北京师范大学 $2021 \sim 2022$ 学年第一学期期末考试试卷(A 卷)

课程名称:	拓扑学			任语	i:			
卷面总分:	_ <u>100_</u> 分	考试日	时长: <u>12</u>	0_分钟	考试类别	別: 闭卷	⊠ 开卷	□ 其他□
院(系):			专业:			年级:		
姓名:			学号:					
题号	_	<u> </u>	三	四	五.	六	七	总分
得分								
阅卷老师	(签字):							

一. (10 分) 在 E^n 和 $S^n - \{S\}$ 之间建立一个同胚。

二. $(16 \ \mathcal{G})$ 在实数集 \mathbb{R} 上,写出离散拓扑 τ_s ,平凡拓扑 τ_t ,余有限拓扑 τ_f ,余可数拓扑 τ_c 的定义。并考虑如下拓扑:

$$\tau_1 := \{ (-\infty, a) \mid -\infty \le a \le \infty \}.$$

证明: $E^1 = (\mathbb{R}, \tau_e)$, (\mathbb{R}, τ_f) , (\mathbb{R}, τ_c) , (\mathbb{R}, τ_1) 这四个空间两两不同胚。

三.(10分) 设 $f: X \to Y$ 是连续单射,X 紧致,Y 为 Hausdorff 空间。证明:f 为嵌入。(从而,若 f 也是满射,则为同胚。)

四. (10分) 证明: 如果连续映射 $f: X \to S^n$ 不是满射,则 f 是零伦的,即 f 同伦于一个常值映射。

五. (10分) 将 $S^2 - \{N, S\}$ 按对径点粘合,所得空间是什么?

六. (14分) 设 f 是 2 维实心球 D^2 到自身的连续映射,证明:存在 $x \in D^2$,使得 f(x) = x.

七. (30分) 下列空间之间哪些相互同胚,或不同胚? 说明理由 $E^1,\ E^2,\ [0,1),\ S^1,\ S^2,\ E^3.$