Problem 1

Proof. Suppose towards contradiction that F is uniformly continuous. Take $\varepsilon = 1$. Then $\exists \delta > 0$ such that $\|x - y\| \le \delta \implies \|f(x) - f(y)\| \le 1$ for $x, y \in \mathbb{R}^2$. Take x = (n, 0) and $y = (n + \frac{1}{n}, 0)$ with $n \in \mathbb{N}$ such that $\frac{1}{n} \le \delta$. Then

$$||x - y|| = \frac{1}{n} \le \delta$$

and

$$||f(x) - f(y)|| = \left| \left| n^2 - \left(n^2 + 2 + \frac{1}{n^2} \right) \right| \right| = \left| \left| 2 + \frac{1}{n^2} \right| \right| = 2 + \frac{1}{n^2} > 1 = \varepsilon.$$

 \Diamond

 \Diamond

Therefore F is not uniformly continuous on \mathbb{R}^2 .

Problem 2

Proof. Take $\varepsilon > 0$. Since *F* approximates *f* , for any $x \in E$

$$||f(x) - F(x)|| \le \frac{\varepsilon}{3}.$$

Furthermore since F is uniformly continuous, there exists some $\delta > 0$ such that for $||x - y|| \le \delta$

$$||F(x) - F(y)|| \le \frac{\varepsilon}{3}$$

and thus by triangle inequality

$$||f(x) - f(y)|| \le ||f(x) - F(x)|| + ||F(x) - F(y)|| + ||F(y) - f(y)||$$

$$\le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Therefore f is uniformly continuous on E

Eli Griffiths MATH 140C HW #4

Problem 3

Proof. For $x \in K \times L$, let $x_L := (x_1, \ldots, x_n)$ and $x_R := (x_{n+1}, \ldots, x_{n+p})$. Since K and L are compact, both are closed and bounded meaning there exists M_K and M_L such that $\|x\|_{\mathbb{R}^n} \leq M_K$ for $x \in K$ and $\|x\|_{\mathbb{R}^p} \leq M_L$ for $x \in L$. Therefore

$$||x||_{\mathbb{R}^{n+p}}^2 = ||x_K||_{\mathbb{R}^n}^2 + ||x_K||_{\mathbb{R}^p}^2 \le (||x_K||_{\mathbb{R}^n} + ||x_L||_{\mathbb{R}^p})^2 \le (M_K + M_L)^2$$

meaning $||x||_{\mathbb{R}^{n+p}} \leq M_K + M_L$ for all $x \in K \times L$. Thus $K \times L$ is bounded. Let $(x^{(k)})$ be a sequence in $K \times L$ that converges to some $a \in \mathbb{R}^{n+p}$. Note then that each component must converge, meaning the sequences $(x_K^{(k)})$ and $(x_L^{(k)})$ both converge to a_K and a_L respectively. Since K and L are closed, $a_K \in K$ and $a_L \in L$. Therefore $a \in K \times L$ meaning $K \times L$ is closed. Since $K \times L$ is both closed and bounded, it is compact. \diamondsuit

Problem 4

Proof. Suppose A is closed and B is compact. Consider some sequence $(x^{(k)})$ in A+B that converges to $x \in \mathbb{R}^n$. Note that $x^{(k)} = a^{(k)} + b^{(k)}$ for some $a^{(k)} \in A$ and $b^{(k)} \in B$ for all $k \in \mathbb{N}$. Since B is compact, there exists a subsequence $(b^{(k_j)})$ that converges to some $b \in B$. Then since $a^{(k_j)} = x^{(k_j)} - b^{(k_j)}$ and both $(x^{(k_j)})$ and $(b^{(k_j)})$ are convergent sequences, $(a^{(k_j)})$ converges to x-b. Since A is closed, $x-b \in A$. Thus $(x-b)+b=x \in A+B$, hence A+B is closed.

Problem 5

Proof. First note that \mathbb{S}^{n-1} is bounded since $||x|| \leq 1$ for all $x \in \mathbb{S}^{n-1}$. Additionally, since d(x) = ||x|| is continuous on \mathbb{R}^n , $\{1\}$ is closed in \mathbb{R} , and $\mathbb{S}^{n-1} = d^{-1}(\{1\})$, \mathbb{S}^{n-1} is closed. Since \mathbb{S}^{n-1} is both closed and bounded, it is compact.

Consider some $x \in \mathbb{R}^n \setminus 0$. Note that it can be written as $r\hat{x}$ where r = ||x|| > 0 and $\hat{x} = \frac{x}{||x||}$. Therefore by the homogeneity of f, $f(x) = f(r\hat{x}) = r^d f(\hat{x})$. Since $||\hat{x}|| = 1$, $\hat{x} \in \mathbb{S}^{n-1}$. Furthermore f is continuous on \mathbb{S}^{n-1} which is compact, thus f is bounded by some M > 0 on it. Hence

$$||f(x)|| = ||r^d f(\hat{x})|| = ||x||^d ||f(\hat{x})|| \le M ||x||^d$$

 \Diamond

which was to be shown.

Problem 6

Part I

Proof. Suppose g is continuous and let $(x^{(k)})$ be a Cauchy sequence in \mathbb{R}^n . Since $(x^{(k)})$ is Cauchy and \mathbb{R}^n is complete, it must converge to some $a \in \mathbb{R}^n$. Take $\varepsilon > 0$. Since g is continuous at a, there exists $\delta > 0$ such that $||x - a|| \le \delta \implies ||g(x) - g(a)|| \le \varepsilon$. By convergence of $(x^{(k)})$ there exists $K \in \mathbb{N}$ such that $||x^{(k)} - a|| \le \delta$ for $k \ge K$. Therefore $||g(x^{(k)}) - g(a)|| \le \varepsilon$ for $k \ge K$, meaning the sequence $(g(x^{(k)}))$ converges to g(a). Since convergent sequences are Cauchy, g takes Cauchy sequences to Cauchy sequences.

Part II

Proof. Suppose f is uniformly continuous and let $(x^{(k)})$ be a Cauchy sequence in D. Take $\varepsilon > 0$. Since f is uniformly continuous, $\exists \delta > 0$ such that $\|x - y\| \le \delta \implies \|f(x) - f(y)\| \le \varepsilon$. Since $\delta > 0$ and $(x^{(k)})$ is Cauchy, there exists K such that for $m, n \ge K$, $\|x^{(n)} - x^{(m)}\| \le \delta$. Therefore $\|f(x^{(n)}) - f(x^{(m)})\| \le \varepsilon$ for $m, n \ge K$, hence $(f(x^{(k)}))$ is a Cauchy sequence.

Eli Griffiths MATH 140C HW #4

Problem 7

Proof. Let $F \subseteq \mathbb{R}^n$ be closed. Consider some $y \in \overline{f(F)}$. Then there is a sequence $(y^{(k)})$ in f(F) that converges to y. Let $K = \{y^{(k)} : k \in \mathbb{N}\} \cup \{y\}$. Let (G_α) be an open cover of K. Note then there is some G_α such that $y \in G_\alpha$. Thus there exists r > 0 such that $y \in B_r(y) \subseteq G_\alpha$. Since $(y^{(k)})$ is convergent, there exists $K \in \mathbb{N}$ such that $\|y^{(k)} - y\| < r$, thus $y^{(k)} \in B_r(y) \subseteq G_\alpha$ for all k > K. For each $1 \le k \le K$, there is then some G_{α_k} such that $y^{(k)} \in G_{\alpha_k}$. Thus the finite subcover $G_{\alpha_1} \cup \ldots \cup G_{\alpha_K} \cup G_\alpha$ covers K.

Therefore K is compact meaning the preimage $f^{-1}(K)$ is also compact. Note that $y^{(k)} = f(x^{(k)})$ for some $x^{(k)} \in f^{-1}(K) \subseteq F$. Thus there is a convergent subsequence $(x^{(k_j)})$ which converges to some $a \in F$. Therefore by continuity of f and uniqueness of limits

$$f(a) = \lim_{j \to \infty} f(x^{(k_j)}) = y.$$

 \Diamond

Hence $y \in f(F)$ meaning f(F) is closed.