

# Investigating non-specific protein binding and streptavidin binding using QCM-D sensing

## Victoria Linderberg

## **Abstract**

This protocol describes how to check the quality of modified QCM-D sensors and how to study protein interactions using QCM-D sensing.

Citation: Victoria Linderberg Investigating non-specific protein binding and streptavidin binding using QCM-D sensing.

protocols.io

dx.doi.org/10.17504/protocols.io.efzbbp6

Published: 28 Jan 2016

## **Before start**

All QCM-D measurements should be performed with an E4 Q-Sense instrument. All protein interaction experiments should be performed in duplicates, under a continuous flow of 50-100  $\mu$ l/min and with a negative control for which PBS is flown instead of the other reagents.

## **Materials**

- HEPES View by P212121
- Sodium chloride View by P212121
- BSA-Molecular Biology Grade 12 mg B9000S by New England Biolabs
- Streptavidin 1.0 mg N7021S by New England Biolabs
- ✓ 1X PBS (Phosphate-buffered saline ) by Contributed by users
- Distilled Water by Contributed by users
- Fetal Bovine Serum by Contributed by users
- ✓ biotin-protein-A by Contributed by users
- ✓ anti-BSA by Contributed by users
- ✓ NaOH by Contributed by users

## **Protocol**

#### Step 1.

Prepare a Hepes Buffered Saline (HBS) solution containing 150 mM NaCl and 10 mM Hepes. Then prepare a solution of 25  $\mu$ g/ml streptavidin in HBS.

## Step 2.

Using QCM-D sensing, make a baseline of the HBS solution.

## Step 3.

Expose the modified sensors to non-diluted Fetal Bovine Serum (FBS) for 30-60 min under static conditions in QCM-D and measure the amount of adsorbed FBS relative to the HBS baseline obtained in the previous step.

# Step 4.

Rinse the sensors with the HBS solution.

## Step 5.

Flow the streptavidin solution over the modified sensors (100-500 µl/min), until they are saturated.

# Step 6.

Rinse the sensors with the HBS solution.