SEMAINE 19

FONCTIONS de PLUSIEURS VARIABLES

EXERCICE 1:

1. Soit $\alpha \in \mathbb{R}_+$. Résoudre, dans \mathbb{R}_+^* , l'équation différentielle

$$(E_{\alpha})$$
: $r^2 u''(r) + r u'(r) - \alpha^2 u(r) = 0$

(on pourra chercher des solutions de la forme $u(r) = r^m$, avec $m \in \mathbb{R}$).

Soit $f: \mathbb{C} \to \mathbb{C}$ de classe \mathcal{C}^2 (considérée comme fonction de deux variables réelles).

On dit que f est harmonique lorsque son laplacien Δf est nul, soit $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

On rappelle l'expression du laplacien en coordonnées polaires : en posant $g(r, \theta) = f(re^{i\theta})$, on a, pour r > 0,

$$\Delta f(re^{i\theta}) = \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial g}{\partial r}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2}(r,\theta) .$$

2. Soit $f: \mathbb{C} \to \mathbb{C}$, de classe \mathcal{C}^2 , harmonique. Montrer qu'il existe des coefficients $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}^*}$, complexes, tels que

$$\forall z \in \mathbb{C}$$
 $f(z) = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=1}^{+\infty} b_n \overline{z}^n$.

- 3. Montrer que toute fonction harmonique bornée sur $\mathbb C$ est constante.
- 4. En déduire le théorème de d'Alembert-Gauss.

Source : article d'Éric VAN DER OORD, Fonctions harmoniques dans \mathbb{R}^2 , RMS (Revue de Mathématiques Spéciales), janvier 1995

- 1. On sait que l'ensemble des solutions de (E_{α}) sur \mathbb{R}_{+}^{*} est un plan vectoriel. La fonction $r \mapsto r^{m}$ est solution de (E_{α}) si et seulement si $m^{2} \alpha^{2} = 0$, d'où la discussion :
 - \bullet si $\alpha > 0$, on a trouvé deux solutions linéairement indépendantes, donc

$$(E_{\alpha}) \iff u(r) = A r^{\alpha} + B r^{-\alpha}, \qquad (A, B) \in \mathbb{C}^2.$$

• si
$$\alpha = 0$$
, $(E_0) \iff r u''(r) + u'(r) = 0 \iff u'(r) = \frac{A}{r} \iff u(r) = A \ln r + B$.

 (E_{α}) est une équation d'Euler ; on peut aussi la résoudre sur \mathbb{R}_{+}^{*} en utilisant le changement de variable $r=e^{t}$.

2. Pour $n \in \mathbf{Z}$ et $r \in \mathbb{R}_+$, posons $c_n(r) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$. Le nombre $c_n(r)$ est le n-ième coefficient de Fourier de la fonction $g_r : \theta \mapsto g(r,\theta) = f(re^{i\theta})$.

Comme f est harmonique, on a (le caractère C^2 de la fonction g sur $\mathbb{R} \times [0, 2\pi]$ permet de dériver sous le signe intégrale), pour r > 0:

$$r^{2} c_{n}^{"}(r) + r c_{n}^{'}(r) = \frac{r^{2}}{2\pi} \int_{0}^{2\pi} \left[\frac{\partial^{2} g}{\partial r^{2}}(r,\theta) + \frac{1}{r} \frac{\partial g}{\partial r}(r,\theta) \right] e^{-in\theta} d\theta$$

$$= -\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial^{2} g}{\partial \theta^{2}}(r,\theta) e^{-in\theta} d\theta$$

$$= -\frac{1}{2\pi} \int_{0}^{2\pi} g_{r}^{"}(\theta) e^{-in\theta} d\theta = n^{2} c_{n}(r)$$

(en intégrant deux fois par parties).

Pour tout $n \in \mathbf{Z}$, la fonction c_n , de classe \mathcal{C}^2 sur \mathbb{R}_+ , vérifie l'équation différentielle (E_n) sur \mathbb{R}_+^* . Comme elle est bornée au voisinage de zéro, on a

$$\begin{cases} c_0(r) = a_0 & \text{(constante)} \\ c_n(r) = a_n r^n & \text{pour } n \in \mathbb{N}^* \\ c_{-n}(r) = b_n r^n & \text{pour } n \in \mathbb{N}^* \end{cases}$$

Pour tout $r \in \mathbb{R}_+$, la fonction g_r , 2π -périodique et de classe \mathcal{C}^2 , est somme de sa série de Fourier, donc

$$f(r e^{i\theta}) = g(r, \theta) = a_0 + \sum_{n=1}^{+\infty} a_n r^n e^{in\theta} + \sum_{n=1}^{+\infty} b_n r^n e^{-in\theta}$$

soit

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=1}^{+\infty} b_n \overline{z}^n.$$

3. Si $|f(z)| \leq M$ sur \mathbb{C} , alors, de la définition des $c_n(r)$, on déduit $|c_n(r)| \leq M$ pour tout $r \in \mathbb{R}_+$ et tout $n \in \mathbb{Z}$. Pour tout $n \in \mathbb{N}^*$, on a ainsi

$$\forall r \in \mathbb{R}_+^* \qquad |a_n| \le \frac{M}{r^n} \quad \text{et} \quad |b_n| \le \frac{M}{r^n} .$$

Comme $\lim_{r \to +\infty} \frac{M}{r^n} = 0$, on déduit $a_n = b_n = 0$ pour tout $n \in \mathbb{N}^*$, donc f est constante.

4. Soit $P \in \mathbb{C}[X]$ un polynôme. Alors la fonction polynomiale $P : \mathbb{C} \to \mathbb{C}$ est harmonique. En effet,

$$\frac{\partial}{\partial x}(z^n) = \frac{\partial}{\partial x}\big((x+iy)^n\big) = n(x+iy)^{n-1} = n\,z^{n-1} \qquad \text{et} \qquad \frac{\partial}{\partial y}(z^n) = in\,z^{n-1} \ ,$$

donc

$$\Delta(z^n) = \frac{\partial^2}{\partial x^2}(z^n) + \frac{\partial^2}{\partial y^2}(z^n) = n(n-1) z^{n-2} - n(n-1) z^{n-2} = 0 ,$$

donc $\Delta P = 0$.

Supposons que P n'admette pas de racine dans \mathbb{C} . Alors la fonction $\frac{1}{P}$ est harmonique sur \mathbb{C} . En effet,

$$\frac{\partial}{\partial x} \left(\frac{1}{P} \right) = -\frac{1}{P^2} \frac{\partial P}{\partial x}, \quad \text{puis} \quad \frac{\partial^2}{\partial x^2} \left(\frac{1}{P} \right) = \frac{2}{P^3} \left(\frac{\partial P}{\partial x} \right)^2 - \frac{1}{P^2} \frac{\partial^2 P}{\partial x^2}$$

et

$$\Delta \left(\frac{1}{P}\right) = \frac{2}{P^3} \left[\left(\frac{\partial P}{\partial x}\right)^2 + \left(\frac{\partial P}{\partial y}\right)^2 \right] - \frac{1}{P^2} \Delta P \ .$$

Or, $\Delta P=0$ et le calcul fait ci-dessus montre que $\frac{\partial P}{\partial x}=P'(z)$ et $\frac{\partial P}{\partial y}=iP'(z)$, donc $\left(\frac{\partial P}{\partial x}\right)^2+\left(\frac{\partial P}{\partial y}\right)^2=0$.

Si P n'a pas de zéro, la fonction $\frac{1}{P}$ est harmonique et bornée sur \mathbb{C} (car $\lim_{|z|\to+\infty}\frac{1}{|P(z)|}=0$), donc est constante, et P est un polynôme constant.

EXERCICE 2 : Solution (intégrale de Poisson) du problème de Dirichlet

On identifiera $\mathbb C$ à $\mathbb R^2$. $\mathcal U$ est le cercle unité, D le disque unité ouvert, $\overline D$ le disque unité fermé.

Si Ω est un ouvert de \mathbb{R}^2 , une fonction $f:\Omega\to\mathbb{R}$ est dite **harmonique** si elle est de classe \mathcal{C}^2 sur Ω et de laplacien nul, c'est-à-dire

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 .$$

Pour tout $t \in \mathbb{R}$ et $r \in [0, 1[$, on pose

$$P_r(t) = \sum_{n=-\infty}^{+\infty} r^{|n|} e^{int} .$$

Soit $f: \mathcal{U} \to \mathbb{R}$ une application continue.

Montrer qu'il existe une unique application $F: \overline{D} \to \mathbb{R}$, continue sur \overline{D} , harmonique sur D et coïncidant avec f sur \mathcal{U} . On vérifiera, pour r < 1 et $\theta \in \mathbb{R}$, la relation

$$F(r e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$$
 (*)

• Pour $r \in [0,1[$ et $t \in \mathbb{R}$, calculons

$$P_r(t) = \sum_{n = -\infty}^{+\infty} r^{|n|} e^{int} = \frac{1}{1 - r e^{it}} + \frac{r e^{-it}}{1 - r e^{-it}} = \frac{1 - r^2}{1 - 2r \cos t + r^2}.$$

La famille de fonctions $\left(\frac{1}{2\pi}P_r\right)$, appelée **noyau de Poisson**, est une approximation de l'unité 2π -périodique lorsque $r \to 1^-$ (cf. semaine 13, exercice 4), c'est-à-dire que

 \triangleright les fonctions P_r sont à valeurs positives ou nulles ;

 \triangleright pour tout $r \in [0,1[, \int_{-\pi}^{\pi} P_r(t) dt = \sum_{n=-\infty}^{+\infty} r^{|n|} \int_{-\pi}^{\pi} e^{int} dt = 2\pi$ car la série de fonctions converge normalement sur $[-\pi,\pi]$;

 \triangleright pour tout $\alpha \in]0, \pi[$, la famille de fonctions (P_r) converge uniformément vers la fonction nulle sur $[-\pi, -\alpha] \cup [\alpha, \pi]$ lorsque $r \to 1^-$. Sur ces intervalles, on a effectivement

$$0 \le P_r(t) \le \frac{1 - r^2}{1 - 2r \cos \alpha + r^2}$$
, et $\lim_{r \to 1^-} \frac{1 - r^2}{1 - 2r \cos \alpha + r^2} = 0$.

• Considérons la fonction $F_0: \overline{D} \to \mathbb{R}$ définie par $F_0 = f$ sur \mathcal{U} et, si $z = re^{i\theta} \in D$, alors $F_0(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$.

• La fonction F_0 est continue en tout point de \mathcal{U} : en effet, soit $z_0 = e^{i\theta_0} \in \mathcal{U}$. Si r < 1 et $\theta \in \mathbb{R}$,

$$\delta = F_0(r e^{i\theta}) - F_0(z_0) = F_0(r e^{i\theta}) - f(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) \left(f(e^{it}) - f(e^{i\theta_0}) \right) dt.$$

Soit $\varepsilon > 0$, comme f est continue sur \mathcal{U} , il existe $\eta > 0$ tel que

$$|\theta_0 - t| \le \eta \Longrightarrow |f(e^{it}) - f(e^{i\theta_0})| \le \frac{\varepsilon}{2}$$
.

Alors, le nombre δ ci-dessus étant défini par une intégrale sur $[-\pi, \pi]$ ou sur $[\theta_0 - \pi, \theta_0 + \pi]$,

$$|\delta| \leq \frac{\varepsilon}{4\pi} \int_{|\theta_0 - t| \leq \eta} P_r(\theta - t) dt + \frac{2\|f\|_{\infty}}{2\pi} \int_{|\theta_0 - t| \geq \eta} P_r(\theta - t) dt$$
$$\leq \frac{\varepsilon}{2} + \frac{\|f\|_{\infty}}{\pi} \int_{|\theta_0 - t| \geq \eta} P_r(\theta - t) dt.$$

Or, si $|\theta - \theta_0| \le \frac{\eta}{2}$, on a $|\theta_0 - t| \ge \eta \Longrightarrow |\theta - t| \ge |\theta_0 - t| - |\theta - \theta_0| \ge \frac{\eta}{2}$, donc $(P_r(\theta - t))$ converged uniformément vers 0 lorsque $r \to 1^-$ pour $|\theta_0 - t| \ge \eta$, et $\lim_{r \to 1^-} \int_{|\theta_0 - t| > \eta} P_r(\theta - t) dt = 0$. On peut donc trouver $r_0 < 1$ tel que

$$r_0 \le r < 1 \Longrightarrow \int_{|\theta_0 - t| \ge \eta} P_r(\theta - t) dt \le \frac{\pi}{\|f\|_{\infty}} \frac{\varepsilon}{2}$$

et on a ainsi $|\delta| \leq \varepsilon$ dès que $\begin{cases} |\theta - \theta_0| \leq \frac{\eta}{2}. \text{ Cela prouve que, pour tout } z_0 \in \mathcal{U}, \text{ on a} \\ r_0 \leq r < 1 \end{cases}$ $\lim_{z \to z_0, |z| < 1} F_0(z) = f(z_0) = F_0(z_0).$ La continuité de f sur \mathcal{U} achève de prouver que F_0 est

• La fonction F_0 est harmonique sur D : si $z = r e^{i\theta} \in D$, on a

$$F_{0}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{+\infty} r^{|n|} e^{in(\theta-t)} f(e^{it}) \right) dt$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} \left(\int_{-\pi}^{\pi} e^{-int} f(e^{it}) dt \right) r^{|n|} e^{in\theta}$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} c_{n} r^{|n|} e^{in\theta} = \frac{1}{2\pi} \left(\sum_{n=0}^{+\infty} c_{n} z^{n} + \sum_{n=1}^{+\infty} c_{-n} \overline{z}^{n} \right) ,$$

les c_n étant les coefficients de Fourier de la fonction 2π -périodique $t \mapsto f(e^{it})$ (l'interversion série-intégrale est justifiée par la convergence normale de la série de fonctions sur $[-\pi,\pi]$). La fonction F_0 est donc somme de deux séries entières (en z et en \overline{z} respectivement) de rayon de convergence au moins égal à 1 car $|c_n| \le 2\pi ||f||_{\infty}$, ce qui permet de dériver terme à terme dans D par rapport à chacune des deux variables x et y (pour employer des arguments plus conformes au programme, on peut vérifier que

$$\frac{\partial^{k+l}}{\partial x^k \partial y^l} (z^n) = \begin{cases} i^l \frac{n!}{(n-k-l)!} z^{n-k-l} & \text{si} \quad k+l \le n \\ 0 & \text{si} \quad k+l > n \end{cases}$$

et un calcul semblable pour $\frac{\partial^{k+l}}{\partial x^k \partial y^l} (\overline{z}^n)$, ce qui entraîne la convergence normale sur tout compact de D de toutes les séries dérivées, donc F_0 est de classe \mathcal{C}^{∞} sur D et on peut dériver terme à terme). En particulier,

$$\frac{\partial^2}{\partial x^2}(z^n) = \frac{\partial^2}{\partial x^2} ((x+iy)^n) = n(n-1)(x+iy)^{n-2} = n(n-1)z^{n-2} = -\frac{\partial^2}{\partial y^2}(z^n)$$

et
$$\frac{\partial^2}{\partial x^2}(\overline{z}^n) = n(n-1)\overline{z}^{n-2} = -\frac{\partial^2}{\partial u^2}(\overline{z}^n)$$
, donc $\Delta F_0 = 0$: F_0 est harmonique sur D .

- La fonction F_0 est l'unique solution du problème posé (appelé **problème de Dirichlet**) : il suffit pour cela de montrer que, si une fonction $g: \overline{D} \to \mathbb{R}$ est continue sur \overline{D} , harmonique sur D et nulle sur \mathcal{U} , alors g = 0.
 - Soit donc $g: \overline{D} \to \mathbb{R}$ vérifiant ces hypothèses, et soit $\varepsilon > 0$. Pour tout $z \in \overline{D}$, posons $g_{\varepsilon}(z) = g(z) + \varepsilon x^2 = g(z) + \varepsilon \operatorname{Re}(z)^2$. On a alors $\Delta g_{\varepsilon} = 2\varepsilon > 0$ sur D, la fonction g_{ε} ne peut alors admettre de maximum local en aucun point de D (en un tel point, les dérivées secondes partielles de g_{ε} seraient nécessairement négatives ou nulles, donc $\Delta g_{\varepsilon} \leq 0$, ce qui est contradictoire). Comme g_{ε} atteint un maximum sur le compact \overline{D} , celui est atteint en un point de \mathcal{U} , d'où $\forall z \in \overline{D}$ $g_{\varepsilon}(z) \leq \varepsilon$ et, a fortiori, $\forall z \in \overline{D}$ $g(z) \leq \varepsilon$. Ceci étant vrai pour tout $\varepsilon > 0$, on a $g(z) \leq 0$ sur \overline{D} . Le même raisonnement appliqué à -g donne finalement g = 0 sur \overline{D} .

EXERCICE 3:

Soit E un espace euclidien. Soit F un fermé non vide de E. Pour tout $x \in E$, on pose

$$f(x) = d(x, F)$$
.

1. Montrer que

$$\forall x \in E \quad \exists y \in F \qquad f(x) = ||x - y||.$$

- **2.** Soit x un point de $E \setminus F$. On suppose que f est différentiable au point x. Montrer que le point y de la question **1.** est unique (on essaiera d'exprimer le vecteur grad f(x) à l'aide de x et y).
- 1. Soit $x \in E$. L'application $g: \begin{cases} F \to \mathbb{R}_+ \\ y \mapsto \|y-x\| \end{cases}$ est 1-lipschitzienne, donc continue sur F. Soit d = d(x, F). Alors $d = \inf_F g = \inf_K g$, où K est le compact $F \cap \overline{B}(x, d+1)$, donc cette borne est atteinte.

2. L'application f est 1-lipschitzienne : en effet, soient x_1 et x_2 deux points de $E \setminus F$, soient y_1 et y_2 dans F tels que $f(x_1) = ||x_1 - y_1||$ et $f(x_2) = ||x_2 - y_2||$. On a alors

$$f(x_1) - f(x_2) = ||x_1 - y_1|| - ||x_2 - y_2|| \le ||x_1 - y_2|| - ||x_2 - y_2|| \le ||x_1 - x_2||$$

et la même majoration pour $f(x_2) - f(x_1)$.

Il en résulte que, en tout point x où f est différentiable, on a $\|\operatorname{grad} f(x)\| \le 1$. En effet, posons $u = \operatorname{grad} f(x)$. On a, pour tout $h \in E$,

$$df(x)(h) = (u|h) = \lim_{t \to 0^+} \frac{f(x+th) - f(x)}{t},$$

mais $|f(x+th)-f(x)|\leq t\|h\|$, donc $|(u|h)|\leq \|h\|$ pour tout h et, en particulier, $|(u|u)|=\|u\|^2\leq \|u\|$, d'où $\|u\|\leq 1$.

Soit $x \in E \setminus F$, soit $y \in F$ tel que f(x) = d(x, F) = ||x - y||. Alors, pour tout point z du segment [x, y], on a f(z) = d(z, F) = ||z - y||: en effet, posons z = x + t(y - x) = (1 - t)x + ty avec $t \in [0, 1]$; alors ||y - x|| = ||y - z|| + ||z - x||, donc $f(z) = d(z, F) \le ||z - y|| = f(x) - ||z - x||$, soit $f(x) - f(z) \ge ||z - x||$ mais, f étant 1-lipschitzienne, c'est une égalité, donc f(z) = ||z - y|| = f(x) - ||z - x||.

Soit $x \in E \setminus F$ un point où f est supposée différentiable, soit y un point de F tel que d(x,F) = ||y-x||, soit $u = \operatorname{grad} f(x)$. Avec $h = \overrightarrow{xy} = y - x$, on a

$$\forall t \in [0, 1] \qquad f(x + th) - f(x) = -\|t h\| = -t \|y - x\|$$

car le point x + th appartient au segment [x, y]. Donc, en faisant tendre h vers 0^+ , on obtient df(x)(h) = (u|h) = (u|y-x) = -||y-x||, ou encore (u|x-y) = ||x-y|| ce qui, avec $||u|| \le 1$ et $x - y \ne 0$, entraı̂ne que ||u|| = 1, puis que les vecteurs u et x - y sont positivement liés (égalité dans Cauchy-Schwarz), donc

$$u = \operatorname{grad} f(x) = \frac{x - y}{\|x - y\|} = \frac{x - y}{f(x)}.$$

En particulier, cela détermine entièrement le point y, d'où l'unicité de ce dernier.

EXERCICE 4:

- L'espace $E = \mathcal{M}_n(\mathbb{R})$ est muni d'une norme d'algèbre, c'est-à-dire une norme telle que $||AB|| \leq ||A|| ||B||$ pour toutes matrices A et B (considérer par exemple la norme subordonnée à une quelconque norme sur \mathbb{R}^n).
- 1. Soit $A \in E$ telle que ||A|| < 1. Montrer que la matrice I A est inversible, et donner une expression de $(I A)^{-1}$.
- **2.** En déduire que $U = GL_n(\mathbb{R})$ est un ouvert de E.
- **3.** On note f l'application $M \mapsto M^{-1}$ de U dans U. Montrer que f est différentiable sur U et exprimer df(M) pour $M \in U$.

Source : François ROUVIÈRE, Petit guide de calcul différentiel, Éditions Cassini, ISBN 2-84225-008-7

1. De $||A^k|| \leq ||A||^k$, on déduit que la série de terme général A^k est absolument convergente $(\sum_k ||A^k|| \text{ converge})$, donc convergente puisque E, de dimension finie, est complet. Pour tout $n \in \mathbb{N}$, on a l'identité

$$(I-A) \cdot \sum_{k=0}^{n} A^k = I - A^{n+1}$$
.

En passant à la limite (continuité de l'application bilinéaire $(A, B) \mapsto AB$), on obtient

$$(I-A) \cdot \sum_{k=0}^{+\infty} A^k = I ,$$

donc I - A est inversible et $(I - A)^{-1} = \sum_{k=0}^{+\infty} A^k$.

- 2. On vient de prouver que $U = \operatorname{GL}_n(\mathbb{R})$ contient la boule ouverte de centre I et de rayon 1. Plus généralement, soit A une matrice inversible ; alors $A + H = A(I (-A^{-1}H))$ est inversible dès que $||A^{-1}H|| < 1$ et cette condition est réalisée dès que $||H|| < \frac{1}{||A^{-1}||}$. Si $A \in U$, alors U contient la boule ouverte de centre A et de rayon $\frac{1}{||A^{-1}||}$. L'ensemble U est donc un ouvert de E.
- 3. Étudions d'abord le cas M = I. Si H est une matrice telle que ||H|| < 1, alors

$$f(I+H) = (I+H)^{-1} = I - H + \sum_{k=2}^{+\infty} (-1)^k H^k$$
.

Or, $\left\|\sum_{k=2}^{+\infty}(-1)^kH^k\right\| \leq \sum_{k=2}^{+\infty}\|H\|^k = \frac{\|H\|^2}{1-\|H\|} = O(\|H\|^2)$ lorsque $\|H\|$ tend vers zéro. On a donc $f(I+H) = I-H+o(\|H\|)$, ce qui signifie que la fonction f est différentiable au point I avec $\mathrm{d}f(I)(H) = -H$, c'est-à-dire $\mathrm{d}f(I) = -\mathrm{id}_E$.

Soit $M \in U$ quelconque. On a, pour tout H tel que $||H|| < \frac{1}{||M^{-1}||}$,

$$\begin{split} f(M+H) &= & (M+H)^{-1} = \left(M(I+M^{-1}H)\right)^{-1} = (I+M^{-1}H)^{-1} \, M^{-1} \\ &= & \left(I-M^{-1}H+o(\|H\|)\right) M^{-1} = f(M) - M^{-1}HM^{-1} + o(\|H\|) \; , \end{split}$$

donc f est différentiable au point M avec

$$\forall H \in E \qquad \mathrm{d}f(M)(H) = -M^{-1}HM^{-1} \ .$$

EXERCICE 5:

Soit U un ouvert convexe de \mathbb{R}^n . Une application $f: U \to \mathbb{R}$ est dite **convexe** si

$$\forall (x,y) \in U^2 \quad \forall t \in [0,1] \qquad f((1-t)x + ty) \le (1-t) f(x) + t f(y)$$
.

1. On suppose f différentiable sur U. Montrer que f est convexe si et seulement si

$$\forall (x,y) \in U^2 \qquad f(y) - f(x) \ge \mathrm{d}f(x)(y-x) \ . \tag{*}$$

2. On suppose f de classe C^2 sur U. Montrer que f est convexe si et seulement si, pour tout point x de U, la matrice **hessienne** $H(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)$ est positive.

Source : François ROUVIÈRE, Petit guide de calcul différentiel, Éditions Cassini, ISBN 2-84225-008-7

1. Supposons f convexe. Soient $x \in U$, $y \in U$. Pour tout $t \in [0,1]$, posons

$$\psi(t) = (1 - t) f(x) + t f(y) - f((1 - t)x + ty).$$

Par hypothèse, on a $\psi(t) \ge 0$ pour tout $t \in [0, 1]$. Comme $\psi(0) = 0$ et que la fonction ψ est dérivable sur [0, 1], on en déduit que $\psi'(0) \ge 0$. En tout point $t \in [0, 1]$, on a

$$\psi'(t) = f(y) - f(x) - df((1-t)x + ty)(y-x) ,$$

donc $\psi'(0) = f(y) - f(x) - \mathrm{d}f(x)(y-x) \ge 0$, ce qu'il fallait démontrer.

Réciproquement, supposons (*) vérifiée. Fixons $(x,y) \in U^2$ et considérons l'application $\varphi: [0,1] \to \mathbb{R}$ définie par

$$\forall t \in [0,1] \qquad \varphi(t) = f((1-t)x + ty) = f(x + t(y-x)).$$

Il suffit de montrer que φ est convexe car

$$\forall t \in [0,1]$$
 $f((1-t)x + ty) < (1-t) f(x) + t f(y) \iff \varphi(t) < (1-t) \varphi(0) + t \varphi(1)$.

Nous allons montrer pour cela que φ' est croissante. L'application φ est dérivable sur [0,1] avec $\varphi'(t) = \mathrm{d} f \big(x + t(y-x) \big) (y-x)$. Si $0 \le t_1 < t_2 \le 1$, l'inégalité (*) appliquée à $z_1 = x + t_1(y-x)$ et $z_2 = x + t_2(y-x)$ donne

$$f(x + t_2(y - x)) - f(x + t_1(y - x)) \ge df(x + t_1(y - x))((t_2 - t_1)(y - x));$$

$$f(x+t_1(y-x))-f(x+t_2(y-x)) \ge df(x+t_2(y-x))((t_1-t_2)(y-x))$$
.

En ajoutant membre à membre, on obtient

$$(t_2 - t_1) \Big[df \Big(x + t_2(y - x) \Big) (y - x) - df \Big(x + t_1(y - x) \Big) (y - x) \Big] \ge 0$$

soit $\varphi'(t_2) \ge \varphi'(t_1)$. Ainsi, φ est dérivable et φ' est croissante sur [0,1], donc φ est convexe, ce qu'il fallait démontrer.

2. Si f est de classe \mathcal{C}^2 alors, pour tout $(x,y) \in U^2$ fixé, l'application φ utilisée ci-dessus est de classe \mathcal{C}^2 et

$$\varphi'(t) = \mathrm{d}f(x + t(y - x))(y - x) = \sum_{i=1}^{n} (y_i - x_i) \frac{\partial f}{\partial x_i}(x + t(y - x));$$

$$\varphi''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_i - x_i)(y_j - x_j) \frac{\partial^2 f}{\partial x_j \partial x_i}(x + t(y - x))$$

$$= {}^t(Y - X) \cdot H(x + t(y - x)) \cdot (Y - X).$$

- Si la matrice hessienne H (qui est symétrique d'après le théorème de Schwarz) est positive en tout point, alors $\varphi''(t) \geq 0$, donc φ est convexe, donc f est convexe (cf question 1.).
- Si f est convexe sur U alors, pour tout couple $(x,y) \in U^2$ donné, l'application φ est convexe, donc notamment $\varphi''(0) \geq 0$, donc ${}^t(Y-X) \cdot H(x) \cdot (Y-X) \geq 0$. Ceci étant vrai pour tout Y (ou y) de U, la matrice symétrique H(x) est positive (l'ensemble U étant ouvert, le vecteur $\overrightarrow{xy} = Y X$ peut prendre toutes les directions dans l'espace).