

Predictive Fleet Swap AI

Hackathon 24H — Technischools × LSP Group

Opis problemu:

Firma LSP GROUP jest czołowym partnerem logistycznym dla takich firm jak DPD, InPost, UPS, GLS, Carrefour i wielu innych.

Flota przedsiębiorstwa obejmuje ponad 200 ciągników siodłowych .

Każdy pojazd posiada roczny limit przebiegu wynoszący **150 000 km**, wynikający z warunków umowy serwisowej. Przekroczenie tego limitu wiąże się z dodatkowym kosztem w wysokości **x PLN/km**.

Ciągniki realizują **stałe trasy** o długości od **50 do 1 050 km dziennie**, pracując **5–7 dni w tygodniu**. Dodatkowo występują przejazdy dojazdowe, trasy weekendowe oraz zlecenia dodatkowe. Należy również uwzględnić okresy **przeglądów i napraw**, podczas których pojazdy są czasowo wyłączone z eksploatacji.

Problem:

Każdy pojazd jest odbierany w innym terminie, a po **12 miesiącach od odbioru** jego przebieg powinien maksymalnie zbliżać się do limitu **150 000 km** – bez przekroczenia (lub z kontrolowanym przekroczeniem przy minimalnym koszcie).

W tym celu konieczne jest **rotowanie pojazdów między trasami**, przy ograniczeniu do **maksymalnie 1 zamiany na pojazd w ciągu 3 miesięcy**

Misja:

W 24 godziny zbudujcie prototyp inteligentnego planera floty ciężarowej, który potrafi:

planować zamiany pojazdów, tak aby utrzymać maksymalne limity km rocznie.

A przy tym;

- przewidywać przebiegi na podstawie tras i dotychczasowych przebiegów,
- wyznacza optymalny plan przypisań i zamian pojazdów,
- monitoruje stan licznika, serwisy i limity leasingowe,
- minimalizuje dodatkowe koszty przy 100% realizacji tras.

Dlaczego warto?

- Realny case z branży transportowej. Wasze decyzje przełożą się na konkretne koszty w
 € / PLN (nadprzebieg, serwis, przestój, zamiana).
- End-to-end w 24h. Przejdziecie cały cykl: prognoza → plan → dashboard (Gantt/KPI/alerty) → demo.
- Pełna swoboda metody. Możecie użyć prostych reguł, arkuszy, algorytmów, ML lub AI byle działało i było zrozumiale.
- Nagroda główna:
 - o **2000 z**ł dla wybranego zespółu który przygotuje najlepszy projekt.
 - Nagrody indywidualne
 - Płatne staże w firmie LSP GROUP

1) Co zrobicie w 24h — skrót

- 1. Wytrenowanie modelu i analiza danych treningowych (zbiór 12 miesięcy) przetestowanie systemu na zbiorze testowym (1 msc. danych)
- 2. Wizualizacja predykcji modelu oraz stworzony system z informacjami o aktualnym położeniu pojazdów i ich przebiegu, powiadomieniami o zbliżających się rotacjach, serwisach, historia zmian.
- 3. Dodatkowy koszt policzony i pokazany: rotacja pojazdu, przekroczone kilometry.
- 4. Czytelny system gotowy do wdrożenia

2) Dane wejściowe

Dostarczymy **zestaw plików CSV** odzwierciedlających operacje flotowe (pojazdy, trasy, odcinki tras, lokalizacje). **Nie narzucamy schematu tabel.**

Schematy plików z danymi

Vehicles.csv

Column	Туре
ld	INT
registration_number	NVARCHAR(32)
brand	NVARCHAR(100)
service_interval_km	INT
Leasing_start_km	INT
leasing_limit_km	INT
leasing_start_date	DATETIME
leasing_end_date	DATETIME
current_odometer_km	INT
Current_location_id	ID

Locations.csv

Column	Туре
id	INT
name	NVARCHAR(64)
lat	DECIMAL(9,6)
long	DECIMAL(9,6)
is_hub	BIT

Locations_relations.csv

Column	Туре
id	INT
id_loc_1	INT
id_loc_2	INT
dist	DECIMAL(10,3)
time	DECIMAL(10,2)

Routes.csv

Column	Туре
id	INT
	IDENTITY(1,1)
start_datetime	DATETIME2(0)
end_datetime	DATETIME2(0)

Segments.csv

Column	Туре
id	INT
route_id	INT
seq	INT
start_loc_id	INT
end_loc_id	INT
start_datetime	DATETIME
end_datetime	DATETIME
distance_travelled_km	INT
relation_id	INT

3) Ograniczenia i reguły (constraints)

3.1 Twarde (feasibility)

- 1. **Trasy stałe** czas/przebieg narzucony przez klienta.
- 2. **Brak podwójnych przydziałów** jeden pojazd ≠ dwie trasy równocześnie.
- 3. Limit częstotliwości zamian max 1 zamiana/pojazd/3 miesiące.
- 4. Interwały serwisów i limity kontraktowe
- 5. **Limity roczne** zgodnie z CSV **per pojazd**; przekroczenia dozwolone z kosztem (nadprzebieg)
- 6. Serwis musi zostać wykonany po trasie która przekroczy limit kilometrów i "blokuje" pojazd na 48h
- 7. Pojazdy na początek nie mają przypisanej początkowej lokalizacji

3.3 Koszty (dodatkowe parametry)

- Zamiana lokalizacji pojazdu: 1000 PLN + 1 PLN/km + 150 PLN/h
- Nadprzebieg: 0.92 PLN/km.

3.4 Interwally i limity

Marka	Rodzaj	Interwał przeglądowy (km)	Limit przebiegu kontraktowego (km)
DAF	Ciągnik siodłowy	120 000	450 000
Scania	Ciągnik siodłowy	120 000	750 000
Volvo	Ciągnik siodłowy	110 000	450 000

Roczne limity: w drugim zbiorze CSV limity roczne są określone **per pojazd** (np. 150 000 lub 163 200 km/rok). Planner musi respektować **oba poziomy**: limit **roczny** (kara = nadprzebieg) oraz **kontraktowy łączny** (km przez cały okres), a także **interwały przeglądowe** między serwisami.

4) Funkcja celu i KPI

4.1 KPI (raportowane)

- % pojazdów bez przekroczeń limitów
- liczba zamian
- szacowany czas do osiągnięcia limitu (km)
- % wykorzystania kontraktów (km przejchane/ km dostępne)

5) Output (co ma wypluwać system)

- 1. Propozycja przypisani na podstawie dostarczonych tras
- 2. Raport dodatkowych kosztów: zamiany, dodatkowe kilometry
- 3. Alerty: przekroczenia limitów, konflikty okien, zbliżające się serwisy.
- 4. Panel zmian: historia przyjętych aktualizacji i ich wpływ na rekomendacje.

6) Bonusowe punkty

- Interaktywna predykcja wizualizacja
- Responsywny system
- Rzeczywista lokalizacja pojazdów
- Prognoza na najbliższy rok na bazie danych historycznych

