

Gain Engineering with Additional Interface Roughness Scattering in Quantum Cascade Lasers

Angeline Aguinaldo^{1, 2}, Pierre Bouzi¹, YenTing Chiu^{1, 3}, Mei C. Zheng¹, Juliana Hernandez^{1, 4}, Deborah Sivco¹, and Claire Gmachl¹

¹ Department of Electrical Engineering, Princeton University, Princeton, NJ, USA 08540 ² Permanent Address: Department of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA 19104 ³ Current Address: Intel Oregon, Portland Technology Development, Hillsboro, OR, USA 97124 ⁴ Permanent Address: Department of Physics, University of California Santa Cruz, Santa Cruz, CA, USA 95064 Email: aaguinaldo94@gmail.com

MOTIVATION

Interface roughness

 Roughness that occurs between the different layers within the band structure

Intersubband scattering

 Scattering of electrons caused by random reflection off the rough surface

Population inversion

Concentration gradient generated by a low concentration of electrons in the lower laser state when compared to the higher laser state

Gain

 Quantity of amplification of light generated from the material

QUANTUM WELL DESIGN

structure. This design is the control sample when calculating gain and slope efficiency.

Fig. 1 Schematic for the baseline sample. This design

lacks additional monolayer barriers within its band

tı	Level/ ransition	τ (ps)	$\propto au_3 \left(1 - rac{ au_2}{ au_{32}} ight)$ (ps)	$\propto rac{ au_{eff}}{ au_{eff} + au_2}$	
	3	0.39	0.22	0.48	
	3→2	0.56		Slope	
	2→1	0.25	Gain	Efficiency	

Fig. 2 Schematic for the low inversion sample. This design possesses an additional monolayer barrier within its band structure which primarily affects the upper laser state. Notice the 40% decrease in gain when

compared to the baseline.							
Level/	τ	(τ_2)	$ au_{eff}$				
transition	(ps)	$\propto au_3 \left(1 - rac{ au_2}{ au_{32}} ight)$	$\propto rac{ au_{eff}}{ au_{eff}+ au_2}$				
		(ps)					
3	0.24	0.14	0.5				
3 → 2	0.33						
2 -> 1	0.14	Gain	Slope Efficiency				

Fig. 3 Schematic for the fast depopulation sample. This design possesses an additional monolayer barrier within its band structure which primarily affects the lower laser state. Notice the 60% increase in slope efficiency

	when compared to the baseline.			
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Level/ transition	τ (ps)		$\propto rac{ au_{eff}}{ au_{eff}+ au_2}$
			(ps)	
	3	0.33	0.28	0.78
agy Active	3→2	0.57		Slope
region Injector	2→1	0.09	Gain	Efficiency
N Distance				

RESULTS/DATA ANALYSIS

Fig. 4 Voltage versus current plot of various temperatures for the baseline sample (A), the low inversion sample (B), and the fast depopulation sample (C).

- Lines do not intersect throughout the entire temperature range for all samples
- Same conditions maintained for all measurements (eg. cryostat, resistors, cables)

Fig. 5 Electroluminescence plot temperatures at 80 K and 300 K for the baseline sample (A), the low inversion sample (B), and the fast depopulation sample (C).

Maintained same settings throughout the experiment (eg. sensitivity, cryostat, detector)

Area under the peak intensity curve is

Smaller HWHM suggests that, although the

width of the peak intensity curve is small, its

the device

Fig. 6 Comparison of differential resistance with respect to temperature for the three samples. Differential resistance was derived from current versus voltage plots.

- **Differential resistance** is defined as
 - $\triangle Voltage$ ∆ Current
- Differential resistance affects the speed at which carriers travel through the structure
- Low differential resistance makes it easier to transport an electron

Design

CONCLUSIONS

To increase optical gain,

$$gain = (N_3 - N_2) \sigma(v)$$

Equation that relates gain to population inversion and transition cross section

Based on the results found, optical gain has been improved in the Fast Depopulation sample.

OR

Based on these results, gain has been successfully engineered with the addition of rough interfaces.

FUTURE WORK

- ☐ Incorporate design into laser samples
- ☐ Experimentally test laser for gain and slope efficiency to determine viability of laser design

This material is based upon work supported by the National Science Foundation under Grant No. EEC-0540832.

