. Key concepts on Deep Neural Networks Quiz, 10 questions

Congratulations! You passed!	Next Item				
1/1 point					
1. What is the "cache" used for in our implementation of forward propagation	on and backward propagation?				
We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.					
It is used to cache the intermediate values of the cost function during training.					
We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.					
Correct Correct, the "cache" records values from the forward propagation units units because it is needed to compute the chain rule derivatives.	s and sends it to the backward propagation				
It is used to keep track of the hyperparameters that we are searching over, to speed up computation.					
1/1 point					
2. Among the following, which ones are "hyperparameters"? (Check all that	apply.)				
activation values $a^{[l]}$					
Un-selected is correct					
number of iterations					
Correct					
learning rate $lpha$					

	concepts on Deep Neural Networks O questions
	size of the hidden layers $n^{[l]}$
Corre	ect
	bias vectors $b^{[l]}$
Un-se	elected is correct
0.1.5	
	weight matrices $oldsymbol{W}^{[l]}$
Un-se	elected is correct
	number of layers L in the neural network
Corre	ect
~	1 / 1 point
3. Which	of the following statements is true?
Willen	The deeper layers of a neural network are typically computing more complex features of the input than the
	earlier layers.
Corre	ect
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.
	1/1
	point
	zation allows you to compute forward propagation in an L -layer neural network without an explicit for-loop (or any explicit iterative loop) over the layers l=1, 2,,L. True/False?
	True
0	False
Corre	ect

Forward propagation propagates the input through the layers, although for shallow networks we may just write all K \mathbf{E} $\mathbf{$

1/1 point

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

1/1 point

6.

Consider the following neural network.

Key concepts on Deep Neural Networks

Quiz, 10 questions

How many layers doe	es this network have?
---------------------	-----------------------

s 3

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers \boldsymbol{L} is 4. The number of hidden layers is 4.
The number of layers \boldsymbol{L} is 5. The number of hidden layers is 4.

1/1 point

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

1/1 point

8.

There are certain functions with the following properties:

Key concepts on Deep Neural Networks

(মুণাত টেপাড়বাৰ্টাৰ কি function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	Tru

Correct

False

0/1 point

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $oxed{b^{[1]}}$ will have shape (4, 1)

Key QJigsi	\mathfrak{C}_{0} the shape of $b^{[l]}$ is $(n^{[l]},1)$.
	$W^{\left[1 ight]}$ will have shape (3, 4)
Un-s	elected is correct
	$b^{[1]}$ will have shape (3, 1)
Un-s	elected is correct
	$W^{[2]}$ will have shape (3, 4)
Corr Yes.	ect More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
	$b^{[2]}$ will have shape (1, 1)
Un-s	elected is correct
	$W^{\left[2 ight]}$ will have shape (3, 1)
Un-s	elected is correct
	$b^{[2]}$ will have shape (3, 1)
Corr Yes.	ect More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
	$W^{\left[3 ight]}$ will have shape (3, 1)
Un-s	elected is correct
	$b^{[3]}$ will have shape (1, 1)
This	should be selected
	$W^{\left[3 ight]}$ will have shape (1, 3)
Corr Yes.	ect More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Key concepts on Deep Neural Networks

Quiz, 10 questions Un-selected is correct

1/1 point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

