

1 | 24

Transfer viva: Proof-theoretic Semantics for ILL and beyond

YII Buzoku

Department of Computer Science University College London

May 30, 2024

YII Buzoku (UCL) P-tS for ILL May 30, 2024

2 | 24

Goals for this talk

- To cover the work done in obtaining a proof-theoretic semantics for ILL.
- To discuss my future plans for my PhD.

Yll Buzoku (UCL) May 30, 2024

A natural deduction system for ILL

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \multimap \psi} \rightharpoonup -1$$

$$\frac{\Gamma \vdash \varphi \multimap \psi \qquad \Delta \vdash \varphi}{\Gamma, \Delta \vdash \psi} \multimap -1$$

$$\frac{\Gamma \vdash \varphi \land \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \land \psi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \land \psi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \Delta \vdash 1}{\Gamma, \Delta \vdash \varphi} \vdash -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \land \varphi \vdash \varphi}{\Gamma \vdash \varphi \land \psi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma \vdash \varphi \land \psi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma \vdash \varphi \land \psi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \land \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi \lor \varphi}{\Gamma, \Delta \vdash \varphi} \otimes -1$$

$$\frac{\Gamma \vdash \varphi}{\Gamma, \Delta} \otimes -1$$

$$\frac{\Gamma$$

4 | 24

A natural deduction system for ILL (cont.)

Yll Buzoku (UCL) May 30, 2024

Alternative systems

One may consider other natural deduction systems.

Yll Buzoku (UCL) P-tS for ILL May 30, 2024

5|24

Alternative systems

- One may consider other natural deduction systems.
- The exponential has two rules only in the system of Negri:

$$\frac{(!\,\varphi)^{m},\Gamma\vdash\chi\qquad\Delta_{1}\vdash!\,\psi_{1}\ldots\Delta_{n}\vdash!\,\psi_{n}\qquad !\,\psi_{1},\ldots,!\,\psi_{n}\vdash\varphi}{\Gamma,\Delta_{1},\ldots\Delta_{n}\vdash\chi}\,!\text{-I}$$

$$\frac{\Gamma\vdash!\,\varphi\quad\Delta,\,\varphi\vdash\psi}{\Gamma,\Delta\vdash\psi}\,!\text{-E}$$

Weakening and Contraction derivability

Proof.

It follows immediately by setting n=1 and m=2 for contraction and m=0 for weakening in the introduction rule, $\psi=\varphi$ and $\Delta=!$ φ that

$$\frac{(!\,\varphi)^{\textit{m}},\Gamma\vdash\chi\qquad !\,\varphi\vdash!\,\varphi\qquad \frac{!\,\varphi\vdash!\,\varphi\quad \varphi\vdash\varphi}{!\,\varphi\vdash\varphi}\,!\mathsf{E}}{\Gamma,!\,\varphi\vdash\chi}$$

YII Buzoku (UCL) P-tS for ILL May 30, 2024

6 24

7 24

Substructural atomic derivability

Definition

Atomic rules Basic rules take the following form:

$$\{(P_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r$$

where

- \blacksquare Each P_i is an atomic multiset, called a premiss multiset.
- \blacksquare Each q_i and r is an atomic proposition.
- Each $(P_i \Rightarrow q_i)$ is a pair (P_i, q_i) called an atomic sequent.
- Each collection $\{(P_{i_1} \Rightarrow q_{i_1}), \ldots, (P_{i_k} \Rightarrow q_{i_k})\}$ is called an atomic box.

May 30, 2024

Substructural atomic derivability

Definition (Basic derivability relation)

The relation of derivability in a base \mathcal{B} , is defined inductively as so:

Ref
$$p \vdash_{\mathscr{B}} p$$

App Given that $(\{(P_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r) \in \mathcal{B}$ and atomic multisets C_i such that the following hold:

$$C_i$$
, $P_{i_j} \vdash_{\mathscr{B}} q_{i_j}$ for all $i = 1, ..., n$ and $j = 1, ..., l_i$

Then $C_1 \circ \cdots \circ C_n \vdash_{\mathscr{R}} r$.

- (At) $\Vdash^{\perp}_{\mathscr{B}} p$ iff $L \vdash_{\mathscr{B}} p$
- $(\otimes) \qquad \Vdash_{\mathscr{B}} \varphi \otimes \psi \qquad \text{iff} \qquad \text{for any } \mathscr{C} \text{ such that } \mathscr{B} \subseteq \mathscr{C}, \text{ atomic multisets } K$ $\text{and any } p \in \mathbb{A}, \text{ if } \varphi \text{ , } \psi \Vdash_{\mathscr{B}}^K p \text{ then } \Vdash_{\mathscr{C}}^{L_jK} p$
- (\top) $\Vdash^{\perp}_{\mathscr{B}} \top$ iff always

- $(,) \qquad \stackrel{\Vdash^L}{\mathscr{B}} \; \Gamma \; , \; \Delta \qquad \text{iff} \quad \text{there exists multisets K and M such that $L = K$, M} \\ \quad \text{and} \; \stackrel{\Vdash^K}{\Vdash^K} \; \Gamma \; \text{and} \; \stackrel{\Vdash^M}{\mathscr{B}} \; \Delta$

Notes on $\mathbb{H}_{\mathscr{B}}$

 $\blacksquare \text{ The sequent } \langle \Gamma, \phi \rangle \text{ is said to be valid if and only if } \Gamma \Vdash_\varnothing^\varnothing \phi \text{ holds.}$

■ We frequently write this as $\Gamma \Vdash \varphi$.

YII Buzoku (UCL) P-(S for ILL May 30, 2024 10 | 24

Notes on $\mathbb{F}_{\mathscr{B}}$

- $\blacksquare \text{ If } \Vdash^{L}_{\mathscr{B}} \phi \text{ then for all } \mathscr{C} \supseteq \mathscr{B} \text{ we have } \Vdash^{L}_{\mathscr{C}} \phi.$
- $\blacksquare \Vdash_{\mathscr{B}}^{L} \phi \text{ iff } \Vdash_{\mathscr{B}}^{L} \phi \otimes 1 \text{ iff } \Vdash_{\mathscr{B}}^{L} \phi \ , 1$
- Given $\Gamma \Vdash^{\underline{L}}_{\mathscr{B}} \varphi$ and $\Vdash^{\underline{K}}_{\mathscr{B}} \Gamma$, then it holds that $\Vdash^{\underline{L}_{\mathscr{B}} K}_{\mathscr{B}} \varphi$.

Why the extension to Inf?

- Up until now, all Base-extension Semantics have had a simple (Inf) clause.
- For example in IMALL, it suffices to take the following: $\Gamma \Vdash^L_{\mathscr{B}} \varphi$ iff for all $\mathscr{C} \supseteq \mathscr{B}$ and K, $\Vdash^K_{\mathscr{C}} \Gamma$ implies $\Vdash^{L_{\mathscr{C}}} \varphi$

YII Buzoku (UCL) P-4S for ILL May 30, 2024 12 | 24

Why the extension to Inf?

Are we still inferentialist?

Can we understand the exponential better?

- $\blacksquare \ ! \ \phi \Vdash \phi \otimes \ldots \otimes \phi$
- $\blacksquare \Vdash_{\mathscr{B}}^{L} !(\phi \& \psi) \text{ iff } \Vdash_{\mathscr{B}}^{L} ! \phi \otimes ! \psi$

$$!\,\phi \Vdash \phi \otimes \ldots \otimes \phi \text{ iff }$$

for all bases \mathscr{B} and atomic multisets L, such that $\Vdash_{\mathscr{B}}^{\underline{L}} ! \varphi$ then

$$\Vdash_{\mathscr{B}}^{\underline{L}} \phi \otimes \ldots \otimes \phi$$

Yll Buzoku (UCL) May 30, 2024 15 | 24

Considering the case when $\varphi = p$ for simplicity we get the following:

YII Buzoku (UCL) P-IS for ILL May 30, 2024 17

Considering the case when $\varphi = p$ for simplicity we get the following:

■ Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.

YII Buzoku (UCL) P4S for ILL May 30, 2024 17 24

Considering the case when $\varphi = p$ for simplicity we get the following:

- Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.
- Then we have that $\Vdash^{\perp}_{\mathscr{B}} p \otimes \ldots \otimes p$.

Considering the case when $\varphi = p$ for simplicity we get the following:

- Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.
- Then we have that $\Vdash^{\mathcal{L}}_{\mathscr{B}} p \otimes \ldots \otimes p$.
- Examples of such bases:
 - $\blacksquare \mathscr{B} = \{\varnothing \Rightarrow p\}$
 - $\blacksquare \mathscr{B} = \{\varnothing \Rightarrow q, \ q \Rightarrow p\}$

17 24

Expanding what we know

Considering the case when $\varphi = p$ for simplicity we get the following:

- Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.
- Then we have that $\Vdash^{\mathcal{L}}_{\mathscr{B}} p \otimes \ldots \otimes p$.
- Examples of such bases:
 - $\blacksquare \mathscr{B} = \{\varnothing \Rightarrow p\}$
 - $\blacksquare \mathscr{B} = \{\varnothing \Rightarrow q, \ q \Rightarrow p\}$

Note that if $L \neq \emptyset$ then the only way that this relation could hold is if the atoms were derivable from within the base, i.e. if were valid $\Vdash_{\mathscr{B}}^{\emptyset} L$.

So ultimately, $\Vdash_{\mathscr{B}}^{\varnothing} p \otimes \ldots \otimes p$.

Inferring from ! φ should imply that $\Vdash_{\mathscr{B}}^{\varnothing} \varphi$.

A proof-theoretic flavour of the!

We now consider the second identity: $\Vdash_{\mathscr{B}}^{\mathcal{L}}!(\phi \& \psi)$ iff $\Vdash_{\mathscr{B}}^{\mathcal{L}}!\phi \otimes !\psi$ with $\psi = \top$. Furthermore since $\phi \& \top \equiv \phi$ we go as follows:

$$\Vdash_{\mathscr{B}}^{L}! \varphi \text{ iff } \Vdash_{\mathscr{B}}^{L}! \varphi \otimes ! \top \tag{1}$$

iff
$$\Vdash_{\mathscr{B}}^{\underline{L}} ! \varphi \otimes 1$$
 (2)

iff for all
$$\mathscr{C} \supseteq \mathscr{B}$$
, K and $p \in \mathbb{A}$, $! \varphi$, $1 \Vdash_{\mathscr{C}}^{K} p$ implies $\Vdash_{\mathscr{C}}^{L_{p}K} p$ (3)

iff for all
$$\mathscr{C} \supseteq \mathscr{B}$$
, K and $p \in \mathbb{A}$, $! \varphi \Vdash_{\mathscr{C}}^{K} p$ implies $\Vdash_{\mathscr{C}}^{L,K} p$ (4)

A proof-theoretic flavour of the!

We now consider the second identity: $\Vdash_{\mathscr{B}}^{\mathcal{L}}!(\phi \& \psi)$ iff $\Vdash_{\mathscr{B}}^{\mathcal{L}}!\phi \otimes !\psi$ with $\psi = \top$. Furthermore since $\phi \& \top \equiv \phi$ we go as follows:

$$\Vdash^{L}_{\mathscr{B}}! \varphi \text{ iff } \Vdash^{L}_{\mathscr{B}}! \varphi \otimes ! \top \tag{1}$$

iff
$$\Vdash_{\mathscr{B}}^{\underline{L}} ! \varphi \otimes 1$$
 (2)

iff for all
$$\mathscr{C} \supseteq \mathscr{B}$$
, K and $p \in \mathbb{A}$, $! \varphi$, $1 \Vdash_{\mathscr{C}}^{K} p$ implies $\Vdash_{\mathscr{C}}^{L,K} p$ (3)

iff for all
$$\mathscr{C} \supseteq \mathscr{B}$$
, K and $p \in \mathbb{A}$, $! \varphi \Vdash_{\mathscr{C}}^{K} p$ implies $\Vdash_{\mathscr{C}}^{L_{g}K} p$ (4)

Disclaimer: This is not a proof of anything! Just a somewhat convincing argument!

■ The most convincing hypothesis was that $\Vdash^{\mathcal{L}}_{\mathscr{B}} ! \varphi$ iff $L = \emptyset$ and for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and atoms p, if $\varphi \Vdash^{K}_{\mathscr{C}} p$ then $\Vdash^{K}_{\mathscr{C}} p$.

YII Buzoku (UCL) P-IS for ILL May 30, 2024 20 24

- The most convincing hypothesis was that $\Vdash^L_{\mathscr{B}} ! \varphi$ iff $L = \emptyset$ and for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and atoms p, if $\varphi \Vdash^K_{\mathscr{C}} p$ then $\Vdash^K_{\mathscr{C}} p$.
- This however fails to be complete as it requires us to be able to prove from $L \vdash_{\mathscr{B}} (! \, \phi)^{\flat}$ that $L = \varnothing$, to pass Proposition 31 from the report.

YII Buzoku (UCL) P-IS for ILL May 30, 2024 20 | 24

- The most convincing hypothesis was that $\Vdash^{\perp}_{\mathscr{R}} ! \varphi$ iff $L = \emptyset$ and for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and atoms p, if $\varphi \Vdash_{\mathscr{C}}^K p$ then $\Vdash_{\mathscr{C}}^K p$.
- This however fails to be complete as it requires us to be able to prove from $L \vdash_{\mathscr{R}} (! \omega)^{\flat}$ that $L = \emptyset$, to pass Proposition 31 from the report.
- Attempts to generalise this by replacing $L = \emptyset$ with $\mathbb{H}^{\emptyset}_{\infty} L$ fail for the same reason.

YII Buzoku (UCL) May 30, 2024 20 | 24

- The most convincing hypothesis was that $\Vdash^L_{\mathscr{B}} ! \varphi$ iff $L = \emptyset$ and for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and atoms p, if $\varphi \Vdash^K_{\mathscr{C}} p$ then $\Vdash^K_{\mathscr{C}} p$.
- This however fails to be complete as it requires us to be able to prove from $L \vdash_{\mathscr{B}} (! \, \phi)^{\flat}$ that $L = \varnothing$, to pass Proposition 31 from the report.
- Attempts to generalise this by replacing $L = \emptyset$ with $\Vdash_{\mathscr{B}}^{\emptyset} L$ fail for the same reason.
- A different attempt, based on a notion of closure was to define $\Vdash_{\mathscr{B}}^{L} ! \varphi$ iff for every K, p and $\mathscr{C} \supseteq \mathscr{B}$ if we have $\varphi \Vdash_{\mathscr{C}}^{K} p$ then $\Vdash_{\mathscr{C}}^{L,K} p$ and $\ulcorner \forall \urcorner M (\Vdash_{\mathscr{B}}^{M} \varphi \ulcorner \Rightarrow \urcorner \Vdash_{\mathscr{B}}^{\mathscr{D}} M)$ also fails as there is no way to prove the conclusion of the second conditional.

■ We want to re-introduce, in a controlled manner, the ability for normal intuitionistic inferences to be held valid.

Yll Buzoku (UCL) P-IS for ILL May 30, 2024 21 24

- We want to re-introduce, in a controlled manner, the ability for normal intuitionistic inferences to be held valid.
- Not absurd to distinguish basic sentences based on whether they are to be used as a hypothesis in an intuitionistic or a resourceful way.

Yll Buzoku (UCL) P-IS for ILL May 30, 2024 21 24

- We want to re-introduce, in a controlled manner, the ability for normal intuitionistic inferences to be held valid.
- Not absurd to distinguish basic sentences based on whether they are to be used as a hypothesis in an intuitionistic or a resourceful way.
- The distinction *must* however be made by the formula consequence relation.

Yll Buzoku (UCL) P-IS for ILL May 30, 2024 21 24

- We want to re-introduce, in a controlled manner, the ability for normal intuitionistic inferences to be held valid.
- Not absurd to distinguish basic sentences based on whether they are to be used as a hypothesis in an intuitionistic or a resourceful way.
- The distinction *must* however be made by the formula consequence relation.
- Thus a basic rule might look something like the following:

$[P_1; C_1]$		$[P_n; C_n]$
:		:
q_1		q_n
	r	X

Exploring the zoned semantics

Definition (Zoned basic derivability relation)

The relation of derivability in a base \mathcal{B} , is defined inductively as so:

Ref
$$S$$
; $T \vdash_{\mathscr{B}} p$ iff $(p \in S \text{ and } T = \emptyset)$ or $T = [p]$.

App Given that

$$(\{(P_{1_i}; C_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i}; C_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r) \in \mathcal{B}$$
 and atomic multisets G and C_i such that the following hold:

$$G, P_{i_j}; L_i, C_{i_j} \vdash_{\mathscr{B}} q_{i_j}$$
 for all $i = 1, ..., n$ and $j = 1, ..., l_i$

Then
$$G; L_1, \ldots, L_n \vdash_{\mathscr{B}} r$$
.

Exploring the zoned semantics

- $\blacksquare \Vdash_{\mathscr{B}}^{G;L} p \text{ iff } G; L \vdash_{\mathscr{B}} p$
- $\blacksquare \Vdash_{\mathscr{B}}^{G;L} \Gamma \ , \ \Delta \ \text{iff there exists} \ L = U \ , \ V \ \text{such that} \ \Vdash_{\mathscr{B}}^{G;U} \Gamma \ \text{and} \ \Vdash_{\mathscr{B}}^{G;V} \Delta$
- $\Vdash_{\mathscr{B}}^{G;L}$! φ iff for every base $\mathscr{C} \supseteq \mathscr{B}$, atomic multiset K and atom p, such that φ ; $\cdot \Vdash_{\mathscr{C}}^{G;K} p$ hold, then $\Vdash_{\mathscr{C}}^{G;L_{\flat}K} p$.
- Seems to suggest a want for a Lolli-like encoding of sequents i.e. $(! \Gamma, \Delta : \phi) \mapsto \Gamma; \Delta \Vdash \phi$, as it is still difficult to encode the !I rule.

YII Buzoku (UCL) P-4S for ILL May 30, 2024 23 | 24

Thank you!

Thank you for listening!