

A look at the data

652,173 trees

444,390 professional (TreesCount and Parks staff) entries 207,776 volunteer entries

Health of trees (classification target):

Good (82%), **Fair** (14%), and **Poor** (4%)

Variables:

Tree diameter, species, number of stewards, quality of tree guards, root/trunk/branch problems

Location attributes:

Borough, neighborhood, community board, council district, state assembly, state senate

COUNT 5

Latitude & longitude for mapmaking

Project Outline

Data Cleaning

Drop stumps and dead trees

Drop volunteer data

Turn data objects into numericals

EDA

Effects of location:

Borough

Neighborhood Political districts

Effect of species

Root, trunk, and branch

problems

Tree guards Tree stewards

Maps

Baseline Model

Fit a Random Forest Model with standard parameters

Interpret which features are most important and if any more EDA needs to be done

Feature Engineering

Distance of nearest tree using GeoPandas

Number of trees on same block

Create dummy variables

Use community board as neighborhood variable

Final Model

Random Forest with GridSearch

Naive Bayes with GridSearch

Create list of flagged trees (future goal)

Volunteer entries

Fair Poor

Recommend changes for next tree census

Recommend policies for trees planting and maintenance

Develop a model to verify the health status given by volunteers

Model preview

Vanilla random forest

Hyperparams: class_weight='balanced'

Accuracy: **54.0%**

Weighted F1: **61.1%**

Untuned random forest

Hyperparams: class_weight='balanced'

Accuracy: **84.6%**

Weighted F1: 81.7%

Tuned random forest

Accuracy: **77.1%**

Weighted F1: **78.2%**

Hyperparams:

max_features=11,

min_samples_split=11,

min_samples_leaf=2,

n_estimators=500,

class_weight='balanced'

Species matters

Top 3: Norway maple Katsura tree Maple

Bottom 3: Sawtooth oak Silver linden Japanese zelkova

Tree problems (and solutions)

The most important problems are listed as "Other".

In future censuses, be more specific or have a notes column for each.

Solutions for healthier trees:

More regular maintenance of trees.

Farther reaching environmental protections, à la the plastic bag ban.

Confusion journey

Accuracy: **54.0%** Weighted F1: **61.1%**

Accuracy: **84.6%** Weighted F1: **81.7%**

Accuracy: **76.8%** Weighted F1: **78.0%**

Final model - Random Forest

Top features (out of 147):

Tree diameter	(14.8%)
Number of trees on block	(11.2%)
Distance to nearest tree	(9.1%)
Sidewalk damage	(7.6%)
Tree stewards [1-2]	(5.1%)
Root problems [stone]	(4.8%)
Species [Norway maple]	(2.6%)
Trunk problems [other]	(2.4%)
Branch problems [light]	(2.2%)
Species [London planetree]	(2.0%)
Branch problems [other]	(2.0%)
Community board [503]	(1.8%)
Species [Honeylocust]	(1.3%)
Borough [Queens]	(1.2%)

Accuracy: **77.1%** Weighted F1: **78.2%**

Weighted Precision: **77.1%** Weighted Recall: **79.7%**

Hyperparams: class_weight='balanced', max_features=11, min_samples_split=11, min_samples_leaf=2, n_estimators=500 Community Board 210

Neighborhoods: Co-op City, City Island, Throggs Neck, Country Club, Zerega, Westchester Square, Pelham Bay, Waterbury Lasalle

Community Board 414

Neighborhoods: Breezy Point, Belle Harbor, Broad Channel, Neponsit, Arverne, Bayswater, Edgemere, Rockaway Park, Rockaway and Far Rockaway

Any questions?