Wskaźnik planarności w grafach Barabasi Albert

1 Cel

Chcemy oceniać szansę na wystąpienie podpodziału $K_{3,3}$ lub K_5 w grafie G_n^m . Zaczynamy od pustego grafu. W każdym kroku dodajemy nową krawędź/ nowy wierzchołek z krawędzią. Co każde dodanie krawędzi na podstawie indeksu planaraności decydujemy jaki kolor jej nadać. Każdy kolor odpowiada jednej z warstw na które rozkładamy graf. Indeks ten liczymy dla każdej warstwy osobno.

2 Założenia

- 1. Dowolne ścieżki pomiędzy wierzchołkami nie powinny wpływać na wskaźnik, ponieważ mogą zostać zkontrakowane.
- 2. Wskaźnik powinien uwzględniać to, że każda krawędź może zostać użyta tylko raz.
- 3. Trzeba uwzględnić to aby wierzchołki tworzyły klikę czy graf pełny dwudzielny.

3 Realizacja

Weźmy pewną ścieżką P w grafie: p_1,\ldots,p_k i zdefiniujmy funkcję:

$$\tau(P) = \phi(p_1) \cdot (\prod_{i=2}^{k-1} \psi(p_i)) \cdot \phi(p_k)$$
(1)

gdzie: $\phi(p) = \frac{MIN\{d, \ deg(p)\}}{d}$ oraz $\psi(p) = \frac{1}{deg(p)-1}$.

Tak zdefiniowana funkcja $\tau(P)$ zwraca wartości z przedziału (0,1]. Wartość 1 oznacza, że ścieżka P może zostać zkontraktowana do krawędzi łączącej dwa wierzchołki stopnia d oraz wierzchołki w niej występujące nie wystąpią w innym podgrafie.

Sumując wartości $\tau(P)$ dla wszystkich ścieżek pomiędzy dwoma wierzchołkami p_i, p_j otrzymamy 'oczekiwaną liczbę ścieżek', które mogą zostać skontraktowane do krawędzi łączącej dwa wierzchołkami stopnia o 'oczekwianym stopniu d' - oznaczenie $\tau(P(p_i, p_j))$.

Aby określić wartość τ dla całego grafu mnożymy τ dla ścieżek pomiędzy wierzchołkami tworzącymi potencjalne kliki oraz potencjalne pełne grafy dwudzielne.

4 Usprawnienia obliczeniowe

Z analizy grafów planarnych wynika, że podgrafy będące podpodziałami grafów $K_{3,3}$ oraz K_5 mają rozmiar $O(\log_2(n))$, zatem wystarczy w analizie wziąść pod uwagę ścieżki takiej długości.

Przy pojawianiu się nowego wierzchołka/krawędzi wystarczy zaktualizować część wartości. Można to będzie osiągnąć poprzez trzymanie jakiś dodatkowych informacji lub lekką modyfikację funkcji τ . Można do iloczynów wartości krawędzi grafów $K_{3,3}$ oraz K_5 zastować jakiś próg, aby wartości poniżej 0.1 nie były brane pod uwagę. Można także liczyć logarytm wartości τ dla ścieżek aby zamienić iloczyny na sumy.

5 Zalety

Mając policzone wartości τ dla danych ścieżek można analizować które miejsca w grafie są problematyczne oraz szacować ile krawędzi będzie zakłócać planarność grafu.

6 Przykład użycia

Efekty kolorowania przy użyciu wskaźnika opisanego wyżej. Generowany jest graf BA dla parametru m=5 oraz n=30 i liczbie kolorów 3. Po dodaniu każdej krawędzi wyznaczany jest wskaźnik planarności dla każdej warstwy(koloru). Wierzchołki kolorowane są na podstawie najniższej wartości wskaźnika planarności. Pod uwagę brane są wszytskie ścieżki - bez ograniczeń na długość.

