An Introduction to the Data Science Statistics Concentration

John Tipton 08/04/2022

Data science

- What is data science?
- Data science is statistics + computer science with a focus on communication
- What is statistics?
- My opinion: data science is what statistics should have been the statistics community dropped the ball!

Statistical Modeling

- · Drawing conclusions based on data while accounting for random variation.
- Goal: Make inference about the state of the world using data.
- Most statistics courses are taught as a recipe.
 - If your data are X then do Y.
 - Where is the creativity? Science?

What people think statistics is

What people think statistics is

What statistics actually is

- The creative process of turning data into insights using mathematics
- The mathematics that allow for understanding using data
- Constructive and dynamic
- · Collaborative: Opportunity to work with experts in multiple fields

Problem with traditional statistics

- · Where is the science?
- Don't we know something about the world other than our data is X?
- How do we add this knowledge into our modeling?

Scientifically Motivated Statistical Modeling

- Probabilistic modeling.
- Model encodes our understanding of the scientific process of interest.
- Model accounts for as much uncertainty as possible.
- Model results in a probability distribution.
- · Update model with data.
- Use the model to generate parameter estimates given data.

Scientifically Motivated Statistical Modeling

- Criticize the model
 - Does the model fit the data well?
 - Do the predictions make sense?
 - Are there subsets of the data that don't fit the model well?
- Make inference using the model.
- If the model fits the data, use the model fit for prediction or inference.

Data Science Statistics - What you will learn

- Focus on the mathematical underpinnings for data science
- Programming languages and data frameworks change
 - Today it's python/R
 - Tomorrow it's (probably) Julia
- Not everything is big data and most problems don't require deep learning and instead require careful thought

Data science statistics - What you will learn

- Understanding the first principles ensures your expertise will never become obsolete
 - The models and programming frameworks will change in the future
 - The mathematics and statistics underlying these will always be the same

Data science statistics - What you will learn

- · There is a desperate need for people that can think statistically
 - There are many, many more software engineers than data scientists
 - Why?
 - Statistical thinking is hard and takes time to learn

Data science statistics

- Core courses
 - Introduction to Mathematical Statistics
 - Statistical forecasting and prediction
 - Bayesian Methods
- Possible electives
 - Nonparametric methods
 - Experimental Design
 - Analysis of categorical data

Mathematical Statistics

- Statistical properties
 - What happens to the model inference/prediction as you get more data?
 - Are the estimates unbiased?
 - On average, are the estimates equal to the "true" value?
 - Are the estimates consistent?
 - As you get more data, do the estimates converge to the "true" value
- Estimation and testing

Mathematical Statistics

- Sufficient statistics
 - The backbone of distributed computing platforms
 - Hadoop, Apache Spark, MapReduce, etc.
- Decision Theory
 - How to make decisions under uncertainty
 - Formal definition of loss and risk

Statistical Forecasting and Prediction

- Modeling of data that is dependent on time
 - Temperature today is more likely to be like yesterday than the same day last year
 - Retail sales today more likely to be like yesterday than last month
- Fundamentals of "time series" data analysis
- Robust understanding of autocorrelation, autoregression, and moving averages
- Fundamental for finance, business forecasting, ecological monitoring, etc.

Bayesian Methods

- Understanding model building, regularization, classification and prediction.
- Formal modeling of uncertainty
 - Estimates of how reliable a prediction is
- Inclusion of prior (scientific) knowledge
 - Add knowledge about the real world
- Constructive model building
 - Customize the analysis to specific challenges and problems
 - Not just "data mining"
 - Iterative model building and improvement

Other statistics courses

- Nonparametric statistics
 - What to do when assumptions are not met
 - bootstrapping and resampling methods
 - Foundation for deep learning and ML models
- Experimental statistics
 - A/B testing how internet ads are tested
 - Scientific testing
- Analysis of categorical data
 - Generalized linear models
 - Count data
 - Logistic regression

Jobs in Data Science Statistics

- A Data Science Statistics concentration will prepare you for all jobs in data science
- Strongly recommend learning from experts
 - Much of the work of applied statisticians and data scientists is translating knowledge from experts in a domain area into mathematical models and computer code