

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Quintana Roo a 29 Abril 2010	M.C Julio César Ramírez Pacheco M.C Luis Rizo Dominguez	Se propone el temario para la asignatura de Señales y Sistemas.

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s)	Asignatura(s)
a) Calculo diferencial	a) Fundamentos de comunicaciones
b) Cálculo integral	b) Introducción a las comunicaciones digitales.c) Introducción a las telecomunicaciones.
Tema(s)	
a) Diferenciación de funciones.	Tema(s)
b) Integración por partes	a) Densidad espectral de potencia y energía.
c) Solución de ecuaciones diferenciales lineales con coeficientes constantes.	

	Nombre de la as	ignatura		Departamento o Licenciatura
Señales y sistemas			Ingeniería en Telemática	
	Ciclo	Clave	Créditos	Área de formación curricular
	3 - 3	IT0216	6	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir las técnicas de análisis de sistemas en el dominio del tiempo, frecuencia y frecuencia compleja para su aplicación en el análisis de señales de tiempo continuo.

Objetivo procedimental

Aplicar la integral de convolución, análisis de Fourier y transformada de Laplace para la caracterización de la salida de sistemas lineales e invariantes en el tiempo.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad en la solución de ejercicios y/o problemas.

Unidades y temas

Unidad I. SEÑALES

Describir las principales operaciones y clasificación de señales en tiempo continuo para la comprensión de su importancia en las ciencias de la ingeniería.

- 1) El concepto de señal.
- 2) Operaciones entre señales y transformaciones de la variable independiente.
 - a) Cambio de nivel, suma y amplificación de señales.
 - b) Corrimiento en el tiempo.
 - c) Inversión en el tiempo.
 - d) Escalamiento en el tiempo.
 - e) Escalamiento en tiempo y espacio. Invarianza de la norma.
- 3) Clasificación de señales.
 - a) Señales acotadas.
 - b) Señales de duración limitada.

c) Señales de banda limitada.
d) Señales periódicas y no periódicas.
e) Señales de energía y de potencia
f) Señales pares e impares
g) Señales causales y no causales.
h) Clasificación en términos de espacios de señales.
4) Señales básicas
a) Señal impulso unitario o delta de Dirac.
b) Señal escalón unitario o función indicadora.
c) Señal signo.
d) Señales senoidales.
e) Señal exponencial compleja y relación de Euler.
f) Señal sinc
5) Representación de señales usando deltas de Dirac.
6) Ejemplos con MATLAB y Scilab
Unidad II. SISTEMAS
Explicar la integral de convolución para la obtención de la respuesta al impulso de sistemas en el dominio del tiempo continuo.

1) El concepto de sistema. Ejemplos.

2) Clasificación de sistemas en tiempo continuo.

a) Sistemas lineales.
b) Sistemas invariantes en el tiempo.
c) Sistemas lineales e invariantes en el tiempo.
d) Sistemas con y sin memoria.
e) Sistemas invertibles.
f) Sistemas causales.
g) Sistemas estables en sentido BIBO.
3) Sistemas básicos.
a) El amplificador ideal.
b) El rectificador de media onda.
c) El rectificador de onda completa.
d) Sistemas limitadores.
e) Sistemas retardadores y sistemas integradores.
4) Respuesta de sistemas lineales e invariantes en el tiempo.
a) Respuesta de sistemas usando ecuaciones diferenciales.
b) Respuesta a entrada cero y en estado cero.
c) Respuesta de sistemas usando la respuesta al impulso.
5) La integral de convolución.
a) Definición.

b) Propiedades.
c) Interpretación gráfica de la convolución.
d) Respuesta de sistemas descritos mediante la respuesta al impulso.
6) Ejemplos usando MATLAB y Scilab.
Unidad III. ANALISIS DE FOURIER DE SEÑALES Y SISTEMAS
Ullidad III. ANALISIS DE FOURIER DE SENALES 1 SISTEMAS
Representar los conceptos de serie de Fourier y espectros de línea y de potencia así como la respuesta en frecuencia de sistemas para la comprensión de la representación en el dominio de la frecuencia de señales y sistemas
1) Funciones Ortogonales.
2) Representación de señales usando sumas ponderadas de señales ortogonales.
3) Representación de señales periódicas usando series de Fourier.
4) Propiedades de la serie de Fourier.
a) Linealidad.
b) Simetría.
c) Corrimiento en tiempo y frecuencia.
d) Convolución en el tiempo y frecuencia.
e) Dualidad.
f) Escalamiento.
g) Diferenciación e integración en el tiempo.
h) Teorema de Parseval.
5) Fenómeno de Gibbs.

6) Las condiciones de Dirichlet
7) La transformada de Fourier.
a) Definición.
b) Existencia de la transformada de Fourier.
8) Transformada de Fourier de funciones simples.
a) Señal delta de Dirac.
b) Señal exponencial unilateral y bilateral.
c) Función rectangular.
d) Función triangular.
e) Función signo.
9) Propiedades de la transformada de Fourier
a) Linealidad.
b) Dualidad.
c) Corrimiento en el tiempo y frecuencia.
d) Escalamiento en el tiempo.
e) Inversión en el tiempo.
f) Convolución en el tiempo y la frecuencia
g) Diferenciación e integración en el tiempo.
h) Diferenciación en la frecuencia.

i) Relación de Parseval.
10) Aplicación de las propiedades de la transformada de Fourier a señales.
11) Transformada inversa de Fourier.
a) Ejemplos.
12) Transformada de Fourier de funciones periódicas.
13) Respuesta en frecuencia de sistema lineales e invariantes en el tiempo.
14) Análisis de sistemas de primer y segundo orden.
Unidad IV. TRANSFORMADA DE LAPLACE
Aplicar los conceptos teóricos de la transformada de Laplace para la interpretación de sistemas lineales e invariantes en el tiempo
1) Definición.
a) Ecuación de análisis.
b) Ecuación de síntesis.
2) Relación con la transformada de Fourier.
3) La región de convergencia.
4) Transformada de Laplace unilateral.
5) Aplicación de la transformada de Laplace bilateral y unilateral a señales.
6) Transformada de Laplace inversa.
7) Propiedades de la transformada de Laplace.
a) Linealidad.

- b) Corrimiento en el tiempo.
- c) Escalamiento en el tiempo.
- d) Corrimiento en el dominio de la frecuencia compleja.
- e) Diferenciación e integración en el tiempo.
- 8) Solución de ecuaciones diferenciales lineales.
- 9) Análisis de sistemas lineales usando la transformada de Laplace.

Actividades que promueven el aprendizaje

Docente	Estudiante
Docente	Estudiante

Solución de ejercicios y problemas
Preguntas guía
Simulación.
Lectura dirigida
Resúmenes.
Investigación documental

Actividades de aprendizaje en Internet

Elaborar resúmenes usando los enlaces de Internet:

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-003Fall-2003/LectureNotes/index.htm (Consultado el 20/05/2010)

Criterios y/o evidencias de evaluación y acreditación

Criterios Porcentajes

Exámenes	30	
Tareas	30	
Investigaciones	15	
Simulaciones	15	
Participaciones	10	
Total	100	

Fuentes de referencia básica

Bibliográficas

Bracewell, Ronald(2000). The Fourier transforms and its applications. Boston: McGraw-Hill.

Butz, Tilman.(2005). Fourier Transformation for pedestrians. Springer.

Lathi, B. P.(2000). Signal processing and linear systems. USA: Oxford University Press

Hsu, Hwei P.(1973). Análisis de Fourier. México: Pearson.

Marks, Robert.(2006). The Joy of Fourier. Baylor University.

Oppenheim, Alan; Willsky, Alan y Nawab, S.(1998). Señales y sistemas. México: Pearson Educación.

Papoulis, Athanasious. (1985). The fourier integral and its applications. New York: McGraw-Hill.

Tolstov, Georgi.(1976). Fourier series. New York: Dover publications.

Web gráficas

Berkeley university (2010). Course notes of structure and interpretation of signals and systems. Recuperado el 20 de Mayo, 2010 de http://webcast.berkeley.edu/course_details.php?seriesid=1906978509

Concordia university (2010). Fundamentals of Telecommunication Systems. Recuperado el 14 de Mayo, 2010 de http://users.encs.concordia.ca/~msoleyma/ELEC363_2009/outline.htm

Johns Hopkins university (2010). Signals and Systems demonstrations. Recuperado el 21 de Mayo, 2010 de http://www.jhu.edu/signals/

Massachussets Institute of Technology (2010). Lecture notes on Communications Engineering. Recuperado el 20 de Mayo, 2010 de http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-003Fall-2003/LectureNotes/index.htm

Stanford university (2010). Lecture notes on Introduction to signals and systems. Recuperado el 19 de Mayo, 2010 de http://www.stanford.edu/class/ee102k/

Utah state university (2010). Signals and Systems lecture notes. Recuperado el 20 de Mayo, 2010 de http://ocw.usu.edu/Electrical_and_Computer_Engineering/Signals_and_Systems

Fuentes de referencia complementaria

Bibliográficas

Allen, Ronald y Mills, Duncan. (). Signal Analysis: Time, frequency, scale and structure. Rosewood Drive: IEEE-Wiley Press.

Franks, L. E. (1975). Teoría de la señal. Barcelona: Reverté.

Haykin, S. y Van Veen Barry. (2001). Señales y sistemas. México: Limusa-Wiley.

Hsu, Hwei P.(1995). Schaum¿s Ouline of signals and systems. New York: McGraw-Hill

Karris, Steven. (2003). Signals and Systems with MATLAB Applications. Fremont: Orchard Publications.

Mandal Mrinal y Asif Amir. (2007). Continuos and discrete time signals and systems. London: Cambridge University Press.

Papoulis, Athanasious. (1977). Signal Analysis. New York: McGraw-Hill.

Schetzen, Martin. (2003). Linear time-invariant systems. Hoes Lane: IEEE-Wiley Press.

Schmaliy, Yuriy. (2006). Continuous-time signals. Netherlands: Springer.

Soliman, Samir y Mandyam, S.(1999). Señales y sistemas continuos y discretos. Mexico: Prentice Hall.

Sundararajan, D.(2008). A practical approach to signals and systems. Singapore: John Wiley & Sons.

Web gráficas

Imperial College(2010). Lecture notes on Signal and Systems. Recuperado el 20 de Mayo, 2010 de http://www.commsp.ee.ic.ac.uk/~tania/teaching/sas.html

Massachussets Institute of Technology (2010). Lecture notes on Applied signal processing. Recuperado el 20 de Mayo, 2010 de http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-582JSpring-2007/CourseHome/index.htm

University of Arizona (2010). Lecture notes on Signal and Systems. Recuperado el 20 de Mayo, 2010 de http://www.inf.ethz.ch/personal/cellier/Lect/SS/Lect_ss_index.html

Perfil profesiográfico del docente

Académicos

Licenciatura en Electrónica, comunicaciones o afín, con maestría en Telecomunicaciones o comunicaciones. Preferentemente con Doctorado en sistemas de comunicaciones o telecomunicaciones.

Docentes

3 años de experiencia docente en el área de comunicaciones, en particular impartiendo asignaturas de telecomunicaciones, telefonía moderna, sistemas de comunicaciones, comunicaciones digitales, transmisión de señales, análisis de Fourier y señales y sistemas

Profesionales

Experiencia comprobable mínima de 3 años en el área de administración de sistemas de comunicaciones, telecomunicaciones o diseño y administración de redes de comunicaciones