Дуалности накратко

Йонко Йонков

10 януари 2021 г.

Определение 1: Дуално пространство

Нека \mathbb{V} е линейно пространство над числовото поле \mathbb{F} . Дуално пространство на \mathbb{V} ще наричаме множеството $\operatorname{Hom}(\mathbb{V},\mathbb{F})$. Означаваме го с \mathbb{V}^* и е над същото поле \mathbb{F}

Както виждате, елементите на V^* са линейни изображения, които приемат вектор и връщат число. Те се наричат линейни функционали.

Твърдение 1: Размерност на дуалното пространство

Нека V е КМЛП. Тогава $\dim V^* = \dim V$

Доказателство. $\dim \mathbb{V}^* = \dim \operatorname{Hom}(\mathbb{V}, \mathbb{F}) = \dim \mathbb{V}. \dim \mathbb{F} = \dim \mathbb{V}. 1 = \dim \mathbb{V}$

Определение 2: Дуален базис

Нека $\mathbb V$ е КМЛП, $\dim \mathbb V=n$ и $e_1,...,e_n$ е произволен негов базис. Тогава $\exists!e^1,...,e^n\in \mathbb V^*$, дефинирани по следния начин $\forall i,j\in \{1,...,n\}$ $e^i(e_j)=\delta_{ij}= \begin{cases} 1 & \text{if } i=j\\ 0 & \text{if } i\neq j \end{cases}$

Така векторите $e^1,...,e^n$ образуват базис на \mathbb{V}^*

Определение 3: Дуално изображение

Нека \mathbb{U} , \mathbb{W} са КМЛП над \mathbb{F} и $\varphi \in \text{Hom}(\mathbb{U}, \mathbb{W})$. Тогава $\varphi^* \in \text{Hom}(\mathbb{W}^*, \mathbb{U}^*)$, дефинирано по следния начин: $\forall f \in \mathbb{W}^* \ \varphi^*(f) = f \circ \varphi$ се нарича дуално изображение на φ

Твърдение 2: Матрица на дуално изображение

Нека \mathbb{U} , \mathbb{W} са КМЛП над \mathbb{F} , $\dim \mathbb{U} = n$, $\dim \mathbb{W} = m$ и $\varphi \in \operatorname{Hom}(\mathbb{U}, \mathbb{W}), e_1, ..., e_n$ и $f_1, ..., f_m$ са базиси на \mathbb{U} и \mathbb{W} съответно. Нека $e^1, ..., e^n$ и $f^1, ..., f^m$ са съответние им дуални базиси. Тогава $M_e^f(\varphi) = (M_{o^*}^{f^*}(\varphi^*))^T$.

Доказателство. Доказателство ще намерите в записките от лекция 19

Твърдение 3: Сума на дуални изоражения

Нека \mathbb{U}, \mathbb{W} са ЛП над \mathbb{F} и $\varphi, \psi \in \text{Hom}(\mathbb{U}, \mathbb{W})$. Тогава $(\varphi + \psi)^* = \varphi^* + \psi^*$

Доказателство. Доказателството е тривиално и се предоставя на читателя за упражнение. Ако се запънете много лекция 19:

Твърдение 4: Умножение на дуално със скалар
Нека \mathbb{U},\mathbb{W} са ЛП над \mathbb{F} и $\varphi\in \mathrm{Hom}(\mathbb{U},\mathbb{W})$ и $\lambda\in\mathbb{F}$. Тогава $(\lambda\varphi)^*=\lambda\varphi^*$
Доказателство. Доказателството е тривиално и се предоставя на читателя за упражнение. Ако се запънете много лекция 19 :)
Твърдение 5: Произведение на дуални изоражения
Нека $\mathbb{U}, \mathbb{W}, \mathbb{V}$ са ЛП над \mathbb{F} и $\varphi \in \mathrm{Hom}(\mathbb{U}, \mathbb{W})$ и $\psi \in \mathrm{Hom}(W, V)$. Тогава $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$
Доказателство. Доказателството е тривиално и се предоставя на читателя за упражнение. Ако се запънете много лекция 19 :)
Определение 4: Анихилатор
Нека \mathbb{V} е ЛП над \mathbb{F} и $\mathbb{U} < \mathbb{V}$. Тогава анихилатор на \mathbb{U} наричаме множеството $\mathbb{U}^0 = \{v^* \in \mathbb{V}^* \forall u \in \mathbb{U} : v^*(u) = 0_F\}.$
Оказва се $\mathbb{U}^0 < \mathbb{V}^*$. Докажете :).
Твърдение 6: Сума на размерности на подпространство и анихилатора му
Нека \mathbb{V} е КМЛП над \mathbb{F} и $\mathbb{U} < \mathbb{V}$. Тогава $\dim \mathbb{U} + \dim \mathbb{U}^0 = \dim \mathbb{V}$.
Доказателство. Доказателство ще намерите в записките от лекция 20 :)
Определение 5: Анулатор
Нека $\mathbb V$ е ЛП над $\mathbb F$, $\mathbb U < \mathbb V$, $\dim \mathbb V = n$, $\dim \mathbb U = k$ и g_1,g_k е базис на $\mathbb U$. Анулатор на $\mathbb U$ ще наричаме множеството $U_0 = \{v \in \mathbb V \forall i \in \{1,,k\} : g^i(v) = 0_F\}$
Твърдение 7: Важно равенство
Нека \mathbb{U},\mathbb{W} са ЛП над \mathbb{F} и $\varphi\in \mathrm{Hom}(\mathbb{U},\mathbb{W})$. Тогава $\mathrm{Ker}\varphi^*=(\mathrm{Im}\varphi)^0$
Доказателство. Лесно може да се провери, ако се знаят дефинциите :)
Твърдение 8
Нека \mathbb{U},\mathbb{W} са ЛП над \mathbb{F} и $\varphi\in \mathrm{Hom}(\mathbb{U},\mathbb{W})$. Тогава ($\mathrm{Ker}\varphi^*)_0=\mathrm{Im}\varphi$

Твърдение 9: Ранговете на изображение и неговото дуално

Нека \mathbb{U},\mathbb{W} са КМЛП над \mathbb{F} и $\varphi\in \mathrm{Hom}(\mathbb{U},\mathbb{W}).$ Тогава $\mathbf{r}(\varphi^*)=\mathbf{r}(\varphi)$

Доказателство. Лесно може да се провери, ако се знаят дефинциите :)

Твърдение 10: Първа теорема за ранг на матрици

Нека $A \in \mathbb{F}_{m \times n}$. Тогава rr(A) = rc(A), т.е $r(A) = r(A^T)$

Твърдение 11: Важно равенство

Нека \mathbb{U},\mathbb{W} са КМЛП над \mathbb{F} и $\varphi\in \mathrm{Hom}(\mathbb{U},\mathbb{W})$. Тогава $(\mathrm{Ker}\,\varphi)^0=\mathrm{Im}\,\varphi^*$

Доказателство. Края на лекция 20 и началото на лекция 21

Твърдение 12

Нека \mathbb{U} , \mathbb{W} са КМЛП над \mathbb{F} и $\varphi \in \text{Hom}(\mathbb{U},\mathbb{W})$. Тогава (Im φ^*)₀ = Ker φ

Доказателство. Лекция 21

Определение 6: Дуално пространство на дуалното пространство

Нека \mathbb{V} е ЛП над \mathbb{F} . Тогава дуалното пространство на дуалното пространство на \mathbb{V} е множеството $\mathbb{V}^{**} = \operatorname{Hom}(\mathbb{V}^*, \mathbb{F})$

Реално няма нищо ново по този начин можем да си дефинираме $V^{***} = \operatorname{Hom}(\mathbb{V}^{**}, \mathbb{F})$, $V^{****} = \operatorname{Hom}(\mathbb{V}^{***}, \mathbb{F})$ и т.н. Ясно е че за крайномерно \mathbb{V} от $\dim \mathbb{V}^* = \dim \mathbb{V}$, то аналогично $\dim \mathbb{V}^{**} = \dim \mathbb{V}$ и знаем от теорема, че когато две пространства имат равни размерности, то можем да построим изоморфизъм между тях като пратим базис на едното в базис на другото. Красивото тук е че съществува изоморфизъм, между \mathbb{V} и \mathbb{V}^{**} , който не използва базис в себе си, наречен каноничен изоморфизъм.

Твърдение 13: Каноничен изоморфизъм между линейно и дуалното на дуалното му

Нека \mathbb{V} е КМЛП над \mathbb{F} . Тогава изображението $\theta: \mathbb{V} \to \mathbb{V}^**$, дефинирано по следния начин: $\forall v \in \mathbb{V} \ (\theta(v))(v^*) = (v^*(v))$ е изоморфизъм

Доказателство. Лекция 21

Редакции и благодарности

10.01.2021 Оправена е дефиницията на дуално изображение. Благодаря на Марио Марков за откритата грешка