

Computational analysis of thermochemistry of Aluminium based propellants and ballistic properties of High-nitrogen cage compounds

K. Gowtham 140100091

Guide: Neeraj Kumbhakarna Department of Mechanical Engineering, Indian Institute of Technology - Bombay Mumbai, India-400076

Introduction

Two Projects

- 1. HNC High-nitrogen cage compounds analysis
 - ✓ Computational analysis of ballistic and detonation properties
 - ✓ Better propellants in terms of Specific Impulse (I_{sp}) ?

(Dec 2016 - Jan2017)

- 2. CRM Aluminium Nano-particles and Teflon polymer reaction
 - ✓ Formulation of chemical reaction mechanism (CRM)
 - √ Theoretical validation of mechanism
 - ✓ Effect of solvents on reaction

(Jul 2017 – Dec 2017)

Topic 1

High-nitrogen cage compounds (HNC)

Literature Review - HNC

- It is a research collaboration between chemistry department and mechanical department of IITB.
- Look at the analogy

Cage compounds with carbon majority.

High energy material but stable

Octazacubane

Hypothetical Nitrogen Cage

Molecules Under Study

HNC1

HNC3

HNC2

HNC4

Modifications of cubane cages with addition of nitrogen rich chains

Computational Methods - 1

There are various molecular modelling techniques in computational chemisty (Lewars, 2011).

- Molecular Mechanics (MM)
- ab initio methods
- Semiempirical (SE) methods
- Density functional (DFT) calculations
- Molecular Dynamics (MD)

Software based on Quantum
Chemistry

Computational Methods - 2

Software used for calculating propulsive properties.

- Specific Impulse (I_{sp})
- Density specific impulse (ρI_{sp})
- Adiabatic flame temperature

NASA CEA

Results & Discussion-1 (HNC)

Notation	Formula	Molecular structure	Heat of Formation (kcal/mol)	Density (gm/cm3)
HNC1	C ₁₀ H ₁₂ N ₄ O ₂	H ₂ N NH O HN NH ₂	151.39	1.558
HNC2	C ₁₂ H ₁₃ N ₂ O ₃ Br	O Br O HN NH ₂	82.64	1.80
HNC3	C ₁₂ H ₁₆ N ₄ O ₂	NH ₂	69.2	1.48
HNC4	C ₁₆ H ₂₀ NO ₃ Br	O N H	43.46	1.58

Note:- HOF Cubane = 144.2 kcal/mol

Results & Discussion-2 (HNC)

Compound	сст (к)	I _{sp} (s)	I _{sp,vac} (s)
C ₁₀ H ₁₂ N ₄ O ₂	3183.92	300.31	311.32
C ₁₂ H ₁₃ N ₂ O ₃ Br	3095.82	290.85	302.69
C ₁₂ H ₁₆ N ₄ O ₂	3048.91	290.9	301.10
C ₁₆ H ₂₀ NO ₃ Br	3076.49	287.94	298.4

Compound	сст (к)	I _{sp} (s)	I _{sp,vac} (s)
C ₁₀ H ₁₂ N ₄ O ₂	2609.44	274.07	284.01
$C_{12}H_{13}N_2O_3Br$	2622.49	272.56	282.36
C ₁₂ H ₁₆ N ₄ O ₂	2542.2	271.02	281.01
C ₁₆ H ₂₀ NO ₃ Br	2561.34	270.51	280.43

Table 1: Performance as Solid Bipropellant with AP as oxidizer

(20% HNC, 80% AP)

Table 2: Performance as additive to AP-HTPB mixture

(80% AP, 15% HTPB, 5%HNC)

AP : Ammonium Perchlorate

HTPB: Hydroxyl terminated polybutadiene

a Optimisation done using B3LYP density function theory with 6-311++G(d,p) basis set

Results & Discussion-3 (HNC)

Compound	O/F Ratio	сст (к)	Ratio √(Tad/MW)	I _{sp} (s)	I _{sp,vac} (s)	ρΙ _{sp} (gm.s/cm³)	ρΙ _{sp,vac} (gm.s/cm³)
C ₁₀ H ₁₂ N ₄ O ₂	1.14	3861.76	12.15	352.40	366.73	459.53	478.22
C ₁₀ H ₈ N ₈	1	3783.29	11.62	300.39	309.46	419.95	432.63
C ₁₂ H ₁₆ N ₄ O ₂	1.38	3752.51	11.82	344.85	359.40	434.81	453.15
C ₁₆ H ₂₀ NO ₃ Br	1.28	3756.37	11.22	331.72	346.61	430.99	450.33

Table 3: Performance as propellant with LOX as oxidizer

Results & Discussion-4 (HNC)

Compound	O/F Ratio	ССТ (К)	Ratio √(Tad/MW)	I _{sp} (s)	I _{sp,vac} (s)	ρΙ _{sp} (gm.s/cm³)	ρΙ _{sp,vac} (gm.s/cm³)
C ₁₀ H ₁₂ N ₄ O ₂	2.15	3698.2	12.04	350.97	365.96	387.49	404.05
C ₁₂ H ₁₃ N ₂ O ₃ Br	2.11	3683.95	11.83	346.16	391.02	391.02	441.69
C ₁₂ H ₁₆ N ₄ O ₂	2.22	3680.23	11.98	349.36	382.83	382.83	419.52
C ₁₆ H ₂₀ NO ₃ Br	2.19	3682.27	11.86	346.77	383.83	383.83	424.85

Table 4: Performance as additive to RP-1 with LOX as oxidizer (30% HNC, 70 % RP-1)

Results & Discussion-5 (HNC)

Compound	CCT (K)	Ratio √(Tad/MW)	$\mathbf{I}_{\mathrm{sp}}\left(\mathbf{s}\right)$	$\mathbf{I}_{\mathrm{sp,vac}}(\mathbf{s})$	ρI _{sp} (gm.s/cm ³)	ρΙ _{sp,vac} (gm.s/cm ³)
$\mathrm{C}_{10}\mathrm{H}_{12}\mathrm{N}_4\mathrm{O}_2$	2044.95	12.82	260.32	272.29	405.51	424.17
C ₁₂ H ₁₃ N ₂ O ₃ Br	1701.93	10.32	209.24	219.83	377.57	396.68
$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}_2$	1417.65	10.74	219.54	230.90	323.74	340.48
$\mathrm{C}_{16}\mathrm{H}_{20}\mathrm{NO}_3\mathrm{Br}$	1378.49	9.89	195.07	205.55	308.15	324.71

Table 5: Performance as Monopropellant

Results & Discussion-6 (HNC)

Table 5: ρI_{sp,vac} from last 3 mixtures

Compound	HNC+LOX ρI _{sp,vac} (gm.s/cm ³)	HNC+RP1+LOX ρI _{sp,vac} (gm.s/cm ³)	Mono ρI _{sp,vac} (gm.s/cm ³)	
$C_{10}H_{12}N_4O_2$	478.22	404.05	424.17	
C ₁₂ H ₁₃ N ₂ O ₃ Br	432.63	441.69	396.68	
$C_{12}H_{16}N_4O_2$	453.15	419.52	340.48	
$\mathrm{C}_{16}\mathrm{H}_{20}\mathrm{NO}_3\mathrm{Br}$	450.33	424.85	324.71	

Table 6: Propulsive properties of currently used compounds

Compound	Compound + LOX		Compound (30%)+ RP1 (70%)+LOX		As monopropellant	
	I_{sp}	$ ho I_{sp,vac}$	I_{sp}	$ ho I_{sp,vac}$	$I_{sp,vac}$	$ ho I_{sp,vac}$
RP1	366.2	374.3	-	-	-	-
N_2H_4	-	-	-	-	234.1	235.3
IPN	-	-	-	-	251.6	261.7

N₂H₄ is Hydrazine. isopropyl nitrate (IPN, (CH₃)₂CHONO₂).

 I_{sp} is in seconds. $\rho I_{sp,sac}$ is in gm.s/cm3

Results & Discussion-7 (HNC)

Compound	Detonation Pressure, D (kBar)	Detonation Velocity, V (km/s)	
$C_{10}H_{12}N_4O_2$	132.74	5.69	
$C_{12}H_{13}N_2O_3Br$	104.8	4.86	
$C_{12}H_{16}N_4O_2$	215.99	7.43	
C ₁₆ H ₂₀ NO ₃ Br	77.92	4.36	

Table 6: Predicted* detonation properties

* Detonation properties not computed if Q is negative

$$D = 15.58 \rho^2 N M_{av}^{1/2} Q^{1/2}$$

$$V = 1.01 \sqrt{N M_{av} Q^{1/2}} (1 + 1.13 \rho)$$

where ρ (g/cm3) is the density, M_{av} (g/mol) is the average molecular weight of the gaseous products, N (mol/g) is the number of moles of gaseous products per gram of explosive and Q (cal/g) is the mass specific enthalpy of detonation (Mallick et al., 2017).

HNC- Conclusion

- > Results of propulsive properties under 5 different mixture combinations are presented
 - 1. As solid bipropellant with AP as oxidiser (80% AP, 20% HNC)
 - 2. As additive to AP-HTPB mixture (80% AP, 15% HTPB, 5%HNC)
 - 3. As propellant with LOX as oxidiser
 - 4. As additive to RP1 with LOX as oxidiser (30%HNC, 70% RP1)
 - 5. As monopropellant
- ➤ Detonation properties (Pressure and Velocity) are tabulated.
- ✓ Specific impulse values show that these HNC compounds are better than currently used compounds by a small factor (compare tables 5 & 6)
- ✓ I_{sp} values roughly follow the trend LOX (table3) > RP1, LOX (table4) > Monopropellant(table5) > AP (table1) > HTPB, AP (table2)
- ✓ Heavier atoms like Br tend to reduce overall effectivity sometimes, though not a sweeping conclusion
- √ The detonation properties are not as good as that of RDX (DP = 35.1Gpa, DV = 8.93 m/s)[*]
 - [*] Mallick, L., Lal, S., Reshmi, S., Namboothiri, I. N. N., Chowdhury, A., and Kumbhakarna, N., 2017, "Theoretical studies on the propulsive and explosive performance of strained polycyclic cage compounds," New J. Chem. 41, 920–930.

Topic 2

Chemical Reaction Mechanism (CRM)

PTFE (aka Teflon) + Aluminium Nano-particles in presence of solvents

Literature Review - CRM

PTFE (Polytetrafluoroethylene) and Aluminium Nano particles reaction is of interest [*]

Solvent used in preparation reaction mixtures affects thermal properties. Flame speeds, DSC (differential

scanning calorimetry) measurements.

- Possible reason: Pre ignition reaction (PIR)
 - Occurs before primary combustion at ~ 510 °C
 - Strengthened by MDM (melt dispersion mechanism)
 - Tiny Al-F layer over the 3nm thick Al₂O₃ shell.
- Polar solvents > Non polar solvents > No solvation

observed trend in [*]

Computational Methods-1

- Gaussian software
- Calculation framework:
- 1. Basic reactants, products optimisation + frequency using CBSQB3 theory
- 2. Scan calculation to find Transition State (TS) of the reaction using simple theory
- 3. Transition State (TS) optimisation using same simple theory
- 4. Perform IRC (Intrinsic Reaction Coordinate) calculations for both forward & backward iterations starting from the transition state
- 5. Transition State optimisation using CBSQB3 theory, which is a high level theory
- 6. Find the kinetics, thermochemical parameters (activation energies, G,H, kf,kb etc) using transition state theory mentioned earlier.

Computational Methods-2

Heat of formation of a compound A_x B_y H_z [*]:

$$\Delta H_{f}^{0}(A_{x}B_{y}H_{z}, 298 K) = \Delta H_{f}^{0}(A_{x}B_{y}H_{z}, 0 K) + [H_{f}^{0}(A_{x}B_{y}H_{z}, 298 K) - H_{f}^{0}(A_{x}B_{y}H_{z}, 0 K)]$$

- $x[H^0(A, 298 K) H^0(A, 0 K)]_{st}$
- $-y[H^0(B, 298 K) H^0(B, 0 K)]_{st}$
- $-z[H^0(H, 298 K) H^0(H, 0 K)]_{st}$

^[*] Lewars, E.G., Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. 2010: Springer Science & Business Media.

Possible pathways

Suggested reaction categories

```
    ♣ Al<sub>2</sub>O<sub>3</sub>-OH + F containing radical -> Al<sub>2</sub>O<sub>3</sub>-F + OH<sup>-</sup> + Other Products
    ♣ Solvent + F containing radical -> F substituted solvent.
    ♣ Al<sub>2</sub>O<sub>3</sub>-OH + F substituted solvent -> Al<sub>2</sub>O<sub>3</sub>-F + Solvent
    ♣ Solvent -> Decomposition products
```

CRM - Conclusion

Proposed methodology has been verified by trying it out for the reaction

$$N_2H_4 + NO_2 \longrightarrow N_2H_3 + HONO$$

• Possible reactions pathways have been identified for interaction between Alumina and PTFE decomposition products.

Future Work

• HNC compound analysis is complete. All the results are available now.

All the reactions from part 2 will be simulated in the next semester. CRM formulation will be finished in BTP 2.

References

- Rajkumar, S., Choudhari, R. S., Chowdhury, A., and Namboothiri, I. N., 2013, "Synthesis and pyrolysis studies of bis(nitratomethyl)-1,3-bishomocubane- a high-energy highdensity liquid," Thermochimica Acta 563, 38 45.
- Padhye, R., McCollum, J., Korzeniewski, C., and Pantoya, M. L., 2015, "Examining hydroxyl alumina bonding toward aluminum nanoparticle reactivity," The Journal of Physical Chemistry C 119, 26547–26553
- Ochterski, J. W., 2000, "Thermochemistry in gaussian," http://gaussian.com/thermo/, Accessed: 2017-11-07.
- Lewars, E. G., 2011, Computational Chemistry (Springer Netherlands).
- Losada, M., and Chaudhuri, S., 2009, "Theoretical study of elementary steps in the reactions between aluminum and teflon fragments under combustive environments," The Journal of Physical Chemistry A 113, 5933–5941.
- Mallick, L., Lal, S., Reshmi, S., Namboothiri, I. N. N., Chowdhury, A., and Kumbhakarna, N., 2017, "Theoretical studies on the propulsive and explosive performance of strained polycyclic cage compounds," New J. Chem. 41, 920–930.
- Mulamba, O., and Pantoya, M. L., 2014, "Exothermic surface chemistry on aluminium particles promoting reactivity," Applied Surface Science 315, 90 94.

