Measuring uniqueness

Let $D = \{S_1, ..., S_N\}$ be a dataset of N individuals, in the form of $S_i = (A_1 = [a_1^1, a_2^1, ..., a_m^1], ..., A_k = [a_1^k, a_2^k, ..., a_m^k])$, containing m readings for k activities, a_i^j is the value of the i-th reading for the j-th activity.

Considerations:

- 1. Assume to conduct the uniqueness analysis on each activity separately. In other words, we compute a uniqueness score $u_i(\cdot)$, for each activity A_i . Here, we can start by considering the top-3 activity that you have already identified using the KL-divergence.
- 2. Consider a threshold value th to match the reading

Uniqueness score:

Consider a positive integer x, we generate x random readings $I_i{}^x = (i_1, i_2, ..., i_x)$, for the activity A_i . An individual S_j is **compatible** with $I_i(x)$, if there exists x readings in S_j , $S_j^x = (A'_i = \begin{bmatrix} a_{l1}^i, a_{l2}^i, ..., a_{lx}^i \end{bmatrix})$ such that $|a_{l1}^i - i_1| \le th$,..., $|a_{lx}^i - i_x| \le th$ (i.e., all the reading are matched within a threshold).

Furthermore, let $|D(I_i^x)|$ denote the number of individuals in D that are compatible with I_i^x . Then an individual is **uniquely identified** by I_i^x if $|D(I_i^x)| = 1$. Let $u_1(x)$ denote the fraction of time-series in D for which $|D(I_i^x)| \le 1$.

TODO: Compute the uniqueness for the top-3 activities with $x \in \{1, ..., 5\}$ and

- $th \in \{1, 5\}$ for discrete activities (e.g., number of steps)
- $th \in \{0.1,0.2\}$ for real-value activities (e.g., distance-based activities)

 $u_1(2) = 3/3$ all the individuals can be uniquely identified with 2 readings

```
D = \{S_1, S_2, S_3\} = \{[10,13,5], [0,13,10], [10,5,6]\}
x = 1
\{(0),(5),(6),(10),(13)\} universe of 1-reading from the data
I^1 list of matching individuals
(0) \rightarrow \{S_2\}
(5) \rightarrow \{S_1, S_3\}
(6) \rightarrow \{S_3\}
(10) \rightarrow \{S_1, S_2, S_3\}
(13) \rightarrow \{S_1, S_2\}
u_1(1) = 2/3 -> because only S2 and S3 are uniquely identified
x = 2
{(0,10),(0,13),(5,6),(10,5),(10,6),(10,13),(13,5)} universe of 2-readings from the data
I^2 list of matching individuals
(0,10) \rightarrow \{S_2\}
(0,13) \rightarrow \{S_2\}
(5,6) \rightarrow \{S_3\}
(10,5) \rightarrow \{S_1, S_2\}
(10,6) \rightarrow \{S_3\}
(10,13) \rightarrow \{S_1\}
(13,5) \rightarrow \{S_1\}
```