

Learning vs Pure Optimization

- Optimization algorithms for deep learning differ from traditional optimization in several ways:
 - Machine learning acts indirectly
 - We care about some performance measure P defined wrt the training set which may be intractable
 - We reduce a different cost function $J(\theta)$ in the hope that doing so will reduce P
- Pure optimization: minimizing J is a goal in itself
- Optimizing algorithms for training Deep models:
 - Includes specialization on specific structure of ML objective function

Typical Cost Function

Typically the cost function can be written as an average over a training set

$$J(\boldsymbol{\theta}) = E_{(\boldsymbol{x},y) \sim \hat{p}_{data}} \left(L(f(\boldsymbol{x};\boldsymbol{\theta}),y) \right)$$

- Where
 - L is the per-example loss function
 - $f(x; \theta)$ is the predicted output when the input is x
 - \hat{p}_{data} is the empirical distribution
- In supervised learning y is target output

Typical Cost Function

- We consider the unregularized supervised case
 - where arguments of L are $f(x; \theta)$ and y
- Trivial to extend to cases:
 - Where parameters θ and input x are arguments or
 - Exclude output y as argument
 - For regularization or unsupervised learning

Objective wrt data generation is risk

Objective function wrt training set is

$$J(\theta) = E_{(x,y) \sim \hat{p}_{\text{data}}} \left(L(f(x;\theta),y) \right)$$
 L is the per-example loss function

• We would prefer to minimize the corresponding objective function where expectation is across the data generating distribution $p_{\rm data}$ rather than over finite training set

$$J^*(\boldsymbol{\theta}) = E_{(\boldsymbol{x},y) \sim p_{\text{data}}} (L(f(\boldsymbol{x};\boldsymbol{\theta}),y))$$

- The goal of a machine learning algorithm is to reduce this expected generalization error
- This quantity is known as risk

Empirical Risk

- True risk is $J^*(\theta) = E_{(x,y) \sim p_{\text{data}}} (L(f(x;\theta),y))$
 - If we knew $p_{\text{data}}(x,y)$ it would be optimization solved by an optimization algorithm
 - When we do not know $p_{\text{data}}(x,y)$ but only have a training set of samples, we have a machine learning problem
- Empirical risk, with m training examples, is

$$J(\boldsymbol{\theta}) = E_{(\boldsymbol{x},y) \sim \hat{p}_{\text{data}}} \left(L(f(\boldsymbol{x};\boldsymbol{\theta}),y) \right) = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),y^{(i)})$$

Empirical Risk Minimization

Empirical risk, with m training examples, is

$$J(\boldsymbol{\theta}) = E_{(\boldsymbol{x},y) \sim \hat{p}_{\text{data}}} \left(L(f(\boldsymbol{x};\boldsymbol{\theta}),y) \right) = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),y^{(i)})$$

- Which is the average training error
- Still similar to straightforward optimization
- But empirical risk minimization is not very useful:
 - 1. Prone to overfitting: can simply memorize training set
 - 2.SGD is commonly used, but many useful loss functions have 0-1 loss, with no useful derivatives (derivative is either 0 or undefined everywhere)
- We must use a slightly different approach
 - Quantity we must optimize is even more different from what we truly want to optimize

Challenges in Neural Network Optimization

Optimization is a difficult task

- Optimization is an extremely difficult task
 - Traditional ML: careful design of objective function and constraints to ensure convex optimization

 When training neural networks, we must confront the nonconvex case

Challenges in Optimization

- Summary of challenges in optimization
 - 1. III-conditioning
 - 2. Local minima
 - 3. Plateaus, saddle points and other flat regions
 - 4. Cliffs and exploding gradients
 - 5. Long-term dependencies
 - 6. Inexact gradients
 - 7. Poor correspondence between local & global structure
 - 8. Theoretical limits of optimization

1. Ill-conditioning of the Hessian

- Even when optimizing convex functions one problem is an ill conditioned Hessian matrix, *H*
 - Very general problem in optimization, convex or not

Condition number is the ratio of maximal and minimal eigenvalues of the

$$\operatorname{Hessian} \nabla^2 f(x) \,, \qquad \qquad \kappa \; = \; \frac{\lambda_{\max}}{\lambda_{\min}}$$

Problem with large condition number is called **ill-conditioned**

Steepest descent convergence rate is slow for ill-conditioned problems

Source: https://slideplayer.com/slide/4916524/

Result of Ill-conditioning

- Causes SGD to be stuck: even very small steps cause increase in cost function
 - Gradient descent step of $-\varepsilon g$ will add to the cost $-\varepsilon g^T g + \frac{1}{2}\varepsilon^2 g^T H g$

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}^{(0)}) + (\boldsymbol{x} - \boldsymbol{x}^{(0)})^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^{(0)})^T H(\boldsymbol{x} - \boldsymbol{x}^{(0)})$$
Substituting $\boldsymbol{x} = \boldsymbol{x}^{(0)} - \varepsilon \boldsymbol{g}$

$$f(\boldsymbol{x}^{(0)} - \varepsilon \boldsymbol{g}) \approx f(\boldsymbol{x}^{(0)}) - \varepsilon \boldsymbol{g}^T \boldsymbol{g} + \frac{1}{2} \varepsilon^2 g^T H \boldsymbol{g}$$

- III conditioning becomes a problem when $\frac{1}{2} \varepsilon^2 g^T H g > \varepsilon g^T g$
- To determine whether ill-conditioning is detrimental monitor g^Tg and g^THg terms
 - Gradient norm doesn't shrink but g^THg grows order of magnitude
- Learning becomes very slow despite a strong gradient

2. Local Minima

- In convex optimization, problem is one of finding a local minimum
- Some convex functions have a flat region rather than a global minimum point
- Any point within the flat region is acceptable
- With non-convexity of neural nets many local minima are possible
- Many deep models are guaranteed to have an extremely large no. of local minima
- This is not necessarily a major problem

Model Identifiability

- Model is identifiable if large training sample set can rule out all but one setting of parameters
 - Models with latent variables are not identifiable
 - Because we can exchange latent variables
 - If we have m layers with n units each there are $n!^m$ ways of arranging the hidden units
 - This non-identifiability is weight space symmetry
 - Another is scaling incoming weights and biases
 - By a factor α and scale outgoing weights by $1/\alpha$
- Even if a neural net has uncountable no. of minima, they are equivalent in cost
 - So not a problematic form of non-convexity

Deep Learning

3. Plateaus, Saddle Points etc

- More common than local minima/maxima are:
 - Another kind of zero gradient points: saddle points
 - At saddle, Hessian has both positive and negative values
 - Positive: cost greater than saddle point
 - Negative values have lower value
 - In low dimensions:
 - Local minima are more common
 - In high dimensions:
 - Local minima are rare, saddle points more common
- For Newton's saddle points pose a problem
 - Explains why second-order methods have not replaced gradient descent

Plateau and Ravine

Cost Function of Neural Network

- Visualizations are similar for
 - Feedforward networks
 - Convolutional networks
 - Recurrent networks

- Applied to object recognition and NLP tasks
- Primary obstacle is not multiple minima but saddle points
- Most of training time spent on traversing flat valley of the Hessian matrix or circumnavigating tall "mountain" via an indirect arcing path

4. Cliffs and Exploding Gradients

- Neural networks with many layers
- Have steep regions resembling cliffs
 - Result from multiplying several large weights
 - E.g., RNNs with many factors at each time step
- Gradient update step can move parameters extremely far, jumping off cliff altogether
- Cliffs dangerous from either direction
- Gradient clipping heuristics can be used

5. Long-Term Dependencies

- When computational graphs become extremely deep, as with
 - feed-forward networks with many layers
 - RNNs which construct deep computational graphs by repeatedly applying the same operation at each time step
- Repeated application of same parameters gives rise to difficulties

6. Inexact Gradients

- Optimization algorithms assume we have access to exact gradient or Hessian matrix
- In practice we have a noisy or biased estimate
 - Every deep learning algorithm relies on samplingbased estimates
 - In using minibatch of training examples
 - In other case, objective function is intractable
 - In which case gradient is intractable as well
 - Contrastive Divergence gives a technique for approximating the gradient of the intractable loglikelihood of a Boltzmann machine

7. Poor Correspondence between Local and Global Structure

- It can be difficult to make a single step if:
 - $-J(\theta)$ is poorly conditioned at the current point θ
 - $-\theta$ lies on a cliff
 - 0 is a saddle point hiding the opportunity to make progress downhill from the gradient
- It is possible to overcome all these problems and still perform poorly
 - if the direction that makes most improvement locally does not point towards distant regions of much lower cost

Need for good initial points

- Optimization based on local downhill moves can fail if local surface does not point towards the global solution
- Research directions are aimed at finding good initial points for problems with a difficult global structure

 $J(\boldsymbol{\theta})$

- Ex: no saddle points or local minima
 - Trajectory of circumventing

 such mountains may be long and result in excessive training time

8. Theoretical Limits of Optimization

- There are limits on the performance of any optimization algorithm we might design for neural networks
- These results have little bearing on the use of neural networks in practice
 - Some apply only to networks that output discrete values
 - Most neural networks output smoothly increasing values
 - Some show that there exist problem classes that are intractable
 - But difficult to tell whether problem falls in thet class