ICE 535 機器學習 (Machine Learning)

Lecture 0: Introduction

國立中山大學 通訊工程研究所 溫朝凱 教授

Al, Machine Learning, Deep Learning

Al, Machine Learning, Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Al, Machine Learning, Deep Learning

第一次人工智慧泡沫後,研究領域轉為「機器學習」

- 「機器學習」是一門涵蓋電腦科學、統計學、機率論、博弈論等多門領域的學科,從1980開始蓬勃興起。
- 機器學習之所以能興起,也歸功於硬體 儲存成本下降、運算能力增強(包括本機 端與雲端運算),加上大量的數據能做處 理。
- · 電腦從大量的資料中找出規律來「學習」,稱為「機器學習」,也是「資料科學」(Data Science)的熱門技術之一。

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

AI, Machine Learning, Deep Learning

- 機器學習在 1980 年 代到 2006 年間成為 研究主流
- 2006 年 Hinton 成功訓練多層神經網路、稱為深度學習

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

What is Machine Learning? Deep Learning?

What is Machine Learning?

What is Deep Learning?

Why is deep learning taking off?

- 1980年代,當時的諾貝爾醫學獎得主研究了大腦內部的神經迴路而 轟動一時。也讓科學家們對「模擬人類大腦的運算模型」抱持了高度 期待。
- 1986年, Rumelhart 和 Hinton 等學者提出了反向傳播算法 (Back Propagation),解決了神經網路所需要的複雜計算量問題,從而帶動了神經網路的研究熱潮。
- 然而過了不久就發現反向傳播法遇到了瓶頸——反向傳播的優化(找出 誤差的最小值)問題,使得神經網路只要超過3層以上就幾乎沒有效果。
- 如果神經網路無法達到多層的運算,相較之下不如採用其它層數小於 3 且效果又更好的機器學習算法,比如 SVM、隨機森林(Random Forest)等,此時 SVM 火熱了一段時間,在垃圾信件分類上做得特別 好。
- 同時間,學術界一度放棄類神經網路的研究方向,甚至只要有論文或研究標明「Neural Network」,幾乎不願意花心思閱覽或刊出。

2006 年 Hinton 成功訓練多層神經網路、稱為深度學習

- 此時的 Hinton 還很年輕,仍不離不棄對於神經網路的研究。也正是這股熱情,使他整整力撐30年、終於在2006年找到了解方、提出限制玻爾茲曼機(RBM)模型成功訓練多層神經網路。
- 這帶來了類神經網路模型復甦的又一春。由於 Neural Network 長久以來太過惡名昭彰,Hinton 決定把**多層的神經網路 (Deep Neural Network)** 重命名為**深度學習 (Deep Learning)**。Hinton 因此被稱為「深度學習之父」。
- 儘管如此,Hinton 就算在 2006 年就提出了 RBM 模型,深度學習還是沒有紅起來。大家只是知道:「噢類神經網路也不是完全沒用嘛。」由於習於忽視已久,加上運算量過於龐大:
- 當時都是採用 CPU 來運算。好不容易耗費 5 天才終於跑完一個模型, 結果發現有問題、改個模型參數又要再等 5 天... 等真正訓練好的時候 都已經不知何日了。
- 只能說 2006 年的突破只是帶來一絲曙光。真正的轉折點,還是要到 2012年。那年10月,機器學習界發生了一項大事。

2012 年深度學習+GPU一戰成名,爆發人工智慧熱潮

ImageNet 是全世界最大的圖像識別資料庫。每年,史丹佛大學都會舉辦 ImageNet 圖像識別競賽,參加者包括了Google、微軟、百度等大型企業,除了在比賽中爭奪圖像識別寶座、同時測試自家系統的效能與極限。

IM ♣GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

- 其實從 2007 年 ImageNet 比賽創辦以來,每年的比賽結果、每家都 差不多,錯誤率大致落在 30%、29%、28%... 瓶頸一直無法突破。
- 結果 2012 年 Hinton 的兩個學生以 SuperVision 的隊伍名參賽,以 16.42% 的錯誤率遠勝第二名的 26.22%。用的正是深度學習技術。

- Google 在 2013 年收購了 Hinton 和他的兩位學生,一堆企業爭相投入深度學習的研究領域。
- 2015 年的冠軍 Microsoft ,已以 3.5% 的錯誤率贏得冠軍,超越人 類5%。發展可謂一日千里。

• 後續 AlphaGo 的出現,除了主導研發的 DeepMind 之外,還有 Hinton 的協助

2016年初時,AlphaGo以4:1的成績打敗南韓圍棋選手李世石 2016年底,又以Master的代稱在網路上豪取59 勝 2017年5月,AlphaGo迎戰世界第一棋王柯潔,寫下三戰全勝紀錄

https://www.youtube.com/watch?v=jBTm2xsQgW0

- 深度學習之所以在 2006 年還沒真正火熱起來,問題在於硬體運算能力不足——傳統大家都是用 CPU 來運算,然而速度緩慢。
- 深度學習會大量用到矩陣運算,最合適的硬體事實上是負責圖形處理的 GPU。直到 2012 年 Hinton 的兩位學生利用「深度學習 + GPU」的組合,才真正發揮 GPU 的威力。
- 但為什麼這麼長以來的時間,都沒有人用 GPU 來運算呢?因為編譯 有其難度。
- 我們之所以能用 CPU 做運算,是因為 CPU 有編譯器 (Compiler) 這樣的設計,能讓工程師寫完程式後、經過編譯器的轉譯、成為 CPU 看得懂的機械碼。
- 然而一般 GPU 並沒有類似的設計,因此工程師難以直接寫程式讓
 GPU 來運算。直到 NVIDIA 在 2006 2007 年間推出全新運算架構
 CUDA ——NVIDIA成為深度學習運算必用硬體的關鍵。

- 使用者可以撰寫 C 語言、再透過 CUDA 底層架構轉譯成 GPU 看得懂的語言。
- 這也是自 GPU 可以拿來做大規模運算的概念推出之後,首次可以讓人使用 C 語言來運用 GPU 蘊藏已久的強大運算能力,故 NVIDIA 從 GeForce 8 系列之後的顯示卡全開始支援 CUDA 技術。
- 而 CUDA 的成功,更直接導致了深度學習的運算全部都使用 NVIDIA 家的 GPU。這種驚人的影響力,不論是深度學習、機器學習、自動車、 虛擬實境 (VR)、電競遊戲,每一項都跟 NVIDIA 習習相關。

2018 Turing Award

Face detection

Machine Leaning is Everywhere!

Medical Imaging

Levy et al, 2016 Figure reproduced with permission

Galaxy Classification

Dieleman et al, 2014

From left to right: public domain by NASA, usage permitted by ESA/Hubble, public domain by NASA, and public domain.

Whale recognition

Kaggle Challenge

This image by Christin Khan is in the public domain and originally came from the U.S. NOAA.

A Neural Algorithm of Artistic Style

https://arxiv.org/abs/1508.06576

Schedule and Syllabus (1/2)

- 1. Python and PyToch Basic
- 2. Image Classification
- 3. Loss Functions and Optimization
- 4. Introduction to Neural Networks
- 5. Convolutional Neural Networks
- 6. Training Neural Networks
- 7. Tips and tricks for tuning NNs
- 8. CNN Architectures
- 9. Recurrent Neural Networks

Schedule and Syllabus (2/2)

- 10. More about RNN Applications
- 11. Object Detection
- 12. Detection and Segmentation
- 13. Face Recognition and Style Transfer
- 14. Generative Models
- 15. Deep Reinforcement Learning

Recommended background

- Additional background in algorithms, linear algebra, probability will all be helpful
- Substantial programming (e.g., Python, PyToch) background is required

Online Material

http://introtodeeplearning.com/

Intro to Deep Learning

Lecture 1
[Slides] [Video]

Deep Computer Vision

Lecture 3
[Slides] [Video]

Deep Reinforcement Learning

Lecture 5
[Slides] [Video] coming Mar. 6!

Neurosymbolic Hybrid

Lecture 7
[Info] [Slides] [Video] coming Mar. 20!

Neural Rendering

Lecture 9
[Info] [Slides] [Video] coming Apr. 4!

Deep Sequence Modeling

Lecture 2
[Slides] [Video]

Deep Generative Modeling

Lecture 4
[Slides] [Video] coming Feb. 28!

Limitations and New Frontiers

Lecture 6
[Slides] [Video] coming Mar. 13!

Generalizable Autonomy in Robotics

Lecture 8
[Info] [Slides] [Video] coming Mar. 27!

ML for Scent

Lecture 10
[Info] [Slides] [Video] coming Apr. 10!

Intro to TensorFlow; Music Generation

Lab Session 1
[Code]

De-biasing Facial Recognition Systems

Lab Session 2
[Code] [Paper]

Pixels-to-Control Learning

Lab Session 3

Final Projects

Lab Session 4
[Video] coming soon!

Final Projects and Awards Ceremony

Lab Session 5
[Video] coming Apr. 17!

Assessment Method

- HW (40%, 11:50, Wed.)
- Quiz (10%, 9:00-9:15)
 - about one problems at the beginning of each lecture
 - the problems will be found from the homework each lecture
 - Best 10 results will be selected
- Take home Midterm (20%)
 - 20th April (hand out), 26th April (hand in)
- Take home Final (30%)
 - 25th May (hand out), 31th May (hand in)
 - 7th June (second round, hand in)
 - 15th June (<5 persons can get score>85, 10 minutes presentation)

50%

Teaching Assistants

TA Hours: 星期三 17:00

楊承域

a5241223@gmail.com

黃子豪

peter94135@gmail.com

蔡其哲

jackkcaj13579@gmail.com

余侑庭

york4517@gmail.com

詹晏丞

ycchan7250@gmail.com

黃威澄

st20001014@gmail.com

張昱辰

william881106@gmail.com

如果要修要考慮甚麼?

作業很多

是否我該修這門課?

老師...

我要畢業,就差這科...

我找到工作,就差這科...

我要畢業,提早交成績 ...

