MATLAB kommandoer til analoge filtre

Filterorden (analoge filtre)

[n,wn]=buttord(wp,ws,Ap,As,'s')

[n,wn]=cheb1ord(wp,ws,Ap,As,'s')

[n,wn]=cheb2ord(wp,ws,Ap,As,'s')

[n,wn]=ellipord(wp,ws,Ap,As,'s')

[n]=besselor(Ap,wp,As,ws)

[n]=BESSEL ORDER(DelaTg0,AttMAX)

Litt. 4

Computes the order of a normalized Bessel filter for which the deviation in the group delay at w = 1 is less than DelaTg and the attenuation at w = 1 is less than max(Att).

Toolbox for ANALOG FILTERS USING MATLAB, Springer, 2009

Pol/nulpunkter

[z,p,k]=buttap(orden)

[z,p,k]=cheb1ap(orden,ripple)

[z,p,k]=cheb2ap(orden,ripple)

[z,p,k]=ellipap(orden,pas-ripple,stop-ripple)

[z,p,k]=besselap(orden)

pzmap(tæller,nævner) (grafisk)

Overføringsfunktion

[tæller,nævner]=zp2tf(z,p,k)

N= tf(tæller,nævner)

[z,p,k]=tf2zp(tæller,nævner)

[sos,K] = zp2sos(z,p,k) (anden ordens led fra pol/nulpunkter)

Amplitude og fasekarakteristik

freqs(tæller,nævner)

bodeplot(tæller,nævner)

opts = bodeoptions('cstprefs'); opts.frequnits='Hz', bode(Ns,opts)

groupDelaytf(Ns)

(groupDelaytf.m fra Blackboard eller MathWorks)

Tidsområdet

impulse(tæller,nævner)

step(tæller,nævner)

LP, HP, BP & BS

[tæller_{HP},nævner_{HP})=lp2hp(tæller_{LP},nævner_{LP},wn)

[tæller_{BP},nævner_{BP})=lp2bp(tæller_{LP},nævner_{LP},wn,bw)

[tæller_{BS},nævner_{BS})=lp2bs(tæller_{LP},nævner_{LP},wn,bw)

Passiv realisering

 $[L,C,K] = BW_LADDER(\omega_p,\,\omega_s,A_p,A_s,n,R_g,R_b,ladder)$

Butterworth

Litt. 4

 $[L,C,K] = CH_1_LADDER(\omega_p,\,\omega_s,A_p,A_s,n,R_g,R_b,ladder) \; Chebyshev$

[L,C,K]=CH_1_LADDER(ω_p , ω_s ,A_p,A_s,n,R_q,R_b,ladder) Invers Chebyshev

[L,C,K]=CA_1_LADDER(ω_p , ω_s ,A_p,A_s,n,R_g,R_b,ladder) Cauer

[L,C,K]=BESSEL_LADDER(se litt. 4) Bessel (findes ikke?)

[LHP,CHP]=LP_2_HP_LADDER(L,C,K, ω_p)

[LBP,CBP]=LP_2_BP_LADDER(L,C,K,ω₀)

[LBS,CBS]=LP_2_BS_LADDER(L,C,K, ω_0)

Andet

Talformat help format F.eks. format LONGENG

Sallen a	nd I	Key
----------	------	-----

IGMF