Mapping to a reference genome

1. Quality check and trimming raw reads

2. Alignment to the reference genome

reference bam individual 1 bam individual 2

Tools to align short read data

reference read —

bwa-mem2 (Burroughs-Wheeler alignment – maximum exact matches)

Bowtie2

Burroughs Wheeler Transform

(also used in file compression, e.g. bzip, figures from https://medium.com/@mr-easy)

Burroughs Wheeler Alignment

\$CGATGCACCGGT ACCGGT SCGATGC ATGCACCGGT\$CG CACCGGT\$CGATG CCGGT\$CGATGCA CGATGCACCGGT\$ CGGT\$CGATGCAC GATGCACCGGTSC GCACCGGT\$CGAT COLUMN GGT\$CGATGCACC GT\$CGATGCACCG TSCGATGCACCGG TGCACCGGTSCGA Suffix Array **BWT**

CGATGCACCGGT\$

Read: GCA

	Re	Read:			C	4	Read:			GCA			Read:			G CA		
12.	0.	\$				T	0.	\$				T	0.	\$.			T	
6.	1.	A				C	1.	Α				C	1.	Α.			C	
2.	2.	A				G	2	Α				G	2.	Α.			G	
5.	3.	C				G	3.	CI	1			G	3.	CA			G	
7.	4.	C				A	4.	С				A	4.	С.			A	
0.	5.	C				\$	5.	C				\$	1/5.	С.			\$	
8.	6.	C				C	6.	C				C	16/4	С.			C	
1.	7.	G				C	7.	G				C	1/	G.			C	
4.	8.	G				T	8.	G				T	8.	GCA	*		T	
9.	9.	G			٠	C	9.	G				C	9.	G.			C	
10	10.	G				G	10.	G				G	10.	G.			G	
11	11.	T				G	11.	T				G	11.	т.			G	
3.	12.	T	٠			A	12.	T		٠		A	12.	т.		٠	A	

Aligning reads is complicated by:

- Imperfect match to the reference due to mutations or sequencing errors, or errors in the reference genome
- Multiple positions where the read could match (repeated regions)
- Low quality of the read
- With paired-end reads: only one read maps or the other read maps on a different chromosome

Alignment tools such as bwamem2 are able to handle all of these complications and give information on the mapping quality.

Regions that are repeated in the genome make it very difficult to map reads

Reference genome

Read to be aligned to the reference

Regions that are repeated in the genome make it very difficult to map reads

Reference genome

Read to be aligned to the reference

Indels: deletions and insertions

Aligning other type of data: RNA data

Tools:

e.g.

STAR

HISAT2

PacBio mapping

Karin Näsvall

Sequel IIe Instrument

Data Transfer/SMRT Link Server

Generate Sequencing Data

Sequel lle System output files

```
<your_specified_output_directory>/r64009_20200825_221039/1_A01/
|-- m64009_200825_222052.baz2bam_1.log
|-- m64009_200825_222052.ccs.log
|-- m64009_200825_222052.ccs_reports.json
|-- m64009_200825_222052.ccs_reports.txt
|-- m64009_200825_222052.consensusreadset.xml
|-- m64009_200825_222052.reads.bam
|-- m64009_200825_222052.reads.bam.pbi
|-- m64009_200825_222052.sts.xml
|-- m64009_200825_222052.transferdone
|-- m64009_200825_222052.zmw_metrics.json.gz
```


SMRT Link GUI

Access using a web browser

Automatic HiFi reads generation (Export Reads)

hifi_reads.fastq.gz- FASTQ file containing HiFi Reads hifi_reads.fasta.gz- FASTA file containing HiFi Reads hifi_reads.bam- BAM file containing HiFi Reads

HiFi reads QV > 20

https://pacbiofileformats.readthedocs.io/en/13.0/

https://pacbiofileformats.readthedocs.io/en/13.0/BAM.html#hifi-reads

- \$ samtools view —H /pacbio/m84093_240426_124306_s1.ccs.bc2033.rmdup.bam |head =n2
- @HD VN:1.6 S0:coordinate pb:5.0.0
- @RG ID:f56a67e5/0--0 PL:PACBIO
 DS:READTYPE=CCS;Ipd:CodecV1=ip;PulseWidth:CodecV1=pw;B
 INDINGKIT=102-739-100;SEQUENCINGKIT=102-118800;BASECALLERVERSION=5.0;FRAMERATEHZ=100.000000;Barco
 deFile=/lustre/scratch123/tol/resources/barcodes/PacBi
 o_ULI_adapter.fasta;BarcodeHash=cf95303a081e62fbaedf29
 888b16fdb7;BarcodeCount=1;BarcodeMode=Symmetric;Barcod
 eQuality=Score_LB:TRAC-2-8589
 PU:m84093_240426_124306_s1_SM:Meier_Genomes13637824
 PM:REVIO_BC:AAGCAGTGGTATCAACGCAGAGTACT_CM:R/P1-C1/5.025M

https://pacbiofileformats.readthedocs.io/en/13.0/BAM.html#hifi-reads

- \$ samtools view /pacbio/m84093_240426_124306_s1.ccs.bc2033.bam |head -n2
- ----

```
cat m84093_240426_124306_s1.ccs.bc2033.stats
-
A = 7108650862 (34.9%), C = 3058767823 (15.0%), G = 3061827434 (15.0%),
T = 7127816130 (35.0%), CpG = 1003156910 (4.9%)
sum = 20357062249, n = 2218131, mean = 9177.57438537219, largest = 30301, smallest = 135
```

PacBio mapping – Minimap2

Minimap2 https://github.com/lh3/minimap2

Uses **minimizers** – short sequences of length –k [default 15 bases]

- 1. Extracts minimizers from the reference (target) and index them
- 2. Match each minimizer in the query sequence against the reference set of minimizers
- 3. Sorts the position of each minimizer after position
- Make a chain of the minimizers
- 5. Repeat for all query sequences

Minimap2 -ax map-hifi target.fa query.fa > output.sam

Align PacBio high-fidelity (HiFi) reads to a reference genome (-k19 -w19 -U50,500 - g10k -A1 -B4 -O6,26 -E2,1 -s200)

- Preprocessing
 - Filtering adapters (blastn)
- Alignment
 - MINIMAP2
- Alignment post-processing
 - Statistics

https://pipelines.tol.sanger.ac.uk/readmapping