- 1. (10 points) Consider a bet with equal odds (i.e., win/lose \$1 for each \$1 you bet) and probability of winning p = 0.52.
 - (a) What is the Kelly-optimal proportion (f^*) of wealth to wager at each bet?
 - (b) Starting with initial wealth $V_0 = 100$, write a formula for your wealth after winning 5 and losing 4 bets with the above strategy.

Solution:

- (a) For even odds, the Kelly-optimal fraction is equal to the magnitude of the "edge", i.e. $f^* = p q = 2p 1 = 0.52 0.48 = 0.04 = 4\%$.
- (b) We have:

$$V_9 = V_0 (1 + f^*)^5 (1 - f^*)^4$$

= 100(1.04)⁵(0.96)⁴

2. (10 points) Consider the following prices of two assets on different days:

stock \ day	1	2	3	4	5
P	35.63	35.59	35.49	35.43	35.41
S	33.74	32.72	31.69	32.45	34.98

Calculate the pairs-trading strategy profit of going long \$100 of S & short \$100 of P on day 1, and unwinding the position on day 5.

Solution: On day 1, we buy/long $100/S_1$ shares of S and short-sell $100/P_1$ shares of P. Since the strategy has 0 set-up cost (long & short \$100), the profit is just the payoff when you unwind the position:

profit =
$$S_5 \times$$
 (shares long) - $P_5 \times$ (shares short)
= $S_5 \times 100/S_1 - P_5 \times 100/P_1$
= $100 \times (34.98/33.74 - 35.41/35.63)$ (= 4.29262)