Elliptic Curves

Lectured by Prof Tom Fisher Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Elliptic Curves Contents

Contents

1	Fermat's method of infinite descent	3
	1.1 Primitive triangles	. 3
	1.2 A variant for polynomials	. 4
2	Some remarks on algebraic curves	5
	2.1 Rational curves	. 5
	2.2 Order of vanishing	. 5
	2.3 Riemann Roch spaces	. 6
	2.4 The degree of a morphism	
3	Weierstrass equations	8
	3.1 The Weierstrass form	
	3.2 Discriminant and j-invariant	
	·	
4	Group law	10
	4.1 The Picard group law	
	4.2 Explicit formulae for the group law	
	4.3 Maps on an elliptic curve	
	4.4 Elliptic curves over \mathbb{C}	
	4.5 Group structure over other fields	. 13
5	Isogenies	14
	5.1 Isogenies	. 14
	5.2 The degree quadratic form	. 15
6	The invariant differential	18
	6.1 Differentials	
	6.2 Regular differentials	
	6.3 The invariant differential	
	6.4 Separability criterion	
		. 20
7	Elliptic curves over finite fields	21
	7.1 Hasse's theorem	
	7.2 Zeta functions	. 21
8	Formal groups	23
	8.1 Complete rings	. 23
	8.2 The main example	
	8.3 Formal groups	. 24
9	Elliptic curves over local fields	27
,	9.1 Integral Weierstrass equations	
	9.2 The filtration of formal groups	
	9.3 Reduction modulo π	
	5.6 Induction modulo //	. 40

1 Fermat's method of infinite descent

The following are the books.

- J H Silverman, The arithmetic of elliptic curves, 1986
- J W S Cassels, Lectures on elliptic curves, 1991
- J H Silverman and J Tate, Rational points on elliptic curves, 1992
- J S Milne, Elliptic curves, 2006

1.1 Primitive triangles

Definition. Let $\Delta = \Delta(a, b, c)$ be a right triangle

so $a^2 + b^2 = c^2$ and the area of Δ is $\frac{1}{2}ab$. Then Δ is **rational** if $a, b, c \in \mathbb{Q}$, and Δ is **primitive** if $a, b, c \in \mathbb{Z}$ are coprime.

Lemma 1.1. Every primitive triangle is of the form $\Delta \left(u^2 - v^2, 2uv, u^2 + v^2\right)$ for some $u, v \in \mathbb{Z}$ such that u > v > 0.

Proof. Without loss of generality a is odd, b is even, and c is odd, so $(b/2)^2 = ((c+a)/2)((c-a)/2)$ is a product of coprime positive integers. By unique prime factorisation in \mathbb{Z} ,

$$\frac{c+a}{2} = u^2, \qquad \frac{c-a}{2} = v^2, \qquad u, v \in \mathbb{Z},$$

so $a = u^2 - v^2$, b = 2uv, and $c = u^2 + v^2$.

Definition. $D \in \mathbb{Q}_{>0}$ is a **congruent number** if there exists a rational triangle Δ with area D.

Note that it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

Example. D = 5.6 are congruent numbers.

Lemma 1.2. $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}$ such that $y \neq 0$.

Proof. Lemma 1.1 shows D is congruent if and only if $Dw^2 = uv\left(u^2 - v^2\right)$ for some $u, v, w \in \mathbb{Q}$ such that $w \neq 0$. Put x = u/v and $y = w/v^2$.

Fermat showed that 1 is not a congruent number.

Theorem 1.3. There is no solution to

$$w^{2} = uv(u+v)(u-v), \qquad u, v, w \in \mathbb{Z}, \qquad w \neq 0.$$
(1)

Proof. Without loss of generality u and v are coprime, and u>0 and w>0. If v<0 then replace (u,v,w) by (-v,u,w). If $u\equiv v\mod 2$ then replace (u,v,w) by ((u+v)/2,(u-v)/2,w/2). Then u,v,u+v,u-v are pairwise coprime positive integers whose product is a square. By unique factorisation in \mathbb{Z} ,

$$u = a^2$$
, $v = b^2$, $u + v = c^2$, $u - v = d^2$, $a, b, c, d \in \mathbb{Z}_{>0}$.

Since $u \not\equiv v \mod 2$ both c and d are odd. Then $((c+d)/2)^2 + ((c-d)/2)^2 = (c^2+d^2)/2 = u = a^2$, so $\Delta\left((c+d)/2,(c-d)/2,a\right)$ is a primitive triangle. Its area is $(c^2-d^2)/8 = v/4 = (b/2)^2$. Let $w_1 = b/2$. By Lemma 1.1, $w_1^2 = u_1v_1\left(u_1^2-v_1^2\right)$ for some $u_1,v_1 \in \mathbb{Z}$, that is we have a new solution to (1). But $4w_1^2 = b^2 = v \mid w^2$, so $w_1 \leq w/2$. So by Fermat's method of infinite descent, there is no solution to (1).

Lecture 1 Friday 09/10/20

1.2 A variant for polynomials

In this section, K is a field with ch $K \neq 2$, with algebraic closure \overline{K} .

Lemma 1.4. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$ then $u, v \in K$.

Proof. Without loss of generality $K = \overline{K}$. Changing coordinates on \mathbb{P}^1 we may assume the ratios $(\alpha : \beta)$ are (1:0), (0:1), (1:-1), $(1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Then $u=a^2$ and $v=b^2$ for some $a,b \in K$ [t], so u-v=(a+b) (a-b) and $u-\lambda v=(a+\mu b)$ $(a-\mu b)$ for $\mu=\sqrt{\lambda}$. By unique factorisation in K [t], $a+b,a-b,a+\mu b,a-\mu b$ are squares. But max $(\deg a,\deg b)\leq \frac{1}{2}$ max $(\deg u,\deg v)$. So by Fermat's method of infinite descent $u,v\in K$.

Definition 1.5.

- An elliptic curve E/K is the projective closure of the plane affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polynomial with distinct roots in \overline{K} .
- For L/K any field extension

$$E(L) = \{(x, y) \in L^2 \mid y^2 = f(x)\} \cup \{\mathcal{O}\},\$$

where \mathcal{O} is the **point at infinity**.

Fact. E(L) is naturally an abelian group.

In this course we study E(L) for L a finite field, a local field $[L:\mathbb{Q}_p]<\infty$, or a number field $[L:\mathbb{Q}]<\infty$. By Lemma 1.2 and Theorem 1.3, if E is $y^2=x^3-x$ then $E(\mathbb{Q})=\{\mathcal{O},(0,0),(\pm 1,0)\}$.

Corollary 1.6. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality $K = \overline{K}$. By a change of coordinates we may assume E is

$$y^2 = x(x-1)(x-\lambda), \qquad \lambda \in K \setminus \{0,1\}.$$

Suppose $(x,y) \in E(K(t))$. Write x = u/v for $u,v \in K[t]$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$. By unique factorisation in K[t], $u,v,u-v,u-\lambda v$ are all squares. By Lemma 1.4, $u,v \in K$, so $x,y \in K$.

2 Some remarks on algebraic curves

Work over $K = \overline{K}$.

Lecture 2 Monday 12/10/20

2.1 Rational curves

Definition 2.1. A plane algebraic curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ for an irreducible polynomial f is **rational** if it has a rational parameterisation, that is there exists $\phi, \psi \in K(t)$ such that

$$\begin{array}{ccc} \mathbb{A}^{1} & \longrightarrow & \mathbb{A}^{2} \\ t & \longmapsto & \left(\phi\left(t\right), \psi\left(t\right)\right) \end{array}$$

is injective on \mathbb{A}^1 minus a finite set, and $f(\phi(t), \psi(t)) = 0$.

Example 2.2.

• Any nonsingular plane conic is rational. For example, let $x^2 + y^2 = 1$. The line of slope t at (-1,0) is y = t(x+1). Their intersection is $x^2 + t^2(x+1)^2 = 1$, so $(x+1)(x-1+t^2(x+1)) = 0$. Thus x = -1 or $x = (1-t^2)/(1+t^2)$. The rational parameterisation is

$$(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right).$$

• Any singular plane cubic is rational. For example, let $y^2 = x^3$. The line of slope t at (0,0) is y = tx. The rational parameterisation is

$$(x,y) = (t^2, t^3).$$

• Corollary 1.6 shows that elliptic curves are not rational.

Remark 2.3. The genus $g(C) \in \mathbb{Z}_{>0}$ is an invariant of a smooth projective curve C.

- If $K = \mathbb{C}$ then g(C) is the genus of a Riemann surface.
- A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus g(C) = (d-1)(d-2)/2.

Proposition 2.4. Still assuming $K = \overline{K}$, let C be a smooth projective curve.

- 1. C is rational as in Definition 2.1 if and only if g(C) = 0.
- 2. C is an elliptic curve as in Definition 1.5 if and only if g(C) = 1.

Proof.

- 1. Omitted.
- 2. For \implies , use Remark 2.3. For \iff , see later Theorem 3.1.

2.2 Order of vanishing

Let C be an algebraic curve, with function field K(C). Let $P \in C$ be a smooth point. Write ord_P f for the order of vanishing of $f \in K(C)$ at P, which is negative if f has a pole.

Fact. ord_P: $K(C)^* \to \mathbb{Z}$ is a discrete valuation, that is

$$\operatorname{ord}_{P}(f_{1}f_{2}) = \operatorname{ord}_{P}f_{1} + \operatorname{ord}_{P}f_{2}, \quad \operatorname{ord}_{P}(f_{1} + f_{2}) \geq \min(\operatorname{ord}_{P}f_{1}, \operatorname{ord}_{P}f_{2}).$$

Definition. $t \in K(C)^*$ is a **uniformiser** at the point P if $\operatorname{ord}_P t = 1$.

Example 2.5. Let $C = \{g = 0\} \subset \mathbb{A}^2$ for $g \in K[x,y]$ irreducible, so $K(C) = \operatorname{Frac}(K[x,y]/\langle g \rangle)$ for $g = g_0 + g_1(x,y) + \ldots$ where g_i is homogeneous of degree i. Suppose $P = (0,0) \in C$ is a smooth point, that is $g_0 = 0$ and $g_1(x,y) = \alpha x + \beta y$ such that α and β are not both zero. Let $\gamma, \delta \in K$. A fact is that

$$\gamma x + \delta y \in K(C)$$
 is a uniformiser at $p \iff \alpha \delta - \beta \gamma \neq 0$.

Example 2.6. The projective closure of $\{y^2 = x(x-1)(x-\lambda)\}\subset \mathbb{A}^2$ for $\lambda \neq 0, 1$ is

$$\{Y^2Z = X(X-Z)(X-\lambda Z)\} \subset \mathbb{P}^2,$$

where x = X/Z and y = Y/Z. Let P = (0:1:0). We compute $\operatorname{ord}_P x$ and $\operatorname{ord}_P y$. Put t = X/Y and w = Z/Y. Then

$$w = t(t - w)(t - \lambda w). \tag{2}$$

Now P is the point (t, w) = (0, 0). This is a smooth point and $\operatorname{ord}_P t = \operatorname{ord}_P (t - w) = \operatorname{ord}_P (t - \lambda w) = 1$. By (2), $\operatorname{ord}_P w = 3$, so

$$\operatorname{ord}_P x = \operatorname{ord}_P \frac{X}{Z} = \operatorname{ord}_P \frac{t}{w} = 1 - 3 = -2, \qquad \operatorname{ord}_P y = \operatorname{ord}_P \frac{Y}{Z} = \operatorname{ord}_P \frac{1}{w} = -3.$$

Remark that the line $\{w=0\}$ meets E with multiplicity three at P, so P is a point of inflection.

2.3 Riemann Roch spaces

Definition. Let C be a smooth projective curve. A divisor is a formal sum of points on C, say

$$D = \sum_{P \in C} n_P(P), \qquad n_P \in \mathbb{Z},$$

with $n_P = 0$ for all but finitely many $P \in C$. The **degree** of D is

$$\deg D = \sum_{P \in C} n_P.$$

Then D is **effective**, written $D \ge 0$, if $n_P \ge 0$ for all $P \in C$. If $f \in K(C)^*$ then the **divisor of** f is

$$\operatorname{div} f = \sum_{P \in C} \left(\operatorname{ord}_{P} f \right) (P).$$

The **Riemann Roch space** of $D \in \text{Div } C$ is

$$\mathcal{L}(D) = \left\{ f \in K(C)^* \mid \operatorname{div} f + D \ge 0 \right\} \cup \{0\},\,$$

that is the K-vector space of rational functions on C with poles no worse than specified by D.

Riemann Roch for genus one states that

$$\dim \mathcal{L}(D) = \begin{cases} 0 & \deg D < 0 \\ 0 \text{ or } 1 & \deg D = 0 \\ \deg D & \deg D > 0 \end{cases}$$

Example. Revisiting Example 2.6, let P be the point at infinity of $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$. Then $\operatorname{ord}_P x = -2$ and $\operatorname{ord}_P y = -3$. We deduce

$$\mathcal{L}(2(P)) = \langle 1, x \rangle, \qquad \mathcal{L}(3(P)) = \langle 1, x, y \rangle.$$

This motivates the proof of Theorem 3.1.

Assume $K = \overline{K}$ and $\operatorname{ch} K \neq 2$.

Lecture 3 Wednesday 14/10/20

Proposition 2.7. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic and $P \in C$ a point of inflection. Then we may change coordinates such that C is

$$Y^{2} = X(X - Z)(X - \lambda Z), \qquad \lambda \neq 0, 1,$$

and P = (0:1:0).

Proof. We change coordinates such that P = (0:1:0) and $T_PC = \{Z = 0\}$. Let $C = \{F(X,Y,Z) = 0\}$. Since $P \in C$ is a point of inflection, F(t,1,0) is a constant times t^3 , that is no terms X^2Y, XY^2, Y^3 , so

$$F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle.$$

The coefficient of Y^2Z is nonzero otherwise $P \in C$ is singular. The coefficient of X^3 is nonzero otherwise $\{Z=0\} \subset C$. We are free to rescale X,Y,Z,F. Without loss of generality C is defined by

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$

the Weierstrass form. Substituting Y by $Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$ we may assume $a_1 = a_3 = 0$. Now C is $Y^2Z = Z^3f(X/Z)$ for f a monic cubic polynomial. Since C is smooth, f has distinct roots, without loss of generality $0, 1, \lambda$. Thus C is

$$Y^2 = X (X - Z) (X - \lambda Z),$$

the Legendre form.

Remark. It may be shown that the points of inflection on $C = \{F = 0\} \subset \mathbb{P}^2$ in coordinates $(X_1 : X_2 : X_3)$ are given by $F = \det H = 0$, where $H = \left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right)$ is a 3×3 matrix.

2.4 The degree of a morphism

Definition. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Let

$$\begin{array}{cccc} \phi^* & : & K\left(C_2\right) & \longrightarrow & K\left(C_1\right) \\ f & \longmapsto & f \circ \phi \end{array}.$$

• The **degree** of ϕ is

$$\deg \phi = [K(C_1) : \phi^*K(C_2)].$$

- ϕ is separable if $K(C_1)/\phi^*K(C_2)$ is a separable field extension, which is automatic if $\operatorname{ch} K=0$.
- Suppose $P \in C_1$ and $Q \in C_2$ such that $\phi : P \mapsto Q$. Let $t \in K(C_2)$ be a uniformiser at Q. The ramification index of ϕ at P is

$$e_{\phi}(P) = \operatorname{ord}_{P} \phi^{*} t$$

which is always at least one, and independent of t.

Theorem 2.8. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then

$$\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi, \qquad Q \in C_2.$$

Moreover if ϕ is separable then $e_{\phi}(P) = 1$ for all but finitely many $P \in C_1$. In particular

- ϕ is surjective, noting that $K = \overline{K}$, and
- $\#\phi^{-1}(Q) \leq \deg \phi$, with equality for all but finitely many Q, assuming ϕ is separable.

Remark 2.9. Let C be an algebraic curve. A rational map is given by

$$\phi : C \longrightarrow \mathbb{P}^n
P \longmapsto (f_0(P) : \cdots : f_n(P)) ,$$

where $f_0, \ldots, f_n \in K(C)$ not all zero. A fact is if C is smooth then ϕ is a morphism.

Lecture 4 Friday

16/10/20

3 Weierstrass equations

In this section K is a perfect field, with algebraic closure \overline{K} .

Definition. An elliptic curve E over K is a smooth projective curve of genus one defined over K with a specified K-rational point \mathcal{O}_E .

Example. $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$ for p prime is not an elliptic curve over \mathbb{Q} , since it has no \mathbb{Q} -points.

3.1 The Weierstrass form

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstrass form, via an isomorphism taking \mathcal{O}_E to (0:1:0).

Remark. Proposition 2.7 treated the special case where E is a smooth plane cubic and \mathcal{O}_E is a point of inflection.

Fact. If $D \in \text{Div } E$ is defined over K, that is fixed by $\text{Gal }(\overline{K}/K)$, then $\mathcal{L}(D)$ has a basis in K(E), not just in $\overline{K}(E)$.

Proof. Pick bases $\langle 1, x \rangle = \mathcal{L}\left(2\left(\mathcal{O}_{E}\right)\right) \subset \mathcal{L}\left(3\left(\mathcal{O}_{E}\right)\right) = \langle 1, x, y \rangle$. Then $\operatorname{ord}_{\mathcal{O}_{E}} x = -2$ and $\operatorname{ord}_{\mathcal{O}_{E}} y = -3$. The seven elements $1, x, y, x^{2}, xy, x^{3}, y^{2}$ in the six-dimensional vector space $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$ must satisfy a dependence relation. Leaving out x^{3} or y^{2} gives a basis for $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$ since each term has a different order pole at \mathcal{O}_{E} , so the coefficients of x^{3} and y^{2} are nonzero. Rescaling x and y we get

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \quad a_{i} \in K.$$

Let E' be the curve defined by this equation, or rather its projective closure. There is a morphism

$$\begin{array}{cccc} \phi & : & E & \longrightarrow & E' \subset \mathbb{P}^2 \\ & P & \longmapsto & \left(x\left(P\right):y\left(P\right):1\right) = \left(\frac{x}{y}\left(P\right):1:\frac{1}{y}\left(P\right)\right) \ . \\ & \mathcal{O}_E & \longmapsto & \left(0:1:0\right) \end{array}$$

Then

$$\left[K\left(E\right):K\left(x\right)\right]=\deg\left(x:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{x}=2,\qquad\left[K\left(E\right):K\left(y\right)\right]=\deg\left(y:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{y}=3,$$

so

By the tower law, [K(E):K(x,y)]=1, so $\deg(\phi:E\to E')=1$, so ϕ is birational. If E' is singular then E and E' are rational, a contradiction. So E' is smooth and we may apply Remark 2.9 to ϕ^{-1} to see that ϕ^{-1} is a morphism, so ϕ is an isomorphism.

Proposition 3.2. Let E and E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over K if and only if the Weierstrass equations are related by a change of variables

$$x=u^2x'+r, \qquad y=u^3y'+u^2sx'+t, \qquad u,r,s,t\in K, \qquad u\neq 0.$$

Proof. Let $\langle 1, x \rangle = \mathcal{L}(2(\mathcal{O}_E)) = \langle 1, x' \rangle$ and $\langle 1, x, y \rangle = \mathcal{L}(3(\mathcal{O}_E)) = \langle 1, x', y' \rangle$. Then

$$x = \lambda x' + r,$$
 $y = \mu y' + \sigma x' + t,$ $\lambda, r, \mu, \sigma, t \in K,$ $\lambda, \mu \neq 0.$

Looking at coefficients of x^3 and y^2 , $\lambda^3 = \mu^2$, so $(\lambda, \mu) = (u^2, u^3)$ for some $u \in K^*$. Put $s = \sigma/u^2$.

3.2 Discriminant and j-invariant

A Weierstrass equation defines an elliptic curve if and only if it defines a smooth curve, if and only if $\Delta(a_1, \ldots, a_6) \neq 0$ where $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$ is a certain polynomial. If $\operatorname{ch} K \neq 2, 3$ then we can reduce to the case E is

$$y^2 = x^3 + ax + b,$$

with discriminant

$$\Delta = -16 \left(4a^3 + 27b^2 \right).$$

Corollary 3.3. Assume $\operatorname{ch} K \neq 2, 3$. Elliptic curves $E = \{y^2 = x^3 + ax + b\}$ and $E' = \{y^2 = x^3 + a'x + b'\}$ are isomorphic over K if and only if $a' = u^4a$ and $b' = u^6b$ for some $u \in K^*$.

Proof. E and E' are related as in Proposition 3.2 with r = s = t = 0.

Definition. The j-invariant is

$$j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}.$$

Corollary 3.4. If $E \cong E'$, then j(E) = j(E'), and the converse holds if $K = \overline{K}$.

Proof.

$$E \cong E' \iff \exists u \in K^*, \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases} \implies (a^3 : b^2) = (a'^3 : b'^2) \iff j(E) = j(E'),$$

and the converse holds if $K = \overline{K}$.

4 Group law

Let $E = E(\overline{K}) \subset \mathbb{P}^2$ be a smooth plane cubic, and let $\mathcal{O}_E \in E(K)$. Then E meets each line in three points counted with multiplicity.

4.1 The Picard group law

Let $P, Q \in E$, let S be the third point of intersection of PQ and E, and let R be the third point of intersection of \mathcal{O}_ES and E. We define

$$P \oplus Q = R$$
.

If P = Q then take $T_P E$ instead, etc. This is the **chord and tangent process**.

Theorem 4.1. (E, \oplus) is an abelian group.

Associativity is hard.

Definition. $D_1, D_2 \in \text{Div } E$ are **linearly equivalent**, written $D_1 \sim D_2$, if there exists $f \in \overline{K}(E)^*$ such that

$$\operatorname{div} f = D_1 - D_2.$$

Let

$$[D] = \{ D' \mid D' \sim D \}.$$

The **Picard group** is

$$\operatorname{Pic} E = \operatorname{Div} E / \sim$$
.

If

$$\operatorname{Div}^0 E = \ker (\operatorname{deg} : \operatorname{Div} E \to \mathbb{Z})$$

is the degree zero divisors on E, let

$$\operatorname{Pic}^0 E = \operatorname{Div}^0 E / \sim$$
.

Note that $\operatorname{div} f q = \operatorname{div} f + \operatorname{div} q$.

Proposition 4.2. Let

$$\begin{array}{ccc} \psi & : & E & \longrightarrow & \operatorname{Pic}^0 E \\ & P & \longmapsto & [(P) - (\mathcal{O}_E)] \end{array}.$$

Then

1.
$$\psi(P \oplus Q) = \psi(P) + \psi(Q)$$
, and

2. ψ is a bijection.

Proof.

1. Let $P, Q \in E$, let S be the third point of intersection of PQ and E, and let R be the third point of intersection of $\mathcal{O}_E S$ and E. Let l = 0 be the line PQ and let m = 0 be the line $\mathcal{O}_E S$. Then

$$\operatorname{div} \frac{l}{m} = (P) + (S) + (Q) - (R) - (S) - (\mathcal{O}_E) = (P) + (Q) - (\mathcal{O}_E) - (P \oplus Q),$$

so
$$(P \oplus Q) + (\mathcal{O}_E) \sim (P) + (Q)$$
. Thus $(P \oplus Q) - (\mathcal{O}_E) \sim (P) - (\mathcal{O}_E) + (Q) - (\mathcal{O}_E)$, so $\psi(P \oplus Q) = \psi(P) + \psi(Q)$.

2. For injectivity, suppose $\psi(P) = \psi(Q)$ for $P \neq Q$. Then there exists $f \in \overline{K}(E)^*$ such that div f = P - Q, and deg $(f : E \to \mathbb{P}^1) = \operatorname{ord}_P f = 1$, so $E \cong \mathbb{P}^1$, a contradiction. For surjectivity, let $[D] \in \operatorname{Pic}^0 E$. Then $D + (\mathcal{O}_E)$ has degree one. By Riemann Roch, dim $\mathcal{L}(D + (\mathcal{O}_E)) = 1$, so there exists $f \in \overline{K}(E)^*$ such that div $f + D + (\mathcal{O}_E) \geq 0$. Since div $f + D + (\mathcal{O}_E)$ has degree one, div $f + D + (\mathcal{O}_E) = (P)$ for some $P \in E$, so $(P) - (\mathcal{O}_E) \sim D$. Thus $\psi(P) = [D]$.

Proof of Theorem 4.1.

- $P \oplus Q = Q \oplus P$ is clear.
- \mathcal{O}_E is the identity. Let S be the third point of intersection of $\mathcal{O}_E P$ and E. Then P is the third point of intersection of $\mathcal{O}_E S$ and E, so $\mathcal{O}_E \oplus P = P$.
- Inverses. Let S be the third point of intersection of $T_{\mathcal{O}_E}E$ and E, and let Q be the third point of intersection of PS and E. Then S is the third point of intersection of PQ and E, and \mathcal{O}_E is the third point of intersection of \mathcal{O}_ES and E, so $P \oplus Q = \mathcal{O}_E$.
- By Proposition 4.2,

$$\psi\left((P\oplus Q)\oplus R\right)=\psi\left(P\oplus Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\oplus R\right)=\psi\left(P\oplus Q\oplus R\right)\right).$$

Since ψ is injective, $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$. We deduce that \oplus is associative, and

$$\psi: (E, \oplus) \xrightarrow{\sim} (\operatorname{Pic}^0 E, +)$$

is an isomorphism of groups. Note that we did not need ψ surjective for the proof that \oplus is associative.

4.2 Explicit formulae for the group law

We consider E in Weierstrass form

Lecture 5 Monday 19/10/20

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, (3)$$

and \mathcal{O}_E is the point at infinity.

Remark. \mathcal{O}_E is a point of inflection. So now $P_1 \oplus P_2 \oplus P_3 = \mathcal{O}_E$ if and only if P_1, P_2, P_3 are collinear.

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_3, y_3)$, let P' = (x', y') be the third point of intersection of $P_1P_2 = \{y = \lambda x + \nu\}$ and E, and let $P_3 = (x_3, y_3)$ be the second point of intersection between x = x' and E, so $P_3 = P_1 \oplus P_2 = \ominus P'$. Thus

$$\ominus P_1 = (x_1, -(a_1x_1 + a_3) - y_1).$$

Substituting $y = \lambda x + \nu$ into (3) and looking at the coefficient of x^2 gives $\lambda^2 + a_1\lambda - a_2 = x_1 + x_2 + x'$, so

$$x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \qquad y_3 = -(a_1 x' + a_3) - y' = -(a_1 x' + a_3) - (\lambda x' + \nu) = -(\lambda + a_1) x_3 - \nu - a_3.$$

It remains to find formulae for λ and ν .

Case 1. $x_1 = x_2$ and $P_1 \neq P_2$. Then $P_1 \oplus P_2 = \mathcal{O}_E$.

Case 2. $x_1 \neq x_2$. Then

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \qquad \nu = y_1 - \lambda x_1 = \frac{y_1 (x_2 - x_1) - (y_2 - y_1) x_1}{x_2 - x_1} = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}.$$

Case 3. $x_1 = x_2$ and $P_1 = P_2$. Then

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \qquad \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}.$$

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup of $E = E(\overline{K})$.

- Identity is $\mathcal{O}_E \in E(K)$ by definition.
- Closure and inverses are by the formulae above.
- Associativity and commutativity are inherited.

4.3 Maps on an elliptic curve

Theorem 4.4. Elliptic curves are group varieties. That is,

are morphisms of algebraic varieties.

Proof. The above formulae show [-1] and + are rational maps. By Remark 2.9, $[-1]: E \to E$ is a morphism. The formulae also show, by case 2, that + is regular on

$$U = \{ (P, Q) \in E \times E \mid P, Q, P + Q, P - Q \neq \mathcal{O}_E \}.$$

For $P \in E$ let translation by P be

$$\begin{array}{cccc} \tau_P & : & E & \longrightarrow & E \\ & X & \longmapsto & P + X \end{array},$$

which is a rational map and therefore a morphism. Let $A, B \in E$. We factor + as

$$E \times E \xrightarrow{\tau_{-A} \times \tau_{-B}} E \times E \xrightarrow{+} E \xrightarrow{\tau_{A+B}} E.$$

Thus + is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$, so + is regular on $E \times E$.

Definition. For $n \in \mathbb{Z}$ let

$$\begin{array}{cccc} [n] & : & E & \longrightarrow & E \\ & P & \longmapsto & \underbrace{P + \cdots + P}_{n} \ , \end{array}$$

and $[-n] = [-1] \circ [n]$. The *n*-torsion subgroup of *E* is

$$E[n] = \ker([n] : E \to E)$$
.

Lemma 4.5. Assume $\operatorname{ch} K \neq 2$. Let E be

$$y^2 = (x - e_1)(x - e_2)(x - e_3),$$

for $e_1, e_2, e_3 \in \overline{K}$ distinct. Then

$$E[2] = \{\mathcal{O}, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

Proof. Let $P = (x, y) \in E$. Then [2] P = 0 if and only if P = -P, if any if P = -P, if any

4.4 Elliptic curves over \mathbb{C}

Let $\Lambda = \{a\omega_1 + b\omega_2 \mid a, b \in \mathbb{Z}\}$ for ω_1 and ω_2 a basis for \mathbb{C} as an \mathbb{R} -vector space. Then

$$\left\{ \begin{array}{c} \text{meromorphic functions on} \\ \text{Riemann surface } \mathbb{C}/\Lambda \end{array} \right\} \qquad \leftrightsquigarrow \qquad \left\{ \begin{array}{c} \Lambda\text{-invariant meromorphic} \\ \text{functions on } \mathbb{C} \end{array} \right\}.$$

This field is generated by $\wp(z)$ and $\wp'(z)$ where

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right).$$

They satisfy

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

for some $g_2, g_3 \in \mathbb{C}$ depending on Λ . One shows that

$$\mathbb{C}/\Lambda \cong E(\mathbb{C})$$

is an isomorphism as Riemann surfaces and as groups, where E is the elliptic curve

$$y^2 = 4x^3 - g_2x - g_3.$$

Theorem 4.6 (Uniformisation theorem). Every elliptic curve over \mathbb{C} arises in this way.

For elliptic curves E/\mathbb{C} we have

1.
$$E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$$
, and

2.
$$\deg[n] = n^2$$
.

We show 2 holds over any field K and 1 holds if $\operatorname{ch} K \nmid n$.

4.5 Group structure over other fields

The following will be a summary of the results.

1. If
$$K = \mathbb{C}$$
, then

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}.$$

2. If $K = \mathbb{R}$, then

$$E\left(\mathbb{R}\right)\cong\begin{cases}\mathbb{Z}/2\mathbb{Z}\times\mathbb{R}/\mathbb{Z}&\Delta>0\\\mathbb{R}/\mathbb{Z}&\Delta<0\end{cases}.$$

3. If $K = \mathbb{F}_q$, then Hasse's theorem states that

$$|\#E\left(\mathbb{F}_q\right) - (q+1)| \le 2\sqrt{q}.$$

- 4. If $[K:\mathbb{Q}_p]<\infty$ with ring of integers \mathcal{O}_K , then E(K) has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$.
- 5. If $[K:\mathbb{Q}]<\infty$, then the Mordell-Weil theorem states that E(K) is a finitely generated abelian group.

Note that the isomorphisms in 1, 2, and 4 respect the relevant topologies.

5 Isogenies

Definition. Let E_1 and E_2 be elliptic curves.

Lecture 6 Wednesday 21/10/20

- An **isogeny** $\phi: E_1 \to E_2$ is a nonconstant morphism with $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$, which is if and only if it is surjective on \overline{K} -points, by Theorem 2.8. We say E_1 and E_2 are **isogenous**.
- Let

$$\text{Hom}(E_1, E_2) = \{\text{isogenies } E_1 \to E_2\} \cup \{0\}.$$

This is a group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$. If $\phi : E_1 \to E_2$ and $\psi : E_2 \to E_3$ are isogenies then $\psi \circ \phi$ is an isogeny. By the tower law, $\deg(\psi \circ \phi) = \deg \phi \deg \psi$.

Lemma 5.1. If $0 \neq n \in \mathbb{Z}$ then $[n] : E \to E$ is an isogeny.

Proof. By Theorem 4.4, [n] is a morphism. We must show $[n] \neq 0$. Assume $\operatorname{ch} K \neq 2$.

n = 2. By Lemma 4.5, #E[2] = 4, so $[2] \neq 0$.

n odd. By Lemma 4.5, there exists $0 \neq T \in E[2]$. Then $nT = T \neq 0$, so $[n] \neq 0$.

Now use $[mn] = [m] \circ [n]$. If ch K = 2 then replace Lemma 4.5 with a lemma computing E[3].

A corollary is that $\operatorname{Hom}(E_1, E_2)$ is torsion-free as a \mathbb{Z} -module.

5.1 Isogenies

Lemma 5.2. Let $\phi: E_1 \to E_2$ be an isogeny. Then

$$\phi(P+Q) = \phi(P) + \phi(Q), \qquad P, Q \in E_1.$$

Proof. ϕ induces a map

$$\phi_*$$
: $\operatorname{Div}^0 E_1 \longrightarrow \operatorname{Div}^0 E_2$
 $\sum_{P \in E} n_P(P) \longmapsto \sum_{P \in E} n_P(\phi(P))$.

Recall $\phi^*: K(E_2) \hookrightarrow K(E_1)$. A fact is that

$$\operatorname{div}\left(\mathrm{N}_{K(E_{1})/K(E_{2})}f\right) = \phi_{*}\left(\operatorname{div}f\right), \qquad f \in K\left(E_{1}\right)^{*}.$$

So ϕ_* takes principal divisors to principal divisors. Since $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$ the diagram

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$P \mapsto [(P) - (\mathcal{O}_{E_{1}})] \downarrow \sim \qquad \sim \downarrow Q \mapsto [(Q) - (\mathcal{O}_{E_{2}})]$$

$$\operatorname{Pic}^{0} E_{1} \xrightarrow{\phi_{*}} \operatorname{Pic}^{0} E_{2}$$

commutes. Since ϕ_* is a group homomorphism, ϕ is group homomorphism.

Lemma 5.3. Let $\phi: E_1 \to E_2$ be an isogeny. Then there exists a morphism ξ making the diagram

$$E_1 \xrightarrow{\phi} E_2$$

$$x_1 \downarrow \qquad \qquad \downarrow x_2$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

commute, where x_i is the x-coordinate on a Weierstrass equation for E_i . Moreover if $\xi(t) = r(t)/s(t)$ for $r, s \in K[t]$ coprime then $\deg \phi = \deg \xi = \max(\deg r, \deg s)$.

Proof. For $i = 1, 2, K(E_i)/K(x_i)$ is a degree two Galois extension with Galois group generated by $[-1]^*$. Since ϕ is a group homomorphism we have $\phi \circ [-1] = [-1] \circ \phi$. If $f \in K(x_2)$ then $[-1]^* f = f$ and $[-1]^* (\phi^* f) = \phi^* ([-1]^* f) = \phi^* f$, so $\phi^* f \in K(x_1)$. Taking $f = x_2$ gives $\phi^* x_2 = \xi(x_1)$ for some rational function ξ , so

By the tower law, $2 \deg \phi = 2 \deg \xi$. Now

$$\phi^* : K(x_2) \longrightarrow K(x_1)$$

$$x_2 \longmapsto \xi(x_1) = \frac{r(x_1)}{s(x_1)},$$

for $r, s \in K[t]$ coprime. Claim that the minimal polynomial of x_1 over $K(x_2)$ is

$$f(t) = r(t) - s(t) x_2 \in K(x_2)[t].$$

Check that $f(x_1) = 0$ and f is irreducible in $K[x_2, t]$, since r and s are coprime. By Gauss' lemma, f is irreducible in $K(x_2)[t]$. Thus

$$\deg\phi=\deg\xi=\left[K\left(x_{1}\right):K\left(x_{2}\right)\right]=\deg f=\max\left(\deg r,\deg s\right).$$

Lemma 5.4. deg[2] = 4.

Proof. Assuming ch $K \neq 2, 3$, let E be $y^2 = f(x) = x^3 + ax + b$. If P = (x, y) then

$$x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{\left(3x^2 + a\right)^2 - 8xf(x)}{4f(x)} = \frac{x^4 + \dots}{4f(x)}.$$

The numerator and denominator are coprime. Indeed otherwise there exists $\theta \in \overline{K}$ with $f(\theta) = f'(\theta) = 0$, so f has a multiple root, a contradiction. By Lemma 5.3, deg $[2] = \max(4,3) = 4$.

5.2 The degree quadratic form

Definition. Let A be an abelian group. Then $q:A\to\mathbb{Z}$ is a quadratic form if

- 1. $q(nx) = n^2 q(x)$ for all $n \in \mathbb{Z}$ and all $x \in A$, and
- 2. $(x,y) \mapsto q(x+y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.5. $q: A \to \mathbb{Z}$ is a quadratic form if and only if it satisfies the **parallelogram law**

$$q(x + y) + q(x - y) = 2q(x) + 2q(y), \qquad x, y \in A.$$

Proof.

$$\implies \text{ Let } \langle x,y\rangle = q\left(x+y\right) - q\left(x\right) - q\left(y\right). \text{ Then } \langle x,x\rangle = q\left(2x\right) - 2q\left(x\right) = 2q\left(x\right) \text{ by 1 with } n = 2. \text{ But by 2,}$$
$$q\left(x+y\right) + q\left(x-y\right) = \frac{1}{2}\left\langle x+y,x+y\right\rangle + \frac{1}{2}\left\langle x-y,x-y\right\rangle = \left\langle x,x\right\rangle + \left\langle y,y\right\rangle = 2q\left(x\right) + 2q\left(y\right).$$

 \leftarrow On example sheet 2.

Lecture 7 Friday 23/10/20

Theorem 5.6. deg : Hom $(E_1, E_2) \to \mathbb{Z}$ is a quadratic form.

Note that deg 0 = 0. For the proof we assume ch $K \neq 2, 3$. We write E_2 as $y^2 = x^3 + ax + b$. Let $P, Q \in E_2$ with $P, Q, P + Q, P - Q \neq 0$. Let x_1, \ldots, x_4 be the x-coordinates of these four points.

Lemma 5.7. There exist $w_0, w_1, w_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree at most two in x_1 and degree at most two in x_2 such that $(1: x_3 + x_4: x_3x_4) = (w_0: w_1: w_2)$.

Proof. By direct calculation,

$$w_0 = (x_1 - x_2)^2$$
, $w_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$, $w_2 = x_1^2x_2^2 - 2ax_1x_2 - 4b(x_1 + x_2) + a^2$.

Alternatively, let $y = \lambda x + \nu$ be the line through P and Q. Then

$$x^{3} + ax + b - (\lambda x + \nu)^{2} = (x - x_{1})(x - x_{2})(x - x_{3}) = x^{3} - s_{1}x^{2} + s_{2}x - s_{3}$$

where s_i is the *i*-th symmetric polynomial in x_1, x_2, x_3 . Comparing coefficients gives $\lambda^2 = s_1, -2\lambda\nu = s_2 - a$, and $\nu^2 = s_3 + b$. Eliminating λ and ν gives

$$F(x_1, x_2, x_3) = (s_2 - a)^2 - 4s_1(s_3 + b) = 0,$$

which has degree at most two in each x_i . Then x_3 is a root of the quadratic polynomial $w(t) = F(x_1, x_2, t)$. Repeating for the line through P and -Q shows that x_4 is the other root. Thus $w_0(t - x_3)(t - x_4) = w(t) = w_0t^2 - w_1t + w_2$, so $(1:x_3 + x_4:x_3x_4) = (w_0:w_1:w_2)$.

Proof of Theorem 5.6. We show that if $\phi, \psi \in \text{Hom}(E_1, E_2)$ then

$$\deg(\phi + \psi) + \deg(\phi - \psi) \le 2\deg\phi + 2\deg\psi.$$

We may assume $\phi, \psi, \phi + \psi, \phi - \psi \neq 0$, otherwise trivial, or use deg [2] = 4. Let

$$\phi: (x,y) \mapsto (\xi_1(x), \dots), \qquad \psi: (x,y) \mapsto (\xi_2(x), \dots),$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \dots), \qquad \phi - \psi: (x,y) \mapsto (\xi_4(x), \dots).$$

By Lemma 5.7,

$$(1:\xi_3(x)+\xi_4(x):\xi_3(x)\xi_4(x))=(w_0:w_1:w_2),$$

where w_0, w_1, w_2 are in terms of $\xi_1(x)$ and $\xi_2(x)$. Put $\xi_i = r_i/s_i$ for $r_i/s_i \in K[x]$ coprime. Then

$$(s_3(x) s_4(x) : r_3(x) s_4(x) + r_4(x) s_3(x) : r_3(x) r_4(x)) = (w_0 : w_1 : w_2),$$

where w_0, w_1, w_2 are in terms of $r_1(x), s_1(x), r_2(x), s_2(x)$, so

$$\begin{split} \deg\left(\phi+\psi\right) + \deg\left(\phi-\psi\right) &= \max\left(\deg r_3\left(x\right), \deg s_3\left(x\right)\right) + \max\left(\deg r_4\left(x\right), \deg s_4\left(x\right)\right) \\ &= \max\left(\deg s_3\left(x\right), \deg\left(r_3\left(x\right), \deg\left(r_3\left(x\right), s_4\left(x\right)\right) + r_4\left(x\right), s_3\left(x\right)\right), \deg r_3\left(x\right), r_4\left(x\right)\right) \\ &\leq 2\max\left(\deg r_1\left(x\right), \deg s_1\left(x\right)\right) + 2\max\left(\deg r_2\left(x\right), \deg s_2\left(x\right)\right) \\ &= 2\deg\phi + 2\deg\psi, \end{split}$$

since $s_3(x) s_4(x)$, $r_3(x) s_4(x) + r_4(x) s_3(x)$, $r_3(x) r_4(x)$ are coprime. Now replace ϕ and ψ by $\phi + \psi$ and $\phi - \psi$ to get

$$\deg 2\phi + \deg 2\psi \le 2\deg (\phi + \psi) + 2\deg (\phi - \psi).$$

Since deg[2] = 4 we get

$$2 \operatorname{deg} \phi + 2 \operatorname{deg} \psi < \operatorname{deg} (\phi + \psi) + \operatorname{deg} (\phi - \psi)$$
.

Thus deg satisfies the parallelogram law, so deg is a quadratic form.

Corollary 5.8. deg $n\phi = n^2 \deg \phi$ for all $n \in \mathbb{Z}$ and $\phi \in \operatorname{Hom}(E_1, E_2)$. In particular deg $[n] = n^2$.

Example 5.9. Let E/K be an elliptic curve, and let $0 \neq T \in E(K)[2]$. Suppose $\operatorname{ch} K \neq 2$. Without loss of generality E is

$$y^2 = x(x^2 + ax + b),$$
 $a, b \in K,$ $b(a^2 - 4b) \neq 0,$

and T = (0,0). If P = (x, y) and P' = P + T = (x', y'), then

$$x' = \left(\frac{y}{x}\right)^2 - x - a = \frac{x^2 + ax + b}{x} - x - a = \frac{b}{x}, \qquad y' = -\left(\frac{y}{x}\right)x' = -\frac{by}{x^2}.$$

Let

$$\xi = x + x' + a = \frac{x^2 + ax + b}{x} = \left(\frac{y}{x}\right)^2, \qquad \eta = y + y' = \left(\frac{y}{x}\right)\left(x - \frac{b}{x}\right).$$

Then

$$\eta^{2} = \left(\frac{y}{x}\right)^{2} \left(\left(x + \frac{b}{x}\right)^{2} - 4b\right) = \xi\left((\xi - a)^{2} - 4b\right) = \xi\left(\xi^{2} - 2a\xi + a^{2} - 4b\right).$$

Let E' be

$$y^2 = x(x^2 + a'x + b'),$$
 $a' = -2a,$ $b' = a^2 - 4b.$

There is an isogeny

$$\phi : E \longrightarrow E'$$

$$(x,y) \longmapsto \left(\left(\frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right) .$$

$$\mathcal{O}_E \longmapsto (0:1:0)$$

Then $(y/x)^2 = (x^2 + ax + b)/x$, which are coprime since $b \neq 0$. By Lemma 5.3, $\deg \phi = 2$. We say ϕ is a 2-isogeny.

6 The invariant differential

Let C be an algebraic curve over $K = \overline{K}$.

Lecture 8 Monday 26/10/20

6.1 Differentials

Definition. The space of **differentials** Ω_{C} is the K(C)-vector space generated by df for $f \in K(C)$ subject to the relations

- d(f+g) = df + dg,
- d(fg) = fdg + gdf, and
- da for all $a \in K$.

Fact. Ω_C is a one-dimensional K(C)-vector space.

Let $0 \neq \omega \in \Omega_C$. Let $P \in C$ be a smooth point and $t \in K(C)$ a uniformiser at P. Then $\omega = f dt$ for some $f \in K(C)^*$. We define

$$\operatorname{ord}_P \omega = \operatorname{ord}_P f$$
.

This is independent of the choice of t.

Fact. Suppose $f \in K(C)^*$ such that $\operatorname{ord}_P f = n \neq 0$. If $\operatorname{ch} k \nmid n$ then

$$\operatorname{ord}_{P}(\mathrm{d}f) = n - 1.$$

We now assume C is a smooth projective curve.

Definition. Let

$$\operatorname{div} \omega = \sum_{P \in C} (\operatorname{ord}_P \omega) P \in \operatorname{Div} C,$$

using here the fact that $\operatorname{ord}_P \omega = 0$ for all but finitely many $P \in C$.

6.2 Regular differentials

Definition. The **genus** is

$$g(C) = \dim_K \{ \omega \in \Omega_C \mid \operatorname{div} \omega \ge 0 \},$$

the space of regular differentials.

As a consequence of Riemann Roch we have, if $0 \neq \omega \in \Omega_C$, then

$$\deg(\operatorname{div}\omega) = 2g(C) - 2.$$

Lemma 6.1. Assume $\operatorname{ch} K \neq 2$. Let E be $y^2 = (x - e_1)(x - e_2)(x - e_3)$ for e_1, e_2, e_3 distinct. Then $\omega = \operatorname{d} x/y$ is a differential on E with no zeros or poles, so $\operatorname{g}(E) = 1$. In particular the K-vector space of regular differentials on E is one-dimensional, spanned by ω .

Proof. Let $T_i = (e_i, 0)$, so $E[2] = \{\mathcal{O}, T_1, T_2, T_3\}$. Then

$$\operatorname{div} y = [T_1] + [T_2] + [T_3] - 3[\mathcal{O}]. \tag{4}$$

For $P \in E$, div $(x - x_P) = [P] + [-P] - 2[\mathcal{O}]$.

- If $P \in E \setminus E[2]$ then $\operatorname{ord}_P(x x_P) = 1$, so $\operatorname{ord}_P(dx) = 0$.
- If $P = T_i$ then $\operatorname{ord}_P(x x_P) = 2$, so $\operatorname{ord}_P(dx) = 1$.
- If $P = \mathcal{O}$ then $\operatorname{ord}_P x = -2$, so $\operatorname{ord}_P (dx) = -3$.

Then

$$\operatorname{div}(dx) = [T_1] + [T_2] + [T_3] - 3[\mathcal{O}]. \tag{5}$$

By (4) and (5),
$$\text{div}(dx/y) = 0$$
.

6.3 The invariant differential

Definition. If $\phi: C_1 \to C_2$ is a nonconstant morphism

$$\phi^* : \Omega_{C_2} \longrightarrow \Omega_{C_1}
fdg \longmapsto \phi^* fd(\phi^* g) .$$

Lemma 6.2. Let $P \in E$, let $\omega = dx/y$ as above, and let

$$\begin{array}{cccc} \tau_P & : & E & \longrightarrow & E \\ & X & \longmapsto & P + X \end{array}.$$

Then $\tau_P^*\omega = \omega$, so ω is called the **invariant differential**.

Proof. $\tau_P^*\omega$ is a regular differential on E, so $\tau_P^*\omega = \lambda_P\omega$ for some $\lambda_P \in K^*$. The map

$$\begin{array}{ccc} E & \longrightarrow & \mathbb{P}^1 \\ P & \longmapsto & \lambda_P \end{array}$$

is a morphism of smooth projective curves but not surjective, since it misses zero and ∞ , so it is constant, by Theorem 2.8, that is there exists $\lambda \in K^*$ such that $\tau_P^*\omega = \lambda \omega$ for all $P \in E$. Taking $P = \mathcal{O}_E$ shows $\lambda = 1$.

Remark. If $K = \mathbb{C}$, there is an isomorphism

$$\begin{array}{ccc}
\mathbb{C}/\Lambda & \longrightarrow & E(\mathbb{C}) \\
z & \longmapsto & (\wp(z), \wp'(z))
\end{array},$$

so $dx/y = \wp'(z) dz/\wp'(z) = dz$, which is invariant under $z \mapsto z + c$.

Lemma 6.3. Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, and let ω be the invariant differential on E_2 . Then

$$(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega.$$

Proof. Write $E = E_2$. Let

A fact is that $\Omega_{E\times E}$ is a two-dimensional $K(E\times E)$ -vector space with basis $\pi_1^*\omega$ and $\pi_2^*\omega$, so

$$\mu^* \omega = f \pi_1^* \omega + g \pi_2^* \omega, \qquad f, g \in K (E \times E). \tag{6}$$

For $Q \in E$ let

$$\begin{array}{cccc} \iota_Q & : & E & \longrightarrow & E \times E \\ & P & \longmapsto & (P,Q) \end{array}.$$

Applying ι_Q^* to (6) gives

$$\tau_O^* \omega = (\mu \circ \iota_Q)^* \omega = \iota_O^* f (\pi_1 \circ \iota_Q)^* \omega + \iota_O^* g (\pi_2 \circ \iota_Q)^* \omega = \iota_O^* f \omega + 0,$$

which is ω by Lemma 6.2. Then $\iota_Q^* f = 1$ for all $Q \in E$, so f(P,Q) = 1 for all $P,Q \in E$. Similarly g(P,Q) = 1 for all $P,Q \in E$. By (6), $\mu^* \omega = \pi_1^* \omega + \pi_2^* \omega$. Now pull back by

$$\begin{array}{ccc}
E & \longrightarrow & E \times E \\
P & \longmapsto & (\phi(P), \psi(P))
\end{array},$$

to get
$$(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega$$
.

6.4 Separability criterion

Lemma 6.4. Let $\phi: C_1 \to C_2$ be a nonconstant morphism. Then ϕ is separable if and only if $\phi^*: \Omega_{C_1} \to \Omega_{C_1}$ is nonzero.

Proof. Omitted. \Box

Wednesday

Lecture 9

28/10/20

Example. Let $\mathbb{G}_{\mathrm{m}} = \mathbb{A}^1 \setminus \{0\} = \mathbb{P}^1 \setminus \{0, \infty\}$ be the **multiplicative group** with group law

$$\begin{array}{ccc} \mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}} & \longrightarrow & \mathbb{G}_{\mathrm{m}} \\ (x,y) & \longmapsto & xy \end{array}.$$

Let $n \ge 1$ be an integer, and let

$$\begin{array}{cccc} \alpha & : & \mathbb{G}_{\mathrm{m}} & \longrightarrow & \mathbb{G}_{\mathrm{m}} \\ & x & \longmapsto & x^n \end{array}.$$

Then $\alpha^*(\mathrm{d}x) = \mathrm{d}(x^n) = nx^{n-1}\mathrm{d}x$. So if $\mathrm{ch}\,k \nmid n$ then α is separable. By Theorem 2.8, $\#\alpha^{-1}(Q) = \mathrm{deg}\,\alpha$ for all but finitely many $Q \in \mathbb{G}_{\mathrm{m}}$. Since α is a group homomorphism, $\#\alpha^{-1}(Q) = \#\ker\alpha$ for all $Q \in \mathbb{G}_{\mathrm{m}}$. Thus $\#\ker\alpha = \mathrm{deg}\,\alpha = n$, that is $K = \overline{K}$ contains exactly n distinct n-th roots of unity.

Theorem 6.5. If ch $K \nmid n$ then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By Lemma 6.3 and induction, $[n]^*\omega = n\omega$. So if ch $K \nmid n$, [n] is separable. By Theorem 2.8, $\#[n]^{-1}(Q) = \deg[n]$ for all but finitely many $Q \in E$. Since [n] is a group homomorphism, $\#[n]^{-1}(Q) = \#E[n]$ for all $Q \in E$, so $\#E[n] = \deg[n] = n^2$, by Corollary 5.8. By group theory,

$$E[n] \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_t\mathbb{Z}, \qquad d_1 \mid \cdots \mid d_t \mid n,$$

and $\prod_{i=1}^t d_i = n^2$. If p is a prime with $p \mid d_1$ then $E[p] \cong (\mathbb{Z}/p\mathbb{Z})^t$. But $\#E[p] = p^2$, so t = 2. Then $d_1 \mid d_2 \mid n$ and $d_1d_2 = n^2$, so $d_1 = d_2 = n$.

Remark. Not to be used on example sheet. If ch K = p then [p] is inseparable. It can be shown that either $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \geq 1$, where E is **ordinary**, or E[p] = 0, where E is **supersingular**.

7 Elliptic curves over finite fields

7.1 Hasse's theorem

Recall $q(x) = \frac{1}{2} \langle x, x \rangle$.

Lemma 7.1. Let A be an abelian group and $q: A \to \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$ then

$$|\langle x, y \rangle| = |q(x+y) - q(x) - q(y)| \le 2\sqrt{q(x)q(y)}.$$

Proof. We may assume $x \neq 0$ otherwise the result is clear. Let $m, n \in \mathbb{Z}$. Then

$$0 \le q\left(mx + ny\right) = \frac{1}{2} \left\langle mx + ny, mx + ny \right\rangle = m^2 q\left(x\right) + mn \left\langle x, y \right\rangle + n^2 q\left(y\right)$$
$$= q\left(x\right) \left(m + \frac{\left\langle x, y \right\rangle}{2q\left(x\right)}n\right)^2 + n^2 \left(q\left(y\right) - \frac{\left\langle x, y \right\rangle}{4q\left(x\right)}\right).$$

Taking $m = \langle x, y \rangle$ and $n = -2q(x) \neq 0$ we deduce $\langle x, y \rangle^2 \leq 4q(x) q(y)$, so $|\langle x, y \rangle| \leq 2\sqrt{q(x) q(y)}$.

Let \mathbb{F}_q be the field with q elements, so $q = p^m$ and $\operatorname{ch} \mathbb{F}_q = p$. Then $\operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ is cyclic of order r generated by the Frobenius map $x \mapsto x^q$.

Theorem 7.2 (Hasse). Let E/\mathbb{F}_q be an elliptic curve. Then

$$|\#E\left(\mathbb{F}_q\right) - (q+1)| \le 2\sqrt{q}.$$

Proof. Let E have a Weierstrass equation with coefficients $a_1, \ldots, a_6 \in \mathbb{F}_q$, so $a_i^q = a_i$. Define the Frobenius endomorphism

$$\phi : E \longrightarrow E (x,y) \longmapsto (x^q, y^q) ,$$

an isogeny of degree q. Then $E(\mathbb{F}_q) = \{P \in E \mid \phi(P) = P\} = \ker(1 - \phi)$, and

$$\phi^*\omega = \phi^* \left(\frac{\mathrm{d}x}{y}\right) = \frac{\mathrm{d}(x^q)}{y^q} = \frac{qx^{q-1}\mathrm{d}x}{y^q} = 0,$$

since $q \equiv 0 \mod p$. By Lemma 6.3, $(1-\phi)^*\omega = \omega - \phi^*\omega \neq 0$, so $1-\phi$ is separable. By Theorem 2.8 and the fact that $1-\phi$ is a group homomorphism, $\# \ker (1-\phi) = \deg (1-\phi)$, so $\# E(\mathbb{F}_q) = \deg (1-\phi)$. By Theorem 5.6, $\deg : \operatorname{End} E = \operatorname{Hom}(E, E) \to \mathbb{Z}$ is a positive definite quadratic form. By Lemma 7.1, $|\deg (1-\phi) - 1 - \deg \phi| \leq 2\sqrt{\deg \phi}$, so $|\# E(\mathbb{F}_q) - (q+1)| \leq 2\sqrt{q}$.

7.2 Zeta functions

For K a number field

$$\zeta_K(s) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{1}{(\mathrm{N}\mathfrak{a})^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_K, \ \mathfrak{p} \ \mathrm{prime}} \left(1 - \frac{1}{(\mathrm{N}\mathfrak{p})^s}\right)^{-1}.$$

For K a function field, that is $K=\mathbb{F}_q\left(C\right)$ where C/\mathbb{F}_q is a smooth projective curve,

$$\zeta_K(s) = \prod_{x \in |C|} \left(1 - \frac{1}{(Nx)^s} \right)^{-1},$$

where |C| are the **closed points** on C, the orbits for the action of $\operatorname{Gal}\left(\overline{\mathbb{F}_q}/\mathbb{F}_q\right)$ on $C\left(\overline{\mathbb{F}_q}\right)$, and $\operatorname{N} x = q^{\deg x}$ where $\deg x$ is the size of the orbit. We have $\zeta_K\left(s\right) = F\left(q^{-s}\right)$ for some $F \in Q\left[[T]\right]$, where

$$F(T) = \prod_{x \in |C|} \left(1 - T^{\deg x}\right)^{-1}.$$

By $-\log(1-x) = x + \frac{1}{2}x^2 + \dots,$

$$\log F(T) = \sum_{x \in |T|} \sum_{m=1}^{\infty} \frac{1}{m} T^{m \operatorname{deg} x}.$$

Then

$$T\frac{\mathrm{d}}{\mathrm{d}T}\log F\left(T\right) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \left(\deg x\right) T^{m \deg x} = \sum_{n=1}^{\infty} \left(\sum_{x \in |C|, \deg x|n} \deg x\right) T^n = \sum_{n=1}^{\infty} \#C\left(\mathbb{F}_{q^n}\right) T^n,$$

so

$$F(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n\right).$$

For $\phi, \psi \in \text{Hom}(E_1, E_2)$ we put

$$\langle \phi, \psi \rangle = \deg(\phi + \psi) - \deg \phi - \deg \psi.$$

We define

$$\begin{array}{cccc} \operatorname{Tr} & : & \operatorname{End} E & \longrightarrow & \mathbb{Z} \\ & \psi & \longmapsto & \langle \psi, 1 \rangle \end{array}.$$

Lemma 7.3. If $\psi \in \text{End } E$ then

$$\psi^2 - [\operatorname{Tr} \psi] \psi + [\operatorname{deg} \psi] = 0.$$

Proof. See example sheet 2.

Definition. The **zeta function** of a variety V/\mathbb{F}_q is

$$\mathbf{Z}_{V}\left(T\right) = \exp\left(\sum_{n=1}^{\infty} \frac{\#V\left(\mathbb{F}_{q^{n}}\right)}{n} T^{n}\right).$$

Lemma 7.4. Let E/\mathbb{F}_q be an elliptic curve such that $\#E(\mathbb{F}_q) = q+1-a$. Then

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

Proof. Let $\phi: E \to E$ be the q-power Frobenius map. By the proof of Hasse's theorem $\#E(\mathbb{F}_q) = \deg(1-\phi)$, so Tr $\phi = a$ and $\deg \phi = q$. By Lemma 7.3, $\phi^2 - a\phi + q = 0$, so $\phi^{n+2} - a\phi^{n+1} + q\phi^n = 0$ for all $n \ge 0$, so

$$\operatorname{Tr} \phi^{n+2} - a \operatorname{Tr} \phi^{n+1} + q \operatorname{Tr} \phi^n = 0.$$

This second order difference equation with initial conditions $\operatorname{Tr} 1 = 2$ and $\operatorname{Tr} \phi = a$ has solution $\operatorname{Tr} \phi^n = \alpha^n + \beta^n$ where $\alpha, \beta \in \mathbb{C}$ are the roots of $X^2 - aX + q = 0$, so

$$\#E(\mathbb{F}_{q^n}) = \deg(1 - \phi^n) = 1 + \deg\phi^n - \operatorname{Tr}\phi^n = 1 + q^n - \alpha^n - \beta^n.$$

Thus

$$Z_{E}\left(T\right) = \exp\left(\sum_{n=1}^{\infty} \left(\frac{T^{n}}{n} + \frac{\left(qT\right)^{n}}{n} - \frac{\left(\alpha T\right)^{n}}{n} - \frac{\left(\beta T\right)^{n}}{n}\right)\right) = \frac{\left(1 - \alpha T\right)\left(1 - \beta T\right)}{\left(1 - T\right)\left(1 - qT\right)} = \frac{1 - aT + qT^{2}}{\left(1 - T\right)\left(1 - qT\right)},$$

using
$$-\log(1-x) = \sum_{n=1}^{\infty} x^n/n$$
.

Remark. By Hasse's theorem, $|a| \leq 2\sqrt{q}$. Then $\alpha = \overline{\beta}$, so

$$|\alpha| = |\beta| = \sqrt{q}.\tag{7}$$

Let $K = \mathbb{F}_q(E)$. If $\zeta_K(s) = 0$, then $Z_E(q^{-s}) = 0$, so $q^s = \alpha$ or $q^s = \beta$. Thus $\Re s = \frac{1}{2}$ by (7).

Lecture 10 Friday 30/10/20

8 Formal groups

8.1 Complete rings

Definition. Let R be a ring, and let $I \subseteq R$ an ideal. The I-adic topology is the topology on R with basis $\{r + I^n \mid r \in R, n \ge 1\}$.

Definition. A sequence (x_n) in R is **Cauchy** if for all k there exists N such that $x_m - x_n \in I^k$ for all $m, n \geq N$.

Definition. R is complete if

- $\bigcap_{n>0} I^n = \{0\}$, and
- every Cauchy sequence converges.

Remark. If $x \in I$ then 1/(1-x) = 1 + x + ..., so $1 - x \in R^{\times}$.

Example.

- $R = \mathbb{Z}_p$ and $I = p\mathbb{Z}_p$.
- $R = \mathbb{Z}[[t]]$ and $I = \langle t \rangle$.

Lemma 8.1 (Hensel's lemma). Let R be an integral domain, complete with respect to an ideal I. Let $F \in R[X]$ and $s \ge 1$. Suppose $a \in R$ satisfies $F(a) \equiv 0 \mod I^s$ and $F'(a) \in R^{\times}$. Then there exists a unique $b \in R$ such that F(b) = 0 and $b \equiv a \mod I^s$.

Proof. Let $u \in R^{\times}$ with $F'(a) \equiv u \mod I$, for example could take u = F'(a). Replacing F(X) by F(X+a)/u we may assume a=0 and $F'(0) \equiv 1 \mod I$. We put $x_0=0$ and

$$x_{n+1} = x_n - F\left(x_n\right). \tag{8}$$

By easy induction,

$$x_n \equiv 0 \mod I^s. \tag{9}$$

Then

$$F(X) - F(Y) = (X - Y)(F'(0) + XG(X, Y) + YH(X, Y)), \qquad G, H \in R[X, Y]. \tag{10}$$

Claim that $x_{n+1} \equiv x_n \mod I^{n+s}$ for all $n \ge 0$. By induction on n.

n=0 Clear.

n > 0 Suppose $x_n \equiv x_{n-1} \mod I^{n+s-1}$. By (10), $F(x_n) - F(x_{n-1}) = (x_n - x_{n-1}) (1+c)$ for some $c \in I$, so $F(x_n) - F(x_{n-1}) \equiv x_n - x_{n-1} \mod I^{n+s}$. Then $x_n - F(x_n) \equiv x_{n-1} - F(x_{n-1}) \mod I^{n+s}$, so $x_{n+1} \equiv x_n \mod I^{n+s}$.

This proves the claim, so $(x_n)_{n\geq 0}$ is Cauchy. Since R is complete, $x_n \to b$ as $n \to \infty$, for some $b \in R$. Taking the limit as $n \to \infty$ in (8), b = b - F(b), so F(b) = 0. Taking the limit as $n \to \infty$ in (9), $b \equiv 0 \mod I^s$. Uniqueness is proved using (10) and the assumption R is an integral domain.

8.2 The main example

Let E be

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

In the affine piece $Y \neq 0$, let t = -X/Y and w = -Z/Y. Then

$$w = f(t, w) = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3.$$

We apply Lemma 8.1 with

$$R = \mathbb{Z}[a_1, \dots, a_6][[t]], \qquad I = \langle t \rangle, \qquad F(X) = X - f(t, X) \in R[X], \qquad s = 3, \qquad a = 0.$$

Check that $F(0) = -f(t,0) = -t^3 \equiv 0 \mod I^3$ and $F'(0) = 1 - a_1t - a_2t^2 \in R^{\times}$. Thus there exists a unique $w(t) \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ such that w(t) = f(t, w(t)) and $w(t) \equiv 0 \mod t^3$. Following the proof of Lemma 8.1 with u = 1 gives

$$w(t) = \lim_{n \to \infty} w_n(t), \qquad \begin{cases} w_0(t) = 0 \\ w_{n+1}(t) = f(t, w_n(t)) \end{cases}.$$

In fact $w(t) = t^3 (1 + A_1 t + A_2 t^2 + A_3 t^3 + A_4 t^4 + \dots)$, where

Lecture 11 Monday 02/11/20

$$A_1 = a_1,$$
 $A_2 = a_1^2 + a_2,$ $A_3 = a_1^3 + 2a_1a_2 + a_3,$ $A_4 = a_1^4 + 3a_1^2a_2 + 3a_1a_3 + a_2^2 + a_4,$

Lemma 8.2. Let R be an integral domain, complete with respect to an ideal I, let $a_1, \ldots, a_6 \in R$, and let $K = \operatorname{Frac} R$. Then

$$\widehat{E}(I) = \{(t, w) \in E(K) \mid t, w \in I\} = \{(t, w(t)) \in E(K) \mid t \in I\}$$

is a subgroup of E(K).

Proof. The two descriptions of $\widehat{E}(I)$ agree, since given $t \in I$, Hensel's lemma shows there exists a unique $w \in I$ such that $(t, w) \in I$. Taking (t, w) = (0, 0) shows $\mathcal{O}_E \in \widehat{E}(I)$. So it suffices to show that if $P_1, P_2 \in \widehat{E}(I)$ then $P_3 = -P_1 - P_2 \in \widehat{E}(I)$. Let $w = \lambda t + \nu$ be the line through $P_1 = (t_1, w_1), P_2 = (t_2, w_2)$, and $P_3 = (t_3, w_3)$. Then

$$w(t) = \sum_{n=2}^{\infty} A_{n-2} t^{n+1}, \qquad \lambda = \begin{cases} \frac{w(t_2) - w(t_1)}{t_2 - t_1} & t_1 \neq t_2 \\ w'(t_1) & t_1 = t_2 \end{cases}.$$

If $P_1, P_2 \in \widehat{E}(I)$, then $t_1, t_2 \in I$, so

$$\lambda = \sum_{n=2}^{\infty} A_{n-2} (t_1^n + \dots + t_2^n) \in I, \qquad \nu = w_1 - \lambda t_1 \in I.$$

Substituting $w = \lambda t + \nu$ into w = f(t, w) gives

$$\lambda t + \nu = t^3 + a_1 t (\lambda t + \nu) + a_2 t^2 (\lambda t + \nu) + a_3 (\lambda t + \nu)^2 + a_4 t (\lambda t + \nu)^2 + a_6 (\lambda t + \nu)^3$$
.

Let

$$A = 1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3$$

be the coefficient of t^3 , and let

$$B = a_1\lambda + a_2\nu + a_3\lambda^2 + 2a_4\lambda\nu + 3a_6\lambda^2\nu$$

be the coefficient of t^2 . We have $A \in \mathbb{R}^{\times}$ and $B \in I$, so $t_3 = -B/A - t_1 - t_2 \in I$ and $w_3 = \lambda t_3 + \nu \in I$. \square

8.3 Formal groups

Taking $R = \mathbb{Z}[a_1, \ldots, a_6][[t]]$ and $I = \langle t \rangle$, by Lemma 8.2, there exists $\iota \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ with $\iota(0) = 0$ such that

$$[-1](t, w(t)) = (\iota(t), w(\iota(t))).$$

Taking $R = \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]]$ and $I = \langle t_1, t_2 \rangle$ there exists $F \in \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]]$ with F(0, 0) = 0 such that

$$(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2))).$$

In fact

$$\iota(X) = -X - a_1 X^2 - a_2 X^3 - \left(a_1^3 + a_3\right) X^4 + \dots, \qquad F(X, Y) = X + Y - a_1 X Y - a_2 \left(X^2 Y + X Y^2\right) + \dots$$

By properties of the group law we deduce

- 1. F(X,Y) = F(Y,X),
- 2. F(X,0) = X and F(0,Y) = Y,
- 3. F(X, F(Y, Z)) = F(F(X, Y), Z), and
- 4. $F(X, \iota(X)) = 0$.

Definition. Let R be a ring. A **formal group** over R is a power series $F(X,Y) \in R[[X,Y]]$ satisfying 1, 2, and 3.

Exercise. Show that for any formal group there exists a unique $\iota(X) = -X + \cdots \in R[[X]]$ such that $F(X, \iota(X)) = 0$.

Example.

- F(X,Y) = X + Y is $\widehat{\mathbb{G}}_a$.
- F(X,Y) = X + Y + XY = (1+X)(1+Y) 1 is $\widehat{\mathbb{G}}_{\mathrm{m}}$.
- F as above is \widehat{E} .

Definition. Let \mathcal{F} and \mathcal{G} be formal groups over R given by power series F and G.

- A morphism $f: \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[[T]]$ such that f(0) = 0 satisfying f(F(X,Y)) = G(f(X), f(Y)).
- $\mathcal{F} \cong \mathcal{G}$ if there exists $f: \mathcal{F} \to \mathcal{G}$ and $g: \mathcal{G} \to \mathcal{F}$ morphisms such that f(g(X)) = g(f(X)) = X.

Theorem 8.3. If $\operatorname{ch} R = 0$ then any formal group \mathcal{F} over R is isomorphic to $\widehat{\mathbb{G}}_{\mathbf{a}}$ over $R \otimes \mathbb{Q}$. More precisely

1. there is a unique power series

$$\log T = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots, \qquad a_i \in R,$$

such that

$$\log F(X,Y) = \log X + \log Y,\tag{11}$$

2. there is a unique power series

$$\exp T = T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots, \qquad b_i \in R,$$

such that $\exp \log T = \log \exp T = T$.

We use the following.

Lecture 12 Wednesday 04/11/20

Lemma 8.4. Let $f(T) = aT + \cdots \in R[[T]]$ with $a \in R^{\times}$. Then there exists a unique $g(T) = a^{-1}T + \cdots \in R[[T]]$ such that f(g(T)) = g(f(T)) = T.

Proof. We construct polynomials $g_n(T) \in R[T]$ such that

$$f(g_n(T)) \equiv T \mod T^{n+1}, \qquad g_{n+1}(T) \equiv g_n(T) \mod T^{n+1}.$$

Then $g(T) = \lim_{n \to \infty} g_n(T)$ satisfies f(g(T)) = T. To start the induction set $g_1(T) = a^{-1}T$. Now suppose $n \ge 2$ and $g_{n-1}(T)$ exists, so $f(g_{n-1}(T)) \equiv T + bT^n \mod T^{n+1}$. We put $g_n(T) = g_{n-1}(T) + \lambda T^n$ for $\lambda \in R$ to be chosen later. Then

$$f\left(g_{n}\left(T\right)\right)=f\left(g_{n-1}\left(T\right)+\lambda T^{n}\right)\equiv f\left(g_{n-1}\left(T\right)\right)+\lambda aT^{n}\equiv T+\left(b+\lambda a\right)T^{n}\mod T^{n+1}.$$

We take $\lambda = -b/a$, using again that $a \in R^{\times}$. We get $g(T) = a^{-1}T + \cdots \in R[[T]]$ such that f(g(T)) = T. Applying the same argument to g gives $h(T) = aT + \cdots \in R[[T]]$ such that g(h(T)) = T. Then f(T) = f(g(h(T))) = h(T).

Proof of Theorem 8.3.

1. The notation is $F_1(X,Y) = \frac{\partial F}{\partial X}(X,Y)$.

• Uniqueness. Let

$$p(T) = \frac{d}{dT} (\log T) = 1 + a_2 T + a_3 T^2 + \dots$$

Differentiating (11) with respect to X gives

$$p(F(X,Y)) F_1(X,Y) = p(X) + 0.$$

Putting X = 0 gives

$$p(Y) F_1(0, Y) = 1.$$

Then $p(Y) = F_1(0, Y)^{-1}$, so p, and hence log, is unique.

• Existence. Let $p(T) = F_1(0,T)^{-1} = 1 + a_2T + a_3T^2 + \dots$ for some $a_i \in R$. Let

$$\log T = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$$

Differentiating F(F(X,Y),Z) = F(X,F(Y,Z)) with respect to X,

$$F_1(F(X,Y),Z)F_1(X,Y) = F_1(X,F(Y,Z)).$$

Putting X = 0,

$$F_1(Y,Z) F_1(0,Y) = F_1(0, F(Y,Z)).$$

Then $F_1(Y, Z) p(Y)^{-1} = p(F(Y, Z))^{-1}$, so $F_1(Y, Z) p(F(Y, Z)) = p(Y)$. Integrating with respect to Y,

$$\log F(Y, Z) = \log Y + h(Z),$$

for some power series h. By symmetry of Y and Z we see $h(Z) = \log Z$.

2. Theorem 8.3.2 now follows from Lemma 8.4, except for showing $b_n \in R$, not just in $R \otimes \mathbb{Q}$. See example sheet 2.

Notation. Let \mathcal{F} , such as $\widehat{\mathbb{G}}_{a}$, $\widehat{\mathbb{G}}_{m}$, \widehat{E} , be a formal group, given by $F \in R[[X,Y]]$. Suppose R is complete with respect to an ideal I. For $x,y \in I$ put $x \oplus_{\mathcal{F}} y = F(x,y) \in I$. Then $\mathcal{F}(I) = (I, \oplus_{\mathcal{F}})$ is an abelian group. For example, $\widehat{\mathbb{G}}_{a}(I) = (I, +)$ and $\widehat{\mathbb{G}}_{m}(I) = (1 + I, \times)$, and by Lemma 8.2 $\widehat{E}(I) \subset E(K)$, which explains the earlier notation.

Corollary 8.5. Let \mathcal{F} be a formal group over R, and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$. Then

- $[n]: \mathcal{F} \to \mathcal{F}$ is an isomorphism, and
- If R is complete with respect to an ideal I then $n: \mathcal{F}(I) \to \mathcal{F}(I)$ is an isomorphism.

In particular $\mathcal{F}(I)$ has no n-torsion.

Proof. We have [1](T) = T and [n](T) = F([n-1]T,T) for all $n \ge 2$. For n < 0 use $[-1](T) = \iota(T)$. By induction, $[n](T) = nT + \cdots \in R[[T]]$. Lemma 8.4 shows that if $n \in R^{\times}$ then [n] is an isomorphism.

9 Elliptic curves over local fields

Let K be a field, complete with respect to a discrete valuation $v: K^* \to \mathbb{Z}$. The valuation ring, or ring of integers, is

$$\mathcal{O}_K = \{ x \in K^* \mid v(x) \ge 0 \} \cup \{ 0 \}.$$

with unit group \mathcal{O}_K^{\times} where v(x) = 0 and maximal ideal $\pi \mathcal{O}_K$ where $v(\pi) = 1$. The residue field is $k = \mathcal{O}_K/\pi \mathcal{O}_K$. We assume $\operatorname{ch} K = 0$ and $\operatorname{ch} k = p$.

Example. $K = \mathbb{Q}_p$, $\mathcal{O}_K = \mathbb{Z}_p$, and $k = \mathbb{F}_p$.

9.1 Integral Weierstrass equations

Let E/K be an elliptic curve.

Definition. A Weierstrass equation for E with coefficients $a_1, \ldots, a_6 \in K$ is **integral** if $a_1, \ldots, a_6 \in \mathcal{O}_K$, and **minimal** if $v(\Delta)$ is minimal among all integral Weierstrass equations for E.

Remark.

- Putting $x = u^{x'}$ and $y = u^3y'$ gives $a_i = u^i a_i'$, so integral Weierstrass equations exist.
- Since $a_1, \ldots, a_6 \in \mathcal{O}_K$, $\Delta \in \mathcal{O}_K$, so $v(\Delta) \geq 0$, so minimal Weierstrass equations exist.
- If $\operatorname{ch} k \neq 2,3$ then there exists a minimal Weierstrass equation of the form $y^2 = x^3 + ax + b$.

Lemma 9.1. Let E/K have an integral Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

Let $\mathcal{O} \neq P = (x, y) \in E(K)$. Then either $x, y \in \mathcal{O}_K$ or v(x) = -2s and v(y) = -3s for some $s \ge 1$.

Compare to example sheet 1, question 5.

Proof.

 $v(x) \geq 0$. If v(y) < 0 then v(LHS) < 0 and $v(RHS) \geq 0$, a contradiction, so $x, y \in \mathcal{O}_K$.

$$v\left(x\right)<0.$$
 $v\left(\text{LHS}\right)\geq\min\left(2v\left(y\right),v\left(x\right)+v\left(y\right),v\left(y\right)\right)$ and $v\left(\text{RHS}\right)=3v\left(x\right)$, so $v\left(y\right)< v\left(x\right)$. But $v\left(\text{LHS}\right)=2v\left(y\right)$. Thus $3v\left(x\right)=2v\left(y\right)$, so $v\left(x\right)=-2s$ and $v\left(y\right)=-3s$ for some $s\geq1$.

9.2 The filtration of formal groups

Since K complete, \mathcal{O}_K is complete with respect to the ideal $\pi^r \mathcal{O}_K$, for any $r \geq 1$. Fix a minimal Weierstrass equation for E/K, which gives a formal group \widehat{E} over \mathcal{O}_K . Taking $I = \pi^r \mathcal{O}_K$ in Lemma 8.2

$$\widehat{E}\left(\pi^{r}\mathcal{O}_{K}\right) = \left\{ (x,y) \in E\left(K\right) \middle| -\frac{x}{y}, -\frac{1}{y} \in \pi^{r}\mathcal{O}_{K} \right\} \cup \left\{\mathcal{O}\right\}$$

$$= \left\{ (x,y) \in E\left(K\right) \middle| v\left(\frac{x}{y}\right) \geq r, v\left(\frac{1}{y}\right) \geq r \right\} \cup \left\{\mathcal{O}\right\}$$

$$= \left\{ (x,y) \in E\left(K\right) \middle| \exists s \geq r, v\left(x\right) = -2s, v\left(y\right) = -3s \right\} \cup \left\{\mathcal{O}\right\}$$

$$= \left\{ (x,y) \in E\left(K\right) \middle| v\left(x\right) \leq -2r, v\left(y\right) \leq -3r \right\} \cup \left\{\mathcal{O}\right\},$$

using Lemma 9.1. By Lemma 8.2 this is a subgroup of E(K), say $E_r(K)$, so

$$\cdots \subset E_2(K) \subset E_1(K)$$
.

More generally for \mathcal{F} a formal group over \mathcal{O}_K

$$\cdots \subset \mathcal{F}\left(\pi^{2}\mathcal{O}_{K}\right) \subset \mathcal{F}\left(\pi\mathcal{O}_{K}\right).$$

We show that $\mathcal{F}(\pi^r \mathcal{O}_K) \cong (\mathcal{O}_K, +)$ for r sufficiently large and $\mathcal{F}(\pi^r \mathcal{O}_K) / \mathcal{F}(\pi^{r+1} \mathcal{O}_K) \cong (k, +)$.

Lecture 13 Friday 06/11/20

Theorem 9.2. Let \mathcal{F} be a formal group over \mathcal{O}_K . Let e = v(p). If r > e/(p-1) then $\log : \mathcal{F}(\pi^r \mathcal{O}_K) \xrightarrow{\sim} \widehat{\mathbb{G}_{\mathbf{a}}}(\pi^r \mathcal{O}_K)$ is an isomorphism with inverse $\exp : \widehat{\mathbb{G}_{\mathbf{a}}}(\pi^r \mathcal{O}_K) \xrightarrow{\sim} \mathcal{F}(\pi^r \mathcal{O}_K)$.

Remark. $\widehat{\mathbb{G}}_{\mathbf{a}}(\pi^r \mathcal{O}_K) = (\pi^r \mathcal{O}_K, +) \cong (\mathcal{O}_K, +).$

Proof. For $x \in \pi^r \mathcal{O}_K$ we must check the power series exp and log converge. Recall $\exp T = T + (b_2/2!) T^2 + (b_3/3!) T^3 + \dots$ for $b_i \in \mathcal{O}_K$. Claim that $\operatorname{v}_p(n!) \leq (n-1)/(p-1)$, since

$$v_p(n!) = \sum_{r=1}^{\infty} \left\lfloor \frac{n}{p^r} \right\rfloor < \sum_{r=1}^{\infty} \frac{n}{p^r} = n \frac{\frac{1}{p}}{1 - \frac{1}{p}} = \frac{n}{p-1},$$

so $(p-1) v_p(n!) < n$, so $(p-1) v_p(n!) \le n-1$, since the left hand side is in \mathbb{Z} . Now

$$v\left(\frac{b_n x^n}{n!}\right) \ge nr - e\left(\frac{n-1}{p-1}\right) = (n-1)\left(r - \frac{e}{p-1}\right) + r.$$

This is always at least r and tends to infinity as $n \to \infty$, so $\exp x$ converges and belongs to $\pi^r \mathcal{O}_K$. The same method works for log.

Lemma 9.3. We have $\mathcal{F}(\pi^r \mathcal{O}_K) / \mathcal{F}(\pi^{r+1} \mathcal{O}_K) \cong (k, +)$ for all $r \geq 1$.

Proof. By definition of formal groups F(X,Y) = X + Y + XY(...). So if $x,y \in \mathcal{O}_K$ then $F(\pi^r x, \pi^r y) \equiv \pi^r (x+y) \mod \pi^{r+1}$. Therefore

$$\begin{array}{ccc} \mathcal{F}\left(\pi^r\mathcal{O}_K\right) & \longrightarrow & (k,+) \\ \pi^r x & \longmapsto & x \mod \pi \end{array}$$

is a surjective group homomorphism, with kernel $\mathcal{F}(\pi^{r+1}\mathcal{O}_K)$.

Thus for r > e/(p-1),

$$(\mathcal{O}_K, +) \cong \mathcal{F}(\pi^r \mathcal{O}_K) \subset \cdots \subset \mathcal{F}(\pi^2 \mathcal{O}_K) \subset \mathcal{F}(\pi \mathcal{O}_K),$$

where the quotients are isomorphic to (k, +), so if $|k| < \infty$ then $\mathcal{F}(\pi \mathcal{O}_K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

9.3 Reduction modulo π

Notation. Reduction modulo π is

$$\begin{array}{ccc} \mathcal{O}_K & \longrightarrow & \mathcal{O}_K/\pi\mathcal{O}_K = k \\ x & \longmapsto & \widetilde{x} \end{array}.$$

Proposition 9.4. Let E/K be an elliptic curve. The reduction modulo π of any two minimal Weierstrass equations for E define isomorphic curves over k.

Proof. Say Weierstrass equations are related by [u; r, s, t] for $u \in K^*$ and $r, s, t \in K$. Then $\Delta_1 = u^{12}\Delta_2$. Since both equations are minimal, $v(\Delta_1) = v(\Delta_2)$, so $u \in \mathcal{O}_K^{\times}$. By the transformation formulae for a_i and b_i and since \mathcal{O}_K is integrally closed, $r, s, t \in \mathcal{O}_K$. The Weierstrass equations for the reduction modulo π are related by $[\widetilde{u}; \widetilde{r}, \widetilde{s}, \widetilde{t}]$ for $\widetilde{u} \in k^*$ and $\widetilde{r}, \widetilde{s}, \widetilde{t} \in k$.

Definition. The reduction \widetilde{E}/k of E/K is defined by the reduction of a minimal Weierstrass equation. Then E has **good reduction** if \widetilde{E} is non-singular, and so an elliptic curve, otherwise it has **bad reduction**.

For an integral Weierstrass equation

- if $v(\Delta) = 0$, then good reduction,
- if $0 < v(\Delta) < 12$, then bad reduction, and
- if $v(\Delta) \ge 12$, then beware the equation might not be minimal.

There is a well-defined map

$$\begin{array}{ccc} \mathbb{P}^2\left(K\right) & \longrightarrow & \mathbb{P}^2\left(k\right) \\ (x:y:z) & \longmapsto & \widetilde{x}:\widetilde{y}:\widetilde{z} \end{array},$$

choosing the representative of (x:y:z) with $\min(v(x),v(y),v(z))=0$. We restrict to give

$$\begin{array}{ccc} E\left(K\right) & \longrightarrow & \widetilde{E}\left(k\right) \\ P & \longmapsto & \widetilde{P} \end{array}.$$

If $P = (x, y) \in E(K)$ then by Lemma 9.1 either $x, y \in \mathcal{O}_K$, so $\widetilde{P} = (x, y)$, or v(x) = -2s and v(y) = -3s, so $P = (\pi^{3s}x : \pi^{3s}y : \pi^{3s})$ and $\widetilde{P} = (0 : 1 : 0)$. Thus

$$\widehat{E}\left(\pi\mathcal{O}_{K}\right)=E_{1}\left(K\right)=\left\{ P\in E\left(K\right)\ \middle|\ \widetilde{P}=\mathcal{O}\right\} ,$$

the kernel of reduction. Let

$$\widetilde{E}_{\rm ns} = \begin{cases} \widetilde{E} & E \text{ has good reduction} \\ \widetilde{E} \setminus \{\text{singular point}\} & E \text{ has bad reduction} \end{cases}$$

The chord and tangent process still defines a group law on $\widetilde{E}_{\rm ns}$. In cases of bad reduction either $\widetilde{E}_{\rm ns} \cong \mathbb{G}_{\rm a}$, an **additive reduction**, or $\widetilde{E}_{\rm ns} \cong \mathbb{G}_{\rm m}$, a **multiplicative reduction**. The isomorphism is over k, or possibly a quadratic extension of k. For simplicity suppose $\operatorname{ch} k \neq 2$. Then \widetilde{E} is $y^2 = f(x)$ for $\operatorname{deg} f = 3$, so \widetilde{E} is singular if and only if f has a repeated root. A double root gives a curve $y^2 = x^2(x+1)$ with a **node**, which leads to multiplicative reduction. See example sheet 3. A triple root gives a curve $y^2 = x^3$ with a **cusp**, which leads to additive reduction. We check

$$\begin{array}{ccc}
\widetilde{E}_{\rm ns} & \longleftrightarrow & \mathbb{G}_{\rm a} \\
(x,y) & \longmapsto & \frac{x}{y} \\
\left(\frac{1}{t^2}, \frac{1}{t^3}\right) & \longleftrightarrow & t
\end{array}$$

is a group homomorphism. Let P_1, P_2, P_3 lie on the line ax + by = 1. Write $P_i = (x_i, y_i)$ and $t_i = x_i/y_i$. Then $x_i^3 = y_i^2 = y_i^2 (ax_i + by_i)$, so t_1, t_2, t_3 are the roots of $X^3 - aX - b = 0$. Looking at coefficient of X^2 gives $t_1 + t_2 + t_3 = 0$.