1 Esercizio 1

1.1 Creazione dell'automa caratteristico

Creiamo l'automa caratteristico \mathcal{A} per il parsing bottom-up SLR(1). Iniziamo aggiungendo una nuova produzione con un nuovo non terminale che produce lo start symbol:

$$S' \rightarrow \cdot S$$

Procediamo con il calcolo della chiusura LR(0), che consiste nell'includere tutte le produzioni in cui il non terminale preceduto dal marker funge da driver, e ripetiamo questo processo in modo ricorsivo, ottenendo così il risultato finale:

$$S \to \cdot AaB \mid \cdot b$$
$$A \to \cdot BcBaA \mid \cdot$$
$$B \to \cdot$$

Questo sarà lo stato iniziale 0 dell'automa. Analizzando le transizioni da questo stato, otteniamo i seguenti kernel degli stati di arrivo:

- Transizione con S: il kernel è {S' → S·}, corrispondente allo stato 1. La chiusura di questo stato
 è vuota poiché il marker (·) si trova alla fine della produzione, rendendo questo stato reducing
 (stato finale). Inoltre, questo stato è anche lo stato di accettazione.
- Transizione con A: il kernel è $\{S \to A \cdot aB\}$, corrispondente allo stato 2. Anche in questo caso, la chiusura è vuota perché il marker non precede alcun non terminale.
- Transizione con b: il kernel è $\{S \to b \cdot\}$, corrispondente allo stato 3. La chiusura è vuota e, essendo uno stato reducing, è anche uno stato finale.
- Transizione con B: il kernel è $\{A \to B \cdot cBaA\}$, corrispondente allo stato 4. La chiusura di questo stato è vuota.

Notiamo che lo stato 0 ha due item di riduzione $A \to \cdot$ e $B \to \cdot$, quindi è anche uno stato finale. Proseguendo analogamente alla creazione degli altri stati seguendo le transizioni da quelli appena calcolati otteniamo l'automa seguente:

1.2 Creazione della tabella di parsing SLR(1)

Calcoliamo i set di first e follow:

Non Terminale	First	Follow
S	$\{a,b,c\}$	{\$}
A	$\{c,\epsilon\}$	<i>{a}</i>
В	$\{\epsilon\}$	$\{c, a, \$\}$

Costruiamo ora la tabella di parsing. Le transizioni dei terminali sono shift, quelle dei non terminali sono GOTO, mentre le riduzioni avvengono nei Follow dei reducing items. Reducing items:

- $R_1: S \to AaB$ ·
- $R_2: S \to b$ ·
- R_3 : $A \to BcBaA$ ·
- R_4 : $A \rightarrow \cdot$
- R_5 : $B \rightarrow \cdot$

Stato	a	b	c	\$	A	В	S
0	R4 / R5	S3	R5	R5	2	4	1
1				acc			
2	S5						
3				R4			
4			S6				
5	R5		R5	R5		7	
6	R5		R5	R5		8	
7				R1			
8	S9						
9	R4 / R5		R5	R5	10	4	
10	R3						

1.3 Risposte alle domande

- 1. Gli stati dell'automa \mathcal{A} sono 11.
- 2. Le mosse di shift sono 4.
- 3. Le mosse di reduce sono 17.
- 4. Sono presenti due conflitti evidenziati in giallo nella tabella.
- 5. I conflitti sono:
 - T[I,a]: conflitto reduce/reduce, produzioni coinvolte: $A \to \epsilon$ e $B \to \epsilon$.
 - T[I[BcBa], a]: conflitto reduce/reduce, produzioni coinvolte: $A \to \epsilon$ e $B \to \epsilon$.

2 Esercizio 2

2.1 Creazione dell'automa caratteristico

Lo svolgimento è analogo all'esercizio precedente:

2.2 Creazione della tabella di parsing SLR(1)

Calcoliamo i set di first e follow:

Non Terminale	First	Follow
S	$\{*,id\}$	{\$}
L	$\{*,id\}$	{=,\$}
R	$\{*,id\}$	${=,\$}$

Reducing items:

• $R_1: S \to L = R$

• $R_2: S \to R$

• R_3 : $L \to *R$ ·

• R_4 : $L \to id$ ·

• $R_5: R \to L$

Calcoliamo la tabella di parsing:

Stato	*	=	id	\$	L	R	S
0	S4		S5		2	3	1
1				acc			
2		S6 / R5		R5			
3				R2			
4	S4		S5		8	7	
5		R4		R4			
6	S4		S5		8	9	
7		R3		R3			
8		R5		R5			
9				R1			

2.3 Risposte alle domande

- 1. Gli stati dell'automa \mathcal{A} sono 10.
- 2. Le mosse di shift sono 7.
- 3. Le mosse di reduce sono 9.
- 4. E' presente un conflitto evidenziato in giallo nella tabella.
- 5. T[I[L],=]: conflitto shift/reduce, in particolare sono coinvolte l'azione di $shift\ 2$ e la produzione $R \to L$

3 Esercizio 3

3.1 Soluzione

Analiziamo i conflitti della grammatica G_1 data:

- [P[EaE], a]: in questo stato, leggendo il simbolo terminale a, il parser può effettuare una riduzione con la produzione $E \to EaE$ · oppure eseguire un'operazione di *shift* del terminale a. La decisione determina l'associatività dell'operatore a. Per esempio se il parser eseguisse l'azione di reduce garantirebbe l'associatività a sinistra. Questo conflitto può essere ignorato poiché non influisce sulla precedenza tra a e b.
- [P[EbE], b]: in modo analogo al caso precedente, ma relativo al terminale b, quindi possiamo ignorare anche questo conflitto.
- [P[EaE], b]: in questo stato, leggendo il terminale b, il parser può ridurre con $E \to EaE$ · oppure eseguire uno shift del terminale b Per assegnare una precedenza più alta all'operatore a rispetto a b, il parser deve eseguire la riduzione. In questo modo, l'espressione EaE viene risolta prima che b venga processato.
- [P[EbE], a]: in modo analogo al precedente per dare priorità all'operatore a rispetto a b, il parser dovrebbe scegliere l'azione di *shift*. In questo modo, l'operatore a verrà letto e processato prima che venga effettuata la riduzione con b.

3.2 Automa caratteristico

3.3 Tabella di parsing

Stato	a	b	n	\$	${f E}$
0			S2		1
1	S3	S4		acc	
2	R1	R1		R1	
3			S2		5
4			S2		6
5	S3 / R2	S4 / R2		R2	
6	S3 / R3	S4 / R3		R3	

4 Esercizio 4

Soluzione

Per prima cosa generiamo una nuova grammatica che tenga conto della precedenza dell'operatore a rispetto a b. In particolare creiamo dei nuovi non terminali:

- E rappresenterà un espressione intera
- \bullet T rappresenterà le operazioni con priorità maggiore
- F rappresenterà i fattori atomici o le espressioni tra parentesi

Inoltre per garantire l'associatività a sinistra costruiremo la grammatica con ricorsione a sinistra.

$$E \to EbT \mid T$$

$$T \to TaF \mid F$$

$$F \to (E) \mid id$$

Questa grammatica risolve l'ambiguità dando la precedenza all'operatore a su b ed è associativa a sinistra, ma non è LL(1), poiché presenta appunto ricorsione a sinistra.

Per eliminare la ricorsione a sinistra possiamo fattorizzare, ricordando la formula:

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid \beta_1 \mid \beta_2 \mid \dots$$

$$\downarrow \downarrow$$

$$A \to \beta_1 A \mid \beta_2 A \mid \dots$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \epsilon$$

Quindi applicando la formula otteniamo:

Mettendo tutto insieme otteniamo:

$$E \to TE'$$

$$E' \to bTE' \mid \epsilon$$

$$T \to FT'$$

$$T' \to aFT' \mid \epsilon$$

$$F \to (E) \mid id$$

Questa grammatica è stata vista a lezione con b = + e a = * e sappiamo sia LL(1).