- **1.** Найдите $n \in [179, 183]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 4, P(3) = 0, P(4) = 4.$$

- 3. Решите систему сравнений $\begin{cases} x \equiv 2 \pmod{47}, \\ x \equiv 22 \pmod{33} \end{cases}$
- 4. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_6?$
- **5.** Для функции $f = (1010\ 0010\ 0000\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_6$?
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{136}
- **3.** В кольце \mathbb{Z}_{25} найдите элемент порядка 5.
- **4.** Вычислите $\frac{20}{23}$ в кольце \mathbb{Z}_{66} .
- 5. Для функции $f=(1011\ 0101\ 1111\ 0110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 27^{-1} в кольце \mathbb{Z}_{41}
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 9, P(7) = 7, P(12) = 9.$$

- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам S, T_0 и T_1 ?
- 4. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1110\ 1101)$$

$$f_2 = (0011\,0110)$$

$$f_3 = (1110\,0011)$$

$$f_4 = (0001\,0011)$$

$$f_5 = (1100\,0110)$$

$$f_6 = (0010\,0110)$$

- **1.** Найдите 31^{-1} в кольце \mathbb{Z}_{79}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(499, -36), B(34, 483).
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 7, P(7) = 7, P(11) = 5.$$

- **4.** Найдите порядок элемента 9 в кольце \mathbb{Z}_{70}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0010\ 1100)$$

$$f_2 = (1110\ 1011)$$

$$f_3 = (1111\ 1001)$$

$$f_4 = (111111111)$$

$$f_5 = (1110\ 1110)$$

$$f_6 = (0011\,1010)$$

- **1.** Найдите $n \in [137, 142]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Сколько существует целочисленных решений (x, y) уравнения -80x + 28y = 4 таких, что $y \in [74, 100]$?
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_1 ?
- **4.** В кольце \mathbb{Z}_{26} найдите элемент порядка 6.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 0101)$ $f_2 = (0011 \ 1100)$ $f_3 = (0101 \ 1110)$

 $f_4 = (1010\ 1111)$

 $f_5 = (0111\ 1001)$

 $f_6 = (1000\ 1010)$

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- 2. Найдите $n \in [156, 162]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Сколько существует целочисленных решений (x, y) уравнения -42x + 51y = 3 таких, что $y \in [-7, 35]$?
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- 5. Для функции $f=(1011\ 1101\ 0010\ 1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 12^{-1} в кольце \mathbb{Z}_{55}
- **2.** Определите наибольший порядок элемента в кольце $\mathbb{Z}_{102}.$
- **3.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- 4. Определите, какому элементу кольца \mathbb{Z}_{1938} соответствует пара (54, 17) кольца $\mathbb{Z}_{57} \times \mathbb{Z}_{34}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0011)$

 $f_2 = (1101 \ 1100)$

 $f_3 = (0110\,0011)$

 $f_4 = (1111\,0110)$

 $f_5 = (1011\ 1100)$

 $f_6 = (1110\ 1000)$

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 6, P(1) = 3, P(7) = 4.$$

- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{74}
- 3. Сколько существует целочисленных решений (x, y) уравнения 60x + 112y = 4 таких, что $y \in [27, 93]$?
- **4.** Вычислите $\frac{41}{17}$ в кольце \mathbb{Z}_{49} .
- **5.** Для функции $f = (0100\ 0001\ 0100\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{91}
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **3.** Вычислите $\frac{20}{12}$ в кольце \mathbb{Z}_{43} .
- **4.** Найдите $n \in [98, 103]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0100 \ 1100)$$

$$f_2 = (1110\,0010)$$

$$f_3 = (0001\,0111)$$

$$f_4 = (1001\,0010)$$

$$f_5 = (0010\,0110)$$

$$f_6 = (1111\ 1011)$$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -112x + 4y = 4 таких, что $y \in [23, 67]$?
- **2.** Вычислите $\frac{29}{5}$ в кольце \mathbb{Z}_{62} .
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-19,411), B(-193,457).
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** Для функции $f = (1111\ 0000\ 0111\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,0) = f(0,1,1)?
- 2. Найдите порядок элемента 14 в кольце \mathbb{Z}_{43}
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(1) = 3, P(2) = 3.$$

- **4.** Вычислите $\frac{22}{28}$ в кольце \mathbb{Z}_{69} .
- 5. Для функции $f=(0000\,0111\,0111\,0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{86}
- **2.** Вычислите $\frac{5}{23}$ в кольце \mathbb{Z}_{40} .
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{175}
- **4.** Найдите 43^{-1} в кольце \mathbb{Z}_{66}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1010)$

 $f_2 = (0011\,0011)$

 $f_3 = (1100\,0010)$

 $f_4 = (0010\,0000)$

 $f_5 = (0111\ 1100)$

 $f_6 = (1100\,0110)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения
- -15x + 14y = 1 таких, что $y \in [-81, -40]$?
- 2. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не S?
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 3, P(4) = 3.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(406, -427), B(-400, -70).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\,0010)$

 $f_2 = (0011\,0101)$

 $f_3 = (0100 \ 1111)$

 $f_4 = (0000\,0001)$

 $f_5 = (1100\ 1010)$

 $f_6 = (1100\,0010)$

- **1.** Вычислите $\frac{44}{11}$ в кольце \mathbb{Z}_{67} .
- 2. Определите, какому элементу кольца \mathbb{Z}_{2183} соответствует пара (2,3) кольца $\mathbb{Z}_{59} \times \mathbb{Z}_{37}$
- 3. Найдите порядок элемента 3 в кольце \mathbb{Z}_{50}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{236} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0010)$

 $f_2 = (0000 \ 1111)$

 $f_3 = (0010\ 1101)$

 $f_4 = (1001 \ 1100)$

 $f_5 = (0110\,0010)$

 $f_6 = (1011\ 1001)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1911} соответствует пара (2,6) кольца $\mathbb{Z}_{49} \times \mathbb{Z}_{39}$
- **2.** Найдите 55^{-1} в кольце \mathbb{Z}_{74}
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- **4.** В кольце \mathbb{Z}_{37} найдите элемент порядка 18.
- **5.** Для функции $f = (0011\ 0011\ 0001\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Решите систему сравнений $\begin{cases} x \equiv 41 \pmod{58}, \\ x \equiv 7 \pmod{41} \end{cases}$
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{183}
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{93}
- 4. Найдите 38^{-1} в кольце \mathbb{Z}_{45}
- 5. Для функции $f=(0011\ 1011\ 0011\ 1010)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{111}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{219}
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 1, P(4) = 0.$$

- 4. Определите, какому элементу кольца \mathbb{Z}_{2726} соответствует пара (45,24) кольца $\mathbb{Z}_{58} \times \mathbb{Z}_{47}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1110)$

 $f_2 = (1010\,0010)$

 $f_3 = (1010\ 1001)$

 $f_4 = (0010\ 1101)$

 $f_5 = (0000\,0010)$

 $f_6 = (1011\,0010)$

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классу L и не принадлежащих классу T_1 ?
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{117}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{234}
- 4. Решите систему сравнений $\begin{cases} x \equiv 27 \pmod{53}, \\ x \equiv 21 \pmod{54} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1110\,0100)$$

$$f_2 = (1110\ 1100)$$

$$f_3 = (1101\ 1011)$$

$$f_4 = (0011\ 1010)$$

$$f_5 = (0101\,0010)$$

$$f_6 = (1101\,0011)$$

- **1.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{63}
- **2.** Сколько существует целочисленных решений (x, y) уравнения 25x + 3y = 1 таких, что $y \in [-23, 39]$?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{63}
- 4. Найдите 22^{-1} в кольце \mathbb{Z}_{53}
- 5. Для функции $f=(1010\ 1100\ 0110\ 0011)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -3x + 23y = 1 таких, что $y \in [-28, 5]$?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-122, -97), B(-279, -69).
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **4.** Найдите 33^{-1} в кольце \mathbb{Z}_{70}
- **5.** Для функции $f = (1000\ 1001\ 0100\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{79}
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{43}.$
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{107}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{111}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010 \ 1100)$

 $f_2 = (1010\,0111)$

 $f_3 = (1110\,0100)$

 $f_4 = (1001\,0000)$

 $f_5 = (1001\,0001)$

 $f_6 = (1011\ 1001)$

- **1.** Найдите $n \in [156, 161]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** В кольце \mathbb{Z}_{30} найдите элемент порядка 2.
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(6) = 1, P(8) = 12, P(9) = 1.$$

- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,1) = f(1,0,0)?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\,0100)$

 $f_2 = (0010\ 1111)$

 $f_3 = (1001\ 1011)$

 $f_4 = (0011\,0001)$

 $f_5 = (0010\ 1001)$

 $f_6 = (0110\,0000)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- 2. Определите, какому элементу кольца \mathbb{Z}_{2346} соответствует пара (17,1) кольца $\mathbb{Z}_{46} \times \mathbb{Z}_{51}$
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{137} .
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(2) = 0, P(4) = 4.$$

5. Для функции $f = (1001\,0111\,0001\,0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{72}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(473, -279), B(421, 68).
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 1, P(4) = 5, P(5) = 4.$$

- **4.** Найдите $n \in [135, 138]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1100)$$

$$f_2 = (0100\ 1001)$$

$$f_3 = (0110\ 1101)$$

$$f_4 = (0111\ 1001)$$

$$f_5 = (0000 \ 1011)$$

$$f_6 = (0010\ 1011)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{75}
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{69} .
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(129, -403), B(50, -415).
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- **5.** Для функции $f = (1111\ 0001\ 0010\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(6) = 7, P(7) = 1, P(10) = 8.$$

- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{234} .
- **3.** В кольце \mathbb{Z}_{28} найдите элемент порядка 2.
- **4.** Найдите $n \in [212, 216]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\,0000)$

 $f_2 = (1110\ 1011)$

 $f_3 = (1000\,0111)$

 $f_4 = (1101\,0111)$

 $f_5 = (1010\,0010)$

 $f_6 = (1111\ 1110)$

- 1. Найдите порядок элемента 15 в кольце \mathbb{Z}_{74}
- **2.** Найдите $n \in [183, 189]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{254} .
- **4.** Вычислите $\frac{16}{8}$ в кольце \mathbb{Z}_{63} .
- **5.** Для функции $f = (0100\ 0001\ 0110\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [171, 176]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{74}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1749} соответствует пара (23,6) кольца $\mathbb{Z}_{53} \times \mathbb{Z}_{33}$
- **4.** В кольце \mathbb{Z}_{26} найдите элемент порядка 4.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1000)$

 $f_2 = (0011\,1110)$

 $f_3 = (0100\ 1001)$

 $f_4 = (0010\,0010)$

 $f_5 = (0101\,0110)$

 $f_6 = (0100\,0110)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(210,380), B(204,358).
- **2.** Найдите 37^{-1} в кольце \mathbb{Z}_{57}
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(7) = 6, P(11) = 6, P(12) = 9.$$

- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{227} .
- **5.** Для функции $f = (0011\ 0001\ 0110\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Определите, какому элементу кольца \mathbb{Z}_{2120} соответствует пара (8, 10) кольца $\mathbb{Z}_{40} \times \mathbb{Z}_{53}$
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-346, -494), B(-124, -441).
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{106}
- **4.** Найдите 71^{-1} в кольце \mathbb{Z}_{78}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1111\,0111)$

 $f_2 = (0011\,0010)$

 $f_3 = (0100\ 1101)$

 $f_4 = (1010\,0001)$

 $f_5 = (10110111)$

 $f_6 = (0010\ 1011)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-410,391), B(-150,-286).
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{82}
- 3. Найдите порядок элемента 4 в кольце \mathbb{Z}_{83}
- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_2$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\,0011)$

 $f_2 = (1110\ 1101)$

 $f_3 = (1000 \ 1101)$

 $f_4 = (1100\,0101)$

 $f_5 = (0000\,0111)$

 $f_6 = (1001\,1101)$

- **1.** В кольце \mathbb{Z}_{39} найдите элемент порядка 12.
- 2. Решите систему сравнений $\begin{cases} x \equiv 28 \pmod{44}, \\ x \equiv 46 \pmod{57} \end{cases}$
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_0 ?
- **4.** Найдите $n \in [219, 222]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1011)$$

$$f_2 = (1100 \ 1110)$$

$$f_3 = (01011100)$$

$$f_4 = (1101\ 1000)$$

$$f_5 = (1010\,0101)$$

$$f_6 = (1100\,0010)$$

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 4, P(2) = 5, P(3) = 5.$$

- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{44}.$
- **3.** В кольце \mathbb{Z}_{26} найдите элемент порядка 2.
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{254}
- 5. Для функции $f = (0010\ 0001\ 1110\ 1101)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{89}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{180}
- 3. Определите, какому элементу кольца \mathbb{Z}_{2109} соответствует пара (41,8) кольца $\mathbb{Z}_{57} \times \mathbb{Z}_{37}$
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{210} .
- **5.** Для функции $f = (0110\ 1010\ 0001\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_0 ?
- 2. Определите, какому элементу кольца \mathbb{Z}_{3080} соответствует пара (41,28) кольца $\mathbb{Z}_{56} \times \mathbb{Z}_{55}$
- 3. Сколько существует целочисленных решений (x, y) уравнения -150x + 35y = 5 таких, что $y \in [1, 46]$?
- **4.** Найдите 29^{-1} в кольце \mathbb{Z}_{52}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 1010)$

 $f_2 = (0001\,0111)$

 $f_3 = (0010\ 1101)$

 $f_4 = (0001\ 1111)$

 $f_5 = (0010\,0010)$

 $f_6 = (1001\,0111)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{99}
- **2.** Вычислите $\frac{40}{6}$ в кольце \mathbb{Z}_{55} .
- 3. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_6$?
- **4.** В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 3, P(6) = 11, P(7) = 12.$$

5. Для функции $f=(1101\,0011\,0110\,1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -76x + 72y = 4 таких, что $y \in [-3, 67]$?
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{183}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(462, -47), B(2, 146).
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{185} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 0001)$ $f_2 = (1000\ 1000)$ $f_3 = (0110\ 0011)$ $f_4 = (1001\ 1101)$

 $f_5 = (0100\,0111)$

 $f_6 = (0010\ 1101)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-500, -378), B(-178, 310).
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 6, P(2) = 0, P(6) = 2.$$

- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{255}
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_3$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1101\,0000)$$

$$f_2 = (1100 \ 1100)$$

$$f_3 = (1110\,0110)$$

$$f_4 = (0011\ 1001)$$

$$f_5 = (1101\ 1011)$$

$$f_6 = (1101\,0010)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{93}
- 2. Найдите $n \in [109, 115]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{193}
- **4.** Вычислите $\frac{27}{50}$ в кольце \mathbb{Z}_{73} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 1101)$

 $f_2 = (1011\ 1001)$

 $f_3 = (1101\,0110)$

 $f_4 = (1000\,0100)$

 $f_5 = (1001\,0011)$

 $f_6 = (0101\ 1011)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{98}
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{226}.$
- 3. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_7$?
- **4.** Вычислите $\frac{21}{41}$ в кольце \mathbb{Z}_{57} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\,0011)$$

$$f_2 = (1111\,0001)$$

$$f_3 = (0001\ 1010)$$

$$f_4 = (1010\,0110)$$

$$f_5 = (1011\ 1111)$$

$$f_6 = (0001\ 1001)$$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 5, P(3) = 2, P(7) = 5.$$

- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{120}
- **4.** Сколько существует целочисленных решений (x, y) уравнения -65x + 145y = 5 таких, что $y \in [-24, 35]$?
- **5.** Для функции $f = (0001\ 0011\ 0011\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 1, P(3) = 1, P(4) = 5.$$

- 2. Определите, какому элементу кольца \mathbb{Z}_{2226} соответствует пара (14,7) кольца $\mathbb{Z}_{42} \times \mathbb{Z}_{53}$
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{243}
- **4.** Найдите $n \in [127, 132]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\ 1010)$$

 $f_2 = (0001\,0101)$

 $f_3 = (1011\ 1100)$

 $f_4 = (0100 \ 1100)$

 $f_5 = (0100\ 1001)$

 $f_6 = (0100\,0011)$

1. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 14, P(10) = 7, P(13) = 13.$$

- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{94}
- **4.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{83}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\ 1111)$

 $f_2 = (1011\ 1100)$

 $f_3 = (0010\ 1110)$

 $f_4 = (1110\,0000)$

 $f_5 = (0001\,1110)$

 $f_6 = (1000 \ 1101)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -27x + 23y = 1 таких, что $y \in [-96, -39]$?
- 2. Найдите $n \in [233, 238]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(303,7), B(-237,5).
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{186}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\,0000)$

 $f_2 = (1001\,0010)$

 $f_3 = (0110\,0001)$

 $f_4 = (1101\ 1000)$

 $f_5 = (0001\ 1011)$

 $f_6 = (0000\ 1001)$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 6, P(6) = 4, P(10) = 4.$$

- 3. Найдите порядок элемента 6 в кольце \mathbb{Z}_{71}
- 4. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_2$?
- **5.** Для функции $f=(1100\ 1000\ 1110\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{255} .
- 2. Найдите порядок элемента 13 в кольце \mathbb{Z}_{88}
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **4.** Сколько существует целочисленных решений (x, y) уравнения

7x + 26y = 1 таких, что $y \in [-81, -18]$?

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101 \ 1110)$

 $f_2 = (1101\ 1001)$

 $f_3 = (11110010)$

 $f_4 = (1000\,0010)$

 $f_5 = (0111\,0111)$

 $f_6 = (1100\,0010)$

- **1.** В кольце \mathbb{Z}_{39} найдите элемент порядка 4.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{167}
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 3, P(5) = 4, P(11) = 1.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(19, -336), B(-160, 182).
- 5. Для функции $f=(1010\ 1001\ 0011\ 0110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{136}
- 2. Вычислите $\frac{8}{43}$ в кольце \mathbb{Z}_{50} .
- 3. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{144}.$
- **4.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **5.** Для функции $f = (1010\ 0000\ 1111\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,1,1) \neq f(1,1,0)$?
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{78}
- 3. Сколько существует целочисленных решений (x, y) уравнения 30x + 46y = 2 таких, что $y \in [38, 80]$?
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- 5. Для функции $f=(0001\,0111\,0010\,0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{29}{49}$ в кольце \mathbb{Z}_{54} .
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 4, P(4) = 11, P(5) = 9.$$

- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-20,485), B(-492,320).
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{240} .
- 5. Для функции $f=(0011\,0110\,1010\,1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{52}
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Сколько существует целочисленных решений (x, y) уравнения -9x + 12y = 3 таких, что $y \in [-121, -61]$?
- **4.** Найдите $n \in [96, 101]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1111\ 0010\ 1100\ 1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-188,9), B(469,-365).
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{194}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100 \ 1100)$

 $f_2 = (1101\,0011)$

 $f_3 = (0110\,0111)$

 $f_4 = (0000\,0001)$

 $f_5 = (1111\ 1101)$

 $f_6 = (0001\ 1000)$

- **1.** Найдите $n \in [202, 207]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{114}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{158}
- **4.** В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 9, P(4) = 2, P(10) = 7.$$

5. Для функции $f = (1001\ 0011\ 0000\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{34} найдите элемент порядка 4.
- 2. Найдите порядок элемента 13 в кольце \mathbb{Z}_{69}
- 3. Найдите 49^{-1} в кольце \mathbb{Z}_{57}
- **4.** Вычислите $\frac{21}{53}$ в кольце \mathbb{Z}_{57} .
- **5.** Для функции $f = (0000\ 0011\ 0000\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 63^{-1} в кольце \mathbb{Z}_{80}
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Найдите порядок элемента 13 в кольце \mathbb{Z}_{55}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{110}
- **5.** Для функции $f = (0110\ 1000\ 0010\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{40}
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{110}.$
- **3.** Вычислите $\frac{29}{39}$ в кольце \mathbb{Z}_{59} .
- **4.** Найдите $n \in [209, 212]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\,0001)$

 $f_2 = (1100\,0100)$

 $f_3 = (0100\,0001)$

 $f_4 = (1110\,0110)$

 $f_5 = (0011\,0111)$

 $f_6 = (1001\,0100)$

- **1.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{104} .
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 9, P(8) = 7, P(9) = 10.$$

- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1010\ 1011)$$

$$f_2 = (1111\ 1111)$$

$$f_3 = (0111\,0001)$$

$$f_4 = (1101\,0000)$$

$$f_5 = (1011\,0110)$$

$$f_6 = (0100 \ 1110)$$

- **1.** Найдите $n \in [79, 84]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{217} .
- 3. Найдите 56^{-1} в кольце \mathbb{Z}_{61}
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{268}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\,0101)$

 $f_2 = (0100\,0001)$

 $f_3 = (0110\ 1001)$

 $f_4 = (0001\ 1011)$

 $f_5 = (0010\ 1100)$

 $f_6 = (1111\ 1110)$

- **1.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{47}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- 3. Найдите $n \in [89,92]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** В кольце \mathbb{Z}_{27} найдите элемент порядка 9.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1011)$

 $f_2 = (1110\,0111)$

 $f_3 = (1001\,0101)$

 $f_4 = (1110\ 1010)$

 $f_5 = (1001\ 1011)$

 $f_6 = (0001\,1110)$

- 1. Найдите порядок элемента 13 в кольце \mathbb{Z}_{46}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{209}
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 12, P(5) = 1, P(12) = 1.$$

- 4. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_3$?
- **5.** Для функции $f = (0010\ 0001\ 1000\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 10 \pmod{47}, \\ x \equiv 12 \pmod{35} \end{cases}$
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{204} .
- **3.** В кольце \mathbb{Z}_{30} найдите элемент порядка 4.
- 4. Найдите порядок элемента 7 в кольце \mathbb{Z}_{88}
- 5. Для функции $f=(0100\ 1110\ 1110\ 0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{34} найдите элемент порядка 8.
- 2. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 6, P(9) = 7, P(16) = 0.$$

- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам L, T_0 и T_1 ?
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{116}
- **5.** Для функции $f = (0110\ 0101\ 0001\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_2$?
- 2. Определите, какому элементу кольца \mathbb{Z}_{1665} соответствует пара (7,5) кольца $\mathbb{Z}_{45} \times \mathbb{Z}_{37}$
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(2) = 3, P(4) = 0.$$

- **4.** Найдите $n \in [205, 210]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1101\ 0110\ 0101\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{65}{15}$ в кольце \mathbb{Z}_{77} .
- **2.** Сколько существует целочисленных решений (x, y) уравнения -30x + 52y = 2 таких, что $y \in [-57, -28]$?
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{179} .
- 4. Решите систему сравнений $\begin{cases} x \equiv 9 \pmod{31}, \\ x \equiv 27 \pmod{39} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000\ 1001)$$

$$f_2 = (0011\,0000)$$

$$f_3 = (1000 \ 1101)$$

$$f_4 = (0110\ 1101)$$

$$f_5 = (0000 \ 1111)$$

$$f_6 = (1110\ 1001)$$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{248}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -5x + 70y = 5 таких, что $y \in [45, 84]$?
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{67} .
- **4.** В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 9, P(2) = 7, P(12) = 16.$$

5. Для функции $f=(0111\ 0010\ 1000\ 0111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения 57x + 6y = 3 таких, что $y \in [11, 43]$?
- 2. Найдите порядок элемента 8 в кольце \mathbb{Z}_{77}
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{108}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\ 1010)$

 $f_2 = (0101\,0001)$

 $f_3 = (1010\,0010)$

 $f_4 = (1110\ 1001)$

 $f_5 = (0100\ 1011)$

 $f_6 = (0000\ 1000)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения
- -140x + 115y = 5 таких, что $y \in [54, 106]$?
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{66}
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{69} .
- **4.** Найдите 53^{-1} в кольце \mathbb{Z}_{70}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1101)$

 $f_2 = (1100\ 1001)$

 $f_3 = (0100\ 1001)$

 $f_4 = (1010\,0111)$

 $f_5 = (1110\,0101)$

 $f_6 = (1011\,0111)$

- 1. Найдите 31^{-1} в кольце \mathbb{Z}_{51}
- 2. Найдите $n \in [217, 222]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 8, P(8) = 7.$$

- **4.** В кольце \mathbb{Z}_{35} найдите элемент порядка 6.
- **5.** Для функции $f = (1000\ 1100\ 1101\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Решите систему сравнений $\begin{cases} x \equiv 2 \pmod{60}, \\ x \equiv 36 \pmod{37} \end{cases}$
- **2.** В кольце \mathbb{Z}_{26} найдите элемент порядка 2.
- **3.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{66}
- **4.** Найдите $n \in [239, 244]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\,0000)$$

$$f_2 = (0101\ 1010)$$

$$f_3 = (0100\ 1010)$$

$$f_4 = (0010\ 1011)$$

$$f_5 = (0101\ 1001)$$

$$f_6 = (0011\,0100)$$

- **1.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{84}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-73,399), B(-397,300).
- 3. Найдите $n \in [243, 248]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 4, P(2) = 0, P(3) = 1.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1000)$

 $f_2 = (1010\,0001)$

 $f_3 = (0110\,0110)$

 $f_4 = (1111\,0101)$

 $f_5 = (0100\,0110)$

 $f_6 = (1101 \ 1110)$

- 1. Решите систему сравнений $\begin{cases} x \equiv 24 \pmod{43}, \\ x \equiv 7 \pmod{49} \end{cases}$
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{78}
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-171, -361), B(-160, -48).
- **4.** Найдите 23^{-1} в кольце \mathbb{Z}_{52}
- 5. Для функции $f=(1110\ 1101\ 0111\ 0010)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{158}
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{72}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(357,116), B(458,183).
- **4.** Вычислите $\frac{47}{51}$ в кольце \mathbb{Z}_{65} .
- **5.** Для функции $f = (1010\ 0110\ 0010\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -5x + 4y = 1 таких, что $y \in [-32, 25]$?
- **2.** Найдите $n \in [97, 102]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{90} .
- **4.** Вычислите $\frac{10}{17}$ в кольце \mathbb{Z}_{40} .
- **5.** Для функции $f = (0000\ 0110\ 1101\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-145, -74), B(261, -75).
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{85}
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(1,1,0) \neq f(1,0,0)$?
- **5.** Для функции $f = (0001\ 0000\ 0001\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S, T_0 и T_1 ?
- 2. Найдите 11^{-1} в кольце \mathbb{Z}_{40}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1855} соответствует пара (30,12) кольца $\mathbb{Z}_{35} \times \mathbb{Z}_{53}$
- **4.** Вычислите $\frac{49}{15}$ в кольце \mathbb{Z}_{68} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0000)$

 $f_2 = (0000 \ 1100)$

 $f_3 = (1011\ 1001)$

 $f_4 = (0111\,0011)$

 $f_5 = (0100\,0001)$

 $f_6 = (1101\ 1000)$

- **1.** В кольце \mathbb{Z}_{29} найдите элемент порядка 28.
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Сколько существует целочисленных решений (x, y) уравнения -38x + 20y = 2 таких, что $y \in [55, 96]$?
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000\,0000)$

 $f_2 = (0111\,0010)$

 $f_3 = (0100 \ 1100)$

 $f_4 = (0000 \ 1111)$

 $f_5 = (1010\ 1100)$

 $f_6 = (10100101)$

- 1. Решите систему сравнений $\begin{cases} x \equiv 23 \pmod{32}, \\ x \equiv 48 \pmod{59} \end{cases}$
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_1 ?
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{113} .
- **4.** Найдите $n \in [233, 237]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (0000\ 0001\ 1101\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 51 \pmod{57}, \\ x \equiv 28 \pmod{35} \end{cases}$
- 2. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(10) = 1, P(11) = 2, P(12) = 2.$$

- **3.** Вычислите $\frac{11}{7}$ в кольце \mathbb{Z}_{69} .
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000 \ 1011)$$

$$f_2 = (1001\,0000)$$

$$f_3 = (0010\,0100)$$

$$f_4 = (0011\,0110)$$

$$f_5 = (1010\ 1100)$$

$$f_6 = (1101 \ 1110)$$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{218}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(457, -400), B(-471, 237).
- **3.** Вычислите $\frac{24}{31}$ в кольце \mathbb{Z}_{52} .
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\ 1011)$

 $f_2 = (1010\ 1001)$

 $f_3 = (0010\,0100)$

 $f_4 = (0011\,0100)$

 $f_5 = (0001\,1111)$

 $f_6 = (1000\,0000)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-181,159), B(356,314).
- **2.** Найдите 14^{-1} в кольце \mathbb{Z}_{79}
- 3. Сколько существует целочисленных решений (x, y) уравнения -52x + 68y = 4 таких, что $y \in [-111, -37]$?
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** Для функции $f = (1110\ 1000\ 0111\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 1 \pmod{37}, \\ x \equiv 28 \pmod{32} \end{cases}$
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{80}
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(0,0,1) = f(1,0,1)?
- **4.** В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 11, P(9) = 11, P(11) = 9.$$

5. Для функции $f = (0110\ 0010\ 0101\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{39} найдите элемент порядка 6.
- 2. Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_1 ?
- 3. Найдите 19^{-1} в кольце \mathbb{Z}_{60}
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{124}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010 \ 1100)$

 $f_2 = (1011\ 1001)$

 $f_3 = (0111\,0010)$

 $f_4 = (1111\ 0010)$

 $f_5 = (0100\,0011)$

 $f_6 = (0000\ 1011)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{2632} соответствует пара (8,4) кольца $\mathbb{Z}_{56} \times \mathbb{Z}_{47}$
- **2.** В кольце \mathbb{Z}_{34} найдите элемент порядка 4.
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащих классу L?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{172}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

```
f_1 = (1100 \ 1111)
```

 $f_2 = (1001 \ 1101)$

 $f_3 = (1100 \ 1100)$

 $f_4 = (0011\ 1111)$

 $f_5 = (0011\,0000)$

 $f_6 = (1011\,0011)$

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1739} соответствует пара (33,32) кольца $\mathbb{Z}_{47} \times \mathbb{Z}_{37}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения 6x + 45y = 3 таких, что $y \in [26, 75]$?
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(1,1,0) = 1?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{174}
- **5.** Для функции $f = (0010\ 1000\ 0010\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_2$?
- **2.** Найдите порядок элемента 16 в кольце \mathbb{Z}_{75}
- **3.** Вычислите $\frac{33}{39}$ в кольце \mathbb{Z}_{80} .
- **4.** Сколько существует целочисленных решений (x, y) уравнения 104x + 108y = 4 таких, что $y \in [30, 91]$?
- **5.** Для функции $f = (0111\ 0011\ 0100\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{224}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{94}
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-104,341), B(428,-66).
- **4.** Найдите $n \in [185, 189]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001\ 1011)$

 $f_2 = (0011\,0010)$

 $f_3 = (0111\,0000)$

 $f_4 = (0110\ 1001)$

 $f_5 = (1011 \ 1100)$

 $f_6 = (0110\ 1000)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{2891} соответствует пара (15,29) кольца $\mathbb{Z}_{49} \times \mathbb{Z}_{59}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения 116x + 40y = 4 таких, что $y \in [59, 117]$?
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 10, P(5) = 8, P(9) = 5.$$

- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_2$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1000\,0010)$$

$$f_2 = (1100\,0111)$$

$$f_3 = (0100 \ 1110)$$

$$f_4 = (111111110)$$

$$f_5 = (1100\ 1000)$$

$$f_6 = (0101\ 1001)$$

- **1.** Найдите порядок элемента 12 в кольце \mathbb{Z}_{47}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{225}
- 3. Решите систему сравнений $\begin{cases} x \equiv 55 \pmod{56}, \\ x \equiv 35 \pmod{55} \end{cases}$
- **4.** В кольце \mathbb{Z}_{38} найдите элемент порядка 6.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\,0110)$$

$$f_2 = (1011\,0100)$$

$$f_3 = (1110\ 1110)$$

$$f_4 = (0010\,0111)$$

$$f_5 = (0010\,0110)$$

$$f_6 = (0110\ 1111)$$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(432,262), B(58,-455).
- **2.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{48}
- **3.** В кольце \mathbb{Z}_{25} найдите элемент порядка 4.
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(1) = 2, P(4) = 2.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1111\ 1010)$$

 $f_2 = (0011\ 1011)$

 $f_3 = (0011\ 1100)$

 $f_4 = (1100\,0000)$

 $f_5 = (0000\,0010)$

 $f_6 = (1110\ 1001)$

- **1.** Найдите 71^{-1} в кольце \mathbb{Z}_{76}
- 2. Найдите порядок элемента 7 в кольце \mathbb{Z}_{78}
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(0,1,0) = 1?
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(0,20), B(-223,320).
- **5.** Для функции $f = (1110\ 1111\ 1100\ 0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(493, -230), B(225, -209).
- **2.** Найдите 16^{-1} в кольце \mathbb{Z}_{41}
- 3. Сколько существует целочисленных решений (x,y) уравнения 120x+115y=5 таких, что $y\in[21,94]$?
- **4.** В кольце \mathbb{Z}_{30} найдите элемент порядка 4.
- **5.** Для функции $f = (0000\ 1010\ 1010\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [118, 123]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(1) = 0, P(3) = 6.$$

- 3. Найдите порядок элемента 3 в кольце \mathbb{Z}_{73}
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{118}
- 5. Для функции $f=(0101\ 1110\ 0100\ 0100)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 10^{-1} в кольце \mathbb{Z}_{77}
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_0 ?
- **3.** В кольце \mathbb{Z}_{33} найдите элемент порядка 10.
- **4.** Сколько существует целочисленных решений (x, y) уравнения 15x + 39y = 3 таких, что $y \in [-71, -12]$?
- **5.** Для функции $f = (1000\ 1010\ 1000\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 10 в кольце \mathbb{Z}_{41}
- 2. Найдите $n \in [177, 182]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{90} .
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{197}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\ 1111)$

 $f_2 = (0101\ 1101)$

 $f_3 = (0010\ 1000)$

 $f_4 = (0010\ 1110)$

 $f_5 = (1000\,0101)$

 $f_6 = (1000 \ 1110)$

- 1. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(154, -395), B(196, -49).
- **2.** Найдите 67^{-1} в кольце \mathbb{Z}_{72}
- 3. Найдите $n \in [197, 203]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{88}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\,0100)$

 $f_2 = (1010\,0111)$

 $f_3 = (1110\ 1000)$

 $f_4 = (0011\ 1111)$

 $f_5 = (1010\ 1110)$

 $f_6 = (0101\,0011)$

- 1. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- 2. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 12, P(6) = 15, P(8) = 11.$$

- 3. Найдите $n \in [185, 189]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{36}{15}$ в кольце \mathbb{Z}_{74} .
- **5.** Для функции $f = (1110\ 1000\ 0110\ 1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{78}
- 2. Определите, какому элементу кольца \mathbb{Z}_{1394} соответствует пара (17,4) кольца $\mathbb{Z}_{34} \times \mathbb{Z}_{41}$
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{119}
- **4.** В кольце \mathbb{Z}_{39} найдите элемент порядка 6.
- **5.** Для функции $f = (0101\ 1001\ 1110\ 0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 12 \pmod{38}, \\ x \equiv 34 \pmod{51} \end{cases}$
- 2. Найдите $n \in [142, 146]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** В кольце \mathbb{Z}_{38} найдите элемент порядка 6.
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу L и не принадлежащих классу T_0 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1000\,0000)$$

$$f_2 = (0100\,0101)$$

$$f_3 = (1000\ 1011)$$

$$f_4 = (1110\ 1010)$$

$$f_5 = (1010\ 1011)$$

$$f_6 = (1110\,0101)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{244} .
- 2. Определите, какому элементу кольца \mathbb{Z}_{1665} соответствует пара (1,8) кольца $\mathbb{Z}_{45} \times \mathbb{Z}_{37}$
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(16,361), B(-70,199).
- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_4$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000\ 1011)$

 $f_2 = (0010\ 1111)$

 $f_3 = (0110\,0000)$

 $f_4 = (0100\,0101)$

 $f_5 = (1101\ 1101)$

 $f_6 = (0000 \ 1101)$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{293}
- 2. Решите систему сравнений $\begin{cases} x \equiv 14 \pmod{55}, \\ x \equiv 26 \pmod{57} \end{cases}$
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(152,2), B(72,-73).
- **4.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{54}
- **5.** Для функции $f = (1110\ 0011\ 0101\ 1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{63}{61}$ в кольце \mathbb{Z}_{66} .
- **2.** Найдите $n \in [114, 119]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Решите систему сравнений $\begin{cases} x \equiv 13 \pmod{47}, \\ x \equiv 45 \pmod{52} \end{cases}$
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{222} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0011\,0111)$$

$$f_2 = (0001\,0111)$$

$$f_3 = (0000\ 1011)$$

$$f_4 = (0101\,0000)$$

$$f_5 = (0010\ 1010)$$

$$f_6 = (0111\ 1101)$$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(52,392), B(-74,238).
- **2.** Вычислите $\frac{42}{23}$ в кольце \mathbb{Z}_{48} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{66}
- **4.** В кольце \mathbb{Z}_{33} найдите элемент порядка 2.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100 \ 1101)$

 $f_2 = (0110\ 1001)$

 $f_3 = (0111\ 1000)$

 $f_4 = (1100 \ 1010)$

 $f_5 = (1101 \ 1100)$

 $f_6 = (0111\,0001)$

- **1.** Найдите 39^{-1} в кольце \mathbb{Z}_{80}
- **2.** Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_5$?
- 3. Определите, какому элементу кольца \mathbb{Z}_{2950} соответствует пара (7,14) кольца $\mathbb{Z}_{50} \times \mathbb{Z}_{59}$
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- **5.** Для функции $f = (1111\ 0000\ 0011\ 1011)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_7$?
- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_1 ?
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 0, P(3) = 3, P(4) = 3.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-200,349), B(61,200).
- **5.** Для функции $f = (0100\ 1011\ 1000\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,1,1) = 0?
- **2.** Вычислите $\frac{23}{38}$ в кольце \mathbb{Z}_{59} .
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{296}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-383, -134), B(-363, -22).
- **5.** Для функции $f = (0001\ 1000\ 1111\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{38} найдите элемент порядка 2.
- 2. Решите систему сравнений $\begin{cases} x \equiv 28 \pmod{41}, \\ x \equiv 4 \pmod{59} \end{cases}$
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{156} .
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0100\ 1001)$$

$$f_2 = (0000\,0110)$$

$$f_3 = (1010\ 1000)$$

$$f_4 = (1010\ 1010)$$

$$f_5 = (0111\,0001)$$

$$f_6 = (1101\ 1011)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{116}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{226}
- 3. Найдите $n \in [149, 153]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{25}{47}$ в кольце \mathbb{Z}_{48} .
- **5.** Для функции $f = (0000\ 1001\ 1010\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-259, -315), B(174, -267).
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_2$?
- **3.** Сколько существует целочисленных решений (x, y) уравнения -145x + 10y = 5 таких, что $y \in [-75, -12]$?
- **4.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\ 0001)$ $f_2 = (1100\ 0101)$

 $f_3 = (0111\ 0101)$

 $f_4 = (1001\,0000)$

 $f_5 = (0000\ 1001)$

 $f_6 = (0100 \ 1110)$

- **1.** Найдите $n \in [237, 241]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{294}
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(265,283), B(123,-491).
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- **5.** Для функции $f = (1000\,0101\,0110\,1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- **2.** Сколько существует целочисленных решений (x, y) уравнения -44x + 52y = 4 таких, что $y \in [-64, -26]$?
- **3.** Найдите 32^{-1} в кольце \mathbb{Z}_{57}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{132} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000\,0101)$

 $f_2 = (0000\,0010)$

 $f_3 = (0010\ 1110)$

 $f_4 = (1000\,0000)$

 $f_5 = (1000\ 1001)$

 $f_6 = (0100 \ 1100)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{87}
- **2.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{227}
- 3. Сколько существует целочисленных решений (x, y) уравнения -90x + 85y = 5 таких, что $y \in [-53, 15]$?
- 4. Определите, какому элементу кольца \mathbb{Z}_{930} соответствует пара (20,28) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{30}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1111)$

 $f_2 = (1100\ 1000)$

 $f_3 = (0111\ 1000)$

 $f_4 = (11110110)$

 $f_5 = (1100\,0000)$

 $f_6 = (1000\ 1011)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{2850} соответствует пара (26,45) кольца $\mathbb{Z}_{57} \times \mathbb{Z}_{50}$
- 2. Найдите $n \in [166, 172]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 7, P(6) = 8, P(8) = 5.$$

- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{270}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\,0001)$

 $f_2 = (1111\ 1001)$

 $f_3 = (1000 \ 1111)$

 $f_4 = (1000\,0000)$

 $f_5 = (0111\ 1100)$

 $f_6 = (0110\ 1011)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1692} соответствует пара (44,11) кольца $\mathbb{Z}_{47} \times \mathbb{Z}_{36}$
- 2. Найдите $n \in [151, 154]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 4, P(6) = 5, P(9) = 1.$$

- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S, T_0 и T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\,0010)$

 $f_2 = (1001\ 1001)$

 $f_3 = (0111\ 1000)$

 $f_4 = (1100\,0110)$

 $f_5 = (0110\,0011)$

 $f_6 = (0001\,0010)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 24x + 25y = 1 таких, что $y \in [75, 120]$?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{67} .
- 3. Найдите $n \in [84, 89]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(371, -494), B(264, -342).
- **5.** Для функции $f = (0111\ 0000\ 0010\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{47}
- 2. Определите, какому элементу кольца \mathbb{Z}_{1395} соответствует пара (30,1) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{45}$
- 3. Найдите $n \in [129, 132]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 5. Для функции $f = (1101\,0110\,0111\,0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_1 ?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-285, -230), B(-166, -168).
- **3.** Найдите все идемпотенты в кольце \mathbb{Z}_{87}
- **4.** Найдите $n \in [138, 142]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1111\ 1011\ 1001\ 0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{108}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -4x + 28y = 4 таких, что $y \in [70, 125]$?
- 3. Найдите $n \in [140, 143]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{2}{44}$ в кольце \mathbb{Z}_{47} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 0111)$$

$$f_2 = (0110\ 1100)$$

$$f_3 = (10110111)$$

$$f_4 = (0000\,0010)$$

$$f_5 = (1010\ 1011)$$

$$f_6 = (1000\ 1011)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{90}
- **2.** Найдите 42^{-1} в кольце \mathbb{Z}_{73}
- 3. Найдите порядок элемента 11 в кольце \mathbb{Z}_{40}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(48, -292), B(-408, -368).
- 5. Для функции $f = (0010\ 1011\ 1101\ 0111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 5, P(1) = 3, P(6) = 2.$$

- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{142} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{119}
- 4. Найдите 12^{-1} в кольце \mathbb{Z}_{61}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\,0001)$

 $f_2 = (1001\ 1111)$

 $f_3 = (0010\ 1001)$

 $f_4 = (1001\,0111)$

 $f_5 = (1011\ 1000)$

 $f_6 = (1001\ 1100)$

- **1.** Найдите $n \in [185, 188]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{178}
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **4.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{90}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\ 1000)$

 $f_2 = (1110\,0111)$

 $f_3 = (1001\ 1100)$

 $f_4 = (1000\,0111)$

 $f_5 = (0001\,0101)$

 $f_6 = (0011\,0111)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-467,80), B(-61,-73).
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{114}
- **3.** Вычислите $\frac{36}{10}$ в кольце \mathbb{Z}_{47} .
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{98}
- **5.** Для функции $f = (1010\ 0011\ 0111\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Определите, какому элементу кольца \mathbb{Z}_{1410} соответствует пара (46,7) кольца $\mathbb{Z}_{47} \times \mathbb{Z}_{30}$
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(7) = 8, P(8) = 5, P(12) = 10.$$

- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{217} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\ 1011)$

 $f_2 = (0011\ 1110)$

 $f_3 = (1001\,0011)$

 $f_4 = (0111\ 1100)$

 $f_5 = (1101\,0000)$

 $f_6 = (1110\,0000)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{108}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(156, -100), B(-324, -89).
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{89} .
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{92}
- 5. Для функции $f = (0001\ 0001\ 1111\ 1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(2) = 3, P(4) = 3.$$

- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **3.** Вычислите $\frac{13}{43}$ в кольце \mathbb{Z}_{53} .
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1100\,0111)$$

$$f_2 = (1100 \ 1110)$$

$$f_3 = (1011\ 1111)$$

$$f_4 = (1110\,0110)$$

$$f_5 = (1101\,0000)$$

$$f_6 = (1111\ 1100)$$

- **1.** Вычислите $\frac{21}{67}$ в кольце \mathbb{Z}_{68} .
- **2.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{149}
- 3. Определите, какому элементу кольца \mathbb{Z}_{2964} соответствует пара (37,5) кольца $\mathbb{Z}_{57} \times \mathbb{Z}_{52}$
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_7$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100 \ 1110)$

 $f_2 = (1000\,0011)$

 $f_3 = (1100\,0000)$

 $f_4 = (1110\ 1101)$

 $f_5 = (0001\,0000)$

 $f_6 = (1110\ 1011)$

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 0, P(1) = 4, P(2) = 4.$$

- **2.** Вычислите $\frac{18}{25}$ в кольце \mathbb{Z}_{72} .
- **3.** Пусть $f: A \to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Найдите порядок элемента 9 в кольце \mathbb{Z}_{71}
- **5.** Для функции $f = (1001\ 0010\ 1001\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{39}{11}$ в кольце \mathbb{Z}_{45} .
- **2.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{62}
- 3. Найдите $n \in [214, 218]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(156,203), B(76,-230).
- **5.** Для функции $f = (0011\ 1100\ 0110\ 0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,1,0) = f(1,0,0)?
- 2. Найдите порядок элемента 11 в кольце \mathbb{Z}_{58}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{188} .
- **4.** Найдите $n \in [112, 117]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1000\ 0101\ 0001\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{48}
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- **3.** Вычислите $\frac{39}{5}$ в кольце \mathbb{Z}_{78} .
- **4.** Сколько существует целочисленных решений (x, y) уравнения
- -80x + 65y = 5 таких, что $y \in [-35, 28]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1000)$

 $f_2 = (0000\,0100)$

 $f_3 = (1100 \ 1110)$

 $f_4 = (1100\,0101)$

 $f_5 = (1111\,0101)$

 $f_6 = (0100\ 1000)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{110} .
- 2. В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- 3. Найдите 43^{-1} в кольце \mathbb{Z}_{68}
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_4$?
- 5. Для функции $f=(1010\,0001\,1011\,1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_7$?
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 3, P(2) = 3, P(3) = 1.$$

- 3. Сколько существует целочисленных решений (x,y) уравнения 52x+80y=4 таких, что $y\in[32,90]$?
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{102}
- 5. Для функции $f=(1100\ 1101\ 0100)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{286}
- **2.** Вычислите $\frac{16}{29}$ в кольце \mathbb{Z}_{44} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{92}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\,0000)$

 $f_2 = (1101\ 1100)$

 $f_3 = (0110\,0100)$

 $f_4 = (0101\ 1010)$

 $f_5 = (0101\,0001)$

 $f_6 = (0100\,0100)$

- **1.** В кольце \mathbb{Z}_{29} найдите элемент порядка 4.
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{62}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{72}
- **4.** Вычислите $\frac{21}{31}$ в кольце \mathbb{Z}_{44} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001\ 1011)$

 $f_2 = (1011 \ 1100)$

 $f_3 = (0001\ 1011)$

 $f_4 = (1000 \ 1100)$

 $f_5 = (1110\,0011)$

 $f_6 = (1011\,0100)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{60} .
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{118}
- 3. Сколько существует целочисленных решений (x,y) уравнения -46x+16y=2 таких, что $y\in[11,73]$?
- **4.** В кольце \mathbb{Z}_{25} найдите элемент порядка 10.
- 5. Для функции $f=(1111\ 0011\ 0101\ 0001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{70}
- **2.** В кольце \mathbb{Z}_{39} найдите элемент порядка 12.
- 3. Сколько существует целочисленных решений (x,y) уравнения 81x + 48y = 3 таких, что $y \in [50,101]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{88} .
- 5. Для функции $f=(0110\ 1110\ 1101\ 0101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{199}
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{79} .
- 3. Найдите $n \in [229, 234]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Решите систему сравнений $\begin{cases} x \equiv 1 \pmod{39}, \\ x \equiv 15 \pmod{31} \end{cases}$
- **5.** Для функции $f=(0100\,0011\,1000\,1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 15^{-1} в кольце \mathbb{Z}_{71}
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Вычислите $\frac{43}{27}$ в кольце \mathbb{Z}_{50} .
- **4.** В кольце \mathbb{Z}_{39} найдите элемент порядка 12.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1101 \ 1100)$$

$$f_2 = (1101\ 1010)$$

$$f_3 = (10100110)$$

$$f_4 = (1011\ 1000)$$

$$f_5 = (1000 \ 1101)$$

$$f_6 = (1010\,0101)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{147} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(427, -34), B(-468, -203).
- 3. Найдите $n \in [83, 88]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{48}{67}$ в кольце \mathbb{Z}_{72} .
- **5.** Для функции $f=(1100\,0100\,1011\,1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -57x + 75y = 3 таких, что $y \in [-47, 4]$?
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{90}
- **3.** Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_5$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{45} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1000)$

 $f_2 = (1100\,0110)$

 $f_3 = (1110\ 1110)$

 $f_4 = (0001\,0110)$

 $f_5 = (1011\,0001)$

 $f_6 = (1011\ 1000)$

- **1.** Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_5$?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{236} .
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 0, P(5) = 11, P(10) = 6.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-467,483), B(-370,211).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1010)$

 $f_2 = (1100\,0011)$

 $f_3 = (1010\,0001)$

 $f_4 = (1110\,0001)$

 $f_5 = (0101\,0101)$

 $f_6 = (1100\,0011)$

- **1.** В кольце \mathbb{Z}_{34} найдите элемент порядка 16.
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не S?
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-472,334), B(232,254).
- **4.** Вычислите $\frac{39}{53}$ в кольце \mathbb{Z}_{78} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\ 1011)$

 $f_2 = (0101\ 1001)$

 $f_3 = (1111\ 1010)$

 $f_4 = (1010 \ 1100)$

 $f_5 = (1010\,0000)$

 $f_6 = (0001\,1111)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 1x + 17y = 1 таких, что $y \in [-15, 55]$?
- **2.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{74}
- 3. Найдите $n \in [134, 139]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{72}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\,0000)$

 $f_2 = (0100\ 1111)$

 $f_3 = (0100\ 1010)$

 $f_4 = (0011\,0101)$

 $f_5 = (0000 \ 1100)$

 $f_6 = (0000\,0101)$

- 1. Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и L?
- 2. Сколько существует целочисленных решений (x, y) уравнения -90x + 95y = 5 таких, что $y \in [21, 42]$?
- 3. Найдите 47^{-1} в кольце \mathbb{Z}_{63}
- 4. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- **5.** Для функции $f=(1100\ 1011\ 1000\ 0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{62}
- **2.** В кольце \mathbb{Z}_{35} найдите элемент порядка 4.
- 3. Сколько существует целочисленных решений (x, y) уравнения -4x + 42y = 2 таких, что $y \in [38, 101]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{114} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_2 = (1100\ 1001)$$

$$f_3 = (1111\ 1101)$$

$$f_4 = (1101\ 1011)$$

$$f_5 = (1100 \ 1101)$$

$$f_6 = (0111\ 1000)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{141} .
- 2. Найдите 21^{-1} в кольце \mathbb{Z}_{53}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-470, 158), B(274, 37).
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 5. Для функции $f=(0110\ 0101\ 0110\ 1111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_3$?
- 2. Найдите $n \in [127, 130]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите порядок элемента 11 в кольце \mathbb{Z}_{68}
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- **5.** Для функции $f = (1110\ 1011\ 0000\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [223, 228]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Вычислите $\frac{30}{41}$ в кольце \mathbb{Z}_{42} .
- 3. Сколько существует целочисленных решений (x, y) уравнения -72x + 100y = 4 таких, что $y \in [40, 108]$?
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- **5.** Для функции $f = (0001\ 1010\ 1100\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{72}
- **2.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{267}
- 3. Сколько существует целочисленных решений (x, y) уравнения 120x + 28y = 4 таких, что $y \in [49, 89]$?
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-55, -234), B(-279, -287).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100\,0100)$

 $f_2 = (0101\ 1101)$

 $f_3 = (1101\,0111)$

 $f_4 = (0110\ 1100)$

 $f_5 = (0100\ 1001)$

 $f_6 = (1000 \ 1100)$

- **1.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{86}
- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 1, P(4) = 0.$$

- 4. Найдите 43^{-1} в кольце \mathbb{Z}_{68}
- **5.** Для функции $f=(0110\ 0111\ 1011\ 1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- 2. Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_0 ?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- **4.** Найдите $n \in [104, 109]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f = (0111\ 0001\ 0110\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [117, 121]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{86}
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-355,273), B(226,459).
- **4.** Определите, какому элементу кольца \mathbb{Z}_{2009} соответствует пара (1,33) кольца $\mathbb{Z}_{49} \times \mathbb{Z}_{41}$
- **5.** Для функции $f = (1010\ 0011\ 1111\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{87}
- 2. Найдите 30^{-1} в кольце \mathbb{Z}_{47}
- **3.** В кольце \mathbb{Z}_{27} найдите элемент порядка 6.
- 4. Решите систему сравнений $\begin{cases} x \equiv 7 \pmod{56}, \\ x \equiv 9 \pmod{37} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1011)$$

$$f_2 = (0010\,0000)$$

$$f_3 = (0111\ 1110)$$

$$f_4 = (1000\,0110)$$

$$f_5 = (1000 \ 1100)$$

$$f_6 = (0011\,1110)$$

1. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 16, P(9) = 13, P(14) = 16.$$

- 2. Найдите порядок элемента 11 в кольце \mathbb{Z}_{87}
- 3. Найдите 27^{-1} в кольце \mathbb{Z}_{64}
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{292}
- **5.** Для функции $f = (1000\ 1011\ 0100\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{34} найдите элемент порядка 8.
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Сколько существует целочисленных решений (x, y) уравнения -130x + 85y = 5 таких, что $y \in [-76, -11]$?
- **4.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{42}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1111\ 0101)$

 $f_2 = (1101\,0000)$

 $f_3 = (1010\,0111)$

 $f_4 = (1100 \ 1010)$

 $f_5 = (0010\ 1011)$

 $f_6 = (0101\,1111)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-335,489), B(-453,-182).
- 2. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_3$?
- **3.** Найдите 31^{-1} в кольце \mathbb{Z}_{70}
- **4.** Найдите $n \in [118, 123]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100\ 1001)$

 $f_2 = (1110\ 1110)$

 $f_3 = (1000 \ 1110)$

 $f_4 = (1100\,0011)$

 $f_5 = (1101\,0000)$

 $f_6 = (0001\,0101)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{2856} соответствует пара (45,24) кольца $\mathbb{Z}_{56} \times \mathbb{Z}_{51}$
- 2. Найдите 19^{-1} в кольце \mathbb{Z}_{46}
- 3. Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и L?
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\,0010)$

 $f_2 = (0000\,0111)$

 $f_3 = (10100100)$

 $f_4 = (0010\,0010)$

 $f_5 = (0101\,0100)$

 $f_6 = (1100\,0000)$

- **1.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{66}
- 2. Найдите 10^{-1} в кольце \mathbb{Z}_{41}
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 2.
- 4. Решите систему сравнений $\begin{cases} x \equiv 18 \pmod{37}, \\ x \equiv 38 \pmod{49} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0101\ 1111)$$

$$f_2 = (1101\,0000)$$

$$f_3 = (1010\ 1001)$$

$$f_4 = (0110\,0111)$$

$$f_5 = (1011 \ 1101)$$

$$f_6 = (1110\ 1001)$$

- **1.** Найдите порядок элемента 8 в кольце \mathbb{Z}_{55}
- **2.** Найдите $n \in [74,79]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{162}.$
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{75}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\ 1000)$

 $f_2 = (1110\ 1100)$

 $f_3 = (1001\ 1000)$

 $f_4 = (0100\,0000)$

 $f_5 = (1010\,0011)$

 $f_6 = (1011\,0100)$

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{66}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{114}
- **3.** В кольце \mathbb{Z}_{33} найдите элемент порядка 2.
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{118}
- **5.** Для функции $f = (0010\ 0010\ 1001\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{54} .
- **2.** Найдите $n \in [101, 106]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Вычислите $\frac{14}{8}$ в кольце \mathbb{Z}_{49} .
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,0,1)=1?
- **5.** Для функции $f = (1011\ 0100\ 0011\ 1100)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 42 \pmod{59}, \\ x \equiv 1 \pmod{34} \end{cases}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения 6x + 57y = 3 таких, что $y \in [21, 70]$?
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\ 1010)$

 $f_2 = (0010\,0011)$

 $f_3 = (1011\ 1110)$

 $f_4 = (1000\,0110)$

 $f_5 = (1001\ 1111)$

 $f_6 = (1001\,0001)$

- **1.** Найдите $n \in [178, 184]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Найдите 72^{-1} в кольце \mathbb{Z}_{79}
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(0,0,1) = f(1,0,0)?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{54} .
- **5.** Для функции $f = (0000\,0101\,0001\,0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 35 \pmod{47}, \\ x \equiv 22 \pmod{56} \end{cases}$
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(4) = 4, P(6) = 0.$$

- **3.** Вычислите $\frac{19}{31}$ в кольце \mathbb{Z}_{74} .
- **4.** Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **5.** Для функции $f = (1010\ 0110\ 0000\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите, какому элементу кольца \mathbb{Z}_{2301} соответствует пара (24,6) кольца $\mathbb{Z}_{39} \times \mathbb{Z}_{59}$
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(3) = 2, P(8) = 1.$$

- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(97,431), B(75,42).
- **4.** Найдите порядок элемента 12 в кольце \mathbb{Z}_{55}
- **5.** Для функции $f = (1100\ 1111\ 1010\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 0, P(11) = 13, P(12) = 4.$$

- **2.** В кольце \mathbb{Z}_{28} найдите элемент порядка 6.
- 3. Найдите $n \in [207, 211]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Определите, какому элементу кольца \mathbb{Z}_{1410} соответствует пара (41,14) кольца $\mathbb{Z}_{47} \times \mathbb{Z}_{30}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1111)$

 $f_2 = (1100\ 1011)$

 $f_3 = (0100\,0001)$

 $f_4 = (0000\,0010)$

 $f_5 = (0010\,0111)$

 $f_6 = (1000 \ 1111)$

- 1. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_6$?
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{72}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(256, -210), B(-148, 363).
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{280}
- **5.** Для функции $f = (1010\ 0100\ 0100\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{28}{59}$ в кольце \mathbb{Z}_{75} .
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{84}
- 3. Найдите 47^{-1} в кольце \mathbb{Z}_{72}
- 4. Определите, какому элементу кольца \mathbb{Z}_{1813} соответствует пара (28,15) кольца $\mathbb{Z}_{49} \times \mathbb{Z}_{37}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\,0101)$

 $f_2 = (1000\,0001)$

 $f_3 = (0110\ 1110)$

 $f_4 = (0100\,0110)$

 $f_5 = (1100\ 1011)$

 $f_6 = (1011\,0110)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{61} .
- **2.** Найдите $n \in [72, 76]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Вычислите $\frac{19}{25}$ в кольце \mathbb{Z}_{68} .
- 4. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1111\ 1011)$$

$$f_2 = (0011\ 1010)$$

$$f_3 = (0100\,0001)$$

$$f_4 = (1110\ 1110)$$

$$f_5 = (1001\,0000)$$

$$f_6 = (0110\ 1000)$$

- **1.** В кольце \mathbb{Z}_{30} найдите элемент порядка 2.
- **2.** Сколько существует целочисленных решений (x, y) уравнения 100x + 12y = 4 таких, что $y \in [46, 89]$?
- 3. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_5$?
- **4.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{60}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\ 1001)$

 $f_2 = (1010\ 1001)$

 $f_3 = (1011\ 1100)$

 $f_4 = (0101\,0101)$

 $f_5 = (1000\,0100)$

 $f_6 = (0011\,1001)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{68}
- 2. Решите систему сравнений $\begin{cases} x \equiv 31 \pmod{57}, \\ x \equiv 21 \pmod{37} \end{cases}$
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(250, -335), B(-281, -279).
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам T_0 и T_1 , но не L?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1101\,0000)$$

$$f_2 = (1110\,0101)$$

$$f_3 = (0101\ 1101)$$

$$f_4 = (0111\ 1011)$$

$$f_5 = (0001\ 1000)$$

$$f_6 = (0011\,0110)$$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{79}
- **3.** В кольце \mathbb{Z}_{33} найдите элемент порядка 5.
- **4.** Найдите 23^{-1} в кольце \mathbb{Z}_{52}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1001)$

 $f_2 = (1011\ 1101)$

 $f_3 = (1100\ 1001)$

 $f_4 = (1000\,0111)$

 $f_5 = (1101\ 1011)$

 $f_6 = (0111\ 1100)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{124} .
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{72}
- 3. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_4$?
- **4.** Найдите $n \in [102, 105]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1111\ 0110\ 1100\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите 29^{-1} в кольце \mathbb{Z}_{54}
- **2.** В кольце \mathbb{Z}_{37} найдите элемент порядка 6.
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{118}
- **4.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{78}
- 5. Для функции $f=(0110\ 0101\ 0101\ 1111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 2, P(3) = 2, P(9) = 7.$$

- **2.** В кольце \mathbb{Z}_{33} найдите элемент порядка 10.
- 3. Сколько существует целочисленных решений (x, y) уравнения 87x + 54y = 3 таких, что $y \in [45, 77]$?
- **4.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{69}
- **5.** Для функции $f = (0110\ 1001\ 1000\ 0100)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-153, -493), B(455, -228).
- **2.** Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_7$?
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_1 ?
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{72}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1101\ 1010)$

 $f_2 = (1101\,0111)$

 $f_3 = (1100 \ 1110)$

 $f_4 = (0000 \ 1010)$

 $f_5 = (1101 \ 1100)$

 $f_6 = (0100\ 1001)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-52, -79), B(26, -472).
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{141} .
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 1, P(7) = 0, P(12) = 11.$$

- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{125}
- 5. Для функции $f=(0110\ 0011\ 1111\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{52}
- **2.** Найдите $n \in [100, 106]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{63}
- 4. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 9, P(5) = 11, P(9) = 8.$$

5. Для функции $f = (1000\ 0001\ 0011\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{11}{20}$ в кольце \mathbb{Z}_{41} .
- 2. Найдите $n \in [196, 199]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** В кольце \mathbb{Z}_{29} найдите элемент порядка 4.
- **4.** Сколько существует целочисленных решений (x, y) уравнения

88x + 76y = 4 таких, что $y \in [-43, -6]$?

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001 \ 1100)$

 $f_2 = (1010\,0000)$

 $f_3 = (0000\ 1011)$

 $f_4 = (0011\,0010)$

 $f_5 = (1111\ 1100)$

 $f_6 = (1100\,0111)$

- 1. Решите систему сравнений $\begin{cases} x \equiv 31 \pmod{43}, \\ x \equiv 28 \pmod{47} \end{cases}$
- 2. Найдите порядок элемента 15 в кольце \mathbb{Z}_{46}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{47} .
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(119, -411), B(-398, 97).
- 5. Для функции $f=(0110\,0111\,0101\,0100)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 2, P(3) = 0, P(4) = 0.$$

- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- 3. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{107} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1010\ 1011)$$

$$f_2 = (1001\,0000)$$

$$f_3 = (111111110)$$

$$f_4 = (0001 1110)$$

$$f_5 = (1001\,0001)$$

$$f_6 = (0101\ 1100)$$

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{66}
- **2.** Найдите $n \in [74,79]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите порядок элемента 13 в кольце \mathbb{Z}_{45}
- **4.** Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и L?
- **5.** Для функции $f = (1001\ 0100\ 0111\ 1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{256}
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{196} .
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0101)$

 $f_2 = (0000\,0110)$

 $f_3 = (1100 \ 1110)$

 $f_4 = (0000 \ 1101)$

 $f_5 = (0110\,0011)$

 $f_6 = (1110\,0110)$

- **1.** Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- **2.** Сколько существует целочисленных решений (x, y) уравнения -32x + 44y = 4 таких, что $y \in [-63, -9]$?
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(4) = 5, P(6) = 0.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(183, -200), B(363, -237).
- **5.** Для функции $f = (1100\ 1000\ 1110\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 23^{-1} в кольце \mathbb{Z}_{78}
- **2.** В кольце \mathbb{Z}_{33} найдите элемент порядка 10.
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{74}
- **4.** Найдите порядок элемента 14 в кольце \mathbb{Z}_{47}
- 5. Для функции $f=(0100\,0110\,0110\,1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- 2. Найдите $n \in [96, 101]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** В кольце \mathbb{Z}_{34} найдите элемент порядка 2.
- **4.** Сколько существует целочисленных решений (x, y) уравнения
- -110x + 5y = 5 таких, что $y \in [-74, -15]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .
- $f_1 = (1100 \ 1110)$
- $f_2 = (1101\ 1110)$
- $f_3 = (1000 \ 1100)$
- $f_4 = (0000 \ 1101)$
- $f_5 = (0100 \ 1100)$
- $f_6 = (0001\,0101)$

1. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(8) = 5, P(10) = 2, P(12) = 9.$$

- 2. Определите, какому элементу кольца \mathbb{Z}_{1554} соответствует пара (25,12) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{42}$
- 3. Сколько существует целочисленных решений (x, y) уравнения -18x + 57y = 3 таких, что $y \in [-129, -59]$?
- **4.** Найдите порядок элемента 4 в кольце \mathbb{Z}_{67}
- **5.** Для функции $f = (1101\ 0100\ 0011\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{82}
- 2. Определите, какому элементу кольца \mathbb{Z}_{2622} соответствует пара (44,42) кольца $\mathbb{Z}_{46} \times \mathbb{Z}_{57}$
- 3. Найдите 43^{-1} в кольце \mathbb{Z}_{69}
- **4.** Вычислите $\frac{42}{19}$ в кольце \mathbb{Z}_{64} .
- 5. Для функции $f=(0000\,0100\,1100\,1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{62}{17}$ в кольце \mathbb{Z}_{64} .
- **2.** В кольце \mathbb{Z}_{32} найдите элемент порядка 2.
- 3. Решите систему сравнений $\begin{cases} x \equiv 19 \pmod{37}, \\ x \equiv 26 \pmod{44} \end{cases}$
- **4.** Сколько существует целочисленных решений (x, y) уравнения 140x + 85y = 5 таких, что $y \in [-44, 22]$?
- 5. Для функции $f=(0100\,0010\,1111\,0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 6 в кольце \mathbb{Z}_{59}
- 2. Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_0 ?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{115}
- **4.** В кольце \mathbb{Z}_{33} найдите элемент порядка 2.
- **5.** Для функции $f = (1101\ 0100\ 0111\ 0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{133}
- **2.** Найдите 67^{-1} в кольце \mathbb{Z}_{77}
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(8) = 2, P(9) = 6, P(10) = 3.$$

- **4.** Найдите $n \in [86, 91]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100 \ 1110)$

 $f_2 = (1111\ 0111)$

 $f_3 = (1010\ 1110)$

 $f_4 = (0110\,0101)$

 $f_5 = (1101\ 1110)$

 $f_6 = (1010\ 1010)$

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{116}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(444, -450), B(167, -174).
- **3.** Вычислите $\frac{2}{41}$ в кольце \mathbb{Z}_{42} .
- **4.** Найдите $n \in [168, 172]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1101\ 1110\ 0001\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- 2. Найдите 51^{-1} в кольце \mathbb{Z}_{64}
- 3. Найдите $n \in [183, 187]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{161}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1011)$

 $f_2 = (1000\,0011)$

 $f_3 = (0001\ 1001)$

 $f_4 = (0011\ 1010)$

 $f_5 = (1011\,0011)$

 $f_6 = (0111\,0001)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 44x + 14y = 2 таких, что $y \in [16, 87]$?
- **2.** В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(5) = 5, P(10) = 9.$$

- 3. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_0 ?
- **5.** Для функции $f = (0010\ 1111\ 0000\ 1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 52 \pmod{57}, \\ x \equiv 36 \pmod{50} \end{cases}$
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{106}
- 3. Вычислите $\frac{3}{41}$ в кольце \mathbb{Z}_{60} .
- **4.** В кольце \mathbb{Z}_{27} найдите элемент порядка 6.
- 5. Для функции $f=(1011\ 1001\ 1110\ 0001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{111}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(141,415), B(-218,150).
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\,0001)$

 $f_2 = (0010\ 1111)$

 $f_3 = (1010\ 1010)$

 $f_4 = (0001\,0011)$

 $f_5 = (0010\ 1000)$

 $f_6 = (0010\ 1111)$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{64}
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классам L, T_0 и T_1 ?
- **4.** Сколько существует целочисленных решений (x, y) уравнения 22x + 58y = 2 таких, что $y \in [-3, 53]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1010)$

 $f_2 = (1000 \ 1101)$

 $f_3 = (0111\ 1001)$

 $f_4 = (0010\ 1001)$

 $f_5 = (1010\,0110)$

 $f_6 = (0000 \ 1011)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(25, -488), B(413, 237).
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- 3. Найдите $n \in [244, 247]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{296}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\,0110)$

 $f_2 = (1000\,0110)$

 $f_3 = (111111110)$

 $f_4 = (1101\,0100)$

 $f_5 = (1010\,0101)$

 $f_6 = (1111\,0010)$

- **1.** Найдите порядок элемента 12 в кольце \mathbb{Z}_{59}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{105}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1947} соответствует пара (9,28) кольца $\mathbb{Z}_{33} \times \mathbb{Z}_{59}$
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{73}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\,0010)$

 $f_2 = (0101\,0110)$

 $f_3 = (0110\ 1000)$

 $f_4 = (0110\,0000)$

 $f_5 = (1010\ 1010)$

 $f_6 = (1110\,0010)$

- **1.** В кольце \mathbb{Z}_{26} найдите элемент порядка 2.
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{82}
- 3. Сколько существует целочисленных решений (x, y) уравнения 116x + 28y = 4 таких, что $y \in [20, 78]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{247} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_2 = (0111\,0000)$

 $f_3 = (1010\ 1000)$

 $f_4 = (0100\ 1001)$

 $f_5 = (0100 \ 1100)$

 $f_6 = (0011\,1110)$

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(1) = 10, P(7) = 10.$$

- 2. Найдите 41^{-1} в кольце \mathbb{Z}_{66}
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{183}
- **5.** Для функции $f = (1010\,0111\,0111\,1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 11^{-1} в кольце \mathbb{Z}_{49}
- 2. Найдите $n \in [117, 121]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите порядок элемента 9 в кольце \mathbb{Z}_{62}
- 4. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не L?
- 5. Для функции $f=(0011\ 1001\ 0000\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 37^{-1} в кольце \mathbb{Z}_{65}
- 2. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_7$?
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-103,50), B(-210,37).
- 4. Решите систему сравнений $\begin{cases} x \equiv 1 \pmod{54}, \\ x \equiv 41 \pmod{55} \end{cases}$
- 5. Для функции $f=(1100\ 1110\ 1110\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 15 \pmod{40}, \\ x \equiv 30 \pmod{39} \end{cases}$
- **2.** В кольце \mathbb{Z}_{27} найдите элемент порядка 6.
- 3. Найдите $n \in [102, 108]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{20}{11}$ в кольце \mathbb{Z}_{54} .
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

 $f_1 = (1000\,0110)$

 $f_2 = (0010\ 1001)$

 $f_3 = (0000\ 1010)$

 $f_4 = (1010 \ 1100)$

 $f_5 = (1011\,0011)$

 $f_6 = (0101\,0110)$

- 1. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_7$?
- **2.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- **4.** Найдите 59^{-1} в кольце \mathbb{Z}_{75}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0010)$

 $f_2 = (1011\ 1100)$

 $f_3 = (0011\ 1100)$

 $f_4 = (0100\,0001)$

 $f_5 = (1001\,0010)$

 $f_6 = (0000 \ 1010)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{930} соответствует пара (29,20) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{30}$
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_2$?
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(9) = 10, P(14) = 6, P(16) = 14.$$

- **4.** Вычислите $\frac{11}{31}$ в кольце \mathbb{Z}_{72} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\,0100)$$

$$f_2 = (0100\ 1011)$$

$$f_3 = (1111\ 1001)$$

$$f_4 = (1110\ 1011)$$

$$f_5 = (0111\,0100)$$

$$f_6 = (1011\,0101)$$

- **1.** Сколько существует целочисленных решений (x, y) уравнения
- -13x + 23y = 1 таких, что $y \in [-114, -50]$?
- **2.** Найдите $n \in [93, 98]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Вычислите $\frac{4}{22}$ в кольце \mathbb{Z}_{79} .
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{245}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\,0010)$

 $f_2 = (1100 \ 1100)$

 $f_3 = (1001\,0001)$

 $f_4 = (0110\,0111)$

 $f_5 = (0101\ 1011)$

 $f_6 = (0100 \ 1100)$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 2. Найдите $n \in [238, 243]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Найдите все идемпотенты в кольце \mathbb{Z}_{75}
- **4.** Сколько существует целочисленных решений (x, y) уравнения 42x + 34y = 2 таких, что $y \in [-112, -71]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001 \ 1110)$ $f_2 = (1110 \ 0011)$

 $f_3 = (1010\ 1010)$

 $f_4 = (0111\ 0100)$

 $f_5 = (1100\,0110)$

 $f_6 = (0010\ 1000)$

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 4, P(3) = 1, P(4) = 3.$$

- 2. Найдите 43^{-1} в кольце \mathbb{Z}_{58}
- 3. Решите систему сравнений $\begin{cases} x \equiv 12 \pmod{59}, \\ x \equiv 27 \pmod{34} \end{cases}$
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{298}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0001\ 1000)$$

$$f_2 = (1101\,0010)$$

$$f_3 = (0011\,1100)$$

$$f_4 = (0111\ 1100)$$

$$f_5 = (0001\ 1101)$$

$$f_6 = (0101\,0011)$$

- **1.** Найдите $n \in [96, 100]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{109}
- **4.** В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(2) = 8, P(8) = 9.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000\ 1001)$

 $f_2 = (0000\,0100)$

 $f_3 = (0000\,0110)$

 $f_4 = (1011 \ 1100)$

 $f_5 = (0011\,0110)$

 $f_6 = (0010\ 1100)$

- 1. Найдите 23^{-1} в кольце \mathbb{Z}_{56}
- **2.** Сколько существует целочисленных решений (x, y) уравнения 60x + 57y = 3 таких, что $y \in [-62, -14]$?
- 3. Найдите порядок элемента 9 в кольце \mathbb{Z}_{56}
- 4. Определите, какому элементу кольца \mathbb{Z}_{3363} соответствует пара (9,45) кольца $\mathbb{Z}_{59} \times \mathbb{Z}_{57}$
- **5.** Для функции $f = (1101\,0110\,0001\,0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -92x + 56y = 4 таких, что $y \in [-109, -84]$?
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_1 ?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{122}
- **4.** В кольце \mathbb{Z}_{34} найдите элемент порядка 2.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1011\,0101)$

 $f_2 = (1011\ 1011)$

 $f_3 = (0010\,0000)$

 $f_4 = (11110010)$

 $f_5 = (1100\,0011)$

 $f_6 = (0111\ 1100)$

- **1.** В кольце \mathbb{Z}_{27} найдите элемент порядка 6.
- 2. Найдите $n \in [132, 137]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Определите, какому элементу кольца \mathbb{Z}_{1554} соответствует пара (38,16) кольца $\mathbb{Z}_{42} \times \mathbb{Z}_{37}$
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(2) = 2, P(4) = 0.$$

5. Для функции $f = (0001\ 0011\ 1101\ 1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [120, 124]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- 3. Найдите порядок элемента 15 в кольце \mathbb{Z}_{58}
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{80}
- 5. Для функции $f=(1011\ 1111\ 0110\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{65}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{120}
- **3.** Найдите порядок элемента 15 в кольце \mathbb{Z}_{77}
- **4.** Сколько существует целочисленных решений (x, y) уравнения

6x + 45y = 3 таких, что $y \in [46, 111]$?

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1010)$

 $f_2 = (1101\,0011)$

 $f_3 = (0110\ 1101)$

 $f_4 = (0011\,0101)$

 $f_5 = (0111\,0100)$

 $f_6 = (0010\ 1000)$

- **1.** Вычислите $\frac{18}{23}$ в кольце \mathbb{Z}_{56} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-467, -441), B(-491, -133).
- 3. Сколько существует целочисленных решений (x, y) уравнения 36x + 69y = 3 таких, что $y \in [-102, -52]$?
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 0, P(2) = 1, P(3) = 1.$$

5. Для функции $f = (0001\ 1000\ 0101\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 11 \pmod{31}, \\ x \equiv 43 \pmod{53} \end{cases}$
- **2.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,1,0) = f(0,1,1)?
- 3. Сколько существует целочисленных решений (x, y) уравнения 21x + 39y = 3 таких, что $y \in [-69, -7]$?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{266}
- **5.** Для функции $f = (0101\ 0011\ 1001\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{51}{62}$ в кольце \mathbb{Z}_{69} .
- 2. Найдите $n \in [193, 198]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(123, -280), B(118, -269).
- 4. Найдите порядок элемента 6 в кольце \mathbb{Z}_{89}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1011\ 1000)$

 $f_2 = (0101\ 1001)$

 $f_3 = (10100111)$

 $f_4 = (0011\,0100)$

 $f_5 = (1000\,0111)$

 $f_6 = (1111\,0001)$

- **1.** Вычислите $\frac{26}{29}$ в кольце \mathbb{Z}_{42} .
- **2.** В кольце \mathbb{Z}_{39} найдите элемент порядка 3.
- 3. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{213}.$
- 4. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- 5. Для функции $f=(1000\,0101\,1111\,1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 30 \pmod{42}, \\ x \equiv 48 \pmod{55} \end{cases}$
- **2.** Найдите $n \in [75, 79]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Пусть $f:A\to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Найдите 59^{-1} в кольце \mathbb{Z}_{72}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1001\ 1011)$$

$$f_2 = (1101\ 1011)$$

$$f_3 = (0111 \ 1100)$$

$$f_4 = (1010\ 1011)$$

$$f_5 = (1001\,0011)$$

$$f_6 = (0111\ 1111)$$

- **1.** Найдите $n \in [81, 85]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(5) = 6, P(6) = 0, P(9) = 3.$$

- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(176, -61), B(-395, -426).
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_1 ?
- **5.** Для функции $f = (0111\ 0111\ 1000\ 1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{117}
- **2.** Вычислите $\frac{47}{7}$ в кольце \mathbb{Z}_{64} .
- 3. Сколько существует булевых функций от 4 переменных, принадлежащих классам L и T_0 ?
- **4.** Сколько существует целочисленных решений (x, y) уравнения
- -10x + 17y = 1 таких, что $y \in [-9, 50]$?
- 5. Для функции $f=(0111\ 1010\ 1000\ 1011)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{240} .
- **2.** Вычислите $\frac{36}{45}$ в кольце \mathbb{Z}_{79} .
- 3. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- **4.** Найдите $n \in [160, 165]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f = (0101\ 1000\ 1101\ 0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{73}
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- 3. Решите систему сравнений $\begin{cases} x \equiv 28 \pmod{33}, \\ x \equiv 19 \pmod{43} \end{cases}$
- **4.** Вычислите $\frac{22}{49}$ в кольце \mathbb{Z}_{54} .
- **5.** Для функции $f = (0011\ 0011\ 1101\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(1) = 6, P(5) = 6.$$

- **2.** В кольце \mathbb{Z}_{35} найдите элемент порядка 6.
- 3. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{213}.$
- **4.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{76}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\ 1011)$

 $f_2 = (0011\,0001)$

 $f_3 = (0010\ 1010)$

 $f_4 = (1010\,0100)$

 $f_5 = (1110\,0001)$

 $f_6 = (1001\ 1010)$

- **1.** Вычислите $\frac{59}{19}$ в кольце \mathbb{Z}_{60} .
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам $S,\,T_0$ и $T_1?$
- 3. Определите, какому элементу кольца \mathbb{Z}_{1610} соответствует пара (14,28) кольца $\mathbb{Z}_{35} \times \mathbb{Z}_{46}$
- **4.** Найдите 17^{-1} в кольце \mathbb{Z}_{72}
- **5.** Для функции $f = (1011\ 0001\ 1110\ 0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_0 ?
- **2.** Сколько существует целочисленных решений (x, y) уравнения -40x + 125y = 5 таких, что $y \in [-30, 34]$?
- 3. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_7$?
- **4.** Найдите 31^{-1} в кольце \mathbb{Z}_{44}
- 5. Для функции $f = (0111\ 0001\ 1111\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x,y) уравнения
- -51x + 81y = 3 таких, что $y \in [-100, -68]$?
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{99}
- 3. Найдите $n \in [126, 131]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{214}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000\,0101)$

 $f_2 = (1111\ 1010)$

 $f_3 = (0111\ 1111)$

 $f_4 = (1110\ 1011)$

 $f_5 = (1011\,0110)$

 $f_6 = (0011\,0011)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{85}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-326, -427), B(218, 428).
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{276}
- **4.** Сколько существует целочисленных решений (x, y) уравнения 18x + 40y = 2 таких, что $y \in [-39, 29]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0001)$

 $f_2 = (1100\ 1011)$

 $f_3 = (0011\,0000)$

 $f_4 = (1010\ 0010)$

 $f_5 = (1101\ 1100)$

 $f_6 = (0101\,0000)$

- **1.** Определите, какому элементу кольца \mathbb{Z}_{2107} соответствует пара (17,2) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{49}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения 28x + 80y = 4 таких, что $y \in [-43, 5]$?
- **3.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{52}
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- 5. Для функции $f=(0110\ 0101\ 1010\ 0110)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(4) = 4, P(6) = 5.$$

- **2.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- **3.** Вычислите $\frac{9}{68}$ в кольце \mathbb{Z}_{79} .
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(435,466), B(303,-151).
- 5. Для функции $f=(0010\ 1100\ 1110\ 0011)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{155} .
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{211}
- 3. Найдите порядок элемента 7 в кольце \mathbb{Z}_{66}
- **4.** Сколько существует целочисленных решений (x, y) уравнения 39x + 42y = 3 таких, что $y \in [-39, 19]$?
- **5.** Для функции $f = (0110\ 1101\ 0010\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ

- **1.** Сколько существует целочисленных решений (x, y) уравнения -20x + 54y = 2 таких, что $y \in [-24, 35]$?
- **2.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{56}
- 3. Определите, какому элементу кольца \mathbb{Z}_{2408} соответствует пара (17,15) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{56}$
- **4.** Найдите $n \in [110, 116]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001\ 1000)$

 $f_2 = (0000\ 1001)$

 $f_3 = (1101 \ 1100)$

 $f_4 = (1110\ 1011)$

 $f_5 = (0110\ 1001)$

 $f_6 = (0001\,0110)$

- 1. Сколько существует целочисленных решений (x,y) уравнения
- -24x + 33y = 3 таких, что $y \in [-49, -5]$?
- **2.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{292}
- **3.** Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **4.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\,0100)$

 $f_2 = (1001\,0010)$

 $f_3 = (0010\,0101)$

 $f_4 = (1011\,0000)$

 $f_5 = (0111\,0100)$

 $f_6 = (1010 \ 1100)$

- **1.** Найдите $n \in [247,250]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{94}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{184} .
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-361, -209), B(183, 360).
- **5.** Для функции $f = (0110\ 1001\ 0011\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [191, 196]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_1 ?
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{63} .
- 4. Решите систему сравнений $\begin{cases} x \equiv 28 \pmod{51}, \\ x \equiv 38 \pmod{49} \end{cases}$
- **5.** Для функции $f = (1011\ 1100\ 1110\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{106}
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 6, P(1) = 3, P(7) = 8.$$

- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{126}
- **4.** Вычислите $\frac{46}{18}$ в кольце \mathbb{Z}_{61} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1111\ 1101)$$

$$f_2 = (1111\ 1010)$$

$$f_3 = (1100\,0100)$$

$$f_4 = (1011\,0000)$$

$$f_5 = (1101\,0010)$$

$$f_6 = (1101\ 1100)$$

- **1.** Найдите порядок элемента 15 в кольце \mathbb{Z}_{67}
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{97} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{95}
- **4.** В кольце \mathbb{Z}_{38} найдите элемент порядка 9.
- **5.** Для функции $f = (0101\ 0001\ 0101\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_4$?
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{42}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(325, -36), B(-39, 256).
- **4.** Сколько существует целочисленных решений (x, y) уравнения -35x + 85y = 5 таких, что $y \in [-66, -33]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100 \ 1100)$

 $f_2 = (1000\ 1001)$

 $f_3 = (1101\ 1000)$

 $f_4 = (0100\ 1010)$

 $f_5 = (0011\ 1011)$

 $f_6 = (0110\ 1001)$

- **1.** В кольце \mathbb{Z}_{31} найдите элемент порядка 2.
- 2. Решите систему сравнений $\begin{cases} x \equiv 39 \pmod{51}, \\ x \equiv 15 \pmod{52} \end{cases}$
- 3. Найдите порядок элемента 4 в кольце \mathbb{Z}_{43}
- **4.** Найдите $n \in [115, 119]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1010\ 0110\ 1000\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите 30^{-1} в кольце \mathbb{Z}_{61}
- 2. Найдите порядок элемента 7 в кольце \mathbb{Z}_{90}
- 3. Найдите $n \in [66, 71]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Пусть $f:A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\,0110)$

 $f_2 = (0111\ 1101)$

 $f_3 = (1001 \ 1100)$

 $f_4 = (0111\ 1101)$

 $f_5 = (0000\,0010)$

 $f_6 = (0011\ 1011)$

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,0,1) = f(0,1,1)?
- **2.** Найдите 23^{-1} в кольце \mathbb{Z}_{72}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{208}
- **4.** Найдите $n \in [173, 178]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (0001\ 1100\ 1101\ 1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 4 в кольце \mathbb{Z}_{63}
- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- **3.** Найдите 11^{-1} в кольце \mathbb{Z}_{50}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{68}
- 5. Для функции $f = (0100\ 0011\ 1100\ 0110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{25} найдите элемент порядка 5.
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{200}.$
- 3. Найдите $n \in [213, 217]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 3, P(3) = 4, P(4) = 1.$$

5. Для функции $f = (1100\ 1000\ 1001\ 1111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **2.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,0) = f(0,0,1)?
- 3. Решите систему сравнений $\begin{cases} x \equiv 5 \pmod{39}, \\ x \equiv 19 \pmod{38} \end{cases}$
- **4.** Вычислите $\frac{15}{17}$ в кольце \mathbb{Z}_{50} .
- **5.** Для функции $f = (1011\ 0011\ 1000\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(333, -352), B(-106, 136).
- **2.** Найдите $n \in [212, 215]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_1 ?
- **5.** Для функции $f = (0011\ 0010\ 1111\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(159,244), B(143,-298).
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{235} .
- 3. Определите, какому элементу кольца \mathbb{Z}_{1240} соответствует пара (1,24) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{40}$
- **4.** Найдите 37^{-1} в кольце \mathbb{Z}_{44}
- **5.** Для функции $f = (1100\ 1100\ 1101\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{154}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{65}
- 3. В кольце \mathbb{Z}_{38} найдите элемент порядка 18.
- **4.** Вычислите $\frac{51}{23}$ в кольце \mathbb{Z}_{58} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1011\,0010)$

 $f_2 = (0100\,0010)$

 $f_3 = (1100 \ 1101)$

 $f_4 = (1011\ 1101)$

 $f_5 = (0011\ 1011)$

 $f_6 = (1100 \ 1110)$

- **1.** Вычислите $\frac{43}{53}$ в кольце \mathbb{Z}_{76} .
- 2. Решите систему сравнений $\begin{cases} x \equiv 2 \pmod{32}, \\ x \equiv 5 \pmod{37} \end{cases}$
- 3. Найдите $n \in [72, 75]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{76}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\,0010)$$

$$f_2 = (0101\,0010)$$

$$f_3 = (1101 \ 1110)$$

$$f_4 = (0110\ 1110)$$

$$f_5 = (0000 \ 1110)$$

$$f_6 = (1010\,0000)$$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -4x + 28y = 4 таких, что $y \in [50, 107]$?
- **2.** Вычислите $\frac{27}{67}$ в кольце \mathbb{Z}_{78} .
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(10) = 16, P(11) = 14.$$

- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{198}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

$$f_1 = (0111\,0000)$$

$$f_2 = (1110\ 1011)$$

$$f_3 = (1110\ 1110)$$

$$f_4 = (0000\,0001)$$

$$f_5 = (1100 \ 1110)$$

$$f_6 = (0000\ 1001)$$

- **1.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{45}
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(2) = 3, P(4) = 3.$$

- **3.** Вычислите $\frac{36}{35}$ в кольце \mathbb{Z}_{48} .
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-50,433), B(-355,150).
- 5. Для функции $f=(0110\ 1010\ 0110\ 0001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{89} .
- **2.** В кольце \mathbb{Z}_{33} найдите элемент порядка 10.
- 3. Найдите $n \in [73, 76]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Решите систему сравнений $\begin{cases} x \equiv 24 \pmod{56}, \\ x \equiv 42 \pmod{57} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg , \land , \lor .

$$f_1 = (1000\,0000)$$

$$f_2 = (1110\,0001)$$

$$f_3 = (1011\,0100)$$

$$f_4 = (0000\,0001)$$

$$f_5 = (0110\ 1100)$$

$$f_6 = (0101\,0110)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{192} .
- **2.** Найдите 48^{-1} в кольце \mathbb{Z}_{61}
- 3. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_6$?
- **4.** Сколько существует целочисленных решений (x, y) уравнения -108x + 100y = 4 таких, что $y \in [12, 56]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0011\,0110)$$

 $f_2 = (1101\,0011)$

 $f_3 = (1101\,0000)$

 $f_4 = (0010\,0100)$

 $f_5 = (0101\ 1010)$

 $f_6 = (0100\ 1000)$

- **1.** В кольце \mathbb{Z}_{32} найдите элемент порядка 8.
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{56}
- 3. Сколько существует целочисленных решений (x, y) уравнения 39x + 24y = 3 таких, что $y \in [-86, -17]$?
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,0,1) \neq f(1,0,1)$?
- 5. Для функции $f=(1110\ 1100\ 0101\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **2.** Вычислите $\frac{35}{50}$ в кольце \mathbb{Z}_{51} .
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{272}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{87}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\,0100)$

 $f_2 = (0111\ 1111)$

 $f_3 = (1110\ 1000)$

 $f_4 = (1000\,0111)$

 $f_5 = (0110\ 1100)$

 $f_6 = (1010\,0101)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 22x + 23y = 1 таких, что $y \in [26, 73]$?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{201} .
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,1,1) \neq f(1,1,0)$?
- 4. Решите систему сравнений $\begin{cases} x \equiv 11 \pmod{43}, \\ x \equiv 26 \pmod{53} \end{cases}$
- **5.** Для функции $f = (0000\,0110\,1100\,0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 10 в кольце \mathbb{Z}_{69}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(174, -430), B(-178, 131).
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 5, P(6) = 8, P(8) = 13.$$

- **4.** Определите, какому элементу кольца \mathbb{Z}_{2537} соответствует пара (14,36) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{59}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1111\,0101)$$

$$f_2 = (00011110)$$

$$f_3 = (1000\,0110)$$

$$f_4 = (0001\,0111)$$

$$f_5 = (0001\,0011)$$

$$f_6 = (1110\ 1101)$$

- **1.** Найдите 14^{-1} в кольце \mathbb{Z}_{75}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(40, -293), B(53, 316).
- **3.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{90}
- **4.** Сколько существует целочисленных решений (x, y) уравнения 28x + 34y = 2 таких, что $y \in [30, 90]$?
- **5.** Для функции $f = (1100\ 0100\ 1000\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите 46^{-1} в кольце \mathbb{Z}_{51}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-5,82), B(208,-244).
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- 4. Найдите порядок элемента 7 в кольце \mathbb{Z}_{40}
- **5.** Для функции $f = (0001\ 0010\ 1000\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 56^{-1} в кольце \mathbb{Z}_{71}
- **2.** Вычислите $\frac{34}{19}$ в кольце \mathbb{Z}_{44} .
- **3.** Пусть $f:A\to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{58} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1001 \ 1110)$$

$$f_2 = (1101\,0011)$$

$$f_3 = (1101\ 1111)$$

$$f_4 = (1000 \ 1110)$$

$$f_5 = (1010\ 1010)$$

$$f_6 = (0111\ 1111)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{74}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -56x + 58y = 2 таких, что $y \in [-94, -43]$?
- **3.** Найдите 15^{-1} в кольце \mathbb{Z}_{47}
- 4. Определите, какому элементу кольца \mathbb{Z}_{1426} соответствует пара (31,22) кольца $\mathbb{Z}_{46} \times \mathbb{Z}_{31}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1001\ 1111)$$

 $f_2 = (1100\,0001)$

 $f_3 = (1010\,0100)$

 $f_4 = (0110\ 1110)$

 $f_5 = (0000\ 1011)$

 $f_6 = (1111\ 1001)$

- **1.** В кольце \mathbb{Z}_{36} найдите элемент порядка 2.
- 2. Найдите $n \in [115, 121]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_7$?
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 4, P(1) = 4, P(3) = 3.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1101)$

 $f_2 = (11110100)$

 $f_3 = (1011\,0100)$

 $f_4 = (1010\,0100)$

 $f_5 = (0010\,0111)$

 $f_6 = (0110\ 1100)$

- **1.** Найдите 11^{-1} в кольце \mathbb{Z}_{40}
- **2.** Вычислите $\frac{47}{5}$ в кольце \mathbb{Z}_{58} .
- 3. Найдите порядок элемента 9 в кольце \mathbb{Z}_{64}
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{115}
- **5.** Для функции $f=(1100\ 1100\ 0011\ 0011)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{114}
- **2.** Найдите 59^{-1} в кольце \mathbb{Z}_{76}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{114}
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(2) = 4, P(3) = 0.$$

5. Для функции $f=(1001\,0110\,0101\,1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{212}
- **2.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,1) = 0?
- 3. Найдите порядок элемента 7 в кольце \mathbb{Z}_{61}
- 4. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 9, P(2) = 9, P(6) = 10.$$

5. Для функции $f = (0100\ 1110\ 0000\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- 2. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не S?
- 3. Решите систему сравнений $\begin{cases} x \equiv 21 \pmod{47}, \\ x \equiv 23 \pmod{55} \end{cases}$
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-362, -305), B(78, 14).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 1011)$$

$$f_2 = (0000 \ 1111)$$

$$f_3 = (0101\,0100)$$

$$f_4 = (1010\ 1000)$$

$$f_5 = (11010111)$$

$$f_6 = (1100 \ 1110)$$

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 4, P(2) = 3, P(4) = 4.$$

- **2.** Сколько существует целочисленных решений (x, y) уравнения -21x + 8y = 1 таких, что $y \in [-85, -12]$?
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,0) = f(0,1,0)?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{257} .
- **5.** Для функции $f = (0010\ 0110\ 1000\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{74} .
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Вычислите $\frac{11}{65}$ в кольце \mathbb{Z}_{74} .
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(2) = 2, P(4) = 2.$$

5. Для функции $f=(0111\ 1111\ 0100\ 0111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{207} .
- 2. Сколько существует целочисленных решений (x, y) уравнения -92x + 32y = 4 таких, что $y \in [-53, -1]$?
- **3.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101 \ 0110)$ $f_2 = (0110 \ 1110)$ $f_3 = (1011 \ 0001)$ $f_4 = (1101 \ 1011)$

 $f_5 = (0111\ 1001)$

 $f_6 = (0101\,0011)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{101} .
- **2.** Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- 3. Решите систему сравнений $\begin{cases} x \equiv 38 \pmod{53}, \\ x \equiv 26 \pmod{32} \end{cases}$
- 4. Найдите 21^{-1} в кольце \mathbb{Z}_{59}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\,0110)$$

$$f_2 = (0100\,0011)$$

$$f_3 = (0010\ 1011)$$

$$f_4 = (1110\,0010)$$

$$f_5 = (0000\ 1001)$$

$$f_6 = (1010\ 1000)$$

- **1.** Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_2$?
- **2.** В кольце \mathbb{Z}_{39} найдите элемент порядка 6.
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(2) = 2, P(4) = 0.$$

- **4.** Найдите 47^{-1} в кольце \mathbb{Z}_{59}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1100\,0101)$$

$$f_2 = (1000\,0011)$$

$$f_3 = (1000\,0001)$$

$$f_4 = (1001\ 1011)$$

$$f_5 = (1101\ 1110)$$

$$f_6 = (1001\ 1111)$$

- **1.** Вычислите $\frac{27}{16}$ в кольце \mathbb{Z}_{57} .
- **2.** Найдите $n \in [249, 255]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Решите систему сравнений $\begin{cases} x \equiv 4 \pmod{31}, \\ x \equiv 33 \pmod{45} \end{cases}$
- **4.** В кольце \mathbb{Z}_{39} найдите элемент порядка 6.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000 \ 1011)$$

$$f_2 = (1000 \ 1110)$$

$$f_3 = (0011\,0001)$$

$$f_4 = (1100\,0101)$$

$$f_5 = (1100 \ 1101)$$

$$f_6 = (1010\,0000)$$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1798} соответствует пара (3,8) кольца $\mathbb{Z}_{58} \times \mathbb{Z}_{31}$
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_2$?
- 3. Сколько существует целочисленных решений (x, y) уравнения -15x + 12y = 3 таких, что $y \in [-28, 27]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{252} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_2 = (1001\,0101)$

 $f_3 = (0001\,0101)$

 $f_4 = (0111\,0000)$

 $f_5 = (1011\ 1000)$

 $f_6 = (0001\,1000)$

- **1.** В кольце \mathbb{Z}_{27} найдите элемент порядка 18.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{95}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{220}
- **4.** Сколько существует целочисленных решений (x, y) уравнения -100x + 56y = 4 таких, что $y \in [-82, -37]$?
- **5.** Для функции $f=(1100\ 0001\ 0101\ 0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ

$$P(2) = 1, P(3) = 3, P(4) = 2.$$

- **2.** Найдите 69^{-1} в кольце \mathbb{Z}_{77}
- 3. Найдите порядок элемента 13 в кольце \mathbb{Z}_{54}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{94}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0100)$

 $f_2 = (1001\ 1110)$

 $f_3 = (1011\,0111)$

 $f_4 = (1010\,0100)$

 $f_5 = (0000\ 1011)$

 $f_6 = (1011\,0100)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -5x + 30y = 5 таких, что $y \in [39, 69]$?
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 5, P(5) = 10, P(7) = 2.$$

- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{91} .
- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_4$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\,0000)$$

$$f_2 = (1110\ 1001)$$

$$f_3 = (0001 1110)$$

$$f_4 = (0011 \ 1100)$$

$$f_5 = (1001\,0011)$$

$$f_6 = (0010\ 1001)$$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(372, -481), B(391, 22).
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(6) = 3, P(9) = 5, P(10) = 0.$$

- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{91}
- **4.** Вычислите $\frac{15}{36}$ в кольце \mathbb{Z}_{47} .
- 5. Для функции $f = (0010\ 1101\ 0000\ 1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -76x + 56y = 4 таких, что $y \in [70, 117]$?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-39,384), B(-68,265).
- 3. Найдите порядок элемента 14 в кольце \mathbb{Z}_{69}
- 4. Определите, какому элементу кольца \mathbb{Z}_{1862} соответствует пара (32,48) кольца $\mathbb{Z}_{38} \times \mathbb{Z}_{49}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 0100)$ $f_2 = (1010 \ 1010)$

 $f_3 = (0010\ 1101)$

 $f_4 = (0000 \ 1000)$

 $f_5 = (0110\ 1110)$

 $f_6 = (1110\,0011)$

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- 2. Определите, какому элементу кольца \mathbb{Z}_{2279} соответствует пара (31,30) кольца $\mathbb{Z}_{53} \times \mathbb{Z}_{43}$
- **3.** Вычислите $\frac{41}{23}$ в кольце \mathbb{Z}_{42} .
- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0000)$

 $f_2 = (0101\ 1101)$

 $f_3 = (0101\ 1011)$

 $f_4 = (1010\ 1011)$

 $f_5 = (0010\ 1000)$

 $f_6 = (0010\,0100)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{96} .
- **2.** В кольце \mathbb{Z}_{27} найдите элемент порядка 2.
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{106}
- **4.** Найдите $n \in [155, 159]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\,0110)$

 $f_2 = (0101\ 1000)$

 $f_3 = (0000\ 1001)$

 $f_4 = (0000\,0011)$

 $f_5 = (1100\,0101)$

 $f_6 = (1110\ 1101)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 3x + 33y = 3 таких, что $y \in [-2, 62]$?
- 2. Найдите порядок элемента 11 в кольце \mathbb{Z}_{78}
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **4.** Найдите 47^{-1} в кольце \mathbb{Z}_{52}
- **5.** Для функции $f = (0101\ 1001\ 0101\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует булевых функций от 4 переменных, принадлежащих классам L, T_0 и T_1 ?
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 4, P(2) = 3, P(3) = 4.$$

- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{72} .
- 4. Найдите 53^{-1} в кольце \mathbb{Z}_{80}
- 5. Для функции $f=(1001\,0100\,1000\,0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{39} найдите элемент порядка 4.
- **2.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,1,1) = 1?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{236}
- **4.** Вычислите $\frac{20}{16}$ в кольце \mathbb{Z}_{63} .
- **5.** Для функции $f = (0011\ 0101\ 0001\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{44}{8}$ в кольце \mathbb{Z}_{53} .
- 2. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{51} .
- **4.** Сколько существует целочисленных решений (x, y) уравнения 42x + 16y = 2 таких, что $y \in [-92, -66]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (01011100)$

 $f_2 = (1001\ 1101)$

 $f_3 = (0111\ 1000)$

 $f_4 = (0010\ 1000)$

 $f_5 = (0011\,0011)$

 $f_6 = (1010\,0100)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 46x + 2y = 2 таких, что $y \in [25, 61]$?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{211} .
- **3.** В кольце \mathbb{Z}_{35} найдите элемент порядка 6.
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{100}
- 5. Для функции $f=(1010\ 1110\ 0101\ 0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{74}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -33x + 84y = 3 таких, что $y \in [-27, 14]$?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{96}
- **4.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{89}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1111)$

 $f_2 = (0100\ 1111)$

 $f_3 = (0001\,0010)$

 $f_4 = (1010\ 1101)$

 $f_5 = (0111\,0010)$

 $f_6 = (0101\,0110)$

- **1.** В кольце \mathbb{Z}_{28} найдите элемент порядка 3.
- **2.** Найдите $n \in [194, 198]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **4.** Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и L?
- **5.** Для функции $f = (1101\ 1100\ 0111\ 1110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 49 \pmod{54}, \\ x \equiv 23 \pmod{41} \end{cases}$
- **2.** Найдите $n \in [108, 114]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** В кольце \mathbb{Z}_{29} найдите элемент порядка 4.
- **4.** В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(2) = 6, P(5) = 6.$$

5. Для функции $f = (1100\ 1011\ 1100\ 0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{167}
- 2. Найдите порядок элемента 11 в кольце \mathbb{Z}_{90}
- 3. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_4$?
- **4.** Вычислите $\frac{37}{9}$ в кольце \mathbb{Z}_{49} .
- 5. Для функции $f=(0111\ 1100\ 0110\ 1001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{39} найдите элемент порядка 3.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{107} .
- **3.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{61}
- 4. Решите систему сравнений $\begin{cases} x \equiv 31 \pmod{35}, \\ x \equiv 10 \pmod{38} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1110\,0110)$$

$$f_2 = (1000\,0110)$$

$$f_3 = (0000\,0110)$$

$$f_4 = (0010\ 1111)$$

$$f_5 = (1101\ 1111)$$

$$f_6 = (0011\,0101)$$

- **1.** Найдите 35^{-1} в кольце \mathbb{Z}_{74}
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не L?
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(3) = 1, P(4) = 0.$$

5. Для функции $f=(1011\ 1111\ 1001\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{84}
- 2. Решите систему сравнений $\begin{cases} x \equiv 19 \pmod{42}, \\ x \equiv 48 \pmod{59} \end{cases}$
- 3. Найдите $n \in [221, 225]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_5$?
- 5. Для функции $f=(1011\ 1011\ 1010\ 0101)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{48}{27}$ в кольце \mathbb{Z}_{67} .
- 2. Найдите 43^{-1} в кольце \mathbb{Z}_{56}
- **3.** В кольце \mathbb{Z}_{39} найдите элемент порядка 3.
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(1) = 2, P(2) = 0.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100 \ 1100)$

 $f_2 = (0101\,0001)$

 $f_3 = (1111\,0000)$

 $f_4 = (0100 \ 1110)$

 $f_5 = (1110\ 1101)$

 $f_6 = (0000\ 1000)$

- **1.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- 2. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_5$?
- **3.** Вычислите $\frac{21}{23}$ в кольце \mathbb{Z}_{56} .
- 4. Найдите 47^{-1} в кольце \mathbb{Z}_{56}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1111)$$

$$f_2 = (1001\,0010)$$

$$f_3 = (0001\,0010)$$

$$f_4 = (1110\ 1101)$$

$$f_5 = (0010\ 1100)$$

$$f_6 = (0001\,0001)$$

- **1.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{58}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -8x + 3y = 1 таких, что $y \in [42, 92]$?
- 3. Найдите $n \in [72, 77]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите 38^{-1} в кольце \mathbb{Z}_{65}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\ 1000)$

 $f_2 = (1011\,0000)$

 $f_3 = (0001\ 1101)$

 $f_4 = (1101\,0010)$

 $f_5 = (0111\ 1110)$

 $f_6 = (1011\,0110)$

- **1.** Найдите порядок элемента 7 в кольце \mathbb{Z}_{86}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-105, -124), B(-273, -45).
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_1 ?
- **4.** Определите, какому элементу кольца \mathbb{Z}_{2162} соответствует пара (35, 12) кольца $\mathbb{Z}_{47} \times \mathbb{Z}_{46}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110 \ 1100)$

 $f_2 = (0000 \ 1111)$

 $f_3 = (0110\ 0101)$

 $f_4 = (1101\ 1001)$

 $f_5 = (0100 \ 1110)$

 $f_6 = (0111\,0011)$

- **1.** Найдите порядок элемента 14 в кольце \mathbb{Z}_{59}
- 2. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_6$?
- 3. Найдите 34^{-1} в кольце \mathbb{Z}_{71}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{109} .
- 5. Для функции $f=(1000\ 1111\ 0000\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{48}{7}$ в кольце \mathbb{Z}_{78} .
- **2.** Найдите 17^{-1} в кольце \mathbb{Z}_{78}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{66}
- **4.** Определите наибольший порядок элемента в кольце $\mathbb{Z}_{186}.$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\ 1010)$

 $f_2 = (1111\,0110)$

 $f_3 = (0001\ 1011)$

 $f_4 = (1001 \ 1110)$

 $f_5 = (1000\,0110)$

 $f_6 = (0101\ 1111)$

- **1.** Найдите $n \in [100, 104]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** В кольце \mathbb{Z}_{29} найдите элемент порядка 28.
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 12, P(6) = 13, P(7) = 15.$$

- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{181}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\ 1011)$

 $f_2 = (1111\ 1101)$

 $f_3 = (0100\,0101)$

 $f_4 = (0111\ 1011)$

 $f_5 = (1010\ 1001)$

 $f_6 = (0111\ 1111)$

- **1.** В кольце \mathbb{Z}_{38} найдите элемент порядка 3.
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{238}.$
- **3.** Найдите $n \in [75, 81]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(3) = 1, P(4) = 0.$$

5. Для функции $f = (1000\,0111\,1101\,1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{4}{17}$ в кольце \mathbb{Z}_{58} .
- 2. Определите, какому элементу кольца \mathbb{Z}_{1829} соответствует пара (35,25) кольца $\mathbb{Z}_{59} \times \mathbb{Z}_{31}$
- 3. Найдите 49^{-1} в кольце \mathbb{Z}_{62}
- **4.** Найдите $n \in [109, 114]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\ 1111)$$

$$f_2 = (1111\ 1010)$$

$$f_3 = (1101\,0110)$$

$$f_4 = (1000\,0001)$$

$$f_5 = (0110\ 1011)$$

$$f_6 = (1110\,0111)$$

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 7, P(5) = 5, P(7) = 9.$$

- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{102}
- **3.** Вычислите $\frac{44}{32}$ в кольце \mathbb{Z}_{51} .
- 4. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_6$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000\,0001)$$

$$f_2 = (1001\,0100)$$

$$f_3 = (0000 \ 1101)$$

$$f_4 = (0100\,0010)$$

$$f_5 = (0010\ 1101)$$

$$f_6 = (0011\ 1001)$$

- **1.** Найдите 49^{-1} в кольце \mathbb{Z}_{75}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-171,28), B(-207,-470).
- 3. Вычислите $\frac{53}{17}$ в кольце \mathbb{Z}_{60} .
- **4.** Сколько существует целочисленных решений (x, y) уравнения -34x + 16y = 2 таких, что $y \in [62, 84]$?
- **5.** Для функции $f=(0111\ 1001\ 0101\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ

- **1.** Найдите $n \in [245, 250]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Найдите 30^{-1} в кольце \mathbb{Z}_{77}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{200}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

```
f_1 = (0001 \ 1101)
```

 $f_2 = (0111\,0001)$

 $f_3 = (0110\ 1111)$

 $f_4 = (0111\,0011)$

 $f_5 = (0101\ 1100)$

 $f_6 = (0001\,0011)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(301,354), B(-250,66).
- **2.** В кольце \mathbb{Z}_{37} найдите элемент порядка 3.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{171}
- **4.** Найдите $n \in [71, 76]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1111\,0100)$

 $f_2 = (1010\,0110)$

 $f_3 = (1001\,0000)$

 $f_4 = (11110110)$

 $f_5 = (0111\ 1001)$

 $f_6 = (1110\ 1111)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -33x + 27y = 3 таких, что $y \in [-26, 39]$?
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(3) = 3, P(4) = 1.$$

- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(1,1,0) = f(1,0,0)?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{250} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\,0010)$$

$$f_2 = (1001\,0100)$$

$$f_3 = (1000\,0110)$$

$$f_4 = (0001\,1110)$$

$$f_5 = (1111\,0111)$$

$$f_6 = (0101\,0100)$$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{101}
- **2.** Вычислите $\frac{23}{32}$ в кольце \mathbb{Z}_{55} .
- **3.** Пусть $f: A \to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{227} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\,0000)$$

$$f_2 = (1010 \ 1100)$$

$$f_3 = (1100\ 1010)$$

$$f_4 = (0101\,0000)$$

$$f_5 = (1001\,0110)$$

$$f_6 = (0001\,1000)$$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_1 ?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{233} .
- **3.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_2$?
- **4.** Сколько существует целочисленных решений (x, y) уравнения 22x + 26y = 2 таких, что $y \in [5, 37]$?
- 5. Для функции $f=(0111\,0110\,0011\,1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 29^{-1} в кольце \mathbb{Z}_{50}
- **2.** В кольце \mathbb{Z}_{35} найдите элемент порядка 2.
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{132} .
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{68}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0010)$

 $f_2 = (0100\,0001)$

 $f_3 = (1011\ 0111)$

 $f_4 = (0101\,0001)$

 $f_5 = (1010\,0100)$

 $f_6 = (0100\,0010)$

- 1. Решите систему сравнений $\begin{cases} x \equiv 10 \pmod{35}, \\ x \equiv 25 \pmod{36} \end{cases}$
- **2.** Вычислите $\frac{38}{54}$ в кольце \mathbb{Z}_{79} .
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{72} .
- 4. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_3$?
- **5.** Для функции $f=(1011\ 1001\ 0010\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{59} .
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{173}
- **3.** В кольце \mathbb{Z}_{30} найдите элемент порядка 4.
- 4. Определите, какому элементу кольца \mathbb{Z}_{1122} соответствует пара (13,32) кольца $\mathbb{Z}_{33} \times \mathbb{Z}_{34}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1010)$

 $f_2 = (1110 \ 1100)$

 $f_3 = (1111\ 1101)$

 $f_4 = (0101\ 1110)$

 $f_5 = (0010\,0110)$

 $f_6 = (0011\,0010)$

- **1.** Найдите 14^{-1} в кольце \mathbb{Z}_{45}
- **2.** В кольце \mathbb{Z}_{29} найдите элемент порядка 28.
- 3. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- **4.** Сколько существует целочисленных решений (x, y) уравнения -8x + 3y = 1 таких, что $y \in [-96, -51]$?
- 5. Для функции $f=(1010\ 1110\ 0010\ 1010)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ

- **1.** Сколько существует целочисленных решений (x, y) уравнения 8x + 28y = 4 таких, что $y \in [-124, -60]$?
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{188}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{65} .
- **4.** Найдите порядок элемента 16 в кольце \mathbb{Z}_{71}
- 5. Для функции $f=(1011\ 0111\ 0100\ 1101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [137, 142]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** В кольце \mathbb{Z}_{27} найдите элемент порядка 18.
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 6, P(3) = 2, P(10) = 0.$$

- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1000 \ 1110)$$

$$f_2 = (1000\,0100)$$

$$f_3 = (0011\ 1101)$$

$$f_4 = (1001 1110)$$

$$f_5 = (1010\ 1001)$$

$$f_6 = (1001\ 1000)$$

- **1.** Найдите 21^{-1} в кольце \mathbb{Z}_{40}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(176,228), B(350,107).
- 3. Найдите $n \in [181, 185]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите, какому элементу кольца \mathbb{Z}_{1860} соответствует пара (29,22) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{60}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100 \ 1111)$

 $f_2 = (0111\,0011)$

 $f_3 = (0100 \ 1110)$

 $f_4 = (0000\ 1000)$

 $f_5 = (0100\,0001)$

 $f_6 = (0101\,0101)$

- **1.** В кольце \mathbb{Z}_{32} найдите элемент порядка 4.
- **2.** Сколько существует целочисленных решений (x, y) уравнения 27x + 22y = 1 таких, что $y \in [-110, -67]$?
- **3.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{177}
- **5.** Для функции $f = (1101\ 1011\ 0000\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 9, P(2) = 10, P(11) = 2.$$

- 2. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_5$?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{180}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{129} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0101\ 1100)$

 $f_2 = (1000\,0011)$

 $f_3 = (11010110)$

 $f_4 = (1011 \ 1101)$

 $f_5 = (0111\,0011)$

 $f_6 = (1100\,0011)$

- **1.** Найдите $n \in [70, 76]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Вычислите $\frac{60}{40}$ в кольце \mathbb{Z}_{73} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{105}
- **4.** В кольце \mathbb{Z}_{37} найдите элемент порядка 9.
- 5. Для функции $f=(0111\ 0100\ 0111\ 1101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{54}
- 2. Найдите 13^{-1} в кольце \mathbb{Z}_{60}
- 3. Сколько существует целочисленных решений (x, y) уравнения 63x + 39y = 3 таких, что $y \in [-22, 23]$?
- **4.** Вычислите $\frac{3}{9}$ в кольце \mathbb{Z}_{64} .
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

 $f_1 = (0011\,0001)$

 $f_2 = (1101\ 1000)$

 $f_3 = (1101\,0110)$

 $f_4 = (1011\ 0010)$

 $f_5 = (1011\ 1111)$

 $f_6 = (1110\,0001)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{127} .
- 2. Определите, какому элементу кольца \mathbb{Z}_{1665} соответствует пара (36,20) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{45}$
- **3.** В кольце \mathbb{Z}_{29} найдите элемент порядка 4.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(434, -26), B(383, 139).
- 5. Для функции $f = (0111\ 0001\ 1100\ 1011)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -24x + 50y = 2 таких, что $y \in [52, 79]$?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{178} .
- 3. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_5$?
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,0) = f(0,1,1)?
- 5. Для функции $f=(0101\,0110\,1101\,0001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{40}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -7x + 29y = 1 таких, что $y \in [26, 79]$?
- **3.** Вычислите $\frac{14}{23}$ в кольце \mathbb{Z}_{48} .
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{69}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

 $f_1 = (0000 \ 1010)$

 $f_2 = (1010\ 1101)$

 $f_3 = (0010\,0011)$

 $f_4 = (1100 \ 1110)$

 $f_5 = (0011\ 1000)$

 $f_6 = (1111\,0100)$

- **1.** Найдите $n \in [140, 143]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Сколько существует целочисленных решений (x, y) уравнения -100x + 84y = 4 таких, что $y \in [-109, -68]$?
- 3. Пусть $f: A \to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Найдите порядок элемента 8 в кольце \mathbb{Z}_{59}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100 \ 1101)$

 $f_2 = (1111\ 1101)$

 $f_3 = (0100\ 1001)$

 $f_4 = (0110\ 1001)$

 $f_5 = (1111\ 1100)$

 $f_6 = (1011\ 1111)$

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{82}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{80}
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 1, P(12) = 12, P(16) = 10.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-105, -71), B(71, -417).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1101 \ 1111)$$

 $f_2 = (0000\,0100)$

 $f_3 = (1110\,0001)$

 $f_4 = (0010\ 1111)$

 $f_5 = (0000\,0011)$

 $f_6 = (0110\ 1110)$

- **1.** Вычислите $\frac{13}{39}$ в кольце \mathbb{Z}_{40} .
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 3. Сколько существует целочисленных решений (x,y) уравнения 48x+52y=4 таких, что $y\in[-41,-17]$?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{108}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0000)$

 $f_2 = (0010\ 1001)$

 $f_3 = (1111\ 1001)$

 $f_4 = (11100110)$

 $f_5 = (1000\,0100)$

 $f_6 = (1101\,0100)$

- **1.** Найдите $n \in [127, 131]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{289}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{168} .
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\ 1101)$

 $f_2 = (0101\,0110)$

 $f_3 = (0011\,0100)$

 $f_4 = (1100 \ 1101)$

 $f_5 = (0111\,0111)$

 $f_6 = (1100\ 1000)$

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(4) = 4, P(5) = 5.$$

- **2.** В кольце \mathbb{Z}_{36} найдите элемент порядка 2.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{69}
- **4.** Вычислите $\frac{36}{27}$ в кольце \mathbb{Z}_{67} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\,0010)$$

$$f_2 = (1010\,0101)$$

$$f_3 = (0101\ 1101)$$

$$f_4 = (0011\ 1011)$$

$$f_5 = (0110\,0000)$$

$$f_6 = (0101\,0010)$$

- **1.** В кольце \mathbb{Z}_{34} найдите элемент порядка 2.
- 2. Найдите порядок элемента 10 в кольце \mathbb{Z}_{81}
- **3.** Вычислите $\frac{35}{31}$ в кольце \mathbb{Z}_{63} .
- 4. Решите систему сравнений $\begin{cases} x \equiv 10 \pmod{35}, \\ x \equiv 4 \pmod{46} \end{cases}$
- 5. Для функции $f=(0101\ 1000\ 1101\ 0010)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -65x + 40y = 5 таких, что $y \in [-49, 14]$?
- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классам L, T_0 и T_1 ?
- **3.** В кольце \mathbb{Z}_{34} найдите элемент порядка 16.
- 4. Определите, какому элементу кольца \mathbb{Z}_{2132} соответствует пара (41,2) кольца $\mathbb{Z}_{52} \times \mathbb{Z}_{41}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1000)$

 $f_2 = (0110\ 1101)$

 $f_3 = (0110\ 1101)$

 $f_4 = (0100\ 1011)$

 $f_5 = (1001\ 1001)$

 $f_6 = (0100 \ 1110)$

- 1. Найдите порядок элемента 7 в кольце \mathbb{Z}_{71}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{98}
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам $S,\,T_0$ и $T_1?$
- 4. Определите, какому элементу кольца \mathbb{Z}_{1770} соответствует пара (21,21) кольца $\mathbb{Z}_{30} \times \mathbb{Z}_{59}$
- **5.** Для функции $f = (0100\ 0001\ 0101\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения 20x + 17y = 1 таких, что $y \in [73, 105]$?
- 2. Решите систему сравнений $\begin{cases} x \equiv 35 \pmod{49}, \\ x \equiv 6 \pmod{33} \end{cases}$
- 3. Пусть $f:A\to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-261, -395), B(187, 423).
- **5.** Для функции $f = (0011\ 0000\ 0001\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- 2. Определите, какому элементу кольца \mathbb{Z}_{1610} соответствует пара (18,27) кольца $\mathbb{Z}_{35} \times \mathbb{Z}_{46}$
- 3. Найдите $n \in [153, 156]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Сколько существует целочисленных решений (x,y) уравнения 38x + 48y = 2 таких, что $y \in [-13,31]$?
- 5. Для функции $f=(0101\ 1010\ 0110\ 0010)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ

- **1.** В кольце \mathbb{Z}_{38} найдите элемент порядка 3.
- **2.** Вычислите $\frac{10}{11}$ в кольце \mathbb{Z}_{57} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{117}
- **4.** Найдите $n \in [169, 173]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1010)$$

$$f_2 = (1001\ 1000)$$

$$f_3 = (0011\,0101)$$

$$f_4 = (1111\ 1011)$$

$$f_5 = (0000\,0000)$$

$$f_6 = (0101\,0100)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{164} .
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(2) = 4, P(3) = 0.$$

- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_2$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1010\,0101)$$

$$f_2 = (1110\,0010)$$

$$f_3 = (0000\,0011)$$

$$f_4 = (10100111)$$

$$f_5 = (0010\,0011)$$

$$f_6 = (0010\,0001)$$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{224}
- **2.** Найдите 19^{-1} в кольце \mathbb{Z}_{41}
- 3. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- **4.** Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\,0100)$

 $f_2 = (0001\ 1100)$

 $f_3 = (1000\,0011)$

 $f_4 = (1000 \ 1001)$

 $f_5 = (1000\ 1111)$

 $f_6 = (1010\ 1000)$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{297}
- 2. Найдите порядок элемента 3 в кольце \mathbb{Z}_{40}
- **3.** Вычислите $\frac{19}{5}$ в кольце \mathbb{Z}_{74} .
- **4.** Найдите 37^{-1} в кольце \mathbb{Z}_{68}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0001)$

 $f_2 = (0001\ 11111)$

 $f_3 = (1000 \ 1010)$

 $f_4 = (0111\ 1011)$

 $f_5 = (11110101)$

 $f_6 = (0011\,0010)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{70}
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(7) = 2, P(8) = 4.$$

- 3. Найдите порядок элемента 15 в кольце \mathbb{Z}_{68}
- 4. Найдите 25^{-1} в кольце \mathbb{Z}_{52}
- 5. Для функции $f=(1001\ 1000\ 1011\ 0001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 19^{-1} в кольце \mathbb{Z}_{60}
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{164} .
- 3. Найдите порядок элемента 16 в кольце \mathbb{Z}_{43}
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(1,1,0) \neq f(0,1,0)$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\ 1011)$

 $f_2 = (0110\,0111)$

 $f_3 = (0100\ 1000)$

 $f_4 = (0001\,0111)$

 $f_5 = (0000\ 1011)$

 $f_6 = (1011\ 1100)$

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{69}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -4x + 36y = 4 таких, что $y \in [90, 132]$?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{86}
- **4.** В кольце \mathbb{Z}_{31} найдите элемент порядка 6.
- 5. Для функции $f=(0100\,0110\,1101\,0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 9 в кольце \mathbb{Z}_{40}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{114}
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(6) = 3, P(7) = 3, P(8) = 16.$$

- **4.** В кольце \mathbb{Z}_{38} найдите элемент порядка 6.
- 5. Для функции $f=(0111\ 1101\ 0000\ 0101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 20 \pmod{38}, \\ x \equiv 32 \pmod{49} \end{cases}$
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(3) = 3, P(5) = 1.$$

- 3. Найдите $n \in [128, 132]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Сколько существует целочисленных решений (x, y) уравнения -14x + 29y = 1 таких, что $y \in [-123, -48]$?
- 5. Для функции $f=(0111\ 1110\ 0011\ 0101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 11 \pmod{39}, \\ x \equiv 3 \pmod{37} \end{cases}$
- **2.** В кольце \mathbb{Z}_{32} найдите элемент порядка 4.
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(2) = 2, P(3) = 1.$$

- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{42} .
- 5. Для функции $f=(1001\ 1111\ 0110\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{33} найдите элемент порядка 5.
- 2. Определите, какому элементу кольца \mathbb{Z}_{1634} соответствует пара (18,10) кольца $\mathbb{Z}_{38} \times \mathbb{Z}_{43}$
- 3. Найдите $n \in [192, 197]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{75}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1010)$

 $f_2 = (1100 \ 1010)$

 $f_3 = (1000\,0110)$

 $f_4 = (1101\,0001)$

 $f_5 = (0110\ 1100)$

 $f_6 = (0001\,1010)$

- **1.** Найдите $n \in [243, 249]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{128}
- 3. Найдите порядок элемента 13 в кольце \mathbb{Z}_{55}
- 4. Определите, какому элементу кольца \mathbb{Z}_{1110} соответствует пара (30,28) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{30}$
- 5. Для функции $f=(0001\ 1000\ 0110\ 1110)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует булевых функций от 3 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- 2. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_4$?
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 5, P(5) = 6, P(9) = 7.$$

- 4. Определите, какому элементу кольца \mathbb{Z}_{2585} соответствует пара (5,16) кольца $\mathbb{Z}_{55} \times \mathbb{Z}_{47}$
- **5.** Для функции $f = (1101\,0000\,1011\,0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Решите систему сравнений $\begin{cases} x \equiv 38 \pmod{43}, \\ x \equiv 8 \pmod{31} \end{cases}$
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(3) = 3, P(4) = 1.$$

- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{178} .
- **4.** Вычислите $\frac{51}{65}$ в кольце \mathbb{Z}_{74} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0001\ 1111)$$

$$f_2 = (1011\ 1010)$$

$$f_3 = (0010\,0010)$$

$$f_4 = (1110\ 1100)$$

$$f_5 = (0110\,0111)$$

$$f_6 = (0000 \ 1111)$$

- **1.** Найдите порядок элемента 9 в кольце \mathbb{Z}_{86}
- **2.** Вычислите $\frac{53}{25}$ в кольце \mathbb{Z}_{63} .
- 3. Найдите $n \in [123, 126]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(1,0,0) \neq f(0,1,0)$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1011\,0111)$

 $f_2 = (1010\,0101)$

 $f_3 = (0010\,0111)$

 $f_4 = (1101\ 1111)$

 $f_5 = (0011\ 1011)$

 $f_6 = (1011\ 1001)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -32x + 76y = 4 таких, что $y \in [-111, -58]$?
- **2.** Сколько существует булевых функций от 4 переменных, не принадлежащих классам T_0 , и T_1 и L?
- **3.** В кольце \mathbb{Z}_{36} найдите элемент порядка 2.
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 6, P(3) = 1, P(5) = 4.$$

5. Для функции $f = (0100\ 1011\ 0101\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{234} .
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{91}
- 3. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(2) = 2, P(10) = 1.$$

- **4.** Найдите 11^{-1} в кольце \mathbb{Z}_{74}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1110\,0011)$$

$$f_2 = (1000 \ 1111)$$

$$f_3 = (0000\ 1010)$$

$$f_4 = (1110\,0100)$$

$$f_5 = (1111\ 1100)$$

$$f_6 = (1111\,0000)$$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{217} .
- **3.** Вычислите $\frac{55}{9}$ в кольце \mathbb{Z}_{68} .
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(153, -480), B(487, 103).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 1101)$

 $f_2 = (1110\,0010)$

 $f_3 = (1110\,0111)$

 $f_4 = (0111\ 1010)$

 $f_5 = (1000\,0101)$

 $f_6 = (1111\,0100)$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(109, -15), B(-437, -224).
- 3. Решите систему сравнений $\begin{cases} x \equiv 41 \pmod{59}, \\ x \equiv 51 \pmod{52} \end{cases}$
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,1,1) \neq f(0,0,1)$?
- **5.** Для функции $f = (1000\ 1110\ 1110\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_1 ?
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{74}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{124} .
- **4.** В кольце \mathbb{Z}_{29} найдите элемент порядка 14.
- 5. Для функции $f=(1001\,0110\,1101\,0110)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{196} .
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-258,14), B(481,185).
- 4. Найдите 10^{-1} в кольце \mathbb{Z}_{57}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\,0110)$

 $f_2 = (1001 \ 1101)$

 $f_3 = (1100 \ 1111)$

 $f_4 = (0111\,0110)$

 $f_5 = (0100\,0111)$

 $f_6 = (0110\ 1100)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 46x + 10y = 2 таких, что $y \in [-101, -64]$?
- **2.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{67}
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-42, -132), B(-444, -495).
- **4.** Вычислите $\frac{46}{4}$ в кольце \mathbb{Z}_{75} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1101)$

 $f_2 = (1110\ 1110)$

 $f_3 = (1110\,0011)$

 $f_4 = (1010\,0010)$

 $f_5 = (1001\ 1011)$

 $f_6 = (1010\ 1110)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-121,146), B(-4,478).
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(7) = 2, P(8) = 7, P(10) = 0.$$

- 3. Сколько существует целочисленных решений (x, y) уравнения -52x + 96y = 4 таких, что $y \in [18, 69]$?
- **4.** Вычислите $\frac{49}{9}$ в кольце \mathbb{Z}_{56} .
- 5. Для функции $f=(1101\,0111\,0100\,1100)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [234, 238]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{112}
- **3.** Вычислите $\frac{4}{22}$ в кольце \mathbb{Z}_{73} .
- **4.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0001\,0110)$$

$$f_2 = (1010\,0101)$$

$$f_3 = (1111\ 1001)$$

$$f_4 = (0010\,0010)$$

$$f_5 = (0101\,0011)$$

$$f_6 = (0001\,0011)$$

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,1,0) = 1?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(273, -77), B(407, 246).
- **3.** Найдите 35^{-1} в кольце \mathbb{Z}_{78}
- **4.** В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(9) = 2, P(10) = 7, P(11) = 6.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0001)$

 $f_2 = (0011\,0100)$

 $f_3 = (0100\,0000)$

 $f_4 = (0111\ 1000)$

 $f_5 = (0010\ 1010)$

 $f_6 = (0111\,0100)$

- **1.** Найдите $n \in [118, 121]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{168}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1776} соответствует пара (8,29) кольца $\mathbb{Z}_{48} \times \mathbb{Z}_{37}$
- **4.** В кольце \mathbb{Z}_{35} найдите элемент порядка 12.
- 5. Для функции $f=(1001\,0110\,1101\,1011)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 40 \pmod{59}, \\ x \equiv 16 \pmod{39} \end{cases}$
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{76}
- 3. Найдите 56^{-1} в кольце \mathbb{Z}_{67}
- **4.** В кольце \mathbb{Z}_{27} найдите элемент порядка 2.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 1010)$$

$$f_2 = (1101\ 1000)$$

$$f_3 = (0101\,0011)$$

$$f_4 = (0100\,0001)$$

$$f_5 = (1110\ 1110)$$

$$f_6 = (0101\ 1010)$$

- 1. Сколько существует булевых функций от 4 переменных, принадлежащих классам T_0 и T_1 , но не L?
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- **3.** Вычислите $\frac{19}{17}$ в кольце \mathbb{Z}_{42} .
- 4. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{225}.$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0011 \ 1100)$$

$$f_2 = (0001\,1101)$$

$$f_3 = (0111\,0110)$$

$$f_4 = (0111\,0110)$$

$$f_5 = (0111\ 1110)$$

$$f_6 = (0000 \ 1111)$$

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{99}
- 2. Определите, какому элементу кольца \mathbb{Z}_{1419} соответствует пара (10,11) кольца $\mathbb{Z}_{33} \times \mathbb{Z}_{43}$
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-31,191), B(-206,44).
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_0 ?
- **5.** Для функции $f = (0010\ 0101\ 1111\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(245,305), B(324,67).
- **2.** Вычислите $\frac{45}{33}$ в кольце \mathbb{Z}_{46} .
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{200}
- 4. Решите систему сравнений $\begin{cases} x \equiv 38 \pmod{56}, \\ x \equiv 11 \pmod{31} \end{cases}$
- **5.** Для функции $f = (1011\ 1100\ 0101\ 1101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1914} соответствует пара (15,42) кольца $\mathbb{Z}_{33} \times \mathbb{Z}_{58}$
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-45,351), B(202,392).
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(3) = 1, P(7) = 8.$$

- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\ 1010)$$

$$f_2 = (0110\,0110)$$

$$f_3 = (1001 \ 1110)$$

$$f_4 = (1011\,0101)$$

$$f_5 = (1110\,0110)$$

$$f_6 = (0101\ 0010)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{183} .
- **2.** Вычислите $\frac{5}{47}$ в кольце \mathbb{Z}_{76} .
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(2) = 2, P(3) = 2.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-416,336), B(420,-314).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\,0101)$$

$$f_2 = (0000\,0100)$$

$$f_3 = (0110\,0110)$$

$$f_4 = (1000 \ 1010)$$

$$f_5 = (1010\,0000)$$

$$f_6 = (111111100)$$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1599} соответствует пара (14,1) кольца $\mathbb{Z}_{39} \times \mathbb{Z}_{41}$
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 3, P(3) = 5, P(9) = 3.$$

- 3. Найдите порядок элемента 4 в кольце \mathbb{Z}_{89}
- **4.** Вычислите $\frac{2}{25}$ в кольце \mathbb{Z}_{67} .
- 5. Для функции $f=(1010\,0101\,1000\,1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{91}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{153}
- 3. Найдите 19^{-1} в кольце \mathbb{Z}_{44}
- **4.** Сколько существует целочисленных решений (x, y) уравнения
- -112x + 12y = 4 таких, что $y \in [-42, 22]$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\ 1101)$

 $f_2 = (1001\ 1011)$

 $f_3 = (11110101)$

 $f_4 = (1110\,0111)$

 $f_5 = (0000\,0011)$

 $f_6 = (1000\ 1010)$

- **1.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- **2.** Сколько существует целочисленных решений (x, y) уравнения 22x + 10y = 2 таких, что $y \in [-65, -13]$?
- 3. Найдите $n \in [159, 163]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Вычислите $\frac{38}{42}$ в кольце \mathbb{Z}_{61} .
- **5.** Для функции $f = (1101\,0000\,1010\,1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{99}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{105}
- 3. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_6$?
- 4. Найдите порядок элемента 15 в кольце \mathbb{Z}_{88}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0011\,0011)$

 $f_2 = (1010\ 1111)$

 $f_3 = (1101\ 1101)$

 $f_4 = (1100\,0011)$

 $f_5 = (1100\,0111)$

 $f_6 = (1000\,0010)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 15x + 54y = 3 таких, что $y \in [-56, -18]$?
- 2. Найдите 11^{-1} в кольце \mathbb{Z}_{57}
- 3. Найдите $n \in [174, 180]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(454, -49), B(-53, 268).
- **5.** Для функции $f = (0000\,0100\,0110\,0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(4, -286), B(173, -157).
- **2.** В кольце \mathbb{Z}_{37} найдите элемент порядка 4.
- 3. Сколько существует целочисленных решений (x, y) уравнения -1x + 25y = 1 таких, что $y \in [64, 92]$?
- **4.** Найдите $n \in [187, 191]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1100)$

 $f_2 = (0111\,0010)$

 $f_3 = (0000\ 1010)$

 $f_4 = (1001\,0011)$

 $f_5 = (0110\ 1010)$

 $f_6 = (1001\ 1001)$

- **1.** Вычислите $\frac{15}{37}$ в кольце \mathbb{Z}_{72} .
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащих классу L?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{85}
- 4. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_4$?
- 5. Для функции $f=(0010\ 0011\ 0111\ 1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 15^{-1} в кольце \mathbb{Z}_{62}
- **2.** Сколько существует целочисленных решений (x, y) уравнения 68x + 48y = 4 таких, что $y \in [-62, -12]$?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{63}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{69} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1100 \ 1010)$$

$$f_2 = (0111\ 1111)$$

$$f_3 = (0111\ 1111)$$

$$f_4 = (1111\ 1000)$$

$$f_5 = (0001\ 1110)$$

$$f_6 = (0111\,0111)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{210} .
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(1) = 5, P(3) = 5.$$

- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{169}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 1001)$$

$$f_2 = (0110\ 1010)$$

$$f_3 = (1000\ 1011)$$

$$f_4 = (1001\,0100)$$

$$f_5 = (1100\,0100)$$

$$f_6 = (0111\,0110)$$

- **1.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,1,1) \neq f(1,1,0)$?
- 2. Найдите 63^{-1} в кольце \mathbb{Z}_{80}
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(382,53), B(170,300).
- 4. Решите систему сравнений $\begin{cases} x \equiv 8 \pmod{39}, \\ x \equiv 1 \pmod{59} \end{cases}$
- **5.** Для функции $f = (0101\,0000\,0101\,1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{62}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-23, -300), B(-9, -133).
- **3.** Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{273}
- 5. Для функции $f=(0110\ 0011\ 1111\ 1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{217} .
- **2.** Вычислите $\frac{31}{39}$ в кольце \mathbb{Z}_{74} .
- 3. Найдите порядок элемента 6 в кольце \mathbb{Z}_{89}
- 4. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 7, P(5) = 0, P(7) = 5.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 1010)$$

$$f_2 = (0100\,0011)$$

$$f_3 = (0110\ 1001)$$

$$f_4 = (0101\ 1110)$$

$$f_5 = (1111\ 1110)$$

$$f_6 = (0111\ 0011)$$

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1155} соответствует пара (22,31) кольца $\mathbb{Z}_{33} \times \mathbb{Z}_{35}$
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 4, P(5) = 0, P(8) = 3.$$

- 3. Сколько существует целочисленных решений (x, y) уравнения -21x + 25y = 1 таких, что $y \in [72, 98]$?
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **5.** Для функции $f = (0110\ 0001\ 1110\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 8, P(2) = 0, P(6) = 0.$$

- **2.** Вычислите $\frac{32}{27}$ в кольце \mathbb{Z}_{44} .
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{91}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{107} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\ 1111)$$

$$f_2 = (0000 \ 1101)$$

$$f_3 = (1010\,0101)$$

$$f_4 = (1011\ 1111)$$

$$f_5 = (1011\ 1011)$$

$$f_6 = (1001\ 1001)$$

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_2$?
- 2. Определите, какому элементу кольца \mathbb{Z}_{2226} соответствует пара (30,41) кольца $\mathbb{Z}_{42} \times \mathbb{Z}_{53}$
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(211, -345), B(-118, 349).
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{165} .
- **5.** Для функции $f = (0010\ 1011\ 0010\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует целочисленных решений (x, y) уравнения 29x + 12y = 1 таких, что $y \in [-81, -38]$?
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{62}
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(9) = 4$$
, $P(10) = 8$, $P(15) = 0$.

- 4. Определите, какому элементу кольца \mathbb{Z}_{1643} соответствует пара (5,31) кольца $\mathbb{Z}_{31} \times \mathbb{Z}_{53}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000 \ 1101)$$

$$f_2 = (0001\ 1111)$$

$$f_3 = (10100110)$$

$$f_4 = (0110\ 1011)$$

$$f_5 = (1001\,0000)$$

$$f_6 = (1101\ 1111)$$

- 1. Найдите порядок элемента 3 в кольце \mathbb{Z}_{86}
- 2. Определите, какому элементу кольца \mathbb{Z}_{2365} соответствует пара (14,16) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{55}$
- **3.** Вычислите $\frac{48}{20}$ в кольце \mathbb{Z}_{77} .
- 4. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 10, P(9) = 8, P(10) = 9.$$

5. Для функции $f = (1011\ 0101\ 1110\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует целочисленных решений (x,y) уравнения
- -2x + 3y = 1 таких, что $y \in [-76, -44]$?
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_4$?
- 3. Найдите $n \in [203, 208]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 7, P(9) = 3, P(11) = 4.$$

- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .
- $f_1 = (0001\,1110)$
- $f_2 = (0110\,0010)$
- $f_3 = (0000 \ 1101)$
- $f_4 = (11010101)$
- $f_5 = (1111\ 1011)$
- $f_6 = (0100\,0000)$

- 1. Вычислите $\frac{40}{47}$ в кольце \mathbb{Z}_{50} .
- 2. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_7$?
- 3. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{227}.$
- **4.** Найдите $n \in [128, 134]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f=(1011\ 0010\ 1010\ 1100)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Вычислите $\frac{30}{27}$ в кольце \mathbb{Z}_{52} .
- 3. Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,0) = f(1,1,0)?
- 4. Определите, какому элементу кольца \mathbb{Z}_{1120} соответствует пара (27,1) кольца $\mathbb{Z}_{35} \times \mathbb{Z}_{32}$
- **5.** Для функции $f = (1110\ 1011\ 1001\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{36} найдите элемент порядка 6.
- 2. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(8) = 7, P(9) = 10, P(11) = 9.$$

- **3.** Найдите порядок элемента 5 в кольце \mathbb{Z}_{56}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{60} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1011\ 1111)$

 $f_2 = (0111\ 1011)$

 $f_3 = (0010\ 0111)$

 $f_4 = (1101\,0010)$

 $f_5 = (0100\ 1110)$

 $f_6 = (0111\ 1110)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{105} .
- **2.** Вычислите $\frac{12}{7}$ в кольце \mathbb{Z}_{48} .
- 3. Определите, какому элементу кольца \mathbb{Z}_{2360} соответствует пара (11,13) кольца $\mathbb{Z}_{59} \times \mathbb{Z}_{40}$
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(398,411), B(282,300).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\,0001)$

 $f_2 = (1110\ 1101)$

 $f_3 = (0111\ 1010)$

 $f_4 = (0101\ 1000)$

 $f_5 = (0101\,0010)$

 $f_6 = (1010\,0010)$

- **1.** Вычислите $\frac{4}{33}$ в кольце \mathbb{Z}_{74} .
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(9) = 0, P(10) = 7.$$

- **3.** Найдите все идемпотенты в кольце \mathbb{Z}_{85}
- 4. Найдите порядок элемента 4 в кольце \mathbb{Z}_{75}
- 5. Для функции $f=(1111\,0010\,0101\,0010)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 19^{-1} в кольце \mathbb{Z}_{65}
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 0, P(4) = 4, P(6) = 2.$$

- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{162}
- **4.** Найдите порядок элемента 10 в кольце \mathbb{Z}_{71}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1100 \ 1110)$

 $f_2 = (0101\,0110)$

 $f_3 = (1100\,0010)$

 $f_4 = (1110\,0010)$

 $f_5 = (1001\ 1100)$

 $f_6 = (1111\ 1001)$

- 1. Найдите порядок элемента 5 в кольце \mathbb{Z}_{62}
- **2.** В кольце \mathbb{Z}_{27} найдите элемент порядка 2.
- 3. Определите, какому элементу кольца \mathbb{Z}_{2280} соответствует пара (7,9) кольца $\mathbb{Z}_{40} \times \mathbb{Z}_{57}$
- **4.** Сколько существует целочисленных решений (x, y) уравнения 84x + 100y = 4 таких, что $y \in [25, 73]$?
- **5.** Для функции $f = (0101\ 0010\ 1010\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{37} найдите элемент порядка 12.
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- 3. Найдите 57^{-1} в кольце \mathbb{Z}_{80}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-448,430), B(227,-264).
- 5. Для функции $f=(1100\ 1101\ 1110\ 0101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1419} соответствует пара (42,32) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{33}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения 45x + 69y = 3 таких, что $y \in [71, 112]$?
- **3.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_0 ?
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(364,414), B(-283,81).
- **5.** Для функции $f = (1111\ 0010\ 1011\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(3) = 3, P(4) = 1.$$

- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{298}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-117, -381), B(290, -283).
- 5. Для функции $f = (0011\,0100\,0010\,0111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите 30^{-1} в кольце \mathbb{Z}_{43}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{102}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{51} .
- 4. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 1, P(4) = 3, P(5) = 0.$$

5. Для функции $f = (1010\ 1001\ 0100\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-277, -283), B(443, 84).
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{109}
- 3. Сколько существует целочисленных решений (x, y) уравнения 28x + 23y = 1 таких, что $y \in [-25, 23]$?
- **4.** В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(2) = 5, P(9) = 4.$$

5. Для функции $f = (1001\ 0001\ 1000\ 1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [218, 221]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Вычислите $\frac{13}{55}$ в кольце \mathbb{Z}_{72} .
- 3. Определите, какому элементу кольца \mathbb{Z}_{2072} соответствует пара (27,54) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{56}$
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{67}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0000\,0111)$$

$$f_2 = (1010\,0101)$$

$$f_3 = (1000\ 1001)$$

$$f_4 = (0100 \ 1100)$$

$$f_5 = (0101\,0111)$$

$$f_6 = (0010\,0110)$$

- 1. Решите систему сравнений $\begin{cases} x \equiv 33 \pmod{37}, \\ x \equiv 23 \pmod{35} \end{cases}$
- **2.** Найдите 47^{-1} в кольце \mathbb{Z}_{69}
- 3. Найдите $n \in [246, 251]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1010\,0111)$$

$$f_2 = (0110\,0000)$$

$$f_3 = (1110\ 1000)$$

$$f_4 = (1110\,0101)$$

$$f_5 = (0011\ 1010)$$

$$f_6 = (1001\ 1001)$$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1978} соответствует пара (17,12) кольца $\mathbb{Z}_{46} \times \mathbb{Z}_{43}$
- **2.** Вычислите $\frac{13}{24}$ в кольце \mathbb{Z}_{55} .
- **3.** В кольце \mathbb{Z}_{32} найдите элемент порядка 2.
- 4. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_3$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1000\ 1011)$$

$$f_2 = (1011\,0001)$$

$$f_3 = (1101\,0110)$$

$$f_4 = (0001\,1100)$$

$$f_5 = (0101\ 1010)$$

$$f_6 = (0011\ 1011)$$

- **1.** Вычислите $\frac{29}{27}$ в кольце \mathbb{Z}_{47} .
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_3$?
- **3.** Найдите 67^{-1} в кольце \mathbb{Z}_{80}
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\,0010)$

 $f_2 = (1100\,0011)$

 $f_3 = (0100 \ 1101)$

 $f_4 = (0111\ 1100)$

 $f_5 = (0000 \ 1110)$

 $f_6 = (1101\,0001)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-113,473), B(386,-91).
- **2.** Вычислите $\frac{5}{22}$ в кольце \mathbb{Z}_{43} .
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 4, P(3) = 6, P(7) = 5.$$

- **4.** Найдите 21^{-1} в кольце \mathbb{Z}_{53}
- 5. Для функции $f=(1110\ 0000\ 1001\ 1101)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Определите, какому элементу кольца \mathbb{Z}_{2205} соответствует пара (14,24) кольца $\mathbb{Z}_{45} \times \mathbb{Z}_{49}$
- **2.** В кольце \mathbb{Z}_{30} найдите элемент порядка 4.
- 3. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_4$?
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{119}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0111\ 0111)$

 $f_2 = (11110101)$

 $f_3 = (1000 \ 1101)$

 $f_4 = (0110\,0000)$

 $f_5 = (1110\ 1110)$

 $f_6 = (0100\,0110)$

- **1.** Найдите $n \in [178, 181]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 3, P(9) = 5, P(14) = 3.$$

- **3.** В кольце \mathbb{Z}_{37} найдите элемент порядка 6.
- **4.** Найдите 34^{-1} в кольце \mathbb{Z}_{49}
- 5. Для функции $f=(0001\,0111\,0100\,1111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- 3. Сколько существует целочисленных решений (x, y) уравнения 45x + 21y = 3 таких, что $y \in [-16, 37]$?
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 6, P(4) = 1.$$

5. Для функции $f = (1100\ 0010\ 0110\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{211} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-488, -278), B(-413, -10).
- 3. Вычислите $\frac{46}{14}$ в кольце \mathbb{Z}_{51} .
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам L, T_0 и T_1 ?
- **5.** Для функции $f = (1100\ 0110\ 1001\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- 2. Найдите $n \in [204, 210]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-95,410), B(117,181).
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{285}
- **5.** Для функции $f = (0001\ 0010\ 1111\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{85}
- 2. Найдите 59^{-1} в кольце \mathbb{Z}_{68}
- **3.** Вычислите $\frac{33}{41}$ в кольце \mathbb{Z}_{63} .
- 4. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 1, P(1) = 3, P(4) = 0.$$

5. Для функции $f = (1110\ 0111\ 0010\ 0111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -4x + 96y = 4 таких, что $y \in [-48, 28]$?
- **2.** Вычислите $\frac{26}{5}$ в кольце \mathbb{Z}_{48} .
- 3. Найдите порядок элемента 13 в кольце \mathbb{Z}_{64}
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- 5. Для функции $f=(0101\,0110\,1101\,0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{82}
- 2. Найдите порядок элемента 5 в кольце \mathbb{Z}_{88}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1290} соответствует пара (41,12) кольца $\mathbb{Z}_{43} \times \mathbb{Z}_{30}$
- 4. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 12, P(11) = 14, P(15) = 7.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1010\,0011)$

 $f_2 = (0111\,0100)$

 $f_3 = (10110110)$

 $f_4 = (1011\,0101)$

 $f_5 = (0110\ 1000)$

 $f_6 = (1001\,0001)$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_0 ?
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{197} .
- **3.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- 4. Определите, какому элементу кольца \mathbb{Z}_{2279} соответствует пара (38,2) кольца $\mathbb{Z}_{53} \times \mathbb{Z}_{43}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_2 = (0111\ 1011)$

 $f_3 = (1101\ 1011)$

 $f_4 = (0111\ 1011)$

 $f_5 = (0100\ 1011)$

 $f_6 = (1000\,0101)$

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_2 \to \mathbb{Z}_3$?
- 2. Найдите порядок элемента 15 в кольце \mathbb{Z}_{58}
- 3. Определите, какому элементу кольца \mathbb{Z}_{3186} соответствует пара (35,28) кольца $\mathbb{Z}_{59} \times \mathbb{Z}_{54}$
- **4.** Найдите $n \in [249, 253]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\,0101)$

 $f_2 = (1101\ 1001)$

 $f_3 = (0010\ 1100)$

 $f_4 = (0111\,0001)$

 $f_5 = (0101\,0110)$

 $f_6 = (1100\,0000)$

- **1.** Вычислите $\frac{40}{21}$ в кольце \mathbb{Z}_{61} .
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 5, P(3) = 0, P(6) = 1.$$

- 3. Найдите $n \in [76, 81]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите 27^{-1} в кольце \mathbb{Z}_{49}
- **5.** Для функции $f=(1101\ 1110\ 0001\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **2.** Вычислите $\frac{64}{51}$ в кольце \mathbb{Z}_{71} .
- 3. Найдите 71^{-1} в кольце \mathbb{Z}_{79}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{101} .
- **5.** Для функции $f = (0111\ 0111\ 0110\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(4) = 3, P(6) = 6.$$

- **2.** Вычислите $\frac{27}{17}$ в кольце \mathbb{Z}_{56} .
- 3. Найдите 29^{-1} в кольце \mathbb{Z}_{64}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0100\ 1010)$$

$$f_2 = (0110\ 1011)$$

$$f_3 = (0001\,1111)$$

$$f_4 = (0110\,0010)$$

$$f_5 = (0100 \ 1101)$$

$$f_6 = (0010\ 1101)$$

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1599} соответствует пара (33,3) кольца $\mathbb{Z}_{39} \times \mathbb{Z}_{41}$
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_3$?
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-104,413), B(-180,-92).
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{221} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1110)$

 $f_2 = (1110\ 1101)$

 $f_3 = (0111\ 1111)$

 $f_4 = (0000\,0011)$

 $f_5 = (0111\,0100)$

 $f_6 = (0111\,0011)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{104}
- 2. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_2$?
- 3. Найдите 37^{-1} в кольце \mathbb{Z}_{62}
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000 \ 1100)$

 $f_2 = (0000 \ 1101)$

 $f_3 = (1010\ 1100)$

 $f_4 = (0100\,0100)$

 $f_5 = (1000 \ 1110)$

 $f_6 = (1100 \ 1100)$

- **1.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{77}
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-73, -177), B(-421, -500).
- **3.** Вычислите $\frac{37}{25}$ в кольце \mathbb{Z}_{56} .
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что $f(0,1,0) \neq f(0,1,1)$?
- 5. Для функции $f = (1011\ 0000\ 1111\ 1001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -96x + 4y = 4 таких, что $y \in [-53, 3]$?
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{108}
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{65}
- **4.** Найдите $n \in [71, 75]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (0010\ 1011\ 1000\ 1011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** Сколько существует целочисленных решений (x, y) уравнения 26x + 44y = 2 таких, что $y \in [48, 119]$?
- 3. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 7, P(6) = 10, P(12) = 3.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-383, -23), B(466, 304).
- 5. Для функции $f = (0111\ 1010\ 1011\ 1110)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 9 в кольце \mathbb{Z}_{56}
- **2.** Найдите $n \in [78, 82]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Определите, какому элементу кольца \mathbb{Z}_{1887} соответствует пара (27,8) кольца $\mathbb{Z}_{51} \times \mathbb{Z}_{37}$
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{189} .
- **5.** Для функции $f = (0101\ 0001\ 1101\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{93}
- **2.** Найдите $n \in [198, 204]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(226,195), B(306,-239).
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 1, P(2) = 5, P(5) = 5.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001 1110)$

 $f_2 = (11010110)$

 $f_3 = (0100 \ 1100)$

 $f_4 = (1011\,0100)$

 $f_5 = (1011\,0101)$

 $f_6 = (0011\,0010)$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{279}
- **2.** Сколько существует целочисленных решений (x, y) уравнения 28x + 3y = 1 таких, что $y \in [-48, 1]$?
- 3. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-151, -243), B(-345, 273).
- **4.** Вычислите $\frac{11}{35}$ в кольце \mathbb{Z}_{43} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\,0111)$

 $f_2 = (1001\ 1100)$

 $f_3 = (0100\ 1001)$

 $f_4 = (0010\ 1000)$

 $f_5 = (0001\,0101)$

 $f_6 = (1111\,0110)$

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{290}
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Найдите $n \in [202, 207]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\,0011)$

 $f_2 = (0100 \ 1111)$

 $f_3 = (10100110)$

 $f_4 = (0100\,0110)$

 $f_5 = (1000\,0011)$

 $f_6 = (0000\ 1011)$

- 1. Сколько существует инъективных отображений $\mathbb{Z}_5 \to \mathbb{Z}_4$?
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{68}
- **3.** Найдите 74^{-1} в кольце \mathbb{Z}_{79}
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{137} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0100)$

 $f_2 = (0111\,0001)$

 $f_3 = (0100\ 1001)$

 $f_4 = (0111\,0011)$

 $f_5 = (1001\ 1111)$

 $f_6 = (1001\ 1000)$

1. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 4, P(7) = 7, P(8) = 6.$$

- **2.** В кольце \mathbb{Z}_{35} найдите элемент порядка 12.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{300}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (111111111)$

 $f_2 = (1011\,0010)$

 $f_3 = (11010101)$

 $f_4 = (1001\ 1010)$

 $f_5 = (1100\,0011)$

 $f_6 = (0010\ 1111)$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(7) = 10, P(9) = 6, P(10) = 1.$$

- 3. Найдите порядок элемента 8 в кольце \mathbb{Z}_{49}
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1011\ 1111)$$

$$f_2 = (111111110)$$

$$f_3 = (0001\,1001)$$

$$f_4 = (0011\,0011)$$

$$f_5 = (1100\,0111)$$

$$f_6 = (1000\ 1010)$$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. Найдите 22^{-1} в кольце \mathbb{Z}_{45}
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{233} .
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- 5. Для функции $f=(1111\ 0001\ 1101\ 1101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите порядок элемента 16 в кольце \mathbb{Z}_{65}
- 2. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(5) = 9, P(6) = 1, P(10) = 7.$$

- 3. Найдите 13^{-1} в кольце \mathbb{Z}_{56}
- **4.** Определите наибольший порядок элемента в кольце $\mathbb{Z}_{151}.$
- 5. Для функции $f=(0110\ 1000\ 0000\ 1000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{26} найдите элемент порядка 4.
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Сколько существует целочисленных решений (x, y) уравнения 21x + 11y = 1 таких, что $y \in [65, 118]$?
- **4.** Найдите $n \in [71, 77]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (0111\ 1001\ 0100\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите, какому элементу кольца \mathbb{Z}_{1665} соответствует пара (40,27) кольца $\mathbb{Z}_{45} \times \mathbb{Z}_{37}$
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-398,406), B(143,174).
- **3.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу S?
- **4.** В кольце \mathbb{Z}_{38} найдите элемент порядка 9.
- 5. Для функции $f = (0110\ 1000\ 1110\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{16}{51}$ в кольце \mathbb{Z}_{55} .
- **2.** В кольце \mathbb{Z}_{37} найдите элемент порядка 12.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{85}
- **4.** Найдите $n \in [198, 204]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001\,0111)$

 $f_2 = (1100\,0101)$

 $f_3 = (1001\ 1000)$

 $f_4 = (1011\ 1111)$

 $f_5 = (0010\ 1011)$

 $f_6 = (1010\,0111)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{79} .
- **2.** Сколько существует целочисленных решений (x, y) уравнения 65x + 25y = 5 таких, что $y \in [-86, -19]$?
- **3.** В кольце \mathbb{Z}_{38} найдите элемент порядка 3.
- **4.** В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 7, P(2) = 6, P(4) = 9.$$

- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .
- $f_1 = (1001\ 1111)$
- $f_2 = (1011\ 1111)$
- $f_3 = (1000 \ 1100)$
- $f_4 = (1001\,0010)$
- $f_5 = (1100\,0110)$
- $f_6 = (1111\,0011)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{68}
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{247} .
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не L?
- **4.** В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 14, P(13) = 3, P(16) = 9.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\ 1101)$

 $f_2 = (0000 \ 1101)$

 $f_3 = (0110\,0110)$

 $f_4 = (1010\ 1001)$

 $f_5 = (0111\ 1001)$

 $f_6 = (0001\,0111)$

- 1. Сколько существует целочисленных решений (x, y) уравнения -56x + 116y = 4 таких, что $y \in [23, 72]$?
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{256}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(194, -9), B(-181, 361).
- **5.** Для функции $f = (0010\ 0000\ 1000\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{15}{7}$ в кольце \mathbb{Z}_{45} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-253,211), B(-387,-84).
- 3. Найдите 38^{-1} в кольце \mathbb{Z}_{65}
- **4.** Найдите $n \in [239, 245]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f=(1001\ 1010\ 1101\ 1111)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{120}
- **2.** Сколько существует целочисленных решений (x, y) уравнения -10x + 24y = 2 таких, что $y \in [-78, -29]$?
- 3. Найдите $n \in [145, 150]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_7$?
- **5.** Для функции $f = (0010\ 0101\ 0101\ 1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(6) = 2, P(7) = 6, P(9) = 9.$$

- 2. Решите систему сравнений $\begin{cases} x \equiv 30 \pmod{36}, \\ x \equiv 22 \pmod{55} \end{cases}$
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{212}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0110\,0110)$$

$$f_2 = (1110\,0011)$$

$$f_3 = (1000\,0101)$$

$$f_4 = (0110\,0110)$$

$$f_5 = (1010\ 1010)$$

$$f_6 = (0000 \ 1100)$$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{122} .
- 2. Решите систему сравнений $\begin{cases} x \equiv 15 \pmod{48}, \\ x \equiv 37 \pmod{41} \end{cases}$
- 3. Найдите порядок элемента 3 в кольце \mathbb{Z}_{59}
- **4.** Вычислите $\frac{18}{37}$ в кольце \mathbb{Z}_{79} .
- **5.** Для функции $f = (0101\ 0100\ 0011\ 0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{122}
- 2. Найдите 44^{-1} в кольце \mathbb{Z}_{57}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1504} соответствует пара (23,26) кольца $\mathbb{Z}_{32} \times \mathbb{Z}_{47}$
- **4.** Сколько существует целочисленных решений (x, y) уравнения -36x + 15y = 3 таких, что $y \in [-107, -70]$?
- **5.** Для функции $f = (0111\ 1110\ 1000\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Определите, какому элементу кольца \mathbb{Z}_{1908} соответствует пара (42,14) кольца $\mathbb{Z}_{53} \times \mathbb{Z}_{36}$
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{105} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{75}
- **4.** Найдите 73^{-1} в кольце \mathbb{Z}_{78}
- 5. Для функции $f=(0101\,0111\,1000\,0001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 41 \pmod{51}, \\ x \equiv 17 \pmod{32} \end{cases}$
- **2.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 3. Определите наибольший порядок элемента в кольце \mathbb{Z}_{52} .
- **4.** Найдите 63^{-1} в кольце \mathbb{Z}_{68}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1100\,0001)$$

$$f_2 = (0010\ 1001)$$

$$f_3 = (1010\ 1111)$$

$$f_4 = (0011\,0111)$$

$$f_5 = (0001\,0001)$$

$$f_6 = (0000 \ 1011)$$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{111}
- 2. Определите, какому элементу кольца \mathbb{Z}_{2397} соответствует пара (24,13) кольца $\mathbb{Z}_{51} \times \mathbb{Z}_{47}$
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{298}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(293,495), B(248,6).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000\,0001)$

 $f_2 = (1101 \ 1110)$

 $f_3 = (0100\,0111)$

 $f_4 = (0111\,0010)$

 $f_5 = (1001 \ 1100)$

 $f_6 = (1100\ 1000)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{77}
- **2.** Найдите $n \in [249, 254]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите 55^{-1} в кольце \mathbb{Z}_{79}
- **4.** Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_5$?
- **5.** Для функции $f = (1101\ 0001\ 0111\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(455, -115), B(-413, -351).
- **2.** Найдите 23^{-1} в кольце \mathbb{Z}_{42}
- 3. Найдите $n \in [127, 130]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Сколько существует целочисленных решений (x, y) уравнения -52x + 64y = 4 таких, что $y \in [-67, -16]$?
- **5.** Для функции $f = (0001\ 0011\ 0101\ 1010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(420,152), B(-91,1).
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классам L и T_1 ?
- **3.** Вычислите $\frac{26}{33}$ в кольце \mathbb{Z}_{80} .
- **4.** В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 0, P(2) = 6, P(4) = 0.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0001\,0100)$

 $f_2 = (1100\ 1011)$

 $f_3 = (0111\ 1100)$

 $f_4 = (1011\ 1011)$

 $f_5 = (1110\,0110)$

 $f_6 = (1010\,0000)$

- **1.** Вычислите $\frac{12}{7}$ в кольце \mathbb{Z}_{58} .
- 2. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- **3.** Сколько существует целочисленных решений (x, y) уравнения 40x + 54y = 2 таких, что $y \in [-116, -72]$?
- **4.** Сколько существует монотонных булевых функций от трех переменных таких, что f(1,0,1) = f(0,1,0)?
- **5.** Для функции $f = (1010\ 1000\ 0101\ 0000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -38x + 48y = 2 таких, что $y \in [-49, -7]$?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(236,206), B(-444,415).
- **3.** В кольце \mathbb{Z}_{37} найдите элемент порядка 2.
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1000 \ 1110)$

 $f_2 = (0001\ 1011)$

 $f_3 = (0100\,0101)$

 $f_4 = (1011\,0110)$

 $f_5 = (0100\,0000)$

 $f_6 = (0101\,0010)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-279, -368), B(249, -439).
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{63}
- **3.** В кольце \mathbb{Z}_{28} найдите элемент порядка 3.
- **4.** Найдите $n \in [83, 86]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f=(1111\ 1001\ 1100\ 1100)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(351,236), B(232,428).
- 2. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 6, P(5) = 6, P(6) = 0.$$

- 3. Сколько существует целочисленных решений (x, y) уравнения -44x + 10y = 2 таких, что $y \in [-2, 55]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{233} .
- **5.** Для функции $f = (1110\ 0001\ 0011\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{13} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 11, P(6) = 5, P(7) = 12.$$

- **2.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 3. Найдите 37^{-1} в кольце \mathbb{Z}_{44}
- **4.** Найдите $n \in [173, 178]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f=(1001\ 1111\ 1110\ 1110)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **2.** Найдите $n \in [167, 170]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите порядок элемента 3 в кольце \mathbb{Z}_{70}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(149,156), B(-26,363).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1001\,0110)$

 $f_2 = (0011\,1100)$

 $f_3 = (1001\,0100)$

 $f_4 = (1010 \ 1100)$

 $f_5 = (1101\ 1111)$

 $f_6 = (1000\,0010)$

- **1.** Найдите $n \in [225, 231]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** В кольце \mathbb{Z}_{29} найдите элемент порядка 2.
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{85}
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1100)$

 $f_2 = (1001\,0110)$

 $f_3 = (0011\,0101)$

 $f_4 = (1111\ 1011)$

 $f_5 = (0011\,1100)$

 $f_6 = (0011\,1111)$

- **1.** Вычислите $\frac{68}{44}$ в кольце \mathbb{Z}_{73} .
- 2. Решите систему сравнений $\begin{cases} x \equiv 37 \pmod{54}, \\ x \equiv 2 \pmod{55} \end{cases}$
- 3. Найдите $n \in [185, 188]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 4. Найдите порядок элемента 4 в кольце \mathbb{Z}_{45}
- **5.** Для функции $f = (1010\ 0010\ 1101\ 0001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_4$?
- 2. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 0, P(3) = 2, P(4) = 1.$$

- **3.** Сколько существует булевых функций от 4 переменных, принадлежащих классам S и T_0 , но не принадлежащих T_1 ?
- **4.** Найдите порядок элемента 3 в кольце \mathbb{Z}_{62}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0101\,0011)$$

$$f_2 = (1101\ 1010)$$

$$f_3 = (1111\ 1010)$$

$$f_4 = (0010\,0001)$$

$$f_5 = (1000\ 1010)$$

$$f_6 = (0100\,0101)$$

- **1.** Сколько существует булевых функций от 4 переменных, принадлежащих классам L, T_0 и T_1 ?
- **2.** Найдите 59^{-1} в кольце \mathbb{Z}_{70}
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{110}
- 4. Решите систему сравнений $\begin{cases} x \equiv 24 \pmod{55}, \\ x \equiv 28 \pmod{37} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1101\ 1011)$$

$$f_2 = (0101\ 1111)$$

$$f_3 = (0100\ 1011)$$

$$f_4 = (1100\,0001)$$

$$f_5 = (1100\,0011)$$

$$f_6 = (0010\,0110)$$

- **1.** Найдите 42^{-1} в кольце \mathbb{Z}_{61}
- 2. Определите, какому элементу кольца \mathbb{Z}_{2805} соответствует пара (17,31) кольца $\mathbb{Z}_{55} \times \mathbb{Z}_{51}$
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{191} .
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{242}
- **5.** Для функции $f = (0011\ 0100\ 1010\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 41 \pmod{47}, \\ x \equiv 27 \pmod{46} \end{cases}$
- **2.** Вычислите $\frac{27}{43}$ в кольце \mathbb{Z}_{48} .
- 3. Пусть $f:A\to B$. Дайте определения: a) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу T_0 и не принадлежащий классу T_1 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1001)$

 $f_2 = (1111\ 1011)$

 $f_3 = (0000\,0110)$

 $f_4 = (1101\,0010)$

 $f_5 = (0110\ 1001)$

 $f_6 = (1101\ 1100)$

- **1.** Найдите $n \in [75, 80]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Сколько существует монотонных булевых функций от трех переменных таких, что f(0,1,1) = f(0,0,1)?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{119}
- **4.** Сколько существует целочисленных решений (x, y) уравнения 19x + 15y = 1 таких, что $y \in [-30, 18]$?
- 5. Для функции $f=(1111\,0100\,0100\,1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{170} .
- **2.** В кольце \mathbb{Z}_{30} найдите элемент порядка 4.
- 3. Сколько существует целочисленных решений (x, y) уравнения 5x + 21y = 1 таких, что $y \in [36, 77]$?
- 4. Решите систему сравнений $\begin{cases} x \equiv 15 \pmod{41}, \\ x \equiv 37 \pmod{38} \end{cases}$
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0010\,0000)$$

$$f_2 = (1001\ 1101)$$

$$f_3 = (0111\ 1010)$$

$$f_4 = (1011\ 1000)$$

$$f_5 = (0101\ 1001)$$

$$f_6 = (0010\,0011)$$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. Найдите порядок элемента 13 в кольце \mathbb{Z}_{82}
- 3. Найдите 15^{-1} в кольце \mathbb{Z}_{62}
- 4. Решите систему сравнений $\begin{cases} x \equiv 36 \pmod{47}, \\ x \equiv 38 \pmod{42} \end{cases}$
- **5.** Для функции $f = (1010\ 0010\ 1110\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{255} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(231, -93), B(266, -427).
- 3. Сколько существует булевых функций от 3 переменных, принадлежащих классам T_0 и T_1 , но не S?
- 4. Решите систему сравнений $\begin{cases} x \equiv 29 \pmod{39}, \\ x \equiv 46 \pmod{53} \end{cases}$
- **5.** Для функции $f = (0000\ 1010\ 0011\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует булевых функций от 3 переменных, принадлежащих классам L, T_0 и T_1 ?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(63, -256), B(-205, -424).
- 3. Вычислите $\frac{38}{47}$ в кольце \mathbb{Z}_{69} .
- **4.** Найдите $n \in [111, 115]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f = (0011\ 0111\ 1110\ 0011)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(97, -39), B(466, 232).
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{65}
- 3. Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **4.** Найдите $n \in [81, 87]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\,0101)$

 $f_2 = (0101\,0110)$

 $f_3 = (1010\,0000)$

 $f_4 = (1010 \ 1100)$

 $f_5 = (0111\ 1011)$

 $f_6 = (1011\ 1001)$

- 1. Определите, какому элементу кольца \mathbb{Z}_{1395} соответствует пара (22,9) кольца $\mathbb{Z}_{45} \times \mathbb{Z}_{31}$
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(345, -170), B(197, 113).
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{106}
- **4.** Вычислите $\frac{25}{14}$ в кольце \mathbb{Z}_{43} .
- 5. Для функции $f=(1101\,0110\,1001\,1101)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите порядок элемента 15 в кольце \mathbb{Z}_{79}
- **2.** В кольце \mathbb{Z}_{30} найдите элемент порядка 2.
- **3.** Найдите $n \in [221, 225]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-293, -150), B(-264, -425).
- 5. Для функции $f=(0111\ 0001\ 1111\ 0111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(490, -411), B(109, 251).
- **2.** Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **3.** Найдите порядок элемента 9 в кольце \mathbb{Z}_{68}
- **4.** Найдите 11^{-1} в кольце \mathbb{Z}_{63}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\,0110)$

 $f_2 = (1111\ 1001)$

 $f_3 = (0111\,0010)$

 $f_4 = (0101\ 1001)$

 $f_5 = (0010\ 1010)$

 $f_6 = (0101\,1111)$

- **1.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{58}
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{211}
- 3. Вычислите $\frac{2}{47}$ в кольце \mathbb{Z}_{60} .
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** Для функции $f = (1101\ 1001\ 0101\ 1001)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует булевых функций от 3 переменных, не принадлежащих классам T_0 , и T_1 и S?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(89,404), B(365,-434).
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 7, P(7) = 14, P(8) = 10.$$

- 4. Найдите 13^{-1} в кольце \mathbb{Z}_{58}
- **5.** Для функции $f=(1100\,0001\,1101\,1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{33} найдите элемент порядка 5.
- 2. Сколько существует целочисленных решений (x,y) уравнения
- -87x + 48y = 3 таких, что $y \in [-61, -4]$?
- 3. Найдите $n \in [103, 109]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 7, P(7) = 0, P(10) = 10.$$

- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .
- $f_1 = (1110\,0101)$
- $f_2 = (0100\ 1001)$
- $f_3 = (0000\,0001)$
- $f_4 = (1010\ 1111)$
- $f_5 = (0110\,0011)$
- $f_6 = (0001\,1000)$

- **1.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-264, -179), B(-261, -8).
- **2.** Найдите порядок элемента 14 в кольце \mathbb{Z}_{75}
- 3. Сколько существует целочисленных решений (x, y) уравнения 44x + 84y = 4 таких, что $y \in [-92, -54]$?
- **4.** Сколько существует булевых функций от 3 переменных, принадлежащих классу L и не принадлежащих классу T_0 ?
- **5.** Для функции $f = (1111\ 1111\ 0011\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Вычислите $\frac{2}{19}$ в кольце \mathbb{Z}_{52} .
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{181} .
- 3. Сколько существует целочисленных решений (x, y) уравнения 95x + 40y = 5 таких, что $y \in [16, 57]$?
- **4.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{167}
- 5. Для функции $f=(1100\ 0010\ 1110\ 1010)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Найдите все идемпотенты в кольце \mathbb{Z}_{111}
- 2. Вычислите $\frac{7}{15}$ в кольце \mathbb{Z}_{56} .
- 3. Найдите порядок элемента 5 в кольце \mathbb{Z}_{73}
- **4.** Найдите $n \in [196, 200]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 5. Для функции $f=(0111\ 0111\ 1110\ 0100)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(2) = 3, P(4) = 3.$$

- 2. В кольце \mathbb{Z}_{35} найдите элемент порядка 3.
- **3.** Найдите 45^{-1} в кольце \mathbb{Z}_{59}
- 4. Решите систему сравнений $\begin{cases} x \equiv 7 \pmod{39}, \\ x \equiv 12 \pmod{32} \end{cases}$
- 5. Для функции $f=(1011\ 1101\ 0010\ 1011)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{70}
- **3.** В кольце \mathbb{Z}_{38} найдите элемент порядка 2.
- **4.** Найдите 11^{-1} в кольце \mathbb{Z}_{57}
- 5. Для функции $f=(1000\,0111\,0100\,0100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Решите систему сравнений $\begin{cases} x \equiv 36 \pmod{38}, \\ x \equiv 32 \pmod{33} \end{cases}$
- **2.** Найдите все идемпотенты в кольце \mathbb{Z}_{117}
- 3. Сколько существует целочисленных решений (x, y) уравнения -1x + 26y = 1 таких, что $y \in [30, 64]$?
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{222} .
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (1010\ 1000)$$

$$f_2 = (1101\,0111)$$

$$f_3 = (0011\,0101)$$

$$f_4 = (1111\ 1010)$$

$$f_5 = (0000\ 1010)$$

$$f_6 = (0101\,0111)$$

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{100}
- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{95}
- 3. Сколько существует целочисленных решений (x, y) уравнения 65x + 145y = 5 таких, что $y \in [-5, 43]$?
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-360,174), B(-298,-80).
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (1110\ 1010)$

 $f_2 = (1011\ 1011)$

 $f_3 = (0001\,0110)$

 $f_4 = (0001\,0100)$

 $f_5 = (1010\ 1011)$

 $f_6 = (1010\,0000)$

- **1.** Вычислите $\frac{7}{51}$ в кольце \mathbb{Z}_{56} .
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{228} .
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{94}
- **4.** В кольце \mathbb{Z}_{40} найдите элемент порядка 4.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

 $f_1 = (0110\ 1111)$

 $f_2 = (0001\,0010)$

 $f_3 = (0011\,0000)$

 $f_4 = (0000\,0010)$

 $f_5 = (0101\,0000)$

 $f_6 = (1010\ 1001)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения 13x + 2y = 1 таких, что $y \in [-127, -76]$?
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{145}
- 3. Сколько существует инъективных отображений $\mathbb{Z}_6 \to \mathbb{Z}_4$?
- **4.** Найдите $n \in [88, 94]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1011\ 0100\ 1101\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Вычислите $\frac{38}{51}$ в кольце \mathbb{Z}_{58} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-456, -429), B(108, -187).
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{63}
- 4. В кольце \mathbb{Z}_7 найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 0, P(2) = 2, P(6) = 1.$$

5. Для функции $f=(1000\ 1101\ 1011\ 1001)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(1) = 2, P(4) = 8, P(10) = 1.$$

- 2. Найдите все идемпотенты в кольце \mathbb{Z}_{65}
- 3. Сколько существует целочисленных решений (x,y) уравнения 140x+125y=5 таких, что $y\in[-67,-33]$?
- **4.** Найдите $n \in [156, 162]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** Для функции $f = (1011\ 0011\ 0100\ 1000)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- **2.** Найдите $n \in [178, 181]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Вычислите $\frac{9}{48}$ в кольце \mathbb{Z}_{49} .
- 4. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{116}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1101)$

 $f_2 = (0010\,0001)$

 $f_3 = (0010\,0001)$

 $f_4 = (0100\ 1000)$

 $f_5 = (0100\ 1000)$

 $f_6 = (0000\,0011)$

- **1.** Найдите $n \in [214, 219]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** В кольце \mathbb{Z}_{33} найдите элемент порядка 2.
- 3. Сколько существует инъективных отображений $\mathbb{Z}_7 \to \mathbb{Z}_5$?
- 4. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 12, P(10) = 8, P(16) = 1.$$

5. Для функции $f=(1111\ 1000\ 1111\ 1010)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{29}{11}$ в кольце \mathbb{Z}_{52} .
- **2.** Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{117}
- 3. Определите, какому элементу кольца \mathbb{Z}_{1110} соответствует пара (8,22) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{30}$
- 4. Найдите все идемпотенты в кольце \mathbb{Z}_{118}
- 5. Для функции $f=(0010\ 1011\ 0100\ 0000)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Решите систему сравнений $\begin{cases} x \equiv 13 \pmod{58}, \\ x \equiv 9 \pmod{31} \end{cases}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения -24x + 22y = 2 таких, что $y \in [-100, -43]$?
- **3.** В кольце \mathbb{Z}_{39} найдите элемент порядка 6.
- 4. В кольце \mathbb{Z}_{11} найдите многочлен P(x) наименьшей степени такой, что

$$P(3) = 0, P(6) = 3, P(10) = 5.$$

5. Для функции $f=(0110\ 1011\ 1101\ 1111)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

1. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(4) = 13, P(7) = 5, P(14) = 5.$$

- 2. Найдите $n \in [219, 225]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{207}
- 4. Найдите порядок элемента 7 в кольце \mathbb{Z}_{75}
- 5. Для функции $f=(1000\,0111\,1011\,1100)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Сколько существует целочисленных решений (x, y) уравнения -72x + 20y = 4 таких, что $y \in [-12, 23]$?
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-53,192), B(-255,-394).
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 2, P(1) = 0, P(3) = 4.$$

- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1001)$

 $f_2 = (0110\ 1010)$

 $f_3 = (11110110)$

 $f_4 = (0100\ 0101)$

 $f_5 = (1010\ 1111)$

 $f_6 = (0110\,0000)$

- 1. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{64}
- **2.** Найдите $n \in [234, 239]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **3.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-352, -318), B(-228, 362).
- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_4$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0100\,0001)$

 $f_2 = (1110\ 1000)$

 $f_3 = (0100\ 1001)$

 $f_4 = (1011\ 1011)$

 $f_5 = (0111\ 1011)$

 $f_6 = (1110\ 1100)$

- **1.** В кольце \mathbb{Z}_{27} найдите элемент порядка 9.
- **2.** Сколько существует целочисленных решений (x, y) уравнения -104x + 28y = 4 таких, что $y \in [-37, 21]$?
- 3. Определите, какому элементу кольца \mathbb{Z}_{1406} соответствует пара (7,32) кольца $\mathbb{Z}_{37} \times \mathbb{Z}_{38}$
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{252} .
- 5. Для функции $f=(1011\ 0011\ 0000\ 1100)$ найдите Сокр
ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите 17^{-1} в кольце \mathbb{Z}_{66}
- **2.** Сколько существует целочисленных решений (x, y) уравнения 22x + 42y = 2 таких, что $y \in [70, 138]$?
- **3.** Вычислите $\frac{18}{32}$ в кольце \mathbb{Z}_{53} .
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{112}
- 5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \wedge, \lor .

 $f_1 = (1011\,0000)$

 $f_2 = (1100 \ 1100)$

 $f_3 = (0110\ 1011)$

 $f_4 = (11110101)$

 $f_5 = (0011\ 1001)$

 $f_6 = (0001\,1110)$

- **1.** Найдите все идемпотенты в кольце \mathbb{Z}_{119}
- **2.** Сколько существует булевых функций от 3 переменных, принадлежащих классу S и не принадлежащих классу T_0 ?
- 3. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{125}
- **4.** Найдите $n \in [127, 132]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0010\ 1010)$

 $f_2 = (0000\,0001)$

 $f_3 = (0001\ 1011)$

 $f_4 = (0111\ 1001)$

 $f_5 = (0001\ 1010)$

 $f_6 = (111111111)$

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{48} .
- **2.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- 3. Сколько существует целочисленных решений (x, y) уравнения 3x + 36y = 3 таких, что $y \in [-110, -53]$?
- **4.** Сколько существует булевых функций от 4 переменных, принадлежащих классам T_0 и T_1 , но не S?
- **5.** Для функции $f = (0010\ 1010\ 1110\ 0111)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Найдите $n \in [154, 158]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- 2. Сколько существует инъективных отображений $\mathbb{Z}_3 \to \mathbb{Z}_7$?
- **3.** Вычислите $\frac{15}{43}$ в кольце \mathbb{Z}_{57} .
- **4.** Сколько существует целочисленных решений (x, y) уравнения -38x + 42y = 2 таких, что $y \in [-55, 6]$?
- **5.** Для функции $f=(1000\ 1110\ 1101\ 0010)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** В кольце \mathbb{Z}_{29} найдите элемент порядка 2.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{211} .
- **3.** Сколько существует булевых функций от 4 переменных, принадлежащих классу L и не принадлежащих классу T_1 ?
- **4.** В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(2) = 6, P(7) = 9, P(12) = 0.$$

5. В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg , \land , \lor .

 $f_1 = (0000\,0000)$

 $f_2 = (1011\ 1011)$

 $f_3 = (0101\,0000)$

 $f_4 = (0111\ 1101)$

 $f_5 = (1011\,0000)$

 $f_6 = (0001\,1111)$

- **1.** В кольце \mathbb{Z}_{36} найдите элемент порядка 3.
- **2.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{253} .
- **3.** Найдите 34^{-1} в кольце \mathbb{Z}_{53}
- **4.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0000\ 1001)$

 $f_2 = (1011\,1100)$

 $f_3 = (1010\,0101)$

 $f_4 = (0101\,0011)$

 $f_5 = (0100\ 1001)$

 $f_6 = (1101 \ 1101)$

- **1.** Пусть $f: A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **2.** В кольце \mathbb{Z}_{40} найдите элемент порядка 2.
- **3.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{42} .
- **4.** Найдите все идемпотенты в кольце \mathbb{Z}_{100}
- 5. Для функции $f=(0110\,0101\,0100\,0101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ

- **1.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{229} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(266, -385), B(143, 14).
- 3. Найдите $n \in [221, 226]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Найдите порядок элемента 11 в кольце \mathbb{Z}_{42}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

 $f_1 = (0110\ 1001)$

 $f_2 = (1110\ 1011)$

 $f_3 = (11010100)$

 $f_4 = (1111\,0000)$

 $f_5 = (011111101)$

 $f_6 = (0111\ 1101)$

- **1.** Сколько существует целочисленных решений (x, y) уравнения -87x + 48y = 3 таких, что $y \in [-92, -54]$?
- **2.** Найдите 59^{-1} в кольце \mathbb{Z}_{74}
- 3. В кольце \mathbb{Z}_5 найдите многочлен P(x) наименьшей степени такой, что

$$P(0) = 0, P(2) = 0, P(3) = 4.$$

- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(208, -14), B(219, -92).
- **5.** Для функции $f = (1110\ 0011\ 1000\ 0011)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- 1. Сколько существует инъективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_6$?
- 2. Определите наибольший порядок элемента в кольце $\mathbb{Z}_{119}.$
- **3.** Вычислите $\frac{30}{41}$ в кольце \mathbb{Z}_{42} .
- **4.** Найдите порядок элемента 13 в кольце \mathbb{Z}_{74}
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0001\,0111)$$

$$f_2 = (0010\,0110)$$

$$f_3 = (0110\,0110)$$

$$f_4 = (0000\,0111)$$

$$f_5 = (1111\,0001)$$

$$f_6 = (0011\,0000)$$

- 1. Сколько существует булевых функций от 4 переменных, принадлежащих классам $S,\,T_0$ и T_1 ?
- 2. Найдите 24^{-1} в кольце \mathbb{Z}_{41}
- 3. Найдите $n \in [106, 109]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **4.** Определите наибольший порядок элемента в кольце \mathbb{Z}_{90} .
- **5.** Для функции $f = (0101\ 0100\ 1101\ 1101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{12}{11}$ в кольце \mathbb{Z}_{70} .
- **2.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-367, -320), B(137, -498).
- 3. В кольце \mathbb{Z}_{17} найдите многочлен P(x) наименьшей степени такой, что

$$P(5) = 16, P(6) = 16, P(7) = 0.$$

- **4.** Сколько существует сюръективных отображений $\mathbb{Z}_4 \to \mathbb{Z}_4$?
- **5.** В наборе функций $f_1, f_2, \dots f_6$ перечислите все минимальные полные подсистемы (с полным обоснованием). Для одной из этих подсистем выразите константы 0, 1 и функции \neg, \land, \lor .

$$f_1 = (0111\ 1101)$$

$$f_2 = (0011\,0011)$$

$$f_3 = (1110\ 1110)$$

$$f_4 = (0010\ 1011)$$

$$f_5 = (1100\,0110)$$

$$f_6 = (1111\ 1100)$$

- **1.** Найдите $n \in [66, 72]$, при котором в кольце \mathbb{Z}_n наибольшее количество обратимых элементов.
- **2.** Вычислите $\frac{60}{33}$ в кольце \mathbb{Z}_{80} .
- 3. Сколько существует целочисленных решений (x, y) уравнения 27x + 28y = 1 таких, что $y \in [-32, 18]$?
- **4.** В кольце \mathbb{Z}_{26} найдите элемент порядка 2.
- **5.** Для функции $f = (0110\ 0011\ 1001\ 1101)$ найдите Сокр ДНФ, Сокр КНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Вычислите $\frac{28}{41}$ в кольце \mathbb{Z}_{71} .
- 2. Найдите количество нетривиальных идемпотентов в кольце \mathbb{Z}_{79}
- **3.** Пусть $f:A \to B$. Дайте определения: а) f инъективное отображение, б) f сюръективное отображение, в) f биективное отображение.
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(220,334), B(449,285).
- **5.** Для функции $f = (0100\ 1010\ 0100\ 0101)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.

- **1.** Определите, какому элементу кольца \mathbb{Z}_{2090} соответствует пара (5, 10) кольца $\mathbb{Z}_{38} \times \mathbb{Z}_{55}$
- **2.** Сколько существует целочисленных решений (x, y) уравнения -32x + 30y = 2 таких, что $y \in [23, 86]$?
- 3. Найдите все идемпотенты в кольце \mathbb{Z}_{66}
- **4.** Определите количество целых точек, принадлежащих отрезку, заданному своими крайними точками A(-360,5), B(-425,233).
- **5.** Для функции $f = (0110\ 1001\ 0000\ 1001)$ найдите СокрДНФ, СокрКНФ и перечислите все тупиковые ДНФ и КНФ.