Approximate Counting and Sampling

Brief Introduction with a Few Examples

劉爽

上海交通大學致遠學院 2012 級 ACM 班

2013.11.29

FPRAS

FPRAS

Definition ((ϵ , δ)-approximation)

A randomized algorithm gives an (ϵ, δ) -approximation for the value V if the output X satisfies:

$$Pr(|X - V| \le \epsilon V) \ge 1 - \delta$$

FPRAS

Definition ((ϵ , δ)-approximation)

A randomized algorithm gives an (ϵ, δ) -approximation for the value V if the output X satisfies:

$$Pr(|X - V| \le \epsilon V) \ge 1 - \delta$$

Definition (FPRAS)

A fully polynomial randomized approximation scheme (FPRAS) for a problem is a randomized algorithm for which, give an input X and any parameters $0<\epsilon,\delta<1$, the algorithm outputs an (ϵ,δ) approximation to V(x) in $1/\epsilon$, $In\delta^{-1}$ and the size of the input n.

Monte Carlo Method

3 / 23

Monte Carlo Method

Definition (Monte Carlo Method)

Use an efficient Process to generate a sequence of independent and identically distributed random samples with $\mathbb{E}[X_i] = V$. Get enough samples for an (ϵ, δ) -approximation for V.

• Suppose we want to estimate |S|, we find a set $S_0 \supseteq S$, the size of which $|S_0|$ is known, and it is easy to pick a (near) random member of S_0

- Suppose we want to estimate |S|, we find a set $S_0 \supseteq S$, the size of which $|S_0|$ is known, and it is easy to pick a (near) random member of S_0
- To estimate |S| we choose random points from S_0 and estimate $\frac{|S|}{|S_0|}$ by the proportion of samples that are in S.

- Suppose we want to estimate |S|, we find a set $S_0 \supseteq S$, the size of which $|S_0|$ is known, and it is easy to pick a (near) random member of S_0
- To estimate |S| we choose random points from S_0 and estimate $\frac{|S|}{|S_0|}$ by the proportion of samples that are in S.
- How large should the ratio $\frac{|S|}{|S_0|}$ be?

• We generate M random variables X_i and take $\mu = \frac{\sum X_i}{M}$ as our estimation

- We generate M random variables X_i and take $\mu = \frac{\sum X_i}{M}$ as our estimation
- ullet denote V=|S| and $V_0=|S_0|$, since $\mathbb{E}(X_i)=V$, we have $\mathbb{E}(\mu)=V$

- We generate M random variables X_i and take $\mu = \frac{\sum X_i}{M}$ as our estimation
- ullet denote V=|S| and $V_0=|S_0|$, since $\mathbb{E}(X_i)=V$, we have $\mathbb{E}(\mu)=V$
- If we use Chebyshev inequality, we have

$$\Pr(|\mu - V| \ge \epsilon V) \le \frac{Var(X)}{M\epsilon^2 V^2} \le \delta$$

$$M \ge \frac{Var(X)}{V^2} \frac{1}{\epsilon^2 \delta}$$

- We generate M random variables X_i and take $\mu = \frac{\sum X_i}{M}$ as our estimation
- ullet denote V=|S| and $V_0=|S_0|$, since $\mathbb{E}(X_i)=V$, we have $\mathbb{E}(\mu)=V$
- If we use Chebyshev inequality, we have

$$\Pr(|\mu - V| \ge \epsilon V) \le \frac{Var(X)}{M\epsilon^2 V^2} \le \delta$$

$$M \ge \frac{Var(X)}{V^2} \frac{1}{\epsilon^2 \delta}$$

• we need $\frac{Var(X)}{V^2}$ to be poly(n)

- We generate M random variables X_i and take $\mu = \frac{\sum X_i}{M}$ as our estimation
- ullet denote V=|S| and $V_0=|S_0|$, since $\mathbb{E}(X_i)=V$, we have $\mathbb{E}(\mu)=V$
- If we use Chebyshev inequality, we have

$$\Pr(|\mu - V| \ge \epsilon V) \le \frac{Var(X)}{M\epsilon^2 V^2} \le \delta$$

$$M \ge \frac{Var(X)}{V^2} \frac{1}{\epsilon^2 \delta}$$

- we need $\frac{Var(X)}{V^2}$ to be poly(n)
- Since $Var(X) \leq V_0^2$, We only need $rac{V}{V_0} = rac{1}{ extit{poly}(n)}$

• If we estimate $\frac{V}{V_0}$ instead and also suppose X_i takes value from $\{0,1\}$, we can use Chernoff bound, we have

$$\Pr(|\mu - \frac{V}{V_0}| \ge \epsilon \frac{V}{V_0}) \le 2e^{-\frac{\epsilon^2 MV}{3V_0}} \le \delta$$

$$M \ge \frac{3\ln^2_{\overline{\delta}}}{\epsilon^2} \frac{V_0}{V}$$

6 / 23

• If we estimate $\frac{V}{V_0}$ instead and also suppose X_i takes value from $\{0,1\}$, we can use Chernoff bound, we have

$$\Pr(|\mu - \frac{V}{V_0}| \ge \epsilon \frac{V}{V_0}) \le 2e^{-\frac{\epsilon^2 MV}{3V_0}} \le \delta$$

$$M \ge \frac{3\ln^2_{\delta}}{\epsilon^2} \frac{V_0}{V}$$

we need $\frac{V}{V_0}$ to be $\frac{1}{poly(n)}$

Definition (DNF)

In boolean logic, a disjunctive normal form (DNF) is a standardization (or normalization) of a logical formula which is a disjunction of conjunctive clauses

$$(A \wedge \neg B \wedge \neg C) \vee (\wedge D \wedge E \wedge F) \vee (\neg A \wedge F)$$

• Suppose there are n variables and k be the number of clauses

8 / 23

- ullet Suppose there are n variables and k be the number of clauses
- A first approach, choose S_0 be the all 2^n assignments.

- Suppose there are *n* variables and *k* be the number of clauses
- A first approach, choose S_0 be the all 2^n assignments.
- $\frac{|S|}{2^n}$ should be $\frac{1}{poly(n)}$, but we don't know the size of S

• A better approach, construct a matrix

	assignment 1	assignment 2				assignment 2/n-1	assignment 2^n
clause 1			0	0	1	0	0
clause 2	0	1	0	0	0	0	0
clause 3	1	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	1	1	0	0	0	1
	0	0	0	0	1	0	0
clause k-1	0	0	0	0	0	0	0
clause k	0	0	0	0	0	0	0

• A better approach, construct a matrix

	assignment 1	assignment 2				assignment 2/n-1	assignment 2^n
clause 1			0	0	1	0	0
clause 2	0	1	0	0	0	0	0
clause 3	1	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	1	1	0	0	0	1
	0	0	0	0	1	0	0
clause k-1	0	0	0	0	0	0	0
clause k	0	0	0	0	0	0	0

• $C_{ij} = 1$ if clause *i* can be satisfied by assignment *j*, 0 otherwise.

A better approach, construct a matrix

	assignment 1	assignment 2 0	•••			assignment 2/n-1	assignment 2^n
clause 1			0	0	1	0	0
clause 2	0	1	0	0	0	0	0
clause 3	1	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	1	1	0	0	0	1
	0	0	0	0	1	0	0
clause k-1	0	0	0	0	0	0	0
clause k	0	0	0	0	0	0	0

- $C_{ij} = 1$ if clause i can be satisfied by assignment j, 0 otherwise.
- S₀ = {number of ones in the matrix}
 S = {columns contain at least one}
- In other wordsS = {the uppermost one in each column}

 \bullet First we show $\frac{|S|}{|S0|}$ is not too small

$$\frac{|S|}{|S_0|} \geq \frac{1}{k}$$

• First we show $\frac{|S|}{|S0|}$ is not too small

$$\frac{|S|}{|S_0|} \ge \frac{1}{k}$$

ullet Then we show elements in S_0 can be generated uniformly at random

• Suppose there are R_i ones in row i, then we have $R_i = 2^{n-d_i}$, where d_i is the number of variables in the i_{th} clause. Let $R = \sum R_i = |S_0|$.

- Suppose there are R_i ones in row i, then we have $R_i = 2^{n-d_i}$, where d_i is the number of variables in the i_{th} clause. Let $R = \sum R_i = |S_0|$.
- We choose row i with probability $\frac{R_i}{R}$, and then determine each of the variable not in clause i uniformly at random, thus get the 2^{n-d_i} ones in column i uniformly at random.

- Suppose there are R_i ones in row i, then we have $R_i = 2^{n-d_i}$, where d_i is the number of variables in the i_{th} clause. Let $R = \sum R_i = |S_0|$.
- We choose row i with probability $\frac{R_i}{R}$, and then determine each of the variable not in clause i uniformly at random, thus get the 2^{n-d_i} ones in column i uniformly at random.
- Finally, if the chosen one is the uppermost one in its column, we let X_i be 1, otherwise be 0.

ullet If we repeat M times, our estimation thus is $rac{\sum X_i}{M} |S_0|$

- If we repeat M times, our estimation thus is $\frac{\sum X_i}{M} |S_0|$
- Give ϵ and δ , Let $M = \frac{3kln^{\frac{2}{\delta}}}{\epsilon^{2}}$, this algorithm gives an (ϵ, δ) -approximation, thus is a FPRAS.

FPAUS

FPAUS

Definition (Variation Distance)

The variation distance between two probability distributions π and π' on a countable state space S is given by

$$\|\pi - \pi'\| = \frac{1}{2} \sum_{x \in S} |\pi(x) - \pi'(x)|$$

FPAUS

Definition (Variation Distance)

The variation distance between two probability distributions π and π' on a countable state space S is given by

$$\|\pi - \pi'\| = \frac{1}{2} \sum_{x \in S} |\pi(x) - \pi'(x)|$$

Definition (FPAUS)

An almost uniform sampler (AUS) is a randomized algorithm that takes as input of size n and a tolerance δ , and produces a random event $F \in \Omega(x)$, such that the probability distribution of F is within variation distance δ of the desired distribution on $\Omega(x)$. A fully polynomial almost uniformly sampler is an AUS runs in poly-time in n and $\ln \delta^{-1}$

4□ > 4個 > 4 = > 4 = > = 9 q @

Markov chain Monte Carlo Method

When the samples cannot be sampled "directly", we often use the following method

Definition (MCMC)

The Markov chain Monte Carlo (MCMC) Method runs as follows: Define an ergodic Markov Chain \mathcal{M} with states the elements of the sample space, \mathcal{M} must converge to the requered distribution fast enough (as a FPAUS). From any starting state and after a sufficient number of steps r the distribution of X_r will be close to the stationary distribution, and we use as almost independent samples $X_r, X_{2r}, X_{3r}...$

• Let G=(V,E) be a graph of maximum degree Δ . We want to uniformly at rondom sample proper k-colourings of G (use k colours to paint the vertices so that any adjacent vertex have different colours). Here we will assume that $k>2\Delta$.

Lemma

For a finite space Ω and neighborhood structure $\{N(x)|x\in\Omega|\}$. Let $N=\max_{x\in\Omega}|N(x)|$. Let $M\geq N$. If the following MC is irreducible, aperiodic then the stationary distribution is the uniform distribution.

$$P_{x,y} = \begin{cases} \frac{1}{M} & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \frac{N(x)}{M} & \text{if } x = y, \end{cases}$$

• Let's define a Markov chain on $\Omega(k, G)$.

- Let's define a Markov chain on $\Omega(k, G)$.
- **Step 0** X_0 is any k-colouring of G
- **Step t** Choose v uniformly at random from V and i uniformly at random from 1 to k, try to re-colour v in X_{t-1} with colour i. If succeed, X_t should be the re-coloured graph, otherwise, $X_t = X_{t-1}$.

- Let's define a Markov chain on $\Omega(k, G)$.
- **Step 0** X_0 is any k-colouring of G
- **Step t** Choose v uniformly at random from V and i uniformly at random from 1 to k, try to re-colour v in X_{t-1} with colour i. If succeed, X_t should be the re-coloured graph, otherwise, $X_t = X_{t-1}$.
- This chain obviously satisfies of the requirements of the previous lemma.

Definition (Mixing Time)

Let p_{x}^{t} be the distribution of the state of a Markov Chain starting at x after t steps and π be the desired stationary distribution. We define

$$\Delta_{X}(t) = \| p_{X}^{t} - \pi \|$$

We define $\tau_X(\epsilon) = \min\{t | \Delta_X(t) \le \epsilon\}$ and the mixing time $\tau(\epsilon) = \max_{X \in \mathcal{S}} \tau_X(\epsilon)$.

A chain is called rapidly mixing if $\tau(\epsilon)$ is polynomial in $\frac{1}{\epsilon}$ and the size of the problem n.

Jerrum showed that if $k > 2\Delta(G)$ then the mixing time of the chain defined previously is $O(kn \log n)$

Now we want to estimate the number of k-colourings of a graph.

Theorem

Suppose we have a AUS for the k-colouring of a graph, which works for graphs G with maximum degree bounded by Δ and suppose that the sampler has time complexity $T(n,\delta)$. Then we may construct an FPRAS for the number of k-colouring of a graph, with degree bound Δ and time complexity

$$O(\frac{m^2}{\epsilon^2}T(n,\frac{\epsilon}{6m}))$$

where m is the number of edges in G and ϵ the specified error bound.

4□ > 4□ > 4 = > 4 = > = 90

Proof outline.

Let $\Omega(k, G)$ denote the set of proper k-colourings of G. Let $E = \{e_1, e_2, \dots, e_m\}$ and let $G_i = (V, \{e_1, e_2, \dots, e_i\})$. Then

$$|\Omega(k,G)| = |\Omega(k,G_0)| \prod_{i=1}^m \frac{|\Omega(k,G_i)|}{|\Omega(k,G_{i-1})|}$$

Since $|\Omega(k, G_0)| = k^{|V|}$, we only need to estimate the ratios

$$\rho_i = \frac{|\Omega(k, G_i)|}{|\Omega(k, G_{i-1})|}$$

Then we can use MCMC to choose near random members of $\Omega(k, G_{i-1})$ and seeing what proportion are also in $\Omega(k, G_i)$. Since $k > 2\Delta$, $\rho_i > \frac{1}{2}$, which prevents the failure of the sampling.

Let's take the number of independent sets as our example (which is quite similar to k-colouring)

Let's take the number of independent sets as our example (which is quite similar to k-colouring)

Theorem

Suppose we have an FPRAS APPROXCOUNT (G, ϵ, δ) for the number of independent sets of a graph G = (V, E) and suppose that APPROXCOUNT (G, ϵ, δ) has time complexity $T(n, \epsilon, \delta)$. Then we can construct a AUS U_{GEN} which has expectd time complexity

$$O(T(n, O(\frac{1}{n}), O(\frac{\delta}{n})))$$

Proof Idea.

Construct an algorithm as follows: There is a function called U_{GENX} , we call it repeatly untill we get an sample. The function U_{GENX} has an argument ϕ roughly means the probablity of failure.

 $v = \max V$ and X is the set of neighbours of v in G.

$$G_1 = G - v - X$$
 and $G_2 = G - v$

$$N_1 = \operatorname{APPROXCOUNT}(G_1, \epsilon_1, \delta_1) \ \operatorname{and} \ N_2 = \operatorname{APPROXCOUNT}(G_2, \epsilon_1, \delta_1)$$

$$\mathbf{Output}\ I = \left\{ \begin{array}{ll} v + \mathrm{UGENX}\left(G_1, \epsilon_1, \phi \frac{N_1 + N_2}{N_1}\right) & \mathrm{probability}\ \frac{N_1}{N_1 + N_2} \\ \mathrm{UGENX}\left(G_2, \epsilon_1, \phi \frac{N_1 + N_2}{N_2}\right) & \mathrm{probability}\ \frac{N_2}{N_1 + N_2} \end{array} \right.$$

Thank You

