CHAPTER 8 (Odd)

1.
$$V_{ab} = E + IR = 10 \text{ V} + (6 \text{ A})(3 \Omega) = 28 \text{ V}$$

3. a.
$$I_1 = \frac{E}{R_1} = \frac{24 \text{ V}}{2 \Omega} = 12 \text{ A}, \ I_{R_2} = \frac{E}{R_2 + R_3} = \frac{24 \text{ V}}{6 \Omega + 2 \Omega} = \frac{24 \Omega}{8 \Omega} = 3 \text{ A}$$

KCL: $I + I_s - I_1 - I_{R_2} = 0$
 $I_s = I_1 + I_{R_2} - I = 12 \text{ A} + 3 \text{ A} - 4 \text{ A} = 11 \text{ A}$

b.
$$V_s = E = 24 \text{ V}$$

VDR: $V_3 = \frac{R_3 E}{R_2 + R_3} = \frac{2 \Omega (24 \text{ V})}{6 \Omega + 2 \Omega} = \frac{48 \text{ V}}{8} = 6 \text{ V}$

5. a.
$$I = \frac{E}{R_s} = \frac{18 \text{ V}}{6 \Omega} = 3 \text{ A}, R_p = R_s = 6 \Omega$$

b.
$$I = \frac{E}{R_s} = \frac{9 \text{ V}}{2.2 \text{ k}\Omega} = 4.091 \text{ mA}, R_p = R_s = 2.2 \text{ k}\Omega$$

7. a. CDR:
$$I_L = \frac{R_s(I)}{R_s + R_L} = \frac{4 \Omega(12 \text{ A})}{4 \Omega + 2 \Omega} = 8 \text{ A}$$

b.
$$E_s = IR = (12 \text{ A})(4 \Omega) = 48 \text{ V}$$

 $R_s = 4 \Omega$
 $I = \frac{E_s}{R_s + R_I} = \frac{48 \text{ V}}{4 \Omega + 2 \Omega} = 8 \text{ A}$

9.
$$I_T \uparrow = 7 \text{ A} - 3 \text{ A} = 4 \text{ A}$$

CDR: $I_1 = \frac{R_2(I_T)}{R_1 + R_2} = \frac{6 \Omega(4 \text{ A})}{4 \Omega + 6 \Omega} = 2.4 \text{ A}$
 $V_2 = I_T(R_1 || R_2) = 4 \text{ A}(2.4 \Omega) = 9.6 \text{ V}$

11. a.
$$I = \frac{E}{R_2} = \frac{12 \text{ V}}{2.2 \text{ k}\Omega} = 5.4545 \text{ mA}, R_p = 2.2 \text{ k}\Omega$$

b.
$$I_T \uparrow = 8 \text{ mA} + 5.4545 \text{ mA} - 3 \text{ mA} = 10.4545 \text{ mA}$$

 $R' = 6.8 \text{ k}\Omega \| 2.2 \text{ k}\Omega = 1.662 \text{ k}\Omega$
 $V_1 = I_T R' = (10.4545 \text{ mA})(1.662 \text{ k}\Omega)$
 $= 17.375 \text{ V}$

c.
$$V_1 = V_2 + 12 \text{ V} \Rightarrow V_2 = V_1 - 12 \text{ V} = 17.375 \text{ V} - 12 \text{ V} = 5.375 \text{ V}$$

d.
$$I_2 = \frac{V_2}{R_2} = \frac{5.375 \text{ V}}{2.2 \text{ k}\Omega} = 2.443 \text{ mA}$$

13. (I):
$$I_1 \downarrow I_3$$
 10 - I_1 5.6 k Ω - I_3 2.2 k Ω + 20 = 0
-20 + I_3 2.2 k Ω + I_2 3.3 k Ω - 30 = 0
 $I_1 + I_2 = I_3$

$$I_1 = I_{R_1} = 1.445 \text{ mA}, I_2 = I_{R_2} = 8.513 \text{ mA}, I_3 = I_{R_3} = 9.958 \text{ mA}$$

(II):
$$\begin{array}{c} -1.2 \text{ k}\Omega I_1 + 9 - 8.2 \text{ k}\Omega I_3 = 0 \\ -10.2 \text{ k}\Omega I_2 + 8.2 \text{ k}\Omega I_3 + 6 = 0 \\ I_2 + I_3 = I_1 \end{array}$$

$$I_1 = 2.0316 \text{ mA}, I_2 = 1.2316 \text{ mA}, I_3 = 0.8 \text{ mA}$$

$$I_{R_1} = I_1 = 2.0316 \text{ mA}$$

 $I_{R_2} = I_3 = 0.8 \text{ mA}$
 $I_{R_3} = I_{R_4} = I_2 = 1.2316 \text{ mA}$

15.
$$I_1 = I_{R_1}(CW), I_2 = I_{R_2}(down), I_3 = I_{R_3}(right), I_4 = I_{R_4}(down)$$

 $I_5 = I_{R_5}(CW)$

a.
$$E_1 - I_1 R_1 - I_2 R_2 = 0$$

$$I_2 R_2 - I_3 R_3 - I_4 R_4 = 0$$

$$I_4 R_4 - I_5 R_5 - E_2 = 0$$

$$I_1 = I_2 + I_3$$

$$I_3 = I_4 + I_5$$

b.
$$E_1 - I_2(R_1 + R_2) - I_3R_1 = 0$$

$$I_2R_2 - I_3(R_3 + R_4) + I_5R_4 = 0$$

$$I_3R_4 - I_5(R_4 + R_5) - E_2 = 0$$

c.
$$I_{2}(R_{1} + R_{2}) + I_{3}R_{1} + 0 = E_{1}$$

$$I_{2}(R_{2}) - I_{3}(R_{3} + R_{4}) + I_{5}R_{4} = 0$$

$$0 + I_{3}R_{4} - I_{5}(R_{4} + R_{5}) = E_{2}$$

$$3I_{2} + 2I_{3} + 0 = 10$$

$$1I_{2} - 9I_{3} + 5I_{5} = 0$$

$$0 + 5I_{3} - 8I_{5} = 6$$

d.
$$I_3 = I_{R_3} = -63.694 \text{ mA}$$

17. a.
$$I_1 \lor I_2 \lor$$

$$4 - 4I_1 - 8(I_1 - I_2) = 0$$

$$-8(I_2 - I_1) - 2I_2 - 6 = 0$$

$$I_1 = -\frac{1}{7} A, I_2 = -\frac{5}{7} A$$

$$I_{R_1} = I_1 = -\frac{1}{7} A$$

$$I_{R_2} = I_2 = -\frac{5}{7} A$$

$$I_{R_3} = I_1 - I_2 = \left[-\frac{1}{7} A \right] - \left[-\frac{5}{7} A \right] = \frac{4}{7} A \text{ (dir. of } I_1)$$

(Odd)

b.
$$\widehat{I_1} \vee \widehat{I_2} \vee -10 -4I_1 - 3(I_1 - I_2) - 12 = 0$$

$$12 - 3(I_2 - I_1) - 12I_2 = 0$$

$$I_1 = -3.0625 \text{ A}, I_2 = 0.1875 \text{ A}$$

$$I_{R_1} = I_1 = -3.0625 \text{ A}$$
 $I_{R_3} = I_2 = 0.1875 \text{ A}$
 $I_{R_2} = I_1 - I_2 = (-3.0625 \text{ A}) - (0.1875 \text{ A}) = -3.25 \text{ A}$

19. (I):
$$I_1 \lor I_2 \lor$$

$$\frac{-25 - 2I_1 - 3(I_1 - I_2) + 60 = 0}{-60 - 3(I_2 - I_1) + 6 - 5I_2 - 20 = 0}$$
$$I_1 = 1.8701 \text{ A}, I_2 = -8.5484 \text{ A}$$

$$V_{ab} = 20 - I_2 5 = 20 - (8.5484)(5) = 20 V - 42.74 V$$

$$V_{ab} = -22.74 V$$

(II): Source conversion: $E = 9 \text{ V}, R = 3 \Omega$

$$V_{ab} = I_2 4 - 6 = (1.274 \text{ A})(4 \Omega) - 6 \text{ V}$$

$$V_{ab} = I_2 4 - 6 = (1.274 \text{ A})(4 \Omega) - 6 \text{ V}$$

$$= 5.096 \text{ V} - 6 \text{ V}$$

$$= -0.904 \text{ V}$$

21. a.
$$I_{1} \lor I_{2} \lor \qquad \frac{-1I_{1} - 4 - 5I_{1} + 6 - 1(I_{1} - I_{2}) = 0}{-1(I_{2} - I_{1}) - 6 - 3I_{2} - 15 - 10I_{2} = 0}$$

$$I_{1} = I_{5\Omega} = 72.16 \text{ mA}$$

$$V_{a} = -4 - (72.16 \text{ mA})(6 \Omega)$$

$$= -4 - 0.433 \text{ V}$$

$$= -4.433 \text{ V}$$

b. Network redrawn:

$$-6I_{1} - 4(I_{1} - I_{2}) - 12 = 0$$

$$12 - 4(I_{2} - I_{1}) - 5I_{2} - 2(I_{2} - I_{3}) + 16 = 0$$

$$-16 - 2(I_{3} - I_{2}) - 3I_{3} = 0$$

$$I_{2} = I_{50} = 1.953 \text{ A}$$

23. a.
$$I_1 \downarrow I_2 \downarrow$$

$$-6.8 \text{ k}\Omega I_1 - 4.7 \text{ k}\Omega(I_1 - I_2) + 6 - 2.2 \text{ k}\Omega(I_1 - I_4) = 0$$

$$-6 - 4.7 \text{ k}\Omega(I_2 - I_1) - 2.7 \text{ k}\Omega I_2 - 8.2 \text{ k}\Omega (I_2 - I_3) = 0$$

$$-1.1 \text{ k}\Omega I_3 - 22 \text{ k}\Omega(I_3 - I_4) - 8.2 \text{ k}\Omega(I_3 - I_2) - 9 = 0$$

$$5 - 1.2 \text{ k}\Omega I_4 - 2.2 \text{ k}\Omega(I_4 - I_1) - 22 \text{ k}\Omega(I_4 - I_3) = 0$$

$$I_1 = 0.0321 \text{ mA}, I_2 = -0.8838 \text{ mA}, I_3 = -0.968 \text{ mA}, I_4 = -0.639 \text{ mA}$$

$$-2I_{1} - 6 - 4I_{1} + 4I_{2} = 0$$

$$-4I_{2} + 4I_{1} - 1I_{2} + 1I_{3} - 6 = 0$$

$$-1I_{3} + 1I_{2} + 6 - 8I_{3} = 0$$

$$I_{1} = -3.8 \text{ A}, I_{2} = -4.2 \text{ A}, I_{3} = 0.2 \text{ A},$$

25. a.
$$\widehat{I_1} \vee \widehat{I_2} \vee$$

b.

$$(4 + 8)I_1 - 8I_2 = 4$$

 $(8 + 2)I_2 - 8I_1 = -6$

$$I_1 = -\frac{1}{7}A, I_2 = -\frac{5}{7}A$$

b.
$$\widehat{I_1} \widehat{I_2} \widehat{I_2}$$

$$(4 + 3)I_1 - 3I_2 = -10 - 12$$

$$(3 + 12)I_2 - 3I_1 = 12$$

$$I_1 = -3.0625 \text{ A}, I_2 = 0.1875 \text{ A}$$

27. (I): a.
$$\widehat{I_1} \vee \widehat{I_2} \vee \widehat{I_2} \vee \widehat{I_3} \vee \widehat{I_4} \vee \widehat{I_4} \vee \widehat{I_5} \vee \widehat{I_5}$$

$$\begin{array}{ll}
\widehat{I_1} \widehat{I_2} \\
\widehat{I_2} \\
\end{array} \qquad \begin{array}{ll}
(2+3)I_1 - 3I_2 = -25 + 60 \\
(3+5)I_2 - 3I_1 = -60 + 6 - 20
\end{array}$$

b.
$$I_1 = 1.871 \text{ A}, I_2 = -8.548 \text{ A}$$

c.
$$I_{R_1} = I_1 = 1.871 \text{ A}, I_{R_2} = I_2 = -8.548 \text{ A}$$

 $I_{R_3} = I_1 - I_2 = 1.871 \text{ A} - (-8.548 \text{ A}) = 10.419 \text{A} \text{ (direction of } I_1\text{)}$

(II): a.
$$I_2 \lor I_3 \lor$$
 $(3 + 4 + 6)I_2 - 6I_3 = 9 + 6$
 $(6 + 8)I_3 - 6I_2 = -4$

b.
$$I_2 = 1.274 \text{ A}, I_3 = 0.26 \text{ A}$$

c.
$$I_{R_2} = I_2 = 1.274 \text{ A}, I_{R_3} = I_3 = 0.26 \text{ A}$$

 $I_{R_4} = I_2 - I_3 = 1.274 \text{ A} - 0.26 \text{ A} = 1.014 \text{ A}$
 $I_{R_1} = 3 \text{ A} - I_2 = 3 \text{ A} - 1.274 \text{ A} = 1.726 \text{ A}$

$$I_1 \downarrow I_2 \downarrow I_3 \downarrow$$

$$I_1(6+4) - 4I_2 = -12$$

$$I_2(4+5+2) - 4I_1 - 2I_3 = 12+16$$

$$I_3(2+3) - 2I_2 = -16$$

$$I_{5\Omega} = I_2 = 1.953 \text{ A}$$

 $I_3 = -2.4186 \text{ A}, \therefore V_a = (I_3)(3 \Omega) = (-2.4186 \text{ A})(3 \Omega) = -7.26 \text{ V}$

31. a.
$$I_1 \downarrow I_2 \downarrow$$
 $I_1(6.8 \text{ k}\Omega + 4.7 \text{ k}\Omega + 2.2 \text{ k}\Omega) - 4.7 \text{ k}\Omega I_2 - 2.2 \text{ k}\Omega I_4 = 6$
 $I_2(2.7 \text{ k}\Omega + 8.2 \text{ k}\Omega + 4.7 \text{ k}\Omega) - 4.7 \text{ k}\Omega I_1 - 8.2 \text{ k}\Omega I_3 = -6$
 $I_3(8.2 \text{ k}\Omega + 1.1 \text{ k}\Omega + 22 \text{ k}\Omega) - 22 \text{ k}\Omega I_4 - 8.2 \text{ k}\Omega I_2 = -9$
 $I_4(2.2 \text{ k}\Omega + 22 \text{ k}\Omega + 1.2 \text{ k}\Omega) - 2.2 \text{ k}\Omega I_1 - 22 \text{ k}\Omega I_3 = 5$

$$I_1 = 0.0321 \text{ mA}, I_2 = -0.8838 \text{ mA}, I_3 = -0.968 \text{ mA}, I_4 = -0.639 \text{ mA}$$

From Sol. 23(b):

$$I_1(2+4) - 4I_2 = -6$$

 $I_2(4+1) - 4I_1 - 1I_3 = -6$
 $I_3(1+8) - 1I_2 = 6$

$$I_1 = 3.8 \text{ A}, I_2 = -4.2 \text{ A}, I_3 = 0.2 \text{ A}$$

(I):
$${}_{\circ}V_{1} \quad {}_{\circ}V_{2}$$
 $V_{1}\left[\frac{1}{3} + \frac{1}{6} + \frac{1}{4}\right] - \frac{1}{4}V_{2} = -5 - 3$ $V_{2}\left[\frac{1}{8} + \frac{1}{4}\right] - \frac{1}{4}V_{1} = 3 - 4$

$$V_1 = -14.86 \text{ V}, V_2 = -12.57 \text{ V}$$

 $V_{R_1} = V_{R_4} = -14.86 \text{ V}$

$$V_{R_2} = -12.57 \text{ V}$$

$${}^{+}V_{R_3}^{-}$$
 = 12 V + 12.57 V - 14.86 V = **9.71** V

(II):
$$_{\circ}V_{1}$$
 $_{\circ}V_{2}$

$$V_1 \left[\frac{1}{5} + \frac{1}{3} + \frac{1}{2} \right] - \frac{1}{3}V_2 - \frac{1}{2}V_2 = -6$$

$$V_2 \left[\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{8} \right] - \frac{1}{3} V_1 - \frac{1}{2} V_1 = 7$$

$$V_1 = -2.556 \text{ V}, V_2 = 4.03 \text{ V}$$

 $V_{R_1} = -2.556 \text{ V}$

$$V_{R_1} = -2.556 \text{ V}$$

$$V_{R_2} = V_{R_5} = 4.03 \text{ V}$$

$$V_{R_4} = V_{R_3} = 4.03 \text{ V} + 2.556 \text{ V} = 6.586 \text{ V}$$

35. (I):
$${}_{\circ}V_{1}$$
 ${}_{\circ}V_{2}$ ${}_{\circ}V_{3}$ $V_{1}\left[\frac{1}{3} + \frac{1}{6} + \frac{1}{6}\right] - \frac{1}{6}V_{2} - \frac{1}{6}V_{3} = 5$

$$\frac{9}{4}$$
 $V_{2}\left[\frac{1}{6} + \frac{1}{4} + \frac{1}{5}\right] - \frac{1}{6}V_{1} - \frac{1}{5}V_{3} = -3$

$$\frac{V_{3}\left[\frac{1}{6} + \frac{1}{5} + \frac{1}{7}\right] - \frac{1}{5}V_{2} - \frac{1}{6}V_{1} = 0}{V_{2}\left[\frac{1}{6} + \frac{1}{5} + \frac{1}{7}\right] - \frac{1}{5}V_{2} - \frac{1}{6}V_{1} = 0}$$

$$V_1 = 7.238 \text{ V}, V_2 = -2.453 \text{ V}, V_3 = 1.405 \text{ V}$$

(II): Source conversion:
$$I = 4 \text{ A}, R = 4 \Omega$$

$$v_1 \begin{bmatrix} \frac{1}{9} + \frac{1}{20} + \frac{1}{20} \end{bmatrix} - \frac{1}{20}V_2 - \frac{1}{20}V_3 = -2$$

$$V_2 \begin{bmatrix} \frac{1}{20} + \frac{1}{20} + \frac{1}{18} \end{bmatrix} - \frac{1}{20}V_1 - \frac{1}{20}V_3 = 0$$

$$V_3 \begin{bmatrix} \frac{1}{20} + \frac{1}{20} + \frac{1}{4} \end{bmatrix} - \frac{1}{20}V_2 - \frac{1}{20}V_1 = 4$$

$$V_1 = -6.642 \text{ V}, V_2 = 1.293 \text{ V}, V_3 = 10.664 \text{ V}$$

37. a.

$$\sum I_i = \sum I_o$$
Node V_1 :
$$2 A = \frac{V_1}{6 \Omega} + \frac{V_1 - V_2}{10 \Omega}$$

Supernode V_2 ,

$$0 = \frac{V_2 - V_1}{10 \Omega} + \frac{V_2}{4 \Omega} + \frac{V_3}{12 \Omega}$$

Independent source:

$$V_2 - V_3 = 24 \text{ V or } V_3 = V_2 - 24 \text{ V}$$

2 eq. 2 unknowns:

$$\frac{V_1}{6 \Omega} + \frac{V_1 - V_2}{10 \Omega} = 2 A$$

$$\frac{V_2 - V_1}{10 \Omega} + \frac{V_2}{4 \Omega} + \frac{V_2 - 24 V}{12 \Omega} = 0$$

$$0.267V_1 - 0.1V_2 = 2 +0.1V_1 - 0.433V_2 = -2$$

$$V_1 = 10.083 \text{ V}, V_2 = 6.944 \text{ V}$$

 $V_3 = V_2 - 24 \text{ V} = -17.056 \text{ V}$

b.

$$\sum I_i = \sum I_o$$

Supernode:

$$3 A + 4 A = 3 A + \frac{V_1}{20 \Omega} + \frac{V_2}{40 \Omega}$$

$$2 \text{ eq. 2 unk.} \begin{cases} 4 A = \frac{V_1}{20 \Omega} + \frac{V_2}{40 \Omega} \\ V_2 - V_1 = 16 \text{ V} \end{cases}$$

$$\text{Subt. } V_2 = 16 \text{ V} + V_1$$

$$4 A = \frac{V_1}{20 \Omega} + \frac{(16 \text{ V} + V_1)}{40 \Omega}$$

$$\text{and } V_1 = 48 \text{ V}$$

$$V_2 = 16 \text{ V} + V_1 = 64 \text{ V}$$

b.
$$V_1 = -14.86 \text{ V}, V_2 = -12.57 \text{ V}$$

c.
$$V_{R_1} = V_{R_4} = V_1 = -14.86 \text{ V}, V_{R_2} = V_2 = -12.57 \text{ V}$$

 $+ V_{R_3} -$
 $- \bigvee_{R_2} - V_{R_3} = V_1 - V_2 + 12 \text{ V} = (-14.86 \text{ V}) - (-12.57 \text{ V}) + 12 \text{ V} = 9.71 \text{ V}$

b.
$$V_1 = -2.556 \text{ V}, V_2 = 4.03 \text{ V}$$

c.
$$V_{R_1} = V_1 = -2.556 \text{ V}, V_{R_2} = V_{R_5} = V_2 = 4.03 \text{ V}$$

 $V_{R_3} = V_{R_4} = V_2^{(+)} - V_1^{(-)} = 6.586 \text{ V}$

$$V_1 = -5.311 \text{ V}, V_2 = -0.6219 \text{ V}, V_3 = 3.751 \text{ V}$$

 $V_{5A} = V_1 = -5.311 \text{ V}$

$$V_1 = -6.917 \text{ V}, V_2 = 12 \text{ V}, V_3 = 2.3 \text{ V}$$

$$V_{2A} = V_2^{(+)} - V_3^{(-)} = 9.7 \text{ V}, V_{5A} = V_2^{(+)} - V_1^{(-)} = 18.917 \text{ V}$$

43. Source conversion:
$$I = 1 \text{ A}, R = 6 \Omega$$

$$V_{Rc} = 0.1967 \text{ V, no}$$

45. Source conversion:
$$I = 12 \text{ A}$$
, $R = 2 \text{ k}\Omega$

$$I_{R_5} = 0$$
 A, yes

$$(2 k\Omega + 2 k\Omega + 2 k\Omega)I_3 - 2 k\Omega I_1 - 2 k\Omega I_2 = 0$$

$$I_1 = I_{100} = 3.33 \text{ mA}$$

 $I_1=I_{10\mathrm{V}}=3.33~\mathrm{mA}$ Source conversion: $I=10~\mathrm{V/1~k\Omega}=10~\mathrm{mA},~R=1~\mathrm{k\Omega}$

Source conversion:
$$I = 10 \text{ V/1 k}\Omega = 10 \text{ mA}, R = 1 \text{ k}\Omega$$

$$V_{1} \left[\frac{1}{1 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} \right] - \frac{1}{2 \text{ k}\Omega}V_{2} - \frac{1}{2 \text{ k}\Omega}V_{3} = 10 \text{ mA}$$

$$V_{2} \left[\frac{1}{2 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} \right] - \frac{1}{2 \text{ k}\Omega}V_{1} - \frac{1}{2 \text{ k}\Omega}V_{3} = 0$$

$$V_{3} \left[\frac{1}{2 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} + \frac{1}{2 \text{ k}\Omega} \right] - \frac{1}{2 \text{ k}\Omega}V_{2} - \frac{1}{2 \text{ k}\Omega}V_{1} = 0$$

$$V_1 = 6.67 \text{ V} = E - IR_s = 10 \text{ V} - I(1 \text{ k}\Omega)$$

$$I = \frac{10 - 6.67 \text{ V}}{1 \text{ k}\Omega} = 3.33 \text{ mA}$$

b. Source conversion:
$$E = 20 \text{ V}, R = 10 \Omega$$

$$(10 + 10 + 20)I_1 - 10I_2 - 20I_3 = 20$$

$$(10 + 20 + 20)I_2 - 10I_1 - 20I_3 = 0$$

$$(20 + 20 + 10)I_3 - 20I_1 - 20I_2 = 0$$

$$I_1 = I_{20V} = 0.8235 \text{ A}$$

$$V = 20 \text{ V} - 8.235 \text{ V}$$

$$V = 20 \text{ V} - 8.235 \text{ V}$$

$$V = 11.765 \text{ V}$$

$$I_{s} = \frac{V}{R_{s}} = \frac{11.765 \text{ V}}{10 \Omega} = 1.177 \text{A}$$

$$V_{1} \left[\frac{1}{10} + \frac{1}{10} + \frac{1}{20} \right] - \left[\frac{1}{20} \right] V_{2} - \left[\frac{1}{10} \right] V_{3} = 2$$

$$V_{2} \left[\frac{1}{20} + \frac{1}{20} + \frac{1}{10} \right] - \left[\frac{1}{20} \right] V_{1} - \left[\frac{1}{20} \right] V_{3} = 0$$

$$V_{3} \left[\frac{1}{10} + \frac{1}{20} + \frac{1}{20} \right] - \left[\frac{1}{10} \right] V_{1} - \left[\frac{1}{20} \right] V_{2} = 0$$

$$I_{R_{s}} = \frac{V_{1}}{R_{s}} = 1.177 \text{ A}$$

49. a.

$$I = \frac{400 \text{ V}}{12 \text{ kΩ} \| 12 \text{ kΩ} \| 6 \text{ kΩ}} = \frac{400 \text{ V}}{3 \text{ kΩ}}$$
$$= 133.33 \text{ mA}$$

b.
$$I = \frac{42 \text{ V}}{(18 \Omega \| 18 \Omega) \| [(18 \Omega \| 18 \Omega) + (18 \Omega \| 18 \Omega)]} = \frac{42 \text{ V}}{9 \Omega \| [9 \Omega + 9 \Omega]}$$
$$= 7 \text{ A (Y} - \Delta \text{ conversion)}$$

51.

53.

c - g:
$$27 \Omega \| 9 \Omega \| 27 \Omega = 5.4 \Omega$$

a - h: $27 \Omega \| 9 \Omega \| 27 \Omega = 5.4 \Omega$
 $R_T = 5.4 \Omega \| (13.5 \Omega + 5.4 \Omega)$
= $5.4 \Omega \| 18.9 \Omega$
= 4.2Ω

CHAPTER 8 (Even)

2. a. CDR:
$$I_{6\Omega} = \frac{10 \text{ k}\Omega(4 \text{ A})}{10 \text{ k}\Omega + 8 \Omega} = 3.997 \text{ A}$$
$$V_{6\Omega} = I_{6\Omega}(6 \Omega) = (3.997 \text{ A})(6 \Omega) = 23.982 \text{ V}$$

b.
$$V_{6\Omega} = I_{6\Omega}(6 \Omega) = (4 \text{ A})(6 \Omega) = 24 \text{ V}$$
. Yes, a good approximation.

4.
$$V_1 = V_2 = V_s = IR_T = 0.6 \text{ A}[6 \Omega \| 24 \Omega \| 24 \Omega] = 0.6 \text{ A}[6 \Omega \| 12 \Omega] = 2.4 \text{ V}$$

$$I_2 = \frac{V_2}{R_2} = \frac{2.4 \text{ V}}{24 \Omega} = 0.1 \text{ A}$$

$$V_3 = \frac{R_3 V_s}{R_2 + R_4} = \frac{16\Omega(2.4 \text{ V})}{24 \Omega} = 1.6 \text{ V}$$

6. a.
$$E = IR_s = (1.5 \text{ A})(3 \Omega) = 4.5 \text{ V}, R_s = 3 \Omega$$

b.
$$E = IR_s = (6 \text{ mA})(4.7 \text{ k}\Omega) = 28.2 \text{ V}, R_s = 4.7 \text{ k}\Omega$$

8. a.
$$E = IR_2 = (2 \text{ A})(6.8 \Omega) = 13.6 \text{ V}, R = 6.8 \Omega$$

b.
$$I_1 = (12 \text{ V} + 13.6 \text{ V})/(10 \Omega + 6.8 \Omega + 39 \Omega) = \frac{25.6 \text{ V}}{55.8 \Omega} = 458.78 \text{ mA}$$

c.
$$V_{ab} = I_1 R_3 = (458.78 \text{ mA})(39 \Omega) = 17.89 \text{ V}$$

10. a. Conversions:
$$I_1 = E_1/R_1 = 9 \text{ V/3 } \Omega = 3 \text{ A}, R_1 = 3 \Omega$$

 $I_2 = E_2/R_2 = 20 \text{ V/2 } \Omega = 10 \text{ A}, R_2 = 2 \Omega$

b.
$$I_T \downarrow = 10 \text{ A} - 3\text{A} = 7\text{A}, R_T = 3 \Omega \parallel 6 \Omega \parallel 2\Omega \parallel 12 \Omega = 2 \Omega \parallel 2 \Omega \parallel 12 \Omega = 1 \Omega \parallel 12 \Omega = 0.9231 \Omega$$

 $V_{ab} = -I_T R_T = -(7 \text{ A})(0.9231 \Omega) = -6.462 \text{ V}$

c.
$$I \uparrow = \frac{6.462 \text{ V}}{6 \Omega} = 1.077 \text{ A}$$

12. a.
$$I_{1} \downarrow I_{3} I_{2} \qquad \begin{array}{c} 4 - 4I_{1} - 8I_{3} = 0 \\ 6 - 2I_{2} - 8I_{3} = 0 \\ I_{1} + I_{2} = I_{3} \end{array}$$

$$I_{1} = -\frac{1}{7} A, I_{2} = \frac{5}{7} A, I_{3} = \frac{4}{7} A$$

$$I_{R_{1}} = I_{1} = -\frac{1}{7} A, I_{R_{2}} = I_{2} = \frac{5}{7} A, I_{R_{3}} = I_{3} = \frac{4}{7} A$$

b.
$$I_1 \uparrow I_3$$
 I_2 $I_1 + I_2 - 3I_3 - 4I_1 = 0$ $I_1 = 3.0625 \text{ A}$ $I_2 = 0.1875 \text{ A}$ $I_1 + I_2 = I_3$ $I_3 = 3.25 \text{ A}$

$$I_{R_1} = I_1 = 3.0625 \text{ A}, I_{R_2} = I_2 = 3.25 \text{ A}$$

 $I_{R_3} = I_3 = 0.1875 \text{ A}$

14. (I):
$$I_{1} \downarrow I_{3} \downarrow I_{2}$$
 $-25 - 2I_{1} - 3I_{3} + 60 = 0$
 $-60 + 3I_{3} + 6 - 5I_{2} - 20 = 0$
 $I_{1} = I_{2} + I_{3}$
 $I_{2} = -8.548 \text{ A}$

$$I_{3} + 5\Omega + I_{2} + I_{3}$$

$$V_{ab} = 20 \text{ V} - I_{2} 5 \Omega$$

$$V_{ab} = 20 \text{ V} - (8.548 \text{ A})(5 \Omega)$$

$$V_{ab} = -22.75 \text{ V}$$

(II): Source conversion:
$$E = IR_1 = (3 \text{ A})(3 \Omega) = 9 \text{ V}, R_1 = 3 \Omega$$

$$\begin{array}{ll}
\overrightarrow{I_2} \downarrow \overrightarrow{I_4} \downarrow I_3 & 9 + 6 - 3I_2 - 4I_2 - 6I_4 = 0 \\
+ 6I_4 - 8I_3 - 4 = 0 \\
I_2 = I_3 + I_4 \\
I_2 = 1.274 \text{ A}
\\
& \underbrace{I_2 \quad 6 \text{ V}}_{4 \quad \Omega} \quad + b \\
& \underbrace{A \quad \Omega}_{+-} \quad + b \\
& \underbrace{A \quad \Omega}_{+-} \quad + C \quad$$

16. a.
$$20 \text{ V} - I_B(270 \text{ k}\Omega) - 0.7 \text{ V} - I_E(0.51 \text{ k}\Omega) = 0$$

$$I_E(0.51 \text{ k}\Omega) + 8 \text{ V} + I_C(2.2 \text{ k}\Omega) - 20 \text{ V} = 0$$

$$I_E = I_B + I_C$$

$$I_B = 63.02 \ \mu\text{A}, I_C = 4.416 \text{ mA}, I_E = 4.479 \text{ mA}$$

b.
$$V_B = 2.985 \text{ V}, V_E = 2.285 \text{ V}, V_C = 10.285 \text{ V}$$

c.
$$\beta \cong 70.07$$

18. (I):
$$I_1 \lor I_2 \lor$$

$$I_2 \lor$$

$$I_2 \lor$$

$$I_1 \lor I_2 \lor$$

$$I_3 \lor$$

$$I_4 \lor$$

$$I_3 \lor$$

$$I_4 \lor$$

$$I_4$$

 $I_1 = -0.2385 \text{ A}, I_2 = -0.5169 \text{ A}, I_3 = -1.278 \text{ A}$

24. a.

24 V -
$$6I_1$$
 - $4I_2$ - $10I_1$ + 12 V = 0
and $16I_1$ + $4I_2$ = 36
 I_1 - I_2 = 6 A
 I_1 = I_2 + 6 A
 $16[I_2$ + 6 A] + $4I_2$ = 36
 $16I_2$ + 96 + $4I_2$ = 36
 $20I_2$ = -60
 I_2 = -3 A
 I_1 = I_2 + 6 A = -3 A + 6 A = 3 A

$$I_{24\text{V}} = I_{6\Omega} = I_{10\Omega} = I_{12\text{V}} = 3 \text{ A (CW)}$$

 $I_{4\Omega} = 3 \text{ A (CCW)}$

b.

20 V
$$-4I_1 - 6(I_1 - I_2) - 8(I_3 - I_2) - 1I_3 = 0$$

 $10I_1 - 14I_2 + 9I_3 = 20$
 $I_3 - I_1 = 3$ A
 $I_2 = 8$ A

$$10I_1 - 14(8 \text{ A}) + 9[I_1 + 3 \text{ A}] = 20$$

 $19I_1 = 105$
 $I_1 = 5.526 \text{ A}$
 $I_3 = I_1 + 3 \text{ A} = 5.526 \text{ A} + 3 \text{ A} = 8.526 \text{ A}$
 $I_2 = 8$

$$I_{20V} = I_{4\Omega} = 5.526 \text{ A (dir. of } I_1)$$

 $I_{6\Omega} = I_2 - I_1 = 2.474 \text{ A (dir. of } I_2)$
 $I_{4\Omega} = I_1 - I_2 = 0.526 \text{ A (dir. of } I_2)$

$$I_{8\Omega} = I_3 - I_2 =$$
0.526 A (dir. of I_3)
 $I_{1\Omega} =$ 8.526 A (dir. of I_2)

$$I_{1\Omega} = 8.526 \text{ A (dir. of } I_3)$$

26. (I):
$$\widehat{I_1}$$
 $\widehat{I_2}$

a.
$$I_1(5.6 \text{ k}\Omega + 2.2 \text{ k}\Omega) - 2.2 \text{ k}\Omega \ (I_2) = 10 + 20$$

 $I_2(2.2 \text{ k}\Omega + 3.3 \text{ k}\Omega) - 2.2 \text{ k}\Omega \ (I_1) = -20 - 30$

b.
$$I_1 = 1.445 \text{ mA}, I_2 = -8.513 \text{ mA}$$

c.
$$I_{R_1} = I_1 = 1.445 \text{ mA}, I_{R_2} = I_2 = -8.513 \text{ mA}$$

 $I_{R_3} = I_1 + I_2 = 8.513 \text{ mA} + 1.445 \text{ mA} = 9.958 \text{ mA} \text{ (direction of } I_1\text{)}$

(II):
$$I_1$$

a.
$$I_1(1.2 \text{ k}\Omega + 8.2 \text{ k}\Omega) - 8.2 \text{ k}\Omega I_2 = 9$$

 $I_2(8.2 \text{ k}\Omega + 1.1 \text{ k}\Omega + 9.1 \text{ k}\Omega) - 8.2 \text{ k}\Omega I_1 = 6$

b.
$$I_1 = 2.0316 \text{ mA}, I_2 = 1.2316 \text{ mA}$$

c.
$$I_{R_1} = I_1 = 2.0316 \text{ mA}, I_{R_3} = I_{R_4} = I_2 = 1.2316 \text{ mA}$$

 $I_{R_2} = I_1 - I_2 = 2.0316 \text{ mA} - 1.2316 \text{ mA} = 0.8 \text{ mA} \text{ (direction of } I_1\text{)}$

28.
$$I_1 \downarrow I_2 \downarrow I_3 \downarrow$$

 $I_1(2+1) - 1I_2 = 10$
 $I_2(1+4+5) - 1I_1 - 5I_3 = 0$
 $I_3(5+3) - 5I_2 = -6$
 $I_2 = I_{R_3} = -63.694 \text{ mA (exact match with problem 15)}$

30. (I):
$$I_1 \downarrow I_2 \downarrow I_3 \downarrow$$

$$(2.2 k\Omega + 9.1 k\Omega)I_1 - 9.1 k\Omega I_2 = 18$$

$$(9.1 k\Omega + 7.5 k\Omega + 6.8 k\Omega)I_2 - 9.1 k\Omega I_1 - 6.8 k\Omega I_3 = -18$$

$$(6.8 k\Omega + 3.3 k\Omega)I_3 - 6.8 k\Omega I_2 = -3$$

$$I_1 = 1.2059 \text{ mA}, I_2 = -0.4806 \text{ mA}, I_3 = -0.6206 \text{ mA}$$

(II):
$$I_{1\downarrow}$$
 $I_{2\downarrow}$ $I_{2\downarrow}$ $I_{2\downarrow}$ $I_{3\downarrow}$ $I_{3\downarrow}$ $I_{2\downarrow}$ $I_{3\downarrow}$ I_{3

32. a.
$${}_{\circ}V_{1} {}_{\circ}V_{2}$$

$$V_{1} \left[\frac{1}{2} + \frac{1}{5} + \frac{1}{2} \right] - \frac{1}{2}V_{2} = 5 \qquad V_{1} = 8.077 \text{ V}$$

$$V_{2} = 9.385 \text{ V}$$

$$V_{2} \left[\frac{1}{2} + \frac{1}{4} \right] - \frac{1}{2}V_{1} = 3$$

Symmetry is present

b.
$${}_{\circ}V_{1} {}_{\circ}V_{2}$$

$$V_{1} \left[\frac{1}{2} + \frac{1}{4} \right] - \frac{1}{4}V_{2} = 4 - 2 \qquad V_{1} = 4.8 \text{ V}$$

$$V_{2} \left[\frac{1}{4} + \frac{1}{20} + \frac{1}{5} \right] - \frac{1}{4}V_{1} = 2$$

Symmetry is present

34. (I): a.
$${}_{\circ}V_{1} {}_{\circ}V_{2}$$

$$V_{1} \left[\frac{1}{2.2 \text{ k}\Omega} + \frac{1}{9.1 \text{ k}\Omega} + \frac{1}{7.5 \text{ k}\Omega} \right] - \frac{1}{7.5 \text{ k}\Omega} V_{2} = -1.978 \text{ mA}$$

$$V_{2} \left[\frac{1}{7.5 \text{ k}\Omega} + \frac{1}{6.8 \text{ k}\Omega} + \frac{1}{3.3 \text{ k}\Omega} \right] - \frac{1}{7.5 \text{ k}\Omega} V_{1} = 0.909 \text{ mA}$$

b.
$$V_1 = -2.653 \text{ V}, V_2 = 0.952 \text{ V}$$

c.
$$V_{R_3} = V_1 = -2.653 \text{ V}, V_{R_5} = V_2 = 0.952 \text{ V}, V_{R_4} = {\binom{+}{V_2}} - {\binom{-}{V_1}} = 3.605 \text{ V}$$

$$R_1 \rightleftharpoons {\stackrel{+}{V}_{R_1}} = 18 \text{ V} - 2.653 \text{ V} = 15.347 \text{ V}$$

$$R_2 \rightleftharpoons {\stackrel{+}{V}_{R_2}} = 3 \text{ V} - 0.952 \text{ V} = 2.048 \text{ V}$$

(II): a.
$$\circ V_1 \qquad \circ V_2 \qquad V_1 \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{7} \right] - \frac{1}{4} V_2 - \frac{1}{4} V_3 = 4$$

$$\frac{?}{=} \qquad V_2 \left[\frac{1}{4} + \frac{1}{3} + \frac{1}{10} \right] - \frac{1}{4} V_1 - \frac{1}{3} V_3 = 4 + 1.5$$

$$V_3 \left[\frac{1}{4} + \frac{1}{3} + \frac{1}{4} \right] - \frac{1}{4} V_1 - \frac{1}{3} V_3 = -4 - 4$$

b.
$$V_1 = 8.877 \text{ V}, V_2 = 9.831 \text{ V}, V_3 = -3.005 \text{ V}$$

c.
$$V_{R_6} = V_1 = 8.877 \text{ V}, V_{R_4} = V_3 = -3.005 \text{ V}, V_{R_5} = {\binom{+}{V_2}} - {\binom{-}{V_1}} = 0.954 \text{ V}$$

$$-V_{R_1} + \\
-W_{N_1} - V_{R_1} = 16 \text{ V} - V_1 + V_3 = 4.118 \text{ V}$$

$$-V_{R_2} + \\
-W_{N_2} - V_{R_2} = V_2 - V_3 - 12 \text{ V} = 0.836 \text{ V}$$

$$R_3 = {\binom{+}{V_2}} - {\binom{-}{V_1}} = 0.954 \text{ V}$$

36. (I)
$${}_{\circ}V_{1} \quad {}_{\circ}V_{2} \quad {}_{\circ}V_{3}$$

$$\left[\frac{1}{2} + \frac{1}{2}\right]V_{1} - \frac{1}{2}V_{2} + 0 = -5$$

$$\left[\frac{1}{2} + \frac{1}{9} + \frac{1}{7} + \frac{1}{2}\right]V_{2} - \frac{1}{2}V_{1} - \frac{1}{2}V_{3} = 0$$

$$\left[\frac{1}{2} + \frac{1}{2} + \frac{1}{4}\right]V_{3} - \frac{1}{2}V_{2} = 5$$

 $V_1 = -5.311 \text{ V}, V_2 = -0.6219 \text{ V}, V_3 = 3.751 \text{ V}$

(II)
$$\circ V_1 \quad \circ V_2$$
 $\circ V_3 \quad \stackrel{\circ}{=}$

$$V_1 \left[\frac{1}{2} + \frac{1}{6} \right] - \frac{1}{6} V_3 = -5$$

$$V_2 \left[\frac{1}{4} \right] = 5 - 2$$

$$V_3 \left[\frac{1}{6} + \frac{1}{5} \right] - \frac{1}{6} V_1 = 2$$

$$V_1 = -6.917 \text{ V}, V_2 = 12 \text{ V}, V_3 = 2.3 \text{ V}$$

38. a.
$${}_{\circ}V_{1}$$
 ${}_{\circ}V_{2}$
$$V_{1}\left[\frac{1}{2} + \frac{1}{5} + \frac{1}{2}\right] - \frac{1}{2}V_{2} = 5$$

$$\frac{V_{2}\left[\frac{1}{2} + \frac{1}{4}\right] - \frac{1}{2}V_{1} = 3}{V_{1} = 8.077 \text{ V}, V_{2} = 9.385 \text{ V}}$$
Symmetry present

b.
$$_{\circ}V_{1}$$
 $_{\circ}V_{2}$ $V_{1}\left[\frac{1}{2} + \frac{1}{4}\right] - \frac{1}{4}V_{2} = 4 - 2$ $V_{2}\left[\frac{1}{4} + \frac{1}{20} + \frac{1}{5}\right] - \frac{1}{4}V_{1} = 2$ $V_{1} = 4.8 \text{ V}, V_{2} = 6.4 \text{ V}$ Symmetry present

b.
$$V_1 = 7.238 \text{ V}, V_2 = -2.453 \text{ V}, V_3 = 1.405 \text{ V}$$

c.
$$R_1 \lessapprox V_{R_1} = 15 \text{ V} - 7.238 \text{ V} = 7.762 \text{ V}$$

$$V_{R_2} = V_2 = -2.453 \text{ V}, V_{R_3} = V_3 = 1.405 \text{ V}$$

$$V_{R_4} = V_3 - V_2 = 1.405 \text{ V} - (-2.453 \text{ V}) = 3.858 \text{ V}$$

$$V_{R_5} = V_1 - V_2 = 7.238 \text{ V} - (-2.453 \text{ V}) = 9.691 \text{ V}$$

$$V_{R_6} = V_1 - V_3 = 7.238 \text{ V} - 1.405 \text{ V} = 5.833 \text{ V}$$

b.
$$V_1 = -6.642 \text{ V}, V_2 = 1.293 \text{ V}, V_3 = 10.664 \text{ V}$$

c.
$$V_{R_1} = V_1 = -6.737 \text{ V}, R_2 \stackrel{\downarrow}{\geqslant} \stackrel{v}{V}_{R_2} = 16 \text{ V} - 10.676 \text{ V} = 5.324 \text{ V}$$

$$V_{R_3} = V_2 = 1.288 \text{ V}, V_{R_4} = \stackrel{(+)}{V_2} - \stackrel{(-)}{V_1} = 1.288 \text{ V} - (-6.737 \text{ V}) = 8.025 \text{ V}$$

$$V_{R_5} = \stackrel{(+)}{V_3} - \stackrel{(-)}{V_2} = 10.676 \text{ V} - 1.288 \text{ V} = 9.388 \text{ V}$$

$$V_{R_6} = \stackrel{(+)}{V_3} - \stackrel{(-)}{V_1} = 10.676 \text{ V} - (-6.737 \text{ V}) = 17.413 \text{ V}$$

b.
$$I_5 = I_2 - I_3 = 39.34$$
 mA (direction of I_2)

c, d. no

44. a.
$$I_{1} I_{2} I_{3} I_{1} I_{2} I_{3} I_{1} = 0.9662 \text{ mA}, I_{2} = I_{3} = 0.3583 \text{ mA}$$

$$I_{1}(2 k\Omega + 33 k\Omega + 3.3 k\Omega) - 33 k\Omega I_{2} - 3.3 k\Omega I_{3} = 24$$

$$I_{2}(33 k\Omega + 56 k\Omega + 36 k\Omega) - 33 k\Omega I_{1} - 36 k\Omega I_{3} = 0$$

$$I_{3}(3.3 k\Omega + 36 k\Omega + 5.6 k\Omega) - 36 k\Omega I_{2} - 3.3 k\Omega I_{1} = 0$$

b.
$$I_5 = I_2 - I_3 = 0.3583 \text{ mA} - 0.3583 \text{ mA} = \mathbf{0}$$

c, d. yes

46. Source conversion: I = 9 mA, $R = 1 \text{ k}\Omega$

$$V_{1} \begin{bmatrix} \frac{1}{1 \text{ k}\Omega} + \frac{1}{100 \text{ k}\Omega} + \frac{1}{200 \text{ k}\Omega} \end{bmatrix} - \frac{1}{100 \text{ k}\Omega} V_{2} - \frac{1}{200 \text{ k}\Omega} V_{3} = 4 \text{ mA}$$

$$\stackrel{?}{=} V_{2} \begin{bmatrix} \frac{1}{100 \text{ k}\Omega} + \frac{1}{200 \text{ k}\Omega} + \frac{1}{1 \text{ k}\Omega} \end{bmatrix} - \frac{1}{100 \text{ k}\Omega} V_{1} - \frac{1}{1 \text{ k}\Omega} V_{3} = -9 \text{ mA}$$

$$V_{3} \begin{bmatrix} \frac{1}{200 \text{ k}\Omega} + \frac{1}{100 \text{ k}\Omega} + \frac{1}{1 \text{ k}\Omega} \end{bmatrix} - \frac{1}{200 \text{ k}\Omega} V_{1} - \frac{1}{1 \text{ k}\Omega} V_{2} = 9 \text{ mA}$$

48. a.

$$I = \frac{20 \text{ V}}{\frac{4}{5} \Omega + \left[\frac{2}{5} \Omega + 3 \Omega\right] \left\| \left[\frac{2}{5} \Omega + 4 \Omega\right] \right\|}$$
$$= \frac{20 \text{ V}}{\frac{4}{5} \Omega + (3.14 \Omega) \left\| (4.4 \Omega) \right\|}$$
$$= 7.358 \text{ A}$$

b.

$$\begin{split} R_T &= 2.267 \text{ k}\Omega + [4.7 \text{ k}\Omega + 2.267 \text{ k}\Omega] \| [1.1 \text{ k}\Omega + 2.267 \text{ k}\Omega] \\ &= 2.267 \text{ k}\Omega + [6.967 \text{ k}\Omega] \| [3.367 \text{ k}\Omega] \\ &= 2.267 \text{ k}\Omega + 2.27 \text{ k}\Omega \\ &= 4.537 \text{ k}\Omega \end{split}$$

$$I = \frac{8 \text{ V}}{4.537 \text{ k}\Omega} = 1.763 \text{ mA}$$

50.

$$3 k\Omega \parallel 7.5 k\Omega = 2.14 k\Omega$$

 $3 k\Omega \parallel 15 k\Omega = 2.5 k\Omega$

$$R'_T = 2.14 \text{ k}\Omega \parallel (2.5 \text{ k}\Omega + 2.5 \text{ k}\Omega) = 1.499 \text{ k}\Omega$$

CDR: $I = \frac{(1.499 \text{ k}\Omega)(5 \text{ A})}{1.499 \text{ k}\Omega + 2 \text{ k}\Omega} = 2.143 \text{ A}$

52.

$$R_T = 1 \text{ k}\Omega + 1.5 \text{ k}\Omega + 1 \text{ k}\Omega = 3.5 \text{ k}\Omega$$

$$I_s = \frac{E}{R_T} = \frac{20 \text{ V}}{3.5 \text{ k}\Omega} = 5.714 \text{ mA}$$

$$R' = R_1 + 1 k\Omega = 3 k\Omega$$

$$R'' = R_2 + 1 k\Omega = 3 k\Omega$$

$$R'_T = \frac{3 k\Omega}{2} = 1.5 k\Omega$$