Assignment 3

- 1. Consider the daily stock returns of Apple from January 2020 to February 2023. The price data can be obtained by using R package quantmod.
 - a. Compute the sample mean, standard deviation, skewness and excess kurtosis of the log returns r_t .
 - b. Estimate the mean and standard deviation of the simple return R_t by assuming the log returns r_t follow a normal distribution $r_t \sim N(\mu, \sigma^2)$.
 - c. Compute the sample mean and the sample standard deviation of the simple return R_t . Compare the results of (b) and (c).
 - d. Find the kernel density estimator and normal density estimator for the log return r_t and the simple return R_t , respectively. Compare the empirical kernel density and normal density for r_t and R_t .
 - Plot the two estimated densities on the same graph.(see Page 21 Figure 1.4 in the textbook)
- 2. Consider the daily stock returns of Taiwan Semiconductor Manufacturing from January 2020 to February 2023. The price data can be obtained by using R package quantmod.
 - a. Compute the sample mean, standard deviation, skewness and excess kurtosis of the log returns r_t .
 - b. Estimate the mean and standard deviation of the simple return R_t by assuming the log returns r_t follow a normal distribution $r_t \sim N(\mu, \sigma^2)$.
 - c. Compute the sample mean and the sample standard deviation of the simple return R_t . Compare the results of (b) and (c).
 - d. Find the kernel density estimator and normal density estimator for the log return r_t and the simple return R_t , respectively. Compare the empirical kernel density and normal density for r_t and R_t .

Plot the two estimated densities on the same graph.(see Page 21 Figure 1.4 in the textbook)