习题(33)

33.1 设总体 X 的密度函数为 $f(x;\theta)$, X_1, X_2, \cdots, X_n 为 X 的样本.求下列情况下 θ 的极大似然估计.

1)
$$f(x;\theta) = \begin{cases} \theta \alpha x^{\alpha-1} e^{-\theta x^{\alpha}} &, x > 0 \\ 0 &, x \le 0 \end{cases}$$
 ($\alpha > 0$ 且已知);

2)
$$f(x;\theta) = \begin{cases} \frac{\theta^r}{\Gamma(r)} \cdot x^{r-1} e^{-\theta x} &, x > 0 \\ 0 &, x \le 0 \end{cases}$$
 $(r > 0$ 且已知).

33.2 设总体 X 的分布律为

$$P\{X=k\} = (k-1)\theta^2(1-\theta)^{k-2}, k=2,3,4,\cdots,$$

其中 $0 < \theta < 1$ 为参数. X_1, X_2, \cdots, X_n 是X的样本.求未知参数 θ 的矩估计量和极大似然估计量.

- **33.3** 设总体 $X \sim U(\theta, 2\theta)$, $\theta > 0$ 是未知参数 . X_1, X_2, \cdots, X_n 为 X 的样本,试求 θ 的矩估计量 和极大似然估计量 .
 - 33.4 设总体 X 的概率分布为

X	0	1	2	3		
$p_{\scriptscriptstyle k}$	θ^2	2θ(1	$-\theta$)	θ^2	$1-2\theta$	

其中 θ ($0 < \theta < \frac{1}{2}$)是未知参数,利用总体 X 的如下样本值:

试求 θ 的极大似然估计值.

习题(33)参考解答

33.1 解: 1) 由似然函数

$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) = \prod_{i=1}^{n} (\theta \alpha X_i^{\alpha - 1} e^{-\theta X_i^{\alpha}}) = \theta^n \alpha^n (\prod_{i=1}^{n} X_i)^{\alpha - 1} \cdot e^{-\theta \cdot \sum_{i=1}^{n} X_i^{\alpha}}$$

$$\ln L(\theta) = n \cdot \ln \theta + n \cdot \ln \alpha + (\alpha - 1) \cdot \ln \left(\prod_{i=1}^{n} X_{i} \right) - \theta \cdot \sum_{i=1}^{n} X_{i}^{\alpha} .$$

令

$$\frac{\partial}{\partial \theta} \ln L(\theta) = 0$$
 $\frac{n}{\theta} - \sum_{i=1}^{n} X_i^{\alpha} = 0$,

解得 θ 的极大似然估计为 $\hat{\theta} = \frac{n}{\sum\limits_{i=1}^{n} X_i^{\alpha}}$.

2) 由似然函数

$$L(\theta) = \prod_{i=1}^{n} \left[\frac{\theta^{r}}{\Gamma(r)} \cdot X_{i}^{r-1} e^{-\theta X_{i}} \right] = \left(\frac{1}{\Gamma(r)} \right)^{n} \cdot \left(\prod_{i=1}^{n} X_{i} \right)^{r-1} \cdot \theta^{nr} \cdot e^{-\theta \sum_{i=1}^{n} X_{i}}$$

$$\ln L(\theta) = -n \cdot \ln \Gamma(r) + (r-1) \cdot \ln \left(\prod_{i=1}^{n} X_{i} \right) + nr \cdot \ln \theta - \theta \cdot \sum_{i=1}^{n} X_{i} ,$$

$$\frac{\partial}{\partial \theta} \ln L(\theta) = 0 \qquad \frac{nr}{\theta} - \sum_{i=1}^{n} X_{i} = 0 \qquad \frac{nr}{\theta} - n\overline{X} = 0 .$$

解得 θ 的极大似然估计为 $\hat{\theta} = \frac{r}{\overline{X}}$.

33.2解:1)由

$$E(X) = \sum_{k=2}^{\infty} k \cdot P\{X = k\} = \sum_{k=2}^{\infty} k \cdot (k-1)\theta^{2} (1-\theta)^{k-2}$$

$$= \sum_{k=2}^{\infty} [(k-2) + 2] \cdot (k-1)\theta^{2} (1-\theta)^{k-2}$$

$$= \sum_{k=3}^{\infty} (k-1) \cdot (k-2)\theta^{2} (1-\theta)^{k-2} + 2 \cdot \sum_{k=2}^{\infty} (k-1)\theta^{2} (1-\theta)^{k-2}$$

$$= (1-\theta) \sum_{l=2}^{\infty} l \cdot (l-1)\theta^{2} (1-\theta)^{l-2} + 2$$

$$= (1-\theta) \cdot E(X) + 2 \qquad E(X) = \frac{2}{\theta}.$$

根据矩估计方法,令 $\frac{2}{\theta} = \overline{X}$,解得 θ 的矩估计量为 $\hat{\theta} = \frac{2}{\overline{X}}$.

2) 关于 θ 的似然函数为

$$L(\theta) = \prod_{i=1}^{n} [(x_i - 1)\theta^2 (1 - \theta)^{x_i - 2}] = [\prod_{i=1}^{n} (x_i - 1)] \cdot \theta^{2n} (1 - \theta)^{\sum_{i=1}^{n} x_i - 2n}$$

$$\ln L(\theta) = \ln [\prod_{i=1}^{n} (x_i - 1)] + 2n \cdot \ln \theta + (\sum_{i=1}^{n} x_i - 2n) \cdot \ln(1 - \theta),$$

解得 $\hat{\theta} = \frac{2}{\overline{x}}$.则得 θ 的极大似然估计量为 $\hat{\theta} = \frac{2}{\overline{X}}$ (与矩估计量相同).

33.3 解: 由总体
$$X\sim U(\theta,2\theta)$$
 ,则 $E(X)=\frac{\theta+2\theta}{2}=\frac{3}{2}\theta$.根据矩估计法,令
$$\overline{X}=E(X)\qquad \overline{X}=\frac{3}{2}\theta\;.$$

解得 θ 的矩估计量为 $\hat{\theta}_1 = \frac{2}{3}\bar{X}$.

由 X 的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} &, & \theta \le x \le 2\theta \\ 0 &, & 其他 \end{cases}$$

则似然函数

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \frac{1}{\theta^n}, \quad \theta \le x_1, x_2, \dots, x_n \le 2\theta$$

$$= \frac{1}{\theta^n}, \quad \theta \le x_{(1)}, x_{(n)} \le 2\theta$$

$$= \frac{1}{\theta^n}, \quad \frac{1}{2} x_{(n)} \le \theta \le x_{(1)}, \qquad (*)$$

其中 $x_{(1)} = \min\{x_1, x_2, \dots, x_n\}$, $x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$.

对于确定的样本值 x_1, x_2, \cdots, x_n ,由(*)式可知,只有当 $\theta = \frac{1}{2} x_{(n)}$ 时, $L(\theta)$ 达最大,则 θ 的极大似然估计值为 $\hat{\theta} = \frac{1}{2} \cdot \max\{x_1, x_2, \cdots, x_n\}$.所以, θ 的极大似然估计量为

$$\hat{\theta} = \frac{1}{2} \cdot \max \{X_1, X_2, \dots, X_n\}.$$

33.4解: 由样本值 x_1, x_2, \dots, x_8 ,得

样本值	0	1	2	3	
频数	1	2	1	4	

则似然函数

$$L(\theta) = \prod_{i=1}^{8} p(x_i, \theta) = \theta^2 \times [2\theta(1-\theta)]^2 \times \theta^2 \times (1-2\theta)^4$$
$$= 4 \cdot \theta^6 \cdot (1-\theta)^2 \cdot (1-2\theta)^4$$

$$\ln L(\theta) = \ln 4 + 6 \cdot \ln \theta + 2 \cdot \ln(1-\theta) + 4 \cdot \ln(1-2\theta).$$

令

$$\frac{\partial}{\partial \theta} \ln L(\theta) = 0$$
 $\frac{6}{\theta} - \frac{2}{1 - \theta} - \frac{8}{1 - 2\theta} = 0$,

化为

$$\frac{6-28\theta+24\theta^2}{\theta(1-\theta)(1-2\theta)} = 0 \qquad 12\theta^2 - 14\theta + 3 = 0.$$

解得

$$\hat{\theta}_{1,2} = \frac{14 \pm \sqrt{14^2 - 4 \times 12 \times 3}}{2 \times 12} = \frac{7 \pm \sqrt{13}}{12}.$$

又因为
$$0 < \theta < \frac{1}{2}$$
,故所求 θ 的极大似然估计值 $\hat{\theta} = \frac{7 - \sqrt{13}}{12}$.