機器學習基礎簡介

Mark Chang

什麼是學習?

- 從已知的資料,根據資料的特徵,歸納出其中的規則(知識)。
- 用這個規則(知識)可預測未知的資料。

什麼是機器學習?

- 讓機器(電腦)根據已知資料的特徵,歸納出其中的規則。
- 用這個規則可預測未知的資料。
- 機器學習可分為兩大類:
 - 監督式學習:有老師,告訴答案
 - 非監督式學習: 沒老師, 自己學

監督式學習種類

- 分類(Classification):答案為一個類別
- 迴歸(Regression):答案為一個數值

機器學習模型

- 迴歸:
 - 線性回歸(Linear Regression)
- 分類:
 - 邏輯迴歸(Logistic Regression)

符號慣例

線性回歸(Linear Regression)

• 用直線去逼近資料分佈情形

訓練資料

X	Υ
-1	-1.35083488
-0.93103448	-0.832318
-0.86206897	-1.80594819
-0.79310345	-0.41854779
-0.72413793	-1.49916917
-0.65517241	-0.33899642
-0.5862069	-0.25423128
-0.51724138	-2.11349879
-0.44827586	0.59621997
-0.37931034	0.18047539
-0.31034483	0.37495828

機器學習模型

$$h(x) = w_0 + w_1 x$$

• Error function:

$$E(h(X), Y)$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} ((w_{0} + w_{1}x^{(i)}) - y^{(i)})^{2}$$

$$(h(x^{(i)}) - y^{(i)})^{2}$$

• Error function:

$$E(h(X), Y)$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} ((w_{0} + w_{1}x^{(i)}) - y^{(i)})^{2}$$

• 梯度下降(Gradient Descent):

$$w_0 \leftarrow w_0 - \eta \frac{\partial E(h(X), Y)}{\partial w_0}$$

$$w_1 \leftarrow w_1 - \eta \frac{\partial E(h(X), Y)}{\partial w_1}$$

η: Learning Rate

$$(-\frac{\partial E(h(X),Y)}{\partial w_0}, -\frac{\partial E(h(X),Y)}{\partial w_1})$$

邏輯回歸(Logistic Regression)

• 用Sigmoid曲線去逼近資料的分佈情形

訓練資料

X	Υ
-0.47241379	0
-0.35344828	0
-0.30148276	0
0.33448276	1
0.35344828	1
0.37241379	1
0.39137931	1
0.41034483	1
0.44931034	1
0.49827586	1
0.51724138	1

機器學習模型

Sigmoid function
$$h(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Error function : Cross Entropy

$$E(h(X), Y) = \frac{-1}{m} \left(\sum_{i=1}^{m} y^{(i)} log(h(x^{(i)})) + (1 - y^{(i)}) log(1 - h(x^{(i)})) \right)$$

• Error function : Cross Entropy

$$E(h(X),Y) = \frac{-1}{m} \left(\sum_{i=1}^{m} y^{(i)} log(h(x^{(i)})) + (1-y^{(i)}) log(1-h(x^{(i)})) \right)$$

$$h(x^{(i)}) \approx 0 \text{ and } y^{(i)} = 0 \Rightarrow E(h(X),Y) \approx 0$$

$$h(x^{(i)}) \approx 1 \text{ and } y^{(i)} = 1 \Rightarrow E(h(X),Y) \approx 0$$

$$h(x^{(i)}) \approx 0 \text{ and } y^{(i)} = 1 \Rightarrow E(h(X),Y) \approx \infty$$

 $h(x^{(i)}) \approx 1 \text{ and } y^{(i)} = 0 \Rightarrow E(h(X), Y) \approx \infty$

• 梯度下降:

$$w_0 \leftarrow w_0 - \eta \frac{\partial E(h(X), Y)}{\partial w_0}$$
$$w_1 \leftarrow w_1 - \eta \frac{\partial E(h(X), Y)}{\partial w_1}$$

實作: 邏輯回歸

延伸閱讀

- Logistic Regression 3D
 - http://cpmarkchang.logdown.com/posts/189069-logisti-regression-model
- OverFitting and Regularization
 - http://cpmarkchang.logdown.com/posts/193261-machine-learning-overfitting-and-regularization
- Model Selection
 - http://cpmarkchang.logdown.com/posts/193914-machine-learning-model-selection
- Neural Network Back Propagation
 - http://cpmarkchang.logdown.com/posts/277349-neural-network-backward-propagation