CECS 228 - HOMEWORK 9

PAGE 608: 1 (d,e,f), 7 (d,e,g,h), 27, 47

1 (d, e, f)

List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$. Where $(a,b) \in R$ if and only if

- a. a = b
- b + a + b = 4
- c. a > b
- d. a | b
- e. $gcd(a,b) = 1 \ge$
- f. lcm(a,b) = 2

Solution:

- a.
- b.
- c.
- d. $\{(1,0),(1,1),(1,2),(1,3),(2,0),(2,2),(3,0),(3,3),(4,0)\}$
- e. $\{(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)\}$
- f. $\{(1, 2), (2, 1), (2, 2)\}$

7 (d, e, g, h)

Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x,y) \in R$ if and only if

- a. $x \neq y$
- b. $xy \ge 1$
- c. x = y + 1 or x = y 1
- d. $x \equiv y \pmod{7}$
- e. x is a multiple of y
- f. x and y are both negative or both nonnegative
- $g. x = y^2$
- $h. \quad x \ge y^2$

- a.
- b.
- c.
- d. reflexive, symmetric, transitive
- e. reflexive, transitive
- f
- g. antisymmetric
- h. antisymmetric, transitive

Let R be the relation $R = \{(a,b) \mid a \text{ divides } b\}$ on the set of positive integers. Find

- a. R^{-1}
- b. \overline{R}

Solution:

- a. $\{(a, b) \mid b \text{ divides } a\}$
- b. $\{(a, b) \mid a \text{ does not divide b}\}$

47

- a. How many relations are there on the set $\{a, b, c, d\}$?
- b. How many relations are there on the set {a, b, c, d} that contain the pair (a, a)?

Solution:

- a. 65,536
- b. 32,768

PAGE 619: 1, 7

1

List the triples in the relation $\{\{a, b, c\} \mid a, b, and c are integers with <math>0 \le a \le b \le c \le 5\}$

Solution:

$$\{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)\}$$

7

The 3-tuples in a 3-ary relation represent the following attributes of a student database: student ID number, name, phone number.

- a. Is student ID number likely to be a primary key?
- b. Is name likely to be a primary key?
- c. Is phone number likely to be a primary key?

Solution:

- a. Yes
- b. No
- c. No

PAGE 626: 13, 9, 27

13

Let R be the relation represented by the matrix

$$M_R =$$

0	1	1
---	---	---

1	1	0
1	0	1

Find the matrix representing

- a. R^{-1}
- b. \overline{R}
- c. R^2

Solution:

a.

0	1	1
1	1	0
1	0	1

b.

1	0	0
0	0	1
0	1	0

c.

1	1	1
1	1	1
1	1	1

9

How many nonzero entries does the matrix representing the relation R on $A = \{1, 2, 3, ..., 100\}$ consisting of the first 100 positive integers have if R is

- a. $\{(a, b) | a > b\}$?
- b. $\{(a, b) | a \neq b\}$?
- c. $\{(a, b) | a = b + 1\}$?
- d. $\{(a, b) | a = 1\}$?
- e. $\{(a, b) \mid ab = 1\}$?

- a. 4950
- b. 9900
- c. 99

- d. 100
- e. 1

27

List the ordered pairs in the relations represented by the directed graphs.

Solution:

 $\{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (d, d)\}$

PAGE 637: 7, 25 (c,d)

7

Draw the directed graph of the reflexive closure of the relations with the directed graph shown.

Solution:

25 (c, d)

Use Algorithm 1 to find the transitive closures of these relations on {1, 2, 3, 4}.

```
a. \{(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)\}
```

b.
$$\{(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)\}$$

c.
$$\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

d.
$$\{(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)\}$$

a.

b.

c.

0	1	1	1
0	0	1	1
0	0	0	1
0	0	0	0

d.

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

PAGE 646: 3, 21, 23, 31, 35 (c,d)

3

Which of these relations on the set of all functions from Z to Z are equivalence relations? Determine the properties of an equivalence relation that the others lack.

a.
$$\{(f, g) \mid f(1) = g(1)\}$$

b.
$$\{(f, g) \mid f(0) = g(0) \text{ or } f(1) = g(1)\}$$

c.
$$\{(f, g) \mid f(x) - g(x) = 1 \text{ for all } x \in Z\}$$

d.
$$\{(f, g) \mid \text{ for some } C \subseteq Z, \text{ for all } x \subseteq Z, f(x) - g(x) = C\}$$

e.
$$\{(f, g) \mid f(0) = g(1) \text{ and } f(1) = g(0)\}$$

- a. equivalence relation
- b. not transitive
- c. not reflexive, not symmetric, not transitive
- d. equivalence relation
- e. not reflexive, not transitive

21

Determine whether the relation with the directed graph shown is an equivalence relation.

Solution:

No

23

Determine whether the relation with the directed graph shown is an equivalence relation.

Solution:

No

31

What are the equivalence classes of the bit strings in Exercise 30 for the equivalence relation from Exercise 12?

Solution:

- a. The set of all bit strings of length 3
- b. The set of all bit strings of length 4 that end with a 1
- c. The set of all bit strings of length 5 that end 11
- d. The set of all bit strings of length 8 that end with 10101

35 (c, d)

What is the congruence class $[n]_5$ (that is, the equivalence class of n with respect to congruence modulo 5) when n is

a.

c.
$$[6]_5 = \{i \mid i \equiv 6 \pmod{5}\} = \{\dots, -9, -4, 1, 6, 11, \dots\}$$

c.
$$[6]_5 = \{i \mid i \equiv 6 \pmod{5}\} = \{..., -9, -4, 1, 6, 11, ...\}$$

d. $[-3]_5 = \{i \mid i \equiv -3 \pmod{5}\} = \{..., -8, -3, 2, 7, 12, ...\}$

PAGE 662: 7, 9, 11, 23 (c,d), 27, 33

7

Determine whether the relations represented by these zero-one matrices are partial orders

a.

1	1	1
1	1	0
0	0	1

b.

1	1	1
0	1	0
0	0	1

c.

1	1	1	0
0	1	1	0
0	0	1	1
1	1	0	1

- a. No
- b. Yes
- c. No

No

11

Solution:

Yes

23 (c, d)

Draw the Hasse diagram for divisibility on the set

- a. {1, 2, 3, 4, 5, 6, 7, 8}
- b. {1, 2, 3, 5, 7, 11, 13}
- c. $\{1, 2, 3, 6, 12, 24, 36, 48\}$
- d. $\{1, 2, 4, 8, 16, 32, 64\}$.

Solution:

C.

27

Solution:

(a, a), (a, g), (a, d), (a, e), (a, f), (b, b), (b, g), (b, d), (b, e), (b, f), (c, c), (c, g), (c, d), (c, e), (c, f), (g, d), (g, e), (g, f), (g, g), (d, d), (e, e), (f, f)

33

Answer these questions for the poset $(\{3, 5, 9, 15, 24, 45\}, |)$

- a. Find the maximal elements
- b. Find the minimal elements
- c. Is there a greatest element?
- d. Is there a least element?
- e. Find all upper bounds of {3, 5}
- f. Find the least upper bound of $\{3, 5\}$, if it exists
- g. Find all lower bounds of {15, 45}
- h. Find the greatest lower bound of {15,45}, if it exits

- a. 24, 45
- b. 3, 5
- c. No
- d. No
- e. 15, 45
- f. 15
- g. 15, 5, 3
- h. 15