Package 'CRF'

October 24, 2011

Version 0.1-6
Date 2011-10-24
Title CRF - Conditional Random Fields
Author Ling-Yun Wu <wulingyun@gmail.com></wulingyun@gmail.com>
Author@R c(person(``Ling-Yun", ``Wu", email = ``wulingyun@gmail.com"))
Maintainer Ling-Yun Wu <wulingyun@gmail.com></wulingyun@gmail.com>
Depends R (>= $2.12.0$)
Description Library to decode/infer/sample/train Conditional Random Fields
License GPL (>= 2)
R topics documented: CRF-package
infer
Index 1
CRF-package CRF - Conditional Random Fields

Description

Library to decode/infer/sample/train Conditional Random Fields

2 CRF-package

Details

CRF is R package for various computational tasks of conditional random fields as well as other probabilistic undirected graphical models of discrete data with pairwise (and unary) potentials. The decoding/inference/sampling tasks are implemented for general discrete undirected graphical models with pairwise potentials. The training task is less general, focusing on conditional random fields with log-linear potentials and a fixed structure. The code is written entirely in R and C++. The initial version is ported from UGM written by Mark Schmidt.

Decoding: Computing the most likely configuration

- decode.exact Exact decoding for small graphs with brute-force search
- · decode.chain Exact decoding for chain-structured graphs with the Viterbi algorithm
- decode.tree Exact decoding for tree- and forest-structured graphs with max-product belief propagation
- decode.conditional Conditional decoding (takes another decoding method as input)
- decode.cutset Exact decoding for graphs with a small cutset using cutset conditioning
- decode.sample Approximate decoding using sampling (takes a sampling method as input)
- decode.marginal Approximate decoding using inference (takes an inference method as input)
- decode.lbp Approximate decoding using max-product loopy belief propagation
- decode.trbp Approximate decoding using max-product tree-reweighted belief propagtion
- decode.greedy Approximate decoding with greedy algorithm
- decode.icm Approximate decoding with the iterated conditional modes algorithm

Inference: Computing the partition function and marginal probabilities

- infer.exact Exact inference for small graphs with brute-force counting
- infer.chain Exact inference for chain-structured graphs with the forward-backward algorithm
- infer.tree Exact inference for tree- and forest-structured graphs with sum-product belief propagation
- infer.conditional Conditional inference (takes another inference method as input)
- infer.cutset Exact inference for graphs with a small cutset using cutset conditioning
- infer.sample Approximate inference using sampling (takes a sampling method as input)
- infer.lbp Approximate inference using sum-product loopy belief propagation
- infer.trbp Approximate inference using sum-product tree-reweighted belief propagation

Sampling: Generating samples from the distribution

- sample.exact Exact sampling for small graphs with brute-force inverse cumulative distribution
- sample.chain Exact sampling for chain-structured graphs with the forward-filter backward-sample algorithm
- sample.tree Exact sampling for tree- and forest-structured graphs with sum-product belief propagation and backward-sampling
- sample.conditional Conditional sampling (takes another sampling method as input)
- sample.cutset Exact sampling for graphs with a small cutset using cutset conditioning
- sample.gibbs Approximate sampling using a single-site Gibbs sampler

Training: Given data, computing the most likely estimates of the parameters

clamp.crf 3

Author(s)

```
Ling-Yun Wu <wulingyun@gmail.com>
```

References

• J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *the proceedings of International Conference on Machine Learning (ICML)*, pp. 282-289, 2001.

• Mark Schmidt. UGM: A Matlab toolbox for probabilistic undirected graphical models. http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

See Also

```
make.crf, decode, infer, sample, train
```

Examples

```
library(CRF)
data(Small)
decode.exact(small.crf)
infer.exact(small.crf)
sample.exact(small.crf, 100)
```

clamp.crf

Make clamped CRF data structure

Description

Generate clamped CRF data structure by fixing the states of some nodes

Usage

```
clamp.crf(crf, clamped)
```

Arguments

crf The CRF data structure generated by make.crf

 $\hbox{clamped} \qquad \quad \hbox{The vector of fixed states of nodes}$

Details

The function will generate a clamped CRF data structure from a given CRF data structure by fixing the states of some nodes. The vector clamped contains the desired state for each node while zero means the state is not fixed. The node and edge potentials are updated to the conditional potentials based on the clamped vector.

4 decode

Value

The function will return a CRF data structure with additional components:

```
original The original CRF data.

clamped The vector of fixed states of nodes.

node.id The vector of the original node ids for nodes in the new CRF data.

node.map The vector of the new node ids for nodes in the original CRF data.

edge.id The vector of the original edge ids for edges in the new CRF data.

The vector of the new edge ids for edges in the original CRF data.
```

See Also

```
make.crf, sub.crf
```

Examples

```
library(CRF)
data(Small)
crf <- clamp.crf(small.crf, c(0, 0, 1, 1))</pre>
```

decode

Decoding methods

Description

Computing the most likely configuration

Usage

Arguments

crf

infer 5

Details

- decode.exact Exact decoding for small graphs with brute-force search
- decode.chain Exact decoding for chain-structured graphs with the Viterbi algorithm
- decode.tree Exact decoding for tree- and forest-structured graphs with max-product belief propagation
- decode.conditional Conditional decoding (takes another decoding method as input)
- decode.cutset Exact decoding for graphs with a small cutset using cutset conditioning
- decode.sample Approximate decoding using sampling (takes a sampling method as input)
- decode.marginal Approximate decoding using inference (takes an inference method as input)
- decode.lbp Approximate decoding using max-product loopy belief propagation
- decode.trbp Approximate decoding using max-product tree-reweighted belief propagtion
- decode.greedy Approximate decoding with greedy algorithm
- decode.icm Approximate decoding with the iterated conditional modes algorithm
- · decode.block Approximate decoding with the block iterated conditional modes algorithm

See Also

```
make.crf, infer, sample
```

Examples

```
library(CRF)
data(Small)
decode.exact(small.crf)
decode.chain(small.crf)
decode.tree(small.crf)
decode.conditional(small.crf, c(0,1,0,0), decode.exact)
decode.cutset(small.crf, c(2))
decode.sample(small.crf, sample.exact, 10000)
decode.marginal(small.crf, infer.exact)
decode.lbp(small.crf)
decode.trbp(small.crf)
decode.greedy(small.crf)
decode.jcm(small.crf)
decode.icm(small.crf)
decode.block(small.crf, list(c(1,3), c(2,4)))
```

infer

Inference methods

Description

Computing the partition function and marginal probabilities

6 infer

Usage

```
infer.exact(crf)
infer.chain(crf)
infer.tree(crf)
infer.conditional(crf, clamped, infer.method, ...)
infer.cutset(crf, cutset)
infer.sample(crf, sample.method, ...)
infer.lbp(crf, max.iter = 10000, cutoff = 1e-4, verbose = 0)
infer.trbp(crf, max.iter = 10000, cutoff = 1e-4, verbose = 0)
```

Arguments

crf

Details

- infer.exact Exact inference for small graphs with brute-force counting
- infer.chain Exact inference for chain-structured graphs with the forward-backward algorithm
- infer.tree Exact inference for tree- and forest-structured graphs with sum-product belief propagation
- infer.conditional Conditional inference (takes another inference method as input)
- infer.cutset Exact inference for graphs with a small cutset using cutset conditioning
- infer.sample Approximate inference using sampling (takes a sampling method as input)
- infer.lbp Approximate inference using sum-product loopy belief propagation
- infer.trbp Approximate inference using sum-product tree-reweighted belief propagation

See Also

```
make.crf, decode, sample
```

Examples

```
library(CRF)
data(Small)
infer.exact(small.crf)
infer.chain(small.crf)
infer.tree(small.crf)
infer.conditional(small.crf, c(0,1,0,0), infer.exact)
infer.cutset(small.crf, c(2))
infer.sample(small.crf, sample.exact, 10000)
infer.lbp(small.crf)
infer.trbp(small.crf)
```

make.crf 7

make.crf	Make CRF data structure	

Description

Generate CRF data structure from the adjacent matrix

Usage

```
make.crf(adj.matrix, nstates)
```

Arguments

adj.matrix The adjacent matrix of CRF network

nstates The state numbers of nodes

Details

The function will generate a empty CRF data structure from a given adjacent matrix. If the length of nstates is less than n.nodes, it will be used repeatly. All node and edge potentials are initilized as 1.

Value

The function will return a CRF data structure, which is a list with components:

n.nodes	The number of nodes.
n.edges	The number of edges.
n.states	The number of states for each node. It is a vector of length ninodes.
max.state	The maximum number of states. It is equal to $max(n.states)$.
edges	The node pair of each edge. It is a matrix with 2 columns and n.edges rows. Each row denotes one edge. The node with smaller id is put in the first column.
n.adj	The number of adjacent nodes for each node. It is a vector of length n.nodes.
adj.nodes	The list of adjacent nodes for each node. It is a list of length $n.nodes$ and the i-th element is a vector of length $n.adj[i]$.
adj.edges	The list of adjacent edges for each node. It is similiar to adj.nodes while contains the edge ids instead of node ids.
node.pot	The node potentials. It is a matrix with dimmension (n.nodes, max.state). Each row node.pot[i,] denotes the node potentials of the i-th node.
edge.pot	The edge potentials. It is a 3-dimmensional array with dimmension (max.state, max.state, n.edges). Each sub-array edge.pot[,,i] denotes the edge potentials of the i-th edge.

See Also

```
clamp.crf, sub.crf
```

8 sample

Examples

```
library(CRF)

nNodes <- 4
nStates <- 2

adj <- matrix(0, nrow=nNodes, ncol=nNodes)
for (i in 1:(nNodes-1))
{
    adj[i,i+1] <- 1
    adj[i+1,i] <- 1
}

crf <- make.crf(adj, nStates)

crf$node.pot[1,] <- c(1, 3)
    crf$node.pot[2,] <- c(9, 1)
    crf$node.pot[4,] <- c(1, 3)
    crf$node.pot[4,] <- c(9, 1)

for (i in 1:crf$n.edges)
{
    crf$edge.pot[1,,i] <- c(2, 1)
    crf$edge.pot[2,,i] <- c(1, 2)
}</pre>
```

sample

Sampling methods

Description

Generating samples from the distribution

Usage

Arguments

crf

Details

• sample.exact Exact sampling for small graphs with brute-force inverse cumulative distribution

sub.crf 9

• sample.chain Exact sampling for chain-structured graphs with the forward-filter backward-sample algorithm

- sample.tree Exact sampling for tree- and forest-structured graphs with sum-product belief propagation and backward-sampling
- sample.conditional Conditional sampling (takes another sampling method as input)
- sample.cutset Exact sampling for graphs with a small cutset using cutset conditioning
- sample.gibbs Approximate sampling using a single-site Gibbs sampler

See Also

```
make.crf, decode, infer
```

Examples

```
library(CRF)
data(Small)
sample.exact(small.crf, 100)
sample.chain(small.crf, 100)
sample.tree(small.crf, 100)
sample.conditional(small.crf, c(0,1,0,0), sample.exact, 100)
sample.cutset(small.crf, c(2), 100)
sample.gibbs(small.crf, 100)
```

sub.crf

Make sub CRF data structure

Description

Generate sub CRF data structure by selecting some nodes

Usage

```
clamp.crf(crf, clamped)
```

Arguments

crf The CRF data structure generated by make.crf
subset The vector of selected node ids

Details

The function will generate a CRF data structure from a given CRF data structure by selecting some nodes. The vector subset contains the node ids selected to generate the new CRF data. Unlike clamp.crf, the potentials of remainning nodes and edges are untouched.

10 sub.crf

Value

The function will return a CRF data structure with additional components:

original	The original CRF data.
node.id	The vector of the original node ids for nodes in the new CRF data.
node.map	The vector of the new node ids for nodes in the original CRF data.
edge.id	The vector of the original edge ids for edges in the new CRF data.
edge.map	The vector of the new edge ids for edges in the original CRF data.

See Also

```
make.crf, clamp.crf
```

Examples

```
library(CRF)
data(Small)
crf <- sub.crf(small.crf, c(2, 3))</pre>
```

Index

```
*Topic decode
                                             sample.conditional, 2,9
    decode, 4
                                             sample.cutset, 2, 9
*Topic infer
                                             sample.exact, 2, 8
    infer, 5
                                             sample.gibbs, 2, 9
*Topic make.crf
                                             sample.tree, 2, 9
                                             sub.crf, 4, 7, 9
    clamp.crf, 3
    make.crf, 7
                                             train,3
    sub.crf, 9
*Topic package
    CRF-package, 1
*Topic sample
    sample, 8
clamp.crf, 3, 7, 9, 10
CRF (CRF-package), 1
CRF-package, 1
decode, 3, 4, 6, 9
decode.block, 5
decode.chain, 2, 5
decode.conditional, 2, 5
decode.cutset, 2, 5
decode.exact, 2, 5
decode.greedy, 2, 5
decode.icm, 2, 5
decode.lbp, 2, 5
decode.marginal, 2, 5
decode.sample, 2, 5
decode.trbp, 2, 5
decode.tree, 2, 5
infer, 3, 5, 5, 9
infer.chain, 2, 6
infer.conditional, 2, 6
infer.cutset, 2, 6
infer.exact, 2, 6
infer.lbp, 2, 6
infer.sample, 2, 6
infer.trbp, 2, 6
infer.tree, 2, 6
make.crf, 3-6, 7, 9, 10
sample, 3, 5, 6, 8
sample.chain, 2, 9
```