Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1

з дисципліни «Аналіз даних з використанням мови Python»

Виконав: студент групи ІП-04 Пащенко Дмитро Олексійович Перевірила: Тимофєєва Ю. С.

Код програми та результат виконання

```
In [117]: import numpy as np import pandas as pd
             Створити програму, яка:
              1. Генерує випадкові і невипадкові масиви різними способами, зазначеними в теоретичних відомостях.
In [118]: a = np.arange(1, 9, 2) #від 1 до 9 із кроком 2 print(a)
             [1 3 5 7]
In [119]: b = np.ones((2, 2), dtype='int') #одинички
            print(b)
             [[1 1]
[1 1]]
In [120]: c = \text{np.random.rand(2, 2)} #рівномірно розподілені випадкові числа print(c)
             [[0.28482577 0.65120722]
[0.56176905 0.66921339]]
In [121]: d = np.random.randint(0, 69, (4, 4)) #випадкові цілі числа print(d)
             [[64 8 5 31]
[50 67 40 63]
[61 32 21 38]
[62 5 16 47]]
In [122]: e = np.linspace(0, 1, 5) #5 рівномірно розміщених числа від 0 до 1 print(e)
             [0. 0.25 0.5 0.75 1. ]
                2. Демонструє звернення до елементів масиву за допомогою індексів, в тому числі від'ємних; виділення підмасивів як одновимірних, так і
                   багатовимірних масивів.
  In [123]: a[0], a[-1]
  Out[123]: (1, 7)
  In [124]: d[1, 0]
  Out[124]: 50
  In [125]: d[1][0]
  Out[125]: 50
  In [126]: d[1][0:4:3]
  Out[126]: array([50, 63])
  In [127]: d[1:3, 1:4:1]
  Out[127]: array([[67, 40, 63], [32, 21, 38]])
```

3. Демонструє основні арифметичні операції над масивами, а також роботу методів reduce, accumulate, outer.

```
In [128]: a
Out[128]: array([1, 3, 5, 7])

In [129]: a * 2
Out[129]: array([2, 6, 10, 14])

In [130]: a + 2
Out[130]: array([3, 5, 7, 9])

In [131]: np.add.accumulate(a)
Out[131]: array([1, 4, 9, 16])

In [132]: np.add.reduce(a)
Out[132]: 16

In [133]: np.multiply.outer(a, a)
Out[133]: array([[1, 3, 5, 7], [3, 9, 15, 21], [5, 15, 25, 35], [7, 21, 35, 49]])

4. Вираховуе статистичні характеристики, а саме, мінімальне і максимальне значення, вибіркові середне, дисперсію, середньоквадратичне відхилення, медіану та 25 та 75 персентилі, величини ширина пелюстки (petal_width) з набору даних щодо квіток ірису (iris.csv).

In [134]: data = pd.read_csv('iris.csv') petal_width = np.array(data['petal_width'])
```

In [135]: data

Out[135]:

	sepal_length	sepal_width	petal_length	petal_width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows \times 5 columns

```
In [136]: np.min(petal_width)
Out[136]: 0.1
In [137]: np.max(petal_width)
Out[137]: 2.5
In [138]: np.mean(petal_width)
Out[138]: 1.19866666666668
In [139]: np.var(petal_width)
Out[139]: 0.578531555555555
In [140]: np.std(petal_width)
Out[140]: 0.7606126185881716
In [141]: np.median(petal_width)
Out[141]: 1.3
In [142]: np.percentile(petal_width, 25)
Out[142]: 0.3
In [143]: np.percentile(petal_width, 75)
Out[143]: 1.8
```