Algorithm Design Manual Notes

Zachary William Grimm Notes for ADM by Skiena

zwgrimm@gmail.com

February 10, 2019

Contents

1	Intro	oduction To Algorithm Design	2
	1.1	Robot Tour Optimization	2
	1.2	Selecting the Right Jobs	2
		1.2.1 test, delete this	3
	1.3	Reasoning about Correctness	3
		1.3.1 Expressing Algorithms	3
		1.3.2 Problems and Properties	3
		1.3.3 Demonstrating Incorrectness	3
		1.3.4 Induction and Recursion	3
		1.3.5 Summations	3
	1.4	Modeling The Problem	3
		1.4.1 Combinatorial Objects	3
		1.4.2 Recursive Objects	3
	1.5	About the War Stories	3
	1.6	War Story: Psychic Modeling	3

1 Introduction To Algorithm Design

the algorithmic *problem* known as *sorting* is defined as follows:

Problem: Sorting

Input: A sequence of n keys $a_1, ..., a_n$.

Output: The permutation (reordering) of the input sequence such that $a_1' \leq a_2' \leq \ldots \leq a_{n-1}' \leq a_n'$

```
I N S E R T I O N S O R T I N S E R T I O N S O R T I N S E R T I O N S O R T I N S E R T I O N S O R T E I N S R T I O N S O R T E I I N R S T O N S O R T E I I N O R S T N S O R T E I I N N O R S T O R T E I I N N O R S T O R T E I I N N O R S T T O R T E I I N N O R S S T R T E I I N N O O R R S S T R T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T T E I I N N O O R R S S T T
```

Figure 1: Animation of insertion sort in action (time flows down)

```
insertion_sort(item s[], int n)
{
    int i,j; /* counters */

    for (i=1; i<n; i++) {
        j=i;
        while ((j>0) && (s[j] < s[j-1])) {
            swap(&s[j],&s[j-1]);
            j = j-1;
        }
    }
}</pre>
```

1.1 Robot Tour Optimization

aaa

1.2 Selecting the Right Jobs

bbb

1.2.1 test, delete this

1.3 Reasoning about Correctness

- 1.3.1 Expressing Algorithms
- 1.3.2 Problems and Properties
- 1.3.3 Demonstrating Incorrectness
- 1.3.4 Induction and Recursion
- 1.3.5 Summations

1.4 Modeling The Problem

- 1.4.1 Combinatorial Objects
- 1.4.2 Recursive Objects
- 1.5 About the War Stories
- 1.6 War Story: Psychic Modeling