```
import pandas as pd
import matplotlib.pyplot as plt
import gdown

# Download the data from Google Drive
url - 'https://drive.google.com/uc?id-{}'.format('ir-FEVZWJackNJ9E0fN64isWnvlN_g56-J')

# Step 2: Basic Statistical Description
print(df.describe())

# Step 3: Check for Null Values and replace with mean
df.fillna(df.mean(), implace=True)

# Step 4: Aggregate Data for "Duration" and "Calories"
agg_data = df[['Duration', 'Calories']].agg(['min', 'max', 'count', 'mean'])
print(agg_data)

# Step 5: Filter Data for calories between 500 and 1000
filtered_data_500_1000 = df[(df['Calories'] >= 500) & (df['Calories'] <= 1000)]
print(filtered_data_500_1000 = df[(df['Calories'] >> 500) & (df['Pulse'] < 100)]
print(filtered_data_cal_pulse = df[(df['Calories'] >> 500) & (df['Pulse'] < 100)]
print(filtered_data_cal_pulse)

# Step 6: Filter Data for calories > 500 and pulse < 100
filtered_data_cal_pulse = df[(df['Calories'] >> 500) & (df['Pulse'] < 100)]
print(filtered_data_cal_pulse)

# Step 7 & 8: Modify Dataframe
df.modified = df.drop(columns=['Maxpulse'])
df.drop(columns=['Maxpulse'], inplace=True)

# Step 9: Convert Datatype of Calories to int
df['Calories'] = df['Calories'].astype(int)

# Step 10: Scatter Plot for Duration and Calories
plt.scatter(df['Duration'), pff('Calories'])
plt.vilabel('Calories')
plt.vilabel('Calories')
plt.vilabel('Calories')
plt.vilabel('Calories')
plt.show()
```

₽		Durat	ion	Pulse	Maxpulse	Calories	
L	count			9.000000	169.000000	164.000000	
	mean	63.846			134.047337	375.790244	
	std	42.299		4.510259	16.450434	266.379919	
	min	15.000			100.000000	50.300000	
	25%	45.000	1000 10	0.000000	124.000000	250.925000	
	50%	60.000	1000 10	5.000000	131.000000	318.600000	
	75%	60.000	000 11	1.000000	141.000000	387.600000	
	max	300.000	000 15	9.000000	184.000000	1860.400000	
		Durat	ion	Calories			
	min	15.000	000	50.300000			
	max	300.000		60.400000			
	count			69.000000			
	mean	63.846		75.790244			
		Duration	Pulse	Maxpulse	Calories		
	51	80	123	146	643.1		
	62	160	109	135	853.0		
	65	180	90	130	800.4		
	66	150	105	135	873.4		
	67	150	107	130	816.0		
	72	90	100	127	700.0		
	73	150	97	127	953.2		
	75	90	98	125	563.2		
	78	120	100	130	500.4		
	83	120	100	130	500.0		
	90 99	180 90	101 93	127 124	600.1 604.1		
	101	90	99	110	500.0		
	101	90	90	100	500.0		
	103	90	90	100	500.4		
	106	180	90	120	800.3		
	108	90	90	120	500.3		
		Duration	Pulse	Maxpulse	Calories		
	65	180	90	130	800.4		
	70	150	97	129	1115.0		
	73	150	97	127	953.2		
	75	90	98	125	563.2		
	99	90	93	124	604.1		
	103	90	90	100	500.4		
	106	180	90	120	800.3		
	108	90	90	120	500.3		

Q2 Part 1

```
# Data for the popularity of programming languages
languages = ["Java", "Python", "PHP", "JavaScript", "C#", "C++"]
popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7]

# Create a pie chart
colors = ['blue', 'green', 'red', 'yellow', 'cyan', 'purple']
explode = (0.1, 0, 0, 0, 0, 0) # explode 1st slice (Java) for emphasis

plt.figure(figsize=(10, 7))
plt.pie(popularity, explode=explode, labels=languages, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140)
plt.title('Popularity of Programming Languages')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
```


Q2 Part 2

```
import matplotlib.pyplot as plt
# Data for Maths and Science marks
math_marks = [88, 92, 80, 89, 100, 80, 60, 100, 80, 34]
science_marks = [35, 79, 79, 48, 100, 88, 32, 45, 20, 30]
marks_range = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# Create a scatter plot
plt.figure(figsize=(10, 5))
plt.scatter(marks_range, math_marks, label='Math Marks', color='red', s=50)
plt.scatter(marks_range, science_marks, label='Science Marks', color='blue', s=50)
plt.xlabel('Marks Range')
plt.ylabel('Marks Scored')
plt.title('Scatter Plot of Maths vs Science marks')
plt.legend()
plt.grid(True)
plt.show()
                                      Scatter Plot of Maths vs Science marks
    100
                                                                                                Math Marks
                                                                                                Science Marks
     90
     80
     70
 Marks Scored
     60
    50
     40
     30
     20
                      20
                                           40
                                                                60
                                                                                    80
                                                                                                         100
```

Marks Range

Github: https://github.com/SXP36810/BigData

Youtube: https://youtu.be/38ts9mmRbfE