Introduction au signal et bruit Exercices

Gabriel Dauphin

September 3, 2025

Contents

1	Relations entrées-sorties sans effet mémoire	3
2	Signaux temps continu, fonction affine par morceaux	6
3	Utilisation de la transformée de Fourier	10
4	Diracs	11
5	Transformées de Fourier, dérivation et équations différentielles	12
6	Filtres et effet mémoire	16
7	Description fréquentielle des filtres	17
8	Signaux périodiques	18

9 Filtres agissant sur des signaux périodiques	19
10 Échantillonnage	20
11 Peigne de Diracs	21
12 Modélisation stochastique du bruit	22
13 Résumé du cours	23
13.1 Exercices	23

Relations entrées-sorties sans effet mémoire

Exercice 1 Le graphique représente la relation entrée-sortie d'un Relu pour Rectified

Linear Unit.

- 1. En utilisant la figure 1.1, combien valent les signaux en sortie lorsque respectivement, les signaux en entrées valent -3 et 3 ?
- 2. Combien valent les puissances de ces signaux?
- 3. Proposez une formule utilisant la valeur absolue, l'addition et la multiplication pour modéliser cette relation ?
- 4. On considère le filtre $\mathcal{H}_1(x) = 0.5x$ et $\mathcal{H}_2(x) = |x|$, montrez comment en les associant on peut fabriquer le filtre Relu.
- 5. Écrire le pseudo-code permettant de générer la figure 1.1.

Exercice 2 Les filtres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 sont définis par

$$\mathcal{H}_1(x) = |x| \quad \mathcal{H}_2(x) = \min(1, x) \quad \mathcal{H}_3(x) = \max(0, x) \tag{1.1}$$

On appelle \mathcal{H} le filtre décrit par la figure 1.2 et associé à la relation transformant x en y.

- 1. Calculez les sorties y associées aux valeurs -2, -1, 0, 1, 2 pour x.
- 2. Écrivez la formule modélisant \mathcal{H} ?
- 3. Dessinez la relation transformant x en y sur un graphe.

Signaux temps continu, fonction affine par morceaux

Figure 2.1: Visualisation de x(t) qui a la forme d'une maison avec son lampadaire

Exercice 3 On considère le signal x(t) décrit par la figure 2.1.

- 1. Calculez les valeurs de x(t) pour les valeurs de t-2.5, 0.5, 1, 2.5.
- 2. Écrivez une formule décrivant x(t) au moyen de différents intervalles de temps.
- 3. Utilisez quelques unes des fonctions de base présentées en cours pour définir x(t).
- 4. Utilisez le crochet d'Iverson pour décrire x(t).

Exercice 4 On considère le signal x(t) ainsi défini

$$x(t) = (at + b) [t_1 \le t \le t_2]$$
(2.1)

- 1. Représentez ce signal pour a = 1, b = 0 et $t_1 = 2$, $t_2 = 3$.
- 2. Représentez ce signal pour a = -1, b = 1 et $t_1 = 0$, $t_2 = 1$.
- 3. Montrez que pour a = 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) \tag{2.2}$$

4. Montrez que pour a > 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) + \beta \mathbb{C}(\gamma t + \delta)$$
(2.3)

5. Donnez un pseudo-code permettant de visualiser de signal.

Utilisation de la transformée de Fourier

Diracs

Exercice 5 On considère le signal $x(t) = \Pi(t) = [-0.5 \le t \le 0.5](t)$.

- 1. Calculez sa dérivée $y(t)\frac{d}{dt}x(t)$.
- 2. Calculez $z(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 3. Calculez la transformée de Fourier de y(t) notée $\widehat{Y}(f)$ et en déduire celle de x(t) notée $\widehat{X}(f)$.
- 4. Représentez les signaux x(t), y(t), z(t).

Transformées de Fourier, dérivation et équations différentielles

Figure 5.1: Visualisation de l'entrée x(t) et de la sortie y(t) illustrant l'exercice 6.

Exercice 6 On considère un filtre défini par l'équation différentielle

$$LC\frac{d^2}{dt^2}y(t) + RC\frac{d}{dt}y(t) + y(t) = RC\frac{d}{dt}x(t)$$
(5.1)

avec R=3, C=0.5, L=1. On considère un signal en entrée défini par $x(t)=\mathbb{T}(t)$ et on cherche à simuler le signal de sortie y(t) associé à ce filtre décrit par l'équation (5.1).

1. Montrez que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{5.2}$$

2. On appelle $\tilde{y}(t)$ la solution de cette deuxième équation différentielle

$$LC\frac{d^2}{dt^2}\tilde{y}(t) + RC\frac{d}{dt}\tilde{y}(t) + \tilde{y}(t) = \delta(t)$$
(5.3)

Exprimez y(t) en fonction de $\tilde{y}(t)$.

3. En utilisant les fonctions sol_eq_diff, deriver, integrer et retarder de seb, donnez un pseudo-programme permettant de simuler y(t).

Exercice 7 On considère un filtre dont la réponse fréquentielle vérifie

$$\widehat{H}(f) = \frac{j2\pi f RC}{1 - 4\pi^2 f^2 + 4jRC\pi f} \tag{5.4}$$

- 1. Trouvez l'équation différentielle associée à la relation entrée-sortie ?
- 2. Trouvez l'équation différentielle associée à la réponse impulsionnelle ?
- 3. Proposez un algorithme permettant de caculer la réponse impulsionnelle.

Exercice 8 On considère l'équation différentielle associée à une relation entréesortie :

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + y(t) = x(t)$$
 (5.5)

- 1. Donnez la réponse fréquentielle.
- 2. Donnez un algorithme donnant la réponse impulsionnelle.
- 3. Écrivez le polynôme caractéristique.
- 4. Trouvez les solutions de ce polynôme.
- 5. En déduire la réponse impulsionnelle.

Filtres et effet mémoire

Description fréquentielle des filtres

Chapter 8 Signaux périodiques

Filtres agissant sur des signaux périodiques

Chapter 10 Échantillonnage

Chapter 11 Peigne de Diracs

Modélisation stochastique du bruit

Résumé du cours

13.1 Exercices

Exercice 9 Le signal montré sur la figure 13.1 est noté x(t). Sa transformée de Fourier est notée \widehat{X} .

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Donnez une expression de x(t) sous la forme de sa description sur plusieurs intervalles.
- 3. Donnez une expression de x(t) en fonction de $\mathbf{1}()$.
- 4. Calculez x(0), x(1), E_x .

Figure 13.1: Graphe de x(t) relatif à l'exercice 9.

- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Exercice 10 Le signal montré sur la figure 13.2 est noté x(t). Sa transformée de Fourier est notée \widehat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a avec la courbe exponentielle sur la figure 13.2.
- 3. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 13.2.
- 4. Donnez une expression de x(t) en fonction de $\mathbf{1}()$.
- 5. Calculez x(0), x(1), E_x .
- 6. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.

Figure 13.2: Graphe de x(t) et de sa tangente pour l'exercice 10.

- 7. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 8. Construire $y_1(t) = x(t-1)$
- 9. Construire $y_1(t) = \frac{1}{2}x(t)$
- 10. Construire $y_1(t) = x(t) x(t-2)$

Exercice 11 Le signal étudié ici est $x(t) = t\mathbf{1}(t \in [0,1[) + (2-t)\mathbf{1}(t \in [1,2[) \ On \ considère y(t) \ obtenu en périodisant le signal <math>x(t)$ pour $t \in [0,3]$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. y(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_y et P_y .
- 7. Calculez \widehat{X}_0 et \widehat{Y}_0 .

- 8. Calculez \widehat{X}_0 et \widehat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$
- 10. Dessiner sur le graphe $y_2(t) = y(t-1)$
- 11. Dessiner sur le graphe $y_3(t) = \frac{1}{2}y(t)$
- 12. Dessiner sur le graphe $y_4(t) = y(t) y(t-2)$

Exercice 12 Le signal montré sur la figure 13.3 est noté x(t). Sa transformée de Fourier est notée \widehat{X} . Ce signal est de la forme $x(t) = a\cos(bt + c)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a en observant la valeur maximale et minimale sur la figure 13.3.
- 3. Justifiez la valeur de b en mesurant la période sur la figure 13.3.
- 4. Justifiez la valeur de c en interprétant cette courbe comme en retard (ou en avance) par rapport à a cos(bt) sur la figure 13.2.
- 5. Calculez x(0), x(1), P_x .

Figure 13.3: Graphe de x(t) relatif à l'exercice 12.

- 6. Calculez \widehat{X}_0 et \widehat{X}_1 .
- 7. Dessiner sur le graphe $y_1(t) = x(\frac{t}{2})$
- 8. Dessiner sur le graphe $y_1(t) = x(t-1)$
- 9. Dessiner sur le graphe $y_1(t) = \frac{1}{2}x(t)$
- 10. Dessiner sur le graphe $y_1(t) = x(t) x(t-2)$