MATEMATIKA

2010 m. valstybinio brandos egzamino bandomosios užduoties VERTINIMO INSTRUKCIJA

Pasirenkamojo atsakymo uždavinių atsakymai

Užd. Nr.	1	2	3	4	5	6	7	8
Ats.	C	В	C	D	C	D	D	E

Kitų uždavinių sprendimo nurodymai ir atsakymai

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
B → 9		3	
	$2.3 \cdot 50 + 2 = 117$ (Lt),	• 1	Už teisingai apskaičiuotą pinigų sumą, kurią turėtų mokėti Lukas pirkdamas EK grynais.
	$2,2270 \cdot 50 + 1,5 = 112,85$ (Lt),	• 1	Už teisingai apskaičiuotą pinigų sumą, kurią turėtų mokėti Lukas, pirkdamas EK ne grynais.
	117 – 112,85 = 4,15 (Lt). <i>Ats.</i> : 4,15 Lt.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
B → 10		2	
	$\left(\frac{1}{5}\right)^x \le \frac{1}{25},$ $\left(\frac{1}{5}\right)^x \le \left(\frac{1}{5}\right)^2, \qquad \text{(arba } 5^{-x} \le 5^{-2}\text{)}$ $x \ge 2, \text{ nes } 0 < \frac{1}{5} < 1.$	• 1	Už teisingą laipsnio pagrindų suvienodinimą.
	Ats.: $x \in [2; +\infty)$ (arba $x \ge 2$).	• 1	Už teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
B → 11		2	
	$\log_2(5x-10)=3$, $5x-10>0$, $x>2$. $5x-3,6$.	• 1	Už teisingą logaritminės lygties pakeitimą tiesine lygtimi.
	Ats.: 3,6 $\left(arba\ 3\frac{3}{5}\right)$.	• 1	Už <i>gautą</i> teisingą atsakymą.

Pastaba. Jei mokinys gavo teisingą atsakymą, bet neužrašė logaritmo apibrėžimo srities ar neatliko lygties patikrinimo raštu, jam skiriami *visi taškai*.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
B → 12		2	
	$f'(x) = \left(\frac{1}{4}x^4 + 3x^2 - 6x + 5\right)' = x^3 + 6x - 6.$ $f'(-2) = (-2)^3 + 6 \cdot (-2) - 6 =$	• 1	Už teisingai apskaičiuotą išvestinę.
	=-8-12-6=-26. Ats.: -26 .	• 1	Už teisingai <i>gautą</i> atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
B → 13	Sprenamus ii utsukymus	2	Vortininas
	I būdas.	_	
	ΔABC – lygiašonis, tai BD – aukštinė ir pusiaukraštinė. $BD = \sqrt{13^2 - 12^2} = 5(cm)$. $S_{\Delta ABC} = \frac{1}{2} \cdot AC \cdot BD = \frac{1}{2} \cdot 24 \cdot 5 = 60(cm^2)$. $Ats.: 60 \ cm^2$.	• 1	Už teisingai apskaičiuotą aukštinės <i>BD</i> ilgį. Už <i>gautą</i> teisingą atsakymą.
	II būdas. $S_{\triangle ABC} = \sqrt{25 \cdot (25 - 13) \cdot (25 - 13) \cdot (25 - 24)} =$ $= \sqrt{25 \cdot 12 \cdot 12 \cdot 1} = 60(cm^2).$ Ats.: 60 cm ² .	• 1	Už teisingai pritaikytą Herono formulę. Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
B → 14		3	
	$24 \cdot 60 = 1440 (cnt),$ $1440 + 192 = 1632 (cnt),$		Už teisingai apskaičiuotą 2008 metų derlių. Už teisingai apskaičiuotą 2009
	1632:60 = 27,2 (cnt/ha). Ats.: $27,2 cnt/ha$.	• 1	metų derlių. Už teisingai <i>gautą</i> atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
15		6	
B → 15.1.		4	
	Skritulinėje diagramoje 1 rutuliukas atitinka 360°:100 = 3,6°. Skritulinėje digramoje:	• 1	Už teisingai apskaičiuotą <i>bent vieno</i> centrinio kampo, kuris
	10 baltų rutuliukų atitiks centrinį kampą $3.6^{\circ} \cdot 10 = 36^{\circ} = 0.2\pi$.		atitinka rutuliukų pasiskirstymą pagal spalvas, didumą
	35 mėlyni rutuliukai atitiks centrinį kampą $3.6^{\circ} \cdot 35 = 126^{\circ} = 0.7\pi$.		laipsniais.
	55 raudoni rutuliukai atitiks centrinį kampą $3,6^{\circ} \cdot 55 = 198^{\circ} = 1,1\pi$.	• 1	Už teisingą <i>bent vieno</i> centrinio kampo, kuris atitinka rutuliukų
	(arba $360^{\circ} - 36^{\circ} - 126^{\circ} = 198^{\circ} = 1,1\pi$.)	pasiskirstymą j	pasiskirstymą pagal spalvas, didumą <i>radianais</i> .
	raudoni	• 1	Už teisingai pavaizduotą skrituline diagrama <i>vieną</i>
	mélyni balti		rutuliukų santykį pagal spalvas.
	meryin	• 1	Už teisingai pavaizduotą skrituline diagrama <i>visų</i>
			rutuliukų santykį pagal spalvas.

Pastabos:

- 1) Jei mokinys klaidingai apskaičiavo centrinio kampo didumą laipsniais, bet teisingai apskaičiavo *bent vieno* kampo didumą radianais, jam už tai skiriamas *1 taškas*.
- 2) Jei mokinys neteisingai apskaičiavo centrinius kampus, bet su savo klaida teisingai pavaizdavo skrituline diagrama rutuliukų santykį (*centrinių kampų suma lygi* 360°), jam skiriamas *l taškas*.

15.2.		2	
	A – "ir antras išimtas rutuliukas bus raudonas, kai pirmasis į dėžę negrąžinamas". Visų baigčių skaičius n = 99 . [vykiui palankių baigčių skaičius m = 54 .	• 1	Už teisingai nustatytą baigčių skaičių.
	Ats.: $P(A) = \frac{54}{99} \left(arba \frac{6}{11} \right)$.	• 1	Už teisingą gautą atsakymą taikant klasikinį tikimybės apibrėžimą.

Pastaba:

Jeigu mokinys gavo atsakymą $P(A) = \frac{54}{100}$ arba $P(A) = \frac{55}{99}$, jam už **15.2** skiriamas *l taškas*.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
16	<u> </u>	4	
	I būdas. Tarkime, kad x – puslapių skaičius, y – dienų skaičius. Tuomet $\begin{cases} x \cdot y = 120, \\ (x+4) \cdot (y-1) = 120; \end{cases}$	• 1	Už teisingą sprendimo būdo pasirinkimą (įvesti kintamieji, teisingai sudaryta viena lygtis). Už teisingai sudarytą sistemą.
	$\begin{cases} x = \frac{120}{y}, \\ y^2 - y - 30 = 0. \end{cases}$ $y^2 - y - 30 = 0,$ $y_1 = -5 - \text{netenkina uždavinio sąlygos},$ $y_2 = 6.$ At $x \in C$	• 1	Už gautą teisingą kvadratinę lygtį.
	Ats.: 6 dienos. II būdas. Tarkime, kad x – puslapių skaičius, $\frac{120}{x}$ – dienų skaičius.	• 1	Už gautą teisingą atsakymą. Už teisingą sprendimo būdo pasirinkimą (įvestas kintamasis, teisingai užrašytas puslapių,
	Tuomet $(x+4) \cdot \left(\frac{120}{x} - 1\right) = 120$, $x^2 + 4x - 480 = 0$; $x_1 = -24$ – netenkina uždavinio sąlygos, $x_2 = 20$.	• 1 • 1	dienų skaičius). Už teisingai sudarytą lygtį. Už gautą teisingą kvadratinę lygtį.
	Todėl dienų skaičius yra $\frac{120}{20} = 6$. Ats.: 6 dienos.	• 1	Už gautą teisingą atsakymą.
	Tarkime, kad x – dienų skaičius, $\frac{120}{x}$ – puslapių skaičius.	• 1	Už teisingą sprendimo būdo pasirinkimą (įvestas kintamasis, teisingai užrašytas dienų, puslapių skaičius).
	Tuomet $\left(\frac{120}{x} + 4\right) \cdot (x-1) = 120$;	• 1	Už teisingai sudarytą lygtį.
	$x^{2}-x-30=0;$ $x_{1}=-5-\text{netenkina uždavinio sąlygos},$ $x_{2}=6.$	• 1	Už gautą teisingą kvadratinę lygtį.
	Ats.: 6 dienos.	• 1	Už gautą teisingą atsakymą.

Pastaba:

Jeigu mokinys atspėja dienų skaičių ir patikrindamas pagrindžia, jog šis skaičius teisingas, jam skiriamas *I taškas*.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
17	optonomics acounty mus	5	· · · · · · · · · · · · · · · · · · ·
	I būdas. $60 = a \cdot 0 + b \cdot 0 + c,$ $c = 60.$ Parabolės viršūnės abscisė $x_0 = -\frac{b}{2a}$, tai	• 1	Už teisingai nustatytą koeficiento <i>c</i> reikšmę.
	$40 = -\frac{b}{2a}.$	• 1	Už teisingą parabolės viršūnės abscisės išraišką (pagal viršūnės koordinatės formulę ar
	$\begin{cases} -\frac{b}{2a} = 40, \\ a \cdot 40^2 + b \cdot 40 + 60 = 90; \end{cases}$ $\begin{cases} a = -\frac{3}{160}, \\ b = \frac{3}{2}. \end{cases}$	• 1	išvestinės skaičiavimą). Už teisingai sudarytą lygčių sistemą koeficientų <i>a</i> ir <i>b</i> reikšmėms apskaičiuoti.
	$\begin{cases} a = -\frac{3}{160}, \\ b = \frac{3}{2}. \end{cases}$ Ats.: $a = -0.01875, b = 1.5, c = 60.$	• 2	Po tašką už teisingai apskaičiuotas koeficientų <i>a</i> ir <i>b</i> reikšmes.
	II būdas. Parabolės viršūnė $K(40; 90)$, tai $y = a(x-40)^2 + 90$.	• 1	Už teisingai nustatytas parabolės viršūnės koordinates.
	Taškas $B(0;60)$ priklauso parabolei, tai $60 = a \cdot (0-40)^2 + 90$, 1600a = -30,	• 1	Už teisingą sprendimo būdo pasirinkimą.
	$a = -\frac{3}{160}.$	• 1	Už teisingai apskaičiuotą koeficiento <i>a</i> reikšmę.
	$y = -\frac{3}{160}(x - 40)^2 + 90,$ $y = -\frac{3}{160}x^2 + \frac{3}{2}x + 60.$		
	Ats.: $a = -\frac{3}{160}$, $b = \frac{3}{2}$, $c = 60$.	• 2	Po tašką už kiekvieną gautą teisingą koeficientų <i>b</i> ir <i>c</i> reikšmę.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
18		6	
18.1.		3	
	I būdas. f(x) = 2x - 2, tai $F(x) = \frac{2x^2}{2} - 2x + C = x^2 - 2x + C$.	• 1	Už teisingai užrašytą bendrąją $f(x)$ pirmykštės funkcijos
	$k = F'(x_0) = f(x_0) = 2x_0 - 2$. Kadangi $y = -4x$, tai $k = -4$. Todėl $2x_0 - 2 = -4$, $2x_0 = -2$,	• 1	išraišką. Už teisingai sudarytą lygtį $F'(x_0) = k$.
	$x_0 = -1$, tai $y_0 = -4 \cdot (-1) = 4$. $1 - 2 \cdot (-1) + C = 4$, $C = 1$. $F(x) = x^2 - 2x + 1$.	• 1	Už teisingai apskaičiuotą C reikšmę.
	II būdas. f(x) = 2x - 2, tai $F(x) = \frac{2x^2}{2} - 2x + C = x^2 - 2x + C$.	• 1	Už teisingai užrašytą bendrąją $f(x)$ pirmykštės funkcijos išraišką.
	Kadangi tiesė $y = -4x$ liečia parabolę, tai $x^2 - 2x + C = -4x$. $x^2 + 2x + C = 0$,	• 1	Už teisingą sprendimo būdo pasirinkimą.
	D = 4(1-C) = 0, nes lygtis turi tik vieną sprendinį. Todėl $C = 1$. $F(x) = x^2 - 2x + 1$.	• 1	Už teisingai apskaičiuotą C reikšmę.
18.2.		3	
	$S = \int_{0}^{0} (x^{2} - 2x + 1) dx = \int_{0}^{0} (x - 1)^{2} dx =$	• 1	Už teisingai užrašytą plotą
	$S = \int_{-1}^{0} (x^{2} - 2x + 1) dx = \int_{-1}^{0} (x - 1)^{2} dx =$ $= \frac{(x - 1)^{3}}{3} \Big _{-1}^{0} = \frac{(0 - 1)^{3}}{3} - \frac{(-1 - 1)^{3}}{3} = 2\frac{1}{3}.$	• 1	apibrėžtiniu integralu. Už teisingai surastą pirmykštę funkciją.
	Ats.: $2\frac{1}{3}$.	• 1	Už teisingai gautą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
19	Spiciamas/atsakymas	4	v Citillinas
	I būdas.		
	MN – trapecijos vidurinė linija, tai $MN = \frac{BC + AD}{2} = 9$. Todėl $BC + AD = 18$. Trapecija $ABCD$ – apibrėžtinis keturkampis, tai $AB + CD = BC + AD$. $AB = 2r = 8$ ir $BC + AD = 18$, tai $CD = 18 - 8 = 10$. Iš st. $ACED$:	• 1	Už teisingą trapecijos vidurinės linijos savybės pritaikymą. Už teisingą apibrėžtinio keturkampio kraštinių savybės pritaikymą.
	$ED = \sqrt{CD^{2} - CE^{2}} = \sqrt{10^{2} - 8^{2}} = 6.$ $AE = \frac{(BC + AD) - ED}{2} = \frac{18 - 6}{2} = 6.$ $AD = AE + ED = 12.$ $Ats.: 12.$	• 1	Už teisingai apskaičiuotą atkarpos <i>ED</i> ilgį. Už gautą teisingą atsakymą.
	II būdas.		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	CB ir CD – apskritimo liestinės, išeinančios iš vieno taško C , tai $CK = CL = x$. DC ir DA – apskritimo liestinės, išeinančios	• 1	Už teisingą apskritimo liestinių, nubrėžtų iš to paties taško savybės pritaikymą.
	iš vieno taško D , tai $DL = DP = y$. MN – trapecijos vidurinė linija, tai $MN = \frac{BC + AD}{2} = 9$. Todėl $BC + AD = 18$.	• 1	Už teisingą trapecijos vidurinės linijos savybės pritaikymą.
	AB = AM + MB = AP + BK = 8, (AP + BK) + KC + PD = 18, 8 + x + y = 18, x + y = 10 = CD.		
	Iš st. $\triangle CED$: $ED = \sqrt{CD^2 - CE^2} = \sqrt{10^2 - 8^2} = 6$. $AE = \frac{(BC + AD) - ED}{2} = \frac{18 - 6}{2} = 6$. AD = AE + ED = 12.	• 1	Už teisingai apskaičiuotą atkarpos <i>ED</i> ilgį.
	Ats.: 12.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
20		4	
	$\sqrt{25-x^2} \cdot \log_{\frac{1}{3}}(x-3) \ge 0$		
	$\begin{cases} 25 - x^2 \ge 0, \\ x - 3 > 0; & \text{tai} & 3 < x \le 5. \end{cases}$	• 1	Už teisingai nustatytą apibrėžimo sritį.
	Kai $x = 5$, $\sqrt{25 - x^2} = 0$, o $\log_{\frac{1}{3}}(x - 3)$ turi prasmę. Todėl $x = 5$ – nelygybės sprendinys.	• 1	Už teisingai nustatytą nelygybės sprendinį $x = 5$.
	Kai $3 < x < 5$, $\sqrt{25 - x^2} > 0$, tai $\log_{\frac{1}{3}}(x - 3) \ge 0$,		
	$0 < x - 3 \le 1$,		
	$3 < x \le 4.$	• 1	Už teisingai išspręstą
			logaritminę nelygybę.
	Ats.: (3; 4] ir 5.	• 1	Už teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
21		5	
21.1.		3	
	S A B		
	ΔBES – statusis: $\frac{h}{a} = \text{tg}\alpha$, iš čia $h = \frac{a}{2} \cdot \text{tg}\alpha$.	• 1	Už gautą teisingą <i>h</i> išraišką.
	$\frac{1}{2}$ ΔSOE – statusis:	1	o z ganną voisingą wisinisną
	$H^2 + \left(\frac{a}{2}\right)^2 = h^2$, tai $H^2 + \left(\frac{a}{2}\right)^2 = \left(\frac{a}{2}\operatorname{tg}\alpha\right)^2$,		
	iš čia $H^2 = \frac{a^2}{4} \cdot (\lg^2 \alpha - 1)$, o	• 1	Už gautą teisingą H^2 išraišką.
	$a^2 = \frac{4H^2}{\operatorname{tg}^2 \alpha - 1}.$	• 1	Už gautą teisingą a^2 išraišką.
	Tuomet		
	$V = \frac{1}{3} \cdot \frac{4H^2}{\lg^2 \alpha - 1} \cdot H = \frac{4}{3} \cdot \frac{H^3}{\lg^2 \alpha - 1}.$		

21.2.		2	
	Užrašome lygtį:		
	$2_{H^3} - 4 H^3$	• 1	Už teisingai išreikštą $tg^2\alpha$.
	$\frac{2}{9} \cdot H^3 = \frac{4}{3} \cdot \frac{H^3}{tg^2 \alpha - 1},$		
	$1 = \frac{6}{tg^2\alpha - 1},$		
	=		
	$tg^2\alpha=7$,		
	$tg\alpha = \pm\sqrt{7}$.		
	Kadangi $45^{\circ} < \alpha < 90^{\circ}$, tai $tg\alpha = \sqrt{7}$.		
	Ats.: $tg\alpha = \sqrt{7}$.	• 1	Už gautą teisingą atsakymą.

Pastabos:

- 1) Jei mokinys iš $tg^2\alpha = 7$ neargumentuodamas parašo atsakymą $tg\alpha = \sqrt{7}$, tai už 21.2 dalį skiriamas *tik 1 taškas*.
- 2) Jei mokinys iš $tg\alpha = \pm \sqrt{7}$ atsakymą $tg\alpha = \sqrt{7}$ užrašo neargumentuodamas, už 21.2 dalį skiriami *visi taškai*.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
22	T J	6	
22.1.		4	
	$(x+3)^2 = (x-3) \cdot (6x+2),$ $5x^2 - 22x - 15 = 0,$	• 1	Už teisingai pritaikytą geometrinės progresijos narių savybę. Už teisingai išspręstą kvadratinę
	$x_1 = -\frac{3}{5}$, $x_2 = 5$. Progresijos nariai teigiami skaičiai, tai $x = 5$.	• 1	lygtį. Už pagrindimą, kad $x = 5$.
	Turime progresiją: 2; 8; 32; $q = \frac{b_2}{b_1} = \frac{8}{2} = 4.$ Ats.: $q = 4$.	• 1	Už <i>gautą</i> teisingą atsakymą
22.2.	7115 у - т.	2	
22.2.	Pritaikome geometrinės progresijos n – pirmųjų narių sumos formulę. $\frac{S_{19}}{S_{20}} = \frac{4^{19} - 1}{4^{20} - 1}.$	• 1	Už gautą teisingą sumų santykį.
	$\frac{4^{19} - 1}{4^{20} - 1} < \frac{1}{4},$ $\frac{4^{19} - 1}{4^{20} - 1} - \frac{1}{4} < 0,$		
	$\frac{4 \cdot 4^{19} - 4 - 4^{20} + 1}{4 \cdot (4^{20} - 1)} < 0,$ $\frac{-3}{4 \cdot (4^{20} - 1)} < 0, \text{ kadangi } -3 < 0, \text{ o}$ $4 \cdot (4^{20} - 1) > 0,$	• 1	Už teisingą pagrindimą.

(8	rba
	$\frac{19}{120} - \frac{1}{1} < \frac{1}{4}$
	$\frac{1^{20}-1}{4} < \frac{7}{4}$
	Kadangi $4^{20} - 1 > 0$ ir $4 > 0$, tai
	$(4^{19}-1) < 4^{20}-1.$
	Kadangi $4^{20} - 1 > 0$ ir $4 > 0$, tai $ \cdot (4^{19} - 1) < 4^{20} - 1.$ $ \cdot (2^{0} - 4 < 4^{20} - 1, + 4 < -1. $
(-	4 < -1.
to	$\det \frac{S_{19}}{S_{20}} < \frac{1}{4} .$