距離空間の sup ノルムを備えた数列空間への等長埋め込み

1

定義 1.1. S を集合とする.

$$l_{\infty}(S) := \{(r_{\lambda})_{\lambda \in S} \in \mathbb{R}^{\#S} \mid \sup |r_{\lambda}| < \infty \}$$

と定める. sup ノルムを備えておく.

命題 1.2. 距離空間 (X,d) は、数列空間 $l_{\infty}^{\#X}$ と等長同型である.

証明. $p \in X$ を適当にとっておく.

$$j: X \to l_{\infty}(X); x \mapsto (d(x, z) - d(p, z))_{z \in X}$$

と定めると、

$$d_{l_{\infty}(X)}(jx,jy) = \sup_{z \in X} |d(x,z) - d(y,z)|$$

である.

step:

$$\sup_{z \in X} |d(x, z) - d(y, z)| \le d(x, y).$$

(::) 任意の $z\in X$ に対して, $|d(x,z)-d(y,z)|\leq d(x,y)$ が成り立つ.

step:

$$\sup_{z \in X} |d(x, z) - d(y, z)| \ge d(x, y).$$

(::) $z \in X$ として z = y を選べばよい.

従って, $\sup_{z \in X} |d(x,z) - d(y,z)| = d(x,y)$ であるので,

$$d_{l_{\infty}(X)}(jx, jy) = d(x, y)$$

が成り立つ.

命題 1.3. (X,d) が可分な距離空間であるならば, (X,d) は数列空間 $l_{\infty}(\mathbb{N})$ へ等長に埋め込める.

証明. 可算稠密部分集合 $A \subset X$ をとる. $p \in A$ を適当にとっておく.

$$j: X \to l_{\infty}(\mathbb{N}); x \mapsto (d(x,z) - d(p,z))_{z \in A}$$

と定めると,

$$d_{l_{\infty}^{\#X}}(jx,jy)=\sup_{z\in X}|d(x,z)-d(y,z)|$$

である.

step:

$$\sup_{z \in A} |d(x,z) - d(y,z)| \le d(x,y).$$

(::) 任意の $z\in A$ に対して, $|d(x,z)-d(y,z)|\leq d(x,y)$ が成り立つ. $y\in X$ に対して $y_n\in A, d(y_n,y)\leq \frac{1}{n}$ をとると, step:

$$\sup_{z\in X}|d(x,z)-d(y,z)|\geq d(x,y_n)-\frac{1}{n}.$$

(:・)
$$z\in A$$
 として $z=y_n$ を選べばよい. 従って, $d(x,y_n)-\frac{1}{n}\sup_{z\in X}|d(x,z)-d(y,z)|=d(x,y)$ であるので, n に関して極限をとると,
$$d_{l_\infty(X)}(jx,jy)=d(x,y)$$

が成り立つ.

2