Dynamics (গতিবিদ্যা)

১। একবিন্দু গামী u ও v বেগের লব্ধি R হলে, $R=\sqrt{u^2+v^2+2uv\cos\alpha}$ $\quad (u>v)$

$$an \; \; \theta = rac{v \sin \alpha}{u + v \cos \alpha} \; \;$$
 এখানে $\alpha = u$ ও v এর মধ্যবর্তী কোণ; $\theta = u$ ও k এর অন্তর্ভুক্ত কোণ

২। সর্বোচ্চ লব্ধি,
$$R_{max}=u+v~(\alpha=0^{\circ})$$
 ৩। সর্বন্ম লব্ধি, $R_{min}=u-v~(\alpha=180^{\circ})$

- 8। সমকোণে ক্রিয়ারত বলের লব্ধি , $R_{90} = \sqrt{u^2 + v^2}$
- α । ক্ষুদ্রতম দূরত্বে/ সোজা পরাপার / আড়াআড়ি পারাপারের ক্ষেত্রে ঃ

$$R^2 + u^2 = v^2 \Rightarrow R = \sqrt{v^2 - u^2}$$

v = লোকের / নৌকার বেগ; u = স্রোতের বেগ

নদীর প্রস্থ
$$S$$
 হলে $S=Rt \mathrel{\dot{\cdot}\cdot} t = \frac{S}{\sqrt{v^2-u^2}}$

৬। ক্ষুদ্রতম সময়ে পারাপারের ক্ষেত্রে ঃ

AB বরাবর (নদী পার হতে) vএর উপাংশ vsinlpha

$$\therefore R = v sin\alpha \quad \Rightarrow \ t = \frac{s}{v sin\alpha}$$

AC বরাবর (তীর বরাবর) ν এর উপাংশ ν cosα

- : তীর বরাবর মোট বেগ = u + vcosα (অর্থাৎ এই বেগ এর জন্য তীর বরাবর কোন নৌকা / লোক যাবে)
- **৭। আপেক্ষিক গতি ঃ**একটা প্রসঙ্গ কাঠামোর সাপেক্ষে অপরটির গতি।

সরল রেখায় ঃ B এর সাপেক্ষে A এর আপেক্ষিক বেগ V_{AB} এবং A এর সাপেক্ষে B এর আপেক্ষিক বেগ V_{BA} (ক) Aএবং B একই দিকে গতিশীল হলে $(V_A>V_B)$; B এর সাপেক্ষে A এর আপেক্ষিক বেগ , $V_{AB}=V_A-V_B$

(খ) A এবং B পরস্পর বিপরীত দিকে গতিশীল হলে; B এর সাপেক্ষে A এর আপেক্ষিক বেগ , $V_{AB}=V_A+V_B$

Mathicstry

- (গ) আনত হলে, নিয়মঃ
- (i) যার সাপেক্ষে আপেক্ষিক বেগ বের করবে তার বেগ উল্টা করবে।
- (ii) এবার এই উল্টা বেগের সাথে যার আপেক্ষিক বেগ বের করবে তার লব্ধি বের করবে। এই লব্ধিই আপেক্ষিক বেগ।

P এর সাপেক্ষে Q এর আপেক্ষিক বেগ

$$R_{\mathit{QP}}\!=\!\sqrt{P^2+Q^2+2PQ\cos(\pi-lpha)}$$
 যেখানে বেগদ্বয়ের মধ্যবর্তী কোণ $lpha$

$$\Rightarrow \theta = \tan^{-1} \frac{Q \sin(\pi - \alpha)}{P + Q \cos(\pi - \alpha)} = \tan^{-1} \frac{Q \sin \alpha}{P - Q \cos \alpha}$$

(ঘ) আপেক্ষিক বেগ দেওয়া থাকলে প্রকৃত বেগ নির্ণয়ঃ

- (i) যার সাপেক্ষে আপেক্ষিক বেগ দেওয়া আছে তার উল্টা বেগ আঁকতে হবে।
- (ii) এই উল্টা বেগের শেষ বিন্দু এবং আপেক্ষিক বেগ এর শেষ বিন্দু যোগ করতে হবে।
- (iii) তাহলে আপেক্ষিক বেগ কে কর্ণ ধরে সামান্তরিকের অন্য সন্নিহিত বাহুই প্রকৃত বেগ।

যেমনঃ একজন লোক $p\ ms^{-1}$ বেগ যাওয়ার সময় দেখল যে, বৃষ্টি খাড়াভাবে পড়ছে বলে মনে হয়। বৃষ্টির প্রকৃত বেগ = ?

$$tan\theta = \frac{P}{R}$$

$$\vec{Q} = \vec{R} + \vec{P}$$

ΔΟΑΒ হতে সাইন সূত্র প্রয়োগ করে পাই,

$$\frac{P}{\sin(Q \text{ ও R us মধ্যবর্তী রেলাণ})} = \frac{Q}{\sin(P \text{ ও R us মধ্যবর্তী রেলাণ})} = \frac{R}{\sin(P \text{ ও Q us মধ্যবর্তী রেলাণ})}$$

$$\Rightarrow \frac{P}{\sin\theta} = \frac{Q}{\sin90^0} = \frac{R}{\sin(90^0 - \theta)}$$

Note:(i) Q ও -P এর লব্ধি R (ii) R ও P এর লব্ধি Q

৮। কোন বস্তু u আদিবেগে f সমত্বরণে চলে t sec পর s দূরত্ব অতিক্রম করে v শেষ বেগ প্রাপ্ত হলে,

(i)
$$v = u + ft$$
 (ii) $v^2 = u^2 + 2fs$ (iii) $s = ut + \frac{1}{2}ft^2$

৯। কোন বস্তু কর্তৃক t তম সেকেন্ডে অতিক্রান্ত দূরত্ব $= t \sec 7$ সময়ের দূরত্ব -(t-1) সময়ের দূরত্ব

$$\dot{\cdot} \, \, s_{th} = s_t - s_{t-1} = \, \, ut + \frac{1}{2} ft^2 - u(t-1) - \frac{1}{2} f(t-1)^2 = \, \mathbf{u} + \frac{\mathbf{1}}{\mathbf{2}} \mathbf{f}(\mathbf{2t-1})$$

১০। কোন বস্তু v সমবেগে অথবা v গড়বেগে s দূরতু অতিক্রম করলে, S=vt

১১। গড়বেগ ঃ
$$(i)$$
 $\overline{v}=rac{c$ মাট দূ রত্ব $}{
m সময়}=rac{{
m u}t+rac{1}{2}{
m f}t^2}{t}=u+rac{1}{2}{
m f}t$

(ii)
$$\overline{V} = \frac{\text{আদির বগ} + c * শ্বের বগ}{2} = \frac{u + v}{2}$$

১২। পড়ন্ত বস্তুর সমীকরণ: (i)
$$v=u+gt$$
 (ii) $v^2=u^2+2gh$ (iii) $h=ut+\frac{1}{2}gt^2$ কোন বস্তুকে ছির অবছা থেকে উপর থেকে ফেলে দিলে, $u=0$ ।

১২ (Φ) । ভূমি থেকে উর্ধে নিক্ষিপ্ত বস্তুর সমীকরণ: $u \uparrow h \uparrow g \downarrow$ উপরেরদিক ধনাত্মক ধরলে, u=+h=+g=-

(i)
$$v = u - gt$$
 (iii) $h = ut - \frac{1}{2}gt^2$

(ii)
$$v^2 = u^2 - 2gh$$

১২ (খ) । ভূমি হতে h উচ্চতার স্থান থেকে উপরে নিক্ষিপ্ত বস্তু $v_0 \uparrow h \downarrow$ যদি **নিচের দিক ধণাত্মক** বিবেচনা করি, u=-h=+g=+

(i)
$$v = -u + gt$$
 (ii) $+ h = -ut + \frac{1}{2}gt^2$

১২(গ) । নিমুদিকে নিক্ষিপ্ত বস্তুর সমীকরণः $u\downarrow h\downarrow g\downarrow$ নিমুদিক ধনাত্মক ধরলে ,u=+h=+g=+ Mathicstry

(i)
$$v = u + gt$$
 (ii) $v^2 = u^2 + 2gh$ (iii) $h = ut + \frac{1}{2}gt^2$

১৩। পাথর কুয়ার ফেলার পরে পাথর পতনের শব্দ শুনতে সময় ঃ

১ম ক্ষেত্রঃ পাথর
$$t_1$$
 সময়ে কুয়ার ভিতর প্রবেশ করলে $h=rac{1}{2}gt_1^2\div t_1=\sqrt{rac{2h}{g}}$

২য় ক্ষেত্রঃ পাথর পতনের শব্দ
$$t_2$$
 সময়ে কুয়া থেকে আসলে $h=vt_2$ $(v=$ শব্দের বেগ $)$ \therefore $t_2=\frac{h}{v}$

$$\therefore$$
 মোট সময় $\mathbf{t} = \mathbf{t}_1 + \mathbf{t}_2 = \sqrt{\frac{2h}{g}} + \frac{h}{v}$

১৪। প্রাসের গতি:

ভূমি থেকে উপরে নিক্ষিপ্ত

t সময় পর, বেগ v হলে

 ${f v}$ এর অনুভূমিক উপাংশ, ${f v}_{f x}=u_x+a_{f x}{f t}$; ${f v}_{f x}={m u}{f cos}lpha$

 ${f v}$ এর উল্লম্ব উপাংশ, ${f v}_{f y}=u_{f y}+a_{f y}{f t}$; ${f v}_{f y}={m u}{f s}{f i}{m n}lpha-{f g}{f t}$

$$x = u_x t + \frac{1}{2} a_x t^2 \Rightarrow x = (u \cos \alpha) t$$

$$y = u_y t + \frac{1}{2} a_y t^2 \Rightarrow y = (u \sin \alpha) t - \frac{1}{2} g t^2$$

আদিবেগ =u; নিক্ষিপ্ত কোণ $=\alpha$; যে কোন সময় t sec পর প্রাসের স্থান P(x,y) এবং বেগ =v

 \mathbf{u} এর অনুভূমিক উপাংশ, $\mathbf{u}_{\mathbf{x}} = \mathbf{u}\mathbf{cos}\alpha$

u এর উলম্ব উপাংশ, $u_y=u sin lpha$

Remember: $a_x = 0$; $a_y = -g$

১৫। যে কোন সময় পর প্রাসের বেগের মান ও দিক নির্ণয়:

$$v = \sqrt{{v_x}^2 + {v_y}^2}$$
$$\theta = \tan^{-1} \frac{v_y}{v_x}$$

১৬। প্রাসের গতিপথের সমীকরণ: $y=x \tan \theta_0 - \frac{1}{2} g(\frac{x}{v_0 cos \theta_0})^2$

ৰা,
$$y = x \tan \theta_0 - \frac{g}{2v_0^2 \cos^2 \theta_0} x^2$$

বা, $y=ax+bx^2 o$ যা একটি প্যারাবোলা বা পরাবৃত্তের সমীকরণ

১৭। প্রাসের সর্বোচ্চ উচ্চতা (H):

সর্বোচ্চ উচ্চতায়, $v_x=u_x=ucoslpha$

এবং
$$v_y = 0$$

Now,
$$v_y^2 = u_y^2 - 2gH$$

$$\therefore 0^2 = u^2 \sin^2 \alpha - 2gH$$

$$\therefore H = \frac{u^2 sin^2 \alpha}{2g}$$

খাড়া উপরের দিকে নিক্ষেপ করলে $lpha=90^{\circ}$; $H=rac{u^2}{2g}$ [উলম্ব গতির জন্য]

Mathicstry

১৮(ক)। সর্বোচ্চ উচ্চতায় পৌঁছানোর সময় / উত্থানকাল $: \mathsf{t} = rac{\mathrm{usin} lpha}{\mathsf{g}}$

Remember: সর্বোচ্চ উচ্চতায় পৌঁছানোর সময় / উত্থানকাল এবং সর্বোচ্চ উচ্চতাহতে ভূমিতে পৌঁছানোর সময় / পতনকাল সমান । অর্থাৎ পতনকাল =উত্থানকাল = $t=\frac{u sin \alpha}{\sigma}$

১৮(খ)। বিচরণকাল (T): বিচরণকাল (T) = পতনকাল +উত্থানকাল $=t+t=rac{2usin\alpha}{g}$ \therefore $T=rac{2usin\alpha}{g}$

Remember: বিচরণকাল / প্রাসটি নিক্ষেপের পর হতে ভূমিতে ফিরে আসতে সময় / প্রাসটি নিক্ষেপের পর শূন্যে থাকার সময়

১৮(গ)। অনুভূমিক পাল্লা
$$(\mathbf{R})$$
: $t=T$ হলে, $y=0$, $x=$ অনুভূমিক পাল্লা $=\mathbf{R}$ \therefore $\mathbf{R}=\frac{\mathbf{u}^2\sin 2\alpha}{\mathbf{g}}$

Remember: $\sin 2\alpha = 1 = \sin 90^{\circ}$; $2\alpha = 90^{\circ}$; $\alpha = 45^{\circ}$

 \therefore সর্বোচ্চ পাল্লা , $R_{max}=rac{u^2}{g}\left[45^\circ
ight.$ কোণে নিক্ষিপ্ত প্রাসের পাল্লা সর্বাধিক হবে]

একই বেগে নিক্ষিপ্ত হলে দুইটি কোণ lpha এবং $(rac{\pi}{2}-lpha)$ এর জন্য একই অনুভূমিক পালা পাওয়া যাবে।

$$R_1 = \frac{u^2 sin2\alpha}{g}, R_2 = \frac{u^2 sin\left\{2.\left(\frac{\pi}{2} - \alpha\right)\right\}}{g} = \frac{u^2 sin(\pi - 2\alpha)}{g} = \frac{u^2 sin2\alpha}{g}$$

$$\therefore lpha$$
 ও $\left(rac{\pi}{2} - lpha
ight)$ এর জন্য $R_1 = R_2 = R$

১৯। ভূমি থেকে h উচ্চতায় অবস্থান থেকে উপরে নিক্ষিপ্ত প্রাস:

 $u \uparrow h \downarrow g \downarrow$ উপরের দিক ধণাত্মক ধরণে, u = + h = -g = - $-h = (u \sin \alpha)t - \frac{1}{2}gt^2$ $\Rightarrow h = -(u \sin \alpha)t + \frac{1}{2}gt^2$ এবং $x = (u \cos \alpha)t$

Remember: h হল প্রথম বিন্দু থেকে শেষ বিন্দুর মধ্যবর্তী সরলরৈখিক দূরত্ব। এখানে প্রাসটি ABCD পথে আসলেও h=AE=CF= প্রথম বিন্দু A থেকে শেষ বিন্দু D এর মধ্যবর্তী সরলরৈখিক দূরত্ব।

২০। অনুভূমিক ভাবে নিক্ষিপ্ত প্রাস:

 $u_{
ightarrow} \quad h \downarrow \quad g \downarrow$ নিচের দিক ধনাত্মক ধরে

আদিবেগ =u [অনুভূমিক বরাবর] $lpha=0^\circ$

u এর অনুভূমিক উপাংশ $u_x = u\cos\alpha = u\cos0^\circ = u$

u এর উলম্ব উপাংশ = $u_y = u \sin lpha = u \sin 0^\circ = 0$

যেকোন বিন্দু Aতে ,
$$x=ut$$
 ; $y=\frac{1}{2}gt^2$; $v_x=u$; $v_y=gt$; $v=\sqrt{{v_x}^2+{v_y}^2}$

২১। H ও R হতে মান নির্ণয়ের ক্ষেত্রেঃ $R=\frac{u^2 sin 2\alpha}{g}=\frac{u^2 2 sin \alpha \cos \alpha}{g}$

$$\Rightarrow (u \sin \alpha)(u \cos \alpha) = \frac{gR}{2} \dots \dots (i)$$

অবাবার,
$$H = \frac{u^2 sin^2 \alpha}{2g} \Rightarrow u sin \alpha = \sqrt{2gH} \dots (ii)$$

$$\text{Now } u^2 \text{sin}^2 \alpha + u^2 \text{cos}^2 \alpha = 2gH + \frac{g^2 R^2}{4 \times 2gH} \quad \ \ \dot{} \cdot u^2 = 2gH + \frac{g^2 R^2}{8gH}$$

(i)
$$R = \frac{4H}{\tan \alpha} = uT\cos\alpha = \frac{gT^2}{2\tan\alpha}$$
 (ii) $H = 8gT^2$

