Motivação (Aplicação e Computação)

• Impacto da Fraude (Aplicação):

- Perdas globais anuais estimadas em mais de US\$ 5 trilhões, de acordo com a Association of Certified Fraud Examiners.
- Prejuízo médio de US\$ 1,7 milhão por caso entre janeiro de 2022 e setembro de 2023.
- Impacto direto em instituições financeiras, comerciantes e na confiança do consumidor.

Desafio Computação):

- **Problema Central**: Datasets de fraude são extremamente desbalanceados (apenas 0,172% de fraudes no nosso caso).
- Lacuna na Literatura: Algoritmos tradicionais falham em detectar a classe minoritária. Faltam sistemas que refinem predições de baixa confiança e corrijam erros de um classificador inicial.
- Nossa Proposta: Um sistema em cascata para resolver essa lacuna.
 Implementar um sistema que diminui a chance de clientes serem lesados por ações fraudulentas de terceiros.

Sistema híbrido

- Arquitetura em Cascata (Stacking):
 - **Modelo Base** (**SVM**): Um **SVM** com **kernel RBF** atua como primeiro classificador. Ele gera probabilidades de uma transação ser fraude.
 - Meta-Learner (XGBoost): Um modelo XGBoost que recebe as features originais MAIS as probabilidades do SVM para refinar a decisão final.

Protocolo Experimental

Dataset:

- Uma base de dados: "Credit Card Fraud Detection" do Kaggle.
- 284.807 transações, com 492 fraudes (0,172%).

Condução dos Experimentos:

- 10 execuções independentes para garantir robustez estatística.
- Divisão Estratificada: 70% para treino, 15% para validação e 15% para teste.

Otimização e Testes:

- Otimização de Parâmetros: Parâmetros definidos com base em experimentação prévia. O limiar de decisão do nosso modelo foi otimizado na etapa de validação para maximizar o F1-Score.
- Testes de Hipótese Usados: Teste T Pareado, Wilcoxon Signed-Rank e McNemar.
- Como foram usados: Para comparar nosso modelo com os de referência e verificar se as diferenças de desempenho eram estatisticamente significativas, com um nível de significância de 0,05.

Resultados

- Comparação com a Literatura:
 - Artigo 1 (Ensemble): VotingClassifier com 3 modelos (Multilayer Perceptron, XGBoost e Logistic Regression). Testado com dados desbalanceados e balanceados com SMOTE.
 - Artigo 2 (Híbrido RF-AdaBoost): RandomForest gera features para um AdaBoost.
 - Artigo 3 (IHT-Ensemble): VotingClassifier com 4 modelos (Decision Tree, Random Forest, K-Nearest Neighbors e Multilayer Perceptron) e balanceamento complexo (IHT).
- Análise dos Resultados:
 - Resultados de Desempenho (Tabela 1): Nosso modelo (F1=0,75) foi superado no *F1-Score* pelos modelos dos Artigos 1 e 2 (F1≈0,84). Porém, nosso *AUC-ROC* (0,95) foi o segundo melhor, mostrando alta capacidade discriminatória.
 - Resultados de Hipótese (Tabela 2): Os testes confirmaram que as vitórias dos Artigos 1 e 2 em *F1-Score* foram estatisticamente significativas (p < 0,05). Não houve diferença significativa contra o Artigo 1 Balanceado em *F1-Score* e contra o Artigo 3 em *AUC-ROC*.

TABLE I
TABELA 1: MÉDIAS E DESVIOS PADRÃO DAS MÉTRICAS DE
DESEMPENHO (10 EXECUÇÕES)

Modelo de Referência	Acurácia	Precisão	Recall	F1- Score	AUC- ROC
Método Proposto	0,9992	0,8253	0,6946	0,7513	0,9497
	±	±	±	±	±
	0,0001	0,0663	0,0571	0,0368	0,0238
Artigo1_Desbalanceado	0,9995	0,9471	0,7541	0,8393	0,8770
	±	±	±	±	±
	0,0001	0,0289	0,0431	0,0352	0,0215
Artigo1_Balanceado_SMOTE	0,9992	0,7556	0,8230	0,7870	0,9113
	±	±	±	±	±
	0,0001	0,0477	0,0293	0,0315	0,0146
Artigo2_RF_AdaBoost	0,9995	0,9221	0,7649	0,8356	0,8824
	±	±	±	±	±
	0,0001	0,0195	0,0383	0,0244	0,0192
Artigo3_IHT_Ensemble	0,0245	0,0018	1,0000	0,0035	0,9554
	±	±	±	±	±
	0,0074	0,0000	0,0000	0,0000	0,0168

TABLE II

TABELA 2: P-VALORES DOS TESTES DE HIPÓTESE (MODELO PROPOSTO VS. MODELOS DE REFERÊNCIA)

Modelo Proposto vs Modelo de Referência	Métrica	Teste T Pareado (p-value)	Wilcoxon Signed- Rank (p-value)
Artigo1_Desbalanceado	Acurácia	0,0002	0,0020
	Precisão	0,0005	0,0020
	Recall	0,0140	0,0312
	F1-Score	0,0002	0,0020
	AUC- ROC	0,0000	0,0020
Artigo1_Balanceado_SMOTE	Acurácia	0,7474	0,6875
	Precisão	0,0198	0,0273
	Recall	0,0000	0,0020
	F1-Score	0,0628	0,0645
	AUC- ROC	0,0006	0,0039
Artigo2_RF_AdaBoost	Acurácia	0,0001	0,0020
	Precisão	0,0034	0,0020
	Recall	0,0018	0,0039
	F1-Score	0,0000	0,0020
	AUC- ROC	0,0000	0,0020
Artigo3_IHT_Ensemble	Acurácia	0,0000	0,0020
	Precisão	0,0000	0,0020
	Recall	0,0000	0,0020
	F1-Score	0,0000	0,0020
	AUC- ROC	0,5948	1,0000

Conclusão

Objetivos Atingidos:

- **Proposta de um Novo Sistema**: Propusemos e implementamos com sucesso um sistema híbrido em cascata *SVM-XGBoost*, com código aberto.
- Validação Robusta: O sistema foi rigorosamente avaliado contra três abordagens de referência da literatura usando um protocolo de 10 execuções e testes estatísticos.
- **Desempenho Competitivo**: Embora não tenha superado os melhores modelos em *F1-Score*, o método proposto alcançou um desempenho comparável e competitivo, oferecendo um excelente poder discriminatório (alto *AUC-ROC*).

Próximos Passos:

- Otimização de hiperparâmetros dos modelos base e meta-learner.
- Exploração de outros modelos na arquitetura em cascata.