

1. (original): A compound of the formula

in which

R₁ represents hydrogen, substituted or unsubstituted C₁-C₈alkyl, substituted or unsubstituted C₁-C₈alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

R₃ and R_{3a} each, independently of the other, represent hydrogen, a C₁-C₄alkyl group, which may be substituted or unsubstituted, halogen, hydroxy, substituted or unsubstituted

C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl and each of the residues

A₁ and A₂, independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

in which

X₁ represents C₁-C₄alkyl, or phenyl which is unsubstituted or monosubstituted by C₁-C₄alkyl, C₁-C₄alkoxy or halogen and

X₂ represents phenyl which is unsubstituted, mono-, di- or trisubstituted by one or two SO₃H, SO₂NHC₁-C₄alkyl groups which alkyl groups may be substituted, SO₂C₁-C₄alkyl, C₁-C₄substituted or unsubstituted alkyl, hydroxy, C₁-C₄alkoxy, halogen, CF₃, NH₂, NHCOC₁-C₄alkyl, NHCOOC₁-C₄alkyl, NHCONHC₁-C₄alkyl, CO₂H, CONHC₁-C₄alkyl or NO₂; a 1- or 2-naphthyl residue which is unsubstituted or substituted by one or two SO₃H, SO₂NHC₁-C₄alkyl, carboxy, CONHC₁-C₄alkyl, carboxyC₁-C₄alkyl or carboxyaryl groups or

a 5- or 6-membered heterocyclic ring containing 1-3 heteroatoms and which may be benzannelated and be further substituted by C₁-C₄alkyl, C₁-C₄alkoxy or halogen and which may be attached to the NH-atom in formula (2) either via the hetero- or benzo-nucleus, in the case of benzannelated heterocycles;

a derivative of barbituric acid of the formula

in which

Y represents O, NCN or NCONH₂;

a 2,4,6-triaminopyrimidine derivative;

a pyridone derivative of the formula

in which

Q₁ represents hydrogen, hydroxy, C₁-C₂alkyl, hydroxyethyl, 2-(C₁-C₂alkoxy)alkyl, C₁-C₂alkoxy, COOH, CONH₂ or COOC₁-C₂alkyl,

Q₂ represents hydrogen, CN, CONH₂, halogen, SO₃H or C₁-C₂alkyl which is unsubstituted or substituted by hydroxy, phenyl or SO₃H,

Q₃ represents hydrogen, phenyl, C₁-C₂alkylphenyl, cyclohexyl or C₁-C₄alkyl which is unsubstituted or substituted by hydroxy, CN, C₁-C₂alkoxy or SO₃H and

Q₄ represents hydrogen or hydroxy;

an aminopyrazole or a pyrazolone derivative of formula

in which

R₄ represents hydrogen, substituted or unsubstituted C₁-C₄alkyl, C₂-C₄alkenyl, NHCOC₁-C₄alkyl or CO₂H, each

R₅ and R₆, independently of the other, represent hydrogen, halogen, C₁-C₄alkyl, SO₃H or CO₂H and R₇ represents hydrogen or C₁-C₄alkyl;

a benzoic acid derivative of formula

in which

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy or

A₁ and A₂, each one independently of the other, represent a phenol residue of the formula

in which

R₉ and R₁₀, each one independently of the other, represent hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy, hydroxy, halogen, NH₂, NHCOC₁-C₄alkyl, NO₂, SO₃H, CO₂C₁-C₄alkyl or CONHC₁-C₄alkyl groups,

with the proviso that in compounds of formula

if

R_1 , R_2 , R_3 and R_{3a} each, independently of the others, are hydrogen or SO_3H , then

A_1 and A_2 are not both a 1-phenyl or 1-sulphophenyl-3-methyl-5-aminopyrazole residue,
or, if

R_1 , R_2 , R_3 and R_{3a} represent hydrogen and

A_1 is a residue of formula (9) in which

R_7 represents hydrogen or methyl, then

A_2 does not represent a 1-phenyl or 1-sulphophenyl-3-methyl- or 3-carboxy pyrazol-5-one residue

or, if

R_1 , R_3 and R_{3a} are hydrogen and R_2 is SO_3H and one of

A_1 and A_2 represents a 1-sulphophenyl-3-methyl pyrazol-5-one residue, then the other is not a residue
of formula (11) in which both

R_9 and R_{10} are hydrogen, or if

A_1 represents a 1-nitrophenyl-, a 1-phenyl- or an unsubstituted 3-methyl pyrazol-5-one residue,

A_2 is not a residue of formula (9) in which R_7 represents hydrogen, or if

R_1 , R_3 and R_{3a} represent hydrogen, R_2 is CO_2H and

A_1 represents a residue of formula (9), in which R_7 is hydrogen,

A_2 is not a residue of formula (2) or formula (7);

in compounds of the formula

if

R_2 represents CO_2H , R_3 represents hydroxy or methoxy and R_{3a} represents hydrogen,
 A_1 and A_2 do not represent residues of formulae (2) or (7) and,
in compounds of the formula

if

R_2 represents SO_3H and R_3 and R_{3a} both represent hydrogen
 A_1 and A_2 are not both 2,4-dihydroxyphenyl.

2. (original): A compound of formula (1), according to claim 1, which contains a total number of two, three or four SO_3H and/or CO_2H groups.

3. (currently amended): A compound of the formula

according to claims 1-er-2, in which

R₁ represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

R₃ represents hydrogen, a C₁-C₄alkyl group, halogen, hydroxy, C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl,

R_{3a} represents hydrogen or NH₂ and

A₁ and A₂ are as defined in claim 1.

4. (original): A compound of formula (13), according to claim 3, in which

R₃ and R_{3a} both represent hydrogen and

A₁ and A₂, each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

in which

X₁ represents C₁-C₄alkyl, and

X₂ represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO₃H, C₁-C₄alkyl, hydroxy, C₁-C₄alkoxy, halogen or CO₂H;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

a pyridone derivative of the formula

in which

Q_1 represents $C_1\text{-}C_2$ alkyl,

Q_2 represents CN , $CONH_2$ or CH_2SO_3H ,

Q_3 represents $C_1\text{-}C_2$ alkyl and

Q_4 represents hydroxy;

an aminopyrazole or a pyrazolone derivative of formula

or

in which

R_4 represents $C_1\text{-}C_4$ alkyl or CO_2H ,

R_5 represents hydrogen, halogen, $C_1\text{-}C_4$ alkyl, SO_3H or CO_2H and

R_6 represents hydrogen;

a benzoic acid derivative of formula

or

in which

R_7 represents hydrogen or $C_1\text{-}C_4$ alkyl and

R_8 represents hydrogen or hydroxy or

A_1 and A_2 , each one independently of the other, represent a phenol residue of the formula

in which

R_9 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or SO_3H and

R_{10} represents hydrogen.

5. (currently amended): A compound of formula

according to claims 1-or-2, in which

R_1 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or SO_3H ,

R_2 represents SO_3H or CO_2H ,

R_3 represents hydrogen, a C_1 - C_4 alkyl group, halogen, hydroxy, C_1 - C_4 alkoxy, carboxy, NH_2 or NHC_1-C_4 alkyl,

R_{3a} represents hydrogen or NH_2 and

A_1 and A_2 are as defined in claim 1.

6. (original): A compound of formula (14), according to claim 5, in which

R_3 and R_{3a} both represent hydrogen and

A_1 and A_2 , each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

in which

X_1 represents $\text{C}_1\text{-}\text{C}_4$ alkyl, and

X_2 represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO_3H ,

$\text{C}_1\text{-}\text{C}_4$ alkyl, hydroxy, $\text{C}_1\text{-}\text{C}_4$ alkoxy, halogen or CO_2H ;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

(5)

(7),

in which

R_4 represents $\text{C}_1\text{-}\text{C}_4$ alkyl or CO_2H ,

R_5 represents hydrogen, halogen, $\text{C}_1\text{-}\text{C}_4$ alkyl, SO_3H or CO_2H and

R_6 represents hydrogen;

a benzoic acid derivative of formula

(9)

(10),

in which

R_7 represents hydrogen or $\text{C}_1\text{-}\text{C}_4$ alkyl and

R_8 represents hydrogen or hydroxy or

A_1 and A_2 , each one independently of the other, represent a phenol residue of the formula

in which

R_9 represents hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, hydroxy, halogen or SO_3H and

R_{10} represents hydrogen.

7. (currently amended): A compound of formula

according to claims 1-~~or~~2, in which

R_1 represents hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy or SO_3H ,

R_2 represents SO_3H or CO_2H ,

R_3 represents hydrogen, a $C_1\text{-}C_4$ alkyl group, halogen, hydroxy, $C_1\text{-}C_4$ alkoxy, carboxy, NH_2 or $NHC_1\text{-}C_4$ alkyl,

R_{3a} represents hydrogen or NH_2 and

A_1 and A_2 are as defined in claim 1.

8. (original): A compound of formula (15), according to claim 7, in which

R_3 and R_{3a} both represent hydrogen and

A_1 and A_2 , each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

in which

X_1 represents $\text{C}_1\text{-}\text{C}_4$ alkyl, and

X_2 represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO_3H ,

$\text{C}_1\text{-}\text{C}_4$ alkyl, hydroxy, $\text{C}_1\text{-}\text{C}_4$ alkoxy, halogen or CO_2H ;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

(5)

(7),

in which

R_4 represents $\text{C}_1\text{-}\text{C}_4$ alkyl or CO_2H ;

R_5 represents hydrogen, halogen, $\text{C}_1\text{-}\text{C}_4$ alkyl, SO_3H or CO_2H and

R_6 represents hydrogen;

a benzoic acid derivative of formula

(9)

or

(10),

in which

R_7 represents hydrogen or $\text{C}_1\text{-}\text{C}_4$ alkyl and

R_8 represents hydrogen or hydroxy or

A_1 and A_2 , each one independently of the other, represent a phenol residue of the formula

in which

R_9 represents hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, hydroxy, halogen or SO_3H and
 R_{10} represents hydrogen.

9. (currently amended): A compound of formula

according to claims 1 or 2, in which

R_1 represents hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy or SO_3H ,

R_2 represents SO_3H or CO_2H ,

R_3 represents hydrogen, a $C_1\text{-}C_4$ alkyl group, halogen, hydroxy, $C_1\text{-}C_4$ alkoxy, carboxy, NH_2 or $NHC_1\text{-}C_4$ alkyl,

R_{3a} represents hydrogen or NH_2 and

A_1 and A_2 are as defined in claim 1.

10. (original): A compound of formula (16), according to claim 9, in which

R_3 and R_{3a} both represent hydrogen and

A_1 and A_2 , each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

in which

X_1 represents C_1 - C_4 alkyl, and

X_2 represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO_3H , C_1 - C_4 alkyl,

hydroxy, C_1 - C_4 alkoxy, halogen or CO_2H ;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

in which

R_4 represents C_1 - C_4 alkyl or CO_2H ,

R_5 represents hydrogen, halogen, C_1 - C_4 alkyl, SO_3H or CO_2H and

R_6 represents hydrogen;

a benzoic acid derivative of formula

in which

R_7 represents hydrogen or C_1 - C_4 alkyl and

R_8 represents hydrogen or hydroxy or

A_1 and A_2 , each one independently of the other, represent a phenol residue of the formula

in which

R_9 represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy, hydroxy, halogen or SO₃H and
 R_{10} represents hydrogen.

11. (original): A process for the preparation of a compound of formula (1), according to claim 1, by tetrazotisation of a diaminobenzanilide derivative of the formula

in which R_1 , R_2 , R_3 and R_{3a} are as defined in claim 1, and sequential coupling with a coupling component of the formula A_1H or A_2H , followed by coupling with a coupling component of the formula A_2H or A_1H , A_2 and A_1 being as defined in claim 1.

12. (original): A compound of the formula

13. (currently amended): A process for the preparation of compound (18), according to claim 12, by reaction of 2-methoxy-4-nitroaniline-5-sulphonic acid with the appropriate nitrbenzoyl nitrobenzoyl halide, followed by reduction of the resulting dinitrobenzanilide.

14. (cancelled).

15. (currently amended): Use of the compound of formula (1), according to claim 1, A process for dyeing natural or synthetic materials, comprising contacting said materials with a tinctorially effective amount of a compound of the formula (1) according to claim 1, and, optionally, further auxiliaries.

16. (original): A solid dye preparation for dyeing paper, comprising a compound of the formula (1) according to claim 1, and, optionally, further auxiliaries.

17. (original): Aqueous solutions for dyeing paper, comprising a compound of the formula (1), according to claim 1, and, optionally, further auxiliaries.

18. (original): Aqueous solutions according to claim 17 containing, as further auxiliaries, solubilizers and/or organic solvents.

19. (currently amended): Paper which is dyed with a compound of the formula (1), according to claim 1, ~~in the form of a solid dye preparation, according to claim 16, or an aqueous solution, according to claim 17.~~

20. (new): A process for the preparation of a compound of formula (1), according to claim 1, by tetrazotisation of a diaminobenzanilide derivative of the formula

and sequential coupling with a coupling component of the formula A₁H or A₂H, followed by coupling with a coupling component of the formula A₂H or A₁H, A₂ and A₁ being as defined in claim 1.