Symulacja ekosystemu

Symulacja **środowiska naturalnego**, składającego się ze **zwierząt, roślin,** etc.

Świat będzie dwuwymiarową siatką. Każda z komórek siatki będzie **posiadała pewne właściwości** a także będzie mogła **zawierać jakiś organizm** (roślinę lub zwierzę).

Rośliny

Rośliny będą organizmami bardziej pasywnymi, tzn. będą reagowały na zmiany środowiska w pewnym, tudzież ograniczonym, stopniu, np. jeżeli środowisko będzie miało odpowiednie nasłonecznienie i wilgotność, będą rosnąć; w przeciwnym wypadku, będą umierać. Będą miały również bardzo ograniczoną możliwość wpływania na środowisko czy inne organizmy.

Zwierzęta

Elementami wyróżniającymi organizmy zwierzęce będzie przede wszystkim możliwość zmiany swojej pozycji oraz większy zakres wpływu na swoje środowisko. Zwierzę będzie musiało w sposób aktywny zaspokajać swoje potrzeby fizjologiczne: głód, odpoczynek, etc. W sposób aktywny, tj. podejmować kroki do osiągnięcia celu, np. szukając pożywienia, unikać potencjalnych zagrożeń, etc.

Każdy gatunek będzie miał określone statystyki: wytrzymałość, siła i szybkość. Statystyki zwierząt tego samego gatunku mogą się delikatnie różnić. Jeśli wytrzymałość spadnie do 0 to osobnik umiera. Wytrzymałość można stracić podczas konfrontacji z innymi zwierzętami oraz można ją odzyskać odpoczywając i jedząc. Siła odpowiada za to jak dobrze zwierze radzi sobie w walce, a szybkość jak sprawnie przemieszcza się po świecie.

Będą różne typy zwierząt różniące się pod wieloma względami: roślinożercy i mięsożercy, samiec i samica, młode i dorosłe, jak dużo potomstwa będą produkować, jakich strategii będą używać aby przeżyć, etc.

Gatunki

Organizmy zwierzęce będą dzielić się na gatunki. Rozmnażanie będzie się odbywać tylko w obrębie gatunku (brak crossbreedingu). Statystyki potomstwa będą generowane na podstawie statystyk rodziców.

Oprócz tego, gatunki mogą mieć różne wzorce zachowań. Przykładowo: roślinożerca po znalezieniu pożywienia wchodzi np. w stan JEDZ, który polega po prostu przemieszczeniu się w jego kierunku pożywienia i spożyciu go; mięsożerca natomiast po wypatrzeniu pożywienia (innego zwierzęcia) przejdzie w stan POLUJ, w którym zwierzę będzie starało się najpierw zabić swój cel. Po udanym polowaniu mięsożerca może zjeść swoją zdobycz, w wypadku porażki zwierzę poszuka innego celu. Z pozoru takie same stany, np. POLUJ mogą również różnić się pomiędzy gatunkami, np. gepard będzie polował samotnie, ale wilki będą polować w grupie, co będzie wymagało koordynacji i kooperacji pomiędzy przedstawicielami gatunku zarówno podczas polowania, jak i po (dzielenie się pożywieniem).

Ze względu na rozdzielczość symulacji (jedna komórka reprezentująca powierzchnię 10-100m^2) nie będą symulowane zwierzęta małe jak np. owady lub będą one symulowane w sposób pasywny (np. jak rośliny lub jako właściwość komórki).