

ISSUE: VARIABLE LENGTH SEQUENCES OF WORDS

- With images, we forced them into a specific input dimension
- Not obvious how to do this with text
- For example, classify tweets as positive, negative, or neutral
- Tweets can have a variable number of words
- What to do?

ISSUE: ORDERING OF WORDS IS IMPORTANT

- Want to do better than "bag of words" implementations
- Ideally, each word is processed or understood in the appropriate context
- Need to have some notion of "context"
- Words should be handled differently depending on "context"
- Also, each word should update the context

- Input words one by one
- Network outputs two things:
 - Prediction: What would be the prediction if the sequence ended with that word
 - State: Summary of everything that happened in the past
- This way, can handle variable lengths of text
- The response to a word depends on the words that preceded it

In Keras, this part is accomplished by a subsequent Dense layer.

This part is the core RNN.

Keras calls this part the "kernel" (e.g. kernel_initializer,...).

Keras calls this part "recurrent" (recurrent_initializer,...).

PRACTICAL DETAILS

- Often, we train on just the "final" output and ignore the intermediate outputs
- Slight variation called Backpropagation Through Time (BPTT) is used to train RNNs
- Sensitive to length of sequence (due to "vanishing/exploding gradient" problem)
- In practice, we still set a maximum length to our sequences
 - If input is shorter than maximum, we "pad" it
 - If input is longer than maximum, we truncate

OTHER USES OF RNNS

- We have focused on text/words as application
- But, RNNs can be used for other sequential data
 - Time-Series Data
 - Speech Recognition
 - Sensor Data
 - Genome Sequences

WEAKNESSES OF RNNS

- Nature of state transition means it is hard to keep information from distant past in current memory without reinforcement
- In the next lecture, we will introduce LSTMs, which have a more complex mechanism for updated the state

LSTM (LONG-SHORT TERM MEMORY) RNNS

ISSUE: STANDARD RNNS HAVE POOR MEMORY

- Transition Matrix necessarily weakens signal
- Need a structure that can leave some dimensions unchanged over many steps
- This is the problem addressed by so-called Long-Short Term Memory RNNs (LSTM)

IDEA: MAKE "REMEMBERING" EASY

- Define a more complicated update mechanism for the changing of the internal state
- By default, LSTMs remember the information from the last step
- Items are overwritten as an active choice

cell state gets updated in two stages

cell state gets updated in two stages

cell state gets updated in two stages

Note: '*' represents element-wise multiplication

$$C_t = f_i * C_{t-1} + i_t * C'_t$$

$$\uparrow \qquad \qquad \uparrow$$
forget add the new (or not) (or not)

Final stage computes the output

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

Final stage computes the output

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

Note: No weights here

LSTM UNROLLED

FINAL POINTS

- This is the most common version of LSTM, but there are many different "flavors"
 - Gated Recurrent Unit (GRU)
 - Depth-Gated RNN
- LSTMs have considerably more parameters than plain RNNs
- Most of the big performance improvements in NLP have come from LSTMs, not plain RNN

