Рубежный контроль №2

Киреев Андрей ИУ5-64Б

Задание. Для заданного набора данных (googleplaystore.csv) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (1:Линейная/логистическая регрессия, 2:Градиентный бустинг). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

In [113]:

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.ensemble import GradientBoostingRegressor
```

Проведем предварительную подготовку датасета: удаление пропусков + кодирование категориальных признаков

In [114]:

```
data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/googleplaystore.csv")
```

In [115]:

data.head()

Out[115]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Cu
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19 M	10,000+	Free	0	Everyone	Art & Design	January 7, 2018	
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018	
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7 M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018	
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018	V: de
4	Pixel Draw - Number Art	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018	

Типы переменных в датасете до обработки

```
In [117]:
```

(9360, 13)

```
data.dtypes
Out[117]:
                    object
App
Category
                   object
Rating
                   float64
Reviews
                   object
Size
                    object
Installs
                    object
Type
                    object
Price
                    object
Content Rating
                   object
Genres
                    object
```

Кодируем котегориальные признаки в числовые:

object

object

object

In [118]:

Last Updated

Current Ver

Android Ver

dtype: object

```
for i in range(data.shape[0]):
   data["Reviews"].iloc[i] = int(data["Reviews"].iloc[i])
   str = data["Installs"].iloc[i][:-1]
   data["Installs"].iloc[i] = int(str.replace(",", ""))
   if data["Price"].iloc[i] != "0":
        data["Price"].iloc[i] = data["Price"].iloc[i][1:]
        data["Price"].iloc[i] = float(data["Price"].iloc[i])
    else:
        data["Price"].iloc[i] = 0
data = data.astype({"Reviews": "int64"})
data = data.astype({"Installs": "int64"})
data = data.astype({"Price":"float64"})
leType = LabelEncoder()
le_arr = leType.fit_transform(data["Type"])
data["Type"] = le arr
data = data.astype({"Type":"int64"})
leContent = LabelEncoder()
le arr = leContent.fit transform(data["Content Rating"])
data["Content Rating"] = le arr
data["Content Rating"].unique()
data = data.astype({"Content Rating":"int64"})
leCategory = LabelEncoder()
le arr = leCategory.fit transform(data["Category"])
data["Category"] = le arr
data["Category"].unique()
data = data.astype({"Category":"int64"})
leGenres = LabelEncoder()
```

```
le_arr = leGenres.fit_transform(data["Genres"])
data["Genres"] = le_arr
data["Genres"].unique()
data = data.astype({"Genres":"int64"})

leSize = LabelEncoder()
le_arr = leSize.fit_transform(data["Size"])
data["Size"] = le_arr
data["Size"].unique()
data = data.astype({"Size":"int64"})

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)
```

Название приложения, дата его обновления и версии андроида - признаки с большим количеством уникальных значений, не нужные для исследований. Удалим их.

```
In [119]:
```

```
data2 = data.drop(["App", "Last Updated", "Current Ver", "Android Ver"], axis=1)
```

In [120]:

```
data2.dtypes
```

Out[120]:

Category int64 Rating float64 Reviews int64 Size int64 Installs int64 int64 Type float64 Price Content Rating int64 Genres int64 dtype: object

Построим матрицу корреляции:

In [121]:

```
fig, ax = plt.subplots(figsize=(15,9))
sns.heatmap(data2.corr(method="pearson"), ax=ax,annot=True, fmt=".3f", center=0)
```

Out[121]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4821025250>

В качестве целевого признака возьмём столбец "Genres" - жанры игр в Google Play Store

```
In [122]:
```

```
#Разделение выборки на обучающую и тестовую target = "Genres" 
xArray = data2.drop(target, axis=1) 
yArray = data2[target] 
trainX, testX, trainY, testY = train_test_split(xArray, yArray, test_size=0.2, random_st ate=1)
```

Линейная регрессия

Будем использовать функцию LinearRegression() из библиотеки ScikitLearn

```
In [123]:
```

```
LR = LinearRegression()
LR.fit(trainX, trainY)
Out[123]:
```

LinearRegression()

Для оценки качетсва модели будем использовать следующие метрики:

- 1) Коэффициента детерминации чтобы определить насколько качественна модель для обучения. Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе к r2 к 1, тем выше качество модели.
- 2) Корень из средней квадратичной ошибки чтобы определить разброс ошибок в предсказании модели. **RMSE** это способ измерения того, насколько хорошо наша прогностическая модель по сравнению с фактическими данными, чем меньше **RMSE**, тем лучше способ поведения модели

```
In [124]:
```

```
R2_LR = r2_score(testY, LR.predict(testX))
RMSE_LR = mean_squared_error(testY, LR.predict(testX), squared=True)
```

```
In [125]:
```

```
print("Коэфф. детерминации: {}".format(R2_LR))
print("Среднеквадратическая ошибка (RMSE): {}".format(RMSE_LR))
```

```
Коэфф. детерминации: 0.5943559539032288
Среднеквадратическая ошибка (RMSE): 431.5223920437256
```

Градиентный бустинг для регрессии

Будем использовать функцию GradientBoostingRegressor из библиотеки ScikitLearn

```
In [126]:
```

```
GB = GradientBoostingRegressor(n estimators=10, random state=1)
```

```
GB.fit(trainX, trainY)
Out[126]:
GradientBoostingRegressor(n_estimators=10, random_state=1)
In [127]:

R2_GB = r2_score(testY, GB.predict(testX))
RMSE GB= mean squared error(testY, GB.predict(testX), squared=True)
```

```
In [128]:
```

```
print("Коэфф. детерминации: {}".format(R2_GB))
print("Среднеквадратическая ошибка (RMSE): {}".format(RMSE_GB))
```

Коэфф. детерминации: 0.6050155370636838 Среднеквадратическая ошибка (RMSE): 420.18277331186016

Вывод: из проведенных методов очевидно, что метод Градиентного бустинга не сильно отличается от Линейной регрессии, однако все же показывает лучшие результаты. Оба метода показывают средний коэффициент детерминации, а это значит, что мы не можем точно сказать, о высококачественности модели или о ее непригодности. Однако в обоих методах Среднекватическая ошибка достаточно велика.