SCRUM Domain Optimization Model

Generated from Entities, Relationships, Goals, Conditions, Decision Variables ${\rm August}\ 12,\,2025$

Contents

1	1. Sets (Entities)	2
2	2. Indices	2
3	3. Goals	3
4	4. Conditions	4
5	5. DecisionVariables	5

1 1. Sets (Entities)

- \mathcal{P} (Project): product or initiative to be developed.
- \mathcal{T} (Team): self-organized, cross-functional development team.
- W (Worker): individual team member working on the project.
- \mathcal{F} (Feature): mid-sized functionality.
- S (Skill): competence of a worker.
- \mathcal{R} (Role): defined responsibilities within the Scrum team.
- \mathcal{PO} (ProductOwner): responsible for product vision and Product Backlog.
- \mathcal{SM} (ScrumMaster): supports team in applying Scrum.
- \mathcal{PB} (ProductBacklog): ordered list of all requirements.
- \mathcal{SP} (Sprint): fixed time-box to create an increment.
- SPP (SprintPlanning): sprint planning meeting.
- \mathcal{DS} (DailyScrum): daily 15-minute meeting.
- SR (SprintReview): presentation and acceptance of results.
- \mathcal{SRE} (SprintRetrospective): retrospective for improvement.
- \mathcal{SBL} (SprintBacklog): selected backlog items + implementation plan.
- \mathcal{SG} (SprintGoal): objective to be achieved in the sprint.
- \mathcal{E} (Epic): large requirement split into stories.
- \mathcal{US} (UserStory): requirement from a user perspective.
- TSK (Task): smallest unit of work.
- \mathcal{DEV} (DevelopmentSnapshot): product state at sprint end.
- \mathcal{BL} (Blocker): obstacle hindering progress.
- \mathcal{SH} (Stakeholder): interested party in the product.
- VEL (Velocity): average amount of work per sprint.
- \mathcal{REP} (ReleasePlan): plan for releasing specific features.
- \mathcal{RM} (Roadmap): long-term planning across releases.
- \mathcal{SCB} (ScrumBoard): visual board of sprint tasks.
- \mathcal{FED} (Feature Documentation): documentation for a specific feature.

2 2. Indices

• $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM}, pb \in \mathcal{PB}, sp \in \mathcal{SP}, spp \in \mathcal{SPP}, ds \in \mathcal{DS}, sr \in \mathcal{SR}, sre \in \mathcal{SRE}, sbl \in \mathcal{SBL}, sg \in \mathcal{SG}, e \in \mathcal{E}, u \in \mathcal{US}, \tau \in \mathcal{TSK}, dev \in \mathcal{DEV}, b \in \mathcal{BL}, sh \in \mathcal{SH}, v \in \mathcal{VEL}, rp \in \mathcal{REP}, rm \in \mathcal{RM}, scb \in \mathcal{SCB}, fd \in \mathcal{FED}.$

Data Parameters (derived from attributes and relationships). Where needed, categorical attributes (e.g., status) are represented by numeric indicator parameters derived from the CSVs:

- $\bullet \ s_u^{\mathrm{done}} \in \{0,1\} \ (\mathtt{UserStory.status} == \mathrm{done}), \, \mathrm{sp}_u \in \mathbb{Z}_{\geq 0} \ (\mathtt{UserStory.story.points}).$
- $eff_{\tau} \in \mathbb{R}_{\geq 0}$ (Task.effort), $is_not_done_f \in \{0,1\}$ (Feature.status \neq done).
- $avail_w \in [0,1]$ (Worker.availability), $sev_b \in \mathbb{R}_{>0}$ (Blocker.severity).
- $cost_f \in \mathbb{R}_{\geq 0}$ (proxy from Feature.estimated_effort and unit cost).
- $rel_{sh,f} \in \mathbb{R}_{\geq 0}$ (from Stakeholder.relevance_to_feature).
- $align_f \in \mathbb{R}_{\geq 0}$ (alignment to Roadmap.objectives).
- $fbq_{sp} \in \mathbb{R}_{\geq 0}$ (quality of SprintReview.feedback_documentation for sprint sp).

Relationship-incidence parameters (from Relationships.csv):

- $R_{u.\tau}^{US\text{-}TSK} \in \{0,1\}$ (R10: story u consists of task τ).
- $R_{pb,u}^{PB-US} \in \{0,1\}$ and $R_{pb,f}^{PB-F} \in \{0,1\}$ (R7, R11 via epic/story expansion).
- $\bullet \ \ R_{sbl,u}^{SBL-US} \in \{0,1\} \ (\text{R11}), \ R_{sp,sbl}^{SP\text{-}SBL} \in \{0,1\} \ (\text{R12}), \ R_{sp,sg}^{SP\text{-}SG} \in \{0,1\} \ (\text{R13}).$
- $R_{rp,f}^{REP\text{-}F} \in \{0,1\}$ (R20), $R_{rp,rm}^{REP\text{-}RM} \in \{0,1\}$ (R21).
- $R_{fd,f}^{FED-F} \in \{0,1\}$ (R15).

3 3. Goals

For each goal Gk we show (i) ID and snake_case name, (ii) logical intent, and (iii) mathematical form. We use weights $w_k > 0$ from the CSV (default 1.0 where unspecified). A single scalar objective can be built by a weighted sum of goals of type "max" (added) and type "min" (subtracted), or treated as separate scenarios.

- G0 maximize_completed_user_stories (max): prioritize completed stories for the sprint. max $w_0 \sum_{u \in \mathcal{US}} s_u^{\text{done}} x_u^{US}$
- G1 minimize_open_blockers (min): reduce impact of unresolved blockers. min $w_1 \sum_{b \in \mathcal{BL}} sev_b (1 - x_b^{BL})$
- G2 maximize_velocity_trend (max): proxy by maximizing story points planned. max $w_2 \sum_{u \in \mathcal{US}} \mathrm{sp}_u \, x_u^{US}$
- G3 minimize_total_task_effort (min): limit total selected task effort. min $w_3 \sum_{\tau \in \mathcal{TSK}} eff_\tau x_\tau^{TSK}$
- G4 maximize_sprint_goal_achievement (max): favor sprints that meet their goals. max $w_4 \sum_{sp \in \mathcal{SP}} x_{sp}^{SG}$

- G5 minimize_feature_cycle_time (min): proxy by avoiding not-done features in release. min $w_5 \sum_{f \in \mathcal{F}} is_not_done_f x_f^{FR}$
- G6 maximize_team_availability (max): maximize available capacity assigned to teams. max $w_6 \sum_{w \in \mathcal{W}} \sum_{t \in \mathcal{T}} avail_w x_{w,t}^{WT}$
- G7 minimize_budget_spend (min): proxy by minimizing cost of selected features. min $w_7 \sum_{f \in \mathcal{F}} cost_f \, x_f^{FR}$
- G8 maximize_stakeholder_relevance_coverage (max): select features valued by stakeholders.

$$\max w_8 \sum_{sh \in \mathcal{SH}} \sum_{f \in \mathcal{F}} rel_{sh,f} x_f^{FR}$$

• **G9 maximize_review_feedback_documentation** (max): encourage high-quality reviews (proxy via goal achievement).

$$\max w_9 \sum_{sp \in \mathcal{SP}} fbq_{sp} x_{sp}^{SG}$$

• G10 minimize_blocker_severity_exposure (min): further penalize severe unresolved blockers.

$$\min \ w_{10} \sum_{b \in \mathcal{BL}} sev_b \left(1 - x_b^{BL} \right)$$

• G11 maximize_roadmap_objectives_alignment (max): prefer features aligned to roadmap. max $w_{11} \sum_{f \in \mathcal{F}} align_f x_f^{FR}$

4 4. Conditions

Each condition Ck is modeled as a constraint. (Logical descriptions reflect the CSV names; mathematical forms use the decision variables and relationship incidence.)

- C0 minimize_unscheduled_tasks: selected tasks must belong to a selected user story. $\forall \tau \in \mathcal{TSK}: x_{\tau}^{TSK} \leq \sum_{u \in \mathcal{US}} R_{u,\tau}^{US-TSK} x_{u}^{US}$
- C1 minimize_unassigned_worker_roles: if a worker is assigned to any team, at least one role must be taken.

$$\forall w \in \mathcal{W}: \quad \sum_{r \in \mathcal{R}} x_{w,r}^{WR} \ge \min\{1, \sum_{t \in \mathcal{T}} x_{w,t}^{WT}\}$$

• C2 minimize_unplanned_epics: planning a story implies its epic is represented in a product backlog.

product backlog.
$$\forall u \in \mathcal{US}: \quad x_u^{US} \leq \sum_{pb \in \mathcal{PB}} R_{pb,u}^{PB-US}$$

• C3 minimize_story_without_acceptance_criteria: only stories with acceptance criteria may be selected.

$$orall u \in \mathcal{US}: \quad x_u^{US} \leq \mathbf{1}\{\mathtt{acceptance_criteria}(u)
eq \emptyset\}$$

• C4 minimize_sprint_without_goal: a sprint marked achieved must reference a sprint goal.

$$\forall sp \in \mathcal{SP}: \quad x_{sp}^{SG} \leq \sum_{sg \in \mathcal{SG}} R_{sp,sg}^{SP\text{-}SG}$$

• C5 minimize_exceeded_sprint_duration: (feasibility check) end date after start date (data validity).

$$\forall sp \in \mathcal{SP}: \quad \mathtt{end_date}(sp) \ - \ \mathtt{start_date}(sp) \ \geq \ 0$$

• C6 minimize_overallocated_team_size: assigned workers cannot exceed team capacity Cap_t .

$$\forall t \in \mathcal{T}: \sum_{w \in \mathcal{W}} x_{w,t}^{WT} \leq Cap_t$$

• C7 minimize_missing_feature_docs: if a feature is selected for release, it must have documentation.

$$\forall f \in \mathcal{F}: \quad x_f^{FE} \leq \sum_{fd \in \mathcal{FED}} R_{fd,f}^{FED-F}$$

• C8 minimize_stale_backlog: only user stories in a recently updated backlog may be planned.

$$\forall u \in \mathcal{US}: \quad x_u^{US} \ \leq \ \textstyle \sum_{pb \in \mathcal{PB}} R_{pb,u}^{PB-US} \cdot \mathbf{1} \{ \texttt{last_updated}(pb) \geq \Delta \}$$

• C9 minimize_unmoderated_events: (policy) retrospectives must be moderated if sprint goal is achieved.

$$\forall sp \in \mathcal{SP}: \quad x_{sp}^{SG} \leq \mathbf{1}\{\exists \, sre \in \mathcal{SRE} \, \, \text{with moderation}(sre) = \text{true}\}$$

 \bullet C10 minimize_unestimated_stories: only estimated stories may be planned.

$$\forall u \in \mathcal{US}: \quad x_u^{US} \leq \mathbf{1}\{\mathrm{sp}_u > 0\}$$

• C11 minimize_untracked_velocity: velocity targets require historical basis minSprints. $\sum_{u \in \mathcal{US}} \operatorname{sp}_u x_u^{US} \leq \left(\sum_{v \in \mathcal{VEL}} \mathbf{1}\{\operatorname{number_of_sprints_used}(v) \geq minSprints\}\right) \cdot V_{\max}$

5 5. DecisionVariables

We adopt the previously defined decision variables and domains.

- $x_{t,p}^{TP} \in \{0,1\}$ (DV0 assign_team_to_project): team t is assigned to project p.
- $x_{w,t}^{WT} \in \{0,1\}$ (DV1 assign_worker_to_team): worker w belongs to team t.
- $x_{w,r}^{WR} \in \{0,1\}$ (DV2 assign_worker_role): worker w takes role r.
- $x_{w,s}^{WS} \in \{0,1\}$ (DV3 assign_worker_skill): worker w has skill s (operational use for staffing).
- $x_f^{FR} \in \{0,1\}$ (DV4 select_feature_for_release): feature f is included in a release plan.
- $x_u^{US} \in \{0,1\}$ (DV5 place_story_in_sprint): user story u is assigned to a (current) sprint backlog.
- $x_{\tau}^{TSK} \in \{0,1\}$ (DV6 select_task_for_sprint): task τ is included in the sprint plan/board.
- $x_b^{BL} \in \{0,1\}$ (DV7 close_blocker): blocker b is resolved (closed) within the sprint.

- $x_{sp}^{SG} \in \{0,1\}$ (DV8 set_sprint_goal_achieved): sprint sp achieves its goal.
- $y_{p,f}^{Bud} \in [0,1]$ (**DV9 allocate_budget_to_feature**): share of project p budget allocated to feature f.
- $x_{po,pb}^{POB} \in \{0,1\}$ (DV10 assign_product_owner_to_backlog): PO po manages backlog pb.
- $x_{sm,t}^{SM} \in \{0,1\}$ (DV11 assign_scrum_master_to_team): Scrum Master sm supports team t.

Linking (illustrative) constraints. Typical couplings between decisions and budget:

Budget per project:
$$\forall p \in \mathcal{P}: \sum_{f \in \mathcal{F}} cost_f \, y_{p,f}^{Bud} \leq \text{budget}(p)$$

Release-selection consistency:
$$\forall f \in \mathcal{F}: x_f^{FR} \leq \sum_{p \in \mathcal{P}} y_{p,f}^{Bud}$$

Composite objective (optional). If a single-objective scalarization is desired, maximize

$$\max \ \sum_{k \in \{0, 2, 4, 6, 8, 9, 11\}} w_k \cdot \operatorname{Goal}_k \ - \ \sum_{k \in \{1, 3, 5, 7, 10\}} w_k \cdot \operatorname{Goal}_k,$$

where each $Goal_k$ corresponds to the expressions enumerated in Section 3.