Deep Anticipatory Networks for Active Perception

Yash Satsangi

August 26, 2019

Yash Satsangi DANs for Active Perception August 26, 2019

1/17

Multi-camera systems

- Scarce Resources
 - Manpower

- Computational resources.
- Bandwidth.

Energy.

Sensor selection problem

At each time step t:

• Given: probability distribution over state of the world.

$$b(s) = \Pr(s)$$
.

Select: 1 out of n available sensors.

$$\mathcal{A} = \{1 \dots n\}$$
; select $a \in A$.

• Goal: to minimize future uncertainty about the state of the world.

$$b_{\mathbf{z}}^{a}(s) = \Pr(s|\mathbf{z},a),$$

where $\mathbf{z} = \langle z_1, z_2, \dots, z_n \rangle$ is the observation vector.

Active perception

 Active perception is the ability of an agent to reason about its own limitations to come up with control strategies for information gathering.

Active perception POMDP

$$\rho(b) = -H(b) = \sum_{s \in S} b(s) log(b(s))$$

Entropy

- $\rho(b) = \sum_{s \in S} b(s) \log(b(s))$
- ullet If ho(b) is to be calculated then we need a definite representation of b.

Deep Anticipatory Networks

• Train Q and M simultaneously.

• Approximate $\rho(b) = -H(b)$ with $\rho'(b) = \max_{p \in P} [\sum_s [b(s)R(s,p)]].$

Theorem

Let R(s, p) = 1 if s = p and 0 otherwise, then

$$\rho(b) - \rho'(b) \le 1.31$$

$$\rho'(b) = \max_{p \in P} [b(s_0)R(s_0, p) + (1 - b(s_0))R(s_1, p)]$$

Theorem

Let R(s, p) = r' if s = p and r'' otherwise, then

$$\rho(b) - \rho'(b) \le \max\{\epsilon_1, \epsilon_2\}$$

where

$$\epsilon_1 = \log(e^{r'} + (|S| - 1)e^{r''}) - r',$$

$$\epsilon_2 = \log(\frac{1}{|S|}) - (\frac{1}{|S|})(r' + (|S| - 1)r'') + \log(e^{r'} + (|S| - 1)e^{r''}).$$

Experiments - sensor selection

Experiments

Experiments

Discrete attention

Experiments

Summary

- DANs cooperative task between a Q network and an M network.
- Rewarding agent for correct predicting maximizes information.
- Application sensor selection, discrete attention, decision trees.