CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Jan 20, 2021

/ 42

Outline

- 1 Logistics
- 2 Recap
- 3 Classification and Nearest Neighbor Classifier (NNC)
- 4 Some theory on NNC

Outline

- 1 Logistics
- 2 Recap
- 3 Classification and Nearest Neighbor Classifier (NNC)
- Some theory on NNC

Los

Homeworks

- HW 0 is due on Friday. It will not be graded, only to get everyone familiar with the submission mechanism.
- HW 1 will be released on Friday (01/22/2021). Starting HW 1 assignments will be graded.

4.

Outline

Last Class: Foundations of ML

- 1 Logistics
- 2 Recap
- 3 Classification and Nearest Neighbor Classifier (NNC)
- 4 Some theory on NNC

- We discussed different flavors of learning problems
- Tools from probability, information theory, and optimization
- **Today:** We will start our journey of Supervised learning starting with classification.

5 / 42

Classification and Nearest Neighbor Classifier (NNC)

Outline

- Logistics
- 2 Recap
- 3 Classification and Nearest Neighbor Classifier (NNC)
 - Intuitive example
 - General setup for classification
 - Algorithm
 - How to measure performance
 - Variants, Parameters, and Tuning
 - Summary
- 4 Some theory on NNC

Classification and Nearest Neighbor Classifier (NNC)

Intuitive example

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

Measuring the properties of the flowers

Features and attributes: the widths and lengths of sepal and petal

Often, data is conveniently organized as a table

Fisher's Iris Data					
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +	
5.1	3.5	1.4	0.2	I. setosa	
4.9	3.0	1.4	0.2	I. setosa	
4.7	3.2	1.3	0.2	I. setosa	
4.6	3.1	1.5	0.2	I. setosa	
5.0	3.6	1.4	0.2	I. setosa	
5.4	3.9	1.7	0.4	I. setosa	
4.6	3.4	1.4	0.3	I. setosa	
5.0	3.4	1.5	0.2	I. setosa	
4.4	2.9	1.4	0.2	I. setosa	
4.9	3.1	1.5	0.1	I. setosa	

Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Pairwise scatter plots of 131 flower specimens

Visualization of data helps identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica

Classification and Nearest Neighbor Classifier (NNC)

Different types seem well-clustered and separable

Using two features: petal width and sepal length

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa

13 / 42

Classification and Nearest Neighbor Classifier (NNC) Algorithm

Nearest neighbor classification (NNC)

The index of the **nearest neighbor** of a point x is

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \operatorname*{argmin}_{n \in [\mathsf{N}]} \sqrt{\sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2}$$

where $\|\cdot\|_2$ is the ℓ_2 /Euclidean distance.

Classification rule

$$f(\boldsymbol{x}) = y_{\mathsf{nn}(\boldsymbol{x})}$$

General setup for multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each $x_n \in \mathbb{R}^{ extsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \dots, C\}$ is called a label/class/category.
- They are used to learn a *classifier* $f: \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C=2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

Classification and Nearest Neighbor Classifier (NNC)

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setoas
2	1.4	7.0	versicolor
3	2.5	6.7	virginica
:	:	:	

Flower with unknown category

petal width = 1.8 and sepal length = 6.4 (i.e. x = (1.8, 6.4)) Calculating distance $\|x - x_n\|_2 = \sqrt{(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2}$

ID	distance
1	1.75
2	0.72
3	0.76

Thus, the category is versicolor.

Classification and Nearest Neighbor Classifier (NNC) How to measure performance

Is NNC doing the right thing for us?

Intuition

We should compute accuracy (A) — the percentage of data points being correctly classified, or the error rate (ϵ) — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

$$A^{ ext{train}} = rac{1}{\mathsf{N}} \sum_n \mathbb{I}[f(oldsymbol{x}_n) == y_n], \quad \epsilon^{ ext{train}} = rac{1}{\mathsf{N}} \sum_n \mathbb{I}[f(oldsymbol{x}_n)
eq y_n]$$

where $\mathbb{I}[\cdot]$ is the indicator function.

Is this the right measure?

Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a decision boundary that partitions the space into different regions.

Classification and Nearest Neighbor Classifier (NNC)

How to measure performance

Example

Training data

What are A^{TRAIN} and $\epsilon^{\mathrm{TRAIN}}$?

$$A^{\text{TRAIN}} = 100\%, \quad \epsilon^{\text{TRAIN}} = 0\%$$

For every training data point, its nearest neighbor is itself.

Test Error

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_{\mathsf{M}}, y_{\mathsf{M}})\}$
- A fresh dataset, not overlap with training set.
- Test accuracy and test error

$$A^{ ext{TEST}} = rac{1}{\mathsf{M}} \sum_m \mathbb{I}[f(oldsymbol{x}_m) == y_m], \quad \epsilon^{ ext{TEST}} = rac{1}{\mathsf{M}} \sum_M \mathbb{I}[f(oldsymbol{x}_m)
eq y_m]$$

• Good measurement of a classifier's performance

21 / 42

Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- ullet 1-nearest neighbor: $\mathsf{nn}_1(oldsymbol{x}) = \mathrm{argmin}_{n \in [\mathsf{N}]} \, \|oldsymbol{x} oldsymbol{x}_n\|_2$
- 2-nearest neighbor: $\operatorname{nn}_2(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \setminus \operatorname{nn}_1(x)} \|x x_n\|_2$
- 3-nearest neighbor: $\operatorname{nn}_3(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \setminus \{\operatorname{nn}_1(x), \operatorname{nn}_2(x)\}} \|x x_n\|_2$

The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Note: we have

$$\|m{x} - m{x}_{\mathsf{nn}_1(m{x})}\|_2 \leq \|m{x} - m{x}_{\mathsf{nn}_2(m{x})}\|_2 \cdots \leq \|m{x} - m{x}_{\mathsf{nn}_K(m{x})}\|_2$$

Variant 1: measure nearness with other distances

Previously, we use the Euclidean distance

$$\mathsf{nn}(\boldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2$$

Many other alternative distances

E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\|x - x_n\|_1 = \sum_{d=1}^{D} |x_d - x_{nd}|$$

More generally, L_p distance (for $p \ge 1$):

$$\|x - x_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

Green line is Euclidean distance. Red, Blue, and Yellow lines are ${\cal L}_1$ distance

22 / 42

Classification and Nearest Neighbor Classifier (NNC)

Variants, Parameters, and Tuning

How to classify with K neighbors?

Classification rule

- ullet Every neighbor votes: naturally $oldsymbol{x}_n$ votes for its label y_n .
- ullet Aggregate everyone's vote on a class label c

$$v_c = \sum_{n \in \operatorname{knn}(\boldsymbol{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

Predict with the majority

$$f(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} v_c$$

 $c{\in}[\mathsf{C}]$

Variants, Parameters, and Tuning

Example

Decision boundary

When K increases, the decision boundary becomes smoother.

What happens when K = N?

25 / 42

Classification and Nearest Neighbor Classifier (NNC)

Variants, Parameters, and Tuning

Which variants should we use?

Classification and Nearest Neighbor Classifier (NNC) Variant 3: Preprocessing data

One issue of NNC: distances depend on units of the features!

One solution: preprocess data so it looks more "normalized".

Example:

• compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data.

Hyper-parameters in NNC

- The distance measure (e.g. the parameter p for L_p norm)
- K (i.e. how many nearest neighbor?)
- Different ways of preprocessing

Most algorithms have hyper-parameters. Tuning them is a significant part of applying an algorithm.

Recipe

Tuning via a development dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

Classification and Nearest Neighbor Classifier (NNC)

Variants, Parameters, and Tuning

S-fold Cross-validation

What if we do not have a development set?

Classification and Nearest Neighbor Classifier (NNC)

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

S = 5: 5-fold cross validation

Variants, Parameters, and Tuning

Special case: S = N, called leave-one-out.

- For each possible value of the hyperparameter (e.g. $K=1,3,\cdots$)
 - \bullet Train a model using $\mathcal{D}^{\mbox{\tiny TRAIN}}$
 - ullet Evaluate the performance of the model on $\mathcal{D}^{ ext{DEV}}$
- ullet Choose the model with the best performance on $\mathcal{D}^{ ext{DEV}}$
- ullet Evaluate the model on $\mathcal{D}^{ ext{TEST}}$

Cross-validation recipe

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - For every $s \in [S]$
 - $\bullet \ \ \mathsf{Train} \ \mathsf{a} \ \mathsf{model} \ \mathsf{using} \ \mathcal{D}_{\backslash s}^{{\mbox{\tiny TRAIN}}} = \mathcal{D}^{{\mbox{\tiny TRAIN}}} \mathcal{D}_{s}^{{\mbox{\tiny TRAIN}}}$
 - ullet Evaluate the performance of the model on $\mathcal{D}_s^{ ext{TRAIN}}$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance
- ullet Use the best hyper-parameter to train a model using all $\mathcal{D}^{\mathsf{train}}$
- ullet Evaluate the model on $\mathcal{D}^{ ext{TEST}}$

Summary

Advantages of NNC

• Simple, easy to implement (widely used in practice)

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for each prediction *naively*. Here, N is the cardinality of the training set and D is the dimension of the training example.
- Need to "carry" the training data around. This type of method is called nonparametric.
- Choosing the right hyper-parameters can be involved.

Summary

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

33 / 4

Some theory on NNC

Outline

- Logistics
- 2 Recap
- 3 Classification and Nearest Neighbor Classifier (NNC)
- Some theory on NNC
 - Step 1: Expected risk
 - Step 2: The ideal classifier
 - Step 3: Comparing NNC to the ideal classifier

Some theory on NNC

How good is NNC really?

To answer this question, we proceed in 3 steps

- 1 Define *more carefully* a performance metric for a classifier.
- 4 Hypothesize an ideal classifier the best possible one.
- Ompare NNC to the ideal one.

34 / 4

35 / 4

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independent and identically distributed (i.i.d.*) sample of an unknown joint distribution \mathcal{P} .

• often written as $(x,y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Test error of a fixed classifier is therefore a *random variable*.

Need a more "certain" measure of performance (so it's easy to compare different classifiers for example).

Some theory on NNC Step 1: Expected risk

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y',y) = \mathbb{I}[y' \neq y]$, called 0-1 loss. **Default**
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x},y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y).$$

For *0-1 loss* we have

$$R(f) = \mathbb{E}_{(\boldsymbol{x},y) \sim \mathcal{P}} \mathbb{I}[y' \neq y]$$

Expected error

What about the **expectation** of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x_m}) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}) \neq y]$$

• i.e. the expected error/mistake of f

Test error is a proxy of expected error. The larger the test set, the better the approximation.

What about the expectation of training error? Is training error a good proxy of expected error?

Step 2: The ideal classifier

Bayes optimal classifier

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(x) = \operatorname{argmax}_{c \in [C]} \mathcal{P}(c|x)$.

Some theory on NNC

The optimal risk: $R(f^*) = \mathbb{E}_{x \sim \mathcal{P}_x}[1 - \max_{c \in [C]} \mathcal{P}(c|x)]$ where \mathcal{P}_x is the marginal distribution of x.

That is we have $R(f^*) \leq R(f)$ for any f. **Verify!**

For special case C=2, let $\eta(x)=\mathcal{P}(0|x)$, then

$$R(f^*) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} [\mathbb{I}_{f^*(\boldsymbol{x}) \neq y}]]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x}) \mathbb{I}_{f^*(\boldsymbol{x}) = 1} + (1 - \eta(\boldsymbol{x})) \mathbb{I}_{f^*(\boldsymbol{x}) = 0}]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\min \{ \eta(\boldsymbol{x}), 1 - \eta(\boldsymbol{x}) \}],$$

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let f_N be the 1-nearest neighbor binary classifier using N training data points, we have (under mild conditions)

$$R(f^*) \le \lim_{N \to \infty} \mathbb{E}[R(f_N)] \le 2R(f^*)$$

i.e., expected risk of NNC in the limit is at most twice of the best possible.

A pretty strong guarantee.

In particular, $R(f^*) = 0$ implies $\mathbb{E}[R(f_N)] \to 0$.

Proof sketch

Fact: $x_{\mathsf{nn}_{(x)}} o x$ as $N o \infty$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x})\neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'}\mathbb{E}_{y,y'}\mathbb{E}_{(\cdot|\boldsymbol{x})}[\mathbb{I}[y'\neq y]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'}\mathbb{E}_{y,y'}\mathbb{E}_{(\cdot|\boldsymbol{x})}[\mathbb{I}[y'=0 \text{ and } y=1] + \mathbb{I}[y'=1 \text{ and } y=0]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\eta(\boldsymbol{x})(1-\eta(\boldsymbol{x})) + (1-\eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\eta(\boldsymbol{x})(1-\eta(\boldsymbol{x}))] \\ &\leq 2\mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\min\{\eta(\boldsymbol{x}), (1-\eta(\boldsymbol{x}))\}] \\ &= 2R(f^*) \end{split}$$