Machine Learning - Notes

Dom Hutchinson

October 2, 2019

Contents

1	Introduction 1.1 Probability Theory	2
G	eneral	
Le	ecturer - Carl Henrik Ek	
Cc	ourse Website - http://carlhenrik.com/COMS30007/	
Cc	ourse Repo - https://github.com/carlhenrikek/COMS30007	
Cc	ourse Subreddit - https://www.reddit.com/r/coms30007/	

1 Introduction

Definition 1.1 - Deductive Reasoning

A method of reasoning in which the premieses are viewed as supplying <u>all</u> the evidence for the truth of the conclusion.

Definition 1.2 - Inductive Reasoning

A method of reasoning in which the premieses are viewed as supplying <u>some</u> evidence for the truth of the conclusion, rather than all the evidence. This allows for the conclusion of the *Inductive Reasoning* to be false.

Remark 1.1 - Free-Lunch Theorem

There are infinite number of hypotheses that perfectly explain the data. Adding a data point removes an infinite number of possibilities, but still leaves infinite possibilities.

Remark 1.2 - The Task of Machine Learning

When proposing to use machine learning on a task, one should consider the following questions:

- i) How can we formulate beliefes ad assumptions mathematically?
- ii) How can we connect our assumptions with data?
- iii) How can we update our beliefs?

1.1 Probability Theory

Definition 1.3 - Stochastic/Random Variable

A variable whose value depends on outcomes of random phenomona. e.g. $x \sim \mathcal{N}(0,1)$.

Definition 1.4 - Probability Measure, \mathbb{P}

A function with signature $\mathbb{P}: \mathcal{F} \to [0,1]$, where \mathcal{F} is a sample space of rv X, and fulfils $\int_{-\infty}^{\infty} \mathbb{P}(x) dx = 1$.

Definition 1.5 - Joint Probability Distribution

A Probability Measure for multiple variables, $\mathbb{P}: X \times Y \rightarrow [0,1].$

Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(X = x_i, Y = y_j) = \frac{n_{ij}}{\sum_{i,j} n_{ij}}$$

Definition 1.6 - Marginal Probability Distribution

A *Probability Measure* for one variable when the sample space is over multiple variables.

Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(X = x_i) = \frac{\sum_{j} n_{ij}}{\sum_{i,j} n_{ij}}$$

Definition 1.7 - Conditional Probability Distribution

A Probability Measure for a variable, given another variable has a defined value. Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{n_{ij}}{\sum_j n_{ij}}$$

Theorem 1.1 - Product Rule

For random variables X & Y

$$\mathbb{P}(X = x_i, Y = Y_j) = \mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)$$

Theorem 1.2 - Sum Rule

For random variables X & Y

$$\mathbb{P}(X=x) = \sum_{i} \mathbb{P}(X=x, Y=y_j)$$

Theorem 1.3 - Baye's Theorem

For random variables X & Y

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\mathbb{P}(Y = y_j)}$$

Definition 1.8 - Expectaction Value, \mathbb{E}

The mean value a random variable will produce from a large number of samples.

Continuous	Discrete
$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \mathbb{P}(X) dx$	$\mathbb{E}(X) = \sum_{-\infty}^{\infty} x \mathbb{P}(X) dx$
$\mathbb{E}(f(X)) = \int_{-\infty}^{\infty} f(x) \mathbb{P}(X) dx$	$\mathbb{E}(f(X)) = \sum_{-\infty}^{\infty} f(x) \mathbb{P}(X) dx$

Definition 1.9 - Variance

Describes the amount of spread in the values a single random variable will produce.

$$\operatorname{var}(X) = \mathbb{E}\left(x - \mathbb{E}(x)\right)^2\right) = \mathbb{E}(X^2) - \left(\mathbb{E}(X)\right)^2$$

Definition 1.10 - Covariance

Describes the joint variability between two random variables.

$$cov(X, Y) = \mathbb{E}\Big(\big(X - \mathbb{E}(X)\big)\big(Y - \mathbb{E}(Y)\big)\Big)$$

Definition 1.11 - Marginalisation

The process of summing out the probability of one random variable using its joing probability with another rando variable.

$$\begin{array}{rcl} \text{Continuous} & \mathbb{P}(X=x) & = & \int (X=x,Y=y) dy \\ \text{Discrete} & \mathbb{P}(X=x) & = & \sum_i \mathbb{P}(X=x,Y=y_i) \end{array}$$