Àlgebra Lineal

Problemes del Tema 3: Aplicacions lineals

- 1. Justifiqueu si són lineals o no les aplicacions següents:
- (a) $f: \mathbb{R}^2 \to \mathbb{R}$ definida per f(x, y) = x + y;
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ definida per f(x, y) = xy;
- (c) $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida per f(x, y) = (x + 2y, x 2y, 3y);
- (d) $f: \mathbb{R}^2 \to \mathbb{R}$ definida per $f(x,y) = x^2 + y^2$;
- (e) $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida per $f(x,y) = (a^2x + b^2y, a^3x + b^3y)$, on $a,b \in \mathbb{R}$;
- (f) $f: \mathbb{R}^2 \to \mathbb{R}^4$ definida per f(x,y) = (x+y, |x|, |y|, y);
- (g) $f: \mathbb{R}[x] \to \mathbb{R}[x]$ definida per f(p(x)) = p'(x);
- (h) $f: \mathbb{R}[x] \to \mathbb{R}[x]$ definida per f(p(x)) = p(x+1);
- (i) $f: \mathcal{M}_{n \times m}(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ definida per $f(A) = A A^t$;
- (j) $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ definida per $f(A) = A A^t$.
- 2. Calculeu el nucli i la imatge de les aplicacions lineals següents i digueu en cada cas si l'aplicació és injectiva, exhaustiva o bijectiva:
- (a) $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida per f(x, y) = (x + 2y, 4x + 6y);
- (b) $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida per f(x,y) = (x-y, 3x+2y, 5x+5y);
- (c) $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida per f(x, y, z) = (x + 2y + 3z, -x + 3y + 2z);
- (d) $f: \mathbb{R}^4 \to \mathbb{R}^4$ definida per f(x, y, z, t) = (x y + z, x + t, y z + t, x + t);
- (e) $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ definida per $f(p(x)) = p'(x) + p(0) + x^2 p''(\pi)$;
- (f) $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ definida per $f(A) = A^t + (\operatorname{tr} A)I_2$;
- (g) $f: \mathcal{M}_{3\times 2}(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ definida per

$$f(A) = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 0 & 2 \end{pmatrix} A \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}.$$

- **3.** Sigui E un espai vectorial de dimensió finita i sigui $f: E \to F$ una aplicació lineal. Proveu que, donada una base qualsevol $\{u_1, \ldots, u_n\}$ de E, se satisfà:
 - (a) f és injectiva si, i només si, $f(u_1), \ldots, f(u_n)$ són linealment independents;
 - (b) f és exhaustiva si, i només si, $f(u_1), \ldots, f(u_n)$ generen F;
 - (c) f és bijectiva si, i només si, $\{f(u_1), \ldots, f(u_n)\}$ és base de F.
- **4.** Siguin $f: E \to F$ i $g: F \to G$ aplicacions lineals. Demostreu que la composició g f és una aplicació lineal i proveu la igualtat $\operatorname{Nuc}(g f) = f^{-1}(\operatorname{Nuc} g)$.

1

- **5.** Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal definida per f(x, y, z) = (2x 3y + z, -x + 2y 2z, x 3y + 5z). Calculeu:
 - (a) una base de Nuc f i de Im f;
 - (b) $f^{-1}(u)$ i $f^{-1}(v)$ per als vectors u = (-1, 1, -2) i v = (1, 1, 1);
 - (c) f(E) i f(F) per als subespais E = [(1, 0, -1), (3, 3, 2)] i $F = \{(x, y, z) \in \mathbb{R}^3 \mid x y z = 0\}$;
 - (d) $f^{-1}(E)$ i $f^{-1}(F)$ per als subespais

$$E = [(-1, 1, -2), (-1, 0, 1)]$$
 i $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = x + 2y + 3z = 0\}.$

- **6.** Sigui $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ l'aplicació definida per $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & a-b & c \\ b-a & 0 & d-c \\ -c & c-d & 0 \end{pmatrix}$.
- (a) Proveu que f és lineal.
- (b) Trobeu una base de Nuc f i de Im f.
- (c) És f injectiva? És f exhaustiva?
- (d) Trobeu un complementari de Nuc f en $\mathcal{M}_2(\mathbb{R})$ i un complementari de Im f en $\mathcal{M}_3(\mathbb{R})$.
- 7. Sigui $f: \mathbb{R}^3 \to M_2(\mathbb{R})$ l'aplicació definida per $f(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2 & x_2 x_3 \\ x_3 x_2 & x_1 x_3 \end{pmatrix}$.
- (a) Proveu que f és lineal.
- (b) Trobeu una base de Nuc f i de Im f.
- (c) És f injectiva? És f exhaustiva?
- (d) Trobeu un complementari de Nuc f en \mathbb{R}^3 i un complementari de Im f en $\mathcal{M}_2(\mathbb{R})$.
- 8. Discutiu si existeix alguna aplicació lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(u_i) = v_i$ per a i = 1, 2, 3 en cadascun dels casos següents:

(a)
$$u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (-1, 1, 0), v_1 = (1, 2, 3), v_2 = (3, 2, 1), v_3 = (8, 4, 0);$$

(b)
$$u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (-1, 2, 3), v_1 = (1, 2, 3), v_2 = (3, 2, 1), v_3 = (8, 4, 0);$$

(c)
$$u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (-1, 2, 3), v_1 = (1, 2, 3), v_2 = (3, 2, 1), v_3 = (0, 1, 2).$$

En cas afirmatiu, trobeu-les totes donant-ne la matriu en les bases canòniques.

9. Donada una base $\{u, v, w, t\}$ d'un \mathbb{R} -espai vectorial E, sigui $f \colon E \to E$ una aplicació lineal tal que

$$f(u) = u + 2w$$
, $f(v) = v + w$, $f(w) = 2u + v + w$, $f(t) = 2u + 2v + 4w$.

Trobeu una base de Nuc f i de Im f.

10. Sigui $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'aplicació lineal definida per f(x,y) = (-2x - y, 4x + 2y). Calculeu la matriu de f en la base $\{(1,-1), (-2,3)\}$ de \mathbb{R}^2 .

2

- **11.** Considereu l'aplicació lineal $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ definida per $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b+c-d, a+d, 0).$
- (a) Trobeu una base de Nuc f i de Im f.
- (b) Calculeu la matriu de f en la base $\{M_1, M_2, M_3, M_4\}$ de $\mathcal{M}_2(\mathbb{R})$, on

$$M_1 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \qquad M_3 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \qquad M_4 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix},$$

i la base $\{v_1, v_2, v_3\}$ de \mathbb{R}^3 , on $v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1).$

12. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^4$ l'aplicació lineal determinada per $f(u_i) = v_i$ per a i = 1, 2, 3, on

$$u_1 = (0, 1, 1),$$
 $u_2 = (1, 0, 3),$ $u_3 = (2, 1, 0),$ $v_1 = (2, 1, -1, 0),$ $v_2 = (5, 2, 2, 1),$ $v_3 = (5, -2, 3, 2).$

$$v_1 = (2, 1, -1, 0),$$
 $v_2 = (5, 2, 2, 1),$ $v_3 = (5, -2, 3, 2).$

Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i de \mathbb{R}^4 . Determineu una base de Nuc f i de Im f.

- **13.** Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal amb matriu associada $\begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ en la base canònica de \mathbb{R}^3 .
- (a) Trobeu una base de Nuc f i de Im f.
- (b) Trobeu una base de \mathbb{R}^3 tal que la matriu de f en aquesta base sigui $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 14. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'aplicació lineal amb matriu associada $\begin{pmatrix} 3 & 5 & 1 \\ 1 & 2 & 0 \end{pmatrix}$ en la base $\{u_1, u_2, u_3\}$ de \mathbb{R}^3 i la base $\{v_1, v_2\}$ de \mathbb{R}^2 , on

$$u_1 = (1, 1, 1),$$
 $u_2 = (1, 1, 0),$ $u_3 = (1, 0, 0),$ $v_1 = (1, 1),$ $v_2 = (1, 0).$

- (a) Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^2 .
- (b) Trobeu la matriu de f en la base $\{u_1', u_2', u_3'\}$ de \mathbb{R}^3 i la base $\{v_1', v_2'\}$ de \mathbb{R}^2 , on

$$u'_1 = (1,0,1),$$
 $u'_2 = (0,1,0),$ $u'_3 = (1,1,0),$ $v'_1 = (2,1),$ $v'_2 = (1,2).$

- (c) Sigui w el vector de \mathbb{R}^3 amb coordenades (1,2,3) en la base $\{u_1,u_2,u_3\}$. Trobeu les coordenades de f(w)en la base $\{v'_1, v'_2\}$.
- **15.** Sigui f l'endomorfisme de \mathbb{R}^3 definit per $f(x,y,z)=(3x,\,x-y,\,2x+y+z)$.
- (a) Doneu la seva matriu en la base canònica.
- (b) Trobeu la seva matriu en la base $\{(1,0,1), (-1,2,1), (2,1,1)\}.$
- (c) Comproveu que f és bijectiva i calculeu les matrius de f^{-1} en les bases dels apartats (a) i (b).
- (d) Proveu que $(f^2 I)(f 3I) = 0$.

- 16. Sigui f un endomorfisme d'un espai vectorial E tal que $f^2 + f + I = 0$. Proveu que f és un isomorfisme i trobeu el seu invers.
- 17. Sigui f un endomorfisme d'un espai vectorial V de dimensió finita. Demostreu que $\operatorname{Im} f = \operatorname{Im} f^2$ si, i només si, $V = \operatorname{Nuc} f \oplus \operatorname{Im} f$.
- 18. Sigui f un endomorfisme d'un espai vectorial E. Es diu que f és una projecció si és idempotent, és a dir, si $f^2 = f$.
 - (a) Demostreu que f és una projecció si, i només si, ho és I f.
 - (b) Demostreu que, si f és una projecció, llavors Nuc $f \oplus \text{Im } f = E$. Doneu un contraexemple del recíproc.
- 19. Sigui f un endomorfisme d'un espai vectorial E.
- (a) Proveu que $\operatorname{Im} f^{n+1} \subset \operatorname{Im} f^n$ i $\operatorname{Nuc} f^n \subset \operatorname{Nuc} f^{n+1}$ per a tot nombre natural n.
- (b) Demostreu que, si E té dimensió finita, existeix un natural m tal que $\operatorname{Im} f^n = \operatorname{Im} f^m$ i $\operatorname{Nuc} f^n = \operatorname{Nuc} f^m$ per a tot $n \ge m$.
- (c) Proveu, donant un contra exemple a l'espai de polinomis $\mathbb{R}[x]$, que l'apartat (b) no és cert si E no té dimensió finita.
- **20.** Calculeu el determinant i la traça dels dos endomorfismes f de $\mathcal{M}_2(\mathbb{R})$ definits així:
- (a) $f(A) = A^t$.
- (b) f(A) = MA, on $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- **21.** Comproveu que, per a tot endomorfisme f d'un espai vectorial E, els subespais Nuc f i Im f són invariants per f. Trobeu endomorfismes f_1, f_2, f_3 de \mathbb{R}^4 tals que dim Nuc $f_j = \dim \operatorname{Im} f_j = 2$ per a j = 1, 2, 3 i que satisfacin les condicions següents:
 - (a) Nuc $f_1 \oplus \text{Im } f_1 = \mathbb{R}^4$.
 - (b) Nuc $f_2 = \operatorname{Im} f_2$.
 - (c) Nuc $f_3 \cap \text{Im } f_3$ té dimensió 1.
- **22.** Considereu l'endomorfisme f de \mathbb{R}^3 definit per

$$f(x, y, z) = (-2x + 2y - 2z, -5x + 4y + 2z, y - z).$$

Comproveu que el subespai $E = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$ és invariant per f i trobeu la matriu de la restricció $f_{|E}$ en alguna base de E.

23. Considereu a \mathbb{R}^3 els vectors $v_1 = (5, -1, 2), v_2 = (4, 1, 1), v_3 = (-3, 0, 1)$ i la forma lineal

$$\phi(x, y, z) = 2x + 3y - z.$$

Comproveu que $\{v_1, v_2, v_3\}$ és una base de \mathbb{R}^3 i calculeu les coordenades de ϕ en la seva base dual.

24. Trobeu la forma lineal $\phi : \mathbb{R}^3 \to \mathbb{R}$ que té coordenades (1,1,1) en la base dual de la base de \mathbb{R}^3 formada pels vectors (1,0,0), (0,1,0), (a,b,1).

4

- **25.** Comproveu que $\{(1,1,0), (0,1,0), (0,1,-1)\}$ és una base de \mathbb{R}^3 i expresseu la seva base dual en termes de la base dual de la base canònica.
- **26.** Donada una base $\mathcal{C} = \{e_1, e_2, e_3\}$ d'un espai vectorial E, considereu els vectors $v_1 = 5e_1 e_2 + 2e_3$, $v_2 = 4e_1 + e_2 + e_3$, $v_3 = -3e_1 + e_3$. Sigui $\mathcal{C}^* = \{e_1^*, e_2^*, e_3^*\}$ la base dual de \mathcal{C} . Proveu que $\mathcal{B} = \{v_1, v_2, v_3\}$ és una base de E i expresseu la forma lineal $2e_1^* + 3e_2^* e_3^*$ en la seva base dual.
- **27.** Donada una base $\mathcal{C} = \{e_1, e_2, e_3\}$ d'un espai vectorial E, sigui $\mathcal{C}^* = \{e_1^*, e_2^*, e_3^*\}$ la seva base dual. Considereu les formes lineals $\omega_1 = 2e_1^* + e_2^* e_3^*$, $\omega_2 = e_1^* e_2^* + e_3^*$, $\omega_3 = e_3^*$. Proveu que $\{\omega_1, \omega_2, \omega_3\}$ és una base de l'espai dual E^* i trobeu la base $\{v_1, v_2, v_3\}$ de E tal que $\omega_i = v_i^*$ per a i = 1, 2, 3.
- **28.** Siguin $\omega_1, \omega_2, \omega_3$ les formes lineals de $\mathbb{R}_2[x]$ definides per

$$\omega_1(p(x)) = p(1), \quad \omega_2(p(x)) = p(-1), \quad \omega_3(p(x)) = p(0).$$

Proveu que $\{\omega_1, \omega_2, \omega_3\}$ és una base de l'espai dual de $\mathbb{R}_2[x]$ i trobeu la base de $\mathbb{R}_2[x]$ que té aquesta base com a base dual.

- **29.** Sigui $f: \mathbb{R}_2[x] \to \mathbb{R}^2$ l'aplicació lineal definida per $f(a+bx+cx^2) = (a+b, a+c)$. Considereu les bases $\mathcal{B}_u = \{1, 1+x, x^2\}$ de $\mathbb{R}_2[x]$ i $\mathcal{B}_v = \{(1,0), (1,1)\}$ de \mathbb{R}^2 . Calculeu la matriu de l'aplicació dual de f en les bases duals de \mathcal{B}_v i \mathcal{B}_u , respectivament.
- **30.** Donat un espai vectorial E de dimensió n, siguin $\omega_1, \ldots, \omega_n$ formes lineals de E tals que

$$\omega_1(v) = \cdots = \omega_n(v) = 0$$

per a algun vector v de E no nul. Proveu que $\omega_1, \ldots, \omega_n$ són linealment dependents.

31. Donat un espai vectorial E de dimensió n, siguin ω_1, ω_2 formes lineals de E linealment independents. Proveu que dim $(\operatorname{Nuc}\omega_1 \cap \operatorname{Nuc}\omega_2) = n - 2$.