Mon rapport

Alain Terrieur mettre la date du jour ici

Table des matières

1	Ma première section	2
	1.1 Une sous-section	2
2	Nouvelle section 2	
3	Les tableaux	2
4	Insérer une image	3
5	Le mode mathématique	
6	Citer ses sources	4

1 Ma première section

1.1 Une sous-section

Ce texte est en italique tandis que celui-ci est en gras.

1.2 Une autre sous-section

Liste des items:

- item 1
- item 2
- item 3

2 Nouvelle section

Ceci est un rapport rédigé en LaTeX ¹. La première sous-section, c'est-àdire la sous-section 1.1 se situe en page 2 (numéro de page calculé automatiquement). Ci-dessous se trouve une liste numérotée d'items :

- 1. bla
- 2. ble
- 3. bli
- 4. blo
- 5. blu

3 Les tableaux

texte centré	texte à gauche	texte à droite
a	b	c
d	e	f

Table 1 – Nom du tableau

Le tableau 1 est nommé.

^{1.} langage que nous apprenons aujourd'hui.

4 Insérer une image

La Figure 1 mesure en largeur la moitié de la largeur du texte.

FIGURE 1 – Une photo de smiley

5 Le mode mathématique

Le nombre π vaut environ 3.14, ou encore $\frac{22}{7}$ ou $\frac{\frac{44}{2}}{\sqrt{7^2}}$ à un (gros) ϵ près.

Une équation non numérotée :

$$a^2 + b^2 = c^2$$

Une équation numérotée :

$$a^2 + b^2 = c^2 (1)$$

On peut citer l'équation précédente comme étant l'équation 1.

Avec "align", on peut citer chaque ligne d'une équation. Par exemple, l'équation 2 et l'équation 3.

$$f(x) = x^2 + 8x + 16$$

$$= (x+4)^2$$
(3)

6 Citer ses sources

Je cite la première référence [1]. Je peux aussi citer les 3 d'un seul coup [1, 2, 3].

Références

- [1] Anthony H. Dekker and Bernard D. Colbert. Network Robustness and Graph Topology. In *Proceedings of the 27th Australasian Conference on Computer Science Volume 26*, ACSC '04, pages 359–368, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.
- [2] Junming Xu. Topological structure and analysis of interconnection networks, volume 7 of Network Theory and Applications. Springer-Verlag, 2001.
- [3] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. *Annals of Mathematics*, 155(1):157–187, 2002.