Question 1: (i) Find all the units of $Z_7[x]$. (ii) Check whether $Q \oplus Q$ is an integral domain or not. (iii) Give an example of a subring S of a ring R which is not an ideal of R. (iv) Prove that a ring homomorphism carries an idempotent to an idempotent. (v) Let ϕ be a ring homomorphism from a ring R to a ring S. If R has unity 1, S \neq {0} and ϕ is onto then prove that ϕ (1) is the unity of S. (vi) Let $f(x) = 2x^5 + 14x^2 - 21x + 7$. Is f(x) an irreducible polynomial over Q? Justify your answer. (vii) Let D be an integral domain. Suppose that p, q \in D and q \neq 0. Show that if p is not a unit, then $\langle p \rangle$ is a proper subset of $\langle q \rangle$. (viii) Explain why $3x^2 + 6$ is reducible over Z.

(i) The **units of** $Z_7[x]$ are the constant polynomials corresponding to the units of Z_7 . Since 7 is a prime number, every non-zero element in Z_7 is a unit. Therefore, the units of $Z_7[x]$ are **{1, 2, 3, 4, 5, 6}**.

(ii) Q ⊕ Q is not an integral domain.

- An integral domain is a commutative ring with unity and no zero divisors.
- While Q

 Q is a commutative ring with unity (1,1), it has zero divisors.
- For example, consider the non-zero elements (1, 0) and (0, 1) in Q ⊕ Q. Their product is (1, 0) * (0, 1) = (0, 0), which is the zero element.
 Since non-zero elements multiply to zero, Q ⊕ Q is not an integral domain.

(iii) An example of a subring S of a ring R which is not an ideal of R is:

- Let R be the ring of real numbers, \mathbb{R} .
- Let S be the set of integers, \mathbb{Z} .
- \mathbb{Z} is a subring of \mathbb{R} because it is closed under subtraction and multiplication, and contains 0.

• However, \mathbb{Z} is not an ideal of \mathbb{R} . For instance, take $r = \frac{1}{2} \in \mathbb{R}$ and $s = 3 \in \mathbb{Z}$. Their product $r \cdot s = \frac{1}{2} \cdot 3 = \frac{3}{2}$ is not an integer, so it is not in \mathbb{Z} . This violates the ideal property.

(iv) To prove that a **ring homomorphism carries an idempotent to an idempotent**:

- Let $\phi: R \to S$ be a ring homomorphism.
- Let $e \in R$ be an idempotent element, meaning $e^2 = e$.
- We need to show that $\phi(e)$ is an idempotent in S, i.e., $(\phi(e))^2 = \phi(e)$.
- Since ϕ is a ring homomorphism, it preserves multiplication: $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.
- Therefore, $(\phi(e))^2 = \phi(e)\phi(e) = \phi(e \cdot e)$.
- Because e is an idempotent, $e \cdot e = e$.
- So, $\phi(e \cdot e) = \phi(e)$.
- Thus, $(\phi(e))^2 = \phi(e)$, proving that $\phi(e)$ is an idempotent in S.
- (v) To prove that $\phi(1)$ is the unity of S when ϕ is an onto ring homomorphism from R with unity 1 to S \neq {0}:
 - Let 1 be the unity of R, so $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$.
 - We want to show that $\phi(1)$ is the unity of S. This means for any $s \in S$, $s \cdot \phi(1) = \phi(1) \cdot s = s$.
 - Since ϕ is onto, for any $s \in S$, there exists an $a \in R$ such that $\phi(a) = S$.
 - Consider the product $s \cdot \phi(1)$:

o
$$s \cdot \phi(1) = \phi(a) \cdot \phi(1)$$
 (since $s = \phi(a)$)

- $\circ = \phi(a \cdot 1)$ (since ϕ is a homomorphism)
- $\circ = \phi(a)$ (since 1 is the unity in R)
- $\circ = s$.
- Similarly, consider the product $\phi(1) \cdot s$:
 - $\circ \phi(1) \cdot s = \phi(1) \cdot \phi(a)$
 - $\circ = \phi(1 \cdot a)$
 - $\circ = \phi(a)$
 - $\circ = s$.
- Since $s \cdot \phi(1) = \phi(1) \cdot s = s$ for all $s \in S$, $\phi(1)$ is the unity of S.
- (vi) Yes, $f(x) = 2x^5 + 14x^2 21x + 7$ is an irreducible polynomial over Q.
 - We can use **Eisenstein's Criterion**. For $f(x) = 2x^5 + 0x^4 + 0x^3 + 14x^2 21x + 7$, let's consider the prime p = 7.

0

i. *p* divides all coefficients except the leading coefficient: 7 divides 14, -21, and 7.

0

ii. *p* does not divide the leading coefficient: 7 does not divide 2.

- iii. p^2 does not divide the constant term: $7^2 = 49$ does not divide 7.
- Since all conditions of Eisenstein's Criterion are met for p = 7, f(x) is irreducible over Q.

- (vii) The statement as written, "Let D be an integral domain. Suppose that p, $q \in D$ and $q \ne 0$. Show that if p is not a unit, then $\langle p \rangle$ is a proper subset of $\langle q \rangle$ ", is **not universally true**.
 - For example, in the integral domain \mathbb{Z} , let p=2 (not a unit) and q=3 (not a unit).
 - $\langle 2 \rangle = \{..., -4, -2, 0, 2, 4, ...\}$ (even integers).
 - $\langle 3 \rangle = \{..., -6, -3, 0, 3, 6, ...\}$ (multiples of 3).
 - Neither $\langle 2 \rangle \subset \langle 3 \rangle$ nor $\langle 3 \rangle \subset \langle 2 \rangle$.
 - The statement would be true if, for instance, q were a unit. If q is a unit, then ⟨q⟩ = D. If p is not a unit, then ⟨p⟩ ≠ D. In this specific case, ⟨p⟩ would be a proper subset of ⟨q⟩ = D. However, this condition on q is not given in the original question.
- (viii) $3x^2 + 6$ is reducible over Z because it is not a primitive polynomial.
 - A polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Z} if it can be factored into a product of two non-constant polynomials with integer coefficients, or if its coefficients have a common divisor greater than 1 (i.e., it's not primitive).
 - For $f(x) = 3x^2 + 6$, the coefficients (3 and 6) have a common divisor of 3 (which is greater than 1).
 - We can factor it as $3(x^2 + 2)$.
 - According to the definition of reducibility over Z (which requires a
 polynomial to be primitive to be considered irreducible), if the content
 (gcd of coefficients) is greater than 1, the polynomial is considered
 reducible.
 - Since the content of $3x^2 + 6$ is 3, it is reducible over \mathbb{Z} .

Question 2: (a) Prove that intersection of two subrings in a ring R is a subring of R. Is the union of two subrings necessarily a subring of R? Justify your answer. (b) Find all the units, zero divisors and idempotent elements in $Z_3 \oplus Z_6$. (c) Prove that Z_n , the ring of integers modulo n, is a field if and only if n is a prime.

(a)

- Proof that the intersection of two subrings in a ring R is a subring of R:
 - Let S_1 and S_2 be two subrings of a ring R. We want to show that $S_1 \cap S_2$ is a subring.

0

i. **Non-empty**: Since S_1 and S_2 are subrings, they both contain the additive identity 0 of R. Thus, $0 \in S_1 \cap S_2$, so the intersection is non-empty.

0

ii. Closure under subtraction: Let $a, b \in S_1 \cap S_2$. This means $a, b \in S_1$ and $a, b \in S_2$. Since S_1 is a subring, $a - b \in S_1$. Since S_2 is a subring, $a - b \in S_2$. Therefore, $a - b \in S_1 \cap S_2$.

0

- iii. Closure under multiplication: Let $a, b \in S_1 \cap S_2$. This means $a, b \in S_1$ and $a, b \in S_2$. Since S_1 is a subring, $a \cdot b \in S_1$. Since S_2 is a subring, $a \cdot b \in S_2$. Therefore, $a \cdot b \in S_1 \cap S_2$.
- Since all conditions are satisfied, $S_1 \cap S_2$ is a subring of R.
- Is the union of two subrings necessarily a subring of R? No, the union of two subrings is not necessarily a subring of R.
 - o **Justification**: Consider the ring \mathbb{Z}_6 .

- Let $S_1 = \{0,2,4\}$ be a subring of \mathbb{Z}_6 .
- Let $S_2 = \{0,3\}$ be a subring of \mathbb{Z}_6 .
- The union is $S_1 \cup S_2 = \{0,2,3,4\}$.
- \circ For $S_1 \cup S_2$ to be a subring, it must be closed under addition.
- Consider $2 \in S_1 \cup S_2$ and $3 \in S_1 \cup S_2$.
- o Their sum is $2 + 3 = 5 \pmod{6}$.
- However, $5 \notin S_1 \cup S_2$.
- Thus, $S_1 \cup S_2$ is not closed under addition, and therefore it is not a subring of \mathbb{Z}_6 .
- (b) To find all the units, zero divisors, and idempotent elements in $Z_3 \oplus Z_6$:
 - **Units**: An element $(a, b) \in \mathbb{Z}_3 \oplus \mathbb{Z}_6$ is a unit if and only if a is a unit in \mathbb{Z}_3 and b is a unit in \mathbb{Z}_6 .
 - o Units in \mathbb{Z}_3 : {1,2}
 - o Units in \mathbb{Z}_6 : {1,5} (elements coprime to 6)
 - o The units in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ are: (1, 1), (1, 5), (2, 1), (2, 5). There are $2 \times 2 = 4$ units.
 - **Zero Divisors**: An element $(a,b) \in \mathbb{Z}_3 \oplus \mathbb{Z}_6$ is a zero divisor if $(a,b) \neq (0,0)$ and (a,b)(c,d) = (0,0) for some $(c,d) \neq (0,0)$. This occurs if a=0 and b is a zero divisor in \mathbb{Z}_6 , or if b=0 and a is a zero divisor in \mathbb{Z}_6 , or if $b\neq 0$ and a is a zero divisor in \mathbb{Z}_6 , or if $b\neq 0$ and a is a zero divisor in \mathbb{Z}_3 .
 - \circ \mathbb{Z}_3 is a field, so it has no non-zero zero divisors.
 - o Zero divisors in \mathbb{Z}_6 : {2,3,4}.
 - The zero divisors in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ are:

- Elements where a=0 and b is a non-unit and $b\neq 0$: (0, 2), (0, 3), (0, 4).
- Elements where $a \neq 0$ and b is a zero divisor in \mathbb{Z}_6 : (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4).
- o The zero divisors are: (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4). There are 3 + 6 = 9 zero divisors.
- **Idempotent Elements**: An element $(a,b) \in \mathbb{Z}_3 \oplus \mathbb{Z}_6$ is idempotent if $(a,b)^2 = (a,b)$, which means $a^2 = a$ in \mathbb{Z}_3 and $b^2 = b$ in \mathbb{Z}_6 .
 - o Idempotents in \mathbb{Z}_3 : $0^2=0$, $1^2=1$, $2^2=4\equiv 1 \pmod 3$. So, $\{0,1\}.$
 - o Idempotents in \mathbb{Z}_6 : $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 9 \equiv 3 \pmod{6}$, $4^2 = 16 \equiv 4 \pmod{6}$, $5^2 = 25 \equiv 1 \pmod{6}$. So, $\{0,1,3,4\}$.
 - o The idempotent elements in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ are:
 - **•** (0, 0), (0, 1), (0, 3), (0, 4)
 - **1** (1, 0), (1, 1), (1, 3), (1, 4)
 - \circ There are $2 \times 4 = 8$ idempotent elements.
- (c) To prove that \mathbb{Z}_n , the ring of integers modulo n, is a field if and only if n is a prime:
 - Part 1: If n is prime, then \mathbb{Z}_n is a field.
 - o Assume n is a prime number. \mathbb{Z}_n is a commutative ring with unity [1].
 - To show it's a field, we must show every non-zero element has a multiplicative inverse.
 - Let [a] be a non-zero element in \mathbb{Z}_n , so $a \in \{1,2,\ldots,n-1\}$.
 - O Since n is prime and a is between 1 and n-1, gcd(a,n)=1.

- o By Bezout's identity, there exist integers x and y such that ax + ny = 1.
- o Taking this equation modulo n, we get $ax \equiv 1 \pmod{n}$.
- o This means [x] is the multiplicative inverse of [a] in \mathbb{Z}_n .
- o Since every non-zero element has an inverse, \mathbb{Z}_n is a field.
- Part 2: If \mathbb{Z}_n is a field, then n is prime.
 - o Assume \mathbb{Z}_n is a field. A field has no non-zero zero divisors.
 - \circ Suppose, for contradiction, that n is a composite number.
 - O Then n can be written as n = ab for some integers a and b where 1 < a < n and 1 < b < n.
 - o Consider the elements [a] and [b] in \mathbb{Z}_n . Since 1 < a < n and 1 < b < n, neither [a] nor [b] is the zero element [0] in \mathbb{Z}_n .
 - O However, their product [a][b] = [ab] = [n] = [0] in \mathbb{Z}_n .
 - o This implies that [a] and [b] are non-zero zero divisors in \mathbb{Z}_n , which contradicts the fact that \mathbb{Z}_n is a field.
 - \circ Therefore, our assumption that n is composite must be false. Hence, n must be a prime number.
- From both parts, \mathbb{Z}_n is a field if and only if n is a prime.

Question 3: (a) Let R be a commutative ring with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under multiplication. Also, find U(Z[i]). (b) Define the characteristic of a ring. Prove that the characteristic of an integral domain is either 0 or prime. (c) Prove that in a commutative ring R with unity, an ideal A is a maximal ideal if and only if R/A is a field.

(a)

- Proof that U(R) is a group under multiplication:
 - Let U(R) be the set of units in a commutative ring R with unity
 1.

0

i. **Closure**: Let $a, b \in U(R)$. This means $a^{-1}, b^{-1} \in R$. Consider the product ab. We need to show $ab \in U(R)$. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a(1)a^{-1} = aa^{-1} = 1$. Similarly, $(b^{-1}a^{-1})(ab) = 1$. So, $(ab)^{-1} = b^{-1}a^{-1}$ exists in R, and thus $ab \in U(R)$.

0

ii. **Associativity**: Multiplication in R is associative, and U(R) is a subset of R, so multiplication is associative in U(R).

0

iii. **Identity Element**: Since R has unity 1, and $1 \cdot 1 = 1$, 1 has an inverse (itself). Thus, $1 \in U(R)$.

0

- iv. **Inverse Element**: By definition, every element $a \in U(R)$ has a multiplicative inverse $a^{-1} \in R$. We need to show $a^{-1} \in U(R)$. Since $a^{-1} \cdot a = 1$ and $a \cdot a^{-1} = 1$, a^{-1} has an inverse (which is a). Thus, $a^{-1} \in U(R)$.
- o Therefore, U(R) is a group under multiplication.
- Finding U(Z[i]):
 - Z[i] is the ring of Gaussian integers, $\{a + bi \mid a, b \in \mathbb{Z}\}$.
 - o An element z = a + bi is a unit in Z[i] if there exists $w = c + di \in \mathbb{Z}[i]$ such that zw = 1.
 - o Taking the norm of both sides: $N(zw) = N(1) \Rightarrow N(z)N(w) = 1$.

- The norm $N(a + bi) = a^2 + b^2$. Since a, b, c, d are integers, $a^2 + b^2$ and $c^2 + d^2$ are non-negative integers.
- o For their product to be 1, both must be 1. So, $a^2 + b^2 = 1$.
- o Integer solutions for $a^2 + b^2 = 1$ are:
 - If $a = \pm 1$, then b = 0, giving units 1 and -1.
 - If a = 0, then $b = \pm 1$, giving units i and -i.
- Thus, **U(Z[i]) = {1, -1, i, -i}**.

(b)

- Definition of the Characteristic of a Ring:
 - o The **characteristic of a ring R**, denoted as char(R), is the smallest positive integer n such that $n \cdot x = 0$ for all $x \in R$ (where $n \cdot x$ means x added to itself n times).
 - If no such positive integer exists, the characteristic is defined to be 0.
- Proof that the characteristic of an integral domain is either 0 or prime:
 - o Let D be an integral domain.
 - \circ Case 1: char(D) = 0. If no such positive integer n exists, the characteristic is 0 by definition. This satisfies the condition.
 - Case 2: char(D) = n > 0.
 - Since D is an integral domain, it has a unity element 1.
 - By definition of characteristic, $n \cdot 1 = 0$.
 - Assume, for contradiction, that n is composite. So n = ab for some integers a, b where 1 < a < n and 1 < b < n.

- Then $n \cdot 1 = (ab) \cdot 1 = 0$. This can be rewritten as $(a \cdot 1)(b \cdot 1) = 0$.
- Since D is an integral domain, it has no zero divisors. Thus, if $(a \cdot 1)(b \cdot 1) = 0$, then either $a \cdot 1 = 0$ or $b \cdot 1 = 0$.
- If $a \cdot 1 = 0$, then a must be a multiple of the characteristic n. But 1 < a < n, which is a contradiction.
- If $b \cdot 1 = 0$, then b must be a multiple of the characteristic n. But 1 < b < n, which is also a contradiction.
- Since assuming n is composite leads to a contradiction, n must be a prime number.
- Therefore, the characteristic of an integral domain is either 0 or a prime number.
- (c) To prove that in a commutative ring R with unity, an ideal A is a maximal ideal if and only if R/A is a field:
 - Part 1: If A is a maximal ideal, then R/A is a field.
 - Assume A is a maximal ideal in a commutative ring R with unity.
 - Since A is maximal, it is a proper ideal, so $A \neq R$, which means R/A is not the zero ring and contains unity 1 + A.
 - \circ R/A is a commutative ring with unity. To show it's a field, we need every non-zero element to have a multiplicative inverse.
 - Let x + A be a non-zero element in R/A, meaning $x \notin A$.
 - Consider the ideal $J = A + \langle x \rangle = \{a + rx \mid a \in A, r \in R\}$.
 - Since $x \notin A$, A is strictly contained in J ($A \subsetneq J$).
 - As A is maximal, and J is an ideal containing A, it must be that J = R.

- Since $1 \in R$, we have $1 \in J$, so 1 = a + rx for some $a \in A$ and $r \in R$.
- o In R/A, this equation becomes 1 + A = (a + rx) + A.
- \circ Since $a \in A$, a + A = 0 + A.
- o So, 1 + A = rx + A = (r + A)(x + A).
- \circ This shows that (r + A) is the multiplicative inverse of (x + A).
- \circ Thus, every non-zero element in R/A has an inverse, so R/A is a field.

Part 2: If R/A is a field, then A is a maximal ideal.

- \circ Assume R/A is a field.
- Since R/A is a field, it is not the zero ring, so $A \neq R$, meaning A is a proper ideal.
- Let B be an ideal of R such that $A \subseteq B \subseteq R$. We want to show that either B = A or B = R.
- o If A = B, we are done.
- Assume $A \subsetneq B$. This means there exists an element $b \in B$ such that $b \notin A$.
- Consider the element $b + A \in R/A$. Since $b \notin A$, b + A is a non-zero element in R/A.
- Since R/A is a field, b+A must have a multiplicative inverse, say r+A, for some $r \in R$.
- So, (b+A)(r+A) = 1 + A. This means br + A = 1 + A, which implies $1 br \in A$.
- Since $b \in B$ and $r \in R$, and B is an ideal, $br \in B$.
- Since $1 br \in A$ and $A \subseteq B$, we have $1 br \in B$.

- Now, since $br \in B$ and $1 br \in B$, their sum (br) + (1 br) = 1 must be in B.
- Since $1 \in B$ and B is an ideal, for any $x \in R$, $x \cdot 1 = x \in B$.
- o Thus, $R \subseteq B$. Since $B \subseteq R$, we have B = R.
- o Therefore, A is a maximal ideal.

Question 4: (a) Prove that the ideal $\langle x \rangle$ is a prime ideal in Z[x] but not a maximal ideal in Z[x]. (b) Let ϕ be a ring homomorphism from a ring R onto a ring S. Prove that R/Ker $\phi \approx S$. (c) Determine all ring homomorphisms from $Z_4 \to Z_{10}$. (b) Let $f(x) = 5x^4 + 3x^3 + 1$ and $g(x) = 3x^2 + 2x + 1 \in Z_7[x]$. Determine the quotient and remainder obtained when f(x) is divided by g(x). (c) Prove that the product of two primitive polynomials is a primitive polynomial.

- (a) To prove that the ideal $\langle x \rangle$ is a prime ideal in Z[x] but not a maximal ideal in Z[x]:
 - $\langle x \rangle$ is a prime ideal:
 - An ideal P is prime if and only if the quotient ring R/P is an integral domain.
 - o Consider the evaluation homomorphism $\psi: \mathbb{Z}[x] \to \mathbb{Z}$ defined by $\psi(f(x)) = f(0)$.
 - o The kernel of this homomorphism is $Ker(\psi) = \{f(x) \in \mathbb{Z}[x] \mid f(0) = 0\}$, which is precisely the set of polynomials whose constant term is 0. These are exactly the multiples of x, so $Ker(\psi) = \langle x \rangle$.
 - o By the First Isomorphism Theorem for Rings, $\mathbb{Z}[x]/\text{Ker}(\psi) \cong \text{Im}(\psi)$.
 - o The image of ψ is all of \mathbb{Z} (since for any integer k, the constant polynomial f(x) = k maps to k).

- o So, $\mathbb{Z}[x]/\langle x\rangle \cong \mathbb{Z}$.
- o Since \mathbb{Z} is an integral domain (it's a commutative ring with unity and no zero divisors), it follows that $\langle x \rangle$ is a prime ideal in $\mathbb{Z}[x]$.

\(\chi\x\)\) is not a maximal ideal:

- An ideal M is maximal if and only if the quotient ring R/M is a field.
- o From the previous point, we know that $\mathbb{Z}[x]/\langle x\rangle \cong \mathbb{Z}$.
- o However, \mathbb{Z} is not a field (e.g., 2 has no multiplicative inverse in \mathbb{Z}).
- o Therefore, $\langle x \rangle$ is not a maximal ideal in $\mathbb{Z}[x]$.
- O Alternatively, to show it's not maximal, we can find an ideal I such that $\langle x \rangle \subsetneq I \subsetneq \mathbb{Z}[x]$.
- o Consider the ideal $I = \langle x, 2 \rangle$. This ideal consists of all polynomials in $\mathbb{Z}[x]$ whose constant term is an even integer.
- Clearly, $\langle x \rangle \subseteq \langle x, 2 \rangle$ (e.g., $2 \in \langle x, 2 \rangle$ but $2 \notin \langle x \rangle$).
- Also, $\langle x, 2 \rangle \subsetneq \mathbb{Z}[x]$ (e.g., $1 \in \mathbb{Z}[x]$ but $1 \notin \langle x, 2 \rangle$).
- o Since we found such an ideal I, $\langle x \rangle$ is not a maximal ideal.

(b) To prove that **R/Ker** $\phi \cong$ **S** for a ring homomorphism ϕ from R onto S:

- This is the First Isomorphism Theorem for Rings.
- Let $\phi: R \to S$ be an onto ring homomorphism.
- Let $Ker(\phi) = \{r \in R \mid \phi(r) = 0_S\}$ be the kernel of ϕ . We know $Ker(\phi)$ is an ideal of R.
- Define a map $\bar{\phi}$: $R/\text{Ker}(\phi) \to S$ by $\bar{\phi}(r + \text{Ker}(\phi)) = \phi(r)$.

i. **Well-defined**: If $r + \operatorname{Ker}(\phi) = r' + \operatorname{Ker}(\phi)$, then $r - r' \in \operatorname{Ker}(\phi)$. Thus $\phi(r - r') = 0_S$. Since ϕ is a homomorphism, $\phi(r) - \phi(r') = 0_S$, which means $\phi(r) = \phi(r')$. So $\bar{\phi}(r + \operatorname{Ker}(\phi)) = \bar{\phi}(r' + \operatorname{Ker}(\phi))$, making it well-defined.

0

- ii. Homomorphism:
- $\bar{\phi}((r+\operatorname{Ker}(\phi))+(r'+\operatorname{Ker}(\phi)))=\bar{\phi}((r+r')+\operatorname{Ker}(\phi))=\phi(r+r')=\phi(r)+\phi(r')=\bar{\phi}(r+\operatorname{Ker}(\phi))+\bar{\phi}(r'+\operatorname{Ker}(\phi)).$ (Preserves addition)
- $\bar{\phi}((r + \text{Ker}(\phi))(r' + \text{Ker}(\phi))) = \bar{\phi}(rr' + \text{Ker}(\phi)) = \phi(rr') = \phi(r)\phi(r') = \bar{\phi}(r + \text{Ker}(\phi))\bar{\phi}(r' + \text{Ker}(\phi)).$ (Preserves multiplication)

0

iii. **Injective (One-to-one)**: Suppose $\bar{\phi}(r + \text{Ker}(\phi)) = 0_S$. By definition, $\phi(r) = 0_S$. This means $r \in \text{Ker}(\phi)$. If $r \in \text{Ker}(\phi)$, then $r + \text{Ker}(\phi) = 0 + \text{Ker}(\phi)$, the zero element in $R/\text{Ker}(\phi)$. Thus, $\bar{\phi}$ is injective.

- iv. **Surjective (Onto)**: Since $\phi: R \to S$ is onto, for any $s \in S$, there exists an $r \in R$ such that $\phi(r) = s$. Then, $\bar{\phi}(r + \text{Ker}(\phi)) = \phi(r) = s$. So $\bar{\phi}$ is surjective.
- Since $\bar{\phi}$ is a well-defined, injective, and surjective ring homomorphism, it is an isomorphism. Therefore, $R/\text{Ker}(\phi) \cong S$.
- (c) To determine all ring homomorphisms from $Z_4 \rightarrow Z_{10}$:
 - Let $\phi: \mathbb{Z}_4 \to \mathbb{Z}_{10}$ be a ring homomorphism.

- A ring homomorphism must map the additive identity to the additive identity, so $\phi(0) = 0$.
- It must also map the unity of the domain to an idempotent element in the codomain. Let $\phi(1) = e$. Then $e^2 = e$ in \mathbb{Z}_{10} .
- The idempotent elements in \mathbb{Z}_{10} are: 0,1,5,6.
- Additionally, in \mathbb{Z}_4 , we know $4 \cdot 1 = 0$. Applying the homomorphism:
 - $\phi(4 \cdot 1) = \phi(0) = 0.$
 - o Also, $\phi(4 \cdot 1) = 4 \cdot \phi(1) = 4e$.
 - So, $4e \equiv 0 \pmod{10}$.
- Let's check each possible idempotent *e*:

0

i. If e=0: $4\cdot 0=0 \pmod{10}$. This is valid. In this case, $\phi(k)=k\cdot \phi(1)=k\cdot 0=0$ for all $k\in \mathbb{Z}_4$. This is the **trivial homomorphism**.

0

ii. If e = 1: $4 \cdot 1 = 4 \pmod{10}$. Since $4 \neq 0$, this is not a valid homomorphism.

- iii. If e=5: $4\cdot 5=20 \pmod{10}$. Since $20\equiv 0$, this is valid. In this case, $\phi(k)=k\cdot \phi(1)=5k \pmod{10}$.
- $\phi(0) = 0$
- $\phi(1) = 5$
- $\phi(2) = 10 \equiv 0$
- $\phi(3) = 15 \equiv 5$ This is a **valid homomorphism**.

0

- iv. If e = 6: $4 \cdot 6 = 24 \pmod{10}$. Since $24 \equiv 4 \neq 0$, this is not a valid homomorphism.
- Therefore, there are **two ring homomorphisms** from \mathbb{Z}_4 to \mathbb{Z}_{10} :

C

i. $\phi_1(k) = 0$ for all $k \in \mathbb{Z}_4$.

0

- ii. $\phi_2(k) = 5k \pmod{10}$ for all $k \in \mathbb{Z}_4$.
- (b) To determine the quotient and remainder obtained when $f(x) = 5x^4 + 3x^3 + 1$ is divided by $g(x) = 3x^2 + 2x + 1$ in $Z_7[x]$:
 - We perform polynomial long division in $\mathbb{Z}_7[x]$. First, find the inverse of the leading coefficient of g(x), which is $3^{-1} \pmod{7}$. Since $3 \cdot 5 = 15 \equiv 1 \pmod{7}$, $3^{-1} = 5$.
 - **Step 1**: Divide $5x^4$ by $3x^2$. The coefficient is $5 \cdot 3^{-1} = 5 \cdot 5 = 25 \equiv 4 \pmod{7}$. So the first term of the quotient is $4x^2$.
 - $4x^{2}(3x^{2} + 2x + 1) = 12x^{4} + 8x^{3} + 4x^{2} \equiv 5x^{4} + x^{3} + 4x^{2} \pmod{7}.$
 - o Subtract this from f(x): $(5x^4 + 3x^3 + 0x^2 + 0x + 1) (5x^4 + x^3 + 4x^2) = (3 1)x^3 + (0 4)x^2 + 0x + 1 = 2x^3 4x^2 + 1 \equiv 2x^3 + 3x^2 + 1 \pmod{7}$.
 - **Step 2**: Divide $2x^3$ by $3x^2$. The coefficient is $2 \cdot 3^{-1} = 2 \cdot 5 = 10 \equiv 3 \pmod{7}$. So the next term of the quotient is 3x.
 - $3x(3x^2 + 2x + 1) = 9x^3 + 6x^2 + 3x \equiv 2x^3 + 6x^2 + 3x \pmod{7}.$
 - o Subtract this from the current remainder: $(2x^3 + 3x^2 + 0x + 1) (2x^3 + 6x^2 + 3x) = (3 6)x^2 + (0 3)x + 1 = -3x^2 3x + 1 = 4x^2 + 4x + 1 \pmod{7}$.

- **Step 3**: Divide $4x^2$ by $3x^2$. The coefficient is $4 \cdot 3^{-1} = 4 \cdot 5 = 20 \equiv 6 \pmod{7}$. So the next term of the quotient is 6.
 - o $6(3x^2 + 2x + 1) = 18x^2 + 12x + 6 \equiv 4x^2 + 5x + 6 \pmod{7}$.
 - O Subtract this from the current remainder: $(4x^2 + 4x + 1) (4x^2 + 5x + 6) = (4 5)x + (1 6) = -x 5 \equiv 6x + 2 \pmod{7}$.
- The degree of the remainder (6x + 2) is 1, which is less than the degree of the divisor g(x) (which is 2).
- Therefore, the **quotient is** $q(x) = 4x^2 + 3x + 6$ and the **remainder is** r(x) = 6x + 2.
- (c) To prove that the **product of two primitive polynomials is a primitive polynomial**:
 - **Definition**: A polynomial $f(x) \in \mathbb{Z}[x]$ is primitive if the greatest common divisor of its coefficients is 1.
 - **Proof**: Let f(x) and g(x) be two primitive polynomials in $\mathbb{Z}[x]$.
 - Assume, for contradiction, that their product h(x) = f(x)g(x) is not primitive.
 - If h(x) is not primitive, then there exists a prime number p that divides all coefficients of h(x).
 - Consider the homomorphism $\phi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ which reduces coefficients modulo p.
 - Since p divides all coefficients of h(x), $\phi_p(h(x)) = \bar{h}(x) = \bar{0}$ (the zero polynomial in $\mathbb{Z}_p[x]$).
 - Since ϕ_p is a homomorphism, $\phi_p(f(x)g(x)) = \phi_p(f(x))\phi_p(g(x))$.
 - So, $\bar{f}(x)\bar{g}(x) = \bar{h}(x) = \bar{0}$.

- Since p is prime, \mathbb{Z}_p is a field. Consequently, $\mathbb{Z}_p[x]$ is an integral domain (polynomial ring over a field).
- In an integral domain, if a product is zero, at least one of the factors must be zero. Thus, either $\bar{f}(x) = \bar{0}$ or $\bar{g}(x) = \bar{0}$.
- If $\bar{f}(x) = \bar{0}$, it means all coefficients of f(x) are divisible by p. This contradicts the assumption that f(x) is primitive.
- Similarly, if $\bar{g}(x) = \bar{0}$, it means all coefficients of g(x) are divisible by p. This contradicts the assumption that g(x) is primitive.
- Since both possibilities lead to a contradiction, our initial assumption that h(x) is not primitive must be false.
- Therefore, the product of two primitive polynomials is a primitive polynomial (this is known as Gauss's Lemma).

Question 5: (a) Let F be a field and let $I = \{a_0 + a_1x + ... + a_nx^n : a_0, a_1,..., a_n \in F \text{ and } a_0 + a_1 + ... + a_n = 0\}$. Show that I is an ideal of F[x] and find a generator for I.

(a) To show that I is an ideal of F[x] and find a generator for I:

Showing I is an ideal:

- o Consider the evaluation homomorphism $\phi: F[x] \to F$ defined by $\phi(p(x)) = p(1)$. This map sends a polynomial to the sum of its coefficients (when coefficients are treated as elements in F).
- The set I is precisely the set of polynomials $p(x) \in F[x]$ such that p(1) = 0.
- o Therefore, I is the **kernel of the homomorphism** ϕ , i.e., $I = \text{Ker}(\phi)$.
- O Since the kernel of any ring homomorphism is an ideal, I is an ideal of F[x].

Finding a generator for I:

- o By the **Factor Theorem**, if p(1) = 0, then (x 1) is a factor of p(x).
- \circ Since F is a field, F[x] is a Principal Ideal Domain (PID), meaning every ideal can be generated by a single element.
- \circ The polynomials in I are exactly those divisible by (x-1).
- The polynomial (x 1) itself is in I, since its coefficients sum to 1 + (-1) = 0.
- o Therefore, the ideal I is generated by $(\mathbf{x} \mathbf{1})$. So, $I = \langle x 1 \rangle$.

Question 6: (a) Show that $p(x) = x^3 + x + 1$ is an irreducible polynomial over Z_2 . Let $M = \langle x^3 + x + 1 \rangle$ be an ideal of $Z_2[x]$. Show that $F = Z_2[x] / M$ is a field of order 8. Exhibit all the 8 elements of F. Find the product of $x^2 + x + 1 + M$ and $x^2 + 1 + M$ and express it as a member of F. (b) In a principal ideal domain, prove that the element is irreducible if and only if it is prime. (c) Show that integral domain Z[t] is Euclidean Domain. Is Z[i] a Unique Factorization Domain? Justify.

(a)

• Show that $p(x) = x^3 + x + 1$ is an irreducible polynomial over Z_2 :

- A polynomial of degree 3 is irreducible over a field if and only if it has no roots in that field.
- \circ The elements of \mathbb{Z}_2 are 0 and 1.
- $\circ \ \ p(0) = 0^3 + 0 + 1 = 1 \ (\text{mod } 2) \neq 0.$
- $p(1) = 1^3 + 1 + 1 = 3 \equiv 1 \pmod{2} \neq 0.$
- O Since p(x) has no roots in \mathbb{Z}_2 , and its degree is 3, it is irreducible over \mathbb{Z}_2 .

Show that F = Z₂[x] / M is a field of order 8:

- o For a field F and an ideal $M = \langle p(x) \rangle$ where $p(x) \in F[x]$, the quotient ring F[x]/M is a field if and only if p(x) is an irreducible polynomial over F.
- O Since $p(x) = x^3 + x + 1$ is irreducible over \mathbb{Z}_2 , $F = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ is a field.
- The elements of this field are polynomials modulo p(x), meaning they are represented by polynomials with degree less than deg(p(x)) = 3.
- o These elements are of the form $a_2x^2 + a_1x + a_0$, where $a_0, a_1, a_2 \in \mathbb{Z}_2 = \{0,1\}.$
- O There are $2 \times 2 \times 2 = 2^3 = 8$ possible combinations for the coefficients.
- o Thus, F is a field of order 8.

• Exhibit all the 8 elements of F:

- The elements are of the form $a_2x^2 + a_1x + a_0 + M$:
 - -0+M
 - 1 + M
 - \blacksquare x + M
 - x + 1 + M
 - $x^2 + M$
 - $x^2 + 1 + M$
 - $x^2 + x + M$
 - $x^2 + x + 1 + M$

- Find the product of $x^2 + x + 1 + M$ and $x^2 + 1 + M$ and express it as a member of F:
 - o Let $A = x^2 + x + 1 + M$ and $B = x^2 + 1 + M$.
 - o First, multiply the polynomials $(x^2 + x + 1)$ and $(x^2 + 1)$ in $\mathbb{Z}_2[x]$: $(x^2 + x + 1)(x^2 + 1) = x^2(x^2 + 1) + x(x^2 + 1) + 1(x^2 + 1) = x^4 + x^2 + x^3 + x + x^2 + 1 = x^4 + x^3 + (x^2 + x^2) + x + 1 = x^4 + x^3 + 0x^2 + x + 1$ (since 1 + 1 = 0 in \mathbb{Z}_2) = $x^4 + x^3 + x^3 + x + 1$.
 - O Now, we reduce this polynomial modulo $M = \langle x^3 + x + 1 \rangle$.
 - o The relation we use is $x^3 + x + 1 = 0 \pmod{M}$, which implies $x^3 = x + 1 \pmod{M}$ (since adding or subtracting 1 is the same in \mathbb{Z}_2).
 - $x^4 + x^3 + x + 1 = x(x^3) + x^3 + x + 1$
 - O Substitute $x^3 = x + 1$: $= x(x + 1) + (x + 1) + x + 1 = x^2 + x + x + 1 + x + 1 = x^2 + (x + x + x) + (1 + 1) = x^2 + 3x + 2 = x^2 + x + 0$ (since $3 \equiv 1 \pmod{2}$ and $2 \equiv 0 \pmod{2}$) $= x^2 + x$.
 - o Therefore, the product is $x^2 + x + M$.
- (b) To prove that in a principal ideal domain, an element is irreducible if and only if it is prime:
 - Definitions:
 - O An element p in an integral domain D is **irreducible** if p is a non-zero, non-unit element, and whenever p = ab, then either a is a unit or b is a unit.
 - O An element p in an integral domain D is **prime** if p is a non-zero, non-unit element, and whenever p divides ab, then p divides a or p divides b.
 - A Principal Ideal Domain (PID) is an integral domain where every ideal is principal (generated by a single element).

Proof:

- Part 1: If p is prime, then p is irreducible.
 - Let p be a prime element in a PID D. Assume p = ab for some $a, b \in D$.
 - Since p divides ab and p is prime, by definition, p divides a or p divides b.
 - Without loss of generality, assume p divides a. So, a = pc for some $c \in D$.
 - Substituting this into p = ab: p = (pc)b = pcb.
 - Since D is an integral domain and $p \neq 0$, we can cancel p: 1 = cb.
 - This means *b* is a unit (with inverse *c*).
 - Therefore, if *p* is prime, it is irreducible. (This part holds in any integral domain, not just PIDs).
- Part 2: If p is irreducible, then p is prime.
 - Let p be an irreducible element in a PID D. Assume p divides ab for some $a, b \in D$.
 - We need to show that p divides a or p divides b.
 - Consider the ideal $\langle p \rangle$.
 - In a PID, an ideal (p) is maximal if and only if p is irreducible.
 - We know that in any commutative ring with unity, every maximal ideal is also a prime ideal.
 - Therefore, if p is irreducible in a PID, then $\langle p \rangle$ is a maximal ideal, which implies $\langle p \rangle$ is also a prime ideal.

- By the definition of a prime ideal, since $ab \in \langle p \rangle$ (because p divides ab), it follows that $a \in \langle p \rangle$ or $b \in \langle p \rangle$.
- If $a \in \langle p \rangle$, then p divides a.
- If $b \in \langle p \rangle$, then p divides b.
- Thus, p divides a or p divides b. Hence, p is prime.
- Combining both parts, in a PID, an element is irreducible if and only if it is prime.

(c) Show that integral domain Z[t] is Euclidean Domain. Is Z[i] a Unique Factorization Domain? Justify.

- Z[t] is NOT a Euclidean Domain.
 - O A Euclidean Domain is an integral domain where a Euclidean algorithm (like polynomial long division) can be performed. This requires that for any $f(t), g(t) \in Z[t]$ with $g(t) \neq 0$, we can find $q(t), r(t) \in Z[t]$ such that f(t) = q(t)g(t) + r(t), where r(t) = 0 or $\deg(r(t)) < \deg(g(t))$.
 - The standard degree function works for polynomial rings over a field (like F[t]), but not for Z[t].
 - o For instance, consider dividing x by 2x in $\mathbb{Z}[x]$. The quotient would be 1/2, which is not in $\mathbb{Z}[x]$.
 - o More formally, $\mathbb{Z}[x]$ is not a PID because the ideal $\langle 2, x \rangle$ (polynomials with even constant terms) cannot be generated by a single polynomial. If it were generated by p(x), then p(x) would have to divide both 2 and x. The only common divisors are ± 1 . But $\langle 1 \rangle = \mathbb{Z}[x] \neq \langle 2, x \rangle$.
 - o Since every Euclidean Domain is a PID, and $\mathbb{Z}[x]$ is not a PID, $\mathbb{Z}[x]$ (or $\mathbb{Z}[t]$) is not a Euclidean Domain.
- Yes, Z[i] is a Unique Factorization Domain (UFD).

- Justification: A fundamental theorem states that every Euclidean Domain (ED) is a Principal Ideal Domain (PID), and every PID is a Unique Factorization Domain (UFD).
- o $\mathbb{Z}[i]$ (the Gaussian integers) is a Euclidean Domain. The Euclidean function is the norm function $d(a + bi) = a^2 + b^2$.
- o For any Gaussian integers z_1, z_2 with $z_2 \neq 0$, we can find $q, r \in \mathbb{Z}[i]$ such that $z_1 = qz_2 + r$, where r = 0 or $N(r) < N(z_2)$. This is done by finding z_1/z_2 in \mathbb{C} , rounding its real and imaginary parts to the nearest integers to get q, and then setting $r = z_1 qz_2$.
- \circ Since $\mathbb{Z}[i]$ is a Euclidean Domain, it is also a PID, and consequently, it is a UFD. This means that every non-zero, non-unit Gaussian integer can be uniquely factored into irreducible Gaussian integers (up to units and order of factors).

unive