Game Engineering und Simulation

Alexander Hofmann

Machine Learning – Neuronal Networks

Die Besten. Seit 1994. www.technikum-wien.at

Neuronal Network

- Dem menschlichen Gehirn nachempfundenes, simuliertes, künstliches Netz an Neuronen
- Supervised Learning
- Backpropagation, Multilayer, Feed-forward Network
- 3-Layer: Input, Hidden, Output
- Ein Deep-Learning Neuronales Netz besteht aus vielen Hidden Layer

Neuronal Network

Input Layer

- Prinzipiell wird mit double Werten gerechnet
- Boolsche, Enumerated oder Named Types werden nach double transformiert
- Anzahl der Neuronen beliebig, normalerweise pro Attribut ein Eingangsneuron

Hidden Layer

- Berechnet seine Werte aus den Neuronen des Inputlayers und den Verbindungen
- Die Anzahl der Neuronen ist frei wählbar Literatur empfiehlt: $|n^h| = \sqrt{|n^i| * |n^o|}$
- Je mehr Neuronen umso länger die Lernphase aber eventuell genauer das Ergebnis

Output Layer

- Erhält die Werte aus dem Hidden Layer und den Verbindungen
- Classification: 1 Neuron pro Wert des Classifiers
- Regression: 1 Neuron, Werte sind entscheidend
- Beispiel:
 - Daten (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1) Classifier
 Index=2
 - 2 Input Neurons, 3 Hidden Neurons, 1-2 Output Neurons
 - Output: Neuron 1 = 1 heißt 1, Neuron 0 = 1 heißt 0 oder Neuron 0 < 0.5 heißt 0, Neuron 0 > 0.5 heißt 1
- Supervised Learning: Output Neuronen brauchen einen Desired Output

Denkaufgabe

- Wie könnte ein NN für folgende Datenquellen aussehen? Wie viele Neuronen in den Layern i, h und o würde ein NN für folgende Datenquellen haben?
 - Iris
 - White wine
 - Play or not
 - Party or not
 - SMS ham or spam

Initialisieren des Neuronalen Netzwerks

- Randomize Weights (inklusive Bias Weights)
 - Werte zwischen -1 und +1
- Bias = -1 oder +1

Lernen

So lange der Fehler > Schwellwert ist Für alle Dateninstanzen i

- 1. Input im Input Layer setzen
- 2. Desired Output im Output Layer setzen
- 3. Feedforward
- 4. Backpropagation
 - 1. Compute Errors
 - 2. Adjust Weights

Klassifizieren

- Neuer Datensatz kommt rein
- Input setzen
- 2. Feedforward
- 3. Ouput Layer gibt Aufschluss über Klassifizierung
 - Regression: Wert ist das Ergebnis
 - Classification: das Neuron mit dem höchsten Wert im Output Layer hat gewonnen

Neuron

Neuronal Network

Synaptic Connections (Weights)

- Jedes Neuron des einen Layers ist mit jedem Node des nächsten Layers über Synapsen verbunden
- Gewichte (Weights) bestimmen die Intensität der Verbindungen
- $n_j^x = (\sum n_i^{x-1} w_{ij}^{x-1}) + b_j^x w_j^{bx}$ $x \dots current \ layer$ $n \dots node \ values$ $w_{ij} \dots weight \ from \ i - th \ node \ to \ the \ j - th \ node$ $b_j \dots node \ bias$ $w_j^b \dots bias \ weight$

114

Activation Functions

- Entscheiden ob ein Neuron feuert oder nicht (der Gehirnzelle nachempfunden)
- Nichtlineare Funktionen
- Erzeugen den Output eines Neurons, rechnen mit dem Wert des Neuron
- Sigmoid: $f(x) = \frac{1}{1+e^{-x}}$
- Step: $f(x) = \begin{cases} 0; x \le 0 \\ 1; x > 0 \end{cases}$
- Hyperbolic Tangent: $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Linear: f(x) = x

Feedforward

```
public void feedForward() {
    inputLayer.calculateNeuronValues();
    hiddenLayer.calculateNeuronValues();
    outputLayer.calculateNeuronValues();
}
```


Calculate Neuron Values

```
public void calculateNeuronValues() {
    double x = 0.0;
    if (parentLayer != null) {
        for (int j=0; j<numberOfNodes; j++) {
            x = 0.0;
            for (int i=0; i<numberOfParentNodes; i++) {
                 x += parentLayer.neuronValues[i] * parentLayer.weights[i][j];
            }
            x += parentLayer.biasValues[j] * parentLayer.biasWeights[j];

            if ((childLayer == null) && linearOutput) {
                 neuronValues[j] = x;
            } else {
                  neuronValues[j] = 1.0 / (1.0 + Math.exp(-x));
            }
        }
    }
}</pre>
```


Backpropagation

```
public void backProgagate() {
    outputLayer.calculateErrors();
    hiddenLayer.calculateErrors();
    hiddenLayer.adjustWeights();
    inputLayer.adjustWeights();
}
```


Error 1

- Network Error
 - Mean Square Error: $\varepsilon = \frac{\sum (n_c n_d)^2}{m}$ n_c ... current value of the output neurons n_d ... desired value of the output neurons m ... number of neurons in the output layer
 - In der Lernphase wird das Netz solange trainiert bis der durchschnittliche Network Error unter eine gewisse Schwelle kommt
 - z.B. 0.05

Network Error

Klasse NeuronalNetwork

```
public double calculateError() {
    double error = 0.0;

    for (int i = 0; i < outputLayer.getNumberOfNodes(); i++) {
        error += Math.pow(outputLayer.getNeuronValues()[i] - outputLayer.getDesiredValues()[i], 2);
    }
    error = error / outputLayer.getNumberOfNodes();
    return error;
}</pre>
```


Error 2

Ouput Layer Error:

```
- Neuron Error Function: \delta_i^o = (n_{di}^o - n_{ci}^o)n_{ci}^o(1 - n_{ci}^o)
i \dots index
```

o ... output layer

d ... desired value

c ... calculated value

n ... neuron value

Output Layer Error

```
for (int i = 0; i < numberOfNodes; i++) {
    errors[i] = (desiredValues[i] - neuronValues[i]) * neuronValues[i] * (1.0 - neuronValues[i]);
}</pre>
```


Error 3

- Hidden Layer Error
 - Hidden Layer Neuron Error Function:

```
• \delta_i^h = (\sum \delta_j^o * w_{ij}) * n_i^h * (1 - n_i^h)

i \dots error index

j \dots child layer index

h \dots hidden layer

w \dots weights

n \dots current neuron value
```


Hidden Layer Error

```
public void calculateErrors() {
    double sum = 0.0;

if (childLayer == null) { //output layer
        for (int i = 0; i < numberOfNodes; i++) {
            errors[i] = (desiredValues[i] - neuronValues[i]) * neuronValues[i] * (1.0 - neuronValues[i]);
    }
} else if (parentLayer == null) { //input layer
    for (int i = 0; i < numberOfNodes; i++) {
        errors[i] = 0.0f;
    }
} else { //hidden layer
    for (int i=0; i < numberOfNodes; i++) {
        sum = 0.0;
        for (int j=0; j < numberOfChildNodes; j++) {
            sum += childLayer.errors[j] * weights[i][j];
        }
        errors[i] = sum * neuronValues[i] * (1.0 - neuronValues[i]);
    }
}</pre>
```


Adjust Weights

```
• Weight Adjustment: \Delta w = \rho \delta_i n_i + \alpha (\Delta w')

\rho ... learning rate

\delta_i ... error of childnode

n_i ... neuron value

\alpha ... momentum

\Delta w' ... changes of previous iteration
```

• Bias Adjustment: $\Delta w_b = \rho \delta_i n_{bi}$ $\Delta w_b \dots bias \ delta$ $\rho \dots learning \ rate$ $\delta_i \dots error \ of \ childnode$ $n_{bi} \dots node's \ bias \ value \ of \ current \ layer$

Learning Rate ρ

- Gibt die Geschwindigkeit der Anpassung der Gewichte vor
- Zu hohe Learning Rate bringt nicht das Optimale Ergebnis
- Zu niedrige Learning Rate verlängert die Lernphase
- z.B. $\rho = 0.2$

Momentum α

- Gradient Descent
- Lokale Minima können so übersprungen werden
- Unterstützung in Richtung globales Minimum
- z.B. $\alpha = 0.9$

Adjust Weights

```
public void adjustWeights() {
    double dw = 0.0;
    if (childLayer != null) {
        for (int i=0; i<numberOfNodes; i++) {
            dw = learningRate * childLayer.errors[j] * neuronValues[i];
            if (useMomentum) {
                weights[i][j] += dw + momentumFactor * weightChanges[i][j];
                 weightChanges[i][j] = dw;
            } else {
                weights[i][j] += dw;
            }
        }
        for (int j=0; j<numberOfChildNodes; j++) {
                biasWeights[j] += learningRate * childLayer.errors[j] * biasValues[j];
        }
    }
}</pre>
```


Handschrifterkennung

- MNIST Database of Handwritten Digits
- http://yann.lecun.com/exdb/mnist/

```
• 60.000 Bilder 50624
66345
00158
14660
```

10.000 Testbilder

```
76668
41534
93931
89162
8W721
```


DigitImage & -LoadingService

- 28x28 Pixel
- In den Originalbildern sind die Pixel in Graustufen (0-255)
- Klasse DigitImage wandelt sie in Schwarz Weiß Bildern um

Neuronal Network

- 784 Input Neurons (1 Pixel = 1 Neuron)
- 10 Output Neurons
- 89 Hidden Neurons $(\sqrt{784 * 10})$
- Learning Rate: 0.2
- Momentum: 0.9
- Lernen bis Network Error ε < 0.005

Confusion Matrix

		p r e	dio	c t e	d	v a l	u e			
0	1	2	3	4	5	6	7	8	9	
946	2	4	3	0	12	7	4	1	1	<- 0 t
0	1119	2	3	1	3	3	1	3	0	<- 1 r
19	9	924	18	7	6	9	19	18	3	<- 2 u
4	5	9	942	0	21	1	10	12	6	<- 3 e
2	10	3	1	896	3	11	8	6	42	<- 4
9	12	1	19	5	806	13	2	13	12	<- 5 v
18	12	7	2	7	17	880	2	11	2	<- 6 a
2	21	17	1	7	6	1	950	5	18	<- 7 1
10	11	5	18	11	29	7	10	856	17	<- 8 u
15	12	0	9	24	12	2	19	9	907	<- 9 e

Accuracy = 92,26% Error Rate = 7,74%