre Binaire
- Arbre m-aire

Détermination de la taille « optimale »

- Pré-pruning
- Post-pruning

Autres subtilités : coûts, graphes, arbres obliques, arbres flous

Evaluer une segmentation -- Impact

Comment les caractériser

51 : Maximalité
Distribution « pure » dans les feuilles

S2: Minimalité
Pas de modification des distributions

S3: Intermédiaire

Modification des distributions, association de certaines valeurs de X avec celles de Y

Mesures de liaison statistique – CHI-2 et ses normalisations (CHAID)

Tableau de calcul

Caractériser : la connaissance de X améliore la connaissance des valeurs de Y

Y/X	x_1	x_l	x_L	Σ
y_1		:		
y_k		$\cdots n_{kl} : $	•••	$n_{k.}$
\mathcal{Y}_{K}		•		
Σ		$n_{.l}$		n

Principe

Comparer les valeurs observées avec les valeurs théoriques lorsque Y et X sont indépendants (produit des marges) CHI-2 varie entre 0 et +00

$$\chi^{2} = \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{\left(n_{kl} - \frac{n_{k.} \times n_{.l}}{n}\right)^{2}}{\frac{n_{k.} \times n_{.l}}{n}}$$

T de Tschuprow est une normalisation par les degrés de libertés. Il varie entre 0 et 1.

$$t^{2} = \frac{\chi^{2}}{n \times \sqrt{(K-1) \times (L-1)}}$$

Exemple pour le t de Tschuprow -- CHAID

51:1.0Distribution enfant « pure »

52:0.0Pas de modification des distributions

53:0.7746

Modification des distributions, association des valeurs de certaines valeurs de X avec celles de Y

Théorie de l'information – Le gain informationnel (C4.5)

Entropie de Shannon

Quantité d'information pour connaître les valeurs de Y

$$E(Y) = -\sum_{k=1}^{K} \frac{n_{k}}{n} \times \log_2\left(\frac{n_{k}}{n}\right)$$

Entropie Conditionnelle

Quantité d'information pour connaître les valeurs de Y Sachant les valeurs de X

$$E(Y/X) = -\sum_{l=1}^{L} \frac{n_{l}}{n} \sum_{k=1}^{K} \frac{n_{kl}}{n_{.l}} \times \log_{2} \left(\frac{n_{kl}}{n_{.l}}\right)$$

Gain d'entropie

$$G(Y/X) = E(Y) - E(Y/X)$$

Gain d'entropie normalisée

Gain Ratio - Tenir compte de la distribution marginale de X

$$GR(Y/X) = \frac{E(Y) - E(Y/X)}{E(X)}$$

6

Exemple pour le gain ratio – C4.5

\$1:1.0

Distribution « pure » dans les feuilles

52:0.0Pas de modification des distributions

S3: 0.5750

Modification des distributions, association des valeurs de certaines valeurs de X avec celles de Y

Indice de concentration (CART)

Indice de Gini Concentration des valeurs de Y

$$I(Y) = \sum_{k=1}^{K} \frac{n_{k.}}{n} \left(1 - \frac{n_{k.}}{n} \right)$$

Indice de Gini conditionnel Concentration de Y sachant les valeurs de X

$$I(Y/X) = \sum_{l=1}^{L} \frac{n_{.l}}{n} \sum_{k=1}^{K} \frac{n_{kl}}{n_{.l}} \left(1 - \frac{n_{kl}}{n_{.l}} \right)$$

Amélioration de la concentration

$$D(Y/X) = I(Y) - I(Y/X)$$

Indice de Gini = Entropie Quadratique

On peut aussi interpréter D comme un gain informationnel

Indice de Gini = Variance sur variables catégorielles

On peut aussi interpréter D comme une variance inter-classes = variance totale - variance intra

Exemple pour l'indice de Gini – CART

S1: 0.5

Distribution « pure » dans les feuilles

S2: 0.0 Pas de modification des distributions

53:0.3 Modification des distributions, association des valeurs de certaines valeurs de X avec celles de Y

Impact -- Le rôle de la normalisation

Éviter la fragmentation des données – La propriété de Fusion des mesures

Y / X1	A1	B1	C1	D1	Total	
positif	2	3	6	3	14	CHI-2 3.9796
négatif	4	4	8	0	16	T Tschuprow 0.0766
Total	6	7	14	3	30	

Segmentation en 4 modalités avec la variable X1

Y / X2	A2	B2	D2	Total	
oositif	2	9	3	14	CHI-2
négatif	4	12	0	16	T Tschuprov
Total	6	21	3	30	

Segmentation en 3 modalités avec la variable X2

- · Le t de Tschuprow normalise le CHI-2
- · Le Gain Ratio normalise le gain informationnel
- · Le Gain de Gini n'est pas normalisé (mais on s'affranchit autrement de cette limitation dans CART)

Regroupement des modalités

1 modalité = 1 branche de l'arbre – C4.5

- Simplicité du calcul et d'interprétation
- Danger de fragmentation, surtout sur les petits effectifs
- Arbres « larges »
- · La mesure est chargée de favoriser les variables ayant peu de modalités

Regroupement des modalités

L'arbre binaire -- CART

- · Regroupement de manière à optimiser l'impact
- Moins de fragmentation
- Arbres « profonds »
- · La binarisation compense l'absence de normalisation du gain de Gini
- La binarisation n'est pas toujours pertinente

Regroupement des modalités

L'arbre m-aire -- CHAID

- Regroupement des feuilles ayant le même
 profil »
- Moins de fragmentation
- · Difficulté à régler le paramètre de fusion

Principe : test d'équivalence distributionnelle Fusionner les feuilles issues de la segmentation Tant que les profils ne sont pas significativement différents

	NoMilk, Powder	WholeMilk
High	5	16
Low	1	8
Normal	8	31
Total	14	55

$$\chi^{2} = 14 \times 55 \times \left[\frac{\left(5/14 - 16/55\right)^{2}}{5 + 16} + \frac{\left(1/14 - 8/55\right)^{2}}{1 + 8} + \frac{\left(8/14 - 31/55\right)^{2}}{8 + 31} \right]$$
$$= 0.6309$$

$$p - value_{\chi^2[(3-1)\times(2-1)]} = 0.73$$

Fusion si (p-value > probabilité critique pour la fusion)

Arbitrage biais - variance

Biais: (in)capacité à retraduire des fonctions / concepts « complexes »

Variance : dépendance au fichier d'apprentissage

Arbre

Pre-pruning

Critères empiriques

- Effectifs sur les nœuds et les feuilles : taille limite avant la segmentation et effectif d'admissibilité
- · Pureté des feuilles : seuil de spécialisation
- · Taille de l'arbre

Simples mais difficiles à déterminer (essais et tâtonnements, dépendant de la taille de la base et du domaine d'étude)

Critères statistiques -- CHAID

Test d'indépendance du CHI-2

Difficile de déterminer un niveau de signification optimal (à fixer très bas à mesure que la taille de la base augmente)

Dans la pratique, ça marche quand même :

- · la zone « optimale » est large
- · rapidité en apprentissage (par rapport au post-pruning)
- · à privilégier dans une phase exploratoire

Post-pruning

Apprentissage en deux phases

- (1) Expansion [growing] → maximiser la pureté
- (2) Élagage [pruning] → minimiser l'erreur de prédiction

Comment obtenir une estimation crédible de la « vraie » erreur

Post-pruning avec un échantillon d'élagage -- CART

Subdivision de l'apprentissage en 2 parties

- (1) Growing set (#67%)
- (2) Pruning set (#33%)

Séquences d'arbres de coût-complexité équivalents

$$E_{\alpha}(T) = E(T) + \alpha \times |T|$$

Estimation « honnête » de l'erreur

Éviter la trop grande dépendance à l'échantillon d'élagage

Post-pruning avec l'erreur pessimiste – C4.5

Erreur pessimiste = erreur pénalisée par les effectifs

= borne haute de l'intervalle de confiance du taux d'erreur

- e. Resub = 0.0
- e. Pess = 0.206
 - e. Resub = 0.0
 - e. Pess = 0.143
 - e. Resub = 0.0
 - e. Pess = 0.750

Stratégie:

Tester de proche en proche chaque sommet précédant des feuilles

Élagage: $0.157 < (7 \times 0.206 + 9 \times 0.143 + 1 \times 0.750)/17 = 0.2174$

Récapitulatif

Caractéristiques des méthodes – CHAID, CART ou C4.5?

Carac. / Méthode	CHAID	CART	C4.5	
Impact	T de Tschuprow	Indice de Gini	Gain informationnel (Gain Ratio)	
Regroupement	M-aire Test d'équivalence distributionnelle	Binaire forcément	1 modalité = 1 branche	
Détermination de la taille « optimale »	Effectif minimum pour segmenter Nombre de niveau de l'arbre Seuil de spécialisation Effectif d'admissibilité			
Détermination de la taille « optimale » (spécifique)	Pré-élagage avec test du CHI-2	Post élagage avec échantillon d'élagage	Post-élagage avec estimation pessimiste de l'erreur	
Conseillé parce que / lorsque	Phase exploratoire Grosses bases de données	Performances en classement Pas de paramétrage compliqué	Petits effectifs Incontournable chez les informaticiens (IA - ML) Peu sensible au paramétrage	
Déconseillé parce que / lorsque	Performances en classement Difficulté à trouver les « bons » paramètres	Petits effectifs Binarisation pas toujours appropriée	Post-élagage peu performant sur les grands effectifs Taille arbre fonction de la taille de la base	

Aspect pratique

Prise en compte des coûts de mauvaise affectation -- CART

Dans les problèmes réels, les coûts de mauvaise affectation ne sont pas symétriques

Comment en tenir compte dans l'apprentissage?

Prédiction		
Observé	Cancer	Non-Cancer
Cancer	0	5
Non-Cancer	1	0

Cancer : 10 (33%)

Non-Cancer : 20 (67%)

Ne pas tenir compte des coûts

Tenir compte des coûts

```
C (cancer) = 10/30 \times 0 + 20/30 \times 1 = 0.67

C (non-cancer) = 10/30 \times 5 + 20/30 \times 0 = 1.67

Décision = cancer \rightarrow C (Feuille) = 0.67
```

Stratégie de CART:

- (1) Définir séquences d'arbres de coût complexité équivalents
- (2) Choisir l'arbre qui minimise le coût de mauvaise affectation

$$C_{\alpha}(T) = C(T) + \alpha \times |T|$$

Autres subtilités

Les Graphes d'Induction – La méthode SIPINA (Zighed)

- Introduction de l'opérateur de « fusion »
- · Amélioration du système de représentation
- Meilleur exploitation des petits effectifs
- Interprétation moins évidente des règles (ET / OU)
- · Ne se démarque pas en termes de performances
- · Graphes très « profonds » parfois

Autres subtilités

Les Arbres Obliques – OC1 (Murthy)

- · Utilisation de combinaison linéaire de variables
- Amélioration du système de représentation
- Arbres plus concis
- Interprétation moins évidente des règles
- · Complexité de calcul
- · Pas tranchant face à des méthodes comme la LDA

Autres subtilités

Moralité de tout cela ?

- Arbres flous
- Arbres à options
- Combinaisons logiques de variables
- Induction constructive
- · Recherche en avant

etc... cf. Rakotomalala (2005)

- (1) Les performances en classement sur données réelles sont peu probants
- (2) Ces subtilités entraîne souvent une simplification de l'arbre (à performances égales)

