DISCRETE RANDOM VARIABLES AND DISTRIBUTIONS

Experiment: Opinion poll, in which we ask 50 students if they agree that 3D pie charts are terrible.

Sample space of this experiment is:

X = Number of «yes» among the 50 students

Sample space for $X : \{1,2,3,....,50\}$

RANDOM VARIABLES

A random variable associates a numerical value to the outcomes of a random experiment.

Example: Rolling a pair of dice.

X = Sum

Experiment: Rolling a pair of dice.

X = Sum

Possible values: {2,3,4,5,6,7,8,9,10,11,12}

A discrete random variable has possible values that can be given in an ordered list.

- The sum of two dice {2,3,4...,12}
- The number of calls you need to make before successfully connecting to customer service {1,2,3,...}

A continuous random variable takes all values in some interval.

Annual income of a randomly selected person

PROBABILITY DISTRIBUTION

The **probability distribution** of a discrete random variable X is a list of all possible values of X and their probabilities.

X = Sum of a pair of dice.

x	2	3	4	5	6	7	8	9	10	11	12
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278

$$P(X = 10) = P(\blacksquare \blacksquare) + P(\blacksquare \blacksquare) + P(\blacksquare \blacksquare)$$
$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{36} \approx 0.0833$$

All discrete probability distributions must satisfy:

1.
$$0 \le p(x) \le 1$$
 for all x

$$2. \quad \sum_{\{all\ x\}} p(x) = 1$$

3. Find the probability of any event by adding the probabilities of the values that make up the event.

х	2	3	4	5	6	7	8	9	10	11	12
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278

$$P(X \le 4) = p(2) + p(3) + p(4) = 0.0270 + 0.0556 + 0.0833 = 0.1659$$

PROBABILITY HISTOGRAM

PROBABILITY DISTRIBUTION FORMULAS

In some situations the probability distribution can be expressed as a formula.

Example: The binomial distribution

COMMON DISTRIBUTIONS

Examples of discrete probability distributions:

- Binomial
- Poisson
- Geometric
- Negative Binomial
- Hypergeometric

A discrete random variable has possible values that can be given in an ordered list.

The probability distribution of a discrete random variable X is a list of all

possible values of *X* and their probabilities.

X	0	1	2	3	4	5	6
p(x)	0.1176	0.3025	0.3241	0.1852	0.0595	0.0102	0.0007

$$p(x) = {6 \choose x} 0.3^{x} (1 - 0.3)^{6-x}$$

$$for x = 0,1,2,3,4,5,6$$

NHH TECH3

Sondre Hølleland Geir Drage Berentsen