TECHNIKA CYFROWA

Laboratorium 2014/15

ćw. 2

Multipleksery i demultipleksery

Funkcjonalność multipleksera prezentuje poniższy rysunek. Multiplekser umożliwia wybór jednego z wejść informacyjnych $(I_0...I_3)$, z którego sygnał jest przesyłany na wyjście. Numer wejścia jest określony przez sygnały na wejściach adresowych ($s_0...s_1$).

Podstawą dla realizacji funkcji logicznych z użyciem multipleksera jest twierdzenie Shannona o dekompozycji.

Dla dekompozycji wobec jednej zmiennej:

$$g(x_1x_2x_3...x_n) = x_1g(1x_2...x_n) + \overline{x_1}g(0x_2...x_n)$$
 - dla postaci dysjunkcyjnej
$$g(x_1x_2x_3...x_n) = (x_1 + g(0x_2...x_n))(\overline{x_1} + g(1x_2...x_n))$$
 - dla postaci koniunkcyjnej

Dia dekompozycji wobec jednej zimeniej:
$$g(x_1x_2x_3...x_n) = x_1g(1x_2...x_n) + \overline{x_1}g(0x_2...x_n) - \text{dla postaci dysjunkcyjnej}$$

$$g(x_1x_2x_3...x_n) = (x_1 + g(0x_2...x_n))(\overline{x_1} + g(1x_2...x_n)) - \text{dla postaci koniunkcyjnej}$$
Dla dekompozycji wobec dwóch zmiennych odpowiednio:
$$g(x_1x_2x_3...x_n) = x_1x_2g(11x_3...x_n) + x_1\overline{x_2}g(10x_3...x_n) + \overline{x_1}x_2g(01x_3...x_n) + \overline{x_1}\overline{x_2}g(00x_3...x_n)$$

$$g(x_1x_2x_3...x_n) = (x_1 + x_2 + g(00x_3...x_n)) + (x_1 + \overline{x_2} + g(01x_3...x_n)) + (\overline{x_1} + x_2 + g(10x_3...x_n)) + (\overline{x_1} + \overline{x_2} + g(11x_3...x_n))$$

Przykład 1

Niech $f(a, b, c) = \bar{a}bc + ab\bar{c}$. Dokonajmy dekompozycji funkcji względem zmiennej a:

$$f(a,b,c) = \overline{a}\underbrace{f(0,b,c)}_{I_0} + a\underbrace{f(1,b,c)}_{I_1}$$

Wyznaczamy funkcje resztkowe:

$$\begin{split} I_0 &= \overline{0} \cdot bc + 0 \cdot b\overline{c} = 1 \cdot bc = bc \\ I_1 &= \overline{1} \cdot bc + 1 \cdot b\overline{c} = 1 \cdot b\overline{c} = b\overline{c} \end{split}$$

Funkcję I_0 przyporządkowujemy do wejścia informacyjnego i_0 , a I_1 – odpowiednio do wejścia i_1 :

Jeżeli jednak dekompozycja miałaby być dokonana względem zmiennej *b*, to otrzymuje się odpowiednio:

$$f(a,b,c) = \overline{b}\underbrace{f(a,0,c)}_{I_0} + b\underbrace{f(a,1,c)}_{I_1}$$

i wobec tego:

$$I_0 = 0 \cdot \bar{a}c + 0 \cdot a\bar{c} = 0$$

$$I_1 = 1 \cdot \bar{a}c + 1 \cdot a\bar{c} = \bar{a}c + a\bar{c} = a \oplus c$$

Przykład 2

Rozważmy realizację funkcji logicznej $f(a,b,c,d) = \sum m(0,1,2,3,5,6,9,10) + d(12,14)$ z użyciem multipleksera o dwóch wejściach adresowych. Procedura ustalenia funkcji resztkowych wymaga specyficznego podejścia, jeżeli wartości funkcji dla niektórych argumentów są *don't care*, gdyż stosując dekompozycję Shannona wobec minimalnej postaci dysjunkcyjnej, traci się informację o położeniu wartości *don't care* i w efekcie postać funkcji resztkowych może nie być minimalna.

Najprościej jest ustalić funkcje resztkowe korzystając z fragmentów siatki Karnaugha. W przypadku dekompozycji względem zmiennych, których wartości sąsiadują ze sobą w wierszach lub kolumnach oryginalnej siatki Karnaugha. Przykładowo, zdekomponujmy funkcję f względem zmiennych (a, b). Oryginalna siatka Karnaugha pokazana jest na rysunku poniżej. Rozpatrując niezależnie od siebie poszczególne wiersze, niejako zakładamy konkretną wartość zmiennych (a, b), a wartości w danym wierszu zależą już wyłącznie od pozostałych zmiennych (c, d) – są to wartości funkcji resztkowych, które należy w następnym kroku zminimalizować.

ab	00	01	11	10
00	1	1	1	1
01	0	1	0	1
11	x	0	0	X
10	0	1	0	1

Ustalenie zminimalizowanej postaci funkcji resztkowych nie nastręcza trudności. Prosta analiza wartości funkcji resztkowych dla poszczególnych wartości (c,d) pozwala stwierdzić, że:

- funkcja resztkowa I_0 przyjmuje wartość 1 dla dowolnych wartości (c, d), zatem $I_0 = 1$,
- funkcja resztkowa I_1 przyjmuje wartośc 1 dla (cd) = (01) i (cd) = (10), więc $I_1 = c \oplus d$,
- funkcja resztkowa I_2 jest identyczna jak I_1 ,
- funkcja resztkowa I_3 przyjmuje wartość 0 dla (cd) = (01) i (cd) = (11), a poza tym wartości są *don't care*, zatem najprostszym rozwiązaniem jest $I_3 = 0$.

W sytuacji, gdy żądana jest dekompozycja funkcji względem zmiennych, których wartości nie sąsiadują ze sobą w wierszach/kolumnach siatki Karnaugha, należy przygotować zmodyfikowaną siatkę Karnaugha. Pamiętamy o tym, że poszczególne pola nowej siatki odpowiadają teraz innym indeksom i identyfikującym stany wejściowe. Jeżeli a jest zmienną zapisywaną na najbardziej znaczącej pozycji, $i=2^3a+2^2b+2^1c+2^0d$. W poniższej tabeli pokazano indeksy dla poszczególnych pól siatki Karnaugha, jeżeli wiersze odpowiadają poszczególnym parom wartości zmiennych

ad bc	00	01	11	10
00	0	2	6	4
01	1	3	7	5
11	9	11	15	13
10	8	10	14	12

* * *

Demultiplekser działa odwrotnie w stosunku do multipleksera: sygnał z pojedynczego wejścia informacyjnego jest przesyłany na wyjście, którego numer jest określony poprzez "adres" podany na wejścia sterujące.

Niech funkcja wejściowa będzie oznaczona w. Można zauważyć, że na wyjściu i_0 realizowana jest funkcja $\bar{a}w$, a na wyjściu i_1 – funkcja aw.

W szczególności, jeśli w=1, na poszczególnych wyjściach demultipleksera realizowane są wszystkie mintermy dla tylu zmiennych logicznych, ile jest wejść adresowych demultipleksera.

Zadanie 1. (1p) Zrealizuj wykorzystując MUX o dwóch wejściach sterujących funkcję $f(a, b, c, d) = \sum m(0,2,3,5,6,12) + d(9,14)$.

Zaliczenie zadania:

- na kartce: wyznaczenie funkcji resztkowych
- w symulatorze: demonstracja działającego układu

Zadanie 2. (1p) Powtórz zadanie 1. wykorzystując multiplekser o trzech wejściach sterujących. Zmienne, wobec których ma być wykonana dekompozycja, poda prowadzący.

Zaliczenie zadania:

- na kartce: wyznaczenie funkcji resztkowych
- w symulatorze: demonstracja działającego układu

Zadanie 3. (0,5 p) Zrealizuj funkcję z zadania 1. wykorzystując tak jak wówczas jeden multiplekser o dwóch wejściach sterujących. Na jego wejścia sterujące podaj te same zmienne co w zad. 1. Jednak zamiast bramek i negatorów do realizacji funkcji resztkowych (podawanych na wejścia informacyjne) można wykorzystać wyłącznie multipleksery o jednym wejściu sterującym.

Zaliczenie zadania: należy wykonać symulację układu w Multisimie.

Zadanie 4. (0,5 p) Wypełnij poniższą tabelę jedynkami w polach odpowiadających literom, które występują w Twoim imieniu i nazwisku. Zrealizuj funkcję o takiej tablicy prawdy korzystając z demultipleksera o czterech wejściach adresowych. Na jego wyjściach wolno użyć bramek logicznych jednego typu: NAND lub AND.

a	ą	ł	e	ć	b	d	g	f	ę	c	h	i	1	k	j
n	m	t	0	ó	ń	Ż	S	Ś	p	r	u	y	W	ź	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Zaliczenie zadania: pokazanie działającego układu w MultiSim.