The Patent Office

GB04/14/06

INVESTOR IN PROPIR

	Concept House
	Cardiff Road
PRIORITY	Newport
	South Waleson

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Cardiff Road
Newport
South WalkEc'D 1 1 OCT 2004
NP10 8QQ
WIPO PC

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 1 October 2004

Patents Form 1/77

Patents Act 1977 le 16) THE PATENT OFFICE M 2 7 SEP 2003

RULE 97

Request for grant of a paramport

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

29SEP03 E840644-2 D02029_ P01/7700 0.00-0322726.1

1/77

2 7 SEP 2003

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1.	Your Reference	FRB/PB60515P
<u>_</u>	Data de l'instina number	0322726.1
2.	Patent application number (The Patent office will fill in this part)	UUZZI ZU. I
3.	Full name, address and postcode of the or of	GLAXO GROUP LIMITED
	each applicant (underline all surnames)	GLAXO WELLCOME HOUSE
	, , , , , , , , , , , , , , , , , , ,	BERKELEY AVENUE
	•	GREENFORD
		MIDDLESEX
		UB6 ONN
		GB
	Patents ADP number (if you know it)	
	If the applicant is a corporate body, give the	22.02.20
	country/state of its corporation	GB 473587003
4	Title of the invention	COMPOUNDS
		•
		FIONA R BOR
5	Name of your agent (if you know one)	FIONA R BOR
	"Address for service" in the United Kingdom	GLAXOSMITHKLINE
	to which all correspondence should be sent	CORPORATE INTELLECTUAL PROPERTY
	(including the postcode)	980 GREAT WEST ROAD
		BRENTFORD, MIDDLESEX
		TW8 9GS, GB 807255004
•	Patents ADP number (if you know it)	
6.	If you are declaring priority from one or	Country Priority application number Date of Filing (If you know it) (day / month / year)
	more earlier patent applications, give the	(i) you more sy
	country and date of filing of the or of each	•
	of these earlier applications and (if you know it)	• •
	the or each application number	
7.	If this application is divided or otherwise	Number of earlier application Date of filing
′:	derived from an earlier UK application, give	(day / month / year)
	the number and the filing date of the earlier	
	application .	
8.	Is a statement of inventorship and of right to	YES
	grant a patent required in support of this	
	request? (Answer yes if:	
	a) any applicant named in part 3 is not an inventor, or	
	b) there is an inventor who is not named as an	
	applicant, or	
	c) any named applicant is a corporate body.	

Patents Form 1/77

9.	Enter the number of sheets for any of the
	following items you are filing with this form.
	Do not count copies of the same document

Description

32/5

Claim(s)

Abstract

Drawing(s)

10. If you are also filing any of the following, state how many against each item .

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patent Form 9/77)

Request for substantive examination (Patent Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application

Signature Fiona R Bor 25 September 2003

AGENT FOR THE APPLICANTS

12. Name and daytime telephone number of person to contact in the United Kingdom

LESLEY WELLS 01438 76 8599

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication of communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the patent Act 1977 stops you from applying for a patent abroad without first getting written permission form the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been received

- a) Notes
 - If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form

 If you have answered "Yes" Patents Form 7/77 will need to be filed.
- d) Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

15

20

25

30

COMPOUNDS

The present invention relates to quinoline compounds, processes for their preparation, intermediates usable in these processes, and pharmaceutical compositions containing the compounds. The invention also relates to the use of the quinoline compounds in therapy, for example as inhibitors of phosphodiesterases and/or for the treatment and/or prophylaxis of inflammatory and/or allergic diseases such as chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic rhinitis.

- 10 WO 02/20489 A2 (Bristol-Myers-Squibb Company) discloses 4-aminoquinoline derivatives wherein the 4-amino group NR⁴R⁵ may represent an acyclic amino group wherein R⁴ and R⁵ may each independently represent hydrogen, alkyl, cycloalkyl, aryl, heteroaryl etc.; NR⁴R⁵ may alternatively represent an aliphatic heterocyclic group. The compounds are disclosed as inhibitors of cGMP phosphodiesterase, especially type 5 (PDE5).
 - EP 0 480 052 (Otsuka Pharmaceutical Co. Ltd.) discloses 4-aminoquinoline-3-carboxamides wherein the 4-amino group NHR⁴ may represent an amino group wherein R⁴ represents phenyl, tetrahydronaphthyl or naphthyl, optionally substituted with alkyl, halogen, alkoxy etc.; and the 3-carboxamide group CONR²R³ represents a primary, secondary or tertiary carboxamide group. The compounds are disclosed as inhibitors of gastric acid secretion, and as cytoprotective agents; inhibition of the ATPase activated by H⁺ and K⁺ at the gastric wall cells is also disclosed.
 - It is desirable to find new compounds which bind to, and preferably inhibit, phosphodiesterase type IV (PDE4).

According to the invention there is provided a compound of formula (I) or a pharmaceutically acceptable salt thereof:

$$R^3$$
 R^4
 R^5
 R^6
 R^6
 R^6

wherein:

R1 is

Aryl optionally substituted by one or more C₁₋₆alkoxy groups;

R² is hydrogen or C₁₋₆ alkyl;

5 R³ Ís

Hydrogen;

C₁₋₆ alkyl optionally substituted by one or more substituents selected from:

10 heterocyclyl (itself optionally substituted by C₁₋₆ alkyl), R⁷R⁸NCO-, R⁹CONR¹⁰-, C₁₋₆ alkoxy, R¹¹R¹²N-;

C₃₋₇cycloalkyl;

Aryl or aryl(C₁₋₆alkyl) wherein the aryl is optionally substituted by one or more substituents selected from: halogen, C₁₋₆alkoxy;

Aryl fused to a heterocyclyl ring;

20 Aryl fused to C₄₋₇cycloalkyl, wherein the cycloalkyl is optionally substituted by =O;

Heteroaryl or heteroaryl(C_{1-6} alkyl), wherein the heteroaryl is optionally substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halogen;

Heterocyclyl or heterocyclyl(C₁₋₆alkyl), wherein the heterocyclyl is optionally substituted by one or more C₁₋₆alkylCO, C₁₋₆alkyl;

R⁴ is hydrogen or C₁₋₈ alkyl;

R³ and R⁴ together with the nitrogen atom to which they are attached may form a heterocyclyl ring, which is optionally substituted by one or more substituents selected from C₁₋₆alkyl, C₁₋₆alkoxy, C₃₋₇cycloalkyl, C₁₋₆alkylCO, OH, (CH₂)_mNR¹³R¹⁴, -(CH₂)_mCONR¹⁵R¹⁶, - (CH₂)_mNR¹¹COR¹⁶, C₁₋₆alkoxyC₁₋₄alkyl, heteroarylC₁₋₄alkyl, heteroarylC0.

35 m is 0-6

R⁵ is hydrogen or C₁-8 alkyl;

 R^6 is hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, fluorine, chlorine, or bromine;

40

25

10

15

25

30

35

40

R⁷⁻¹⁸ all independently represent hydrogen, C₁₋₆ alkyl;

R⁷ and R⁸ together with the nitrogen atom to which they are attached may form a heterocyclyl ring;

R¹¹ and R¹² together with the nitrogen atom to which they are attached may form a heterocyclyl ring;

R¹³ and R¹⁴ together with the nitrogen atom to which they are attached may form a heterocyclyl ring;

As used herein, the term "alkyl" refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms. For example, C_{1-6} alkyl means a straight or branched alkyl chain containing at least 1, and at most 6, carbon atoms. Examples of "alkyl" as used herein include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, iso-butyl, iso-butyl, iso-butyl, iso-butyl, iso-propyl. The said alkyl groups may be optionally substituted with one or more fluorine atoms, for example, trifluoromethyl.

. <u>}</u>.

As used herein, the term "alkoxy" refers to a straight or branched chain alkoxy group, for example, methoxy, ethoxy, prop-1-oxy, prop-2-oxy, but-1-oxy, but-2-oxy, 2-methylprop-1-oxy, 2-methylprop-2-oxy, pentoxy or hexyloxy. A C₁₋₄alkoxy group is preferred, for example methoxy or ethoxy. The said alkoxy groups may be optionally substituted with one or more fluorine atoms, for example, trifluoromethoxy.

As used herein, the term "cycloalkyl" refers to a non-aromatic hydrocarbon ring containing the specified number of carbon atoms. For example, C₃₋₇cycloalkyl means a non-aromatic ring containing at least three, and at most seven, ring carbon atoms. Examples of "cycloalkyl" as used herein include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. A C₃₋₆cycloalkyl group is preferred, for example cyclopentyl.

When used herein, the term "aryl" refers to, unless otherwise defined, a mono- or bicyclic carbocyclic aromatic ring system containing up to 10 carbon atoms in the ring system, for instance phenyl or naphthyl, optionally fused to a C_{4-7} cycloalkyl or heterocyclyl ring.

As used herein, the terms "heteroaryl ring" and "heteroaryl" refer to a monocyclic five- to seven- membered heterocyclic aromatic ring containing one or more heteroatoms selected from oxygen, nitrogen and sulfur. In a particular aspect such a ring contains 1-3 heteroatoms. Preferably, the heteroaryl ring has five or six ring atoms. Examples of

10

15

20

heteroaryl rings include, but are not limited to, furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, triazolyl, tetrazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl and triazinyl. The terms "heteroaryl ring" and "heteroaryl" also refer to fused bicyclic heterocyclic aromatic ring systems containing at least one heteroatom selected from oxygen, nitrogen and sulfur. Preferably, the fused rings each have five or six ring atoms. Examples of fused heterocyclic aromatic rings include, but are not limited to, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, cinnolinyl, naphthyridinyl, indolyl, indazolyl, pyrrolopyridinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzisothiazolyl, benzisothiazolyl, benzoxadiazolyl and benzothiadiazolyl. The heteroaryl may attach to the rest of the molecule through any atom with a free valence.

As used herein, the term "heterocyclyl" refers to a monocyclic three- to seven-membered saturated or non-aromatic, unsaturated ring containing at least one heteroatom selected from oxygen, nitrogen and sulfur. In a particular aspect such a ring contains 1 or 2 heteroatoms. Preferably, the heterocyclyl ring has five or six ring atoms. Examples of heterocyclyl groups include, but are not limited to, aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, imidazolidinyl, pyrazolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, diazepinyl, azepinyl, tetrahydrofuranyl, tetrahydropyranyl, and 1,4-dioxanyl.

As used herein, the terms "halogen" or "halo" refer to fluorine, chlorine, bromine and iodine. Preferred halogens are fluorine, chlorine and bromine. Particularly preferred halogens are fluorine and chlorine.

As used herein, the term "optionally" means that the subsequently described event(s) may or may not occur, and includes both event(s) which occur and events that do not occur.

As used herein, the term "substituted" refers to substitution with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated.

In a preferred embodiment, R¹ is 3-methoxyphenyl.

In a preferred embodiment, R² is hydrogen.

In a preferred embodiment R³ is selected from C₁₋₈ alkyl;

Aryl optionally substituted by one or more substituents selected from: halogen, C₁. _ealkoxy;

40

30

15

25

Aryl fused to a heterocyclyl ring;

Aryl fused to cycloalkyl, wherein the cycloalkyl is optionally substituted by =O;

Heteroaryl or heteroaryl(C_{1-6} alkyl), wherein the heteroaryl is optionally substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halogen.

In a preferred embodiment R4 is hydrogen or methyl.

10 In a more preferred embodiment, R³ and R⁴ together with the nitrogen atom to which they are attached may form a heterocyclyl ring, optionally substituted by C₁-alkylCO.

In a particularly preferred embodiment R³ and R⁴ together with the nitrogen to which they are attached represent 4-morpholinyl or 1-piperidinyl.

In a preferred embodiment R⁵ represents hydrogen.

In a preferred embodiment R⁶ represents hydrogen.

20 It is to be understood that the present invention covers all combinations of substituent groups referred to hereinabove.

It is to be understood that the present invention covers all combinations of particular and preferred groups described hereinabove.

. . .

ξ.

:2,

Particular compounds according to the invention include those mentioned in the examples and their pharmaceutically acceptable salts. Specific examples which may be mentioned include:

Example 1: 4-{[3-(methyloxy)phenyl]amino}-N⁶-phenyl-3,6-quinolinedicarboxamide,

30 Example 2: 4-{[3-(methyloxy)phenyl]amino}-6-(4-morpholinylcarbonyl)-3- quinolinecarboxamide,

Example 7: N^6 , N^6 -dimethyl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 8: N^6 -1,3-benzothiazol-6-yl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 10: N^6 -(1-methyl-1H-benzimidazol-5-yl)-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 13: $4-\{[3-(methyloxy)phenyl]amino\}-N^6-3-pyridinyl-3,6-quinolinedicarboxamide, Example 14: <math>N^6-[3-(methyloxy)phenyl]-4-\{[3-(methyloxy)phenyl]amino\}-3,6-$

quinolinedicarboxamide,

Example 16: N^6 -1,3-benzodioxol-5-yl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 17: $4-\{[3-(methyloxy)phenyl]amino\}-N^6-(3-oxo-2,3-dihydro-1$ *H*-inden-5-yl)-3,6-quinolinedicarboxamide,

5 Example 22: 4-{[3-(methyloxy)phenyl]amino}-*N*⁶-[6-(methyloxy)-3-pyridinyl]-3,6-quinolinedicarboxamide,

Example 26: N⁶-(4-chlorophenyl)-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 27: 4-{[3-(methyloxy)phenyl]amino}-6-(1-piperidinylcarbonyl)-3-quinolinecarboxamide,

Example 30: 4-{[3-(methyloxy)phenyl]amino}-N⁶-(1,3-thiazol-2-ylmethyl)-3,6-quinolinedicarboxamide,

Example 31: N^6 -(1,3-dihydro-2-benzofuran-5-yl)-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

15 Example 32: N°-[(3-methyl-5-isoxazolyl)methyl]-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

Example 33: N^6 -[(5-chloro-2-pyridinyl)methyl]-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,

and pharmaceutically acceptable salts thereof.

20

10

Salts of the compounds of the present invention are also encompassed within the scope of the invention. Because of their potential use in medicine, the salts of the compounds of formula (I) are preferably pharmaceutically acceptable. Suitable pharmaceutically acceptable salts can include acid or base addition salts. A pharmaceutically acceptable acid addition salt can be formed by reaction of a compound of formula (I) with a suitable 25 inorganic or organic acid (such as hydrobromic, hydrochloric, sulfuric, nitric, phosphoric, succinic, maleic, acetic, fumaric, citric, tartaric, benzoic, p-toluenesulfonic, methanesulfonic or naphthalenesulfonic acid), optionally in a suitable solvent such as an organic solvent, to give the salt which is usually isolated for example by crystallisation and filtration. A pharmaceutically acceptable acid addition salt of a compound of formula (I) 30 can be for example a hydrobromide, hydrochloride, sulfate, nitrate, phosphate, succinate, maleate, acetate, fumarate, citrate, tartrate, benzoate, p-toluenesulfonate, methanesulfonate or naphthalenesulfonate salt. A pharmaceutically acceptable base addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic base, optionally in a suitable solvent such as an organic solvent, to 35 give the base addition salt which is usually isolated for example by crystallisation and filtration. Other non-pharmaceutically acceptable salts, eg. oxalates or trifluoroacetates, may be used, for example in the isolation of compounds of the invention, and are included within the scope of this invention. The invention includes within its scope all possible stoichiometric and non-stoichiometric forms of the salts of the compounds of formula (I). 4,0

5.

10

15

Also included within the scope of the invention are all solvates, hydrates and complexes of compounds and salts of the invention.

Certain compounds of formula (I) may exist in stereoisomeric forms (e.g. they may contain one or more asymmetric carbon atoms or may exhibit *cis-trans* isomerism). The individual stereoisomers (enantiomers and diastereomers) and mixtures of these are included within the scope of the present invention. The present invention also covers the individual isomers of the compounds represented by formula (I) as mixtures with isomers thereof in which one or more chiral centres are inverted. Likewise, it is understood that compounds of formula (I) may exist in tautomeric forms other than that shown in the formula and these are also included within the scope of the present invention.

The compounds of this invention may be made by a variety of methods, including standard chemistry. Any previously defined variable will continue to have the previously defined meaning unless otherwise indicated. Illustrative general synthetic methods are set out below and then specific compounds of the invention are prepared in the working Examples.

20 Process a

Compounds of formula (I), wherein R¹, R², R³, R⁴, R⁵ and R⁶ are as defined above, may be prepared from compounds of formula (II);

...

3. 814

25

wherein R¹, R², R⁵ and R⁶ are as defined above, by treatment with a suitable amide coupling agent followed by treatment with an amine of formula R³R⁴NH wherein R³ and R⁴ are as defined above.

30

Suitable conditions for process a) include stirring in a suitable solvent such as *N,N*-dimethylformamide, at a suitable temperature, such as room temperature in the presence of a suitable coupling reagent such as 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium

10

20

tetrafluoroborate for a suitable period of time, such as 30 minutes followed by the addition of the amine of formula R³R⁴NH, wherein R³ and R⁴ are as defined above.

Compounds of formula (II), wherein R¹, R², R⁵ and R⁶ are as defined above, may be prepared from compounds of formula (III);

$$Z \xrightarrow{Q} R^{5} \xrightarrow{R^{6}} N \xrightarrow{R^{1}} Q$$

$$R^{5} \xrightarrow{R^{6}} N \xrightarrow{R^{1}} Q$$

$$R^{5} \xrightarrow{R^{6}} N \xrightarrow{R^{1}} Q$$

$$R^{6} \xrightarrow{R^{1}} N \xrightarrow{R^{1}} Q$$

$$R^{6} \xrightarrow{R^{1}} N \xrightarrow{R^{1}} Q$$

wherein R¹, R², R⁵ and R⁶ are as defined above and Z represents C₁₋₆ alkyl, by hydrolysis with a suitable base, such as aqueous sodium hydroxide, in a suitable solvent, such as ethanol, at a suitable temperature, such as between room temperature and the reflux temperature of the solvent, for example at room temperature.

Compounds of formula (III), wherein R¹, R², R⁵, R⁶ and R⁷ are as defined above, may be prepared from compounds of formula (IV);

wherein R¹, R², R⁵ and R⁶ are as defined above, and Y represents chlorine, bromine or iodine, by treatment with carbon monoxide and a suitable alcohol such as ethanol in a suitable solvent such as ethanol, at a suitable temperature such as the reflux temperature of the solvent, in the presence of a suitable catalyst, such as a palladium catalyst, e.g. dichlorobis(triphenylphosphine)palladium(II) and a suitable base, such as triethylamine.

25 Compounds of formula (IV), wherein R¹, R², R⁵, R⁶ and Y are as defined above, may be prepared from compounds of formula (V);

10

$$\begin{array}{c}
X & O \\
NH_2
\end{array}$$
 $\begin{array}{c}
R^5 & \\
N
\end{array}$
 $\begin{array}{c}
(V)
\end{array}$

wherein R^5 , R^6 and Y are as defined above and X represents a halogen, by treatment with an amine of formula R^1R^2NH , wherein R^1 and R^2 are as defined above. Suitable conditions include stirring in a suitable solvent such as acetonitrile, at a suitable temperature, such as between room temperature and the reflux temperature of the solvent, for example at 80°C, optionally in the presence of a base such as N,N-diisopropylethylamine. Alternatively, preparation of compounds of formula (IV) from compounds of formula (V) may be carried out under microwave irradiation, at a suitable power such as 150W, in a suitable solvent such as N-methyl-2-pyrrolidinone, at a suitable temperature such as 150°C.

The compounds of formula (V) may be prepared according to the following synthetic scheme, wherein R^5 , R^6 , X and Y are as defined above:

SCHEME 1

5 .

Suitable conditions for the reactions of Scheme 1 are: (A) heating together compounds of formulae (VI) and (VII) in the absence of solvent, at a suitable temperature, such as 60-100°C, for example at 80°C; (B) heating compounds of formula (VIII) in a suitable solvent,

10

25

30

35

such as diphenyl ether, at a suitable temperature such as 200-300°C, for example at 250°C; (C) hydrolysis of compounds of formula (IX) with a suitable base, such as aqueous sodium hydroxide, in a suitable solvent, such as ethanol, at a suitable temperature such as room temperature; (D) treatment of compounds of formula (X) with a suitable halogenating agent, such as a chlorinating agent, for example thionyl chloride, in the presence of a suitable catalyst such as *N,N*-dimethylformamide, followed by treatment with ammonia under suitable conditions, such as concentrated aqueous ammonia at room temperature.

Preparation of the compounds of formulae (VIII) and (IX) wherein Y represents iodine and R⁵ and R⁶ both represent hydrogen have been previously described in: Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry (2002), 41B(3), 650-652. Preparation of the compound of formula (X) wherein Y represents iodine and R⁵ and R⁶ both represent hydrogen has been previously described in: PCT Int. Appl. (1999), WO 9932450 A1.

Compounds of formulae (VI) and (VII) are either known compounds (for example available from commercial suppliers such as Aldrich) or may be prepared by conventional means.

20 Compounds of formulae R¹R²NH and R³R⁴NH, wherein R¹, R², R³ and R⁴ are as defined above, are either known compounds (for example available from commercial suppliers such as Aldrich) or may be prepared by conventional means.

Compounds of formulae R¹R²NH and R³R⁴NH may contain amine or acid groups which are suitably protected. Examples of suitable protecting groups and the means for their removal can be found in T. W. Greene 'Protective Groups in Organic Synthesis' (J. Wiley and Sons, 1991). Removal of such protecting groups may be accomplished at any suitable stage in the synthesis of compounds of formula (I).

Process b

Compounds of formula (I), wherein R¹, R², R³, R⁴, R⁵ and R⁶ are as defined above, may alternatively be prepared from compounds of formula (IV);

wherein R1, R2, R5 and R6 and Y are as defined above.

Suitable conditions for process b) include treatment with carbon monoxide and a suitable amine such as dimethylamine in a suitable solvent such as toluene, at a suitable temperature such as the reflux temperature of the solvent, in the presence of a suitable catalyst, such as a palladium catalyst, e.g. dichlorobis(triphenylphosphine)palladium(II) and a suitable base, such as triethylamine.

Process c

Compounds of formula (I), wherein R¹, R², R³, R⁴, R⁵ and R⁶ are as defined above, may alternatively be prepared from compounds of formula (XI);

$$R^3$$
 R^4
 R^5
 R^6
(XI)

15

5

10

wherein R³, R⁴, R⁵, R⁶ and X are as defined above, by treatment with an amine of formula R¹R²NH, wherein R¹ and R² are as defined above.

Suitable conditions for process c) include stirring in a suitable solvent such as acetonitrile, at a suitable temperature, such as between room temperature and the reflux temperature of the solvent, for example at 80°C, optionally in the presence of a base such as *N,N*-diisopropylethylamine. Alternatively, preparation of compounds of formula (I) from compounds of formula (XI) may be carried out under microwave irradiation, at a suitable power such as 150W, in a suitable solvent such as *N*-methyl-2-pyrrolidinone, at a suitable temperature such as 150°C.

Compounds of formula (XI), wherein R³, R⁴, R⁵, R⁶ and X are as defined above, may be prepared from compounds of formula (XII);

HO
$$R^5$$
 NH_2 (XII)

5

10

wherein R⁵, R⁶ and X are as defined above, by treatment with a suitable amide coupling agent followed by treatment with an amine of formula R³R⁴NH wherein R³ and R⁴ are as defined above. Suitable conditions include stirring in a suitable solvent such as *N,N*-dimethylformamide, at a suitable temperature, such as room temperature in the presence of a suitable coupling reagent such as 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate for a suitable period of time, such as 30 minutes followed by the addition of the amine of formula R³R⁴NH, wherein R³ and R⁴ are as defined above.

15 Compounds of formula (XII), wherein R³, R⁴, R⁵, R⁶ and X are as defined above, may be prepared from compounds of formula (XIII);

20

wherein R⁵, R⁶, Z and X are as defined above, by hydrolysis with a suitable base, such as aqueous sodium hydroxide, in a suitable solvent, such as ethanol, at a suitable temperature, such as between room temperature and the reflux temperature of the solvent, for example at room temperature.

25

Compounds of formula (XIII), wherein R^5 , R^6 , R^7 and X are as defined above, may be prepared from compounds of formula (V);

$$\begin{array}{c} Y \\ \\ R^5 \\ \\ \end{array}$$

$$\begin{array}{c} X \\ \\ \\ \\ \end{array}$$

$$\begin{array}{c} CONH_2 \\ \\ \\ \end{array}$$

$$\begin{array}{c} (V) \\ \end{array}$$

wherein R⁵, R⁶, X and Y are as defined above, by treatment with carbon monoxide and a suitable alcohol such as ethanol, in a suitable solvent such as ethanol, at a suitable temperature such as the reflux temperature of the solvent, in the presence of a suitable catalyst, such as a palladium catalyst, e.g. dichlorobis(triphenylphosphine)palladium(II) and a suitable base, such as triethylamine.

10 Process d

5

20

25

30

Compounds of formula (I) may also be prepared by a process of interconversion between compounds of formula (I). Processes of interconversion between compounds of formula (I) may include, for example oxidation, reduction, alkylation, dealkylation, or substitution.

15 Process e

Compounds of formula (I) may also be prepared by a process of deprotection of protected derivatives of compounds of formula (I). Examples of suitable protecting groups and the means for their removal can be found in T. W. Greene 'Protective Groups in Organic Synthesis' (J. Wiley and Sons, 1991).

The present invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance in a mammal such as a human. The compound or salt can be for use in the treatment and/or prophylaxis of any of the conditions described herein and/or for use as a phosphodiesterase inhibitor, *e.g.* for use as a phosphodiesterase 4 (PDE4) inhibitor. "Therapy" may include treatment and/or prophylaxis.

Also provided is the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament (e.g. pharmaceutical composition) for the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal such as a human.

Also provided is a method of treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal (e.g. human) in need thereof, which comprises administering to the mammal (e.g. human) a therapeutically effective amount of a compound of formula (I) as herein defined or a pharmaceutically acceptable salt thereof.

5

10

Phosphodiesterase 4 inhibitors are believed to be useful in the treatment and/or prophylaxis of a variety of diseases, especially inflammatory and/or allergic diseases, in mammals such as humans, for example: asthma, chronic bronchitis, emphysema, atopic dermatitis, urticaria, allergic rhinitis (seasonal or perennial), vasomotor rhinitis, nasal polyps, allergic conjunctivitis, vernal conjunctivitis, occupational conjunctivitis, infective conjunctivitis, eosinophilic syndromes, eosinophilic granuloma, psoriasis, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock, adult respiratory distress syndrome, multiple sclerosis or memory impairment (including Alzheimer's disease).

15

20

In the treatment and/or prophylaxis, the inflammatory and/or allergic disease is preferably chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic rhinitis in a mammal (e.g. human). More preferably, the treatment and/or prophylaxis is of COPD or asthma in a mammal (e.g. human). PDE4 inhibitors are thought to be effective in the treatment of asthma (e.g. see M.A.Giembycz, *Drugs*, Feb. 2000, 59(2), 193-212; Z. Huang et al., *Current Opinion in Chemical Biology*, 2001, 5, 432-438; and refs cited therein) and COPD (e.g. see S.L. Wolda, *Emerging Drugs*, 2000, 5(3), 309-319; Z. Huang et al., *Current Opinion in Chemical Biology*, 2001, 5, 432-438; and refs cited therein). COPD is often characterised by the presence of airflow obstruction due to chronic bronchitis and/or emphysema (S.L. Wolda, *Emerging Drugs*, 2000, 5(3), 309-319).

25

For use in medicine, the compounds of the present invention are usually administered as a pharmaceutical composition.

30

The present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers and/or excipients.

35

The pharmaceutical composition can be for use in the treatment and/or prophylaxis of any of the conditions described herein.

The compounds of formula (I) and/or the pharmaceutical composition may be administered, for example, by oral, parenteral (e.g. intravenous, subcutaneous, or

10

15

20

35

intramuscular), inhaled, nasal, transdermal or rectal administration, or as topical treatments (e.g. ointments or gels). Accordingly, the pharmaceutical composition is preferably suitable for oral, parenteral (e.g. intravenous, subcutaneous or intramuscular), inhaled or nasal administration. More preferably, the pharmaceutical composition is suitable for inhaled or oral administration, e.g. to a mammal such as a human. Inhaled administration involves topical administration to the lung, e.g. by aerosol or dry powder composition.

A pharmaceutical composition suitable for oral administration can be liquid or solid; for example it can be a syrup, a suspension or emulsion, a tablet, a capsule or a lozenge.

A liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable pharmaceutically acceptable liquid carrier(s), for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring and/or colouring agent.

A pharmaceutical composition suitable for oral administration being a tablet can comprise one or more pharmaceutically acceptable carriers and/or excipients suitable for preparing tablet formulations. Examples of such carriers include lactose and cellulose. The tablet can also or instead contain one or more pharmaceutically acceptable excipients, for example binding agents, lubricants such as magnesium stearate, and/or tablet disintegrants.

A pharmaceutical composition suitable for oral administration being a capsule can be prepared using encapsulation procedures. For example, pellets containing the active ingredient can be prepared using a suitable pharmaceutically acceptable carrier and then filled into a hard gelatin capsule. Alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutically acceptable carrier, for example an aqueous qum or an oil and the dispersion or suspension then filled into a soft gelatin capsule.

A parenteral composition can comprise a solution or suspension of the compound or pharmaceutically acceptable salt in a sterile aqueous carrier or parenterally acceptable oil. Alternatively, the solution can be lyophilised; the lyophilised parenteral pharmaceutical composition can be reconstituted with a suitable solvent just prior to administration.

Compositions for nasal or inhaled administration may conveniently be formulated as aerosols, drops; gels or dry powders.

Aerosol formulations, e.g. for inhaled administration, can comprise a solution or fine suspension of the active substance in a pharmaceutically acceptable aqueous or non-

10

15

20

25

30

35

40

container.

aqueous solvent. Aerosol formulations can be presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device or inhaler. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve (metered dose inhaler) which is intended for disposal once the contents of the container have been exhausted.

Where the dosage form comprises an aerosol dispenser, it preferably contains a suitable propellant under pressure such as compressed air, carbon dioxide or an organic propellant such as a chlorofluorocarbon (CFC) or hydrofluorocarbon (HFC). Suitable CFC propellants include dichlorodifluoromethane, trichlorofluoromethane and dichlorotetrafluoroethane. Suitable HFC propellants include 1,1,1,2,3,3,3-heptafluoropropane and 1,1,1,2-tetrafluoroethane. The aerosol dosage forms can also take the form of a pump-atomiser.

Optionally, in particular for dry powder inhalable compositions, a pharmaceutical composition for inhaled administration can be incorporated into a plurality of sealed dose containers (e.g. containing the dry powder composition) mounted longitudinally in a strip or ribbon inside a suitable inhalation device. The container is rupturable or peel-openable on demand and the dose of e.g. the dry powder composition can be administered by inhalation via the device such as the DISKUS TM device, marketed by GlaxoSmithKline. The DISKUS TM inhalation device is for example described in GB 2242134 A, and in such a device at least one container for the pharmaceutical composition in powder form (the container or containers preferably being a plurality of sealed dose containers mounted longitudinally in a strip or ribbon) is defined between two members peelably secured to one another; the device comprises: a means of defining an opening station for the said container or containers; a means for peeling the members apart at the opening station to open the container; and an outlet, communicating with the opened container, through which a user can inhale the pharmaceutical composition in powder form from the opened

In the pharmaceutical composition, each dosage unit for oral or parenteral administration preferably contains from 0.01 to 3000 mg, more preferably 0.5 to 1000 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base. Each dosage unit for nasal or inhaled administration preferably contains from 0.001 to 50 mg, more preferably 0.01 to 5 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

The pharmaceutically acceptable compounds or salts of the invention can be administered in a daily dose (for an adult patient) of, for example, an oral or parenteral dose of 0.01 mg to 3000 mg per day or 0.5 to 1000 mg per day, or a nasal or inhaled dose of 0.001 to 50

15

20

mg per day or 0.01 to 5 mg per day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

The compounds, salts and/or pharmaceutical compositions according to the invention may also be used in combination with one or more other therapeutically active agents, for example, a β_2 adrenoreceptor agonist, an anti-histamine, an anti-allergic agent, an anti-inflammatory agent (including a steroid), an anticholinergic agent or an antiinfective agent (e.g. antibiotics or antivirals).

The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof with one or more other therapeutically active agents, for example, a β_2 -adrenoreceptor agonist, an anti-histamine, an anti-allergic agent, an anti-inflammatory agent (including a steroid), an anticholinergic agent or an antiinfective agent (e.g. antibiotics or antivirals).

Examples of β_2 -adrenoreceptor agonists include salmeterol (e.g. as racemate or a single enantiomer such as the R-enantiomer), salbutamol, formoterol, salmefamol, fenoterol or terbutaline and salts thereof, for example the xinafoate salt of salmeterol, the sulphate salt or free base of salbutamol or the fumarate salt of formoterol. Long-acting β_2 -adrenoreceptor agonists are preferred, especially those having a therapeutic effect over a 24 hour period such as salmeterol or formoterol.

Examples of anti-histamines include methapyrilene or loratadine.

25 Examples of anti-inflammatory steroids include fluticasone propionate and budesonide.

Examples of anticholinergic agents include muscarinic M3 antagonists, such as tiotropium bromide.

Other suitable combinations include, for example, combinations comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with other anti-inflammatory agents (e.g. NSAIDs, leukotriene antagonists, iNOS inhibitors, tryptase and elastase inhibitors, beta-2 integrin antagonists, chemokine antagonists such as CCR3 antagonists, and adenosine 2a agonists).

The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical composition and thus a pharmaceutical composition comprising a combination as defined above together with one or more pharmaceutically acceptable carriers and/or excipients represent a further aspect of the invention.

40

35

The individual compounds of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical compositions.

10

15

20

25

30

Biological Test Methods

PDE3, PDE4B, PDE4D, PDE5 Primary assay methods

The activity of the compounds can be measured as described below. Preferred compounds of the invention are selective PDE4 inhibitors, *i.e.* they inhibit PDE4 (*e.g.* PDE4B and/or PDE4D) more strongly than they inhibit other PDE's such as PDE3 and/or PDE5.

PDE enzyme sources and literature references

Human recombinant PDE4B, in particular the 2B splice variant thereof (HSPDE4B2B), is disclosed in WO 94/20079 and also in M.M. McLaughlin et al., "A low Km, rolipramsensitive, cAMP-specific phosphodiesterase from human brain: cloning and expression of cDNA, biochemical characterisation of recombinant protein, and tissue distribution of mRNA", *J. Biol. Chem.*, 1993, **268**, 6470-6476. For example, in Example 1 of WO 94/20079, human recombinant PDE4B is described as being expressed in the PDE-deficient yeast *Saccharomyces cerevisiae* strain GL62, e.g. after induction by addition of 150 uM CuSO₄, and 100,000 x g supernatant fractions of yeast cell lysates are described for use in the harvesting of PDE4B enzyme.

Human recombinant PDE4D (HSPDE4D3A) is disclosed in P. A. Baecker et al., "Isolation of a cDNA encoding a human rolipram-sensitive cyclic AMP phoshodiesterase (PDE IV_D)", *Gene*, 1994, **138**, 253-256.

Human recombinant PDE5 is disclosed in K. Loughney et al., "Isolation and characterisation of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3',5'-cyclic nucleotide phosphodiesterase", *Gene*, 1998, **216**, 139-147.

PDE3 was purified from bovine aorta as described by H. Coste and P. Grondin, "Characterisation of a novel potent and specific inhibitor of type V phosphodiesterase", *Biochem. Pharmacol.*, 1995, **50**, 1577-1585.

35 PDE6 was purified from bovine retina as described by: P. Catty and P. Deterre, "Activation and solubilization of the retinal cGMP-specific phosphodiesterase by limited proteolysis", Eur. J. Biochem., 1991, 199, 263-269; A. Tar et al. "Purification of bovine retinal cGMP phosphodiesterase", Methods in Enzymology, 1994, 238, 3-12; and/or D. Srivastava et al. "Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase", Biochem. J., 1995, 308, 653-658.

Inhibition of PDE3, PDE4B,PDE 4D, PDE5 or PDE 6 activity: radioactive Scintillation Proximity Assay (SPA)

The ability of compounds to inhibit catalytic activity at PDE4B or 4D (human recombinant), 5 PDE3 (from bovine aorta) PDE5 (human recombinant) or PDE 6 (from bovine retina) was determined by Scintillation Proximity Assay (SPA) in 96-well format. Test compounds (preferably as a solution in DMSO, e.g. 2 microlitre (ul) volume) were preincubated at ambient temperature in Wallac Isoplates (code 1450-514) with PDE enzyme in 50mM Tris-HCl buffer pH 7.5, 8.3mM MgCl₂, 1.7mM EGTA, 0.05% (w/v) bovine serum albumin for 10 10-30 minutes. The enzyme concentration was adjusted so that no more than 20% hydrolysis of the substrate occurred in control wells without compound, during the incubation. For the PDE3, PDE4B and PDE4D assays [5',8-3H]adenosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech , code TRK.559 or Amersham Biosciences UK Ltd, Pollards Wood, Chalfont St Giles, Buckinghamshire HP8 4SP, UK) was added to give 15 0.05uCi per well and ~ 10nM final concentration. For the PDE5 and PDE6 assays [8-³H]guanosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech , code TRK.392) was added to give 0.05uCi per well and ~ 36nM final concentration. Plates e.g. containing approx. 100 ul volume of assay mixture were mixed on an orbital shaker for 5 minutes and incubated at ambient temperature for 1 hour. Phosphodiesterase SPA beads (Amersham 20 Pharmacia Biotech, code RPNQ 0150) were added (~1mg per well) to terminate the assay. Plates were sealed and shaken and allowed to stand at ambient temperature for 35 minutes to 1hour to allow the beads to settle. Bound radioactive product was measured using a WALLAC TRILUX 1450 Microbeta scintillation counter. For inhibition, curves, 10 concentrations (e.g. 1.5nM - 30uM) of each compound were assayed; more 25 potent compounds were assayed over lower concentration ranges (assay concentrations were generally between 30µM and 50fM). Curves were analysed using ActivityBase and XLfit (ID Businesss Solutions Limited, 2 Ocean Court, Surrey Research Park, Guildford, Surrey GU2 7QB, United Kindgom). Results were expressed as pIC₅₀ values.

30

Alternatively, the activity of the compounds can be measured in the following Fluorescence Polarisation (FP) assay:

Inhibition of PDE4B or PDE4D activity: Fluorescence Polarisation (FP) assay

35

The ability of compounds to inhibit catalytic activity at PDE4B (human recombinant) and PDE4D (human recombinant) was determined by IMAP Fluorescence Polarisation (FP) assay (Molecular Devices code: R8062) in 384-well format. Test compounds (small volume, e.g. 0.5 ul, of solution in DMSO) were preincubated at ambient temperature in

black 384-well microtitre plates (supplier: NUNC, code 262260) with PDE enzyme in 10mM Tris-HCl buffer pH 7.2, 10mM MgCl₂, 0.1% (w/v) bovine serum albumin. 0.05% NaN₃ for 10-30 minutes. The enzyme level was set so that reaction was linear throughout the incubation.

5

10

15

Fluorescein adenosine 3',5'-cyclic phosphate (Molecular Devices code: R7091) was added to give ~ 40nM final concentration. Plates were mixed on an orbital shaker for 10 seconds and incubated at ambient temperature for 40 minutes. IMAP binding reagent (Molecular Devices code: R7207) was added (60ul of a 1 in 400 dilution in binding buffer of the kit stock solution) to terminate the assay. Plates were allowed to stand at ambient temperature for 1hour. The FP ratio of parallel to perpendicular light was measured using an AnalystTM plate reader (from Molecular Devices Corporation). For inhibition curves, 10 concentrations (1.5nM - 30uM) of each compound were assayed; more potent compounds were assayed over lower concentration ranges (assay concentrations were generally between 30µM and 50fM). Curves were analysed using ActivityBase and XLfit (ID Businesss Solutions Limited). Results were expressed as pIC₅₀ values.

For a given PDE4 inhibitor, the PDE4B (or PDE4D) inhibition values measured using the SPA and FP assays can differ slightly. However, in a regression analysis of 100 test compounds, the pIC₅₀ inhibition values measured using SPA and FP assays have been found generally to agree within 0.5 log units, for PDE4B and PDE4D (linear regression coefficient 0.966 for PDE4B and 0.971 for PDE4D; David R.Mobbs et al., "Comparison of the IMAP Fluorescence Polarisation Assay with the Scintillation Proximity Assay for Phosphodiesterase Activity", poster to be presented at 2003 Molecular Devices UK & Europe User Meeting, 2nd October 2003, Down Hall, Harlow, Essex, United Kingdom).

25

20

Examples of compounds of the invention described above inhibit the catalytic activity at the PDE4B (human recombinant) enzyme with pIC₅₀'s in the range 6.3-8.4. Biological Data obtained for some of the Examples (PDE4B and PDE5 inhibitory activity) is as follows:

30

Example	PDE4B	PDE5
No.	mean	mean
	plC ₅₀	pIC _{so}
1	8.0	<4.5
2	7.6	<4.5
3	7.4	<4.5

10

15

6 63 <4.5			
0.0	6	6.3	

Emesis: Many known PDE4 inhibitors cause emesis and/or nausea to greater or lesser extents (e.g. see Z. Huang et al., Current Opinion in Chemical Biology, 2001, 5, 432-438, see especially pages 433-434 and refs cited therein). Therefore, it would be preferable but not essential that a PDE4 inhibitory compound of the invention causes only limited or manageable emetic side-effects. Emetic side-effects can for example be measured by the emetogenic potential of the compound when administered to ferrets; for example one can measure the time to onset, extent, frequency and/or duration of vomiting and/or writhing in ferrets after oral or parenteral administration of the compound. See for example A. Robichaud et al., "Emesis induced by inhibitors of PDE IV in the ferret" Neuropharmacology, 1999, 38, 289-297, erratum Neuropharmacology, 2001, 40, 465-465.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

Silver of

(A)

EXAMPLES

The various aspects of the invention will now be described by reference to the following examples. These examples are merely illustrative and are not to be construed as a limitation of the scope of the present invention. In this section, "Intermediates" represent syntheses of intermediate compounds intended for use in the synthesis of the "Examples".

Abbreviations used herein:

10 NMR nuclear magnetic resonance

HPLC high performance liquid chromatography
LC/MS liquid chromatography/mass spectroscopy

SPE solid phase extraction

General experimental details

15

LC/MS (liquid chromatography/mass spectroscopy)

Waters ZQ mass spectrometer operating in positive ion electrospray mode, mass range 100-1000 amu.

UV wavelength: 215-330nM

20 Column: 3.3cm x 4.6mm ID, 3μm ABZ+PLUS

Flow Rate: 3ml/min Injection Volume: 5µl

Solvent A: 95% acetonitrile + 0.05% formic acid

Solvent B: 0.1% formic acid + 10mMolar ammonium acetate

25 Gradient: 0% A/0.7min, 0-100% A/3.5min, 100% A/1.1min, 100-0% A/0.2min

Mass Directed Automated Preparative HPLC column, conditions and eluent

System A

The preparative column used was a Supelcosil ABZplus (10cm x 2.12cm internal

30 diameter; particle size 5μm)

UV detection wavelength: 200-320nM

Flow rate: 20ml/min Injection Volume: 0.5ml Solvent A: 0.1% formic acid

35 Solvent B: 95% acetonitrile + 0.05% formic acid

Mass Directed Automated Preparative HPLC column, conditions and eluent System B

The preparative column used was a Supelcosil ABZplus (10cm x 2.12cm internal diameter; particle size 5μm)

UV detection wavelength: 200-320nM

Flow rate: 20ml/min Injection Volume: 0.5ml

Solvent A: water + 0.1% trifluoroacetic acid

5 Solvent B: acetonitrile + 0.1% trifluoroacetic acid

Intermediates and Examples

All reagents not detailed in the text below are commercially available from established suppliers such as Sigma-Aldrich.

Intermediate 1. Diethyl {[(4-iodophenyl)amino]methylidene}propanedioate

15

20

A mixture of 4-iodoaniline (208g) and diethyl (ethoxymethylene)malonate (210ml) was heated to 100°C. The mixture set solid at *ca.* 60°C, and was removed from heating and broken up. Heating was continued at 100°C for 1h, and the solid was collected, washed with cyclohexane (1000ml) and ethanol (2x500ml), and dried *in vacuo* at 40°C overnight to give the title compound as a white solid (356.1g).

LC/MS R, 3.57min m/z 390 [MH⁺].

Intermediate 2. Ethyl 6-iodo-4-oxo-1,4-dihydro-3-quinolinecarboxylate

25

30

Diphenyl ether (170ml) was heated to reflux and <u>intermediate 1</u> (30g) was gradually added down an air condenser. Once all the reagent had been added the mixture was heated under reflux for a further 30min. The mixture was then cooled and isohexane (200ml) was added. The solid formed was collected by filtration to give the <u>title compound</u> (19.2g).

10

15

20

25

NMR(DMSO) δ 8.58 (1H,s), 8.42(1H,d), 7.99 (1H,dd), 7.44(1H,d), 4.21(2H,q), 1.28 (3H,t).

Intermediate 3. 6-lodo-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid

Sodium hydroxide (9.8g) was dissolved in water (61ml) and ethanol (30ml) was added. The resultant solution was added to <u>intermediate 2</u>, and the mixture was heated under reflux for 60min with stirring under nitrogen. Concentrated hydrochloric acid was added, giving a white precipitate. After stirring for 16h, the precipitate was filtered off, washed with water and dried *in vacuo* to give a white solid (8.15g) as the <u>title compound</u>. LC/MS R_t 3.01min m/z 316 [MH $^+$].

Intermediate 4. 4-Chloro-6-iodo-3-quinolinecarboxamide

Intermediate 3 (8.1g) was added portionwise to stirred thionyl chloride (60ml). *N,N*-dimethylformamide (3 drops) was added and the mixture was heated under reflux with stirring under nitrogen for 1.75h. The excess thionyl chloride was evaporated *in vacuo* and the residue was azeotroped with toluene (2x50ml). The resulting pale yellow solid was added portionwise to stirred concentrated aqueous ammonia (250ml), and the mixture stirred at room temperature for 1.5h. The solid was filtered off, washed with water and dried *in vacuo* at 60°C for 16h to give the title compound as a white solid (7.94g). LC/MS R₁ 2.72min *m/z* 332 [MH⁺].

Intermediate 5. 6-lodo-4-{[3-(methyloxy)phenyl]amino}-3-quinolinecarboxamide hydrochloride

20

HCI

Intermediate 4 (2.5g) was dissolved in acetonitrile (30ml), 3-methoxyaniline (0.84ml) was added, and the mixture was heated under reflux for 16h. The resulting precipitate was filtered off and washed with acetonitrile to give the title compound (2.2g).

LC/MS R₄ 2.53min *m/z* 420 [MH⁺]

Intermediate 6. Ethyl 3-carbamoyl-4-[(3-methyoxyphenyl)amino]-6-quinolinecarboxylate

To a stirred solution of intermediate 5 (1.0g) in ethanol (50ml) was added triethylamine (0.63ml) and dichlorobis(triphenylphosphine)palladium(II) (0.08g). The flask was evacuated and refilled with nitrogen three times and then evacuated and refilled with carbon monoxide two times. The mixture was heated at 80°C under an atmosphere of carbon monoxide for 16h. The mixture was cooled to 20°C and the solvent removed in vacuo. Purification by column chromatography on silica gel, eluting with 9:1 ethyl acetate:cyclohexane, gave the title compound as a pale yellow solid (0.8g). LC/MS R_t 2.40 min, m/z 366 [MH⁺]

Intermediate 7. 3-(Aminocarbonyl)-4-{[3-(methyloxy)phenyl]amino}-6-quinolinecarboxylic acid

To a stirred solution of <u>intermediate 6</u> (0.8g) in ethanol (25ml) was added 2M sodium hydroxide solution (15ml) and the mixture stirred at 20°C for 16h. The solvent was removed *in vacuo* and the residue dissolved in water (150ml) and washed with dichloromethane (100ml). The aqueous layer was acidified to pH4 by the addition of 2M hydrochloric acid and a precipitate formed which was collected by filtration to give the <u>title</u> compound as a yellow solid (460mg).

LC/MS R_t 1.93 min, m/z 338 [MH⁺]

Example 1. 4-{[3-(Methyloxy)phenyl]amino}-6-(4-morpholinylcarbonyl)-3-quinolinecarboxamide

To a stirred solution of intermediate 7 (25mg) in *N*,*N*-dimethylformamide (3ml) was added 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (33mg) and the mixture stirred at 20°C for 30min. Morpholine (10mg) was added and the mixture stirred at 20°C for 16h. The solvent was removed under a flow of nitrogen. The residue was loaded onto a 1g SPE cartridge (aminopropyl stationary phase), washed with chloroform and eluted with 10% methanol in ethyl acetate. Concentration of the eluent and purification of the residue by mass directed HPLC gave the title compound as pale yellow solid (20mg). LC/MS R_t 2.05 min, *m*/*z* 407 [MH⁺]

20

15

5

10

Similarly prepared from intermediate 7 were the following:

25

Example Number (a)	R³R⁴N-	Amine Reagent/ Source	Isolation Method (b)	LC/MS R _t	LC/MS MH⁺
--------------------------	--------	--------------------------	----------------------------	-------------------------	--------------

_					
1 HCOOH	N X	Morpholine/ Aldrich	. (I) ·	2.04	407
2 HCOOH	K _X	Aniline/ Aldrich	(1)	2.56	413
3 HCOOH	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(1,1- Dimethylethyl)amine/ Aldrich	(1)	2.33	393
4 HCOOH	N ⁺	(Phenylmethyl)amine/ Aldrich	(1)	2.5	427
5 HCOOH	H₂N [⊁]	Ammonia/ Aldrich	(1)	1.8	337
6	_NH	Methylamine/ Aldrich	(1)	1.87	351
7 HCOOH	\ <u>\</u> \	Dimethylamine/ Aldrich	(1)	1.93	. 365
8 TFA	S H	1,3-Benzothiazol-6- amine/ Lancaster	(II)	2.66	470
9 TFA		(2- Pyridinylmethyl)amine/ Aldrich	(II)	2.23	428
10 TFA	N H	1-Methyl-1H- benzimidazol-5-amine/ Heterocycles (1991), 32(5), 1003-12.	(11)	2.2	467

11 TFA		4-Pyridinamine/ Aldrich	(11)	2.11	414
12 TFA	H	3-Chloroaniline/ Aldrich	(11)	3.01	467
13 TFA	H H	3-Pyridinamine/ Aldrich	(II)	2.28	414
14 TFA	, H	3-(Methyloxy)aniline/ Aldrich	(11)	2.75	443
15 TFA	F N _X	4-Fluoroaniline/ Aldrich	(11)	⁻ 2.78	431
16 TFA		1,3-Benzodioxol-5- amine/ Aldrich	(II) ··	2.69	457
: 17 TFA		6-Amino-2,3-dihydro-1H- inden-1-one/ Journal of Medicinal Chemistry (2003), 46(3), 399-408.	(11)	2.66	467
18 TFA	O N N X	1-Acetylpiperazine/ Aldrich	(11)	2.14	448
19 TFA		Pyrrolidine/ Aldrich	(11)	2.33	391

}

20 TFA	TN Hy	[(1-Ethyl-2- pyrrolidinyl)methyl]amine / Acros	(11)	1.99	448
21 TFA	I O H	(Tetrahydro-2- furanylmethyl)amine/ Aldrich	. (11)	2.29	421
22 TFA	N	6-(Methyloxy)-3- pyridinamine/ Aldrich	(11)	2.66	444 ·
23 TFA	HNX	2,3-Dihydro-1- benzofuran-4-amine/ Journal of Heterocyclic Chemistry (1980), 17(6), 1333-5.	(11)	2.67	455
24 TFA	HN N=N	(1H-Tetrazol-5- ylmethyl)amine Dynamit	(11)	2.12	•••419
25 TFA	N N N N N N N N N N N N N N N N N N N	[(1-Methyl-1H-imidazol- 5-yl)methyl]amine/ WO0304467	(11)	1.91	?'431
. 26 TFA	CI	4-Chloroaniline/ Aldrich	(11)	3	447
27 TFA	_N _×	Piperidine/ Aldrich	(11)	2.45	405
28 TFA	N H	1-Methyl-4- piperidinamine/ Journal of Medicinal Chemistry (1974),	(11)	1.92	434

		17(1), 75-100			
29 TFA	₩, Y	4-(Methyloxy)aniline/ Aldrich	(11)	2.68	443
30 TFA	s N	(1,3-Thiazol-2- ylmethyl)amine/ Tetrahedron (1995), 51(46), 12731-44	(II)	2.31	434
31 TFA		1,3-Dihydro-2- benzofuran-5-amine/ Journal of Medicinal Chemistry (1978), 21(9), 965-78	(11)	2.59	455
32 TFA	N N N N N N N N N N N N N N N N N N N	[(3-Methyl-5- isoxazolyl)methyl]amine/ Tetrahedron Letters (1993), 34(47), 7509-12	(II)	2.34	432
33 TFA	TZ Z	[(5-Chloro-2-pyridinyl)methyl]amine/ Journal of Organic Chemistry (1979), 44(3), 396-400	(11)	2.49	462

(a) Salt forms: TFA = trifluoroacetate salt; HCOOH = formate salt

(b) Isolation Method: (I) Mass Directed HPLC Method A

(II) Mass Directed HPLC Method B

5

CLAIMS

1. A compound of formula (I) or a pharmaceutically acceptable salt thereof:

5

$$R^3$$
 R^4
 R^5
 R^6
 R^6
 R^6

wherein:

10

R1 is

Aryl optionally substituted by one or more C₁₋₆alkoxy groups;

R² is hydrogen or C₁₋₆ alkyl;

15

R³ is

Hydrogen;

20

C₁₋₆ alkyl optionally substituted by one or more substituents selected from: heterocyclyl (itself optionally substituted by C₁₋₆ alkyl), R⁷R⁸NCO-, R⁹CONR¹⁰-, C₁₋₆ alkoxy, R¹¹R¹²N-;

C₃₋₇cycloalkyl;

25

Aryl or aryl(C₁₋₆alkyl) wherein the aryl is optionally substituted by one or more substituents selected from: halogen, C₁₋₆alkoxy;

Aryl fused to a heterocyclyl ring;

30

Aryl fused to C_{4-7} cycloalkyl, wherein the cycloalkyl is optionally substituted by =O;

Heteroaryl or heteroaryl(C_{1-6} alkyl), wherein the heteroaryl is optionally substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halogen;

Heterocyclyl or heterocyclyl(C_{1-6} alkyl), wherein the heterocyclyl is optionally substituted by one or more C_{1-6} alkylCO, C_{1-6} alkyl;

R⁴ is hydrogen or C₁₋₆ alkyl;

R³ and R⁴ together with the nitrogen atom to which they are attached may form a heterocyclyl ring, which is optionally substituted by one or more substituents selected from C₁₋₆alkyl, C₁₋₆alkoxy, C₃₋₇cycloalkyl, C₁₋₆alkylCO, OH, (CH₂)_mNR¹³R¹⁴, -(CH₂)_mCONR¹⁵R¹⁶, - (CH₂)_mNR¹⁷COR¹⁸, C₁₋₆alkoxyC₁₋₄alkyl, heteroaryl, heteroarylC₁₋₄alkyl, heteroarylCO.

m is 0-6

5

10

R⁵ is hydrogen or C₁₋₆ alkyl;

15 R⁶ is hydrogen, C₁₋₆ alkyl, C₁₋₆alkoxy, fluorine, chlorine, or bromine;

R⁷⁻¹⁸ all independently represent hydrogen, C₁₋₈ alkyl;

R⁷ and R⁸ together with the nitrogen atom to which they are attached may form a heterocyclyl ring;

R¹¹ and R¹² together with the nitrogen atom to which they are attached may form a heterocyclyl ring;

- 25 R¹³ and R¹⁴ together with the nitrogen atom to which they are attached may form a heterocyclyl ring;
 - A compound according to claim 1 which is
- 4-{[3-(methyloxy)phenyl]amino}-N⁶-phenyl-3,6-quinolinedicarboxamide,
 4-{[3-(methyloxy)phenyl]amino}-6-(4-morpholinylcarbonyl)-3-quinolinecarboxamide,
 N⁶-N⁶-dimethyl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,
 N⁶-1,3-benzothiazol-6-yl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,
 N⁶-(1-methyl-1*H*-benzimidazol-5-yl)-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide,
 - 4–{[3-(methyloxy)phenyl]amino}- N^6 -3-pyridinyl-3,6-quinolinedicarboxamide, N^6 -[3-(methyloxy)phenyl]-4–{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide, N^6 -1,3-benzodioxol-5-yl-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide, 4–{[3-(methyloxy)phenyl]amino}- N^6 -(3-oxo-2,3-dihydro-1H-inden-5-yl)-3,6-
- 40 quinolinedicarboxamide,

)

4-{[3-(methyloxy)phenyl]amino}- N^6 -[6-(methyloxy)-3-pyridinyl]-3,6-quinolinedicarboxamide,

N⁶-(4-chlorophenyl)-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide, 4-{[3-(methyloxy)phenyl]amino}-6-(1-piperidinylcarbonyl)-3-quinolinecarboxamide,

- 4-{[3-(methyloxy)phenyl]amino}-N⁶-(1,3-thiazol-2-ylmethyl)-3,6-quinolinedicarboxamide, N⁶-(1,3-dihydro-2-benzofuran-5-yl)-4-{[3-(methyloxy)phenyl]amino}-3,6quinolinedicarboxamide, N⁶-[(3-methyl-5-isoxazolyl)methyl]-4-{[3-(methyloxy)phenyl]amino}-3,6quinolinedicarboxamide,
- 10 N⁶-[(5-chloro-2-pyridinyl)methyl]-4-{[3-(methyloxy)phenyl]amino}-3,6-quinolinedicarboxamide, and pharmaceutically acceptable salts thereof.
- 3. A compound or a pharmaceutically acceptable salt thereof, according to claim 1 or claim 2 for use in therapy.
 - 4. A compound or a pharmaceutically acceptable salt thereof, according to claim 1 or claim 2 for use in the treatment or prophylaxis of inflammatory and/or allergic diseases.
- 5. The use of a compound according to claim 1 or claim 2, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of inflammatory and/or allergic diseases.
- 6. A pharmaceutical composition which comprises a compound according to claim 1 or claim 2 optionally with a pharmaceutically acceptable carrier or excipient.
 - 7. A pharmaceutical composition according to claim 6 which is suitable for inhaled administration.
- 30 8. A pharmaceutical composition according to claim 6 which is suitable for oral administration.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.