I. Fonction dérivée

A. Introduction

Définition 1

Soit f une fonction définie sur un intervalle I et soit a un réel de I. f est dérivable en a s'il existe un nombre L tel que

$$\lim_{h\to 0}\frac{f(\alpha+h)-f(\alpha)}{h}=L.$$

Le nombre L est appelé **nombre dérivé** en a de f.

Définition 2

Soit f une fonction définie sur un intervalle I.

f est dite **dérivable** sur I lorsque, pour tout $a \in I$, f admet un nombre dérivé en a.

La fonction définie sur I qui, à tout réel a de I, associe le nombre dérivé de f en a est appelée fonction dérivée de f.

Cette fonction se note f'.

Exemple • Fonction polynomiale de degré 2.

B. Dérivée de fonctions de référence

Soient u et v deux fonctions définies sur un même intervalle I. Alors :

$$(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'.$$

Dans le tableau ci-dessous, k désigne un nombre réel et u une fonction :

Fonction	\mathscr{D}_{f}	Dérivée	$\mathscr{D}_{f'}$
Fonction constante : $u: x \mapsto k$	\mathbb{R}	u'=0	\mathbb{R}
ku	$\mathscr{D}_{\mathfrak{u}}$	$(k\mathfrak{u})' = k \times \mathfrak{u}'$	$\mathscr{D}_{\mathfrak{u}'}$
$\chi \mapsto \chi$	\mathbb{R}	$x \mapsto 1$	\mathbb{R}
$x \mapsto ax + b$	\mathbb{R}	$x\mapsto a$	\mathbb{R}
$x \mapsto x^n$, $n \in \mathbb{N}^*$	\mathbb{R}	$x \mapsto n \times x^{n-1}$	\mathbb{R}
$x\mapsto \frac{1}{x}$	\mathbb{R}^*	$x\mapsto \frac{-1}{x^2}$	\mathbb{R}^*
$x \mapsto \cos x$	\mathbb{R}	$x \mapsto -\sin x$	[-1;1]
$x \mapsto \sin x$	\mathbb{R}	$x \mapsto \cos x$	[-1;1]
$x \mapsto \cos(\omega x + \varphi)$	\mathbb{R}	$x \mapsto -\omega \times \sin(\omega x + \varphi)$	\mathbb{R}
$x \mapsto \sin(\omega x + \varphi)$	\mathbb{R}	$x\mapsto\omega\times\cos(\omega x+\varphi)$	\mathbb{R}

Propriété 2 (admise)

Soient u et v deux fonctions définies sur un même intervalle I. Alors :

$$(\mathbf{u} \times \mathbf{v})' = \mathbf{u}'\mathbf{v} + \mathbf{u}\mathbf{v}'.$$

De plus, si pour tout $x \in I, v(x) \neq 0$ alors :

$$\left(\frac{\mathfrak{u}}{\mathfrak{v}}\right)' = \frac{\mathfrak{u}'\mathfrak{v} - \mathfrak{u}\mathfrak{v}'}{\mathfrak{v}^2}.$$

II. Tangente

P Définition 3

Soit f une fonction définie sur un intervalle I.

Soit a un réel de I tel que f est dérivable en a, de nombre dérivé f'(a).

On note \mathscr{C}_f la courbe représentative de f dans un repère orthogonal du plan.

La **tangente** à \mathcal{C}_f au point A(a; f(a)) est la droite passant par A de cœfficient directeur f'(a).

`@- <u>Théorème 1</u>

Soit f une fonction dérivable en un réel a de nombre dérivé f'(a). On note \mathscr{C}_f la courbe représentative de f dans un repère orthogonal. L'équation réduite de la tangente T à \mathscr{C}_f au point d'abscisse a est :

$$y = f'(a) \times (x - a) + f(a)$$

III. Variations d'une fonction

- 7 Théorème 2 (admis)

Soit f une fonction polynôme du second degré dont on note f' la dérivée. I est un intervalle.

- Si, pour tout $x \in I$, f'(x) > 0, alors f est strictement croissante sur I.
- − Si, pour tout $x \in I$, f'(x) < 0, alors f est strictement décroissante sur I.