Comparison of Q-Learning, Dynamic Programming, and Monte Carlo Methods in Reinforcement Learning

Aspect	Dynamic (DD)	Monte Carlo (MC)	Q-Learning
	Programming (DP)		
Model Requirement	Requires a complete and accurate model of the environment, including transition probabilities and rewards.	Does not require a model; uses sampled episodes to estimate values.	Does not require a model; learns action-value function $(Q(s, a))$ directly through interaction with the environment.
Applicability	Suitable when the model of the environment is known.	Suitable when the model is unknown or difficult to define but interaction with the environment is possible.	Suitable for model-free environments where the model is unavailable or infeasible to compute.
Update Mechanism	Deterministic updates using Bellman equations. Updates values for all states simultaneously based on expectations.	Stochastic updates based on sampled trajectories. Updates values episodically based on observed returns.	Stochastic updates using temporal-difference (TD) learning. Updates a single $Q(s,a)$ pair at a time based on sampled rewards and the TD error.
Algorithm Type	Iterative method: combines Policy Evaluation and Policy Improvement steps until convergence (e.g., Policy Iteration).	Episodic method: relies on the aggregation of sampled returns from complete episodes (e.g., First-Visit or Every-Visit Monte Carlo).	Incremental TD method: directly learns optimal action-value function $(Q^*(s,a))$ without needing a policy evaluation step.
Exploration	Does not inherently explore; assumes a predefined policy and relies on a full model.	Explores the state space by sampling episodes generated from a behavior policy.	Requires explicit exploration strategies (e.g., ϵ -greedy or softmax) to balance exploration and exploitation.
Efficiency	Computationally efficient for small to moderate state spaces when the model is known. Simultaneous updates reduce the number of iterations.	Computationally less efficient due to reliance on sampling. Requires many episodes for convergence, especially in large state spaces.	Efficient for large or unknown state spaces due to incremental updates but sensitive to hyperparameter tuning (e.g., learning rate).
Convergence	Converges to the true value function if the model is accurate and the convergence criteria are met.	Converges to the true value function of the behavior policy as the number of episodes approaches infinity (assuming sufficient exploration).	Converges to the optimal $Q^*(s, a)$ under sufficient exploration and learning rate decay.
Variance	Low variance due to deterministic updates.	High variance due to stochastic updates from sampled episodes.	Moderate variance; variance is reduced compared to MC due to TD updates but higher than DP.

Aspect	Dynamic	Monte Carlo (MC)	Q-Learning
	Programming (DP)		
Dependency on	Works for both episodic	Typically designed for	Can handle both episodic
Episodicity	and continuous tasks.	episodic tasks where	and continuous tasks but
		episodes terminate.	requires exploration
			strategies to visit all
			states.
Discount Factor (γ)	Utilizes the discount	Can handle $\gamma = 1$ safely	Utilizes the discount
	factor explicitly to	for episodic tasks as	factor explicitly to
	compute expected	episodes terminate.	balance immediate and
	returns.		future rewards.
Complexity	Scales poorly with the	Scales poorly with the	Scales well for large
	size of the state and	number of episodes	state-action spaces due to
	action spaces due to the	required for convergence	its incremental updates
	need to store and	in large or complex state	but depends on sufficient
	compute values for all	spaces.	exploration.
	states.		
Use Case	Best suited for problems	Best suited for problems	Ideal for real-world
	with a known model and	where the model is	applications where the
	moderate state/action	unknown, or the	model is unavailable, and
	spaces. Example: solving	environment is too	interactions with the
	gridworld problems with	complex to model	environment are required.
	a predefined MDP model.	explicitly. Example:	Example: robotics,
		estimating state values	games, and online
		from experience in a	learning tasks.
		game-like environment.	