Ligands and Receptors: A Love Story

Binding Affinities Between Opioids and the μ -opioid Receptor

Research Goal

Molecule Creation and Optimization Method

Experiment Setup

What are: "Binding Affinities"?

They are:

- How tightly bound an interaction is (i.e. a ligand and protein)
- ▶ Often referred to as the free energy of binding (ΔG)
- Used in drug optimization, computations of biological systems etc.

Simple terms in context of my research:

The total energy decrease when a ligand binds to a receptor

Briefing

Heroin 6DDF Docking Output

Heroin 8E0G Docking Output

Heroin 8E0G Docking Output

Affinity Graphs

Affinity Graphs

Affinity Graphs

Analysis

- ► BU72 Consistently had the strongest binding. ⊢
- ► Fentanyl and Carfentanil consistently showed strong binding.
- Morphine was stronger bound to a higher quality model.
- ► The gap in affinity lessened when the structure was lower quality.
- ► Heroin and Methadone varied greatly across structure and file format.

Thank You!

