COP 3402 Systems Software

Predictive Parsing (First and Follow Sets)

Outline

- 1. First Set
- 2. Nullable Symbols
- 3. Follow Set
- 4. Predictive Parsing Table
- 5. LL(1) Parsing

A recursive descent (or predictive) parser chooses the correct production by looking a fixed number of symbols ahead (typically one symbol or token).

First set:

Let **X** be any string of grammar symbols (terminals and non-terminals).

First(X) is defined to be the set of terminals that begin strings derived from X.

Definition: FIRST(X) = { $\mathbf{t} \mid \mathbf{X} ==> * \mathbf{t} \mathbf{Z}$ for some \mathbf{Z} } $\cup \{ \mathbf{\varepsilon} \mid \text{if } \mathbf{X} ==> * \mathbf{\varepsilon} \}$

If $X \rightarrow A B C$, then FIRST(X) = FIRST(A B C) and is computed as follows:

A is a terminal $FIRST(X) = FIRST(A B C) = \{A\}$

For instance, if $X \rightarrow t$ B C, then FIRST(X) = FIRST(t B C) = { t }

A is a non-terminal and A does not derive to ε FIRST(X) = FIRST(A B C) = FIRST(A)

A is a non-terminal and A derives to ε FIRST(X) = FIRST(A B C) = FIRST(A) – { ε } \cup FIRST(BC)

Similarly, for FIRST(BC) we have:

B is a terminal $FIRST(BC) = \{B\}$

B is a non-terminal and B does not derive to ε FIRST(BC) = FIRST(B)

B is a non-terminal and B derives to ε FIRST(BC) = FIRST(B) - $\{\varepsilon\}$ \cup FIRST(C)

And so on...

```
Example:
S \rightarrow ABC|CbB|Ba
A \rightarrow da \mid BC
B \rightarrow g \mid \epsilon
C \rightarrow h \mid \epsilon
FIRST(S) = FIRST(A B C) \cup FIRST(C b B) \cup FIRST(B a)
FIRST(A) = FIRST(d \ a) \cup First(B \ C) = \{ d \} \cup FIRST(B \ C)
FIRST(B) = FIRST(g) \cup First \{ \epsilon \} = \{ g, \epsilon \}
FIRST(C) = FIRST(h) \cup First \{ \epsilon \} = \{ h, \epsilon \}
Now we can compute:
FIRST(BC) = FIRST(B) - \{ \epsilon \} \cup \{ h, \epsilon \} = \{ g, \epsilon \} - \{ \epsilon \} \cup \{ h, \epsilon \} = \{ g, h, \epsilon \}
and
FIRST(A) = \{ d \} \cup \{ g, h, \varepsilon \} = \{ d, g, h, \varepsilon \}
```

Exercise: Compute FIRST(C b B) and FIRST(B a) in order to compute FIRST(S)

Example: Given the following expression grammar:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

```
First(E + T) = { id, ( }

Because: E + T \rightarrow T + T \rightarrow F + T \rightarrow id + T

E + T \rightarrow T + T \rightarrow F + T \rightarrow (E) + T

First(E) = { id, ( }

Because: E \rightarrow T \rightarrow F \rightarrow id

E \rightarrow T \rightarrow F \rightarrow (E)
```

Nullable Symbols

Nullable symbols those that produce the empty (ε) string.

Example: Given the following grammar, find the nullable symbols and the FIRST sets:

$$Z \rightarrow d$$

$$Y \rightarrow \epsilon$$

$$X \rightarrow Y$$

$$Z \rightarrow X Y Z$$
 $Y \rightarrow c$

$$Y \rightarrow c$$

$$X \rightarrow a$$

Note that if X can derive the empty string, nullable(X) is true.

$$X \rightarrow Y \rightarrow \epsilon$$

$$3 \leftarrow Y$$

$$Z \rightarrow d$$

$$Z \rightarrow X Y Z$$

	Nullable	First
X	Yes	$\{a,c,\epsilon\}$
Y	Yes	{ c, ε }
Z	No	{ a, c, d }

Follow set

FOLLOW(A) = {
$$\mathbf{t} \mid \mathbf{S} ==> *\alpha \mathbf{A} \mathbf{t} \mathbf{\omega}$$
 for some $\alpha, \mathbf{\omega}$ }

Given a non-terminal A, FOLLOW(A) is the set of terminal symbols that can immediately follow A.

Example 1: If there is a derivation containing At, then t is in FOLLOW(A) = t.

Example 2: If there is a derivation containing A B C t and B and C are nullable, then t is in FOLLOW(A).

Example 3: The FIRST / FOLLOW sets and nullable symbols for the following grammar are:

$$Z \rightarrow d$$
 $Y \rightarrow \varepsilon$ $X \rightarrow Y$ $Z \rightarrow X Y Z$ $Y \rightarrow c$ $X \rightarrow a$

	Nullable	FIRST	FOLLOW
X	Yes	{ a, c, ε }	{ a, c, d }
Υ	Yes	{ C, & }	{ a, c, d }
Z	No	{ a, c, d }	{ }

Method to construct the predictive parsing table

For each production $A \rightarrow \alpha$ of the grammar, do the following:

- 1. Add $A \rightarrow \alpha$ to m[A,t] for each terminal t in FIRST(α).
- 2. If nullable(α) is true, add $A \rightarrow \alpha$ to m[A, t] for each t in FOLLOW(A).

Example: Given the grammar:

$$Z \rightarrow d$$

 $Z \rightarrow X Y Z$

$$Y \rightarrow \varepsilon$$

 $Y \rightarrow c$

$$X \rightarrow Y$$

$$Z \rightarrow X Y Z$$

Example: Given the grammar:

```
S \rightarrow E\$
E \rightarrow E + T
T \rightarrow T * F
F \rightarrow id
E \rightarrow T
T \rightarrow F
F \rightarrow (E)
We can rewrite the grammar to avoid left recursion obtaining thus:
S \rightarrow E\$
E \rightarrow TE'
T \rightarrow FT'
F \rightarrow id
E' \rightarrow + TE'
T' \rightarrow * FT'
F \rightarrow (E)
E' \rightarrow \epsilon
T' \rightarrow \epsilon
```

Compute First, Follow, and nullable.

	Nullable	First	Follow
Е	No	{ id , (}	{), \$ }
E'	Yes	{ +, ε }	{), \$ }
Т	No	{ id , (}	{) , +, \$ }
T'	Yes	{ *, ε }	{) , +, \$ }
F	No	{ id , (}	{) , * , +, \$ }

Parsing table for the expression grammar:

	+	*	id	()	\$
E			E → T E'	E → T E'		
E'	E' → +T E'				E' > ε	Ε' → ε
T			T → F T'	T → F T'		
T'	Τ' → ε	T' → *F T'			Τ' → ε	Τ' → ε
F			F → id	$\mathbf{F} \rightarrow (\mathbf{E})$		

Using the predictive parsing table, it is easy to write a recursive-descent parser:

```
void Tprime() {
  switch (token) {
   case PLUS : break;
   case TIMES : accept(TIMES); F(); Tprime(); break;
   case RPAREN : break;
   default : error();
  }
}
```

Left factoring

Another problem that we must avoid in predictive parsers is when two productions for the same non-terminal start with the same symbol.

Example: $S \rightarrow \text{if } E \text{ then } S$

 $S \rightarrow if E then S else S$

Solution: Left-factor the grammar. Take allowable ending "else S" and ϵ , and make a new production (new non-terminal) for them:

 $S \rightarrow if E then S X$

 $X \rightarrow else S$

 $X \rightarrow \epsilon$

Grammars whose predictive parsing tables contain no multiples entries are called LL(1).

The first L stands for left-to-right parse of input string. (input string scanned from left to right)

The second L stands for leftmost derivation of the grammar

The "1" stands for one symbol lookahead

Left Factoring

The following (unambiguous) grammar for arithmetic expressions is not LL(1):

```
E -> E + E | T
T -> T * F | F
F -> id | num | ( E )
```

We obtain an LL(1) by using a grammar transformation called left factoring:

```
E -> T E'

E' -> + T E' | ε

T -> F T'

T' -> * F T' | ε

F -> id | num | ( E )
```

Left Recursive Grammars

A grammar is called left recursive if there is a derivation A -> A a for some string a and some non-terminal symbol.

Left recursive grammars are not suitable for LL(k) parsers.

Left Factoring

Left factoring is a grammar transformation that eliminates left recursion.

For example, the pair

$$A \rightarrow A a \mid b$$

could be replaced by the following two non-left-recursive productions:

$$A \rightarrow b A'$$

 $A' \rightarrow a A' \mid \epsilon$

A Non-LL(1) Grammar

For instance, a grammar having a production such as

$$A \rightarrow a b_1 \mid a b_2$$

is not suitable for an LL(1) parser.

If the parser looks only one token ahead and sees the token a, then it cannot determine which choice of the alternation to follow.

Left Factoring

Using again left factoring, the production

$$A \rightarrow a b_1 \mid a b_2$$

can be left-factored to the following two productions:

A
$$\rightarrow$$
 a A'
A' \rightarrow b₁ | b₂

Example: Given the grammar:

```
S \rightarrow E\$

E \rightarrow TE' T \rightarrow FT' F \rightarrow id

E' \rightarrow +TE' T' \rightarrow *FT' F \rightarrow (E)

E' \rightarrow \epsilon T' \rightarrow \epsilon
```

With the following First, Follow, and nullable.

	Nullable	First	Follow
S	No	{ id }	
E	No	{ id , (}	{), \$ }
E'	Yes	{ + }	{), \$ }
Т	No	{ id , (}	{) , +, \$ }
T'	Yes	{ * }	{) , +, \$ }
F	No	{ id , (}	{) , * , +, \$ }

A nonrecursive predictive parser can also be implemented by using a stack instead of recursively calling procedures.

This approach is called table driven.

To implement it we need:

- 1) As input a string "w".
- 2) A parsing table.
- 3) A stack.

Initial configuration:

- 1)The string w\$ in the input buffer
- 2) The start symbol S on top of the stack, above the end of file symbol \$.

Algorithm:

```
push $ onto the stack
push start symbol E onto the stack
repeat { /*stack not empty */
  if (X == cis) {
    pop the stack;
    advance cis to next symbol;
  elseif (X is terminal) error();
  elseif (M[X, cis] is error entry) error();
  elseif (M[X, cis] is production) {
    pop the stack;
    push the right hand side of
    the production in reverse order;
  let X point to the top of the stack.
until (X == \$);
```

Stack	Input	Production	Algorithm:
\$E \$E'T' \$E'T'F \$E'T'id \$E'T' \$E'T'F \$E'T'F \$E'T'F* \$E'T'F \$E'T'F \$E'T'G \$E'T'	id + id * id\$ + id * id\$ + id * id\$ + id * id\$ * id\$ * id\$ * id\$ * id\$ * id\$	$E \rightarrow TE'$ $T \rightarrow FT'$ $F \rightarrow id$ match id $T' \rightarrow \varepsilon$ $E' \rightarrow +TE'$ match $+$ $T \rightarrow FT'$ $F \rightarrow id$ match id $T' \rightarrow *FT'$ match $*$ $F \rightarrow id$ match id $T' \rightarrow \varepsilon$ $E' \rightarrow \varepsilon$	<pre>push \$ onto the stack push start symbol E onto the stack repeat { /* stack not empty*/ if (X == cis) { pop the stack; advance cis to next symbol; } elseif (X is terminal) error(); elseif (M[X, cis] is error entry) error(); elseif (M[X, cis] is production) { pop the stack; push the right hand side of the production in reverse order; } let X point to the top of the stack. } until (X == \$);</pre>

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.

- 1. If X is a terminal, then FIRST(X) = { X }.
- 2. If X is a non-terminal and $X \rightarrow Y$

COP 3402 Systems Software

Predictive Parsing (First and Follow Sets)

The End