

Motivation

- Long duration deep space missions will require many closed loop, self-sufficient and highly sustainable technologies.
- Conditions will create a seemingly independent operation from support personnel located back on Earth, especially during day-to-day mission operations.
- Closed-loop life-support-systems with minimal or no re-supply from Earth have the greatest technical challenges to development.
- The Trash to Gas (TtG) is part of the Logistics Reduction and Repurposing (LRR) project. TTG technology has proven successful in laboratory studies, a number of assumptions were made to facilitate testing, leading to questions pertaining to the design of a flight unit.
- Analog tests, where the conditions of long duration, deep space missions are simulated, can be used to evaluate new technologies.
 - TtG Develop space technology alternatives for converting space waste into a gas that may be converted into high-value products or a gas that can be easily vented as a fettison function.

Waste Type	Mass Waste Total (kg)	Average Mass per Day (kg)	Mass Percent (%)
Food	49.94	0.38	33
Plant	31.11	0.27	21
Paper/Cardboard	25.18	0.21	17
Polymers	18.39	0.16	
Hygiene	10.52	0.06	7
Metallics	8.83	0.06	6
Haz Waste	4.71	0.03	- 13 7
assue	3.70	0.03	
	151,67	L- L21	10(14

Volume Reduction via Footballs

- 154 TOTAL FOOTBALLS
 - (not everything could be made into a football)
- Uncompressed Volume: 2.65m³
- Compressed Volume: 1.51m³ (43% reduction)
- Average football mass: 904g (range:60-1200g)
 - Average football volume: 0.006m

Reactor System Flow Diagram Condenser Gas Oxygen Chromatograph Steam Reforming Mixing Tube Chiller Reactor Steam

Reactor Feed - Football Compositions

Waste Type	Composition by mass	
	50% corrugated cardboard	
Cardboard	40% food packaging boxes	
	10% used paper	
	50% plastic utensils	
Plastics	45% plastic food packaging	
	5% nitrile gloves	
	75% Coffee grounds, tea bags,	
Food and Plant Mix	food crumbs	
	25% spent soil with inedible plant mass	
And the second second		
Chirws	LRR project waste model	

Reactor Projections for Methane Production/Power

- 115 days of mission waste collected
- 151.7 kg of wet and dry waste was accounted for (not including human, waste water or brine).
 - 1 Year, 4 person crew:
 - HI-SEAS: 385kg
 - LRR Full Waste Model: 2,559kg (with feces, brine, clothing, etc.)
 - LRR: 735kg (hygiene, food, food packaging and food

CONCLUSION

- The amount of waste produced during the HI-SEAS was measured and is less than would be expected from long duration space missions.
- The waste collection data showed that large amounts of waste were generated during certain times, such as when the monthly food supplies were unpacked.
- This indicates that the TtG process must be able to handle a waste stream that will vary in composition, and that it is possible for a crew of five to segregate wastes over a mission.
- The amount of time required to process all the waste during this mission was 12% of the mission time, based on the reaction rates using the existing reactor at KSC.
 - A more automated system, would likely require less crew time. (Currently

the KSC ItG process successfully processed the three waste types, and could produce 9% of the power needed during the mission.

ACKNOWLEDGEMENTS

- NASA's Advanced Exploration Systems Program Office
- Logistics Reduction and Repurposing Team, esp. KSC/JSC
- HI-SEAS Mission 2 Crew Members: Lucie Poulet,
 Tiffany Swarmer, Ross Lockwood, Casey Stedman
- HI-SEAS P.I. Dr. Kim Binsted and Dr. Jean Hunter.
- Gasmet Technologies Inc.

Water, Ash, and Combustible Mass Percentages of Wastes

Reactor Outputs

Waste Type	CO ₂ (g/g)	CO (g/g)	C (g/g)
Cardboard	1.64(1.78)	0.30(0.33)	0.64(0.70)
Plastics	1.34(1.35)	0.23(0.23)	0.48(0.48)
Food and Plant Mix	0.30(0.9)	0.04(0.12)	0.11(0.33)
HFWS /	0.72(1.21)	0.18(0.3)	0.28(0.47)
		MANA	

