Convergencia en el método de Newton

Sea $f \in C^2[a, b]$. Si $p \in (a, b)$ es tal que f(p) = 0 y $f'(p) \neq 0$, entonces existe una $\delta > 0$ tal que el método de Newton genera una sucesión $\{p_n\}_{n=1}^{\infty}$ que converge a p para cualquier aproximación inicial $p_0 \in [p - \delta, p + \delta]$.

Prueba:

Recuerde que $p_n = g(p_{n-1})$ para $n \ge 1$, con

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Sea $k \in (0,1)$. Primero se encontrará un intervalo $[p-\delta,p+\delta]$ que g mapea en sí mismo y para el cual $|g'(x)| \le k$ para todas las $x \in (p-\delta,p+\delta)$

Ya que f' es continua y $f'(p) \neq 0$, entonces existe una $\delta_1 > 0$, tal que $f'(x) \neq 0$ para toda $x \in [p - \delta_1, p + \delta_1] \subseteq [a, b]$. Por lo tanto, g está definida y es continua en $[p - \delta_1, p + \delta_1]$. Además,

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}, \quad x \in [p - \delta_1, p + \delta_1]$$

puesto que $f \in C^2[a,b]$, se tiene que $g \in C^1[p-\delta_1,p+\delta_1]$. Por hipótesis, f(p)=0 por lo que

$$g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0$$

Puesto que g' es continua y 0 < k < 1, entonces existe δ con $0 < \delta < \delta_1$, para el cual

$$|g'(x)| \le k, \quad \forall x \in [p - \delta, p + \delta]$$

Falta probar que g mapea $[p - \delta, p + \delta]$ en $[p - \delta, p + \delta]$. Si $x \in [p - \delta, p + \delta]$, el teorema del valor medio implica que para algún número ξ entre x y p, $|g(x) - g(p)| = |g'(\xi)||x - p|$. Por lo tanto

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)||x - p| \le k|x - p| < |x - p|$$

Dado que ya se satisfacen todas las condiciones del teorema de punto fijo, entonces la sucesión $\{p_n\}_{n=1}^{\infty}$, definida por

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ para } n \ge 1$$

converge a p para cualquier $p_0 \in [p - \delta, p + \delta]$