Algebra Examenskurs Übungsblatt 1

Thema: Gruppentheorie I ($\S 1.1 - \S 1.3$)

1 Aufwärmübungen

Aufgabe 1.1. Ist die Menge $G = \{a \in \mathbb{R} | a > 0, a \neq 1\}$ mit der Operation $a * b = a^{\log b}$ eine Gruppe?

Aufgabe 1.2. Zeigen Sie, die Gruppe $U = \{z \in \mathbb{C} | |z| = 1\}$ mit der Multiplikation ist nicht isomorph zu $(\mathbb{C}, +)$ oder (\mathbb{Q}^*, \cdot) .

Aufgabe 1.3. In der linearen Algebra gibt es 3 wichtige Äquivalenzrelationen auf $M_{n\times n}(\mathbb{C})$. Was sind sie?

Aufgabe 1.4. Sei G ein zyklische Gruppe und seien $a, b \in G$ keine Quadrate. Zeigen Sie, dass ab ein Quadrat ist. Ist es richtig, wenn G nicht zyklisch ist?

2 Aufgaben

Aufgabe 2.1 (H11-T2-A2). Sei G eine endliche Gruppe und sei $n \ge 1$ mit ggT(n, ord(G)) = 1. Zeigen Sie, dass es zu jedem Element $a \in G$ ein eindeutig bestimmtes Element $b \in G$ gibt mit $b^n = a$.

Aufgabe 2.2 (F12-T2-A2). Es seien G eine endliche Gruppe und p eine Primzahl. Begründen Sie, dass die Anzahl der Elemente der Ordnung p in G durch p-1 teilbar ist, d.h.,

$$|\{a \in G | \operatorname{ord}(a) = p\}| = (p-1) \cdot k \text{ für ein } k \in \mathbb{N}.$$

(Hinweis: Betrachten Sie die Mengen $M_a = \{a, a^2, \cdots, a^{p-1}\}$ für $a \in G$ mit $\operatorname{ord}(a) = p$.)

Aufgabe 2.3 (H16-T2-A1). Sei $\mathbb{H} = \{z \in \mathbb{C} | \text{Im}(z) > 0\}$ die obere Halbebene und $SL_2(\mathbb{R})$ die Gruppe der reellen 2×2 -Matrizen mit Determinante 1. Die Abbildung

$$\rho: SL_2(\mathbb{R}) \times \mathbb{H} \to \mathbb{H}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \mapsto \frac{az+b}{cz+d}$$

definiert eine Gruppenoperation von $SL_2(\mathbb{R})$ auf \mathbb{H} .

- a) Geben Sie die Bahnen von ρ an.
- b) Geben Sie den Stabilisator von $i \in \mathbb{H}$ an.