

Departamento de Matemática, Universidade de Aveiro

Cálculo II — Agrup. IV

Exame de Recurso; 2 de julho de 2018 Duração: 2h30min

Justifique todas as respostas e indique os cálculos efetuados –

[20pts]

1. Determine o domínio de convergência da série de potências $\sum_{n=1}^{+\infty} \frac{(x+2)^n}{n2^{n-1}}$.

[20pts]

- Considere o seguinte desenvolvimento em série $\operatorname{sen}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \, x^{2n+1} \, , \, x \in \mathbb{R}.$
 - (a) Partindo desse desenvolvimento, escreva o desenvolvimento em série de MacLaurin de $\cos(x)$, para $x \in \mathbb{R}$, justificando.
 - (b) Obtenha a soma da seguinte série numérica $\sum_{n=0}^{+\infty} \frac{\pi(-\pi^2)^n}{(2n+1)!}$.

[25pts]

- 3. A série de Fourier da função real de variável real 2π -periódica g, tal que $g(x)=x,\; -\pi \leq x < \pi$, é
 - (a) Justifique que a série converge pontualmente, para todo o $x \in \mathbb{R}$, e determine a sua soma S(x), para $x \in [-\pi, \pi[$.
 - (b) Justifique a veracidade da seguinte afirmação:

Esta série não converge uniformemente em $\mathbb R$.

[35pts]

- 4. Seja h a função de domínio $\mathbb{R}^2 \setminus \{(0,0)\}$ tal que $h(x,y) = \ln(x^2 + y^2)$.
 - (a) Determine a curva de nível 0 de h e descreva-a geometricamente.
 - (b) Determine o gradiente de h, $\nabla h(x,y)$, para $(x,y) \neq (0,0)$.
 - (c) Determine uma equação do plano tangente ao gráfico de h no ponto $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$.

[35pts]

- 5. Sejam f a função de domínio \mathbb{R}^2 tal que $f(x,y)=x^2y-y$ e $D=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq 4\}$.
 - (a) Mostre que f não tem extremantes locais no interior de D.
 - (b) Justifique que f tem máximo e mínimo globais em D e que os respetivos extremantes pertencem à fronteira de D.
 - (c) Mostre que o ponto $(\sqrt{3}, -1)$ surge como um candidato a extremante de f na fronteira de D, quando se utiliza o método dos multiplicadores de Lagrange.

[25pts]

- 6. Considere a EDO y''' 2y'' + y' = 2x + 1,
 - (a) Mostre que a EDO tem uma solução da forma $y = ax^2 + bx + c$, com $a, b, c \in \mathbb{R}$.
 - (b) Encontre a sua solução geral.

[20pts]

7. Determine um integral geral da equação $xyy'=x^2e^{-\frac{y}{x}}+y^2$, efetuando a mudança de variável

[20pts]

8. Usando transformadas de Laplace, resolva o problema de valores iniciais $\begin{cases} y'' + 9y = 20 \, e^{-t} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$