AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of the claims in the application:

- 1. (Cancelled)
- 2. (Currently Amended) The compound of claim 32 1, wherein Z is NR₇R₈.
- 3. (Original) The compound of claim 2, wherein R₈ is -CH₂-CH₂-NH₂.
- 4. (Original) The compound of claim 2, wherein R₈ is $(CR_9R_{10})_n$ -NR₂₂-R₁₁.
- 5. (Cancelled)
- 6. (Previously presented) The compound of claim 4, wherein R₁₁ is a polyalkylene oxide residue.
- 7. (Original) The compound of claim 6, wherein said polyalkylene oxide residue is a polyethylene glycol.
- 8. (Original) The compound of claim 7, wherein said polyethylene glycol has a number average molecular weight of from about 2,000 to about 200,000 daltons.
- 9. (Previously presented) The compound of claim 4, wherein R₁₁ is a member of the group consisting of collagen, glycosaminoglycan, poly(-aspartic acid), poly(-L-lysine), poly(-lactic acid), poly-N-vinylpyrolidone and copolymers of poly(-lactic acid) and poly(-glycolic acid).
- 10. (Currently Amended) The compound of claim $\underline{32}$ 1, wherein R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 are independently selected from the group consisting of H, CH_3 and CH_3CH_2 .
- 11. (Original) The compound of claim 4, wherein R_7 is CH_3CH_2 ; R_8 is $-(CR_9R_{10})_n$ - NR_{22} - R_{11} ; and R_9 and R_{10} are H; n is 2; and X_1 is O, S or NH.

- 12. (Original) The compound of claim 4, wherein R_7 is CH_3CH_2 ; R_8 is $-(CR_9R_{10})_n$ - NR_{22} - R_{11} and R_9 and R_{10} are H.
- 13. (Cancelled)
- 14. (Currently Amended) The compound of claim 32 1, wherein X_1A is

$$R_{12}$$
 NO_2 or R_{13} W NH_2

- 15. (Cancelled)
- 16. (Original) The compound of claim 14, wherein J is O, R_2 is H, R_7 is CH₃CH₂; R_8 is $-(CR_9R_{10})_n$ -NR₂₂-R₁₁, R_9 and R₁₀ are H, and n is 2.
- 17-21. (Cancelled)
- 22. (Currently Amended) A compound of claim 32 1 selected from the group consisting of:

$$\begin{array}{c|c}
R_4 & R_2 & O \\
\hline
R_1 & R_1 & A \\
\hline
R_2 & R_1 & A
\end{array}$$

wherein

PEG is a polyethylene glycol having a molecular weight of from about 2,000 to about 200,000; and

mAb is a monoclonal antibody.

23-24. (Cancelled)

25. (Currently Amended) A pharmaceutically acceptable salt of the compound of claim 32 4.

26-30. (Cancelled)

31. (Currently Amended) A method of preparing a conjugate, comprising: reacting a compound of Formula (IV)

$$R_4$$
 R_7
 R_5
 R_6
 R_{10}
 R_{20}
 R_{10}
 R_{20}
 R_{10}
 R_{20}
 R_{10}
 R_{20}
 R_{10}
 R_{20}

(IV)

wherein:

R₁ and R₂ are individually selected from the group consisting of H, CH₃,

C2-C10 alkyls, C2-C10 alkenyls or C2-C10 alkynyls, straight or branched, C2-C10 heteroalkyls,

 C_2 - C_{10} heteroalkenyls or C_2 - C_{10} heteroalkynyls and -($CR_{15}R_{16}$)_p-D

wherein: R₁₅ and R₁₆ are individually selected from the group consisting of H, CH₃,

 C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls and C_2 - C_{10} alkynyls, straight or branched; and C_2 - C_{10} heteroalkyls,

C2-C10 heteroalkenyls or C2-C10 heteroalkynyls;

p is a positive integer from 1 to about 12;

D is selected from among -SH, -OH, X2, -CN, -OR19, NHR20,

wherein:

 R_{17} is H, a CH₃ or X₃;

R₁₈ is H, a C₁₋₄ alkyl or benzyl;

R₁₉ is H, a C₁₋₄ alkyl, X₂ or benzyl;

 R_{20} is H, a C_{1-10} alkyl or -C(O) R_{21}

wherein R₂₁ is H, a C₁₋₄ alkyl or alkoxy, t-butoxy or benzyloxy;

X₂ and X₃ are independently selected halogens;

 R_3 is H, CH₃, or -C(=O)(CR₁₅R₁₆)_w-D,

where w is 0 or an integer from 1 to about 12, and D is H or as described for R_1 and R_2 , J is O, NH or S;

R₄, R₅ and R₆ independently selected from the group consisting of H, CH₃,

 C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls or C_2 - C_{10} alkynyls, straight or branched; C_2 - C_{10} heteroalkyls, heteroalkenyls or heteroalkynyls and halogens;

R₇ is selected from among H, CH₃ and C₂-C₁₀ alkyls;

X₁ is O, NH, or S;

R₂₂ is H or CH₃; and

A is H or A_1 wherein X_1A_1 is

$$R_{12}$$
 NO_2 or R_{13} W NH_2

wherein R_{12} and R_{13} are independently H or electron donating or electron withdrawing groups and W is CH or N;

with a linking reagent containing a member-of selected from the group consisting of succinimides, maleimides, imidoesters, 2-iminothiolane, hydrazides, maleic anhydride, azides, citraconic anhydride, glutaraldehyde.

32. (Previously Presented) A compound of the formula:

$$R_4 \xrightarrow{JR_3} R_2 \xrightarrow{R_1} X_1 - A$$

$$Z \xrightarrow{R_5} R_6$$

(I)

wherein:

 R_1 and R_2 are individually selected from the group consisting of H, CH_3 , C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls or C_2 - C_{10} alkynyls, straight or branched, C_2 - C_{10} heteroalkyls, C_2 - C_{10} heteroalkynyls and -($CR_{15}R_{16}$)₀-D;

wherein: R_{15} and R_{16} are individually selected from the group consisting of H, CH_3 , C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls or C_2 - C_{10} alkynyls, straight or branched; and C_2 - C_{10} heteroalkyls, C_2 - C_{10} heteroalkynyls;

p is a positive integer from 1 to about 12;

D is selected from among -SH, -OH, X2, -CN, -OR19, NHR20,

wherein:

R₁₇ is H, CH₃ or X₃;

R₁₈ is H, a C₁₋₄ alkyl or benzyl;

R₁₉ is H, a C₁₋₄ alkyl, X₂ or benzyl;

 R_{20} is H, a C_{1-10} alkyl or -C(O) R_{21} ,

wherein R₂₁ is H, a C₁₋₄ alkyl or alkoxy, t-butoxy or benzyloxy;

X₂ and X₃ are independently selected halogens;

 R_3 is H, CH₃, or -C(=O)(CR₁₅R₁₆)_w-D,

where w is 0 or an integer from 1 to about 12, and D is H or as described for R_1 and R_2 J is O, NH or S;

 R_4 , R_5 , and R_6 are independently selected from the group consisting of H, CH₃, C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls or C_2 - C_{10} alkynyls, straight or branched; C_2 - C_{10} heteroalkyls, heteroalkenyls or heteroalkynyls and halogens;

wherein R_7 is selected from among H, CH_3 , C_2 - C_{10} alkyls, alkenyls or alkynyls straight or branched; C_2 - C_{10} heteroalkyls, heteroalkenyls or heteroalkynyls, or -($CR_{23}R_{24}$)_q-aryl, or R_8 ,

wherein R_{23} and R_{24} are independently selected from the group consisting of H and C_1 - C_{10} alkyls;

q is an integer from 1 to about 6;

R₈ is selected from the group consisting of (CR₉R₁₀)_n-NR₂₂-R₁₁,

 $(CR_9R_{10})_n$ - CH_2 -NHC(O) R_{26} and $(CR_9R_{10})_n$ - CH_2 -E;

wherein R_9 and R_{10} are independently selected from the group consisting of H, CH₃, C_2 - C_{10} alkyls, C_2 - C_{10} alkenyls or C_2 - C_{10} alkynyls, straight or branched; C_2 - C_{10} heteroalkyls, C_2 - C_{10} heteroalkynyls and halogens;

R₂₆ is H, CH₃, O-t-butyl, O-benzyl;

E is OH, SH or O-C(O) R_{27} ,

wherein R₂₇ is a C₁-C₆ alkyl, benzyl or phenyl;

R₂₂ is H or CH₃;

n is a positive integer from 1 to about 10;

R₁₁ is H or -L-B,

wherein L-B are maleimides, N-hydroxysuccinimidyl compounds, immidoesters, 2-iminothiolane, hydrazides and maleic anhydride;

 R_{25} is H, -C(O)- R_{28} or -C(O)-O- R_{29} ,

wherein R₂₈ is a C₁.C₆ alkyl or benzyl; and R₂₉ is CH₃, t-butyl or benzyl;

X₁ is O, NH, or S; and

A is H, or A_1 wherein X_1A_1 is

wherein R_{12} and R_{13} are independently H or electron donating or electron withdrawing groups and W is CH or N.

33-34. (Cancelled)

- 35. (Previously Presented) The method of claim 31, wherein the linking reagent is selected from the group consisting of heterobifunctional reagents containing N-hydroxysuccinimide and maleimide, bifunctional maleimide and bifunctional PEG's.
- 36. (Previously Presented) The method of claim 35, wherein the heterobifunctional reagent containing N-hydroxysuccinimide and maleimide is (Succinimidyl-6-[(β-maleimidopropionamido) hexanoate].