DATA MODELS

Data models (1/2)

- A model is an abstract representation
 - We care about data, so we have data models
- Do you know your data?
 - Is there something missing?
 - Are there redundancies?
 - How do various components of your data fit together?

Data models (2/2)

- To design a database, we first need a schema
 - Remember logical/physical independence ?
- Use a data model to design the schema
 - We will study two data models: ER and relational

ER MODEL

Entity-Relationship model (1/2)

- Sets of entities and the relationships between them
- ER-diagrams
- Conversion to relational model

Entity-Relationship model (2/2)

- Entity sets
 - Actors, movies, studios
- Attributes
 - Atomic values
 - Name, age, height
- Relationships
 - Between two entity sets
 - Actors actsIn Movies

Go back and revise from the text book. Almost all material is from there.

ER diagram

Entity set

Attribute

Relationship

Example - Movie DB

Types of relationships (1/2)

Movie produced by at most one studio, but a studio produces many movies

Movie produ cedBy Studio

An actor plays at most one role, a role is played by at most one actor

A movie has many actors, an actor plays in many movies

Types of relationships (2/2)

- one-one
 - an entity of one entity set is related to at most one entity of another entity set and vice-versa
- many-one
 - many entities of one entity set are related to at most one entity of another entity set
- many-many

Remember the maths

$$A = \{a_1, a_2, a_3\}$$

$$B = \{b_1, b_2\}$$

$$A \times B$$

Multi-way relationships

Non-binary relationships

Priyanka Chopra	Baywatch	Victoria Leeds
Anthony Hopkins	Thor: Ragnarok	Odin

Attributes on relationships

- An attribute depends on a combination of entities, not a single entity
 - Relationships are how entities are combined!

Modeling subsets

- ER model allows for hierarchies
 - Sound familiar?

N-ary to binary

"Parallel" relationships

- A relationship from an entity set to itself
 - Each edge indicates a role

CONSTRAINTS

Modeling constraints

- Constraints model restrictions on the data
 - Data may be erroneous
 - Mistakes may be made during the data entry process
- Modeling the correct constraints are part of the design process

Common constraints (1/2)

- Keys
 - How is an entity uniquely identified?
 - (Name, Year of birth) identifies an actor uniquely
- Single-value constraints
 - Unique values in a given context (keys are single-value constraints)
 - Place of birth has to be unique (right?)
 - Null values

Key constraints and single value constraints

- Every entity set should have a key
- There could be more than one key

Keys

Common constraints (2/2)

- Referential integrity
 - Remove the null, insist on the value
 - If an actor acts in a movie, then that movie has to exist in the database
- Domain constraints
 - Restricting the value set of attributes
 - Age in range from 0 to 100 (or is it 0 to 25?)
- General constraints

Representing constraints (2/2)

Referential Integrity

Weak entity sets

 An entity set whose attributes are not sufficient to form a key

