

Proposta de Teste n.º 4

MATEMÁTICA A - 10.º ANO - MARÇO DE 2016

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Considere um polinómio P, de grau 3, divisível por x + 2 e por $x^2 - 1$. Seja a o coeficiente de termo de maior grau, com $a \in \mathbb{R}$.

Sabendo que o resto da divisão inteira de P por $x-a \in 4a^3-a^2-2a$, qual \in o valor de a?

A 0

B 1

C 2

- **D** 3
- 2. Na figura estão representadas num referencial o.n. xOy uma elipse com focos sobre o eixo Ox e a recta r.

Sabe-se que:

- o eixo maior da elipse é 8
- ullet a recta r intersecta a elipse no ponto A de coordenadas

$$\left(\frac{12}{5}, \frac{12}{5}\right)$$

a recta *r* intersecta o eixo *Ox* no ponto *B* de abcissa 1

Qual das seguintes condições define a região sombreada da figura?

$$\boxed{\mathbf{A}} \quad \frac{x^2}{16} + \frac{y^2}{9} \le 1 \quad \land \quad y \le \frac{12x}{7} - \frac{12}{7}$$

$$\frac{x^2}{16} + \frac{y^2}{4} \le 1 \land y \le \frac{7x}{12} - 1$$

$$\boxed{\mathbf{D}} \quad \frac{x^2}{16} + \frac{y^2}{9} \le 1 \quad \land \quad y \le \frac{7x}{12} - 1$$

3. Considere dois vectores não nulos definidos por $\vec{u}(-2,a,b)$ e $\vec{v}(c,3,1)$, com $a,b,c\in\mathbb{R}$, tais que $\|\vec{u}-\vec{v}\|=4$.

Seja P um ponto de coordenadas (a,b,c). O ponto P pertence à superfície esférica:

lacksquare centrada em (3,1,-2) e raio 16

lacksquare centrada em (3,1,-2) e raio 4

C centrada em (-2,3,1) e raio 16

 \Box centrada em (-2,3,1) e raio 4

4. Sejam a um número real positivo e r e s duas rectas paralelas definidas por:

$$r:(x,y)=(2,1)+k(a,-a^2), k \in \mathbb{R}$$
 e $x=(2-a)k \land y=-1+ak, k \in \mathbb{R}$

Qual é o valor de a?

- **A** 0 **B** 1 **C** 2
- **5.** Considere os pontos A(a,a-2,a+1) e B(a,-6,a+1), com $a \in \mathbb{R}$, tais que d(A,B)=4.

Qual das condições define o segmento de recta [AB]?

- **A** $x = -8 \land z = -7 \land -6 \le y \le -2$
- **B** $x=2 \land z=3 \land -6 \le y \le 0$
- $x = 0 \land z = 1 \land -6 \le y \le -2$
- $x = 0 \land z = 1 \land -10 \le y \le -6$

GRUPO II - ITENS DE RESPOSTA ABERTA

1. Considere o polinómio *P* definido por $P(x) = 3x^3 - 16x^2 + 12x + 12$

Determine o conjunto solução da inequação P(x) > P(2).

2. Na figura está representado o trapézio isósceles [ABCD].

Sabe-se que:

• P e Q são os pontos médios dos lados $\begin{bmatrix} AD \end{bmatrix}$ e $\begin{bmatrix} CD \end{bmatrix}$, respectivamente

- o ponto R pertence ao lado $\left[AB\right]$ e $\left\|\overrightarrow{AB}\right\|=3\left\|\overrightarrow{RB}\right\|$
- o ponto S pertence ao lado [BC] e $\|\overrightarrow{BC}\| = 3\|\overrightarrow{BS}\|$

Sejam $\vec{a} = \overrightarrow{PQ}$ e $\vec{b} = \overrightarrow{RS}$.

2.1. Mostre que os vectores \vec{a} e \vec{b} são colineares e que $\frac{\|\vec{a}\|}{\|\vec{b}\|} = \frac{3}{2}$.

2.2. Considere agora o trapézio [ABCD] representado num referencial o.n. xOy.

Sabe-se que:

$$\vec{a}\left(\frac{5}{2},\frac{3}{2}\right) \text{ e } \left\|\overrightarrow{CD}\right\| = 4$$

- a) Mostre que as coordenadas dos pontos B, C e D são, respectivamente (6,0), (5,3) e (1,3)
- b) Considere o ponto T de pertencente à recta de equação y-x+1=0 e à circunferência de diâmetro $\lceil BD \rceil$.

Determine as coordenadas do ponto T, começando por escrever uma equação da circunferência de diâmetro $\lceil BD \rceil$. Sugestão: comece por escrever as coordenadas de T em função de x.

- c) Escreva uma equação vectorial da mediatriz do segmento de recta $\lceil PR \rceil$.
- d) Seja $\vec{w}(2,0)$. Determine um vector de norma $5\sqrt{2}$, colinear com $2\vec{a}+3\vec{b}-\vec{w}$.
- e) Defina, por meio de uma condição, a o triângulo $\left[PQD\right]$.
- **3.** Considere num referencial o.n. xOy os pontos A(2,-4), B(7,4) e C(-6,1).
 - 3.1. Mostre que o triângulo [ABC] é rectângulo e isósceles e determine a sua área.
 - **3.2.** Seja M o ponto médio do segmento $\begin{bmatrix} AB \end{bmatrix}$. Escreva a equação reduzida da recta paralela à recta BC que contém o ponto M.
 - **3.3.** Seja r a recta perpendicular à recta CB que contém o ponto A.
 - a) Escreva um sistema de equações paramétricas que defina a recta r.
 - **b)** Considere os pontos D, $E\left(-\frac{3}{2},5\right)$ e $F\left(-7,14\right)$.

Determine as coordenadas do ponto D de modo que $M - \frac{1}{2}\overrightarrow{DA} = \overrightarrow{EB} + F$ e mostre que pertence à recta r.

4. Na figura está representada a pirâmide quadrangular regular $\lceil ABCDV \rceil$ de volume 120.

Sabe-se que:

- o ponto B pertence ao eixo Oy
- o ponto A pertence ao plano xOy
- a face $\begin{bmatrix} ABCD \end{bmatrix}$ é paralela a xOz
- uma condição que define a recta AD é $x = 6 \land y = 2$

- **4.2.** Defina por uma condição em \mathbb{R}^3 :
 - a) o plano paralelo a *xOy* que contém o ponto *D*. b) a recta *DC*
 - c) o segmento de recta que é a altura da pirâmide. d) a base [ABCD].
 - e) a semi-recta $\dot{A}B$
 - f) o plano perpendicular a Ox que contém o ponto simétrico de V em relação ao eixo Oz.
- **4.3.** Mostre que uma equação do plano mediador do segmento de recta $\begin{bmatrix} CV \end{bmatrix}$ é 3x-10y-3z=21. Determine as coordenadas do ponto de intersecção do plano mediador de $\begin{bmatrix} CV \end{bmatrix}$ com a recta AD.
- **4.4.** Identifica a secção definida na esfera de inequação $(x-2)^2 + (y+2)^2 + (z-1)^2 \le 20$ pelo corte segundo o plano *ABC*. Determine a sua área.
- **4.5.** O plano xOz intersecta as arestas $\begin{bmatrix} AV \end{bmatrix}$, $\begin{bmatrix} BV \end{bmatrix}$, $\begin{bmatrix} CV \end{bmatrix}$ e $\begin{bmatrix} DV \end{bmatrix}$ nos pontos E, F, G e H, respectivamente.
 - a) Defina por uma condição o quadrilátero $\left[\mathit{EFGH} \right]$.
 - **b)** Determine o volume do sólido [ABCDEFGH].

FIM

Solucionário

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

2.

3.

С

GRUPO II - ITENS DE RESPOSTA ABERTA

1.
$$\left]-\frac{2}{3},2\right[\cup]4,+\infty[$$

2.2. b)
$$T(1,0)$$
 ou $T(5,4)$

b) T(1,0) ou T(5,4) **2.2. c)** Por exemplo, $(x,y) = (0,-\frac{9}{2}) + k(3,7)$, $k \in \mathbb{R}$

2.2. d)
$$(-4\sqrt{2}, -3\sqrt{2})$$
 ou $(4\sqrt{2}, 3\sqrt{2})$

2.2. e) $y \le 3x \land y \ge \frac{3}{5}x + \frac{6}{5} \land y \le 3$

3.1.
$$A_{[ABC]} = \frac{89}{2}$$

3.2.
$$y = \frac{3}{13}x - \frac{27}{26}$$

3.1.
$$A_{[ABC]} = \frac{89}{2}$$
 3.2. $y = \frac{3}{13}x - \frac{27}{26}$ 3.3. a) $x = 2 + 3k \land y = -4 - 13k$, $k \in \mathbb{R}$

3.3. b)
$$D(-4,22)$$

4.2. a)
$$z = 6$$

4.2. b)
$$y = 2 \land z = 6$$

4.2. c)
$$x = 3 \land z = 3 \land -8 \le y \le 2$$

4.2. d)
$$y = 2 \land 0 \le x \le 6 \land 0 \le z \le 6$$

4.2. e)
$$y = 2 \land z = 0 \land x \le 6$$

4.2. f)
$$x = -3$$

4.3.
$$\left(6,2,-\frac{23}{3}\right)$$

4.3. $\left(6,2,-\frac{23}{3}\right)$ 4.4. Círculo contido no plano ABC, centrado no ponto de coordenadas $\left(2,2,1\right)$ e raio 2. Área = 4π

4.5. a)
$$y = 0 \land \frac{3}{5} \le x \le \frac{27}{5} \land \frac{3}{5} \le z \le \frac{27}{5}$$

4.5. b)
$$V_{[ABCDEFGH]} = \frac{1464}{25}$$