

containercon

CLOUDOPEN

CHINA 中国

THINK OPEN

开放性思维

阿里云弹性人工智能

阿里云平台上深度优化分布式训练性能

游亮 (昀龙)

弹性 AI 服务 - Elastic AI Service

基于阿里云弹性基础资源,为用户提供深度性能优化的、 一站式的、开源开放的人工智能解决方案

♠ LINUXCONcontainercon♠ CLOUDOPEN

阿里云弹性异构计算服务

- EGS: Elastic GPU Service
- FaaS: FPGA as a Service
- 异构计算
 - CPU + GPU/FPGA优势互补
- 云上大规模GPU/FPGA池
 - 短时间能够获取大量GPU/FPGA资源
 - 有效解决业务波峰、波谷的问题
 - 大大降低训练时间,提高模型迭代速
- 享受硬件升级的红利
- 和其他云产品深度整合

阿里云超级计算集群SCC

----- CHINA 中国 ----

RDMA 低延迟网络 VPC 虚拟网络 神龙 神龙 神龙 神龙 神龙 云服务器 云服务器 云服务器 云服务器 云服务器 节点 节点 节点 节点

- 虚机的弹性 + 物理机的性能
- 支持2x25Gb(100Gb) RoCE RDMA网络
- 支持GPU Direct RDMA
- 适合大规模深度学习训练

推荐算法I

CHINA 中国 一

- 逻辑回归算法
 - 浅层模型
 - 需要大量特征工程
 - Sigmoid作为激活函数
 - Sigmoid交叉熵作为损失函数

推荐算法II

- Deep Auto Encoder[Hinton, 2011]
 - 把请求Q和文档D映射到语义空间
 - 用Cosine计算请求和文档的相关度
 - 缺点:真实生产中模型大小扩展很快(2.5亿参数)

推荐算法III

- Deep Structured Semantic Model [Microsoft, 2013]
 - 输入层:将输入向量进行单词哈希
 - 使用多个非线性隐藏层抽取高级语义表达(DNN模型)
 - 使用点击信号来指导学习
 - 用Softmax最大化请求和点击过的文档的cosine相似度

推荐算法IV

- Wide and Deep [Google, 2016]
 - Wide输入层:原始输入特征 + 交叉特征;模型:FTRL
 - Deep模型的输入层:将稀疏特征转换成了稠密的embedding层;模型: DNN

Figure 1: The spectrum of Wide & Deep models.

在线效果提升3.9%

Table 1: Offline & online metrics of different models.

Online Acquisition Gain is relative to the control.

Model	Offline AUC	Online Acquisition Gain
Wide (control)	0.726	0%
Deep	0.722	+2.9%
Wide & Deep	0.728	+3.9%

阿里云上推荐场景 – 技术架构

---- CHINA 中国 ----

- ・训练任务
 - 每天需要训练上千亿样本
- 行为预估
 - 根据用户的行为预估和推荐
- 算法
 - 原来使用逻辑回归和GBDT算法
 - 现在使用LR + DNN算法
- ・配置
 - •双M40 GPU卡, 56vcpu, 96GB内存
 - •10Gb网络
- 预处理、存储:EMR
 - •Hadoop做预处理
 - •HDFS基于D1实例构建
- 分布式训练:K8S
 - •多GPU卡的分布式调度
 - •Tensorflow PS模式调度
 - •Tensorflow MPI模式调度

阿里云上推荐场景 - 性能优化I

定位性能瓶颈

- Tensorflow profiler
- 瓶颈1: 文件读取和解析
- 瓶颈2: 分布式多机通信

阿里云上推荐场景 - 性能优化II

CHINA 中国 -

- 优化IO性能
 - 多进程同时从HDFS文件系统里读取大量文件
 - 多缓存队列:让文件读取和计算重叠
 - 64节点比原始性能提升2.1倍

Number of nodes

阿里云上推荐场景 - 性能优化III

TI LF ASIA, LLC

- 优化通信性能
 - 使用MPI通信代替了gRPC通信
 - 使用allreduce环形通信
 - 64节点比原始性能提升2.7倍,累计提升5.7倍

阿里云上推荐场景 - 性能优化IV

• 优化通信性能

- 使用FP16通信,带宽压力降低一倍,使用FP32做计算
- 选择合适的 scaling 值避免下溢
- 64节点比原始性能提升2.5倍,累计提升14倍

阿里云上图像识别场景 - 技术架构

♠ LINUXCONcontainercon♠ CLOUDOPEN

--- CHINA 中国 ---

- 训练任务
 - 一小时内需要训练128万*90epoch=1.15亿张图片
- 算法模型
 - ResNet-50
- 配置
 - •8xP100 GPU卡, 56vcpu, 480 GB内存
 - •25Gb网络
- 分布式调度: K8S
 - •多GPU卡的分布式调度
 - •Tensorflow PS模式调度
 - •Tensorflow MPI模式调度
- •存储:
 - •CPFS(Lustre on 阿里云)

阿里云上图像识别场景 - 性能优化

---- CHINA 中国 ----

- MPI + ring allreduce性能 优化
 - •移除多对1的通信瓶颈
 - •分散带宽压力
- 计算和通信重叠优化
 - •多层权值融合成一个block
 - •自动调节block大小达到最佳性能
- 性能提升
 - •ResNet-50 128卡性能提升63%
- •精度调节
 - •0.1;5;3.2;30;0.32;60;0.032;80; 0.0032
 - •训练Top-1精度为75%, Top5 为92.4%

♠ LINUXCON

阿里云上图像识别场景 -更多模型性能提升 ® CLOUDOPEN

── CHINA 中国 *─*─

Tensorflow ResNet-101性 能提升

ResNet-101 128卡性能

提升70%

性能提升

Tensorflow Inception-v3

Inception-v3 128卡性 能提升50%

Tensorflow VGG16性能提

VGG16 128卡性能提升 80%

TLF ASIA, LLC

♠ LINUXCONc⊚ntainercon♠ CLOUDOPEN

CHINA 中国 ----

欢迎加入阿里云弹性人工智能团队

当人工智能遇上云计算,一切皆有可能

愿景: 加速阿里云上人工智能企业的发展

