Lab 2

Measuring Diode Characteristics using Multisim

Learning outcomes

1) Learn two techniques to measure Diode's characteristics

Experiment 1) Measure Diode's characteristics using step by step measurements

- A) Create new Multisim project
- B) Insert and connect the required components
 - 1.Insert R1 resistor and adjust its value to 100 Ω
 - 2.Insert a DC power source
 - 3.Insert a Ground
 - 4. Insert 1N4007G Silicon Diode from Diode list
 - 5. Insert 3 multimeters from the rightmost list (the first icon is the Multimeter)
 - 6. Connect the circuit as shown bellow

C) Simulate and change the value of DC source as follows:

-3V	to	0V	step	1
0V	to	3.2V	step	0.2
3.2V	to	5V	step	0.4
5V	to	10V	step	0.5
10V	to	30V	step	5V

- D) For each vale of V1 measure the current through Diode I_D and Diode voltage V_D
- E) What do you notice? Is it a linear relation? Does the slope is constant?
- F) Measure the slope (assuming linear) for the line passing through the last 4 entries of the table
- G) Save the current project with a proper name, e.g. Ohm's law step by step

Experiment 2) Measure Diode's characteristics automatically using AC source and oscilloscope

- A) Insert and connect the required components
 - 1.Insert 2 resistors and set their R2 1Ω and R1 100Ω
 - 2.Insert an AC power source and set its rms to 21V (≈60Vpp)
 - 3. Insert from the same list a ground
 - 4. Insert an oscilloscope from the rightmost list (the fourth icon is the oscilloscope) and another on the far left to measure input
 - 5. Insert the same Diode of Exp 1; 1N4007G
 - 6. Connect the circuit as shown bellow

- B) Running the simulation
 - 1. From Simulate click Run
 - 2. Double on the oscilloscope
 - 3. Set the front panel knobs of the oscilloscope as shown bellow

4. Try to measure the Diode forward resistance using the part of the curve between the 2 vertical lines in the figure above

5. Set the oscilloscope as shown bellow in A/B mode

- 6. Measure the slope of the line
- 7. What do you notice?
- 8. Repeat the procedure after changing the R1 value to 0.1Ω
- C) Save the current project with a proper name, e.g. Ohm's law automatic characteristic measurements

Experiment 3) Measure Diode's characteristics automatically using AC source and oscilloscope (using realistic oscilloscope connection)

In reality, practical lab oscilloscope has a common ground for both A and B channels so the precious connection in Exp 2 is not realistic and will cause a short circuit on R2

A) Insert and connect the required components as shown bellow

- B) Repeat the same procedure of Exp 2, and get the characteristics on the oscilloscope screen of XSC1
- C) Why R2 changed from 1 Ω in Exp 2 to 0.01 Ω in Exp 3? Can we keep it 1 Ω , should the measurement error increases in that case?