Введение в теорию методов оптимизации

Александр Катруца

Сочи 2017

Введение

- Что такое методы оптимизации?
- Какой математический аппарат используется?
- Как развивалась теория методов оптимизации?
- Какие главные результаты?

Обозначения и типы задач

$$\min f(x)$$
 s.t. $x \in X \subseteq \mathbb{R}^n$

- Глобальный vs. локальный минимум
- Условная vs.безусловная задача
- Непрерывная vs. дискретная задача
- Детерминированная vs. стохастическая задача

Как сравнивать методы оптимизации?

- Теоретическая сложность об этом ниже
- Масштабируемость
- Время работы
- Простота понимания и реализации

Общая схема

Математически:

- ullet Поиск направления h_k , чаще всего это направление убывания
- ullet Выбор шага $lpha_k$, такого что $f(x_k + lpha_k h_k) < f(x_k)$
- Проверка критерия остановки

Алгоритмически:

```
while (True):
h = FindDirection(...)
alpha = FindStepSize(...)
x = x + alpha * h
if StopCriterion(...):
    break
```

Методы первого порядка

Идея: помимо значения функции в точке, использовать значение первой производной.

- Градиентный спуск
- Метод сопряжённых градиентов
- Квазиньютоновские методы

Методы второго порядка

Идея: помимо значения функции в точке и значения первой производной использовать значения второй производной в точке.

• Метод Ньютона

Теория двойственности: идея

Общий принцип

Полезно иметь несколько взглядов на одну сущность

Например:

- множество: перечисление элементов vs. задание ограничений на элементы
- функция: табличное vs. аналитическое определение
- задачи: прямое решение vs. переформулировка или решение вспомогательной задачи
- связь между эллиптическими кривыми и теорией чисел: великая теорема Ферма, криптография, etc

Двойственность в оптимизации

Построение задачи, связанной с данной, которая

- всегда решается легко не зависимо от сложности решения исходной
- даёт нижнюю оценку на оптимальное значение целевой функции исходной задачи

Теория двойственности: конкретика

Задача

$$\min_{x \in \mathcal{D}} f(x) = p^*$$
 s.t. $g_i(x) = 0, \ i = 1, \dots, m$ $h_j(x) \leq 0, \ j = 1, \dots, p$

Лагранжиан

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\pmb{\mu},\pmb{\lambda})=\inf_{x\in\mathcal{D}}L(x,\pmb{\lambda},\pmb{\mu})$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) вне зависимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $\pmb{\lambda}$ и для $\pmb{\mu} \geq 0$ выполнено $g(\pmb{\mu}, \pmb{\lambda}) \leq p^*.$

Двойственная задача

$$\max g(\boldsymbol{\mu}, \boldsymbol{\lambda}) = d^*$$
 s.t. $\boldsymbol{\mu} \geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Элементы теории сложности

Главный вопрос

Быть или не быть?

Какой метод оптимизации лучше для данной задачи?

Возможные ответы:

- экспериментально сравнить несколько методов
- определить к какому классу задач относится данная и использовать наилучший метод для этого класса задач

Оптимальные методы

Заключение

- Зачем нужны методы оптимизации?
- Итеративная схема
- Классификация методов и их анализ
- Теория двойственности
- Элементы теории сложности