BIOMECHANIKA SRDEČNÍHO CYKLU

(SRDCE JAKO PUMPA)

SRDCE PERMANENTNĚ, <u>BEZ ODPOČINKU</u>, ČERPÁ KREV RYTMICKÝM STŘÍDÁNÍM SYSTOLY A DIASTOLY PO CELÝ ŽIVOT

ZA FYZIOLOGICKÝCH OKOLNOSTÍ KREV PROTÉKÁ PRAVÝM NEBO LEVÝM SRDCEM V DEFINOVANÉM SMĚRU: ŽÍLA –SÍŇ – KOMORA – TEPNA. SMĚR TOKU KRVE URČUJE PŘEDEVŠÍM FUNKCE CHLOPENNÍHO APARÁTU

PRAVIDELNĚ SE STŘÍDAJÍ OBDOBÍ PLNĚNÍ SRDEČNÍCH DUTIN KRVÍ, OBDOBÍ DIASTOLY, A OBDOBÍ VYPUZOVÁNÍ KRVE, EJEKČNÍ FÁZE SYSTOLY.

KOMORA A PŘEDSÍŇ MAJÍ VTOKOVÉ A VÝTOKOVÉ ÚSTÍ. ZATÍMCO KOMORA MÁ OBĚ ÚSTÍ OPATŘENÉ CHLOPNĚMI, PŘEDSÍŇ MÁ CHLOPNĚ JEN NA ÚSTÍ VÝTO-KOVÉM. VTOKOVÉ ÚSTÍ PŘEDSÍNÍ JE SMĚREM DO ŽIL TRVALE OTEVŘENO

PLNĚNÍ SRDCE KRVÍ PROBÍHÁ PASIVNĚ. KREV SE HROMADÍ PŘED SRDCEM V DŮS-LEDKU "ŽILNÍHO NÁVRATU" A PO OCHABNUTÍ STĚN V DIASTOLE VTÉKÁ DO DUTIN SRDCE.

PROTOŽE JE KREV NESTLAČITELNÁ, MŮŽE SRDCE PŘEČERPAT JEN TOLIK KRVE, KOLIK JÍ DO SRDCE PŘITEČE. <u>Hlavní determinantou srdečního výdeje se stává žilní návrat</u>

ELEKTRICKÁ AKTIVITA PŘEDCHÁZÍ AKTIVITU MECHANICKOU

VZRUCH VZNIKÁ VE FYZIOLOGICKÉM PACEMAKERU (SINOATRIÁLNÍ UZEL) A ŠÍŘÍ SE MYOKARDEM PROSTŘEDNICTVÍM "NÍZKOODPOROVÝCH MŮSTKŮ". GAP JUNCTIONS.

ELEKTROFYZIOLOGICKÝM KORELÁTEM VZRUCHU JE AKČNÍ NAPĚTÍ (AN). ROLE AN JE DVOJÍ:

- 1) INFORMAČNÍ (PUTUJE Z JEDNOHO NA DALŠÍ MÍSTO)
- 2) SPOUŠTÍ KONTRAKCI (VAZBA MEZI EXCITACÍ A KONTRAKCÍ; ECC).

SRDEČNÍ CYKLUS

S OHLEDEM NA SKUTEČNOST, ŽE SE SÍNĚ BĚHEM CYKLU NEUZAVÍRAJÍ PROTI ŽILÁM, POPISUJE SE BIOMECHANIKA SRDEČNÍHO CYKLU NA KOMORÁCH. KOMORY MAJÍ NA VTOKOVÉM (ATRIOVENTRIKULÁRNÍ) I VÝTOKOVÉM (KOMORO-TEPENNÉ) ÚSTÍ CHLOPNĚ, KTERÉ V URČITÝCH FÁZÍCH CYKLU ZAJISTÍ NEMĚNNÝ OBJEM KOMOR.

FÁZE SRDEČNÍHO CYKLU

SYSTOLA 1. FÁZE IZOVOLUMICKÉ KONTRAKCE 2. FÁZE EJEKČNÍ

3. PROTODIASTOLA

DIASTOLA

- 4. FÁZE IZOVOLUMICKÉ RELAXACE
- 5. FÁZE PLNĚNÍ KOMOR
 - 6. FÁZE RYCHLÉHO PLNĚNÍ
 - 7. FÁZE POMALÉHO PLNĚNÍ
 - 8. FÁZE SÍŇOVÉ SYSTOLY

PROTOŽE SE JEDNÁ O CYKLICKÝ DĚJ, JE LHOSTEJNÉ ODKUD BUDEME PROCES POPISOVAT. VŽDY SE VRÁTÍME DO VÝCHOZÍHO BODU

BĚHEM CYKLU SE V KOMORÁCH MĚNÍ TYTO PARAMETRY:

INTRAVENTRIKULÁRNÍ TLAK = P_V INTRAVENTRIKULÁRNÍ OBJEM = V_V

> KOMENTÁŘ CYKLU ZAČNEME OD PLNĚNÍ KOMOR SOUČÁST DIASTOLY

Fáze plnění komor (na předchozím schematu zjednodušeně 1 a 2)

POHYBY KRVE URČUJÍ TLAKOVÉ SPÁDY A POLOHY CHLOPNÍ SÍLA JE GENEROVÁNA STAHEM PRACOVNÍCH VLÁKEN MYOKARDU

SYSTOLICKÁ IZOVOLUMICKÁ FÁZE NASTUPUJE PO SYSTOLE SÍNĚ

SRDEČNÍ CYKLUS PROVÁZEJÍ ZEVNÍ PROJEVY VZNIKAJÍCÍ MECHANICKOU ČINNOSTÍ SRDCE.

SRDEČNÍ OZVY

ARTERIÁLNÍ PULZOVÁ VLNA

PŘENOS TLAKOVĚ-OBJEMOVÝCH KOLÍSÁNÍ V V PRAVÉ PŘEDSÍNI NA VELKÉ ŽÍLY PŘED SRDCEM (NESPŘÁVNĚ "ŽILNÍ PULZ")

Kromě toho je srdeční činnost provázena ději elektrickými, které lze registrovat technikou ELEKTROKARDIOGRAFIE (EKG).

SRDEČNÍ OZVY

Jsou akustické fenomeny vznikající jednak mechanikou chlopenního aparátu, jednak turbulencí krve uvnitř srdeční dutiny.

Rozlišují se celkem 4 srdeční ozvy, Označují se I., II., III., IV. ozva.

- I. Ozva je určena uzavřením chlopní cípatých (ozva systolická)
- II. Ozva je dána zaklapnutím poloměsíčitých chlopní (ozva diastolická)
- III. Ozva vzniká v období rychlého plnění komor
- IV. Ozva je dána urychlením pohybu krve v důsledku systoly síní

Obvykle jsou I. a II. ozva dobře slyšitelné (registrovatelné). III. a IV. ozva jsou slyšitelné při určité poloze hrudníku, zpravidla u mladých neobezních jedinců.

Srdeční ozvy lze snímat mikrofonem a po odfiltrování určitých zvukových frekvencí lze provést registraci např. pomocí PC a následně podrobně srdeční zvuky analyzovat. Tato technika se označuje FONOKARDIOGRAFIE. Pořízený záznam je FONOKARDIOGRAM.

FLEBOGRAM

izovolumická kontrakce

