# Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto

January 11, 2024

# Outline

- Introduction
- 2 Model
- Benchmarks
- 4 Offer design
- 5 Random monopoly payoff bound
- 6 The Gap
- Conclusions



- Business partners want to cease partnership. Their firm cannot be divided, and if one partner keeps it, the other expects a compensation.
- Two countries negotiate a peace treaty, with land swaps and reparations (or economic aid) on the table.
- Coalition parties negotiate an agreement with a support for policy traded off against number of cabinet positions.
- https://bwm-payoffs.streamlit.app/

- Bargaining one of the longest-studied problems in economic theory ("bilateral monopoly" before [Nash 50])
- No satisfactory solution for incomplete information:
  - cooperative solutions: (Harsanyi 72), (Myerson 84),
  - large literature on bargaining over prices:
    - one-sided: uniqueness in Coasian bargaining with a gap,
    - two-sided: large set of equilibria, possible refinements to eliminate some (Ausubel, Crampton, Deneckere 02 and others).
- Goal: show that a natural modification of a standard random-proposer bargaining has a "unique" outcome under
  - single good plus transfers environment,
  - private values (two types for each player).

- Bargaining with sophisticated offers in real world
  - menus,
  - menus of menus ("I divide, you choose"),
  - mediation, arbitration (example: "trial by gods"),
  - change in bargaining protocols,
  - deadlines or delays, etc.
- Challenges:
  - how to model mechanisms as actions?
  - signaling.

- Three benchmarks:
- Complete information (Rubinstein 84)
- Informed principal with private values (Maskin Tirole, 90)
  - informed principal types get their monopoly payoff,
  - private information of the principal does not matter in private values case.
- One-sided incomplete information (Peski 22),
  - uninformed player and some of the informed player types get random monopoly payoff,

Results

• Suppose each player has two types and, w.l.o.g., that  $l_1 < l_2$ .

Results

- Suppose each player has two types and, w.l.o.g., that  $l_1 < l_2$ .
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As  $\delta \to 1$ , ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

#### Results

- Suppose each player has two types and, w.l.o.g., that  $l_1 < l_2$ .
- **Theorem 1**: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As  $\delta \to 1$ , ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

#### Results

- Suppose each player has two types and, w.l.o.g., that  $l_1 < l_2$ .
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As  $\delta \to 1$ , ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

# Outline

- Introduction
- 2 Model
  - Bargaining game
  - Mechanisms and Implementation
  - Equilibrium
  - Commitment
- Benchmarks
- 4 Offer design
- 5 Random monopoly payoff bound
- 6 The Gap

#### Environment

- Two players i = 1, 2, sometimes third player ("mediator").
- Single good and transfers
- Preferences:  $q_i t_i \tau_i$ ,
  - t<sub>i</sub> type (valuation) of player i,
  - $q_i$  probability that pl. i gets the good,
  - $\tau_i$  transfer from player i
  - feasibility:  $q_1 + q_2 \le 1$ ,  $q_i \ge 0$ ,  $\tau_1 + \tau_2 \le 0$ ,

#### Bargaining game

## Bargaining game

- ullet multiple rounds until offer is accepted, discounting  $\delta < 1$ ,
- random proposer: player i is chosen with prob.  $\beta_i \geq 0$ , where  $\beta_1 + \beta_2 = 1$ ,
- proposer offers a mechanism,
- if the offer is accepted, it is implemented, and the bargaining game ends.
- Perfect Bayesian Equilibrium:
  - no updating beliefs about player i after -i's action.
  - public randomization plus cheap talk.



• Payoff vector  $u\left(.|q,\tau\right) \in R^{T_1 \cup T_2}$  in allocation  $q_i\left(.\right), \tau\left(.\right)$ :

$$u_{i}\left(t_{i}|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_{i}q_{i}\left(t_{i},t_{-i}
ight)- au_{i}\left(t_{i},t_{-i}
ight)
ight)$$
 for each  $t_{i}$ .

• Allocation  $q_i(.), \tau(.)$  is IC given beliefs p iff

$$u_i\left(t_i|q, au
ight)\geq \sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$$
 for each  $t_i,s_i$ .

Correspondence of feasible and IC payoffs

$$\mathcal{U}\left(p\right) = \left\{u\left(.|q,\tau\right): \left(q,\tau\right) \text{ is IC given } p\right\} \subseteq R^{T_1 \cup T_2}.$$



• Payoff vector  $u\left(.|q,\tau\right) \in R^{T_1 \cup T_2}$  in allocation  $q_i\left(.\right), \tau\left(.\right)$ :

$$u_{i}\left(t_{i}|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_{i}q_{i}\left(t_{i},t_{-i}
ight)- au_{i}\left(t_{i},t_{-i}
ight)
ight)$$
 for each  $t_{i}$ .

• Allocation  $q_i(.), \tau(.)$  is IC given beliefs p iff

$$u_i\left(t_i|q, au\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_iq_i\left(s_i,t_{-i}\right) - au_i\left(s_i,t_{-i}\right)\right) \text{ for each } t_i,s_i.$$

Correspondence of feasible and IC payoffs

$$\mathcal{U}\left(p\right) = \left\{u\left(.|q,\tau\right): \left(q,\tau\right) \text{ is IC given } p\right\} \subseteq R^{T_1 \cup T_2}.$$

• Payoff vector  $u\left(.|q,\tau\right) \in R^{T_1 \cup T_2}$  in allocation  $q_i\left(.\right), \tau\left(.\right)$ :

$$u_{i}\left(t_{i}|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_{i}q_{i}\left(t_{i},t_{-i}
ight)- au_{i}\left(t_{i},t_{-i}
ight)
ight)$$
 for each  $t_{i}$ .

• Allocation  $q_i(.), \tau(.)$  is IC given beliefs p iff

$$u_i\left(t_i|q, au\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_iq_i\left(s_i,t_{-i}\right) - au_i\left(s_i,t_{-i}\right)\right) \text{ for each } t_i,s_i.$$

Correspondence of feasible and IC payoffs:

$$\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$$

• Payoff vector  $u(.|q,\tau) \in R^{T_1 \cup T_2}$  in allocation  $q_i(.), \tau(.)$ :

$$u_{i}\left(t_{i}|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_{i}q_{i}\left(t_{i},t_{-i}
ight)- au_{i}\left(t_{i},t_{-i}
ight)
ight)$$
 for each  $t_{i}$ .

• Allocation  $q_i(.), \tau(.)$  is IC given beliefs p iff

$$u_i\left(t_i|q, au\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_iq_i\left(s_i,t_{-i}\right) - \tau_i\left(s_i,t_{-i}\right)\right) \text{ for each } t_i,s_i.$$

Correspondence of feasible and IC payoffs:

$$\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$$

• Payoff vector  $u(.|q,\tau) \in R^{T_1 \cup T_2}$  in allocation  $q_i(.), \tau(.)$ 

$$u_i\left(t_i|q, au
ight)=\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(t_i,t_{-i}
ight)- au_i\left(t_i,t_{-i}
ight)
ight)$$
 for each  $t_i$ 

• Allocation  $q_i(.), \tau(.)$  is IC given beliefs p iff

$$u_i\left(t_i|q, au
ight)\geq \sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$$
 for each  $t_i,s_i$ .

Correspondence of feasible and IC payoffs:

$$\mathcal{U}\left(p\right) = \left\{u\left(.|q,\tau\right): \left(q,\tau\right) \text{ is IC given } p\right\} \subseteq R^{T_1 \cup T_2}.$$



#### Mechanisms

- Game G:
  - players: 1, 2, and mediator (whose payoff is a non-negative transfer),
  - finite or compact actions,
  - continuous outcome function that maps actions to an allocation of a good and a transfer,
  - always assume public randomization.
- For each p, the set of equilibrium payoff vectors

$$m(p;G)\subseteq \mathcal{U}(p)$$
.

Equilibrium correspondence:

$$m(.;G):\Delta T \Rightarrow R^{T_1\cup T_2}, m_G \subseteq \mathcal{U}.$$



#### Mechanisms

- Real mechanism is a correspondence m for which there exists a game G such that m = m(.; G).
- Real mechanism m is
  - u.h.c.,
  - $m \subseteq \mathcal{U}$ ,
  - non-empty-valued, and
  - convex valued.

- (Abstract) mechanism is correspondence m st.
  - *m* is u.h.c.,
  - $m \subseteq \mathcal{U}$ ,
  - non-empty valued,
  - it can be approximated by continuous functions  $m_n: \Delta T \to R^{T_1 \cup T_2}$ ,  $m_n \subseteq \mathcal{U}$  such that

$$\lim_{n\to\infty}\max_{p}\min_{v,q:v\in m(q)}d\left(\left(m_{n}\left(p\right),p\right),\left(v,q\right)\right)=0,$$

where d is the Euclidean distance on  $\Delta T \times R^{T_1 \cup T_2}$ .

• The space of mechanism is compact\* under Hausdorff distance induced by *d*.

## Theorem

Any real mechanism is an (abstract) mechanism.

For any (abstract) mechanism m, there is a sequence of real mechanisms  $m_n$  that "approximate" m:

$$\lim_{n\to\infty}\max_{u,p:u\in m_n(p)}\min_{v,q:v\in m(q)}d\left(\left(u,p\right),\left(v,q\right)\right)=0.$$

- First part: use Michael's Theorem.
- Second part: construct a game:
  - mediator names the beliefs p,
  - given p, use virtual Bayesian implementation of (Abreu Matsushima 92).

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_{i}(m) = MM_{i} \{MM_{-i} \{n, m\} : n \text{ is a mechanism}\}$$



- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$ .
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{n, m\} : n \text{ is a mechanism}\}$$



- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{n, m\} : n \text{ is a mechanism}\}$$



- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$ .
- $\delta m$  discounted mechanism m.
- $I_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{ MM_{-i} \{ n, m \} : n \text{ is a mechanism} \}$$



- Given a mechanism or a set of mechanisms, we can construct new ones:
- ullet  $lpha\in\Delta A$  randomly chosen mechanism according to distribution lpha
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_{i}(m) = MM_{i} \{MM_{-i} \{n, m\} : n \text{ is a mechanism}\}$$



- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i (including p.r. and cheap talk by i).
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{ MM_{-i} \{ n, m \} : n \text{ is a mechanism} \}$$



#### Bargaining game

 $\bullet$  Bargaining mechanism : the largest fixed point  ${\cal B}$  of

$$\mathcal{B} = \left(\textit{IP}_1\left(\delta\mathcal{B}\right)\right)^{\beta_1}\left(\textit{IP}_2\left(\delta\mathcal{B}\right)\right)^{\beta_2}$$

# Model Equilibrium

## Equilibrium: definition

- modular (one-shot deviation principle), extends to the existence in bargaining game,
- $\bullet$  PBE = WPBE + "no updating after the other player actions",
- if restricted to real mechanisms, approximate (i.e.,  $\varepsilon$ -like) equilibrium.
- Equilibrium: existence
  - space of (abstract) mechanisms is compact,
  - if A finite, approximate each mechanism by a payoff function and apply Brouwer FPT,
  - extend to compact A (cheap talk is important),
  - public randomization is important.

#### Commitment

- Players are not committed to future offers.
- Players are committed to implementing a mechanism once offered and accepted:
  - hence, less commitment than in the limited commitment literature (V. Skreta and L. Doval).
- Relevant for many situations
  - good allocation with no backsies,
  - bargaining over protocol,
- Lack of commitment is a restriction on the space of mechanisms,
- Commitment is not necessarily helpful to the agent who can exercise it.

# Outline

- Introduction
- 2 Model
- Benchmarks
  - Benchmark 1: Complete information
  - Benchmark 2: Informed principal
  - Benchmark 3: One-sided incomplete information
- 4 Offer design
- 5 Random monopoly payoff bound
- The Gap

# **Benchmarks**

#### Complete information bargaining

- Claim: Assume  $t_1 < t_2$  are known. Then, in each equilibrium, player i gets  $\beta_i t_2$ .
- Special features:
  - linearly transferable payoffs,
  - endogenous interdependent value:
    - total surplus =  $t_2$ ,
    - each player gets share of surplus equal to their bargaining power:

# **Benchmarks**

## Complete information bargaining

- Claim: Assume  $t_1 < t_2$  are known. Then, in each equilibrium, player i gets  $\beta_i t_2$ .
- **Proof**: Suppose i = 1 (the other argument is analogous). Let

$$x^* = \frac{1}{t_2} \min_{u \in \mathcal{B}} u_1.$$

- If  $x^* < \beta_1$ , player 1 has a profitable deviation:
  - reject any offer of player 2,
  - player 1 offer: player 2 gets the good and pays  $(1 \delta(1 x^*)) t_2$  to player 1,
  - the offer will be accepted.

- (Random) informed principal with private values ( $\beta_i = 1$  or  $\delta = 0$ ):
  - monopoly payoff:

$$M(t_i; p_{-i}) = \max_{\tau} p_{-i} (t_{-i} \leq \tau) t_i + (1 - p_{-i} (t_{-i} \leq \tau)) \tau,$$

- If player i is a proposer, she offers the monopoly price to -i, which is accepted (the game ends),
- *i*'s expected payoff is  $M(t_i; p_{-i})$ .
- Special features:
  - ullet continuation value =0 (and it does not depend on beliefs)
  - private information of the principal does not matter due to private values.

# **Benchmarks**

## One-sided incomplete information

- One-sided incomplete  $(p_i \in \{0,1\}, i.e., i \text{ is uninformed})$ :
- The equilibrium payoffs are unique and implemented by random monopoly mechanism:
  - with probability  $\beta_j$ , agent j gets the good:
  - if so, she offers monopoly price to -j,
  - player i's expected payoff of  $\beta_i M(t_i; p_{-i})$ ,
  - some player -i's types may get a bit more than  $\beta_{-i}M(t_{-i};p_i)$ ,
- Special features:
  - random monopoly mechanism is interim efficient.

## Outline

- Offer design
  - First problem: accept or reject decisions
  - Second problem: belief updating

ullet i makes an offer, -i decides whether to accept or reject:

$$IP_{i}\left(m\right)=MM_{i}\left\{ MM_{-i}\left\{ m,a\right\} :a\text{ is mechanism}\right\} .$$

- Offer design:
  - making offers that are refused is inefficient due to surplus-burning delay,
  - control: offers should be be accepted exactly as they are.
- Two problems:
  - $\Rightarrow$  player -i may have reasons to refuse the offer,
  - signaling: (possibly, off-path) offers lead to belief updating  $p_i \rightarrow q_i$ .

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.



#### Definition

Mechanism a is an offer that player -i cannot refuse given m, if  $\forall p_i, p_{-i}, q_{-i}, \forall u \in a(p_i, p_{-i})$ , and  $\forall v \in m(p_i, q_{-i})$ ,

u is  $q_{-i}$ -undominated by v.

(i.e., there is a  $q_{-i}$ -positive prob. type  $t_{-i}$  such that  $u_{-i}(t_{-i}) \geq v_{-i}(t_{-i})$ ).

 Compare with SUPO allocations in (Maskin Tirole 90) and strong neologism proof allocations in (Mylovanow Troger 14). Offers that cannot be refused

#### Lemma

Suppose that a is an offer that player -i strictly cannot refuse given mechanism m and

- a is a payoff function,
- $I_{-i}(a) = a$ . Then,

 $MM_{-i}\{m,a\}\subseteq a.$ 

Offers that cannot be refused: Existence

• For any two mechanisms m and a, there alwars exists a continuous  $w:\Delta \mathcal{T} \to \mathbb{R}$  such that

$$(a +_{-i} w)_{j}(p) = \begin{cases} a_{i}(p) + w(p) & j = -i \\ a_{i}(p) - w(p) & j = i \end{cases}$$

cannot be refused by -i given continuation m.

#### Mixing and matching offers that cannot be refused

- Two problems:
  - player -i may have reasons to refuse the offer,
  - ullet  $\Rightarrow$ signaling: (possibly, off-path) offers lead to belief updating  $p_i o q_i$ .
- Consider informed principal problem with continuation m and suppose that  $MM_{-i}\{m,a\}\subseteq a$ .
  - informally, the principal should get at least a.
  - but, belief updating :(
- If  $u \in IP_i(m)(p_i, p_{-i})$ , then there must be  $q_i$  and  $v \in a(q_i, p_{-i})$  st.  $u_i \ge v_i$ .

Mixing and matching offers that cannot be refused

ullet Suppose that a, b are offers that cannot be refused given m



Mixing and matching offers that cannot be refused

ullet Suppose that a, b are offers that cannot be refused given m



Mixing and matching offers that cannot be refused

ullet Suppose that a, b are offers that cannot be refused given m



Mixing and matching offers that cannot be refused

• Suppose that a, b are offers that cannot be refused given m



## Outline

- Introduction
- 2 Model
- Benchmarks
- 4 Offer design
- Sandom monopoly payoff bound
  - Random monopoly bound
  - Proof
- 6 The Gap

- From now on, assume two types for each player  $T_i = \{l_i, h_i\}$ :
  - $p_i$  probability of type  $h_i$ .
- W.I.o.g.  $I_1 < I_2$ . I focus on

$$0 \le l_1 < l_2 < h_1 < h_2.$$

#### Theorem

For each  $\delta < 1$ , each  $u \in \mathcal{B}\left( p \right)$ , each player i, each  $t_{i}$ ,

$$u_i(t_i) \geq \beta_i M_i(t_i; p_{-i})$$

.

- Each player gets at least their random monopoly payoff.
- In many cases, Theorem 2 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
  - $\beta_i \in \{0, 1\}$ ,
  - $p_i \in \{0,1\}$  for one of the players,
  - $l_1 = l_2$  or  $l_2 = h_1$  or  $h_1 = h_2$ .
- In general, there is a gap between random monopoly payoffs and efficiency.

- The idea is to reproduce the complete info argument. Fix player i.
- The smallest equilibrium random monopoly share:

$$x^* = \min_{u \in \mathcal{B}} \min_{t_i} \frac{u_i}{M_i(t_i; p_{-i})}.$$

Proof:

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right)=\left\{ u\in\mathcal{U}\left(p\right):u_{i}\geq xM_{i}\left(.;p_{-i}
ight)
ight\} .$$

Then,

$$\mathcal{B}\subseteq A_{x^*}^i$$
.

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i.$$

• Instead of delay, with prob.  $\delta$ , deliver the payoffs now, and, with prob.  $1-\delta$ , give player i his monopoly payoff.

Proof:

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right)=\left\{ u\in\mathcal{U}\left(p\right):u_{i}\geq xM_{i}\left(.;p_{-i}
ight)
ight\} .$$

Then,

$$\mathcal{B}\subseteq A_{x^*}^i$$
.

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i.$$

• Instead of delay, with prob.  $\delta$ , deliver the payoffs now, and, with prob.  $1-\delta$ , give player i his monopoly payoff.



• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right)=\left\{ u\in\mathcal{U}\left(p\right):u_{i}\geq xM_{i}\left(.;p_{-i}\right)\right\} .$$

Then,

$$\mathcal{B} \subseteq A_{x^*}^i$$
.

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i$$
.

• Instead of delay, with prob.  $\delta$ , deliver the payoffs now, and, with prob.  $1 - \delta$ , give player i his monopoly payoff.

- Goal: find mechanism a st.
  - ullet a cannot be refused given  $A^i_{1-\delta(1-x^*)}$  and
  - $a \subseteq A^i_{1-\delta(1-x^*)}$ , i.e, each type  $t_i$  receives payoff at least

$$\geq (1 - \delta (1 - x^*)) M_i (t_i; p_{-i}).$$

• If  $x^* < \beta_i$ , complete information argument shows that player i has a profitable deviation.

#### Lemma

For each x, there exists mechanism  $a^{i}\left(x\right)\subseteq A_{x}^{i}$  such that

- $a^{i}(x)$  cannot be refused given  $A_{x}^{i}$ ,
- $a^{i}(x)$  is (mostly) payoff function such that  $I_{-i}(a^{i}(x)) = a^{i}(x)$ .
- https://bwm-payoffs.streamlit.app/

### Outline

- Introduction
- 2 Model
- Benchmarks
- 4 Offer design
- Sandom monopoly payoff bound
- 6 The Gap
- Conclusions



- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(p\right) = \max_{u \in \mathcal{U}\left(p\right) \text{ st. } \forall_{i,t_{i}} u_{i}\left(t\right) \geq \beta_{i} M_{i}\left(t_{i}|p\right)} p_{1} \cdot \left(u_{1} - \beta_{1} M_{1}\left(.|p\right)\right)$$

The gap is not larger than

$$\operatorname{\mathsf{Gap}}(p) \leq 6.25\%$$
 of  $h_2$  for all  $p$ .

https://bwm-payoffs.streamlit.app/



- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(p\right) = \max_{u \in \mathcal{U}\left(p\right) \text{ st. } \forall_{i,t_{i}} u_{i}\left(t\right) \geq \beta_{i} M_{i}\left(t_{i}|p\right)} p_{1} \cdot \left(u_{1} - \beta_{1} M_{1}\left(.|p\right)\right)$$

The gap is not larger than

$$\operatorname{\mathsf{Gap}}(p) \leq 6.25\%$$
 of  $h_2$  for all  $p$ .

https://bwm-payoffs.streamlit.app/



- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(p\right) = \max_{u \in \mathcal{U}\left(p\right) \text{ st. } \forall_{i,t_{i}} u_{i}\left(t\right) \geq \beta_{i} M_{i}\left(t_{i}|p\right)} p_{1} \cdot \left(u_{1} - \beta_{1} M_{1}\left(.|p\right)\right)$$

• The gap is not larger than

$$\operatorname{\mathsf{Gap}}(p) \leq 6.25\%$$
 of  $h_2$  for all  $p$ .

https://bwm-payoffs.streamlit.app/



#### Theorem

For each p,

$$\lim_{\delta \to 1} \sup_{u \in \mathcal{B}(p)} \left| p_1 \cdot u_1 - \left[ p_1 \cdot \beta_1 M_1 \left( . \middle| p \right) + \textit{Gap} \left( p \right) \right] \right| = 0.$$

- As  $\delta \to 1$ , player 1 equilibrium *ex ante* payoffs converge to maximum possible subject to feasibility, IC, and random monopoly constraint.
  - player 1's payoffs are determined uniquely in ex ante sense,
  - player 2's payoffs are determined uniquely in the *interim* sense.

- Player 1 (i.e.,  $l_1 < l_2$ ) gets the entire Gap!
  - $a^2$  is an example of mechanism attaining such payoffs.
- Why?
  - mix and match offers that cannot be refused:
    - $a^1$ , •  $a^2 - \text{Gap}(...p_n^*)$
    - linearly transferable payoffs for  $p_1 > p_2^*$ .
  - convexity of mechanism a<sup>2</sup>
- https://bwm-payoffs.streamlit.app/



- Player 1 (i.e.,  $l_1 < l_2$ ) gets the entire Gap!
  - $a^2$  is an example of mechanism attaining such payoffs.
- Why?
  - mix and match offers that cannot be refused:
    - a<sup>1</sup>,
    - $a^2 \mathsf{Gap}(., p_2^*)$ ,
  - linearly transferable payoffs for  $p_1 \geq p_1^*$ ,
  - convexity of mechanism  $a^2$ .
- https://bwm-payoffs.streamlit.app/

- Player 1 (i.e.,  $l_1 < l_2$ ) gets the entire Gap!
  - $a^2$  is an example of mechanism attaining such payoffs.
- Why?
  - mix and match offers that cannot be refused:
    - $a^1$ ,
    - $a^2 \mathsf{Gap}(., p_2^*)$ ,
  - linearly transferable payoffs for  $p_1 \geq p_1^*$ ,
  - convexity of mechanism  $a^2$ .
- https://bwm-payoffs.streamlit.app/

### Outline

- Introduction
- 2 Model
- Benchmarks
- 4 Offer design
- Sandom monopoly payoff bound
- 6 The Gap
- Conclusions



#### Conclusions

- A natural modification of a standard random-proposer bargaining has unique payoffs under
  - single good plus transfers, private values environment,
  - two types for each player.
- A proof of concept better results and a general theory would be nice:
  - more types,
  - other environments,
  - better implementation results.