Description:

This dataset contains district-wise data on the number of women teachers working in middle schools in Punjab over multiple years. It includes various districts as well as the overall total for Punjab. The data has been cleaned by replacing missing values with 0 and ensuring all numerical values are properly formatted. Several visualization techniques have been applied to analyze trends, distributions, and variations in the dataset.

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]: df = pd.read_csv('District-wise number of women teachers working in middle
df

Out[3]:

	Year/District	2017	2016	2015	2014	2013	2012	2011	2010	2009	
0	Gurdaspur	2076	2155	2084	2148	1571	2175	4722	4926.0	4069.0	 3
1	Pathankot	782	765	761	775	612	745	2507	NaN	NaN	
2	Amritsar	2187	2263	2316	2213	1481	2260	3952	3151.0	3532.0	 5
3	Tarn Taran	1056	1090	946	1016	917	1099	680	1557.0	1474.0	
4	Kapurthala	1063	1148	1049	1097	643	1123	1801	2928.0	1407.0	 1
5	Jalandhar	2010	2110	2119	2069	1301	2155	2807	4210.0	2419.0	 2
6	SBS Nagar	673	724	693	720	524	811	841	926.0	904.0	
7	Hoshiarpur	1984	2108	2048	2104	1488	2160	2227	5900.0	2576.0	 2
8	Rupnagar	804	843	790	835	599	1827	1733	1064.0	1011.0	 1
9	SAS Nagar	1288	1268	1115	1116	413	1409	1538	1660.0	1201.0	
10	Ludhiana	2568	2737	2683	2604	1967	2633	4948	5382.0	4613.0	 3
11	Ferozepur	965	938	788	869	933	771	1844	3188.0	2660.0	 2
12	Fazilka	802	783	775	768	1321	911	786	NaN	NaN	
13	Faridkot	656	668	662	684	550	676	1802	1290.0	1060.0	
14	Sri Muktsar Sahib	831	827	738	771	785	1080	1900	1472.0	1411.0	
15	Moga	983	1109	908	920	730	1000	2003	1772.0	1601.0	 1
16	Bathinda	1171	1103	1071	1090	891	1105	3163	2338.0	2076.0	 1
17	Mansa	660	625	600	622	745	692	1393	1007.0	903.0	
18	Sangrur	1387	1321	1326	1372	1403	862	2146	2346.0	1643.0	 1
19	Barnala	476	450	452	474	425	517	1016	817.0	529.0	
20	Patiala	1875	1788	1784	1820	1421	775	3441	3099.0	2129.0	 2
21	Fatehgarh Sahib	760	762	747	765	548	782	1307	1126.0	775.0	
22	Punjab	27057	27585	26455	26852	21268	27568	48557	50159.0	37993.0	 33

23 rows × 30 columns

→

In [4]: df.replace({"Year/District": {"Punjab": "Total"}}, inplace=True)
df

Out[4]:

	Year/District	2017	2016	2015	2014	2013	2012	2011	2010	2009	
0	Gurdaspur	2076	2155	2084	2148	1571	2175	4722	4926.0	4069.0	 3
1	Pathankot	782	765	761	775	612	745	2507	NaN	NaN	
2	Amritsar	2187	2263	2316	2213	1481	2260	3952	3151.0	3532.0	 5
3	Tarn Taran	1056	1090	946	1016	917	1099	680	1557.0	1474.0	
4	Kapurthala	1063	1148	1049	1097	643	1123	1801	2928.0	1407.0	 1
5	Jalandhar	2010	2110	2119	2069	1301	2155	2807	4210.0	2419.0	 2
6	SBS Nagar	673	724	693	720	524	811	841	926.0	904.0	
7	Hoshiarpur	1984	2108	2048	2104	1488	2160	2227	5900.0	2576.0	 2
8	Rupnagar	804	843	790	835	599	1827	1733	1064.0	1011.0	 1
9	SAS Nagar	1288	1268	1115	1116	413	1409	1538	1660.0	1201.0	
10	Ludhiana	2568	2737	2683	2604	1967	2633	4948	5382.0	4613.0	 3
11	Ferozepur	965	938	788	869	933	771	1844	3188.0	2660.0	 2
12	Fazilka	802	783	775	768	1321	911	786	NaN	NaN	
13	Faridkot	656	668	662	684	550	676	1802	1290.0	1060.0	
14	Sri Muktsar Sahib	831	827	738	771	785	1080	1900	1472.0	1411.0	
15	Moga	983	1109	908	920	730	1000	2003	1772.0	1601.0	 1
16	Bathinda	1171	1103	1071	1090	891	1105	3163	2338.0	2076.0	 1
17	Mansa	660	625	600	622	745	692	1393	1007.0	903.0	
18	Sangrur	1387	1321	1326	1372	1403	862	2146	2346.0	1643.0	 1
19	Barnala	476	450	452	474	425	517	1016	817.0	529.0	
20	Patiala	1875	1788	1784	1820	1421	775	3441	3099.0	2129.0	 2
21	Fatehgarh Sahib	760	762	747	765	548	782	1307	1126.0	775.0	
22	Total	27057	27585	26455	26852	21268	27568	48557	50159.0	37993.0	 33

23 rows × 30 columns

```
In [5]: df.fillna(0, inplace=True)
In [6]: for col in df.columns[1:]:
    df[col] = pd.to_numeric(df[col], errors='coerce').round(0).astype(int)
```

In [7]: df

Out[7]:

	Year/District	2017	2016	2015	2014	2013	2012	2011	2010	2009	 1998
0	Gurdaspur	2076	2155	2084	2148	1571	2175	4722	4926	4069	 3408
1	Pathankot	782	765	761	775	612	745	2507	0	0	 0
2	Amritsar	2187	2263	2316	2213	1481	2260	3952	3151	3532	 5190
3	Tarn Taran	1056	1090	946	1016	917	1099	680	1557	1474	 0
4	Kapurthala	1063	1148	1049	1097	643	1123	1801	2928	1407	 1070
5	Jalandhar	2010	2110	2119	2069	1301	2155	2807	4210	2419	 2726
6	SBS Nagar	673	724	693	720	524	811	841	926	904	 565
7	Hoshiarpur	1984	2108	2048	2104	1488	2160	2227	5900	2576	 2480
8	Rupnagar	804	843	790	835	599	1827	1733	1064	1011	 1680
9	SAS Nagar	1288	1268	1115	1116	413	1409	1538	1660	1201	 0
10	Ludhiana	2568	2737	2683	2604	1967	2633	4948	5382	4613	 3941
11	Ferozepur	965	938	788	869	933	771	1844	3188	2660	 2419
12	Fazilka	802	783	775	768	1321	911	786	0	0	 0
13	Faridkot	656	668	662	684	550	676	1802	1290	1060	 824
14	Sri Muktsar Sahib	831	827	738	771	785	1080	1900	1472	1411	 895
15	Moga	983	1109	908	920	730	1000	2003	1772	1601	 1143
16	Bathinda	1171	1103	1071	1090	891	1105	3163	2338	2076	 1728
17	Mansa	660	625	600	622	745	692	1393	1007	903	 564
18	Sangrur	1387	1321	1326	1372	1403	862	2146	2346	1643	 1818
19	Barnala	476	450	452	474	425	517	1016	817	529	 0
20	Patiala	1875	1788	1784	1820	1421	775	3441	3099	2129	 2804
21	Fatehgarh Sahib	760	762	747	765	548	782	1307	1126	775	 516
22	Total	27057	27585	26455	26852	21268	27568	48557	50159	37993	 33771

23 rows × 30 columns

◆

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23 entries, 0 to 22
Data columns (total 30 columns):

Data	COTUMNIS (COCAT	30 COTUMINS).	
#	Column	Non-Null Count	Dtype
0	Year/District	23 non-null	object
1	2017	23 non-null	int32
2	2016	23 non-null	int32
3	2015	23 non-null	int32
4	2014	23 non-null	int32
5	2013	23 non-null	int32
6	2012	23 non-null	int32
7	2011	23 non-null	int32
8	2010	23 non-null	int32
9	2009	23 non-null	int32
10	2008	23 non-null	int32
11	2007	23 non-null	int32
12	2006	23 non-null	int32
13	2005	23 non-null	int32
14	2004	23 non-null	int32
15	2003	23 non-null	int32
16	2002	23 non-null	int32
17	2001	23 non-null	int32
18	2000	23 non-null	int32
19	1999	23 non-null	int32
20	1998	23 non-null	int32
21	1997	23 non-null	int32
22	1996	23 non-null	int32
23	1995	23 non-null	int32
24	1994	23 non-null	int32
25	1993	23 non-null	int32
26	1992	23 non-null	int32
27	1991	23 non-null	int32
28	1990	23 non-null	int32
29	1989	23 non-null	int32

dtypes: int32(29), object(1)

memory usage: 2.9+ KB

```
In [9]: plt.figure(figsize=(5, 5))
    sns.boxplot(data=df.set_index("Year/District").T, palette="coolwarm")
    plt.xticks(rotation=90)
    plt.title("Boxplot of Case Distribution Over the Years")
    plt.show()
```


This creates a boxplot to visualize the distribution of cases over the years

```
In [10]: plt.figure(figsize=(7, 7))
    plt.plot(df.columns[1:], df[df['Year/District'] == 'Total'].values.flatten(
    plt.title("Total Cases Over the Years")
    plt.xlabel("Year")
    plt.ylabel("Cases")
    plt.grid(True)
    plt.show()
```


This plots the total cases over the years using a line graph with markers, showing trends in case counts over time.

```
In [11]: plt.figure(figsize=(5, 5))
    for district in df["Year/District"]:
        plt.scatter(df.columns[1:], df[df["Year/District"] == district].values.
    plt.title("Scatter Plot of Cases Over Years")
    plt.xlabel("Year")
    plt.ylabel("Cases")
    plt.legend(loc='upper left', bbox_to_anchor=(1,1))
    plt.show()
```


It generates a scatter plot showing the distribution of cases over the years for each district, with different markers representing different districts.

```
In [12]: plt.figure(figsize=(5, 5))
    sns.heatmap(df.set_index("Year/District").T, cmap='coolwarm', annot=False,
    plt.title("Heatmap of Cases Over the Years")
    plt.show()
```


It creates a heatmap to visualize the distribution and intensity of cases over the years across different districts using a color gradient.

```
In [13]: highest_year = df.set_index("Year/District").sum().idxmax()
lowest_year = df.set_index("Year/District").sum().idxmin()

plt.figure(figsize=(5, 5))
plt.bar([highest_year, lowest_year], [df.set_index("Year/District")[highest
plt.title("Year with Highest and Lowest Cases")
plt.xlabel("Year")
plt.ylabel("Total Cases")
plt.show()
```


It identifies the years with the highest and lowest total cases and visualizes them using a bar chart with red and green bars.

```
In [14]: plt.figure(figsize=(5, 5))
    sns.kdeplot(df.set_index("Year/District").values.flatten(), fill=True, colo
    plt.title("KDE Plot of Case Distribution")
    plt.xlabel("Cases")
    plt.show()
```


It generates a Kernel Density Estimate (KDE) plot to visualize the distribution of case values across all years and districts, highlighting density variations smoothly.

```
In [15]: plt.figure(figsize=(5, 5))
   plt.hist(df.set_index("Year/District").values.flatten(), bins=20, color='sk
   plt.title("Distribution of Cases")
   plt.xlabel("Cases")
   plt.ylabel("Frequency")
   plt.show()
```


This creates a histogram to visualize the distribution of case counts, showing how frequently different case values occur.

It creates an area plot showing the total cases over the years, highlighting trends with a shaded region.

```
In [18]: plt.figure(figsize=(7, 7))
    year = df.columns[-1]
    pie_data = df.set_index("Year/District")[year]
    pie_data = pie_data[pie_data > 0]
    colors = plt.get_cmap("coolwarm")(np.linspace(0.2, 0.8, len(pie_data)))

plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%', startangle=90, plt.title(f"Case Distribution in {year}")
    plt.show()
```

Case Distribution in 1989

It generates a pie chart showing the distribution of cases across districts for the most recent year in the dataset, using a "coolwarm" color map.

```
In [19]: plt.figure(figsize=(6, 6))
    df_sorted = df.sort_values(by=df.columns[-1], ascending=False)
    sns.barplot(x=df_sorted["Year/District"].head(10), y=df_sorted[df.columns[-
    plt.xticks(rotation=90)
    plt.title("Top 10 Districts with Highest Cases")
    plt.show()
```


It creates a bar plot of the top 10 districts with the highest cases in the most recent year, sorting them in descending order.

```
plt.figure(figsize=(12, 6))
In [20]:
          districts = df["Year/District"].sample(5, random_state=42) # Random 5 dist
          for district in districts:
              plt.plot(df.columns[1:], df[df["Year/District"] == district].values.fla
          plt.title("Random Districts Case Trends")
          plt.xlabel("Year")
          plt.ylabel("Cases")
          plt.legend()
          plt.show()
                                            Random Districts Case Trends
             5000
                                                                                     Moga
                                                                                     SAS Nagar
                                                                                     Gurdaspur
                                                                                     Rupnagar
             4000
                                                                                     Mansa
             3000
```


2000

1000

0

```
In [21]:
    years = [df.columns[-1], df.columns[len(df.columns)//2]]
    titles = ["Latest Year", "Midpoint Year"]

    plt.figure(figsize=(16, 8))
    for i, (year, title) in enumerate(zip(years, titles), start=1):
        plt.subplot(1, 2, i)
        pie_data = df.set_index("Year/District")[year]
        pie_data = pie_data[pie_data > 0]
        colors = plt.get_cmap("coolwarm")(np.linspace(0.2, 0.8, len(pie_data)))
        plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%', startangle=
        plt.title(f"Case Distribution in {title}")
    plt.show()
```


It generates side-by-side pie charts showing the distribution of cases for the latest and midpoint years.

```
In [22]: plt.figure(figsize=(12, 6))
    sns.stripplot(data=df.set_index("Year/District").T, jitter=True, alpha=0.6)
    plt.title("Strip Plot of Case Distribution")
    plt.show()
```


Gurda Bapthran kontritsann Thána purthadan dhibbar Neigainia Roppn ag dar Natignainia Beaczep Razilk Beridklocktsar Shalighadh in dhian sean greinn a leibhiad lagarh Stàthad Year/District It creates a strip plot to visualize the distribution of case counts over the years, adding jitter for better visibility of overlapping points.

```
In [23]:
         plt.figure(figsize=(14, 7))
          selected_districts = df["Year/District"].sample(5, random_state=42) # Rand
          for district in selected_districts:
              plt.plot(df.columns[1:], df[df["Year/District"] == district].values.fla
          plt.title("Trends of Selected Districts Over the Years")
          plt.xlabel("Year")
          plt.ylabel("Cases")
          plt.legend()
          plt.grid(True)
          plt.show()
                                          Trends of Selected Districts Over the Years
                                                                                       Moga
                                                                                     SAS Nagar

    Gurdaspur

                                                                                     Rupnagar
                                                                                      Mansa
            2000
```

It randomly selects 5 districts and plots their case trends over the years using a line plot.

2017201620152014201320122011201020092008200720062005200420032002200120001999199819971996199519941993199119901989

```
In [24]: plt.figure(figsize=(14, 7))
    selected_districts = df["Year/District"].sample(5, random_state=42)
    for district in selected_districts:
        plt.scatter(df.columns[1:], df[df["Year/District"] == district].values.
    plt.title("Scatter Plot of Cases Over Years")
    plt.xlabel("Year")
    plt.ylabel("Cases")
    plt.legend()
    plt.grid(True)
    plt.show()
```


It generates a scatter plot of cases over the years for five randomly selected districts, highlighting trends in case distribution.

```
In [25]: highest_year = df.set_index("Year/District").sum().idxmax()
lowest_year = df.set_index("Year/District").sum().idxmin()

plt.figure(figsize=(12, 6))
plt.plot(df["Year/District"], df[highest_year], marker='o', linestyle='--',
plt.plot(df["Year/District"], df[lowest_year], marker='s', linestyle='--',
plt.xticks(rotation=90)
plt.title("District-wise Case Trends for Highest & Lowest Year")
plt.xlabel("District")
plt.ylabel("Cases")
plt.legend()
plt.show()
```



```
In [26]: plt.figure(figsize=(12, 6))
    average_cases = df.set_index("Year/District").drop(index="Total").mean()

    plt.plot(average_cases.index, average_cases.values, marker='o', linestyle='
    plt.title("Average Cases Per District Over the Years")
    plt.xlabel("Year")
    plt.ylabel("Average Cases")
    plt.legend()
    plt.grid(True)
    plt.show()
```


It plots the average number of cases per district over the years, excluding the "Total" row, using a line chart with markers for better visualization.

```
In [27]: plt.figure(figsize=(12, 6))
    districts = df["Year/District"].sample(2, random_state=10)
    for district in districts:
        plt.plot(df.columns[1:], df[df["Year/District"] == district].values.fla
    plt.title("Comparison Between Two Random Districts")
    plt.xlabel("Year")
    plt.ylabel("Cases")
    plt.legend()
    plt.grid(True)
    plt.show()
```


This randomly selects two districts and plots their case trends over the years using a dashed line with square markers for comparison.

Observations:

The dataset provides insights into the number of women teachers working in middle schools across different districts of Punjab over multiple years. Data cleaning was performed by replacing missing values with 0 and converting all numerical columns into integers for uniformity. Analyzing the trends over time, it was observed that the total number of women teachers fluctuated, with certain years experiencing a peak while others showed a decline. Some districts consistently had a higher number of teachers, whereas others exhibited fluctuations rather than a steady increase or decrease. Visualizations provided deeper insights into these trends. The boxplot highlighted variations in teacher numbers across years, while the line plot showed an overall trend of growth or decline in total teachers. Scatter plots depicted yearly distributionsacross different districts, and heatmaps revealed density variations in teacher numbers over time. The bar chart identified years with the highest and lowest total teachers, while the histogram and KDE plot provided an overview of the distribution, indicating common and rare occurrences. The violin plot and strip plot illustrated the variability and spread of data, whereas pie charts displayed district-wise contributions for the latest and midpoint years.

In []:	