

# **COOLANT STRUCTURAL MATERIALS**

### **COMPATIBILITY**

APEX Task III 6 a,b

S. Sharafat and N. M. Ghoniem

The University of California at Los Angeles (UCLA) Los Angeles, CA. 90095-1597, USA

**Joint APEX Electronic Meeting** 

**USA** 

March 24, 2000

Sharafat / Ghoniem- UCLA



# **Compatibility Issues**

# Three compatibility issues and three design specific issues:

| COMPATIBILITY                                      | <b>DESIGN ISSUES</b>                            |  |
|----------------------------------------------------|-------------------------------------------------|--|
| Liquid Metal Corrosion Chemical leaching           | Structural Material Choice and Operating Window |  |
| Liquid Metal Erosion  Mechanical mass transfer     | Insulating Coating Self-Healing or Not          |  |
| Liquid Metal Embrittlement Degradation of strength | Bi-Metallic Loop Economics                      |  |

Sharafat / Ghoniem- UCLA



# **Approach**

#### 1. Extensive Review of Experimental Data Base:

- Over the past decade research in liquid blankets resulted in a number of experimental programs to investigate feasibility issues (ITER, LHD)
- Over 72 published reports have been identified for review.

#### 2. Use of Thermodynamic Analysis:

- Activation, Gibbs's free energy, and solubility are used to estimate interactions between liquid metals and structural materials
- Interactions between liquid metals and ceramic insulating materials have been reported for:

Oxides, Nitrides, and Carbides



# **Experimental and Analytical Material Matrix**

|                                                                 |                                                                                                                                                                                                                 | Lack Data                                                                                                     |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Liquid Metal                                                    | Li, Li17-Pb83                                                                                                                                                                                                   | FliBe, Sn-Li                                                                                                  |
| Structural Materials (Experimental)                             | V, Alloys : V-Ti-Cr, V-Cr-Ti-Zr<br>SS: Fe-C-Cr-Ni-Mo,                                                                                                                                                           | W, W-Re, ODS-W, Ferritic Steels                                                                               |
| Insulating Ceramics (Thermodynamic analysis, some experimental) | Oxides: Y <sub>2</sub> O <sub>3</sub> , CaO, Al <sub>2</sub> O <sub>3</sub> ,<br>MgO, SiO <sub>2</sub> , Cr <sub>2</sub> O <sub>3</sub> Carbides: β-SiC, TiC, ZrC, TaC  Nitrides: BN, AlN, TiN, ZrN,<br>VN, CrN | SiC unstable in<br>Li, but stable in<br>Li-Pb <sup>[1]</sup> (no info<br>on SiC and FliBe<br>or SiC and LiSn) |
| Impurities (effects on compatibility)                           | O, N, C, H                                                                                                                                                                                                      |                                                                                                               |



# Compatibility between Li and V-Alloys/Insulating Coating

# Vanadium and SS Stability in Li (450°C, 400 wpm N)<sup>[1]</sup>:



Vanadium alloys are superior to Cr and Cr-Ni Steel alloys Insulating Coating Stability based on Gibbs's Free Energy [2]:

| Li (773 K)             |                            |
|------------------------|----------------------------|
| Species                | $D_fG_{ceramic}$ (kJ/mole) |
| $Y_2O_3$               | -1678.8                    |
| $Al_2O_3$              | -1432.6                    |
| $Cr_2O_3$              | -927.7                     |
| CaO                    | -554.1                     |
| AlN                    | -219.2                     |
| $\mathbf{B}\mathbf{N}$ | 206.1                      |
| $\mathbf{V}\mathbf{N}$ | -150.2                     |
| CrN                    | -61.6                      |

Among the ceramics the Yittria is the most stable



# **Nozzle Design Issues**

#### Two Issues:

- 1) Wear of Nozzle
- 2) Effects of Nozzle Geometry → Performance
- → Lifetime

A review of **NOZZLE WEAR** based on high temperature liquids is being conducted (no data with liquid metals).

**EFFECTS OF NOZZLE GEOMETRY** (diameter and aspect ratio) on the local heat transfer coefficients has been studied and will be reported.

Sharafat / Ghoniem- UCLA