Variedades Complejas (tarea 5)

Eduardo León (梁遠光)

Octubre 2020

Ejercicio 1. Sea $\pi: E \to M$ un fibrado vectorial complejo de rango k. Sean $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{C})$ las funciones de transición sobre una cobertura abierta $\{U_{\alpha}\}$. Muestre que toda sección global $\sigma: M \to E$ se puede identificar con una colección de funciones diferenciables $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^{k}$ que satisface la condición de compatibilidad $\sigma_{\beta} = g_{\alpha\beta} \cdot \sigma_{\alpha}$ sobre cada intersección $U_{\alpha} \cap U_{\beta}$.

Solución. Sean $\varphi_{\alpha}: E_{\alpha} \to U_{\alpha} \times \mathbb{C}^{k}$ las trivializaciones locales de E. Tenemos

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1}(p, v) = (p, g_{\alpha\beta}(p) \cdot v)$$

para cada punto $p \in U_{\alpha} \cap U_{\beta}$ y cada vector $v \in \mathbb{C}^k$. Entonces son equivalentes:

- Una sección global $\sigma: M \to E$ del fibrado $\pi: E \to M$.
- Una colección de secciones locales $\sigma_{\alpha}: U_{\alpha} \to E_{\alpha}$ tales que $\sigma_{\alpha} = \sigma_{\beta}$ sobre $U_{\alpha} \cap U_{\beta}$.
- Una colección de secciones $\sigma_{\alpha}: U_{\alpha} \to U_{\alpha} \times \mathbb{C}^{k}$ tales que $\varphi_{\alpha}^{-1} \circ \sigma_{\alpha} = \varphi_{\beta}^{-1} \circ \sigma_{\beta}$ sobre $U_{\alpha} \cap U_{\beta}$.
- Una colección de secciones $\sigma_{\alpha}: U_{\alpha} \to U_{\alpha} \times \mathbb{C}^{k}$ tales que $\sigma_{\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \sigma_{\alpha}$ sobre $U_{\alpha} \cap U_{\beta}$.
- Una colección de funciones diferenciables $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ tales que $\sigma_{\beta} = g_{\alpha\beta} \cdot \sigma_{\alpha}$ sobre $U_{\alpha} \cap U_{\beta}$.

Ejercicio 2. Sea $\pi: E \to M$ un fibrado vectorial complejo sobre una variedad compleja. Demuestre que este fibrado es holomorfo si y sólo si E es una variedad compleja y π es una aplicación holomorfa.

Solución. Sean $\varphi_{\alpha}: E_{\alpha} \to U_{\alpha} \times \mathbb{C}^{k}$ las trivializaciones locales de E y sean $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{C})$ las funciones de transición correspondientes. Supongamos sin pérdida de generalidad que los abiertos U_{α} son biholomorfos a abiertos de \mathbb{C}^{n} , de tal manera que cada φ_{α} pueda ser considerada una carta. Entonces las siguientes proposiciones son equivalentes:

- $\pi: E \to M$ es un fibrado vectorial holomorfo.
- Las funciones de transición $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(k,\mathbb{C})$ son holomorfas.
- Las trivializaciones locales φ_{α} forman un atlas complejo de E.
- Las proyecciones locales $\pi_{\alpha}: E_{\alpha} \to U_{\alpha}$ son holomorfas.
- E es una variedad compleja y la proyección global $\pi: E \to M$ es holomorfa.

Ejercicio 3. Sea $\pi: E \to M$ un fibrado vectorial holomorfo con sección cero $\sigma: M \to E$. Demuestre que $\mathbb{P}(E)$ es una variedad compleja y la proyección $\psi: E \setminus \sigma(M) \to \mathbb{P}(E)$ es holomorfa.

Solución. Consideremos la acción de \mathbb{C}^* sobre E por reescalamientos en cada fibra. Entonces,

- La proyección $\pi: E \to M$ es \mathbb{C}^* -invariante.
- Las trivializaciones locales $\varphi_{\alpha}: E_{\alpha} \to U_{\alpha} \times \mathbb{C}^k$ son \mathbb{C}^* -equivariantes.
- Las funciones de transición $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(k,\mathbb{C})$ conmutan con la acción de \mathbb{C}^* .

Entonces $\tilde{\pi}: \mathbb{P}(E) \to M$ es un fibrado (no vectorial) holomorfo definido por

- La proyección $\tilde{\pi} : \mathbb{P}(E) \to M$.
- Las trivializaciones locales $\tilde{\varphi}_{\alpha} : \mathbb{P}(E_{\alpha}) \to U_{\alpha} \times \mathbb{CP}^{k-1}$.
- Las funciones de transición $\tilde{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{PGL}(k, \mathbb{C}).$

Formalmente, las funciones $\tilde{\varphi}_{\alpha}$ no son cartas de $\mathbb{P}(E)$, pues, para empezar, $\mathbb{P}(E_{\alpha})$ no es biholomorfo a un abierto de \mathbb{C}^m . Sin embargo, como cada $U_{\alpha} \times \mathbb{CP}^{k-1}$ tiene una estructura compleja conocida, $\tilde{\varphi}_{\alpha}$ se puede ver como una "carta generalizada" que transporta esta estructura a un abierto de $\mathbb{P}(E)$. Las funciones de transición $\tilde{g}_{\alpha\beta}$ inducen los "cambios de carta generalizados" holomorfos definidos por

$$\varphi_{\beta}\circ\varphi_{\alpha}^{-1}(p,[v])=(p,\tilde{g}_{\alpha\beta}\cdot[v])=(p,[g_{\alpha\beta}(p)\cdot v])$$

para cada punto $p \in U_{\alpha} \cap U_{\beta}$ y cada recta $[v] \subset \mathbb{C}^k$. Entonces $\mathbb{P}(E)$ es una variedad compleja. Finalmente, $\tilde{\pi}$ es holomorfa porque se representa localmente por las funciones $\pi_1 \circ \tilde{\varphi}_{\alpha} : \mathbb{P}(E_{\alpha}) \to U_{\alpha}$, holomorfas por construcción.