Mathematics for Economists Kapitel 1 – Lineær Algebra

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus University

Disposition Kapitel 1

- Ligningssystemer / Lineære uafhængighed
- Funktioner / Rangen af en matrix / Rangen og lineære ligningssystemer / Skalarprodukt
- Determinanter
- Egenværdier
- Symmetriske bilineære former

Vi betragter afbildninger $f: V \to V$, med V et n-dimensionalt reelt eller komplekst vektorrum. Funktionen f er givet ved multiplikation med en $n \times n$ matrix A.

Definition (Egenværdier og Egenvektorer)

En *n*-dimensional vektor v, $v \neq 0$, der opfylder

 $Av = \lambda v$, λ et reellt eller komplekst tal,

kaldes for **egenvektor** for A med tilhørende **egenværdi** λ for A.

Bemærkning (Komplekse Egenværdier)

Komplekse egenværdier er mulige, selv for matricer som kun har reelle indgange.

Eksempel

Betragt

$$A = \frac{1}{2} \left[\begin{array}{cc} 5 & -1 \\ -1 & 5 \end{array} \right].$$

 $v_1 = (1, 1)^T$ er en egenvektor med tilhørende egenværdi $\lambda_1 = 2$, og $v_2 = (-1, 1)^T$ er en egenvektor med tilhørende egenværdi $\lambda_2 = 3$.

2 Betragt

$$A = \left[\begin{array}{cc} 4 & 5 \\ -2 & -2 \end{array} \right].$$

 $v_1 = (1, -3/5 + i/5)^T$ er en egenvektor med tilhørende egenværdi $\lambda_1 = 1 + i$ og $v_2 = (1, -3/5 - i/5)^T$ er en egenvektor med tilhørende egenværdi $\lambda_2 = 1 - i$.

Egenværdier kan have en eller flere tilhørende egenvektorer.

Definition

Lad λ være en egenværdi for $f: \mathbb{R}^n \to \mathbb{R}^n$ givet ved multiplikation med $A \in \mathbb{R}^{n \times n}$. **Egenrummet** $E(\lambda)$ er givet ved

$$E(\lambda) = \{x \in \mathbb{R}^n | Ax = \lambda x\}$$

Betingelsen $Ax = \lambda x$ svarer til $(A - \lambda I)x = 0$. Egenrummet er derfor løsningsrummet til systemet af lineære ligninger

$$(A - \lambda I)x = 0, x \in \mathbb{R}^n$$
.

Hvis systemet har ikke-nul løsninger x, så betyder det, at $A-\lambda I$ ikke har fuld rang, og derfor

$$\det(A - \lambda I) = 0.$$

Eksempel

$$A = \left[\begin{array}{rrr} 2 & 1 & 0 \\ 0 & 3 & 0 \\ -1 & 1 & 3 \end{array} \right]$$

Matricen $A\in\mathbb{R}^{3 imes3}$ har to egenværdier, $\lambda_1=3$ og $\lambda_2=2$. De tilhørende egenvektorer er

$$E(\lambda_1) = E(3) = \left\{ s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\},$$

$$E(\lambda_2) = E(2) = \left\{ s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, s \in \mathbb{R} \right\}.$$

Definition

Determinanten af $n \times n$ matricen $A - \lambda I$,

$$p(\lambda) = \det \left[\begin{array}{cccc} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{array} \right]$$

er et polynomium i λ , som kaldes det karakteristiske polynomium.

Korollar

Vi får et konstruktivt kriterium for egenværdier:

$$\lambda$$
 egenværdi for $A \iff \lambda$ rod i $p(\lambda)$.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix},$$

$$= (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21},$$

$$= \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}),$$

$$= \lambda^2 - \operatorname{trace}(A)\lambda + \det A.$$

Eksempel

$$A = \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix}$$

$$\implies p(\lambda) = (6 - \lambda)(2 - \lambda) - 5 = \lambda^2 - 8\lambda + 7.$$

Rødderne i $p(\lambda)$, dvs. de værdier af λ , der opfylder $p(\lambda)=0$, er $\lambda_1=1$ and $\lambda_2=7$.

Egenrummene $E(\lambda_i)$ bestemmes som løsningsrummet til $A-\lambda_i I=0$ når egenværdierne λ_i er kendte.

$$A = \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix},$$

$$(A - I)x = 0,$$

$$E(\lambda_1) = E(1) = \left\{ \begin{bmatrix} -\frac{1}{5} \\ 1 \end{bmatrix} s \middle| s \in \mathbb{R} \right\}.$$

$$(A-7I)x = 0,$$

$$E(\lambda_2) = E(7) = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} s \middle| s \in \mathbb{R} \right\}.$$

Eksempel

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$$

$$p(\lambda) = (2 - \lambda)[(3 - \lambda)(-2 - \lambda) + 4]$$

$$-2[(-2 - \lambda) + 1]$$

$$-1[4 - (3 - \lambda)],$$

$$= -\lambda^3 + 3\lambda^2 + \lambda - 3,$$

$$= (\lambda - 1)(\lambda + 1)(\lambda - 3).$$

Egenværdierne til A er $\lambda_1=1$, $\lambda_2=-1$, $\lambda_3=3$.

$$(A-I)x = 0,$$

$$E(\lambda_1) = E(1) = \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} s \middle| s \in \mathbb{R} \right\}.$$

$$(A+I)x=0,$$

$$E(\lambda_2) = E(-1) = \left\{ \left[egin{array}{c|c} 0 \\ 1 \\ -1 \end{array} \right] s \middle| s \in \mathbb{R}
ight\}.$$

$$(A-3I)x = 0,$$

$$E(\lambda_3) = E(3) = \left\{ \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix} s \middle| s \in \mathbb{R} \right\}.$$

Bemærkning (Komplekse egenværdier)

Lad polynomiummet $p(\lambda)=\det(A-\lambda I)$ for $A\in\mathbb{R}^{n\times n}$ have rødderne $\lambda_j=a+bi$ med $a,\,b\in\mathbb{R},\,b\neq 0$. Vi har

$$0 = p(\lambda_j) = a_n \lambda_j^n + a_{n-1} \lambda_j^{n-1} + \ldots + a_1 \lambda_j + a_0,$$

med reelle koefficienter $a_j,\,j=0,\,\ldots,\,n$. Den komplekst konjugerede til 0 er igen 0, og derfor

$$\begin{split} 0 &= \overline{0} = \overline{a_n \lambda_j^n} + \overline{a_{n-1} \lambda_j^{n-1}} + \ldots + \overline{a_1 \lambda_j} + \overline{a_0}, \\ &= a_n \overline{\lambda_j^n} + a_{n-1} \overline{\lambda_j^{n-1}} + \ldots + a_1 \overline{\lambda_j} + a_0. \end{split}$$

Vi ser, at $\overline{\lambda_j}=a-bi$ også er en rod i det karakteristiske polynomium $p(\lambda)$. Den komplekst konjugerede til komplekse vektorer og matricer defineres elementvist. Alle egenskaber af addition og multiplikation forbliver de samme. Således bliver argumentet endda kortere:

$$A\overline{z} = \overline{Az} = \overline{\lambda}\overline{z} = \overline{\lambda}\overline{z}.$$

Den komplekst konjugerede til egenvektoren tilhører den komplekst konjugerede egenværdi.

Sætning

Lad $f:V\to V$ være givet ved multiplikation med den $n\times n$ -dimensionale matrix A. Hvis (v_1,\ldots,v_k) er egenvektorer for k forskellige egenværdier $(\lambda_1,\ldots,\lambda_k)$, så er (v_1,\ldots,v_k) lineært uafhængige.

Definition (Diagonaliserbare Matricer)

En afbildning $f: V \to V$ givet ved multiplikation med den $n \times n$ -dimensionale matrix A kaldes **diagonaliserbar**, hvis der findes en invertibel $n \times n$ matrix P, således at matricen

$$D = P^{-1}AP$$

er diagonal. Den resulterende repræsentation

$$A = PDP^{-1}$$

kaldes for egenværdi dekompositionen af A.

Hvis $A \in \mathbb{R}^{n \times n}$ har n forskellige egenværdier $\lambda_1, \lambda_2, \ldots, \lambda_n$ med tilknyttede egenvektorer v_1, v_2, \ldots, v_n , så kan man forme

$$P = [v_1 \ v_2 \ \dots \ v_n].$$

ldet egenvektorerne er lineært uafhængige, så er matricen P regulær (har rangen n). Da $Av_i = \lambda_i v_i$, så har vi at

$$AP = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \dots & \lambda_n v_n \end{bmatrix} = PD$$

hvor $D = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Det følger, at hvis en $n \times n$ matrix A har n forskellige egenværdier, så er den diagonaliserbar.

Eksempel

I eksemplet

$$A = \left[\begin{array}{cc} 6 & 1 \\ 5 & 2 \end{array} \right]$$

har vi fundet, at $\lambda_1=1$ og $\lambda_2=7$ med tilhørende egenvektorer $v_1=(-\frac{1}{5},\ 1)'$ og $v_2=(1,\ 1)'$. A er diagonaliserbar med egenværdi dekomposition

$$A = PDP^{-1} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1},$$
$$= \begin{bmatrix} -\frac{1}{5} & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} -\frac{1}{5} & 1 \\ 1 & 1 \end{bmatrix}^{-1}.$$

Eksempel

I eksemplet

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{array} \right]$$

har vi bestemt egenværdierne som $\lambda_1=1$, $\lambda_2=-1$, $\lambda_3=3$, henholdsvis, med egenvektorer $v_1'=(-1,\ 1,\ 0)$, $v_2'=(0,\ 1,\ -1)$ og $v_3'=(-2,\ -3,\ 1)$. Egenværdi dekompositionen er derfor

$$A = PDP^{-1} = \begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & -3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & -3 \\ 0 & -1 & 1 \end{bmatrix}^{-1}.$$

Eksempel

Nogle gange findes en diagonalisering selv om, at der er gentagne egenværdier. Betragt eksemplet

$$A = \left[\begin{array}{rrr} 2 & 1 & 0 \\ 0 & 3 & 0 \\ -1 & 1 & 3 \end{array} \right]$$

hvor der er to egenværdier, $\lambda_1=3$ og $\lambda_2=2$ med tilhørende egenvektorer

$$E(\lambda_1) = E(3) = \left\{ s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\},$$

$$E(\lambda_2) = E(2) = \left\{ s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, s \in \mathbb{R} \right\}.$$

Eksempel

Definér

$$P = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

og tjek at

$$P^{-1}AP = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D.$$

Eksempel

Men ikke alle gentagne egenværdier har flere tilhørende egenvektorer. Et modeksempel er den ikke-diagonaliserbare matrix

$$A = \left[\begin{array}{rrr} 3 & 0 & 0 \\ 3 & 3 & -2 \\ 2 & 0 & 1 \end{array} \right].$$

Konceptet af diagonaliseringen i disse tilfælde generaliseres til teorien om **Jordan dekompositionen**. Generaliseringen til ikke-kvadratiske matricer behandles i **singulærværdi dekompositionen**, som er vigtig til numerisk analyse og informatik.