

LAB5 Decision Tree and Random Forests

贾艳红 Jana Email:jiayh@mail.sustech.edu.cn

- Ol Decision Tree
- **Ensemble learning**
- 03 lab task

What is decision Tree?

- A decision tree has decision nodes and leaf nodes.
- A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy).
- Leaf node (e.g., Play) represents a classification or decision.
- The topmost decision node in a tree which corresponds to the best predictor called root node.
- Decision trees can handle both categorical and numerical data.

Which attribute to select?

Which attribute to select?

> We have two popular attribute selection measures:

- Deterministic good (all true or all false)
- Uniform distribution bad
- What about distributions in between

> We have two popular attribute selection measures:

- Information Gain(ID₃)
- Information Gain Ratio(ID4.5)
- Gini Index(CART)

Entropy H(S) is a measure of the amount of uncertainty in the (data) set S

$$H(S) = -\sum_{x \in X} p(x) \log_2 p(x)$$

set S distriction of the set of t

The entropy is 0 if all samples of a node belong to the same class, and the entropy is maximal if we have a uniform class distribution.

1. Entropy of a group in which all examples belong to the same class:

$$entropy = -1\log_2 1 = 0$$

This is not a good set for training.

2. entropy of a group with 50% in either class:

$$entropy = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

This is a good set for training.

Information Gain

IG(A) is the measure of the difference in entropy from before to after the set is split on an A

attribute .

$$IG(A) = H(S) - \sum_{t \in T} p(t)H(t)$$

- H(S) Entropy of set S
- ullet T The subsets created from splitting set S by attribute A such that $S = \bigcup_{t \in T} t$
- ullet p(t) The proportion of the number of elements in t to the number of elements in set S
- ullet H(t) Entropy of subset t

Outlook	Temperature	Humidity	Wind	Play ball	
Sunny	Hot	High	Weak	No	
Sunny	Hot	High	Strong	No	
Overcast	Hot	High	Weak	Yes	
Rain	Mild	High	Weak	Yes	
Rain	Cool	Normal	Weak	Yes	
Rain	Cool	Normal	Strong	No	
Overcast	Cool	Normal	Strong	Yes	
Sunny	Mild	High	Weak	No	
Sunny	Cool	Normal	Weak	Yes	
Rain	Mild	Normal	Weak	Yes	
Sunny	Mild	Normal	Strong	Yes	
Overcast	Mild	High	Strong	Yes	
Overcast	Hot	Normal	Weak	Yes	
Rain	Mild	High	Strong	No	
			Total	14	

	Outlook	Temperature	Humidity	Wind	Play ball
	Sunny	Hot	High	Weak	No
	Sunny	Hot	High	Strong	No
	Overcast	Hot	High	Weak	Yes
	Rain	Mild	High	Weak	Yes
	Rain	Cool	Normal	Weak	Yes
	Rain	Cool	Normal	Strong	No
	Overcast	Cool	Normal	Strong	Yes
	Sunny	Mild	High	Weak	No
	Sunny	Cool	Normal	Weak	Yes
	Rain	Mild	Normal	Weak	Yes
	Sunny	Mild	Normal	Strong	Yes
	Overcast	Mild	High	Strong	Yes
	Overcast	Hot	Normal	Weak	Yes
=	Rain	Mild	High	Strong	No
				Total	14

Collection (S) All the records in the table refer as Collection

Outlook	Temperature	Humidity	Wind	Play ball
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No
			Total	14

Class(C) or Classifier:Play ball Because based on Outlook, Temperature, Humidity and Wind we need to decide whether we can Play ball or not, that's why Play ball is a classifier to make decisiona-Ps

ID3 Algorithm

1. Compute Entropy(S) = $-(9/14)\log_2(9/14)-(5/14)\log_2(5/14)=0.940$

$$H(S) = -\sum_{x \in X} p(x) \log_2 p(x)$$

2. Compute information gain for each attribute:

$$IG(A) = H(S) - \sum_{t \in T} p(t)H(t)$$

Windy: Weak= $8 \rightarrow (6+,2-)$, Strong= $6 \rightarrow (3+,3-)$

- Entropy(S_{false})=-6/8Log2(6/8)-2/8Log2(2/8)=0.811
- Entropy(S_{true}) =-3/6Log2(3/6)-3/6Log2(3/6)=1

$$\checkmark$$
 Gain(S,Windy) = 0.940-(8/14)(0.811)-(6/14)(1)=0.048

ID3 Algorithm

3. Select attribute with the maximum information gain for splitting:

- Gain(S, Windy)=0.048
- Gain(S, Humidity) =0.151
- Gain(S, Temperature)=0.029
- Gain(S, Outlook) = 0.246

4. Apply ID3 to each child node of this root, until:

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse
- Proposed Base Case 3: If all attributes have small information gain(<β) then don't recurse

Build a decision tree using ID3

- 1 Start from empty decision tree
- 2 Split on next best attribute (feature)
- ③ Use, for example, information gain to select attribute:

$$\underset{i}{\operatorname{argmax}} \operatorname{IG}(S, A_{i}) = \underset{i}{\operatorname{argmax}} \operatorname{H}(S) - \operatorname{H}(S \mid A_{i})$$

4 Recurse(2~3 step)

Problematic: attributes with a large numer of values(extreme case: Day). information grain is maximal for Day attribute!!

Day	Outlook	Temperature	Humidity	Wind	Play ball
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

Note: Information gain is biased towards choosing attributes with a large number of values.

From ID3 to C4.5

Gain ratio: a modification of the information gain that reduces its bias

$$IG_{ratio}(S, A) = \frac{IG(S, A)}{H_A(S)}$$

$$H_A(S) = \sum_{i=1}^n \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

C4.5 is an extension of ID3 algorithm:

- Handling both continuous and discrete attributes.
- Handling training data with missing attribute values
- Pruning trees after creation.

Continuous-value attributes

Day	Outlook Temperature		Humidity	Play ball
D01	Sunny	High	80	No
D02	Sunny	Hot	72	No
D03	Overcast	Hot	83	Yes
D04	Rainy	Mild	81	Yes
D05	Rainy	Coo1	72	Yes
D06	Rainy	Coo1	65	No
D07	0vercast	Coo1	75	Yes
D08	Sunny	Mild	85	No
D09	Sunny	Coo1	68	Yes
D10	Rainy	Mild	75	Yes
D11	Sunny	Mild	69	Yes
D12	Overcast	Mild	64	Yes
D13	Overcast	Hot	70	Yes
D14	Rainy	Mild	71	No

sort the numeric attribute values,

Humidity	Play ball
80	No
72	No
83	Yes
81	Yes
72	Yes
65	No
75	Yes
85	No
68	Yes
75	Yes
69	Yes
64	Yes
70	Yes
71	No

Humidity	Play ball
85	No
83	Yes
81	Yes
80	No
75	Yes
75	Yes
72	Yes
72	No
71	No
70	Yes
69	Yes
68	Yes
65	No
64	Yes

Continuous-value attributes

Split on temperature attribute:

- E.g.: temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3]) = 0.939 bits

Place split points halfway between values

$$IG(S, a) = \max IG(S, a, t) = \max H(S) - \sum_{\lambda \in \{-, +\}} \frac{S_t}{S} H(S_t)$$

"Under fitting"

"Just right"

"Over fitting"

Overfitting: If we have too many attributes(features) the learned hypothesis may fit the training set very well, but fail to generalize to new examples (Predict price on new examples).

Why overfitting happens in decision tree 2 chine

 Presence of error in the training examples. (In general in machine learning).

When small numbers of examples are associated with leaf node.

Reduce Overfitting

 Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data. (difficult)

Allow the tree to overfit the data, and then post-prune the tree.

Missing information

Fill in the data according to most common(given class)

BI-RAD	Age	shape	Margin	Density	Class
4	48	4	5	?	1
5	67	3	5	3	1
5	57	4	4	3	1
5	60	?	5	1	1
4	53	?	4	3	1
4	28	1	1	3	0
4	70	?	2	3	0
2	66	1	1	?	0
5	63	3	?	3	0
4	78 1		1	1	0

BI-RAD	Age	shape	Margin	Density	Class
4	48	4	5	3	1
5	67	3	5	3	1
5	57	4	4	3	1
5	60	4	5	1	1
4	53	4	4	3	1
4	28	1	1	3	0
4	70	1	2	3	0
2	66	1	1	3	0
5	63	3	?	3	0
4	78	1	1	1	0

Missing information

>Probability weights

编号	色泽	根蒂	高声	纹理	脐部	触感	好瓜
1	-	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	-	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	-	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	-	稍凹	硬滑	是
9	乌黑	-	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	-	否
12	浅白	蜷缩	-	模糊	平坦	软粘	否
13	-	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	-	沉闷	稍糊	稍凹	硬滑	否

$$IG(S,A) = \rho * IG(\widetilde{S},A)$$

色泽:

$$Ent(\tilde{\mathbf{S}}) = -\left(\frac{6}{14}log_2\frac{6}{14} + \frac{8}{14}log_2\frac{8}{14}\right) = 0.985$$

$$Ent(\tilde{\mathbf{S}}^1) = -\left(\frac{2}{4}log_2\frac{2}{4} + \frac{2}{4}log_2\frac{2}{4}\right) = 1$$

$$Ent(\tilde{\mathbf{S}}^2) = -\left(\frac{4}{6}log_2\frac{4}{6} + \frac{2}{6}log_2\frac{2}{6}\right) = 0.918$$

$$Ent(\tilde{\mathbf{S}}^3) = -\left(\frac{0}{4}log_2\frac{0}{4} + \frac{4}{4}log_2\frac{4}{4}\right) = 0$$

$$Gain(\tilde{\mathbf{S}}, a) = 0.985 - \left(\frac{4}{14} \times 1 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0\right) = 0.306$$

$$Gain(\mathbf{S}, a) = \rho \times Gain(\tilde{D}, a) = \frac{14}{17} \times 0.306 = 0.252$$

Gini indexes are calculated as

Gini(p) =
$$\sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

For a set of instances D:

Gini(D) =
$$1 - \sum_{k=1}^{K} (\frac{|C_k|}{|D|})^2$$

- CART stands for Classification and Regression Trees.
- It constructs binary trees, namely each internal node has exactly two outgoing edges.
- The splits are selected using the twoing criteria and the obtained tree is pruned by cost–complexity Pruning.
- CART can handle both numeric and categorical variables and it can easily handle outliers

- The simplest way of combination is voting.
- Each base classifier should at least have a certain degree of accuracy and diver: "

	测试例1	测试例2	测试例3	须	则试例1	测试例2	测试例3	ß	则试例1	测试例2	测试例3
h_1	√	√	×	h_1	√	√	×	h_1	√	×	×
h_2	×	\checkmark	\checkmark	h_2	\checkmark	\checkmark	×	h_2	×	\checkmark	×
h_3	\checkmark	×	\checkmark	h_3	√	√	×	h_3	×	×	\checkmark
集成	₹ √	√	√	集成	√	. 🗸	×	集成	×	×	×
	(a) 集品	战提升性	能		(b) 集)	成不起作	用		(c) 集	成起负作	■用

《机器学习》,周志华

 Ensemble learning is better than each base learning with the number of base learning algorithms. T. increased.

$$P(H(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \sum_{k=0}^{\lfloor T/2 \rfloor} {T \choose k} (1 - \epsilon)^k \epsilon^{T-k}$$
$$\leq \exp\left(-\frac{1}{2}T(1 - 2\epsilon)^2\right).$$

- > Ensemble learning including boosting, bagging, stacking and so on
- boosting(Ada boosting \ gradient boosting)
- Ada Boosting
 - ✓ Totally T iterations into which the base algorithms are trained by increasing the weighting of the miss-matched sample points in previous iterations.

- AdaBoostClassifier(): Solve the classification problem;
- AdaBoostRegressor(): Solving regression problem;
- Usage:

```
import numpy as np
   import matplotlib.pyplot as plt
  from sklearn import datasets
  from sklearn.model selection import train test split
  X, y = datasets.make moons(n samples=500, noise=0.3, random state=42)
  X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
  from sklearn.ensemble import AdaBoostClassifier
  from sklearn.tree import DecisionTreeClassifier
   ada_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2), n_estimators=500)
   ada clf.fit(X train, y train)
AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=2),
                   n estimators=500)
```


Gradient boosting

- ✓ It also use iterations and each iteration is dependent upon previous one.
- ✓ Gradient boosting see the residual from previous iteration as new inputs and try to fit the residual.
- ✓ At last, the ensemble learning is
 the summation of each base ones

解释:

- 1. 使用整体的数据集训练第一个子模型 m1, 产生错误 e1 (m1 模型预测错误的样本数据);
- 2. 使用 e1 数据集训练第二个子模型 m2,产生错误 e2;
- 3. 使用 e2 数据集训练第三个子模型 m3,产生错误 e3;
- 4. . . .
- 5. 最终的预测结果是: m1 + m2 + m3 + 。。。(回归问题)

- GradientBoostingClassifier(): Solve the classification problem;
- GradientBoostingRegressor(): Solving regression problem;
- Usage:

```
from sklearn.ensemble import GradientBoostingClassifier

gd_clf = GradientBoostingClassifier(max_depth=2, n_estimators=30)

gd_clf.fit(X_train, y_train)
```


> Stacking

- 1. 将训练数据集分割为 3 份(有几层就将 X_train 分成几份): **X_train_1、X_train_2、X_train_3**,使用 **X_train_1** 训练出 3 个模型(训练方式可以有多种); (<mark>得到第一层的 3 个模型</mark>)
- 2. 将 **X_train_2** 数据集传入 3 个模型,得到 3 组预测结果,将 3 组预测结果与 **X_train_2** 数据集中的 y 值一起 组合成一个新的数据集 **X_train_new_1**; (得到第一个新的数据集: **X_train_new_1**)
- 3. 使用 X_train_new_1 数据集再训练出 3 个模型,为第二层的模型; (得到第二层的 3 个模型)
- 4. 将 **X_train _3** 数据集传入第二层的 3 个模型,得到 3 组预测结果,再将 3 组预测结果与 X_train_3 数据集中的 y 值一起组合成一个新的数据集 **X_train_new_2**; (得到第二个新的数据集: **X_train_new_2**)
- 5. 使用 X_train_new_2 训练出一个模型,作为最高层的模型;(得到第三层的 1 个模型)

- Bagging (Bootstrap AGGregatING)
 - ✓ Bagging can be calculated parallelly because the base algorithms are not dependent
 - ✓ Use bootstrap sampling to get T sample data sets from original data set
 - ✓ Train the base model on each bootstrap data set than get the ensemble learning model
- Bagging keeps the diversity by changing the data sets. Additionally, it has
 the same order of computational complexity

Use ensemble learning in decision tree

•

Sampling with Replacement

• If we use decision tree as the base learning algorithms, this ensemble algorithm is called **Random Forest**

Forest

✓ It means many "trees"

Random

- ✓ The splitting attribute of each node is not chosen by IG
- ✓ It select a subset of the remain attributes randomly and perform IG method just in that subset
- ✓ In that way we keep the diversity of the base algorithm
- ✓ Base decision tree does not need pruning also because of diversity

Use ensemble learning in decision tree

- RandomForestClassifier(): Solve the classification problem;
- RandomForestRegressor(): Solving regression problem;
- Usage:

```
from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=500, random_state=666, oob_score=True, n_jobs=-1)

rf_clf.fit(X, y)
```

Lab Task

- 1. Complete the exercises and questions in the Lab05_DecisionTree_guide.pdf
- 2. Submit two result files with the same content to bb. The extensions of these two files are **ipynb** and **pdf**, respectively.

Lab1: 周三 上午3-4节 荔园6栋408机房

Lab2: 周三 下午7-8节 荔园6栋406机房

Lab3: 周二下午5-6节 荔园6栋409机房

Lab4: 周二下午7-8节 荔园6栋406机房

Thanks

贾艳红 Jana Email:jiayh@mail.sustech.edu.cn

