Lecture 5

More Adders & Multipliers

Computer Systems Laboratory Stanford University horowitz@stanford.edu

Copyright © 2007 Mark Horowitz

M Horowitz EE 371 Lecture 5

Overview

• Readings (for next lecture on latches/flops)

Stojanovic
 Comparison of Latches and Flops

Also Chapt 11 in Chandrakasan

Harris Skew Tolerant Domino

(Won't discuss until later)

- Today's topics
 - Ling Adders
 - Multiplication
 - · Booth recoding
 - CSA
 - · Tree combiners

Ling Adder

- Huey Ling (IBM, 1981) reformulated Pg and Gg for speed
- The problem: Want to minimize logic delays for a 64b add
 - Start with radix-4 for only three levels of PG logic
 - Generate $P_{3:0}$, $G_{3:0}$ from inputs to save a stage
 - · Uh-oh: that's a pretty complicated gate
- The normal equations for P_{3:0} and G_{3:0} are:

$$- G_{3:0} = G_3 + P_3(G_2 + P_2(G_1 + P_1G_0))$$

- $-P_{3:0} = P_3 P_2 P_1 P_0$
- Left as an exercise to the reader ©
 - Generating G_{3:0} from A[3:0], B[3:0], C_{in} takes 15 terms, stack=5

M Horowitz EE 371 Lecture 5

+Ling And ECL Logic

- Ling exploited the then-prevalent design style of ECL
 - Emitter-coupled logic a very fast current steering bipolar style
 - $-V_{CC} = 0V$, $V_{FF} < -1.7V$; here, inputs range from -0.9 to -1.7V
 - CMOS equivalent is called SCL (source coupled logic)
 - · Gate operates with current steering

Source: Motorola MECL data sheet

+Benefits of ECL Logic

- ECL logic supports a "Wired-OR" configuration (or "Dot-OR")
 - Two logic gates have outputs X and Y
 - Short their outputs together
 - If either output goes high
 - The result is pulled high an OR function

- ECL gives a way to OR together complex logic "for free"
 - Ling used this to create moderately complex OR functions
- Is there an analogous circuit style in CMOS?
 - Domino precharge/discharge logic
 - Different pulldown stacks on the same node get "OR-ed"
 - Not exactly the same but close...

M Horowitz EE 371 Lecture 5 5

Simplifying G4 and P4

- Expand G4 term partially (but not all the way to A, B, C_{in})
 - $G_{3:0} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$
- Key observations: if P=A+B, then Gg=1 implies Pg=1
 - $G4 = P_3*G_3 + P_3*G_2 + P_3*P_2*G_1 + P_3*P_2*P_1*G_0$
 - $G4 = P_3*(G_3 + G_2 + P_2*G_1 + P_2*P_1*G_0) = P_3*H4$
 - Call this H4 a "pseudo-carry" term
- H4 is easier to compute than G4 is

 - H4 takes only 8 terms, fanin of 4
 - · A significant speed win

What Good Is H4?

- Rewrite: $H4 = G_3 + G_2 + P_2 * G_1 + P_2 * P_1 * G_0$
- Can I make a tree structure with H terms?
 - Good: my current group of four doesn't use P₃, so why bother?
 - Bad: the next group of four does need P₃...
- So define a "pseudo-propagate" term I4
 - $-I_{3:0} = P_2P_1P_0P_{-1}$ or $I_{7:4} = P_6P_5P_4P_3$ and so on (what's P_{-1} ?)
 - In general $I_{i:j} = P_{i-1:j-1}$

Using H and I

- They let us use the same tree structure as before ("off by one")
 - $-\;$ With Ps and Gs: $G_{i:j}=G_{i:k}+P_{i:k}G_{k\text{-}1:j}\;$ and $\;P_{i:j}=P_{i:k}P_{k\text{-}1:j}\;$
 - $-\,$ With Hs and Is: $H_{i:j}=H_{i:k}+I_{i:k}H_{k\text{-}1:j}\,$ and $\,I_{i:j}=I_{i:k}I_{k\text{-}1:j}\,$
- Normally this type of optimization would not matter much
 - Trick only works with P and G, and not Pg and Gg
 - This means you get savings only at the first level of tree
 - But adders are carefully optimized, and every bit helps
- Ultimately need to add the missing P back to generate Carry
 - $\,$ Put C_{in} into $\,Ig_0$ (in the open slot for $P_{\mbox{\tiny -1}})$
 - When you generate C from H, I
 - $Cin_{i+1} = P_i (H_{i:0} + I_{i:0})$, not much slower than normal Carry
 - In carry select adders, Pi can be added to the local chains

Ling Adder Implementation

- Sam Naffziger (HP, 1996) presented a 64b adder
 - 7 FO4 delay (< 1nS): pretty darn fast
 - $-0.5\mu m$ CMOS
 - This was a fairly optimized process (FO4 = 150pS at TTTT)
 - We'd usually expect 250pS at TTSS or 180pS at TTTT (360*L_{gate})
 - Fairly small as well
 - 7000 transistors
 - ¼ mm²
- In the homework you'll get to implement part of this adder
 - In Verilog, not spice
 - We'll give you skeleton Verilog and ask you to fill in the rest
 - Some errors in his slides (we'll detail them in the homework)

M Horowitz EE 371 Lecture 5

Aside - Domino Gate Factoring

- Domino gates have two stages
 - 2nd stage does not need to be an inverter
- · Can build a 4 input AND gate by building two high stacks
 - And then using a pMOS NOR gate to combine

M Horowitz EE 371 Lecture 5

Multiplication, Grade-School Level

- Product = Multiplicand * Multiplier
 - Multiplicand scaled by each digit in the multiplier→partial products
 - These partial products are shifted and added up
- Base-10 example: 119 * 182
 - Partial products are: $119^2 = 238$, $119^8 = 952$; and $119^1 = 119$
 - Shift them and add them up

· This is perhaps easier to read in binary...

Multiplication, Grad-School Level

- Same basic idea, only now all digits are 0 or 1
 - But still have multiplicand, multiplier, and partial products
 - Ex: 119 = 01110111; 182 = 10110110

• Hm. Is there an easier notation for this operation?

M Horowitz EE 371 Lecture 5 13

Dot Notation

- Rows of dots are partial products, either a "1" or a "0"
 - Number of dots corresponds roughly to total hardware needed
 - Height of dot structure corresponds roughly to total latency

- Result of multiplying two n-bit numbers is a 2n-bit number
 - Integer operations keep the LSB n bits
 - Floating point operations keep the MSB n bits (toss out precision)

Simplest Multiplier

- A very simple multiplier iterates over n cycles
 - Smallest area (fewest dots), longest latency (maximum dot height)

M Horowitz EE 371 Lecture 5 15

Remove Unnecessary Partial Products

- Speed up the operation by avoiding adding partial products = 0
 - Unless multiplier = 111..1, there are always some 0 partial products
 - Just shift if multiplier bit is 0; don't bother adding the 0
 - In our example, from 8 to 6 partial products
- We can do better: consider a multiplier of 011111111
 - Requires seven partial products if we ignore the 0
 - Rewrite this as 10000000 00000001
 - Now I only need two partial products, although one is negative!
- Called "Booth encoding" (1951)
 - Skip strings of 1's in the multiplier
 - Encode as the difference of two numbers

Basic Booth Recoding

- Apply this to our example: 118 = 01110111
 - Write 0111 as 1000 0001; this string shows up twice

- This is an improvement; six partial products to four
- Not always helpful; imagine input of 170 = 10101010
 - Recoding into differences of two numbers doesn't help at all
 - No string of 1's to exploit
- Problem: Variable #s of PPs are hard to support in hardware

M Horowitz EE 371 Lecture 5 17

Modified Booth Recoding

- Look at the multiplier three bits at a time
 - Try to figure out if we're starting, inside, or finishing a string of 1s
 - Overlap the three bits to help us figure this out
 - Really encoding just two bits at a time, but in context of three bits
- 16b multiplier always generates 9 partial products (PP0-PP8)
 - In general will create floor(0.5*(n+2)) partial products
 - Pad the LSB with a 0, and the MSBs with enough 0s

Modified Booth Recoding Rules

- Get different PPs depending on the rules (here, M=multiplicand)
 - If we're starting a string of 1's, put a -M at string's LSB
 - If we're ending a string of 1's, put a +M one left of string's MSB
 - If we're inside or outside a string, do nothing
 - Isolated 1's are treated as is

Bit1	Bit0	Prev	Output	Comment .
0	0	0	0	Outside a string of 1's. Do nothing
0	0	1	+M	Ended a string of 1's. Put +M at MSB+1
0	1	0	+M	Isolated 1; treat as is
0	1	1	+2M	Ended a string of 1's. Put +M at MSB+1
1	0	0	-2M	Starting a string of 1's. Put -M at LSB
1	0	1	-M	Start & end. Put +M at MSB+1 and -M at LSB
1	1	0	-M	Starting a string of 1's. Put -M at LSB
1	1	1	0	Inside a string of 1's. Do nothing

- This needs +M, -M, +2M, and -2M
 - +/- 2M are easy: just take +/- M and shift it over a bit

M Horowitz EE 371 Lecture 5 19

Example of Modified Booth Recoding

Recall our multiplier was 118 = 01110111

- Same as before; modified Booth = original Booth for this case
- Writing it out this time
 - Use two's complement notation for the negative numbers

```
1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 (-M)
. . . . 1 0 1 1 0 1 1 0 . . . . (2M)
1 1 1 0 1 0 1 1 0 . . . . . . . . (-M)
1 0 1 1 0 1 1 0 . . . . . . . . . (2M)
0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 = 21658
```

Modified Booth Recoding Circuits

- A plain-vanilla CMOS implementation
 - Booth decoder followed by 16 individual Booth muxes

Source: Bewick, Stanford, 1994

M Horowitz

EE 371 Lecture 5

21

Modified Booth Decoder in Domino

M Horowitz

EE 371 Lecture 5

22

Modified Booth Mux in Domino

M Horowitz EE 371 Lecture 5 2:

Can We Extend This Paradigm?

- Look at multiplier four bits at a time and hunt for strings of 1's
 - Recode three bits at a time, but using context of four bits

 Bit2	Bit1	Bit0	Prev	Output	Comment .
0	0	0	0	0	Outside a string of 1's. Do nothing
0	0	0	1	+M	Ended a string of 1's. Put +M at MSB+1
0	0	1	0	+M	Isolated 1; treat as is
0	0	1	1	+2M	Ended a string of 1's. Put +M at MSB+1
0	1	0	0	+2M	Isolated 1; like above but shifted
0	1	0	1	+3M	Isolated 1 plus an ending to string of 1's
0	1	1	0	+3M	Start&end: +M at MSB+1 and -M at LSB
0	1	1	1	+4M	Ended a string of 1's. Put +M at MSB+1
1	0	0	0	-4M	Starting a string of 1's. Put -M at LSB
1	0	0	1	-3M	End&start: +M at MSB+1 and -M at LSB
1	0	1	0	-3M	Isolated 1 plus a start to a string of 1's
1	0	1	1	-2M	End&start: +M at MSB+1 and -M at LSB
1	1	0	0	-2M	Starting a string of 1's. Put -M at LSB
1	1	0	1	-M	End&start: +M at MSB+1 and -M at LSB
1	1	1	0	-M	Starting a string of 1's. Put -M at LSB
1	1	1	1	0	Inside a string of 1's. Do nothing

Booth-3 Recoding

Good part of this scheme: fewer partial products; faster

- Bad part of this scheme: Need to generate +/- 3M
 - Can take an additional add!
 - This is why Booth-3 is typically not used in designs
 - Higher-order Booth recoding gets worse
 - Booth-4 requires +/-3M, +/-5M, and +/-7M. Yikes.
- Clever tricks to get around this use "partially redundant forms"
 - Optional reading (Bewick) if you want to try this on your project

M Horowitz EE 371 Lecture 5 25

Negative Partial Products

- How do we deal with negative partial products?
- Consider a 16b multiplication using modified Booth recoding

Add Sign Bits

- What if all the partial products were negative?
 - Invert all the bits (blue circles), add 1, and sign-extend
 - Notation: red circle = 1, green circle = 0
 - Note that last partial product is never negative

M Horowitz EE 371 Lecture 5 27

Dealing With Sign Extensions

- These red circles (all "1"s) are inconvenient
 - They make our multiplier unsquare or at least, un-parallelpiped
 - Notation: red circle = 1, green circle = 0
- What do the 1's add up to?

Reduce

- The red triangle (of 1s) can be reduced to a simpler form
 - Good thing, or else fanout would be huge
 - Notation: red circle = 1, green circle = 0

M Horowitz EE 371 Lecture 5 29

Sign Extension Constants

- Let's examine these extra sign extension bits more closely
 - S = sign bit = 1 if negative
 - Because fonts don't work well in Powerpoint, "C" = S_bar

- Expression on the right is exactly the same as the left for S=1
 - And, it also works out for S=0 (all the terms drop out)

Allow Both Signs

- This is a fully general PP formation
 - Again, S=1 means a negative number

M Horowitz EE 371 Lecture 5 31

Add Up Partial Products

- So we can speed up the generation of the partial products
 - We still have to add them up, column by column

- Our simple iterative multiplier is slow with this add
 - Even if we optimize the number of partial products we generate
 - Adding more adders doesn't help; even fast adders are pretty slow

Carry-Save Adders

- · For speed, delay carry propagation until later
 - There is no need for carry propagation after each sum
- Carry-Save Adders represent the sum in a "redundant form"
 - Sum = sum_1 + sum_2
 - Compute sum and carry, but don't propagate the carry
 - In other words, Sum = sum_without_carries + carries
 - Need to do a final add with a carry propagate at the very end

M Horowitz EE 371 Lecture 5 3

Using CSAs In Multipliers

- Consider a 16-deep partial-product array
 - For example, a 30b multiplier using modified Booth recoding
 - · Ignoring sign extensions in this dot diagram
 - Worst column is the center one; need to add 16 terms

Add the columns up using 3-2 CSAs; avoid carry propagation

Using CSAs In Multipliers

- Group terms into a line of 3-2 CSAs
 - Sums stay in this column; carryouts go into left column (red)
 - Right column is giving me its carryouts (blue)

More About CSAs

- CSAs are small and fast
 - In Domino logic, a CSA is about 1.5 FO4
 - Very simple (just a full adder)
 - No carry ripple needed
- At each stage, redundant sum takes two inputs
 - Next partial product takes the third input
- One problem, of course, is at the very end
 - You need to sum up the redundant form
 - Shift the carry word over to a higher weight first
 - This takes a fast adder, but only one such adder

Block Diagram of This Array

- This sample adder has 16 partial products
 - Therefore 13 CSAs, all in the critical path
 - First CSA takes 3 partial products
- Very regular datapath, fairly short wires
- Long latency due to extended critical path
 - What if we move away from linear path?
 - What about logarithmic structures?

M Horowitz EE 371 Lecture 5 37

Using CSAs In Multipliers

- Group terms into a tree of 3-2 CSAs (a "Wallace Tree," 1964)
 - Much shorter latency chain

Problem With 3-2 Wallace Trees

- This seems good; critical path drops from 13 CSAs to 6
- But layout of this is messy
 - Irregular
 - Long wires that span multiple rows
 - 3-2 structures do not lend themselves nicely to trees
- Would much prefer to have a binary element for trees

M Horowitz EE 371 Lecture 5 39

4-2 Compressors

- Create a new element from two back-to-back 3-2 CSAs
 - Call this a 4-2 compressor: it "compresses" 4 inputs into 2 outputs

- "Wait," you say. "This is really a 5-3 compressor."
- Yes, that's right. But 5-3 doesn't sound remotely binary tree-like
- This element allows for much more regular layout and wiring

Using 4-2 Compressors In Multipliers

- Go back to the 16bit column example
 - In-between Cin and Cout terms (that make it 5-3) are not shown

M Horowitz EE 371 Lecture 5 4

Do 4-2 Compressors Fix Everything?

- 4-2 Compressors allow a regular layout (better than 3-2CSAs)
 - But still not as nice as the (slow) linear arrays
 - Still long wires, lots of routing tracks, lots of cross-overs
- Turn the picture sideways: bitslice

- · Suppose this is our 30b multiplier w/ modified Booth recoding
 - What is the datapath height at each level?

Other Array Structures

- Some alternate methods of creating multiplier arrays
 - Even/odd arrays (Hennessy)
 - Array of arrays (Dhanesha)
 - Covers two partial arrays and four partial arrays
- I encourage you to look at these array structures
 - Perhaps you want to use them for your project
 - Trade off regularity and shortness of wires for latency
- Note that the readings are usually for floating point multipliers
 - Double-precision, so 53-bit mantissa
 - Booth encoding gives you 27 PPs, each 54b long (to support 2M)
 - With sign extension, you actually get 57b in first PP, 56b in rest