

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	mii opaooi
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	,
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.4 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1012_Jul19

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.5 Ω - 6.3 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.8 Ω - 4.7 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	140	SPEAG
-----------------------	-----------------	-----	-------

Certificate No: D2600V2-1012_Jul19

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.38 W/kg

Maximum value of SAR (measured) = 24.0 W/kg

0 dB = 24.0 W/kg = 13.80 dBW/kg

Certificate No: D2600V2-1012_Jul19

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul19

DASY5 Validation Report for Body TSL

Date: 17.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2 \text{ S/m}$; $\varepsilon_r = 50.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.1 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 23.3 W/kg

0 dB = 23.3 W/kg = 13.67 dBW/kg

Certificate No: D2600V2-1012_Jul19

Page 7 of 8

Impedance Measurement Plot for Body TSL

ANNEX I SPOT CHECK

I.1 Dielectric Performance and System Validation

Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2019-11-19	Head	750 MHz	41.7	-0.57	0.898	0.90
2019-11-20	Head	835 MHz	41.6	0.24	0.901	0.11
2019-11-21	Head	1750 MHz	40.68	1.50	1.38	0.73
2019-11-22	Head	1900 MHz	39.55	-1.13	1.39	-0.71
2019-11-23	Head	2450 MHz	39.05	-0.38	1.784	-0.89
2019-11-23	Head	2600 MHz	39.57	1.44	1.966	0.31

Table I.1-2: System Validation of Head

Table III 21 Office I tanadae i i i i i a							
Measurement		Target val	arget value (W/kg) Measured value(W/kg)		Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2019-11-19	750 MHz	5.57	8.57	5.52	8.56	-0.90%	-0.12%
2019-11-20	835 MHz	6.29	9.70	6.28	9.8	-0.16%	1.03%
2019-11-21	1750 MHz	19.3	36.6	19.4	36.04	0.52%	-1.53%
2019-11-22	1900 MHz	20.8	39.7	20.6	40.28	-0.96%	1.46%
2019-11-23	2450 MHz	24.2	51.6	24.64	52.56	1.82%	1.86%
2019-11-23	2600 MHz	25.1	55.8	25.24	56.68	0.56%	1.58%

I.2 Conducted power of selected case

Table I.2-1: The conducted power results for 2G- Normal Power

OCM OFOMILY	Measured Power (dBm)				
GSM 850MHZ	251	190	128		
Speech	32.13	1	1		
GPRS(2Tx)	29.52	1	1		
GSM1900MHZ	Measured Power (dBm)				
GSW1900WHZ	810	661	512		
Speech	1	1	28.75		
GPRS(2Tx)	1	1	27.02		

Table I.2-2: The conducted Power for WCDMA- Normal Power

	Table 112 21 The contacted 1 over 101 Weblint 1 to that 1					
lt a ma	band	FDDII result				
Item	ARFCN	9538/9938	9400/9800	9262/9662		
MCDMA	,	(1907.6MHz)	(1880MHz)	(1852.4MHz)		
WCDMA	\	/	22.42	22.65		
lt a ma	band	FDDIV result				
Item	ARFCN	1513/1738	1412/1637	1312/1537		
MCDMA	,	(1752.6MHz)	(1732.4MHz)	(1712.4MHz)		
WCDMA	\	22.95	1	1		
14	band	FDDV result				
Item	ARFCN	4233/4458	4183/4408	4132/4357		
MCDMA	,	(846.6MHz)	(836.6MHz)	(826.4MHz)		
WCDMA	\	22.54	1	22.60		

Table I.2-3: The conducted Power for WCDMA- Low Power

14010 112 01 1110 0011440004 1 01101 1102 1111 1 2011 1 01101						
14	band	FDDII result				
Item	ARFCN	9538/9938	9400/9800	9262/9662		
WCDMA	,	(1907.6MHz)	(1880MHz)	(1852.4MHz)		
	\	19.32	1	1		
lt a ma	band	FDDIV result				
Item	ARFCN	1513/1738	1412/1637	1312/1537		
WCDMA	,	(1752.6MHz)	(1732.4MHz)	(1712.4MHz)		
	\	19.25	1	1		

Table I.2-4: The conducted Power for LTE-Normal Power

Table 1.2-4: The conducted I ower for ETE-Normal I ower						
LTE Band2	1RB-Middle	1900(19100)	23.06			
LTE Band5	1RB-Middle	829(20450)	22.51			
LTE Band7	1RB-Middle	2535 (21100)	22.81			
LTE Band7	1RB-Middle	2560 (21350)	22.89			
LTE Band13	1RB-Middle	782 (23230)	23.1			
LTE Band17	1RB-Middle	709 (23780)	22.67			
LTE Band66	1RB-Middle	1770 (132572)	22.85			

Table I.2-5: The conducted Power for LTE-Low Power

LTE Band2	50RB-Middle	1900(19100)	18.78
LTE Band7	50RB-Middle	2535 (21100)	18.84
LTE Band66	1RB-Middle	1745 (132322)	19.07

Table I.2-6: The conducted Power for WLAN

Mode / data rate	Channel	Measured Power (dBm)

802.11b – 1Mbps	6	15.73
00=:::::	•	

I.3 SAR results for Main antenna

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift
GSM850	251	848.8	33.3	32. 13	Left Cheek	0.285	0.375	0.37	0.49	0.01
GSM850	251	848.8	30.5	29.52	Rear	0.285	0.518	0.36	0.65	0.08
PCS1900	512	1850. 2	30.3	28.75	Left Cheek	0.0688	0.108	0.10	0.15	0.07
PCS1900	512	1850. 2	28	27.02	Bottom	0.171	0.322	0.21	0.40	-0.05
WCDMA1900-BII	9400	1880	24	22.42	Left Cheek	0.115	0.18	0.17	0.26	0.08
WCDMA1900-BII	9538	1907.6	20	19.32	Bottom	0.253	0.494	0.30	0.58	0.02
WCDMA1900-BII	9262	1852.4	24	22.65	Rear	0. 287	0.503	0.39	0.69	0.16
WCDMA1700-BIV	1513	1752.6	24	22.95	Left Cheek	0.137	0.214	0.17	0.27	0.06
WCDMA1700-BIV	1513	1752.6	20	19.25	Rear	0.195	0.365	0.23	0.43	0.01
WCDMA1700-BIV	1513	1752.6	24	22.95	Rear	0.254	0.442	0.32	0.56	0.03
WCDMA850-BV	4132	826.4	24	22.6	Left Cheek	0. 206	0.268	0.28	0.37	0.02
WCDMA850-BV	4233	846.6	24	22.54	Rear	0.244	0.447	0.34	0.63	0.19
LTE1900-FDD2	19100	1900 MHz	24	23.06	Right Cheek	0.13	0.21	0.16	0.26	0.09
LTE1900-FDD2	19100	1900 MHz	20	18.78	Bottom	0.209	0.503	0.28	0.67	-0.12
LTE1900-FDD2	19100	1900 MHz	24	23.06	Rear	0.304	0.533	0.38	0.66	-0.16
LTE850-FDD5	20450	829 MHz	24	22.51	Left Cheek	0.225	0. 297	0.32	0.42	0.19
LTE850-FDD5	20450	829 MHz	24	22.51	Rear	0.359	0.475	0.51	0.67	0.11
LTE2500-FDD7	21100	2535 MHz	24	22.81	Right Cheek	0.0359	0.0683	0.05	0.09	0.04
LTE2500-FDD7	21100	2535 MHz	19.5	18.84	Bottom	0.328	0.692	0.38	0.81	0.11
LTE2500-FDD7	21350	2560 MHz	24	22.89	Rear	0.474	0.924	0.61	1.19	0.08
LTE750-FDD13	23230	782 MHz	24	23.1	Left Cheek	0.158	0.205	0.19	0.25	-0.05
LTE750-FDD13	23230	782 MHz	24	23.1	Rear	0.315	0.422	0.39	0.52	0.16
LTE700-FDD17	23780	709 MHz	24	22.67	Left Cheek	0.0678	0.087	0.09	0.12	0.03
LTE700-FDD17	23780	709 MHz	24	22.67	Rear	0.131	0.174	0.18	0.24	-0.07
LTE1700-FDD66	132572	709 MHz	24	22.85	Left Cheek	0.149	0.238	0.19	0.31	-0.16
LTE1700-FDD66	132322	709 MHz	20	19.07	Rear	0.232	0.422	0.29	0.52	0.02
LTE1700-FDD66	132572	709 MHz	24	22.85	Rear	0.25	0.439	0.33	0.57	-0.19
WLAN2450	6	2437	17.5	15.73	Right Tilt	0.129	0.327	0.19	0.49	-0.06
WLAN2450	6	2437	17.5	15.73	Тор	0.084	0.185	0.13	0.28	-0.12

I.4 Reported SAR Comparison

Table I.4-1: Highest Reported SAR (1g)

		Highest	Highest	
Exposure	Toobnology Dand	Reported SAR	Reported SAR	Equipment
Configuration	Technology Band	1g(W/kg)	1g(W/kg)	Class
		original	spot check	
	GSM 850	0.60	0.49	
	PCS 1900	0.15	0.15	
	UMTS FDD 2	0.31	0.26	
	UMTS FDD 4	0.40	0.27	
Head	UMTS FDD 5	0.43	0.37	
(Separation Distance	LTE Band 2	0.29	0.26	PCE
0mm)	LTE Band 5	0.44	0.42	
	LTE Band 7	0.09	0.09	
	LTE Band 13	0.30	0.25	
	LTE Band 17	0.14	0.12	
	LTE Band 66	0.35	0.31	

No.I19Z62043-SEM02

	WLAN 2.4 GHz	0.41	0.49	DTS
	GSM 850	0.59	0.65	
	PCS 1900	0.78	0.40	
	UMTS FDD 2	0.65	0.58	
	UMTS FDD 4	0.32	0.43	
Hotspot	UMTS FDD 5	0.63	0.63	
(Separation Distance	LTE Band 2	0.65	0.67	PCE
` '	LTE Band 5	0.56	0.67	
10mm)	LTE Band 7	0.90	0.81	
	LTE Band 13	0.56	0.52	
	LTE Band 17	0.22	0.24	
	LTE Band 66	0.37	0.52	
	WLAN 2.4 GHz	0.22	0.28	DTS
	UMTS FDD 2	0.62	0.69	
Body-worn	UMTS FDD 4	0.59	0.56	
(Separation Distance	LTE Band 2	0.59	0.66	PCE
15mm)	LTE Band 7	1.32	1.19	
	LTE Band 66	0.52	0.57	

Note: The spot check results marked blue are larger than the original result.

I.5 MAIN TEST INSTRUMENTS

Table I.5-1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2019	One year
02	Power meter	NRP2	106277	September 4, 2010	One yeer
03	Power sensor	NRP8S	104291	September 4, 2019	One year
04	Signal Generator	E4438C	MY49070393	January 4, 2019	One Year
05	Amplifier	60S1G4	0331848	No Calibration R	equested
06	BTS	E5515C	MY50263375	January 17, 2019	One year
07	BTS	CMW500	159890	January 3, 2019	One year
08	E-field Probe	SPEAG EX3DV4	3617	January 31, 2019	One year
09	DAE	SPEAG DAE4	771	January 11,2019	One year
10	Dipole Validation Kit	SPEAG D750V3	1017	July 18, 2019	One year
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 18, 2019	One year
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2019	One year
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 17, 2019	One year
14	Dipole Validation Kit	SPEAG D2450V2	853	July 17, 2019	One year
15	Dipole Validation Kit	SPEAG D2600V2	1012	July 17, 2019	One year

I.6 GRAPH RESULTS

GSM850 CH251 Left Cheek

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 848.8; $\sigma = 0.914$ mho/m; $\varepsilon r = 41.58$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.429 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.204 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.471 W/kg

SAR(1 g) = 0.375 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.429 W/kg

Fig A.1

GSM850 CH251 Rear

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 848.8; $\sigma = 0.914$ mho/m; $\varepsilon r = 41.58$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 Duty Cycle: 1: 4

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.605 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.63 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.939 W/kg

SAR(1 g) = 0.518 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.667 W/kg

Fig A.2

PCS1900_CH512 Left Cheek

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1850.2; $\sigma = 1.342$ mho/m; $\epsilon r = 39.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.137 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.908 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.0688 W/kg

Maximum value of SAR (measured) = 0.135 W/kg

Fig A.3

PCS1900 CH512 Bottom

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1850.2; $\sigma = 1.342$ mho/m; $\epsilon r = 39.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 Duty Cycle: 1: 4

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.461 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.57 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.56 W/kg

SAR(1 g) = 0.322 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.456 W/kg

Fig A.4

WCDMA1900-BII CH9400 Left Cheek

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1880; $\sigma = 1.371$ mho/m; $\epsilon r = 39.57$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1880 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.23 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.642 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.18 W/kg; SAR(10 g) = 0.115 W/kg

Maximum value of SAR (measured) = 0.226 W/kg

Fig A.5

WCDMA1900-BII CH9538 Bottom

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1907.6; $\sigma = 1.398$ mho/m; $\epsilon r = 39.54$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1907.6 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.707 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.44 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.884 W/kg

SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.253 W/kg

Maximum value of SAR (measured) = 0.695 W/kg

Fig A.6

WCDMA1900-BII CH9262 Rear

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1852.4; $\sigma = 1.344$ mho/m; $\epsilon r = 39.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.642 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.358 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.851 W/kg

SAR(1 g) = 0.503 W/kg; SAR(10 g) = 0.287 W/kg

Maximum value of SAR (measured) = 0.674 W/kg

Fig A.7

WCDMA1700-BIV CH1513 Left Cheek

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 1752.6; $\sigma = 1.383$ mho/m; $\epsilon r = 40.68$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.277 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.052 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.137 W/kg

Maximum value of SAR (measured) = 0.269 W/kg

Fig A.8

WCDMA1700-BIV CH1513 Rear

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 1752.6; $\sigma = 1.383$ mho/m; $\epsilon r = 40.68$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.528 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.95 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.365 W/kg; SAR(10 g) = 0.195 W/kg

Maximum value of SAR (measured) = 0.514 W/kg

Fig A.9

WCDMA1700-BIV_CH1513 Rear

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 1752.6; $\sigma = 1.383$ mho/m; $\epsilon r = 40.68$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.575 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.533 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.742 W/kg

SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.254 W/kg

Maximum value of SAR (measured) = 0.596 W/kg

Fig A.10

WCDMA850-BV_CH4132 Left Cheek

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 826.4; $\sigma = 0.892$ mho/m; $\varepsilon r = 41.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 826.4 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.309 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.933 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.206 W/kg

Maximum value of SAR (measured) = 0.305 W/kg

Fig A.11

WCDMA850-BV CH4233 Rear

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 846.6; $\sigma = 0.912$ mho/m; $\varepsilon r = 41.59$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.656 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.19 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.823 W/kg

SAR(1 g) = 0.447 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.65 W/kg

Fig A.12

LTE1900-FDD2 CH19100 Right Cheek

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 39.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.271 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.937 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.333 W/kg

SAR(1 g) = 0.21 W/kg; SAR(10 g) = 0.13 W/kg

Maximum value of SAR (measured) = 0.265 W/kg

Fig A.13

LTE1900-FDD2 CH19100 Bottom

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 39.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.691 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.895 W/kg

SAR(1 g) = 0.503 W/kg; SAR(10 g) = 0.209 W/kg

Maximum value of SAR (measured) = 0.718 W/kg

Fig A.14

LTE1900-FDD2 CH19100 Rear

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 39.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.705 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.558 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.901 W/kg

SAR(1 g) = 0.533 W/kg; SAR(10 g) = 0.304 W/kg

Maximum value of SAR (measured) = 0.72 W/kg

Fig A.15

LTE850-FDD5 CH20450 Left Cheek

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 829 MHz; $\sigma = 0.895$ mho/m; $\epsilon r = 41.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.337 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.379 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.345 W/kg

Fig A.16

LTE850-FDD5 CH20450 Rear

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: head 835 MHz

Medium parameters used: f = 829 MHz; $\sigma = 0.895$ mho/m; $\epsilon r = 41.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.541 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.89 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.608 W/kg

SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.359 W/kg

Maximum value of SAR (measured) = 0.551 W/kg

Fig A.17

LTE2500-FDD7 CH21100 Right Cheek

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: head 2600 MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.904$ mho/m; $\epsilon r = 39.65$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(7.19,7.19,7.19)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0958 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.409 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.0683 W/kg; SAR(10 g) = 0.0359 W/kg

Maximum value of SAR (measured) = 0.0946 W/kg

Fig A.18

LTE2500-FDD7 CH21100 Bottom

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: head 2600 MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.904$ mho/m; $\epsilon r = 39.65$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(7.19,7.19,7.19)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.313 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.692 W/kg; SAR(10 g) = 0.328 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

Fig A.19

LTE2500-FDD7 CH21350 Rear

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: head 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.928 \text{ mho/m}$; $\epsilon r = 39.62$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(7.19,7.19,7.19)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.785 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.924 W/kg; SAR(10 g) = 0.474 W/kg

Maximum value of SAR (measured) = 1.33 W/kg

Fig A.20

LTE750-FDD13 CH23230 Left Cheek

Date: 11/19/2019

Electronics: DAE4 Sn771 Medium: head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.928$ mho/m; $\epsilon r = 41.66$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(10.03,10.03,10.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.251 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.284 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.158 W/kg

Maximum value of SAR (measured) = 0.235 W/kg

Fig A.21

LTE750-FDD13 CH23230 Rear

Date: 11/19/2019

Electronics: DAE4 Sn771 Medium: head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.928$ mho/m; $\epsilon r = 41.66$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(10.03,10.03,10.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.488 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.79 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.547 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.315 W/kg

Maximum value of SAR (measured) = 0.49 W/kg

Fig A.22

LTE700-FDD17 CH23780 Left Cheek

Date: 11/19/2019

Electronics: DAE4 Sn771 Medium: head 750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.859$ mho/m; $\epsilon r = 41.75$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD17 709 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(10.03,10.03,10.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0991 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.13 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.109 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.0678 W/kg

Maximum value of SAR (measured) = 0.0987 W/kg

Fig A.23

LTE700-FDD17 CH23780 Rear

Date: 11/19/2019

Electronics: DAE4 Sn771 Medium: head 750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.859$ mho/m; $\epsilon r = 41.75$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD17 709 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(10.03,10.03,10.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.207 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.131 W/kg

Maximum value of SAR (measured) = 0.214 W/kg

Fig A.24

LTE1700-FDD66 CH132572 Left Cheek

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.391$ mho/m; $\epsilon r = 41.93$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 709 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.3 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.599 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.298 W/kg

Fig A.25

LTE1700-FDD66 CH132322 Rear

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.391$ mho/m; $\epsilon r = 41.93$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 709 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.582 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.359 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.747 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.232 W/kg

Maximum value of SAR (measured) = 0.584 W/kg

Fig A.26

LTE1700-FDD66 CH132572 Rear

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: head 1750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.391$ mho/m; $\epsilon r = 41.93$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD66 709 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.577 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.598 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.738 W/kg

SAR(1 g) = 0.439 W/kg; SAR(10 g) = 0.25 W/kg

Maximum value of SAR (measured) = 0.57 W/kg

Fig A.27

WLAN2450 CH6 Left Tilt

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: head 2450 MHz

Medium parameters used: f = 2437; $\sigma = 1.772$ mho/m; $\epsilon r = 39.07$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(7.62,7.62,7.62)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.632 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.191 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.727 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.129 W/kg

Maximum value of SAR (measured) = 0.567 W/kg

Fig A.28

WLAN2450 CH6 Top

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: head 2450 MHz

Medium parameters used: f = 2437; $\sigma = 1.772$ mho/m; $\epsilon r = 39.07$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1: 1

Probe: EX3DV4 – SN3617 ConvF(7.62,7.62,7.62)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.316 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.189 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.084 W/kg

Maximum value of SAR (measured) = 0.306 W/kg

Fig A.29

1.7 ANNEX SYSTEM VALIDATION RESULTS

750 MHz

Date: 11/19/2019

Electronics: DAE4 Sn771 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.898$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(10.03,10.03,10.03)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 60.78 V/m; Power Drift = 0.03

Fast SAR: SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (interpolated) = 2.78 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =60.78 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dB W/kg

Fig.B.1 validation 750 MHz 250mW

Date: 11/20/2019

Electronics: DAE4 Sn771 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(9.75,9.75,9.75)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 63.88 V/m; Power Drift = 0.04

Fast SAR: SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (interpolated) = 3.16 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =63.88 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dB W/kg

Fig.B.2 validation 835 MHz 250mW

Date: 11/21/2019

Electronics: DAE4 Sn771 Medium: Head 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 40.68$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(8.38,8.38,8.38)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 104.5 V/m; Power Drift = 0.06

Fast SAR: SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (interpolated) = 14.31 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.53 W/kg

SAR(1 g) = 9.01 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dB W/kg

Fig.B.3 validation 1750 MHz 250mW

Date: 11/22/2019

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 39.55$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 107.26 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (interpolated) = 15.34 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 107.26 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.52 W/kg

SAR(1 g) = 10.07 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 14.81 W/kg

0 dB = 14.81 W/kg = 11.71 dB W/kg

Fig.B.4 validation 1900 MHz 250mW

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.784$ mho/m; $\epsilon_r = 39.05$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(7.62,7.62,7.62)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 116.72 V/m; Power Drift = -0.08

Fast SAR: SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (interpolated) = 21.99 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =116.72 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.53 W/kg

SAR(1 g) = 13.14 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 21.92 W/kg

0 dB = 21.92 W/kg = 13.41 dB W/kg

Fig.B.5 validation 2450 MHz 250mW

Date: 11/23/2019

Electronics: DAE4 Sn771 Medium: Head 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.966$ mho/m; $\epsilon_r = 39.57$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(7.19,7.19,7.19)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 118.31 V/m; Power Drift = -0.05

Fast SAR: SAR(1 g) = 13.82 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (interpolated) = 25.14 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =118.31 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 28.68 W/kg

SAR(1 g) = 14.17 W/kg; SAR(10 g) = 6.31 W/kg

Maximum value of SAR (measured) = 23.74 W/kg

0 dB = 23.74 W/kg = 13.75 dB W/kg

Fig.B.6 validation 2600 MHz 250mW

ANNEX I Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2019-09-26 through 2020-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program