

Course code: SWE2001

Course title : Data Structures and its Application

Introduction to Data Structures

Introduction

Data

 A collection of facts, concepts, figures, observation, occurrences or instructions in a formalized manner.

Information

 The meaning that is currently assigned to data by means of the conventions applied to those data (i.e processed data).

Data Type

Set of elements that share common set of properties used to solve a program.

Data Structure

Data structure describes <u>the way of storing and organizing the data</u>.

Classification

Abstract Data Types (Non Primitive)

Abstract Data type (ADT) is a type (or class) for objects whose <u>behavior is</u> <u>defined by a set of value and a set of operations</u>.

Types of operations in ADT

- <u>Traversing</u> Accessing and processing the records at once.
- Searching Finding the location of a data.
- **Inserting** Inserting a new data to data structure.
- <u>Deleting</u> deleting a new data to data structure.
- **Sorting** Arranging the given elements in some order.
- Merging Combining the values of two data structure into one data structure.

Arrays

An array is a group of similar-type variables that are referred to by a common name.

40	55	63	17	22	68	89	97	89
0	1	2	3	4	5	6	7	8

<- Array Indices

Array Length = 9

First Index = 0

Last Index = 8

Creating Arrays

- An array is a container object that <u>holds a fixed number of values of a single type</u>
- When an array is created, the length of an array is fixed
- Array elements are automatically initialized with the default value of their type, When an array is created
- Array can be created using the new keyword
- Ex:
- int[] x = new int[5]; // defining an integer array for 5 blocks

One Dimensional Arrays

Alternatively, we can create and initialize array as below format

```
int[] x = \{10, 20, 30\};
int[] x = \text{new int}[]\{10, 20, 30\};
```

- Here the length of an array is determined by the number of values provided between { and }
- The built-in length property determines the size of any array

Ex:

int[] x = new int[10]; int x_len = x.length;

Array - Example

```
public class ArrayDemo {
    public static void main(String[] args)
        int[] x; // declares an array of integers
        x = new int[5]; // allocates memory for 5integers
        x[0] = 11;
        x[4] = 22;
        System.out.println("Element at index 0: " + x[0]);
        System.out.println("Element at index 1: " + x[1]);
        System.out.println("Element at index 4: " + x[4]);
```


Two / Multi dimensional Array

- Two-dimensional arrays are arrays of arrays
- Initializing two-dimensional arrays:

```
int[][] y = new int[3][3];
```

The 1st dimension represent rows or number of one dimension, the 2nd dimension represent columns or number of elements in the each one dimensions

- The curly braces { } may also be used to initialize two dimensional arrays
- Ex:
- int[][] $y = \{ \{1,2,3\}, \{4,5,6\}, \{7,8,9\} \};$
- $int[][] y = new int[][] { {1,2,3}, {4,5,6}, {7,8,9} };$

2D Array example

- Ex2:
 - int [][]x = new int[3][];
 - $x[0] = new int[]{0,1,2,3};$
 - $x[1] = new int[]{0,1,2}; x[2] = new int[]{0,1,2,3,4};$

Array Operations

- Insert
- Delete
- Search
- Sort
- Display

<u>Insert</u>

```
public static void insert(int pos,int ele)
{
    for (int i = size - 1; i > pos; i--) {
        ary[i] = ary[i - 1];
    }
    ary[pos] = ele;
}
```


Delete

```
public static void aryDelete(int pos) {
int temp[]=new int[size-1];
for (int i = 0, k = 0; i < ary.length; i++) {
        if (i == pos) {
           continue;
        temp[k++] = ary[i];
ary=temp;
```


Sorting

```
public static void sort() {
    int pass=0;
    for(int i=0;i<ary.length-1;i++) {</pre>
              if(ary[i]>ary[i+1]){
                  int temp=ary[i];
                  ary[i]=ary[i+1];
                  ary[i+1]=temp;
                  pass=1;
    if(pass==1)
    sort();
```


Display

```
public static void display() {
    for (int i : ary)
        System.out.println(i);
}
```