

Elektronische signalen 2

Spanningscomparatoren

P. Debbaut

Nuldoorgangsdetector

Inverterende-nuldoorgangsdetector

Niet-inverterende-nuldoorgangsdetector

Nuldoorgangsdetector

Inverterende-nuldoorgangsdetector

Niet-inverterende-nuldoorgangsdetector

Transferkarakteristieken

Niveaudetector

Inverterende-niveaudetector

Niet-inverterende-niveadetector

omslagpunt

Niveaudetector

Inverterende-niveaudetector

Niet-inverterende-niveadetector

Niveaudetector

Voorbeeld: niet-inverterende niveaudetector met spanningsdeler als U_{ref}

Dot/Bar Graph Display

Toepassing:

ontwerpen van een lineaire voltmeter van 0V...10V met LM3914

Dot/Bar Graph Display

Stroom door de LED's

$$I_{LED} = \frac{12,5}{R_1}$$

Bij
$$R_1$$
= 1,2k Ω → ≈10mA

Dot/Bar Graph Display

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1}\right) + I_{ADJ} R_2$$

Bepalen R₂

$$R_2 = \frac{V_{OUT} - V_{REF}}{\frac{V_{REF}}{R_1} + I_{ADJ}}$$

 $I_{ADJ} = 75\mu A$ en $U_{REF} = 1,25V$

$$R_2 = \frac{10 - 1,25}{\frac{1,25}{1,2.10^3} + 75.10^{-6}} = 7836\Omega$$

$$P2 = R_2 - R2 - R3$$

= $7836\Omega - 6800\Omega - 560\Omega$
 $\Rightarrow = 475,82\Omega$

Venstercomparator

Voorwaarde:

$$U_{ref2} > U_{ref1}$$

Uitgang hoog:

$$U_g < U_{ref2}$$
 en $U_g > U_{ref1}$

Venstercomparator-signalen

Opamps asymmetrisch gevoed (U_{s+} 15V en U_{s-} 0V)

Transferkarakteristiek

Venstercomparator

Voorbeeld:

venstercomparator zonder AND-poort met symmetrische voeding van +15V en -15V en ideale opamp

$$U_{ref1} = 5V$$

$$U_{ref2} = 8V$$

 U_g : sinus van $20V_{tt}$

Venstercomparator

Schmitt-trigger

Foutieve pulsreconstructie bij gewone comparatoren met signaalstoringen

Comparator met hysteresis

Inverterende Schmitt-trigger

Inverterende Schmitt-trigger

Wanneer de uitgangsspanning U_o op U_{sat^+} staat

$$U_{(+)} = U_{sat} + \frac{R_1}{R_1 + R_f}$$

$$U_L = U_{sat} + \frac{R_1}{R_1 + R_f}$$

Zolang $U_g < U_L$ blijft $U_o = U_{sat+}$

Wordt nu echter U_g > U_L dan klapt de uitgang zeer snel om van U_{sat+} naar U_{sat-}.

De nieuwe spanning (U_f) op de (+) klem wordt

De ingangsspanning moet nu dalen tot onder dit niveau om de uitgang opnieuw te laten omschakelen van
$$U_{sat-}$$
 naar U_{sat+} .

$$U_{(+)} = U_{sat} - \frac{R_1}{R_1 + R_f}$$

$$U_H = U_{sat} - \frac{R_1}{R_1 + R_f}$$

Inverterende Schmitt-trigger

Transferkarakteristiek

Niet-inverterende Schmitt-trigger

Niet-inverterende Schmitt-trigger

Wanneer de uitgangsspanning U_o op U_{sat+} staat

Op het omschakelpunt $(U_{(+)}=0V)$ staat U_{sat+} over R_f

$$I_{R_f} = \frac{U_{sat+}}{R_f}$$

$$U_L = -I_{R_f}.R_1$$

$$U_L = -U_{sat} + \frac{R_1}{R_f}$$

Wordt $U_g < U_L$ dan klapt de uitgang zeer snel om van U_{sat+} naar U_{sat-}

Op analoge wijze vinden we U_H

$$U_H = -U_{sat} - \frac{R_1}{R_f}$$

Niet-inverterende Schmitt-trigger

Transferkarakteristiek

Inverterende ST met referentiespanning

U_i R_1 U_{o}

Schakelpunten

$$U_L = \frac{U_{ref}.R_f + U_{sat+}.R_2}{R_2 + R_f}$$

$$U_{H} = \frac{U_{ref}.R_{f} + U_{sat}.R_{2}}{\frac{1}{2}}$$

Niet-inverterende ST met referentiespanning

Schakelpunten

$$U_{H} = U_{ref} + \frac{R_{1}}{R_{f}} \left(U_{ref} - U_{sat-} \right)$$

$$U_L = U_{ref} + \frac{R_1}{R_f} \left(U_{ref} - U_{sat+} \right)$$

Transferkarakteristiek

Componenten

 R_1 : $20k\Omega$

 R_2 : $100k\Omega$

 R_3 : 200 $k\Omega$

 R_f : $100k\Omega$

Niet-inverterende ST met referentiespanning

Bepaling U_{ref}

$$U_{ref} = 15V \frac{R_3}{R_2 + R_f}$$

$$U_{ref} = 15V \frac{200k\Omega}{100k\Omega + 200k\Omega} = 10V$$

Berekening van de schakelpunten

$$U_H = U_{ref} + \frac{R_1}{R_f} \left(U_{ref} - U_{sat-} \right)$$

$$U_H = 10V + \frac{20k\Omega}{100k\Omega}(10V - 0V) = 12V$$

$$U_L = U_{ref} + \frac{R_1}{R_f} \left(U_{ref} - U_{sat+} \right)$$

$$U_L = 10V + \frac{20k\Omega}{100k\Omega}(10V - 15V) = 9V$$

Transferkarakteristiek

Schmitt-trigger als pulsvormer

Beveiliging en begrenzing

Eigenschappen comparatoren

Slew rate

$$SR = \left(\frac{\Delta U_o}{\Delta t}\right)_{max}$$

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

Eigenschappen comparatoren

Response time

Ingangs offset-spanning

Input Bias Current