Lecture 11 - More NumPy

Week 5 Wednesday

Miles Chen, PhD

Based on Python Data Science Handbook by Jake VanderPlas

```
In [1]: import numpy as np
```

Concatenating Arrays

```
In [2]: x = np.arange(4)
y = np.arange(100, 104)
print(x)
print(y)

[0 1 2 3]
[100 101 102 103]

In [3]: np.concatenate([x,y])

Out[3]: array([ 0,  1,  2,  3, 100, 101, 102, 103])
```

np.concatenate has an argument for axis. The axes are 0-indexed.

```
In [4]: np.concatenate([x,y], axis = 0)
Out[4]: array([ 0,  1,  2,  3, 100, 101, 102, 103])
```

Let's try to concatenate in the other direction. We specify axis = 1

note that when I concatenate along axis 0 for a 2-dimensional array, it concatenates by rows. In a 2D array, index 0 is for rows, and index 1 is for columns.

```
In [12]:
         xm = np.arange(6).reshape([2,3])
          ym = np.arange(100, 106, 1).reshape([2, 3])
         print(xm)
         print(ym)
         [[0 1 2]
          [3 4 5]]
         [[100 101 102]
           [103 104 105]]
In [13]:
         xm.shape
         (2, 3)
Out[13]:
In [14]:
         ym.shape
Out[14]: (2, 3)
```

```
In [15]: | print(np.concatenate([xm,ym])) # default behavior concatenates on axis 0
         0 ]]
                1
                    2]
          [ 3 4 5]
          [100 101 102]
          [103 104 105]]
In [16]: print(np.concatenate([xm,ym], axis = 0))
         # axes are reported as rows, then columns.
         # concatenating along axis 0 will concatenate along rows
         0 ]]
                    21
                 4
                    51
          [ 3
          [100 101 102]
          [103 104 105]]
In [17]: | print(np.concatenate([xm,ym], axis = 1))
         # concatenating along axis 1 will concatenate along columns
         0 ]]
                1 2 100 101 102]
          [ 3
                4
                    5 103 104 105]]
```

You can always use vstack and hstack for 2D arrays.

Math Operators with numpy arrays

```
In [20]: | print(x)
          print(y)
          [0 1 2 3]
          [100 101 102 103]
In [21]: |_{X} + 5
Out[21]: array([5, 6, 7, 8])
In [22]: x + y # elementwise addition
Out[22]: array([100, 102, 104, 106])
In [23]: | x * y
Out[23]: array([ 0, 101, 204, 309])
In [24]: np.sum(x * y)
Out[24]: 614
In [25]: | \text{np.dot}(x,y)  # 0 * 100 + 1 * 101 + 2 * 102 + 3 * 103
Out[25]: 614
```

```
In [26]: print(xm)
    print(ym)

        [[0 1 2]
        [3 4 5]]
        [[100 101 102]
        [103 104 105]]

In [27]: xm + 5

Out[27]: array([[ 5,  6,  7],
        [ 8,  9, 10]])

In [28]: xm + ym # elementwise addition

Out[28]: array([[100, 102, 104],
        [106, 108, 110]])
```

```
In [29]:
         print(xm)
         print(ym)
         [[0 1 2]
          [3 4 5]]
         [[100 101 102]
          [103 104 105]]
In [30]: | xm * ym
         array([[ 0, 101, 204],
Out[30]:
                 [309, 416, 525]])
In [31]:
         np.multiply(xm, ym)
         array([[ 0, 101, 204],
Out[31]:
                 [309, 416, 525]])
In [32]:
         np.dot(xm, ym.T)
         array([[ 305, 314],
Out[32]:
                 [1214, 1250]])
In [33]:
         xm.dot(ym.T)
Out[33]: array([[ 305, 314],
                 [1214, 1250]])
```

Basic Math

```
In [38]: print(x / 2)
         [0. 0.5 1. 1.5]
In [39]: | print(-x)
         [ 0 -1 -2 -3]
In [40]: print(x ** 2)
         [0 1 4 9]
In [41]: print(x % 2) # modulo division
         [0 1 0 1]
In [42]: print(abs(x)) # abs
         [0 1 2 3]
```

Trig functions

note that the functions are preceded by np.

```
In [43]: | theta = np.linspace(0, np.pi, 5)
         print(theta)
                     0.78539816 1.57079633 2.35619449 3.141592651
         [0.
In [44]:
         print(np.sin(theta))
         [0.00000000e+00 7.07106781e-01 1.0000000e+00 7.07106781e-01
          1.22464680e-16]
In [45]:
         print(np.cos(theta))
         [ 1.00000000e+00 7.07106781e-01 6.12323400e-17 -7.07106781e-01
          -1.00000000e+00]
In [46]:
         print(np.tan(theta))
         [ 0.00000000e+00 1.0000000e+00 1.63312394e+16 -1.00000000e+00
          -1.22464680e-16]
```

Log and Exp

```
In [47]: x = np.array([1, 10, 100])
         print(np.log(x)) # natural log
         print(np.log10(x)) # common log
         [0. 2.30258509 4.60517019]
         [0. 1. 2.]
In [48]: | y = np.arange(3)
         print(np.exp(y)) # e^y
         [1.
                    2.71828183 7.3890561 ]
In [49]: | print(np.exp2(y)) # 2^y
         [1. 2. 4.]
In [50]: | print(np.power(3, y)) # power ^ y
         [1 3 9]
```

Aggregates

you can use sum()

```
or np.sum()
         np.sum() is faster than sum, but doesn't always behave the same way
In [51]: | x = np.arange(100)
         print(x)
                                      9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
          24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
          48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
          72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
          96 97 98 991
In [52]:
         print(sum(x))
         4950
In [53]:
         print(np.sum(x))
         4950
```

```
2.29 ms \pm 508 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each) 9.13 \mus \pm 301 ns per loop (mean \pm std. dev. of 7 runs, 100000 loops each)
```

min and max

summaries for matrices

```
In [61]: print(M)
         [[ 2 3 4 10]
         [ 1 6 0 7]
          [11 9 8 5]]
In [62]: | np.sum(M, axis = 0) # np.sum function with axis specified
         # matrices have two dimensions
         # 0 is rows, 1 is columns
         # np.sum axis = 0, will sum over rows, so you end up getting column totals
Out[62]: array([14, 18, 12, 22])
In [63]: | np.sum(M, axis = 1) |
Out[63]: array([19, 14, 33])
In [64]: np.min(M, axis = 0)
Out[64]: array([1, 3, 0, 5])
In [65]: print(M)
         [[2 3 4 10]
         [1607]
          [11 9 8 5]]
```

```
In [66]: print(xm)
    print(ym)

        [[0 1 2]
        [3 4 5]]
        [[100 101 102]
        [103 104 105]]

In [67]: np.std(M)

Out[67]: 3.452052529534663

In [68]: np.std(M, axis = 0)

Out[68]: array([4.49691252, 2.44948974, 3.26598632, 2.05480467])
```

dealing with nan

nan is the float value for something that is not a number. We often use it in the place of a missing value. nan only exists in float type.

```
In [69]: x = float("nan") # direct creation of nan
         print(x)
         print(type(x))
         nan
         <class 'float'>
In [70]: y = float("inf") # y is the float representation of infinity
         print(y / y) # these calculations will yield a nan result
         print(y - y)
         nan
         nan
In [71]:
         np.sum([x, 2])
Out[71]:
         nan
In [72]:
         np.nansum([x, 2]) # in R you have the option na.rm = TRUE
Out[72]: 2.0
```

The following table provides a list of useful aggregation functions available in NumPy:

Function Name	NaN-safe Version	Description		
np.sum	np.nansum	Compute sum of elements		
np.prod	np.nanprod	Compute product of elements		
np.mean	np.nanmean	Compute mean of elements		
np.std	np.nanstd	Compute standard deviation		
np.var	np.nanvar	Compute variance		
np.min	np.nanmin	Find minimum value		
np.max	np.nanmax	Find maximum value		
np.argmin	np.nanargmin	Find index of minimum value		
np.argmax	np.nanargmax	Find index of maximum value		
np.median	np.nanmedian	Compute median of elements		
np.percentile	np.nanpercentile	Compute rank-based statistics of elements		
np.any	N/A	Evaluate whether any elements are true		
np.all	N/A	Evaluate whether all elements are true		

Broadcasting

This is a similar concept to recyling values in R, but only works when the dimensions are compatible

```
In [75]: print(a)
         [1 2 3]
In [76]:
         e = np.ones([3,3])
         print(e)
         [[1. 1. 1.]
          [1. 1. 1.]
          [1. 1. 1.]]
In [77]: print(e + a) # the array a gets 'broadcast' across all three rows
         [[2. 3. 4.]
          [2. 3. 4.]
          [2. 3. 4.]]
In [78]: | print(a.reshape([3,1])) # we reshape a to be a 3x1 array
         [[1]
          [2]
          [3]]
In [79]:
         print(e + a.reshape([3,1])) # the reshaped array is broadcast across columns
         [[2. 2. 2.]
          [3. 3. 3.]
          [4. 4. 4.]]
```

```
In [83]: | print(c)
         [7 8]
In [84]:
         print(d)
         [[1 2 3]
          [4 5 6]]
In [85]: | print(d + c) # c does not have compatible dimensions
         ValueError
                                                    Traceback (most recent call last)
         <ipython-input-85-8c651d5d46fc> in <module>
         ---> 1 print(d + c) # c does not have compatible dimensions
         ValueError: operands could not be broadcast together with shapes (2,3) (2,)
In [86]: print(d + c.reshape([2,1])) # after we reshape c to be a column, we can broadcast
         it
         [[ 8 9 10]
          [12 13 14]]
```

```
In [87]: | e = np.arange(10).reshape((10, 1))
         f = np.arange(11)
         print(e)
         print(f)
         [[0]]
         [1]
         [2]
         [3]
         [4]
         [5]
         [6]
         [7]
         [8]
         [9]]
         [0 1 2 3 4 5 6 7 8 9 10]
In [88]:
        print(e + f) ## e and f are broadcast into compatible matrices and then added
             1
                 2
                   3 4 5 6 7 8 9 10]
                3 4 5 6 7 8 9 10 11]
          [ 1
              2
          [ 2
                4 5 6 7 8 9 10 11 12]
          [ 3
              4 5 6 7 8
                            9 10 11 12 13]
                      8 9 10 11 12 13 14]
              6 7 8 9 10 11 12 13 14 15]
              7 8 9 10 11 12 13 14 15 16]
              8 9 10 11 12 13 14 15 16 17]
             9 10 11 12 13 14 15 16 17 18]
          [ 9 10 11 12 13 14 15 16 17 18 19]]
```

```
In [89]: print(e * f) ## e and f are broadcast into compatible matrices and then multiplied
         element-wise
                0 0 0 0 0 0 0 0]
             1 2 3 4 5 6 7 8 9 10]
         0 ]
             2 4 6 8 10 12 14 16 18 20]
              3 6 9 12 15 18 21 24 27 30]
             4 8 12 16 20 24 28 32 36 40]
             5 10 15 20 25 30 35 40 45 50]
              6 12 18 24 30 36 42 48 54 60]
         [ 0 7 14 21 28 35 42 49 56 63 70]
         [ 0 8 16 24 32 40 48 56 64 72 80]
         [ 0 9 18 27 36 45 54 63 72 81 90]]
In [90]: | print(d)
        [[1 2 3]
         [4 5 6]]
In [91]: d.reshape((1,6)) + d.reshape((6,1))
Out[91]: array([[ 2, 3, 4, 5, 6, 7],
                [3, 4, 5, 6, 7, 8],
                [ 4,
                    5, 6, 7, 8, 9],
                [ 5,
                     6, 7, 8, 9, 10],
                [ 6, 7, 8, 9, 10, 11],
                [7, 8, 9, 10, 11, 12]])
```

Boolean Operators in NumPy

```
In [92]: x = np.arange(6)
    print(x)

       [0 1 2 3 4 5]

In [93]: print(x < 3)
       [ True True True False False False]

In [94]: print(x >= 3)
       [False False False True True]

In [95]: print(x == 3)

[False False False True False False]
```

```
In [96]: # the results can then be used to subset
    print(x[x >= 3])

[3 4 5]

In [97]: np.sum(x >= 3) # True = 1, False = 0, so sum counts how many are true

Out[97]: 3

In [98]: np.mean(x >= 3) # finds the proportion that is True

Out[98]: 0.5

In [99]: print(~(x == 3)) # use the tilde for negation of boolean values
    [ True True False True True]
```

```
In [100]: print(~x == 3) # be careful if you leave off parenthesis
        [False False False False False]
In [101]: ~x
Out[101]: array([-1, -2, -3, -4, -5, -6], dtype=int32)
```

Working with matrices

```
In [102]: y = np.arange(12).reshape([3,4])
         print(y)
         [[ 0 1 2 3]
         [ 4 5 6 7]
          [ 8 9 10 11]]
In [103]: print(y >= 6)
         [[False False False]
          [False False True True]
          [ True True True ] ]
In [104]: np.sum(y >= 6)
Out[104]: 6
In [105]: np.sum(y >= 6, axis = 0) # you can perform sums and other aggregate functions axis
         -wise on the boolean matrix
Out[105]: array([1, 1, 2, 2])
In [106]: np.sum(y >= 6, axis = 1)
Out[106]: array([0, 2, 4])
```

Bitwise (element-wise) Boolean operators

```
In [107]: | a = np.array([True, True, False, False])
          b = np.array([True, False, True, False])
         print(a)
         print(b)
          [ True True False False]
          [ True False True False]
In [108]: print(a & b) # bitwise and
          [ True False False]
In [109]: print(a | b) # bitwise or
          [ True True True False]
In [110]: print(a ^ b) # bitwise xor (exclusive or)
          [False True True False]
```

fancy indexing

Regular lists in python do not support fancy indexing, but NumPy does!

```
In [116]: a = [1, 4, 7]
          b = [2, 3, 8]
          ind = np.vstack([a,b])
          print(ind)
          [[1 4 7]
          [2 3 8]]
In [117]: print(x[ind])
          [[12 75 64]
           [72 9 16]]
In [118]: X = \text{np.arange}(12).\text{reshape}((3, 4))
          print(X)
          [[0 1 2 3]
           [ 4 5 6 7]
           [ 8 9 10 11]]
In [119]: row = np.array([0, 1, 2])
          col = np.array([2, 1, 3])
          X[row, col]
Out[119]: array([ 2, 5, 11])
```

sorting

- np.sort()
- np.argsort() gives the indexes of the values to have the proper sorting

```
In [120]: | np.random.seed(2)
          x = np.arange(5)
          np.random.shuffle(x)
          print(x)
          [2 4 1 3 0]
In [121]: x.sort() # sorts x in place
          print(x)
          [0 1 2 3 4]
In [122]: y = np.array([5, 2, 1, 4])
          print(y)
          print(y.argsort())
          [5 2 1 4]
          [2 1 3 0]
In [123]: d = y.argsort()
          y[d]
Out[123]: array([1, 2, 4, 5])
```

Sorting along rows or columns

A useful feature of NumPy's sorting algorithms is the ability to sort along specific rows or columns of a multidimensional array using the axis argument. For example:

```
In [124]: | np.random.seed(1)
          X = np.random.randint(0, 10, (4, 6))
          print(X)
          [[5 8 9 5 0 0]
           [1 7 6 9 2 4]
           [5 2 4 2 4 7]
           [7 9 1 7 0 6]]
In [125]: # sort each column of X
          # np.sort returns a copy of X after sorted. It does not modify X
          np.sort(X, axis=0)
Out[125]: array([[1, 2, 1, 2, 0, 0],
                 [5, 7, 4, 5, 0, 4],
                  [5, 8, 6, 7, 2, 6],
                  [7, 9, 9, 9, 4, 7]])
In [126]: # sort each row of X
          np.sort(X, axis=1)
Out[126]: array([[0, 0, 5, 5, 8, 9],
                  [1, 2, 4, 6, 7, 9],
                  [2, 2, 4, 4, 5, 7],
                  [0, 1, 6, 7, 7, 9]])
```

other things

```
In [127]: X[0,:] # selecting a row
Out[127]: array([5, 8, 9, 5, 0, 0])
In [128]: print(X)
         [[5 8 9 5 0 0]
          [1 7 6 9 2 4]
           [5 2 4 2 4 7]
           [7 9 1 7 0 6]]
In [129]: X[:,1].argsort() # the argsort for the column index 1
Out[129]: array([2, 1, 0, 3], dtype=int64)
In [130]: print(X[ X[:,1].argsort() , : ]) # 'subset' X by the argsort to arrange X by the c
          olumn
          [[5 2 4 2 4 7]
          [1 7 6 9 2 4]
           [5 8 9 5 0 0]
           [7 9 1 7 0 6]]
```