Preparing Data and Feature Engineering

Week 2

Mohammad Esmalifalak

Why Feature Engineering or Data Cleaning?

Feature Engineering

Door color
White
Brown
.
.

Crime Rate	RM	Age	Tax	Price
0.00632	6.575	65.2	296	240000
0.02731	6.421	78.9	242	216000
0.02729	7.185	61.1	242	347000
0.03237	6.998	45.8	222	334000
0.06905	7.147	54.2	222	362000
0.02985	6.43	58.7	222	287000
0.08829	6.012	66.6	311	229000
0.14455	6.172	96.1	311	271000

• Feature selection: Deciding which data to collect (Domain Knowledge)

• Feature creation: Combinations of features

Data Cleaning

Types of Data-Level of Measurement

Categorical (Nominal, Qualitative):

- Don't have order (e.g. Sex, Preferred type of car, Color)
- Can be summarized by frequency of observation for each category
- Not possible to calculate mean

Slide 5

really glad you included this -Noelle Ibrahim 7

, 5/8/2018

Thanks 2

Haitham Alhajj, 5/8/2018

Types of Data-Level of Measurement

Ordinal:

- Have meaningful order (e.g. Rank, Satisfaction, Fanciness)
- Can be summarized by frequency of observation
- Usually not good idea to get mean

Slide 6

really glad you included this -Noelle Ibrahim 7

, 5/8/2018

Thanks 2

Haitham Alhajj, 5/8/2018

Types of Data-Level of Measurement

Interval/Ratio (Scale, Quantitative, Parametric):

- Can be measured (rather than classified or ordered).
- Can be discrete (#of costumers, age) or continuous (distance, weight)
- Common summary measures are, mean, median, standard deviation

Slide 7

really glad you included this -Noelle Ibrahim 7

, 5/8/2018

Thanks 2

Haitham Alhajj, 5/8/2018

Method	Strengths	Weaknesses	Python
Mean	Averages of numerical data are used in many computations that will need to be done with numerical data, replacing with average value will not distort	Skewed by outliers Only meaningful for rational data types (i.e. float, int) and possibly interval, but not nominal (categorical) or ordinal	mean_age = df.Age.mean() df.Age = df.Age.fillna(mean_age)

- This slide and the next one are very nice and efficient. But again, there are too much information per slide. O the other hand, students are very good in absorbing concepts when we show them plots and figures rather than only words and sentences. So, I suggest to put each method in a separate slide and show two plots of two data sets for which one of them the method is working and another one themethod is not.
 - -hossein taghinejad
 - , 5/8/2018

Method	Strengths	Weaknesses	Python
Median	Robust to outliers	May not be appropriate for datasets with "skewed' distributions (i.e. poisson) in certain applications	med_age = df.Age.median()

- This slide and the next one are very nice and efficient. But again, there are too much information per slide. O the other hand, students are very good in absorbing concepts when we show them plots and figures rather than only words and sentences. So, I suggest to put each method in a separate slide and show two plots of two data sets for which one of them the method is working and another one themethod is not.
 - -hossein taghinejad
 - , 5/8/2018

Method	Strengths	Weaknesses	Python
Mode	Using the most frequent value in a large dataset will not usually distort the average or other values too greatly	May not be appropriate for datasets with kurtosis (i.e. stable distributions) in certain applications	mod_age = df.Age.mode()[0] *Mode returns a series

- This slide and the next one are very nice and efficient. But again, there are too much information per slide. O the other hand, students are very good in absorbing concepts when we show them plots and figures rather than only words and sentences. So, I suggest to put each method in a separate slide and show two plots of two data sets for which one of them the method is working and another one themethod is not.
 - -hossein taghinejad
 - , 5/8/2018

Method	Strengths	Weaknesses	Python
Remove	Does not introduce any bias if missing values are randomly distributed	Selection bias may occur if missing values are concentrated among population subgroups (i.e. mostly older or mostly younger patients in a medical database)	A = df.dropna(how='all') df.dropna(how='any') df.dropna(thresh=2)

Pandas Data Frames and Useful Commands

Some commands that can be used to understand your data set. This can help you decide how to best handle missing values and other data cleaning tasks we will discuss in this lecture

- df.head() (method)
- df.tail() (method)
- df.columns (attribute)
- df.shape (attribute)
- df.info()
- df.column.value_counts(dropna=False)
- df.describe()

Visualizing Data with Graphs

Plot	Strengths	Weaknesses	Python
Scatter	Visualize relationships between variables, see outliers	Useful only for 2 or 3 variables at a time	# Matplotlib Import matplotlib.pyplot as plt plt.scatter(x, y)
			# Seaborn Import seaborn as sns Sns.scatterplot(x=,y=,hue=)

Visualizing Data with Graphs

Plot	Strengths	Weaknesses	Python
Histogram	Find distribution of a single variable, see outliers	Selecting Bin size	# Matplotlib Import matplotlib.pyplot as plt plt.hist(x, bins=10)
			# Seaborn Import seaborn as sns sns.distplot(x, bins=10, kde=False)

Visualizing Data with Graphs

Plot	Strengths	Weaknesses	Python
Box Plot	Visualize coarse grained distribution of numerical data by category, see outliers Can handle several categorical variables	Distribution is only min, max, quartiles and outliers	# Matplotlib Import matplotlib.pyplot as plt plt.boxplot([x ,y],labels=['a','b']) plt.legend # Seaborn Import seaborn as sns sns.boxplot(x="day", y="total_bill", hue="time")

Data cleaning/Outliers

Having less than a certain probability of occurring

Categorical Data

Label Encoding:

Five categories — Five Numbers.

Pros: One new column

Cons: Order could confuse algorithm

df["C3"] = df["C3"].astype('category')

df["Cn"] = df["C3"].cat.codes

One-Hot Encoding:

Three categories — Three columns

Pros: Doesn't have any order Cons: Can create lots cols.+rows

pd.get_dummies(df, columns=['Sex','Color'])

© All rights reserved. All content within our courses, such as this video, is protected by copyright and is owned by the course author or unless otherwise stated. Third party copyrighted materials (for example, images and text) have either been licensed for use in any given course, or have been copied under an exception or limitation in Canadian Copyright law. For further information, please contact the McMaster University Centre for Continuing Education ccecrsdv@mcmaster.ca.