3. Probabilidad e inferencia estadística

Clase 4 - 3.2. Principales variables aleatorias

22 de febrero de 2024

ÍNDICE

- 1. Recapitulando: conceptos y principales funciones
- 2. Variables aleatorias discretas
- 3. Variables aleatorias continuas
- 4. Esperanza, varianza y regla de Laplace

Recapitulando: conceptos y principales funciones

1. Recapitulando: conceptos y principales funciones

Probabilidad

$$P(X=x) = \text{función de masa}(x) = \text{pmf}(x)$$

Variables aleatorias:

[3kg, 180kg]

 $X = \{80.1, 70.5, 54.6, 88\}$

- Función que asigna un valor al resultado de un experimento aleatorio.
 - Variable aleatoria continua Puede tomar un rango continuo de valores
 - Variable alearoria discreta Puede tomar un rango discreto de valores

P(a
$$\leq$$
X \leq b) = $\int_a^b f(x) = \int_a^b p df(x)$ donde pdf es la función de densidad

$$P(X \le x)$$
 = función distribución acumulada(x)
= $cdf(x)$

qf(p) = x tal que cdf(x) = p
$$\frac{-4 -3 -2 -1 0}{4 -3 -2 -1 0} = \frac{0.5}{1 + 2 -3 -4}$$

Variables aleatorias discretas

2. Variables aleatorias discretas

Bernouilli (p)

Binomial (n, p)

Poisson (λ)

¿Qué es?

2 valores (0, 1)

Posibles valores: {0, 1}

Parámetros

p - probabilidad de obtener el valor 1

Ejemplo

- 1. Tirar una moneda (C, X)
- 2. Moneda balanceada (C 0.3, X 0.7)

2. Variables aleatorias discretas

Bernouilli (p)

Binomial (n, p)

Poisson (λ)

¿Qué es?

Repetir n veces una Bernouilli (p) y contar número de 1's.

Posibles valores: {0, .., n}

Parámetros

- n Número de repeticiones de Ber(p)
- p probabilidad del valor 1 en Ber(p)

Ejemplo

- 1. Tirar una moneda (C, X) n veces y contar el número de cruces.
- 2. Moneda balanceada (C 0.3, X 0.7) y contar el número de cruces.

Función de masa de una Binomial(n=10, p=0.7)

Este documento se dirige exclusivamente a su(s) destinatario(s) y puede contener información privilegiada o confidencial. El acceso a esta información por otras personas distintas a las designadas no está autorizado. IMF Smart Education

2. Variables aleatorias discretas

Bernouilli (p)

Binomial (n, p)

Poisson (λ)

¿Qué es?

Número de eventos en un tiempo determinado sabiendo su tasa de ocurrencia.

Posibles valores: {0, .., n, ..}

Parámetros

 λ - Tasa de ocurrencia del suceso, cuyo conteo se realiza. Es el valor que esperamos que salga.

Ejemplo

- 1. Nº visitas a una web en un día.
- 2. Nº de coches que pasan por una carretera en una hora.

Función de masa de una Poisson(lambda=3)

Función de masa de una Poisson(lambda=10)

NOMBRE	FUNCION	PARAMETROS
Uniforme	$f(x_k) = \frac{1}{n},$	$x_1 < x_2 < \cdots < x_n$
	$k = 1, 2, \dots, n$	$n \in \mathbb{N}$
Bernoulli	f(0) = p,	p
	f(1) = 1 - p	
Binomial	$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$	0
	$k=0,1,2,\ldots,n$	$n \in \mathbb{N}$
Poisson	$f(k) = \frac{1}{k!} e^{-\lambda} \lambda^k$	$\lambda > 0$
	$k = 0, 1, 2, 3, \dots$	

Variables aleatorias continuas

3. Variables aleatorias continuas

Exponencial (λ)

¿Qué es?

Valores centrados en torno a un valor y exponencialmente menos probables al alejarse.

Posibles valores: $(-\infty, +\infty)$

Parámetros

 μ - Valor medio

σ - Desviación estándar

Ejemplo

- 1. Peso de la población en un país.
- 2. Errores cometidos en un modelo equilibrado.

3. Variables aleatorias continuas

¿Qué es?

Tiempo que transcurre entre dos sucesos con una tasa de frecuencia fija.

Posibles valores: $(0,+\infty)$

Parámetros

 λ - Tasa de ocurrencia del suceso.

En Poisson se realiza el conteo de sucesos.

En una exponencial se mide el tiempo entre

dos sucesos.

Ejemplo

- Tiempo hasta que se realiza una visita en una web.
- 2. Tiempo hasta que pasa un coche por la carretera

Función de densidad de una Exponencial(lambda=2)

Valores más probables

Valores más probables

NOMBRE	FUNCION	PARA-
		METROS
Uniforme	$f(x) = \frac{1}{b-a},$	a < b
	a < x < b	
Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}, e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\mu \in \mathbb{R},$ $\sigma^2 > 0$
	$x \in \mathbb{R}$	$\sigma^2 > 0$
Exponencial	$f(x) = \lambda e^{-\lambda x},$	$\lambda > 0$
	x > 0	

Esperanza, varianza y regla de Laplace

4. Esperanza, varianza y regla de Laplace

Esperanza matemática: μ

Formalización de la idea de valor medio de un fenómeno aleatorio.

Ejemplos

- Si X es una Poisson(λ), su esperanza matemática, el valor que esperamos que salga, es λ .
- Si X es una Normal(μ, σ), su esperanza matemática, el valor que esperamos que salga, es μ .

Varianza: σ^2

Formalización de la idea de variabilidad de un fenómeno aleatorio.

Ejemplos

• Si X es una Normal(μ , σ), su varianza es σ^2 .

Regla de Laplace

Si todos los resultados de un experimento son equiprobables, entonces la probabilidad de un suceso A es:

$$P(A) = \frac{Casos favorables \ a \ A}{Total \ de \ casos \ posibles}$$

Ejemplo

Si tenemos 7 bolas blancas y 3 bolas negras, la probabilidad de A = sacar bola blanca es:

$$P(A) = \frac{Casos favorables a A}{Total de casos posibles} = \frac{7}{10} = 0.7$$

