Proiectare logică

Curs 12

Sisteme secvențiale sincrone

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

Cuprins

- Sisteme secvenţiale sincrone
 - structura
 - proiectarea unității de comandă
 - principii de comandă
 - hazardul
 - surse de perturbație

Definiție: sunt circuite logice secvențiale sincrone cu număr mare de variabile de intrare și de stare.

- Datorită complexității sinteza lor se bazează pe o organigramă funcțională:
 - pune în evidență stările interne și tranzițiile la modificarea unei singure variabile de intrare.

Structura

- Elemente structurale:
 - Unitatea de execuție (UE):
 - Conține: registre, numărătoare, bistabile și CLC.
 - Unitatea de comandă (UC):
 - Implementează următoarele elemente:
 - un secvențiator de acțiuni pentru UE;
 - o comportamentul prin tranziția între stări interne;
 - o întreruperi de secvențe de procesare prin salt;
 - o bucle de așteptare.

Structura

- Generatorul de secvențe:
 - Implementare cablată => UC cablată;
 - Implementare microprogramată => UC microprogramată.

Unitatea de Comandă – Proiectarea cablată

Varianta 1

- Generatorul de secvențe este realizat cu un numărător programabil care poate să numere, să se oprească sau să încarce o nouă valoare (adresă).
- leşirile numărătorului sunt decodificate cu un decodificator de secvențe => secvența din care se generează un set de acțiuni dirijate pentru UE.

Unitatea de Comandă - Proiectarea cablată

Varianta 2

- Generatorul de secvențe este realizat cu un registru de deplasare combinat ce conține întotdeauna doar un bit de 1. Starea e dată de poziția bitului care indică direct secvența din care se generează un set de acțiuni dirijate pentru UE.
- starea următoare = deplasare cu 1 poziție a bitului 1; saltul = încărcare paralelă a unei stări care conține un bit cu valoarea logică 1, restul fiind 0.

Unitatea de Comandă - Proiectarea cablată

Dezavantaj: Orice modificare a funcționării => modificare a cablajului.

Unitatea de Comandă - Proiectarea microprogramată

- Generatorul de secvențe păstrează aceeași funcționalitate ca la varianta cablată.
- Se poate defini/schimba în microprogram fiecare secvență (avantaj).

Generatorul de acțiuni

Generatorul de acțiuni

Semnalele de activare

- Semnalele de ieșire se modifică în funcție de intrări și sunt prevăzute cu semnale de activare (enable) proprii.
- Semnalele de activare dau tempoul acțiunilor.

Generatorul de acțiuni

Semnalele de activare

- Prin semnalele de activare se impune succesiunea temporală a acțiunilor ce urmează a fi întreprinse în cadrul unei secvențe.
- Exemple de succesiuni în funcție de semnalele de activare generate:

Acțiuni suprapuse

Acțiuni adiacente

Acțiuni neadiacente

Generatorul de acțiuni

Semnalele de activare – temporizare

Se pot folosi numărătoare pentru generarea semnalelor de activare.

Ex: EN_1 – se activează în intervalul 5÷7 sec

Generatorul de acțiuni

- Acțiunile UE se generează folosind secvența curentă și semnale externe (de feedback) de la UE.
- Acțiunile UE sunt comenzi către elementele componente din UE, iar semnalele de activare EN; asociate dirijează în timp acțiunile întreprinse.
- Funcțiile de comandă se introduc într-un tabel care conține:
 - Numele elementului;
 - Tipul elementului fizic;
 - Intrările elementului;
 - Modul de comandă a intrărilor;
 - Expresia logică pentru fiecare intrare.

Hazardul

Definiție: Hazardul reprezintă apariția unei modificări nedorite în stările sistemului secvențial sincron.

- Tipuri de hazard:
 - Static: datorat nesincronizării semnalelor propagate pe căi diferite.
 - Dinamic: datorat intrărilor asincrone cu efect la momente de timp necontrolate.
- Manifestare: comutări fără semnificație logică.
- Alte cauze:
 - semnale parazite la funcțiile de comandă;
 - nerespectarea parametrilor electrici;
 - impulsuri de comandă cu perioadă insuficientă.

Hazardul

- Soluții de evitare:
 - Sincronizarea intrărilor asincrone cu elemente de sincronizare (ex: Mono Pulse Generator – MPG):

Obs: Sesizarea succesiunii 0 –> 1 pe I_a între 2 eșantionări generează un impuls de o perioadă T_{CLK} pe I_s ; N = numărul de perioade T_{CLK} între 2 eșantionări.

Hazardul

- Soluții de evitare: (continuare)
 - Logică de autoinițializare (la pornire) și autocorecție a stărilor;
 - Reducerea numărului de niveluri logice combinaționale (căilor de propagare) prin tehnici de pipeline (intercalare de bistabile/registre) atunci când se dorește obținerea unei frecvențe de lucru ridicate.

Hazardul

- Soluții de evitare: (continuare)
 - Exemplu pentru pipeline: se intercalează registre între nivelele de logică combinațională.

 $\max(\Delta_1, \Delta_2, \Delta_3) < \Delta \Rightarrow \text{scade } T_{CLK} \Leftrightarrow \text{frecvenţa se menţine ridicată}$

19

Surse de perturbație

- Natura perturbațiilor: electrică, magnetică, electromagnetică.
- 1. Perturbațiile mediului înconjurător:
 - ✓ Se elimină cu ecranare (perturbații electrice, magnetice) sau filtre de rețea (perturbații electromagnetice);
- 2. Perturbațiile sursei de alimentare:
 - Zgomote pe liniile de masă => curenți paraziți => tensiuni parazite => impulsuri false pe intrări => comportament / ieșiri neprevăzute ale circuitului;
 - Variații de curent continuu la tranziția între stări;
 - ✓ Se elimină cu condensatoare de înaltă și joasă frecvență și inductanțe care elimină oscilațiile de curent la cuplare/decuplare.
- 3. Diafonia fenomen de cuplaj electromagnetic (transmisie-recepție radio) între fire paralele (se comportă ca antene slabe) care produce semnale parazite:
 - ✓ Se elimină cu trasee (fire) de masă între linii.

Surse de perturbație

- 4. Propagarea și reflexiile pe liniile de transmisie:
 - Impedanța (rezistența) caracteristică a unei linii de transmisie trebuie însoțită de o rezistență cel puțin egală la capetele liniei pentru a evita reflexiile. Dacă apar, reflexiile se suprapun peste semnalul transmis pe linie;
 - Reflexii pot sa apară pe liniile lungi în care timpul de propagare a semnalului crește;
 - ✓ Se elimină prin utilizarea unor linii de lungime adecvată și utilizarea de rezistențe corespunzătoare la capetele liniilor.