

Processamento de Linguagem Natural

Modelos de Linguagem

Prof. Luciano Barbosa & Prof. Johny Moreira (luciano, jms5)@cin.ufpe.br

Objetivo Principal

- Tarefa de predizer próximas palavras
- Computa a probabilidade da próxima palavra dada uma sequência

Aplicação

Aplicação

Aplicação

- Gerar texto ou estimar a probabilidade de um texto
- Componente de várias tarefas de PLN
 - > Corretor ortográfico
 - Reconhecedor de fala
 - Machine translation
 - > Reconhecimento de escrita
 - > Sumarização
 - Diálogo

Regra da Cadeia

$$p(B|A) = \frac{P(A,B)}{P(A)} \longrightarrow P(A,B) = P(A) \times P(B|A)$$

$$P(A, B, C, D) = P(A) \times P(B|A) \times P(C|A,B) \times P(D|A,B,C)$$

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1) \times P(x_2|x_1) \times P(x_3|x_1, x_2) \times P(x_n|x_1, x_2, x_3, ..., x_{n-1})$$

 $P("its water is so transparent") = P(its, water, is, so, transparent) = P(its) \times P(water | its) \times P(is | its, water) \times P(so | its, water, is) \times P(transparent | its, water, is, so)$

Calculando as probabilidades

Baseado na frequência em um corpus de dados

P(the lits water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Problema: n-grams grandes são raros

N-grams: sequência de n palavras consecutivas

Calculando as probabilidades: Markov Assumption

Utilizando somente as *k* palavras mais próximas

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-k} ... w_{i-1})$$

Utilizando bigramas (a palavra anterior)

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-1})$$

N-gram: trigrams, 4-grams, 5-grams

Linguagem tem dependências de longa distância

Ex: "The computer which I had just put into the machine room on the fifth floor crashed"

Calculando as probabilidades:

Maximum Likelihood Estimate (Estimativa de Probabilidade Máxima)

$$P(I \mid ~~) = \frac{2}{3} = .67~~$$
 $P(Sam \mid ~~) = \frac{1}{3} = .33~~$ $P(am \mid I) = \frac{2}{3} = .67$ $P(\mid Sam) = \frac{1}{2} = 0.5$ $P(Sam \mid am) = \frac{1}{2} = .5$ $P(do \mid I) = \frac{1}{3} = .33$

Calculando as probabilidades:

```
P(<s> | want english food </s>) = P(| | <s>) \times P(want | | |) \times \\ P(english | want) \times P(food | english) \times \\ P(</s> | food)
```

P(<s> I want english food </s>) = .000031

Cálculo em log

- Evitar overflow
- Adicionar é mais rápido que multiplicar

$$\log(p_{1}, p_{2}, p_{3}, p_{4}) = \log p_{1} + \log p_{2} + \log p_{4} + \log p_{4}$$

Gerando Sentenças

Modelos Neurais de Linguagem

Recurrent Neural Networks (RNN)

output distribution

$$\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax}\left(\boldsymbol{U}\boldsymbol{h}^{(t)} + \boldsymbol{b}_2\right) \in \mathbb{R}^{|V|}$$

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $oldsymbol{h}^{(0)}$ is the initial hidden state

word embeddings

$$\boldsymbol{e}^{(t)} = \boldsymbol{E}\boldsymbol{x}^{(t)}$$

words / one-hot vectors

$$oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

Recurrent Neural Networks (RNN)

Vantagens

- Pode processar sequência de qualquer tamanho
- Modelo não aumenta com o tamanho da sequência
- Usa informação anterior
- Mesmos pesos utilizados em cada passo

Desvantagens

- ➤ Lenta
- Na prática, tem dificuldade em guardar informação de palavras muito anteriores

Transformers & Modelos de Linguagem Pré-treinados

Transformers

- ❖ É o estado-da-arte para o Processamento de Linguagem Natural
- É uma arquitetura de Deep Learning que visa resolver tarefas sequence-to-sequence resolvendo dependências de longo alcance
- Não usa RNN ou Convolução
- Não exige que os dados sequenciais sejam processados em ordem
- Permite maior paralelização
- Diferentes tarefas: classificação, extração, geração de texto e busca

Transformers: Arquitetura

- Encoder: constrói uma representação da entrada
- Decoder: gera probabilidades baseado na saída do encoder e outras entradas

fonte: https://huggingface.co/course/chapter1/4

Transformers

Fonte: https://arxiv.org/pdf/1706.03762.pdf

Transformers

Fonte: https://arxiv.org/pdf/1706.03762.pdf

Word Embedding Tradicional

- Vocabulário construído pelo conjunto de treinamento
- Palavras não presentes mapeadas para UNK

Subword Tokenization

- Crítico para línguas com muitas variações na estrutura das palavras
- Ev. Cwohili

conjug	ation of	anning a							-									1999
		-							n-finite fo	orms					Alexandria.			
Form Infinitive					Positive kuambia Simple finite forms					Negative kutoambia								
											KUIDAIIIDIA							
		ositive for				Singular					Plural							
Imperative					ambia					ambieni								
		Habitual						C	tou fluite	forme	hua	mbia						
		_	San		Dare	one /		Comp	olex finite	torms		-	and the same					
Balasins	Persons			Persons / Classes			100			Classes								
olarity	_ 1	st	_ 2	nd	3rd/	M-wa	M	-mi		Иa _	_ Ki	-vi		N		Ku	Pa 16	Mu 18
	Sg.	PI.	Sg.	PI.	Sg. / 1	Pl. / 2	3	4	5 Past	6		8	9	10	11/14	15/17	16	Dess .
Positive	niliambia naliambia	tuliambia twalambia	ulambia waliambia	miambia mualambia	aliambia	waliambia	uliambia	illambia	Blambia	yaliambia	kiliambia	villembie	Flambia	ziliambia	uliambia	kuliambia	paliambia	muliamb
Negative	sikuambia	hatukuambia	hukuambia	hemkuambia	hakuambia	havakuambi 8	haukuambia	haikuambia	halikuambia	hayakuambi a	hakkuambia	havikuambia	haikuambia	hazikuembia	haukuambia	hakukuambi a	hapakuambi #	hamukuan
								PI	esent									(less
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia	kinaambia	vinsambia	inaambia	zinaambia	unaambia	kunaambia	panaambia	munaami
Negative	siambit	hatuambii	huambii	hamambii	heambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	havlambii	haiambii	haziambii	hauambii	hakuambii	hapaambii	hamuam
									uture									liess
Positive	nitaambia	tutaambia	utaambia	mtaumbia	ataambia	wataambia	utsambis	itaambia	Itaambia	yataambia	kitaambia	vitaambia	itaambia	zitsambia	utaambia	kutaembia	palaumbia	mutaamt
Negative	sitaambia	hatutaambia	hutaambia	hambaambia	hataambia	hawataambii a	hautaambia	haltaambia	halitaambia	hayataambia	hakitaambia	havitaambia	haltaambia	hazitaambia	hautsambia	hakutaambia	hapatoamble	hamutaan
								Sub	unctive									lless
Positive	niambie	tuambie	uambie	mambia	aumbie	waambie	uambie	iambie	Sambia	yaambie	kiembie	viambie	lambie	ziembie	uambie	kuambia	peamble	muambi
Negative	nisiambie	tusiambie	usiambie	msiamble	asiambie	wasiambie	usiambie	islamble	lisiambie	yasiambie	kislamble	visiambie	Islamble	zisiambie	usiambie	kusiambie	pasiamble	muslamb
Positive	ninnoamhia	tungeambia	unneamhla	mngeambia	annonembia	wananamhia	unneamble		Conditio	yangeambia	kingsambia	vinnaombia	ingeambia	zingeambia	ungeambia	kunnoambia	pangeambia	Fless
rosnire	nisingeambi	tusingeambi	ungeanus	msingaambi	arranamena	brank and a			thisasanhis	yasingeambi	kiningeambi	visingeambi	rigeamore	zisingeambi	usingsambia	A	pasingeamb	
Negative	rasingeamor 8	8	usingeambla		asingeambla	la .	usingeambia haungeambi						isingeamble	8	In many many morning	. 0	- 8	10
2000	singeambla	natungeamb	nungeambia	hamngeambi	nangeambia	hawangeam bia	8	haingeambia	9	nayangeamo	nakingeamoi	navingeamo	nangeamos	a hazingeambi	a	namengeams ia	hapangeam bia	hamunger
								Past C	ondition	al								lless
Positive	ningaliambia	tungallambia	ungaliambia	mngaliambia	angaliambia	wangaliambi	ungallambia	ingaliambia	lingallambia	yangaliambi	kingallambia	vingaliambia	ingaliambia	zingafambia	ungaliambia	kungaliambi	pangallambi	mungelian
	nisingaliamb	tusingallamb	usingaliambi	msingaliamb	asingaliambi	wasingaliam	usingallambi	isingallambia	lisingallambi	yasingallam	kisingallambi	visingaliambi	isingallambi	zisingallambi	usingaliambi	kusingallam	pasingallam	musingali
Negative				hamngaliam						havangaliam					haungaliamb	Dis	0.00	Dist
	singaliambia	bia	a	bia	*	mbia	ia.	2	ie .	bia	bia	bia		bia	Title	bia	bia	mbia
								nditional										lless.
Positive	ningeliambia	tungeliambia	ungeliambia	mngellambie	angeliambia	wangelambi	ungellambia	ingeliambia	lingellambie	yangekambi	kingstambia	vingeliambia	ingellambia	zingeliambia	ungeliambia	kungeliambi	pangelambi	mungelian
								G	nomic									lless
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	loambia	yaambia	chaemble	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia	mesamb
								Pi	erfect									Tless

Subword Tokenization

- Palavras raras são quebradas em substrings
- Palavras frequentes são mantidas
- Tamanho do vocabulário é um parâmetro

Byte-pair Encoding

- Objetivo: representar o corpus com a menor quantidade de tokens
- Inicia o vocabulário com todos os caracteres e símbolo "fim de palavra"
- 2. Une dois tokens com maior frequência
- 3. Decrementa a frequência dos dois tokens
- 4. Repetir até o vocabulário desejado

BPE: Palavras no Corpus

WORD	FREQUENCY	WORD	FREQUENCY
d e e p	3	b u i l d	1
learning	3	train	1
t h e	2	a n d	1
m o d e l s	2	d e p l o y	1
F l o y d h u b	1	Build	1
i s	1	m o d e l s	1
fastest	1	i n	1
w a y	1	cloud	1
t o	1	Train	1

BPE: Caracteres no Corpus

NUMBER	TOKEN	FREQUENCY	NUMBER	TOKEN	FREQUENCY
1		24	15	g	3
2	е	16	16	m	3
3	d	12	17		3
4	I	11	18	b	2
5	n	10	19	h	2
6	Ĭ	9	20	F	1
7	а	8	21	Н	1
8	0	7	22	f	1
9	s	6	23	w	1
10	t	6	24	,	1
11	r	5	25	В	1
12	u	4	26	С	1
13	р	4	27	Т	1
14	у	3			

BPE: Merge

	•					
NUMBER	TOKEN	FREQUENCY	NUMBER	TOKEN	FREQUENCY	
1		24	16	g	3	
2	2 е		17	m	3	
3 d		12 - 7 = 5	18		3	
4	1	11	19	b	2	
5 n		10	20	h	2	
6 i		9	21	F	1	
7 a		8	22	Н	1	
8 0		7	23	f	1	
9	de	7	24	w	1	
10	s	6	25	1	1	
11 t		6	26	В	1	
12 r		5	27	С	1	
13 u		4	28	Т	1	
14	р	4				
15	У	3				

BPE

Wordpiece

- Similar ao BPE
- Algorithm:
- Inicia o vocabulário com todos os caracteres e o símbolo de "fim da palavra"
- Une os tokens com maior score
- 3. Diminui a frequência dos dois tokens
- 4. Repete até o vocabulário desejado (por exemplo, tamanho de vocabulário pré-definido)

```
score = (freq_of_pair)/(freq_of_first_element × freq_of_second_element)
probabilidade maior de aparecer junto do que separado
```

Wordpiece

Word	Token(s)				
surf	['surf']				
surfing	['surf', '##ing']				
surfboarding	['surf', '##board', '##ing']				
surfboard	['surf', '##board']				
snowboard	['snow', '##board']				
snowboarding	['snow', '##board', '##ing']				
snow	['snow']				
snowing	['snow', '##ing']				

Transformers

Fonte: https://arxiv.org/pdf/1706.03762.pdf

Positional Encoding

- Tokens são processados pelo Transformer de forma não ordenada
- Positional Encoding introduz ordem aos tokens que são manipulados pelo Transformer
- Assim, o modelo aprende representações diferentes para uma palavra dependendo da sua posição

Positional Encoding

https://jalammar.github.io/illustrated-transformer/

Cálculo do Posicional (Sinusoidal)

$$PE_{(pos,2i)}=\sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

pos: posição do token na frase i: dimensão no embedding

Transformers

Fonte: https://arxiv.org/pdf/1706.03762.pdf

Contextual Representations

 Limitação de word embeddings: mesma representação para significados diferentes

```
open a bank account on the river bank [0.3, 0.2, -0.8, ...]
```

Solução: aprender contextual representations

```
[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...] 

open a bank account on the river bank
```

Self-Attention

"é um mecanismo de atenção que relaciona diferentes posições de uma única sequência para computar uma representação da sequência." Ashish Vaswani et al., Google Brain.

"The animal didn't cross the street because it was too tired"

Exemplo de Self-Attention

walked

Bob

He

home

He

walked

home

He

Later

Alice

came

Bob

She

Later

Alice

came

up

to

Bob

He

up

 Decompõe embedding da palavra em 3: Query, Key e Value

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_-k}}
ight)\mathbf{V}$$

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

 $\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_-k}}
ight) \mathbf{V}$

Determina a quantidade de atenção que deve ser dada a outras palavras da sentença enquanto codifica a palavra atual ("Thinking")

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

Calculando a autoatenção de "Thinking"

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_-k}}
ight)\mathbf{V}$$

Soma os vetores

Calculando a autoatenção de "Thinking"

Transformers: Multi-Head Attention

Múltiplas camadas de atenção rodando em paralelo

Transformers: Multi-head Attention

- Várias Camadas de Atenção rodando em paralelo
- Permite atender a diferentes partes da sequência de maneira diferente a cada vez.
- Melhor captura de informações posicionais, pois cada cabeça atenderá a diferentes segmentos da entrada.
- A combinação dessas cabeças de atenção provê uma representação mais robusta.
- Cada cabeça também irá capturar diferentes informações contextuais, correlacionando palavras de uma maneira única.

Transformers: Conexões Residuais

Skip Connection

- Permite que as representações de diferentes níveis de processamento interajam.
- Mesma intuição da linguagem: combinação de diferentes ideias e contextos para uma compreensão mais ampla.
- As camadas posteriores têm acesso ao entendimento das camadas anteriores

Adicionando Não-Lineriadades

Decodificador (Decoder)

- Processa a representação codificada.
- Determina o quão relacionada cada palavra da saída esperada está em relação às palavras da entrada

Decodificador (Decoder)

- Processa a representação codificada.
- Determina o quão relacionada cada palavra da saída esperada está em relação às palavras da entrada

Na geração de texto o output é a mesma sentença de entrada deslocada para a direita

Output Probabilities Softmax Após processamento da saída esperada. A matriz resultante é entregue como consulta Add & Norm Forward N× N× Add & Norm Multi-Head Positional Positional Encoding Encodina Input Output Embedding Embedding Na geração de texto o output é a Inputs Outputs

Decodificador (Decoder)

- Processa a representação codificada.
- Determina o quão relacionada cada palavra da saída esperada está em relação às palavras da entrada

mesma sentença de entrada deslocada para a direita

As probabilidades de saída predizem o próximo token na sentença de saída

Após processamento da saída esperada. A matriz resultante é entregue como consulta

Decodificador (Decoder)

- Processa a representação codificada.
- Determina o quão relacionada cada palavra da saída esperada está em relação às palavras da entrada

Na geração de texto o output é a mesma sentença de entrada deslocada para a direita

Transformers: Encoder

fonte: https://huggingface.co/course/chapter1/5

Transformers: Decoder

fonte: https://huggingface.co/course/chapter1/6

Transformers & Modelos de Linguagem Pré-treinados

Bidirectional Encoder Representations from Transformers BERT

- Modelos de Linguagem Tradicionais: dependem da ordem sequencial de palavras
- BERT: É um modelo de linguagem contextual, pois mapeia a representação contextual bidirecional de toda a frase
- É um modelo pré-treinado para Processamento de Linguagem Natural
- Utiliza transformers mas, apenas o mecanismo codificador é necessário

Bidirectional Encoder Representations from Transformers BERT

- Dados
 - Wikipedia (2.5B palavras) + BookCorpus (800M palavras)
- ❖ BERT-Base: 110M
- ❖ BERT-Large: 340M
- Treinado em 4 dias

BERT e Transfer Learning

Duas etapas:

- Pre-treinamento do modelo
- Fine-tuning: treinar apenas algumas camadas do modelo pré-treinado (ou adicionar novas camadas) de forma a executar tarefas específicas

BERT pre-training: Masked Language Modeling

- 15% das palavras em cada sequência são substituídas por um token [MASK]
- Objetivo: prever o as palavras mascaradas, utilizando o contexto fornecido pelas outras palavras não mascaradas
- Convergência lenta mas eficaz

BERT pre-training: Masked Language Modeling

BERT pre-training: Next Sentence Prediction

- Pares de frases são entregues como entrada
- Objetivo: prever se a segunda frase do par dado como entrada é a frase correta
- Treino: 50% das frases na segunda posição mostradas ao modelo são aleatórias
- Suposição: O modelo aprenderá que a segunda frase está desconectada da primeira
- Tokens especiais: [CLS] e [SEP]

BERT pre-training: Next Sentence Prediction

BERT: Como usar

- Diversas tarefas
- Como extrator de features
 - > Feature de palavras: posição do token
 - Feature de sentenças: token especial [CLS]
 - Pode ser usado para classificação

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Variações

Generative
Pretrained
Transformer
(GPT)

Generative Pretrained Transformer (GPT)

- OpenAl (2018)
 https://openai.com/blog/language-unsupervised/
- Modelagem de Linguagem Não Supervisionada (Pré-treinamento)
- Processa o texto de forma unidirecional
- Transformer decoder com 12 camadas
- 768-dimensional hidden states, 3072-dimensional feed-forward
- **Byte-pair encoding** com 40.000 merges
- 117M parâmetros
- Treinado no BooksCorpus: mais de 7.000 livros (sentenças longas)

GPT-2

- Conjunto de dados maior e adição de mais parâmetros ao modelo
- WebText
 - > 40 GB
 - 8 milhões de documentos
 - Removidos todos os artigos da Wikipedia pois muitos conjuntos de teste contém artigos da Wikipedia
- ❖ 1,5 bilhão de parâmetros (10x > GPT-1)
- 48 camadas
- ❖ 50.257 tokens
- Demo: https://demo.allennlp.org/next-token-lm

Fonte: https://jalammar.github.io/illustrated-gpt2/

GPT-2

GPT-3

175 bilhões de parâmetros (100x > GPT-2)

Corpus:

➤ 45TB

Common Crawl, WebText2, Books1, Books2 e Wikipedia

96 camadas

GPT-2 1.5B Parameters

GPT-3 175B Parameters

GPT-3 In-context Learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language discription of the task. No gradient updates are performed.

```
Translate English to French: task description
cheese => prompt
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Artigo Original:

https://arxiv.org/pdf/2005.14165.pdf

GPT-3: Algumas aplicações

- **♦** Q&A
- Resolução de esquemas
- Tradução
- Adição aritmética
- Decodificação de palavras
- Geração de artigos de notícias
- Aprendizagem e uso de palavras novas
- Programação
- API de acesso

https://openai.com/api/

GPT-3: Limitações

- Preconceitos da linguagem aprendidos do conjunto de treino: gênero, etnia, raça ou religião...
- Perda de coerência ao formular frases longas
- Repetição de sequências de texto indefinidamente
- Baixo desempenho em tarefas de inferência de linguagem natural, preencher os espaços em branco e tarefas de compreensão de leitura
- Problema para seguir instruções explícitas
- Alucinações: fatos inexistentes ou incorretos
- Desinformação
- Difícil de interpretar as suas tomadas de decisões

ChatGPT

O treino incorpora aprendizagem por reforço a partir de feedback humano;

1. GPT-3.5 ou Supervised Fine Tuning (SFT) Model

- Fine-tuning do modelo GPT-3 em um amplo conjunto de dados rotulado;
- 40 pessoas foram necessárias para realizar esse fine-tuning do modelo e rotulagem dos dados;
- Foram utilizadas entradas e prompts de usuários da plataforma da OpenAl API;
- Os rotuladores manuais precisaram criar exemplos de categorias de não abrangidas pelos usuários da OpenAl API.

ChatGPT

2. Modelo de Recompensa

- Rotuladores manuais ranqueiam (de melhores a piores) as saídas (respostas) entregues pelo GPT-3.5
- As entradas (prompts), saídas (respostas) geradas pelo modelo e os rankings atribuídos pelos rotuladores são utilizados para treinar o modelo de recompensa

3. Modelo de Aprendizagem por reforço

- É utilizada uma política (estratégia) para maximizar a recompensa do modelo
- Itera-se entre a geração do texto para um dado prompt e o cálculo de recompensa dado a saída recebida na geração
- Atualiza-se a política de geração conforme é recebida a recompensa

Text-to-Text Transfer Transformer (T5)

- Encoder-decoder transformer
- Gera texto como saída para qualquer tarefa

Fonte: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

Aula Prática

Google Colab - Modelo Bigram

Google Colab - Modelo BERT

GPT-3 -> OpenAl

ChatGPT -> OpenAl

Referências

Dan Jurafsky, James H. Martin. Speech and Language Processing. (3rd ed. Draft). 2021. Disponível em: https://web.stanford.edu/~jurafsky/slp3/7.pdf. Capítulo 6. Acesso em: 01 Setembro de 2022.

Dan Jurafsky, James H. Martin. Speech and Language Processing. (3rd ed. Draft). 2021. Disponível em: https://web.stanford.edu/~jurafsky/slp3/11.pdf>. Capítulo 11. Acesso em: 01 Setembro de 2022.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Tokenizers: How machines read. Disponível em: < https://blog.floydhub.com/tokenization-nlp/>. Acesso em: 01 Setembro de 2022.

Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/>. Capítulos: 76 a 82. Acesso em: 01 Setembro. 2022.

Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/>. Capítulos: 86 a 90. Acesso em: 01 Setembro. 2022.