2주차 ML/DL 스터디 발표

GDSC Hanyang

ML/DL core 김남호

Logistic regression

• 선형 회귀 직선에 data set을 넣음

Multinomial classification

• 변수도 여러 개. 분류도 이진분류가 아님.(Ex: 학점(A,B,C..))

• 어떻게 분류할래?

• 각 분류값(A,B,C)마다 T,F식으로 구분.

Multinomial classification

• 행렬로 작성. (다변수이므로)

• 또 총 세개의 구별할 수 있는 가설을 만들어야 함.

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + w_3 x_3 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + w_3 x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + w_3 x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + w_3 x_3 \\ x_2 \\ x_3 \end{bmatrix}$$

Multinomial classification

- Where is sigmoid?

• Sigmoid와 같은 함수를 통해 0~1 사이의 값을 만들어야 한다.

SoftMax 함수

$$ext{Softmax}(z)_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

• 확률 분포

SOFTMAX

One-hot encoding

• Softmax함수의 결과를 범주형 데이터를 1또는 0(이진변수)로 변환함.

즉, 예측을 하기 위해 실제 training 데이터 셋을 수치형 데이터로 변환하는 것.

- Ex) A등급은 1 나머지 등급(B,C)는 0
- 다중클래스 분류의 Hypothesis 완성

Cross-entropy

Cross-entropy

• 예측하려는 Y^와, 그 대상이 되는 L을 element-wise 곱(행렬산술연산)을 한다.

• 결과: 틀리면 오차가 매우 크게, 맞으면 0으로 나온다.

Logistic cost VS cross entropy

$$D(S,L) = -\sum_{i} L_{i} \log(S_{i})$$

둘 다 결국 무한대 or 0이렇게 이진값으로 최대한 오차를 양분해서 크게 나타낼 수 있게 표시함. (y와 (1-y)를 이용함)

Logistic cost VS cross entropy

$$D(S,L) = -\sum_{i} L_{i} \log(S_{i})$$

Cost function

Gradient descent

Learning rate

- 높은 learning rate = 오버슈팅
- 아담 옵티마이저 = 0.0003
- Decay 기법 (Ex: exponential decay)

데이터 전처리

- 표준화
 - 통계에서 배운 그대로

- 정규화
 - 0~1사이의 값으로 data 표현

데이터 전처리

- Noisy data 처리
 - 수치데이터 (실제 분석에 필요없는, 너무 크거나 작은 값을 배제)
 - NLP : 중요 word만 추출
 - Face image : 얼굴만 추출(머리, 배경 등을 제외)

Overfitting

• 모델이 훈련 데이터에 너무 **과도하게 적합되어** 훈련 데이터에 대한 예측 성능이 높지만, 새로운 데이터 또는 테스트 데이터에 대한 성능이 저하되는 현상

Underfit / just right / overfit(High variance)

- 1. Training data를 더 많이.(high variance 해결위해)
- 2. Feature의 차원을 내리는 것 (의미있는 저차원의 공간에서 속 성의 의미를 분명히 함) : <u>PCA</u>(sklearn)
- 3. Feature의 수를 증가.(underfitting 해결위해)

- 학습 횟수를 늘릴때마다 트레이닝 data set의 error는 감소
- 하지만, 새로운 test에는 error가 증가하는 시점.
- => 적절한 최솟값을 찾아서
- 맞춤숫자의 feature set을 꾸려야.

- 4. 정규화(loss함수에 term을 추가)
- 특정 변수의 값이 다른 변수들과 큰 차이를 보일 때, 이를 조정 해줌. (λ를 통한 모델의 평균값을 더해줌)
- Overfitting 방지용
- Tf에서도 가능

Linear regression with regularization Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \sum_{j=1}^{N} \theta_j^2$$

• Neural network 이해하고도 할 수 있는 추가적인 overfitting solution이 있음.

- Feature Normalization
- Regularization
- More Data (Data Augmentation)
 - Color Jilttering
 - Horizontal Flips
 - Random Crops/Scales
- Dropout (0.5 is common)
- Batch Normalization

DATA SET training

• Mnist data set (숫자 데이터셋)

Good Case

• 가설 검증

이상 감지

• GAN 모델

일반적 data 학습 => 특이 data 감지

=> 피상적내용이었음

Learning

	Online Learning	Batch(Offline) Learning
Data	Fresh	Static
Network	connected	disconnected
Model	Updating	Static
Weight	Tunning	initialize
Infra(GPU)	Always	Per call
Application	Realtime Process	Stopping
Priority	Speed	Correctness

Online learning

- Fine tuning
 - 전체 data를 새롭게 training

- Feature extraction
 - 하위 layer 고정, 상위 layer만 fine tuning학습

Sample data

- Fashion Mnist
 - 패션 샘플데이터
- IMDB
 - 자연어 처리용(영화 평론) 데이터
- CIFAR-100

느낀점

- 이번에는 코드를 작성하면서, 직접 실습해보는 느낌이 더 났다. (특히 sampl데이터)
- 이상 감지나 후반부 설명에 있어서 어려운내용이어서 그런지, 선생님이 조금 피상적이고 추상적으로 설명하셔서 아쉬웠다..
- 어려워지고 있다!

끝

• 출처: https://www.boostcourse.org/ai212/lecture/41852?isDesc=false

감사합니다!