SciTinyML

Scientific use of machine learning on low power devices Regional Workshop - Africa

Supervised Learning and Motion Classification

Marcelo Rovai Professor, UNIFEI - Brazil

Shawn Himel Senior DevRel Engineer, Edge Impulse

Machine Learning

Supervised learning

Task-driven

- Regression
- Classification
- Object detection

Unsupervised learning

Data-driven

- Clustering
- Segmentation
- Anomaly detection

Reinforcement learning

Learn from experience

- Robotics
- Games
- Recommender systems

Supervised Learning

Training data:

$$(x_0, y_0)$$

 (x_1, y_1)
 (x_2, y_2)

Training: automatically update the model parameters so that loss function is minimized

Goal:

$$f(x_n) = \hat{y_n}$$
 where $\hat{y_n} = y_n$

Loss function: $L(\hat{y_n}, y_n)$

Inference: using the trained machine learning model to make predictions with new, unseen data

Supervised Learning

Training data:

$$(x_0, y_0)$$

 (x_1, y_1)
 (x_2, y_2)

Labels (y_n) are known for training data

$$f(x_n) = \hat{y_n}$$
 where
$$\hat{y_n} = y_n$$

Loss function:

$$L(\hat{y_n}, y_n)$$

Workflow

Holdout Method

Motion Classification

1 (x, y, z) accelerometer point from "left-right" sample

Many (x, y, z) accelerometer points from all classes

Problems with deep learning

- 1. Computational complexity
- 2. Requires lots of training data

375 raw values

375 raw values

hello@edgeimpulse.com

3031 Tisch Way 110 Plaza West San Jose, CA 95128 USA