- 1. Write down the matrices of the following 3-ary quadratic forms:
 - (a) $x_1^2 + x_2^2 3x_3^2 + 2x_1x_2 6x_1x_3$, (b) $x_1^2 + 2x_3^2 x_1x_2$,
 - (c) x_2x_3 , (d) $(2x_1 x_2 + 3x_3)^2$ and (e) $(\mathbf{u}^T\mathbf{x})^2$.
- 2. If **A** is not symmetric, what is the matrix of $\mathbf{x}^T \mathbf{A} \mathbf{x}$ viewed as a quadratic form?
- 3. Show that $\mathbf{x}^{T}\mathbf{A}\mathbf{x} = 0 \ \forall \mathbf{x} \Rightarrow \mathbf{A} = \mathbf{0} \text{ and } \mathbf{x}^{T}\mathbf{A}\mathbf{x} = \mathbf{x}^{T}\mathbf{B}\mathbf{x} \ \forall \mathbf{x} \Rightarrow \mathbf{A} = \mathbf{B}$.
- 4. If $\overline{x} = \frac{1}{n}(x_1 + \dots + x_n)$, find the matrices of the quadratic forms $n\overline{x}^2$ and $\sum_{i=1}^{n}(x_i \overline{x})^2$. Verify that they are idempotent and add up to I.
- 5. A map $\psi : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ is said to be a bilinear form if $\psi(\alpha \mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}, \alpha \mathbf{y}) = \alpha \psi(\mathbf{x}, \mathbf{y}), \ \psi(\mathbf{x} + \mathbf{z}, \mathbf{y}) = \psi(\mathbf{x}, \mathbf{y}) + \psi(\mathbf{z}, \mathbf{y}) \text{ and } \psi(\mathbf{x}, \mathbf{y} + \mathbf{u}) = \psi(\mathbf{x}, \mathbf{y}) + \psi(\mathbf{x}, \mathbf{u}).$
 - (a) Show that every bilinear form $\psi(\mathbf{x}, \mathbf{y})$ can be written as $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{y}$ for some $m \times n$ matrix \mathbf{A} .
 - (b) When m = n show that a bilinear form gives rise to a quadratic form if we put $\mathbf{x} = \mathbf{y}$.
 - (c) If m = n and **A** is symmetric, show that there is a unique bilinear form $\psi(\mathbf{x}, \mathbf{y})$ such that $\psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{y}, \mathbf{x})$ which gives rise to the quadratic form $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$ as in (b).
- 1. Prepare a table showing the possible types of definiteness (p.d., p.s.d., n.d., n.s.d. and indefinite) of A + B given those of A and B.
- 2. Find the quadratic form to which $x_1^2 + 2x_2^2 x_3^2 + 2x_1x_2 + x_2x_3$ transforms by the change of variables $y_1 = x_1 x_3$, $y_2 = x_2 x_3$, $y_3 = x_3$ by actual substitution. Verify that the matrix of the resulting quadratic form is congruent to the matrix of the original quadratic form.
- 3. Prove that congruence is an equivalence relation on the set of all $n \times n$ symmetric matrices.
- 4. If A and B are n.n.d., then show that diag(A, B) is n.n.d. If A is p.d. and B is n.d., what can be said about diag(A, B)?
- 5. (a) If **A** is an n.n.d. matrix of order n and **P** is an $m \times n$ matrix, show that $\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}}$ is n.n.d. Deduce that $\mathbf{P}\mathbf{P}^{\mathrm{T}}$ is n.n.d. for any matrix **P**.
- 6. Let A and B be n.n.d. Show that A + B = 0 iff A = B = 0. Deduce that if C and D are symmetric and $C^2 + D^2 = 0$, then C = D = 0.
- 1. Prove that every orthogonal projector is an n.n.d. matrix.
- 2. If $\mathbf{B} = \mathbf{A}^{-1}$, show that $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$ and $\mathbf{x}^{T}\mathbf{B}\mathbf{x}$ have the same signature.
- 3. Let **P** be of full column rank. Show that **A** and **PAP**^T have the same rank and the same signature. What about the number of zero eigenvalues?

1 of 3

- 4. Prove that a quadratic form $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$ can be written as the product of two linearly independent linear forms in \mathbf{x} iff \mathbf{A} has rank 2 and signature 0.
- 8. Find the rank and signature of each of the following quadratic forms:
 - (a) $x_1^2 3x_2^2 8x_3^2 x_4^2 + 2x_1x_2 2x_1x_3 + 2x_1x_4 14x_2x_3 + 10x_2x_4 + 10x_3x_4$
 - (b) $x_1x_2 + x_3x_4 + \cdots + x_{2k-1}x_{2k}$
 - (c) $\sum_{i,j=1}^{n} (x_i x_j)^2$
- 11. If A is any real symmetric matrix, show that there exists a real number α such that $\alpha \mathbf{I} + \mathbf{A}$ is positive definite.
 - 12. Show that every real symmetric matrix can be written as the difference
- 13. Show that the set $\{x : x^T A x \leq 1\}$ is bounded iff A is p.d.
- 1. If A is n.n.d., show that $\mathbf{x}^{T} \mathbf{A} \mathbf{x} = 0$ iff $\mathbf{A} \mathbf{x} = \mathbf{0}$. Show also that $\mathbf{x}^{T} \mathbf{A} \mathbf{x} = 0$ iff $\mathbf{y}^{T} \mathbf{A} \mathbf{x} = 0$ for all y.
- 2. Let **A** be an $n \times n$ p.d. matrix and let **P** be an $n \times r$ matrix of rank r. Then show that $\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$ is p.d.
- 3. If **A** is an n.n.d. matrix of order n with rank r and if $k \ge r$, prove that there exists an $n \times k$ matrix **C** such that $\mathbf{A} = \mathbf{CC}^{\mathsf{T}}$. Note that if k = r, $(\mathbf{C}, \mathbf{C}^{\mathsf{T}})$ is a rank-factorization of **A**.
- 4. Let $(\mathbf{C}, \mathbf{C}^{\mathsf{T}})$ be a rank-factorization of an n.n.d. matrix \mathbf{A} of order n and let \mathbf{C}_L^{-1} be a left inverse of \mathbf{C} .
 - (a) Show that $([C:u], [C:u]^T)$ is a rank-factorization of $A + uu^T$ if $u \notin \mathcal{Q}(A)$
- 6. Let **A** be an n.n.d. matrix and let p be a positive integer. Show that there is a unique n.n.d. matrix **B** such that $\mathbf{B}^p = \mathbf{A}$.
- 7. Show that $(1-\rho)\mathbf{I} + \rho \mathbf{1} \mathbf{1}^{\mathrm{T}}$ is p.d. iff $-\frac{1}{n-1} < \rho < 1$ where n is the order of the matrix and $\mathbf{1}^{\mathrm{T}} = (1, 1, \dots, 1)$.
- 9. If **A** is a p.s.d. matrix of order n, show that there exists an n.n.d. matrix **B** of order n such that $\rho(\mathbf{A} + \mathbf{B}) = \rho(\mathbf{A}) + \rho(\mathbf{B}) = n$.
- 10. If A, B are symmetric matrices of the same order, write $A \ge B$ if A B is n.n.d. Then prove the following:
 - (a) $A \ge B$ and $B \ge A \Rightarrow A = B$
 - (b) $A \ge B$ and $B \ge C \Rightarrow A \ge C$
 - (c) \mathbf{B} n.n.d. and $\mathbf{A} \ge \mathbf{B} \Rightarrow |\mathbf{A}| \ge |\mathbf{B}|$
 - (d) **B** p.d., A > B and $|A| = |B| \Rightarrow A = B$
- 11. Let **A** be p.d. and $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{b}^T & d \end{bmatrix}$. Show that **M** is p.d., p.s.d. or indefinite according as $d \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}$ is positive, zero or negative.

2 of 3 24/05/22, 07:03

- 13. Let $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{D} \end{bmatrix}$ be symmetric, where \mathbf{A} is square.
 - (a) Prove that M is p.d. iff A and $D B^T A^{-1}B$ are p.d. Show also that M is p.d. iff D and $A BD^{-1}B^T$ are p.d.
 - (b) Prove that **M** is n.n.d. iff **A** and $\mathbf{D} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{-}} \mathbf{B}$ are n.n.d. and $\mathcal{C}(\mathbf{B}) \subseteq \mathcal{C}(\mathbf{A})$.
 - (c) If M is p.d. and L is the leading principal submatrix of M^{-1} with the same order as A, prove that $L A^{-1}$ is n.n.d.
 - (d) If M is n.n.d., prove that $|\mathbf{M}| \leq |\mathbf{A}| \cdot |\mathbf{D}|$. Suppose next M is p.d. Then prove that $|\mathbf{M}| = |\mathbf{A}| \cdot |\mathbf{D}|$ iff $\mathbf{B} = \mathbf{0}$.
- 14. If **A** is p.d., show that $\begin{bmatrix} \mathbf{A} & \mathbf{I} \\ \mathbf{I} & \mathbf{A}^{-1} \end{bmatrix}$ is p.s.d.
- 15. (a) Let **A** be p.d. Then show that $\mathbf{A} \mathbf{b}\mathbf{b}^{\mathrm{T}}$ is p.d. iff $\mathbf{b}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{b} < 1$.
 - (b) Let A be n.n.d. Then show that $A bb^T$ is n.n.d. iff $b \in \mathcal{C}(A)$ and $b^TA^-b \leq 1$.
- *19. Let A and B be n.n.d. Show that the eigenvalues of AB are non-negative. If $AB \neq 0$, show that AB has a positive eigenvalue.
- *22. If **A** and **B** are n.n.d. and if $\rho(\mathbf{A} \mathbf{B}) = \rho(\mathbf{A}) \rho(\mathbf{B})$, show that $\mathbf{A} \mathbf{B}$ is n.n.d.
- 3. (a) If α is an eigenvalue of an $n \times n$ real symmetric matrix \mathbf{A} , show that $|\alpha| \leq n(\max_{i,j} |a_{ij}|)$.
- 4. Show that for any $m \times n$ matrix \mathbf{A} , $\max\{\|\mathbf{A}\mathbf{x}\| : \|\mathbf{x}\| = 1\}$ is the square-root of the largest eigenvalue of $\mathbf{A}^T\mathbf{A}$. If \mathbf{A} is a real $n \times n$ normal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, show that $\max\{\|\mathbf{A}\mathbf{x}\| : \|\mathbf{x}\| = 1\} = \max_i |\lambda_i|$.
- 6. (a) Show that the largest singular value of a square matrix **A** is $||\mathbf{A}||$ where $||\cdot||$ is the matrix norm induced by the Euclidean norm for vectors.
 - (b) Deduce that the modulus of any eigenvalue of A cannot be greater than the largest singular value of A.
- 1. Show that the quadratic forms $x_1^2 x_2^2$ and $x_1^2 + x_2^2 + 2x_1x_2$ cannot be simultaneously diagonalized by a non-singular transformation.

3 of 3