Lab assignment 6: LCD

Masauso Lungu 209533,

1. Preparation task:

a) Table with LCD signals

Signal(s)	Pin(s)	Purpose			
RS	PBO	Register selection signal. Selection between <i>Instruction</i> register (0) and <i>Data register</i> (1)			
R/W	GND	Selecting reading or writing. GND means only writing is enabled			
E	PB1	Enable signal for communication			
D[3:0]	N/A	Data transfer in 8-bit mode.			
D[7:4]	PD[7:4]	Data transfer in both 8 and 4-bit modes.			

b) ASCII values

CHAR	DEC	HEX	CHAR	DEC	HEX	CHAR	DEC	HEX
0	48	30	Α	65	41	а	97	61
1	49	31	В	66	42	b	98	62
2	50	32	С	67	43	С	99	63
3	51	33	D	68	44	d	100	64
4	52	34	E	69	45	е	101	65
5	53	35	F	70	46	f	102	66
6	54	36	G	71	47	g	103	67
7	55	37	Н	72	48	h	104	68
8	56	38	I	73	49	i	105	69
9	57	39	J	74	4A	j	106	6A
			K	75	4B	k	107	6B
			L	76	4C	I	108	6C
			М	77	4D	m	109	6D
			N	78	4E	n	110	6E
	••••	••••	0	79	4F	0	111	6F
••	••••	••••	Р	80	50	р	112	70
••	••••	••••	Q	81	51	q	113	71
	••••	••••	R	82	52	r	114	72
••	••••	••••	S	83	53	S	115	73
••	••••	••••	Т	84	54	t	116	74
	••••		U	85	55	u	117	75
	••••		V	86	56	V	118	76
			W	87	57	W	119	77
			Х	88	58	х	120	78
			Υ	89	59	У	121	79
			Z	90	5A	Z	122	7A

2. HD44780 communication.

Picture of Time signals between ATmega328p and LCD keypad shield when transmitting "DE2"

DE2 => 0100 0100 _ 0100 0101_0011 0010

3. STOPWATCH

i) Listings of TIMER2 OVF vect

```
/* Interrupt service routines -----*/
/**
* ISR starts when Timer/Counter2 overflows. Update the stopwatch on
* LCD display every sixth overflow, ie approximately every 100 ms
 * (6 \times 16 \text{ ms} = 100 \text{ ms}).
 */
ISR(TIMER2_OVF_vect)
   static uint8_t number_of_overflows = 0;
   static uint8_t tens = 0;  // Tenths of a second
                                // Seconds
   static uint8_t secs = 0;
   uint16_t secs_sq = secs*secs; // Square of seconds
   number_of_overflows++;
   if (number_of_overflows >= 6)
       // Do this every 6 x 16 ms = 100 ms
       number_of_overflows = 0;
            tens++;
            if (tens > 9)
            {
                   tens = 0;
                   secs++;
                   if (secs > 59)
                   {
                         secs = 0;
                         mins++;
                         if (mins > 59)
                         {
                               mins = 0;
                         }
                   }
            }
            itoa(tens, lcd_string, 10);
            lcd_gotoxy(7, 0);
            lcd_putc(lcd_string[0]);
            // Displaying Seconds
            itoa(secs, lcd_string, 10);
            lcd_gotoxy(4, 0);
            if (secs < 10)
            {
                   lcd putc('0');
                   lcd_putc(lcd_string[0]);
            }
            else
            {
                   lcd_puts(lcd_string);
            }
```

```
//Displaying minutes
              itoa(mins, lcd_string, 10);
              lcd_gotoxy(1, 0);
              if (mins < 10)
              {
                     lcd_putc('0');
                     lcd_putc(lcd_string[0]);
              }
              else
              {
                     lcd_puts(lcd_string);
              }
              //Displaying square of seconds
              itoa(secs_sq, lcd_string, 10);
              lcd_gotoxy(11, 0);
              lcd_puts(lcd_string);
              if (secs == 0)
                     // Clears the position and reset square of secs back to 0
                     secs_sq = 0;
                     lcd_puts("
                                      ");
              }
    }
}
```

ii) Screenshort of SimulIDE circuit for stopwatch

4. Progress bar

i) Listings of TIMERO_OVF_vect

```
/**
st ISR starts when Timer/Counter0 overflows. Update the progress bar on
* LCD display every 16 ms.
ISR(TIMER0_OVF_vect)
       static uint8_t number_of_overflows = 0;
    static uint8 t symbol = 0;
    static uint8_t position = 0;
       number of overflows++;
       if (number_of_overflows >=12) // It takes approximately 12 cycles to fill 1 bar
       {
              number of overflows = 0;
              symbol++;
              if(symbol > 5)
              {
                      symbol = 0;
                      position++;
                      if ((position > 7))// Resetting the progress bar when 7th bar filled
                             position = 0;
                             lcd_gotoxy(1, 1);
                                                ");
                             lcd_puts("
                      }
              }
       }
       lcd_gotoxy(1 + position, 1);
       lcd_putc(symbol);
}
```

ii) Circuit simulation when with progress bar.

Link to repository:

https://github.com/Masauso-L/Digital-electronics-2/tree/master/Labs/06-lcd

https://github.com/Masauso-L/Digital-electronics-2/tree/master/Homework/Task-6