Laboratorium napędu elektrycznego

Modelowanie trójfazowej maszyny indukcyjnej i badanie właściwości trójfazowego falownika napięcia w programie Plecs

1. Wybieramy silnik indukcyjny.

Dane techniczne:

1000 min⁻¹ (6 biegunowe)

2. Lista parametrów modelu trójfazowego silnika indukcyjnego klatkowego w programie Plecs.

Znanymi wprost z katalogu parametrami są:

neters
neters

Wyznaczanie parametrów modelu maszyny indukcyjnej pozwala jedynie oszacować ich wartość. Przybliżanie wartości parametrów może następować na podstawie pomiarów rezystancji uzwojeń stojana, próby biegu jałowego i zwarcia lub może być zrealizowane na podstawie wartości katalogowych/wartości z tabliczki znamionowej. W niniejszej instrukcji posłużono się szacowaniem wartości modelu trójfazowej maszyny indukcyjnej klatkowej na podstawie danych katalogowych.

3. Szacowanie wartości indukcyjności rozproszenia uzwojenia stojana L_{ls} (stator leakage inductance) i wirnika L_{lr} (rotor leakage inductance):

Indukcyjność rozproszenia uzwojeń stojana przyjmuje się równą indukcyjności rozproszenia uzwojeń wirnika, a ich wartość można przybliżyć zależnością:

$$L_{ls} = L_{lr}' = \frac{X_{\sigma}}{2\pi f_N} = \frac{U_N}{2\sqrt{3}\pi f_N I_N} \left(\sqrt{1 - \cos^2 \varphi_N} - \frac{I_{saN} \cos \varphi_N}{I_{sqN}} \right)$$

w której U_N jest znamionowym napięciem przewodowym, I_N znamionowym prądem stojana, a $cos \varphi_N$ jest współczynnikiem mocy w punkcie pracy znamionowej maszyny. Ponadto, składowe prądu stojana I_{sdN} i I_{sqN} są definiowane jako:

$$I_{sdN} = \sqrt{2}I_N\sqrt{1 - \cos\varphi_N} = \sqrt{2} \cdot 16.6 \cdot \sqrt{1 - 0.75} \text{ A} = 11.737973 \text{ A}$$

$$I_{sqN} = \sqrt{2I_N^2 - I_{sdN}^2} = \sqrt{2 \cdot 16,6^2 - 11,737973^2} \text{ A} = 20,330765 \text{ A}$$

A po podstawieniu otrzymujemy:

$$L_{ls} = L_{lr}' = \frac{U_N}{2\sqrt{3}\pi f_N I_N} \left(\sqrt{1 - \cos^2 \varphi_N} - \frac{I_{sdN} \cos \varphi_N}{I_{sqN}} \right) =$$

$$= \frac{400}{2\sqrt{3}\pi \cdot 50 \cdot 16.6} \left(\sqrt{1 - 0.75^2} - \frac{11,737973 \cdot 0.75}{20,330765} \right) H = 0.010115 H$$

4. Szacowanie wartości indukcyjności magnesującej L_m (magnetizing inductance):

Wartość indukcyjności magnesującej L_m możemy obliczyć na podstawie reaktancji magnesującej X_m :

$$L_m = \frac{X_m}{2\pi f_N}$$

gdzie f_N jest wartością znamionową częstotliwości napięcia zasilania maszyny, a wartość reaktancji magnesującej przybliża następująca zależność:

$$X_m = \frac{\sqrt{2}U_N}{\sqrt{3}I_{sdN}} - X_\sigma = \frac{U_N}{\sqrt{3}} \left(\frac{\sqrt{2}}{I_{sdN}} - \frac{\sqrt{1 - cos^2 \varphi_N}}{I_N} + \frac{I_{sdN} cos \varphi_N}{I_{sqN}I_N} \right)$$

Ostatecznie po podstawieniu otrzymujemy:

$$\begin{split} X_m &= \frac{U_N}{\sqrt{3}} \left(\frac{\sqrt{2}}{I_{sdN}} - \frac{\sqrt{1 - cos^2 \varphi_N}}{I_N} + \frac{I_{sdN} cos \varphi_N}{I_{sqN} I_N} \right) = \\ &= \frac{400}{\sqrt{3}} \left(\frac{\sqrt{2}}{11,737973} - \frac{\sqrt{1 - 0,75^2}}{16,6} + \frac{11,737973 \cdot 0,75}{20,330765 \cdot 16,6} \right) \Omega = 24,646247 \ \Omega \end{split}$$

oraz:

$$L_m = \frac{X_m}{2\pi f_N} = \frac{24,646247}{2\pi \cdot 50} = 0,078451 \text{ H}$$

5. Szacowanie wartości rezystancji stojana R_s (stator resistance).

Wartość rezystancji uzwojeń stojana R_s można oszacować na podstawie wzoru:

$$R_s = \frac{\omega_{slipN} I_{sdN} X_m}{2\pi f_N I_{sqN}}$$

a znamionowa wartość pulsacji poślizgu
$$\omega_{slipN}$$
 wynosi:
$$\omega_{slipN} = 2\pi \left(f_N - \frac{n_N p}{60}\right) = 2\pi \left(50 - \frac{975 \cdot 3}{60}\right) \frac{\text{rad}}{\text{s}} = 7,853982 \frac{\text{rad}}{\text{s}}$$

Podstawiając wartości do wzoru na rezystancję uzwojeń stojana otrzymujemy:
$$R_s = \frac{\omega_{slipN} I_{sdN} X_m}{2\pi f_N I_{sqN}} = \frac{7,853982 \cdot 11,737973 \cdot 24,646247}{2\pi \cdot 50 \cdot 20,330765} \Omega = 0,3557 \ \Omega$$

6. Szacowanie wartości rezystancji wirnika R_r ' (rotor resistance).

Wartość rezystancji uzwojeń wirnika R_r ' można oszacować na podstawie wzoru:

$$R_r' = s_N \frac{U_N}{\sqrt{3}I_N}$$

gdzie s_N jest poślizgiem znamionowym zdefiniowanym jako:

$$s_N = \frac{n_S - n_N}{n_S} = \frac{1000 - 975}{1000} = 0,025$$

A wartość rezystancji uzwojenia wirnika po podstawieniu wynosi:
$$R_r'=s_N\frac{U_N}{\sqrt{3}I_N}=0.025\frac{400}{\sqrt{3}\cdot 16.6}\Omega=0.3478~\Omega$$

7. Szacowanie wartości współczynnika tarcia wiskotycznego F (friction coefficient).

Wartość współczynnika tarcia wiskotycznego można obliczyć na podstawie bilansu mocy maszyny:

$$F = \frac{\sqrt{3}U_N I_N cos\varphi_N - T_N \omega_N - c_l I_N^2 R_s}{\omega_N^2}$$

gdzie sumę mocy strat w uzwojeniu stojana i wirnika oraz strat w żelazie uproszczono do c_l - krotności strat w uzwojeniu stojana. Wartość znamionowej prędkości kątowej wynosi:

$$\omega_N = n_N \frac{2\pi}{60} = 975 \frac{2\pi \text{ rad}}{60 \text{ s}} = 102,101761 \frac{\text{rad}}{\text{s}}$$

i ostatecznie otrzymujemy:

$$F = \frac{\sqrt{3}U_{N}I_{N}cos\varphi_{N} - T_{N}\omega_{N} - c_{l}I_{N}^{2}R_{s}}{\omega_{N}^{2}} = \frac{\sqrt{3}\cdot400\cdot16,6\cdot0,75 - 73,5\cdot102,101761 - 2\cdot16,6^{2}\cdot0,3557}{102,101761^{2}} \text{Nms} = 0,088739 \text{ Nms}$$

8. Amplitudę i częstotliwość napięcia źródła trójfazowego napięcia V_3ph ustawiamy na wartości, które pozwolą na zasilanie maszyny napięciem znamionowym maszyny U_N o częstotliwości f_N . Wartość źródła sygnału Step sterującego momentem obciążenia ustawiamy na wartość znamionową momentu na wale maszyny T_N .

Sparametryzowany model trójfazowej maszyny indukcyjnej klatkowej.

Block Paran	neters: Machine AC/Squ	uirre	l-Cage IM	>
Induction Mach	ine (Squirrel Cage) (mask) (lir	k) ————————————————————————————————————	
	duction machine with sho uantities are referred to		rcuited rotor windings. All parameters stator side.	
Parameters	Assertions			
Stator resistan	ce Rs:	F	riction coefficient F:	
0.3557		\Box	0.088739	
Stator leakage	inductance Lls:	1	Number of pole pairs p:	
0.01		\Box	3	
Rotor resistan	te Rr':		nitial rotor speed wm0:	
0.3478		\Box	0	
Rotor leakage	inductance Llr':]	nitial rotor position thm0:	
0.01		\Box	0	
Magnetizing in	ductance Lm:	ļ	nitial stator currents [isa0 isb0]:	
0.07845		\Box	[0 0]	
Inertia J:		ļ	initial stator flux [psisd0 psisq0]:	
0.1	[[0 0]	
	OK	C	ancel Apply Help	

Wyniki symulacyjne w warunkach znamionowych modelu zamodelowanej maszyny indukcyjnej trójfazowej przedstawiono poniżej.

Szacowane parametry modelu obwodowego maszyny indukcyjnej, na podstawie danych katalogowych, pozwoliły na otrzymanie wartości prądu stojana, sprawności, współczynnika mocy i prędkości obrotowej w punkcie pracy znamionowej różniących się od danych katalogowych o blisko 10%. Dalsze ulepszenie/korekta modelu maszyny indukcyjnej może odbywać się jedynie z zastosowaniem metody prób i błędów. Celem jest dobranie parametrów modelu obwodowego maszyny, tak aby różnica uzyskanych wartości nie różniła się więcej niż 1% od wartości znamionowych.

9. Wyniki symulacyjne skorygowanego modelu maszyny indukcyjnej trójfazowej.

W następstwie korekty parametrów modelu maszyny indukcyjnej udało się uzyskać wierniejsze odzwierciedlenie wartości prądu, współczynnika mocy i sprawności w warunkach znamionowych, co przedstawiono poniżej:

10. Zbudować trójfazowy przekształtnik napięcia i do wyjścia przekształtnika dołączyć symetryczny trójfazowy odbiornik rezystancyjno-indukcyjny 3xRL. Przeanalizować rozkład Fouriera otrzymanych przebiegów czasowych.

- 11. Uruchomić symulację z symetrycznym obciążeniem rezystancyjno-indukcyjnym i odpowiedzieć na poniższe pytania:
 - a. Jaki kształt i jakie dyskretne wartości przyjmuje napięcie $U_{a\theta}$ w odniesieniu do napięcia zasilania przekształtnika? Z czego wynikają te wartości?
 - b. Jaki kształt i jakie dyskretne wartości przyjmuje napięcie U_{ab} w odniesieniu do napięcia zasilania przekształtnika? Z czego wynikają te wartości?
 - c. Jaki kształt i jakie dyskretne wartości przyjmuje napięcie U_{an} w odniesieniu do napięcia zasilania przekształtnika? Z czego wynikają te wartości?
 - d. Jaki kształt ma prąd wyjściowy mostka *Iout*?
 - e. Co ma wpływ na wartość tętnień prądu odbiornika?
- 11. Jaka powinna być minimalna wartość napięcia w obwodzie napięcia stałego (napięcia zasilającego przekształtnik $U_{dc}=U_u+U_d$), aby uzyskać wartość podstawowej harmonicznej przewodowego napięcia wyjściowego, przy zastosowaniu modulacji sinusoidalnej, równą napięciu znamionowemu maszyny indukcyjnej ($U_N=400V$)?

 $U_{dc}^{min} = \dots$

12. Usunąć trójfazowe obciążenie RL i zastąpić je uprzednio zamodelowanym silnikiem indukcyjnym wraz z obciążeniem mechanicznym i pomiarem prędkości.

