Sistemas de Numeração

Bases Numéricas e Notação Posicional

Definições

- Número: é a expressão de uma quantidade, é a ideia que temos de alguma quantidade.
- Numeral: é a forma como representamos (escrevemos) uma quantidade em um sistema de numeração.
- Algarismos: são os símbolos existentes em um sistema de numeração.
- Dígitos: são os algarismos utilizados em um numeral.
- Observação: é comum o uso dos termos "número" e "numeral" como sinônimos.

Definições

 Exemplo: o sistema de numeração indo-arábico é composto pelos algarismos 0,1,2,3,4,5,6,7,8,9.
 Nesse sistema, o número quinhentos e trinta e cinco é representado pelo numeral 535 o qual contém os dígitos 5, 3 e 5.

Sistemas de Numeração

- O principal objetivo de um sistema de numeração é a de representar números
- Exemplos
 - Sistema unário
 - □ I, II, III, IIII, IIIII, IIIIII, ...
 - Números Romanos
 - Números arábicos e notação posicional
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Sistema Unário

- Existe um único símbolo (algarismo) no sistema. Exemplo: algarismo "I"
- O número representado pelo numeral
 é a quantidade de vezes que o algarismo foi escrito (repetido).
- Exemplos de numerais:
 - I = um
 - II = dois
 - III = três
 - IIII = quatro
 - e assim sucessivamente...
- Problema para representar números grandes.
 - Exemplo: IIIIIIIIIIIIIIII = vinte e cinco

Números Romanos

- Algarismos:
 - I = um
 - V = cinco
 - X = dez
 - L = cinquenta
 - C = cem
 - D = quinhentos
 - M = mil

Números Romanos

- Não utiliza notação posicional clássica, ou seja, o algarismo tem sempre o mesmo valor, independente da posição do algarismo dentro do numeral
- Dificuldade em realizar operações aritméticas

Números Romanos

- Exemplos de numerais:
 - | = um
 - II = dois
 - III = três
 - IV = quatro
 - V = cinco
 - VI = seis
 - VII = sete
 - VIII = oito
 - X = dez
 - XX = vinte
 - XXX = trinta

- Exemplo: algarismos indo-arábicos e base 10 (decimal).
- Algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Nota-se a existência de um algarismo para representação do zero
- A quantidade de algarismos é sempre igual ao valor da base (neste caso, dez)
- O valor do maior algarismo é sempre o valor da base subtraído de um: 10-1 = 9 (maior algarismo)

- O algarismo tem um valor relativo que depende da sua posição dentro do numeral (dígito)
- O valor do numeral é a soma dos valores relativos de cada dígito dentro do numeral
- Exemplo: numerais com os algarismos 2 e 7
 - 27 = vinte e sete (20 + 7)
 - 72 = setenta e dois (70 + 2)

Exemplo: Base 10 (decimal).

Algarismos: 0,1,2,3,4,5,6,7,8,9

10 algarismos

```
Valor do maior algarismo = Base -1
Valor do maior algarismo = 10 - 1
```

Valor do maior algarismo = 9

- Exemplo: Base 10 (decimal).
- Algarismos: 0,1,2,3,4,5,6,7,8,9
- Um número em base 10 é formado por quantidades de potências de 10

Exemplo: numeral 5748									
Posição do dígito	5	4	3	2	1	0			
Potência	10 ⁵	104	103	10 ²	10 ¹	10°			
Peso do dígito	100000	10000	1000	100	10	1			
Dígito			5	7	4	8			
Valor do dígito			5000	700	40	8			
Valor do número			5000	+ 700	+ 40	+ 8 =	5748		

5x1000=5000 7x100=7004x10=4012 / 31

- Exemplo: Base 10 (decimal).
- Algarismos: 0,1,2,3,4,5,6,7,8,9
- Um número em base 10 é formado por quantidades de potências de 10

Exemplo: numeral 5748									
Posição d	o dígito 5 4 3 2 1					1	0		
Potência		10^5 10^4 10^3 10^2 10^3				10^{1}	10°		
Peso do d	4	Pa	7	1					
Dígito	Sir	n, porque	arece óbv estamos		nando		8		
Valor do d		nente com		8					
Valor do r		nais sentic		+ 8 =	5748				
	quand	do vamos	Э						
		para de							

Exemplo: Base 8 (octal).

Algarismos: 0,1,2,3,4,5,6,7

8 algarismos

```
Valor do maior algarismo = Base -1
Valor do maior algarismo = 8 - 1
```

Valor do maior algarismo = 7

- Exemplo: Base 8 (octal).
- Algarismos: 0,1,2,3,4,5,6,7
- Um número em base 8 é formado por quantidades de potências de 8

Exemplo: numeral 573 ₈									
Posição do dígito	5	4	3	2	1	0			
Potência	8 ⁵	84	83	82	81	80			
Peso do dígito	32768	4096	512	64	8	1			
Dígito				5	7	3			
Valor do dígito				320	56	3			
Valor do número $320 + 56 + 3 = 379$									

- Exemplo: Base 8 (octal).
- Algarismos: 0,1,2,3,4,5,6,7
- Um número em base 8 é formado por quantidades de potências de 8

Exemplo: numeral 573 ₈									
Posição d	do dígito	5	4	3	2	1	0		
Potência		8 ⁵ 8 ⁴ 8 ³ 8 ² 8 ¹					80		
Peso do	Δ	gora fica		1					
Dígito	_	573_8 (cine		3					
Valor do		0.00 (0)	5	3					
Valor do	379 (trezentos e setenta e nove em decimal).						+ 3 (379	

Exemplo: Base 2 (binária).

```
• Algarismos: 0,1

2 algarismos
```

```
Valor do maior algarismo = Base -1
Valor do maior algarismo = 2 - 1
```

```
Valor do maior algarismo = 1
```

- Exemplo: Base 2 (binária).
- Algarismos: 0,1
- Obs.: Cada dígito em um número binário é chamado de bit (<u>bi</u>nary digi<u>t</u> = dígito binário)

Exemplo: numeral 101001 ₂									
Posição do dígito	5	4	3	2	1	0			
Potência	2 ⁵	24	23	22	21	20			
Peso do dígito	32	16	8	4	2	1			
Dígito	1	0	1	0	0	1			
Valor do dígito	32	0	8	0	0	1			
Valor do número	32 -	- 0	+ 8 +	0	+ 0	+ 1 =	41		

1x32=32 0x16=0 1x8=8 0x4=0 0x2=0 1x1=1

- Exemplo: Base 2 (binária).
- Algarismos: 0,1
- Obs.: Cada dígito em um número binário é chamado de bit (<u>bi</u>nary digi<u>t</u> = dígito binário)

Exemplo: numeral 101001 ₂										
Posição	do dígito	5	4	3	2	1	0			
Potência		2 ⁵	24	23	2 ²	21	2º			
Peso do						2	1			
Dígito	1010012	101001 ₂ (um zero um zero zero um binário) 0								
Valor do	11	(quarenta	0	1						
Valor do	41	(quarenta	e um em	0	+1	41				

• Base 16 (hexadecimal).

- Base 16 (hexadecimal).
- Algarismos: Precisamos de 16 algarismos (símbolos).

Base 16 (hexadecimal).

Algarismos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

16 algarismos

Regra / Convenção:

Utilizamos os DEZ algarismos da base decimal e completamos com as letras do alfabeto, em ordem alfabética.

A tem valor dez (10)

B tem valor onze (11)

C tem valor doze (12)

D tem valor treze (13)

E tem valor quatorze (14)

F tem valor quinze (15)

Valor do maior algarismo = Base -1 Valor do maior algarismo = 16 - 1

Valor do maior algarismo = 15

- Base 16 (hexadecimal).
- Algarismos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Um número em base 16 é formado por quantidades de potências de 16

Exemplo: numeral 2E5C ₁₆									
Posição do dígito	5	4	3	2	1	0			
Potência	16 ⁵	164	16 ³	16 ²	16¹	16°			
Peso do dígito	1048576	65536	4096	256	16	1			
Dígito			2	E	5	C			
Valor do dígito			8192	3584	80	12			
Valor do número	8192 + 3584 + 80 + 12 = 11868								

$$2x4096 = 8192$$
 $Ex256 = 14x256 = 3584$
 $5x16 = 80$
 $Cx1 = 12x1 = 12$

- Base 16 (hexadecimal).
- Algarismos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Um número em base 16 é formado por quantidades de potências de 16

Exemplo: numera 2E5C ₁₆									
Posição do dígito	5	4	3	2	1	0			
Potência	16 ⁵	164	16 ³	16 ²	16^{1}	16º			
					3	1			
2E5C ₁₆ (dois		С							
		12							
1868 (onze mil oitoc	nal). 🗔	12 -	11868						

- Generalizando para números inteiros
 - $V = d_{n-1}.b^{n-1} + d_{n-2}.b^{n-2} + ... + d_1.b^1 + d_0.b^0$
- b = base do sistema
- n = quantidade de dígitos no numeral
- d_x = dígito na posição x dentro do numeral
- v = valor do número (quantidade)
- Observações:
 - d₀ → dígito menos significativo
 - d_{n-1} → dígito mais significativo

- Exemplo: número 5748 na base 10
- b=10, n = 4, $d_3=5$, $d_2=7$, $d_1=4$, $d_0=8$
- V = 5 7 4 8 (base 10)
- $V = 5x10^3 + 7x10^2 + 4x10^1 + 8x10^0$
- v = 5x1000 + 7x100 + 4x10 + 8x1
- V = 5709 (decimal) = cinco mil setecentos e quarenta e oito.

- Exemplo: número 573₈ (base 8)
- b=8, n = 3, d_2 =5, d_1 =7, d_0 =3
- v = 5 7 3 (base 8)
- $V = 5x8^2 + 7x8^1 + 3x8^0$
- v = 5x64 + 7x8 + 3x1
- v = 320 + 56 + 3
- V = 379 (decimal) = trezentos e setenta e nove.

- Exemplo: número 101001₂ (base 2)
- b=2, n = 6, d_5 =1, d_4 =0, d_3 =1, d_2 =0, d_1 =0, d_0 =1
- V = 1 0 1 (bin)
- $V = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
- v = 1x32 + 0x16 + 1x8 + 0x4 + 0x2 + 1x1
- V = 41 (decimal) = quarenta e um.

- Exemplo: número 2E5C₁₆ (base 16)
- b=16, n = 5, $d_3=2$, $d_2=E$, $d_1=5$, $d_0=C$
- v = 2 E 5 C (base 16)
- $V = 2x16^3 + Ex16^2 + 5x16^1 + Cx16^9$
- v = 2x4096 + 14x256 + 5x16 + 12x1
- \bullet V = 8192 + 3584 + 80 + 12
- V = 11868 (decimal) = onze mil oitocentos e sessenta e oito.

Bases mais utilizadas

- Base decimal: mais utilizada pelos seres humanos
- Base binária: uso interno no computador
- Bases octal e hexadecimal: bases que são facilmente convertidas para a base binária

Referências

- STALLINGS, William. Arquitetura e organização de computadores.
 8.ed. São Paulo: Pearson Education do Brasil, 2010. 624 p. ISBN: 9788576055648.
- VELLOSO, Fernando de Castro. Informática: conceitos básicos. 8. ed. rev. e atual. Rio de Janeiro, RJ: Elsevier,: Campus, c2011. xiii, 391 p. ISBN: 9788535243970.
- WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 3. ed. Porto Alegre: Instituto de Informática da UFRGS,: Sagra Luzzatto, c2004. 306 p. ISBN: 9788577803101.
- TOCCI, Ronald J.. Sistemas digitais : princípios e aplicações. 10. ed. São Paulo : Pearson Prentice Hall, c2007. xxii, 804 p. ISBN: 9788576050957.