1. EQUATION OF A CIRCLE

Standard Equation of a Circle

The equation of circle with center C(a,b) and radius r is

$$(x-a)^2 + (y-b)^2 = r^2$$
.

Example: Write the equation of circle with center C(1,-3) and radius 4.

Example: Find the center and radius of the circle

$$(x+\frac{3}{4})^2+(y-2)^2=\frac{1}{9}$$
.

Example: Find the equation of the circle with center at the origin and radius 4. Show it on the coordinate plane.

Example: Determine the radius and center of the circle $x^2 + (y-2)^2 = 9$ and sketch its graph.

Example: Determine the equation of the circle with center C(-3,5) passes through the point P(1,2).

Example: Write the equation of the circle centered at C(2,-3) which is tangent to the line -3x+4y-7=0.

Example: What is the equation of the circle which passes through the points O(0,0), A(0,8) and B(6,0)?

Example: Find the equation of the circle which is tangent to the x-axis and whose center is C(3,-2). Show the circle on following coordinate plane.

Example: Find the equation of the circle which is tangent to the y-axis and whose center is C(-5,3). Show the circle on following coordinate plane.

Example: Find the equation of the circle which is tangent to the x-axis and y-axis with center C(-3,3). Show the circle on following coordinate plane.

General Equation of a Circle

The equation of circle with center C(a,b) and radius r is $(x-a)^2+(y-b)^2=r^2$.

by expanding
$$(x-a)^2 + (y-b)^2 = r^2$$

we get
$$x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

let us take
$$D = -2a, E = -2b, F = a^2 + b^2 - r^2$$
 so,

the general equation of a circle with center C(a,b) and radius r

$$x^2 + y^2 + Dx + Ey + F = 0$$

where

$$D = -2a, E = -2b, F = a^2 + b^2 - r^2$$

Example: Find the general equation of the circle with center C(2,-5) and radius r=4.

Example: Find the center and radius of the circle whose equation is $x^2 + y^2 - 2x + 6y - 6 = 0$.

Example: The circle $x^2 + y^2 + 5x + (2-m)y - m + 2 = 0$ passes through the point A(1,-2).

- a) Find the value of m.
- b) Find the center of circle.

Example: (UN 2006)

Persamaan lingkaran yang berpusat di (1,-10) dan menyinggung garis $3x-y\sqrt{3}-3=0$ adalah ...

The general equation of circle which is centered at (1,-10) and tangent to $3x - y\sqrt{3} - 3 = 0$ line is ...

ANALYTIC ANALYSIS OF CIRCLES

Definition: Given the equation $x^2 + y^2 + Dx + Ey + F = 0$,

 $D^2 + E^2 - 4F$ is called the **discriminant** of the circle.

Observation: $D^2 + E^2 - 4F = 4r^2$

Therefore;

• $D^2 + E^2 - 4F < 0 \Rightarrow r \notin \mathbb{R}$

⇒ equation does not represent a circle.

 $D^2 + E^2 - 4F = 0 \Rightarrow r = 0$

 \Rightarrow equation represents only point.

• $D^2 + E^2 - 4F > 0 \Rightarrow r \in \mathbb{R}$

⇒ equation represents a circle with

center
$$\left(-\frac{D}{2}, -\frac{E}{2}\right)$$
 and radius $\frac{1}{2}\sqrt{D^2 + E^2 - 4F}$.

Note that;

If F < 0, then $D^2 + E^2 - 4F > 0$.

So, it always represents a circle.

Example: Find the possible values of *m* such that

 $x^2 + y^2 + 5x - 7y + m = 0$ represents a circle.

Example: If $x^2 + y^2 + 3x - y - 2n + 4 = 0$ represents a point, find n.

Example: The radius of the circle

 $4x^2 + 4y^2 - 32x + 24y + 16m = 0$ is 3 units. Find m.

Example: The equation

 $(k+2)x^2 + (5-2k)y^2 + 12x + 15y - 6 = 0$ represents a circle.

Find k, radius and center of the circle.

Exercises 2.1 – Page 113 in Zambak

From 1 to 30

2. POSITIONS OF LINES AND CIRCLES

Relative Position of a Line and a Circle

Example: Describe the position of the circle $(x-4)^2 + (y+5)^2 = 16$ relative to each line.

•
$$5x - 12y - 15 = 0$$

$$-5x+12y+28=0$$

•
$$5x + 12y + 1 = 0$$

Example: The circle $(x-3)^2 + (y+1)^2 = 37$ is tangent to the line x + 6y + m = 0. Find the value(s) of m.

Example: Find the possible values of k such that the circle $(x+2)^2 + (y+3)^2 = 4$ and the line 8x-15y+k=0 intersect at two points.

Example: Find the minimum and maximum distance between the circle $(x-2)^2 + (y+1)^2 = 9$ and the line 3x - 4y + 15 = 0.

Observation:

If y=mx+n is replaced into the equation of the circle $x^2+y^2+Dx+Ey+F=0$, second degree equation with one unknown is obtained.

Based on the discriminant (Δ) of this equation;

- If $\Delta < 0$, then the line does not intersect the circle.
- If $\Delta = 0$, then the line is tangent to the circle. The point of tangency is the solution of this equation.
- If $\Delta > 0$, then the line intersects the circle at two different points. The intersection points are the solution of this equation.

Example: Describe the relative position of y = x + 1 and $x^2 + y^2 - 5x + 7y - 6 = 0$. If the line and circle are tangent or intersecting, find the solution.

Example: Describe the relative position of -2x + y - 2 = 0 and $x^2 + y^2 + 2x - y + 1 = 0$. If the line and circle are tangent or intersecting, find the solution.

Equations of Tangent and Normal Lines

Tangent Line: a line which meets a circle at only one point. **Normal Line:** a line which is perpendicular to tangent of a circle at point of tangency.

Equation of the Tangent and Equation of the Normal through a Point on a Circle

Tangent Line:

$$m_{t} = -\frac{x_{0} - a}{y_{0} - b} \Rightarrow \begin{cases} y - y_{0} = -\frac{x_{0} - a}{y_{0} - b}(x - x_{0}) \\ or \\ (y - y_{0})(y_{0} - b) + (x - x_{0})(x_{0} - a) = 0 \end{cases}$$

Normal Line:

$$m_{n} = \frac{y_{0} - b}{x_{0} - a} \Rightarrow \begin{cases} y - y_{0} = \frac{y_{0} - b}{x_{0} - a} (x - x_{0}) \\ or \\ (y - y_{0})(x_{0} - a) - (x - x_{0})(y_{0} - b) = 0 \end{cases}$$

Example: Write the equation of the tangent and normal to the circle $(x-2)^2 + (y+3)^2 = 25$ at the point P(5,0).

Example: Find the equation of the tangent and normal to the circle $(x+2)^2 + (y-4)^2 = 34$ at the point P(1,-1).

Example: Find the equation of the tangent and normal to the circle $x^2 + y^2 - 2x + 8y + 9 = 0$ at the point P(3,-2).

tive Note Boo

Practical ways to find the equation of the tangent through

$P(x_0, y_0)$

• $(x-a)^2 + (y-b)^2 = r^2$

can be written as $(x-a)(x-a)+(y-b)(y-b)=r^2$

then

Equation of tangent through $P(x_0, y_0)$

$$(x-a)(x_0-a)+(y-b)(y_0-b)=r^2$$

•
$$x^2 + y^2 + Dx + Ey + F = 0$$

Can be written as

$$x \cdot x + y \cdot y + \frac{D}{2}(x+x) + \frac{E}{2}(y+y) + F = 0$$

then

Equation of tangent through $P(x_0, y_0)$

$$x \cdot x_0 + y \cdot y_0 + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F = 0$$

Example: Find the equation of the tangent to the circle $x^2 + y^2 + 4x - 8y + 3 = 0$ at the point P(2,3).

Example: (UN 2011 PAKET 12)

Persamaan garis singgung lingkaran $x^2 + y^2 - 6x + 4y - 12 = 0$ di titik (7,1) adalah...

The equation of tangent line to the circle

$$x^2 + y^2 - 6x + 4y - 12 = 0$$
 at point (7,1) is ...

Equations of Tangents Drawn from an External Point

Let y = mx + n be a tangent line.

Distance of a point C(a,b) to y = mx + n can be calculated by $y = mx + n \Leftrightarrow -mx + y - n = 0$.

$$r = \frac{\left| -ma + b - n \right|}{\sqrt{m^2 + 1}} \tag{1}$$

On the other hand, $P(x_1, y_1)$ must satisfy y = mx + n , that is,

$$y_1 = mx_1 + n \qquad (2)$$

By using (1) and (2), equations of lines can be obtained.

Example: Find the equation of the tangent lines to the circle $x^2 + y^2 = 10$ drawn from the external point P(2,4).

Example: (UN 2007 PAKET B)

to tangent line)

Persamaan garis singgung lingkaran $x^2 + y^2 - 2x + 2y - 2 = 0$ yang bergradien 10 adalah...

The equation of tangent line to the circle

$$x^2 + y^2 - 6x + 4y - 12 = 0$$
 with a slope of 10 is ...

Hint: (use y = 10x + n (or 10x - y - n = 0) as a tangent line equation, then think about the distance from the center of circle

Example: (UN 2010 PAKET A)

Persamaan garis singgung lingkaran $(x-3)^2 + (y+5)^2 = 80$ yang sejajar dengan garis y-2x+5=0 adalah...

The tangent line to the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ is parallel to the line y - 2x + 5 = 0. The equation of this tangent line is ...

Relative Position of Two Circles

• $d > r_1 + r_2 \Rightarrow$ circles do not intersect.

• $d = r_1 + r_2 \Rightarrow$ circles are tangent to each other externally.

• $|r_1 - r_2| \prec d \prec r_1 + r_2 \Rightarrow$ circles intersect at two points

• $d = |r_1 - r_2| \Rightarrow$ circles are tangent to each other internally.

• $d \prec |r_1 - r_2| \Rightarrow$ circles do not intersect and one of them is completely inside of the other.

Example: $(x-1)^2 + y^2 = r^2$ and $(x-9)^2 + (y-15)^2 = 64$ are externally tangent. Find *r*.

Example: Find the distance between the nearest and farthest points of the circles $(x+7)^2 + (y+3)^2 = 16$ and $(x-8)^2 + (y-5)^2 = 49$.

Example: If the circles $x^2 + (y-6)^2 = r^2$ and $(x-8)^2 + y^2 = 25$ are internally tangent, then find r.

Definition: If two intersecting circles satisfy the equality $d^2 = r_1^2 + r_2^2$, they are called **orthogonal circles**.

Example: The circles $(x+2)^2 + (y-4)^2 = r^2$ and $(x-6)^2 + (y+2)^2 = 36$ are orthogonal circles. Find r.

ANALYTIC ANALYSIS OF CIRCLES

Example: A chord of the circle $x^2 + y^2 + 6x - 10y - 135 = 0$ is tangent to the circle $x^2 + y^2 + 6x - 10y + 9 = 0$. Find the length of this chord.

Exercises 2.2 – Page 130 in Zambak

From 1 to 24

Power of a Point

Definition: Power of the point $Q(x_1, y_1)$ with respect to the circle is

$$P = d^2 - r^2$$

Since $d^2 = (x_1 - a)^2 + (y_1 - b)^2$

•
$$P = (x_1 - a)^2 + (y_1 - b)^2 - r^2$$

Since $d^2 - r^2 = |QT|^2$ from ΔQTC

$$P = |QT|^2$$

Since $|QT|^2 = |QA| \cdot |QB|$

$$\bullet \qquad P = |QA| \cdot |QB|$$

Observation:

 $Q(x_1, y_1)$ is at the exterior of circle

$$\Rightarrow d > r \Rightarrow P > 0$$

 $Q(x_1, y_1)$ is on the circle

$$\Rightarrow d = r \Rightarrow P = 0$$

 $Q(x_1, y_1)$ is at the interior of circle

$$\Rightarrow d < r \Rightarrow P < 0$$

Conclusion:

Power of $Q(x_1, y_1)$ wrt $(x-a)^2 + (y-b)^2 = r^2$ is

$$(x_1-a)^2+(y_1-b)^2-r^2$$

Power of $Q(x_1, y_1)$ wrt $x^2 + y^2 + Dx + Ey + F = 0$ is

$$x_1^2 + y_1^2 + Dx_1 + Ey_1 + F$$

Example: Find the power of Q(-2,1) with respect to

$$(x-2)^2 + (y+3)^2 = 4$$
.

Example: Find the length of tangent segment drawn from A(8,-3) to $x^2 + y^2 + 8x - 4y - 5 = 0$.

Example: The length of tangent segment drawn from M(4,1) to $x^2+y^2-2x+6y+p=0$ is 4. Find p.

Example: If M(4,-5) is in the interior region of $(x+2)^2 + (y-5)^2 = r^2$. Find the minimum integer value of r.

Exercises 2.3 – Page 141 in Zambak 1, 2, 3, 4, 5, 8, 9, 10

Equation of a Semi-Circle

$$(x-a)^2 + (y-b)^2 = r^2$$
 is given.

solve for x.

$$x = a \pm \sqrt{r^2 - (y - b)^2}$$

are the semi-circles separated by the line x = a.

solve for y.

$$y = b \pm \sqrt{r^2 - (x - a)^2}$$

are the semi-circles separated by the line y = b.

Example: Draw the graph of semi-circle given by the equation $y = \sqrt{49 - x^2}$.

Example: Draw the graph of semi-circle given by the equation $x = \sqrt{16 - (y - 3)^2} - 1$.

Inequalities Involving Circles

Let $(x-a)^2 + (y-b)^2 = r^2$ given,

- $(x-a)^2 + (y-b)^2 < r^2 \Rightarrow$ interior of circle.
- $(x-a)^2 + (y-b)^2 = r^2 \Rightarrow$ circle itself.
- $(x-a)^2 + (y-b)^2 > r^2 \Rightarrow$ exterior of circle.

Example: Show the points satisfying the inequality $x^2 + y^2 \le 36$.

Example: Draw the graph of inequality $(x-2)^2 + (y-3)^2 > 9$.

Example: Draw the graph of $4 \le x^2 + y^2 < 16$

Example: Show the points on the coordinate plane which satisfy

ANALYTIC ANALYSIS OF CIRCLES

Example: Write the appropriate inequalities for the shaded region in the figure.

Exercises 2.4 – Page 153 in Zambak

From 4 to 13

Active Note Book

Review Test

- 1) Which of the following is the equation of the circle centered at M(-1,2) with radius 4 cm?
 - A) $(x+1)^2 + (y-2)^2 = 4$
 - B) $(x+1)^2 + (y-2)^2 = 16$
 - C) $(x-1)^2 + (y+2)^2 = 16$
 - D) $(x-2)^2 + (y+1)^2 = 16$
 - E) $(x+1)^2 (y-2)^2 = 16$
- 2) What is the radius of the circle $(x-2)^2 + (y+3)^2 = 8$?
 - A) 4
- B) 3
- C) $2\sqrt{2}$ D) $\sqrt{6}$ E) 2
- Which of the following is the equation of the circle centered at M(3,4) and passes through the origin?
 - A) $(x+3)^2 + (y+4)^2 = 25$
 - B) $(x-3)^2 + (y-4)^2 = 5$
 - C) $(x-3)^2 + (y-4)^2 = 25$
 - D) $(x-4)^2 + (y-4)^2 = 25$
 - E) $(x-1)^2 + (y+3)^2 = 25$
- Which one is the equation of the circle having center at C(-3,1) and passing through the point P(1,-2)?
 - A) $(x-3)^2 + (y+1)^2 = 4$
 - B) $(x+3)^2 + (y-1)^2 = 25$
 - C) $(x+1)^2 + (y-3)^2 = 25$
 - D) $x^2 + y^2 = 5$
 - E) $(x-2)^2 + (y+1)^2 = 25$
- What is the radius of the following circle $x^2 + y^2 - 2x - 4y + 1 = 0$?
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 5

- 6) What is the radius of the following circle
 - $x^2 + y^2 4x 8y + 11 = 0$?
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 5
- The points A(-2,1) and B(2,5) are given. Which one of the following is the equation of the circle with diameter [AB]?
 - A) $x^2 + (y+3)^2 = 2\sqrt{2}$
 - B) $(x-3)^2 + y^2 = 8$
 - C) $(x+3)^2 + y^2 = 2\sqrt{2}$
 - D) $x^2 + (y-3)^2 = 4\sqrt{2}$
 - E) $x^2 + y^2 = 8$
- If the point $(3,\sqrt{3})$ is on the circle $x^2 + y^2 4a = 0$, then find the radius of the circle.

Active Note Boo

- A) $\sqrt{2}$ B) $\sqrt{3}$ C) $\sqrt{6}$ D) $2\sqrt{2}$ E) $2\sqrt{3}$
- Which one of the followings is the center C and the radius r of the circle $4x^2 + 4y^2 - 8x + 24y = 81$?
 - A) C(4,-12), r=9
 - B) C(1,-3), r=9
 - C) C(1,-3), r=11
 - D) C(1,-3); $r = \frac{11}{2}$
 - E) $C(1,-3), r = \frac{9}{2}$
- 10) If a circle is tangent to the lines y = 2 and y = -4, and centered on the line x + y = -1, then find the equation of the circle.
 - A) $(x-1)^2 + (y-2)^2 = 9$
 - B) $(x-2)^2 + y^2 = 6$
 - C) $(x+1)^2 + y^2 = 6$
 - D) $x^2 + y^2 = 36$
 - E) $x^2 + (y+1)^2 = 9$

- 11) Find one of the intersection point of the line x + y = 1 and the circle $x^2 + y^2 = 1$?
 - A) (1,1)
- B) (1,-1)
- C) (1,0) D) (-1,0)
- E) (0,-1)
- 12) If the line y = 3x a is tangent to the circle $x^2 + y^2 = 10$, then find the sum of the values of a.
 - A) 0
- B) 1
- C) 2
- D) -2
- E) 10
- 13) What is the equation of a circle which is centered at M(3,4) and tangent to the line 3x + 4y = -5?
 - A) $(x-3)^2 + (y-4)^2 = 16$
 - B) $(x-3)^2 + (y-4)^2 = 36$
 - C) $(x-4)^2 + (y-3)^2 = 16$
 - D) $x^2 + y^2 = 36$
 - E) $x^2 + y^2 + 3x + 4y = 5$
- 14) If the circles $x^2 + y^2 = 9$ and $(x-3)^2 + (y-a)^2 = 4$ are externally tangent to each other, then find the value of a. (a > 0)
 - A) 3
- B) 4
- C) 5
- D) 6
- E) 8

ctive Note Boo

- **15)** Which one of the following is the equation of the line that is tangent to the circle $x^2 + y^2 8x + 2y 8 = 0$ at the point A(1,3)?
 - A) 3x+4y-15=0
 - B) 4x + 3y 13 = 0
 - C) 3x-5y+12=0
 - D) 3x-4y+9=0
 - E) 4x + 5y 10 = 0
- 16) What is the equation of the tangent line at point (3,2) to the circle $(x-2)^2 + (y-3)^2 = 2$?
 - A) x + y = 1
- B) y x = -2
- C) x y = 1

- D) x = y
- E) x + y = 2

17) (UN 2012/E25)

Lingkaran $L = (x+1)^2 + (y-3)^2 = 9$ memotong garis y=3.

Garis singgung lingkaran yang melalui titik potong antara lingkaran dan garis tersebut adalah ...

The circle $L = (x+1)^2 + (y-3)^2 = 9$ intersects the line y=3.

The lines passing through the intersection points of line and circle are ...

- A) x = 2 dan x = -4
- B) $x = 2 \, \text{dan} \, x = -2$
- c) $x = -2 \, \text{dan} \, x = 4$
- D) $x = -2 \, \text{dan} \, x = -4$
- E) x = 8 dan x = -10

18) (UN 2009 PAKET A/B)

Lingkaran $(x-4)^2 + (y-4)^2 = 16$ memotong garis y=4.

Garis singgung lingkaran yang melalui titik potong antara lingkaran dan garis tersebut adalah ...

The circle $(x-4)^2 + (y-4)^2 = 16$ intersects the line y = 4.

The lines passing through the intersection points of line and circle are ...

- A) y = 8 x
- B) y = 0 dan y = 8
- C) $x=0 \operatorname{dan} x=8$
- D) y = x + 8 dan y = x 8
- E) y = x 8 dan y = 8 x

19) (UN 2008 PAKET A/B)

Persamaan garis singgung melalui titik (2,3) pada lingkaran

$$x^2 + y^2 = 13$$
 adalah ...

The equation of tangent line to the circle $x^2 + y^2 = 13$ at point (2,3) is ...

- A) 2x-3y=13
- B) 2x + 3y = -13
- c) 2x + 3y = 13
- D) 3x 2y = -13
- E) 3x + 2y = 13

20) (UN 2011 PAKET 46)

Persamaan garis singgung lingkaran

$$x^2 + y^2 - 6x + 4y + 11 = 0$$
 di titik $(2, -1)$ adalah ...

The equation of tangent line to the circle

$$x^2 + y^2 - 6x + 4y + 11 = 0$$
 at point $(2, -1)$ is ...

A)
$$x - y - 12 = 0$$

- B) x y 4 = 0
- C) x-y-3=0
- D) x+y-3=0
- E) x + y + 3 = 0

21) (UN 2007 PAKET A)

Persamaan garis singgung lingkaran

 $x^2 + y^2 - 6x + 4y - 12 = 0$ di titik P(7, -5) adalah ...

The equation of tangent line to the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ at point P(7, -5) is ...

- A) 4x 3y = 43
- B) 4x + 3y = 23
- c) 3x-4y=41
- D) 10x + 3y = 55
- E) 4x 5y = 53

22) (UN 2010 PAKET B)

Salah satu persamaan garis singgung lingkaran $(x-4)^2 + (y-5)^2 = 8$ yang sejajar dengan garis y-7x+5=0 adalah ...

The equation of one of the tangent line to the circle $(x-4)^2 + (y-5)^2 = 8$ which is parallel to the line y - 7x + 5 = 0 is...

- A) y-7x-13=0
- B) y + 7x + 3 = 0
- c) -y-7x+3=0
- D) -y+7x+3=0
- E) y-7x+3=0

23) (UN 2004)

Salah satu persamaan garis singgung lingkaran $x^{2} + y^{2} - 4x - 8y + 15 = 0$ yang tegak lurus garis x + 2y = 6

The equation of one of the tangent line to the circle $x^2 + y^2 - 4x - 8y + 15 = 0$ which is perpendicular to the line x + 2y = 6 is...

- A) 2x y + 3 = 0
- B) 2x-y+5=0
- c) 2x y + 7 = 0
- D) 2x y + 13 = 0
- E) 2x y + 25 = 0
- 24) Find the intersection points of the circle $x^2 + y^2 8x + 11 = 0$ and the line y-x+1=0.
 - A) (3,0) B) (0,-2) C) (3,2) D) (3,-1) E) (1,2) (2,0)(2,0)(2,1)(2,2)(3,1)
- **25)** Find the power of the point Q(3,5) with respect to the circle $(x+1)^2 + (y-2)^2 = 16$.
 - A) 6
- B) 7
- C) 8
- D) 9
- E) 10

- **26)** The equation $(5-2m)x^2 + (m-1)y^2 4x + 6y + 2m = 0$ represents a circle. What is the radius of this circle?
 - A) 2
- B) 3
- C) 4
- D) 5
- E) 6
- 27) What is the relative position of the two circles $x^2 + y^2 = 9$ and $(x-3)^2 + (y-3)^2 = 81$?
 - the circles do not intersect.
 - the circles are tangent to each other externally.
 - the circles intersect at two points.
 - the circles are tangent to each other internally.
 - the circles do not intersect and one of them is completely inside of the other.
- 28) Find the expression representing the graph below?

- A) $(x-5)^2 + (y-5)^2 \le 25$
- B) $(x-4)^2 + (y-6)^2 \le 36$
- C) $(x-4)^2 + (y-6)^2 \ge 36$
- D) $(x-4)^2 + (y-2)^2 \le 36$
- E) $(x-6)^2 + (y-2)^2 = 36$
- 29) The slope of the tangent lines drawn from the point P(3,2)to the circle $(x+1)^2 + (y-2)^2 = 9$ are m_1 and m_2 . Find $m_1 + m_2$.

- B) $-\sqrt{3}$ C) $-\sqrt{7}$ D) $\frac{\sqrt{7}}{7}$ E) $-\frac{3\sqrt{7}}{7}$
- 30) Find the distance from the nearest point on the circle $(x-2)^2 + (y+1)^2 = 9$ to the point P(-1, 3).
 - A)2
- B)4
- C)6
- E)10