Exercise 9.

- (a) Show that every nonempty subset of \mathbb{Z} that is bounded above has a largest element.
- (b) If $x \notin \mathbb{Z}$, show there is exact one $n \in \mathbb{Z}$ such that n < x < n + 1.
- (c) If x y > 1, show there is at least one $n \in \mathbb{Z}$ such that y < n < x.
- (d) If y < x, show there is a rational number z such that y < z < x.

Proof.

- (a) Let A be a nonempty subset of \mathbb{Z} that is bounded above. There exists $b \in \mathbb{R}$ such that $\forall x \in A$, x < b. Since \mathbb{Z} is unbounded, there exists $m \in \mathbb{Z}$ such that b < m, so the subset B of \mathbb{Z} containing all integer upper bounds of A is nonempty. Therefore B has a smallest element u. If $u \notin A$, then the largest element in A is at most u-1 since $u \in \mathbb{Z}$, so that u-1 < u is an upper bound for A, which contradicts the fact that u is the smallest such upper bound; so u is the largest element of A.
- (b) Let $x \in \mathbb{R} \mathbb{Z}$. Since \mathbb{Z} is unbounded, there exists $m \in \mathbb{Z}$ such that m > x. The subset B of \mathbb{Z} containing all integer upper bounds of $\{x\}$ is nonempty, and thus has a smallest element u. Then u > x since x is not an integer, and u 1 < x since u is the smallest element of B.
- (c) Let $x, y \in \mathbb{R}$ such that x y > 1, and let $X = \{z \in \mathbb{Z} \mid z < x\}$. Note that since \mathbb{Z} is unbounded, there is an element $m \in \mathbb{Z}$ such that m > -x. Then we have -m < x, so that X is not empty. Since X is also bounded above, it has a largest element u, and we have u < x. If u < y, then x u > x y > 1, so that x > u + 1, which contradicts the fact that u is the largest element of X. So we have y < u < x.
- (d) Let $x, y \in \mathbb{R}$ such that y < x. The real number 1/(x y) exists, and since \mathbb{Z}_+ is unbounded, $A = \{n \in \mathbb{Z}_+ \mid n > 1/(x y)\}$ is nonempty. Let u be the smallest element in A; since x y > 0, we have u > 0. From the definition of u we deduce that ux uy > 1, so that there exists an integer d such that uy < d < ux. This implies that the rational number d/u verifies y < d/u < x.