Федеральное государственное автономное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет: Институт издательского дела и журналистики Кафедра «Информатика и информационные технологии» Направление подготовки/ специальность: Информационные системы и технологии

ОТЧЕТ

по проектной практике

Студент: Федукина Мария Павловна			Группа: 241-334						
Место	прохождения	практики:	Московский	Политех,	кафедра				
«информатика и информационные технологии»									
Отчет пр	оинят с оценкой _		Дата						
Руковол	итель практики:	Рябчикова Ан	на Валерьевна						

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

- 1. Общая информация о проекте:
 - Название проекта
 - Цели и задачи проекта
- 2. Общая характеристика деятельности организации (заказчика проекта)
 - Наименование заказчика
 - Организационная структура
 - Описание деятельности
- 3. Описание задания по проектной практике

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

4. Описание достигнутых результатов по проектной практике

ЗАКЛЮЧЕНИЕ (выводы о проделанной работе и оценка ценности выполненных задач для заказчика)

ПРИЛОЖЕНИЯ (при необходимости)

ВВЕДЕНИЕ

1. Общая информация о проекте

Название проекта

Название проекта «CharCreator» - производное от двух английских слов (character – персонаж, герой; creator – создатель). По задумке название должно быть простым в произношении и запоминании как русской, так и английской аудитории, а также отражать суть проекта.

Цели и задачи проекта

Главной целью проекта является создание функционирующего сайта со встроенным визуальным редактором внешности персонажа для DnD. Для выполнения данной цели необходимо не только четко выстроить цепочку задач, но и осознавать, что из себя представляет DnD. DnD – это ролевая настольная игра в жанре фэнтези, в которой есть игроки и мастер. Игроки под руководством мастера отправляются в выдуманное приключение, ими персонажа. Для отыгрывая созданного ЭТОГО используются специальные листы персонажа, в которые записывается вся информация о нем, в том числе и его внешность. Таким образом, проект CharCreator это визуальный редактор внешности персонажа, изначально специализирующийся именно на игроках DnD. Для реализации данного проекта был поставлен ряд задач:

- Сбор и анализ информации:
 - о Опрос ЦА;
 - Анализ трендов и конкурентов;
 - о Создание карты пути пользователя;
- Создание и распределение технического задания (далее, Т3):
 - о ТЗ для дизайнеров проекта;
 - о ТЗ для программистов;

• Работа над дизайном:

- о Определение цветового решения;
- о Создание логотипа;
- о Создание макета сайта (как цифрового, так и бумажного);
- о Создание дизайна персонажей;
- Работа над технической частью:
 - о Определение языка программирования, домена и т.п.;
 - Разработка сайта и визуального редактора;
- Работа над социальными сетями:
 - о Создание группы ВКонтакте;
 - о Привлечение аудитории;
 - Оформление постов, работа над их регулярным выходом и поиск нового контента.

Актуальность проекта

Актуальность проекта обусловлена ростом популярности настольной игры DnD. Рост популярности настольной игры приводит к притоку новых игроков, которые не привыкли к традиционной записи статистики своего игрового персонажа и поиску информации об игре в объемной Книге Игрока или Мастера, поэтому стремятся его оптимизировать: именно благодаря этому существуют сейчас такие сайты как «Long Story Short» и «dnd.su». Однако их функционал не подразумевает визуального редактора внешности персонажа. Существуют другие сайты, содержащие в себе подобный функционал, однако, по тем или иным причинам они недостаточно соответствуют требованиям игроков, ЧТО доказал проведенный анализ конкурентов и трендов. Именно поэтому создание визуального редактора внешности персонажа является проблемой.

2. Общая характеристика деятельности организации (заказчика проекта)

Наименование заказчика

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Политехнический Университет».

Организационная структура

Организационная структура университета включает в себя несколько ключевых компонентов:

- административное управление (ректорат, отделы по учебной и научной деятельности);
- структурные подразделения факультеты и институты, формирующие образовательный и исследовательский контент;
- центр дополнительного профессионального образования, обеспечивающий реализацию программ вне рамок основной учебной нагрузки.

Описание деятельности

Московский Политех осуществляет образовательную деятельность в рамках программ бакалавриата, магистратуры и дополнительного профессионального образования. Университет предлагает широкий спектр учебных направлений – от технических и инженерных до гуманитарных и цифровых, а также развивает курсы переподготовки и повышения квалификации. Одной ИЗ задач, стоящих университетом, является необходимость создания более эффективной, централизованной системы администрирования программ дополнительного образования, что открывает перспективы для цифровизации и автоматизации учебных процессов.

3. Описание задания по проектной практике

В рамках проектной практики было поставлено задание разработать вебпродукт, тематически связанный с основным проектом, который выполнялся на «Проектной деятельности». Практика включала как базовую, так и вариативную части и предусматривала не только техническую реализацию, но и оформление сопроводительной документации.

Проект выполнялся индивидуально. Вся работа — от планирования структуры до наполнения контентом и публикации — велась мной самостоятельно, с использованием репозитория на GitHub (https://github.com/uneverdreamed/project-practice-site), что обеспечивало контроль версий и прозрачность хода разработки.

Базовая часть задания включала:

- инициализацию и настройку репозитория проекта;
- создание сайта с помощью статического генератора Hugo;
- реализацию нескольких разделов, включая главную страницу, страницу «О проекте», «Журнал» и «Ресурсы»;
- работу с шаблонами темы оформления (Ananke), адаптацию структуры сайта под цели проекта;
- размещение на сайте материалов проекта: презентации, графических ресурсов, игровых правил и ссылок;
- оформление проектной документации и итогового отчёта.

В процессе работы мной была выполнена настройка сайта на Нидо, подобрана и подключена тема оформления, организована структура контента (в том числе через каталоги content, static и layouts), а также подготовлены страницы с использованием синтаксиса Markdown. В разделе «Журнал» были опубликованы записи, отслеживающие ход разработки, в «Ресурсах» — выложены вспомогательные материалы, необходимые для ознакомления с проектом. Кроме того, были созданы главная страница с

общей информацией о проекте и страница с описанием участников. Все страницы сопровождаются фотографиями и визуально понятным оформлением, соответствующим общей стилистике проекта.

Проект создавался с нуля и стал логическим продолжением работы, выполненной в течение года в рамках основного проекта «CharCreator». В результате была подготовлена полноценная веб-страница, выполняющая функцию цифровой презентации и хранилища материалов проекта.

Вариативная часть включала разработку простой нейросетевой модели на языке Python, способной предсказывать следующий ход противника в игре «Камень-ножницы-бумага» на основе истории предыдущих раундов. Цель заключалась в демонстрации базовых принципов машинного обучения: подготовки данных, построения модели, обучения и оценки её качества.

Работа выполнялась индивидуально. Основные этапы включали:

- Формирование обучающего датасета: были собраны и размечены синтетические представляющие собой реальные данные, последовательности ходов игрока и противника. Дополнительно реализована функция генерации правдоподобных последовательностей на вероятностных правил, основе имитирующих поведение игрока.
- Предобработка данных и кодирование признаков: каждый ход преобразовывался в вектор в формате one-hot. На основе истории длиной N (в финальной версии 5 раундов) формировались входные признаки, учитывающие как действия самого игрока, так и его оппонента.

- Разработка архитектуры нейросети: была построена простая двухслойная модель с одним скрытым слоем. Входной слой принимал кодированные данные, скрытый слой активировался функцией sigmoid, выходной softmax с тремя нейронами (для «Камня», «Ножниц» и «Бумаги»). Использовалась кросс-энтропийная функция потерь и L2-регуляризация.
- Реализация обучения модели с нуля: все операции реализованы вручную без использования готовых фреймворков, что позволило глубже понять принципы работы нейросетей.
- Проведение обучения и анализ результатов: модель обучалась на 80% данных, а точность проверялась на отложенной тестовой выборке (20%). Итоговая точность на тесте составила около 41%, что существенно превышает случайное угадывание (33%). Также были построены график снижения ошибки и матрица неточностей.
- Формулировка выводов и ограничений: дальнейшее повышение точности потребует перехода к более сложным архитектурам расширения обучающего набора. Работа продемонстрировала базовые возможности ИИ в предсказании шаблонного поведения в игре и может быть использована как основа для дальнейших экспериментов.

4. Описание достигнутых результатов по проектной практике

В рамках выполнения проектной практики мной был разработан сайт проекта с использованием генератора статических сайтов Hugo. Это позволило не только ускорить процесс создания сайта, но и получить опыт работы с современными веб-инструментами. Создана и оформлена структура репозитория на GitHub, в том числе добавлен ключевой файл README.md, поясняющий содержание проекта.

Разработан полноценный сайт, включающий пять основных разделов:

• Главная страница (main) – краткое описание проекта и его цели;

- **О проекте** (about) подробный текст о замысле, актуальности, этапах и результатах;
- **Участники** (team) информация об авторах проекта;
- Журнал (blog) записи, отражающие ход выполнения работы;
- **Ресурсы** (resources) вспомогательные материалы, включая правила настольной игры, презентацию, ссылки на фигму и соцсети.

Каждая страница оформлена c использованием Markdown И интегрирована в структуру сайта Hugo. Визуально сайт построен на базе темы Ananke, поддерживающей адаптивность и простоту восприятия. Хотя задуманный внешний не удалось полностью реализовать вид, использование Hugo соответствовало методическим рекомендациям, в которых прямо указывается, что генераторы сайтов (в особенности Hugo) являются предпочтительным вариантом при наличии базовых навыков HTML/CSS.

В рамках вариативной части практики, была разработана простая нейросетевая модель на языке Python, предсказывающая следующий ход противника в игре «Камень-ножницы-бумага» на основе истории предыдущих раундов:

- кодировка входных данных в формате one-hot (ходы игрока и соперника за 5 последних раундов);
- двухслойная архитектура: скрытый слой с 16 нейронами и сигмоидой,
 выходной слой с функцией softmax;

Дополнительно были реализованы модули, обеспечивающие полноценную работу и оценку модели:

- генерация обучающих данных с ограничением на повтор ходов;
- обучение нейросети с нуля методом обратного распространения ошибки (backpropagation);
- визуализация процесса обучения (график ошибки), а также оценка точности предсказания и построение confusion matrix;
- демо-режим, позволяющий сыграть против обученной модели (отключено по умолчанию).

Приобретенные навыки:

1) Работа с Git и GitHub

- Создание и структурирование репозитория проекта
- Ведение истории изменений и работа с коммитами
- Размещение проекта в удалённом репозитории

2) Работа с генераторами сайтов (Hugo)

- Установка и настройка Нидо
- Использование темы оформления (Ananke), адаптация шаблонов
- Paбoтa c Markdown и параметрами конфигурации (config.toml)
- Создание структуры сайта и страниц на основе шаблонов

3) Основы веб-разработки

- Написание и редактирование HTML и CSS
- Интеграция медиа-контента (изображений, логотипов, фоновых изображений)
- Попытка настройки визуальной части сайта (цветовая схема, фон и т.п.)

4) Python-разработка

• Работа с массивами и матрицами при кодировании входных данных (one-hot)

- Реализация собственной нейросети с нуля, включая прямой и обратный проход
- Создание инструментов для анализа данных и визуализации результатов обучения (matplotlib)

5) Документирование проекта

- Подготовка и оформление текстов для сайта
- Структурирование информации в формате Markdown
- Составление итогового отчета по проектной практике

ЗАКЛЮЧЕНИЕ

Проектная практика стала для меня важным этапом в профессиональном и личном развитии. Она позволила не только применить полученные ранее знания на практике, но и попробовать себя в роли разработчика полноценного цифрового продукта — от проектирования структуры до технической реализации и финального оформления.

Работа над сайтом проекта дала возможность освоить генератор статических сайтов Hugo, научиться организовывать структуру проекта, работать с шаблонами и конфигурационными файлами, а также размещать контент с помощью языка разметки Markdown. Несмотря на то что мне не удалось в полной мере реализовать изначально задуманную визуальную концепцию сайта (в частности, настройку фона и цветовой схемы), я получила полезный опыт адаптации готовых тем и настройки внешнего вида с помощью CSS и параметров Hugo.

Особую ценность имела реализация вариативной части задания — нейросетевой модели на Python. Работа над ней потребовала глубокого погружения в основы машинного обучения, включая подготовку и обработку данных, разработку архитектуры модели и реализацию обучения с нуля. Это позволило не только лучше понять алгоритмы работы нейросетей, но и развить навыки работы с числовыми данными, логикой программирования и визуализацией результатов.

Также в рамках проекта я освоила базовые принципы работы с Git и GitHub, что обеспечило прозрачность и управляемость процесса разработки. Подготовка отчета и оформление сайта помогли систематизировать знания, улучшить навыки технического письма и визуального представления информации.

Несмотря на отсутствие командной работы, выполнение всех этапов проекта в одиночку дало ценный опыт самоуправления, планирования и решения нестандартных задач. Уверена, что этот проект станет важной вехой в моей учебной и будущей профессиональной деятельности. Полученные знания и навыки обязательно найдут применение в дальнейших образовательных и практических задачах, особенно в сфере разработки пользовательских интерфейсов и интеллектуальных систем.

Подтверждаю, что отчет выполнен лично и соответствует требованиям практики

Федукина Мария Павловна

23.05.2025

подпись

ФИО

дата

СПИСОК ЛИТЕРАТУРЫ

- 1) Купер Нейт, Джи Ким. *Как создать сайт: Пошаговое руководство для начинающих.* М.: Манн, Иванов и Фербер, 2016.
- 2) How Many People Play D&D in 2024? (User & Growth Stats) // Fiction Horizon. URL: https://fictionhorizon.com/how-many-people-play-dd/
- 3) *Hugo Quick Start Guide* Официальная документация Hugo. URL: https://gohugo.io/getting-started/quick-start/
- 4) *Hugo Documentation* Полная документация по Hugo. URL: https://gohugo.io/documentation/
- 5) Ananke Theme for Hugo GitHub репозиторий темы Ananke. URL: https://github.com/theNewDynamic/gohugo-theme-ananke
- 6) *Pro Git* (Scott Chacon and Ben Straub). 2nd Edition. Apress, 2014. URL: https://git-scm.com/book/en/v2
- 7) Markdown Guide Полное руководство по синтаксису Markdown. URL: https://www.markdownguide.org/basic-syntax/
- 8) Matplotlib Documentation Официальная документация библиотеки Matplotlib. URL: https://matplotlib.org/stable/index.html

ПРИЛОЖЕНИЯ

Добро пожаловать на сайт проекта **CharCreator!**

Цель проекта — создать функционирующий сайт со встроенным визуальным редактором внешности персонажа для **Dungeons & Dragons (DnD)**.

Для успешной реализации необходимо не только выстроить чёткую последовательность задач, но и понимать, что представляет собой сама система DnD

Рисунок 1 - страница таіп 1

Что такое DnD?

Dungeons & Dragons — это настольная ролевая игра в жанре фэнтези, в которой участники (игроки) совместно с ведущим (мастером) отправляются в вымышленное приключение. Каждый игрок отыгрывает собственного персонажа, все характеристики которого (включая внешность) записываются в специальный лист персонажа.

Что делает CharCreator?

CharCreator — это визуальный редактор, который помогает быстро и удобно создать внешность персонажа для игры в DnD. Наш проект облегчает процесс подготовки к сессии и делает его более увлекательным и наглядным.

Рисунок 2 - страница таіп 2

О проекте

ГЛАВНАЯ СТРАНИЦА

О проекте

О проекте CharCreator

CharCreator — это визуальный редактор внешности персонажа для настольной ролевой игры Dungeons

Рисунок 3 - страница about 1

О проекте CharCreator

CharCreator — это визуальный редактор внешности персонажа для настольной ролевой игры Dungeons and Dragons (DnD). Цель проекта — упростить процесс создания образа персонажа для игроков, предоставив удобный онлайн-инструмент с элементами визуального редактирования.

Рисунок 4 - страница about 2

Цели проекта

- Создание сайта с визуальным редактором внешности персонажа для DnD.
- Анализ потребностей целевой аудитории (ЦА) и актуальности проекта.
- Разработка дизайна и технической части проекта.

Основные задачи

- 1. Исследование:
 - Анализ ЦА;

Рисунок 5 - страница about 3

• Построение карты пути пользователя.

2. Проектирование:

- Постановка технического задания (ТЗ) для дизайнеров и разработчиков;
- Разработка логотипа, цветовой палитры, макета сайта и дизайна персонажей.

3. Реализация:

- Создание набора деталей внешности;
- Разработка сайта и визуального редактора;
- Поддержка и развитие социальных сетей (например, группы ВКонтакте).

Рисунок 6 - страница about 4

С ростом популярности DnD растёт и потребность в удобных онлайнинструментах. Существующие ресурсы либо не предоставляют визуального редактора, либо не соответствуют ожиданиям пользователей. Это делает CharCreator актуальным и востребованным решением.

Рисунок 7 - страница about 5

Рисунок 8 - страница team 1

Дизайнеры интерфейса

Имя	Группа
Попова Екатерина Дмитриевна	231-821
Правдолюбова Анастасия Андреевна	231-331
Прокопова Варвара Константиновна	241-332
Федукина Мария Павловна	241-334

Художники

Имя	Группа
Брыскина Сабина Александровна	231-023
Денисова Софья Алексеевна	231-023
Манушина Ксения Дмитриевна	231-821
Попова Екатерина Дмитриевна	231-821

Рисунок 9 - страница team 2

Художники

Имя	Группа
Брыскина Сабина Александровна	231-023
Денисова Софья Алексеевна	231-023
Манушина Ксения Дмитриевна	231-821
Попова Екатерина Дмитриевна	231-821
Суздалева Дарья Евгеньевна	231-023
Хильченко Полина Денисовна	231-023
Федукина Мария Павловна	241-334

Рисунок 10 - страница team 3

SMM

Рисунок 11 - страница team 4

Рисунок 12 - страница blog 1

Рисунок 13 - страница blog 2

Рисунок 14 - страница resources 1

Рисунок 15 - страница resources 2

```
import numpy as np
import matplotlib.pyplot as plt
opponent moves = ['H',
def generate smart sequence(length=100):
   sequence = []
          choices = [m for m in moves if m != sequence[-1]]
      elif len(sequence) >= 2 and sequence[-1] == sequence[-2]:
```

```
choices = [m for m in moves if m != sequence[-1]]
               next move = sequence[-1]
               choices = [m for m in moves if m != sequence[-1]]
               next move = random.choice(moves)
       sequence.append(next move)
smart my moves = generate smart sequence(500)
smart opponent moves = generate smart sequence(500)
rps_to_russian = {'R': 'K', 'P': 'B', 'S': 'H'}
smart my moves = [rps to russian[m] for m in smart my moves]
smart opponent moves = [rps to russian[m] for m in smart opponent moves]
my moves += smart my moves
opponent moves += smart opponent moves
move to int = \{'K': 0, 'H': 1, 'B': 2\}
int to move = {0: 'Камень', 1: 'Ножницы', 2: 'Бумага'}
history size = 5 # сколько прошлых ходов учитывать
    opp history = opponent moves[i - history size:i]
       onehot my[move to int[m]] = 1
       encoded.extend(onehot my)
       onehot opp = [0, 0, 0]
       onehot opp[move to int[o]] = 1
       encoded.extend(onehot opp)
    X.append (encoded)
    y.append(move to int[opponent moves[i]])
X = np.array(X)
y = np.array(y)
y 	ext{ onehot} = np.eye(3)[y]
```

```
x = np.clip(x, -500, 500)
    if deriv:
    return exp x / np.sum(exp x, axis=1, keepdims=True)
    return np.argmax(12, axis=1)
input size = history size * 3 * 2 # 3 значения (К,Н,Б) * 2 игрока *
hidden size = 16
output size = 3
np.random.seed(42)
syn0 = 2 * np.random.random((input size, hidden size)) - 1 # веса вход ->
syn1 = 2 * np.random.random((hidden size, output size)) - 1 # веса скрытый
learning_rate = 0.01
epochs = 5000
12 \quad lambda = 0.01
loss history = []
for epoch in range(epochs):
    11 = \overline{\text{sigmoid}}(\text{np.dot}(10, \text{syn0}))
    syn0 += (10.T.dot(11 delta) - 12 lambda * syn0) * learning rate
    loss history.append(loss)
    y pred = predict(X)
```

```
y_true = np.argmax(y_true_onehot, axis=1)
accuracy = accuracy_score(y_true, y_pred)
train accuracy, train cm = evaluate model(X train, y train)
test accuracy, test cm = evaluate model(X test, y test)
print(f"\nTrain Accuracy: {train_accuracy:.2%}")
plt.plot(loss history)
\operatorname{plt.title}("График ошибки при обучении")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
```

Приложение 16 – листинг нейросети

Рисунок 16 - вывод при запуске