MA8020 Tekniska beräkningar

Något om numerisk linjär algebra

Mikael Hindgren

28 november 2024

Vi vill lösa linjära ekvationssystem Ax = b:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{12} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

- Uppkommer t.ex. vid diskretisering av partiella differentialekvationer
- Antalet obekanta är ofta stort: $n = 10^5 \rightarrow 10^8$

Det är viktigt att kunna lösa linjära ekvationssystem effektivt och noggrannt!

Terminologi:

- A kallas koefficientmatris, b högerled och x lösningsvektor
- Om n > m/n < m \(\text{ ar systemet under-/\text{overbest\(\text{amt} \)}} \)
- Om **b** = **0** är ekvationssystemet homogent

Vi kommer att koncentrera oss på kvadratiska ekvationssystem (m = n).

Vilka kvadratiska ekvationssystem har entydig lösning?

Definition 1

Om matrisen A har linjärt oberoende kolonner kallas A reguljär eller icke-singulär.

Sats 1

Matrisen A är icke-singulär omm

- Ax = b har entydig lösning för varje högerled b
- $\det A \neq 0$
- Inversen A⁻¹ existerar

Sats 2

Om matrisen A är kvadratisk har ekvationssystemet $A\mathbf{x} = \mathbf{b}$ entydig lösning, ingen lösning eller oändligt många lösningar.

Anm: Om A^{-1} existerar har Ax = b den entydiga lösningen $x = A^{-1}b$.

HÖGSKOLAN

Linjära ekvationssystem

Illa-konditionering

- Om det $A \approx 0$ är ekvationssystemet illa-konditionerat. Små förändringar av matriselementen i A eller i b kan då ge stora förändringar i lösningen.
- Om $\det A = 0$ är A singulär.

Exempel 1

En välkonditionerad (A_1) och en illa-konditionerad (A_2) matris:

```
Remove["Global`*"]

A1 = {(0.0001, 1}, {1, 1}};

A2 = {{1, 1}, {1, 1.0001}};

x = {x1, x2};

b1 = {2, 2};

b2 = {2, 2.0001};

Print["A1 = ", MatrixForm[A1], ", Det A1 = ", Det[A1], ", A1x = b1: ",

Solve[A1.x = b1, x][[1]], ", A1x = b2: ", Solve[A1.x = b2, x][[1]]];

Print["A2 = ", MatrixForm[A2], ", Det A2 = ", Det[A2], ", A2x = b1: ",

Solve[A2.x = b1, x][[1]], ", A2x = b2: ", Solve[A2.x = b2, x][[1]]];

A1 = (0.0001 1 / 1 1), Det A1 = -0.9999, A1x = b1: (x1 → 0., x2 → 2.), A1x = b2: (x1 → 0.00010001, x2 → 2.)

A2 = (1 1 1.0001), Det A2 = 0.0001, A2x = b1: {x1 → 2., x2 → -6.44689 x10<sup>-17</sup>}, A2x = b2: (x1 → 1., x2 → 1.)
```


Lösningsmetoder för linjära ekvationssystem

- Två typer av metoder används för att lösa linjära ekvationssystem numeriskt:
 Direkta och iterativa.
- Den vanligaste direkta metoden är Gausselimination som utnyttjar att lösningen inte ändras under elementära radoperationer dvs om:
 - Två rader byter plats
 - En rad multipliceras med en konstant
 - En rad adderas till en annan
- Om ett ekvationssystem kan omformas till ett annat genom (1) (3) har de samma lösning och kallas radekvivalenta.

Gausselimination

Exempel 2

Vi vill lösa evationssystemet med Gausselimination:

$$\begin{cases} x_1 - 2x_2 + 2x_3 = 1 & (R1) \\ 3x_1 + x_2 - 2x_3 = -2 & (R2) \\ 2x_1 + x_2 - 2x_3 = -3 & (R3) \end{cases}$$

Gausselimination

- Triangulering: Nollställ elementen under diagonalelementen i varje kolonn med elementära radoperationer
- Gör bakåtsubstitution
- Metoden innebär division med diagonalelement, som därför måste vara $\neq 0$ (helst inte heller nära noll).
- Radomkastning placerar det tal i diagonalen som har störst absolutbelopp (pivåtelementet) i den kolonn som skall nollställas.
- ullet Om inget pivåtelement \neq 0 finns avbryts elimineringen och lösning saknas.

Gausselimination

Exempel 2 (forts)

Nollställning i K1 av R2 & R3. R2 är pivotrad och R1 & R2 kastas om. En kopia av R1 multipliceras med $\frac{1}{3}$ för R2 och $\frac{2}{3}$ för R3 och subtraheras från R2 & R3:

$$\begin{pmatrix} 1 & -2 & 2 & | & 1 \\ 3 & 1 & -2 & | & -2 \\ 2 & 1 & -2 & | & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & 1 & -2 & | & -2 \\ 1 & -2 & 2 & | & 1 \\ 2 & 1 & -2 & | & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & 1 & -2 & | & -2 \\ 0 & -\frac{7}{3} & \frac{8}{3} & | & \frac{5}{3} \\ 0 & \frac{1}{3} & -\frac{2}{3} & | & -\frac{5}{3} \end{pmatrix}$$

Nollställning i K2 av R3. R2 är pivotrad ($|-\frac{7}{3}|>|\frac{1}{3}|$) och omkastning behövs ej.

En kopia av R2 multipliceras med $\frac{\frac{1}{3}}{\frac{-7}{3}} = -\frac{1}{7}$ och subtraheras från R3:

$$\Leftrightarrow \begin{pmatrix} 3 & 1 & -2 & | & -2 \\ 0 & -\frac{7}{3} & \frac{8}{3} & | & \frac{5}{3} \\ 0 & \frac{1}{3} & -\frac{2}{3} & | & -\frac{5}{3} \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & 1 & -2 & | & -2 \\ 0 & -\frac{7}{3} & \frac{8}{3} & | & -\frac{5}{3} \\ 0 & 0 & -\frac{2}{7} & | & -\frac{10}{7} \end{pmatrix}$$

Bakåtsubstitution:

$$x_3 = \frac{\frac{-10}{7}}{\frac{-2}{7}} = 5$$
, $x_2 = \frac{\frac{5}{3} - \frac{8}{3} \cdot 5}{\frac{-7}{3}} = 5$, $x_1 = \frac{-2 + 2 \cdot 5 - 1 \cdot 5}{3} = 1$.

Gausselimination

Anm:

- Gausselimination är den direkta metod som kräver minst antal flyttalsoperationer för att lösa ett givet ekvationssystem.
- Lösningstiden ges av $T = kn^3$ där n är antalet obekanta och k en datorberoende konstant.
- Om man behöver lösa flera ekvationssystem av typen

$$Ax = b_i, i = 1, 2, ..., k,$$

är det effektivare att använda två triangulära matriser.

- Matrisen A skrivs som A = LU där U är övertriangulär och L undertriangular.
 Denna uppdelning av A kallas LU-faktorisering.
- Metod:
 - O Bestäm U och L så att A = LU.
 - Inför en ny variabel y = Ux och lös för varje b_i först $Ly = b_i$ och sedan Ux = y.

Eftersom L och U är triangulära är båda ekvationssystemen i (2) enkla att lösa.

Iterativa lösningsmetoder

lterativa metoder är speciellt lämpliga för stora glesa system där de flesta matriselementen i systemmatrisen A är noll.

Metod:

• Skriv A som A = B + (A - B) där B är en reguljär matris som är lätt att invertera och sådan att A - B kan betraktas som en "liten störning" av B:

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow B\mathbf{x} = (B-A)\mathbf{x} + \mathbf{b} \Leftrightarrow \mathbf{x} = B^{-1}((B-A)\mathbf{x} + \mathbf{b}) = (I-B^{-1}A)\mathbf{x} + B^{-1}\mathbf{b}$$

• Sambandet kan nu skrivas som en fixpunktsiteration (jfr $x_{k+1} = g(x_k)$):

$$\mathbf{x}^{(k+1)} = (I - B^{-1}A)\mathbf{x}^{(k)} + B^{-1}\mathbf{b}$$

Iterativa lösningsmetoder

Frågetecken:

- Hur väljer vi startlösningen $\mathbf{x}^{(0)}$?
- Vad krävs för att fixpunktsiterationen ska konvergera?

Sats 3

Om A och B är reguljära matriser så konvergerar fixpunktsiterationen

$$\mathbf{x}^{(k+1)} = (I - B^{-1}A)\mathbf{x}^{(k)} + B^{-1}\mathbf{b}$$

mot lösningen till $A\mathbf{x} = \mathbf{y}$ omm egenvärdena λ_i till matrisen $I - B^{-1}A$ uppfyller $\max(|\lambda_i|) < 1$.

Felet i lösningen

$$|\Delta {m x}^{(k)}| = |{m x} - {m x}^{(k)}| \leq C \max(|\lambda_i|)|^k$$

Vi kan alltså räkna med snabb konvergens om villkoren i satsen är uppfyllda.

Iterativa lösningsmetoder: Jacobis metod

Jacobis metod bygger på att vi delar upp A enligt A = L + D + U där L är strikt undertriangulär, D diagonal och U strikt övertriangulär.

Med B = D och A - B = L + U kan fixpunktsiterationen skrivas som

$$\boldsymbol{x}^{(k+1)} = D^{-1}(\boldsymbol{b} - (L+U)\boldsymbol{x}^{(k)}) \Leftrightarrow x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

Sats 4

Jacobis iterationsmetod konvergerar om A är diagonaldominant dvs om

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$
 för alla i.

Anm:

- Ju mer diagonaldominant A är desto snabbare konvergens.
- D diagonal $\Rightarrow D = (a_{ij}), \ a_{ij} = 0 \text{ för } i \neq j \Rightarrow D^{-1} \text{ diagonal med diagonalelement } (\frac{1}{a_{ij}}).$

Iterativa lösningsmetoder: Jacobis metod

Exempel 3

```
Lös ekvationssystemet \begin{cases} 3x_1 - x_2 + x_3 = 1 \\ 2x_1 - 4x_2 + x_3 = 1 \\ -x_1 + x_2 - 4x_3 = -1 \end{cases} \leftarrow A \text{ diagonal dominant!}
```

```
In[0]:= Remove["Global`*"]
      a = \{\{3, -1, 1\}, \{2, -4, 1\}, \{-1, 1, -4\}\};
      u = UpperTriangularize[a, 1];
      d = DiagonalMatrix[Diagonal[a]]:
      l = a - d - u;
      xold = \{0, 0, 0\};
      b = \{1, 1, -1\};
      kmax = 20;
      For k = 1, k \le k \max, ++k
       xnew = Inverse[d].(b - (l + u).xold);
       xold = xnew:
      Print["Jacobi: ", N[xnew]];
      Printf"Kontroll med NSolve: ". NSolve[a.{x1, x2, x3} == b, {x1, x2, x3}]
      Jacobi: {0.249976, -0.0833073, 0.166647}
      Kontroll med NSolve: \{(x1 \rightarrow 0.25, x2 \rightarrow -0.0833333, x3 \rightarrow 0.166667)\}
```


Iterativa lösningsmetoder: Gauss-Seidels metod

Denna metod bygger också på att A = L + D + U men med en alternativ omskrivning:

$$(L+D+U)\mathbf{x} = \mathbf{b} \Leftrightarrow D\mathbf{x} = \mathbf{b} - L\mathbf{x} - U\mathbf{x}$$

Denna formel ger fixpunktsiterationen:

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - L\mathbf{x}^{(k+1)} - U\mathbf{x}^{(k)}) \Leftrightarrow \mathbf{x}^{(k+1)} = (L+D)^{-1}(\mathbf{b} - U\mathbf{x}^{(k)})$$

Anm:

- I Gauss-Seidels metod använder vi B = L + D medan Jacobis metod använder B = D.
- Fixpunktsiterationen använder även det "nyaste" $\mathbf{x}^{(k+1)}$ i högerledet och vi kan därför förvänta oss snabbare konvergens än med Jacobis metod.
- Ett tillräckligt villkor för konvergens är även här att A är diagonaldominant.

Iterativa lösningsmetoder: Gauss-Seidels metod

Exempel 4

Samma ekvationssystem igen:

$$\begin{cases} 3x_1 - x_2 + x_3 = 1 \\ 2x_1 - 4x_2 + x_3 = 1 \\ -x_1 + x_2 - 4x_3 = -1 \end{cases}$$

```
In[*]:= Remove["Global`*"]
      a = \{(3, -1, 1), (2, -4, 1), (-1, 1, -4)\}:
      u = UpperTriangularize[a, 1]:
      d = DiagonalMatrix[Diagonal[a]]:
     l = a - d - u:
      b = \{1, 1, -1\};
      xold = \{0, 0, 0\};
      kmax = 20;
      For k = 1, k \le k \max, ++k
       xnew = Inverse[d].(b - (l + u).xold);
       xold = xnew:
      Print["Jacobi: ". N[xnew]]:
      xold = {0, 0, 0}:
      For[k = 1, k ≤ kmax, ++k,
       xnew = Inverse(l + d).(b - u.xold):
       xold = xnew;
      Print["Gauss-Seidel: ", N[xnew]];
      Print["NSolve: ", NSolve[a.\{x1, x2, x3\} == b, \{x1, x2, x3\}]]
      Jacobi: {0.249976, -0.0833073, 0.166647}
      Gauss-Seidel: {0.25, -0.0833333, 0.166667}
      NSolve: \{(x1 \rightarrow 0.25, x2 \rightarrow -0.0833333, x3 \rightarrow 0.166667)\}
```


Definition 2

Vektorn $\mathbf{x} \neq \mathbf{0}$ är en egenvektor till matrisen A med egenvärdet λ om $A\mathbf{x} = \lambda \mathbf{x}$.

- Ekvationsystemet kan skrivas som $(A \lambda I)x = 0$.
- Det har icke-trivial lösning $x \neq 0$ omm

$$det(A - \lambda I) = 0 \leftarrow A$$
:s karaktäristiska ekvation.

Exempel 5

Bestäm samtliga egenvärden och egenvektorer till $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

Karaktäristisk ekvation:

$$\det(A-\lambda I) = \begin{vmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{vmatrix} = (1-\lambda)(4-\lambda)-2\cdot 2 = \lambda(\lambda-5) = 0 \Leftrightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 5. \end{cases}$$

Exempel 5

Egenvektorer:

$$\lambda_{1} = 0 : (A - \lambda_{1}I)\mathbf{x} = \mathbf{0}$$

$$\Leftrightarrow \begin{cases} (1 - 0)x_{1} + 2x_{2} = 0 \\ 2x_{1} + (4 - 0)x_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} x_{1} + 2x_{2} = 0 \\ 2x_{1} + 4x_{2} = 0 \end{cases}$$

$$\Leftrightarrow (x_{1}, x_{2}) = t(-2, 1)$$

$$\lambda_{2} = 5 : (A - \lambda_{2}I)\mathbf{x} = \mathbf{0}$$

$$\Leftrightarrow \begin{cases} (1 - 5)x_{1} + 2x_{2} = 0 \\ 2x_{1} + (4 - 5)x_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} -4x_{1} + 2x_{2} = 0 \\ 2x_{1} + -x_{2} = 0 \end{cases}$$

$$\Leftrightarrow (x_{1}, x_{2}) = \mathbf{s}(1, 2)$$

 \therefore Alla vektorer som är parallella med (-2,1) resp (1,2) är egenvektorer till A med egenvärdet 0 resp 5.

Potensmetoden

Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att egenvärdena till A uppfyller

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$$

Om $v_1, v_2, ..., v_n$ är en bas av egenvektorer till A som svarar mot egenvärdena $\lambda_i, i = 1, 2, ..., n$, kan startvektorn skrivas som

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$

Eftersom $A\mathbf{v}_i = \lambda \mathbf{v}_i \Rightarrow A^k \mathbf{v}_i = \lambda^k \mathbf{v}_i$ får vi

$$A^{k}\boldsymbol{x}_{0} = c_{1}\lambda_{1}^{k}\boldsymbol{v}_{1} + c_{2}\lambda_{2}^{k}\boldsymbol{v}_{2} + \cdots + c_{n}\lambda_{n}^{k}\boldsymbol{v}_{n} \Leftrightarrow \frac{A^{k}\boldsymbol{x}_{0}}{\lambda_{1}^{k}} = c_{1}\boldsymbol{v}_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}\boldsymbol{v}_{2} + \cdots + \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}\boldsymbol{v}_{n}$$

Om k är stort är $A^k \mathbf{x}_0$ nästan parallell med \mathbf{v}_1 eftersom $\left(\frac{\lambda_i}{\lambda_1}\right)^k \approx 0$ för $i \neq 1$. $\therefore \mathbf{x}_k = A^k \mathbf{x}_0$ närmar sig en egenvektor som motsvarar det egenvärde som har störst absolutbelopp.

Potensmetoden

För att hindra att vektorerna blir för stora normerar vi under varje iteration.

Potensmetoden

Välj en godtycklig startgissning \mathbf{x}_0 för egenvektorn och iterera

$$\mathbf{v}_{k+1} = \mathbf{y}_{k+1}/|\mathbf{y}_{k+1}|$$

tills
$$|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k| < \delta$$

Om vi har en egenvektor kan vi beräkna motsvarande egenvärde:

$$A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow \mathbf{v}^T A \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda |\mathbf{v}|^2 \Leftrightarrow \lambda = \frac{\mathbf{v}^T A \mathbf{v}}{|\mathbf{v}|^2} \leftarrow \mathsf{Rayleighkvot}$$

Vi får därför direkt en approximation till λ_1 som vi kan använda i iterationen ovan:

$$\lambda_1 = \frac{\boldsymbol{v}_1^T \boldsymbol{A} \boldsymbol{v}_1}{|\boldsymbol{v}_1|^2} \approx \frac{\boldsymbol{y}_k^T \boldsymbol{A} \boldsymbol{y}_k}{|\boldsymbol{y}_k|^2} = \frac{\boldsymbol{y}_k^T \boldsymbol{A} \boldsymbol{x}_k}{|\boldsymbol{y}_k|} = \boldsymbol{x}_k^T \boldsymbol{y}_{k+1}$$

Exempel 6

Potensmetoden

Bestäm största egenvärde och tillhörande egenvektor till $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & -3 \\ 1 & 0 & 1 \end{pmatrix}$

```
Remove["Global`*"]
A = \{\{3, 2, 1\}, \{2, 1, -3\}, \{1, 0, 1\}\};
xold = {1., 1., 1.};
For [k = 1, k \le 15, k++,
 ynew = A.xold;
 xnew = ynew / Norm[ynew];
 lambda = xold.ynew;
 xold = xnew;
Print["Normerad egenvektor: ", N[xnew]]
Print["Största egenvärde: ", N[lambda]]
Eigensystem[N[A]] // MatrixForm
Normerad egenvektor: {0.904535, 0.301502, 0.301517}
Största egenvärde: 3.99997
(0.904534, 0.301511, 0.301511) (0.57735, -0.57735, 0.57735) (-0.481543, 0.842701, 0.240772)
```


Invers iteration och skiftade potensmetoden

Hur gör vi om vi vill bestämma samtliga egenvärden och egenvektorer? Om *A* är inverterbar har vi

$$A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow A^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x} \Leftrightarrow A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$$

Slutsatser:

- A och A⁻¹ har samma egenvektorer.
- Om λ är egenvärde till A så är $\frac{1}{\lambda}$ egenvärde till A^{-1} vilket innebär att: A är inverterbar $\Leftrightarrow \lambda_i \neq 0, \ i=1,2,...,n$.
- Vill vi beräkna egenvektorn som svarar mot det egenvärde som har *minst* absolutbelopp kan vi använda fixpunktsiterationen $\mathbf{x}_{n+1} = A^{-1}\mathbf{x}_n$.

Invers iteration och skiftade potensmetoden

Exempel 7

Bestäm minsta egenvärde och tillhörande egenvektor till $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & -3 \\ 1 & 0 & 1 \end{pmatrix}$

```
Remove["Global`*"]
A = \{\{3, 2, 1\}, \{2, 1, -3\}, \{1, 0, 1\}\};
invA = Inverse[A];
xold = {1., 1., 1.};
For [k = 1, k \le 15, k++,
 ynew = invA.xold;
 xnew = ynew / Norm[ynew];
 lambda = xold.ynew;
 xold = xnew;
Print["Normerad egenvektor: ", N[xnew]]
Print["Minsta egenvärde: ", 1/N[lambda]]
Eigensystem[N[A]] // MatrixForm
Normerad egenvektor: {0.481548, -0.842702, -0.24076}
Minsta egenvärde: -0.99997
{0.904534, 0.301511, 0.301511} {0.57735, -0.57735, 0.57735} {-0.481543, 0.842701, 0.240772}
```


Invers iteration och skiftade potensmetoden

Hur beräknar vi egenvärdena mellan de som har störst och minst absolutbelopp? Om *s* är ett tal har vi

$$(A-sI)\mathbf{x} = A\mathbf{x} - s\mathbf{x} = \lambda\mathbf{x} - s\mathbf{x} = (\lambda - s)\mathbf{x}$$

Slutsats:

- A och A sI har samma egenvektorer.
- Om λ är ett egenvärde till A så är λs ett egenvärde till A sI.
- Med invers iteration kan vi beräkna det egenvärde λs till A sI som har minst absolutbelopp dvs det egenvärde λ till A som ligger närmast s.

Invers iteration och skiftade potensmetoden

Exempel 8

Bestäm egenvärdet till *A* som ligger närmast 1.5 samt tillhörande egenvektor.

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & -3 \\ 1 & 0 & 1 \end{pmatrix}$$

```
Remove["Global`*"]
A = \{\{3, 2, 1\}, \{2, 1, -3\}, \{1, 0, 1\}\};
i = IdentityMatrix[3];
s = 1.5;
invAsI = Inverse(A - s * i):
xold = {1., 1., 1.};
For [k = 1, k \le 15, k++,
 ynew = invAsI.xold;
 xnew = ynew / Norm[ynew];
 lambda = xold.ynew;
 xold = xnew:
Print["Normerad egenvektor: ", N[xnew]]
Print["Egenvärdet närmast ", s, ": ", 1/N[lambda] + s]
Eigensystem[N[A]] // MatrixForm
Normerad egenvektor: {0.57735, -0.57735, 0.57735}
Egenvärdet närmast 1.5: 2.
{0.904534, 0.301511, 0.301511} {0.57735, -0.57735, 0.57735} {-0.481543, 0.842701, 0.240772}
```