class17

Moises Gonzalez A17579866

Pertussis, or whooping cough, is a highly contagious lung infection caused by a bacteria B. pertussis.

The CDC tracks reported cases in the U.S. since the 1920s.

```
cdc <- data.frame(data.frame(</pre>
                                                            Year = c(1922L, 1923L,
                                                                      1924L, 1925L,
                                                                      1926L,1927L,1928L,
                                                                      1929L,1930L,1931L,
                                                                      1932L,1933L,1934L,
                                                                      1935L,1936L,1937L,
                                                                      1938L,1939L,1940L,
                                                                      1941L,1942L,1943L,
                                                                      1944L, 1945L,
                                                                      1946L, 1947L, 1948L,
                                                                      1949L,1950L,1951L,
                                                                      1952L,1953L,1954L,
                                                                      1955L,1956L,1957L,
                                                                      1958L,1959L,1960L,
                                                                      1961L,1962L,1963L,
                                                                      1964L, 1965L,
                                                                      1966L,1967L,1968L,
                                                                      1969L, 1970L, 1971L,
                                                                      1972L,1973L,1974L,
                                                                      1975L,1976L,1977L,
                                                                      1978L,1979L,1980L,
                                                                      1981L, 1982L, 1983L,
                                                                      1984L,1985L,
                                                                      1986L,1987L,1988L,
                                                                      1989L,1990L,1991L,
                                                                      1992L,1993L,1994L,
```

```
1995L,1996L,1997L,
                                  1998L,1999L,2000L,
                                  2001L, 2002L, 2003L,
                                  2004L,2005L,
                                  2006L,2007L,2008L,
                                  2009L,2010L,2011L,
                                  2012L,2013L,2014L,
                                  2015L,2016L,2017L,
                                  2018L,2019L,2020L,
                                  2021L),
No..Reported.Pertussis.Cases = c(107473,
                                  164191,165418,152003,
                                  202210,181411,
                                  161799, 197371, 166914,
                                  172559,215343,
                                  179135,265269,180518,
                                  147237,214652,
                                  227319,103188,183866,
                                  222202,191383,
                                  191890,109873,133792,
                                  109860, 156517,
                                  74715,69479,120718,
                                  68687,45030,37129,
                                  60886,62786,31732,
                                  28295,32148,40005,
                                  14809,11468,17749,
                                  17135,13005,6799,
                                  7717,9718,4810,
                                  3285, 4249, 3036,
                                  3287,1759,2402,1738,
                                  1010,2177,2063,
                                  1623,1730,1248,
                                  1895,2463,2276,3589,
                                  4195,2823,3450,
                                  4157,4570,2719,
                                  4083,6586,4617,5137,
                                  7796,6564,7405,
                                  7298,7867,7580,
                                  9771,11647,25827,
                                  25616, 15632, 10454,
                                  13278,16858,27550,
```

```
18719,48277,28639,
32971,20762,17972,
18975,15609,
18617,6124,2116)
```

))

We can now plot the number of reported pertussis cases per year in the U.S.

```
library(ggplot2)

ggplot(cdc) +
    aes(cdc$Year, cdc$No..Reported.Pertussis.Cases)+
    geom_point()+
    geom_line()+
    labs(x="year", y="cases")

Warning: Use of `cdc$Year` is discouraged.
i Use `Year` instead.

Warning: Use of `cdc$No..Reported.Pertussis.Cases` is discouraged.
i Use `No..Reported.Pertussis.Cases` instead.

Warning: Use of `cdc$Year` is discouraged.
i Use `Year` instead.

Warning: Use of `cdc$No..Reported.Pertussis.Cases` is discouraged.
i Use `Year` instead.
```


The first big "Whole-cell" pertussis vaccine was introduced in 1942

```
colnames(cdc) <- c('Year', 'Cases')</pre>
  head(cdc)
  Year Cases
1 1922 107473
2 1923 164191
3 1924 165418
4 1925 152003
5 1926 202210
6 1927 181411
  ggplot(cdc) +
    aes(cdc$Year, cdc$Cases)+
    geom_point()+
    geom_line()+
    labs(x="Year", y="Cases")+
  geom_vline(xintercept=1942, col="blue")+
    geom_vline(xintercept=1980, col="grey", linetype=2)+
```

```
geom_vline(xintercept=1995, col="red")
```

Warning: Use of `cdc\$Year` is discouraged. i Use `Year` instead.

Warning: Use of `cdc\$Cases` is discouraged. i Use `Cases` instead.

Warning: Use of `cdc\$Year` is discouraged. i Use `Year` instead.

Warning: Use of `cdc\$Cases` is discouraged. i Use `Cases` instead.

Something bi is happening with pertussis cases and big outbreaks are once again a major public health concern! BUGGER

One of the main hypothesis for the increasing case numbers is waning vaccine efficacy with the newer vaccine.

Enter the CMI-PB project, which is studing this problem on a large scale. Let's see what data they have.

Their data is available in JSON format ("key: value" pair style). We will use the "jsonlight" package to read their data

```
library(jsonlite)
  subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)</pre>
  head(subject)
  subject_id infancy_vac biological_sex
                                                        ethnicity race
1
                       wP
                                  Female Not Hispanic or Latino White
           2
2
                       wP
                                  Female Not Hispanic or Latino White
3
           3
                       wP
                                  Female
                                                          Unknown White
           4
4
                       wP
                                     Male Not Hispanic or Latino Asian
5
           5
                       wP
                                     Male Not Hispanic or Latino Asian
6
           6
                       wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                     dataset
                    2016-09-12 2020 dataset
     1986-01-01
1
                    2019-01-28 2020_dataset
2
     1968-01-01
3
     1983-01-01
                    2016-10-10 2020_dataset
4
     1988-01-01
                    2016-08-29 2020_dataset
     1991-01-01
                    2016-08-29 2020_dataset
5
     1988-01-01
                    2016-10-10 2020_dataset
     Q4. How may aP and wP infancy vaccinated subjects are in the dataset?
  table(subject$infancy_vac)
aP wP
47 49
     Q5. How many Male and Female subjects/patients are in the dataset?
  table(subject$biological_sex)
```

```
Female Male 66 30
```

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

```
table(subject$race)
```

```
American Indian/Alaska Native

1
Asian
27
Black or African American
2
More Than One Race
10
Native Hawaiian or Other Pacific Islander
2
Unknown or Not Reported
14
White
40
```

table(subject\$race, subject\$biological_sex)

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	18	9
Black or African American	2	0
More Than One Race	8	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	10	4
White	27	13

Now let's read some more data tabels from CMI-PB:

```
specimen <- read_json("http://cmi-pb.org/api/specimen", simplifyVector = TRUE)
head(specimen)</pre>
```

specimen_id subject_id actual_day_relative_to_boost

```
1
             1
                         1
                                                         -3
2
             2
                                                        736
                         1
3
             3
                         1
                                                          1
4
             4
                         1
                                                          3
                                                          7
5
             5
                          1
                                                         11
  planned_day_relative_to_boost specimen_type visit
1
                                             Blood
                                                        1
2
                               736
                                             Blood
                                                       10
3
                                             Blood
                                                        2
                                 1
4
                                 3
                                             Blood
                                                        3
5
                                 7
                                             Blood
                                                        4
                                                        5
                                14
                                             Blood
```

I want to "join" (a.k.a. "merge"/link/etc.) the subject and specimen tables together. I will use the **dplyr** package for this.

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
    meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join_by(subject_id)`

head(meta)

```
subject_id infancy_vac biological_sex
                                                        ethnicity race
                                  Female Not Hispanic or Latino White
1
           1
                       wP
2
           1
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                       wP
                                  Female Not Hispanic or Latino White
4
           1
                                  Female Not Hispanic or Latino White
                       wP
5
           1
                                  Female Not Hispanic or Latino White
                       wP
                                  Female Not Hispanic or Latino White
6
           1
                       wP
 year_of_birth date_of_boost
                                    dataset specimen_id
     1986-01-01
                    2016-09-12 2020_dataset
1
                                                        1
                                                        2
2
     1986-01-01
                    2016-09-12 2020_dataset
3
                    2016-09-12 2020_dataset
                                                        3
     1986-01-01
4
                    2016-09-12 2020_dataset
                                                        4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        5
5
     1986-01-01
     1986-01-01
                    2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                                         Blood
1
2
                            736
                                                            736
                                                                         Blood
3
                              1
                                                                        Blood
                                                              1
4
                              3
                                                              3
                                                                        Blood
                              7
                                                              7
5
                                                                        Blood
6
                             11
                                                             14
                                                                        Blood
 visit
1
      1
2
     10
3
      2
4
      3
      4
5
      5
6
  colnames(subject)
[1] "subject_id"
                      "infancy_vac"
                                        "biological_sex" "ethnicity"
[5] "race"
                      "year_of_birth"
                                        "date_of_boost"
                                                          "dataset"
  colnames(specimen)
[1] "specimen_id"
                                      "subject_id"
[3] "actual_day_relative_to_boost"
                                      "planned_day_relative_to_boost"
[5] "specimen_type"
                                      "visit"
```

```
colnames (meta)
```

```
[1] "subject_id"
                                       "infancy_vac"
 [3] "biological_sex"
                                       "ethnicity"
 [5] "race"
                                       "year_of_birth"
 [7] "date_of_boost"
                                       "dataset"
 [9] "specimen id"
                                       "actual_day_relative_to_boost"
[11] "planned_day_relative_to_boost" "specimen_type"
[13] "visit"
  ab <- read_json("http://cmi-pb.org/api/ab_titer",</pre>
                       simplifyVector = TRUE)
  head(ab)
  specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                              Total 1110.21154
                                                                       2.493425
2
            1
                                      FALSE
                                              Total 2708.91616
                                                                       2.493425
                   IgE
3
            1
                   IgG
                                       TRUE
                                                 PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                PRN 332.12718
                                                                       2.602350
5
            1
                                       TRUE
                                                FHA 1887.12263
                                                                      34.050956
                   IgG
                                                        0.10000
                   IgE
                                       TRUE
                                                 ACT
                                                                       1.000000
  unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

Now I can join meta that we made above and contained all info about the subject and specimens with this ab data.

```
abdata <- inner_join(meta, ab)

Joining with `by = join_by(specimen_id)`

dim(abdata)</pre>
```

```
[1] 32675 20
```

Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?

```
table(abdata$isotype)
```

```
IgE IgG IgG1 IgG2 IgG3 IgG4 6698 1413 6141 6141 6141 6141
```

Q12. What do you notice about the number of visit 8 specimens compared to other visits?

```
table(abdata$visit)
```

```
1 2 3 4 5 6 7 8
5795 4640 4640 4640 4640 4320 3920 80
```

There are way less visit 8 specimens because the project is still ongoing and we have not got that data for all individuals yet.

Examine IgG1 Ab titer levels

We will use the filter() function from dplyr to focus on just IgG1 isotope and visits 1 to 7 (i.e. exclude visit 8 as there are not as many specimen there yet).

```
ig1 <- filter(abdata, isotype == "IgG1", visit!=8)
head(ig1)</pre>
```

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
                                  Female Not Hispanic or Latino White
1
                      wΡ
2
                      wP
                                  Female Not Hispanic or Latino White
3
           1
                      wP
                                  Female Not Hispanic or Latino White
4
           1
                      wP
                                  Female Not Hispanic or Latino White
5
           1
                      wP
                                  Female Not Hispanic or Latino White
           1
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset specimen_id
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
1
2
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
```

```
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
                    2016-09-12 2020_dataset
                                                        1
5
     1986-01-01
6
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                         Blood
2
                             -3
                                                              0
                                                                         Blood
                                                                         Blood
                              -3
                                                              0
3
4
                              -3
                                                              0
                                                                         Blood
5
                             -3
                                                              0
                                                                         Blood
                             -3
6
                                                              0
                                                                         Blood
  visit isotype is_antigen_specific antigen
                                                      MFI MFI_normalised unit
                                                                0.6928058 IU/ML
1
      1
           IgG1
                                 TRUE
                                          ACT 274.355068
                                               10.974026
2
      1
           IgG1
                                 TRUE
                                          LOS
                                                                2.1645083 IU/ML
3
           IgG1
      1
                                 TRUE
                                        FELD1
                                                 1.448796
                                                                0.8080941 IU/ML
4
      1
           IgG1
                                 TRUE
                                        BETV1
                                                 0.100000
                                                                1.0000000 IU/ML
5
      1
           IgG1
                                 TRUE
                                        LOLP1
                                                 0.100000
                                                                1.0000000 IU/ML
      1
                                                                1.6638332 IU/ML
6
           IgG1
                                 TRUE Measles
                                               36.277417
  lower_limit_of_detection
1
                   3.848750
2
                   4.357917
3
                   2.699944
4
                   1.734784
5
                   2.550606
6
                   4.438966
```

Q13. Complete the following code to make a summary boxplot of Ab titer levels for all antigens:

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot()
```


and facet by visit

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow=2)
```


Clearly FIM2/3 changes. This is "Fimbrial protein" that makes the bacteria pilus and is involved in cell adhesion.

PT Pertussis toxin

FHA is Filamentous hemagglutain

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  theme_bw()
```



```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```



```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = TRUE) +
  facet_wrap(vars(visit)) +
   theme_bw()
```



```
filter(ig1, antigen=="FIM2/3") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = TRUE) +
  facet_wrap(vars(visit)) +
  theme_bw()
```



```
url <- "https://www.cmi-pb.org/api/v2/rnaseq?versioned_ensembl_gene_id=eq.ENSG00000211896.
rna <- read_json(url, simplifyVector = TRUE)
#meta <- inner_join(specimen, subject)
ssrna <- inner_join(rna, meta)</pre>
```

Joining with `by = join_by(specimen_id)`

```
rna <- read_json(url, simplifyVector = TRUE)
ggplot(ssrna) +
  aes(visit, tpm, group=subject_id) +
  geom_point() +
  geom_line(alpha=0.2)</pre>
```



```
ggplot(ssrna) +
  aes(tpm, col=infancy_vac) +
  geom_boxplot() +
  facet_wrap(vars(visit))
```



```
ssrna %>%
  filter(visit==4) %>%
  ggplot() +
   aes(tpm, col=infancy_vac) + geom_density() +
   geom_rug()
```

