Cambridge (CIE) A Level Chemistry

General Physical & Chemical Properties of the First Row of Transition Elements, Titanium to Copper

Contents

- The Transition Elements: Titanium to Copper
- Oxidation States of Transition Metals

The Transition Elements: Titanium to Copper

Definition of a Transition Element

- Transition elements are d-block elements which form one or more stable ions with an incomplete d subshell
- They are all metals found in the d-block of the Periodic Table, between Groups 2 and 13
 - Sometimes they are referred to as transition metals
- Not all d-block elements are classed as transition elements: scandium and zinc, for example, are not classed as transition elements, despite being in the d-block
- Scandium is not classed as a transition element because:
 - It only forms **one** ion, Sc³⁺
 - The Sc³⁺ion has **no electrons** in its 3d subshell; it has the electronic configuration of
- **Zinc** is also not classed as a transition element because:
 - It also forms only **one** ion, Zn²⁺
 - The Zn²⁺ ion has a **complete** 3d subshell; it has the electronic configuration [Ar]3d¹⁰

The transition elements on the periodic table

The transition elements are in the central d-block on the Periodic Table

Shape of 3d(xy) & 3d(z2) Orbitals

- The transition elements all have **incomplete** d subshells
- There are five orbitals in a d subshell. Some of these orbitals may have similar **shapes** but different orientations, whereas others may have completely different shapes

- The five orbitals are
 - 3d_{yz}
 - 3d_{xz}
 - 3d_{xy}
 - $-3d_{x}^{2}-v^{2}$
 - \blacksquare 3d_z²
- $\blacksquare \ \ \, \text{Note that students are required to sketch the shapes of the } \\ \textbf{3d}_{xy} \text{ and } \textbf{3d}_{z^2} \text{ orbitals } \\ \textbf{only}$

Shapes of the 3d orbitals

- $\blacksquare \quad \text{The $3d_{yz}$, $3d_{xz}$, and $3d_{xy}$ orbitals are orbitals which lie in the $y-z$, $x-z$ and $x-y$ plane}$ respectively
 - They all have **four lobes** that point **between** the two axes

The $3d_{yz}$, $3d_{xz}$ and $3d_{xy}$ orbitals

The 3dyz, 3dxz, and 3dxy orbitals all have four lobes which are similar in shape but point between different axes

- The $3d_{x2-y2}$ orbital looks like the $3d_{yz}$, $3d_{xz}$, and $3d_{xy}$ orbitals, as it also consists of **four**
- The difference is that these lobes point **along** the x and y axes and **not** between them

The $3d_{x^2-y^2}$ orbital

The four lobes in a 3dx2-y2 orbital point along the axes

- The 3d_z² orbital is different from the other orbitals, as there are two main lobes which form a dumbbell shape
- The two main lobes point **along** the z-axis and there is a "doughnut" ring around the

The 3d₂ orbital

The 3dz2 orbital has a dumbbell shape with a ring around the centre

Properties of the Transition Elements

- Although the transition elements are metals, they have some properties unlike those of other metals on the periodic table, such as:
 - Variable oxidation states
 - Behave as catalysts
 - Form complex ions
 - Form coloured compounds

lons of transition metals

- Like other metals on the periodic table, the transition elements will lose electrons to form positively charged ions
- However, unlike other metals, transition elements can form more than one positive ion

- They are said to have variable oxidation states
- Due to this, Roman numerals are used to indicate the oxidation state of the metal ion

- For example, the metal sodium (Na) will only form Na⁺ ions (no Roman numerals are needed, as the ion formed by Na will always have an oxidation state of +1)
- The transition metal iron (Fe) can form Fe²⁺ (Fe(II)) and Fe³⁺ (Fe(III)) ions
- The table below shows the most common oxidation states of a few transition metals

Oxidation states of transition elements table

Transition element	Common oxidation states
Ti	+3, +4
V	+2, +3, +4, +5
Cr	+3, +6
Mn	+2, +4, +6, +7
Fe	+2,+3
Ni	+2
Cu	+1,+2

Coloured complex

- Another characteristic property of transition elements is that their compounds are often coloured
 - For example, the colour of the $[Cr(OH)_6]^{3-}$ complex (where the oxidation number of Cris +3) is dark green
 - Whereas the colour of the [Cr(NH₃)₆]³⁺ complex (where the oxidation number of Cr is still +3) is purple

Colours of common transition metal complexes

Examples of some transition metal ions and their coloured complexes

Transition elements as catalysts

- Since transition elements can have variable oxidation states, they make excellent catalysts
- During catalysis, the transition element can change to various oxidation states by gaining electrons or donating electrons from reagents within the reaction
 - For example, iron (Fe) is commonly used as a catalyst in the Haber Process, switching between the +2 and +3 oxidation states
- Substances can also be adsorbed onto their surface and activated in the process

Complex ions

- Another property of transition elements caused by their ability to form variable oxidation states is their ability to form complex ions
- A complex ion is a molecule or ion, consisting of a central metal atom or ion, with a number of molecules or ions surrounding it
- The molecules or ions surrounding the central metal atom or ion are called **ligands**
- Due to the different oxidation states of the central metal ions, a different number and wide variety of ligands can form bonds with the transition element
 - For example, the chromium(III) ion can form [Cr(NH₃)₆]³⁺, [Cr(OH)₆]³⁻ and $[Cr(H_2O)_6]^{3+}$ complex ions

Oxidation States of Transition Metals

Effects of the 3d & 4s Subshells on **Oxidation States of the Transition Elements**

- Transition elements can have variable oxidation states
- These variable oxidation states can be formed as the 3d and 4s atomic orbitals are similar in energy
- This means that a similar amount of energy is needed to remove a different number of electrons
- When the transition elements form ions, the electrons of the 4s subshell are lost first, followed by the 3d electrons
- The most common oxidation state is +2, which is usually formed when the two 4s electrons are lost

Oxidation number at the start of the 3d transition elements

- At the start of the period, it is easier for the transition elements to lose the maximum number of electrons
- The maximum oxidation number of these transition elements involves all the 4s and 3d electrons in the atom
- For example, the maximum oxidation state of a titanium (Ti) ion is +3 or +4, as two 4s electrons and either 1 or 2 3d electrons are lost
 - \blacksquare Ti atom = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s²
 - \blacksquare Ti³⁺ion = 1s² 2s² 2p⁶ 3s² 3p⁶3d¹
 - \blacksquare Ti⁴⁺ ion = 1s² 2s² 2p⁶ 3s² 3p⁶

Oxidation number at the end of the 3d transition elements

- Towards the **end**, the 3d transition elements are more likely to adopt the +2 oxidation state
- This is because, across the d block, the 3d electrons become slightly **harder** to remove as the nuclear charge increases
 - The 3d electrons are attracted more strongly to the nucleus
 - The higher oxidation states become less stable
- Therefore, the elements are more likely to lose their 4s electrons only

• For example, nickel (Ni) is a transition element at the end of the period which only forms ions with oxidation state +2, due to the loss of the 4s electrons only

- Ni atom = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$
- Ni^{2+} ion = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$

Transition Elements: Catalysts

 Transition elements are often used as catalysts due to their ability to form ions with more than one stable oxidation state, and the fact that they contain vacant d orbitals

Oxidation states

- Transition element ions can adopt more than one stable oxidation state
- This means that they can accept and lose electrons easily to go from one oxidation state to another
- They can therefore catalyse **redox** reactions, by acting as both **oxidising agents** and reducing agents
- For example, iron (Fe) is often used as a catalyst due to its ability to form Fe(II) and Fe(III) ions, acting as an oxidising agent and a reducing agent
 - When Fe(II) acts as a reducing agent, it will reduce another species and become oxidised itself

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

• The Fe³⁺ formed in the catalytic cycle, can then also act as an oxidising agent by oxidising another species and getting reduced itself to reform the Fe²⁺ ion

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

- Transition element ions with high oxidation states make powerful oxidising agents because they will readily accept electrons
 - A common example of this is potassium permanganate (VII), where manganese has an oxidation state of +7

Vacant d orbitals

- When transition elements form ions, they have vacant d orbitals which are energetically accessible
 - The orbitals are not too high in energy
- This means that dative bonds can be formed between the transition element ion and ligands
 - Each ligand provides the pair of electrons required for the formation of a bond between the ion and the ligand
 - This pair of electrons is donated into the ion's vacant d orbital
- The table below shows the electron configuration of the transition element atoms

• When they form ions, empty **d orbitals** are obtained which can be filled by the pairs of electrons donated by the ligands

Electronic configuration of transition elements table

Element	Electronic configuration
Ti	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²
V	ls ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²
Cr	ls ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹
Mn	ls ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²
Fe	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²
Co	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²
Ni	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²
Cu	ls ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹

Transition Metals: Complex Ions

- A complex is a molecule or ion formed by a central metal atom or ion surrounded by one or more **ligands**
 - A complex can have an overall positive or negative charge, or it can be neutral
 - If a complex is charged overall, it is often called a **complex ion**
- Transition elements can easily form complex ions because they have **empty d orbitals** that are energetically accessible
 - The empty d orbitals are therefore not too high in energy and can accommodate a lone pair of electrons
- The transition element in the centre will accept pairs of electrons from the ligands into their empty d orbitals, forming dative bonds
 - The transition element in the centre is often referred to as the **central metal ion**, as all transition elements are metals, and it is often an ion in the centre
- For example, the titanium(III) (Ti³⁺) ion, has an electronic configuration of 1s² 2s² 2p⁶ 3s² $3p^63d^1$
 - This means that there are vacant d orbitals that can be occupied by electrons, from ligands such as H_2O for example, to form a $[Ti(H_2O)_6]^{3+}$ complex ion

• 6 water ligands have each donated a pair of electrons, to form 6 dative bonds with the central metal ion

