令和6年度卒業論文

伸縮する単リンクブラキエーションロボットの 自在移動の実現

指導教員印

指導教員 水内 郁夫 教授

東京農工大学 工学部 機械システム工学科

> 令和3年度入学 21265014 大澤 蒼人

目 次

目 次 5

第1章	序論	7
1.1	研究の背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.2	本論文の構成	10
第2章	本研究におけるブラキエーション動作と実機構成	11
2.1	はじめに	13
2.2	ブラキエーションの流れ	13
2.3	伸縮による励振	13
2.4	伸縮する単リンクブラキエーションロボットの実機構成	14
第3章	バーの位置に基づく空中過程を含まないブラキエーション動作	15
3.1	はじめに	17
3.2	伸縮タイミングの検討	17
3.3	目標バーの位置に基づくリンクの長さ調整	18
3.4	空中過程を含まないブラキエーション動作の実機実験	19
第4章	最適なバーリリース条件の導出	21
4.1	はじめに	23
4.2	最適なバーリリース条件の導出	23
	$4.2.1$ 空中過程における目標バーとグリッパーの距離と相対速度 \dots	23
	4.2.2 最適化のための評価関数	24
4.3	最適なバーリリース条件に基づくリリース実験	25
	4.3.1 実験条件と最適なバーリリース条件	25
	4.3.2 実機実験	25
第5章	リリース条件到達のための励振制御	29
5.1	はじめに	31
5.2	伸縮による励振のメカニズム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	5.2.1 伸縮する単リンクプラキエーションロボットのモデル化	31
	5.2.2 励振シミュレーション	33
5.3	励振制御の流れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
5.4	目標振幅の導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34

<u>6</u> 目 次

5.5	励振制御	36
	5.5.1 近似モデルの励振データへのフィッティング	36
	5.5.2 励振制御	37
	5.5.3 伸縮量と減衰率の関係式	37
	5.5.4 目標初期角度の導出	38
5.6	目標初期角度実現のための励振制御・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	5.6.1 減衰データのフィッティング	39
	5.6.2 励振データのフィッティング	39
	5.6.3 dd	40
5.7	励振制御の実機実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
第6章	最適なバーリリース条件に基づく励振とブラキエーション動作の実験	41
6.1	はじめに	43
6.2	考察	43
第7章	結論および今後の展望	45
7.1	結論	47
7.2	今後の展望	47
謝辞		48
参老文献		52

第1章

序論

1.1 研究の背景と目的

ブラキエーションは,上肢で枝を掴んでぶら下がりながら移動する方法であり,重力を利用することで高所を効率的に移動できる.この移動方法をロボットに応用することで [1] ,送電線の点検などの高所作業への適用が期待される.テナガザルを模倣した多リンク型のロボットの研究例として,福田らの 2 リンク型 [2][3][4][5][6][7][8][9] や 5 リンク型 [10] ,6 リンク型 [1] ,7 リンク型 [11] ,13 リンク型 [12] などがある.また,把持機構に電磁石を用いた 2 リンク型 [13][14] や,パッシブグリッパーを用いた 2 リンク型 [15] ,3 リンク型 [16] などがある.しかし,多リンク型は構造が複雑であるとともに,カオス現象 [17] が生じることで制御が難しくなるという問題がある.赤羽らはロボットの形状を棒状,すなわち単リンク型にすることで構造を単純化し,これらの問題を解決した [18] .また,おもりを動かすことで重心を移動させて励振する手法 [19] を用いたロボットの,モデル予測制御 [20] によるブラキエーションの研究や,伸縮することで励振するとともに移動可能距離を延ばす [21] などの単リンクブラキエーションロボットに関する研究がある.

異なる高さ、位置

励振の調整は行っていなかった。

さらに伸縮

空中過程 (空中相にしないように)

本研究では,バーの位置に基づいた最適なバーリリース条件を導出し,その条件による空中過程を含む移動により,伸縮する単リンクブラキエーションロボットの自在移動を実現することを目的とする.伸縮する機構を活かした最適なバーリリース条件の導出と励振制御を実験的に得た時刻を基に再計画は行っているが、相対速度を考慮していないためロバストではない

伸縮することでバーの位置によってリリース時の長さを変え、

時刻ではなく角度角速度にすることで、リアルタイムに計測していることにより励振プログラムが実行された後に不具合が生じてその時刻に適切な状態になくても

空中過程(跳躍 飛ぶ動作 次のバーを掴む前に支持していたグリッパーもバーから離す) 跳躍ブラキエーション通常のブラキエーションよりも高速かつ遠くの目標物まで到達可能 バーとの相対速度が大きいことで、衝突により把持するタイミングがずれることや部品破 損といったことが生じる可能性がある。 伸縮調整により、以前はその時間になるまで待っていたけどより速く到達できる(早くの評価はいまいちかも)

1.2 本論文の構成

本論文は,全7章から構成させる.以下に各章の概要を述べる.

- 第1章(本章)では,研究の背景と目的について述べた。
- 第2章「本研究におけるブラキエーション動作と実機構成」では,本研究で目標とするブラキエーション動作と,伸縮する単リンクブラキエーションロボットの実機構成について述べる.
- 第3章「バーの位置に基づく空中過程を含まないブラキエーション動作」では,バーの位置に基づいて空中過程を含まないブラキエーション動作を行うための伸縮制御システムの提案と実機実験について述べる.
- 第4章「最適なバーリリース条件の導出」では,空中過程を含むブラキエーションに おけるバーの位置に基づく最適なバーリリース条件の導出とリリース実験について述 べる.
- 第5章「励振制御」では,最適なバーリリース条件を実現させるための振子過程における励振制御について述べる.
- 第6章「空中過程を含むブラキエーション実験」では最適なバーリリースによる空中 過程を含むブラキエーション動作の実験について述べる。
- 第7章「結論および今後の展望」では,本研究で得られた結論および今後の展望について述べる.

第2章

本研究におけるブラキエーション動作と 実機構成

2.1 はじめに

本章では,目的とするブラキエーション動作と伸縮による励振,そして本研究で用いるロボットの実機構成について述べる.

2.2 ブラキエーションの流れ

図 2.1 に本研究で目的とする空中過程を含んだブラキエーション動作を示す.ロボットの両端のグリッパーがバーを掴んだ状態(図 2.1(1))から,片方のバーを離して振子過程(図 2.1(2))に移る.目標のバーまでの距離がロボットの最大長以下である場合,バーの距離に合わせてロボットを伸縮させることで空中過程を含まないブラキエーション(図 2.1(3-1))を行う.一方,目標のバーまでの距離がロボットの最大長以上である場合,適切なタイミングでもう一方のバーも離し(図 2.1(3-2)),空中過程を経て,最後に目標のバーを掴む(図 2.1(4)).これらの動きを繰り返すことで連続したブラキエーションを行う.

2.3 伸縮による励振

目標とするバーの位置が,把持していたバー (図 2.1 における bar1) と同じ,もしくはそれよりも高い場合,振子過程においてロボットの振幅を大きくしなければ空気抵抗や摩擦などの影響により目標のバーへ到達することができない.そのため,振子過程において外部からのエネルギー投入による振動の拡大が望まれる.本研究ではロボットを伸縮することにより,プランコのように重心位置をロボットの長手方向に変化させることで励振を行う.この励振方法は先行研究があり,実機で実現されている [21].

Fig. 2.1: Brachiation motions

Fig. 2.2: Overall view of extensible brachiation robot

2.4 伸縮する単リンクブラキエーションロボットの実機構成

本研究では [21] で使用していた実機を用いた.図 2.2 に全体図を示す.重さは 3.0 kg であり,幅・奥行・高さは最も縮めた場合は $150\times80\times560$ mm,最も伸ばした場合は $150\times80\times740$ mm である.伸縮にはラックピニオン機構が用いられており,中心部のブラシレス DC モータ (MAXON EC22 40W, ギアヘッドギア比 128) によって歯車を回転させる.ブラシレス DC モータはモータドライバ (EPOS2 24/5) を介してロボット全体の制御を行う Arduino Uno に接続されている.また,グリッパーは把持部品がサーボモジュール (双葉電子工業 RS406CB) で駆動する.ロボット全体の姿勢取得には $1MU(Adafruit\ BNO055)$ を用いている.

第3章

バーの位置に基づく 空中過程を含まないブラキエーション動作

3.1 はじめに

伸縮する単リンクブラキエーションロボットは,その「伸縮する」という特徴を活用することで,目標のバーまでの距離に合わせてリンクの長さを調整して移動することが可能となる.これにより,おもりを動かすことで励振するブラキエーションロボット [18] よりも自在な移動が実現できる.先行研究 [21] では実験的にリンクを伸ばすタイミングを決定していた.しかし,伸ばすタイミングや長さが適切ではない場合,バーを把持できないだけでなく,バーとロボットが衝突することで不具合が生じたり,破損してしまう.そこで,本章ではバーの位置に基づいた空中過程を含まないブラキエーション動作について述べる.

3.2 伸縮タイミングの検討

リンクを伸ばして次のバーを把持する場合,伸ばすタイミングは図 3.1 に示すように以下の 4 通りの方法が考えられる.

• 方法 1 (図 3.1(1)):

バーに対して下側から近づき,バーに近づいたらリンクを伸ばし始める.

バー把持時のグリッパーに対する回転方向の負荷が小さいが,伸縮による角速度の変化や,伸縮時間を考慮する必要があり伸縮制御が複雑になる.

方法 2 (図 3.1(2)):

バーに対して上側から近づき,バーに近づいたらリンクを伸ばし始める.

バー把持時のグリッパーに対する回転方向の負荷が小さいが,伸縮による角速度の変化や,伸縮時間を考慮する必要があり伸縮制御が複雑になる.

方法 3 (図 3.1(3)):

最高点においてリンクを目標の長さまで伸ばし終えた状態で上側からバーに近づく. 振子の最高点に達したときに伸縮するため,伸縮制御が容易であるが,最高点が目標のバーから離れている場合,バー把持時のグリッパーに対する回転方向の負荷が大きくなる.

Fig. 3.1: Approach methods in brachiation movements without an aerial phase

• 方法 4 (図 3.1(4)):

最高点においてリンクを目標の長さまで伸ばし終えた状態で下側からバーに近づく. 方法 3 と同様に伸縮制御が容易であるが,把持していたバー (図 3.1 における $\mathrm{bar}\ 1$) と衝突する可能性がある.

上記のうち,方法3は振子の最高点が目標のバーから離れすぎない位置まで励振したタイミングでリンクを伸ばすことで,バー把持時のグリッパーに対する回転方向の負荷を小さくすることが可能であるため,本研究では方法3を採用した.

3.3 目標バーの位置に基づくリンクの長さ調整

図 3.2 に目標とするバーとロボットの位置の概略図を示す.座標軸は左向きをx 軸の正方向,上向きをz 軸の正方向に設定し,ロボットが把持しているバーの座標を原点 (0,0),目標バーの座標を $(l_{\rm bx},l_{\rm bz})$ とし,原点と結んだ線分がz 軸となす角度を θ とする.また,ロボットは角度 φ ,角速度 $\dot{\varphi}$ とボディの全長 $l_{\rm r}$ で表す.グリッパーが届く範囲にあるバーであれば,空中過程を含まないブラキエーションが可能である.ゆえに,ロボットの最大の長さを $l_{\rm rMax}$,最小の長さを $l_{\rm rMin}$ とすると目標とするバーの条件は式 (3.1) となる.また,目標とするバーの座標を用いて角度 θ は式 (3.2) で表される.

$$l_{\text{rMin}} \leq \sqrt{l_{\text{bx}}^2 + l_{\text{bz}}^2} \leq l_{\text{rMax}}$$
 (3.1)

$$\theta = \arctan\left(\frac{l_{\rm bz}}{l_{\rm bx}}\right) \tag{3.2}$$

theta が励振の最大長はバーまでの距離?180 に近づくと theta + 30 を最大振幅 が超えたらというのはできなくなる範囲狭めるか、励振でジャストは難しいよね、この後の励振制御次第

Fig. 3.2: Schematic Diagram

$$x_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \cos(\varphi) t + \frac{1}{2} l_{\rm r} \sin(\varphi)$$
 (3.3)

$$z_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \sin(\varphi) t - \frac{1}{2} g t^2 - \frac{1}{2} l_{\rm r} \cos(\varphi)$$
 (3.4)

$$x_{\rm e} = x_{\rm c} + \frac{1}{2} l_{\rm r} \sin \left(\varphi + \dot{\varphi} t \right) \tag{3.5}$$

$$z_{\rm e} = z_{\rm c} - \frac{1}{2} l_{\rm r} \cos \left(\varphi + \dot{\varphi} t \right) \tag{3.6}$$

$$J_{\rm d}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{(l_{\rm bx} - x_{\rm e})^2 + (l_{\rm bz} - z_{\rm e})^2}$$
 (3.7)

$$J_{\rm r}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{\dot{x_{\rm e}}^2 + \dot{z_{\rm e}}^2}$$
 (3.8)

ここにバー座標の図、座標から距離、角度、移動可能な範囲を半円で示したり(角速度はいらないかな)

その次に上から掴むか、下からか、どこで伸ばすかの議論。

3.4 空中過程を含まないブラキエーション動作の実機実験

第4章 最適なバーリリース条件の導出

4.1 はじめに

空中過程を含むブラキエーション動作は、目標とするバーを把持することができなかった場合に落下してしまうという危険性がある。確実なバー把持のための条件には、バーとグリッパーの距離に加え、バーとの衝突を考慮することも望まれる。そこで、本研究では目標バーとロボットのグリッパー間の距離と、バー把持時のバーに対するグリッパーの相対速度に基づく評価関数を用いてバーリリース条件を最適化することを提案する。本章では、任意のバーの位置に基づくリリース条件最適化と、最適条件を基に行ったリリース実験について述べる。

4.2 最適なバーリリース条件の導出

4.2.1 空中過程における目標バーとグリッパーの距離と相対速度

図 4.1 に示したロボットのバーリリース時の状態から,空中過程における目標バーとグリッパーの距離,相対速度を導出する.座標軸は左向きをx軸の正方向,上向きをz軸の正方向に設定し,ロボットが把持しているバーの座標を原点(0,0),目標バーの座標を $(l_{\rm bx},l_{\rm bz})$ とする.また,ロボットは姿勢 φ とボディの全長 $l_{\rm r}$ の2変数を持つ.ここで,バーリリース後の空中過程におけるロボットの長さ $l_{\rm r}$ はバーリリース時から変えずに一定であるとすると,ロボットの重心の軌道はバーリリース時の角度 φ ,角速度 $\dot{\varphi}$ による放物線軌道,手先の軌道はバーリリース時の角速度 $\dot{\varphi}$ による重心周りの一定速回転軌道となる.ゆえに,バーリリースからt 秒後の目標バーとグリッパーとの距離t0、目標バーに対するグリッパーの相対速度t1、はそれぞれ式t2、式t3、式t3、式t3、式t4、可能。ここで,t3 は重力加速度,t4、式t5、式t5、式t7、以t5、以t5、以t7、以t7、以t8、以t8、以t9、以

$$x_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \cos(\varphi) t + \frac{1}{2} l_{\rm r} \sin(\varphi)$$
 (4.1)

$$z_{\rm c} = \frac{1}{2} l_{\rm r} \dot{\varphi} \sin(\varphi) t - \frac{1}{2} g t^2 - \frac{1}{2} l_{\rm r} \cos(\varphi)$$
 (4.2)

$$x_{\rm e} = x_{\rm c} + \frac{1}{2} l_{\rm r} \sin \left(\varphi + \dot{\varphi} t \right) \tag{4.3}$$

$$z_{\rm e} = z_{\rm c} - \frac{1}{2} l_{\rm r} \cos \left(\varphi + \dot{\varphi} t \right) \tag{4.4}$$

$$J_{\rm d}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{(l_{\rm bx} - x_{\rm e})^2 + (l_{\rm bz} - z_{\rm e})^2}$$
 (4.5)

$$J_{\rm r}(\varphi, \dot{\varphi}, t, l_{\rm r}) = \sqrt{\dot{x_{\rm e}}^2 + \dot{z_{\rm e}}^2}$$
 (4.6)

Fig. 4.1: Schematic Diagram in release

4.2.2 最適化のための評価関数

バーを離すときの角度 φ , 角速度 $\dot{\varphi}$, ロボットの長さ $l_{\rm r}$ の 3 つの値をバーリリース条件とする.バーリリース条件の最適化のために,目標バーとグリッパーの距離と相対速度がともに小さくなる条件を求める.ここで,評価関数 J を式 (4.5),式 (4.6) で示した距離 $J_{\rm d}$ と相対速度 $J_{\rm r}$ を用いて式 (4.7) とした.ここで, α は重み係数を表し,確実な把持のためにバーとグリッパーの距離に重みづけを行う.

$$J(\varphi, \dot{\varphi}, t, l_{\rm r}) = \alpha \times J_{\rm d} + J_{\rm r} \tag{4.7}$$

評価関数が最小になるとき,目標とするバーとグリッパーの距離と相対速度がともに小さくなる.ゆえに,評価関数を最小にする角度 φ ,角速度 $\dot{\varphi}$,ロボットの長さ $l_{\rm r}$,リリース後のバー把持までの時間 t を導出し,そのうち角度,角速度,ロボットの長さを最適なバーリリース条件とした.また,バー把持までの時間はグリッパーを閉じるタイミングの決定に用いた.評価関数の最小化にはニュートン法と共役勾配法を組み合わせた Newton-CG 法を用いた.

Table 4.1: Experiment conditions

Variables	Values
$l_{\rm bx} [{\rm m}]$	0.79
$l_{\rm bz}~[{ m m}]$	0.00
α [-]	20
$g [\mathrm{m/s^2}]$	9.81

Table 4.2: Optimized conditions values

Values
56
260
0.68
0.261
0.0144
0.00115
0.00292

4.3 最適なバーリリース条件に基づくリリース実験

4.2.2 節に基づいて最適なバーリリース条件を求め,実機を用いてリリース実験を行った.

4.3.1 実験条件と最適なバーリリース条件

実験条件を表 4.1 に示す.また,その実験条件を基に求めた最適なバーリリース条件と評価値を表 4.2 に示す.目標バーとグリッパーの距離の最小値 $J_{\rm d}$ が約 $1~{\rm mm}$ であるため,バー把持が可能であると考えられる.この最適なバーリリース条件が実用的かどうかを,次節で述べるリリース実験により確認した.

4.3.2 実機実験

実験では、ロボットの長さが導出した条件で固定されるようにブラシレスモータを制御し、導出した角度・角速度になる初期振幅を実験的に求めた・バーリリースの指令は、IMUで角度をリアルタイムに計測し、リリース条件の角度を満たした時にグリッパーが完全に開

いた状態になるようにグリッパーのサーボモータの回転速度を考慮して設定した.同様にグリッパーを閉じるタイミングは,導出したバー把持までの時間を基にサーボモータの回転速度や空気抵抗などを考慮して実験的に決定した.

実験の様子を図 4.2 に示す. 結果として, 4.2.2 節に基づいて導出した最適なバーリリース条件でのリリースによるバー把持が可能であることを確認した. また, バー把持時の衝撃が小さく, 安定した把持であった. これにより, 評価関数に目標バーに対するグリッパーの手先の相対速度が小さくなる条件を含めることの有効性を確認した. 一方, バーをリリースしてからバーを把持するまでの時間は 0.24 s であり, 表 4.2 で示したバー把持までの時間と誤差が生じた. その理由として, 空中過程における空気抵抗や, バーリリース時のバーとの接触による摩擦などといった原因が考えられる. より確実なバー把持のために, 測距センサなどを用いてバーが近づいたらバーを自動的に把持するシステムなどが望まれる.

Fig. 4.2: Release Experiment

第5章

リリース条件到達のための励振制御

Fig. 5.1: Model of an extensible pendulum

5.1 はじめに

第4章において導出した最適なバーリリース条件を実現するためには,振子過程における 励振調整が望まれる.本章では伸縮タイミングと伸縮量の調整による目標角度・角速度の実 現について述べる.

5.2 伸縮による励振のメカニズム

本研究では,重心を移動させることにより振子過程において励振させる.Lieskovskýらの重りを動かすことによる振幅増加率が最大となる重心移動の研究 [19] を,伸縮機構に応用して励振を行う.

5.2.1 伸縮する単リンクブラキエーションロボットのモデル化

図 5.1 に伸縮する単リンクブラキエーションロボットを簡略化した,伸縮する振子のモデルを示す.振子の半径方向と鉛直下向き線がなす角を $\varphi[\mathrm{rad}]$,振子の長さを $l[\mathrm{m}]$,振子の質量を $m[\mathrm{kg}]$,振子の重心周りの慣性モーメントを $I[\mathrm{kgm}^2]$,重力加速度を $g[\mathrm{m/s}^2]$ とする.運動方程式を以下のラグランジュの運動方程式で求める.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = S_i \tag{5.1}$$

 q_i と S_i はそれぞれ一般化座標と一般化力であり,それぞれ式 (5.2),式 (5.3) とした.ここで,伸縮のために加える力を $u[{\bf N}]$ とする.L=T-U はラグランジアンであり,系の運動

エネルギーTと位置エネルギーUで構成され,本モデルでは式(5.4),式(5.5)となる.

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} \varphi \\ l \end{bmatrix} \tag{5.2}$$

$$\begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \begin{bmatrix} 0 \\ u \end{bmatrix}$$
(5.3)

$$T = \frac{1}{2}m\left(\frac{l}{2}\dot{\varphi}\right)^2 + \frac{1}{2}I\dot{\varphi}^2 + \frac{1}{2}m\dot{l}^2$$
 (5.4)

$$U = -gm\frac{l}{2}\cos(\varphi) \tag{5.5}$$

運動方程式を行列で書き表すと式(5.6)となる.

$$\underbrace{\frac{\partial^2 L}{\partial \dot{q}^2}}_{M} \ddot{q}^2 + \underbrace{\frac{\partial^2 L}{\partial \dot{q} \partial q} \dot{q} - \frac{\partial L}{\partial q}}_{c} = \begin{bmatrix} 0 \\ u \end{bmatrix}$$
 (5.6)

ここで,M(l), $c(\varphi,l,\dot{\varphi},\dot{l})$ は以下のようになる.

$$\boldsymbol{M}(l) = \begin{bmatrix} M_{11}(l) & 0\\ 0 & M_{22} \end{bmatrix} \tag{5.7}$$

$$\mathbf{c}(\varphi, l, \dot{\varphi}, \dot{l}) = \begin{bmatrix} c_1(\varphi, l, \dot{\varphi}, \dot{l}) \\ c_2(\varphi, l, \dot{\varphi}) \end{bmatrix}$$
(5.8)

$$M_{11}(l) = \frac{1}{4}ml(t)^2 + I$$

$$M_{22} = \frac{m}{4}$$
(5.9)

$$M_{22} = \frac{m}{4} (5.10)$$

$$c_1(\varphi, l, \dot{\varphi}, \dot{l}) = \frac{1}{2} m l(t) \dot{l}(t) \dot{\varphi}(t) + \frac{1}{2} g m l(t) \sin(\varphi(t))$$

$$(5.11)$$

$$c_2(\varphi, l, \dot{\varphi}) = -\frac{1}{4}ml(t)\dot{\varphi}(t)^2 - \frac{1}{2}gm\cos(\varphi(t))$$
(5.12)

本モデルの力積は式 (5.13) で計算され,系の運動量 $p_i=rac{\partial L}{\partial \dot{q}_i}$ との関係は式 (5.14) である.

$$\hat{S}_i = \lim_{t^+ \to t} \int_t^{t^+} S_i(\tau) d\tau \tag{5.13}$$

$$p_i(t^+) - p_i(t) = \hat{S}_i \tag{5.14}$$

本モデルにおいて, φ 方向の運動量は保存されるため,式(5.15)が満たされる.

$$M_{11}(l^+)\dot{\varphi}^+ - M_{11}(l)\dot{\varphi} = 0 (5.15)$$

また, 状態変数を

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} \varphi \\ l \\ \dot{\varphi} \\ \dot{l} \end{pmatrix} \tag{5.16}$$

とすると,状態モデルは

$$\dot{\boldsymbol{x}} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ -M_{11}^{-1}(x_2)c_1(x_{1-4}) \\ -M_{22}^{-1}c_2(x_{1-3}) + M_{22}^{-1}u \end{pmatrix}$$
(5.17)

となる.

5.2.2 励振シミュレーション

伸縮が時刻 t 秒から t^+ 秒の間に瞬間的に行われると仮定すると,伸縮後の状態 x^+ は伸縮前の状態 x と式 (5.15) を用いて式 (5.18) で表される.ここで,伸びる場合は縮む場合は $x_2^+=l_{\min}$, $x_2^+=l_{\max}$ となり,式 (5.19) の条件に基づいて変化させる.

$$\boldsymbol{x}^{+} = \begin{pmatrix} x_{1} \\ x_{2}^{+} \\ M_{11}^{-1}(x_{2}^{+})M_{11}(x_{2})x_{3} \\ 0 \end{pmatrix}$$
 (5.18)

$$l = \begin{cases} l_{\min} & \text{if } \varphi \dot{\varphi} > 0 \\ l_{\max} & \text{if } \varphi \dot{\varphi} < 0 \end{cases}$$
 (5.19)

この瞬間的な伸縮により系の運動エネルギーTと位置エネルギーUは次のように変化する.

$$\Delta T_t^{t^+} = \left(\frac{M_{11}(x_2)}{M_{11}(x_2^+)} - 1\right) \frac{1}{2} M_{11}(x_2) x_3^2 \tag{5.20}$$

$$\Delta U_t^{t^+} = gm(x_2^+ - x_2)\cos(x_1) \tag{5.21}$$

本実験で用いる実機に基づき,各パラメータと初期状態 $(\varphi_{\rm ini},l_{\rm ini},\dot{\varphi}_{\rm ini},\dot{l}_{\rm ini})$ を表 5.1 としてルンゲクッタ法を用いてシミュレータを作成した.その結果を図 5.5 に示す.横軸は時間 t ,縦軸はそれぞれ力学的エネルギー E・運動エネルギー T・ポテンシャルエネルギー U ,角度 φ ・角速度 $\dot{\varphi}$ を示す.これにより,伸縮することによる重心移動でも励振が可能であること

Variables	Values
m [kg]	3.0
l_{\min} [m]	0.56
$l_{\rm max} \ [{ m m}]$	0.74
$g [\mathrm{m/s^2}]$	9.81
$\varphi_{\rm ini}$ [rad]	0.3
$l_{ m ini} \ [{ m m}]$	$l_{ m max}$
$\dot{arphi}_{ m ini}$	0.0
$\dot{l}_{ m ini}$	0.0

Table 5.1: Simulation parameters

Fig. 5.2: Excitation simulation of extensible brachiation robot

が確認できる.これらの内容は Lieskovskỳ らのおもりを動かすことによる励振の研究 [19]を伸縮機構に応用したものである.

また,伸縮時の最大長 $l_{\rm max}$ を 0.59 m から 0.74 m まで 3 cm 刻みで変化させた場合の励振シミュレーションを図 5.5 に示す.横軸は時間,縦軸は力学的エネルギーと角度を示している.このシミュレーション結果から,伸縮量を大きくするほど振幅増加量が大きくなり,伸縮量を小さくするほど伸縮増加量が小さくなることが分かる.ゆえに,伸縮量調整によって励振時の振幅操作が可能であると考えられる.

5.3 励振制御の流れ

5.4 目標振幅の導出

まず,最適なバーリリース条件である角度 $arphi_{
m ref}$ ・角速度 $\dot{arphi}_{
m ref}$ になるために必要な目標振幅を求める.式 (5.6) は減衰を考慮していない運動方程式であるため,伸縮せず,角速度のみ

Fig. 5.3: Excitation simulation with changing the max length

Fig. 5.4: Damped vibration

に比例する減衰を仮定すると次のように表される.ここで, b は減衰係数を表す.

$$M_{11}(l)\ddot{\varphi} + b\dot{\varphi} + \frac{1}{2}mgl\sin(\varphi) = 0$$
 (5.22)

実機を用いた減衰計測データを基に,減衰係数bを求めた.図??に減衰計測データ(角度・角速度)を示す.なお,ロボットの長さを $0.74\,\mathrm{m}$,初期角度を $130\,\mathrm{deg}$ とした.この減衰データを基に最小二乗法を用いて指数近似を行うことで減衰係数を求めたところ $b=0.059\,\mathrm{cm}$ であった.求めた減衰係数を用いて式 (5.29) を4 次のルンゲクッタ法で解いた結果を減衰計測データとともに図??に示す.全体的に振幅のずれがあるため,減衰係数を調整して $b=0.050\,\mathrm{cm}$ した結果が図??である.図??から,時間が経過するほど数値解と計測データとの間に振幅のずれが生じることが確認できた.このことから,実際の減衰では角速度比例だけではない減衰があると考えられる.しかし,本実験では目標振幅の導出には振動の半周期分しか用いず,図??において時間経過後も振動数はほとんど一致しているため,適用可能であると考えた.調整した減衰係数を用いて式 (5.29) を初期角度を変えながら 4 次のルンゲクッタ法で解き,第4 章で求めた最適なバーリリース条件に最も近い目標振幅を求めた.なお,式 (5.23)

に示す誤差 e が最小となる初期角度を目標振幅とした.

$$e = \sqrt{(\varphi_{\text{ref}} - \varphi)^2 + (\dot{\varphi}_{\text{ref}} - \dot{\varphi})^2}$$
(5.23)

表 4.1 ,表 4.2 の条件では , 目標振幅は $A_{
m ref}=89\deg$ であった .

5.5 励振制御

次に,求めた目標振幅にするための励振制御方法について述べる.振子過程では現在の振幅と目標振幅の比に基づいて伸縮量を調整し,励振制御を行う.リアルタイムで伸縮量調整を行うために,伸縮量と半周期後の振幅の変化率の関係式を求める.実機の振動を,振動が微小であるとみなした近似式である式 (5.28) に示す形式での近似モデル化を試みた.ここで現在の振幅,減衰率,角振動数をそれぞれ $A_{\rm now}$, λ , ω として t 秒後の変位 A(t) を表す.なお,励振においては減衰率は負の値で表される.また,現在の振幅と半周期後の振幅の比は式 (5.25) となる.

$$A(t) = A_{\text{now}} e^{-\lambda t} \cos(\omega t)$$
 (5.24)

$$\frac{A(t)}{A_{\text{now}}} = e^{-\lambda \frac{\pi}{\omega}} \tag{5.25}$$

よって,半周期後に目標振幅 $A_{
m ref}$ になるために必要な減衰率は式(5.26) で表される.

$$\lambda = \frac{\omega}{\pi} \ln \left(\frac{A_{\text{now}}}{A_{\text{ref}}} \right) \tag{5.26}$$

5.5.1 近似モデルの励振データへのフィッティング

実機の励振データの取得のために,伸縮時の最小長は 0.56 m で固定し,最大長のみ 0.74 m , 0.70 m , 0.68 m , 0.66 m と変化させ,それぞれの長さでの励振計測を行った.励振計測データを図??に示す.ここで,近似モデルをフィッティングさせるために,なお,微小角近似ができない振幅になると角振動数は小さくなるため,単純化のために振幅で区間を分け,区間ごとに角振動数を調整することで近似モデルを実験データにフィッティングさせた.図??にフィッティング結果,表 5.2 に振幅の区間分けとそれぞれの区間における固有角振動数,表 5.3 に最大長ごとの減衰率を示す. 図??に示すように,縦軸を減衰率,横軸を最大長さとして表 5.3 のデータをプロットし,線形近似した.近似式は式 (5.27) となった.

$$l = d (5.27)$$

Table 5.2: Excitation fitting values

Amplitude A_{now} [deg]	$\omega [\mathrm{rad/s}]$
$A_{\text{now}} \ge 90$	3.35
$90 > A_{\text{now}} \ge 85$	3.50
$85 > A_{\text{now}} \ge 70$	3.70
$70 > A_{\text{now}}$	3.90

Table 5.3: Excitation rate

Length l [m]	$\lambda [1/s]$
0.74	-0.15
0.72	-0.14
0.70	-0.13
0.68	-0.090
0.66	-0.0010

5.5.2 励振制御

ロボットの現在の振幅と目標初期角度の差が大きい場合は最大伸縮量で励振を行い,差が小さい場合は,その差に基づいて減衰・励振の決定を行う.このとき,リアルタイムで減衰・励振の選択を行うためには計算速度が重要となる.式 (5.29) で振動を表現すると数値解析する必要があるため,計算に時間がかかる.本研究では振子の小角近似モデルである式 (5.28) に示す形式のモデル化を試みた.ここで初期振幅,減衰率,減衰調和振動の固有角振動数をそれぞれ $\varphi_{\rm ini}$, λ , ω として t 秒後の変位 $\varphi(t)$ を表す.

$$\varphi(t) = \varphi_{\text{ini}} e^{-\lambda t} \cos(\omega t) \tag{5.28}$$

5.5.3 伸縮量と減衰率の関係式

励振データのフィッティング

第4章で目標角度角速度が与えられるその条件を満たす初期振幅を決定するその振幅に近づくまでは最大伸縮量でその初期振幅になるようにリアルタイムで減衰・励振の調整をする

Fig. 5.5: Damped vibration

5.5.4 目標初期角度の導出

式 (5.6) は減衰を考慮していない運動方程式であるため,伸縮せず,角速度のみに比例する減衰を仮定すると次のように表される.ここで,b は減衰係数を表す.

$$M_{11}(l)\ddot{\varphi} + b\dot{\varphi} + \frac{1}{2}mgl\sin(\varphi) = 0$$
 (5.29)

実機を用いた減衰計測データを基に,減衰係数bを求めた.図??に減衰計測データ(角度・角速度)を示す.なお,ロボットの長さを $0.74~\mathrm{m}$,初期角度を $130~\mathrm{deg}$ とした.この減衰データを基に最小二乗法を用いて指数近似を行うことで減衰係数を求めたところ $b=0.0591~\mathrm{cm}$ あった.求めた減衰係数を用いて式 (5.29) を4 次のルンゲクッタ法で解いた結果を減衰計測データとともに図??に示す.全体的に振幅のずれがあるため,減衰係数を調整して b=0.050 とした結果が図??である.図??から,時間が経過するほど数値解と計測データとの間に振幅のずれが生じることが確認できた.このことから,実際の減衰では角速度比例だけではない減衰があると考えられる.しかし,本実験では目標初期角度の導出には振動の半周期分しか用いず,図??において時間経過後も振動数はほとんど一致しているため,適用可能であると考えた.

調整した減衰係数を用いて式 (5.29) を初期角度を変えながら 4 次のルンゲクッタ法で解き,第 4 章で求めた最適なバーリリース条件を満たす,目標初期角度を求めた.表 4.1 ,表 4.2 の条件では,目標初期角度は $\varphi_{\rm ref}=-89\deg$ であった.

•	0 0	
Amplitude A_{now} [deg]	$\lambda [1/s]$	$\omega [\mathrm{rad/s}]$
$A_{\rm now} \ge 100$	0.070	3.31
$100 > A_{\text{now}} \ge 75$	0.057	3.77
$75 > A_{\text{now}}$	0.055	4.00

Table 5.4: Damping fitting values

5.6 目標初期角度実現のための励振制御

5.6.1 減衰データのフィッティング

まず,減衰率 $\lambda=0.05$,単振動の固有角振動数 $w_0=\sqrt{l/g}$,減衰調和振動の固有角振動数 $w=\sqrt{w_0^2-\lambda^2}$ を用いた式 (5.28) によるモデルと実験データをプロットした図を図??に示す.この段階では振幅,振動数ともに実験データとのずれがある.そこで,振幅で区間を分け,区間ごとに減衰率と固有角振動数を調整することで図??に示すようにフィッティングを行った.なお,振幅の区間分けとそれぞれの区間における減衰率と固有角振動数を表 5.4 に示す.図??における赤色破線は振幅に応じた区間切り替えが行われた時刻を表す.

5.6.2 励振データのフィッティング

励振データ計測のために実機実験を行った.伸縮時の最小の長さは $0.56~\mathrm{m}$ で固定し,最大長のみ $0.74~\mathrm{m}$ から $0.02~\mathrm{m}$ ずつ短くし,それぞれの長さでの励振計測を行った.励振計測データを図??に示す.なお,最大長が $0.66~\mathrm{m}$ の場合は励振をせず, $0.66~\mathrm{m}$ より短い場合は減衰した.減衰データのフィッティングと同様にして式 (5.28) を用いて励振データへのフィッティングを行った.ここで,角振動数 ω は伸縮量に依らず,振幅のみに依存するとみなした.また,励振では減衰率は負の値となり,振幅に依らず,伸縮量のみに依存するとみなした.図??にフィッティング結果,表 $5.2~\mathrm{c}$ に振幅の区間分けとそれぞれの区間における固有角振動数,表 $5.3~\mathrm{c}$ に最大長ごとの減衰率を示す.

式 (5.29) を 4 次のルンゲクッタ法で解き,最適なバーリリース条件を満たす初期振幅を求める.

表 4.2 1 周期または半周期後の振幅が分かればいい振子過程の運動方程式減衰係数決定の ために参考として減衰データ-170 のやつフィッティング

5.6.3 dd

dd

振子過程のシミュレーション説明 2 つの過程で調整を行う減衰数値解解析解減衰データとフィッティング励振調整プログラム

5.7 励振制御の実機実験

第6章

最適なバーリリース条件に基づく 励振とブラキエーション動作の実験

- 6.1 はじめに
- 6.2 考察

第7章 結論および今後の展望

7.1 結論

7.2 今後の展望

測距センサ等を用いたバー認識によるロバスト性向上と移動自動化空中過程でのロバスト 性向上三次元方向移動

謝辞

謝辞 51

卒業論文を執筆するに当たり,水内郁夫教授より多大なるご指導,ご鞭撻を賜りました.多くの技術,知識をこの一年間で学ばせていただきました.深く感謝申し上げます.また,森下克幸助教にも論文執筆や発表技術に関するアドバイスをいただき,Professor Tomáš Vyhlídal,Mr. Juraj Lieskovskýをはじめ,Czech Technical University in Prague の皆様には留学時に多くのアドバイスをいただき,英語が不安な私をサポートしてくださいました.感謝申し上げます.さらに,研究室の先輩,同期には研究の面,そして研究以外の面でも支えていただきました.本当にありがとうございました.

参考文献 55

[1] 福田敏男, 細貝英実, 近藤裕二. ブラキエーション形移動ロボットの研究: 第 1 報, 動特性の解析とシミュレーション. 日本機械学会論文集 C 編, Vol. 56, No. 527, pp. 1839–1846, 1990.

- [2] 福田敏男, 齋藤史倫, 新井史人, 小菅一弘. ブラキエーション形移動ロボットの研究: 第3報, ヒューリスティックな駆動力波形の生成と制御. 日本機械学会論文集 C編, Vol. 57, No. 541, pp. 2930–2937, 1991.
- [3] 福田敏男, 齊藤史倫, 新井史人. ブラキエーション形移動ロボットの研究: 第 4 報, 小脳モデル神経回路を用いた移動制御. 日本機械学会論文集 C 編, Vol. 58, No. 549, pp. 1450-1457, 1992.
- [4] 齋藤史倫, 福田敏男, 新井史人, 松浦英雄. ブラキエーション形移動ロボットの研究: 第5報, 2 リンクロボットによる励振と移動制御実験. 日本機械学会論文集 C 編, Vol. 59, No. 557, pp. 171–178, 1993.
- [5] 齋藤史倫, 福田敏男. 学習とロボット 強化学習による実ロボットの運動制御. 日本ロボット学会誌, Vol. 13, No. 1, pp. 82-88, 1995.
- [6] 福田敏男, 長谷川泰久, 下島康嗣, 斎藤史倫. 強化学習法を用いたファジィコントローラの生成. 日本機械学会論文集 C 編, Vol. 62, No. 601, pp. 3565-3571, 1996.
- [7] 中西淳, 福田敏男. 解析的手法による 2 リンクブラキエーションロボットの制御. 日本ロボット学会誌, Vol. 16, No. 3, pp. 361-368, 1998.
- [8] 中西淳, 福田敏男. 2 リンクブラキエーションロボットの制御目標ダイナミクス法の実ロボットへの適用. 日本ロボット学会誌, Vol. 17, No. 1, pp. 110-117, 1999.
- [9] 中西淳, 福田敏男. ハイブリッドコントローラによる 2 リンクブラキエーションロボットの振幅制御. 日本ロボット学会誌, Vol. 19, No. 5, pp. 652-659, 2001.
- [10] 福田敏男, 細貝英実, 近藤裕二. ブラキエーション形移動ロボットの研究: 第 2 報, 励振シミュレーションおよび実験結果. 日本機械学会論文集 C 編, Vol. 57, No. 537, pp. 1639–1644, 1991.

56 参考文献

[11] 齋藤史倫, 福田敏男. ブラキエーション形移動ロボットの研究 第 6 報, 7 リンクロボットのモデル化と初期コントローラによる動作シミュレーション. 日本機械学会論文集 C編, Vol. 60, No. 578, pp. 3468-3475, 1994.

- [12] 長谷川泰久, 伊藤芳邦, 福田敏男. ブラキエーション形移動ロボットの研究: 第7報 階層形行動制御における行動学習. 日本機械学会論文集 C 編, Vol. 67, No. 662, pp. 3204-3211, 2001.
- [13] 山川雄司, 安宅佑樹, 石川正俊. ブラキエーションロボットの開発と運動生成 (第 1 報) 把持機構に電磁石を用いた動作手法 . ロボティクス・メカトロニクス講演会講演概 要集 2016, pp. 2A2-08a4. 一般社団法人 日本機械学会, 2016.
- [14] 山川雄司, 古山佳和, 石川正俊. ブラキエーションロボットの開発と運動生成 (第 2 報) 把持機構にフックを用いた動作手法 . ロボティクス・メカトロニクス講演会講演概要集 2016, pp. 2A2-08a3. 一般社団法人 日本機械学会, 2016.
- [15] Mahdi Javadi, Daniel Harnack, Paula Stocco, Shivesh Kumar, Shubham Vyas, Daniel Pizzutilo, and Frank Kirchner. Acromonk: A minimalist underactuated brachiating robot. *IEEE Robotics and Automation Letters*, Vol. 8, No. 6, pp. 3637–3644, 2023.
- [16] Shourie S Grama, Mahdi Javadi, Shivesh Kumar, Hossein Zamani Boroujeni, and Frank Kirchner. Ricmonk: A three-link brachiation robot with passive grippers for energy-efficient brachiation. arXiv preprint arXiv:2403.15762, 2024.
- [17] 鈴木三男, 増田健二. 二重振り子におけるカオス的振舞. 物理教育, Vol. 48, No. 1, pp. 1–5, 2000.
- [18] Hijiri Akahane and Ikuo Mizuuchi. Single-rod brachiation robot. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 451–456. IEEE, 2022.
- [19] Juraj Lieskovskỳ, Hijiri Akahane, Jaroslav Bušek, Ikuo Mizuuchi, and Tomáš Vyhlídal. Optimal swing motion control for single-rod brachiation robot. IFAC-PapersOnLine, Vol. 56, No. 2, pp. 6320–6325, 2023.

参考文献 57

[20] 赤羽聖, 水内郁夫. モデル予測制御による棒状ロボットのブラキエーション. Proceedings of JSME Conference on Robotics and Mechatronics, No. 2A1-N07, 2024.

[21] 赤羽聖, 水内郁夫. 伸縮する棒状ロボットのブラキエーション. Proceedings of JSME Conference on Robotics and Mechatronics, No. 2P1-M07, 2024.