INTRODUCTION TO ROBOT TECHNOLOGIES

Odometry: The location of the robot according to x=0, y=0. [X, Y, θ] \longrightarrow odometry Odometry is the use of data from motion sensors to estimate charge in position over time.

Trajectory: A sequential information that is collected from continuous odometry informations.

Localization: Finding the location of the robot in an environment. If the robot rotates around itself, localization sensitivity decreases.

Navigation: The robat can go to a target point that we give by itself is called navigation. (autonomous)

Exploration: Navigation but the robot determines the target point instead of a human. (frontiers)

Wheeled Mobile Robots

- Combination of various physical (hurdware) and computational (software) components.
- A collection of subsystems:
 - · Locamotion: how the rubot moves through its environment.
 - · Sensing: How the robot measures properties of itself and environments.
 - · Control: How the robot generate physical actions.
 - · Reasoning: How the robot maps measurements into actions.
 - · Communication: How the robots communicate with each other or with an outside operator.

Pose/Posture % position (x,y) and orientation Θ

· Exm, Ymg - moving frame

Xb · EXb, Ybs -> base frame

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \longrightarrow robot posture in base frame (odumetry)$$

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{rotation matrix}} \text{expressing the orientation of the base}$$

$$\text{frame with respect to the moving frame}.$$

Steered Wheel

The orrestation of the rotation cixis can be controlled.

Idealized Rolling Wheel

Assumptions:

- 1. The robot is built from rigid mechanisms.
- 2. No slip occurs in the orthogonal direction of rolling (non-slipping)
- 3. No translational slip occurs between the wheel and the floor (pure polling)
- 4. The robot contains at most one steering link per wheel.
- 5. 1711 steering axes are perpendicular to floor.

Robot Wheel Parameters

For low velocities, rolling is a reasonable wheel model. This is the model that will be considered in the Kinematics models of WMR.

Wheel Parameters :

- r = wheel radius
- V = wheel linear velocity
- -w = Wheel anyolar velocity
- -t = Steering Velocity.

- Velocity of point P

V = (rxw)ax, where ax: A unit vector to x-axis

- Restriction to the robot mobility

point p cannot move to the direction perpendicular to plane of the wheel.

Fixed titleet Centered Orientable wheel

- Velocity of point P

V = (rxw)ax, where

ax 8 A unit vector to x-axis

V = (rxw)ax, where

ay: A unit vector to y-axis

Off-Centered Orientuble Wheels

$$V=(rxw)a_x+(dxt)a_y$$

Sweedish wheel

$$V = (r_x w) u_x + U a_s$$

where as: A unit vector to the motion of roller.

Examples of WMB

Bi-wheel Robot

- Smooth motion
- Risk of slipping
- Sometimes use roller-bur to make buluce

Caterpillar Type Robot

- Exact Straight motion
- Robust to slipping.
- Inexuct modeling of turning.

Omnidirectional Robot

- Free motion.
- Complex Structure.
- Weakness of the frame.

issali stateme Consess. Local Sage

Mobile Robot Locomotion

- instantaneous cuter of rotation (ICR) or instartaneous center of curvature (ICC) - a cross point of all axes of the wheels ICR (b) (a) ICB (C) degree mobility degree mobility degree mobility (fixed are motion) (variable are motion) (cannot move anywhere) y degree of -two mutually Steerability & 1 depudent centered oriestable wheels >degree of steerability & O degree mobility (nu conter orrested wheels) (fully free motion) orientable wheel Two mutually independent cutived orientable wheels. degree of steerability: 2

Non-holonomic Constraint

A non-holonomic constraint is a constraint on the

feasible velocities of a body.

your robot can move in some directions (forward and backward), but not others (sideward).

Differential Drives

- two driving wheels (plus roller-bur for bulunce)
- simplest drive mechanism.
- Susitive to relative velocity of the two wheels (small error result in different trajectories, not just speed)

Steered Wheels &

- Steering wheel + rear wheels
- Cannot turn ±90°
- limited radius of curvature

Synchronous Drive Omni-directional Car Drive athematic research assets

Differential Drive

· Posture of the robot

$$\rho = \begin{pmatrix} x \\ y \\ \Theta \end{pmatrix}$$

$$P = \begin{pmatrix} x \\ y \\ \Theta \end{pmatrix} \xrightarrow{(x_1 y)} \mapsto position of the robot$$

$$\Theta \mapsto orientation of the robot$$

· Control input

$$\bigcup = \begin{pmatrix} \vee \\ \omega \end{pmatrix}$$

20 Traslation

$$X' = X + E_X$$
, $Y' = Y + E_Y$
 $P = \begin{bmatrix} x \\ y \end{bmatrix}$, $P = \begin{bmatrix} x' \\ y' \end{bmatrix}$, $T = \begin{bmatrix} E_X \\ E_Y \end{bmatrix}$

20 Rotation

$$X' = X_r + (x - X_r) \cos \theta - (y - y_r) \cdot \sin \theta$$

$$y' = y_r + (x - x_r) \sin \theta + (y - y_r) \cdot \cos \Theta$$

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Homogeneus Coordinates

2D Translation
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ y \\ 1 \end{bmatrix}$$
, $P' = T(t_x, t_y) P$

20 Rotation
$$\longrightarrow$$
 $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & \phi \\ \sin \theta & \cos \theta & \phi \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, P' = R(\theta) P$

Sensor Types

- Sonar
- lazer
- radur

- Inertial Measurement Unit (IMU)
 - Accele rometer
 - Maynetometer Gyroscope
- (orientation, where is north,
- robots transformation, robots acceleration)

- Camera
 - R6B
 - Infrared -> salt and pepper
 - RGB-D -> point cloud
 - Stereo Camera
 - Thermal

- Ortan algi Euserlei (CO2, 1914, nem etc)

270° 'lik okuma. - LIDAR Sensor:

0.25 'lik hassusiyet. (derecenin dortte biri)

2D-8D

Determination of the pose (= position + orientation) of a mobile robot in a Known environment in order to successfully perform a given task.

Localization As An Estimation Problem

The robot must infer its pose from available data

Data (noisy):

- · Mution Information:
 - -> proprioceptive sessors (e.g., excoders, accelerometes, etc.)
- · Environment Measurement
 - -> Exteroceptive sessors (e.g. laser, sonor etc)

Xr, 0:c = { Xr,0 , Xr,1, ---, Xr,6} >> pose

2(8t = 2 E1, 721---, 2 € 3 1-> exteroceptive measurement

Uoit = {Uo, ---, Vo} - motion commands (proprioceptive measurement)

Belief of the robot at time t: PDF describing the information the robot has regarding its pose at time to bused on all available data.

Prior belief of the robot at time t: pdf before acquiring the lust measuremut 2:

The robot motion model is the pdf of the robot at time Et1 given the robot pose and motion action at time E. It takes into account the noise characterizing the propriocaptive sessors:

The measurement model describes the probability of observing at time to a given measurement It when the robot pose is Xrit. It takes into account the noise characterizing the exteroceptive sessors.

Typical Motion Models

- Odometry based >> wheel encoders
- Velocity based (dead reckoning) no wheel encoders given

 Li calculates the new pose based on the

 Velocities and the time alapsed.

 Li lower performance
- Odometry is the use of data from motion sessors to estimate charge in position over time colculate the resulting robot position and orientation from wheel ecoder measurements.

Visual Odometry

The vehicle ego-motion is estimated from the appearent motion of the features in the image space.

possible sources of noise: different wheel diameters, bump, corpet.

Deterministic (systematic) errors can be eliminated through proper calibration.

Non-deterministic errors have to be described by error moduls, and will always lead to uncertain position estimate.

Errors are integrated, unbounded;

- Simultaneous localization and mapping
- if odometry is pufact

grapping -> full slan

and the second

Online slam: p(Xt, m | ti:t, Ui:t)

full slam: p(X18t, m/21:t, U1st)

input: Odometry, seisor data, previous map

output: updated map

Quaternion - Orientation Format

$$[w,x,y,2] = \left[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\cdot nx,\sin\frac{\theta}{2}\cdot ny,\sin\frac{\theta}{2}\cdot nz\right]$$

For mobile robot travelling on xy-pluae

With only dead reckoning, vehicle pose uncertainty grows without bound.

- SLAM with laser scanning
- Observations
- Local Mapping Literated closest point -> Scar matching O(n2)
- Loop closing

-> scan matching

Indeferred validation

- Search strategies

L> False minimus

· if icp starts for from true alignment

if soms exhibit repeated local structure

La Bius:

· Anisotropic point sampling

· Differing seison fields of view

JUII-SLAM SLAM fairly well

But now consider:

- Lurge scale
- . High uncertainty

Map files as images PN6,5P6

Although, RGB images are converted to grayscule images to being interpreted by ROS.

YAML holds additional informations about the map.

ROBOT NAVIGATION

Give a map, starting location and a goal point.

L> Navigation

Takes information from odometry and sensors, and a goal pose and outputs sufe valuatly commands that are sent to robot.

- The navigation stack can only hundle differential drive and holonomic wheeled botos.

Ly it car also do certain things with biped robots such as localitation, as long as the robot does not more sideways

→ A placer laser must be mounted on the moloile base of the robot to create map and localitation

- puform best on robots that are nearly square or circular,

Navigation Plannes

Global planner -> paths for a goal

Local planner -> paths in the newby distances

Lappropriate relating command

Jakin frontier -> A* daha vygun