8. CE Configuration

27 September 2023 11:3

COMMON EMITTER CONFIGURATION

· Arrow indicates direction of IE

• The NPN BJT occapiones two voltage sources V_{BE} on V_{BB} , and V_{CE} on V_{CL} to

bias the two junctions respectively.

heck diagrams

CE CONFIGURATION - INPUT CHARACTERISTICS

As output vollage $V_{e_{\mathcal{E}}}$ increases, covernt $I_{\mathcal{B}}$ decreases.

Hence graph shifts to the night.

Navrower base width

(loss chance of necombination) $V_{ce} > V_{be}$

- · In CB config,

 In input current (MA)

 VBE input voltage
- · Plot of IB 1/s VBE infut characteristics
- * When the output voltage V_{ce} is increased, this high voltage initiates a decrease in the current I_B through the device. Thus graph shifts to the right.

CE CONFIGURATION - DUTPUT CHARACTERISTICS

Output inpedance? =
$$\frac{V_{CE}}{I_{C}} = \frac{10-5}{(3.4-3.1)}$$
 m

I his is less compared to infinity?

Common Emitter - Active Region

$$I_{c} = \alpha I_{E} + I_{ceo}$$

$$= \alpha (I_{c} + I_{B}) + I_{ceo} \qquad [: I_{E} = I_{c} + I_{B}]$$

$$I_{c} = \alpha I_{c} + \alpha I_{B} + I_{ceo}$$

$$I_{c} (1 - \alpha) = \alpha I_{B} + I_{ceo}$$

$$I_{c} = \alpha I_{C} + \alpha I_{C} + \alpha I_{C}$$

$$I_{c} = \alpha I_{C} + \alpha I_{C}$$

Let
$$\beta = \frac{\alpha}{1-\alpha}$$
; $\Rightarrow \frac{1}{1-\alpha} = 1+\beta$

$$I_c = \beta I_B + (1+\beta) I_{ceo}$$

$$I_c = \beta I_B + I_{ceo}$$

$$I_{ceo} \approx \beta I_{ceo}$$

$$I_{ceo} \approx \beta I_{ceo}$$

$$I_{ceo} \approx \beta I_{ceo}$$

$$I_{ceo} \approx \beta I_{ceo}$$

$$I_{ceo} \approx I_{ceo}$$

$$I_{ceo} = I_{ceo}$$

$$B = \frac{\alpha}{1-\alpha}$$

$$\frac{1-\alpha}{1-\alpha}$$

$$\frac{1-\alpha}{1-\alpha}$$

9. Find B if
(i)
$$\alpha = 0.9$$
 (iii) $\alpha = 0.99$
(ii) $\alpha = 0.98$

If
$$B = \frac{Q}{1-Q}$$
 are putside the range \implies distorted output (i) $B = \frac{0.9}{0.1} = \frac{9}{0.98} = \frac{49}{0.02}$

(iii)
$$\beta = 0.99 = 99$$