Apresentação Trabalho 2 - Sistemas Digitais 2018/2

Neander em VHDL

Nome: Gabriel Martins dos Santos

Cartão: 00275617

Introdução

Este trabalho tem como objetivo implementar as instruções do processador NEANDER, e seus respectivos componentes e máquina de estados, através da linguagem de descrição VHDL.

Além das 11 instruções primárias do neander foram adicionadas as instruções de subtração e multiplicação.

Ao longo do trabalho foram adicionados três programas utilizando as instruções do NEANDER, os programas 1 e 2 utilizam as instruções primárias, o programa 3 usa as instruções adicionais desenvolvidas para o projeto:

- 1. Somador de matrizes de 4 bits 2x2.
- 2. Multiplicador de matrizes de 4 bits 2x2.
- 3. Subtração de endereços de memória.

Características do NEANDER:

- Largura dos endereços e dados de 8 bits
- Dados representados em complemento de dois
- 1 acumulador de 1 byte (AC)
- 1 apontador de programa de 1 byte (PC)
- 1 registrador de estado que indica dados negativos ou zero
- Modo de endereçamento direto

11 Instruções primárias :

Código	Instr	ução	Comentário
0000	NOP		nenhuma operação
0001	STA	end	armazena acumulador - (store)
0010	LDA	end	carrega acumulador - (load)
0011	ADD	end	soma
0100	OR	end	"ou" lógico
0101	AND	end	"e" lógico
0110	NOT		inverte (complementa) acumulador
1000	JMP	end	desvio incondicional - (jump)
1001	JN	end	desvio condicional - (jump on negative)
1010	JZ	end	desvio condicional - (jump on zero)
1111	HLT		término de execução - (halt)

2 Instruções Implementadas:

1011 - SUB end 1100 - MULT end

Instruções com um byte: NOP, NOT, HLT

7	4 3	0
código da oper	don't	care

Instruções com dois bytes: STA, LDA, ADD, OR, AND, JMP, JN, JZ

RTL do circuito

Tempo

```
Timing Summary:
Speed Grade: -5
  Minimum period: 10.707ns (Maximum Frequency: 93.393MHz)
  Minimum input arrival time before clock: 3.788ns
  Maximum output required time after clock: 7.612ns
  Maximum combinational path delay: No path found
Timing Detail:
All values displayed in nanoseconds (ns)
Timing constraint: Default period analysis for Clock 'clk'
 Clock period: 10.707ns (frequency: 93.393MHz)
 Total number of paths / destination ports: 11346 / 186
Delay:
                    10.707ns (Levels of Logic = 14)
 Source:
                    Instancia 7/entrada 7 (FF)
 Destination:
                    Instancia 9/dado 0 (FF)
 Source Clock: clk rising
 Destination Clock: clk rising
```


Resultados Obtidos

Dados da Unidade de Controle e ULA:

```
Synthesizing Unit <ULA>.
   Related source file is "C:/Neander Gabriel Martins/ULA.vhd".
   Found 8x8-bit multiplier for signal <mult>.
   Found 8-bit addsub for signal <operacao$addsub0000>.
   Summary:
                1 Adder/Subtractor(s).
        inferred
       inferred | Multiplier(s).
Unit <ULA> synthesized.
Synthesizing Unit <UnidadeControle>.
   Related source file is "C:/Neander Gabriel Martins/UnidadeControle.vhd".
   Found finite state machine <FSM 0> for signal <state>.
    I States
    | Transitions
    | Inputs
    | Outputs
    I Clock
                           clkDiv
                                                     (rising_edge)
    | Reset
                         | reset
                                                     (positive)
    | Reset type
                       asynchronous
    | Reset State
                        1 30
    | Power Up State
                        1 30
    | Encoding
                        I automatic
   Found 1-bit register for signal <clkDiv>.
   Found 32-bit up counter for signal <cont>.
   Summary:
       inferred | Finite State Machine(s).
       inferred 1 Counter(s).
       inferred | D-type flip-flop(s).
Unit <UnidadeControle> synthesized.
```


Número de FF's , LUT4 Utilizados

	Neander Project Status (10/17/2018 - 19:25:05)												
Project File:	Neander_Gabriel_Martins.xise	Parser Errors:	No Errors										
Module Name:	Neander	Implementation State:	Placed and Routed										
Target Device:	xc3s100e-5cp132	• Errors:	No Errors										
Product Version:	ISE 14.7	• Warnings:	66 Warnings (1 new)										
Design Goal:	Balanced	• Routing Results:	All Signals Completely Routed										
Design Strategy:	Xilinx Default (unlocked)	• Timing Constraints:	All Constraints Met										
Environment:	System Settings	• Final Timing Score:	0 (Timing Report)										

Device Utilization Summary												
Logic Utilization	Used	Available	Utilization	Note(s)								
Number of Slice Flip Flops	85	1,920	4%									
Number of 4 input LUTs	157	1,920	8%									
Number of occupied Slices	121	960	12%									
Number of Slices containing only related logic	121	121	100%									
Number of Slices containing unrelated logic	0	121	0%									
Total Number of 4 input LUTs	203	1,920	10%									
Number used as logic	157											
Number used as a route-thru	46											
Number of bonded <u>IOBs</u>	11	83	13%									
Number of RAMB16s	1	4	25%									
Number of BUFGMUXs	1	24	4%									
Number of MULT 18X 18SIOs	1	4	25%									
Average Fanout of Non-Clock Nets	3.46											

Memória utilizada / Erros / 4LUTs detalhados

```
Target Device : xc3s100e
Target Package : cp132
Target Speed : -5
Mapper Version : spartan3e -- $Revision: 1.55 $
Mapped Date : Wed Oct 17 19:24:32 2018
Design Summary
_____
Number of errors:
Number of warnings: 56
Logic Utilization:
 Number of Slice Flip Flops:
                                      85 out of 1,920
 Number of 4 input LUTs:
                                      157 out of 1.920
Logic Distribution:
 Number of occupied Slices:
                                      121 out of
                                                    960 12%
   Number of Slices containing only related logic:
                                                     121 out of
                                                                   121 100%
   Number of Slices containing unrelated logic:
                                                       0 out of
                                                                   121 0%
      *See NOTES below for an explanation of the effects of unrelated logic.
  Total Number of 4 input LUTs:
                                      203 out of 1,920 10%
   Number used as logic:
                                      157
   Number used as a route-thru:
  The Slice Logic Distribution report is not meaningful if the design is
  over-mapped for a non-slice resource or if Placement fails.
  Number of bonded IOBs:
                                       11 out of
                                                          13%
                                                      4 25%
  Number of RAMB16s:
                                       1 out of
  Number of BUFGMUXs:
                                       1 out of
  Number of MULT18X18SIOs:
                                       1 out of
                                                      4 25%
Average Fanout of Non-Clock Nets:
                                     3.46
Peak Memory Usage: 4432 MB
Total REAL time to MAP completion: 2 secs
Total CPU time to MAP completion: 1 secs
```


Delay

Simulações - ULA

operações da UAL	selUAL
X + Y	000
X and Y	001
X or Y	010
Not X	011
Y	100

Simulações - ULA

operações da UAL	selUAL
X + Y	000
X and Y	001
X or Y	010
Not X	011
Υ	100

Simulações: Unidade Controle - Teste com LDA

UNIVERSIDADE FEDERAL

Simulações: Neander Completo

Prog 1 - Soma de Matrizes

$$A+B=egin{bmatrix} 2,00 & 4,00 \ 6,00 & 8,00 \end{bmatrix}_{(2x2)}$$

Matriz A

$$A = egin{bmatrix} 1,00 & 2,00 \ 3,00 & 4,00 \end{bmatrix}_{(2x2)}$$

Matriz B

$$B = egin{bmatrix} 1,00 & 2,00 \ 3,00 & 4,00 \end{bmatrix}_{(2x2)}$$

Prog 1 - Soma de Matrizes

NOP LDA 30 ADD 34 STA 38 LDA ADD 35 STA 39 LDA 32 ADD 36 STA 40 33 LDA ADD 37 STA HLT

0	0	32	30	48	34	16	38	32	31	48	35	16	39	32	32
16	36	16	40	32	33	48	37	16	41	240	0	0	0	0	1
32	3	4	1	2	3	4	2	4	6	8	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
144	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
176	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
208	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
224	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13 instruções 235 ciclos de relógio 4700 ns (operando a 50MHz)

Prog 1 - Soma de Matrizes - Simulação c/ atraso

Prog 2 - Multiplicação de Matrizes

Resultado

$$AxB = \begin{bmatrix} 7,00 & 10,00 \\ 15,00 & 22,00 \end{bmatrix}_{(2x2)}$$

Matriz A

$$A = egin{bmatrix} 1,00 & 2,00 \ 3,00 & 4,00 \end{bmatrix}_{(2x2)}$$

Matriz B

$$B = \begin{bmatrix} 1,00 & 2,00 \\ 3,00 & 4,00 \end{bmatrix}_{(2x2)}$$

Prog 2 - Multiplicação de Matrizes

NOP	LDA	88
LDA 80	ADD	89
MUL 84	STA	96
STA 88	LDA	90
LDA 82	ADD	91
MUL 85	STA	97
STA 89	LDA	92
LDA 80	ADD	93
MUL 86	STA	98
STA 90	LDA	94
LDA 82	ADD	95
MUL 87	STA	99
STA 91	HLT	
LDA 81		

MUL 84 STA 92 LDA 83 MUL 85 STA 93 LDA 81 MUL 86

STA 94 LDA 83

MUL 87

STA 95

U	0	32	80	192	84	16	88	22	82	192	85	16	89	32	80	192
16	86	16	90	32	82	192	87	16	91	32	81	192	84	16	92	32
32	22	192	85	16	93	32	81	192	86	16	94	32	83	192	87	16
48	95	32	88	48	89	16	96	32	90	48	91	16	97	32	92	48
64	93	16	98	32	94	48	95	16	99	240	0	0	0	0	0	0
80	1	2	3	4	1	2	3	4	1	6	3	12	2	8	6	16
96	7	15	10	22	0	0	0	0	0	0	0	0	0	0	0	0
112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
144	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
176	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
208	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
224	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10

11

38 instruções 605 ciclos de relógio 12100 ns (operando a 50MHz)

240 0

Prog 2 - Multiplicação de Matrizes- Simulação c/ atraso

Prog 3 - Subtração de Endereços de Memória

NOP LDA 17 SUB 18 STA 19 LDA 18 SUB 17 STA 20 HLT

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	32	17	176	18	16	19	32	18	176	17	16	20	240	0	0
16	0	3	2	1	255	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
144	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
176	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
208	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
224	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

8 instruções 109 ciclos de relógio 2180 ns (operando a 50MHz)

Prog 3 - Subtração de Endereços de Memória-Simulação c/ atraso

