Devoir à la maison n°02

- ► Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.

Soit n un entier naturel impair. On pose $\omega=e^{\frac{2i\pi}{n}}$ et $G=\sum_{k=0}^{n-1}\omega^{k^2}$.

- 1. Soit $r\in\mathbb{Z}.$ Calculer $\sum_{k=0}^{n-1}\omega^{rk}$ selon les valeurs de r.
- $\textbf{2.} \ \ \text{Montrer que l'application} \ \varphi: \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{C} \\ k & \longmapsto & \omega^{k^2} \end{array} \right. \ \text{est n-périodique}.$
- 3. Soit $j\in\mathbb{Z}.$ Montrer que $\sum_{k=0}^{n-1}\omega^{(k+j)^2}=G.$
- **4.** Montrer que $G\overline{G} = n$ et en déduire |G|.

EXERCICE 2.

Pour $n \in \mathbb{N}$, on pose $S_n = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}$.

- **1.** Calculer S_0 , S_1 et S_2 .
- 2. Calculer les sommes $\sum_{k=0}^{n} \binom{n}{k}$ et $\sum_{k=0}^{n} 2^k$.
- **3.** En intervertissant l'ordre de sommation, calculer S_n pour tout $n \in \mathbb{N}$.

Exercice 3.

Dans tout l'énoncé, n désigne un entier naturel non nul. On pose

$$P_n = \prod_{k=1}^n (2k)$$
 et $Q_n = \prod_{k=1}^n (2k-1)$

- 1. Exprimer P_n en fonction de n.
- **2.** Que vaut P_nQ_n ?
- **3.** En déduire Q_n .