LEARNING TO DETECT FAKE DOCUMENTS

Team #6

Team Members:

Leonid (Leo) Boytsov

Zhou Yu

Di Wang

Hector, Zhengzhong Liu

General Approach

- Design linguistically motivated features
- Train a discriminative classifier to produce document classes (fake or real)
- Train a logistic regression model to produce posterior probabilities

Main Hypothesis

One can detect fake articles by processing histories that comprise word spans longer than three consecutive words.

Designed Features

- Original text n-gram model perplexity (2 to 7 words, Good-Turing smoothing)
- POS tag n-gram model perplexity (2 to 7 tags, Good-Turing smoothing)
- Point-wise mutual information between distant words (more than 2 words in-between)
- Point-wise mutual information between words in different sentences
- Proportion of words that repeat in more than one sentence
- Syntactical parsing scores

Additional training/testing data

- First we tried NLTK, but produced documents were very different from the provided testing and training data
- Then we back-ported the generating function from the CMU Sphinx toolkit to the CMU Cambridge toolkit
- Real data was generated by extracting a long piece that started at a random sentence
- We generated documents that were much longer than those in the training set
- The generated training/testing sets were 10x the size of the sets provided by instructors

Machine Learning Methods

- Soft-margin SVM
 - Good classifier, but no posterior probabilities
 - Tried different kernels
- Regularized logistic regression
 - Probably not as good as SVM
 - But it can produce posterior probabilities
 - LASSO (L1) and Tikhonov (L2) regularization
- Naïve Bayes
- Parameters tuned by 10-fold cross-validation
- We use two sets of features
 - Complete includes all n-gram models
 - Short includes only 3-gram and 4-gram models

Experimental results

Original Dev Set

Hard Metric (SVM)

		Generated training set	
short	complete	short	complete
0.88	0.90	0.92	0.895

2^{Soft Metric} (LR-L1)

		Generated training set	
short	complete	short	complete
0.7	0.73	0.75	0.76

Generated Dev Set

Hard Metric (SVM)

		Generated training set	
short	complete	short	complete
0.927	0.923	0.927	0.901

2^{Soft Metric} (LR-L1)

Original training set		Generated training set	
short	complete	short	complete
8.0	0.78	8.0	0.73

Perplexity distributions of 3- and 4-gram models for fake and real documents

Word Occurrence Features

Point-wise Mutual Information

Average portion of repeated words

Accuracy vs. # Sentences

Conclusions

Best Machine Learning Methods

- Soft margin linear SVM
- Logistic regression with the LASSO regularization

Features

- Perplexities computed using n-gram models
- No single n-gram model can detect fake sentences
- Yet, two n-gram models are sufficient to classify accurately
- Probability estimation may work better with all n-gram models
- No feature works well for short sentences
- Syntactical parsing scores were not helpful

Additional data

- Was probably helpful on the development set
- Unsure about unseen data

Questions?