Pembahasan Kuis 1 Pengantar Analisis Fungsional T.A 2024/2025

Teosofi Hidayah Agung 5002221132

Departemen Matematika Institut Teknologi Sepuluh Nopember

Rabu, 9 April 2025

1/16

Teo (Matematika ITS) Pengantar Analisis Fungsional Rabu, 9 April 2025

Soal 1

Jika A subspace dari ℓ^{∞} yang terdiri dari semua barisan yang elemen-elemennya nol dan satu, maka dapatkan metrik terinduksi (induced metric) pada A.

Definisi 1

Ruang ℓ^{∞} didefinisikan sebagai himpunan semua barisan bilangan real (atau kompleks) $x=(x_n)_{n=1}^{\infty}$ yang **terbatas**, yaitu:

$$\ell^{\infty} = \left\{ (x_n)_{n=1}^{\infty} \left| \sup_{n \in \mathbb{N}} |x_n| < \infty \right. \right\}.$$

Teo (Matematika ITS) Pengantar Analisis Fungsional Rabu, 9 April 2025 2 / 16

Jawaban:

Misalkan $x_n, y_n \in A$, maka kita dapat didefinisikan fungsi jarak $d: A \times A \to \mathbb{R}$ sebagai berikut:

$$d(x_n, y_n) = \sup_{n \in \mathbb{N}} |x_n - y_n|$$

Lebih lanjut, karena barisan x_n dan y_n adalah barisan yang elemen-elemennya nol dan satu, maka berakibat

$$\sup_{n \in \mathbb{N}} |x_n - y_n| = \begin{cases} 0 & \text{ jika } x_n = y_n \\ 1 & \text{ jika } x_n \neq y_n \end{cases}$$

Teo (Matematika ITS)

3/16

Dengan demikian, kita dapat menyimpulkan bahwa d merupakan metrik pada A atau lebih tepatnya disebut **metrik diskrit**. Sehingga

$$d(x_n, y_n) = \begin{cases} 0 & \text{ jika } x_n = y_n \\ 1 & \text{ jika } x_n \neq y_n \end{cases}$$

merupakan metrik terinduksi pada A.

Soal 2

Dapatkan barisan yang konvergen ke nol, tetapi bukan anggota dari ℓ^p , $1 \le p < \infty$. Jelaskan jawaban anda.

Definisi 2

Ruang ℓ^p untuk $1 \leq p < \infty$ didefinisikan sebagai:

$$\ell^p = \left\{ x = (x_n)_{n=1}^{\infty} \left| \sum_{n=1}^{\infty} |x_n|^p < \infty \right. \right\}.$$

Jawaban:

Perhatikan barisan $x_n = \left(\frac{1}{\ln(n+1)}\right)_{n=1}^{\infty}$. Jelas bahwa $x_n \to 0$ ketika $n \to \infty$. Sekarang akan dibuktikan bahwa $x_n \notin \ell^p$ untuk $1 \le p < \infty$.

Teorema 1

Jika
$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$$
, maka untuk x yang cukup besar berlaku $|f(x)|<|g(x)|$

Bukti: Karena $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$, maka untuk setiap $\varepsilon>0$ terdapat N sehingga untuk semua

$$x>N$$
 berlaku $\left|rac{f(x)}{g(x)}
ight| Pilih $arepsilon=1$, maka terdapat N_1 sehingga untuk semua $x>N_1$$

berlaku
$$\left| \frac{f(x)}{g(x)} \right| < 1$$
. Dengan kata lain, untuk x yang besar berlaku $|f(x)| < |g(x)|$.

Sekarang tinjau untuk $1 \leq p < \infty$ dan dengan L'Hôpital, berlaku

$$\lim_{n \to \infty} \frac{\ln(n+1)^p}{n} = \lim_{n \to \infty} \frac{p \ln(n+1)^{p-1}}{n+1} = \dots = \lim_{n \to \infty} \frac{p!}{n} = 0$$

Dengan menggunakan Teorema sebelumnya didapatkan bahwa $\ln(n+1)^p < n$ atau $\frac{1}{\ln(n+1)^p} > \frac{1}{n}$ untuk n yang cukup besar. Karena kedua barisan monoton turun, misalkan saja untuk $n \leq M$ berlaku $\ln(n+1)^p \geq n$, maka

$$S_1 = \sum_{n=1}^{M} \frac{1}{\ln(n+1)^p} \le \sum_{n=1}^{M} \frac{1}{n} = S_2$$

Selanjutnya didefinisikan

$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)^p} = S_1 + \sum_{n=M+1}^{\infty} \frac{1}{\ln(n+1)^p}$$
 (1)

$$\sum_{n=1}^{\infty} \frac{1}{n} = S_2 + \sum_{n=M+1}^{\infty} \frac{1}{n} \tag{2}$$

Kemudian dari (1) dan (2) didapatkan hubungan

$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)^p} > S_1 + \sum_{n=M+1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n} + S_1 - S_2$$

Deret harmonik merupakan deret divergen, oleh karena itu

$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)^p} > \infty$$

untuk $1 \leq p < \infty$. Dengan demikian menggunakan uji banding biasa, didapat kesimpulan bahwa barisan $x_n = \left(\frac{1}{\ln(n+1)}\right)_{n=1}^{\infty}$ konvergen ke nol tetapi bukan anggota dari ℓ^p .

Soal 3

Diberikan A dan B himpunan bagian dari ruang metrik (X,d). Didefinisikan fungsi D dengan $D(A,B)=\inf_{\substack{a\in A\\b\in B}}d(a,b)$. Tunjukkan bahwa D tidak mendefinisikan metrik pada himpunan

kuasa (power set) dari X. Lebih lanjut, tunjukkan bahwa jika $A\cap B\neq\emptyset$ maka D(A,B)=0.

Definisi 3

Misalkan X merupakan himpunan tak kosong, maka *power set* atau **himpunan kuasa** dari X, dilambangkan dengan P(X) atau 2^X yang merupakan himpunan dari semua himpunan bagian dari X. Dengan kata lain, $P(X) = \{A \mid A \subseteq X\}$.

Nomor 3

Jawaban:

Untuk membuktikan bahwa D tidak mendefinisikan metrik pada himpunan kuasa dari X, kita perlu menunjukkan bahwa D tidak memenuhi salah satu aksioma metrik. Misalkan $A,B\in 2^X$ dengan $A\neq B$ namun $A\cap B\neq \emptyset$. Dengan kata lain terdapat x sehingga $x\in A$ dan $x\in B$. Oleh karenanya diperoleh

$$D(A,B) = \inf_{\substack{a \in A \\ b \in B}} d(a,b) \le d(x,x) = 0$$

Disisi lain, d merupakan metrik pada X sehingga $d(a,b) \geq 0$ untuk semua $a,b \in X$. Dengan demikian, kita dapat menyimpulkan bahwa

$$D(A,B)=0$$
, jika $A\cap B\neq\emptyset$

atau terdapat $A,B\in 2^X$ dengan $A\neq B$ tetapi D(A,B)=0. Hal ini tidak memenuhi aksioma metrik yang menyatakan bahwa d(a,b)=0 jika dan hanya jika a=b. Oleh karena itu, D tidak mendefinisikan metrik pada himpunan kuasa dari X.

Soal 4

Jika (x_n) dan (y_n) adalah barisan Cauchy di ruang metrik (X,d), tunjukkan bahwa (a_n) , dimana $a_n = d(x_n, y_n)$, konvergen. Berikan contoh ilustrasinya.

Definisi 4

Barisan (x_n) di ruang metrik (X,d) disebut **barisan Cauchy** jika untuk setiap $\varepsilon>0$ terdapat K sehingga untuk semua m,n>K berlaku $d(x_m,x_n)<\varepsilon$.

Jawaban:

Misalkan (x_n) dan (y_n) adalah barisan Cauchy di ruang metrik (X,d). Secara definisi (x_n) artinya untuk setiap $\varepsilon > 0$ terdapat K_1 sehingga untuk semua $m,n > K_1$ berlaku

$$d(x_m, x_n) < \varepsilon/2.$$

Demikian juga (y_n) Cauchy artinya untuk setiap $\varepsilon>0$ terdapat K_2 sehingga untuk semua $m,n>K_2$ berlaku

$$d(y_m, y_n) < \varepsilon/2.$$

Selanjutnya akan dibuktikan bahwa (a_n) konvergen di $\mathbb R$ dengan menggunakan fakta bahwa setiap barisan Cauchy di $\mathbb R$ pasti konvergen, maka cukup ditunjukkan bahwa (a_n) adalah barisan Cauchy di $\mathbb R$.

Perhatikan bahwa untuk setiap $\varepsilon>0$ dapat dipilih $K=\sup\{K_1,K_2\}$ sehingga untuk semua m,n>K berlaku

$$|a_{m} - a_{n}| = |d(x_{m}, y_{m}) - d(x_{n}, y_{n})|$$

$$\leq |d(x_{m}, x_{n}) + d(x_{n}, y_{m}) - d(y_{m}, y_{n})|$$

$$\leq |d(x_{m}, x_{n}) + d(x_{n}, y_{n}) + d(y_{n}, y_{m}) - d(y_{m}, y_{n})|$$

$$\leq d(x_{m}, x_{n}) + d(y_{m}, y_{n})$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Hal diatas menunjukkan bahwa (a_n) adalah barisan Cauchy di $\mathbb R$ terhadap metrik Euclidean. Oleh karena itu, (a_n) konvergen di $\mathbb R$.

Untuk ilustrasinya misalkan kita bekerja di ruang metrik (\mathbb{R},d) dengan d(x,y)=|x-y|, dan ambil:

$$x_n = 1 + \frac{1}{n} \quad \text{dan} \quad y_n = 3 - \frac{1}{n}$$

Keduanya adalah barisan Cauchy di \mathbb{R} , karena $(x_n) \to 1$ dan $(y_n) \to 3$ Sekarang lihat:

$$a_n = d(x_n, y_n) = |x_n - y_n| = \left| \left(1 + \frac{1}{n} \right) - \left(3 - \frac{1}{n} \right) \right| = \left| -2 + \frac{2}{n} \right| = 2 - \frac{2}{n} \to 2$$

Barisan $a_n = d(x_n, y_n)$ konvergen ke 2.

Figure: Ilustrasi barisan Cauchy (x_n) dan (y_n) di \mathbb{R} , serta jarak $a_n=d(x_n,y_n)$.