ECE345 HW1

 Homework Group #85 Yanni Alan Alevras | yanni.
alevras@mail.utoronto.ca | 1009330706 Evan Banerjee | evan.banerjee@mail.utoronto.ca | 1009682309 Gautam | |

Total Pages: 7

Thursday 19th September, 2024

1 Question 1 Examples of proof

a. Theorem. Some theorem here.

Proof. Proof by induction

Base Step: When n = 1, is true.

Induction Hypothesis: Suppose is true

Induction Step: Consider when

b. Time complexity: $\mathcal{O}(n)$ Proof. (\Leftarrow) Assume by Contradiction, (\Rightarrow)

2 Question 2 Example Pseudocode

```
1: function Gale-Shapley(E, S)
2:
       initialize all employers in E and students in S to unmatched
       while an unmatched employer with at least one student on its preference list remains do
3:
4:
           choose such an employer e \in E
           make offer to next student s \in S on e's preference list
5:
           if s is unmatched then
 6:
              Match e with s
 7:
                                                                                             \triangleright s accepts e's offer
           else if s prefers e to their current employer e' then
8:
              Unmatch s and e'
9:
                                                                                                    \triangleright s rejects e'
              Match e with s
                                                                                             \triangleright s accepts e's offer
10:
           end if
11:
           cross s off e's preference list
12:
       end while
13:
       report the set of matched pairs as the final matching
14:
15: end function
```

3 Question 3

Figure 1: Example image

This figure shows xxx

4 Question 4 Induction

 (\Rightarrow)

a.	
	Theorem. Some theorem here.
	<i>Proof.</i> Proof by induction
	Base Step : When $n = 1$, is true.
	Induction Hypothesis: Suppose is true
	Induction Step: Consider when
b.	Time complexity: $\mathcal{O}(n)$
	<i>Proof.</i> (\Leftarrow) Assume by Contradiction,

5 Question 5 Probability

a.		
	Theorem. Some theorem here.	
	<i>Proof.</i> Proof by induction	
	Base Step : When $n = 1$, is true.	
	Induction Hypothesis: Suppose is true	
	Induction Step: Consider when	
b.	Time complexity: $\mathcal{O}(n)$	
	<i>Proof.</i> (\Leftarrow) Assume by Contradiction,	
	(\Rightarrow)	

6 Question 6 Graphs, Proof by Contradiction

Proof. Assume by Contradiction,

Assume d(u, w) + d(w, v) < d(u, v).

This implies that there is a path from u to v via w whose total distance is less than the direct distance between u and v.

However, by the definition of d(u, v), it is the shortest distance between u and v. Therefore, no other path, including one through w, can have a smaller distance.

This contradiction arises from our assumption, so the assumption must be false. Hence, we conclude that $d(u, w) + d(w, v) \ge d(u, v)$.

7 Question 7 Trees, Proof by induction

Definition: A stable parent is defined as a node with two leaves. Let:

- \bullet *n* be the number of nodes,
- \bullet *l* be the number of leaves,
- p be the number of stable parents.

Proof. Proof by induction.

Assume the inductive hypothesis:

$$l_n = p_n + 1 \quad \Rightarrow \quad l_{n+1} = p_{n+1} + 1$$

We will now consider two cases:

Case 1: Add a child to a leaf.

- Since the leaf gains a child, while a new leaf is added, we have $l_{n+1} = l_n$.
- Since no node with 1 child gains another child, $p_{n+1} = p_n$.
- Therefore, $l_{n+1} = l_n = p_n + 1 = p_{n+1} + 1$.

Case 2: Add a child to a node with 1 child already.

- Since no leaf stops being a leaf, you have simply added a leaf, so $l_{n+1} = l_n + 1$.
- Since the node with 1 child gains another child, a new stable parent is formed, so $p_{n+1} = p_n + 1$.
- Therefore, $l_{n+1} = l_n + 1 = p_{n+1} + 1 = p_n + 1 + 1$.

Base case: For n = 1, we have:

- 1 node implies 1 leaf and 0 stable parents.
- Thus, $l_1 = 1$ and $p_1 = 0$.
- Therefore, 1 = 0 + 1, which satisfies $l_1 = p_1 + 1$.

Q.E.D.