Suggestions for solutions Advanced Microeconomics exam 21FEB2014

3 hours closed book exam

Problem A

(a) Give a graphic example of a production set $Y \subset \mathbb{R}^2$ satisfying P1, except the convexity part, and prices, $(p_1, p_2) \in \mathbb{R}^2_{++}$ such that there are precisely two solutions to the Producer Problem.

SOLUTION: See Figure 1.

(b) Let a consumer have \mathbb{R}^2_+ as consumption set and lexicographic preferences. Define such preferences.

SOLUTION: $x \succsim \bar{x}$ if either $x_1 > \bar{x}_1$ or if $x_1 = \bar{x}_1$ and $x_2 \ge \bar{x}_2$

(c) For the consumer from (b) find the indifference class containing x = (1, 1)

SOLUTION: The indifference class contains only the consumption x = (1, 1).

(d) Assume that Arrow's assumptions A1 to A3 for a SWF are satisfied and that Schedule 1 below is mapped to a ranking for society with b above a. What can be concluded about society's ranking of a and b for Schedule 2?

Schedule 1			Schedule 2		
\mathbf{c}	b	a	\mathbf{c}	a	\mathbf{c}
b	a	\mathbf{c}	b	b	a
a	\mathbf{c}	b	a	\mathbf{c}	b

SOLUTION: Schedule 1 and Schedule 2 do not have the same a-b pattern so Independence of Irrelevant Alternatives can not be applied. Individual 1 and 2 have the same preferences over a, b so one of them is a dictator.

(e) Let $\mathcal{E} = (\mathbb{R}^2_+, u^i, \omega^i)_{i \in \{a,b\}}$ be a pure exchange economy with private ownership. Define what is meant by a Walras equilibrium for \mathcal{E} .

SOLUTION: See MWG or NotesWa

(f) Let the consumption set be $X = \mathbb{R}^2_+$ and consider a consumer with homothetic preferences \succeq . Assume that $x \sim \bar{x}$. Can it be the case that $2x \succ 2\bar{x}$? Illustrate in a diagram.

SOLUTION: No, it must be the case that $2x \sim 2\bar{x}$. See Figure 2 and MWG

(g) Show by a graphic example, in \mathbb{R}^2 , that when a consumer faces a price-wealth pair (p, \mathbf{w}) , $p \in \mathbb{R}^2_{++}$ such that $\mathbf{w} = \min\{px \mid x \in X\}$ then there might be $\hat{x} \in X$ such that \hat{x} is a solution to the expenditure minimization problem (for utility level $\hat{u} = u(\hat{x})$ at prices p) but \hat{x} does not solve the Utility Maximization Problem.

SOLUTION: See Figure 3 or NotesOpt.

(h) In an economy the production sector has 2 producers, a and b, with production sets Y^a and Y^b . What is the (total, aggregate) production set for the production sector.

SOLUTION: $Y^a + Y^b$ see NotesThPr.

(i) Let (\bar{x}, \bar{y}, p) , p = (1, 1), be a Walras equilibrium for an economy $\mathcal{E} = \{(u, \omega), Y, \alpha\}$ (one consumer, one producer) where $\alpha = 1$ (the consumer owns the producer). State the conditions that (\bar{x}, \bar{y}, p) must satisfy. Be careful when defining the consumer's wealth. Illustrate in a diagram.

SOLUTION: See Figure 4. \bar{y} solves PMP at prices p, \bar{x} solves UMP at prices p and wealth $w = p\bar{x} = p\bar{y} + p\omega$, markets balance so $\bar{x} = \bar{y} + \omega$.

(j) Assume that the preference relation \succeq on $X = \mathbb{R}^L_+$ is represented by the non-negative strictly monotone utility function u with the property $u(\alpha x) = \alpha^2 u(x)$ for $\alpha \geq 0$ (homogeneous of degree 2). Is \succeq a homothetic preference relation?

SOLUTION: \succeq is a homothetic preference relation if and only if there is a utility function homogenous of degree 1 representing \succeq . The function $t \longrightarrow \varphi(t) = t^{\frac{1}{2}}$ is increasing and defined on \mathbb{R}_+ . Thus $\varphi \circ u$ with values $\varphi \circ u(x) = \left(u(x)^{1/2}\right)$ represents \succeq , But $\varphi \circ u(\alpha x) = (\alpha^2 u(x))^{\frac{1}{2}} = \alpha(u(x))^{\frac{1}{2}} = \alpha \cdot \varphi \circ u(x)$ so $\varphi \circ u$ is a representation of \succeq which is homogenous of degree 1.

Problem B

(a) Consider an economy with commodity space \mathbb{R}^L having precisely two producers, a and b, with production sets $Y^a \subset \mathbb{R}^L$ and $Y^b \subset \mathbb{R}^L$. Let the price vector $p \in \mathbb{R}^L_{++}$ be given and let \bar{y}^a and \bar{y}^b be solutions to the individual producer problems. Show that $\bar{y}^a + \bar{y}^b$ solves the aggregate (total) profit maximization problem.

SOLUTION: Let $y \in Y^a + Y^b$ then $y = y^a + y^b$ with $y^a \in Y^a$ and $y^b \in Y^b$. Then

$$p\bar{y}^a \geq py^a$$
$$p\bar{y}^b \geq py^b$$

and thus $p(\bar{y}^a + \bar{y}^b) \ge p(y^a + y^b) = py$.

(b) Let $\mathcal{E} = (\mathbb{R}^2_+, u^i, \omega^i)_{i \in \{a,b\}}$ be an exchange economy with private ownership where $\omega^a = \omega^b$ and $(\hat{x}^a, \hat{x}^b, p)$ a Walras equilibrium for \mathcal{E} . Show that the equilibrium allocation is a fair allocation

SOLUTION: Since $\omega^a = \omega^b$ both consumers have the same wealth, $\mathbf{w}^a = \mathbf{w}^b = p\omega^a = pw^b$. Consumer a could have chosen b 's consumption. Hence $u^a(\hat{x}^a) \geq u^a(\hat{x}^b)$. The same reasoning applies to b so that $u^b(\hat{x}^b) \geq u^b(\hat{x}^a)$ which shows that the equilibrium allocation is fair.

Problem C

Consider a private ownership pure exchange economy with commodity space \mathbb{R}^3 . The economy has two consumers, a and b, with consumption sets $X^a = X^b = \mathbb{R}^3_+$ initial endowments $\omega^a, \omega^b \in \mathbb{R}^3_{++}$ and preferences given by

utility functions $U^a: \mathbb{R}^3_+ \longrightarrow \mathbb{R}$ and $U^b: \mathbb{R}^3_+ \longrightarrow \mathbb{R}$, where furthermore,

$$U^{a}(x_{1}, x_{2}, x_{3}) = v^{a}(x_{1}) + v^{a}(x_{2}) + v^{a}(x_{3})$$

$$U^{b}(x_{1}, x_{2}, x_{3}) = v^{b}(x_{1}) + v^{b}(x_{2}) + v^{b}(x_{3})$$

and where, for i=a,b, the function $v^i: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ has positive first derivative (differentiably monotone), $Dv^i > 0$, and negative second derivative (differentiably concave), $D^2v^i < 0$ on \mathbb{R}_{++} . Furthermore $\lim_{y\to 0} Dv^i(y) = \infty$.

(a) Does $f: \mathbb{R} \longrightarrow \mathbb{R}$ with values $f(t) = 2t^{\frac{1}{2}}$ satisfy the conditions assumed for v^a ?

SOLUTION: $Df(t) = t^{-\frac{1}{2}}$ and $D^2 f(t) = -\frac{1}{2}t^{-\frac{3}{2}}$ from which is seen that f satisfies the assumptions for v^a .

(b) Is U^a a quasi-concave function? **Hint:** U^a is the sum of the functions $(x_1, x_2, x_3) \longrightarrow v^a(x_1), (x_1, x_2, x_3) \longrightarrow v^a(x_2)$ and $(x_1, x_2, x_3) \longrightarrow v^a(x_3)$.

SOLUTION: Let $\alpha, \beta > 0$ and $\alpha + \beta = 1$. Then for $x, y \in \mathbb{R}^3_+$

$$\alpha x + \beta y \longrightarrow v^a (\alpha x_1 + \beta y_1) \ge \alpha v^a (x_1) + \beta v^a (y_1)$$

$$\alpha x + \beta y \longrightarrow v^a (\alpha x_2 + \beta y_2) \ge \alpha v^a (x_2) + \beta v^a (y_2)$$

$$\alpha x + \beta y \longrightarrow v^a (\alpha x_3 + \beta y_3) \ge \alpha v^a (x_3) + \beta v^a (y_3)$$

with at least one strict inequality if $x \neq y$. Hence if $x \neq y$

$$U(\alpha x + \beta y) = v^{a}(\alpha x_{1} + \beta y_{1}) + v^{a}(\alpha x_{2} + \beta y_{2}) + v^{a}(\alpha x_{3} + \beta y_{3}) >$$

$$\alpha U(x) + \beta U(y)$$

which shows that U is a strictly concave function and hence a strictly quasiconcave function.

(c) Let $p \in \mathbb{R}^3_{++}$ and income (wealth) $w^a > 0$. State consumer a's problem (the UMP). Does it have a solution?

SOLUTION: The UMP is

$$Max\ U^{a}\left(x\right)$$
 subject to $x\in\mathbb{R}^{3}_{+}$ and $px\leq\mathbf{w}^{a}$

Since the budget set is compact (and U^a continuous) there is a solution. Since U^a is strictly quasi-concave the solution is unique.

(d) Assume that \bar{x}^a is a solution to the problem from (c). Derive the marginal conditions that \bar{x}^a will satisfy.

SOLUTION: If \bar{x}^a is a solution then \bar{x}^a solves the UMP with equality in the budget restriction.

Then there is $\lambda \in \mathbb{R}$ such that

$$Dv^{a}(\bar{x}_{1}^{a}) - \lambda p_{1} = 0$$

$$Dv^{a}(\bar{x}_{2}^{a}) - \lambda p_{2} = 0$$

$$Dv^{a}(\bar{x}_{3}^{a}) - \lambda p_{3} = 0$$

which also shows that $\lambda > 0$. Note that the condition $\lim_{y\to 0} Dv^i(y) = \infty$ excludes boundary solutions.

(e) Assume that $p_1 < p_2 < p_3$ and let λ be the multiplier from (d). Make a qualitatively correct plot of the first derivative of $(1/\lambda) v^a$. Indicate in your diagram the location of pairs $\left(\frac{1}{\lambda}Dv^a(\bar{x}_h^a), \bar{x}_h^a\right) = (p_h, \bar{x}_h^a),$ h = 1, 2, 3 where λ is the multiplier from (d).

SOLUTION: See Figure 5.

(f) Assume in the sequel that total initial endowment $\omega = \omega^a + \omega^b$ is such that $\omega_1 > \omega_2 > \omega_3$. Let $(\hat{x}^a, \hat{x}^b, \hat{p})$ be a Walras equilibrium. State the market balance conditions for commodity 1 and 2. Using these show that $\hat{x}_1^a > \hat{x}_2^a$ or $\hat{x}_1^b > \hat{x}_2^b$.

SOLUTION: Assume that $\hat{x}_1^a \leq \hat{x}_2^a$ and $\hat{x}_1^b \leq \hat{x}_2^b$. Then $\omega_1 = \hat{x}_1^a + \hat{x}_1^b \leq \hat{x}_2^a + \hat{x}_2^b = \omega_2$ contradicting that $\omega_1 > \omega_2$.

(g) Show that the result in (f) implies $p_1 < p_2$. Hint: Apply the reasoning from (e).

SOLUTION: Assume from (f) that $\hat{x}_1^a > \hat{x}_2^a$ is (part of) a solution to consumer a 's problem. From Figure 5 it is seen that this can be the case only if $p_1 < p_2$.

(h) Thus in an exchange economy with preferences like U^a and U^b (separable preferences) there is a relation between the ordering of the total endowment and Walras equilibrium prices. Does this extend also to the ordering of the equilibrium consumptions?

SOLUTION: Yes, clearly prices are increasing if the initial endowment is decreasing. But with increasing prices both consumers choose consumptions which are decreasing.

Figure 1: At prices p the PMP has precisely two solutions; y^1 and y^2

Figure 2: $\bar{x} \sim \hat{x}$ implies $2\bar{x} \sim 2\hat{x}$. Let I(x) be the indifference class containing x. We have $I(2\bar{x}) = 2 I(\bar{x})$.

Figure 3: \hat{x} is a solution to the EMP (at prices p and utility level $u(\hat{x})$) but \bar{x} is the unique solution to the UMP at prices p and wealth $p\bar{x} = p\hat{x}$

Figure 4: As initial endowment is $\omega=(\omega_1,0)$ with $\omega_1>0$ the consumptions $x=y+\omega$ are available to the consumer, In order to realize the consumption the consumer needs wealth $\mathbf{w}=px=py+p\omega$

Figure 5: For λ fixed the function $(1/\lambda) Dv^a$ is decreasing since $D^2v^a < 0$. Consumer a demands a larger quantity, \hat{x} , of the commodity with the low price.