

Artificial Intelligence

A journey to the center – via the buzzwords machine learning, big data, deep learning, data science, ...

Special thanks to Prof. Dr. Markus Breunig

Domain Knowledge

Know-How about the application domain

Talk to the experts!

Key for building deployable AI systems

Goal: common language, common terms

Business Model

What is the Value-Proposition?

Understand, Improve, Innovate

Tool: BMC = Business Model Canvas

Three horizons of innovation

Big Data

IT View

- Properties of the Data
- 3V Volume / Velocity / Variety
- Infrastructure: NoSQL / Cloud / etc.

Business View

• Use Cases

Data Science

Extract Knowledge from Data

Goal: Generate Business Value

Interdisciplinary Field

Basis: Scientific Processes and Algorithms

Computer Science

Mathematics & Statistics

Domain Knowledge

Data Science - Process

Busin

Business Problem vs. Data Science Problem

EDA, Visuell, Data Acquisition

Data Cleaning, Feature Engineering

Modelling and Model Optimization (→ ML / AI Algorithms)

Qualitative Evaluation of the Model

Deployment

Machine Learning

- Computer solves a problem without an explicitly coded algorithm
- Instead: use a highly parameterized algorithm
- Set of parameter values = Model
- Compute the parameter values (the model) using a training algorithm and (lots of) examples
- Most ML methods employ 2 algorithms
 - one for training the model and
 - one for model execution

Newspaper ad revenue over time (in bn-US\$)

polynomial regression of degree 3

Artificial Neural Networks (ANN)

- Originally inspired by the working of the brain
- Invented 1943, lots of research/progress until 1975
- First "AI Winter" from ~1974 until ~1980 Second "AI Winter" from ~1987 until ~2006
- ANN = Collection of artificial neurons (perceptrons) connected with weighted edges
- Model: weights. Evaluation usually Feed-Forward.
- Primary training algorithm: backpropagation (backprop)

Deep Neural Networks (DNN)

- Deep = Many hidden layers
- Can model complex, non-linear functions
- Popular since ~2012: ImageNet Moment
- Many architectural variants, e.g.
 - RNN and LSTM for language modelling
 - CNN for computer vision
 - Encode-Decoder for text processing
- Training and Model Evaluation usually like ANNs (feed-forward and backprop)

Weak AI

vs. Strong AI (AGI)

Cognitive Systems

Also called: Cognitive Computing

Simulate human thinking and learning using AI

Adaptive, Interactive, Stateful, Contextual

Example: IBM Watson

Terms and Statements

Key Take Aways

- Definition of and Distinction between
 - Domain Knowledge
 - Business Model
 - Big Data
 - Data Science
 - Machine Learning
 - ANN and Deep Learning
 - Weak AI, AGI, Cognitive Systems
- What is a Model?
- Training vs. Model Evaluation

