Modeling Point Patterns using NHPPs

Statistical modeling depends on a sampling model for the data and the associated likelihood function. Conditional on the number of points, Num(D) = n, the location density can be specified as:

$$f(s_1, \dots, s_n | Num(D) = n) = \prod_i \frac{\lambda(s_i)}{(\lambda(D))^n}$$

Then considering the location and number of points simultaneously, we have

$$f(s_1, \dots, s_n, Num(D) = n) = \prod_i \frac{\lambda(s_i)}{(\lambda(D))^n} \times (\lambda(D))^n \frac{\exp(-\lambda(D))}{n!}$$

Alternatively, consider a fine partition for D, then using the Poisson assumption, the likelihood is the product of the counts across the partitions.

$$\prod_{l} \exp(-\lambda(A_{l}))(\lambda(A_{l}))^{Num(A_{l})}$$

As the grid becomes finer, $Num(A_l) \in \{0, 1\}$.

The likelihood is a function of the entire intensity surface $\lambda(s)$. Hence, a functional description of $\lambda(s)$ is necessary.
There are two general approaches for modeling $\lambda(s)$: parametric and non-parametric.
A simple, but "silly" example of a parametric form would be $\lambda(s) = \sigma \lambda_0(s)$. Realistically, $\lambda_0(s)$ would not be available.
Suppose remote-sensed covariate information is available on a grid. How might this be used for constructing $\lambda(s)$? Markov random field properties (Areal data) could be used.
In general a parametric function $\lambda(s;\theta)$ could be specified, but it would required a richly specified class that would need to be non-negative. A common approach for this type of problem is to use a set of basis functions such that $\lambda(s;\theta) = \sum_k a_k g_k(s)$.
- Sketch a set of basis functions to create a multimodal curve in 1D.

Sometimes a trend surface (as a function of latitude and longitude) can be used to specify $\lambda(s)$
The most common approach is to specify $\log(\lambda(s)) = X^t(s)\gamma$. In otherwords, spatial covariates are used in a regression model for the intensity surface.
Specifying covariates still requires integrating $\int_D \exp(X^t(s)\gamma)ds$, which is challenging as $X^t(s)$ is not often specified in a functional form.
Now, considering $\lambda(s)$ through the non-parametric lens, let
$\lambda(oldsymbol{s}) = g(X^t(oldsymbol{s})\gamma)\lambda_0(oldsymbol{s})$
where $g() \ge 0$ and $\lambda_0(s)$ as the error process (with mean 1). This is referred to as a Cox process.
Suppose $\lambda(s) = \exp(Z(s))$ where $Z(s)$ is a realization from a spatial Gaussian process with mean $X^t(s)\gamma$ and covariance function $\sigma^s \rho()$. Then this is referred to as a Log Gaussian Cox Process (LGCP).
The LGCP provides a prior for $\lambda(s)$. This can be written as $X^t(s)\gamma + w(s)$ where $w(s) = \log \lambda_0(s)$.

