План проекта

Роботизированная система монтажа электронных компонентов на базе манипулятора АВВ

Участники команды:

Васильева Ксения Алексеевна

Беспятчук Евгений Евгеньевич

Кондратьев Артём Сергеевич

Сотов Артем Александрович

Челноков Никита Андреевич

Сириусята (Команда 6)

2024 год/осенний семестр, Команда 6 Математическая робототехника и искусственный интеллект Научный центр информационных технологий и искусственного интеллекта Научно-технологический университет «Сириус»

Участники команды

Имя	Ответственный	Электронная почта
Васильева Ксения	Ответственный за документацию (DOC)	Ksushenka.2019@mail.r u
Беспятчук Евгений	Ответственный за деревянные заготовки	yevgenybespyatchuk@y andex.ru
Кондратьев Артём	Ответственный за CUI	artemkondratev5@gmail .com
Сотов Артем	Ответственный за решение задач компьютерного зрения (CV)	sotoff.artem@yandex.ru
Челноков Никита	Ответственный за ABB	chebreko@gmail.com

1. Описание проекта

1.1 Предыстория

В области автоматизации сборки электронных компонентов и использования роботизированных манипуляторов, таких как ABB, проводилось множество исследований и разработок. Вот некоторые ключевые направления и достижения, которые были полезны для нашего проекта:

1. Исследования в области робототехники и автоматизации:

- Системы управления манипуляторами: Исследования в области алгоритмов управления движением манипуляторов, включая использование PID-регулирования, адаптивного управления и нейросетевых методов.
- Кинематика и динамика: Изучение кинематических моделей манипуляторов для точного планирования движений и предотвращения коллизий.
- Обработка данных с сенсоров: Разработка технологий для интеграции различных сенсоров (камера, лазерные сканеры, тактильные датчики) для улучшения восприятия окружающей среды.

2. Технологии монтажа:

- Системы машинного зрения: Использование камер и алгоритмов компьютерного зрения для автоматического обнаружения и позиционирования компонентов на платах.
- Автоматизированные системы контроля качества: Разработка технологий для проверки качества сборки, включая методы визуального контроля и тестирования функциональности.

3. Программное обеспечение:

- CAD/CAM системы: Программы для проектирования и моделирования сборочных процессов, которые позволяют оптимизировать размещение компонентов и планирование операций.
- **Промышленные протоколы связи:** Технологии, такие как OPC UA, EtherCAT и другие, которые обеспечивают связь между различными устройствами в производственной среде.

4. Примеры успешных внедрений:

- **Производственные линии в электронике:** Многие компании, такие как Foxconn, используют роботизированные системы для сборки смартфонов и другой электроники, что подтверждает эффективность автоматизации.
- Исследования в области гибкой автоматизации: Проекты, направленные на создание адаптивных производственных систем, которые могут быстро перенастраиваться под разные задачи.

5. Стандарты и безопасность:

• Стандарты безопасности: Исследования по безопасности роботизированных систем, включая ISO 10218 и ISO/TS 15066, которые регулируют взаимодействие человека и робота на производственных площадках.

6. Обучение и симуляция:

- Системы обучения: Разработка программного обеспечения для обучения операторов работе с роботами и автоматизированными системами.
- Симуляционные платформы: Использование программных средств (например, ROS, Gazebo) для моделирования и тестирования роботизированных систем до их физического внедрения.

Эти исследования и технологии создают основу для успешной реализации нашего проекта по созданию роботизированной системы монтажа электронных компонентов на базе манипулятора ABB. Они помогают не только в разработке эффективных решений, но и в минимизации рисков при внедрении новых технологий в производство.

Основными источниками были:

- 1. API модулей // Qt for Python URL: https://doc.qt.io/qtforpython-6/api.html (дата обращения: 01.12.2024).
- 2. Open Source Computer Vision // OpenCV URL: https://docs.opencv.org/4.x/ (дата обращения: 01.12.2024).
- 3. ChatGPT

1.2 Мотивация

Проект по разработке роботизированной системы монтажа электронных компонентов на базе манипулятора ABB имеет значительное значение в современном производственном процессе и решает несколько ключевых проблем.

Значимость проекта:

1. Автоматизация производства:

• Проект способствует автоматизации процессов сборки, что позволяет значительно повысить производительность и снизить затраты на трудозатраты.

2. Увеличение точности и качества:

• Роботизированные системы обеспечивают высокую точность монтажа, что снижает количество бракованных изделий и улучшает качество конечного продукта.

3. Снижение времени цикла:

• Автоматизация процессов позволяет сократить время, необходимое для сборки, что ускоряет выход продукции на рынок и повышает конкурентоспособность компании.

4. Гибкость и адаптивность:

• Современные манипуляторы, такие как ABB, могут быть легко перенастроены для работы с различными компонентами и изделиями, что делает систему универсальной для разных производственных задач.

Проблемы, которые решает проект:

1. Недостаток рабочей силы:

• В условиях нехватки квалифицированных работников автоматизация позволяет компенсировать этот дефицит и сохранить уровень производства.

2. Человеческий фактор:

• Снижение ошибок, связанных с человеческим фактором, таких как усталость или невнимательность, благодаря использованию роботов.

3. Увеличение производственных затрат:

• Автоматизация процессов позволяет снизить затраты на производство за счет уменьшения потребности в ручном труде и повышения эффективности.

4. Сложные операции:

• Роботы могут выполнять сложные задачи, которые требуют высокой точности и аккуратности, что может быть сложно или невозможно для человека.

Применение в реальной жизни:

1. Электронная промышленность:

• Системы могут быть использованы для монтажа печатных плат, сборки компонентов в смартфонах, компьютерах и другой электронике.

2. Автомобильная промышленность:

• Применение в сборочных линиях для установки электронных систем в автомобили, таких как системы управления и безопасности.

3. Медицинская техника:

• Использование для монтажа сложных медицинских устройств, где требуется высокая степень надежности и точности.

4. Промышленная автоматизация:

• Внедрение в общие производственные процессы для повышения эффективности и снижения затрат в различных отраслях.

Таким образом, проект по созданию роботизированной системы монтажа электронных компонентов на базе манипулятора ABB является важным шагом к модернизации производственных процессов и решению актуальных проблем в различных отраслях.

1.3 Этапы и Подзадачи

Разрабатываем систему роботизированного монтажа электронных компонентов на плату с помощью манипулятора ABB.

Этапы проекта:

- 1. Разработать систему детекции плат и электронных компонентов на основе алгоритмов компьютерного зрения
- 2. Создать ПО для взаимодействия манипулятора с системой компьютерного зрения
- 3. Собрать модели плат и электронных компонентов
- 4. Провести моделирование процесса монтажа электронных компонентов

1.4 Общие цели

Данный проект содержит несколько основных целей:

- 1. Создать базу для дальнейших исследований в области робототехники и автоматизации, включая возможность внедрения новых технологий и методов в будущем.
- 2. Разработать полностью автоматизированную систему, которая сможет выполнять операции по монтажу электронных компонентов с высокой скоростью и точностью, минимизируя человеческое вмешательство.
- 3. Создать систему, способную быстро перенастраиваться для работы с различными типами электронных компонентов и плат, что позволит сократить время на переналадку.

1.5 Техническое задание

Общие требования к проекту

- 1. **Цель проекта:** Создание автоматизированной системы для монтажа электронных компонентов, которая повысит производительность, качество и безопасность сборочных процессов.
- 2. Сроки выполнения: Определить четкие временные рамки для каждой фазы проекта:
 - Планирование (30.11-01.12)
 - Разработка (02.12-03.12)
 - Тестирование (04.12-05.12)
 - Презентация проекта (06.12).

3. **Бюджет:** Установить бюджет проекта, включая затраты на оборудование, программное обеспечение, обучение и поддержку. (Так как мы не продаем наш проект, данный пункт отсутствует).

Основные требования (обязательные для выполнения)

1. Автоматизация процессов:

- Система должна выполнять операции по монтажу компонентов без необходимости ручного вмешательства.
- Необходимость интеграции с существующими системами управления производством.

2. Производительность:

• Возможность работы в режиме многозадачности (одновременная работа с несколькими типами компонентов).

3. Качество:

- Уровень соответствия стандартам качества должен составлять не менее 99%.
 - Внедрение системы контроля качества в реальном времени.

4. Безопасность:

- Система должна соответствовать стандартам безопасности (например, ISO 10218 для промышленных роботов).
 - Наличие защитных барьеров и аварийных остановок.

5. Гибкость:

- Возможность быстрой перенастройки для работы с различными типами электронных компонентов и плат.
- Поддержка изменения конфигурации системы без значительных затрат времени.

Вспомогательные требования (дополнительные улучшения)

1. Интерфейс пользователя:

- Разработка интуитивно понятного графического интерфейса для управления системой и мониторинга процессов.
 - Возможность удаленного доступа для мониторинга и управления.

2. Обучение и поддержка:

- Создание обучающей программы для операторов, включая видеоуроки и документацию.
- Наличие службы технической поддержки на случай возникновения проблем.

3. Экологические аспекты:

- Реализация решений по минимизации отходов и оптимизации использования ресурсов.
 - Использование экологически чистых материалов и технологий.

4. Расширяемость:

- Возможность дальнейшего расширения системы с добавлением новых функций или оборудования.
- Поддержка обновлений программного обеспечения для улучшения функциональности.

5. Документация:

• Полный пакет документации, включая технические спецификации, инструкции по эксплуатации и руководство по обслуживанию.

2. Планирование этапов проекта

2.1 Перед стартом

1. Определение целей и задач проекта:

- Формулирование основных целей проекта.
- Определение конкретных задач, которые необходимо решить.

2. Подготовка документации:

- Создание проектной документации, включая описание проекта, его цели и задачи.
- Разработка технического задания (ТЗ), в котором будут четко прописаны требования к продукту или услуге.

3. Согласование технического задания:

- Обсуждение и согласование ТЗ.
- Внесение правок и уточнений на основе полученной обратной связи.

4. Формирование команды проекта:

- Определение необходимых ролей и обязанностей участников команды.
- Назначение ответственных за ключевые направления работы.

5. Оценка ресурсов и бюджета:

- Оценка необходимых ресурсов (человеческих, материальных, финансовых) для выполнения проекта.
- Составление предварительного бюджета и его согласование с руководством. (В нашем случае данный пункт отсутствует).

6. Разработка плана проекта:

• Создание детального плана с этапами и сроками выполнения.

7. Анализ рисков:

• Идентификация потенциальных рисков, связанных с проектом.

• Разработка стратегии управления рисками и плана действий на случай непредвиденных обстоятельств.

8. Коммуникационный план:

- Определение каналов и частоты коммуникации между участниками проекта.
 - Установление отчетности и форматов встреч.

9. Подготовка инфраструктуры:

- Обеспечение необходимой технической инфраструктуры (программного обеспечения, оборудования).
 - Настройка рабочих мест для команды.

2.2 Во время проекта

Этапы проекта:

- 1. Разработать систему детекции плат и электронных компонентов на основе алгоритмов компьютерного зрения
- 2. Создать ПО для взаимодействия манипулятора с системой компьютерного зрения
- 3. Собрать модели плат и электронных компонентов
- 4. Провести моделирование процесса монтажа электронных компонентов **2.3** После завершения проекта

Подготовка отчета и презентации о проделанной работе.

3. Ресурсы

3.1 Команда

Участники команды:

Васильева К.А.

Беспятчук Е.Е.

Кондратьев А.С.

Сотов А.А.

Челноков Н.А.

3.2 Материал

Оборудование:

- Манипулятор ABB IRB 1600
- web-камера ...
- штатив для камеры
- лазерный станок
- сверлильный станок

Материалы:

- гайки М6
- шпильки М6
- фанера 6 мм
- бумага А4

ПО:

- ABB RobotStudio
- OpenCV
- Qt6

3.3 Рабочие помещения и коммуникации

- Физические рабочие помещения: лаборатории и коворкинги Университета, коворкинги Сигма Сириус
- Методы связи:
 - o Telegram
 - о Личные встречи

4. План реализации

4.1 Методы и подходы

Ход работы:

- 1. Модели печатных плат и электронных компонентов изготавливаются на 3д-принтере\лазерном станке.
- 2. Камера устанавливается на штативе над рабочим полем
- 3. на рабочее поле помещается шахматная доска, производится калибровка камеры
- 4. Находится матрица преобразования из СК камеры в СК робота
- 5. Набор электронных компонентов и одна из возможных плат расположены случайным образом на рабочем поле
- 6. На каждой плате размещается три различных класса электронных компонентов. Каждый класс имеет 2 экземпляра
- 7. Тип платы определяется с помощью aruco-маркера
- 8. С помощью компьютерного зрения определяется положение платы и электронных компонентов
- 9. В разработанной программе осуществляется выбор доступных компонентов и запуск движения робота
- 10. Робот получает набор поз электронных компонентов и платы и осуществляет монтаж электронных компонентов на плату

4.2 Тестовые сценарии

- 1. При известном положении деталей проверить точность определения положения с помощью камеры
- 2. При известном положении деталей осуществить монтаж компонентов для проверки точности движений робота
- 3. При неизвестном положении деталей осуществить монтаж компонентов для проверки общей работоспособности

4.3 Ключевые этапы выполнения

Этап	Описание	Ответственный член проектной команды	Дата
A.	Разработано проектное предложение	Вся команда	29.11.2024
Б.	Составление плана проекта	Васильева Ксения	01.12.2024
В.	Решение задач компьютерного зрения	Сотов Артем	02.12.2024
г.	Разработка по графическому интерфейсу	Кондратьев Артем	02.12.2024
Д.	Изготовка деревянных плат	Беспятчук Евгений	03.12.2024
E.	Разработка ядра алгоритма движения робота манипулятора	Челноков Никита	02.12.2024
Ж.	Планирование тестирования	Вся команда	03.12.2024
3.	Предварительная подготовка	Беспятчук Евгений	03.12.2024
И.	Подготовка к тестированию	Сотов Артем	03.12.2024
К.	Тестирование	Кондратьев Артем	04.12.2024
Л.	Програмирование робота	Челноков Никита	03.12.2024
M.	Подготовка презентации	Васильева Ксения	05.12.2024
Н.	Написание отчета	Васильева Ксения	05.12.2024
0.	Проверка отчета перед отправкой	Вся команда	05.12.2024
П.	Презентация	Вся команда	06.12.2024

4.4 Действия

Активность	Описание	Ответств енный участник проекта	Ориенти ровочное время
Подготовка плана проекта	Составление плана проекта по шаблону	ВКА	10
Решение задач по компьютерному зрению	1. Распознавание микросхем 2. Распознавание платы 3. Расчет позиций микросхем относительно платы и передача этих данных на ABB	CAA	20
Разработка по графическому интерфейсу	1. Разработка и создание платы и компонентов	KAC	10
Изготовка плат	1. Модели микросхем	БЕЕ	10
Разработка ядра алгоритма движения робота манипулятора	1. Разработка кода для переноса детали	ЧНА	15
Планирование тестирования	Составление плана тестирования	СК	20
Предварительная подготовка	Подготовка всех составляющих эксперимента	БЕЕ	9
Подготовка к тестированию	Загрузка кода	CAA	9
Тестирование		КАС	8
Програмирование робота		ЧНА	7
Подготовка презентации		ВКА	7
Написание отчета		ВКА	9

Проверка отчета перед отправкой	Вся команда	5
Презентация	Вся команда	1

5. Анализ рисков

5.1 SWOТ-анализ.

Внутренние факторы		
Сильные стороны (Strengths):	Слабые стороны (Weaknesses):	
• Опыт работы с манипуляторами	• Отсутствие опыта работы со	
• Опыт проектной работы	встроенной камерой	
	• Случайный характер формирования	
	команды	
Внешние факторы		
Возможности (Opportunities):	Угрозы (Threats):	
• Практически постоянный доступ к	• неточность изготовления плат и	
оборудованию или возможность	компонентов	
симуляции	• погрешности при калибровке камеры	
• Возможность консультации с		
преподователями		

5.2 План управления рисками

Решение недостатков: повышение внимания к задачам связанным с компютерным зрением и коммуникацией.

Решение рисков:

- Неточность изготовления: применение цифровых двойников для симуляции движения робота
- Погрешности при калибровке камеры: использовать большее количество данных при калибровке

ССЫЛКИ

1. API модулей // Qt for Python URL: https://doc.qt.io/qtforpython-6/api.html (дата обращения: 01.12.2024).

- 2. Open Source Computer Vision // OpenCV URL: https://docs.opencv.org/4.x/ (дата обращения: 01.12.2024).
- 3. ChatGPT