Consensus

In a distributed system, agreement among multiple processes on a single data value, despite failures.

Once they reach a decision on a value, that decision is final.

Why Consensus?

Consensus

Generalizes to N nodes/processes.

The Distributed Consensus Problem

We assume n processes, connected by a synchronous, undirected graph where each process has a unique ID.

Each process u receives an input value i_u from the set S, that is $i_u \in S$.

An algorithm solves the problem of distributed consensus if it adheres to the following specifications:

- 1. Agreement: No pair of processes agrees on different output values, that is, $\nexists u, v : o_u \neq o_v$
- 2. Validity: If all processes start with the same value $i \in S$, i.e., $\forall u \in [1, n] : i_u = i$, then value i is the only possible decision value, that is $\forall u \in [1, n] : o_u = i$
- 3. Termination: All processes eventually decide.

SimpleConsensus Algorithm

Each process $u \in [1, n]$ maintains a list I_u with pairs of IDs and input values. Initially the list contains only one set: the ID of u and the input value $i_u \in S$. In each round, all processes transmit the list I to their local neighborhood. When they receive list I_v from a neighbor v, they merge it with their internal list. After $\delta + 1$ rounds, all processes maintain a list containing a pair (u, i_u) for each other process of the system. Then they apply a predefined consensus rule and terminate by outputing the common value $o \in S$.

- Each process knows δ.
- The algorithm solves the consensus problem.
- The consensus rule can be: minimum value, average value, majority . . .

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

General Graph

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

1st Round - message transmission

Let a synchronous network of n = 6 processes and $\delta = 2$.

Consensus rule: simple majority

1st Round - processing

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

2nd Round - message transmission

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

2nd Round - processing

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

3rd Round – message transmission

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

3rd Round - processing

Let a synchronous network of n=6 processes and $\delta=2$.

Consensus rule: simple majority

3rd Round-decision

Properties of SimpleConsensus Algorithm

Let a synchronous network G with n processes and m channels

- At the end of round δ each process $u \in [1, n]$ will maintain a list $I_u = \{(1, i_1), (2, i_2), \dots, (n, i_n)\}$
- ▶ The lists maintained by all processes are identical, i.e., $\forall u \in [1, n] : I_u = I$
- ► The time complexity is O (diam(G))
- ▶ The message complexity is $\mathcal{O}(diam(G) \cdot m)$
- ▶ The message complexity in bits is $\mathcal{O}(diam(G) \cdot n \cdot m)$

Considerations

How will the execution evolve if failures occur during the transmission of messages ?

Given the presence of failures,

- can we guarantee the correctness of SimpleConsensus ?
- can we identify failure ?
- can we prevent/deal with failure ?

Fundamental limitation

Theorem

Let G be the graph constituting of nodes 1 and 2 connected by a single edge. Then, there is no algorithm that solves the coordinated attack problem on G given an unbounded number of link failures.

- Impossible to solve basic consensus problems when dealing with totally unreliable network.
- To overcome, it is necessary to strengthen the model
 - Assume an upper bound on the number of link failures.
 - Assume that link failures occur with a probability p.
- or relax the problem requirements
 - Allow the possibility of violating the agreement condition.
 - Allow the possibility of violating the validity condition.
- Allow processes to use randomization.

Stopping Failures

Processes may simply stop arbitrarily without warning, at any point during a round of execution of a distributed algorithm. The process will halt immediately and terminate without further interaction with the other processes of the system.

- Stopping failures model unpredictable processor crashes.
- We assume an upper bound σ on the number of stopping failures
 - such an upper bound holds for the complete execution of the distributed system.
 - is equivalent to other measures, e.g., rate of stopping failure per round.

Let a synchronous complete graph n=4 and $\sigma=2$.

Complete Graph

Let a synchronous complete graph n=4 and $\sigma=2$.

1st Round - process 3 fails

Let a synchronous complete graph n=4 and $\sigma=2$.

2nd Round - process 4 fails

Let a synchronous complete graph n=4 and $\sigma=2$.

3rd Round - no failures

Let a synchronous complete graph n=4 and $\sigma=2$.

3rd Round – agreement

