SENZORI TEMPERATURE

Merenje temperature

Ekspanzioni termometri

6-12-2004 SENZORI 1

Bimetalni termometri

Termoparovi termoelektrični potencijal

$$dU = KdT$$

$$U_{T_{2}} - U_{T_{1}} = \int_{T_{1}}^{T_{2}} KdT$$

$$U_{T_{2}} - U_{T_{1}} = K(T_{2} - T_{1})$$

Termopar

- A i B različiti materijali
- □ T₁ hladan kraj
- □ T₂ topao kraj
- \square U=K_B(T₂-T₁)-K_A(T₂-T₁)= α (T₂-T₁)

Termoelektrični niz materijala u odnosu na platinu

MATERIJAL	μV/°C	MATERIJAL	μV/°C	MATERIJAL	μV/°C
Bizmut	-72	Živa	0,6	Bakar	7,6
Konstantan	-35	Ugljik	3	Volfram	8
Nikl	-16,4	Aluminijum	3,5	Molibden	12
Kobalt	-15,2	Kalaj	4,2	Gvožđe	18,5
Alumel	-12,9	Olovo	4,4	Nihrom	25
Potaša	- 9	Tantal	4,5	Hromel	28
Rodijum	-6,4	Srebro	6,5	Antimon	47
Paladijum	-5,7	Zlato	7,3	Germanijum	300
Natrijum	-2	Cink	7,5	Telur	500
Platina	0	Kadmijum	7,5	Selen	900

TIP	KOMERCIJALNI NAZIV	MAKSIMALNI OPSEG °C	MAKSIMALNA TEMPERATURA (KRATKOTRAJNO ZAGREVANJE)	PRO– SEČNA OSET– LJIVOST µV/°C	KARAKTERISTIKE RADNE SREDINE I OGRANIČENJA U UPOTREBI
Τ	Bakar/konstantan	-200 do 350	600	40,5	Slabo korozivna i redukovana atmosfera. Vakuum ili inertna atmosfera. Prisustvo vlage.
J	Gvožđe/konstantan	0 do 750	1 200	52,6	Redukovana atmosfera. Vakuum ili inertna atmosfera. Ograničena upotreba na visokim temperaturama zbog pojačane korozije. Ne preporučuje se za niske temperature
Е	Kromel/konstantan	-200 do 900	1 000	67,9	Korozivna ili inertna atmosfera. Ograničena upotreba u vakuumu i redukovanoj atmosferi.
K	Kromel/alumel	-200 do 1250	1 370	38,8	Inertna atmosfera, bez korozija. Ograničena upotreba u vakuumu i redukovanoj atmosferi. Nije dozvoljena upotreba u sumpornoj atmosferi.
S	Platina– 10%rodijum/platina	0 do 1450	1 760	10,6	Korozivna ili inertna atmosfera. Dozvoljena samo kratkotrajna upotreba
R	Platina– 13%rodijum/platina	0 do 1450	1 600	12,0	u vakuumu. Zaštitni oklop samo keramički. Moguća upotreba u metalnim i nemetalnim parama. Ove
В	Platina– 30%rodijum/platina- 6%rodijum	0 do 1700	1 800	7,6	karakteristike iste su za tip S, R i B.

Konstrukcija termoparova

Načini spajanja

- Zavarivanje topljenjem
- Lemljenje
- Potapanje u živu ili rastopljen metal
- Lemljenje za treći metal
- Pričvršćenje stezaljkom ili trakom

Statičke karakteristike termoparova

Karakteristike termopara

- Aktivan senzor
- Vrlo mali izlazni napon
- Nelinearna statička karakteristika
- Meri razliku temperatura
- Kompenzacija hladnog kraja
- Parazitni termospojevi

Transmiter za termopar

Otpornički senzori temperature

Karakteristika metalnog termootpornika

- Karakteristika se aproksimira polinomom 20-og reda
- U praksi se obično uzimaju prva tri člana

$$R_{\rm T}(T) = R_0 + R_0 \alpha \left[T - \delta \left(\frac{T}{100} - 1 \right) \frac{T}{100} - \beta \left(\frac{T}{100} - 1 \right) \left(\frac{T}{100} \right)^3 \right]$$

Materijali za metalne termootpornike

- □ Platina Pt
- Nikl Ni
- □ Bakar Cu

Karakteristike platine

- □ Čistoća 99.999%
- $\square \rho = 0.1 \mu \Omega m$
- $\square \alpha = 0.00392 1/^{\circ}C$
- \square β =0 za T>0; β =0.11 za T<0
- \square δ =1.49
- ☐ Opseg -260 do +650°C max 1500°C
- □ Pt100 i Pt1000

Karakteristike nikla i bakra

□ Nikl

- ρ=0.128μΩm
- α = 0.00586 1/°C
- Opseg -50 do +250°C max 430°C

□ Bakar

- $\rho = 0.017 \mu\Omega m$
- α =0.0042 do 0.0427 1/°C
- Opseg -50 do +180°C max 260°C

Linearnost transmitera

Primer izračunavanja otpotnosti dužine kabla

- □ Poprečni presek kabla 0.5mm2
- \square Otpornost: 0.0017 Ω mm2 po m
- Dužina kabla 100m
- Materijal kabla: bakar
- \square R = 6.8 Ω
- Otpor od 6.8Ω kod PT100 odgovara promeni temperature od 17C

Spoj termootpornika i transmitera

- Dvožični:
 - Greška usled otpornosti provodnika
- □ Trožični:
 - Kompenzacija otpornosti provodnika, ali sve tri žice moraju biti isti provodnici, iste dužine
- Četvorožični:
 - Dve žice služe za "napajanje" termootpornika, na njima dolazi do pada napona
 - Dve žice služe za merenje napona na samom termootporniku, kroz njih ne teče struja pa nema ni pada napona