Guía de Álgebra para Negocios (Parte 2)

Asignatura: Introducción al Álgebra (MAT-101/MAT-002) **Dirigido a:** Estudiantes de la Facultad de Ciencias Administrativas y Sociales de Unitec

¡Hola de nuevo! 🎻

En la primera parte de esta guía, establecimos cómo las ecuaciones lineales y los polinomios son herramientas esenciales para modelar costos, ingresos y utilidades. Ahora, nos adentraremos en conceptos un poco más avanzados que te permitirán analizar la **eficiencia**, **el rendimiento promedio y las tasas de crecimiento compuesto**, conceptos cruciales en el mundo de los negocios modernos.

Tema 3: Expresiones y Ecuaciones Racionales (Fracciones Algebraicas)

Si un polinomio puede describir tu costo total, una **expresión racional** (una fracción de polinomios) puede describir tu **costo promedio por unidad**. Este tema es clave para analizar ratios, tasas y cualquier métrica de eficiencia.

3.1. Expresiones Racionales y sus Operaciones

- **El Concepto:** Una fracción donde el numerador y/o el denominador son polinomios. Piénsalo como una forma de expresar una **relación o un ratio** entre dos variables complejas.
- El "Porqué te Interesa": Te permite calcular y analizar métricas de rendimiento como el costo promedio por producto, el ingreso promedio por cliente o la concentración de una inversión.
- Ejemplo Contextualizado (Administración Industrial y Operaciones / Finanzas):
 Análisis de Costo Promedio

Retomemos el ejemplo de la empresa que fabrica tazas. Su función de **Costo Total** era: C(x)=5000+75x Donde x es el número de tazas.

Un inversionista o un gerente de operaciones no solo quiere saber el costo total, sino el **costo promedio por taza**, para ver cómo la producción en masa afecta la eficiencia. Para ello, divides el costo total entre el número de unidades x:

Costo Promedio C(x)=xC(x)=x5000+75x

Esta es una expresión racional. Podemos simplificarla para entenderla mejor: C(x)=x5000+x75x = x5000+75

Análisis: Esta simple fórmula revela una idea económica poderosa. A medida que produces más tazas (x aumenta), el término x5000 se hace cada vez más pequeño. Esto significa que tu costo fijo se "diluye" entre más unidades, y el costo promedio por taza se acerca a tu costo variable de L 75.

Un analista de **Inteligencia de Negocios** usaría este modelo para determinar el volumen de producción óptimo.

3.2. Ecuaciones Racionales

- **El Concepto:** Ecuaciones que contienen expresiones racionales. Se resuelven para encontrar un valor específico que cumple con una condición de ratio.
- **El "Porqué te Interesa":** Te ayuda a responder preguntas como: "¿Cuántas unidades debo producir para que mi costo promedio sea de L 85?" o "¿Cuánto tiempo tardarán dos equipos en completar un proyecto si trabajan juntos?".
- Ejemplo Contextualizado (Administración y Emprendimiento): Planificación de Proyectos

Imagina que eres un gerente de proyectos. Tienes que lanzar una nueva campaña de marketing digital.

- Tu equipo de marketing interno, trabajando solo, puede completar el proyecto en 30 días. Su "tasa de trabajo" es de 301 del proyecto por día.
- Decides contratar a una agencia externa que, por su experiencia, podría hacerlo sola en 20 días. Su tasa es de 201 del proyecto por día.

La pregunta es: ¿Cuánto tiempo (t, en días) tardarán si ambos equipos trabajan juntos?

La ecuación racional que modela esto es: (Tasa del equipo 1) + (Tasa del equipo 2) = (Tasa combinada) 30t+20t=1 (Donde 1 representa el proyecto completo).

Para resolverla, encuentras el mínimo común múltiplo (60), y multiplicas toda la ecuación: 60·(30t +20t)=60·1 2t+3t=60 5t=60 t=12

Conclusión: Juntos, los equipos pueden completar la campaña en solo **12 días.** Este tipo de cálculo es fundamental para la asignación de recursos, el cumplimiento de plazos y la gestión eficiente en cualquier rol administrativo.

Tema 4: Raíces y Radicales

Las raíces y los exponentes fraccionarios son el lenguaje del **crecimiento compuesto y los rendimientos decrecientes**. Son esenciales para el análisis financiero, los modelos económicos y la previsión a largo plazo.

4.1. Raíces, Radicales y Exponentes Racionales

• **El Concepto:** Un radical (como x) es otra forma de escribir un exponente fraccionario (x1/2). Esta conexión es clave para modelar situaciones donde el crecimiento no es constante.

- El "Porqué te Interesa": Son la base para calcular tasas de crecimiento promedio a lo largo de varios años y para entender modelos económicos que muestran rendimientos decrecientes.
- Ejemplo Contextualizado (Finanzas y Economía / Negocios Internacionales): Tasa de Crecimiento Anual Compuesta (CAGR)

Eres un analista financiero evaluando el desempeño de una inversión. En 2022, el valor de un fondo de inversión era de **L 100,000**. Tres años después, en 2025, su valor es de **L 140,000**.

No puedes simplemente promediar el crecimiento, porque el rendimiento de cada año se basa en el valor del año anterior (interés compuesto). Para encontrar la tasa de crecimiento anual promedio y constante, usas la fórmula de la CAGR, que depende de un exponente racional:

CAGR=(ValorInicialValorFinal)1/n-1 Donde n es el número de años.

CAGR=(100,000140,000)1/3-1 CAGR=(1.4)1/3-1

Aquí, (1.4)1/3 es lo mismo que 31.4 . Usando tu calculadora: CAGR≈1.1187-1 CAGR≈0.1187

Conclusión: La inversión tuvo una tasa de crecimiento anual compuesta del 11.87%. Esta métrica es un estándar en la industria financiera y es crucial para un profesional de **Negocios**Internacionales al comparar el crecimiento del PIB de diferentes países o para un mercadólogo al analizar el crecimiento de la cuota de mercado a lo largo del tiempo.

4.2. Ecuaciones con Radicales

- El Concepto: Ecuaciones donde la variable que buscas está dentro de una raíz.
- **El "Porqué te Interesa":** Te permite "trabajar hacia atrás" en los modelos de crecimiento. Por ejemplo, si sabes la tasa de crecimiento que deseas, puedes calcular la inversión inicial o final necesaria.
- Ejemplo Contextualizado (Economía / Administración y Emprendimiento): Modelos de Producción

Un modelo económico común es la función de producción de Cobb-Douglas, que relaciona la

producción con el capital y el trabajo. Una versión muy simplificada podría ser: P=10L Donde P es la cantidad de productos fabricados por día y L son las horas de trabajo invertidas. El radical (L

o L1/2) indica que hay **rendimientos decrecientes**: cada hora adicional de trabajo aumenta la producción, pero un poco menos que la hora anterior.

Ahora, el gerente de planta te pregunta: "¿Cuántas horas de trabajo (L) necesitamos para alcanzar una meta de producción de 50 unidades por día (P=50)?"

Para responder, resuelves la ecuación con radicales: 50=10L 1050=L 5=L

Para eliminar la raíz, elevas ambos lados al cuadrado: (5)2=(L)2 25=L

Conclusión: Se necesitan **25 horas de trabajo** para alcanzar la meta de producción. Este tipo de análisis ayuda a los gerentes a planificar la fuerza laboral y los recursos de manera efectiva.

Mensaje Final (Parte 2)

Estos temas, aunque más abstractos, son los que te darán una ventaja competitiva en tu carrera. La capacidad de analizar tasas de cambio, eficiencias y crecimientos compuestos es lo que distingue a un simple observador de un **estratega basado en datos**.

Sigue practicando, conecta siempre estos conceptos con tus áreas de interés y recuerda: cada ecuación que resuelves está afinando tu habilidad para tomar decisiones más inteligentes y fundamentadas en el futuro. ¡Adelante!