AIL 862

Lecture 24

At bare minimum, it can provide a more effective feature extractor backbone in methods that use domain adversarial training

At bare minimum, it can provide a more effective feature extractor backbone in methods that use domain adversarial training

Let's look into this aspect from point of view of multi-target adaptation

Multi-target adaptation

Single source, multiple targets

Assumption: We know which datapoint is coming from which target during the training process

Adapting on single target

k^*	B_s	B_t	Backbone	Acc.
1	32	32	ResNet-50	70.5
10	32	32	ResNet-50	73.6
10	48	16	ResNet-50	73.7
10	48	16	Transformer	80.8

Table 7. Variation of 4 components of the proposed method $(k^*, B_s, B_t, \text{ and backbone})$ on Office-Home dataset, source: Art, target: rest.

Train on the source dataset

- Train on the source dataset
- Choose a target (from the collection of targets) to adapt on

- Train on the source dataset
- Choose a target (from the collection of targets) to adapt on
- Feedback from MLP to GNN (during training)

- Train on the source dataset
- Choose a target (from the collection of targets) to adapt on
- Feedback from MLP to GNN (during training)
- Feedback from GNN to MLP (after processing each target)

- Train on the source dataset
- Choose a target domain (from the collection of targets) to adapt on
- Feedback from MLP to GNN (during training)
- Feedback from GNN to MLP (after processing each target)
- Choose another target domain from the remaining domains and repeat

Reiterative adaptation

At bare minimum, it can provide a more effective feature extractor backbone in methods that use domain adversarial training

However, more effectively, we can use the generalizability acquired by foundations models

- Let's start from the ideas that we used for CNN-based domain adaptation
- Batch normalization

- Let's start from the ideas that we used for CNN-based domain adaptation
- ☐ Batch normalization can we replace by feature stylization

CLIP – Feature stylization

Maybe even target domain images are not needed?

CLIP – Feature stylization

- Target domain textual descriptions passed through text encoder
 - provides us target domain features feature statistics

CLIP – Feature statistics alignment

Target domain textual descriptions – passed through text encoder
provides us target domain features – feature statistics

 Similarly, source domain feature statistics from source domain images and the image encoder

CLIP – Feature statistics alignment

Target domain textual descriptions – passed through text encoder
provides us target domain features – feature statistics

 Similarly, source domain feature statistics from source domain images and the image encoder

Feature alignment

- Let's start from the ideas that we used for CNN-based domain adaptation
- ☐ Batch normalization we have just seen
- Adversarial training we already saw with multi-target adaptation case

- Let's start from the ideas that we used for CNN-based domain adaptation
- ☐ Batch normalization we have just seen
- ☐ Adversarial training we already saw with multi-target adaptation case
- ☐ Pseudo-label some data from target domain and then finetune using those pseudo-labeled data

Pseudo-label and fine-tune

Risk of catastrophic forgetting – how to deal with it?

Pseudo-label and fine-tune

Risk of catastrophic forgetting – how to deal with it?

□If you have access to source domain data during target adaptation – simply keep checking performance on the source domain data

Pseudo-label and fine-tune

Risk of catastrophic forgetting – how to deal with it?

- ☐ If you have access to source domain data during target adaptation simply keep checking performance on the source domain data
- □ Only using target domain Decrease the learning rate according to the difference between the original CLIP and fine-tuned CLIP representations. Large differences indicate that CLIP forgets the pre-trained knowledge (resulting in a new representation).

A step back – how to pseudo label

• In addition to what we already know, another idea – (strong) augment and (weak) augment same image and if the prediction matches, then added to pseudo label.

CLIP for multi-target adaptation

With the idea of pseudo label

CLIP for multi-target adaptation

With the idea of pseudo label

Text input in format "a [DOMAIN] photo of a [CLASS]"

Weights - vectors

We can edit models via task arithmetic

Obtaining task vector

Forgetting via Subtraction

Method	ViT-B/32		
Method	Target (↓)	Control (†)	
Pre-trained	48.3	63.4	
Fine-tuned	90.2	48.2	
Gradient ascent	2.73	0.25	
Random vector	45.7	61.5	
Negative task vector	24.0	60.9	

Learning via Addition

Learning via Addition

• Better multi-task model

Learning via Addition

Better multi-task model

• Single resulting model can be competitive with using multiple specialized models

Domain Generalization

Objective

Use the information from:

Pretrained ($\theta_{pre, D1}$) and finetuned ($\theta_{ft, D1}$) models on dataset in domain D1 (Amazon/DSLR)

To obtain a model that:

Performs well on dataset in domain D2 (DSLR/Amazon)

For the task of:

Image Classification

Without:

Explicit finetuning on dataset in domain D2 (DSLR/Amazon)

Thought Process

$$\theta_{\text{ft, D2}} = \theta_{\text{pre, D2}} + \lambda(\theta_{\text{ft, D1}} - \theta_{\text{pre, D1}})$$
 where $\lambda > 0$

Finding Optimal λ using Validation Dataset

Federated Learning