Escuela Colombiana de Ingeniería Programa de Ingeniería de Sistemas Algoritmos y Programación Elaborado por: profesora CLAUDIA PATRICIA CASTAÑEDA BERMUDEZ

Tarea 6. Programas.

Para los siguientes problemas, antes de escribir el código, desarrolle todo el proceso metodológico de resolución computacional de problemas propuesto para la asignatura AYPR:

- 1. Comprender y analizar el problema.
- 2. Identificar los datos. Tabla de datos.
- 3. Diseñar un algoritmo que resuelva el problema. Algoritmo.
- 4. Verificar el algoritmo. Hacer una prueba de escritorio.
- 5. Escribir el **programa** solución.
- 6. Hacer las pruebas al programa con los datos dados.

Para cada punto entregue únicamente el programa solución.

El programa solución deberá ser un **programa completo** con por lo menos dos funciones:

- 1. función main(), que hace la entrada y salida de datos, y el llamado a las demás funciones.
- 2. función(es) que hace(n) el proceso pedido.

1. Pares-Impares.

Se quiere generar un arreglo de longitud **n** con los valores como se muestran en los casos dados.

Caso 1	Caso 2	Caso 3
Entrada	Entrada	Entrada
7	8	1
Salida	Salida	Salida
1-3-5-7-2-4-6	2-4-6-8-1-3-5-7	1

2. Problema Duplicados.

Dado un conjunto de ${\bf n}$ elementos con cada elemento entre ${\bf 1}$ y ${\bf n}$, determine si hay duplicados.

Casos de prueba

1	2	3
Entrada	Entrada	Entrada
15	12	1
7	5	1
1	1	
2	7	
4	2	Salida
5	8	No
3	12	
8	10	
9	9	
10	6	
4	3	
2	11	
13	4	
14		
15	Salida	
11	No	
Salida		
Si		

3. Problema Meseta mayor.

Dado un conjunto de **n** enteros, se quiere encontrar la longitud y posición de la mayor meseta, esto es la mayor secuencia continua de valores iguales cuyos valores justo una posición antes y justo una después sean menores. Si hay mesetas de igual longitud toma la primera mayor.

Casos de prueba

1	2	3
Entrada	Entrada	Entrada
15	12	12
7	5	1
2	1	1
2	1	1
4	2	2
5	2	2
3	2	2
3	3	1
3	3	3
3	3	3
4	4	3
2	4	1
3	4	4
3		
2	Salida	
2	0,-1	Salida
		3,3
Salida		
2,11		