DIY Optische ToF Distanzmessung

CAS Sensorik und Sensor Signal Conditioning

Matthias Schär, Timon Burkard OST – Ostschweizer Fachhochschule

25. Dezember 2024

CAS Sensorik und Sensor Signal Conditioning an der OST – Ostschweizer Fachhochschule

Titel DIY Optische ToF Distanzmessung

Diplomandin/Diplomand Matthias Schär, Timon Burkard

Studiengang CAS Sensorik und Sensor Signal Conditioning

Semester HS24

Dozentin/Dozent Prof. Guido Keel, Michael Lehmann

Abstract

Die vorliegende Projektarbeit befasst sich mit der Entwicklung eines...

Ort, Datum Rapperswil, 25. Dezember 2024

© Matthias Schär, Timon Burkard, OST – Ostschweizer Fachhochschule

Alle Rechte vorbehalten. Die Arbeit oder Teile davon dürfen ohne schriftliche Genehmigung der Rechteinhaber weder in irgendeiner Form reproduziert noch elektronisch gespeichert, verarbeitet, vervielfältigt oder verbreitet werden.

Sofern die Arbeit auf der Website der Ostschweizer Fachhochschule online veröffentlicht wird, können abweichende Nutzungsbedingungen unter Creative-Commons-Lizenzen gelten. Massgebend ist in diesem Fall die auf der Website angezeigte Creative-Commons-Lizenz.

Inhaltsverzeichnis

T	E III	ieitung	9
2	The 2.1 2.2 2.3	Time of Flight	10 10 10 10 11 11
3	\mathbf{Um}	setzung	12
	3.1	Firmware	12
	3.2	Schaltungen	13
		3.2.1 Selective Input Voltage	13
		3.2.2 Nucleo Board	13
		3.2.3 TDC Electrical Signal	14
		3.2.4 TDC Optical Signal	14
		3.2.5 Oscillator For TDCs	15
		3.2.6 Power Supply Separation	15
		3.2.7 Laser Driver	16
		3.2.8 Photo Receiver	16
		3.2.9 Decoupling Capacitors	17
	3.3	Layout	18
	3.4	3D View	19
	3.5	Komponenten	20
4	Sim	nulationen	21
	4.1	Laser Treiber	21
	4.2	Transimpedanzverstärker	21
5	Mes	ssungen	22
6	Fazi	it	23
7	Anl	hang	24

Abkürzungsverzeichnis

$\mathbf{OST} - \mathbf{Ostschweizer}$ Fachhochschule CAS Sensorik und Sensor Signal Conditioning

 ${\bf Projektarbeit}$

Abbildungsverzeichnis

1	Selective Input Voltage	13
2	Nucleo Board	13
3	TDC Electrical Signal	14
4	TDC Optical Signal	14
5	Oscillator for TDCs	15
6	Power Supply Separation	15
7	Laser Driver	16
8	Photo Receiver	16
9	Decoupling Capacitors	17
10	3D View Top	19
11	3D View Bottom	19

Formelverzeichnis

1	Eintreffende Lichtleistung
2	Strahlungsintensität
3	Raumwinkel
4	Photostrom
5	Werte des RLD94PZJ5
6	Werte des BPV23NF
7	Nummerische Resultate mit RLD94PZJ5 und BPV23NF
8	Werte des RLD94PZJ5
9	Werte des BPV23NF
10	Nummerische Resultate mit RLD94PZJ5 und BPV23NF

DIY Optische ToF Distanzmessung	OST – Ostschweizer Fachhochschule
Projektarbeit	CAS Sensorik und Sensor Signal Conditioning

Tab	ellenverzeichnis	
1	Bill of Material	20

Codeverzeichnis

1 Einleitung

2 Theorie

2.1 Time of Flight

2.2 Photostrom

Zur Berechnung des theoretisch zu erwartenden Photostrom wird von einer Distanz zur Wand von 10 m ausgegangen.

Der Laserstrahl gehe idealisiert mit 0° zur Wand und werde dort uniform Halbkugel-förmig gestreut. In der Realität wird sich die Streuung nicht uniform verteilen, sondern in der Mitte stärker konzentriert sein. Die folgende Berechnung zeigt also den worst case.

$$P_{in} = E_e \cdot A = \frac{I_e}{r^2} \cdot A \tag{1}$$

$$I_e = \frac{P_{out}}{\Omega} \tag{2}$$

$$\Omega = \frac{4 \cdot \pi \cdot 0.5}{d} \tag{3}$$

$$I_{ph} = S \cdot P_{in} \tag{4}$$

2.2.1 Berechnung mit RLD94PZJ5 und BPV23NF

$$P_{out} = 285 \ mW \tag{5}$$

$$A = 4.4 \ mm^2$$

$$S = 0.6 \ \frac{A}{W} \tag{6}$$

$$I_{e} = \frac{P_{out}}{\Omega} = \frac{285 \ mW}{\frac{4 \cdot \pi \cdot 0.5}{d}} = \frac{285 \ mW}{\frac{4 \cdot \pi \cdot 0.5}{10 \ m}} = 45 \ \frac{mW}{sr}$$

$$P_{in} = \frac{I_{e}}{r^{2}} \cdot A = 45 \ \frac{mW}{sr} \cdot 4.4 \ mm^{2} = 2 \ nW$$

$$I_{ph} = S \cdot P_{in} = 0.6 \ \frac{A}{W} \cdot 2 \ nW = 1.2 \ nA$$

$$(7)$$

2.2.2 Berechnung mit RLD65NZX1 and NJL6401R-3

$$P_{out} = 10 \ mW \tag{8}$$

$$A = 0.7 \ mm \cdot 0.7 \ mm = 0.49 \ mm^{2}$$

$$S = 0.42 \ \frac{A}{W}$$
(9)

$$I_{e} = \frac{P_{out}}{\Omega} = \frac{10 \ mW}{\frac{4 \cdot \pi \cdot 0.5}{d}} = \frac{10 \ mW}{\frac{4 \cdot \pi \cdot 0.5}{10 \ m}} = 1.6 \ \frac{mW}{sr}$$

$$P_{in} = \frac{I_{e}}{r^{2}} \cdot A = 45 \ \frac{mW}{sr} \cdot 0.49 \ mm^{2} = 8 \ pW$$

$$I_{ph} = S \cdot P_{in} = 0.42 \ \frac{A}{W} \cdot 8 \ pW = 3.3 \ pA$$

$$(10)$$

2.3 Transimpedanzverstärker

3 Umsetzung

3.1 Firmware

3.2 Schaltungen

3.2.1 Selective Input Voltage

Abbildung 1: Selective Input Voltage

3.2.2 Nucleo Board

Abbildung 2: Nucleo Board

3.2.3 TDC Electrical Signal

TDC electrical signal

Abbildung 3: TDC Electrical Signal

3.2.4 TDC Optical Signal

TDC optical signal

Abbildung 4: TDC Optical Signal

3.2.5 Oscillator For TDCs

Oscillator for TDCs

Abbildung 5: Oscillator for TDCs

3.2.6 Power Supply Separation

Powersupply separation

Abbildung 6: Power Supply Separation

3.2.7 Laser Driver

Abbildung 7: Laser Driver

3.2.8 Photo Receiver

Abbildung 8: Photo Receiver

3.2.9 Decoupling Capacitors

Decoupling capacitors

Abbildung 9: Decoupling Capacitors

3.3 Layout

3.4 3D View

Abbildung 10: 3D View Top

Abbildung 11: 3D View Bottom

Komponenten

Datasheet	heet	Footprint Consolitor SMD-C 0402 1005 Metric Pod0 74v0 62mm	Qty DNP
		Capacitor_SMD:C_040z_1005Metric_Fadu./4xu.6zmm Canacitor_SMD:C_0402_1005Metric_Dad0_74v0_63mm	0 0
		Capacitor SMD:C 0402 1005Metric Pad0 74x0.62mm	۰- ۱
		Capacitor_SMD:C_0402_1005Metric_Pad0.74x0.62mm	
		Capacitor_SMD:C_0603_1608Metric_Pad1.08x0.95mm	2
		Capacitor_Tantalum_SMD:CP_EIA-7343-43_Kemet-X_Pad2.25x2.55mm	2
		NJL6401R3TE1	(
	TI 9016)	Inductor_SMID:L_0402_1005Metric_Pad0.77x0.64mm	27 C
ز —	(11, 2010)	20F03F040A1Z0-14IN 7AFV71C08ONV57	v -
21		SON65P200X200X80-7N	
		Connector:Molex_KK-254_AE-6410-02A_1x02_P2.54mm_Vertical	2
		Connector:Molex_SL_171971-0003_1x03_P2.54mm_Vertical	Н
		TestPoint:TestPoint_2Pads_Pitch2.54mm_Drill0.8mm	2
		TestPoint:TestPoint_2Pads_Pitch2.54mm_Drill0.8mm	1
		– mixed values –	3
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	П
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	П
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	-
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	2
		Resistor_SMD:R_4020_10251Metric	П
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	П
		$Resistor_SMD:R_0402_1005Metric_Pad0.72x0.64mm$	П
		Potentiometer_SMD:Potentiometer_Bourns_3224W_Vertical	1
		Potentiometer_SMD:Potentiometer_Bourns_3224W_Vertical	2
)A1		Button_Switch_SMD:Nidec_Copal_CAS-120A	2
		Connector_2.54mm:PinHeader_1x01_P2.54mm_Vertical	19
		NUCLEO_F042K6:MODULE_NUCLEO-F042K6	1
		Package_SON:WSON-8-1EP_2x2mm_P0.5mm_EP0.9x1.6mm	
		Package_TO_SOT_SMD:SOT-23-6	П
-		DNH0008A	1
		Oscillator:Oscillator_SMD_SeikoEpson_SG8002LB-4Pin_5.0x3.2mm	

Tabelle 1: Bill of Material

4 Simulationen

- 4.1 Laser Treiber
- 4.2 Transimpedanzverstärker

5 Messungen

6 Fazit

7 Anhang

Quellenverzeichnis

TI. (2016). TDC7200 Datasheet. Zugriff auf http://www.ti.com/lit/gpn/tdc7200 (aufgerufen am 25.12.2024)