

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD 2ª EVALUACIÓN (19 de diciembre de 2019)

Apellidos: SOLUCIÓN Nombre:

Ejercicio 1:

Sea el autómata a pila AP = { Σ , Γ , Q , q₀ , A₀ , f , \emptyset }, con Σ = { a , b }, Γ = { A₀ , A }, Q = { q₀ , q₁ } y f definida mediante los 8 movimientos siguientes:

- ① $f(q_0, a, A_0) = (q_0, AA_0)$
- ② $f(q_0, a, A) = (q_0, AA)$
- $\bigoplus f(q_0, b, A) = (q_1, \lambda)$
- ⑤ $f(q_1, b, A) = (q_1, \lambda)$
- 6 $f(q_1, \lambda, A) = (q_1, \lambda)$
- \bigcirc $f(q_1, \lambda, A_0) = (q_1, \lambda)$
- a) Construir a partir del AP, utilizando el algoritmo correspondiente, una gramática G que genere el mismo lenguaje y depurarla (7 puntos)
- b) Comprobar la generación en G y aceptación en AP de las palabras aaa y aaabb (2 puntos)
- c) ¿Qué lenguaje reconoce el AP y genera la gramática G? (1 punto)

25 minutos

a) Se pide construir una G que genere el lenguaje aceptado por AP:

AP = { { a , b } , { A , A₀ } , { q₀ , q₁ } , A₀ , q₀ ,
$$f$$
 , \emptyset } G = { Σ_T , Σ_N , P , S } , Σ_T = Σ del AP , Σ_N = { S } \cup { [q A p] / q, p \in Q , A \in Γ } , S = Axioma ALGORITMO (para obtener las producciones P de G):

- 1. $S: := [q_0 \ A_0 \ p], \forall p \in Q$
- 2. $[q \ A \ q_{m+1}] ::= a [q_1 \ B_1 \ q_2], [q_2 \ B_2 \ q_3], [q_3 \ B_3 \ q_4],, [q_m \ B_m \ q_{m+1}]$ Todas las posibles secuencias que llevan de q_1 a q_{m+1} para cada símbolo B_1 , B_2 , B_3 , ..., B_m introducido en la pila. $\forall \ q_1, \ q_2, \ q_3, \ q_4, \dots, \ q_m, \ q_{m+1} \in Q; \ A, \ B_1, \ B_2, \ B_3, \dots, \ B_m \in \Gamma; \ a \in \Sigma \cup \{\lambda\}$ Si los movimientos de la función de transición f son del tipo: $(q_1 \ B_1B_2B_3...B_m) \in f(q \ a \ A)$
- 3. Si m = 0, es decir, si no se introduce nada en la pila: [q A q_i] : : = a , \forall $q_i \in Q$ Si los movimientos de la función de transición f son del tipo: (q_i λ) \in f (q a A)

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD 2ª EVALUACIÓN (19 de diciembre de 2019)

Apellidos: SOLUCIÓN Nombre:

SE REDENOMINAN LAS TERNAS Y SE DEPURA LA GRAMÁTICA

S::= A B	Eliminar símbolos inaccesibles:
$A: := aCA \mid aDG$	G y H (aDG, aDH)
$B::= \frac{aCB}{aCF} \mid aDF \mid \lambda$	Eliminar la regla no generativa:
$C ::= aCC \mid aDH$	C::= aCC
$D::= aCD \mid aDE \mid \lambda \mid b$	Eliminar todas las afectadas por la regla anterior: aCA, aCB, aCD
$E ::= b \mid \lambda$ $F ::= \lambda$	Desaparece A y sus producciones
S::= aD F λ	Regla de redenominación: S : : = B y B : : = aDF $\mid \lambda$
$D::=aDE \mid \lambda \mid b$	se queda en: S::= aDF $\mid \lambda$
	Se sustituyen en S y D las reglas:
$E ::= b \mid \lambda$	E::= b
F::= λ	$F::=\lambda$
$S::=aD \mid \lambda$	Producciones definitivas
$D : := aDb \mid aD \mid b \mid \lambda$	GRAMÁTICA DEPURADA

b) (1) Se prueban las palabras en AP: aaa y aaabb (ambas ∈ L)

```
Palabra aaa: [q_0 \text{ aaa } A_0] \vdash [q_0 \text{ aa } AA_0] \vdash [q_0 \text{ a } AAA_0] \vdash [q_0 \lambda AAAA_0] \vdash [q_1 \lambda AA_0] \vdash [q_1 \lambda AA_0] \vdash [q_1 \lambda A_0] \vdash [q_1 \lambda A_0] \vdash [q_0 \text{ aabb } AA_0] \vdash [q_0 \text{ aabb } AA_0] \vdash [q_0 \text{ bb } AAAA_0] \vdash [q_0 \text{ bb } AAAA_0] \vdash [q_1 \text{ b } AAA_0] \vdash [q_1 \lambda AA_0] \vdash [q_1 \lambda AA_
```

(2) Se generan en la G las 2 palabras: aab y aaabb ∈ L:

```
Palabra aaa: S \to \underline{aD} \to \underline{aaD} \to \underline{aaaD} \to \underline{aaa} (GENERA)
Palabra aaabb: S \to \underline{aD} \to \underline{aaDb} \to \underline{aaabb} \to \underline{aaabb} (GENERA)
```

c) El lenguaje que acepta el AP y genera la gramática G es: $L = \{ a^n b^m / n \ge m \ge 0 \}$

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

2ª EVALUACIÓN (19 de diciembre de 2019)

Apellidos:

SOLUCIÓN

Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde $w \in 1^*$ es un número entero codificado en unario. M inicialmente está en el estado q_0 leyendo el primer 1 de w.

a) ¿Qué función aritmética sobre cada w calcula M? ¿Cuál es la configuración final de M tras recibir las entradas de los apartados a.1) y a.2)? (2 puntos)

- b) Escribir (y describir brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal (MTU) programada para simular a la máquina M con la entrada del apartado a.1). Utilicen la siguiente codificación binaria: $q_0 = 00$; $q_1 = 01$; $q_2 = 10$; Izqda I = 1; Dcha D = 0 (2 puntos)
- c) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo transcriptor cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a.1). ¿En qué estado termina el módulo transcriptor? ¿Por qué? (2 puntos)
- d) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de simular el primer movimiento que realiza la máquina M con la entrada del apartado a.1). ¿A qué estado accede el módulo simulador tras recolocar el *? ¿Por qué? (2 puntos)
- e) Escribir (y describir brevemente) el contenido final de la cinta de la MTU cuando termine de simular a la máquina M con la entrada del apartado a.1). ¿En qué estado se para la MTU? ¿Por qué? (2 puntos)

NOTA: Todos los apartados se responderán en la carilla de atrás.

Durante el examen se da fotocopia con el grafo de los tres módulos de la MTU.

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES Apartado a) a.1) y a.2)
9011+···· + 1#92# 90111+···
¿Qué función aritmética sobre cada w calcula M? W - (W+1) mod 2 ó W - I + W mod?
Apartado b) Cinta de la MTU programada con la entrada del aptdo. a.1) Seda en blano 2 $\frac{40}{10000000000000000000000000000000000$
I 0 0 1 ≠ 1 0 1 1 0 0 0 ≠ # · · · IIIIIIIIIIIIIIIIIIIIIIIIIIIII
Apartado c) Módulo Transcriptor (escribid sólo la parte de la cinta que cambia)
* 10 + 0 11 = A A B A B B A = REG de inicio
Las cedas transcritas re marcan contas y B
¿En qué estado termina el módulo transcriptor? q ¿Por qué? Pero memorizer el vebr O que indica desplezezmiento a la derecha. El vebr de esa ceda no se puede transcribir en las cedes del REG. de inicio por la que se memoriza. Si es O(q12).
Apartado d) Módulo Simulador (escribid sólo la parte de la cinta que cambia) Revuelve a escribir un la el control pasa de fo (00) a f. (01) # 1 * 0 ± 0 1 1 ± 0 0 1 0 1 0 = 0 0 0
El ex se recobce en le celez de la dereche. El pue hey en esa celez se el macer en el REG. de inicio. Se restauran los repistros marcados (el primero). ¿A qué estado accede el módulo simulador tras recolocar el *? 9 ¿Por qué?
Porque en el estado fizo el módulo simulados se encuentra un I que memoriza transitando a fiza para almacenarlo posteriormente en la última ceda del REG inici
Apartado e) Cinta de la MTU cuando para M 2e pzrz en (fz) leyendo un (#)
#10* +B00 = AABABA = ABBA = AAA
BAAB = BABBAAA = # Por memorizz un 1 del REG. de micie
¿En qué estado se para la MTU? a ¿Por qué? Parque el mod. localizador busca = 100 = al
¿En qué estado se para la MTU? q ¿Por qué? Porque el mod. localizador busca = 100 = al comienzo de los diferentes repistros. Ninpuno de ellos comienza por esa secuencia por lo que son marcados con As y Bs. El mód. localizador para cuando buscando un super repistro por examinar aparece la primera celos en blanco # por la derecha en (\$5)