Задача 1 (*Числа Фибоначчи*) Пусть последовательности (a_n) и (b_n) удовлетворяют соотношению $x_{n+2} = x_{n+1} + x_n$. Докажите, что

- **a)** при любом $\lambda \in \mathbb{R}$ последовательность $\lambda(a_n) = (\lambda a_1, \lambda a_2, \dots)$ удовлетворяет этому соотношению;
- **б)** при любых $\lambda, \mu \in \mathbb{R}$ последовательность $\lambda(a_n) + \mu(b_n) = (\lambda a_1 + \mu b_1, \lambda a_2 + \mu b_2, \dots)$ также удовлетворяет этому соотношению.
- в) Пусть вектора (a_1, a_2) и (b_1, b_2) неколлинеарны. Докажите, что любая последовательность, удовлетворяющая соотношению пункта а), представляется в виде $(\lambda a_n) + (\mu b_n)$ при некоторых $\lambda, \mu \in \mathbb{R}$.
- г) Найдите геометрические прогрессии, удовлетворяющие соотношению пункта а).
- д) Найдите явную формулу последовательности Фибоначчи с начальными условиями $a_0=a_1=1.$

Задача 2. Найдите явные формулы для следующих (вещественных) последовательностей:

- a) $a_{n+3} = 2a_{n+2} + a_{n+1} 2a_n$, если $a_0 = 1$, $a_1 = 2$, $a_2 = 3$;
- **б)** $a_{n+2} = -2a_{n+1} a_n$, в случаях $a_0 = 1$, $a_1 = -1$; $a_0 = 0$, $a_1 = -1$; $a_0 = 1$, $a_1 = 2$.
- **в)** $a_{n+2} = 7a_{n+1} 12,5a_n$, если $a_0 = a_1 = 1$.
- $\mathbf{r}) \ a_{n+2} = a_{n+1} + a_n + 1, \text{ если } a_0 = a_1 = 1.$

Линейной рекуррентой называется последовательность a_n , если для некоторого $k \in \mathbb{N}$ и для любого $n \geqslant 0$ выполнено линейное рекуррентное уравнение

$$a_{n+k} = a_{n+k-1}c_1 + \ldots + a_nc_k$$
 для всех $n \geqslant 0$.

Другими словами, линейные рекурренты — решения данного уравнения. Если $c_k \neq 0$, то k- *порядок* рекурренты.

Многочлен $x^k - c_1 x^{k-1} - \ldots - c_k = 0$ называется $x a p a \kappa m e p u c m u u e c \kappa u м многочленом$ данного рекуррентного уравнения.

Задача 3°. Докажите, что решения линейного рекуррентного уравнения образуют линейное пространство размерности k над полем $\mathbb C$.

Задача 4°. Зафиксируем линейное рекуррентное уравнение 2-го порядка $a_{n+2} = \lambda a_{n+1} + \mu a_n$.

- а) (Случай разных корней) Пусть характеристический многочлен имеет два различных (комплексных) корня α , β . Докажите, что последовательности $a_n = \alpha^n$ и $b_n = \beta^n$ являются решениями данного уравнения, и более того, образуют базис пространства решений.
- **б)** (*Случай кратного корня*) Пусть у характеристического многочлена есть кратный (комплексный) корень α . Докажите, что последовательности $a_n = \alpha^n$ и $b_n = n\alpha^n$ являются решениями данного уравнения, и более того, образуют базис пространства решений.

Задача 5^{\varnothing} . Сколько существует последовательностей длины n из символов **a)** 0 и 1; **б)** 0, 1 и 2, в которых никакие два нуля не находятся рядом?

Задача 6°. Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на *n*-ом году роста первоначального растения?

Задача 7^{\varnothing} . В вершине A шестиугольника ABCDEF сидит лягушка. Каждую секунду лягушка перепрыгивает в одну из соседних вершин, выбирая направление случайным образом равновероятно. С какой вероятностью она окажется в A через n прыжков?

Задача 8 . Найдите количество 10-значных чисел, удовлетворяющих следующим условиям:

- **а)** все цифры числа принадлежат множеству 1, 2, 3, 4, 5, а любые две соседние цифры отличаются на 1;
- б) никакие две чётные цифры не находятся рядом.

Задача 9*. Опишите все решения рекуррентного уравнения k-ого порядка для $k \geqslant 3$.

1 a	1 6	1 B	1 Г	1 д	2 a	2 6	2 B	2 Г	3	4 a	4 6	5 a	5 6	6	7	8 a	8 6	9