| Name: | Roll No. : | Sl No. : |
|-------|------------|----------|

## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, CALICUT

 $\textbf{CSCS2004: Computer Organization} - \textbf{End Semester Examination} \hspace{0.1cm} (Winter \hspace{0.1cm} 2016 \text{-'} 17)$ 

|    | Time: 3nr Max Marks                                                                                                                                                                                               | ;; ¿       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. | Programs that translate symbolic notation to binary is called [0                                                                                                                                                  | -<br>0.5]  |
| 2. | Sign extension is a step in [0                                                                                                                                                                                    | 0.5]       |
|    | Floating point multiplication Signed 16 bit integer addition  Arithmetic left shift Converting a signed integer from one size to another.                                                                         | her        |
| 3. | If hexadecimal representation of a MIPS instruction is $(02324020)_{16}$ . Give the actual MIPS instruction.                                                                                                      | [1]        |
|    | Ans:                                                                                                                                                                                                              |            |
| 4. | Suppose we have a 32 bit quantity written as A3BC12CD. CD is stored in the smallest address. And A3 is stored in the largest address. This alignment restriction is called                                        | red<br>[1] |
| 5. | The 16-bit 2s complement representation of an integer is 1111 1111 1111 0101. Its decimal representation is                                                                                                       |            |
|    |                                                                                                                                                                                                                   | [1]        |
| 6. | When a program tries to access a page, mapped in address space but not loaded in physical memory, then                                                                                                            | 1]         |
|    | Segmentation fault occurs.  Page fault occurs.                                                                                                                                                                    |            |
|    | Fatal error occurs.  No error occurs.                                                                                                                                                                             |            |
| 7. | algorithm chooses the page that has not been used for the long period of time whenever the page required to be replaced.                                                                                          | est        |
| 8. | Working set model for page replacement is based on the assumption of                                                                                                                                              | [1]        |
|    | Modularity. Globalization.                                                                                                                                                                                        |            |
|    | Locality. Random access.                                                                                                                                                                                          |            |
| 9. | Performance of a pipelined processor suffers if                                                                                                                                                                   | [1]        |
|    | The pipeline stages have different delays.  Consecutive instructions are dependent on earlier.                                                                                                                    | ach        |
|    | The pipeline stages share hardware resources. All of the above                                                                                                                                                    |            |
| 0. | For the following combination of instruction, identify whether any hazard(s) exist. I f there is a hazard, write hazard name, number of stall cycles for, with and without data forwarding . Justify your answer. | the        |
|    | A) lw $\$S1, 16(\$S2)$<br>addi $\$S3, \$S1, 4$                                                                                                                                                                    |            |
|    | (a) Without data forwarding: Whether hazard exist or not: If yes, hazard name : No.of stall cycles: Justification with pipeline stages:                                                                           | [1]        |

| (b  | Whet     | Vith data forwarding: Vhether hazard exist or not: ustification with pipeline stages: |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If yes, hazard name :                                                           |                                               |                   | _ No.of stall cycles:                 |            |
|-----|----------|---------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-------------------|---------------------------------------|------------|
|     | В)       |                                                                                       |          | \$S0, 5<br>\$S1, L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                               |                   |                                       |            |
| (a  | Whet     |                                                                                       | rd exis  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If yes, hazard na                                                               | ame :                                         |                   | No.of stall cycles                    | : [1]      |
| (b  | Whet     |                                                                                       | rd exis  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If yes, hazard na                                                               | ame :                                         | Ι                 | No.of stall cycles                    | :          |
| tio | ns (A, I | B, and C<br>ge number                                                                 | er of cy | ne instruction and color of the | , M1 and M2, of t<br>set. M1 has a clo<br>nstruction class a<br>Cycles/Instruc- | ock rate of 80 Mand their frequent Machine M2 | MHz and M2 ha     | s a clock rate of<br>cal program) are | 100 MHz.   |
|     |          | Class                                                                                 |          | tion Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 | tion Class                                    |                   | 60%                                   |            |
|     |          | A<br>B                                                                                |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 3                                             |                   | 30%                                   |            |
|     |          | C                                                                                     |          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 4                                             |                   | 10%                                   |            |
| (a  | For N    | late the Iachine1                                                                     | :        | e CPI for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | machine, M1, ar                                                                 | nd M2.                                        |                   |                                       | [1]        |
| (b  | •        | late the<br>Iachine1                                                                  | _        | e MIPS rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s for each machin                                                               | ne, M1 and M2.                                |                   |                                       | [1]        |
|     | For M    | Iachine2                                                                              | :        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                               |                   |                                       |            |
| (c  | and b    | y how m                                                                               | uch, to  | have this ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PS rating? Which the have the saturation that the CPI for one                   | ame or better po                              | erformance as the | ne machine with                       | the higher |

| 12. | In the IEEE floating             | point representation the hexadecing                                                                                                                                  | mal value 0                                          | x000000000 corresponds to                                  | [1.5]                 |  |
|-----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------|--|
|     | The norma                        | alized value $2^{-127}$                                                                                                                                              |                                                      | The normalized value $+0$                                  |                       |  |
|     | The norma                        | alized value $2^{-126}$                                                                                                                                              |                                                      | The special value $+0$                                     |                       |  |
|     | Justify your answer              |                                                                                                                                                                      |                                                      |                                                            |                       |  |
| 13. | If a computer B runs than A?     | s a program in 8 seconds and comp                                                                                                                                    | $\operatorname{uter} \mathbf{A} \operatorname{runs}$ | s a program in 16 seconds. How m                           | uch faster is B [1.5] |  |
| 14. |                                  | Assume that the variables i, and j are assigned to registers \$s0, and \$s1 respectively. For the C statement below, give the corresponding MIPS assembly code . [2] |                                                      |                                                            |                       |  |
|     | C Code                           | Equivalent MIPS Instruction                                                                                                                                          |                                                      |                                                            |                       |  |
|     | if(i=j)<br>i++;<br>else<br>j;    |                                                                                                                                                                      |                                                      |                                                            |                       |  |
|     | j+= i ;                          |                                                                                                                                                                      |                                                      |                                                            |                       |  |
| 15. | a miss rate of $0.05~\mathrm{m}$ | mory access time for a processor wi<br>isses per instruction, and a cache ac<br>rite miss penalties are same and ign                                                 | ccess time (                                         | including hit detection) of 2 clock                        | cycle. Assume         |  |
| 16. | The decimal value 0.             | 5 in IEEE single precision floating                                                                                                                                  | point repre                                          | esentation has                                             | [2]                   |  |
|     |                                  | ts of $0000$ and exponent value of 0ts of $0000$ and exponent value of $-$                                                                                           |                                                      | fraction bits of 1000 and exponent no exact representation | ent value of 0        |  |
|     | Justify your answer:             |                                                                                                                                                                      |                                                      |                                                            |                       |  |
| 17. |                                  | hit ratio is 70% and it takes 30 ns is Justify                                                                                                                       |                                                      |                                                            | nory. Effective [2.5] |  |



| 21. A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of bits for the TAG field is [2.5] |      |              |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--|--|--|--|--|
| $\square$ 5                                                                                                                                                                                                                              | ☐ 15 | $\square$ 20 |  |  |  |  |  |
| Justify your answer:                                                                                                                                                                                                                     |      |              |  |  |  |  |  |

22. Calculate the total execution time by drawing the pipeline diagram for the code below, if it runs on a five stage pipelined processor with data forwarding circuitry. [2.5]

add \$S1, \$S2, \$S3 sw \$S1, 0(\$S2) add \$S2, \$S2, \$S3

Total execution time in number of clock cycles neded:

Justify your answer

23. For the MIPS datapath shown below, several lines are marked with X.



|     | A) Cut1 Describe in words the negative consequence of cutting this line relative to the working.                                                                                                                                                  | [3] |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Provide a snippet of code that will fail                                                                                                                                                                                                          |     |
|     | Provide a snippet of code that will still work                                                                                                                                                                                                    |     |
|     | B) Cut2 Describe in words the negative consequence of cutting this line relative to the working.                                                                                                                                                  | [2] |
|     | C) Cut3 Describe in words the negative consequence of cutting this line relative to the working.                                                                                                                                                  | [3] |
|     | Provide a snippet of code that will fail.                                                                                                                                                                                                         |     |
|     | Provide a snippet of code that will still work.                                                                                                                                                                                                   |     |
| 24. | In a paged memory if the page hit ratio is 0.35. The time required to access a page from secondary memory 100ns. The time required to access a page from primary memory is 10ns. The average time required to access page is Justify your answer: |     |