Understanding Deep Neural Networks

Chapter Two

Network Structure

Zhang Yi, *IEEE Fellow* Autumn 2020

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- Discussions
- Assignments

- A brain contains about 10¹¹ neurons
- Each neuron has about 10⁴ connections

Brief Review of Brain Structure • Information flow in the brain layer by layer Chorold Retina

Ciliary body

Concept of Layer

- 1. Neural network with layers
- 2. Neurons receive the outputs of neurons at previous layer as inputs.

Third layer Mid layer First layer

Concept of Layers

• The typical human neocortex:

- 1000cm^2
- Stretched flat, the human neocortical sheet is roughly the size of a large dinner napkin.
- 2mm thick
- 30 billion neurons
- A tiny square millimeter contains an estimated 100,000 neurons.
- 100 trillion synapses.

Almost everything related to intelligence such as: perception, language, imagination, mathematics, art, music, and planning—occurs on the neocortex.

- A neocortex is divided into several functional regions, such as visual area, auditory area, touch area, associate area, etc..
 - The functional regions are arranged in an irregular patchwork quilt physically.
 - Nearly identical architecture.

Concept of regions

- Functionally the regions are arranged in a branching hierarchy.
- Lower regions feed information up to higher regions.
- Higher regions send feedback down to lower regions.

Concept of Hierarchy Connection

Region

- Physically: irregular quilt.
- Functionally: hierarchy.

Neural Network = Neurons + Connections

The information flow in the network by some kind of electricity.

Problem: Can we develop computational models for the neural network?

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- Discussions
- Assignments

- Basic Components
 - Soma (cell body)
 - Dendrite
 - Axon

- Basic Functions
 - Collecting
 - Functioning
 - Transferring

- Characters
 - Multi-inputs
 - Mon-output

Neuron structure

$$a = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

Computational model

$$a = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

A Simple Example

$$a = f(2x_1 + 2x_2 - 1)$$

$$z = 2x_1 + 2x_2 - 1$$

$$f(s) = \begin{cases} 1, & s \ge 0 \\ 0, & otherwise \end{cases}$$

$$z = 2x_1 + 2x_2 - 1 = 2 \cdot 9 + 2 \cdot 0 + 1 \cdot (-1) = 17$$

 $a = f(z) = 1$

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- Discussions
- Assignments

Neural Network = Neurons + Connections

Mathematics inside

Topological structure of neural networks

- Two important characters:
 - No any connection in any layer
 - No any connection across any layer

Layer L Layer L-1Layer l+1Layer *l* Layer 2 Layer 1

Another view to NN structure

Topological structure of neural networks

Layer l contains n_l neurons.

 a_{n_l}

Layer *l*

The neuron located in l layer j^{th} place, a_j^l denotes the output value of the neuron and is called the neuron prediction of the neuron in l layer at j^{th} place.

 $a_j^l = f(z_j^l)$

Layer output
$$a^l = \begin{bmatrix} a_1^l \\ \vdots \\ a_j^l \\ \vdots \\ a_{n_l}^l \end{bmatrix}$$

Layer l+1

Forward computing a^l

 a^l is called the network prediction at l layer

Layer L-1

Layer L

Output layer

 a^l is the input of l+1 layer. a^{l+1} can be calculated out from a^l . a^l is called the network prediction at l layer. a^L is called the network prediction.

Connections between layers:
An Example

$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & w_{13}^{l} \\ w_{21}^{l} & w_{22}^{l} & w_{23}^{l} \end{bmatrix}_{2 \times 3}$$

Standard Structure of Neural Networks

Forward computing

。 O

How to use $a_1^l, \dots, a_{n_l}^l$ and $w_{i1}^l, \dots, w_{in_l}^l$ to compute a_i^{l+1} ?

Problem:

How to do the forward computing?

Layer
$$l$$
 Layer $l+1$

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

 a^l is the input of l+1 layer. a^{l+1} is the representation of a^l .

One page to understand forward computing

Forward computing a^l

Algorithm:

Input
$$W^{l}$$
, a^{1}
for $l = 1$: L

$$a^{l+1} = fc(W^{l}, a^{l})$$
return

Function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

Component form

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

Vector form
$$\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = w^l a^l \end{cases}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- Discussions
- Assignments

Standard Model of Neural Networks

- Two important characters:
 - No any connection in any layer
 - No any connection across any layer

NN Model with External Inputs

External inputs:

If neurons in l layer are not connected to any neurons in previous layer, these neurons are called external inputs of l+1 layer. External inputs can exist in any layer except the last one.

 \bigcirc

External inputs

NN Model with External Inputs

Internal representations / outputs

$$a^{l} = \begin{bmatrix} x^{l} \\ y^{l} \end{bmatrix}$$

$$z^{l+1} = W^{l}a^{l}$$

$$y^{l+1} = f(z^{l+1})$$

$$a^{l+1} = \begin{bmatrix} x^{l+1} \\ y^{l+1} \end{bmatrix}$$

$$Layer 1 \quad Layer 2 \quad Layer l \quad Layer l+1 \quad Layer l-1 \quad Layer l \quad Output layer$$

CNNs: Share Connections Weights Between Layers

Convolutional Neural Networks

■ Share Connection Weights Between Two Layers

CNNs: Share Connections Weights Between Layers

CNNs: Share Connections Weights Between Layers

The Inception Architecture (GoogLeNet, 2014)

RNNs: Share connection weights in all layers

RNNs: Share connection weights in all layers

Recurrent Neural Networks

$$W^1 = W^2 = \cdots = W^L = W$$

The transfer of KS
$$n_1 = n_2 = \dots = n_L = n$$

$$W^1 = W^2 = \dots = W^L = W$$

$$a^{l+1} = f(Wa^l)$$

$$a(t+1) = f(Wa(t))$$

Discrete Time Neural Networks

Problem:
How to develop model for continuous time neural networks?

$$a_i^{l+1} = f\left(\sum_{j=1}^n w_{ij} a_j^l\right)$$

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

 ϵ is an infinitesimal variable, thus, there are infinite layers

Starting from here:
$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$
 $a_i(t+1) - a_i(t) = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$

$$a_i(t+1) - a_i(t) = 1 \cdot \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij} a_j(t)\right) \right]$$

$$a_i(t+\epsilon) - a_i(t) = \epsilon \cdot \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij} a_j(t)\right) \right]$$

 ϵ is an infinitesimal variable, thus, there are infinite layers

$$\epsilon \to 0$$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$\frac{a_i(t+\epsilon) - a_i(t)}{\epsilon} = \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right) \right]$$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

 ϵ is an infinitesimal variable, thus, there are infinite layers

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$\epsilon = 1, t = l$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

$$\epsilon \to 0$$
1. $n_1 = n_2 = \dots = n_L = n$
2. $W^1 = W^2 = \dots = W^L = W$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- **■**Discussions
- Assignments

Nonlinear Mapping / Dynamical Systems

A neural network can be looked as a nonlinear mapping or a dynamical system.

$$\begin{bmatrix} a^{L} = f\left(W^{L-1}f\left(W^{L-2}f\left(W^{L-3}\cdots f(W^{1}a^{1})\right)\right)\right) \\ R^{n_{1}} & \\ & \\ & \text{Nonlinear mapping} \end{bmatrix}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right) \longrightarrow a_i(l+1) = f\left(\sum_{j=1}^{n_l} w_{ij}(l) a_j(l)\right)$$

Dynamical system

Nonlinear Mapping / Dynamical Systems

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

Doted worms

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Smooth worms

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = f[f(2x_1 + 2x_2 - 1) + f(-x_1 - x_2 + 1.5) - 1.5] \qquad \qquad \boxed{1}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad f(s) = \begin{cases} 1, & s \ge 0 \\ 0, & otherwise \end{cases}$$

An FNN is a nonlinear mapping.

Problem: Can we construct an FNN to replace F?

53

Handwritten Digits Recognition

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- Various Models of Neural Networks
- Discussions
- Assignments

Assignment

Redraw the following two networks to be in standard form, i.e., no any connection in any layer, no connection across any layer.

Assignment

- Implement the forward computing of this NN:
 - in component form
 - in vector form

Algorithm in Component form:

Input
$$W^l$$
, a^1
 $for \ l = 1$: L
 $a^{l+1} = fc_c(W^l, a^l)$
 $return$

Function
$$fc_c(W^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$

end

Algorithm in Vector form:

Input
$$W^l$$
, a^1
for $l = 1$: L

$$a^{l+1} = fc_v(W^l, a^l)$$
return

Function
$$fc_v(W^l, a^l)$$

$$z^{l+1} = W^l a^l$$
$$a^{l+1} = f(z^{l+1})$$

end

Thanks