I. Proposición 8.

Sea A y B subconjuntos cerrados de \mathbb{R}^n , entonces.

b)
$$A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

1.-
$$A^{o} \cap B^{o} \subseteq (A \cap B)^{o}$$

$$x \in (A^{\circ} \cap B^{\circ}) \Rightarrow (x \in A^{\circ}) \wedge (x \in B^{\circ}) \Rightarrow (\exists B_{r}(x) \subset A) \wedge (\exists B_{r}(x) \subset B) \Rightarrow \exists B_{r}(x) \subset (A \cap B)$$
$$\Rightarrow x \in (A \cap B)^{\circ}$$
$$\therefore A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$$
 (1)

 $2.-(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$

$$x \in (A \cap B)^{\circ} \Rightarrow \exists B(x) \subset (A \cap B) \Rightarrow (\exists B_r(x) \subset A) \land (\exists B_r(x) \subset B) \Rightarrow (x \in A^{\circ}) \land (x \in B^{\circ})$$
$$\Rightarrow x \in (A \cap B)^{\circ}$$
$$\therefore (A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$$
 (2)

$$\therefore A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

c) $\overline{A} \cup \overline{B} = \overline{A \cup B}$

1.-
$$\overline{A} \cup \overline{B} \subset \overline{A \cup B}$$

$$x \in (A^{\circ} \cap B^{\circ}) \Rightarrow (x \in \overline{A}) \lor (x \in \overline{B}) \Rightarrow (\forall B_{r}(x), B_{r}(x) \cap A \neq \emptyset) \lor (\forall B_{r}(x), B_{r}(x) \cap B \neq \emptyset)$$

$$\Rightarrow (\forall B_{r}(x), B_{r}(x) \cap (A \cup B) \neq \emptyset) \Rightarrow x \in (\overline{A \cup B})$$

$$\therefore \overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$$

$$(3)$$

 $2.\text{-}\ \overline{A\cup B}\subseteq \overline{A}\cup \overline{B}$

$$x \in (\overline{A \cup B}) \Rightarrow \forall B_r(x), B_r(x) \cap (A \cup B) \neq \emptyset \Rightarrow (\forall B_r(x), B_r(x) \cap A \neq \emptyset) \cup (\forall B_r(x), B_r(x) \cap B \neq \emptyset)$$

$$\Rightarrow (\forall B_r(x), B_r(x) \cap A \neq \emptyset) \vee (\forall B_r(x), B_r(x) \cap B \neq \emptyset)$$

$$\Rightarrow (x \in \overline{A}) \vee (x \in \overline{B}) \Rightarrow x \in (\overline{A} \cup \overline{B})$$

$$\therefore \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$$

$$(4)$$

$$\therefore \overline{A} \cup \overline{B} = \overline{A \cup B}$$

d) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$

Por la proposición 3 inciso b) sabemos que $A \subset \overline{A}$ y $B \subset \overline{B}$ por lo que $A \cap B \subset \overline{A} \cap \overline{B}$ y dado que $\overline{A} \cap \overline{B}$ es cerrado $\Rightarrow \overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Si consideramos A = (0,1) y $B = (1,2) \Rightarrow \overline{A \cap B} = \emptyset$ pero $\overline{A} = [0,1]$ y $\overline{B} = [1,2] \Rightarrow \overline{A} \cap \overline{B} = 1$.