

Locating Primary Users in Cognitive Radio Networks by GENERALIZED METHOD OF MOMENTS

Soumya Basu^{1,2}, Maryam Ahmadi³, Minming Ni^{3,4}, Jianping Pan³

¹University of Texas, Austin, USA, ²IIT Kharagpur, India, ³University of Victoria, Canada, ⁴Beijing Jiaotong University, China

PU LOCALIZATION IN COGNITIVE NETWORKS HOLE _ Secondary User (SU)

Figure 1: Spectrum Utilization by Cognitive Radio Users

Proposed Method

- Single SU localizes using received signal strength
- GMM estimation in linear time
- Localization with the required accuracy

Estimation with Single SU: High Accuracy Localization in Cellular Networks

Figure 2: Downlink Results

Localization Performance Measures • GMM estimation: Three possible outcomes: Fractional indecision in localization (FIL)

- J-test fails. 2. Fractional localization success (FLS)
- 3. Fractional localization error (FLE)

Downlink Results

- Localization with high *FLS*
- AUA increases with SU's distance from the BS
- PU and SU in the same zone increases *FLE*
- High received power near the BS increases FIL

Figure 3: Uplink Results

SU Performance Measure

• Average utilized area (AUA) A notion of the coverage area of the SU

Uplink Results

- \bullet High FLS, specially near the BS
- FLS lower for PUs near to the edge
- AUA follows the same trend
- Successful hypothesis testing
- Negligible *FLE* in uplink

GEOMETRIC LOCALIZATION OF THE PU

• FIL higher for smaller PU and SU dist

PU

COGNITIVE RADIO NETWORK: SYSTEM MODEL

Traffic Model

- Random traffic from an active PU
- Distributed uniformly over $[c_0, c_1]$

A1: An SU knows the *channel* model. A3: It knows the PU *traffic* model.

• Base station (BS) schedules traffic

• Tx power relies on the PU location

Power Control

A2: It knows its distance from the BS. **A4**: Scheduling rule is known to an SU. Note: The distribution of $\mathbf{P_R}$ at the SU is a function of the **k-parameter**. SCHEDULING $c_f := c - (f - 1)c_{max}$ $c_i = c_{max} \ \forall i = 1 \ to \ (f-1)$ Load $\overline{P_R} = E_b exp\left(\frac{c_j}{B}\right) \left(\frac{d_P}{d_{SP}}\right)^{c_j}$ Traffic: c $P_T = E_b exp\left(\frac{c_j}{B}\right) \left(\frac{d_P}{d_0}\right)^{\alpha}$ $\overline{P_R} = E_b exp\left(\frac{c_j}{R}\right)$ $\overline{P_R} = E_b exp\left(\frac{c_j}{B}\right) \left(\frac{d_P}{d_S}\right)^{\alpha}$ [# Ch]: $f = \int_{-c}^{c}$ BS

Figure 4: Signal Propagation

Channel Model

- Exponential pathloss with distance
- Rayleigh fading channel

k-parameter

 $\begin{cases} E_b (d_{\rm S})^{-\alpha} (d_{\rm P})^{\alpha}, \text{downlink} \\ E_b (d_{\rm S,P}_i)^{-\alpha} (d_{\rm P})^{\alpha}, \text{uplink} \end{cases}$

Figure 5: Cellular Network

Notations

- α , $\mathbf{d_0}$: Pathloss parameters
- **E**_b:Power const **B**:Channel b/w
- $\mathbf{c_i}$:Load in j-th channel
- **P**_T:Tx power **P**_R:Rx power • d_P:distance btw PU and the BS
- d_S:distance btw SU and the BS
- d_{SP}:distance btw PU and SU

GMM ESTIMATION

- GMM [1] used to estimate k-parameter
- PU localization with estimated **k-parameter**

Figure 6: GMM Estimation Flowchart

• Downlink region: PU downlink transmission • Uplink region: PU uplink transmission • **PU region**: Union of downlink and uplink regions

• Minimum estimated distance (MED):

Uplink Region

Utilized Area

Downlink Region

Figure 7: PU Localization

The distance of the SU from the PU region

• Utilized area (UA):

PU Location

Area of the circle centered at SU with radius MED.

FUTURE WORK

- Adopting traffic arrival models, e.g. **Poisson**
- Adopting channel allocation, e.g. water-filling
- SU collaboration to increase the utilization

• Developing **power allocation** algoritms for SUs

ACKNOWLEDGEMENT

This work is supported by NSERC, CFI and BCKDF and MITACS.

REFERENCES

[1] A R Hall. Generalized Method of Moments. OUP, 2005.