REVISÃO RÁPIDA

Nos exercícios 1 e 2, simplifique a expressão combinando termos equivalentes.

1.
$$2x + 5x + 7 + y - 3x + 4y + 2$$

2.
$$4 + 2x - 3z + 5y - x + 2y - z - 2$$

Nos exercícios 3 e 4, use a propriedade distributiva para expandir os produtos. Simplifique a expressão resultante combinando termos semelhantes.

3.
$$3(2x - y) + 4(y - x) + x + y$$

4.
$$5(2x + y - 1) + 4(y - 3x + 2) + 1$$

Nos exercícios de 5 a 10, reduza as frações ao mesmo denominador para operá-las. Simplifique a fração resul-

5.
$$\frac{2}{y} + \frac{3}{y}$$

6.
$$\frac{1}{y-1} + \frac{3}{y-2}$$
 7. $2 + \frac{1}{x}$ **8.** $\frac{1}{x} + \frac{1}{y} - x$

7.
$$2 + \frac{1}{x}$$

8.
$$\frac{1}{x} + \frac{1}{y} - x$$

9.
$$\frac{x+4}{2} + \frac{3x-1}{5}$$
 10. $\frac{x}{3} + \frac{x}{4}$

10.
$$\frac{x}{3} + \frac{x}{4}$$

Nos exercícios de 11 a 14, faça a expansão do produto.

11.
$$(3x - 4)^2$$

12.
$$(2x + 3)^2$$

13.
$$(2x + 1)(3x - 5)$$

14.
$$(3y - 1)(5y + 4)$$

Nos exercícios de 15 a 18, fatore completamente.

15.
$$25x^2 - 20x + 4$$

16.
$$15x^3 - 22x^2 + 8x$$

17.
$$3x^3 + x^2 - 15x - 5$$

18.
$$y^4 - 13y^2 + 36$$

Nos exercícios 19 e 20, opere com as frações e reduza a fração resultante para termos de expoentes mais baixos.

19.
$$\frac{x}{2x+1} - \frac{2}{x+3}$$

20.
$$\frac{x+1}{x^2-5x+6} - \frac{3x+11}{x^2-x-6}$$

EXERCÍCIOS

Nos exercícios de 1 a 4, encontre quais valores de x são soluções da equação.

1.
$$2x^2 + 5x = 3$$

(a)
$$x = -3$$
 (b) $x = -\frac{1}{2}$ (c) $x = \frac{1}{2}$
2. $\frac{x}{2} + \frac{1}{6} = \frac{x}{3}$

2.
$$\frac{x}{2} + \frac{1}{6} = \frac{x}{3}$$

(a)
$$x = -1$$
 (b) $x = 0$

$$(c) x =$$

3.
$$\sqrt{1-x^2}+2=3$$

(a)
$$x = -2$$
 (b) $x = 0$

$$c = 0$$

(c)
$$x = 2$$

4.
$$(x-2)^{1/3}=2$$

(a)
$$x = -6$$
 (b) $x = 8$

(c)
$$x = 10$$

Nos exercícios de 5 a 10, determine se a equação é linear em x.

5.
$$5 - 3x = 0$$

6.
$$5 = \frac{10}{2}$$

7.
$$x + 3 = x - 5$$

8.
$$x-3=x^2$$

9.
$$2\sqrt{x} + 5 = 10$$

10.
$$x + \frac{1}{x} = 1$$

Nos exercícios de 11 a 24, resolva a equação.

11.
$$3x = 24$$

12.
$$4x = -16$$

13.
$$3t - 4 = 8$$

14.
$$2t - 9 = 3$$

15.
$$2x - 3 = 4x - 5$$

16.
$$4 - 2x = 3x - 6$$

17.
$$4 - 3y = 2(y + 4)$$

18.
$$4(y-2) = 5y$$

19.
$$\frac{1}{2}x = \frac{7}{8}$$

20.
$$\frac{2}{3}x = \frac{4}{5}$$

21.
$$\frac{1}{2}x + \frac{1}{3} = 1$$

23.
$$2(3-4z)$$
 – **24.** $3(5z-3)$ –

Nos exercícios de pode conferir a re tenha recurso gráfi

25.
$$\frac{2x-3}{4}+5=$$

27.
$$\frac{t+5}{8} - \frac{t-2}{2}$$

Nos exercícios 29 equação foi obtida

29.
$$x - 3 = 2x +$$

30.
$$2x - 1 = 2x - 1$$

Nos exercícios 31 ções são equivalent

(b)
$$6x + 2 =$$

32. (a)
$$3x + 2 =$$

(b)
$$2x + 5 =$$

33. Múltipla esc ções é equivale

(a)
$$3x = 2x$$

(c)
$$\frac{3}{2}x + \frac{5}{2} =$$

(e)
$$3x = 2x -$$

34. Múltipla esco nativas temos a :

(a)
$$x = 0 \text{ ou } x$$

(c) somente
$$x$$

nativas temos ur

$$\frac{2x}{3}$$

(a)
$$2x + 1 = x$$

(c)
$$4x + 3 = \frac{3}{2}$$

(e)
$$4x + 6 = 3$$

$$21. \frac{1}{2}x + \frac{1}{3} = 1$$

22.
$$\frac{1}{3}x + \frac{1}{4} = 1$$

23.
$$2(3-4z)-5(2z+3)=z-17$$

24.
$$3(5z-3)-4(2z+1)=5z-2$$

Nos exercícios de 25 a 28, resolva a equação. Você pode conferir a resposta com uma calculadora que enha recurso gráfico.

$$25. \frac{2x-3}{4} + 5 = 3x$$

expressão resul-

que a fração resul-

xpoentes mais baixos.

termine se a equação é

6. $5 = \frac{10}{2}$

8. $x - 3 = x^2$

10. $x + \frac{1}{x} = 1$

esolva a equação.

12. 4x = -16

14. 2t - 9 = 3

20. $\frac{2}{3}x = \frac{4}{5}$

16. 4-2x=3x-6

18. 4(y-2) = 5y

2) + 1

25.
$$\frac{2x-3}{4} + 5 = 3x$$
 26. $2x-4 = \frac{4x-5}{3}$

$$27. \frac{t+5}{8} - \frac{t-2}{2} = \frac{1}{3}$$

27.
$$\frac{t+5}{8} - \frac{t-2}{2} = \frac{1}{3}$$
 28. $\frac{t-1}{3} + \frac{t+5}{4} = \frac{1}{2}$

Nos exercícios 29 e 30, explique como a segunda equação foi obtida da primeira.

29.
$$x - 3 = 2x + 3$$
, $2x - 6 = 4x + 6$

30.
$$2x - 1 = 2x - 4$$
, $x - \frac{1}{2} = x - 2$

Nos exercícios 31 e 32, determine se as duas equacões são equivalentes.

31. (a)
$$3x = 6x + 9$$
, $x = 2x + 9$

(a)
$$5x = 6x + 5$$
, $3x + 1 = 2x + 5$

32. (a)
$$3x + 2 = 5x - 7$$
, $-2x + 2 = -7$

(a)
$$3x + 2$$

(b) $2x + 5 = x - 7$, $2x = x - 7$

33. Múltipla escolha Qual das seguintes equações é equivalente à 3x + 5 = 2x + 1?

(a)
$$3x = 2x$$

(b)
$$3x = 2x + 4$$

(c)
$$\frac{3}{2}x + \frac{5}{2} = x + 1$$
 (d) $3x + 6 = 2x$

(d)
$$3x + 6 = 2x$$

(e)
$$3x = 2x - 4$$

34. Múltipla escolha Em qual das seguintes alternativas temos a solução da equação x(x+1) = 0?

(a)
$$x = 0$$
 ou $x = -1$

(a)
$$x = 0$$
 ou $x = -1$ (b) $x = 0$ ou $x = 1$

(c) somente
$$x = -1$$

(d) somente
$$x = 0$$

(e) somente
$$x = 1$$

15. Múltipla escolha Em qual das seguintes alternativas temos uma equação equivalente à:

$$\frac{2x}{3} + \frac{1}{2} = \frac{x}{4} - \frac{1}{3}$$
?

(a)
$$2x + 1 = x -$$

(a)
$$2x + 1 = x - 1$$
 (b) $8x + 6 = 3x - 4$

(c)
$$4x + 3 = \frac{1}{3}$$

(c)
$$4x + 3 = \frac{3}{2}x - 2$$
 (d) $4x + 3 = 3x - 4$

(e)
$$4x + 6 = 3x - 4$$

36. Perímetro de um retângulo A fórmula para o perímetro P de um retângulo é

$$P = 2(b+h)$$

onde b é a medida da base, e h, a medida da altura. Resolva essa equação isolando h.

37. Área de um trapézio A fórmula para a área A de um trapézio é:

$$A = \frac{1}{2}h(b_1 + b_2),$$

onde b_1 e b_2 são medidas das bases, e h é a medida da altura. Resolva essa equação isolando b_1 .

38. Volume de uma esfera A fórmula para o volume V de uma esfera é:

$$V=\frac{4}{3}\pi r^3,$$

onde r é o raio. Resolva essa equação isolando r.

39. Celsius e Fahrenheit A fórmula para temperatura Celsius (°C), em termos de temperatura Fahrenheit (°F), é:

$$C = \frac{5}{9}(F - 32).$$

Resolva essa equação isolando F.

Nos exercícios de 40 a 45, resolva a equação graficamente encontrando os valores que interceptam o eixo horizontal x.

40.
$$x^2 - x - 20 = 0$$

41.
$$2x^2 + 5x - 3 = 0$$

42.
$$4x^2 - 8x + 3 = 0$$

43.
$$x^2 - 8x = -15$$

44.
$$x(3x-7)=6$$

45.
$$x(3x + 11) = 20$$

Nos exercícios de 46 a 51, resolva a equação extraindo as raízes quadradas.

46.
$$4x^2 = 25$$

47.
$$2(x-5)^2=17$$

48.
$$3(x + 4)^2 = 8$$
 49. $4(u + 1)^2 = 18$

49.
$$4(u+1)^2=18$$

50.
$$2y^2 - 8 = 6 - 2y^2$$

51.
$$(2x + 3)^2 = 169$$

Nos exercícios de 52 a 57, resolva a equação completando o quadrado.

52.
$$x^2 + 6x = 7$$

53.
$$x^2 + 5x - 9 = 0$$

54.
$$x^2 - 7x + \frac{5}{4} = 0$$

55.
$$4 - 6x = x^2$$

56.
$$2x^2 - 7x + 9 = (x - 3)(x + 1) + 3x$$

57.
$$3x^2 - 6x - 7 = x^2 + 3x - x(x+1) + 3$$

Nos exercícios de 58 a 63, resolva a equação usando a fórmula de Bhaskara.

58.
$$x^2 + 8x - 2 = 0$$

59.
$$2x^2 - 3x + 1 = 0$$

60.
$$3x + 4 = x^2$$

61.
$$x^2 - 5 = \sqrt{3}x$$

62.
$$x(x+5)=12$$

63.
$$x^2 - 2x + 6 = 2x^2 - 6x - 26$$

Nos exercícios de 64 a 67, estime os valores por onde os gráficos interceptam os eixos x e y:

$$[-5, 5]$$
 por $[-5, 5]$

65.

[-3, 6] por [-3, 8]

66.

[-5, 5] por [-5, 5]

67.

[-3, 3] por [-3, 3]

Nos exercícios de 68 a 73, resolva a equação graficamente encontrando intersecções. Confirme sua resposta algebricamente.

68.
$$|t-8|=2$$

69.
$$|x+1|=4$$

70.
$$|2x + 5| = 7$$

71.
$$|3-5x|=4$$

72.
$$|2x-3|=x^2$$

73.
$$|x+1|=2x-3$$

74. Interpretando gráficos Os gráficos a seguir podem ser usados para resolver graficamente a equação $3\sqrt{x+4} = x^2 - 1$.

[-5, 5] por [-10, 10] (a)

- (a) O gráfico em (a) ilustra o método da intersecção. Identifique as duas equações que estão representadas.
- **(b)** O gráfico em (b) ilustra o método de analisar onde o gráfico intercepta o eixo horizontal *x*.
- (c) Como estão os pontos de intersecção em (a) relacionados com os valores por onde o gráfico intercepta o eixo horizontal x em (b)?

Nos exercícios de 75 a 84, utilize o método da sua preferência para resolver a equação.

75.
$$x^2 + x - 2 = 0$$

76.
$$x^2 - 3x = 12 - 3(x - 2)$$

77.
$$|2x-1|=5$$

78.
$$x + 2 - 2\sqrt{x + 3} = 0$$

79.
$$x^3 + 4x^2 - 3x - 2 = 0$$

80.
$$x^3 - 4x + 2 = 0$$

81.
$$|x^2 + 4x - 1| = 7$$

82.
$$|x+5| = |x-3|$$

83.
$$|0.5x + 3| = x^2 - 4$$

84.
$$\sqrt{x+7} = -x^2 + 5$$

85. Discriminante de uma expressão quadrática O radicando b² – 4ac na fórmula quadrática é chamado de discriminante do polinômio

quadrático $ax^2 + b$ zado para descreve

- (a) Se $b^2 4aa$ sobre os zero tico $ax^2 + bz$
- (b) Se $b^2 4aa$ sobre os zero tico $ax^2 + ba$
- (c) Se $b^2 4a$ sobre os zero tico $ax^2 + b$.
- 86. Discriminante drática Use o canterior para cria os seguintes no Justifique sua res
 - (a) Dois zeros
 - (b) Exatamente
 - (c) Nenhum ze
- 87. Tamanho de medidas estão e 1,0936 yd) Vário 1994 ocorreram Stanford, na Camais de comprise a área do cam dimensões desse
- 88. Comprimento está em pés [ft], sabe que sua esc distância do chã do que a distân escada (como v qual a altura que

Os gráficos a seguir Bolver graficamente a

-10, 10]

Justra o método da inter-

e as duas equações que

ercepta o método de analisar ercepta o eixo horizontal x. entos de intersecção em (a) os valores por onde o grácixo horizontal x em (b)?

4. utilize o método da sua a equação.

- 2)

= 0

U

quadrático $ax^2 + bx + c$, porque ele pode ser utilizado para descrever a origem dos zeros (ou raízes).

- (a) Se $b^2 4ac > 0$, o que você pode dizer sobre os zeros (raízes) do polinômio quadrático $ax^2 + bx + c$? Explique sua resposta.
- (b) Se $b^2 4ac = 0$, o que você pode dizer sobre os zeros (raízes) do polinômio quadrático $ax^2 + bx + c$? Explique sua resposta.
- (c) Se $b^2 4ac < 0$, o que você pode dizer sobre os zeros (raízes) do polinômio quadrático $ax^2 + bx + c$? Explique sua resposta.
- Discriminante de uma expressão quadrática Use o que você aprendeu no exercício anterior para criar um polinômio quadrático com os seguintes números de zeros (ou raízes). Justifique sua resposta graficamente.
 - (a) Dois zeros (ou duas raízes) reais.
 - (b) Exatamente um zero (ou uma raiz) real.
 - (c) Nenhum zero (ou raiz) real.
- Tamanho de um campo de futebol (as medidas estão em jardas [yd], e 1 m equivale a 1,0936 yd) Vários jogos da Copa do Mundo de 1994 ocorreram no estádio da Universidade de Stanford, na Califórnia. O campo tem 30 yd a mais de comprimento em relação à sua largura, e a área do campo é de 8.800 yd². Quais são as dimensões desse campo de futebol?
- Comprimento de uma escada (a medida está em pés [ft], e 1 m equivale a 3,2808 ft) João sabe que sua escada de 18 ft fica estável quando a distância do chão até o topo dela é de 5 ft a mais do que a distância da construção até a base da escada (como vemos na figura). Nessa posição, qual a altura que a escada alcança na construção?

89. Dimensões de uma janela (a medida está em pés [ft], e 1 m equivale a 3,2808 ft) Essa janela tem a forma de um quadrado com um semicírculo sobre ele. Encontre as dimensões da janela se a área total do quadrado e do semicírculo é dada por 200 ft².

- 90. Verdadeiro ou falso? Se o gráfico de $y = ax^2$ + bx + c intercepta o eixo horizontal x em 2, então 2 é a solução da equação $ax^2 + bx + c = 0$. Justifique a sua resposta.
- **91.** Verdadeiro ou falso? Se $2x^2 = 18$, então x precisa ser igual a 3. Justifique a sua resposta.
- 92. Múltipla escolha Qual das seguintes alternativas é a solução da equação x(x-3)=0?
 - (a) Somente x = 3.
 - **(b)** Somente x = -3.
 - (c) x = 0 e x = -3.
 - (d) x = 0 e x = 3.
 - (e) Não existem soluções.
- 93. Múltipla escolha Qual dos seguintes substitutos para ? faz $x^2 5x + ?$ ser um quadrado perfeito?

(a)
$$-\frac{5}{2}$$

(b)
$$\left(-\frac{5}{2}\right)^2$$

(c)
$$(-5)^2$$

(d)
$$\left(-\frac{2}{5}\right)^2$$

(e)
$$-6$$

94. Múltipla escolha Qual das seguintes alternativas é a solução da equação $2x^2 - 3x - 1 = 0$?

(a)
$$\frac{3}{4} \pm \sqrt{17}$$

(b)
$$\frac{3 \pm \sqrt{17}}{4}$$

(c)
$$\frac{3 \pm \sqrt{17}}{2}$$

(d)
$$\frac{-3 \pm \sqrt{17}}{4}$$

(e)
$$\frac{3 \pm 1}{4}$$

- **95.** Múltipla escolha Qual das seguintes alternativas é a solução da equação |x 1| = -3?
 - (a) Somente x = 4
- **(b)** Somente x = -2
- (c) Somente x = 2
- (d) x = 4 e x = -2
- (e) Não existem soluções.
- 96. Dedução da fórmula quadrática ou de Bhaskara Siga estes passos de completar o quadrado para resolver $ax^2 + bx + c = 0$, $a \ne 0$.
 - (a) Subtraia c de ambos os lados da equação original e divida ambos os lados da equação resultante por a para obter

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

(b) Adicione o quadrado da metade do coeficiente de x em (a) em ambos os lados e simplifique para obter

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

(c) Extraia raízes quadradas em (b) e isole x para obter a fórmula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 97. Considere a equação $|x^2 4| = c$.
 - (a) Encontre o valor de c para o qual essa equação tenha quatro soluções. (Existem vários valores com essas condições.)
 - **(b)** Encontre o valor de *c* para o qual essa equação tenha três soluções. (Existe somente um valor com essas condições.)
 - (c) Encontre o valor de c para o qual essa equação tenha duas soluções. (Existem vários valores com essas condições.)
 - (d) Encontre o valor de c para o qual essa equação não tenha soluções. (Existem vários valores com essas condições.)
 - (e) Existem outros possíveis números de soluções dessa equação? Explique.
- 98. Somas e produtos das soluções de $ax^2 + bx + c = 0$, $a \ne 0$ Suponha que temos $b^2 4ac > 0$.
 - (a) Mostre que a soma das duas soluções dessa equação $é \left(\frac{b}{a}\right)$.
 - **(b)** Mostre que o produto das duas soluções dessa equação é $\frac{c}{a}$.
- 99. Continuação do exercício anterior A equação $2x^2 + bx + c = 0$ tem duas soluções, x_1 e x_2 . Se $x_1 + x_2 = 5$ e $x_1 \cdot x_2 = 3$, encontre as duas soluções.

Objetivos de a

- Inequações lin
- Solução de ineSolução de ine
- Aproximação

Esses tópicos su representações g

Inequaçõ

Inequações

ções, assim como

Os sinais qu

≤ imenor ou igua

Usamos essa dos números reais

DEFINIÇÃO

Uma inequação

onde a e b são r

Achar as so quais a inequação de conjunto solu

Propriedade

Sejam u, v, w e

- 1. Transitiva
- 2. Adição
- 3. Multiplica

Isso quer dizer serva a desigua inverte a desigu As propriedades propriedades si