FUNCTIONAL SAFETY IN EMBEDDED SYSTEMS

Part III
Embedded Systems Hardware
STEPHAN HEIDINGER

OUTLINE

- Introduction
- Input
- Processing Units
- Reconfigurable Logic
- Memory
- Communication
- Output
- Secure Hardware

INTRODUCTION

- System consists of Software and Hardware.
- Hardware for Embedded Systems is much less standardized than PC hardware is.

INPUT

- Sensors
- Discretization of time
- Discretization of values

INPUT - SENSORS

Sensors for any given quantity.

- Acceleration
- Rain
- Image CCD
- Image CMOS
- Biometric Sensors
- RFID
- ...

INPUT - DISCRETIZATION OF TIME

- Computers only work in discrete time domain.
 - => Need to take samples at fixed points in time.
 - => Only those samples can be used by the computer.
- Reconstruction of unsampled data generaly not possible.
 - => Can be possible in some cases.
 - => Nyquist sampling criterion:
 - "Restrict the frequencies of the incoming signal to less than half of the sampling frequency."
- Sample-and-Hold circuits: value is sampled and held, until next value is sampled (sampling takes some time).

INPUT - DISCRETIZATION OF VALUES

- Computers only work in discrete data domain.
- large variety of converters
- Flash A/D converter
 - + very fast
 - complex hardware (n-1 comparators)
- Successive Approximation:
 - + hardware efficient
 - slow (log(n) steps)
- SNR => "how much good signal" (dB, dimensionless)
- Automatic techniques for selecting most approriate converter exist.

PROCESSING UNITS

- Overview
- ASIC
- Processors

PROCESSING UNITS - OVERVIEW

- "consumed" energy
- power and energy efficiency important=> "green IT"
- energy efficient => not flexible
- flexible => not energy efficient
- high power consumption => may be more energy efficient, if also faster

PROCESSING UNITS - ASIC APPLICATION SPECIFIC INTEGRATED CIRCUITS

- Cost of design and manufacture very high.
 => only feasible for large quantities
- Design is time consuming.
 => Correcting faults is expensive.
- Very small energy consumption.

PROCESSING UNITS - PROCESSORS

- Processors are programmable.
 - => very flexible
- Embedded processors
 - => no need for instruction set compatibility.

PROCESSING UNITS - PROCESSORS ENERGY EFFICIENCY

- gate clocking
 - => parts of processor are disconnected from clock if idle
- Dynamic Power Management (DPM)
 - => more power saving states (e.g. run, idle, sleep)
- Dynamic Voltage Scaling (DVS)
 - => power changes quadratically with voltage
 - => runtime changes linearly

PROCESSING UNITS - PROCESSORS CODE-SIZE EFFICIENCY

- Memory very limited => want to take as little space as possible for code
- RISC => designed for speed
- CISC ("old processors") => designed for code-efficiency
- Compression Techniques => hardware decoder
- second instruction set (ARM)
- dictionaries

PROCESSING UNITS - PROCESSORS RUN-TIME EFFICIENCY

- Optimize architecture for specific domain.
 => more efficient without higher clock frequency
- Example: Digital Signal Processing
 - Specialized Addressing Modes
 - Seperate Address Generation Units
 - Saturation Arithmetic
 - Fixed-Point Arithmetic
 - Multiple Memory Banks
 - Multiply/Accumulate Instructions

PROCESSING UNITS - PROCESSORS VERY LONG INSTRUCTION WORD PROCESSORS

- no instruction set compatibility
 - => explicit identification of parallelism
 - => EPIC (explicitly parallel instruction computing)
- several operations in one instructions
 - => execution in parallel
- possible delay penalty (due to branch instructions):

PROCESSING UNITS - PROCESSORS MICRO-CONTROLLERS

- not complex
- easy usage

MULTIPROCESSOR SYSTEM-ON-A-CHIP (MPSOC)

- increased clock speed => higher energy consumption
- in PC
 - => homogenous *multi-core* systems
- in embedded systems
 - => highly specialised processors
 - => energy efficiency close to ASICs

RECONFIGURABLE LOGIC

- ASIC often too expensive, processor too slow
 => field programmable gate Arrays (FPGAs)
- timing of FPGA precisely predictable
- reconfigurable hardware
 - => ROM is non-volatile
 - => RAM is volatile
- processors may be included in FPGA:
 - hard core: physical processor (efficient)
 - *soft core*: synthesize processor from CLB

MEMORY

- efficient storage
 - => run-time memory hierarchy
 - => code-size compiler, compression
 - => energy memory hierarchy
- Moore's Law
 - => speed of processors doubles every 18-36 months
 - => speed of memory only increases by 1.07
- Use small, fast memory between processor and main memory.
- Scratch Pad Memory (SPM)

COMMUNICATION

- Common Communication Requirements
- Electrical Robustness
- Real-Time Behavior
- Examples

COMMUNICATION - REQUIREMENTS

- real-time behavior
- efficiency
- bandwidth, communication delay
- event-driven communication
- robustness
- fault tolerance
- maintainability
- privacy

COMMUNICATION - EL. ROBUSTNESS SINGLE-ENDED SIGNALING

- voltage over commong ground
- succeptible to noise
- common ground may be hard to achieve

COMMUNICATION - EL. ROBUSTNESS

DIFFERENTIAL SIGNALING

- first -> second = positive voltage => '1'
- noise added to both wires => no effect
- magnitude of voltage => irrelevant
- no common ground
- large throughput

COMMUNICATION - REAL TIME

- point-to-point
 - => many wires needed
 - => shared buses very common
- priority based arbitration
 - => poor timing, can lead to starvation
- TDMA (timed division multiple access)
 - => real time behavior may be to slow
- CSMA/CD: upon collision: stop, wait, restart
- CSMA/CA: priority based arbitration phase
 - => starvation possible

COMMUNICATION - EXAMPLES

- Sensor/Actuator Bus
- Field Bus
 - => controller area network
 - => time-triggered Protocol
- Wired Multimedia Communication
 - => MOST (media oriented system transport)
 - => IEEE 1394 "FireWire"
- Wireless Communication
 - => HSPA, LTE
 - => Bluetooth
 - => IEEE 802.11

OUTPUT

- Displays
- Electro-Mechanical Devices (motors, gauges, ...)
- D/A Converter
 - => generate current proportional to signal x
 - => convert current into voltage y
- If Nyquist Theorem holds => interpolation is possible
 - => Shannon-Whittaker interpolation
 - => possible via low-pass filter
- Actuators: very wide range
 - => relatively new: Microsystem Technology

SECURE HARDWARE

Embedded Systems may need special security elements:

- cryptography, en-/decryption
- side-channel attacks

Different levels of security and enemy need to be taken into account.