TITANIC SURVIVAL PREDICTION NAME: - SIDDHI PRASAD GAMBHIR In [1]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings	
warnings.filterwarnings('ignore') In [2]: df=pd.read_csv(r'C:\Users\Siddhi\Desktop\Titanic-Dataset.csv') In [3]: df Out[3]: PassengerId Survived Pclass	
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S	
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S	
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S 889 890 1 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C 890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q 891 rows × 12 columns	
Out [4]: Out [4]: PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked	
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S	
<pre>In [5]: df.info()</pre>	
0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 SibSp 891 non-null int64	
7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB	
<pre>In [6]: df.columns Out[6]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',</pre>	
Out[7]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177	
SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64	
In [8]: df.drop('Cabin', axis=1, inplace=True) In [9]: df['Age'].fillna(df['Age'].mean(), inplace=True) In [10]: df.dropna(inplace=True)	
In [11]: df.isnull().sum() Dut[11]: PassengerId 0	
SibSp 0 Parch 0 Ticket 0 Fare 0 Embarked 0 dtype: int64 df.drop(['PassengerId','Name','Ticket','Fare'],axis=1,inplace=True)	
In [13]: df.head() Out [13]: Survived Pclass Sex Age SibSp Parch Embarked O 0 0 3 male 22.0 1 0 S	
1 1 1 female 38.0 1 0 C 2 1 3 female 26.0 0 0 S 3 1 1 female 35.0 1 0 S 4 0 3 male 35.0 0 0 S	
<pre>In [14]: plt.figure(figsize = (3,3)) sns.countplot(x ="Sex", data = df, hue ="Sex", palette ="Pastel1") plt.title("Survival by Gender") plt.show() plt.subplot(1,2,1) sns.countplot(x=df[[Survived]])</pre>	
sns.countplot(x=df['Survived']) plt.title('Count of persons survived') Survival by Gender 500 - Sex male	
400 - 100 - 200 -	
100 - male female Sex ut[14]: Text(0.5, 1.0, 'Count of persons survived')	
Count of persons survived 500 -	
400 - ti 300 -	
100 -	
This both univariate graphs clearly shows Male passangers survived more than the Female passangers x=df['Survived']	
<pre>y=df['Age'] plt.figure(figsize=(3,4)) plt.bar(x,y) plt.xticks(rotation=90) plt.title("Survived v/s Age") plt.xlabel('Survived') plt.ylabel('Age')</pre>	
<pre>plt.show() plt.figure(figsize=(3, 4)) plt.scatter(x=df['Pclass'][0:20], y=df['Age'][0:20]) plt.title('Pclass vs. Age') plt.xlabel('Pclass') plt.ylabel('Age') plt.yticks(rotation=90) plt.yticks(rotation=90)</pre>	
plt.grid() plt.show() Survived v/s Age 80 -	
70 - 60 - 50 - ⁹ E 40 -	
30 - 20 - 10 -	
Survived Pclass vs. Age	
Age 40 50 40 50 40 50 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	
In this both bivariate graph represents the survival by age and the passangers ages with their different classes.	
STATISTICAL INFORMATION OF DATASET In [16]: df.describe() Out[16]: Survived Pclass Age SibSp Parch	
count 889.000000 889.000000 889.000000 889.000000 mean 0.382452 2.311586 29.653446 0.524184 0.382452 std 0.486260 0.834700 12.968366 1.103705 0.806761 min 0.000000 1.000000 0.420000 0.000000 0.000000	
25% 0.000000 2.000000 0.000000 0.000000 50% 0.000000 3.000000 29.699118 0.000000 0.000000 75% 1.000000 35.000000 1.000000 0.000000 max 1.000000 80.00000 8.000000 6.000000	
x=df.iloc[:,1:] x.head() Ptlass Sex Age SibSp Parch Embarked 0 3 male 22.0 1 0 S	
1 1 female 38.0 1 0 C 2 3 female 26.0 0 0 S 3 1 female 35.0 1 0 S 4 3 male 35.0 0 0 S	
<pre>In [18]: y=df['Survived'] y.head() Out[18]: 0 0 1 1</pre>	
2 1 3 1 4 0 Name: Survived, dtype: int64 In [19]: col=x.select_dtypes(['int','float']).columns col	
<pre>Dut[19]: Index(['Pclass', 'Age', 'SibSp', 'Parch'], dtype='object') In [20]: from scipy.stats import skew</pre>	
<pre>skew(x[['Pclass', 'Age', 'SibSp', 'Parch']]) put[21]: array([-0.63592246, 0.43099149, 3.68482683, 2.74052607]) in [22]: from sklearn.preprocessing import OrdinalEncoder</pre>	
<pre>in [23]: oe.fit_transform(x[['Embarked','Sex']]) put[23]: array([[2., 1.],</pre>	
[1., 1.]]) In [24]: catcol = x.select_dtypes(object).columns	
1 1 dass 3ex Age Slock Falcit Ellibarked 0 3 1.0 22.0 1 0 2.0 1 1 0.0 38.0 1 0 0.0 2 3 0.0 26.0 0 0 2.0 3 1 0.0 35.0 1 0 2.0	
4 3 1.0 35.0 0 0 2.0 n [25]: from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=1)	
from sklearn.linear_model import LogisticRegression logreg=LogisticRegression() logreg.fit(xtrain,ytrain) ypred=logreg.predict(xtest) n [27]: from sklearn.metrics import classification_report, accuracy_score	
cr=classification_report(ytest,ypred) print(cr) ac = accuracy_score(ytest,ypred) print("Accuracy score : ",ac) precision recall f1-score support 0 0.87 0.87 0.87 166	
1 0.78 0.78 0.78 101 accuracy 0.84 267 macro avg 0.82 0.82 267 weighted avg 0.84 0.84 0.84 267 Accuracy score: 0.8352059925093633	
We have achieved an Average Accuracy of 84 % which is almost good. Lets see, if we can increase this accuracy by hyper tuning. [29]: from sklearn.tree import DecisionTreeClassifier [30]: dt = DecisionTreeClassifier() [31]: def mymodel(model):	
<pre>def mymodel(model): model.fit(xtrain,ytrain) ypred = model.predict(xtest) print(accuracy_score(ytest,ypred)) print(classification_report(ytest,ypred)) return model</pre>	
mymodel(dt) 0.8014981273408239 precision recall f1-score support 0 0.85 0.83 0.84 166 1 0.73 0.75 0.74 101	
accuracy 0.80 267 macro avg 0.79 0.79 0.79 267 weighted avg 0.80 0.80 0.80 267 ut[32]: DecisionTreeClassifier DecisionTreeClassifier()	
By using Decision Tree, we get accuracy of 79% which is not good but lets check whether we get more accurcy by hyper tunning. his phase of EDA, after finding the skewness of all Numerical features understand that no need to remove it. and it does not impact the model's predictive performance. from sklearn.ensemble import AdaBoostClassifier ada = AdaBoostClassifier() ada.fit(xtrain, ytrain)	
<pre>ada.fit(xtrain,ytrain) ypred = ada.predict(xtest) print(classification_report(ytest,ypred)) precision recall f1-score support 0 0.87 0.86 0.86 166 1 0.77 0.78 0.78 101</pre>	
accuracy 0.83 267 macro avg 0.82 0.82 267 weighted avg 0.83 0.83 0.83 267 By using Gradient Boosting algorithm we get 84% of accuracy.	
XG Boosting [34]: pip install xgboost Requirement already satisfied: xgboost in c:\users\siddhi\appdata\local\programs\python\python311\lib\site-packages (2.0.3) Requirement already satisfied: numpy in c:\users\siddhi\appdata\local\programs\python\python311\lib\site-packages (from xgboost) (1.25.2) Requirement already satisfied: scipy in c:\users\siddhi\appdata\local\programs\python\python311\lib\site-packages (from xgboost) (1.11.2) Note: yew may peed to restart the kernel to yee yedsted pockages	
Note: you may need to restart the kernel to use updated packages. [notice] A new release of pip is available: 23.2.1 -> 23.3.2 [notice] To update, run: python.exe -m pip installupgrade pip n [35]: from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(xtrain,ytrain)	
<pre>ypred = xgb.predict(xtest) print(classification_report(ytest,ypred)) precision recall f1-score support 0 0.85 0.83 0.84 166 1 0.73 0.75 0.74 101</pre>	
macro avg 0.79 0.79 0.79 267 weighted avg 0.80 0.80 0.80 267 By using XG Boost algorithm, we get 80% of accuracy.	
<pre>BAGGING from sklearn.ensemble import BaggingClassifier bg = BaggingClassifier(LogisticRegression()) bg.fit(xtrain, ytrain) ypred = bg.predict(xtest) print(classification_report(ytest,ypred))</pre>	
macro avg 0.82 0.82 0.82 267 weighted avg 0.83 0.83 0.83 267 By using Bagging Classifier on Logostic Regression, we get 82% of accuracy which is not good for prediction. bg = BaggingClassifier(DecisionTreeClassifier()) bg.fit(xtrain,ytrain)	
<pre>ypred = bg.predict(xtest) print(classification_report(ytest,ypred)) precision recall f1-score support 0 0.85 0.86 0.86 166 1 0.77 0.75 0.76 101</pre>	
accuracy 0.82 267 macro avg 0.81 0.81 0.81 267 weighted avg 0.82 0.82 0.82 267 By using Bagging Classifier on Decision Tree we get 83% of accuracy.	
<pre>models =[] models.append(("lr", LogisticRegression())) models.append(("dt", DecisionTreeClassifier())) n [39]: from sklearn.ensemble import VotingClassifier vc = VotingClassifier(estimators = models) # estimators> model name vc.fit(xtrain, ytrain) vnred = vc.predict(ytest)</pre>	
<pre>ypred = vc.predict(xtest) print(classification_report(ytest,ypred)) precision recall f1-score support 0 0.83 0.93 0.88 166 1 0.85 0.69 0.77 101</pre>	
macro avg 0.84 0.81 0.82 267 weighted avg 0.84 0.84 0.83 267 In [40]: from sklearn.ensemble import VotingClassifier vc = VotingClassifier(estimators = models, voting='soft') # estimators> model na vc.fit(xtrain,ytrain)	
<pre>ypred = vc.predict(xtest) print(classification_report(ytest,ypred)) precision recall f1-score support 0 0.85 0.84 0.85 166 1 0.75 0.75 0.75 101</pre>	
accuracy 0.81 267 macro avg 0.80 0.80 0.80 267 weighted avg 0.81 0.81 267 By using Voting Classifier, we get 84% (hard voting) and 82% (soft voting) of of accuracy.	

Thank You