2024 年普通高等学校招生全国统一考试

数学

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题 卡上。写在本试卷上无效。
- Į

•	· · · · · · · · · · · · · · · · · · ·			
	3. 考试结束后,将本试卷和答题卡一并交回。			
— 、	选择题: 本题共 8 小题, 每小题 5 分, 共 40 分。在每小题给出的四个选项中, 只			
	有一项是符合题目要求的。			
1.	设 $A = \{x (x+1)(x-2)^2 > 0\}, B = \{x 4^x > \frac{1}{2}\}, \ \mathbb{M} \ A \cap B = (D).$			
	A. $(-1, +\infty)$		B. $(2, +\infty)$	
	C. $(-\frac{1}{2}, +\infty)$		D. $(-\frac{1}{2}, 2) \cup (2, +\infty)$)
2.	$(1+i) + (1+i)^2 + (1+i)^3$ 的虚部为 (B) .			
	A5	B. 5	C. $-5i$	D. 5 <i>i</i>
3.	已知向量 $a + 3b, 2a - b$ 能构成平面的一组基底,则 $(A.)$ 也能构成基底.			
	A. $\boldsymbol{a}, \boldsymbol{b}$	B1	C. 1	D. 2
4.	已知 $\cos(\alpha + \beta) = m$, $\tan \alpha \tan \beta = 2$,则 $\cos(\alpha - \beta) =$			
	A. $-3m$	B. $-\frac{m}{3}$	C. $\frac{m}{3}$	D. 3m
5.	已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $\sqrt{3}$,则圆锥的体积			
	为			
	A. $2\sqrt{3}\pi$	B. $3\sqrt{3}\pi$	C. $6\sqrt{3}\pi$	D. $9\sqrt{3}\pi$
	已知函数 $f(x) = \begin{cases} -x^2 - 2ax - a, & x < 0, \\ e^x + \ln(x+1), & x \ge 0 \end{cases}$ 在 \mathbb{R} 上单调递增,则 a 的取值范围是			
6.	已知函数 $f(x) = \{$	$e^x + \ln(x+1), x \geqslant$	在 K 上 中 调 选 增 , 0	则 a 的取值泡围走
		B. [-1,0]		
7.	当 $x \in [0, 2\pi]$ 时,曲线 $y = \sin x$ 与 $y = 2\sin\left(3x - \frac{\pi}{6}\right)$ 的交点个数为			
		B. 4	(0 /	

- 8. 已知函数 f(x) 的定义域为 \mathbb{R} , f(x) > f(x-1) + f(x-2), 且当 x < 3 时, f(x) = x, 则下列结论中一定正确的是

- A. f(10) > 100 B. f(20) > 1000 C. f(10) < 1000 D. f(20) < 10000
- 二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分。在每小题给出的选项中, 有多项 符合题目要求。全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分。
- 9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出 口后亩收入的样本均值 $\overline{x} = 2.1$,样本方差 $s^2 = 0.01$,已知该种植区以往的亩收入 X服从正态分布 $N(1.8,0.1^2)$,假设推动出口后的亩收入 Y 服从正态分布 $N(\bar{x},s^2)$, 则(若随机变量 Z 服从正态分布 $N(\mu, \sigma^2)$,则 $P(Z < \mu + \sigma) \approx 0.8413$)
 - A. P(X > 2) > 0.2

B. P(X > 2) < 0.5

C. P(Y > 2) > 0.5

- D. P(Y > 2) < 0.8
- 10. 设函数 $f(x) = (x-1)^2(x-4)$,则
 - A. x = 3 是 f(x) 的极小值点
 - B. $\pm 0 < x < 1$ 时, $f(x) < f(x^2)$

 - D. $\stackrel{\text{def}}{=} -1 < x < 0$ 时,f(2-x) > f(x)
- 11. 造型 " \times " 可以做成美丽的丝带,将其看作图中曲线 C 的一部分. 已知 C 过坐标 原点 O,且 C 上的点满足横坐标大于 -2,到点 F(2,0) 的距离与到定直线 x=a(a < 0) 的距离之积为 4,则
 - A. a = -2
 - B. 点 $(2\sqrt{2},0)$ 在 C 上
 - C. C 在第一象限的点的纵坐标的最大值为 1
 - D. 当点 (x_0, y_0) 在 C 上时, $y_0 \leqslant \frac{4}{x_0 + 2}$

三、填空题:本题共3小题,每小题5分,共15分。

- 12. 设双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别为 F_1 , F_2 ,过 F_2 作平 行于 y 轴的直线交 C 于 A、B 两点,若 $|F_1A| = 13$,|AB| = 10,则 C 的离心率 为 _______.
- 13. 若曲线 $y = e^x + x$ 在点 (0,1) 处的切线也是曲线 $y = \ln(x+1) + a$ 的切线,则 a = .
- 14. 甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字 1,3,5,7,乙的卡片上分别标有数字 2,4,6,8. 两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得 1 分,数字小的人得 0 分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于 2 的概率为
- 四、解答题:本题共 5 小题,共 77 分。解答应写出文字说明、证明过程或演算步骤。 15. $(13\ \mathcal{O})$ 设 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin C = \sqrt{2}\cos B$, $a^2 + b^2 c^2 = \sqrt{2}ab$.
 - (1) 求 B;
 - (2) 若 $\triangle ABC$ 的面积为 $3+\sqrt{3}$,求 c.
- 16. (15 分)已知 A(0,3) 和 $P\left(3,\frac{3}{2}\right)$ 为椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \; (a>b>0)$ 上两点.
 - (1) 求 C 的离心率;
 - (2) 若过 P 的直线 l 交 C 于另一点 B,且 $\triangle ABP$ 的面积为 9,求 l 的方程.

17. (15 分)如图,四棱锥 P-ABCD 中,PA \bot 底面ABCD,PA = AC = 2,BC = 1, AB = $\sqrt{3}$.

- (1) 若 $AD \perp PB$, 证明: $AD \parallel \text{平面}PBC$;
- (2) 若 $AD \perp DC$,且二面角 A–CP–D 的正弦值为 $\frac{\sqrt{42}}{7}$,求 AD.

- 18. (17 分) 己知函数 $f(x) = \ln \frac{x}{2-x} + ax + b(x-1)^3$.
 - (1) 若 b = 0, 且 $f'(x) \ge 0$, 求 a 的最小值;
 - (2) 证明: 曲线 y = f(x) 是中心对称图形;
 - (3) 若 f(x) > -2 当且仅当 1 < x < 2,求 b 的取值范围.

- 19. (17 分)设 m 为正整数,数列 a_1 , a_2 ,…, a_{4m+2} 是公差不为 0 的等差数列,若从中删去两项 a_i 和 a_j (i < j) 后剩余的 4m 项可被平均分为 m 组,且每组的 4 个数都能构成等差数列,则称数列 a_1 , a_2 ,…, a_{4m+2} 是 (i,j)—可分数列.
 - (1) 写出所有的 (i, j), $1 \le i < j \le 6$, 使得数列 a_1 , a_2 , ..., a_6 是 (i, j)-可分数列;
 - (2) 当 $m \ge 3$ 时,证明:数列 a_1 , a_2 , …, a_{4m+2} 是 (2,13)-可分数列;
- (3)从 1,2,···,4m+2 中一次任取两个数 i 和 j (i < j),记数列 a_1 , a_2 ,···, a_{4m+2} 是 (i,j)—可分数列的概率为 P_m ,证明: $P_m > \frac{1}{8}$.