

Machine learning assisted structural characterization of nanoclusters using X Ray scattering

N. Ratel-Ramond – S. Cayez

X-Ray scattering techniques

Q<1Å-1: Small Angle Region (SAXS)

1: Wide Angle Region (WAXS'

- particle size

- particle shape

- arrangement of particles

Q>1Å-

X-Ray scattering techniques

- ◆ What type of information in a PDF?
 - Atomic distances
 - Coordination number
 - Disorder
 - Particle size

.

Structural information at the atomic scale

◆ Example: Ag nanoparticles (R. Parmar, L.M. Lacroix, G. Viau)

◆ Theoretical Aspects : the general equation of SAXS has the following expression

- Information about:
 - size
 - Size distribution
 - Shape
 - Surface structure
 - Arragement of particles

DOI: 10.1021/acs.chemrev.5b00690

1. Form factor analysis

For dilute systems

Example of Au nanoparticles:

Model: sphere

Radius=34.907 \pm 0.071 Å, polydispersity ratio= 0.062 \pm 0.004 (gaussian)

A. Pham, C. Chinaud-Chaix, S. Tricard

2. Structure factor analysis: Crystalline assemblies – lattice indexing

Example of μ SAXS investigation of micromagnets built by magnetophoresis from Co nanorods (L.M. Lacroix, G. Viau)

<u>Q>1Å-</u>

SWAXS techniques are well suited for nano and atomic scale structural characterization of nanoclusters

SWAXS techniques are well suited for nano and atomic scale structural characterization of nanoclusters

<u>Q>1Å-</u>

<u>Purpose:</u> algorithm for the prediction of the size and shape of monometallic nanoparticles from SAXS/WAXS scattering data, particularly for non crystalline structures

Methodology:

- Create dataset
 - build structural models
 - calculate the corresponding scattering curve
 - o store the results with the corresponding labels (shape, size, atom type)
- Choose ML model

Training

Testing

- Create dataset
 - build structural models
 - calculate the corresponding scattering curve
 - o store the results with the corresponding labels (shape, size, atom type)

R. Poteau - LPCNO - MCP

- Create dataset
 - build structural models
 - o calculate the corresponding scattering curve
 - o store the results with the corresponding labels (shape, size, atom type)

$$I(Q) = \sum_{i} \sum_{j} f_{i} f_{j} \frac{\sin(Qr_{ij})}{Qr_{ij}}$$

where

- Q is the scattering vector, called also momentum transfer vector $(Q=|{m Q}|=4\pi\sin\theta/\lambda$, where θ is diffraction half-angle and λ is the wavelength),
- $r_{ij} = |\mathbf{r}_i \mathbf{r}_j|$ is the distance between atoms i and j,
- and f_i is the atomic scattering factor of i-th atom; in general it depends on Q and we should write it as f(Q), but we don't, to keep the notation simple.

- Create dataset
 - build structural models
 - calculate the corresponding scattering curve
 - store the results with the corresponding labels (shape, size, atom type)

Creation of a large database of scattering data tagged with structural features (labels)

Shape Prediction

Predictions made in the WAXS domain

92,6 % accuracy

Size Prediction

Predictions made in the <u>SAXS</u> domain (Guinier plateau)

96.8 % accuracy

Shape Prediction

Real systems: Au decahedron - Au icosahedron NPs

I(q) data were corrected from solvent contribution

Accuracy 100% on ... 2 experimental samples

Perspectives

Size and shape predictions from combined SAXS and WAXS domains (rather than separate SAXS for size, WAXS)

for shape)

• Simultaneous size and shape predictions?

• Introduction of polydispersity in the dataset to mimic real systems (e.g. icosahedral, mean =4 layers, 20% polydisp.)

Thank you for your attention!

2. Structure factor analysis: Crystalline assemblies – lattice indexing

Example of uSAXS investigation of micromagnets (L.M. Lacroix, G. Viau)

<u>video</u>

Example 3: Decahedron Au : explore decahedron parameters and find best model M. Imperor- LPS Orsay

(4,1,2)

Experimental PDF does not match with cubic structure

ASE: 3 parameters are used to describe a decahedron: p: Number of atoms on the (100) facets perpendicular to the five fold axis. Build models g: Number of atoms on the (100) facets parallel to the five fold axis. g = 1 corresponds using ASE to no visible (100) facets. Python library r: Depth of the Marks re-entrence at the pentagon corners. r = 0 corresponds to no reentrence The following (p,q,r) were tested: (3,1,2),(3,1,3),(4,1,0),(4,1,1),(4,1,2),(4,1,3),(5,1,0),(5,1,1),(5,1,2),(5,1,3),(6,1,0),(6,1,1),(6,1,2),(7,1,0),(7,1,0)1),(7,1,2) G(r) Data Adjust the Refine model using diffpy-cmi parameters python library of the model

Best refinement obtained for (6,1,1) decahedron: Rw=0,167

r(Å)

Au Uiso

zoomscale

4.08113531e+00

1.01580006e-02 5.93450212e-01

1.01270454e+00

◆ Example 3: Decahedron Au : optimize structure using ASE

ASE library contains optimizers for atomic structures

BFGS Optimization : (video)

◆ Example 3: Decahedron Au - optimize structure using ASE

ASE library contains optimizers for atomic structures

BFGS Optimization:

The structure shrinks. Would that improve the PDF refinement?

Model refinement at each step of the optimization

◆ Example 3: Decahedron Au : optimize structure using ASE

ASE library contains optimizers for atomic structures

BFGS Optimization

Improvement of refinement?

Optimization did not improve the refinement

Zoomscale, Rw

