

Integrantes

Bruno Ramos Ribeiro – 17/0007367 Érico Maximiano Bandeira – 160010331 Felipe Coelho Serra Gonçalves – 130044431 Guilherme Gonçalves Machado – 160123178 João Vitor Morandi Lemos – 160010195 João Vitor de Moura Rosa Silva – 160127891 José Aquiles Guedes Rezende – 160010331 Lucas Gonçalves Campos – 170016757 Pedro Henrique Amaral – 160141222 Rafael Santos Teodosio – 160142466 Samara Cristina Silva dos Santos – 150147996 Tiago Rodrigues dos Santos – 150047266 Vinícius Hiroshi Souza Miwa – 170046753 Wemerson Fontenele Sousa – 170024130

Justicativa

Missões de salvamento exigem de equipes de resgate adaptação aos mais diferentes cenários, sejam eles escombros, inundações, deslizamentos de terra, profundidades e entre outros. Cenários que desafiam a capacidade do corpo humano, mas que podem ser contornados pelo uso de tecnologia, como drones, para aumentar a rapidez e eficiência da missão.

Objetivo

O projeto traz a proposta de apresentar um modelo de drone quadricóptero auxiliar que poderá ser controlado por equipes de resgate para mapeamento de regiões de risco durante missões de busca.

Objetivos específicos

- Traçar rotas de atuação para equipes de resgate com o mapeamento realizado pelo drone.
- Garantir que o drone tenha autonomia no caso de perca de contato com a CLP.
- Projetar uma base de carregamento off-grid para CLP.

Frelser

"Frelser" significa salvador em dinamarquês.

O "Frelser" será composto por:

- Drone
- Controlador Lógico Programável (CLP)
- Sistema de carregamento off-grid

EAP

Estrutura

Problemas a serem enfrentados pela estrutura:

- Resistência à variação climática (chuva, frio, calor, ventos fortes);
- Estabilidade estrutural;
- Autonomia de voo;
- Alcance de área mapeada;
- Custo de fabricação;
- Peso da estrutura;

Modelo Estrutural

Comparativo entre drone de asa fixa e asa rotativa

Comparação	Asa fixa	Asa rotativa
Preço	X	V
Tamanho/Portabilidade	X	V
Facilidade de pilotagem	X	V
Eficiência de área mapeada	V	X
Estabilidade	V	X
Área de decolagem e pouso	X	V
Capacidade de carga	X	V

Material da Estrutura

Propriedades da Matéria Prima - Grãos

Propriedades	ABS	PETG	PEEK	PLA
Densidade (g/cm3)	1,04	1,27	1,31	1,24
Temp. Fusão (°C)	220	240	341(6)	185
Tg (°C)	100	85	150(6)	60
Tensão de	38	51	116(4)	66
Escoamento (MPa)				
Resistência à	66	72	175(5)	130
Flexão (MPa)				
Módulo de	2200	2120	4200(5)	4350
Elasticidade (MPa)				
Preço (R\$/kg)	89,90	129,90	5422,74	129,90

Estimativas Iniciais

Depois de decidido sobre o modelo estrutural e o material, foram levantados alguns dados preliminares como:

- Geometria preliminar do drone;
- CLP;
- Estimativa inicial de peso.

Dimensionamento Inicial de Peso

N° do componente	Componente	Detalhes	Peso (g)
1	Sensor Lidar	YDLIDAR x4	189
2	Giroscópio	Módulo L3GD20H da ST	3
3	Raspbery pi 3B+	-	66
4	Módulo Lora	sx1272	22
5	Acelerômetro	Módulo LSM303D da ST	1
6	Módulo GPS e altímetro	Módulo LPS25H da ST	1
7	Câmera infravermelho	Foxeer Micro Cat 3 1200TVL 0.00001lux Super Low Light Night Câmera	181
8	Gimbal	Storm32 bgc	181
9	Sensor Lidar	YDLIDAR x4	189
10	Drone	Design Inicial	690
Peso Total (g)			1164

Geometria Preliminar

Vista isométrica do drone

Vista frontal do drone

CLP

Modelo inicial da CLP

Eletrônica

Sensor LiDar

Fonte: https://www.radartutorial.eu/18.explanations/ex32.en.html

Mapeamento realizado por LiDar

Fonte: https://www.gislounge.com/lidar/

Componentes - Prós e Contras

Componente	Prós	Contras
Raspberry PI - 3B+	Capacidade de processamento.	Consumo energético.
Display LCD Purpoise 13.3"	Dimensões, qualidade.	Consumo energético.
Módulo Lora - sx1262 Lora Hat 915MHz	Alcance, largura de banda.	
Sensor Lidar - YDLIDAR x4	Alcance. Ângulo de escaneamento.	
Altímetro, Giroscópio e GPS - Pololu AltIMU-10 v5	3 Componentes em um só, altímetro, giroscópio e GPS.	Não possui distribuidor no Brasil.
Câmera - Foxeer Micro Cat 3	Tecnologia Starlight.	Qualidade.
Módulo Joystick	3 Eixos de movimentação.	Precisão.
Push-Buttons	Praticidade.	

Energia

A área de energia irá trabalhar em duas frentes neste projeto:

- Base de carregamento off-grid
- Baterias e motores para o drone.

Base de Carregamento Off-grid

Esquemático geral

Baterias e motores do drone

Bateria de polímero de lítio Fonte: https://hobbyking.com/pt_pt/turnigy-5000mah-6s-40c-lipo-pack-xt90.html?___store=pt_pt

Motor de drone Fonte: https://www.dji.com/e310

Energia

- Para a base de carregamento off-grid espera-se que uma estrutura móvel seja projetada para facilitar a movimentação.
- Para aproveitar o carregamento, além de manter a bateria da CLP, a base também poderá alimentar outros dispositivos na área durante as missões.

Software

A equipe de software está encarregada, no projeto, de:

- Mapear terreno com base nos dados fornecidos pelo LiDAR
- Analisar periculosidades nos pontos mapeados
- Calcular menor rota de emergência para o Frelser

Representação Arquitetural

Diagrama de Arquitetura Fonte: Autoria própria

Dispositivos e Serviços

Raspberry Pi
Fonte: https://pt.wikipedia.org/wiki/Ficheiro:Raspberry_Pi_4_Model_B
_-_Side.jpg

TensorFlow(TF)
Fonte: https://miro.medium.com/proxy/0*xn9KO7B_Bwa5pPB9.jpg

Requisitos - Funcionais

Rf001	Identificar proximidade com os objetos ao redor para evitar colisões
Rf002	Calcular rota mais curta para retorno do drone em caso de emergência
Rf003	Calcular cor relativa à segurança da área realizada
Rf004	Realizar o mapeamento da área
Rf005	Exibir mapeamento com cores relativas à segurança da área analisada
Rf006	Gerar mapa em larga escala da área atual analisada
Rf007	Trocar de tela entre o mapeamento em larga escala e a visão em tempo real a partir de um botão no controle

Requisitos - Não funcionais

Rnf001	O sistema deverá possuir um algoritmo para mapeamento de áreas
Rnf002	O sistema deverá possuir um algoritmo para detectar proximidade com os objetos ao redor
Rnf003	O sistema deverá possuir um algoritmo para identificar a periculosidade da área analisada
Rnf004	O Software deverá atuar em cima das informações fornecidas pelo sensor LiDAR
Rnf005	O sistema deverá realizar os cálculos de identificação de periculosidade em tempo real
Rnf006	O mapa em larga escala deve ser legível para o usuário