Experimentalphysik I im Wintersemester 13/14 Übungsserie 7

Abgabe am 5.12.13 bis 08:15 (vor der Vorlesung)

Alle Aufgaben (!) müssen gerechnet werden. Die mit * gekennzeichneten Aufgaben sind schriftlich abzugeben. Zu jeder Lösung gehören eine oder im Bedarfsfalle mehrere Skizzen, die den Sachverhalt verdeutlichen.

- 23.* Ein dünnwandiger Hohlzylinder und ein Vollzylinder gleicher Außenabmessungen und Masse rollen gleichzeitig reibungsfrei ohne zu gleiten eine schiefe Ebene (Länge l, Neigungswinkel α) hinab.
 - (a) Wie groß ist das Verhältnis ihrer Rollzeiten bzw. ihrer Geschwindigkeiten am Ende der Bahn?
 - (b) Zeigen Sie, dass die Gesamtenergie am Ende der Bewegung gleich der Rotationsenergie um die momentane Drehachse ist!
- **24.*** Leiten Sie das Massenträgheitsmoment eines Kegels mit der Höhe h und dem maximalen Durchmesser R bei Rotation um seine Figurenachse her
 - (a) unter Annahme einer konstanten Massendichte: $\rho = \rho_0$,
 - (b) dito für den Fall einer linear mit dem Abstand zur Rotationsachse anwachsenden Massendichte $\rho(r) = \rho_0 r/R$,
 - (c) dito für den Fall einer linear mit z (entlang der Kegelachse) anwachsenden Massendichte!
 - (d) Berechnen Sie das Massenträgheitsmoment des Körpers aus der Teilaufgabe a), wenn die Rotation um eine Achse erfolgt, die um den Wert R_s verschoben parallel zur Figurenachse verläuft!
- 25. Durch Ziehen an dem auf einer Rolle aufgewickelten Faden (siehe Abbildung) kann je nach Wahl des Winkels β eine Bewegung der Rolle nach rechts oder links hervorgerufen werden. Wie ist das erklärbar, und bei welchem Winkel geht die eine Bewegung in die andere über? Der innere Radius betrage $r_1 = 0.2$ m und der äußere $r_2 = 0.25$ m.

 r_2 r_1 r_2

26.* Ein Mann sitzt auf einem reibungsfrei gelagerten Drehstuhl, ohne dass seine Füße den Boden berühren. Mann und Drehstuhl haben zusammen bezüglich der Drehachse das Trägheitsmoment $J_0 = 4 \text{ m}^2\text{kg}$. Er nimmt je ein Bleistück der Masse m = 10 kg in seine Hände und

Kontakt: <u>malte.kaluza@uni-jena.de</u>

michael.duparre@uni-jena.de

streckt die Arme aus. Der Abstand zwischen der Drehachse und den Bleistücken beträgt zunächst jeweils $r_1 = 90$ cm.

- (a) Eine zweite Person bringt in 0.5 s den Drehschemel in Rotation mit einer konstanten Drehzahl $u_1 = 0.4$ s⁻¹. Wie groß ist jetzt der gesamte Drehimpuls L_1 des Systems?
- (b) Der Mann zieht beide Arme an den Körper, bis sich die Bleistücke im Abstand r₂ = 20 cm von der Drehachse befinden. Wie groß ist jetzt die Drehzahl u₂? Welche Arbeit wird dabei verrichtet (Formel, Zahlenwert), und wo kommt die dafür notwendige Energie her?

Kontakt: malte.kaluza@uni-jena.de

michael.duparre@uni-jena.de