

Ch—06 Electromagnetic Induction Daily Practice Problem 07

Q1. AB is a part of circuit. Find the potential difference $V_A - V_B$, if

- (a) current i = 2 A and is constant
- **(b)** current i = 2 A and is increasing at the rate of $1 A s^{-l}$
- (c) current i = 2 A and is decreasing at the rate $1 A s^{-1}$.
- **Q2.** When the current in the portion of the circuit shown in figure is $2.00\,A$ and increases at a rate of $0.500\,A/s$, the measured voltage is $\Delta V_{ab} = 9.00\,V$. When the current is $2.00\,A$ and decreases at the rate of $0.500\,A/s$, the measured voltage is $\Delta V_{ab} = 5.00\,V$. Calculate the values of
 - (a) L and
 - (b) R.

Q3. Suppose the emf of the battery in the circuit shown in figure varies with time t so that the current is given by i(t) = 3.0 + 5.0t,

where i is in amperes and t is in seconds. Take $R=4.0\,n$ and $L=6.0\,H$, and find an expression for the battery emf as a function of t.

Q4. In the circuit shown, the switch 'S' has been closed for a long time and them o[ens at t=0

- (a) Find the current through the inductor just before the switch is opened.
- **(b)** Find the current through the inductor a long time after the switch is opened.
- (c) Find current through the inductor as a function of time after the switch is opened. Also write the current through the cell as a function of time.

Q5. In given figure, $R=4.0~k\Omega$, $L=8.0~\mu H$, and the ideal battery has E=20~V. How long after switch S is closed is the current 2.0~mA?

Q6. In the circuit shown in figure, E=10V, $R_1=5\Omega$, $R_2=10\Omega$ and L=5 H. For the two separate conditions, (i) switch S is just

closed and (ii) switch S is closed for a long time, calculate

- (a) current i_1 through R_1 ,
- **(b)** current i_2 through R_2 ,
- **(c)** current *i* through the switches,
- (d) the potential difference across R_2 ,
- (e) the potential difference across L,
- **(f)** di_2/dt .

ANSWERS

1.(a) 9*V*

(b) 10 V

(c) 8 V

2.(a) 4.0 *H*

(b) 3.5 Ω

3. (42 + 20t)V

4.(a) 6 A

(b) 3A

(c) $2 + 4e^{-2t}$

5. 1.0 ns

6.(a) 2 A

(b) 1 A

(c) 3 A

(d) 10 V

(e) 0 V

(f) 0