Variables critical to performance that are set in the program

{variable} = default value in program

These are parameters that cannot be changed via the GUI but can potentially impact performance

Pattern screen aspect ratio {pAspRatio} = 884/1024 [height/width]

Maximum dwell time allowed in exposure file for "segment" element {tdMax_FEI} = 4.6 [ms]

Dwell time for "pillar" element {tdPillar} = 0.1.*floor({tdMax_FEI}/0.1) [ms]

Minimum dwell time allowed in exposure file $\{PIA\} = 1.6 [\mu s]$

NVPE option, constant dwell time {tdMax_NVPE} = 0.5 [ms]

Maximum number of 3D object vertices {NumVertices_Limit} = 1000

Maximum number of exposure levels {NumExpLevels Limit} = 500

Maximum number of elements per exposure level {NumSegsPerLevel_Limit} = 100

Maximum number of pixel exposure positions NumShots_Limit = 100000

Maximum number of element spacing bins that can be submitted to the vertex histogram {MaxNumBins} = 20

Maximum number of elements connections per vertex for auto-segment detection {MaxNumSegsPerNode} = 10

Maximum number of segments per level during auto-segment detection {MaxNumSegsPerLevel} = 100

Intensity (i.e., counts) maximum for the number of vertex spacings per bin displayed in the vertex spacing histogram – in other words, the x-axis maximum limit. {xAxisMaxHistogram} = 10 Maximum number of remeshing operations that can be applied during segment bending compensation

 $\{NumReMeshOps\} = 20$

FEBID model evolution: time step used during the calibration curve fitting procedure {dTau} = 1.0 [ms]

FEBID model evolution: maximum time simulated for the calibration curve fitting {TauMaxFit} = 100 [ms]

FEBID model evolution: maximum number of surface nodes for growing deposit {SurfaceNodes} = 200

Calibration curve (τ_d vs ζ) plot axes range [xMin(ms) xMax(ms) yMin(degrees) yMax(degrees)] {tzAxesLimits} = [0 80 0 80] %[ms,degrees]

Calibration curve x-axis (τ_d) major tick positions $\{tzAxesYTick\} = [0\ 20\ 40\ 60\ 80]\ \%[ms]$

Parameter with range limitations

Dwell time multiplication factor for all segments (see $\{f_tDe\}$). This multiplication factor is applied to all "segment" type elements in an exposure file $f_tDe \times \tau_d$ $\{f_tDe MinMax\} = [0; 2]$

Diverging segments proximity correction range (see {PrxCi}). The initial length of segment (length projected into the focal plane) not exposed when more than one segment emanates from a single design vertex. Applied to all segments diverging from the vertex-of-interest

 ${PrxCi_MinMax} = [0; 10] [nm]$

Converging segments proximity correction (see {PrxCf}). The final length of segment (length projected into the focal plane) not exposed when more than one segment converges at a single design vertex. Applied to all segments converging at the vertex-of-interest

 ${PrxCf_MinMax} = [0; 10] [nm]$

Sample exposure level segment exposure order every {sPerLevel} loops through the level

 ${sPerLevel_MinMax} = [1; 50]$

Fitting parameter for calibration curve simulation. Imparts observed delay in segment take-off for calibration curve (see $\{rN\}$)

 $rN_MinMax = [0.1; 2] [nm]$

Primary electron beam size (see {FWHM}) FWHM_MinMax = [1; 50] [nm]

NVPE dwell time (see {tdMax_NVPE}) tdMax_NVPE_MinMax = [0; 1] [ms]

Fitting constraint relieved for {Rule_1_Max} data points. Specifies the number of experimental data points for which the fitting constraint is relieved. Rule_1_Max_MinMax = [0; 10]