S. No.	Outlook	Play		
1.	Rainy	Yes		
2.	Sunny	Yes		
3.	Overcost	Yes		
4.	Overcost	Yes		
5.	Sunny	No		
6.	Rainy	Yes		
7.	Sunny	Yes		
8.	Overcost	Yes		
9.	Rainy	No		
10.	Sunny	No		
12.	Suny	Yes		
12.	Rainy	No		
13.	overcost	Yes		
14.	Overcost	468		

Construction of foreque forequency table

class Label	1,00	Outlook			total	
	Rairy	Surry	ONHOUS			
Yes	2	3	5		10	
No	2	2	0		4	V
	1	, ,				

Step 1: Compute
$$P(C_k)$$
 $k=1, 2$

$$P(4e8) = \frac{10}{14} \qquad P(NO) = \frac{4}{14}$$

Step 2: Construction of conditional perobability table

class lable	outbok			
	Rainy	sunny	Chestast	
Yes	2/10	3/10	5/10	
No	24	2/4	0	

Step 3: Compute conditional perobability of Ck given X

$$p(4e8|Sunny) = p(8unny|ye8) + p(4e8)$$

$$= \frac{3}{10} + \frac{10}{14} = \frac{3}{14} = 0.2142$$

$$P(N0|sunny) = P(sunny|N0) + P(N0)$$

$$= \frac{2}{4} + \frac{4}{14} = \frac{2}{14} = 0.1428$$

Step 4: Marimum Ck, K=1, 2 p (4e8/8unny)= 0.2/42 p(No/8unny)=0.1428

Step 5: \$ 50 if the weather is surry, then the player should play (Yes).

$$P(B_1) = \frac{1}{3}$$
 $P(B_2) = \frac{2}{3}$

let c, be cadbiny chocolate

let c, be Amul chocolate.

let c3 be Nestle chocolate.

$$P(c_1|B_2) = \frac{3}{11}$$
 $P(c_3|B_2) = \frac{8}{11}$

P(B, C,) = ? To find the perobability of seletting a cadbusy chocolate forom box 1:

$$P(B_{1}|C_{1}) = P(C_{1}|B_{1}) \cdot P(B_{1})$$

$$P(C_{1}|B_{1}) \cdot P(B_{1}) + P(C_{2}|B_{1}) \cdot P(B_{1})$$

$$+ P(C_{1}|B_{2}) \cdot P(B_{2}) \cdot P(B_{2}) \cdot P(B_{2})$$

$$= \frac{6 \times \frac{1}{3}}{\frac{6}{11} \times \frac{1}{3}} + \frac{5}{11} \times \frac{1}{3} + \frac{8}{11} \times \frac{2}{3} + \frac{8}{11} \times \frac{2}{3} = \frac{0.1818}{0.4848}$$

The probability of selecting a codbury chocolate

Total no. of balls = 5

No of gred balls = 3

No of blue balls = 2

To find: the parobability of getting both the balls ove sted.

Bayes theorem $P(B|A) = P(A|B) \cdot P(B)$ $P(A|B) \cdot P(B)$

P (A)

 $p(aed) = \frac{3}{5}$ $p(blue) = \frac{2}{5}$

P(getting first ned ball) = 3

p(getting second sted ball) = 2 4

P(getting both sied balls one after other) = $\frac{3}{5} \times \frac{9}{4} = \frac{3}{10}$

The probability of getting both the balls sted when derawn one after another = 3

A A KING THE SOUTH OF THE SECOND

4) let D be A disease and T be test mesult.

PJ=1 → person has a disease

D=0 > person does not have a disease.

T=1 > positive

T=0 > test is negative.

$$P(D=1|T=1)=9$$
 $P(D=1|T=1)=P(T=1|D=1) \cdot P(D=1)$

P(T=1/D=0), P(D=0) +

P(T=1) D=1). P(D=1)

$$P(D=1) = 1$$
 106 , $P(T=1|D=1) = 99$
 100

$$P(T=1|D=0) = \frac{1}{1000}$$
 $P(D=0) = 1 - \frac{1}{100}$

$$P(D=1|T=1) = \frac{99}{100} \times \frac{1}{106}$$

$$\frac{1}{1000} \left[1 - \frac{1}{106}\right] + \frac{99}{1000} \times \frac{1}{106}$$

The perobability that the person has a disease and the test is positive = 0.000 98902-