ĐỀ THI HỌC KỲ 2/2011-2012

Môn: Tín hiệu và hệ thống – ngày thi: 13/06/2012

Thời gian: 110 phút không kể chép đề

Bài 1. Cho hệ thống trên $\underline{H.1}$. (a) Hãy xác định và vẽ phổ $Y(\omega)$ của tín hiệu y(t); (b) Xác định và vẽ sơ đồ khối của hệ thống tách $m_1(t)$ và $m_2(t)$ từ y(t).

Bài 2. Cho hệ thống lấy mẫu lý tưởng với chu kỳ lấy mẫu T_s trên hình $\underline{H.2}$. (a) Theo định lý lấy mẫu thì chu kỳ lấy mẫu lớn nhất (T_{smax}) là bao nhiêu, vẽ $Y(\omega)$ tương ứng (b) Nếu $T_s=2\pi/\omega_2$, hãy xác định và vẽ $Y(\omega)$; (c) Xác định sơ đồ khối khôi phục lại f(t) từ y(t) cho cả hai trường hợp trong câu (a) và câu (b).

Bài 3. Để thực hiện một mạch điện tử tương đương dùng Op-amp cho một hệ thống LTI là "hộp đen" – chỉ biết ngõ vào và ra, hãy thực hiện các bước sau: (a) Cấp f(t)=u(t) vào ngõ vào và đo ngõ ra là $y(t)=[e^{-5t}-(2/\sqrt{3})\sin(5\sqrt{3}t)]e^{-5t}u(t)$, xác định hàm truyền H(s) của hệ thống; (b) Vẽ sơ đồ khối thực hiện hệ thống bằng 2 cách khác nhau; (c) Thực hiện hệ thống bằng mạch điện dùng Op-amp.

Bài 4. Vẽ đáp ứng biên độ và đáp ứng pha (biểu đồ Bode) của hệ thống LTI có hàm truyền:

$$H(s) = \frac{1000s^3}{(s+100)(s^2+100s+10^4)(s+1000)}$$

Bài 5. Xác định hàm truyền H(s) của bộ lọc thông thấp Butterworth có ω_p =1000 (rad/s), ω_s =5000 (rad/s), độ lợi trong dãi thông không nhỏ hơn G_p = -2dB và độ lợi trong dãi chắn không lớn hơn G_s = -55dB. Tính độ lợi nhỏ nhất trong dãi thông và độ lợi lớn nhất trong dãi chắn của bộ lọc đã được thiết kế.

Ghi chú: - Sinh viên không được sử dụng tài liệu, được xem bảng CT ở mặt sau của đề thi.

- Cán bộ coi thi không được giải thích đề thi

Cho biết:

A. Các cặp biến đổi Fourier thông dụng:

$$\delta(t) \leftrightarrow 1 \qquad rect\left(\frac{t}{\tau}\right) \leftrightarrow \tau \sin c\left(\frac{\omega \tau}{2}\right) \qquad \Delta\left(\frac{t}{\tau}\right) \leftrightarrow \frac{\tau}{2} \sin c^2\left(\frac{\omega \tau}{4}\right)$$

$$e^{-at}u(t); a > 0 \leftrightarrow \frac{1}{a+j\omega} \qquad t^n e^{-at}u(t); a > 0 \leftrightarrow \frac{n!}{\left(a+j\omega\right)^{n+1}} \qquad u(t) \leftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}$$

$$\cos \omega_0 t \leftrightarrow \pi [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \qquad \sin \omega_0 t \leftrightarrow j\pi [\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$$

B. Các cặp biến đổi Laplace thông dụng:

$$\delta(t) \leftrightarrow 1$$
 $u(t) \leftrightarrow \frac{1}{s}$ $e^{-at}u(t) \leftrightarrow \frac{1}{s+a}$ $\cos(bt)u(t) \leftrightarrow \frac{s}{s^2+b^2}$ $\sin(bt)u(t) \leftrightarrow \frac{b}{s^2+b^2}$

C. Bộ lọc thông thấp Butterworth:

- Đáp ứng biên độ:
$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

- Đa thức Butterworth cho ở dạng các hệ số:

n	a_1	a_2	a_3	a_4	a ₅
2	1.41421356				
3	2.00000000	2.00000000			
4	2.61312593	3.41421356	2.61312593		
5	3.23606798	5.23606798	5.23606798	3.23606798	
6	3.86370331	7.46410162	9.14162017	7.46410162	3.86370331

- Đa thức Butterworth cho ở dạng thừa số:

n	$B_n(s)$	
1	s+1	
2	$s^2 + 1.41421356s + 1$	
3	$(s+1)(s^2+s+1)$	
4	$(s^2 + 0.76536686s + 1)(s^2 + 1.84775907s + 1)$	
5	$(s+1)(s^2+0.61803399s+1)(s^2+1.931803399s+1)$	
6	$(s^2 + 0.51763809s + 1)(s^2 + 1.41421356s + 1)(s^2 + 1.93185165s + 1)$	