Sets as ordered pairs

Ordered pairs

An ordered pair is a familiar object—the Cartesian coordinates of a point in a plane, for example, is an ordered pair of real numbers.

Example

Examples of ordered pairs of real numbers:

$$(0,0), (2,-6), (2,\sqrt{42}), (107,28).$$

- $oldsymbol{ iny}$ We say that a is the *first coordinate* of the ordered pair (a,b), and b is its second coordinate.
- We efine equality of ordered pairs using $[(a,b)=(a',b')]\equiv [a=a']\wedge [b=b'].$
- extstyle ext

As nice this may be

Question Ordered pairs are somewhat like sets, but the order matters. Can we define an ordered pair as a set?

Answer Sure. To an ordered pair (a,b) we associate it with the set $\{\{a\},\{a,b\}\}.$

lacktriangle Since $\{\{a\},\{a,b\}\}$ is a set of sets, we can form the intersection of its members. Define $I=\{\{a\},\{a,b\}\}$. Then

$$\underset{x \in I}{\cap} x = \{a\} \cap \{a,b\} = \{a\}.$$

So the intersection of the member of I gives the first coordinate of the ordered pair (a,b).

Mow do we extract the second coordinate?

$$\bigcup_{x \in I} x \setminus \bigcap_{x \in I} x = \{a, b\} \setminus \{a\} = \{b\}.$$

3

Theorem

If
$$\{\{a\}, \{a,b\}\} = \{\{a'\}, \{a',b'\}\}\$$
, then $a = a'$ and $b = b'$.

lacktriangle A proof uses the ingredients: If $\{a\}=\{a'\}$, then a=a'. It also uses

$$\underset{x\in I}{\cap}x=\{a\}\cap\{a,b\}=\{a\},$$

and

$$\underset{x \in I}{\cup} x \setminus \underset{x \in I}{\cap} x = \{a,b\} \setminus \{a\} = \{b\}.$$

where
$$I = \{\{a\}, \{a, b\}\}.$$