Introductory Course: Machine Learning (WWI15B4)

Concept Learning and the Hypothesis Space

Fabio Ferreira, David Bethge

DHBW Karlsruhe

Recommended Literature

- 1 Motivation
- 2 Concept Learning
 - Concept Learning Task
 - Algorithms
 - Learning as Search in the Hypothesis Space
 - Inductive Learning and Biases
- 3 Learning Theory
 - VC-Dimension

Questions and more questions...

Some questions we will be answering (from a theoretical perspective) in this lecture:

- What does "a model generalizes well" mean?
- Why classification cannot work without making a-priori assumptions?
- What is a bias and what different types do we usually consider?
- Why can we only learn so much what's in the data we provide to a learning algorithm?
- Why are models with lots of parameters usually not a blessing but a curse? (curse of dimensionality)

Motivation

Statements like

- "Dogs bark."
- "Cars drive."
- "I enjoy going to the theater."

require the knowledge of *concepts* (having learned about larger sets like animals, transportation, entertainment, ...)

Motivation

Statements like

- lacktriangle "Dogs bark." o animals
- "Cars drive." → transportation
- lacktriangle "I enjoy going to the theater." ightarrow entertainment

require the knowledge of *concepts* (having learned about larger sets like animals, transportation, entertainment, ...)

Motivation

Statements like

- "Dogs bark." → animals
- "Cars drive." → transportation
- "I enjoy going to the theater." → entertainment

require the knowledge of *concepts* (having learned about larger sets like animals, transportation, entertainment, ...)

Concept

Description of a subset of objects/events which are defined over a larger set.

Why are concepts important?

- Learning often involves inducing general functions from specific (training) examples
- building block for:
 - classification, events
 - inferring possible consequences
 - creating more complex knowledge (relations etc.)
- concept learning: "searching through a predefined space of potential hypotheses for the hypothesis that best fits the training examples" [Mitchell, 1997] ⇒ many machine learning algorithms perform hypothesis space search (e.g. ID3, SVM)

Concept Learning

Concept Learning

Automatic inference of a boolean-valued function based on training examples that yields **true** if an object (e.g. dog) is member of its larger (e.g. animals), **false** if not a member.

- Input: training samples (either member or non-member)
- Goal: automatic inference of definition of the underlying concept

Concept Learning

```
Example: foo(lion) \rightarrow true foo(giraffe) \rightarrow true foo(jackal) \rightarrow true foo(elephant) \rightarrow true foo(cougar) \rightarrow false foo(snowleopard) \rightarrow false
```

Concept Learning

```
Example: foo(lion) \rightarrow true foo(giraffe) \rightarrow true foo(jackal) \rightarrow true foo(elephant) \rightarrow true foo(cougar) \rightarrow false foo(snowleopard) \rightarrow false Concept: animals inhabiting Africa
```

Table of Contents

- 1 Motivation
- 2 Concept Learning
 - Concept Learning Task
 - Algorithms
 - Learning as Search in the Hypothesis Space
 - Inductive Learning and Biases
- 3 Learning Theory
 - VC-Dimension

(The following examples are taken from [Mitchell, 1997])

- goal: learn the concept "days on which my friend Aldo enjoys his favorite water sport."
- i.e.: $c : EnjoySport : X \rightarrow \{true, false\}$
- set of instances X: possible days described by 6 attributes:
 - Sky (Sunny, Cloudy, Rainy)
 - AirTemp (Warm, Cold)
 - Humidity (Normal, High))
 - Wind (Strong, Weak))
 - Water (Warm, Cool)
 - Forecoast (Same, Change)
- e.g. <Sunny, Warm, Normal, Strong, Warm, Same>

- set of hypotheses H specified as a vector of six constraints, which can be evaluated as:
 - attribute value (e.g. "Warm")
 - "?" (any value is acceptable)
 - "∅" (no value acceptable)
- e.g. <Sunny, Warm, Normal, Strong, ?, Same>
- most general hypothesis: <?,?,?,?,?,>
- most specific hypothesis: $\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$

- set of hypotheses H specified as a vector of six constraints, which can be evaluated as:
 - attribute value (e.g. "Warm")
 - "?" (any value is acceptable)
 - "∅" (no value acceptable)
- e.g. <Sunny, Warm, Normal, Strong, ?, Same>
- most general hypothesis: <?,?,?,?,?,</p>
- most specific hypothesis: $\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$
- "x satisfies h" if h(x) = 1, $\exists x \in X$
- a hypothesis is consistent if it correctly classifies all samples
- **goal**: determine $h \in H$ s.t. $h(x) = c(x), \forall x \in X$

Positive and negative examples of EnjoySport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

from [Mitchell, 1997]

Hypothesis Space

How is the hypotheses space shaped?

- the space of hypotheses is implicitly shaped by selecting the hypothesis representation
- number of instances¹ in X: 3 * 2 * 2 * 2 * 2 * 2 * 2 = 96
- number of hypotheses² in H: 5 * 4 * 4 * 4 * 4 * 4 = 5120

Many algorithms address learning by viewing it as *searching the hypothesis space* in order to find hypotheses that best fit the data.

¹distinct

²syntactically distinct

Example:

- h1 = <Sunny, ?, ?, Strong, ?, ?>
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

More general than or equal to: (\geq)

Let h_j and h_k be defined over X. Then $h_j \ge h_k$ iff: $h_k(x) = 1 \Rightarrow h_j(x) = 1, \forall x \in X$

Example:

- $h1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

More general than or equal to: (\geq)

Let h_j and h_k be defined over X. Then $h_j \ge h_k$ iff: $h_k(x) = 1 \Rightarrow h_j(x) = 1, \forall x \in X$

More general than: (>)

Let h_j and h_k be defined over X. Then $h_j > h_k$ iff: $h_i \ge h_k \wedge h_k \not \ge h_i$

- h1 = <Sunny, ?, ?, Strong, ?, ?>
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

Evaluate the following expressions:

- h2 > h1?
- h3 > h2?

- h1 = <Sunny, ?, ?, Strong, ?, ?>
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

Evaluate the following expressions:

- h2 > h1? true, since $h1 \Rightarrow h2$ AND it is NOT $h2 \Rightarrow h1$ ($\forall x$)
- h3 > h2? false, since NOT $h2 \Rightarrow h3$ ($\exists x$)

- h1 = <Sunny, ?, ?, Strong, ?, ?>
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

Verify the following expressions:

- h2 > h1? true, since $h1 \Rightarrow h2$ AND it is NOT $h2 \Rightarrow h1$ ($\forall x$)
- h3 > h2? false, since NOT $h2 \Rightarrow h3$ ($\exists x$)
- $h3 \ge h1$?

- h1 = <Sunny, ?, ?, Strong, ?, ?>
- h2 = <Sunny, ?, ?, ?, ?, ?>
- h3 = <Sunny, ?, ?, ?, Cool, ?>

Verify the following expressions:

- h2 > h1? true, since $h1 \Rightarrow h2$ AND it is NOT $h2 \Rightarrow h1$ ($\forall x$)
- h3 > h2? false, since $h2 \text{ NOT} \Rightarrow h3 (\exists x)$
- $h3 \ge h1$? false, x=<Sunny, Warm, High, Strong, Warm, Same> $\Rightarrow h1(x) = 1 \Rightarrow h3(x) = 1$

Visualization of X and H

 x_1 = <Sunny, Warm, High, Strong, Cool, Same> x_2 = <Sunny, Warm, High, Light, Warm, Same> $h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$ $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$ $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

from [Mitchell, 1997]

Table of Contents

- 1 Motivation
- 2 Concept Learning
 - Concept Learning Task
 - Algorithms
 - Learning as Search in the Hypothesis Space
 - Inductive Learning and Biases
- 3 Learning Theory
 - VC-Dimension

Learning as Search in the Hypothesis Space

- 1 Search from general to specific
 - initial point is the most general hypothesis <?,...,?>
 - positive samples are omitted
 - negative samples are used for specialization
- Search from specific to general
 - initial point is the most specific hypothesis $\langle \emptyset, ..., \emptyset \rangle$
 - negative samples are omitted
 - positive samples are used for generalization
- 3 Combination of both: Candidate Elimination algorithm (later)

Learning as Search in the Hypothesis Space

- 1 Search from general to specific
 - initial point is the most general hypothesis <?,...,?>
 - positive samples are omitted
 - negative samples are used for specialization
- Search from specific to general
 - initial point is the most specific hypothesis $\langle \emptyset, ..., \emptyset \rangle$
 - negative samples are omitted
 - positive samples are used for generalization
- 3 Combination of both: Candidate Elimination algorithm (later)

Specific-to-General Algorithm

- 1 initialize h as most specific hypothesis in H
- 2 for each positive training sample
 - for each attribute constraint a_i in $h < a_0,...,a_n >$
 - \blacksquare if a_i is satisfied by x: do nothing
 - else replace a_i in h by the next more general constraint that is satisfied by x
- 3 return hypothesis h

Specific-to-General Algorithm (2)

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- initialization: $h=<\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset>$
- first sample is positive (EnjoySport(x_1) = true)
- However, $h(x_1)$ =false \rightarrow generalize
- h=<Sunny, Warm, Normal, Strong, Warm, Same>

Specific-to-General Algorithm (3)

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- h=<Sunny, Warm, Normal, Strong, Warm, Same>
- second sample is positive
- However, $h(x_2)$ =false \rightarrow generalize (minimally)
- h=<Sunny, Warm, ?, Strong, Warm, Same>

Specific-to-General Algorithm (4)

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- h=<Sunny, Warm, ?, Strong, Warm, Same>
- third sample is negative (EnjoySport(x_3) = false) \rightarrow ignored
- forth sample is positive
- However, $h(x_2)$ =false \rightarrow generalize (minimally)
- h=<Sunny, Warm, ?, Strong, ?, ?>
- termination, return h

Specific-to-General Algorithm (5)

 x_1 = <Sunny Warm Normal Strong Warm Same>, + x_2 = <Sunny Warm High Strong Warm Same>, + x_3 = <Rainy Cold High Strong Warm Change>, -

Same War High Same Carl Character

 $x_4 = \langle Sunny | Warm | High | Strong | Cool | Change \rangle$, +

 $h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$

 $h_1 = \langle Sunny | Warm | Normal | Strong | Warm | Same \rangle$

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

h₃ = <Sunny Warm? Strong Warm Same>

 $h_4 = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$

Specific-to-general Algorithm (5)

Properties of the Specific-to-General Algorithm

- algorithm is guaranteed to output the most specific hypothesis within H that is consistent with the positive training samples
- final hypothesis is also consistent with negative samples provided
 - the correct target concept is in H
 - the examples are correct

Specific-to-general Algorithm (5)

Properties of the Specific-to-General Algorithm

- algorithm is guaranteed to output the most specific hypothesis within H that is consistent with the positive training samples
- final hypothesis is also consistent with negative samples provided
 - the correct target concept is in H
 - the examples are correct

BUT:

- is the found h the only one consistent with the data?
- why prefer the most specific $h_{specific}$? Unclear whether we should prefer it over the most general $h_{general}$.
- data-inefficient (negative samples ignored) ... and more

Version Space and Candidate Elimination Algorithm

Candidate Elimination algorithm

The Candidate Elimination algorithm finds all describable hypotheses that are consistent with the observed training examples.

ightarrow represents the set of *all* hypotheses consistent with the observed data. This set is called *Version Space*

Version Space?

The version space, denoted $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H *consistent* with the training examples in D.

[Russell and Norvig, 2003, Mitchell, 1997]

Example of the Version Space (2)

 $\mathsf{GB} = \mathsf{maximally}$ general positive boundary, $\mathsf{SB} = \mathsf{maximally}$ specific positive boundary

[Wikipedia: The Free Encyclopedia, 2006]

Example of the Version Space (2)

The version space for the <code>EnjoySports</code> concept learning task with the previously shown samples. The VS includes all six hypotheses. However, it can simply represented by ${\sf G}$ and ${\sf S}$.

Candidate Elimination Algorithm

Preliminary:

- $S = \{s \mid s \text{ being a hypothesis consistent with the observed samples } \land \text{ there exists no hypothesis which is more specific than } s \text{ that is also consistent with all samples} \}$
- initialize S with < ∅ >
- $G = \{g \mid g \text{ being a hypothesis consistent with the observed samples } \land \text{ there exists no hypothesis which is more general than } g \text{ that is also consistent with all samples} \}$
- initialize G with <? >

Candidate Elimination Algorithm (2)

x is a negative sample:

- remove from S any hypothesis inconsistent with x
- for each hypothesis g in G inconsistent with x:
 - remove g from G
 - add to G all minimal specializations h s.t. h is consistent with x, and some member of S is more specific than h
- remove from G any hypothesis less general than another hypothesis in G

Candidate Elimination Algorithm (2)

x is a negative sample:

- remove from S any hypothesis inconsistent with x
- for each hypothesis g in G inconsistent with x:
 - remove g from G
 - add to G all minimal specializations h of S s.t. h is consistent with x, and some member of S is more specific than h
- remove from G any hypothesis less general than another hypothesis in G

x is a positive sample:

- remove from G any hypothesis inconsistent with x
- for each hypothesis s in S inconsistent with x:
 - remove s from S
 - add to S all minimal generalizations h of S s.t. h is consistent with x, and some member of G is more general than h
- remove from S any hypothesis less general than other hypothesis in S

i=1

- S0 = {<Ø,Ø,Ø,Ø,Ø,Ø,Ø>}
- G0 = {<?,?,?,?,?,?>}

i=2

- x1= <Sunny, Warm, Normal, Strong, Warm, Same>, c(x1)=true
- · G consistent with x1
- S too specific → generalize until consistent

Learning as Search in the Hypothesis Space

Candidate Elimination Algorithm Example

i=3

- x2= <Sunny, Warm, High, Strong, Warm, Same>, c(x2)=true
- G consistent with x2
- S too specific → generalize until consistent

<Sunny, Warm, Normal, Strong, Warm, Same>

<Sunny, Warm, ?, Strong, Warm, Same>

i=4

- x3= <Rainy, Cold, High, Strong, Warm, Change>, c(x3)=false
- S consistent with x3

<Sunny, Warm, Normal, Strong, Warm, Same>

<Sunny, Warm, ?, Strong, Warm, Same>

i=4

- x3= <Rainy, Cold, High, Strong, Warm, Change>, c(x3)=false
- S consistent with x3 (no hypotheses in S classify x3 positive)
- G too general→ search minimal specializations, sort out inconsistencies, at least one s∈S must be more specific

i=5

- x4= <Sunny, Warm, High, Strong, Cool, Change>, c(x4)=true
- · One hypothesis inconsistent in G with x4
- S inconsistent with x4 → generalize until consistent

Resulting Version Space

· all consistent hypotheses

Candidate Elimination Algorithm Summary

Summary:

- the version space learned by the algorithm converges toward the hypothesis correctly describing the target concept given:
 - there are no errors in the training samples
 - there is some hypothesis in H that correctly describes the target concept

Candidate Elimination Algorithm Summary(2)

Advantages:

- instances don't have to be stored (lazy-learning)
- convergence is determinable (S=G)
- data-efficient

Disadvantages:

- consistent samples required
- noisy data problematic
- target concept must be represented by hypothesis space

In semi-supervised learning: optimal query strategy is to request instances that satisfy half the hypotheses in the current VS

Table of Contents

- 1 Motivation
- 2 Concept Learning
 - Concept Learning Task
 - Algorithms
 - Learning as Search in the Hypothesis Space
 - Inductive Learning and Biases
- 3 Learning Theory
 - VC-Dimension

Inductive Learning and Biases

Inductive Learning

What has been shown is associated with inductive learning

Induction

Plausible conclusion to the general given an input (specific).

Deduction

Logical reasoning from given knowledge (e.g. rules).

Inductive Learning Hypothesis

Inductive learning makes one fundamental assumption:

Induction Learning Hypothesis

Any hypothesis found to approximate a target function well over a sufficiently large set of training examples will also approximate a target function well over unknown samples.

- ⇒ The success of learning an inductive learning machine is heavily dependent on the provided data
- \Rightarrow it can at best guarantee that the output hypothesis fits the target concept over the training data.

Inductive Learning Hypothesis

- problem: target concept might not be contained in the hypothesis space
- solution(?): use hypothesis space that includes all possible hypotheses

Inductive Learning Hypothesis

- problem: target concept might not be contained in the hypothesis space
- solution(?): use hypothesis space that includes all possible hypotheses

Fundamental Property of Inductive Inference:

An inductive learning machine that makes no a-priori assumptions about the identity of the target concept has no rational basis for classifying unseen instances.

See [Mitchell, 1997] for an example of the futility of bias-free learning.

Inductive Learning and Biases

Inductive Learning Hypothesis(2)

Inductive bias of the Candidate Elimination algorithm

The target concept is contained in the hypothesis space and the concept could be represented by a conjunction of attribute values.

Inductive Learning and Biases

Biases

General Bias

Specification after which hypotheses are constructed. For example: classification accuracy, costs for storing hypotheses, human readability etc.

Hypothesis Space Bias

What could this be?

Preference Bias

What could this be?

Biases

General Bias

Specification after which hypotheses are constructed. For example: classification accuracy, costs for storing hypotheses or human readability

Hypothesis Space Bias

An hypothesis belongs to a restricted space of hypotheses, e.g. boolean conjunctions, linear threshold functions or 3-nearest neighbor

Preference Bias

There exists an order within the hypothesis space, e.g. prefer hypotheses with fewer disjunctions or prefer smaller decision trees

Biases (2)

Adjusting for the Hypothesis Space Bias:

- good classification might require complex hypothesis
- might result in overfitting

Adjusting for the Preference Bias:

- choose an hypothesis that correctly classifies as many samples as possible
- misclassification might be taken into account

Table of Contents

- 1 Motivation
- 2 Concept Learning
 - Concept Learning Task
 - Algorithms
 - Learning as Search in the Hypothesis Space
 - Inductive Learning and Biases
- 3 Learning Theory
 - VC-Dimension

Two central questions

- Recap: inductive learning hypothesis states that any hypothesis that approx. a target function well over train data will also approx it well over unknown examples
- Now: is there a way
 - to quantify a (classification) model's test error over unseen data?
 - that yields the amount of data necessary to learn?
- Vapnik-Chervonenkis (VC) theory can help us here [Vapnik, 1971]
- PAC (probably approximately correct) not addressed here

Definition

A measure of the **capacity** of the hypothesis space that can be learned by a classification model.

VC-Dimension

The cardinality of the largest set of points that a classification algorithm can *shatter*.

- Assume a binary data separation problem. What does shatter mean?
- Intuitively described:
- \implies all +/- label combinations of a fixed set of points can be separated with the classifier

from [Wikipedia: The Free Encyclopedia, 2012]

- to show the VC dimension is \geq a number:
 - ∃data points ∀labelings ∃hypothesis

- to show the VC dimension is \geq a number:
 - ∃data points ∀labelings ∃hypothesis
- to show the VC dimension is **not** > a number:
 - ∀data points ∃labelings ¬(∃hypothesis)

- to show the VC dimension is \geq a number:
 - ∃data points ∀labelings ∃hypothesis
- to show the VC dimension is **not** > a number:
 - ▼data points ∃labelings ¬(∃hypothesis)
- showing the lower bound is easier than showing higher bound

- to show the VC dimension is \geq a number:
 - ∃data points ∀labelings ∃hypothesis
- to show the VC dimension is **not** > a number:
 - ▼data points ∃labelings ¬(∃hypothesis)
- showing the lower bound is easier than showing higher bound
- Question: which arrangement of 3 points cannot be shattered in a binary classification problem?

- to show the VC dimension is \geq a number:
 - ∃data points ∀labelings ∃hypothesis
- to show the VC dimension is **not** > a number:
 - ▼data points ∃labelings ¬(∃hypothesis)
- showing the lower bound is easier than showing higher bound
- Question: which arrangement of 3 points cannot be shattered in a binary classification problem?
 - \implies 3 collinear points

- VC(H) high capacity
- VC(H) low capacity
- assumption: the higher VC(H) the better the classification model

- VC(H) high capacity
- VC(H) low capacity
- assumption: the higher VC(H) the better the classification model

- VC(H) high capacity
- VC(H) low capacity
- assumption: the higher VC(H) the better the classification model

from [Encyclopedia, 2016]

- VC(H) high capacity
- VC(H) low capacity
- assumption: the higher VC(H) the better the classification model
- ⇒ wrong

the VC dimension can predict a probabilistic **upper bound** on the test error:

$$Pr\left(testerror \leq trainingerror + \sqrt{...\frac{VC(H)}{N}...}\right) = 1 - \delta$$

while N being the size of the training set, VC(H) the VC dimension of the family of hypotheses H and $0 \le \delta \le 1$. What are the implications?

$$Pr\bigg(ext{testerror} \leq ext{trainingerror} + \sqrt{... rac{VC(H)}{N}...} \bigg) = 1 - \delta$$

Without going much into the details, it follows:

 as more data is added the lower the error of the model will become

$$Pr\bigg(ext{testerror} \leq ext{trainingerror} + \sqrt{... rac{VC(H)}{N}...} \bigg) = 1 - \delta$$

Without going much into the details, it follows:

- as more data is added the lower the error of the model will become
- the more complex the model is the more data is required to generalize well

$$Pr\bigg(ext{testerror} \leq ext{trainingerror} + \sqrt{... rac{VC(H)}{N}...} \bigg) = 1 - \delta$$

Without going much into the details, it follows:

- as more data is added the lower the error of the model will become
- the more complex the model is the more data is required to generalize well
- amount of data is linear to the VC dimension ⇒ this is one reason why deep neural nets require so much data

$$Prig(ext{testerror} \leq ext{trainingerror} + \sqrt{...rac{VC(H)}{N}...} ig) = 1 - \delta$$

Without going much into the details, it follows:

- as more data is added the lower the error of the model will become
- the more complex the model is the more data is required to generalize well
- lacktriangle amount of data is linear to the VC dimension \Longrightarrow this is one reason why deep neural nets require so much data

main takeaway: if you use a complex algorithm you will require a lot of data to generalize well

Curse of Dimensionality

Problems that face the *curse of dimensionality* in inductive learning typically refer to the phenomenon that, when increasing the model dimensionality³, the available data becomes sparse

 \Rightarrow the demand for additional data often grows exponentially with the dimensionality

 $^{^3}$ e.g. attributes of concepts $<\times 1, \times 2...>$, weights/learned parameters in parameterized models

- computing the VC dimension is often intractable or impossible
- e.g. when need to prove that it's impossible to find any set that can be shattered

- computing the VC dimension is often intractable or impossible
- e.g. when need to prove that it's impossible to find any set that can be shattered

- computing the VC dimension is often intractable or impossible
- e.g. when need to prove that it's impossible to find any set that can be shattered

- computing the VC dimension is often intractable or impossible
- e.g. when need to prove that it's impossible to find any set that can be shattered

Structural Risk Minimization (SRM)

- the choose a class of functions (e.g. polynomials of degree n)
- 2 divide the class of functions into subsets: $H_1 \subset H_2 \subset ... \subset H_n$ (e.g. polynomials of increasing degree)
- 3 perform parameter selection (optimize)
- 4 select the model with lowest (empirical) error (and implicitly lowest VC dim)

- computing the VC dimension is often intractable or impossible
- e.g. when need to prove that it's impossible to find any set that can be shattered

Structural Risk Minimization (SRM)

- 1 choose a class of functions (e.g. polynomials of degree n)
- 2 divide the class of functions into subsets: $H_1 \subset H_2 \subset ... \subset H_n$ (e.g. polynomials of increasing degree)
- 3 perform parameter selection (optimize)
- 4 select the model with lowest (empirical) error (and implicitly lowest VC dim)

for example SVM performs SRM

- Encyclopedia, W. T. F. (2016). Overfitting.
- Mitchell, T. M. (1997).
 Machine Learning.
 McGraw-Hill, Inc., New York, NY, USA, 1 edition.
- Russell, S. J. and Norvig, P. (2003).

 Artificial Intelligence: A Modern Approach.
 Pearson Education, 2 edition.
- Vapnik, V.N., C. A. Y. (1971).
 On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities.
 Theory of Probability & Its Applications, 16:264.
- Wikipedia: The Free Encyclopedia (2006). Version Space Learning.
- Wikipedia: The Free Encyclopedia (2012).

VC dimension.