Question 1

The sequence (x_n) which satisfies the properties as mentioned is:

$$x_n = n + \frac{1}{n}$$

Now let's prove it

Proof. We will show that $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s.t } \forall n \geq N, |x_{n+1} - x_n| < \epsilon.$

It is not hard to observe that $|x_{n+1} - x_n| = \left| \left(n + 1 + \frac{1}{n+1} \right) - \left(n + \frac{1}{n} \right) \right| = \left| \frac{1}{n+1} - \frac{1}{n} + 1 \right|$.

Then, we can do further simplification, $|x_{n+1} - x_n| = \left| \frac{-1}{n(n+1)} + 1 \right|$. By Triangle Inequality,

$$|x_{n+1} - x_n| \le \left| \frac{-1}{n(n+1)} \right| + |1|$$

$$= \frac{1}{n(n+1)} + 1$$

Since n is always a positive integer, So n+1>n, conversely $\frac{1}{n+1}<\frac{1}{n}$. So we get

$$|x_{n+1} - x_n| < \frac{1}{n^2} + 1$$

In this case, if we slove for $\frac{1}{n^2} + 1 < \delta$, where $\delta > 1$, it's the same as sloving $\frac{1}{n^2} < \epsilon$. where $\epsilon > 0$. So, we get when $n \ge \sqrt{\frac{1}{\epsilon}}$, it is always true that $|x_{n+1} - x_n| < \frac{1}{n^2} + 1 < \epsilon + 1$.

However, as we can see, (x_n) does not converge, because it is a strictly increasing sequence when $n \ge 1$, and $\lim(x_n)$ does not exist. (infinity)

So, according to the judgements above, this sequence satisities those properties.

Question 2

Part (a):

Proof. Since we know that $x_1 > 0$, then the base case is automatically correct. Now we assume that the statement is true for a fixed integer n. Then we will prove that it still holds for n+1. Since we know $x_n > 0$ by our assumption, and according to the definition of this sequence, $x_{n+1} = \frac{1}{2+x_n}$, which means that x_{n+1} must also be positive. So the inductive step is also proved. Hence, WLOG, we say that $x_n > 0$ for all \mathbb{N} .

Part (b):

Proof. To show that (x_n) is contractive, we need to show that $\forall n \in \mathbb{N}, \exists c \in (0,1), \text{ s.t.}$

$$|x_{n+2} - x_{n+1}| \le c \cdot |x_{n+1} - x_n|$$

By the formula $x_{n+1} = \frac{1}{2+x_n}$, we get $|x_{n+2} - x_{n+1}| = \left| \frac{1}{2+x_{n+1}} - \frac{1}{2+x_n} \right|$. Then, by further simplification, we get

$$|x_{n+2} - x_{n+1}| = \left| \frac{x_n - x_{n+1}}{(2 + x_{n+1})(2 + x_n)} \right| = \frac{1}{|(2 + x_{n+1})(2 + x_n)|} \cdot |x_{n+1} - x_n|$$

We see that the term $\left|\frac{1}{(2+x_{n+1})(2+x_n)}\right|$ is always between 0 and 1 by the property, and it is constant befined by a given sequence, also note that x_n is always positive for any $n \in \mathbb{N}$, which means $\frac{1}{(2+x_{n+1})(2+x_n)} < \frac{1}{2\times 2} < 1$. So by the property, we conclude that

$$|x_{n+2} - x_{n+1}| \le c \cdot |x_{n+1} - x_n|$$

Part (c):

Proof. By the property, we know that $\lim(x_{n+1}) = \lim(x_n)$, then if we use the relations between x_{n+1} and x_n , we get

$$\lim(x_{n+1}) = \lim(\frac{1}{2+x_n})$$

Then by limit laws, we can simplify as:

$$\lim(x_{n+1}) = \frac{1}{2 + \lim(x_n)}$$

As we mentioned, $\lim(x_{n+1}) = \lim(x_n)$, so we may let $\lim(x_n) = u$, then solve for the equation

$$u = \frac{1}{2+u}$$

Then we get $u=-1\pm\sqrt{2}$, but note that by definition, x_n is always positive, so the only solution inserting $u=-1+\sqrt{2}$, i.e $\lim(x_n)=-1+\sqrt{2}$.