CFA Application using LISREL

Outline

1. The software

2. The input

3. The first program

4. The first output

The software

- There is a number of software packages (e.g. AMOS, EQS, LAVAN, LISREL, MPLUS)
- We use LISREL.
- ... it is software that fits especially well with the path diagrams
- ... it is basic and, therefore, supports the understanding of how this method works
- ... it should be easy to switch to another software afterwards

Outline

1. The software

2. The input

3. The first program

4. The first output

• Starting LISREL by clicking the icon on the desk top leads to ...

• Starting LISREL by clicking the icon leads to ...

Next: click on "File" - a new window opens

Next: click on "New" – another

window opens.

• Next: click on "OK" – to start a new statistical investigation.

 A window opens that is to be used for providing the input for the statistical

investigation.

Outline

1. The software

2. The input

3. The first program

4. The first output

The first program

In the following a first program for investigating a model of measurement (a typical confirmatory factor model) is provided.

The to-be-investigated model

The first program: the input

The to-be-investigated model

LISREL Notation

VA 1 PH 1 1 FR LX 1 1 FR LX 2 1

.

FR TD 1 1 FR TD 2 2

The first program: the model

FIRST SEM MODEL	
DA NI=5 NO=500 MA=CM	First row: name of program
! A model of measurement including 5 indicators and 1 latent variable	 Second row: data description
LA	NI – number of input variables
I1 I2 I3 I4 I5	NO – number of observations
CM	MA – type of input data
0.148	LA row: labels for input variables
0.033	CM: the covariances to be analyzed
0.024 0.033 0.133 0.034 0.028 0.033 0.117	
0.023 0.023 0.027 0.037 0.106	MO row: characteristics of the model
MO NX=5 NK=1 TD=FU,FI PH=FU,FI	We row. characteristics of the model
LK	LK row: labels of latent variables
LatVariable	ERTOW. Tabols of Tatorii Validatos
TD 1114	
FR LX 11	-specification of factor loadings
FR LX 1 1 FR LX 2 1 FR LX 3 1	-specification of factor loadings
FR LX 2 1 FR LX 3 1 FR LX 4 1	-specification of factor loadings
FR LX 2 1 FR LX 3 1 FR LX 4 1 FR LX 5 1	
FR LX 2 1 FR LX 3 1 FR LX 4 1	-specification of factor loadings - specification of variance of latent variables
FR LX 2 1 FR LX 3 1 FR LX 4 1 FR LX 5 1 VA 1 PH 1 1 FR TD 1 1	- specification of variance of latent variables
FR LX 2 1 FR LX 3 1 FR LX 4 1 FR LX 5 1 VA 1 PH 1 1	
FR LX 2 1 FR LX 3 1 FR LX 4 1 FR LX 5 1 VA 1 PH 1 1 FR TD 1 1 FR TD 2 2	- specification of variance of latent variables

The first program: the output

FIRST SEM MODEL DA NI=5 NO=500 MA=CM	First row: name of program
! A model of measurement including 5 indicators and 1 latent variable	- Second row: data description
LA I1 I2 I3 I4 I5	NI – number of input variables NO – number of observations
CM	MA – type of input data
0.148	LA row: labels for input variables
0.033 0.178 0.024 0.033 0.153	CM: the covariances to be analyzed
0.034 0.028 0.033 0.117	
0.023 0.023 0.027 0.037 0.106	MO row: characteristics of the model
MO NX=5 NK=1 TD=FU,FI PH=FU,FI	
LK LatVariable	LK row: labels of latent variables
FR LX 1 1 FR LX 2 1 FR LX 3 1 FR LX 4 1	-specification of factor loadings
FR LX 5 1	
VA 1 PH 1 1	- specification of variance of latent variables
FR TD 1 1 FR TD 2 2 FR TD 3 3	- specification of thetas
FR TD 4 4 FR TD 5 5 PD	- request of path diagram
OU ML SC IT=1000 ND=3	OU row: characteristics of output

The first program

Start the program by clicking the "L".

Outline

1. The software

2. The input

3. The first program

4. The first output

PATH DIAGRAM AS OUTPUT

Chi-Square=5.79, df=5, P-value=0.32759, RMSEA=0.018

Important fit information (rest is given in the output)

DATE: 10/29/2018 TIME: 10:38

LISREL 8.80

BY

Karl G. Jöreskog & Dag Sörbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Lincolnwood, IL 60712, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2006
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\Users\dell\Documents\Schweizer\Lisrel_Lat

FIRST SEM MODEL DA NI=5 NO=500 MA=CM

! A model of measurement including 5 indicators and 1 latent variable

LA I1 I2 I3 I4 I5

CM

0.148 0.033 0.178 0.024 0.033 0.153 0.034 0.028 0.033 0.117 The output starts with repeating the input information.

FIRST SEM MODEL

Number of Iterations = 5

LISREL Estimates (Maximum Likelihood)

There is information on parameter estimation.

Goodness of Fit Statistics

Degrees of Freedom = 5
Minimum Fit Function Chi-Square = 5.768 (P = 0.329)

Normal Theory Weighted Least Squares Chi-Square = 5.786 (P = 0.328)

Estimated Non-centrality Parameter (NCP) = 0.786

90 Percent Confidence Interval for NCP = (0.0; 11.094)

Minimum Fit Function Value = 0.0116

Population Discrepancy Function Value (F0) = 0.00158

90 Percent Confidence Interval for F0 = (0.0; 0.0222)

Root Mean Square Error of Approximation (RMSEA) = 0.0178

90 Percent Confidence Interval for RMSEA = (0.0; 0.0667)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.823

Expected Cross-Validation Index (ECVI) = 0.0517 90 Percent Confidence Interval for ECVI = (0.0501; 0.0723) ECVI for Saturated Model = 0.0601 ECVI for Independence Model = 0.509

Chi-Square for Independence Model with 10 Degrees of Freedom = 244.057

Model AIC = 25.786 Saturated AIC = 30.000 Independence CAIC = 280.130 Model CAIC = 77.932 Saturated CAIC = 108.219

Independence AIC = 254.057

Normed Fit Index (NFI) = 0.976

Non-Normed Fit Index (NNFI) = 0.993

Parsimony Normed Fit Index (PNFI) = 0.488

Comparative Fit Index (CFI) = 0.997

Incremental Fit Index (IFI) = 0.997

Relative Fit Index (RFI) = 0.953

Critical N (CN) = 1306.293

Root Mean Square Residual (RMR) = 0.00335 Standardized RMR = 0.0222 Goodness of Fit Index (GFI) = 0.995

Goodness of Fit Index (GFI) = 0.995 Adjusted Goodness of Fit Index (AGFI) = 0.986 Parsimony Goodness of Fit Index (PGFI) = 0.332 There is information on model fit.

The fit statistics indicate that there is good model fit.

The end