## 1 (Nossa versão da) Equação de Rayleigh-Plesset (24/11/2017)

A equação mais geral do raio da bolha ao longo do tempo é

$$\partial_{t} \left( (I_{1} + I_{2}) (R(t))^{3} R'(t) \right) = (2I_{2} - I_{1}) (R(t))^{2} (R'(t))^{2} + \Lambda$$

$$- \int_{0}^{R(t)} r^{2} T'(R(t)) \partial_{T(R(t))} \epsilon (n, T(R(t))) dr$$

$$- \int_{R(t)}^{\infty} r^{2} T'(R(t)) \partial_{T(R(t))} \epsilon (n, T(R(t))) dr$$
(1)

em que T é uma temperatura,  $\epsilon$  uma energia e

$$I_{1} = \int_{0}^{1} \frac{x^{4} F(x)}{1 - x^{2} (R'(t))^{2}} dx, \qquad I_{2} = \int_{1}^{\infty} \frac{x^{2} F(x)}{x^{4} - (R'(t))^{2}} dx$$

$$\Lambda = \int_{0}^{R(t)} \frac{3r^{2} F(r)}{R(t)} dr - (R(t))^{2} \left\{ F(r \to \infty) + \epsilon_{v} \left[ n(r \to R), T(R(t)) \right] - \epsilon_{l} \left[ n(r \to R), T(R(t)) \right] \right\}$$

Para um campo termodinâmico espacialmente uniforma,  $F = F_0$  e as I-integrais tornam-se:

$$I_{1} = \frac{1}{5} F_{0,v} \cdot {}_{2} F_{1} \left( 1, \frac{5}{2}, \frac{7}{2}, (R'(t))^{2} \right)$$
$$I_{2} = F_{0,l} \cdot {}_{2} F_{1} \left( 1, \frac{1}{4}, \frac{5}{4}, (R'(t))^{2} \right)$$

em que a função hipergeométrica  $_2F_1$  é conhecida por admitir a representação integral

$$_{2}F_{1}(a,b,c,z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{\zeta^{b-1}(1-\zeta)^{-b+c-1}}{(1-\zeta z)^{a}} d\zeta$$

No caso da teoria de uma temperatura zero, a equação da bolha por ser escrita na forma

$$R''(t) = \frac{\Lambda - (R(t))^{2} (4I_{1}(t) + I_{2}(t)) (R'(t))^{2} - (R(t))^{3} R'(t) (I'_{1}(t) + I'_{2}(t))}{(R(t))^{3} (I_{1}(t) + I_{2}(t))}$$

Se os componentes do líquido e do vapor são homogêneos, temos:

$$R''(t) = \frac{35\Lambda + (R(t))^{2} (-28F_{0,v}H_{1} - 35F_{0,l}H_{2}) (R'(t))^{2}}{(R(t))^{3} \left\{ F_{0,v} \left[ 7H_{1} + 10H_{3} (R'(t))^{2} \right] + 7F_{0,l} \left[ 5H_{2} + 2H_{4} (R'(t))^{2} \right] \right\}}$$

em que:

$$H_{1} = {}_{2}F_{1}\left(1, \frac{5}{2}, \frac{7}{2}, (R(t))^{2}\right) \qquad H_{2} = {}_{2}F_{1}\left(1, \frac{1}{4}, \frac{5}{4}, (R(t))^{2}\right)$$

$$H_{3} = {}_{2}F_{1}\left(2, \frac{7}{2}, \frac{9}{2}, (R(t))^{2}\right) \qquad H_{4} = {}_{2}F_{1}\left(2, \frac{5}{4}, \frac{9}{4}, (R(t))^{2}\right)$$

$$\Lambda = (R(t))^{2} \left[-F(r \to \infty) + F_{0,v} + \epsilon_{l}(n(r \to R), 0) - \epsilon_{v}(n(r \to R), 0)\right]$$

Neste ponto, lembramos a relação termodinâmica  $n\epsilon'(n) = F(r) = P + \epsilon$ , conhecida como **relação** de Gibbs. O primeiro termo do numerador do lado direito da equação pela R''(t) se torna:

$$35 (R(t))^{2} (-P_{l} + P_{v}) \qquad (-P_{l} + P_{v} = -beta)$$

Fazendo as substituições:

$$F_{0,l}=\epsilon_l+P_l, \ F_{0,v}=\epsilon_v+P_v, \ H_1=5I_1, \ H_2=I_2, \ H_3=\frac{7}{2}I_3, \ H_4=\frac{5}{2}I_4,$$

temos a equação da lista.

## 2 Exercícios

Use o método de integração de Runge-Kutta para obter a aproximação da solução dos seguintes problemas de Cauchy

1.

$$R'(t) = U(t), \quad U'(t) = -\frac{R'(t)^{2} \left[I_{2} \left(P_{l} + \epsilon_{l}\right) + 4I_{1} \epsilon_{v}\right] + P_{l} + P_{v} \left(4I_{1} R'(t)^{2} - 1\right)}{R(t) \left[I_{4} \left(P_{l} + \epsilon_{l}\right) R'(t)^{2} + I_{2} \left(P_{l} + epislon_{l}\right) + \left(P_{v} + \epsilon_{v}\right) \left(I_{1} + I_{3} R'(t)^{2}\right)\right]}$$

$$R(0) = 0.1, \quad U(0) = 0.1$$

2.

$$R'(t) = U(t), \quad U'(t) = -\frac{R'(t)^{2} \left[I_{2} \left(P_{l} + \epsilon_{l}\right) + 4I_{1} \epsilon_{v}\right] + P_{l} + P_{v} \left(4I_{1} R'(t)^{2} - 1\right)}{R(t) \left[I_{4} \left(P_{l} + \epsilon_{l}\right) R'(t)^{2} + I_{2} \left(P_{l} + epislon_{l}\right) + \left(P_{v} + \epsilon_{v}\right) \left(I_{1} + I_{3} R'(t)^{2}\right)\right]}$$

$$R(0) = 0.2, \quad U(0) = \frac{1}{10000000}$$

Adote os seguintes valores para os parâmetros:  $P_v=0.1595106949435665, P_l=0.17078553413498362,$   $\epsilon_v=1.7699955011416335$  e  $\epsilon_l=4.275051939160018.$  Note que U é a primeira derivada de R com relação a t.

As integrais que aparecem na equação que trata da determinação de R são expressas em termos das funções hipergeométricas:

$$I_{1} = \frac{1}{5} {}_{2}F_{1} \left( 1, \frac{5}{2}, \frac{7}{2}, (R(t))^{2} \right) = \frac{1}{2} \int_{0}^{1} \frac{\zeta^{3/2}}{1 - \zeta R'(t)} d\zeta$$

$$I_{2} = {}_{2}F_{1} \left( 1, \frac{1}{4}, \frac{5}{4}, (R(t))^{2} \right) = \frac{1}{4} \int_{0}^{1} \frac{1}{\zeta^{3/4} \left( 1 - \zeta R'(t) \right)} d\zeta$$

$$I_{3} = \frac{2}{7} {}_{2}F_{1} \left( 2, \frac{7}{2}, \frac{9}{2}, (R(t))^{2} \right) = \int_{0}^{1} \frac{\zeta^{5/2}}{\left( 1 - \zeta R'(t) \right)^{2}} d\zeta$$

$$I_{4} = \frac{2}{5} {}_{2}F_{1} \left( 2, \frac{5}{4}, \frac{9}{4}, (R(t))^{2} \right) = \frac{1}{2} \int_{0}^{1} \frac{\zeta^{1/4}}{\left( 1 - \zeta R'(t) \right)^{2}} d\zeta$$