ENGG319 L01 Fall 2016 – Section #10 (Hypothesis Testing) Summary Sheet

H_0 : μ = μ 0; σ known and α given. Data are either normally distributed or you are invoking CLT (n ≥ 30)						
If $H_{1:} \mu < \mu_0$	Compute critical value z_{α} where $P(Z < -z_{\alpha}) = \alpha$	Compute statistic	Reject H_0 if $z < -z_{\alpha}$			
If $H_{1:} \mu > \mu_0$	Compute critical value z_{α} where $P(Z > z_{\alpha}) = \alpha$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	Reject H_0 if $z > z_{\alpha}$			
If $H_{1:} \mu \neq \mu_0$	Compute critical value $z_{\alpha/2}$ where $P(Z < -z_{\alpha/2}) = \alpha/2$ and $P(Z > z_{\alpha/2}) = \alpha/2$	σ/\sqrt{n}	Reject H ₀ if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$			
$F(Z > Z_{\alpha/2}) = \omega/2$ H ₀ : μ=μ ₀ ; σ; unknown but n ≥ 30 so you invoke CLT. This is a "large sample test for a single mean"; α given.						
If $H_{1:} \mu < \mu_0$	Compute critical value z_{α} where $P(Z < -z_{\alpha}) = \alpha$		Reject H_0 if $z < -z_{\alpha}$			
If $H_{1:} \mu > \mu_0$	Compute critical value z_{α} where $P(Z > z_{\alpha}) = \alpha$	Compute statistic $z = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	Reject H_0 if $z > z_{\alpha}$			
If $H_1: \mu \neq \mu_0$	Compute critical value $z_{\alpha/2}$ where $P(Z < -z_{\alpha/2}) = \alpha/2$ and $P(Z > z_{\alpha/2}) = \alpha/2$	s/\sqrt{n}	Reject H ₀ if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$			
H	₀ : μ = μ ₀ ; σ unknown and data is no	rmally distributed; cannot invoke CLT;	α given.			
If $H_{1:} \mu < \mu_0$	Compute critical value t_{α} where $P(T < -t_{\alpha}) = \alpha$ with $df = n-1$	Compute statistic	Reject H_0 if $t < -t_{\alpha}$			
If $H_{1:} \mu > \mu_0$	Compute critical value t_{α} where $P(T > t_{\alpha}) = \alpha$ with $df = n-1$	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	Reject H_0 if $t > t_{\alpha}$			
If $H_{1:} \mu \neq \mu_0$	Compute critical value $t_{\alpha/2}$ where P(T< $-t_{\alpha/2}$) = $\alpha/2$ and P(T> $t_{\alpha/2}$) = $\alpha/2$; $df = n-1$	s/\sqrt{n}	Reject H ₀ if $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$			
$H_0: \mu_1 - \mu_2 = d_0$; σ_1 , σ_2 known and α given. Data a	re either normally distributed or you in	voke CLT $(n \ge 30)$			
If H_1 : $\mu_1 - \mu_2 < d_0$	Compute critical value z_{α} where $P(Z < -z_{\alpha}) = \alpha$	Community atoticalis	Reject H_0 if $z < -z_{\alpha}$			
If $H_1: \mu_1 - \mu_2 > d_0$	Compute critical value z_{α} where $P(Z > z_{\alpha}) = \alpha$	Compute statistic $z = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$	Reject H_0 if $z > z_{\alpha}$			
If H_1 : $\mu_1 - \mu_2 \neq d_0$	Compute critical value $z_{\alpha/2}$ where $P(Z < -z_{\alpha/2}) = \alpha/2$ and $P(Z > z_{\alpha/2}) = \alpha/2$	$\sqrt{\left(\sigma_1^2/n_1\right)+\left(\sigma_2^2/n_2\right)}$	Reject H ₀ if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$			
	H_0 : μ_1 – μ_2 = d_0 ; σ_1 , σ_2 unknown, b	ut $n \ge 30$: use "large sample test"; α gi	ven.			
If H_1 : $\mu_1 - \mu_2 < d_0$	Compute critical value z_{α} where $P(Z < -z_{\alpha}) = \alpha$	Commute eteticia	Reject H_0 if $z < -z_{\alpha}$			
If $H_1: \mu_1 - \mu_2 > d_0$	Compute critical value z_{α} where $P(Z > z_{\alpha}) = \alpha$	Compute statistic $z = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}$	Reject H_0 if $z > z_{\alpha}$			
If $H_1: \mu_1 - \mu_2 \neq d_0$	Compute critical value $z_{\alpha/2}$ where $P(Z < -z_{\alpha/2}) = \alpha/2$ and $P(Z > z_{\alpha/2}) = \alpha/2$	$\sqrt{\left(s_1^2/n_1\right)+\left(s_2^2/n_2\right)}$	Reject H ₀ if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$			
H_0 : $\mu_1 - \mu_2 = d_0$; $\sigma_1 = \sigma_2$ and both are unknown; data are normally distributed; α given.						
If H_1 : $\mu_1 - \mu_2 < d_0$	Compute critical value t_{α} where $P(T < -t_{\alpha}) = \alpha$ with $df = n_1 + n_2 - 2$	Compute statistic $(\overline{x}, -\overline{x}_2) - d_2$	Reject H_0 if $t < -t_{\alpha}$			
If $H_1: \mu_1 - \mu_2 > d_0$	Compute critical value t_{α} where $P(T > t_{\alpha}) = \alpha$ with $df = n_1 + n_2 - 2$	$t = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{s_p \sqrt{(1/n_1) + (1/n_2)}}$	Reject H_0 if $t > t_{\alpha}$			
If $H_1: \mu_1 - \mu_2 \neq d_0$	Compute critical value $t_{\alpha/2}$ where $P(T < -t_{\alpha/2}) = \alpha/2$ and $P(T > t_{\alpha/2}) = \alpha/2$; $df = n_1 + n_2 - 2$	with $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	Reject H ₀ if $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$			

ENGG319 L01 Fall 2016 – Section #10 (Hypothesis Testing) Summary Sheet

H ₀ : μ_1 – μ_2 =d ₀ ; σ_1 \neq σ_2 and both are unknown; data are normally distributed; α given.				
If $H_1: \mu_1 - \mu_2 < d_0$	Compute critical value t_{α} where $P(T < -t_{\alpha}) = \alpha$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}};$	Reject H_0 if $t < -t_{\alpha}$	
If $H_1: \mu_1 - \mu_2 > d_0$	Compute critical value t_{α} where $P(T > t_{\alpha}) = \alpha$		Reject H_0 if $t > t_{\alpha}$	
If \mathbf{H}_1 : $\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 \neq \boldsymbol{d}_0$	Compute critical value $t_{\alpha/2}$ where P(T< $-t_{\alpha/2}$) = $\alpha/2$ and P(T> $t_{\alpha/2}$) = $\alpha/2$	with $df = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$	Reject H ₀ if $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$	
H_0 : μ_D = d_0 ; σ_1 \neq σ_2 and both are unknown; data are normally distributed AND PAIRED; α given.				
If H_1 : $\mu_D < d_0$	Compute critical value t_{α} where $P(T < -t_{\alpha}) = \alpha$, $df = n-1$	Compute statistic	Reject H_0 if $t < -t_{\alpha}$	
If H_1 : $\mu_D > d_0$	Compute critical value t_{α} where	$\overline{d} - d_{\circ}$	Reject H_0 if $t > t_{\alpha}$	
· • D 0	$P(T > t_{\alpha}) = \alpha$, $df = n-1$	$t = \frac{d - d_0}{s_A / \sqrt{n}}$	Reject $\Pi_0 \Pi \ i > \iota_{\alpha}$	

Formulating Hypothesis Testing Problems

Hypotheses about a random variable x are often formulated in terms of its distributional properties. Example, if property is a:

Null hypothesis H_0 : $a = a_0$

Alternative hypothesis \mathbf{H}_1 : $\mathbf{a} < \mathbf{a}_0 || \mathbf{a} > \mathbf{a}_0 || \mathbf{a} \neq \mathbf{a}_0$

Objective of hypothesis testing is to decide whether or not to reject this hypothesis. Decision is based on estimator â of a:

Reject H_0 : If observed estimate \hat{a} lies in rejection region R_{a0} (i.e. $\hat{a} \in R_{a0}$) **Do not reject** H_0 : Otherwise (i.e. $\hat{a} \notin R_{a0}$)

Select rejection region to obtain desired error properties:

		Test Result	
		Do not reject H0 $\hat{a} \notin R_{a0}$	Reject H0 $\hat{a} \in R_{a0}$
True situation	H0 true	$P(H0 H0) = 1 - \alpha$	$P(\sim H0 H0) = \alpha$ (Type I Error)
	H0 false	$P(H0 \sim H0) = \beta$ (Type II Error)	$P(\sim H0 \sim H0) = 1 - \beta$

Type I Error probability α is called the test **significance level**.

1- β □□□is□ said to be the **power** of a test; and β is the Type II Error probability

Computing $\beta \square$ and \square choosing \square sample \square size

Suppose that we wish to test the hypothesis (H₀: $\mu=\mu0$; H1: $\mu>\mu0$) with a significance level α when σ^2 is known. For a specific alternative, say $\mu=\mu_0+\delta$, the power of our test is: $1-\beta=P[\overline{x}>a]$ when $\mu=\mu_0+\delta$, which is equivalent to:

$$\beta = P \left[Z < z_{\alpha} - \frac{\delta}{\frac{\sigma}{\sqrt{n}}} \right] = P \left[Z < -z_{\beta} \right]$$
Hence: $n = \frac{\left(z_{\alpha} + z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}$ or $n \approx \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}$ (two – tailed)

ENGG319 L01 Fall 2016 – Section #10 (Hypothesis Testing) Summary Sheet

H_0 : $\sigma^2 = \sigma_0^2$					
If H_1 : $\sigma^2 < \sigma_0^2$	Compute critical value $\chi^2_{1-\alpha}$		Reject H_0 if $\chi^2 < \chi^2_{1-\alpha}$		
If $H_{1:}\sigma^2 > \sigma_0^2$	where $P(\chi^2 < \chi^2_{1-\alpha}) = \alpha$ Compute critical value χ^2_{α} where $P(\chi^2 > \chi^2_{\alpha}) = \alpha$	Compute statistic $(n-1)s^2$	Reject H ₀ if $\chi^2 > \chi^2_{\alpha}$		
If $H_{1:} \sigma^2 \neq \sigma_0^2$	Compute critical values $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$ where $P(\chi^2 < \chi^2_{1-\alpha/2}) = \alpha/2$ and $P(\chi^2 > \chi^2_{\alpha/2}) = \alpha/2$	$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$ with df = n-1	Reject H_0 if $\chi^2 < \chi^2_{1-\alpha/2}$ or $\chi^2 > \chi^2_{\alpha/2}$		
$H_0: \sigma_1^2 = \sigma_2^2$					
If H_1 : $\sigma_1^2 \neq \sigma_2^2$	Compute critical values $F_{\omega/2}(df_1, df_2)$ where $P(F > F_{\omega/2}) = \omega/2$	Compute statistic $F = \frac{s_1^2}{s_2^2} \text{ if } s_1^2 > s_2^2$	Reject H ₀ if F > $F_{\alpha/2}(df_1, df_2)$		
If H_1 : $\sigma_1^2 > \sigma_2^2$ $(\Box \text{or } \sigma_1^2 < \sigma_2^2)$	Compute critical values $F_{\alpha}(df_1, df_2)$ where $P(F > F_{\alpha}) = \alpha$	with $df_1 = n_1 - 1$ and $df_2 = n_2 - 1$ or $F = \frac{s_2^2}{s_1^2} \text{ if } s_1^2 < s_2^2$ with $df_1 = n_2 - 1$ and $df_2 = n_1 - 1$	Reject H_0 if $F > F_{\alpha}(df_1, df_2)$		
(Goodness-for-Fit Test) H ₀ : observation x follows a specified distribution f(x)					
H_1 : x does not follow the distribution $f(x)$		Compute statistic $\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$ with df = k - 1	Reject H_0 if $\chi^2 > \chi^2_{\alpha}$		
<i>Note:</i> Expected frequencies e_i must be $\geq 5 \Rightarrow$ collapse classes where necessary					