Outline

Quasi-Poisson Example: Florida 2000 Presidential Election

2 Interaction Effects

 For each of the 67 counties in Florida: Total votes for Bush, Gore, Nader, and Buchanan

Proportion of voters who support Buchanan in each county.

```
> fl2 = read.table("florida2000.txt", header=T); # 67 counties
> head(f12)
   County Gore Bush Buchanan Nader Total Votes Reg Reform Reg Rep Reg Ind Reg Grn
  ALACHUA 47300 34062
                           262
                               3215
                                                       91
                                                            34319
                                                                    1639
                                          84839
    BAKER
          2392
                 5610
                            73
                                 53
                                          8128
                                                        4
                                                            1684
                                                                      58
      BAY
         18850 38637
                           248
                                 828
                                          58563
                                                       55
                                                           34286
                                                                      0
          3072 5413
                           65
                                84
                                          8634
                                                          2832
4 BRADFORD
                                                                      96
  BREVARD
          97318 115185
                           570
                                4470
                                         217543
                                                      148 131427
                                                                    6815
                                                                             98
6 BROWARD 386518 177279
                           789 7099
                                       571685
                                                      332 266829
                                                                    125
                                                                            179
 Reg_Dem Total_Reg
1 64135
           120876
  10261
          12352
  44209
          92749
   9639
          13547
  107840
          283680
  456789
          887764
```


 Obs 50 is Palm Beach County with 656,694 registered voters in the 2000 election. Palm Beach is where a butterfly ballot was used.

- Objective: predict the Palm Beach vote from a general linear model in which Palm Beach is omitted from the fit.
- Let N_i be the total number of votes cast and Y_i be the number of votes for Buchanan in county i.
- Let π_i be the proportion of voters who support Buchanan in county i.
- Then the Binomial distribution would suggest that the variance of Y_i is approximately $N_i\pi_i(1-\pi_i)$.
- Quasi-likelihood approach to overdispersion based on models of the form

$$Var(Y_i) = \sigma^2 N_i \pi_i (1 - \pi_i)$$

• For π_i , we assume that

$$\pi_i = \frac{1}{1 + \exp(-\boldsymbol{X}_i'\beta)}$$

where $\mathbf{X}_i = (1, x_{i1}, x_{i2})'$ are predictor variables: the proportion voting for Bush and Nader.

- Palm Beach (case 50) is excluded for the purpose of model fitting and prediction.
- Consider only counties with more than 10,000 actual voters in the 2000 presidential election.

```
> index = apply(fl, 1, sum) > 10000;
> index2 = index;
> index2[50] = FALSE;
> vi = fl[index2,4]
> xi1 = flp[index2,1]; xi2 = flp[index2,3]
> Ni = apply(fl, 1, sum);
> ni = Ni[index2]-vi;
> glmfit.no50 = glm(cbind(yi, ni)~xi1+xi2, family=quasibinomial("logit"));
> summary(glmfit.no50)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.9313 0.4317 -18.371 < 2e-16 ***
           2.8367 0.6845 4.144 0.000167 ***
xi1
       26.9536 10.3612 2.601 0.012858 *
vi2
(Dispersion parameter for quasibinomial family taken to be 50.94362)
Null deviance: 3115.9 on 43 degrees of freedom
Residual deviance: 1958.0 on 41 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 4
```

- Using the resulting model to predict π_{50} leads to a point estimate 0.00139063, and a 95% confidence interval (0.001044842,0.001850643).
- With N_{50} = 430762, this leads to a point estimate 599 and 95% confidence interval (450,797) for the mean vote $N_{50}\pi_{50}$.
- The interval is described as confidence interval rather than prediction interval, because it does not take account of the variability of Y_{50} given π_{50} .
- Since quasi-likelihood models do not specify the full distribution of Y₅₀, a precise resoluation is hard to achieve.

Outline

Quasi-Poisson Example: Florida 2000 Presidential Election

2 Interaction Effects

Interaction

- Interaction is a three-variable concept. One of these is the response variable (Y) and the other two are explanatory variables (X_1 and X_2).
- There is an interaction between X₁ and X₂ if the impact of an increase in X₂ on Y depends on the level of X₁.
- To incorporate interaction in multiple regression model, we add the explanatory variable X_1X_2 (or $(X_1 \bar{X}_1)(X_2 \bar{X}_2)$). There is evidence of an interaction if the coefficient on X_1X_2 is significant (p-value < 0.05).

Example

- An experiment to study how noise affects the performance of children.
- Study sample consists of hyperactive children and a control group of children who were not hyperactive.
- The children solved problems under both high-noise and low-noise conditions.
- Here are the mean scores:

Interactions between categorical predictors

- Let Y=mathematics score, X₁ = type of child, X₂ = type of noise.
- There is an interaction between type of child and type of noise.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \frac{\beta_3 X_{1,i} X_{2,i}}{\lambda_{2,i}} + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$$

$$X_{1,i} = \begin{cases} 1 & \text{if } i \text{ is a hyperactive child} \\ 0 & \text{if } i \text{ is a control child} \end{cases} X_{2,i} = \begin{cases} 1 & \text{if } i \text{ is in high noise} \\ 0 & \text{if } i \text{ is in low noise} \end{cases}$$

$$X_{1,i}X_{2,i} = \begin{cases} 1 & \text{if } i \text{ is a hyperactive child in high noise} \\ 0 & \text{otherwise} \end{cases}$$

What is the interpretation of β_0 , β_1 , β_2 , β_3 ?

$$eta_3 = \mathbb{E}(Y|\text{hyperactive, high noise}) + \mathbb{E}(Y|\text{control, low noise}) - \mathbb{E}(Y|\text{hyperactive, low noise}) - \mathbb{E}(Y|\text{control, high noise})$$

Interaction between categorical and continuous predictors

- An interaction occurs when an exploratory variable has a different effect on the outcome depending on the values of another exploratory variable.
- Let Y represents the output (amount of cholesterol lowering), β_1 represents the effect of the drug, β_2 the effect of gender, and β_3 the interaction effect

$$\mathbb{E}(Y) = \beta_0 + \beta_1 \mathsf{Dose} + \beta_2 \mathbf{1}_{\textit{female}} + \beta_3 \mathsf{Dose} * \mathbf{1}_{\textit{female}}$$

- How to depict each of the following scenario?
 - No gender effect
 - Gender has an main effect, but no interaction
 - Gender has an effect with interaction.

Cont.

Interactions between two continuous predictors

- The number of car accidents on a highway (Y) is related to the number of vehicles that travel over it (X_1) and the speed at which they are traveling (X_2) .
- Data covering the last few years were provided.
- Possible model with interactions

$$Y_t \sim Poi(\lambda_t)$$
 independently,
 $\log(\lambda_t) = \beta_0 + \beta_1 \text{cars}_t + \beta_2 \text{speed}_t + \beta_3 (\text{cars}_t - 60) * (\text{speed}_t - 9.9)$

Estimate	Std Error	∠-ratio	Prob
-0.85	7.31	-0.12	0.90
0.41	0.13	3.05	0.003
0.06	0.11	0.54	0.58
1.07	0.07	12.26	< 0.0001
	0.41 0.06	-0.85 7.31 0.41 0.13 0.06 0.11	-0.85 7.31 -0.12 0.41 0.13 3.05 0.06 0.11 0.54

- Increases in speed have a worse impact on the number of accidents when there are a large number of cars than when there are a small number of cars on the road.
- What is $\mathbb{E}(Cars = 8, Speed 66) \mathbb{E}(Cars = 8, Speed 65)$?
- How about $\mathbb{E}(Cars = 11, Speed 66) \mathbb{E}(Cars = 11, Speed 65)$?

Trick that sometime helps

- Subtract the mean from each independent variable, and use these so-called "centered" variables to create the interaction variables.
- This will not change the correlations among the non-interaction terms, but may reduce correlations for interaction terms.
- We have looked only at "first order" interactions, and only at interactions between two variables at a time. However, second order interactions, or interactions between three or more variables are also possible. E.g.

$$\mathbb{E}(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3 + \beta_6 X_1 X_2 X_3$$

 ANOVA analysis similarly extends to two-way (or higher-way) interactions.

Revisit the CEB dataset

- Number of Children Ever Born (CEB) to Women of Indian Race By Marital Duration, Type of Place of Residence and Educational Level
- Each cell shows the mean, variance, and sample size.

Marr.		Suv	ra			Urb	an			Ru	ral	
Dur.	N	$_{ m LP}$	UP	S+	N	$_{ m LP}$	UP	S+	N	$_{ m LP}$	UP	S+
0-4	0.50	1.14	0.90	0.73	1.17	0.85	1.05	0.69	0.97	0.96	0.97	0.74
	1.14	0.73	0.67	0.48	1.06	1.59	0.73	0.54	0.88	0.81	0.80	0.59
	8	21	42	51	12	27	39	51	62	102	107	47
5-9	3.10	2.67	2.04	1.73	4.54	2.65	2.68	2.29	2.44	2.71	2.47	2.24
	1.66	0.99	1.87	0.68	3.44	1.51	0.97	0.81	1.93	1.36	1.30	1.19
	10	30	24	22	13	37	44	21	70	117	81	21
10 - 14	4.08	3.67	2.90	2.00	4.17	3.33	3.62	3.33	4.14	4.14	3.94	3.33
	1.72	2.31	1.57	1.82	2.97	2.99	1.96	1.52	3.52	3.31	3.28	2.50
	12	27	20	12	18	43	29	15	88	132	50	9
15-19	4.21	4.94	3.15	2.75	4.70	5.36	4.60	3.80	5.06	5.59	4.50	2.00
	2.03	1.46	0.81	0.92	7.40	2.97	3.83	0.70	4.91	3.23	3.29	_
	14	31	13	4	23	42	20	5	114	86	30	1
20-24	5.62	5.06	3.92	2.60	5.36	5.88	5.00	5.33	6.46	6.34	5.74	2.50
	4.15	4.64	4.08	4.30	7.19	4.44	4.33	0.33	8.20	5.72	5.20	0.50
	21	18	12	5	22	25	13	3	117	68	23	2
25 - 29	6.60	6.74	5.38	2.00	6.52	7.51	7.54	_	7.48	7.81	5.80	_
	12.40	11.66	4.27	_	11.45	10.53	12.60	_	11.34	7.57	7.07	_
	47	27	8	1	46	45	13	_	195	59	10	_

Additive model

Table 4.4: Estimates for Additive Log-Linear Model of Children Ever Born by Marital Duration, Type of Place of Residence and Educational Level

Parameter		Estimate	Std. Error	z-ratio
Constant		-0.1173	0.0549	-2.14
Duration	0 - 4	_		
	5 - 9	0.9977	0.0528	18.91
	10 - 14	1.3705	0.0511	26.83
	15 - 19	1.6142	0.0512	31.52
	20 - 24	1.7855	0.0512	34.86
	25 - 29	1.9768	0.0500	39.50
Residence	Suva	_		
	Urban	0.1123	0.0325	3.46
	Rural	0.1512	0.0283	5.34
Education	None	_		
	Lower	0.0231	0.0227	1.02
	Upper	-0.1017	0.0310	-3.28
	Sec+	-0.3096	0.0552	-5.61

ANOVA model

 ${\it TABLE~4.3:~Deviances~for~Poisson~Log-linear~Models~Fitted~to~the~Data~on~CEB~by~Marriage~Duration,~Residence~and~Education}$

Model	Deviance	d.f.
Null	3731.52	69
One-factor Mod	els	
Duration	165.84	64
Residence	3659.23	67
Education	2661.00	66
$Two ext{-}factor\ Mod$	els	
D+R	120.68	62
D + E	100.01	61
DR	108.84	52
DE	84.46	46
Three-factor Mo	dels	
D + R + E	70.65	59
D + RE	59.89	53
E + DR	57.06	49
R + DE	54.91	44
DR + RE	44.27	43
DE + RE	44.60	38
DR + DE	42.72	34
DR + DE + RE	30.95	28

Interpretation

- Null model has a deviance of 3732 on 69 degrees of freedom, which does not pass the goodness-of-test. ⇒ reject the hypothesis that "the expect number of children is the same for all these groups".
- Introducing marital duration leads to substantial reduction of 3566 at only 5 d.f. ⇒ significant effect of "duration" on the number of children
- The additive model D+R+E has a deviance of 70.65 on 59 d.f. The associated P-value under a χ^2 distribution is 0.14, so the model provides a good description of the data.
- Education effect:
 - compare model E to model Null (1071 on 3 d.f.)
 - compare model D+E to model D (65.8 on 3 d.f.)
 - compare model D+R+E to model D+R. (50.1 on 3 d.f.)
 - part of education effect may be attributed to the fact that more educated women tend to live in Suva or in other urban areas (collinearity between E and R).

Interaction effect

- Does education make more of a difference in rural areas than in urban areas?
- Compare D + R + E to D + RE. \Rightarrow reduces the deviance by 10.8 at the expense of 6 d.f. \Rightarrow not significant, with a P-value of 0.096.
- Does education effect increase with marital duration?
- Compare D + R + E to $R + DE \Rightarrow$ reduces the deviance by 15.7 at the expense of 15 d.f. \Rightarrow hardly a bargain.