Can Search Predict TV Ratings?

mattmates@

Project Proposal

Background: Historically we have seen very high correlations between search volume and business KPIs. Search data is currently being used across Media & Entertainment to help inform and predict the sales of video games, event tickets, and movie box-office.

Problem: Television ratings have been on the decline for nearly a decade and TV companies like Disney, NBC Universal, ViacomCBS, Discovery, etc. are looking for earlier indicators to understand if their next new TV show will meeting their ratings goals & decide how to allocate marketing budgets

Hypothesis: Google Search is the world's best measure of interest and intent and can be a strong predictor of how well a TV show will premiere

Goal: To understand the relationship between Google Search data and TV shows then determine if Google Search data is a strong predictor of TV Viewership

Success Metrics: Model Accuracy

Risks/Limitations:

- The target metrics is a calculation based on reach & engagement; therefore, shows that have low engagement will have lower ratings even if reach is held equal. There is no way to quantify how engaging (good/bad) a TV show is before it premieres
- I am working with a small data set, which is specifically for Viacom. It will likely not generalize well for Viacom specifically or outside of Viacom shows. In addition, it the small data set will limit the number of features I can include in the model.

The Original Data

TV Ratings

Data	columns (total 18 column	ns):	
#	Column	Non-Null Count	Dtype
0	network	41 non-null	object
1	show	41 non-null	object
2	id	41 non-null	object
3	nielsen_name	41 non-null	object
4	season	41 non-null	object
5	premiere	41 non-null	datetime64[ns]
6	type	41 non-null	object
7	start_time	41 non-null	object
8	episode_duration	41 non-null	int64
9	genre	0 non-null	float64
10	reach_18-49_1sd	41 non-null	int64
11	reach_p2_lsd	41 non-null	int64
12	reach_p18-49_13	41 non-null	int64
13	reach_p2_13	41 non-null	int64
14	avg_audience_18-49_lsd	41 non-null	int64
15	avg_audience_p2_lsd	41 non-null	int64
16	avg_audience_18-49_13	41 non-null	int64
17	avg_audience_p2_13	41 non-null	int64
• -			

Google Search

Data columns (total 5 columns):			
#	Column	Non-Null Count	Dtype
0	id	2350 non-null	object
1	release_date	2350 non-null	object
2	stat_date	2350 non-null	object
3	days_from_release	2350 non-null	int64
4	index_queries	2350 non-null	float64

The Combined Data

Data	columns (total 24 column	ns):	_
#	Column	Non-Null Count	Dtype
0	network	41 non-null	object
1	show	41 non-null	object
2	nielsen_name	41 non-null	object
3	season	41 non-null	object
4	premiere	41 non-null	datetime64[ns]
5	type	41 non-null	object
6	start_time	41 non-null	object
7	episode_duration	41 non-null	int64
8	genre	0 non-null	float64
9	reach_18-49_1sd	41 non-null	int64
10	reach_p2_lsd	41 non-null	int64
11	reach_p18-49_13	41 non-null	int64
12	reach_p2_13	41 non-null	int64
13	avg_audience_18-49_lsd	41 non-null	int64
14	avg_audience_p2_lsd	41 non-null	int64
15	avg_audience_18-49_13	41 non-null	int64
16	avg_audience_p2_13	41 non-null	int64
17	to_day1	41 non-null	float64
18	to_day0	41 non-null	float64
19	to_day-7	41 non-null	float64
20	to_day-14	41 non-null	float64
21	to_day-21	40 non-null	float64
22	to_day-28	38 non-null	float64
23	to_day-35	38 non-null	float64

Two Core Questions:

Q1: What metrics has the strongest relationship & what should we try to predict?

Q2: How far out can we can confidently predict the result?

EDA

Q: What metrics has the strongest relationship?

Findings

- Overall, Reach P18-49 L+3 has the strongest relationship between with Search
- All Reach related metrics showed a stronger correlation than any of the Avg. Audience metrics
- However, AA P18-49 L+3 had the strongest relationship for an Avg. Audience Metrics, indicating that Search Data is more likely to relate to the 18-49 audience than p2+
- the relationship between search and the metrics seems to remain relatively constant from -14 to 0, meaning that we may be able to make meaningful predictions two weeks out
- However, relationship is very weak, especially in comparison to similar analysis

There's outliers, are they skewing results?

A stronger relationship when we remove outliers

Are there any interesting Dimensions?

- Network
- Genre
- New/Returning/Tentpole
- Day of Week
- Time slot
- Seasonality

Modeling

What did I do?

What I Did

- OLS
- OLS w/ Cross Validation
- Lasso w/ Cross Validation
- Normalized Lasso w/ CV

What I still want to do...

- Decision Tree Regressor
- Neural Networks

Results: What Model is most predictive?

Model	RMSE
OLS	1524.34
OLS CV (cv=5)	1740.98
Lasso	1740.95
Lasso CV (cv=5)	1782.66
Normalized Lasso CV (cv=5)	1782.21

Results: How far out can we predict

Thoughts going forward...

Conclusions

- Strong relationship between TV Ratings & Search Volume; can be used a strong indicator of future success
- However, data set was limiting: we could 1) not include a lot of features 2)
 Try more complex models like Decision Trees and Neural Networks, which resulted in low predictive power of mode: RMSE: 1.7M

Next Steps

 Next Steps: Expand data set outside of Viacom brands so we can include more features and test other models and improve predictive power