SparseMAP: DIFFERENTIABLE SPARSE STRUCTURED INFERENCE

Presented by Vlad Niculae

Joint work with André FT Martins

Mathieu Blondel

Claire Cardie

poster #66 tonight

github.com/vene/sparsemap

* I like it

•••

PRON VERB NOUN

I like it

•••

•••

PRON VERB PRON

I like it

•••

PRON VERB ADJ

•••

•••

•••

l•── cela like •── me it •── plaît

(Latent) Structured Inference

$$M = conv(Y)$$
 where $Y = \{$

SparseMAP

Efficient & simple to:

- compute
- back-propagate

Useful as:

- hidden layer
- output layer

Deriving SparseMAP

Structured Inference as argmax

input

argmax

input

9b/9x3

9b/9x3

argmax → softmax $p_i = \exp x_i / Z$

3p/3x?

argmax → softmax

9b/9x3

argmax → softmax → sparsemax

dim(x) = number of possible structures!

(exponentially large)

 p_1

3p/3x?

[Martins and Astudillo, 2016] [Niculae and Blondel, 2017] $\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}^{\varepsilon R^{\mathsf{d}}} \qquad k \gg \mathsf{d}$

$$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$

$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$

argmax
$$\langle x, p \rangle$$

s.t. $p \in \Delta$

MAP

argmax
$$\langle \eta, \mu \rangle$$

s.t. $\mu \in M$

$$p^* = e_i$$
 where $i = argmax(x)$

$$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

$$\mu = Ap$$

MAP inference:

Maximum spanning tree (Chu-Liu/Edmonds)

Hungarian algorithm

argmax
$$\langle x, p \rangle$$

s.t. $p \in \Delta$

MAP

argmax
$$\langle \eta, \mu \rangle$$

s.t. $\mu \in M$

argmax
$$\langle x, p \rangle + H(p)$$

s.t. $p \in \Delta$

Marginal

argmax
$$\langle \eta, \mu \rangle + H(\mu)$$

s.t. $\mu \in M$

softmax, closed-form solution: $p^* = \exp(x) / Z$

structured attention networks [Kim et al, 2017], [Liu et al, 2017]

$$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

 $\mu = Ap$

MAP inference: Maximum spanning tree

Marginal inference: Matrix-Tree theorem

$$\eta = \begin{bmatrix}
.3 \\ .8 \\ -.5 \\
.2 \\ -.1 \\ -.2 \\
.7 \\ .6 \\ .1
\end{bmatrix}$$

Hungarian algorithm

#P complete

argmax
$$\langle x, p \rangle$$

s.t. $p \in \Delta$

MAP

argmax
$$\langle \eta, \mu \rangle$$

s.t. $\mu \in M$

argmax
$$\langle x, p \rangle + H(p)$$

s.t. $p \in \Delta$

Marginal

argmax
$$\langle \eta, \mu \rangle + \tilde{H(\mu)}$$

s.t. $\mu \in M$

 $\mu = Ap$

$$\mathbf{X} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

argmax
$$\langle x, p \rangle$$

s.t. $p \in \Delta$

MAP

argmax
$$\langle \eta, \mu \rangle$$

s.t. $\mu \in M$

argmax
$$\langle x, p \rangle + H(p)$$

s.t. $p \in \Delta$

Marginal

argmax
$$\langle \eta, \mu \rangle + \tilde{H(\mu)}$$

s.t. $\mu \in M$

argmax
$$\langle x, p \rangle - \frac{1}{2} ||Ap||^2$$

s.t. $p \in \Delta$

SparseMAP

argmax
$$\langle \eta, \mu \rangle - \frac{1}{2} ||\mu||^2$$

s.t. $\mu \in M$

$$X = A^{T} \eta$$
(.6, .4, 0)
(.5, .3, .2)

Efficiently Computing SparseMAP

argmax $\langle \eta, \mu \rangle - \frac{1}{2} ||\mu||^2$ s.t. $\mu \in M$

QP with exponentially many vertices!

Forward Pass:

Active Set algorithm

only accesses *M* through MAP calls

linear **& finite** convergence

Backward Pass:

$$\frac{\mu}{\partial \eta}$$

Linear in dim(M)
and in # selected structures

Sparse Latent Structure

Prem: A gentleman overlooking a neighborhood situation.

Hypo: A police officer watches a situation closely.

Prem: A gentleman overlooking a neighborhood situation.

Hypo: A police officer watches a situation closely.

Model: ESIM [Chen δ al, 2017]

Prem: A gentleman overlooking a neighborhood situation.

Hypo: A police officer watches a situation closely.

Model: ESIM [Chen δ al, 2017]

Natural Language Inference with Linear Assignment

Prem: A gentleman overlooking a neighborhood situation.

Hypo: A police officer watches a situation closely.

(3-class accuracy)

Natural Language Inference with Linear Assignment

Natural Language Inference with Linear Assignment

cost (as in structured SVM)

margin-SparseMAP L_A^{$$\rho$$}(η, μ) = $\max_{\mu \in M} \{ \langle \eta, \mu \rangle - \frac{1}{2} \|\mu\|^2 + \rho(\mu, \overline{\mu}) \}$ loss

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc.

Unlabeled Accuracy (UAS)
Universal Dependencies dataset

As models train, inference gets sparser!

Inference captures linguistic ambiguity!

Inference captures linguistic ambiguity!

poster #66 tonight @6:15

- github.com/vene/sparsemap https://vene.ro
- vnfrombucharest

Sparse Structured
Output Prediction

