Friday warm-up: Forces II

Prof. Jordan C. Hanson

September 26, 2025

1 Memory Bank

- $\vec{r} = r\cos(\omega t)\hat{i} + r\sin(\omega t)\hat{j}$... Position for uniform circular motion, with angular velocity ω .
- $\vec{F}_{\rm C} = -m\vec{r}\omega^2$... The centripetal acceleration given the speed v around a circular path r.
- $\vec{f} = -\mu N\hat{i}$... Force of friction in the horizontal direction, given a normal force N.

2 Forces, II

1. Consider the banking plane in Fig. 1. Suppose the mass of the plane is 10^4 kg. (a) If the lift force \vec{L} has a magnitude of 1.02×10^5 N, what is the bank angle such that the plane flies level? (b) What is the centripetal force? (c) Note that the period T of circular motion is $T=2\pi/\omega$. If T for the motion of the plane is 2 minutes, what is the radius r of the path?

$$k_1 \Delta x_1 = k_2 \Delta x_2 = k_{\text{total}} \Delta x_{\text{total}}$$
 (1)

Since $\Delta x_{\text{total}} = \Delta x_1 + \Delta x_2$, solve for k_{total} . What is the equivalent formula for k_{total} for the parallel springs?

Figure 1: A plane banks during flight, with the forces of lift and weight resulting in a centripetal force.

Figure 2: Two springs with k_1 and k_2 , connected in parallel.

3. The force of friction is proportional to the normal force balancing the weight of a system. (a) Suppose the coefficient of kinetic friction mu between rubber and concrete is 0.7, and 0.35 if the pavement is wet. If the friction of sliding tires across pavement slows a vehicle from initial speed v_i to a final speed $v_f = 0$, what is the ratio of stopping distances? Assume the mass of the vehicle is m. (b) What is the stopping distance of a 2000 kg minivan on wet pavement, if $v_i = 100$ km per hour?