L10_1 Finite-StateAssignment Project Exam Help Machines Implementation

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- Be able to identify the components and trade-offs relevant to a finite state machine.
- Identify the course granuarity by bereit on the implementation for an FSM.

 https://powcoder.com

Add WeChat powcoder

0

A B

Implementing Combinational Logic (1)

- If I have a truth table:
- I can either implement this using combinational logiessignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

 ...or I could literally just store the entire truth table in a memory and just "address" it using the input!

Implementing Combinational Logic (2)

- Custom logic
 - Pros:
 - Can optimize the number of gates used Assignment Project Exam Help
 - Cons:
 - Can be expensive / time consuming to make custom logic circuits
- Lookup table:

Add WeChat powcoder

- Pros:
 - Programmable ROMs (Read-Only Memories) are very cheap and can be programmed very quickly
- Cons:
 - Size requirement grows exponentially with number of inputs (adding one just more bit doubles the storage requirements!)

Α	В	С	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1 1

Add one more input...

Α	В	С	D	0
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1 1 1
1	1	1	1	1

ROMs and PROMs

- Read Only Memory
 - Array of memory values that are constant
 - Non-volatile

Assignment Project Exam Help

Programmable Read Only Memory

• Array of memory values that bathose where we detry come (destructive writes)

You can use ROMs to implement FSM transition functions

- ROM inputs (i.e., ROM address): current state, primary inputs
- ROM outputs (i.e., ROM data): next state, primary outputs

8-entry 4-bit ROM

ROM for Vending Machine Controller

- Use current state and inputs as address
 - 2 state bits + 22 inputs = 24 bits (address)
 - Coin, refund, 10 dans ighertont, Projecto sxam Help

https://powcoder.com

- Read next state and outputs from ROM
 - 2 state bits + 11 outputs = 13 bit (memory) coder
 - Refund release, 10 drink latches

- We need 2²⁴ entry, 13 bit ROM memories
 - 218,103,808 bits of ROM seems excessive for our cheap controller

Reducing the ROM Needed

- Idea: let's do a hybrid between combinational logic and a lookup table
 - Use basic hardware (AND / OR) gates where we can, and a ROM for everything more complicated
- Replace 10 selector in prigrand to project resident with a single bit input (drink selected)
 - Use drink selection input hot specific wwich desire as elatch to activate
 - Only allow trigger if pressure sensor indicates that there is a bottle in that selection.
 (10 2-bit ANDs) Add WeChat powcoder

Now:

- 2 current state bits + 3 input bits (5 bit ROM address)
- 2 next state bits + 2 control trigger bits (4 bit memory)
- $32 \times 4 = 128 \text{ bit ROM (good!)}$

Putting It All Together

Some of the ROM Contents

ROM address (current state, inputs) ROM contents (next state, outputs)

Limitations of the Controller

- What happens if we make the price \$1.00?, or what if we want to accept nickels, dimes and quarters?
 - Must redesign the Assitgolfere (m) Presidete, Exferre Metapositions)
 - A programmable processor only needs a software upgrade.
 - If you had written software anticipating a variable price, perhaps no change is even needed

Add WeChat powcoder

Next Topic - Our first processor!

LC2Kx Processor as FSM

Logistics

- There are 3 videos for lecture 10
 - L10 _1 Finite-State-Machines_Implementation
 - L10_2 Single-Cycles Propersont Project Exam Help

- L10_3 LC2K_Datapath
 https://powcoder.com
 There is one worksheet for lecture 10
 - 1. Finite state machine And Wie Chttipnowcoder

L10_2 Assignment Project Exam Help Single-Cycle-Processor

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

To identify the components used to implement a processor for LC-2K and understand the mapping from these components to LC-2K instructions.
 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

General-Purpose Processor Design

- Fetch Instructions
- Decode Instructions Assignment Project Exam Help
- - Instructions are input thtoostropeQModer.com
- ROM data controls movement of data powcoder
 - Incrementing PC, reading registers, ALU control
- Clock drives it all
- Single-cycle datapath: Each instruction completes in one clock cycle

Here are the pieces, go build yourself a processor!


```
Connect one of the inputs to OUT based on the value

Assign@fe@le@bject Exam Help

https://powcoder.com

Add WeChat powcoder

If (! select)
```

OUT = IN1

OUT = IN2

Else

Decoder activates one of the output lines based on the input

Assignment Project Exam/Hs/p210

https://poycoder.com/00000010

Add Weethat powcoder/000100

only

etc.

ROM stores preset data in each location.
Give address to access data.

Perform basic arithmetic functions

//powcoder.com

For other processors, there are many more functions.

Just adds

Useful when compute unit is wider than data

Small/fast memory to store temporary values

n entries (LC2 = 8)

oject Exam Help
(LC2 = 2)

https://powcodemerita ports (LC2 = 1)

nat Piospeodies register number to read

- * W specifies register number to write
- * D specifies data to write

State Building Blocks (2)

Review: LC2K Instruction Formats

- Tells you which bit positions mean what
- R-type instructions (opcodes add 000, nor 001)

 Assignment Project Exam Help
 31-25 24-22 21-19 18-16 15-3 2-0

unused	opcode	https://pregA	owcode regB	r.com unused	destR
--------	--------	---------------	----------------	-----------------	-------

Add WeChat powcoder

• I-type instructions (opcodes lw 010, sw 011, beq

31-25 24-22 21-19 18-16 15-0

unused	opcode	regA	regB	offset
--------	--------	------	------	--------

Logistics

- There are 3 videos for lecture 10
 - L10 _1 Finite-State-Machines_Implementation
 - L10_2 Single-Cycles Propersont Project Exam Help
 - L10_3 LC2K-Datapath

- https://powcoder.com

 There is one worksheet for lecture 10
 - 1. Finite state machine Add WeChat powcoder

L10_3 LC2K-Datapath

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Char powcoder

Learning Objectives

- Ability to trace and explain the flow of data in a single-cycle processor diagram, using the blocks from the previous lecture.
- Identify the timing and speration of control of the lift for a single-cycle processor.

 https://powcoder.com

Add WeChat powcoder

LC2Kx Datapath Implementation

Executing an ADD Instruction

Executing an ADD Instruction

Executing a NOR Instruction

Executing a NOR Instruction

Executing an LW Instruction

Executing an LW Instruction

Assignment Project Exam Help

https://powcoder.com

More instructions processing...

Next lecture!

Logistics

- There are 3 videos for lecture 10
 - L10 _1 Finite-State-Machines_Implementation
 - L10_2 Single-Cycles Propersont Project Exam Help
 - L10_3 LC2K-Datapath

- https://powcoder.com

 There is one worksheet for lecture 10
 - 1. Finite state machine Add WeChat powcoder