

SOEN 6011 (Software Engineering Processes)

Eternity - σ (Standard Deviation function)

Tejasvi

Student ID: 40292854

Contents

1	Introduction	2
2	Scope	2
3	Definitions, Acronyms, and Abbreviations	2
4	Functional Requirements 4.1 Input Requirements	2 2 2 3
5	Non-Functional Requirements	3
6	Assumptions and Dependencies	3
7	Algorithm for Standard Deviation Calculation	3
8	References	4

1 Introduction

This document presents a detailed Software Requirements Specification (SRS) for the standard deviation function, following the ISO/IEC/IEEE 29148 Standard as per the course guidelines. The standard deviation function is denoted as: $\frac{1}{2} \frac{1}{2} \frac{1}$

$$\sigma = \sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}(x_i - \mu)^2\right)}$$

2 Scope

The software to be designed will compute the standard deviation of a set of real numbers (possibly array of ints/floats) in Java Programming Language. The software will be used in scientific computing applications.

3 Definitions, Acronyms, and Abbreviations

- SRS: Software Requirements Specification
- σ : Standard deviation function

4 Functional Requirements

4.1 Input Requirements

- FR1: The function must accept a list of real numbers as input.
- FR2: The function must validate the input to ensure it is a list of real numbers.

4.2 Processing Requirements

- FR3: The function must calculate the mean of the input numbers.
- FR4: The function must calculate the variance of the input numbers using the formula:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

where N is the number of input numbers, x_i is an input number, and μ is the mean of the input numbers.

4.3 Output Requirements

- **FR5:** The function must calculate the standard deviation by taking the square root of the variance.
- FR6: The function must return the standard deviation as a real number.

5 Non-Functional Requirements

- NFR1: The function must handle large lists of numbers efficiently.
- NFR2: The function must return accurate results up to a reasonable precision.
- NFR3: The function must provide error messages for invalid inputs.

6 Assumptions and Dependencies

- A1: It is assumed that the input list is not empty.
- A2: It is assumed that the input numbers are real numbers.

7 Algorithm for Standard Deviation Calculation

- 1. Initialize a variable 'sum' to 0.
- 2. For each number 'x' in the list of numbers:
 - Add 'x' to 'sum'.
- 3. Calculate the mean 'mu' (μ) by dividing 'sum' by the number of elements 'N' in the list (N is assumed to be greater than 0).
- 4. Initialize a variable 'varianceSum' to 0.
- 5. For each number 'x' in the list of numbers:
 - Subtract 'mu' from 'x' to get 'diff'.
 - Square 'diff' to get 'squaredDiff'.
 - Add 'squaredDiff' to 'varianceSum'.
- 6. Calculate the variance by dividing 'varianceSum' by 'N'.
- 7. Calculate the standard deviation 'sigma' by taking the square root of the variance.

8 References

- \bullet ISO/IEC/IEEE 29148:2018 Systems and software engineering Life cycle processes Requirements engineering.
- Standard deviation (2024) Wikipedia. Available at: https://en.wikipedia.org/wiki/Standard_deviation (Accessed: 04 July 2024).