Lecture 21

Part 4 Analysis of Variance

ECON2843 1/12

Relationship between Chi-squared Test and F Test

ECON2843 2 / 12

Another Way to Define Chi-squared Distribution and Test

Let Z_1, Z_2, \dots, Z_k being independent and identically distributed and follow N(0,1)

$$\Rightarrow X^2 \equiv Z_1^2 + Z_2^2 + \ldots + Z_k^2 \sim \chi_k^2.$$

ightharpoonup Specifically, if k=1,

$$Z^2 \sim \chi_1^2$$
.

- ▶ Chi-squared statistic: $\chi^2 = \sum_{i=1}^k \frac{(O_i E_i)^2}{E_i}$
- Where:
 - \triangleright O_i are observed frequencies
 - \triangleright E_i are expected frequencies
- ▶ Under H_0 : $\chi^2 \sim \chi^2_{k-1}$

ECON2843 3 / 12

Recall How F-test is Defined

► F-test statistic:

$$F = \frac{S_1^2/(k_1 - 1)}{S_2^2/(k_2 - 1)}$$

- ▶ Where:
 - $ightharpoonup S_1^2, S_2^2$ are sample variances
 - ▶ $k_1 1, k_2 1$ are degrees of freedom
- ▶ Under H_0 : $F \sim F_{k_1-1,k_2-1}$

ECON2843 4 / 12

Mathematical Connection

Key relationship here:

$$F = \frac{\chi_1^2/(k_1 - 1)}{\chi_2^2/(k_2 - 1)}$$

- Where:
 - $\chi_1^2 \sim \chi_{k_1-1}^2$ $\chi_2^2 \sim \chi_{k_2-1}^2$

 - $\searrow \chi_1^2$ and χ_2^2 are independent

5/12

Fisher's F-statistic

F-statistics is invented by and named after Sir Ronald Fisher.

The original concern of Fisher is to construct a **statistic** which has a sampling distribution, in some extent, free from the degrees of freedom a and b under the null hypothesis.

ECON2843 6 / 12

Fisher's F-statistic

With this concern, he presented his F-statistic in a way that:

Since χ_a^2 has expectation a, so the numerator χ_a^2/a has expectation 1;

similarly, the denominator also has expectation 1.

As Fisher said, the value of F-statistic will fluctuate near 1 under the null hypothesis $H_0: \mu_1 = \cdots = \mu_k$ (if k = a + 1).

◆□▶◆□▶◆■▶◆■▶ ● 900

ECON2843 7 / 12

Recall One-Way ANOVA We Have Learned

In one-way ANOVA:

$$\begin{split} F &= \frac{\text{Between-group variability}}{\text{Within-group variability}} \\ &= \frac{\chi_{\text{between}}^2/(k-1)}{\chi_{\text{within}}^2/(N-k)} \end{split}$$

Where:

- \triangleright k is number of groups
- ightharpoonup N is total sample size

ECON2843 8 / 12

Applications

- ▶ Variance Comparison
 - ► F-test for comparing two variances
 - ▶ Multiple χ^2 tests for multiple variances
- ▶ Model Comparison
 - ▶ F-test in regression analysis
 - $\rightarrow \chi^2$ test for nested models

ECON2843 9 / 12

Practical Implications

- Understanding the relationship helps in:
 - ▶ Test selection
 - Result interpretation
 - Statistical power considerations

ECON2843 10 / 12

Relationship between $t\ {\sf Test}$ and ${\sf F}\ {\sf Test}$

ECON2843 11 / 12

Relationship between t Test and F Test

▶ All under the assumption that null hypothesis is true

$$\begin{split} t_{k-1} &= \frac{Z}{\sqrt{S^2/(k-1)}} \\ &= \frac{Z}{\sqrt{\chi_{k-1}^2/(k-1)}} \\ &= \frac{\sqrt{\chi_{k-1}^2/(k-1)}}{\sqrt{\chi_{k-1}^2/(k-1)}} = \sqrt{\frac{\chi_{1}^2/1}{\chi_{k-1}^2/(k-1)}} \\ &= \sqrt{F_{1,k-1}} \end{split}$$

Or, in other words,

$$t_{k-1}^2 = F_{1,k-1}.$$

ECON2843 12 / 12