Linear Regression

Aarti Singh & Barnabas Poczos

Machine Learning 10-701/15-781 Jan 23, 2014

So far ...

- Learning distributions
 - Maximum Likelihood Estimation (MLE)
 - Maximum A Posteriori (MAP)
- Learning classifiers
 - Naïve Bayes

Discrete to Continuous Labels

Classification

X = Document Y = Topic

Anemic cell Healthy cell

X = Cell Image

Y = Diagnosis

Regression

Stock Market Prediction

Regression Tasks

Weather Prediction

Estimating Contamination

Supervised Learning

Goal: Construct a predictor $f: X \to Y$ to minimize loss function (performance measure)

Classification:

$$P(f(X) \neq Y)$$

Probability of Error

Regression:

$$\mathbb{E}[(f(X) - Y)^2]$$

Mean Squared Error

Regression algorithms

Linear Regression

Regularized Linear Regression – Ridge regression, Lasso

Polynomial Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, ...

Replace Expectation with Empirical Mean

Optimal predictor:
$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:
$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \right)$$

Empirical mean

Law of Large Numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \left[loss(Y_i, f(X_i)) \right] \xrightarrow{\mathsf{n} \to \infty} \mathbb{E}_{XY} \left[loss(Y, f(X)) \right]$$

Restrict class of predictors

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

Why?

Overfitting!

Empiricial loss minimized by any function of the form

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$$

Restrict class of predictors

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

- ${\mathcal F}$ Class of Linear functions
 - Class of Polynomial functions
 - Class of nonlinear functions

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \quad \text{Least Squares Estimator}$$

 \mathcal{F}_L - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$
 β_1 - intercept

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$= X\beta \qquad \text{where} \quad X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$$

Least Squares Estimator

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \qquad f(X_i) = X_i \beta$$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \times \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\hat{f}_n^L(X) = X \hat{\beta}$

When is $(\mathbf{A}^T\mathbf{A})$ invertible? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T\mathbf{A})$?

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ? Regularization (later)

Gradient Descent

Even when $(\mathbf{A}^T\mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Treat as optimization problem

Observation: $J(\beta)$ is convex in β .

$\frac{\mathsf{J}(\beta_1)}{\beta_1}$

How to find the minimizer?

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Since $J(\beta)$ is convex, move along negative of gradient

Initialize:
$$\beta^0$$
 step size

Update: $\beta^{t+1} = \beta^t - \frac{\alpha}{2} \frac{\partial J(\beta)}{\partial \beta}\Big|_t$
 $= \beta^t - \alpha \mathbf{A}^T (\mathbf{A}\beta^t - Y)$
 $0 \text{ if } \hat{\beta} = \beta^t$

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \epsilon$.

Effect of step-size α

Large α => Fast convergence but larger residual error Also possible oscillations

Small α => Slow convergence but small residual error

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}) \quad Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$

$$\widehat{\beta}_{\text{MLE}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2)$$

$$\log \text{ likelihood}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i \beta - Y_i)^2 = \widehat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model!

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(\beta) \propto e^{-\beta^T \beta/2\tau^2}$$

) Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \mathsf{Ridge Regression}$$

$$\mathrm{constant}(\sigma^2,\tau^2)$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I})^{-1}\boldsymbol{A}^{\top}\boldsymbol{Y}$$

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(\beta) \propto e^{-\beta^T \beta/2\tau^2}$$

Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$

$$\mathrm{constant}(\sigma^2,\tau^2)$$

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

II) Laplace Prior

$$eta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t) \qquad \qquad p(eta_i) \propto e^{-|eta_i|/t}$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\widehat{eta}_{\mathsf{MAP}} = \arg\min_{eta} \sum_{i=1}^n (Y_i - X_i eta)^2 + \lambda \|eta\|_1$$
 Lasso constant (σ^2, t)

Ridge Regression vs Lasso

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

$$pen(\beta) = \|\beta\|_2^2$$

Lasso:

$$pen(\beta) = \|\beta\|_1$$

Lasso (I1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Beyond Linear Regression

Polynomial regression

Regression with nonlinear features

Later ...

Kernel regression - Local/Weighted regression

Polynomial Regression

degree m

Univariate (1-dim) $f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_m X^m = X\beta$ case:

where
$$\mathbf{X} = [1 \ X \ X^2 \dots X^m], \ \beta = [\beta_1 \dots \beta_m]^T$$

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\widehat{f}_n(X) = \mathbf{X} \widehat{\beta}$$

$$\widehat{f}_n(X) = \mathbf{X}\widehat{\beta}$$

$$\mathbf{A} = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & \vdots \\ 1 & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$$

Multivariate (p-dim)
$$f(X) = \beta_0 + \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$
 case:
$$+ \sum_{i=1}^p \sum_{j=1}^p \beta_{ij} X^{(i)} X^{(j)} + \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p X^{(i)} X^{(j)} X^{(k)} + \dots \text{ terms up to degree m}$$

Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1

Regression with nonlinear features

In general, use any nonlinear features

What you should know

Linear Regression

Least Squares Estimator

Normal Equations

Gradient Descent

Probabilistic Interpretation (connection to MLE)

Regularized Linear Regression (connection to MAP)

Ridge Regression, Lasso

Polynomial Regression, Regression with Non-linear features