- 1. Proveu a partir de la definició de límit d'una successió:
 - (a) $\lim_{n\to\infty} \frac{3n}{4n+3} = \frac{3}{4}$.
 - (b) Si $\lim_{n\to\infty} x_n = 0$ i $(y_n)_n$ és una successió acotada aleshores $\lim_{n\to\infty} (-1)^n x_n y_n = 0$
- **2.** Si $a \in (0, \frac{1}{2})$, es defineix $x_1 = a$ i $x_{n+1} = \frac{x_n}{2}(1 x_n)$, per a cada $n \ge 1$.
 - (a) Proveu que la successió $(x_n)_n$ és monòtona i acotada, i calculeu el seu límit.
 - (b) Calculeu $\inf_{n\in\mathbb{N}} x_n$ i $\sup_{n\in\mathbb{N}} x_n$.
- **3.** Es defineix la successió $(x_n)_n$ de manera inductiva com $x_1 = a > 0$ i

$$x_{n+1} = x_n + \frac{1}{x_n}, \quad n \ge 1.$$

És $(x_n)_n$ convergent ?

4. Calculeu

$$\lim_{n \to \infty} \left(\frac{n}{2n^2 + 1} + \frac{n}{2n^2 + 2} + \dots + \frac{n}{2n^2 + n} \right).$$

5. Es defineix la successió $(x_n)_n$ de manera inductiva com $x_1 = 2$ i

$$x_{n+1} = \frac{x_n^2 + 2}{2x_n}$$
, si $n \ge 1$.

- (a) Proveu que $x_n > 0$ i que també $x_n^2 \ge 2$ per a tot $n \in \mathbb{N}$.
- (b) Demostreu que $(x_n)_n$ és monòtona.
- (c) És $(x_n)_n$ convergent ? En cas que ho sigui, calculeu-ne el límit.
- 6. Calculeu

(a)
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n};$$
 (b)
$$\lim_{n \to \infty} \frac{\log(n^n)}{\log(n!)}.$$

7. Calculeu els límits:

(a)
$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}}{\sqrt{n}}$$
, (b) $\lim_{n \to \infty} \frac{2^2 + 3^4 + \dots + (n+1)^{2n}}{2^1 + 5^2 + \dots + (n^2 + 1)^n}$
(c) $\lim_{n \to \infty} \frac{\sin(n^2)\cos(n^2)}{\sqrt{n}}$, (d) $\lim_{n \to \infty} {}^{n+4}\sqrt{(n+1)(n+2)\cdots(n+n)}$.