Question (1) LHR= 250W/cm Ve = 0.45 cm

Shehab Shousha

a) Med stress is hoop stress of at 1=1

Stress due to Themal Expassion:

where
$$l = \frac{1}{\sqrt{F}}$$

$$0 = \frac{1}{\sqrt{F}} = \frac{$$

$$-0.71 = 1-000^{2}$$
 $= 1.71$

quema (1) (b)

Yuestion (2) Stress de southagent in cladeding (a) Assuming thin-walled sylvider 0 = PR, P= pressure, R: average radhy S: houses, $O_0 = \frac{50 \times 5.4}{1.2} = 225 \text{ MPa}$ OZ = PR = 100 = (112.5 MPZ) 0= -1= -0.5 × 50 = (-25MPa) (b) Assuming thock-walled astinder $O_r(r) = -P\left(\frac{R_0}{r}\right)^{-1}$ where Ro: oaker rady = 6 mm Ri: inner valory = 4.8 mm (R.) 1-1 $O_{r}(r=5.6mm) = -50(\frac{6}{50})-1$ 4 XOO. MESTERS :. Or (r=5.6 mm)=-13.2 MPa) (6.8)2-1 Q (1-5.6 m) = 00 (r=5.6 mm) - 50 (4.8)2+1 (48)2-1 ·. (00 (r=5.6mm) =/190.9 MPa = 60 x - 1 (6-8)²-1 Ox(v=5.6ma) = P* : 02 (r=6.6mm) - 88.9 MPa

Question (2) Err= = (0rr-v(00+027)) 200 = 1 (000 - 0 (0 cr + 027)) 1- [190.9 - 0.28(-13.2+88.9)] = 9.4 110-7

Err= 1- [-13.2 -0.28(190.9+88.9)]

- 5.09 A15 7

Question (3) Change in gap throlands due to themel expussion - 300K Degap = Re QC (Tc-Ten) - Reg QF (Tg-Tens) $R_c = 0.92 \, \text{cm} + 0.005 \, \text{cm} + 0.008 \, \text{cm} = 0.605 \, \text{cm}$:/ X8gap: 0.605 x 4.5x10 x (Tc-300) - 0.52x16x10 (Tp-300) 2TC = {HP = 225 = 40.08 = 36.7 K "TCO = 550K .: TCI = 550 + 36.7 = 5887K 6. Tc = 588.4K STP = CHR = 225 = 358.1K 4TIMP = 4TT x 0.05 ATSap = LHR = 225 * 0.005 = 114,8K =1059.6K ?. To = 586.7K + 114.8 + 358.1 :/Tg = 880.6K] «. Дбур = 2.72 x 10 (880.6-300) - 7.8 x 10 (568.4-300) $=1.58 \pm 10^{-3}$ -2.09 ± 10^{-3} $-[-5.1 \pm 10^{-9} \text{ cm}]$

Quembra (4) = 2 x 10 3 hours, D= 2x10 cm²/s 9=0.30/7 after t= 2 years a=8x10m=8x/0 cm Applying Booth Model (In pile release) Calculate $V = Dt = 2 \times 10^{-15} \times 2 \times 365 \times 24 \times 60^{2} = [0.1971]$ $(8 \times 10^{-4})^{2} = \pi^{-2}$ in fraction of gas atoms released

(f) = 1-0.0662 [1-0.93 e] = 0.709 = 70.9% at gas alm, on veleaged + total me of gas along produced is (4 FE) $= 0.3017 \times 2 \times 10^{13} \times 2 \times 365 \times 24 \times 60^{2} = 3.806 \times 10^{20} \text{ atomy}$ $= 0.3017 \times 2 \times 10^{13} \times 2 \times 365 \times 24 \times 60^{2} = 3.806 \times 10^{20} \text{ atomy}$ * If of gas atoms released = Estar 0.709 * 3. 806 × 10° atoms

Com 3 = 2. 7 x/020 atoms (m3 A for each grain 2.7×10× 4 TT × (8×164)3 (assuming spherical = 5.8 x 10" (atoms) were released from each grain (on average)

 \mathbf{y}_{i}

Question (5) Strain Hardening: increase in yield stress due to plastice deformation.

Causes: Dislocation motion is the land to the land of grand boundary

Question (6) Properties Rat vary with Stoichmetry: * Klelling Komperature

* Thermal Guductive ty creep rate

* Fission gas release rate * Grain Growth value

Question (7) Fuel performance code must be able to:

* predict Centerline temperatur of huel pellep

* Calculate Stresses on clad walls

* predict swelling & Fission gas release behows for

Question (8) Stages of Rission gas release:
(1) Diffusion of gas atoms within grains until reaching grain boundary
(2) Growth and interconnection of intergranular gas bubbles (3) Transport of gas bubbles to free surface
Question (9) High Burnup structure results in:
* Dept sely porous structure = degradation in thermal conductivity * reduction of grant size
High phytonium production in peripheny of hel pellet is the higher bission density at periphery of hel peller.
Question (6) 0-0 defects: vacancies, interstitions
30 défects : precipitates, voids, bubbles
dustron (11) Driving horce for hel desification.
lustion (11) Driving horce for hel desification: (owering surface free energy by decreasing surface area of pores
Question (12) valence state of (); (1)

other valence states 5+, 6+

Shehab Shousha

en graft en syn i de le kante eksperieren en eksperieren bestelle er eksperieren eksperieren er eksperieren ek En graft en syn i de le kante eksperieren eksperieren eksperieren eksperieren eksperieren eksperieren eksperie

n de la companya de la co