TELEMAC-2D Reference Manual

Version v8p3
December 6, 2021

Contents

1	Detail list of keywords	14
1.1	ABSCISSAE OF SOURCES	14
1.2	ACCURACY FOR DIFFUSION OF TRACERS	14
1.3	ACCURACY OF EPSILON	14
1.4	ACCURACY OF K	14
1.5	ACCURACY OF SPALART-ALLMARAS	15
1.6	AD LINEAR SOLVER DERIVATIVE CONVERGENCE	15
1.7	AD LINEAR SOLVER RESET DERIVATIVES	15
1.8	AD NAMES OF DERIVATIVES	15
1.9	AD NUMBER OF DERIVATIVES	15
1.10	AD SYMBOLIC LINEAR SOLVER	16
1.11	ADVECTION	16
1.12	ADVECTION OF H	16
1.13	ADVECTION OF K AND EPSILON	16
1.14	ADVECTION OF TRACERS	16
1.15	ADVECTION OF U AND V	17
1.16	AIR PRESSURE	17
1.17	AIR TEMPERATURE	17
1.18	ALGAE RELEASE TYPE	17
1.19	ALGAE TRANSPORT MODEL	17
1.20	ALGAE TYPE	18
1.21	ANTECEDENT MOISTURE CONDITIONS	18
1.22	ASCII ATMOSPHERIC DATA FILE	18
1.23	ASCII DATABASE FOR TIDE	18
1.24	ASCII DROGUES FILE	19
1.25	BINARY ATMOSPHERIC DATA FILE	19

1.26	BINARY ATMOSPHERIC DATA FILE FORMAT	19
1.27	BINARY DATA FILE 1	19
1.28	BINARY DATA FILE 1 FORMAT	19
1.29	BINARY DATA FILE 2	20
1.30	BINARY DATA FILE 2 FORMAT	20
1.31	BINARY DATABASE 1 FOR TIDE	20
1.32	BINARY DATABASE 2 FOR TIDE	20
1.33	BINARY DROGUES FILE	21
1.34	BINARY RESULTS FILE	21
1.35	BINARY RESULTS FILE FORMAT	21
1.36	BINGHAM OPTION	21
1.37	BOTTOM SMOOTHINGS	22
1.38	BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS	22
1.39	BOTTOM SURFACES DELWAQ FILE	22
1.40	BOTTOM TOPOGRAPHY FILE	22
1.41	BOUNDARY CONDITIONS FILE	22
1.42	BREACH	23
1.43	BREACHES DATA FILE	23
1.44	C-U PRECONDITIONING	23
1.45	CHECKING THE MESH	23
1.46	CLOUD COVER	23
1.47	COEFFICIENT FOR DIFFUSION OF TRACERS	24
1.48	COEFFICIENT OF WIND INFLUENCE	24
1.49	COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED	24
1.50	COEFFICIENT TO CALIBRATE SEA LEVEL	24
1.51	COEFFICIENT TO CALIBRATE TIDAL RANGE	24
1.52	COEFFICIENT TO CALIBRATE TIDAL VELOCITIES	25
1.53	COMPATIBLE COMPUTATION OF FLUXES	25
1.54	COMPUTATION CONTINUED	25
1.55	CONCATENATE PARTEL OUTPUT	25
1.56	CONTINUITY CORRECTION	26
1.57	CONTROL OF LIMITS	26
1.58	CONTROL SECTIONS	26
1.59	CONVERGENCE STUDY	26
1.60	CORIOLIS	26
1.61	CORIOLIS COEFFICIENT	27

1.62	COST FUNCTION	27
1.63	COUPLING PERIOD FOR SISYPHE	27
1.64	COUPLING PERIOD FOR TOMAWAC	27
1.65	COUPLING WITH	28
1.66	CULVERTS DATA FILE	28
1.67	DEBUGGER	28
1.68	DEFINITION OF ZONES	28
1.69	DELWAQ PRINTOUT PERIOD	28
1.70	DELWAQ STEERING FILE	29
1.71	DENSITY EFFECTS	29
1.72	DENSITY OF ALGAE	29
1.73	DEPTH IN FRICTION TERMS	29
1.74	DESIRED COURANT NUMBER	29
1.75	DESIRED FOURIER NUMBER	30
1.76	DIAMETER OF ALGAE	30
1.77	DICTIONARY	30
1.78	DIFFUSION OF TRACERS	30
1.79	DIFFUSION OF VELOCITY	30
1.80	DIFFUSIVITY DELWAQ FILE	30
1.81	DIFFUSIVITY FOR DELWAQ	31
1.82	DISCRETIZATIONS IN SPACE	31
1.83	DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS	31
1.84	DROGUES FILE FORMAT	32
1.85	DROGUES INITIAL POSITIONING DATA FILE	32
1.86	DURATION	32
1.87	DURATION BEFORE ALGAE RELEASE	32
1.88	DURATION OF RAIN OR EVAPORATION IN HOURS	32
1.89	ELEMENTS MASKED BY USER	33
1.90	EQUATIONS	33
1.91	EXCHANGE AREAS DELWAQ FILE	33
1.92	EXCHANGES BETWEEN NODES DELWAQ FILE	33
1.93	FINITE ELEMENT ASSEMBLY	33
1.94	FINITE VOLUME SCHEME	34
1.95	FINITE VOLUME SCHEME FOR TRACER DIFFUSION	34
1.96	FINITE VOLUME SCHEME FOR VELOCITY DIFFUSION	34
1.97	FINITE VOLUME SCHEME SPACE ORDER	35

1.98	FINITE VOLUME SCHEME TIME ORDER	35
1.99	FLUX LIMITOR FOR H PLUS Z	35
1.100	FLUX LIMITOR FOR TRACERS	35
1.101	FLUX LIMITOR FOR U AND V	36
1.102	FLUXLINE	36
1.103	FLUXLINE INPUT FILE	36
1.104	FORMAT OF THE DROGUES POSITIONING DATA FILE	36
1.105	FORMATTED DATA FILE 1	36
1.106	FORMATTED DATA FILE 2	37
1.107	FORMATTED RESULTS FILE	37
1.108	FORMATTED RESULTS FILE 1	37
1.109	FORMATTED RESULTS FILE 2	37
1.110	FORMATTED RESULTS FILE 3	37
1.111	FORMATTED RESULTS FILE 4	37
1.112	FORMATTED RESULTS FILE 5	38
1.113	FORMATTED RESULTS FILE 6	38
1.114	FORTRAN FILE	38
1.115	FOURIER ANALYSIS PERIODS	38
1.116	FREE FORMAT FOR ATMOSPHERIC DATA FILE	38
1.117	FREE SURFACE GRADIENT COMPATIBILITY	39
1.118	FRICTION COEFFICIENT	39
1.119	FRICTION DATA	39
1.120	FRICTION DATA FILE	39
1.121	GAIA STEERING FILE	39
1.122	GEOGRAPHIC SYSTEM	40
1.123	GEOMETRY FILE	40
1.124	GEOMETRY FILE FORMAT	40
1.125	GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	40
1.126	GLOBAL NUMBERS OF SOURCE NODES	41
1.127	GRAPHIC PRINTOUT PERIOD	41
1.128	GRAVITY ACCELERATION	41
1.129	H CLIPPING	41
1.130	HARMONIC CONSTANTS FILE	41
1.131	HERSCHEL-BULKLEY POWER-LAW INDEX	42
1.132	IDENTIFICATION METHOD	42
1.133	IMPLICITATION COEFFICIENT OF TRACERS	42

1.134	IMPLICITATION FOR DEPTH	42
1.135	IMPLICITATION FOR DIFFUSION OF VELOCITY	42
1.136	IMPLICITATION FOR VELOCITY	43
1.137	INFORMATION ABOUT K-EPSILON MODEL	43
1.138	INFORMATION ABOUT SOLVER	43
1.139	INFORMATION ABOUT SPALART-ALLMARAS MODEL	43
1.140	INITIAL CONDITIONS	43
1.141	INITIAL DEPTH	44
1.142	INITIAL DROGUES SAMPLING DENSITY	44
1.143	INITIAL ELEVATION	44
1.144	INITIAL GUESS FOR H	44
1.145	INITIAL GUESS FOR U	45
1.146	INITIAL LENGTHS OF BREACHES	45
1.147	INITIAL TIME SET TO ZERO	45
1.148	INITIAL VALUES OF TRACERS	45
1.149	INITIAL VELOCITIES COMPUTED BY TPXO	46
1.150	KHIONE STEERING FILE	46
1.151	LAMBERT 93 CONVERSION FILE	46
1.152	LANGUAGE	46
1.153	LATITUDE OF ORIGIN POINT	46
1.154	LAW OF BOTTOM FRICTION	47
1.155	LAW OF FRICTION ON LATERAL BOUNDARIES	47
1.156	LIMIT VALUES	47
1.157	LINEARIZED PROPAGATION	48
1.158	LIQUID BOUNDARIES FILE	48
1.159	LIST OF POINTS	48
1.160	LISTING FOR PRINTOUT PERIOD	48
1.161	LISTING PRINTOUT	48
1.162	LISTING PRINTOUT PERIOD	49
1.163	LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	49
1.164	LONGITUDE OF ORIGIN POINT	49
1.165	MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW	49
1.166	MASS-BALANCE	49
1.167	MASS-LUMPING FOR WEAK CHARACTERISTICS	50
1.168	MASS-LUMPING ON H	50
1.169	MASS-LUMPING ON TRACERS	50

1.170	MASS-LUMPING ON VELOCITY	50
1.171	MATRIX STORAGE	51
1.172	MATRIX-VECTOR PRODUCT	51
1.173	MAXIMUM NUMBER OF BOUNDARIES	51
1.174	MAXIMUM NUMBER OF DROGUES	51
1.175	MAXIMUM NUMBER OF FRICTION DOMAINS	51
1.176	MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES	52
1.177	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS	52
1.178	MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION	52
1.179	MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON	52
1.180	MAXIMUM NUMBER OF ITERATIONS FOR SOLVER	52
1.181	MAXIMUM NUMBER OF POINTS FOR SOURCES REGIONS	53
1.182	MAXIMUM NUMBER OF SOURCES	53
1.183	MAXIMUM NUMBER OF TRACERS	53
1.184	MEAN DEPTH FOR LINEARIZATION	53
1.185	MEAN TEMPERATURE	53
1.186	MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITION 54	ONS
1.187	MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS	54
1.188	MINIMUM VALUE OF DEPTH	54
1.189	MINOR CONSTITUENTS INFERENCE	54
1.190	MIXING LENGTH MODEL COEFFICIENTS	54
1.191	NAMES OF CLANDESTINE VARIABLES	55
1.192	NAMES OF POINTS	55
1.193	NAMES OF PRIVATE VARIABLES	55
1.194	NAMES OF TRACERS	55
1.195	NESTOR	55
1.196	NESTOR ACTION FILE	56
1.197	NESTOR POLYGON FILE	56
1.198	NESTOR RESTART FILE	56
1.199	NESTOR SURFACE REFERENCE FILE	56
1.200	NEWMARK TIME INTEGRATION COEFFICIENT	56
1.201	NODES DISTANCES DELWAQ FILE	57
1.202	NON-DIMENSIONAL DISPERSION COEFFICIENTS	57
1.203	NON-NEWTONIAN FLUID DENSITY	57
1.204	NON-NEWTONIAN LAMINAR RESISTANCE PARAMETER K	57

1.205	NON-NEWTONIAN MODEL	57
1.206	NON-NEWTONIAN PSEUDO-BIPHASIC MODEL	58
1.207	NON-NEWTONIAN VISCOSITY	58
1.208	NON-NEWTONIAN YIELD STRESS	58
1.209	NORTH	58
1.210	NUMBER OF ALGAE CLASSES	58
1.211	NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES	58
1.212	NUMBER OF CULVERTS	59
1.213	NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS	59
1.214	NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS	59
1.215	NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS	59
1.216	NUMBER OF LAGRANGIAN DRIFTS	60
1.217	NUMBER OF PRIVATE ARRAYS	60
1.218	NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES	60
1.219	NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES	60
1.220	NUMBER OF TIME STEPS	61
1.221	NUMBER OF TRACERS	61
1.222	NUMBER OF WEIRS	61
1.223	OIL SPILL MODEL	61
1.224	OIL SPILL STEERING FILE	61
1.225	OPTION FOR CHARACTERISTICS	62
1.226	OPTION FOR CULVERTS	62
1.227	OPTION FOR DIRICHLET CONDITION IN FV DIFFUSION	62
1.228	OPTION FOR INITIAL ABSTRACTION RATIO	62
1.229	OPTION FOR LIQUID BOUNDARIES	63
1.230	OPTION FOR THE DIFFUSION OF TRACERS	63
1.231	OPTION FOR THE DIFFUSION OF VELOCITIES	63
1.232	OPTION FOR THE RTPF SCHEME RECONSTRUCTIONS	63
1.233	OPTION FOR THE SOLVER FOR K-EPSILON MODEL	64
1.234	OPTION FOR THE TREATMENT OF TIDAL FLATS	64
1.235	OPTION FOR TIDAL BOUNDARY CONDITIONS	64
1.236	OPTION FOR TSUNAMI GENERATION	64
1.237	OPTION FOR WIND	65
1.238	OPTION OF THE HYDROSTATIC RECONSTRUCTION	65
1.239	ORDINATES OF SOURCES	65
1.240	ORIGINAL DATE OF TIME	65

1.241	ORIGINAL HOUR OF TIME	66
1.242	PARALLEL PROCESSORS	66
1.243	PARAMETER ESTIMATION	66
1.244	PARTITIONING TOOL	66
1.245	PHYSICAL CHARACTERISTICS OF THE TSUNAMI	67
1.246	PRECONDITIONING	67
1.247	PRECONDITIONING FOR DIFFUSION OF TRACERS	68
1.248	PRECONDITIONING FOR K-EPSILON MODEL	68
1.249	PRESCRIBED ELEVATIONS	68
1.250	PRESCRIBED FLOWRATES	69
1.251	PRESCRIBED TRACERS VALUES	69
1.252	PRESCRIBED VELOCITIES	69
1.253	PREVIOUS COMPUTATION FILE	69
1.254	PREVIOUS COMPUTATION FILE FORMAT	69
1.255	PREVIOUS DROGUES FILE	70
1.256	PREVIOUS DROGUES FILE FORMAT	70
1.257	PRINTING CUMULATED FLOWRATES	70
1.258	PRINTOUT PERIOD FOR DROGUES	70
1.259	PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS	70
1.260	PROPAGATION	71
1.261	RAIN OR EVAPORATION	71
1.262	RAIN OR EVAPORATION IN MM PER DAY	71
1.263	RAINFALL-RUNOFF MODEL	71
1.264	RATE OF DEGRADATION FOR ALGAE	71
1.265	RECORD NUMBER FOR RESTART	72
1.266	RECORD NUMBER IN WAVE FILE	72
1.267	REFERENCE FILE	72
1.268	REFERENCE FILE FORMAT	72
1.269	REFINEMENT LEVELS	72
1.270	RESULT FILE IN LONGITUDE-LATITUDE	73
1.271	RESULTS FILE	73
1.272	RESULTS FILE FORMAT	73
1.273	ROUGHNESS COEFFICIENT OF BOUNDARIES	73
1.274	SALINITY DELWAQ FILE	74
1.275	SALINITY FOR DELWAQ	74
1.276	SCHEME FOR ADVECTION OF K-EPSILON	74

1.277	SCHEME FOR ADVECTION OF TRACERS	74
1.278	SCHEME FOR ADVECTION OF VELOCITIES	74
1.279	SCHEME OPTION FOR ADVECTION OF K-EPSILON	74
1.280	SCHEME OPTION FOR ADVECTION OF TRACERS	75
1.281	SCHEME OPTION FOR ADVECTION OF VELOCITIES	75
1.282	SECONDARY CURRENTS	76
1.283	SECTIONS INPUT FILE	76
1.284	SECTIONS OUTPUT FILE	76
1.285	SECURITY COEFFICIENT FOR SCARACT	76
1.286	SISYPHE STEERING FILE	76
1.287	SOLAR RADIATION	77
1.288	SOLVER	77
1.289	SOLVER ACCURACY	77
1.290	SOLVER FOR DIFFUSION OF TRACERS	77
1.291	SOLVER FOR K-EPSILON MODEL	78
1.292	SOLVER OPTION	78
1.293	SOLVER OPTION FOR TRACERS DIFFUSION	79
1.294	SOURCE REGIONS DATA FILE	79
1.295	SOURCES FILE	79
1.296	SPATIAL PROJECTION TYPE	79
1.297	SPEED AND DIRECTION OF WIND	79
1.298	SPHERICAL COORDINATES	80
1.299	STAGE-DISCHARGE CURVES	80
1.300	STAGE-DISCHARGE CURVES FILE	80
1.301	STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT	80
1.302	STEERING FILE	81
1.303	STOCHASTIC DIFFUSION MODEL	81
1.304	STOP CRITERIA	81
1.305	STOP IF A STEADY STATE IS REACHED	81
1.306	SUPG OPTION	81
1.307	TEMPERATURE DELWAQ FILE	82
1.308	TEMPERATURE FOR DELWAQ	82
1.309	THICKNESS OF ALGAE	82
1.310	THRESHOLD DEPTH FOR RECEDING PROCEDURE	82
1.311	THRESHOLD DEPTH FOR WIND	83
1.312	THRESHOLD FOR NEGATIVE DEPTHS	83

1.313	TIDAL DATA BASE	83
1.314	TIDAL FLATS	83
1.315	TIDAL MODEL FILE	83
1.316	TIDAL MODEL FILE FORMAT	84
1.317	TIDE GENERATING FORCE	84
1.318	TIME RANGE FOR FOURIER ANALYSIS	84
1.319	TIME STEP	84
1.320	TITLE	84
1.321	TOLERANCES FOR IDENTIFICATION	85
1.322	TOMAWAC STEERING FILE	85
1.323	TREATMENT OF FLUXES AT THE BOUNDARIES	85
1.324	TREATMENT OF NEGATIVE DEPTHS	85
1.325	TREATMENT OF THE LINEAR SYSTEM	86
1.326	TURBULENCE MODEL	86
1.327	TURBULENCE REGIME FOR SOLID BOUNDARIES	86
1.328	TYPE OF ADVECTION	87
1.329	TYPE OF BOUNDARY CONDITION FOR KINETIC SCHEME	87
1.330	TYPE OF SOURCES	87
1.331	TYPE OF WEIRS	88
1.332	VALIDATION	88
1.333	VALUE OF ATMOSPHERIC PRESSURE	88
1.334	VALUES OF THE TRACERS AT THE SOURCES	88
1.335	VALUES OF TRACERS IN THE RAIN	89
1.336	VAPOROUS PRESSURE	89
1.337	VARIABLE TIME-STEP	89
1.338	VARIABLES FOR GRAPHIC PRINTOUTS	89
1.339	VARIABLES TO BE PRINTED	91
1.340	VECTOR LENGTH	91
1.341	VEGETATION FRICTION	91
1.342	VELOCITIES OF THE SOURCES ALONG X	91
1.343	VELOCITIES OF THE SOURCES ALONG Y	91
1.344	VELOCITY DELWAQ FILE	92
1.345	VELOCITY DIFFUSIVITY	92
1.346	VELOCITY FOR DELWAQ	92
1.347	VELOCITY PROFILES	92
1.348	VERTICAL FLUXES DELWAQ FILE	93

1.349	VERTICAL STRUCTURES	93
1.350	VOLUMES DELWAQ FILE	93
1.351	WAQTEL STEERING FILE	93
1.352	WATER DENSITY	93
1.353	WATER DISCHARGE OF SOURCES	94
1.354	WATER QUALITY PROCESS	94
1.355	WAVE DRIVEN CURRENTS	94
1.356	WAVE ENHANCED FRICTION FACTOR	95
1.357	WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 1	95
1.358	WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 2	95
1.359	WEIRS DATA FILE	95
1.360	WEIRS DISCHARGE OUTPUT FILE	95
1.361	WIND	95
1.362	WIND VELOCITY ALONG X	96
1.363	WIND VELOCITY ALONG Y	96
1.364	ZERO	96
1.365	ZONE NUMBER IN GEOGRAPHIC SYSTEM	96
1.366	ZONES FILE	97
2	List of keywords classified according to type	98
2.1	COMPUTATION ENVIRONMENT	98
2.1.1	INITIALIZATION	
2.1.2	OUTPUT FILES	
2.1.5		100
2.2.1	DELWAQ	
2.2.2	GAIA	
2.2.3	KHIONE	
2.2.4	NESTOR INFO	
2.2.6	TOMAWAC	
2.2.7	WAQTEL	101
2.3	GENERAL PARAMETERS	101
2.3.1	LOCATION	
2.3.2	TIME	
2.4	HYDRAULIC STRUCTURES	101
<u> </u>		
2.4.1 2.4.2	BREACHES	

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	HYDRO BOUNDARY CONDITIONS BOUNDARY CONDITIONS OTHERS FLUID NUMERICAL PARAMETERS HYDRO PHYSICAL PARAMETERS HYDRO	. 102 . 102 . 103
2.6	INTERNAL	104
2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7	NUMERICAL PARAMETERS ADVANCED ADVECTION INFO AUTOMATIC DIFFERENTIATION DIFFUSION DISCRETISATIONS IMPLICITATION PROPAGATION INFO SOLVER INFO	. 105 . 105 . 106 . 106 . 106
2.8	PARTICLE TRANSPORT	106
2.8.1 2.8.2 2.8.3 2.8.4 2.8.5	ALGAE BROWNIAN MOTION DROGUES LAGRANGIAN DRIFTS OIL SPILL	. 107 . 107 . 107
2.9	TIDAL FLATS INFO	107
2.10 2.10.1 2.10.2	TIDES BOUNDARY CONDITIONS	
2.10.1 2.10.2 2.11 2.11.1 2.11.2 2.11.3 2.11.4 2.11.5 2.11.6	BOUNDARY CONDITIONS	. 108 . 108 . 108 . 108 . 108 . 108 . 109 . 109
2.10.1 2.10.2 2.11 2.11.1 2.11.2 2.11.3 2.11.4 2.11.5 2.11.6 2.11.7 2.12 2.12.1 2.12.2	BOUNDARY CONDITIONS PHYSICAL PARAMETERS TRACERS ACCURACY TRA BOUNDARY CONDITIONS FOR TRACERS METEOROLOGY TRA NUMERICAL SETTING SOLVER TRA	108 108 108 108 108 108 109 109 109 109
2.10.1 2.10.2 2.11 2.11.1 2.11.2 2.11.3 2.11.4 2.11.5 2.11.6 2.11.7 2.12 2.12.1 2.12.2 2.12.3	BOUNDARY CONDITIONS PHYSICAL PARAMETERS TRACERS ACCURACY TRA BOUNDARY CONDITIONS FOR TRACERS METEOROLOGY TRA NUMERICAL SETTING SOLVER TRA SOURCES TRA TURBULENCE ACCURACY ADVANCED SOLVER INFO	108 108 108 108 108 108 108 109 109 109 109 109
2.10.1 2.10.2 2.11 2.11.1 2.11.2 2.11.3 2.11.4 2.11.5 2.11.6 2.11.7 2.12 2.12.1 2.12.2 2.12.3	BOUNDARY CONDITIONS PHYSICAL PARAMETERS TRACERS ACCURACY TRA BOUNDARY CONDITIONS FOR TRACERS METEOROLOGY TRA NUMERICAL SETTING SOLVER TRA SOURCES TRA TURBULENCE ACCURACY ADVANCED SOLVER INFO	108 108 108 108 108 108 108 109 109 109 109 109

1. Detail list of keywords

1.1 ABSCISSAE OF SOURCES

Type: Real
Dimension: 2
Mnemo XSCE

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DES SOURCES

Abscissae of sources of flowrate and/or tracer. The source will be located at the nearest node in the mesh.

1.2 ACCURACY FOR DIFFUSION OF TRACERS

Type: Real Dimension: 1

Mnemo SLVTRA(ITRAC)%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA DIFFUSION DES TRACEURS

Sets the required accuracy for computing the tracer diffusion.

1.3 ACCURACY OF EPSILON

Type: Real Dimension: 1

Mnemo SLVEP%EPS

DEFAULT VALUE: 1.E-9

French keyword: PRECISION SUR EPSILON

Sets the required accuracy for computing ε in the diffusion and source terms step of the ε transport equation.

1.4 ACCURACY OF K

Type: Real Dimension: 1

Mnemo SLVK%EPS

DEFAULT VALUE: 1.E-9

French keyword: PRECISION SUR K

Sets the required accuracy for computing k in the diffusion and source terms step of the k transport equation.

1.5 ACCURACY OF SPALART-ALLMARAS

Type: Real Dimension: 1

Mnemo SLVNU%EPS

DEFAULT VALUE: 1.E-9

French keyword: PRECISION SUR SPALART-ALLMARAS

Sets the required accuracy for the Spalart-Allmaras model in the diffusion and source terms step

of the \tilde{v} .

1.6 AD LINEAR SOLVER DERIVATIVE CONVERGENCE

Type: Logical

Dimension: 1

Mnemo AD LINSOLV DERIVATIVE CONVERGENCE

DEFAULT VALUE: YES

French keyword: AD CONVERGENCE DES DERIVEES POUR LE SOLVEUR LINEAIRE

Iterative linear solvers: derivative convergence test for AD.

1.7 AD LINEAR SOLVER RESET DERIVATIVES

Type: Logical

Dimension: 1

Mnemo AD_LINSOLV_RESETDERIV

DEFAULT VALUE: YES

French keyword: AD REMISE A ZERO DES DERIVEES DU SOLVEUR LINEAIRE

Resets the derivatives for AD.

1.8 AD NAMES OF DERIVATIVES

Type: String
Dimension: 2

Mnemo NAMES_ADVAR
DEFAULT VALUE: 'MANDATORY'

French keyword: AD NOMS DES DERIVEES

Name of user differentiators in 32 characters, 16 for the name, 16 for the unit.

1.9 AD NUMBER OF DERIVATIVES

Type: Integer Dimension: 1

Mnemo NADVAR

DEFAULT VALUE: 0

French keyword: AD NOMBRE DE DERIVEES

Defines the number of user derivatives, within the framework of the algorithmic differentiation.

1.10 AD SYMBOLIC LINEAR SOLVER

Type: Logical

Dimension: 1

Mnemo AD_SYMBLINSOLV

DEFAULT VALUE: NO

French keyword: AD SOLVEUR LINEAIRE SYMBOLIQUE

Enables the symbolic linear solver for AD.

1.11 ADVECTION

Type: Logical

Dimension: 1

Mnemo CONV DEFAULT VALUE: YES

French keyword: CONVECTION

Are the advection terms taken into account or not? If YES, some advection terms can still be deleted using the keywords ADVECTION OF...

1.12 ADVECTION OF H

Type: Logical

Dimension:

Mnemo CONVV(2)

DEFAULT VALUE: YES

French keyword: CONVECTION DE H The advection of H is taken into account or ignored.

1.13 ADVECTION OF K AND EPSILON

Type: Logical

Dimension: 1

Mnemo CONVV(4)

DEFAULT VALUE: YES

 $French \ keyword: \qquad \hbox{CONVECTION DE K ET EPSILON}$

The k and ε advection is taken into account or ignored (for $k - \varepsilon$ model) or \tilde{v} advection (for

Spalart-Allmaras model).

1.14 ADVECTION OF TRACERS

Type: Logical

Dimension: 1

Mnemo CONVV(3)

DEFAULT VALUE: YES

French keyword: CONVECTION DES TRACEURS

The advection of the passive tracer is taken into account or ignored.

1.15 ADVECTION OF U AND V

Type: Logical

Dimension: 1

Mnemo CONVV(1)

DEFAULT VALUE: YES

French keyword: CONVECTION DE U ET V The advection of U and V is taken into account or ignored.

1.16 AIR PRESSURE

Type: Logical

Dimension: 1

Mnemo ATMOS DEFAULT VALUE: NO

French keyword: PRESSION ATMOSPHERIQUE

Provided to decide whether the influence of an atmosphere pressure field is taken into account

or not.

1.17 AIR TEMPERATURE

Type: Real Dimension: 1

Mnemo CST_TAIR

DEFAULT VALUE: 20.

French keyword: TEMPERATURE DE L'AIR

Gives the value of air temperature when it is constant in time and space. In °C.

1.18 ALGAE RELEASE TYPE

Type: Integer

Dimension: 2

Mnemo REL_ALGAE

DEFAULT VALUE: 1;1

French keyword: TYPE DE RELACHE DES ALGUES

Possible values are:

• 1: TIMED: Algae move after a specified time has elapsed,

• 2: DISLODGEMENT: Algae move after a critical wave orbital velocity is exceeded.

1.19 ALGAE TRANSPORT MODEL

Type: Logical Dimension: 1

Mnemo ALGAE DEFAULT VALUE: NO

French keyword: MODELE DE TRANSPORT DES ALGUES

If YES, some or all the floats or particles will be algae.

1.20 ALGAE TYPE

Type: Integer Dimension: 2

Mnemo YALGAE

DEFAULT VALUE: 1;1

French keyword: TYPE DES ALGUES

Algae type. Possible choices are:

- 1: Sphere,
- 2: Iridaeca Flaccida,
- 3: Pelvetiopsis Limitata,
- 4: Gigartina Leptorhynchos.

For choice 1 the algae particles will be modeled as spheres, and for the other choices see Gaylord et al. (1994).

1.21 ANTECEDENT MOISTURE CONDITIONS

Type: Integer
Dimension: 1
Mnemo AMC
DEFAULT VALUE: 2

French keyword: CONDITIONS D'HUMIDITE PRECEDENTE

Gives the antecedent moisture conditions before a rainfall event for the SCS CN runoff model. Available options are:

- 1: dry antecedent conditions,
- 2: normal antecedent conditions,
- 3: wet antecedent conditions.

This keyword is only usefull for runoff model 1 (SCS CN model).

1.22 ASCII ATMOSPHERIC DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2ATMA)%NAME

DEFAULT VALUE: '

French keyword: FICHIER ASCII DE DONNEES ATMOSPHERIQUES

ASCII data file containing the atmospheric data varying in time.

1.23 ASCII DATABASE FOR TIDE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBDD)

DEFAULT VALUE: '

French keyword: BASE ASCII DE DONNEES DE MAREE

Tide data base of harmonic constituents extracted from the TIDAL MODEL FILE. Old name in release 6.1: TIDE DATA BASE.

1.24 ASCII DROGUES FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DFLO)%NAME

DEFAULT VALUE:

French keyword: FICHIER ASCII DES FLOTTEURS

ASCII results file with positions of drogues.

1.25 BINARY ATMOSPHERIC DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2ATMB)%NAME

DEFAULT VALUE: '

French keyword: FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Binary-coded data file containing the atmospheric data varying in time and space on the mesh.

1.26 BINARY ATMOSPHERIC DATA FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2ATMB)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Format of the BINARY ATMOSPHERIC DATA FILE. Possible values are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.27 BINARY DATA FILE 1

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBI1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES BINAIRE 1

Binary-coded data file available to the user.

1.28 BINARY DATA FILE 1 FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBI1)%FMT

DEFAULT VALUE: 'BIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

Format of the BINARY DATA FILE 1. Possible values are:

• BIN: standard binary format,

• SERAFIN: classical single precision format in TELEMAC,

- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.29 BINARY DATA FILE 2

Type: String Dimension: 1

Mnemo T2D FILES(T2DBI2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES BINAIRE 2

Binary-coded data file available to the user.

1.30 BINARY DATA FILE 2 FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBI2)%FMT

DEFAULT VALUE: 'BIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 2

Format of the BINARY DATA FILE 2. Possible values are:

- BIN: standard binary format,
- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED : MED double precision format based on HDF5.

1.31 BINARY DATABASE 1 FOR TIDE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBB1)

DEFAULT VALUE: '

French keyword: BASE BINAIRE 1 DE DONNEES DE MAREE

Binary database 1 of harmonic constants. In the case of the TPXO satellite altimetry model, this file should be for free surface level, for instance h_tpxo7.2

1.32 BINARY DATABASE 2 FOR TIDE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBB2)

DEFAULT VALUE: '

French keyword: BASE BINAIRE 2 DE DONNEES DE MAREE

Binary database 2 of harmonic constants. In the case of the TPXO satellite altimetry model, this file should be for tidal velocities, for instance u_tpxo7.2

1.33 BINARY DROGUES FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DBLO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER BINAIRE DES FLOTTEURS

Binary results file with positions of drogues.

1.34 BINARY RESULTS FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRBI)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS BINAIRE

Additional binary-coded result file available to the user.

1.35 BINARY RESULTS FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRBI)%NAME

DEFAULT VALUE: 'BIN'

French keyword: FORMAT DU FICHIER DE RESULTATS BINAIRE

Format of the BINARY RESULTS FILE. Possible values are:

- BIN: standard binary format,
- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.36 BINGHAM OPTION

Type: Integer Dimension: 1

Mnemo OPTBGHM

DEFAULT VALUE: 1

French keyword: OPTION DU MODELE DE BINGHAM

Bingham model option:

- 1: Papanastasiou (1987) exponential regularization,
- 2: Effective viscosity with cross formulation (Shao & Lo 2003),
- 3: Rickenmann (1990) Cubic equation.

1.37 BOTTOM SMOOTHINGS

Type: Integer
Dimension: 1
Mnemo LISFON

DEFAULT VALUE: 0

French keyword: LISSAGES DU FOND

Number of smoothings on bottom topography. Each smoothing is mass conservative. to be used when interpolation of bathymetry on the mesh gives very rough results.

1.38 BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS

Type: Logical Dimension: 1

Mnemo LISFON_AFTER

DEFAULT VALUE: YES

French keyword: LISSAGES DU FOND APRES MODIFICATIONS UTILISATEUR Indicates if the number of potential smoothings on bottom topography is done after (or before otherwise) the topography modifications implemented by the user.

1.39 BOTTOM SURFACES DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DDL5)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DU FOND

Results file for chaining with DELWAQ.

1.40 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DFON)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data. Where this keyword is used, these bathymetric data shall be used in the computation.

1.41 BOUNDARY CONDITIONS FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DCLI)%NAME

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through through colours that are assigned to the boundary nodes.

1.42 BREACH 23

1.42 BREACH

Type: Logical

Dimension: 1

Mnemo BRECHE
DEFAULT VALUE: NO
French keyword: BRECHE

Take in account some breaches during the computation by modifying the bottom level of the mesh. Breach description is done with the BREACHES DATA FILE.

1.43 BREACHES DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBRC)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES DES BRECHES

Description of breaches.

1.44 C-U PRECONDITIONING

Type: Logical

Dimension: 1

Mnemo PRECCU
DEFAULT VALUE: YES

French keyword: PRECONDITIONNEMENT C-U

Change of variable from H to C in the final linear system. This option is deactivated with wave equation i.e. TREATMENT OF THE LINEAR SYSTEM = 2.

1.45 CHECKING THE MESH

Type: Logical

Dimension: 1

Mnemo CHECK MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

If this keyword is equal to YES, a call to subroutine **CHECKMESH** will look for errors in the mesh, superimposed points, etc.

1.46 CLOUD COVER

Type: Real Dimension: 1

Mnemo CST_CLDC

DEFAULT VALUE: 5.

French keyword: NEBULOSITE

Gives the value of cloud cover when it is constant in time and space. In Octas or tenth.

1.47 COEFFICIENT FOR DIFFUSION OF TRACERS

Type: Real
Dimension: 1
Mnemo DIFNU
DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION DES TRACEURS

Sets the value of the tracer diffusivity. These values may have a significant effect on the evolution of tracers in time. Since release 8.2, it has been an array, with one value per tracer, separated by semicolons.

1.48 COEFFICIENT OF WIND INFLUENCE

Type: Real
Dimension: 1
Mnemo FAIR
DEFAULT VALUE: 1.55E-6

French keyword: COEFFICIENT D'INFLUENCE DU VENT

Sets the value of the wind driving coefficient. See the User Manual or the principle note for the

value to give.

1.49 COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED

Type: Logical

Dimension: 1

Mnemo FAIRACCU

DEFAULT VALUE: YES

French keyword: COEFFICIENT D'INFLUENCE DU VENT DEPENDANT DE LA VITESSE DU VI

If YES, the value of the wind driving coefficient is computed with respect to the wind velocity. The value of COEFFICIENT OF WIND INFLUENCE is overwritten. Old default value = NO until V8P1.

1.50 COEFFICIENT TO CALIBRATE SEA LEVEL

Type: Real
Dimension: 1
Mnemo MSL
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CALAGE DU NIVEAU DE MER

Coefficient to calibrate the sea level. It may depend on the altimetric reference used in the model, for example Chart Datum, Mean Sea Level...

1.51 COEFFICIENT TO CALIBRATE TIDAL RANGE

Type: Real
Dimension: 1
Mnemo CTIDE
DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE CALAGE DU MARNAGE

Coefficient to calibrate the tidal range of tidal wave at tidal open boundary conditions.

1.52 COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

Type: Real Dimension: 1

Mnemo CTIDEV DEFAULT VALUE: 999999.

French keyword: COEFFICIENT DE CALAGE DES VITESSES DE COURANT Coefficient to calibrate the tidal velocities of tidal wave at tidal open boundary conditions. Default value 999,999. means that the square root of COEFFICIENT TO CALIBRATE TIDAL RANGE is taken.

1.53 COMPATIBLE COMPUTATION OF FLUXES

Type: Logical

Dimension: 1

Mnemo COMFLU
DEFAULT VALUE: NO

French keyword: CALCUL COMPATIBLE DES FLUX

Flowrates through control sections, computation compatible with the weak formulation of noflux boundary condition.

1.54 COMPUTATION CONTINUED

Type: Logical

Dimension: 1

Mnemo .NOT.DEBU

DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is independent result or is following an earlier result.

- NO: It is the first run for this computation and a whole set of initial conditions should be defined,
- YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE defined in the steering file used for submitting the computation.

All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step, the turbulence model, the friction, to add or remove a tracer...

It is also possible to define new boundary conditions (in the subroutine **BORD** or values defined in the steering file).

1.55 CONCATENATE PARTEL OUTPUT

Type: Logical

Dimension: 1

Mnemo CONCAT_PARTEL

DEFAULT VALUE: NO

French keyword: CONCATENATION SORTIE PARTEL

With this option partel no more generates a file (GEO/CLI/PAR) per process but a single concatenate file of them, associated to an index file. Then instead of having partel generating 3P files, it only generates 6 files.

1.56 CONTINUITY CORRECTION

Type: Logical

Dimension: 1

Mnemo CORCON

DEFAULT VALUE: NO

French keyword: CORRECTION DE CONTINUITE

Correction of the velocities on points with a prescribed elevation, where the continuity equation has not been solved. It has to be activated with tidal flats and TREATMENT OF NEGATIVE DEPTHS = 2 or 3.

1.57 CONTROL OF LIMITS

Type: Logical

Dimension: 1

Mnemo VERLIM DEFAULT VALUE: NO

French keyword: CONTROLE DES LIMITES

Use with the key-word: LIMIT VALUES. The program is stopped if the limits on U, V, H or

tracers are trepassed.

1.58 CONTROL SECTIONS

Type: Integer

Dimension: 2

Mnemo CTRLSC
DEFAULT VALUE: MANDATORY

DEFAULI VALUE. MANDATORI

French keyword: SECTIONS DE CONTROLE

Couples of points (global numbers in the mesh) defining sections where the instantaneous and cumulated discharges will be given.

1.59 CONVERGENCE STUDY

Type: Logical

Dimension: 1

Mnemo CONVERGENCE

DEFAULT VALUE: NO

French keyword: ETUDE DE CONVERGENCE

Activates a convergence study compared to an analytical solution on a fine mesh.

1.60 CORIOLIS

Type: Logical

Dimension: 1

Mnemo CORIOL DEFAULT VALUE: NO

French keyword: CORIOLIS

The Coriolis force is taken into account or ignored.

1.61 CORIOLIS COEFFICIENT

Type: Real
Dimension: 1
Mnemo FCOR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CORIOLIS

Sets the value of the Coriolis force coefficient, in cartesian coordinates. This coefficient, denoted **FCOR** in the code, should be equal to $2\omega \sin(l)$ where ω denotes the earth angular speed of rotation and l the latitude. $\omega = 7.2921$ 10-5 rad/s.

The Coriolis force components are then:

 $FU = FCOR \times V,$ $FV = -FCOR \times U.$

When using the spherical coordinates, the Coriolis coefficient is automatically computed.

1.62 COST FUNCTION

Type: Integer Dimension: 1

Mnemo OPTCOST

DEFAULT VALUE: 1

French keyword: FONCTION COUT

Possible choices:

- computed with h, u, v,
- computed with c, u, v.

1.63 COUPLING PERIOD FOR SISYPHE

Type: Integer Dimension: 1

Mnemo PERCOU

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR SISYPHE

Sets the coupling period with the SISYPHE module, in number of time steps. By default, it is coupled at every time step.

1.64 COUPLING PERIOD FOR TOMAWAC

Type: Integer Dimension: 1

Mnemo PERCOU_WAC

DEFAULT VALUE:

French keyword: PERIODE DE COUPLAGE POUR TOMAWAC

Sets the coupling period with the TOMAWAC module, in number of time steps. By default, it is coupled at every time step.

1.65 COUPLING WITH

Type: String Dimension: 1

Mnemo COUPLING, IN BIEF

DEFAULT VALUE: "

French keyword: COUPLAGE AVEC List of codes to be coupled with TELEMAC-2D:

- SISYPHE: internal coupling with SISYPHE,
- TOMAWAC: internal coupling with TOMAWAC,
- WAQTEL: internal coupling with WAQTEL,
- KHIONE: internal coupling with KHIONE,
- DELWAQ: will yield results file for DELWAQ,
- GAIA: internal coupling with GAIA.

1.66 CULVERTS DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBUS)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES DES BUSES

Description of culverts/tubes/bridges existing in the model.

1.67 DEBUGGER

Type: Integer
Dimension: 1
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing.

1.68 DEFINITION OF ZONES

Type: Logical

Dimension: 1

Mnemo DEFZON DEFAULT VALUE: NO

French keyword: DEFINITION DE ZONES

Triggers the call to **USER_DEF_ZONES** subroutine to give a zone number to every point.

1.69 DELWAQ PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo WAQPRD

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE POUR DELWAO

Printout period for DELWAQ files.

1.70 DELWAQ STEERING FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DL11)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE COMMANDE DELWAQ

Steering file for chaining with DELWAQ.

1.71 DENSITY EFFECTS

Type: Logical Dimension: 1

Mnemo ROVAR DEFAULT VALUE: NO

French keyword: EFFETS DE DENSITE

The horizontal gradient of density is taken into account. The 1st tracer is then the salinity.

 $\rho_{\text{water}} = 999.972.(1 - 7.10^{-6}(T_{\text{mean}} - 4)^2).$

1.72 DENSITY OF ALGAE

Type: Real Dimension: 2

Mnemo RALGAE DEFAULT VALUE: 1050.;1050.

French keyword: MASSE VOLUMIQUE DES ALGUES

Density of algae in kg/m³.

1.73 DEPTH IN FRICTION TERMS

Type: Integer Dimension: 1

Dimension: 1 Mnemo HFROT

DEFAULT VALUE: 1

French keyword: HAUTEUR DANS LES TERMES DE FROTTEMENT

Possible choices:

• 1: nodal,

• 2: average.

1.74 DESIRED COURANT NUMBER

Type: Real Dimension: 1

Mnemo CFLWTD

DEFAULT VALUE: 1.

French keyword: NOMBRE DE COURANT SOUHAITE

Desired Courant number when VARIABLE TIME-STEP is set to YES.

1.75 DESIRED FOURIER NUMBER

Type: Real
Dimension: 1
Mnemo FWTD
DEFAULT VALUE: 1.

French keyword: NOMBRE DE FOURIER SOUHAITE

Desired Fourier number when VARIABLE TIME-STEP is set to YES.

1.76 DIAMETER OF ALGAE

Type: Real Dimension: 2

Mnemo DALGAE DEFAULT VALUE: 0.1;0.1

French keyword: DIAMETRE DES ALGUES

Diameter of algae in m.

1.77 DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'telemac2d.dico' French keyword: DICTIONNAIRE

Key word dictionary.

1.78 DIFFUSION OF TRACERS

Type: Logical
Dimension: 1
Mnemo DIFT
DEFAULT VALUE: YES

French keyword: DIFFUSION DES TRACEURS

The diffusion of the passive tracer is taken into account or ignored.

1.79 DIFFUSION OF VELOCITY

Type: Logical
Dimension: 1
Mnemo DIFVIT
DEFAULT VALUE: YES

French keyword: DIFFUSION DES VITESSES

Makes it possible to decide whether the diffusion of velocity (i.e. viscosity) is taken into account

or not.

1.80 DIFFUSIVITY DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DL10)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DE LA DIFFUSION

Results file for chaining with DELWAQ.

1.81 DIFFUSIVITY FOR DELWAQ

Type: Logical Dimension: 1

Mnemo DIFF_DEL

DEFAULT VALUE: NO

French keyword: DIFFUSION POUR DELWAQ

Triggers the output of diffusion for DELWAQ.

1.82 DISCRETIZATIONS IN SPACE

Type: Integer Dimension: 5

Mnemo DISCRE
DEFAULT VALUE: 11;11;11;11;11

French keyword: DISCRETISATIONS EN ESPACE

Choice of space discretisation for every variable. These coefficients are respectively applied to:

- 1) U and V,
- 2) *H*,
- 3) *T*,
- 4) k and ε ($k \varepsilon$ model),
- 5) \tilde{v} (Spalart-Allmaras model).

Possible choices are:

- 11: linear,
- 12: quasi-bubble,
- 13: quadratic.

Quadratic elements (13) have not been implemented for wave equation (TREATMENT OF THE LINEAR SYSTEM = 2).

1.83 DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS

Type: Real Dimension: 1

Mnemo SEC_DS DEFAULT VALUE: 5.E-1

French keyword: COEFFICIENT DE DISSIPATION POUR COURANTS SECONDAIRES

Coefficient of dissipation term of Ω .

1.84 DROGUES FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DBLO)%FMT

DEFAULT VALUE: 'TECPLOT'

French keyword: FORMAT DU FICHIER DES FLOTTEURS Format of the BINARY DROGUES FILE. Possible choices are:

• BKBINPCL: format binary PCL native to BlueKenue,

• TECPLOT: format Tecplot original (ASCII).

1.85 DROGUES INITIAL POSITIONING DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DPLY)%NAME

DEFAULT VALUE:

French keyword: FICHIER POSITIONNANT LES DROGUES INITIALES ASCII data file containing polygons or points defining the initial positioning of drogues at the start of the simulation.

1.86 DURATION

Type: Real
Dimension: 1
Mnemo DUREE
DEFAULT VALUE: 0.

French keyword: DUREE DU CALCUL

Sets the duration of simulation in seconds. May be used instead of the parameter NUMBER OF TIME STEPS. The nearest integer to (duration/time step) is taken. If NUMBER OF TIME STEPS is also given, the greater value is taken.

1.87 DURATION BEFORE ALGAE RELEASE

Type: Real Dimension: 2

Mnemo TALGAE DEFAULT VALUE: 0.0;0.0

French keyword: DUREE AVANT RELACHE DES ALGUES

Duration in seconds before the release of the algae from the start of the simulation.

1.88 DURATION OF RAIN OR EVAPORATION IN HOURS

Type: Real Dimension: 1

Mnemo RAIN_HDUR

DEFAULT VALUE: 1.E6

French keyword: DUREE DE LA PLUIE OU EVAPORATION EN HEURES

Gives the duration of the rain in hours, default value is infinite.

1.89 ELEMENTS MASKED BY USER

Type: Logical

Dimension: 1

Mnemo MSKUSE DEFAULT VALUE: NO

French keyword: ELEMENTS MASQUES PAR L'UTILISATEUR

If YES, fill in the subroutine USER_MASKOB.

1.90 EQUATIONS

Type: String
Dimension: 1
Mnemo EQUA

DEFAULT VALUE: 'SAINT-VENANT FE'

French keyword: EQUATIONS

Choice of equations to solve:

- Shallow Water Finite Elements,
- Shallow Water Finite Volumes,
- Boussinesq 20 Characters.

1.91 EXCHANGE AREAS DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DDL2)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DE FLUX

Results file for chaining with DELWAQ.

1.92 EXCHANGES BETWEEN NODES DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DDL6)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES ECHANGES ENTRE NOEUDS

Results file for chaining with DELWAQ.

1.93 FINITE ELEMENT ASSEMBLY

Type: Integer Dimension: 1

Mnemo MODASS

DEFAULT VALUE: 1

French keyword: ASSEMBLAGE EN ELEMENTS FINIS

Possible choices are:

- 1: normal,
- 2: with I8 integers,
- 3: compensation (for reproducibility).

1.94 FINITE VOLUME SCHEME

Type: Integer
Dimension: 1
Mnemo OPTVF

DEFAULT VALUE: 1

French keyword: SCHEMA EN VOLUMES FINIS

Possible choices:

- 0: Roe scheme,
- 1: kinetic,
- 3: Zokagoa scheme,
- 4: Tchamen scheme,
- 5: HLLC,
- 6: WAF.

1.95 FINITE VOLUME SCHEME FOR TRACER DIFFUSION

Type: Integer
Dimension: 2
Mnemo MVIST

DEFAULT VALUE: 1

French keyword: SCHEMA VOLUMES FINIS POUR LA DIFFUSION DES TRACEURS Choice of the finite volume diffusion model:

- 1: explicit P1 finite element;
- 2: two points flux;
- 3: reconstructed two points flux.

1.96 FINITE VOLUME SCHEME FOR VELOCITY DIFFUSION

Type: Integer Dimension: 1

Mnemo MVISUV

DEFAULT VALUE: 1

French keyword: SCHEMA VOLUMES FINIS POUR LA DIFFUSION DES VITESSES Choice of the finite volume diffusion model:

- 1: explicit P1 finite element;
- 2: two points flux;
- 3: reconstructed two points flux.

1.97 FINITE VOLUME SCHEME SPACE ORDER

Type: Integer

Dimension: 1

Mnemo SORDER

DEFAULT VALUE: 1

French keyword: ORDRE EN ESPACE DU SCHEMA VOLUME FINIS

Possible choices:

• 1: first order in space,

• 2: second order in space.

1.98 FINITE VOLUME SCHEME TIME ORDER

Type: Integer

Dimension: 1

Mnemo TORDER

DEFAULT VALUE:

French keyword: ORDRE EN TEMPS DU SCHEMA VOLUME FINIS

Possible choices:

• 1: first order in time,

• 2: second order in time.

1.99 FLUX LIMITOR FOR H PLUS Z

Type: Integer

Dimension: 1

Mnemo ILIMHZ

DEFAULT VALUE:

French keyword: LIMITEUR DE FLUX POUR H PLUS Z

Possible choices:

- 1 : Minmod,
- 2: Van Albada,
- 3: MC (Monotonized Central-difference),
- 4 : GenMinmod.

1.100 FLUX LIMITOR FOR TRACERS

Type: Integer

Dimension: 1

Mnemo ILIMT

DEFAULT VALUE: 2

French keyword: LIMITEUR DE FLUX POUR LES TRACEURS

Possible choices:

- 1 : Minmod,
- 2: Van Albada,
- 3 : MC (Monotonized Central-difference),
- 4 : GenMinmod.

1.101 FLUX LIMITOR FOR U AND V

Type: Integer

Dimension: 1

Mnemo ILIMUV

DEFAULT VALUE: 2

French keyword: LIMITEUR DE FLUX POUR U ET V

Possible choices:

• 1 : Minmod,

• 2: Van Albada,

• 3 : MC (Monotonized Central-difference),

• 4 : GenMinmod.

1.102 FLUXLINE

Type: Logical

Dimension:

Mnemo DOFLUX

DEFAULT VALUE: NO

French keyword: FLUXLINE Use Fluxline to compute flux over lines.

1.103 FLUXLINE INPUT FILE

Type: String Dimension: 1

Jilicusion . 1

Mnemo T2D_FILES(T2DFLX)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE FLUXLINE Name of the fluxline file, with data on cross-sections.

1.104 FORMAT OF THE DROGUES POSITIONING DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DPLY)%FMT

DEFAULT VALUE: 'BKASCI2S'

French keyword: FORMAT DU FICHIER POSITIONNANT LES DROGUES

Format of the DROGUES INITIAL POSITIONING DATA FILE. Single possible choice

is:

• BKASCI2S: format AXCII I2S native of BlueKenue.

1.105 FORMATTED DATA FILE 1

Type: String Dimension: 1

Mnemo T2D_FILES(T2DFO1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 1

Formatted data file available to the user.

1.106 FORMATTED DATA FILE 2

Type: String

Dimension: 1

Mnemo T2D_FILES(T2DFO2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 2

Formatted data file available to the user.

1.107 FORMATTED RESULTS FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRFO)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE

Formatted file of results available to the user.

1.108 FORMATTED RESULTS FILE 1

Type: String Dimension: 1

Mnemo T2D FILES(T2DRF1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 1

Formatted file of results 1 available to the user.

1.109 FORMATTED RESULTS FILE 2

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRF2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 2

Formatted file of results 2 available to the user.

1.110 FORMATTED RESULTS FILE 3

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRF3)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 3

Formatted file of results 3 available to the user.

1.111 FORMATTED RESULTS FILE 4

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRF4)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 4

Formatted file of results 4 available to the user.

1.112 FORMATTED RESULTS FILE 5

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRF5)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DE RESULTATS FORMATE 5

Formatted file of results 5 available to the user.

1.113 FORMATTED RESULTS FILE 6

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRF6)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 6

Formatted file of results 6 available to the user.

1.114 FORTRAN FILE

Type: String Dimension: 1

Mnemo NOMFOR

DEFAULT VALUE: '

French keyword: FICHIER FORTRAN

Name of the FORTRAN file or directory to be submitted, including specific subroutines of the

model.

1.115 FOURIER ANALYSIS PERIODS

Type: Real Dimension: 2

Mnemo PERIAF
DEFAULT VALUE: MANDATORY

French keyword: PERIODES D'ANALYSE DE FOURIER

List of periods to be analysed.

1.116 FREE FORMAT FOR ATMOSPHERIC DATA FILE

Type: Logical Dimension: 1

Mnemo FREE_ATMO

DEFAULT VALUE: NO

French keyword: FORMAT LIBRE POUR FICHIER DE DONNEES ATMOSPHERIQUES Indicates if the atmospheric data file (ASCII or binary) has to follow the format expected by the **METEO_TELEMAC** module or if it can be handled outside this module. If a special treatment

has to be implemented for this file, e.g. with option OPTION FOR WIND = 3, set to YES.

1.117 FREE SURFACE GRADIENT COMPATIBILITY

Type: Real Dimension: 1

Mnemo TETAZCOMP

DEFAULT VALUE: 1.

French keyword: COMPATIBILITE DU GRADIENT DE SURFACE LIBRE

Values between 0 and 1 may suppress spurious oscillations.

1.118 FRICTION COEFFICIENT

Type: Real
Dimension: 1
Mnemo FFON
DEFAULT VALUE: 50.

French keyword: COEFFICIENT DE FROTTEMENT

Sets the value of the friction coefficient for the selected formulation. It is noteworthy that the meaning of this figure changes according to the selected formula (Chezy, Strickler, etc.):

- 1: linear coefficient,
- 2: Chezy coefficient,
- 3: Strickler coefficient,
- 4: Manning coefficient,
- 5: Nikuradse grain size.

1.119 FRICTION DATA

Type: Logical

Dimension: 1

Mnemo FRICTB DEFAULT VALUE: NO

French keyword: DONNEES POUR LE FROTTEMENT

Logical to say if friction laws are defined by area.

1.120 FRICTION DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DCOF)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES POUR LE FROTTEMENT Friction data file name. See the TELEMAC-2D user manual for its description.

1.121 GAIA STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE GAIA

GAIA parameter file in case of internal coupling.

1.122 GEOGRAPHIC SYSTEM

Type: Integer Dimension: 1

Mnemo GEOSYST

DEFAULT VALUE: -1

French keyword: SYSTEME GEOGRAPHIQUE

Geographic coordinates system in which the numerical model is built. Indicate the corresponding zone with the keyword. The possible choices are:

- 0: defined by the user,
- 1: WGS84 longitude/latitude in real degrees,
- 2: WGS84 Northern UTM,
- 3: WGS84 Southern UTM,
- 4: Lambert,
- 5: Mercator projection.

1.123 GEOMETRY FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DGEO)%NAME

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction coefficients.

1.124 GEOMETRY FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DGEO)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Format of the GEOMETRY FILE. Possible values are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED : MED double precision format based on HDF5.

1.125 GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 1

Mnemo ICALHWG

DEFAULT VALUE: 0

French keyword: NUMERO GLOBAL DU POINT POUR CALER LA PLEINE MER Global number of the point (between 1 and the number of boundary nodes in the 2D mesh) with

respect to which the tidal constituents have their phase shifted to start the calculation with a high water (for schematic tides only). This point has to be a maritime boundary node. Only harmonic constants databases like TPXO are concerned.

1.126 GLOBAL NUMBERS OF SOURCE NODES

Type: Integer
Dimension: 2
Mnemo ISCE

DEFAULT VALUE: MANDATORY

French keyword: NUMEROS GLOBAUX DES NOEUDS DES SOURCES Global numbers of nodes in the mesh that correspond to source point locations.

1.127 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo LEOPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines, in number of time steps, the printout period for the VARIABLES FOR GRAPHIC PRINTOUTS in the RESULTS FILE.

1.128 GRAVITY ACCELERATION

Type: Real
Dimension: 1
Mnemo GRAV
DEFAULT VALUE: 9.81

French keyword: ACCELERATION DE LA PESANTEUR

Sets the value of the acceleration due to gravity in m/s^2 .

1.129 H CLIPPING

Type: Logical Dimension: 1 Mnemo CLIPH DEFAULT VALUE: NO

French keyword: CLIPPING DE H

Determines whether limiting the water depth H by a lower value desirable or not (for instance in the case of tidal flats). This keyword may have an influence on mass conservation since the truncation of depth is equivalent to adding mass.

1.130 HARMONIC CONSTANTS FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DHAR)

DEFAULT VALUE: '

French keyword: FICHIER DES CONSTANTES HARMONIQUES File containing the harmonic constants to compute the tidal boundary conditions.

1.131 HERSCHEL-BULKLEY POWER-LAW INDEX

Type: Real
Dimension: 1
Mnemo NN_N
DEFAULT VALUE: 1.

French keyword: INDICE POUR LE MODELE DE HERSCHEL-BULKLEY

Herschel-Bulkley power law index n.

1.132 IDENTIFICATION METHOD

Type: Integer
Dimension: 1
Mnemo OPTID
DEFAULT VALUE: 1

French keyword: METHODE D'IDENTIFICATION

Possible choices:

- 0: list of tests,
- 1: gradient,
- 2: conjugate gradient,
- 3: Lagrangian interpolation.

1.133 IMPLICITATION COEFFICIENT OF TRACERS

Type: Real
Dimension: 1
Mnemo TETAT
DEFAULT VALUE: 0.6

French keyword: COEFFICIENT D'IMPLICITATION DES TRACEURS

Sets the value of the implicitation coefficient for the tracer. If an advection scheme for tracers is a distributive scheme (e.g.: 3, 4, 5, 13, 14 or 15), IMPLICITATION COEFFICIENT OF TRACERS is prescribed at 0. (explicit).

1.134 IMPLICITATION FOR DEPTH

Type: Real
Dimension: 1
Mnemo TETAC
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA HAUTEUR

Sets the value of the implicitation coefficient for C (the celerity of waves) in the propagation step (refer to principle note). Values below 0.5 result in an unstable scheme (and are then forbidden).

1.135 IMPLICITATION FOR DIFFUSION OF VELOCITY

Type: Real
Dimension: 1
Mnemo TETAD
DEFAULT VALUE: 1.

French keyword: IMPLICITATION POUR LA DIFFUSION DES VITESSES

Sets the value of the implicitation coefficient for the diffusion of velocity.

1.136 IMPLICITATION FOR VELOCITY

Type: Real
Dimension: 1
Mnemo TETAU
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA VITESSE

Sets the value of the implicitation coefficient for velocity in the propagation step (refer to principle note). Values below 0.5 result in an unstable condition (and are then forbidden).

1.137 INFORMATION ABOUT K-EPSILON MODEL

Type: Logical Dimension: 1
Mnemo INFOK

Mnemo INFOKE DEFAULT VALUE: YES

French keyword: INFORMATIONS SUR LE MODELE K-EPSILON

Gives the number of iterations of the solver in the diffusion and source terms step of the $k - \varepsilon$ model.

1.138 INFORMATION ABOUT SOLVER

Type: Logical

Dimension: 1

Mnemo INFOGR DEFAULT VALUE: YES

French keyword: INFORMATIONS SUR LE SOLVEUR

If YES, prints the number of iterations that have been necessary to get the solution of the linear system.

1.139 INFORMATION ABOUT SPALART-ALLMARAS MODEL

Type: Logical

Dimension: 1

Mnemo INFONU DEFAULT VALUE: YES

French keyword: INFORMATION SUR LE MODELE SPALART-ALLMARAS If yes, informations about solver of Spalart-Allmaras model are printed to the listing.

1.140 INITIAL CONDITIONS

Type: String
Dimension: 1
Mnemo CDTINI

DEFAULT VALUE: 'ZERO ELEVATION'

French keyword: CONDITIONS INITIALES

Makes it possible to define the initial conditions of the water depth. The possible values are as follows:

• ZERO ELEVATION: Initializes the free surface elevation to 0. The initial water depths are then found by computing the difference between the free surface and the bottom,

- CONSTANT ELEVATION: Initializes the water elevation to the value given by the keyword INITIAL ELEVATION. The initial water depths are computed as in the previous case,
- ZERO DEPTH: Initializes the water depths to 0.
- CONSTANT DEPTH: Initializes the water depths to the value given by the keyword INITIAL DEPTH,
- TPXO SATELITE ALTIMETRY: The initial conditions on the free surface and velocities are established from the satellite program data given by the harmonic constants database coming from OSU (e.g. TPXO) and stored in the BINARY DATABASE 1/2 FOR TIDE,
- SPECIAL or PARTICULAR: The initial conditions with the water depth should be stated in the USER_CONDIN_H subroutine.

1.141 INITIAL DEPTH

Type: Real Dimension: 1

Mnemo HAUTIN

DEFAULT VALUE: 0.

French keyword: HAUTEUR INITIALE

Value to be used along with the option: INITIAL CONDITIONS: "CONSTANT DEPTH".

1.142 INITIAL DROGUES SAMPLING DENSITY

Type: Real Dimension: 2

Mnemo DRG_DENSITY

DEFAULT VALUE: 1000;1000

French keyword: DENSITE INITIALE DE REPARTITION DES FLOTTEURS Initial density of drogues, or number of drogues per m2, used to spatially place the initial drogues in a simulation.

1.143 INITIAL ELEVATION

Type: Real
Dimension: 1
Mnemo COTINI
DEFAULT VALUE: 0.

French keyword: COTE INITIALE

Value to be used with the option: INITIAL CONDITIONS: "CONSTANT ELEVATION".

1.144 INITIAL GUESS FOR H

Type: Integer Dimension: 1

Mnemo IORDRH

DEFAULT VALUE: 1

French keyword: ORDRE DU TIR INITIAL POUR H

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value

of C, upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available:

- 0: DH = 0,
- 1: DH = DHn (ultimate DH value in the next previous time step),
- 2: DH = 2.DHn DHn-1 (extrapolation).

1.145 INITIAL GUESS FOR U

Type: Integer Dimension:

Mnemo **IORDRU**

DEFAULT VALUE:

French keyword: ORDRE DU TIR INITIAL POUR U

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value of U, upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available:

- 0: U = 0,
- 1: U = U(n),
- 2: U = 2 U(n) U(n-1) (extrapolation).

1.146 **INITIAL LENGTHS OF BREACHES**

Type: Logical

Dimension:

Mnemo **LOGINB** DEFAULT VALUE: NO

French keyword: LONGUEURS INITIALES DES BRECHES

Logical to state if the initial lengths of breaches are known. If yes, values must be given in the BREACHES DATA FILE.

INITIAL TIME SET TO ZERO 1.147

Type: Logical Dimension: 1

Mnemo

RAZTIM DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart.

1.148 **INITIAL VALUES OF TRACERS**

Type: Real Dimension: 2

TRAC0 Mnemo DEFAULT VALUE: 0.;0.

French keyword: VALEURS INITIALES DES TRACEURS Sets the initial value of the tracer(s). Required value(s) separated with a semicolumn; if more than one. The number of supplied values must be equal to the number of declared tracers.

1.149 INITIAL VELOCITIES COMPUTED BY TPXO

Type: Logical

Dimension: 1

Mnemo VITINI_TPXO

DEFAULT VALUE: OUI

French keyword: VITESSES INITIALES CALCULEES PAR TPXO

Initial velocity components computed from a tidal solution from OSU (e.g. TPXO). NO to prevent from an initialisation with too big tidal velocities. For tidal solutions coming from OSU only (e.g. TPXO).

1.150 KHIONE STEERING FILE

Type: String Dimension: 1

Mnemo T2D FILES(KHIONE)

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE KHIONE

Steering file for physical parameters of ice processes.

1.151 LAMBERT 93 CONVERSION FILE

Type: String

Dimension: 1

Mnemo T2D_FILES(T2DL93)

DEFAULT VALUE: '

French keyword: FICHIER DE CONVERSION LAMBERT 93

Name of file gr3df97a.txt, conversion grid for Lambert 93.

1.152 LANGUAGE

Type: Integer
Dimension: 1
Mnemo LNG
DEFAULT VALUE: 2

French keyword: LANGUE

1: FRENCH 2: ENGLISH

1.153 LATITUDE OF ORIGIN POINT

Type: Real Dimension: 1

Mnemo LAMBD0

DEFAULT VALUE: 48.

French keyword: LATITUDE DU POINT ORIGINE

Determines the origin used for computing latitudes when a computation is made in spherical coordinates. This latitude is in particular used to compute the Coriolis force. In cartesian coordinates, Coriolis coefficient is considered constant. Also used for heat exchange with atmosphere, Okada model for tsunamis, frazil.

1.154 LAW OF BOTTOM FRICTION

Type: Integer

Dimension: 1

Mnemo KFROT

DEFAULT VALUE: MANDATORY

French keyword: LOI DE FROTTEMENT SUR LE FOND

Selects the type of formulation used for the bottom friction. The possible laws are as follows (refer to the Principle note):

- 0: no friction against bottom,
- 1: Haaland"s formula,
- 2: Chezy"s formula,
- 3: Strickler"s formula,
- 4: Manning"s formula,
- 5: Nikuradse"s formula.

1.155 LAW OF FRICTION ON LATERAL BOUNDARIES

Type: Integer

Dimension: 1

Mnemo KFROTL

DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LES PAROIS LATERALES Selects the type of formulation used for the friction on lateral boundaries. The possible laws are as follows (refer to the Principle note):

- 0: no friction,
- 1 : linear,
- 2 : Chezy,
- 3 : Strickler,
- 4: Manning,
- 5: Nikuradse"s formula,
- 6 : log law,
- 7 : Colebrook-White.

1.156 LIMIT VALUES

Type: Real Dimension: 8

Mnemo BORNES

DEFAULT VALUE: -1000.;9000.;-1000.;1000.;-1000.;1000.;-1000.;1000.

French keyword: VALEURS LIMITES

To be used with the key-word CONTROL OF LIMITS. Min and max acceptable values for H, U, V and tracers in the following order: $\min(H)$ $\max(H)$ $\min(U)$ $\max(U)$ $\min(V)$ $\max(V)$ $\min(T)$ $\max(T)$.

1.157 LINEARIZED PROPAGATION

Type: Logical
Dimension: 1
Mnemo PROLIN
DEFAULT VALUE: NO

French keyword: PROPAGATION LINEARISEE

Provided for linearizing the propagation step, e.g. when performing test-cases for which an analytical solution in the linearized case is available.

1.158 LIQUID BOUNDARIES FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DIMP)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FRONTIERES LIQUIDES

File containing the variations in time of boundary conditions.

1.159 LIST OF POINTS

Type: Integer Dimension: 2

Mnemo LIST_PTS DEFAULT VALUE: MANDATORY

French keyword: LISTE DE POINTS

List of remarkable points for printouts.

1.160 LISTING FOR PRINTOUT PERIOD

Type: Integer

Dimension: 1

Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED. The results are systematically printed out on the listing file (file CAS.SORTIE at the workstation), Has priority before LISTING PRINTOUT PERIOD.

1.161 LISTING PRINTOUT

Type: Logical Dimension: 1 Mnemo LISTIN

Mnemo LISTII DEFAULT VALUE: YES

French keyword: SORTIE LISTING

Result printout on hard copy. When NO is selected, the listing only includes the heading and the phrase "NORMAL END OF PROGRAM". In addition, the options MASS-BALANCE and VALIDATION are inhibited. Not recommended for use.

1.162 LISTING PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo LISPRD

DEFAULT VALUE:

French keyword: PERIODE DE SORTIE LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED. The results are systematically printed out on the listing file (file CAS.SORTIE at the workstation).

1.163 LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 1

Mnemo ICALHWB

DEFAULT VALUE: (

French keyword: NUMERO LOCAL DU POINT POUR CALER LA PLEINE MER Local number between 1 and the number of tidal boundary points (of the HARMONIC CONSTANTS FILE) where the tidal boundary conditions are computed with JMJ, NEA, FES, PREVIMER databases (except TPXO-type databases). The tidal constituents have their phase shifted with respect to this point to start the simulation with a high water (for schematic tides only).

1.164 LONGITUDE OF ORIGIN POINT

Type: Real
Dimension: 1
Mnemo PHI0
DEFAULT VALUE: 0.

French keyword: LONGITUDE DU POINT ORIGINE

Give the value of the longitude of the origin point of the model, when taking into account of the tide generator force. For the Mercator projection, see the keyword GEOGRAPHIC SYSTEM. Also used for tide generating force, heat exchange with atmosphere, Okada model for tsunamis.

1.165 MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW

Type: Real
Dimension: 1
Mnemo NDEF
DEFAULT VALUE: 0.02

French keyword: VALEUR PAR DEFAUT DU MANNING POUR LA LOI DE COLEBROOK-WHITE

Manning default value for the friction law of Colebrook-White (law number 7).

1.166 MASS-BALANCE

Type: Logical

Dimension: 1

Mnemo BILMAS DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is mader or not. This procedures computes the following at each time step:

- the domain inflows and outflows,
- the overall flow across all the boundaries,
- the relative error in the mass for that time step.

The relative error in the mass over the whole computation can be found at the end of the listing.

1.167 MASS-LUMPING FOR WEAK CHARACTERISTICS

Type: Real Dimension: 1

Mnemo AGGLOW

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES CARACTERISTIQUES FAIBLES Sets the amount of mass-lumping that is applied to the mass matrix when using weak characteristics.

1.168 MASS-LUMPING ON H

Type: Real Dimension: 1

Mnemo AGGLOC

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR H

TELEMAC-2D provides an opportunity to carry out mass-lumping either on H or on the velocity. This is equivalent to bringing the matrices AM1 (h) or AM2 (U) and AM3 (V) wholly or partly, back onto their diagonal. Thanks to that technique, the code can be speeded up to a quite significant extent and it can also be made much more stable. The resulting solutions, however, become artificially smoothed. This parameter sets the extent of mass-lumping that is performed on h.

1.169 MASS-LUMPING ON TRACERS

Type: Real Dimension: 1

Mnemo AGGLOT

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR LES TRACEURS

Sets the amount of mass-lumping that is performed on the tracer. Read but replaced by the value of MASS-LUMPING ON H to ensure tracer mass conservation.

1.170 MASS-LUMPING ON VELOCITY

Type: Real Dimension: 1

Mnemo AGGLOU

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR LA VITESSE

Sets the amount of mass-lumping that is performed on the velocity. The keyword TREATMENT OF THE LINEAR SYSTEM changes the used value to 1.

1.171 MATRIX STORAGE

Type: Integer

Dimension: 1

Mnemo OPTASS

DEFAULT VALUE: 3

French keyword: STOCKAGE DES MATRICES

Defines the method to store matrices. The possible choices are:

• 1: classical EBE,

• 3: edge-based storage.

Option 3 is mandatory with a distributive scheme for advection (= 3, 4, 5, 13, 14 or 15).

1.172 MATRIX-VECTOR PRODUCT

Type: Integer

Dimension: 1

Mnemo PRODUC

DEFAULT VALUE: 1

French keyword: PRODUIT MATRICE-VECTEUR

Possible choices are:

• 1: classic,

• 2: frontal. Beware, with option 2, a special numbering of points is required.

1.173 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer

Dimension: 1

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

Maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased

if needed.

1.174 MAXIMUM NUMBER OF DROGUES

Type: Integer Dimension: 1

Mnemo NFLOT_MAX

DEFAULT VALUE: 0

French keyword: NOMBRE MAXIMAL DE FLOTTEURS

Maximum number of drogues in the computation.

1.175 MAXIMUM NUMBER OF FRICTION DOMAINS

Type: Integer Dimension: 1

Mnemo NZONMX

DEFAULT VALUE: 10

French keyword: NOMBRE MAXIMUM DE DOMAINES DE FROTTEMENT Maximal number of zones defined for the friction. Could be increased if needed.

1.176 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

Type: Integer Dimension: 1

Mnemo MAXADV

DEFAULT VALUE: 50

French keyword: MAXIMUM D'ITERATIONS POUR LES SCHEMAS DE CONVECTION

Limits the number of solver iterations for the advection schemes, only for schemes 13, 14 and

15. Old default value = 10 until release 8.1.

1.177 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 1

Mnemo SLVTRA(ITRAC)%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES TRACEURS

Limits the number of solver iterations at each time step for the diffusion of tracer(s).

1.178 MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION

Type: Integer Dimension: 1

Mnemo MAXEST

DEFAULT VALUE: 20

French keyword: MAXIMUM D'ITERATIONS POUR L'IDENTIFICATION

Every iteration implies at least a direct and an adjoint computation.

1.179 MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON

Type: Integer Dimension: 1

Mnemo SLVK%NITMAX

DEFAULT VALUE: 50

French keyword: MAXIMUM D'ITERATIONS POUR K ET EPSILON

Sets the maximum number of iterations that are acceptable when solving the diffusion source-

terms step of k, ε (for $k - \varepsilon$ model) or \tilde{v} (for Spalart-Allmaras model).

1.180 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER

Type: Integer Dimension: 1

Mnemo SLVPRO%NITMAX

DEFAULT VALUE: 100

French keyword: MAXIMUM D'ITERATIONS POUR LE SOLVEUR

Since the algorithms used for solving the propagation step are iterative, the allowed number of iterations should be limited. NOTE: a maximum number of 40 iterations per time step seems to be reasonable.

1.181 MAXIMUM NUMBER OF POINTS FOR SOURCES REGIONS

Type: Integer Dimension: 1

Mnemo MAXPTSCE

DEFAULT VALUE: 10

French keyword: NOMBRE MAXIMUM DE POINTS POUR DEFINIR DES SOURCES Maximal number of points to define regions containing sources. Used for dimensioning arrays. It can be increased if needed.

1.182 MAXIMUM NUMBER OF SOURCES

Type: Integer Dimension: 1

Mnemo MAXSCE

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE SOURCES

Maximal number of punctual sources in the mesh. Used for dimensioning arrays. Can be

increased if needed.

1.183 MAXIMUM NUMBER OF TRACERS

Type: Integer Dimension: 1

Mnemo MAXTRA

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE TRACEURS

Maximal number of tracers. Used for dimensioning arrays. Can be increased if needed.

1.184 MEAN DEPTH FOR LINEARIZATION

Type: Real Dimension: 1

Mnemo HAULIN

DEFAULT VALUE: 0.

French keyword: PROFONDEUR MOYENNE POUR LA LINEARISATION

Sets the water depth around which the linearization is done when the LINEARIZED PROPAGATION

option is selected.

1.185 MEAN TEMPERATURE

Type: Real
Dimension: 1
Mnemo TMOY
DEFAULT VALUE: 20.

French keyword: TEMPERATURE MOYENNE

Reference temperature for density effects. To be used with the keyword DENSITY EFFECTS.

MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS 1.186

Type: Real Dimension: 1

Mnemo HMIN_VIT_BC

DEFAULT VALUE: 0.1

French keyword: HAUTEUR MINIMALE POUR LES CONDITIONS AUX LIMITES DE COURANTS

Minimum value of water depth used to compute tidal boundary conditions for velocities if the

water depths are too small. For tidal solutions coming from OSU only (e.g. TPXO).

MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS 1.187

Type: Real Dimension: 1

HMIN_VIT_IC Mnemo

DEFAULT VALUE:

French keyword: HAUTEUR MINIMALE POUR LES CONDITIONS INITIALES DE COURANTS

Minimum value of water depth above which initial conditions for tidal velocities are computed. Otherwise, the velocity components are equal to 0. For tidal solutions coming from OSU only (e.g. TPXO).

1.188 MINIMUM VALUE OF DEPTH

Type: Real Dimension: 1 **HMIN** Mnemo DEFAULT VALUE: 0.

French keyword: VALEUR MINIMUM DE H

Sets the minimum water depth H value when option H CLIPPING is implemented. Not fully implemented.

1.189 MINOR CONSTITUENTS INFERENCE

Type: Logical Dimension:

Mnemo

INTMICON

DEFAULT VALUE: NO

French keyword: INTERPOLATION DE COMPOSANTES MINEURES

For TPXO tidal data base only. Inference of minor constituents from the one read in input files linked to keywords BINARY DATABASE 1 FOR TIDE and BINARY DATABASE 2 FOR TIDE.

MIXING LENGTH MODEL COEFFICIENTS 1.190

Type: Real Dimension: 2

Mnemo **CALMIXLENGTH** DEFAULT VALUE: 0.1066667;0.0666667

COEFFICIENTS DU MODELE DE LONGUEUR DE MELANGE French keyword: Calibration coefficients C_l and α_l in mixing length formula. Only used with TURBULENCE MODEL = 5.

1.191 NAMES OF CLANDESTINE VARIABLES

Type: String Dimension: 2

Mnemo VARCLA

DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES VARIABLES CLANDESTINES

Names of variables that are not used by TELEMAC-2D, but should be preserved when it is being run. This keyword may be used, for instance when TELEMAC-2D is coupled with another code. Thus, the clandestine variables belong to the other code and are given back in the results file.

1.192 NAMES OF POINTS

Type: String Dimension: 2

Mnemo NAME_PTS

DEFAULT VALUE: 'MANDATORY'
French keyword: NOMS DES POINTS
Names of remarkable points for printouts.

1.193 NAMES OF PRIVATE VARIABLES

Type: String Dimension: 2

Mnemo NAMES_PRIVE DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES VARIABLES PRIVEES

Name of private variables in 32 characters, 16 for the name, 16 for the unit. They are stored in the block **PRIVE** and can be read in the GEOMETRY FILE if they are here with their name.

1.194 NAMES OF TRACERS

Type: String Dimension: 2

Mnemo NAMETRAC
DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES TRACEURS

Name of tracers in 32 characters, 16 for the name, 16 for the unit.

1.195 NESTOR

Type: Logical Dimension: 1

Mnemo NESTOR
DEFAULT VALUE: NO
French keyword: NESTOR

Activates the use of the NESTOR module to change the bottom.

1.196 NESTOR ACTION FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2NACT)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE NESTOR

Name of the NESTOR steering file.

1.197 NESTOR POLYGON FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2NPOL)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE POLYGONES DE NESTOR

Name of the NESTOR polygon file which indicates the location.

1.198 NESTOR RESTART FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2NRST)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE REPRISE DE NESTOR

Name of the NESTOR restart file.

1.199 NESTOR SURFACE REFERENCE FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2NREF)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE SURFACE REFERENCE DE NESTOR

Name of the NESTOR file which contains the reference water surface.

1.200 NEWMARK TIME INTEGRATION COEFFICIENT

Type: Real Dimension: 1

Mnemo GAMMA

DEFAULT VALUE: 0.5

French keyword: COEFFICIENT D'INTEGRATION EN TEMPS DE NEWMARK

Possible choices are:

• 1.: Euler explicit,

• 0.5: order 2 in time.

Only for Finite Volumes.

1.201 NODES DISTANCES DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DDL7)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES DISTANCES ENTRE NOEUDS

Results file for chaining with DELWAQ.

1.202 NON-DIMENSIONAL DISPERSION COEFFICIENTS

Type: Real Dimension: 2

Mnemo ELDER DEFAULT VALUE: 6.;0.6

French keyword: COEFFICIENTS ADIMENSIONNELS DE DISPERSION

Longitudinal and transversal coefficients in Elder s formula. Used only with TURBULENCE

MODEL = 2.

1.203 NON-NEWTONIAN FLUID DENSITY

Type: Real Dimension: 1

Mnemo NN_RHO DEFAULT VALUE: 1000.

French keyword: DENSITE DU FLUIDE NON-NEWTONIEN

Non-newtonian fluid density, correspond to the sediment density if the pseudo-biphasic model

is activated [kg/m³].

1.204 NON-NEWTONIAN LAMINAR RESISTANCE PARAMETER K

Type: Real
Dimension: 1
Mnemo NN_K
DEFAULT VALUE: 24.

French keyword: RESISTANCE LAMINAIRE DU FLUIDE NON-NEWTONIEN

Non-newtonian laminar resistance parameter k.

1.205 NON-NEWTONIAN MODEL

Type: Integer Dimension: 1

Mnemo NONNEWTMODEL

DEFAULT VALUE: 0

French keyword: MODELE NON-NEWTONIEN

Choice of the non-newtonian model:

• 0: Newtonian,

• 1: Bingham,

• 2: Herschel-Bulkley.

1.206 NON-NEWTONIAN PSEUDO-BIPHASIC MODEL

Type: Logical

Dimension: 1

Mnemo NN_BIPHASIC

DEFAULT VALUE: NO

French keyword: MODELE NON-NEWTONIEN PSEUDO DIPHASIQUE

Non-newtonian pseudo biphasic model with variable density.

1.207 NON-NEWTONIAN VISCOSITY

Type: Real Dimension: 1

Mnemo NN_VISC

DEFAULT VALUE: 0.

French keyword: VISCOSITE DU FLUIDE NON-NEWTONIEN

Non-newtonian dynamic viscosity [Pa.s].

1.208 NON-NEWTONIAN YIELD STRESS

Type: Real Dimension: 1

Mnemo NN YIELD

DEFAULT VALUE: 0.

French keyword: CONTRAINTE D'ELASTICITE DU FLUIDE NON-NEWTONIEN

Non-newtonian yield stress [Pa].

1.209 NORTH

Type: Real
Dimension: 1
Mnemo NORD
DEFAULT VALUE: 0.
French keyword: NORD

Angle of the North with the y axis, counted counter-clockwise, in degrees. 10.5 means 10 degrees and 30 minutes. Read but not used.

1.210 NUMBER OF ALGAE CLASSES

Type: Integer Dimension: 1

Mnemo NALG CLSS

DEFAULT VALUE: 0

French keyword: NOMBRE DE CLASSES D'ALGUES

Number of algae classes. Each class will be associated with a particular property.

1.211 NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NCO_DIST

DEFAULT VALUE:

French keyword: NOMBRE DE CORRECTIONS DES SCHEMAS DISTRIBUTIFS

For predictor-corrector options with advection scheme of type 3, 4, 5, LIPS or not, and ERIA). Number of iterations for every time step (or sub-time step) to converge to the solution. It is useful for unsteady cases. For quasi-steady flows, this keyword does not have a large impact on the solution, so it can be set to 0. On the other hand, for unsteady flows, it is suggested to set this keyword to 2 (at least), which is a good compromise between accuracy and computational time. Indeed, increasing the number of corrections the scheme is more accurate but the CPU time rapidly increases.

1.212 NUMBER OF CULVERTS

Type: Integer Dimension: **NBUSE** Mnemo DEFAULT VALUE: 0

French keyword: NOMBRE DE BUSES

Number of culverts, tubes or bridges treated as source terms. They must be described as sources in the domain and their features are given in the CULVERTS DATA FILE (see written documentation).

1.213 NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS

Type: Integer Dimension: **PTINIG** Mnemo DEFAULT VALUE:

NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES GRAPHIQUES French keyword:

Determines the number of time steps after which the results are first written into the RESULTS

FILE.

NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS 1.214

Type: Integer Dimension: 1 PTINIL. Mnemo DEFAULT VALUE:

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES LISTING

Determines the number of time steps after which the results are first written into the listing.

NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS 1.215

Type: Integer Dimension: 1

Mnemo **NGAUSS**

DEFAULT VALUE:

French keyword: NOMBRE DE POINTS DE GAUSS POUR LES CARACTERISTIQUES FAIBLES See release notes 6.3. Number of Gauss points used to compute the weak characteristics. Pos-

sible choices are:

- 1 point,
- 3 points,
- 4 points,

- 6 points,
- 7 points,
- 12 points.

The bigger the number is, the more conservative the scheme is, but the higher the computational costs are.

1.216 **NUMBER OF LAGRANGIAN DRIFTS**

Type: Integer Dimension: Mnemo **NLAG** DEFAULT VALUE:

French keyword: NOMBRE DE DERIVES LAGRANGIENNES

Provided for performing several computations of Lagrangian drifts starting at different times.

Add A and G in the VARIABLES FOR GRAPHIC PRINTOUTS keyword.

NUMBER OF PRIVATE ARRAYS 1.217

Type: Integer Dimension: **NPRIV** Mnemo DEFAULT VALUE:

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming.

NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES 1.218

Type: Integer Dimension: 1

NSOUSI Mnemo

DEFAULT VALUE:

French keyword: NOMBRE DE SOUS-ITERATIONS POUR LES NON-LINEARITES Used for updating, within one time step, the advection and propagation field. upon the first sub-iteration, these fields are given by C and the velocity field in the previous time step. At subsequent iterations, the results of the previous sub-iteration is used to update the advection and propagation field. The non-linearities can be taken into account through this technique.

1.219 NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension:

NSP DIST Mnemo

DEFAULT VALUE:

French keyword: NOMBRE DE SOUS-PAS DES SCHEMAS DISTRIBUTIFS Only for implicit scheme with predictor-corrector (3, 4 or 5). This keyword allows to subdivide the time step given by the user in the STEERING FILE, into several sub-steps. Again, it produces an effect on the precision of the scheme and it is convenient to set this keyword in order to have Courant numbers not too large (around 1).

1.220 NUMBER OF TIME STEPS

Type: Integer
Dimension: 1
Mnemo NIT
DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Specifies the number of time steps performed when running the code.

1.221 NUMBER OF TRACERS

Type: Integer Dimension: 1

Mnemo NTRAC

DEFAULT VALUE: 0

French keyword: NOMBRE DE TRACEURS

Defines the number of tracers

1.222 NUMBER OF WEIRS

Type: Integer Dimension: 1

Mnemo NWEIRS

DEFAULT VALUE: 0

French keyword: NOMBRE DE SEUILS

Number of weirs that will be treated by boundary conditions. They must be described as boundaries of the domain and their features are given in the WEIRS DATA FILE (see written documentation)

1.223 OIL SPILL MODEL

Type: Logical Dimension: 1

Mnemo SPILL_MODEL

DEFAULT VALUE: NO

French keyword: MODELE DE NAPPES D'HYDROCARBURES

Will trigger the oil spill model, in this case the OIL SPILL STEERING FILE is needed.

1.224 OIL SPILL STEERING FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DMIG)

DEFAULT VALUE:

French keyword: FICHIER DE COMMANDES HYDROCARBURES

Contains data for the OIL SPILL MODEL.

1.225 OPTION FOR CHARACTERISTICS

Type: Integer

Dimension:

Mnemo OPTCHA

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CARACTERISTIQUES

Possible choices are:

- 1: strong form,
- 2: weak form.

If one component of array TYPE OF ADVECTION = 1 or SCHEME FOR ADVECTION OF... = 1, and also the corresponding keyword SCHEME OPTION FOR ADVECTION OF... = 2, OPTION FOR CHARACTERISTICS is automatically set to 2.

1.226 OPTION FOR CULVERTS

Type: Integer Dimension: 1

Mnemo OPTBUSE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES BUSES

Option for the treatment of culverts. There are two options in TELEMAC-2D based on Bodhaine (1968) and Carlier (1976) formulae. Read the TELEMAC-3D theory guide for more informations.

1.227 OPTION FOR DIRICHLET CONDITION IN FV DIFFUSION

Type: Integer Dimension: 1

Mnemo BNDTYP

DEFAULT VALUE: 1

French keyword: OPTION DE LA CONDITION DE DIRICHLET POUR LA DIFFUSION VF Choice of the dirichlet boundary condition type:

- 1: weak,
- 2: strong.

1.228 OPTION FOR INITIAL ABSTRACTION RATIO

Type: Integer Dimension: 1

Mnemo IASCNOPT

DEFAULT VALUE: 1

French keyword: OPTION POUR RATIO DES PERTES INITIALES

Gives the ratio for Initial Abstraction to Maximal Potential Retention S for the SCS CN runoff model. Available options are:

- 1: IA/S = 0.2 (standard method),
- 2: IA/S = 0.05 (revised method, see Woodward, Hawkins et al. 2003.

With this option the CN values given in input are automatically converted see user manual). This keyword is only useful for runoff model 1 (SCS CN model).

1.229 OPTION FOR LIQUID BOUNDARIES

Type: Integer
Dimension: 2
Mnemo FRTYPE
DEFAULT VALUE: MANDATORY

French keyword: OPTION POUR LES FRONTIERES LIQUIDES

One integer per liquid boundary is given. Possible choices are:

• 1: classical boundary conditions,

• 2: Thompson method based on characteristics.

1.230 OPTION FOR THE DIFFUSION OF TRACERS

Type: Integer Dimension: 1

Mnemo OPDTRA

DEFAULT VALUE: 1

French keyword: OPTION POUR LA DIFFUSION DES TRACEURS

Possible choices:

- 1: Diffusion in the form div(nu grad(T)),
- 2: Diffusion in the form 1/h div (h nu grad(T)).

1.231 OPTION FOR THE DIFFUSION OF VELOCITIES

Type: Integer
Dimension: 1
Mnemo OPDVIT

winemo OPDv

DEFAULT VALUE:

French keyword: OPTION POUR LA DIFFUSION DES VITESSES

Possible choices are:

- 1: Diffusion in the form $div(v \operatorname{grad}(U))$,
- 2: Diffusion in the form 1/h div ($h \vee \text{grad}(U)$).

1.232 OPTION FOR THE RTPF SCHEME RECONSTRUCTIONS

Type: Integer Dimension: 1

Mnemo OPTRTPF

DEFAULT VALUE: 1

French keyword: OPTION POUR LA RECONSTRUCTION DU SCHEMA RTPF

Choice of the reconstruction method for the RTPF scheme:

- 1: reconstructions with subcell gradients,
- 2: option 2.

1.233 OPTION FOR THE SOLVER FOR K-EPSILON MODEL

Type: Integer

Dimension: 1

Mnemo SLVK%KRYLOV

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR POUR LE MODELE K-EPSILON When GMRES (7) is chosen for solver, dimension of the Krylov space. Try values between 2 and 15. Common keyword for variables k, ε (for $k-\varepsilon$ model) and \tilde{v} (for Spalart-Allmaras model).

1.234 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer

Dimension: 1

Mnemo OPTBAN

DEFAULT VALUE: 1

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS

Used if TIDAL FLATS is YES. Possible choices are:

- 1: equations solved everywhere with correction on tidal flats (corrected free surface gradient),
- 2: dry elements are frozen (tidal flats area are masked). Warning: mass-conservation may be altered,
- 3: like 1 but with porosity (defina method).

1.235 OPTION FOR TIDAL BOUNDARY CONDITIONS

Type: Integer Dimension: 2

Mnemo BND_TIDE DEFAULT VALUE: MANDATORY

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DE MAREE Option for tidal boundary conditions. For real tides, option 1 is recommended. This keyword has been an array with a value given per liquid boundary, separated by semicolons, since release 7.1. This enables to have tidal conditions (or not) computed on liquid boundaries with prescribed velocities or depths, avoiding a clash when using weirs in the domain. 0 codes for conditions other than tidal. BEWARE since release 7.1! Old models must be changed if their tidal boundary is not number 1. In that case this keyword must be changed and more values given. Possible calibration with the keywords COEFFICIENT TO CALIBRATE TIDAL RANGE, COEFFICIENT TO CALIBRATE TIDAL VELOCITIES and COEFFICIENT TO CALIBRATE SEA LEVEL.

1.236 OPTION FOR TSUNAMI GENERATION

Type: Integer Dimension: 1

Mnemo OPTTSUNAMI

DEFAULT VALUE: 0

French keyword: OPTION POUR LA GENERATION DE TSUNAMI

Possible choices:

- 0: no tsunami,
- 1: tsunami generated on the basis of the Okada model (1992).

1.237 OPTION FOR WIND

Type: Integer Dimension: 1

Mnemo OPTWIND

DEFAULT VALUE: 1

French keyword: OPTION DU VENT Gives the option for managing the wind:

- 1: constant in time and space, given by the keyword SPEED AND DIRECTION OF WIND,
- 2: variable in time and constant in space, given by ASCII ATMOSPHERIC DATA FILE,
- 3: variable in time and space, given by formatted file or by a binary SERAFIN file.

1.238 OPTION OF THE HYDROSTATIC RECONSTRUCTION

Type: Integer

Dimension: 1

Mnemo HROPT

DEFAULT VALUE:

French keyword: OPTION DE LA RECONSTRUCTION HYDROSTATIQUE

Gives the option for hydrostatic reconstruction (only used for Finite Volumes with kinetic, HLLC and WAF schemes):

- 1: Audusse et al. option;
- 2: Chen and Noelle option.

1.239 ORDINATES OF SOURCES

Type: Real
Dimension: 2
Mnemo YSCE

DEFAULT VALUE: MANDATORY

French keyword: ORDONNEES DES SOURCES

Ordinates of sources of flowrate and/or tracer. The source will be located at the nearest node in the mesh.

1.240 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 1900;1;1

French keyword: DATE DE L'ORIGINE DES TEMPS

Enables to set the date of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used with drogues, heat exchange with atmosphere, frazil, chaining with DELWAQ.

1.241 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0:0:0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Enables to set the time of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used with drogues, heat exchange with atmosphere, frazil, chaining with DELWAQ.

1.242 PARALLEL PROCESSORS

Type: Integer

Dimension:

Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

Number of processors for domain partition.

- 0: 1 machine, compiling without parallel library,
- 1: 1 machine, compiling with a parallel library,
- 2: 2 processors or machines in parallel etc...

1.243 PARAMETER ESTIMATION

Type: String

Dimension: 1

Mnemo ESTIME

DEFAULT VALUE: '

French keyword: ESTIMATION DE PARAMETRE

List of parameter to be estimated, choices:

- FRICTION,
- FRICTION, STEADY.

1.244 PARTITIONING TOOL

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

Partitioning tool selection:

- 1: METIS,
- 2: SCOTCH,
- 3: PARMETIS,
- 4: PTSCOTCH.

1.245 PHYSICAL CHARACTERISTICS OF THE TSUNAMI

Type: Real Dimension: 10

Mnemo COETSUNAMI

DEFAULT VALUE: 100.;210000.;75000.;13.6;81.;41.;110.;0.;0.;3. French keyword: PARAMETRES PHYSIQUES DU TSUNAMI

Physical characteristics of the tsunami. There are 10 of them:

- HH focal depth (in m),
- L fault length (in m),
- W fault width (in m),
- D dislocation (in m),
- TH strike direction (in decimal degrees),
- DL dip angle (in decimal degrees),
- RD slip angle (in decimal degrees),
- Y0 epicentre latitude (in decimal degrees),
- X0 epicentre longitude (in decimal degrees),
- C0 size of the ellipse of influence $(L \times W)$.

1.246 PRECONDITIONING

Type: Integer

Dimension:

Mnemo SLVPRO%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT

Choice of the preconditioning in the propagation step linear system that the convergence is speeded up when it is being solved.

- 0: no preconditioning,
- 2: diagonal preconditioning,
- 3: block-diagonal preconditioning (systemes a 4 ou 9 matrices),
- 5: diagonal preconditioning with absolute value,
- 7: Crout"s preconditioning per element or segment (does not work in parallel),
- 11: Gauss-Seidel"s preconditioning per element or segment,
- 13: preconditioning supplied by the user.

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be made.

1.247 PRECONDITIONING FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 1

Mnemo SLVTRA(ITRAC)%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DES TRACEURS Choice of the preconditioning of the linear system of the tracer diffusion so that the convergence is speeded up when it is being solved.

- 0: no preconditioning,
- 2: diagonal preconditioning,
- 7: Crout"s preconditioning per element or segment (does not work in parallel).

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be made.

1.248 PRECONDITIONING FOR K-EPSILON MODEL

Type: Integer Dimension: 1

Mnemo SLVK%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LE MODELE K-EPSILON Choice of the preconditioning of the linear system in the diffusion step of k, ε (for $k - \varepsilon$ model) or \tilde{v} (for Spalart-Allmaras model) so that the convergence is speeded up when it is being solved.

- 0: no preconditioning,
- 2: diagonal preconditioning,
- 7: Crout's preconditioning per element or segment (does not work in parallel).

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be made.

1.249 PRESCRIBED ELEVATIONS

Type: Real
Dimension: 2
Mnemo COTE

DEFAULT VALUE: MANDATORY
French keyword: COTES IMPOSEES

Values of the elevations prescribed at open boundaries. The section about boundary conditions is to be read in the manual.

1.250 PRESCRIBED FLOWRATES

Type: Real
Dimension: 2
Mnemo DEBIT

DEFAULT VALUE: MANDATORY
French keyword: DEBITS IMPOSES

Values of the flowrates prescribed at open boundaries. The section about boundary conditions is to be read in the manual.

1.251 PRESCRIBED TRACERS VALUES

Type: Real Dimension: 2

Mnemo TRACER
DEFAULT VALUE: MANDATORY

French keyword: VALEURS IMPOSEES DES TRACEURS

Tracer values prescribed at the inflow boundaries. Read the user manual section dealing with the boundary conditions.

1.252 PRESCRIBED VELOCITIES

Type: Real
Dimension: 2
Mnemo VITES

DEFAULT VALUE: MANDATORY

French keyword: VITESSES IMPOSEES

Values of the magnitudes of velocity prescribed at open boundaries. Refer to the section dealing with the boundary conditions.

1.253 PREVIOUS COMPUTATION FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DPRE)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DU CALCUL PRECEDENT

Name of a file containing the results of an earlier computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation.

1.254 PREVIOUS COMPUTATION FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DPRE)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT

Format of the PREVIOUS COMPUTATION FILE. Possible values are:

- SERAFIN : classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED : MED double precision format based on HDF5.

1.255 PREVIOUS DROGUES FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DPLO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FLOTTEURS PRECEDENT Name of a file containing the results of an earlier computation with drogues.

1.256 PREVIOUS DROGUES FILE FORMAT

Type: String Dimension: 1

Mnemo T2D FILES(T2DPLO)%FMT

DEFAULT VALUE: 'BKBINPCL'

French keyword: FORMAT DU FICHIER DES FLOTTEURS PRECEDENT

Format of the PREVIOUS DROGUES FILE. Possible choices are:

- BKBINPCL: format binary PCL native of BlueKenue,
- BKASCPCL: format SCII PCL native of BlueKenue.

1.257 PRINTING CUMULATED FLOWRATES

Type: Logical Dimension: 1

Mnemo CUMFLO

DEFAULT VALUE: NO

French keyword: IMPRESSION DU CUMUL DES FLUX

Printing the cumulated flowrates through control sections.

1.258 PRINTOUT PERIOD FOR DROGUES

Type: Integer Dimension: 1

Mnemo FLOPRD

DEFAULT VALUE:

French keyword: PERIODE POUR LES SORTIES DE FLOTTEURS Number of time steps between 2 outputs of drogues positions in the output file.

1.259 PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS

Type: Real Dimension: 1

Mnemo SEC_AS DEFAULT VALUE: 7.071

French keyword: COEFFICIENT DE PRODUCTION POUR COURANTS SECONDAIRES

A constant in the production terms of Ω .

1.260 PROPAGATION

Type: Logical
Dimension: 1
Mnemo PROPA
DEFAULT VALUE: YES

French keyword: PROPAGATION

Determines whether the propagation step is taken into account or not. The diffusion being included in that step will be deleted as well.

1.261 RAIN OR EVAPORATION

Type: Logical
Dimension: 1
Mnemo RAIN
DEFAULT VALUE: NO

French keyword: PLUIE OU EVAPORATION

Enables to add or remove water at the free surface. See the keyword RAIN OR EVAPORATION IN MM PER DAY.

1.262 RAIN OR EVAPORATION IN MM PER DAY

Type: Real Dimension: 1

Mnemo CST RAINFALL

DEFAULT VALUE: 0.0

French keyword: PLUIE OU EVAPORATION EN MM PAR JOUR

To add or remove water at the free surface.

1.263 RAINFALL-RUNOFF MODEL

Type: Integer Dimension: 1

Mnemo RUNOFFOPT

DEFAULT VALUE: 0

French keyword: MODELE PLUIE-DEBIT Option for the rainfall-runoff model. Available options are:

- 0: No infiltration (basic function),
- $\bullet\,$ 1: CN runoff model (Curve Number method of the SCS).

1.264 RATE OF DEGRADATION FOR ALGAE

Type: Real Dimension: 2

Mnemo A_ALGAE

DEFAULT VALUE: 0.;0.

French keyword: TAUX DE DEGRADATION POUR LES ALGUES

Rate of degradation for algae.

1.265 RECORD NUMBER FOR RESTART

Type: Integer

Dimension: 1

Mnemo START_RECORD

DEFAULT VALUE: 0

French keyword: ENREGISTREMENT POUR SUITE DE CALCUL

In case of COMPUTATION CONTINUED = YES, record number to start from in the PREVIOUS

COMPUTATION FILE. 0 means the last record is taken.

1.266 RECORD NUMBER IN WAVE FILE

Type: Integer
Dimension: 1
Mnemo NPTH
DEFAULT VALUE: 1

French keyword: NUMERO DE L'ENREGISTREMENT DANS LE FICHIER DE HOULE

Record number to be read in the wave driven currents file.

1.267 REFERENCE FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DREF)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE REFERENCE

Binary-coded result file for validation.

1.268 REFERENCE FILE FORMAT

Type: String
Dimension: 1

Mnemo T2D_FILES(T2DREF)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Format of the REFERENCE FILE. Possible values are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.269 REFINEMENT LEVELS

Type: Integer Dimension: 1

Mnemo RLEVELS

DEFAULT VALUE: 0

French keyword: NIVEAUX DE RAFFINEMENT

Gives the number of refinement levels that the user wants to use in the convergence study (when activating CONVERGENCE STUDY = YES). Each level multiplies the number of elements by 4.

1.270 RESULT FILE IN LONGITUDE-LATITUDE

Type: Logical

Dimension: 1

Mnemo KEEP_LONLAT

DEFAULT VALUE: YES

French keyword: FICHIER RESULTAT EN LONGITUDE-LATITUDE

Gives the coordinates of the result file in longitude-latitude if the geometry file is also given in

longitude-latitude.

1.271 RESULTS FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DRES)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS

Name of the file into which the computation results are written with a periodicity given by the

keyword GRAPHIC PRINTOUT PERIOD.

1.272 RESULTS FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DRES)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS

Format of the RESULTS FILE. Possible choices are:

- SERAFIN : classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.273 ROUGHNESS COEFFICIENT OF BOUNDARIES

Type: Real
Dimension: 1
Mnemo SB
DEFAULT VALUE: 100.

French keyword: COEFFICIENT DE RUGOSITE DES BORDS

Sets the value of the friction coefficient of the solid boundary with the bed roughness option. Same meaning than friction coefficient:

- 1: not implemented,
- 2: Chezy coefficient,
- 3: Strickler coefficient,
- 4: Manning coefficient,
- 5: Nikuradse grain size.

1.274 SALINITY DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DDL4)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA SALINITE

Results file for chaining with DELWAQ.

1.275 SALINITY FOR DELWAQ

Type: Logical

Dimension: 1

Mnemo SALI_DEL

DEFAULT VALUE: NO

French keyword: SALINITE POUR DELWAQ

Triggers the output of salinity for DELWAQ.

1.276 SCHEME FOR ADVECTION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo ICONVF(4)

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DU K-EPSILON

Choice of the advection scheme for k and ε (for $k - \varepsilon$ model) or \tilde{v} (for Spalart-Allmaras model),

replaces TYPE OF ADVECTION.

1.277 SCHEME FOR ADVECTION OF TRACERS

Type: Integer Dimension: 1

Mnemo ICONVFT

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DES TRACEURS Choice of the advection scheme for the tracers, replaces TYPE OF ADVECTION.

1.278 SCHEME FOR ADVECTION OF VELOCITIES

Type: Integer

Dimension: 1

Mnemo ICONVF(1)

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DES VITESSES Choice of the advection scheme for the velocities, replaces TYPE OF ADVECTION.

1.279 SCHEME OPTION FOR ADVECTION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo OPTADV_KE

DEFAULT VALUE:

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DU K-EPSILON

If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION. If characteristics:

- 1 = strong form,
- 2 = weak form.

If N or PSI scheme:

- 1 = explicit,
- 2 = predictor-corrector,
- 3 = predictor-corrector second-order in time,
- 4 = implicit.

Common keyword for variables k, ε (for $k - \varepsilon$ model) and \tilde{v} (for Spalart-Allmaras model).

1.280 SCHEME OPTION FOR ADVECTION OF TRACERS

Type: Integer

Dimension: 1

Mnemo OPTADV TR

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES TRACEURS If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION. If characteristics:

- 1 = strong form,
- 2 = weak form.

If N or PSI scheme:

- 1 = explicit,
- 2 = predictor-corrector,
- 3 = predictor-corrector second-order in time,
- 4 = implicit.

1.281 SCHEME OPTION FOR ADVECTION OF VELOCITIES

Type: Integer Dimension: 1

Mnemo OPTADV_VI

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES VITESSES If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION. If characteristics:

- 1 = strong form,
- 2 = weak form.

If N or PSI scheme:

- 1 = explicit,
- 2 = predictor-corrector,
- 3 = predictor-corrector second-order in time,
- 4 = implicit.

1.282 SECONDARY CURRENTS

Type: Logical

Dimension: 1

Mnemo SECCURRENTS

DEFAULT VALUE: NO

French keyword: COURANTS SECONDAIRES Using the parametrisation for secondary currents.

1.283 SECTIONS INPUT FILE

Type: String Dimension: 1

Mnemo T2D_FILES%ADR(T2DSEC)

DEFAULT VALUE:

French keyword: FICHIER DES SECTIONS DE CONTROLE

Sections input file, partitioned.

1.284 SECTIONS OUTPUT FILE

Type: String Dimension: 1

Mnemo T2D_FILES%ADR(T2DSEO)

DEFAULT VALUE: "

French keyword: FICHIER DE SORTIE DES SECTIONS DE CONTROLE

Sections output file, written by the master.

1.285 SECURITY COEFFICIENT FOR SCARACT

Type: Real Dimension: 1

Mnemo SECU_DROGUES

DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE SECURITE POUR SCARACT

Security coefficient for memory allocation for SCARACT.

1.286 SISYPHE STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE SISYPHE

SISYPHE parameter file in case of internal coupling.

1.287 SOLAR RADIATION

Type: Real Dimension: 1

Mnemo CST_RAY3

DEFAULT VALUE: 160.

French keyword: RAYONNEMENT SOLAIRE

Gives the value of solar radiation when it is constant in time and space. In W/m².

1.288 SOLVER

Type: Integer Dimension: 1

Mnemo SLVPRO%SLV

DEFAULT VALUE: 3

French keyword: SOLVEUR

Makes it possible to select the solver used for solving the propagation step. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient (not implemented),
- 6: conjugate gradient squared stabilised (cgstab),
- 7: GMRES (see SOLVER OPTION),
- 8: direct.

1.289 SOLVER ACCURACY

Type: Real Dimension: 1

Mnemo SLVPRO%EPS

DEFAULT VALUE: 1.E-4

French keyword: PRECISION DU SOLVEUR

Required accuracy for solving the propagation step (refer to Principle note).

1.290 SOLVER FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 2

Mnemo SLVTRA(ITRAC)%SLV

DEFAULT VALUE: 1:1

French keyword: SOLVEUR POUR LA DIFFUSION DES TRACEURS

Makes it possible to select the solver used for solving the system of tracer(s) diffusion. Possible choices are:

• 1: conjugate gradient,

- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient (not implemented),
- 6: cgstab,
- 7: GMRES (see SOLVER OPTION FOR TRACERS DIFFUSION,
- 8: direct.

1.291 SOLVER FOR K-EPSILON MODEL

Type: Integer Dimension: 1

Mnemo SLVK%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LE MODELE K-EPSILON

Makes it possible to select the solver used for solving the system of the diffusion of k, ε (for $k - \varepsilon$ model) or \tilde{v} (for Spalart-Allmaras model). Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient (not implemented),
- 6: conjugate gradient squared stabilised (cgstab),
- 7: GMRES (see OPTION FOR THE SOLVER FOR K-EPSILON MODEL),
- 8: direct.

1.292 SOLVER OPTION

Type: Integer Dimension: 1

Mnemo SLVPRO%KRYLOV

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR

When GMRES (7) is chosen for solver, dimension of the Krylov space. Try values between 2 and 15.

1.293 SOLVER OPTION FOR TRACERS DIFFUSION

Type: Integer

Dimension: 1

Mnemo SLVTRA(ITRAC)%KRYLOV

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DES TRACEURS When GMRES (7) is chosen for solver, dimension of the Krylov space. Try values between 2 and 15.

Type: String

Dimension: 1

SOURCE REGIONS DATA FILE

Mnemo T2D_FILES(T2DSDN)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES REGIONS DES SOURCES

ASCII data file containing sources informations: coordinates of the polygons containing sources.

1.295 SOURCES FILE

1.294

Type: String Dimension: 1

Mnemo T2D_FILES(T2DVEF)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES SOURCES

Name of the file containing time-dependent information on sources.

1.296 SPATIAL PROJECTION TYPE

Type: Integer

Dimension: 1

Mnemo PROTYP

DEFAULT VALUE: 1

French keyword: TYPE DE PROJECTION SPATIALE

Specifies the type of spatial projection used (for example when using spherical coordinates).

Possible choices are:

- 1: Cartesian, not georeferenced,
- 2: Mercator,
- 3: latitude/longitude (in degrees).

Option 2 or 3 mandatory for spherical coordinates. Option 3: latitude and longitude in degrees! When using option 3, the coordinates are automatically treated by TELEMAC-2D using Mercator projection.

1.297 SPEED AND DIRECTION OF WIND

Type: Real Dimension: 2

Mnemo CST_WINDS;CST_WINDD

DEFAULT VALUE: 0.:0.

French keyword: VITESSE ET DIRECTION DU VENT

Gives the speed and direction (in degrees (from 0 to 360), 0 given y = 0 anx x = +infinity) when they are constant in time and space (keyword OPTION FOR WIND = 1).

1.298 SPHERICAL COORDINATES

Type: Logical Dimension: 1

Mnemo SPHERI DEFAULT VALUE: NO

French keyword: COORDONNEES SPHERIQUES

Selection of spherical coordinates to perform the computation (for large computation domains). Warning: this option is closely related to the mesh that should have been entered onto a nautical chart drawn as per Mercator projection The LATITUDE OF ORIGIN POINT, which corresponds to ordinate y = 0 in the mesh, must moreover be given.

1.299 STAGE-DISCHARGE CURVES

Type: Integer Dimension: 2

Mnemo STA_DIS_CURVES
DEFAULT VALUE: MANDATORY

French keyword: COURBES DE TARAGE

Says if a discharge-elevation curve must be used for a given boundary (one value per open boundary):

• 0: no,

• 1: Z(Q),

• 2: Q(Z).

1.300 STAGE-DISCHARGE CURVES FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DMAB)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES COURBES DE TARAGE

Name of the file containing stage-discharge curves.

1.301 STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT

Type: Real Dimension: 1

Mnemo RELAX_STA_DIS

DEFAULT VALUE: 0.02

French keyword: COEFFICIENT DE RELAXATION DES COURBES DE TARAGE Relaxation coefficient used to interpolate free surface elevation with respect to flowrate from the stage-discharge curve (for STAGE-DISCHARGE CURVES = 1). If set to 1., the elevation is instantaneously prescribed corresponding to the stage-discharge curve, but this may lead to instabilities. Setting a value between 0. and 1., a delay is introduced to prescribe this stage-discharge curve, that is a compromise between the goal of the stage-discharge curve and possible instabilities. Read the Telemac-2D user manual for more details.

1.302 STEERING FILE 81

1.302 STEERING FILE

Type: String Dimension: 1

Mnemo NOMCAS

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation Written by the user.

1.303 STOCHASTIC DIFFUSION MODEL

Type: Integer Dimension: 1

Mnemo STOCHA

DEFAULT VALUE: 0

French keyword: MODELE DE DIFFUSION STOCHASTIQUE

Meant for particles: drogues, oil spills. If no turbulence is activated, this stochastic diffusion is not considered during the particle transport.

1.304 STOP CRITERIA

Type: Real Dimension: 3

Mnemo CRIPER

DEFAULT VALUE: 1.E-4;1.E-4
French keyword: CRITERES D'ARRET

Stop criteria for a steady state. These coefficients are applied respectively to:

- \bullet *U* and *V*,
- *H*,
- Tracers.

To be used with the keyword STOP IF A STEADY STATE IS REACHED.

1.305 STOP IF A STEADY STATE IS REACHED

Type: Logical

Dimension:

Mnemo STOPER DEFAULT VALUE: NO

French keyword: ARRET SI UN ETAT PERMANENT EST ATTEINT

To be used with the keyword: STOP CRITERIA.

1.306 SUPG OPTION

Type: Integer Dimension: 4

Mnemo OPTSUP DEFAULT VALUE: 2;2;2;2

French keyword: OPTION DE SUPG

Possible choices are:

- 0: no upwinding,
- 1: classical SUPG,
- 2: modified SUPG.

These coefficients are applied respectively to:

- 1) U and V,
- 2) H,
- \bullet 3) T,
- 4) k and ε .

If using a distributive scheme (3, 4, 5, 13, 14, 15), the coefficient applied to H is automatically set to 0. Moreover, if using TREATMENT OF NEGATIVE DEPTHS = 2 or 3 with OPTION FOR THE TREATMENT OF TIDAL FLATS = 1, it is mandatory to choose 0 for the 2nd component of SUPG OPTION (water depth).

1.307 TEMPERATURE DELWAQ FILE

Type: String

Dimension: 1

Mnemo T2D_FILES(T2DDL8)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA TEMPERATURE

Results file for chaining with DELWAQ.

1.308 TEMPERATURE FOR DELWAQ

Type: Logical

Dimension: 1

Mnemo TEMP_DEL

DEFAULT VALUE: NO

French keyword: TEMPERATURE POUR DELWAQ

Triggers the output of temperature for DELWAQ.

1.309 THICKNESS OF ALGAE

Type: Real Dimension: 2

Mnemo EALGAE DEFAULT VALUE: 0.01;0.01

French keyword: EPAISSEUR DES ALGUES

Thickness of algae in m.

1.310 THRESHOLD DEPTH FOR RECEDING PROCEDURE

Type: Real
Dimension: 1
Mnemo HREC
DEFAULT VALUE: 0.

French keyword: PROFONDEUR LIMITE POUR PROCEDURE DE RESSUYAGE

If > 0., will trigger the receding procedure that avoids overwhelming of dykes which are too loosely discretised.

1.311 THRESHOLD DEPTH FOR WIND

Type: Real Dimension: 1

Mnemo HWIND

DEFAULT VALUE: 1.

French keyword: PROFONDEUR LIMITE POUR LE VENT Wind is not taken into account for depths smaller than this value.

1.312 THRESHOLD FOR NEGATIVE DEPTHS

Type: Real
Dimension: 1
Mnemo HNEG
DEFAULT VALUE: 0.

French keyword: SEUIL POUR LES PROFONDEURS NEGATIVES

Below the threshold the negative depths are smoothed. Only used with TREATMENT OF NEGATIVE DEPTHS = 1.

1.313 TIDAL DATA BASE

Type: Integer Dimension: 1

Mnemo TIDALDB

DEFAULT VALUE: -1

French keyword: BASE DE DONNEES DE MAREE

FOR TIDE and TIDAL MODEL FILE. For TPXO, LEGOS-NEA, FES20XX and PREVIMER, the user has to download files of harmonic constituents on the internet.

1.314 TIDAL FLATS

Type: Logical Dimension: 1

Mnemo BANDEC
DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When NO, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats.

1.315 TIDAL MODEL FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DTID)

DEFAULT VALUE:

French keyword: FICHIER DU MODELE DE MAREE

Geometry file of the model from which harmonic constituents are extracted.

1.316 TIDAL MODEL FILE FORMAT

Type: String Dimension: 1

Mnemo T2D_FILES(T2DTID)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU MODELE DE MAREE

Format of the TIDAL MODEL FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED : MED double precision format based on HDF5.

1.317 TIDE GENERATING FORCE

Type: Logical Dimension: 1

Mnemo MAREE DEFAULT VALUE: NO

French keyword: FORCE GENERATRICE DE LA MAREE

The tide generating force is taken into account. The keyword SPHERICAL COORDINATES has to be activated, it is impossible to account tide generating force in cartesian coordinates.

1.318 TIME RANGE FOR FOURIER ANALYSIS

Type: Real Dimension: 2

Mnemo TAFBGN,TAFEND

DEFAULT VALUE: 0.;0.

French keyword: BORNES EN TEMPS POUR L'ANALYSE DE FOURIER

For computing tidal range and phase of tide.

1.319 TIME STEP

Type: Real Dimension: 1 Mnemo DT DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Specifies the time step in seconds.

1.320 TITLE

Type: String Dimension: 1

Mnemo TITCAS

DEFAULT VALUE:

French keyword: TITRE Title of the case being considered.

1.321 TOLERANCES FOR IDENTIFICATION

Type: Real Dimension: 4

Mnemo TOLEST

DEFAULT VALUE: 1.E-3;1.E-3;1.E-3;1.E-4

French keyword: PRECISIONS POUR L'IDENTIFICATION

4 numbers: absolute precision on H, U, V, and relative precision on the cost function.

1.322 TOMAWAC STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE TOMAWAC

TOMAWAC parameter file in case of internal coupling.

1.323 TREATMENT OF FLUXES AT THE BOUNDARIES

Type: Integer Dimension: 1

Mnemo DIRFLU

DEFAULT VALUE: 1

French keyword: TRAITEMENT DES FLUX AUX FRONTIERES

Used so far only with the SUPG, PSI and N schemes. With option 2, Dirichlet prescribed values are not obeyed, but the fluxes are correct. One single and same value for every liquid boundary.

1.324 TREATMENT OF NEGATIVE DEPTHS

Type: Integer Dimension: 1

Mnemo OPT_HNEG

DEFAULT VALUE: 1

French keyword: TRAITEMENT DES HAUTEURS NEGATIVES

Only with OPTION FOR THE TREATMENT OF TIDAL FLATS = 1. Possible choices are:

- 0: no treatment,
- 1: smoothing,
- 2: flux control, by segment,
- 3: flux control, by element.

If using options 2 or 3 with tidal flats, it is mandatory to set MASS-LUMPING ON H = 1. + CONTINUITY CORRECTION = YES + SUPG OPTION for water depth = 0 (no SUPG upwinding on depth).

1.325 TREATMENT OF THE LINEAR SYSTEM

Type: Integer Dimension: 1

Mnemo SOLSYS

DEFAULT VALUE: 2

French keyword: TRAITEMENT DU SYSTEME LINEAIRE

Possible choices:

• 1: Coupled,

• 2: Wave equation.

Old default value = 1 (coupled) until release V8P1.

1.326 TURBULENCE MODEL

Type: Integer
Dimension: 1
Mnemo ITURB
DEFAULT VALUE: 1

French keyword: MODELE DE TURBULENCE

The current alternatives are as follows:

- 1: constant viscosity,
- 2: elder"s model,
- 3: k- ε model,
- 4: Smagorinski model,
- 5: mixing length model,
- 6: Spalart-Allmaras model.

NOTE: when option 1 is chosen, it should be kept in mind that the value of the keyword VELOCITY DIFFUSIVITY has to be ajusted. When option 2 is chosen, the two values of keyword NON-DIMENSIONAL DISPERSION COEFFICIENTS are used. When option 3 is chosen, this parameter should recover its true physical value, since it is used as such in the turbulence model.

1.327 TURBULENCE REGIME FOR SOLID BOUNDARIES

Type: Integer Dimension: 1

Mnemo LISRUG

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LES PAROIS Provided for selecting the type of friction on the walls. Possible choices are:

- 1: smooth,
- 2: rough.

1.328 TYPE OF ADVECTION

Type: Integer Dimension: 4

Mnemo ICONVF DEFAULT VALUE: 1;5;1;1

French keyword: FORME DE LA CONVECTION

Choice of advection schemes for every variable. These coefficients are applied respectively to

- 1) U and V,
- 2) *H*,
- 3) *T*,
- 4) k and ε .

Possible choices are:

- 1: characteristics,
- 2: SUPG,
- 3: Conservative N-scheme,
- 4: Conservative N-scheme,
- 5: Conservative PSI-scheme,
- 13: Edge-based N-scheme,
- 14: Edge-based N-scheme,
- 15: ERIA scheme.

The second integer must be 5.

1.329 TYPE OF BOUNDARY CONDITION FOR KINETIC SCHEME

Type: Integer

Dimension: 1

Mnemo BNDCIN

DEFAULT VALUE:

French keyword: TYPE DE CONDITION A LA LIMITE POUR LE SCHEMA CINETIQUE

Possible choices:

- 1: Weak imposition,
- 2: Strong imposition.

1.330 TYPE OF SOURCES

Type: Integer

Dimension: 1

Mnemo OPTSOU

DEFAULT VALUE: 1

French keyword: TYPE DES SOURCES

Defines how the sources are computed:

- 1: Source term multiplied by a finite element basis,
- 2: Source term multiplied by a Dirac function (recommended with high numbers of sources).

1.331 TYPE OF WEIRS

Type: Integer

Dimension:

Mnemo TYPSEUIL

DEFAULT VALUE: 1

French keyword: TYPE DES SEUILS Method for treatment of weirs. Two options:

- horizontal with same number of nodes upstream/downstream (Historical solution with the **BORD** subroutine),
- general (new solution with sources points).

1.332 VALIDATION

Type: Logical Dimension: 1 Mnemo VALID DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. The REFERENCE FILE is then considered as a reference which the computation is going to be compared with. The comparison is done by the subroutine **BIEF_VALIDA**, which can be modified so as to include, for example, a comparison with an exact solution.

1.333 VALUE OF ATMOSPHERIC PRESSURE

Type: Real Dimension: 1

Mnemo CST_PATMOS

DEFAULT VALUE: 100000.

French keyword: VALEUR DE LA PRESSION ATMOSPHERIQUE Gives the value of atmospheric pressure when it is constant in time and space. In Pa.

1.334 VALUES OF THE TRACERS AT THE SOURCES

Type: Real
Dimension: 2
Mnemo TSCE

DEFAULT VALUE: MANDATORY

French keyword: VALEURS DES TRACEURS DES SOURCES

Values of the tracers at the sources. All tracers for the first source, then all tracers for the second source, etc. (see user manual). For example, if there are 3 tracers (T1, T2 and T3) and 2 sources (S1 and S2), the following syntax is used:

S1_T1;S1_T2;S1_T3;S2_T1;S2_T2;S2_T3

10.0; 10.0; 0.0; 0.0; 10.0; 10.0

1.335 VALUES OF TRACERS IN THE RAIN

Type: Real
Dimension: 2
Mnemo TRAIN

DEFAULT VALUE: MANDATORY

French keyword: VALEURS DES TRACEURS DANS LA PLUIE

Most often, this tracer is temperature, in this case this value should be modified, otherwise, default value of 0 seems reasonable.

1.336 VAPOROUS PRESSURE

Type: Real Dimension: 1

Mnemo CST_PVAP DEFAULT VALUE: 1000.

French keyword: PRESSION DE VAPEUR SATURANTE

Gives the value of vaporous pressure when it is constant in time and space. In Pa.

1.337 VARIABLE TIME-STEP

Type: Logical

Dimension:

Mnemo DTVARI DEFAULT VALUE: NO

French keyword: PAS DE TEMPS VARIABLE Variable time-step to get a given Courant number.

1.338 VARIABLES FOR GRAPHIC PRINTOUTS

Type: String Dimension: 1

Mnemo VARDES
DEFAULT VALUE: 'U;V;H;B'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES

Names of variables which will be written in the results file. Each variable is represented by a letter (free separators). The possible choices are:

- U: velocity along x axis (m/s),
- V: velocity along y axis (m/s),
- C: wave celerity (m/s),
- H: water depth (m),
- S: free surface elevation (m),
- B: bottom elevation (m),
- F: Froude number,
- Q: scalar flowrate of fluid (m²/s),
- Tn: tracer, with n the tracer number,

- K: turbulent kinetic energy in $k \varepsilon$ model (J/kg),
- E: dissipation of turbulent energy (W/kg),
- D: turbulent viscosity (m²/s),
- I: flowrate along x axis (m^2/s) ,
- J: flowrate along y axis (m²/s),
- M: scalar velocity (m/s),
- X: wind along x axis (m/s),
- Y: wind along y axis (m/s),
- P: air pressure (Pa),
- W: friction coefficient,
- A: drift along *x* (m),
- G: drift along y (m),
- L: Courant number,
- MAXZ: maximum elevation (m),
- TMXZ: time of maximum elevation (s),
- MAXV : maximum velocity (m/s),
- TMXV : time of maximum velocity (s),
- US: friction velocity (m/s),
- Gn: differentiated gradient, with n the gradient reference number,
- TAU_S: TAU_S,
- 1/R : 1/R (1/m),
- OMEGA: OMEGA,
- WDIST: distance to the closest wall (m),
- ZRL: reference level for Nestor (m).

4 other variables are also available to the user to write created variables results. These user variables should be computed in **PRERES_TELEMAC2D** subroutine and their name should be written in **NOMVAR_TELEMAC2D** subroutine. These seven variables are as follows: N, O, R, Z which correspond to arrays **PRIVE(1,1)** up to **PRIVE(1,4)**. Unlike the previous variables, they are kept throughout the program, so that they can be used again. In the latter case, do not forget to provide the array PRIVE with sufficiently large dimensions in the FORTRAN FILE. The size of the RESULTS FILE can be limited with this keyword. However, if a computation must be continued, the RESULTS FILE should contain the appropriate information for running the code,i.e.:

- \bullet velocities U and V,
- water depth H,
- bottom elevation B.

TELEMAC-2D can compute some of these variables from others.

1.339 VARIABLES TO BE PRINTED

Type: String Dimension: 1

Mnemo VARIMP

DEFAULT VALUE:

French keyword: VARIABLES A IMPRIMER

Name of the variables that the user wants printed on screen. Same values available as graphical

outputs.

1.340 VECTOR LENGTH

Type: Integer
Dimension: 1
Mnemo LVMAC

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR

Vector length on vector machines.

1.341 VEGETATION FRICTION

Type: Logical

Dimension: 1

Mnemo VEGETATION

DEFAULT VALUE: NO

French keyword: FROTTEMENT POUR LA VEGETATION

Friction calculation of the non-submerged vegetation.

1.342 VELOCITIES OF THE SOURCES ALONG X

Type: Real
Dimension: 2
Mnemo USCE

DEFAULT VALUE: MANDATORY

French keyword: VITESSES DES SOURCES SELON X

Velocities along x at the sources. If they are not given, the velocity of the flow at this location

is taken.

1.343 VELOCITIES OF THE SOURCES ALONG Y

Type: Real
Dimension: 2
Mnemo VSCE

DEFAULT VALUE: MANDATORY

French keyword: VITESSES DES SOURCES SELON Y

Velocities along y at the sources. If they are not given, the velocity of the flow at this location is taken.

1.344 VELOCITY DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DDL9)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DE LA VITESSE

Results file for chaining with DELWAQ.

1.345 VELOCITY DIFFUSIVITY

Type: Real Dimension: 1

Mnemo PROPNU
DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION DES VITESSES

Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity. This value may have a significant effect both on the shapes and sizes of recirculation zones.

1.346 VELOCITY FOR DELWAQ

Type: Logical

Dimension: 1

Mnemo VELO_DEL

DEFAULT VALUE: NO

French keyword: VITESSE POUR DELWAQ

Triggers the output of velocity for DELWAQ.

1.347 VELOCITY PROFILES

Type: Integer Dimension: 2

Mnemo PROVEL
DEFAULT VALUE: MANDATORY

French keyword: PROFILS DE VITESSE

Specifies the type of horizontal profile of velocities. Possible choices are:

- 1: constant normal profile,
- 2: *u* and *v* given in the BOUNDARY CONDITION FILE,
- 3: normal velocity given in **UBOR** in the BOUNDARY CONDITION FILE,
- 4: \sqrt{h} profile,
- 5: like 4 but virtual depth based on the lowest elevation of the boundary.

1.348 VERTICAL FLUXES DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DDL3)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DES FLUX VERTICAUX

Results file for chaining with DELWAQ.

1.349 VERTICAL STRUCTURES

Type: Logical

Dimension: 1

Mnemo VERTIC DEFAULT VALUE: NO

French keyword: STRUCTURES VERTICALES

Drag forces from vertical structures are taken into account. (subroutine DRAGFO must then

be implemented).

1.350 VOLUMES DELWAQ FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DSOU)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES VOLUMES

Results file for chaining with DELWAQ.

1.351 WAQTEL STEERING FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES DE WAQTEL

File for physical parameters of water quality processes (local ones of TELEMAC-2D-WAQTEL

not those of DELWAQ).

1.352 WATER DENSITY

Type: Real Dimension: 1

Mnemo ROEAU DEFAULT VALUE: 1000.

French keyword: MASSE VOLUMIQUE DE L'EAU

Sets the value of water density.

1.353 WATER DISCHARGE OF SOURCES

Type: Real
Dimension: 2
Mnemo DSCE

DEFAULT VALUE: MANDATORY

French keyword: DEBITS DES SOURCES

Specifies the discharge for every source. A positive discharge means that fluid is added.

1.354 WATER QUALITY PROCESS

Type: Integer

Dimension: 1

Mnemo WAQPROCESS

DEFAULT VALUE:

French keyword: PROCESSUS QUALITE D'EAU

Gives the water quality process number, defined as a multiplicative combination of prime numbers (2,3,5,7,11, 17 and 19) with 0 and 1 having a special role:

- 0: all,
- 1: none,
- 2: O2,
- 3: BIOMASS,
- 5: EUTRO,
- 7: MICROPOL,
- 11: THERMIC,
- 17: Degradation law,
- 19: Ghost process for ice modelling.

Example: 110 = 2x5x11 activate O2, EUTRO and THERMIC together. It is noted that AED2 is not available in 2D, for the time being.

1.355 WAVE DRIVEN CURRENTS

Type: Logical Dimension: 1

Mnemo COUROU

DEFAULT VALUE: NO

French keyword: COURANTS DE HOULE Wave driven currents are taken into account.

1.356 WAVE ENHANCED FRICTION FACTOR

Type: Logical

Dimension: 1

Mnemo FRICOU DEFAULT VALUE: NO

French keyword: AUGMENTATION DU FROTTEMENT PAR LA HOULE

Wave friction enhancement for the calculation of the wave generated longshore current (cf

OConnor and Yoo, 1988, Coast Eng.12.).

1.357 WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 1

Type: Real Dimension: 2

Mnemo TW1_ALGAE

DEFAULT VALUE: 2.:2.

French keyword: SEUIL DE LA VITESSE ORBITALE DE VAGUE POUR LES ALGUES 1

Wave orbital velocity 1 for algae dislodgement in m/s.

1.358 WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 2

Type: Real Dimension: 2

Mnemo TW2_ALGAE

DEFAULT VALUE: 0.;0.

French keyword: SEUIL DE LA VITESSE ORBITALE DE VAGUE POUR LES ALGUES 2

Wave orbital velocity 2 for algae dislodgement in m/s.

1.359 WEIRS DATA FILE

Type: String Dimension: 1

Mnemo T2D_FILES(T2DSEU)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES SEUILS

Description of weirs existing in the model.

1.360 WEIRS DISCHARGE OUTPUT FILE

Type: String Dimension: 1

Mnemo T2D FILES(T2DWOP)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE SORTIE DES DEBITS DES SEUILS

Output file of discharge of weirs existing in the model.

1.361 WIND

Type: Logical Dimension: 1

Mnemo VENT DEFAULT VALUE: NO

French keyword: VENT

Determines whether the wind effects are to be taken into account or not.

1.362 WIND VELOCITY ALONG X

Type: Real Dimension: 1

Mnemo CST_WINDX

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X Wind velocity, component along x axis (m/s), if constant.

1.363 WIND VELOCITY ALONG Y

Type: Real Dimension: 1

Mnemo CST_WINDY

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y Wind velocity, component along y axis (m/s), if constant.

1.364 **ZERO**

Type: Real Dimension: 1

Mnemo SLVPRO%ZERO

DEFAULT VALUE: 1.E-10 French keyword: ZERO

Not yet implemented

1.365 ZONE NUMBER IN GEOGRAPHIC SYSTEM

Type: Integer Dimension: 1

NA NATIONAL DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANI

Mnemo NUMZONE DEFAULT VALUE: -1

French keyword: NUMERO DE FUSEAU OU PROJECTION DANS LE SYSTEME GEOGRAPHIQUE

Number of zone when using a plane projection. Indicate the geographic system in which the numerical model is built with the keyword GEOGRAPHIC SYSTEM. Possible choices are:

- 1: Lambert 1 north,
- 2: Lambert 2 center,
- 3: Lambert 3 south,
- 4: Lambert 4 Corsica,
- 22: Lambert 22 extended,
- 93: Lambert 93,
- X: UTM zone with WGS84 (X is the number of the zone).

1.366 ZONES FILE 97

1.366 ZONES FILE

Type: String

Dimension: 1

Mnemo T2D_FILES(T2DZFI)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES ZONES

Zones file, with on every line: point number zone number.

2. List of keywords classified according to type

2.1 COMPUTATION ENVIRONMENT

2.1.1 INITIALIZATION

BINARY DATA FILE 1
BINARY DATA FILE 1 FORMAT
BINARY DATA FILE 2
BINARY DATA FILE 2 FORMAT
FORMATTED DATA FILE 1
FORMATTED DATA FILE 2
INITIAL CONDITIONS
INITIAL DEPTH
INITIAL ELEVATION
TITLE

GLOBAL

CHECKING THE MESH

MAXIMUM NUMBER OF BOUNDARIES

MAXIMUM NUMBER OF SOURCES

MAXIMUM NUMBER OF TRACERS

PARALLEL PROCESSORS

SECURITY COEFFICIENT FOR SCARACT

VECTOR LENGTH

INPUT FILES

BOTTOM SMOOTHINGS
BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS
BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORTRAN FILE
GEOMETRY FILE
GEOMETRY FILE FORMAT
REFERENCE FILE
REFERENCE FILE FORMAT

VALIDATION

2.1.2 OUTPUT FILES

CONTROL SECTION

COMPATIBLE COMPUTATION OF FLUXES
CONTROL SECTIONS
FLUXLINE
FLUXLINE INPUT FILE
PRINTING CUMULATED FLOWRATES

SECTIONS INPUT FILE SECTIONS OUTPUT FILE

FOURIER

FOURIER ANALYSIS PERIODS
TIME RANGE FOR FOURIER ANALYSIS

LISTING

INFORMATION ABOUT SOLVER
LIST OF POINTS
LISTING FOR PRINTOUT PERIOD
LISTING PRINTOUT
LISTING PRINTOUT PERIOD
MASS-BALANCE
NAMES OF POINTS
NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS
VARIABLES TO BE PRINTED

RESULTS FILES

BINARY RESULTS FILE BINARY RESULTS FILE FORMAT FORMATTED RESULTS FILE FORMATTED RESULTS FILE 1 FORMATTED RESULTS FILE 2 FORMATTED RESULTS FILE 3 FORMATTED RESULTS FILE 4 FORMATTED RESULTS FILE 5 FORMATTED RESULTS FILE 6 GRAPHIC PRINTOUT PERIOD NAMES OF PRIVATE VARIABLES NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS NUMBER OF PRIVATE ARRAYS RESULT FILE IN LONGITUDE-LATITUDE RESULTS FILE RESULTS FILE FORMAT VARIABLES FOR GRAPHIC PRINTOUTS

2.1.3 RESTART

COMPUTATION CONTINUED
INITIAL TIME SET TO ZERO
PREVIOUS COMPUTATION FILE
PREVIOUS COMPUTATION FILE FORMAT
RECORD NUMBER FOR RESTART

2.2 COUPLING

COUPLING WITH
NAMES OF CLANDESTINE VARIABLES

2.2.1 DELWAQ

BOTTOM SURFACES DELWAQ FILE DELWAQ PRINTOUT PERIOD DELWAQ STEERING FILE DIFFUSIVITY DELWAQ FILE DIFFUSIVITY FOR DELWAQ EXCHANGE AREAS DELWAQ FILE EXCHANGES BETWEEN NODES DELWAQ FILE NODES DISTANCES DELWAQ FILE SALINITY DELWAQ FILE SALINITY FOR DELWAQ TEMPERATURE DELWAQ FILE TEMPERATURE FOR DELWAQ VELOCITY DELWAQ FILE VELOCITY FOR DELWAQ VERTICAL FLUXES DELWAQ FILE VOLUMES DELWAO FILE

2.2.2 GAIA

GAIA STEERING FILE

2.2.3 KHIONE

KHIONE STEERING FILE

2.2.4 NESTOR INFO

NESTOR
NESTOR ACTION FILE
NESTOR POLYGON FILE
NESTOR RESTART FILE
NESTOR SURFACE REFERENCE FILE

2.2.5 SISYPHE

COUPLING PERIOD FOR SISYPHE SISYPHE STEERING FILE

2.2.6 TOMAWAC

COUPLING PERIOD FOR TOMAWAC TOMAWAC STEERING FILE

2.2.7 WAQTEL

WAQTEL STEERING FILE

2.3 GENERAL PARAMETERS

DEBUGGER

2.3.1 LOCATION

LATITUDE OF ORIGIN POINT LONGITUDE OF ORIGIN POINT NORTH SPATIAL PROJECTION TYPE SPHERICAL COORDINATES

2.3.2 TIME

CONTROL OF LIMITS

DESIRED COURANT NUMBER

DESIRED FOURIER NUMBER

DURATION

LIMIT VALUES

NUMBER OF TIME STEPS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

STOP CRITERIA

STOP IF A STEADY STATE IS REACHED

TIME STEP

VARIABLE TIME-STEP

2.4 HYDRAULIC STRUCTURES

2.4.1 BREACHES

BREACH BREACHES DATA FILE INITIAL LENGTHS OF BREACHES

2.4.2 CULVERTS

CULVERTS DATA FILE NUMBER OF CULVERTS OPTION FOR CULVERTS

2.4.3 WEIRS

NUMBER OF WEIRS
TYPE OF WEIRS
WEIRS DATA FILE
WEIRS DISCHARGE OUTPUT FILE

2.5 HYDRO

2.5.1 BOUNDARY CONDITIONS

PRESCRIBED ELEVATIONS
PRESCRIBED FLOWRATES
PRESCRIBED VELOCITIES

2.5.2 BOUNDARY CONDITIONS OTHERS

ELEMENTS MASKED BY USER
LIQUID BOUNDARIES FILE
OPTION FOR LIQUID BOUNDARIES
STAGE-DISCHARGE CURVES
STAGE-DISCHARGE CURVES FILE
STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT
VELOCITY PROFILES

2.5.3 FLUID

CORIOLIS EFFECT

CORIOLIS COEFFICIENT

SECONDARY CURRENTS INFO

DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS SECONDARY CURRENTS

TSUNAMI

OPTION FOR TSUNAMI GENERATION
PHYSICAL CHARACTERISTICS OF THE TSUNAMI

2.5 HYDRO 103

2.5.4 NUMERICAL PARAMETERS HYDRO

EQUATIONS
FINITE VOLUME SCHEME
TREATMENT OF THE LINEAR SYSTEM

2.5.5 PHYSICAL PARAMETERS HYDRO ADVANCED-PHY

GRAVITY ACCELERATION VERTICAL STRUCTURES WATER DENSITY

ESTIMATION

COST FUNCTION
IDENTIFICATION METHOD
MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION
PARAMETER ESTIMATION
TOLERANCES FOR IDENTIFICATION

FRICTION

DEFINITION OF ZONES
DEPTH IN FRICTION TERMS
FRICTION COEFFICIENT
FRICTION DATA
FRICTION DATA FILE
LAW OF BOTTOM FRICTION
LAW OF FRICTION ON LATERAL BOUNDARIES
MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW
MAXIMUM NUMBER OF FRICTION DOMAINS
ROUGHNESS COEFFICIENT OF BOUNDARIES
VEGETATION FRICTION
ZONES FILE

METEOROLOGY

AIR PRESSURE
AIR TEMPERATURE
ANTECEDENT MOISTURE CONDITIONS
ASCII ATMOSPHERIC DATA FILE
BINARY ATMOSPHERIC DATA FILE
BINARY ATMOSPHERIC DATA FILE FORMAT
CLOUD COVER
COEFFICIENT OF WIND INFLUENCE
COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED
DURATION OF RAIN OR EVAPORATION IN HOURS
FREE FORMAT FOR ATMOSPHERIC DATA FILE
OPTION FOR INITIAL ABSTRACTION RATIO
OPTION FOR WIND

RAIN OR EVAPORATION
RAIN OR EVAPORATION IN MM PER DAY
RAINFALL-RUNOFF MODEL
SOLAR RADIATION
SPEED AND DIRECTION OF WIND
THRESHOLD DEPTH FOR WIND
VALUE OF ATMOSPHERIC PRESSURE
VAPOROUS PRESSURE
WIND
WIND VELOCITY ALONG X

WIND VELOCITY ALONG Y

NON-NEWTONIAN
BINGHAM OPTION
HERSCHEL-BULKLEY POWER-LAW INDEX
NON-NEWTONIAN FLUID DENSITY
NON-NEWTONIAN LAMINAR RESISTANCE PARAMETER K
NON-NEWTONIAN MODEL
NON-NEWTONIAN PSEUDO-BIPHASIC MODEL
NON-NEWTONIAN VISCOSITY
NON-NEWTONIAN YIELD STRESS

SOURCES

ABSCISSAE OF SOURCES
GLOBAL NUMBERS OF SOURCE NODES
MAXIMUM NUMBER OF POINTS FOR SOURCES REGIONS
ORDINATES OF SOURCES
SOURCE REGIONS DATA FILE
SOURCES FILE
TYPE OF SOURCES
VELOCITIES OF THE SOURCES ALONG X
VELOCITIES OF THE SOURCES ALONG Y
WATER DISCHARGE OF SOURCES

WATER QUALITY INFO

WATER QUALITY PROCESS

WAVE

RECORD NUMBER IN WAVE FILE WAVE DRIVEN CURRENTS WAVE ENHANCED FRICTION FACTOR

2.6 INTERNAL

CONCATENATE PARTEL OUTPUT DICTIONARY

LANGUAGE
PARTITIONING TOOL
STEERING FILE

2.7 NUMERICAL PARAMETERS

2.7.1 ADVANCED

CONVERGENCE STUDY

FINITE VOLUME SCHEME SPACE ORDER

FINITE VOLUME SCHEME TIME ORDER

FLUX LIMITOR FOR H PLUS Z

FLUX LIMITOR FOR TRACERS

FLUX LIMITOR FOR U AND V

MATRIX STORAGE

MATRIX-VECTOR PRODUCT

NEWMARK TIME INTEGRATION COEFFICIENT

OPTION OF THE HYDROSTATIC RECONSTRUCTION

REFINEMENT LEVELS

TYPE OF BOUNDARY CONDITION FOR KINETIC SCHEME

ZERO

2.7.2 ADVECTION INFO

ADVECTION

ADVECTION OF H

ADVECTION OF U AND V

FREE SURFACE GRADIENT COMPATIBILITY

MASS-LUMPING FOR WEAK CHARACTERISTICS

MASS-LUMPING ON H

MASS-LUMPING ON VELOCITY

MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

OPTION FOR CHARACTERISTICS

SCHEME FOR ADVECTION OF VELOCITIES

SCHEME OPTION FOR ADVECTION OF VELOCITIES

SUPG OPTION

TREATMENT OF FLUXES AT THE BOUNDARIES

TYPE OF ADVECTION

2.7.3 AUTOMATIC DIFFERENTIATION

AD LINEAR SOLVER DERIVATIVE CONVERGENCE

AD LINEAR SOLVER RESET DERIVATIVES

AD NAMES OF DERIVATIVES

AD NUMBER OF DERIVATIVES

AD SYMBOLIC LINEAR SOLVER

2.7.4 DIFFUSION

DIFFUSION OF VELOCITY

FINITE VOLUME SCHEME FOR TRACER DIFFUSION

FINITE VOLUME SCHEME FOR VELOCITY DIFFUSION

IMPLICITATION FOR DIFFUSION OF VELOCITY

OPTION FOR DIRICHLET CONDITION IN FV DIFFUSION

OPTION FOR THE DIFFUSION OF VELOCITIES

OPTION FOR THE RTPF SCHEME RECONSTRUCTIONS

2.7.5 DISCRETISATIONS IMPLICITATION

DISCRETIZATIONS IN SPACE IMPLICITATION FOR DEPTH IMPLICITATION FOR VELOCITY

2.7.6 PROPAGATION INFO

INITIAL GUESS FOR H
INITIAL GUESS FOR U
LINEARIZED PROPAGATION
MEAN DEPTH FOR LINEARIZATION
PROPAGATION

2.7.7 SOLVER INFO

C-U PRECONDITIONING
CONTINUITY CORRECTION
FINITE ELEMENT ASSEMBLY
MAXIMUM NUMBER OF ITERATIONS FOR SOLVER
PRECONDITIONING
SOLVER
SOLVER ACCURACY
SOLVER OPTION

2.8 PARTICLE TRANSPORT

2.8.1 ALGAE

ALGAE RELEASE TYPE
ALGAE TRANSPORT MODEL
ALGAE TYPE
DENSITY OF ALGAE
DIAMETER OF ALGAE
DURATION BEFORE ALGAE RELEASE
NUMBER OF ALGAE CLASSES

2.9 TIDAL FLATS INFO

RATE OF DEGRADATION FOR ALGAE
THICKNESS OF ALGAE
WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 1
WAVE ORBITAL VELOCITY THRESHOLD FOR ALGAE 2

2.8.2 BROWNIAN MOTION

STOCHASTIC DIFFUSION MODEL

2.8.3 DROGUES

ASCII DROGUES FILE
BINARY DROGUES FILE
DROGUES FILE FORMAT
DROGUES INITIAL POSITIONING DATA FILE
FORMAT OF THE DROGUES POSITIONING DATA FILE
INITIAL DROGUES SAMPLING DENSITY
MAXIMUM NUMBER OF DROGUES
PREVIOUS DROGUES FILE
PREVIOUS DROGUES FILE FORMAT
PRINTOUT PERIOD FOR DROGUES

2.8.4 LAGRANGIAN DRIFTS

NUMBER OF LAGRANGIAN DRIFTS

2.8.5 OIL SPILL

OIL SPILL MODEL
OIL SPILL STEERING FILE

2.9 TIDAL FLATS INFO

H CLIPPING
MINIMUM VALUE OF DEPTH
OPTION FOR THE TREATMENT OF TIDAL FLATS
THRESHOLD DEPTH FOR RECEDING PROCEDURE
THRESHOLD FOR NEGATIVE DEPTHS
TIDAL FLATS
TREATMENT OF NEGATIVE DEPTHS

2.10 TIDES

BINARY DATABASE 1 FOR TIDE BINARY DATABASE 2 FOR TIDE COEFFICIENT TO CALIBRATE SEA LEVEL GEOGRAPHIC SYSTEM GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER
INITIAL VELOCITIES COMPUTED BY TPXO
LAMBERT 93 CONVERSION FILE
MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS
MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS
MINOR CONSTITUENTS INFERENCE
ZONE NUMBER IN GEOGRAPHIC SYSTEM

2.10.1 BOUNDARY CONDITIONS

ASCII DATABASE FOR TIDE

COEFFICIENT TO CALIBRATE TIDAL RANGE

COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

HARMONIC CONSTANTS FILE

LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

OPTION FOR TIDAL BOUNDARY CONDITIONS

TIDAL DATA BASE

TIDAL MODEL FILE

TIDAL MODEL FILE FORMAT

2.10.2 PHYSICAL PARAMETERS

TIDE GENERATING FORCE

2.11 TRACERS

2.11.1 ACCURACY TRA

ACCURACY FOR DIFFUSION OF TRACERS
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

2.11.2 BOUNDARY CONDITIONS FOR TRACERS

PRESCRIBED TRACERS VALUES

2.11.3 METEOROLOGY TRA

VALUES OF TRACERS IN THE RAIN

2.11.4 NUMERICAL

ADVECTION OF TRACERS
COEFFICIENT FOR DIFFUSION OF TRACERS
DIFFUSION OF TRACERS
IMPLICITATION COEFFICIENT OF TRACERS
MASS-LUMPING ON TRACERS
OPTION FOR THE DIFFUSION OF TRACERS
SCHEME FOR ADVECTION OF TRACERS

2.12 TURBULENCE 109

SCHEME OPTION FOR ADVECTION OF TRACERS

2.11.5 SETTING

DENSITY EFFECTS
INITIAL VALUES OF TRACERS
MEAN TEMPERATURE
NAMES OF TRACERS
NUMBER OF TRACERS

2.11.6 SOLVER TRA

PRECONDITIONING FOR DIFFUSION OF TRACERS
SOLVER FOR DIFFUSION OF TRACERS
SOLVER OPTION FOR TRACERS DIFFUSION

2.11.7 SOURCES TRA

VALUES OF THE TRACERS AT THE SOURCES

2.12 TURBULENCE

ACCURACY OF SPALART-ALLMARAS
INFORMATION ABOUT SPALART-ALLMARAS MODEL
TURBULENCE MODEL
VELOCITY DIFFUSIVITY

2.12.1 ACCURACY

ACCURACY OF EPSILON

ACCURACY OF K

MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON

2.12.2 ADVANCED

ADVECTION OF K AND EPSILON
INFORMATION ABOUT K-EPSILON MODEL
MIXING LENGTH MODEL COEFFICIENTS
NON-DIMENSIONAL DISPERSION COEFFICIENTS
SCHEME FOR ADVECTION OF K-EPSILON
SCHEME OPTION FOR ADVECTION OF K-EPSILON
TURBULENCE REGIME FOR SOLID BOUNDARIES

2.12.3 SOLVER INFO

OPTION FOR THE SOLVER FOR K-EPSILON MODEL PRECONDITIONING FOR K-EPSILON MODEL

SOLVER FOR K-EPSILON MODEL

3. Glossary

3.1 English/French glossary

ABSCISSAE OF SOURCES	ABSCISSES DES SOURCES
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
TRACERS	TRACEURS
ACCURACY OF EPSILON	PRECISION SUR EPSILON
ACCURACY OF K	PRECISION SUR K
ACCURACY OF SPALART-ALLMARAS	PRECISION SUR SPALART-ALLMARAS
AD LINEAR SOLVER DERIVATIVE	AD CONVERGENCE DES DERIVEES
CONVERGENCE	POUR LE SOLVEUR LINEAIRE
AD LINEAR SOLVER RESET	AD REMISE A ZERO DES DERIVEES
DERIVATIVES	DU SOLVEUR LINEAIRE
AD NAMES OF DERIVATIVES	AD NOMS DES DERIVEES
AD NUMBER OF DERIVATIVES	AD NOMBRE DE DERIVEES
AD SYMBOLIC LINEAR SOLVER	AD SOLVEUR LINEAIRE SYMBOLIQUE
ADVECTION	CONVECTION
ADVECTION OF H	CONVECTION DE H
ADVECTION OF K AND EPSILON	CONVECTION DE K ET EPSILON
ADVECTION OF TRACERS	CONVECTION DES TRACEURS
ADVECTION OF U AND V	CONVECTION DE U ET V
AIR PRESSURE	PRESSION ATMOSPHERIQUE
AIR TEMPERATURE	TEMPERATURE DE L'AIR
ALGAE RELEASE TYPE	TYPE DE RELACHE DES ALGUES
ALGAE TRANSPORT MODEL	MODELE DE TRANSPORT DES ALGUES
ALGAE TYPE	TYPE DES ALGUES
ANTECEDENT MOISTURE CONDITIONS	CONDITIONS D'HUMIDITE
	PRECEDENTE
ASCII ATMOSPHERIC DATA FILE	FICHIER ASCII DE DONNEES
	ATMOSPHERIQUES
ASCII DATABASE FOR TIDE	BASE ASCII DE DONNEES DE MAREE
ASCII DROGUES FILE	FICHIER ASCII DES FLOTTEURS
BINARY ATMOSPHERIC DATA FILE	FICHIER BINAIRE DE DONNEES
	ATMOSPHERIQUES

BINARY ATMOSPHERIC DATA FILE	FORMAT DU FICHIER BINAIRE DE
FORMAT	DONNEES ATMOSPHERIQUES
BINARY DATA FILE 1	FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 2	FICHIER DE DONNEES BINAIRE 2
BINARY DATA FILE 2 FORMAT	FORMAT DU FICHIER DE DONNEES BINAIRE 2
BINARY DATABASE 1 FOR TIDE	BASE BINAIRE 1 DE DONNEES DE MAREE
BINARY DATABASE 2 FOR TIDE	BASE BINAIRE 2 DE DONNEES DE MAREE
BINARY DROGUES FILE	FICHIER BINAIRE DES FLOTTEURS
BINARY RESULTS FILE	FICHIER DE RESULTATS BINAIRE
BINARY RESULTS FILE FORMAT	FORMAT DU FICHIER DE RESULTATS BINAIRE
BINGHAM OPTION	OPTION DU MODELE DE BINGHAM
BOTTOM SMOOTHINGS	LISSAGES DU FOND
BOTTOM SMOOTHINGS AFTER USER	LISSAGES DU FOND APRES
MODIFICATIONS	MODIFICATIONS UTILISATEUR
BOTTOM SURFACES DELWAQ FILE	FICHIER DELWAQ DES SURFACES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
	LIMITES
BREACH	BRECHE
BREACHES DATA FILE	FICHIER DE DONNEES DES BRECHES
C-U PRECONDITIONING	PRECONDITIONNEMENT C-U
CHECKING THE MESH	VERIFICATION DU MAILLAGE
CLOUD COVER	NEBULOSITE
COEFFICIENT FOR DIFFUSION OF TRACERS	COEFFICIENT DE DIFFUSION DES TRACEURS
COEFFICIENT OF WIND INFLUENCE	COEFFICIENT D'INFLUENCE DU VENT
COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED	COEFFICIENT D'INFLUENCE DU VENT DEPENDANT DE LA VITESSE DU VENT
COEFFICIENT TO CALIBRATE SEA LEVEL	COEFFICIENT DE CALAGE DU NIVEAU DE MER
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DU
RANGE	MARNAGE
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DES
VELOCITIES	VITESSES DE COURANT
COMPATIBLE COMPUTATION OF	CALCUL COMPATIBLE DES FLUX
FLUXES	
COMPUTATION CONTINUED	SUITE DE CALCUL
CONCATENATE PARTEL OUTPUT	CONCATENATION SORTIE PARTEL
CONTINUITY CORRECTION	CORRECTION DE CONTINUITE
CONTROL OF LIMITS	CONTROLE DES LIMITES

CONTROL SECTIONS	SECTIONS DE CONTROLE
CONVERGENCE STUDY	ETUDE DE CONVERGENCE
CORIOLIS	CORIOLIS
CORIOLIS COEFFICIENT	COEFFICIENT DE CORIOLIS
COST FUNCTION	FONCTION COUT
COUPLING PERIOD FOR SISYPHE	PERIODE DE COUPLAGE POUR
COOLDING LEKTOD LOK SISTING	SISYPHE
COUPLING PERIOD FOR TOMAWAC	PERIODE DE COUPLAGE POUR
	TOMAWAC
COUPLING WITH	COUPLAGE AVEC
CULVERTS DATA FILE	FICHIER DE DONNEES DES BUSES
DEBUGGER	DEBUGGER
DEFINITION OF ZONES	DEFINITION DE ZONES
DELWAQ PRINTOUT PERIOD	PERIODE DE SORTIE POUR DELWAQ
DELWAO STEERING FILE	FICHIER DE COMMANDE DELWAQ
DENSITY EFFECTS	
	EFFETS DE DENSITE
DEDITH IN EDICATION TERMS	MASSE VOLUMIQUE DES ALGUES
DEPTH IN FRICTION TERMS	HAUTEUR DANS LES TERMES DE
DEGIDED COUDANT NUMBER	FROTTEMENT
DESIRED COURANT NUMBER	NOMBRE DE COURANT SOUHAITE
DESIRED FOURIER NUMBER	NOMBRE DE FOURIER SOUHAITE
DIAMETER OF ALGAE	DIAMETRE DES ALGUES
DICTIONARY	DICTIONNAIRE
DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
DIFFUSION OF VELOCITY	DIFFUSION DES VITESSES
DIFFUSIVITY DELWAQ FILE	FICHIER DELWAQ DE LA DIFFUSION
DIFFUSIVITY FOR DELWAQ	DIFFUSION POUR DELWAQ
DISCRETIZATIONS IN SPACE	DISCRETISATIONS EN ESPACE
DISSIPATION COEFFICIENT FOR	COEFFICIENT DE DISSIPATION POUR
SECONDARY CURRENTS	COURANTS SECONDAIRES
DROGUES FILE FORMAT	FORMAT DU FICHIER DES FLOTTEURS
DROGUES INITIAL POSITIONING	FICHIER POSITIONNANT LES
DATA FILE	DROGUES INITIALES
DURATION	DUREE DU CALCUL
DURATION BEFORE ALGAE RELEASE	DUREE AVANT RELACHE DES ALGUES
DURATION OF RAIN OR EVAPORATION	DUREE DE LA PLUIE OU
IN HOURS	EVAPORATION EN HEURES
ELEMENTS MASKED BY USER	ELEMENTS MASQUES PAR
	L'UTILISATEUR
EQUATIONS	EQUATIONS
EXCHANGE AREAS DELWAQ FILE	FICHIER DELWAQ DES SURFACES DE
	FLUX
EXCHANGES BETWEEN NODES DELWAQ	FICHIER DELWAQ DES ECHANGES
FILE	ENTRE NOEUDS
FINITE ELEMENT ASSEMBLY	ASSEMBLAGE EN ELEMENTS FINIS
FINITE VOLUME SCHEME	SCHEMA EN VOLUMES FINIS

FINITE VOLUME SCHEME FOR TRACER	SCHEMA VOLUMES FINIS POUR LA
DIFFUSION	DIFFUSION DES TRACEURS
FINITE VOLUME SCHEME FOR	SCHEMA VOLUMES FINIS POUR LA
VELOCITY DIFFUSION	DIFFUSION DES VITESSES
FINITE VOLUME SCHEME SPACE	ORDRE EN ESPACE DU SCHEMA
ORDER	VOLUME FINIS
FINITE VOLUME SCHEME TIME ORDER	ORDRE EN TEMPS DU SCHEMA VOLUME
	FINIS
FLUX LIMITOR FOR H PLUS Z	LIMITEUR DE FLUX POUR H PLUS Z
FLUX LIMITOR FOR TRACERS	LIMITEUR DE FLUX POUR LES
	TRACEURS
FLUX LIMITOR FOR U AND V	LIMITEUR DE FLUX POUR U ET V
FLUXLINE	FLUXLINE
FLUXLINE INPUT FILE	FICHIER DE FLUXLINE
FORMAT OF THE DROGUES	FORMAT DU FICHIER POSITIONNANT
POSITIONING DATA FILE	LES DROGUES
FORMATTED DATA FILE 1	FICHIER DE DONNEES FORMATE 1
FORMATTED DATA FILE 2	FICHIER DE DONNEES FORMATE 2
FORMATTED RESULTS FILE	FICHIER DE RESULTATS FORMATE
FORMATTED RESULTS FILE 1	FICHIER DE RESULTATS FORMATE 1
FORMATTED RESULTS FILE 2	FICHIER DE RESULTATS FORMATE 2
FORMATTED RESULTS FILE 3	FICHIER DE RESULTATS FORMATE 3
FORMATTED RESULTS FILE 4	FICHIER DE RESULTATS FORMATE 4
FORMATTED RESULTS FILE 5	FICHIER DE RESULTATS FORMATE 5
FORMATTED RESULTS FILE 6	FICHIER DE RESULTATS FORMATE 6
FORTRAN FILE	FICHIER FORTRAN
FOURIER ANALYSIS PERIODS	PERIODES D'ANALYSE DE FOURIER
FREE FORMAT FOR ATMOSPHERIC	FORMAT LIBRE POUR FICHIER DE
DATA FILE	DONNEES ATMOSPHERIQUES
FREE SURFACE GRADIENT	COMPATIBILITE DU GRADIENT DE
COMPATIBILITY	SURFACE LIBRE
FRICTION COEFFICIENT	COEFFICIENT DE FROTTEMENT
FRICTION DATA	DONNEES POUR LE FROTTEMENT
FRICTION DATA FILE	FICHIER DE DONNEES POUR LE
	FROTTEMENT
GAIA STEERING FILE	FICHIER DES PARAMETRES DE GAIA
GEOGRAPHIC SYSTEM	SYSTEME GEOGRAPHIQUE
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GLOBAL NUMBER OF THE POINT TO	NUMERO GLOBAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
GLOBAL NUMBERS OF SOURCE NODES	NUMEROS GLOBAUX DES NOEUDS DES
	SOURCES
GRAPHIC PRINTOUT PERIOD	PERIODE POUR LES SORTIES
1.2	GRAPHIQUES
GRAVITY ACCELERATION	ACCELERATION DE LA PESANTEUR
H CLIPPING	CLIPPING DE H
11 011111110	OTTITING DI II

HARMONIC CONSTANTS FILE	FICHIER DES CONSTANTES
	HARMONIQUES
HERSCHEL-BULKLEY POWER-LAW	INDICE POUR LE MODELE DE
INDEX	HERSCHEL-BULKLEY
IDENTIFICATION METHOD	METHODE D'IDENTIFICATION
IMPLICITATION COEFFICIENT OF	COEFFICIENT D'IMPLICITATION DES
TRACERS	TRACEURS
IMPLICITATION FOR DEPTH	IMPLICITATION POUR LA HAUTEUR
IMPLICITATION FOR DIFFUSION OF	IMPLICITATION POUR LA DIFFUSION
VELOCITY	DES VITESSES
IMPLICITATION FOR VELOCITY	IMPLICITATION POUR LA VITESSE
INFORMATION ABOUT K-EPSILON	INFORMATIONS SUR LE MODELE
MODEL	K-EPSILON
INFORMATION ABOUT SOLVER	INFORMATIONS SUR LE SOLVEUR
INFORMATION ABOUT	INFORMATION SUR LE MODELE
SPALART-ALLMARAS MODEL	SPALART-ALLMARAS
INITIAL CONDITIONS	CONDITIONS INITIALES
INITIAL DEPTH	HAUTEUR INITIALE
INITIAL DROGUES SAMPLING	DENSITE INITIALE DE REPARTITION
DENSITY	DES FLOTTEURS
INITIAL ELEVATION	COTE INITIALE
INITIAL GUESS FOR H	ORDRE DU TIR INITIAL POUR H
INITIAL GUESS FOR U	ORDRE DU TIR INITIAL POUR U
INITIAL LENGTHS OF BREACHES	LONGUEURS INITIALES DES BRECHES
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUES OF TRACERS	VALEURS INITIALES DES TRACEURS
INITIAL VELOCITIES COMPUTED BY	VITESSES INITIALES CALCULEES
TPXO	PAR TPXO
KHIONE STEERING FILE	FICHIER DES PARAMETRES DE
	KHIONE
LAMBERT 93 CONVERSION FILE	FICHIER DE CONVERSION LAMBERT
	93
LANGUAGE	LANGUE
LATITUDE OF ORIGIN POINT	LATITUDE DU POINT ORIGINE
LAW OF BOTTOM FRICTION	LOI DE FROTTEMENT SUR LE FOND
LAW OF FRICTION ON LATERAL	LOI DE FROTTEMENT SUR LES
BOUNDARIES	PAROIS LATERALES
LIMIT VALUES	VALEURS LIMITES
LINEARIZED PROPAGATION	PROPAGATION LINEARISEE
LIQUID BOUNDARIES FILE	FICHIER DES FRONTIERES LIQUIDES
LIST OF POINTS	LISTE DE POINTS
LISTING FOR PRINTOUT PERIOD	PERIODE POUR LES SORTIES
TISTING FOW EVINTOUT EFFICE	LISTING
LISTING PRINTOUT	SORTIE LISTING
LISTING PRINTOUT PERIOD	PERIODE DE SORTIE LISTING
LOCAL NUMBER OF THE POINT TO	NUMERO LOCAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER

	T
LONGITUDE OF ORIGIN POINT	LONGITUDE DU POINT ORIGINE
MANNING DEFAULT VALUE FOR	VALEUR PAR DEFAUT DU MANNING
COLEBROOK-WHITE LAW	POUR LA LOI DE COLEBROOK-WHITE
MASS-BALANCE	BILAN DE MASSE
MASS-LUMPING FOR WEAK	MASS-LUMPING POUR LES
CHARACTERISTICS	CARACTERISTIQUES FAIBLES
MASS-LUMPING ON H	MASS-LUMPING SUR H
MASS-LUMPING ON TRACERS	MASS-LUMPING SUR LES TRACEURS
MASS-LUMPING ON VELOCITY	MASS-LUMPING SUR LA VITESSE
MATRIX STORAGE	STOCKAGE DES MATRICES
MATRIX-VECTOR PRODUCT	PRODUIT MATRICE-VECTEUR
MAXIMUM NUMBER OF BOUNDARIES	NOMBRE MAXIMUM DE FRONTIERES
MAXIMUM NUMBER OF DROGUES	NOMBRE MAXIMAL DE FLOTTEURS
MAXIMUM NUMBER OF FRICTION	NOMBRE MAXIMUM DE DOMAINES DE
DOMAINS	FROTTEMENT
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LES
FOR ADVECTION SCHEMES	SCHEMAS DE CONVECTION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR
FOR IDENTIFICATION	L'IDENTIFICATION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR K ET
FOR K AND EPSILON	EPSILON
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LE
FOR SOLVER	SOLVEUR
MAXIMUM NUMBER OF POINTS FOR	NOMBRE MAXIMUM DE POINTS POUR
SOURCES REGIONS	DEFINIR DES SOURCES
MAXIMUM NUMBER OF SOURCES	NOMBRE MAXIMUM DE SOURCES
MAXIMUM NUMBER OF TRACERS	NOMBRE MAXIMUM DE TRACEURS
MEAN DEPTH FOR LINEARIZATION	PROFONDEUR MOYENNE POUR LA
	LINEARISATION
MEAN TEMPERATURE	TEMPERATURE MOYENNE
MINIMUM DEPTH TO COMPUTE TIDAL	HAUTEUR MINIMALE POUR LES
VELOCITIES BOUNDARY CONDITIONS	CONDITIONS AUX LIMITES DE
	COURANTS
MINIMUM DEPTH TO COMPUTE TIDAL	HAUTEUR MINIMALE POUR LES
VELOCITIES INITIAL CONDITIONS	CONDITIONS INITIALES DE
	COURANTS
MINIMUM VALUE OF DEPTH	VALEUR MINIMUM DE H
MINOR CONSTITUENTS INFERENCE	INTERPOLATION DE COMPOSANTES
	MINEURES
MIXING LENGTH MODEL	COEFFICIENTS DU MODELE DE
COEFFICIENTS	LONGUEUR DE MELANGE
NAMES OF CLANDESTINE VARIABLES	NOMS DES VARIABLES CLANDESTINES
NAMES OF POINTS	NOMS DES POINTS
NAMES OF PRIVATE VARIABLES	NOMS DES VARIABLES PRIVEES
NAMES OF TRACERS	NOMS DES TRACEURS
1111110 01 1111101110	1,0110 010 11111011010

NESTOR	NESTOR
NESTOR ACTION FILE	FICHIER DES PARAMETRES DE
	NESTOR
NESTOR POLYGON FILE	FICHIER DE POLYGONES DE NESTOR
NESTOR RESTART FILE	FICHIER DE REPRISE DE NESTOR
NESTOR SURFACE REFERENCE FILE	FICHIER DE SURFACE REFERENCE DE
	NESTOR
NEWMARK TIME INTEGRATION	COEFFICIENT D'INTEGRATION EN
COEFFICIENT	TEMPS DE NEWMARK
NODES DISTANCES DELWAQ FILE	FICHIER DELWAQ DES DISTANCES
	ENTRE NOEUDS
NON-DIMENSIONAL DISPERSION	COEFFICIENTS ADIMENSIONNELS DE
COEFFICIENTS	DISPERSION
NON-NEWTONIAN FLUID DENSITY	DENSITE DU FLUIDE NON-NEWTONIEN
NON-NEWTONIAN LAMINAR	RESISTANCE LAMINAIRE DU FLUIDE
RESISTANCE PARAMETER K	NON-NEWTONIEN
NON-NEWTONIAN MODEL	MODELE NON-NEWTONIEN
NON-NEWTONIAN PSEUDO-BIPHASIC	MODELE NON-NEWTONIEN PSEUDO
MODEL	DIPHASIQUE
NON-NEWTONIAN VISCOSITY	VISCOSITE DU FLUIDE
NON NEGRONIAN VIED CEDECC	NON-NEWTONIEN
NON-NEWTONIAN YIELD STRESS	CONTRAINTE D'ELASTICITE DU
NORTH	FLUIDE NON-NEWTONIEN NORD
NUMBER OF ALGAE CLASSES	NOMBRE DE CLASSES D'ALGUES
NUMBER OF CORRECTIONS OF	NOMBRE DE CORRECTIONS DES
DISTRIBUTIVE SCHEMES	SCHEMAS DISTRIBUTIFS
NUMBER OF CULVERTS	NOMBRE DE BUSES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
GRAPHIC PRINTOUTS	POUR LES SORTIES GRAPHIQUES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
LISTING PRINTOUTS	POUR LES SORTIES LISTING
NUMBER OF GAUSS POINTS FOR WEAK	NOMBRE DE POINTS DE GAUSS POUR
CHARACTERISTICS	LES CARACTERISTIQUES FAIBLES
NUMBER OF LAGRANGIAN DRIFTS	NOMBRE DE DERIVES LAGRANGIENNES
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF SUB-ITERATIONS FOR	NOMBRE DE SOUS-ITERATIONS POUR
NON-LINEARITIES	LES NON-LINEARITES
NUMBER OF SUB-STEPS OF	NOMBRE DE SOUS-PAS DES SCHEMAS
DISTRIBUTIVE SCHEMES	DISTRIBUTIFS
NUMBER OF TIME STEPS	NOMBRE DE PAS DE TEMPS
NUMBER OF TRACERS	NOMBRE DE TRACEURS
NUMBER OF WEIRS	NOMBRE DE SEUILS
OIL SPILL MODEL	MODELE DE NAPPES
	D'HYDROCARBURES
OIL SPILL STEERING FILE	FICHIER DE COMMANDES
	HYDROCARBURES

OPTION FOR CHARACTERISTICS	OPTION POUR LES
	CARACTERISTIQUES
OPTION FOR CULVERTS	OPTION POUR LES BUSES
OPTION FOR DIRICHLET CONDITION	OPTION DE LA CONDITION DE
IN FV DIFFUSION	DIRICHLET POUR LA DIFFUSION
	VF
OPTION FOR INITIAL ABSTRACTION	OPTION POUR RATIO DES PERTES
RATIO	INITIALES
OPTION FOR LIQUID BOUNDARIES	OPTION POUR LES FRONTIERES
	LIQUIDES
OPTION FOR THE DIFFUSION OF	OPTION POUR LA DIFFUSION DES
TRACERS	TRACEURS
OPTION FOR THE DIFFUSION OF	OPTION POUR LA DIFFUSION DES
VELOCITIES	VITESSES
OPTION FOR THE RTPF SCHEME	OPTION POUR LA RECONSTRUCTION
RECONSTRUCTIONS	DU SCHEMA RTPF
OPTION FOR THE SOLVER FOR	OPTION DU SOLVEUR POUR LE
K-EPSILON MODEL	MODELE K-EPSILON
OPTION FOR THE TREATMENT OF	OPTION DE TRAITEMENT DES BANCS
TIDAL FLATS	DECOUVRANTS
OPTION FOR TIDAL BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS	LIMITES DE MAREE
OPTION FOR TSUNAMI GENERATION	OPTION POUR LA GENERATION DE TSUNAMI
OPTION FOR WIND	OPTION DU VENT
OPTION OF THE HYDROSTATIC	OPTION DE LA RECONSTRUCTION
RECONSTRUCTION	HYDROSTATIQUE
ORDINATES OF SOURCES	ORDONNEES DES SOURCES
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARAMETER ESTIMATION	ESTIMATION DE PARAMETRE
PARTITIONING TOOL	PARTITIONNEUR
PHYSICAL CHARACTERISTICS OF THE	PARAMETRES PHYSIQUES DU TSUNAMI
TSUNAMI	
PRECONDITIONING	PRECONDITIONNEMENT
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
PRECONDITIONING FOR K-EPSILON	PRECONDITIONNEMENT POUR LE
MODEL	MODELE K-EPSILON
PRESCRIBED ELEVATIONS	COTES IMPOSEES
PRESCRIBED FLOWRATES	DEBITS IMPOSES
PRESCRIBED TRACERS VALUES	VALEURS IMPOSEES DES TRACEURS
PRESCRIBED VELOCITIES	VITESSES IMPOSEES
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE	FORMAT DU FICHIER DU CALCUL

PREVIOUS DROGUES FILE	FICHIER DES FLOTTEURS PRECEDENT
PREVIOUS DROGUES FILE FORMAT	FORMAT DU FICHIER DES FLOTTEURS
	PRECEDENT
PRINTING CUMULATED FLOWRATES	IMPRESSION DU CUMUL DES FLUX
PRINTOUT PERIOD FOR DROGUES	PERIODE POUR LES SORTIES DE
	FLOTTEURS
PRODUCTION COEFFICIENT FOR	COEFFICIENT DE PRODUCTION POUR
SECONDARY CURRENTS	COURANTS SECONDAIRES
PROPAGATION	PROPAGATION
RAIN OR EVAPORATION	PLUIE OU EVAPORATION
RAIN OR EVAPORATION IN MM PER	PLUIE OU EVAPORATION EN MM PAR
DAY	JOUR
RAINFALL-RUNOFF MODEL	MODELE PLUIE-DEBIT
RATE OF DEGRADATION FOR ALGAE	TAUX DE DEGRADATION POUR LES
	ALGUES
RECORD NUMBER FOR RESTART	ENREGISTREMENT POUR SUITE DE
	CALCUL
RECORD NUMBER IN WAVE FILE	NUMERO DE L'ENREGISTREMENT DANS
	LE FICHIER DE HOULE
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
REFINEMENT LEVELS	NIVEAUX DE RAFFINEMENT
RESULT FILE IN	FICHIER RESULTAT EN
LONGITUDE-LATITUDE	LONGITUDE-LATITUDE
RESULTS FILE	FICHIER DES RESULTATS
RESULTS FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
ROUGHNESS COEFFICIENT OF	COEFFICIENT DE RUGOSITE DES
BOUNDARIES	BORDS
SALINITY DELWAQ FILE	FICHIER DELWAQ DE LA SALINITE
SALINITY FOR DELWAQ	SALINITE POUR DELWAQ
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DU
K-EPSILON	K-EPSILON
SCHEME FOR ADVECTION OF TRACERS	SCHEMA POUR LA CONVECTION DES TRACEURS
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DES
VELOCITIES	VITESSES
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
K-EPSILON	CONVECTION DU K-EPSILON
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
TRACERS	CONVECTION DES TRACEURS
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
VELOCITIES	CONVECTION DES VITESSES
SECONDARY CURRENTS	COURANTS SECONDAIRES
SECTIONS INPUT FILE	FICHIER DES SECTIONS DE CONTROLE
SECTIONS OUTPUT FILE	FICHIER DE SORTIE DES SECTIONS

GEGLIDIEN, GODERNICHDIE DOD	CORRECTENS DE CROUDISE DOUD
SECURITY COEFFICIENT FOR	COEFFICIENT DE SECURITE POUR
SCARACT	SCARACT
SISYPHE STEERING FILE	FICHIER DES PARAMETRES DE
	SISYPHE
SOLAR RADIATION	RAYONNEMENT SOLAIRE
SOLVER	SOLVEUR
SOLVER ACCURACY	PRECISION DU SOLVEUR
SOLVER FOR DIFFUSION OF TRACERS	SOLVEUR POUR LA DIFFUSION DES
	TRACEURS
SOLVER FOR K-EPSILON MODEL	SOLVEUR POUR LE MODELE
	K-EPSILON
SOLVER OPTION	OPTION DU SOLVEUR
SOLVER OPTION FOR TRACERS	OPTION DU SOLVEUR POUR LA
DIFFUSION	DIFFUSION DES TRACEURS
SOURCE REGIONS DATA FILE	FICHIER DES REGIONS DES SOURCES
SOURCES FILE	FICHIER DES SOURCES
SPATIAL PROJECTION TYPE	TYPE DE PROJECTION SPATIALE
SPEED AND DIRECTION OF WIND	VITESSE ET DIRECTION DU VENT
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STAGE-DISCHARGE CURVES	COURBES DE TARAGE
STAGE-DISCHARGE CURVES FILE	FICHIER DES COURBES DE TARAGE
STAGE-DISCHARGE CURVES	COEFFICIENT DE RELAXATION DES
RELAXATION COEFFICIENT	COURBES DE TARAGE
STEERING FILE	FICHIER DES PARAMETRES
STOCHASTIC DIFFUSION MODEL	MODELE DE DIFFUSION
STOCHASTIC DIFFOSION MODEL	STOCHASTIQUE
STOP CRITERIA	CRITERES D'ARRET
STOP IF A STEADY STATE IS	ARRET SI UN ETAT PERMANENT EST
REACHED	ATTEINT
SUPG OPTION	OPTION DE SUPG
TEMPERATURE DELWAQ FILE	FICHIER DELWAQ DE LA
	TEMPERATURE
TEMPERATURE FOR DELWAQ	TEMPERATURE POUR DELWAQ
THICKNESS OF ALGAE	EPAISSEUR DES ALGUES
THRESHOLD DEPTH FOR RECEDING	PROFONDEUR LIMITE POUR
PROCEDURE	PROCEDURE DE RESSUYAGE
THRESHOLD DEPTH FOR WIND	PROFONDEUR LIMITE POUR LE VENT
THRESHOLD FOR NEGATIVE DEPTHS	SEUIL POUR LES PROFONDEURS
	NEGATIVES
TIDAL DATA BASE	BASE DE DONNEES DE MAREE
TIDAL FLATS	BANCS DECOUVRANTS
TIDAL MODEL FILE	FICHIER DU MODELE DE MAREE
TIDAL MODEL FILE FORMAT	FORMAT DU FICHIER DU MODELE DE
	MAREE
TIDE GENERATING FORCE	FORCE GENERATRICE DE LA MAREE
TIME RANGE FOR FOURIER ANALYSIS	BORNES EN TEMPS POUR L'ANALYSE
	DE FOURIER

TIME STEP	PAS DE TEMPS
TITLE	TITRE
TOLERANCES FOR IDENTIFICATION	PRECISIONS POUR
TOLERANCES FOR IDENTIFICATION	L'IDENTIFICATION
TOMAWAC STEERING FILE	FICHIER DES PARAMETRES DE
TOPAWAC SIEEKING FILE	TOMAWAC
TREATMENT OF FLUXES AT THE	TRAITEMENT DES FLUX AUX
BOUNDARIES	FRONTIERES
TREATMENT OF NEGATIVE DEPTHS	TRAITEMENT DES HAUTEURS
	NEGATIVES
TREATMENT OF THE LINEAR SYSTEM	TRAITEMENT DU SYSTEME LINEAIRE
TURBULENCE MODEL	MODELE DE TURBULENCE
TURBULENCE REGIME FOR SOLID	REGIME DE TURBULENCE POUR LES
BOUNDARIES	PAROIS
TYPE OF ADVECTION	FORME DE LA CONVECTION
TYPE OF BOUNDARY CONDITION FOR	TYPE DE CONDITION A LA LIMITE
KINETIC SCHEME	POUR LE SCHEMA CINETIQUE
TYPE OF SOURCES	TYPE DES SOURCES
TYPE OF WEIRS	TYPE DES SEUILS
VALIDATION	VALIDATION
VALUE OF ATMOSPHERIC PRESSURE	VALEUR DE LA PRESSION
	ATMOSPHERIQUE
VALUES OF THE TRACERS AT THE	VALEURS DES TRACEURS DES
SOURCES	SOURCES
VALUES OF TRACERS IN THE RAIN	VALEURS DES TRACEURS DANS LA
	PLUIE
VAPOROUS PRESSURE	PRESSION DE VAPEUR SATURANTE
VARIABLE TIME-STEP	PAS DE TEMPS VARIABLE
VARIABLES FOR GRAPHIC PRINTOUTS	VARIABLES POUR LES SORTIES
	GRAPHIQUES
VARIABLES TO BE PRINTED	VARIABLES A IMPRIMER
VECTOR LENGTH	LONGUEUR DU VECTEUR
VEGETATION FRICTION	FROTTEMENT POUR LA VEGETATION
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON X
X	
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON Y
Y	DIGITED DELIZAC DE LA VITERGE
VELOCITY DIEFRICIALTY	FICHIER DELWAQ DE LA VITESSE
VELOCITY DIFFUSIVITY	COEFFICIENT DE DIFFUSION DES VITESSES
VELOCITY FOR DELWAQ	VITESSES VITESSE POUR DELWAQ
VELOCITY FOR DELWAQ VELOCITY PROFILES	PROFILS DE VITESSE
VERTICAL FLUXES DELWAQ FILE	FICHIER DELWAQ DES FLUX
APVITCAD LHOVES DETMAN LIDE	VERTICAUX
VERTICAL STRUCTURES	STRUCTURES VERTICALES
VOLUMES DELWAQ FILE	FICHIER DELWAQ DES VOLUMES
AOTOLIDO DETMAŽ LITE	T TOUTHY DUTHWY NOTO AOTHURS

WAQTEL STEERING FILE	FICHIER DES PARAMETRES DE
	WAQTEL
WATER DENSITY	MASSE VOLUMIQUE DE L'EAU
WATER DISCHARGE OF SOURCES	DEBITS DES SOURCES
WATER QUALITY PROCESS	PROCESSUS QUALITE D'EAU
WAVE DRIVEN CURRENTS	COURANTS DE HOULE
WAVE ENHANCED FRICTION FACTOR	AUGMENTATION DU FROTTEMENT PAR
	LA HOULE
WAVE ORBITAL VELOCITY THRESHOLD	SEUIL DE LA VITESSE ORBITALE DE
FOR ALGAE 1	VAGUE POUR LES ALGUES 1
WAVE ORBITAL VELOCITY THRESHOLD	SEUIL DE LA VITESSE ORBITALE DE
FOR ALGAE 2	VAGUE POUR LES ALGUES 2
WEIRS DATA FILE	FICHIER DE DONNEES DES SEUILS
WEIRS DISCHARGE OUTPUT FILE	FICHIER DE SORTIE DES DEBITS
	DES SEUILS
WIND	VENT
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
ZERO	ZERO
ZONE NUMBER IN GEOGRAPHIC	NUMERO DE FUSEAU OU PROJECTION
SYSTEM	DANS LE SYSTEME GEOGRAPHIQUE
ZONES FILE	FICHIER DES ZONES

3.2 French/English glossary

ABSCISSES DES SOURCES	ABSCISSAE OF SOURCES
ACCELERATION DE LA PESANTEUR	GRAVITY ACCELERATION
AD CONVERGENCE DES DERIVEES	AD LINEAR SOLVER DERIVATIVE
POUR LE SOLVEUR LINEAIRE	CONVERGENCE
AD NOMBRE DE DERIVEES	AD NUMBER OF DERIVATIVES
AD NOMS DES DERIVEES	AD NAMES OF DERIVATIVES
AD REMISE A ZERO DES DERIVEES	AD LINEAR SOLVER RESET
DU SOLVEUR LINEAIRE	DERIVATIVES
AD SOLVEUR LINEAIRE SYMBOLIQUE	AD SYMBOLIC LINEAR SOLVER
ARRET SI UN ETAT PERMANENT EST	STOP IF A STEADY STATE IS
ATTEINT	REACHED
ASSEMBLAGE EN ELEMENTS FINIS	FINITE ELEMENT ASSEMBLY
AUGMENTATION DU FROTTEMENT PAR	WAVE ENHANCED FRICTION FACTOR
LA HOULE	
BANCS DECOUVRANTS	TIDAL FLATS
BASE ASCII DE DONNEES DE MAREE	ASCII DATABASE FOR TIDE
BASE BINAIRE 1 DE DONNEES DE	BINARY DATABASE 1 FOR TIDE
MAREE	
BASE BINAIRE 2 DE DONNEES DE	BINARY DATABASE 2 FOR TIDE
MAREE	
BASE DE DONNEES DE MAREE	TIDAL DATA BASE
BILAN DE MASSE	MASS-BALANCE

DODNEG EN EEMDG DOUD I / ANALYGE	TIME DANGE FOR FOURTH ANALYGIG
BORNES EN TEMPS POUR L'ANALYSE	TIME RANGE FOR FOURIER ANALYSIS
DE FOURIER	PDE101
BRECHE	BREACH
CALCUL COMPATIBLE DES FLUX	COMPATIBLE COMPUTATION OF
	FLUXES
CLIPPING DE H	H CLIPPING
COEFFICIENT D'IMPLICITATION DES	IMPLICITATION COEFFICIENT OF
TRACEURS	TRACERS
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
DEPENDANT DE LA VITESSE DU VENT	VARYING WITH WIND SPEED
COEFFICIENT D'INTEGRATION EN	NEWMARK TIME INTEGRATION
TEMPS DE NEWMARK	COEFFICIENT
COEFFICIENT DE CALAGE DES	COEFFICIENT TO CALIBRATE TIDAL
VITESSES DE COURANT	VELOCITIES
COEFFICIENT DE CALAGE DU	COEFFICIENT TO CALIBRATE TIDAL
MARNAGE	RANGE
COEFFICIENT DE CALAGE DU NIVEAU	COEFFICIENT TO CALIBRATE SEA
DE MER	LEVEL
COEFFICIENT DE CORIOLIS	CORIOLIS COEFFICIENT
COEFFICIENT DE DIFFUSION DES	COEFFICIENT FOR DIFFUSION OF
TRACEURS	TRACERS
COEFFICIENT DE DIFFUSION DES	VELOCITY DIFFUSIVITY
VITESSES	
COEFFICIENT DE DISSIPATION POUR	DISSIPATION COEFFICIENT FOR
COURANTS SECONDAIRES	SECONDARY CURRENTS
COEFFICIENT DE FROTTEMENT	FRICTION COEFFICIENT
COEFFICIENT DE PRODUCTION POUR	PRODUCTION COEFFICIENT FOR
COURANTS SECONDAIRES	SECONDARY CURRENTS
COEFFICIENT DE RELAXATION DES	STAGE-DISCHARGE CURVES
COURBES DE TARAGE	RELAXATION COEFFICIENT
COEFFICIENT DE RUGOSITE DES	ROUGHNESS COEFFICIENT OF
BORDS	BOUNDARIES
COEFFICIENT DE SECURITE POUR	SECURITY COEFFICIENT FOR
SCARACT	SCARACT
COEFFICIENTS ADIMENSIONNELS DE	NON-DIMENSIONAL DISPERSION
DISPERSION	COEFFICIENTS
COEFFICIENTS DU MODELE DE	MIXING LENGTH MODEL
LONGUEUR DE MELANGE	COEFFICIENTS
COMPATIBILITE DU GRADIENT DE	FREE SURFACE GRADIENT
SURFACE LIBRE	COMPATIBILITY
CONCATENATION SORTIE PARTEL	CONCATENATE PARTEL OUTPUT
CONDITIONS D'HUMIDITE	ANTECEDENT MOISTURE CONDITIONS
PRECEDENTE	
CONDITIONS INITIALES	INITIAL CONDITIONS
CONTRAINTE D'ELASTICITE DU	NON-NEWTONIAN YIELD STRESS
FLUIDE NON-NEWTONIEN	
	ı

CONTROLE DES LIMITES	CONTROL OF LIMITS
CONVECTION	ADVECTION
CONVECTION DE H	ADVECTION OF H
CONVECTION DE K ET EPSILON	ADVECTION OF K AND EPSILON
CONVECTION DE U ET V	ADVECTION OF U AND V
CONVECTION DES TRACEURS	ADVECTION OF TRACERS
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES
CORIOLIS	CORIOLIS
CORRECTION DE CONTINUITE	CONTINUITY CORRECTION
COTE INITIALE	INITIAL ELEVATION
COTES IMPOSEES	PRESCRIBED ELEVATIONS
COUPLAGE AVEC	COUPLING WITH
COURANTS DE HOULE	WAVE DRIVEN CURRENTS
COURANTS SECONDAIRES	SECONDARY CURRENTS
COURBES DE TARAGE	STAGE-DISCHARGE CURVES
CRITERES D'ARRET	STOP CRITERIA
DATE DE L'ORIGINE DES TEMPS	ORIGINAL DATE OF TIME
DEBITS DES SOURCES	WATER DISCHARGE OF SOURCES
DEBITS IMPOSES	PRESCRIBED FLOWRATES
DEBUGGER	DEBUGGER
DEFINITION DE ZONES	DEFINITION OF ZONES
DENSITE DU FLUIDE NON-NEWTONIEN	NON-NEWTONIAN FLUID DENSITY
DENSITE INITIALE DE REPARTITION	INITIAL DROGUES SAMPLING
DES FLOTTEURS	DENSITY
DIAMETRE DES ALGUES	DIAMETER OF ALGAE
DICTIONNAIRE	DICTIONARY
DIFFUSION DES TRACEURS	DIFFUSION OF TRACERS
DIFFUSION DES VITESSES	DIFFUSION OF VELOCITY
DIFFUSION POUR DELWAQ	DIFFUSIVITY FOR DELWAQ
DISCRETISATIONS EN ESPACE	DISCRETIZATIONS IN SPACE
DONNEES POUR LE FROTTEMENT	FRICTION DATA
DUREE AVANT RELACHE DES ALGUES	DURATION BEFORE ALGAE RELEASE
DUREE DE LA PLUIE OU	DURATION OF RAIN OR EVAPORATION
EVAPORATION EN HEURES	IN HOURS
DUREE DU CALCUL	DURATION
EFFETS DE DENSITE	DENSITY EFFECTS
ELEMENTS MASQUES PAR	ELEMENTS MASKED BY USER
L'UTILISATEUR	
ENREGISTREMENT POUR SUITE DE	RECORD NUMBER FOR RESTART
CALCUL	
EPAISSEUR DES ALGUES	THICKNESS OF ALGAE
EOUATIONS	EOUATIONS
ESTIMATION DE PARAMETRE	PARAMETER ESTIMATION
ETUDE DE CONVERGENCE	CONVERGENCE STUDY
FICHIER ASCII DE DONNEES	ASCII ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER ASCII DES FLOTTEURS	ASCII DROGUES FILE
1 10111111 110011 010 11101110110	110011 1100010 11111

FICHIER BINAIRE DE DONNEES	BINARY ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	DIMARY PROCUES ETTE
FICHIER BINAIRE DES FLOTTEURS	BINARY DROGUES FILE
FICHIER DE COMMANDES	DELWAQ STEERING FILE
FICHIER DE COMMANDES	OIL SPILL STEERING FILE
HYDROCARBURES	TAMBERE 02 CONVERGEON BILL
FICHIER DE CONVERSION LAMBERT	LAMBERT 93 CONVERSION FILE
93	
FICHIER DE DONNEES BINAIRE 1	BINARY DATA FILE 1
FICHIER DE DONNEES BINAIRE 2	BINARY DATA FILE 2
FICHIER DE DONNEES DES BRECHES	BREACHES DATA FILE
FICHIER DE DONNEES DES BUSES	CULVERTS DATA FILE
FICHIER DE DONNEES DES SEUILS	WEIRS DATA FILE
FICHIER DE DONNEES FORMATE 1	FORMATTED DATA FILE 1
FICHIER DE DONNEES FORMATE 2	FORMATTED DATA FILE 2
FICHIER DE DONNEES POUR LE	FRICTION DATA FILE
FROTTEMENT	
FICHIER DE FLUXLINE	FLUXLINE INPUT FILE
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE POLYGONES DE NESTOR	NESTOR POLYGON FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DE REPRISE DE NESTOR	NESTOR RESTART FILE
FICHIER DE RESULTATS BINAIRE	BINARY RESULTS FILE
FICHIER DE RESULTATS FORMATE	FORMATTED RESULTS FILE
FICHIER DE RESULTATS FORMATE 1	FORMATTED RESULTS FILE 1
FICHIER DE RESULTATS FORMATE 2	FORMATTED RESULTS FILE 2
FICHIER DE RESULTATS FORMATE 3	FORMATTED RESULTS FILE 3
FICHIER DE RESULTATS FORMATE 4	FORMATTED RESULTS FILE 4
FICHIER DE RESULTATS FORMATE 5	FORMATTED RESULTS FILE 5
FICHIER DE RESULTATS FORMATE 6	FORMATTED RESULTS FILE 6
FICHIER DE SORTIE DES DEBITS	WEIRS DISCHARGE OUTPUT FILE
DES SEUILS	
FICHIER DE SORTIE DES SECTIONS	SECTIONS OUTPUT FILE
DE CONTROLE	
FICHIER DE SURFACE REFERENCE DE	NESTOR SURFACE REFERENCE FILE
NESTOR	
FICHIER DELWAQ DE LA DIFFUSION	DIFFUSIVITY DELWAQ FILE
FICHIER DELWAQ DE LA SALINITE	SALINITY DELWAQ FILE
FICHIER DELWAQ DE LA	TEMPERATURE DELWAQ FILE
TEMPERATURE	
FICHIER DELWAQ DE LA VITESSE	VELOCITY DELWAQ FILE
FICHIER DELWAQ DES DISTANCES	NODES DISTANCES DELWAQ FILE
ENTRE NOEUDS	
FICHIER DELWAQ DES ECHANGES	EXCHANGES BETWEEN NODES DELWAQ
ENTRE NOEUDS	FILE
FICHIER DELWAQ DES FLUX	VERTICAL FLUXES DELWAQ FILE
VERTICAUX	

FICHIER DELWAQ DES SURFACES DE	EXCHANGE AREAS DELWAQ FILE
FLUX	
FICHIER DELWAQ DES SURFACES DU	BOTTOM SURFACES DELWAQ FILE
FOND	
FICHIER DELWAQ DES VOLUMES	VOLUMES DELWAQ FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES CONSTANTES	HARMONIC CONSTANTS FILE
HARMONIQUES	Introduct Conditions I Ind
FICHIER DES COURBES DE TARAGE	STAGE-DISCHARGE CURVES FILE
FICHIER DES FLOTTEURS PRECEDENT	PREVIOUS DROGUES FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FRONTIERES LIQUIDES	LIQUID BOUNDARIES FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES PARAMETRES DE GAIA	GAIA STEERING FILE
FICHIER DES PARAMETRES DE	KHIONE STEERING FILE
KHIONE	
FICHIER DES PARAMETRES DE	NESTOR ACTION FILE
NESTOR	
FICHIER DES PARAMETRES DE	SISYPHE STEERING FILE
SISYPHE	
FICHIER DES PARAMETRES DE	TOMAWAC STEERING FILE
TOMAWAC	
FICHIER DES PARAMETRES DE	WAQTEL STEERING FILE
WAQTEL	vizi dillimo i ill
FICHIER DES REGIONS DES SOURCES	SOURCE REGIONS DATA FILE
FICHIER DES RESULTATS	RESULTS FILE
FICHIER DES SECTIONS DE	SECTIONS INPUT FILE
CONTROLE	SECTIONS INFOT FILE
	COUNCES BILE
FICHIER DES SOURCES	SOURCES FILE
FICHIER DES ZONES	ZONES FILE
FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU MODELE DE MAREE	TIDAL MODEL FILE
FICHIER FORTRAN	FORTRAN FILE
FICHIER POSITIONNANT LES	DROGUES INITIAL POSITIONING
DROGUES INITIALES	DATA FILE
FICHIER RESULTAT EN	RESULT FILE IN
LONGITUDE-LATITUDE	LONGITUDE-LATITUDE
FLUXLINE	FLUXLINE
FONCTION COUT	COST FUNCTION
FORCE GENERATRICE DE LA MAREE	TIDE GENERATING FORCE
FORMAT DU FICHIER BINAIRE DE	BINARY ATMOSPHERIC DATA FILE
DONNEES ATMOSPHERIQUES	FORMAT
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	DIMINI DATA LIBE I FONNAI
	DIMADY DATA BILE O BODMAT
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 2 FORMAT
BINAIRE 2	

	T
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DE RESULTATS	BINARY RESULTS FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DES FLOTTEURS	DROGUES FILE FORMAT
FORMAT DU FICHIER DES FLOTTEURS	PREVIOUS DROGUES FILE FORMAT
PRECEDENT	
FORMAT DU FICHIER DES RESULTATS	RESULTS FILE FORMAT
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	FORMAT
FORMAT DU FICHIER DU MODELE DE	TIDAL MODEL FILE FORMAT
MAREE	
FORMAT DU FICHIER POSITIONNANT	FORMAT OF THE DROGUES
LES DROGUES	POSITIONING DATA FILE
FORMAT LIBRE POUR FICHIER DE	FREE FORMAT FOR ATMOSPHERIC
DONNEES ATMOSPHERIQUES	DATA FILE
FORME DE LA CONVECTION	TYPE OF ADVECTION
FROTTEMENT POUR LA VEGETATION	VEGETATION FRICTION
HAUTEUR DANS LES TERMES DE	DEPTH IN FRICTION TERMS
FROTTEMENT	
HAUTEUR INITIALE	INITIAL DEPTH
HAUTEUR MINIMALE POUR LES	MINIMUM DEPTH TO COMPUTE TIDAL
CONDITIONS AUX LIMITES DE	VELOCITIES BOUNDARY CONDITIONS
COURANTS	
HAUTEUR MINIMALE POUR LES	MINIMUM DEPTH TO COMPUTE TIDAL
CONDITIONS INITIALES DE	VELOCITIES INITIAL CONDITIONS
COURANTS	
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
IMPLICITATION POUR LA DIFFUSION	IMPLICITATION FOR DIFFUSION OF
DES VITESSES	VELOCITY
IMPLICITATION POUR LA HAUTEUR	IMPLICITATION FOR DEPTH
IMPLICITATION POUR LA VITESSE	IMPLICITATION FOR VELOCITY
IMPRESSION DU CUMUL DES FLUX	PRINTING CUMULATED FLOWRATES
INDICE POUR LE MODELE DE	HERSCHEL-BULKLEY POWER-LAW
HERSCHEL-BULKLEY	INDEX
INFORMATION SUR LE MODELE	INFORMATION ABOUT
SPALART-ALLMARAS	SPALART-ALLMARAS MODEL
INFORMATIONS SUR LE MODELE	INFORMATION ABOUT K-EPSILON
K-EPSILON	MODEL
INFORMATIONS SUR LE SOLVEUR	INFORMATION ABOUT SOLVER
INTERPOLATION DE COMPOSANTES	MINOR CONSTITUENTS INFERENCE
MINEURES	
LANGUE	LANGUAGE
LATITUDE DU POINT ORIGINE	LATITUDE OF ORIGIN POINT
LIMITEUR DE FLUX POUR H PLUS Z	FLUX LIMITOR FOR H PLUS Z
LIMITEUR DE FLUX POUR LES	FLUX LIMITOR FOR H PLUS Z
	THOS LIMITOR FOR INACERS
TRACEURS	

LIMITEUR DE FLUX POUR U ET V	FLUX LIMITOR FOR U AND V
LISSAGES DU FOND	BOTTOM SMOOTHINGS
LISSAGES DU FOND APRES	BOTTOM SMOOTHINGS AFTER USER
MODIFICATIONS UTILISATEUR	MODIFICATIONS
LISTE DE POINTS	LIST OF POINTS
LOI DE FROTTEMENT SUR LE FOND	LAW OF BOTTOM FRICTION
LOI DE FROTTEMENT SUR LES	LAW OF FRICTION ON LATERAL
PAROIS LATERALES	BOUNDARIES
LONGITUDE DU POINT ORIGINE	LONGITUDE OF ORIGIN POINT
LONGUEUR DU VECTEUR	VECTOR LENGTH
LONGUEURS INITIALES DES BRECHES	INITIAL LENGTHS OF BREACHES
MASS-LUMPING POUR LES	MASS-LUMPING FOR WEAK
CARACTERISTIQUES FAIBLES	CHARACTERISTICS
MASS-LUMPING SUR H	MASS-LUMPING ON H
MASS-LUMPING SUR LA VITESSE	MASS-LUMPING ON VELOCITY
MASS-LUMPING SUR LES TRACEURS	MASS-LUMPING ON TRACERS
MASSE VOLUMIQUE DE L'EAU	WATER DENSITY
MASSE VOLUMIQUE DES ALGUES	DENSITY OF ALGAE
MAXIMUM D'ITERATIONS POUR K ET	MAXIMUM NUMBER OF ITERATIONS
EPSILON	FOR K AND EPSILON
MAXIMUM D'ITERATIONS POUR	MAXIMUM NUMBER OF ITERATIONS
L'IDENTIFICATION	FOR IDENTIFICATION
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES TRACEURS	FOR DIFFUSION OF TRACERS
MAXIMUM D'ITERATIONS POUR LE	MAXIMUM NUMBER OF ITERATIONS
SOLVEUR	FOR SOLVER
MAXIMUM D'ITERATIONS POUR LES	MAXIMUM NUMBER OF ITERATIONS
SCHEMAS DE CONVECTION	FOR ADVECTION SCHEMES
METHODE D'IDENTIFICATION	IDENTIFICATION METHOD
MODELE DE DIFFUSION	STOCHASTIC DIFFUSION MODEL
STOCHASTIQUE	STOOMISTIC BILLOSION HOBBE
MODELE DE NAPPES	OIL SPILL MODEL
D'HYDROCARBURES	
MODELE DE TRANSPORT DES ALGUES	ALGAE TRANSPORT MODEL
MODELE DE TURBULENCE	TURBULENCE MODEL
MODELE NON-NEWTONIEN	NON-NEWTONIAN MODEL
MODELE NON-NEWTONIEN PSEUDO	NON-NEWTONIAN PSEUDO-BIPHASIC
DIPHASIQUE	MODEL
MODELE PLUIE-DEBIT	RAINFALL-RUNOFF MODEL
NEBULOSITE	CLOUD COVER
NESTOR	NESTOR NESTOR
NIVEAUX DE RAFFINEMENT	REFINEMENT LEVELS
NOMBRE DE BUSES	NUMBER OF CULVERTS
NOMBRE DE CLASSES D'ALGUES	NUMBER OF ALGAE CLASSES
NOMBRE DE CORRECTIONS DES	NUMBER OF CORRECTIONS OF
SCHEMAS DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE COURANT SOUHAITE	DESIRED COURANT NUMBER
MOMBRE DE COURANT SOURATTE	DESIKED COOKANI NOMBEK

NOMBRE DE DERIVES LAGRANGIENNES	NUMBER OF LAGRANGIAN DRIFTS
NOMBRE DE FOURIER SOUHAITE	DESIRED FOURIER NUMBER
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEPS
NOMBRE DE POINTS DE GAUSS POUR	NUMBER OF GAUSS POINTS FOR WEAK
LES CARACTERISTIQUES FAIBLES	CHARACTERISTICS
NOMBRE DE SEUILS	NUMBER OF WEIRS
NOMBRE DE SOUS-ITERATIONS POUR	NUMBER OF SUB-ITERATIONS FOR
LES NON-LINEARITES	NON-LINEARITIES
NOMBRE DE SOUS-PAS DES SCHEMAS	
	NUMBER OF SUB-STEPS OF
DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMBRE DE TRACEURS	NUMBER OF TRACERS
NOMBRE MAXIMAL DE FLOTTEURS	MAXIMUM NUMBER OF DROGUES
NOMBRE MAXIMUM DE DOMAINES DE	MAXIMUM NUMBER OF FRICTION
FROTTEMENT	DOMAINS
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES
NOMBRE MAXIMUM DE POINTS POUR	MAXIMUM NUMBER OF POINTS FOR
DEFINIR DES SOURCES	SOURCES REGIONS
NOMBRE MAXIMUM DE SOURCES	MAXIMUM NUMBER OF SOURCES
NOMBRE MAXIMUM DE TRACEURS	MAXIMUM NUMBER OF TRACERS
NOMS DES POINTS	NAMES OF POINTS
NOMS DES TRACEURS	NAMES OF TRACERS
NOMS DES TRACEORS NOMS DES VARIABLES CLANDESTINES	NAMES OF CLANDESTINE VARIABLES
NOMS DES VARIABLES PRIVEES	NAMES OF PRIVATE VARIABLES
NORD	NORTH
NUMERO DE FUSEAU OU PROJECTION	ZONE NUMBER IN GEOGRAPHIC
DANS LE SYSTEME GEOGRAPHIQUE	SYSTEM
NUMERO DE L'ENREGISTREMENT DANS	RECORD NUMBER IN WAVE FILE
LE FICHIER DE HOULE	
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES GRAPHIQUES	GRAPHIC PRINTOUTS
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES LISTING	LISTING PRINTOUTS
NUMERO GLOBAL DU POINT POUR	GLOBAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMERO LOCAL DU POINT POUR	LOCAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMEROS GLOBAUX DES NOEUDS DES	GLOBAL NUMBERS OF SOURCE NODES
SOURCES	
OPTION DE LA CONDITION DE	OPTION FOR DIRICHLET CONDITION
DIRICHLET POUR LA DIFFUSION	IN FV DIFFUSION
VF	
OPTION DE LA RECONSTRUCTION	OPTION OF THE HYDROSTATIC
HYDROSTATIQUE	RECONSTRUCTION
OPTION DE SUPG	SUPG OPTION
OPTION DE TRAITEMENT DES BANCS	OPTION FOR THE TREATMENT OF
DECOUVRANTS	TIDAL FLATS

	DIVIGUAL ODDITON
OPTION DU MODELE DE BINGHAM	BINGHAM OPTION
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES TRACEURS	TRACERS
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES VITESSES	VELOCITIES
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DU K-EPSILON	K-EPSILON
OPTION DU SOLVEUR	SOLVER OPTION
OPTION DU SOLVEUR POUR LA	SOLVER OPTION FOR TRACERS
DIFFUSION DES TRACEURS	DIFFUSION
OPTION DU SOLVEUR POUR LE	OPTION FOR THE SOLVER FOR
MODELE K-EPSILON	K-EPSILON MODEL
OPTION DU VENT	OPTION FOR WIND
OPTION POUR LA DIFFUSION DES	OPTION FOR THE DIFFUSION OF
TRACEURS	TRACERS
OPTION POUR LA DIFFUSION DES	OPTION FOR THE DIFFUSION OF
VITESSES	VELOCITIES
OPTION POUR LA GENERATION DE	OPTION FOR TSUNAMI GENERATION
TSUNAMI	
OPTION POUR LA RECONSTRUCTION	OPTION FOR THE RTPF SCHEME
DU SCHEMA RTPF	RECONSTRUCTIONS
OPTION POUR LES BUSES	OPTION FOR CULVERTS
OPTION POUR LES	OPTION FOR CHARACTERISTICS
CARACTERISTIQUES	
OPTION POUR LES CONDITIONS AUX	OPTION FOR TIDAL BOUNDARY
LIMITES DE MAREE	CONDITIONS
OPTION POUR LES FRONTIERES	OPTION FOR LIQUID BOUNDARIES
LIQUIDES	
OPTION POUR RATIO DES PERTES	OPTION FOR INITIAL ABSTRACTION
INITIALES	RATIO
ORDONNEES DES SOURCES	ORDINATES OF SOURCES
ORDRE DU TIR INITIAL POUR H	INITIAL GUESS FOR H
ORDRE DU TIR INITIAL POUR U	INITIAL GUESS FOR U
ORDRE EN ESPACE DU SCHEMA	FINITE VOLUME SCHEME SPACE
VOLUME FINIS	ORDER
ORDRE EN TEMPS DU SCHEMA VOLUME	FINITE VOLUME SCHEME TIME ORDER
FINIS	
PARAMETRES PHYSIQUES DU TSUNAMI	PHYSICAL CHARACTERISTICS OF THE
	TSUNAMI
PARTITIONNEUR	PARTITIONING TOOL
PAS DE TEMPS	TIME STEP
PAS DE TEMPS VARIABLE	VARIABLE TIME-STEP
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR SISYPHE
SISYPHE	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR TOMAWAC
TOMAWAC	
PERIODE DE SORTIE LISTING	LISTING PRINTOUT PERIOD
	1

PERIODE DE SORTIE POUR DELWAQ	DELWAQ PRINTOUT PERIOD
PERIODE POUR LES SORTIES DE	PRINTOUT PERIOD FOR DROGUES
FLOTTEURS	TRINIOGI TERRES TOR BROSSES
PERIODE POUR LES SORTIES	GRAPHIC PRINTOUT PERIOD
GRAPHIQUES	Citi iii iii iiiiiii ii iiii
PERIODE POUR LES SORTIES	LISTING FOR PRINTOUT PERIOD
LISTING	
PERIODES D'ANALYSE DE FOURIER	FOURIER ANALYSIS PERIODS
PLUIE OU EVAPORATION	RAIN OR EVAPORATION
PLUIE OU EVAPORATION EN MM PAR	RAIN OR EVAPORATION IN MM PER
JOUR	DAY
PRECISION DU SOLVEUR	SOLVER ACCURACY
PRECISION POUR LA DIFFUSION DES	ACCURACY FOR DIFFUSION OF
TRACEURS	TRACERS
PRECISION SUR EPSILON	ACCURACY OF EPSILON
PRECISION SUR K	ACCURACY OF K
PRECISION SUR SPALART-ALLMARAS	ACCURACY OF SPALART-ALLMARAS
PRECISIONS POUR	TOLERANCES FOR IDENTIFICATION
L'IDENTIFICATION	
PRECONDITIONNEMENT	PRECONDITIONING
PRECONDITIONNEMENT C-U	C-U PRECONDITIONING
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS
PRECONDITIONNEMENT POUR LE	PRECONDITIONING FOR K-EPSILON
MODELE K-EPSILON	MODEL
PRESSION ATMOSPHERIQUE	AIR PRESSURE
PRESSION DE VAPEUR SATURANTE	VAPOROUS PRESSURE
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROCESSUS QUALITE D'EAU	WATER QUALITY PROCESS
PRODUIT MATRICE-VECTEUR	MATRIX-VECTOR PRODUCT
PROFILS DE VITESSE	VELOCITY PROFILES
PROFONDEUR LIMITE POUR LE VENT	THRESHOLD DEPTH FOR WIND
PROFONDEUR LIMITE POUR	THRESHOLD DEPTH FOR RECEDING
PROCEDURE DE RESSUYAGE	PROCEDURE
PROFONDEUR MOYENNE POUR LA	MEAN DEPTH FOR LINEARIZATION
LINEARISATION	
PROPAGATION	PROPAGATION
PROPAGATION LINEARISEE	LINEARIZED PROPAGATION
RAYONNEMENT SOLAIRE	SOLAR RADIATION
REGIME DE TURBULENCE POUR LES	TURBULENCE REGIME FOR SOLID
PAROIS	BOUNDARIES
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
RESISTANCE LAMINAIRE DU FLUIDE	NON-NEWTONIAN LAMINAR
NON-NEWTONIEN	RESISTANCE PARAMETER K
SALINITE POUR DELWAQ	SALINITY FOR DELWAQ

SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF TRACERS
TRACEURS	
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF
VITESSES	VELOCITIES
SCHEMA POUR LA CONVECTION DU	SCHEME FOR ADVECTION OF
K-EPSILON	K-EPSILON
SCHEMA VOLUMES FINIS POUR LA	FINITE VOLUME SCHEME FOR TRACER
DIFFUSION DES TRACEURS	DIFFUSION
SCHEMA VOLUMES FINIS POUR LA	FINITE VOLUME SCHEME FOR
DIFFUSION DES VITESSES	VELOCITY DIFFUSION
SECTIONS DE CONTROLE	CONTROL SECTIONS
SEUIL DE LA VITESSE ORBITALE DE	WAVE ORBITAL VELOCITY THRESHOLD
VAGUE POUR LES ALGUES 1	FOR ALGAE 1
SEUIL DE LA VITESSE ORBITALE DE	WAVE ORBITAL VELOCITY THRESHOLD
VAGUE POUR LES ALGUES 2	FOR ALGAE 2
SEUIL POUR LES PROFONDEURS	THRESHOLD FOR NEGATIVE DEPTHS
NEGATIVES	
SOLVEUR	SOLVER
SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF TRACERS
TRACEURS	
SOLVEUR POUR LE MODELE	SOLVER FOR K-EPSILON MODEL
K-EPSILON	SOLVER TOR R ELECTION HOBEL
SORTIE LISTING	LISTING PRINTOUT
STOCKAGE DES MATRICES	MATRIX STORAGE
STRUCTURES VERTICALES	VERTICAL STRUCTURES
SUITE DE CALCUL	COMPUTATION CONTINUED
SYSTEME GEOGRAPHIQUE	GEOGRAPHIC SYSTEM
TAUX DE DEGRADATION POUR LES	RATE OF DEGRADATION FOR ALGAE
ALGUES	
TEMPERATURE DE L'AIR	AIR TEMPERATURE
TEMPERATURE MOYENNE	MEAN TEMPERATURE
TEMPERATURE POUR DELWAQ	TEMPERATURE FOR DELWAQ
TITRE	TITLE
TRAITEMENT DES FLUX AUX	TREATMENT OF FLUXES AT THE
FRONTIERES	BOUNDARIES
TRAITEMENT DES HAUTEURS	TREATMENT OF NEGATIVE DEPTHS
NEGATIVES	2.1
TRAITEMENT DU SYSTEME LINEAIRE	TREATMENT OF THE LINEAR SYSTEM
TYPE DE CONDITION A LA LIMITE	TYPE OF BOUNDARY CONDITION FOR
POUR LE SCHEMA CINETIQUE	KINETIC SCHEME
TYPE DE PROJECTION SPATIALE	SPATIAL PROJECTION TYPE
TYPE DE RELACHE DES ALGUES	ALGAE RELEASE TYPE
TYPE DES ALGUES	ALGAE TYPE
TYPE DES SEUILS	TYPE OF WEIRS
TYPE DES SOURCES	TYPE OF SOURCES
VALEUR DE LA PRESSION	VALUE OF ATMOSPHERIC PRESSURE
ATMOSPHERIQUE	

Bibliography 133

VALEUR MINIMUM DE H	MINIMUM VALUE OF DEPTH
VALEUR PAR DEFAUT DU MANNING	MANNING DEFAULT VALUE FOR
POUR LA LOI DE COLEBROOK-WHITE	COLEBROOK-WHITE LAW
VALEURS DES TRACEURS DANS LA	VALUES OF TRACERS IN THE RAIN
PLUIE	
VALEURS DES TRACEURS DES	VALUES OF THE TRACERS AT THE
SOURCES	SOURCES
VALEURS IMPOSEES DES TRACEURS	PRESCRIBED TRACERS VALUES
VALEURS INITIALES DES TRACEURS	INITIAL VALUES OF TRACERS
VALEURS LIMITES	LIMIT VALUES
VALIDATION	VALIDATION
VARIABLES A IMPRIMER	VARIABLES TO BE PRINTED
VARIABLES POUR LES SORTIES	VARIABLES FOR GRAPHIC PRINTOUTS
GRAPHIQUES	
VENT	WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VISCOSITE DU FLUIDE	NON-NEWTONIAN VISCOSITY
NON-NEWTONIEN	
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y
VITESSE ET DIRECTION DU VENT	SPEED AND DIRECTION OF WIND
VITESSE POUR DELWAQ	VELOCITY FOR DELWAQ
VITESSES DES SOURCES SELON X	VELOCITIES OF THE SOURCES ALONG
	X
VITESSES DES SOURCES SELON Y	VELOCITIES OF THE SOURCES ALONG
	Y
VITESSES IMPOSEES	PRESCRIBED VELOCITIES
VITESSES INITIALES CALCULEES	INITIAL VELOCITIES COMPUTED BY
PAR TPXO	TPXO
ZERO	ZERO

[1] J-M. HERVOUET. Hydrodynamics of free surface flows. Modelling with the finite element method. John Wiley & Sons, Ltd, Paris, 2007.