Definition 1

Une équation récurrente est une égalité reliant les termes successifs d'une suite.

Exemples

- $u_{n+1} = \ln(1 + u_n)$ est une équation récurrente non-linéaire d'ordre
- $u_{n+2} = u_{n+1} + 2u_n 3$ est une équation récurrente linéaire d'ordre 2, à coefficients constants, non-homogène.

Si on enlève le terme -3, on obtient l'équation homogène associée $u_{n+2} = u_{n+1} + 2u_n$.

Les exemples précédents portent sur de suites définies dans $\mathbb R$ ou $\mathbb C$: ce sont des équations scalaires.

Si on considère des suites de \mathbb{R}^k ou \mathbb{C}^k , on obtient des **systèmes** d'équations récurrentes vectorielles.

Exemple

$$U_{n+1} = AU_n + B$$
 avec $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ et $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

une équation scalaire linéaire d'ordre k peut toujours s'écrire comme un système vectoriel d'ordre 1.

en posant $U_n=\begin{pmatrix}u_n\\u_{n+1}\end{pmatrix}$ réécrire l'équation $u_{n+2}=u_{n+1}+2u_n-3$ dans

Definition 2

Résoudre une équation récurrente (ou un système d'équations récurrentes) c'est déterminer toutes les suites vérifiant cette équation.

La donnée des k premiers termes, pour une équation d'ordre k, mène à une solution unique.

Théorème 1

Du fait de la linéarité, on obtient toutes les solutions en ajoutant à l'une d'elles toutes les solutions de l'équation homogène.

Résolution de l'équation homogène

Résolution de l'équation homogène

- Il est clair que l'ensemble des solutions de l'équation homogène est stable par combinaison linéaire et qu'il est non vide. Donc il forme un espace vectoriel.
- On peut donc montrer que la dimension de cet e.v est égale à l'ordre de l'équation.
- On est donc amené à chercher k solutions indépendantes.
- Si l'équation est à coefficients constants il est facile de déterminer s'il existe des solutions du type (r^n) .

Exemple

 $u_{n+2} = u_{n+1} + 2u_n$

Théorème 2

- Plus généralement, si l'équation caractéristique d'un problème d'ordre k possède k solutions distinctes $r_1, r_2, \ldots r_k$ alors les (r_i^n) sont des solutions indépendantes formant une base de l'espace vectoriel des solutions de l'équation homogène.
- Dans le cas des racines multiples à l'équation caractéristique, par exemple $si\ r$ est une solution d'ordre m, on peut montrer que $(r^n), (nr^n), \ldots, (n^{m-1}r^n)$ forme une famille libre de solutions qui, associée aux autres, donne une base.

Recherche d'une solution particulière

Pas de méthode générale. Il faut deviner, en s'inspirant de l'allure du second membre.

Exemples

$$u_{n+2} = u_{n+1} + 2u_n - 3$$

$$u_{n+2} = u_{n+1} + 2u_n - 3.2^n$$

Plus généralement si le second membre est du type $P(n)r^n$ où P(n) est un polynôme et r est une valeur quelconque, il faut chercher une solution du type $Q(n)r^n$ où Q(n) est un polynôme de degré égal à celui de P si rn'est pas solution de l'équation caractéristique, et augmenté de l'ordre de multiplicité de r s'il est solution de l'équation caractéristique.

Exercice

Résoudre
$$U_{n+1}=AU_n+B$$
 avec $A=\begin{pmatrix}1&0\\1&1\end{pmatrix}$, $U_n=\begin{pmatrix}x_n\\y_n\end{pmatrix}$ et $B=\begin{pmatrix}2\\1\end{pmatrix}$

Gwendal Le Bouffant (ENSSAT) Mathématiques pour l'informatique

Fonctions génératrices

Fonctions génératrices

Fonctions génératrices

Definition 3

La fonction génératrice de la suite (u_n) réelle ou complexe est la fonction

$$G(z) = \sum_{n=0}^{+\infty} u_n z^n.$$

Elle est définie sur un disque $\{|z| < R\}$, R étant le **rayon de** convergence de la série entière.

Outre les éguations linéaires cela permet de résoudre les équations comportant des produits de convolution.

Remarque

En traitement du signal, la coutume est plutôt l'usage de la transformée **en z** définie sur $\{|z|>\frac{1}{D}\}$:

$$X(z) = \sum_{n=0}^{+\infty} u_n z^{-n}.$$

Exemple

Soit $u_n = a^n$, $a \neq 0$.

Donner sa fonction génératrice puis sa transformée en z.

• Ces transformations sont linéaires : $Si(u_n) \mapsto U \ et(v_n) \mapsto V$

alors
$$(\alpha u_n + \beta v_n) \mapsto \alpha U + \beta V$$
.

• L'effet d'une translation est facile à exprimer :

$$Si\ (u_n)\mapsto U(z)=\sum u_nz^n \ alors\ (u_{n+1})\mapsto \sum u_{n+1}z^n=\dots$$

• Le produit par n aussi :

Si
$$U = \sum u_n z^n$$
 alors $U' = \sum n u_n z^{n-1}$
donc $zU' = \sum n u_n z^n$.

• Le produit de convolution de deux suites est transformé en produit (simple) de leurs transformées :

Si
$$(u_n) \mapsto U(z)$$
 et $(v_n) \mapsto V(z)$ alors $(u_n * v_n) \mapsto U(z)V(z)$.

Fonctions génératrices

Remarque

Les formules sont analogues pour la transformation en z, en remplaçant z par $\frac{1}{z}.$

Exemple

Résoudre par fonction génératrice puis transformée en z:

$$u_{n+2} = u_{n+1} + 2u_n + 3$$

Gwendal Le Bouffant (ENSSAT) Mathématiques pour l'informatique