>data=read.csv("C:/Users/imsau/Desktop/6th Sem/ML/ML lab/Lab3(6-Feb)/drug2.csv")

> summary(data)

sex dose response

Min. :0.0 Min. : 0.100 Min. : 1.92

1st Qu.:0.0 1st Qu.: 2.575 1st Qu.: 19.53

Median :0.5 Median : 5.050 Median : 32.37

Mean :0.5 Mean : 5.050 Mean : 83.01

3rd Qu.:1.0 3rd Qu.: 7.525 3rd Qu.:147.09

Max. :1.0 Max. :10.000 Max. :280.73

> head(data)

sex dose response

1 1 0.1 13.75

2 1 0.2 12.90

3 1 0.3 19.26

4 1 0.4 20.34

5 1 0.5 19.97

6 1 0.6 26.80

> cor(data\$dose, data\$response)

[1] 0.5136214

> cor(data\$sex, data\$response)

[1] 0.7516308

```
> par(mfrow=c(1, 3)) # divide graph area in 2 columns
```

- > plot(density(data\$dose), main="Density Plot: Dose", ylab="Frequency", sub=paste("Skewness:", round(e1071::skewness(data\$dose), 2))) # density plot for 'speed' polygon(density(data\$dose), col="red")
- > plot(density(data\$response), main="Density Plot: Response", ylab="Frequency", sub=paste("Skewness:", round(e1071::skewness(data\$response), 2))) # density plot for 'dist' polygon(density(data\$response), col="red")
- > plot(density(data\$sex), main="Density Plot: sex", ylab="Frequency", sub=paste("Skewness:", round(e1071::skewness(data\$sex), 2))) # density plot for 'dist' polygon(density(data\$sex), col="red")

>scatter.smooth(x=data\$dose, y=data\$response, main="dose ~ response")

dose ~ response

model1 = Im(data\$response~data\$dose)
> summary(model1)

Call:

Im(formula = data\$response ~ data\$dose)

Residuals:

Min 1Q Median 3Q Max

-123.514 -62.764 0.401 63.669 124.707

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2534 2.5778 2.814 0.00493 ** data\$dose 15.0020 0.4432 33.852 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 72.36 on 3198 degrees of freedom Multiple R-squared: 0.2638, Adjusted R-squared: 0.2636 F-statistic: 1146 on 1 and 3198 DF, p-value: < 2.2e-16

>error = residuals(model1)

> hist(error)

Histogram of error

>scatter.smooth(x=model1\$residuals, y=model1\$fitted.values, main="predicted value vs error")

predicted value vs error

> scatter.smooth(x=data\$response, y=model1\$fitted.values, main="predicted value vs Actual value")

predicted value vs Actual value

- > model2 = Im(data\$response~data\$dose+data\$sex)
- > summary(model2)

Call:

Im(formula = data\$response ~ data\$dose + data\$sex)

Residuals:

Min 1Q Median 3Q Max -62.986 -30.350 0.306 29.360 64.009

Coefficients:

Residual standard error: 34.91 on 3197 degrees of freedom Multiple R-squared: 0.8288, Adjusted R-squared: 0.8286 F-statistic: 7736 on 2 and 3197 DF, p-value: < 2.2e-16

> error2 = residuals(model2)

> hist(error2)

> scatter.smooth(x=model2\$residuals, y=model2\$fitted.values, main="Model2-predicted value vs error")

Model2-predicted value vs error

> scatter.smooth(x=data\$response+data\$sex, y=model2\$fitted.values, main="Model2-predicted value vs Actual value")

Model2-predicted value vs Actual value

How to know if the model is best fit for your data?

The most common metrics to look at while selecting the model are:

STATISTIC	CRITERION
R-Squared	Higher the better (> 0.70)
Adj R-Squared	Higher the better
F-Statistic	Higher the better
Std. Error	Closer to zero the better
t-statistic	Should be greater 1.96 for p-value to be less than 0.05
AIC	Lower the better
BIC	Lower the better
Mallows cp	Should be close to the number of predictors in model
MAPE (Mean absolute percentage error)	Lower the better

MSE (Mean squared error)	Lower the better	
Min_Max Accuracy => mean(min(actual,	Higher the better	
predicted)/max(actual, predicted))		