Problem Sheet 2

MS121 Semester 2 IT Mathematics

Exercise 1.

Find the equations that determine the following lines:

- (a) The line through (-1,2) with slope -2.
- (b) The line through (-1, -2) and (1, 3).
- (c) The line through (0,5) which is parallel to the line y=7-3x.
- (d) The line through (1,1) which is perpendicular to the line 2x y = 5.

 \oslash

Solution 1.

- (a) For the line through (-1,2) with slope -2 we start with the general formula y=mx+b. We insert the slope m=-2 and then determine b using the point (-1,2): 2=-2(-1)+b, so b=0. Hence, y=-2x.
- (b) For the line through (-1,-2) and (1,3) we first determine the slope $m=\frac{3-(-2)}{1-(-1)}=\frac{5}{2}$. Inserting this into y=mx+b we may use either of the points to determine $b=\frac{1}{2}$ and hence $y=\frac{1}{2}(5x+1)$.
- (c) The line through (0,5) which is parallel to the line y=7-3x must have the same slope, m=-3. Using (0,5) to determine b in y=-3x+b yields b=5 and hence y=-3x+5.
- (d) For the line through (1,1) which is perpendicular to the line 2x y = 5 we first note that the given line can be written as y = 2x 5, so it has a slope 2. Any line perpendicular to it must have a slope $m = -\frac{1}{2}$ (the products of the slopes must be -1). Determining b in $y = -\frac{1}{2}x + b$ with the given point (1,1) yields $b = \frac{3}{2}$ and hence $y = -\frac{1}{2}x + \frac{3}{2}$.

 \Diamond

Exercise 2.

Which of the following functions are even, which ones are odd, and which ones are neither?

(a) $f(x) = 4x^3 - 2x$,

(d) $f(x) = \sin(x)$,

(b) $f(x) = 5x^6$,

(e) $f(x) = x\sin(x) + \cos(x),$

(c) f(x) = x - 3,

(f) f(x) = 0.

 \bigcirc

Solution 2.

- (a) $f(x) = 4x^3 2x$ is odd (polynomial with only odd powers),
- (b) $f(x) = 5x^6$ is even,
- (c) f(x) = x 3 is neither even nor odd,
- (d) $f(x) = \sin(x)$ is odd,

- (e) $f(x) = x\sin(x) + \cos(x)$ is even,
- (f) f(x) = 0 is the only function which is both even and odd.

 \Diamond

Exercise 3.

Find the roots of the following functions and determine where the functions are positive and where they are negative:

(a) $f(x) = 49 - x^2$,

(d) $h(t) = t^2 + 2t + 3$,

(b) $f(x) = x^2 - 5x - 6$,

(e) $y = -x^2 + 3x - 2$,

(c) $q(y) = y^2 - 4y + 4$,

(f) $h(x) = x^4 + 4x^2 + 3$.

 \oslash

Solution 3.

- (a) $f(x) = 49 x^2$ has roots x = -7, and x = 7, and it is positive on (-7,7) and negative on $(-\infty, -7) \cup (7, \infty)$,
- (b) $f(x) = x^2 5x 6$ has roots x = -1, and x = 6, and it is positive on $(-\infty, -1) \cup (6, \infty)$ and negative on (-1, 6),
- (c) $g(y) = y^2 + 4y + 4$ has one (double) root y = 2, and it is positive on $(-\infty, 2) \cup (2, \infty)$ and nowhere negative,
- (d) $h(t) = t^2 + t + 1$ has no roots (discriminant is negative) and it is positive on all of \mathbb{R} ,
- (e) $y = -x^2 + 3x 2$ has roots x = 1, and x = 2, and it is positive on (1,2) and negative on $(-\infty, 1) \cup (2, \infty)$,
- (f) for $h(x) = x^4 + 4x^2 + 3$ we first note $h(x) = g(x^2)$ with $g(y) = y^2 + 4y + 3$; g(y) has roots at y = -3 and y = -1, so that g(y) = (y+3)(y+1); it follows that $h(x) = (x^2+3)(x^2+1)$ and neither factor has roots, because $x^2 = -3$ and $x^2 = -1$ have no solutions in \mathbb{R} ; hence h has no roots and it is positive on the entire \mathbb{R} .

 \Diamond

Exercise 4.

Solve the following inequalities for $x \in \mathbb{R}$. Write your answer in terms of intervals.

(a) $1 - 3x \le -2$,

(e) $\frac{x+3}{2x+7} > 0$, (Hint: multiply both sides by the positive number $(2x+7)^2$)

(b) 1 < 7 - 2x < 3,

(f) $\frac{3}{\sqrt{-2x^2+7x-5}} > 0$,

(d) $2x^2 - 4x < 16$.

(c) |3x-4| < 5,

(g) $\frac{x+2}{3x+4} > 5x + 6$.

 \bigcirc

Solution 4.

- (a) $1-3x \le -2$ means $3x \ge 1+2=3$ and $x \ge 1$, i.e. $x \in [1,\infty)$,
- (b) $1 \le 7 2x < 3$ means $2x \le 7 1 = 6$ and 2x > 7 3 = 4, i.e. $x \in (2, 3]$,
- (c) to solve $2x^2-4x < 16$ we first find the solutions to $2x^2-4x = 16$, which means $x^2-2x-8 = 0$ and therefore x = -2 or x = 4. From the shape of the graph $y = 2x^2 4x 16$ we see that the solutions are $x \in (-2, 4)$,
- (d) |3x-4| < 5 means 3x-4 < 5 and 4-3x < 5 (because $|y| = \max\{y, -y\}$), and therefore $x \in (-\frac{1}{2}, 3)$,
- (e) $\frac{x+3}{2x+7} > 0$ means either x+3>0 and 2x+7>0, or x+3<0 and 2x+7<0, i.e. $x\in (-\infty, -3\frac{1}{2})\cup (-3, \infty)$,
- (f) $\frac{3}{\sqrt{-2x^2+7x-5}} > 0$ means $\sqrt{-2x^2+7x-5} > 0$ and therefore $-2x^2+7x-5 > 0$; first solving $-2x^2+7x-5=0$ we have x=1 or $x=\frac{5}{2}$ and from the shape of the graph of $y=-2x^2+7x-5$ we see that the solutions are $x\in(1,\frac{5}{2})$,
- (g) $\frac{x+2}{3x+4} > 5x+6$ means either 3x+4>0 and x+2>(5x+6)(3x+4) (multiplying both sides by 3x+4), or 3x+4<0 and x+2<(5x+6)(3x+4); the polynomial $(5x+6)(3x+4)-(x+2)=15x^2+37x+22$ has roots at $x=-\frac{22}{15}$ and x=-1 and it is negative in between these roots; using the ordering $-\frac{22}{15}<-\frac{4}{3}<-1$ we then find that $x\in(-\infty,-\frac{22}{15})\cup(-\frac{4}{3},-1)$.

