

Adaptive Beamforming for future ITS

A neural network approach to antenna beam steering for mmWave Systems

Clifford Beta Anne Okemwa October 12, 2017

mmWave Communication Potential

multi-gigabit-per second communication

mmWave Communication Potential

- multi-gigabit-per second communication
- very low latency

Problem

• Increased vehicular mobility

Problem

• Increased vehicular mobility

• Need for constant beam realignment.

Model

Neural networks have been proven to have the ability to compute any function, even

{Sequence prediction problems}

at which LSTMs shine . . .

tanh Neuron

ReLU Neuron

Sigmoid Neuron

 Feed forward Neural Networks

- Feed forward Neural Networks
- Recurrent Neural Networks

- Feed forward Neural Networks
- Recurrent Neural Networks
 - Long short term memory RNN (LSTM)

Algorithm

Require: Vehicles encapsulate position, motion and velocity in beacons **Ensure:** Serving node has not changed after every update interval. if New beacon received then Find Closest node if Received position \neq Predicted position then Beamforming: Align beam based on received position else Predict current position of vehicle Beamforming: Align beam based on predicted position end if end if

Merits

Higher SNR Interference avoidance and rejection Higher network efficiency **Questions?**