This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 162 196 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 12.12.2001 Bulletin 2001/50

(21) Application number: 00987728.3

(22) Date of filing: 22.12.2000

(51) Int CI.7: **C07D 209/12**, C07D 235/18, C07D 235/30, C07D 401/04, C07D 401/10, C07D 401/12, C07D 401/14, C07D 403/12, C07D 405/04, C07D 405/12, C07D 409/04, C07D 409/12, C07D 409/14, C07D 413/04, C07D 413/12, C07D 471/04, C07D 487/04

(86) International application number: PCT/JP00/09181

(87) International publication number: WO 01/47883 (05.07.2001 Gazette 2001/27)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 27.12.1999 JP 36900899

(71) Applicant: Japan Tobacco Inc. Tokyo 105-8422 (JP)

(72) Inventors:

HASHIMOTO, Hiromasa,
 Ctr. Pharm. Res. Inst. Japan
 Takatsuku-shi, Osaka 569-1125 (JP)

 MIZUTANI, Kenji, Ctr. Pharm. Res. Inst. of Japan Takatsuki-shi, Osaka 569-1125 (JP)

 YOSHIDA, Atsuhito, Ctr. Pharm. Res. Inst. Japan Takatsuki-shi, Osaka 569-1125 (JP)

(74) Representative:

von Kreisler, Alek, Dipl.-Chem. et al Patentanwälte von Kreisler-Selting-Werner Postfach 10 22 41 50462 Köln (DE)

(54) FUSED-RING COMPOUNDS AND USE THEREOF AS DRUGS

(57) The present invention provides a fused ring compound of the following formula [i]

wherein each symbol is as defined in the specification, a pharmaceutically acceptable salt thereof, and a therapeutic agent for hepatitis C, which contains this compound. The compound of the present invention shows an anti-hapatitis C virus (HCV) action based on the HCV polymerase inhibitory activity, and is useful as a therapeutic agent or prophylactic agent for hepatitis C.

Description

Technical Field

[0001] The present invention relates to a novel fused ring compound and a pharmaceutically acceptable salt thereof useful as a therapeutic agent for hepatitis C. The present invention also relates to a novel use of a certain fused ring compound or a pharmaceutically acceptable salt thereof as a therapeutic agent for hepatitis C. More particularly, the present invention relates to a therapeutic agent for hepatitis C, which contains a novel fused ring compound or a pharmaceutically acceptable salt thereof, which is effective for the prophylaxis or treatment of hepatitis C and which shows anti-hepatitis C virus (HCV) activity, particularly anti-HCV activity based on an RNA-dependent RNA polymerase inhibitory activity.

Background Art

20

25

35

50

[0002] In 1989, a main causative virus of non-A non-B posttransfusion hepatitis was found and named hepatitis C virus (HCV). Since then, several types of hepatitis viruses have been found besides type A, type B and type C, wherein hepatitis caused by HCV is called hepatitis C.

[0003] The patients infected with HCV are considered to involve several percent of the world population, and the infection with HCV characteristically becomes chronic.

[0004] HCV is an envelope RNA virus, wherein the genome is a single strand plus-strand RNA, and belongs to the genus Hepacivirus of Flavivirus (from The International Committee on Taxonomy of Viruses, International Union of Microbiological Societies). Of the same hepatitis viruses, for example, hepatitis B virus (HBV), which is a DNA virus, is eliminated by the immune system and the infection with this virus ends in an acute infection except for neonates and infants having yet immature immunological competence. In contrast, HCV somehow avoids the immune system of the host due to an unknown mechanism. Once infected with this virus, even an adult having a mature immune system frequently develops persistent infection.

[0005] When chronic hepatitis is associated with the persistent infection with HCV, it advances to cirrhosis or hepatic cancer in a high rate. Enucleation of tumor by operation does not help much, because the patient often develops recurrent hepatic cancer due to the sequela inflammation in non-cancerous parts.

[0006] Thus, an effective therapeutic method of hepatitis C is desired. Apart from the symptomatic therapy to suppress inflammation with an anti-inflammatory agent, the development of a therapeutic agent that reduces HCV to a low level free from inflammation and that eradicates HCV has been strongly demanded.

[0007] At present, a treatment with interferon is the only effective method known for the eradication of HCV. However, interferon can eradicate the virus only in about one-third of the patient population. For the rest of the patients, it has no effect or provides only a temporary effect. Therefore, an anti-HCV drug to be used in the place of or concurrently with interferon is awaited in great expectation.

[0008] In recent years, Ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) has become commercially available as a therapeutic agent for hepatitis C, which is to be used concurrently with interferon. It enhances the efficacy of interferon but only to a low efficacy rate, and a different novel therapeutic agent for hepatitis C is desired.

40 [0009] Also, an attempt has been made to potentiate the immunocompetence of the patient with an interferon agonist, an interleukin-12 agonist and the like, thereby to eradicate the virus, but an effective pharmaceutical agent has not been found yet.

[0010] In addition, the inhibition of HCV growth, wherein HCV-specific protein is targeted, has been drawing attention these days.

45 [0011] The gene of HCV encodes a protein such as serine protease, RNA helicase, RNA-dependent RNA polymerase and the like. These proteins function as a specific protein essential for the growth of HCV.

[0012] One of the specific proteins, RNA-dependent RNA polymerase (hereinafter to be also briefly referred to as an HCV polymerase), is an enzyme essential for the growth of the virus. The gene replication of HCV having a plusstrand RNA gene is considered to involve synthesis of a complementary minus-strand RNA by the use of the plusstrand RNA as a template, and, using the obtained minus-strand RNA as a template, amplifying the plus-strand RNA. The portion called NS5B of a protein precursor, that HCV codes for, has been found to show an RNA-dependent RNA polymerase activity (EMBO J., 15, 12-22, 1996), and is considered to play a central role in the HCV gene replication. [0013] Therefore, an HCV polymerase inhibitor can be a target in the development of an anti-HCV drug, and the development thereof is eagerly awaited. However, an effective HCV polymerase inhibitor has not been developed yet, like in other attempts to develop an anti-HCV drug based on other action mechanisms. As the situation stands, no pharmaceutical agent can treat hepatitis C satisfactorily.

[0014] The following discloses known compounds relatively similar to the compound of the present invention.

[0015] A known therapeutic agent for hepatitis C having a benzimidazole skeleton is disclosed in WO97/36866,

Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) and WO99/51619. [0016] WO97/36866 discloses the following compound D and the like, and HCV helicase inhibitory activity of the compounds.

[0017] Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) discloses the following compound E and the like, and WO99/51619 discloses the following compound F and the like, in both of which a possibility of these compounds being effective as an HCV inhibitor is mentioned.

[0018] However, these publications do not include the compound disclosed in the present specification, or a disclosure suggestive thereof.

NHCO—CONH—NHCO—NHCO—COMPOUND D

10

15

20

25

30

40

45

50

H₂NOC CI N N N H

HCI HO OH

Compound E compound F

[0019] A known anti-hepatitis virus agent having a benzimidazole skeleton is disclosed in Japanese Patent Application under PCT laid-open under kohyo No. 2000-503017 (WO97/25316) and Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 (WO96/7646).

[0020] WO97/25316 discloses the following compound A and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as hepatitis B virus and the like. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

[0021] Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 discloses the following compound B and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as herpesvirus and hepatitis B virus. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

CI N N N OH CI N N OH OH OH Compound A compound B

[0022] The benzimidazole derivatives having an antiviral activity have been disclosed in JP-A-3-31264, US3644382 and US3778504. In addition, WO98/37072 discloses, as a production inhibitor of tumor necrosis factor (TNF) and cyclic AMP, a benzimidazole derivative for the use as an anti-human immunodeficiency virus (HIV) agent and an anti-inflammation agent. WO98/05327 discloses, as a reverse transcriptase inhibitor, a benzimidazole derivative for the use as an anti-HIV agent. J. Med. Chem. (13(4), 697-704, 1970) discloses, as a neuraminidase inhibitor, a benzimidazole derivative for the use as an anti-influenza virus agent.

[0023] However, none of these publications includes the compound of the present invention or a description regarding

or suggestive of an anti-HCV effect.

[0024] Known benzimidazole derivatives having a pharmaceutical use other than as an antiviral agent are disclosed in JP-A-8-501318 (US5824651) and JP-A-8-134073 (US5563243). These publications disclose the following compound C and the like as a catechol diether compound, and the use thereof as an anti-inflammation agent. However, neither of the publications includes the compound of the present invention, and as the action mechanism, the former discloses phosphodiesterase IV and the latter discloses TNF. These publications do not include a description regarding or suggestive of an anti-HCV effect.

[0025] Japanese Patent Application under PCT laid-open under kohyo No. 2000-159749 (EP882718) discloses the following compound G and the like, and the use thereof for the treatment of bronchitis, glomerulonephritis and the like. However, this publication does not include the compound of the present invention, but discloses only a phosphodiesterase IV inhibitory and hypoglycemic action. This publication does not include a description regarding or suggestive of an anti-HCV effect.

[0026] WO98/50029, WO98/50030 and WO98/50031 disclose benzimidazole derivatives as an antitumor agent having a protein isoprenyl transferase action. While this publication discloses a wide scope of the claims, at least it does not include a compound analogous to the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.

[0027] JP-A-8-109169 (EP694535) discloses the application of a tachykinin receptor antagonist to treat an inflammatory disease, and WO96/35713 discloses the application thereof as a growth hormone release promoter to treat a growth hormone-related disease such as osteoporosis and the like. However, none of these publications includes a description regarding or suggestive of an anti-HCV effect.

[0028] JP-A-53-14735 discloses a benzimidazole derivative as a brightener besides its pharmaceutical use, but this publication does not include the compound of the present invention.

Disclosure of the Invention

15

20

25

35

45

50

55

[0029] Based on the findings from the preceding studies, it has been elucidated that a pharmaceutical agent having an anti-HCV activity is effective for the prophylaxis and treatment of hepatitis C, and particularly an anti-HCV agent having an inhibitory activity on RNA-dependent RNA polymerase of HCV can be a prophylactic and therapeutic agent effective against hepatitis C and a prophylactic and therapeutic agent for the disease caused by hepatitis C.

[0030] Accordingly, the present invention provides a pharmaceutical agent having an anti-HCV activity, particularly a pharmaceutical agent having an RNA-dependent RNA polymerase inhibitory activity.

[0031] The present inventors have made an in-depth study of compounds having an anti-HCV activity, particularly RNA-dependent RNA polymerase inhibitory activity, and completed the present invention.

[0032] Thus, the present invention provides the following (1) to (43).

(1) A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:

wherein

5

10

15

20

25

30

35

40

45

50

55

a broken line is a single bond or a double bond,

G ¹	is C(-R1) or a nitrogen atom,
G ²	is C(-R ²) or a nitrogen atom,
G ³	is C(-R3) or a nitrogen atom,
G ⁴	is C(-R4) or a nitrogen atom,
05 06 08 4 00	

are each independently a carbon atom or a nitrogen atom,

G7 is C(-R7), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R8,

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom.

(2) C₁₋₆ alkanoyi,

(3) carboxyl,

(4) cyano,

(5) nitro,

(6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino, (7) -COORa1

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B, group B; halogen atom, cyano, nitro, C₁₋₆ alkyl,

halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

- (CH₂)_r-COORb1, -(CH₂)_r-CONRb1Rb2, -(CH₂)_r-NRb1Rb2, - (CH₂)_r-NRb1-CORb2, -(CH₂)_r-NHSO₂Rb1, -(CH₂)_r-ORb1, - (CH2)r-SRb1, -(CH2)r-SO2Rb1 and -(CH2)r-SO2NRb1Rb2

wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyline and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyline C_{1-6} (as defined above),

(9) -C(=NRa4)NH2

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHRa5

wherein Ra5 is hydrogen atom, C₁₋₆ alkanoyl or C₁₋₆ alkylsulfonyl,

(11) -ORa6

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein Ra7 is hydroxyl group, amino, C₁₋₆ alkyl or C₁₋₆ alkylamino

(13) -P(=O)(ORa31)2

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

R7 and R8 are each hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above), ring Cy is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,

(2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

5

10

15

20

30

35

40

45

wherein u and v are each independently an integer of 1 to 3,

ring A is

(1) C₆₋₁₄ aryl,

(2) C₃₋₈ cycloalkyl,

(3) C₃₋₈ cycloalkenyl or

(4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

25 R5 and R6 are each independently

(1) hydrogen atom,

(2) halogen atom,

(3) optionally substituted C_{1-6} alkyl (as defined above) or

(4) -ORa8

wherein R^{aB} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and

X is

(1) hydrogen atom.

(2) halogen atom,

(3) cyano,

(4) nitro,

(5) amino, C₁₋₆ alkanoylamino.

(6) C₁₋₆ alkylsulfonyl,

(7) optionally substituted C₁₋₆ alkyl(as defined above),

(8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,

(9) -COORa9

wherein Ra9 is hydrogen atom or C1-6 alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein R^{a11} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above)

or

(12)

55

50

wherein ring B is (1') C₆₋₁₄ aryl, 5 (2') C₃₋₈ cycloalkyl or (3') heterocyclic group (as defined above), each Z is independently 10 (1') a group selected from the following group D, (2') C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (3') C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (4') C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D 15 wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D: 20 (a) hydrogen atom, (b) halogen atom, (c) cyano, (d) nitro, (e) optionally substituted C₁₋₆ alkyl (as defined above), 25 (f) -(CH₂)_t-CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1") optionally substituted C₁₋₆ alkyl (as defined above), 30 (2") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, (g) -(CH₂)_t-COORa19 35 wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂)_t-CONR^{a27}R^{a28} wherein Ra27 and Ra28 are each independently, 40 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 45 (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or 50 (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (i)-(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C₁₋₆ alkyl, 55 (j) -(CH₂)_t-ORa20 wherein Ra20 is

(1") hydrogen atom,

```
(2") optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                         (3") optionally substituted C<sub>2-6</sub> alkenyl (as defined above),
                         (4") C<sub>2-6</sub> alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
                         (5") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
  5
                         (6") C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                         (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                         (8") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                         (9") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
                         (10") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group
 10
                   (k) -(CH<sub>2</sub>)<sub>t</sub>-O-(CH<sub>2</sub>)<sub>p</sub>-CORa21
                   wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected
                   from the above group B, and p is 0 or an integer of 1 to 6,
 15
                   (1) -(CH<sub>2</sub>)<sub>t</sub>-NRa22Ra23
                   wherein Ra22 and Ra23 are each independently
                        (1") hydrogen atom,
                        (2") optionally substituted C_{1-6} alkyl (as defined above),
20
                       (3") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                       (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
                       (5") heterocycle C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                  (m) -(CH<sub>2</sub>),-NRa<sup>29</sup>CO-Ra<sup>24</sup>
                  wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined
25
                  above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic
                  group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                  (n) -(CH<sub>2</sub>)<sub>t</sub>-NHSO<sub>2</sub>-Ra25
                 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally sub-
                 stituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
30
                 by 1 to 5 substituent(s) selected from the above group B,
                 (o) -(CH2)1-S(O)q-Ra25
                 wherein Ra25 is as defined above, and q is 0, 1 or 2,
                        and
                 (p)-(CH<sub>2</sub>)<sub>t</sub>-SO<sub>2</sub>-NHRa26
                wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally
                substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
                by to 5 substituent(s) selected from the above group B,
                  w is an integer of 1 to 3, and
                  Y is
                (1') a single bond,
                (2') C<sub>1-6</sub> alkylene,
                (3') C2-6 alkenylene,
                (4') -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>n</sub>-,
                (hereinafter m and n are each independently 0 or an integer of 1 to 6),
                (5') -CO-,
                (6') -CO2-(CH2)n-,
                (7") -CONH-(CH<sub>2</sub>)<sub>n</sub>-NH-,
                (8') -NHCO<sub>2</sub>-,
               (9') -NHCONH-,
               (10') -O-(CH<sub>2</sub>)<sub>n</sub>-CO-,
               (11') -O-(CH<sub>2</sub>)<sub>n</sub>-O-,
               (12') -SO<sub>2</sub>-,
               (13') -(CH<sub>2</sub>)<sub>m</sub>-NRa12-(CH<sub>2</sub>)<sub>n</sub>-
                      wherein Ra12 is
```

35

40

45

50

55

- (1") hydrogen atom,
- (2") optionally substituted C₁₋₆ alkyl (as defined above),
- (3") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (5") -CORb5

wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

- (6") -COORb5 (Rb5 is as defined above) or
- (7") -SO₂Rb5 (Rb5 is as defined above),

(14') -NRa12CO- (Ra12 is as defined above),

(15') -CONRa13-(CH₂)_n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHRa14-

wherein $R^{a_{14}}$ is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O-(CH₂)_m-CR^{a₁₅}Ra¹⁶-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

20

25

30

15

5

10

- (1") hydrogen atom,
- (2") carboxyl,
- (3") C₁₋₆ alkyl,
- (4") -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

(5") -NHR^{b7}

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6")

 $-(CH_2)_{n'}$ B' $(Z')_{W'}$

35

40

45

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18')- $(CH_2)_n$ - NR^{a12} - CHR^{a15} - $(R^{a12}$ and R^{a15} are each as defined above),
- (19') -NRa17SO₂-

wherein Ra17 is hydrogen atom or C₁₋₆ alkyl or

- (20') $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above).
- (2) The therapeutic agent of (1) above, wherein 1 to 4 of the G¹, G², G³, G⁴, G⁵, G⁶, G⁷, G⁸ and G⁹ is (are) a nitrogen atom.
- (3) The therapeutic agent of (2) above, wherein G2 is C(-R2) and G6 is a carbon atom.
- (4) The therapeutic agent of (2) or (3) above, wherein G5 is a nitrogen atom.
- (5) The therapeutic agent of (1) above, wherein, in formula [1], the moiety

50

55

G²-G¹, G⁸-G⁷, G⁶-G⁵

is a fused ring selected from

(6) The therapeutic agent of (5) above, wherein, in formula [I], the moiety

is a fused ring selected from

(7) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-1]

wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.

(8) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [1-2]

$$\begin{array}{c|c}
R^2 & & \\
\hline
R^3 & & \\
\hline
R^4 & & \\
\hline
Cy & & \\
\end{array}$$

$$\begin{array}{c|c}
R^6 & \\
\hline
R^6 & \\
\end{array}$$

$$\begin{bmatrix}
I-2
\end{bmatrix}$$

wherein each symbol is as defined in (1),

10

15

20

25

30

35

40

45

50

- or a pharmaceutically acceptable salt thereof as an active ingredient.
- (9) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & & & \\
R^3 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(10) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-4]

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
 R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^6 & \\
\hline
 R^7 & Cy$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(11) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3} or -SO₂R^{a7} wherein R^{a1}, R^{a2}, R^{a3} and R^{a7} are as defined in (1).

(12) The therapeutic agent of any of (1) to (11) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cyclohexyl or tetrahydrothiopyranyl.

(13) The therapeutic agent of any of (1) to (12) above, wherein the ring A is C_{6-14} aryl.

(14) A fused ring compound of the following formula [II]

wherein the moiety

5

10

15

20

25

30

35

40

45

50

55

is a fused ring selected from

wherein $R^1,\,R^2,\,R^3$ and R^4 are each independently,

(1) hydrogen atom,

(2) C₁₋₆ alkanoyl, (3) carboxyl, (4) cyano, (5) nitro, (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, 5 group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino, (7) -COORa1 wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B, 10 group B; halogen atom, cyano, nitro, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-ORb1, -(CH2)r-SRb1, -(CH2)r-SO2Rb1 and -(CH2)r-SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3 wherein Ra2 and Ra3 are each independently hydrogen atom, C₁₋₆ alkoxy or optionally substituted C₁₋₆ alkyl 15 (as defined above), (9) -C(=NRa4)NH2 wherein Ra4 is hydrogen atom or hydroxyl group, (10) -NHRa5 20 wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl, (11) -ORa6 wherein Ras is hydrogen atom or optionally substituted C_{1.5} alkyl (as defined above), (12) -SO₂Ra7 wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino 25 (13) -P(=O) (ORa31)2 wherein Ra31 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and R7 is hydrogen atom or optionally substituted 30 C₁₋₆ alkyl (as defined above), ring Cy' is (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group 35 C; hydroxyl group, halogen atom, C₁₋₆ alkyl and C₁₋₆ alkoxy, or 40 45 wherein u and v are each independently an integer of 1 to 3, ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl, R5' and R6' are each independently 50 (1) hydrogen atom, (2) halogen atom, (3) optionally substituted C₁₋₆ alkyl (as defined above) or (4) hydroxyl group 55 ring B is

(1) C₆₋₁₄ aryl,

(2) C₃₋₈ cycloalkyl or

(3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, 5 each Z is independently (1) a group selected from the following group D, (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or 10 (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D: 15 (a) hydrogen atom. (b) halogen atom, (c) cyano, (d) nitro, (e) optionally substituted C₁₋₆ alkyl (as defined above), 20 (f) -(CH₂),-COR²18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1') optionally substituted C₁₋₆ alkyl (as defined above), 25 (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom. 30 (g) -(CH₂)_t-COOR^{a19} wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂),-CONRa27Ra28 35 wherein Ra27 and Ra28 are each independently, (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 40 (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B. (6°) heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 45 wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or 50 (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B. (i) -(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C1-6 alkyl, 55 (j) -(CH₂)_t-ORa20 wherein Ra20 is (1') hydrogen atom.

(4') C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,

(2') optionally substituted C₁₋₆ alkyl (as defined above),
 (3') optionally substituted C₂₋₆ alkenyl (as defined above),

(5') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 5 (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (7) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (8') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 group B, (9') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or (10') C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 (k) - (CH₂)_t-O-(CH₂)_p-COR^{a21} wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6, (I) -(CH₂)_t-NRa22Ra23 wherein Ra22 and Ra23 are each independently 20 (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 25 (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (m) -(CH₂)_t-NR^{a29}CO-R^{a24} 30 wherein Ra29 is hydrogen atom, C₁₋₆ alkyl or C₁₋₆ alkanoyl, Ra24 is optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (n)-(CH₂)_t-NHSO₂-Ra25 35 wherein Ra25 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (o) -(CH₂)_t-S(O)_a-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, 40 and (p) -(CH₂)_t-SO₂-NHR^{a26} wherein Ra26 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group option-45 ally substituted by 1 to 5 substituent(s) selected from the above group B, is an integer of 1 to 3, and is 50 (1) a single bond, (2) C₁₋₆ alkylene, (3) C₂₋₆ alkenylene, (4) -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), 55 (5) -CO-, (6) $-CO_2-(CH_2)_{n-1}$ (7) -CONH-(CH2)n-NH-, (8) -NHCO2-,

(9) -NHCONH-, (10) -O-(CH₂)_n-CO-, (11) -O-(CH₂)_n-O-, (12) -SO_{2"}, (13) -(CH₂)_m-NR^{a12}-(CH₂)_nwherein Ra12 is (1') hydrogen atom, (2') optionally substituted C_{1-6} alkyl (as defined above), (3') C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (5') -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') -COORb5 (Rb5 is as defined above) or (7') -SO₂Rb5 (Rb5 is as defined above), (14) -NRa12CO- (Ra12 is as defined above). (15) -CONRa13-(CH₂)_nwherein Ra13 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (16) -CONH-CHRa14wherein R^{a14} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17) -O-(CH₂)_m-CRa15Ra16-(CH₂)_nwherein Ra15 and Ra16 are each independently (1') hydrogen atom, (2') carboxyl, (3') C₁₋₆ alkyi, (4') -ORb6 wherein R^{b6} is $\mathsf{C}_{\mathsf{1-6}}$ alkyl or $\mathsf{C}_{\mathsf{6-14}}$ aryl $\mathsf{C}_{\mathsf{1-6}}$ alkyl, or wherein R^{b7} is hydrogen atom, C₁₋₆ alkyl, C₁₋₆ alkanoyl or C₆₋₁₄ aryl C₁₋₆ alkyloxycarbonyl, or R^{a15} is optionally (6')

 $-(CH_2)_{n'} - (Z')_{W}$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18) -(CH₂)_n-NRa12-CHRa15- (Ra12 and Ra15 are each as defined above),

(19) -NRa17SO₂-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20) $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CR_2)_n$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above),

or a pharmaceutically acceptable salt thereof.

(15) The fused ring compound of (14) above, which is represented by the following formula [II-1]

16

55

5

10

15

20

25

30

35

40

45

50

$$\begin{array}{c|c}
R^2 & R^7 & R^{6^{\circ}} \\
R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^{6^{\circ}} & & \\
R^{6^{\circ}} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{6^{\circ}} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{6^{\circ}} & & \\
\end{array}$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(16) The fused ring compound of (14) above, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
 R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^{6'} & Y & B \\
\hline
 R^{6'} & Y & B
\end{array}$$

$$\begin{array}{c|c}
R^{10} & Y & B \\
\hline
 R^{10} & Y & B
\end{array}$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(17) The fused ring compound of (14) above, which is represented by the following formula [II-3]

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(18) The fused ring compound of (14) above, which is represented by the following formula [II-4]

$$R^2$$
 R^3
 N
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

5

10

20

25

30

35

40

45

50

55

(19) The fused ring compound of any of (14) to (18) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1} or -SO₂R^{a7} wherein R^{a1} and R^{a7} are as defined in (14), or a pharmaceutically acceptable salt thereof. (20) The fused ring compound of (19) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is as defined in (14), or a pharmaceutically acceptable salt thereof.

(21) The fused ring compound of (20) above, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.

(22) The fused ring compound of any of (14) to (21) above, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.

(23) The fused ring compound of (22) above, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.

(24) The fused ring compound of any of (14) to (23) above, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.

(25) The fused ring compound of (24) above, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.

(26) The fused ring compound of (25) above, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

(27) The fused ring compound of any of (14) to (26) above, wherein the Y is $-(CH_2)_m$ -O- $-(CH_2)_n$ -, $-NHCO_2$ -, $-CONH-CHR^{a14}$ -, $-(CH_2)_m$ -NRa¹²- $-(CH_2)_n$ -, $-CONR^{a13}$ - $-(CH_2)_n$ -, $-O-(CH_2)_m$ -CRa¹⁵Ra¹⁶- $-(CH_2)_n$ - or $-(CH_2)_n$ -NRa¹²-CHRa¹⁵- (wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.

(28) The fused ring compound of (27) above, wherein the Y is - $(CH_2)_m$ -O- $(CH_2)_n$ - or -O- $(CH_2)_m$ -CRa¹⁵Ra¹⁶. $(CH_2)_n$ - (wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.

(29) The fused ring compound of (28) above, wherein the Y is -(CH₂)_m-O-(CH₂)_n- wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(30) The fused ring compound of any of (14) to (29) above, wherein the R² is carboxyl, R¹, R³ and R⁴ are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

(31) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 1), 2-[4-(3-bromophenoxy)phenyl] 1, cyclohexylbenzimidazole-5-carboxylate (Example 1),

2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2),

ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 3),

ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 4), ethyl 2-[4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 5),

2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 6),

ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 7), ethyl 2-[4-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 8),

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 9),

ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate (Example 10), 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid (Example 11),

```
2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 12),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide (Example 13),
              2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (Example 14),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime (Example 15),
              ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxy-
 5
              late (Example 16),
              1-cyclohexyl-2-(4-[(4- (4-fluorophenyl)-2-methyl-5-thiazolyl)-methoxylphenyl)benzimidazole-5-carboxylic ac-
              id (Example 17),
              ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 18),
10
              ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example
              2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              20).
              ethyl 1-cyclopentyl-2- (4-nitrophenyl)benzimidazole-5-carboxylate (Example 21),
15
              ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 22),
              ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 23),
              2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 24),
              ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 25),
              2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 26),
20
              ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 27),
              ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate (Example 28),
              ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylate (Example 29),
              1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylic acid (Example 30),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 31).
25
              ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5- carboxylate (Example 32).
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide (Example 33),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide (Example 34),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole (Example 35),
              5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 36),
30
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
              ride (Example 37).
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole (Example 38),
              5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride (Example 39),
              5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 40),
35
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole (Example 41),
              5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 42),
              2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 43),
              2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 44),
              2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 45),
40
              2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 46),
              1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 47),
              1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 48),
              1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride (Example 49),
              1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 50),
45
              1-cyclopentyl-2-{4-{(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid (Example
              51),
              1-cyclopentyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylic acid (Example 52),
             [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid (Example 53),
             2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 54),
50
             2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 55),
             2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid (Example 56),
             2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 57),
              1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid (Example 58),
             2-{4-((4-chlorophenyl)carbonylamino)phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 59).
55
             2-{4-{(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 60).
             2-{4-{(4-benzyloxyphenyl)carbonylamino}phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
             trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol (Example 62),
```

```
trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane (Example 63),
                 2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole (Example 64),
                2-[1-benzyloxycarbonyl-4-piperidyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 65),
                2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 66),
                1-cyclopentyl-2-[4- (3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 67),
   5
                1-cyclopentyl-2-[4- (3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 68),
                1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5-carboxylic acid (Example 69),
                 1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 70),
                 1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid (Example 71),
                trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane (Example 72),
  10
                2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole (Example 73),
                2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 74),
                2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
                75),
                2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 76),
  15
                1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid (Example 77),
                2-(1-benzyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 78),
                2-(1-benzoyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 79),
                1-cyclopentyl-2-[1-(p-toluenesulfonyl)-4-piperidyl]benzimidazole-5-carboxylic acid (Example 80),
               1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 81),
 20
                1-cyclohexyl-2-[4- (diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 82),
               1-cyclohexyl-2- [4- (3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 83),
               2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid (Example 84),
               1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 85),
               1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid (Example 86),
 25
               1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-carboxylic acid (Example 87),
               2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 88),
               2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 89),
               1-cyclohexyl-2-[4- (dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 90),
 30
               2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 91),
               2-(4-benzyl-1-piperazinyl)-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 92),
               1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 93),
               2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 94),
               2-(4-benzyloxypiperidino)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 95),
 35
               1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 96),
               1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 97),
               1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 98),
              2-(3-benzyloxy-5-isoxazolyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 99),
              2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 100),
               1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 101),
40
              2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid (Example 102),
              1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 103),
              2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 104),
              2-[4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 105),
              1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 106),
45
              1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 107),
              1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 108),
              1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 109),
              1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 110),
              1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 111),
50
              1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid
                                                                                                             (Example
              112),
              1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid
                                                                                                             (Example
              113),
              1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 114),
55
             1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 115),
             1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
              acid (Example 116),
```

```
1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid (Example
               117),
              2-{4-[bis(4-chlorophenyl) methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 118),
               1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 119),
 5
              1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 120),
              1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 121),
              2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid (Example 122),
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 123),
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 124).
 10
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 125),
              2-(4-benzyloxyphenyl)-1-(3-cyclohexenyl)benzimidazole-5-carboxylic acid (Example 126),
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane (Example 127),
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 128),
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 129),
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid
15
              (Example 130),
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl)benzimidazole-5-carboxylic
                                                                                                                   acid
              (Example 131),
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 132),
20
              2-{4-{bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 133),
              2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 134),
              1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 135),
              1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 136),
              1-cyclohexyl-6-methyl-2- [4- (3-phenylpropoxy) phenyl]benzimidazole-5-carboxylic acid (Example 137),
              2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 138),
25
              2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 139).
              2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 140),
              2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 141),
              2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
30
              2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
              1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl]benzimidazole-5-carboxylic
                                                                                                                  acid
              (Example 144),
35
              2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
              ple 145).
              2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              146).
              2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
40
              ple 147),
              2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 149).
              2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
45
              150).
             2-{4- [3-chloro-6- (2-trifluoromethylphenyl) benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
              (Example 151),
             2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 152),
             2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 153),
50
             2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 154),
             2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
             ylic acid (Example 155),
             2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl]-1-cyclohexylbenzimidazole-5-carbox-
             ylic acid (Example 156),
55
             2-{4-[3-chloro-6- (3,4,5-trimethoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
             (Example 157),
             2-{4-[2-(2-biphenyly])ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 158),
             2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 159),
```

1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride (Example 160),

1-cyclohex (Example	-2-{4-[3-(4-piperidylmethoxy)phe	noxy]phenyl}-benzimidazole-5-carboxylic acid	hydrochloride
		nyl}-1-cyclohexylbenzimidazole-5-carboxylic a	ıcid (Example
• •	-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic	acid (Example
	-2-{4-[3-(3-methyl-3-butenyloxy)	phenoxy]phenyl}-benzimidazole-5-carboxylic a	cid (Example
	-benzyl-2-pyrrolidinyl}methoxy]pl e 165).	nenyl}-1-cyclohexyl-benzimidazole-5-carboxylic	acid hydrochlo-
		ry]phenyl}-1-cyclohexylbenzimidazole-5-carboxy	lic acid (Exam-
	o-6-(4-methanesulfonylphenyl)be 7),	nzyloxy)phenyl}-1-cyclohexylbenzimidazole-5-c	arboxylic acid
2-{4-[3-chlo	o-6-(2-thienyl)benzyloxy]phenyl}-	1-cyclohexylbenzimidazole-5-carboxylic acid (E: enyl}-1-cyclohexylbenzimidazole-5-carboxylic a	kample 168),
169),		I-cyclohexylbenzimidazole-5-carboxylic acid (E)	
2-{4-[3-cnlo 171),	-6-(4-fluorophenyl)benzyloxy]ph	enyl}-1-cyclohexylbenzimidazole-5-carboxylic a	cid (Example
2-[4-(2-bron	i-o-cniorobenzyloxy)phenylj-1-cy	cyclohexylbenzimidazole-5-carboxylic acid (Exal clohexylbenzimidazole-5-carboxylic acid (Exam fluorophenyl}-1-cyclohexylbenzimidazole-5-cart	nle 173)
(Example 1	·),	/]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl	
pie 1/5),			
pie 176),		r]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl	
1-cyclonexyl 2-(4-benzylo	?-{4-{3-(3-pyridylmethoxy)pheno; y-2-methoxyphenyl)-1-cyclohexy	henyl}benzimidazole-5-carboxylic acid (Exampl y]phenyl}-benzimidazole-5-carboxylic acid (Exa benzimidazole-5-carboxylic acid (Example 179)	mple 178),
2-[4-(Carbox) 2-[4-[2-(4-ch	ipnenyimetnoxy)phenyij-1-cyclo	cyclohexylbenzimidazole-5-carboxylic acid (Exan hexylbenzimidazole-5-carboxylic acid (Example yl]-1-cyclohexylbenzimidazole-5-carboxylic ac	1911
182), 2-{4-[3-acety		xy]phenyl}-1-cyclohexylbenzimidazole-5-carbox	
ample 100),		nenyl]-1-cyclohexylbenzimidazole-5-carboxylic	
	enzyloxycarbonyl-2-pyrrolidinyl}ı 35).	nethoxy]phenyl}-1-cyclohexylbenzimidazole-5-c	arboxylic ac-
	2-(4-trifluoromethylphenyl)benzy	loxy]phenyl}-1-cyclohexylbenzimidazole-5-carbo	oxylic acid
1-cyclohexyl- 2-{4-[2-(4-chl 188),	-{4- [3- (2-pyridylmethoxy)pheno ophenyl)-5-fluorobenzyloxy]phe	xy]phenyl}-benzimidazole-5-carboxylic acid (Ex nyl}-1-cyclohexylbenzimidazole-5-carboxylic ac	ample 187), cid (Example
2-{4-[3-carbo: 189),	r-6-(4-chlorophenyl)benzyloxy]pl	nenyl}-1-cyclohexylbenzimidazole-5-carboxylic a	cid (Example
2-{4- <mark>[3-carba</mark> i ple 190),	oyl-6-(4-chlorophenyi)benzyloxy	phenyl}-1-cyclohexylbenzimidazole-5-carboxyli	c acid (Exam-
1-cyclohexyl- ole 191),	{4-[2-(dimethylcarbamoylmethox	y)phenoxy]-phenyl}benzimidazole-5-carboxylic	acid (Exam-
l-cyclohexyl-2 ole 192),	{4-[2-(piperidinocarbonylmethox	y)phenoxy]-phenyl}benzimidazole-5-carboxylic	acid (Exam-
	enzenesulfonyl-2-pyrrolidinyl}met	hoxy]phenyl}-1-cyclohexylbenzimidazole-5-cart	oxylic acid

5

10

15

20

25

30

35

40

45

50

55

2-{4-{{(2S)-1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 194), 2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 195). 1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 197). 1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl]benzimidazole-5-carboxylic acid (Example 198), 1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl) -4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 199), 2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyi]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 200). 2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 201). 1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 202), 1-cyclohexyl-2-(4-[((2S)-1- (4-nitrophenyl) -2-pyrrolidinyl)-methoxy]phenyl]benzimidazole-5-carboxylic acid (Example 203), 1-cyclohexyl-2-{4-{{(2S) -1-phenyl-2-pyrrolidinyl}methoxy}-phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 204). 2-{4-[{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}methoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 205), 2-{4-[(5-(4-chlorophenyl)-2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 206), 2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 207), 1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 208). 1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 209). 1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Ex-2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 212), 2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 213), 1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 214), 2-{4-[3- (4-chlorophenyl) phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 215), 1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 216), 1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolylyl}methoxy|phenyl}benzimidazole-5-carboxylic acid (Example 217), 2-(4-[(4-(4-chlorophenyl)-2-methyl-5-thiazolyl]methoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 218), 2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 219), 1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}-phenyl}-benyl}-benzimidazole-5-carboxylic acid (Example 220). 1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy}-phenyl}benzimidazole-5-carboxylic (Example 221), 1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 222), 2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 223), 2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 224), 2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-2-{4-{4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 226). 2-{4-{3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 227),

2-{4-[2- (4-chlorophenyl) -5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

-2-pyrrolidinyi}-methoxy]phenyl}-1-cyclohexylbenzimidazole-

2-{4-[{(2S)-1-(4-dimethylcarbamoylphenyl)

5-carboxylic acid (Example 228),

(Example 229),

1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 230), 1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-

5-carboxylic acid (Example 231),

2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-5 id (Example 232). 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 233). 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 234), 10 2-{4-{{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 235), 2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 236), 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-15 ample 237). 2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 238), 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 239), 2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 20 240), methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 241), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochloride (Example 242). 25 ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 243). methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 244). methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-30 boxylate (Example 245). methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (Example 246). methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 247), 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 35 hydrochloride (Example 248), 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 249). 2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluor-40 oacetate (Example 250), 2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 251), 2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 252), 2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 253), 1-cyclohexyl-2-{4-[{4- (4-fluorophenyl) -2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-car-45 boxylic acid (Example 254). 1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 255), 1-cyclohexyl-2-{2-fluoro-4-{4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl]benzimidazole-5-carboxylic acid (Example 256). 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-sulfonic acid (Example 50 257), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-3-cyclohexylbenzimidazole-4-carboxylic acid (Example 258), 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic 55 acid dihydrochloride (Example 259), 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]-phenyl]benzimidazole-5-carboxylic acid dihydrochloride (Example 260), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-4-carboxylic acid (Exam-

2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-

2-{4-{{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxyl-

ple 261),

ple 263),

5

55

chloride (Example 262),

	ic acid (Example 204),
	2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id hydrochloride (Example 265),
10	1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-car-
	boxylic acid hydrochloride (Example 266),
	1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxy-
	lic acid hydrochloride (Example 267),
	2-{4-{2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
15	boxylic acid hydrochloride (Example 268),
	2-{4-{2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 269),
	2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id hydrochloride (Example 270),
20	2-{4-{3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy}-phenyl}-1-cyclohexylbenzimidazole-
	5-carboxylic acid hydrochloride (Example 271),
	2-{4-{3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihy-
	drochloride (Example 272),
	2-{4-{3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-
25	5-carboxylic acid (Example 273),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 274),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 275),
30	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 276),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(I-oxo-4-tetrahydrothiopyranyl)benzimida-
	zole-5-carboxylic acid (Example 277),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimi-
<i>35</i>	dazole-5-carboxylic acid (Example 278),
	2-{4-{2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 279),
	2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 280),
40	methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxy-
	late hydrochloride (Example 281),
	2-{4-{2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid di-
	hydrochloride (Example 282),
	2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxyl-
45	ic acid hydrochloride (Example 283),
	2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 284),
	2-{4-{2-(4-chlorophenyl)-5-isopropylcarbamoyibenzyloxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 285),
50	2-{4-{2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 286),
	2-{4-{2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-
	the state of the s

2-{4- [2-(4-chlorophenyl)-5- (2-hydroxyethyl)carbamoylbenzyloxy] -2-fluorophenyl]-1-cyclohexylbenzimida-

2-{4-[2-(4-chlorophenyl]-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimi-

2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-

5-carboxylic acid hydrochloride (Example 287),

zole-5-carboxylic acid hydrochloride (Example 288),

dazole-5-carboxylic acid hydrochloride (Example 289),

	boxylic acid hydrochloride (Example 290),
	2-{4-[2-(4-chlorophenyl)-5-thiomorpholipocarbonylbenzyloxyl-2-flygrophonyl] 4 gyalahaga lla agrici da a la
	a carpoxyric acid riverocitiones (Example 2011
5	2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
_	zara a garacyliic gold Manachlolide (Examble 202)
	2-{4-[2-{4-(2-carboxyethyl) phenyl}-5-chlorobenzyloxy] phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 293),
	2-(4-(3-chloro-6-(4-hydroxymethylphonyl)honzylanda a said
	2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 294),
10	2-{4-(3-chloro-6-(4-methoxymethylphenyl)henzyloxylphonyll 4 avalah ozyll
	my discriminate (Example 295),
	2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
	200),
15	2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 297)
,,,	P-0 = 0 /);
	2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 298),
	2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo- ride (Example 299),
20	2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 300),
	2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 300), (Example 301)
	(=xampio 001),
	sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 302)
25	· F-9 -9-4-),
25	methyl 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
	zoio o carboxyrate (Example 303).
	sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-zole-5-carboxylate (Example 304),
	2-{4-{5-carboxy-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
30	(=nanpio 000),
	2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 306)
	F
	2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-
35	Tany ne dold (Example 307).
0 5	2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 308),
	***/)
	2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 309),
	2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 310)
40	an serior de (Example 610).
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
	omoneo (Example 311),
	2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 312).
45	-·-/n
	2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 313),
	methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole- 5-carboxylate (Example 314),
	2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
	chloride (Example 315),
50	2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxyl-2-fluorophenyll-1-gycloboxylbas zimidasa la 5
	boxy to acid try droctholide (Example 316)
	2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
	2010 C SALDONYIIO AGIG ITYGIOCIIIDIIQE (EXAMDIE 317)
55	2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
JJ	2010 C Dai Doxylic acid diriydi ochionge (Example 318)
	2-{4-[2- (4-chlorophenyl) -5- (N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzim-idazole-5-carboxylic acid hydrochloride (Example 319),
	Age of a graphy in acid Hydrochlolide (Example 31d)
	methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-1H-indole-5-carboxylate (Exam-

ple 501), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid (Example 502),

2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid (Example 503), ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (Example 601), 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid (Example 602), and 2-(4-cyclopenyl) 5-methoral (acid benzyloxylaboxyl) 5-methoral (acid benzyloxylaboxyl) 5-methoral (acid benzyloxylaboxyl) 6-methoral (acid benzyloxylaboxy

5

10

15

20

25

30

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid (Example 701).

- (32) A pharmaceutical composition comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (33) A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of (1) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (34) An anti-hepatitis C virus agent comprising a fused ring compound of any of (1) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (35) A therapeutic agent for hepatitis C comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (36) A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
- (37) A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
- (38) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
- (39) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- (40) A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (41) A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (42) A commercial package comprising a pharmaceutical composition of (40) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
- 35 (43) A commercial package comprising a pharmaceutical composition of (41) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.
 - [0033] The definitions of respective substituents and moieties used in the present specification are as follows.
- 40 [0034] The halogen atom is a fluorine atom, chlorine atom, bromine atom or iodine atom, preferably fluorine atom, chlorine atom or bromine atom.
 - [0035] Particularly preferably, the halogen atom is fluorine atom at R^5 , R^5 , R^6 , R^6 , group A and group C, and fluorine atom or chlorine atom at X, Z, Z, group B and group D.
 - [0036] The C₁₋₆ alkyl is straight chain or branched chain alkyl having 1 to 6 carbon atoms, and is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl and the like.
 - [0037] Preferably, it is straight chain or branched chain alkyl having 1 to 4 carbon atoms, and is particularly preferably methyl at Ra²⁷, Ra⁸, Ra⁹, Ra¹⁵, Ra¹⁶, Ra¹⁷, Ra²⁹, Ra³³, Rb⁶ and Rb⁷ and methyl or tert-butyl at Rb¹, Rb², group B and group C.
- [0038] The halogenated C₁₋₆ alkyl is the above-defined C₁₋₆ alkyl except that it is substituted by the above-defined halogen atom. Preferably, it is halogenated alkyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, chloromethyl, 1,2-dichloromethyl, 2,2-dichloromethyl, 2,2,2-trifluoroethyl and the like.
 - [0039] The halogenated C₁₋₆ alkyl is particularly preferably trifluoromethyl at group B.
- [0040] The C₁₋₆ alkylene is straight chain alkylene having 1 to 6 carbon atoms, and is exemplified by methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene.
 - [0041] The C₁₋₆ alkylene is preferably methylene or ethylene at Y.
 - [0042] The C_{2-6} alkenylene is straight chain alkenylene having 2 to 6 carbon atoms, and is exemplified by vinylene, propenylene, 1-butenylene, 1,3-butadienylene and the like.

[0043] The C₂₋₆ alkenylene is preferably vinylene at Y.

20

30

35

50

[0044] The C_{1-6} alkoxy is alkyloxy wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkoxy wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy and the like.

[0045] The C₁₋₆ alkoxy is particularly preferably methoxy at Ra2, Ra3, group A and group C.

[0046] The C_{1-6} alkanoyl is alkylcarbonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkanoyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetyl, propionyl, butyryl, isobutyryl, pivaloyl and the like.

[0047] The C₁₋₆ alkanoyl is particularly preferably acetyl at R¹, R², R³, R⁴, R^{a5}, R^{a29}, R^{b7} and group B.

[0048] The C₁₋₆ alkoxycarbonyl is alkyloxycarbonyl wherein the alkoxy moiety thereof is the above-defined C₁₋₆ alkoxy. Preferably, it is alkoxycarbonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropyloxycarbonyl, butoxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl and the like.

[0049] The C₁₋₆ alkoxycarbonyl is particularly preferably methoxycarbonyl or ethoxycarbonyl at Ra10 and group A. [0050] The C₁₋₆ alkylamino is alkylamino or dialkylamino wherein the alkyl moiety thereof is the above-defined C₁₋₆ alkyl. Preferably, it is alkylamino or dialkylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylamino, ethylamino, propylamino, isopropylamino, butylamino, tert-butylamino, pentylamino, hexylamino, dimethylamino, diethylamino, methylamino, N-isopropyl-N-isobutylamino and the like.

[0051] The C_{1-6} alkylamino is particularly preferably methylamino at R^{a7} , and particularly preferably dimethylamino at R^{a21} and group A.

[0052] The C₁₋₆ alkanoylamino is alkylcarbonylamino wherein the alkanoyl moiety thereof is the above-defined C₁₋₆ alkanoyl. Preferably, it is alkylcarbonylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetylamino, propionylamino, butyrylamino, isobutyrylamino, pivaloylamino and the like.

[0053] The C₁₋₆ alkanoylamino is particularly preferably acetylamino at X and Ra10.

[0054] The C₁₋₆ alkylsulfonyl is alkylsulfonyl wherein the alkyl moiety thereof is the above-defined C₁₋₆ alkyl. Preferably, it is alkylsulfonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, pentylsulfonyl, hexylsulfonyl and the like.

[0055] The C₁₋₆ alkylsulfonyl is particularly preferably methylsulfonyl at X and R^{a5}.

[0056] The C_{6-14} aryl is aromatic hydrocarbon having 6 to 14 carbon atoms. Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl and the like.

[0057] The C₆₋₁₄ aryl is preferably phenyl or naphthyl, particularly preferably phenyl at the ring A, ring B and ring B'.

[0058] The C_{3-8} cycloalkyl is saturated cycloalkyl having 3 to 8, preferably 5 to 7, carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclohexyl, cyclohexyl, cyclohexyl, and cycloactyl.

[0059] The C₃₋₈ cycloalkyl is particularly preferably cyclohexyl at the ring A, ring A', ring B and ring B'.

40 [0060] The C₃₋₈ cycloalkenyl is cycloalkenyl having 3 to 8, preferably 5 to 7, carbon atoms and has at least 1, preferably 1 or 2, double bond(s). Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

[0061] The C₃₋₈ cycloalkenyl is preferably cyclohexenyl at the ring A and ring A'.

[0062] The heterocyclic group has, as an atom constituting the ring, 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, besides a carbon atom, and includes saturated ring and unsaturated ring, monocyclic ring and fused ring having the number of ring atom constituting the ring of 3 to 14.

[0063] The heterocyclic group as a monocyclic ring includes, for example, pyridyl, pyrazinyl, pyridinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, pyrrolinyl, pyrrolinyl,

[0064] Examples of the heterocyclic group as a fused ring include quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzothiazolyl and the like.

[0065] Preferably, it is a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl and the like.

[0066] The heterocyclic group is preferably pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl which is an aromatic group, and particularly preferably pyridyl at the ring A and ring A'.

[0067] The heterocyclic group is particularly preferably pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, which is an aromatic group, at the ring B and ring B'. More preferably it is pyridyl or thiazolyl, most preferably thiazolyl.

[0068] The C_{6-14} aryl C_{1-6} alkyl is arylalkyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl and the aryl moiety is the above-defined C_{6-14} aryl. Preferably, it is arylalkyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyl, phenethyl, 3-phenyl-propyl, 2-phenylpropyl, 4-phenylbutyl and the like.

[0069] The C₆₋₁₄ aryl C₁₋₆ alkyl is particularly preferably benzyl at Ra8 and Rb6.

25

[0070] The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is arylalkyloxycarbonyl wherein the C_{6-14} aryl C_{1-6} alkyl moiety thereof is the above-defined C_{6-14} aryl C_{1-6} alkyl. Preferably, it is arylalkyloxycarbonyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyloxycarbonyl, phenethyloxycarbonyl, 3-phenylpropyloxycarbonyl, 2-phenylpropyloxycarbonyl, 4-phenylbutyloxycarbonyl and the like. [0071] The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is particularly preferably benzyloxycarbonyl at R^{b7} .

[0072] The optionally substituted C_{1-6} alkyl is the above-defined C_{1-6} alkyl, preferably that wherein straight chain or branched chain alkyl having 1 to 4 carbon atoms is optionally substituted with 1 to 3 substituent(s), and includes unsubstituted alkyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{1-6} alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tertbutyl, pentyl, isopentyl, tert-pentyl, neopentyl, 1-ethylpropyl, hexyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 1-hydroxy-1-methylethyl, carboxylmethyl, 2-carboxylethyl, methoxymethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-dimethylaminoethyl and the like.

[0073] Preferably, the optionally substituted C₁₋₆ alkyl is methyl, 1-hydroxy-1-methylethyl, carboxylmethyl or 2-dimethylaminoethyl at R¹, R², R³ and R⁴, methyl or trifluoromethyl at R⁵, R⁵, R⁶ and R⁶, methyl at R⁷, R⁸, R^{a18}, R^{a24}, R^{a25}, R^{a31} and R^{b5}, methyl or ethyl at R^{a1} and R^{a19}, methyl, carboxylmethyl or 2-dimethylaminoethyl at R^{a2} and R^{a3}, methyl or carboxylmethyl at R^{a6}, methyl, ethyl, isopropyl, butyl or trifluoromethyl at X, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-ethylpropyl or carboxylmethyl at R^{a10}, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, 2-hydroxyethyl or carboxylmethyl at R^{a11}, methyl or 4-hydroxybutyl at R^{a12}, methyl, ethyl, isopropyl, butyl, 2-hydroxyethyl, 4-hydroxybutyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl or 2-dimethyl-aminoethyl at R^{a13}, methyl, propyl, butyl, isopentyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl or carboxylmethyl at R^{a20}, methyl or ethyl at R^{a22} and R^{a23}, methyl or tert-butyl at R^{a26}, methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-carboxylethyl, methoxymethyl, ethoxycarbonylmethyl at Z, Z' and group D.

[0074] It is particularly preferably, trifluoromethyl at R⁵, R⁵', R⁶ and R⁶', methyl or tert-butyl at R^{a26}, methyl, tert-butyl, trifluoromethyl or hydroxymethyl at Z, Z' and group D, and methyl at other substituents.

[0075] The optionally substituted C_{2-6} alkenyl is that wherein straight chain or branched chain alkenyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkenyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{2-6} alkenyl include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 1,3-butadienyl, 2-isopentenyl, 3-isohexenyl, 4-methyl-3-pentenyl, 2-carboxylethenyl and the like.

[0076] The optionally substituted C_{2-6} alkenyl is preferably 2-carboxylethenyl at X, and preferably 2-isopentenyl, 3-isohexenyl or 4-methyl-3-pentenyl at R^{a20} .

[0077] The optionally substituted C_{2-6} alkynyl is that wherein straight chain or branched chain alkynyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkynyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples thereof include ethynyl, 1-propynyl, 2-propynyl, 3-butynyl and the like.

[0078] The optionally substituted C₂₋₆ alkynyl is preferably 2-propynyl at Ra20.

[0079] The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C_{6-14} aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r-COOR^{b1}$, $-(CH_2)_r-CONR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-SO_2R^{b1}$, and $-(CH_2)_r-SO_2R^{b1}R^{b2}$ (wherein R^{b1} and R^{b2} are each independently hydrogen atom or the above-defined C_{1-6} alkyl and r is 0 or an integer of 1 to 6).

[0080] Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-nitrophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-carboxylphenyl, 4-carboxylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-acetylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methysulfonylphenyl, 3,4,5-trimethoxyphenyl, 4-methylthiophenyl, 4-methylsulfonylphenyl, 4-aminosulfonylphenyl, 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0081] The aryl moiety is preferably phenyl, the group B here is preferably the above-defined halogen atom, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl or -(CH_2)_r-OR^{b1}. Examples of group B include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl and methoxy. Particularly preferably, it is fluorine atom or chlorine atom.

[0082] With regard to "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group B", it is preferably phenyl, 4-tert-butylphenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl at Ra12, Ra27 and Ra28, phenyl at Ra14, Ra22, Ra23, Ra26 and Rb5, phenyl or 3-fluorophenyl at Ra18, phenyl or 2,4-dichlorophenyl at Ra20, phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 3,5-dichlorophenyl, 3-nitro-4-methoxyphenyl or 4-nitro-3-methoxyphenyl at Ra24, and phenyl or 4-methylphenyl at Ra25.

[0083] It is particularly preferably phenyl at other substituents.

10

15

20

25

30

40

55

[0084] The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C_{6-14} aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (p)).

[0085] Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxycarbonyl, 2-carboxylethyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, methoxy, ethoxy, propyloxy, isopropyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonyl, methylsulfonyl, methylsulfonyl, methylaminosulfonyl, methylaminosulfonyl.

[0086] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoyl-phenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methylsulfinylphenyl, 4-aminosulfonylphenyl and 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0087] At Z and Z', the aryl moiety is preferably phenyl, and group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}Ra28, - (CH₂)_t-S(O)_q-Ra25 or -(CH₂)_t-SO₂-NHRa26.

[0088] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D preferably include phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-methylsulfinylphenyl and 4-aminosulfonylphenyl.

[0089] Particularly preferably, it is the above-defined halogen atom, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_tCOORa¹⁹, -(CH₂)_t-CONRa²⁷Ra²⁸, (CH₂)_t-ORa²⁰ or - (CH₂)_t-S (O)_q-Ra²⁵, which is specifically fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino. More preferably, it is fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino, most preferably fluorine atom or chlorine atom.

[0090] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl, the above-defined C₁₋₆ alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-OR^{b1}, -(CH₂)_r-SO₂R^{b1} and -(CH₂)_r-SO₂NR^{b1}R^{b2} wherein R^{b1} and R^{b2} are each independently hydrogen atom or the above-defined C₁₋₆ alkyl and r is 0 or an integer of 1 to 6.

[0091] Examples thereof include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropy-

ridin-3-yl, pyrazinyl, pyridinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, 3-hydroxypyrrolidinyl, imidazolidinyl, piperidyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)-piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, 4-methylsulfonylpiperazinyl, morpholinyl, thiomorpholinyl, 1-oxothiomorpholin-4-yl, 1,1-dioxothiomorpholin-4-yl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzothiazolyl and the like.

[0092] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the group B here is preferably the above-defined halogen atom, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl, the above-defined C₁₋₆ alkyl, -(CH₂)_r-CONR^{b1}, -(CH₂)_r-CONR^{b1}, -(CH₂)_r-CONR^{b1}.

[0093] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-(methylsulfonyl)piperidin-4-yl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, tetrahydropyranyl, pyridyl and thiazolyl. Particularly preferably, it is piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino or 4-thiomorpholinyl at Ra18, tetrahydropyranyl or 4-hydroxypiperidino at Ra20, piperidino at Ra21, pyridyl at Ra24 and Ra25, pyridyl or thiazolyl at Ra26 and at Ra27 and Ra28, it is 1-(methylsulfonyl)piperidin-4-yl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, 4-methylsulfonylpiperazinyl, 1-oxothiomorpholin-4-yl or 1,1-dioxothiomorpholin-4-yl.

20

25

35

[0094] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0095] Examples of the group D here include the substituent(s) exemplified for C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0096] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrmidinyl, pyridazinyl, 1,3,5-triazinyl, pyrmolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolinyl, benzofuranyl, benzofuranyl, benzothiazolyl, benzothiazolyl, and the like.

[0097] In addition, the heterocyclic group may be substituted at the 3-, 4-, 5- or 6-position of 2-pyridyl, at the 2-, 4-, 5- or 6-position of 3-pyridyl, at the 2-, 3-, 5- or 6-position of 4-pyridinyl, at the 3-, 4- or 5-position of 2-thienyl, or at the 2-, 4- or 5-position of 3-thienyl, by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trif-luoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

45 [0098] At Z and Z', the heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolinyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl. The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}R^{a28}, -(CH₂)_t-OR^{a20}, -(CH₂)_t-NR^{a29}CO-R^{a24}, -(CH₂)_t-S(O)_q-R^{a25} or -(CH₂)_t-SO₂-NHR^{a26}.

[0099] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, 4-tetrahydropyranyl, 3-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl and 2-thienyl.

[0100] Particularly preferably, it is pyridyl, pyrimidinyl, tetrazolyl, thienyl or piperidyl.

[0101] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by the 1 to 5 substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4fluorocyclohexyl,

2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0102] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

10

35

[0103] At the ring Cy and ring Cy', the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is preferably cyclopentyl, cyclohexyl, 4-fluorocyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl or 4-methoxycyclohexyl, more preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

[0104] The C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituents are selected from the above group B.

[0105] Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, 4-fluorocyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0106] Also exemplified are those wherein cyclopentyl or cyclohexyl is substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0107] At cycloalkyl moiety, it is preferably cyclopentyl or cyclohexyl. As the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, it is particularly preferably cyclohexyl or 4-hydroxycyclohexyl at Ra²⁷ and Ra²⁸.

20 [0108] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0109] The group D here includes the substituents recited with regard to C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0110] Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0111] The group D may be, for example, cyclopentyl or cyclohexyl substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0112] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, and at Z and Z', it is particularly preferably cyclohexyl.

[0113] The optionally substituted C₃₋₈ cycloalkenyl is that wherein the above-defined C₃₋₈ cycloalkenyl is optionally substituted by substituted from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 4-fluoro-2-cyclohexenyl, 4-methyl-3-cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

[0114] The optionally substituted C₃₋₈ cycloalkenyl is particularly preferably cyclohexenyl at the ring Cy.

[0115] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C₆₋₁₄ aryl C₁₋₆ alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted

arylalkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0116] Examples thereof include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-nitrobenzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-carboxylbenzyl, 4-carboxylbenzyl, 4-aminobenzyl, 4-dimethylsulfonylamino)benzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-methylsulfonylbenzyl, 4-aminosulfonylbenzyl, 3-nitro-4-methoxybenzyl and 4-nitro-3-methoxybenzyl.

[0117] The C₆₋₁₄ aryl C₁₋₆ alkyl moiety is preferably benzyl or phenethyl, particularly preferably benzyl. The group B is preferably the above-defined halogen atom, nitro, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl or -(CH₂)_r-OR^{b1}. Examples thereof include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethyloxy, particularly preferably fluorine atom or chlorine atom.

[0118] The specific C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B at Ra12 and Ra13 is preferably benzyl, phenethyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 3-trifluoromethylbenzyl, it is preferably benzyl at Ra1, Ra19, Ra27, Ra28, Ra31 and Rb5, it is preferably benzyl, phenethyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 4-trifluoromethylbenzyl at Ra20, and 4-chlorobenzyl, 3,5-dichlorobenzyl or 4-trifluoromethylbenzyl at Ra22 and Ra23.

[0119] It is particularly preferably benzyl at other substituents.

10

20

25

35

[0120] The $C_{6.14}$ aryl $C_{1.6}$ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined $C_{6.14}$ aryl $C_{1.6}$ alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0121] Examples of group D include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl. [0122] Examples of C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4- (methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-(acetylamino)benzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-(methylsulfonylamino) benzyl, 4-methylsulfinylbenzyl, 4-aminosulfonylbenzyl, (3-nitro-4-methoxyphenyl)methyl and (4-nitro-3-methoxyphenyl)methyl.

[0123] At Z and Z', the C_{6-14} aryl C_{1-6} alkyl moiety is preferably benzyl or phenethyl, and the group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, - $(CH_2)_t$ - $COOR^{a19}$, - $(CH_2)_t$ - $COOR^{a29}$, - $(CH_2)_t$ -

[0124] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is preferably benzyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-acetylaminobenzyl, 4-methylsulfinylbenzyl or 4-aminosulfonylbenzyl.

[0125] It is particularly preferably the above-defined halogen atom, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t$ - $COOR^{a19}$, $-(CH_2)_t$ - $CONR^{a27}R^{a28}$, $-(CH_2)_t$ - OR^{a20} or $-(CH_2)_t$ - $S(O)_q$ - R^{a25} . Examples thereof include fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl and acetylamino. It is more preferably fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl or methylsulfonyl, most preferably fluorine atom or chlorine atom.

[0126] The heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocycle C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C_{1-6} alkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0127] Examples thereof include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl and the like.

[0128] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety thereof is preferably straight chain alkyl having 1 to 4 carbon atoms. The group B here is preferably the above-defined halogen atom, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl, the above-defined C₁₋₆ alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-COOR^{b1}.

[0129] Examples of heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B preferably include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl) piperidin-4-ylmethyl, 1-(methylsulfonyl)-piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-ylmethyl

methyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl. Particularly preferably, it is 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl or 4-methylthiazol-2-ylmethyl at Ra22 and Ra23, and 4-pyridylmethyl or 4-methylthiazol-2-ylmethyl at Ra27 and Ra28.

[0130] The C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkylalkyl. The substituents are selected from the above group B.

[0131] Specific examples thereof include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclopentylmethyl, 2-(cyclopentyl)ethyl, 2-(cyclohexyl)ethyl, cycloheptylmethyl, 4-fluorocyclohexylmethyl, 2-methylcyclopentylmethyl, 3-methylcyclohexylmethyl, 4-methylcyclohexylmethyl, 4,4-dimethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 4-tert-butylcyclohexylmethyl, 4-hydroxycyclohexylmethyl, 4-methoxycyclohexylmethyl and 2,3,4,5,6-pentafluorocyclohexylmethyl.

[0132] Also exemplified are those wherein cyclopentylmethyl or cyclohexylmethyl is substituted by fluorine atom, chlorine atom, bromine atom, nito, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0133] At cycloalkyl moiety, it is preferably cyclopentylmethyl or cyclohexylmethyl, and at Ra20, Ra27 and Ra28, it is particularly preferably cyclohexylmethyl.

[0134] In formula [i], X is preferably

20

25

30

35

40

45

50

55

wherein each symbol is as defined above.

[0135] G¹, G², G³ and G⁴ are each preferably (C-R¹), (C-R²), (C-R³) and (C-R⁴), G⁵ is preferably a nitrogen atom, and G⁶, G⁶ and G⁶ are preferably a carbon atom. G⁶ is preferably C(-R⁶) or unsubstituted nitrogen atom, wherein R⁶ is preferably hydrogen atom.

[0136] A preferable combination is G² of (C-R²) and G⁶ of a carbon atom, particularly preferably G² of (C-R²), G⁶ of a carbon atom and G⁵ of a nitrogen atom, most preferably G² of (C-R²), G⁶ of a carbon atom, G⁵ of a nitrogen atom and G⁷ of unsubstituted nitrogen atom.

[0137] In formulas [I] and [II], 1 to 4 of G1 to G9 in the moiety

is(are) preferably a nitrogen atom, specifically preferably

particularly preferably

45
$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

50 more preferably

most preferably

5

10

15

20

25

30

40

 R^2 R^3 R^4

[0138] R¹ and R⁴ are preferably hydrogen atom. R² is preferably carboxyl, -COORa¹, -CONRa²Ra³ or -SO₂Ra² (each symbol is as defined above), particularly preferably carboxyl, -COORa¹ or -SO₂Ra², more preferably carboxyl or -COORa¹, most preferably carboxyl. R³ is preferably hydrogen atom or -ORa6 (Ra6 is as defined above), particularly preferably hydrogen atom.

[0139] The ring Cy and ring Cy are preferably cyclopentyl, cyclohexyl, cyclohexyl or tetrahydrothiopyranyl, particularly preferably cyclopentyl, cyclohexyl or cyclohexyl, more preferably cyclohexyl.

[0140] The ring A and ring A' are preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl or thienyl, particularly preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, more preferably phenyl or pyridyl, and most preferably phenyl.

[0141] The ring B and ring B' are preferably C₁₋₆ aryl or heterocyclic group, specifically preferably, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, particularly preferably phenyl, pyrimidinyl, 1,3,5-triazinyl or thiazolyl, more preferably, phenyl, pyridyl or thiazolyl, and most preferably phenyl or thiazolyl.

[0142] With regard to R⁵ and R⁶, one of them is preferably hydrogen atom and the other is halogen atom, particularly fluorine atom. Alternatively, the both arepreferably hydrogen atoms. When ring A is phenyl, R⁵ and R⁶ preferably are present at an ortho position from G⁶. The same applies to R⁵ and R⁶.

[0143] Y is preferably - $(CH_2)_m$ -O- $(CH_2)_n$ -, -NHCO₂-, -CONH-CHR^{a14}-, - $(CH_2)_m$ -NR^{a12}- $(CH_2)_n$ -, -CONR^{a13}- $(CH_2)_n$ -O- $(CH_2)_m$ -CR^{a15}Ra¹⁶- $(CH_2)_n$ - or - $(CH_2)_n$ -NR^{a12}-CHR^{a15}- (each symbol is as defined above), more preferably, - $(CH_2)_m$ -O- $(CH_2)_n$ - or -O- $(CH_2)_m$ -CR^{a15}Ra¹⁶- $(CH_2)_n$ -, most preferably -O- $(CH_2)_m$ -CR^{a15}Ra¹⁶- $(CH_2)_n$ -.

[0144] The 1, m and n are preferably 0 or an integer of 1 to 4, particularly preferably 0, 1 or 2, at Y. In - $(CH_2)_m$ -O- $(CH_2)_n$ -, m=n=0 or m=0 and n=1 is more preferable, most preferably m=n=0. In -O- $(CH_2)_m$ -CR^{a15}Ra¹⁶- $(CH_2)_n$ -, m=n=0, m=0 and n=1, m=1 and n=0 or m=1 and n=1 is more preferable, most preferably m=n=0.

When Y is -O- (CH₂)_m-CR^{a15}Ra¹⁶- (CH₂)_n-, Ra¹⁶ is preferably hydrogen atom, Ra¹⁵ is preferably

$$-(CH_2)^{\frac{1}{u_*}}(Z_*)^M.$$

wherein the

55

$$(CH_2)_n$$

$$R^{a16}$$

$$(CH_2)_n$$

$$(CH_2)_n$$

5

10

25

35

45

50

55

moiety is preferably symmetric. The preferable mode of n, ring B, Z and w and the preferable mode of n', ring B', Z' and w' are the same.

[0146] When ring A is phenyl, X or Y is preferably present at the para-position relative to G⁶. When ring B and ring B' are phenyl, Z is preferably present at the ortho or meta-position relative to Y. It is preferable that the 3-position on phenyl have one substituent or the 2-position and the 5-position on phenyl each have one substituent.

20 [0147] When ring B is thiazolyl, Y is preferably substituted at the 5-position, and Z is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position. Similarly, when ring B' is thiazolyl, (CH₂)_{n'} is also preferably substituted at the 5-position or the 2-position and the 4-position.
4-position.

[0148] Z and Z' are preferably group D, "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D" or "heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D", particularly preferably group D or "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D".

[0149] More preferably, they are the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t$ -COORa¹⁹- $(CH_2)_t$ -CONRa²⁷Ra²⁸, $-(CH_2)_t$ -ORa²⁰, $(CH_2)_t$ -NRa²⁹CO-Ra²⁴, $-(CH_2)_t$ -S(O)_q-Ra²⁵ or $-(CH_2)_t$ -SO₂-NHRa²⁶, or C_{6-14} aryl or heterocyclic group optionally substituted by these.

With regard to Z and Z, the preferable mode of group D that directly substitutes each ring B and ring B' and the preferable mode of group D that substitutes C₆₋₁₄ aryl, C₃₋₈ cycloalkyl, C₆₋₁₄ aryl C₁₋₆ alkyl or heterocyclic group are the same, wherein they may be the same with or different from each other.

[0150] Specific examples of the substituent preferably include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbarnoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylamino-carbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)-aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, trifluoromethyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl) phenyl, 4-(2-hydroxyethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 4-(methoxycarbonylmethyl) phenyl, 4-(ethoxycarbonylmethyl)phenyl, 4-acetylphenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-(methoxycarbonyl) phenyl, 4-(ethoxycarbonyl)-phenyl, 4-carbamoylphenyl, 4-(methylaminocarbonyl)phenyl, 4-(isopropylaminocarbonyl) phenyl, 4-(dimethylaminocarbonyl)phenyl, 4-(diethylaminocarbonyl)phenyl, 4-[(2-hydroxyethyl)-aminocarbonyl]phenyl, 4-[(carboxylmethyl)aminocarbonyl]phenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-ethoxyphenyl, 4-propyloxyphenyl, 4-isopropyloxyphenyl, 4-butyloxyphenyl, 4-isopentyloxyphenyl, 4-(2-isopentenyloxy)phenyl, 4-(3-isohexenyloxy)phenyl, 4-(4-methyl-3-pentenyloxy)phenyl, 4-(2-propynyloxy)phenyl, 4-(trifluoromethyloxy) phenyl, 4-(hydroxymethyloxy)phenyl, 4-(carboxylmethyloxy)phenyl, 4-((dimethylaminocarbonyl)methyloxy)phenyl, 4-aminophenyl, 4-(methylamino)phenyl, 4-(dimethylaminophenyl), 4-(diethylamino)-phenyl, 4-(acetylamino)phenyl, 4-(methylsulfonylamino)phenyl, 4-(methylthio)phenyl, 4- (methylsulfonyl)phenyl, 4- (methylsulfinyl)-phenyl, 4- (aminosulfonyl)phenyl, 4-(methylaminosulfonyl) phenyl, 4-(dimethylaminosulfonyl)phenyl, 4-(tert-butylaminosulfonyl)phenyl, cyclohexyl, benzyl, 4-chlorobenzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 2-chlorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-tert-butylbenzyloxy, 4-trifluoromethylbenzyloxy, phenethyloxy, 2-thienyl, 2-thiazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, piperidino, piperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 1-piperazinylcarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, phenoxy, 2,4-dichlorophenoxy, tet-

rahydropyranyloxy, 2-pyridylmethyloxy, 3-pyridylmethyloxy, 2-chloropyridin-4-ylmethyloxy, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyloxy, 1-(methylsulfonyl)-piperidin-4-ylmethyloxy, 2-methylthiazolin-4-yloxy, 2,4-dimethylthiazolin-5-yloxy, dimethylaminocarbonylmethyloxy, piperidinocarbonylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl) methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, benzoyl, 3-fluorobenzoyl, 4-chlorobenzylamino, 3,5-dichlorobenzylamino, 4-trifluoromethylbenzylamino, 2-pyridylmethylamino, benzoylamino, 4-chlorobenzoylamino, 4-trifluoromethylbenzoylamino, 3,5-dichlorobenzoylamino, 3-nitro-4-methoxybenzoylamino, 4-nitro-3-methoxybenzoylamino, 3-pyridylcarbonylamino, 4-methylphenylsulfonylamino, 2-thiazolylaminosulfonyl, 2-pyridylaminosulfonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)-aminocarbonyl or (cyclohexylmethyl)aminocarbonyl, 2-hydroxyethyloxy, 3-hydroxypropyloxy, 3-hydroxypyrrolidinylcarbonyl, 3-hydroxypiperidinocarbonyl, 3,4-dihydroxypiperidinocarbonyl, 4-methoxypiperidinocarbonyl, 4-carboxypiperidinocarbonyl, 4-(hydroxymethyl)piperidinocarbonyl, 2-oxopiperidinocarbonyl, 4-oxopiperidinocarbonyl, 2,2,6,6-tetramethylpiperidinocarbonyl, 2,2,6,6-tetramethyl-4-hydroxypiperidinocarbonyl, 1-oxothiomorpholin-4-ylcarbonyl, 1,1-dioxothiomorpholin-4-ylcarbonyl, 1-(methylsulfonyl)piperidin-4-ylaminocarbonyl, 4-methylsulfonylpiperazinylcarbonyl, N,N-bis(2-hydroxyethyl)-aminocarbonyl, phenylaminocarbonyl, cyclohexylaminocarbonyl, 4-hydroxycyclohexylaminocarbonyl, 4-methylthiazol-2-ylmethylaminocarbonyl, 2-(4-hydroxypiperidino)ethyloxy, 2-pyridylmethylaminocarbonyl, 3-pyridylmethylaminocarbonyl, N-methyl-N-(4-pyridylmethyl)aminocarbonyl, cyclohexylmethyloxy, 4-hydroxypiperidinocarbonylmethyloxy and 4-methylthiazol-2-ylmethyloxy.

[0151] Particularly preferable examples of the substituent include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxylethyl)aminocarbonyl, (carboxymethyl)-aminocarbonyl, methoxy, 2-isopentenyloxy, 2-propynyloxy, methylthio, methylamino, dimethylamino, acetylamino, methylsulfonylamino, methylsulfonyl, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carboxylphenyl, 4-methylphenyl, 4-carboxylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, benzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 4-chlorobenzyloxy, 2-thiazolyl, 3-pyridyl, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 2-chloropiperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, 5-tetrazolyl, 3-fluorobenzoyl, piperidinocarbonyl, 4-hydroxylpiperidinocarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl, and (cyclohexylmethyl)aminocarbonyl.

[0152] Most preferable substituents are fluorine atom, chlorine atom, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxy, methylamino, acetylamino, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3-dichlorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl and 4-methylsulfonylphenyl.

[0153] The w is preferably 1 or 2 rand t are preferably 0.1 or 2 particularly preferably 0.2 or 1 many preferably 0.3 or 1 many preferabl

[0153] The w is preferably 1 or 2, r and t are preferably 0, 1 or 2, particularly preferably 0 or 1, more preferably 0, p is preferably 1, and q is preferably 0 or 2.

[0154] The pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with a compound of the above-mentioned formula [!] or [II]. Such salt can be obtained by reacting the compound with an inorganic acid, such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like, or an organic acid, such as oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methylsulfonic acid, benzylsulfonic acid and the like, or an inorganic base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide and the like, or an organic base, such as methylamine, diethylamine, triethylamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, guanidine, choline, cinchonine and the like, with an amino acid, such as lysine, arginine, pound.
[10155] The company of the company of the compound of the above training product, hydrate and solvate of each compound.

[0155] The compounds of the above-mentioned formula [I] or [II] have various isomers. For example, E compound and Z compound are present as geometric isomers, and when the compound has an asymmetric carbon, an enantiomer and a diastereomer are present due to the asymmetric carbon. A tautomer may be also present. The present invention encompasses all of these isomers and mixtures thereof.

[0156] The present invention also encompasses prodrug and metabolite of each compound.

[0157] A prodrug means a derivative of the compound of the present invention, which is capable of chemical or metabolic decomposition, which shows inherent efficacy by reverting to the original compound after administration to a body, and which includes salts and complexes without a covalent bond.

[0158] When the inventive compound is used as a pharmaceutical preparation, the inventive compound is generally

admixed with pharmaceutically acceptable carriers, excipients, diluents, binders, disintegrators, stabilizers, preservatives, buffers, emulsifiers, aromatics, coloring agents, sweeteners, thickeners, correctives, solubilizers, and other additives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and the like, and prepared into a dosage form of tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like, which can be administered systemically or topically and orally or parenterally.

[0159] While the dose varies depending on the age, body weight, general condition, treatment effect, administration route and the like, it is from 0.1 mg to 1 g for an adult per dose, which is given one to several times a day.

[0160] The prophylaxis of hepatitis C means, for example, administration of a pharmaceutical agent to an individual found to carry an HCV by a test and the like but without a symptom of hepatitis C, or to an individual who shows an improved disease state of hepatitis after a treatment of hepatitis C, but who still carries an HCV and is associated with a risk of recurrence of hepatitis.

[0161] Examples of the production method of the compound to be used for the practice of the present invention are given in the following. However, the production method of the compound of the present invention is not limited to these examples.

[0162] Even if no directly corresponding disclosure is found in the following Production Methods, the steps may be modified for efficient production of the compound, such as introduction of a protecting group into a functional group with deprotection in a subsequent step, and changing the order of Production Methods and steps.

[0163] The treatment after reaction in each step may be conventional ones, for which typical methods, such as isolation and purification, crystallization, recrystallization, silica gel chromatography, preparative HPLC and the like, can be appropriately selected and combined.

Production Method 1

[0164] In this Production Method, a benzimidazole compound is formed from a nitrobenzene compound.

Production Method 1-1

30 [0165]

5

10

15

20

25

35
$$R^{2}$$
 R^{1} NO_{2} $Step 1$ R^{2} NO_{2} $Step 2$ R^{2} NH_{2} R^{3} R^{4} NH R^{4} R^{5} R^{5}

wherein Hal is halogen atom, such as chlorine atom, bromine atom and the like, R^{c1} is halogen atom, such as chlorine atom, bromine atom and the like, or hydroxyl group, and other symbols are as defined above.

Step 1

[0166] A compound [1] obtained by a conventional method or a commercially available compound [1] is reacted with amine compound [2] in a solvent such as N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF), toluene and the like in the presence or absence of a base such as potassium carbonate, triethylamine, potassium t-butoxide and the like at room temperature or with heating to give compound [3].

Step 2

10

15

20

25

30

35

40

[0167] The compound [3] is hydrogenated in a solvent such as methanol, ethanol, THF, ethyl acetate, acetic acid, water and the like in the presence of a catalyst such as palladium carbon, palladium hydroxide, platinum oxide, Raney nickel and the like at room temperature or with heating to give compound [4]. In addition, compound [3] is reduced with a reducing agent such as zinc, iron, tin(II) chloride, sodium sulfite and the like, or reacted with hydrazine in the presence of iron(III) chloride to give compound [4].

Step 3

[0168] The compound [4] is condensed with carboxylic acid compound [5] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like using a condensing agent such as dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, diphenylphosphoryl azide and the like and, where necessary, adding N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like to give amide compound [6]. Alternatively, amide compound [6] can be obtained from compound [5] as follows. The carboxylic acid compound [5] is converted to an acid halide derived with thionyl chloride, oxalyl chloride and the like, or an active ester (e.g., mixed acid anhydride derived with ethyl chlorocarbonate and the like), which is then reacted in the presence of a base, such as triethylamine, potassium carbonate, pyridine and the like, or in an amine solvent, such as pyridine and the like, to give amide compound [6].

Step 4

[0169] The compound [6] is heated in a solvent such as ethanol, methanol, toluene, DMF, chloroform and the like or without a solvent in the presence of an acid such as acetic acid, formic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like, a halogenating agent such as zinc chloride, phosphorus oxychloride, thionyl chloride and the like or acid anhydride such as acetic anhydride and the like, to allow cyclization to give compound [1-2].

Production Method 1-2

[0170] This Production Method is an alternative method for producing compound [I-2].

$$R^2$$
 R^4
 R^4
 R^4
 R^4
 R^5
 R^6
 R^6

wherein each symbol is as defined above.

Step 1

5 [0171] The compound [3] obtained in the same manner as in Step 1 of Production Method 1-1 is subjected to amide condensation with compound [5] in the same manner as in Step 3 of Production Method 1-1 to give compound [7].

Step 2

10 [0172] The compound [7] is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [8].

Step 3

[0173] The compound [8] is subjected to cyclization in the same manner as in Step 4 of Production Method 1-1 to give compound [I-2].

Production Method 1-3

[0174]

20

50

55

15

25
$$R^{2}$$
 NH_{2} R^{3} NH_{2} R^{4} NH_{2} R^{5} NH_{2} R^{5} NH_{30} R^{5} R^{4} R^{5} $R^{$

wherein R^{c2} is alkyl such as methyl, ethyl and the like, and other symbols are as defined above.

[0175] The compound [4] is reacted with imidate compound [9] in a solvent such as methanol, ethanol, acetic acid, DMF, THF, chloroform and the like at room temperature or with heating to give compound [I-2].

[0176] In addition, compound [4] may be reacted with aldehyde compound [10] in a solvent such as acetic acid, formic acid, acetonitrile, DMF, nitrobenzene, toluene and the like in the presence or absence of an oxidizing agent such as benzofuroxan, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzbquinone, iodine, potassium ferricyanide and the like with heating to give compound [1-2].

[0177] Alternatively, compound [4] and carboxylic acid compound [11] may be heated to allow reaction in the presence of polyphosphoric acid, phosphoric acid, phosphorus oxychloride, hydrochloric acid and the like to give compound [1-2].

Production Method 2

[0178] In this Production Method, conversion of the substituents (R^1 , R^2 , R^3 , R^4) on the benzene ring of benzimidazole is shown. While a method of converting R^2 when R^1 , R^3 and R^4 are hydrogen atoms is shown, this Production Method is applicable irrespective of the position of substitution.

Production Method 2-1

[0179] Conversion of carboxylic acid ester moiety to amide

NHR^{c4}R^{c5}

R^{c3}00C-E

NHR^{c4}R^{c5}

Step 1

$$R^{c4}$$
 R^{c5}
 R^{c4}
 R^{c5}
 R^{c4}
 R^{c5}
 R^{c4}
 R^{c5}
 R^{c5}
 R^{c5}
 R^{c5}
 R^{c5}
 R^{c5}
 R^{c5}
 R^{c5}

wherein E is a single bond, - $(CH_2)_s$ -, -O- $(CH_2)_s$ - or -NH- $(CH_2)_s$ -(wherein s is an integer of 1 to 6), R^{c3} , R^{c4} and R^{c5} are C_{1-6} alkyl, and other symbols are as defined above.

Step 1

25

30

35

55

5

10

[0180] The compound [I-2-1] obtained in the same manner as in the above-mentioned Production Method is subjected to hydrolysis in a solvent such as methanol, ethanol, THF, dioxane and the like, or in a mixed solvent of these solvents and water under basic conditions with sodium hydroxide, potassium hydroxide, potassium carbonate, lithium hydroxide and the like or under acidic conditions with hydrochloric acid, sulfuric acid and the like to give compound [I-2-2].

Step 2

[0181] The compound [I-2-2] is reacted with compound [12] in the same manner as in Step 3 of Production Method 1-1 to give compound [I-2-3].

Production Method 2-2

40 [0182] Conversion of cyano group to substituted amidino group

wherein each symbol is as defined above.

[0183] The compound [1-2-4] obtained in the same manner as in the above-mentioned Production Method is reacted with hydroxylamine in a solvent such as water, methanol, ethanol, THF, DMF and the like to give compound [1-2-5]. When a salt of hydroxylamine such as hydrochloride and the like is used, the reaction is carried out in the presence of a base such as sodium hydrogencarbonate, sodium hydroxide, triethylamine and the like.

Production Method 2-3

5

10

15

20

25

30

55

[0184] Conversion of sulfonic acid ester moiety to sulfonic acid

wherein R^{c6} is C₁₋₆ alkyl, and other symbols are as defined above.

[0185] The compound [I-2-6] obtained in the same manner as in the above-mentioned Production Method is reacted with iodide salt such as sodium iodide, lithium iodide and the like, bromide salt such as sodium bromide, trimethylammonium bromide and the like, amine such as pyridine, trimethylamine, triazole and the like, phosphine such as triphenylphosphine and the like in a solvent such as DMF, dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, water and the like with heating to give compound [I-2-7].

Production Method 3

[0186] This Production Method relates to convertion of the substituent(s) on phenyl group at the 2-position of benzimidazole. This Production Method can be used even when phenyl is a different ring.

Production Method 3-1

[0187] Conversion of hydroxyl group to ether

35

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{01}
 R^{01}

wherein R^{c7} is optionally substituted alkyl corresponding to R^{a11} , G^1 is a single bond, *-(CH_2)_n-, *-(CH_2)_n- CP_1 -, *-(CH_2)_n-, wherein * show the side to be bonded to R^{c1} , and other symbols are as defined above.

[0188] When R^{c1} of compound [13] is halogen atom, compound [1-2-8] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [13] in a solvent such as DMF, DMSO, acetonitrile, ethanol, THF and the like in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, potassium

carbonate, sodium ethoxide, potassium t-butoxide and the like at room temperature or with heating to give compound [II-2-1].

[0189] When Rc1 of compound [13] is hydroxyl group, the hydroxyl group of compound [13] is converted to halogen atom with thionyl chloride, phosphorus tribromide, carbon tetrabromide-triphenylphosphine and the like and reacted with compound [1-2-8] by the aforementioned method to give compound [II-2-1]. In this case, compound [I-2-8] may be striphenylphosphine - diethyl azodicarboxylate and the like to give compound [II-2-1].

[0190] The compound [I-2-9] can be obtained in the same manner from compound [I-2-8] and compound [14].

Production Method 3-2

[0191] Conversion of nitro to substituted amino group

wherein R^{c8} is C₁₋₆ alkyl, G² is *-(CH₂)_n- or *-CHR^{a15}, G³ is -CO-, *-CO₂-, *-CONH- or -SO₂-, and other symbols are as defined above.

Step 1

[0192] The nitro compound [I-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 2 of Production Method 1-1 to give compound [I-2-11].

Step 2

50

55

[0193] The compound [I-2-11] is alkylated with compound [15] in the same manner as in Production Method 3-1 to give compound [II-2-2].

Step 3

10

15

20

25

30

35

40

45

[0194] When G³ of compound [16] is -CO-, -CO₂- or -CONH-, compound [1-2-11] is acylated with compound [16] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0195] When G³ of compound [16] is -SO₂-, sulfonylation is conducted using sulfonyl halide instead of acid halide used in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0196] The compound [1-2-11] is acylated with compound [17] in the same manner as above to give compound [1-2-12].

[0197] This Production Method is applied in the same manner as above to give disubstituted compounds (tertiary amine) of compound [II-2-2], compound [II-2-3] and compound [I-2-12].

Production Method 3-3

[0198] Conversion of carboxylic acid ester moiety to amide

[1-2-14]

R²

R³

R⁴

Cy

Step 1

COOH

Step 2 R^{a13} R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} $R^{$

wherein R^{c9} is C_{1-6} alkyl, G^4 is #- $(CH_2)_n$ -, #- $(CH_2)_n$ -NH- or #-CHRa14-wherein # shows the side that is bounded to amine and other symbols are as defined above.

Step 1

[0199] The compound [I-2-13] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 1 of Production Method 2-1 to give compound [I-2-14].

Step 2

[0200] The compound [I-2-14] is reacted with compound [18] in the same manner as in Step 2 of Production Method 2-1 to give compound [II-2-4].

[0201] The compound [I-2-15] is obtained from compound [I-2-14] and compound [19] in the same manner as above.

50 Production Method 4

[0202] In this Production Method, additional substituent(s) is(are) introduced into ring B on phenyl group that substitutes the 2-position of benzimidazole. This Production Method is applicable even when phenyl is a different ring.

55 Production Method 4-1

[0203] Direct bonding of ring Z" to ring B

wherein R^{c11} is leaving group such as bromine atom, iodine atom, trifluoromethanesulfonyloxy and the like, R^{c12} is formyl, carboxyl or carboxylic acid ester such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl and the like, and other symbols are as defined above.

Step 1

30

35

40

45

[0208] Commercially available compound [22] or compound [22] obtained by a conventional method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [23].

Step 2

[0209] The compound [23] obtained in the same manner as in the above-mentioned Production Method is reduced according to a conventional method to give compound [24].

[0210] For example, compound [23] is reacted with in a solvent such as methanol, ethanol, THF and the like in the presence of a reducing agent such as lithium aluminum hydride, sodium borohydride and the like under cooling to heating to give compound [24].

Step 3

[0211] The compound [24] obtained in the same manner as in the above-mentioned Production Method is reacted in a solvent such as 1,4-dioxane, diethyl ether, THF, dichloromethane, chloroform, toluene and the like with a halogenating agent, such as phosphorus pentachloride, phosphorus tribromide, thionyl chloride and the like, in the presence of a tertiary amine such as pyridine and the like to give compound [25].

Step 4

[0212] The compound [24] or [25] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [I-2-8] in the same manner as in Production Method 3-1 to give compound [II-2-9].

wherein ring Z^* -M is aryl metal compound, ring Z^* moiety is optionally substituted C_{6-14} aryl or optionally substituted heterocyclic group corresponding to substituent Z, and the metal moiety contains boron, zinc, tin, magnesium and the like, such as phenylboronic acid, w^* is 0, 1 or 2, and other symbols are as defined above.

[0204] The compound [II-2-5] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)-palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a nickel catalyst such as nickel chloride, [1,3-bis(diphenylphosphino)-propane]nickel(II) chloride and the like, and a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like at room temperature or with heating, to give compound [II-2-6].

Production Method 4-2

10

15

20

25

30

35

40

45

50

55

[0205] Conversion of hydroxyl group to ether

wherein R^{c10} is -R^{a20} or -(CH₂)_p-COR^{a21} corresponding to substituent Z, and other symbols are as defined above. **[0206]** The compound [II-2-7] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [21] in the same manner as in Production Method 3-1 to give compound [II-2-8].

Production Method 4-3

[0207] Synthesis in advance of ring B part such as compound [13] in Production Method 3-1

Production Method 4-4

[0213]

5

wherein M' is a metal such as magnesium, lithium, zinc and the like, and other symbols are as defined above.

Step 1

25

30

35

40

[0214] Commercially available compound [41] or compound [41] obtained by a conventional method is converted to aryl metal reagent by a conventional method to give compound [42].

[0215] For example, when M' is magnesium, magnesium is reacted with compound [41] in a solvent such as THF, diethyl ether, benzene, toluene and the like, preferably THF, from cooling to heating preferably at -100°C to 100°C to 100°C to

Step 2

[0216] The compound [42] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [43] to give compound [44].

[0217] The compound [42] is reacted in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C to give compound [44].

Step 3

[0218] The compound [44] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in Step 3 of Production Method 4-3 to give compound [45].

[0219] The compound [44] is reacted with thionyl chloride and pyridine preferably in toluene solvent to give compound [45].

[0220] When compound [45] is symmetric, namely, when the ring B-(Z)w molety and the ring B'-(Z')w' molety are the same, compound [42] is reacted with formate such as methyl formate, ethyl formate and the like, preferably ethyl formate, in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C, to give compound [45].

Production Method 4-5

[0221] Method including steps to introduce a protecting group into a functional group

55

wherein R^{c13} is carboxylic acid protecting group such as tert-butyl and the like, R^{c14} is carboxylic acid protecting group such as methyl and the like and other symbols are as defined above. **Step 1**

[0222] Commercially available compound [26] or compound [26] obtained by a conventional method is protected by a conventional method to give compound [27].

[0223] For example, when Rc13 is tert-butyl, compound [26] is converted to acid halide with thionyl chloride, oxalyl chloride and the like in a solvent such as THF, chloroform, dichloromethane, toluene and the like, and reacted with potassium tert-butoxide to give compound [27].

[0224] As used herein, R^{c13} may be a different protecting group as long as it is not removed during the Step 2 or Step 3 but removed in Step 4 without affecting -CO₂R^{c14}.

Step 2

30

35

40

[0225] The methyl group of compound [27] obtained in the same manner as in the above-mentioned Production Method is converted to bromomethyl with N-bromosuccinimide and N,N'-azobisisobutyronitrile and reacted with compound [I-2-16] in the same manner as in Production Method 3-1 to give compound [II-2-10].

Step 3

[0226] The compound [II-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted with anyl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-11].

Step 4

[0227] The R^{c13} of the compound [II-2-11] obtained in the same manner as in the above-mentioned Production Method is removed by a conventional method to give compound [II-2-12].

[0228]. The protecting group of carboxylic acid can be removed by a conventional deprotection method according to the protecting group. In this Step, the conditions free from reaction of R^{c14} are preferable. For example, when R^{c13} is

tert-butyl, compound [II-2-11] is treated with trifluoroacetic acid in a solvent such as dichloromethane, chloroform and the like to give compound [II-2-12].

Step 5

[0229] The compound [II-2-12] obtained in the same manner as in the above-mentioned Production Method is subjected to amide condensation with compound [28] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-13].

10 Step 6

5

20

[0230] The compound [II-2-13] obtained in the same manner as in the above-mentioned Production Method is deprotected in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-14].

[0231] As used herein, R^{c14} is preferably a protecting group that does not react during the Step 1 through Step 5 but removed in this Step.

[0232] For example, when Rc14 is methyl, compound [II-2-13] is reacted in an alcohol solvent such as methanol, ethanol, n-propanol, isopropanol and the like or a mixed solvent of alcohol solvent and water in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like from cooling to heating for deprotection, followed by acidifying the reaction solution to give compound [II-2-14].

Production Method 5

[0233] Formation of indole ring

wherein R^{c15} is protecting group such as trimethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl and the like, and other symbols are as defined above.

Step 1

50

[0234] The compound [29] obtained in the same manner as in the above-mentioned Production Method or conventional method is reacted with compound [30] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like using a palladium catalyst such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a copper catalyst such as copper(I) iodide and the like or a mixture thereof, and in the presence of a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like to give compound [31].

Step 2

5

10

15

20

[0235] The compound [31] obtained in the same manner as in the above-mentioned Production Method is reacted in an alcohol solvent such as methanol, ethanol and the like or a mixed solvent of an alcohol solvent and a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like at room temperature or with heating for deprotection, and reacted with compound [32] obtained in the same manner as in Step 1 of Production Method 1-1 in the same manner as in Step 1 of Production Method 5 to give compound [33].

Step 3

[0236] The compound [33] obtained in the same manner as in the above-mentioned Production Method was subjected to cyclization in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a copper catalyst such as copper(I) iodide and the like or a palladium catalyst such as palladium(II) chloride and the like at room temperature or with heating to give compound [II-2-15].

Production Method 6

[0237] Formation of imidazo[1,2-a]pyridine ring

wherein Rc16 and Rc17 are each independently alkyl, such as methyl, ethyl and the like, and other symbols are as defined above.

Step 1

55 [0238] The compound [34] obtained by the above-mentioned Production Method or a conventional method is subjected to amide condensation with compound [35] in the same manner as in Step 3 of Production Method 1-1 to give compound [36].

Step 2

[0239] The compound [36] obtained by the above-mentioned Production Method is reacted with Grignard reagent [37] obtained by a conventional method to give compound [38].

[0240] Alternatively, an acid halide of compound [34] may be used instead of compound [36].

Step 3

[0241] The compound [38] obtained by the above-mentioned Production Method is subjected to halogenation by a conventional method to give compound [39].

[0242] For example, when Hal is a bromine atom, compound [38] is reacted with bromine under cooling or at room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, toluene and the like to give compound [39].

[0243] Alternatively, a halogenating agent such as hypohalite (e.g., hypochlorite and the like), N-bromosuccinimide and the like may be used instead of bromine for halogenation

Step 4

15

25

[0244] The compound [39] obtained by the above-mentioned Production Method is subjected to cyclization with compound [40] obtained by a conventional or known method (JP-A-8-48651) in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like in a solvent or without a solvent at room temperature or with heating to give compound [II-2-16].

[0245] The Production Methods shown in the above-mentioned Production Methods 2 to 4 can be used for the synthesis of compounds other than benzimidazole of the formulas [I] and [II], such as compounds [II-2-15] and [II-2-16]. The compounds of the formulas [I] and [II], and production methods thereof of the present invention are explained in detail in the following by way of Examples. It is needless to say that the present invention is not limited by these Examples.

30 Example 1

Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0247]

35

40

45

50

55

Step 1: Production of ethyl 4-chloro-3-nitrobenzoate

4-Chloro-3-nitrobenzoic acid (300 g) was dissolved in ethyl alcohol (1500 ml) and concentrated sulfuric acid (100 ml) was added with ice-cooling. The mixture was refluxed under heating for 7 hr. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (332 g, yield 97%).

 1 H-NMR (300MHz, CDCl₃) : 8.50(1H, d, J=2.1Hz), 8.16(1H, dd, J=8.4, 2.1Hz), 7.63(1H, d, J=8.4Hz), 4.43(2H, q, J=7.5Hz), 1.42(3H, t, J=7.5Hz)

Step 2: Production of ethyl 4-cyclohexylamino-3-nitrobenzoate

Ethyl 4-chloro-3-nitrobenzoate (330 g) obtained in the previous step was dissolved in acetonitrile (1500 ml), and cyclohexylamine (220 g) and triethylamine (195 g) were added. The mixture was refluxed under heating overnight. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (400 g, yield 94%).

¹H-NMR (300MHz, CDCl₃): 8.87(1H, d, J=2.1Hz), 8.35-8.45(1H, m), 8.02(1H, dd, J=9.1, 2.1Hz), 6.87(1H, d, J=9.1Hz), 4.35(2H, q, J=7.1Hz), 3.65-3.50(1H, m), 2.14-1.29(10H, m), 1.38(3H, t, J=7.1Hz)

Step 3: Production of ethyl 3-amino-4-cyclohexylaminobenzoate

Ethyl 4-cyclohexylamino-3-nitrobenzoate (400 g) obtained in the previous step was dissolved in ethyl acetate (1500 ml) and ethyl alcohol (500 ml), and 7.5% palladium carbon (50% wet, 40 g) was added. The mixture was hydrogenated for 7 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Disopropyl ether was added to the residue and the precipitated crystals were collected by filtration to give the title compound (289 g, yield 80%).

¹H-NMR (300MHz, CDCl₃): 7.57(1H, dd, J=8.4, 1.9Hz), 7.41(1H, d, J=1.9Hz), 6.59(1H, d, J=8.4Hz), 4.30(2H, q, J=7.1Hz), 3.40-3.30(1H, m), 2.18-2.02(2H, m), 1.88-1.15(8H, m), 1.35(3H, t, J=7.1Hz)

Step 4: Production of ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate

4-(3-Bromophenoxy)benzoic acid (74 g) was dissolved in chloroform (500 ml), and oxalyl chloride (33 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 4 hr at room temperature. The reaction mixture was concentrated under reduced pressure and dissolved in dichloromethane (150 ml). The resulting solution was added dropwise to a solution of ethyl 3-amino-4-cyclohexylaminobenzoate (66 g) obtained in the previous step in dichloromethane (500 ml) and triethylamine (71 ml), and the mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diethyl ether was added to the residue for crystallization and the crystals were collected by filtration to give the title compound (129 g, yield 95%).

 1 H-NMR (300MHz, CDCl₃): 8.00-7.78(4H, m), 7.66(1H, brs), 7.37-7.18(3H, m), 7.13-6.59(3H, m), 6.72(1H, d, J=8.7Hz), 4.50(1H, brs), 4.29(2H, q, J=7.2Hz), 3.36(1H, m), 2.12-1.96(2H, m), 1, 83-1.56(3H, m), 1.47-1.12(5H, m), 1.37(3H, t, J=7.2Hz)

Step 5: Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate (129 g) obtained in the previous step was suspended in acetic acid (600 ml) and the resulting suspension was refluxed under heating for 3 hr. The reaction mixture was concentrated under reduced pressure. Water was added to the residue and the precipitated crystals were collected by filtration to give the title compound (124 g, yield 99%).

 1 H-NMR (300MHz, CDCl₃): 8.51(1H, d, J=1.5Hz), 8.00(1H, dd, J=8.4, 1.5Hz), 7.67(1H, d, J=8.4Hz), 7.63(2H, d, J=8.7Hz), 7.35-7.21(3H, m), 7.17(2H, d, J=8.7Hz), 7.14(1H, m), 4.42(2H, q, J=7.2Hz), 4.38(1H, m), 2.43-2.22(2H, m), 2.07-1.87(4H, m), 1.80(1H, m), 1.42(3H, t, J=7.2Hz), 1.40-1.27(3H, m)

Example 2

5

10

15

20

25

30

35

40

50

Production of 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid

[0248] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.0 g) obtained in Example 1 was dissolved in tetrahydrofuran (10 ml) and ethyl alcohol (10 ml), and 4N sodium hydroxide (10 ml) was added. The mixture was refluxed under heating for 1 hr. The reaction mixture was concentrated under reduced pressure and water was added to the residue. The mixture was acidified with 6N hydrochloric acid and the precipitated crystals were collected by filtration to give the title compound (0.9 g, yield 96%).

melting point: 255-256°C

FAB-Ms: 491(MH+)

¹H-NMR (300MHz, DMSO-d₆): (12.75(1H, brs), 8.24(1H, s) , 7.96(1H, d, J=8.7Hz), 7.86(1H, d, J=8.7Hz), 7.71(2H, d, J=8.6Hz), 7.47-7.34(3H, m), 7.24(2H, d, J=8.6Hz), 7.20(1H, m), 4.31(1H, m) , 2.38-2.18(2H, m), 2.02-1.79(4H, m), 1.65(1H, m), 1.44-1.20(3H, m)

Example 3

Production of ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate

[0249] Ethyl 3-amino-4-cyclohexylaminobenzoate (130 g) obtained in Example 1, Step 3, and methyl 4-hydroxybenzimidate hydrochloride (139 g) were added to methyl alcohol (1500 ml), and the mixture was refluxed under heating for 4 hr. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (131 g, yield 72%).

¹H-NMR (300MHz, CDCl₃): 10.02(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.6Hz), 7.83(1H, dd, J=8.6, 1.4Hz), 7.48(2H, d, J=8.6Hz), 6.95(2H, d, J=8.6Hz), 4.39-4.25(1H, m), 4.33(1H, q, J=7.0Hz), 2.35-2.18(2H, m), 1.98-1.79(4H, m), 1.70-1.60(1H, m), 1.46-1.19(3H, m), 1.35(3H, t, J=7.0Hz)

Example 4

Production of ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0250] 2-Bromo-5-chlorobenzyl bromide prepared from 2-bromo-5-chlorotoluene (50 g), N-bromosuccinimide and N,N'-azobisisobutyronitrile, and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 3 were suspended in dimethylformamide (300 ml). Potassium carbonate (38 g) was added and the mixture was stirred for 1 hr at 80°C with heating. The reaction mixture was allowed to cool and then added to a mixed solvent of water-ethyl acetate. The precipitated crystals were collected by filtration to give the title compound (50 g, yield 64%).

1H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.70-7.57(5H, m), 7.20(1H, dd, J=8.4.

2.5Hz), 7.14(2H, d, J=8.7Hz), 5.17(2H, s), 4.46-4.30(1H, m), 4.41(2H, q, J=7.1Hz), 2.40-2.20(2H, m), 2.02-1.21(8H, m), 1.42(3H, t, J=7.1Hz)

Example 5

5

15

30

35

40

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0251] Ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (49 g) obtained in Example 4, 4-chlorophenylboronic acid (18 g) and tetrakis-(triphenylphosphine)palladium (10 g) were suspended in 1,2-dimethoxyethane (600 ml). Saturated aqueous sodium hydrogencarbonate solution (300 ml) was added and the mixture was refluxed under heating for 2 hr. Chloroform was added to the reaction mixture. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was punified by silica gel flash chromatography (developing solvent, chloroform:ethyl acetate = 97:3). Ethyl acetate and diisopropyi ether were added to the resulting oil for crystallization and the resulting crystals were collected by filtration to give the title compound (44 g, yield 85%).

¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.6Hz), 7.70-7.60(2H, m), 7.55(2H, d, J=8.7Hz), 4.95(2H, s), 4.48-4.28(1H, m), 4.40(2H, m), 2.02-1.20(8H, m), 1.41(3H, t, J=7.1Hz)

20 Example 6

Production of 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0252] Ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (43 g) obtained in Example 5 was treated in the same manner as in Example 2 to give the title compound (33 g, yield 76%). 25 melting point: 243-244°C

FAB-Ms: 571(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.32(1H, s), 8.28(1H, d, J=8.9Hz), 8.05(1H, d, J=8.8Hz), 7.76-7.72(3H, m), 7.58-7.46 (5H, m), 7.40(1H, d, J=8.3Hz), 7.24(2H, d, J=8.9Hz), 5.11(2H, s), 4.36(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m)

Example 7

Production of ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0253] Ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate obtained in Example 3 and 2-bromo-5-methoxybenzyl bromide were treated in the same manner as in Example 4 to give the title compound (59 g).

Example 8

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy}-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0254] Ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate obtained in Example 7 was treated in the same manner as in Example 5 to give the title compound (48 g, yield 77%). 1H-NMR $(300MHz, CDCl_3): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=8.7Hz), 7.37(1H, dd, J=8.6Hz), 7.54(2H, d, J=8.6Hz), 7.54(2H, d, J=8.7Hz), 7.37(1H, dd, J=8.6Hz), 7.54(2H, d, J=8.6Hz), 7.54(2Hz), 7.54(2H$ (2H, d, J=8.6Hz), 7.31(2H, d, J=8.6Hz), 7.25(1H, d, J=8.4Hz), 7.19(1H, d, J=2.7Hz), 7.00(2H, d, J=8.7Hz), 6.97(1H, dd, J=8.4, 2.7Hz), 4.98(2H, s), 4.41(2H, q, J=7.1Hz), 4.42-4.29(1H, m), 3.88(3H, s), 2.40-2.20(2H, m), 2.01-1.88(4H, m), 1.83-1.73(1H, m), 1.42(3H, t, J=7.1Hz), 1.41-1.25(3H, m)

50 Example 9

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0255] Ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (52 g) obtained in Example 8 was treated in the same manner as in Example 2 to give the title compound (44 g, yield 89%). 55 melting point: 248-249°C

FAB-Ms: 568(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.20(1H, s) , 7.88(1H, d, J=8.7Hz), 7.85(1H, d, J=8.7Hz), 7.57(d, 2H, J=8.6Hz), 7.46

(2H, d, J=8.6Hz), 7.44(2H, d, J=8.6Hz), 7.29(1H, d, J=8.5Hz), 7.24(1H, d, J=2.6Hz), 7.11(2H, d, J=8.6Hz), 7.06(1H, dd, J=8.5, 2.6Hz), 5.04(2H, s), 4.26(1H, m), 3.83(3H, s), 2.38-2.29(2H, m)

Example 10

5

10

30

Production of ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate

[0256] Ethyl 3-amino-4-cyclohexylaminobenzoate (500 mg) obtained in Example 1, Step 3, was dissolved in methyl alcohol (6 ml) and trans-4-stilbenecarbaldehyde (397 mg) was added under ice-cooling. The mixture was stirred overnight at room temperature. The reaction mixture was ice-cooled and benzofuroxan (259 mg) dissolved in acetonitrile (2 ml) was added. The mixture was stirred for 7 hr at 50°C. The reaction mixture was ice-cooled. After 1N sodium hydroxide was added, ethyl acetate was added and the mixture was extracted. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 4:1) to give the title compound (540 mg, yield 63%).

 1 H-NMR (300MHz, DMSO-d₆): 8.28(1H, d, J=1.4Hz), 8.01(1H, d, J=8.7Hz), 7.90-7.80(3H, m), 7.75-7.65(4H, m), 7.50-7.25(5H, m), 4.35(2H, q, J=7.0Hz), 4.31(1H, m), 2.40-2.20(2H, m), 2.00-1.80(4H, m), 1.63(1H, m), 1.40-1.20(3H, m), 1.36(3H, t, J=7.0Hz)

20 Example 11

Production of 1-cyclohexyl-2-{4-{(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylic acid

[0257] Ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate (127 mg) obtained in Example 10 was treated in the same manner as in Example 2 to give the title compound (116 mg, yield 97%). melting point: not lower than 300°C

FAB-Ms: 423(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.25(1H, s) , 7.96-7.29(13H, m) , 4.33(1H, brt), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 1.71-1.59(1H, m), 1.49-1.20(3H, m)

Example 12

Production of 2- (4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

[0258] In the same manner as in Examples 1 and 2, the title compound (700 mg) was obtained. FAB-Ms: 413(MH+)

 1 H-MMR (300MHz, CDCl₃): 8.60(1H, s), 8.04(1H, d, J=9.0Hz), 7.63(2H, d, J=8.4Hz), 7.51-7.32(6H, m), 7.14(2H, d, J=9.0Hz), 5.16(2H, s), 5.03-4.89(1H, m), 2.41-1.63(8H, m)

40 Example 13

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide

[0259] 2-(4-Benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (700 mg) obtained in Example 12 was dissolved in dimethylformamide (10 ml), and ammonium chloride (108 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (390 mg), 1-hydroxybenzotriazole (275 mg) and triethylamine (0.3 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl secretate and dispersoral other was added to the residue for any tilination and the control of the

acetate and diisopropyl ether were added to the residue for crystallization and the crystals were collected by filtration to give the title compound (571 mg, yield 81%).

melting point: 232-233°C

FAB-Ms: 412(MH+)

¹H-NMR (300MHz, CDCl₃): 8.23(1H, d, =1.5Hz), 7.86(1H, dd, J=8.5, 1.5Hz), 7.65-7.30(8H, m), 7.13(2H, d, J=8.8Hz),

55 5.16(2H, s), 4.93(1H, quint, J=8.8Hz), 2.40-1.60(8H, m)

Example 14

Production of 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole

[0260] In the same manner as in Example 1, the title compound (400 mg) was obtained. FAB-Ms: 394(MH+) ¹H-NMR (300MHz, CDCl₃): 8.11(1H, s), 7.68-7.30(9H, m), 7.13(2H, s) , 5.16(2H, s), 4.94(1H, quint, J=8.9Hz), 2.35-1.60 (8H, m)

Example 15

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime

[0261] 2-(4-Benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (400 mg) obtained in Example 14 was suspended in ethyl alcohol (3 ml) and water (1.5 ml), and hydroxylamine hydrochloride (141 mg) and sodium hydrogencarbonate (170 mg) were added. The mixture was refluxed under heating overnight. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (312 mg, yield 71%). melting point: 225-226°C FAB-Ms: 456(MH+)

20

¹H-NMR (300MHz, DMSO-d₆): 8.20(1H, s), 7.50-7.31(9H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7Hz), 3.61(3H, s), 3.40(3H, s), 2.41-1.42(8H, m)

Example 16

Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate

[0262]

30 Step 1: Production of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole

Ethyl 4-(4-fluorophenyl)-2-methyl-5-thiazolecarboxylate (59 g) prepared by a known method (Chem. Pharm. Bull., 43(6), 947, 1995) was dissolved in tetrahydrofuran (700 ml). Lithium aluminum hydride (13 g) was added under ice-cooling and the mixture was stirred for 30 min. Water (13 ml), 15% sodium hydroxide (13 ml) and water (39 ml) were added successively to the reaction mixture, and the precipitated insoluble materials were filtered off. The filtrate was concentrated under reduced pressure to give the title compound (37 g, yield 71%). ¹H-NMR (300MHz, CDCl₃): 7.60(2H, dd, J=8.7, 6.6Hz), 7.11(2H, t, J=8.7Hz), 4.80(2H, s), 2.70(3H, s)

Step 2: Production of 5-chloromethyl-4-(4-fluorophenyl)-2-methylthiazole

4-(4-Fluorophenyl)-5-hydroxymethyl-2-methylthiazole (37 g) obtained in the previous step was dissolved in chloroform (500 ml), and thionyl chloride (24 ml) and pyridine (2 ml) were added. The mixture was stirred for 3 hr at room temperature. The reaction mixture was poured into ice-cold water. The mixture was extracted with chloroform, and washed with water and saturated brine. The organic layer was dried over sodium sulfate, and concentrated under reduced pressure to give the title compound (29 g, yield 76%).

 1 H-NMR (300MHz, CDCl₃): 7.67(2H, dd, J=8.8, 5.4Hz), 7.16(2H, t, J=8.7Hz), 4.79(2H, s) , 2.73(3H, s)

Step 3: Production of ethyl I-cyclohexyl-2-{4-[{4-(4-fluorophenyl) -2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate

5-Chloromethyl-4-(4-fluorophenyl)-2-methylthiazole (28 g) obtained in the previous step and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (36 g) obtained in Example 3 were treated in the same manner as in Example 4 to give the title compound (61 g, yield 100%). APCI-Ms: 570 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.25(1H, d, J=1.5Hz), 7.97(1H, d, J=8.7Hz), 7.86(1H, dd, J=8.6, 1.6Hz), 7.7.4(2H, dd, J=8.8, 5.5Hz), 7.62(2H, d, J=8.7Hz), 7.33(2H, t, J=8.9Hz), 7.22(2H, t, J=8.9Hz), 5.41(2H, s), 4.34(2H, q, J=7.1Hz), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05-1.75(4H, m), 1.55-1.15(3H, m), 1.36(3H, t, J=7.1Hz)

55

50

35

40

Example 17

5

Production of 1-cyclohexyl-2-{4-[4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid

[0263] Ethyl 1-cyclohexyl-2-{4-[4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 16 was treated in the same manner as in Example 2 to give the title compound (39g, yield 69%).

melting point: 196-198°C

10 FAB-Ms: 542(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 13.1(1H, brs), 8.34(1H, s) , 8.29(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.80-7.72(4H, m), 7.36-7.31(4H, m), 5.46(2H, s) , 4.38(1H, m), 2.72(3H, s), 2.45-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)

15 Example 18

Production of ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate

[0264] In the same manner as in Example 3, the title compound (50 g) was obtained.

Example 19

Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

25 [0265]

20

30

35

40

45

50

55

Step 1: Production of 3,3'-difluorobenzhydrol

To a stirred solution of magnesium strip (35.4 g) in THF (200 ml), iodine strip was added and the mixture was heated with stirring under nitrogen stream until most of color of iodine was disappeared. A solution of 3-fluorobromobenzene (250.0 g) in THF (1000 ml) was added dropwise over 2.5 hr while the temperature of the solution was maintained at 60°C. After the completion of the addition of the solution, the resulting mixture was refluxed for 1 hr with heating. The resulting Grignard solution was ice-cooled and a solution of ethyl formate (63.2 g) in THF (200 ml) was added dropwise over 1 hr. After a stirring of the reaction solution for an additional 30 min, saturated aqueous ammonium chloride solution (700 ml) was added dropwise with ice-cooling and water (300 ml) was added. The mixture was stirred for 10 min. The organic layer and water layer were separated. Water layer was extracted with ethyl acetate, and the combined organic layer was washed with 2N hydrochloric acid, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated off under reduced pressure to give the title compound (156.2 g, yield 99%). 1H-NMR (300MHz, CDCl₃): 7.31(2H, td, J=7.9, 5.8Hz), 7.15-7.80(4H, m), 6.97-6.94(2H, m), 5.82(1H, d, J=3.3Hz), 2.30(1H, d, J=3.3Hz)

Step 2: Production of 3,3'-difluorobenzhydryl chloride

To a solution of 3,3'-difluorobenzhydrol (150.0 g) obtained in the previous step in toluene (400 ml), pyridine (539 mg) was added at room temperature. To the solution, thionyl chloride (89.1 g) was added dropwise over 1 hr at room temperature and the resulting solution was stirred for an additional 2 hr. The solution was heated so that the temperature of the solution was at 40°C, and then stirred for an additional 1.5 hr. Thionyl chloride (8.1 g) was added again and the mixture was stirred for 30 min. To the reaction mixture, water was added. The organic layer was separated, and washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, the solvent was evaporated off under reduced pressure to give the title compound (158.2 g, yield 97%).

¹H-NMR (300MHz, CDCl₃): 7.32(2H, td, J=8.0, 5.9Hz), 7.18-7.10(4H, m), 7.01(2H, tdd, J=8.2, 2.5, 1.2Hz), 6.05 (1H, s)

Step 3: Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate (50 g) obtained in Example 18 and 3,3'-difluorobenzhydryl chloride (34 g) obtained in the previous step were treated in the same manner as in Example 4 to give the title compound (76 g, yield 99%).

FAB-Ms: 585(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.24(1H, d, J=1.4Hz), 7.98(1H, d, J=8.7Hz), 7.88(1H, d, J=8.7Hz), 7.56(1H, t,

J=8.6Hz), 7.50-7.40(6H, m), 6.82(1H, s), 4.34(2H, q, J=7.1Hz), 3.95(1H, m), 2.20-2.10(2H, m), 1.90-1.80(4H, m), 1.6(1H, m), 1.35(3H, t, J=7.2Hz), 1.30-1.20(3H, mz)

Example 20

5

20

30

50

Production of 2-{4-(bis[3-fluorophenyl]methoxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0266] Ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (75 g) obtained in Example 19 was treated in the same manner as in Example 2 to give the title compound (48 g, yield 62%). melting point: 242-243°C

FAB-Ms: 557(MH+)

¹H-NMR (300MHz, DMSO- d_6): 8.29(1H, s), 8.16(1H, d, J=8.8Hz), 7.99(1H, d, J=8.7Hz), 7.66(1H, t, J=8.7Hz), 7.51-7.40(6H, m), 7.30(1H, d, J=12.1Hz), 7.20-7.14(3H, m), 6.88(1H, s), 4.07(1H, m), 2.40-2.10(2H, m), 2.00-1.75 (4H, m), 1.70-1.55(1H, m),

15 1.50-1.15(3H, m)

Example 21

Production of ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate

[0267] In the same manner as in Example 1, the title compound (12 g) was obtained.

Example 22

25 Production of ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate

[0268] Ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (12 g) obtained in Example 21 was dissolved in tetrahydrofuran (200 ml) and ethyl alcohol (50 ml), 7.5% palladium carbon (50% wet, 1 g) was added. The mixture was hydrogenated for 1 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Tetrahydrofuran was added to the residue to allow crystallization and the crystals were collected by filtration to give the title compound (11 g, yield 98%).

1H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.3Hz), 7.95(1H, dd, J=8.5, 1.3Hz), 7.50-7.40(3H, m), 6.79(2H, d, J=4.6Hz), 4.97(1H, quint, J=8.9Hz), 4.40(2H, q, J=7.1Hz), 3.74(2H, brs), 2.40-1.60(8H, m), 1.41(3H, t, J=7.1Hz)

35 Example 23

Production of ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate

[0269] Ethyl 1-cyclopentyl-2-(4-aminophenyl)benzimidazole-5-carboxylate (300 mg) obtained in Example 22 was dissolved in pyridine (3 ml) and chloroform (3 ml), and benzoyl chloride (127 mg) was added. The mixture was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and water was added to the residue to allow crystallization. The crystals were collected by filtration to give the title compound (403 mg, yield 100%).

¹H-NMR (300MHz, CDCl₃): 8.58(1H, s), 8.00(1H, d, J=9.0Hz), 7.84(2H, d, J=7.5Hz), 7.60-7.40(6H, m), 7.14(2H, d, J=7.5Hz), 4.84(1H, quint, J=8.7Hz), 4.41(2H, q, J=7.5Hz), 2.20-1.30(8H, m), 1.41(3H, t, J=7.5Hz)

Example 24

Production of 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

[0270] Ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (200 mg) obtained in Example 23 was treated in the same manner as in Example 2 to give the title compound (131 mg, yield 70%).

FAB-Ms: 426(MH+)

¹H-NMR (300MHz, DMSO-d₆): 10.75(1H, s), 8.35(1H, s), 8.15and7.85(4H, ABq, J=8.9Hz), 8.10-7.98(4H, m), 7.70-7.55 (3H, m), 5.02(1H, quint, J=8.7Hz), 2.36-2.15(4H, m), 2.14-1.95(2H, m), 1.80-1.62 (2H, m)

Example 25

Production of ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

5 [0271] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (65 g) obtained in Example 1 and 3-chlorophenylboronic acid (23 g) were treated in the same manner as in Example 5 to give the title compound (59 g, yield 85%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃) : 8.51(1H, d, J=1.8Hz), 7.99(1H, dd, J=8.7, 1.8Hz), 7.71-7.55(4H, m), 7.51-7.43(2H, m), 7.43-7.27(4H, m), 7.19(1H, d, J=8.4Hz), 7.12(1H, m) , 4.41(2H, q, J=7.2Hz), 4.39(1H, m) , 2.42-2.22(2H, m) , 2.03-1.87 (4H, m) , 1.79(1H, m), 1.42(3H, t, J=7.2Hz), 1.39-1.29(3H, m)

Example 26

15

25

Production of 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0272] Ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (59 g) obtained in Example 25 was treated in the same manner as in Example 2 to give the title compound (43 g, yield 76%). melting point: 253-254°C

FAB-Ms: 523(MH+)

¹H-NMR (300MHz, DMSO-d₆): 12.82(1H, brs), 8.24(1H, d, J=1.3Hz), 7.98(1H, d, J=8.7Hz), 7.89(1H, dd, J=8.7, 1.3Hz), 7.78(1H, s), 7.72(2H, d, J=9.7Hz), 7.70(1H, m), 7.64-7.42(5H, m), 7.25(2H, d, J=8.7Hz), 7.20(1H, m), 4.33(1H, m), 2.39-2.17(2H, m), 2.00-1.76(4H, m), 1.65(1H, m), 1.50-1.22(3H, m)

Example 27

Production of ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0273] In the same manner as in Example 1, the title compound (87 g) was obtained.

30 Example 28

Production of ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)-phenyl]benzimidazole-5-carboxylate

[0274] Ethyl 2-[4- (3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (87 g) obtained in Example 27 was dissolved in methyl alcohol (250 ml) and tetrahydrofuran (250 ml), and potassium carbonate (31 g) was added. The mixture was stirred for 30 min at room temperature. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. Water was added to the residue and the mixture was neutralized with 2N hydrochloric acid. The precipitated crystals were collected by filtration to give the title compound (78 g, yield 97%).

1H-NMR (300MHz, DMSO-d₆): 9.71(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.68 (2H, d, J=8.6Hz), 7.24

(1H, t, J=8.1Hz), 7.18(2H, d, J=8.6Hz), 6.63(1H, d, J=8.1Hz), 6.57(1H, d, J=8.1Hz), 6.51(1H, s), 4.38-4.23(1H, m),

4.35(2H, q, J=6.9Hz), 2.36-2.18(2H, m), 1.99-1.78(4H, m), 1.71-1.59(1H, m), 1.45-1.20(3H, m), 1.36(3H, t, J=6.9Hz)

Example 29

Production of ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)-phenyloxy]phenyl]benzimidazole-5-carboxylate

[0275] Ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-benzimidazole-5-carboxylate (78 g) obtained in Example 28 was suspended in dimethylformamide (800 ml), and sodium hydride (60% oil, 14 g) was added under ice-cooling. The mixture was stirred for 1 hr at room temperature. After the reaction mixture was ice-cooled, 4-chloromethylpyridine hydrochloride (29 g) was added and the mixture was stirred for 30 min. The mixture was then stirred overnight at room temperature. Water was added to the reaction mixture and the precipitated crystals were collected by filtration. The resulting crystals were recrystallized from ethyl alcohol to give the title compound (77 g, yield 82%).

1H-NMR (300MHz, CDCl₃): 8.63(2H, d, J=6.0Hz), 8.51(1H, s), 7.99(1H, d, J=8.7Hz), 7.66(2H, d, J=8.7Hz), 7.62(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, m), 5.09(2H, s), 4.47-4.31(1H, m), 4.42(2H, q, J=7.0Hz), 2.42-2.22(2H, m), 2.04-1.71(5H, m), 1.45-1.25(3H, m), 1.42(3H, t, J=7.0Hz)

Example 30

Production of 1-cyclohexyl-2-{4-{3-(4-pyridylmethoxy)phenyloxy}-phenyl}benzimidazole-5-carboxylic acid

[0276] Ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 29 was treated in the same manner as in Example 2 to give the title compound (54 g, yield 75%).
melting point: 235-237°C

FAB-Ms: 520(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.58(2H, d, J=6.0Hz), 8.23(1H, s), 7.96 and 7.86(2H, ABq, J=8.7Hz), 7.68 and 7.17 (4H, A'B'q, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.39(1H, t, J=8.3Hz), 6.90(1H, d, J=8.1Hz), 6.84(1H, s), 6.75(1H, d, J=8.1Hz), 5.22(2H, s), 4.40-4.22(1H, m), 2.40-2.19(2H, m), 2.00-1.80(4H, m)

Example 241

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0277]

20

25

30

35

40

45

50

55

Step 1: Production of 2-bromo-5-methoxybenzaldehyde

3-Methoxybenzaldehyde (15 g) was dissolved in acetic acid (75 ml), and a solution of bromine (5.7 ml) dissolved in acetic acid (15 ml) was added dropwise. The mixture was stirred overnight at room temperature and water (150 ml) was added to the reaction mixture. The precipitated crystals were collected by filtration, washed with water and dried under reduced pressure to give the title compound (21 g, yield 88%).

¹H-NMR (300MHz, CDCl₃): 10.31(1H, s), 7.52(1H, d, J=8.8Hz), 7.41(1H, d, J=3.3Hz), 7.03(1H, dd, J=8.8, 3.3Hz), 3.48(3H, s)

Step 2: Production of 2-(4-chlorophenyl)-5-methoxybenzaldehyde

2-Bromo-5-methoxybenzaldehyde (10 g) obtained in the previous step was treated in the same method as in Example 5 to give the title compound (11 g, yield 96%).

¹H-NMR (300MHz, CDCl₃): 9.92(1H, s), 7.50(1H, d, J=2.6Hz), 7.48-7.14(6H, m), 3.90(3H, s)

Step 3: Production of 2-(4-chlorophenyl)-5-methoxybenzyl alcohol

2-(4-Chlorophenyl)-5-methoxybenzaldehyde (10 g) obtained in the previous step was dissolved in tetrahydrofuran (30 ml). The solution was added dropwise to a suspension of sodium borohydride (620 mg) in isopropyl alcohol (50 ml) and the mixture was stirred for 1 hr. The solvent was evaporated under reduced pressure and water was added to the residue. The precipitated crystals were collected by filtration and dried under reduced pressure. The resulting crystals were recrystallized from a mixture of methanol and water to give the title compound (9.2 g, yield 91%).

 1 H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.6Hz), 7.27(2H, d, J=8.6Hz), 7.17(1H, d, J=8.6Hz), 7.11(1H, d, J=2.6Hz), 6.89(1H, dd, J=8.6, 2.6Hz), 4.57(2H, s), 3.86(3H, s)

Step 4: Production of 2-(4-chlorophenyl)-5-methoxybenzyl chloride

2-(4-Chlorophenyl)-5-methoxybenzyl alcohol (20 g) obtained in the previous step was dissolved in ethyl acetate (100 ml) and pyridine (0.5 ml), and thionyl chloride (11 ml) was added dropwise. The mixture was stirred for 1 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Isopropyl alcohol was added to the residue to allow crystallization. The resulting crystals were collected by filtration and dried under reduced pressure to give the title compound (16 g, yield 74%).

¹H-NMR (300MHz, CDCl₃): 7.43-7.29 (4H, m) , 7.17(1H, d, J=8.6Hz), 7.05(1H, d, J=2.6Hz), 6.96-6.89(1H, m), 4.46(2H, s) , 3.86(3H, s) **Step 5**: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

2-(4-Chlorophenyl)-5-methoxybenzyl chloride (4.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (5.0 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (6.0 g, yield 72%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃): 8.48(1H, s), 8.00-7.93(1H, m), 7.68-7.62(1H, m) , 7.54(2H, d, J=9.0Hz), 7.41-7.16(6H, m) , 7.04-6.93(3H, m), 4.97(2H, s), 4.36(1H, m), 3.94(3H, s), 3.87(3H, s), 2.39-2.21(2H, m) , 2.02-1.88(4H, m), 1.85-1.45(4H, m)

Example 242

5

10

15

20

25

30

35

40

45

50

55

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride

[0278] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (5.0 g) obtained in Example 241 was treated in the same manner as in Example 2 to give the title compound (5.1 g, yield 98%).

APCI-Ms: 568(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.30(1H, d, J=1.4Hz), 8.24(1H, d, J=8.7Hz), 8.03 (1H, d, J=8.7Hz), 7.72(2H, d, J=8.7Hz), 7.51-7.39(4H, m), 7.34-7.18(4H, m), 7.11-7.03(1H, m), 5.08 (2H, s), 4.35(1H, m), 3.83(3H, m), 2.40-2.18 (2H, m), 2.10-1.96(2H, m), 1.93-1.78(2Hm), 1.72-1.18(4H, m)

Example 243

Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0279]

Step 1: Production of methyl 3-hydroxypicolinate

3-Hydroxypicolinic acid (1.0 g) was suspended in methanol (10 ml) and concentrated sulfuric acid (1.0 ml) was added. The mixture was refluxed under heating for 5 hr. The reaction mixture was ice-cooled, neutralized with saturated aqueous sodium hydrogencarbonate, and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (711 mg, yield 64%).

¹H-NMR (300MHz, CDCl₃): 10.63(1H, s), 8.28(1H, dd, J=3.7, 1.8Hz), 7.47-7.35(2H, m), 4.06(3H, s)

Step 2: Production of methyl 3-(trifluoromethylsulfonyloxy)-pyridine-2-carboxylate

Methyl 3-hydroxypicolinate (710 mg) obtained in the previous step and triethylamine (0.77 ml) were dissolved in dichloromethane (7 ml), and trifluoromethanesulfonic anhydride (0.86 ml) was added under ice-cooling. The reaction mixture was allowed to warm to room temperature and the mixture was stirred for 2 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.2 g, yield 90%).

¹H-NMR (300MHz, CDCl₃): 8.80-8.73(1H, m), 7.75-7.70(1H, m), 7.63(1H, dd, J=8.2, 4.5Hz), 4.05(3H, s)

Step 3: Production of methyl 3-(4-chlorophenyl)pyridine-2-carboxylate

Methyl 3-(trifluoromethylsulfonyloxy)pyridine-2-carboxylate (1.2 g) obtained in the previous step was treated in the same manner as in Example 5 to give the title compound (728 mg, yield 69%).

 1 H-NMR (300MHz, CDCl₃): 8.73-8.66(1H, m), 7.77-7.68 (1H, m), 7.49(1H, dd, J=7.8, 4.5Hz), 7.46-7.37(2H, m), 7.32-7.23(2H, m), 3.80(3H, s)

Step 4: Production of [3-(4-chlorophenyl)pyridin-2-yl]methanol

Methyl 3-(4-chlorophenyl)pyridine-2-carboxylate (720 mg) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was ice-cooled. Lithium aluminum hydride (160 mg) was added to the solution and the mixture was stirred for 1 hr. To the reaction mixture were added successively water (1.6 ml), 15% sodium hydroxide (1.6 ml) and water (4.8 ml). The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (208 mg, yield 32%).

¹H-NMR (300MHz, CDCl₃): 8.60(1H, dd, J=4.8, 1.5Hz), 7.60-7.55(1H, m), 7.40-7.48(2H, m), 7.29-7.36(1H, m), 7.27-7.20(3H, m), 4.63(2H, s)

Step 5: Production of ethyl 2-{4-{3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[3-(4-Chlorophenyl)pyridin-2-yl]methanol (200 mg) obtained in the previous step was dissolved in chloroform (3 ml), and thionyl chloride (0.13 ml) and pyridine (catalytic amount) were added. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (3 ml), and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (232 mg) obtained in the same manner as in Example 3 and potassium carbonate (250 mg) were added. The mixture was stirred for 3 hr with heating at 80°C. The reaction mixture was then allowed to cool. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography

(developing solvent, n-hexane:ethyl acetate = 1:2) to give the title compound (246 mg, yield 68%). 1 H-NMR (300MHz, CDCl₃): 8.71(1H, dd, J=4.7, 1.4Hz), 8.49(1H, d, J=2.1Hz), 7.96(1H, d, J=10.2Hz), 7.71-7.62 (2H, m), 7.53(2H, d, J=8.7Hz), 7.45-7.34(5H, m), 7.04(2H, d, J=8.7Hz), 5.14(2H, s), 4.48-4.29(3H, m), 2.38-2.19 (2H, m), 2.02-1.22(11H, m)

Example 244

Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0280]

5

10

15

20

25

30

35

45

Step 1: Production of tert-butyl 4-bromo-3-methylbenzoate

4-Bromo-3-methylbenzoic acid (25 g) was suspended in dichloromethane (200 ml), and oxalyl chloride (12 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in tetrahydrofuran (200 ml) and the solution was ice-cooled. To the solution was added dropwise a solution of potassium tert-butoxide dissolved in tetrahydrofuran (150 ml) and the mixture was stirred for 30 min. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (27 g, yield 85%).

¹H-NMR (300MHz, CDCl₃): 7.83(1H, d, J=2.2Hz), 7.67-7.53 (2H, m), 2.43(3H, s), 1.58(9H, s)

Step 2: Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

tert-Butyl 4-bromo-3-methylbenzoate (7.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (6.3 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (8.8 g, yield 77%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3): 8.49(1H, d, J=1.5Hz), 8.21(1H, d, J=2.1Hz), 7.97(1H, d, J=10.2Hz), 7.82(1H, d, J=10.2Hz), 7.71-7.58(4H, m), 7.16(2H, d, J=8.7Hz), 5.23(2H, s), 4.38(1H, m), 3.95(3H, s), 2.40-2.23(2H, m), 2.04-1.90(4H, m), 1.84-1.73(1H, m), 1.59(9H, s), 1.44-1.27(3H, m)

Example 245

Production of methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0281] Methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (4.5 g) obtained in Example 244 was treated in the same manner as in Example 5 to give the title compound (3.6 g, yield 76%).

40 1H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.27 (1H, d, J=1.8Hz), 8.04(1H, dd, J=7.9, 1.5Hz), 7.96(1H, dd, J=7.0, 1.5Hz), 7.65(1H, d, J=8.6Hz), 7.55(2H, d, J=8.6Hz), 7.43-7.32(5H, m), 7.01(2H, d, J=8.6Hz), 4.99(2H, s), 4.43-4.29(1H, m), 3.95(3H, s), 2.41-2.21(2H, m), 2.02-1.89(4H, m), 1.82-1.73(1H, m), 1.62(9H, s), 1.46-1.28(3H, m)

Example 246

 $Production of methyl 2-\{4-[5-carboxy-2-(4-chlorophenyl]-benzyloxy] phenyl\}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride$

[0282] Methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-car-boxylate (3.5 g) obtained in Example 245 was dissolved in dichloromethane (35 ml), and trifluoroacetic acid (35 ml) was added. The mixture was stirred for 1 hr at room temperature and the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, and 4N hydrochloric acid-ethyl acetate was added. The precipitated crystals were collected by filtration and dried under reduced pressure to give the title compound (3.3 g, yield 97%).

¹H-NMR (300MHz, DMSO-d₆): 8.33(1H, d, J=1.5Hz), 8.29(1H, s) , 8.24(1H, d, J=1.8Hz), 8.09-8.00 (2H, m), 7.74(2H, d, J=8.6Hz), 7.61-7.44(5H, m) , 7.24(2H, d, J=8.6Hz), 5.19(2H, s) , 4.36(1H, m), 3.93(3H, s) , 2.37-1,21(10H, m)

Example 247

5

20

25

35

40

45

50

55

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0283] Methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (400 mg) obtained in Example 246 was suspended in dichloromethane (5 ml), and oxalyl chloride (0.08 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane (5 ml). The resulting solution was added dropwise to a mixed solution of 40% aqueous methylamine solution (5 ml) and tetrahydrofuran (5 ml) under ice-cooling. The reaction mixture was stirred for 1 hr and concentrated under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from ethyl acetate and diisopropyl ether. The crystals were collected by filtration and dried under reduced pressure to give the title compound (335 mg, yield 86%).

 1 H-NMR (300MHz, CDCl₃): 8.47(1H, s), 8.06(1H, d, J=1.8Hz), 7.96(1H, dd, J=8.6, 1.5Hz), 7.82(1H, dd, J=8.2, 2.2Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=9.0Hz), 7.44-7.31(5H, m), 6.99(2H, d, J=9.0Hz), 6.35-6.26(1H, m), 5.00(2H, s), 4.35(1H, m), 3.95(3H, s), 3.05(3H, d, J=4.8Hz), 2.40-1.24(10H, m)

Example 248

Production of 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride

[0284] Methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carbox-ylate (150 mg) obtained in Example 247 and tetrahydrofuran (2 ml) were treated in the same manner as in Example 2 to give the title compound (141 mg, yield 90%).

APCI-Ms: 594(MH+)

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.65-8.58(1H, m), 8.27(1H, d, J=1.5Hz), 8.21(1H, d, J=8.2Hz), 8.15(1H, d, J=1.5Hz), 8.05-7.90(2H, m), 7.70(2H, d, J=8.6Hz), 7.56-7.43(5H, m), 7.21(2H, d, J=8.6Hz), 5.14 (2H, s) , 4.34(1H, m) , 2.81(3H, d, J=4.5Hz), 2.39-1.19(10H, m)

[0285] In the same manner as in Examples 1-30 and 241-248, and optionally using other conventional methods, where necessary, the compounds of Examples 31-240, 249-327, 701 and 1001-1559 were obtained. The chemical structures and properties are shown in Table 1 to 177 and 185 to 212.

Example 501

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexyl-1H-indole-5-carboxylate

[0286]

Step 1: Production of methyl 3-bromo-4-cyclohexylaminobenzoate

3-Bromo-4-fluorobenzoic acid (2.0 g) was dissolved in methanol (20 ml) and concentrated sulfuric acid (2 ml) was added. The mixture was refluxed for 3 hr. The reaction mixture was poured into ice-cold water and extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in dimethyl sulfoxide (20 ml) and cyclohexylamine (10.3 ml) was added. The mixture was stirred overnight at 120°C. The reaction mixture was poured into 10% aqueous citric acid solution (100 ml) and extracted with ethyl acetate (100 ml). The organic layer was washed with water (50 ml) and saturated brine (50 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (2.6 g, yield 92%).

 1 H-NMR (300MHz, CDCl₃): 8.10(1H, d, J=1.9Hz), 7.83(1H, dd, J=1.9Hz, 8.6Hz), 6.59(1H, d, J=8.7Hz), 4.73(1H, brd, J=7.3Hz), 3.85(3H, s), 3.38(1H, m), 2.10-2.00(2H, m), 1.90-1.20(8H, m)

Step 2: Production of 4'-chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl

4-lodophenol (5.0 g) was dissolved in acetone (50 ml), and potassium carbonate (4.7 g) and 4'-chloro-2-chloromethyl-4-methoxybiphenyl (6.0 g) obtained in Example 241, Step 4 were added. The mixture was refluxed for

10 hr. The reaction mixture was concentrated and 4N aqueous sodium hydroxide solution (50 ml) was added. The precipitated crystals were collected by filtration, washed with water, and dried under reduced pressure to give the title compound (10.0 g, yield 98%).

¹H-NMR (300MHz, CDCl₃): 7.52(2H, d, J=8.9Hz), 7.35(2H, d, J=8.5Hz), 7.27-7.20(3H, m), 7.12(1H, s), 6.95(1H, d, J=8.5Hz), 6.62(2H, d, J=8.9Hz), 4.84(2H, s), 3.85(3H, s)

Step 3: Production of [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]trimethylsilane

4'-Chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl (7.0 g) obtained in the previous step was dissolved in acetonitrile (50 ml), and trimethylsilylacetylene (2.3 g), tetrakis-(triphenylphosphine)palladium complex (1.8 g), copper(I) iodide (0.6 g) and triethylamine (50 ml) were added. The mixture was stirred overnight at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (5.1 g, yield 79%). ¹H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.9Hz), 7.34(2H, d, J=8.2Hz), 7.28-7.21(3H, m), 7.13(1H, s), 6.94(1H, d, J=8.2Hz), 6.75(2H, d, J=8.9Hz), 4.87(2H, s) , 3.85(3H, s) , 0.23(9H, s)

Step 4: Production of methyl 3-(4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate

[4-(4'-Chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-trimethylsilane (5.1 g) obtained in the previous step was dissolved in methanol (50 ml) and chloroform (50 ml), and potassium carbonate (2.5 g) was added. The mixture was stirred for 3 hr at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure to give white crystals (3.8 g). The white crystals (2.3 g) were dissolved in acetonitrile (10 ml), and methyl 3-bromo-4-cyclohexylaminobenzoate (1.0 g) obtained in Step 1, tetrakis(triphenylphosphine)palladium complex (0.4 g), copper(I) iodide (0.1 g) and triethylamine (10 ml) were added. The mixture was stirred overnight at 100°C and concentrated under reduced pressure. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.9 g, yield 49%). ¹H-NMR (300MHz, CDCl₃): 8.03(1H, s), 7.84(1H, d, J=8.7Hz), 7.42-7.22(7H, m), 7.15(1H, s), 6.95(1H, d, J=8.2Hz), 6.85(2H, d, J=8.8Hz), 6.59(1H, d, J=8.8Hz), 5.07(1H, brs), 4.91(2H, s), 3.86(3H, s), 3.85(3H, s), 3.42(1H, m), 2.15-2.00(2H, m), 1.80-1.20(8H, m) Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-car-

Methyl 3- [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate (0.5 g) obtained in the previous step was dissolved in N,N-dimethylformamide (5 ml), and copper(I) iodide (0.17 g) was added. The mixture was refluxed for 3 hr at 180°C. The insoluble materials were removed by filtration. Water (10 ml) was added and the mixture was extracted with ethyl acetate (30 ml). The organic layer was washed with water (10 ml) and saturated brine (10 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, nhexane:ethyl acetate = 8:1) to give the title compound (0.27 g, yield 55%). ¹H-NMR (300MHz, CDCl₃): 8.34(1H, s), 7.85(1H, d, J=8.8Hz), 7.62(1H, d, J=8.8Hz), 7.40-7.18(8H, m), 7.00-6.94 (3H, m), 6.48(1H, s), 4.95(2H, m), 4.18(1H, m), 3.93(3H, s), 3.88(3H, s), 2.45-2.25(2H, m), 1.95-1.20(8H, m)

45 Example 502

5

10

15

20

25

30

35

40

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-IH-indole-5-carboxylic acid

[0287] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-1H-indole-5-carboxylate (0.27 g) obtained in Example 501 was treated in the same manner as in Example 2 to give the title compound (0.19 g, yield 71%). 50 APCI-Ms: 566(MH+)

¹H-NMR (300MHz, DMSO-d₆): 12.43(1H, brs), 8.20(1H, s), 7.79(1H, d, J=9.3Hz), 7.72(1H, d, J=9.0Hz), 7.50-7.20(8H, m), 7.07-7.03(3H, m), 6.53(1H, s), 5.01(2H, s), 4.13(1H, m), 3.83(3H, m), 2.35-2.25(2H, m), 1.85-1.10(8H, m) [0288] In the same manner as in Examples 501 and 502, and optionally using other conventional methods where

necessary, the compound of Example 503 was obtained. The chemical structure and properties are shown in Table 207.

Example 601

Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1, 2-a]pyridine-7-carboxylate

5 [0289]

10

15

20

25

30

35

40

45

50

Step 1: Production of 4-benzyloxy-N-methoxy-N-methylbenzamide

4-Benzyloxybenzoic acid (5.0 g) and N,O-dimethylhydroxylamine hydrochloride (2.5 g) were suspended in dimethylformamide (50 ml), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.0 g), 1-hydroxybenzotriazole (3.5 g) and triethylamine (3.6 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (5.6 g, yield 94%).

 1 H-NMR (300MHz, CDCl₃): 7.22, 2H, d, J=8.8Hz), 7.28-7.46(5H, m), 6.97(2H, d, J=8.8Hz), 5.10(2H, s), 3.56(3H, s), 3.35(3H, s)

Step 2: Production of 1-(4-benzyloxyphenyl)-2-cyclohexylethanone

Magnesium (470 mg) was suspended in tetrahydrofuran (2 ml) and cyclohexylmethyl bromide (3.4 g) was added dropwise at room temperature. After the addition, the reaction mixture was stirred for 30 min at 60°C. The reaction mixture was allowed to cool and diluted with tetrahydrofuran (5 ml). Separately, 4-benzyloxy-N-methoxy-N-methylbenzamide (3.4 g) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was added dropwise to the reaction mixture at room temperature. The mixture was stirred for 2 hr and saturated aqueous ammonium chloride solution was added to the reaction mixture. The mixture was extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (3.8 g, yield 66%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3) : 7.93(2H, d, J=8.8Hz), 7.28-7.46(5H, m), 7.00(2H, d, J=8.8Hz), 5.13(2H, s) , 2.76(2H, d, J=6.8Hz), 1.95(1H, m), 0.78-1.82(10H, m)

Step 3: Production of 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone

1-(4-Benzyloxyphenyl)-2-cyclohexylethanone (1.0 g) obtained in the previous step was dissolved in 1,4-dioxane (10 ml) and bromine (0.17 ml) was added. The mixture was stirred for 10 min at room temperature. Saturated aqueous sodium hydrogencarbonate was added to the reaction mixture and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (696 mg, yield 55%).

1H-NMR (300MHz, CDCl₃): 7.98(2H, d, J=8.9Hz), 7.28-7.48(5H, m), 7.02(2H, d, J=8.9Hz), 5.14(2H, s), 4.89(1H,

d, J=9.3Hz), 0.86-3.30(11H, m)

Step 4: Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate

Ethyl 2-aminopyridine-4-carboxylate (214 mg) prepared according to JP-A-8-48651, 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone (500 mg) obtained in the previous step and potassium carbonate (356 mg) were stirred for 5 hr with heating at 140°C. The reaction mixture was allowed to cool and chloroform was added. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (95 mg, yield 16%).

APCI-MS: 455(MH+)

 1 H-NMR (300MHz, CDCl₃): 8.33(1H, s), 8.21(1H, d, J=7.5Hz), 7.55(2H, d, J=8.7Hz), 7.25-7.50(6H, m), 5.13(2H, s), 4.41(2H, q, J=7.1Hz), 3.25(1H, m), 1.41(3H, t, J=7.1Hz), 1.15-2.00(10H, m)

Example 602

Production of 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo [1,2-a]pyridine-7-carboxylic acid

[0290] Ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (95 mg) obtained in the previous step was treated in the same manner as in Example 2 to give the title compound (33 mg, 37%).

55 APCI-MS: 427(MH+)

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.67(1H, d, J=7.3Hz), 8.08(1H, s) , 7.25-7.58(8H, m), 7.13(2H, d, J=8.7Hz), 5.17(2H, s), 3.23(1H, m), 1.25-2.10(10H, m)

[0291] The compounds shown in Tables 213 to 218 can be further obtained in the same manner as in Examples 1

to 701 or by other conventional method employed as necessary.

Table 1

Example	No.	31	1H NMR(δ) ppm
	\		300MHz, CDC13 7. 81 (2H, d, J=6.6Hz), 7. 60 (2H, d, J=8.8Hz), 7. 51-7. 21 (8H, m), 7. 11 (2H, d, J=8.8Hz), 5. 15 (2H, s), 4. 93 (1H, quin t, J=8.8Hz), 2. 36-2. 32 (2H, m), 2. 09-2. 04 (3H, m), 1. 75-1. 68 (3H, m).
Purity	>90%	(NMR)	
MS	369	(M+1)	

Example No.	32	1H NMR(δ) ppm
		300MHz, CDC13 8. 51 (1H, d, J=1.5Hz), 7.98 (1H, d, J=8.4Hz), 7.61 (2H, d, J=8.7Hz), 7.56-7.10 (6H, m), 7.12 (2H, d, J=8.7Hz), 5.15 (2H, s), 4.94 (1H, quint, J=9.3Hz), 4.41 (2H, q, J=7.5Hz), 2.40-1.50 (8H, m), 1.41 (3H, t, J=7.5Hz)
Purity >90% (NMR))	
MS 441 (M+1)		

Example	No.	33	1H NMR(δ) ppm
N O			300MHz, CDC13 7.84(1H, s), 7.61(2H, d, J=9 .0Hz), 7.58-7.30(7H, m), 7. 12(2H, d, J=9.0Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7H z), 3.10(6H, brs), 2.40-1.5 0(8H, m)
Purity	>90% (NMR)		
MS	440 (M+1)		1.

Table 2

5		
J	Example No. 34	1 IH NMR(δ) ppm
10		300MHz, CDC13 8. 20 (1H, s), 7. 50-7. 31 (9H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 15 (2H, s), 4. 94 (1H, quint, J=8. 7Hz), 3. 61 (3H, s), 3. 40 (3H, s), 2. 41-1. 42 (8H, m)
15		
	Purity >90% (NMR)	
20	MS 456 (M+1)	
25	Example No. 35	1H NMR(δ) ppm 300MHz, CDC13
30	HO	7. 91 (1H. s), 7. 59 (2H, d, J=8 .7Hz), 7. 49-7. 30 (7H, m), 7. 11 (2H, d, J=8.8Hz), 5. 15 (2H, s), 4. 19 (1H, quint, J=8.8Hz), 2. 41-2. 22 (2H, m), 2. 13-1. 49 (14H, m)
35	Purity >90% (NMR)	- 1
	MS 427 (M+1)	
40	Example No. 36	1H NMR(δ) ppm
45		300MHz, CDC13 8. 40 (1H, d, J=1. 4Hz), 7. 95 (1H, dd, J=8. 6, 1. 4Hz), 7. 61 (2H, d, J=8. 7Hz), 7. 57-7. 30 (6H, m), 7. 13 (2H, d, J=8. 7Hz) , 5. 16 (2H, s), 4. 95 (1H, guin
50		t, J=8.8Hz), 2.64(3H, s), 2. 40-1.54(8H, m)

>90% (NMR)

411 (M+1)

Purity

MS

Table 3

Example	No.	37	1H NMR(δ) ppm
M H H			300MHz, DMSO-d6 10. 47(1H, brs,), 9. 15(1H, rs), 8. 40(1H, s), 8. 07(1H, d, J=8. 7Hz), 7. 77(2H, d, J=8. 7Hz), 7. 55-7. 29(7H, m), 5. 26(2H, s), 4. 93(1H, quint, J=9. 0Hz), 3. 77-3. 63(2H, m), 3. 39-3. 23(2H, m), 2. 84(6H, d, J=4. 8Hz), 2. 32-1. 60(8H, m)
Purity	>90% (NMR)		
MS	483 (M+1)		

Example No.	38	1H NMR(δ) ppm
02N		300MHz, CDC13 8.69(1H, s), 8.19(1H, d, J=9.0Hz), 7.62(2H, d, J=8.7Hz), 7.54(1H, d, J=9.0Hz), 7.48 -7.36(5H, m), 7.15(2H, d, J=8.7Hz), 5.17(2H, s), 4.98(1H, quint, J=9.0Hz), 2.27-2.07(6H, m), 1.82-1.78(2H, m)
Purity >909	6 (NMR)	
MS 41	4 (M+1)	

Example	No.	39	1H NMR(δ) ppm
HC1			300MHz, DMSO-d6 7.84(1H, d, J=9.0Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.33(8H, m), 7.26(1H, d, J=9.0Hz), 5.27(2H, s), 4.92(1H, quin t, J=9.3Hz), 2.19-1.70(8H, m).
Purity	>90% (NMR))	
MS	384 (M+1)		

Table 4

Example	No.	40 1H NMR(δ) ppm
		300MHz, CDC13 7. 72 (1H, s), 7. 60-7. 35 (10H, m), 7. 10 (2H, d, J=8. 7Hz), 5 .14 (2H, s), 4. 90 (1H, quint, J=8. 8Hz), 2. 29-2. 19 (2H, m), 2. 19 (3H, s), 2. 19-1. 74 (6H, m).
Purity	>90% (NMR)	
MS	426 (M+1)	

Example No.	41 1H NMR(δ) ppm
	300MHz, CDC13 7. 66(1H, s), 7. 61(2H, d, J=8 .8Hz), 7. 50-7. 28(7H, m), 7. 12(2H, d, J=8. 8Hz), 6. 86(1H, brs), 5. 15(2H, s), 4. 94(1H, quint, J=8. 8Hz), 2. 97(3H, s), 2. 29-1. 76(8H, m).
Purity >90% (NMR)	
MS 462 (M+1)	

Table 5

5	Example No. 43	1H NMR(δ) ppm
10		300MHz, DMSO-d6 8. 33(1H, s), 8. 08(1H, d, J=9.0Hz), 7. 99(1H, d, J=9.0Hz), 7. 47-7. 41(4H, m), 7. 33(2H, d, J=8.4Hz), 5. 22(2H, s), 4. 96(1H, quint, J=9.0Hz), 2. 25-1.60(8H, m), 1. 30(9H, s)
	Purity >90% (NMR)	
20	MS 469 (M+1)	
	Example No. 44	1H NMR(δ) ppm
25		300MHz, DMSO-d6
	HO NO O	12. 9 (2H, brs), 8. 25 (1H, s), 8. 00 (2H, d, J=7. 8Hz), 7. 90 (1H, d, J=8. 4Hz), 7. 74 (1H, d, J=8. 7Hz), 7. 67 (2H, d, J=9. 0
30		Hz), 7. 62 (2H, d, J=8. 1Hz), 7 . 24 (2H, d, J=8. 4Hz), 5. 32 (2 H, s), 4. 88 (1H, quint, J=9. 0 Hz, 2. 25-1. 60 (8H, m).
35	Purity >90% (NMR)	
	MS 457 (M+1)	1
		<u> </u>
40	Example No. 45	1H NMR(δ) ppm
45 50	HO CI	300MHz, DMSO-d6 13. 4(1H, brs), 8. 32(1H, s), 8. 06(1H, d, J=8. 7Hz), 7. 97(1H, d, J=8. 7Hz), 7. 79(2H, d, J=8. 8Hz), 7. 56-7. 48(4H, m), 7. 33(2H, d, J=8. 8Hz), 5. 27 (2H, s), 4. 95(1H, quint, J=8, 9Hz), 2. 30-1. 60(8H, m).
	Purity >90% (NMR)	
		i i

447 (M+1)

55

MS

Table 6

Example No.	46 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 33(1H, s), 8. 07(1H, d, J=8 . 7Hz), 7. 98(1H, d, J=8. 7Hz) , 7. 80(2H, d, J=8. 4Hz), 7. 34 (2H, d, 8. 4Hz), 7. 19(1H, d, J =3. 6Hz), 7. 09(1H, d, J=3. 6H z), 5. 41(2H, s), 4. 95(1H, qu int, J=8. 7Hz), 2. 30-1. 60(8 H, m).
Purity > 90% (NM	IR)
MS 453 (M+1)	

Example No. 47	1H NMR(δ) ppm
HO NOTE OF S	300MHz, DMSO-d6 8. 33(1H, s), 8. 07(1H, d, J=8 .4Hz), 7. 98(1H, d, J=9.0Hz) , 7. 82-7. 72(6H, m), 7. 35(2H , d, J=9.0Hz), 5. 40(2H, s), 4 .95(1H, quint, J=8.7Hz), 2. 35-1.60(8H, m).
Purity >90% (NMR)	
MS 481 (M+1)	

Example No.	48 IH NMR(δ) ppm
	300MHz, DMSO-d6 8. 23 (1H, s), 7. 88 (1H, d, J=8 . 4Hz), 7. 70 (1H, d, J=8. 4Hz), 7. 64 (2H, d, J=8. 4Hz), 7. 20 (2H, d (2H, d, J=8. 4Hz), 7. 20 (2H, d , J=8. 4Hz), 6. 98 (2H, d, J=8. 4Hz), 5. 13 (2H, s), 4. 88 (1H, quint, J=8. 7Hz), 3. 77 (3H, s), 2. 35-1. 60 (8H, m).
Purity >90% (NMF	
MS 443 (M+1)	

Table 7

Example	No.	49 1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 93 (2H, d, J=6.6Hz), 8. 35 (1H, s), 8. 06-8.04 (3H, m), 7. 97 (1H, d, J=8.7Hz), 7. 83 (2H, d, J=8.7Hz), 7. 38 (2H, d, J=8.7Hz), 5. 61 (2H, s), 4. 94 (1H, quint, J=8.7Hz), 2. 40-1. 60 (8H, m).
Purity	>90% (NMI	2)
MS	414 (M+1)	

Example	No.	50	1H NMR(δ) ppm
но О.			300MHz, DMSO-d6 8. 33(1H, s), 8. 08(1H, d, J=8 .7Hz), 7. 99(1H, d, J=9. 0Hz) ,7. 78(2H, d, J=8. 4Hz), 7. 39 (2H, d, J=8. 1Hz), 7. 32(2H, d ,J=8. 7Hz), 7. 23(2H, d, J=7. 8Hz), 5. 22(2H, s), 4. 96(1H, quint, J=9. 0Hz), 2. 32(3H, s), 2. 30-1. 60(8H, m).
Purity	>90%	(NMR)	7
MS	427 (1	¥+1) .	7

Example No.		51	1H NMR(δ) ppm
HO N) -	300MHz, DMSO-d6 8. 31(1H, s), 8. 03(1H, d, J=9 . 0Hz), 7. 93(1H, d, J=9. 0Hz) , 7. 77(2H, d, J=8. 4Hz), 7. 31 (2H, d, J=8. 7Hz), 5. 07(2H, s), 4. 94(1H, quint, J=8. 7Hz) , 2. 45(3H, s), 2. 26(3H, s), 2 . 26-1. 60(8H, m).
Purity >	90% (NMR)		
MS	432 (M+1)		

Table 8

Example No.	52 1H NMR(δ) ppm
HO NO OH	300MHz, DMSO-d6 12.7(1H, brs), 10.0(1H, s) 8.22(1H, s), 7.87(1H, d, J= .6Hz), 7.69(1H, d, J=8.6Hz), 7.53(2H, d, J=8.6Hz), 6.96 (2H, d, J=8.6Hz), 4.89(1H, duint, J=9.0Hz), 2.30-1.60 8H, m).
Purity >90% (NMR)	
MS 323 (M+1)	

Example No. 5	3 IH NMR(δ) ppm
	300MHz, DMSO-d6 9. 18(1H, t, J=5.6Hz), 8. 34(1H, s), 8. 04(1H, d, J=9.6Hz) , 7. 98(1H, d, J=8.7Hz), 7. 80 (2H, d, J=8.7Hz), 7. 52-7. 32 (7H, m), 5. 27(2H, s), 4. 95(1 H, quint, J=9.0Hz), 3. 99(2H , d, J=5.7Hz), 2. 40-1.60(8H , m).
Purity >90% (NMR)	
MS 470 (M+1)	

Example	No.	54 1H NMR(δ) ppm
HD		300MHz, DMSO-d6 8. 32(1H, s), 8. 05(1H, d, J=8
Purity	>90% (NMR)	
MS	447 (M+1)	

Table 9

Example	No.	5 IH NMR(δ) ppm
но		300MHz, DMSO-d6 12. 78 (1H, br s), 8. 24 (1H, s), 7. 88and7. 7 2 (2H, ABq, J=8. 6Hz), 7. 66an d7. 23 (4H, A'B'q, J=8. 6Hz), 7. 58 (1H, s), 7. 48-7. 42 (3H, m), 5. 24 (1H, s), 4. 88 (1H, qu int, J=8. 8Hz), 2. 30-1. 91 (6 H, m), 1. 78-1. 60 (2H, m)
Purity	>90% (NMR)	
MS	447 (M+1)	

Example	No.	56	1H NMR(δ) ppm
но			300MHz, DMSO 12. 89 (1H, broad), 8. 18 (1H, s), 7. 87 (1H, d, J=8. 4Hz), 7. 74 (1H, d, J=9. 2Hz), 7. 67 (2H, d, J=8. 8Hz), 7. 52 (2H, m), 7. 45 (2H, m), 7. 38 (1H, m), 7. 2 3 (2H, d, J=8. 8Hz), 5. 22 (2H, s), 4. 94 (1H, quintet, J=8. 9 Hz), 2. 16 (4H, m), 1. 98 (2H, m), 1. 73 (2H, m).
Purity	>90% (NMR)		
MS	413 (M+)		

Example	No. 57	1H NMR(δ) ppm
но		300MHz, DMSO-d6 10.99(1H, s), 8.26(1H, s), 8 .01-7.86(4H, m), 7.69-7.59 (5H, m), 7.38(2H, d, J=8.7Hz)), 4.86(1H, quint, J=8.7Hz) ,2.12-1.90(6H, m), 1.72-1. 59(2H, m)
Purity	>90% (NMR)	
MS	462 (M+1)	

Table 10

Example	No.	58	1H NMR(δ) ppm
но		CI CI	300MHz, DMSO-d6 12.78(1H.s), 10.69(1H,s), 8.26-7.72(9H,m), 4.92(1H, quint, J=9.0Hz), 2.34-1.70 (6H, m), 1.75-1.61(2H, m)
Purity	>90% (NMR)		
MS	494 (M+1)		

Example	No.	59)	1H.NMR(δ) ppm
но			CI	300MHz, DMSO-d6 10.82(1H, s), 8.34(1H, s), 8 .14and7.84(4H, ABq, J=8.4H z), 8.06and7.66(4H, A'B'q, J=8.6Hz), 8.06-7.98(4H, m) ,5.01(1H, quint, J=9.3Hz), 2.35-2.15(4H, m), 2.11-1.9 6(2H, m), 1.80-1.62(2H, m)
Purity	>90%	(NMR)		
MS	460	(M+1)		

Example	No.	60	1H NMR(δ) ppm
100 H		#\\\\	300MHz, DMSO-d6 10. 61 (1H, s), 8. 32 (1H, s), 8 . 12and7. 81 (4H, ABq, J=8. 9H z), 8. 03and7. 93 (2H, A' B' q, J=8. 7Hz), 7. 95and7. 59 (4H, A"B"q, J=8. 4Hz), 4. 99 (1H, q uint, J=9. 0Hz), 2. 33-2. 12 (4H, m), 2. 10-1. 93 (2H, m), 1. 80-1. 63 (2H, m), 1. 34 (9H, m)
Purity	>90%	(NMR)	
MS	482	(M+1)	

Table 11

Example	No.	61	1H NMR(δ) ppm
m i C		\bigcirc	300MHz, DMSO-d6 10.6(1H, s), 8.34(1H, s), 8. 13(2H, d, J=8.7Hz), 8.09-7. 98(4H, m), 7.82(2H, d, J=8.7 Hz), 7.50-7.35(5H, m), 7.20 -7.17(2H, d, J=9.0Hz), 5.24 (2H, s), 5.01(1H, quint, J=9 .3Hz), 2.40-1.60(8H, m).
Purity	>90% (NMR)		
MS	532 (M+1)		

Example	No.	62	1H NMR(δ) ppm
н			300MHz, DMSO-d6 8. 32 (1H, s), 8. 26 (1H, d, J=8 . 7Hz), 8. 04 (1H, d, J=8. 7Hz) , 7. 77 (2H, d, J=8. 4Hz), 7. 52 (2H, d, J=6. 9Hz), 7. 46-7. 39 (5H, m), 5. 28 (2H, s), 4. 38 (1 H, m), 3. 71 (1H, m), 2. 60-2. 1 5 (2H, m), 2. 04-1. 96 (4H, m), 1. 30-1. 20 (2H, m).
Purity	>90% (N	MR)	
MS	443 (m+1))	

Example	No.	63	1H NMR(δ) ppm
HD		\bigcirc	300MHz, DMSO-d6 8. 27(1H, s), 8. 14(1H, d, J=8 .7Hz), 7. 96(1H, d, J=8. 4Hz) , 7. 71(2H, d, J=9. 0Hz), 7. 51 (2H, d, J=6. 9Hz), 7. 46-7. 37 (3H, m), 7. 30(2H, d, J=8. 4Hz), 5. 25(3H, s), 4. 39(1H, m), 3. 44(1H, m), 3. 27(3H, s), 2. 60-1. 95(6H, m), 1. 25-1. 05(2H, m).
Purity	約90% (NMI	₹)	
MS	457 (M+1)		7

Table 12

Example	No. 6	4 1H NMR(δ) ppm
HO 1		300MHz, DMSO-d6 12. 25(1H, brs), 7. 70-7. 30(9H, m), 7. 20(2H, d, J=8. 7Hz), 7. 14(1H, d, J=8. 4Hz), 5. 20 (2H, s), 4. 84(1H, quint, J=6. 0Hz), 3. 66(2H, s), 2. 30-1. 51(8H, m)
Purity	>90% (NMR)	
MS	427 (M+1)	

Example	No.	65	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.64(1H, brs), 8.13(1H, s), 7.80(1H, d, J=7.2Hz), 7.59 (1H, d, J=8.7Hz), 7.48-7.30 (5H, m), 5.11(2H, s), 5.03(1 H, quint, J=8.7Hz), 4.20-4. 05(2H, m), 3.45-3.90(3H, m), 2.15-1.60(12H, m)
Purity	>90% (NMR	2)	
MS	448 (M+1)		

Example No. 66	1H NMR(δ) ppm
HO	300MHz, DMSO-d6 10.59(1H, s), 8.31(1H, s), 8 .10(2H, d, J=8.6Hz), 8.03(1 H, d, J=8.7Hz), 8.00-7.85(3 H, m), 7.80(2H, d, J=8.6Hz), 7.41(2H, d, J=8.2Hz), 4.98(1 1H, quint, J=8.8Hz), 2.71-1 .10(19H, m)
Purity >90% (NMR)	
MS 508 (M+1)	1

. 20

Table 13

Example	No.	67	1H NMR(δ) ppm
но		C1	300MHz, DMSO-d6 12.81 (1H, brs), 8.42 (1H, s), 7.90 (1H, d, J=8.5Hz), 7.80 -7.52 (6H, m), 7.44 (2H, d, J=8.6Hz), 5.25 (2H, s), 4.88 (1H, quimt, J=8.8Hz), 2.30-1.52 (8H, m)
Purity	>90% (NMR)		
MS	481 (M+1)		

Example	No.	68	1H NMR(δ) ppm
HO		CI CI	300MHz, DMSO-d6 8. 31 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=8. 6Hz), 7. 96 (1H, d, J=8. 6Hz), 8. 86-8. 61 (4H, m) , 7. 51 (1H, d, J=6. 3Hz), 7. 33 (2H, d, J=8. 8Hz), 5. 28 (2H, s) , 4. 94 (1H, quint, J=8. 8Hz) , 2. 31-1. 60 (8H, m)
Purity	>90% (NMR)		
MS	481 (N+1)		·

Example No.	69 1H NMR(δ) ppm
	300MHz, DMSO-d6 9. 88(1H, s), 9. 42(1H, s), 8. 32(1H, s), 8. 09and8. 02(2H, ABq, J=9. 0Hz), 7. 81and7. 78 (4H, A'B'q, J=9. 2Hz), 7. 50(2H, d, J=7. 8Hz), 7. 31(2H, t, J=7. 8Hz), 7. 00(1H, t, J=7. 8Hz), 5. 03(1H, quint, J=8. 7Hz), 2. 34-2. 17(4H, m), 2. 13-1. 96(2H, m), 1. 83-1. 64(2H,
Purity > 90% (NMR)	m)
MS 441 (M+1)	

Table 14

Example	No.	70	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 27(1H, d, J=1. 2Hz), 8. 04(1H, d, J=8. 7Hz), 7. 94(1H, d, J=8. 7Hz), 7. 72(2H, d, J=8. 7Hz), 7. 60-7. 20(12H, m)6. 74(1H, s), 4. 92(1H, quint, J=8. 9Hz), 2. 30-1. 58(8H, m)
Purity	>90% (NMR)		1 ·
MS	489 (M+1)		†

Example No.	71	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 31 (1H, s), 8. 05 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 7Hz) , 7. 76 (2H, d, J=8. 6Hz), 7. 44 -7. 19 (7H. m), 4. 94 (1H, quin t, J=8. 8Hz), 4. 35 (2H, t, J=6 .7Hz), 3. 10 (2H, t, J=6. 7Hz) , 2. 32-1. 60 (8H, m)
Purity >90%	(NMR)	1
MS 427	(M+1)	1

Example No.		72	1H NMR(δ) ppm
) -OO		300MHz, DMSO-d6 8. 30 (1H, s), 8. 25 (1H, d, J=8 .7Hz), 8. 03 (1H, d, J=9. 0Hz) .7. 75 (2H, d, J=8. 7Hz), 7. 51 (2H, d, J=7. 2Hz), 7. 46-7. 33 (5H, m), 5. 27 (2H, s), 4. 36 (1 H, m), 2. 50-2. 25 (2H, m), 2. 1 5-2. 00 (2H, m), 1. 95-1. 85 (2 H, m), 1. 35 (1H, m), 1. 20-1. 1 0 (2H, m), 0. 87 (9H, s).
Purity >9	0% (NMR)		
MS	483 (M+1)		

Table 15

Example No.	73 1H NMR(δ) ppm
HD 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300MHz, DMSO-d6 7. 59 (2H, d, J=8. 4Hz), 7. 52- 7. 35 (6H, m), 7. 20 (2H, d, J=8. 7Hz), 7. 14 (1H, d, J=2. 1Hz), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 5. 21 (2H, s), 4. 83 (1H, quint, J=8. 7Hz), 4. 70 (2H, s), 2. 30-1. 90 (6H, m), 1. 75-1. 55 (2H, m).
Purity >90% (NMR)
MS 443 (M	+1)

Example	No.	74	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8. 27 (1H, s), 8. 06and7. 97 (2 H, ABq, J=8. 7Hz), 7. 57and6. 86 (4H, A'B'q, J=8. 9Hz), 7. 4 2-7. 26 (5H, m), 5. 04 (1H, qui nt, J=9. 0Hz), 4. 42 (2H, s), 2 .32-1. 94 (6H, m), 1. 80-1. 62 (2H, m)
Purity	>90% (NM)	R)	·
MS	412 (M+1)		

Example	No.	75	1H NMR(δ) ppm
но		→	300MHz, DMSO-d6 12.80(1H, s), 8.26(1H, s), 7 .90(1H, d, J=9.2Hz), 7.76-7 .60(8H, m), 7.35(2H, d, J=8. 4Hz), 4.84(1H, quint, J=8.8 Hz), 3.23(3H, s), 2.32-1.90 (6H, m), 1.78-1.61(2H, m)
Purity	>90% (NM)	R)	·
MS	476 (M+1)		

Table 16

Example	No. 70	6 IH NMR(δ) ppm
но		300MHz, DMSO-d6 8. 29(1H, s), 8. 07and7. 49(2 H, ABq, J=8. 7Hz), 7. 66and7. 00(4H, A'B'q, J=7. 7Hz), 7. 3 9-7. 24(5H, m), 5. 05(1H, qui nt, J=8. 8Hz), 4. 76(2H, s), 3 .21(3H, s), 2. 35-1. 92(6H, m), 1. 81-1. 62(2H, m)
Purity	>90% (NMR)	
MS .	426 (M+1)	

Example No. 77	1H NMR(δ) ppm
HO LOCATION OF THE PARTY OF THE	300MHz, DMSO-d6 8. 21 (1H, s), 7. 87 (1H, s), 7. 56and7. 43 (4H, ABq, J=8. 1Hz), 7. 34-7. 16 (5H, m), 4. 25 (1 h, brt, J=12. 5Hz), 3. 06-2. 9 2 (4H, m), 2. 41-2. 17 (2H, m), 1. 96-1. 77 (4H, m), 1. 72-1. 5 8 (1H, m), 1. 48-1. 15 (3H, m)
Purity >90% (NMR)	
MS 425 (M+1)	

Example No.	78	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 14(1H, s), 7. 79(1H, d, J=9.0Hz), 7. 57(1H, d, J=8.7Hz), 7. 40-7. 20(5H, m), 4. 89(1H, quint, J=8.7Hz), 3. 54(2H, s), 3. 19-2. 90(3H, m), 2. 23-1. 69(14H, m)
Purity >90% (N)	MR)	
MS 404 (M+1)		

Table 17

5	Example No.	79	1H NMR(δ) ppm
10	но		300MHz, DMSO-d6 8. 15(1H, s), 7. 81(1H, d, J=8 .4Hz), 7. 59(1H, d, J=9. 0Hz) , 7. 50-7. 38(5H, m), 5. 05(1H, quint, J=9. 0Hz), 3. 85-2. 9 5(3H, m), 2. 20-1. 65(14H, m)
	Purity >	90% (NMR)	1
20	MS	418 (M+1)	
20	Example No.	. 80	1H NMR(δ) ppm
25	0		300MHz, DMSO-d6 8.17(1H, m), 7.84(1H, d, J=8

Example No.	80	1H NMR(δ) ppm
HO II N	0 -3 -0 -3 -0	300MHz, DMSO-d6 8. 17 (1H, m), 7. 84 (1H, d, J=8 .4Hz), 7. 78-7. 62 (3H, m), 7. 49 (2H, d, J=8. 1Hz), 5. 05-4. 91 (1H, m), 3. 80-3. 70 (2H, m) ,3. 30-3. 12 (1H, m), 2. 48-2. 31 (5H, m), 2. 15-1. 60 (12H, m)
Purity > 90% (NM	IR)	
MS 468 (M+1)		

Example N	·	81	1H NMR(δ) ppm
HO		CI CI	300MHz, DMSO-d6 12. 75 (1H, brs), 8. 21 (1H, d, J=1. 4Hz), 7. 49 (1H, d, J=8. 6 Hz), 7. 85 (1H, dd, J=8. 6, 1. 4 Hz), 7. 70-7. 55 (5H, m), 7. 23 (2H, d, J=8. 7Hz), 5. 25 (2H, s), 4. 36-4. 15 (1H, m), 2. 39-2 .18 (2H, m), 2. 00-1. 78 (4H, m), 1. 70-1. 57 (1H, m), 1. 48-1 .15 (3H, m)
Purity	>90% (NMR)		·
MS	495 (M+1)		

Table 18

Example	No. 82	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 27 (1H, s), 8. 22 (1H, d, J= .7Hz), 8. 02 (1H, d, J=8. 7Hz), 7. 69 (2H, d, J=8. 7Hz), 7. 66 -7. 50 (4H, m), 7. 45-7. 25 (8I, m), 6. 75 (1H, s), 4. 21-4. 23 (1H, m), 2. 39-2. 18 (2H, m), 2. 10-1. 78 (4H, m), 1. 70-1. 15 (4H, m)
Purity	>90% (NMR)	
MS ·	503 (M+1)	

Example	No.	83	1H NMR(δ) ppm
но		\	300MHz, DMSO-d6 13. 2(1H, brs), 8. 30(1H, s), 8. 23(1H, d, J=8. 8Hz), 8. 02(1H, d, J=8. 7Hz), 7. 74(2H, d, J=8. 6Hz), 7. 40-7. 33(5H, m), 5. 22(2H, s), 4. 36(1H, m), 2. 50-1. 40(10H, m), 1. 31(18H, s).
Purity	>90% (NMR)	-	
MS	539 (M+1)	-	

Example No.	84 1H NMR(δ) ppm
	mixture of isomers(cis:trans=3:1) 300MHz, DMSO-d6 8. 30(1H, s), 8. 20-7. 95(2H, m), 7. 72(2H, d, J=8. 4Hz), 7. 52-7. 29(7H, m), 5. 25(2H, s), 4. 34, 3. 40(1H, m), 2. 50-2. 20(2H, m), 2. 05-1. 50(6H, m), 1. 14, 0. 90(3H, d, J=6. 9, 6. 3Hz), 1. 09(1H, m).
Purity >90% (NMR)	
MS 441 (M+1)	

Table 19

Example	No.	85	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8. 25 (1H, s), 8. 14-7. 83 (6H, m), 7. 77-7. 44 (5H, m), 7. 21 (2H, d, J=7. 8Hz), 4. 44 (2H, br t), 4. 31 (1H, brt), 3. 56 (2H, brt), 2. 20-2. 16 (2H, m), 2. 00-1. 74 (4H, m), 1. 70-1. 55 (1H, m), 1. 45-1. 14 (3H, m)
Purity	>90% (NMF	2)	•
MS	491 (M+1)		·

Example	No.	86	1H NMR(δ) ppm
но		3	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 8 .15(1H, d, J=7.6Hz), 8.02-7 .53(10H, m), 7.32(2H, d, J=8 .7Hz), 5.68(2H, s), 4.32(1H, brt, J=12.2Hz), 2.41-2.20 (2H, m), 2.01-1.78(4H, m), 1 .71-1.56(1H, m), 1.50-1.16 (3H, m)
Purity	>90% (NMR)		· ·
MS	477 (M+1)		

Example	No. 87	1H NMR(δ) ppm
но		300MHz, DMSO-d6 12. 75 (1H, brs), 8. 16 (1H, s) , 7. 91and7. 82 (2H, ABq, J=8. 5Hz), 7. 44and6. 86 (4H, A'B' q, J=8. 6Hz), 7. 39-7. 26 (10H , m), 4. 82 (2H, s), 4. 35 (1H, b rt, J=12. 2Hz), 2. 35-2. 16 (2 H, m), 1. 97-1. 75 (4H, m), 1. 6 9-1. 56 (1H, m), 1. 45-1. 16 (3 H, m)
Purity	>90% (NMR) .	
MS	516 (M+1)	

5

Table 20

Example	No. 8	3 IH NMR(δ) ppin
но		300MHz, DMSO-d6 8. 31 (1H, s), 8. 26and8. 06 (2 H, ABq, J=8. 9Hz), 7. 73and7. 22 (4H, A'B'q, J=8. 7Hz), 7. 5 0-7. 36 (8H, m), 5. 10 (2H, s), 4. 37 (1H, brt, J=12. 2Hz), 2. 38-2. 28 (2H, m), 2. 10-1. 80 (4H, m), 1. 70-1. 56 (1H, m), 1. 50-1. 20 (3H, m)
Purity	>90% (NMR)	
MS	503 (M+1)	

Example	No.	89	1H NMR(δ)	ppm
но				·
Purity	91% (HPLC)		1	
MS	427 (M+1)		1	

Table 21

Example	No.	91	1H NMR(δ) ppm
но		·	300MHz, DMSO-d6 8.31(1H, s), 8.27(1H, d, J=8 .7Hz), 8.08-8.03(3H, m), 7. 77-7.58(5H, m), 7.31(2H, d, J=8.7Hz), 5.81(2H, s), 4.40 (1H, m), 2.50-1.20(10H, m).
Purity	約90% (NMR)]
MS	455 (M+1)		

Example No.	92	1H NMR(δ) ppm
HO N N		300MHz, DMSO-d6 11.8(1H, brs), 8.07(1H, s), 7.89(1H, d, J=8.7Hz), 7.84(1H, d, J=8.4Hz), 7.69(2H, m), 7.48(3H, m), 4.42(2H, s), 4 .11(1H, m), 3.73(4H, m), 3.4 0(4H, m), 2.40-1.40(10H, m)
Purity >90%	(NMR)	
MS 419	(M+1)	

Example No.	93	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 32 (1H, s), 8. 28 (1H, d, J=8 .9Hz), 8. 05 (1H, d, J=8. 7Hz) ,7. 72 (2H, d, J=8. 7Hz), 7. 38 (4H, d, J=7. 2Hz), 7. 31 (4H, t ,J=7. 3Hz), 7. 21-7. 17 (4H, m), 4. 37 (1H, m), 4. 26 (1H, t, J =7. 9Hz), 4. 01 (2H, t, J=6. 2H z), 2. 57 (2H, m), 2. 50-2. 20 (2H, m), 2. 10-2. 00 (2H, m), 2.
Purity >90% (NMR)	00-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m).
MS 531 (M+1)		

Table 22

Example No.	94	1H NMR(δ) ppm
HO I N		300MHz, DMSO-d6 8. 32(1H, s), 8. 27(1H, d, J=9.0Hz), 8. 05(1H, d, J=8.7Hz), 7. 75-7. 70(3H, m), 7. 56(1H, d, J=8.4Hz), 7. 55-7. 35(6H, m), 7. 22(2H, d, J=8.7Hz), 5. 11(2H, s), 4. 36(1H, m), 2. 4. 0-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 75(2H, m), 1. 75-1. 55(1H, m), 1. 55-1. 20(3
Purity >9	0% (NMR)	H, m).
MS	537 (M+1)	7

Example No.	95	1H NMR(δ) ppm
HO I I		300Hz, DMSO-d6 12.9(1H, brs), 8.02(1H, s), 7.82(2H, m), 7.40-7.25(5H, m), 4.58(2H, s), 4.09(1H, m), 3.71(1H, m), 3.49(2H, m), 3.21(2H, m), 2.35-1.30(14H, m).
Purity >90	% (NMR)	1
MS 4	34 (M+1)	

Example No.	96	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 31(1H, d, J=1. 3Hz), 8. 27(1H, d, J=8. 8Hz), 8. 05(1H, d, J=8. 8Hz), 7. 76(2H, d, J=8. 7 Hz), 7. 40-7. 25(4H, m), 7. 06-6. 90(3H, m), 4. 53-4. 26(5H, m), 2. 40-2. 18(2H, m), 2. 12-1. 56(5H, m), 1. 50-1. 19(3H, m)
Purity >90% (NMR)	
MS 457 (M-	+1)	·

Table 23

Example 1	10.	97	1H NMR(δ) ppm
HO NO			300MHz, DMSO-d6 8. 32 (1H, d, J=1. 3Hz), 8. 29 (1H, d, J=8. 8Hz), 8. 05 (1H, dd , J=8. 8, 1. 3Hz), 8. 42 (2H, d, J=8. 8Hz), 7. 37-7. 16 (7H, m) , 4. 48-4. 30 (1H, m), 4. 12 (2H , t, J=6. 2Hz), 2. 83-2. 70 (2H , m), 2. 40-1. 50 (9H, m), 1. 59 -1. 19 (3H, m)
Purity	>90% (1	NMR)	
MS	455 (M+	1)	

Example No.	98	1H NMR(δ) ppm
**************************************		300MHz, DMSO-d6 8. 28(1H, d, J=1. 3Hz), 8. 21(1H, d, J=8. 8Hz), 8. 01(1H, d, J=10. 1Hz), 7. 70(2H, d, J=8. 7Hz), 7. 33-7. 12(7H, m), 4. 44-4. 28(1H, m), 4. 10(2H, t, J=6. 3Hz), 2. 62(2H, t, J=7. 4Hz), 2. 39-2. 15(2H, m), 2. 10-1. 18(14H, m)
Purity >90% (NM	R)	·
MS 483 (M+1)		

Example No. 99	1H NMR(δ) ppm
HO I NO ON ON	300MHz, DMSO-d6 12. 93 (1H, brs), 8. 30 (1H, d, J=1. 4Hz), 8. 04 (1H, d, J=8. 7 Hz), 7. 92 (1H, dd, J=8. 7, 1. 4 Hz), 7. 59-7. 34 (5H, m), 7. 07 (1H, s), 5. 38 (2H, s), 4. 78-4 .60 (1H, m), 2. 32-2. 14 (2H, m), 2. 03-1. 28 (8H, m)
Purity >90% (NMR)	·
MS 418 (M+1)	

Table 24

Example No.	100 1H NMR(δ) ppm
NaO NaO N	300MHz, DMSO-d6 8. 46 (1H, d, J=2. 1Hz), 8. 16 (1H, s), 8. 00 (1H, dd, J=8. 5, 2 . 1Hz), 7. 87 (1H, d, J=8. 5Hz), 7. 68 (1H, d, J=8. 5Hz), 7. 55 -7. 30 (5H, m), 7. 08 (1H, d, J= 8. 5Hz), 5. 45 (2H, s), 4. 25-4 . 08 (1H, m), 2. 39-2. 18 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1 . 55 (1H. m), 1. 45-1. 19 (3H, m)
Purity >90% (NM)	
MS 427 (M+1)	

Example	No.	101	1H NMR(δ) ppm
н		CH,	300MHz, DMSO-d6 8. 33 (1H, s), 8. 31 (1H, d, J=6. .9Hz), 8. 06 (1H, d, J=8. 4Hz), 7. 76and7. 29 (4H, ABq, J=8. 9Hz), 6. 68 (2H, s), 4. 37 (1H, m), 4. 35 (2H, t, J=7. 0Hz), 3. 79 (6H, s), 3. 63 (3H, s), 3. 04 (2H, t, J=6. 9Hz), 2. 30 (2H, m), 2. 04 (2H, m), 1. 86 (2H, m), 1. 65 (1H, m), 1. 50-1. 15 (3H.
Purity	>90%	(NMR)	m)
MS	531 (M	(+1)	

Example N	10.	102	IH. NMR(δ) ppm
но	ĭ, N, CH,	→	300MHz, DMSO-d6 12.88(1H, s), 8.34(1H, s), 7 .86(1H, d, J=8.5Hz), 7.73(1 H, d, J=8.5Hz), 7.63and7.23 (4H, ABq, J=8.7Hz), 7.52-7. 35(5H, m), 5.22(2H, s), 4.31 (1H, m), 2.39(2H, m), 1.79(2 H, m), 1.53(2H, m), 1.31(2H, m), 1.11(3H, s), 0.95(3H, s)
Purity	>90% (NM	IR)	
MS	455 (M+1)		·

Table 25

Example	No.	103	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.79(1H, brs), 8.22(2H, s), 8.02-7.78(4H, m), 7.63-7.42(6H, m), 7.20-7.09(2H, m), 4.43(2H, s), 4.27(1H, brt, J=12.2Hz), 3.59(2H, s), 2.39-2.15(2H, m), 1.98-1.72(4H, m), 1.68-1.59(1H, m), 1.43-1.12(3H, m)
Purity	>90% (NMR)	
MS	491 (M+1)		

Example No	· .	104	1H NMR(δ) ppm
100 1			300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7.94and7.86(2H, ABq, J=8.6Hz), 7.64and7.05(4H, A'B'q, J=8.7Hz), 7.32-7.09(9H, m), 5.13(2H, s), 4.28(1H, brt, J=12.2Hz), 2.36-2.19(2H, m), 1.95-1.77(4H, m), 1.66-1.56(1H, m), 1.46-1.10(3H, m))
Purity	>90% (NM	R)	
MS	519 (M+1)		

Example No.	105	1H NMR(δ) ppm
HD N		300MHz, DMSO-d6 8. 23 (1H, s), 7. 94and7. 87 (2 H, ABq, J=8. 6Hz), 7. 68and7. 17 (4H, A'B'q, J=8. 7Hz), 7. 4 6-7. 33 (6H, m), 6. 93and6. 75 (2H, A"B"q, J=8. 2Hz), 6. 82 (1H, s), 5. 13 (2H, s), 4. 30 (1H ,brt, J=12. 2Hz), 2. 39-2. 18 (2H, m), 1. 98-1. 77 (4H, m), 1 .71-1. 59 (1H, m), 1. 48-1. 20
Purity >90%	(NMR)	(3H, m)
MS 519	(M+1)	

Table 26

Example No.	106 1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 12.89(1H, brs), 9.73(1H, s), 8.24(1H, s), 8.03and7.91(2H, ABq, J=8.7Hz), 7.66and7.04(4H, A'B'q, J=8.7Hz), 7.16-7.03(3H, m), 6.89(2H, t, J=9.2Hz), 4.33(1H, brt, J=12.2Hz), 2.40-2.18(2H, m), 2.00-1.78(4H, m), 1.70-1.58(1H, m), 1.50-1.20(3H, m)
Purity >90% (NMR)	
MS 429 (M+1)	

Example No.	107	1H NMR(δ)·ppm
HO I CO	—о_ о	300MHz, DMSO-d6 12. 98 (1H, brs), 9. 82 (1H, br s), 8. 27 (1H, s), 8. 09and7. 9 4 (2H, ABq, J=8. 7Hz), 7. 74an d7. 22 (4H, A'B' q, J=8. 7Hz), 7. 28-7. 22 (1H, m), 6. 67-6. 5 4 (3H, m), 4. 35 (1H, brt, J=12 . 2Hz), 2. 40-2. 20 (2H, m), 2. 05-1. 80 (4H, m), 1. 72-1. 59 (1H, m), 1. 50-1. 21 (3H, m)
Purity >90% (N	NMR)	
MS 429 (M+	1)	

Example No.	108	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8.24(1H, s), 8.01and7.90(2 H, ABq, J=8.7Hz), 7.65and7. 03(4H, A'B'q, J=8.7Hz), 7.3 2-7.20(3H, m), 7.08-7.03(1 H, m), 4.32(1H, brt, J=12.2H z), 3.77(3H, s), 2.36-2.20(2H, m), 2.00-1.78(4H, m), 1. 71-1.59(1H, m), 1.44-1.11(3H, m)
Purity > 90% (NM	R)	
MS 443 (M+1)		

Table 27

Example No.		109	1H NMR(δ) ppm
HO		o'	300MHz, DMSO-d6 12.75(1H, s), 8.24(1H, s), 7 .96and7.87(2H, ABq, J=9.0H z), 7.69and7.19(4H, A'B'q, J=8.6Hz), 7.37(1H, t, J=7.1 Hz), 6.84-6.70(3H, m), 4.31 (1H, brt, J=12.2Hz), 3.78(3 H, s), 2.39-2.20(2H, m), 1.9 8-1.78(4H, m), 1.76-1.60(1 H, m), 1.48-1.13(3H, m)
Purity >	90% (NMR)		•
MS	443 (M+1)		

Example No.	110	1H NMR(δ) ppm
но 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		300MHz, DMSO-d6 8. 31 (1H, s), 8. 26and8. 04 (2 H, ABq, J=8. 8Hz), 7. 75and7. 71 (4H, A'B'q, J=8. 8Hz), 7. 3 2-7. 03 (4H, m), 4. 34 (1H, brt , J=12. 2Hz), 3. 94 (2H, t, J=6 . 3Hz), 2. 40-2. 19 (2H, m), 2. 11-1. 81 (4H, m), 1. 72-1. 16 (6H, m), 0. 71 (3H, t, J=7. 3Hz)
Purity >90% (N	MR)	
MS 471 (M+1)	

Example No.	111	1H NMR(δ) ppm
HD	- ò	300MHz, DMSO-d6 8. 22(1H, s), 7. 91and7. 87(2 H, ABq, J=8. 7Hz), 7. 68and7. 18(4H, A'B'q, J=8. 7Hz), 7. 3 5(1H, t, J=8. 5Hz), 6. 80(1H, d, J=9. 0Hz), 6. 72-6. 68(2H, m), 4. 30(1H, brt, J=12. 2Hz), 3. 94(2H, t, J=6. 5Hz), 2. 39 -2. 18(2H, m), 1. 97-1. 58(7H, m), 1. 45-1. 20(3H, m), 0. 97
Purity >90%	(NMR)	(3H, t, J=7. 4Hz)
MS 471	(M+1)	

Table 28

5

Example No. 113 IH NMR(δ) ppm 300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7.95and7.86(2H, ABq, J=8.9Hz), 7.69and7.18(4H, A'B'q, J=8.9Hz), 7.35(1H, t, J=8.3 Hz), 6.81-6.69(3H, m), 5.41(2H, brs), 4.54(2H, d, J=6.6 Hz), 4.31(1H, brt, J=12.2Hz), 2.41-2.18(2H, m), 1.98-1.76(4H, m), 1.73(3H, s), 1.70-1.58(1H, m), 1.68(3H, s), 1.45-1.17(3H, m)

MS 497(M+1)

Example No.

114

1H NMR(δ) ppm

300MHz, DMSO-d6
12.73 (1H, s), 8.22 (1H, s), 7
.94and7.85 (2H, ABq, J=8.4H
z), 7.60and6.99 (4H, A' B' q,
J=8.6Hz), 7.29-7.00 (4H, m)
,4.29 (1H, brt, J=12.2Hz), 3
.99 (2H, t, J=6.3Hz), 2.41-2
.20 (2H, m), 1.95-1.76 (4H, m)
), 1.70-1.14 (7H, m), 0.76 (3
H, d, J=6.6Hz)

MS

499 (M+1)

Table 29

Example No.	115	1H NMR(δ) ppm
HO II O	_>_	300MHz, DMSO-d6 8. 23 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=7. 8Hz), 6. 82-6. 6 9 (3H, m), 4. 30 (1H, brt, J=12 . 2Hz), 4. 00 (2H, t, J=6. 9Hz) , 2. 38-2. 20 (2H, m), 1. 97-1. 54 (8H, m), 1. 47-1. 20 (3H, m) , 0. 93 (6H, d, J=6. 6Hz)
Purity >90% (NMR)		
MS 499 (M+1)		

Example No.	116	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 30(1H, s), 8. 25(1H, d, J=8. 9Hz), 8. 03(1H, d, J=8. 8Hz), 7. 68(2H, d, J=8. 8Hz), 7. 24 (2H, d, J=7. 2Hz), 7. 19-7. 10 (6H, m), 6. 94(2H, t, J=7. 2Hz), 4. 34(1H, m), 4. 19(4H, brs), 3. 10(4H, brs), 2. 40-2. 15 (2H, m), 2. 10-1. 95(2H, m), 1. 95-1. 75(2H, m), 1. 75-1. 55
Purity >90% (N	IMR)	(1H, m), 1.55-1.20 (3H, m).
MS 557 (M+	1)	

Example No.	117	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.80(2H, d, J=8.2Hz), 7.72-7.67(3H, m), 7.59(2H, d, J=8.7Hz), 7.54 -7.51(2H, m), 7.42-7.41(1H, m), 7.11(2H, d, J=8.8Hz), 5.09(2H, s), 4.27(1H, m), 2.4 0-2,15(2H, m), 2.00-1,75(4
Purity >90% (1	NMR)	H, m), 1.75-1.55 (1H, m), 1.5 5-1.15 (3H, m).
MS 571 (M+	-1)]

Table 30

Example No.	118	1H NMR(δ) ppm
HO NO CO	-)—cı	300MHz, DMSO-d6 13.3(1H, brs), 8.30(1H, s), 8.25(1H, d, J=8.9Hz), 8.04(1H, d, J=8.7Hz), 7.72(2H, d, J=8.8Hz), 7.57(4H, d, J=8.6 Hz), 7.47(4H, d, J=8.6Hz), 7 .33(2H, d, J=8.9Hz), 6.84(1 H, s), 4.33(1H, m), 2.45-2.1 0(2H, m), 2.10-1.95(2H, m), 1.95-1.70(2H, m), 1.70-1.5
Purity >90% (NMR)		5 (1H, m), 1.55-1.15 (3H, m).
MS 571 (M+1)		1

Example No.	119	1H NMR(δ) ppm
HO LO	→o	300MHz, DMSO-d6 8. 32-8. 30 (2H, m), 8. 07-8. 0 3 (1H, m), 7. 74and6. 90 (4H, A Bq, J=8. 7Hz), 4. 37 (1H, m), 4 . 31 (2H, t, J-6. 8Hz), 3. 74 (3 H, s), 3. 04 (2H, t, J=6. 7Hz), 2. 30 (2H, m), 2. 02 (2H, m), 1. 86 (2H, m), 1. 63 (1H, m), 1. 55 -1. 15 (3H, m)
Purity >90%	(NMR)	
MS 471 (M+1>	

Example No.	120	1H NMR(δ) ppm
HO N	0-сн,	300MHz, DMSO-d6 8. 23(1H, s), 7. 99(1H, d, J=8 .7Hz), 7. 88(1H, d, J=8. 4Hz) , 7. 61and7. 16(4H, ABq, J=8. 6Hz), 7. 30-7. 22(2H, m), 7. 0 1(2H, d, J=8. 1Hz), 6. 92(1H, t, J=7. 5Hz), 4. 28(1H, m), 4. 25(2H, t, J=7. 2Hz), 3. 83(3H, s), 3. 07(2H, t, J=7. 1Hz), 2 . 28(2H, m) 2. 00-1. 75(4H, m)
Purity >90% (NMR)	, 1.70-1.55 (1H, m), 1.50-1. 15 (3H, m)
MS 471 (M	+1)	1

Table 31

Example	No.	121	1H NMR(δ) ppm
но		-оо.сн	300MHz, DMSO-d6 12.85(1H, brs), 8.24(1H, s), 8.01(1H, d, J=8.7Hz), 7.90 (1H, d, J=8.6Hz), 7.62and, 7.17(4H, ABq, J=8.7Hz), 7.24 (1H, m), 6.94(2H, m), 6.82(1H, m), 4.32(2H, t, J=6.7Hz), 3.76(3H, s), 3.07(2H, t, J=6.7Hz), 2.29(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m)
Purity	>90%	(NMR)	, 1. 50–1. 15 (3H, m)
MS	471	(M+1)	

Example N	ю.	122	1H NMR(δ) ppm
но		∼	300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.87(2H, m), 7.62(2H, d, J=8 .1Hz), 7.60-7.20(7H, m), 5. 23(2H, s), 4.46(1H, m), 2.50 -2.30(2H, m), 1.70-1.40(10 H, m).
Purity	>90% (NM	R)	
MS .	441 (M+1)		

Example	No.	123	1H NMR(δ) ppm
но		~\bigcirc\	300MHz, DMSO-d6 8. 24(1H, s), 7. 97(1H, d, J=9.0Hz), 7. 87(1H, d, J=8.4Hz), 7. 65(2H, d, J=8.7Hz), 7. 40-7. 05(9H, m), 7. 03(2H, d, J=8.4Hz), 4. 31(1H, m), 4. 18(2H, t, J=6.6Hz), 2. 81(2H, t, J=6.3Hz), 2. 40-2. 20(2H, m), 2. 00-1. 70(4H, m), 1. 70-1. 50(1H, m), 1. 50-1. 05(3H, m).
Purity	>90% (NMR	2)	
MS	533 (M+1)		

Table 32

Example No.	124 1H NMR(δ) ppm
HO I COMPANY	300MHz, DMSO-d6 13. 1 (1H, brs), 8. 29 (1H, s) 8. 17 (1H, d, J=8. 7Hz), 7. 99 1H, d, J=8. 7Hz), 7. 77 (2H, d) J=8. 7Hz), 7. 40-7. 20 (8H, m) 6. 84 (1H, d, J=9. 3Hz), 6. 7 -6. 72 (2H, m), 4. 36 (1H, m), 22 (2H, t, J=6. 8Hz), 3. 04 (H, t, J=6. 7Hz), 2. 40-2. 15 (H, m), 2. 15-1. 95 (2H, m), 1.
Purity >90% (NM)	
MS 533 (M+1)	

5

Example No.	125	1H NMR(δ) ppm
HD N		300MHz, DMSO-d6 8. 32(1H, s), 8. 28(1H, d, J=8 . 7Hz), 8. 05(1H, d, J=9. 0Hz) , 7. 73(2H, d, J=9. 0Hz), 7. 43 (4H, d, J=7. 2Hz), 7. 36-7. 20 (8H, m), 4. 74(2H, d, J=7. 5Hz)), 4. 57(1H, t, J=7. 5Hz), 4. 3 8(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 8 5(2H, m), 1. 85-1. 55(1H, m),
Purity >90% (NMR))	1.55-1.20 (3H, m).
MS 517 (M+1)		

Example	No.	126	1H NMR(δ) ppm
HO		-	300MHz, DMSO-d6 8. 32(1H, s), 8. 14(1H, d, J=8 .7Hz), 8. 03(1H, d, J=8. 7Hz) , 7. 77(2H, d, J=9. 0Hz), 7. 52 -7. 31(7H, m), 5. 74(2H, m), 5 . 26(2H, s), 4. 61(1H, m), 2. 9 6(1H, m), 2. 60-2. 10(5H, m).
Purity	>90% (NM)	R)	
MS	425 (M+1)		

Table 33

Example	No.	127	1H NMR(δ) ppm
HO		\bigcirc	300MHz, DMSO-d6 13.2(1H, brs), 8.33(1H, s), 8.12(1H, d, J=8.7Hz), 7.96(1H, d, J=8.8Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.32(7H, m), 5.26(2H, s), 4.92(1H, d, J= 49.4Hz), 4.57(1H, m), 2.65- 2.35(2H, m), 2.25-1.50(6H, m).
Purity	>90% (NMI	₹)	
MS	445 (M+1)		

Example 1	No.	128	1H NMR(δ) ppm
HO I			300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 85 (2 H, ABq, J=8. 6Hz), 7. 61and7. 06 (4H, A'B'q, J=8. 6Hz), 7. 3 6-6. 91 (9H, m), 4. 24 (1H, brt, J=12. 2Hz), 2. 35-2. 15 (2H, m), 1. 95-1. 75 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 14 (3H, m)
Purity	>90%	(NMR)	7
MS	505 ((H+1)	

Example	No.	129	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 22 (4H, A'B'q, J=8. 6Hz), 7. 5 2-7. 39 (1H, m), 7. 47and7. 41 (2H, A'B''q, J=8. 1Hz), 6. 91 (1H, d, J=8. 0Hz), 6. 89 (1H, d, J=8. 2Hz), 6. 75 (1H, s), 4. 36 -4. 18 (1H, m), 2. 38-2. 17 (2H , m), 1. 95-1. 76 (4H, m), 1. 70
Purity	>90%	(NMR)	-1.59(1H, m), 1.44-1.19(3H
MS	505	(M+1)	

Table 34

Example No	. 1:	O 1H NMR(δ) ppm
110 T		.300MHz, DMSO-d6 8.27(1H, s), 7.69(2H, d, J=8 .6Hz), 7.49-7.21(11H, m), 5 .08and5.03(2H, ABq, J=12.6 Hz), 5.07-4.99(1H, m), 4.26 (2H, d, J=6.6Hz), 2.40-2.18 (2H, m), 2.04-1.77(4H, m), 1 .70-1.58(1H, m), 1.48-1.15 (3H, m)
Purity >	90% (NMR)	
MS	590 (M+1)	

Example No.	131	1H NMR(δ) ppm
	>	300MHz, DMSO-d6 8. 29 (1H, s), 8. 11 (1H, d, J=9 .0Hz), 7. 96 (1H, d, J=8. 4Hz) , 7. 80 (2H, d, J=8. 1Hz), 7. 72 -7. 41 (7H, m), 7. 12 (1H, d, J= 12. 6Hz), 7. 01 (1H, d, J=8. 4H z), 5. 12 (2H, s), 4. 06 (1H, m) , 2. 35-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 75-1. 55 (1H, m) , 1. 60-1. 20 (3H, m).
Purity >90% (NMR)		
MS · 589 (M+1)		

Example	No.	132	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.8(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.66(2H, d, J=8.6Hz), 7.49-7.33(5H, m), 7.17-7.05(6H, m), 5.12(2H, s), 4.31(1H, m), 2.40-2.15(2H, m), 2.05-1.20(8H, m).
Purity	>90%	(NMR)	
MS	519 (M+1)	

5

Table 35

133

10 15 20

Purity >90% (NMR)
MS 531(M+1)

Example No.

1H NMR(δ) ppm

300MHz, DMSO-d6
8.57(1H, s), 8.01(1H, d, J=8.7Hz), 7.66(1H, d, J=8.7Hz), 7.51(2H, d, J=8.7Hz), 7.16(4H, d, J=8.0Hz), 7.16(4H, d, J=8.0Hz), 7.09(2H, d, J=8.7Hz), 6.26(1H, s), 4.37(1H, m), 2.41-2.28(2H, m), 2.33(6H, s), 2.03-1.84(4H, m), 1.77(1H, m), 1.45-1.20(3H, m)

25

30

35

40

45

50

55

MS

1H NMR(δ) ppm

8. 59 (1H, d, J=1. 5Hz), 8. 02 (
1H, dd, J=8. 7, 1. 5Hz), 7. 68 (
1H, d, J=8. 7Hz), 7. 54 (2H, d, J=8. 8Hz), 7. 39 (4H, dd, J=8. 7, 5. 3Hz), 7. 08 (4H, d, J=8. 7 Hz), 7. 05 (2H, d, J=8. 8Hz), 6 . 29 (1H, s), 4. 36 (1H, m), 2. 4 3-2. 19 (2H, m), 2. 04-1. 85 (4 H, m), 1. 78 (1H, m), 1. 45-1. 2 3 (3H, m).

Example No. 135

Purity >90% (NMR)

485 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6

300MH2, DMSO-d6
12.34(1H, brs), 7.93(1H, s), 7.55(1H, d, J=8.6Hz), 7.33
-7.15(6H, m), 7.11(2H, d, J=8.6Hz), 4.30-4.20(1H, m), 4.07(2H, t, J=6.3Hz), 3.93(3H, s), 2.78(2H, t, J=7.4Hz), 2.35-2.19(2H, m), 2.12-2.00(2H, m), 1.91-1.79(4H, m), 1.69-1.60(1H, m), 1.47-1.20(3H, m)

Table 36

Example	No.	136	1H NMR(δ) ppm
но		\	300MHz, DMSO-d6 8. 13 (1H, s), 7. 65 (2H, d, J=8 .7Hz), 7. 63 (1H, s), 7. 35-7. 12 (7H, m), 4. 35-4. 20 (1H, m) , 4. 10 (1H, t, J=6. 3Hz), 2. 78 (2H, t, J=7. 5Hz), 2. 33-1. 78 (8H, m), 1. 70-1. 16 (4H, m)
Purity	>90% (NM	R)	
MS	471 (M+1)		

Example	No.	137	1H NMR(δ) ppm
но ндс		~ <u></u>	300MHz, DMSO-d6 8.24(1H, s), 8.11(1H, s), 7. 76(2H, d, J=9.0Hz), 7.37-7. 16(7H, m), 4.43-4.30(1H, m), 4.13(2H, t, J=6.3Hz), 2.84 -2.68(5H, m), 2.42-2.22(2H, m), 2.18-1.80(6H, m), 1.70 -1.20(4H, m)
Purity	>90% (NA	AR)	
MS	469 (M+1)		

Example	No.	138	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 73(1H, brs), 8. 22(1H, s), 7. 76(1H, d, J=8. 7Hz), 7. 85 (1H, d, J=8. 7Hz), 7. 54-7. 49 (4H, m), 7. 42-7. 21(5H, m), 7. 11-7. 09(3H, m), 6. 93(1H, m), 5. 17(2H, s), 4. 29(3H, m), 3. 11(2H, m), 2. 40-2. 20(2H, m), 1. 99-1. 23(8H, m)
Purity	>90% (NM	R)	
MS	547 (M+1)		

Table 37

Example No.	139	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.73(1H, brs), 8.22(1H, s) , 7.93(1H, d, J=8.7Hz), 7.73 (1H, m), 7.60-7.57(2H, m), 7 .47-6.90(1H, m), 5.11(2H, s), 4.33-4.28(3H, m), 3.09-3 .04(2H, t, J=6.7Hz), 2.35-2 .20(2H, m), 1.95-1.10(8H, m
Purity >90%	(NMR)	
MS 547	(M+1)	

Example No.	140	1H NMR(δ) ppm
	- ° - ° - ° - ° - ° - ° - ° - ° - ° - °	300MHz, DMSO-d6 12.83(2H, brs), 8.22(1H, s), 7.94(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.4Hz), 7.63-7.60 (2H, m), 7.26-7.03(6H, m), 4 .73(2H, s), 4.30(1H, m), 2.4 0-2.15(2H, m), 2.00-1.20(8 H, m)
Purity >90%	(NMR)	
MS 487 ()	M+1)	•

Example No.]	141	1H NMR(δ) ppm
HO N		⟨°	300MHz, DMSO-d6 12.87(1H, brs), 8.24(1H, s), 7.97(1H, d, J=9.0Hz), 7.87 (1H, d, J=8.7Hz), 7.69and7. 19(4H, ABq, J=8.7Hz), 7.36(1H, t, J=8.7Hz), 6.80-6.72(3H, m), 4.71(2H, s), 4.32(1H, m), 2.29(2H, m), 1.95-1.25 (8H, m)
Purity >	90% (NMR)		
MS	487 (M+1)		

Table 38

Example No.	142 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=8 . 7Hz), 8. 05 (1H, d, J=9. 0Hz) , 7. 76-7. 72 (3H, m), 7. 54 (1H , d, J=8. 4Hz), 7. 39-7. 22 (7H , m), 5. 11 (1H, s), 4. 36 (1H, m), 2. 35 (3H, s), 2. 35-2. 15 (2 H, m), 2. 15-1. 95 (2H, m), 1. 9 5-1. 75 (2H, m), 1. 75-1. 55 (1 H, m), 1. 55-1. 15 (3H, m).
Purity >90% (NMR)	10,011, 11,
MS 551 (M+1)	

Example No. 14	3 1H NMR(δ) ppm
	300MHz, DMSO-d6 13.1(1H, brs), 8.30(1H, s), 8.24(1H, d, J=8.8Hz), 8.03(1H, d, J=8.7Hz), 7.74-7.71(3H, m), 7.52(1H, d, J=8.3Hz), 7.40-7.36(3H, m), 7.23(2H, d, J=8.8Hz), 7.01(2H, d, J=8.7Hz), 5.11(2H, s), 4.35(1H, m), 3.79(3H, s), 2.45-2.1 5(2H, m), 2.15-1.95(2H, m),
Purity >90% (NMR)	1.95-1.75(2H, m), 1.75-1.5 5(1H, m), 1.55-1.15(3H, m),
MS 567 (M+1)	

Example No.	144 1H NMR(δ) ppm
	300MHz, DMSO-d6 13.0(1H, brs), 8.31(1H, s), 8.23(1H, d, J=8.7Hz), 8.04(1H, d, J=8.7Hz), 7.80(2H, d, J=8.3Hz), 7.70-7.66(3H, m), 7.55-7.40(4H, m), 7.03-6. 95(2H, m), 5.08(2H, s), 4.03 (1H, m), 2.40-2.15(2H, m), 2. 18(3H, s), 2.05-1.70(4H, m), 1.70-1.50(1H, m), 1.50-1
Purity >90% (NMR)	. 10 (3H, m).
MS 585 (M+1)	

Table 39

Example No. 145

H NMR(δ) ppm

300MHz, DMSO-d6
8.31(1H, s), 8.23(1H, d, J=8
.8Hz), 8.02(1H, d, J=8.7Hz)
,7.73-7.71(3H, m), 7.54(1H
,d, J=8.3Hz), 7.48(2H, d, J=
8.4Hz), 7.41-7.37(3H, m), 7
.22(2H, d, J=8.7Hz), 5.13(2
H, s), 4.34(1H, m), 2.40-2.2
0(2H, m), 2.15-1.95(2H, m),
1.95-1.75(2H, m), 1.70-1.5
5(1H, m), 1.50-1.15(3H, m),
1.31(9H, s).

Example	No.	146	1H NMR(δ) ppm
но		C _I	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 6Hz) ,7. 76 (1H, d, J=2. 1Hz), 7. 63 (1H, t, J=8. 5Hz), 7. 57 (1H, d d, J=8. 2, 2. 2Hz), 7. 55-7. 35 (6H, m), 7. 15 (1H, d, J=12. 1H z), 7. 02 (1H, d, J=8. 6Hz), 5. 10 (2H, s), 4. 07 (1H, m), 2. 35 -2. 10 (2H, m), 2. 00-1. 70 (4H
Purity	>90% (NM	AR)	, m), 1.70-1.55(1H, m), 1.50 -1.15(3H, m).
MS	555 (M+1)]

Example No.	147	1H NMR(δ) ppm
HO CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C	CI CI	300MHz, CDC13 8. 61 (1H, s), 8. 04 (1H, d, J=8 . 7Hz), 7. 69 (1H, d, J=8. 7Hz) , 7. 66 (1H, d, J=2. 4Hz), 7. 59 (2H, d, J=8. 7Hz), 7. 42 (1H, d d, J=8. 0, 2. 4Hz), 7. 38 (1H, t , J=1. 8Hz), 7. 28 (2H, d, J=1. 8Hz), 7. 26 (1H, d, J=8. 0Hz), 7. 03 (2H, d, J=8. 7Hz), 4. 94 (2H, s), 4. 37 (1H, m), 2. 43-2.
Purity >90% (NM)	R)	21 (2H, m), 2, 17-1.86 (4H, m) , 1.79 (1H, m), 1.43-1.26 (3H
MS 605 (N+1)], m).

Table 40

Example	No.	148	1H NMR(δ) ppm
HO		F	300MHz, DMSO-d6 8. 21 (s, 1H), 7. 89 (1H, d, J=8 . 7Hz), 7. 87 (1H, d, J=8. 7Hz) , 7. 63-7. 46 (5H, m), 7. 30-7. 12 (5H, m), 7. 08 (1H, d, J=11. 0Hz), 6. 81 (1H, s), 3. 92 (1H, m), 2. 15-2. 06 (2H, m), 1. 89- 172 (4H, m), 1. 61 (1H, m), 1. 4 2-1. 09 (3H, m).
Purity	>90% (NMR)	-	
MS	557 (M+1)		

Example	No.	150	1H NMR(8) ppm
		Ġ.	300MHz, DMSO-d6 8. 23 (1H, s), 8. 95 (1H, d, J=8 . 4Hz), 7. 88 (1H, d, J=8. 7Hz) , 7. 66 (1H, d, J=8. 4Hz), 7. 52 -7. 28 (7H, m), 7. 23 (2H, d, J= 9. 3Hz), 7. 14 (2H, d, J=8. 7Hz), 5. 14 (2H, s), 3. 90-3. 72 (1 H, m), 2. 20-1. 10 (10H, m)
Purity	>90%	(NMR)	·
MS 587 (M+1)		- .	

Table 41

5	Example No.	151	III ARM (C)
10	HO N O	151	1H NMR (δ) ppm 300MHz, DMSO-d6 8. 18 (1H, s), 7. 92-7. 78 (3H, m), 7. 78-7. 58 (3H, m), 7. 58- 7. 44 (4H, m), 7. 29 (1H, d, J=8. 2Hz), 7. 01 (2H, d, J=8. 7Hz), 4. 88 (1H, d, J=11. 8Hz), 4. 8 0 (1H, d, J=11. 8Hz), 4. 22 (1H, m), 2. 37-2. 16 (2H, m), 1. 95- 1. 75 (4H, m), 1. 64 (1H, m), 1. 48-1. 14 (3H, m).
	Purity >90% (NMR	2)	
20	MS 605 (M+1)		<u> </u>
25 30	Example No.	152	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 21 (2H, m), 7. 99-7. 80 (2H, m), 7. 63-7. 08 (9H, m), 4. 20-3. 98 (4H, m), 2. 20-2. 15 (2H, m), 1. 95-1. 74 (4H, m), 1. 70-1. 54 (1H, m), 1. 44-1. 14 (3H, m)
35	Purity >90% (NMR MS 456(M+1))	
40	Example No.	153	1H NMR(δ) ppm 300MHz, DMSO-d6
45	HOUND		8. 20(1H, s), 8. 93and7. 83(2 H, ABq, J=8. 7Hz), 7. 86-7. 21 (11H, m), 7. 03(2H, d, J=8. 7H z), 4. 20(1H, brt, J=12. 2Hz) ,2. 32-2. 13(2H, m), 1. 92-1. 74(4H, m), 1. 69-1. 58(1H, m) 1. 45-1. 15(3H, m)
55	Purity > 90% (NMR) MS 489(M+1))	

Table 42

Example No.	154	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 23 (1H, s), 7. 94and7. 86 (2 H, ABq, J=8. 6Hz), 7. 72-7. 16 (13H, m), 5. 25 (2H, brs), 4. 5 5 (2H, d, J=6. 6Hz), 4. 31 (1H, brt, J=12. 2Hz), 2. 37-2. 18 (2H, m), 1. 98-1. 77 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 20 (3H, m)
Purity >90% (NMR)	
MS 489 (M	+1)	

Example N	155	1H NMR(δ) ppm
HD		300MHz, DMSO-d6 8. 21 (1H, s), 7. 85and7.61 (2 H, ABq, J=8. 7Hz), 7. 61and6. 99 (4H, A'B'q, J=8. 7Hz), 7. 2 8-7. 18 (1H, m), 7. 25 (2H, d, J =7. 5Hz), 7. 07-6. 99 (1Hm), 4 . 30 (1H, brt, J=12. 2Hz), 3. 8 3 (2H, d, J=6. 0Hz), 3. 82-3. 7 2 (1H, m), 2. 68-2. 49 (2H, m), 2. 39-2. 21 (2H, m), 1. 95-1. 8
Purity -	>90% (NMR)	0 (4H, m), 1.79-1.60 (2H, m), 1.46-1.22 (5H, m), 1.30 (9H,
MS ·	626 (M+1)	s), 1.00-0.82(2H, m)

Example No	- 156	1H NMR(δ) ppm
m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u></u> }~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	300MHz, DMSO-d6 8. 22 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 7Hz), 7. 68and7. 18 (4H, A'B'q, J=8. 7Hz), 7. 3 5 (1H, t, J=8. 5Hz), 6. 80 (1H, d, J=8. 3Hz), 6. 72-6. 70 (2H, m) 4. 30 (1H, brt, J=12. 2Hz), 3. 99 (2H, brd, J=12. 0Hz), 3. 85 (2H, d, J=6. 3Hz), 2. 82-2. 62 (2H, m), 2. 38-2. 20 (2H, m)
Purity >	90% (NMR)	, 1. 99-1. 59 (8H, m), 1. 42-1. 03 (5H, m), 1. 39 (9H, s)
MS	626 (M+1)	7 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 2

Table 43

Example No.	157	1H NMR(δ) ppm
HO N N C C C C C C C C C C C C C C C C C		300MHz, DMSO-d6 12. 78 (1H, brs), 8. 22 (1H, s) ,7. 96 (1H, d, J=8. 6Hz), 7. 86 (1H, d, J=8. 6Hz), 7. 75 (1H, d , J=2. 2Hz), 7. 60 (2H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 3, 2. 2Hz), 7. 48 (1H, d, J=8. 3Hz), 7. 18 (2H, d, J=8. 4Hz), 6. 73 (2H, s), 5. 08 (2H, s), 4. 23 (1H, m), 3. 68 (9H, s), 2. 37-2. 17
Purity > 9 0% (NMR)	•	(2H, m), 1. 99-1. 79 (4H, m), 1 .65 (1H, s), 1. 49-1. 15 (3H, m
MS 627 (M+1)).

Example	No.	15	1H NMR(δ) ppm
но		-•	300MHz, DMSO-d6 12. 75(1H, brs), 8. 22(1H, s) , 7. 93(2H, d, J=8. 7Hz), 7. 85 (2H, d, J=8. 5Hz), 7. 53-7. 21 (10H, m), 6. 94(2H, d, J=8. 7Hz), 4. 30-4. 12(3H, m), 3. 05(2H, m), 2. 35-2. 15(2H, m), 1. 95-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 50-1. 10(3H, m)
Purity	>90%	(NMR)	
MS	517	(M+1)	

Example	No.	159	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.77(1H, brs), 8.22(1H, s), 7.95(1H, d, 8.6Hz), 7.86(1 H, d, 8.6Hz), 7.80(1H, s), 7. 70-7.35(10H, m), 7.27(2H, d, J=8.7Hz), 5.30(2H, s), 4.2 8(1H, m), 2.35-2.15(2H, m), 1.95-1.75(4H, m), 1.70-1.5 5(1H, m), 1.50-1.15(3H, m)
Purity	>90% (NM	IR)	
MS	503 (M+1)		

5

Table 44

Example No. 160	1H NMR(δ) ppm
HO N HC1 H	300MHz, DMSO-d6 8. 90 (1H, brs), 8. 59 (1h, brs), 8. 33 (1H, s), 8. 18 and 8. 00 (2H, ABq, J=8. 5Hz), 7. 73 and 7. 10 (4H, A'B' q, J=8. 5Hz), 7 .32-7. 05 (4H, m), 4. 35 (1H, brt, J=12. 2Hz), 3. 86 (2H, d, J=6. 3Hz), 3. 25-3. 08 (2H, m), 2. 85-2. 66 (2H, m), 2. 40-2. 2 8 (2H, m), 2. 07-1. 14 (15H, m)
Purity >90% (NMR)	
MS 526 (M+1)	

Example No.	161	1H NMR(δ) ppm
HO NO	∕—€NH HC I	300MHz, DMSO-d6 9. 05 (1H, brs), 8. 76 (1h, brs), 8. 31 (1H, s), 8. 19and8.00 (2H, ABq, J=8.3Hz), 7. 79and 7. 25 (4H, A'B'q, J=8.3Hz), 7. 39 (1H, brs), 6. 86-6. 74 (4H, m), 4. 37 (1H, brt, J=12.2Hz), 3. 89 (2H, d, J=5.0Hz), 3. 35-3. 18 (2H, m), 2. 98-2. 75 (2H, m), 2. 38-2. 17 (2H, m), 2. 1
Purity >90% (NMF	٤)	6-1. 15 (15H, m)
MS 526 (M+1)		

Example	No.	162	1H NMR(δ) ppm
но		H O	300MHz, DMSO-d6 12. 87(1H, brs), 8. 58(1H, d, J=6. 0Hz), 8. 23(1H, s), 7. 99 and 7. 80(2H, ABq, J=8. 6Hz), 7. 61 and 7. 18(4H, A'B'q, J=8. 0Hz), 7. 45-7. 30(5H, m), 5. 29(1H, brs), 4. 26(1H, brt, J=12. 2Hz), 2. 37-2. 11(2H, m), 2. 00-1. 71(4H, m), 1. 92(3H, s), 1. 70-1. 52(1H, m), 1. 45
Purity	>90% (NM)	R)	-1. 11 (3H, m)
MS	498 (M+1)		

Table 45

5	Example No.	163	1H NMR(δ) ppm
10	HO N O	<i>,</i> =<	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 6Hz), 6. 80 (1H, d, J=7. 5Hz), 6. 72-6. 69 (2H, m), 5. 20 (1H, t, J=3. 7Hz), 4. 31 (1H, brt, J=12. 2Hz), 3. 95 (2H, t, J=6. 8Hz), 2. 49-2. 19 (4H, m), 1. 97-1. 76 (4H, m), 1 . 68 (3H, s), 1. 67-1. 54 (1H, m
	Purity >90% (NMR)), 1, 61 (3H, s), 1. 45−1. 20 (3
20	MS 511 (M+1)		Н, 19.)
			
	Example No.	164	1H NMR(δ) ppm
25	HO N N	_ر	300MHz, DMSO-d6 8. 20 (1H, s), 7. 87 (2H, s), 7. 68and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=7. 9Hz), 6. 8 1 (1H, d, J=9. 4Hz), 6. 72 (1Hs), 6. 71 (1H, d, J=6. 8Hz), 4. 8
35	Purity >90% (NMR)		0(2H, s), 4. 29(1H, brt, J=12 .2Hz), 4. 10(1H, t, J=6. 7Hz) ,2. 43(1H, t, J=6. 7Hz), 2. 39 -2. 19(2H, m), 1. 97-1. 78(4H ,m), 1. 76(3H, s), 1. 70-1. 56 (1H, m), 1. 43-1. 19(3H, m)
	MS 497 (M+1)		-
40	Example No.	165	1H NMR(δ) ppm
45 50	HCI		300MHz, DMSO-d6 11. 21 (1H, brs), 8. 33 (1H, s), 8. 25 (1H, d, J=8. 6Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 78 (2H, d, J=8. 7Hz), 7. 70-7. 67 (2H, m), 7. 55-7. 42 (3H, m), 7. 27 (2H, d, J=8. 7Hz), 4. 73-4. 30 (5H, m), 4. 20-3. 97 (1H, m), 3. 42-3. 10 (2H, m), 2. 45-1. 23 (14H, m)
	Purity >90% (NMR)	ł	1

MS

Table 46

Example No.	166	1H NMR(δ) ppm
	ı	300MHz, DMSO-d6 8. 27 (1H, s), 8. 13 (1H, d, J=8 . 4Hz), 7. 97 (1H, d, J=9. OHz) , 7. 73 (1H, d, J=1. 8Hz), 7. 68 (2H, d, J=8. 4Hz), 7. 54 (1H, d d, J=8. 4, 2. 1Hz), 7. 41-7. 31 (5H, m), 7. 19 (2H, d, J=8. 4Hz), 5. 10 (2H, s), 4. 32 (1H, m), 2. 50 (3H, s), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 75-
Purity >90% (NMR)		1.55(1H, m), 1.55-1.10(3H, m).
MS 583 (M+1)		

5

Example	No.	167	1H NMR(δ) ppm
10		ı	300MHz, DMSO-d6 8. 25 (1H, s), 8. 09 (1H, d, J=8 . 4Hz), 8. 00 (2H, d, J=8. 4Hz) , 7. 94 (1H, d, J=8. 7Hz), 7. 80 (1H, d, J=2. 1Hz), 7. 73 (2H, d , J=8. 1Hz), 7. 65 (2H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 1, 2. 1Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 16 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 30 (1H, m), 3. 26 (3H
Purity	>90% (NMR)		,s),2.40-1.15(2H,m),2.05 -1.75(4H,m),1.75-1.55(1H
MS	615 (M+1)		, m), 1.55-1.15(3H, m).

Example	No.	168	1H NMR(δ) ppm
но		C)	300MHz, DMSO-d6 13. 1 (1H, brs), 8. 32 (1H, s), 8. 28 (1H, d, J=8. 8Hz), 8. 05 (1H, d, J=8. 7Hz), 7. 80-7. 75 (3H, m), 7. 69 (1H, d, J=4. 1Hz), 7. 57 (2H, m), 7. 34-7. 29 (3H, m), 7. 20-7. 15 (1H, m), 5. 24 (2H, s), 4. 39 (1H, m), 2. 45-2 . 20 (2H, m), 2. 20-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1
Purity	>90% (NM	R)	.55 (1H, m), 1.55-1.15 (3H, m
MS	543 (M+1)		<i>'</i> ·

5

Table 47

Example No.		69 1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 31 (1H, s), 8. 26 (1H, d, J=8 . 7Hz), 8. 05 (1H, d, J=8. 7Hz) , 7. 78-7. 71 (3H, m), 7. 59-7. 41 (6H, m), 7. 23 (2H, d, J=9. 0 Hz), 5. 11 (2H, s), 4. 35 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1 . 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1 . 15 (3H, m).
Purity >90	% (NMR)	
MS 8	571 (M+1)	-

Example No.	70 1H NMR(δ) ppm .
HO I I	300MHz, DMSO-d6 12.7(1H, brs), 8.66(1H, s), 8.61(1H, m), 8.21(1H, s), 7. 92-7.79(4H, m), 7.61-7.56(3H, m), 7.50-7.43(2H, m), 7. 10(2H, d, J=8.7Hz), 5.09(2H, s), 4.26(1H, m), 2.40-2.15 (2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15 (3H, m).
Purity >90% (NMR)	
MS 538 (M+1)	

Example No.	171 1H NMR(δ) ppm
	300MHz, DMSO-d6 8.31 (1H, s), 8.25 (1H, d, J=8 .7Hz), 8.04 (1H, d, J=8.7Hz) ,7.74-7.71 (3H, m), 7.57-7. 46 (3H, m), 7.39 (1H, d, J=8.1 Hz), 7.31-7.21 (4H, m), 5.11 (2H, s), 4.35 (1H, m), 2.40-2 .15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1 .55 (1H, m), 1.55-1.15 (3H, m
Purity >90% (NMR).
MS 555 (M+1)	

Table 48

5	Example No.	172	1H NMR(δ) ppm
10	HO		300MHz, DMSO-d6 8. 24 (1H, s), 7. 99 (1H, d, J=8 . 7Hz), 7. 88 (1H, d, J=10. 5Hz), 7. 70 (1H, dd, J=11. 4, 1. 8H z), 7. 48-7. 32 (6H, m), 7. 17- 7. 09 (5H, m), 5. 12 (2H, s), 4. 30 (1H, m), 2. 40-2. 15 (2H, m), 2. 05-1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 20 (3H, m)
	Purity >90% (NMR)		
20	MS 537 (M+1)		
25	Example No.	173	1H NMR(δ) ppm 300MHz, DMSO-d6

Example No.	173 1H NMR(δ) ppm
HO I I	300MHz, DMSO-d6 8. 33 (1H, s), 8. 29 (1H, d, J=8 . 7Hz), 8. 06 (1H, d, J=8. 7Hz) , 7. 82-7. 74 (4H, m), 7. 45 (1H, dd, J=8. 4, 3. 0Hz), 7. 39 (2H, d, J=8. 7Hz), 5. 28 (2H, s), 4. 40 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 15 (3H, m),
Purity >90% (N	
MS 540 (M+1	

Example No.	174	1H NMR(δ) ppm
)	300MHz, DMSO-d6 12.80(1H, brs), 8.26(1H, s), 8.01(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.7Hz), 7.80-7.70 (1H, m), 7.60-7.36(7H, m), 7.18-6.91(2H, m), 5.09(2H, s), 4.11-3.90(1H, m), 2.32-1.18(14H, m)
Purity >90% (NMR	2)	
MS 590 (M+1)		

Table 49

5	Example No.	175	1H NMR(δ) ppm
10	HO NO		300MHz, DMSO-d6 12. 75 (1H, s), 8. 21 (1H, s), 7 . 94and7. 85 (2H, ABq, J=8. 7H z), 7. 61and7. 00 (4H, A' B' q, J=8. 5Hz), 7. 31-6. 91 (2H, m) ,7. 25 (2H, d, J=7. 7Hz), 5. 41 (2H, brs), 4. 54 (2H, d, J=6. 6 Hz), 4. 35-4. 14 (2H, m), 2. 49 -2. 15 (3H, m), 1. 95-1. 55 (5H ,m), 1. 50-1. 13 (5H, m), 1. 10
	Purity >90% (NMR)	-0.77 (2H, m)
20	MS 568 (M	+1)	
	Example No.	176	1H NMR(δ) ppm
25		√	300MHz, DMSO-d6 8. 24 (1H, s), 7. 97and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 1Hz), 6. 81 (1H,
30	6	, ,~_, " ~\	d, J=9. 2Hz), 6. 72 (1H, s), 6. 71 (1H, d, J=6. 5Hz), 4. 48-4. 20 (2H, m), 3. 95-3. 75 (3H, m), 3. 03 (1H, t, J=12. 3Hz), 2. 6 0-2. 40 (1H, m), 2. 39-2. 15 (2
35	Purity >90% (NMR)	H, m), 2.07-1.58(6H, m), 1.9 9(3H, s), 1.50-1.00(5H, m)
	MS 568 (M	+1)	
40	Example No.	177	1H NMR(δ) ppm
45 50	HO II		300MHz, DMSO-d6 12. 76(1H, s), 8. 23(1H, s), 7 . 96and7. 86(2H, ABq, J=8. 6H z), 7. 69and7. 20(4H, A'B'q, J=8. 6Hz), 7. 39(1H, t, J=8. 2 Hz), 6. 86(1H, d, J=8. 3Hz), 6 . 81(1H, s), 6. 76(1h, d, J=8. 0Hz), 4. 83(2H, s), 4. 31(1H, brt, J=12. 2Hz), 2. 39-2. 19(
	Purity >90% (VMR)	2H, m), 1. 99-1. 79 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 20 (
	2 2 2 2 2 2 2 3	14444	3H, m)

467 (M+1)

55

MS

Table 50

Example No.	178	1H NMR(δ) ppm
HO L N		300MHz, DMSO-d6 12. 85 (1H, s), 8. 75 (1H, s), 8 . 63 (2H, d, J=3. 8Hz), 8. 25 (1 H, s), 8. 04-8. 01 (2H, m), 8. 0 2and7. 90 (2H, ABq, J=8. 6Hz) , 7. 72and7. 20 (4H, A'B'q, J= 8. 6Hz), 7. 57 (2H, dd, J=7. 8, 5. 0Hz), 7. 40 (1H, t, J=8. 2Hz), 6. 93 (1H, d, J=8. 2Hz), 6. 8 7 (1H, s), 6. 77 (1H, d, I=8. 2H
Purity >90%	(NMR)	z), 5. 23 (2H, s), 4. 33 (1H, br t, J=12. 2Hz), 2. 40-2. 18 (2H
MS 520	(M+1)	, m), 2.00-1.55(5H, m), 1.50

Example No.	179	1H NMR(δ) ppm
HO	` ~	300MHz, DMSO-d6 8. 32 (1H, s), 8. 29 (1H, d, J=9 .0Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 61 (1H, d, J=8. 4Hz), 7. 58 -7. 32 (5H, m), 6. 98 (1H, d, J= 2. 1Hz), 6. 93 (1H, dd, J=8. 7, 2. 1Hz), 5. 27 (2H, s), 4. 16-4 .00 (1H, m), 3. 87 (3H, s), 2. 2 0-2. 12 (2H, m), 2. 02-1. 98 (4 H, m), 1. 70-1. 60 (1H, m), 1. 5
Purity >90% (N)	MR)	2-1. 10 (3H, m)
MS 457 (M+1)		

Example	No.	180	1H NMR(δ) ppm
но		Br Om	300MHz, DMSO-d6 8. 21 (1H, s), 7. 91 (1H, d, J=8 .6Hz), 7. 85 (1H, d, J=8. 6Hz) , 7. 63 (2H, d, J=8. 4Hz), 7. 60 (1H, d, J=9. 0Hz), 7. 25 (2H, d , J=8. 4Hz), 7. 23 (1H, d, J=3. 0Hz), 6. 95 (1H, dd, J=9. 0, 3. 0Hz), 5. 19 (2H, s), 4. 30 (1H, m), 3. 78 (3H, s), 2. 40-2. 19 (2H, m), 2. 00-1. 87 (4H, m), 1.
Purity	>90% (NM)	R)	66 (1H, m), 1. 49-1. 18 (3H, m)
MS	536 (M+1)		1

Table 51

5	Example No. 18	1 1H NMR(δ) ppm
10	HO NO SHO	7Hz),7.6 ,7.65(4H, (2H,d,J=6 (6H,m),6.),4.20(1H,m),1.98	MSO-d6 s), 7. 95 (1H, d, J=8 86 (1H, d, J=8. 7Hz) d, J=7. 4Hz), 7. 47 3. 7Hz), 7. 44-7. 27 99 (2H, d, J=8. 7Hz H, m), 2. 34-2. 12 (2 3-1. 75 (4H, m), 1. 6 1. 46-1. 13 (3H, m).
	Purity >90% (NMR)		
20	MS 547 (M+1)		
25 30 35	Example No. 18 CI NO. Purity >90% (NMR)	300MHz, DM 8. 55 (1H, d 1H, m), 8. 2 , d, J=8. 4H 7. 8Hz), 7. . 14 (2H, d, H, s), 4. 26 5 (2H, m), 2	
	MS 582 (M+)		
40	Example No. 18	1H NMR(S)	DOM:

Example No. 183	1H NMR(δ) ppm
	300MHz, DMSO-d6 10.16(1H, s), 8.25(1H, s), 8 .07(1H, d, J=8.7Hz), 7.94-7 .87(2H, m), 7.71-7.62(3H, m), 7.50-7.42(4H, m), 7.30(1 H, d, J=8.4Hz), 7.14(2H, d, J =8.4Hz), 5.06(2H, s), 4.31(1H, m), 2.35-2.15(2H, m), 2. 05-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15(3H, m)
Purity >90% (NMR)	
MS 594 (M+)	

Table 52

Example No.	184	1H NMR(δ) ppm
) 01	300MHz, DMSO-d6 13. 2 (2H, brs), 8. 30 (1H, s), 8. 26 (1H, d, J=8. 8Hz), 8. 04 (1H, d, J=8. 8Hz), 8. 00 (2H, d, J=8. 2Hz), 7. 79 (1H, s), 7. 73 (2H, d, J=8. 7Hz), 7. 61-7. 56 (3H, m), 7. 44 (1H, d, J=8. 3Hz), 7. 23 (2H, d, J=8. 8Hz), 5. 1 3 (2H, s), 4. 35 (1H, m), 2. 45-2. 15 (2H, m), 2. 15-1. 95 (2H,
Purity > 90% (NM	IR)	m), 1.95-1.75(1H, m), 1.75- 1.15(3H, m).
MS 581 (M+1)		1

Example	No.	185	1H NMR(δ) ppm
но		O	300MHz, DMSO-d6 8. 30(1H, m), 8. 24(1H, d, J=9.0Hz), 8. 03(1H, d, J=9.0Hz), 7. 79-7. 10(9H, m), 5. 20-5. 07(2H, m), 4. 43-4. 04(4H, m), 3. 50-3. 36(2H, m), 2. 40-1. 19(14H, m)
Purity	>90% (NMR)).	
MS	554 (M+1)		

Example No.	186	1H NMR(δ) ppm
		(DMSO-d6) δ:8.29(1H, brs), 8.10(1H, d, J=8.4Hz), 7.97(1H, d, J=8.4Hz), 7.79(2H, d, J=8.4Hz), 7.76(1H, m), 7.68(2H, d, J=8.4Hz), 7.61(1H, d, J=8.4Hz), 7.57-7.50(2H, m), 7.46-7.39(1H, m), 7.29(1H, d, J=2.4Hz), 7.11(1H, dd, J=2.4, 8.4Hz), 5.12(2H, s), 3.99-3.84(1H, m), 2.
Purity >90% (NM	R)	35-1.72(6H, m), 1.68-1.55(1H, m), 1.42-1.10(3H, m)
MS 605 (M+1)		

			Table 5	3
5	Example	No.	187	1H NMR(δ) ppm
. 10	но			300MHz, DMSO-d6 12. 76(1H, s), 8. 57(1H, d, J= 4. 4Hz), 8. 23(1H, s), 7. 96an d7. 86(2H, ABq, J=8. 2Hz), 7. 87-7. 82(1H, m), 7. 68and7. 1 2(4H, A'B'q, J=8. 6Hz), 7. 53 (2H, d, J=7. 8Hz), 7. 37(1H, t , J=8. 3Hz), 7. 36-7. 33(1H, m), 6. 90(1H, d, J=8. 3Hz), 6. 8 3(1H, s), 6. 74(1H, d, J=8. 0H
	Purity	>90% (NMR)	z), 5. 20 (2H, s), 4. 31 (1H, br t, J=12. 2Hz), 2. 35-2. 19 (2H
20	MS	520 (M+1)		, m), 1.99-1.57 (5H, m), 1.45
25	Example N	10.	188	1H NMR(δ) ppm 300MHz, DMSO-d6 12.77(1H, brs), 8.21(1H, d, J=1,4Hz), 7.92(1H, d, J=8.7
	но		_	Hz), 7. 88 (1H, dd, J=8. 7, 1. 4 Hz), 7. 57 (2H, d, J=8, 7Hz), 7

Example No.		188	1H NMR(δ) ppm
но		}	300MHz, DMSO-d6 12. 77 (1H, brs), 8. 21 (1H, d, J=1, 4Hz), 7. 92 (1H, d, J=8. 7 Hz), 7. 88 (1H, dd, J=8. 7, 1. 4 Hz), 7. 57 (2H, d, J=8. 7Hz), 7. 57-7. 27 (7H, m), 7. 11 (2H, d, J=8. 7Hz), 5. 07 (2H, s), 4. 2 6 (1H, m), 2. 36-2. 16 (2H, m), 1. 98-1. 75 (4H, m), 1. 64 (1H, m), 1. 49-1. 17 (3H, m).
Purity >	90% (NMR)		
MS	555 (M+1)		

Example No.	189	1H NMR(δ) ppm
	C C C C C C C C C C C C C C C C C C C	300MHz, DMSO-d6 8. 32 (1H, s), 8. 30-8. 20 (2H, m), 8. 10-7. 98 (2H, m), 7. 74 (2H, d, J=9. 0Hz), 7. 60-7. 46 (5H, m), 7. 24 (2H, d, J=9. 0Hz), 5. 19 (2H, s), 4. 44-4. 30 (1H, m), 2. 40-2. 20 (2H, m), 2. 12-1. 78 (4H, m), 1. 72-1. 58 (4H, m)
Purity >90%	(NMR)	
MS 581 ()	M+1)	7

Table 54

Example	No.	190	1H NMR(δ) ppm
ной		NH ₂	300MHz, DMSO-d6 8.36-7.90(5H, m), 7.74(2H, d, J=8.6Hz), 7.60-7.40(5H, m), 7.25(2H, d, J=8.7Hz), 5.14(2H, s), 4.45-4.28(1H, m), 2.40-2.15(4H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)
Purity	>90% (1	MR)	1 .
MS	580 (M+	1)	

Example 1	No.	191	1H NMR(δ) ppm
но		-0 CH _a	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz) ,7. 61(2H, d, J=8. 7Hz), 7. 25 -7. 00(6H, m), 4. 86(2H, s), 4 .30(1H, m), 2. 89(3H, s), 2. 8 0(3H, s), 2. 29(2H, m), 2. 00- 1. 75(4H, m), 1. 70-1. 55(1H, m), 1. 50-1. 15(3H, m)
Purity	>90%	(NMR)	
MS	514 ((M+1)	

Example	No.	192	1H NMR(δ) ppm
HOLL		 -	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz) , 7. 61(2H, d, J=8. 7Hz), 7. 26 -7. 01(6H, m), 4. 84(2H, s), 4 .31(1H, m), 3. 36(4H, m), 2. 2 9(2H, m), 2. 00-1. 75(4H, m), 1. 75-1. 15(10H, m)
Purity	>90% (NMR) .	
MS	554 (M+1)		·

Table 55

Example No.	193	1H NMR(δ) ppm
Ho 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		300MHz, DMSO-d6 13.00(1H, brs), 8.29(1H, d, J=1.4Hz), 8.15(1H, d, J=8.8 Hz), 7.97(1H, dd, J=1.4Hz, 8 .8Hz), 7.89(2H, d, J=8.8Hz) , 7.80-7.60(5H, m) 7.25(2H, d, J=8.8Hz), 4.47-3.90(4H, m), 3.20-3.10(2H, m), 2.41- 1.22(14H, m)
Purity >90% (N)	MR)	
MS 560 (M+1)		7

Example N	o.	194	1H NMR(δ) ppm
ной			300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.5Hz), 7.87 (1H, d, J=8.5Hz), 7.70-7.17 (9H, m), 4.60-4.13(4H, m), 3.72-3.40(2H, m), 2.40-1.15 (14H, m)
Purity	>90% (NMR)		. •
MS	524 (M+1)		

Example No. 19	5 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 25 (1H, s), 8. 09-7. 92 (5H, m), 7. 77 (1H, s), 7. 65 (2H, d, J=8. 4Hz), 7. 59-7. 51 (3H, m), 7. 43 (2H, d, J=8. 4Hz), 7. 17 (2H, d, J=8. 7Hz), 5. 10 (2H, s), 4. 30 (1H, m), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 10 (3H, m).
Purity >90% (NMR)	
MS 580 (M+1)	

Table 56

Example No.	196 1H NMR(δ) ppm
HO LO	N-OH, (AHz), 7. 69and 7Hz), 7. 69and 7Hz), 7. 6. 80-6. 6 s), 4. 31 d, 2. 84 (3Hz), 7. 7 do not consider the constant of the co	DMSO-d6 ,s), 7. 95 (1H, d, J=8 .86 (1H, d, J=8. 4Hz) d7. 18 (4H, ABq, J=8. 34 (1H, t, J=8. 0Hz), 59 (3H, m), 4. 83 (2H, (1H, m), 2. 98 (3H, s) 4, s), 2. 29 (2H, m), 2 5 (4H, m), 1. 70-1. 55 1. 50-1. 15 (3H, m)
Purity >90%	(NMR)	V
MS 514	(M+1)	*

Example	No.	197	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 23 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 7Hz) , 7. 69and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 80-6. 70 (3H, m), 4. 82 (2H, s), 4. 31 (1H, m), 3. 40 (4H, m) , 2. 29 (2H, m), 2. 00-1. 75 (4H , m), 1. 70-1. 15 (10H, m)
Purity	>90% (NMR)		
MS	554 (M+1)		

Example	No.	198	1H NMR(δ) ppm
HO. L	**************************************)v-c#,	300MHz, DMSO-d6 12. 75 (1H, s), 8. 23 (1H, d, J= 4. 4Hz), 7. 95and7. 86 (2H, AB q, J=8. 6Hz), 7. 69and7. 19 (4 H, A'B'q, J=8. 6Hz), 7. 36 (1H , t, J=7. 8Hz), 6. 82 (1H, d, J= 9. 3Hz), 6. 73 (1H, s), 6. 71 (1 H, d, J=7. 2Hz), 4. 30 (1H, brt , J=12. 2Hz), 3. 89 (2H, d, J=6 . 0Hz), 3. 59 (2H, d, J=11. 7Hz
Purity	>90% (NMR)]), 2. 85 (3H, s), 2. 73 (2H, t, J =10. 5Hz), 2. 41-2, 20 (2H, m)
MS	604 (M+1)		, 1.98-1.59 (8H, m), 1.46-1.

Table 57

Example No.	199	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 33 (1H, s), 8. 30 (1H, d, J=8 .9Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 79 (2H, d, J=8. 7Hz), 7. 70 (2H, d, J=8. 7Hz), 7. 61 (2H, d ,J=8. 7Hz), 7. 39 (2H, d, J=8. 8Hz), 5. 28 (2H, s), 4. 39 (1H, m), 2. 50-2. 15 (2H, m), 2. 15- 1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-
Purity >90% (NM	IR)	1. 15 (3H, m).
MS 542 (M+1)		

Example No.	200	1H NMR(δ) ppm
		(DMSO-d6) δ:8.23(1H, s), 7.96(1H, d, J=8.6Hz), 7.86(1H, d, J=8.6Hz), 7.69(2H, d, J=8.4Hz), 7.52(1H, s), 7.50-7.30(4H, m), 7.18(2H, d, J=8.4Hz), 6.90(1H, d, J=8.3Hz), 6.84(1H, s), 6.74(1H, d, J=8.3Hz), 5.15(2H, s), 4.39-4.21(1H, m), 2.39-2.18(2H, m), 1.99-1.80(4H, m), 1.71-1
Purity >90% (NMR)		.59(1H, m), 1.50-1.20(3H, m)
MS 553 (M+1)		

Example No.	201	1H NMR(δ) ppm
		(DMSO-d6) δ :8.26(1H, s),8 .06(1H, d, J=8.7Hz),7.92(1 H, d, J=8.7Hz),7.72(2H, d, J =8.7Hz),7.47(4H, s),7.38(1H, t, J=8.2Hz),7.20(2H, d, J=8.7Hz),6.90(1H, d, J=8.2 Hz),6.83(1H, s),6.74(1H, d, J=8.2 Hz),5.14(2H, s),2.4 0-2.19(2H, m),2.04-1.78(4 H, m),1.71-1.60(1H, m),1.5
Purity >90%	(NMR)	0-1. 21 (3H, m)
MS 553	(M+1)	

5

Table 58

Example No.	202	IH NMR(δ) ppm
HO L CO	∕ ~∫≻F	(DMSO-d6) δ :12.81(1H, brs), 8.24(1H, s), 7.99(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.69(2H, d, J=8.6Hz), 7.53-7.47(2H, m), 7.38(1H, t, J=8.2Hz), 7.26-7.16(4H, m), 6.89(1H, d, J=8.2Hz), 6.82(1H, s), 6.73(1H, d, J=8.2Hz), 5.11(2H, s), 4.40-4.21(1H, m), 2.40-2.17(2H, m), 2.0
Purity >90% (NM	R)	1-1.77(4H, m), 1.71-1.59(1 H, m), 1.50-1.20(3H, m)
MS 537 (M+1)	-	, , , , , , , , , , , , , , , , , , , ,

Example No.	203	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.74(1H, brs), 8.21(1H, s), 8.08(2H, d, J=9.0Hz), 7.93 (1H, d, J=8.7Hz), 7.85(2h, d, J=8.7Hz), 7.58(2H, d, J=8.7Hz), 7.13(2H, d, J=8.7Hz), 6.83(2H, d, J=9.0Hz), 4.50-4.08(4H, m), 3.68-3.30(2H, m), 2.40-1.23(14H, m)
Purity >90% (N	IMR)	
MS 541 (M+	1)	

Example No. 20	14 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 39-8. 28(2H, m), 8. 08(1H, d, J=8. 8Hz), 7. 76(2H, d, J=8. 7Hz), 7. 29(2H, d, J=8. 7Hz), 7. 25-7. 13(2H, m), 6. 80-6. 60(3H, m), 4. 46-3. 98(4H, m), 3. 51-3. 42(1H, m), 3. 20-3. 04(1H, m), 2. 39-1. 20(14H, m)
Purity >90% (NMR)	
MS	

Table 59

Example No.	205	1H NMR(δ) ppm
		300MHz, DMSO-d6 9. 59(1H, brs), 8. 23(1H, s), 8. 04(1H, d, J=8. 4Hz), 7. 90(1H, d, J=8. 4Hz), 7. 62(2H, d, J=8. 7Hz), 7. 39(2H, 2H, d, J=8. 7Hz), 7. 18(2H, d, J=8. 7Hz), 6. 63(2H, d, J=8. 7Hz), 3. 95 -3. 37(4H, m), 3. 51-3. 40(1H, m), 3. 17-3. 02(1H. m), 2. 39 -1. 18(17H, m)
Purity >90% (NMR	2)	
MS 553 (M+1)		

Example No.	206	1H NMR(δ) ppm
		300MHz, DMSO-d6 13. 1 (1H, brs), 8. 33 (1H, s), 8. 29 (1H, d, J=8. 8Hz), 8. 06 (1H, d, J=8. 7Hz), 7. 77 (2H, d, J=8. 7Hz), 7. 59-7. 52 (4H, m), 7. 35 (2H, d, J=8. 8Hz), 5. 19 (2H, s), 4. 39 (1H, m), 2. 71 (3 H, s), 2. 45-2. 20 (2H, m), 2. 2 (0-1. 95 (2H, m), 1. 95-1. 75 (2 H, m), 1. 75-1. 55 (1H, m), 1. 5
Purity >90% (NMR)		5-1.15(3H, m).
MS 558 (M+1)		

Example No.	207	1H NMR(δ) ppm
HO I CON		300MHz, DMSO-d6 8. 29 (1H, s), 8. 26 (1H, d, J=8 .8Hz), 8. 04 (1H, d, J=8. 7Hz) .7. 73 (2H, d, J=8. 8Hz), 7. 50 -7. 41 (6H, m), 7. 36 (2H, d, J= 8. 8Hz), 7. 18-7. 13 (2H, m), 6 .84 (1H, s), 4. 33 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity >90% (N	IMR)	H, m).
MS 539 (M+	1)	

Table 60

Example	No.	208	1H NMR(δ) ppm
но		NO ₂	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 07-8. 00 (3H, m), 7. 79-7. 70 (3H, m), 7. 51 (2H, d, J=8. 1Hz), 7. 40 (2H, d, J=8. 4 Hz), 7. 18 (2H, d, J=8. 7Hz), 4 .99 (2H, s), 4. 34 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity	>90% (NMF	2)	Н, m).
MS	582 (M+1)		

Example No.		
EXEMPLE NO.	209	IH NMR(δ) ppm
HO LONGO	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	300MHz, DMSO-d6 8. 24 (1H, d, J=4. 4Hz), 7. 98a nd7. 88 (2H, ABq, J=8. 6Hz), 7 . 70and7. 19 (4H, A'B'q, J=8. 4Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 86 (1H, d, J=8. 1Hz), 6. 79 (1H, s), 6. 71 (1H, d, J=8. 1Hz), 4. 65-4. 53 (1H, m), 4. 31 (1H, brt, J=12. 2Hz), 3. 88-3. 78 (2H, m), 3. 48 (2H, t, J=9. 0Hz
Purity >90% (NM	AR)), 2.39-2.19(2H, m), 1.02-1 .71(6H, m), 1.70-1.50(3H, m
MS 513(M+1)), 1. 46-1. 19 (3H, m)

Example No.	210	1H NMR(δ) ppm
HO LO CO	, ~~;,	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .96and7.87(2H, ABq, J=8.7H z), 7.84-7.66(6H, m), 7.38(1H, t, J=8.4Hz), 7.18(2H, d, J=8.4Hz), 6.91(1H, d, J=9.0 Hz), 6.84(1H, s), 6.74(1H, d ,J=8.1Hz), 5.26(2H, s), 4.3 1(1H, brt, J=12.2Hz), 2.40- 2.20(2H, m), 1.99-1.76(4H,
Purity >90% (N)	MR)	m), 1.69-1.58(1H, m), 1.45- 1.20(3H, m)
MS 587 (M+1)	<u></u>	1

		Table 6	51
5	Example No.	211	1H NMR(δ) ppm
10	HO CO	HCI	300MHz, DMSO-d6 8. 29 (1H, s), 8. 15and7. 47 (2 H, ABq, J=9. OHz), 7. 77and7. 24 (4H, ABq, J=8. 9Hz), 7. 39 (1H, t, J=7. 8Hz), 6. 84 (1H, d, J=9. 3Hz), 6. 76 (1H, s), 6. 75 (1H, d, J=9. 5Hz), 4. 36 (1H, b rt, J=12. 2Hz), 3. 89 (2H, d, J =6. OHz), 3. 42 (2H, d, J=10. 8 Hz), 3. 04-2. 88 (2H, m), 2. 78
	Purity >90% (NM	R)	7 -2.60 (1H, m), 2.71 (2H, d, J= 4.8Hz), 2.38-2.20 (2H, m), 2
20	MS 540 (M+1)		. 07-1. 80 (7H, m), 1. 70-1. 20
25	Example No.	212	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 22(1H, s), 7. 93and7. 87(2 H, ABq, J=8. 6Hz), 7. 68and7. 17(4H, A'B'q, J=8. 7Hz), 7. 4 3-7. 33(5H, m), 6. 87(1H, d, J=8. 1Hz), 7. 18(2H, d, J=8. 4Hz), 6. 91(1H, d, J=9. 0Hz), 6. 81(1H, s), 6. 72(1H, d, J=8. 0Hz), 5. 08(2H, s), 4. 36(1H, brt, J=12. 2Hz), 2. 37-2. 20(2H, m), 1. 98-1. 78(4H, m), 1. 6
35	Purity >90% (NM	R)	9-1.60(1H, m), 1.41-1.21(3
	MS 575 (M+1)		H, m), 1.28 (9H, s)
40	Example No.	213	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 23(1H, s), 7. 95and7. 86(2
45		æ,	H, ABq, J=8. 4Hz), 7. 69and7.

Example No. 213	lH NMR(δ) ppm
	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 4Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 7Hz), 7. 6 2-7. 36 (5H, m), 6. 90 (1H, d, J =8. 1Hz), 6. 84 (1H, s), 6. 76 (1H, d, J=8. 1Hz), 5. 19 (2H, s), 4. 31 (1H, brt, J=12. 2Hz), 2 .40-2. 19 (2H, m), 1. 99-1. 76 (4H, m), 1. 68-1. 55 (1H, m), 1
Purity >90% (NMR)	. 50-1. 18 (3H, m)
MS 553 (M+1)	

Table 62

Example No.	214	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 94 (1H, d, J=2. 1Hz), 8. 60 (1H, dd, J=4. 8, 1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 12 (1H, dt , J=8. 1, 2. 1Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 87 (1H, dd, J=8. 7, 1. 5Hz), 7. 70 (1H, d, J=8. 7 Hz), 7. 67-7. 54 (3H, m), 7. 50 (1H, dd, J=8. 1, 4. 8Hz), 7. 25 (2H, d, J=8. 7Hz), 7. 21 (1H, m
Purity >90% (NMR)]), 4. 31 (1H, m), 2. 38-2. 19 (2 H, m), 2. 00-1. 78 (4H, m), 1. 6
MS 490 (M+	-1)	5(1H, m), 1.48-1.22(3H, m).

Example	e No.	215	1H NMR(δ) ppm
но		- ()-c	300MHz, DMSO-d6 12.75(1H, brs), 8.23(1H, s), 7.95(1H, d, J=8.7Hz), 7.86 (1H, d, J=8.7Hz), 7.73(2H, d, J=8.4Hz), 7.71(2H, d, J=8.4Hz), 7.63-7.39(2H, m), 7.5 2(2H, d, J=8.4Hz), 7.24(2H, d, J=8.4Hz), 7.18(1H, m), 4.31(1H, m), 2.39-2.20(2H, m), 2.00-1.76(4H, m), 1.65(1H
Purity	>90% (NMI	₹)	, m), 1.49-1.18(3H, m).
MS	523 (M+1)		

Example No.	216	1H NMR(δ) ppm
	<u></u>	300MHz, DMSO-d6 12.77(1H, s), 8.23(1H, d, J= 1.4Hz), 7.95(1H, d, J=8.6Hz), 7.86(1H, dd, J=8.6, 1.4Hz), 7.70(2H, d, J=8.7Hz), 7.6 4(2H, d, J=8.8Hz), 7.56-7.4 8(2H, m), 7.40(1H, s), 7.23(2H, d, J=8.7Hz), 7.10(1H, m), 7.03(2H, d, J=8.8Hz), 4.31 (1H, m), 3.80(3H, s), 2.48-2
Purity >90% (1	MR)] . 20 (2H, m), 2. 00-1. 88 (4H, m), 1. 66 (1H, m), 1. 50-1. 21 (3
MS 519 (M+	1)	H, m).

Table 63

Example	≥ No.	217	1H NMR(δ) ppm
но			(DMSO-d6) δ : 12.80 (1H, brs), 8.23 (1H, s), 8.04 (1H, d, J)=8.6Hz), 7.96 (3H, d, J=8.6Hz), 7.86 (1H, d, J=8.7Hz), 7.63 (2H, d, J=8.6Hz), 5.50 (2H, s), 4.36-4.21 (1H, m), 3.27 (3H, s), 2.74 (3H, s), 2.40-2.19 (2H, m), 1.99-1.79 (4H, m), 1.71-1.60 (1H, m), 1.49-1.19 (3
Purity	>90% (NMF	2)	H, m)
MS	602 (M+1)		1

Example No.	218 1H NMR(δ) pp	in:
	300MHz, DMSO-0 12. 9 (1H, brs), 8. 04 (1H, d, J=8 1H, d, J=8. 6Hz) J=8. 5Hz), 7. 67 Hz), 7. 56 (2H, d, 26 (2H, d, J=8. H, s), 4. 31 (1H, s), 2. 40-2. 15 (1. 80 (4H, m), 1.	8. 25 (1H, s), 3. 7Hz), 7. 91 (4. 7. 72 (2H, d,
Purity >90% (NMR)	m), 1.55-1.15((3H, m)
MS 558 (M+1)		

Example No.	219	1H NMR(δ) ppm
HO LONG		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=9. 0Hz), 7. 84 (1H, dd , J=9. 0, 1. 5Hz), 7. 56 (2H, d, J=8. 7Hz), 7. 42-7. 30 (4H, m) , 7. 12 (2H, d, J=8. 7Hz), 4. 53 (1H, brs), 4. 36-4. 20 (1H, m) , 3. 55 (2H, brs), 3. 00-2. 90 (1H, m), 2. 70-2. 58 (1H, m), 2. 40-1. 10 (18H, m)
Purity >90% (NM	R)	
MS 544 (M+1)		

Table 64

Example	No.	220	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 76 (1H, s), 8. 23 (1H, s), 7 . 96and7. 87 (2H, ABq, J=8. 9H z), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 55 (1H, s), 7. 37 (1H, t, J=8. 1Hz), 6. 91 (1H, d, J=7. 8Hz), 6. 85 (1H, s), 6. 7 4 (1H, d, J=7. 5Hz), 5. 13 (2H, s), 4. 31 (1H, brt, J=12. 2Hz), 2. 65 (3H, s), 2. 41-2. 20 (2H
Purity	>90% (NMR)		, m), 2.00-1.74(4H, m), 1.70 -1.59(1H, m), 1.58-1.20(3H
MS	540 (M+1)		, m)

Example No.	221 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 23 (1H, s), 7. 96and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 7Hz), 7. 3 7 (1H, t, J=8. 2Hz), 6. 87 (1H, d, J=8. 2Hz), 6. 82 (1H, s), 6. 75 (1H, d, J=8. 0Hz), 5. 24 (2H, s), 4. 32 (1H, brt, J=12. 2Hz), 2. 58 (3H, s), 2. 38-2. 20 (2H, m), 2. 30 (3H, s), 2. 00-1. 7
Purity >90% (NM	0/40 -) 1 70 1 50/111)
MS 554 (M+1)	

Example No.	222	1H NMR(δ) ppm
HO. I. C.		300MHz, DMSO-d6 12.88(1H, brs), 8.25(s, 1H), 8.07-7.57(11H, m), 7.26(2 H, d, J=8.7Hz), 7.24(1H, m), 4.34(1H, m), 2.30-2.20(2H, m), 2.03-1.78(4H, m), 1.64(1H, m), 1.49-1.19(3H, m).
Purity >90% (N	MR)	
MS 557 (M+1	1)	

Table 65

Example No.	223	1H NMR(δ) ppm
ной		300MHz, DMSO-d6 10.96(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.7 Hz), 7.84(1H, dd, J=8.7, 1.4 Hz), 7.76-7.40(7H, m), 7.18 (2H, d, J=8.0Hz), 4.24-4.16 (2H, m), 2.40-1.12(18H, m)
Purity >90% (NMR)	-
MS 544 (M	+1)]

Example No. 224	1H NMR(δ) ppm
HO I CONTO	(DMSO-d6) δ :8.22(1H, s),8 .07(1H, d, J=8.4Hz), 7.92(1 H, d, J=8.4Hz), 7.54(2H, d, J =8.7Hz), 7.40(2H, d, J=8.4Hz), 7. 14(2H, d, J=8.7Hz), 4.61(2H, s), 4.48-4.32(1H, m), 3.82 (1H, brd, J=12.3Hz), 3.65-3 .47(2H, m), 3.10(brdd, J=8. 4,12.3Hz), 2.40-2.20(2H, m)
Purity >90% (NMR)), 2.09-1.76(6H, m), 1.71-1 .16(6H, m)
MS 544 (M+1)	

Example No.	225 1H NMR(δ) ppm
	(DMSO-d6) δ:12.83(1H, brs), 8.21(1H, s), 8.10(1H, brs), 7.01-7.91(2H, m), 7.89-7.82(2H, m), 7.75(1H, d, J=8.0Hz), 7.59(2H, d, J=8.7Hz), 7.53(4H, s), 7.46(1H, brs), 7.12(2H, d, J=8.7Hz), 7.23(2H, s), 4.35-4.17(1H, m), 2.38-2.20(2H, m), 1.99-1.79(4H, m), 1.71-1.59(1H, m), 1.
Purity >90% (N	1R) 48-1. 18 (3H, m)
MS 580 (M+1)	

Table 66

Exampl	e No.	226	1H NMR(δ) ppm
HO	\} \-\\-\\-\\-\\	————————————————————————————————————	300MHz, DMSO-d6 8. 33and8. 08(2H, ABq, J=8.7 Hz), 8. 31(1H, m), 7. 66and7. 26(4H, A'B'q, J=9. 2Hz), 7. 4 2and7. 39(4H, A'B''q, J=8. 7Hz), 4. 57(2H, s), 4. 50(1H, brt, J=12. 2Hz), 3. 85-3. 62(3H, m), 3. 28-3. 16(2H, m), 2. 42-2. 23(2H, m), 2. 14-1. 81(6H, m), 1. 72-1. 25(6H, m)
Purity	>90% (NMF	₹)	
MS	544 (M+1)		

Example No.	227	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 43 (1H, d, J=5. 0Hz), 8. 23 (1H, s), 7. 96and7. 86 (2H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 6Hz), 7. 57 (1H, s), 7. 47 (1H, d, J=5. 0Hz), 7. 40 (2H, t, J=8. 2Hz), 6. 91 (1H, d, J=8. 3Hz), 6. 85 (1H, s), 6. 77 (1H, d, J=7. 9Hz), 5. 25 (2H, s), 4. 31 (1H, brt, J=12. 2H
Purity >90% (N	MR)	z), 2. 40–2. 19 (2H, m), 1. 99– 1. 75 (4H, m), 1. 73–1. 57 (1H.
MS 554 (M+1		n), 1. 49–1. 19 (3H, m)

Example No. 228	1H NMR(δ) ppm
	300MHz, DMSO-d6 12. 80(1H, brs), 8. 22(1H, s) , 7. 94(1H, d, J=8. 6Hz), 7. 87 (1H, d, J=8. 6Hz), 7. 60(2H, d , J=8. 7Hz), 7. 32(2H, d, J=8. 7Hz) 7. 17(2H, d, J=8. 7Hz), 6 . 70(2H, d, J=8. 7Hz), 4. 35-3 . 97(4H, m), 3. 62-3. 11(2H, m), 2. 96(6H, s), 2. 39-1. 12(1 4H, m)
Purity >90% (NMR)	
MS 567 (M+1)	

Table 67

Example	No.	229	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 25 (1H, s), 8. 20 (1H, s), 8. 04 (1H, dd, J=8. 1, 1. 8Hz), 7. 92 (1H, d, J=8. 1Hz), 7. 84 (1H, d, J=9. 9Hz), 7. 62-7. 50 (7H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (2H, q, J=6. 9Hz), 4. 30-4. 20 (1H, m), 2. 3 8-2. 18 (2H, m), 1. 98-1. 18 (8H, m), 1. 35 (3H, t, J=6. 9Hz)
Purity	>90% (NI	AR)	
MS	608 (M+1)		

Example No.	230	1H NMR(δ) ppm
но	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	300MHz, DMSO-d6 8. 35(1H, s), 8. 27(1H, d, J=8 .7Hz), 8. 05(1H, d, J=9. 0Hz) ,7. 87(2H, d, J=8. 7Hz), 7. 74 (1H, t, J=8. 1Hz), 7. 64(1H, d ,J=7. 8Hz), 7. 59-7. 50(2H, m),7. 36(2H, d, J=8. 7Hz), 4. 3 9(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 7 5(2H, m), 1. 75-1. 55(1H, m),
Purity about9 0	% (NMR)	1.55-1.20 (3H, m).
MS 4	181 (M+1)	7

Example No.	231	1H NMR(δ) ppm
" C C C C C C C C C C C C C C C C C C C		300MHz DMSO-d6 12.78(1H, brs), 8.23(1H, d, J=1.5Hz), 7.96(1H, d, J=8.7 Hz), 7.87(1H, dd, J=8.7, 1.5 Hz), 7.75(2H, d, J=8.4Hz), 7.63(2H, d, J=8.4Hz), 7.52(2 H, d, J=8.4Hz), 7.24(2H, d, J=8.4Hz), 5.47(2H, s), 4.29(1H, m), 2.97(6H, brs), 2.72(3H, s), 2.39-2.16(2H, m), 2.
Purity about 90% (NM	MR)	7 00-1: 78 (4H, m), 1. 71-1. 59 (1H, m), 1. 49-1. 17 (3H, m).
MS 595 (M+1)		

Table 68

Example No.	232 1H NMR(δ) ppm
	300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.96(1H, d, J=8.7Hz), 7.86 1H, d, J=8.6Hz), 7.70(1H, s), 7.59(2H, d, J=8.7Hz), 7.53 -7.50(5H, m), 7.42(1H, d, J=7.9Hz), 7.12(2H, d, J=8.7Hz), 5.11(2H, s), 4.27(1H, m), 3.01(3H, brs), 2.97(3H, brs), 2.40-2.15(2H, m), 2.00-1
Purity >90% (NM)	
MS 608 (M+1)	

5

Example No.	233 1H NMR(δ) ppm
HO! CI	DMSO-d6 13. 20 (1H, brs), 8. 99 (1H, s), 8. 32 (1H, s), 8. 25 (1H, d, J=8. 8Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 79-7. 74 (4H, m), 7. 60 (2H, d, J=8. 7Hz), 5. 26 (2H, s), 4. 36 (1H, m), 2. 72 (3H, s), 2. 50-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1.
Purity >90% (NMR)	
MS 553 (M+1-HC1)	

Example No.	234	1H NMR(δ) ppm
29121	01 -0 -1	DMSO-d6 8. 77 (1H, d, J=3. 6Hz), 8. 36-8. 26 (3H, m), 8. 08 (1H, d, J=8. 8Hz), 7. 79 (2H, d, J=8. 7Hz), 7. 72-7. 64 (3H, m), 7. 58 (2H, d, J=8. 7Hz), 5. 26 (2H, s), 4. 38 (1H, m), 2. 50-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 5
Purity >90% (1	NMR)	5-1. 15 (3H, m).
MS 538 (M+1-	2HC1)	1

Table 69

Example 1	No.	235	1H NMR(δ) ppm
HO.			300MHz, DMSO-d6 12. 74(1H, brs), 8. 67(1H, dd , J=3. 1, 1. 6Hz), 8. 21(1H, d, J=1. 6Hz), 7. 93(1H, dJ=8. 6H z), 7. 90-7. 80(2H, m), 7. 60- 7. 50(7H, m), 7. 09(2H, d, J=8 .7Hz), 5. 16(2H, s), 4. 26(1H ,m), 2. 40-2. 20(2H, m), 2. 00 -1. 60(5H, m), 1. 50-1. 20(3H ,m)
Purity	>90% (NM)	R)	7
MS .	APCI-Ms 538(M+	1)	7

Example	No.	236	1H NMR(δ) ppm
		CF,00,H	300MHz, DMSO-d-6 8. 40-7. 40 (11H, m), 2. 95, 2. 81 (3H, each d, J=4. 7Hz), 2. 40-2. 20 (2H, m), 2. 10-1. 80 (4H, m), 1. 70- 1. 60 (1H, m), 1. 50-1. 20 (3H, m)
Purity	>90%	(NMR)	
MS	APCI-Ms	555 (M+1)	

Example No.	237	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 21 (1H, s), 8. 15 (1H, d, J=9 .5Hz), 8. 02 (1H, s), 8. 00-7. 80 (3H, m), 7. 70-7. 50 (6H, m) ,7. 12 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 28 (1H, m), 2. 40-2 .20 (2H, m), 2. 00-1. 80 (4H, m), 1. 65 (1H, m), 1. 50-1. 20 (3 H, m)
Purity >909	6 (NMR)	
MS FAB-M:	605 (M+1)	

Table 70

Example No.	238	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 12.80 (1H, brs), 8.54 (1H, s), 8.25 (1H, s), 7.98and7.88 (2H, Abq, J=8.6Hz), 7.76 (2H, d, J=8.6Hz), 7.53-7.31 (3H, m), 6.61 (1H, s), 5.46 (2H, s), 4.32 (1H, brt), 2.40-2.20 (2H, m), 2.02-1.79 (4H, m), 1.69-1.59 (1H, m), 1.48-1.19 (3H, m)
Purity >90% (NMR)		
MS APCI-Ms 521 (M+1)		

Example No.	239	1H NMR(δ) ppm
HO NO	~C*	300MHz, DMSO-d6 12. 79 (1H, brs), 8. 60 (2H, d, J=1. 5Hz), 8. 53 (1H, s), 8. 25 (1H, s), 7. 98 and 7. 85 (2H, AB q, J=9. 4Hz), 7. 76 (2H, d, J=9. 0Hz), 7. 44 (4H, d, J=6. 5Hz), 6. 69 (1H, s), 5. 53 (2H, s), 4. 32 (1H, brt), 2. 40-2. 19 (2H, m), 2. 03-1. 82 (4H, m), 1. 72-1. 61 (1H, m),
Purity >90% (NMR)		1. 42-1. 22 (3H, m)
MS APCI-Ms 522 (M+1)		

Example No	240	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8.90(1H, s), 8.32(1H, s), 8. 28(1H, s), 8.25(1H, d, J=8.3 Hz), 8.05(1H, d, J=8.8Hz), 7.96(1H, s), 7.93(1H, d, J=8.4 Hz), 7.68-7.59(2H, m), 7.54(2H, d, J=8.8Hz), 4.37(1H, b) rt), 2.30(2H, m), 2.00(2H, m), 1.88(2H, m), 1.67(1H, m).
Purity	>90% (NMR)	1.5-1.2(3H, m)
MS	APCI-Ms 525(M+1)	

Table 71

5	Ex. No.	Formula	MS
·	1001	HJN TO	364 (M+H)
10		н,с	
15	1002	H ₂ N CH ₃	454 (M+H)
20			
25	1003	N. N. C.	398 (M+H)
30	1004		357 (M+H)
35		H ₂ M	
40	1005	ни	322 (M+H)
45		5	
50	1006	H ₂ N NO ₂	385 (M+H)
55		U	

Table 72

		Table 12	
5	Ex. No.	Formula	MS
10	1007	H ₂ N TN	357 (M+H)
15	1008		416 (M+H)
20		HJN CH,	
25	1009	H ₂ N H ₃ C	310 (M+H)
30	1010		390 (M+H)
35		H ₂ N T	390 (MTH)
40	1011	HIN NOS	395 (M+H)
45	1012	0	366 (M+H)
50		H³N OH	300 (A11)

138

Table 73

5	Ex. No.	Formula	MS
	1013) F	374 (M+H)
10		H ² M	
15	1014	HIN TO TO	382 (M+H)
20		\Diamond	
	1015	О	350 (M+H)
25		HIN THE	
30			
	1016	H ₂ N F	402 (M+H)
35		Br	
	1017		414 (M+H)
40		H ^M N N N N N N N N N N N N N N N N N N N	,,,,,
		Er CH ₃	
45	1018	9	340 (M+H)
50		HJN TYN	

139

Table 74

		rable /4	
5	Ex. No.	Formula	MS
	1019	H ₃ C	350 (M+H)
10		HĻN	
15	1020		
20	1020	нъм	380 (M+H)
25	1021	OH	366 (M+H)
30		HŢN	
35	1022		378 (M+H)
		H ₂ N CH ₃	
40			
45	1023	H ₂ N Br	402 (M+H)
50			

55

Table 75

	Ex. No.	Formula	MS
5	1024		518 (M+H)
		ا ا	
10		H _I N .	
•			
15			
	1025	H ^T M Cd	408 (M+H)
20			
25	1026	H.W. CH., CH.,	336 (M+H)
		A COH	
30			
	1027		408 (M+H)
35 .		HAN TO THE STATE OF THE STATE O	
40	1028	О	366 (M+H)
		H _I N OH	
45			
	1029		362 (M+H)
50		H³N CH'	ł
		H ₂ ¢	
55			

Table 76

	Ex. No.	Formula	T Wa
5	· ·	FORMUIA	MS
J	1030	9	473 (M+H)
		HAN TO SEE	
	1		1
10	1		
	1031	но, и	338 (M+H)
15		HLN M	
		·	·
		\rightarrow	
20			
20	1032	9	307 (M+H)
		HJN	
<i>25</i>			
	1033		406 (M+H)
30			
	1		
		<u>`</u>	
<i>35</i>			į
	1034		466 (M+H)
		9	400 (M+H)
		HANT AND	
40			
	·	\rightarrow	
			i
45	1035		412 (M+H)
		<u>_</u>	ľ
50			
		H-W T T	
55			
-			
-			

Table 77

5	Ex. No.	Formula	MS
5	1036	° ° — СН,	412 (M+H)
10		H,N T	
15	1037	H ₂ N CH ₃	428 (M+H)
20			
25	1038	H ₂ N C C C C C C C C C C C C C C C C C C C	466 (M+H)
30	1039	0	406 (M+H)
35		H ₂ N C	
40 45	1040	H ₂ N NO ₂	417 (M+H)
	1041		440 (M+H)
50	1041	H ₂ N F F	
55			

Table 78

		Table 78	
5	Ex. No.	Formula	MS
	1042	O NO	417 (M+H)
		HAN THE NO THE STATE OF THE STA	
10			
	1043	F\F	440 (M+H)
15			
		HAN TO ME OF THE PROPERTY OF T	
20			
		\succ	1
	1044		312 (M+H)
25		HIN	
		\triangleright	
30	1045		423 (M+H)
			123 (11.11)
35		HJN	
		H,C	
40	1046	ОН	352 (M+H)
		HAN TO THE STATE OF THE STATE O	
45		CH,	
	1047	o o	307 (M+H)
50		H _N	
.		N N	
		\cup	
₅₅ L			

144

Table 79

5	Ex. No.	Formula	MS
10	1048	H ₂ N F F F	374 (M+H)
15 20	1049		398 (M+H)
	1050		326 (M+H)
25		H ₂ N S CH ₃	
35	1051	Ω O O-CH,	442 (M+H)
40		H _I N T	
45	1052		518 (M+H)
50		HAN CONTRACTOR OF THE PARTY OF	

145

Table 80

	r =	10216 80	
5	Ex. No.	Formula	MS
	1053		442 (M+H)
10		H ₂ N CH ₃	
15	1054	\bigcirc	
20	1054	H ₁ N OH	376 (M+H)
25	1055	H ₂ N C	442 (M+H)
30		, цс ^о	
35	1056	нұм он	352 (M+H)
40	1057	H³N N OH	367 (M+H)
45		NO ₂	
50	1058	H ^T N OH	367 (M+H)
55			

Table 81

5	Ex. No.	Formula	MS
10	1059	H ₂ N CH ₃	364 (M+H)
15	1060	Q.	324 (M+H)
20		H ₂ N F	
05	1061	9	352 (M+H)
30		H ¹ N OH	
35	1062	HIN ST NO.	357 (M+H)
40	1063	H _I N F F	360 (M+H)
45			
50	1064	H ^T N NO ³	351 (M+H)
<i>5</i> 5 .			

Table 82

5	Ex. No.	Formula	MS
	1065		351 (M+H)
10		H-IN NO.	
15	1066	H ₂ N CH ₃	366 (M+H)
20		H _i c [*]	
25	1067	HIN NO.	367 (M+H)
25		ОН	
30	1068		364 (M+H)
35		H ₂ N CH ₃	
40	1069	H ₂ N OH	350 (M+H)
45	1070		
50	10.0		306 (M+H)

Table 83

5	Ex. No.	Formula	MS
10	1071	HO H ₃ C	365 (м+н)
15	1072	HO HO CH ₃	455 (M+H)
20	1073		399 (M+H)
<i>25</i>		HO	,
35	1074	HO L N	358 (M+H)
40	1075	HO CH,	337 (M+H)
45	1076	<u> </u>	386 (M+H)
50	10/0	HO NO ₂	Joo (Mill)

Table 84

5	Ex. No.	Formula	· MS
	1077	9	358 (M+H)
10		HO TO	
	1078	<u> </u>	417 (M+H)
15		HOLLING	117 (HTH)
20		H ₃ C CH ₃	
25	1079	HO NH	311 (M+H)
30	1080		391 (M+H)
35		HO TO F	
40	1081	HO NO2	396 (M+H)
45	1082		267 (16)
50	1082	но	367 (M+H)
. [

150

Table 85

_			
5	Ex. No.	Formula	MS
10	1083	HO N F F	375 (M+H)
15			
20	1084	но	351 (M+H)
25	1085		383 (M+H)
30			J.
35	1086	HO Br	403 (M+H)
40	1087	но	415 (M+H)
45		Br Br	
50	1088	HO NO CO	341 (M+H)

Table 86

	Es No		
5	Ex. No.	Formula	MS
_	1089	ңс	351 (M+H)
10		но	
15	1090	0	381 (M+H)
20		но	J 5 1 (M 11)
	1091	ОН	367 (M+H)
25		HOLL	367 (M+H)
30			
35	1092	HO CH,	379 (M+H)
40	1093	HO Br	403 (M+H)
45			

50

Table 87

5	Ex. No.	Formula	MS
-]	- Camala	}
10	1094	HO N	519 (M+H)
15			
20	1095	HOLL	409 (M+H)
25	1096	HO NO OH	337 (M+H)
30	1097	, or,	409 (M+H)
35		HO THO	
40	1098	но	367 (M+H)
45	1099		363 (M+H)
		HO CH,	
L			

Table 88

	Ex. No.	Formula	MS
5	1100	9	474 (M+H)
10		HO	
15	1101	но	339 (M+H)
20			
25	1102	HO CON	308 (M+H)
30	1103	9 -	467 (M+H)
35		HO FFF	
40	1104	HO TO	413 (M+H)
45			
<i>50</i>	1105	но	413 (M+H)
55		V	

Table 89

_	Ex. No.	Formula	1 345
5	}	rormuta	MS
10	1106	HO CH,	429 (M+H)
15	1107	но	467 (M+H)
20	1108	•	
25		HO CITY OF OR	
35	1109	HO CONO,	
40	1110	HO FF	441 (M+H)
45	1111	HO NO.	418 (M+H)

155

Table 90

	Ex. No.		
5	1	Formula	MS
	1112	Q II	313 (M+H)
		HO	
10			
,,,			
15	1113	l l	308 (M+H)
15		но	
20	1114		275 (417)
		₽ F - F	375 (M+H)
<i>25</i>		но	
25			
30	1115		399 (M+H)
		HO N	
35		<u> </u>	
	1116	9	327 (M+H)
40		HO N S CH,	
45	1117		442
!			443 (M+H)
50		0 0 0−сн,	
30		H0 / / /	
•			
55	1	$\langle \rangle$	
	 -		

Table 91

		Table 91	
5	Ex. No.	Formula	MS
10	1118	HO N	519 (M+H)
15			
20	1119		443 (M+H)
25	·	HO CH,	
30	1120	HD OH	377 (M+H)
35	1121	°	443 (M+H)
40		HOTO	
45	1122	HO CH ₃	353 (M+H)
50			

Table 92

	Ex. No.	Formula	MS
5	1123		1
	1125	N NO2	368 (M+H)
10		но	
		<u> </u>	
15	1124	NO ₂	368 (M+H)
		HO	
		OH	
20			
	1125	1	365 (M+H)
25		HO TING	
		CH,	
		\cup	1
<i>30</i>	1126	Î	325 (M+H)
	}	HO	
<i>35</i>		N F	
		\bigcirc	
	1127	9	353 (M+H)
40		но	
		N O-CH	
45			
	1128	0	358 (M+H)
		HO	
50		S NO ₂	
. [

158

Table 93

5	Ex. No.	Formula	MS
10	1129	HO N F	361 (M+H)
15	1130	9	352 (M+H)
20		HO NO ₂	
	1131	1 ~ —	352 (M+H)
30	1120	HO NO ₂	
35	1132	HO CH ₃	367 (M+H)
40 45	1133	HO NO ₂	368 (M+H)
50	1134	HO CH ₃	365 (M+H)
₅₅ . L			

Table 94

	Γ= :-	Table 34	
5	Ex. No.	Formula	MS
	1135	0	351 (M+H)
•		но	
10		ОН	
15	1136	9	307 (M+H)
		HO	,
·			
20		$\overline{}$	
	1137		
		HO 1	385 (M+H)
25		" g-cry	
<i>30</i>			
30	1138	Î , , , , , , , , , , , , , , , , , , ,	365 (M+H)
		но	
35			
	1139	, g	467 (M+H)
40		9	
		HO N	
45			
45			
	1140	9	387 (M+H)
50		HO N C	
		CH,	
		\rightarrow	
55			

Table 95

_	Tuble 95			
5	Ex. No.	Formula	MS	
10	1141	HO N CH,	322 (M+H)	
15	1142	Q	364 (M+H)	
20		HO CH,		
25	1143	рн	323 (M+H)	
25 30		HO T		
	1144		363 (M+H)	
35		HO H ₃ C CH ₃		
40	1145	но Строн,	484 (M+H)	
45				
50	1146	но	385 (M+H)	
55 . L				

Table 96

		Table 96	
5	Ex. No.	Formula	MS
10	1147	HO NO	427 (M+H)
20	1148	HO CH ₃	420 (M+H)
25	1149	но	508 (M+H)
30	1150		
35		HOLL	458 (M+H)
40	1151	<u> </u>	458 (M+H)
45		HO TO	
50			

Table 97

5	Ex. No.	Formula	MS
10	1152	HO TO	474 (M+H)
15			
20	1153	HO TO	458 (M+H)
25		\Diamond	
30	1154		508 (M+H)
35			
40	1155		454 (M+H)
45 50		HO CH,	
l	L		

163

Table 98

5	<u> </u>	Table 78	
•	Ex. No.	Formula	MS
10	1156	но	470 (M+H)
15	41.57		
20	1157	H,C CH, CH,	496 (M+H)
25		HOTH	
30	1158		482 (M+H)
35	1150		
40	1159	HD TO HOCH,	448 (M+H)
45			
50	1160		488 (M+H)
5.5			

164

Table 99

5			
3	Ex. No.	Formula	MS
	1161		468 (M+H)
10		\	
		HO 100 100 100 100 100 100 100 100 100 10	
15		\rightarrow	
	1162	√N, CH³	447 (M+H)
20			
		HO'TING	
25			
	1163		466 (M+H)
30]		
50		HO TIN	
35	1		
	1164	ОМе	526 (M+H)
		ОМВ	
40	.	HO N	
		\rightarrow	
45	1165	<u> </u>	
	1165	n 〈S〉	420 (M+H)
50		HO NO	
50			
		<u> </u>	

165

Table 100

5		Table 100	
,	Ex. No.	Formula	MS
10	1166		490 (M+H)
15			
	1167	9	435 (M+H)
20		HO TO THE CHI	
25	1168	QGH,	436 (M+H)
30	1169	HO TO TO	
35	1 1	HO TONG	436 (M+H)
40	1170	но	404 (M+H)
45			
<i>50</i>	1171	HO HO CH ₃	406 (M+H)
55 E	<u></u>		

Table 101

5	Ex. No.	Formula	MS
	1172	н Сн,	392 (M+H)
10		HO CH,	
15	1173	H ₂ C CH ₃ CH ₃ CH ₃	420 (M+H)
20			
25	1174	HO THE CHAIN	406 (M+H)
30	1175	CH,	420 (M+H)
35		HO CH,	
40	1176		523 (M+H)
45			
50	1177	HO CH ₃ CH ₃ CH ₃	406 (M+H)
55		V	

5		Table 102	
•	Ex. No.	Formula	MS
10	1178	но	447 (M+H)
15	1170	<u>\</u>	
20	1179	HO CH,	433 (M+H)
25	1180 ·		
30	1200	HO I I I I I I I I I I I I I I I I I I I	509 (M+H)
35			
40	1181	HO N	513 (M+H)
45			

55

Table 103

		Table 103	
5	Ex. No.	Formula	MS
	1182		497 (M+H)
10		но	
15			
20	1183		496 (M+H)
25		HO TO	
30	1184	HO LO	418 (M+H)
35	1185		508 (M+H)
40		HO LINE ON	
45	1186	Q	490 (M+H)
<i>50</i>		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
55		\Diamond	

Table 104

		Table 104	
5	Ex. No.	Formula	MS
10	1187	HO TO TO	441 (M+H)
15	1188		455 (M+H)
20			
25	1189	HO H	455 (M+H)
<i>30</i>	1190	OMe	F 2 2 (24 - 11)
35	1 . 1	HO TONA	513 (M+H)
40	1191	но	504 (M+H)
45	1192		
<i>50</i>	1192	HO TO THE STATE OF	494 (M+H)
55			

Table 105

5	Ex. No.	Formula	MS
3		TOTMUTG	
10	1193		512 (M+H)
15	1194	HO BY	504 (M+H)
20	1195	\bigcirc	516 (M+H)
25	1133		J10 (MTN)
30			
35	1196		497 (M+H)
40	1197	но	456 (M+H)
45			
<i>50</i>	1198	HO LO	509 (M+H)

171

Table 106

5	En Ma	10016 100	
-	Ex. No.	Formula	MS
	1199) H / > CH	483 (M+H)
10		HOTT	
15			
	1200		427 (M+H)
20	1001	<u>\\</u>	
25	1201	HO TO	427 (M+H)
35	1202	HO LANGE OF THE PARTY OF THE PA	477 (M+H)
40	1203		519 (M+H)
1	ŀ	" S S S S S S S S S S S S S S S S S S S	
45			1
50	1204	HO TO	440 (M+H)
55			

Table 107

_		15226 207	
5	Ex. No.	Formula	MS
10	1205	HO HO	454 (M+H)
15	1206	HO N	325 (M+H)
20			
25	1207	но	341 (M+H)
30	1208		385 (M+H)
35		HO Br	
40	1209	HO CH,	363 (M+H)
45	1210		222 (V.II)
50	1210	HO	332 (M+H)
<i>55</i> L			

Table 108

5	Ex. No.		
	L	Formula	MS
	1211	9	351 (M+H)
10		HO CH ₃	
15			
	1212	0	335 (M+H)
20		HO CH,	
	1213	P	349 (M+H)
25		HO CH ₃	
30			
	1214	R	321 (M+H)
35		но	
40	1215	HO F	375 (M+H)
45		\Diamond	
I	1216	9	367 (M+H)
50		HO N	
		ОН	
55			

Table 109

		10020 200	
5	Ex. No.	Formula	MS
	1217	P	433 (M+H)
10		HO TO TO	
15	1218	0	391 (M+H)
20		HO TO F	
	1219	0	337 (M+H)
25		HO TO TO THE STATE OF THE STATE	
30	1220	0	385 (M+H)
35		HO By	
40	1221	HOLLA	341 (M+H)
45	{	\vee	1
<i>50</i>	1222	HOLLY	332 (M+H)
55			

-		Table 110	
5	Ex. No.	Formula	MS
10	1223	HO CH,	395 (M+H)
15	1224		375 (M+H)
20		но	
25	1225	но Ст.	351 (M+H)
30	1226	CAH,	
35		HO CH,	321 (M+H)
40	1227		426 (M+H)
45			
50	1228	HO LO LO CO	460 (M+H)
L			

Table 111

5	Ex. No.	Formula	MS
10	1229	но	442 (M+H)
20	1230	HD CH.	468 (M+H)
20	1231	— ОН — — ОН	456 (M+H)
25		HO NO	
30	1232	HO A A A	494 (M+H)
35			
40	1233		451 (M+H)
45	1234		468 (M+H)
50		HO CH,	
55		U	

Table 112

5	Ex. No.	Formula	MS
10	1235	но	498 (M+H)
	1236		476 (M+H)
. 20		HO LA	
25	1237		502 (M+H)
30	1238	но	
40		HO S NH ₂	505 (M+H)
45	1239 .	9,	469 (M+H)
50		HO	

178

Table 113

		14516 115	
5	Ex. No.	Formula	MS
10	1240	HO TO	483 (M+H)
15	1241	но н	408 (M+H)
20			
25	1242		460 (M+H)
30	1243	<u>\(\)</u>	468 (M+H)
<i>35</i>		HO COL	
40	1244	но	494 (M+H)
45			
<i>50</i>	1245	но СН,	454 (M+H)
55	1		

Table 114

5	·	rapte 114	
3	Ex. No.	Formula	MS
	1246	ң,с_	468 (M+H)
10			
		HO	
15) o	
20	1247) H /=\	498 (M+H)
20		HO	
25			
	1248	н /=\ ,сн,	482 (M+H)
30		HO H,C CH,	
	1040	V	
35	1249	н,с	468 (M+H)
		HO NO	
40			
45	1250	a 4	160 (M+H)
50		но	
55 ·	}		
·			

Table 115

		Table 113	
5	Ex. No.	Formula	MS
	1251	ОН	442 (M+H)
10			
		но	
15			
20	1252	°}—α ,	468 (M+H)
	1		
		P → →	
25		HO NO	
30			
-	1253		456 (M+H)
		о о он	
35		HO N	
40			
	1254		494 (M+H)
		, 	
45			
ļ		HO TO	
50			
		<u> </u>	

Table 116

		Table 116	
5	Ex. No.	Formula	MS
10	1255	HO N CN	451 (M+H)
15			
20	1256	HO CH ₃	468 (M+H)
25	1257		
	1237	, CH,	498 (M+H)
35		HO	
40	1258	ОН	470 (M+H)
45		HO I I I I I I I I I I I I I I I I I I I	
50			

182

Table 117

		Table 117	
5	Ex. No.	Formula	MS
	1259		476 (M+H)
10			
		но	
15			
20	1260		502 (M+H)
<i>2</i> 5		HO TIN	
25			
	1261	O. NH2	505 (M+H)
30	1201		303 (H·II)
		o. 🔎	
35		HO N P	
40			
	1262	NH	469 (M+H)
45			
		HO HO	}
50			

Table 118

_		Table 118	
5	Ex. No.	Formula	MS
10	1263		483 (M+H)
15		HO H.	
20	1264	но	408 (M+H)
25			
30	1265		460 (M+H)
35		HO	
40	1266	CH ₃	46B (M+H)
45		но	
50			

184

Table 119

5	

Ex. No.	Formula	MS
1267	HO THE STATE OF TH	494 (M+H)
1268	et d'a	454 (M+H)
1269	HO CH,	468 (M+H)
1270	HO CH,	498 (M+H)

Table 120

		Table 120	
5	Ex. No.	Formula	MS
	1271	H,C CH,	482 (M+H)
10			
15		HO TI	
20	1272	CH ₃	468 (M+H)
		HO THE	
30	1273	aa	494 (M+H)
35			
40	1274		484 (M+H)
45		HO THE	
50			

186

Table 121

		14D16 121	
5	Ex. No.	Formula	MS
10	1275	в э э э э э э э э э э э э э э э э э э э	519 (M+H)
20	1276		427 (M+H)
25			
30	1277	و حدي	456 (M+H)
35		HO "	
40	1278		516 (M+H)
45 50		но	
		<u> </u>	

Table 122

5	Ex. No.	14216 122	
3	1	Formula	MS
	1279	Q CH,	436 (M+H)
10	- [H	
		HO TI	
15			
	1280		426 (M+H)
	l l		
20			1
	1 1	HO TI	1
	1 1		1
25			
	1281		440 (M+H)
			1
30		HO	
35			1
35	1282		454 (M+H)
		<u>_</u> .>	
40		8	
40	1 1	HO N H	
45		\sim	
	1283		
	====		468 (M+H)
50		9	
,		HO HO	
			1
55		ightharpoonup	1
[

Table 123

MS

482 (M+H)

406 (M+H)

420 (M+H)

508 (M+H)

508 (M+H)

		Table 123
5	Ex. No.	Formula
10	1284	
15		HO TO
. 20	1285	HO CH,
25	1286	H,C, CH,
30		HO CH,
35	1287	
40		HO TO
45	1288	
50 .		но

Table 124

		rable 124	
5	Ex. No.	Formula	MS
10	1289		509 (M+H)
15		но	
20	1290		455 (M+H)
25		HOLLING	
<i>30</i>	1291		
35	1291	HO N N	494 (M+H)
40			
45	1292	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	418 (M+H)
50			

Table 125

		Table 125	
5	Ex. No.	Formula	MS
	1293		490 (M+H)
10		HO	
15	1294	(A) (CH)	496 (M+H)
20		но нас сн.	
25	1295		477 (M+H)
<i>30</i>			
35	1296	<u> </u>	508 (M+H)
40	1250	HO TO THE	JOO (MTH)
45	1297	() (H ₁	470 (M+H)
<i>50</i>		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		. 🔾	

Table 126

5	Table 126				
	Ex. No.	Formula	MS		
10	1298	j h h ch	435 (M+H)		
15					
20	1299		488 (M+H)		
25		HO			
<i>30</i>	1300		454 (M+H)		
35		HO CH,			
40	1301		504 (M+H)		
45	·	HO BI			
50					

Table 127

Ex. No.	Formula	MS
1302	HN O-CH,	513 (M+H)
1303		399 (M+H)
1304		530 (M+H)
1305	HO H	504 (M+H)
1306		440 (M+H)

Ta	a b	7	_	1	2	Q

5		rable 128	•
	Ex. No.	Formula	MS
10 15	1307	HO NO	494 (M+H)
	1308		
20	1350	HO T N	508 (M+H)
25			
30	1309	HO TO	518 (M+H)
<i>35</i>			
40	1310 		532 (M+H)
45	1311		
50			522 (M+H)
55 <u>.</u> [

Table 129

_	Ex. No.	Formula	MS
5	1	TOTINGE	1
	1312	,cH, Q	546 (M+H)
10			
	;		
		HO 1	
15			
	1313		484 (M+H)
20		P HO	
		HO	
25			
23			
	1314		517 (M+H)
30		no Holling	
35			
	1315	· n	488 (M+H)
40		но	
1			
45	1316		481 (M+H)
		HO	
50	1		
į	Ì		
. [
33			

Table 130

			Table 130	•
5	•	Ex. No.	Formula	MS
		1317	9	413 (M+H)
			HO 1	
10				
15		1318	9	423 (M+H)
			10	
20		-		
		1319	8	504 (M+H)
			HO TIME	
25				
30		1320	9	510 (M+H)
			HO TI	
35				
			HC CH	
40		1321		522 (M+H)
40			HO 1 1	
45				ĺ
		1322	a g	522 (M+H)
			HO NO PO	322 (M+H)
50	•			
<i>55</i>			F-F	
				1

Table 131

	Ex. No.	Formula.	7 70
5	İ	Formula	MS
10	1323	HO CH,	484 (M+H)
15	1324	0	449 (M+H)
20		HO CH,	
25	1325		502 (M+H)
30	1326	HO CA	403 (W-U)
	1326		491 (M+H)
35			
40	1327	ӊҁ	496 (M+H)
45 50		HO CH,	

Table 132

		Table 132	
5	Ex. No.	Formula	MS
10	1328	HO THE STORY	497 (M+H)
15	1329	но	470 (M+H)
20		но	
25	1330	HO TO	530 (М+Н)
<i>30</i>	1331		502 (M+H)
35		HO N N N	
40			
45	1332	HO CINCON	522 (M+H)
<i>50</i>			

Table 133

5	Ex. No.	Formula	MS
	1333		491 (M+H)
10	·	HO N	
15		\bigcirc	
20	1334	HO TO CO	536 (M+H)
25	1335	Î AN S	547 (M+H)
30	1336	HO THE STATE OF STATE	404 (M. W.
35	1330	но С	484 (M+H)
40	1337		484 (M+H)
45		HO CH,	
50 .	1338	HO CHANGE OF THE PARTY OF THE P	498 (M+H)
55			

Table 134

		Table 134	
5	Ex. No.	Formula	MS
	1339	HO N	528 (M+H)
10		H,C	,
15	1340	HO CONTRACTOR	498 (M+H)
20	1341	, , , , , , , , , , , , , , , , , , ,	
25	1341	HOLL	514 (M+H)
<i>30</i>	1342	осн,	F12 / W. W.
35 40	1 (HO NO.	513 (M+H)
	1343	но	488 (M+H)
5	1344		502 (M+H)
L			

50

Table 135

	Ex. No.	Formula	MS
5	BR. No.	Formura) MS
10	1345	HO CONTRACTOR OF THE PARTY OF T	488 (M+H)
15	1346	9	502 (M+H)
20		HO TO	
	1347	9	499 (M+H)
. 25		HO NO2	
	1348	. 8	480 (M+H)
35		HO TO THE TO THE TOTAL PROPERTY OF THE TOTAL	
40	1349		522 (M+H)
50	1350	HO BI	546 (M+H)
-			

Table 136

	Ex. No.	Table 130	
5	ļ	Formula	MS
	1351	HO N S	482 (M+H)
10		CH ₃	
15	1352	HO LA CHA	484 (M+H)
20	1353	8	609 (M+H)
25			303 (MTH)
30	1354	CH,	
35	ŀ		532 (M+H)
40	1355	HO NH 4	80 (M+H)
45			
50	1356 H		66 (M+H)
55	·	·	

Table 137

5	Ex. No.	Formula	MS
10	1357	HO HO S S S S S S S S S S S S S S S S S	602 (M+H)
15	1358		596 (M+H)
20	22.50		
25	1359		491 (M+H)
30	1360		491 (M+H)
35		HO THE STATE OF TH	
40	1361	HO LONG	491 (M+H)
45	1362		496 (M+H)
<i>50</i>	1302	HO TO	490 (MTN)
55		CH,	

Table 138

		19DIE 138	
5	Ex. No.	Formula	MS
	1363	9	512 (M+H)
10		HO CH,	
15	1364	HO LING	494 (M+H)
20		н,с	:
25	1365	HO HIC CO	488 (M+H)
30	1366	8	481 (M+H)
35		HO NH	
40	1367	но	524 (M+H)
45	1000		
50	1368		497 (M+H)

55

Table 139

5	Ex. No.	Formula	MS
	1369	HO N /	472 (M+H)
10			
15	1370	HO TO TO	469 (M+H)
20	1371		470 (M. U.)
25	13/1		470 (M+H)
30	1372	CH,	469 (M+H)
.as			
40	1373		494 (M+H)
45			
50 .	1374	HO NH	458 (M+H)
55 L			

Table 140

5 1375 Formula MS 1375 HO			Table 140	
15 1376 HO 1376 HO 1377 HO 1377 HO 1378 HO 1378 HO 1379 HO 1379 HO 1380 HO 138	5	Ex. No.	Formula	MS
15 1376 HO CH ₃ 554 (M+H) 20 1377 HO CH ₃ 542 (M+H) 30 1378 HO		1375		612 (M+H)
15 1376 HO S54 (M+H) 20 1377 HO S42 (M+H) 30 1378 HO S26 (M+H) 40 1379 HO HO HO GH, 510 (M+H) 52 1380 HO S510 (M+H)			но	
1376 HO CH ₃ 1377 HO HO HO CH ₄ 554 (M+H) 554 (M+H) 35 1378 HO HO HO HO HO 1379 HO HO HO 1379 HO 1380 HO HO 1380 HO	10			1
1376 HO CH ₃ 1377 HO HO HO CH ₄ 554 (M+H) 554 (M+H) 35 1378 HO HO HO HO HO 1379 HO HO HO 1379 HO 1380 HO HO 1380 HO				
20 25 26 27 28 28 29 20 20 20 20 21377 20 20 21377 20 20 21377 20 20 21378 20 20 20 21378 20 20 20 20 20 20 20 20 20 20 20 20 20				
20 25 1377 1378 1378 1379 1380 1380 1380 1380 1380 1380 1380 1380	15	1376	P	554 (M+H)
25 1377 1378 1378 1379 1380			HO 1000	
25 1377 1378 1378 1379 1380				
25 1377 HO 1378 1378 1379 HO 1380	20			
30 1378 1378 1378 1379 1380				
30 1378 HO HO HO HO HO HO HO HO HO H		1377	9	542 (M+H)
30 1378 HO 1379 HO 1380 1380 HO 1380	25		ш	- 1
1378				
1378 HO HO 1379 HO HO 1380 1380 HO 1380 HO 1380 HO 1380 1380 HO 1380 HO 1380 1380 HO	20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
35 HO HO 1379 HO HO 496 (M+H) 45 1380 HO HO 1380 HO HO HO HO HO HO HO HO HO H	30	1270		
35 40 1379 HD 496 (M+H) 45 1380 0 1380 510 (M+H)		13/8	H	526 (M+H)
1379 HO	<i>35</i>			
1379 HO				{
1379 HO				
45 HO HO STO (M+H) 50 HO STO (M+H)	40	1379		
1380 HO 510 (M+H)		25.5	H •	96 (M+H)
1380 O 510 (M+H)				1
1380 CH ₃ (M+H)	45		Hc-	1
50 HO TO				
50 HO HO S	ĺ	1380	0 5	10 (M+H)
55	50	1	.	
55 CH _s				
сн,				
	55		CH,	

Table 141

5 Ex. No. Formula MS 1381 HO N O O O CH ₃ 15 1382 HO N O CH ₃ 20 1383 HO N O CH ₃ 558 (M+H
10 HO CH, 525 (M+H) 1382 HO CH, CH, CH, CH, STREET CH, STREET CH,
15 1382 HO CH, CH, CH, CH, 25 (M+H) 25 1383 0 558 (M+H)
20 HO CH, CH, S25 (M+H) 25 1383 0 558 (M+H)
20 HO CH, CH, S25 (M+H) 25 1383 0 558 (M+H)
20 HO CH,
25 1383 0 558 (M+H
- '' '' '' '' '' '' '' '' '' '' '' '' ''
30
35 HO NO STATE OF THE STATE OF
40 H Ca
1385 P. 539 (M+H)
50 T

Table 142

		14D16 142	
5	Ex. No.	Formula	MS
	1386	l a	533 (M+H)
10 15		но Т д сн,	
15	1387		500 (M+H)
20		HO NO.	
25	1388	0	485 (M+H)
30		HO HO HACO	
35	1389		523 (M+H)
40		HO TO	
45	1390	X	512 (M+H)
50		HO THE STATE OF TH	·
•			

Table 143

	Ex. No.	Formula	MS
5	ĺ	T OZMAZU	MS
3	1391	P	540 (M+H)
10		HO TO CO	
	1392	P .	527 (M+H)
20		HO LICE	
	1393	R	525 (M+H)
25		HO TO THE TOTAL PARTY OF THE PA	
30	1394		507 (M+H)
35		HO THE N	
	1395	8	491 (M+H)
45	. •		
	1396		506 (M+H)
50 . :		HO THE MAN TO THE MAN	
55			
-			

Table 144

	Ex. No.	Town 1	
_	22. 10.	Formula	MS
5	1397	P	522 (M+H)
	1	HO N S	
10			
		() <u>_</u> _a	1
4.5	1398	P	538 (M+H)
15	1 1	HO N S	
	1 1		
	1	h h	
20		() (_)~{_;	
			}
	1399	9	522 (M+H)
<i>25</i>		HO	1
	1		1
	1	__\	1
30	1400	a′	500
			530 (M+H)
	1 1	HO TO TO THE TOTAL PARTY OF THE	1
35]	A H	1
	}		
	1401		600 (M+H)
40		HO TO	1
45			
Ì		a—()\	
ļ	!	· ~	1
	1402	Q.	504 (M+H)
50		HD CH,	1
		S CH,	
[A N CA	Ì
55	İ	()	
Ĺ		<u> </u>	

Table 145

	Ex. No.	Formula	MS
5	1403	но по о-сн,	534 (M+H)
10			
		н,с-о	
15	1404	HO N /	475 (M+H)
		H-Cha	
20			
	1405		472 (M+H)
25		HO THE	
30	1406		455 (M+H)
35		HO TO	
35			
40	1407		469 (M+H)
		HO THE STATE OF TH	
45			
	1408		547 (M+H)
50		HO THE STATE OF TH	
		O S NH,	
₅₅ L	1	3	

Table 146

Ex. No. Formula MS 1409 1410 1411 15 1411 16 16 17 17 18 18 18 18 18 18 18 18			rable 146	
1410 15 1410 16 16 17 17 18 18 18 18 18 18 18 18	-	Ex. No.	Formula	MS
10 1410 1410 15 1411 16 16 17 18 18 18 18 18 18 18 18 18	5	1409		529 (M+H)
1410 HO HO HO HO HO HO HO HO HO H			HO NO	
20 1411 HO HO HO HO HO HO HO HO HO HO HO HO HO	10		H N	2
20 1411 HO HO HO HO HO HO HO HO HO HO HO HO HO				
20 1411 HO 1412 HO 1413 HO 1414 HO 1414 HO 1414 HO 1414 HO 1414 HO 1418 HO 1418 HO 1418 HO 1418 HO 1418 HO 1418 HO 1418 HO 1418 HO HO HO HO HO HO HO HO HO HO HO HO HO	15	1410	9 %	435 (M+H)
20 1411 HO 1412 HO 1413 HO 1414 HO 1414 HO 1414 HO 1414 HO 1414 HO 1414 HO 1414 HO 1414 HO 1416 HO 1417 HO 1418 HO 141				
1411 HO 1 469 (M+H) 30 1412 HO 1 469 (M+H) 40 1413 HO 1 488 (M+H) 50				
25 30 1412 HO HO HO HO HO HO HO HO HO H	20 .			
30 1412 HO HO HO HO HO HO HO HO HO HO HO HO HO		1411		504 (M+H)
1412 HO HO 1413 HO 1414 HO HO HO HO HO HO HO HO HO H	25		HO N	1 · t
1412 HO HO 1413 HO 1414 HO HO HO HO HO HO HO HO HO H		}		
1412 HO HO 1413 HO 1414 HO HO HO HO HO HO HO HO HO H	30			
1413		1412	9 %-11	469 (M+H)
1413			HO TIME	
45 1414 0 488 (M+H) 50	35			
45 1414 0 488 (M+H) 50				
1414 0 488 (M+H)	40	1413		522 (M+H)
1414 0 488 (M+H) 50				
1414 HO HO C HO C HO C HO C HO C HO C HO C	45			
50 HO (A11)		1414		
		1414		488 (M+H)
55	50		HO	
55				
	55			

Table 147

	Ex. No.	Formula	MS
5	1415	9 %	502 (M+H)
10		HOTH	
15	1416	HO	488 (M+H)
20		\bigcirc	
25	1417		502 (М+Н)
30	1410	O a	455 (34) 11)
35	1418	HO!	455 (M+H)
40	1419		455 (M+H)
45			
50	1420	но	522 (M+H)
55		\smile	

Table 148

	Ex. No.		
5		Formula	MS
	1421	9 %	469 (M+H)
10		HO TO	
15	1422	8 %	536 (M+H)
20		HO TO CO	
	1423) CH,	510 (M+H)
25 30		HO H ₃ C CH ₃	
	1424	8 % #	494 (M+H)
35		но	
40	1425	9 %	458 (M+H)
45		HOLL	

214

50

Table 149

_	Ex. No.	Formula	MS
5	1426	,—⟨a	612 (M+H)
10			
		но	
15			
	1427	ф	526 (M+H)
20			
25		HO HO	
<i>30</i>			
·	1428	î	480 (M+H)
35		HO TO THE	
		, H,	
40	1429	n	441 (M+H)
45			
	1430	g	511 (M+H)
50		HO THO	
55		CH ₃	
L			

Table 150

_		Table 150	
5	Ex. No.	Formula	MS
10	1431	HO LANGE OF THE PARTY OF THE PA	530 (M+H)
15	1432	HOLL	497 (M+H)
20	1433		
25			441 (M+H)
30	1434	HO NO	491 (M+H)
35	1435		491 (M+H)
40		HO TO THE STATE OF	
45	1436		
<i>50</i>	1430		491 (M+H)
55			

Table 151

	Ex. No.	Formula	MS
5	1437	9 24	524 (M+H)
10		HOTO	
15	1438	но	508 (M+H)
	1439	•	474 (M+H)
25	1439	HO CONTRACTOR OF THE PARTY OF T	4/4 (MTH)
35	1440	HO I NO INCOME TO THE PARTY OF	490 (M+H)
40	1441	но Стра	508 (M+H)
45			
<i>50</i>	1442	HO	474 (M+H)
55		<u> </u>	

Table 152

5		Table 152	
	Ex. No.	Formula	MS
10	1443	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	516 (M+H)
15	1444		
20		HO TO	600 (M+H)
25	1445		
<i>30</i>		HD S CH, H,C CH,	504 (м+н)
35	1446	HO NOCH,	534 (M+H)
40	·	H,C-O CI	·
45	1447	HO TO	475 (M+H)
50			

Table 153

1448 530 (M+H)	Ex. No.	Formula	MS	
15 1449 1450 1450 1451 1452 1453 1453 1453 1454 1455 1455 1456 1466 1474 (M+H) 1474 (M+H) 1474 (M+H) 1474 (M+H) 1474 (M+H)	5	1448		530 (M+H)
15 1449 1450 1450 1451 1452 1453 1453 1453 1454 1455 1455 1456 1466 1474 (M+H) 1474 (M+H) 1474 (M+H) 1474 (M+H) 1474 (M+H)	10			
20 25 1450 HO 490 (M+H) 30 1451 HO 474 (M+H) 45 1453 P 1453 P 1508 (M+H)				
25 1450 HO 490 (M+H) 36 1451 HO 474 (M+H) 474 (M+H) 45 1453 O 508 (M+H)	15			
25 1450 HO HO HO HO M+H) 30 1451 HO HO HO HO HO HO HO HO HO HO HO HO HO		1449	но	440 (M+H)
30 1451 HO 1451 HO 1452 HO 1453 P 508 (M+H)	20			
30 1451 HO 1452 HO 1453 P 508 (M+H)	25	1450		490 (M+H)
1451 HO 474 (M+H) 40 1452 HO 441 (M+H) 45 508 (M+H)				
35 40 1452 0 441 (M+H) 45 1453 0 508 (M+H)	30			
40 1452 0 441 (M+H) 45 1453 0 508 (M+H)	25	1451	Li a a	474 (M+H)
45 1452 HO 1451 (M+H) 1453 O 508 (M+H)				
45 1453 D 508 (M+H)	40	1452		441 (M+H)
1453 P 508 (M+H)	!	1102	HOTT	
1 1 4 - 1 - 1	45			
		1453	1 - 1 1	508 (M+H)
55 a	55			

Table 154

5		Table 154	
	Ex. No.	Formula	MS
	1454	9	455 (M+H)
10		HO	
15	1455	9	522 (14) 115
		HO N	522 (M+H)
20		, " _\a	
	1055	a a	
	1,456		496 (M+H)
25		HO TIME	
30			
		цс) с ң цс	
	1457		516 (M+H)
35		HO	
			1
40	1458	8	426 (M+H)
		но	
45		\bigcirc	
	1459	9	182 (M+H)
50	· · · · · · · · · · · · · · · · · · ·		102 (MTH)
30			
į		" \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
55			

Table 155

5	Ex. No.	Formula	MS
10	1460	HO CH,	486 (M+H)
15	1461		516 (M+H)
20	1462	9	427 (M+H)
		HOTO	
30 35	1463	HO TO	476 (M+H)
35			
40	1464	HO HO A	460 (M+H)
~	1465	ì	502 (M+H)
50		HO TO	

221

Table 156

	Ex. No.	Table 136	
5		Formula	MS
	1466	<u>a</u>	586 (M+H)
10		HO	
	1467		518 (M+H)
20			
25	1468		530 (M+H)
30	1469		
35		HO CO	598 (M+H)
40	1470	HO CH	512 (M+H)
45			
50	1471		544 (M+H)
55			

Table 157

5			
	Ex. No.	Formula	MS
10	1472	HO!	440 (M+H)
15	1423		100 (00 00)
20	1473	HO TO	490 (M+H)
25	1474	но	474 (M+H)
30	1475	9	441 (M+H)
35		HO	
40	1476		508 (M+H)
43	1439	<u> </u>	
50	1477	HO TO	455 (M+H)

55

Table 158

		Table 158	
5	Ex. No.	Formula	MS
	1478	9 _4	522 (M+H)
		HO CI	
10			
	1479	<u> </u>	
15	1473	HO CH,	496 (M+H)
		H,d CH,	
20			
	1480		516 (M+H)
25			
		HO T	
30	1 1		
	1481		426 (M+H)
35		8>	
		но	
			·
40 _.			
	1482	H,C CH,	482 (M+H)
15		CH ₃	
50		HO THE	
		\rightarrow	
· L			

224

50

5		Table 159	
J	Ex. No.	Formula	MS
	1483	о-сн,	486 (M+H)
10			
)=-/ `c+s	
		HO N	
15			
		\bigcirc	
20	1484		516 (M+H)
		•	·
25		HO N	
30			
	1485		427 (M+H)
		<u></u>	
35		HO N	
40			
	1486		476 (M+H)
45		HO TO THE TOTAL PARTY OF THE TOT	
50			
j		\checkmark	ſ

Table 160

		14510 100	
5	Ex. No.	Formula	MS
10	1487	HO HO	460 (M+H)
15			
20	1488		502 (M+H)
25	-	HO TI	
30	1489		586 (M+H)
35		но	
40 45	1490	HO HO HO HO HO HO HO HO HO HO HO HO HO H	518 (M+H)
50			·

Table 161

5		14020 101	
	Ex. No.	Formula	MS
10	1491		530 (M+H)
15		HO	-
20	1492	cı—(598 (M+H)
25		HO TO TO	
30	1403		510 (14.5)
35	1493	но	512 (M+H)
40		ОН	
45	1494		544 (M+H)
50		HO	
55	·····		

Table 162

5 Ex. No. Formula MS 1495 O	
10 HO CH, S50 (M+I	
15 1496 PO 550 (M+I	i)
HO TO	,
25 1497 0 606 (M+H	,
30 HO H ₃ C CH ₃ H ₃ C CH ₃ O-CH ₄ 580 (M+H	
1498 О-сң, 580 (М+Н	
HO HO C	
550 (M+H)	

5		Table 163	
	Ex. No.	Formula	MS ·
10	1500	H ₃ C CH ₃	606 (M+H)
15		HO CI	
20		\bigcirc	
25	1501	HO CH,	630 (M+H)
35 35	1502	HO P	600 (M+H)
4U	1503	HO CH ₃	656 (M+H)
45 50		H ₃ C CH ₃	

Table 164

	The No.		
5	Ex. No.	Formula	MS
	1504	о-сн,	630 (M+H)
10		I N S F	
		HO THE STATE OF TH	į
15			
	7.505	\smile	
20	1505		600 (M+H)
20			
		HO THE	
25			
	1506		
<i>30</i>	1306	H ₃ C CH ₃	656 (M+H)
35		N OF	
		HD	·
40	1507	9	580 (M+H)
		но	
45)—(
	ĺ		
50		a	
_			

5

Table 165

10	
15	
20	
25	
30	
35	
40	
45	
50	

Ex. No.	Formula	MS
1508	но	550 (M+H)
1509	HO CH ₃	606 (M+H)
1510	HO CH,	580 (M+H)
1511	HO CONTRACTOR OF THE PARTY OF T	550 (M+H)
1512	HO COL	546 (M+H) ·

Table 166

	[To 27 27 27 27 27 27 27 27 27 27 27 27 27	14010 100	
5	Ex. No.	Formula	MS
	1513	P	516 (M+H)
•		но	
10			
			1
	1514		
15	1514	HO N	572 (M+H)
		CH,	1
		н,с сн,	1
20			
	1515	,0-сн,	546 (M+H)
<i>25</i>			1 1
2.5			
		HO	
30			
		\bigcirc	
	1516		516 (M+H)
35			٠
		HO NO	
40			
			1
	1517		550 (1)
45	202,) , 	572 (M+H)
		Сн,	I
			ĺ
50	Ì	но	
.			
}		\bigcirc	
55		<u> </u>	

5

Table 167

	Ex. No.	Formula	MS
10	1518	HO LO CH,	602 (M+H)
15		H ₁ C CH ₃	
20	1519	HO NO	572 (M+H)
25		H,C CH,	
30	1520	H ₂ C	628 (M+H)
35		HO CH,	
40		H _C CH _s	
45 50	1521	1	606 (M+H)
		Ъść	

Table 168

		14510 100	
5	Ex. No.	Formula	MS
10	1522	но	573 (M+H)
15		H,C-CH,	
20	1523	HO TO	606 (M+H)
25		H,C CH,	
30	1524	0-сн,	602 (M+H)
35		HO H ₃ C CH ₃	
40	1525		572 (M+H)
45		H ₃ C CH ₃	
50			

Table 169

5			
	Ex. No.	Formula	MS
10	1526	H ₃ C CH ₃ CH ₃	628 (M+H)
15		HO NO CH ₃	
20	1527		606 (M+H)
25 30		HO H ₃ C CH ₃	
35	1528	GI CI	606 (M+H)
		HO H,C CH,	
40	1529	ò	614 (M+H)
45	1323	HO CH,	·
50			

235

Table 170

5	Ex. No.	Formula	MS
10	1530	HO TO	584 (M+H)
15	1531	HO CH	640 (M+H)
20	·	H,C CH,	
25	1532	HO TO A	618 (M+H)
30	1533		
35	1333	0-CH ₃	614 (M+H)
40		HO THO	
45	1534		584 (M+H)
50		HO F F	
<i>5</i> 5			

EP 1 162 196 A1

Table 171

	14D1C 171	
Ex. No.	Formula	MS
1535	H ₂ C CH ₃ CH ₃ CH ₃	640 (M+H)
1536	HO HO HIN	627 (M+H)
1537	HO HIN	627 (M+H)

Table 172

		Table 1/2	
5	Ex. No.	Formula	MS
	1538	/=N	560 (M+H)
10	1	HN HN	
		HO N N	
15			
,,,			
	1539	H ₃ C-O, NO ₂	634 (M+H)
20			
25		HIN HIN	
		HO TIME	
30	1540		500 000
	1340	a a	593 (M+H)
35			
		HO TO TO TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TH	
40	į		
}	1541		627 (04 17)
45			627 (M+H)
50			
55			

Table 173

5		·	
	Ex. No.	Formula	MS
	1542	F_F	627 (M+H)
10			
		<u>, , , , , , , , , , , , , , , , , , , </u>	
	1		
15		HO TO THE TOTAL PROPERTY OF THE PROPERTY OF TH	
20		\bigcirc	
	1543	. 🔼	560 (M+H)
		h	
25			
		HO TO TO TO THE TOTAL PROPERTY OF THE TOTAL	
30		\bigcirc	
	1544	√NO,	634 (M+H)
35		, S-S-S-Cas,	
		HO TO SHE	
40		\sim	
45	1545		593 (M+H)
		HO HO HO HO HO HO HO HO HO HO HO HO HO H	
50			
• [

55

Table 174

		1001C 1/4			
5	Ex. No.	Formula	MS		
10	1546	но	627 (M+H)		
20	1547	HO I N H	627 (M+H)		
30	1548	HO NO	560 (M+H)		
<i>35</i>	1549		634 (M+H)		
45	1	O-CH ³			

Table 175

	Ex. No.	Formula	MS
5			_
	1550	a	627 (M+H)
10			
		HO TI	
15			
		\bigcirc	
20	1551	_ %	560 (M+H)
25		но Т	
		\bigcirc	
30	1552		532 (M+H)
	Ì	" —(
35		HN	
	1		
		HO	
40			
		\bigcup	
	1553	ا ا	565 (M+H)
45			
			į
		HO HO	
50			
. }		\rightarrow	
55		<u> </u>	

Table 176

	Ex. No.	T	
5	}	Formula	MS
	1554	. а	599 (M+H)
10			
	1		{
		HO	İ
15			
	1		
20	1555	F	599 (M+H)
25		, ,	
		HO N N	
30			
	1556		532 (M+H)
35		· >=<	
	1	HO THE HEAD OF THE	
40			
			ł
45	1557		532 (M+H)
45			Į.
		9 H	1
50		W CH	
30			1
		\rightarrow	į
55		\smile	

Table 177

Ex. No.	Formula	MS
1558	HO HO	584 (M+H)
1559	HO HO HO	570 (M+H)

[0292] The evaluation of the HCV polymerase inhibitory activity of the compound of the present invention is explained in the following. This polymerase is an enzyme coded for by the non-structural protein region called NS5B on the RNA gene of HCV (EMBO J., 15:12-22, 1996).

40 Experimental Example [I]

5

10

15

20

25

30

35

45

50

i) Preparation of enzyme (HCV polymerase)

[0293] Using, as a template, a cDNA clone corresponding to the full length RNA gene of HCV BK strain obtained from the blood of a patient with hepatitis C, a region encoding NS5B (591 amino acids; J Virol 1991 Mar, 65(3), 1105-13) was amplified by PCR. The objective gene was prepared by adding a 6 His tag {base pair encoding 6 continuous histidine (His)} to the 5' end thereof and transformed to Escherichia coli. The Escherichia coli capable of producing the objective protein was cultured. The obtained cells were suspended in a buffer solution containing a surfactant and crushed in a microfluidizer. The supernatant was obtained by centrifugation and applied to various column chromatographys {poly[U]-Sepharose, Sephacryl S-200, mono-S (Pharmacia)}, inclusive of metal chelate chromatography, to give a standard enzyme product.

ii) Synthesis of substrate RNA

[0294] Using a synthetic primer designed based on the sequence of HCV genomic 3' untranslated region, a DNA fragment (148 bp) containing polyU and 3'X sequence was entirely synthesized and cloned into plasmid pBluescript SK II(+) (Stratagene). The cDNA encoding full length NS5B, which was prepared in i) above, was digested with restriction enzyme KpnI to give a cDNA fragment containing the nucleotide sequence of from the restriction enzyme

cleavage site to the termination codon. This cDNA fragment was inserted into the upstream of 3' untranslated region of the DNA in pBluescript SK II(+) and ligated. The about 450 bp inserted DNA sequence was used as a template in the preparation of substrate RNA. This plasmid was cleaved immediately after the 3'X sequence, linearized and purified by phenol-chloroform treatment and ethanol precipitation to give DNA.

[0295] RNA was synthesized (37°C, 3 hr) by run-off method using this purified DNA as a template, a promoter of pBluescript SK II(+), MEGAscript RNA synthesis kit (Ambion) and T7 RNA polymerase. DNasel was added and the mixture was incubated for 1 hr. The template DNA was removed by decomposition to give a crude RNA product. This product was treated with phenol-chloroform and purified by ethanol precipitation to give the objective substrate RNA. [0296] This RNA was applied to formaldehyde denaturation agarose gel electrophoresis to confirm the quality thereof and preserved at -80°C.

iii) Assay of enzyme (HCV polymerase) inhibitory activity

5

10

15

20

[0297] A test substance (compound of the present invention) and a reaction mixture (30 µl) having the following composition were reacted at 25°C for 90 min.

[0298] 10% Trichloroacetic acid at 4°C and 1% sodium pyrophosphate solution (150 µl) were added to this reaction mixture to stop the reaction. The reaction mixture was left standing in ice for 15 min to insolubilize RNA. This RNA was trapped on a glass filter (Whatman GF/C and the like) upon filtration by suction. This filter was washed with a solution containing 1% trichloroacetic acid and 0.1% sodium pyrophosphate, washed with 90% ethanol and dried. A liquid scintillation cocktail (Packard) was added and the radioactivity of RNA synthesized by the enzyme reaction was measured on a liquid scintillation counter.

[0299] The HCV polymerase inhibitory activity (IC₅₀) of the compound of the present invention was calculated from the values of radioactivity of the enzyme reaction with and without the test substance. [0300] The results are shown in Tables 178 - 184.

Reaction mixture: HCV polymerase (5 μg/ml) obtained in i), substrate RNA (10 μg/ml) obtained in ii), ATP (50 μM), GTP (50 μM), CTP (50 μM), UTP (2 μM), [5,6-3H]UTP (46 Cl/mmol (Amersham), 1.5 μCi) 20 mM Tris-HCl (pH 7.5), EDTA (1 mM), MgCl₂ (5 mM), NaCl (50 mM), DTT (1 mM), BSA (0.01%)

Table 178

	lable 178				
30	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	
	2	0.079	67	0.26	
	6	0.034	68	0.28	
35	9	0.019	70	0.19	
	11	0.53	71	0.62	
	12	0.60	77	0.51	
	17	0.047	81	0.18	
40	20	0.042	82	0.097	
	26	0.033	83	0.52	
	30	0.052	85	0.17	
15	43	0.58	86	0.13	
	44	0.95	87	0.80	
	45	0.40	88	0.092	
	46	0.47	89	0.34	
50	47	0.54	90	0.20	
	48	0.44	91	0.53	
	49	0.94	93	0.16	
5	50	0.54	94	0.084	
	51	1.0	96	0.25	
	54	0.56	97	0.16	

Table 178 (continued)

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
55	0.36	98	0.30

Table 179

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
10	99	0.53	120	0.16
	100	0.78	121	0.19
	101	0.14	122	0.51
15	103	0.17	123	0.10
••	104	0.073	124	0.091
	105	0.076	125	0.12
	106	0.40	128	0.14
20	107	0.11	129	0.12
	108	0.21	130	0.16
	109	0.11	131	0.046
25	110	0.24	132	0.055
	111	0.14	133	0.12
	112	0.11	134	0.071
	113	0.071	139	· 0.26
30	114	0.56	140	0.11
	115	0.17	141	0.43
	116	0.37	142	0.055
<i>3</i> 5	117	0.075	143	0.053
	118	0.14	144	0.19
	119	0.13	145	0.088

Table 180

5

40

45

50

Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μM]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μM]
146	0.043	167	0.033
147	0.31	168	0.078
148	0.038	169	0.15
149	0.15	170	0.048
150	0.24	171	0.050
151	0.20	172	0.10
153	0.19	173	0.14
154	0.076	174	0.030
155	0.53	175	0.29
156	0.23	176	0.053
157	0.16	177	0.077

Table 180 (continued)

	Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
5	158	0.11	178	0.052
	159	0.13	179	0.63
	160	0.24	180	0.11
10	161	0.062	181	0.71
	162	0.43	182	0.021
	163	0.15	183	0.017
	164	0.16	184	0.018
	165	0.58	185	0.11
15	166	0.055	186	0.37

Table 181

	Table 181					
20	Ex. No. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]		
	187	0.056	207	0.081		
	188	0.038	208	0.039		
25	189	0.017	209	0.12		
	190	0.020	210	0.31		
	191	0.43	211	0.059		
30	192	0.22	212	0.23		
	193	0.13	213	0.10		
	194	0.52	214	0.059		
	195	0.023	215	0.078		
35	196	0.20	216	0.084		
	197	0.11	217	0.058		
	198	0.044	218	0.033		
40	199	0.11	219	0.13		
	200	0.10	220	0.073		
	201	0.14	221	0.058		
45	202	0.095	222	0.041		
45	203	0.063	223	0.21		
	204	0.16	225	0.014		
	205	0.077	227	0.045		
50	206	0.05	228	0.18		

Table 182

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
229	0.022	257	0.074
230	0.17	259	0.10

Table 182 (continued)

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
	231	0.073	260	0.27
5	232	0.015	262	0.013
	233	0.028	263	0.035
	234	0.022	264	<0.01
10	235	0.036	265	0.014
	236	0.075	266	0.018
	237	0.015	267.	0.014
	238	0.19	268	0.012
15	239	0.17	269	0.013
	240	0.055	270	0.012
	248	0.012	271	0.024
20	249	0.022	272	0.066
	250	0.018	273	0.041
	252	0.32	276	0.023
	253	0.65	279	0.017
25	254	0.038	280	0.016
	255	0.038	281	0.052
	256	0.079	282	0.019
30	<u> </u>			

Table 183

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
35	283	0.014	298	0.011
	284	0.014	299	0.018
	285	0.012	300	0.045
	286	0.014	301	0.017
40	287	0.012	303	0.10
	288	0.013	304	0.017
	289	<0.01	305	0.01
45	290	0.012	306	0.013
	291	0.016	307	0.022
	292	0.015	308	0.023
	293	0.034	311	0.16
50	294	0.032	312	0.023
	295	0.045	313	0.025
	296	0.034	314	0.097
55	297	0.022	315	0.028

Table 184

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
316	0.022	502	0.024
317	0.032	503	0.196
318	0.012	601	0.32
319	0.030	701	0.052

Table 185

Example No.	249	1H NMR(δ) ppm
	0=15-N	300MHz, DMSO-d6 8. 02(1H, d, J=1.5Hz), 8. 11(1H, d, J=1.8Hz), 7. 96-7. 81(3H, m), 7. 67(1H, s), 7. 61-7. 49(6H, m), 7. 08(2H, d, J=8.6 Hz), 5. 19(2H, s), 4. 25(1H, m), 2. 38-2. 17(2H, m), 1. 96-1 . 78(4H, m), 1. 70-1. 56(1H, m), 1. 46-1. 16(3H, m), 1. 11(9 H, s)
Purity >90% (N	MR)	
MS . 672 (M+1))]

Example No.	250	1H NMR(δ) ppm
***	>-\	300MHz, DMSO-d6 8. 25 (1H, d, J=1.5Hz), 8. 16- 8. 08 (2H, m), 7. 99-7. 88 (2H, m), 7. 66 (2H, d, J=8.6Hz), 7. 60-7. 48 (5H, m), 7. 19 (2H, d, J=8.6Hz), 5. 17 (2H, s), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2 . 04-1. 79 (4H, m), 1. 72-1. 60 (1H, m), 1. 50-1. 18 (3H, m)
Purity >90	% (NMR)	
MS 6	l6 (M+1)	· .

Example	No.	251	1H NMR(δ) ppm	
HCI HCI			300MHz, DMSO-d6 cis and trans mixture 8.13and8.11(total 1H, each s), 7.90-7.74(2H, m), 7.42- 7.22(5H, m), 4.56and4.52(t otal 2H, each s), 4.42(1H, brs), 3.78-3.0 6(2H, m) 2.33-1.33(18H, m)	
Purity	>90% (NN	MR)	1 .	
MS	433 (M+1)		7	

Table 186

Example No.	252	1H NMR(δ) ppm
HO N S	8	300MHz, DMSO-d6 8. 20 (1H, d, J=1.5Hz), 7. 96 (1H, d, J=8.6Hz), 7. 84 (1H, dd , J=8.6, 1.5Hz), 7. 54 (2H, d, J=6.9Hz), 7. 48-7. 26 (8H, m) , 7. 09 (1H, t, J=7.3Hz), 5. 43 (2H, s), 4. 06 (1H, m), 2. 40-2 .20 (2H, m), 2. 01-1. 80 (4H, m), 1. 75-1. 64 (1H, m), 1. 51-1 .28 (3H, m)
Purity >90% (NA	AR)]
MS 509 (M+1)		1

Example No.	253	1H NMR(δ) ppm
HIO NO NO NO NO NO NO NO NO NO NO NO NO NO	8	300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 85 (1H, dd , J=8. 4, 1. 5Hz), 7. 54-7. 47 (2H, m), 7. 40-7. 24 (6H, m), 7. 15 (1H, d, J=3. 6Hz), 7. 11-7. 05 (1H, m), 6. 81 (1H, d, J=3. 6 Hz), 5. 26 (2H, s), 4. 96 (1H, m), 2. 32-2. 13 (2H, m), 1. 95-1 . 72 (4H, m), 1. 68-1. 55 (1H, m
Purity > 90% (NM	IR)), 1. 43-1. 18 (3H, m)
MS 493 (M+1)		1

Example No.	254 IH NMR(δ) ppm
	300MHz, DMSO-d6 8. 25 (1H, s), 8. 02 (1H, d, J=8 . 7Hz), 7. 90 (1H, dd, J=8. 4, 1 . 4Hz), 7. 80-7. 71 (2H, m), 7. 67 (2H, d, J=8. 7Hz), 7. 33 (2H , t, J=8. 7Hz), 7. 26 (2H, d, J= 8. 7Hz), 5. 46 (2H, s), 4. 78 (2 H, s), 4. 31 (1H, m), 2. 39-2. 1 9 (2H, m), 2. 03-1. 79 (4H, m), 1. 71-1. 59 (1H, m), 1. 50-1. 1
Purity >90% (NMR)	7 (3H, m)
MS 558 (M+1)	

Table 187

Example No	•	255	1H NMR(δ) ppm
100	HEI S	•	300MHz, DMSO-d6 8. 34(1H, s), 8. 32(1H, d, J=8 .8Hz), 8. 09-8. 03(3H, m), 7. 83(2H, d, J=8. 3Hz), 7. 79(2H, d, J=8. 8Hz), 7. 36(2H, d, J=8. 8Hz), 5. 54(2H, s), 4. 38(1H, m), 2. 74(3H, s), 2. 40-2. 18(2H, m), 2. 13-1. 96(2H, m), 1. 93-1. 78(2H, m), 1. 73-1. 57(1H, m), 1. 55-1. 15(3H, m)
Purity >	90% (NMR)		
MS	568 (M+1)		

Example No. 25	6 1H NMR(δ) ppm
	300MHz, DMSO-d6 12. 67 (1H, brs), 8. 23 (1H, s) ,7. 94and7. 87 (2H, ABq, J=8. 6Hz), 7. 79 (1H, dd, J=8. 7, 5. 4Hz), 7. 62-7. 41 (7H, m), 6. 8 0 (1H, dd, J=11. 9, 2. 3Hz), 6. 69 (1H, dd, J=8. 1, 2. 1Hz), 5. 20 (2H, s), 3. 93 (1H, brt, J=1 5. 3Hz), 2. 30-2. 11 (2H, brm) 1. 88-1. 74 (4H, brm), 1. 64-1
Purity >90% (NMR)	.58(1H, brm), 1.41-1.14(3H, brm)
MS 585 (M+1)	

1112 000 (111 12)	
Example No.	257 1H NMR(δ) ppm
HD_000	300MHz, DMSO-d6 8. 19 (1H, d, J=8. 7Hz), 7. 93 (1H, s), 7. 83-7. 71 (3H, m), 7. 50-7. 39 (4H, m), 7. 34-7. 10 (4H, m), 7. 06 (1H, dd, J=8. 4, 2 . 9Hz), 5. 09 (2H, s), 4. 34 (1H , m), 3. 82 (3H, s), 2. 39-2. 19 (2H, m), 2. 11-1. 98 (2H, m), 1 . 94-1. 79 (2H, m), 1. 74-1. 58 (1H, m), 1. 52-1. 21 (3H, m)
Purity >90% (NM)	R)
MS 603 (M+1)	

Table 188

Example No.	258	1H NMR(δ) ppm
		300MHz, DMSO-d6 7. 79 (1H, d, J=6. 7Hz), 7. 56 (1H, d, J=7. 5Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 42 (4H, s), 7. 32 -7. 23 (3H, m), 7. 09-7. 03 (3H, m), 5. 02 (2H, s), 4. 46 (1H, m), 3. 82 (3H, s), 1. 95-1. 83 (2H, m), 1. 75-1. 44 (5H, m), 1. 3 0-1. 10 (2H, m), 0. 89-0. 71 (1H, m)
Purity >90% (NMR)]
MS 567 (M+1)		1

Example No.	259	1H NMR(δ) ppm
BO 2 HOI	- C*	300MHz, DMSO-d6 8. 93 (2H, d, J=6. 6Hz), 8. 36 (1H, s), 8. 28 (1H, d, J=8. 7Hz), 8. 10-8. 03 (3H, m), 7. 85 (2H, d, J=8. 7Hz), 7. 33 (2H, d, J=8. 7Hz), 7. 23 (1H, s), 7. 23 (1H, s), 6. 81 (1H, s), 5. 56 (2H, s), 4. 39 (1H, m), 2. 97, 2. 92 (6H, s), 2. 40-2. 18 (2H, m), 2. 16-1. 95 (2H, m), 1. 90-1. 75 (
Purity >90% (NM	R)	2H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15 (3H, m)
MS 591 (M+1)		1

Example N	To. 260	1H NMR(δ) ppm
AD 2 HOI	O-OH O-OH	300MHz, DMSO-d6 8. 93 (2H, d, J=6. 3Hz), 8. 35 (1H, s), 8. 26 (1H, d, J=8. 7Hz), 8. 09-8. 02 (3H, m), 7. 86 (2H, d, J=8. 7Hz), 7. 50 (1H, s), 7 .35 (2H, d, J=8. 4Hz), 7. 24 (2 H, d, J=7. 8Hz), 5. 60 (2H, s), 4. 39 (1H, m), 2. 50-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90- 1. 75 (2H, m), 1. 70-1. 55 (1H,
Purity	>90% (NMR)	m) 1. 50-1. 10 (3H, m)
MS	564 (M+1)	

Table 189

5	Example No. 2	61 1H NMR(δ) ppm
10	**************************************	300MHz, DMSO-d6 8. 22 (1H, d, J=7.8Hz), 7.85 (1H, d, J=6.7Hz), 7.63 (2H, d, J=9.0H), 7.51-7.38 (5H, m), 7.29 (1H, d, J=8.3Hz), 7.23 (1H, d, J=3.0Hz), 7.06 (2H, d, J=9.0Hz), 7.06 (1H, dd, J=8.6, 3.0Hz), 5.05 (2H, s), 4.41 (25 (1H, m), 3.83 (3H, s), 2.40-2.20 (2H, m), 2.03-1.78
	Purity >90% (NMR)	(4H, m), 1.72-1.57(1H, m), 1 .50-1.18(3H, m)
20	MS 567 (M+1)	

Example No.	262	1H NMR(δ) ppm
**************************************	CI Note 1	300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 26 (1H, d, J=9.0Hz), 8. 19 (1H, d, J=1.8Hz), 8. 13 (1H, brs), 8. 08-7.96 (2H, m), 7. 73 (2H, d, J=9.0Hz), 7. 57-7. 43 (6H, m) 7. 24 (2H, d, J=9.0Hz), 5. 14 (2H, s), 4. 36 (1H, m), 2. 38-2 .18 (2H, m), 2. 12-1. 97 (2H, m), 1. 93-1. 80 (2H, m), 1. 73-1
Purity >	90% (NMR)	. 58 (1H, m), 1.52-1.20 (3H, m
MS	580 (M+1)	

MO 000 (4:17		
Example No.	263 1H NMR(δ) ppm 300MHz, DMSO-d6 12. 85 (1H, brs), 8. 72 (1H, J=4. 8Hz), 8. 22 (1H, s), 8. (1H, d, J=6. 3Hz), 8. 03and 76 (4H, ABq, J=8. 6Hz), 7. 9 nd7. 85 (2H, A'B'q, J=8. 6Hz), 7. 60and7. 15 (4H, A'B''q, 8. 7Hz), 7. 55 (1H, dd, J=6. 4. 8Hz), 5. 19 (2H, s), 4. 26 H, brt, J=12. 6Hz), 2. 35-2	14 17. 338 1z) J= 3, 12. 1
Purity > 90% (NM	1 m/, 1. 10 1. 00 (111, 01 m/,	
MS 548 (M+1)	45-1. 15 (3H, brm)	

Table 190

Example No.	264	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 23 (1H, d, J=1. 0Hz), 7. 92 (1H, dd, J=8. 7, 1. 0Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 60 (2H, d, J=8. 6Hz), 7. 47 (2H, d, J=8. 7 Hz), 7. 44 (2H, d, J=8. 7Hz), 7. 30 (1H, d, J=8. 3Hz), 7. 23 (1 H, d, J=2. 6Hz), 7. 11 (2H, d, J=8. 7Hz), 7. 06 (1H, dd, J=8. 7 , 2. 6Hz), 5. 04 (2H, s), 4. 36 (
Purity >9	0% (NMR)	1H, m), 3.83 (3H, s), 2.80-2. 70 (4H, m), 2.60-2.40 (2H, m)
MS 5	86, 588 (M+1)	, 2. 30-2. 20 (2H, m)

Example No.	265	1H NMR(δ) ppm
HCI CI	› →(300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=9. 1Hz), 8. 03 (1H, dd , J=8. 7, 1. 5Hz), 7. 76-7. 96 (3H, m), 7. 55-7. 49 (5H, m), 7. 42 (1H, d, J=7. 6Hz), 7. 23 (2H , d, J=8. 7Hz), 5. 15 (2H, s), 4 . 35 (1H, m), 3. 01 (3H, s), 2. 9 7 (3H, s), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 94-1. 8
Purity >90% (NMR))	1 (2H, m), 1.72-1.30 (1H, m), 1.50-1.21 (3H, m)
MS 608 (M+1)		

Example No.	266	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 27(1H, d, J=1. 5Hz), 8. 20(1H, d, J=9. 0Hz), 8. 00(1H, dd, J=8. 6, 1. 5Hz), 7. 82(2H, d, J=8. 2Hz), 7. 76-7. 65(5H, m), 7. 56(1H, dd, J=7. 9, 1. 8Hz), 7. 47(1H, d, J=7. 5Hz), 7. 20(2H, d, J=8. 6Hz), 5. 16(2H, s), 4. 32(1H, m), 3. 02(3H, s), 2. 98(3H, s), 2. 38-2. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2H, d, J=8. 6Hz), 5. 19(2Hz), 5
Purity > 90%	(NMR)	m), 2. 07-1. 95 (2H, m), 1. 93- 1. 80 (2H, m), 1. 72-1. 58 (1H.
MS 642	(M+1)	m), 1. 52-1. 18 (3H, m)

Table 191

Example No.	267 1H NMR(δ) ppm
HC)	300MHz, DMSO-d6 8. 34 (2H, m), 8. 03 (1H, d, J=8 . 3Hz), 7. 77-7. 68 (3H, m), 7. 54-7. 40 (4H, m), 7. 33 (2H, d, J=8. 6Hz), 7. 24 (2H, d, J=9. 0 Hz), 5. 16 (2H, s), 4. 36 (1H, m), 3. 01 (3H, s), 2. 97 (3H, s), 2. 40-2. 20 (2H, m), 2. 11-1. 9 7 (2H, m), 1. 93-1. 81 (2H, m), 1. 71-1. 60 (1H, m), 1. 50-1. 2
Purity >90% (NM	1 (3H, m)
MS 620 (M+1)	·

Example No.	268	1H NMR(δ) ppm
HOI F) H	300MHz, DMSO-d6 8.67-8.59(1H, m), 8.30(1H, s), 8.13-8.20(2H, m), 8.02-7.92(2H, m), 7.65(1H, t, J=8.3Hz), 7.56-7.45(5H, m), 7.18(1H, dd, J=12.0, 2.2Hz), 7.05(1H, dd, J=8.6, 2.2Hz), 5.14(2H, s), 4.09(1H, m), 2.82(3H, d, J=4.5Hz), 2.34-2.12(2H, m), 1.99-1.79(4H, m),
Purity >90% (NMR	2)	1.71-1.59 (1H, m), 1.49-1.2 1 (3H, m)
MS 612 (M+1)]

			-
Example	No.	269	1H NMR(δ) ppm
40 L	HCI F	\	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=9 . 0Hz), 7. 97 (1H, dd, J=8. 6, 1 . 5Hz), 7. 71 (1H, d, J=1. 8Hz) , 7. 63 (1H, t, J=8. 2Hz), 7. 56 -7. 41 (6H, m), 7. 17 (1H, dd, J =12. 0, 2. 2Hz), 7. 03 (1H, dd, J=8. 2, 1. 8Hz), 5. 14 (2H, s), 4. 15-4. 00 (1H, m), 3. 01 (3H, s), 2. 98 (3H, s), 2. 32-2. 13 (
Purity	>90% (NMI	₹)	2H, m) 1. 95-1. 79 (4H, m), 1. 7 2-1. 59 (1H, m), 1. 45-1. 21 (3
MS	626 (M+1)] H, m)

Table 192

Example No.	270	1H NMR(δ) ppm
HO! HO!	0 16H,	300MHz, DMSO-d6 8. 24 (1H, d, J=1. 4Hz), 8. 19 (1H, d, J=1. 8Hz), 8. 11 (1H, br s), 8. 02-7. 85 (3H, m), 7. 60- 7. 44 (7H, m), 7. 10 (1H, dd, J= 12. 0, 2. 1Hz), 6. 98 (1H, dd, J= 8. 4, 2. 1Hz), 5. 11 (2H, s), 3. 98 (1H, m), 2. 30-2. 12 (2H, m), 1. 91-1. 73 (4H, m), 1. 71-1 58 (1H, m), 1. 45-1. 15 (3H, m)
Purity >90% (NN	AR)	7)
MS 598 (M+1)		7

Example	No.	271	1H NMR(δ) ppm
**	HOI		300MHz, DMSO-d6 8. 29 (1H, d, J=1. 5Hz), 8. 24 (1H, d, J=8. 7Hz), 8. 07-7. 98 (3H, m), 7. 80-7. 68 (5H, m), 7. 56 (1H, dd, J=8. 0, 1. 8Hz), 7. 47 (1H, d, J=8. 0Hz), 7. 21 (2H, d, J=8. 4Hz), 5. 18 (2H, s), 4. 34 (1H, m), 3. 27 (3H, s), 3. 0 2 (3H, s), 2. 98 (3H, s), 2. 38- 2, 18 (2H, m), 2. 10-1. 95 (2H,
Purity	>90%	(NMR)	m), 1.93-1.79(2H, m), 1.72- 1.59(1H, m), 1.50-1.19(3H,
MS	652	(M+1)	m)

Example No.	272	1H NMR(δ) ppm
HO CIM	HCI	300MHz, DMSO-d6 8. 97(1H, d, J=1.8Hz), 8. 85(1H, d, J=4.7Hz), 8. 46(1H, d, J=8.0Hz), 8. 39-8. 26(2H, m), 8. 06(1H, d, J=8.7Hz), 7. 99 -7. 64(6H, m), 7. 24(2H, d, J=8.7Hz), 5. 25(2H, s), 4. 36(1H, m), 3. 03(3H, s), 2. 97(3H, s), 2. 39-2. 19(2H, m), 2. 14-1, 96(2H, m), 1. 94-1. 78(2H, m)
Purity >90%	(NMR)	m), 1. 73-1. 60 (1H, m), 1. 21- 1. 55 (3H, m)
MS 575	(M+1)	

Table 193

Example No.	273	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 30 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8. 7Hz) , 7. 77-7. 67 (3H, m). 7. 58-7. 48 (6H, m), 7. 22 (2H, d, J=8. 4 Hz), 5. 18 (2H, s), 4. 35 (1H, b rt, J=9. 8Hz), 3. 06-2. 88 (12 H, brm), 2. 38-2. 20 (2H, brm) , 2. 08-1. 96 (2H, brm), 1. 90- 1. 80 (2H, brm), 1. 70-1. 60 (1
Purity >909	6 (NMR)	H, brm), 1.49-1.22(3H, brm)
MS 64	5 (M+1)	

Example No.	274	1H NMR(δ) ppm
	<u>}</u>	300MHz, DMSO-d6 mixture of cis and trans 8.35,8.34(1H,s),8.15-8.1 0(2H,m),7.79-7.70(3H,m), 7.49(2H,d,J=8.7Hz),7.44(2H,d,J=8.7Hz),7.31(1H,d, J=8.4Hz),7.25-7.19(2H,m) ,7.07(1H,d,J=8.5Hz),5.08 (2H,s),4.75(1H,m),3.83(3 H,s),3.70-1.90(8H,m)
Purity about 80% (N	MR)	
MS 601 (M+1)	

Example No.	275	1H NMR(δ) ppm
	-\(\)	300MHz, DMSO-d6 8. 33 (1H, s), 8. 13 (1H, d, J=7 .5Hz), 7. 93 (1H, d, J=8. 8Hz) ,7. 74 (2H, d, J=8. 7Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 44 (2H, d ,J=8. 6Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 25-7. 15 (3H, m), 7. 0 7 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 98 (1H, m), 3. 83 (3H, s) ,3. 65-3. 45 (2H, m), 3. 30-3.
Purity >90% (N	IMR)	10 (2H, m), 3. 00-2. 75 (2H, m), 2. 60-2. 30 (2H, m)
MS 617 (M+	1)	

Table 194

5	Example No. 276	IH NMR(δ) ppm
10	HO LINE CI	300MHz, DMSO-d6 8. 25(1H, s), 7. 93and7. 87(2 H, ABq, J=9. 1Hz), 7. 55(1H, t , J=8. 6Hz), 7. 48and7. 42(4H , A'B'q, J=8. 6Hz), 7. 31(1H, d, J=8. 5Hz), 7. 24(1H, d, J=2 .6Hz), 7. 09-6. 95(3H, m), 5.
15	Purity >90% (NMR)	05(2H, s), 4. 11(1H, brt, J=1 4. 0Hz), 3. 84(3H, s), 2. 83-2 .67(4H, brm), 2. 50-2. 32(2H, brm), 2. 21-2. 10(2H, brm)
	7 0 0 70 (11/1/12)	-
20	MS 603 (M+1)	
	Example No. 277	T
	Example No. 277	1H NMR(δ) ppm
25	OI	300MHz, DMSO-d6 cis and trans mixture
	کا حالما	8. 28and8. 24 (total 1H, each
		s), 7.94-7.87(1H, m), 7.60-
30	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7. 41 (5H, m), 7. 31 (1H, d, J=8 .5Hz), 7. 23-7. 21 (1H, m), 7.
	8 9	12-7.05(2H, m), 7.00-6.95(1H, m), 5.06and5.05(total
35	Purity >90% (NMR)	2H, each s), 4. 47and4. 34(total
33	- CONTRACTOR	1H, each brs), 3, 83 (3H, s), 3, 12-1.7
	MS 619 (M+1)	6 (8H, m)
40	Example No. 278	
	Example No. 278	IH NMR(δ) ppm
45		300MHz, DMSO-d6 12.9(1H, brs), 8.27(1H, s), 7.97and7.74(2H, ABq, J=8.6 Hz), 7.58(1H, t, J=8.6Hz), 7 .49and7.43(4H, A'B'q, J=8. 5Hz), 7.31(1H, d, J=8.5Hz),
50	Purity >9.0% (NMP)	7. 22(1H, d, J=2.6Hz), 7.13-6.92(3H, m), 5.05(2H, s), 4.67(1H, brt, J=14.2Hz), 3.57-3.40(2H, brm), 3.20-3.05(2H, brm), 2.91-2.70(2H, brm)
	- J J J J K (IVIII)), 2. 28-2. 11 (2H, brm)
55	MS 635 (M+1)	

Table 195

Example No.	279 1H NMR(δ) ppm
HC1 HC1	300MHz, DMSO-d6 8. 30(1H, s), 8. 23(1H, d, J= . 7Hz), 8. 06-8. 00(2H, m), 7 83(1H, dd, J=8. 0, 1. 8Hz), 7 71(2H, d, J=8. 4Hz), 7. 64(1 , d, J=8. 0Hz), 7. 59-7. 54(4 , m), 7. 22(2H, d, J=8. 4Hz), . 25(2H, s), 4. 33(1H, m), 2. 6(3H, s), 2. 66(3H, s), 2. 37 2. 19(2H, m), 1. 93-1. 80(2H
Purity >90% (NM)	m) 1 70-1 59 (1H m) 1 47
MS 644 (M+1)	

Example No.	280	1H NMR(δ) ppm
HCI HCI		300MHz, DMSO-d6 8. 32-8. 23 (3H, m), 8. 08-8. 0 1 (2H, m), 7. 73 (2H, d, J=8. 6H z), 7. 65 (1H, d, J=8. 2Hz), 7. 59-7. 51 (4H, m), 7. 25 (2H, d, J=8. 6Hz), 5. 21 (2H, s), 4. 34 (1H, m), 3. 32 (3H, s), 2. 37-2 .19 (2H, m), 2. 10-1. 98 (2H, m), 1. 93-1. 80 (2H, m), 1. 71-1 .60 (1H, m), 1. 51-1. 21 (3H, m
Purity > 90% (NM	R)	7)
MS 615 (M+1)		

Example	No.	281	1H NMR(δ) ppm
ہٰ۔	HOI F	OH OH	300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 24 (1H, s), 8. 14 (1H, d, J=8. 6Hz) , 8. 07-7. 95 (2H, m), 7. 63 (1H , t, J=8. 6Hz), 7. 57-7. 47 (5H , m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7. 03 (1H, dd, J=8. 6, 2. 2Hz), 5. 17 (2H, s), 4. 06 (1H, m), 3. 90 (3H, s), 2. 31-2. 11 (2H, m), 1. 97-1. 78 (4H, m), 1.
Purity	>90% (N	MR)	71-1.59(1H, m), 1.43-1.22(3H, m)
MS	315		

Table 196

Exampl	e No.	282	1H NMR(δ) ppm
MO I	HGI (DOIN OUR	300MHz, DMSO-d6 8. 36 (1H, s), 8. 35 (1H, d, J=9 . 3Hz), 8. 09 (1H, d, J=9. 3Hz) , 7. 78 (2H, d, J=8. 7Hz), 7. 48 -7. 25 (9H, m), 5. 09 (2H, s), 4 . 39 (1H, m), 3. 04 (6H, s), 2. 4 0-2. 15 (2H, m), 2. 10-1. 95 (2 H, m), 1. 90-1. 75 (2H, m), 1. 7 0-1. 55 (1H, m), 1. 50-1. 20 (3 H, m)
Purity	>90% (NMR)	,
MS	580 (M	+1)	

Example 1	No.	283	1H NMR(δ) ppm
	HCI CI	0 H-5=0 H	300MHz, DMSO-d6 10.03(1H, s), 8.33(1H, s), 8 .29(1H, d, J=8.7Hz), 8.06(1 H, d, J=9.0Hz), 7.74(2H, d, J =9.0Hz), 7.51-7.42(5H, m), 7.37-7.30(2H, m), 7.22(2H, d, J=8.7Hz), 5.10(2H, s), 4. 37(1H, m), 3.06(3H, s), 2.40 -2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75
Purity	>90% (NM	IR)	-1.55 (1H, m), 1.50-1.20 (3H, m)
MS	630 (M+1)		

Example No.	284	1H NMR(δ) ppm
HOI POI		300MHz, DMSO-d6 8. 30 (1H, s), 8. 14 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 7Hz) ,7. 96-7. 41 (8H, m), 7. 16 (1H, dd, J=12. 4, 2. 2Hz), 7. 03 (1H, dd, J=8. 4, 2. 2Hz), 5. 15 (2H, s), 4. 15 (1H, m), 3. 54-3. 16 (4H, m), 2. 33-2. 13 (2H, m), 1. 97-1. 79 (4H, m), 1. 70-1. 02 (9H, m)
Purity >90% (NMR)	
MS 654 (M	+1)	1

Table 197

Example No.	285	1H NMR(δ) ppm
HCI FOR CI		300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 30 (1H, s), 8. 19-8. 12 (2H, m), 8. 02-7. 95 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 56-7. 43 (5H, m), 7. 18 (1H, dd, J=12. 0, 1. 8Hz), 7. 06 (1H, dd, J=8. 4, 2. 1Hz), 5. 13 (2H, s), 4. 22-4. 03 (2H, m), 2. 34-2. 13 (2H, m), 1. 9 9-1. 78 (4H, m), 1. 72-1. 57 (1
Purity > 90% (N	MR)	H, m), 1.44-1.14(3H, m), 1.2 0, 1.18(6H, each s)
MS 640 (M+1)	

Example No.	286	1H NMR(δ) ppm
HCI. PCI.		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, dd, J=8. 7, 1 .4Hz), 7. 69-7. 40 (8H, m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7 .02 (1H, dd, J=8. 4, 2. 2Hz), 5 .15 (2H, s), 4. 07 (1H, m), 3. 7 1-3. 23 (2H, m), 1. 98-1. 71 (4 H, m), 1. 71-1. 18 (10H, m)
Purity >90% (N	MR)	
MS 666 (M+)	1)	

Example No.	287	1H NMR(δ) ppm
HCI F CI	}	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 . 0Hz), 7. 97 (1H, d, J=8. 4Hz) , 7. 83 (1H, s), 7. 68-7. 41 (7H , m), 7. 17 (1H, d, J=12. 0Hz), 7. 03 (1H, d, J=8. 4Hz), 5. 15 (2H, s), 4. 07 (1H, m), 3. 58-3. 41 (4H, m), 2. 34-2. 13 (2H, m) , 1. 97-1. 77 (8H, m), 1. 71-1. 58 (1H, m), 1. 49-1. 18 (3H, m)
Purity >90% (N	MR)	
MS 652(M+1)		

Table 198

Example No.	288	1H NMR(δ) ppm
HCI F	OH OH	300MHz, DMSO-d6 8. 62 (1N, m), 8. 31 (1H, s), 8. 22-8. 14 (2H, m), 8. 99 (2H, d, J=8. 7Hz), 7. 66 (1H, t, J=7. 7 Hz), 7. 58-7. 44 (5H, m), 7. 19 (1H, dd, J=8. 7, 2. 2Hz), 5. 14 (2H, s), 4. 11 (1H, m), 3. 67-3 .49 (2H, m), 3. 45-3. 30 (2H, m), 2. 37-2. 12 (2H, m), 2. 00-1 .76 (4H, m), 1. 70-1. 58 (1H, m)
Purity >90% (NM	R)), 1.48-1.17(3H, m)
MS 642 (M+1)		

-

Example No.	289	1H NMR(δ) ppm
HOI CO	OH OH	400MHz, DMSO-d6 8. 28 (1H, s), 8. 11 (1H, d, J=8 .9Hz), 7. 96 (1H, d, J=8. 9Hz) , 7. 68 (1H, s), 7. 62 (1H, t, J= 8. 2Hz), 7. 55-7. 41 (6H, m), 7 .15 (1H, d, J=11. 7Hz), 7. 02 (1H, d, J=8. 4Hz), 5. 14 (2H, s) , 4. 12-3. 13 (6H, m), 2. 30-1. 19 (13H, m)
Purity >90%	(NMR)	
MS 682	(H+1)	

Example No.	290	1H NMR(δ) ppm
HC)		400MHz, DMSO-d6 8. 29 (1H, s), 8. 15 (1H, d, J=8 .6Hz), 7. 98 (1H, d, J=8. 8Hz) , 7. 72 (1H, s), 7. 64 (1H, t, J= 8. 8Hz), 7. 57-7. 43 (6H, m), 7 .18 (1H, dd, J=12. 1, 2. 1Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 12 (2H, s), 4. 15-4. 01 (1H, m), 3 .75-3. 33 (8H, m), 2. 31-2. 14 (2H, m), 1. 96-1. 78 (4H, m), 1
Purity >90%	(NMR)	.70-1.58(1H, m), 1.47-1.21 (3H, m)
MS 668	(M+1)	

Table 199

5			
	Example	No.	291
10	""	ol p	
	Purity	> 9 0 %	(NMR)
20	MS	684 (M+1)

30

35

40

45

50

55

400MHz, DMSO-d6 8. 29 (1H, s), 8. 14 (1H, d, J=8 .9Hz), 7. 97 (1H, d, J=8. 6Hz) ,7. 71 (1H, s), 7. 63 (1H, t, J= 8. 2Hz), 7. 56-7. 42 (6H, m), 7 .17 (1H, d, J=12. 3Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 14 (2H, s), 4. 07 (1H, m), 3. 96-3. 52 (4 H, m), 2. 79-2. 56 (4H, m), 2. 3 2-2. 14 (2H, m), 1. 97-1. 79 (4 H, m), 1. 71-1. 58 (1H, m), 1. 5 1-1. 19 (3H, m)

1H NMR(δ) ppm

Example	No.	292
HO HC		OH OH
Purity	>90% (NM)	R)
MS	656 (M+1)	

1H NMR (δ) ppm 300MHz, DMSO-d6 9.07-8.99(1H, m), 8.30(1H, s), 8.23-8.12(2H, m), 8.04-7.95(2H, m), 7.65(1H, t, J=8.2Hz), 7.60-7.45(5H, m), 7.19(1H, dd, J=12.0, 2.6Hz), 7.06(1H, dd, J=8.6, 2.2Hz), 5.16(2H, s), 4.18-4.02(1H, m), 3.97(2H, d, J=6.0Hz), 2.33-2.14(2H, m), 1.99-1.79(4H, m), 1.72-1.59(1H, m), 1.45-1.19(3H, m)

Example	No. 293
BO A	
Purity	>90% (NMR)
MS	637 (M+1)

1H NMR(δ) ppm

300MHz, DMSO-d6:8. 21 (1H, s), 7. 94and7. 86 (2H, ABq, J=8.6Hz), 7. 72 (1H, d, J=2. 4Hz), 7. 59and7. 11 (4H, A'B'q, J=8. 9Hz), 7. 53 (1H, dd, J=8. 4Hz), 7. 36and7. 32 (4H, A'B''q, J=8. 1Hz), 5. 07 (2H, s), 4. 27 (1H, brt, J=13. 8Hz), 2. 87 (2H, t, J=7. 8Hz), 2. 35-2. 20 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 68-1. 59 (1H, brm), 1. 47-1. 18 (3H, brm)

Table 200

Example No.	294	1H NMR(δ) ppm
HCI CH	CI CI	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25and8. 03 (2 H, ABq, J=8. 9Hz), 7. 73 (1H, s), 7. 73 (2H, d, J=8. 6Hz), 7. 5 5 (1H, dd, J=8. 0, 2. 3Hz), 7. 4 0 (4H, s), 7. 39 (1H, d, J=8. 0H z), 7. 23 (2H, d, J=8. 6Hz), 5. 11 (2H, s), 4. 55 (2H, s), 4. 36 (1H, brt, J=14. 8Hz), 2. 37-2 . 19 (2H, brm), 2. 09-1. 96 (2H
Purity > 9.0% (NA	AR)	, brm), 1.91-1.79 (2H, brm), 1.71-1.59 (1H, brm), 1.50-1
MS 567 (M+1)		. 20 (3H, brm)

Example No. 298	5 1H NMR(δ) ppm
HO HO N	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25and8. 04(2 H, ABq, J=8. 7Hz), 7. 74 (1H, s), 7. 72 (2H, d, J=8. 7Hz), 7. 5 6(1H, d, J=8. 7Hz), 7. 48-7. 3 5(5H, m), 7. 22 (2H, d, J=8. 7Hz), 5. 11 (2H, s), 4. 46 (2H, s) ,4. 35 (1H, brt, J=14. 8Hz), 3 .31 (3H, s), 2. 37-2. 17 (2H, brm), 2. 07-1. 95 (2H, brm), 1.
Purity >90% (NMR)	92-1.79 (2H, brm), 1.73-1.5 6(1H, brm), 1.52-1.20 (3H, b
MS 581 (M+1)	rm)

Example No.	296	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 98 (1H, d, J=1. 2Hz), 7. 97-7. 91 (2H, m), 7. 84 (1H, dd, J=8. 7, 1 .5Hz), 7. 77 (1H, d, J=2. 1Hz) , 7. 70 (1H, d, J=7. 5Hz), 7. 60 -7. 54 (4H, m), 7. 43 (1H, d, J= 8. 4Hz), 7. 09 (2H, d, J=8. 7Hz), 5. 05 (2H, s), 4. 25 (1H, brt , J=14. 8Hz), 2. 36-2, 18 (2H,
Purity >90% (NMR)	brm), 1.95-1.79(4H, brm), 1 .71-1.6(1H, brm), 1.43-1.1
MS 581 (M+	-1)	8 (3H, brm)

Table 201

J	

15

20

25

30

35

40

45

50

55

Example	No.	297	1.11
HO .			30 12 7. Hz an), 5(.0 20 br
Purity	>90% (N	MR)	. 4
MS	583 (M+1)		

 $HNMR(\delta)$ ppm

DOMHz, DMSO-d6 300MHz, DMSO-d6
12.7(1H, brs), 8.21(1H, s),
7.94and7.85(2H, ABq, J=8.6
Hz), 7.60-7.55(3H, m), 7.49
and7.45(4H, A'B'q, J=8.3Hz
7.12(2H, d, J=8.7Hz), 5.0
5(2H, s), 4.26(1H, brt, J=13
0Hz), 2.54(3H, s), 2.38-2.
20(2H, brm), 1.97-1.80(4H, brm), 1.71-1.59(1H, brm), 1
47-1.20(3H, brm) 47-1. 20 (3H, brm)

Example	No.	298	1H NMR(δ) ppm
но 🔭		S=0	300MHz, DMSO-d6 8. 22(1H, s), 8. 01(95and7. 86(2H, ABq), 7. 79(1H, d, J=7. 8(3H, t, J=7. 5Hz), s), 7. 13(2H, d, 8. 7 (2H, s), 4. 26(1H, b 8Hz), 2. 83(3H, s), 8(2H, brm), 1. 95-1 rm), 1. 70-1. 59(1H
Purity	>90%	(NMR)	47-1. 17 (3H, brm)
MS	599	(M+1)	

B. 01 (1H, s), 7. H, ABq, J=8. 6Hz, J=7. 8Hz), 7. 5 GHz), 7. 53 (4H, i, 8. 7Hz), 5. 15 (1H, brt, J=13. i, s), 2. 37-2. 1 95-1. 78 (4H, b 9(1H, brm), 1.

Example	No.	299	1H NMR(δ) ppm
но	HOI OI		300MHz, DMSO-d6 8. 43-8. 16 (3H, m), 8. 07-7. 9 4 (2H, m), 7. 72 (2H, d, J=8. 6H z), 7. 62-7. 49 (5H, m), 7. 23 (2H, d, J=8. 6Hz), 5. 16 (2H, s) , 4. 34 (1H, m), 2. 39-2. 20 (2H , m), 2. 10-1. 96 (2H, m), 1. 93 -1. 80 (2H, m), 1. 71-1. 58 (1H , m), 1. 49-1. 19 (3H, m)
Purity	>90% (NM)	R)	
MS	562 (M+1)		

Table 202

Example No.	300	1H NMR(δ) ppm
HO 1 10 10 10 10 10 10 10 10 10 10 10 10 1		300MHz, DMSO-d6:2. 77 (1H, b rs), 8. 83 (2H, d, J=1. 9Hz), 8 . 56 (2H, dd, J=4. 9, 1. 9Hz), 8 . 22 (1H, d, J=1. 5Hz), 7. 97 (2 H, dt, J=7. 9, 1. 9Hz), 7. 95 (1 H, d, J=8. 6Hz), 7. 87 (1H, dd, J=8. 6, 1. 5Hz), 7. 57 (1H, t, J=8. 7Hz), 7. 46 (2H, dd, J=7. 9, 4. 9Hz), 7. 26 (1H, dd, J=12. 0, 4. 9Hz), 7. 14 (1H, dd, J=8.
Purity >90%	(NMR)	8, 2. 3Hz), 6. 99(2H, s), 3. 94 (1H, brt), 2. 26-2. 09(2H, m)
MS 523	(M+1)	1.87-1.73 (4H, m), 1.67-1. 57(1H m) 1 49-1 19(3H m)

Example No.	301	1H NMR(δ) ppm
	} _	300MHz, DMSO-d6 8. 22(1H, s), 7. 95(1H, d, J=8 .7Hz), 7. 87(1H, dd, J=1. 5Hz ,9. 0Hz), 7. 62(4H, d, J=8. 4H z), 7. 55(1H, t, J=9. 0Hz), 7. 44(4H, d, J=8. 1Hz), 7. 20(1H ,dd, J=2. 1Hz, 12. 0Hz), 7. 11 (1H, dd, J=2. 1Hz, 8. 7Hz), 6. 86(1H, s), 3. 94(1H, m), 2. 96 ,2. 88(12H, s), 2. 35-2. 00(2)
Purity >90% (NM	IR)	H, m), 1.95-1.70(4H, m), 1.6 5-1.50(1H, m), 1.45-1.10(3
MS 663 (M+1)		H, m)

Example No.	302	1H NMR(δ) ppm
Na o Na S	5	300MHz, DMSO-d6 8. 14(1H, s); 7. 88(1H, d, J=8 .4Hz), 7. 68(1H, d, J=8. 7Hz) , 7. 64-7. 55(3H, m), 7. 50(1H , t, J=8. 7Hz), 7. 22-7. 17(3H , m), 7. 11(1H, s), 7. 08-7. 00 (2H, m), 3. 90(1H, m), 2. 15-2 .00(2H, m), 1. 95-1. 50(5H, m)), 1. 45-1. 00(3H, m)
Purity > 90% (N)	MR)	
MS 532 (M+1)		

Table 203

Example No.	303	1H NMR(δ) ppm
		300MHz, CDC13 8. 49(1H, s), 7. 98(1H, dd, J= 8. 6, 1. 5Hz), 7. 71(1H, d, J=1 .8Hz), 7. 66(1H, d, J=8. 6Hz) ,7. 55-7. 29(7H, m), 6. 80(1H, dd, J=8. 2, 2. 2Hz), 6. 69(1H, dd, J=11. 2, 2. 2Hz), 4. 99(2H, s), 4. 10-3. 92(1H, m), 3. 9 5(3H, s), 3. 15(3H, s), 3. 06(3H, s), 2. 31-2. 14(2H, m), 2.
Purity >90% (NM)	R)	04-1.86(4H, m), 1.81-1.71(1H, m), 1.41-1.21(3H, m)
MS 640 (M+1)		7

Example No.	304	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 21 (1H, s), 7. 94 (1H, d, J=8 . 7Hz), 7. 84 (1H, d, J=9. 1Hz) , 7. 70 (1H, s), 7. 26-7. 39 (9H , m), 7. 11 (2H, d, J=8. 4Hz), 5 . 11 (2H, s), 4. 26 (1H, m), 3. 0 1 (3H, s), 2. 97 (3H, s), 2. 38- 2. 19 (2H, m), 1. 97-1. 78 (4H, m), 1. 72-1. 57 (1H, m), 1. 48- 1. 17 (3H, m)
Purity >90% (N	MR)	
MS 608 (M+1))	

Example No.	305	1H NMR(δ) ppm
Purity >0.00% (NMP)		300MHz, DMSO-d6 8. 24 (2H. s), 8. 03 (1H, d, J=8. 0Hz), 7. 96 (1H, d, J=8. 8Hz), 7. 87 (1H, d, J=9. 1Hz), 7. 60 -7. 46 (6H, m), 7. 09 (1H, dd, J=12. 0, 1. 8Hz), 6. 97 (1H, dd, J=8. 4, 1. 8Hz), 5. 16 (2H, s), 3. 97 (1H, m), 2. 31-2. 11 (2H, m), 1. 92-1. 73 (4H, m), 1. 70-1, 57 (1H, m), 1. 46-1. 13 (3H, m)
Purity >90%	(NMR)	m)
MS 599	(M+1)	

Table 204

Example No.	306 1H NMR(δ) ppm
HO-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	300MHz, DMSO-d6 12.84(1H, brs), 8.21(1H, s) , 7.98-7.84(5H, m), 7.58(2H, d, J=8.7Hz), 7.54(2H, d, J=7.8Hz), 7.34(1H, d, J=8.7Hz), 7.26(1H, d, J=2.4Hz), 7.13-7.06(3H, m), 5.06(2H, s), 4.26(1H, brt, J=12.7Hz), 3.84(3H, s), 2.36-2.17(2H, brm), 1.99-1.80(4H, brm), 1.
Purity >90% (NMR)	73-1. 59 (1H, brm), 1. 47-1. 1 7 (3H, brm)
MS 577 (M+1)	

Example	No.	307	1H NMR(δ) ppm
10 1			300MHz, DMSO-d6 8. 22(1H, s), 8. 04(1H, s), 7. 96(2H, d, J=8. 1Hz), 7. 87(2H, s), 7. 72(1H, d, J=1. 2Hz), 7. 59-7. 41(7H, m), 5. 12(2H, s), 4. 25(1H, brt, J=11. 8Hz), 3. 02(3H, brs), 2. 98(3H, brs), 2. 38-2. 15(2H, brm), 1. 93 -1. 76(4H, brm), 1. 71-1. 59(1H, brm), 1. 46-1. 16(3H, brm)
Purity	>90% (NMR)	}
MS	617 (M	+1)	

Example	No.	308	1H NMR(δ) ppm
NO. H. NO.		300MHz, DMSO-d6 8. 27 (1H, s), 8. 08 (1H, d, J=9 .0Hz), 7. 93 (1H, d, J=8. 7Hz) , 7. 65 (2H, d, J=8. 7Hz), 7. 46 (2H, d, J=8. 1Hz), 7. 42 (2H, d , J=8. 4Hz), 7. 30-7. 04 (5H, m), 5. 03 (2H, s), 4. 32 (1H, m), 2. 40-2. 10 (2H, m), 2. 05-1. 1 0 (8H, m)	
Purity	>90%	(NMR)	
MS	552 (M+1)	

Table 205

Example No.	309	iH NMR(δ) ppm
HO HOCI		300MHz, DMSO-d6 8. 33(1H, s), 8. 15and7. 99(2 H, ABq, J=8. 9Hz), 7. 84and7. 59(4H, A'B'q, J=8. 3Hz), 7. 4 6(2H, d, J=8. 4Hz), 7. 22-7. 1 6(3H, m), 7. 01-6. 98(2H, m), 4. 27and4. 23(2H, A'B''q, J=1 2. 9Hz), 3. 78(3H, s), 2. 39-2 . 21(2H, brm), 2. 07-1. 95(2H, brm), 1. 91-1. 80(2H, brm),
Purity >90% (N)	MR)	1.72-1.59(1H, brm), 1.49-1 .17(3H, brm)
MS		1

Example No.	310 1H NMR(δ) ppm
HC:	300MHz, DMSO-d6 8. 33 (1H, s), 8. 09and7. 95 (2 H, ABq, J=8. 7Hz), 7. 87and7. 71 (4H, A'B'q, J=8. 0Hz), 7. 4 3 (2H, d, J=7. 8Hz), 7. 15 (1H, d, J=8. 7Hz), 7. 07-7. 02 (4H, m), 4. 66 (2H, s), 4. 23 (1H, br t, J=11. 8Hz), 3. 76 (3H, s), 2 . 38-2. 20 (2H, brm), 2. 04-1. 93 (2H, brm), 1. 89-1. 79 (2H,
Purity >90% (NMR)	brm), 1. 70-1. 59 (1H, brm), 1 . 49-1. 18 (3H, brm)
MS 615 (M+1)	

Example No.	311	1H NMR(δ) ppm
HCI HCI HCI		300MHz, DMSO-d6 8. 30 (1H, s), 8. 21and8. 01 (2 H, ABq, J=8. 7Hz), 7. 65 (2H, d , J=8. 4Hz), 7. 52-7. 41 (6H, m), 7. 20 (1H, d, J=8. 4Hz), 7. 1 4 (1H, d, J=2. 7Hz), 6. 97 (1H, dd, J=8. 4, 2. 4Hz), 4. 31 (1H, brt, J=9. 8Hz), 4. 28 (2H, s), 3. 78 (3H, s), 2. 37-2. 20 (2H, brm), 2. 07-1. 95 (2H, brm), 1
Purity >90% (N	MR)	. 92-1. 80 (2H, brm), 1. 71-1. 60 (1H, brm), 1. 50-1. 19 (3H,
MS 583 (M+1)	brm)

Table 206

Example No.	312	1H NMR(δ) ppm
HO HO ON ON ON ON ON ON ON ON ON ON ON ON ON	-₹° •	300MHz, DMSO-d6 8. 22(1H, s), 8. 12(1H, d, J=8 .4Hz), 8. 00-7. 84(5H, m), 7. 70(4H, d, J=8. 4Hz), 7. 56(1H ,t, J=8. 6Hz), 7. 23(1H, d, J= 12. 0Hz), 7. 13(1H, d, J=8. 6H z), 6. 97(1H, s), 3. 92(1H, m) ,2. 35-2. 00(2H, m), 1. 95-1. 70(4H, m), 1. 65-1. 55(1H, m) ,1. 50-1. 05(3H, m)
Purity >90% (NMR)		
MS . 609 (M+1)		

Example No.	313	1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	→	300MHz, DMSO-d6 8. 89 (1H, brs), 8. 63 (1H, brs), 8. 24 (1H, s), 8. 11 (1H, d, J=7.8Hz), 7. 99 (1H, d, J=8.8Hz), 7. 89 (1H, d, J=9.9Hz), 7. 61-7. 55 (4H, m), 7. 43 (2H, t, J=7.7Hz), 7. 34 (1H, t, J=7.2 Hz), 7. 24 (1H, d, J=12.0Hz), 7. 14 (1H, d, J=8.6Hz), 6. 95 (1H, s), 3. 96 (1H, m), 2. 35-2.
Purity > 90% (NN	1R)	05(2H, m), 2.00-1.50(5H, m), 1.45-1.10(3H, m)
MS 522 (M+1)		

Example No.	314	1H NMR(δ) ppm
		300MHz, CDC13 8. 48 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=1. 8Hz), 8. 98 (1H, d, J=8. 6Hz), 7. 82 (1H, d, J=7. 9 Hz), 7. 66 (1H, d, J=8. 6Hz), 7 .55-7. 24 (6H, m), 6. 78 (1H, d d, J=8. 6, 2. 6Hz), 6. 69 (1H, d d, J=11. 6Hz), 2. 2Hz), 6. 40- 6. 30 (1H, m), 4. 99 (2H, s), 4. 02 (1H, m), 3. 95 (3H, s), 3. 05
Purity >90% (NMR)	(3H, d, J=4.8Hz), 2.32-2.13 (2H, m), 2.03-1.87(4H, m), 1
MS 626 (M	+1)	. 81-1. 71 (1H, m), 1. 46-1. 23 (3H, m)

Table 207

Example	No.	503	1H NMR(δ) ppm	
H0 1	HO LOCAL CONTRACTOR OF THE PARTY OF THE PART		300MHz, DMSO-d6 8.23(1H, s), 7.76(1H, d, J=8 .7Hz), 7.58(1H, d, J=8.8Hz) , 7.51-7.32(7H, m), 7.17(2H , d, J=8.7Hz), 6.55(1H, s), 5 .18(2H, s), 4.75(1H, m), 2.3 5-2.12(2H, m), 2.10-1.85(4 H, m), 1.80-1.50(2H, m)	
Purity	>90% (NM	R)		
MS	412 (M+1)			

Example No.	701 1H NMR(δ) ppm
100 NO NO NO NO NO NO NO NO NO NO NO NO NO	300MHz, DMSO-d6 8. 96(1H, s), 8. 50(1H, s), 7. 77(2H, d, J=8. 7Hz), 7. 50-7. 40(4H, m), 7. 30(1H, d, J=8. 4 Hz), 7. 24(1H, d, J=2. 4Hz), 7. 16(2H, d, J=8. 4Hz), 7. 06(1 H, dd, J=2. 4Hz, 8. 1Hz), 5. 06 (2H, s), 4. 31(1H, s), 3. 83(3 H, s), 2. 80-2. 55(2H, m), 2. 0 0-1. 80(4H, m), 1. 70-1. 55(1
Purity >90% (N)	
MS 568 (M+1)	

Table 208

Example	No.	315	1H NMR(δ) ppm
но	HCI N	CI	300MHz, DMSO-d6 8.84(2H, d, J=6.3Hz), 8.28(1H, s), 8.17end7.99(2H, ABq, J=8.7Hz), 7.87-7.85(3H, m), 7.70 -7.50(3H, m), 7.52(1H, d, J=8.3Hz), 7.18(2H, d, J=8.7Hz), 5. 22(2H, s)4.31(1H, br t, J=12.5Hz), 2.36-2.18(2H, m), 2.03-1.78(4H, m), 1.70-1.5 8(1H, m), 1.50-1.23(3H, m)
Purity	>90% (NMR)	
MS	538 (M+1)		

Example N	lo.	316	1H NMR(δ) ppm
10 ¹ (300MHz, DMSO-d6 9. 23 (1H, t, J=6. 3Hz), 8. 29 (1H, s), 8. 25-8. 22 (2H, m), 8. 03 (2H, d, J=7. 9Hz), 7. 55-7. 48 (5H, m)? .34 (4H, d, J=4. 4Hz), 7. 28-7. 22 (3H, m), 5. 15 (2H, s), 4. 52 (2H, d, J=6. 9Hz), 4. 35 (1H, br t, J=12. 1Hz), 2. 37-2. 18 (2H, m), 2. 08-1. 95 (2H, m), 1. 91-1. 79 (2H, m), 1. 72-1. 59 (1H, m), 1. 47-1. 19 (3H, m)
Purity	>90% (1	NMR)	
MS	670 (M+	1)	1 ·

Example	No.	317	1H NMR(δ) ppm
10	HGI CI	-# <u></u>	300MHz, DMSO-d6 8.59(1H, t, J=5.5Hz), 8.28(1H, s), 8.21 and8.01(2H, ABq, J=8.8 Hz), 8.16(1H, s), 7.97 and7.46(2H, A'B'g, J=8.0Hz), 7.71 and7.23(4H, A'B'g, J=8.7Hz), 7.53 and7.49(4H, A'B''g, J=9.2Hz), 5.14(2H, s), 4.34(1H, brt, J=12.8Hz), 3.14(2H, t, J=6.3 Hz), 2.38-2.18(2H, m), 2.07-1.78(4H, m), 1.78-1.47(7H, m), 1.47-1.07(6H, m), 1.03-0.83(2H, decomposite of the state of the st
Purity	>90% (NM	R)	47-1.07 (5H, m), 1.03-0.83 (2H, m)
MS	676 (M+1)		

Table 209

Example	No.	318	1H NMR(δ) ppm
10° ()	2 HC1	_	300MHz, DMSO-d6 9. 63 (1H, t, J=4. 8Hz), 8. 86and7. 97 (4H, ABq, J=6. 6Hz), 8. 30 (1H, s), 8. 27 (1H, s), 8. 23and8. 03 (2H, A 'B'q, J=8. 8Hz), 8. 09and7. 54 (2 H, A'B''q, J=8. 1Hz), 7. 73and7. 2 4 (4H, A'B''q, J=8. 8Hz), 7. 54a nd7. 52 (4H, A'''B'''q, J=8. 8Hz), 5. 16 (2H, s) 4. 78 (2H, d, J=5. 6Hz), 4. 35 (1H, br t, J=11. 0Hz), 2. 39-2. 19 (2H, m)
Purity	>90% (NMR)		,2.07-1.96(2H, m), 1.91-1.78(2H, m), 1.70-1.57(1H, m) 1.50-1
MS	671 (M+1)		. 19 (3H, m)

Example	No.	319	1H NMR(δ) ppm
10	HCI CI		300MHz, DMSO-d6 8. 28 (1H, s), 8. 24and8. 03 (2H, A Bq, J=9. 0Hz), 7. 77 (1H, s), 7. 70 (2H, d, J=8. 4Hz), 7. 64-7. 10 (13 H, m), 5. 16 (2H, s), 4. 74and4. 57 (total 2H, each br s), 4. 34 (1H, br t, J=11. 7Hz), 2. 90 (3H, s), 2. 35 -2. 17 (2H, m), 2. 07-1. 93 (2H, m) ,1. 93-1. 78 (2H, m), 1. 71-1. 57 (1H, m), 1. 51-1. 19 (3H, m)
Purity	>90%	(NMR)]
MS	684	(M+1)	<u> </u>

Example	No.	320	1H NMR(δ) ppm
H C	ZHCI		300MHz, DMSO-d6 8. 94and8. 06 (4H, ABq, J=6. 8Hz) , 8. 33 (1H, s), 8. 28and8. 05 (2H, A'B'q, J=8. 7Hz), 7. 80 (1H, s), 7 . 73and7. 22 (4H, A'B''q, J=8. 7Hz), 7. 63and7. 57 (2H, A''B'''q, J=7. 9Hz), 5. 30 (2H, s), 4. 34 (1H, b r t, J=12. 1Hz), 3. 04 (3H, s), 2. 97 (3H, s), 2. 38-2. 18 (2H, m), 2. 10 -1. 96 (2H, m), 1. 93-1. 80 (2H, m)
Purity	>90%	(NMR)	- , 1. 72-1. 58 (1H, m), 1. 52-1. 08 (3H, m)
MS	575	(M+1)	

5		Table 21	0
•	Example No.	321	1H NMR(δ) ppm
10	HO NO NO NO NO NO NO NO NO NO NO NO NO NO		300MHz, DMSO-d6 11. 19 (1H, br s), 8. 31 (1H, s), 8. 23and8. 02 (2 H, ABq, J=9. 0Hz), 7. 77 (1H, s), 7 . 72and7. 23 (4H, A'B'q, J=8. 7Hz), 7. 59and7. 48 (2H, A'B'q, J=7. 9Hz), 7. 53and7. 51 (4H, A'B'q)
15	0		J=9.0Hz), 5.16(2H, s), 4.72-2 .97(8H, br m), 4.34(1H, br t, J=12.1Hz), 2.79(3H, s), 2.38 -2.17(2H.m), 2.07-1.93(2H.m)
	Purity > 9	0% (NMR)	, 1. 93-1. 78 (2H, m), 1. 69-1. 58 (1H, m), 1. 50-1. 10 (3H, m)
20	MS	663 (M+1)	·
	Example No.	322	1H NMR(δ) ppm
25 30	Ho I N		300MHz, DMSO-d6 9. 54 (1H, t, J=5. 7Hz), 8. 91 (1H, s), 8. 81 (1H, d, J=4. 9Hz), 8. 48 (1H, d, J=7. 9Hz), 8. 32 (1H, s), 8. 27 (1H, d, J=9. 0Hz), 8. 25 (1H, s), 8. 07-7. 97 (3H, m), 7. 74and7. 2 5 (4H, ABq, J=8. 9Hz), 7. 56-7. 49 (5H, m), 5. 16 (2H, s), 4. 69 (2H, d, J=5. 6Hz), 4. 36 (1H, br t, J=12. 4Hz), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 91-1. 78 (

HO LAND	300MHz, DMSO-d6 9. 54 (1H, t, J=5. 7Hz), 8. 91 (1H, s), 8. 81 (1H, d, J=4. 9Hz), 8. 48 (1H, d, J=7. 9Hz), 8. 32 (1H, s), 8. 27 (1H, d, J=9. 0Hz), 8. 25 (1H, s), 8. 07-7. 97 (3H, m), 7. 74and7. 2 5 (4H, ABq, J=8. 9Hz), 7. 56-7. 49 (5H, m), 5. 16 (2H, s), 4. 69 (2H, d, J=5. 6Hz), 4. 36 (1H, br t, J=12. 4Hz), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 91-1. 78 (
Purity > 90% (NMR)	2H, m), 1.70-1.57 (1H, m), 1.50- 1.17 (3H, m)
MS 671 (M+1)	·

35

40

45

50

55

Example No. 323 1H NMR(δ) ppm 300MHz, DMSO-d6 9. 52(1H, t, J=6. OHz), 8. 72(1H, d, J=5. 3Hz), 8. 30-8. 19(4H, m), 8. 08(1H, d, J=7. 9Hz), 8. 02(1H, d, J=7. 6HZ), 7. 77-7. 64(4H, m), 7. 57-7. 49(5H, m), 7. 24(2H, d, J=8. 7Hz), 5. 16(2H, s), 4. 77(2H, d, J=5. 6Hz), 4. 34(1H, t, J=12. 8 Hz), 2. 36-2. 19(2H, m), 2. 07-1. 95(2H, m), 1. 91-1. 78(2H, m), 1. 69-1. 59(1H, m), 1. 45-1. 20(3H, m) 2HC Purity >90% (NMR) MS 671 (M+1)

Table 211

Example No.	324	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 36 (1H, d, J=7.9Hz), 8. 30 (1H, s), 8. 28and8. 05 (2H, ABq, J=8.8 Hz), 8. 16 (1H, s), 7. 79and7. 46 (2H, A'B'q, J=8. 3Hz), 7. 74and7. 25 (4H, A'B''q, J=8. 9Hz), 7. 52an d7. 50 (4H, A'' B'''q, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (1H, br t, J=12. 1Hz), 3. 80 (1H, br s), 2. 39-2. 18 (2H, m), 2. 10-1. 9 8 (2H, m), 1. 93-1. 57 (8H, m), 1. 4
Purity >90% (NN	(R)	9-1.04 (BH, m)
MS 662 (M+1)		

Example No.	325	1H NMR(δ) ppm
***************************************	-t_ _ t_ _ }	300MHz, DMSO-d6 8.86(1H, t, J=6.0Hz), 8.84and8 .00(4H, ABq, J=6.6Hz), 8.33(1H, s), 8.27and8.04(2H, A'B'q, J= 9.0Hz), 8.12(1H, s), 7.92and7. 46(2H, A"B"q, J=7.9Hz), 7.74an d7.23(4H, A"B"q, J=9.0Hz), 7 .53and7.49(4H, A"B"q, J=9.1 Hz), 5.13(2H, s), 4.36(1H, br t, J=12.8Hz), 3.70(2H, td, J=6. 8, 6.0Hz), 3.21(2H, t, J=6.8Hz)
Purity >90% (N	IMR)	2. 38-2. 20 (2H, m), 2. 09-1. 95 (2H, m), 1. 91-1. 77 (2H, m), 1. 70-
MS 685 (M+)	1)	1.59(1H, m), 1.49-1.20(3H, m)

Example N	o.	326	1H NMR(δ) ppm
ной			300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7. 90(1H, d, J=8.7Hz), 7.83(1H, d, J=8.7Hz), 7.60-7.50(5H, m), 7. 39(2H, d, J=7.8Hz), 7.23-7.10(3H, m), 7.05(1H, d, J=7.8Hz), 6. 85(1H, s), 3.94(1H, s), 2.97, 2. 88(6H, s), 2.30-2.10(2H, m), 1. 90-1.50(5H, m), 1.40-1.00(3H, m)
Purity	>90% (NM)	R)	•
MS	610 (M+1)		

Table 212

Example No.	327	1H NMR(δ) ppm
но	DHOH	300MHz, DMSO-d6 13. 20-12. 60 (2H, brs), 8. 23 (1H, s), 7. 98 (2H, d, J=6. 6Hz), 7. 95 (1H, d, J=8. 7Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 70-7. 50 (5H, m), 7. 27 -7. 20 (3H, m), 7. 08 (1H, d, J=7. 8 Hz), 6. 90 (1H, s), 3. 93 (1H, s), 2 .51-2. 05 (2H, m), 1. 90-1. 70 (4H, m), 1. 65-1. 55 (1H, m), 1. 40-1. 10 (3H, m)
Purity >90	% (NMR)	
MS 5	33 (M+1)	

Table 213

10	HO ₂ C N 2 3		
15			8 5 R
	Ex.No.	R	R'
	2001	-н	4-(-Me)
	2002	-н	3- (-CF ₃)
20	2003	· 5-(-F)	. –н
	2004	3- (-F)	2-(-F)
	2005	3-(-F)	3- (-F)
25	2006	3-(-F)	4-(-F)
	2007	4- (-F)	4-(-F)
	2008	5- (-F)	4- (-F)
30	2009	6-(-F)	4-(-F)
	2010	4-(-F)	4-(-C1)
	2011	5-(-F)	4-(-Me)
35	2012	5-(-F)	4-(-CF ₃)
	2013	5-(-F)	4-(-CO ₂ H)
	2014	5-(-F)	4- (-CO₂Me)
40	2015	5-(-F)	₄₋ (-Li(○))
	2016	5- (-F)	4-(-CONH ₂)
45	2017	5-(-F)	4-{-CON (Me) 2}
	2018	5-(-F)	4- (-OMe)
	2019	5-(-F)	4-(-SMe)
50	2020	5- (-F)	4 - (-3-lie)
	2021	5-(-F)	4 - (-8-He)
55	2022	4-(-C1)	-н

		·	
_			
5	2023	4-(-Cl)	4-(-F)
	2024	4-(-Cl)	4-(-C1)
	2025	4-(-Cl)	4-(-Me)
10	2026	5-(-C1)	4-(-CF ₃)
	2027	4-(-Cl)	4-(-CO ₂ H)
45	2028	5-(-C1)	4-(-CO ₂ Me)
15	2029	5-(-Cl)	4-(-1-1-)
	2030	4-(-C1)	4-(-CONH2)
20	2031	5-(-C1)	4-{-CON (Me) ₂ }
	2032	5-(-C1)	3-(-OMe)
	2033	4-(-C1)	4- (-SMe)
25	2034	5-(-C1)	4- (-S-Ha)
	2035	4-(-C1)	4- (-\$)
30	2036	5-(-CN)	4-(-F)
	2037	4-(-CN)	4-(-Cl)
	2038	5-(-NO ₂)	4- (-F)
35	2039	4-(-NO ₂)	4-(-C1)
	2040	5-(-Me)	4-(-CO ₂ H)
	2041	5-(-Me)	4-(-CO ₂ Me)
40	2042	5-(-Me)	4-(-1-(-))
	2043	5- (-CF ₃)	4-(-CO ₂ H)
45	2044	5-(-CF ₃)	4-(-CO ₂ Me)
	2045	5-(-CF ₃)	4- (<u>1</u> -())
	2046	5- (-CO₂H)	4-(-F)
50	2047	4-(-CO ₂ H)	4-(-C1)
	2048	5- (-C0₂Me)	4- (-F)
	2049	5- (-C0₂Me)	4-(-C1)
55	2050	5- (-Ac)	4-(-F)
	·		

EP 1 162 196 A1

	2051	5-(-Ac)	4-(-C1)
5	2052	5-(ÎN)	-н
	2053	5-(- <u>P</u> N-)	4-(-F)
10	2054	_{5−} (<u>L</u> ,)	4-(-Cl)
15	2055	5-(<u>-</u>	4- (-CN)
,,,	2056	₅₋ (- <u>L</u> -(-)	4-(-NO ₂)
20	2057	₅₋ (- <u>1</u> -(-))	4-(-Me)
	2058	₅₋ (L ()	4-(-CF ₃)
25	2059	₅₋ (-1-(-))	4-(-Ac)
	2060	₅₋ (- 1 -(-))	4-(-CO₂H)
30	2061	₅₋ (- 1 -(-))	4-(-CO₂Me)
	2062	5-(-1-\(\))	4-(-Î-(\(\circ\))
35	2063	5-((-))	4-(-CONH ₂)
	2064	₅₋ (- <u>L</u> ,(_))	4-{-CON (Me) ₂ }
40	2065	5-(-1	4-{-C (=NH) NH ₂ }
	2066	5-(-1-(-))	4-(-0Me) .
45	2067	₅₋ (-L ₁ (-))	4-(-c-cH ₂ -N)
	2068	₅₋ (-l-(-))	4-(-NHMe)
50	2069	₅₋ (()	4-(-NHAc)
55	2070	5- (-N)	4- (-N-3-80)

EP 1 162 196 A1

5	2071	₅₋ (-1-\(\to\))	4-(-SMe)
	2072	5- (- N)	4- (-S-No)
10	2073	5-(<u>f</u> x)	4- (
	2074	₅₋ (-l)	(—————————————————————————————————————
15	2075	₅₋ (-l-\(\to\))	{-\$-N(He) ₂ }
	2076	5- (-CONH ₂)	-н
20	2077	5- (-CONH ₂)	4-(-F)
	2078	5-(-CONH ₂)	2,3,4,5,6-penta-(-F)
	2079	5-(-CONH ₂)	2-(-C1)
25	2080	5-(-CONH ₂)	3-(-c1)
	2081	3-(-CONH ₂)	2-(-Cl)
	2082	3-(-CONH ₂)	3-(-C1)
30	2083	3-(-CONH ₂)	4-(-C1)
	2084	4-(-CONH ₂)	2-(-C1)
	2085	4-(-CONH ₂)	3-(-C1)
35	2086	4-(-CONH ₂)	4-(-C1)
	2087	6-(-CONH ₂)	2-(-C1)
	2088	6-(-CONH ₂)	3-(-C1)
40	2089	6- (-CONH ₂)	4-(-C1)
	2090	5- (-CONH ₂)	3,5-di-(-Cl)
	2091	5- (-CONH ₂)	4-(-CN)
45	2092	5- (-CONH ₂)	4-(-NO ₂)
	2093	5-(-CONH ₂)	4-(-Me)
	2094	5- (-CONH ₂)	2,6-di-(-Me)
50	2095	5-(-CONH ₂)	4-(-CF ₃)
	2096	5-(-CONH ₂)	4-(-Ac)
	2097	5-(-CONH ₂)	4-(-CO ₂ H)
55	2098	5-(-CONH ₂)	4-(-CO ₂ Me)

EP 1 162 196 A1

	2099	5- (-CONH ₂)	4- (-1-N-)
5	2100	5- (-CONH ₂)	4-(-CONH ₂)
	2101	5- (-CONH ₂)	. 3,5-di-(-CONH ₂)
	2102	5- (-CONH ₂)	4-{-CON (Me) 2}
10	2103	5- (-CONH ₂)	4-(-C(=NH)NH ₂)
	2104	5- (-CONH ₂)	4-(-OMe)
15	2105	5- (-CONH ₂)	3,4,5-tri-(-OMe)
,,	2106	5-(-CONH ₂)	4-(-0-CH2 N)
	2107	5- (-CONH ₂)	4-(-NHMe)
20	2108	5- (-CONH ₂)	4- (-NHAC)
	2109	5- (-CONH ₂)	4- (-N-S-He)
25	2110	5- (-CONH ₂)	4-(-SMe)
	2111	5- (-CONH ₂)	4 – (- s – Ho)
30	2112	5- (-CONH ₂)	4- (-8-4e)
	2113	5- (-CONH ₂)	4 - (-8-NH ₂)
35	2114	5- (-CONH ₂)	4- {-\$-H(Me); }
	2115	5-{-CON (Me) ₂ }	-н
40	2116	. 5-{-CON (Me) ₂ }	4-(-F)
	2117	4-{-CON (Me) ₂ }	4-(-C1)
	2118	5-{-CON (Me) ₂ }	4-(-CN)
45	2119	5-{-CON (Me) 2}	4-(-NO ₂)
	2120	5-{-CON (Me) 2}	4-(-Me)
50	2121	4-{-CON (Me) ₂ }	4-(-CF ₃)
55	2122	5-{-CON (Me) ₂ }	4-(-Ac)
	2123	5-{-CON (Me) ₂ }	4-(-CO ₂ H)
55	2124	5-(-CON (Me) ₂ }	4-(-CO ₂ Me)
			•

EP 1 162 196 A1

5	2125	5-{-CON (Me) ₂ }	4-(1 -())
	2126	5-{-CON (Me) ₂ }	3-(-CONH ₂)
	2127	4-{-CON (Me) ₂ }	4-{-CON (Me) 2}
10	2128	5-{-CON (Me) ₂ }	4-(-C(=NH)NH ₂ }
	2129	5-(-CON (Me) ₂)	4-(-OMe)
15	2130	5-{-CON (Me) ₂ }	4-(-o-cr ₂ N)
	2131	5-{-CON (Me) ₂ }	4-(-NHMe)
	2132	5-{-CON (Me) ₂ }	4-(-NHAC)
20	2133	5-{-CON (Me) ₂ }	4- (-H-S-He)
	2134	4-{-CON (Me) ₂ }	4-(-SMe)
25	2135	5-{-CON (Me) ₂ }	4 - (-s-He)
	2136	4-{-CON (Me) ₂ }	4 - (-9-Hs)
<i>30</i>	2137	5-{-CON (Me) ₂ }	4 - (-\$-HH ₂)
	2138	5-{-CON (Me) ₂ }	4- {-9-N (No) ₂ }
<i>35</i>	2139	5-(-OMe)	-н
	2140	5-(-OMe)	4-(-F)
	2141	3-(-OMe)	4-(-C1)
40	2142	4-(-OMe)	4-(-C1)
	2143	5- (-OMe)	2-(-C1)
45	2144	5- (-OMe)	3-(-Cl)
45	2145	6-(-OMe)	4-(-Cl)
	2146	5-(-OMe)	4-(-CN)
50	2147	5-(-OMe)	4-(-NO ₂)
50	2148	5-(-OMe)	4-(-Me)
:	2149	5-(-OMe)	4-(-CF ₃)
<i>55</i>	2150	5-(-OMe)	4-(-Ac)

EP 1 162 196 A1

	2151	4-(-OMe)	4-(-CO ₂ H)
5	2152	4,5-di-(-OMe)	4-(-CO ₂ H)
	2153	5- (-OMe)	4-(-CO₂Me)
10	2154	5-(-OMe)	4- (ÎN)
	2155	5-(-OMe)	4-(-CONH ₂)
	2156	5- (-OMe)	4-{-CON (Me) 2}
15	2157	5-(-OMe)	4-{-C (=NH) NH ₂ }
	2158	5- (-OMe)	4-(-OMe)
20	2159	5- (-OMe)	4-(-0-CH_1)
20	2160	5- (-OMe)	4-(-NHMe)
	2161	5-(-OMe)	4-(-NHAC)
25	2162	5- (-OMe)	4- (-N-3-He)
	2163	5- (-OMe)	4-(-SMe)
30	2164	5- (OMe)	4- (-8-He)
	2165	5- (-OMe)	4- (-\$-No)
35	2166	5-(-OMe)	4- (-\$-NH ₂)
	2167	5-(-OMe)	4- {-\$-ii (Mo) ₁ }
40	2168	5-(-NHMe)	4-(-F)
	2169	5-(-NHMe)	4-(-C1)
	2170	. 5-(-NHAC)	4-(-F)
45	2171	5-(-NHAc)	4-(-Cl)
	2172	5-(-NHAC)	4-(-Ac)
	2173	5-(-NHAc)	4-(-CONH ₂)
50 .	2174	5-(-NHAc)	4-{-CON (Me) ₂ }
	2175	5- (-N-\$-#a)	4-(-F)

EP 1 162 196 A1

5	2176	4- (-N-Ş-Ne)	4-(-Cl)
	2177	5- (-N-3-Na)	4-(-Me)
10	2178	5- (-1-9-Re)	4-(-CF ₃)
	2179	5- (-N-3-No)	4-(-CO ₂ H)
15	2180	$5-\frac{\left(-\frac{9}{H-\frac{9}{6}-H_0}\right)}{1}$	4-(-CO ₂ Me)
	2181	5- (-N-8-Me)	4-(-NO)
20	2182	5- (-N-3-He)	4-(-SMe)
25	2183	5- (-N-8-No)	4 (-\$-Ne)
	2184	5- (-N-3-Ne)	4- (-8-ls)
	2185	5-(-SMe)	4-(-F)
30	2186	4-(-SMe)	4-(-C1)
	2187	5-(-SMe)	4-(-Me)
	2188	5- (-SMe)	4-(-CF ₃)
35	2189	5-(-SMe)	4-(-Ac)
	2190	5- (-SMe)	4-(-CONH ₂)
	2191	5-(-SMe)	4-{-CON(Me) ₂ }
40	2192	5- (-\$-#e)	4-(-F)
	2193	. (-9-4-)	4-(-C1)
45	2194	5- (- \$-ito)	4-(-Me)
	2195	5- (-s-He)	4-(-CF ₃)
50	2196	5- (-9-He)	4- (-Ac)
	2197	5- (-s-Ho)	4-(-CONH ₂)
5			

EP 1 162 196 A1

	2198	5- (-\$-#e)	4-{-CON (Me) 2}
5	2199	5- (-\$-Me) 5- (-\$-Me) 5- (-\$-Me)	4-(-F)
	2200	4 (-8-Ne)	4-(-Cl)
10	2201	5- (-8-Ne)	4-(-Me)
15	2202	5- (-8-he)	4-(-CF ₃)
	2203	5- (-s-Ha)	4- (-Ac)
20	2204	5- (-8-ita)	4-(-CONH ₂)
	2205	(4-{-CON (Me) ₂ }
25 .	2206	ር (- ዩ – አካኒ) 5 – የ	4-(-F)
	2207	4- (4-(-Cl)
30	2208	4 – (– ያ – ክዚ _ን)	2,4-di-(-Cl)
35	2209	5- (-8-нн _э)	4-(-Me)
	2210	5- (-ё-нн _з)	3- (-CF ₃)
40	2211	5- (-\$-NH ₃)	4-(-CF ₃)
	2212	5- (-8-NH ₂)	4-(-CONH ₂)
45	2213	(-\$-NH ₂) 5- 0	4-{-CON (Me) 2}
	2214	5 – (– รู๊ – พห _ร) 5 –	4-(-SMe)
50	2215	5- (-\$-NH ₂) 5- 0 (-\$-NH ₂) 5- 0	4- (-8-lie)
	2216	5- (-\$-NH ₃)	$\frac{4-\begin{pmatrix} 0\\ -3-ite \end{pmatrix}}{\begin{pmatrix} -\frac{1}{5}-8a \\ 0 \end{pmatrix}}$
<i>5</i> 5			

EP 1 162 196 A1

		T	
5	2217	5- {-\$\frac{\text{fi}}{0} = N (060)_2 }	4-(-F)
	2218	4 - { N(Me) ₂ }	4-(-Cl)
10	2219	5- {-\$-N(Ne); }	4- (-Me)
	2220	5- { N(He); }	4-(-CF ₃)
15	2221	5- { N (Me) 2 }	4-(-CONH ₂)
20	2222	$5-\left\{ egin{array}{c} egin{array}{c} eta & N \left(M_{0} ight)_{z} \end{array} ight\}$	4-{-CON (Me) ₂ }
20	2223	5— { — — (Ne); }	4-(-SMe)
25	2224	$5-\left\{ -\frac{9}{5-8}(\text{Me})_{2}\right\}$	4- (-S-Me)
	2225	5- { - \$-N (No) ₂ }	4- (-s-We)
	2226	5-(-O-(CH ₂) ₂ -OH)	4-(-C1)
30	2227	5-{-O-(CH ₂) ₃ -OH}	4-(-C1)
	2228	5- (-0^)	4-(-C1)
35	2229	5- (-0^)	4-(-Cl)
	2230	5~ (-0~)	4-(-Cl)
40	2231	5- (~~~) OH	4-(-Cl)
45	2232	5- (-0-ly)	4-(-Cl)
	2233	5- (N OH)	4-(-Cl)
50	2234	5- (NON)	4-(-Cl)
55	2235	5- (N OH)	4- (-Cl)

EP 1 162 196 A1

5	2236	5- (NO OH)	4-(-C1)
	2237	5- (CO,H)	4-(-C1)
10	2238	5- (No Ho Ho)	4-(-Cl)
15	2239	O Me Ma OH	4-(-C1)
20	2240	5- (N ONE)	4-(-Cl)
	2241	5- ()	4-(-Cl)
25	2242	5-(1)	4-(-Cl)
30	2243	5-	4-(-Cl)
<i>3</i> 5	2244	5-(1000)	4-(-Cl)
10	2245	5-	4-(-Cl)
40	2246	5- (NOH)	4-(-C1)
45	2247	5-(10)	4- (-Cl)
50	2248	4-(المهاب) 4-(المهاب)	4-(-C1)
50	2249	5- (4-(-c1)

5	2250	5-	4-(-Cl)
10	2251	4- ()	4-(-Cl)
	2252	4-(110)	4-(-Cl)
15	2253	5- (N)	4-(-C1)
20	2254	5-() () () ()	4-(-Cl)

Table 214

5	HO ₂ C N 5 0 1 2 3 4 6 6 6 1		
15	Ex. No. 2255	R -H	R¹ -H
	2256	-H	4- (-Me)
	2257	—н	3-(-CF ₃)
20	2258	5-(-F)	-н
	2259	5-(-F)	4-(-F)
	2260	5-(-F)	4-(-C1)
25 .	2261	5-(-F)	4- (-Me)
	2262	5- (- F)	4-(-CF ₃)
30	2263	5-(-F)	4~(-CO ₂ H)
30	2264	5- (-F)	4-(-CO ₂ Me)
	2265	5-(-F)	4- (-l-\(\rightarrow\)
35	2266	5-(-F)	4-(-CONH ₂)
	2267	5-(-F)	4-{-CON (Me) ₂ }
	2268	5-(-F)	4-(-OMe)
40	2269	5- (-F)	4-(-SMe)
	2270	5- (-F)	4- (-S-No)
45	2271	5-(-F)	4 (-\$-16)
	2272	4-(-Cl)	-н
50	2273	5-(-C1)	4- (-F)
.	2274	4-(-Cl)	4-(-C1)
	2275	5-(-C1)	4-(-Me)
55	2276	5-(-C1)	4-(-CF ₃)

EP 1 162 196 A1

2277	
2278	₂ H)
10	Me)
10 2280 5-(-Cl) 4-(-CON (1) 2281 5-(-Cl) 4-(-CON (1) 2282 5-(-Cl) 4-(-CON (1) 2282 5-(-Cl) 4-(-CM (1) 4-(-C	<u> </u>
2282 5-(-C1) 4-(-OM 2283 5-(-C1) 4-(-SM 2284 5-(-C1) 4-(-SM 2284 5-(-C1) 4-(-SM 2285 5-(-C1) 4-(-SM 2286 5-(-C1) 4-(-SM 2287 5-(-CN) 4-(-F) 2288 5-(-NO ₂) 4-(-F) 2289 5-(-NO ₂) 4-(-C1) 2290 5-(-Me) 4-(-CO ₂ M 2291 5-(-CF ₃) 4-(-CO ₂ M 2293 5-(-CO ₂ Me) 4-(-CO ₂ M 2296 5-(-CO ₂ Me) 4-(-F) 2296 5-(-CO ₂ Me) 4-(-C1) 2298 5-(-CO ₂ Me) 4-(-C1)	H2)
2283 5-(-Cl) 4-(-SM) 2284 5-(-Cl) 4-(-S-M) 2285 5-(-Cl) 4-(-S-M) 2286 5-(-Cl) 4-(-S-M) 2287 5-(-Cl) 4-(-F) 2287 5-(-Cl) 4-(-F) 2288 5-(-NO ₂) 4-(-F) 2289 5-(-NO ₂) 4-(-Cl) 2290 5-(-Me) 4-(-CO ₂ M) 2292 5-(-CO ₂ M) 4-(-CO ₂ M) 2296 5-(-CO ₂ Me) 4-(-Cl) 2297 4-(-CO ₂ Me) 4-(-Cl) 2298 5-(-CO ₂ Me) 4-(-Cl)	(e) ₂ }
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e)
2286 5-(-CN) 4-(-F) 2287 5-(-CN) 4-(-F) 2288 5-(-NO ₂) 4-(-C1) 2289 5-(-NO ₂) 4-(-C1) 2290 5-(-Me) 4-(-CO ₂ N) 2291 5-(-Me) 4-(-CO ₂ N) 2292 5-(-Me) 4-(-CO ₂ N) 2293 5-(-CF ₃) 4-(-CO ₂ N) 2294 5-(-CF ₃) 4-(-CO ₂ N) 2295 5-(-CO ₂ N) 4-(-F) 2296 5-(-CO ₂ N) 4-(-C1) 2298 5-(-CO ₂ Me) 4-(-C1)	.)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	>)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$))
2298 $5-(-CO_2Me)$ $4-(-F)$ 2299 $5-(-CO_2Me)$ $4-(-C1)$	
2299 5-(-CO ₂ Me) 4-(-Cl)	
	·
1	
2300 5-(-Ac) 4-(-F)	
50 2301 5-(-Ac) 4-(-Cl)	
2302 (-f) -H	
5- () 4- (-F)	

EP 1 162 196 A1

5	2304	4-(-1	4-(-Cl)
	2305	₅₋ (-l-\(\cap\))	4-(-CN)
10	2306	5-(-1-)	4-(-NO ₂)
	2307	5-()	4-(-Me)
15	2308	5- (<u>P</u> ()	4-(-CF ₃)
	2309	5- (<u>f</u> i())	4-(-Ac)
20	2310	₅₋ (- 1 -(-))	4- (-CO ₂ H) .
	2311	₅₋ (上()	4-(-CO ₂ Me)
25	2312	₅₋ (-l-(-))	4- ()
	2313	₅₋ (<u> </u>	4-(-CONH ₂)
30	2314	₅₋ (<u>P</u> ()	4-(-CON (Me) ₂ }
	2315	₅₋ (- <u>L</u>	4-{-C (=NH) NH ₂ }
35	2316	₅₋ (- <u>L</u>)	4-(-OMe)
40	2317	₅₋ (- <u>L</u>	4-(-0-cH, -N-)
	2318	5-(-1	4-(-NHMe)
45	2319	₅₋ (- 1 -(-))	4-(-NHAc)
	2320	₅₋ (-\(\frac{1}{\chi}\))	4- (-N-S-Hs)
50	2321	₅₋ (4-(-SMe)
	2322	5- ()	4- (-s-He)

EP 1 162 196 A1

			
5	2323	5-()	4- (-8-ks)
	2324	5-(-1-1-)	4- (-\$-NH ₂)
10	2325	5-(<u>P</u> (<u>)</u>)	4- {-3-N (Me), }
	2326	5- (-CONH ₂)	-н
15	2327	5- (-CONH ₂)	4-(-F)
	2328	4- (-CONH ₂)	4-(-C1)
	2329	5- (-CONH ₂)	4-(-CN)
20 .	2330	5- (-CONH ₂)	4-(-NO ₂)
	2331	5- (-CONH ₂)	4-(-Me)
	2332	5- (-CONH ₂)	4-(-CF ₃)
25	2333	5- (-CONH ₂)	4-(-Ac)
	2334	5- (-CONH ₂)	4-(-CO ₂ H)
	2335	5- (-CONH ₂)	4-(-CO ₂ Me)
30	2336	5- (-CONH ₂)	4-(-1
	2337	5- (-CONH ₂)	4-(-CONH ₂)
35	2338	5- (-CONH ₂)	4-{-CON (Me) ₂ }
	2339	5- (-CONH ₂)	4-(-C (=NH) NH ₂)
	2340	5- (-CONH ₂)	4-(-OMe)
40	2341	5-(-CONH ₂)	4-(-o-cH2 H)
	2342	5-(-CONH ₂)	4-(-NHMe)
45	2343	5-(-CONH ₂)	4-(-NHAC)
	2344	5-(-CONH ₂)	4- (-N-8-Na)
•	2345	5-(-CONH ₂)	4-(-SMe)
50	2346	5-(-CONH ₂)	4- (-9-lis)
55	2347	5-(-CONH ₂)	4- (-\$-ks) (-\$-ks) 4- (-\$-ts)
=			

EP 1 162 196 A1

5	2348	5-(-CONH ₂)	4- (-s-NH ₂)
	2349	5-(-CONH ₂)	4- {-\$-N(Ne), }
10	2350	5-{-CON (Me) ₂ }	-н
	2351	5-{-CON (Me) ₂ }	4-(-F)
	2352	4-{-CON (Me) 2}	4-(-C1)
15	2353	5-{-CON(Me) ₂ }	4-(-CN)
,	2354	5-{-CON (Me) ₂ }	4-(-NO ₂)
20	2355	5-{-CON (Me) ₂ }	4-(-Me)
20	2356	5- (-CON (Me) 2)	4-(-CF ₃)
	2357	5-{-CON (Me) ₂ }	4- (-Ac)
25	2358	5-{-CON (Me) 2}	4-(-CO ₂ H)
	2359	5-{-CON (Me) 2}	4- (-CO ₂ Me)
	2360	5-{-CON (Me) 2}	4-(-10)
30	2361	5-{-CON (Me) ₂ }	4-(-CONH ₂)
	2362	5-{-CON(Me) ₂ }	4-(-CON (Me) ₂)
	2363	5-{-CON (Me) ₂ }	4-{-C (=NH) NH ₂ }
35	2364	5-{-CON (Me) ₂ }	4-(-OMe)
	2365	5-{-CON(Me) ₂ }	4-(-0-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
40	2366	5-{-CON (Me) ₂ }	4-(-NHMe)
{	2367	5-{-CON (Me) ₂ }	4-(-NHAc)
45	2368	5-{-CON (Me) ₂ }	4- (-1-3-Hs)
	2369	5-{-CON (Me) ₂ }	4-(-SMe)
50	2370	5-{-CON (Me) ₂ }	4 - (-g-No)
	2371	5-{-CON (Me) ₂ }	4 - (-s-us)
55	2372	5-{-CON (Me) ₂ }	$ \begin{array}{c} 4 - \begin{pmatrix} 0 \\ -s - M_0 \end{pmatrix} \\ \begin{pmatrix} -s - M_0 \end{pmatrix} \\ 4 - \begin{pmatrix} 0 \\ -s - M_2 \end{pmatrix} \\ 4 - \begin{pmatrix} -s - M_2 \end{pmatrix} \\ 4 - \begin{pmatrix} 0 \\ -s - M_2 \end{pmatrix} \end{array} $

EP 1 162 196 A1

5	2373	5-{-CON(Me) ₂ }	4- {-\$-N(Me), }
	2374	5-(-OMe)	-н
10	2375	5-(-OMe)	4-(-F)
	2376	5-(-OMe)	4-(-Cl)
	2377	5-(-OMe)	4-(-CN)
15	2378	5-(-OMe)	4-(-NO ₂)
	2379	5-(-OMe)	4-(-Me)
	2380	5-(-OMe)	4-(-CF ₃)
20	2381	5-(-OMe)	4-(-Ac)
	2382	5-(-OMe)	4-(-CO ₂ H)
	2383	5-(-OMe)	4-(-CO ₂ Me)
25	2384	5-(-OMe)	4-(-1-(-))
	2385	5-(-OMe)	4-(-CONH ₂)
<i>30</i>	2386	5-(-OMe)	4-{-CON (Me) 2}
30	2387	5-(-OMe)	4-{-C (=NH) NH ₂ }
	2388	5-(-OMe)	4-(-OMe)
35	2389	5-(-OMe)	4-(-o-ch2)
	2390	5-(-OMe)	4-(-NHMe)
	2391	5-(-OMe)	4-(-NHAC)
40	2392	5-(-OMe)	(-N-\$-He)
	2393	5-(-OMe)	4-(-SMe)
45	2394	5-(-OMe)	4- (-\$-lie)
	2395	5-(-OMe)	4- (-1-ite)
50	2396	5-(-OMe)	$ \begin{array}{c} $
	2397	5-(-OMe)	4- {-8-N (No); }
<i>55</i>	2398	5-(-NHMe)	4-(-F)

EP 1 162 196 A1

2399 5- (-NHMe) 4-(-C1) 2400 5- (-NHAC) 4-(-F) 2401 5- (-NHAC) 4-(-C1) 2402 5- (-NHAC) 4-(-C1) 2403 5- (-NHAC) 4-(-CONH ₂) 2404 5- (-NHAC) 4-(-CONH ₂) 2405 (-1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -				
2401 5-(-NHAC) 4-(-CL) 2402 5-(-NHAC) 4-(-AC) 2403 5-(-NHAC) 4-(-CONH ₂) 2404 5-(-NHAC) 4-(-CON(Me) ₂) 2405 5-(-NHAC) 4-(-CON(Me) ₂) 2406 5-(-NHAC) 4-(-CN(Me) ₂) 2406 5-(-NHAC) 4-(-CN(Me) ₂) 2407 5-(-NHAC) 4-(-CI) 2408 (2399	5-(-NHMe)	4-(-C1)
2402 $5-(-NHAC)$ $4-(-AC)$ 2403 $5-(-NHAC)$ $4-(-CONH_2)$ 2404 $5-(-NHAC)$ $4-(-CON(Me)_2)$ 2405 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-F)$ 2406 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C1)$ 20 2407 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C1)$ 2408 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C2)$ 2409 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C2)$ 2410 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C2)$ 2411 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-C3)$ 2412 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $4-(-\frac{9}{11-\frac{9}{3}-16})$ 2413 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{4-(-\frac{9}{3}-16)}$ 2414 $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{5-(-\frac{9}{11-\frac{9}{3}-16})}$ $\frac{(-\frac{9}{11-\frac{9}{3}-16})}{4-(-\frac{9}{3}-16)}$ 2415 $5-(-SMe)$ $4-(-F)$ 2416 $5-(-SMe)$ $4-(-C1)$ 2417 $5-(-SMe)$ $4-(-C1)$ 2418 $5-(-SMe)$ $4-(-C5)$ 2420 $5-(-SMe)$ $4-(-C0)$ 2421 $5-(-SMe)$ $4-(-C0)$ 2422 $(-\frac{9}{11-\frac{9}{3}-16})$ $4-(-F)$	5	2400	5- (-NHAC)	4-(-F)
10		2401	5- (-NHAC)	4-(-Cl)
2404 $5-(-NHAC)$ $4-(-CON (Me)_2)$ 2405 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-F)$ 2406 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-C1)$ 20 2407 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-Me)$ 2408 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-CF_3)$ 25 2409 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-CO_2H)$ 2410 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-CO_2He)$ 2411 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-CO_2He)$ 2412 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-SMe)$ 2413 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-\frac{1}{100}-\frac{1}{100})$ 2414 $5-(-\frac{1}{110}-\frac{1}{100})$ $4-(-\frac{1}{100}-\frac{1}{100})$ 2415 $5-(-SMe)$ $4-(-F)$ 2416 $5-(-SMe)$ $4-(-F)$ 2418 $5-(-SMe)$ $4-(-CO)$ 2420 $5-(-SMe)$ $4-(-CO)$ 2421 $5-(-SMe)$ $4-(-CO)$ 2422 $5-(-SMe)$ $4-(-CO)$ 2422 $5-(-SMe)$ $4-(-CO)$		2402	5- (-NHAC)	4-(-Ac)
2405 $\frac{1}{5-\frac{1}{11000000000000000000000000000000000$	10	2403	5-(-NHAC)	4-(-CONH ₂)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2404	5- (-NHAC)	4-(-CON (Me) ₂)
20	15	2405	5 (-1-3-4e)	4-(-F)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2406		4-(-C1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	2407	(-N-3-16) 5-	. 4-(-Me)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2408	(一州	4- (-CF ₃)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	2409	5- (- N-8 -Ma)	4-(-CO₂H)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	2410		4- (-CO ₂ Me)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	2411		4-(\(\)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	2412		4- (-SMe)
2415 5-(-SMe) 4-(-F) 2416 5-(-SMe) 4-(-C1) 2417 5-(-SMe) 4-(-Me) 2418 5-(-SMe) 4-(-CF ₃) 2419 5-(-SMe) 4-(-AC) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON(Me) ₂) 2422 (-S-Ne) 4-(-F)		2413	5- (-N-8-40)	4- (-ŝ-lie)
2416 5-(-SMe) 4-(-C1) 2417 5-(-SMe) 4-(-Me) 2418 5-(-SMe) 4-(-CF ₃) 2419 5-(-SMe) 4-(-AC) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)	40	2414	5- (-11-\$-16)	4- (-8-Ne)
2417 5-(-SMe) 4-(-Me) 2418 5-(-SMe) 4-(-CF ₃) 2419 5-(-SMe) 4-(-AC) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)		2415		
2418 5-(-SMe) 4-(-CF ₃) 2419 5-(-SMe) 4-(-Ac) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)		2416	·	
2419 5-(-SMe) 4-(-Ac) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)	45	2417		
50 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)		2418		
2421 5-(-SMe) 4-(-CON(Me) ₂) 2422 (-S-Ne) 4-(-F)		2419		
2422 (-s-we) 4-(-F)	50	2420		
55 2422 (-S-No) 4-(-F)		2421		4-{-CON (Me) 2}
	55	2422	5- (-\$-¥¢)	4-(-F)

5	2423	5- (-s-Me)	4-(-Cl)
	2424	5- (-s-Me)	4-(-Me)
10	2425	5- (-ŝ-Me)	4-(-CF ₃)
	2426	. (\$ke)	4-(-Ac)
15	2427	5- (-g-No)	4-(-CONH ₂)
	2428	5- (-\$-iie)	4-{-CON (Me) ₂ }
20	2429	5- (-9-ile)	4-(-F)
	2430	5- (-ş-ue)	4-(-C1)
25	2431	5- (-g-Me)	4-(-Me)
	2432	5- (-8-Ne)	4-(-CF ₃)
30	2433	5- (-8-Na)	4- (-Ac)
35	2434	5- (-\$-Ne)	4-(-CONH ₂)
	2435	5- (-3-Re)	4-{-CON (Me) 2}
40	2436	5- (-8-NH ₃)	4- (-F)
	2437	5- (-\$-NH ₂)	4-(-C1)
45	2438	5- (-8-NH ₂)	4-(-Me)
	2439	5- (-8-NH ₂)	4-(-CF ₃)
50	2440	5- (-\$-NH ₂) 5- (-\$-NH ₃) 5- (-\$-NH ₃) 5- (-\$-NH ₃) 5- (-\$-NH ₃)	4-(-CONH ₂)
	2441	5- (-8-NH ₃)	4-{-CON(Me) ₂ }
55			

EP 1 162 196 A1

5	2442	5- (-р-ын _у)	4-(-SMe)
	2443	5- (-\$-NH ₂)	4- (-s-Me)
10	2444	5- (4- (-\$-Me)
	2445	$ \begin{cases} -\frac{9}{3} - \mathbf{N} \left(\mathbf{Me} \right)_{z} \end{cases} $ 5 - 0	4-(-F)
15	2446	$5 - \left\{ \begin{array}{c} 9 \\ -8 - H \left(Re \right)_2 \end{array} \right\}$	4-(-Cl)
	2447	5 {	4-(-Me)
20	2448	7 (Ма). } 5 (Ма). }	4-(-CF ₃)
25	2449	5— { — 9—N (Ma), }	4-(-CONH ₂)
23	2450	5- {-5-N (No), }	4-{-CON (Me) ₂ }
30	2451	5- {-\$-N(Ma), }	4-(-SMe)
	2452	5- {	4- (-\$-He)
35	2453	5- {-\$-N(Ma) ₂ }	4- (-8-No)

Table 215

5		Table 215		
10		HO ₂ C N 2 3 4 5 R'		
	Ex.N	R	R'	
15	2454	2-(-F)	2-(-F)	
	2455	2-(-F)	3-(-F)	
	2456	2-(-F)	4-(-F)	
20	2457	3-(-Cl)	3-(-C1)	
	2458	3,5-di-(-Cl)	3,5-di-(-Cl)	
	2459	3-(-CN)	3-(-CN)	
25	2460	3-(-NO ₂)	3-(-NO ₂)	
	2461	3-(-Me)	3- (-Me)	
	2462	3-(-CF ₃)	3-(-CF ₃)	
<i>30</i>	2463	3-(-Ac)	3-(-Ac)	
	2464	3- (-CO ₂ H)	3-(-CO ₂ H)	
	2465	3- (-CO₂Me)	3-(-CO ₂ Me)	
35	2466	3-(<u>-</u> L)	3-(-1-(-))	
	2467	3-(-CONH ₂)	3-(-CONH ₂)	
40	2468	3-(-CONH ₂)	3-(-F)	
	2469	3-(-CONH ₂)	3-(-C1)	
	2470	3-(-CON (Me) 2)	3-(-CON (Me) ₂)	
45	2471	3-{-CON (Me) 2}	3-(-F)	
	2472	3-{-CON (Me) ₂ }	3-(-C1)	
<i>50</i>	2473	3-{-C (=NH) NH ₂ }	3-{-C (=NH) NH ₂ }	
	2474	3-(-OMe)	3-(-OMe)	
	2475	3-(-0-cH ₂ -N)	3-(-0-cH2-N)	
55	2476	3-(-NHMe)	3-(-NHMe)	

	2477	3- (-NHAc)	3- (-NHAC)
5	2478	3- (-4-3-4-)	3- (-N-8-Ne)
	2479	3- (-SMe)	3-(-SMe)
10	2480	3- (-s-He)	3- (-3-He)
	2481	3- (-8-No)	3- (-8-49)
15	2482	3- (-8-NH ₂)	3- (-8-NH ₂)
20	2483	3- {-8-N(Ma), }	3- {
	2484	3-(-F)	4-(-F)
	2485	3-(-C1)	4-(-C1)
25	2486	4- (-CN)	4-(-CN)
	2487	4-(-NO ₂)	4-(-NO ₂)
	2488	3-(-Me)	4-(-Me)
30	2489	4- (-Me)	2,6-di-(-Me)
	2490	4-(-CF ₃)	4-(-CF ₃)
	2491	4-(-Ac)	4-(-Ac)
35	2492	4-(-CO ₂ H)	4-(-CO ₂ H)
L	2493	4- (-CO ₂ Me)	4-(-CO ₂ Me)
	2494	4- (<u> </u>	4- (-PN-)
40	2495	4-(-CONH ₂)	4-(-CONH ₂)
L	2496	4-(-CONH ₂)	4-(-F)
Ĺ	2497	4- (-CONH ₂)	2,3,4,5,6-penta-(-F)
45	2498	4- (-CONH ₂)	4-(-C1)
L	2499	4-{-CON (Me) ₂ }	4-{-CON (Me) 2}
	2500	4-{-CON (Me) ₂ }	4-(-F)
50	2501	4-{-CON(Me) ₂ }	4-(-Cl)
Γ	2502	4-{-CON (Me) ₂ }	3,5-di-(-C1)
55	2503	4-(-C (=NH) NH ₂)	4-{-C (=NH) NH ₂ }

EP 1 162 196 A1

		4 / 63/ 1	
5	2504	4-(-OMe)	4- (-OMe)
	2505	4-(-OMe)	3,4,5-tri-(-OMe)
,	2506	4-(-0-01,1-1)	4-(-0-cH-1-N)
10	2507	4-(-NHMe)	4-(-NHMe)
	2508	4-(-NHAC)	4-(-NHAc)
15	2509	4- (-N-S-No)	4- (-#-s-#e)
	2510	4-(-SMe)	4-(-SMe)
20	2511	4— (-S-Ne)	4- (-s-He)
20	2512	4- (-3-lie)	4- (-3-He)
25	2513	4- (-\$-NH ₂)	(-\frac{P}{S}-NH ₂)
	2514	4 - {	4- {-8-n(No), }

Table 216

_	Table 210			
10	HO ₂ C N 2 3 4 6 6 R.			
	Ex.N	R	R'	
15	2515	-н	-н	
	2516	. 2-(-F)	3-(-F)	
	2517	3-(-C1)	3-(-C1)	
20	2518	3-(-CN)	3- (-CN)	
	2519	3-(-NO ₂)	3-(-NO ₂)	
	2520	3-(-Me)	3- (-Me)	
25	2521	3-(-CF ₃)	3-(-CF ₃)	
	2522	3-(-Ac)	3- (-Ac)	
	2523	3- (-CO ₂ H)	3- (-CO ₂ H)	
30	2524	3-(-CO₂Me)	3- (-CO ₂ Me)	
	2525	3-(3-(<u>_</u> LO)	
35	2526	3- (-CONH ₂)	3-(-CONH ₂)	
1	2527	3- (-CONH ₂)	3-(-F)	
	2528	3- (-CONH ₂)	3-(-C1)	
40	2529	3-(-CON (Me) ₂ }	· 3-{-CON (Me) ₂ }	
	2530	3-{-CON (Me) ₂ }	3-(-F)	
	2531	3-{-CON (Me) ₂ }	3-(-C1)	
45	2532	3-{-C(=NH)NH ₂ }	3-(-C(=NH)NH ₂ }	
	2533	3-(-OMe)	3- (-0Me)	
50	2534	3-(-0-cH ² -N\)	3-(-o-ch² N)	
	2535	3-(-NHMe)	3- (-NHMe)	
Ì	2536	3-(-NHAC)	3- (-NHAC)	
•				

301

EP 1 162 196 A1

		T	
5	2537	3- (-N-2-N-)	3- (-N-\$-Na)
	2538	3-(-SMe)	3-(-SMe)
10	2539	3- (-2-Ne)	3- (-\$-Ne)
	2540	3- (-\$-M ₀)	3- (-3-Na)
15	2541	3- (-= NH²)	3- (
	2542	3- {-\$-N(He) ₂ }	3- {-8-N (Me), }
20	2543	3-(-F)	4-(-F)
	2544	4-(-C1)	4-(-Cl)
	2545	4-(-cn)	4-(-CN)
25	2546	4-(-NO ₂)	4-(-NO ₂)
	2547	4-(-Me)	4-(-Me)
	2548	4-(-CF ₃)	4-(-CF ₃)
30	2549	4-(~Ac)	4-(-Ac)
	2550	3- (-CO ₂ H)	4-(-CO ₂ H)
	2551	4-(-CO ₂ Me)	4- (-CO₂Me)
35	2552	4-(-1-(-))	4-(<u> </u>
	2553	4-(-CONH ₂)	4-(-CONH ₂)
	2554	4-(-CONH ₂)	4-(-F)
40	2555	4-(-CONH ₂)	4-(-C1)
	2556	3-{-CON (Me) 2}	4-{-CON (Me) ₂ }
4.5	2557	3-{-CON (Me) 2}	4-(-F)
45	2558	4-{-CON (Me) 2}	4-(-C1)
	2559	4-{-C (=NH) NH ₂ }	4-(-C (=NH) NH ₂ }
50	2560	4-(-OMe)	4-(-OMe)
50	2561	4-(-0-GH ₂ -N))	4-(-0-cit-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	2562	4-(-NHMe)	4-(-NHMe)
<i>55</i>	2563	4-(-NHAC)	4- (-NHAC)

5	2564	4- (-N-S-Na)	4 - (-N-S-Ma)
	2565	4-(-SMe)	4-(-SMe)
10	2566	4 – (-s-Ne)	4 - (- s-Ne)
	2567	$4 - \begin{pmatrix} 0 \\ -\frac{1}{2} - \frac{1}{2} \\ 0 \end{pmatrix}$	4 - (-\$-#e)
15	2568	4— (———————————————————————————————————	4- (-3-NH ₂)
	2569	$_{4-}\left\{ egin{matrix} 0\\ -\frac{9}{8}-N\left(\operatorname{Me} ight)_{z} \end{smallmatrix} ight\}$	4 — { — Ş—N (Me) ; }

Table 217

5		Table 217		
	H0 ₂ C			
10	Py : pyridyl grou			
	Ex.N	Py	R'	
15	2570	3-PY	-н	
	2571	3-P y	3-(-F)	
	2572	3-Ру	3-(-C1)	
20	2573	3-P y	3-(-Me)	
	2574	3-Py	3-(-CF ₃)	
	2575	3-Py	3-(-Ac)	
25	2576	3-Py	3-(-CO ₂ H)	
	2577	3-Py	3-(-CO ₂ Me)	
	2578	3-Ру	3-(- <u>F</u> NO)	
30	2579	3-Py	3-(-CONH ₂)	
	2580	3-Py	3-{-CON (Me) ₂ }	
	2581	3-Py	4-(-F)	
35	2582	3-Py	4-(-Cl)	
	2583	3-Ру	4-(-Me)	
	2584	3-Py	4-(-CF ₃)	
40	2585	3-Py	4-(-Ac)	
	2586	2-Ру	4~(-CO ₂ H)	
45	2587	3-Py	4- (-CO₂Me)	
	2588	3-Py	4-(-1	
	2589	4-Py	4-(-CONH ₂)	
50	2590	3-Py	4-{-CON (Me) 2}	

Table 218

_	Table 215			
5	HO ₂ C 2 3 4 Py 1 8 5 R'			
10	Py : pyridyl group			
	Ex.N	. Py	R'	
15	2591	3-Ру	-н	
	2592	3-Py	3-(-F)	
	2593	3-Py	3-(-C1)	
20	2594	3-Py	3-(-Me)	
	2595	3-Py	3-(-CF ₃)	
	2596	3-PY	3- (-Ac)	
25	2597	3-Py	3-(-CO ₂ H)	
	2598	3-Py	3- (-CO₂Me)	
	2599	3-P y	3-(
30	2600	3-Py	3- (-CONH ₂)	
•	2601	3-Py	3-{-CON (Me) 2}	
1	2602	3-Ру	4-(-F)	
35	2603	3-Py	4-(-C1)	
	2604	3-Ру	4-(-Me)	
	2605	3-Py	4-(-CF ₃)	
40	2606	3-Ру	4-(-Ac)	
	2607	3-Ру	4- (-CO₂H)	
	2608	3-Ру	4-(-CO ₂ Me)	
45	2609	3-Ру	4-(<u>l</u> ,()	
	2610	· 3-Ру	4- (-CONH ₂)	
50	2611	3-Ру	4-{-CON (Me) 2}	

[0301] Formulation Example is given in the following. This example is merely for the purpose of exemplification and does not limit the invention.

Formulation Example

[0302]

5

10

15

compound of Example 1	10 g
lactose	50 g
corn starch	15 a
sodium carboxymethylcellulose	44 a
magnesium stearate	1 a
	lactose

[0303] The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).

Industrial Applicability

[0304] As is evident from the above-mentioned results, the compound of the present invention shows a high inhibitory against HCV polymerase.

[0305] Therefore, the compound of the present invention can provide a pharmaceutical agent effective for the prophylaxis or treatment of hepatitis C, based on the anti-HCV effect afforded by the HCV polymerase inhibitory activity. When used concurrently with a different anti-HCV agent, such as interferon, and/or an anti-inflammatory agent and the like, it can provide a pharmaceutical agent more effective for the prophylaxis or treatment of hepatitis C. Its high inhibitory activity specific to HCV polymerase suggests the possibility of the compound being a pharmaceutical agent with slight side effects, which can be used safely for humans.

[0306] This application is based on patent application No. 369008/1999 filed in Japan, the contents of which are hereby incorporated by reference.

Claims

30

35

40

45

50

55

A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [i] or a pharmaceutically acceptable salt thereof as an active ingredient:

$$G^{2} - G^{1} - G^{8} - G^{7} - G^{6$$

wherein

a broken line is a single bond or a double bond,

G¹	is C(-R¹) or a nitrogen atom,
G ²	is C(-R ²) or a nitrogen atom,
G ³	is C(-R ³) or a nitrogen atom,
G⁴	is C(-R4) or a nitrogen atom,
G ⁵ , G ⁶ , G ⁸ and G ⁹	are each independently a carbon atom or a nitrogen atom.
G'	is C(-R7), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R8

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom,

- (2) C₁₋₆ alkanoyl,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,

5

10

15

20

25

30

35

40

45

50

55

(6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COOR^{a1}

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

-(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}R^{b2}, - (CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-OR^{b1}, -(CH₂)_r-SO₂R^{b1} and -(CH₂)_r-SO₂NR^{b1}R^{b2}

wherein Rb1 and Rb2 are each independently hydrogen atom or C₁₋₈ alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

(9) -C(=NRa4)NH2

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHR^{a5}

wherein Ra5 is hydrogen atom, C₁₋₆ alkanoyl or C₁₋₆ alkylsulfonyl,

(11) -ORa6

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein Ra7 is hydroxyl group, amino, C₁₋₆ alkyl or C₁₋₆ alkylamino

or

(13) -P(=O) (ORa31)2

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

 R^7 and R^8 are each hydrogen atom or optionally substituted C_{1-6} alkyl(as defined above),

ring Cy is

(1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,

(2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

(3)

 $(\langle u \rangle)_{v} (\langle u \rangle)_{v} (\langle u \rangle)_{v}$

wherein u and v are each independently an integer of 1 to 3,

ring A is

- (1) C₆₋₁₄ aryl,
- (2) C₃₋₈ cycloalkyl,
- (3) C₃₋₈ cycloalkenyl or
- (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.

R5 and R6 are each independently

- (1) hydrogen atom.
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) -ORa8

wherein R^{a8} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and

X is

10

15

20

25

30

35

40

45

50

55

5

- (1) hydrogen atom,
- (2) halogen atom,
- (3) cyano,
- (4) nitro,
- (5) amino, C₁₋₆ alkanoylamino,
- (6) C₁₋₆ alkylsulfonyl,
- (7) optionally substituted C₁₋₆ alkyl (as defined above),
- (8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
- (9) -COORa9

wherein Ra9 is hydrogen atom or C1-6 alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein R^{a11} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above) or

(12)

wherein

ring B is

- (1') C₆₋₁₄ aryl,
- (2') C₃₋₈ cycloalkyl or
- (3') heterocyclic group (as defined above),

each Z is independently

- (1') a group selected from the following group D,
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
- (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group

wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,

(e) optionally substituted C₁₋₆ alkyl (as defined above), (f) -(CH2),-CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is 5 (1") optionally substituted C₁₋₆ alkyl (as defined above), (2") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B 10 wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, (g) -(CH₂)_t-COOR^{a19} wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 15 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂)_t-CONRa27Ra28 wherein Ra27 and Ra28 are each independently, (1") hydrogen atom, 20 (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B. (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above 25 (6") heterocycle C_{1.6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group 30 B. or (8") C_{3-8} cycloalkyl $C_{1.8}$ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 35 (i) -(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C1-6 alkyl, (j) -(CH₂)_t-ORa20 wherein Ra20 is 40 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") optionally substituted C2-6 alkenyl (as defined above), (4") C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (5") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 45 (6") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above aroup B. (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (8") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 50 (9") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (10") C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 55 (k) -(CH₂)_t-O- (CH₂)_p-COR^{a21} wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,

(I) -(CH₂)_t-NR^{a22}Ra23

wherein Ra22 and Ra23 are each independently (1") hydrogen atom, 5 (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 group B. (m) - (CH₂)_t-NRa29CO-Ra24 wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above 15 group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (n)-(CH₂)_t-NHSO₂-R^{a25} wherein Ra25 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group option-20 ally substituted by 1 to 5 substituent(s) selected from the above group B, (o)-(CH₂)_t-S(O)_q-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, and (p) -(CH₂)_t-SO₂-NHRa26 wherein Ř^{a26} is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl option-25 ally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and 30 Y is (1') a single bond, (2') C₁₋₆ alkylene, (3') C2-6 alkenylene, 35 (4') -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5') -CO-, (6') -CO2-(CH2)n-, (7') -CONH-(CH2)n-NH-, 40 (8') -NHCO2-, (9') -NHCONH-, (10') -O-(CH₂)_n-CO-, (11') -O-(CH₂)_n-O-, (12') -SO₂-, 45 (13') -(CH₂)_m-NRa12-(CH₂)_nwherein Ra12 is (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), 50 (3") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (5") -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted $\mathsf{C}_{\mathsf{1-6}}$ alkyl (as defined above), $\mathsf{C}_{\mathsf{6-14}}$ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally 55 substituted by 1 to 5 substituent(s) selected from the above group B, (6") -COORb5 (Rb5 is as defined above) or (7") -SO₂Rb5 (Rb5 is as defined above),

(14') -NRa12CO- (Ra12 is as defined above),

(15') -CONRa13-(CH₂)_n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHRa14-

wherein Ra¹⁴ is C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O- $(CH_2)_m$ -CRa¹⁵Ra¹⁶- $(CH_2)_n$ -

wherein Ra15 and Ra16 are each independently

(1") hydrogen atom,

(2") carboxyl,

(3") C₁₋₆ alkyl,

(4") -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

(5") -NHRb7

wherein \mathbb{R}^{57} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or \mathbb{R}^{a15} is optionally

(6")

 $-(CH_2)_{n} - (Z') w'$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18') -(CH₂)_n-NR^{a12}-CHR^{a15}- (Ra¹² and Ra¹⁵ are each as defined above),

(19') -NRa17SO2-

wherein R^{a17} is hydrogen atom or C_{1-6} alkyl or

 $(20') - S(O)_{e} - (CH_{2})_{m} - CR^{a15}R^{a16} - (CH_{2})_{n}$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above).

- 2. The therapeutic agent of claim 1, wherein 1 to 4 of the G¹, G², G³, G⁴, G⁵, G⁶, G⁷, G⁸ and G⁹ is (are) a nitrogen atom.
- 3. The therapeutic agent of claim 2, wherein G2 is C(-R2) and G6 is a carbon atom.
- 4. The therapeutic agent of claim 2 or claim 3, wherein G⁵ is a nitrogen atom.
- 5. The therapeutic agent of claim 1, wherein, in formula [I], the moiety

G²-G¹. G⁸-G⁷. G⁸-G⁵

is a fused ring selected from

55

50

5

10

15

20

25

30

35

40

10
$$R^{2} + R^{1} + R^{2} + R$$

6. The therapeutic agent of claim 5, wherein, in formula [I], the moiety

55

is a fused ring selected from

7. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-1]

$$\begin{array}{c|c}
R^2 & R^7 & R^6 \\
\hline
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^7 & R^6 & \\
\hline
R^6 & Cy
\end{array}$$
[1-1]

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

8. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-2]

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

9.

9. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
 & N \\
\hline
 & R^5 \\
\hline
 & R^6
\end{array}$$
[1-3]

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

10. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-4]

- 30 wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
 - 11. The therapeutic agent of any of claims 1 to 10, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3} or -SO₂R^{a7} wherein R^{a1}, R^{a2}, R^{a3} and R^{a7} are as defined in claim 1.
 - 12. The therapeutic agent of any of claims 1 to 11, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl.
 - 13. The therapeutic agent of any of claims 1 to 12, wherein the ring A is C_{6-14} aryl.
 - 14. A fused ring compound of the following formula [ii]

$$G^{2} - G^{1} - G^{8} - G^{7} - G^{8} - G^{7} - G^{8$$

wherein the moiety

5

10

15

35

is a fused ring selected from

5

10

15

20

25

30

35

40

45

50

55

wherein R1, R2, R3 and R4 are each independently,

- (1) hydrogen atom,
- (2) C₁₋₆ alkanoyl,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,
- (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group \hat{A} ; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino,

(7) -COORa1

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

-(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂),NR^{b1}R^{b2}, - (CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-ORb1, -(CH2)r-SRb1, -(CH2)r-SO2Rb1 and -(CH2)r-SO2NRb1Rb2

wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6,

(8) -CONRa2Ra3

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

(9) -C(=NRa4)NH2

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHRa5

wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,

(11) -ORa6

wherein R^{a6} is hydrogen atom or optionally substituted $C_{1\text{-}6}$ alkyl (as defined above) ,

(12) -SO₂Ra7

wherein Ra7 is hydroxyl group, amino, C1-6 alkyl or C1-6 alkylamino

(13) -P(=O)(ORa31)2

wherein Ra31 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

R7 is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above),

ring Cy' is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C,

group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy, or (2)

(\langle u \rangle)v

380

wherein u and v are each independently an integer of 1 to 3, ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, turyl and thienyl, R^{5'} and R^{6'} are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) hydroxyl group

ring B is

(1) C₆₋₁₄ aryl,

5

10

15

20

25

30

35

40

45

50

55

- (2) C₃₋₈ cycloalkyl or
- (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

each Z is independently

- (1) a group selected from the following group D,
- (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
- (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D:
 - (a) hydrogen atom,
 - (b) halogen atom,
 - (c) cyano,
 - (d) nitro,
 - (e) optionally substituted C₁₋₆ alkyl (as defined above),
 - (f) -(CH₂)_t-CORa18,

(hereinafter each t means independently 0 or an integer of 1 to 6), wherein $R^{a\,18}$ is

- (1') optionally substituted C_{1-6} alkyl (as defined above),
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
- (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B

wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

5	(g) -(CH ₂) _t -COORa ¹⁹ wherein Ra ¹⁹ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH ₂) _t -CONRa ²⁷ Ra ²⁸ wherein Ra ²⁷ and Ra ²⁸ are each independently,
•	wholeshire and it are east independently,
10	 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	(5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
15	(6") heterocycle C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above
20	group B, or (8°) C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	(i) -(CH ₂) _t -C(=NR ^{a33})NH ₂
25	wherein Ra33 is hydrogen atom or C ₁₋₆ alkyl,
25	(j) -(CH ₂) _t -OR ^{a20} wherein R ^{a20} is
	(1') hydrogen atom,
30	(2') optionally substituted C ₁₋₆ alky! (as defined above),
30	(3') optionally substituted C_{2-6} alkenyl (as defined above), (4') C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group
	Ä,
	(5') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above
35	group B, (7') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above
	group B, (8') heterocycle C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the
40	above group B, (9') C ₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above
	group B, or (10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from
	the above group B,
45	(k) -(CH ₂) _t -O-(CH ₂) _p -COR ^{a21}
	wherein R^{a21} is C_{1-6} alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent (s) selected from the above group B, and p is 0 or an integer of 1 to 6,
	(I) -(CH ₂) _t -NR ^{a22} Ra ²³
50	wherein Ra22 and Ra23 are each independently
30	(1') hydrogen atom,
	(2') optionally substituted C_{1-6} alkyl (as defined above), (3') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
55	(4') C ₆₋₁₄ aryl C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
	(5') heterocycle C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6}

(m) -(CH₂)_t-NR^{a29}CO-R^{a24}

5

10

15

20

25

30

35

40

45

50

alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (n)-(CH₂)_t-NHSO₂-Ra25 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (o) -(CH₂)₁-S(O)_n-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, and (p) -(CH₂)_t-SO₂-NHRa26 wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and y is (1) a single bond, (2) C₁₋₆ alkylene, (3) C₂₋₆ alkenylene, (4) -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5) -CO-, (6) -CO2-(CH2)n-, (7) -CONH-(CH2)n-NH-, (8) -NHCO2-, (9) -NHCONH-, (10) -O-(CH₂)_n-CO-, (11) -O-(CH₂)_n-O-, (12) -SO₂-, (13) -(CH₂)_m-NRa12-(CH₂)_nwherein Ra12 is (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (5') -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') -COORb5 (Rb5 is as defined above) or (7') -SO₂R^{b5} (R^{b5} is as defined above), (14) -NRa12CO- (Ra12 is as defined above), (15) -CONRa13-(CH₂)_nwherein Ra13 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (16) -CONH-CHRa14wherein R^{a14} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17) -O- (CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

- (1') hydrogen atom,
- (2') carboxyl,
- (3') C₁₋₆ alkyl,
- (4') -ORb6

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or Ra15 is optionally

(6')

5

10

15

20

25

30

35

40

45

50

55

$$-(CH_2)_{\frac{n}{1}} - (Z')_{W'}$$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18) -(CH₂)_n-NR^{a12}-CHR^{a15}- (R^{a12} and R^{a15} are each as defined above),
- (19) -NRa17SO2-

wherein Ra¹⁷ is hydrogen atom or C₁₋₆ alkyl or (20) -S(O)_e-(CH₂)_m-CRa¹⁵Ra¹⁶-(CH₂)_n- (e is 0, 1 or 2, Ra¹⁵ and Ra¹⁶ are each as defined above), or a pharmaceutically acceptable salt thereof.

15. The fused ring compound of claim 14, which is represented by the following formula [II-1]

$$\begin{array}{c|c}
R^2 & R^7 & R^{5'} \\
R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^5 & Y & B \\
R^6 & Y & B
\end{array}$$

$$\begin{array}{c|c}
R & (Z) & W & [11-1]
\end{array}$$

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

16. The fused ring compound of claim 14, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & N & R^5 \\
\hline
 & N & R^6 & Y & B
\end{array}$$

$$\begin{array}{c|c}
R^2 & R^5 & Y & B
\end{array}$$

$$\begin{array}{c|c}
R^4 & Cy & R^6 & Y & B
\end{array}$$

wherein each symbol is as defined in claim 14,

or a pharmaceutically acceptable salt thereof.

5

10

15

25

30

35

45

17. The fused ring compound of claim 14, which is represented by the following formula [II-3]

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

20 18. The fused ring compound of claim 14, which is represented by the following formula [II-4]

$$R^2$$
 N
 N
 $R^{5'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

- 19. The fused ring compound of any of claims 14 to 18, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1} or -SO₂R^{a7} wherein R^{a1} and R^{a7} are as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- 20. The fused ring compound of claim 19, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
 - 21. The fused ring compound of claim 20, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
 - 22. The fused ring compound of any of claims 14 to 21, wherein the ring Cy' is cyclopentyl, cyclohexyl, cyclohexyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
- 23. The fused ring compound of claim 22, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
 - 24. The fused ring compound of any of claims 14 to 23, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- 25. The fused ring compound of claim 24, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
 - 26. The fused ring compound of claim 25, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

- 27. The fused ring compound of any of claims 14 to 26, wherein the Y is -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, -(CH₂)_m-NR^{a12}-(CH₂)_n- -CONR^{a13}-(CH₂)_n-, -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- or -(CH₂)_n-NR^{a12}-CHR^{a15}- (wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.
- 28. The fused ring compound of claim 27, wherein the Y is (CH₂)_m-O-(CH₂)_n- or -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- (wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.

10

- 29. The fused ring compound of claim 28, wherein the Y is -(CH₂)_m-O-(CH₂)_n- wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- 30. The fused ring compound of any of claims 14 to 29, wherein the R² is carboxyl, R¹, R³ and R⁴ are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- 15 31. The fused ring compound of claim 14 or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

```
ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
20
              ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-{2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
25
              2-{4-{2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate,
              1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide,
                                                                                   2-(4-benzyloxyphenyl)-5-cyano-1-cy-
30
              clopentylbenzimidazole,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime,
              ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxy-
              1-cyclohexyl-2-{4-{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
35
              ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate.
              2-{4-{bis(3-fluorophenyl)methoxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
              2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
40
              ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-{3-(3-chlorophenyl)phenoxy)phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate,
              ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylate,
45
              1-cyclohexyl-2-{4- [3- (4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
              ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide,
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide,
50
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazote,
              5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
             2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
             2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole,
55
             5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride,
```

5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonylaminobenzimidazole,

```
2-[4-(4-tert-butylbenzyloxy)phenyi]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-[4-(4-carboxybenzyloxy)phenyi]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-{4-[(2-chloro-5-thienyl)methoxylphenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
 5
               1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy) phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclopentyi-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride,
               1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-{4-{(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid,
               [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid,
 10
               2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid.
               2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid.
 15
               1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid,
               2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentyl-benzimidazole-5-carboxylic acid,
               2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
               trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol,
20
               trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane,
               2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole,
               2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid.
               1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
25
               1-cyclopentyl-2- [4- (phenylcarbamoylamino) phenyl] benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid,
               trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane,
               2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole,
30
               2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentyl-benzimidazole-5-carboxylic acid,
               2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
35
               1-cyclohexyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid,
               2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid.
               1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid.
40
               1-cyclohexyl-2-[4- (dibenzylamino)phenyl]benzimidazole-5-carboxylic acid,
              2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
              2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
45
              1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
              2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid.
50
              2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid.
              2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
55
              2- [4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
5
              1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
              acid,
10
              1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl]benzimidazole-5-carboxylic acid,
              2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid,
15
              2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl[benzimidazole-5-carboxylic acid,
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane,
20
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
25
              2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid,
30
              2-{4-{2-(e-benzyloxyphenyl)ethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{2-(3-benzyloxyphenyl)ethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
35
              2-{4-{3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
              2-{4-{2-(4-tert-butylphenyl)-5-chlorobenzyloxylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-f3-chloro-6-(3,5-dichlorophenyl)benzyloxylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
40
              2-{4- [bis (4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{(2R)-2-amino-2-phenylethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
45
              2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
              ylic acid,
              2-{4-{3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
50
              ylic acid,
              2-{4-{3-chloro-6- (3,4,5-trimethoxyphenyl) benzyloxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
55
              1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
              2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3- (3-methyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
```

```
2-{4-{{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo-
                 2-[4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
   5
                 2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4- (4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
   10
                 2-[4-[3-chloro-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid,
  15
                 1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-{4-{3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
  20
                2-[4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic ac-
                id,
                2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-[3-(2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
  25
                2-[4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
 30
               2-{4-{{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[((2S) -1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
 35
               1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl}benzimidazole-5-carboxylic
               1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl)-4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
               id,
 40
               2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[3-(4-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-[3-(4-fluorobenzyloxy)phenoxy]phenyf]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S) -1- (4-nitrophenyl) -2-pyrrolidinyl]-methoxy]phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochlo-
45
               ride,
              2-{4-{{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}mthoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
              acid.
              2-{4-[{5- (4-chlorophenyl) -2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
              id,
              2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
50
              1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxylphenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
              2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
55
              2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl]benzimidazole-5-carboxylic acid,
             2-{4-[3-(4-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-car-
               boxylic acid,
               2-{4-{\d-chlorophenyl\) -2-methyl-5-thiazolyl\methoxy]phenyl\}-1-cyclohexylbenzimidazole-5-carboxylic ac-
 5
              id,
               2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy}-phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
10
              2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-fa-carbamoyi-2-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-{4-chlorobenzyloxy)piperidino}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-{3-{(2-chloro-4-pyridyl)methoxy}phenoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
15
              2-{4-{{(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-
              5-carboxylic acid,
              2-{4-{2-(4-chlorophenyl)-5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-
20
              5-carboxvlic acid.
              2-{4-{2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
              2-{4-{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
              acid hydrochloride,
25
              2-{4-{{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydro-
              2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-
              ic acid trifluoroacetate.
30
              2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{4-{4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid.
              2-{4-{4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
35
              chloride.
              ethyl 2-{4-{3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazoie-5-carboxylate,
              methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              methyl 2-{4-{5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy}-phenyl}-1-cyclohexylbenzimidazole-5-car-
40
              boxylate,
              methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate hy-
              methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
              ylate,
45
              2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
              hydrochloride,
              2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
              acid.
              2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluor-
50
              oacetate.
              2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
              2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole5-carboxylic acid,
              1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carbox-
              ylic acid,
55
              1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic
              acid hydrochloride.
```

1-cyclohexyl-2-{2-fluoro-4-{4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-sulfonic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride. 5 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxylphenyl]benzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 10 2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid. 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 15 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride. 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-20 boxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-{3-carbamoyl-6-(4-chlorophenyl)benzyloxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 25 2-{4-{3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-{3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 30 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 35 hydrochloride, methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 40 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-45 boxylic acid hydrochloride. 2-{4-{2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-{2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 50 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethyl)carbamoylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-55 boxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-

2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-

5-carboxylic acid hydrochloride.

	zole-5-carboxylic acid hydrochloride, 2-(4-[2-{4-(2-carboxyethyl)phenyl}-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 2-(4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
5	2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic achydrochloride,
	2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
10	2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochk ride,
	2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
15	sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[2-(4-chlorophenyl) -5- (dimethylcarbamoyl) benzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
	sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida zole-5-carboxylate,
20	2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
25	2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy
	drochloride, 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy drochloride,
10	2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
	2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole 5-carboxylate,
15	2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
	2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-boxylic acid hydrochloride,
0	2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida- zole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
	zole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimi-
5	dazole-5-carboxylic acid hydrochloride, methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-3-cyclohexyl-1-cyclopentyl-1H-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-1-cyclopentyl-1H-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-1-cyc
_	limidazo[1,2-a]pyridine-7-carboxylate, 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid, and
U	2-f4-f2-(4-chlorophenyl)-5-methoxybenzyloxylphenyl}-3-cyclohexyl-3H-imidazof4-5-bloyridine-6-carboxylic

32. A pharmaceutical composition comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

acid.

55

33. A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- 34. An anti-hepatitis C virus agent comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 35. A therapeutic agent for hepatitis C comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - 36. A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable sait thereof.
- 37. A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused 10 ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable sait thereof.
 - 38. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
 - 39. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- 40. A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the 20 formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - 41. A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 25 42. A commercial package comprising a pharmaceutical composition of claim 40 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis
- 43. A commercial package comprising a pharmaceutical composition of claim 41 and a written matter associated 30 therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.

35

5

15

40

45

50

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/09181

Int. 405/ 4178	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D209/12, 235/18, 235/30, 401/04, 401/10, 401/12, 401/14, 403/12, 405/04, 405/12, 409/04, 409/12, 409/14, C07D413/04, 413/12, 417/12, 471/04, 487/04, A61K31/407, 4178, 4184, 422, 427, 428, 433, 437, 4439, 454, 4709, A61K31/4725, 496, 498, 506, 53, 5377, 541, 55, A61P1/16, 31/20 According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELD	S SEARCHED				
Int. 405/ 4178 541,	ocumentation searched (classification system follower CL ² C07D209/12, 235/18, 235/30, 4 12, 409/04, 409/12, 409/14, C07D413/0, 4184, 422, 427, 428, 433, 437, 4439, 55, A61P1/16, 31/20	01/04, 401/10, 401/12, 401/14 14, 413/12, 417/12, 471/04, 4 454, 4709, A61K31/4725, 496, 4	87/04, A61K31/407, 198, 506, 53, 5377,		
Documents	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
771					
	ata base consulted during the international search (nar LUS, REGISTRY (STN)	ne of the base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
A	WO, 97/46237, A1 (ELI LILLY AN	D COMPANY),	1-35, 38-43		
	11 December, 1997 (11.12.97),				
i	& CA, 2257296, A & AU, 9732				
]	& EP, 906097, A1 & CN, 1220 & BR, 9709528, A & JP, 2000	-511899, A			
	u pa, 3.03320, A u 01, 2000	-311033, A			
A	EP, 507650, Al (SYNTHELABO S.A	.),	1-35, 38-43		
1	07 October, 1992 (07.10.92),	,	-		
	& FR, 2674855, A & CA, 2064	924, A			
	& FR, 2674855, A & CA, 2064 & NO, 9201281, A & AU, 9213 & CN, 1065459, A & JP, 5-11	989, A 2563 A			
	& HU, 62573, A & US, 5280	030. A			
	1, 020.0, 11 1 00, 3200	330, 11			
A	WO, 97/25316, A1 (GLAXO GROUP:	LMT.),	1-35, 38-43		
	17 July, 1997 (17.07.97),				
	& AU, 9714389, A & NO, 9803 & CZ, 9802127, A & EP, 8866	089, A	•		
	ERR. 9706938 A ERT 9900	35, AI 580 a			
	& BR, 9706938, A & HU, 9900 & US, 5998398, A & CN, 1212	683. A			
	& JP, 2000-503017, A& KR, 9907				
		· .			
			·		
Further	documents are listed in the continuation of Box C.	See patent family annex.			
	categories of cited documents:	"I" later document published after the inter			
	nt defining the general state of the art which is not red to be of particular relevance	priority date and not in conflict with the understand the principle or theory unde			
	locument but published on or after the international filing	"X" document of particular relevance; the c	laimed invention cannot be		
"L" docume	nt which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider step when the document is taken alone	en to myolve an inventive		
cited to	establish the publication date of another citation or other	"Y" document of particular relevance; the ci	laimed invention cannot be		
	special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such				
means "P" document published prior to the international filling date but later than the priority date claimed "A" document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
	20 February, 2001 (20.02.01) 06 March, 2001 (06.03.01)				
			-		
Name and m	siling address of the ISA/	Authorized officer			
	nese Patent Office	- Tricklifth orrigin			
Facsimile No. Telephone No.					
PCTRS A 710 (general cheet) (Tehr 1902)					

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

	. PCI/0P00/09181
Box I Observations where certain claims were found unsearchable (Continuation	
This international search report has not been established in respect of certain claims und	der Article 17(2)(a) for the following reasons:
·	
1. Claims Nos.: 36,37	
because they relate to subject matter not required to be searched by this Author	
The inventions of claims 36 and 37 fall under for treatment of the human body by therapy.	the category of methods
	•
 Claims Nos.: because they relate to parts of the international application that do not comply 	with the measuribed manning to be a second
extent that no meaningful international search can be carried out, specifically:	with the prescribed requirements to such an
3. Claims Nos.:	
because they are dependent claims and are not drafted in accordance with the s	
Box II Observations where unity of invention is lacking (Continuation of item 2 of	
This International Searching Authority found multiple inventions in this international app	plication, as follows:
•	
As all required additional search fees were timely paid by the applicant, this int	amational search report covers all searchable
claims.	order all scalements
As all searchable claims could be searched without effort justifying an additions	al fee this Authority did not in its
of any additional fee.	m too, this Attitudity the first matte payment
As only some of the required additional search fees were timely paid by the app	disont this international and
only those claims for which fees were paid, specifically claims Nos.:	meant, una miamanonal search report covers
No required additional search fees were timely paid by the applicant. Consequen	why this international
search report is restricted to the invention first mentioned in the claims; it is cover	ered by claims Nos.:
	•
emark on Protest The additional search fees were accommanied by the applica	
The second secon	
No protest accompanied the payment of additional search for	ees.