Содержание

1	\mathbf{Bep}	роятностное пространство	1
	1.1	Свойства Р из учебника	2
	1.2	Некоторые следствия аксиоматики	4
		1.2.1 Индикатор	4
2	Усл	ювные вероятности и независимость	5
_	2.1	<u>.</u>	5
	2.2	2 V	6
	2.3		6
	$\frac{2.0}{2.4}$		7
	2.1		8
		2.4.1 Oxema Dephysisin	O
3	Слу	учайные величины	8
	3.1	Примеры законов распределения	8
	3.2	Свойства мат. ожидания	8
	3.3	Свойства дисперсии	9
	3.4	Джентльменский набор	9
	3.5	Многомерные законы распределения	0
	3.6	Независимость случайных величин	0
	3.7	Евклидово пространство случайных величин	0
	3.8	Условные математические ожидания	1
	3.9	Неравенство Чебышева. Закон больших чисел	2
4	Ст	учайные величины (общий случай)	2
4	4.1	учаиные величины (общии случаи) Примеры дискретных распределений	
	$\frac{4.1}{4.2}$	Свойства	
	4.2	Овоиства	4
5	Ma'	тематическое ожидание 1	4
	5.1	Свойства мат. ожидания	4
	5.2	Джентльменский набор абсолютно непрерывных распределений	4
	5.3	Правила для вычисления	5
6	Пъ	оизводящие функции	5
•	6.1	- Джентльменский набор	
-	v	1	c
7	_	рактеристические функции Абсолютно непрерывный случай	
	(. I	- Aосолютно непрерывный случай	y

1 Вероятностное пространство

Определение (Алгебра). Семейство \mathcal{A} подмножеств множества Ω называется алгеброй, если выполнены след. аксиомы:

- 1. $\emptyset \in \mathcal{A}$
- $2. \ A \in \mathcal{A} \implies \overline{A} \in \mathbb{A}$
- 3. (аддитивность) $A_1,\dots,A_n\in\mathbb{A}\implies A_1\cup\dots\cup A_n\in\mathbb{A}$

Т.е алгебра является замкнутой относительно замыкания и объединения

Определение (σ -алгебра). Алгебра называется σ -алгеброй, если

$$A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$$

Определение (мера). $\mu : \mathcal{A} \to [0; \infty)$ - мера, если

$$A_1,\dots,A_n\in\mathcal{A},A_i\cap A_j=\varnothing,i
eq j: \quad \mu(\bigcup_{n=1}^\infty A_n)=\sum_{n=1}^\infty \mu(A_n)$$
 счетная аддитивность

Мера конечная, если $\mu(\Omega) < \infty$ Мера вероятностная, если $\mu(\Omega) = 1$

Короче говоря, вероятностная мера:

- 1. неотрицательность
- 2. нормированность
- 3. счетная аддитивность (иногда счетная аддитивность заменяется на аддитивность и непрерывность)

1.1 Свойства Р из учебника

1. $A \subseteq B \implies P(B \setminus A) = P(B) - P(A) \ge 0$

представить В как $B = A + (B \setminus A)$,

- $2. A \subseteq B \implies P(A) \leq P(B)$
- 3. $\forall A \in \mathscr{A} \quad 0 \leq P(A) \leq 1$
- $4. \ P(\overline{A}) = 1 P(A)$
- 5. $P(\emptyset) = 0$
- 6. Конечная аддитивность (следует из счетной)

7.

$$P(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k)$$

8.

$$B_k = A_k \setminus (A_1 \cup A_2 \cdots \cup A_{k-1}) \implies \bigcup_{k=1}^n A_k = \sum_{k=1}^n B_k \implies P(\bigcup_{k=1}^n A_k) = P(\sum_{k=1}^n B_k) |P(B_k)| \le P(A_k)|$$

9.

$$\forall A, B \quad P(A \cup B) = P(A) + P(B) - P(AB)$$

раздробить объединение через минус + аддитивность + 1 свойство

Определение (Вероятностное пространство). Тройка (Ω, \mathcal{A}, P) , где

- 1. Ω пространство элементарных событий;
- 2. \mathcal{A} σ —алгебра подмножеств Ω (события);
- 3. Р вероятностная счетно-аддитивная мера на \mathcal{A} (вероятность); называется вероятностным пространством.

Все элементарные исходы равновозможны

- 1. Размещение (упорядоченный набор) $A_N^n = \frac{N!}{(N-n)!}$
- 2. Перестановка (частный случай размещения при N=n)
- 3. Сочетание (подмножество) $C_N^n = \frac{A_N^n}{n!} = \frac{N!}{n!(N-n)!}$

Определение (Классическая вероятность). Модель вероятностного пространства (A - событие)

- 2. \mathcal{A} все подмножества Ω
- 3. $P(A) = \sum_{\omega \in A} p_{\omega} = \frac{|A|}{|\Omega|}$
- 1. $\Omega = \{\omega_1, \dots, \omega_n\}$ конечное пространство

Определение (Геометрическая вероятность). $V \in \mathbb{R}^n$

- 1. $\Omega = V$
- 2. \mathcal{A} борелевская $\sigma-$ алгебра (минимальная $\sigma-$ алгебра, содержащая все компакты) подмножеств V
- 3. $P(A) = \frac{\mu(A)}{\mu(V)}$

1.2 Некоторые следствия аксиоматики

1.

Аксиома (Аксиома непрерывности). *Если* $A_1 \supset A_2, \ldots, \supset A_n \supset \mathcal{A}, \bigcap_{i=1}^{\infty} A_i = \emptyset, mo$

$$\lim_{n \to \infty} P(A_n) = 0$$

 \mathcal{A} оказательство. Пусть $B_n \downarrow \varnothing$. Тогда обозначим $A_n = B_n \setminus B_{n+1}, n = 1, \ldots, \ldots A_n$ попарно несовместны и

$$B_1 = \sum_{n=1}^{\infty} A_n \quad B_n = \sum_{k=n}^{\infty} A_k,$$

поэтому из счетной аддитивности меры следует сходимость ряда

$$P(B_1) = \sum_{n=1}^{\infty} P(A_n),$$

и сумма остатка ряда

$$P(B_n) = \sum_{k=n}^{\infty} P(A_k) = 0.$$

2. (Формула включений и исключений)

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{i < j}^{n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$$

Доказательство. Выводится через обычную формулу включений и исключений для множеств по индукции

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

+

$$\begin{cases} A \cup B = A + (B \setminus AB) \\ \text{Счетная аддитивность} \\ P(B \setminus AB) = P(B) - P(AB) \text{(также по счетной аддитивности)} \end{cases}$$

1.2.1 Индикатор

Определение. Индикатор события A - это функция $I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$

Свойства индикатора

1.
$$I_{\bar{A}} = 1 - I_A$$

2.
$$I_{A_1 \cap A_2} = I_{A_1} I_{A_2}$$

3.
$$I_{A_1 \cup \dots \cup A_n} = 1 - I_{\bar{A_1} \cap \dots \cap \bar{A_n}} = 1 - I_{\bar{A_1}} \dots I_{\bar{A_n}} = 1 - (1 - I_{A_1}) \dots (1 - I_{A_n})$$

2 Условные вероятности и независимость

Определение (Условная вероятность). Пусть P(B) > 0. Условной вероятностью P(A|B) события A при условии, что произошло событие B (или просто: при условии B), назовем отношение

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Применяется также обозначение $P_B(A)$

Теорема 2.1 (Теорема умножения). Пусть события A_1, \ldots, A_n таковы, что $P(A_1, \ldots, A_{n-1}) > 0$. Тогда

$$P(A_1, ..., A_n) = P(A_1)P_{A_1}(A_2)...P_{A_1,...,A_{n-1}}(A_n)$$

Доказательство. Из условия теоремы вытекает, что существуют все условные вероятности из формулы. База индукции $P(AB) = P(B)P_B(A)$.

Переход: $B = A_1, \dots, A_{n-1}, A = A_n$, применим формулу выше

Определение (Разбиение). Систему событий A_1, \ldots, A_n будем называть конечным разбиением (в дальнейшем - просто разбиением), если они попарно несовместны $(A_iA_j=\varnothing, i\neq j)$ и

$$A_1 + \dots A_n = \Omega$$

Теорема 2.2 (Формула полной вероятности). Если A_1, \ldots, A_n - разбиение и все $P(A_k) > 0$, то для любого события B имеет место формула

$$P(B) = \sum_{k=1}^{n} P(A_k)P(B|A_k)$$

Доказательство.

$$B = B\Omega = BA_1 + BA_2 + \dots + BA_n$$

сумма попарно несовместных событий. Тогда

$$P(B) = P(B\Omega = BA_1 + BA_2 + \dots + BA_n) = \sum_{k=1}^{n} P(BA_k)$$

$$P(BA_k) = P(A_k)P_{A_k}(B) = P(A_k)P(B|A_k)$$

2.1 Формулы Байеса

Теорема 2.3 (Формулы Байеса). Если A_1, \ldots, A_n - разбиение и все $P(A_k) > 0$, то для любого события B (P(B) > 0) имеют место формулы:

$$P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

Доказательство.

$$P(A_k B) = P(A_k)P(B|A_k) = P(B)P(A_k|B) \implies P(A_k|B) = \frac{P(A_k)P(B|A_k)}{P(B)}$$

Применяем к P(B) формулу полной вероятности.

- 1. $P(A_k)$ априорные вероятности (до опыта)
- 2. $P(A_k|B)$ апостериорные вероятности (после опыта)

2.2 Независимость событий

Определение (независимость 2 событий). А и В - независимы, если

$$P(AB) = P(A)P(B),$$

иначе зависимы

Определение (независимость n событий (в совокупности)). A_1, \ldots, A_n называются независимыми, если для любых $1 \le i_1 < i_2 < \cdots < i_m \le n, 2 \le m \le n$

$$P(A_{i_1}A_{i_2}...A_{i_m}) = P(A_{i_1})P(A_{i_2})...P(A_{i_m}),$$

иначе зависимы.

Теорема 2.4. Если A_1, \ldots, A_n независимы, $i_1, \ldots, i_r, j_1, \ldots, j_s$ - индексы все различны, вероятность $P(A_{i_1} \ldots A_{i_r}) > 0$, тогда

$$P(A_{j_1} \dots A_{j_s} | A_{i_1} \dots A_{i_r}) = P(A_{j_1} \dots A_{j_s})$$

 $\Delta o \kappa a 3 a m e \wedge b c m e o$. A_1, \ldots, A_n независимы, поэтому

$$P(A_{i_1} \dots A_{i_r}) = P(A_{i_1}) \dots P(A_{i_r})$$

$$P(A_{j_1} \dots A_{j_s}) = P(A_{j_1}) \dots P(A_{j_s})$$

$$P(A_{j_1} \dots A_{j_s} A_{i_1} \dots A_{i_r}) = P(A_{i_1}) \dots P(A_{i_r}) P(A_{j_1}) \dots P(A_{j_s})$$

поэтому

$$P(A_{j_1} \dots A_{j_s} \cap A_{i_1} \dots A_{i_r}) = P(A_{i_1} \dots A_{i_r}) \times P(A_{j_1} \dots A_{j_s})$$

+ формула условной вероятности

2.3 Независимость разбиений, алгебр/ σ -алгебр

Определение (Порожденная алгебра). γ - система множеств. Наименьшая алгебра множеств $\mathcal{A}(\gamma)$, содержащая γ , называется алгеброй, порожденной системой γ .

Определение (Порожденная σ -алгебра). Аналогично.

Замечание. Алгебра, порожденная разбиением, является конечной, состоит из пустого множества и множеств вида

$$A_{i_1} + A_{i_2} + \dots A_{i_m}$$

Теорема 2.5. Каждая конечная алгебра множеств порождается некоторым разбиением

 \mathcal{A} оказатель ство. \mathscr{B} - конечная алгебра событий. Обозначим \mathscr{B}_w - совокупность событий B из \mathscr{B} , для которых w из B.

Для каждого $w \in \Omega$ введем $B_w = \bigcap_{B \in \mathscr{B}_w} B$

Покажем, что для двух $\omega \neq \omega'$

$$\begin{bmatrix} B_{\omega} = B_{\omega'} \\ B_{\omega} \cap B_{\omega'} = \varnothing \end{bmatrix}$$

Для любых $\omega \in \Omega$ и $B \in \mathscr{B}$ истинно свойство: если $\omega \in B$, то $B_{\omega} \subseteq B$ (т.к B_{ω} - пересечение всех таких B из алгебры, в которых лежит ω)

Пусть теперь $\omega \in B_{\omega'}$, тогда $B_{\omega} \subseteq B_{\omega'}$ (транзитивность $B_{\omega} \subseteq B \subseteq B_{\omega'}$)

Далее если $\omega' \in B_{\omega}$, то $B_{\omega'} \subseteq B_{\omega}$ и, следовательно, $B_{\omega'} = B_{\omega}$

Случай $\omega' \in \overline{B_{\omega}}$ невозможен, так как противоречие $B_{\omega'} \subseteq \overline{B_{\omega}}$ (а уже было доказано, что $B_{\omega} \subseteq B_{\omega'}$)

Выберем среди B_{ω} разные множества B_1,\dots,B_r . Это разбиение, т.к $B_1+\dots+B_r=\Omega$ и $B_iB_j=\varnothing$ при $i\neq j$.

Так как $\forall B \in \mathscr{B}$ представимо в виде $B = \bigcup_{\omega \in B} B_{\omega}$, то это разбиение порождает алгебру \mathscr{B} .

Определение (Независимые разбиения). $\alpha_k: A_{k1}+\cdots+A_{kr_k}=\Omega, k=1,\ldots,n$ независимые, если для любых $i_k, 1\leq i_k\leq r_k, k=1,\ldots,n$

$$P(A_{1i_1}A_{2i_2}...A_{ni_n}) = P(A_{1i_1})P(A_{2i_2})...P(A_{ni_n})$$

По-русски: есть n разбиений, они могут быть разной мощности. Берем по любому событию из каждого разбиения. (всего получается n событий) (то есть вариантов формулы всего $|\alpha_1| \times \cdots \times |\alpha_n|$)

Определение (Независимые алгебры (σ -алгебры)). $\mathscr{A}, \ldots, \mathscr{A}$ - независимы, если $\forall A_i \in \mathscr{A}$

$$P(A_1A_2...A_n) = P(A_1)...P(A_n)$$

Теорема 2.6. Конечные алгебры $\mathscr{A}, \ldots, \mathscr{A}$ независимы тогда и только тогда, когда независимы порождающие их разбиения $\alpha_1, \ldots, \alpha_n$

Доказательство. ⇒ Разбиение есть подсистема порожденной алгебры. Из независимости алгебр следует независимость разбиений.

Лемма 2.1. 1. Если события A и B независимы, то \bar{A} и B также независимы

2. Если A_1 и B независимы и A_2 и B независимы, а $A_1A_2=\varnothing$, то A_1+A_2 и B независимы.

Доказательство. 1. А и В независимы, тогда

$$P(B\bar{A}) = P(B \setminus AB) = P(B) - P(AB) = P(B) - P(A)P(B) = P(B)(1 - P(A)) = P(B)P(\bar{A})$$

2. A_i и В независимы: $P(A_iB) = P(A_i)P(B)$

$$P((A_1 + A_2)B) = P(A_1)P(B) + P(A_2)P(B) = P(B)(P(A_1) + P(A_2)) = P(B)P(A_1 + A_2)$$

Замечание. Каждое событие А порождает разбиение $A + \bar{A} = \Omega$, порождающее алгебру $\mathscr{A}(A)$. Из леммы вытекает, что независимость событий A_1, \ldots, A_n и независимость порожденных ими алгебр $\mathscr{A}(A_1), \ldots, \mathscr{A}(A_n)$ эквивалентны.

2.4 Независимые испытания

Если имеем п независимых испытаний, то можно построить одно большое вероятностное пространство, элементы которого являются прямыми произведениями соответствующих Ω_i и тд.

Подалгебры должны быть независимы, тогда такое пространство всегда можно построить

Прямое произведение вероятностей:

$$\omega = (\omega_1, \dots, \omega_n), p(\omega) = p_1(\omega_1) \dots p_n(\omega_n), \quad P(A) = \sum_{\omega \in A} p(\omega)$$

$$P = P_1 \times \cdots \times P_n$$

События являются "прямоугольниками":

$$A = A_1 \times \cdots \times A_n$$

состоит из векторов $\omega = (\omega_1, \dots, \omega_n), \omega_i \in A_i \in \mathscr{A}$

Вероятность А:

$$P(A) = \sum_{\omega \in A} p(\omega) = \sum_{\omega \in A_1} p_1(\omega_1) \cdots \sum_{\omega \in A_n} p_n(\omega_n) = \prod_{k=1}^n P_k(A_k)$$

Пусть \mathscr{A}' - подалгебра \mathscr{A} , где все $A_i = \Omega_i$ для всех компонент прямоугольника $(i \neq k)$ События из этой алгебры (A_i') изоморфны событиям из A_i .

$$P(A_i') = P_i(A_i)$$

Событие A является пересечением событий $A'_{k}, k = 1, ..., n$

$$P(\bigcap_{k=1}^{n} A'_{k}) = \prod_{k=1}^{n} P(A'_{k})$$

Поэтому алгебры A'_j независимы.

2.4.1 Схема Бернулли

п испытаний, в котором либо успех, либо неудача (неуспех) (в каждом испытании вероятность успеха и неудачи равны), тогда вероятность элементарного события (вектора из событий каждого испытания, он булев, так как каждое ω_i либо 0, либо 1)

$$p(\omega) = \prod_{i=1}^{n} p^{\omega_i} q^{1-\omega_i}$$

Обозначим $B_k=\{\omega:\omega_1+\cdots+\omega_n=k\}$ Для $\omega\in B_k\ p(\omega)=p^kq^{n-k}$

$$P(B_k) = C_n^k p^k q^{n-k}, k = 1, \dots n$$
 – Биномиальное распределение

Еще есть полиномиальноая схема. там не по 2 исхода, а по г.

3 Случайные величины

Определение (Случайная величина). Случайной величиной (СВ) $X(\omega)$ называется функция элементарного события ω с областью определения Ω и областью значений $\mathbb R$ такая, что событие $\{\omega: X(\omega) \leq x\}$ принадлежит σ -алгебре $\mathcal F$ при любом действительном $x \in \mathbb R$. Значения x функции $X(\omega)$ называются реализациями CB $X(\omega)$.

Определение (Алгебра, порожденная случайной величиной). Пусть $x_1 < \dots < x_k$ - значения, принимаемые случайной величиной ξ . Каждая такая величина определяет разбиение из событий $A_i = \{\omega : \xi(\omega) = x_i\}$. Т.к $x_i \neq x_i$, то $A_i A_j = \emptyset$. Сумма - достоверное событие Ω .

Разбиение порождает алгебру событий

$$\{\xi \in B\} = \{\omega : \xi(\omega) \in B\}$$

, В - числовое множество.

Определение (Закон распределения). Любое правило (таблица, функция), позволяющее находить вероятности всех возможных событий, связанных со случайной величиной.

3.1 Примеры законов распределения

- 1. Биномиальный закон
- 2. Гипергеометрическое распределение: распределение числа белых шаров ξ в выборке без возвращения объема n из урны, содержащей M белых и N-M черных шаров

$$P\{\xi = m\} = \frac{C_M^m C_{N-M}^{n-m}}{C_M^n}, m = 0, 1, \dots \min(n, M)$$

3. Равномерное распределение

Определение (Математическое ожидание). Математическое ожидание случайной величины $\xi = xi(\omega)$ обозначается $M\xi$ и определяется как сумма

$$M\xi = \sum_{\omega \in \Omega} \xi(\omega) p(\omega)$$

среднее значение ξ

3.2 Свойства мат. ожидания

1. $MI_A = P(A)$

Доказательство.

$$MI_A = \sum_{\omega \in \Omega} I_A(\omega) p(\omega) = \sum_{\omega \in A} p(\omega) = P(A)$$

2. Аддитивность: $M(\xi + \eta) = M\xi + M\eta$

Доказательство.

Из этого также следует конечная аддитивность.

3. Для любой константы С

$$M(C\xi) = cM\xi, \quad MC = C$$

- 4. Если $\xi \geq \eta$, то $M\xi \geq M\eta$. $\xi \geq 0 \& M\xi = 0 \implies P\{\xi = 0\} = 1$
- 5. Математическое ожидание ξ выражается через закон распределения случайной величины ξ формулой

$$M\xi = \sum_{i=1}^{k} x_k P\{\xi = x_i\}$$

Подставляя в числовую функцию случайную величину, мы также получаем случайную величину. Например, если $\eta = g(\xi)$, то

$$M\eta = Mg(\xi) = \sum_{i=1}^{k} g(x_i) P\{\xi = x_i\}$$

При этом

$$g(x_i) = \sum_{i=1}^k g(x_i) I_{\xi = x_i}$$

Определение (n-ый момент случайной величины). Математическое ожидание $M\xi^n$ называется n-ым моментом (или моментом n-ого порядка) случайной величины ξ (или ее закона распределения).

Определение (Абсолютный n-ый момент). Математическое ожидание $M|\xi|^n$.

Определение (Центральный момент n-ого порядка). $M(\xi - M\xi)^n$

Определение (Абсолютный центральный момент n-ого порядка). $M|\xi - M\xi|^n$

Определение (Дисперсия). $D\xi = M(\xi - M\xi)^2$

Определение (Среднее квадратическое отклонение (стандартное отклонение)). $\sqrt{(D\xi)}$

3.3 Свойства дисперсии

- 1. $D\xi = M\xi^2 (M\xi)^2$
- 2. $D\xi \le 0$ и $D\xi = 0$ тогда и только тогда, когда существует такая константа с, что $P\{\xi = c\} = 1$
- 3. Для любой константы с $D(c\xi) = c^2 D\xi$, $D(\xi + c) = D\xi$

Теорема 3.1 (Неравенство Иенсена). Если числовая функция g(x), то для любой случайной величины ξ

$$Mg(\xi) \le g(M\xi)$$

Теорема 3.2 (Неравенство Ляпунова). Для любых положительных $\alpha \leq \beta$

$$(M|\xi|^{\alpha})^{1/\alpha} < (M|\xi|^{\beta})^{1/\beta}$$

Теорема 3.3 (Неравенство Коши-Буняковского).

3.4 Джентльменский набор

1. Равномерное дискретное распределение

$$P\{\xi = k\} = \frac{1}{N}, \quad M\xi = \frac{1+N}{2}, \quad D\xi = \frac{N^2 - 1}{12}$$

2. Биномиальное (распределение Бернулли)

$$P\{n=k\} = C_n^k p^k (1-p)^{n-k}, \quad M\xi = np, \quad D\xi = np(1-p)$$

3. Геометрическое распределение

$$P\{n=k\} = (1-p)p^k, \quad M\xi = \frac{p}{1-p}, \quad D\xi = \frac{p}{(1-p)^2}$$

4. Распределение Пуассона

$$P\{n=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad M\xi = \lambda, \quad D\xi = \lambda$$

3.5 Многомерные законы распределения

3.6 Независимость случайных величин

Определение (Независимость случайных величин). ξ_1, \dots, ξ_n называются независимыми, если порожденные ими алгебры

$$\mathcal{A}_{\mathcal{E}_1},\ldots,\mathcal{A}_{\mathcal{E}_n}$$

независимы.

Определение (Независимость случайных величин). ξ_1, \dots, ξ_n называются независимыми, если для любых $x_{1_{j_1}} \dots, x_{x_{j_n}}$

$$P\{\xi_1 = x_{1_{j_1}}, \xi_n = x_{1_{j_n}}\} = \prod_{i=1}^n P\{\xi_i = x_{1_{j_i}}\}$$

Теорема 3.4. Если случайные величины $\xi_1, \dots \xi_n$ независимы, а $g_i(x)$ - числовые функции, то случайные величины $\eta_1 = g_1(\xi_1), \dots \eta_n = g_n(\xi_n)$ также независимы.

Теорема 3.5 (Мультипликативное свойство математических ожиданий). Если случайные величины $\xi_1, \dots \xi_n$ независимы, то

$$M\xi_1, \dots, \xi_n = \prod_{i=1}^n M\xi_i$$

Теорема 3.6 (Аддитивное свойство дисперсии). *Если случайные величины* $\xi_1, \dots \xi_n$ *независимы, то*

$$D(\xi_1 + \dots + \xi_n) = D\xi_1 + \dots + D\xi_n$$

3.7 Евклидово пространство случайных величин

- 1. зададим евклидово пространство случайных величин векторов $(\xi(\omega_1), \dots, \xi(\omega_n))$ с
 - (а) скалярное произведение

$$(\xi,\eta) = \sum_{\omega} \xi(\omega) \eta(\omega) p(\omega) = M \xi \eta$$

(b) норма

$$\|\xi\| = \sqrt{(\xi, \xi)}$$

(с) расстояние

$$d(\xi,\eta) = \sqrt{M(\xi-\eta)^2} = \|\xi-\eta\|$$

Рассмотрим прямую констант $l_0 = \{\xi | \xi(\omega_1) = \cdots = \xi(\omega_n)\}$ и найдем проекцию m_ξ случайной величины на прямую

$$d(\xi, m_{\xi}) = \min_{c \in l} d(\xi, c)$$

При любой константе

$$M(\xi - c)^2 = M(\xi - M\xi)^2 + (M\xi - c)^2 > D\xi$$

Значит $\sqrt{D\xi} = \min_{c \in l} d(\xi, c) = d(\xi, m_{\xi})$ и $m_{\xi} = M\xi$.

Проекция случайной величины - ее матожидание, $\xi - M \xi$ ортогональнально прямой констант.

$$(1, \xi - M\xi) = 0$$

2. Рассмотрим две случайных величины ξ, η .

$$\begin{cases} \xi = M\xi + \xi_1 \\ \eta = M\eta + \eta_1 \end{cases}$$

Определение (Коэффициент корелляции).

$$\rho(\xi, \eta) = \cos \phi_{\xi_1, \eta_1} = \frac{(\xi_1, \eta_1)}{\|\xi_1\| \|\eta_1\|} = \frac{(\xi - M\xi, \eta - M\eta)}{\|\xi - M\xi\| \|\eta - M\eta\|} = \frac{M(\xi - M\xi)(\eta - M\eta)}{\sqrt{D\xi D\eta}}$$

- коэффициент корелляции между ξ и η

Определение (Ковариация).

$$Cov(\xi, \eta) = M(\xi - M\xi)(\eta - M\eta)$$

$$\rho(\xi,\eta) = \frac{Cov(\xi,\eta)}{\sqrt{D\xi D\eta}}$$

- По неравенству Коши-Буняковского $(M\xi_1\eta_1)^2 \leq M\xi_1^2 M\eta_1^2 \implies |\rho(\xi,\eta)| \leq 1$
- Если ξ,η независимы, то $\mathrm{Cov}(\xi,\eta)=0, \rho(\xi,\eta)=0$

Доказатель ство.
$$M(\xi - M\xi)(\eta - M\eta) = M(\xi - M\xi)M(\eta - M\eta) = 0$$

Определение (некореллированные случайные величины). Если $\rho(\xi,\eta)=0$, то $\xi_1\perp\eta_1$ и случайные величины eta,ξ - некореллированные

При $\alpha_1\alpha_2 \neq 0$

$$\rho(\alpha_1 \xi + \beta_1, \alpha_2 \eta + \beta_2) = \frac{\alpha_1}{|\alpha_1|} \frac{\alpha_2}{|\alpha_2|} \rho(\xi, \eta)$$

Спроектируем вектор η на плоскость, в которой лежат прямая констант l_0 и ξ . Проекция $\eta = \alpha \xi + \beta$ определяется константами α, β , при которых

$$\begin{cases} \eta - \alpha \xi - \beta \perp 1 \\ \eta - \alpha \xi - \beta \perp \xi \end{cases}$$

(вектор-высота)

$$\begin{cases} M(\eta - \alpha \xi - \beta) \cdot 1 = 0 \\ M(\eta - \alpha \xi - \beta) \cdot \xi = 0 \end{cases}$$

$$\begin{cases} \alpha M \xi + \beta = M \eta \\ \alpha M \xi^2 + \beta M \xi = M \xi \eta \end{cases}$$

Получаем

$$\begin{cases} \alpha = \rho \frac{\sigma_{\eta}}{\sigma_{\xi}} \\ \beta = M\eta - \rho \frac{M\xi}{\sigma_{\xi}} \sigma_{\eta} \end{cases}$$

$$\sigma_{\xi}^2 = D\xi, \sigma_{\eta}^2 = D\eta, \rho = \rho(\xi, \eta)$$

Если случайные величины зависимы, то

Теорема 3.7.

$$D(\xi_1 + \dots + \xi_n) = \sum_{k=1}^n D\xi_k + 2 \sum_{1 \le k < l \le n} Cov(\xi_k, \xi_l)$$

Доказательство.

$$D(\xi + \eta) = M((\xi - M\xi) + (\eta - M\eta))^2 = M(\xi - M\xi)^2 + M(\eta - M\eta)^2 + 2M(\xi - M\xi)(\eta - M\eta) = D\xi + D\eta + 2Cov(\xi, \eta)$$

Условное мат. ожидание $M(\xi|\eta)$ - ортогональная проекция ξ на линейное подпространство η

3.8 Условные математические ожидания

Определение (Условная вероятность). Условная вероятность $P(B|\mathscr{A}(\alpha))$ относительно $\mathscr{A}(\alpha)$ как случайную величину, которая принимает значение $P(B|A_k)$ при $\omega \in A_k$.

Определение (Условный закон распределения). Условный закон распределения η при заданном значении $\xi=x_k$ назовем набор условных вероятностей

$$P\{\eta = y_t | \xi = x_k\} = \frac{P(\eta = y_t, \xi = x_k)}{P(\xi = x_k)}, \quad t = 1, \dots, m$$

Определение (Условное мат.ожидание). Условное мат.ожидание η при заданном значении $\xi=x_k$

$$M\{\eta|\xi=x_k\} = \sum_{t=1}^{m} P\{\eta=y_t|\xi=x_k\} = \frac{\sum_{t=1}^{m} y_t P(\eta=y_t, \xi=x_k)}{P(\xi=x_k)}$$

Условное мат.
ожидание является функцией от η . Случайная величина $M(\eta|\xi)$ - условное мат.
ожидание при заданном ξ

Определение.

$$M[M(\eta|\xi)] = \sum_{k=1}^{n} P\{\xi = x_k\} M\{\eta|\xi = x_k\}$$

Теорема 3.8.

$$M[M(\eta|\xi)] = M\eta$$

Доказательство.

$$M[M(\eta|\xi)] = \sum_{k=1}^{n} P\{\xi = x_k\} M\{\eta|\xi = x_k\} = \sum_{k=1}^{n} P\{\xi = x_k\} \sum_{t=1}^{m} P\{\eta = y_t|\xi = x_k\} = \sum_{k=1}^{n} P\{\xi = x_k\} \frac{\sum_{t=1}^{m} y_t P(\eta = y_t, \xi = x_k)}{P(\xi = x_k)} = \sum_{k=1}^{n} \sum_{t=1}^{m} y_t P(\eta = y_t, \xi = x_k) = \sum_{k=1}^{m} \sum_{t=1}^{m} y_t P(\eta = y_t, \xi = x_k) = \sum_{k=1}^{m} y_t P\{\eta = y_t\} = M\eta$$

3.9 Неравенство Чебышева. Закон больших чисел

Теорема 3.9 (Неравенство Чебышева). Для любого x > 0 имеют место неравенства:

$$P\{|\xi| \ge x\} \le \frac{M|\xi|}{x} \tag{1}$$

$$P\{|\xi - M\xi| \ge x\} \le \frac{D\xi}{r^2} \tag{2}$$

 \mathcal{L} оказательство. (1)

$$\begin{aligned} |\xi| &= |\xi| I_{|\xi| \ge x} + |\xi| I_{|\xi| < x} \ge |\xi| I_{|\xi| \ge x} \ge x I_{|\xi| \ge x} \\ M|\xi| &\ge x M I_{|\xi| \ge x} = x P\{|\xi| \ge x\} \end{aligned}$$

$$\eta = (\xi - M\xi)^2$$
$$M\eta = D\xi$$

Закон больших чисел

Теорема 3.10 (Теорема Чебышева). Если ξ_1, \dots, ξ_n независимы и существует такая константа c > 0, что $D\xi_n \leq c, n = 1, \dots,$ то при любом $\varepsilon > 0$

$$\lim_{n \to \infty} P\left\{ \left| \frac{\xi_1 + \dots + \xi_n}{n} - \frac{M\xi_1 + \dots + M\xi_n}{n} \right| > \varepsilon \right\} = 1$$

Cnedcmeue. Если ξ_1, \ldots независимы и одинаково распределены,

$$M\xi_n = a, D\xi_n = \sigma^2 < \infty$$

то при любом x > 0

$$\lim_{n \to \infty} P\left\{ \left| \frac{\xi_1 + \dots + \xi_n}{n} - a \right| < x \right\} = 1$$

Закон больших чисел утверждает, что с вероятностью, приближающейся при $n \to \infty$ к 1, среднее арифметическое сумм независимых слагаемых при определенных условиях становится близким к константе.

Закон больших чисел в схеме Бернулли

Теорема 3.11 (Теорема Бернулли).

4 Случайные величины (общий случай)

Определение. Числовая функция $\xi = \xi(\omega)$ от элементарного события $\omega \in \Omega$ называется случайной величиной, если для любого числа х

$$\{\xi < x\} = \{\omega : \xi(\omega) < x\} \in \mathscr{A}$$

Определение (Функция распределения случайной величины ξ).

$$F(x) = F_{\varepsilon}(x) = P\{\xi \le x\}$$

, определенная при всех $x \in R$

При помощи этой функции можно выразить вероятность попадания ξ в интервалы.

$$P(x_1 < \xi \le x_2) = F(x_2) - F(x_1)$$

$$\{\xi < x\} : \sum_{n=1}^{\infty} \{x - \frac{1}{n-1} < \xi \le x - \frac{1}{n}\}$$

$$P(\xi = x) = F(x) - F(x - 0)$$

$$P(x_1 \le \xi \le x_2) = F(x_2) - F(x_1 - 0)$$

$$P(x_1 < \xi < x_2) = F(x_2 - 0) - F(x_1)$$

$$P(x_1 \le \xi < x_2) = F(x_2 - 0) - F(x_1 - 0)$$

Теорема 4.1 (Свойства функции распределения). Функция распределения F(x) обладает следующими свойствами:

- 1. F(x) не убывает
- 2. F(x) непрерывна справа
- 3. $F(+\infty) = 1$
- 4. $F(-\infty) = 0$

Определение (Борелевская σ -алгебра). σ -алгебра \mathcal{A} числовых множеств, порожденная всевозможными интервалами вида $x_1 < x \le x_2$, называется борелевской; множества A, входящие в \mathcal{A} , называются борелевскими.

Определение (σ -алгебра, порожденная случайной величиной ξ). Совокупность $\xi^{-1}(B)$ для всех борелевских множеств борелевской алгебры.

4.1 Примеры дискретных распределений

- 1. Биномиальное
- 2. Пуассоновское
- 3. Геометрическое

Теорема 4.2. Если ξ - случайная величина, а g(x) - борелевская функция, то $\eta = g(\xi)$ есть случайная величина

Определение (Распределение вероятностей). $P_{\xi}(B)$, определенная для всех $B \in \mathcal{B}$, называется распределением вероятностей случайной величины ξ

Определение (величина с дискретным распределением). величина имеет дискретное распределение, если в точках разрыва функции распределения вероятности таковы, что их сумма $\sum_{k=1}^{\infty} p_k = 1$

Определение (Плотность распределения). $p(x) = p_{\xi}(x)$ - плотность распределения случайной величины ξ , если для любых $x_1 < x_2$

$$P\{x_1 < \xi < x_2\} = \int_{x_1}^{x_2} p_{\xi}(x) dx$$

4.2 Свойства

$$p(x) \le 0, \int_{-\infty}^{\infty} p(x)dx = 1$$

5 Математическое ожидание

Определение (Простая случайная величина). Случайная величина простая, если она представима в виде

$$\xi = \xi(\omega) = \sum_{j=1}^{m} x_j I_{A_j}(\omega)$$

где события A_1,\dots,A_m составляют разбиение, т.е $A_iA_j=\varnothing$ при $i\neq j$ и $\sum_{j=1}^m A_i=\Omega$

Определение (Мат. ожидание простой случайной величины).

$$M\xi = \sum_{j=1}^{m} x_j P(A_j)$$

Определение (Мат. ожидание неотрицательной случайной величины).

$$M\xi = \lim_{n \to \infty} M\xi^n$$

Определение (Мат. ожидание в общем случае).

$$\xi = \xi^+ - \xi^-,$$

где
$$\xi^+ = \xi I_{\{\xi > 0\}}, \, \xi^+ = |\xi| I_{\{\xi < 0\}}$$

5.1 Свойства мат. ожидания

- 1. Свойство линейности
- 2. Свойство положительности
- 3. Свойство конечности

5.2 Джентльменский набор абсолютно непрерывных распределений

1. Нормальное (гауссово распределение)

Определение (гауссово распределение). Случайная величина ξ имеет нормальное распределение с параметрами $(a, \sigma), -\infty < a < \infty, \sigma > 0$, если она имеет плотность

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Нормальное распределение с параметрами (0, 1) называется стандартным.

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Для плотности истинно условие

$$\int_{-\infty}^{\infty} p(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = |t = \frac{x}{\sqrt{2}}| = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} dt = |\text{гауссов интеграл}| = 1$$

2. Равномерное распределение

Определение (равномерное распределение). Случайная величина ξ имеет равномерное распределение на отрезке [a, b] если ее плотность имеет вид:

$$p_{\xi}(x) = \begin{cases} C & \text{при } a \leq x \leq b \\ 0 & \text{при } x < a \text{ или } x > b \end{cases}$$

Так как

$$\int_{-\infty}^{\infty} p(x)dx = C \int_{a}^{b} dx = C(b-a) = 1,$$

то C = b - a.

3. Гамма-распределение

Определение (гамма распределение).

$$p_{\xi}(x) = \begin{cases} 0 & x < 0\\ \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} & x \ge 0, \end{cases}$$

где $\alpha>0, \lambda>0$ - параметры

При $\alpha=1$ имеем показательное распределение

$$p_{\xi}(x) = \begin{cases} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{cases}$$

$$\int_{-\infty}^{\infty} p(x)dx = \int_{0}^{\infty} \lambda e^{-\lambda x} dx = |-\lambda x = t, dt = -\lambda dx| = -\int_{-\infty}^{0} \frac{e^{t}}{-\lambda} dt = e^{t}|_{-\infty}^{0} = 1 - 0 = 1$$

$$\frac{p_{\xi}(x)}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^{2}}{2\sigma^{2}}} \qquad \frac{1}{2} [1 + erf(\frac{x-a}{\sqrt{2\sigma^{2}}})] \qquad \text{a} \qquad \sigma^{2}$$

$$\begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases} \qquad \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \end{cases} \qquad \frac{a+b}{2} \qquad \frac{(b-a)^{2}}{12}$$

$$\begin{cases} x^{\alpha-1} \frac{e^{-x\lambda}}{\lambda^{-\alpha} \Gamma(\alpha)}, & x \ge 0 \\ 0, & x < 0 \end{cases} \qquad \dots \qquad \alpha \lambda^{-1} \qquad \alpha \lambda^{-2}$$

$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt.$$

5.3 Правила для вычисления

$$M\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x)$$

Для непрерывных случайных величин:

$$M\xi = \int_{-\infty}^{\infty} x p_{\xi}(x) dx$$
$$Mg(\xi) = \int_{-\infty}^{\infty} g(x) p_{\xi}(x) dx$$

6 Производящие функции

Определение (Целочисленная случайная величина). Дискретная случайная величина ξ , принимающая только целые неотрицательные значения.

Закон распределения:

$$p_n = P\{\xi = n\}, n = 0, 1..., \sum_{n=0}^{\infty} p_n = 1$$

Определение (Производящая функция).

$$\phi_{\xi}(s) = Ms^{\xi} = \sum_{n=0}^{\infty} p_n s^n$$

Ряд абсолютно сходится при $|s| \le 1$

6.1 Джентльменский набор

1. Равномерное дискретное распределение

$$P\{\xi = k\} = \frac{1}{N}, \quad M\xi = \frac{1+N}{2}, \quad D\xi = \frac{N^2 - 1}{12}, \quad \phi(s) = \sum_{n=1}^{\infty} \frac{s^n}{n} = -\ln(1-s), \quad f_{\xi}(t) = -\ln(1-e^{it})$$

2. Биномиальное (распределение Бернулли)

$$P\{n=k\} = C_n^k p^k (1-p)^{n-k}, \quad M\xi = np, \quad D\xi = np(1-p), \quad \phi(s) = \sum_{m=0}^{\infty} C_n^m p^m (1-p)^{n-m} = (ps+1-p)^n,$$
$$f_{\xi}(t) = (pe^{it} + 1 - p)^n$$

3. Геометрическое распределение

$$P\{n=k\} = (1-p)p^k, \quad M\xi = \frac{p}{1-p}, \quad D\xi = \frac{p}{(1-p)^2}, \quad \phi(s) = \sum_{n=1}^{\infty} p^k (1-p)s^n = \frac{p}{1-(1-p)s}, \quad f_{\xi}(t) = \frac{p}{1-(1-p)e^{it}}$$

4. Распределение Пуассона

$$P\{n=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad M\xi = \lambda, \quad D\xi = \lambda, \quad \phi(s) = \sum_{n=0}^{\infty} \frac{\lambda^n s^n}{n!}e^{-\lambda} = e^{\lambda(s-1)}, \quad f_{\xi}(t) = e^{\lambda(e^{it}-1)}$$

7 Характеристические функции

129-137

$$\xi(t) = \xi_1(t) + i\xi_2(t)$$
$$|M\xi| \le M|\xi|$$

Определение (характеристическая функция). Функция $f_{\xi}(t)$ называется характеристической функцией случайной величины ξ , если она имеет вид

$$f_{\xi}(t) = Me^{it\xi}$$

Если ξ - целочисленная случайная величина, то $\phi_{\xi}(z) = Mz^{\xi}$

$$f_{\xi}(t) = Me^{it\xi} = M(e^{it})^{\xi} = \phi_{\xi}(e^{it})$$

(Свойства х.ф.)

- 1. $|f_{\xi}(t)| \leq 1, f_{\xi}(0) = 1$
- 2. f_ξ равномерно непрерывна по t
- 3. $f_{a\xi+b}(t) = Me^{it(a\xi)}e^{itb} = e^{itb}Me^{i\xi(at)} = e^{itb}f_{\xi}(at)$
- 4. ξ_1, \dots, ξ_n независимы, тогда

$$f_{\xi_1 + \dots + \xi_n}(t) = \prod_{i=1}^n f_{\xi_i}(t)$$

$$Me^{it(\xi_1 + \dots + \xi_n)} = M \prod_{i=1}^n e^{it\xi_i} = \prod_{j=1}^n Me^{it\xi_j} = \prod_{j=1}^n f_{\xi_j}(t)$$

5.
$$f_{\xi}(-t) = \overline{f_{\xi}(t)}$$

$$Me^{-it\xi} = M\overline{e^{it\xi}} = \overline{Me^{it\xi}}$$

6. $\exists m_1, \dots, m_n = M \xi^n$ (существуют первые n моментов), тогда

$$f_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^k}{k!} m_k + R_n(t),$$

где $R_n(t) = o(t^n)$ при $t \to 0$

7.

$$\zeta \begin{cases} \xi, p \\ \eta, 1 - p, \end{cases} \quad p \in (0, 1)$$

$$f_{\zeta}(t) = pf_{\xi}(t) + (1-p)f_{\eta}(t)$$

 Π ример. 1. $\cos(t)$

мы не знаем косинус..

$$\xi = egin{cases} -1 & p = 1/2 \ 1 & p = 1/2 \end{cases}$$
 Бернуллиевская случайная величина

$$Me^{it\xi} = \frac{1}{2}e^{-it} = \frac{1}{2}e^{-it} = \cos t$$

2. $\cos^{3}(t)$

свойство про независимость

3. $\frac{\cos(t) + \cos(2t)}{2}$

свойство про независимость, свойство про выпуклую комбинацию (3)

4. e^{-t^4}

шестое свойство, по формуле Тейлора

$$e^{-t^4} = 1 - t^4 + o(t^4)$$

функция обращения - слишком тяжко, проверяем по свойствам а потом мучаемся (Фурье, Лаплас?)

 $\xi = C$ с вероятностью 1

$$Me^{i\xi t} = e^{iCt}$$

3амечание. В силу 6 свойства, можно обобщить - если моменты до второго равны 0, то уже не характеристическая функция. (сравниваем с х.ф тождественного нуля, а t^4 высоко)

1. Стандартное распределение

$$f_{\xi}(t) = e^{-t^2/2}$$

Мучаемся

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx - x^2/2} dx$$

дифференцируем.

$$f'(t) = \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{itx - x^2/2} dx =$$

$$u = e^{itx}, du = ite^{itx} dx, dv = \frac{x dx}{e^{x^2/2}} = \frac{d(x^2/2)}{e^{x^2/2}} = -d(-x^2/2)e^{-x^2/2} = -d(e^{-x^2/2}), v = -e^{-x^2/2} \Longrightarrow$$

$$= \frac{i}{\sqrt{2\pi}} (uv - \int_{-\infty}^{\infty} v du) = \frac{i}{\sqrt{2\pi}} (-e^{itx}e^{-x^2/2}|_{-\infty}^{\infty} + it \int_{-\infty}^{\infty} e^{itx - x^2/2} dx) = \frac{i^2t}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx - x^2/2} dx = -tf(t)$$

$$f'(t) + tf(t) = 0,$$

уравнение с разделяющимися перем. с начальным условием f(0) = 1 (по свойству хар. функции)

$$f(t) = e^{-t^2/2}$$

можно получить нормальное при помощи 3 свойства.

$$f(t) = e^{ita} f_{\xi}(\sigma t) = e^{ita - (\sigma t)^2/2}$$

2. равномерное на [a, b]:

$$f(t) = \frac{1}{b-a} \int_{a}^{b} e^{itx} dx$$
$$f_{\xi} = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

3. Гамма распределение с параметром α

$$p(x) = \frac{x^{\alpha - 1}}{\Gamma(\alpha)e^{-x}}$$
$$f_{\xi}(t) = (1 - it)^{-\alpha}$$

Рассмотрим плотности гамма распределений с параметрами альфа и бета, плотность гамма распределения с параметром (альфа + бета) вычисляется через свертку:

$$\begin{split} p_{\alpha+\beta}(x) &= \int_0^x p_\beta(x-y) p_\alpha(y) dy = \frac{e^{-x}}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x y^{\alpha-1} (x-y)^{\beta-1} dy = \\ &= \frac{e^{-x}}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x \frac{y^{\alpha-1} (x-y)^{\beta-1}}{x^{\alpha-1} x^{\beta-1}} x^{\alpha-1} x^{\beta-1} dy = |z=y/x, dz=dy/x, dy=x dz| \\ &= \frac{e^{-x} x^{\alpha+\beta-1}}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 z^{\alpha-1} (1-z)^{\beta-1} dz = \frac{x^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} e^{-x}, x \geq 0 \end{split}$$

определили независимость

По 4 свойству

$$f_{\alpha+\beta}(t) = f_{\alpha}(t)f_{\beta}(t)$$

$$f_{1}(x) = \int_{0}^{\infty} e^{itx} p_{1}(x) dx = \int_{0}^{\infty} e^{itx-x} dx = \left| du = e^{-x} dx, u = -e^{-x}, v = e^{itx}, dv = ite^{itx} \right|$$

$$= -e^{itx-x} \Big|_{0}^{\infty} + it \int_{0}^{\infty} e^{itx-x} dx = 1 + itf_{1}(t)$$

$$f_{1}(t) = \frac{1}{1 - it}$$

$$f_{n}(t) = \frac{1}{(1 - it)^{n}}$$

$$f_{1/n} = (1 - it)^{-1/n}$$

$$f_{m/n} = (1 - it)^{-m/n}$$

Формула работает для рациональных чисел. Но можно сделать предельный переход и формула будет работать для всех положительных альфа. $_{\text{многозначная}}$ функция - нужно выделять ветвь $f_{\alpha}(0)=1$

Замечание (Вырожденное распределение).

$$P\{\xi = C\} = 1, \quad f_{\xi}(t) = e^{itC}$$

Определение (свертка). Свертка двух функций на прямой (обозначается f*g) - это функция

$$f * g : y \mapsto \int f(x)g(y-x)dx.$$

7.1 Абсолютно непрерывный случай

Определение (L1-пространство). Пространством L_1 называется нормированное пространство, элементами которого служат классы эквивалентных между собой суммируемых функций; сложение элементов в L_1 и умножение их на числа определяются как обычное сложение и умножение функций, а норма задается формулой

$$\|f\|=\int |f(x)|d\mu$$

$$f_\xi(t)=\int_{-\infty}^\infty e^{itx}p_\xi(x)dx\quad f_\xi(t)\ _{\rm преобразование}\ _{\rm Фурье}\ _{\rm функции}\ p_\xi(x)$$

$$p_\xi(x)=\frac{1}{2\pi}\int_{-\infty}^\infty e^{-itx}f_\xi(t)dt\quad _{\rm Обратное}\ _{\rm преобразование}\ _{\rm Фурье}$$

имеют смысл для функций из $L_1(-\infty,-\infty)$, т.е. с конечным интегралом $\int_{-\infty}^{\infty}|f(t)|dt$

Теорема 7.1. Пусть f(t) - характеристическая функция и F(x) - соответствующая функция распределения. Тогда, если x-l и x+l являются точками непрерывности функции F(x), то

$$F(x+l) - F(x-l) = \lim_{\sigma \to 0} \frac{1}{\pi} \int_{-\infty}^{\infty} e^{-ixt} f(t) \frac{\sin tl}{t} e^{-\sigma^2 t^2/2} dt$$

Теорема 7.2. Каждой хар.функции соответствует только одна функция распределения.