厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§5.1 一元多项式和运算

思考 (1) $\deg(f(x)g(x)) = \deg f(x) + \deg g(x)$;

- (2) 当 $c \neq 0 \in F$ 时, $\deg(ef(x)) = \deg f(x)$;
- $(3) \deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}.$
- **解** (1) 当 f(x) = 0 或 g(x) = 0 时,等式两边都等于 $-\infty$. 所以等式成立.

其

中 $a_n \neq 0$, $b_m \neq 0$. 则 f(x)g(x) 的首项系数为 $a_n b_m x^{n+m}$, 其中 $a_n b_m \neq 0$. 所以

$$\deg(f(x)g(x)) = n + m = \deg f(x) + \deg g(x).$$

(2) 当 f(x) = 0 时,等式两边都等于 $-\infty$. 所以等式成立.

当 $f(x) \neq 0$ 时,记 f(x) 的首项为 $a_n x^n$, 其中 $a_n \neq 0$. 则 ef(x) 的首项系数为 $ea_n x^n$, 其中 $ea_n \neq 0$. 所以 deg(ef(x)) = n = degf(x).

(3) 当 f(x) = 0 或 g(x) = 0 时,等式成立.

当 $f(x) \neq 0$ 且 $g(x) \neq 0$ 时,记 f(x) 的首项为 $a_n x^n$, g(x) 的首项为 $b_m x^m$,其中 $a_n \neq 0$, $b_m \neq 0$. 不妨设 $n \geq m$. 只有当 m = n 且 $a_n = -b_m$ 时,

所以

总有 $\deg(f(x)+g(x)) \leq n = \max\{\deg f(x),\deg g(x)\}.$

习题

1. 设 $f(x), g(x), h(x) \in \mathbb{R}[x]$, 满足 $xf^2(x) + xg^2(x) = h^2(x)$. 证明: f(x) = g(x) = h(x) = 0. 问这个结论在复数域上成立否?

证明 (方法一) 不失一般性, 不妨设 $\deg f(x) \ge \deg g(x)$.

若 f(x)=0, 则 g(x)=0, 进而因为 $0=xf^2(x)+xg^2(x)=h^2(x)$, 从而 h(x)=0.

若 $f(x) \neq 0$, 设 $a_n x^n$ 是 f(x) 的首项,其中 $a_n \neq 0$. 故 $x f^2(x) + x g^2(x)$ 的最高次项为 $a_n^2 x^{2n+1}$ 或 $(a_n^2 + b_n^2) x^{2n+1}$. 注意到 $f(x), g(x) \in \mathbb{R}[x]$, 因此 a_n^2 及 $a_n^2 + b_n^2$ 均非 0,从而 $x f^2(x) + x g^2(x)$ 次数为 2n+1, 是奇数的.

另一方面, $0 \neq xf^2(x) + xg^2(x) = h^2(x)$,故 $h(x) \neq 0$,从而 $\deg h^2(x) = 2\deg h(x)$ 为 0 或者偶数. 这样等式两边不相等. 矛盾. 命题得证.

(方法二) 若 $h(x) \neq 0$, 则 f(x), g(x) 不全为零,否则与设 $xf^2(x) + xg^2(x) = h^2(x)$ 矛盾. 不失一般性,可设 $\deg f(x) \geq \deg g(x)$,且 $a_n x^n, b_m x^m, c_l x^l$ 分别是 f(x), g(x), h(x) 的首项,其中 $a_n \neq 0, c_l \neq 0$. 从而 $x(f^2(x) + g^2(x))$ 的最高次项为 $a_n^2 x^{2n+1}$ 或 $(a_n^2 + b_n^2) x^{2n+1}$. 注意到 $f(x), g(x) \in \mathbb{R}[x]$,因此 a_n^2 及 $a_n^2 + b_n^2$ 均非 0,从而 $xf^2(x) + xg^2(x)$ 次数为 2n+1,是奇数的. 但 $h^2(x)$ 的次数为偶数 2l,从而 $xf^2(x) + xg^2(x) \neq h^2(x)$ 与设矛盾.

可

证 f(x) = g(x) = 0. 若不然, f(x), g(x) 不全为零, 不失一般性可设 $\deg f(x) \ge$ 的

最高次项为 $a_n^2 x^{2n}$ 或 $(a_n^2 + b_n^2) x^{2n}$ 均非零,故 $f^2(x) + g^2(x) \neq 0$,与题设矛盾. 综上可知 f(x) = g(x) = h(x) = 0.

(方法三) 把 f(x), g(x), h(x) 看作 \mathbb{R} 上的函数,则对任意 $x < 0, x(f^2(x) + g^2(x)) \le 0, h^2(x) \ge 0$,所以 h(x) = 0,从而 $f^2(x) + g^2(x) = 0$.又因为 $f^2(x), g^2(x)$ 均为非负函数,因此 $f^2(x) = 0, g^2(x) = 0$.从而 f(x) = g(x) = h(x) = 0.(注:此方法非目前已学的代数方法,因此不建议采用)

此结论在 $\mathbb{C}[x]$ 上不成立. 例如, h(x) = 0, f(x) = x, g(x) = ix.

- 2. $\mathcal{L}(x) = 2x^2 x + 1$.
- $(1) 求 f(A), 其中 A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix};$
- (2) 求 f(i), 其中 $i^2 = -1$;
- (3) 求 f(f(x));
- (4) 求 $f(x^3)$.

解
$$(1)$$
 $f(A) = 2$ $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^2 - \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$.

- (2) $f(i) = 2i^2 i + 1 = -1 i$
- (3) $f(f(x)) = 2(2x^2 x + 1)^2 (2x^2 x + 1) + 1 = 8x^4 8x^3 + 8x^2 3x + 2$.
- (4) $f(x^3) = 2(x^3)^2 (x^3) + 1 = 2x^6 x^3 + 1$.

3. 在线性空间 F[x] 中,记

$$F[x]_n = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in F, i = 0, 1, \dots, n\}.$$

- (1) 证明 $F[x]_n$ 是 F[x] 的子空间;
- (2) 求 $F[x]_n$ 的基和维数;
- (3) 证明:

$$F[x]_n \cong F^{n+1}$$
.

- 证明(1)首先,因为 $0 \in F[x]_n$,故 $F[x]_n \neq \emptyset$. 其次,对任意 $F[x]_n$ 中多项式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, $g(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, $a_i, b_i \in F$ $(i = 0, 1, 2, \dots, n)$,及任意 $k \in F$,有 $f(x) + g(x) = (a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \cdots + (a_1 + b_1) x + (a_0 + b_0)$, $k f(x) = k a_n x^n + k a_{n-1} x^{n-1} + \cdots + k a_1 x + k a_0$,且 $a_i + b_i, k a_i \in F$ $(i = 0, 1, 2, \dots, n)$,因此 $f(x) + g(x), k f(x) \in F[x]_n$.
- (2) 由 $F[x]_n$ 的定义, $F[x]_n$ 中任意元素 f(x) 可以表示为 $x^n, x^{n-1}, \dots, x, 1$ 的 线性组合.设 $k_n x^n + k_{n-1} x^{n-1} + \dots + k_1 x + k_0 = 0$,则由于右边是零多项式,利用多项式相等的定义,即得 $k_i = 0$ $(i = 0, 1, 2, \dots, n)$. 即 $x^n, x^{n-1}, \dots, x, 1$ 线性无关.所以 $x^n, x^{n-1}, \dots, x, 1$ 是 $F[x]_n$ 的一个基.从而 $\dim F[x]_n = n + 1$.
 - (3) 因 $F[x]_n$ 和 F^{n+1} 都是 F 上的 n+1 维线性空间,所以同构.
 - 4. 对任意非零多项式 f(x), 证明 $\deg f(f(x)) = (\deg f(x))^2$.

证明 不妨设 f(x) 的首项为 $a_n x^n$, $(a_n \neq 0)$, 那么 $\deg f(x) = n$; 而 f(f(x)) 的 首项为 $a_n^{n+1} x^{n^2}$. $\deg f(f(x)) = (\deg f(x))^2 = n^2$.