Integration Rules and Formulas

Integration Rules - Ex. 5.4, 5.5, 7.2

Sr.	Formulas	Examples
1.	$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$	Q1. $\int x^3 dx = \frac{x^{3+1}}{3+1} + c = \frac{x^4}{4} + c$
2.	If $n = -1$, then $\int x^{-1} dx = \int \frac{1}{x} dx = \ln x + c$	Q2. $\int \frac{1}{x^3} dx = \int x^{-3} dx = \frac{x^{-2}}{-2} + c$
3.	$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$	$\int (3x^2 + 1)^5 \times 6x \ dx = \frac{(3x^2 + 1)^6}{6} + c$
		$\int \frac{6x}{3x^2 + 1} dx = \ln 3x^2 + 1 + c$
5.	$\int \frac{f'(x)}{[f(x)]^n} dx = \int [f(x)]^{-n} f'(x) dx = \frac{[f(x)]^{-n+1}}{-n+1} + c$	
	e. g., $\int \frac{6x}{\sqrt{3x^2 + 1}} dx = \int (3x^2 + 1)^{\frac{-1}{2}} 6x dx = \frac{(3x^2 + 1)^{\frac{1}{2}}}{1/2} + c = 2\sqrt{3x^2 + 1} + c$	

Integration as a reverse process of differentiation – Ex. 5.4, 7.3

Sr.	Formulas	Generalization
1.	$\int \cos x dx = \sin x + c$	$\int \cos(ax) dx = \frac{\sin(ax)}{a} + c$
2.	$\int \sin x dx = -\cos x + c$	$\int \sin(ax) dx = \frac{-\cos(ax)}{a} + c$
3.	$\int \sec^2 x dx = \tan x + c$	$\int \sec^2(ax) dx = \frac{\tan(ax)}{a} + c$
4.	$\int \csc^2 x dx = -\cot x + c$	$\int \csc^2(ax) dx = \frac{-\cot(ax)}{a} + c$
5.	$\int \sec x \tan x dx = \sec x + c$	$\int \sec(ax)\tan(ax)dx = \frac{\sec(ax)}{a} + c$
6.	$\int \csc x \cot x dx = -\csc x + c$	$\int \csc(ax)\cot(ax)dx = \frac{-\csc(ax)}{a} + c$
7.	$\int e^x dx = e^x + c$	$\int e^{ax} dx = \frac{e^{ax}}{a} + c, a = \text{constant}$

Credits: Dr. Usman Afzal, Assistant Professor (Mathematics), UMT, Lahore

Remaining trigonometric integration formulas - Ex. 5.4, 5.5

1.
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| + c = \ln|\sec x| + c$$
2.
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + c$$
3.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$
4.
$$\int \csc x \, dx = \ln|\csc x - \cot x| + c$$
5.
$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2} \int (1 - \cos 2x) \, dx = \frac{1}{2} \left(x - \frac{\sin 2x}{2}\right) + c$$
6.
$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \int (1 + \cos 2x) \, dx = \frac{1}{2} \left(x + \frac{\sin 2x}{2}\right) + c$$
7.
$$\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x + c$$
8.
$$\int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x + c$$

Integration resulting in inverse trigonometric functions: Ex. 7.6

Sr.	Formulas	Generalization
1.	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$
2.	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$
3.	$\int \frac{1}{ x \sqrt{x^2 - 1}} dx = \sec^{-1} x + c$	$\int \frac{1}{ x \sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) + c$

Integration by parts: Ex. 8.1

Let u and v be functions of x, i.e., u = u(x), v = v(x). Then

$$\int u \, v \, dx = u \times \left(\int v \, dx \right) - \int \left(\int v \, dx \right) \times u'(x) dx$$
$$= u \times \text{integral of } v - \int (\text{integral of } v \times \text{derivative of } u) dx$$

Note: Some functions are always taken as 1^{st} function, e.g., $\ln x$, $\sin^{-1} x$ etc.

~~~ The End ~~~

Credits: Dr. Usman Afzal, Assistant Professor (Mathematics), UMT, Lahore