Lecture1.md 24/10/2019

- Lecture 1
 - · Definition of Machine Learning
 - Tasks, \$T\$
 - Classification
 - Regression
 - Transcription
 - Machine Translation
 - Synthesis & Sampling
 - Performance Measure, \$P\$
 - Experience, \$E\$
 - Supervised Learning
 - Unsupervised Learning
 - Re-enforcement learning

Lecture 1

Definition of Machine Learning

A Computer Program is said to learn from experience, E, with respect to some class of task, T, and performance, P if it's performance as tasks in T improves, as measured by P with experience E

Tasks, \$T\$

Classification

- Construct a function, \$f: \R^n \rightarrow { 1,...,k }\$, s.t. if an object with features \$x \in \R^n \$ belongs to class, y, then \$f(x) = y\$
- · Alternatively, Construct a function which given features returns the probability of each class

print("Hello, World!")

Regression

- Predict a numerical value given some inputs, i.e. a function: \$ f : \R^n \rightarrow \R\$
- e.g prediction of car value /£ give milage/ miles

Transcription

- · Produce Text from unstructured data
- · egs.
 - Optical Character Recognition (OCR)
 - · Speech recognition

Machine Translation

Lecture1.md 24/10/2019

• Translation from a source language to a target language

Synthesis & Sampling

- · Generation of new examples, similar to those in the training data
- · Useful in applications where content is expensive to manually produce

Performance Measure, \$P\$

- Usually specific to the task, T being carried out by the system.
- Accuracy is the proportion of examples for which the model produce the correct output. Equivalent to the Error Rate. Often refer to the error rate as "0-1 loss".
- Performance measure must be calculated using unseen data to avoid over-fitting.
- For tasks such as density estimation, 0-1 loss doesn't make sense as a performance measure.

Experience, \$E\$

- ML often describes "Nature" as an unknown probability distribution, \$D\$ over some space e.g. \$\R^d\$.
- Our "experience" of nature samples from this distribution:
 - i.e \$(X_1,...,X_n) \sim D\$
- The experience is also sometimes called our "Dataset"

Supervised Learning

- The distribution, \$D\$ is over some set \$X \times Y\$ where:
 - \$X\$ is a set of features (e.g. pictures)
 - \$Y\$ is a set of classes (e.g. cats, dogs)
- A "teacher" gives the algorithm labelled examples
 - e.g. a sequence of samples from the distribution which includes elements from both \$X\$ and \$Y\$
 - \$((x_1,y_1),...,(x_n,y_n)) \sim D\$
- The goal of the algorithm is to predict the class, \$y\$, given only the features, \$x\$. i.e. to learn/approximate a conditional probability dataset.

Unsupervised Learning

- Probability distribution \$D\$ over set \$X\$
- · We observe some dataset
 - ∘ \$(x 1, ..., x n) \sim D\$
- The goal of the algorithm is to learn something about the distribution.

Re-enforcement learning

- · The algorithm interacts with an environment through a sequence of actions
- · each action is rewarded or penalised