# 18

## Dimensional Modeling Process and Tasks

e've described countless dimensional modeling patterns in Chapters 1 through 16 of this book. Now it's time to turn your attention to the tasks and tactics of the dimensional modeling process.

This chapter, condensed from content in *The Data Warehouse Lifecycle Toolkit*, *Second Edition* (Wiley, 2008), begins with a practical discussion of preliminary preparation activities, such as identifying the participants (including business representatives) and arranging logistics. The modeling team develops an initial high-level model diagram, followed by iterative detailed model development, review, and validation. Throughout the process, you are reconfirming your understanding of the business's requirements.

Chapter 18 reviews the following concepts:

- Overview of the dimensional modeling process
- Tactical recommendations for the modeling tasks
- Key modeling deliverables

## Modeling Process Overview

Before launching into the dimensional modeling design effort, you must involve the right players. Most notably, we strongly encourage the participation of business representatives during the modeling sessions. Their involvement and collaboration strongly increases the likelihood that the resultant model addresses the business's needs. Likewise, the organization's business data stewards should participate, especially when you're discussing the data they're responsible for governing.

Creating a dimensional model is a highly iterative and dynamic process. After a few preparation steps, the design effort begins with an initial graphical model derived from the bus matrix, identifying the scope of the design and clarifying the grain of the proposed fact tables and associated dimensions.

After completing the high-level model, the design team dives into the dimension tables with attribute definitions, domain values, sources, relationships, data quality concerns, and transformations. After the dimensions are identified, the fact tables are modeled. The last phase of the process involves reviewing and validating the model with interested parties, especially business representatives. The primary goals are to create a model that meets the business requirements, verify that data is available to populate the model, and provide the ETL team with a solid starting source-to-target mapping.

Dimensional models unfold through a series of design sessions with each pass resulting in a more detailed and robust design that's been repeatedly tested against the business needs. The process is complete when the model clearly meets the business's requirements. A typical design requires three to four weeks for a single business process dimensional model, but the time required can vary depending on the team's experience, the availability of detailed business requirements, the involvement of business representatives or data stewards authorized to drive to organizational consensus, the complexity of the source data, and the ability to leverage existing conformed dimensions.

Figure 18-1 shows the dimensional modeling process flow. The key inputs to the dimensional modeling process are the preliminary bus matrix and detailed business requirements. The key deliverables of the modeling process are the high-level dimensional model, detailed dimension and fact table designs, and issues log.



Figure 18-1: Dimensional modeling process flow diagram.

Although the graphic portrays a linear progression, the process is quite iterative. You will make multiple passes through the dimensional model starting at a high level and drilling into each table and column, filling in the gaps, adding more detail, and changing the design based on new information.

If an outside expert is engaged to help guide the dimensional modeling effort, insist they facilitate the process with the team rather than disappearing for a few weeks and returning with a completed design. This ensures the entire team understands the design and associated trade-offs. It also provides a learning opportunity, so the team can carry the model forward and independently tackle the next model.

## Get Organized

Before beginning to model, you must appropriately prepare for the dimensional modeling process. In addition to involving the right resources, there are also basic logistical considerations to ensure a productive design effort.

## Identify Participants, Especially Business Representatives

The best dimensional models result from a collaborative team effort. No single individual is likely to have the detailed knowledge of the business requirements and the idiosyncrasies of the source systems to effectively create the model themselves. Although the data modeler facilitates the process and has primary responsibility for the deliverables, we believe it's critically important to get subject matter experts from the business involved to actively collaborate; their insights are invaluable, especially because they are often the individuals who have historically figured out how to get data out of the source systems and turned it into valuable analytic information. Although involving more people in the design activities increases the risk of slowing down the process, the improved richness and completeness of the design justifies the additional overhead.

It's always helpful to have someone with keen knowledge of the source system realities involved. You might also include some physical DBA and ETL team representatives so they can learn from the insights uncovered during the modeling effort and resist the temptations to apply third normal form (3NF) concepts or defer complexities to the BI applications in an effort to streamline the ETL processing. Remember the goal is to trade off ETL processing complexity for simplicity and predictability at the BI presentation layer.

Before jumping into the modeling process, you should take time to consider the ongoing stewardship of the DW/BI environment. If the organization has an active data governance and stewardship initiative, it is time to tap into that function. If there is no preexisting stewardship program, it's time to initiate it. An enterprise DW/BI effort committed to dimensional modeling must also be committed to a conformed dimension strategy to ensure consistency across business processes. An active data stewardship program helps the organization achieve its conformed dimension strategy. Agreeing on conformed dimensions in a large enterprise can be a challenge; the difficulty is usually less a technical issue and more an organizational communication and consensus building challenge.

Different groups across the enterprise are often committed to their own proprietary business rules and definitions. Data stewards must work closely with the interested groups to develop common business rules and definitions, and then cajole the organization into embracing the common rules and definitions to develop enterprise consensus. Over the years, some have criticized the concept of conformed dimensions as being "too hard." Yes, it's difficult to get people in different corners of the business to agree on common attribute names, definitions, and values, but that's the crux of unified, integrated data. If everyone demands their own labels and business rules, then there's no chance of delivering the single version of the truth promised by DW/BI systems. And finally, one of the reasons the Kimball approach is sometimes criticized as being hard from people who are looking for quick solutions is because we have spelled out the detailed steps for actually getting the job done. In Chapter 19: ETL Subsystems and Techniques, these down-in-the-weeds details are discussed in the coverage of ETL subsystems 17 and 18.

## Review the Business Requirements

Before the modeling begins, the team must familiarize itself with the business requirements. The first step is to carefully review the requirements documentation, as we described in Chapter 17: Kimball DW/BI Lifecycle Overview. It's the modeling team's responsibility to translate the business requirements into a flexible dimensional model that can support a broad range of analysis, not just specific reports. Some designers are tempted to skip the requirements review and move directly into the design, but the resulting models are typically driven exclusively by the source data without considering the added value required by the business community. Having appropriate business representation on the modeling team helps further avoid this data-driven approach.

## Leverage a Modeling Tool

Before jumping into the modeling activities, it's helpful to have a few tools in place. Using a spreadsheet as the initial documentation tool is effective because it enables you to quickly and easily make changes as you iterate through the modeling process.

After the model begins to firm up in the later stages of the process, you can convert to whatever modeling tool is used in your organization. Most modeling tools are dimensionally aware with functions to support the creation of a dimensional model. When the detailed design is complete, the modeling tools can help the DBA

forward engineer the model into the database, including creating the tables, indexes, partitions, views, and other physical elements of the database.

## Leverage a Data Profiling Tool

Throughout the modeling process, the teams needs to develop an ever-increasing understanding of the source data's structure, content, relationships, and derivation rules. You need to verify the data exists in a usable state, or at least its flaws can be managed, and understand what it takes to convert it into the dimensional model. Data profiling uses query capabilities to explore the actual content and relationships in the source system rather than relying on perhaps incomplete or outdated documentation. Data profiling can be as simple as writing some SQL statements or as sophisticated as a special purpose tool. The major ETL vendors include data profiling capabilities in their products.

## Leverage or Establish Naming Conventions

The issue of naming conventions inevitably arises during the creation of the dimensional model. The data model's labels must be descriptive and consistent from a business perspective. Table and column names become key elements of the BI application's interface. A column name such as "Description" may be perfectly clear in the context of a data model but communicates nothing in the context of a report.

Part of the process of designing a dimensional model is agreeing on common definitions and common labels. Naming is complex because different business groups have different meanings for the same name and different names with the same meaning. People are reluctant to give up the familiar and adopt a new vocabulary. Spending time on naming conventions is one of those tiresome tasks that seem to have little payback but is worth it in the long run.

Large organizations often have an IT function that owns responsibility for naming conventions. A common approach is to use a naming standard with three parts: prime word, qualifiers (if appropriate), and class word. Leverage the work of this IT function, understanding that sometimes existing naming conventions need to be extended to support more business-friendly table and column names. If the organization doesn't already have a set of naming conventions, you must establish them during the dimensional modeling.

#### Coordinate Calendars and Facilities

Last, but not least, you need to schedule the design sessions on participants' calendars. Rather than trying to reserve full days, it's more realistic to schedule morning and afternoon sessions that are two to three hours in duration for three or four days each week. This approach recognizes that the team members have other responsibilities and allows them to try to keep up in the hours before, after, and between design sessions. The design team can leverage the unscheduled time to research the source data and confirm requirements, as well as allow time for the data modeler to update the design documentation prior to each session.

As we mentioned earlier, the modeling process typically takes three to four weeks for a single business process, such as sales orders, or a couple of tightly related business processes such as healthcare facility and professional claim transactions in a set of distinct but closely aligned fact tables. There are a multitude of factors impacting the magnitude of the effort. Ultimately, the availability of previously existing core dimensions allows the modeling effort to focus almost exclusively on the fact table's performance metrics, which significantly reduces the time required.

Finally, you must reserve appropriate facilities. It is best to set aside a dedicated conference room for the duration of the design effort—no easy task in most organizations where meeting room facilities are always in short supply. Although we're dreaming, big floor-to-ceiling whiteboards on all four walls would be nice, too! In addition to a meeting facility, the team needs some basic supplies, such as self-stick flip chart paper. A laptop projector is often useful during the design sessions and is absolutely required for the design reviews.

## Design the Dimensional Model

As outlined in Chapter 3: Retail Sales, there are four key decisions made during the design of a dimensional model:

- Identify the business process.
- Declare the grain of the business process.
- Identify the dimensions.
- Identify the facts.

The first step of identifying the business process is typically determined at the conclusion of the requirements gathering. The prioritization activity described in Chapter 17 establishes which bus matrix row (and hence business process) will be modeled. With that grounding, the team can proceed with the design tasks.

The modeling effort typically works through the following sequence of tasks and deliverables, as illustrated in Figure 18-1:

- High-level model defining the model's scope and granularity
- Detailed design with table-by-table attributes and metrics
- Review and validation with IT and business representatives
- Finalization of the design documentation

As with any data modeling effort, dimensional modeling is an iterative process. You will work back and forth between business requirements and source details to further refine the model, changing the model as you learn more.

This section describes each of these major tasks. Depending on the design team's experience and exposure to dimensional modeling concepts, you might begin with basic dimensional modeling education before kicking off the effort to ensure everyone is on the same page regarding standard dimensional vocabulary and best practices.

## Reach Consensus on High-Level Bubble Chart

The initial task in the design session is to create a high-level dimensional model diagram for the target business process. Creating the first draft is relatively straightforward because you start with the bus matrix. Although an experienced designer could develop the initial high-level dimensional model and present it to the team for review, we recommend against this approach because it does not allow the entire team to participate in the process.

The high-level diagram graphically represents the business process's dimension and fact tables. Shown in Figure 18-2, we often refer to this diagram as the bubble *chart* for obvious reasons. This entity-level graphical model clearly identifies the grain of the fact table and its associated dimensions to a non-technical audience.



Figure 18-2: Sample high-level model diagram.

Declaring the grain requires the modeling team to consider what is needed to meet the business requirements and what is possible based on the data collected by the source system. The bubble chart must be rooted in the realities of available physical data sources. A single row of the bus matrix may result in multiple bubble charts, each corresponding to a unique fact table with unique granularity.

Most of the major dimensions will fall out naturally after you determine the grain. One of the powerful effects of a clear fact table grain declaration is you can precisely visualize the associated dimensionality. Choosing the dimensions may also cause you to rethink the grain declaration. If a proposed dimension doesn't match the grain of the fact table, either the dimension must be left out, the grain of the fact table changed, or a multivalued design solution needs to be considered.

Figure 18-2's graphical representation serves several purposes. It facilitates discussion within the design team before the team dives into the detailed design, ensuring everyone is on the same page before becoming inundated with minutiae. It's also a helpful introduction when the team communicates with interested stakeholders about the project, its scope, and data contents.

To aid in understanding, it is helpful to retain consistency across the high-level model diagrams for a given business process. Although each fact table is documented on a separate page, arranging the associated dimensions in a similar sequence across the bubble charts is useful.

## Develop the Detailed Dimensional Model

After completing the high-level bubble chart designs, it's time to focus on the details. The team should meet on a very regular basis to define the detailed dimensional model, table by table, column by column. The business representatives should remain engaged during these interactive sessions; you need their feedback on attributes, filters, groupings, labels, and metrics.

It's most effective to start with the dimension tables and then work on the fact tables. We suggest launching the detailed design process with a couple of straightforward dimensions; the date dimension is always a favorite starting point. This enables the modeling team to achieve early success, develop an understanding of the modeling process, and learn to work together as a team.

The detailed modeling identifies the interesting and useful attributes within each dimension and appropriate metrics for each fact table. You also want to capture the sources, definitions, and preliminary business rules that specify how these attributes and metrics are populated. Ongoing analyses of the source system and systematic data profiling during the design sessions helps the team better understand the realities of the underlying source data.

#### Identify Dimensions and their Attributes

During the detailed design sessions, key conformed dimensions are defined. Because the DW/BI system is an enterprise resource, these definitions must be acceptable across the enterprise. The data stewards and business analysts are key resources to achieve organizational consensus on table and attribute naming, descriptions, and definitions. The design team can take the lead in driving the process and leveraging naming conventions, if available. But it is ultimately a business task to agree on standard business definitions and names; the column names must make sense to the business users. This can take some time, but it is an investment that will deliver huge returns for the users' understanding and willingness to accept the dimensional model. Don't be surprised if the governance steering committee must get involved to resolve conformed dimension definition and naming issues.

At this point, the modeling team often also wrestles with the potential inclusion of junk dimensions or mini-dimensions in a dimensional model. It may not be apparent that these more performance-centric patterns are warranted until the team is deeply immersed in the design.

#### Identify the Facts

Declaring the grain crystallizes the discussion about the fact table's metrics because the facts must all be true to the grain. The data profiling effort identifies the counts and amounts generated by the measurement event's source system. However, fact tables are not limited to just these base facts. There may be additional metrics the business wants to analyze that are derived from the base facts.

#### **Identify Slowly Changing Dimension Techniques**

After the dimension and fact tables from the high-level model diagram have been initially drafted, you then circle back to the dimension tables. For each dimension table attribute, you define how source system data changes will be reflected in the dimension table. Again, input from the business data stewards is critical to establishing appropriate rules. It's also helpful to ask the source system experts if they can determine whether a data element change is due to a source data correction.

#### Document the Detailed Table Designs

The key deliverables of the detailed modeling phase are the design worksheets, as shown in Figure 18-3; a digital template is available on our website at www.kimballgroup.com under the Tools and Utilities Tab for The Data Warehouse Lifecycle Toolkit, Second Edition. The worksheets capture details for communication to interested stakeholders including other analytical business users, BI application developers, and most important, the ETL developers who will be tasked with populating the design.

| Table Name      | DimOrderProfile                                                                              |
|-----------------|----------------------------------------------------------------------------------------------|
| Table Type      | Dimension                                                                                    |
| Display Name    | OrderProfile                                                                                 |
| Description     | Order Profile is the "junk" dimension for miscellaneous information about order transactions |
| Used in schemas | Orders                                                                                       |
| Size            | 12 rows                                                                                      |

|                 | Target                                            |          |      |                                |             | Source           |              |                      |                    |                                   |
|-----------------|---------------------------------------------------|----------|------|--------------------------------|-------------|------------------|--------------|----------------------|--------------------|-----------------------------------|
| Column Name     | Description                                       | Datatype | Size | Example Values                 | SCD<br>Type | Source<br>System | Source Table | Source Field<br>Name | Source<br>Datatype | ETL Rules                         |
| OrderProfileKey | Surrogate primary key                             | smallint |      | 1, 2, 3                        |             | Derived          |              |                      |                    | Surrogate key                     |
| OrderMethod     | Method used to place order (phone, fax, internet) | varchar  | 8    | Phone, Fax,<br>Internet        | 1           | OEI              | OrderHeader  | Ord_Meth             | int                | 1=Phone, 2=Fax,<br>3=Internet     |
| OrderSource     | Source of the order (reseller, direct sales)      | varchar  | 12   | Reseller, Direct<br>Sales      | 1           | OEI              | OrderHeader  | Ord_Src              | char               | R=Reseller, D=Direct<br>Sales     |
| CommissionInd   | Indicates whether order is commissionable or not  | varchar  | 14   | Commission, Non-<br>Commission | 1           | OEI              | OrderHeader  | Comm_Code            | int                | 0=Non-Commission,<br>1=Commission |

Figure 18-3: Sample detailed dimensional design worksheet.

Each dimension and fact table should be documented in a separate worksheet. At a minimum, the supporting information required includes the attribute/fact name, description, sample values, and a slowly changing dimension type indicator for every dimension attribute. In addition, the detailed fact table design should identify each foreign key relationship, appropriate degenerate dimensions, and rules for each fact to indicate whether it's additive, semi-additive, or non-additive.

The dimensional design worksheet is the first step toward creating the sourceto-target mapping document. The physical design team will further flesh out the mapping with physical table and column names, data types, and key declarations.

#### Track Model Issues

Any issues, definitions, transformation rules, and data quality challenges discovered during the design process should be captured in an issues tracking log. Someone should be assigned the task of capturing and tracking issues during the sessions; the project manager, if they're participating in the design sessions, often handles this responsibility because they're typically adept at keeping the list updated and encouraging progress on resolving open issues. The facilitator should reserve adequate time at the end of every session to review and validate new issue entries and their assignments. Between design sessions, the design team is typically busy profiling data, seeking clarification and agreement on common definitions, and meeting with source system experts to resolve outstanding issues.

#### Maintain Updated Bus Matrix

During the detailed modeling process, there are often new discoveries about the business process being modeled. Frequently, these findings result in the introduction of new fact tables to support the business process, new dimensions, or the splitting or combining of dimensions. You must keep the bus matrix updated throughout the design process because it is a key communication and planning tool. As discussed in Chapter 16: Insurance, the detailed bus matrix often captures additional information about each fact table's granularity and metrics.

#### Review and Validate the Model

Once the design team is confident about the model, the process moves into the review and validation phase to get feedback from other interested parties, including:

- IT resources, such as DW/BI team members not involved in the modeling effort, source system experts, and DBAs
- Analytical or power business users not involved in the modeling effort
- Broader business user community

#### **IT Reviews**

Typically, the first review of the detailed dimensional model is with peers in the IT organization. This audience is often composed of reviewers who are intimately familiar with the target business process because they wrote or manage the system that runs it. They are also at least partly familiar with the target data model because you've already been pestering them with source data questions.

IT reviews can be challenging because the participants often lack an understanding of dimensional modeling. In fact, most of them probably fancy themselves as proficient 3NF modelers. Their tendency will be to apply transaction processing-oriented modeling rules to the dimensional model. Rather than spending the bulk of your time debating the merits of different modeling disciplines, it is best to proactively provide some dimensional modeling education as part of the review process.

When everyone has the basic concepts down, you should begin with a review of the bus matrix. This gives everyone a sense of the project scope and overall data architecture, demonstrates the role of conformed dimensions, and shows the relative business process priorities. Next, illustrate how the selected row on the matrix translates directly into the high-level dimensional model diagram. This gives everyone the entity-level map of the model and serves as the guide for the rest of the discussion.

Most of the review session should be spent going through the dimension and fact table worksheet details. It is also a good idea to review any remaining open issues for each table as you work through the model.

Changes to the model will likely result from this meeting. Remember to assign the task of capturing the issues and recommendations to someone on the team.

#### Core User Review

In many projects, this review is not required because the core business users are members of the modeling team and are already intimately knowledgeable about the dimensional model. Otherwise, this review meeting is similar in scope and structure to the IT review meeting. The core business users are more technical than typical business users and can handle details about the model. In smaller organizations, we often combine the IT review and core user review into one session.

#### Broader Business User Review

This session is as much education as it is design review. You want to educate people without overwhelming them, while at the same time illustrating how the dimensional model supports their business requirements. You should start with the bus matrix as the enterprise DW/BI data roadmap, review the high-level model bubble charts, and finally, review the critical dimensions, such as customer and product. Sometimes the bubble charts are supplemented with diagrams similar to Figure 18-4 to illustrate the hierarchical drill paths within a dimension.



Figure 18-4: Illustration of hierarchical attribute relationships for business users.

Be sure to allocate time during this education/review to illustrate how the model can be used to answer a broad range of questions about the business process. We often pull some examples from the requirements document and walk through how they would be answered.

## Finalize the Design Documentation

After the model is in its final form, the design documentation should be compiled from the design team's working papers. This document typically includes:

- Brief description of the project
- High-level data model diagram
- Detailed dimensional design worksheet for each fact and dimension table
- Open issues

## Summary |

Dimensional modeling is an iterative design process requiring the cooperative effort of people with a diverse set of skills, including business representatives. The design effort begins with an initial graphical model pulled from the bus matrix and presented at the entity level. The detailed modeling process drills down into the definitions, sources, relationships, data quality problems, and required transformations for each table. The primary goals are to create a model that meets the business requirements, verify the data is available to populate the model, and provide the ETL team with a clear direction.

#### **442** Chapter 18

The task of determining column and table names is interwoven into the design process. The organization as a whole must agree on the names, definitions, and derivations of every column and table in the dimensional model. This is more of a political process than a technical one, which requires the full attention of the most diplomatic team member. The resulting column names exposed through the BI tool must make sense to the business community.

The detailed modeling effort is followed by several reviews. The end result is a dimensional model that has been successfully tested against both the business needs and data realities.