NLP Numericals-2

Q1. Using the UPenn Treebank tag set, tag the part of speech to the given statement.

The grand jury commented on a number of other topics.

ANS

The DT grand JJ jwey INN

commented VBD on IN a DT

number INN of IN other JJ

to pics NNS.

Determinant - DT Adjective - JJ Noum Singular - NN Noum Flund - NNS Verb (Past Haid - VBD Preposition - IN Q2. Using HMM POS tagging, tag the following sentence based on the given corpus:

Sentence to be tagged: **Justin will spot Will** Corpus:

<s> Martin Justin can watch Will</s>

<s>Spot will watch Martin</s>

<s>Will Justin Spot Martin<s>

<s>Martin will pat Spot</s>

Stepl: Assign	correct	POS	tags	
				<\z)
<s>> Martin</s>	7	Can wo	✓ N	
ZS7 Spot	will M	watch	Martin	<12√
•	Justin	Spot	Marti	U < 17)
<s> Will M</s>	7			
<s> Martin</s>	Ilia d	pat	Spot.	457
N	₩	\checkmark	2	

Stepz: Em	سع زردر	700	ability
Matnx		. 1	

PDS Tagging

LRUE Bracd

LPVO bability

Sto chastic

Total Nown

	7	M	\checkmark
Martin	4/9	0	0
Jwhn	2/9	D	0
Will	1/9	3/4	0
Spot	2/9	O	1/4
can	0	1/4	0
watch	Ō	0	2/4
pat	0	O	1/4

Step3- State Transition Probability Matrix ~~ N N V / < 157

<s>3/4 1/4 0 0 N 1/9 1/3 1/9 4/9 M 1/4, 0 3/4 0 wgran model, P(Wi/Wi-1) = Count(Wi-1, Wi) Count (Wi-1) Probability of Nous after (5) Total (s)

Stepy: Justin will spot Will とれる好っなる 1 X L X 2 X 2 = 8 4 04/3 According to Viterbi
Algorithm (1) Justin an Nous P (N Justo, (5)) $(\langle 2 \rangle | N) q \times (N | \wedge tout) q =$ $=\frac{2}{9}\times\frac{3}{4}=\frac{1}{6}$ 2 Will as Nour $P(N|\omega||,N) \times P(N|N)$ $= P(N||||N|) \times P(N|N)$ $= \frac{1}{4} \times \frac{1}{4} = \frac{1}{8}$ $=\frac{1}{1} \times \frac{1}{6} = \frac{1}{486}$

 $\frac{3}{P(M|W|U, N) = P(W|U|M) \times P(M|N)}$ $= \frac{2}{4} \times \frac{1}{4} = \frac{1}{4}$ $= \frac{1}{4} \times \frac{1}{6} = \frac{1}{24}$ · 1 > 1 486 · will is modal 9 Spot as Now P(NSpot,M)=P(SpotIN) x P(N/M) $=\frac{2}{9}\times\frac{1}{7}=\frac{1}{18}$ $=\frac{18}{18} \times \frac{1}{4} = \frac{432}{432}$ (5) Spot au Verb P(V(Spot, M) = P(Spot(V) X + (V(M) $=\frac{1}{4}\times\frac{3}{4}=\frac{3}{16}$ $=\frac{3}{14}\times\frac{1}{24}=\frac{1}{128}$ 123 > 432 -, SPOT 12 Verb

$$P(N|W||,V) = P(W|||N) \times P(N|V)$$

$$= \frac{1}{9} \times 1 = \frac{1}{9}$$

$$= \frac{1}{9} \times \frac{1}{128} = \frac{1}{1152}$$

$$P(M|W|I) = P(W|I|M) \times P(M|V)$$

$$= \frac{3}{4} \times \frac{1}{1000} = \frac{3}{4000}$$

$$= \frac{3}{4000} \times \frac{1}{128} = \frac{3}{512000}$$

a. Will will be Nous

1157 > 4

Q3. Based on the given state transition and emission probability matrix, assign POS to the statement: **Time flies** like an arrow.

Emission Probability Matrix

	Time	flies	like	an	arrow
VB	0.1	0.2	0.2	0	0
NN	0.1	0.1	0	0	0.1
IN	0	0	0.25	0	0
DT	0	0	0	0.5	0

Time as Now

$$P(N|\text{Time}, \langle S \rangle) = P(\text{Time}|N) \times P(N|\langle S \rangle)$$

$$= 0.1 \times 0.8$$

$$= 0.08$$

State Transition Matrix

	VB	NN	IN	DT	
<s></s>	0.2	0.8	0	0	0
VB	0	0.3	0.2	0.5	0
NN	0.4	0.5	0.1	0	0
IN	0	0.75	0	0.25	0
DT	0	1	0	0	0

Time flies like an arrow

$$VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$$
 $VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow VB \rightarrow VB \rightarrow DT \rightarrow NN$
 $VB \rightarrow$

flies as Nous P(NN/flia,N) = P(Hiss/N)x P(N/N) = 0.1 × 0.2 = 0.05 × 0.08 - 0.004 flies as vert P(VB/Hica, N) = P(His/1/B) XP(V|N) = 0.2 x 0.4 > 0.08 × D.08 = D.0084 D.D 64 > D. 004 . . Hic is verb

P(VB|like,))=P(like|VB)XP(V|V) = 0.2 X d.ol = 0.002 X 0-00641 = 0.000123 Like as Prepositions +(IN) like, V) = P(like IN) xP(IN) = 8, 25 x 0.2 = 0.50 x 0.0064 2 0.00032 0.00032 > 0.000128 . like is Prepostan

Time flies like an arrow
I I I I I
NN DT NN

Q4. Based on the given state transition and emission probability matrix, assign POS to the statement: **That girl** smiles.

Emission Probability Matrix

1	Elilission i Tobasinity Wattin				
		DT	NN	VB	
	That	0.4	0	0	
	girl	0	0.015	0.0031	
	smiles	0	0.0004	0.2	

State Transition Matrix

	DT	NN	VB
<s></s>	0.5	0.4	0.1
DT	0.01	0.99	0
NN	0.3	0.3	0.4
VB	0.4	0.4	0.2

Othat as DT
$$P(DT|That, \langle S\rangle)$$

$$= P(that|DT) \times P(DT|S)$$

$$= 0.015 \times 0.49$$

$$= 0.0029$$

- 0.0029

(4) Girl ~ VB P(VB|avi,DT) $= P(giv||v|g) \times P(v|g|DT) = P(smiles|N) \times P(N|N)$ 2 0.0031 x 0,001 = 0.00031 x0,2 = 0,00062

0.0029 > 0.00042 : Gal is a Now

(5) smiles as NN b(M/2miles'n) = 0.0000 x 0.3 = 0.06012 2 D.00012 x 0.003 2 0.0000036

(6) smiles as VB P(smiles /v) x P(v/n) = 0.2 xo.y - 0.03 X 0.003 2 0.00024 ! Smile is verb.

That girl smiled

1

NN VB

Q5. Using HMM POS tagging, tag the following sentence based on the given corpus:

Sentence to be tagged: The Park is a book.

Corpus:

<s> Book a car</s>

<s>Park the car</s>

<s>The book is in the car ⟨s>

<s>The car is in a park</s>

Stepl! Apply correct tag	
(s) Book a car (1s)	
(5) Park the car (1)	
<57 The book is in the care <15)	7)
25) The car is in a park <10	•7

	The bused of the given corpus.					
Steph Emission Probability Matrix						
\	V	D 7	N	<u> </u>		
<u>R</u> so K	1/2	0	1/6	0		
200 K	0	2/8	Ó	0		
Can	D	0	4 6	0		
Park	1/2-	D	76	0		
the	10	4/8	0	0		
1.5	6	2/8	0	O		
	0	0	D	2/2		

3 Park as Nows P(N/Park, D) = P(Park |N) x P(N/D) = 1 × 1 = 36 11 > 8000 . Pask will be Nour (4) is as a determinat $P(D|i) = P(i|D) \times P(D|D)$ $2 \stackrel{?}{=} \times \stackrel{?}{=}$

Book as Now

$$P(N|Book, D)$$

$$= P(Rook|N) \times P(N|D)$$

$$= \frac{1}{G} \times \frac{4}{G} = \frac{1}{9} \times \frac{1}{122300}$$

$$= \frac{1}{1555200}$$

7)
1 Book as Verb P(V(Rook, D) $= P \left(\beta \Rightarrow k \right) \lor) \lor P(\lor |D)$ $=\frac{1}{2} \times \frac{1}{1928333}$ = 1 3456 x 1=6 Book is Nown e The Park is a Book

DT NN DT DT NN