ELEC S347F Multimedia Technologies

Networked Multimedia

Classification

- Based on Delivery
 - Real-time delivery
 - Soft-real-time delivery
- Based on Application
 - Streaming Stored Multimedia
 - Streaming Live Multimedia
 - Conversational Multimedia

Networked Multimedia

Video Distribution

- Streaming stored audio/video
 - Support random access, pause/resume, thumbnails
- Streaming live audio/video
- E.g. Spotify, Netflix, Disney+, YouTube, Facebook Live
- Video Conversation
 - Voice over IP, Video Telephony/Conferencing
 - Everyone is a sender and a receiver
 - Support call invitation, acceptation, rejection, etc.
 - E.g. Skype, WeChat

Real-time Delivery

- Media data must be delivered from source and presented at destination within a given delay budget
- Applications involve interactions between users
- Real-time delivery requirement may conflict with requirements for data integrity and presentation timing integrity
- e.g. Internet phone:
 - Long delays will lead to talking collision
 - Both sides trying to speak at the same time
 - May allow data loss and playback jitter (in order to meet the given delay budget)

Soft-real-time Delivery

- Unlike real-time delivery, no delay budget given
- However, must preserve data integrity and presentation timing integrity
- Reduce delay as much as possible
- e.g. Video-on-Demand (VoD)
 - Take longer start-up delays (buffering) as long as smooth playback is maintained after playback has started

Streaming Stored Multimedia

- Streaming == download?
 - What if we have an ultra high speed network?
- Download
 - Start decoding and playback soon after obtaining a full copy of the multimedia data
- Streaming
 - Start decoding and playback soon after receiving the initial portion of the multimedia data while at the same time receiving the later portions

Streaming vs. Download

- Advantages of Streaming
 - Shorter playback delay
 - Require less buffer memory for receivers (not necessary to hold a full copy, but a portion only)
 - Allow more concurrent clients (since the download rate is as large as the playback rate)
 - Able to support live content
- Disadvantages of Streaming
 - Traffic expensive for random access, replay
 - Require support of partial decoding (special designed codec)
 - e.g. streaming audio (e.g. MP3), video (e.g. AVC), rich text (e.g. PDF), etc

Characteristics of Multimedia Traffic

- Bidirectional symmetry
 - Video-on-Demand: asymmetric
 - Video conference: symmetric
- Throughput variation with time
 - Constant bit rate traffic vs. variable bit rate traffic
 - At least as large at the data rate of the multimedia data
 - Internet: transmission rate is usually non-constant and not guaranteed
 - Solution: reserve bandwidth for streaming (how?)

Characteristics of Multimedia Traffic

Delay Sensitive

- Stored multimedia: User can tolerant an initial playback delay
- Live multimedia: at most as large as the perceptual limit
 - For voice, delays smaller than 150 ms are not perceived by a human listener
 - Delays between 150 ms and 400 ms are acceptable
 - Delays exceeding 400 ms can result in frustrating voice conversation

Loss Tolerant

- Occasional loss only causes occasional glitches in playback
- These loss can often be partially concealed

Streaming Multimedia

- Property of the Internet
 - Best effort (to move each packet from source to destination as quick as possible)
 - Good for file transfer and web browsing
 - However, multimedia applications typically have quality of service (QoS) requirement in terms of throughput, delay, error rate, etc

Application	Throughput (bps)	Delay Bound (ms)	Error Rate
Voice	9.6 k – 64 k	< 150	<10-2
Video Conference	128 k – 6 M	< 150	<10-3
Video (non-real-time)	1 M - 10 M	Large	<10-6
File Transfer	1 M – 100 M	Large	<10-8
Web Browsing	1 M – 10 M	Large	<10-8

Quality of Service (QoS)

- There are 4 Principles for a network to support quality of service (QoS)
 - Packet Classification
 - Marking of packet is needed for router to distinguish between different classes
 - Isolation
 - Provide protection (i.e. isolation) for one class from other classes so that one flow is not adversely affected by another misbehaving flow
 - High Utilization
 - While providing isolation, it is desirable to use resources as efficiently as possible
 - Call Admission
 - Need a call admission process
 - The network may block call if it cannot satisfy the needs

Networked Multimedia

- New Requirements and Design Issues
 - Bandwidth
 - Throughput
 - Scalability
 - Latency
 - End-to-end Delay
 - Delay Jitter
 - Reliability
 - Packet Loss Rate
 - Bit Error Rate
 - Out of Order Reception

Bandwidth Issue

Throughput

- The throughput of the network must be at least as large as the data rate of the multimedia
- Or to encode the data to the rate lower than the network throughput

Scalability

- Provide multiple quality level
 - For users with various device resolution
 - For users with various bandwidth (varying in time or with users)
- Require special support from coding
 - E.g. MPEG-2 Layered Video, MPEG-4 Scalable Lossless Coding (SLS)

Latency Issue

Delay Jitter

- End-to-end Delay
 - Transmission delay from sender to receiver
- Delay Jitter
 - Different packets may experience different end-to-end delays
 - The variation in end-to-end delays is called delay jitter
- If the delay, d, is bounded, $delay\ jitter$ is also bounded
 - \blacksquare e.g., if $d_{min} \leq d \leq d_{max}$,
 - then $delay\ jitter \leq d_{max} d_{min}$

Delay Jitter

Delay Jitter

- End-to-end delay is not the critical issue
 - Users can tolerate a small initial delay before starting playback
 - lacksquare e.g. for streaming video, $d_{max}=10$ s may be acceptable
- However, the end-to-end delays are varying
 - Users may experience frame freezing (when users wait for the delayed frames) or frame skipping (when users skip over delayed frames)
 - A delay jitter of 5 s may require a buffer requirement of several MBs, which may not be acceptable
- Buffering
 - When the video frames arrived at the client, the playback is not started immediately, but instead build up a reserve of video in a buffer
 - To mitigate the effects of delay jitter

Buffering

- Suppose video is encoded in a fixed data rate
- Each video block contains video frames that are to be played out over some fixed amount of time $\boldsymbol{\Delta}$
- The server transmits the first video block at t_0 , the second block at $t_0 + \Delta$, the third block at $t_0 + 2\Delta$, and so on
- The client receives the first video block at t_1 , and expects to receive the second block at $t_1+\Delta$
- Because of the variance of end-to-end network delays, the second block arrives at t_2 but not $t_1+\Delta$
- If the client begins the playback as soon as the arrival of the first video block (t_1) , the video playback would either have to stall (wait for the second block to arrive) or to skip the second block
- Both resulting in undesirable playback impairments
- Instead, if the client delay the start of playback until t_3 , playback can proceed smoothly
- What is the appropriate value of t_3 ?
 - If t_3 is too small, playback would be unsmooth
 - If t_3 is too large, playback would be smooth, but result in long initial playback delay (and require a large memory buffer)

Fixed Playout Delay

Adaptive Playback Delay

- Estimate network delay and delay variation in real time
- Adjust the playback delay accordingly
 - $\blacksquare t_i$ = timestamp of packet i
 - r_i = the time packet i is received
 - $p_i =$ the time packet i is played at receiver
 - lacksquare Then r_i-t_i is the network delay of packet i
 - Let d_i be the estimated network delay upon reception of packet i
 - Let v_i be the estimated delay variation upon reception of packet i

How to Estimate?

 d_i (estimated network delay upon reception of packet i)

Adaptive Playback Delay

Exponential Averaging

- $\mathbf{v}_i = (1-u)v_{i-1} + u|r_i t_i d_i|$
- where u is a fixed constant between 0 and 1 inclusive (e.g. 0.01)
- lacksquare The playback time of packet i is computed as
 - $\blacksquare p_i = t_i + d_i + K v_i$
 - where K is a positive constant (e.g. 4)

Adaptive Playback Delay

Reliability Issue

Error Models

Bit Error

- One or more bits in a packet flipped
- Solved by channel coding
 - Adding redundancy to the encoded data
 - Decoders can fully recover the data if there are errors (if not serious) in reception
 - e.g. Reed-Solomon (RS) code for CD, Cyclic Redundancy Check (CRC) for packet

Packet Error

- Out-of-order Reception
 - Each packet may experience different delay in arrival due to network congestion
 - How to solve? Require a larger buffer at client application
- Packet Lost
 - Arrive too late or never arrive due to buffer overflow in clients/routers
 - How to solve? Try to recover the lost packet

Lost Packet Recovery

- Forward Error Correction
- Interleaving
- Error concealment: produce a replacement for a lost packet
 - Piggybacking
 - Packet repetition
 - Interpolation
- Or a mix of the above methods

Forward Error Correction

- Forward Error Correction
 - Apply channel coding in packet level
 - Pros: no knowledge to the coding of multimedia
 - Cons: extra bandwidth required and extra playback delay introduced

Interleaving

- Interleaving: the sender resequences the data to be sent
 - The display order is different from the transmission order
 - To minimize the effect of packet losses
- Advantage:
 - No extra bandwidth
 - No knowledge is required of the multimedia data
 - Also work for bursty packet loss
- Disadvantage
 - Introduce extra playback delay
 - Not good for real-time applications

Interleaving and Piggybacking

Interleaving

Piggybacking

Piggybacking

- Attach a lower-resolution stream to the next original packet stream
 - Once a packet is lost, client can reconstruct a lower quality version from the succeeding packet
- Advantage
 - Small playback delay (1 packet delay if attaching one lower version to the next packet)
- Disadvantages
 - Does not work for burst packet loss
 - Require extra bandwidth
 - Require knowledge of the multimedia (require to code the data into two versions)

Packet Repetition and Interpolation

- Packet Repetition
 - Simple
- Interpolation
 - Computation intensive but generally better performance than packet repetition
 - Require knowledge of the multimedia

Or a mix of the above methods