Lehuby Arnaud Note: 6/20 (score total : 6/20)



+153/1/22+

## QCM THLR 4

| Non                              | n et prenom, lisibles :   Identifiant (de naut en bas) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Lehuby 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                | Arnourd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  | ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| sieurs<br>plus<br>pas p<br>incor | Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases t que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plus réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i> ). Il n'est cossible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les rectes pénalisent; les blanches et réponses multiples valent 0.  I J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +153/1/xx+···+153/2/xx+. |
| Q.2                              | L'ensemble des mots du petit Robert (édition 1975) est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /2                               | rationnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q.3                              | Le langage $\{0^n1^n \mid n < 42^{51} - 1\}$ est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /2                               | ☐ non reconnaissable par automate fini ☐ vide ☐ infini 🎇 rationnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.4                              | Quels langages ne vérifient pas le lemme de pompage?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/2                              | <ul> <li>© Certains langages reconnus par DFA</li> <li>☑ Tous les langages reconnus par DFA</li> <li>☑ Tous les langages non reconnus par DFA</li> <li>☑ Tous les langages non reconnus par DFA</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q.5                              | Un automate fini qui a des transitions spontanées                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/2                              | accepte $\varepsilon$ $\square$ n'accepte pas $\varepsilon$ $\square$ est déterministe $\boxtimes$ n'est pas déterministe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q.6                              | Si un automate de $n$ états accepte $a^n$ , alors il accepte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /2                               | $\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$ $\square$ $(a^n)^m$ avec $m \in \mathbb{N}^*$ $\square$ $a^{n+1}$ $\square$ $a^n a^m$ avec $m \in \mathbb{N}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Q.7</b> dont                  | Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ la $n$ -ième lettre avant la fin est un $a$ (i.e., $(a+b)^*a(a+b)^{n-1}$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /2                               | $\square$ Il n'existe pas. $\square$ $2^n$ $\square$ $n+1$ $\square$ $\frac{n(n+1)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Q.8</b><br>dont               | Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a,b,c,d\}$ la $n$ -ième lettre avant la fin est un $a$ (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1/2                              | $4^n \times 2^n$ Il n'existe pas. $\frac{n(n+1)(n+2)(n+3)}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q.9                              | Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

-1/2

 $\square$   $Det(T(Det(T(\mathcal{A}))))$ 

  $\Box$   $T(Det(T(Det(\mathcal{A}))))$ 

Fin de l'épreuve.