

Entor

: Cost function: Error of molevidual record

Cost function: Overall Error

```
Que: What is dillerence blu "Adaboost" and "gradient boost";
 A: Adaboost: We Consider only stump. Edepth = 1)
      * Gradient boast: We Consider some what grown
                        The Tree, Max. leaf modes = 8 to 32
                              Gradient Boost
    How it works
 * ghat
 * [y_actual - y_hat]^2
* y = m(n) + error 1
  error 1 = G[n] + error 2
  error2 = H[n]+error3
   y = m(n) + G[n] + H[n] + error3
* y = alpha * M(n) + beta * G(n) + gamma * H(n) + error 4
              , calculate residuals lerrors
                          Tree after adjusting For Residuals/Errors
                                 Final Tree after adjusting
                                     Errors multiple times.
```

This Dala Set includes descriptions of hypothetical Samples Dala: Corresponding to 23 species of gilled mush rooms in agariaus and Lepiota Family (pp 500-525). Each species in indentified as definetly edible, definitely poisonous, or of unknown edibility and not recommended. this latter class was was combined with the possinous one. the Guide Clearly states that there is no simple rule for determing the edibility of a mustroom; no rule line "leaflets three, Let it be "for poisineus Oak and lvy.

Attribute Information

1. cap_shape = bell = b, conical = C, convex = x,

flat = f, knobbed = K, sunker = S

. Cap-Surface: fibrous = f, grooves = g, Scaly = y, Smooth = s

Cap-colour: brown = n, buff = b, cinna mon = c, gray = g,

green = z, pink = p, purple = u, red = e, white = w, ye llow = y.

oruises?: bruises = t no . F

almond = a, ause = 1, croste = c, fishy = y, foul = f. musty: m, none = n, punget = p, spicy=s

```
6. gill-attachment: black = K, brown = n buff = b, chocolate = h
                    gray =q, green = T, Orange = O, pmk = P
                   purple = u, red=e, white = w, Yellow = y
7. gill-spacing: close = c, crowded = w, distant = d
8. gill - size: broad = b, marnow = n
1. gill-color: black = K, brown = D, buff = b, chocolite = b, grave = g
               green = 2, orange = 0, print = p, purple = u, red = e.
               white = W. Yellow = Y.
. Stalk-Shape: enlarging = e tapering = t
 Stalk - root: bulbous = b, club = c, cup = 4, equal = e,
                 ohizomorphs = Z, noted = T, missing = ?
 Stalk Surface - above - ving: fibrous = f. scaly = y, silky = K.
Stalk Surface - below - orig: fibrous = f, schy = y, silky = b.
 Stalk - colour - above - ring: brown = n, buff = b, Cinna mon = c
                         gray = q, orange = 0, pmb = p, red=e
                         white = w, Yellow = y.
stalk - colour - below-ring:
             Partial = p, universal = u
Veil -color: brown = 10, Orange = 0, white = w, Yellow = y
```

- 18. ring number: none = n, One = 0, two = t 19. ring-type: cobwebby = c evamescent = e flaring = f. large = L, none = p, Pendent = p, sheathing = s, Zone = Z, 20. Spore - Print: black = K, brown = n, buff = b, chocolate = h,

 Colour Green = I, orange = 0, pur ple = u, white = w, yellowy
- 21. Population: abundant = a, clustered = c, numerous = n, Scattered = 5, Several = V, Solitary = y
- 22. habitat: grasses = g, Leaves = 1, meadows = m, paths = P, urban = u, waste = w, woods = d.

23. class (output)

Bussiness Problem

Goal here isto see if we can harness the power of machine Learning and boosting to help create not just a predective model, but general quideline for features People should look out for when picking mushrooms.

Class call cap cap bruises oder attach spacing cize color " Rivers attach brug the world of the share color " Rivers attach brug the world of the share color " Rivers attach brug the world of the worl	H UT.	bruisa	odor	9:11	911	gill	gí!!	Stalk Catoric Ryng	stalk colu httere	stalk color below rmg	veil	veil color	Tring	7 mg bype	Spare print color	Popul	hobilet
e b s w t p f c n n s w w p w o p n a g P x y g f n f w b K S w W P W o e n a g	P X S N	t	P	f	000	n b	K	S	WW	W W :		W	0	P	n	n	gm
	e b s w w p x y g	t t	P	f	c W						P	1.		Pe		a	9

df. mfo ()

Transpose gires total no columns without

df. describe (). transpose ()

$\overline{}$		L	
ر	u	L	

. de sente (), eva	9			
	Count	Unique	top	Freq,
(olp) Class	8124	2	e	4208
cap shape	8124	6	×	3656
Cap- Surface		4	y	3244
cap-color	8124	10	n	2284
bruises	8174	2 9	l f n	4748 3528
odor	8174		f	7914
gill attachment	8124	2	C	6812
gill spacing	8124	2.	Ь	5612
gill size	8124		Ь	1728
9111 - color			E	4608
Stalk- Shape	8194	5	Ь	3776
Stalk-root		4	S	5176
Stalk - Surface - abo	8124	7		49 36
Stalk - Surface - below	8124	4	S	
ring		9	W	4464
Stalk - color above	8124		1.1	4384
a rrug	8124	9	W.	8124
Stalk - color below	0.04	J	P	2
Veil-type	8124	1.	W	7924
veil - color	8124	i .	4 O	7488
ring-number	8124	5	P	3968 2388
ring - type Spore - Print color	8124		V	4040
Population	8121	1	d	3148
habitant	0.	· Link		

* posimous * mon posinous

```
CODE !
   Gradient Boost:
  Same Data. and Same Procedure from import to
    Xand Y (Mushroom Data Set)
        = pd. get-dummies (df. drop ("class") anis = 1 drop-first = True)
          df ["class"]
# X. Shape, y. shape
      (8124, 95), (8124,))
       Sklearn. model-selection import tram_test-split
  tram Pest Split
# 2-train, 2-lest, y train, y-test = train_test_split (n, y, test_size = a.
  modelling
         sklearn en semble import Gradient Boosting Classifier
 # gradmodel = Gradient Boosting Classifier ()
    gradmodel. fit (7-tram, y-train)
   Out: Gradient Boosting classifier ()
```

```
Prediction
   # ypred-tram = grad model. predict (xtram)
                     grad model. Predict (2 test)
      ypred-test
   Evaluation
     from sklearn metrics import decuracy score
# Print ("train accuray":, accuracy_score (y-train, ypred-train)
# print ("test accuray:"; accuracy-score (y-test, y pred-test)
Jout: train accuracy: 1.0
        Test accuracy:
     from Sklearn. metnics import plot-confusion-matrix
    Confusion Matrin
    plot, Confusion_matrin (grad model, X_test, y_test)
     plt. show ()
out!
                 Predicted
```

* Classification report

from Sklearn metrics import Classification-report

Print (classification-report (y test, ypred-test))

# Print Com	Precision	tecall	Liscore	818
Out:	1.00	1.00	1.00	807
macro and Weighted Ang	1.00	1.00	1.00	1625 1625 1625

Cross-validation Score

from Sklearn. model-selection import. Cross-Val-Score

Scores = Cross-Val_Score (gradmodel, X, y, Cv=5)

Print ("cross-val-score: ", scores. mean())

0.9192 Cross-val-score:

feature importance

grad model. feature_importances_ 1.93018, 0.000eto, array ([0.00 e+00 4.49731 1.36 263)

```
Hyper Parameter Tunning
                                                       important
   from Sklearn model Selection import Grid Search CV
   # estimator = Gradient Boosting Classifier ()
# param-grid = {"n_estimators": [1,5,10,20,40,100] learing rate:
# grid = Grid Search CV (estimator, param_grid, Scoring="accuracy")
# grid. fit (n.train, y.train)
# grid. best_params_
out: { "learing-rate": 0,2, "m-estimators": 100)
                         Final Model
# final model = Gradient Boosting Classifier (n_estimators = 100)
# final model. fit (n.tram, y-tram)
# ypred-train = final model · predict (n_train)
      y pred-test = final model. predict (n.test)
      Print ("train_accuracy", accuracy_score (yitrain, y pred_train)
# print ("test acuray", acuray-score (y-test, ypred-test)
         train accuracy: 1.0
          test acuracy
P
```

```
# final model . feature_ importances -
                                                 1.27008, 4.735
                                  2.45746 e-16,
                                                1.923168 3.20965)
out: array ([0.000 =+00]
                                  1.485440
                                                   0.000 bed
                 1.137228
# important = pd. Data Frame (index = x. columns, data = final mode 1.
                      feature_importances, Columns = ["importance_feature"
# important
                       importance-feature
out:
                       : 0.000 de +00
          Cap_shape_c
                         2.45745e-16
          Cap-Shape-f
                          1.270085e-23
           cap- Shape-K:
                         4.7356790 -08
           cap-shape-s:
                         9.5020120.05
            habitatu:
                          0.000000 e too
            habitate w:
    Jack = important [important [importance_feature]] > 0.01]
     Jack. Sort-Values ("importance-feature")
                         importance - features
                             0.010084
out :
          gill-size-n
                             0.014901
        Spore Print Color - h
                            0.019874
                            0.032914
            odor -1
        Spore printcolor - Y
                            0.052216
           Stall root - Y
```

0.060678

bruises - t

```
# plt. figure (figsize=(14,6), dpi = 200)
# Sns. barplot (data = Jack. sort-Values ("importance-featureg,
                           X = Jack. index, y = "importance_feature")
# Plt. xticks ( rotation = 90)
        plt. show()
   out:
        0.7
        0.5
        0.4
         0.3
         0.1
             bru ises, t
                  odor-1
```