- 1. Найдите мощность множества всех решений уравнения $x_1 + x_2 + x_3 = 0$ в целых числах.
- 2. Выпишите минимальную σ -алгебру, порождаемую множествами A=[-2;5) и B=[-2;0] на числовой прямой.
- 3. Совместный закон распределения X и Y задан табличкой

Найдите E(Y|X), Var(Y|X), Var(E(Y|X))

Выпишите все события из σ -алгебры $\mathcal{F} = \sigma(X \cdot Y)$

- 4. Пусть X и Y независимые случайные величины, равные 1 с вероятностью 0.2 или 0 с вероятностью 0.8. Пусть $Z=1_{X+Y=0}$. Найдите E(X|Z).
- 5. Известно, что E(Y|X) = 0. Может ли быть отличной от нуля величина E(Y)? Cov(Y,X)? $Cov(Y^2,X)$? $Cov(Y,X^2)$?
- 6. Пусть S_n симметричное случайное блуждание. Верно ли, что мартингалом является S_n^2/n ? $S_n^3 3nS_n$?
- 7. Саша и Маша играют в шахматы много партий подряд. За выигрыш победитель получает одно очко, проигравший ноль. За ничью оба получают по половине очка. Маша выигрывает с вероятностью 0.4, Саша с вероятностью 0.3. Обозначим X_t разницу набранных очков в момент времени t. Они заканчивают играть в момент времени τ , когда разница набранных очков достигнет двух.

Какие значения потенциально принимает X_{τ} ?

Является ли процесс X_t мартингалом?

При каком a процесс $M_t = a^{X_t}$ будет мартингалом?

При каком b процесс $L_t = X_t - bt$ будет мартингалом?

Найдите вероятность того, что в результате по очкам выиграет Саша. Мартингал M_t вам в помощь.

Найдите среднюю продолжительность партии. Мартингал L_t вам в помощь.